From 4a367bdc98eaefbcddf9a1c3e817db4ec2c70973 Mon Sep 17 00:00:00 2001 From: Damien Brouet Date: Tue, 28 May 2024 14:57:56 +0200 Subject: [PATCH 001/165] ADD: first implementation of the CCP method --- mapie/regression/__init__.py | 5 +- mapie/regression/ccp_regression.py | 993 +++++++++++++++++++++++++++++ mapie/tests/test_ccp_regression.py | 751 ++++++++++++++++++++++ 3 files changed, 1748 insertions(+), 1 deletion(-) create mode 100644 mapie/regression/ccp_regression.py create mode 100644 mapie/tests/test_ccp_regression.py diff --git a/mapie/regression/__init__.py b/mapie/regression/__init__.py index fba9be799..aea43031d 100644 --- a/mapie/regression/__init__.py +++ b/mapie/regression/__init__.py @@ -1,9 +1,12 @@ from .quantile_regression import MapieQuantileRegressor from .regression import MapieRegressor +from .ccp_regression import MapieCCPRegressor, PhiFunction from .time_series_regression import MapieTimeSeriesRegressor __all__ = [ "MapieRegressor", "MapieQuantileRegressor", - "MapieTimeSeriesRegressor" + "MapieTimeSeriesRegressor", + "MapieCCPRegressor", + "PhiFunction", ] diff --git a/mapie/regression/ccp_regression.py b/mapie/regression/ccp_regression.py new file mode 100644 index 000000000..7650462f7 --- /dev/null +++ b/mapie/regression/ccp_regression.py @@ -0,0 +1,993 @@ +from __future__ import annotations + +import inspect +import warnings +from typing import Callable, Dict, List, Optional, Tuple, Union, cast + +import numpy as np +from scipy.optimize import minimize +from sklearn.base import RegressorMixin +from sklearn.exceptions import NotFittedError +from sklearn.linear_model import LinearRegression +from sklearn.model_selection import (BaseCrossValidator, BaseShuffleSplit, + ShuffleSplit) +from sklearn.pipeline import Pipeline +from sklearn.utils import _safe_indexing +from sklearn.utils.validation import _check_y, check_is_fitted, indexable + +from mapie._typing import ArrayLike, NDArray +from mapie.conformity_scores import ConformityScore +from mapie.utils import (check_conformity_score, check_estimator_fit_predict, + check_lower_upper_bounds, check_null_weight, + fit_estimator) + + +class PhiFunction(): + """ + This class is used to define the transformation phi, + used in the Gibbs et al. method to estimate the conformity score + Phi takes as input X (and can take y_pred and any exogenous variable) + and return an array of shape (n_samples, d), for any integer d. + + Parameters + ---------- + functions: Optional[Union[ + Union[Callable, "PhiFunction"], + List[Union[Callable, "PhiFunction"]] + ]] + List of functions (or PhiFunction objects) or single function. + Each function can take a combinaison of the following arguments: + - ``X``: Input dataset, of shape (n_samples, ``n_in``) + - ``y_pred``: estimator prediction, of shape (n_samples,) + - ``z``: exogenous variable, of shape (n_samples, n_features). + It should be given in the ``fit`` and ``predict`` methods. + The results of each functions will be concatenated to build the final + result of the phi function, of shape (n_samples, ``n_out``). + If ``None``, the resulting phi object will return a column of ones, + when called. It will result, in the MapieCCPRegressor, in a basic + split CP approach. + + By default ``None``. + + marginal_guarantee: bool + Add a column of ones to ``phi(X, y_pred, z)`` for safety reason + (to garanty the marginal coverage, no matter the ``functions`` value). + If the functions covers all the dataset (meaning, for all calibration + and test samples, ``phi(X, y_pred, z)`` is never all zeros), + this column of ones is not necessary to obtain marginal coverage. + In this case, you can set this argument to ``False``. + + By default ``True``. + + Attributes + ---------- + n_in: int + Number of features of ``X`` + + n_out: int + Number of features of phi(``X``) + + Examples + -------- + >>> import numpy as np + >>> from mapie.regression import PhiFunction + >>> X = np.array([[1, 2], [3, 4], [5, 6]]) + >>> y_pred = np.array([0, 0, 1]) + >>> z = np.array([[10], [20], [30]]) + >>> def not_lambda_function(y_pred, z): + ... result = np.zeros((y_pred.shape[0], z.shape[1])) + ... cnd = (y_pred == 1) + ... result[cnd] = z[cnd] + ... return result + >>> phi = PhiFunction( + ... functions=[ + ... lambda X: X * (y_pred[:, np.newaxis] == 0), # X, if y_pred is 0 + ... lambda y_pred: y_pred, # y_pred + ... not_lambda_function, # z, if y_pred is 1 + ... ] + ... ) + >>> print(phi(X, y_pred, z)) + [[ 1. 2. 0. 0. 1.] + [ 3. 4. 0. 0. 1.] + [ 0. 0. 1. 30. 1.]] + >>> print(phi.n_out) + 5 + >>> # We can also combine PhiFunction objects with other functions + >>> compound_phi = PhiFunction( + ... functions=[ + ... phi, + ... lambda X: 4 * np.ones((X.shape[0], 1)), + ... ] + ... ) + >>> print(compound_phi(X, y_pred, z)) + [[ 1. 2. 0. 0. 4. 1.] + [ 3. 4. 0. 0. 4. 1.] + [ 0. 0. 1. 30. 4. 1.]] + """ + def __init__( + self, + functions: Optional[Union[ + Union[Callable, "PhiFunction"], + List[Union[Callable, "PhiFunction"]] + ]] = None, + marginal_guarantee: bool = True + ) -> None: + if isinstance(functions, list): + self.functions = list(functions) + elif functions is not None: + self.functions = [functions] + else: + self.functions = [] + + self.marginal_guarantee = marginal_guarantee + + self.marginal_guarantee = self.marginal_guarantee or any( + phi.marginal_guarantee for phi in self.functions + if isinstance(phi, PhiFunction) + ) + + self._check_functions(self.functions, self.marginal_guarantee) + + self.n_in: Optional[int] = None + self.n_out: Optional[int] = None + + def _check_functions( + self, + functions: List[Union[Callable, "PhiFunction"]], + marginal_guarantee: bool, + ) -> None: + """ + Validate functions for required and optional arguments. + + Parameters + ---------- + functions : List[Union[Callable, "PhiFunction"]] + List of functions or PhiFunction instances to be checked. + + marginal_guarantee : bool + Flag indicating whether marginal guarantee is enabled. + + Raises + ------ + ValueError + If no functions are provided and `marginal_guarantee` is False. + If functions contain unknown required arguments. + + Warns + ----- + UserWarning + If functions contain unknown optional arguments. + + Notes + ----- + This method ensures that the provided functions only use recognized + arguments ('X', 'y_pred', 'z'). Unknown optional arguments are allowed, + but will always use their default values. + """ + if len(functions) == 0 and not marginal_guarantee: + raise ValueError("You need to define the `functions` argument " + "with a function or a list of functions, " + "or keep marginal_guarantee argument to True.") + + warn_ind: Dict[str, List[int]] = {} + error_ind: Dict[str, List[int]] = {} + for i, funct in enumerate(functions): + params = inspect.signature(funct).parameters + + for param, arg in params.items(): + if ( + param not in ["X", "y_pred", "z"] + and param != "disable_marginal_guarantee" + ): + if arg.default is inspect.Parameter.empty: + if param in error_ind: + error_ind[param].append(i) + else: + error_ind[param] = [i] + else: + if param in warn_ind: + warn_ind[param].append(i) + else: + warn_ind[param] = [i] + + if len(warn_ind) > 0: + warn_msg = "" + for param, inds in warn_ind.items(): + warn_msg += ( + f"The functions at index ({', '.join(map(str, inds))}) " + + "of the 'functions' argument, has an unknown optional " + + f"argument '{param}'.\n" + ) + warnings.warn( + "WARNING: Unknown optional arguments.\n" + + warn_msg + + "The only recognized arguments are : 'X', 'y_pred' and 'z'. " + "The other optional arguments will act as parameters, " + "as it is always their default value which will be used." + ) + if len(error_ind) > 0: + error_msg = "" + for param, inds in error_ind.items(): + error_msg += ( + f"The functions at index ({', '.join(map(str, inds))}) " + + "of the 'functions' argument, has an unknown required " + + f"argument '{param}'.\n" + ) + raise ValueError( + "Forbidden required argument.\n" + f"{error_msg}" + "The only allowed required argument are : 'X', " + "'y_pred' and 'z'.\n" + "Note: You can use optional arguments if you want " + "to. They will act as parameters, as it is always " + "their default value which will be used." + ) + + def __call__( + self, + X: Optional[NDArray] = None, + y_pred: Optional[NDArray] = None, + z: Optional[NDArray] = None, + disable_marginal_guarantee: bool = False, + ) -> NDArray: + self.n_in = len(_safe_indexing(X, 0)) + self.n_out = 0 + + params_mapping = {"X": X, "y_pred": y_pred, "z": z} + res = [] + + funct_list = list(self.functions) + if not disable_marginal_guarantee and self.marginal_guarantee: + funct_list.append(lambda X: np.ones((len(X), 1))) + + for f in funct_list: + params = inspect.signature(f).parameters + + used_params = { + p: params_mapping[p] for p in params + if p in params_mapping and params_mapping[p] is not None + } + if isinstance(f, PhiFunction): + # We only consider marginal_guaranty with the main PhiFunction + res.append(f(disable_marginal_guarantee=True, **used_params)) + else: + res.append(f(**used_params)) + + if len(res[-1].shape) == 1: + res[-1] = np.expand_dims(res[-1], axis=1) + + self.n_out += res[-1].shape[1] + return np.hstack(res) + + +class MapieCCPRegressor(): + """ + This class implements Conformal Prediction With Conditional Guarantees + method as proposed by Gibbs et al. (2023) to make conformal predictions. + The only valid cross-val strategy is the "split" approach. + + Parameters + ---------- + estimator: Optional[RegressorMixin] + Any regressor with scikit-learn API + (i.e. with ``fit`` and ``predict`` methods). + If ``None``, estimator defaults to a ``QuantileRegressor`` instance. + + By default ``"None"``. + + phi: Optional[PhiFunction] + The phi function used to estimate the conformity scores + + If ``None``, use the default PhiFunction(lambda X: np.ones(len(X))). + It will result in a constant interval prediction (basic split method). + See the examples and the documentation to build a PhiFunction + adaptated to your dataset and constraints. + + By default ``None``. + + cv: Optional[Union[int, str, BaseCrossValidator, BaseShuffleSplit]] + The cross-validation strategy for computing conformity scores. + The method only works with a "split" approach. + Choose among: + + - Any ``sklearn.model_selection.BaseCrossValidator`` + with ``n_splits``=1. + - ``"split"`` or ``None``, divide the data into training and + calibration subsets (using the default ``calib_size``=0.3). + The splitter used is the following: + ``sklearn.model_selection.ShuffleSplit`` with ``n_splits``=1. + - ``"prefit"``, assumes that ``estimator`` has been fitted already. + All data provided in the ``fit`` method is then used + for the calibration. + The user has to take care manually that data for model fitting and + calibration (the data given in the ``fit`` method) are disjoint. + + Note: You can choose the calibration indexes + with sklearn.model_selection.PredefinedSplit(test_fold), + where test_fold[i] = 1 (or any not negative integer) + if the row should be in the calibration set, + -1 otherwise (if it should be used for training). + + By default ``None``. + + conformity_score: Optional[ConformityScore] + ConformityScore instance. + It defines the link between the observed values, the predicted ones + and the conformity scores. For instance, the default ``None`` value + correspondonds to a conformity score which assumes + y_obs = y_pred + conformity_score. + + - ``None``, to use the default ``AbsoluteConformityScore`` conformity + score + - Any ``ConformityScore`` class + + By default ``None``. + + alpha: float + Between ``0.0`` and ``1.0``, represents the risk level of the + confidence interval. + Lower ``alpha`` produce larger (more conservative) prediction + intervals. + ``alpha`` is the complement of the target coverage level. + + By default 0.1 + + + random_state: Optional[int] + Pseudo random number generator state used for random sampling. + Pass an int for reproducible output across multiple function calls. + + By default ``None``. + + Attributes + ---------- + beta_up: Tuple[NDArray, bool] + Calibration fitting results, used to build the upper bound of the + prediction intervals. + beta_up[0]: Array of shape (phi.n_out, ) + beta_up[1]: Whether the optimization process converged or not + (the coverage is not garantied if the optimization fail) + + beta_low: Tuple[NDArray, bool] + Same as beta_up, but for the lower bound + + References + ---------- + Isaac Gibbs and John J. Cherian and Emmanuel J. Candès. + "Conformal Prediction With Conditional Guarantees", 2023 + + Examples + -------- + >>> import numpy as np + >>> from mapie.regression import MapieCCPRegressor + >>> X_train = np.array([[0], [1], [2], [3], [4], [5]]) + >>> y_train = np.array([5, 7.5, 9.5, 10.5, 12.5, 15]) + >>> mapie_reg = MapieCCPRegressor(alpha=0.1, random_state=42) + >>> mapie_reg.fit_calibrate( + ... X_train, + ... y_train, + ... ) + >>> y_pred, y_pis = mapie_reg.predict(X_train) + >>> print(y_pis[:,:, 0]) + [[ 5. 5.8 ] + [ 6.85 7.65] + [ 8.7 9.5 ] + [10.55 11.35] + [12.4 13.2 ] + [14.25 15.05]] + >>> print(y_pred) + [ 5.4 7.25 9.1 10.95 12.8 14.65] + """ + + default_sym_ = True + + def __init__( + self, + estimator: Optional[ + Union[ + RegressorMixin, + Pipeline, + List[Union[RegressorMixin, Pipeline]] + ] + ] = None, + phi: Optional[PhiFunction] = None, + cv: Optional[ + Union[str, BaseCrossValidator, BaseShuffleSplit] + ] = "split", + alpha: float = 0.1, + conformity_score: Optional[ConformityScore] = None, + random_state: Optional[int] = None, + ) -> None: + + self.random_state = random_state + self.cv = self._check_cv( + cv, random_state=self.random_state + ) + self.estimator = self._check_estimator(estimator) + self.conformity_score_ = check_conformity_score( + conformity_score, self.default_sym_ + ) + + if phi is None: + self.phi = PhiFunction(lambda X: np.ones(len(X))) + else: + self.phi = cast(PhiFunction, phi) + + self.alpha = cast(float, self._check_alpha(alpha)) + self.beta_up: Optional[Tuple[NDArray, bool]] = None + self.beta_low: Optional[Tuple[NDArray, bool]] = None + + def _check_cv( + self, + cv: Optional[Union[str, BaseCrossValidator, BaseShuffleSplit]] = None, + test_size: float = 0.3, + random_state: Optional[int] = None, + ) -> Union[str, BaseCrossValidator, BaseShuffleSplit]: + """ + Check if ``cv`` is ``None``, ``"prefit"``, ``"split"``, + or ``BaseShuffleSplit``/``BaseCrossValidator`` with ``n_splits``=1. + Return a ``ShuffleSplit`` instance ``n_splits``=1 + if ``None`` or ``"split"``. + Else raise error. + + Parameters + ---------- + cv: Optional[Union[str, BaseCrossValidator, BaseShuffleSplit]] + Cross-validator to check, by default ``None``. + + test_size: float + If float, should be between 0.0 and 1.0 and represent the + proportion of the dataset to include in the test split. + If cv is not ``"split"``, ``test_size`` is ignored. + + By default ``None``. + + random_state: Optional[int] + Pseudo random number generator state used for random uniform + sampling for evaluation quantiles and prediction sets. + Pass an int for reproducible output across multiple function calls. + + By default ```None``. + + Returns + ------- + Union[str, BaseCrossValidator, BaseShuffleSplit] + The cast `cv` parameter. + + Raises + ------ + ValueError + If the cross-validator is not valid. + """ + if random_state is None: + random_seeds = cast(list, np.random.get_state())[1] + random_state = np.random.choice(random_seeds) + if cv is None: + return ShuffleSplit( + n_splits=1, test_size=test_size, random_state=random_state + ) + elif isinstance(cv, (BaseCrossValidator, BaseShuffleSplit)): + try: + if hasattr(cv, "get_n_splits") and cv.get_n_splits() != 1: + raise ValueError( + "Invalid cv argument. " + "Allowed values are a BaseCrossValidator or " + "BaseShuffleSplit object with ``n_splits``=1. " + f"Got `n_splits`={cv.get_n_splits()}." + ) + return cv + except (ValueError, TypeError): + raise ValueError( + "Invalid cv argument. " + "Allowed values are a BaseCrossValidator or " + "BaseShuffleSplit object with ``n_splits``=1." + ) + elif cv == "prefit": + return cv + elif cv == "split": + return ShuffleSplit( + n_splits=1, test_size=test_size, random_state=random_state + ) + else: + raise ValueError( + "Invalid cv argument. " + "Allowed values are None, 'prefit', 'split' " + "or a BaseCrossValidator/BaseShuffleSplit " + "object with ``n_splits``=1." + ) + + def _check_alpha( + self, + alpha: Optional[float] = None + ) -> float: + """ + Check alpha + + Parameters + ---------- + alpha: float + Can be a float between 0 and 1, represent the uncertainty + of the confidence interval. Lower alpha produce + larger (more conservative) prediction intervals. + alpha is the complement of the target coverage level. + + Returns + ------- + float + Valid alpha. + + Raises + ------ + ValueError + If alpha is not a float between 0 and 1. + + """ + if isinstance(alpha, float): + alpha = alpha + else: + raise ValueError( + "Invalid alpha. Allowed values are float." + ) + + if alpha < 0 or alpha > 1: + raise ValueError("Invalid alpha. " + "Allowed values are between 0 and 1.") + return alpha + + def _check_estimator( + self, estimator: Optional[RegressorMixin] = None + ) -> RegressorMixin: + """ + Check if estimator is ``None``, + and returns a ``LinearRegression`` instance if necessary. + If the ``cv`` attribute is ``"prefit"``, + check if estimator is indeed already fitted. + + Parameters + ---------- + estimator: Optional[RegressorMixin] + Estimator to check, by default ``None``. + + Returns + ------- + RegressorMixin + The estimator itself or a default ``LinearRegression`` instance. + + Raises + ------ + ValueError + If the estimator is not ``None`` + and has no ``fit`` nor ``predict`` methods. + + NotFittedError + If the estimator is not fitted + and ``cv`` attribute is ``"prefit"``. + """ + if estimator is None: + return LinearRegression() + else: + check_estimator_fit_predict(estimator) + if self.cv == "prefit": + try: + if isinstance(estimator, Pipeline): + check_is_fitted(estimator[-1]) + else: + check_is_fitted(estimator) + except NotFittedError as exc: + raise NotFittedError( + "You are using cv='prefit' with an estimator " + "which is not fitted yet.\n" + "Fit the estimator first, or change the " + "cv argument value." + ) from exc + return estimator + + def _check_fit_parameters( + self, + X: ArrayLike, + y: ArrayLike, + sample_weight: Optional[ArrayLike] = None, + ): + """ + Validate sample_weight + + Parameters + ---------- + X: ArrayLike + Observed values. + + y: ArrayLike + Target values. + + sample_weight: Optional[NDArray] of shape (n_samples,) + Non-null sample weights. + + Returns + ------- + NDArray + The X observed values. + + NDArray + the y target values. + + Optional[NDArray] of shape (n_samples,) + Validated Non-null sample weights. + + """ + # Checking + + X, y = indexable(X, y) + y = _check_y(y) + sample_weight, X, y = check_null_weight(sample_weight, X, y) + + X = cast(NDArray, X) + y = cast(NDArray, y) + sample_weight = cast(Optional[NDArray], sample_weight) + + return ( + X, y, + sample_weight + ) + + def fit( + self, + X: ArrayLike, + y: ArrayLike, + sample_weight: Optional[ArrayLike] = None, + groups: Optional[ArrayLike] = None, + **fit_params, + ) -> None: + """ + Fit the estimator. + + Parameters + ---------- + X: ArrayLike of shape (n_samples, n_features) + Training data. + + y: ArrayLike of shape (n_samples,) + Training labels. + + sample_weight: Optional[ArrayLike] of shape (n_samples,) + Sample weights for fitting the out-of-fold models. + If ``None``, then samples are equally weighted. + If some weights are null, + their corresponding observations are removed + before the fitting process and hence have no residuals. + If weights are non-uniform, residuals are still uniformly weighted. + Note that the sample weight defined are only for the training, not + for the calibration procedure. + + By default ``None``. + + groups: Optional[ArrayLike] of shape (n_samples,) + Group labels for the samples used while splitting the dataset into + train/test set. + + By default ``None``. + + **fit_params: dict + Additional fit parameters for the estimator. + + """ + + if self.cv != 'prefit': + train_index = list( + cast(BaseCrossValidator, self.cv).split(X, y, groups) + )[0][0] + X_train = cast(NDArray, _safe_indexing(X, train_index)) + y_train = cast(NDArray, _safe_indexing(y, train_index)) + + if sample_weight is not None: + sample_weight_train = cast( + NDArray, _safe_indexing(sample_weight, train_index) + ) + else: + sample_weight_train = None + + (X_train, + y_train, + sample_weight_train) = self._check_fit_parameters( + X_train, y_train, sample_weight_train + ) + fit_estimator(self.estimator, X_train, y_train, + sample_weight=sample_weight_train, **fit_params) + + else: + warnings.warn("WARNING: As cv='prefit', the estimator will not " + "be fitted again. You can directly call the" + "calibrate method.") + + def calibrate( + self, + X: ArrayLike, + y: ArrayLike, + groups: Optional[ArrayLike] = None, + z: Optional[ArrayLike] = None, + alpha: Optional[float] = None, + ) -> None: + """ + Calibrate with (``X``, ``y`` and ``z``) + and the new value ``alpha`` value, if not ``None`` + + Parameters + ---------- + X: ArrayLike of shape (n_samples, n_features) + Training data. + + y: ArrayLike of shape (n_samples,) + Training labels. + + groups: Optional[ArrayLike] of shape (n_samples,) + Group labels for the samples used while splitting the dataset into + train/test set. + + By default ``None``. + + z: Optional[ArrayLike] of shape (n_calib_samples, n_exog_features) + Exogenous variables + + By default ``None`` + + alpha: Optional[float] + Between ``0.0`` and ``1.0``, represents the risk level of the + confidence interval. + Lower ``alpha`` produce larger (more conservative) prediction + intervals. + ``alpha`` is the complement of the target coverage level. + + If ``None``, the calibration will be done using the ``alpha``value + set in the initialisation. Else, the new value will overwrite the + old one. + + By default ``None`` + + """ + if self.cv != 'prefit': + try: + if isinstance(self.estimator, Pipeline): + check_is_fitted(self.estimator[-1]) + else: + check_is_fitted(self.estimator) + except NotFittedError as exc: + raise NotFittedError("As you are using an estimator which is " + "not fitted yet, you need to call the " + "fit method before calibrate.") from exc + + calib_index = list( + cast(BaseCrossValidator, self.cv).split(X, y, groups) + )[0][1] + X_calib = cast(NDArray, _safe_indexing(X, calib_index)) + y_calib = cast(NDArray, _safe_indexing(y, calib_index)) + if z is not None: + z_calib = cast(NDArray, _safe_indexing(z, calib_index)) + else: + z_calib = None + else: + X_calib = cast(NDArray, X) + y_calib = cast(NDArray, y) + if z is not None: + z_calib = cast(NDArray, z) + else: + z_calib = None + + if alpha is not None: + if self.alpha != alpha: + self.alpha = self._check_alpha(alpha) + warnings.warn(f"WARNING: The old value of alpha " + f"({self.alpha}) has been overwritten " + f"by the new one ({alpha}).") + + y_pred_calib = self.estimator.predict(X_calib) + + calib_conformity_scores = \ + self.conformity_score_.get_conformity_scores( + X_calib, y_calib, y_pred_calib + ) + + if self.conformity_score_.sym: + alpha_low = 1 - self.alpha + alpha_up = 1 - self.alpha + else: + alpha_low = self.alpha / 2 + alpha_up = 1 - self.alpha / 2 + + def l_alpha(alpha, X, S): + return np.where(S >= X, (1 - alpha) * (S - X), alpha * (X - S)) + + def sum_of_losses(beta, phi_x, S, alpha): + return np.sum(l_alpha(alpha, phi_x.dot(beta), S)) + + phi_x = self.phi( + X_calib, + cast(NDArray, y_pred_calib), + cast(NDArray, z_calib), + ) + + if np.any(np.all(phi_x == 0, axis=1)): + warnings.warn("WARNING: At least one row of the transformation " + "phi(X, y_pred, z) is full of zeros. " + "It will result in a prediction interval of zero " + "width. Consider changing the PhiFunction " + "definintion.\n" + "Fix: Use `marginal_guarantee`=True in PhiFunction") + + not_nan_index = np.where(~np.isnan(calib_conformity_scores))[0] + # Some conf. score values may be nan (ex: with ResidualNormalisedScore) + + if self.random_state is None: + warnings.warn("WARNING: The method implemented in " + "MapieCCPRegressor has a stochastic behavior. " + "To have reproductible results, use a integer " + "`random_state` value in the MapieCCPRegressor " + "initialisation.") + else: + np.random.seed(self.random_state) + + optimal_beta_up = minimize( + sum_of_losses, np.random.normal(0, 1, self.phi.n_out), + args=( + phi_x[not_nan_index, :], + calib_conformity_scores[not_nan_index], + 1-alpha_up + ) + ) + + if not self.conformity_score_.sym: + optimal_beta_low = minimize( + sum_of_losses, np.random.normal(0, 1, self.phi.n_out), + args=( + phi_x[not_nan_index, :], + calib_conformity_scores[not_nan_index], + 1-alpha_low + ) + ) + else: + optimal_beta_low = optimal_beta_up + + if not optimal_beta_up.success: + warnings.warn( + "WARNING: The optimization process for the upper bound with " + f"alpha={self.alpha} failed with the following error: \n" + f"{optimal_beta_low.message}\n" + "The returned prediction interval may be inaccurate." + ) + if (not self.conformity_score_.sym + and not optimal_beta_low.success): + warnings.warn( + "WARNING: The optimization process for the lower bound with " + f"alpha={self.alpha} failed with the following error: \n" + f"{optimal_beta_low.message}\n" + "The returned prediction interval may be inaccurate." + ) + + self.beta_up = (cast(NDArray, optimal_beta_up.x), + cast(bool, optimal_beta_up.success)) + self.beta_low = (cast(NDArray, optimal_beta_low.x), + cast(bool, optimal_beta_low.success)) + + def fit_calibrate( + self, + X: ArrayLike, + y: ArrayLike, + sample_weight: Optional[ArrayLike] = None, + groups: Optional[ArrayLike] = None, + z: Optional[ArrayLike] = None, + alpha: Optional[float] = None, + **fit_params, + ) -> None: + """ + Fit the estimator and the calibration. + + Parameters + ---------- + X: ArrayLike of shape (n_samples, n_features) + Training data. + + y: ArrayLike of shape (n_samples,) + Training labels. + + sample_weight: Optional[ArrayLike] of shape (n_samples,) + Sample weights for fitting the out-of-fold models. + If ``None``, then samples are equally weighted. + If some weights are null, + their corresponding observations are removed + before the fitting process and hence have no residuals. + If weights are non-uniform, residuals are still uniformly weighted. + Note that the sample weight defined are only for the training, not + for the calibration procedure. + + By default ``None``. + + groups: Optional[ArrayLike] of shape (n_samples,) + Group labels for the samples used while splitting the dataset into + train/test set. + + By default ``None``. + + z: Optional[ArrayLike] of shape (n_calib_samples, n_exog_features) + Exogenous variables + + By default ``None`` + + alpha: Optional[float] + Between ``0.0`` and ``1.0``, represents the risk level of the + confidence interval. + Lower ``alpha`` produce larger (more conservative) prediction + intervals. + ``alpha`` is the complement of the target coverage level. + + If ``None``, the calibration will be done using the ``alpha``value + set in the initialisation. Else, the new value will overwrite the + old one. + + By default ``None`` + + **fit_params: dict + Additional fit parameters for the estimator. + + """ + self.fit(X, y, sample_weight, groups, **fit_params) + self.calibrate(X, y, groups, z, alpha) + + def predict( + self, + X: ArrayLike, + z: Optional[ArrayLike] = None, + ) -> Tuple[NDArray, NDArray]: + """ + Predict target on new samples with confidence intervals. + The prediction interval is computed + + Parameters + ---------- + X: ArrayLike of shape (n_samples, n_features) + Test data. + + z: Optional[ArrayLike] of shape (n_calib_samples, n_exog_features) + Exogenous variables + + Returns + ------- + Tuple[NDArray, NDArray] + Tuple[NDArray, NDArray] of shapes (n_samples,) + and (n_samples, 2, 1). + - [:, 0, 0]: Lower bound of the prediction interval. + - [:, 1, 0]: Upper bound of the prediction interval. + """ + + if self.beta_low is None or self.beta_up is None: + raise NotFittedError( + "The calibration method has not been fitted yet.\n" + "You must call the calibrate method before predict." + ) + + y_pred = self.estimator.predict(X) + + X = cast(NDArray, X) + y_pred = cast(NDArray, y_pred) + z = cast(NDArray, z) + + phi_x = self.phi(X, y_pred, z) + if np.any(np.all(phi_x == 0, axis=1)): + warnings.warn("WARNING: At least one row of the transformation" + "phi(X, y_pred, z) is full of zeros." + "It will result in a prediction interval of zero" + "width. Consider changing the PhiFunction" + "definintion. \n" + "Fix: Use `marginal_guarantee`=True in PhiFunction") + + signed = -1 if self.conformity_score_.sym else 1 + + y_pred_low = self.conformity_score_.get_estimation_distribution( + X, y_pred[:, np.newaxis], + phi_x.dot(signed * self.beta_low[0][:, np.newaxis]) + ) + y_pred_up = self.conformity_score_.get_estimation_distribution( + X, y_pred[:, np.newaxis], + phi_x.dot(self.beta_up[0][:, np.newaxis]) + ) + + check_lower_upper_bounds(y_pred_low, y_pred_up, y_pred) + + return y_pred, np.stack([y_pred_low, y_pred_up], axis=1) diff --git a/mapie/tests/test_ccp_regression.py b/mapie/tests/test_ccp_regression.py new file mode 100644 index 000000000..50c2932d7 --- /dev/null +++ b/mapie/tests/test_ccp_regression.py @@ -0,0 +1,751 @@ +from __future__ import annotations + +import warnings +from inspect import signature +from typing import Any, Tuple + +import numpy as np +import pytest +from sklearn.base import RegressorMixin +from sklearn.datasets import make_regression +from sklearn.dummy import DummyRegressor +from sklearn.ensemble import GradientBoostingRegressor +from sklearn.exceptions import NotFittedError +from sklearn.linear_model import LinearRegression +from sklearn.model_selection import (KFold, LeaveOneOut, LeavePOut, + PredefinedSplit, RepeatedKFold, + ShuffleSplit, TimeSeriesSplit, + train_test_split) +from sklearn.pipeline import make_pipeline +from sklearn.utils.validation import check_is_fitted + +from mapie._typing import NDArray +from mapie.conformity_scores import (AbsoluteConformityScore, ConformityScore, + GammaConformityScore, + ResidualNormalisedScore) +from mapie.metrics import regression_coverage_score +from mapie.regression import MapieCCPRegressor, PhiFunction + +random_state = 1 +np.random.seed(random_state) + +X_toy = np.linspace(0, 10, num=100).reshape(-1, 1) +y_toy = 2*X_toy[:, 0] + (max(X_toy)/10)*np.random.rand(len(X_toy)) +z_toy = np.linspace(0, 10, num=len(X_toy)).reshape(-1, 1) + +X, y = make_regression( + n_samples=500, n_features=10, noise=1.0, random_state=random_state +) +z = X[:, -2:] + + +CV = ["prefit", "split"] + +PHI = [ + PhiFunction([lambda X: np.ones((len(X), 1))]), + PhiFunction([lambda X: X]), + PhiFunction([lambda X: X, lambda z: z]), + PhiFunction([lambda X: X, lambda y_pred: y_pred]), + PhiFunction([ + PhiFunction([lambda X: X, lambda y_pred: y_pred]), + lambda z: z + ]), +] +PHI_FUNCTIONS = [ + [lambda X: np.ones((len(X), 1))], + [lambda X: X], + [lambda X: X, lambda z: z], + [lambda X: X, lambda y_pred: y_pred], + [PhiFunction([lambda X: X, lambda y_pred: y_pred]), lambda z: z], +] +N_OUT_RAW = [1, 10, 12, 11, 13] + +WIDTHS = { + "split": 3.87, + "prefit": 4.81, +} + +COVERAGES = { + "split": 0.952, + "prefit": 0.980, +} + + +# ======== PhiFunction ========= + +def test_phi_initialized() -> None: + """Test that initialization does not crash.""" + PhiFunction() + + +def test_phi_default_parameters() -> None: + """ + Test default values of input parameters of PhiFunction. + - ``marginal_guarantee`` should be ``True`` + - ``functions``should be a list with a unique callable element + """ + phi = PhiFunction() + assert phi.marginal_guarantee + assert isinstance(phi.functions, list) + assert len(phi.functions) == 0 + + +@pytest.mark.parametrize("phi, n_out_raw", zip(PHI, N_OUT_RAW)) +def test_phi_n_attributes(phi: PhiFunction, n_out_raw: int) -> None: + """ + Test that the n_in and n_out attributes are corrects + """ + phi(X=X, y_pred=y, z=z) + assert phi.n_in == 10 + assert phi.n_out == n_out_raw + 1 # +1 because marginal_guarantee=True + + +@pytest.mark.parametrize("phi_function_1, n_out_raw_1, m_g_1", + zip(PHI_FUNCTIONS, N_OUT_RAW, [True, False])) +@pytest.mark.parametrize("phi_function_2, n_out_raw_2, m_g_2", + zip(PHI_FUNCTIONS, N_OUT_RAW, [True, False])) +@pytest.mark.parametrize("m_g_0", [True, False]) +def test_phi_compound_and_guarantee( + phi_function_1: PhiFunction, n_out_raw_1: int, m_g_1: bool, + phi_function_2: PhiFunction, n_out_raw_2: int, m_g_2: bool, + m_g_0: bool, +) -> None: + """ + Test that when phi is defined using a compound of other PhiFunctions, + the column of ones, added of marginal_guarantee, is added only once + """ + phi_1 = PhiFunction(phi_function_1, marginal_guarantee=m_g_1) + phi_2 = PhiFunction(phi_function_2, marginal_guarantee=m_g_2) + phi_0 = PhiFunction([phi_1, phi_2], marginal_guarantee=m_g_0) + phi_0(X=X, y_pred=y, z=z) + + assert phi_0.n_out == n_out_raw_1 + n_out_raw_2 + int(any( + [m_g_0, m_g_1, m_g_2] + )) + + +def test_phi_functions_warning() -> None: + """ + Test that creating a PhiFunction object with functions which have + optional arguments different from 'X', 'y_pred' or 'z' raise a warning. + """ + with pytest.warns(UserWarning, + match="WARNING: Unknown optional arguments."): + PhiFunction([lambda X, d=d: X**d for d in range(4)]) + + +def test_phi_functions_error() -> None: + """ + Test that creating a PhiFunction object with functions which have + required arguments different from 'X', 'y_pred' or 'z' raise an error. + """ + with pytest.raises(ValueError, match="Forbidden required argument."): + PhiFunction([lambda X, other: X + other, lambda X, other: X - other]) + + +def test_phi_functions_empty() -> None: + """ + Test that creating a PhiFunction object with functions which have + required arguments different from 'X', 'y_pred' or 'z' raise an error. + """ + with pytest.raises(ValueError): + PhiFunction([], marginal_guarantee=False) + + +# ======== MapieCCPRegressor ========= +def test_initialized() -> None: + """Test that initialization does not crash.""" + MapieCCPRegressor() + + +def test_fit() -> None: + """Test that fit raises no errors.""" + mapie_reg = MapieCCPRegressor() + mapie_reg.fit(X_toy, y_toy) + + +def test_fit_calibrate() -> None: + """Test that fit-calibrate raises no errors.""" + mapie_reg = MapieCCPRegressor() + mapie_reg.fit(X_toy, y_toy) + mapie_reg.calibrate(X_toy, y_toy) + + +def test_fit_calibrate_combined() -> None: + """Test that fit_calibrate raises no errors.""" + mapie_reg = MapieCCPRegressor() + mapie_reg.fit_calibrate(X_toy, y_toy) + + +def test_fit_calibrate_predict() -> None: + """Test that fit-calibrate-predict raises no errors.""" + mapie_reg = MapieCCPRegressor() + mapie_reg.fit(X_toy, y_toy) + mapie_reg.calibrate(X_toy, y_toy) + mapie_reg.predict(X_toy) + + +def test_fit_calibrate_combined_predict() -> None: + """Test that fit_calibrate-predict raises no errors.""" + mapie_reg = MapieCCPRegressor() + mapie_reg.fit_calibrate(X_toy, y_toy) + mapie_reg.predict(X_toy) + + +def test_no_fit_calibrate() -> None: + """Test that calibrate before fit raises errors.""" + mapie_reg = MapieCCPRegressor() + with pytest.raises(NotFittedError): + mapie_reg.calibrate(X_toy, y_toy) + + +def test_calib_not_complete_phi() -> None: + """Test that a not complete phi definition raises a warning""" + with pytest.warns(UserWarning): + mapie_reg = MapieCCPRegressor( + phi=PhiFunction([lambda X: (X < 5).astype(int)], + marginal_guarantee=False)) + mapie_reg.fit_calibrate(X_toy, y_toy) + + +def test_predict_not_complete_phi() -> None: + """Test that a not complete phi definition raises a warning""" + with pytest.warns(UserWarning): + mapie_reg = MapieCCPRegressor( + phi=PhiFunction([lambda X: (X < 5).astype(int)], + marginal_guarantee=False)) + mapie_reg.fit_calibrate(X_toy[X_toy[:, 0] < 5], y_toy[X_toy[:, 0] < 5]) + mapie_reg.predict(X_toy) + + +@pytest.mark.parametrize("estimator", [ + LinearRegression(), + make_pipeline(LinearRegression()), +]) +def test_no_fit_prefit_calibrate(estimator: Any) -> None: + """Test that calibrate before without fit, if prefit, raises no errors.""" + estimator.fit(X_toy, y_toy) + mapie_reg = MapieCCPRegressor(estimator, cv="prefit") + mapie_reg.calibrate(X_toy, y_toy) + + +def test_no_fit_predict() -> None: + """Test that predict before fit raises errors.""" + mapie_reg = MapieCCPRegressor() + with pytest.raises(NotFittedError): + mapie_reg.predict(X_toy) + + +def test_no_calibrate_predict() -> None: + """Test that predict before fit raises errors.""" + mapie_reg = MapieCCPRegressor() + mapie_reg.fit(X_toy, y_toy) + with pytest.raises(NotFittedError): + mapie_reg.predict(X_toy) + + +def test_default_sample_weight() -> None: + """Test default sample weights.""" + mapie_reg = MapieCCPRegressor() + assert ( + signature(mapie_reg.fit).parameters["sample_weight"].default + is None + ) + + +@pytest.mark.parametrize("estimator", [0, "a", KFold(), ["a", "b"]]) +def test_invalid_estimator( + estimator: Any +) -> None: + """Test that invalid estimators raise errors.""" + with pytest.raises(ValueError, match=r".*Invalid estimator.*"): + MapieCCPRegressor(estimator=estimator) + + +@pytest.mark.parametrize("estimator", [ + LinearRegression(), + make_pipeline(LinearRegression()), +]) +def test_invalid_prefit_estimator( + estimator: RegressorMixin, +) -> None: + """Test that non-fitted estimator with prefit cv raise errors.""" + with pytest.raises(NotFittedError): + MapieCCPRegressor(estimator=estimator, cv="prefit") + + +@pytest.mark.parametrize("estimator", [ + LinearRegression(), + make_pipeline(LinearRegression()), +]) +def test_valid_prefit_estimator( + estimator: RegressorMixin, +) -> None: + """Test that fitted estimators with prefit cv raise warning but no error""" + estimator.fit(X_toy, y_toy) + mapie_reg = MapieCCPRegressor(estimator=estimator, cv="prefit") + with pytest.warns(UserWarning): + mapie_reg.fit(X_toy, y_toy) + check_is_fitted(mapie_reg.estimator) + + +def test_default_parameters() -> None: + """Test default values of input parameters.""" + mapie_reg = MapieCCPRegressor(random_state=random_state) + assert isinstance(mapie_reg.estimator, RegressorMixin) + assert isinstance(mapie_reg.phi, PhiFunction) + assert isinstance(mapie_reg.cv, ShuffleSplit) + assert mapie_reg.alpha == 0.1 + assert isinstance(mapie_reg.conformity_score_, ConformityScore) + assert isinstance(mapie_reg.random_state, int) + + +@pytest.mark.parametrize( + "alpha", ["a", 0, 2, 1.5, -0.3] +) +def test_invalid_alpha(alpha: Any) -> None: + with pytest.raises(ValueError): + MapieCCPRegressor(alpha=alpha) + + +def test_valid_estimator() -> None: + """Test that valid estimators are not corrupted""" + mapie_reg = MapieCCPRegressor( + estimator=DummyRegressor(), + random_state=random_state + ) + mapie_reg.fit(X_toy, y_toy) + assert isinstance(mapie_reg.estimator, DummyRegressor) + + +@pytest.mark.parametrize( + "cv", [None, ShuffleSplit(n_splits=1), + PredefinedSplit( + test_fold=[1]*(len(X_toy)//2) + [-1]*(len(X_toy)-len(X_toy)//2) + ), "prefit", "split"] +) +@pytest.mark.parametrize("estimator", [ + LinearRegression(), + make_pipeline(LinearRegression()), +]) +def test_valid_cv(cv: Any, estimator: RegressorMixin) -> None: + """Test that valid cv raise no errors.""" + estimator.fit(X_toy, y_toy) + mapie_reg = MapieCCPRegressor(estimator=estimator, cv=cv, + random_state=random_state) + mapie_reg.fit_calibrate(X_toy, y_toy) + mapie_reg.predict(X_toy) + + +@pytest.mark.parametrize( + "cv", ["dummy", 0, 1, 1.5] + [ # Cross val splitters + 3, -1, KFold(n_splits=5), LeaveOneOut(), + RepeatedKFold(n_splits=5, n_repeats=2), ShuffleSplit(n_splits=5), + TimeSeriesSplit(), LeavePOut(p=2), + PredefinedSplit(test_fold=[0]*(len(X_toy)//4) + [1]*(len(X_toy)//4) + + [-1]*(len(X_toy)-len(X_toy)//2)), + ] +) +def test_invalid_cv(cv: Any) -> None: + """Test that invalid agg_functions raise errors.""" + with pytest.raises(ValueError, match="Invalid cv argument."): + MapieCCPRegressor(cv=cv, random_state=random_state) + + +@pytest.mark.parametrize("dataset", [(X, y, z), (X_toy, y_toy, z_toy)]) +@pytest.mark.parametrize("alpha", [0.2]) +@pytest.mark.parametrize("phi", PHI) +@pytest.mark.parametrize("cv", CV) +@pytest.mark.parametrize("estimator", [ + LinearRegression(), + make_pipeline(LinearRegression()), +]) +def test_fit_calibrate_combined_equivalence( + alpha: Any, dataset: Tuple[NDArray, NDArray, NDArray], + cv: Any, phi: PhiFunction, estimator: RegressorMixin +) -> None: + """Test predict output shape.""" + (X, y, z) = dataset + if cv == "prefit": + estimator.fit(X, y) + + mapie_1 = MapieCCPRegressor(estimator=estimator, phi=phi, cv=cv, + alpha=alpha, random_state=random_state) + mapie_2 = MapieCCPRegressor(estimator=estimator, phi=phi, cv=cv, + alpha=alpha, random_state=random_state) + mapie_1.fit_calibrate(X, y, z=z) + mapie_2.fit(X, y) + mapie_2.calibrate(X, y, z=z) + y_pred_1, y_pis_1 = mapie_1.predict(X, z) + y_pred_2, y_pis_2 = mapie_2.predict(X, z) + np.testing.assert_allclose(y_pred_1, y_pred_2) + np.testing.assert_allclose(y_pis_1[:, 0, 0], y_pis_2[:, 0, 0]) + np.testing.assert_allclose(y_pis_1[:, 1, 0], y_pis_2[:, 1, 0]) + + +def test_recalibrate_warning(): + """ + Test that a warning is triggered when we calibrate a second time with + a different alpha value + """ + mapie_reg = MapieCCPRegressor(alpha=0.1) + mapie_reg.fit_calibrate(X_toy, y_toy) + with pytest.warns(UserWarning): + mapie_reg.calibrate(X_toy, y_toy, alpha=0.2) + + +@pytest.mark.parametrize("dataset", [(X, y, z), (X_toy, y_toy, z_toy)]) +@pytest.mark.parametrize("phi", PHI) +@pytest.mark.parametrize("cv", CV) +@pytest.mark.parametrize("estimator", [ + LinearRegression(), + make_pipeline(LinearRegression()), +]) +def test_recalibrate( + dataset: Tuple[NDArray, NDArray, NDArray], + cv: Any, phi: PhiFunction, estimator: RegressorMixin +) -> None: + """ + Test that the PI are different for different value of alpha, + but they are equal if we calibrate again with the correct alpha + """ + (X, y, z) = dataset + if cv == "prefit": + estimator.fit(X, y) + + mapie_1 = MapieCCPRegressor(estimator=estimator, phi=phi, cv=cv, + alpha=0.2, random_state=random_state) + mapie_2 = MapieCCPRegressor(estimator=estimator, phi=phi, cv=cv, + alpha=0.1, random_state=random_state) + mapie_1.fit_calibrate(X, y, z=z) + mapie_2.fit_calibrate(X, y, z=z) + + y_pred_1, y_pis_1 = mapie_1.predict(X, z) + y_pred_2, y_pis_2 = mapie_2.predict(X, z) + + with pytest.raises(AssertionError): + np.testing.assert_allclose(y_pis_1, y_pis_2) + + mapie_2.calibrate(X, y, z=z, alpha=0.2) + y_pred_2, y_pis_2 = mapie_2.predict(X, z) + np.testing.assert_allclose(y_pred_1, y_pred_2) + np.testing.assert_allclose(y_pis_1[:, 0, 0], y_pis_2[:, 0, 0]) + np.testing.assert_allclose(y_pis_1[:, 1, 0], y_pis_2[:, 1, 0]) + + +@pytest.mark.parametrize("dataset", [(X, y, z), (X_toy, y_toy, z_toy)]) +@pytest.mark.parametrize("alpha", [0.2]) +@pytest.mark.parametrize("phi", PHI) +@pytest.mark.parametrize("cv", CV) +@pytest.mark.parametrize("estimator", [ + LinearRegression(), + make_pipeline(LinearRegression()), +]) +def test_predict_output_shape( + alpha: Any, dataset: Tuple[NDArray, NDArray, NDArray], + cv: Any, phi: PhiFunction, estimator: RegressorMixin +) -> None: + """Test predict output shape.""" + (X, y, z) = dataset + if cv == "prefit": + estimator.fit(X, y) + + mapie_reg = MapieCCPRegressor(estimator=estimator, phi=phi, cv=cv, + alpha=alpha, random_state=random_state) + mapie_reg.fit_calibrate(X, y, z=z) + y_pred, y_pis = mapie_reg.predict(X, z) + assert y_pred.shape == (X.shape[0],) + assert y_pis.shape == (X.shape[0], 2, 1) + + +@pytest.mark.parametrize("dataset", [(X, y, z), (X_toy, y_toy, z_toy)]) +@pytest.mark.parametrize("phi", PHI) +@pytest.mark.parametrize("estimator_1, estimator_2", zip(*[[ + LinearRegression(), + make_pipeline(LinearRegression()), + ]]*2) +) +def test_same_results_prefit_split( + dataset: Tuple[NDArray, NDArray, NDArray], phi: PhiFunction, + estimator_1: RegressorMixin, estimator_2: RegressorMixin +) -> None: + """ + Test checking that if split and prefit method have exactly + the same data split, then we have exactly the same results. + """ + (X, y, z) = dataset + cv = ShuffleSplit(n_splits=1, test_size=0.1, random_state=random_state) + train_index, val_index = list(cv.split(X))[0] + X_train, X_calib = X[train_index], X[val_index] + y_train, y_calib = y[train_index], y[val_index] + z_calib = z[val_index] + + mapie_reg = MapieCCPRegressor(estimator=estimator_1, phi=phi, cv=cv, + alpha=0.1, random_state=random_state) + mapie_reg.fit_calibrate(X, y, z=z) + y_pred_1, y_pis_1 = mapie_reg.predict(X, z) + + estimator_2.fit(X_train, y_train) + mapie_reg = MapieCCPRegressor(estimator=estimator_2, phi=phi, cv="prefit", + alpha=0.1, random_state=random_state) + mapie_reg.calibrate(X_calib, y_calib, z=z_calib) + y_pred_2, y_pis_2 = mapie_reg.predict(X, z) + + np.testing.assert_allclose(y_pred_1, y_pred_2) + np.testing.assert_allclose(y_pis_1[:, 0, 0], y_pis_2[:, 0, 0]) + np.testing.assert_allclose(y_pis_1[:, 1, 0], y_pis_2[:, 1, 0]) + + +@pytest.mark.parametrize("dataset", [(X, y, z), (X_toy, y_toy, z_toy)]) +@pytest.mark.parametrize("phi", PHI) +@pytest.mark.parametrize("cv", CV) +@pytest.mark.parametrize("estimator", [ + LinearRegression(), + make_pipeline(LinearRegression()), +]) +def test_results_for_ordered_alpha( + dataset: Tuple[NDArray, NDArray, NDArray], cv: Any, + phi: PhiFunction, estimator: RegressorMixin +) -> None: + """ + Test that prediction intervals lower (upper) bounds give + consistent results for ordered alphas. + """ + (X, y, z) = dataset + if cv == "prefit": + estimator.fit(X, y) + + mapie_reg_1 = MapieCCPRegressor(estimator=estimator, phi=phi, cv=cv, + alpha=0.05, random_state=random_state) + mapie_reg_1.fit_calibrate(X, y, z=z) + _, y_pis_1 = mapie_reg_1.predict(X, z) + + mapie_reg_2 = MapieCCPRegressor(estimator=estimator, phi=phi, cv=cv, + alpha=0.1, random_state=random_state) + mapie_reg_2.fit_calibrate(X, y, z=z) + _, y_pis_2 = mapie_reg_1.predict(X, z) + + assert (y_pis_1[:, 0, 0] <= y_pis_2[:, 0, 0]).all() + assert (y_pis_1[:, 1, 0] >= y_pis_2[:, 1, 0]).all() + + +@pytest.mark.parametrize("dataset", [(X, y, z), (X_toy, y_toy, z_toy)]) +@pytest.mark.parametrize("phi", PHI) +@pytest.mark.parametrize("cv", CV) +@pytest.mark.parametrize("estimator1, estimator2, estimator3", zip(*([[ + LinearRegression(), + make_pipeline(LinearRegression()), +]]*3))) +def test_results_with_constant_sample_weights( + dataset: Tuple[NDArray, NDArray, NDArray], + cv: Any, + phi: PhiFunction, + estimator1: RegressorMixin, + estimator2: RegressorMixin, + estimator3: RegressorMixin, +) -> None: + """ + Test predictions when sample weights are None + or constant with different values. + """ + (X, y, z) = dataset + if cv == "prefit": + estimator1.fit(X, y) + estimator2.fit(X, y) + estimator3.fit(X, y) + + n_samples = len(X) + mapie0 = MapieCCPRegressor(estimator=estimator1, phi=phi, + cv=cv, random_state=random_state) + mapie1 = MapieCCPRegressor(estimator=estimator2, phi=phi, + cv=cv, random_state=random_state) + mapie2 = MapieCCPRegressor(estimator=estimator3, phi=phi, + cv=cv, random_state=random_state) + + mapie0.fit_calibrate(X, y, z=z, sample_weight=None) + mapie1.fit_calibrate(X, y, z=z, sample_weight=np.ones(shape=n_samples)) + mapie2.fit_calibrate(X, y, z=z, sample_weight=np.ones(shape=n_samples) * 3) + + y_pred0, y_pis0 = mapie0.predict(X, z=z) + y_pred1, y_pis1 = mapie1.predict(X, z=z) + y_pred2, y_pis2 = mapie2.predict(X, z=z) + np.testing.assert_allclose(y_pred0, y_pred1, rtol=1e-4, atol=1e-2) + np.testing.assert_allclose(y_pred0, y_pred2, rtol=1e-4, atol=1e-2) + np.testing.assert_allclose(y_pis0, y_pis1, rtol=1e-4, atol=1e-2) + np.testing.assert_allclose(y_pis0, y_pis2, rtol=1e-4, atol=1e-2) + + +@pytest.mark.parametrize("dataset", [(X, y, z), (X_toy, y_toy, z_toy)]) +@pytest.mark.parametrize("phi", PHI) +@pytest.mark.parametrize("cv", CV) +@pytest.mark.parametrize("alpha", [0.2, 0.1, 0.05]) +@pytest.mark.parametrize("estimator", [ + LinearRegression(), + make_pipeline(LinearRegression()), +]) +def test_prediction_between_low_up( + dataset: Tuple[NDArray, NDArray, NDArray], + cv: Any, + phi: PhiFunction, + alpha: float, + estimator: RegressorMixin +) -> None: + """Test that prediction lies between low and up prediction intervals.""" + (X, y, z) = dataset + + if cv == "prefit": + estimator.fit(X, y) + + mapie = MapieCCPRegressor(estimator=estimator, phi=phi, cv=cv, + alpha=alpha, random_state=random_state) + mapie.fit_calibrate(X, y, z=z) + + with warnings.catch_warnings(record=True) as record: + y_pred, y_pis = mapie.predict(X, z=z) + + # Check if the warning was issued + warning_issued = any("The predictions are ill-sorted." in str(w.message) + for w in record) + + # Perform assertions based on whether the warning was issued + if not warning_issued: + assert (y_pred >= y_pis[:, 0, 0]).all() + assert (y_pred <= y_pis[:, 1, 0]).all() + + +@pytest.mark.parametrize("phi", PHI) +@pytest.mark.parametrize("cv", CV) +@pytest.mark.parametrize("alpha", [0.2, 0.1]) +@pytest.mark.parametrize("estimator", [ + LinearRegression(), + make_pipeline(LinearRegression()), +]) +def test_linear_data_confidence_interval( + cv: Any, + phi: PhiFunction, + alpha: float, + estimator: RegressorMixin +) -> None: + """ + Test that MapieRegressor applied on a linear regression estimator + fitted on a linear curve results in null uncertainty. + """ + X_toy = np.arange(0, 200, 1).reshape(-1, 1) + y_toy = X_toy[:, 0]*2 + z_toy = np.ones((len(X_toy), 1)) + + if cv == "prefit": + estimator.fit(X_toy, y_toy) + + mapie = MapieCCPRegressor(estimator=estimator, phi=phi, cv=cv, + alpha=alpha, random_state=random_state) + mapie.fit_calibrate(X_toy, y_toy, z=z_toy) + + y_pred, y_pis = mapie.predict(X_toy, z=z_toy) + np.testing.assert_allclose(y_pis[:, 0, 0], y_pis[:, 1, 0], + rtol=1e-3, atol=1e-2) + np.testing.assert_allclose(y_pred, y_pis[:, 0, 0], + rtol=1e-3, atol=1e-2) + + +def test_linear_regression_results() -> None: + """ + Test that the CCP method in the case of a constant + phi = x -> np.ones(len(x)), on a multivariate linear regression problem + with fixed random state, is strictly equivalent to the regular CP method + (base, jacknife and cv) + """ + + mapie = MapieCCPRegressor( + phi=PHI[0], + cv=ShuffleSplit(n_splits=1, test_size=0.5, random_state=random_state), + alpha=0.05, + random_state=random_state + ) + mapie.fit_calibrate(X, y) + _, y_pis = mapie.predict(X) + y_pred_low, y_pred_up = y_pis[:, 0, 0], y_pis[:, 1, 0] + width_mean = (y_pred_up - y_pred_low).mean() + coverage = regression_coverage_score(y, y_pred_low, y_pred_up) + np.testing.assert_allclose(width_mean, WIDTHS["split"], rtol=1e-2) + np.testing.assert_allclose(coverage, COVERAGES["split"], rtol=1e-2) + + +@pytest.mark.parametrize("estimator", [ + LinearRegression(), + make_pipeline(LinearRegression()), +]) +def test_results_prefit(estimator: RegressorMixin) -> None: + """Test prefit results on a standard train/validation/test split.""" + X_train_val, X_test, y_train_val, y_test = train_test_split( + X, y, test_size=1 / 10, random_state=1 + ) + X_train, X_val, y_train, y_val = train_test_split( + X_train_val, y_train_val, test_size=1 / 9, random_state=1 + ) + estimator.fit(X_train, y_train) + mapie_reg = MapieCCPRegressor(estimator=estimator, phi=PHI[0], cv="prefit", + alpha=0.05, random_state=random_state) + mapie_reg.fit_calibrate(X_val, y_val) + _, y_pis = mapie_reg.predict(X_test) + width_mean = (y_pis[:, 1, 0] - y_pis[:, 0, 0]).mean() + coverage = regression_coverage_score( + y_test, y_pis[:, 0, 0], y_pis[:, 1, 0] + ) + np.testing.assert_allclose(width_mean, WIDTHS["prefit"], rtol=1e-2) + np.testing.assert_allclose(coverage, COVERAGES["prefit"], rtol=1e-2) + + +@pytest.mark.parametrize("phi", PHI) +@pytest.mark.parametrize("cv", CV) +@pytest.mark.parametrize("estimator", [ + LinearRegression(), + make_pipeline(LinearRegression()), +]) +@pytest.mark.parametrize( + "conformity_score", [AbsoluteConformityScore(), GammaConformityScore(), + ResidualNormalisedScore()] +) +def test_conformity_score( + cv: Any, + phi: PhiFunction, + estimator: RegressorMixin, + conformity_score: ConformityScore +) -> None: + """Test that any conformity score function with MAPIE raises no error.""" + + if cv == "prefit": + estimator.fit(X, y + 1e3) + + mapie_reg = MapieCCPRegressor( + estimator=estimator, + phi=phi, + cv=cv, + alpha=0.1, + conformity_score=conformity_score, + random_state=random_state, + ) + mapie_reg.fit_calibrate(X, y + 1e3, z=z) + mapie_reg.predict(X, z=z) + + +def test_fit_parameters_passing() -> None: + """ + Test passing fit parameters, here early stopping at iteration 3. + Checks that underlying GradientBoosting estimators have used 3 iterations + only during boosting, instead of default value for n_estimators (=100). + """ + gb = GradientBoostingRegressor(random_state=random_state) + + mapie_reg = MapieCCPRegressor(estimator=gb, random_state=random_state) + + def early_stopping_monitor(i, est, locals): + """Returns True on the 3rd iteration.""" + if i == 2: + return True + else: + return False + + mapie_reg.fit_calibrate(X, y, monitor=early_stopping_monitor) + + assert mapie_reg.estimator.estimators_.shape[0] == 3 From fffd51160d663abc73cda68821a41b09b67ac914 Mon Sep 17 00:00:00 2001 From: Damien Bouet Date: Tue, 28 May 2024 15:32:30 +0200 Subject: [PATCH 002/165] UPD: increase test_results_with_constant_sample_weights assert_allclose rtol and atol arguments --- mapie/tests/test_ccp_regression.py | 8 ++++---- 1 file changed, 4 insertions(+), 4 deletions(-) diff --git a/mapie/tests/test_ccp_regression.py b/mapie/tests/test_ccp_regression.py index 50c2932d7..6314d00b0 100644 --- a/mapie/tests/test_ccp_regression.py +++ b/mapie/tests/test_ccp_regression.py @@ -569,10 +569,10 @@ def test_results_with_constant_sample_weights( y_pred0, y_pis0 = mapie0.predict(X, z=z) y_pred1, y_pis1 = mapie1.predict(X, z=z) y_pred2, y_pis2 = mapie2.predict(X, z=z) - np.testing.assert_allclose(y_pred0, y_pred1, rtol=1e-4, atol=1e-2) - np.testing.assert_allclose(y_pred0, y_pred2, rtol=1e-4, atol=1e-2) - np.testing.assert_allclose(y_pis0, y_pis1, rtol=1e-4, atol=1e-2) - np.testing.assert_allclose(y_pis0, y_pis2, rtol=1e-4, atol=1e-2) + np.testing.assert_allclose(y_pred0, y_pred1, rtol=0.01, atol=0.1) + np.testing.assert_allclose(y_pred0, y_pred2, rtol=0.01, atol=0.1) + np.testing.assert_allclose(y_pis0, y_pis1, rtol=0.01, atol=0.1) + np.testing.assert_allclose(y_pis0, y_pis2, rtol=0.01, atol=0.1) @pytest.mark.parametrize("dataset", [(X, y, z), (X_toy, y_toy, z_toy)]) From 56c67cf057533fa25aefdcc2911d21dce72f441e Mon Sep 17 00:00:00 2001 From: Damien Bouet Date: Fri, 31 May 2024 17:34:56 +0200 Subject: [PATCH 003/165] MOVE PhiFunction into utils folder --- mapie/regression/__init__.py | 3 +- mapie/regression/ccp_regression.py | 242 +----------------- mapie/regression/utils/__init__.py | 0 mapie/regression/utils/ccp_phi_function.py | 280 +++++++++++++++++++++ mapie/tests/test_ccp_phi_function.py | 116 +++++++++ mapie/tests/test_ccp_regression.py | 81 ------ 6 files changed, 400 insertions(+), 322 deletions(-) create mode 100644 mapie/regression/utils/__init__.py create mode 100644 mapie/regression/utils/ccp_phi_function.py create mode 100644 mapie/tests/test_ccp_phi_function.py diff --git a/mapie/regression/__init__.py b/mapie/regression/__init__.py index aea43031d..c792cc700 100644 --- a/mapie/regression/__init__.py +++ b/mapie/regression/__init__.py @@ -1,6 +1,7 @@ from .quantile_regression import MapieQuantileRegressor from .regression import MapieRegressor -from .ccp_regression import MapieCCPRegressor, PhiFunction +from .ccp_regression import MapieCCPRegressor +from .utils.ccp_phi_function import PhiFunction from .time_series_regression import MapieTimeSeriesRegressor __all__ = [ diff --git a/mapie/regression/ccp_regression.py b/mapie/regression/ccp_regression.py index 7650462f7..b6f3e44b2 100644 --- a/mapie/regression/ccp_regression.py +++ b/mapie/regression/ccp_regression.py @@ -1,8 +1,7 @@ from __future__ import annotations -import inspect import warnings -from typing import Callable, Dict, List, Optional, Tuple, Union, cast +from typing import List, Optional, Tuple, Union, cast import numpy as np from scipy.optimize import minimize @@ -17,249 +16,12 @@ from mapie._typing import ArrayLike, NDArray from mapie.conformity_scores import ConformityScore +from .utils.ccp_phi_function import PhiFunction from mapie.utils import (check_conformity_score, check_estimator_fit_predict, check_lower_upper_bounds, check_null_weight, fit_estimator) -class PhiFunction(): - """ - This class is used to define the transformation phi, - used in the Gibbs et al. method to estimate the conformity score - Phi takes as input X (and can take y_pred and any exogenous variable) - and return an array of shape (n_samples, d), for any integer d. - - Parameters - ---------- - functions: Optional[Union[ - Union[Callable, "PhiFunction"], - List[Union[Callable, "PhiFunction"]] - ]] - List of functions (or PhiFunction objects) or single function. - Each function can take a combinaison of the following arguments: - - ``X``: Input dataset, of shape (n_samples, ``n_in``) - - ``y_pred``: estimator prediction, of shape (n_samples,) - - ``z``: exogenous variable, of shape (n_samples, n_features). - It should be given in the ``fit`` and ``predict`` methods. - The results of each functions will be concatenated to build the final - result of the phi function, of shape (n_samples, ``n_out``). - If ``None``, the resulting phi object will return a column of ones, - when called. It will result, in the MapieCCPRegressor, in a basic - split CP approach. - - By default ``None``. - - marginal_guarantee: bool - Add a column of ones to ``phi(X, y_pred, z)`` for safety reason - (to garanty the marginal coverage, no matter the ``functions`` value). - If the functions covers all the dataset (meaning, for all calibration - and test samples, ``phi(X, y_pred, z)`` is never all zeros), - this column of ones is not necessary to obtain marginal coverage. - In this case, you can set this argument to ``False``. - - By default ``True``. - - Attributes - ---------- - n_in: int - Number of features of ``X`` - - n_out: int - Number of features of phi(``X``) - - Examples - -------- - >>> import numpy as np - >>> from mapie.regression import PhiFunction - >>> X = np.array([[1, 2], [3, 4], [5, 6]]) - >>> y_pred = np.array([0, 0, 1]) - >>> z = np.array([[10], [20], [30]]) - >>> def not_lambda_function(y_pred, z): - ... result = np.zeros((y_pred.shape[0], z.shape[1])) - ... cnd = (y_pred == 1) - ... result[cnd] = z[cnd] - ... return result - >>> phi = PhiFunction( - ... functions=[ - ... lambda X: X * (y_pred[:, np.newaxis] == 0), # X, if y_pred is 0 - ... lambda y_pred: y_pred, # y_pred - ... not_lambda_function, # z, if y_pred is 1 - ... ] - ... ) - >>> print(phi(X, y_pred, z)) - [[ 1. 2. 0. 0. 1.] - [ 3. 4. 0. 0. 1.] - [ 0. 0. 1. 30. 1.]] - >>> print(phi.n_out) - 5 - >>> # We can also combine PhiFunction objects with other functions - >>> compound_phi = PhiFunction( - ... functions=[ - ... phi, - ... lambda X: 4 * np.ones((X.shape[0], 1)), - ... ] - ... ) - >>> print(compound_phi(X, y_pred, z)) - [[ 1. 2. 0. 0. 4. 1.] - [ 3. 4. 0. 0. 4. 1.] - [ 0. 0. 1. 30. 4. 1.]] - """ - def __init__( - self, - functions: Optional[Union[ - Union[Callable, "PhiFunction"], - List[Union[Callable, "PhiFunction"]] - ]] = None, - marginal_guarantee: bool = True - ) -> None: - if isinstance(functions, list): - self.functions = list(functions) - elif functions is not None: - self.functions = [functions] - else: - self.functions = [] - - self.marginal_guarantee = marginal_guarantee - - self.marginal_guarantee = self.marginal_guarantee or any( - phi.marginal_guarantee for phi in self.functions - if isinstance(phi, PhiFunction) - ) - - self._check_functions(self.functions, self.marginal_guarantee) - - self.n_in: Optional[int] = None - self.n_out: Optional[int] = None - - def _check_functions( - self, - functions: List[Union[Callable, "PhiFunction"]], - marginal_guarantee: bool, - ) -> None: - """ - Validate functions for required and optional arguments. - - Parameters - ---------- - functions : List[Union[Callable, "PhiFunction"]] - List of functions or PhiFunction instances to be checked. - - marginal_guarantee : bool - Flag indicating whether marginal guarantee is enabled. - - Raises - ------ - ValueError - If no functions are provided and `marginal_guarantee` is False. - If functions contain unknown required arguments. - - Warns - ----- - UserWarning - If functions contain unknown optional arguments. - - Notes - ----- - This method ensures that the provided functions only use recognized - arguments ('X', 'y_pred', 'z'). Unknown optional arguments are allowed, - but will always use their default values. - """ - if len(functions) == 0 and not marginal_guarantee: - raise ValueError("You need to define the `functions` argument " - "with a function or a list of functions, " - "or keep marginal_guarantee argument to True.") - - warn_ind: Dict[str, List[int]] = {} - error_ind: Dict[str, List[int]] = {} - for i, funct in enumerate(functions): - params = inspect.signature(funct).parameters - - for param, arg in params.items(): - if ( - param not in ["X", "y_pred", "z"] - and param != "disable_marginal_guarantee" - ): - if arg.default is inspect.Parameter.empty: - if param in error_ind: - error_ind[param].append(i) - else: - error_ind[param] = [i] - else: - if param in warn_ind: - warn_ind[param].append(i) - else: - warn_ind[param] = [i] - - if len(warn_ind) > 0: - warn_msg = "" - for param, inds in warn_ind.items(): - warn_msg += ( - f"The functions at index ({', '.join(map(str, inds))}) " - + "of the 'functions' argument, has an unknown optional " - + f"argument '{param}'.\n" - ) - warnings.warn( - "WARNING: Unknown optional arguments.\n" - + warn_msg + - "The only recognized arguments are : 'X', 'y_pred' and 'z'. " - "The other optional arguments will act as parameters, " - "as it is always their default value which will be used." - ) - if len(error_ind) > 0: - error_msg = "" - for param, inds in error_ind.items(): - error_msg += ( - f"The functions at index ({', '.join(map(str, inds))}) " - + "of the 'functions' argument, has an unknown required " - + f"argument '{param}'.\n" - ) - raise ValueError( - "Forbidden required argument.\n" - f"{error_msg}" - "The only allowed required argument are : 'X', " - "'y_pred' and 'z'.\n" - "Note: You can use optional arguments if you want " - "to. They will act as parameters, as it is always " - "their default value which will be used." - ) - - def __call__( - self, - X: Optional[NDArray] = None, - y_pred: Optional[NDArray] = None, - z: Optional[NDArray] = None, - disable_marginal_guarantee: bool = False, - ) -> NDArray: - self.n_in = len(_safe_indexing(X, 0)) - self.n_out = 0 - - params_mapping = {"X": X, "y_pred": y_pred, "z": z} - res = [] - - funct_list = list(self.functions) - if not disable_marginal_guarantee and self.marginal_guarantee: - funct_list.append(lambda X: np.ones((len(X), 1))) - - for f in funct_list: - params = inspect.signature(f).parameters - - used_params = { - p: params_mapping[p] for p in params - if p in params_mapping and params_mapping[p] is not None - } - if isinstance(f, PhiFunction): - # We only consider marginal_guaranty with the main PhiFunction - res.append(f(disable_marginal_guarantee=True, **used_params)) - else: - res.append(f(**used_params)) - - if len(res[-1].shape) == 1: - res[-1] = np.expand_dims(res[-1], axis=1) - - self.n_out += res[-1].shape[1] - return np.hstack(res) - - class MapieCCPRegressor(): """ This class implements Conformal Prediction With Conditional Guarantees diff --git a/mapie/regression/utils/__init__.py b/mapie/regression/utils/__init__.py new file mode 100644 index 000000000..e69de29bb diff --git a/mapie/regression/utils/ccp_phi_function.py b/mapie/regression/utils/ccp_phi_function.py new file mode 100644 index 000000000..09667ce2f --- /dev/null +++ b/mapie/regression/utils/ccp_phi_function.py @@ -0,0 +1,280 @@ +from __future__ import annotations + +import inspect +from typing import Callable, Dict, List, Optional, Union +import warnings + +import numpy as np +from mapie._typing import NDArray +from sklearn.utils import _safe_indexing + + +class PhiFunction(): + """ + This class is used to define the transformation phi, + used in the Gibbs et al. method to model the conformity scores. + Phi takes as input X (and can take y_pred and any exogenous variables z) + and return an array of shape (n_samples, d), for any integer d. + + Parameters + ---------- + functions: Optional[Union[ + Union[Callable, "PhiFunction"], + List[Union[Callable, "PhiFunction"]] + ]] + List of functions (or PhiFunction objects) or single function. + Each function can take a combinaison of the following arguments: + - ``X``: Input dataset, of shape (n_samples, ``n_in``) + - ``y_pred``: estimator prediction, of shape (n_samples,) + - ``z``: exogenous variable, of shape (n_samples, n_features). + It should be given in the ``fit`` and ``predict`` methods. + The results of each functions will be concatenated to build the final + result of the phi function, of shape (n_samples, ``n_out``). + If ``None``, the resulting phi object will return a column of ones, + when called. It will result, in the MapieCCPRegressor, in a basic + split CP approach. + + By default ``None``. + + marginal_guarantee: bool + Add a column of ones to the features, for safety reason + (to garanty the marginal coverage, no matter how the other features + the ``PhiFunction``object were built). + If the ``PhiFunction``object definition covers all the dataset + (meaning, for all calibration and test samples, ``phi(X, y_pred, z)`` + is never all zeros), this column of ones is not necessary + to obtain marginal coverage. + In this case, you can set this argument to ``False``. + + Note: Even if it is not always necessary to guarantee the marginal + coverage, it can't degrade the prediction intervals. + + By default ``True``. + + normalized: bool + Whether or not to normalized ``phi(X, y_pred, z)``. Normalization + will result in a bounded interval prediction width, avoiding the width + to explode to +inf or crash to zero. It is particularly intersting when + you know that the conformity scores are bounded. It also prevent the + interval to have a interval of zero width for out-of-distribution or + new samples. On the opposite, it is not recommended if the conformity + scores can vary a lot. + + By default ``True`` + + Attributes + ---------- + + n_in: int + Number of features of ``X`` + + n_out: int + Number of features of phi(``X``, ``y_pred``, ``z``) + + Examples + -------- + >>> import numpy as np + >>> from mapie.regression import PhiFunction + >>> X = np.array([[1, 2], [3, 4], [5, 6]]) + >>> y_pred = np.array([0, 0, 1]) + >>> z = np.array([[10], [20], [30]]) + >>> def not_lambda_function(y_pred, z): + ... result = np.zeros((y_pred.shape[0], z.shape[1])) + ... cnd = (y_pred == 1) + ... result[cnd] = z[cnd] + ... return result + >>> phi = PhiFunction( + ... functions=[ + ... lambda X: X * (y_pred[:, np.newaxis] == 0), # X, if y_pred is 0 + ... lambda y_pred: y_pred, # y_pred + ... not_lambda_function, # z, if y_pred is 1 + ... ], + ... normalized=False, + ... ) + >>> print(phi(X, y_pred, z)) + [[ 1. 2. 0. 0. 1.] + [ 3. 4. 0. 0. 1.] + [ 0. 0. 1. 30. 1.]] + >>> print(phi.n_out) + 5 + >>> # We can also combine PhiFunction objects with other functions + >>> compound_phi = PhiFunction( + ... functions=[ + ... phi, + ... lambda X: 4 * np.ones((X.shape[0], 1)), + ... ], + ... normalized=False, + ... ) + >>> print(compound_phi(X, y_pred, z)) + [[ 1. 2. 0. 0. 4. 1.] + [ 3. 4. 0. 0. 4. 1.] + [ 0. 0. 1. 30. 4. 1.]] + """ + + _need_x_calib = False + + def __init__( + self, + functions: Optional[Union[ + Union[Callable, "PhiFunction"], + List[Union[Callable, "PhiFunction"]] + ]] = None, + marginal_guarantee: bool = True, + normalized: bool = True, + ) -> None: + if isinstance(functions, list): + self.functions = list(functions) + elif functions is not None: + self.functions = [functions] + else: + self.functions = [] + + self.marginal_guarantee = marginal_guarantee + self.normalized = normalized + + self.marginal_guarantee = self.marginal_guarantee or any( + phi.marginal_guarantee for phi in self.functions + if isinstance(phi, PhiFunction) + ) + + if not self._need_x_calib: + self._check_functions(self.functions, self.marginal_guarantee) + + self.n_in: Optional[int] = None + self.n_out: Optional[int] = None + + def _check_functions( + self, + functions: List[Union[Callable, "PhiFunction"]], + marginal_guarantee: bool, + ) -> None: + """ + Validate functions for required and optional arguments. + + Parameters + ---------- + functions : List[Union[Callable, "PhiFunction"]] + List of functions or PhiFunction instances to be checked. + + marginal_guarantee : bool + Flag indicating whether marginal guarantee is enabled. + + Raises + ------ + ValueError + If no functions are provided and `marginal_guarantee` is False. + If functions contain unknown required arguments. + + Warns + ----- + UserWarning + If functions contain unknown optional arguments. + + Notes + ----- + This method ensures that the provided functions only use recognized + arguments ('X', 'y_pred', 'z'). Unknown optional arguments are allowed, + but will always use their default values. + """ + if len(functions) == 0 and not marginal_guarantee: + raise ValueError("You need to define the `functions` argument " + "with a function or a list of functions, " + "or keep marginal_guarantee argument to True.") + + warn_ind: Dict[str, List[int]] = {} + error_ind: Dict[str, List[int]] = {} + for i, funct in enumerate(functions): + params = inspect.signature(funct).parameters + + for param, arg in params.items(): + if ( + param not in ["X", "y_pred", "z"] + and param != "disable_marginal_guarantee" + ): + if arg.default is inspect.Parameter.empty: + if param in error_ind: + error_ind[param].append(i) + else: + error_ind[param] = [i] + + if param in warn_ind: + warn_ind[param].append(i) + else: + warn_ind[param] = [i] + + if len(warn_ind) > 0: + warn_msg = "" + for param, inds in warn_ind.items(): + warn_msg += ( + f"The functions at index ({', '.join(map(str, inds))}) " + + "of the 'functions' argument, has an unknown optional " + + f"argument '{param}'.\n" + ) + warnings.warn( + "WARNING: Unknown optional arguments.\n" + + warn_msg + + "The only recognized arguments are : 'X', 'y_pred' and 'z'. " + "The other optional arguments will act as parameters, " + "as it is always their default value which will be used." + ) + if len(error_ind) > 0: + error_msg = "" + for param, inds in error_ind.items(): + error_msg += ( + f"The functions at index ({', '.join(map(str, inds))}) " + + "of the 'functions' argument, has an unknown required " + + f"argument '{param}'.\n" + ) + raise ValueError( + "Forbidden required argument.\n" + f"{error_msg}" + "The only allowed required argument are : 'X', " + "'y_pred' and 'z'.\n" + "Note: You can use optional arguments if you want " + "to. They will act as parameters, as it is always " + "their default value which will be used." + ) + + def __call__( + self, + X: Optional[NDArray] = None, + y_pred: Optional[NDArray] = None, + z: Optional[NDArray] = None, + disable_marginal_guarantee: bool = False, + ) -> NDArray: + self.n_in = len(_safe_indexing(X, 0)) + self.n_out = 0 + + params_mapping = {"X": X, "y_pred": y_pred, "z": z} + res = [] + + funct_list = list(self.functions) + if not disable_marginal_guarantee and self.marginal_guarantee: + funct_list.append(lambda X: np.ones((len(X), 1))) + + for f in funct_list: + params = inspect.signature(f).parameters + + used_params = { + p: params_mapping[p] for p in params + if p in params_mapping and params_mapping[p] is not None + } + if isinstance(f, PhiFunction): + # We only consider marginal_guaranty with the main PhiFunction + res.append(np.array( + f(disable_marginal_guarantee=True, **used_params), + dtype=float)) + else: + res.append(np.array(f(**used_params), dtype=float)) + + if len(res[-1].shape) == 1: + res[-1] = np.expand_dims(res[-1], axis=1) + + self.n_out += res[-1].shape[1] + + result = np.hstack(res) + if self.normalized: + norm = np.linalg.norm(result, axis=1).reshape(-1, 1) + norm[abs(norm)<1e-8] = 1 + result /= norm + return result diff --git a/mapie/tests/test_ccp_phi_function.py b/mapie/tests/test_ccp_phi_function.py new file mode 100644 index 000000000..f22f6bc2f --- /dev/null +++ b/mapie/tests/test_ccp_phi_function.py @@ -0,0 +1,116 @@ +from __future__ import annotations + +import numpy as np +import pytest +from sklearn.datasets import make_regression +from mapie.regression import PhiFunction + +random_state = 1 +np.random.seed(random_state) + +X, y = make_regression( + n_samples=500, n_features=10, noise=1.0, random_state=random_state +) +z = X[:, -2:] + +PHI = [ + PhiFunction([lambda X: np.ones((len(X), 1))]), + PhiFunction([lambda X: X]), + PhiFunction([lambda X: X, lambda z: z]), + PhiFunction([lambda X: X, lambda y_pred: y_pred]), + PhiFunction([ + PhiFunction([lambda X: X, lambda y_pred: y_pred]), + lambda z: z + ]), +] + +# n_out without marginal_guarantee +N_OUT_RAW = [1, 10, 12, 11, 13, 20, 20, 3, 40] + +PHI_FUNCTIONS = [ + [lambda X: np.ones((len(X), 1))], + [lambda X: X], + [lambda X: X, lambda z: z], + [lambda X: X, lambda y_pred: y_pred], + [PhiFunction([lambda X: X, lambda y_pred: y_pred]), lambda z: z], +] + + +# ======== PhiFunction ========= +def test_phi_initialized() -> None: + """Test that initialization does not crash.""" + PhiFunction() + + +def test_phi_default_parameters() -> None: + """ + Test default values of input parameters of PhiFunction. + - ``marginal_guarantee`` should be ``True`` + - ``functions``should be a list with a unique callable element + """ + phi = PhiFunction() + assert phi.marginal_guarantee + assert isinstance(phi.functions, list) + assert len(phi.functions) == 0 + + +@pytest.mark.parametrize("phi, n_out_raw", zip(PHI, N_OUT_RAW)) +def test_phi_n_attributes(phi: PhiFunction, n_out_raw: int) -> None: + """ + Test that the n_in and n_out attributes are corrects + """ + phi(X=X, y_pred=y, z=z) + assert phi.n_in == 10 + assert phi.n_out == n_out_raw + int(phi.marginal_guarantee) + + +@pytest.mark.parametrize("phi_function_1, n_out_raw_1, m_g_1", + zip(PHI_FUNCTIONS, N_OUT_RAW, [True, False])) +@pytest.mark.parametrize("phi_function_2, n_out_raw_2, m_g_2", + zip(PHI_FUNCTIONS, N_OUT_RAW, [True, False])) +@pytest.mark.parametrize("m_g_0", [True, False]) +def test_phi_compound_and_guarantee( + phi_function_1: PhiFunction, n_out_raw_1: int, m_g_1: bool, + phi_function_2: PhiFunction, n_out_raw_2: int, m_g_2: bool, + m_g_0: bool, +) -> None: + """ + Test that when phi is defined using a compound of other PhiFunctions, + the column of ones, added of marginal_guarantee, is added only once + """ + phi_1 = PhiFunction(phi_function_1, marginal_guarantee=m_g_1) + phi_2 = PhiFunction(phi_function_2, marginal_guarantee=m_g_2) + phi_0 = PhiFunction([phi_1, phi_2], marginal_guarantee=m_g_0) + phi_0(X=X, y_pred=y, z=z) + + assert phi_0.n_out == n_out_raw_1 + n_out_raw_2 + int(any( + [m_g_0, m_g_1, m_g_2] + )) + + +def test_phi_functions_warning() -> None: + """ + Test that creating a PhiFunction object with functions which have + optional arguments different from 'X', 'y_pred' or 'z' raise a warning. + """ + with pytest.warns(UserWarning, + match="WARNING: Unknown optional arguments."): + PhiFunction([lambda X, d=d: X**d for d in range(4)]) + + +def test_phi_functions_error() -> None: + """ + Test that creating a PhiFunction object with functions which have + required arguments different from 'X', 'y_pred' or 'z' raise an error. + """ + with pytest.raises(ValueError, match="Forbidden required argument."): + PhiFunction([lambda X, other: X + other, lambda X, other: X - other]) + + +def test_phi_functions_empty() -> None: + """ + Test that creating a PhiFunction object with functions which have + required arguments different from 'X', 'y_pred' or 'z' raise an error. + """ + with pytest.raises(ValueError): + PhiFunction([], marginal_guarantee=False) diff --git a/mapie/tests/test_ccp_regression.py b/mapie/tests/test_ccp_regression.py index 6314d00b0..5c4323d01 100644 --- a/mapie/tests/test_ccp_regression.py +++ b/mapie/tests/test_ccp_regression.py @@ -71,87 +71,6 @@ } -# ======== PhiFunction ========= - -def test_phi_initialized() -> None: - """Test that initialization does not crash.""" - PhiFunction() - - -def test_phi_default_parameters() -> None: - """ - Test default values of input parameters of PhiFunction. - - ``marginal_guarantee`` should be ``True`` - - ``functions``should be a list with a unique callable element - """ - phi = PhiFunction() - assert phi.marginal_guarantee - assert isinstance(phi.functions, list) - assert len(phi.functions) == 0 - - -@pytest.mark.parametrize("phi, n_out_raw", zip(PHI, N_OUT_RAW)) -def test_phi_n_attributes(phi: PhiFunction, n_out_raw: int) -> None: - """ - Test that the n_in and n_out attributes are corrects - """ - phi(X=X, y_pred=y, z=z) - assert phi.n_in == 10 - assert phi.n_out == n_out_raw + 1 # +1 because marginal_guarantee=True - - -@pytest.mark.parametrize("phi_function_1, n_out_raw_1, m_g_1", - zip(PHI_FUNCTIONS, N_OUT_RAW, [True, False])) -@pytest.mark.parametrize("phi_function_2, n_out_raw_2, m_g_2", - zip(PHI_FUNCTIONS, N_OUT_RAW, [True, False])) -@pytest.mark.parametrize("m_g_0", [True, False]) -def test_phi_compound_and_guarantee( - phi_function_1: PhiFunction, n_out_raw_1: int, m_g_1: bool, - phi_function_2: PhiFunction, n_out_raw_2: int, m_g_2: bool, - m_g_0: bool, -) -> None: - """ - Test that when phi is defined using a compound of other PhiFunctions, - the column of ones, added of marginal_guarantee, is added only once - """ - phi_1 = PhiFunction(phi_function_1, marginal_guarantee=m_g_1) - phi_2 = PhiFunction(phi_function_2, marginal_guarantee=m_g_2) - phi_0 = PhiFunction([phi_1, phi_2], marginal_guarantee=m_g_0) - phi_0(X=X, y_pred=y, z=z) - - assert phi_0.n_out == n_out_raw_1 + n_out_raw_2 + int(any( - [m_g_0, m_g_1, m_g_2] - )) - - -def test_phi_functions_warning() -> None: - """ - Test that creating a PhiFunction object with functions which have - optional arguments different from 'X', 'y_pred' or 'z' raise a warning. - """ - with pytest.warns(UserWarning, - match="WARNING: Unknown optional arguments."): - PhiFunction([lambda X, d=d: X**d for d in range(4)]) - - -def test_phi_functions_error() -> None: - """ - Test that creating a PhiFunction object with functions which have - required arguments different from 'X', 'y_pred' or 'z' raise an error. - """ - with pytest.raises(ValueError, match="Forbidden required argument."): - PhiFunction([lambda X, other: X + other, lambda X, other: X - other]) - - -def test_phi_functions_empty() -> None: - """ - Test that creating a PhiFunction object with functions which have - required arguments different from 'X', 'y_pred' or 'z' raise an error. - """ - with pytest.raises(ValueError): - PhiFunction([], marginal_guarantee=False) - - # ======== MapieCCPRegressor ========= def test_initialized() -> None: """Test that initialization does not crash.""" From 765c70a329e0bd6b3fd3075311c4ba2ffd92e9d1 Mon Sep 17 00:00:00 2001 From: Damien Bouet Date: Fri, 31 May 2024 17:37:31 +0200 Subject: [PATCH 004/165] ADD Polynomial and Gaussian PhiFunctions --- mapie/regression/__init__.py | 5 +- mapie/regression/ccp_regression.py | 4 + mapie/regression/utils/ccp_phi_function.py | 463 ++++++++++++++++++++- mapie/tests/test_ccp_phi_function.py | 171 +++++++- 4 files changed, 639 insertions(+), 4 deletions(-) diff --git a/mapie/regression/__init__.py b/mapie/regression/__init__.py index c792cc700..d3cc79e05 100644 --- a/mapie/regression/__init__.py +++ b/mapie/regression/__init__.py @@ -1,7 +1,8 @@ from .quantile_regression import MapieQuantileRegressor from .regression import MapieRegressor from .ccp_regression import MapieCCPRegressor -from .utils.ccp_phi_function import PhiFunction +from .utils.ccp_phi_function import (PhiFunction, PolynomialPhiFunction, + GaussianPhiFunction) from .time_series_regression import MapieTimeSeriesRegressor __all__ = [ @@ -10,4 +11,6 @@ "MapieTimeSeriesRegressor", "MapieCCPRegressor", "PhiFunction", + "PolynomialPhiFunction", + "GaussianPhiFunction", ] diff --git a/mapie/regression/ccp_regression.py b/mapie/regression/ccp_regression.py index b6f3e44b2..a2b5fda05 100644 --- a/mapie/regression/ccp_regression.py +++ b/mapie/regression/ccp_regression.py @@ -455,6 +455,8 @@ def fit( fit_estimator(self.estimator, X_train, y_train, sample_weight=sample_weight_train, **fit_params) + self.phi._check_need_calib(X_train) + else: warnings.warn("WARNING: As cv='prefit', the estimator will not " "be fitted again. You can directly call the" @@ -540,6 +542,8 @@ def calibrate( f"({self.alpha}) has been overwritten " f"by the new one ({alpha}).") + self.phi._check_need_calib(X_calib) + y_pred_calib = self.estimator.predict(X_calib) calib_conformity_scores = \ diff --git a/mapie/regression/utils/ccp_phi_function.py b/mapie/regression/utils/ccp_phi_function.py index 09667ce2f..d5785e0ec 100644 --- a/mapie/regression/utils/ccp_phi_function.py +++ b/mapie/regression/utils/ccp_phi_function.py @@ -1,12 +1,14 @@ from __future__ import annotations import inspect -from typing import Callable, Dict, List, Optional, Union +from typing import Callable, Dict, List, Literal, Optional, Tuple, Union, cast +import numbers import warnings import numpy as np from mapie._typing import NDArray from sklearn.utils import _safe_indexing +from sklearn.utils.validation import _num_samples class PhiFunction(): @@ -196,7 +198,8 @@ def _check_functions( error_ind[param].append(i) else: error_ind[param] = [i] - + elif not isinstance(self, (PolynomialPhiFunction, + GaussianPhiFunction)): if param in warn_ind: warn_ind[param].append(i) else: @@ -278,3 +281,459 @@ def __call__( norm[abs(norm)<1e-8] = 1 result /= norm return result + + def _check_need_calib(self, X: NDArray) -> None: + for f in self.functions: + if isinstance(f, PhiFunction): + if f._need_x_calib: + f._check_need_calib(X) + + +class PolynomialPhiFunction(PhiFunction): + """ + This class is used to define the transformation phi, + used in the Gibbs et al. method to model the conformity scores. + This class build a ``PhiFunction`` object with polynomial features of + X, y_pred or z. + + Parameters + ---------- + degree: Union[int, List[int]] + If ``degree``is an integer, it correspond to the degree of the + polynomial features transformer. It will create the features + ``1``, ``variable``, ``variable``**2, ..., ``variable``**``degree``. + + If ``degree``is an iterable of integers, it will create the features + ``variable``**d, for all integer d in ``degree`` + + ``variable`` may be ``X``, ``y_pred`` or ``z``, depending on the + ``variable``argument value. + + By default ``1``. + + variable: Literal["X", "y_pred", "z"] + String, used to choose which argument between ``X``, ``y_pred`` and + ``z`` is used to build the polynomial features. + + By default ``"X"`` + + marginal_guarantee: bool + Add a column of ones to the features, for safety reason + (to garanty the marginal coverage, no matter how the other features + the ``PhiFunction``object were built). + If the ``PhiFunction``object definition covers all the dataset + (meaning, for all calibration and test samples, ``phi(X, y_pred, z)`` + is never all zeros), this column of ones is not necessary + to obtain marginal coverage. + In this case, you can set this argument to ``False``. + + Note: Even if it is not always necessary to guarantee the marginal + coverage, it can't degrade the prediction intervals. + + By default ``True``. + + normalized: bool + Whether or not to normalized ``phi(X, y_pred, z)``. Normalization + will result in a bounded interval prediction width, avoiding the width + to explode to +inf or crash to zero. It is particularly intersting when + you know that the conformity scores are bounded. It also prevent the + interval to have a interval of zero width for out-of-distribution or + new samples. On the opposite, it is not recommended if the conformity + scores can vary a lot. + + By default ``False`` + + Attributes + ---------- + degree: List[int] + List of degrees of the built polynomial features + + n_in: int + Number of features of ``X`` + + n_out: int + Number of features of phi(``X``, ``y_pred``, ``z``) + + Examples + -------- + >>> import numpy as np + >>> from mapie.regression import PolynomialPhiFunction + >>> X = np.array([[1, 2], [3, 4], [5, 6]]) + >>> y_pred = np.array([1, 2, 3]) + >>> phi = PolynomialPhiFunction(3) + >>> print(phi(X, y_pred)) + [[ 1. 2. 1. 4. 1. 8. 1.] + [ 3. 4. 9. 16. 27. 64. 1.] + [ 5. 6. 25. 36. 125. 216. 1.]] + >>> print(phi.degree) + [0, 1, 2, 3] + >>> phi = PolynomialPhiFunction([1, 2, 5], "y_pred", + ... marginal_guarantee=False) + >>> print(phi(X, y_pred)) + [[ 1. 1. 1.] + [ 2. 4. 32.] + [ 3. 9. 243.]] + >>> print(phi.degree) + [1, 2, 5] + """ + def __init__( + self, + degree: Union[int, List[int]] = 1, + variable: Literal["X", "y_pred", "z"] = "X", + marginal_guarantee: bool = True, + normalized: bool = False, + ) -> None: + if isinstance(degree, int): + degree = list(range(degree+1)) + + if variable not in ["X", "y_pred", "z"]: + raise ValueError("variable must be 'X', 'y_pred' or 'z'") + + self.degree = degree + + functions: List[Callable] = [] + if 0 in degree and not marginal_guarantee: + functions.append(lambda X: np.ones(len(X))) + if variable == "X": + functions += [lambda X, d=d: X**d for d in degree if d != 0] + if variable == "y_pred": + functions += [lambda y_pred, d=d: y_pred**d + for d in degree if d != 0] + if variable == "z": + functions += [lambda z, d=d: z**d for d in degree if d != 0] + + super().__init__(functions, marginal_guarantee, normalized) + + +class GaussianPhiFunction(PhiFunction): + """ + This class is used to define the transformation phi, + used in the Gibbs et al. method to model the conformity scores. + This class build a ``PhiFunction`` object with polynomial features of + X, y_pred or z. + + Parameters + ---------- + points : Union[int, NDArray, Tuple[NDArray, NDArray]] + If Array: List of data points, used as centers to compute + gaussian distances. + + If integer, the points will be sampled randomly from the training + set. The points will be sampled in the ``X`` argument if it + is not ``None``. If ``X`` is ``None``, it will use the + training or calibration sets used in the ``fit`` or ``calibrate`` + methods of the ``MapieCCPRegressor`` object. + + You can pass a Tuple[NDArray, NDArray], to have a different + ``sigma`` value for each point. The two elements of the + tuple should be: + - Data points: 2D array of shape (n_points, n_in) + - Sigma values 2D array of shape (n_points, n_in) or (n_points, 1) + In this case, the ``sigma``, ``random_sigma`` and ``X`` argument are + ignored. + + By default, ``10`` + + sigma : Optional[Union[float, NDArray]] + Standard deviation value used to compute the guassian distances, + with the formula: + np.exp(-0.5 * ((X - point) / ``sigma``) ** 2) + - It can be an integer + - It can be a 1D array of float with as many + values as dimensions in the dataset + + If you want different standard deviation values of each points, + you can indicate the sigma value of each point in the ``points`` + argument. + + If ``None``, ``sigma`` will default to a float equal to + np.std(X)/(n**0.5). + If ``X`` is ``None``, we will wait for the ``calibrate`` method of the + ``MapieCCPRegressor`` object to be called, and sample points from + the calibration data. + + By default, ``None`` + + random_sigma : bool + Whether to apply to the standard deviation values, a random multiplier, + different for each point, equal to: + + 2**np.random.normal(0, 1*2**(-2+np.log10(len(``points``)))) + + Exemple: + - For 10 points, the sigma value will, in general, + be multiplied by a value between 0.7 and 1.4 + - For 100 points, the sigma value will, in general, + be multiplied by a value between 0.5 and 2 + + Note: This is a default suggestion of randomization, + which allow to have in the same time wide and narrow gaussians + (with a gigger range of multipliers for huge amount of points). + + You can use fully custom sigma values, buy passing to the + ``points`` argument, a different sigma value for each point. + + If ``None``, it is enabled if ``sigma`` is not defined (``None``, and + ``points`` is not a Tuple of (points, sigmas)), disabled otherwise. + + By default, ``None`` + + X : Optional[NDArray] + Dataset, used to sample points, if ``points`` is an + integer, and compute the default standard deviation, if + ``sigma``=``None``. It should not overlap with the + calibration or testing datasets. + + If ``X`` is ``None``, it will use the + training or calibration sets used in the ``fit`` or ``calibrate`` + methods of the ``MapieCCPRegressor`` object. + + By default, ``None`` + + marginal_guarantee: bool + Add a column of ones to the features, for safety reason + (to garanty the marginal coverage, no matter how the other features + the ``PhiFunction``object were built). + If the ``PhiFunction``object definition covers all the dataset + (meaning, for all calibration and test samples, ``phi(X, y_pred, z)`` + is never all zeros), this column of ones is not necessary + to obtain marginal coverage. + In this case, you can set this argument to ``False``. + + Note: Even if it is not always necessary to guarantee the marginal + coverage, it can't degrade the prediction intervals. + + By default ``True``. + + normalized: bool + Whether or not to normalized ``phi(X, y_pred, z)``. Normalization + will result in a bounded interval prediction width, avoiding the width + to explode to +inf or crash to zero. It is particularly intersting when + you know that the conformity scores are bounded. It also prevent the + interval to have a interval of zero width for out-of-distribution or + new samples. On the opposite, it is not recommended if the conformity + scores can vary a lot. + + By default ``True`` + + Attributes + ---------- + points: NDArray + Array of shape (n_points, n_in), corresponding to the points used to + compute the gaussian distanes. + + sigmas: NDArray of shape (len(points), 1) or (len(points), n_in) + Standard deviation values + + n_in: int + Number of features of ``X`` + + n_out: int + Number of features of phi(``X``, ``y_pred``, ``z``) + + Examples + -------- + >>> import numpy as np + >>> from mapie.regression import PolynomialPhiFunction + >>> np.random.seed(1) + >>> X = np.array([[1], [2], [3], [4], [5]]) + >>> phi = GaussianPhiFunction(2, X=X, marginal_guarantee=False, + ... normalized=False) + >>> print(np.round(phi(X), 2)) + [[0.08 0.4 ] + [0.53 1. ] + [1. 0.4 ] + [0.53 0.03] + [0.08 0. ]] + >>> print(phi.points) + [[3] + [2]] + >>> print(phi.sigmas) + [[0.8892586 ] + [0.74118567]] + >>> phi = GaussianPhiFunction(points=([[3],[3]], [1,2])) + >>> print(np.round(phi(X), 2)) + [[0.11 0.52 0.85] + [0.41 0.6 0.68] + [0.58 0.58 0.58] + [0.41 0.6 0.68] + [0.11 0.52 0.85]] + >>> print(phi.points) + [[3] + [3]] + >>> print(phi.sigmas) + [[1] + [2]] + """ + def __init__( + self, + points: Union[int, NDArray, Tuple[NDArray, NDArray]] = 10, + sigma: Optional[Union[float, NDArray]] = None, + random_sigma: Optional[bool] = None, + X: Optional[NDArray] = None, + marginal_guarantee: bool = True, + normalized: bool = True, + ) -> None: + self.points = points + self.sigmas: Optional[NDArray] = None + self.random_sigma = random_sigma + if random_sigma is None and sigma is None: + self.random_sigma = True + + if isinstance(points, int): + self.sigmas = self._init_sigma(sigma, points) + if X is None: + self._need_x_calib = True + else: + points_index = np.random.choice(_num_samples(X), size=points, + replace=False) + self.points = cast(NDArray, _safe_indexing(X, points_index)) + + if self.sigmas is None: + self.sigmas = np.ones((len(self.points), 1))*np.std( + X, axis=0)/(len(self.points)**0.5) + + elif isinstance(points, tuple): + self.points = np.array(points[0]) + self.sigmas = np.array(points[1]) + if len(self.sigmas.shape) == 1: + self.sigmas = self.sigmas.reshape(-1, 1) + + self._check_points_sigma(self.points, self.sigmas) + if random_sigma is None and sigma is None: + self.random_sigma = False + + elif len(np.array(points).shape) == 2: + self.sigmas = self._init_sigma(sigma, len(points)) + self.points = np.array(points) + + if self.sigmas is None: + if X is None: + self._need_x_calib = True + else: + self.sigmas = np.ones((len(self.points), 1))*np.std( + X, axis=0)/(len(self.points)**0.5) + + else: + raise ValueError("The points argument should be an integer, " + "a 2D array or a tuple of two 2D arrays.") + + if self._need_x_calib: + functions = [] + else: + self.points = cast(NDArray, self.points) + self.sigmas = cast(NDArray, np.array(self.sigmas)) + self._check_points_sigma(self.points, self.sigmas) + + if self.random_sigma: + n = len(self.points) + self.sigmas = self.sigmas * ( + 2**np.random.normal(0, 1*2**(-2+np.log10(n)), n) + .reshape(-1, 1) + ) + + functions = [ + lambda X, mu=_safe_indexing(self.points, i), + sigma=_safe_indexing(self.sigmas, i): + np.exp(-0.5 * ((X - mu) / sigma) ** 2) + for i in range(len(self.points)) + ] + super().__init__(functions, marginal_guarantee, normalized) + + def _init_sigma( + self, + sigma: Optional[Union[float, NDArray]], + n: int, + ) -> Optional[NDArray]: + """ + Return a standard deviation 2D array + + Parameters + ---------- + sigma : Optional[Union[float, NDArray]] + standard deviation, as float or 1D array of length n_in + (number of dimensins of the dataset) + + n : int + Number of points user for gaussian distances calculation + + Returns + ------- + Optional[NDArray] + 2D array Standard deviation + + Raises + ------ + ValueError + If ``sigma`` is not None, a float or a 1D array + """ + if isinstance(sigma, numbers.Number): + sigmas = np.ones((n, 1))*sigma + elif sigma is not None: + if len(np.array(sigma).shape) != 1: + raise ValueError("sigma argument should be a float " + "or a 1D array of floats.") + sigmas = np.ones((n, 1))*np.array(sigma) + else: + sigmas = None + return sigmas + + def _check_points_sigma(self, points: NDArray, sigmas: NDArray) -> None: + """ + Take 2D arrays of points and standard deviations and check + compatibility + + Parameters + ---------- + points : NDArray + 2D array of shape (n_points, n_in) + sigmas : NDArray + 2D array of shape (n_points, 1) or (n_points, n_in) + + Raises + ------ + ValueError + If ``sigmas``is not of shape (n_points, 1) or (n_points, n_in) + """ + if points.shape[0] != sigmas.shape[0]: + raise ValueError("There should have as many points as " + "standard deviation values") + if sigmas.shape[1] not in [1, points.shape[1]]: + raise ValueError("The standard deviation 2D array should be of " + "shape (n_points, 1) or (n_points, n_in).\n" + f"Got sigma of shape: {sigmas.shape}") + + def _check_need_calib(self, X: NDArray) -> None: + """ + Complete the definition of the phi function using the X training or + calibration data, if the ``X`` argument was ``None`` during the + ``GaussianPhiFunction``` initialisation. + + Parameters + ---------- + X : NDArray + Some samples (training or calibration data) + """ + if isinstance(self.points, int): + points_index = np.random.choice(_num_samples(X), + size=self.points, replace=False) + self.points = cast(NDArray, _safe_indexing(X, points_index)) + if self.sigmas is None: + self.sigmas = np.ones((len(self.points), 1))*np.std( + X, axis=0)/(len(self.points)**0.5) + + if self.random_sigma: + n = len(self.points) + self.sigmas = self.sigmas * ( + 2**np.random.normal(0, 1*2**(-2+np.log10(n)), n) + .reshape(-1, 1) + ) + + self._need_x_calib = False + + self.functions = [ + lambda X, mu=_safe_indexing(self.points, i), + sigma=_safe_indexing(self.sigmas, i): + np.exp(-0.5 * ((X - mu) / sigma) ** 2) + for i in range(len(self.points)) + ] diff --git a/mapie/tests/test_ccp_phi_function.py b/mapie/tests/test_ccp_phi_function.py index f22f6bc2f..add2b00c1 100644 --- a/mapie/tests/test_ccp_phi_function.py +++ b/mapie/tests/test_ccp_phi_function.py @@ -1,9 +1,12 @@ from __future__ import annotations +from typing import Any, List, Dict + import numpy as np import pytest from sklearn.datasets import make_regression -from mapie.regression import PhiFunction +from mapie.regression import (PhiFunction, PolynomialPhiFunction, + GaussianPhiFunction) random_state = 1 np.random.seed(random_state) @@ -22,6 +25,10 @@ PhiFunction([lambda X: X, lambda y_pred: y_pred]), lambda z: z ]), + PolynomialPhiFunction(2, "X", marginal_guarantee=True), + PolynomialPhiFunction([1, 2], "X", marginal_guarantee=True), + PolynomialPhiFunction([1, 4, 5], "y_pred", marginal_guarantee=False), + GaussianPhiFunction(4, X=X) ] # n_out without marginal_guarantee @@ -35,6 +42,57 @@ [PhiFunction([lambda X: X, lambda y_pred: y_pred]), lambda z: z], ] +GAUSS_NEED_CALIB_SETTINGS: List[Dict[str, Any]] = [ + { + "points": 10, + "sigma": 1, + "X": None, + }, + { + "points": 10, + "sigma": None, + "X": None, + }, + { + "points": np.ones((2, X.shape[1])), + "sigma": None, + "X": None, + }, +] + +GAUSS_NO_NEED_CALIB_SETTINGS: List[Dict[str, Any]] = [ + { + "points": 10, + "sigma": 1, + "X": X, + }, + { + "points": 10, + "sigma": None, + "X": X, + }, + { + "points": np.ones((2, X.shape[1])), + "sigma": None, + "X": X, + }, + { + "points": np.ones((2, X.shape[1])), + "sigma": np.ones(X.shape[1]), + "X": X, + }, + { + "points": (np.ones((2, X.shape[1])), [1, 2]), + "sigma": None, + "X": None, + }, + { + "points": (np.ones((2, X.shape[1])), np.ones((2, X.shape[1]))), + "sigma": None, + "X": None, + }, +] + # ======== PhiFunction ========= def test_phi_initialized() -> None: @@ -114,3 +172,114 @@ def test_phi_functions_empty() -> None: """ with pytest.raises(ValueError): PhiFunction([], marginal_guarantee=False) + + +# ======== PolynomialPhiFunction ========= +def test_poly_phi_init() -> None: + """Test that initialization does not crash.""" + PolynomialPhiFunction() + + +@pytest.mark.parametrize("degree", [2, [0, 1, 3]]) +@pytest.mark.parametrize("variable", ["X", "y_pred", "z"]) +@pytest.mark.parametrize("marginal_guarantee", [True, False]) +@pytest.mark.parametrize("normalized", [True, False]) +def test_poly_phi_init_other( + degree: Any, variable: Any, marginal_guarantee: bool, normalized: bool +) -> None: + """Test that initialization does not crash.""" + PolynomialPhiFunction(degree, variable, marginal_guarantee, normalized) + + +@pytest.mark.parametrize("var", ["other", 1, np.ones((10, 1))]) +def test_invalid_variable_value(var: Any) -> None: + """ + Test that invalid variable value raise error + """ + with pytest.raises(ValueError): + PolynomialPhiFunction(variable=var) + + +# ======== GaussianPhiFunction ========= +def test_gauss_phi_init() -> None: + """Test that initialization does not crash.""" + GaussianPhiFunction() + + +@pytest.mark.parametrize("points", [3, [[10, 20], [2, 39], [2, 3]], + ([[1], [2], [3]], [1, 2, 3])]) +@pytest.mark.parametrize("sigma", [None, 1, [1, 2]]) +@pytest.mark.parametrize("random_sigma", [True, False]) +@pytest.mark.parametrize("X", [None, np.ones((30, 2))]) +@pytest.mark.parametrize("marginal_guarantee", [True, False]) +@pytest.mark.parametrize("normalized", [True, False]) +def test_poly_gauss_init_other( + points: Any, sigma: Any, random_sigma: Any, X: Any, + marginal_guarantee: bool, normalized: bool +) -> None: + """Test that initialization does not crash.""" + GaussianPhiFunction(points, sigma, random_sigma, X, + marginal_guarantee, normalized) + + +@pytest.mark.parametrize("points", [np.ones((10)), + np.ones((10, 2, 2)), + (np.ones((10, 3)), np.ones((10, 2))), + (np.ones((10, 3)), np.ones((8, 1))), + (np.ones((10, 3)), np.ones(7))]) +def test_invalid_gauss_points(points: Any) -> None: + """ + Test that invalid ``GaussianPhiFunction`` ``points``argument values raise an + error + """ + with pytest.raises(ValueError): + GaussianPhiFunction(points) + + +@pytest.mark.parametrize("sigma", ["1", + np.ones((10, 2)), + np.ones((8, 1)), + np.ones(8)]) +def test_invalid_gauss_sigma(sigma: Any) -> None: + """ + Test that invalid ``GaussianPhiFunction`` ``sigma``argument values raise an + error + """ + with pytest.raises(ValueError): + GaussianPhiFunction(3, sigma, X=X) + + +@pytest.mark.parametrize("ind", range(len(GAUSS_NEED_CALIB_SETTINGS))) +def test_gauss_need_calib(ind: int) -> None: + """ + Test that ``GaussianPhiFunction`` arguments that require later completion + have ``_need_x_calib`` = ``True`` + """ + phi = GaussianPhiFunction(**GAUSS_NEED_CALIB_SETTINGS[ind]) + assert phi._need_x_calib + + +@pytest.mark.parametrize("ind", range(len(GAUSS_NO_NEED_CALIB_SETTINGS))) +def test_gauss_no_need_calib(ind: int) -> None: + """ + Test that ``GaussianPhiFunction`` arguments that don't require later + completion have ``_need_x_calib`` = ``False`` + """ + phi = GaussianPhiFunction(**GAUSS_NO_NEED_CALIB_SETTINGS[ind]) + assert not phi._need_x_calib + + +@pytest.mark.parametrize("ind", range(len(GAUSS_NEED_CALIB_SETTINGS))) +def test_chained_check_need_calib(ind: int) -> None: + """ + Test that a PhiFunction object _check_need_calib call the _check_need_calib + method of children PhiFunction objects + """ + child_phi = GaussianPhiFunction(**GAUSS_NEED_CALIB_SETTINGS[ind]) + assert child_phi._need_x_calib + + phi = PhiFunction([child_phi, lambda X: X, lambda X: np.ones(len(X))]) + assert not phi._need_x_calib + + phi._check_need_calib(X) + assert not child_phi._need_x_calib From c8c004dd100e8a351891db60d42e16fbaa816d5d Mon Sep 17 00:00:00 2001 From: Damien Bouet Date: Fri, 31 May 2024 17:40:40 +0200 Subject: [PATCH 005/165] UPD docstrings and return self on fit and calibrate --- mapie/regression/ccp_regression.py | 58 +++++++++++++++++++++--------- 1 file changed, 41 insertions(+), 17 deletions(-) diff --git a/mapie/regression/ccp_regression.py b/mapie/regression/ccp_regression.py index a2b5fda05..33df8deb6 100644 --- a/mapie/regression/ccp_regression.py +++ b/mapie/regression/ccp_regression.py @@ -96,8 +96,14 @@ class MapieCCPRegressor(): random_state: Optional[int] - Pseudo random number generator state used for random sampling. - Pass an int for reproducible output across multiple function calls. + Integer used to set the numpy seed, to get reproducible calibration + results. + If ``None``, the prediction intervals will be stochastics, and will + change if you refit the calibration (even if no arguments have change). + + WARNING: If ``random_state``is not ``None``, ``np.random.seed`` will + be changed, which will reset the seed for all the other random + number generators. By default ``None``. @@ -124,21 +130,21 @@ class MapieCCPRegressor(): >>> from mapie.regression import MapieCCPRegressor >>> X_train = np.array([[0], [1], [2], [3], [4], [5]]) >>> y_train = np.array([5, 7.5, 9.5, 10.5, 12.5, 15]) - >>> mapie_reg = MapieCCPRegressor(alpha=0.1, random_state=42) - >>> mapie_reg.fit_calibrate( + >>> mapie_reg = MapieCCPRegressor(alpha=0.1, random_state=1) + >>> mapie_reg = mapie_reg.fit_calibrate( ... X_train, ... y_train, ... ) >>> y_pred, y_pis = mapie_reg.predict(X_train) - >>> print(y_pis[:,:, 0]) - [[ 5. 5.8 ] - [ 6.85 7.65] - [ 8.7 9.5 ] - [10.55 11.35] - [12.4 13.2 ] - [14.25 15.05]] - >>> print(y_pred) - [ 5.4 7.25 9.1 10.95 12.8 14.65] + >>> print(np.round(y_pis[:,:, 0], 2)) + [[ 4.14 5.57] + [ 6.11 7.54] + [ 8.07 9.5 ] + [10.04 11.46] + [12. 13.43] + [13.96 15.39]] + >>> print(np.round(y_pred, 2)) + [ 4.86 6.82 8.79 10.75 12.71 14.68] """ default_sym_ = True @@ -398,7 +404,7 @@ def fit( sample_weight: Optional[ArrayLike] = None, groups: Optional[ArrayLike] = None, **fit_params, - ) -> None: + ) -> MapieCCPRegressor: """ Fit the estimator. @@ -431,6 +437,11 @@ def fit( **fit_params: dict Additional fit parameters for the estimator. + Returns + ------- + MapieCCPRegressor + self + """ if self.cv != 'prefit': @@ -461,6 +472,7 @@ def fit( warnings.warn("WARNING: As cv='prefit', the estimator will not " "be fitted again. You can directly call the" "calibrate method.") + return self def calibrate( self, @@ -469,7 +481,7 @@ def calibrate( groups: Optional[ArrayLike] = None, z: Optional[ArrayLike] = None, alpha: Optional[float] = None, - ) -> None: + ) -> MapieCCPRegressor: """ Calibrate with (``X``, ``y`` and ``z``) and the new value ``alpha`` value, if not ``None`` @@ -506,6 +518,11 @@ def calibrate( By default ``None`` + Returns + ------- + MapieCCPRegressor + self + """ if self.cv != 'prefit': try: @@ -631,6 +648,7 @@ def sum_of_losses(beta, phi_x, S, alpha): cast(bool, optimal_beta_up.success)) self.beta_low = (cast(NDArray, optimal_beta_low.x), cast(bool, optimal_beta_low.success)) + return self def fit_calibrate( self, @@ -641,7 +659,7 @@ def fit_calibrate( z: Optional[ArrayLike] = None, alpha: Optional[float] = None, **fit_params, - ) -> None: + ) -> MapieCCPRegressor: """ Fit the estimator and the calibration. @@ -692,9 +710,15 @@ def fit_calibrate( **fit_params: dict Additional fit parameters for the estimator. + Returns + ------- + MapieCCPRegressor + self + """ self.fit(X, y, sample_weight, groups, **fit_params) self.calibrate(X, y, groups, z, alpha) + return self def predict( self, @@ -736,7 +760,7 @@ def predict( phi_x = self.phi(X, y_pred, z) if np.any(np.all(phi_x == 0, axis=1)): - warnings.warn("WARNING: At least one row of the transformation" + warnings.warn("WARNING: At least one row of the transformation " "phi(X, y_pred, z) is full of zeros." "It will result in a prediction interval of zero" "width. Consider changing the PhiFunction" From 1767c1ed4e217f00df54fb2f947ead7df25fb761 Mon Sep 17 00:00:00 2001 From: Damien Bouet Date: Fri, 31 May 2024 17:41:02 +0200 Subject: [PATCH 006/165] FIX: tests --- mapie/tests/test_ccp_regression.py | 16 +++++++++++----- 1 file changed, 11 insertions(+), 5 deletions(-) diff --git a/mapie/tests/test_ccp_regression.py b/mapie/tests/test_ccp_regression.py index 5c4323d01..73b91441c 100644 --- a/mapie/tests/test_ccp_regression.py +++ b/mapie/tests/test_ccp_regression.py @@ -120,7 +120,7 @@ def test_no_fit_calibrate() -> None: def test_calib_not_complete_phi() -> None: """Test that a not complete phi definition raises a warning""" - with pytest.warns(UserWarning): + with pytest.warns(UserWarning, match="WARNING: At least one row of the"): mapie_reg = MapieCCPRegressor( phi=PhiFunction([lambda X: (X < 5).astype(int)], marginal_guarantee=False)) @@ -129,7 +129,7 @@ def test_calib_not_complete_phi() -> None: def test_predict_not_complete_phi() -> None: """Test that a not complete phi definition raises a warning""" - with pytest.warns(UserWarning): + with pytest.warns(UserWarning, match="WARNING: At least one row of the"): mapie_reg = MapieCCPRegressor( phi=PhiFunction([lambda X: (X < 5).astype(int)], marginal_guarantee=False)) @@ -309,7 +309,7 @@ def test_recalibrate_warning(): """ mapie_reg = MapieCCPRegressor(alpha=0.1) mapie_reg.fit_calibrate(X_toy, y_toy) - with pytest.warns(UserWarning): + with pytest.warns(UserWarning, match="WARNING: The old value of alpha"): mapie_reg.calibrate(X_toy, y_toy, alpha=0.2) @@ -451,10 +451,16 @@ def test_results_for_ordered_alpha( @pytest.mark.parametrize("dataset", [(X, y, z), (X_toy, y_toy, z_toy)]) @pytest.mark.parametrize("phi", PHI) @pytest.mark.parametrize("cv", CV) -@pytest.mark.parametrize("estimator1, estimator2, estimator3", zip(*([[ +@pytest.mark.parametrize("estimator1, estimator2, estimator3", zip([ + LinearRegression(), + make_pipeline(LinearRegression()), +], [ + LinearRegression(), + make_pipeline(LinearRegression()), +], [ LinearRegression(), make_pipeline(LinearRegression()), -]]*3))) +])) def test_results_with_constant_sample_weights( dataset: Tuple[NDArray, NDArray, NDArray], cv: Any, From 8a46555ce50caad8ce95ee488b989d136cb3f0ce Mon Sep 17 00:00:00 2001 From: Damien Bouet Date: Fri, 31 May 2024 17:41:28 +0200 Subject: [PATCH 007/165] ADD: Paper simulations reproduction --- .../plot_gibbs2023_simulations.py | 363 ++++++++++++++++++ 1 file changed, 363 insertions(+) create mode 100644 examples/regression/3-scientific-articles/plot_gibbs2023_simulations.py diff --git a/examples/regression/3-scientific-articles/plot_gibbs2023_simulations.py b/examples/regression/3-scientific-articles/plot_gibbs2023_simulations.py new file mode 100644 index 000000000..a985326fb --- /dev/null +++ b/examples/regression/3-scientific-articles/plot_gibbs2023_simulations.py @@ -0,0 +1,363 @@ +""" +====================================================================== +Reproduction of part of the paper experiments of Gibbs et al. (2023) +====================================================================== + +:class:`~mapie.regression.MapieCCPRegressor` is used to reproduce a +part of the paper experiments of Gibbs et al. (2023) in their article [1] +which we argue is a good procedure to get adaptative prediction intervals (PI) +and a guaranteed coverage on all sub groups of interest. + +For a given model, the simulation adjusts the MAPIE regressors using the +``CCP`` method, on a synthetic dataset first considered by Romano et al. (2019) +[2], and compares the bounds of the PIs with the standard split CP. + +In order to reproduce the results of the standard split conformal prediction +(Split CP), we reuse the Mapie implementation in +:class:`~mapie.regression.MapieRegressor`. + +This simulation is carried out to check that the CCP method implemented in +MAPIE gives the same results as [1], and that the bounds of the PIs are +obtained. + +[1] Isaac Gibbs, John J. Cherian, Emmanuel J. Candès (2023). +Conformal Prediction With Conditional Guarantees + +[2] Yaniv Romano, Evan Patterson, Emmanuel J. Candès (2019). +Conformalized Quantile Regression. +33rd Conference on Neural Information Processing Systems (NeurIPS 2019). +""" +import warnings + +import matplotlib.pyplot as plt +import numpy as np +import pandas as pd +import seaborn as sns +from mapie.conformity_scores import AbsoluteConformityScore +from mapie.regression import (MapieCCPRegressor, MapieRegressor, + PhiFunction, GaussianPhiFunction) +from scipy.stats import norm +from sklearn.linear_model import LinearRegression +from sklearn.pipeline import Pipeline +from sklearn.preprocessing import PolynomialFeatures + +warnings.filterwarnings("ignore") + +random_state = 1 +np.random.seed(random_state) + + +############################################################################### +# 1. Global model parameters +# ----------------------------------------------------------------------------- + +def init_model(): + # the degree of the polynomial regression + degree = 4 + + model = Pipeline( + [ + ("poly", PolynomialFeatures(degree=degree)), + ("linear", LinearRegression()) + ] + ) + return model + +############################################################################### +# 2. Generate and present data +# ----------------------------------------------------------------------------- + + +def generate_data(n_train=2000, n_calib=2000, n_test=500): + def f(x): + ax = 0*x + for i in range(len(x)): + ax[i] = np.random.poisson(np.sin(x[i])**2 + 0.1) + + 0.03*x[i]*np.random.randn(1) + ax[i] += 25*(np.random.uniform(0, 1, 1) < 0.01)*np.random.randn(1) + return ax.astype(np.float32) + + # training features + X_train = np.random.uniform(0, 5.0, size=n_train).astype(np.float32) + X_calib = np.random.uniform(0, 5.0, size=n_calib).astype(np.float32) + X_test = np.random.uniform(0, 5.0, size=n_test).astype(np.float32) + + # generate labels + y_train = f(X_train) + y_calib = f(X_calib) + y_test = f(X_test) + + # reshape the features + X_train = X_train.reshape(-1, 1) + X_calib = X_calib.reshape(-1, 1) + X_test = X_test.reshape(-1, 1) + + return X_train, y_train, X_calib, y_calib, X_test, y_test + + +X_train, y_train, X_calib, y_calib, X_test, y_test = generate_data() + +fig = plt.figure(figsize=(12, 5)) +ax1 = fig.add_subplot(1, 2, 1) +ax1.scatter(X_train[:, 0], y_train, s=1.5, alpha=0.6, label="Train Data") +ax1.set_xlabel("X") +ax1.set_ylabel("Y") +ax1.set_title("Train Data") +ax1.legend() + +ax2 = fig.add_subplot(1, 2, 2) +ax2.scatter(X_train[:, 0], y_train, s=1.5, alpha=0.6, label="Train Data") +ax2.set_ylim([-2, 6]) +ax2.set_xlabel("X") +ax2.set_ylabel("Y") +ax2.set_title("Zoom") +ax2.legend() + +plt.show() + +############################################################################## +# 3. Prepare model and show predictions +# ----------------------------------------------------------------------------- + +model = init_model() + +model.fit(X_train, y_train) + +sort_order = np.argsort(X_test[:, 0]) +x_test_s = X_test[sort_order] +y_pred_s = model.predict(x_test_s) + +plt.figure(figsize=(6, 5)) +plt.scatter(X_test[:, 0], y_test, s=1.5, alpha=0.6, label="Test Data") +plt.plot(x_test_s, y_pred_s, "-k", label="Prediction") +plt.ylim([-2, 6]) +plt.xlabel("X") +plt.ylabel("Y") +plt.title("Test Data (Zoom)") +plt.legend() +plt.show() + + +############################################################################## +# 4. Prepare Experiments +# ----------------------------------------------------------------------------- +# In this experiment, we will use the +# :class:`~mapie.regression.MapieRegressor` and +# :class:`~mapie.regression.MapieCCPRegressor` to compute prediction intervals +# with the basic Split CP method and the paper CCP method. +# The coverages will be computed on 500 different dataset generation, to have +# a good idea of the true value. Indeed, the empirical coverage of a single +# experiment is stochastic, because of the finite number of calibration and +# test samples. + +ALPHA = 0.1 + + +def estimate_coverage(mapie_split, mapie_ccp, group_functs=[]): + _, _, X_calib, y_calib, X_test, y_test = generate_data() + + mapie_split.fit(X_calib, y_calib) + _, y_pi_split = mapie_split.predict(X_test, alpha=ALPHA) + + mapie_ccp.calibrate(X_calib, y_calib) + _, y_pi_ccp = mapie_ccp.predict(X_test) + + cover_split = np.logical_or(y_test < y_pi_split[:, 0, 0], + y_test > y_pi_split[:, 1, 0]) + cover_ccp = np.logical_or(y_test < y_pi_ccp[:, 0, 0], + y_test > y_pi_ccp[:, 1, 0]) + group_covers = [] + marginal_cover = np.asarray((cover_split.mean(), cover_ccp.mean())) + for funct in group_functs: + group_cover = np.zeros((2,)) + group_cover[0] = (funct(X_test).flatten() + * cover_split).sum() / funct(X_test).sum() + group_cover[1] = (funct(X_test).flatten() + * cover_ccp).sum() / funct(X_test).sum() + group_covers.append(group_cover) + return marginal_cover, np.array(group_covers) + + +def plot_results(X_test, y_test, n_trials=10, + experiment="Groups", split_sym=True): + + # Split CP + mapie_split = MapieRegressor( + model, method="base", cv="prefit", + conformity_score=AbsoluteConformityScore(sym=split_sym) + ) + mapie_split.conformity_score.eps = 1e-5 + mapie_split.fit(X_calib, y_calib) + _, y_pi_split = mapie_split.predict(X_test, alpha=ALPHA) + + if experiment == "Groups": + # CCP Groups + phi_groups = PhiFunction([ + lambda X, t=t: np.logical_and(X >= t, X < t + 0.5).astype(int) + for t in np.arange(0, 5.5, 0.5) + ]) + mapie_ccp = MapieCCPRegressor( + model, phi=phi_groups, alpha=ALPHA, cv="prefit", + conformity_score=AbsoluteConformityScore(sym=False), + random_state=None + ) + mapie_ccp.conformity_score_.eps = 1e-5 + mapie_ccp.calibrate(X_calib, y_calib) + _, y_pi_ccp = mapie_ccp.predict(X_test) + else: + # CCP Shifts + eval_locs = [1.5, 3.5] + eval_scale = 0.2 + other_locs = [0.5, 2.5, 4.5] + other_scale = 1 + + phi_shifts = GaussianPhiFunction( + points=( + np.array(eval_locs+other_locs).reshape(-1,1), + [eval_scale]*len(eval_locs) + [other_scale]*len(other_locs), + ), + marginal_guarantee=True, + normalized=False, + ) + mapie_ccp = MapieCCPRegressor( + model, phi=phi_shifts, alpha=ALPHA, cv="prefit", + conformity_score=AbsoluteConformityScore(sym=False), + random_state=None + ) + mapie_ccp.conformity_score_.eps = 1e-5 + mapie_ccp.calibrate(X_calib, y_calib) + _, y_pi_ccp = mapie_ccp.predict(X_test) + + # =========== n_trials run to get average marginal coverage ============ + if experiment == "Groups": + eval_functions = [ + lambda X, a=a, b=b: np.logical_and(X >= a, X <= b).astype(int) + for a, b in zip([1, 3], [2, 4]) + ] + eval_names = ["[1, 2]", "[3, 4]"] + else: + eval_functions = [ + lambda x: norm.pdf(x, loc=1.5, scale=0.2).reshape(-1, 1), + lambda x: norm.pdf(x, loc=3.5, scale=0.2).reshape(-1, 1) + ] + eval_names = ["f1", "f2"] + + marginal_cov = np.zeros((n_trials, 2)) + group_cov = np.zeros((len(eval_functions), n_trials, 2)) + for j in range(n_trials): + marginal_cov[j], group_cov[:, j, :] = estimate_coverage( + mapie_split, mapie_ccp, eval_functions + ) + + coverageData = pd.DataFrame() + + for group, cov in zip(["Marginal"]+eval_names, + [marginal_cov] + list(group_cov)): + for i, name in enumerate(["Split", "CCP"]): + coverageData = pd.concat( + [coverageData, + pd.DataFrame({'Method': [name] * len(cov), + 'Range': [group] * len(cov), + 'Miscoverage': np.asarray(cov)[:, i]})], + axis=0 + ) + + # ================== results plotting ================== + sns.set_theme(font="DejaVu Sans") + sns.set_style("whitegrid", {'axes.grid': False}) + cp = sns.color_palette() + fig = plt.figure() + fig.set_size_inches(17, 6) + + sort_order = np.argsort(X_test[:, 0]) + x_test_s = X_test[sort_order] + y_test_s = y_test[sort_order] + y_pred_s = model.predict(x_test_s) + + ax1 = fig.add_subplot(1, 3, 1) + ax1.plot(x_test_s, y_test_s, '.', alpha=0.2) + ax1.plot(x_test_s, y_pred_s, lw=1, color='k') + ax1.plot(x_test_s, y_pi_split[sort_order, 0, 0], color=cp[0], lw=2) + ax1.plot(x_test_s, y_pi_split[sort_order, 1, 0], color=cp[0], lw=2) + ax1.fill_between(x_test_s.flatten(), y_pi_split[sort_order, 0, 0], + y_pi_split[sort_order, 1, 0], + color=cp[0], alpha=0.4, label='split prediction interval') + ax1.set_ylim(-2, 6.5) + ax1.tick_params(axis='both', which='major', labelsize=14) + ax1.set_xlabel("$X$", fontsize=16, labelpad=10) + ax1.set_ylabel("$Y$", fontsize=16, labelpad=10) + ax1.set_title("Split calibration", fontsize=18, pad=12) + + if experiment == 'Groups': + ax1.axvspan(1, 2, facecolor='grey', alpha=0.25) + ax1.axvspan(3, 4, facecolor='grey', alpha=0.25) + else: + for loc in eval_locs: + ax1.plot(x_test_s, norm.pdf(x_test_s, loc=loc, scale=eval_scale), + color='grey', ls='--', lw=3) + + ax2 = fig.add_subplot(1, 3, 2, sharex=ax1, sharey=ax1) + ax2.plot(x_test_s, y_test_s, '.', alpha=0.2) + ax2.plot(x_test_s, y_pred_s, color='k', lw=1) + ax2.plot(x_test_s, y_pi_ccp[sort_order, 0, 0], color=cp[1], lw=2) + ax2.plot(x_test_s, y_pi_ccp[sort_order, 1, 0], color=cp[1], lw=2) + ax2.fill_between(x_test_s.flatten(), y_pi_ccp[sort_order, 0, 0], + y_pi_ccp[sort_order, 1, 0], color=cp[1], alpha=0.4, + label='conditional calibration') + ax2.tick_params(axis='both', which='major', direction='out', labelsize=14) + ax2.set_xlabel("$X$", fontsize=16, labelpad=10) + ax2.set_ylabel("$Y$", fontsize=16, labelpad=10) + ax2.set_title("Conditional calibration", fontsize=18, pad=12) + + if experiment == 'Groups': + ax2.axvspan(1, 2, facecolor='grey', alpha=0.25) + ax2.axvspan(3, 4, facecolor='grey', alpha=0.25) + else: + for loc in eval_locs: + ax2.plot(x_test_s, norm.pdf(x_test_s, loc=loc, scale=eval_scale), + color='grey', ls='--', lw=3) + + ax3 = fig.add_subplot(1, 3, 3) + f = sns.barplot( + coverageData, + x='Range', + y='Miscoverage', + hue='Method', + palette=cp, + ax=ax3, + ci=0.8, + ) + f.axhline(0.1, color='red') + ax3.set_ylabel("Miscoverage", fontsize=18, labelpad=10) + ax3.set_xlabel(experiment, fontsize=18, labelpad=10) + ax3.set_ylim(0., 0.2) + ax3.tick_params(axis='both', which='major', labelsize=14) + + plt.tight_layout(pad=2) + plt.show() + + +############################################################################## +# 5. Reproduce experiment and results +# ----------------------------------------------------------------------------- + +plot_results(X_test, y_test, n_trials=500, experiment="Groups") + +plot_results(X_test, y_test, n_trials=500, experiment="Shifts") + + +############################################################################## +# We succesfully reproduced the experiement of the Gibbs et al. paper [1]. + +############################################################################## +# 6. Variant of the experiments: let's compare what is comparable +# ----------------------------------------------------------------------------- +# +# In the paper, the proposed method (used with not symetrical PI) is compared +# to the split method with symetrical PI. Let's compare it to the split CP with +# unsymetrical PI, to have a fair comparison. + +plot_results(X_test, y_test, n_trials=500, experiment="Groups") + +plot_results(X_test, y_test, n_trials=500, + experiment="Shifts", split_sym=False) From d75a48b3d385fe6c34eb315926a1dbd01c029fab Mon Sep 17 00:00:00 2001 From: Damien Bouet Date: Mon, 3 Jun 2024 11:14:33 +0200 Subject: [PATCH 008/165] FIX: tests and coverage --- mapie/regression/ccp_regression.py | 11 +- mapie/regression/utils/ccp_phi_function.py | 120 +++++++++++---------- mapie/tests/test_ccp_phi_function.py | 29 ++--- mapie/tests/test_ccp_regression.py | 67 ++++++------ 4 files changed, 119 insertions(+), 108 deletions(-) diff --git a/mapie/regression/ccp_regression.py b/mapie/regression/ccp_regression.py index 33df8deb6..9b420a233 100644 --- a/mapie/regression/ccp_regression.py +++ b/mapie/regression/ccp_regression.py @@ -552,12 +552,11 @@ def calibrate( else: z_calib = None - if alpha is not None: - if self.alpha != alpha: - self.alpha = self._check_alpha(alpha) - warnings.warn(f"WARNING: The old value of alpha " - f"({self.alpha}) has been overwritten " - f"by the new one ({alpha}).") + if alpha is not None and self.alpha != alpha: + self.alpha = self._check_alpha(alpha) + warnings.warn(f"WARNING: The old value of alpha " + f"({self.alpha}) has been overwritten " + f"by the new one ({alpha}).") self.phi._check_need_calib(X_calib) diff --git a/mapie/regression/utils/ccp_phi_function.py b/mapie/regression/utils/ccp_phi_function.py index d5785e0ec..c2822b71f 100644 --- a/mapie/regression/utils/ccp_phi_function.py +++ b/mapie/regression/utils/ccp_phi_function.py @@ -62,7 +62,7 @@ class PhiFunction(): new samples. On the opposite, it is not recommended if the conformity scores can vary a lot. - By default ``True`` + By default ``False`` Attributes ---------- @@ -122,7 +122,7 @@ def __init__( List[Union[Callable, "PhiFunction"]] ]] = None, marginal_guarantee: bool = True, - normalized: bool = True, + normalized: bool = False, ) -> None: if isinstance(functions, list): self.functions = list(functions) @@ -278,15 +278,16 @@ def __call__( result = np.hstack(res) if self.normalized: norm = np.linalg.norm(result, axis=1).reshape(-1, 1) - norm[abs(norm)<1e-8] = 1 + result[(abs(norm) == 0)[:, 0], :] = np.ones(result.shape[1]) + + norm[abs(norm) == 0] = 1 result /= norm return result def _check_need_calib(self, X: NDArray) -> None: for f in self.functions: - if isinstance(f, PhiFunction): - if f._need_x_calib: - f._check_need_calib(X) + if isinstance(f, PhiFunction) and f._need_x_calib: + f._check_need_calib(X) class PolynomialPhiFunction(PhiFunction): @@ -386,21 +387,20 @@ def __init__( if isinstance(degree, int): degree = list(range(degree+1)) - if variable not in ["X", "y_pred", "z"]: - raise ValueError("variable must be 'X', 'y_pred' or 'z'") - self.degree = degree functions: List[Callable] = [] if 0 in degree and not marginal_guarantee: - functions.append(lambda X: np.ones(len(X))) + functions.append(lambda X: np.ones((len(X), 1))) if variable == "X": functions += [lambda X, d=d: X**d for d in degree if d != 0] - if variable == "y_pred": + elif variable == "y_pred": functions += [lambda y_pred, d=d: y_pred**d for d in degree if d != 0] - if variable == "z": + elif variable == "z": functions += [lambda z, d=d: z**d for d in degree if d != 0] + else: + raise ValueError("variable must be 'X', 'y_pred' or 'z'") super().__init__(functions, marginal_guarantee, normalized) @@ -409,18 +409,17 @@ class GaussianPhiFunction(PhiFunction): """ This class is used to define the transformation phi, used in the Gibbs et al. method to model the conformity scores. - This class build a ``PhiFunction`` object with polynomial features of - X, y_pred or z. + This class build a ``PhiFunction`` object with features been the gaussian + distances between X and some defined points. Parameters ---------- points : Union[int, NDArray, Tuple[NDArray, NDArray]] If Array: List of data points, used as centers to compute - gaussian distances. + gaussian distances. Should be an array of shape (n_points, n_in). - If integer, the points will be sampled randomly from the training - set. The points will be sampled in the ``X`` argument if it - is not ``None``. If ``X`` is ``None``, it will use the + If integer, the points will be sampled randomly from the ``X`` + set if it is not ``None``. If ``X`` is ``None``, it will use the training or calibration sets used in the ``fit`` or ``calibrate`` methods of the ``MapieCCPRegressor`` object. @@ -500,10 +499,12 @@ class GaussianPhiFunction(PhiFunction): to obtain marginal coverage. In this case, you can set this argument to ``False``. - Note: Even if it is not always necessary to guarantee the marginal - coverage, it can't degrade the prediction intervals. + Note: In this case, with ``GaussianPhiFunction``, if ``normalized`` is + ``True`` (it is, by default), the ``phi(X, y_pred, z)`` will never + be all zeros, so this ``marginal_guarantee`` is not required + sto have coverage guarantee. - By default ``True``. + By default ``False``. normalized: bool Whether or not to normalized ``phi(X, y_pred, z)``. Normalization @@ -551,27 +552,27 @@ class GaussianPhiFunction(PhiFunction): >>> print(phi.sigmas) [[0.8892586 ] [0.74118567]] - >>> phi = GaussianPhiFunction(points=([[3],[3]], [1,2])) + >>> phi = GaussianPhiFunction([[3],[4]], 0.5) >>> print(np.round(phi(X), 2)) - [[0.11 0.52 0.85] - [0.41 0.6 0.68] - [0.58 0.58 0.58] - [0.41 0.6 0.68] - [0.11 0.52 0.85]] + [[1. 0. ] + [1. 0. ] + [0.99 0.13] + [0.13 0.99] + [0. 1. ]] >>> print(phi.points) [[3] - [3]] + [4]] >>> print(phi.sigmas) - [[1] - [2]] + [[0.5] + [0.5]] """ def __init__( self, - points: Union[int, NDArray, Tuple[NDArray, NDArray]] = 10, + points: Union[int, NDArray, Tuple[NDArray, NDArray]] = 20, sigma: Optional[Union[float, NDArray]] = None, random_sigma: Optional[bool] = None, X: Optional[NDArray] = None, - marginal_guarantee: bool = True, + marginal_guarantee: bool = False, normalized: bool = True, ) -> None: self.points = points @@ -643,10 +644,11 @@ def __init__( def _init_sigma( self, sigma: Optional[Union[float, NDArray]], - n: int, + n_points: int, ) -> Optional[NDArray]: """ - Return a standard deviation 2D array + Take a sigma value, and return a standard deviation 2D array of shape + (n_points, n_sigma), n_sigma being 1 or the number of dimensions of X. Parameters ---------- @@ -654,7 +656,7 @@ def _init_sigma( standard deviation, as float or 1D array of length n_in (number of dimensins of the dataset) - n : int + n_points : int Number of points user for gaussian distances calculation Returns @@ -668,12 +670,12 @@ def _init_sigma( If ``sigma`` is not None, a float or a 1D array """ if isinstance(sigma, numbers.Number): - sigmas = np.ones((n, 1))*sigma + sigmas = np.ones((n_points, 1))*sigma elif sigma is not None: if len(np.array(sigma).shape) != 1: raise ValueError("sigma argument should be a float " "or a 1D array of floats.") - sigmas = np.ones((n, 1))*np.array(sigma) + sigmas = np.ones((n_points, 1))*np.array(sigma) else: sigmas = None return sigmas @@ -714,26 +716,28 @@ def _check_need_calib(self, X: NDArray) -> None: X : NDArray Some samples (training or calibration data) """ - if isinstance(self.points, int): - points_index = np.random.choice(_num_samples(X), - size=self.points, replace=False) - self.points = cast(NDArray, _safe_indexing(X, points_index)) - if self.sigmas is None: - self.sigmas = np.ones((len(self.points), 1))*np.std( - X, axis=0)/(len(self.points)**0.5) - - if self.random_sigma: - n = len(self.points) - self.sigmas = self.sigmas * ( - 2**np.random.normal(0, 1*2**(-2+np.log10(n)), n) - .reshape(-1, 1) - ) + if self._need_x_calib: + if isinstance(self.points, int): + points_index = np.random.choice( + _num_samples(X), size=self.points, replace=False + ) + self.points = cast(NDArray, _safe_indexing(X, points_index)) + if self.sigmas is None: + self.sigmas = np.ones((len(self.points), 1))*np.std( + X, axis=0)/(len(self.points)**0.5) - self._need_x_calib = False + if self.random_sigma: + n = len(self.points) + self.sigmas = self.sigmas * ( + 2**np.random.normal(0, 1*2**(-2+np.log10(n)), n) + .reshape(-1, 1) + ) - self.functions = [ - lambda X, mu=_safe_indexing(self.points, i), - sigma=_safe_indexing(self.sigmas, i): - np.exp(-0.5 * ((X - mu) / sigma) ** 2) - for i in range(len(self.points)) - ] + self.functions = [ + lambda X, mu=_safe_indexing(self.points, i), + sigma=_safe_indexing(self.sigmas, i): + np.exp(-0.5 * ((X - mu) / sigma) ** 2) + for i in range(len(self.points)) + ] + + self._need_x_calib = False diff --git a/mapie/tests/test_ccp_phi_function.py b/mapie/tests/test_ccp_phi_function.py index add2b00c1..76a364cce 100644 --- a/mapie/tests/test_ccp_phi_function.py +++ b/mapie/tests/test_ccp_phi_function.py @@ -28,11 +28,12 @@ PolynomialPhiFunction(2, "X", marginal_guarantee=True), PolynomialPhiFunction([1, 2], "X", marginal_guarantee=True), PolynomialPhiFunction([1, 4, 5], "y_pred", marginal_guarantee=False), + PolynomialPhiFunction([0, 1, 4, 5], "y_pred", marginal_guarantee=False), GaussianPhiFunction(4, X=X) ] # n_out without marginal_guarantee -N_OUT_RAW = [1, 10, 12, 11, 13, 20, 20, 3, 40] +N_OUT_RAW = [1, 10, 12, 11, 13, 20, 20, 3, 4, 40] PHI_FUNCTIONS = [ [lambda X: np.ones((len(X), 1))], @@ -156,13 +157,19 @@ def test_phi_functions_warning() -> None: PhiFunction([lambda X, d=d: X**d for d in range(4)]) -def test_phi_functions_error() -> None: +@pytest.mark.parametrize("functions", [ + [lambda X, other: X + other, lambda X, other: X - other], + [lambda X, other: X + other] +]) +def test_phi_functions_error(functions: Any) -> None: """ Test that creating a PhiFunction object with functions which have required arguments different from 'X', 'y_pred' or 'z' raise an error. """ - with pytest.raises(ValueError, match="Forbidden required argument."): - PhiFunction([lambda X, other: X + other, lambda X, other: X - other]) + for f in functions: # For coverage + f(np.ones((10, 1)), np.ones((10, 1))) + with pytest.raises(ValueError, match=r"Forbidden required argument."): + PhiFunction(functions) def test_phi_functions_empty() -> None: @@ -229,8 +236,8 @@ def test_poly_gauss_init_other( (np.ones((10, 3)), np.ones(7))]) def test_invalid_gauss_points(points: Any) -> None: """ - Test that invalid ``GaussianPhiFunction`` ``points``argument values raise an - error + Test that invalid ``GaussianPhiFunction`` ``points``argument values raise + an error """ with pytest.raises(ValueError): GaussianPhiFunction(points) @@ -253,7 +260,7 @@ def test_invalid_gauss_sigma(sigma: Any) -> None: def test_gauss_need_calib(ind: int) -> None: """ Test that ``GaussianPhiFunction`` arguments that require later completion - have ``_need_x_calib`` = ``True`` + have ``_need_x_calib`` = ``True`` """ phi = GaussianPhiFunction(**GAUSS_NEED_CALIB_SETTINGS[ind]) assert phi._need_x_calib @@ -263,7 +270,7 @@ def test_gauss_need_calib(ind: int) -> None: def test_gauss_no_need_calib(ind: int) -> None: """ Test that ``GaussianPhiFunction`` arguments that don't require later - completion have ``_need_x_calib`` = ``False`` + completion have ``_need_x_calib`` = ``False`` """ phi = GaussianPhiFunction(**GAUSS_NO_NEED_CALIB_SETTINGS[ind]) assert not phi._need_x_calib @@ -276,10 +283,6 @@ def test_chained_check_need_calib(ind: int) -> None: method of children PhiFunction objects """ child_phi = GaussianPhiFunction(**GAUSS_NEED_CALIB_SETTINGS[ind]) - assert child_phi._need_x_calib - - phi = PhiFunction([child_phi, lambda X: X, lambda X: np.ones(len(X))]) - assert not phi._need_x_calib - + phi = PhiFunction([child_phi]) phi._check_need_calib(X) assert not child_phi._need_x_calib diff --git a/mapie/tests/test_ccp_regression.py b/mapie/tests/test_ccp_regression.py index 73b91441c..2d82d2088 100644 --- a/mapie/tests/test_ccp_regression.py +++ b/mapie/tests/test_ccp_regression.py @@ -24,7 +24,8 @@ GammaConformityScore, ResidualNormalisedScore) from mapie.metrics import regression_coverage_score -from mapie.regression import MapieCCPRegressor, PhiFunction +from mapie.regression import (MapieCCPRegressor, PhiFunction, + GaussianPhiFunction, PolynomialPhiFunction) random_state = 1 np.random.seed(random_state) @@ -43,23 +44,9 @@ PHI = [ PhiFunction([lambda X: np.ones((len(X), 1))]), - PhiFunction([lambda X: X]), - PhiFunction([lambda X: X, lambda z: z]), - PhiFunction([lambda X: X, lambda y_pred: y_pred]), - PhiFunction([ - PhiFunction([lambda X: X, lambda y_pred: y_pred]), - lambda z: z - ]), + PolynomialPhiFunction(), + GaussianPhiFunction(5), ] -PHI_FUNCTIONS = [ - [lambda X: np.ones((len(X), 1))], - [lambda X: X], - [lambda X: X, lambda z: z], - [lambda X: X, lambda y_pred: y_pred], - [PhiFunction([lambda X: X, lambda y_pred: y_pred]), lambda z: z], -] -N_OUT_RAW = [1, 10, 12, 11, 13] - WIDTHS = { "split": 3.87, "prefit": 4.81, @@ -288,6 +275,11 @@ def test_fit_calibrate_combined_equivalence( if cv == "prefit": estimator.fit(X, y) + if isinstance(phi, GaussianPhiFunction): + # This function is usually called in fit and/or calibrate + # It sample the centers from X. We call it now for reproductibility + phi._check_need_calib(X) + mapie_1 = MapieCCPRegressor(estimator=estimator, phi=phi, cv=cv, alpha=alpha, random_state=random_state) mapie_2 = MapieCCPRegressor(estimator=estimator, phi=phi, cv=cv, @@ -302,14 +294,14 @@ def test_fit_calibrate_combined_equivalence( np.testing.assert_allclose(y_pis_1[:, 1, 0], y_pis_2[:, 1, 0]) -def test_recalibrate_warning(): +def test_recalibrate_warning() -> None: """ Test that a warning is triggered when we calibrate a second time with a different alpha value """ mapie_reg = MapieCCPRegressor(alpha=0.1) mapie_reg.fit_calibrate(X_toy, y_toy) - with pytest.warns(UserWarning, match="WARNING: The old value of alpha"): + with pytest.warns(UserWarning, match=r"WARNING: The old value of alpha"): mapie_reg.calibrate(X_toy, y_toy, alpha=0.2) @@ -332,6 +324,11 @@ def test_recalibrate( if cv == "prefit": estimator.fit(X, y) + if isinstance(phi, GaussianPhiFunction): + # This function is usually called in fit and/or calibrate + # It sample the centers from X. We call it now for reproductibility + phi._check_need_calib(X) + mapie_1 = MapieCCPRegressor(estimator=estimator, phi=phi, cv=cv, alpha=0.2, random_state=random_state) mapie_2 = MapieCCPRegressor(estimator=estimator, phi=phi, cv=cv, @@ -399,6 +396,11 @@ def test_same_results_prefit_split( y_train, y_calib = y[train_index], y[val_index] z_calib = z[val_index] + if isinstance(phi, GaussianPhiFunction): + # This function is usually called in fit and/or calibrate + # It sample the centers from X. We call it now for reproductibility + phi._check_need_calib(X_train) + mapie_reg = MapieCCPRegressor(estimator=estimator_1, phi=phi, cv=cv, alpha=0.1, random_state=random_state) mapie_reg.fit_calibrate(X, y, z=z) @@ -434,6 +436,11 @@ def test_results_for_ordered_alpha( if cv == "prefit": estimator.fit(X, y) + if isinstance(phi, GaussianPhiFunction): + # This function is usually called in fit and/or calibrate + # It sample the centers from X. We call it now for reproductibility + phi._check_need_calib(X) + mapie_reg_1 = MapieCCPRegressor(estimator=estimator, phi=phi, cv=cv, alpha=0.05, random_state=random_state) mapie_reg_1.fit_calibrate(X, y, z=z) @@ -449,7 +456,6 @@ def test_results_for_ordered_alpha( @pytest.mark.parametrize("dataset", [(X, y, z), (X_toy, y_toy, z_toy)]) -@pytest.mark.parametrize("phi", PHI) @pytest.mark.parametrize("cv", CV) @pytest.mark.parametrize("estimator1, estimator2, estimator3", zip([ LinearRegression(), @@ -464,7 +470,6 @@ def test_results_for_ordered_alpha( def test_results_with_constant_sample_weights( dataset: Tuple[NDArray, NDArray, NDArray], cv: Any, - phi: PhiFunction, estimator1: RegressorMixin, estimator2: RegressorMixin, estimator3: RegressorMixin, @@ -480,11 +485,11 @@ def test_results_with_constant_sample_weights( estimator3.fit(X, y) n_samples = len(X) - mapie0 = MapieCCPRegressor(estimator=estimator1, phi=phi, + mapie0 = MapieCCPRegressor(estimator=estimator1, phi=PHI[0], cv=cv, random_state=random_state) - mapie1 = MapieCCPRegressor(estimator=estimator2, phi=phi, + mapie1 = MapieCCPRegressor(estimator=estimator2, phi=PHI[0], cv=cv, random_state=random_state) - mapie2 = MapieCCPRegressor(estimator=estimator3, phi=phi, + mapie2 = MapieCCPRegressor(estimator=estimator3, phi=PHI[0], cv=cv, random_state=random_state) mapie0.fit_calibrate(X, y, z=z, sample_weight=None) @@ -494,10 +499,10 @@ def test_results_with_constant_sample_weights( y_pred0, y_pis0 = mapie0.predict(X, z=z) y_pred1, y_pis1 = mapie1.predict(X, z=z) y_pred2, y_pis2 = mapie2.predict(X, z=z) - np.testing.assert_allclose(y_pred0, y_pred1, rtol=0.01, atol=0.1) - np.testing.assert_allclose(y_pred0, y_pred2, rtol=0.01, atol=0.1) - np.testing.assert_allclose(y_pis0, y_pis1, rtol=0.01, atol=0.1) - np.testing.assert_allclose(y_pis0, y_pis2, rtol=0.01, atol=0.1) + np.testing.assert_allclose(y_pred0, y_pred1, rtol=1e-3, atol=1e-3) + np.testing.assert_allclose(y_pred0, y_pred2, rtol=1e-3, atol=1e-3) + np.testing.assert_allclose(y_pis0, y_pis1, rtol=1e-3, atol=1e-3) + np.testing.assert_allclose(y_pis0, y_pis2, rtol=1e-3, atol=1e-3) @pytest.mark.parametrize("dataset", [(X, y, z), (X_toy, y_toy, z_toy)]) @@ -538,7 +543,7 @@ def test_prediction_between_low_up( assert (y_pred <= y_pis[:, 1, 0]).all() -@pytest.mark.parametrize("phi", PHI) +@pytest.mark.parametrize("phi", PHI[:2]) @pytest.mark.parametrize("cv", CV) @pytest.mark.parametrize("alpha", [0.2, 0.1]) @pytest.mark.parametrize("estimator", [ @@ -568,9 +573,9 @@ def test_linear_data_confidence_interval( y_pred, y_pis = mapie.predict(X_toy, z=z_toy) np.testing.assert_allclose(y_pis[:, 0, 0], y_pis[:, 1, 0], - rtol=1e-3, atol=1e-2) + rtol=0.01, atol=0.1) np.testing.assert_allclose(y_pred, y_pis[:, 0, 0], - rtol=1e-3, atol=1e-2) + rtol=0.01, atol=0.1) def test_linear_regression_results() -> None: From e29d0d76f61df009cec12955c422b158ff07c84f Mon Sep 17 00:00:00 2001 From: Damien Bouet Date: Mon, 3 Jun 2024 11:14:50 +0200 Subject: [PATCH 009/165] FIX: paper simulation --- .../plot_gibbs2023_simulations.py | 15 +++++++-------- 1 file changed, 7 insertions(+), 8 deletions(-) diff --git a/examples/regression/3-scientific-articles/plot_gibbs2023_simulations.py b/examples/regression/3-scientific-articles/plot_gibbs2023_simulations.py index a985326fb..d458298a0 100644 --- a/examples/regression/3-scientific-articles/plot_gibbs2023_simulations.py +++ b/examples/regression/3-scientific-articles/plot_gibbs2023_simulations.py @@ -72,8 +72,8 @@ def generate_data(n_train=2000, n_calib=2000, n_test=500): def f(x): ax = 0*x for i in range(len(x)): - ax[i] = np.random.poisson(np.sin(x[i])**2 + 0.1) - + 0.03*x[i]*np.random.randn(1) + ax[i] = (np.random.poisson(np.sin(x[i])**2 + 0.1) + + 0.03*x[i]*np.random.randn(1)) ax[i] += 25*(np.random.uniform(0, 1, 1) < 0.01)*np.random.randn(1) return ax.astype(np.float32) @@ -213,7 +213,7 @@ def plot_results(X_test, y_test, n_trials=10, phi_shifts = GaussianPhiFunction( points=( - np.array(eval_locs+other_locs).reshape(-1,1), + np.array(eval_locs+other_locs).reshape(-1, 1), [eval_scale]*len(eval_locs) + [other_scale]*len(other_locs), ), marginal_guarantee=True, @@ -341,9 +341,9 @@ def plot_results(X_test, y_test, n_trials=10, # 5. Reproduce experiment and results # ----------------------------------------------------------------------------- -plot_results(X_test, y_test, n_trials=500, experiment="Groups") +plot_results(X_test, y_test, 500, experiment="Groups") -plot_results(X_test, y_test, n_trials=500, experiment="Shifts") +plot_results(X_test, y_test, 500, experiment="Shifts") ############################################################################## @@ -357,7 +357,6 @@ def plot_results(X_test, y_test, n_trials=10, # to the split method with symetrical PI. Let's compare it to the split CP with # unsymetrical PI, to have a fair comparison. -plot_results(X_test, y_test, n_trials=500, experiment="Groups") +plot_results(X_test, y_test, 500, experiment="Groups") -plot_results(X_test, y_test, n_trials=500, - experiment="Shifts", split_sym=False) +plot_results(X_test, y_test, 500, experiment="Shifts", split_sym=False) From fb4dbcb195602290043afc6b5bcbfa4703fc90ad Mon Sep 17 00:00:00 2001 From: Damien Bouet Date: Mon, 3 Jun 2024 11:28:52 +0200 Subject: [PATCH 010/165] Remove Literal for python 3.7 compatibility --- mapie/regression/utils/ccp_phi_function.py | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/mapie/regression/utils/ccp_phi_function.py b/mapie/regression/utils/ccp_phi_function.py index c2822b71f..0fca2afee 100644 --- a/mapie/regression/utils/ccp_phi_function.py +++ b/mapie/regression/utils/ccp_phi_function.py @@ -1,7 +1,7 @@ from __future__ import annotations import inspect -from typing import Callable, Dict, List, Literal, Optional, Tuple, Union, cast +from typing import Callable, Dict, List, Optional, Tuple, Union, cast import numbers import warnings @@ -380,7 +380,7 @@ class PolynomialPhiFunction(PhiFunction): def __init__( self, degree: Union[int, List[int]] = 1, - variable: Literal["X", "y_pred", "z"] = "X", + variable: str = "X", marginal_guarantee: bool = True, normalized: bool = False, ) -> None: From 16c70697ca4bfea2b712db11d4093893d205812b Mon Sep 17 00:00:00 2001 From: Damien Bouet Date: Mon, 3 Jun 2024 11:36:44 +0200 Subject: [PATCH 011/165] UPD: sample_weight_test tol values --- mapie/tests/test_ccp_regression.py | 8 ++++---- 1 file changed, 4 insertions(+), 4 deletions(-) diff --git a/mapie/tests/test_ccp_regression.py b/mapie/tests/test_ccp_regression.py index 2d82d2088..ba10d5209 100644 --- a/mapie/tests/test_ccp_regression.py +++ b/mapie/tests/test_ccp_regression.py @@ -499,10 +499,10 @@ def test_results_with_constant_sample_weights( y_pred0, y_pis0 = mapie0.predict(X, z=z) y_pred1, y_pis1 = mapie1.predict(X, z=z) y_pred2, y_pis2 = mapie2.predict(X, z=z) - np.testing.assert_allclose(y_pred0, y_pred1, rtol=1e-3, atol=1e-3) - np.testing.assert_allclose(y_pred0, y_pred2, rtol=1e-3, atol=1e-3) - np.testing.assert_allclose(y_pis0, y_pis1, rtol=1e-3, atol=1e-3) - np.testing.assert_allclose(y_pis0, y_pis2, rtol=1e-3, atol=1e-3) + np.testing.assert_allclose(y_pred0, y_pred1, rtol=1e-2, atol=1e-2) + np.testing.assert_allclose(y_pred0, y_pred2, rtol=1e-2, atol=1e-2) + np.testing.assert_allclose(y_pis0, y_pis1, rtol=1e-2, atol=1e-2) + np.testing.assert_allclose(y_pis0, y_pis2, rtol=1e-2, atol=1e-2) @pytest.mark.parametrize("dataset", [(X, y, z), (X_toy, y_toy, z_toy)]) From b32626e21416b932f57f4286c662baf15813b793 Mon Sep 17 00:00:00 2001 From: Damien Bouet Date: Mon, 3 Jun 2024 12:11:51 +0200 Subject: [PATCH 012/165] RMV: seaborn from paper simulation imports --- .../plot_gibbs2023_simulations.py | 37 +++++++++++-------- 1 file changed, 22 insertions(+), 15 deletions(-) diff --git a/examples/regression/3-scientific-articles/plot_gibbs2023_simulations.py b/examples/regression/3-scientific-articles/plot_gibbs2023_simulations.py index d458298a0..b73c5dc71 100644 --- a/examples/regression/3-scientific-articles/plot_gibbs2023_simulations.py +++ b/examples/regression/3-scientific-articles/plot_gibbs2023_simulations.py @@ -32,7 +32,6 @@ import matplotlib.pyplot as plt import numpy as np import pandas as pd -import seaborn as sns from mapie.conformity_scores import AbsoluteConformityScore from mapie.regression import (MapieCCPRegressor, MapieRegressor, PhiFunction, GaussianPhiFunction) @@ -263,9 +262,13 @@ def plot_results(X_test, y_test, n_trials=10, ) # ================== results plotting ================== - sns.set_theme(font="DejaVu Sans") - sns.set_style("whitegrid", {'axes.grid': False}) - cp = sns.color_palette() + cp = plt.get_cmap('tab10').colors + + # Set font and style + plt.rcParams['font.family'] = 'DejaVu Sans' + plt.style.use('seaborn-whitegrid') + plt.rcParams['axes.grid'] = False + fig = plt.figure() fig.set_size_inches(17, 6) @@ -318,19 +321,23 @@ def plot_results(X_test, y_test, n_trials=10, color='grey', ls='--', lw=3) ax3 = fig.add_subplot(1, 3, 3) - f = sns.barplot( - coverageData, - x='Range', - y='Miscoverage', - hue='Method', - palette=cp, - ax=ax3, - ci=0.8, - ) - f.axhline(0.1, color='red') + + ranges = coverageData['Range'].unique() + methods = coverageData['Method'].unique() + bar_width = 0.8/len(methods) + for i, method in enumerate(methods): + method_data = coverageData[coverageData['Method'] == method] + x = np.arange(len(ranges)) + i * bar_width + ax3.bar(x, method_data.groupby("Range")['Miscoverage'].mean(), width=bar_width, label=method, color=cp[i]) + + ax3.set_xticks(np.arange(len(ranges)) + bar_width * (len(methods) - 1) / 2) + ax3.set_xticklabels(ranges) + + ax3.axhline(0.1, color='red') + ax3.legend() ax3.set_ylabel("Miscoverage", fontsize=18, labelpad=10) ax3.set_xlabel(experiment, fontsize=18, labelpad=10) - ax3.set_ylim(0., 0.2) + ax3.set_ylim(0.,0.2) ax3.tick_params(axis='both', which='major', labelsize=14) plt.tight_layout(pad=2) From 4f4447e7783bbd1c733ef0c941c1ec0d6c7f4a08 Mon Sep 17 00:00:00 2001 From: Damien Bouet Date: Mon, 3 Jun 2024 12:19:54 +0200 Subject: [PATCH 013/165] FIX: linting --- .../3-scientific-articles/plot_gibbs2023_simulations.py | 7 ++++--- 1 file changed, 4 insertions(+), 3 deletions(-) diff --git a/examples/regression/3-scientific-articles/plot_gibbs2023_simulations.py b/examples/regression/3-scientific-articles/plot_gibbs2023_simulations.py index b73c5dc71..6d5a2453b 100644 --- a/examples/regression/3-scientific-articles/plot_gibbs2023_simulations.py +++ b/examples/regression/3-scientific-articles/plot_gibbs2023_simulations.py @@ -324,11 +324,12 @@ def plot_results(X_test, y_test, n_trials=10, ranges = coverageData['Range'].unique() methods = coverageData['Method'].unique() - bar_width = 0.8/len(methods) + bar_width = 0.8 / len(methods) for i, method in enumerate(methods): method_data = coverageData[coverageData['Method'] == method] x = np.arange(len(ranges)) + i * bar_width - ax3.bar(x, method_data.groupby("Range")['Miscoverage'].mean(), width=bar_width, label=method, color=cp[i]) + ax3.bar(x, method_data.groupby("Range")['Miscoverage'].mean(), + width=bar_width, label=method, color=cp[i]) ax3.set_xticks(np.arange(len(ranges)) + bar_width * (len(methods) - 1) / 2) ax3.set_xticklabels(ranges) @@ -337,7 +338,7 @@ def plot_results(X_test, y_test, n_trials=10, ax3.legend() ax3.set_ylabel("Miscoverage", fontsize=18, labelpad=10) ax3.set_xlabel(experiment, fontsize=18, labelpad=10) - ax3.set_ylim(0.,0.2) + ax3.set_ylim(0., 0.2) ax3.tick_params(axis='both', which='major', labelsize=14) plt.tight_layout(pad=2) From 015bdb7837653a5d5137270afb47d48d228cb9ab Mon Sep 17 00:00:00 2001 From: Damien Bouet Date: Mon, 3 Jun 2024 13:46:55 +0200 Subject: [PATCH 014/165] FIX: useless seaborn grid style --- .../3-scientific-articles/plot_gibbs2023_simulations.py | 1 - 1 file changed, 1 deletion(-) diff --git a/examples/regression/3-scientific-articles/plot_gibbs2023_simulations.py b/examples/regression/3-scientific-articles/plot_gibbs2023_simulations.py index 6d5a2453b..2b7725c0d 100644 --- a/examples/regression/3-scientific-articles/plot_gibbs2023_simulations.py +++ b/examples/regression/3-scientific-articles/plot_gibbs2023_simulations.py @@ -266,7 +266,6 @@ def plot_results(X_test, y_test, n_trials=10, # Set font and style plt.rcParams['font.family'] = 'DejaVu Sans' - plt.style.use('seaborn-whitegrid') plt.rcParams['axes.grid'] = False fig = plt.figure() From 22a901d516d28b53ddfbee4840d84f502bb37d7c Mon Sep 17 00:00:00 2001 From: Damien Bouet Date: Tue, 4 Jun 2024 13:50:46 +0200 Subject: [PATCH 015/165] FIX: Gaussian exp formula --- mapie/regression/utils/ccp_phi_function.py | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/mapie/regression/utils/ccp_phi_function.py b/mapie/regression/utils/ccp_phi_function.py index 0fca2afee..3d80ed8f3 100644 --- a/mapie/regression/utils/ccp_phi_function.py +++ b/mapie/regression/utils/ccp_phi_function.py @@ -636,7 +636,7 @@ def __init__( functions = [ lambda X, mu=_safe_indexing(self.points, i), sigma=_safe_indexing(self.sigmas, i): - np.exp(-0.5 * ((X - mu) / sigma) ** 2) + np.exp(-0.5 * np.sum(((X - mu) / sigma) ** 2, axis=1)) for i in range(len(self.points)) ] super().__init__(functions, marginal_guarantee, normalized) @@ -736,7 +736,7 @@ def _check_need_calib(self, X: NDArray) -> None: self.functions = [ lambda X, mu=_safe_indexing(self.points, i), sigma=_safe_indexing(self.sigmas, i): - np.exp(-0.5 * ((X - mu) / sigma) ** 2) + np.exp(-0.5 * np.sum(((X - mu) / sigma) ** 2, axis=1)) for i in range(len(self.points)) ] From db23dc0ce7e7eff10409c622ee4fd5ffc5ea5763 Mon Sep 17 00:00:00 2001 From: Damien Bouet Date: Tue, 4 Jun 2024 14:13:08 +0200 Subject: [PATCH 016/165] MOVE: check_parameters in outside of init --- mapie/regression/ccp_regression.py | 46 +++++++++++++++++++++++------- mapie/tests/test_ccp_regression.py | 38 ++++++++++++++++++------ 2 files changed, 64 insertions(+), 20 deletions(-) diff --git a/mapie/regression/ccp_regression.py b/mapie/regression/ccp_regression.py index 9b420a233..d5d09b520 100644 --- a/mapie/regression/ccp_regression.py +++ b/mapie/regression/ccp_regression.py @@ -168,23 +168,37 @@ def __init__( ) -> None: self.random_state = random_state - self.cv = self._check_cv( - cv, random_state=self.random_state - ) - self.estimator = self._check_estimator(estimator) - self.conformity_score_ = check_conformity_score( - conformity_score, self.default_sym_ - ) + self.cv = cv + self.estimator = estimator + self.conformity_score_ = conformity_score if phi is None: self.phi = PhiFunction(lambda X: np.ones(len(X))) else: self.phi = cast(PhiFunction, phi) - self.alpha = cast(float, self._check_alpha(alpha)) + self.alpha = alpha self.beta_up: Optional[Tuple[NDArray, bool]] = None self.beta_low: Optional[Tuple[NDArray, bool]] = None + def _check_fit_parameters(self) -> None: + """ + Check and replace default ``cv`` and ``estimator`` arguments + """ + self.cv = self._check_cv( + self.cv, random_state=self.random_state + ) + self.estimator = self._check_estimator(self.estimator) + + def _check_calibrate_parameters(self) -> None: + """ + Check and replace default ``conformity_score`` and ``alpha`` arguments + """ + self.conformity_score_ = check_conformity_score( + self.conformity_score_, self.default_sym_ + ) + self.alpha = cast(float, self._check_alpha(self.alpha)) + def _check_cv( self, cv: Optional[Union[str, BaseCrossValidator, BaseShuffleSplit]] = None, @@ -350,7 +364,7 @@ def _check_estimator( ) from exc return estimator - def _check_fit_parameters( + def _check_sample_weights( self, X: ArrayLike, y: ArrayLike, @@ -443,7 +457,7 @@ def fit( self """ - + self._check_fit_parameters() if self.cv != 'prefit': train_index = list( cast(BaseCrossValidator, self.cv).split(X, y, groups) @@ -460,7 +474,7 @@ def fit( (X_train, y_train, - sample_weight_train) = self._check_fit_parameters( + sample_weight_train) = self._check_sample_weights( X_train, y_train, sample_weight_train ) fit_estimator(self.estimator, X_train, y_train, @@ -524,6 +538,13 @@ def calibrate( self """ + self._check_fit_parameters() + self._check_calibrate_parameters() + + self.estimator = cast(RegressorMixin, self.estimator) + self.cv = cast(Union[str, BaseCrossValidator], self.cv) + self.conformity_score_ = cast(ConformityScore, self.conformity_score_) + if self.cv != 'prefit': try: if isinstance(self.estimator, Pipeline): @@ -745,6 +766,9 @@ def predict( - [:, 1, 0]: Upper bound of the prediction interval. """ + self.estimator = cast(RegressorMixin, self.estimator) + self.conformity_score_ = cast(ConformityScore, self.conformity_score_) + if self.beta_low is None or self.beta_up is None: raise NotFittedError( "The calibration method has not been fitted yet.\n" diff --git a/mapie/tests/test_ccp_regression.py b/mapie/tests/test_ccp_regression.py index ba10d5209..db05534c9 100644 --- a/mapie/tests/test_ccp_regression.py +++ b/mapie/tests/test_ccp_regression.py @@ -2,7 +2,7 @@ import warnings from inspect import signature -from typing import Any, Tuple +from typing import Any, Tuple, cast import numpy as np import pytest @@ -129,7 +129,7 @@ def test_predict_not_complete_phi() -> None: make_pipeline(LinearRegression()), ]) def test_no_fit_prefit_calibrate(estimator: Any) -> None: - """Test that calibrate before without fit, if prefit, raises no errors.""" + """Test that calibrate without fit, if prefit, raises no errors.""" estimator.fit(X_toy, y_toy) mapie_reg = MapieCCPRegressor(estimator, cv="prefit") mapie_reg.calibrate(X_toy, y_toy) @@ -165,19 +165,36 @@ def test_invalid_estimator( ) -> None: """Test that invalid estimators raise errors.""" with pytest.raises(ValueError, match=r".*Invalid estimator.*"): - MapieCCPRegressor(estimator=estimator) + mapie = MapieCCPRegressor(estimator=estimator) + mapie.fit(X, y) @pytest.mark.parametrize("estimator", [ LinearRegression(), make_pipeline(LinearRegression()), ]) -def test_invalid_prefit_estimator( +def test_invalid_prefit_estimator_calibrate( estimator: RegressorMixin, ) -> None: - """Test that non-fitted estimator with prefit cv raise errors.""" + """Test that non-fitted estimator with prefit cv raise errors when + calibrate is called""" with pytest.raises(NotFittedError): - MapieCCPRegressor(estimator=estimator, cv="prefit") + mapie = MapieCCPRegressor(estimator=estimator, cv="prefit") + mapie.calibrate(X, y) + + +@pytest.mark.parametrize("estimator", [ + LinearRegression(), + make_pipeline(LinearRegression()), +]) +def test_invalid_prefit_estimator_fit( + estimator: RegressorMixin, +) -> None: + """Test that non-fitted estimator with prefit cv raise errors when fit + is called.""" + with pytest.raises(NotFittedError): + mapie = MapieCCPRegressor(estimator=estimator, cv="prefit") + mapie.fit(X, y) @pytest.mark.parametrize("estimator", [ @@ -198,6 +215,7 @@ def test_valid_prefit_estimator( def test_default_parameters() -> None: """Test default values of input parameters.""" mapie_reg = MapieCCPRegressor(random_state=random_state) + mapie_reg.fit_calibrate(X, y) assert isinstance(mapie_reg.estimator, RegressorMixin) assert isinstance(mapie_reg.phi, PhiFunction) assert isinstance(mapie_reg.cv, ShuffleSplit) @@ -211,7 +229,8 @@ def test_default_parameters() -> None: ) def test_invalid_alpha(alpha: Any) -> None: with pytest.raises(ValueError): - MapieCCPRegressor(alpha=alpha) + mapie = MapieCCPRegressor(alpha=alpha) + mapie.fit_calibrate(X, y) def test_valid_estimator() -> None: @@ -255,7 +274,8 @@ def test_valid_cv(cv: Any, estimator: RegressorMixin) -> None: def test_invalid_cv(cv: Any) -> None: """Test that invalid agg_functions raise errors.""" with pytest.raises(ValueError, match="Invalid cv argument."): - MapieCCPRegressor(cv=cv, random_state=random_state) + mapie = MapieCCPRegressor(cv=cv, random_state=random_state) + mapie.fit(X, y) @pytest.mark.parametrize("dataset", [(X, y, z), (X_toy, y_toy, z_toy)]) @@ -678,4 +698,4 @@ def early_stopping_monitor(i, est, locals): mapie_reg.fit_calibrate(X, y, monitor=early_stopping_monitor) - assert mapie_reg.estimator.estimators_.shape[0] == 3 + assert cast(RegressorMixin, mapie_reg.estimator).estimators_.shape[0] == 3 From 7f2cf5600ae712833ca3ff3d20897b24c68c0ebd Mon Sep 17 00:00:00 2001 From: Damien Bouet Date: Tue, 4 Jun 2024 14:13:34 +0200 Subject: [PATCH 017/165] FIX: Gaussian exp formula test --- mapie/tests/test_ccp_phi_function.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/mapie/tests/test_ccp_phi_function.py b/mapie/tests/test_ccp_phi_function.py index 76a364cce..a26809111 100644 --- a/mapie/tests/test_ccp_phi_function.py +++ b/mapie/tests/test_ccp_phi_function.py @@ -33,7 +33,7 @@ ] # n_out without marginal_guarantee -N_OUT_RAW = [1, 10, 12, 11, 13, 20, 20, 3, 4, 40] +N_OUT_RAW = [1, 10, 12, 11, 13, 20, 20, 3, 4, 4] PHI_FUNCTIONS = [ [lambda X: np.ones((len(X), 1))], From 24d8e1947238e7d5b0149f9068a7253c4665d559 Mon Sep 17 00:00:00 2001 From: Damien Bouet Date: Tue, 4 Jun 2024 16:22:48 +0200 Subject: [PATCH 018/165] MOVE: PhiFunctions import from regression to regression.utils --- mapie/regression/__init__.py | 5 ----- mapie/regression/utils/__init__.py | 8 ++++++++ 2 files changed, 8 insertions(+), 5 deletions(-) diff --git a/mapie/regression/__init__.py b/mapie/regression/__init__.py index d3cc79e05..333840311 100644 --- a/mapie/regression/__init__.py +++ b/mapie/regression/__init__.py @@ -1,8 +1,6 @@ from .quantile_regression import MapieQuantileRegressor from .regression import MapieRegressor from .ccp_regression import MapieCCPRegressor -from .utils.ccp_phi_function import (PhiFunction, PolynomialPhiFunction, - GaussianPhiFunction) from .time_series_regression import MapieTimeSeriesRegressor __all__ = [ @@ -10,7 +8,4 @@ "MapieQuantileRegressor", "MapieTimeSeriesRegressor", "MapieCCPRegressor", - "PhiFunction", - "PolynomialPhiFunction", - "GaussianPhiFunction", ] diff --git a/mapie/regression/utils/__init__.py b/mapie/regression/utils/__init__.py index e69de29bb..c405eae00 100644 --- a/mapie/regression/utils/__init__.py +++ b/mapie/regression/utils/__init__.py @@ -0,0 +1,8 @@ +from .ccp_phi_function import (PhiFunction, PolynomialPhiFunction, + GaussianPhiFunction) + +__all__ = [ + "PhiFunction", + "PolynomialPhiFunction", + "GaussianPhiFunction", +] From 023207fe4cff7b66619263e650bbeb243b0dcb85 Mon Sep 17 00:00:00 2001 From: Damien Bouet Date: Wed, 5 Jun 2024 17:07:24 +0200 Subject: [PATCH 019/165] UPD: Add fit/calib _attributes and Base classes inheritence --- mapie/regression/ccp_regression.py | 38 ++++++++---------------------- 1 file changed, 10 insertions(+), 28 deletions(-) diff --git a/mapie/regression/ccp_regression.py b/mapie/regression/ccp_regression.py index d5d09b520..234c3d86d 100644 --- a/mapie/regression/ccp_regression.py +++ b/mapie/regression/ccp_regression.py @@ -5,9 +5,7 @@ import numpy as np from scipy.optimize import minimize -from sklearn.base import RegressorMixin -from sklearn.exceptions import NotFittedError -from sklearn.linear_model import LinearRegression +from sklearn.base import BaseEstimator, RegressorMixin from sklearn.model_selection import (BaseCrossValidator, BaseShuffleSplit, ShuffleSplit) from sklearn.pipeline import Pipeline @@ -22,7 +20,7 @@ fit_estimator) -class MapieCCPRegressor(): +class MapieCCPRegressor(BaseEstimator, RegressorMixin): """ This class implements Conformal Prediction With Conditional Guarantees method as proposed by Gibbs et al. (2023) to make conformal predictions. @@ -109,14 +107,14 @@ class MapieCCPRegressor(): Attributes ---------- - beta_up: Tuple[NDArray, bool] + beta_up_: Tuple[NDArray, bool] Calibration fitting results, used to build the upper bound of the prediction intervals. beta_up[0]: Array of shape (phi.n_out, ) beta_up[1]: Whether the optimization process converged or not (the coverage is not garantied if the optimization fail) - beta_low: Tuple[NDArray, bool] + beta_low_: Tuple[NDArray, bool] Same as beta_up, but for the lower bound References @@ -148,6 +146,8 @@ class MapieCCPRegressor(): """ default_sym_ = True + fit_attributes = ["estimator_"] + calib_attributes = ["beta_up_", "beta_low_"] def __init__( self, @@ -540,6 +540,7 @@ def calibrate( """ self._check_fit_parameters() self._check_calibrate_parameters() + check_is_fitted(self, self.fit_attributes) self.estimator = cast(RegressorMixin, self.estimator) self.cv = cast(Union[str, BaseCrossValidator], self.cv) @@ -769,36 +770,17 @@ def predict( self.estimator = cast(RegressorMixin, self.estimator) self.conformity_score_ = cast(ConformityScore, self.conformity_score_) - if self.beta_low is None or self.beta_up is None: - raise NotFittedError( - "The calibration method has not been fitted yet.\n" - "You must call the calibrate method before predict." - ) - - y_pred = self.estimator.predict(X) - - X = cast(NDArray, X) - y_pred = cast(NDArray, y_pred) - z = cast(NDArray, z) - - phi_x = self.phi(X, y_pred, z) - if np.any(np.all(phi_x == 0, axis=1)): - warnings.warn("WARNING: At least one row of the transformation " - "phi(X, y_pred, z) is full of zeros." - "It will result in a prediction interval of zero" - "width. Consider changing the PhiFunction" - "definintion. \n" - "Fix: Use `marginal_guarantee`=True in PhiFunction") + check_is_fitted(self, self.calib_attributes) signed = -1 if self.conformity_score_.sym else 1 y_pred_low = self.conformity_score_.get_estimation_distribution( X, y_pred[:, np.newaxis], - phi_x.dot(signed * self.beta_low[0][:, np.newaxis]) + phi_x.dot(signed * self.beta_low_[0][:, np.newaxis]) ) y_pred_up = self.conformity_score_.get_estimation_distribution( X, y_pred[:, np.newaxis], - phi_x.dot(self.beta_up[0][:, np.newaxis]) + phi_x.dot(self.beta_up_[0][:, np.newaxis]) ) check_lower_upper_bounds(y_pred_low, y_pred_up, y_pred) From 79efe4e89088d7c01300b3e932b80b875bd06876 Mon Sep 17 00:00:00 2001 From: Damien Bouet Date: Wed, 5 Jun 2024 17:14:01 +0200 Subject: [PATCH 020/165] UPD: Improve parameters checks --- mapie/regression/ccp_regression.py | 278 ++++++++++++++++------------- 1 file changed, 150 insertions(+), 128 deletions(-) diff --git a/mapie/regression/ccp_regression.py b/mapie/regression/ccp_regression.py index 234c3d86d..161e9a3a8 100644 --- a/mapie/regression/ccp_regression.py +++ b/mapie/regression/ccp_regression.py @@ -7,7 +7,7 @@ from scipy.optimize import minimize from sklearn.base import BaseEstimator, RegressorMixin from sklearn.model_selection import (BaseCrossValidator, BaseShuffleSplit, - ShuffleSplit) + ShuffleSplit, PredefinedSplit) from sklearn.pipeline import Pipeline from sklearn.utils import _safe_indexing from sklearn.utils.validation import _check_y, check_is_fitted, indexable @@ -15,7 +15,7 @@ from mapie._typing import ArrayLike, NDArray from mapie.conformity_scores import ConformityScore from .utils.ccp_phi_function import PhiFunction -from mapie.utils import (check_conformity_score, check_estimator_fit_predict, +from mapie.utils import (check_conformity_score, check_estimator, check_lower_upper_bounds, check_null_weight, fit_estimator) @@ -161,49 +161,129 @@ def __init__( phi: Optional[PhiFunction] = None, cv: Optional[ Union[str, BaseCrossValidator, BaseShuffleSplit] - ] = "split", - alpha: float = 0.1, + ] = None, + alpha: Optional[float] = None, conformity_score: Optional[ConformityScore] = None, random_state: Optional[int] = None, ) -> None: - self.random_state = random_state self.cv = cv self.estimator = estimator - self.conformity_score_ = conformity_score + self.conformity_score = conformity_score + self.phi = phi + self.alpha = alpha - if phi is None: - self.phi = PhiFunction(lambda X: np.ones(len(X))) - else: - self.phi = cast(PhiFunction, phi) + def _check_parameters(self) -> None: + """ + Check and replace default value of ``estimator`` and ``cv`` arguments. + Copy the ``estimator`` in ``estimator_`` attribute if ``cv="prefit"``. + """ + self.cv = self._check_cv(self.cv) + self.estimator = check_estimator(self.estimator, self.cv) - self.alpha = alpha - self.beta_up: Optional[Tuple[NDArray, bool]] = None - self.beta_low: Optional[Tuple[NDArray, bool]] = None + if self.cv == "prefit": + self.estimator_ = self.estimator - def _check_fit_parameters(self) -> None: + def _check_fit_parameters( + self, + X: ArrayLike, + y: ArrayLike, + sample_weight: Optional[ArrayLike], + train_index: ArrayLike, + ) -> Tuple[NDArray, NDArray, Optional[NDArray]]: """ - Check and replace default ``cv`` and ``estimator`` arguments + Perform several checks on class parameters. + + Parameters + ---------- + X: ArrayLike + Observed values. + + y: ArrayLike + Target values. + + sample_weight: Optional[NDArray] of shape (n_samples,) + Non-null sample weights. + + train_index: ArrayLike + Indexes of the training set. + + Returns + ------- + Tuple[NDArray, NDArray, Optional[NDArray]] + - NDArray of training observed values + - NDArray of training target values + - Optional[NDArray] of training sample_weight """ - self.cv = self._check_cv( - self.cv, random_state=self.random_state - ) - self.estimator = self._check_estimator(self.estimator) + X_train = _safe_indexing(X, train_index) + y_train = _safe_indexing(y, train_index) + + if sample_weight is not None: + sample_weight_train = _safe_indexing( + sample_weight, train_index) + else: + sample_weight_train = None + + X_train, y_train = indexable(X_train, y_train) + y_train = _check_y(y_train) + sample_weight_train, X_train, y_train = check_null_weight( + sample_weight_train, X_train, y_train) + + X_train = cast(NDArray, X_train) + y_train = cast(NDArray, y_train) + sample_weight_train = cast(Optional[NDArray], sample_weight_train) + + return X_train, y_train, sample_weight_train def _check_calibrate_parameters(self) -> None: """ - Check and replace default ``conformity_score`` and ``alpha`` arguments + Check and replace default ``conformity_score``, ``alpha`` and + ``phi`` arguments. """ self.conformity_score_ = check_conformity_score( - self.conformity_score_, self.default_sym_ + self.conformity_score, self.default_sym_ ) - self.alpha = cast(float, self._check_alpha(self.alpha)) + self.alpha = self._check_alpha(self.alpha) + self.phi = self._check_phi(self.phi) + + def _check_phi( + self, + phi: Optional[PhiFunction], + ) -> PhiFunction: + """ + Check if ``phi`` is a ``PhiFunction`` instance. + + Parameters + ---------- + phi: Optional[PhiFunction] + A ``PhiFunction`` instance used to estimate the conformity scores. + + If ``None``, use as default a ``GaussianPhiFunction`` instance. + See the examples and the documentation to build a ``PhiFunction`` + adaptated to your dataset and constraints. + + Returns + ------- + PhiFunction + ``phi`` if defined, a ``GaussianPhiFunction`` instance otherwise. + + Raises + ------ + ValueError + If ``phi`` is not ``None`` nor a ``PhiFunction`` instance. + """ + if phi is None: + return GaussianPhiFunction() + elif isinstance(phi, PhiFunction): + return phi + else: + raise ValueError("Invalid `phi` argument. It must be `None` or a " + "`PhiFunction` instance.") def _check_cv( self, cv: Optional[Union[str, BaseCrossValidator, BaseShuffleSplit]] = None, test_size: float = 0.3, - random_state: Optional[int] = None, ) -> Union[str, BaseCrossValidator, BaseShuffleSplit]: """ Check if ``cv`` is ``None``, ``"prefit"``, ``"split"``, @@ -224,16 +304,9 @@ def _check_cv( By default ``None``. - random_state: Optional[int] - Pseudo random number generator state used for random uniform - sampling for evaluation quantiles and prediction sets. - Pass an int for reproducible output across multiple function calls. - - By default ```None``. - Returns ------- - Union[str, BaseCrossValidator, BaseShuffleSplit] + Union[str, PredefinedSplit, ShuffleSplit] The cast `cv` parameter. Raises @@ -241,53 +314,32 @@ def _check_cv( ValueError If the cross-validator is not valid. """ - if random_state is None: - random_seeds = cast(list, np.random.get_state())[1] - random_state = np.random.choice(random_seeds) - if cv is None: + if cv is None or cv == "split": return ShuffleSplit( - n_splits=1, test_size=test_size, random_state=random_state + n_splits=1, test_size=test_size, random_state=self.random_state ) - elif isinstance(cv, (BaseCrossValidator, BaseShuffleSplit)): - try: - if hasattr(cv, "get_n_splits") and cv.get_n_splits() != 1: - raise ValueError( - "Invalid cv argument. " - "Allowed values are a BaseCrossValidator or " - "BaseShuffleSplit object with ``n_splits``=1. " - f"Got `n_splits`={cv.get_n_splits()}." - ) - return cv - except (ValueError, TypeError): - raise ValueError( - "Invalid cv argument. " - "Allowed values are a BaseCrossValidator or " - "BaseShuffleSplit object with ``n_splits``=1." - ) + elif (isinstance(cv, (PredefinedSplit, ShuffleSplit)) + and cv.get_n_splits() == 1): + return cv elif cv == "prefit": return cv - elif cv == "split": - return ShuffleSplit( - n_splits=1, test_size=test_size, random_state=random_state - ) else: raise ValueError( - "Invalid cv argument. " - "Allowed values are None, 'prefit', 'split' " - "or a BaseCrossValidator/BaseShuffleSplit " - "object with ``n_splits``=1." + "Invalid cv argument. Allowed values are None, 'prefit', " + "'split' or a ShuffleSplit/PredefinedSplit object with " + "``n_splits=1``." ) def _check_alpha( self, alpha: Optional[float] = None - ) -> float: + ) -> Optional[float]: """ Check alpha Parameters ---------- - alpha: float + alpha: Optional[float] Can be a float between 0 and 1, represent the uncertainty of the confidence interval. Lower alpha produce larger (more conservative) prediction intervals. @@ -295,15 +347,16 @@ def _check_alpha( Returns ------- - float + Optional[float] Valid alpha. Raises ------ ValueError - If alpha is not a float between 0 and 1. - + If alpha is not ``None`` or a float between 0 and 1. """ + if alpha is None: + return alpha if isinstance(alpha, float): alpha = alpha else: @@ -455,37 +508,22 @@ def fit( ------- MapieCCPRegressor self - """ - self._check_fit_parameters() + self._check_parameters() + if self.cv != 'prefit': - train_index = list( - cast(BaseCrossValidator, self.cv).split(X, y, groups) - )[0][0] - X_train = cast(NDArray, _safe_indexing(X, train_index)) - y_train = cast(NDArray, _safe_indexing(y, train_index)) - - if sample_weight is not None: - sample_weight_train = cast( - NDArray, _safe_indexing(sample_weight, train_index) - ) - else: - sample_weight_train = None + self.cv = cast(BaseCrossValidator, self.cv) - (X_train, - y_train, - sample_weight_train) = self._check_sample_weights( - X_train, y_train, sample_weight_train - ) - fit_estimator(self.estimator, X_train, y_train, - sample_weight=sample_weight_train, **fit_params) + train_index, _ = list(self.cv.split(X, y, groups))[0] - self.phi._check_need_calib(X_train) + ( + X_train, y_train, sample_weight_train + ) = self._check_fit_parameters(X, y, sample_weight, train_index) - else: - warnings.warn("WARNING: As cv='prefit', the estimator will not " - "be fitted again. You can directly call the" - "calibrate method.") + self.estimator_ = fit_estimator( + self.estimator, X_train, y_train, + sample_weight=sample_weight_train, **fit_params + ) return self def calibrate( @@ -536,58 +574,42 @@ def calibrate( ------- MapieCCPRegressor self - """ - self._check_fit_parameters() + self._check_parameters() self._check_calibrate_parameters() check_is_fitted(self, self.fit_attributes) + self.phi = cast(PhiFunction, self.phi) self.estimator = cast(RegressorMixin, self.estimator) self.cv = cast(Union[str, BaseCrossValidator], self.cv) self.conformity_score_ = cast(ConformityScore, self.conformity_score_) if self.cv != 'prefit': - try: - if isinstance(self.estimator, Pipeline): - check_is_fitted(self.estimator[-1]) - else: - check_is_fitted(self.estimator) - except NotFittedError as exc: - raise NotFittedError("As you are using an estimator which is " - "not fitted yet, you need to call the " - "fit method before calibrate.") from exc - - calib_index = list( - cast(BaseCrossValidator, self.cv).split(X, y, groups) - )[0][1] - X_calib = cast(NDArray, _safe_indexing(X, calib_index)) - y_calib = cast(NDArray, _safe_indexing(y, calib_index)) + self.cv = cast(BaseCrossValidator, self.cv) + + _, calib_index = list(self.cv.split(X, y, groups))[0] + X_calib = _safe_indexing(X, calib_index) + y_calib = _safe_indexing(y, calib_index) if z is not None: - z_calib = cast(NDArray, _safe_indexing(z, calib_index)) + z_calib = _safe_indexing(z, calib_index) else: z_calib = None else: - X_calib = cast(NDArray, X) - y_calib = cast(NDArray, y) - if z is not None: - z_calib = cast(NDArray, z) - else: - z_calib = None + X_calib, y_calib, z_calib = X, y, z if alpha is not None and self.alpha != alpha: self.alpha = self._check_alpha(alpha) - warnings.warn(f"WARNING: The old value of alpha " - f"({self.alpha}) has been overwritten " - f"by the new one ({alpha}).") + warnings.warn(f"WARNING: The old value of alpha ({self.alpha}) " + f"has been overwritten by the new one ({alpha}).") - self.phi._check_need_calib(X_calib) + if self.alpha is None: + return self - y_pred_calib = self.estimator.predict(X_calib) + y_pred_calib = self.estimator_.predict(X_calib) - calib_conformity_scores = \ - self.conformity_score_.get_conformity_scores( - X_calib, y_calib, y_pred_calib - ) + calib_conformity_scores = self.conformity_score_.get_conformity_scores( + X_calib, y_calib, y_pred_calib + ) if self.conformity_score_.sym: alpha_low = 1 - self.alpha @@ -665,10 +687,10 @@ def sum_of_losses(beta, phi_x, S, alpha): "The returned prediction interval may be inaccurate." ) - self.beta_up = (cast(NDArray, optimal_beta_up.x), - cast(bool, optimal_beta_up.success)) - self.beta_low = (cast(NDArray, optimal_beta_low.x), - cast(bool, optimal_beta_low.success)) + self.beta_up_ = cast(Tuple[NDArray, bool], + (optimal_beta_up.x, optimal_beta_up.success)) + self.beta_low_ = cast(Tuple[NDArray, bool], + (optimal_beta_low.x, optimal_beta_low.success)) return self def fit_calibrate( From c27827371b1ae0e08f9eb52bc8e74693850d7ffb Mon Sep 17 00:00:00 2001 From: Damien Bouet Date: Wed, 5 Jun 2024 17:15:43 +0200 Subject: [PATCH 021/165] MOVE: check_estimator into utils --- mapie/regression/ccp_regression.py | 95 ------------------------------ mapie/regression/regression.py | 46 +-------------- mapie/utils.py | 44 +++++++++++++- 3 files changed, 45 insertions(+), 140 deletions(-) diff --git a/mapie/regression/ccp_regression.py b/mapie/regression/ccp_regression.py index 161e9a3a8..261424232 100644 --- a/mapie/regression/ccp_regression.py +++ b/mapie/regression/ccp_regression.py @@ -369,101 +369,6 @@ def _check_alpha( "Allowed values are between 0 and 1.") return alpha - def _check_estimator( - self, estimator: Optional[RegressorMixin] = None - ) -> RegressorMixin: - """ - Check if estimator is ``None``, - and returns a ``LinearRegression`` instance if necessary. - If the ``cv`` attribute is ``"prefit"``, - check if estimator is indeed already fitted. - - Parameters - ---------- - estimator: Optional[RegressorMixin] - Estimator to check, by default ``None``. - - Returns - ------- - RegressorMixin - The estimator itself or a default ``LinearRegression`` instance. - - Raises - ------ - ValueError - If the estimator is not ``None`` - and has no ``fit`` nor ``predict`` methods. - - NotFittedError - If the estimator is not fitted - and ``cv`` attribute is ``"prefit"``. - """ - if estimator is None: - return LinearRegression() - else: - check_estimator_fit_predict(estimator) - if self.cv == "prefit": - try: - if isinstance(estimator, Pipeline): - check_is_fitted(estimator[-1]) - else: - check_is_fitted(estimator) - except NotFittedError as exc: - raise NotFittedError( - "You are using cv='prefit' with an estimator " - "which is not fitted yet.\n" - "Fit the estimator first, or change the " - "cv argument value." - ) from exc - return estimator - - def _check_sample_weights( - self, - X: ArrayLike, - y: ArrayLike, - sample_weight: Optional[ArrayLike] = None, - ): - """ - Validate sample_weight - - Parameters - ---------- - X: ArrayLike - Observed values. - - y: ArrayLike - Target values. - - sample_weight: Optional[NDArray] of shape (n_samples,) - Non-null sample weights. - - Returns - ------- - NDArray - The X observed values. - - NDArray - the y target values. - - Optional[NDArray] of shape (n_samples,) - Validated Non-null sample weights. - - """ - # Checking - - X, y = indexable(X, y) - y = _check_y(y) - sample_weight, X, y = check_null_weight(sample_weight, X, y) - - X = cast(NDArray, X) - y = cast(NDArray, y) - sample_weight = cast(Optional[NDArray], sample_weight) - - return ( - X, y, - sample_weight - ) - def fit( self, X: ArrayLike, diff --git a/mapie/regression/regression.py b/mapie/regression/regression.py index 46bebf3d8..24021ba42 100644 --- a/mapie/regression/regression.py +++ b/mapie/regression/regression.py @@ -5,9 +5,7 @@ import numpy as np from sklearn.base import BaseEstimator, RegressorMixin -from sklearn.linear_model import LinearRegression from sklearn.model_selection import BaseCrossValidator -from sklearn.pipeline import Pipeline from sklearn.utils import check_random_state from sklearn.utils.validation import _check_y, check_is_fitted, indexable @@ -16,7 +14,7 @@ from mapie.estimator.estimator import EnsembleRegressor from mapie.utils import (check_alpha, check_alpha_and_n_samples, check_conformity_score, check_cv, - check_estimator_fit_predict, check_n_features_in, + check_estimator, check_n_features_in, check_n_jobs, check_null_weight, check_verbose) @@ -320,46 +318,6 @@ def _check_agg_function( else: return "mean" - def _check_estimator( - self, estimator: Optional[RegressorMixin] = None - ) -> RegressorMixin: - """ - Check if estimator is ``None``, - and returns a ``LinearRegression`` instance if necessary. - If the ``cv`` attribute is ``"prefit"``, - check if estimator is indeed already fitted. - - Parameters - ---------- - estimator: Optional[RegressorMixin] - Estimator to check, by default ``None``. - - Returns - ------- - RegressorMixin - The estimator itself or a default ``LinearRegression`` instance. - - Raises - ------ - ValueError - If the estimator is not ``None`` - and has no ``fit`` nor ``predict`` methods. - - NotFittedError - If the estimator is not fitted - and ``cv`` attribute is ``"prefit"``. - """ - if estimator is None: - return LinearRegression() - else: - check_estimator_fit_predict(estimator) - if self.cv == "prefit": - if isinstance(estimator, Pipeline): - check_is_fitted(estimator[-1]) - else: - check_is_fitted(estimator) - return estimator - def _check_ensemble( self, ensemble: bool, ) -> None: @@ -427,7 +385,7 @@ def _check_fit_parameters( ) if self.cv in ["split", "prefit"] and self.method != "base": self.method = "base" - estimator = self._check_estimator(self.estimator) + estimator = check_estimator(self.estimator, cv) agg_function = self._check_agg_function(self.agg_function) cs_estimator = check_conformity_score( self.conformity_score, self.default_sym_ diff --git a/mapie/utils.py b/mapie/utils.py index cc1f57135..ffd9c908b 100644 --- a/mapie/utils.py +++ b/mapie/utils.py @@ -4,7 +4,7 @@ import numpy as np from sklearn.base import ClassifierMixin, RegressorMixin -from sklearn.linear_model import LogisticRegression +from sklearn.linear_model import LogisticRegression, LinearRegression from sklearn.model_selection import (BaseCrossValidator, BaseShuffleSplit, KFold, LeaveOneOut, ShuffleSplit, train_test_split) @@ -706,6 +706,48 @@ def check_estimator_fit_predict( ) +def check_estimator( + estimator: Optional[RegressorMixin] = None, + cv: Optional[Union[str, BaseCrossValidator, BaseShuffleSplit]] = None, +) -> RegressorMixin: + """ + Check if estimator is ``None``, + and returns a ``LinearRegression`` instance if necessary. + If the ``cv`` attribute is ``"prefit"``, + check if estimator is indeed already fitted. + + Parameters + ---------- + estimator: Optional[RegressorMixin] + Estimator to check, by default ``None``. + + Returns + ------- + RegressorMixin + The estimator itself or a default ``LinearRegression`` instance. + + Raises + ------ + ValueError + If the estimator is not ``None`` + and has no ``fit`` nor ``predict`` methods. + + NotFittedError + If the estimator is not fitted + and ``cv`` attribute is ``"prefit"``. + """ + if estimator is None: + estimator = LinearRegression() + + check_estimator_fit_predict(estimator) + if cv == "prefit": + if isinstance(estimator, Pipeline): + check_is_fitted(estimator[-1]) + else: + check_is_fitted(estimator) + return estimator + + def check_alpha_and_last_axis(vector: NDArray, alpha_np: NDArray): """Check when the dimension of vector is 3 that its last axis size is the same than the number of alphas. From 595b037d2fb8a205164cb740e9a1144d87c8e411 Mon Sep 17 00:00:00 2001 From: Damien Bouet Date: Wed, 5 Jun 2024 17:17:08 +0200 Subject: [PATCH 022/165] UPD: CCP docstrings --- mapie/regression/ccp_regression.py | 73 ++++++++++++++---------------- 1 file changed, 34 insertions(+), 39 deletions(-) diff --git a/mapie/regression/ccp_regression.py b/mapie/regression/ccp_regression.py index 261424232..e71d25c28 100644 --- a/mapie/regression/ccp_regression.py +++ b/mapie/regression/ccp_regression.py @@ -24,49 +24,45 @@ class MapieCCPRegressor(BaseEstimator, RegressorMixin): """ This class implements Conformal Prediction With Conditional Guarantees method as proposed by Gibbs et al. (2023) to make conformal predictions. - The only valid cross-val strategy is the "split" approach. + This method works with a ``"split"`` approach which requires a separate + calibration phase. The ``calibrate`` method is used on a calibration set + that must be disjoint from the estimator's training set to guarantee + the expected ``1-alpha`` coverage. Parameters ---------- estimator: Optional[RegressorMixin] - Any regressor with scikit-learn API + Any regressor from scikit-learn API. (i.e. with ``fit`` and ``predict`` methods). - If ``None``, estimator defaults to a ``QuantileRegressor`` instance. + If ``None``, ``estimator`` defaults to a ``LinearRegressor`` instance. By default ``"None"``. phi: Optional[PhiFunction] - The phi function used to estimate the conformity scores + A ``PhiFunction`` instance used to estimate the conformity scores. - If ``None``, use the default PhiFunction(lambda X: np.ones(len(X))). - It will result in a constant interval prediction (basic split method). - See the examples and the documentation to build a PhiFunction + If ``None``, use as default a ``GaussianPhiFunction`` instance. + See the examples and the documentation to build a ``PhiFunction`` adaptated to your dataset and constraints. By default ``None``. - cv: Optional[Union[int, str, BaseCrossValidator, BaseShuffleSplit]] - The cross-validation strategy for computing conformity scores. - The method only works with a "split" approach. + cv: Optional[Union[int, str, ShuffleSplit, PredefinedSplit]] + The splitting strategy for computing conformity scores. Choose among: - - Any ``sklearn.model_selection.BaseCrossValidator`` - with ``n_splits``=1. - - ``"split"`` or ``None``, divide the data into training and - calibration subsets (using the default ``calib_size``=0.3). - The splitter used is the following: - ``sklearn.model_selection.ShuffleSplit`` with ``n_splits``=1. + - Any splitter (``ShuffleSplit`` or ``PredefinedSplit``) + with ``n_splits=1``. - ``"prefit"``, assumes that ``estimator`` has been fitted already. - All data provided in the ``fit`` method is then used + All data provided in the ``calibrate`` method is then used for the calibration. - The user has to take care manually that data for model fitting and - calibration (the data given in the ``fit`` method) are disjoint. - - Note: You can choose the calibration indexes - with sklearn.model_selection.PredefinedSplit(test_fold), - where test_fold[i] = 1 (or any not negative integer) - if the row should be in the calibration set, - -1 otherwise (if it should be used for training). + The user has to take care manually that data used for model fitting + and calibration (the data given in the ``calibrate`` method) + are disjoint. + - ``"split"`` or ``None``: divide the data into training and + calibration subsets (using the default ``calib_size``=0.3). + The splitter used is the following: + ``sklearn.model_selection.ShuffleSplit`` with ``n_splits=1``. By default ``None``. @@ -77,21 +73,20 @@ class MapieCCPRegressor(BaseEstimator, RegressorMixin): correspondonds to a conformity score which assumes y_obs = y_pred + conformity_score. - - ``None``, to use the default ``AbsoluteConformityScore`` conformity - score + - ``None``, to use the default ``AbsoluteConformityScore`` symetrical + conformity score - Any ``ConformityScore`` class By default ``None``. - alpha: float + alpha: Optional[float] Between ``0.0`` and ``1.0``, represents the risk level of the confidence interval. Lower ``alpha`` produce larger (more conservative) prediction intervals. ``alpha`` is the complement of the target coverage level. - By default 0.1 - + By default ``None`` random_state: Optional[int] Integer used to set the numpy seed, to get reproducible calibration @@ -101,7 +96,7 @@ class MapieCCPRegressor(BaseEstimator, RegressorMixin): WARNING: If ``random_state``is not ``None``, ``np.random.seed`` will be changed, which will reset the seed for all the other random - number generators. + number generators. It may have an impact on the rest of your code. By default ``None``. @@ -378,7 +373,7 @@ def fit( **fit_params, ) -> MapieCCPRegressor: """ - Fit the estimator. + Fit the estimator if ``cv`` argument is not ``"prefit"`` Parameters ---------- @@ -550,7 +545,7 @@ def sum_of_losses(beta, phi_x, S, alpha): warnings.warn("WARNING: The method implemented in " "MapieCCPRegressor has a stochastic behavior. " "To have reproductible results, use a integer " - "`random_state` value in the MapieCCPRegressor " + "`random_state` value in the `MapieCCPRegressor` " "initialisation.") else: np.random.seed(self.random_state) @@ -578,16 +573,16 @@ def sum_of_losses(beta, phi_x, S, alpha): if not optimal_beta_up.success: warnings.warn( - "WARNING: The optimization process for the upper bound with " - f"alpha={self.alpha} failed with the following error: \n" + "WARNING: The optimization process for the upper bound " + f"failed with the following error: \n" f"{optimal_beta_low.message}\n" "The returned prediction interval may be inaccurate." ) if (not self.conformity_score_.sym and not optimal_beta_low.success): warnings.warn( - "WARNING: The optimization process for the lower bound with " - f"alpha={self.alpha} failed with the following error: \n" + "WARNING: The optimization process for the lower bound " + f"failed with the following error: \n" f"{optimal_beta_low.message}\n" "The returned prediction interval may be inaccurate." ) @@ -609,7 +604,8 @@ def fit_calibrate( **fit_params, ) -> MapieCCPRegressor: """ - Fit the estimator and the calibration. + Fit the estimator (if ``cv`` is not ``"prefit"``) + and fit the calibration. Parameters ---------- @@ -662,7 +658,6 @@ def fit_calibrate( ------- MapieCCPRegressor self - """ self.fit(X, y, sample_weight, groups, **fit_params) self.calibrate(X, y, groups, z, alpha) From b6735c2156a21728ad54454ae21d831d2a381770 Mon Sep 17 00:00:00 2001 From: Damien Bouet Date: Wed, 5 Jun 2024 17:18:01 +0200 Subject: [PATCH 023/165] UPD: Return predictions only if alpha is None --- mapie/regression/ccp_regression.py | 19 +++++++++++-------- 1 file changed, 11 insertions(+), 8 deletions(-) diff --git a/mapie/regression/ccp_regression.py b/mapie/regression/ccp_regression.py index e71d25c28..7f9eb6224 100644 --- a/mapie/regression/ccp_regression.py +++ b/mapie/regression/ccp_regression.py @@ -667,7 +667,7 @@ def predict( self, X: ArrayLike, z: Optional[ArrayLike] = None, - ) -> Tuple[NDArray, NDArray]: + ) -> Union[NDArray, Tuple[NDArray, NDArray]]: """ Predict target on new samples with confidence intervals. The prediction interval is computed @@ -682,15 +682,18 @@ def predict( Returns ------- - Tuple[NDArray, NDArray] - Tuple[NDArray, NDArray] of shapes (n_samples,) - and (n_samples, 2, 1). - - [:, 0, 0]: Lower bound of the prediction interval. - - [:, 1, 0]: Upper bound of the prediction interval. + Union[NDArray, Tuple[NDArray, NDArray]] + - NDArray of shape (n_samples,) if ``alpha`` is ``None``. + - Tuple[NDArray, NDArray] of shapes (n_samples,) and + (n_samples, 2, n_alpha) if ``alpha`` is not ``None``. + - [:, 0, :]: Lower bound of the prediction interval. + - [:, 1, :]: Upper bound of the prediction interval. """ + check_is_fitted(self, self.fit_attributes) + y_pred = self.estimator_.predict(X) - self.estimator = cast(RegressorMixin, self.estimator) - self.conformity_score_ = cast(ConformityScore, self.conformity_score_) + if self.alpha is None: + return y_pred check_is_fitted(self, self.calib_attributes) From e48a8e63c3c6f9bda6bf18b2e9e4fb7b578615f8 Mon Sep 17 00:00:00 2001 From: Damien Bouet Date: Wed, 5 Jun 2024 17:21:04 +0200 Subject: [PATCH 024/165] UPD: Improve and functions --- mapie/regression/ccp_regression.py | 80 +++++++++++++++++++++++------- 1 file changed, 63 insertions(+), 17 deletions(-) diff --git a/mapie/regression/ccp_regression.py b/mapie/regression/ccp_regression.py index 7f9eb6224..7c1b76054 100644 --- a/mapie/regression/ccp_regression.py +++ b/mapie/regression/ccp_regression.py @@ -512,17 +512,11 @@ def calibrate( ) if self.conformity_score_.sym: - alpha_low = 1 - self.alpha - alpha_up = 1 - self.alpha + q_low = 1 - self.alpha + q_up = 1 - self.alpha else: - alpha_low = self.alpha / 2 - alpha_up = 1 - self.alpha / 2 - - def l_alpha(alpha, X, S): - return np.where(S >= X, (1 - alpha) * (S - X), alpha * (X - S)) - - def sum_of_losses(beta, phi_x, S, alpha): - return np.sum(l_alpha(alpha, phi_x.dot(beta), S)) + q_low = self.alpha / 2 + q_up = 1 - self.alpha / 2 phi_x = self.phi( X_calib, @@ -538,9 +532,6 @@ def sum_of_losses(beta, phi_x, S, alpha): "definintion.\n" "Fix: Use `marginal_guarantee`=True in PhiFunction") - not_nan_index = np.where(~np.isnan(calib_conformity_scores))[0] - # Some conf. score values may be nan (ex: with ResidualNormalisedScore) - if self.random_state is None: warnings.warn("WARNING: The method implemented in " "MapieCCPRegressor has a stochastic behavior. " @@ -550,22 +541,77 @@ def sum_of_losses(beta, phi_x, S, alpha): else: np.random.seed(self.random_state) + def pinball_loss(alpha: float, q_pred: NDArray, q: NDArray) -> NDArray: + """ + Apply the pinball loss between ``q_pred`` and ``q`` + considering the target quantile ``1-alpha``. + + Parameters + ---------- + alpha : float + Between ``0.0`` and ``1.0``, represents the risk level of the + confidence interval. + q_pred : NDArray + Predicted quantile + q : NDArray + True quantile + + Returns + ------- + NDArray + Pinball loss between ``q_pred`` and ``q`` + """ + return np.where(q >= q_pred, (1 - alpha) * (q - q_pred), + alpha * (q_pred - q)) + + def objective( + beta: NDArray, + phi_x: NDArray, conformity_scores: NDArray, alpha: float + ) -> float: + """ + Objective funtcion to minimize to get the estimation of + the conformity scores ``1-alpha`` quantile, caracterized by + the scalar parameters in the ``beta`` vector. + + Parameters + ---------- + beta : NDArray + Parameters to optimize to minimize the objective function + phi_x : NDArray + Transformation of the data X using the ``PhiFunction``. + conformity_scores : NDArray + Conformity scores of X + alpha : float + Between ``0.0`` and ``1.0``, represents the risk level of the + confidence interval. + + Returns + ------- + float + Scalar value to minimize, being the sum of the pinball losses. + """ + return np.sum( + pinball_loss(alpha, phi_x.dot(beta), conformity_scores)) + + not_nan_index = np.where(~np.isnan(calib_conformity_scores))[0] + # Some conf. score values may be nan (ex: with ResidualNormalisedScore) + optimal_beta_up = minimize( - sum_of_losses, np.random.normal(0, 1, self.phi.n_out), + objective, self.phi.init_value, args=( phi_x[not_nan_index, :], calib_conformity_scores[not_nan_index], - 1-alpha_up + 1-q_up ) ) if not self.conformity_score_.sym: optimal_beta_low = minimize( - sum_of_losses, np.random.normal(0, 1, self.phi.n_out), + objective, self.phi.init_value, args=( phi_x[not_nan_index, :], calib_conformity_scores[not_nan_index], - 1-alpha_low + 1-q_low ) ) else: From 5158462335f2e5d165a4620e9464af5eb62229a8 Mon Sep 17 00:00:00 2001 From: Damien Bouet Date: Wed, 5 Jun 2024 17:26:51 +0200 Subject: [PATCH 025/165] UPD: Convert PhiFunction into a Abstract class --- .../plot_gibbs2023_simulations.py | 10 +- mapie/regression/ccp_regression.py | 32 +- mapie/regression/utils/ccp_phi_function.py | 522 +++++++++--------- 3 files changed, 285 insertions(+), 279 deletions(-) diff --git a/examples/regression/3-scientific-articles/plot_gibbs2023_simulations.py b/examples/regression/3-scientific-articles/plot_gibbs2023_simulations.py index 2b7725c0d..781f1100e 100644 --- a/examples/regression/3-scientific-articles/plot_gibbs2023_simulations.py +++ b/examples/regression/3-scientific-articles/plot_gibbs2023_simulations.py @@ -33,8 +33,8 @@ import numpy as np import pandas as pd from mapie.conformity_scores import AbsoluteConformityScore -from mapie.regression import (MapieCCPRegressor, MapieRegressor, - PhiFunction, GaussianPhiFunction) +from mapie.regression import MapieCCPRegressor, MapieRegressor +from mapie.regression.utils import CustomPhiFunction, GaussianPhiFunction from scipy.stats import norm from sklearn.linear_model import LinearRegression from sklearn.pipeline import Pipeline @@ -191,7 +191,7 @@ def plot_results(X_test, y_test, n_trials=10, if experiment == "Groups": # CCP Groups - phi_groups = PhiFunction([ + phi_groups = CustomPhiFunction([ lambda X, t=t: np.logical_and(X >= t, X < t + 0.5).astype(int) for t in np.arange(0, 5.5, 0.5) ]) @@ -200,7 +200,7 @@ def plot_results(X_test, y_test, n_trials=10, conformity_score=AbsoluteConformityScore(sym=False), random_state=None ) - mapie_ccp.conformity_score_.eps = 1e-5 + mapie_ccp.conformity_score.eps = 1e-5 mapie_ccp.calibrate(X_calib, y_calib) _, y_pi_ccp = mapie_ccp.predict(X_test) else: @@ -223,7 +223,7 @@ def plot_results(X_test, y_test, n_trials=10, conformity_score=AbsoluteConformityScore(sym=False), random_state=None ) - mapie_ccp.conformity_score_.eps = 1e-5 + mapie_ccp.conformity_score.eps = 1e-5 mapie_ccp.calibrate(X_calib, y_calib) _, y_pi_ccp = mapie_ccp.predict(X_test) diff --git a/mapie/regression/ccp_regression.py b/mapie/regression/ccp_regression.py index 7c1b76054..5c39c9119 100644 --- a/mapie/regression/ccp_regression.py +++ b/mapie/regression/ccp_regression.py @@ -14,7 +14,7 @@ from mapie._typing import ArrayLike, NDArray from mapie.conformity_scores import ConformityScore -from .utils.ccp_phi_function import PhiFunction +from .utils.ccp_phi_function import PhiFunction, GaussianPhiFunction from mapie.utils import (check_conformity_score, check_estimator, check_lower_upper_bounds, check_null_weight, fit_estimator) @@ -121,23 +121,23 @@ class MapieCCPRegressor(BaseEstimator, RegressorMixin): -------- >>> import numpy as np >>> from mapie.regression import MapieCCPRegressor - >>> X_train = np.array([[0], [1], [2], [3], [4], [5]]) - >>> y_train = np.array([5, 7.5, 9.5, 10.5, 12.5, 15]) + >>> np.random.seed(1) + >>> X_train = np.arange(0,100,2).reshape(-1, 1) + >>> y_train = 2*X_train[:,0] + np.random.rand(len(X_train)) >>> mapie_reg = MapieCCPRegressor(alpha=0.1, random_state=1) >>> mapie_reg = mapie_reg.fit_calibrate( ... X_train, ... y_train, ... ) >>> y_pred, y_pis = mapie_reg.predict(X_train) - >>> print(np.round(y_pis[:,:, 0], 2)) - [[ 4.14 5.57] - [ 6.11 7.54] - [ 8.07 9.5 ] - [10.04 11.46] - [12. 13.43] - [13.96 15.39]] - >>> print(np.round(y_pred, 2)) - [ 4.86 6.82 8.79 10.75 12.71 14.68] + >>> print(np.round(y_pred[:5], 2)) + [ 0.43 4.43 8.43 12.43 16.43] + >>> print(np.round(y_pis[:5,:, 0], 2)) + [[ 0.07 0.79] + [ 4.03 4.83] + [ 8. 8.86] + [11.98 12.89] + [15.97 16.9 ]] """ default_sym_ = True @@ -480,9 +480,7 @@ def calibrate( check_is_fitted(self, self.fit_attributes) self.phi = cast(PhiFunction, self.phi) - self.estimator = cast(RegressorMixin, self.estimator) - self.cv = cast(Union[str, BaseCrossValidator], self.cv) - self.conformity_score_ = cast(ConformityScore, self.conformity_score_) + self.phi.fit(X) if self.cv != 'prefit': self.cv = cast(BaseCrossValidator, self.cv) @@ -743,6 +741,10 @@ def predict( check_is_fitted(self, self.calib_attributes) + self.phi = cast(PhiFunction, self.phi) + + phi_x = self.phi.transform(X, y_pred, z) + signed = -1 if self.conformity_score_.sym else 1 y_pred_low = self.conformity_score_.get_estimation_distribution( diff --git a/mapie/regression/utils/ccp_phi_function.py b/mapie/regression/utils/ccp_phi_function.py index 3d80ed8f3..3449a62ee 100644 --- a/mapie/regression/utils/ccp_phi_function.py +++ b/mapie/regression/utils/ccp_phi_function.py @@ -1,29 +1,26 @@ from __future__ import annotations +from abc import ABCMeta, abstractmethod import inspect -from typing import Callable, Dict, List, Optional, Tuple, Union, cast +from typing import Callable, Dict, List, Optional, Tuple, Union, cast, Iterable import numbers import warnings import numpy as np -from mapie._typing import NDArray +from mapie._typing import ArrayLike, NDArray from sklearn.utils import _safe_indexing -from sklearn.utils.validation import _num_samples +from sklearn.utils.validation import _num_samples, check_is_fitted, _is_fitted +from sklearn.base import BaseEstimator -class PhiFunction(): +class PhiFunction(BaseEstimator, metaclass=ABCMeta): """ - This class is used to define the transformation phi, + Base class for the phi functions, used in the Gibbs et al. method to model the conformity scores. - Phi takes as input X (and can take y_pred and any exogenous variables z) - and return an array of shape (n_samples, d), for any integer d. Parameters ---------- - functions: Optional[Union[ - Union[Callable, "PhiFunction"], - List[Union[Callable, "PhiFunction"]] - ]] + functions: Optional[Union[Callable, Iterable]] List of functions (or PhiFunction objects) or single function. Each function can take a combinaison of the following arguments: - ``X``: Input dataset, of shape (n_samples, ``n_in``) @@ -66,101 +63,43 @@ class PhiFunction(): Attributes ---------- + fit_attributes: List[str] + Name of attributes set during the ``fit`` method, and required to call + ``transform``. n_in: int Number of features of ``X`` n_out: int Number of features of phi(``X``, ``y_pred``, ``z``) - - Examples - -------- - >>> import numpy as np - >>> from mapie.regression import PhiFunction - >>> X = np.array([[1, 2], [3, 4], [5, 6]]) - >>> y_pred = np.array([0, 0, 1]) - >>> z = np.array([[10], [20], [30]]) - >>> def not_lambda_function(y_pred, z): - ... result = np.zeros((y_pred.shape[0], z.shape[1])) - ... cnd = (y_pred == 1) - ... result[cnd] = z[cnd] - ... return result - >>> phi = PhiFunction( - ... functions=[ - ... lambda X: X * (y_pred[:, np.newaxis] == 0), # X, if y_pred is 0 - ... lambda y_pred: y_pred, # y_pred - ... not_lambda_function, # z, if y_pred is 1 - ... ], - ... normalized=False, - ... ) - >>> print(phi(X, y_pred, z)) - [[ 1. 2. 0. 0. 1.] - [ 3. 4. 0. 0. 1.] - [ 0. 0. 1. 30. 1.]] - >>> print(phi.n_out) - 5 - >>> # We can also combine PhiFunction objects with other functions - >>> compound_phi = PhiFunction( - ... functions=[ - ... phi, - ... lambda X: 4 * np.ones((X.shape[0], 1)), - ... ], - ... normalized=False, - ... ) - >>> print(compound_phi(X, y_pred, z)) - [[ 1. 2. 0. 0. 4. 1.] - [ 3. 4. 0. 0. 4. 1.] - [ 0. 0. 1. 30. 4. 1.]] """ - _need_x_calib = False + fit_attributes: List[str] = [] + output_attributes = ["n_in", "n_out", "init_value"] def __init__( - self, - functions: Optional[Union[ - Union[Callable, "PhiFunction"], - List[Union[Callable, "PhiFunction"]] - ]] = None, - marginal_guarantee: bool = True, - normalized: bool = False, + self, + functions: Optional[Union[Callable, Iterable]] = None, + marginal_guarantee: bool = True, + normalized: bool = False, ) -> None: - if isinstance(functions, list): - self.functions = list(functions) - elif functions is not None: - self.functions = [functions] - else: - self.functions = [] - + self.functions = functions self.marginal_guarantee = marginal_guarantee self.normalized = normalized - self.marginal_guarantee = self.marginal_guarantee or any( - phi.marginal_guarantee for phi in self.functions - if isinstance(phi, PhiFunction) - ) - - if not self._need_x_calib: - self._check_functions(self.functions, self.marginal_guarantee) - - self.n_in: Optional[int] = None - self.n_out: Optional[int] = None + def _check_transform_parameters(self) -> None: + """ + Check that ``functions_`` are functions that take as input + allowed arguments + """ + self.functions_ = self._check_functions() def _check_functions( self, - functions: List[Union[Callable, "PhiFunction"]], - marginal_guarantee: bool, - ) -> None: + ) -> NDArray: """ Validate functions for required and optional arguments. - Parameters - ---------- - functions : List[Union[Callable, "PhiFunction"]] - List of functions or PhiFunction instances to be checked. - - marginal_guarantee : bool - Flag indicating whether marginal guarantee is enabled. - Raises ------ ValueError @@ -178,14 +117,22 @@ def _check_functions( arguments ('X', 'y_pred', 'z'). Unknown optional arguments are allowed, but will always use their default values. """ - if len(functions) == 0 and not marginal_guarantee: + if self.functions is None: + self.functions = cast(NDArray, []) + elif isinstance(self.functions, Iterable): + self.functions = cast(NDArray, self.functions) + else: + self.functions = cast(NDArray, [self.functions]) + + if (len(self.functions) == 0) and not self.marginal_guarantee: raise ValueError("You need to define the `functions` argument " "with a function or a list of functions, " "or keep marginal_guarantee argument to True.") warn_ind: Dict[str, List[int]] = {} error_ind: Dict[str, List[int]] = {} - for i, funct in enumerate(functions): + for i, funct in enumerate(self.functions): + assert callable(funct) params = inspect.signature(funct).parameters for param, arg in params.items(): @@ -237,21 +184,39 @@ def _check_functions( "to. They will act as parameters, as it is always " "their default value which will be used." ) + return cast(NDArray, self.functions) + + @abstractmethod + def fit( + self, + X: ArrayLike, + ) -> None: + """ + Fit function : Set all the necessary attributes to be able to transform + ``(X, y_pred, z)`` into the expected transformation. + + It should set all the attributes of ``fit_attributes`` - def __call__( + Parameters + ---------- + X : Optional[ArrayLike] + Samples + """ + + def transform( self, - X: Optional[NDArray] = None, - y_pred: Optional[NDArray] = None, - z: Optional[NDArray] = None, + X: Optional[ArrayLike] = None, + y_pred: Optional[ArrayLike] = None, + z: Optional[ArrayLike] = None, disable_marginal_guarantee: bool = False, ) -> NDArray: - self.n_in = len(_safe_indexing(X, 0)) - self.n_out = 0 + check_is_fitted(self, self.fit_attributes) + self._check_transform_parameters() params_mapping = {"X": X, "y_pred": y_pred, "z": z} res = [] - funct_list = list(self.functions) + funct_list = list(self.functions_) if not disable_marginal_guarantee and self.marginal_guarantee: funct_list.append(lambda X: np.ones((len(X), 1))) @@ -262,19 +227,12 @@ def __call__( p: params_mapping[p] for p in params if p in params_mapping and params_mapping[p] is not None } - if isinstance(f, PhiFunction): - # We only consider marginal_guaranty with the main PhiFunction - res.append(np.array( - f(disable_marginal_guarantee=True, **used_params), - dtype=float)) - else: - res.append(np.array(f(**used_params), dtype=float)) + + res.append(np.array(f(**used_params), dtype=float)) if len(res[-1].shape) == 1: res[-1] = np.expand_dims(res[-1], axis=1) - self.n_out += res[-1].shape[1] - result = np.hstack(res) if self.normalized: norm = np.linalg.norm(result, axis=1).reshape(-1, 1) @@ -282,6 +240,19 @@ def __call__( norm[abs(norm) == 0] = 1 result /= norm + + if not _is_fitted(self, self.output_attributes): + self.n_in = len(_safe_indexing(X, 0)) + self.n_out = len(_safe_indexing(result, 0)) + self.init_value = np.random.normal(0, 1, self.n_out) + + if np.any(np.all(result == 0, axis=1)): + warnings.warn("WARNING: At least one row of the transformation " + "phi(X, y_pred, z) is full of zeros. " + "It will result in a prediction interval of zero " + "width. Consider changing the PhiFunction " + "definintion.\nFix: Use `marginal_guarantee=True` " + "in the `PhiFunction` definition.") return result def _check_need_calib(self, X: NDArray) -> None: @@ -346,8 +317,9 @@ class PolynomialPhiFunction(PhiFunction): Attributes ---------- - degree: List[int] - List of degrees of the built polynomial features + fit_attributes: List[str] + Name of attributes set during the ``fit`` method, and required to call + ``transform``. n_in: int Number of features of ``X`` @@ -355,55 +327,77 @@ class PolynomialPhiFunction(PhiFunction): n_out: int Number of features of phi(``X``, ``y_pred``, ``z``) + degrees: List[int] + List of degrees of the built polynomial features + Examples -------- >>> import numpy as np - >>> from mapie.regression import PolynomialPhiFunction + >>> from mapie.regression.utils import PolynomialPhiFunction >>> X = np.array([[1, 2], [3, 4], [5, 6]]) >>> y_pred = np.array([1, 2, 3]) >>> phi = PolynomialPhiFunction(3) - >>> print(phi(X, y_pred)) + >>> print(phi.transform(X, y_pred)) [[ 1. 2. 1. 4. 1. 8. 1.] [ 3. 4. 9. 16. 27. 64. 1.] [ 5. 6. 25. 36. 125. 216. 1.]] - >>> print(phi.degree) + >>> print(phi.degrees) [0, 1, 2, 3] >>> phi = PolynomialPhiFunction([1, 2, 5], "y_pred", ... marginal_guarantee=False) - >>> print(phi(X, y_pred)) + >>> print(phi.transform(X, y_pred)) [[ 1. 1. 1.] [ 2. 4. 32.] [ 3. 9. 243.]] >>> print(phi.degree) [1, 2, 5] """ + fit_attributes = [] + def __init__( - self, - degree: Union[int, List[int]] = 1, - variable: str = "X", - marginal_guarantee: bool = True, - normalized: bool = False, + self, + degree: Union[int, List[int]] = 1, + variable: str = "X", + marginal_guarantee: bool = True, + normalized: bool = False, ) -> None: - if isinstance(degree, int): - degree = list(range(degree+1)) - self.degree = degree + self.variable = variable + + if isinstance(degree, int): + self.degrees = list(range(degree+1)) + else: + self.degrees = degree functions: List[Callable] = [] - if 0 in degree and not marginal_guarantee: + if 0 in self.degrees and not marginal_guarantee: functions.append(lambda X: np.ones((len(X), 1))) if variable == "X": - functions += [lambda X, d=d: X**d for d in degree if d != 0] + functions += [lambda X, d=d: X**d for d in self.degrees if d != 0] elif variable == "y_pred": functions += [lambda y_pred, d=d: y_pred**d - for d in degree if d != 0] + for d in self.degrees if d != 0] elif variable == "z": - functions += [lambda z, d=d: z**d for d in degree if d != 0] + functions += [lambda z, d=d: z**d for d in self.degrees if d != 0] else: raise ValueError("variable must be 'X', 'y_pred' or 'z'") super().__init__(functions, marginal_guarantee, normalized) + def fit( + self, + X: ArrayLike, + ) -> None: + """ + ``PolynomialPhiFunction`` don't need to be fitted. + + Parameters + ---------- + X : Optional[ArrayLike] + Samples + """ + return + class GaussianPhiFunction(PhiFunction): """ @@ -414,16 +408,17 @@ class GaussianPhiFunction(PhiFunction): Parameters ---------- - points : Union[int, NDArray, Tuple[NDArray, NDArray]] + points : Union[int, ArrayLike, Tuple[ArrayLike, ArrayLike]] If Array: List of data points, used as centers to compute gaussian distances. Should be an array of shape (n_points, n_in). If integer, the points will be sampled randomly from the ``X`` - set if it is not ``None``. If ``X`` is ``None``, it will use the - training or calibration sets used in the ``fit`` or ``calibrate`` - methods of the ``MapieCCPRegressor`` object. + set, where ``X`` is the data give to the + ``GaussianPhiFunction.fit`` method, which usually correspond to + the ``X`` argument of the ``MapieCCPRegressor.calibrate`` method + (unless you call ``GaussianPhiFunction.fit(X)`` yourself). - You can pass a Tuple[NDArray, NDArray], to have a different + You can pass a Tuple[ArrayLike, ArrayLike], to have a different ``sigma`` value for each point. The two elements of the tuple should be: - Data points: 2D array of shape (n_points, n_in) @@ -433,7 +428,7 @@ class GaussianPhiFunction(PhiFunction): By default, ``10`` - sigma : Optional[Union[float, NDArray]] + sigma : Optional[Union[float, ArrayLike]] Standard deviation value used to compute the guassian distances, with the formula: np.exp(-0.5 * ((X - point) / ``sigma``) ** 2) @@ -446,10 +441,10 @@ class GaussianPhiFunction(PhiFunction): argument. If ``None``, ``sigma`` will default to a float equal to - np.std(X)/(n**0.5). - If ``X`` is ``None``, we will wait for the ``calibrate`` method of the - ``MapieCCPRegressor`` object to be called, and sample points from - the calibration data. + ``np.std(X)/(n**0.5)``, where ``X`` is the data give to the + ``GaussianPhiFunction.fit`` method, which correspond to the ``X`` + argument of the ``MapieCCPRegressor.calibrate`` method + (unless you call ``GaussianPhiFunction.fit(X)`` yourself). By default, ``None`` @@ -477,18 +472,6 @@ class GaussianPhiFunction(PhiFunction): By default, ``None`` - X : Optional[NDArray] - Dataset, used to sample points, if ``points`` is an - integer, and compute the default standard deviation, if - ``sigma``=``None``. It should not overlap with the - calibration or testing datasets. - - If ``X`` is ``None``, it will use the - training or calibration sets used in the ``fit`` or ``calibrate`` - methods of the ``MapieCCPRegressor`` object. - - By default, ``None`` - marginal_guarantee: bool Add a column of ones to the features, for safety reason (to garanty the marginal coverage, no matter how the other features @@ -519,12 +502,9 @@ class GaussianPhiFunction(PhiFunction): Attributes ---------- - points: NDArray - Array of shape (n_points, n_in), corresponding to the points used to - compute the gaussian distanes. - - sigmas: NDArray of shape (len(points), 1) or (len(points), n_in) - Standard deviation values + fit_attributes: List[str] + Name of attributes set during the ``fit`` method, and required to call + ``transform``. n_in: int Number of features of ``X`` @@ -532,164 +512,185 @@ class GaussianPhiFunction(PhiFunction): n_out: int Number of features of phi(``X``, ``y_pred``, ``z``) + points_: NDArray + Array of shape (n_points, n_in), corresponding to the points used to + compute the gaussian distanes. + + sigmas_: NDArray of shape (len(points), 1) or (len(points), n_in) + Standard deviation values + Examples -------- >>> import numpy as np - >>> from mapie.regression import PolynomialPhiFunction + >>> from mapie.regression.utils import GaussianPhiFunction >>> np.random.seed(1) >>> X = np.array([[1], [2], [3], [4], [5]]) - >>> phi = GaussianPhiFunction(2, X=X, marginal_guarantee=False, + >>> phi = GaussianPhiFunction(2, marginal_guarantee=False, ... normalized=False) - >>> print(np.round(phi(X), 2)) - [[0.08 0.4 ] - [0.53 1. ] - [1. 0.4 ] - [0.53 0.03] - [0.08 0. ]] - >>> print(phi.points) + >>> phi.fit(X) + >>> print(np.round(phi.transform(X), 2)) + [[0.14 0.61] + [0.61 1. ] + [1. 0.61] + [0.61 0.14] + [0.14 0.01]] + >>> print(phi.points_) [[3] [2]] - >>> print(phi.sigmas) - [[0.8892586 ] - [0.74118567]] + >>> print(phi.sigmas_) + [[1.] + [1.]] >>> phi = GaussianPhiFunction([[3],[4]], 0.5) - >>> print(np.round(phi(X), 2)) + >>> print(np.round(phi.transform(X), 2)) [[1. 0. ] [1. 0. ] [0.99 0.13] [0.13 0.99] [0. 1. ]] - >>> print(phi.points) + >>> print(phi.points_) [[3] [4]] - >>> print(phi.sigmas) + >>> print(phi.sigmas_) [[0.5] [0.5]] """ + fit_attributes = ["points_", "sigmas_"] + def __init__( - self, - points: Union[int, NDArray, Tuple[NDArray, NDArray]] = 20, - sigma: Optional[Union[float, NDArray]] = None, - random_sigma: Optional[bool] = None, - X: Optional[NDArray] = None, - marginal_guarantee: bool = False, - normalized: bool = True, + self, + points: Union[int, ArrayLike, Tuple[ArrayLike, ArrayLike]] = 20, + sigma: Optional[Union[float, ArrayLike]] = None, + random_sigma: Optional[bool] = None, + marginal_guarantee: bool = False, + normalized: bool = True, ) -> None: self.points = points - self.sigmas: Optional[NDArray] = None + self.sigma = sigma self.random_sigma = random_sigma - if random_sigma is None and sigma is None: - self.random_sigma = True - if isinstance(points, int): - self.sigmas = self._init_sigma(sigma, points) - if X is None: - self._need_x_calib = True - else: - points_index = np.random.choice(_num_samples(X), size=points, - replace=False) - self.points = cast(NDArray, _safe_indexing(X, points_index)) + self.points_: Optional[NDArray] + self.sigmas_: Optional[NDArray] - if self.sigmas is None: - self.sigmas = np.ones((len(self.points), 1))*np.std( - X, axis=0)/(len(self.points)**0.5) + if isinstance(points, int): + self._init_sigmas(sigma, points) elif isinstance(points, tuple): - self.points = np.array(points[0]) - self.sigmas = np.array(points[1]) - if len(self.sigmas.shape) == 1: - self.sigmas = self.sigmas.reshape(-1, 1) - - self._check_points_sigma(self.points, self.sigmas) - if random_sigma is None and sigma is None: - self.random_sigma = False + self.points_ = np.array(points[0]) + self.sigmas_ = np.array(points[1]) + if len(self.sigmas_.shape) == 1: + self.sigmas_ = self.sigmas_.reshape(-1, 1) elif len(np.array(points).shape) == 2: - self.sigmas = self._init_sigma(sigma, len(points)) - self.points = np.array(points) - - if self.sigmas is None: - if X is None: - self._need_x_calib = True - else: - self.sigmas = np.ones((len(self.points), 1))*np.std( - X, axis=0)/(len(self.points)**0.5) + self._init_sigmas(sigma, _num_samples(points)) + self.points_ = cast(NDArray, np.array(points)) else: - raise ValueError("The points argument should be an integer, " + raise ValueError("Invalid `points` argument. The points argument" + "should be an integer, " "a 2D array or a tuple of two 2D arrays.") - if self._need_x_calib: - functions = [] - else: - self.points = cast(NDArray, self.points) - self.sigmas = cast(NDArray, np.array(self.sigmas)) - self._check_points_sigma(self.points, self.sigmas) - + if ( + _is_fitted(self, self.fit_attributes) + and self.points_ is not None and self.sigmas_ is not None + ): + self._check_parameters(self.points_, self.sigmas_) if self.random_sigma: - n = len(self.points) - self.sigmas = self.sigmas * ( + n = _num_samples(self.points_) + self.sigmas_ = self.sigmas_ * ( 2**np.random.normal(0, 1*2**(-2+np.log10(n)), n) .reshape(-1, 1) ) functions = [ - lambda X, mu=_safe_indexing(self.points, i), - sigma=_safe_indexing(self.sigmas, i): + lambda X, mu=_safe_indexing(self.points_, i), + sigma=_safe_indexing(self.sigmas_, i): np.exp(-0.5 * np.sum(((X - mu) / sigma) ** 2, axis=1)) - for i in range(len(self.points)) + for i in range(_num_samples(self.points_)) ] + else: + functions = [] super().__init__(functions, marginal_guarantee, normalized) - def _init_sigma( - self, - sigma: Optional[Union[float, NDArray]], - n_points: int, - ) -> Optional[NDArray]: + def _check_transform_parameters(self) -> None: """ - Take a sigma value, and return a standard deviation 2D array of shape - (n_points, n_sigma), n_sigma being 1 or the number of dimensions of X. + Check that ``functions_`` are functions that take as input + allowed arguments + """ + self.sigmas_ = cast(NDArray, self.sigmas_) + self.points_ = cast(NDArray, self.points_) + + self._check_parameters(self.points_, self.sigmas_) + self.functions_ = self._check_functions() + + def _check_parameters(self, points: NDArray, sigmas: NDArray) -> None: + """ + Check that ``points`` and ``sigmas`` have compatible shapes Parameters ---------- - sigma : Optional[Union[float, NDArray]] + points : ArrayLike + 2D array of shape (n_points, n_in) + sigmas : ArrayLike + 2D array of shape (n_points, 1) or (n_points, n_in) + """ + self._check_points_sigma(points, sigmas) + self.random_sigma = self._check_random_sigma() + + def _check_random_sigma(self) -> bool: + if self.random_sigma is None and self.sigma is None: + if isinstance(self.points, tuple): + return False + else: + return True + if self.random_sigma is None: + return False + else: + return self.random_sigma + + def _init_sigmas( + self, + sigma: Optional[Union[float, ArrayLike]], + n_points: int, + ) -> None: + """ + If ``sigma`` is not ``None``, take a sigma value, and set ``sigmas_`` + to a standard deviation 2D array of shape (n_points, n_sigma), + n_sigma being 1 or the number of dimensions of X. + + Parameters + ---------- + sigma : Optional[Union[float, ArrayLike]] standard deviation, as float or 1D array of length n_in (number of dimensins of the dataset) n_points : int Number of points user for gaussian distances calculation - Returns - ------- - Optional[NDArray] - 2D array Standard deviation - Raises ------ ValueError If ``sigma`` is not None, a float or a 1D array """ if isinstance(sigma, numbers.Number): - sigmas = np.ones((n_points, 1))*sigma + self.sigmas_ = np.ones((n_points, 1))*sigma elif sigma is not None: if len(np.array(sigma).shape) != 1: raise ValueError("sigma argument should be a float " "or a 1D array of floats.") - sigmas = np.ones((n_points, 1))*np.array(sigma) - else: - sigmas = None - return sigmas + self.sigmas_ = np.ones((n_points, 1))*np.array(sigma) - def _check_points_sigma(self, points: NDArray, sigmas: NDArray) -> None: + def _check_points_sigma( + self, points: ArrayLike, sigmas: ArrayLike + ) -> None: """ Take 2D arrays of points and standard deviations and check compatibility Parameters ---------- - points : NDArray + points : ArrayLike 2D array of shape (n_points, n_in) - sigmas : NDArray + sigmas : ArrayLike 2D array of shape (n_points, 1) or (n_points, n_in) Raises @@ -697,47 +698,50 @@ def _check_points_sigma(self, points: NDArray, sigmas: NDArray) -> None: ValueError If ``sigmas``is not of shape (n_points, 1) or (n_points, n_in) """ - if points.shape[0] != sigmas.shape[0]: + if _num_samples(points) != _num_samples(sigmas): raise ValueError("There should have as many points as " "standard deviation values") - if sigmas.shape[1] not in [1, points.shape[1]]: + if len(_safe_indexing(sigmas, 0)) not in [ + 1, len(_safe_indexing(points, 0)) + ]: raise ValueError("The standard deviation 2D array should be of " "shape (n_points, 1) or (n_points, n_in).\n" - f"Got sigma of shape: {sigmas.shape}") + f"Got sigma of shape: ({_num_samples(sigmas)}, " + f"{len(_safe_indexing(points, 0))}).") - def _check_need_calib(self, X: NDArray) -> None: + def fit( + self, + X: ArrayLike, + ) -> None: """ - Complete the definition of the phi function using the X training or - calibration data, if the ``X`` argument was ``None`` during the - ``GaussianPhiFunction``` initialisation. + ``GaussianPhiFunction`` fit method is used to sample points and compute + the standard deviation values if needed. Parameters ---------- - X : NDArray - Some samples (training or calibration data) + X : Optional[ArrayLike] + Samples """ - if self._need_x_calib: + if not _is_fitted(self, self.fit_attributes): if isinstance(self.points, int): points_index = np.random.choice( _num_samples(X), size=self.points, replace=False ) - self.points = cast(NDArray, _safe_indexing(X, points_index)) - if self.sigmas is None: - self.sigmas = np.ones((len(self.points), 1))*np.std( - X, axis=0)/(len(self.points)**0.5) + self.points_ = cast(NDArray, _safe_indexing(X, points_index)) + if self.sigma is None: + self.sigmas_ = np.ones((_num_samples(self.points_), 1))*np.std( + X, axis=0)/(_num_samples(self.points_)**0.5) if self.random_sigma: - n = len(self.points) - self.sigmas = self.sigmas * ( + n = _num_samples(self.points_) + self.sigmas_ *= ( 2**np.random.normal(0, 1*2**(-2+np.log10(n)), n) .reshape(-1, 1) ) self.functions = [ - lambda X, mu=_safe_indexing(self.points, i), - sigma=_safe_indexing(self.sigmas, i): + lambda X, mu=_safe_indexing(self.points_, i), + sigma=_safe_indexing(self.sigmas_, i): np.exp(-0.5 * np.sum(((X - mu) / sigma) ** 2, axis=1)) - for i in range(len(self.points)) - ] - - self._need_x_calib = False + for i in range(_num_samples(self.points_)) + ] From 2fcc380fd868f939d7319ec5246181375bcc633d Mon Sep 17 00:00:00 2001 From: Damien Bouet Date: Wed, 5 Jun 2024 17:27:32 +0200 Subject: [PATCH 026/165] ADD: CustomPhiFunction --- mapie/regression/utils/__init__.py | 3 +- mapie/regression/utils/ccp_phi_function.py | 110 ++++++++++++++++++++- 2 files changed, 108 insertions(+), 5 deletions(-) diff --git a/mapie/regression/utils/__init__.py b/mapie/regression/utils/__init__.py index c405eae00..091906254 100644 --- a/mapie/regression/utils/__init__.py +++ b/mapie/regression/utils/__init__.py @@ -1,8 +1,9 @@ from .ccp_phi_function import (PhiFunction, PolynomialPhiFunction, - GaussianPhiFunction) + GaussianPhiFunction, CustomPhiFunction) __all__ = [ "PhiFunction", "PolynomialPhiFunction", "GaussianPhiFunction", + "CustomPhiFunction", ] diff --git a/mapie/regression/utils/ccp_phi_function.py b/mapie/regression/utils/ccp_phi_function.py index 3449a62ee..06cb4aa53 100644 --- a/mapie/regression/utils/ccp_phi_function.py +++ b/mapie/regression/utils/ccp_phi_function.py @@ -255,10 +255,112 @@ def transform( "in the `PhiFunction` definition.") return result - def _check_need_calib(self, X: NDArray) -> None: - for f in self.functions: - if isinstance(f, PhiFunction) and f._need_x_calib: - f._check_need_calib(X) + +class CustomPhiFunction(PhiFunction): + """ + This class is used to define the transformation phi, + used in the Gibbs et al. method to model the conformity scores. + This class build a ``PhiFunction`` object with custom features of + X, y_pred or z, defined as a list of functions in ``functions`` argument. + + Parameters + ---------- + functions: Optional[Union[Callable, Iterable]] + List of functions (or PhiFunction objects) or single function. + Each function can take a combinaison of the following arguments: + - ``X``: Input dataset, of shape (n_samples, ``n_in``) + - ``y_pred``: estimator prediction, of shape (n_samples,) + - ``z``: exogenous variable, of shape (n_samples, n_features). + It should be given in the ``fit`` and ``predict`` methods. + The results of each functions will be concatenated to build the final + result of the phi function, of shape (n_samples, ``n_out``). + If ``None``, the resulting phi object will return a column of ones, + when called. It will result, in the MapieCCPRegressor, in a basic + split CP approach. + + By default ``None``. + + marginal_guarantee: bool + Add a column of ones to the features, for safety reason + (to garanty the marginal coverage, no matter how the other features + the ``PhiFunction``object were built). + If the ``PhiFunction``object definition covers all the dataset + (meaning, for all calibration and test samples, ``phi(X, y_pred, z)`` + is never all zeros), this column of ones is not necessary + to obtain marginal coverage. + In this case, you can set this argument to ``False``. + + Note: Even if it is not always necessary to guarantee the marginal + coverage, it can't degrade the prediction intervals. + + By default ``True``. + + normalized: bool + Whether or not to normalized ``phi(X, y_pred, z)``. Normalization + will result in a bounded interval prediction width, avoiding the width + to explode to +inf or crash to zero. It is particularly intersting when + you know that the conformity scores are bounded. It also prevent the + interval to have a interval of zero width for out-of-distribution or + new samples. On the opposite, it is not recommended if the conformity + scores can vary a lot. + + By default ``False`` + + Attributes + ---------- + fit_attributes: List[str] + Name of attributes set during the ``fit`` method, and required to call + ``transform``. + + n_in: int + Number of features of ``X`` + + n_out: int + Number of features of phi(``X``, ``y_pred``, ``z``) + + Examples + -------- + >>> import numpy as np + >>> from mapie.regression.utils import CustomPhiFunction + >>> X = np.array([[1, 2], [3, 4], [5, 6]]) + >>> y_pred = np.array([0, 0, 1]) + >>> phi = CustomPhiFunction( + ... functions=[ + ... lambda X: X * (y_pred[:, np.newaxis] == 0), # X, if y_pred is 0 + ... lambda y_pred: y_pred, # y_pred + ... ], + ... normalized=False, + ... ) + >>> print(phi.transform(X, y_pred)) + [[1. 2. 0. 1.] + [3. 4. 0. 1.] + [0. 0. 1. 1.]] + >>> print(phi.n_out) + 4 + """ + fit_attributes = [] + + def __init__( + self, + functions: Optional[Union[Callable, Iterable]] = None, + marginal_guarantee: bool = True, + normalized: bool = False, + ) -> None: + super().__init__(functions, marginal_guarantee, normalized) + + def fit( + self, + X: ArrayLike, + ) -> None: + """ + ``PolynomialPhiFunction`` don't need to be fitted. + + Parameters + ---------- + X : Optional[ArrayLike] + Samples + """ + return class PolynomialPhiFunction(PhiFunction): From 88e92736f353347008c94d5ddf0111f1e328610b Mon Sep 17 00:00:00 2001 From: Damien Bouet Date: Wed, 5 Jun 2024 17:27:46 +0200 Subject: [PATCH 027/165] UPD: Tests --- mapie/tests/test_ccp_phi_function.py | 168 ++++++++------------ mapie/tests/test_ccp_regression.py | 225 +++++++++++++++------------ 2 files changed, 188 insertions(+), 205 deletions(-) diff --git a/mapie/tests/test_ccp_phi_function.py b/mapie/tests/test_ccp_phi_function.py index a26809111..39a939640 100644 --- a/mapie/tests/test_ccp_phi_function.py +++ b/mapie/tests/test_ccp_phi_function.py @@ -4,9 +4,10 @@ import numpy as np import pytest +from sklearn.utils.validation import check_is_fitted from sklearn.datasets import make_regression -from mapie.regression import (PhiFunction, PolynomialPhiFunction, - GaussianPhiFunction) +from mapie.regression.utils import (CustomPhiFunction, GaussianPhiFunction, + PolynomialPhiFunction, PhiFunction) random_state = 1 np.random.seed(random_state) @@ -17,100 +18,69 @@ z = X[:, -2:] PHI = [ - PhiFunction([lambda X: np.ones((len(X), 1))]), - PhiFunction([lambda X: X]), - PhiFunction([lambda X: X, lambda z: z]), - PhiFunction([lambda X: X, lambda y_pred: y_pred]), - PhiFunction([ - PhiFunction([lambda X: X, lambda y_pred: y_pred]), - lambda z: z - ]), + CustomPhiFunction([lambda X: np.ones((len(X), 1))]), + CustomPhiFunction([lambda X: X]), + CustomPhiFunction([lambda X: X, lambda z: z]), + CustomPhiFunction([lambda X: X, lambda y_pred: y_pred]), PolynomialPhiFunction(2, "X", marginal_guarantee=True), PolynomialPhiFunction([1, 2], "X", marginal_guarantee=True), PolynomialPhiFunction([1, 4, 5], "y_pred", marginal_guarantee=False), PolynomialPhiFunction([0, 1, 4, 5], "y_pred", marginal_guarantee=False), - GaussianPhiFunction(4, X=X) + GaussianPhiFunction(4) ] # n_out without marginal_guarantee -N_OUT_RAW = [1, 10, 12, 11, 13, 20, 20, 3, 4, 4] - -PHI_FUNCTIONS = [ - [lambda X: np.ones((len(X), 1))], - [lambda X: X], - [lambda X: X, lambda z: z], - [lambda X: X, lambda y_pred: y_pred], - [PhiFunction([lambda X: X, lambda y_pred: y_pred]), lambda z: z], -] +N_OUT_RAW = [1, 10, 12, 11, 20, 20, 3, 4, 4] -GAUSS_NEED_CALIB_SETTINGS: List[Dict[str, Any]] = [ +GAUSS_NEED_FIT_SETTINGS: List[Dict[str, Any]] = [ { "points": 10, "sigma": 1, - "X": None, }, { "points": 10, "sigma": None, - "X": None, - }, - { - "points": np.ones((2, X.shape[1])), - "sigma": None, - "X": None, }, -] - -GAUSS_NO_NEED_CALIB_SETTINGS: List[Dict[str, Any]] = [ { "points": 10, - "sigma": 1, - "X": X, + "sigma": None, + "random_sigma": True, }, { "points": 10, "sigma": None, - "X": X, + "random_sigma": False, }, { "points": np.ones((2, X.shape[1])), "sigma": None, - "X": X, }, +] + +GAUSS_NO_NEED_FIT_SETTINGS: List[Dict[str, Any]] = [ { "points": np.ones((2, X.shape[1])), "sigma": np.ones(X.shape[1]), - "X": X, }, { "points": (np.ones((2, X.shape[1])), [1, 2]), "sigma": None, - "X": None, }, { "points": (np.ones((2, X.shape[1])), np.ones((2, X.shape[1]))), "sigma": None, - "X": None, }, ] -# ======== PhiFunction ========= -def test_phi_initialized() -> None: +# ======== CustomPhiFunction ========= +@pytest.mark.parametrize("functions", [ + None, lambda X: X, [lambda X: X] +]) +def test_custom_phi_functions(functions: Any) -> None: """Test that initialization does not crash.""" - PhiFunction() - - -def test_phi_default_parameters() -> None: - """ - Test default values of input parameters of PhiFunction. - - ``marginal_guarantee`` should be ``True`` - - ``functions``should be a list with a unique callable element - """ - phi = PhiFunction() - assert phi.marginal_guarantee - assert isinstance(phi.functions, list) - assert len(phi.functions) == 0 + phi = CustomPhiFunction(functions) + phi.transform(X) @pytest.mark.parametrize("phi, n_out_raw", zip(PHI, N_OUT_RAW)) @@ -118,35 +88,12 @@ def test_phi_n_attributes(phi: PhiFunction, n_out_raw: int) -> None: """ Test that the n_in and n_out attributes are corrects """ - phi(X=X, y_pred=y, z=z) + phi.fit(X) + phi.transform(X, y_pred=y, z=z) assert phi.n_in == 10 assert phi.n_out == n_out_raw + int(phi.marginal_guarantee) -@pytest.mark.parametrize("phi_function_1, n_out_raw_1, m_g_1", - zip(PHI_FUNCTIONS, N_OUT_RAW, [True, False])) -@pytest.mark.parametrize("phi_function_2, n_out_raw_2, m_g_2", - zip(PHI_FUNCTIONS, N_OUT_RAW, [True, False])) -@pytest.mark.parametrize("m_g_0", [True, False]) -def test_phi_compound_and_guarantee( - phi_function_1: PhiFunction, n_out_raw_1: int, m_g_1: bool, - phi_function_2: PhiFunction, n_out_raw_2: int, m_g_2: bool, - m_g_0: bool, -) -> None: - """ - Test that when phi is defined using a compound of other PhiFunctions, - the column of ones, added of marginal_guarantee, is added only once - """ - phi_1 = PhiFunction(phi_function_1, marginal_guarantee=m_g_1) - phi_2 = PhiFunction(phi_function_2, marginal_guarantee=m_g_2) - phi_0 = PhiFunction([phi_1, phi_2], marginal_guarantee=m_g_0) - phi_0(X=X, y_pred=y, z=z) - - assert phi_0.n_out == n_out_raw_1 + n_out_raw_2 + int(any( - [m_g_0, m_g_1, m_g_2] - )) - - def test_phi_functions_warning() -> None: """ Test that creating a PhiFunction object with functions which have @@ -154,7 +101,8 @@ def test_phi_functions_warning() -> None: """ with pytest.warns(UserWarning, match="WARNING: Unknown optional arguments."): - PhiFunction([lambda X, d=d: X**d for d in range(4)]) + phi = CustomPhiFunction([lambda X, d=d: X**d for d in range(4)]) + phi.transform(X) @pytest.mark.parametrize("functions", [ @@ -169,7 +117,8 @@ def test_phi_functions_error(functions: Any) -> None: for f in functions: # For coverage f(np.ones((10, 1)), np.ones((10, 1))) with pytest.raises(ValueError, match=r"Forbidden required argument."): - PhiFunction(functions) + phi = CustomPhiFunction(functions) + phi.transform(X) def test_phi_functions_empty() -> None: @@ -178,7 +127,8 @@ def test_phi_functions_empty() -> None: required arguments different from 'X', 'y_pred' or 'z' raise an error. """ with pytest.raises(ValueError): - PhiFunction([], marginal_guarantee=False) + phi = CustomPhiFunction([], marginal_guarantee=False) + phi.transform(X) # ======== PolynomialPhiFunction ========= @@ -225,24 +175,39 @@ def test_poly_gauss_init_other( marginal_guarantee: bool, normalized: bool ) -> None: """Test that initialization does not crash.""" - GaussianPhiFunction(points, sigma, random_sigma, X, + GaussianPhiFunction(points, sigma, random_sigma, marginal_guarantee, normalized) @pytest.mark.parametrize("points", [np.ones((10)), - np.ones((10, 2, 2)), - (np.ones((10, 3)), np.ones((10, 2))), - (np.ones((10, 3)), np.ones((8, 1))), - (np.ones((10, 3)), np.ones(7))]) + np.ones((10, 2, 2))]) def test_invalid_gauss_points(points: Any) -> None: """ Test that invalid ``GaussianPhiFunction`` ``points``argument values raise an error """ - with pytest.raises(ValueError): + with pytest.raises(ValueError, match="Invalid `points` argument."): GaussianPhiFunction(points) +def test_invalid_gauss_points_2() -> None: + """ + Test that invalid ``GaussianPhiFunction`` ``points``argument values raise + an error + """ + with pytest.raises(ValueError, match="There should have as many points"): + GaussianPhiFunction(points=(np.ones((10, 3)), np.ones((8, 3)))) + + +def test_invalid_gauss_points_3() -> None: + """ + Test that invalid ``GaussianPhiFunction`` ``points``argument values raise + an error + """ + with pytest.raises(ValueError, match="The standard deviation 2D array"): + GaussianPhiFunction(points=(np.ones((10, 3)), np.ones((10, 2)))) + + @pytest.mark.parametrize("sigma", ["1", np.ones((10, 2)), np.ones((8, 1)), @@ -253,36 +218,27 @@ def test_invalid_gauss_sigma(sigma: Any) -> None: error """ with pytest.raises(ValueError): - GaussianPhiFunction(3, sigma, X=X) + phi = GaussianPhiFunction(3, sigma) + phi.fit(X) + phi.transform(X) -@pytest.mark.parametrize("ind", range(len(GAUSS_NEED_CALIB_SETTINGS))) +@pytest.mark.parametrize("ind", range(len(GAUSS_NEED_FIT_SETTINGS))) def test_gauss_need_calib(ind: int) -> None: """ Test that ``GaussianPhiFunction`` arguments that require later completion have ``_need_x_calib`` = ``True`` """ - phi = GaussianPhiFunction(**GAUSS_NEED_CALIB_SETTINGS[ind]) - assert phi._need_x_calib + phi = GaussianPhiFunction(**GAUSS_NEED_FIT_SETTINGS[ind]) + phi.fit(X) + check_is_fitted(phi, phi.fit_attributes) -@pytest.mark.parametrize("ind", range(len(GAUSS_NO_NEED_CALIB_SETTINGS))) +@pytest.mark.parametrize("ind", range(len(GAUSS_NO_NEED_FIT_SETTINGS))) def test_gauss_no_need_calib(ind: int) -> None: """ Test that ``GaussianPhiFunction`` arguments that don't require later completion have ``_need_x_calib`` = ``False`` """ - phi = GaussianPhiFunction(**GAUSS_NO_NEED_CALIB_SETTINGS[ind]) - assert not phi._need_x_calib - - -@pytest.mark.parametrize("ind", range(len(GAUSS_NEED_CALIB_SETTINGS))) -def test_chained_check_need_calib(ind: int) -> None: - """ - Test that a PhiFunction object _check_need_calib call the _check_need_calib - method of children PhiFunction objects - """ - child_phi = GaussianPhiFunction(**GAUSS_NEED_CALIB_SETTINGS[ind]) - phi = PhiFunction([child_phi]) - phi._check_need_calib(X) - assert not child_phi._need_x_calib + phi = GaussianPhiFunction(**GAUSS_NO_NEED_FIT_SETTINGS[ind]) + check_is_fitted(phi, phi.fit_attributes) diff --git a/mapie/tests/test_ccp_regression.py b/mapie/tests/test_ccp_regression.py index db05534c9..aba155bf0 100644 --- a/mapie/tests/test_ccp_regression.py +++ b/mapie/tests/test_ccp_regression.py @@ -6,7 +6,7 @@ import numpy as np import pytest -from sklearn.base import RegressorMixin +from sklearn.base import RegressorMixin, clone from sklearn.datasets import make_regression from sklearn.dummy import DummyRegressor from sklearn.ensemble import GradientBoostingRegressor @@ -17,15 +17,15 @@ ShuffleSplit, TimeSeriesSplit, train_test_split) from sklearn.pipeline import make_pipeline -from sklearn.utils.validation import check_is_fitted from mapie._typing import NDArray from mapie.conformity_scores import (AbsoluteConformityScore, ConformityScore, GammaConformityScore, ResidualNormalisedScore) from mapie.metrics import regression_coverage_score -from mapie.regression import (MapieCCPRegressor, PhiFunction, - GaussianPhiFunction, PolynomialPhiFunction) +from mapie.regression import MapieCCPRegressor +from mapie.regression.utils import (PhiFunction, CustomPhiFunction, + GaussianPhiFunction, PolynomialPhiFunction) random_state = 1 np.random.seed(random_state) @@ -43,7 +43,7 @@ CV = ["prefit", "split"] PHI = [ - PhiFunction([lambda X: np.ones((len(X), 1))]), + CustomPhiFunction([lambda X: np.ones((len(X), 1))]), PolynomialPhiFunction(), GaussianPhiFunction(5), ] @@ -61,46 +61,50 @@ # ======== MapieCCPRegressor ========= def test_initialized() -> None: """Test that initialization does not crash.""" - MapieCCPRegressor() + MapieCCPRegressor(alpha=0.1) def test_fit() -> None: """Test that fit raises no errors.""" - mapie_reg = MapieCCPRegressor() + mapie_reg = MapieCCPRegressor(alpha=0.1) mapie_reg.fit(X_toy, y_toy) -def test_fit_calibrate() -> None: +@pytest.mark.parametrize("z", [None, z_toy]) +def test_fit_calibrate(z: Any) -> None: """Test that fit-calibrate raises no errors.""" - mapie_reg = MapieCCPRegressor() + mapie_reg = MapieCCPRegressor(alpha=0.1) mapie_reg.fit(X_toy, y_toy) - mapie_reg.calibrate(X_toy, y_toy) + mapie_reg.calibrate(X_toy, y_toy, z=z) -def test_fit_calibrate_combined() -> None: +@pytest.mark.parametrize("z", [None, z_toy]) +def test_fit_calibrate_combined(z: Any) -> None: """Test that fit_calibrate raises no errors.""" - mapie_reg = MapieCCPRegressor() - mapie_reg.fit_calibrate(X_toy, y_toy) + mapie_reg = MapieCCPRegressor(alpha=0.1) + mapie_reg.fit_calibrate(X_toy, y_toy, z=z) -def test_fit_calibrate_predict() -> None: +@pytest.mark.parametrize("z", [None, z_toy]) +def test_fit_calibrate_predict(z: Any) -> None: """Test that fit-calibrate-predict raises no errors.""" - mapie_reg = MapieCCPRegressor() + mapie_reg = MapieCCPRegressor(alpha=0.1) mapie_reg.fit(X_toy, y_toy) - mapie_reg.calibrate(X_toy, y_toy) - mapie_reg.predict(X_toy) + mapie_reg.calibrate(X_toy, y_toy, z=z) + mapie_reg.predict(X_toy, z=z) -def test_fit_calibrate_combined_predict() -> None: +@pytest.mark.parametrize("z", [None, z_toy]) +def test_fit_calibrate_combined_predict(z: Any) -> None: """Test that fit_calibrate-predict raises no errors.""" - mapie_reg = MapieCCPRegressor() - mapie_reg.fit_calibrate(X_toy, y_toy) - mapie_reg.predict(X_toy) + mapie_reg = MapieCCPRegressor(alpha=0.1) + mapie_reg.fit_calibrate(X_toy, y_toy, z=z) + mapie_reg.predict(X_toy, z=z) def test_no_fit_calibrate() -> None: """Test that calibrate before fit raises errors.""" - mapie_reg = MapieCCPRegressor() + mapie_reg = MapieCCPRegressor(alpha=0.1) with pytest.raises(NotFittedError): mapie_reg.calibrate(X_toy, y_toy) @@ -109,8 +113,10 @@ def test_calib_not_complete_phi() -> None: """Test that a not complete phi definition raises a warning""" with pytest.warns(UserWarning, match="WARNING: At least one row of the"): mapie_reg = MapieCCPRegressor( - phi=PhiFunction([lambda X: (X < 5).astype(int)], - marginal_guarantee=False)) + alpha=0.1, + phi=CustomPhiFunction([lambda X: (X < 5).astype(int)], + marginal_guarantee=False) + ) mapie_reg.fit_calibrate(X_toy, y_toy) @@ -118,8 +124,10 @@ def test_predict_not_complete_phi() -> None: """Test that a not complete phi definition raises a warning""" with pytest.warns(UserWarning, match="WARNING: At least one row of the"): mapie_reg = MapieCCPRegressor( - phi=PhiFunction([lambda X: (X < 5).astype(int)], - marginal_guarantee=False)) + alpha=0.1, + phi=CustomPhiFunction([lambda X: (X < 5).astype(int)], + marginal_guarantee=False) + ) mapie_reg.fit_calibrate(X_toy[X_toy[:, 0] < 5], y_toy[X_toy[:, 0] < 5]) mapie_reg.predict(X_toy) @@ -131,20 +139,20 @@ def test_predict_not_complete_phi() -> None: def test_no_fit_prefit_calibrate(estimator: Any) -> None: """Test that calibrate without fit, if prefit, raises no errors.""" estimator.fit(X_toy, y_toy) - mapie_reg = MapieCCPRegressor(estimator, cv="prefit") + mapie_reg = MapieCCPRegressor(estimator, cv="prefit", alpha=0.1) mapie_reg.calibrate(X_toy, y_toy) def test_no_fit_predict() -> None: """Test that predict before fit raises errors.""" - mapie_reg = MapieCCPRegressor() + mapie_reg = MapieCCPRegressor(alpha=0.1) with pytest.raises(NotFittedError): mapie_reg.predict(X_toy) def test_no_calibrate_predict() -> None: """Test that predict before fit raises errors.""" - mapie_reg = MapieCCPRegressor() + mapie_reg = MapieCCPRegressor(alpha=0.1) mapie_reg.fit(X_toy, y_toy) with pytest.raises(NotFittedError): mapie_reg.predict(X_toy) @@ -152,7 +160,7 @@ def test_no_calibrate_predict() -> None: def test_default_sample_weight() -> None: """Test default sample weights.""" - mapie_reg = MapieCCPRegressor() + mapie_reg = MapieCCPRegressor(alpha=0.1) assert ( signature(mapie_reg.fit).parameters["sample_weight"].default is None @@ -165,7 +173,7 @@ def test_invalid_estimator( ) -> None: """Test that invalid estimators raise errors.""" with pytest.raises(ValueError, match=r".*Invalid estimator.*"): - mapie = MapieCCPRegressor(estimator=estimator) + mapie = MapieCCPRegressor(estimator=estimator, alpha=0.1) mapie.fit(X, y) @@ -179,7 +187,7 @@ def test_invalid_prefit_estimator_calibrate( """Test that non-fitted estimator with prefit cv raise errors when calibrate is called""" with pytest.raises(NotFittedError): - mapie = MapieCCPRegressor(estimator=estimator, cv="prefit") + mapie = MapieCCPRegressor(estimator=estimator, cv="prefit", alpha=0.1) mapie.calibrate(X, y) @@ -193,31 +201,16 @@ def test_invalid_prefit_estimator_fit( """Test that non-fitted estimator with prefit cv raise errors when fit is called.""" with pytest.raises(NotFittedError): - mapie = MapieCCPRegressor(estimator=estimator, cv="prefit") + mapie = MapieCCPRegressor(estimator=estimator, cv="prefit", alpha=0.1) mapie.fit(X, y) -@pytest.mark.parametrize("estimator", [ - LinearRegression(), - make_pipeline(LinearRegression()), -]) -def test_valid_prefit_estimator( - estimator: RegressorMixin, -) -> None: - """Test that fitted estimators with prefit cv raise warning but no error""" - estimator.fit(X_toy, y_toy) - mapie_reg = MapieCCPRegressor(estimator=estimator, cv="prefit") - with pytest.warns(UserWarning): - mapie_reg.fit(X_toy, y_toy) - check_is_fitted(mapie_reg.estimator) - - def test_default_parameters() -> None: """Test default values of input parameters.""" - mapie_reg = MapieCCPRegressor(random_state=random_state) + mapie_reg = MapieCCPRegressor(random_state=random_state, alpha=0.1) mapie_reg.fit_calibrate(X, y) assert isinstance(mapie_reg.estimator, RegressorMixin) - assert isinstance(mapie_reg.phi, PhiFunction) + assert isinstance(mapie_reg.phi, GaussianPhiFunction) assert isinstance(mapie_reg.cv, ShuffleSplit) assert mapie_reg.alpha == 0.1 assert isinstance(mapie_reg.conformity_score_, ConformityScore) @@ -233,11 +226,21 @@ def test_invalid_alpha(alpha: Any) -> None: mapie.fit_calibrate(X, y) +@pytest.mark.parametrize( + "phi", [1, "some_string"] +) +def test_invalid_phi(phi: Any) -> None: + with pytest.raises(ValueError): + mapie = MapieCCPRegressor(phi=phi) + mapie.fit_calibrate(X, y) + + def test_valid_estimator() -> None: """Test that valid estimators are not corrupted""" mapie_reg = MapieCCPRegressor( estimator=DummyRegressor(), - random_state=random_state + random_state=random_state, + alpha=0.1, ) mapie_reg.fit(X_toy, y_toy) assert isinstance(mapie_reg.estimator, DummyRegressor) @@ -256,7 +259,7 @@ def test_valid_estimator() -> None: def test_valid_cv(cv: Any, estimator: RegressorMixin) -> None: """Test that valid cv raise no errors.""" estimator.fit(X_toy, y_toy) - mapie_reg = MapieCCPRegressor(estimator=estimator, cv=cv, + mapie_reg = MapieCCPRegressor(estimator=estimator, cv=cv, alpha=0.1, random_state=random_state) mapie_reg.fit_calibrate(X_toy, y_toy) mapie_reg.predict(X_toy) @@ -274,7 +277,7 @@ def test_valid_cv(cv: Any, estimator: RegressorMixin) -> None: def test_invalid_cv(cv: Any) -> None: """Test that invalid agg_functions raise errors.""" with pytest.raises(ValueError, match="Invalid cv argument."): - mapie = MapieCCPRegressor(cv=cv, random_state=random_state) + mapie = MapieCCPRegressor(cv=cv, alpha=0.1, random_state=random_state) mapie.fit(X, y) @@ -292,17 +295,18 @@ def test_fit_calibrate_combined_equivalence( ) -> None: """Test predict output shape.""" (X, y, z) = dataset - if cv == "prefit": - estimator.fit(X, y) - if isinstance(phi, GaussianPhiFunction): - # This function is usually called in fit and/or calibrate - # It sample the centers from X. We call it now for reproductibility - phi._check_need_calib(X) + cloned_phi = clone(phi) + cloned_phi.fit(X) + estimator_1 = clone(estimator) + estimator_2 = clone(estimator) + if cv == "prefit": + estimator_1.fit(X, y) + estimator_2.fit(X, y) - mapie_1 = MapieCCPRegressor(estimator=estimator, phi=phi, cv=cv, + mapie_1 = MapieCCPRegressor(estimator=estimator_1, phi=cloned_phi, cv=cv, alpha=alpha, random_state=random_state) - mapie_2 = MapieCCPRegressor(estimator=estimator, phi=phi, cv=cv, + mapie_2 = MapieCCPRegressor(estimator=estimator_2, phi=cloned_phi, cv=cv, alpha=alpha, random_state=random_state) mapie_1.fit_calibrate(X, y, z=z) mapie_2.fit(X, y) @@ -344,14 +348,12 @@ def test_recalibrate( if cv == "prefit": estimator.fit(X, y) - if isinstance(phi, GaussianPhiFunction): - # This function is usually called in fit and/or calibrate - # It sample the centers from X. We call it now for reproductibility - phi._check_need_calib(X) + cloned_phi = clone(phi) + cloned_phi.fit(X) - mapie_1 = MapieCCPRegressor(estimator=estimator, phi=phi, cv=cv, + mapie_1 = MapieCCPRegressor(estimator=estimator, phi=cloned_phi, cv=cv, alpha=0.2, random_state=random_state) - mapie_2 = MapieCCPRegressor(estimator=estimator, phi=phi, cv=cv, + mapie_2 = MapieCCPRegressor(estimator=estimator, phi=cloned_phi, cv=cv, alpha=0.1, random_state=random_state) mapie_1.fit_calibrate(X, y, z=z) mapie_2.fit_calibrate(X, y, z=z) @@ -370,15 +372,14 @@ def test_recalibrate( @pytest.mark.parametrize("dataset", [(X, y, z), (X_toy, y_toy, z_toy)]) -@pytest.mark.parametrize("alpha", [0.2]) @pytest.mark.parametrize("phi", PHI) @pytest.mark.parametrize("cv", CV) @pytest.mark.parametrize("estimator", [ LinearRegression(), make_pipeline(LinearRegression()), ]) -def test_predict_output_shape( - alpha: Any, dataset: Tuple[NDArray, NDArray, NDArray], +def test_predict_output_shape_alpha( + dataset: Tuple[NDArray, NDArray, NDArray], cv: Any, phi: PhiFunction, estimator: RegressorMixin ) -> None: """Test predict output shape.""" @@ -386,14 +387,37 @@ def test_predict_output_shape( if cv == "prefit": estimator.fit(X, y) - mapie_reg = MapieCCPRegressor(estimator=estimator, phi=phi, cv=cv, - alpha=alpha, random_state=random_state) + mapie_reg = MapieCCPRegressor(estimator=estimator, phi=clone(phi), cv=cv, + alpha=0.1, random_state=random_state) mapie_reg.fit_calibrate(X, y, z=z) y_pred, y_pis = mapie_reg.predict(X, z) assert y_pred.shape == (X.shape[0],) assert y_pis.shape == (X.shape[0], 2, 1) +@pytest.mark.parametrize("dataset", [(X, y, z), (X_toy, y_toy, z_toy)]) +@pytest.mark.parametrize("phi", PHI) +@pytest.mark.parametrize("cv", CV) +@pytest.mark.parametrize("estimator", [ + LinearRegression(), + make_pipeline(LinearRegression()), +]) +def test_predict_output_shape_no_alpha( + dataset: Tuple[NDArray, NDArray, NDArray], + cv: Any, phi: PhiFunction, estimator: RegressorMixin +) -> None: + """Test predict output shape.""" + (X, y, z) = dataset + if cv == "prefit": + estimator.fit(X, y) + + mapie_reg = MapieCCPRegressor(estimator=estimator, phi=clone(phi), cv=cv, + alpha=None, random_state=random_state) + mapie_reg.fit_calibrate(X, y, z=z) + y_pred = mapie_reg.predict(X, z) + assert np.array(y_pred).shape == (X.shape[0],) + + @pytest.mark.parametrize("dataset", [(X, y, z), (X_toy, y_toy, z_toy)]) @pytest.mark.parametrize("phi", PHI) @pytest.mark.parametrize("estimator_1, estimator_2", zip(*[[ @@ -416,19 +440,19 @@ def test_same_results_prefit_split( y_train, y_calib = y[train_index], y[val_index] z_calib = z[val_index] - if isinstance(phi, GaussianPhiFunction): - # This function is usually called in fit and/or calibrate - # It sample the centers from X. We call it now for reproductibility - phi._check_need_calib(X_train) + cloned_phi = clone(phi) + cloned_phi.fit(X) - mapie_reg = MapieCCPRegressor(estimator=estimator_1, phi=phi, cv=cv, + mapie_reg = MapieCCPRegressor(estimator=estimator_1, phi=cloned_phi, cv=cv, alpha=0.1, random_state=random_state) mapie_reg.fit_calibrate(X, y, z=z) y_pred_1, y_pis_1 = mapie_reg.predict(X, z) estimator_2.fit(X_train, y_train) - mapie_reg = MapieCCPRegressor(estimator=estimator_2, phi=phi, cv="prefit", - alpha=0.1, random_state=random_state) + mapie_reg = MapieCCPRegressor( + estimator=estimator_2, phi=cloned_phi, cv="prefit", alpha=0.1, + random_state=random_state + ) mapie_reg.calibrate(X_calib, y_calib, z=z_calib) y_pred_2, y_pis_2 = mapie_reg.predict(X, z) @@ -455,18 +479,15 @@ def test_results_for_ordered_alpha( (X, y, z) = dataset if cv == "prefit": estimator.fit(X, y) + cloned_phi = clone(phi) + cloned_phi.fit(X) - if isinstance(phi, GaussianPhiFunction): - # This function is usually called in fit and/or calibrate - # It sample the centers from X. We call it now for reproductibility - phi._check_need_calib(X) - - mapie_reg_1 = MapieCCPRegressor(estimator=estimator, phi=phi, cv=cv, + mapie_reg_1 = MapieCCPRegressor(estimator=estimator, phi=cloned_phi, cv=cv, alpha=0.05, random_state=random_state) mapie_reg_1.fit_calibrate(X, y, z=z) _, y_pis_1 = mapie_reg_1.predict(X, z) - mapie_reg_2 = MapieCCPRegressor(estimator=estimator, phi=phi, cv=cv, + mapie_reg_2 = MapieCCPRegressor(estimator=estimator, phi=cloned_phi, cv=cv, alpha=0.1, random_state=random_state) mapie_reg_2.fit_calibrate(X, y, z=z) _, y_pis_2 = mapie_reg_1.predict(X, z) @@ -504,13 +525,16 @@ def test_results_with_constant_sample_weights( estimator2.fit(X, y) estimator3.fit(X, y) + cloned_phi = clone(PHI[0]) + cloned_phi.fit(X) + n_samples = len(X) - mapie0 = MapieCCPRegressor(estimator=estimator1, phi=PHI[0], - cv=cv, random_state=random_state) - mapie1 = MapieCCPRegressor(estimator=estimator2, phi=PHI[0], - cv=cv, random_state=random_state) - mapie2 = MapieCCPRegressor(estimator=estimator3, phi=PHI[0], - cv=cv, random_state=random_state) + mapie0 = MapieCCPRegressor(estimator=estimator1, phi=cloned_phi, + cv=cv, alpha=0.1, random_state=random_state) + mapie1 = MapieCCPRegressor(estimator=estimator2, phi=cloned_phi, + cv=cv, alpha=0.1, random_state=random_state) + mapie2 = MapieCCPRegressor(estimator=estimator3, phi=cloned_phi, + cv=cv, alpha=0.1, random_state=random_state) mapie0.fit_calibrate(X, y, z=z, sample_weight=None) mapie1.fit_calibrate(X, y, z=z, sample_weight=np.ones(shape=n_samples)) @@ -546,7 +570,7 @@ def test_prediction_between_low_up( if cv == "prefit": estimator.fit(X, y) - mapie = MapieCCPRegressor(estimator=estimator, phi=phi, cv=cv, + mapie = MapieCCPRegressor(estimator=estimator, phi=clone(phi), cv=cv, alpha=alpha, random_state=random_state) mapie.fit_calibrate(X, y, z=z) @@ -587,7 +611,7 @@ def test_linear_data_confidence_interval( if cv == "prefit": estimator.fit(X_toy, y_toy) - mapie = MapieCCPRegressor(estimator=estimator, phi=phi, cv=cv, + mapie = MapieCCPRegressor(estimator=estimator, phi=clone(phi), cv=cv, alpha=alpha, random_state=random_state) mapie.fit_calibrate(X_toy, y_toy, z=z_toy) @@ -607,7 +631,7 @@ def test_linear_regression_results() -> None: """ mapie = MapieCCPRegressor( - phi=PHI[0], + phi=clone(PHI[0]), cv=ShuffleSplit(n_splits=1, test_size=0.5, random_state=random_state), alpha=0.05, random_state=random_state @@ -634,8 +658,10 @@ def test_results_prefit(estimator: RegressorMixin) -> None: X_train_val, y_train_val, test_size=1 / 9, random_state=1 ) estimator.fit(X_train, y_train) - mapie_reg = MapieCCPRegressor(estimator=estimator, phi=PHI[0], cv="prefit", - alpha=0.05, random_state=random_state) + mapie_reg = MapieCCPRegressor( + estimator=estimator, phi=clone(PHI[0]), cv="prefit", alpha=0.05, + random_state=random_state + ) mapie_reg.fit_calibrate(X_val, y_val) _, y_pis = mapie_reg.predict(X_test) width_mean = (y_pis[:, 1, 0] - y_pis[:, 0, 0]).mean() @@ -669,7 +695,7 @@ def test_conformity_score( mapie_reg = MapieCCPRegressor( estimator=estimator, - phi=phi, + phi=clone(phi), cv=cv, alpha=0.1, conformity_score=conformity_score, @@ -687,7 +713,8 @@ def test_fit_parameters_passing() -> None: """ gb = GradientBoostingRegressor(random_state=random_state) - mapie_reg = MapieCCPRegressor(estimator=gb, random_state=random_state) + mapie_reg = MapieCCPRegressor(estimator=gb, alpha=0.1, + random_state=random_state) def early_stopping_monitor(i, est, locals): """Returns True on the 3rd iteration.""" From a376dd5469eb6bad2d47fe5a03717355a9fce041 Mon Sep 17 00:00:00 2001 From: Damien Bouet Date: Wed, 5 Jun 2024 17:28:37 +0200 Subject: [PATCH 028/165] reduce Gibbs paper simulation runtime --- .../3-scientific-articles/plot_gibbs2023_simulations.py | 8 ++++---- 1 file changed, 4 insertions(+), 4 deletions(-) diff --git a/examples/regression/3-scientific-articles/plot_gibbs2023_simulations.py b/examples/regression/3-scientific-articles/plot_gibbs2023_simulations.py index 781f1100e..451e45a3a 100644 --- a/examples/regression/3-scientific-articles/plot_gibbs2023_simulations.py +++ b/examples/regression/3-scientific-articles/plot_gibbs2023_simulations.py @@ -348,9 +348,9 @@ def plot_results(X_test, y_test, n_trials=10, # 5. Reproduce experiment and results # ----------------------------------------------------------------------------- -plot_results(X_test, y_test, 500, experiment="Groups") +plot_results(X_test, y_test, 50, experiment="Groups") -plot_results(X_test, y_test, 500, experiment="Shifts") +plot_results(X_test, y_test, 50, experiment="Shifts") ############################################################################## @@ -364,6 +364,6 @@ def plot_results(X_test, y_test, n_trials=10, # to the split method with symetrical PI. Let's compare it to the split CP with # unsymetrical PI, to have a fair comparison. -plot_results(X_test, y_test, 500, experiment="Groups") +plot_results(X_test, y_test, 50, experiment="Groups") -plot_results(X_test, y_test, 500, experiment="Shifts", split_sym=False) +plot_results(X_test, y_test, 50, experiment="Shifts", split_sym=False) From c2481f377fe1a15aed6a38789df3df0b569f0efa Mon Sep 17 00:00:00 2001 From: Damien Bouet Date: Wed, 5 Jun 2024 18:04:01 +0200 Subject: [PATCH 029/165] RENAME: move CCP on the template fit/predict (with fit_estimator, fit_calibrator) --- .../plot_gibbs2023_simulations.py | 4 +- mapie/regression/ccp_regression.py | 10 +-- mapie/tests/test_ccp_regression.py | 90 +++++++++---------- 3 files changed, 52 insertions(+), 52 deletions(-) diff --git a/examples/regression/3-scientific-articles/plot_gibbs2023_simulations.py b/examples/regression/3-scientific-articles/plot_gibbs2023_simulations.py index 451e45a3a..732cd36a0 100644 --- a/examples/regression/3-scientific-articles/plot_gibbs2023_simulations.py +++ b/examples/regression/3-scientific-articles/plot_gibbs2023_simulations.py @@ -201,7 +201,7 @@ def plot_results(X_test, y_test, n_trials=10, random_state=None ) mapie_ccp.conformity_score.eps = 1e-5 - mapie_ccp.calibrate(X_calib, y_calib) + mapie_ccp.fit_calibrator(X_calib, y_calib) _, y_pi_ccp = mapie_ccp.predict(X_test) else: # CCP Shifts @@ -224,7 +224,7 @@ def plot_results(X_test, y_test, n_trials=10, random_state=None ) mapie_ccp.conformity_score.eps = 1e-5 - mapie_ccp.calibrate(X_calib, y_calib) + mapie_ccp.fit_calibrator(X_calib, y_calib) _, y_pi_ccp = mapie_ccp.predict(X_test) # =========== n_trials run to get average marginal coverage ============ diff --git a/mapie/regression/ccp_regression.py b/mapie/regression/ccp_regression.py index 5c39c9119..023765fa5 100644 --- a/mapie/regression/ccp_regression.py +++ b/mapie/regression/ccp_regression.py @@ -364,7 +364,7 @@ def _check_alpha( "Allowed values are between 0 and 1.") return alpha - def fit( + def fit_estimator( self, X: ArrayLike, y: ArrayLike, @@ -426,7 +426,7 @@ def fit( ) return self - def calibrate( + def fit_calibrator( self, X: ArrayLike, y: ArrayLike, @@ -637,7 +637,7 @@ def objective( (optimal_beta_low.x, optimal_beta_low.success)) return self - def fit_calibrate( + def fit( self, X: ArrayLike, y: ArrayLike, @@ -703,8 +703,8 @@ def fit_calibrate( MapieCCPRegressor self """ - self.fit(X, y, sample_weight, groups, **fit_params) - self.calibrate(X, y, groups, z, alpha) + self.fit_estimator(X, y, sample_weight, groups, **fit_params) + self.fit_calibrator(X, y, groups, z, alpha) return self def predict( diff --git a/mapie/tests/test_ccp_regression.py b/mapie/tests/test_ccp_regression.py index aba155bf0..3e7169657 100644 --- a/mapie/tests/test_ccp_regression.py +++ b/mapie/tests/test_ccp_regression.py @@ -67,30 +67,30 @@ def test_initialized() -> None: def test_fit() -> None: """Test that fit raises no errors.""" mapie_reg = MapieCCPRegressor(alpha=0.1) - mapie_reg.fit(X_toy, y_toy) + mapie_reg.fit_estimator(X_toy, y_toy) @pytest.mark.parametrize("z", [None, z_toy]) def test_fit_calibrate(z: Any) -> None: """Test that fit-calibrate raises no errors.""" mapie_reg = MapieCCPRegressor(alpha=0.1) - mapie_reg.fit(X_toy, y_toy) - mapie_reg.calibrate(X_toy, y_toy, z=z) + mapie_reg.fit_estimator(X_toy, y_toy) + mapie_reg.fit_calibrator(X_toy, y_toy, z=z) @pytest.mark.parametrize("z", [None, z_toy]) def test_fit_calibrate_combined(z: Any) -> None: """Test that fit_calibrate raises no errors.""" mapie_reg = MapieCCPRegressor(alpha=0.1) - mapie_reg.fit_calibrate(X_toy, y_toy, z=z) + mapie_reg.fit(X_toy, y_toy, z=z) @pytest.mark.parametrize("z", [None, z_toy]) def test_fit_calibrate_predict(z: Any) -> None: """Test that fit-calibrate-predict raises no errors.""" mapie_reg = MapieCCPRegressor(alpha=0.1) - mapie_reg.fit(X_toy, y_toy) - mapie_reg.calibrate(X_toy, y_toy, z=z) + mapie_reg.fit_estimator(X_toy, y_toy) + mapie_reg.fit_calibrator(X_toy, y_toy, z=z) mapie_reg.predict(X_toy, z=z) @@ -98,7 +98,7 @@ def test_fit_calibrate_predict(z: Any) -> None: def test_fit_calibrate_combined_predict(z: Any) -> None: """Test that fit_calibrate-predict raises no errors.""" mapie_reg = MapieCCPRegressor(alpha=0.1) - mapie_reg.fit_calibrate(X_toy, y_toy, z=z) + mapie_reg.fit(X_toy, y_toy, z=z) mapie_reg.predict(X_toy, z=z) @@ -106,7 +106,7 @@ def test_no_fit_calibrate() -> None: """Test that calibrate before fit raises errors.""" mapie_reg = MapieCCPRegressor(alpha=0.1) with pytest.raises(NotFittedError): - mapie_reg.calibrate(X_toy, y_toy) + mapie_reg.fit_calibrator(X_toy, y_toy) def test_calib_not_complete_phi() -> None: @@ -117,7 +117,7 @@ def test_calib_not_complete_phi() -> None: phi=CustomPhiFunction([lambda X: (X < 5).astype(int)], marginal_guarantee=False) ) - mapie_reg.fit_calibrate(X_toy, y_toy) + mapie_reg.fit(X_toy, y_toy) def test_predict_not_complete_phi() -> None: @@ -128,7 +128,7 @@ def test_predict_not_complete_phi() -> None: phi=CustomPhiFunction([lambda X: (X < 5).astype(int)], marginal_guarantee=False) ) - mapie_reg.fit_calibrate(X_toy[X_toy[:, 0] < 5], y_toy[X_toy[:, 0] < 5]) + mapie_reg.fit(X_toy[X_toy[:, 0] < 5], y_toy[X_toy[:, 0] < 5]) mapie_reg.predict(X_toy) @@ -140,7 +140,7 @@ def test_no_fit_prefit_calibrate(estimator: Any) -> None: """Test that calibrate without fit, if prefit, raises no errors.""" estimator.fit(X_toy, y_toy) mapie_reg = MapieCCPRegressor(estimator, cv="prefit", alpha=0.1) - mapie_reg.calibrate(X_toy, y_toy) + mapie_reg.fit_calibrator(X_toy, y_toy) def test_no_fit_predict() -> None: @@ -153,7 +153,7 @@ def test_no_fit_predict() -> None: def test_no_calibrate_predict() -> None: """Test that predict before fit raises errors.""" mapie_reg = MapieCCPRegressor(alpha=0.1) - mapie_reg.fit(X_toy, y_toy) + mapie_reg.fit_estimator(X_toy, y_toy) with pytest.raises(NotFittedError): mapie_reg.predict(X_toy) @@ -162,7 +162,7 @@ def test_default_sample_weight() -> None: """Test default sample weights.""" mapie_reg = MapieCCPRegressor(alpha=0.1) assert ( - signature(mapie_reg.fit).parameters["sample_weight"].default + signature(mapie_reg.fit_estimator).parameters["sample_weight"].default is None ) @@ -174,7 +174,7 @@ def test_invalid_estimator( """Test that invalid estimators raise errors.""" with pytest.raises(ValueError, match=r".*Invalid estimator.*"): mapie = MapieCCPRegressor(estimator=estimator, alpha=0.1) - mapie.fit(X, y) + mapie.fit_estimator(X, y) @pytest.mark.parametrize("estimator", [ @@ -188,7 +188,7 @@ def test_invalid_prefit_estimator_calibrate( calibrate is called""" with pytest.raises(NotFittedError): mapie = MapieCCPRegressor(estimator=estimator, cv="prefit", alpha=0.1) - mapie.calibrate(X, y) + mapie.fit_calibrator(X, y) @pytest.mark.parametrize("estimator", [ @@ -202,13 +202,13 @@ def test_invalid_prefit_estimator_fit( is called.""" with pytest.raises(NotFittedError): mapie = MapieCCPRegressor(estimator=estimator, cv="prefit", alpha=0.1) - mapie.fit(X, y) + mapie.fit_estimator(X, y) def test_default_parameters() -> None: """Test default values of input parameters.""" mapie_reg = MapieCCPRegressor(random_state=random_state, alpha=0.1) - mapie_reg.fit_calibrate(X, y) + mapie_reg.fit(X, y) assert isinstance(mapie_reg.estimator, RegressorMixin) assert isinstance(mapie_reg.phi, GaussianPhiFunction) assert isinstance(mapie_reg.cv, ShuffleSplit) @@ -223,7 +223,7 @@ def test_default_parameters() -> None: def test_invalid_alpha(alpha: Any) -> None: with pytest.raises(ValueError): mapie = MapieCCPRegressor(alpha=alpha) - mapie.fit_calibrate(X, y) + mapie.fit(X, y) @pytest.mark.parametrize( @@ -232,7 +232,7 @@ def test_invalid_alpha(alpha: Any) -> None: def test_invalid_phi(phi: Any) -> None: with pytest.raises(ValueError): mapie = MapieCCPRegressor(phi=phi) - mapie.fit_calibrate(X, y) + mapie.fit(X, y) def test_valid_estimator() -> None: @@ -242,7 +242,7 @@ def test_valid_estimator() -> None: random_state=random_state, alpha=0.1, ) - mapie_reg.fit(X_toy, y_toy) + mapie_reg.fit_estimator(X_toy, y_toy) assert isinstance(mapie_reg.estimator, DummyRegressor) @@ -261,7 +261,7 @@ def test_valid_cv(cv: Any, estimator: RegressorMixin) -> None: estimator.fit(X_toy, y_toy) mapie_reg = MapieCCPRegressor(estimator=estimator, cv=cv, alpha=0.1, random_state=random_state) - mapie_reg.fit_calibrate(X_toy, y_toy) + mapie_reg.fit(X_toy, y_toy) mapie_reg.predict(X_toy) @@ -278,7 +278,7 @@ def test_invalid_cv(cv: Any) -> None: """Test that invalid agg_functions raise errors.""" with pytest.raises(ValueError, match="Invalid cv argument."): mapie = MapieCCPRegressor(cv=cv, alpha=0.1, random_state=random_state) - mapie.fit(X, y) + mapie.fit_estimator(X, y) @pytest.mark.parametrize("dataset", [(X, y, z), (X_toy, y_toy, z_toy)]) @@ -308,9 +308,9 @@ def test_fit_calibrate_combined_equivalence( alpha=alpha, random_state=random_state) mapie_2 = MapieCCPRegressor(estimator=estimator_2, phi=cloned_phi, cv=cv, alpha=alpha, random_state=random_state) - mapie_1.fit_calibrate(X, y, z=z) - mapie_2.fit(X, y) - mapie_2.calibrate(X, y, z=z) + mapie_1.fit(X, y, z=z) + mapie_2.fit_estimator(X, y) + mapie_2.fit_calibrator(X, y, z=z) y_pred_1, y_pis_1 = mapie_1.predict(X, z) y_pred_2, y_pis_2 = mapie_2.predict(X, z) np.testing.assert_allclose(y_pred_1, y_pred_2) @@ -324,9 +324,9 @@ def test_recalibrate_warning() -> None: a different alpha value """ mapie_reg = MapieCCPRegressor(alpha=0.1) - mapie_reg.fit_calibrate(X_toy, y_toy) + mapie_reg.fit(X_toy, y_toy) with pytest.warns(UserWarning, match=r"WARNING: The old value of alpha"): - mapie_reg.calibrate(X_toy, y_toy, alpha=0.2) + mapie_reg.fit_calibrator(X_toy, y_toy, alpha=0.2) @pytest.mark.parametrize("dataset", [(X, y, z), (X_toy, y_toy, z_toy)]) @@ -355,8 +355,8 @@ def test_recalibrate( alpha=0.2, random_state=random_state) mapie_2 = MapieCCPRegressor(estimator=estimator, phi=cloned_phi, cv=cv, alpha=0.1, random_state=random_state) - mapie_1.fit_calibrate(X, y, z=z) - mapie_2.fit_calibrate(X, y, z=z) + mapie_1.fit(X, y, z=z) + mapie_2.fit(X, y, z=z) y_pred_1, y_pis_1 = mapie_1.predict(X, z) y_pred_2, y_pis_2 = mapie_2.predict(X, z) @@ -364,7 +364,7 @@ def test_recalibrate( with pytest.raises(AssertionError): np.testing.assert_allclose(y_pis_1, y_pis_2) - mapie_2.calibrate(X, y, z=z, alpha=0.2) + mapie_2.fit_calibrator(X, y, z=z, alpha=0.2) y_pred_2, y_pis_2 = mapie_2.predict(X, z) np.testing.assert_allclose(y_pred_1, y_pred_2) np.testing.assert_allclose(y_pis_1[:, 0, 0], y_pis_2[:, 0, 0]) @@ -389,7 +389,7 @@ def test_predict_output_shape_alpha( mapie_reg = MapieCCPRegressor(estimator=estimator, phi=clone(phi), cv=cv, alpha=0.1, random_state=random_state) - mapie_reg.fit_calibrate(X, y, z=z) + mapie_reg.fit(X, y, z=z) y_pred, y_pis = mapie_reg.predict(X, z) assert y_pred.shape == (X.shape[0],) assert y_pis.shape == (X.shape[0], 2, 1) @@ -413,7 +413,7 @@ def test_predict_output_shape_no_alpha( mapie_reg = MapieCCPRegressor(estimator=estimator, phi=clone(phi), cv=cv, alpha=None, random_state=random_state) - mapie_reg.fit_calibrate(X, y, z=z) + mapie_reg.fit(X, y, z=z) y_pred = mapie_reg.predict(X, z) assert np.array(y_pred).shape == (X.shape[0],) @@ -445,7 +445,7 @@ def test_same_results_prefit_split( mapie_reg = MapieCCPRegressor(estimator=estimator_1, phi=cloned_phi, cv=cv, alpha=0.1, random_state=random_state) - mapie_reg.fit_calibrate(X, y, z=z) + mapie_reg.fit(X, y, z=z) y_pred_1, y_pis_1 = mapie_reg.predict(X, z) estimator_2.fit(X_train, y_train) @@ -453,7 +453,7 @@ def test_same_results_prefit_split( estimator=estimator_2, phi=cloned_phi, cv="prefit", alpha=0.1, random_state=random_state ) - mapie_reg.calibrate(X_calib, y_calib, z=z_calib) + mapie_reg.fit_calibrator(X_calib, y_calib, z=z_calib) y_pred_2, y_pis_2 = mapie_reg.predict(X, z) np.testing.assert_allclose(y_pred_1, y_pred_2) @@ -484,12 +484,12 @@ def test_results_for_ordered_alpha( mapie_reg_1 = MapieCCPRegressor(estimator=estimator, phi=cloned_phi, cv=cv, alpha=0.05, random_state=random_state) - mapie_reg_1.fit_calibrate(X, y, z=z) + mapie_reg_1.fit(X, y, z=z) _, y_pis_1 = mapie_reg_1.predict(X, z) mapie_reg_2 = MapieCCPRegressor(estimator=estimator, phi=cloned_phi, cv=cv, alpha=0.1, random_state=random_state) - mapie_reg_2.fit_calibrate(X, y, z=z) + mapie_reg_2.fit(X, y, z=z) _, y_pis_2 = mapie_reg_1.predict(X, z) assert (y_pis_1[:, 0, 0] <= y_pis_2[:, 0, 0]).all() @@ -536,9 +536,9 @@ def test_results_with_constant_sample_weights( mapie2 = MapieCCPRegressor(estimator=estimator3, phi=cloned_phi, cv=cv, alpha=0.1, random_state=random_state) - mapie0.fit_calibrate(X, y, z=z, sample_weight=None) - mapie1.fit_calibrate(X, y, z=z, sample_weight=np.ones(shape=n_samples)) - mapie2.fit_calibrate(X, y, z=z, sample_weight=np.ones(shape=n_samples) * 3) + mapie0.fit(X, y, z=z, sample_weight=None) + mapie1.fit(X, y, z=z, sample_weight=np.ones(shape=n_samples)) + mapie2.fit(X, y, z=z, sample_weight=np.ones(shape=n_samples) * 3) y_pred0, y_pis0 = mapie0.predict(X, z=z) y_pred1, y_pis1 = mapie1.predict(X, z=z) @@ -572,7 +572,7 @@ def test_prediction_between_low_up( mapie = MapieCCPRegressor(estimator=estimator, phi=clone(phi), cv=cv, alpha=alpha, random_state=random_state) - mapie.fit_calibrate(X, y, z=z) + mapie.fit(X, y, z=z) with warnings.catch_warnings(record=True) as record: y_pred, y_pis = mapie.predict(X, z=z) @@ -613,7 +613,7 @@ def test_linear_data_confidence_interval( mapie = MapieCCPRegressor(estimator=estimator, phi=clone(phi), cv=cv, alpha=alpha, random_state=random_state) - mapie.fit_calibrate(X_toy, y_toy, z=z_toy) + mapie.fit(X_toy, y_toy, z=z_toy) y_pred, y_pis = mapie.predict(X_toy, z=z_toy) np.testing.assert_allclose(y_pis[:, 0, 0], y_pis[:, 1, 0], @@ -636,7 +636,7 @@ def test_linear_regression_results() -> None: alpha=0.05, random_state=random_state ) - mapie.fit_calibrate(X, y) + mapie.fit(X, y) _, y_pis = mapie.predict(X) y_pred_low, y_pred_up = y_pis[:, 0, 0], y_pis[:, 1, 0] width_mean = (y_pred_up - y_pred_low).mean() @@ -662,7 +662,7 @@ def test_results_prefit(estimator: RegressorMixin) -> None: estimator=estimator, phi=clone(PHI[0]), cv="prefit", alpha=0.05, random_state=random_state ) - mapie_reg.fit_calibrate(X_val, y_val) + mapie_reg.fit(X_val, y_val) _, y_pis = mapie_reg.predict(X_test) width_mean = (y_pis[:, 1, 0] - y_pis[:, 0, 0]).mean() coverage = regression_coverage_score( @@ -701,7 +701,7 @@ def test_conformity_score( conformity_score=conformity_score, random_state=random_state, ) - mapie_reg.fit_calibrate(X, y + 1e3, z=z) + mapie_reg.fit(X, y + 1e3, z=z) mapie_reg.predict(X, z=z) @@ -723,6 +723,6 @@ def early_stopping_monitor(i, est, locals): else: return False - mapie_reg.fit_calibrate(X, y, monitor=early_stopping_monitor) + mapie_reg.fit(X, y, monitor=early_stopping_monitor) assert cast(RegressorMixin, mapie_reg.estimator).estimators_.shape[0] == 3 From 38854919fe2b80c42ead189868f3f00000a9dbba Mon Sep 17 00:00:00 2001 From: Damien Bouet Date: Wed, 5 Jun 2024 18:12:32 +0200 Subject: [PATCH 030/165] FIX: forgot to stage a line from 'UPD: Convert PhiFunction into a Abstract class' --- mapie/regression/ccp_regression.py | 14 +------------- 1 file changed, 1 insertion(+), 13 deletions(-) diff --git a/mapie/regression/ccp_regression.py b/mapie/regression/ccp_regression.py index 023765fa5..673116c9f 100644 --- a/mapie/regression/ccp_regression.py +++ b/mapie/regression/ccp_regression.py @@ -516,19 +516,7 @@ def fit_calibrator( q_low = self.alpha / 2 q_up = 1 - self.alpha / 2 - phi_x = self.phi( - X_calib, - cast(NDArray, y_pred_calib), - cast(NDArray, z_calib), - ) - - if np.any(np.all(phi_x == 0, axis=1)): - warnings.warn("WARNING: At least one row of the transformation " - "phi(X, y_pred, z) is full of zeros. " - "It will result in a prediction interval of zero " - "width. Consider changing the PhiFunction " - "definintion.\n" - "Fix: Use `marginal_guarantee`=True in PhiFunction") + phi_x = self.phi.transform(X_calib, y_pred_calib, z_calib) if self.random_state is None: warnings.warn("WARNING: The method implemented in " From f728d77ee7b66764f6aa15c631a6d9a748101fc3 Mon Sep 17 00:00:00 2001 From: Damien Bouet Date: Wed, 5 Jun 2024 18:17:35 +0200 Subject: [PATCH 031/165] FIX: array error for np.std --- mapie/regression/utils/ccp_phi_function.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/mapie/regression/utils/ccp_phi_function.py b/mapie/regression/utils/ccp_phi_function.py index 06cb4aa53..5b8955bae 100644 --- a/mapie/regression/utils/ccp_phi_function.py +++ b/mapie/regression/utils/ccp_phi_function.py @@ -832,7 +832,7 @@ def fit( self.points_ = cast(NDArray, _safe_indexing(X, points_index)) if self.sigma is None: self.sigmas_ = np.ones((_num_samples(self.points_), 1))*np.std( - X, axis=0)/(_num_samples(self.points_)**0.5) + np.array(X), axis=0)/(_num_samples(self.points_)**0.5) if self.random_sigma: n = _num_samples(self.points_) From aeb7979c6cd625b36f62820de53e4c29604b9b79 Mon Sep 17 00:00:00 2001 From: Damien Bouet Date: Thu, 6 Jun 2024 09:40:33 +0200 Subject: [PATCH 032/165] FIX: some forgotten fit_calibrator renaming --- .../plot_gibbs2023_simulations.py | 2 +- mapie/regression/ccp_regression.py | 15 ++++++++------ mapie/tests/test_ccp_regression.py | 20 +++++++++---------- 3 files changed, 20 insertions(+), 17 deletions(-) diff --git a/examples/regression/3-scientific-articles/plot_gibbs2023_simulations.py b/examples/regression/3-scientific-articles/plot_gibbs2023_simulations.py index 732cd36a0..b17dc9e7b 100644 --- a/examples/regression/3-scientific-articles/plot_gibbs2023_simulations.py +++ b/examples/regression/3-scientific-articles/plot_gibbs2023_simulations.py @@ -158,7 +158,7 @@ def estimate_coverage(mapie_split, mapie_ccp, group_functs=[]): mapie_split.fit(X_calib, y_calib) _, y_pi_split = mapie_split.predict(X_test, alpha=ALPHA) - mapie_ccp.calibrate(X_calib, y_calib) + mapie_ccp.fit_calibrator(X_calib, y_calib) _, y_pi_ccp = mapie_ccp.predict(X_test) cover_split = np.logical_or(y_test < y_pi_split[:, 0, 0], diff --git a/mapie/regression/ccp_regression.py b/mapie/regression/ccp_regression.py index 673116c9f..229393083 100644 --- a/mapie/regression/ccp_regression.py +++ b/mapie/regression/ccp_regression.py @@ -22,12 +22,15 @@ class MapieCCPRegressor(BaseEstimator, RegressorMixin): """ - This class implements Conformal Prediction With Conditional Guarantees - method as proposed by Gibbs et al. (2023) to make conformal predictions. + This class implements an adaptative conformal prediction method proposed by + Gibbs et al. (2023) in "Conformal Prediction With Conditional Guarantees". This method works with a ``"split"`` approach which requires a separate - calibration phase. The ``calibrate`` method is used on a calibration set - that must be disjoint from the estimator's training set to guarantee - the expected ``1-alpha`` coverage. + calibration phase. The ``fit`` method automatically split the data into + two disjoint sets to train the estimator and the calibrator. You can call + ``fit_estimator`` and ``fit_calibrator`` to do the two step one after the + other. You will have to make sure that data used in the two methods, + for training and calibration are disjoint, to guarantee the expected + ``1-alpha`` coverage. Parameters ---------- @@ -125,7 +128,7 @@ class MapieCCPRegressor(BaseEstimator, RegressorMixin): >>> X_train = np.arange(0,100,2).reshape(-1, 1) >>> y_train = 2*X_train[:,0] + np.random.rand(len(X_train)) >>> mapie_reg = MapieCCPRegressor(alpha=0.1, random_state=1) - >>> mapie_reg = mapie_reg.fit_calibrate( + >>> mapie_reg = mapie_reg.fit( ... X_train, ... y_train, ... ) diff --git a/mapie/tests/test_ccp_regression.py b/mapie/tests/test_ccp_regression.py index 3e7169657..11612118a 100644 --- a/mapie/tests/test_ccp_regression.py +++ b/mapie/tests/test_ccp_regression.py @@ -64,29 +64,29 @@ def test_initialized() -> None: MapieCCPRegressor(alpha=0.1) -def test_fit() -> None: - """Test that fit raises no errors.""" +def test_fit_estimator() -> None: + """Test that fit_estimator raises no errors.""" mapie_reg = MapieCCPRegressor(alpha=0.1) mapie_reg.fit_estimator(X_toy, y_toy) @pytest.mark.parametrize("z", [None, z_toy]) -def test_fit_calibrate(z: Any) -> None: - """Test that fit-calibrate raises no errors.""" +def test_fit_calibrator(z: Any) -> None: + """Test that fit_calibrator raises no errors.""" mapie_reg = MapieCCPRegressor(alpha=0.1) mapie_reg.fit_estimator(X_toy, y_toy) mapie_reg.fit_calibrator(X_toy, y_toy, z=z) @pytest.mark.parametrize("z", [None, z_toy]) -def test_fit_calibrate_combined(z: Any) -> None: - """Test that fit_calibrate raises no errors.""" +def test_fit(z: Any) -> None: + """Test that fit raises no errors.""" mapie_reg = MapieCCPRegressor(alpha=0.1) mapie_reg.fit(X_toy, y_toy, z=z) @pytest.mark.parametrize("z", [None, z_toy]) -def test_fit_calibrate_predict(z: Any) -> None: +def test_fit_estimator_fit_calibrator_predict(z: Any) -> None: """Test that fit-calibrate-predict raises no errors.""" mapie_reg = MapieCCPRegressor(alpha=0.1) mapie_reg.fit_estimator(X_toy, y_toy) @@ -95,14 +95,14 @@ def test_fit_calibrate_predict(z: Any) -> None: @pytest.mark.parametrize("z", [None, z_toy]) -def test_fit_calibrate_combined_predict(z: Any) -> None: - """Test that fit_calibrate-predict raises no errors.""" +def test_fit_predict(z: Any) -> None: + """Test that fit-predict raises no errors.""" mapie_reg = MapieCCPRegressor(alpha=0.1) mapie_reg.fit(X_toy, y_toy, z=z) mapie_reg.predict(X_toy, z=z) -def test_no_fit_calibrate() -> None: +def test_not_fitted_estimator_fit_calibrator() -> None: """Test that calibrate before fit raises errors.""" mapie_reg = MapieCCPRegressor(alpha=0.1) with pytest.raises(NotFittedError): From f848813a47bd13526ec218c80f84bcda6805ee41 Mon Sep 17 00:00:00 2001 From: Damien Bouet Date: Thu, 6 Jun 2024 09:41:32 +0200 Subject: [PATCH 033/165] ADD: _is_fitted function (almost the copy of the private sklearn.utils.validation._is_fitted) --- mapie/regression/utils/ccp_phi_function.py | 54 +++++++++++++++++++--- mapie/tests/test_ccp_phi_function.py | 35 ++++++++++++++ 2 files changed, 83 insertions(+), 6 deletions(-) diff --git a/mapie/regression/utils/ccp_phi_function.py b/mapie/regression/utils/ccp_phi_function.py index 5b8955bae..e9d57d878 100644 --- a/mapie/regression/utils/ccp_phi_function.py +++ b/mapie/regression/utils/ccp_phi_function.py @@ -9,10 +9,53 @@ import numpy as np from mapie._typing import ArrayLike, NDArray from sklearn.utils import _safe_indexing -from sklearn.utils.validation import _num_samples, check_is_fitted, _is_fitted +from sklearn.utils.validation import _num_samples, check_is_fitted from sklearn.base import BaseEstimator +def _is_fitted(estimator, attributes=None, all_or_any=all): + """Determine if an estimator is fitted + + Parameters + ---------- + estimator : estimator instance + Estimator instance for which the check is performed. + + attributes : str, list or tuple of str, default=None + Attribute name(s) given as string or a list/tuple of strings + Eg.: ``["coef_", "estimator_", ...], "coef_"`` + + If `None`, `estimator` is considered fitted if there exist an + attribute that ends with a underscore and does not start with double + underscore. + + all_or_any : callable, {all, any}, default=all + Specify whether all or any of the given attributes must exist. + + Returns + ------- + fitted : bool + Whether the estimator is fitted. + """ + if attributes is not None: + if not isinstance(attributes, (list, tuple)): + attributes = [attributes] + return all_or_any([ + hasattr(estimator, attr) and getattr(estimator, attr) is not None + for attr in attributes + ]) + + if hasattr(estimator, "__sklearn_is_fitted__"): + return estimator.__sklearn_is_fitted__() + + fitted_attrs = [ + v for v in vars(estimator) + if v.endswith("_") and not v.startswith("__") + and getattr(estimator, v) is not None + ] + return len(fitted_attrs) > 0 + + class PhiFunction(BaseEstimator, metaclass=ABCMeta): """ Base class for the phi functions, @@ -691,10 +734,9 @@ def __init__( "should be an integer, " "a 2D array or a tuple of two 2D arrays.") - if ( - _is_fitted(self, self.fit_attributes) - and self.points_ is not None and self.sigmas_ is not None - ): + if _is_fitted(self, self.fit_attributes): + self.sigmas_ = cast(NDArray, self.sigmas_) + self.points_ = cast(NDArray, self.points_) self._check_parameters(self.points_, self.sigmas_) if self.random_sigma: n = _num_samples(self.points_) @@ -724,7 +766,7 @@ def _check_transform_parameters(self) -> None: self._check_parameters(self.points_, self.sigmas_) self.functions_ = self._check_functions() - def _check_parameters(self, points: NDArray, sigmas: NDArray) -> None: + def _check_parameters(self, points: ArrayLike, sigmas: ArrayLike) -> None: """ Check that ``points`` and ``sigmas`` have compatible shapes diff --git a/mapie/tests/test_ccp_phi_function.py b/mapie/tests/test_ccp_phi_function.py index 39a939640..4518b4557 100644 --- a/mapie/tests/test_ccp_phi_function.py +++ b/mapie/tests/test_ccp_phi_function.py @@ -8,6 +8,7 @@ from sklearn.datasets import make_regression from mapie.regression.utils import (CustomPhiFunction, GaussianPhiFunction, PolynomialPhiFunction, PhiFunction) +from ..regression.utils.ccp_phi_function import _is_fitted random_state = 1 np.random.seed(random_state) @@ -242,3 +243,37 @@ def test_gauss_no_need_calib(ind: int) -> None: """ phi = GaussianPhiFunction(**GAUSS_NO_NEED_FIT_SETTINGS[ind]) check_is_fitted(phi, phi.fit_attributes) + + +class ToyClass: + def __init__(self, fit_attributes, **kwargs) -> None: + self.fit_attributes = fit_attributes + for key, value in kwargs.items(): + setattr(self, key, value) + + +@pytest.mark.parametrize("cls", [ + ToyClass(fit_attributes=None, __sklearn_is_fitted__=lambda: True), + ToyClass(fit_attributes=None, tested_attr_=1), + ToyClass(fit_attributes=["fit_attr"], fit_attr=1), + ToyClass(fit_attributes="fit_attr", fit_attr=1), +]) +def test_is_fitted(cls: ToyClass) -> None: + """ + Test the _is_fitted function + """ + assert _is_fitted(cls, cls.fit_attributes) + + +@pytest.mark.parametrize("cls", [ + ToyClass(fit_attributes=None, __sklearn_is_fitted__=lambda: False), + ToyClass(fit_attributes=None, tested_attr_=None), + ToyClass(fit_attributes=None, __ignored_attr_=1), + ToyClass(fit_attributes=["fit_attr"], tested_attr_=1), + ToyClass(fit_attributes="fit_attr", fit_attr=None), +]) +def test_not_is_fitted(cls: ToyClass) -> None: + """ + Test the _is_fitted function + """ + assert not _is_fitted(cls, cls.fit_attributes) From dc19045b5d7fbb04b79072e4ea937ed8a8d5cfc2 Mon Sep 17 00:00:00 2001 From: Damien Bouet Date: Thu, 6 Jun 2024 09:55:03 +0200 Subject: [PATCH 034/165] typing --- mapie/regression/utils/ccp_phi_function.py | 17 +++++++++++++---- mapie/tests/test_ccp_phi_function.py | 8 ++++++-- 2 files changed, 19 insertions(+), 6 deletions(-) diff --git a/mapie/regression/utils/ccp_phi_function.py b/mapie/regression/utils/ccp_phi_function.py index e9d57d878..dec18eaa8 100644 --- a/mapie/regression/utils/ccp_phi_function.py +++ b/mapie/regression/utils/ccp_phi_function.py @@ -2,7 +2,8 @@ from abc import ABCMeta, abstractmethod import inspect -from typing import Callable, Dict, List, Optional, Tuple, Union, cast, Iterable +from typing import (Iterable, Callable, Optional, Tuple, Union, + cast, Dict, List, Any) import numbers import warnings @@ -13,7 +14,11 @@ from sklearn.base import BaseEstimator -def _is_fitted(estimator, attributes=None, all_or_any=all): +def _is_fitted( + estimator: Any, + attributes: Optional[Union[List[str], str]] = None, + all_or_any: Callable = all, +): """Determine if an estimator is fitted Parameters @@ -21,7 +26,7 @@ def _is_fitted(estimator, attributes=None, all_or_any=all): estimator : estimator instance Estimator instance for which the check is performed. - attributes : str, list or tuple of str, default=None + attributes : Optional[Union[List[str], str]] Attribute name(s) given as string or a list/tuple of strings Eg.: ``["coef_", "estimator_", ...], "coef_"`` @@ -29,9 +34,13 @@ def _is_fitted(estimator, attributes=None, all_or_any=all): attribute that ends with a underscore and does not start with double underscore. - all_or_any : callable, {all, any}, default=all + By default ``None`` + + all_or_any : Callable Specify whether all or any of the given attributes must exist. + By default ``all`` + Returns ------- fitted : bool diff --git a/mapie/tests/test_ccp_phi_function.py b/mapie/tests/test_ccp_phi_function.py index 4518b4557..cb0f441ee 100644 --- a/mapie/tests/test_ccp_phi_function.py +++ b/mapie/tests/test_ccp_phi_function.py @@ -1,6 +1,6 @@ from __future__ import annotations -from typing import Any, List, Dict +from typing import Any, List, Dict, Optional, Union import numpy as np import pytest @@ -246,7 +246,11 @@ def test_gauss_no_need_calib(ind: int) -> None: class ToyClass: - def __init__(self, fit_attributes, **kwargs) -> None: + def __init__( + self, + fit_attributes: Optional[Union[List[str], str]] = None, + **kwargs + ) -> None: self.fit_attributes = fit_attributes for key, value in kwargs.items(): setattr(self, key, value) From 4fdd852e8d798817bf5e21abc1e0df9a95c9972b Mon Sep 17 00:00:00 2001 From: Damien Bouet Date: Thu, 6 Jun 2024 10:02:45 +0200 Subject: [PATCH 035/165] typing again... --- mapie/regression/utils/ccp_phi_function.py | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/mapie/regression/utils/ccp_phi_function.py b/mapie/regression/utils/ccp_phi_function.py index dec18eaa8..a9bac9eea 100644 --- a/mapie/regression/utils/ccp_phi_function.py +++ b/mapie/regression/utils/ccp_phi_function.py @@ -390,7 +390,7 @@ class CustomPhiFunction(PhiFunction): >>> print(phi.n_out) 4 """ - fit_attributes = [] + fit_attributes: List[str] = [] def __init__( self, @@ -506,7 +506,7 @@ class PolynomialPhiFunction(PhiFunction): >>> print(phi.degree) [1, 2, 5] """ - fit_attributes = [] + fit_attributes: List[str] = [] def __init__( self, From b0e22ec7af1c1d05a444d6ef39914cae998c2ddf Mon Sep 17 00:00:00 2001 From: Damien Bouet Date: Thu, 6 Jun 2024 13:42:23 +0200 Subject: [PATCH 036/165] UPD: CustomPhiFunction can now take PhiFunction instances in functions argument --- mapie/regression/utils/ccp_phi_function.py | 126 ++++++++++++++++----- mapie/tests/test_ccp_phi_function.py | 28 +++-- 2 files changed, 121 insertions(+), 33 deletions(-) diff --git a/mapie/regression/utils/ccp_phi_function.py b/mapie/regression/utils/ccp_phi_function.py index a9bac9eea..49d286eab 100644 --- a/mapie/regression/utils/ccp_phi_function.py +++ b/mapie/regression/utils/ccp_phi_function.py @@ -72,7 +72,7 @@ class PhiFunction(BaseEstimator, metaclass=ABCMeta): Parameters ---------- - functions: Optional[Union[Callable, Iterable]] + functions: Optional[Union[Callable, Iterable[Callable]]] List of functions (or PhiFunction objects) or single function. Each function can take a combinaison of the following arguments: - ``X``: Input dataset, of shape (n_samples, ``n_in``) @@ -115,9 +115,12 @@ class PhiFunction(BaseEstimator, metaclass=ABCMeta): Attributes ---------- - fit_attributes: List[str] + fit_attributes: Optional[List[str]] Name of attributes set during the ``fit`` method, and required to call - ``transform``. + ``transform``. Empty list will result in a ``PhiFunction`` class which + is always fittedd (doesn't need to be fitted). If ``None``, it will + check for a method ``__sklearn_is_fitted__()`` or arguments which ends + with ``'_'``, to check if it is fitted or not. n_in: int Number of features of ``X`` @@ -126,12 +129,12 @@ class PhiFunction(BaseEstimator, metaclass=ABCMeta): Number of features of phi(``X``, ``y_pred``, ``z``) """ - fit_attributes: List[str] = [] + fit_attributes: Optional[List[str]] = [] output_attributes = ["n_in", "n_out", "init_value"] def __init__( self, - functions: Optional[Union[Callable, Iterable]] = None, + functions: Optional[Union[Callable, Iterable[Callable]]] = None, marginal_guarantee: bool = True, normalized: bool = False, ) -> None: @@ -256,11 +259,11 @@ def fit( """ def transform( - self, - X: Optional[ArrayLike] = None, - y_pred: Optional[ArrayLike] = None, - z: Optional[ArrayLike] = None, - disable_marginal_guarantee: bool = False, + self, + X: Optional[ArrayLike] = None, + y_pred: Optional[ArrayLike] = None, + z: Optional[ArrayLike] = None, + disable_marginal_guarantee: bool = False, ) -> NDArray: check_is_fitted(self, self.fit_attributes) self._check_transform_parameters() @@ -280,6 +283,9 @@ def transform( if p in params_mapping and params_mapping[p] is not None } + if isinstance(f, PhiFunction) and not f.normalized: + used_params["disable_marginal_guarantee"] = True + res.append(np.array(f(**used_params), dtype=float)) if len(res[-1].shape) == 1: @@ -307,6 +313,15 @@ def transform( "in the `PhiFunction` definition.") return result + def __call__( + self, + X: Optional[ArrayLike] = None, + y_pred: Optional[ArrayLike] = None, + z: Optional[ArrayLike] = None, + disable_marginal_guarantee: bool = False, + ) -> NDArray: + return self.transform(X, y_pred, z, disable_marginal_guarantee) + class CustomPhiFunction(PhiFunction): """ @@ -315,10 +330,13 @@ class CustomPhiFunction(PhiFunction): This class build a ``PhiFunction`` object with custom features of X, y_pred or z, defined as a list of functions in ``functions`` argument. + This class can be used to concatenate ``PhiFunction`` instances. + Parameters ---------- - functions: Optional[Union[Callable, Iterable]] + functions: Optional[Union[Callable, Iterable[Callable]]] List of functions (or PhiFunction objects) or single function. + Each function can take a combinaison of the following arguments: - ``X``: Input dataset, of shape (n_samples, ``n_in``) - ``y_pred``: estimator prediction, of shape (n_samples,) @@ -348,7 +366,7 @@ class CustomPhiFunction(PhiFunction): By default ``True``. normalized: bool - Whether or not to normalized ``phi(X, y_pred, z)``. Normalization + Whether or not to normalized the output result. Normalization will result in a bounded interval prediction width, avoiding the width to explode to +inf or crash to zero. It is particularly intersting when you know that the conformity scores are bounded. It also prevent the @@ -360,15 +378,18 @@ class CustomPhiFunction(PhiFunction): Attributes ---------- - fit_attributes: List[str] + fit_attributes: Optional[List[str]] Name of attributes set during the ``fit`` method, and required to call - ``transform``. + ``transform``. Empty list will result in a ``PhiFunction`` class which + is always fittedd (doesn't need to be fitted). If ``None``, it will + check for a method ``__sklearn_is_fitted__()`` or arguments which ends + with ``'_'``, to check if it is fitted or not. n_in: int Number of features of ``X`` n_out: int - Number of features of phi(``X``, ``y_pred``, ``z``) + Number of features of phi(``X``, ``y_pred``, ``z``). Examples -------- @@ -390,29 +411,76 @@ class CustomPhiFunction(PhiFunction): >>> print(phi.n_out) 4 """ - fit_attributes: List[str] = [] + fit_attributes: Optional[List[str]] = None def __init__( self, - functions: Optional[Union[Callable, Iterable]] = None, + functions: Optional[Union[Callable, Iterable[Callable]]] = None, marginal_guarantee: bool = True, normalized: bool = False, ) -> None: - super().__init__(functions, marginal_guarantee, normalized) + self.functions = functions + self.marginal_guarantee = marginal_guarantee + self.normalized = normalized + + self.functions_ = self._check_functions() + + def __sklearn_is_fitted__(self) -> bool: + """ + Check if all the concatenated ``PhiFunction`` instances are fitted + + Returns + ------- + bool + Whether the ``ConcatenatePhiFunction`` is fitted + """ + for phi in self.functions_: + if isinstance(phi, PhiFunction): + if not _is_fitted(phi, phi.fit_attributes): + return False + return True def fit( self, X: ArrayLike, ) -> None: """ - ``PolynomialPhiFunction`` don't need to be fitted. + Call the fit method of all ``PhiFunction`` in the list of ``functions`` Parameters ---------- X : Optional[ArrayLike] Samples """ - return + if not _is_fitted(self, self.fit_attributes): + for phi in self.functions_: + if isinstance(phi, PhiFunction): + phi.fit(X) + + def _check_marginal_guarantee(self) -> bool: + """ + Check marginal guarantee + + Returns + ------- + bool + marginal_guarantee value, overwritten to ``True`` if one of the + ``functions`` value is a ``PhiFunction`` instance with + ``marginal_guarantee=True``. + """ + for phi in self.functions_: + if isinstance(phi, PhiFunction): + if phi.marginal_guarantee and not phi.normalized: + return True + return self.marginal_guarantee + + def _check_transform_parameters(self) -> None: + """ + Check that ``functions_`` are functions that take as input + allowed arguments + """ + self.functions_ = self._check_functions() + self.marginal_guarantee = self._check_marginal_guarantee() class PolynomialPhiFunction(PhiFunction): @@ -471,9 +539,12 @@ class PolynomialPhiFunction(PhiFunction): Attributes ---------- - fit_attributes: List[str] + fit_attributes: Optional[List[str]] Name of attributes set during the ``fit`` method, and required to call - ``transform``. + ``transform``. Empty list will result in a ``PhiFunction`` class which + is always fittedd (doesn't need to be fitted). If ``None``, it will + check for a method ``__sklearn_is_fitted__()`` or arguments which ends + with ``'_'``, to check if it is fitted or not. n_in: int Number of features of ``X`` @@ -506,7 +577,7 @@ class PolynomialPhiFunction(PhiFunction): >>> print(phi.degree) [1, 2, 5] """ - fit_attributes: List[str] = [] + fit_attributes: Optional[List[str]] = [] def __init__( self, @@ -656,9 +727,12 @@ class GaussianPhiFunction(PhiFunction): Attributes ---------- - fit_attributes: List[str] + fit_attributes: Optional[List[str]] Name of attributes set during the ``fit`` method, and required to call - ``transform``. + ``transform``. Empty list will result in a ``PhiFunction`` class which + is always fittedd (doesn't need to be fitted). If ``None``, it will + check for a method ``__sklearn_is_fitted__()`` or arguments which ends + with ``'_'``, to check if it is fitted or not. n_in: int Number of features of ``X`` @@ -708,7 +782,7 @@ class GaussianPhiFunction(PhiFunction): [[0.5] [0.5]] """ - fit_attributes = ["points_", "sigmas_"] + fit_attributes: Optional[List[str]] = ["points_", "sigmas_"] def __init__( self, diff --git a/mapie/tests/test_ccp_phi_function.py b/mapie/tests/test_ccp_phi_function.py index cb0f441ee..288670f68 100644 --- a/mapie/tests/test_ccp_phi_function.py +++ b/mapie/tests/test_ccp_phi_function.py @@ -27,11 +27,16 @@ PolynomialPhiFunction([1, 2], "X", marginal_guarantee=True), PolynomialPhiFunction([1, 4, 5], "y_pred", marginal_guarantee=False), PolynomialPhiFunction([0, 1, 4, 5], "y_pred", marginal_guarantee=False), - GaussianPhiFunction(4) + GaussianPhiFunction(4), + CustomPhiFunction([lambda X: X, PolynomialPhiFunction(2)]), + CustomPhiFunction([lambda X: X, GaussianPhiFunction(2)]), + CustomPhiFunction([ + lambda X: X, PolynomialPhiFunction([1, 2], marginal_guarantee=False) + ]), ] # n_out without marginal_guarantee -N_OUT_RAW = [1, 10, 12, 11, 20, 20, 3, 4, 4] +N_OUT_RAW = [1, 10, 12, 11, 20, 20, 3, 4, 4, 30, 12, 30] GAUSS_NEED_FIT_SETTINGS: List[Dict[str, Any]] = [ { @@ -76,11 +81,22 @@ # ======== CustomPhiFunction ========= @pytest.mark.parametrize("functions", [ - None, lambda X: X, [lambda X: X] + None, lambda X: X, [lambda X: X], + [lambda X: X, PolynomialPhiFunction(2)], + [lambda X: X, PolynomialPhiFunction(2), GaussianPhiFunction(2)], ]) def test_custom_phi_functions(functions: Any) -> None: """Test that initialization does not crash.""" phi = CustomPhiFunction(functions) + phi.fit(X) + phi.transform(X) + + +def test_compound_phi_fitted() -> None: + phi_gauss = GaussianPhiFunction(2) + phi_gauss.fit(X) + phi = CustomPhiFunction([lambda X: X, phi_gauss]) + check_is_fitted(phi, phi.fit_attributes) phi.transform(X) @@ -118,8 +134,7 @@ def test_phi_functions_error(functions: Any) -> None: for f in functions: # For coverage f(np.ones((10, 1)), np.ones((10, 1))) with pytest.raises(ValueError, match=r"Forbidden required argument."): - phi = CustomPhiFunction(functions) - phi.transform(X) + CustomPhiFunction(functions) def test_phi_functions_empty() -> None: @@ -128,8 +143,7 @@ def test_phi_functions_empty() -> None: required arguments different from 'X', 'y_pred' or 'z' raise an error. """ with pytest.raises(ValueError): - phi = CustomPhiFunction([], marginal_guarantee=False) - phi.transform(X) + CustomPhiFunction([], marginal_guarantee=False) # ======== PolynomialPhiFunction ========= From 809a39fac40b4e5c507185157d91687c591d0960 Mon Sep 17 00:00:00 2001 From: Damien Bouet Date: Thu, 6 Jun 2024 16:37:20 +0200 Subject: [PATCH 037/165] RENAME: check_estimator_regression --- mapie/regression/ccp_regression.py | 4 ++-- mapie/regression/regression.py | 4 ++-- mapie/utils.py | 2 +- 3 files changed, 5 insertions(+), 5 deletions(-) diff --git a/mapie/regression/ccp_regression.py b/mapie/regression/ccp_regression.py index 229393083..91ebd3132 100644 --- a/mapie/regression/ccp_regression.py +++ b/mapie/regression/ccp_regression.py @@ -15,7 +15,7 @@ from mapie._typing import ArrayLike, NDArray from mapie.conformity_scores import ConformityScore from .utils.ccp_phi_function import PhiFunction, GaussianPhiFunction -from mapie.utils import (check_conformity_score, check_estimator, +from mapie.utils import (check_conformity_score, check_estimator_regression, check_lower_upper_bounds, check_null_weight, fit_estimator) @@ -177,7 +177,7 @@ def _check_parameters(self) -> None: Copy the ``estimator`` in ``estimator_`` attribute if ``cv="prefit"``. """ self.cv = self._check_cv(self.cv) - self.estimator = check_estimator(self.estimator, self.cv) + self.estimator = check_estimator_regression(self.estimator, self.cv) if self.cv == "prefit": self.estimator_ = self.estimator diff --git a/mapie/regression/regression.py b/mapie/regression/regression.py index 24021ba42..c0e0276d1 100644 --- a/mapie/regression/regression.py +++ b/mapie/regression/regression.py @@ -14,7 +14,7 @@ from mapie.estimator.estimator import EnsembleRegressor from mapie.utils import (check_alpha, check_alpha_and_n_samples, check_conformity_score, check_cv, - check_estimator, check_n_features_in, + check_estimator_regression, check_n_features_in, check_n_jobs, check_null_weight, check_verbose) @@ -385,7 +385,7 @@ def _check_fit_parameters( ) if self.cv in ["split", "prefit"] and self.method != "base": self.method = "base" - estimator = check_estimator(self.estimator, cv) + estimator = check_estimator_regression(self.estimator, cv) agg_function = self._check_agg_function(self.agg_function) cs_estimator = check_conformity_score( self.conformity_score, self.default_sym_ diff --git a/mapie/utils.py b/mapie/utils.py index ffd9c908b..78a63a1eb 100644 --- a/mapie/utils.py +++ b/mapie/utils.py @@ -706,7 +706,7 @@ def check_estimator_fit_predict( ) -def check_estimator( +def check_estimator_regression( estimator: Optional[RegressorMixin] = None, cv: Optional[Union[str, BaseCrossValidator, BaseShuffleSplit]] = None, ) -> RegressorMixin: From 4cf1a9f98f6354d4b130728b864addb37aba7368 Mon Sep 17 00:00:00 2001 From: Damien Bouet Date: Thu, 6 Jun 2024 16:53:20 +0200 Subject: [PATCH 038/165] RMV: Exemple from MapieCCPRegressor --- mapie/regression/ccp_regression.py | 22 ---------------------- 1 file changed, 22 deletions(-) diff --git a/mapie/regression/ccp_regression.py b/mapie/regression/ccp_regression.py index 91ebd3132..45bee1cf3 100644 --- a/mapie/regression/ccp_regression.py +++ b/mapie/regression/ccp_regression.py @@ -119,28 +119,6 @@ class MapieCCPRegressor(BaseEstimator, RegressorMixin): ---------- Isaac Gibbs and John J. Cherian and Emmanuel J. Candès. "Conformal Prediction With Conditional Guarantees", 2023 - - Examples - -------- - >>> import numpy as np - >>> from mapie.regression import MapieCCPRegressor - >>> np.random.seed(1) - >>> X_train = np.arange(0,100,2).reshape(-1, 1) - >>> y_train = 2*X_train[:,0] + np.random.rand(len(X_train)) - >>> mapie_reg = MapieCCPRegressor(alpha=0.1, random_state=1) - >>> mapie_reg = mapie_reg.fit( - ... X_train, - ... y_train, - ... ) - >>> y_pred, y_pis = mapie_reg.predict(X_train) - >>> print(np.round(y_pred[:5], 2)) - [ 0.43 4.43 8.43 12.43 16.43] - >>> print(np.round(y_pis[:5,:, 0], 2)) - [[ 0.07 0.79] - [ 4.03 4.83] - [ 8. 8.86] - [11.98 12.89] - [15.97 16.9 ]] """ default_sym_ = True From c588ec85d7a0e8158a1e32015501fb7ceb065167 Mon Sep 17 00:00:00 2001 From: Damien Bouet Date: Mon, 10 Jun 2024 15:58:14 +0200 Subject: [PATCH 039/165] UPD: make fit method mandatory and use check_is_fitted from sklearn --- mapie/regression/ccp_regression.py | 145 ++--- mapie/regression/utils/ccp_phi_function.py | 683 +++++++++------------ 2 files changed, 352 insertions(+), 476 deletions(-) diff --git a/mapie/regression/ccp_regression.py b/mapie/regression/ccp_regression.py index 45bee1cf3..1439717b8 100644 --- a/mapie/regression/ccp_regression.py +++ b/mapie/regression/ccp_regression.py @@ -149,24 +149,23 @@ def __init__( self.phi = phi self.alpha = alpha - def _check_parameters(self) -> None: + def _check_parameters(self) -> RegressorMixin: """ Check and replace default value of ``estimator`` and ``cv`` arguments. Copy the ``estimator`` in ``estimator_`` attribute if ``cv="prefit"``. """ self.cv = self._check_cv(self.cv) - self.estimator = check_estimator_regression(self.estimator, self.cv) + estimator = check_estimator_regression(self.estimator, self.cv) - if self.cv == "prefit": - self.estimator_ = self.estimator + return estimator - def _check_fit_parameters( + def _safe_sample( self, X: ArrayLike, y: ArrayLike, sample_weight: Optional[ArrayLike], - train_index: ArrayLike, - ) -> Tuple[NDArray, NDArray, Optional[NDArray]]: + index: ArrayLike, + ) -> Tuple[ArrayLike, ArrayLike, Optional[NDArray]]: """ Perform several checks on class parameters. @@ -181,7 +180,7 @@ def _check_fit_parameters( sample_weight: Optional[NDArray] of shape (n_samples,) Non-null sample weights. - train_index: ArrayLike + index: ArrayLike Indexes of the training set. Returns @@ -191,12 +190,12 @@ def _check_fit_parameters( - NDArray of training target values - Optional[NDArray] of training sample_weight """ - X_train = _safe_indexing(X, train_index) - y_train = _safe_indexing(y, train_index) + X_train = _safe_indexing(X, index) + y_train = _safe_indexing(y, index) if sample_weight is not None: sample_weight_train = _safe_indexing( - sample_weight, train_index) + sample_weight, index) else: sample_weight_train = None @@ -205,23 +204,10 @@ def _check_fit_parameters( sample_weight_train, X_train, y_train = check_null_weight( sample_weight_train, X_train, y_train) - X_train = cast(NDArray, X_train) - y_train = cast(NDArray, y_train) sample_weight_train = cast(Optional[NDArray], sample_weight_train) return X_train, y_train, sample_weight_train - def _check_calibrate_parameters(self) -> None: - """ - Check and replace default ``conformity_score``, ``alpha`` and - ``phi`` arguments. - """ - self.conformity_score_ = check_conformity_score( - self.conformity_score, self.default_sym_ - ) - self.alpha = self._check_alpha(self.alpha) - self.phi = self._check_phi(self.phi) - def _check_phi( self, phi: Optional[PhiFunction], @@ -256,6 +242,18 @@ def _check_phi( raise ValueError("Invalid `phi` argument. It must be `None` or a " "`PhiFunction` instance.") + def _check_calibrate_parameters(self) -> None: + """ + Check and replace default ``conformity_score``, ``alpha`` and + ``phi`` arguments. + """ + self.conformity_score_ = check_conformity_score( + self.conformity_score, self.default_sym_ + ) + self.alpha = self._check_alpha(self.alpha) + self.phi_ = self._check_phi(self.phi) + + def _check_cv( self, cv: Optional[Union[str, BaseCrossValidator, BaseShuffleSplit]] = None, @@ -390,7 +388,7 @@ def fit_estimator( MapieCCPRegressor self """ - self._check_parameters() + estimator = self._check_parameters() if self.cv != 'prefit': self.cv = cast(BaseCrossValidator, self.cv) @@ -399,18 +397,21 @@ def fit_estimator( ( X_train, y_train, sample_weight_train - ) = self._check_fit_parameters(X, y, sample_weight, train_index) + ) = self._safe_sample(X, y, sample_weight, train_index) self.estimator_ = fit_estimator( - self.estimator, X_train, y_train, + estimator, X_train, y_train, sample_weight=sample_weight_train, **fit_params ) + else: + self.estimator_ = estimator return self def fit_calibrator( self, X: ArrayLike, y: ArrayLike, + sample_weight: Optional[ArrayLike] = None, groups: Optional[ArrayLike] = None, z: Optional[ArrayLike] = None, alpha: Optional[float] = None, @@ -427,6 +428,18 @@ def fit_calibrator( y: ArrayLike of shape (n_samples,) Training labels. + sample_weight: Optional[ArrayLike] of shape (n_samples,) + Sample weights for fitting the out-of-fold models. + If ``None``, then samples are equally weighted. + If some weights are null, + their corresponding observations are removed + before the fitting process and hence have no residuals. + If weights are non-uniform, residuals are still uniformly weighted. + Note that the sample weight defined are only for the training, not + for the calibration procedure. + + By default ``None``. + groups: Optional[ArrayLike] of shape (n_samples,) Group labels for the samples used while splitting the dataset into train/test set. @@ -459,22 +472,24 @@ def fit_calibrator( self._check_parameters() self._check_calibrate_parameters() check_is_fitted(self, self.fit_attributes) - self.phi = cast(PhiFunction, self.phi) - - self.phi.fit(X) if self.cv != 'prefit': self.cv = cast(BaseCrossValidator, self.cv) _, calib_index = list(self.cv.split(X, y, groups))[0] - X_calib = _safe_indexing(X, calib_index) - y_calib = _safe_indexing(y, calib_index) + ( + X_calib, y_calib, sample_weight_calib + ) = self._safe_sample(X, y, sample_weight, calib_index) + if z is not None: - z_calib = _safe_indexing(z, calib_index) + ( + z_calib, _, _ + ) = self._safe_sample(z, y, sample_weight, calib_index) else: z_calib = None else: X_calib, y_calib, z_calib = X, y, z + sample_weight_calib = cast(Optional[NDArray], sample_weight) if alpha is not None and self.alpha != alpha: self.alpha = self._check_alpha(alpha) @@ -496,9 +511,7 @@ def fit_calibrator( else: q_low = self.alpha / 2 q_up = 1 - self.alpha / 2 - - phi_x = self.phi.transform(X_calib, y_pred_calib, z_calib) - + if self.random_state is None: warnings.warn("WARNING: The method implemented in " "MapieCCPRegressor has a stochastic behavior. " @@ -508,57 +521,9 @@ def fit_calibrator( else: np.random.seed(self.random_state) - def pinball_loss(alpha: float, q_pred: NDArray, q: NDArray) -> NDArray: - """ - Apply the pinball loss between ``q_pred`` and ``q`` - considering the target quantile ``1-alpha``. - - Parameters - ---------- - alpha : float - Between ``0.0`` and ``1.0``, represents the risk level of the - confidence interval. - q_pred : NDArray - Predicted quantile - q : NDArray - True quantile - - Returns - ------- - NDArray - Pinball loss between ``q_pred`` and ``q`` - """ - return np.where(q >= q_pred, (1 - alpha) * (q - q_pred), - alpha * (q_pred - q)) - - def objective( - beta: NDArray, - phi_x: NDArray, conformity_scores: NDArray, alpha: float - ) -> float: - """ - Objective funtcion to minimize to get the estimation of - the conformity scores ``1-alpha`` quantile, caracterized by - the scalar parameters in the ``beta`` vector. - - Parameters - ---------- - beta : NDArray - Parameters to optimize to minimize the objective function - phi_x : NDArray - Transformation of the data X using the ``PhiFunction``. - conformity_scores : NDArray - Conformity scores of X - alpha : float - Between ``0.0`` and ``1.0``, represents the risk level of the - confidence interval. - - Returns - ------- - float - Scalar value to minimize, being the sum of the pinball losses. - """ - return np.sum( - pinball_loss(alpha, phi_x.dot(beta), conformity_scores)) + self.phi_.fit(X, self.estimator_.predict(X), z) + + phi_x = self.phi_.transform(X_calib, y_pred_calib, z_calib) not_nan_index = np.where(~np.isnan(calib_conformity_scores))[0] # Some conf. score values may be nan (ex: with ResidualNormalisedScore) @@ -673,7 +638,7 @@ def fit( self """ self.fit_estimator(X, y, sample_weight, groups, **fit_params) - self.fit_calibrator(X, y, groups, z, alpha) + self.fit_calibrator(X, y, sample_weight, groups, z, alpha) return self def predict( @@ -710,9 +675,7 @@ def predict( check_is_fitted(self, self.calib_attributes) - self.phi = cast(PhiFunction, self.phi) - - phi_x = self.phi.transform(X, y_pred, z) + phi_x = self.phi_.transform(X, y_pred, z) signed = -1 if self.conformity_score_.sym else 1 diff --git a/mapie/regression/utils/ccp_phi_function.py b/mapie/regression/utils/ccp_phi_function.py index 49d286eab..a5d647239 100644 --- a/mapie/regression/utils/ccp_phi_function.py +++ b/mapie/regression/utils/ccp_phi_function.py @@ -11,58 +11,7 @@ from mapie._typing import ArrayLike, NDArray from sklearn.utils import _safe_indexing from sklearn.utils.validation import _num_samples, check_is_fitted -from sklearn.base import BaseEstimator - - -def _is_fitted( - estimator: Any, - attributes: Optional[Union[List[str], str]] = None, - all_or_any: Callable = all, -): - """Determine if an estimator is fitted - - Parameters - ---------- - estimator : estimator instance - Estimator instance for which the check is performed. - - attributes : Optional[Union[List[str], str]] - Attribute name(s) given as string or a list/tuple of strings - Eg.: ``["coef_", "estimator_", ...], "coef_"`` - - If `None`, `estimator` is considered fitted if there exist an - attribute that ends with a underscore and does not start with double - underscore. - - By default ``None`` - - all_or_any : Callable - Specify whether all or any of the given attributes must exist. - - By default ``all`` - - Returns - ------- - fitted : bool - Whether the estimator is fitted. - """ - if attributes is not None: - if not isinstance(attributes, (list, tuple)): - attributes = [attributes] - return all_or_any([ - hasattr(estimator, attr) and getattr(estimator, attr) is not None - for attr in attributes - ]) - - if hasattr(estimator, "__sklearn_is_fitted__"): - return estimator.__sklearn_is_fitted__() - - fitted_attrs = [ - v for v in vars(estimator) - if v.endswith("_") and not v.startswith("__") - and getattr(estimator, v) is not None - ] - return len(fitted_attrs) > 0 +from sklearn.base import BaseEstimator, clone class PhiFunction(BaseEstimator, metaclass=ABCMeta): @@ -129,134 +78,80 @@ class PhiFunction(BaseEstimator, metaclass=ABCMeta): Number of features of phi(``X``, ``y_pred``, ``z``) """ - fit_attributes: Optional[List[str]] = [] + fit_attributes: List[str] = ["functions_"] output_attributes = ["n_in", "n_out", "init_value"] def __init__( self, functions: Optional[Union[Callable, Iterable[Callable]]] = None, - marginal_guarantee: bool = True, + bias: bool = False, normalized: bool = False, + init_value: Optional[ArrayLike] = None, ) -> None: self.functions = functions - self.marginal_guarantee = marginal_guarantee + self.bias = bias self.normalized = normalized - - def _check_transform_parameters(self) -> None: - """ - Check that ``functions_`` are functions that take as input - allowed arguments + self.init_value = init_value + + @abstractmethod + def _check_fit_parameters( + self, + X: ArrayLike, + y_pred: Optional[ArrayLike] = None, + z: Optional[ArrayLike] = None, + ) -> None: """ - self.functions_ = self._check_functions() + Check fit parameters - def _check_functions( - self, - ) -> NDArray: - """ - Validate functions for required and optional arguments. + Parameters + ---------- + X: ArrayLike of shape (n_samples, n_features) + Training data. - Raises - ------ - ValueError - If no functions are provided and `marginal_guarantee` is False. - If functions contain unknown required arguments. - - Warns - ----- - UserWarning - If functions contain unknown optional arguments. - - Notes - ----- - This method ensures that the provided functions only use recognized - arguments ('X', 'y_pred', 'z'). Unknown optional arguments are allowed, - but will always use their default values. - """ - if self.functions is None: - self.functions = cast(NDArray, []) - elif isinstance(self.functions, Iterable): - self.functions = cast(NDArray, self.functions) - else: - self.functions = cast(NDArray, [self.functions]) - - if (len(self.functions) == 0) and not self.marginal_guarantee: - raise ValueError("You need to define the `functions` argument " - "with a function or a list of functions, " - "or keep marginal_guarantee argument to True.") - - warn_ind: Dict[str, List[int]] = {} - error_ind: Dict[str, List[int]] = {} - for i, funct in enumerate(self.functions): - assert callable(funct) - params = inspect.signature(funct).parameters - - for param, arg in params.items(): - if ( - param not in ["X", "y_pred", "z"] - and param != "disable_marginal_guarantee" - ): - if arg.default is inspect.Parameter.empty: - if param in error_ind: - error_ind[param].append(i) - else: - error_ind[param] = [i] - elif not isinstance(self, (PolynomialPhiFunction, - GaussianPhiFunction)): - if param in warn_ind: - warn_ind[param].append(i) - else: - warn_ind[param] = [i] - - if len(warn_ind) > 0: - warn_msg = "" - for param, inds in warn_ind.items(): - warn_msg += ( - f"The functions at index ({', '.join(map(str, inds))}) " - + "of the 'functions' argument, has an unknown optional " - + f"argument '{param}'.\n" - ) - warnings.warn( - "WARNING: Unknown optional arguments.\n" - + warn_msg + - "The only recognized arguments are : 'X', 'y_pred' and 'z'. " - "The other optional arguments will act as parameters, " - "as it is always their default value which will be used." - ) - if len(error_ind) > 0: - error_msg = "" - for param, inds in error_ind.items(): - error_msg += ( - f"The functions at index ({', '.join(map(str, inds))}) " - + "of the 'functions' argument, has an unknown required " - + f"argument '{param}'.\n" - ) - raise ValueError( - "Forbidden required argument.\n" - f"{error_msg}" - "The only allowed required argument are : 'X', " - "'y_pred' and 'z'.\n" - "Note: You can use optional arguments if you want " - "to. They will act as parameters, as it is always " - "their default value which will be used." - ) - return cast(NDArray, self.functions) + y: ArrayLike of shape (n_samples,) + Training labels. - @abstractmethod + By default ``None`` + + z: Optional[ArrayLike] of shape (n_calib_samples, n_exog_features) + Exogenous variables + + By default ``None`` + """ def fit( self, X: ArrayLike, + y_pred: Optional[ArrayLike] = None, + z: Optional[ArrayLike] = None, ) -> None: """ Fit function : Set all the necessary attributes to be able to transform ``(X, y_pred, z)`` into the expected transformation. - It should set all the attributes of ``fit_attributes`` + It should set all the attributes of ``fit_attributes``. + It should also set, once fitted, ``n_in``, ``n_out`` and + ``init_value``. Parameters ---------- - X : Optional[ArrayLike] - Samples + X: ArrayLike of shape (n_samples, n_features) + Training data. + + y: ArrayLike of shape (n_samples,) + Training labels. + + By default ``None`` + + z: Optional[ArrayLike] of shape (n_calib_samples, n_exog_features) + Exogenous variables + + By default ``None`` """ + self._check_fit_parameters(X, y_pred, z) + result = self.transform(X, y_pred, z) + self.n_in = len(_safe_indexing(X, 0)) + self.n_out = len(_safe_indexing(result, 0)) + self.init_value_ = self._check_init_value(self.init_value, self.n_out) def transform( self, @@ -299,17 +194,12 @@ def transform( norm[abs(norm) == 0] = 1 result /= norm - if not _is_fitted(self, self.output_attributes): - self.n_in = len(_safe_indexing(X, 0)) - self.n_out = len(_safe_indexing(result, 0)) - self.init_value = np.random.normal(0, 1, self.n_out) - if np.any(np.all(result == 0, axis=1)): warnings.warn("WARNING: At least one row of the transformation " "phi(X, y_pred, z) is full of zeros. " "It will result in a prediction interval of zero " "width. Consider changing the PhiFunction " - "definintion.\nFix: Use `marginal_guarantee=True` " + "definintion.\nFix: Use `bias=True` " "in the `PhiFunction` definition.") return result @@ -318,10 +208,8 @@ def __call__( X: Optional[ArrayLike] = None, y_pred: Optional[ArrayLike] = None, z: Optional[ArrayLike] = None, - disable_marginal_guarantee: bool = False, ) -> NDArray: - return self.transform(X, y_pred, z, disable_marginal_guarantee) - + return self.transform(X, y_pred, z) class CustomPhiFunction(PhiFunction): """ @@ -350,7 +238,7 @@ class CustomPhiFunction(PhiFunction): By default ``None``. - marginal_guarantee: bool + bias: bool Add a column of ones to the features, for safety reason (to garanty the marginal coverage, no matter how the other features the ``PhiFunction``object were built). @@ -363,7 +251,7 @@ class CustomPhiFunction(PhiFunction): Note: Even if it is not always necessary to guarantee the marginal coverage, it can't degrade the prediction intervals. - By default ``True``. + By default ``False``. normalized: bool Whether or not to normalized the output result. Normalization @@ -376,14 +264,17 @@ class CustomPhiFunction(PhiFunction): By default ``False`` + init_value: Optional[ArrayLike] + Optimization initialisation value. + If ``None``, is sampled from a normal distribution. + + By default ``None``. + Attributes ---------- fit_attributes: Optional[List[str]] Name of attributes set during the ``fit`` method, and required to call - ``transform``. Empty list will result in a ``PhiFunction`` class which - is always fittedd (doesn't need to be fitted). If ``None``, it will - check for a method ``__sklearn_is_fitted__()`` or arguments which ends - with ``'_'``, to check if it is fitted or not. + ``transform``. n_in: int Number of features of ``X`` @@ -411,76 +302,92 @@ class CustomPhiFunction(PhiFunction): >>> print(phi.n_out) 4 """ - fit_attributes: Optional[List[str]] = None + fit_attributes: List[str] = ["is_fitted_"] def __init__( self, functions: Optional[Union[Callable, Iterable[Callable]]] = None, - marginal_guarantee: bool = True, + bias: bool = False, normalized: bool = False, + init_value: Optional[ArrayLike] = None, ) -> None: self.functions = functions - self.marginal_guarantee = marginal_guarantee + self.bias = bias self.normalized = normalized + self.init_value = init_value - self.functions_ = self._check_functions() - - def __sklearn_is_fitted__(self) -> bool: + def _check_fit_parameters( + self, + X: ArrayLike, + y_pred: Optional[ArrayLike] = None, + z: Optional[ArrayLike] = None, + ) -> None: """ - Check if all the concatenated ``PhiFunction`` instances are fitted + Fit function : Set all the necessary attributes to be able to transform + ``(X, y_pred, z)`` into the expected transformation. - Returns - ------- - bool - Whether the ``ConcatenatePhiFunction`` is fitted + It should set all the attributes of ``fit_attributes``. + It should also set, once fitted, ``n_in``, ``n_out`` and + ``init_value``. + + Parameters + ---------- + X: ArrayLike of shape (n_samples, n_features) + Training data. + + y: ArrayLike of shape (n_samples,) + Training labels. + + By default ``None`` + + z: Optional[ArrayLike] of shape (n_calib_samples, n_exog_features) + Exogenous variables + + By default ``None`` """ - for phi in self.functions_: - if isinstance(phi, PhiFunction): - if not _is_fitted(phi, phi.fit_attributes): - return False - return True + self.functions_ = format_functions(self.functions, self.bias) + compile_functions_warnings_errors(self.functions_) def fit( self, X: ArrayLike, + y_pred: Optional[ArrayLike] = None, + z: Optional[ArrayLike] = None, ) -> None: """ - Call the fit method of all ``PhiFunction`` in the list of ``functions`` + Fit function : Set all the necessary attributes to be able to transform + ``(X, y_pred, z)`` into the expected transformation. + + It should set all the attributes of ``fit_attributes``. + It should also set, once fitted, ``n_in``, ``n_out`` and + ``init_value``. Parameters ---------- - X : Optional[ArrayLike] - Samples - """ - if not _is_fitted(self, self.fit_attributes): - for phi in self.functions_: - if isinstance(phi, PhiFunction): - phi.fit(X) + X: ArrayLike of shape (n_samples, n_features) + Training data. - def _check_marginal_guarantee(self) -> bool: - """ - Check marginal guarantee + y: ArrayLike of shape (n_samples,) + Training labels. - Returns - ------- - bool - marginal_guarantee value, overwritten to ``True`` if one of the - ``functions`` value is a ``PhiFunction`` instance with - ``marginal_guarantee=True``. + By default ``None`` + + z: Optional[ArrayLike] of shape (n_calib_samples, n_exog_features) + Exogenous variables + + By default ``None`` """ + self._check_fit_parameters(X, y_pred, z) + for phi in self.functions_: if isinstance(phi, PhiFunction): - if phi.marginal_guarantee and not phi.normalized: - return True - return self.marginal_guarantee + phi.fit(X) + self.is_fitted_ = True - def _check_transform_parameters(self) -> None: - """ - Check that ``functions_`` are functions that take as input - allowed arguments - """ - self.functions_ = self._check_functions() - self.marginal_guarantee = self._check_marginal_guarantee() + result = self.transform(X, y_pred, z) + self.n_in = len(_safe_indexing(X, 0)) + self.n_out = len(_safe_indexing(result, 0)) + self.init_value_ = self._check_init_value(self.init_value, self.n_out) class PolynomialPhiFunction(PhiFunction): @@ -503,7 +410,9 @@ class PolynomialPhiFunction(PhiFunction): ``variable`` may be ``X``, ``y_pred`` or ``z``, depending on the ``variable``argument value. - By default ``1``. + If ``None``, it will default to ``degree=1``. + + By default ``None``. variable: Literal["X", "y_pred", "z"] String, used to choose which argument between ``X``, ``y_pred`` and @@ -511,7 +420,7 @@ class PolynomialPhiFunction(PhiFunction): By default ``"X"`` - marginal_guarantee: bool + bias: bool Add a column of ones to the features, for safety reason (to garanty the marginal coverage, no matter how the other features the ``PhiFunction``object were built). @@ -524,7 +433,7 @@ class PolynomialPhiFunction(PhiFunction): Note: Even if it is not always necessary to guarantee the marginal coverage, it can't degrade the prediction intervals. - By default ``True``. + By default ``False``. normalized: bool Whether or not to normalized ``phi(X, y_pred, z)``. Normalization @@ -537,14 +446,17 @@ class PolynomialPhiFunction(PhiFunction): By default ``False`` + init_value: Optional[ArrayLike] + Optimization initialisation value. + If ``None``, is sampled from a normal distribution. + + By default ``None``. + Attributes ---------- fit_attributes: Optional[List[str]] Name of attributes set during the ``fit`` method, and required to call - ``transform``. Empty list will result in a ``PhiFunction`` class which - is always fittedd (doesn't need to be fitted). If ``None``, it will - check for a method ``__sklearn_is_fitted__()`` or arguments which ends - with ``'_'``, to check if it is fitted or not. + ``transform``. n_in: int Number of features of ``X`` @@ -552,8 +464,8 @@ class PolynomialPhiFunction(PhiFunction): n_out: int Number of features of phi(``X``, ``y_pred``, ``z``) - degrees: List[int] - List of degrees of the built polynomial features + exponents: List[int] + List of exponents of the built polynomial features Examples -------- @@ -569,7 +481,7 @@ class PolynomialPhiFunction(PhiFunction): >>> print(phi.degrees) [0, 1, 2, 3] >>> phi = PolynomialPhiFunction([1, 2, 5], "y_pred", - ... marginal_guarantee=False) + ... bias=False) >>> print(phi.transform(X, y_pred)) [[ 1. 1. 1.] [ 2. 4. 32.] @@ -577,51 +489,133 @@ class PolynomialPhiFunction(PhiFunction): >>> print(phi.degree) [1, 2, 5] """ - fit_attributes: Optional[List[str]] = [] + fit_attributes: List[str] = [] def __init__( self, - degree: Union[int, List[int]] = 1, + degree: Optional[Union[int, List[int]]] = None, variable: str = "X", - marginal_guarantee: bool = True, + bias: bool = False, normalized: bool = False, + init_value: Optional[ArrayLike] = None, ) -> None: self.degree = degree self.variable = variable + self.bias = bias + self.normalized = normalized + self.init_value = init_value - if isinstance(degree, int): - self.degrees = list(range(degree+1)) + def _convert_degree( + self, degree: Optional[Union[int, List[int]]], bias: bool + ) -> Tuple[List[int], bool]: + """ + Convert ``degree`` argument into a list of exponents + + Parameters + ---------- + degree: Union[int, List[int]] + If ``degree``is an integer, it correspond to the degree of the + polynomial features transformer. It will create the features + ``1``, ``variable``, ``variable``**2, ..., ``variable``**``degree``. + + If ``degree``is an iterable of integers, it will create the features + ``variable``**d, for all integer d in ``degree`` + + ``variable`` may be ``X``, ``y_pred`` or ``z``, depending on the + ``variable``argument value. + + If ``None``, it will default to ``degree=1``. + + By default ``None``. + + bias: bool + Add a column of ones to the features, for safety reason + (to garanty the marginal coverage, no matter how the other features + the ``PhiFunction``object were built). + If the ``PhiFunction``object definition covers all the dataset + (meaning, for all calibration and test samples, ``phi(X, y_pred, z)`` + is never all zeros), this column of ones is not necessary + to obtain marginal coverage. + In this case, you can set this argument to ``False``. + + Note: Even if it is not always necessary to guarantee the marginal + coverage, it can't degrade the prediction intervals. + + Returns + ------- + Tuple[List[int], bool] + - List of exponents (the exponent ``0`` will be replaced by + ``bias=True``, which is equivalent. It is useless to add as many + columns of ones as dimensions of ``X``. Only one is enough.) + - new ``bias`` value. + """ + if degree is None: + exponents = [0, 1] + elif isinstance(degree, int): + exponents = list(range(degree+1)) else: - self.degrees = degree + exponents = degree + + return [d for d in exponents if d!= 0], (0 in exponents) or bias - functions: List[Callable] = [] - if 0 in self.degrees and not marginal_guarantee: - functions.append(lambda X: np.ones((len(X), 1))) + def _create_functions( + self, exponents: List[int], variable: str + ) -> List[Callable]: + """ + Create the list of lambda functions, based on the list ``exponents`` + and the ``variable`` value. + + Parameters + ---------- + exponents: List[int] + List of exponents to apply on the ``variable``` + + variable: Literal["X", "y_pred", "z"] + Variable on which to apply the exponents. + """ if variable == "X": - functions += [lambda X, d=d: X**d for d in self.degrees if d != 0] + return [lambda X, d=d: X**d for d in exponents] elif variable == "y_pred": - functions += [lambda y_pred, d=d: y_pred**d - for d in self.degrees if d != 0] + return [lambda y_pred, d=d: y_pred**d for d in exponents] elif variable == "z": - functions += [lambda z, d=d: z**d for d in self.degrees if d != 0] + return [lambda z, d=d: z**d for d in exponents] else: raise ValueError("variable must be 'X', 'y_pred' or 'z'") - super().__init__(functions, marginal_guarantee, normalized) - def fit( + def _check_fit_parameters( self, X: ArrayLike, + y_pred: Optional[ArrayLike] = None, + z: Optional[ArrayLike] = None, ) -> None: """ - ``PolynomialPhiFunction`` don't need to be fitted. + Fit function : Set all the necessary attributes to be able to transform + ``(X, y_pred, z)`` into the expected transformation. + + It should set all the attributes of ``fit_attributes``. + It should also set, once fitted, ``n_in``, ``n_out`` and + ``init_value``. Parameters ---------- - X : Optional[ArrayLike] - Samples + X: ArrayLike of shape (n_samples, n_features) + Training data. + + y: ArrayLike of shape (n_samples,) + Training labels. + + By default ``None`` + + z: Optional[ArrayLike] of shape (n_calib_samples, n_exog_features) + Exogenous variables + + By default ``None`` """ - return + self.exponents, self.bias = self._convert_degree( + self.degree, self.bias) + functions = self._create_functions(self.exponents, self.variable) + self.functions_ = format_functions(functions, self.bias) class GaussianPhiFunction(PhiFunction): @@ -651,7 +645,9 @@ class GaussianPhiFunction(PhiFunction): In this case, the ``sigma``, ``random_sigma`` and ``X`` argument are ignored. - By default, ``10`` + If ``None``, default to ``20``. + + By default, ``None`` sigma : Optional[Union[float, ArrayLike]] Standard deviation value used to compute the guassian distances, @@ -692,12 +688,11 @@ class GaussianPhiFunction(PhiFunction): You can use fully custom sigma values, buy passing to the ``points`` argument, a different sigma value for each point. - If ``None``, it is enabled if ``sigma`` is not defined (``None``, and - ``points`` is not a Tuple of (points, sigmas)), disabled otherwise. + If ``None``, default to ``False``. By default, ``None`` - marginal_guarantee: bool + bias: bool Add a column of ones to the features, for safety reason (to garanty the marginal coverage, no matter how the other features the ``PhiFunction``object were built). @@ -709,7 +704,7 @@ class GaussianPhiFunction(PhiFunction): Note: In this case, with ``GaussianPhiFunction``, if ``normalized`` is ``True`` (it is, by default), the ``phi(X, y_pred, z)`` will never - be all zeros, so this ``marginal_guarantee`` is not required + be all zeros, so this ``bias`` is not required sto have coverage guarantee. By default ``False``. @@ -725,14 +720,17 @@ class GaussianPhiFunction(PhiFunction): By default ``True`` + init_value: Optional[ArrayLike] + Optimization initialisation value. + If ``None``, is sampled from a normal distribution. + + By default ``None``. + Attributes ---------- fit_attributes: Optional[List[str]] Name of attributes set during the ``fit`` method, and required to call - ``transform``. Empty list will result in a ``PhiFunction`` class which - is always fittedd (doesn't need to be fitted). If ``None``, it will - check for a method ``__sklearn_is_fitted__()`` or arguments which ends - with ``'_'``, to check if it is fitted or not. + ``transform``. n_in: int Number of features of ``X`` @@ -753,7 +751,7 @@ class GaussianPhiFunction(PhiFunction): >>> from mapie.regression.utils import GaussianPhiFunction >>> np.random.seed(1) >>> X = np.array([[1], [2], [3], [4], [5]]) - >>> phi = GaussianPhiFunction(2, marginal_guarantee=False, + >>> phi = GaussianPhiFunction(2, bias=False, ... normalized=False) >>> phi.fit(X) >>> print(np.round(phi.transform(X), 2)) @@ -782,130 +780,39 @@ class GaussianPhiFunction(PhiFunction): [[0.5] [0.5]] """ - fit_attributes: Optional[List[str]] = ["points_", "sigmas_"] + fit_attributes: List[str] = ["points_", "sigmas_", "functions_"] def __init__( self, - points: Union[int, ArrayLike, Tuple[ArrayLike, ArrayLike]] = 20, + points: Optional[Union[int, ArrayLike, + Tuple[ArrayLike, ArrayLike]]] = None, sigma: Optional[Union[float, ArrayLike]] = None, random_sigma: Optional[bool] = None, - marginal_guarantee: bool = False, + bias: bool = False, normalized: bool = True, + init_value: Optional[ArrayLike] = None, ) -> None: self.points = points self.sigma = sigma self.random_sigma = random_sigma + self.bias = bias + self.normalized = normalized + self.init_value = init_value - self.points_: Optional[NDArray] - self.sigmas_: Optional[NDArray] - - if isinstance(points, int): - self._init_sigmas(sigma, points) - - elif isinstance(points, tuple): - self.points_ = np.array(points[0]) - self.sigmas_ = np.array(points[1]) - if len(self.sigmas_.shape) == 1: - self.sigmas_ = self.sigmas_.reshape(-1, 1) - - elif len(np.array(points).shape) == 2: - self._init_sigmas(sigma, _num_samples(points)) - self.points_ = cast(NDArray, np.array(points)) - - else: - raise ValueError("Invalid `points` argument. The points argument" - "should be an integer, " - "a 2D array or a tuple of two 2D arrays.") - - if _is_fitted(self, self.fit_attributes): - self.sigmas_ = cast(NDArray, self.sigmas_) - self.points_ = cast(NDArray, self.points_) - self._check_parameters(self.points_, self.sigmas_) - if self.random_sigma: - n = _num_samples(self.points_) - self.sigmas_ = self.sigmas_ * ( - 2**np.random.normal(0, 1*2**(-2+np.log10(n)), n) - .reshape(-1, 1) - ) - - functions = [ - lambda X, mu=_safe_indexing(self.points_, i), - sigma=_safe_indexing(self.sigmas_, i): - np.exp(-0.5 * np.sum(((X - mu) / sigma) ** 2, axis=1)) - for i in range(_num_samples(self.points_)) - ] - else: - functions = [] - super().__init__(functions, marginal_guarantee, normalized) - - def _check_transform_parameters(self) -> None: - """ - Check that ``functions_`` are functions that take as input - allowed arguments - """ - self.sigmas_ = cast(NDArray, self.sigmas_) - self.points_ = cast(NDArray, self.points_) - - self._check_parameters(self.points_, self.sigmas_) - self.functions_ = self._check_functions() - - def _check_parameters(self, points: ArrayLike, sigmas: ArrayLike) -> None: + def _check_random_sigma(self) -> bool: """ - Check that ``points`` and ``sigmas`` have compatible shapes + Check ``random_sigma`` - Parameters - ---------- - points : ArrayLike - 2D array of shape (n_points, n_in) - sigmas : ArrayLike - 2D array of shape (n_points, 1) or (n_points, n_in) + Returns + ------- + bool + checked ``random_sigma`` """ - self._check_points_sigma(points, sigmas) - self.random_sigma = self._check_random_sigma() - - def _check_random_sigma(self) -> bool: - if self.random_sigma is None and self.sigma is None: - if isinstance(self.points, tuple): - return False - else: - return True if self.random_sigma is None: return False else: return self.random_sigma - def _init_sigmas( - self, - sigma: Optional[Union[float, ArrayLike]], - n_points: int, - ) -> None: - """ - If ``sigma`` is not ``None``, take a sigma value, and set ``sigmas_`` - to a standard deviation 2D array of shape (n_points, n_sigma), - n_sigma being 1 or the number of dimensions of X. - - Parameters - ---------- - sigma : Optional[Union[float, ArrayLike]] - standard deviation, as float or 1D array of length n_in - (number of dimensins of the dataset) - - n_points : int - Number of points user for gaussian distances calculation - - Raises - ------ - ValueError - If ``sigma`` is not None, a float or a 1D array - """ - if isinstance(sigma, numbers.Number): - self.sigmas_ = np.ones((n_points, 1))*sigma - elif sigma is not None: - if len(np.array(sigma).shape) != 1: - raise ValueError("sigma argument should be a float " - "or a 1D array of floats.") - self.sigmas_ = np.ones((n_points, 1))*np.array(sigma) - def _check_points_sigma( self, points: ArrayLike, sigmas: ArrayLike ) -> None: @@ -936,39 +843,45 @@ def _check_points_sigma( f"Got sigma of shape: ({_num_samples(sigmas)}, " f"{len(_safe_indexing(points, 0))}).") - def fit( + def _check_fit_parameters( self, X: ArrayLike, + y_pred: Optional[ArrayLike] = None, + z: Optional[ArrayLike] = None, ) -> None: """ - ``GaussianPhiFunction`` fit method is used to sample points and compute - the standard deviation values if needed. + Fit function : Set all the necessary attributes to be able to transform + ``(X, y_pred, z)`` into the expected transformation. + + It should set all the attributes of ``fit_attributes``. + It should also set, once fitted, ``n_in``, ``n_out`` and + ``init_value``. Parameters ---------- - X : Optional[ArrayLike] - Samples + X: ArrayLike of shape (n_samples, n_features) + Training data. + + y: ArrayLike of shape (n_samples,) + Training labels. + + By default ``None`` + + z: Optional[ArrayLike] of shape (n_calib_samples, n_exog_features) + Exogenous variables + + By default ``None`` """ - if not _is_fitted(self, self.fit_attributes): - if isinstance(self.points, int): - points_index = np.random.choice( - _num_samples(X), size=self.points, replace=False - ) - self.points_ = cast(NDArray, _safe_indexing(X, points_index)) - if self.sigma is None: - self.sigmas_ = np.ones((_num_samples(self.points_), 1))*np.std( - np.array(X), axis=0)/(_num_samples(self.points_)**0.5) - - if self.random_sigma: - n = _num_samples(self.points_) - self.sigmas_ *= ( - 2**np.random.normal(0, 1*2**(-2+np.log10(n)), n) - .reshape(-1, 1) - ) - - self.functions = [ - lambda X, mu=_safe_indexing(self.points_, i), - sigma=_safe_indexing(self.sigmas_, i): - np.exp(-0.5 * np.sum(((X - mu) / sigma) ** 2, axis=1)) - for i in range(_num_samples(self.points_)) - ] + self.random_sigma = self._check_random_sigma() + self.points_ = sample_points(X, self.points) + self.sigmas_ = compute_sigma(X, self.points, self.points_, + self.sigma, self.random_sigma) + self._check_points_sigma(self.points_, self.sigmas_) + + functions = [ + lambda X, mu=_safe_indexing(self.points_, i), + sigma=_safe_indexing(self.sigmas_, i): + np.exp(-0.5 * np.sum(((X - mu) / sigma) ** 2, axis=1)) + for i in range(_num_samples(self.points_)) + ] + self.functions_ = format_functions(functions, self.bias) \ No newline at end of file From 80482209a4a8be541622704bfd6a2f63ee32a585 Mon Sep 17 00:00:00 2001 From: Damien Bouet Date: Mon, 10 Jun 2024 16:00:56 +0200 Subject: [PATCH 040/165] MOVE: Externalise some utils functions --- mapie/phi_function/utils.py | 534 +++++++++++++++++++++ mapie/regression/ccp_regression.py | 31 +- mapie/regression/utils/ccp_phi_function.py | 90 ++-- 3 files changed, 618 insertions(+), 37 deletions(-) create mode 100644 mapie/phi_function/utils.py diff --git a/mapie/phi_function/utils.py b/mapie/phi_function/utils.py new file mode 100644 index 000000000..e966dbbfa --- /dev/null +++ b/mapie/phi_function/utils.py @@ -0,0 +1,534 @@ +from __future__ import annotations + +from abc import ABCMeta, abstractmethod +import inspect +import numpy as np +from typing import (Iterable, Callable, Optional, Tuple, Union, + cast, Dict, List, Any) +from mapie._typing import ArrayLike, NDArray +import warnings +from sklearn.utils import _safe_indexing +from sklearn.utils.validation import _num_samples +from sklearn.metrics import mean_pinball_loss + +def format_functions( + functions: Optional[Union[Callable, Iterable[Callable]]], + bias: bool, +) -> List[Callable]: + """ + Validate functions for required and optional arguments. + + Parameters + ---------- + functions: Optional[Union[Callable, Iterable[Callable]]] + List of functions (or PhiFunction objects) or single function. + Each function can take a combinaison of the following arguments: + - ``X``: Input dataset, of shape (n_samples, ``n_in``) + - ``y_pred``: estimator prediction, of shape (n_samples,) + - ``z``: exogenous variable, of shape (n_samples, n_features). + It should be given in the ``fit`` and ``predict`` methods. + The results of each functions will be concatenated to build the final + result of the phi function, of shape (n_samples, ``n_out``). + If ``None``, the resulting phi object will return a column of ones, + when called. It will result, in the MapieCCPRegressor, in a basic + split CP approach. + + bias: bool + Add a column of ones to the features, for safety reason + (to garanty the marginal coverage, no matter how the other features + the ``PhiFunction``object were built). + If the ``PhiFunction``object definition covers all the dataset + (meaning, for all calibration and test samples, ``phi(X, y_pred, z)`` + is never all zeros), this column of ones is not necessary + to obtain marginal coverage. + In this case, you can set this argument to ``False``. + + Note: Even if it is not always necessary to guarantee the marginal + coverage, it can't degrade the prediction intervals. + + Returns + ------- + List[Callable] + ``functions`` as a not empty list + """ + if functions is None: + functions = [] + elif isinstance(functions, Iterable): + functions = list(functions) + else: + functions = [functions] + + if bias: + functions.append(lambda X: np.ones((_num_samples(X), 1))) + if (len(functions) == 0): + raise ValueError("You need to define the `functions` argument " + "with a function or a list of functions, " + "or keep bias argument to True.") + return functions + +def compile_functions_warnings_errors( + functions: List[Callable] +) -> None: + """ + Raise warnings and errors if the elements in ``functions`` have + unexpected arguments. + + Raises + ------ + ValueError + If no functions are provided and `bias` is False. + If functions contain unknown required arguments. + + Warns + ----- + UserWarning + If functions contain unknown optional arguments. + + Notes + ----- + This method ensures that the provided functions only use recognized + arguments ('X', 'y_pred', 'z'). Unknown optional arguments are allowed, + but will always use their default values. + """ + + warn_ind: Dict[str, List[int]] = {} + error_ind: Dict[str, List[int]] = {} + for i, funct in enumerate(functions): + assert callable(funct) + params = inspect.signature(funct).parameters + + for param, arg in params.items(): + if ( + param not in ["X", "y_pred", "z"] + and param != "disable_marginal_guarantee" + ): + if arg.default is inspect.Parameter.empty: + if param in error_ind: + error_ind[param].append(i) + else: + error_ind[param] = [i] + else: + if param in warn_ind: + warn_ind[param].append(i) + else: + warn_ind[param] = [i] + + if len(warn_ind) > 0: + warn_msg = "" + for param, inds in warn_ind.items(): + warn_msg += ( + f"The functions at index ({', '.join(map(str, inds))}) " + + "of the 'functions' argument, has an unknown optional " + + f"argument '{param}'.\n" + ) + warnings.warn( + "WARNING: Unknown optional arguments.\n" + + warn_msg + + "The only recognized arguments are : 'X', 'y_pred' and 'z'. " + "The other optional arguments will act as parameters, " + "as it is always their default value which will be used." + ) + if len(error_ind) > 0: + error_msg = "" + for param, inds in error_ind.items(): + error_msg += ( + f"The functions at index ({', '.join(map(str, inds))}) " + + "of the 'functions' argument, has an unknown required " + + f"argument '{param}'.\n" + ) + raise ValueError( + "Forbidden required argument.\n" + f"{error_msg}" + "The only allowed required argument are : 'X', " + "'y_pred' and 'z'.\n" + "Note: You can use optional arguments if you want " + "to. They will act as parameters, as it is always " + "their default value which will be used." + ) + + +def sample_points( + X: ArrayLike, + points: Optional[Union[int, ArrayLike, Tuple[ArrayLike, ArrayLike]]] +) -> NDArray: + """ + Generate the ``points_`` attribute from the ``points`` and ``X`` arguments + + Parameters + ---------- + X : ArrayLike + Samples + points : Optional[Union[int, ArrayLike, Tuple[ArrayLike, ArrayLike]]] + If Array: List of data points, used as centers to compute + gaussian distances. Should be an array of shape (n_points, n_in). + + If integer, the points will be sampled randomly from the ``X`` + set, where ``X`` is the data give to the + ``GaussianPhiFunction.fit`` method, which usually correspond to + the ``X`` argument of the ``MapieCCPRegressor.calibrate`` method + (unless you call ``GaussianPhiFunction.fit(X)`` yourself). + + You can pass a Tuple[ArrayLike, ArrayLike], to have a different + ``sigma`` value for each point. The two elements of the + tuple should be: + - Data points: 2D array of shape (n_points, n_in) + - Sigma values 2D array of shape (n_points, n_in) or (n_points, 1) + In this case, the ``sigma``, ``random_sigma`` and ``X`` argument are + ignored. + + If ``None``, default to ``20``. + + Returns + ------- + points_ + 2D NDArray of points + + Raises + ------ + ValueError + If ``points`` is an invalid argument. + """ + if points is None: + points = 20 + if isinstance(points, int): + points_index = np.random.choice( + _num_samples(X), size=points, replace=False + ) + points_ = _safe_indexing(X, points_index) + elif isinstance(points, tuple): + points_ = np.array(points[0]) + elif len(np.array(points).shape) == 2: + points_ = np.array(points) + else: + raise ValueError("Invalid `points` argument. The points argument" + "should be an integer, " + "a 2D array or a tuple of two 2D arrays.") + return points_ + + +def compute_sigma( + X: ArrayLike, + points: Optional[Union[int, ArrayLike, Tuple[ArrayLike, ArrayLike]]], + points_: NDArray, + sigma: Optional[Union[float, ArrayLike]], + random_sigma: bool, +) -> NDArray: + """ + Generate the ``sigmas_`` attribute from the ``points``, ``sigma``, ``X`` + arguments and the fitted ``points_``. + + Parameters + ---------- + X : ArrayLike + Samples + + points : Optional[Union[int, ArrayLike, Tuple[ArrayLike, ArrayLike]]] + If Array: List of data points, used as centers to compute + gaussian distances. Should be an array of shape (n_points, n_in). + + If integer, the points will be sampled randomly from the ``X`` + set, where ``X`` is the data give to the + ``GaussianPhiFunction.fit`` method, which usually correspond to + the ``X`` argument of the ``MapieCCPRegressor.calibrate`` method + (unless you call ``GaussianPhiFunction.fit(X)`` yourself). + + You can pass a Tuple[ArrayLike, ArrayLike], to have a different + ``sigma`` value for each point. The two elements of the + tuple should be: + - Data points: 2D array of shape (n_points, n_in) + - Sigma values 2D array of shape (n_points, n_in) or (n_points, 1) + In this case, the ``sigma``, ``random_sigma`` and ``X`` argument are + ignored. + + If ``None``, default to ``20``. + + points_ : NDArray + Fitted 2D arrray of points + + sigma : Optional[Union[float, ArrayLike]] + Standard deviation value used to compute the guassian distances, + with the formula: + np.exp(-0.5 * ((X - point) / ``sigma``) ** 2) + - It can be an integer + - It can be a 1D array of float with as many + values as dimensions in the dataset + + If you want different standard deviation values of each points, + you can indicate the sigma value of each point in the ``points`` + argument. + + If ``None``, ``sigma`` will default to a float equal to + ``np.std(X)/(n**0.5)``, where ``X`` is the data give to the + ``GaussianPhiFunction.fit`` method, which correspond to the ``X`` + argument of the ``MapieCCPRegressor.calibrate`` method + (unless you call ``GaussianPhiFunction.fit(X)`` yourself). + + random_sigma : bool + Whether to apply to the standard deviation values, a random multiplier, + different for each point, equal to: + + 2**np.random.normal(0, 1*2**(-2+np.log10(len(``points``)))) + + Exemple: + - For 10 points, the sigma value will, in general, + be multiplied by a value between 0.7 and 1.4 + - For 100 points, the sigma value will, in general, + be multiplied by a value between 0.5 and 2 + + + Returns + ------- + sigmas_ + 2D NDArray of standard deviation values + """ + if isinstance(points, tuple): + sigmas_ = np.array(points[1]) + if len(sigmas_.shape) == 1: + sigmas_ = sigmas_.reshape(-1, 1) + elif sigma is None: + sigmas_ = np.ones((_num_samples(points_), 1))*np.std( + np.array(X), axis=0)/(_num_samples(points_)**0.5) + elif isinstance(points, int): + sigmas_ = _init_sigmas(sigma, points) + elif len(np.array(points).shape) == 2: + sigmas_ = _init_sigmas(sigma, _num_samples(points)) + + + if random_sigma: + n = _num_samples(points_) + sigmas_ *= ( + 2**np.random.normal(0, 1*2**(-2+np.log10(n)), n) + .reshape(-1, 1) + ) + return cast(NDArray, sigmas_) + + +def _init_sigmas( + sigma: Union[float, ArrayLike], + n_points: int, +) -> NDArray: + """ + If ``sigma`` is not ``None``, take a sigma value, and set ``sigmas_`` + to a standard deviation 2D array of shape (n_points, n_sigma), + n_sigma being 1 or the number of dimensions of X. + + Parameters + ---------- + sigma : Union[float, ArrayLike] + standard deviation, as float or 1D array of length n_in + (number of dimensins of the dataset) + + n_points : int + Number of points user for gaussian distances calculation + + Raises + ------ + ValueError + If ``sigma`` is not None, a float or a 1D array + """ + if isinstance(sigma, (float, int)): + return np.ones((n_points, 1))*sigma + else: + if len(np.array(sigma).shape) != 1: + raise ValueError("sigma argument should be a float " + "or a 1D array of floats.") + return np.ones((n_points, 1))*np.array(sigma) + + +def dynamic_arguments_call(f: Callable, params_mapping: Dict) -> NDArray: + """ + Call the function ``f``, with the correct arguments + + Parameters + ---------- + f : Callable + function to call + + params_mapping : Dict + Dictionnary of argument names / values + + Returns + ------- + NDArray + result as 2D array + """ + + params = inspect.signature(f).parameters + used_params = { + p: params_mapping[p] for p in params + if p in params_mapping and params_mapping[p] is not None + } + res = np.array(f(**used_params), dtype=float) + if len(res.shape) == 1: + res = np.expand_dims(res, axis=1) + + return res + + +def concatenate_functions( + functions: List[Callable], params_mapping: Dict, + multipliers: List[Callable] +) -> NDArray: + """ + Call the function of ``functions``, with the + correct arguments, and concatenate the results + + Parameters + ---------- + functions : List[Callable] + List of functions to call + + params_mapping : Dict + Dictionnary of argument names / values + + Returns + ------- + NDArray + Concatenated result + """ + # Compute phi(X, y_pred, z) + result = np.hstack([ + dynamic_arguments_call(f, params_mapping) for f in functions + ]) + # Multiply the result by each multiplier function + for f in multipliers: + result *= dynamic_arguments_call(f, params_mapping) + return result + + + +def check_multiplier( + multipliers: List[Callable], + X: Optional[ArrayLike] = None, + y_pred: Optional[ArrayLike] = None, + z: Optional[ArrayLike] = None, +) -> None: + """ + Check is ``funct`` is a valid ``multiplier`` argument + + Parameters + ---------- + multipliers : List[Callable] + function which sould return an array of shape (n_samples, 1) or + (n_samples, ) + + X : ArrayLike + Observed samples + + y_pred : ArrayLike + Target prediction + + z : ArrayLike + Exogenous variable + """ + if multipliers is None: + return + params_mapping = {"X": X, "y_pred": y_pred, "z": z} + for f in multipliers: + res = concatenate_functions([f], params_mapping) + if res.shape != (_num_samples(X), 1): + raise ValueError("The function used as multiplier should return an" + "array of shape n_samples, 1) or (n_samples, ).\n" + f"Got shape = {res.shape}.") + + +def fast_mean_pinball_loss( + y_true, y_pred, *, sample_weight=None, alpha=0.5 +) -> float: + """ + Pinball loss for quantile regression. + Copy of the sklearn.metric.mean_minball_loss, but without the checks on + the ``y_true`` and ``y_pred`` arrays, for faster computation. + + Parameters + ---------- + y_true : array-like of shape (n_samples,) or (n_samples, n_outputs) + Ground truth (correct) target values. + + y_pred : array-like of shape (n_samples,) or (n_samples, n_outputs) + Estimated target values. + + sample_weight : array-like of shape (n_samples,), default=None + Sample weights. + + alpha : float, slope of the pinball loss, default=0.5, + This loss is equivalent to :ref:`mean_absolute_error` when `alpha=0.5`, + `alpha=0.95` is minimized by estimators of the 95th percentile. + + Returns + ------- + loss : float + Weighted average of all output errors. + The pinball loss output is a non-negative floating point. The best + value is 0.0. + + Examples + -------- + >>> from sklearn.metrics import mean_pinball_loss + >>> y_true = [1, 2, 3] + >>> mean_pinball_loss(y_true, [0, 2, 3], alpha=0.1) + 0.03... + >>> mean_pinball_loss(y_true, [1, 2, 4], alpha=0.1) + 0.3... + >>> mean_pinball_loss(y_true, [0, 2, 3], alpha=0.9) + 0.3... + >>> mean_pinball_loss(y_true, [1, 2, 4], alpha=0.9) + 0.03... + >>> mean_pinball_loss(y_true, y_true, alpha=0.1) + 0.0 + >>> mean_pinball_loss(y_true, y_true, alpha=0.9) + 0.0 + """ + diff = y_true - y_pred + sign = (diff >= 0).astype(diff.dtype) + loss = alpha * sign * diff - (1 - alpha) * (1 - sign) * diff + output_errors = np.average(loss, weights=sample_weight, axis=0) + + return np.mean(output_errors) + + +def calibrator_optim_objective( + beta: NDArray, phi_x: NDArray, conformity_scores: NDArray, q: float, + sample_weight: NDArray, +) -> float: + """ + Objective funtcion to minimize to get the estimation of + the conformity scores ``q`` quantile, caracterized by + the scalar parameters in the ``beta`` vector. + + Parameters + ---------- + beta : NDArray + Parameters to optimize to minimize the objective function + + phi_x : NDArray + Transformation of the data X using the ``PhiFunction``. + + conformity_scores : NDArray + Conformity scores of X + + q : float + Between ``0.0`` and ``1.0``, represents the quantile, being + ``1-alpha`` if ``alpha`` is the risk level of the confidence interval. + + sample_weight: Optional[ArrayLike] of shape (n_samples,) + Sample weights for fitting the out-of-fold models. + If ``None``, then samples are equally weighted. + If some weights are null, + their corresponding observations are removed + before the fitting process and hence have no residuals. + If weights are non-uniform, residuals are still uniformly weighted. + Note that the sample weight defined are only for the training, not + for the calibration procedure. + + By default ``None``. + + Returns + ------- + float + Scalar value to minimize, being the sum of the pinball losses. + """ + return fast_mean_pinball_loss( + y_true=conformity_scores, y_pred=phi_x.dot(beta), + alpha=q, sample_weight=sample_weight, + ) \ No newline at end of file diff --git a/mapie/regression/ccp_regression.py b/mapie/regression/ccp_regression.py index 1439717b8..a8e281e86 100644 --- a/mapie/regression/ccp_regression.py +++ b/mapie/regression/ccp_regression.py @@ -14,7 +14,7 @@ from mapie._typing import ArrayLike, NDArray from mapie.conformity_scores import ConformityScore -from .utils.ccp_phi_function import PhiFunction, GaussianPhiFunction +from ..phi_function.utils import calibrator_optim_objective from mapie.utils import (check_conformity_score, check_estimator_regression, check_lower_upper_bounds, check_null_weight, fit_estimator) @@ -119,6 +119,25 @@ class MapieCCPRegressor(BaseEstimator, RegressorMixin): ---------- Isaac Gibbs and John J. Cherian and Emmanuel J. Candès. "Conformal Prediction With Conditional Guarantees", 2023 + + Examples + -------- + >>> import numpy as np + >>> from mapie.regression import MapieCCPRegressor + >>> np.random.seed(1) + >>> X_train = np.arange(0,100,2).reshape(-1, 1) + >>> y_train = 2*X_train[:,0] + np.random.rand(len(X_train)) + >>> mapie_reg = MapieCCPRegressor(alpha=0.1, random_state=1) + >>> mapie_reg = mapie_reg.fit(X_train, y_train) + >>> y_pred, y_pis = mapie_reg.predict(X_train) + >>> print(np.round(y_pred[:5], 2)) + [ 0.43 4.43 8.43 12.43 16.43] + >>> print(np.round(y_pis[:5,:, 0], 2)) + [[ 0.07 0.79] + [ 4.03 4.83] + [ 8. 8.86] + [11.98 12.89] + [15.97 16.9 ]] """ default_sym_ = True @@ -529,21 +548,23 @@ def fit_calibrator( # Some conf. score values may be nan (ex: with ResidualNormalisedScore) optimal_beta_up = minimize( - objective, self.phi.init_value, + calibrator_optim_objective, self.phi_.init_value_, args=( phi_x[not_nan_index, :], calib_conformity_scores[not_nan_index], - 1-q_up + q_up, + sample_weight_calib, ) ) if not self.conformity_score_.sym: optimal_beta_low = minimize( - objective, self.phi.init_value, + calibrator_optim_objective, self.phi_.init_value_, args=( phi_x[not_nan_index, :], calib_conformity_scores[not_nan_index], - 1-q_low + q_low, + sample_weight_calib, ) ) else: diff --git a/mapie/regression/utils/ccp_phi_function.py b/mapie/regression/utils/ccp_phi_function.py index a5d647239..9d94910e1 100644 --- a/mapie/regression/utils/ccp_phi_function.py +++ b/mapie/regression/utils/ccp_phi_function.py @@ -4,11 +4,13 @@ import inspect from typing import (Iterable, Callable, Optional, Tuple, Union, cast, Dict, List, Any) -import numbers import warnings import numpy as np from mapie._typing import ArrayLike, NDArray +from .utils import (compile_functions_warnings_errors, format_functions, + compute_sigma, sample_points, concatenate_functions, + check_multiplier) from sklearn.utils import _safe_indexing from sklearn.utils.validation import _num_samples, check_is_fitted from sklearn.base import BaseEstimator, clone @@ -16,7 +18,7 @@ class PhiFunction(BaseEstimator, metaclass=ABCMeta): """ - Base class for the phi functions, + Base abstract class for the phi functions, used in the Gibbs et al. method to model the conformity scores. Parameters @@ -36,7 +38,7 @@ class PhiFunction(BaseEstimator, metaclass=ABCMeta): By default ``None``. - marginal_guarantee: bool + bias: bool Add a column of ones to the features, for safety reason (to garanty the marginal coverage, no matter how the other features the ``PhiFunction``object were built). @@ -49,7 +51,7 @@ class PhiFunction(BaseEstimator, metaclass=ABCMeta): Note: Even if it is not always necessary to guarantee the marginal coverage, it can't degrade the prediction intervals. - By default ``True``. + By default ``False``. normalized: bool Whether or not to normalized ``phi(X, y_pred, z)``. Normalization @@ -62,14 +64,17 @@ class PhiFunction(BaseEstimator, metaclass=ABCMeta): By default ``False`` + init_value: Optional[ArrayLike] + Optimization initialisation value. + If ``None``, is sampled from a normal distribution. + + By default ``None``. + Attributes ---------- fit_attributes: Optional[List[str]] Name of attributes set during the ``fit`` method, and required to call - ``transform``. Empty list will result in a ``PhiFunction`` class which - is always fittedd (doesn't need to be fitted). If ``None``, it will - check for a method ``__sklearn_is_fitted__()`` or arguments which ends - with ``'_'``, to check if it is fitted or not. + ``transform``. n_in: int Number of features of ``X`` @@ -79,7 +84,6 @@ class PhiFunction(BaseEstimator, metaclass=ABCMeta): """ fit_attributes: List[str] = ["functions_"] - output_attributes = ["n_in", "n_out", "init_value"] def __init__( self, @@ -118,6 +122,31 @@ def _check_fit_parameters( By default ``None`` """ + + def _check_init_value( + self, init_value: Optional[ArrayLike], n_out: int + ) -> ArrayLike: + """ + Set the ``init_value_`` attribute depending on ``init_value`` argument. + + Parameters + ---------- + init_value : Optional[ArrayLike] + Optimization initialisation value, set at ``PhiFunction`` + initialisation. + n_out : int + Number of dimensions of the ``PhiFunction`` transformation. + + Returns + ------- + ArrayLike + Optimization initialisation value + """ + if init_value is None: + return np.random.normal(0, 1, n_out) + else: + return init_value + def fit( self, X: ArrayLike, @@ -158,35 +187,32 @@ def transform( X: Optional[ArrayLike] = None, y_pred: Optional[ArrayLike] = None, z: Optional[ArrayLike] = None, - disable_marginal_guarantee: bool = False, ) -> NDArray: - check_is_fitted(self, self.fit_attributes) - self._check_transform_parameters() - - params_mapping = {"X": X, "y_pred": y_pred, "z": z} - res = [] - - funct_list = list(self.functions_) - if not disable_marginal_guarantee and self.marginal_guarantee: - funct_list.append(lambda X: np.ones((len(X), 1))) - - for f in funct_list: - params = inspect.signature(f).parameters + """ + Transform ``(X, y_pred, z)`` into an array of shape + ``(n_samples, n_out)`` - used_params = { - p: params_mapping[p] for p in params - if p in params_mapping and params_mapping[p] is not None - } + Parameters + ---------- + X : ArrayLike + Observed samples - if isinstance(f, PhiFunction) and not f.normalized: - used_params["disable_marginal_guarantee"] = True + y_pred : ArrayLike + Target prediction - res.append(np.array(f(**used_params), dtype=float)) + z : ArrayLike + Exogenous variable - if len(res[-1].shape) == 1: - res[-1] = np.expand_dims(res[-1], axis=1) + Returns + ------- + NDArray + Transformation + """ + check_is_fitted(self, self.fit_attributes) - result = np.hstack(res) + params_mapping = {"X": X, "y_pred": y_pred, "z": z} + result = concatenate_functions(self.functions_, params_mapping, + self.multipliers_) if self.normalized: norm = np.linalg.norm(result, axis=1).reshape(-1, 1) result[(abs(norm) == 0)[:, 0], :] = np.ones(result.shape[1]) From 1adf14dcc60e84cea89caeebc7a941ab71ca545f Mon Sep 17 00:00:00 2001 From: Damien Bouet Date: Mon, 10 Jun 2024 16:04:38 +0200 Subject: [PATCH 041/165] MOVE: PhiFunctions into phi_function folder --- .../plot_gibbs2023_simulations.py | 4 +- .../utils => phi_function}/__init__.py | 0 .../ccp_phi_function.py | 0 mapie/regression/ccp_regression.py | 2 + mapie/tests/test_ccp_phi_function.py | 107 +++++---------- mapie/tests/test_ccp_regression.py | 129 ++++++++---------- 6 files changed, 96 insertions(+), 146 deletions(-) rename mapie/{regression/utils => phi_function}/__init__.py (100%) rename mapie/{regression/utils => phi_function}/ccp_phi_function.py (100%) diff --git a/examples/regression/3-scientific-articles/plot_gibbs2023_simulations.py b/examples/regression/3-scientific-articles/plot_gibbs2023_simulations.py index b17dc9e7b..d360fae2f 100644 --- a/examples/regression/3-scientific-articles/plot_gibbs2023_simulations.py +++ b/examples/regression/3-scientific-articles/plot_gibbs2023_simulations.py @@ -34,7 +34,7 @@ import pandas as pd from mapie.conformity_scores import AbsoluteConformityScore from mapie.regression import MapieCCPRegressor, MapieRegressor -from mapie.regression.utils import CustomPhiFunction, GaussianPhiFunction +from mapie.phi_function import CustomPhiFunction, GaussianPhiFunction from scipy.stats import norm from sklearn.linear_model import LinearRegression from sklearn.pipeline import Pipeline @@ -215,7 +215,7 @@ def plot_results(X_test, y_test, n_trials=10, np.array(eval_locs+other_locs).reshape(-1, 1), [eval_scale]*len(eval_locs) + [other_scale]*len(other_locs), ), - marginal_guarantee=True, + bias=True, normalized=False, ) mapie_ccp = MapieCCPRegressor( diff --git a/mapie/regression/utils/__init__.py b/mapie/phi_function/__init__.py similarity index 100% rename from mapie/regression/utils/__init__.py rename to mapie/phi_function/__init__.py diff --git a/mapie/regression/utils/ccp_phi_function.py b/mapie/phi_function/ccp_phi_function.py similarity index 100% rename from mapie/regression/utils/ccp_phi_function.py rename to mapie/phi_function/ccp_phi_function.py diff --git a/mapie/regression/ccp_regression.py b/mapie/regression/ccp_regression.py index a8e281e86..dbfbc7b8a 100644 --- a/mapie/regression/ccp_regression.py +++ b/mapie/regression/ccp_regression.py @@ -14,6 +14,8 @@ from mapie._typing import ArrayLike, NDArray from mapie.conformity_scores import ConformityScore +from ..phi_function.ccp_phi_function import PhiFunction +from ..phi_function import GaussianPhiFunction from ..phi_function.utils import calibrator_optim_objective from mapie.utils import (check_conformity_score, check_estimator_regression, check_lower_upper_bounds, check_null_weight, diff --git a/mapie/tests/test_ccp_phi_function.py b/mapie/tests/test_ccp_phi_function.py index 288670f68..3ad5ad037 100644 --- a/mapie/tests/test_ccp_phi_function.py +++ b/mapie/tests/test_ccp_phi_function.py @@ -6,9 +6,8 @@ import pytest from sklearn.utils.validation import check_is_fitted from sklearn.datasets import make_regression -from mapie.regression.utils import (CustomPhiFunction, GaussianPhiFunction, +from mapie.phi_function import (CustomPhiFunction, GaussianPhiFunction, PolynomialPhiFunction, PhiFunction) -from ..regression.utils.ccp_phi_function import _is_fitted random_state = 1 np.random.seed(random_state) @@ -20,23 +19,24 @@ PHI = [ CustomPhiFunction([lambda X: np.ones((len(X), 1))]), + CustomPhiFunction(None, bias=True), CustomPhiFunction([lambda X: X]), CustomPhiFunction([lambda X: X, lambda z: z]), CustomPhiFunction([lambda X: X, lambda y_pred: y_pred]), - PolynomialPhiFunction(2, "X", marginal_guarantee=True), - PolynomialPhiFunction([1, 2], "X", marginal_guarantee=True), - PolynomialPhiFunction([1, 4, 5], "y_pred", marginal_guarantee=False), - PolynomialPhiFunction([0, 1, 4, 5], "y_pred", marginal_guarantee=False), + PolynomialPhiFunction(2, "X", bias=True), + PolynomialPhiFunction([1, 2], "X", bias=True), + PolynomialPhiFunction([1, 4, 5], "y_pred", bias=False), + PolynomialPhiFunction([0, 1, 4, 5], "y_pred", bias=False), GaussianPhiFunction(4), CustomPhiFunction([lambda X: X, PolynomialPhiFunction(2)]), CustomPhiFunction([lambda X: X, GaussianPhiFunction(2)]), CustomPhiFunction([ - lambda X: X, PolynomialPhiFunction([1, 2], marginal_guarantee=False) + lambda X: X, PolynomialPhiFunction([1, 2], bias=False) ]), ] -# n_out without marginal_guarantee -N_OUT_RAW = [1, 10, 12, 11, 20, 20, 3, 4, 4, 30, 12, 30] +# n_out without bias +N_OUT = [1, 1, 10, 12, 11, 21, 21, 3, 4, 4, 31, 12, 30] GAUSS_NEED_FIT_SETTINGS: List[Dict[str, Any]] = [ { @@ -81,7 +81,7 @@ # ======== CustomPhiFunction ========= @pytest.mark.parametrize("functions", [ - None, lambda X: X, [lambda X: X], + lambda X: X, [lambda X: X], [lambda X: X, PolynomialPhiFunction(2)], [lambda X: X, PolynomialPhiFunction(2), GaussianPhiFunction(2)], ]) @@ -92,23 +92,15 @@ def test_custom_phi_functions(functions: Any) -> None: phi.transform(X) -def test_compound_phi_fitted() -> None: - phi_gauss = GaussianPhiFunction(2) - phi_gauss.fit(X) - phi = CustomPhiFunction([lambda X: X, phi_gauss]) - check_is_fitted(phi, phi.fit_attributes) - phi.transform(X) - - -@pytest.mark.parametrize("phi, n_out_raw", zip(PHI, N_OUT_RAW)) +@pytest.mark.parametrize("phi, n_out_raw", zip(PHI, N_OUT)) def test_phi_n_attributes(phi: PhiFunction, n_out_raw: int) -> None: """ Test that the n_in and n_out attributes are corrects """ - phi.fit(X) + phi.fit(X, y_pred=y, z=z) phi.transform(X, y_pred=y, z=z) assert phi.n_in == 10 - assert phi.n_out == n_out_raw + int(phi.marginal_guarantee) + assert phi.n_out == n_out_raw def test_phi_functions_warning() -> None: @@ -119,6 +111,7 @@ def test_phi_functions_warning() -> None: with pytest.warns(UserWarning, match="WARNING: Unknown optional arguments."): phi = CustomPhiFunction([lambda X, d=d: X**d for d in range(4)]) + phi.fit(X) phi.transform(X) @@ -134,7 +127,8 @@ def test_phi_functions_error(functions: Any) -> None: for f in functions: # For coverage f(np.ones((10, 1)), np.ones((10, 1))) with pytest.raises(ValueError, match=r"Forbidden required argument."): - CustomPhiFunction(functions) + phi = CustomPhiFunction(functions) + phi.fit(X) def test_phi_functions_empty() -> None: @@ -143,24 +137,26 @@ def test_phi_functions_empty() -> None: required arguments different from 'X', 'y_pred' or 'z' raise an error. """ with pytest.raises(ValueError): - CustomPhiFunction([], marginal_guarantee=False) + phi = CustomPhiFunction([], bias=False) + phi.fit(X) # ======== PolynomialPhiFunction ========= def test_poly_phi_init() -> None: """Test that initialization does not crash.""" - PolynomialPhiFunction() + phi = PolynomialPhiFunction() + phi.fit(X) @pytest.mark.parametrize("degree", [2, [0, 1, 3]]) @pytest.mark.parametrize("variable", ["X", "y_pred", "z"]) -@pytest.mark.parametrize("marginal_guarantee", [True, False]) +@pytest.mark.parametrize("bias", [True, False]) @pytest.mark.parametrize("normalized", [True, False]) def test_poly_phi_init_other( - degree: Any, variable: Any, marginal_guarantee: bool, normalized: bool + degree: Any, variable: Any, bias: bool, normalized: bool ) -> None: """Test that initialization does not crash.""" - PolynomialPhiFunction(degree, variable, marginal_guarantee, normalized) + PolynomialPhiFunction(degree, variable, bias, normalized) @pytest.mark.parametrize("var", ["other", 1, np.ones((10, 1))]) @@ -169,7 +165,8 @@ def test_invalid_variable_value(var: Any) -> None: Test that invalid variable value raise error """ with pytest.raises(ValueError): - PolynomialPhiFunction(variable=var) + phi = PolynomialPhiFunction(variable=var) + phi.fit(X) # ======== GaussianPhiFunction ========= @@ -183,15 +180,15 @@ def test_gauss_phi_init() -> None: @pytest.mark.parametrize("sigma", [None, 1, [1, 2]]) @pytest.mark.parametrize("random_sigma", [True, False]) @pytest.mark.parametrize("X", [None, np.ones((30, 2))]) -@pytest.mark.parametrize("marginal_guarantee", [True, False]) +@pytest.mark.parametrize("bias", [True, False]) @pytest.mark.parametrize("normalized", [True, False]) def test_poly_gauss_init_other( points: Any, sigma: Any, random_sigma: Any, X: Any, - marginal_guarantee: bool, normalized: bool + bias: bool, normalized: bool ) -> None: """Test that initialization does not crash.""" GaussianPhiFunction(points, sigma, random_sigma, - marginal_guarantee, normalized) + bias, normalized) @pytest.mark.parametrize("points", [np.ones((10)), @@ -202,7 +199,8 @@ def test_invalid_gauss_points(points: Any) -> None: an error """ with pytest.raises(ValueError, match="Invalid `points` argument."): - GaussianPhiFunction(points) + phi = GaussianPhiFunction(points) + phi.fit(X) def test_invalid_gauss_points_2() -> None: @@ -211,7 +209,8 @@ def test_invalid_gauss_points_2() -> None: an error """ with pytest.raises(ValueError, match="There should have as many points"): - GaussianPhiFunction(points=(np.ones((10, 3)), np.ones((8, 3)))) + phi = GaussianPhiFunction(points=(np.ones((10, 3)), np.ones((8, 3)))) + phi.fit(X) def test_invalid_gauss_points_3() -> None: @@ -220,7 +219,8 @@ def test_invalid_gauss_points_3() -> None: an error """ with pytest.raises(ValueError, match="The standard deviation 2D array"): - GaussianPhiFunction(points=(np.ones((10, 3)), np.ones((10, 2)))) + phi = GaussianPhiFunction(points=(np.ones((10, 3)), np.ones((10, 2)))) + phi.fit(X) @pytest.mark.parametrize("sigma", ["1", @@ -256,42 +256,5 @@ def test_gauss_no_need_calib(ind: int) -> None: completion have ``_need_x_calib`` = ``False`` """ phi = GaussianPhiFunction(**GAUSS_NO_NEED_FIT_SETTINGS[ind]) + phi.fit(X) check_is_fitted(phi, phi.fit_attributes) - - -class ToyClass: - def __init__( - self, - fit_attributes: Optional[Union[List[str], str]] = None, - **kwargs - ) -> None: - self.fit_attributes = fit_attributes - for key, value in kwargs.items(): - setattr(self, key, value) - - -@pytest.mark.parametrize("cls", [ - ToyClass(fit_attributes=None, __sklearn_is_fitted__=lambda: True), - ToyClass(fit_attributes=None, tested_attr_=1), - ToyClass(fit_attributes=["fit_attr"], fit_attr=1), - ToyClass(fit_attributes="fit_attr", fit_attr=1), -]) -def test_is_fitted(cls: ToyClass) -> None: - """ - Test the _is_fitted function - """ - assert _is_fitted(cls, cls.fit_attributes) - - -@pytest.mark.parametrize("cls", [ - ToyClass(fit_attributes=None, __sklearn_is_fitted__=lambda: False), - ToyClass(fit_attributes=None, tested_attr_=None), - ToyClass(fit_attributes=None, __ignored_attr_=1), - ToyClass(fit_attributes=["fit_attr"], tested_attr_=1), - ToyClass(fit_attributes="fit_attr", fit_attr=None), -]) -def test_not_is_fitted(cls: ToyClass) -> None: - """ - Test the _is_fitted function - """ - assert not _is_fitted(cls, cls.fit_attributes) diff --git a/mapie/tests/test_ccp_regression.py b/mapie/tests/test_ccp_regression.py index 11612118a..69db78d0b 100644 --- a/mapie/tests/test_ccp_regression.py +++ b/mapie/tests/test_ccp_regression.py @@ -24,7 +24,7 @@ ResidualNormalisedScore) from mapie.metrics import regression_coverage_score from mapie.regression import MapieCCPRegressor -from mapie.regression.utils import (PhiFunction, CustomPhiFunction, +from mapie.phi_function import (PhiFunction, CustomPhiFunction, GaussianPhiFunction, PolynomialPhiFunction) random_state = 1 @@ -115,7 +115,7 @@ def test_calib_not_complete_phi() -> None: mapie_reg = MapieCCPRegressor( alpha=0.1, phi=CustomPhiFunction([lambda X: (X < 5).astype(int)], - marginal_guarantee=False) + bias=False) ) mapie_reg.fit(X_toy, y_toy) @@ -126,23 +126,12 @@ def test_predict_not_complete_phi() -> None: mapie_reg = MapieCCPRegressor( alpha=0.1, phi=CustomPhiFunction([lambda X: (X < 5).astype(int)], - marginal_guarantee=False) + bias=False) ) mapie_reg.fit(X_toy[X_toy[:, 0] < 5], y_toy[X_toy[:, 0] < 5]) mapie_reg.predict(X_toy) -@pytest.mark.parametrize("estimator", [ - LinearRegression(), - make_pipeline(LinearRegression()), -]) -def test_no_fit_prefit_calibrate(estimator: Any) -> None: - """Test that calibrate without fit, if prefit, raises no errors.""" - estimator.fit(X_toy, y_toy) - mapie_reg = MapieCCPRegressor(estimator, cv="prefit", alpha=0.1) - mapie_reg.fit_calibrator(X_toy, y_toy) - - def test_no_fit_predict() -> None: """Test that predict before fit raises errors.""" mapie_reg = MapieCCPRegressor(alpha=0.1) @@ -209,8 +198,8 @@ def test_default_parameters() -> None: """Test default values of input parameters.""" mapie_reg = MapieCCPRegressor(random_state=random_state, alpha=0.1) mapie_reg.fit(X, y) - assert isinstance(mapie_reg.estimator, RegressorMixin) - assert isinstance(mapie_reg.phi, GaussianPhiFunction) + assert isinstance(mapie_reg.estimator_, RegressorMixin) + assert isinstance(mapie_reg.phi_, GaussianPhiFunction) assert isinstance(mapie_reg.cv, ShuffleSplit) assert mapie_reg.alpha == 0.1 assert isinstance(mapie_reg.conformity_score_, ConformityScore) @@ -296,17 +285,17 @@ def test_fit_calibrate_combined_equivalence( """Test predict output shape.""" (X, y, z) = dataset - cloned_phi = clone(phi) - cloned_phi.fit(X) estimator_1 = clone(estimator) estimator_2 = clone(estimator) if cv == "prefit": estimator_1.fit(X, y) estimator_2.fit(X, y) - mapie_1 = MapieCCPRegressor(estimator=estimator_1, phi=cloned_phi, cv=cv, + np.random.seed(random_state) + mapie_1 = MapieCCPRegressor(estimator=estimator_1, phi=phi, cv=cv, alpha=alpha, random_state=random_state) - mapie_2 = MapieCCPRegressor(estimator=estimator_2, phi=cloned_phi, cv=cv, + np.random.seed(random_state) + mapie_2 = MapieCCPRegressor(estimator=estimator_2, phi=phi, cv=cv, alpha=alpha, random_state=random_state) mapie_1.fit(X, y, z=z) mapie_2.fit_estimator(X, y) @@ -329,7 +318,8 @@ def test_recalibrate_warning() -> None: mapie_reg.fit_calibrator(X_toy, y_toy, alpha=0.2) -@pytest.mark.parametrize("dataset", [(X, y, z), (X_toy, y_toy, z_toy)]) +@pytest.mark.parametrize("dataset", [(X, y, z), (X_toy, y_toy, z_toy), + (X, y, None), (X_toy, y_toy, None)]) @pytest.mark.parametrize("phi", PHI) @pytest.mark.parametrize("cv", CV) @pytest.mark.parametrize("estimator", [ @@ -348,12 +338,9 @@ def test_recalibrate( if cv == "prefit": estimator.fit(X, y) - cloned_phi = clone(phi) - cloned_phi.fit(X) - - mapie_1 = MapieCCPRegressor(estimator=estimator, phi=cloned_phi, cv=cv, + mapie_1 = MapieCCPRegressor(estimator=estimator, phi=phi, cv=cv, alpha=0.2, random_state=random_state) - mapie_2 = MapieCCPRegressor(estimator=estimator, phi=cloned_phi, cv=cv, + mapie_2 = MapieCCPRegressor(estimator=estimator, phi=phi, cv=cv, alpha=0.1, random_state=random_state) mapie_1.fit(X, y, z=z) mapie_2.fit(X, y, z=z) @@ -367,7 +354,7 @@ def test_recalibrate( mapie_2.fit_calibrator(X, y, z=z, alpha=0.2) y_pred_2, y_pis_2 = mapie_2.predict(X, z) np.testing.assert_allclose(y_pred_1, y_pred_2) - np.testing.assert_allclose(y_pis_1[:, 0, 0], y_pis_2[:, 0, 0]) + np.testing.assert_allclose(y_pis_1[:, 0, 0], y_pis_2[:, 0, 0], ) np.testing.assert_allclose(y_pis_1[:, 1, 0], y_pis_2[:, 1, 0]) @@ -387,7 +374,7 @@ def test_predict_output_shape_alpha( if cv == "prefit": estimator.fit(X, y) - mapie_reg = MapieCCPRegressor(estimator=estimator, phi=clone(phi), cv=cv, + mapie_reg = MapieCCPRegressor(estimator=estimator, phi=phi, cv=cv, alpha=0.1, random_state=random_state) mapie_reg.fit(X, y, z=z) y_pred, y_pis = mapie_reg.predict(X, z) @@ -411,7 +398,7 @@ def test_predict_output_shape_no_alpha( if cv == "prefit": estimator.fit(X, y) - mapie_reg = MapieCCPRegressor(estimator=estimator, phi=clone(phi), cv=cv, + mapie_reg = MapieCCPRegressor(estimator=estimator, phi=phi, cv=cv, alpha=None, random_state=random_state) mapie_reg.fit(X, y, z=z) y_pred = mapie_reg.predict(X, z) @@ -419,15 +406,14 @@ def test_predict_output_shape_no_alpha( @pytest.mark.parametrize("dataset", [(X, y, z), (X_toy, y_toy, z_toy)]) -@pytest.mark.parametrize("phi", PHI) -@pytest.mark.parametrize("estimator_1, estimator_2", zip(*[[ - LinearRegression(), - make_pipeline(LinearRegression()), - ]]*2) -) +@pytest.mark.parametrize("phi_template", PHI) +@pytest.mark.parametrize("estimator", [ + LinearRegression(), + make_pipeline(LinearRegression()), +]) def test_same_results_prefit_split( - dataset: Tuple[NDArray, NDArray, NDArray], phi: PhiFunction, - estimator_1: RegressorMixin, estimator_2: RegressorMixin + dataset: Tuple[NDArray, NDArray, NDArray], phi_template: PhiFunction, + estimator: RegressorMixin, ) -> None: """ Test checking that if split and prefit method have exactly @@ -435,25 +421,33 @@ def test_same_results_prefit_split( """ (X, y, z) = dataset cv = ShuffleSplit(n_splits=1, test_size=0.1, random_state=random_state) - train_index, val_index = list(cv.split(X))[0] + train_index, _ = list(cv.split(X))[0] + test_fold = np.ones(len(X)) + test_fold[train_index] = -1 + + pred_cv = PredefinedSplit(test_fold) + train_index, val_index = list(pred_cv.split(X, y))[0] X_train, X_calib = X[train_index], X[val_index] y_train, y_calib = y[train_index], y[val_index] z_calib = z[val_index] - cloned_phi = clone(phi) - cloned_phi.fit(X) + phi = clone(phi_template) + phi.fit(X) + phi.init_value = phi.init_value_ + if isinstance(phi, GaussianPhiFunction): + phi.points = (phi.points_, phi.sigmas_) - mapie_reg = MapieCCPRegressor(estimator=estimator_1, phi=cloned_phi, cv=cv, + mapie_reg = MapieCCPRegressor(estimator=estimator, phi=phi, cv=pred_cv, alpha=0.1, random_state=random_state) mapie_reg.fit(X, y, z=z) y_pred_1, y_pis_1 = mapie_reg.predict(X, z) - estimator_2.fit(X_train, y_train) + estimator.fit(X_train, y_train) mapie_reg = MapieCCPRegressor( - estimator=estimator_2, phi=cloned_phi, cv="prefit", alpha=0.1, + estimator=estimator, phi=phi, cv="prefit", alpha=0.1, random_state=random_state ) - mapie_reg.fit_calibrator(X_calib, y_calib, z=z_calib) + mapie_reg.fit(X_calib, y_calib, z=z_calib) y_pred_2, y_pis_2 = mapie_reg.predict(X, z) np.testing.assert_allclose(y_pred_1, y_pred_2) @@ -479,15 +473,15 @@ def test_results_for_ordered_alpha( (X, y, z) = dataset if cv == "prefit": estimator.fit(X, y) - cloned_phi = clone(phi) - cloned_phi.fit(X) + + phi.fit(X) - mapie_reg_1 = MapieCCPRegressor(estimator=estimator, phi=cloned_phi, cv=cv, + mapie_reg_1 = MapieCCPRegressor(estimator=estimator, phi=phi, cv=cv, alpha=0.05, random_state=random_state) mapie_reg_1.fit(X, y, z=z) _, y_pis_1 = mapie_reg_1.predict(X, z) - mapie_reg_2 = MapieCCPRegressor(estimator=estimator, phi=cloned_phi, cv=cv, + mapie_reg_2 = MapieCCPRegressor(estimator=estimator, phi=phi, cv=cv, alpha=0.1, random_state=random_state) mapie_reg_2.fit(X, y, z=z) _, y_pis_2 = mapie_reg_1.predict(X, z) @@ -498,22 +492,14 @@ def test_results_for_ordered_alpha( @pytest.mark.parametrize("dataset", [(X, y, z), (X_toy, y_toy, z_toy)]) @pytest.mark.parametrize("cv", CV) -@pytest.mark.parametrize("estimator1, estimator2, estimator3", zip([ - LinearRegression(), - make_pipeline(LinearRegression()), -], [ - LinearRegression(), - make_pipeline(LinearRegression()), -], [ +@pytest.mark.parametrize("estimator", [ LinearRegression(), make_pipeline(LinearRegression()), -])) +]) def test_results_with_constant_sample_weights( dataset: Tuple[NDArray, NDArray, NDArray], cv: Any, - estimator1: RegressorMixin, - estimator2: RegressorMixin, - estimator3: RegressorMixin, + estimator: RegressorMixin, ) -> None: """ Test predictions when sample weights are None @@ -521,19 +507,18 @@ def test_results_with_constant_sample_weights( """ (X, y, z) = dataset if cv == "prefit": - estimator1.fit(X, y) - estimator2.fit(X, y) - estimator3.fit(X, y) + estimator.fit(X, y) - cloned_phi = clone(PHI[0]) - cloned_phi.fit(X) + phi = PHI[0] + phi.fit(X) + phi.init_value = phi.init_value_ n_samples = len(X) - mapie0 = MapieCCPRegressor(estimator=estimator1, phi=cloned_phi, + mapie0 = MapieCCPRegressor(estimator=estimator, phi=phi, cv=cv, alpha=0.1, random_state=random_state) - mapie1 = MapieCCPRegressor(estimator=estimator2, phi=cloned_phi, + mapie1 = MapieCCPRegressor(estimator=estimator, phi=phi, cv=cv, alpha=0.1, random_state=random_state) - mapie2 = MapieCCPRegressor(estimator=estimator3, phi=cloned_phi, + mapie2 = MapieCCPRegressor(estimator=estimator, phi=phi, cv=cv, alpha=0.1, random_state=random_state) mapie0.fit(X, y, z=z, sample_weight=None) @@ -570,7 +555,7 @@ def test_prediction_between_low_up( if cv == "prefit": estimator.fit(X, y) - mapie = MapieCCPRegressor(estimator=estimator, phi=clone(phi), cv=cv, + mapie = MapieCCPRegressor(estimator=estimator, phi=phi, cv=cv, alpha=alpha, random_state=random_state) mapie.fit(X, y, z=z) @@ -589,7 +574,7 @@ def test_prediction_between_low_up( @pytest.mark.parametrize("phi", PHI[:2]) @pytest.mark.parametrize("cv", CV) -@pytest.mark.parametrize("alpha", [0.2, 0.1]) +@pytest.mark.parametrize("alpha", [0.2]) @pytest.mark.parametrize("estimator", [ LinearRegression(), make_pipeline(LinearRegression()), @@ -611,8 +596,8 @@ def test_linear_data_confidence_interval( if cv == "prefit": estimator.fit(X_toy, y_toy) - mapie = MapieCCPRegressor(estimator=estimator, phi=clone(phi), cv=cv, - alpha=alpha, random_state=random_state) + mapie = MapieCCPRegressor(estimator=estimator, phi=phi, + cv=cv, alpha=alpha, random_state=random_state) mapie.fit(X_toy, y_toy, z=z_toy) y_pred, y_pis = mapie.predict(X_toy, z=z_toy) @@ -695,7 +680,7 @@ def test_conformity_score( mapie_reg = MapieCCPRegressor( estimator=estimator, - phi=clone(phi), + phi=phi, cv=cv, alpha=0.1, conformity_score=conformity_score, From ec4ce1006b226a43b0584fcad55a22d86fe4e4d4 Mon Sep 17 00:00:00 2001 From: Damien Bouet Date: Mon, 10 Jun 2024 16:39:31 +0200 Subject: [PATCH 042/165] FIX: Coverage --- mapie/phi_function/ccp_phi_function.py | 82 ++++++++++++-------------- mapie/phi_function/utils.py | 69 +++++----------------- mapie/regression/ccp_regression.py | 13 ++-- mapie/tests/test_ccp_phi_function.py | 7 ++- mapie/tests/test_ccp_regression.py | 4 +- 5 files changed, 65 insertions(+), 110 deletions(-) diff --git a/mapie/phi_function/ccp_phi_function.py b/mapie/phi_function/ccp_phi_function.py index 9d94910e1..46b0f47db 100644 --- a/mapie/phi_function/ccp_phi_function.py +++ b/mapie/phi_function/ccp_phi_function.py @@ -1,16 +1,13 @@ from __future__ import annotations from abc import ABCMeta, abstractmethod -import inspect -from typing import (Iterable, Callable, Optional, Tuple, Union, - cast, Dict, List, Any) +from typing import Iterable, Callable, Optional, Tuple, Union, List import warnings import numpy as np from mapie._typing import ArrayLike, NDArray from .utils import (compile_functions_warnings_errors, format_functions, - compute_sigma, sample_points, concatenate_functions, - check_multiplier) + compute_sigma, sample_points, concatenate_functions) from sklearn.utils import _safe_indexing from sklearn.utils.validation import _num_samples, check_is_fitted from sklearn.base import BaseEstimator, clone @@ -96,7 +93,7 @@ def __init__( self.bias = bias self.normalized = normalized self.init_value = init_value - + @abstractmethod def _check_fit_parameters( self, @@ -152,7 +149,7 @@ def fit( X: ArrayLike, y_pred: Optional[ArrayLike] = None, z: Optional[ArrayLike] = None, - ) -> None: + ) -> PhiFunction: """ Fit function : Set all the necessary attributes to be able to transform ``(X, y_pred, z)`` into the expected transformation. @@ -181,6 +178,7 @@ def fit( self.n_in = len(_safe_indexing(X, 0)) self.n_out = len(_safe_indexing(result, 0)) self.init_value_ = self._check_init_value(self.init_value, self.n_out) + return self def transform( self, @@ -211,8 +209,7 @@ def transform( check_is_fitted(self, self.fit_attributes) params_mapping = {"X": X, "y_pred": y_pred, "z": z} - result = concatenate_functions(self.functions_, params_mapping, - self.multipliers_) + result = concatenate_functions(self.functions_, params_mapping) if self.normalized: norm = np.linalg.norm(result, axis=1).reshape(-1, 1) result[(abs(norm) == 0)[:, 0], :] = np.ones(result.shape[1]) @@ -311,7 +308,7 @@ class CustomPhiFunction(PhiFunction): Examples -------- >>> import numpy as np - >>> from mapie.regression.utils import CustomPhiFunction + >>> from mapie.phi_function import CustomPhiFunction >>> X = np.array([[1, 2], [3, 4], [5, 6]]) >>> y_pred = np.array([0, 0, 1]) >>> phi = CustomPhiFunction( @@ -320,13 +317,13 @@ class CustomPhiFunction(PhiFunction): ... lambda y_pred: y_pred, # y_pred ... ], ... normalized=False, - ... ) + ... ).fit(X, y_pred) >>> print(phi.transform(X, y_pred)) - [[1. 2. 0. 1.] - [3. 4. 0. 1.] - [0. 0. 1. 1.]] + [[1. 2. 0.] + [3. 4. 0.] + [0. 0. 1.]] >>> print(phi.n_out) - 4 + 3 """ fit_attributes: List[str] = ["is_fitted_"] @@ -337,10 +334,7 @@ def __init__( normalized: bool = False, init_value: Optional[ArrayLike] = None, ) -> None: - self.functions = functions - self.bias = bias - self.normalized = normalized - self.init_value = init_value + super().__init__(functions, bias, normalized, init_value) def _check_fit_parameters( self, @@ -379,7 +373,7 @@ def fit( X: ArrayLike, y_pred: Optional[ArrayLike] = None, z: Optional[ArrayLike] = None, - ) -> None: + ) -> CustomPhiFunction: """ Fit function : Set all the necessary attributes to be able to transform ``(X, y_pred, z)`` into the expected transformation. @@ -414,6 +408,7 @@ def fit( self.n_in = len(_safe_indexing(X, 0)) self.n_out = len(_safe_indexing(result, 0)) self.init_value_ = self._check_init_value(self.init_value, self.n_out) + return self class PolynomialPhiFunction(PhiFunction): @@ -496,18 +491,18 @@ class PolynomialPhiFunction(PhiFunction): Examples -------- >>> import numpy as np - >>> from mapie.regression.utils import PolynomialPhiFunction + >>> from mapie.phi_function import PolynomialPhiFunction >>> X = np.array([[1, 2], [3, 4], [5, 6]]) >>> y_pred = np.array([1, 2, 3]) - >>> phi = PolynomialPhiFunction(3) + >>> phi = PolynomialPhiFunction(3).fit(X, y_pred) >>> print(phi.transform(X, y_pred)) [[ 1. 2. 1. 4. 1. 8. 1.] [ 3. 4. 9. 16. 27. 64. 1.] [ 5. 6. 25. 36. 125. 216. 1.]] - >>> print(phi.degrees) + >>> print(phi.exponents) [0, 1, 2, 3] >>> phi = PolynomialPhiFunction([1, 2, 5], "y_pred", - ... bias=False) + ... bias=False).fit(X, y_pred) >>> print(phi.transform(X, y_pred)) [[ 1. 1. 1.] [ 2. 4. 32.] @@ -542,14 +537,15 @@ def _convert_degree( degree: Union[int, List[int]] If ``degree``is an integer, it correspond to the degree of the polynomial features transformer. It will create the features - ``1``, ``variable``, ``variable``**2, ..., ``variable``**``degree``. + ``1``, ``variable``, ``variable``**2, ..., + ``variable``**``degree``. - If ``degree``is an iterable of integers, it will create the features - ``variable``**d, for all integer d in ``degree`` + If ``degree``is an iterable of integers, it will create the + features ``variable``**d, for all integer d in ``degree`` ``variable`` may be ``X``, ``y_pred`` or ``z``, depending on the ``variable``argument value. - + If ``None``, it will default to ``degree=1``. By default ``None``. @@ -559,9 +555,9 @@ def _convert_degree( (to garanty the marginal coverage, no matter how the other features the ``PhiFunction``object were built). If the ``PhiFunction``object definition covers all the dataset - (meaning, for all calibration and test samples, ``phi(X, y_pred, z)`` - is never all zeros), this column of ones is not necessary - to obtain marginal coverage. + (meaning, for all calibration and test samples, + ``phi(X, y_pred, z)`` is never all zeros), this column of ones + is not necessary to obtain marginal coverage. In this case, you can set this argument to ``False``. Note: Even if it is not always necessary to guarantee the marginal @@ -573,7 +569,7 @@ def _convert_degree( - List of exponents (the exponent ``0`` will be replaced by ``bias=True``, which is equivalent. It is useless to add as many columns of ones as dimensions of ``X``. Only one is enough.) - - new ``bias`` value. + - new ``bias`` value. """ if degree is None: exponents = [0, 1] @@ -581,8 +577,8 @@ def _convert_degree( exponents = list(range(degree+1)) else: exponents = degree - - return [d for d in exponents if d!= 0], (0 in exponents) or bias + + return exponents, (0 in exponents) or bias def _create_functions( self, exponents: List[int], variable: str @@ -600,15 +596,14 @@ def _create_functions( Variable on which to apply the exponents. """ if variable == "X": - return [lambda X, d=d: X**d for d in exponents] + return [lambda X, d=d: X**d for d in exponents if d != 0] elif variable == "y_pred": - return [lambda y_pred, d=d: y_pred**d for d in exponents] + return [lambda y_pred, d=d: y_pred**d for d in exponents if d != 0] elif variable == "z": - return [lambda z, d=d: z**d for d in exponents] + return [lambda z, d=d: z**d for d in exponents if d != 0] else: raise ValueError("variable must be 'X', 'y_pred' or 'z'") - def _check_fit_parameters( self, X: ArrayLike, @@ -774,12 +769,11 @@ class GaussianPhiFunction(PhiFunction): Examples -------- >>> import numpy as np - >>> from mapie.regression.utils import GaussianPhiFunction + >>> from mapie.phi_function import GaussianPhiFunction >>> np.random.seed(1) >>> X = np.array([[1], [2], [3], [4], [5]]) >>> phi = GaussianPhiFunction(2, bias=False, - ... normalized=False) - >>> phi.fit(X) + ... normalized=False).fit(X) >>> print(np.round(phi.transform(X), 2)) [[0.14 0.61] [0.61 1. ] @@ -792,7 +786,7 @@ class GaussianPhiFunction(PhiFunction): >>> print(phi.sigmas_) [[1.] [1.]] - >>> phi = GaussianPhiFunction([[3],[4]], 0.5) + >>> phi = GaussianPhiFunction([[3],[4]], 0.5).fit(X) >>> print(np.round(phi.transform(X), 2)) [[1. 0. ] [1. 0. ] @@ -810,7 +804,7 @@ class GaussianPhiFunction(PhiFunction): def __init__( self, - points: Optional[Union[int, ArrayLike, + points: Optional[Union[int, ArrayLike, Tuple[ArrayLike, ArrayLike]]] = None, sigma: Optional[Union[float, ArrayLike]] = None, random_sigma: Optional[bool] = None, @@ -910,4 +904,4 @@ def _check_fit_parameters( np.exp(-0.5 * np.sum(((X - mu) / sigma) ** 2, axis=1)) for i in range(_num_samples(self.points_)) ] - self.functions_ = format_functions(functions, self.bias) \ No newline at end of file + self.functions_ = format_functions(functions, self.bias) diff --git a/mapie/phi_function/utils.py b/mapie/phi_function/utils.py index e966dbbfa..c1bb62d23 100644 --- a/mapie/phi_function/utils.py +++ b/mapie/phi_function/utils.py @@ -1,15 +1,14 @@ from __future__ import annotations -from abc import ABCMeta, abstractmethod import inspect import numpy as np from typing import (Iterable, Callable, Optional, Tuple, Union, - cast, Dict, List, Any) + cast, Dict, List) from mapie._typing import ArrayLike, NDArray import warnings from sklearn.utils import _safe_indexing from sklearn.utils.validation import _num_samples -from sklearn.metrics import mean_pinball_loss + def format_functions( functions: Optional[Union[Callable, Iterable[Callable]]], @@ -62,10 +61,11 @@ def format_functions( functions.append(lambda X: np.ones((_num_samples(X), 1))) if (len(functions) == 0): raise ValueError("You need to define the `functions` argument " - "with a function or a list of functions, " - "or keep bias argument to True.") + "with a function or a list of functions, " + "or keep bias argument to True.") return functions + def compile_functions_warnings_errors( functions: List[Callable] ) -> None: @@ -90,7 +90,7 @@ def compile_functions_warnings_errors( arguments ('X', 'y_pred', 'z'). Unknown optional arguments are allowed, but will always use their default values. """ - + warn_ind: Dict[str, List[int]] = {} error_ind: Dict[str, List[int]] = {} for i, funct in enumerate(functions): @@ -281,18 +281,20 @@ def compute_sigma( sigmas_ 2D NDArray of standard deviation values """ + # If each point has a corresponding sigma value if isinstance(points, tuple): sigmas_ = np.array(points[1]) if len(sigmas_.shape) == 1: sigmas_ = sigmas_.reshape(-1, 1) + # If sigma is not defined elif sigma is None: sigmas_ = np.ones((_num_samples(points_), 1))*np.std( np.array(X), axis=0)/(_num_samples(points_)**0.5) + # If sigma is defined elif isinstance(points, int): sigmas_ = _init_sigmas(sigma, points) - elif len(np.array(points).shape) == 2: + else: sigmas_ = _init_sigmas(sigma, _num_samples(points)) - if random_sigma: n = _num_samples(points_) @@ -331,7 +333,7 @@ def _init_sigmas( else: if len(np.array(sigma).shape) != 1: raise ValueError("sigma argument should be a float " - "or a 1D array of floats.") + "or a 1D array of floats.") return np.ones((n_points, 1))*np.array(sigma) @@ -366,8 +368,7 @@ def dynamic_arguments_call(f: Callable, params_mapping: Dict) -> NDArray: def concatenate_functions( - functions: List[Callable], params_mapping: Dict, - multipliers: List[Callable] + functions: List[Callable], params_mapping: Dict ) -> NDArray: """ Call the function of ``functions``, with the @@ -387,49 +388,9 @@ def concatenate_functions( Concatenated result """ # Compute phi(X, y_pred, z) - result = np.hstack([ + return np.hstack([ dynamic_arguments_call(f, params_mapping) for f in functions ]) - # Multiply the result by each multiplier function - for f in multipliers: - result *= dynamic_arguments_call(f, params_mapping) - return result - - - -def check_multiplier( - multipliers: List[Callable], - X: Optional[ArrayLike] = None, - y_pred: Optional[ArrayLike] = None, - z: Optional[ArrayLike] = None, -) -> None: - """ - Check is ``funct`` is a valid ``multiplier`` argument - - Parameters - ---------- - multipliers : List[Callable] - function which sould return an array of shape (n_samples, 1) or - (n_samples, ) - - X : ArrayLike - Observed samples - - y_pred : ArrayLike - Target prediction - - z : ArrayLike - Exogenous variable - """ - if multipliers is None: - return - params_mapping = {"X": X, "y_pred": y_pred, "z": z} - for f in multipliers: - res = concatenate_functions([f], params_mapping) - if res.shape != (_num_samples(X), 1): - raise ValueError("The function used as multiplier should return an" - "array of shape n_samples, 1) or (n_samples, ).\n" - f"Got shape = {res.shape}.") def fast_mean_pinball_loss( @@ -457,7 +418,7 @@ def fast_mean_pinball_loss( Returns ------- - loss : float + loss : float Weighted average of all output errors. The pinball loss output is a non-negative floating point. The best value is 0.0. @@ -531,4 +492,4 @@ def calibrator_optim_objective( return fast_mean_pinball_loss( y_true=conformity_scores, y_pred=phi_x.dot(beta), alpha=q, sample_weight=sample_weight, - ) \ No newline at end of file + ) diff --git a/mapie/regression/ccp_regression.py b/mapie/regression/ccp_regression.py index dbfbc7b8a..03e1fcd37 100644 --- a/mapie/regression/ccp_regression.py +++ b/mapie/regression/ccp_regression.py @@ -135,11 +135,11 @@ class MapieCCPRegressor(BaseEstimator, RegressorMixin): >>> print(np.round(y_pred[:5], 2)) [ 0.43 4.43 8.43 12.43 16.43] >>> print(np.round(y_pis[:5,:, 0], 2)) - [[ 0.07 0.79] - [ 4.03 4.83] + [[ 0.02 0.83] + [ 4.01 4.85] [ 8. 8.86] - [11.98 12.89] - [15.97 16.9 ]] + [11.99 12.87] + [15.98 16.89]] """ default_sym_ = True @@ -274,7 +274,6 @@ def _check_calibrate_parameters(self) -> None: self.alpha = self._check_alpha(self.alpha) self.phi_ = self._check_phi(self.phi) - def _check_cv( self, cv: Optional[Union[str, BaseCrossValidator, BaseShuffleSplit]] = None, @@ -501,7 +500,7 @@ def fit_calibrator( ( X_calib, y_calib, sample_weight_calib ) = self._safe_sample(X, y, sample_weight, calib_index) - + if z is not None: ( z_calib, _, _ @@ -532,7 +531,7 @@ def fit_calibrator( else: q_low = self.alpha / 2 q_up = 1 - self.alpha / 2 - + if self.random_state is None: warnings.warn("WARNING: The method implemented in " "MapieCCPRegressor has a stochastic behavior. " diff --git a/mapie/tests/test_ccp_phi_function.py b/mapie/tests/test_ccp_phi_function.py index 3ad5ad037..37db1d7d5 100644 --- a/mapie/tests/test_ccp_phi_function.py +++ b/mapie/tests/test_ccp_phi_function.py @@ -1,13 +1,13 @@ from __future__ import annotations -from typing import Any, List, Dict, Optional, Union +from typing import Any, List, Dict import numpy as np import pytest from sklearn.utils.validation import check_is_fitted from sklearn.datasets import make_regression from mapie.phi_function import (CustomPhiFunction, GaussianPhiFunction, - PolynomialPhiFunction, PhiFunction) + PolynomialPhiFunction, PhiFunction) random_state = 1 np.random.seed(random_state) @@ -27,6 +27,7 @@ PolynomialPhiFunction([1, 2], "X", bias=True), PolynomialPhiFunction([1, 4, 5], "y_pred", bias=False), PolynomialPhiFunction([0, 1, 4, 5], "y_pred", bias=False), + PolynomialPhiFunction([0, 1, 3], "z", bias=False), GaussianPhiFunction(4), CustomPhiFunction([lambda X: X, PolynomialPhiFunction(2)]), CustomPhiFunction([lambda X: X, GaussianPhiFunction(2)]), @@ -36,7 +37,7 @@ ] # n_out without bias -N_OUT = [1, 1, 10, 12, 11, 21, 21, 3, 4, 4, 31, 12, 30] +N_OUT = [1, 1, 10, 12, 11, 21, 21, 3, 4, 5, 4, 31, 12, 30] GAUSS_NEED_FIT_SETTINGS: List[Dict[str, Any]] = [ { diff --git a/mapie/tests/test_ccp_regression.py b/mapie/tests/test_ccp_regression.py index 69db78d0b..967af110b 100644 --- a/mapie/tests/test_ccp_regression.py +++ b/mapie/tests/test_ccp_regression.py @@ -25,7 +25,7 @@ from mapie.metrics import regression_coverage_score from mapie.regression import MapieCCPRegressor from mapie.phi_function import (PhiFunction, CustomPhiFunction, - GaussianPhiFunction, PolynomialPhiFunction) + GaussianPhiFunction, PolynomialPhiFunction) random_state = 1 np.random.seed(random_state) @@ -473,7 +473,7 @@ def test_results_for_ordered_alpha( (X, y, z) = dataset if cv == "prefit": estimator.fit(X, y) - + phi.fit(X) mapie_reg_1 = MapieCCPRegressor(estimator=estimator, phi=phi, cv=cv, From b8be35e5a10b7218e9dd7bfe5df4ad99447838c0 Mon Sep 17 00:00:00 2001 From: Damien Bouet Date: Mon, 10 Jun 2024 17:11:44 +0200 Subject: [PATCH 043/165] ADD: PhiFunction multiplication --- mapie/phi_function/ccp_phi_function.py | 48 ++++++++++++++++++++++++-- mapie/phi_function/utils.py | 45 ++++++++++++++++++++++-- 2 files changed, 88 insertions(+), 5 deletions(-) diff --git a/mapie/phi_function/ccp_phi_function.py b/mapie/phi_function/ccp_phi_function.py index 46b0f47db..ef719e24e 100644 --- a/mapie/phi_function/ccp_phi_function.py +++ b/mapie/phi_function/ccp_phi_function.py @@ -7,7 +7,8 @@ import numpy as np from mapie._typing import ArrayLike, NDArray from .utils import (compile_functions_warnings_errors, format_functions, - compute_sigma, sample_points, concatenate_functions) + compute_sigma, sample_points, concatenate_functions, + check_multiplier) from sklearn.utils import _safe_indexing from sklearn.utils.validation import _num_samples, check_is_fitted from sklearn.base import BaseEstimator, clone @@ -88,11 +89,13 @@ def __init__( bias: bool = False, normalized: bool = False, init_value: Optional[ArrayLike] = None, + multipliers: Optional[List[Callable]] = None, ) -> None: self.functions = functions self.bias = bias self.normalized = normalized self.init_value = init_value + self.multipliers = multipliers @abstractmethod def _check_fit_parameters( @@ -178,6 +181,7 @@ def fit( self.n_in = len(_safe_indexing(X, 0)) self.n_out = len(_safe_indexing(result, 0)) self.init_value_ = self._check_init_value(self.init_value, self.n_out) + check_multiplier(self.multipliers, X, y_pred, z) return self def transform( @@ -209,7 +213,8 @@ def transform( check_is_fitted(self, self.fit_attributes) params_mapping = {"X": X, "y_pred": y_pred, "z": z} - result = concatenate_functions(self.functions_, params_mapping) + result = concatenate_functions(self.functions_, params_mapping, + self.multipliers) if self.normalized: norm = np.linalg.norm(result, axis=1).reshape(-1, 1) result[(abs(norm) == 0)[:, 0], :] = np.ones(result.shape[1]) @@ -234,6 +239,38 @@ def __call__( ) -> NDArray: return self.transform(X, y_pred, z) + def __mul__(self, funct: Optional[Callable]): + """ + Multiply a ``PhiFunction`` with another function. + This other function should return an array of shape (n_samples, 1) + or (n_samples, ) + + Parameters + ---------- + funct : Optional[Callable] + function which should return an array of shape (n_samples, 1) + or (n_samples, ) + + Returns + ------- + PhiFunction + self, with ``funct`` as a multiplier + """ + if funct is None: + return funct + else: + compile_functions_warnings_errors([funct]) + new_phi = clone(self) + if new_phi.multipliers is None: + new_phi.multipliers = [funct] + else: + new_phi.multipliers.append(funct) + return new_phi + + def __rmul__(self, other): + return self.__mul__(other) + + class CustomPhiFunction(PhiFunction): """ This class is used to define the transformation phi, @@ -333,8 +370,9 @@ def __init__( bias: bool = False, normalized: bool = False, init_value: Optional[ArrayLike] = None, + multipliers: Optional[List[Callable]] = None, ) -> None: - super().__init__(functions, bias, normalized, init_value) + super().__init__(functions, bias, normalized, init_value, multipliers) def _check_fit_parameters( self, @@ -519,12 +557,14 @@ def __init__( bias: bool = False, normalized: bool = False, init_value: Optional[ArrayLike] = None, + multipliers: Optional[List[Callable]] = None, ) -> None: self.degree = degree self.variable = variable self.bias = bias self.normalized = normalized self.init_value = init_value + self.multipliers = multipliers def _convert_degree( self, degree: Optional[Union[int, List[int]]], bias: bool @@ -811,6 +851,7 @@ def __init__( bias: bool = False, normalized: bool = True, init_value: Optional[ArrayLike] = None, + multipliers: Optional[List[Callable]] = None, ) -> None: self.points = points self.sigma = sigma @@ -818,6 +859,7 @@ def __init__( self.bias = bias self.normalized = normalized self.init_value = init_value + self.multipliers = multipliers def _check_random_sigma(self) -> bool: """ diff --git a/mapie/phi_function/utils.py b/mapie/phi_function/utils.py index c1bb62d23..a76b81d33 100644 --- a/mapie/phi_function/utils.py +++ b/mapie/phi_function/utils.py @@ -368,7 +368,8 @@ def dynamic_arguments_call(f: Callable, params_mapping: Dict) -> NDArray: def concatenate_functions( - functions: List[Callable], params_mapping: Dict + functions: List[Callable], params_mapping: Dict, + multipliers: Optional[List[Callable]] ) -> NDArray: """ Call the function of ``functions``, with the @@ -388,9 +389,49 @@ def concatenate_functions( Concatenated result """ # Compute phi(X, y_pred, z) - return np.hstack([ + result = np.hstack([ dynamic_arguments_call(f, params_mapping) for f in functions ]) + # Multiply the result by each multiplier function + if multipliers is not None: + for f in multipliers: + result *= dynamic_arguments_call(f, params_mapping) + return result + + +def check_multiplier( + multipliers: Optional[List[Callable]], + X: Optional[ArrayLike] = None, + y_pred: Optional[ArrayLike] = None, + z: Optional[ArrayLike] = None, +) -> None: + """ + Check is ``funct`` is a valid ``multiplier`` argument + + Parameters + ---------- + multipliers : List[Callable] + function which sould return an array of shape (n_samples, 1) or + (n_samples, ) + + X : ArrayLike + Observed samples + + y_pred : ArrayLike + Target prediction + + z : ArrayLike + Exogenous variable + """ + if multipliers is None: + return + params_mapping = {"X": X, "y_pred": y_pred, "z": z} + for f in multipliers: + res = dynamic_arguments_call(f, params_mapping) + if res.shape != (_num_samples(X), 1): + raise ValueError("The function used as multiplier should return an" + "array of shape n_samples, 1) or (n_samples, ).\n" + f"Got shape = {res.shape}.") def fast_mean_pinball_loss( From 99ea3fe5795cb1101d1c211067913b7a25e7695e Mon Sep 17 00:00:00 2001 From: Damien Bouet Date: Mon, 10 Jun 2024 17:47:03 +0200 Subject: [PATCH 044/165] FIX: coverage --- mapie/phi_function/ccp_phi_function.py | 7 ++++--- mapie/tests/test_ccp_phi_function.py | 8 ++++++-- 2 files changed, 10 insertions(+), 5 deletions(-) diff --git a/mapie/phi_function/ccp_phi_function.py b/mapie/phi_function/ccp_phi_function.py index ef719e24e..834358caf 100644 --- a/mapie/phi_function/ccp_phi_function.py +++ b/mapie/phi_function/ccp_phi_function.py @@ -239,7 +239,7 @@ def __call__( ) -> NDArray: return self.transform(X, y_pred, z) - def __mul__(self, funct: Optional[Callable]): + def __mul__(self, funct: Optional[Callable]) -> PhiFunction: """ Multiply a ``PhiFunction`` with another function. This other function should return an array of shape (n_samples, 1) @@ -257,7 +257,7 @@ def __mul__(self, funct: Optional[Callable]): self, with ``funct`` as a multiplier """ if funct is None: - return funct + return self else: compile_functions_warnings_errors([funct]) new_phi = clone(self) @@ -267,7 +267,7 @@ def __mul__(self, funct: Optional[Callable]): new_phi.multipliers.append(funct) return new_phi - def __rmul__(self, other): + def __rmul__(self, other) -> PhiFunction: return self.__mul__(other) @@ -440,6 +440,7 @@ def fit( for phi in self.functions_: if isinstance(phi, PhiFunction): phi.fit(X) + check_multiplier(phi.multipliers, X, y_pred, z) self.is_fitted_ = True result = self.transform(X, y_pred, z) diff --git a/mapie/tests/test_ccp_phi_function.py b/mapie/tests/test_ccp_phi_function.py index 37db1d7d5..9eb45d0d0 100644 --- a/mapie/tests/test_ccp_phi_function.py +++ b/mapie/tests/test_ccp_phi_function.py @@ -34,10 +34,15 @@ CustomPhiFunction([ lambda X: X, PolynomialPhiFunction([1, 2], bias=False) ]), + (lambda X: (X < 3))*CustomPhiFunction([lambda X: X]), + CustomPhiFunction([lambda X: X])*(lambda X: (X < 3)), + CustomPhiFunction([lambda X: X])*None, + CustomPhiFunction([lambda X: X])*(lambda X: (X < 3))*( + lambda X: (X > 0)[:, 0]), ] # n_out without bias -N_OUT = [1, 1, 10, 12, 11, 21, 21, 3, 4, 5, 4, 31, 12, 30] +N_OUT = [1, 1, 10, 12, 11, 21, 21, 3, 4, 5, 4, 31, 12, 30, 10, 10, 10, 10] GAUSS_NEED_FIT_SETTINGS: List[Dict[str, Any]] = [ { @@ -236,7 +241,6 @@ def test_invalid_gauss_sigma(sigma: Any) -> None: with pytest.raises(ValueError): phi = GaussianPhiFunction(3, sigma) phi.fit(X) - phi.transform(X) @pytest.mark.parametrize("ind", range(len(GAUSS_NEED_FIT_SETTINGS))) From db360f935bc0422b086f35a79d3352ac55a66b12 Mon Sep 17 00:00:00 2001 From: Damien Bouet Date: Tue, 11 Jun 2024 11:09:50 +0200 Subject: [PATCH 045/165] MOVE and RENAME: PhiFunctions in calibrators/ccp --- .../plot_gibbs2023_simulations.py | 6 +- mapie/calibrators/ccp/__init__.py | 12 + mapie/calibrators/ccp/base.py | 270 +++++ mapie/calibrators/ccp/custom.py | 188 ++++ mapie/calibrators/ccp/gaussian.py | 314 ++++++ mapie/calibrators/ccp/polynomial.py | 237 +++++ .../ccp}/utils.py | 20 +- mapie/phi_function/__init__.py | 9 - mapie/phi_function/ccp_phi_function.py | 950 ------------------ mapie/regression/ccp_regression.py | 133 +-- mapie/tests/test_ccp_phi_function.py | 102 +- mapie/tests/test_ccp_regression.py | 37 +- 12 files changed, 1150 insertions(+), 1128 deletions(-) create mode 100644 mapie/calibrators/ccp/__init__.py create mode 100644 mapie/calibrators/ccp/base.py create mode 100644 mapie/calibrators/ccp/custom.py create mode 100644 mapie/calibrators/ccp/gaussian.py create mode 100644 mapie/calibrators/ccp/polynomial.py rename mapie/{phi_function => calibrators/ccp}/utils.py (96%) delete mode 100644 mapie/phi_function/__init__.py delete mode 100644 mapie/phi_function/ccp_phi_function.py diff --git a/examples/regression/3-scientific-articles/plot_gibbs2023_simulations.py b/examples/regression/3-scientific-articles/plot_gibbs2023_simulations.py index d360fae2f..455252578 100644 --- a/examples/regression/3-scientific-articles/plot_gibbs2023_simulations.py +++ b/examples/regression/3-scientific-articles/plot_gibbs2023_simulations.py @@ -34,7 +34,7 @@ import pandas as pd from mapie.conformity_scores import AbsoluteConformityScore from mapie.regression import MapieCCPRegressor, MapieRegressor -from mapie.phi_function import CustomPhiFunction, GaussianPhiFunction +from mapie.calibrators.ccp import CustomCCP, GaussianCCP from scipy.stats import norm from sklearn.linear_model import LinearRegression from sklearn.pipeline import Pipeline @@ -191,7 +191,7 @@ def plot_results(X_test, y_test, n_trials=10, if experiment == "Groups": # CCP Groups - phi_groups = CustomPhiFunction([ + phi_groups = CustomCCP([ lambda X, t=t: np.logical_and(X >= t, X < t + 0.5).astype(int) for t in np.arange(0, 5.5, 0.5) ]) @@ -210,7 +210,7 @@ def plot_results(X_test, y_test, n_trials=10, other_locs = [0.5, 2.5, 4.5] other_scale = 1 - phi_shifts = GaussianPhiFunction( + phi_shifts = GaussianCCP( points=( np.array(eval_locs+other_locs).reshape(-1, 1), [eval_scale]*len(eval_locs) + [other_scale]*len(other_locs), diff --git a/mapie/calibrators/ccp/__init__.py b/mapie/calibrators/ccp/__init__.py new file mode 100644 index 000000000..371e3a528 --- /dev/null +++ b/mapie/calibrators/ccp/__init__.py @@ -0,0 +1,12 @@ +from .base import CCP +from .custom import CustomCCP +from .polynomial import PolynomialCCP +from .gaussian import GaussianCCP, check_phi + +__all__ = [ + "CCP", + "CustomCCP", + "PolynomialCCP", + "GaussianCCP", + "check_phi", +] diff --git a/mapie/calibrators/ccp/base.py b/mapie/calibrators/ccp/base.py new file mode 100644 index 000000000..0bf72cd95 --- /dev/null +++ b/mapie/calibrators/ccp/base.py @@ -0,0 +1,270 @@ +from __future__ import annotations + +from abc import ABCMeta, abstractmethod +from typing import Iterable, Callable, Optional, Union, List +import warnings + +import numpy as np +from mapie._typing import ArrayLike, NDArray +from .utils import (compile_functions_warnings_errors, concatenate_functions, + check_multiplier) +from sklearn.utils import _safe_indexing +from sklearn.utils.validation import check_is_fitted +from sklearn.base import BaseEstimator, clone + + +class CCP(BaseEstimator, metaclass=ABCMeta): + """ + Base abstract class for the phi functions, + used in the Gibbs et al. method to model the conformity scores. + + Parameters + ---------- + functions: Optional[Union[Callable, Iterable[Callable]]] + List of functions (or CCP objects) or single function. + Each function can take a combinaison of the following arguments: + - ``X``: Input dataset, of shape (n_samples, ``n_in``) + - ``y_pred``: estimator prediction, of shape (n_samples,) + - ``z``: exogenous variable, of shape (n_samples, n_features). + It should be given in the ``fit`` and ``predict`` methods. + The results of each functions will be concatenated to build the final + result of the phi function, of shape (n_samples, ``n_out``). + If ``None``, the resulting phi object will return a column of ones, + when called. It will result, in the MapieCCPRegressor, in a basic + split CP approach. + + By default ``None``. + + bias: bool + Add a column of ones to the features, for safety reason + (to garanty the marginal coverage, no matter how the other features + the ``CCP``object were built). + If the ``CCP``object definition covers all the dataset + (meaning, for all calibration and test samples, ``phi(X, y_pred, z)`` + is never all zeros), this column of ones is not necessary + to obtain marginal coverage. + In this case, you can set this argument to ``False``. + + Note: Even if it is not always necessary to guarantee the marginal + coverage, it can't degrade the prediction intervals. + + By default ``False``. + + normalized: bool + Whether or not to normalized ``phi(X, y_pred, z)``. Normalization + will result in a bounded interval prediction width, avoiding the width + to explode to +inf or crash to zero. It is particularly intersting when + you know that the conformity scores are bounded. It also prevent the + interval to have a interval of zero width for out-of-distribution or + new samples. On the opposite, it is not recommended if the conformity + scores can vary a lot. + + By default ``False`` + + init_value: Optional[ArrayLike] + Optimization initialisation value. + If ``None``, is sampled from a normal distribution. + + By default ``None``. + + Attributes + ---------- + fit_attributes: Optional[List[str]] + Name of attributes set during the ``fit`` method, and required to call + ``transform``. + + n_in: int + Number of features of ``X`` + + n_out: int + Number of features of phi(``X``, ``y_pred``, ``z``) + """ + + fit_attributes: List[str] = ["functions_"] + + def __init__( + self, + functions: Optional[Union[Callable, Iterable[Callable]]] = None, + bias: bool = False, + normalized: bool = False, + init_value: Optional[ArrayLike] = None, + multipliers: Optional[List[Callable]] = None, + ) -> None: + self.functions = functions + self.bias = bias + self.normalized = normalized + self.init_value = init_value + self.multipliers = multipliers + + @abstractmethod + def _check_fit_parameters( + self, + X: ArrayLike, + y_pred: Optional[ArrayLike] = None, + z: Optional[ArrayLike] = None, + ) -> None: + """ + Check fit parameters + + Parameters + ---------- + X: ArrayLike of shape (n_samples, n_features) + Training data. + + y: ArrayLike of shape (n_samples,) + Training labels. + + By default ``None`` + + z: Optional[ArrayLike] of shape (n_calib_samples, n_exog_features) + Exogenous variables + + By default ``None`` + """ + + def _check_init_value( + self, init_value: Optional[ArrayLike], n_out: int + ) -> ArrayLike: + """ + Set the ``init_value_`` attribute depending on ``init_value`` argument. + + Parameters + ---------- + init_value : Optional[ArrayLike] + Optimization initialisation value, set at ``CCP`` + initialisation. + n_out : int + Number of dimensions of the ``CCP`` transformation. + + Returns + ------- + ArrayLike + Optimization initialisation value + """ + if init_value is None: + return np.random.normal(0, 1, n_out) + else: + return init_value + + def fit( + self, + X: ArrayLike, + y_pred: Optional[ArrayLike] = None, + z: Optional[ArrayLike] = None, + ) -> CCP: + """ + Fit function : Set all the necessary attributes to be able to transform + ``(X, y_pred, z)`` into the expected transformation. + + It should set all the attributes of ``fit_attributes``. + It should also set, once fitted, ``n_in``, ``n_out`` and + ``init_value``. + + Parameters + ---------- + X: ArrayLike of shape (n_samples, n_features) + Training data. + + y: ArrayLike of shape (n_samples,) + Training labels. + + By default ``None`` + + z: Optional[ArrayLike] of shape (n_calib_samples, n_exog_features) + Exogenous variables + + By default ``None`` + """ + self._check_fit_parameters(X, y_pred, z) + result = self.transform(X, y_pred, z) + self.n_in = len(_safe_indexing(X, 0)) + self.n_out = len(_safe_indexing(result, 0)) + self.init_value_ = self._check_init_value(self.init_value, self.n_out) + check_multiplier(self.multipliers, X, y_pred, z) + return self + + def transform( + self, + X: Optional[ArrayLike] = None, + y_pred: Optional[ArrayLike] = None, + z: Optional[ArrayLike] = None, + ) -> NDArray: + """ + Transform ``(X, y_pred, z)`` into an array of shape + ``(n_samples, n_out)`` + + Parameters + ---------- + X : ArrayLike + Observed samples + + y_pred : ArrayLike + Target prediction + + z : ArrayLike + Exogenous variable + + Returns + ------- + NDArray + Transformation + """ + check_is_fitted(self, self.fit_attributes) + + params_mapping = {"X": X, "y_pred": y_pred, "z": z} + result = concatenate_functions(self.functions_, params_mapping, + self.multipliers) + if self.normalized: + norm = np.linalg.norm(result, axis=1).reshape(-1, 1) + result[(abs(norm) == 0)[:, 0], :] = np.ones(result.shape[1]) + + norm[abs(norm) == 0] = 1 + result /= norm + + if np.any(np.all(result == 0, axis=1)): + warnings.warn("WARNING: At least one row of the transformation " + "phi(X, y_pred, z) is full of zeros. " + "It will result in a prediction interval of zero " + "width. Consider changing the CCP " + "definintion.\nFix: Use `bias=True` " + "in the `CCP` definition.") + return result + + def __call__( + self, + X: Optional[ArrayLike] = None, + y_pred: Optional[ArrayLike] = None, + z: Optional[ArrayLike] = None, + ) -> NDArray: + return self.transform(X, y_pred, z) + + def __mul__(self, funct: Optional[Callable]) -> CCP: + """ + Multiply a ``CCP`` with another function. + This other function should return an array of shape (n_samples, 1) + or (n_samples, ) + + Parameters + ---------- + funct : Optional[Callable] + function which should return an array of shape (n_samples, 1) + or (n_samples, ) + + Returns + ------- + CCP + self, with ``funct`` as a multiplier + """ + if funct is None: + return self + else: + compile_functions_warnings_errors([funct]) + new_phi = clone(self) + if new_phi.multipliers is None: + new_phi.multipliers = [funct] + else: + new_phi.multipliers.append(funct) + return new_phi + + def __rmul__(self, other) -> CCP: + return self.__mul__(other) diff --git a/mapie/calibrators/ccp/custom.py b/mapie/calibrators/ccp/custom.py new file mode 100644 index 000000000..c94735754 --- /dev/null +++ b/mapie/calibrators/ccp/custom.py @@ -0,0 +1,188 @@ +from __future__ import annotations + +from typing import Iterable, Callable, Optional, Union, List + +from mapie._typing import ArrayLike +from .base import CCP +from .utils import (compile_functions_warnings_errors, format_functions, + check_multiplier) +from sklearn.utils import _safe_indexing + + +class CustomCCP(CCP): + """ + This class is used to define the transformation phi, + used in the Gibbs et al. method to model the conformity scores. + This class build a ``CCP`` object with custom features of + X, y_pred or z, defined as a list of functions in ``functions`` argument. + + This class can be used to concatenate ``CCP`` instances. + + Parameters + ---------- + functions: Optional[Union[Callable, Iterable[Callable]]] + List of functions (or CCP objects) or single function. + + Each function can take a combinaison of the following arguments: + - ``X``: Input dataset, of shape (n_samples, ``n_in``) + - ``y_pred``: estimator prediction, of shape (n_samples,) + - ``z``: exogenous variable, of shape (n_samples, n_features). + It should be given in the ``fit`` and ``predict`` methods. + The results of each functions will be concatenated to build the final + result of the phi function, of shape (n_samples, ``n_out``). + If ``None``, the resulting phi object will return a column of ones, + when called. It will result, in the MapieCCPRegressor, in a basic + split CP approach. + + By default ``None``. + + bias: bool + Add a column of ones to the features, for safety reason + (to garanty the marginal coverage, no matter how the other features + the ``CCP``object were built). + If the ``CCP``object definition covers all the dataset + (meaning, for all calibration and test samples, ``phi(X, y_pred, z)`` + is never all zeros), this column of ones is not necessary + to obtain marginal coverage. + In this case, you can set this argument to ``False``. + + Note: Even if it is not always necessary to guarantee the marginal + coverage, it can't degrade the prediction intervals. + + By default ``False``. + + normalized: bool + Whether or not to normalized the output result. Normalization + will result in a bounded interval prediction width, avoiding the width + to explode to +inf or crash to zero. It is particularly intersting when + you know that the conformity scores are bounded. It also prevent the + interval to have a interval of zero width for out-of-distribution or + new samples. On the opposite, it is not recommended if the conformity + scores can vary a lot. + + By default ``False`` + + init_value: Optional[ArrayLike] + Optimization initialisation value. + If ``None``, is sampled from a normal distribution. + + By default ``None``. + + Attributes + ---------- + fit_attributes: Optional[List[str]] + Name of attributes set during the ``fit`` method, and required to call + ``transform``. + + n_in: int + Number of features of ``X`` + + n_out: int + Number of features of phi(``X``, ``y_pred``, ``z``). + + Examples + -------- + >>> import numpy as np + >>> from mapie.phi_function import CustomCCP + >>> X = np.array([[1, 2], [3, 4], [5, 6]]) + >>> y_pred = np.array([0, 0, 1]) + >>> phi = CustomCCP( + ... functions=[ + ... lambda X: X * (y_pred[:, np.newaxis] == 0), # X, if y_pred is 0 + ... lambda y_pred: y_pred, # y_pred + ... ], + ... normalized=False, + ... ).fit(X, y_pred) + >>> print(phi.transform(X, y_pred)) + [[1. 2. 0.] + [3. 4. 0.] + [0. 0. 1.]] + >>> print(phi.n_out) + 3 + """ + fit_attributes: List[str] = ["is_fitted_"] + + def __init__( + self, + functions: Optional[Union[Callable, Iterable[Callable]]] = None, + bias: bool = False, + normalized: bool = False, + init_value: Optional[ArrayLike] = None, + multipliers: Optional[List[Callable]] = None, + ) -> None: + super().__init__(functions, bias, normalized, init_value, multipliers) + + def _check_fit_parameters( + self, + X: ArrayLike, + y_pred: Optional[ArrayLike] = None, + z: Optional[ArrayLike] = None, + ) -> None: + """ + Fit function : Set all the necessary attributes to be able to transform + ``(X, y_pred, z)`` into the expected transformation. + + It should set all the attributes of ``fit_attributes``. + It should also set, once fitted, ``n_in``, ``n_out`` and + ``init_value``. + + Parameters + ---------- + X: ArrayLike of shape (n_samples, n_features) + Training data. + + y: ArrayLike of shape (n_samples,) + Training labels. + + By default ``None`` + + z: Optional[ArrayLike] of shape (n_calib_samples, n_exog_features) + Exogenous variables + + By default ``None`` + """ + self.functions_ = format_functions(self.functions, self.bias) + compile_functions_warnings_errors(self.functions_) + + def fit( + self, + X: ArrayLike, + y_pred: Optional[ArrayLike] = None, + z: Optional[ArrayLike] = None, + ) -> CustomCCP: + """ + Fit function : Set all the necessary attributes to be able to transform + ``(X, y_pred, z)`` into the expected transformation. + + It should set all the attributes of ``fit_attributes``. + It should also set, once fitted, ``n_in``, ``n_out`` and + ``init_value``. + + Parameters + ---------- + X: ArrayLike of shape (n_samples, n_features) + Training data. + + y: ArrayLike of shape (n_samples,) + Training labels. + + By default ``None`` + + z: Optional[ArrayLike] of shape (n_calib_samples, n_exog_features) + Exogenous variables + + By default ``None`` + """ + self._check_fit_parameters(X, y_pred, z) + + for phi in self.functions_: + if isinstance(phi, CCP): + phi.fit(X) + check_multiplier(phi.multipliers, X, y_pred, z) + self.is_fitted_ = True + + result = self.transform(X, y_pred, z) + self.n_in = len(_safe_indexing(X, 0)) + self.n_out = len(_safe_indexing(result, 0)) + self.init_value_ = self._check_init_value(self.init_value, self.n_out) + return self diff --git a/mapie/calibrators/ccp/gaussian.py b/mapie/calibrators/ccp/gaussian.py new file mode 100644 index 000000000..bc052fd2d --- /dev/null +++ b/mapie/calibrators/ccp/gaussian.py @@ -0,0 +1,314 @@ +from __future__ import annotations + +from typing import Callable, Optional, Tuple, Union, List + +import numpy as np +from mapie._typing import ArrayLike +from .base import CCP +from .utils import format_functions, compute_sigma, sample_points +from sklearn.utils import _safe_indexing +from sklearn.utils.validation import _num_samples + + +class GaussianCCP(CCP): + """ + This class is used to define the transformation phi, + used in the Gibbs et al. method to model the conformity scores. + This class build a ``CCP`` object with features been the gaussian + distances between X and some defined points. + + Parameters + ---------- + points : Union[int, ArrayLike, Tuple[ArrayLike, ArrayLike]] + If Array: List of data points, used as centers to compute + gaussian distances. Should be an array of shape (n_points, n_in). + + If integer, the points will be sampled randomly from the ``X`` + set, where ``X`` is the data give to the + ``GaussianCCP.fit`` method, which usually correspond to + the ``X`` argument of the ``MapieCCPRegressor.calibrate`` method + (unless you call ``GaussianCCP.fit(X)`` yourself). + + You can pass a Tuple[ArrayLike, ArrayLike], to have a different + ``sigma`` value for each point. The two elements of the + tuple should be: + - Data points: 2D array of shape (n_points, n_in) + - Sigma values 2D array of shape (n_points, n_in) or (n_points, 1) + In this case, the ``sigma``, ``random_sigma`` and ``X`` argument are + ignored. + + If ``None``, default to ``20``. + + By default, ``None`` + + sigma : Optional[Union[float, ArrayLike]] + Standard deviation value used to compute the guassian distances, + with the formula: + np.exp(-0.5 * ((X - point) / ``sigma``) ** 2) + - It can be an integer + - It can be a 1D array of float with as many + values as dimensions in the dataset + + If you want different standard deviation values of each points, + you can indicate the sigma value of each point in the ``points`` + argument. + + If ``None``, ``sigma`` will default to a float equal to + ``np.std(X)/(n**0.5)``, where ``X`` is the data give to the + ``GaussianCCP.fit`` method, which correspond to the ``X`` + argument of the ``MapieCCPRegressor.calibrate`` method + (unless you call ``GaussianCCP.fit(X)`` yourself). + + By default, ``None`` + + random_sigma : bool + Whether to apply to the standard deviation values, a random multiplier, + different for each point, equal to: + + 2**np.random.normal(0, 1*2**(-2+np.log10(len(``points``)))) + + Exemple: + - For 10 points, the sigma value will, in general, + be multiplied by a value between 0.7 and 1.4 + - For 100 points, the sigma value will, in general, + be multiplied by a value between 0.5 and 2 + + Note: This is a default suggestion of randomization, + which allow to have in the same time wide and narrow gaussians + (with a gigger range of multipliers for huge amount of points). + + You can use fully custom sigma values, buy passing to the + ``points`` argument, a different sigma value for each point. + + If ``None``, default to ``False``. + + By default, ``None`` + + bias: bool + Add a column of ones to the features, for safety reason + (to garanty the marginal coverage, no matter how the other features + the ``CCP``object were built). + If the ``CCP``object definition covers all the dataset + (meaning, for all calibration and test samples, ``phi(X, y_pred, z)`` + is never all zeros), this column of ones is not necessary + to obtain marginal coverage. + In this case, you can set this argument to ``False``. + + Note: In this case, with ``GaussianCCP``, if ``normalized`` is + ``True`` (it is, by default), the ``phi(X, y_pred, z)`` will never + be all zeros, so this ``bias`` is not required + sto have coverage guarantee. + + By default ``False``. + + normalized: bool + Whether or not to normalized ``phi(X, y_pred, z)``. Normalization + will result in a bounded interval prediction width, avoiding the width + to explode to +inf or crash to zero. It is particularly intersting when + you know that the conformity scores are bounded. It also prevent the + interval to have a interval of zero width for out-of-distribution or + new samples. On the opposite, it is not recommended if the conformity + scores can vary a lot. + + By default ``True`` + + init_value: Optional[ArrayLike] + Optimization initialisation value. + If ``None``, is sampled from a normal distribution. + + By default ``None``. + + Attributes + ---------- + fit_attributes: Optional[List[str]] + Name of attributes set during the ``fit`` method, and required to call + ``transform``. + + n_in: int + Number of features of ``X`` + + n_out: int + Number of features of phi(``X``, ``y_pred``, ``z``) + + points_: NDArray + Array of shape (n_points, n_in), corresponding to the points used to + compute the gaussian distanes. + + sigmas_: NDArray of shape (len(points), 1) or (len(points), n_in) + Standard deviation values + + Examples + -------- + >>> import numpy as np + >>> from mapie.phi_function import GaussianCCP + >>> np.random.seed(1) + >>> X = np.array([[1], [2], [3], [4], [5]]) + >>> phi = GaussianCCP(2, bias=False, + ... normalized=False).fit(X) + >>> print(np.round(phi.transform(X), 2)) + [[0.14 0.61] + [0.61 1. ] + [1. 0.61] + [0.61 0.14] + [0.14 0.01]] + >>> print(phi.points_) + [[3] + [2]] + >>> print(phi.sigmas_) + [[1.] + [1.]] + >>> phi = GaussianCCP([[3],[4]], 0.5).fit(X) + >>> print(np.round(phi.transform(X), 2)) + [[1. 0. ] + [1. 0. ] + [0.99 0.13] + [0.13 0.99] + [0. 1. ]] + >>> print(phi.points_) + [[3] + [4]] + >>> print(phi.sigmas_) + [[0.5] + [0.5]] + """ + fit_attributes: List[str] = ["points_", "sigmas_", "functions_"] + + def __init__( + self, + points: Optional[Union[int, ArrayLike, + Tuple[ArrayLike, ArrayLike]]] = None, + sigma: Optional[Union[float, ArrayLike]] = None, + random_sigma: Optional[bool] = None, + bias: bool = False, + normalized: bool = True, + init_value: Optional[ArrayLike] = None, + multipliers: Optional[List[Callable]] = None, + ) -> None: + self.points = points + self.sigma = sigma + self.random_sigma = random_sigma + self.bias = bias + self.normalized = normalized + self.init_value = init_value + self.multipliers = multipliers + + def _check_random_sigma(self) -> bool: + """ + Check ``random_sigma`` + + Returns + ------- + bool + checked ``random_sigma`` + """ + if self.random_sigma is None: + return False + else: + return self.random_sigma + + def _check_points_sigma( + self, points: ArrayLike, sigmas: ArrayLike + ) -> None: + """ + Take 2D arrays of points and standard deviations and check + compatibility + + Parameters + ---------- + points : ArrayLike + 2D array of shape (n_points, n_in) + sigmas : ArrayLike + 2D array of shape (n_points, 1) or (n_points, n_in) + + Raises + ------ + ValueError + If ``sigmas``is not of shape (n_points, 1) or (n_points, n_in) + """ + if _num_samples(points) != _num_samples(sigmas): + raise ValueError("There should have as many points as " + "standard deviation values") + if len(_safe_indexing(sigmas, 0)) not in [ + 1, len(_safe_indexing(points, 0)) + ]: + raise ValueError("The standard deviation 2D array should be of " + "shape (n_points, 1) or (n_points, n_in).\n" + f"Got sigma of shape: ({_num_samples(sigmas)}, " + f"{len(_safe_indexing(points, 0))}).") + + def _check_fit_parameters( + self, + X: ArrayLike, + y_pred: Optional[ArrayLike] = None, + z: Optional[ArrayLike] = None, + ) -> None: + """ + Fit function : Set all the necessary attributes to be able to transform + ``(X, y_pred, z)`` into the expected transformation. + + It should set all the attributes of ``fit_attributes``. + It should also set, once fitted, ``n_in``, ``n_out`` and + ``init_value``. + + Parameters + ---------- + X: ArrayLike of shape (n_samples, n_features) + Training data. + + y: ArrayLike of shape (n_samples,) + Training labels. + + By default ``None`` + + z: Optional[ArrayLike] of shape (n_calib_samples, n_exog_features) + Exogenous variables + + By default ``None`` + """ + self.random_sigma = self._check_random_sigma() + self.points_ = sample_points(X, self.points) + self.sigmas_ = compute_sigma(X, self.points, self.points_, + self.sigma, self.random_sigma) + self._check_points_sigma(self.points_, self.sigmas_) + + functions = [ + lambda X, mu=_safe_indexing(self.points_, i), + sigma=_safe_indexing(self.sigmas_, i): + np.exp(-0.5 * np.sum(((X - mu) / sigma) ** 2, axis=1)) + for i in range(_num_samples(self.points_)) + ] + self.functions_ = format_functions(functions, self.bias) + + +def check_phi( + phi: Optional[CCP], +) -> CCP: + """ + Check if ``phi`` is a ``CCP`` instance. + + Parameters + ---------- + phi: Optional[CCP] + A ``CCP`` instance used to estimate the conformity scores. + + If ``None``, use as default a ``GaussianCCP`` instance. + See the examples and the documentation to build a ``CCP`` + adaptated to your dataset and constraints. + + Returns + ------- + CCP + ``phi`` if defined, a ``GaussianCCP`` instance otherwise. + + Raises + ------ + ValueError + If ``phi`` is not ``None`` nor a ``CCP`` instance. + """ + if phi is None: + return GaussianCCP() + elif isinstance(phi, CCP): + return phi + else: + raise ValueError("Invalid `phi` argument. It must be `None` or a " + "`CCP` instance.") diff --git a/mapie/calibrators/ccp/polynomial.py b/mapie/calibrators/ccp/polynomial.py new file mode 100644 index 000000000..75907b17d --- /dev/null +++ b/mapie/calibrators/ccp/polynomial.py @@ -0,0 +1,237 @@ +from __future__ import annotations + +from typing import Callable, Optional, Tuple, Union, List + +from mapie._typing import ArrayLike +from .base import CCP +from .utils import format_functions + + +class PolynomialCCP(CCP): + """ + This class is used to define the transformation phi, + used in the Gibbs et al. method to model the conformity scores. + This class build a ``CCP`` object with polynomial features of + X, y_pred or z. + + Parameters + ---------- + degree: Union[int, List[int]] + If ``degree``is an integer, it correspond to the degree of the + polynomial features transformer. It will create the features + ``1``, ``variable``, ``variable``**2, ..., ``variable``**``degree``. + + If ``degree``is an iterable of integers, it will create the features + ``variable``**d, for all integer d in ``degree`` + + ``variable`` may be ``X``, ``y_pred`` or ``z``, depending on the + ``variable``argument value. + + If ``None``, it will default to ``degree=1``. + + By default ``None``. + + variable: Literal["X", "y_pred", "z"] + String, used to choose which argument between ``X``, ``y_pred`` and + ``z`` is used to build the polynomial features. + + By default ``"X"`` + + bias: bool + Add a column of ones to the features, for safety reason + (to garanty the marginal coverage, no matter how the other features + the ``CCP``object were built). + If the ``CCP``object definition covers all the dataset + (meaning, for all calibration and test samples, ``phi(X, y_pred, z)`` + is never all zeros), this column of ones is not necessary + to obtain marginal coverage. + In this case, you can set this argument to ``False``. + + Note: Even if it is not always necessary to guarantee the marginal + coverage, it can't degrade the prediction intervals. + + By default ``False``. + + normalized: bool + Whether or not to normalized ``phi(X, y_pred, z)``. Normalization + will result in a bounded interval prediction width, avoiding the width + to explode to +inf or crash to zero. It is particularly intersting when + you know that the conformity scores are bounded. It also prevent the + interval to have a interval of zero width for out-of-distribution or + new samples. On the opposite, it is not recommended if the conformity + scores can vary a lot. + + By default ``False`` + + init_value: Optional[ArrayLike] + Optimization initialisation value. + If ``None``, is sampled from a normal distribution. + + By default ``None``. + + Attributes + ---------- + fit_attributes: Optional[List[str]] + Name of attributes set during the ``fit`` method, and required to call + ``transform``. + + n_in: int + Number of features of ``X`` + + n_out: int + Number of features of phi(``X``, ``y_pred``, ``z``) + + exponents: List[int] + List of exponents of the built polynomial features + + Examples + -------- + >>> import numpy as np + >>> from mapie.phi_function import PolynomialCCP + >>> X = np.array([[1, 2], [3, 4], [5, 6]]) + >>> y_pred = np.array([1, 2, 3]) + >>> phi = PolynomialCCP(3).fit(X, y_pred) + >>> print(phi.transform(X, y_pred)) + [[ 1. 2. 1. 4. 1. 8. 1.] + [ 3. 4. 9. 16. 27. 64. 1.] + [ 5. 6. 25. 36. 125. 216. 1.]] + >>> print(phi.exponents) + [0, 1, 2, 3] + >>> phi = PolynomialCCP([1, 2, 5], "y_pred", + ... bias=False).fit(X, y_pred) + >>> print(phi.transform(X, y_pred)) + [[ 1. 1. 1.] + [ 2. 4. 32.] + [ 3. 9. 243.]] + >>> print(phi.degree) + [1, 2, 5] + """ + fit_attributes: List[str] = [] + + def __init__( + self, + degree: Optional[Union[int, List[int]]] = None, + variable: str = "X", + bias: bool = False, + normalized: bool = False, + init_value: Optional[ArrayLike] = None, + multipliers: Optional[List[Callable]] = None, + ) -> None: + self.degree = degree + self.variable = variable + self.bias = bias + self.normalized = normalized + self.init_value = init_value + self.multipliers = multipliers + + def _convert_degree( + self, degree: Optional[Union[int, List[int]]], bias: bool + ) -> Tuple[List[int], bool]: + """ + Convert ``degree`` argument into a list of exponents + + Parameters + ---------- + degree: Union[int, List[int]] + If ``degree``is an integer, it correspond to the degree of the + polynomial features transformer. It will create the features + ``1``, ``variable``, ``variable``**2, ..., + ``variable``**``degree``. + + If ``degree``is an iterable of integers, it will create the + features ``variable``**d, for all integer d in ``degree`` + + ``variable`` may be ``X``, ``y_pred`` or ``z``, depending on the + ``variable``argument value. + + If ``None``, it will default to ``degree=1``. + + By default ``None``. + + bias: bool + Add a column of ones to the features, for safety reason + (to garanty the marginal coverage, no matter how the other features + the ``CCP``object were built). + If the ``CCP``object definition covers all the dataset + (meaning, for all calibration and test samples, + ``phi(X, y_pred, z)`` is never all zeros), this column of ones + is not necessary to obtain marginal coverage. + In this case, you can set this argument to ``False``. + + Note: Even if it is not always necessary to guarantee the marginal + coverage, it can't degrade the prediction intervals. + + Returns + ------- + Tuple[List[int], bool] + - List of exponents (the exponent ``0`` will be replaced by + ``bias=True``, which is equivalent. It is useless to add as many + columns of ones as dimensions of ``X``. Only one is enough.) + - new ``bias`` value. + """ + if degree is None: + exponents = [0, 1] + elif isinstance(degree, int): + exponents = list(range(degree+1)) + else: + exponents = degree + + return exponents, (0 in exponents) or bias + + def _create_functions( + self, exponents: List[int], variable: str + ) -> List[Callable]: + """ + Create the list of lambda functions, based on the list ``exponents`` + and the ``variable`` value. + + Parameters + ---------- + exponents: List[int] + List of exponents to apply on the ``variable``` + + variable: Literal["X", "y_pred", "z"] + Variable on which to apply the exponents. + """ + if variable == "X": + return [lambda X, d=d: X**d for d in exponents if d != 0] + elif variable == "y_pred": + return [lambda y_pred, d=d: y_pred**d for d in exponents if d != 0] + elif variable == "z": + return [lambda z, d=d: z**d for d in exponents if d != 0] + else: + raise ValueError("variable must be 'X', 'y_pred' or 'z'") + + def _check_fit_parameters( + self, + X: ArrayLike, + y_pred: Optional[ArrayLike] = None, + z: Optional[ArrayLike] = None, + ) -> None: + """ + Fit function : Set all the necessary attributes to be able to transform + ``(X, y_pred, z)`` into the expected transformation. + + It should set all the attributes of ``fit_attributes``. + It should also set, once fitted, ``n_in``, ``n_out`` and + ``init_value``. + + Parameters + ---------- + X: ArrayLike of shape (n_samples, n_features) + Training data. + + y: ArrayLike of shape (n_samples,) + Training labels. + + By default ``None`` + + z: Optional[ArrayLike] of shape (n_calib_samples, n_exog_features) + Exogenous variables + + By default ``None`` + """ + self.exponents, self.bias = self._convert_degree( + self.degree, self.bias) + functions = self._create_functions(self.exponents, self.variable) + self.functions_ = format_functions(functions, self.bias) diff --git a/mapie/phi_function/utils.py b/mapie/calibrators/ccp/utils.py similarity index 96% rename from mapie/phi_function/utils.py rename to mapie/calibrators/ccp/utils.py index a76b81d33..4a04ec27f 100644 --- a/mapie/phi_function/utils.py +++ b/mapie/calibrators/ccp/utils.py @@ -20,7 +20,7 @@ def format_functions( Parameters ---------- functions: Optional[Union[Callable, Iterable[Callable]]] - List of functions (or PhiFunction objects) or single function. + List of functions (or CCP objects) or single function. Each function can take a combinaison of the following arguments: - ``X``: Input dataset, of shape (n_samples, ``n_in``) - ``y_pred``: estimator prediction, of shape (n_samples,) @@ -35,8 +35,8 @@ def format_functions( bias: bool Add a column of ones to the features, for safety reason (to garanty the marginal coverage, no matter how the other features - the ``PhiFunction``object were built). - If the ``PhiFunction``object definition covers all the dataset + the ``CCP``object were built). + If the ``CCP``object definition covers all the dataset (meaning, for all calibration and test samples, ``phi(X, y_pred, z)`` is never all zeros), this column of ones is not necessary to obtain marginal coverage. @@ -164,9 +164,9 @@ def sample_points( If integer, the points will be sampled randomly from the ``X`` set, where ``X`` is the data give to the - ``GaussianPhiFunction.fit`` method, which usually correspond to + ``GaussianCCP.fit`` method, which usually correspond to the ``X`` argument of the ``MapieCCPRegressor.calibrate`` method - (unless you call ``GaussianPhiFunction.fit(X)`` yourself). + (unless you call ``GaussianCCP.fit(X)`` yourself). You can pass a Tuple[ArrayLike, ArrayLike], to have a different ``sigma`` value for each point. The two elements of the @@ -228,9 +228,9 @@ def compute_sigma( If integer, the points will be sampled randomly from the ``X`` set, where ``X`` is the data give to the - ``GaussianPhiFunction.fit`` method, which usually correspond to + ``GaussianCCP.fit`` method, which usually correspond to the ``X`` argument of the ``MapieCCPRegressor.calibrate`` method - (unless you call ``GaussianPhiFunction.fit(X)`` yourself). + (unless you call ``GaussianCCP.fit(X)`` yourself). You can pass a Tuple[ArrayLike, ArrayLike], to have a different ``sigma`` value for each point. The two elements of the @@ -259,9 +259,9 @@ def compute_sigma( If ``None``, ``sigma`` will default to a float equal to ``np.std(X)/(n**0.5)``, where ``X`` is the data give to the - ``GaussianPhiFunction.fit`` method, which correspond to the ``X`` + ``GaussianCCP.fit`` method, which correspond to the ``X`` argument of the ``MapieCCPRegressor.calibrate`` method - (unless you call ``GaussianPhiFunction.fit(X)`` yourself). + (unless you call ``GaussianCCP.fit(X)`` yourself). random_sigma : bool Whether to apply to the standard deviation values, a random multiplier, @@ -504,7 +504,7 @@ def calibrator_optim_objective( Parameters to optimize to minimize the objective function phi_x : NDArray - Transformation of the data X using the ``PhiFunction``. + Transformation of the data X using the ``CCP``. conformity_scores : NDArray Conformity scores of X diff --git a/mapie/phi_function/__init__.py b/mapie/phi_function/__init__.py deleted file mode 100644 index 091906254..000000000 --- a/mapie/phi_function/__init__.py +++ /dev/null @@ -1,9 +0,0 @@ -from .ccp_phi_function import (PhiFunction, PolynomialPhiFunction, - GaussianPhiFunction, CustomPhiFunction) - -__all__ = [ - "PhiFunction", - "PolynomialPhiFunction", - "GaussianPhiFunction", - "CustomPhiFunction", -] diff --git a/mapie/phi_function/ccp_phi_function.py b/mapie/phi_function/ccp_phi_function.py deleted file mode 100644 index 834358caf..000000000 --- a/mapie/phi_function/ccp_phi_function.py +++ /dev/null @@ -1,950 +0,0 @@ -from __future__ import annotations - -from abc import ABCMeta, abstractmethod -from typing import Iterable, Callable, Optional, Tuple, Union, List -import warnings - -import numpy as np -from mapie._typing import ArrayLike, NDArray -from .utils import (compile_functions_warnings_errors, format_functions, - compute_sigma, sample_points, concatenate_functions, - check_multiplier) -from sklearn.utils import _safe_indexing -from sklearn.utils.validation import _num_samples, check_is_fitted -from sklearn.base import BaseEstimator, clone - - -class PhiFunction(BaseEstimator, metaclass=ABCMeta): - """ - Base abstract class for the phi functions, - used in the Gibbs et al. method to model the conformity scores. - - Parameters - ---------- - functions: Optional[Union[Callable, Iterable[Callable]]] - List of functions (or PhiFunction objects) or single function. - Each function can take a combinaison of the following arguments: - - ``X``: Input dataset, of shape (n_samples, ``n_in``) - - ``y_pred``: estimator prediction, of shape (n_samples,) - - ``z``: exogenous variable, of shape (n_samples, n_features). - It should be given in the ``fit`` and ``predict`` methods. - The results of each functions will be concatenated to build the final - result of the phi function, of shape (n_samples, ``n_out``). - If ``None``, the resulting phi object will return a column of ones, - when called. It will result, in the MapieCCPRegressor, in a basic - split CP approach. - - By default ``None``. - - bias: bool - Add a column of ones to the features, for safety reason - (to garanty the marginal coverage, no matter how the other features - the ``PhiFunction``object were built). - If the ``PhiFunction``object definition covers all the dataset - (meaning, for all calibration and test samples, ``phi(X, y_pred, z)`` - is never all zeros), this column of ones is not necessary - to obtain marginal coverage. - In this case, you can set this argument to ``False``. - - Note: Even if it is not always necessary to guarantee the marginal - coverage, it can't degrade the prediction intervals. - - By default ``False``. - - normalized: bool - Whether or not to normalized ``phi(X, y_pred, z)``. Normalization - will result in a bounded interval prediction width, avoiding the width - to explode to +inf or crash to zero. It is particularly intersting when - you know that the conformity scores are bounded. It also prevent the - interval to have a interval of zero width for out-of-distribution or - new samples. On the opposite, it is not recommended if the conformity - scores can vary a lot. - - By default ``False`` - - init_value: Optional[ArrayLike] - Optimization initialisation value. - If ``None``, is sampled from a normal distribution. - - By default ``None``. - - Attributes - ---------- - fit_attributes: Optional[List[str]] - Name of attributes set during the ``fit`` method, and required to call - ``transform``. - - n_in: int - Number of features of ``X`` - - n_out: int - Number of features of phi(``X``, ``y_pred``, ``z``) - """ - - fit_attributes: List[str] = ["functions_"] - - def __init__( - self, - functions: Optional[Union[Callable, Iterable[Callable]]] = None, - bias: bool = False, - normalized: bool = False, - init_value: Optional[ArrayLike] = None, - multipliers: Optional[List[Callable]] = None, - ) -> None: - self.functions = functions - self.bias = bias - self.normalized = normalized - self.init_value = init_value - self.multipliers = multipliers - - @abstractmethod - def _check_fit_parameters( - self, - X: ArrayLike, - y_pred: Optional[ArrayLike] = None, - z: Optional[ArrayLike] = None, - ) -> None: - """ - Check fit parameters - - Parameters - ---------- - X: ArrayLike of shape (n_samples, n_features) - Training data. - - y: ArrayLike of shape (n_samples,) - Training labels. - - By default ``None`` - - z: Optional[ArrayLike] of shape (n_calib_samples, n_exog_features) - Exogenous variables - - By default ``None`` - """ - - def _check_init_value( - self, init_value: Optional[ArrayLike], n_out: int - ) -> ArrayLike: - """ - Set the ``init_value_`` attribute depending on ``init_value`` argument. - - Parameters - ---------- - init_value : Optional[ArrayLike] - Optimization initialisation value, set at ``PhiFunction`` - initialisation. - n_out : int - Number of dimensions of the ``PhiFunction`` transformation. - - Returns - ------- - ArrayLike - Optimization initialisation value - """ - if init_value is None: - return np.random.normal(0, 1, n_out) - else: - return init_value - - def fit( - self, - X: ArrayLike, - y_pred: Optional[ArrayLike] = None, - z: Optional[ArrayLike] = None, - ) -> PhiFunction: - """ - Fit function : Set all the necessary attributes to be able to transform - ``(X, y_pred, z)`` into the expected transformation. - - It should set all the attributes of ``fit_attributes``. - It should also set, once fitted, ``n_in``, ``n_out`` and - ``init_value``. - - Parameters - ---------- - X: ArrayLike of shape (n_samples, n_features) - Training data. - - y: ArrayLike of shape (n_samples,) - Training labels. - - By default ``None`` - - z: Optional[ArrayLike] of shape (n_calib_samples, n_exog_features) - Exogenous variables - - By default ``None`` - """ - self._check_fit_parameters(X, y_pred, z) - result = self.transform(X, y_pred, z) - self.n_in = len(_safe_indexing(X, 0)) - self.n_out = len(_safe_indexing(result, 0)) - self.init_value_ = self._check_init_value(self.init_value, self.n_out) - check_multiplier(self.multipliers, X, y_pred, z) - return self - - def transform( - self, - X: Optional[ArrayLike] = None, - y_pred: Optional[ArrayLike] = None, - z: Optional[ArrayLike] = None, - ) -> NDArray: - """ - Transform ``(X, y_pred, z)`` into an array of shape - ``(n_samples, n_out)`` - - Parameters - ---------- - X : ArrayLike - Observed samples - - y_pred : ArrayLike - Target prediction - - z : ArrayLike - Exogenous variable - - Returns - ------- - NDArray - Transformation - """ - check_is_fitted(self, self.fit_attributes) - - params_mapping = {"X": X, "y_pred": y_pred, "z": z} - result = concatenate_functions(self.functions_, params_mapping, - self.multipliers) - if self.normalized: - norm = np.linalg.norm(result, axis=1).reshape(-1, 1) - result[(abs(norm) == 0)[:, 0], :] = np.ones(result.shape[1]) - - norm[abs(norm) == 0] = 1 - result /= norm - - if np.any(np.all(result == 0, axis=1)): - warnings.warn("WARNING: At least one row of the transformation " - "phi(X, y_pred, z) is full of zeros. " - "It will result in a prediction interval of zero " - "width. Consider changing the PhiFunction " - "definintion.\nFix: Use `bias=True` " - "in the `PhiFunction` definition.") - return result - - def __call__( - self, - X: Optional[ArrayLike] = None, - y_pred: Optional[ArrayLike] = None, - z: Optional[ArrayLike] = None, - ) -> NDArray: - return self.transform(X, y_pred, z) - - def __mul__(self, funct: Optional[Callable]) -> PhiFunction: - """ - Multiply a ``PhiFunction`` with another function. - This other function should return an array of shape (n_samples, 1) - or (n_samples, ) - - Parameters - ---------- - funct : Optional[Callable] - function which should return an array of shape (n_samples, 1) - or (n_samples, ) - - Returns - ------- - PhiFunction - self, with ``funct`` as a multiplier - """ - if funct is None: - return self - else: - compile_functions_warnings_errors([funct]) - new_phi = clone(self) - if new_phi.multipliers is None: - new_phi.multipliers = [funct] - else: - new_phi.multipliers.append(funct) - return new_phi - - def __rmul__(self, other) -> PhiFunction: - return self.__mul__(other) - - -class CustomPhiFunction(PhiFunction): - """ - This class is used to define the transformation phi, - used in the Gibbs et al. method to model the conformity scores. - This class build a ``PhiFunction`` object with custom features of - X, y_pred or z, defined as a list of functions in ``functions`` argument. - - This class can be used to concatenate ``PhiFunction`` instances. - - Parameters - ---------- - functions: Optional[Union[Callable, Iterable[Callable]]] - List of functions (or PhiFunction objects) or single function. - - Each function can take a combinaison of the following arguments: - - ``X``: Input dataset, of shape (n_samples, ``n_in``) - - ``y_pred``: estimator prediction, of shape (n_samples,) - - ``z``: exogenous variable, of shape (n_samples, n_features). - It should be given in the ``fit`` and ``predict`` methods. - The results of each functions will be concatenated to build the final - result of the phi function, of shape (n_samples, ``n_out``). - If ``None``, the resulting phi object will return a column of ones, - when called. It will result, in the MapieCCPRegressor, in a basic - split CP approach. - - By default ``None``. - - bias: bool - Add a column of ones to the features, for safety reason - (to garanty the marginal coverage, no matter how the other features - the ``PhiFunction``object were built). - If the ``PhiFunction``object definition covers all the dataset - (meaning, for all calibration and test samples, ``phi(X, y_pred, z)`` - is never all zeros), this column of ones is not necessary - to obtain marginal coverage. - In this case, you can set this argument to ``False``. - - Note: Even if it is not always necessary to guarantee the marginal - coverage, it can't degrade the prediction intervals. - - By default ``False``. - - normalized: bool - Whether or not to normalized the output result. Normalization - will result in a bounded interval prediction width, avoiding the width - to explode to +inf or crash to zero. It is particularly intersting when - you know that the conformity scores are bounded. It also prevent the - interval to have a interval of zero width for out-of-distribution or - new samples. On the opposite, it is not recommended if the conformity - scores can vary a lot. - - By default ``False`` - - init_value: Optional[ArrayLike] - Optimization initialisation value. - If ``None``, is sampled from a normal distribution. - - By default ``None``. - - Attributes - ---------- - fit_attributes: Optional[List[str]] - Name of attributes set during the ``fit`` method, and required to call - ``transform``. - - n_in: int - Number of features of ``X`` - - n_out: int - Number of features of phi(``X``, ``y_pred``, ``z``). - - Examples - -------- - >>> import numpy as np - >>> from mapie.phi_function import CustomPhiFunction - >>> X = np.array([[1, 2], [3, 4], [5, 6]]) - >>> y_pred = np.array([0, 0, 1]) - >>> phi = CustomPhiFunction( - ... functions=[ - ... lambda X: X * (y_pred[:, np.newaxis] == 0), # X, if y_pred is 0 - ... lambda y_pred: y_pred, # y_pred - ... ], - ... normalized=False, - ... ).fit(X, y_pred) - >>> print(phi.transform(X, y_pred)) - [[1. 2. 0.] - [3. 4. 0.] - [0. 0. 1.]] - >>> print(phi.n_out) - 3 - """ - fit_attributes: List[str] = ["is_fitted_"] - - def __init__( - self, - functions: Optional[Union[Callable, Iterable[Callable]]] = None, - bias: bool = False, - normalized: bool = False, - init_value: Optional[ArrayLike] = None, - multipliers: Optional[List[Callable]] = None, - ) -> None: - super().__init__(functions, bias, normalized, init_value, multipliers) - - def _check_fit_parameters( - self, - X: ArrayLike, - y_pred: Optional[ArrayLike] = None, - z: Optional[ArrayLike] = None, - ) -> None: - """ - Fit function : Set all the necessary attributes to be able to transform - ``(X, y_pred, z)`` into the expected transformation. - - It should set all the attributes of ``fit_attributes``. - It should also set, once fitted, ``n_in``, ``n_out`` and - ``init_value``. - - Parameters - ---------- - X: ArrayLike of shape (n_samples, n_features) - Training data. - - y: ArrayLike of shape (n_samples,) - Training labels. - - By default ``None`` - - z: Optional[ArrayLike] of shape (n_calib_samples, n_exog_features) - Exogenous variables - - By default ``None`` - """ - self.functions_ = format_functions(self.functions, self.bias) - compile_functions_warnings_errors(self.functions_) - - def fit( - self, - X: ArrayLike, - y_pred: Optional[ArrayLike] = None, - z: Optional[ArrayLike] = None, - ) -> CustomPhiFunction: - """ - Fit function : Set all the necessary attributes to be able to transform - ``(X, y_pred, z)`` into the expected transformation. - - It should set all the attributes of ``fit_attributes``. - It should also set, once fitted, ``n_in``, ``n_out`` and - ``init_value``. - - Parameters - ---------- - X: ArrayLike of shape (n_samples, n_features) - Training data. - - y: ArrayLike of shape (n_samples,) - Training labels. - - By default ``None`` - - z: Optional[ArrayLike] of shape (n_calib_samples, n_exog_features) - Exogenous variables - - By default ``None`` - """ - self._check_fit_parameters(X, y_pred, z) - - for phi in self.functions_: - if isinstance(phi, PhiFunction): - phi.fit(X) - check_multiplier(phi.multipliers, X, y_pred, z) - self.is_fitted_ = True - - result = self.transform(X, y_pred, z) - self.n_in = len(_safe_indexing(X, 0)) - self.n_out = len(_safe_indexing(result, 0)) - self.init_value_ = self._check_init_value(self.init_value, self.n_out) - return self - - -class PolynomialPhiFunction(PhiFunction): - """ - This class is used to define the transformation phi, - used in the Gibbs et al. method to model the conformity scores. - This class build a ``PhiFunction`` object with polynomial features of - X, y_pred or z. - - Parameters - ---------- - degree: Union[int, List[int]] - If ``degree``is an integer, it correspond to the degree of the - polynomial features transformer. It will create the features - ``1``, ``variable``, ``variable``**2, ..., ``variable``**``degree``. - - If ``degree``is an iterable of integers, it will create the features - ``variable``**d, for all integer d in ``degree`` - - ``variable`` may be ``X``, ``y_pred`` or ``z``, depending on the - ``variable``argument value. - - If ``None``, it will default to ``degree=1``. - - By default ``None``. - - variable: Literal["X", "y_pred", "z"] - String, used to choose which argument between ``X``, ``y_pred`` and - ``z`` is used to build the polynomial features. - - By default ``"X"`` - - bias: bool - Add a column of ones to the features, for safety reason - (to garanty the marginal coverage, no matter how the other features - the ``PhiFunction``object were built). - If the ``PhiFunction``object definition covers all the dataset - (meaning, for all calibration and test samples, ``phi(X, y_pred, z)`` - is never all zeros), this column of ones is not necessary - to obtain marginal coverage. - In this case, you can set this argument to ``False``. - - Note: Even if it is not always necessary to guarantee the marginal - coverage, it can't degrade the prediction intervals. - - By default ``False``. - - normalized: bool - Whether or not to normalized ``phi(X, y_pred, z)``. Normalization - will result in a bounded interval prediction width, avoiding the width - to explode to +inf or crash to zero. It is particularly intersting when - you know that the conformity scores are bounded. It also prevent the - interval to have a interval of zero width for out-of-distribution or - new samples. On the opposite, it is not recommended if the conformity - scores can vary a lot. - - By default ``False`` - - init_value: Optional[ArrayLike] - Optimization initialisation value. - If ``None``, is sampled from a normal distribution. - - By default ``None``. - - Attributes - ---------- - fit_attributes: Optional[List[str]] - Name of attributes set during the ``fit`` method, and required to call - ``transform``. - - n_in: int - Number of features of ``X`` - - n_out: int - Number of features of phi(``X``, ``y_pred``, ``z``) - - exponents: List[int] - List of exponents of the built polynomial features - - Examples - -------- - >>> import numpy as np - >>> from mapie.phi_function import PolynomialPhiFunction - >>> X = np.array([[1, 2], [3, 4], [5, 6]]) - >>> y_pred = np.array([1, 2, 3]) - >>> phi = PolynomialPhiFunction(3).fit(X, y_pred) - >>> print(phi.transform(X, y_pred)) - [[ 1. 2. 1. 4. 1. 8. 1.] - [ 3. 4. 9. 16. 27. 64. 1.] - [ 5. 6. 25. 36. 125. 216. 1.]] - >>> print(phi.exponents) - [0, 1, 2, 3] - >>> phi = PolynomialPhiFunction([1, 2, 5], "y_pred", - ... bias=False).fit(X, y_pred) - >>> print(phi.transform(X, y_pred)) - [[ 1. 1. 1.] - [ 2. 4. 32.] - [ 3. 9. 243.]] - >>> print(phi.degree) - [1, 2, 5] - """ - fit_attributes: List[str] = [] - - def __init__( - self, - degree: Optional[Union[int, List[int]]] = None, - variable: str = "X", - bias: bool = False, - normalized: bool = False, - init_value: Optional[ArrayLike] = None, - multipliers: Optional[List[Callable]] = None, - ) -> None: - self.degree = degree - self.variable = variable - self.bias = bias - self.normalized = normalized - self.init_value = init_value - self.multipliers = multipliers - - def _convert_degree( - self, degree: Optional[Union[int, List[int]]], bias: bool - ) -> Tuple[List[int], bool]: - """ - Convert ``degree`` argument into a list of exponents - - Parameters - ---------- - degree: Union[int, List[int]] - If ``degree``is an integer, it correspond to the degree of the - polynomial features transformer. It will create the features - ``1``, ``variable``, ``variable``**2, ..., - ``variable``**``degree``. - - If ``degree``is an iterable of integers, it will create the - features ``variable``**d, for all integer d in ``degree`` - - ``variable`` may be ``X``, ``y_pred`` or ``z``, depending on the - ``variable``argument value. - - If ``None``, it will default to ``degree=1``. - - By default ``None``. - - bias: bool - Add a column of ones to the features, for safety reason - (to garanty the marginal coverage, no matter how the other features - the ``PhiFunction``object were built). - If the ``PhiFunction``object definition covers all the dataset - (meaning, for all calibration and test samples, - ``phi(X, y_pred, z)`` is never all zeros), this column of ones - is not necessary to obtain marginal coverage. - In this case, you can set this argument to ``False``. - - Note: Even if it is not always necessary to guarantee the marginal - coverage, it can't degrade the prediction intervals. - - Returns - ------- - Tuple[List[int], bool] - - List of exponents (the exponent ``0`` will be replaced by - ``bias=True``, which is equivalent. It is useless to add as many - columns of ones as dimensions of ``X``. Only one is enough.) - - new ``bias`` value. - """ - if degree is None: - exponents = [0, 1] - elif isinstance(degree, int): - exponents = list(range(degree+1)) - else: - exponents = degree - - return exponents, (0 in exponents) or bias - - def _create_functions( - self, exponents: List[int], variable: str - ) -> List[Callable]: - """ - Create the list of lambda functions, based on the list ``exponents`` - and the ``variable`` value. - - Parameters - ---------- - exponents: List[int] - List of exponents to apply on the ``variable``` - - variable: Literal["X", "y_pred", "z"] - Variable on which to apply the exponents. - """ - if variable == "X": - return [lambda X, d=d: X**d for d in exponents if d != 0] - elif variable == "y_pred": - return [lambda y_pred, d=d: y_pred**d for d in exponents if d != 0] - elif variable == "z": - return [lambda z, d=d: z**d for d in exponents if d != 0] - else: - raise ValueError("variable must be 'X', 'y_pred' or 'z'") - - def _check_fit_parameters( - self, - X: ArrayLike, - y_pred: Optional[ArrayLike] = None, - z: Optional[ArrayLike] = None, - ) -> None: - """ - Fit function : Set all the necessary attributes to be able to transform - ``(X, y_pred, z)`` into the expected transformation. - - It should set all the attributes of ``fit_attributes``. - It should also set, once fitted, ``n_in``, ``n_out`` and - ``init_value``. - - Parameters - ---------- - X: ArrayLike of shape (n_samples, n_features) - Training data. - - y: ArrayLike of shape (n_samples,) - Training labels. - - By default ``None`` - - z: Optional[ArrayLike] of shape (n_calib_samples, n_exog_features) - Exogenous variables - - By default ``None`` - """ - self.exponents, self.bias = self._convert_degree( - self.degree, self.bias) - functions = self._create_functions(self.exponents, self.variable) - self.functions_ = format_functions(functions, self.bias) - - -class GaussianPhiFunction(PhiFunction): - """ - This class is used to define the transformation phi, - used in the Gibbs et al. method to model the conformity scores. - This class build a ``PhiFunction`` object with features been the gaussian - distances between X and some defined points. - - Parameters - ---------- - points : Union[int, ArrayLike, Tuple[ArrayLike, ArrayLike]] - If Array: List of data points, used as centers to compute - gaussian distances. Should be an array of shape (n_points, n_in). - - If integer, the points will be sampled randomly from the ``X`` - set, where ``X`` is the data give to the - ``GaussianPhiFunction.fit`` method, which usually correspond to - the ``X`` argument of the ``MapieCCPRegressor.calibrate`` method - (unless you call ``GaussianPhiFunction.fit(X)`` yourself). - - You can pass a Tuple[ArrayLike, ArrayLike], to have a different - ``sigma`` value for each point. The two elements of the - tuple should be: - - Data points: 2D array of shape (n_points, n_in) - - Sigma values 2D array of shape (n_points, n_in) or (n_points, 1) - In this case, the ``sigma``, ``random_sigma`` and ``X`` argument are - ignored. - - If ``None``, default to ``20``. - - By default, ``None`` - - sigma : Optional[Union[float, ArrayLike]] - Standard deviation value used to compute the guassian distances, - with the formula: - np.exp(-0.5 * ((X - point) / ``sigma``) ** 2) - - It can be an integer - - It can be a 1D array of float with as many - values as dimensions in the dataset - - If you want different standard deviation values of each points, - you can indicate the sigma value of each point in the ``points`` - argument. - - If ``None``, ``sigma`` will default to a float equal to - ``np.std(X)/(n**0.5)``, where ``X`` is the data give to the - ``GaussianPhiFunction.fit`` method, which correspond to the ``X`` - argument of the ``MapieCCPRegressor.calibrate`` method - (unless you call ``GaussianPhiFunction.fit(X)`` yourself). - - By default, ``None`` - - random_sigma : bool - Whether to apply to the standard deviation values, a random multiplier, - different for each point, equal to: - - 2**np.random.normal(0, 1*2**(-2+np.log10(len(``points``)))) - - Exemple: - - For 10 points, the sigma value will, in general, - be multiplied by a value between 0.7 and 1.4 - - For 100 points, the sigma value will, in general, - be multiplied by a value between 0.5 and 2 - - Note: This is a default suggestion of randomization, - which allow to have in the same time wide and narrow gaussians - (with a gigger range of multipliers for huge amount of points). - - You can use fully custom sigma values, buy passing to the - ``points`` argument, a different sigma value for each point. - - If ``None``, default to ``False``. - - By default, ``None`` - - bias: bool - Add a column of ones to the features, for safety reason - (to garanty the marginal coverage, no matter how the other features - the ``PhiFunction``object were built). - If the ``PhiFunction``object definition covers all the dataset - (meaning, for all calibration and test samples, ``phi(X, y_pred, z)`` - is never all zeros), this column of ones is not necessary - to obtain marginal coverage. - In this case, you can set this argument to ``False``. - - Note: In this case, with ``GaussianPhiFunction``, if ``normalized`` is - ``True`` (it is, by default), the ``phi(X, y_pred, z)`` will never - be all zeros, so this ``bias`` is not required - sto have coverage guarantee. - - By default ``False``. - - normalized: bool - Whether or not to normalized ``phi(X, y_pred, z)``. Normalization - will result in a bounded interval prediction width, avoiding the width - to explode to +inf or crash to zero. It is particularly intersting when - you know that the conformity scores are bounded. It also prevent the - interval to have a interval of zero width for out-of-distribution or - new samples. On the opposite, it is not recommended if the conformity - scores can vary a lot. - - By default ``True`` - - init_value: Optional[ArrayLike] - Optimization initialisation value. - If ``None``, is sampled from a normal distribution. - - By default ``None``. - - Attributes - ---------- - fit_attributes: Optional[List[str]] - Name of attributes set during the ``fit`` method, and required to call - ``transform``. - - n_in: int - Number of features of ``X`` - - n_out: int - Number of features of phi(``X``, ``y_pred``, ``z``) - - points_: NDArray - Array of shape (n_points, n_in), corresponding to the points used to - compute the gaussian distanes. - - sigmas_: NDArray of shape (len(points), 1) or (len(points), n_in) - Standard deviation values - - Examples - -------- - >>> import numpy as np - >>> from mapie.phi_function import GaussianPhiFunction - >>> np.random.seed(1) - >>> X = np.array([[1], [2], [3], [4], [5]]) - >>> phi = GaussianPhiFunction(2, bias=False, - ... normalized=False).fit(X) - >>> print(np.round(phi.transform(X), 2)) - [[0.14 0.61] - [0.61 1. ] - [1. 0.61] - [0.61 0.14] - [0.14 0.01]] - >>> print(phi.points_) - [[3] - [2]] - >>> print(phi.sigmas_) - [[1.] - [1.]] - >>> phi = GaussianPhiFunction([[3],[4]], 0.5).fit(X) - >>> print(np.round(phi.transform(X), 2)) - [[1. 0. ] - [1. 0. ] - [0.99 0.13] - [0.13 0.99] - [0. 1. ]] - >>> print(phi.points_) - [[3] - [4]] - >>> print(phi.sigmas_) - [[0.5] - [0.5]] - """ - fit_attributes: List[str] = ["points_", "sigmas_", "functions_"] - - def __init__( - self, - points: Optional[Union[int, ArrayLike, - Tuple[ArrayLike, ArrayLike]]] = None, - sigma: Optional[Union[float, ArrayLike]] = None, - random_sigma: Optional[bool] = None, - bias: bool = False, - normalized: bool = True, - init_value: Optional[ArrayLike] = None, - multipliers: Optional[List[Callable]] = None, - ) -> None: - self.points = points - self.sigma = sigma - self.random_sigma = random_sigma - self.bias = bias - self.normalized = normalized - self.init_value = init_value - self.multipliers = multipliers - - def _check_random_sigma(self) -> bool: - """ - Check ``random_sigma`` - - Returns - ------- - bool - checked ``random_sigma`` - """ - if self.random_sigma is None: - return False - else: - return self.random_sigma - - def _check_points_sigma( - self, points: ArrayLike, sigmas: ArrayLike - ) -> None: - """ - Take 2D arrays of points and standard deviations and check - compatibility - - Parameters - ---------- - points : ArrayLike - 2D array of shape (n_points, n_in) - sigmas : ArrayLike - 2D array of shape (n_points, 1) or (n_points, n_in) - - Raises - ------ - ValueError - If ``sigmas``is not of shape (n_points, 1) or (n_points, n_in) - """ - if _num_samples(points) != _num_samples(sigmas): - raise ValueError("There should have as many points as " - "standard deviation values") - if len(_safe_indexing(sigmas, 0)) not in [ - 1, len(_safe_indexing(points, 0)) - ]: - raise ValueError("The standard deviation 2D array should be of " - "shape (n_points, 1) or (n_points, n_in).\n" - f"Got sigma of shape: ({_num_samples(sigmas)}, " - f"{len(_safe_indexing(points, 0))}).") - - def _check_fit_parameters( - self, - X: ArrayLike, - y_pred: Optional[ArrayLike] = None, - z: Optional[ArrayLike] = None, - ) -> None: - """ - Fit function : Set all the necessary attributes to be able to transform - ``(X, y_pred, z)`` into the expected transformation. - - It should set all the attributes of ``fit_attributes``. - It should also set, once fitted, ``n_in``, ``n_out`` and - ``init_value``. - - Parameters - ---------- - X: ArrayLike of shape (n_samples, n_features) - Training data. - - y: ArrayLike of shape (n_samples,) - Training labels. - - By default ``None`` - - z: Optional[ArrayLike] of shape (n_calib_samples, n_exog_features) - Exogenous variables - - By default ``None`` - """ - self.random_sigma = self._check_random_sigma() - self.points_ = sample_points(X, self.points) - self.sigmas_ = compute_sigma(X, self.points, self.points_, - self.sigma, self.random_sigma) - self._check_points_sigma(self.points_, self.sigmas_) - - functions = [ - lambda X, mu=_safe_indexing(self.points_, i), - sigma=_safe_indexing(self.sigmas_, i): - np.exp(-0.5 * np.sum(((X - mu) / sigma) ** 2, axis=1)) - for i in range(_num_samples(self.points_)) - ] - self.functions_ = format_functions(functions, self.bias) diff --git a/mapie/regression/ccp_regression.py b/mapie/regression/ccp_regression.py index 03e1fcd37..38a5e2719 100644 --- a/mapie/regression/ccp_regression.py +++ b/mapie/regression/ccp_regression.py @@ -14,9 +14,8 @@ from mapie._typing import ArrayLike, NDArray from mapie.conformity_scores import ConformityScore -from ..phi_function.ccp_phi_function import PhiFunction -from ..phi_function import GaussianPhiFunction -from ..phi_function.utils import calibrator_optim_objective +from mapie.calibrators.ccp import CCP, check_phi +from mapie.calibrators.ccp.utils import calibrator_optim_objective from mapie.utils import (check_conformity_score, check_estimator_regression, check_lower_upper_bounds, check_null_weight, fit_estimator) @@ -43,11 +42,11 @@ class MapieCCPRegressor(BaseEstimator, RegressorMixin): By default ``"None"``. - phi: Optional[PhiFunction] - A ``PhiFunction`` instance used to estimate the conformity scores. + phi: Optional[CCP] + A ``CCP`` instance used to estimate the conformity scores. - If ``None``, use as default a ``GaussianPhiFunction`` instance. - See the examples and the documentation to build a ``PhiFunction`` + If ``None``, use as default a ``GaussianCCP`` instance. + See the examples and the documentation to build a ``CCP`` adaptated to your dataset and constraints. By default ``None``. @@ -155,7 +154,7 @@ def __init__( List[Union[RegressorMixin, Pipeline]] ] ] = None, - phi: Optional[PhiFunction] = None, + phi: Optional[CCP] = None, cv: Optional[ Union[str, BaseCrossValidator, BaseShuffleSplit] ] = None, @@ -229,40 +228,6 @@ def _safe_sample( return X_train, y_train, sample_weight_train - def _check_phi( - self, - phi: Optional[PhiFunction], - ) -> PhiFunction: - """ - Check if ``phi`` is a ``PhiFunction`` instance. - - Parameters - ---------- - phi: Optional[PhiFunction] - A ``PhiFunction`` instance used to estimate the conformity scores. - - If ``None``, use as default a ``GaussianPhiFunction`` instance. - See the examples and the documentation to build a ``PhiFunction`` - adaptated to your dataset and constraints. - - Returns - ------- - PhiFunction - ``phi`` if defined, a ``GaussianPhiFunction`` instance otherwise. - - Raises - ------ - ValueError - If ``phi`` is not ``None`` nor a ``PhiFunction`` instance. - """ - if phi is None: - return GaussianPhiFunction() - elif isinstance(phi, PhiFunction): - return phi - else: - raise ValueError("Invalid `phi` argument. It must be `None` or a " - "`PhiFunction` instance.") - def _check_calibrate_parameters(self) -> None: """ Check and replace default ``conformity_score``, ``alpha`` and @@ -272,7 +237,7 @@ def _check_calibrate_parameters(self) -> None: self.conformity_score, self.default_sym_ ) self.alpha = self._check_alpha(self.alpha) - self.phi_ = self._check_phi(self.phi) + self.phi_ = check_phi(self.phi) def _check_cv( self, @@ -431,10 +396,10 @@ def fit_calibrator( self, X: ArrayLike, y: ArrayLike, - sample_weight: Optional[ArrayLike] = None, - groups: Optional[ArrayLike] = None, z: Optional[ArrayLike] = None, alpha: Optional[float] = None, + sample_weight: Optional[ArrayLike] = None, + groups: Optional[ArrayLike] = None, ) -> MapieCCPRegressor: """ Calibrate with (``X``, ``y`` and ``z``) @@ -448,24 +413,6 @@ def fit_calibrator( y: ArrayLike of shape (n_samples,) Training labels. - sample_weight: Optional[ArrayLike] of shape (n_samples,) - Sample weights for fitting the out-of-fold models. - If ``None``, then samples are equally weighted. - If some weights are null, - their corresponding observations are removed - before the fitting process and hence have no residuals. - If weights are non-uniform, residuals are still uniformly weighted. - Note that the sample weight defined are only for the training, not - for the calibration procedure. - - By default ``None``. - - groups: Optional[ArrayLike] of shape (n_samples,) - Group labels for the samples used while splitting the dataset into - train/test set. - - By default ``None``. - z: Optional[ArrayLike] of shape (n_calib_samples, n_exog_features) Exogenous variables @@ -484,6 +431,24 @@ def fit_calibrator( By default ``None`` + sample_weight: Optional[ArrayLike] of shape (n_samples,) + Sample weights for fitting the out-of-fold models. + If ``None``, then samples are equally weighted. + If some weights are null, + their corresponding observations are removed + before the fitting process and hence have no residuals. + If weights are non-uniform, residuals are still uniformly weighted. + Note that the sample weight defined are only for the training, not + for the calibration procedure. + + By default ``None``. + + groups: Optional[ArrayLike] of shape (n_samples,) + Group labels for the samples used while splitting the dataset into + train/test set. + + By default ``None``. + Returns ------- MapieCCPRegressor @@ -597,10 +562,10 @@ def fit( self, X: ArrayLike, y: ArrayLike, - sample_weight: Optional[ArrayLike] = None, - groups: Optional[ArrayLike] = None, z: Optional[ArrayLike] = None, alpha: Optional[float] = None, + sample_weight: Optional[ArrayLike] = None, + groups: Optional[ArrayLike] = None, **fit_params, ) -> MapieCCPRegressor: """ @@ -615,24 +580,6 @@ def fit( y: ArrayLike of shape (n_samples,) Training labels. - sample_weight: Optional[ArrayLike] of shape (n_samples,) - Sample weights for fitting the out-of-fold models. - If ``None``, then samples are equally weighted. - If some weights are null, - their corresponding observations are removed - before the fitting process and hence have no residuals. - If weights are non-uniform, residuals are still uniformly weighted. - Note that the sample weight defined are only for the training, not - for the calibration procedure. - - By default ``None``. - - groups: Optional[ArrayLike] of shape (n_samples,) - Group labels for the samples used while splitting the dataset into - train/test set. - - By default ``None``. - z: Optional[ArrayLike] of shape (n_calib_samples, n_exog_features) Exogenous variables @@ -651,6 +598,24 @@ def fit( By default ``None`` + sample_weight: Optional[ArrayLike] of shape (n_samples,) + Sample weights for fitting the out-of-fold models. + If ``None``, then samples are equally weighted. + If some weights are null, + their corresponding observations are removed + before the fitting process and hence have no residuals. + If weights are non-uniform, residuals are still uniformly weighted. + Note that the sample weight defined are only for the training, not + for the calibration procedure. + + By default ``None``. + + groups: Optional[ArrayLike] of shape (n_samples,) + Group labels for the samples used while splitting the dataset into + train/test set. + + By default ``None``. + **fit_params: dict Additional fit parameters for the estimator. @@ -660,7 +625,7 @@ def fit( self """ self.fit_estimator(X, y, sample_weight, groups, **fit_params) - self.fit_calibrator(X, y, sample_weight, groups, z, alpha) + self.fit_calibrator(X, y, z, alpha, sample_weight, groups) return self def predict( diff --git a/mapie/tests/test_ccp_phi_function.py b/mapie/tests/test_ccp_phi_function.py index 9eb45d0d0..33407a105 100644 --- a/mapie/tests/test_ccp_phi_function.py +++ b/mapie/tests/test_ccp_phi_function.py @@ -6,8 +6,7 @@ import pytest from sklearn.utils.validation import check_is_fitted from sklearn.datasets import make_regression -from mapie.phi_function import (CustomPhiFunction, GaussianPhiFunction, - PolynomialPhiFunction, PhiFunction) +from mapie.calibrators.ccp import CustomCCP, GaussianCCP, PolynomialCCP, CCP random_state = 1 np.random.seed(random_state) @@ -18,26 +17,26 @@ z = X[:, -2:] PHI = [ - CustomPhiFunction([lambda X: np.ones((len(X), 1))]), - CustomPhiFunction(None, bias=True), - CustomPhiFunction([lambda X: X]), - CustomPhiFunction([lambda X: X, lambda z: z]), - CustomPhiFunction([lambda X: X, lambda y_pred: y_pred]), - PolynomialPhiFunction(2, "X", bias=True), - PolynomialPhiFunction([1, 2], "X", bias=True), - PolynomialPhiFunction([1, 4, 5], "y_pred", bias=False), - PolynomialPhiFunction([0, 1, 4, 5], "y_pred", bias=False), - PolynomialPhiFunction([0, 1, 3], "z", bias=False), - GaussianPhiFunction(4), - CustomPhiFunction([lambda X: X, PolynomialPhiFunction(2)]), - CustomPhiFunction([lambda X: X, GaussianPhiFunction(2)]), - CustomPhiFunction([ - lambda X: X, PolynomialPhiFunction([1, 2], bias=False) + CustomCCP([lambda X: np.ones((len(X), 1))]), + CustomCCP(None, bias=True), + CustomCCP([lambda X: X]), + CustomCCP([lambda X: X, lambda z: z]), + CustomCCP([lambda X: X, lambda y_pred: y_pred]), + PolynomialCCP(2, "X", bias=True), + PolynomialCCP([1, 2], "X", bias=True), + PolynomialCCP([1, 4, 5], "y_pred", bias=False), + PolynomialCCP([0, 1, 4, 5], "y_pred", bias=False), + PolynomialCCP([0, 1, 3], "z", bias=False), + GaussianCCP(4), + CustomCCP([lambda X: X, PolynomialCCP(2)]), + CustomCCP([lambda X: X, GaussianCCP(2)]), + CustomCCP([ + lambda X: X, PolynomialCCP([1, 2], bias=False) ]), - (lambda X: (X < 3))*CustomPhiFunction([lambda X: X]), - CustomPhiFunction([lambda X: X])*(lambda X: (X < 3)), - CustomPhiFunction([lambda X: X])*None, - CustomPhiFunction([lambda X: X])*(lambda X: (X < 3))*( + (lambda X: (X < 3))*CustomCCP([lambda X: X]), + CustomCCP([lambda X: X])*(lambda X: (X < 3)), + CustomCCP([lambda X: X])*None, + CustomCCP([lambda X: X])*(lambda X: (X < 3))*( lambda X: (X > 0)[:, 0]), ] @@ -85,21 +84,21 @@ ] -# ======== CustomPhiFunction ========= +# ======== CustomCCP ========= @pytest.mark.parametrize("functions", [ lambda X: X, [lambda X: X], - [lambda X: X, PolynomialPhiFunction(2)], - [lambda X: X, PolynomialPhiFunction(2), GaussianPhiFunction(2)], + [lambda X: X, PolynomialCCP(2)], + [lambda X: X, PolynomialCCP(2), GaussianCCP(2)], ]) def test_custom_phi_functions(functions: Any) -> None: """Test that initialization does not crash.""" - phi = CustomPhiFunction(functions) + phi = CustomCCP(functions) phi.fit(X) phi.transform(X) @pytest.mark.parametrize("phi, n_out_raw", zip(PHI, N_OUT)) -def test_phi_n_attributes(phi: PhiFunction, n_out_raw: int) -> None: +def test_phi_n_attributes(phi: CCP, n_out_raw: int) -> None: """ Test that the n_in and n_out attributes are corrects """ @@ -111,12 +110,12 @@ def test_phi_n_attributes(phi: PhiFunction, n_out_raw: int) -> None: def test_phi_functions_warning() -> None: """ - Test that creating a PhiFunction object with functions which have + Test that creating a CCP object with functions which have optional arguments different from 'X', 'y_pred' or 'z' raise a warning. """ with pytest.warns(UserWarning, match="WARNING: Unknown optional arguments."): - phi = CustomPhiFunction([lambda X, d=d: X**d for d in range(4)]) + phi = CustomCCP([lambda X, d=d: X**d for d in range(4)]) phi.fit(X) phi.transform(X) @@ -127,30 +126,30 @@ def test_phi_functions_warning() -> None: ]) def test_phi_functions_error(functions: Any) -> None: """ - Test that creating a PhiFunction object with functions which have + Test that creating a CCP object with functions which have required arguments different from 'X', 'y_pred' or 'z' raise an error. """ for f in functions: # For coverage f(np.ones((10, 1)), np.ones((10, 1))) with pytest.raises(ValueError, match=r"Forbidden required argument."): - phi = CustomPhiFunction(functions) + phi = CustomCCP(functions) phi.fit(X) def test_phi_functions_empty() -> None: """ - Test that creating a PhiFunction object with functions which have + Test that creating a CCP object with functions which have required arguments different from 'X', 'y_pred' or 'z' raise an error. """ with pytest.raises(ValueError): - phi = CustomPhiFunction([], bias=False) + phi = CustomCCP([], bias=False) phi.fit(X) -# ======== PolynomialPhiFunction ========= +# ======== PolynomialCCP ========= def test_poly_phi_init() -> None: """Test that initialization does not crash.""" - phi = PolynomialPhiFunction() + phi = PolynomialCCP() phi.fit(X) @@ -162,7 +161,7 @@ def test_poly_phi_init_other( degree: Any, variable: Any, bias: bool, normalized: bool ) -> None: """Test that initialization does not crash.""" - PolynomialPhiFunction(degree, variable, bias, normalized) + PolynomialCCP(degree, variable, bias, normalized) @pytest.mark.parametrize("var", ["other", 1, np.ones((10, 1))]) @@ -171,14 +170,14 @@ def test_invalid_variable_value(var: Any) -> None: Test that invalid variable value raise error """ with pytest.raises(ValueError): - phi = PolynomialPhiFunction(variable=var) + phi = PolynomialCCP(variable=var) phi.fit(X) -# ======== GaussianPhiFunction ========= +# ======== GaussianCCP ========= def test_gauss_phi_init() -> None: """Test that initialization does not crash.""" - GaussianPhiFunction() + GaussianCCP() @pytest.mark.parametrize("points", [3, [[10, 20], [2, 39], [2, 3]], @@ -193,39 +192,38 @@ def test_poly_gauss_init_other( bias: bool, normalized: bool ) -> None: """Test that initialization does not crash.""" - GaussianPhiFunction(points, sigma, random_sigma, - bias, normalized) + GaussianCCP(points, sigma, random_sigma, bias, normalized) @pytest.mark.parametrize("points", [np.ones((10)), np.ones((10, 2, 2))]) def test_invalid_gauss_points(points: Any) -> None: """ - Test that invalid ``GaussianPhiFunction`` ``points``argument values raise + Test that invalid ``GaussianCCP`` ``points``argument values raise an error """ with pytest.raises(ValueError, match="Invalid `points` argument."): - phi = GaussianPhiFunction(points) + phi = GaussianCCP(points) phi.fit(X) def test_invalid_gauss_points_2() -> None: """ - Test that invalid ``GaussianPhiFunction`` ``points``argument values raise + Test that invalid ``GaussianCCP`` ``points``argument values raise an error """ with pytest.raises(ValueError, match="There should have as many points"): - phi = GaussianPhiFunction(points=(np.ones((10, 3)), np.ones((8, 3)))) + phi = GaussianCCP(points=(np.ones((10, 3)), np.ones((8, 3)))) phi.fit(X) def test_invalid_gauss_points_3() -> None: """ - Test that invalid ``GaussianPhiFunction`` ``points``argument values raise + Test that invalid ``GaussianCCP`` ``points``argument values raise an error """ with pytest.raises(ValueError, match="The standard deviation 2D array"): - phi = GaussianPhiFunction(points=(np.ones((10, 3)), np.ones((10, 2)))) + phi = GaussianCCP(points=(np.ones((10, 3)), np.ones((10, 2)))) phi.fit(X) @@ -235,21 +233,21 @@ def test_invalid_gauss_points_3() -> None: np.ones(8)]) def test_invalid_gauss_sigma(sigma: Any) -> None: """ - Test that invalid ``GaussianPhiFunction`` ``sigma``argument values raise an + Test that invalid ``GaussianCCP`` ``sigma``argument values raise an error """ with pytest.raises(ValueError): - phi = GaussianPhiFunction(3, sigma) + phi = GaussianCCP(3, sigma) phi.fit(X) @pytest.mark.parametrize("ind", range(len(GAUSS_NEED_FIT_SETTINGS))) def test_gauss_need_calib(ind: int) -> None: """ - Test that ``GaussianPhiFunction`` arguments that require later completion + Test that ``GaussianCCP`` arguments that require later completion have ``_need_x_calib`` = ``True`` """ - phi = GaussianPhiFunction(**GAUSS_NEED_FIT_SETTINGS[ind]) + phi = GaussianCCP(**GAUSS_NEED_FIT_SETTINGS[ind]) phi.fit(X) check_is_fitted(phi, phi.fit_attributes) @@ -257,9 +255,9 @@ def test_gauss_need_calib(ind: int) -> None: @pytest.mark.parametrize("ind", range(len(GAUSS_NO_NEED_FIT_SETTINGS))) def test_gauss_no_need_calib(ind: int) -> None: """ - Test that ``GaussianPhiFunction`` arguments that don't require later + Test that ``GaussianCCP`` arguments that don't require later completion have ``_need_x_calib`` = ``False`` """ - phi = GaussianPhiFunction(**GAUSS_NO_NEED_FIT_SETTINGS[ind]) + phi = GaussianCCP(**GAUSS_NO_NEED_FIT_SETTINGS[ind]) phi.fit(X) check_is_fitted(phi, phi.fit_attributes) diff --git a/mapie/tests/test_ccp_regression.py b/mapie/tests/test_ccp_regression.py index 967af110b..0921ce2c2 100644 --- a/mapie/tests/test_ccp_regression.py +++ b/mapie/tests/test_ccp_regression.py @@ -24,8 +24,7 @@ ResidualNormalisedScore) from mapie.metrics import regression_coverage_score from mapie.regression import MapieCCPRegressor -from mapie.phi_function import (PhiFunction, CustomPhiFunction, - GaussianPhiFunction, PolynomialPhiFunction) +from mapie.calibrators.ccp import CCP, CustomCCP, GaussianCCP, PolynomialCCP random_state = 1 np.random.seed(random_state) @@ -43,9 +42,9 @@ CV = ["prefit", "split"] PHI = [ - CustomPhiFunction([lambda X: np.ones((len(X), 1))]), - PolynomialPhiFunction(), - GaussianPhiFunction(5), + CustomCCP([lambda X: np.ones((len(X), 1))]), + PolynomialCCP(), + GaussianCCP(5), ] WIDTHS = { "split": 3.87, @@ -114,8 +113,7 @@ def test_calib_not_complete_phi() -> None: with pytest.warns(UserWarning, match="WARNING: At least one row of the"): mapie_reg = MapieCCPRegressor( alpha=0.1, - phi=CustomPhiFunction([lambda X: (X < 5).astype(int)], - bias=False) + phi=CustomCCP([lambda X: (X < 5).astype(int)], bias=False) ) mapie_reg.fit(X_toy, y_toy) @@ -125,8 +123,7 @@ def test_predict_not_complete_phi() -> None: with pytest.warns(UserWarning, match="WARNING: At least one row of the"): mapie_reg = MapieCCPRegressor( alpha=0.1, - phi=CustomPhiFunction([lambda X: (X < 5).astype(int)], - bias=False) + phi=CustomCCP([lambda X: (X < 5).astype(int)], bias=False) ) mapie_reg.fit(X_toy[X_toy[:, 0] < 5], y_toy[X_toy[:, 0] < 5]) mapie_reg.predict(X_toy) @@ -199,7 +196,7 @@ def test_default_parameters() -> None: mapie_reg = MapieCCPRegressor(random_state=random_state, alpha=0.1) mapie_reg.fit(X, y) assert isinstance(mapie_reg.estimator_, RegressorMixin) - assert isinstance(mapie_reg.phi_, GaussianPhiFunction) + assert isinstance(mapie_reg.phi_, GaussianCCP) assert isinstance(mapie_reg.cv, ShuffleSplit) assert mapie_reg.alpha == 0.1 assert isinstance(mapie_reg.conformity_score_, ConformityScore) @@ -280,7 +277,7 @@ def test_invalid_cv(cv: Any) -> None: ]) def test_fit_calibrate_combined_equivalence( alpha: Any, dataset: Tuple[NDArray, NDArray, NDArray], - cv: Any, phi: PhiFunction, estimator: RegressorMixin + cv: Any, phi: CCP, estimator: RegressorMixin ) -> None: """Test predict output shape.""" (X, y, z) = dataset @@ -328,7 +325,7 @@ def test_recalibrate_warning() -> None: ]) def test_recalibrate( dataset: Tuple[NDArray, NDArray, NDArray], - cv: Any, phi: PhiFunction, estimator: RegressorMixin + cv: Any, phi: CCP, estimator: RegressorMixin ) -> None: """ Test that the PI are different for different value of alpha, @@ -367,7 +364,7 @@ def test_recalibrate( ]) def test_predict_output_shape_alpha( dataset: Tuple[NDArray, NDArray, NDArray], - cv: Any, phi: PhiFunction, estimator: RegressorMixin + cv: Any, phi: CCP, estimator: RegressorMixin ) -> None: """Test predict output shape.""" (X, y, z) = dataset @@ -391,7 +388,7 @@ def test_predict_output_shape_alpha( ]) def test_predict_output_shape_no_alpha( dataset: Tuple[NDArray, NDArray, NDArray], - cv: Any, phi: PhiFunction, estimator: RegressorMixin + cv: Any, phi: CCP, estimator: RegressorMixin ) -> None: """Test predict output shape.""" (X, y, z) = dataset @@ -412,7 +409,7 @@ def test_predict_output_shape_no_alpha( make_pipeline(LinearRegression()), ]) def test_same_results_prefit_split( - dataset: Tuple[NDArray, NDArray, NDArray], phi_template: PhiFunction, + dataset: Tuple[NDArray, NDArray, NDArray], phi_template: CCP, estimator: RegressorMixin, ) -> None: """ @@ -434,7 +431,7 @@ def test_same_results_prefit_split( phi = clone(phi_template) phi.fit(X) phi.init_value = phi.init_value_ - if isinstance(phi, GaussianPhiFunction): + if isinstance(phi, GaussianCCP): phi.points = (phi.points_, phi.sigmas_) mapie_reg = MapieCCPRegressor(estimator=estimator, phi=phi, cv=pred_cv, @@ -464,7 +461,7 @@ def test_same_results_prefit_split( ]) def test_results_for_ordered_alpha( dataset: Tuple[NDArray, NDArray, NDArray], cv: Any, - phi: PhiFunction, estimator: RegressorMixin + phi: CCP, estimator: RegressorMixin ) -> None: """ Test that prediction intervals lower (upper) bounds give @@ -545,7 +542,7 @@ def test_results_with_constant_sample_weights( def test_prediction_between_low_up( dataset: Tuple[NDArray, NDArray, NDArray], cv: Any, - phi: PhiFunction, + phi: CCP, alpha: float, estimator: RegressorMixin ) -> None: @@ -581,7 +578,7 @@ def test_prediction_between_low_up( ]) def test_linear_data_confidence_interval( cv: Any, - phi: PhiFunction, + phi: CCP, alpha: float, estimator: RegressorMixin ) -> None: @@ -669,7 +666,7 @@ def test_results_prefit(estimator: RegressorMixin) -> None: ) def test_conformity_score( cv: Any, - phi: PhiFunction, + phi: CCP, estimator: RegressorMixin, conformity_score: ConformityScore ) -> None: From 0a7ec523f92b305647b6995ff7877c5da4a426b2 Mon Sep 17 00:00:00 2001 From: Damien Bouet Date: Tue, 11 Jun 2024 11:23:19 +0200 Subject: [PATCH 046/165] ADD: Abstract 'Calibrator' class --- mapie/calibrators/__init__.py | 5 ++ mapie/calibrators/base.py | 82 ++++++++++++++++++++++++++++ mapie/calibrators/ccp/base.py | 19 ++----- mapie/calibrators/ccp/custom.py | 4 +- mapie/calibrators/ccp/gaussian.py | 4 +- mapie/calibrators/ccp/polynomial.py | 4 +- mapie/regression/ccp_regression.py | 4 +- mapie/tests/test_ccp_phi_function.py | 6 +- 8 files changed, 104 insertions(+), 24 deletions(-) create mode 100644 mapie/calibrators/__init__.py create mode 100644 mapie/calibrators/base.py diff --git a/mapie/calibrators/__init__.py b/mapie/calibrators/__init__.py new file mode 100644 index 000000000..a6f8c3210 --- /dev/null +++ b/mapie/calibrators/__init__.py @@ -0,0 +1,5 @@ +from .base import Calibrator + +__all__ = [ + "Calibrator", +] diff --git a/mapie/calibrators/base.py b/mapie/calibrators/base.py new file mode 100644 index 000000000..260650b13 --- /dev/null +++ b/mapie/calibrators/base.py @@ -0,0 +1,82 @@ +from __future__ import annotations + +from abc import ABCMeta, abstractmethod +from typing import Optional, List + +from mapie._typing import ArrayLike, NDArray +from sklearn.base import BaseEstimator + + +class Calibrator(BaseEstimator, metaclass=ABCMeta): + """ + Base abstract class for thecalibrators + + Attributes + ---------- + fit_attributes: Optional[List[str]] + Name of attributes set during the ``fit`` method, and required to call + ``transform``. + """ + + fit_attributes: List[str] + + @abstractmethod + def fit( + self, + X: ArrayLike, + y_pred: Optional[ArrayLike] = None, + z: Optional[ArrayLike] = None, + ) -> Calibrator: + """ + Fit the calibrator instance + + Parameters + ---------- + X: ArrayLike of shape (n_samples, n_features) + Training data. + + y_pred: ArrayLike of shape (n_samples,) + Training labels. + + By default ``None`` + + z: Optional[ArrayLike] of shape (n_calib_samples, n_exog_features) + Exogenous variables + + By default ``None`` + """ + + @abstractmethod + def predict( + self, + X: Optional[ArrayLike] = None, + y_pred: Optional[ArrayLike] = None, + z: Optional[ArrayLike] = None, + ) -> NDArray: + """ + Predict ``(X, y_pred, z)`` + + Parameters + ---------- + X : ArrayLike + Observed samples + + y_pred : ArrayLike + Target prediction + + z : ArrayLike + Exogenous variable + + Returns + ------- + NDArray + prediction + """ + + def __call__( + self, + X: Optional[ArrayLike] = None, + y_pred: Optional[ArrayLike] = None, + z: Optional[ArrayLike] = None, + ) -> NDArray: + return self.predict(X, y_pred, z) diff --git a/mapie/calibrators/ccp/base.py b/mapie/calibrators/ccp/base.py index 0bf72cd95..dd7ab073e 100644 --- a/mapie/calibrators/ccp/base.py +++ b/mapie/calibrators/ccp/base.py @@ -8,12 +8,13 @@ from mapie._typing import ArrayLike, NDArray from .utils import (compile_functions_warnings_errors, concatenate_functions, check_multiplier) +from mapie.calibrators import Calibrator from sklearn.utils import _safe_indexing from sklearn.utils.validation import check_is_fitted -from sklearn.base import BaseEstimator, clone +from sklearn.base import clone -class CCP(BaseEstimator, metaclass=ABCMeta): +class CCP(Calibrator, metaclass=ABCMeta): """ Base abstract class for the phi functions, used in the Gibbs et al. method to model the conformity scores. @@ -165,7 +166,7 @@ def fit( X: ArrayLike of shape (n_samples, n_features) Training data. - y: ArrayLike of shape (n_samples,) + y_pred: ArrayLike of shape (n_samples,) Training labels. By default ``None`` @@ -176,14 +177,14 @@ def fit( By default ``None`` """ self._check_fit_parameters(X, y_pred, z) - result = self.transform(X, y_pred, z) + result = self.predict(X, y_pred, z) self.n_in = len(_safe_indexing(X, 0)) self.n_out = len(_safe_indexing(result, 0)) self.init_value_ = self._check_init_value(self.init_value, self.n_out) check_multiplier(self.multipliers, X, y_pred, z) return self - def transform( + def predict( self, X: Optional[ArrayLike] = None, y_pred: Optional[ArrayLike] = None, @@ -230,14 +231,6 @@ def transform( "in the `CCP` definition.") return result - def __call__( - self, - X: Optional[ArrayLike] = None, - y_pred: Optional[ArrayLike] = None, - z: Optional[ArrayLike] = None, - ) -> NDArray: - return self.transform(X, y_pred, z) - def __mul__(self, funct: Optional[Callable]) -> CCP: """ Multiply a ``CCP`` with another function. diff --git a/mapie/calibrators/ccp/custom.py b/mapie/calibrators/ccp/custom.py index c94735754..6e2ef7829 100644 --- a/mapie/calibrators/ccp/custom.py +++ b/mapie/calibrators/ccp/custom.py @@ -93,7 +93,7 @@ class CustomCCP(CCP): ... ], ... normalized=False, ... ).fit(X, y_pred) - >>> print(phi.transform(X, y_pred)) + >>> print(phi.predict(X, y_pred)) [[1. 2. 0.] [3. 4. 0.] [0. 0. 1.]] @@ -181,7 +181,7 @@ def fit( check_multiplier(phi.multipliers, X, y_pred, z) self.is_fitted_ = True - result = self.transform(X, y_pred, z) + result = self.predict(X, y_pred, z) self.n_in = len(_safe_indexing(X, 0)) self.n_out = len(_safe_indexing(result, 0)) self.init_value_ = self._check_init_value(self.init_value, self.n_out) diff --git a/mapie/calibrators/ccp/gaussian.py b/mapie/calibrators/ccp/gaussian.py index bc052fd2d..0ca9bfb46 100644 --- a/mapie/calibrators/ccp/gaussian.py +++ b/mapie/calibrators/ccp/gaussian.py @@ -145,7 +145,7 @@ class GaussianCCP(CCP): >>> X = np.array([[1], [2], [3], [4], [5]]) >>> phi = GaussianCCP(2, bias=False, ... normalized=False).fit(X) - >>> print(np.round(phi.transform(X), 2)) + >>> print(np.round(phi.predict(X), 2)) [[0.14 0.61] [0.61 1. ] [1. 0.61] @@ -158,7 +158,7 @@ class GaussianCCP(CCP): [[1.] [1.]] >>> phi = GaussianCCP([[3],[4]], 0.5).fit(X) - >>> print(np.round(phi.transform(X), 2)) + >>> print(np.round(phi.predict(X), 2)) [[1. 0. ] [1. 0. ] [0.99 0.13] diff --git a/mapie/calibrators/ccp/polynomial.py b/mapie/calibrators/ccp/polynomial.py index 75907b17d..37a34181d 100644 --- a/mapie/calibrators/ccp/polynomial.py +++ b/mapie/calibrators/ccp/polynomial.py @@ -91,7 +91,7 @@ class PolynomialCCP(CCP): >>> X = np.array([[1, 2], [3, 4], [5, 6]]) >>> y_pred = np.array([1, 2, 3]) >>> phi = PolynomialCCP(3).fit(X, y_pred) - >>> print(phi.transform(X, y_pred)) + >>> print(phi.predict(X, y_pred)) [[ 1. 2. 1. 4. 1. 8. 1.] [ 3. 4. 9. 16. 27. 64. 1.] [ 5. 6. 25. 36. 125. 216. 1.]] @@ -99,7 +99,7 @@ class PolynomialCCP(CCP): [0, 1, 2, 3] >>> phi = PolynomialCCP([1, 2, 5], "y_pred", ... bias=False).fit(X, y_pred) - >>> print(phi.transform(X, y_pred)) + >>> print(phi.predict(X, y_pred)) [[ 1. 1. 1.] [ 2. 4. 32.] [ 3. 9. 243.]] diff --git a/mapie/regression/ccp_regression.py b/mapie/regression/ccp_regression.py index 38a5e2719..60a012da2 100644 --- a/mapie/regression/ccp_regression.py +++ b/mapie/regression/ccp_regression.py @@ -508,7 +508,7 @@ def fit_calibrator( self.phi_.fit(X, self.estimator_.predict(X), z) - phi_x = self.phi_.transform(X_calib, y_pred_calib, z_calib) + phi_x = self.phi_.predict(X_calib, y_pred_calib, z_calib) not_nan_index = np.where(~np.isnan(calib_conformity_scores))[0] # Some conf. score values may be nan (ex: with ResidualNormalisedScore) @@ -662,7 +662,7 @@ def predict( check_is_fitted(self, self.calib_attributes) - phi_x = self.phi_.transform(X, y_pred, z) + phi_x = self.phi_.predict(X, y_pred, z) signed = -1 if self.conformity_score_.sym else 1 diff --git a/mapie/tests/test_ccp_phi_function.py b/mapie/tests/test_ccp_phi_function.py index 33407a105..327d90cc0 100644 --- a/mapie/tests/test_ccp_phi_function.py +++ b/mapie/tests/test_ccp_phi_function.py @@ -94,7 +94,7 @@ def test_custom_phi_functions(functions: Any) -> None: """Test that initialization does not crash.""" phi = CustomCCP(functions) phi.fit(X) - phi.transform(X) + phi.predict(X) @pytest.mark.parametrize("phi, n_out_raw", zip(PHI, N_OUT)) @@ -103,7 +103,7 @@ def test_phi_n_attributes(phi: CCP, n_out_raw: int) -> None: Test that the n_in and n_out attributes are corrects """ phi.fit(X, y_pred=y, z=z) - phi.transform(X, y_pred=y, z=z) + phi.predict(X, y_pred=y, z=z) assert phi.n_in == 10 assert phi.n_out == n_out_raw @@ -117,7 +117,7 @@ def test_phi_functions_warning() -> None: match="WARNING: Unknown optional arguments."): phi = CustomCCP([lambda X, d=d: X**d for d in range(4)]) phi.fit(X) - phi.transform(X) + phi.predict(X) @pytest.mark.parametrize("functions", [ From e9e0f439b1d9c2650e07505f04df36ac6f16ddde Mon Sep 17 00:00:00 2001 From: Damien Bouet Date: Wed, 12 Jun 2024 15:37:02 +0200 Subject: [PATCH 047/165] UPD: externalise MapieCCPRegressor into abstract SplitMapie and move calibration inside Calibrator --- .../plot_gibbs2023_simulations.py | 6 +- mapie/calibrators/__init__.py | 4 + mapie/calibrators/base.py | 80 +++- mapie/calibrators/ccp/__init__.py | 4 +- mapie/calibrators/ccp/base.py | 225 +++++++++- mapie/calibrators/ccp/custom.py | 69 ++- mapie/calibrators/ccp/gaussian.py | 64 ++- mapie/calibrators/ccp/polynomial.py | 39 +- mapie/calibrators/ccp/utils.py | 7 +- mapie/futur/__init__.py | 4 + mapie/futur/split/__init__.py | 4 + .../ccp_regression.py => futur/split/base.py} | 401 ++++++++---------- mapie/futur/split/regression.py | 256 +++++++++++ mapie/regression/__init__.py | 4 +- mapie/utils.py | 90 +++- 15 files changed, 891 insertions(+), 366 deletions(-) create mode 100644 mapie/futur/__init__.py create mode 100644 mapie/futur/split/__init__.py rename mapie/{regression/ccp_regression.py => futur/split/base.py} (63%) create mode 100644 mapie/futur/split/regression.py diff --git a/examples/regression/3-scientific-articles/plot_gibbs2023_simulations.py b/examples/regression/3-scientific-articles/plot_gibbs2023_simulations.py index 455252578..76535fc74 100644 --- a/examples/regression/3-scientific-articles/plot_gibbs2023_simulations.py +++ b/examples/regression/3-scientific-articles/plot_gibbs2023_simulations.py @@ -33,7 +33,7 @@ import numpy as np import pandas as pd from mapie.conformity_scores import AbsoluteConformityScore -from mapie.regression import MapieCCPRegressor, MapieRegressor +from mapie.regression import SplitMapieRegressor, MapieRegressor from mapie.calibrators.ccp import CustomCCP, GaussianCCP from scipy.stats import norm from sklearn.linear_model import LinearRegression @@ -195,7 +195,7 @@ def plot_results(X_test, y_test, n_trials=10, lambda X, t=t: np.logical_and(X >= t, X < t + 0.5).astype(int) for t in np.arange(0, 5.5, 0.5) ]) - mapie_ccp = MapieCCPRegressor( + mapie_ccp = SplitMapieRegressor( model, phi=phi_groups, alpha=ALPHA, cv="prefit", conformity_score=AbsoluteConformityScore(sym=False), random_state=None @@ -218,7 +218,7 @@ def plot_results(X_test, y_test, n_trials=10, bias=True, normalized=False, ) - mapie_ccp = MapieCCPRegressor( + mapie_ccp = SplitMapieRegressor( model, phi=phi_shifts, alpha=ALPHA, cv="prefit", conformity_score=AbsoluteConformityScore(sym=False), random_state=None diff --git a/mapie/calibrators/__init__.py b/mapie/calibrators/__init__.py index a6f8c3210..efecabf53 100644 --- a/mapie/calibrators/__init__.py +++ b/mapie/calibrators/__init__.py @@ -1,5 +1,9 @@ from .base import Calibrator +from .ccp import CustomCCP, PolynomialCCP, GaussianCCP __all__ = [ "Calibrator", + "CustomCCP", + "PolynomialCCP", + "GaussianCCP", ] diff --git a/mapie/calibrators/base.py b/mapie/calibrators/base.py index 260650b13..d990f9bcf 100644 --- a/mapie/calibrators/base.py +++ b/mapie/calibrators/base.py @@ -9,8 +9,8 @@ class Calibrator(BaseEstimator, metaclass=ABCMeta): """ - Base abstract class for thecalibrators - + Base abstract class for the calibrators + Attributes ---------- fit_attributes: Optional[List[str]] @@ -23,9 +23,15 @@ class Calibrator(BaseEstimator, metaclass=ABCMeta): @abstractmethod def fit( self, - X: ArrayLike, - y_pred: Optional[ArrayLike] = None, - z: Optional[ArrayLike] = None, + X_calib: ArrayLike, + y_pred_calib: Optional[ArrayLike], + z_calib: Optional[ArrayLike], + calib_conformity_scores: NDArray, + alpha: float, + sym: bool, + sample_weight_calib: Optional[ArrayLike] = None, + random_state: Optional[int] = None, + **optim_kwargs, ) -> Calibrator: """ Fit the calibrator instance @@ -33,35 +39,73 @@ def fit( Parameters ---------- X: ArrayLike of shape (n_samples, n_features) - Training data. + Calibration data. y_pred: ArrayLike of shape (n_samples,) - Training labels. - - By default ``None`` + Calibration target. z: Optional[ArrayLike] of shape (n_calib_samples, n_exog_features) Exogenous variables - By default ``None`` + conformity_scores: ArrayLike of shape (n_samples,) + Calibration conformity scores + + alpha: float + Between ``0.0`` and ``1.0``, represents the risk level of the + confidence interval. + Lower ``alpha`` produce larger (more conservative) prediction + intervals. + ``alpha`` is the complement of the target coverage level. + + sym: bool + Weather or not, the prediction interval should be symetrical + or not. + + sample_weight: Optional[ArrayLike] of shape (n_samples,) + Sample weights for fitting the out-of-fold models. + If ``None``, then samples are equally weighted. + If some weights are null, + their corresponding observations are removed + before the fitting process and hence have no residuals. + If weights are non-uniform, residuals are still uniformly weighted. + Note that the sample weight defined are only for the training, not + for the calibration procedure. + + By default ``None``. + + random_state: Optional[int] + Integer used to set the numpy seed, to get reproducible calibration + results. + If ``None``, the prediction intervals will be stochastics, and will + change if you refit the calibration + (even if no arguments have change). + + WARNING: If ``random_state``is not ``None``, ``np.random.seed`` + will be changed, which will reset the seed for all the other random + number generators. It may have an impact on the rest of your code. + + By default ``None``. + + optim_kwargs: Dict + Other argument, used in sklear.optimize.minimize """ @abstractmethod def predict( self, - X: Optional[ArrayLike] = None, - y_pred: Optional[ArrayLike] = None, + X: ArrayLike, + y_pred: ArrayLike, z: Optional[ArrayLike] = None, ) -> NDArray: """ - Predict ``(X, y_pred, z)`` + Predict ``(X, y_pred, z)`` Parameters ---------- X : ArrayLike Observed samples - y_pred : ArrayLike + y_pred : NDArray Target prediction z : ArrayLike @@ -72,11 +116,3 @@ def predict( NDArray prediction """ - - def __call__( - self, - X: Optional[ArrayLike] = None, - y_pred: Optional[ArrayLike] = None, - z: Optional[ArrayLike] = None, - ) -> NDArray: - return self.predict(X, y_pred, z) diff --git a/mapie/calibrators/ccp/__init__.py b/mapie/calibrators/ccp/__init__.py index 371e3a528..8f4197903 100644 --- a/mapie/calibrators/ccp/__init__.py +++ b/mapie/calibrators/ccp/__init__.py @@ -1,12 +1,12 @@ from .base import CCP from .custom import CustomCCP from .polynomial import PolynomialCCP -from .gaussian import GaussianCCP, check_phi +from .gaussian import GaussianCCP, check_calibrator __all__ = [ "CCP", "CustomCCP", "PolynomialCCP", "GaussianCCP", - "check_phi", + "check_calibrator", ] diff --git a/mapie/calibrators/ccp/base.py b/mapie/calibrators/ccp/base.py index dd7ab073e..97b49c7a7 100644 --- a/mapie/calibrators/ccp/base.py +++ b/mapie/calibrators/ccp/base.py @@ -1,14 +1,16 @@ from __future__ import annotations from abc import ABCMeta, abstractmethod -from typing import Iterable, Callable, Optional, Union, List +from typing import Iterable, Callable, Optional, Union, List, Tuple, cast import warnings import numpy as np +from scipy.optimize import minimize from mapie._typing import ArrayLike, NDArray from .utils import (compile_functions_warnings_errors, concatenate_functions, check_multiplier) from mapie.calibrators import Calibrator +from mapie.calibrators.ccp.utils import calibrator_optim_objective from sklearn.utils import _safe_indexing from sklearn.utils.validation import check_is_fitted from sklearn.base import clone @@ -79,6 +81,17 @@ class CCP(Calibrator, metaclass=ABCMeta): n_out: int Number of features of phi(``X``, ``y_pred``, ``z``) + + beta_up_: Tuple[NDArray, bool] + Calibration fitting results, used to build the upper bound of the + prediction intervals. + beta_up[0]: Array of shape (calibrator.n_out, ) + beta_up[1]: Whether the optimization process converged or not + (the coverage is not garantied if the optimization fail) + + beta_low_: Tuple[NDArray, bool] + Same as beta_up, but for the lower bound + """ fit_attributes: List[str] = ["functions_"] @@ -147,7 +160,7 @@ def _check_init_value( else: return init_value - def fit( + def fit_params( self, X: ArrayLike, y_pred: Optional[ArrayLike] = None, @@ -177,14 +190,161 @@ def fit( By default ``None`` """ self._check_fit_parameters(X, y_pred, z) - result = self.predict(X, y_pred, z) + result = self.transform(X, y_pred, z) self.n_in = len(_safe_indexing(X, 0)) self.n_out = len(_safe_indexing(result, 0)) self.init_value_ = self._check_init_value(self.init_value, self.n_out) check_multiplier(self.multipliers, X, y_pred, z) return self - def predict( + def fit( + self, + X_calib: ArrayLike, + y_pred_calib: Optional[ArrayLike], + z_calib: Optional[ArrayLike], + calib_conformity_scores: NDArray, + alpha: float, + sym: bool, + sample_weight_calib: Optional[ArrayLike] = None, + random_state: Optional[int] = None, + **optim_kwargs, + ) -> CCP: + """ + Fit function : Set all the necessary attributes to be able to transform + ``(X, y_pred, z)`` into the expected transformation. + + It should set all the attributes of ``fit_attributes``. + It should also set, once fitted, ``n_in``, ``n_out`` and + ``init_value``. + + Parameters + ---------- + X: ArrayLike of shape (n_samples, n_features) + Calibration data. + + y_pred: ArrayLike of shape (n_samples,) + Calibration target. + + z: Optional[ArrayLike] of shape (n_calib_samples, n_exog_features) + Exogenous variables + + conformity_scores: ArrayLike of shape (n_samples,) + Calibration conformity scores + + alpha: float + Between ``0.0`` and ``1.0``, represents the risk level of the + confidence interval. + Lower ``alpha`` produce larger (more conservative) prediction + intervals. + ``alpha`` is the complement of the target coverage level. + + sym: bool + Weather or not, the prediction interval should be symetrical + or not. + + sample_weight: Optional[ArrayLike] of shape (n_samples,) + Sample weights for fitting the out-of-fold models. + If ``None``, then samples are equally weighted. + If some weights are null, + their corresponding observations are removed + before the fitting process and hence have no residuals. + If weights are non-uniform, residuals are still uniformly weighted. + Note that the sample weight defined are only for the training, not + for the calibration procedure. + + By default ``None``. + + random_state: Optional[int] + Integer used to set the numpy seed, to get reproducible calibration + results. + If ``None``, the prediction intervals will be stochastics, and will + change if you refit the calibration + (even if no arguments have change). + + WARNING: If ``random_state``is not ``None``, ``np.random.seed`` + will be changed, which will reset the seed for all the other random + number generators. It may have an impact on the rest of your code. + + By default ``None``. + + optim_kwargs: Dict + Other argument, used in sklear.optimize.minimize + """ + if sym: + q_low = 1 - alpha + q_up = 1 - alpha + else: + q_low = alpha / 2 + q_up = 1 - alpha / 2 + + if random_state is None: + warnings.warn("WARNING: The method implemented in " + "SplitMapie has a stochastic behavior. " + "To have reproductible results, use a integer " + "`random_state` value in the `SplitMapie` " + "initialisation.") + else: + np.random.seed(random_state) + + self.fit_params(X_calib, y_pred_calib, z_calib) + + phi_x = self.transform(X_calib, y_pred_calib, z_calib) + + not_nan_index = np.where(~np.isnan(calib_conformity_scores))[0] + # Some conf. score values may be nan (ex: with ResidualNormalisedScore) + + optimal_beta_up = minimize( + calibrator_optim_objective, self.init_value_, + args=( + phi_x[not_nan_index, :], + calib_conformity_scores[not_nan_index], + q_up, + sample_weight_calib, + ), + **optim_kwargs, + ) + + if not sym: + optimal_beta_low = minimize( + calibrator_optim_objective, self.init_value_, + args=( + phi_x[not_nan_index, :], + calib_conformity_scores[not_nan_index], + q_low, + sample_weight_calib, + ), + **optim_kwargs, + ) + else: + optimal_beta_low = optimal_beta_up + + if not optimal_beta_up.success: + warnings.warn( + "WARNING: The optimization process for the upper bound " + f"failed with the following error: \n" + f"{optimal_beta_low.message}\n" + "The returned prediction interval may be inaccurate." + ) + if (not sym + and not optimal_beta_low.success): + warnings.warn( + "WARNING: The optimization process for the lower bound " + f"failed with the following error: \n" + f"{optimal_beta_low.message}\n" + "The returned prediction interval may be inaccurate." + ) + + signed = -1 if sym else 1 + + self.beta_up_ = cast(Tuple[NDArray, bool], + (optimal_beta_up.x, optimal_beta_up.success)) + self.beta_low_ = cast(Tuple[NDArray, bool], + (signed * optimal_beta_low.x, + optimal_beta_low.success)) + + return self + + def transform( self, X: Optional[ArrayLike] = None, y_pred: Optional[ArrayLike] = None, @@ -213,23 +373,66 @@ def predict( check_is_fitted(self, self.fit_attributes) params_mapping = {"X": X, "y_pred": y_pred, "z": z} - result = concatenate_functions(self.functions_, params_mapping, - self.multipliers) + phi_x = concatenate_functions(self.functions_, params_mapping, + self.multipliers) if self.normalized: - norm = np.linalg.norm(result, axis=1).reshape(-1, 1) - result[(abs(norm) == 0)[:, 0], :] = np.ones(result.shape[1]) + norm = np.linalg.norm(phi_x, axis=1).reshape(-1, 1) + phi_x[(abs(norm) == 0)[:, 0], :] = np.ones(phi_x.shape[1]) norm[abs(norm) == 0] = 1 - result /= norm + phi_x /= norm - if np.any(np.all(result == 0, axis=1)): + if np.any(np.all(phi_x == 0, axis=1)): warnings.warn("WARNING: At least one row of the transformation " "phi(X, y_pred, z) is full of zeros. " "It will result in a prediction interval of zero " "width. Consider changing the CCP " "definintion.\nFix: Use `bias=True` " "in the `CCP` definition.") - return result + + return phi_x + + def predict( + self, + X: ArrayLike, + y_pred: ArrayLike, + z: Optional[ArrayLike] = None, + ) -> NDArray: + """ + Transform ``(X, y_pred, z)`` into an array of shape + ``(n_samples, n_out)`` and compute the dot product with the + optimized beta values, to get the conformity scores estimations. + + Parameters + ---------- + X : ArrayLike + Observed samples + + y_pred : ArrayLike + Target prediction + + z : ArrayLike + Exogenous variable + + Returns + ------- + NDArray + Transformation + """ + phi_x = self.transform(X, y_pred, z) + + y_pred_low = phi_x.dot(self.beta_low_[0][:, np.newaxis]) + y_pred_up = phi_x.dot(self.beta_up_[0][:, np.newaxis]) + + return np.hstack([y_pred_low, y_pred_up]) + + def __call__( + self, + X: Optional[ArrayLike] = None, + y_pred: Optional[ArrayLike] = None, + z: Optional[ArrayLike] = None, + ) -> NDArray: + return self.transform(X, y_pred, z) def __mul__(self, funct: Optional[Callable]) -> CCP: """ diff --git a/mapie/calibrators/ccp/custom.py b/mapie/calibrators/ccp/custom.py index 6e2ef7829..6ee64f1ff 100644 --- a/mapie/calibrators/ccp/custom.py +++ b/mapie/calibrators/ccp/custom.py @@ -82,23 +82,57 @@ class CustomCCP(CCP): Examples -------- + # >>> import numpy as np + # >>> from mapie.calibrators import CustomCCP + # >>> X = np.array([[1, 2], [3, 4], [5, 6]]) + # >>> y_pred = np.array([0, 0, 1]) + # >>> phi = CustomCCP( + # ... functions=[ + # ... lambda X: X, # X, if y_pred is 0 + # ... lambda y_pred: y_pred, # y_pred + # ... ], + # ... normalized=False, + # ... ).fit(X, y_pred) + # >>> print(phi.predict(X, y_pred)) + # [[1. 2. 0.] + # [3. 4. 0.] + # [0. 0. 1.]] + # >>> print(phi.n_out) + # 3 + >>> import numpy as np - >>> from mapie.phi_function import CustomCCP - >>> X = np.array([[1, 2], [3, 4], [5, 6]]) - >>> y_pred = np.array([0, 0, 1]) - >>> phi = CustomCCP( + >>> from mapie.calibrators import GaussianCCP + >>> from mapie.regression import SplitMapieRegressor + >>> from mapie.conformity_scores import AbsoluteConformityScore + >>> np.random.seed(1) + >>> X_train = np.linspace(0, 3.14, 1001).reshape(-1, 1) + >>> y_train = np.random.rand(len(X_train))*np.sin(X_train[:,0]) + >>> calibrator = CustomCCP( ... functions=[ - ... lambda X: X * (y_pred[:, np.newaxis] == 0), # X, if y_pred is 0 - ... lambda y_pred: y_pred, # y_pred + ... lambda X: np.sin(X[:,0]), ... ], - ... normalized=False, - ... ).fit(X, y_pred) - >>> print(phi.predict(X, y_pred)) - [[1. 2. 0.] - [3. 4. 0.] - [0. 0. 1.]] - >>> print(phi.n_out) - 3 + ... bias=True, + ... ) + >>> mapie = SplitMapieRegressor( + ... calibrator=calibrator, alpha=0.1, random_state=1, + ... conformity_score=AbsoluteConformityScore(sym=False) + ... ).fit(X_train, y_train) + >>> y_pred, y_pi = mapie.predict(X_train) + >>> print(np.round(y_train[50::100], 2)) + [0. 0.03 0. 0.69 0.19 0.33 0.32 0.34 0.39 0.06] + >>> print(np.round(y_pi[50::100, :, 0], 2)) + [[0.02 0.14] + [0.02 0.42] + [0.02 0.66] + [0.03 0.84] + [0.03 0.93] + [0.02 0.93] + [0.02 0.83] + [0.02 0.66] + [0.01 0.41] + [0.01 0.12]] + >>> print(mapie.calibrator_.n_out) + 2 """ fit_attributes: List[str] = ["is_fitted_"] @@ -144,7 +178,7 @@ def _check_fit_parameters( self.functions_ = format_functions(self.functions, self.bias) compile_functions_warnings_errors(self.functions_) - def fit( + def fit_params( self, X: ArrayLike, y_pred: Optional[ArrayLike] = None, @@ -177,12 +211,13 @@ def fit( for phi in self.functions_: if isinstance(phi, CCP): - phi.fit(X) + phi.fit_params(X, y_pred, z) check_multiplier(phi.multipliers, X, y_pred, z) self.is_fitted_ = True - result = self.predict(X, y_pred, z) + result = self.transform(X, y_pred, z) self.n_in = len(_safe_indexing(X, 0)) self.n_out = len(_safe_indexing(result, 0)) self.init_value_ = self._check_init_value(self.init_value, self.n_out) + check_multiplier(self.multipliers, X, y_pred, z) return self diff --git a/mapie/calibrators/ccp/gaussian.py b/mapie/calibrators/ccp/gaussian.py index 0ca9bfb46..6b978cd2f 100644 --- a/mapie/calibrators/ccp/gaussian.py +++ b/mapie/calibrators/ccp/gaussian.py @@ -4,7 +4,7 @@ import numpy as np from mapie._typing import ArrayLike -from .base import CCP +from .base import CCP, Calibrator from .utils import format_functions, compute_sigma, sample_points from sklearn.utils import _safe_indexing from sklearn.utils.validation import _num_samples @@ -140,36 +140,31 @@ class GaussianCCP(CCP): Examples -------- >>> import numpy as np - >>> from mapie.phi_function import GaussianCCP + >>> from mapie.calibrators import GaussianCCP + >>> from mapie.regression import SplitMapieRegressor >>> np.random.seed(1) - >>> X = np.array([[1], [2], [3], [4], [5]]) - >>> phi = GaussianCCP(2, bias=False, - ... normalized=False).fit(X) - >>> print(np.round(phi.predict(X), 2)) - [[0.14 0.61] - [0.61 1. ] - [1. 0.61] - [0.61 0.14] - [0.14 0.01]] - >>> print(phi.points_) - [[3] - [2]] - >>> print(phi.sigmas_) - [[1.] - [1.]] - >>> phi = GaussianCCP([[3],[4]], 0.5).fit(X) - >>> print(np.round(phi.predict(X), 2)) - [[1. 0. ] - [1. 0. ] - [0.99 0.13] - [0.13 0.99] - [0. 1. ]] - >>> print(phi.points_) - [[3] - [4]] - >>> print(phi.sigmas_) - [[0.5] - [0.5]] + >>> X_train = np.arange(0,400, 2).reshape(-1, 1) + >>> y_train = 1 + 2*X_train[:,0] + np.random.rand(len(X_train)) + >>> mapie = SplitMapieRegressor( + ... calibrator=GaussianCCP(2), alpha=0.1, random_state=1, + ... ).fit(X_train, y_train) + >>> y_pred, y_pi = mapie.predict(X_train) + >>> print(np.round(y_pred[:5], 2)) + [ 1.46 5.46 9.46 13.46 17.46] + >>> print(np.round(y_pi[:5, :, 0], 2)) + [[ 1.06 1.86] + [ 5.06 5.86] + [ 9.06 9.86] + [13.06 13.86] + [17.06 17.87]] + >>> print(mapie.calibrator_.points_) + [[204] + [318]] + >>> print(mapie.calibrator_.sigmas_) + [[86.34106786] + [86.34106786]] + >>> print(mapie.calibrator_.n_out) + 2 """ fit_attributes: List[str] = ["points_", "sigmas_", "functions_"] @@ -228,6 +223,7 @@ def _check_points_sigma( if _num_samples(points) != _num_samples(sigmas): raise ValueError("There should have as many points as " "standard deviation values") + if len(_safe_indexing(sigmas, 0)) not in [ 1, len(_safe_indexing(points, 0)) ]: @@ -280,7 +276,7 @@ def _check_fit_parameters( self.functions_ = format_functions(functions, self.bias) -def check_phi( +def check_calibrator( phi: Optional[CCP], ) -> CCP: """ @@ -307,8 +303,8 @@ def check_phi( """ if phi is None: return GaussianCCP() - elif isinstance(phi, CCP): + elif isinstance(phi, Calibrator): return phi else: - raise ValueError("Invalid `phi` argument. It must be `None` or a " - "`CCP` instance.") + raise ValueError("Invalid `calibrator` argument. It must be `None` " + "or a `Calibrator` instance.") diff --git a/mapie/calibrators/ccp/polynomial.py b/mapie/calibrators/ccp/polynomial.py index 37a34181d..aae613724 100644 --- a/mapie/calibrators/ccp/polynomial.py +++ b/mapie/calibrators/ccp/polynomial.py @@ -87,24 +87,27 @@ class PolynomialCCP(CCP): Examples -------- >>> import numpy as np - >>> from mapie.phi_function import PolynomialCCP - >>> X = np.array([[1, 2], [3, 4], [5, 6]]) - >>> y_pred = np.array([1, 2, 3]) - >>> phi = PolynomialCCP(3).fit(X, y_pred) - >>> print(phi.predict(X, y_pred)) - [[ 1. 2. 1. 4. 1. 8. 1.] - [ 3. 4. 9. 16. 27. 64. 1.] - [ 5. 6. 25. 36. 125. 216. 1.]] - >>> print(phi.exponents) - [0, 1, 2, 3] - >>> phi = PolynomialCCP([1, 2, 5], "y_pred", - ... bias=False).fit(X, y_pred) - >>> print(phi.predict(X, y_pred)) - [[ 1. 1. 1.] - [ 2. 4. 32.] - [ 3. 9. 243.]] - >>> print(phi.degree) - [1, 2, 5] + >>> from mapie.calibrators import PolynomialCCP + >>> from mapie.regression import SplitMapieRegressor + >>> np.random.seed(1) + >>> X_train = np.arange(0,400, 2).reshape(-1, 1) + >>> y_train = 1 + 2*X_train[:,0] + np.random.rand(len(X_train)) + >>> mapie = SplitMapieRegressor( + ... calibrator=PolynomialCCP(1), alpha=0.1, random_state=1, + ... ).fit(X_train, y_train) + >>> y_pred, y_pi = mapie.predict(X_train) + >>> print(np.round(y_pred[:5], 2)) + [ 1.46 5.46 9.46 13.46 17.46] + >>> print(np.round(y_pi[:5, :, 0], 2)) + [[ 1.01 1.91] + [ 5.01 5.91] + [ 9.01 9.92] + [13. 13.92] + [17. 17.92]] + >>> print(mapie.calibrator_.exponents) + [0, 1] + >>> print(mapie.calibrator_.n_out) + 2 """ fit_attributes: List[str] = [] diff --git a/mapie/calibrators/ccp/utils.py b/mapie/calibrators/ccp/utils.py index 4a04ec27f..15495f376 100644 --- a/mapie/calibrators/ccp/utils.py +++ b/mapie/calibrators/ccp/utils.py @@ -283,13 +283,14 @@ def compute_sigma( """ # If each point has a corresponding sigma value if isinstance(points, tuple): - sigmas_ = np.array(points[1]) + sigmas_ = np.array(points[1], dtype=float) if len(sigmas_.shape) == 1: sigmas_ = sigmas_.reshape(-1, 1) # If sigma is not defined elif sigma is None: - sigmas_ = np.ones((_num_samples(points_), 1))*np.std( - np.array(X), axis=0)/(_num_samples(points_)**0.5) + points_std = np.std( + np.array(X), axis=0)/(_num_samples(points_)**0.5) + sigmas_ = np.ones((_num_samples(points_), 1))*points_std # If sigma is defined elif isinstance(points, int): sigmas_ = _init_sigmas(sigma, points) diff --git a/mapie/futur/__init__.py b/mapie/futur/__init__.py new file mode 100644 index 000000000..f163a2b20 --- /dev/null +++ b/mapie/futur/__init__.py @@ -0,0 +1,4 @@ +from .split.regression import SplitMapieRegressor +__all__ = [ + "SplitMapieRegressor", +] diff --git a/mapie/futur/split/__init__.py b/mapie/futur/split/__init__.py new file mode 100644 index 000000000..4164a92ab --- /dev/null +++ b/mapie/futur/split/__init__.py @@ -0,0 +1,4 @@ +from .regression import SplitMapieRegressor +__all__ = [ + "SplitMapieRegressor", +] diff --git a/mapie/regression/ccp_regression.py b/mapie/futur/split/base.py similarity index 63% rename from mapie/regression/ccp_regression.py rename to mapie/futur/split/base.py index 60a012da2..b33f654f9 100644 --- a/mapie/regression/ccp_regression.py +++ b/mapie/futur/split/base.py @@ -1,48 +1,44 @@ from __future__ import annotations +from abc import ABCMeta, abstractmethod +from typing import List, Optional, Tuple, Union, Dict, cast import warnings -from typing import List, Optional, Tuple, Union, cast -import numpy as np -from scipy.optimize import minimize from sklearn.base import BaseEstimator, RegressorMixin from sklearn.model_selection import (BaseCrossValidator, BaseShuffleSplit, ShuffleSplit, PredefinedSplit) from sklearn.pipeline import Pipeline -from sklearn.utils import _safe_indexing -from sklearn.utils.validation import _check_y, check_is_fitted, indexable +from sklearn.utils.validation import check_is_fitted from mapie._typing import ArrayLike, NDArray from mapie.conformity_scores import ConformityScore -from mapie.calibrators.ccp import CCP, check_phi -from mapie.calibrators.ccp.utils import calibrator_optim_objective -from mapie.utils import (check_conformity_score, check_estimator_regression, - check_lower_upper_bounds, check_null_weight, - fit_estimator) +from mapie.calibrators.ccp import CCP +from mapie.calibrators import Calibrator +from mapie.utils import fit_estimator, _safe_sample -class MapieCCPRegressor(BaseEstimator, RegressorMixin): +class SplitMapie(BaseEstimator, RegressorMixin, metaclass=ABCMeta): """ This class implements an adaptative conformal prediction method proposed by Gibbs et al. (2023) in "Conformal Prediction With Conditional Guarantees". This method works with a ``"split"`` approach which requires a separate calibration phase. The ``fit`` method automatically split the data into - two disjoint sets to train the estimator and the calibrator. You can call - ``fit_estimator`` and ``fit_calibrator`` to do the two step one after the + two disjoint sets to train the predictor and the calibrator. You can call + ``fit_predictor`` and ``fit_calibrator`` to do the two step one after the other. You will have to make sure that data used in the two methods, for training and calibration are disjoint, to guarantee the expected ``1-alpha`` coverage. Parameters ---------- - estimator: Optional[RegressorMixin] + predictor: Optional[RegressorMixin] Any regressor from scikit-learn API. (i.e. with ``fit`` and ``predict`` methods). - If ``None``, ``estimator`` defaults to a ``LinearRegressor`` instance. + If ``None``, ``predictor`` defaults to a ``LinearRegressor`` instance. By default ``"None"``. - phi: Optional[CCP] + calibrator: Optional[CCP] A ``CCP`` instance used to estimate the conformity scores. If ``None``, use as default a ``GaussianCCP`` instance. @@ -57,7 +53,7 @@ class MapieCCPRegressor(BaseEstimator, RegressorMixin): - Any splitter (``ShuffleSplit`` or ``PredefinedSplit``) with ``n_splits=1``. - - ``"prefit"``, assumes that ``estimator`` has been fitted already. + - ``"prefit"``, assumes that ``predictor`` has been fitted already. All data provided in the ``calibrate`` method is then used for the calibration. The user has to take care manually that data used for model fitting @@ -104,57 +100,26 @@ class MapieCCPRegressor(BaseEstimator, RegressorMixin): By default ``None``. - Attributes - ---------- - beta_up_: Tuple[NDArray, bool] - Calibration fitting results, used to build the upper bound of the - prediction intervals. - beta_up[0]: Array of shape (phi.n_out, ) - beta_up[1]: Whether the optimization process converged or not - (the coverage is not garantied if the optimization fail) - - beta_low_: Tuple[NDArray, bool] - Same as beta_up, but for the lower bound - References ---------- Isaac Gibbs and John J. Cherian and Emmanuel J. Candès. "Conformal Prediction With Conditional Guarantees", 2023 - - Examples - -------- - >>> import numpy as np - >>> from mapie.regression import MapieCCPRegressor - >>> np.random.seed(1) - >>> X_train = np.arange(0,100,2).reshape(-1, 1) - >>> y_train = 2*X_train[:,0] + np.random.rand(len(X_train)) - >>> mapie_reg = MapieCCPRegressor(alpha=0.1, random_state=1) - >>> mapie_reg = mapie_reg.fit(X_train, y_train) - >>> y_pred, y_pis = mapie_reg.predict(X_train) - >>> print(np.round(y_pred[:5], 2)) - [ 0.43 4.43 8.43 12.43 16.43] - >>> print(np.round(y_pis[:5,:, 0], 2)) - [[ 0.02 0.83] - [ 4.01 4.85] - [ 8. 8.86] - [11.99 12.87] - [15.98 16.89]] """ default_sym_ = True - fit_attributes = ["estimator_"] - calib_attributes = ["beta_up_", "beta_low_"] + fit_attributes = ["predictor_"] + calib_attributes = ["calibrator_"] def __init__( self, - estimator: Optional[ + predictor: Optional[ Union[ RegressorMixin, Pipeline, List[Union[RegressorMixin, Pipeline]] ] ] = None, - phi: Optional[CCP] = None, + calibrator: Optional[CCP] = None, cv: Optional[ Union[str, BaseCrossValidator, BaseShuffleSplit] ] = None, @@ -164,85 +129,28 @@ def __init__( ) -> None: self.random_state = random_state self.cv = cv - self.estimator = estimator + self.predictor = predictor self.conformity_score = conformity_score - self.phi = phi + self.calibrator = calibrator self.alpha = alpha - def _check_parameters(self) -> RegressorMixin: + @abstractmethod + def _check_fit_parameters(self) -> RegressorMixin: """ - Check and replace default value of ``estimator`` and ``cv`` arguments. - Copy the ``estimator`` in ``estimator_`` attribute if ``cv="prefit"``. - """ - self.cv = self._check_cv(self.cv) - estimator = check_estimator_regression(self.estimator, self.cv) - - return estimator - - def _safe_sample( - self, - X: ArrayLike, - y: ArrayLike, - sample_weight: Optional[ArrayLike], - index: ArrayLike, - ) -> Tuple[ArrayLike, ArrayLike, Optional[NDArray]]: - """ - Perform several checks on class parameters. - - Parameters - ---------- - X: ArrayLike - Observed values. - - y: ArrayLike - Target values. - - sample_weight: Optional[NDArray] of shape (n_samples,) - Non-null sample weights. - - index: ArrayLike - Indexes of the training set. - - Returns - ------- - Tuple[NDArray, NDArray, Optional[NDArray]] - - NDArray of training observed values - - NDArray of training target values - - Optional[NDArray] of training sample_weight + Check and replace default value of ``predictor`` and ``cv`` arguments. """ - X_train = _safe_indexing(X, index) - y_train = _safe_indexing(y, index) - - if sample_weight is not None: - sample_weight_train = _safe_indexing( - sample_weight, index) - else: - sample_weight_train = None - - X_train, y_train = indexable(X_train, y_train) - y_train = _check_y(y_train) - sample_weight_train, X_train, y_train = check_null_weight( - sample_weight_train, X_train, y_train) - sample_weight_train = cast(Optional[NDArray], sample_weight_train) - - return X_train, y_train, sample_weight_train - - def _check_calibrate_parameters(self) -> None: + @abstractmethod + def _check_calibrate_parameters(self) -> Calibrator: """ Check and replace default ``conformity_score``, ``alpha`` and - ``phi`` arguments. + ``calibrator`` arguments. """ - self.conformity_score_ = check_conformity_score( - self.conformity_score, self.default_sym_ - ) - self.alpha = self._check_alpha(self.alpha) - self.phi_ = check_phi(self.phi) def _check_cv( self, cv: Optional[Union[str, BaseCrossValidator, BaseShuffleSplit]] = None, - test_size: float = 0.3, + test_size: Optional[Union[int, float]] = None, ) -> Union[str, BaseCrossValidator, BaseShuffleSplit]: """ Check if ``cv`` is ``None``, ``"prefit"``, ``"split"``, @@ -289,10 +197,7 @@ def _check_cv( "``n_splits=1``." ) - def _check_alpha( - self, - alpha: Optional[float] = None - ) -> Optional[float]: + def _check_alpha(self, alpha: Optional[float] = None) -> None: """ Check alpha @@ -304,18 +209,13 @@ def _check_alpha( larger (more conservative) prediction intervals. alpha is the complement of the target coverage level. - Returns - ------- - Optional[float] - Valid alpha. - Raises ------ ValueError If alpha is not ``None`` or a float between 0 and 1. """ if alpha is None: - return alpha + return if isinstance(alpha, float): alpha = alpha else: @@ -326,18 +226,17 @@ def _check_alpha( if alpha < 0 or alpha > 1: raise ValueError("Invalid alpha. " "Allowed values are between 0 and 1.") - return alpha - def fit_estimator( + def fit_predictor( self, X: ArrayLike, y: ArrayLike, sample_weight: Optional[ArrayLike] = None, groups: Optional[ArrayLike] = None, **fit_params, - ) -> MapieCCPRegressor: + ) -> SplitMapie: """ - Fit the estimator if ``cv`` argument is not ``"prefit"`` + Fit the predictor if ``cv`` argument is not ``"prefit"`` Parameters ---------- @@ -366,14 +265,14 @@ def fit_estimator( By default ``None``. **fit_params: dict - Additional fit parameters for the estimator. + Additional fit parameters for the predictor. Returns ------- - MapieCCPRegressor + SplitMapie self """ - estimator = self._check_parameters() + predictor = self._check_fit_parameters() if self.cv != 'prefit': self.cv = cast(BaseCrossValidator, self.cv) @@ -382,14 +281,14 @@ def fit_estimator( ( X_train, y_train, sample_weight_train - ) = self._safe_sample(X, y, sample_weight, train_index) + ) = _safe_sample(X, y, sample_weight, train_index) - self.estimator_ = fit_estimator( - estimator, X_train, y_train, + self.predictor_ = fit_estimator( + predictor, X_train, y_train, sample_weight=sample_weight_train, **fit_params ) else: - self.estimator_ = estimator + self.predictor_ = predictor return self def fit_calibrator( @@ -400,7 +299,8 @@ def fit_calibrator( alpha: Optional[float] = None, sample_weight: Optional[ArrayLike] = None, groups: Optional[ArrayLike] = None, - ) -> MapieCCPRegressor: + **optim_kwargs, + ) -> SplitMapie: """ Calibrate with (``X``, ``y`` and ``z``) and the new value ``alpha`` value, if not ``None`` @@ -449,27 +349,31 @@ def fit_calibrator( By default ``None``. + optim_kwargs: Dict + Other argument, used in sklear.optimize.minimize + Returns ------- - MapieCCPRegressor + SplitMapie self """ - self._check_parameters() - self._check_calibrate_parameters() + self._check_fit_parameters() + calibrator = self._check_calibrate_parameters() check_is_fitted(self, self.fit_attributes) + # Get calibration set if self.cv != 'prefit': self.cv = cast(BaseCrossValidator, self.cv) _, calib_index = list(self.cv.split(X, y, groups))[0] ( X_calib, y_calib, sample_weight_calib - ) = self._safe_sample(X, y, sample_weight, calib_index) + ) = _safe_sample(X, y, sample_weight, calib_index) if z is not None: ( z_calib, _, _ - ) = self._safe_sample(z, y, sample_weight, calib_index) + ) = _safe_sample(z, y, sample_weight, calib_index) else: z_calib = None else: @@ -477,85 +381,29 @@ def fit_calibrator( sample_weight_calib = cast(Optional[NDArray], sample_weight) if alpha is not None and self.alpha != alpha: - self.alpha = self._check_alpha(alpha) + self._check_alpha(alpha) + self.alpha = alpha warnings.warn(f"WARNING: The old value of alpha ({self.alpha}) " f"has been overwritten by the new one ({alpha}).") if self.alpha is None: + warnings.warn("No calibration is done, because alpha is None.") return self - y_pred_calib = self.estimator_.predict(X_calib) + # Compute conformity scores + y_pred_calib = self.predict_score(self.predictor_, X_calib) - calib_conformity_scores = self.conformity_score_.get_conformity_scores( + calib_conformity_scores = self.predict_cs( X_calib, y_calib, y_pred_calib ) - if self.conformity_score_.sym: - q_low = 1 - self.alpha - q_up = 1 - self.alpha - else: - q_low = self.alpha / 2 - q_up = 1 - self.alpha / 2 - - if self.random_state is None: - warnings.warn("WARNING: The method implemented in " - "MapieCCPRegressor has a stochastic behavior. " - "To have reproductible results, use a integer " - "`random_state` value in the `MapieCCPRegressor` " - "initialisation.") - else: - np.random.seed(self.random_state) - - self.phi_.fit(X, self.estimator_.predict(X), z) - - phi_x = self.phi_.predict(X_calib, y_pred_calib, z_calib) - - not_nan_index = np.where(~np.isnan(calib_conformity_scores))[0] - # Some conf. score values may be nan (ex: with ResidualNormalisedScore) - - optimal_beta_up = minimize( - calibrator_optim_objective, self.phi_.init_value_, - args=( - phi_x[not_nan_index, :], - calib_conformity_scores[not_nan_index], - q_up, - sample_weight_calib, - ) - ) - - if not self.conformity_score_.sym: - optimal_beta_low = minimize( - calibrator_optim_objective, self.phi_.init_value_, - args=( - phi_x[not_nan_index, :], - calib_conformity_scores[not_nan_index], - q_low, - sample_weight_calib, - ) - ) - else: - optimal_beta_low = optimal_beta_up - - if not optimal_beta_up.success: - warnings.warn( - "WARNING: The optimization process for the upper bound " - f"failed with the following error: \n" - f"{optimal_beta_low.message}\n" - "The returned prediction interval may be inaccurate." - ) - if (not self.conformity_score_.sym - and not optimal_beta_low.success): - warnings.warn( - "WARNING: The optimization process for the lower bound " - f"failed with the following error: \n" - f"{optimal_beta_low.message}\n" - "The returned prediction interval may be inaccurate." - ) + # Fit the calibrator + self.calibrator_ = calibrator.fit( + X_calib, y_pred_calib, z_calib, calib_conformity_scores, + self.alpha, self.conformity_score_.sym, sample_weight_calib, + self.random_state, **optim_kwargs, + ) - self.beta_up_ = cast(Tuple[NDArray, bool], - (optimal_beta_up.x, optimal_beta_up.success)) - self.beta_low_ = cast(Tuple[NDArray, bool], - (optimal_beta_low.x, optimal_beta_low.success)) return self def fit( @@ -566,10 +414,11 @@ def fit( alpha: Optional[float] = None, sample_weight: Optional[ArrayLike] = None, groups: Optional[ArrayLike] = None, - **fit_params, - ) -> MapieCCPRegressor: + fit_params: Optional[Dict] = None, + calib_params: Optional[Dict] = None, + ) -> SplitMapie: """ - Fit the estimator (if ``cv`` is not ``"prefit"``) + Fit the predictor (if ``cv`` is not ``"prefit"``) and fit the calibration. Parameters @@ -616,16 +465,22 @@ def fit( By default ``None``. - **fit_params: dict - Additional fit parameters for the estimator. + fit_params: dict + Additional fit parameters for the predictor, used as kwargs. + + calib_params: dict + Additional fit parameters for the calibrator, used as kwargs. Returns ------- - MapieCCPRegressor + SplitMapie self """ - self.fit_estimator(X, y, sample_weight, groups, **fit_params) - self.fit_calibrator(X, y, z, alpha, sample_weight, groups) + self.fit_predictor(X, y, sample_weight, groups, + **(fit_params if fit_params is not None else {})) + self.fit_calibrator(X, y, z, alpha, sample_weight, groups, + **(calib_params + if calib_params is not None else {})) return self def predict( @@ -655,26 +510,104 @@ def predict( - [:, 1, :]: Upper bound of the prediction interval. """ check_is_fitted(self, self.fit_attributes) - y_pred = self.estimator_.predict(X) + y_pred = self.predict_score(self.predictor_, X) if self.alpha is None: return y_pred check_is_fitted(self, self.calib_attributes) - phi_x = self.phi_.predict(X, y_pred, z) + y_bounds = self.predict_bounds(X, y_pred, z) - signed = -1 if self.conformity_score_.sym else 1 + return self.predict_best(y_pred), y_bounds - y_pred_low = self.conformity_score_.get_estimation_distribution( - X, y_pred[:, np.newaxis], - phi_x.dot(signed * self.beta_low_[0][:, np.newaxis]) - ) - y_pred_up = self.conformity_score_.get_estimation_distribution( - X, y_pred[:, np.newaxis], - phi_x.dot(self.beta_up_[0][:, np.newaxis]) - ) + @abstractmethod + def predict_score( + self, predictor: RegressorMixin, X: ArrayLike + ) -> NDArray: + """ + Compute conformity scores + + Parameters + ---------- + predictor : RegressorMixin + Prediction + X: ArrayLike + Observed values. + + Returns + ------- + NDArray + Scores (usually ``y_pred`` in regression and ``y_pred_proba`` + in classification) + """ + + @abstractmethod + def predict_cs( + self, + X: ArrayLike, + y: ArrayLike, + y_pred: NDArray, + ) -> NDArray: + """ + Compute conformity scores + + Parameters + ---------- + X: ArrayLike + Observed values. - check_lower_upper_bounds(y_pred_low, y_pred_up, y_pred) + y: ArrayLike + Observed Target + + y_pred: NDArray + Predicted target. + + Returns + ------- + NDArray + Conformity scores on observed data + """ - return y_pred, np.stack([y_pred_low, y_pred_up], axis=1) + @abstractmethod + def predict_bounds( + self, + X: ArrayLike, + y_pred: NDArray, + z: Optional[ArrayLike] = None, + ) -> NDArray: + """ + Compute conformity scores + + Parameters + ---------- + X: ArrayLike + Observed values. + + y_pred: 2D NDArray + Predicted scores (target) + + z: ArrayLike + Exogenous variables + + Returns + ------- + NDArray + Bounds (or prediction set in classification), as a 2D array + """ + + @abstractmethod + def predict_best(self, y_pred: NDArray) -> NDArray: + """ + Compute the prediction + + Parameters + ---------- + y_pred: NDArray + Prediction scores (can be the prediction, the probas, ...) + + Returns + ------- + NDArray + best predictions + """ diff --git a/mapie/futur/split/regression.py b/mapie/futur/split/regression.py new file mode 100644 index 000000000..35264d052 --- /dev/null +++ b/mapie/futur/split/regression.py @@ -0,0 +1,256 @@ +from __future__ import annotations + +from typing import Optional + +import numpy as np +from sklearn.base import RegressorMixin + +from mapie._typing import ArrayLike, NDArray +from mapie.calibrators.ccp import check_calibrator +from mapie.futur.split.base import SplitMapie, Calibrator +from mapie.utils import (check_lower_upper_bounds, check_estimator_regression, + check_conformity_score) + + +class SplitMapieRegressor(SplitMapie): + """ + This class implements an adaptative conformal prediction method proposed by + Gibbs et al. (2023) in "Conformal Prediction With Conditional Guarantees". + This method works with a ``"split"`` approach which requires a separate + calibration phase. The ``fit`` method automatically split the data into + two disjoint sets to train the predictor and the calibrator. You can call + ``fit_estimator`` and ``fit_calibrator`` to do the two step one after the + other. You will have to make sure that data used in the two methods, + for training and calibration are disjoint, to guarantee the expected + ``1-alpha`` coverage. + + Parameters + ---------- + predictor: Optional[RegressorMixin] + Any regressor from scikit-learn API. + (i.e. with ``fit`` and ``predict`` methods). + If ``None``, ``predictor`` defaults to a ``LinearRegressor`` instance. + + By default ``"None"``. + + calibrator: Optional[CCP] + A ``CCP`` instance used to estimate the conformity scores. + + If ``None``, use as default a ``GaussianCCP`` instance. + See the examples and the documentation to build a ``CCP`` + adaptated to your dataset and constraints. + + By default ``None``. + + cv: Optional[Union[int, str, ShuffleSplit, PredefinedSplit]] + The splitting strategy for computing conformity scores. + Choose among: + + - Any splitter (``ShuffleSplit`` or ``PredefinedSplit``) + with ``n_splits=1``. + - ``"prefit"``, assumes that ``predictor`` has been fitted already. + All data provided in the ``calibrate`` method is then used + for the calibration. + The user has to take care manually that data used for model fitting + and calibration (the data given in the ``calibrate`` method) + are disjoint. + - ``"split"`` or ``None``: divide the data into training and + calibration subsets (using the default ``calib_size``=0.3). + The splitter used is the following: + ``sklearn.model_selection.ShuffleSplit`` with ``n_splits=1``. + + By default ``None``. + + conformity_score: Optional[ConformityScore] + ConformityScore instance. + It defines the link between the observed values, the predicted ones + and the conformity scores. For instance, the default ``None`` value + correspondonds to a conformity score which assumes + y_obs = y_pred + conformity_score. + + - ``None``, to use the default ``AbsoluteConformityScore`` symetrical + conformity score + - Any ``ConformityScore`` class + + By default ``None``. + + alpha: Optional[float] + Between ``0.0`` and ``1.0``, represents the risk level of the + confidence interval. + Lower ``alpha`` produce larger (more conservative) prediction + intervals. + ``alpha`` is the complement of the target coverage level. + + By default ``None`` + + random_state: Optional[int] + Integer used to set the numpy seed, to get reproducible calibration + results. + If ``None``, the prediction intervals will be stochastics, and will + change if you refit the calibration (even if no arguments have change). + + WARNING: If ``random_state``is not ``None``, ``np.random.seed`` will + be changed, which will reset the seed for all the other random + number generators. It may have an impact on the rest of your code. + + By default ``None``. + + Attributes + ---------- + beta_up_: Tuple[NDArray, bool] + Calibration fitting results, used to build the upper bound of the + prediction intervals. + beta_up[0]: Array of shape (calibrator.n_out, ) + beta_up[1]: Whether the optimization process converged or not + (the coverage is not garantied if the optimization fail) + + beta_low_: Tuple[NDArray, bool] + Same as beta_up, but for the lower bound + + References + ---------- + Isaac Gibbs and John J. Cherian and Emmanuel J. Candès. + "Conformal Prediction With Conditional Guarantees", 2023 + + Examples + -------- + >>> import numpy as np + >>> from mapie.regression import SplitMapieRegressor + >>> np.random.seed(1) + >>> X_train = np.arange(0,400, 2).reshape(-1, 1) + >>> y_train = 2*X_train[:,0] + np.random.rand(len(X_train)) + >>> mapie_reg = SplitMapieRegressor(alpha=0.1, random_state=1) + >>> mapie_reg = mapie_reg.fit(X_train, y_train) + >>> y_pred, y_pis = mapie_reg.predict(X_train) + >>> print(np.round(y_pred[:5], 2)) + [ 0.46 4.46 8.46 12.46 16.46] + >>> print(np.round(y_pis[:5,:, 0], 2)) + [[-0.23 1.15] + [ 3.77 5.15] + [ 7.76 9.16] + [11.76 13.16] + [15.76 17.16]] + """ + + def _check_fit_parameters(self) -> RegressorMixin: + """ + Check and replace default value of ``predictor`` and ``cv`` arguments. + Copy the ``predictor`` in ``predictor_`` attribute if ``cv="prefit"``. + """ + self.cv = self._check_cv(self.cv) + predictor = check_estimator_regression(self.predictor, self.cv) + return predictor + + def _check_calibrate_parameters(self) -> Calibrator: + """ + Check and replace default ``conformity_score``, ``alpha`` and + ``calibrator`` arguments. + """ + self.conformity_score_ = check_conformity_score( + self.conformity_score, self.default_sym_ + ) + calibrator = check_calibrator(self.calibrator) + self._check_alpha(self.alpha) + return calibrator + + def predict_score( + self, predictor: RegressorMixin, X: ArrayLike + ) -> NDArray: + """ + Compute conformity scores + + Parameters + ---------- + predictor : RegressorMixin + Prediction + X: ArrayLike + Observed values. + + Returns + ------- + NDArray of shape (n_samples, ) + predictions + """ + return predictor.predict(X) + + def predict_cs( + self, + X: ArrayLike, + y: ArrayLike, + y_pred: NDArray, + ) -> NDArray: + """ + Compute conformity scores + + Parameters + ---------- + X: ArrayLike + Observed values. + + y: ArrayLike + Observed Target + + y_pred: NDArray + Predicted target. + + Returns + ------- + NDArray + Conformity scores on observed data + """ + return self.conformity_score_.get_conformity_scores(X, y, y_pred) + + def predict_bounds( + self, + X: ArrayLike, + y_pred: NDArray, + z: Optional[ArrayLike] = None, + ) -> NDArray: + """ + Compute conformity scores + + Parameters + ---------- + X: ArrayLike + Observed values. + + y_pred: 2D NDArray + Observed Target + + z: ArrayLike + Exogenous variables + + Returns + ------- + NDArray + Bounds, as a 3D array of shape (n_samples, 2, 1) + (because we only have 1 alpha value) + """ + conformity_score_pred = self.calibrator_.predict(X, y_pred, z) + + y_pred_low = self.conformity_score_.get_estimation_distribution( + X, y_pred[:, np.newaxis], conformity_score_pred[:, [0]] + ) + y_pred_up = self.conformity_score_.get_estimation_distribution( + X, y_pred[:, np.newaxis], conformity_score_pred[:, [1]] + ) + + check_lower_upper_bounds(y_pred_low, y_pred_up, y_pred) + + return np.stack([y_pred_low, y_pred_up], axis=1) + + def predict_best(self, y_pred: NDArray) -> NDArray: + """ + Compute the prediction + + Parameters + ---------- + y_pred: NDArray + Prediction scores (can be the prediction, the probas, ...) + + Returns + ------- + NDArray + best predictions + """ + return y_pred diff --git a/mapie/regression/__init__.py b/mapie/regression/__init__.py index 333840311..2c8ac38aa 100644 --- a/mapie/regression/__init__.py +++ b/mapie/regression/__init__.py @@ -1,11 +1,11 @@ from .quantile_regression import MapieQuantileRegressor from .regression import MapieRegressor -from .ccp_regression import MapieCCPRegressor +from mapie.futur.split import SplitMapieRegressor from .time_series_regression import MapieTimeSeriesRegressor __all__ = [ "MapieRegressor", "MapieQuantileRegressor", "MapieTimeSeriesRegressor", - "MapieCCPRegressor", + "SplitMapieRegressor", ] diff --git a/mapie/utils.py b/mapie/utils.py index 78a63a1eb..80ed12866 100644 --- a/mapie/utils.py +++ b/mapie/utils.py @@ -12,7 +12,8 @@ from sklearn.utils import _safe_indexing from sklearn.utils.multiclass import type_of_target from sklearn.utils.validation import (_check_sample_weight, _num_features, - check_is_fitted, column_or_1d) + _check_y, check_is_fitted, + column_or_1d, indexable) from ._compatibility import np_quantile from ._typing import ArrayLike, NDArray @@ -76,6 +77,55 @@ def check_null_weight( return sample_weight, X, y +def _safe_sample( + X: ArrayLike, + y: ArrayLike, + sample_weight: Optional[ArrayLike], + index: ArrayLike, +) -> Tuple[ArrayLike, ArrayLike, Optional[NDArray]]: + """ + Perform several checks on class parameters. + + Parameters + ---------- + X: ArrayLike + Observed values. + + y: ArrayLike + Target values. + + sample_weight: Optional[NDArray] of shape (n_samples,) + Non-null sample weights. + + index: ArrayLike + Indexes of the training set. + + Returns + ------- + Tuple[NDArray, NDArray, Optional[NDArray]] + - NDArray of training observed values + - NDArray of training target values + - Optional[NDArray] of training sample_weight + """ + X_train = _safe_indexing(X, index) + y_train = _safe_indexing(y, index) + + if sample_weight is not None: + sample_weight_train = _safe_indexing( + sample_weight, index) + else: + sample_weight_train = None + + X_train, y_train = indexable(X_train, y_train) + y_train = _check_y(y_train) + sample_weight_train, X_train, y_train = check_null_weight( + sample_weight_train, X_train, y_train) + + sample_weight_train = cast(Optional[NDArray], sample_weight_train) + + return X_train, y_train, sample_weight_train + + def fit_estimator( estimator: Union[RegressorMixin, ClassifierMixin], X: ArrayLike, @@ -858,31 +908,31 @@ def get_calib_set( ( X_train, X_calib, y_train, y_calib ) = train_test_split( - X, - y, - test_size=calib_size, - random_state=random_state, - shuffle=shuffle, - stratify=stratify + X, + y, + test_size=calib_size, + random_state=random_state, + shuffle=shuffle, + stratify=stratify ) sample_weight_train = sample_weight sample_weight_calib = None else: ( - X_train, - X_calib, - y_train, - y_calib, - sample_weight_train, - sample_weight_calib, + X_train, + X_calib, + y_train, + y_calib, + sample_weight_train, + sample_weight_calib, ) = train_test_split( - X, - y, - sample_weight, - test_size=calib_size, - random_state=random_state, - shuffle=shuffle, - stratify=stratify + X, + y, + sample_weight, + test_size=calib_size, + random_state=random_state, + shuffle=shuffle, + stratify=stratify ) X_train, X_calib = cast(ArrayLike, X_train), cast(ArrayLike, X_calib) y_train, y_calib = cast(ArrayLike, y_train), cast(ArrayLike, y_calib) From f7e82965ac6069842c07aca3b56cffbfb5ae416b Mon Sep 17 00:00:00 2001 From: Damien Bouet Date: Wed, 12 Jun 2024 15:37:30 +0200 Subject: [PATCH 048/165] RENAME tests --- ...phi_function.py => test_ccp_calibrator.py} | 116 +++--- ...regression.py => test_futur_regression.py} | 375 +++++++++--------- 2 files changed, 267 insertions(+), 224 deletions(-) rename mapie/tests/{test_ccp_phi_function.py => test_ccp_calibrator.py} (65%) rename mapie/tests/{test_ccp_regression.py => test_futur_regression.py} (64%) diff --git a/mapie/tests/test_ccp_phi_function.py b/mapie/tests/test_ccp_calibrator.py similarity index 65% rename from mapie/tests/test_ccp_phi_function.py rename to mapie/tests/test_ccp_calibrator.py index 327d90cc0..309f53698 100644 --- a/mapie/tests/test_ccp_phi_function.py +++ b/mapie/tests/test_ccp_calibrator.py @@ -4,9 +4,11 @@ import numpy as np import pytest +from sklearn.base import clone from sklearn.utils.validation import check_is_fitted from sklearn.datasets import make_regression from mapie.calibrators.ccp import CustomCCP, GaussianCCP, PolynomialCCP, CCP +from mapie.regression import SplitMapieRegressor random_state = 1 np.random.seed(random_state) @@ -33,11 +35,11 @@ CustomCCP([ lambda X: X, PolynomialCCP([1, 2], bias=False) ]), - (lambda X: (X < 3))*CustomCCP([lambda X: X]), - CustomCCP([lambda X: X])*(lambda X: (X < 3)), + (lambda X: (X[:, 0] < 3))*CustomCCP([lambda X: X]), + CustomCCP([lambda X: X])*(lambda X: (X[:, 0] < 3)), CustomCCP([lambda X: X])*None, - CustomCCP([lambda X: X])*(lambda X: (X < 3))*( - lambda X: (X > 0)[:, 0]), + CustomCCP([lambda X: X])*(lambda X: (X[:, 0] < 3))*( + lambda X: (X[:, [0]] > 0)), ] # n_out without bias @@ -92,22 +94,31 @@ ]) def test_custom_phi_functions(functions: Any) -> None: """Test that initialization does not crash.""" - phi = CustomCCP(functions) - phi.fit(X) - phi.predict(X) + mapie = SplitMapieRegressor(calibrator=CustomCCP(functions), alpha=0.1) + mapie.fit(X, y, z) + mapie.predict(X) -@pytest.mark.parametrize("phi, n_out_raw", zip(PHI, N_OUT)) -def test_phi_n_attributes(phi: CCP, n_out_raw: int) -> None: +@pytest.mark.parametrize("calibrator, n_out_raw", zip(PHI, N_OUT)) +def test_phi_n_attributes(calibrator: CCP, n_out_raw: int) -> None: """ Test that the n_in and n_out attributes are corrects """ - phi.fit(X, y_pred=y, z=z) - phi.predict(X, y_pred=y, z=z) - assert phi.n_in == 10 - assert phi.n_out == n_out_raw + mapie = SplitMapieRegressor(calibrator=clone(calibrator), alpha=0.1) + mapie.fit(X, y, z) + assert mapie.calibrator_.n_in == 10 + assert mapie.calibrator_.n_out == n_out_raw +def test_invalid_multiplication() -> None: + with pytest.raises(ValueError): + mapie = SplitMapieRegressor( + calibrator=CustomCCP([lambda X: X])*(lambda X: (X[:, 0] < 3))*( + lambda X: (X[:, [0, 1]] > 0)), + alpha=0.1, + ) + mapie.fit(X, y, z) + def test_phi_functions_warning() -> None: """ Test that creating a CCP object with functions which have @@ -115,9 +126,12 @@ def test_phi_functions_warning() -> None: """ with pytest.warns(UserWarning, match="WARNING: Unknown optional arguments."): - phi = CustomCCP([lambda X, d=d: X**d for d in range(4)]) - phi.fit(X) - phi.predict(X) + mapie = SplitMapieRegressor( + calibrator=CustomCCP([lambda X, d=d: X**d for d in range(4)]), + alpha=0.1, + ) + mapie.fit(X, y, z) + mapie.predict(X) @pytest.mark.parametrize("functions", [ @@ -132,8 +146,8 @@ def test_phi_functions_error(functions: Any) -> None: for f in functions: # For coverage f(np.ones((10, 1)), np.ones((10, 1))) with pytest.raises(ValueError, match=r"Forbidden required argument."): - phi = CustomCCP(functions) - phi.fit(X) + mapie = SplitMapieRegressor(calibrator=CustomCCP(functions), alpha=0.1) + mapie.fit(X, y, z) def test_phi_functions_empty() -> None: @@ -142,15 +156,16 @@ def test_phi_functions_empty() -> None: required arguments different from 'X', 'y_pred' or 'z' raise an error. """ with pytest.raises(ValueError): - phi = CustomCCP([], bias=False) - phi.fit(X) + mapie = SplitMapieRegressor(calibrator=CustomCCP([], bias=False), + alpha=0.1) + mapie.fit(X, y, z) # ======== PolynomialCCP ========= def test_poly_phi_init() -> None: """Test that initialization does not crash.""" - phi = PolynomialCCP() - phi.fit(X) + mapie = SplitMapieRegressor(calibrator=PolynomialCCP(), alpha=0.1) + mapie.fit(X, y, z) @pytest.mark.parametrize("degree", [2, [0, 1, 3]]) @@ -161,7 +176,9 @@ def test_poly_phi_init_other( degree: Any, variable: Any, bias: bool, normalized: bool ) -> None: """Test that initialization does not crash.""" - PolynomialCCP(degree, variable, bias, normalized) + mapie = SplitMapieRegressor(calibrator=PolynomialCCP( + degree, variable, bias, normalized), alpha=0.1) + mapie.fit(X, y, z) @pytest.mark.parametrize("var", ["other", 1, np.ones((10, 1))]) @@ -170,29 +187,31 @@ def test_invalid_variable_value(var: Any) -> None: Test that invalid variable value raise error """ with pytest.raises(ValueError): - phi = PolynomialCCP(variable=var) - phi.fit(X) + mapie = SplitMapieRegressor(calibrator=PolynomialCCP(variable=var), + alpha=0.1) + mapie.fit(X, y, z) # ======== GaussianCCP ========= def test_gauss_phi_init() -> None: """Test that initialization does not crash.""" - GaussianCCP() + mapie = SplitMapieRegressor(calibrator=GaussianCCP(), alpha=0.1) + mapie.fit(X, y, z) -@pytest.mark.parametrize("points", [3, [[10, 20], [2, 39], [2, 3]], +@pytest.mark.parametrize("points", [3, [X[0, :], X[3, :], X[7, :]], ([[1], [2], [3]], [1, 2, 3])]) -@pytest.mark.parametrize("sigma", [None, 1, [1, 2]]) +@pytest.mark.parametrize("sigma", [None, 1, list(range(X.shape[1]))]) @pytest.mark.parametrize("random_sigma", [True, False]) -@pytest.mark.parametrize("X", [None, np.ones((30, 2))]) @pytest.mark.parametrize("bias", [True, False]) @pytest.mark.parametrize("normalized", [True, False]) def test_poly_gauss_init_other( - points: Any, sigma: Any, random_sigma: Any, X: Any, - bias: bool, normalized: bool + points: Any, sigma: Any, random_sigma: Any, bias: bool, normalized: bool ) -> None: """Test that initialization does not crash.""" - GaussianCCP(points, sigma, random_sigma, bias, normalized) + mapie = SplitMapieRegressor(calibrator=GaussianCCP( + points, sigma, random_sigma, bias, normalized), alpha=0.1) + mapie.fit(X, y, z) @pytest.mark.parametrize("points", [np.ones((10)), @@ -203,8 +222,8 @@ def test_invalid_gauss_points(points: Any) -> None: an error """ with pytest.raises(ValueError, match="Invalid `points` argument."): - phi = GaussianCCP(points) - phi.fit(X) + mapie = SplitMapieRegressor(calibrator=GaussianCCP(points), alpha=0.1) + mapie.fit(X, y, z) def test_invalid_gauss_points_2() -> None: @@ -213,8 +232,9 @@ def test_invalid_gauss_points_2() -> None: an error """ with pytest.raises(ValueError, match="There should have as many points"): - phi = GaussianCCP(points=(np.ones((10, 3)), np.ones((8, 3)))) - phi.fit(X) + mapie = SplitMapieRegressor(calibrator=GaussianCCP( + points=(np.ones((10, 3)), np.ones((8, 3)))), alpha=0.1) + mapie.fit(X, y, z) def test_invalid_gauss_points_3() -> None: @@ -223,8 +243,9 @@ def test_invalid_gauss_points_3() -> None: an error """ with pytest.raises(ValueError, match="The standard deviation 2D array"): - phi = GaussianCCP(points=(np.ones((10, 3)), np.ones((10, 2)))) - phi.fit(X) + mapie = SplitMapieRegressor(calibrator=GaussianCCP( + points=(np.ones((10, 3)), np.ones((10, 2)))), alpha=0.1) + mapie.fit(X, y, z) @pytest.mark.parametrize("sigma", ["1", @@ -237,8 +258,9 @@ def test_invalid_gauss_sigma(sigma: Any) -> None: error """ with pytest.raises(ValueError): - phi = GaussianCCP(3, sigma) - phi.fit(X) + mapie = SplitMapieRegressor(calibrator=GaussianCCP(3, sigma), + alpha=0.1) + mapie.fit(X, y, z) @pytest.mark.parametrize("ind", range(len(GAUSS_NEED_FIT_SETTINGS))) @@ -247,9 +269,10 @@ def test_gauss_need_calib(ind: int) -> None: Test that ``GaussianCCP`` arguments that require later completion have ``_need_x_calib`` = ``True`` """ - phi = GaussianCCP(**GAUSS_NEED_FIT_SETTINGS[ind]) - phi.fit(X) - check_is_fitted(phi, phi.fit_attributes) + mapie = SplitMapieRegressor(calibrator=GaussianCCP( + **GAUSS_NEED_FIT_SETTINGS[ind]), alpha=0.1) + mapie.fit(X, y, z) + check_is_fitted(mapie.calibrator_, mapie.calibrator_.fit_attributes) @pytest.mark.parametrize("ind", range(len(GAUSS_NO_NEED_FIT_SETTINGS))) @@ -258,6 +281,7 @@ def test_gauss_no_need_calib(ind: int) -> None: Test that ``GaussianCCP`` arguments that don't require later completion have ``_need_x_calib`` = ``False`` """ - phi = GaussianCCP(**GAUSS_NO_NEED_FIT_SETTINGS[ind]) - phi.fit(X) - check_is_fitted(phi, phi.fit_attributes) + mapie = SplitMapieRegressor(calibrator=GaussianCCP( + **GAUSS_NEED_FIT_SETTINGS[ind]), alpha=0.1) + mapie.fit(X, y, z) + check_is_fitted(mapie.calibrator_, mapie.calibrator_.fit_attributes) diff --git a/mapie/tests/test_ccp_regression.py b/mapie/tests/test_futur_regression.py similarity index 64% rename from mapie/tests/test_ccp_regression.py rename to mapie/tests/test_futur_regression.py index 0921ce2c2..332698904 100644 --- a/mapie/tests/test_ccp_regression.py +++ b/mapie/tests/test_futur_regression.py @@ -23,13 +23,13 @@ GammaConformityScore, ResidualNormalisedScore) from mapie.metrics import regression_coverage_score -from mapie.regression import MapieCCPRegressor +from mapie.regression import SplitMapieRegressor from mapie.calibrators.ccp import CCP, CustomCCP, GaussianCCP, PolynomialCCP random_state = 1 np.random.seed(random_state) -X_toy = np.linspace(0, 10, num=100).reshape(-1, 1) +X_toy = np.linspace(0, 10, num=300).reshape(-1, 1) y_toy = 2*X_toy[:, 0] + (max(X_toy)/10)*np.random.rand(len(X_toy)) z_toy = np.linspace(0, 10, num=len(X_toy)).reshape(-1, 1) @@ -43,7 +43,7 @@ PHI = [ CustomCCP([lambda X: np.ones((len(X), 1))]), - PolynomialCCP(), + PolynomialCCP([0, 1]), GaussianCCP(5), ] WIDTHS = { @@ -60,35 +60,35 @@ # ======== MapieCCPRegressor ========= def test_initialized() -> None: """Test that initialization does not crash.""" - MapieCCPRegressor(alpha=0.1) + SplitMapieRegressor(alpha=0.1) -def test_fit_estimator() -> None: - """Test that fit_estimator raises no errors.""" - mapie_reg = MapieCCPRegressor(alpha=0.1) - mapie_reg.fit_estimator(X_toy, y_toy) +def test_fit_predictor() -> None: + """Test that fit_predictor raises no errors.""" + mapie_reg = SplitMapieRegressor(alpha=0.1) + mapie_reg.fit_predictor(X_toy, y_toy) @pytest.mark.parametrize("z", [None, z_toy]) def test_fit_calibrator(z: Any) -> None: """Test that fit_calibrator raises no errors.""" - mapie_reg = MapieCCPRegressor(alpha=0.1) - mapie_reg.fit_estimator(X_toy, y_toy) + mapie_reg = SplitMapieRegressor(alpha=0.1) + mapie_reg.fit_predictor(X_toy, y_toy) mapie_reg.fit_calibrator(X_toy, y_toy, z=z) @pytest.mark.parametrize("z", [None, z_toy]) def test_fit(z: Any) -> None: """Test that fit raises no errors.""" - mapie_reg = MapieCCPRegressor(alpha=0.1) + mapie_reg = SplitMapieRegressor(alpha=0.1) mapie_reg.fit(X_toy, y_toy, z=z) @pytest.mark.parametrize("z", [None, z_toy]) -def test_fit_estimator_fit_calibrator_predict(z: Any) -> None: +def test_fit_predictor_fit_calibrator_predict(z: Any) -> None: """Test that fit-calibrate-predict raises no errors.""" - mapie_reg = MapieCCPRegressor(alpha=0.1) - mapie_reg.fit_estimator(X_toy, y_toy) + mapie_reg = SplitMapieRegressor(alpha=0.1) + mapie_reg.fit_predictor(X_toy, y_toy) mapie_reg.fit_calibrator(X_toy, y_toy, z=z) mapie_reg.predict(X_toy, z=z) @@ -96,34 +96,34 @@ def test_fit_estimator_fit_calibrator_predict(z: Any) -> None: @pytest.mark.parametrize("z", [None, z_toy]) def test_fit_predict(z: Any) -> None: """Test that fit-predict raises no errors.""" - mapie_reg = MapieCCPRegressor(alpha=0.1) + mapie_reg = SplitMapieRegressor(alpha=0.1) mapie_reg.fit(X_toy, y_toy, z=z) mapie_reg.predict(X_toy, z=z) -def test_not_fitted_estimator_fit_calibrator() -> None: +def test_not_fitted_predictor_fit_calibrator() -> None: """Test that calibrate before fit raises errors.""" - mapie_reg = MapieCCPRegressor(alpha=0.1) + mapie_reg = SplitMapieRegressor(alpha=0.1) with pytest.raises(NotFittedError): mapie_reg.fit_calibrator(X_toy, y_toy) def test_calib_not_complete_phi() -> None: - """Test that a not complete phi definition raises a warning""" + """Test that a not complete calibrator definition raises a warning""" with pytest.warns(UserWarning, match="WARNING: At least one row of the"): - mapie_reg = MapieCCPRegressor( + mapie_reg = SplitMapieRegressor( alpha=0.1, - phi=CustomCCP([lambda X: (X < 5).astype(int)], bias=False) + calibrator=CustomCCP([lambda X: (X < 5).astype(int)], bias=False) ) mapie_reg.fit(X_toy, y_toy) def test_predict_not_complete_phi() -> None: - """Test that a not complete phi definition raises a warning""" + """Test that a not complete calibrator definition raises a warning""" with pytest.warns(UserWarning, match="WARNING: At least one row of the"): - mapie_reg = MapieCCPRegressor( + mapie_reg = SplitMapieRegressor( alpha=0.1, - phi=CustomCCP([lambda X: (X < 5).astype(int)], bias=False) + calibrator=CustomCCP([lambda X: (X < 5).astype(int)], bias=False) ) mapie_reg.fit(X_toy[X_toy[:, 0] < 5], y_toy[X_toy[:, 0] < 5]) mapie_reg.predict(X_toy) @@ -131,72 +131,74 @@ def test_predict_not_complete_phi() -> None: def test_no_fit_predict() -> None: """Test that predict before fit raises errors.""" - mapie_reg = MapieCCPRegressor(alpha=0.1) + mapie_reg = SplitMapieRegressor(alpha=0.1) with pytest.raises(NotFittedError): mapie_reg.predict(X_toy) def test_no_calibrate_predict() -> None: """Test that predict before fit raises errors.""" - mapie_reg = MapieCCPRegressor(alpha=0.1) - mapie_reg.fit_estimator(X_toy, y_toy) + mapie_reg = SplitMapieRegressor(alpha=0.1) + mapie_reg.fit_predictor(X_toy, y_toy) with pytest.raises(NotFittedError): mapie_reg.predict(X_toy) def test_default_sample_weight() -> None: """Test default sample weights.""" - mapie_reg = MapieCCPRegressor(alpha=0.1) + mapie_reg = SplitMapieRegressor(alpha=0.1) assert ( - signature(mapie_reg.fit_estimator).parameters["sample_weight"].default + signature(mapie_reg.fit_predictor).parameters["sample_weight"].default is None ) -@pytest.mark.parametrize("estimator", [0, "a", KFold(), ["a", "b"]]) -def test_invalid_estimator( - estimator: Any +@pytest.mark.parametrize("predictor", [0, "a", KFold(), ["a", "b"]]) +def test_invalid_predictor( + predictor: Any ) -> None: - """Test that invalid estimators raise errors.""" + """Test that invalid predictors raise errors.""" with pytest.raises(ValueError, match=r".*Invalid estimator.*"): - mapie = MapieCCPRegressor(estimator=estimator, alpha=0.1) - mapie.fit_estimator(X, y) + mapie = SplitMapieRegressor(predictor=predictor, alpha=0.1) + mapie.fit_predictor(X, y) -@pytest.mark.parametrize("estimator", [ +@pytest.mark.parametrize("predictor", [ LinearRegression(), make_pipeline(LinearRegression()), ]) -def test_invalid_prefit_estimator_calibrate( - estimator: RegressorMixin, +def test_invalid_prefit_predictor_calibrate( + predictor: RegressorMixin, ) -> None: - """Test that non-fitted estimator with prefit cv raise errors when + """Test that non-fitted predictor with prefit cv raise errors when calibrate is called""" with pytest.raises(NotFittedError): - mapie = MapieCCPRegressor(estimator=estimator, cv="prefit", alpha=0.1) + mapie = SplitMapieRegressor(predictor=predictor, cv="prefit", + alpha=0.1) mapie.fit_calibrator(X, y) -@pytest.mark.parametrize("estimator", [ +@pytest.mark.parametrize("predictor", [ LinearRegression(), make_pipeline(LinearRegression()), ]) -def test_invalid_prefit_estimator_fit( - estimator: RegressorMixin, +def test_invalid_prefit_predictor_fit( + predictor: RegressorMixin, ) -> None: - """Test that non-fitted estimator with prefit cv raise errors when fit + """Test that non-fitted predictor with prefit cv raise errors when fit is called.""" with pytest.raises(NotFittedError): - mapie = MapieCCPRegressor(estimator=estimator, cv="prefit", alpha=0.1) - mapie.fit_estimator(X, y) + mapie = SplitMapieRegressor(predictor=predictor, cv="prefit", + alpha=0.1) + mapie.fit_predictor(X, y) def test_default_parameters() -> None: """Test default values of input parameters.""" - mapie_reg = MapieCCPRegressor(random_state=random_state, alpha=0.1) + mapie_reg = SplitMapieRegressor(random_state=random_state, alpha=0.1) mapie_reg.fit(X, y) - assert isinstance(mapie_reg.estimator_, RegressorMixin) - assert isinstance(mapie_reg.phi_, GaussianCCP) + assert isinstance(mapie_reg.predictor_, RegressorMixin) + assert isinstance(mapie_reg.calibrator_, GaussianCCP) assert isinstance(mapie_reg.cv, ShuffleSplit) assert mapie_reg.alpha == 0.1 assert isinstance(mapie_reg.conformity_score_, ConformityScore) @@ -208,28 +210,28 @@ def test_default_parameters() -> None: ) def test_invalid_alpha(alpha: Any) -> None: with pytest.raises(ValueError): - mapie = MapieCCPRegressor(alpha=alpha) + mapie = SplitMapieRegressor(alpha=alpha) mapie.fit(X, y) @pytest.mark.parametrize( - "phi", [1, "some_string"] + "calibrator", [1, "some_string"] ) -def test_invalid_phi(phi: Any) -> None: +def test_invalid_phi(calibrator: Any) -> None: with pytest.raises(ValueError): - mapie = MapieCCPRegressor(phi=phi) + mapie = SplitMapieRegressor(calibrator=calibrator) mapie.fit(X, y) -def test_valid_estimator() -> None: - """Test that valid estimators are not corrupted""" - mapie_reg = MapieCCPRegressor( - estimator=DummyRegressor(), +def test_valid_predictor() -> None: + """Test that valid predictors are not corrupted""" + mapie_reg = SplitMapieRegressor( + predictor=DummyRegressor(), random_state=random_state, alpha=0.1, ) - mapie_reg.fit_estimator(X_toy, y_toy) - assert isinstance(mapie_reg.estimator, DummyRegressor) + mapie_reg.fit_predictor(X_toy, y_toy) + assert isinstance(mapie_reg.predictor, DummyRegressor) @pytest.mark.parametrize( @@ -238,15 +240,15 @@ def test_valid_estimator() -> None: test_fold=[1]*(len(X_toy)//2) + [-1]*(len(X_toy)-len(X_toy)//2) ), "prefit", "split"] ) -@pytest.mark.parametrize("estimator", [ +@pytest.mark.parametrize("predictor", [ LinearRegression(), make_pipeline(LinearRegression()), ]) -def test_valid_cv(cv: Any, estimator: RegressorMixin) -> None: +def test_valid_cv(cv: Any, predictor: RegressorMixin) -> None: """Test that valid cv raise no errors.""" - estimator.fit(X_toy, y_toy) - mapie_reg = MapieCCPRegressor(estimator=estimator, cv=cv, alpha=0.1, - random_state=random_state) + predictor.fit(X_toy, y_toy) + mapie_reg = SplitMapieRegressor(predictor, CustomCCP(bias=True), cv=cv, + alpha=0.1, random_state=random_state) mapie_reg.fit(X_toy, y_toy) mapie_reg.predict(X_toy) @@ -263,39 +265,44 @@ def test_valid_cv(cv: Any, estimator: RegressorMixin) -> None: def test_invalid_cv(cv: Any) -> None: """Test that invalid agg_functions raise errors.""" with pytest.raises(ValueError, match="Invalid cv argument."): - mapie = MapieCCPRegressor(cv=cv, alpha=0.1, random_state=random_state) - mapie.fit_estimator(X, y) + mapie = SplitMapieRegressor(cv=cv, alpha=0.1, + random_state=random_state) + mapie.fit_predictor(X, y) @pytest.mark.parametrize("dataset", [(X, y, z), (X_toy, y_toy, z_toy)]) @pytest.mark.parametrize("alpha", [0.2]) -@pytest.mark.parametrize("phi", PHI) +@pytest.mark.parametrize("calibrator", PHI) @pytest.mark.parametrize("cv", CV) -@pytest.mark.parametrize("estimator", [ +@pytest.mark.parametrize("predictor", [ LinearRegression(), make_pipeline(LinearRegression()), ]) def test_fit_calibrate_combined_equivalence( alpha: Any, dataset: Tuple[NDArray, NDArray, NDArray], - cv: Any, phi: CCP, estimator: RegressorMixin + cv: Any, calibrator: CCP, predictor: RegressorMixin ) -> None: """Test predict output shape.""" (X, y, z) = dataset - estimator_1 = clone(estimator) - estimator_2 = clone(estimator) + predictor_1 = clone(predictor) + predictor_2 = clone(predictor) if cv == "prefit": - estimator_1.fit(X, y) - estimator_2.fit(X, y) + predictor_1.fit(X, y) + predictor_2.fit(X, y) np.random.seed(random_state) - mapie_1 = MapieCCPRegressor(estimator=estimator_1, phi=phi, cv=cv, - alpha=alpha, random_state=random_state) + mapie_1 = SplitMapieRegressor( + predictor=predictor_1, calibrator=calibrator, + cv=cv, alpha=alpha, random_state=random_state + ) np.random.seed(random_state) - mapie_2 = MapieCCPRegressor(estimator=estimator_2, phi=phi, cv=cv, - alpha=alpha, random_state=random_state) + mapie_2 = SplitMapieRegressor( + predictor=predictor_2, calibrator=calibrator, + cv=cv, alpha=alpha, random_state=random_state + ) mapie_1.fit(X, y, z=z) - mapie_2.fit_estimator(X, y) + mapie_2.fit_predictor(X, y) mapie_2.fit_calibrator(X, y, z=z) y_pred_1, y_pis_1 = mapie_1.predict(X, z) y_pred_2, y_pis_2 = mapie_2.predict(X, z) @@ -309,7 +316,7 @@ def test_recalibrate_warning() -> None: Test that a warning is triggered when we calibrate a second time with a different alpha value """ - mapie_reg = MapieCCPRegressor(alpha=0.1) + mapie_reg = SplitMapieRegressor(alpha=0.1) mapie_reg.fit(X_toy, y_toy) with pytest.warns(UserWarning, match=r"WARNING: The old value of alpha"): mapie_reg.fit_calibrator(X_toy, y_toy, alpha=0.2) @@ -317,15 +324,15 @@ def test_recalibrate_warning() -> None: @pytest.mark.parametrize("dataset", [(X, y, z), (X_toy, y_toy, z_toy), (X, y, None), (X_toy, y_toy, None)]) -@pytest.mark.parametrize("phi", PHI) +@pytest.mark.parametrize("calibrator", PHI) @pytest.mark.parametrize("cv", CV) -@pytest.mark.parametrize("estimator", [ +@pytest.mark.parametrize("predictor", [ LinearRegression(), make_pipeline(LinearRegression()), ]) def test_recalibrate( dataset: Tuple[NDArray, NDArray, NDArray], - cv: Any, phi: CCP, estimator: RegressorMixin + cv: Any, calibrator: CCP, predictor: RegressorMixin ) -> None: """ Test that the PI are different for different value of alpha, @@ -333,12 +340,16 @@ def test_recalibrate( """ (X, y, z) = dataset if cv == "prefit": - estimator.fit(X, y) + predictor.fit(X, y) - mapie_1 = MapieCCPRegressor(estimator=estimator, phi=phi, cv=cv, - alpha=0.2, random_state=random_state) - mapie_2 = MapieCCPRegressor(estimator=estimator, phi=phi, cv=cv, - alpha=0.1, random_state=random_state) + mapie_1 = SplitMapieRegressor( + predictor=predictor, calibrator=clone(calibrator), cv=cv, + alpha=0.2, random_state=random_state + ) + mapie_2 = SplitMapieRegressor( + predictor=predictor, calibrator=clone(calibrator), cv=cv, + alpha=0.1, random_state=random_state + ) mapie_1.fit(X, y, z=z) mapie_2.fit(X, y, z=z) @@ -356,23 +367,25 @@ def test_recalibrate( @pytest.mark.parametrize("dataset", [(X, y, z), (X_toy, y_toy, z_toy)]) -@pytest.mark.parametrize("phi", PHI) +@pytest.mark.parametrize("calibrator", PHI) @pytest.mark.parametrize("cv", CV) -@pytest.mark.parametrize("estimator", [ +@pytest.mark.parametrize("predictor", [ LinearRegression(), make_pipeline(LinearRegression()), ]) def test_predict_output_shape_alpha( dataset: Tuple[NDArray, NDArray, NDArray], - cv: Any, phi: CCP, estimator: RegressorMixin + cv: Any, calibrator: CCP, predictor: RegressorMixin ) -> None: """Test predict output shape.""" (X, y, z) = dataset if cv == "prefit": - estimator.fit(X, y) + predictor.fit(X, y) - mapie_reg = MapieCCPRegressor(estimator=estimator, phi=phi, cv=cv, - alpha=0.1, random_state=random_state) + mapie_reg = SplitMapieRegressor( + predictor=predictor, calibrator=calibrator, + cv=cv, alpha=0.1, random_state=random_state + ) mapie_reg.fit(X, y, z=z) y_pred, y_pis = mapie_reg.predict(X, z) assert y_pred.shape == (X.shape[0],) @@ -380,37 +393,39 @@ def test_predict_output_shape_alpha( @pytest.mark.parametrize("dataset", [(X, y, z), (X_toy, y_toy, z_toy)]) -@pytest.mark.parametrize("phi", PHI) +@pytest.mark.parametrize("calibrator", PHI) @pytest.mark.parametrize("cv", CV) -@pytest.mark.parametrize("estimator", [ +@pytest.mark.parametrize("predictor", [ LinearRegression(), make_pipeline(LinearRegression()), ]) def test_predict_output_shape_no_alpha( dataset: Tuple[NDArray, NDArray, NDArray], - cv: Any, phi: CCP, estimator: RegressorMixin + cv: Any, calibrator: CCP, predictor: RegressorMixin ) -> None: """Test predict output shape.""" (X, y, z) = dataset if cv == "prefit": - estimator.fit(X, y) + predictor.fit(X, y) - mapie_reg = MapieCCPRegressor(estimator=estimator, phi=phi, cv=cv, - alpha=None, random_state=random_state) + mapie_reg = SplitMapieRegressor( + predictor=predictor, calibrator=calibrator, cv=cv, + alpha=None, random_state=random_state + ) mapie_reg.fit(X, y, z=z) y_pred = mapie_reg.predict(X, z) assert np.array(y_pred).shape == (X.shape[0],) @pytest.mark.parametrize("dataset", [(X, y, z), (X_toy, y_toy, z_toy)]) -@pytest.mark.parametrize("phi_template", PHI) -@pytest.mark.parametrize("estimator", [ +@pytest.mark.parametrize("template", PHI) +@pytest.mark.parametrize("predictor", [ LinearRegression(), make_pipeline(LinearRegression()), ]) def test_same_results_prefit_split( - dataset: Tuple[NDArray, NDArray, NDArray], phi_template: CCP, - estimator: RegressorMixin, + dataset: Tuple[NDArray, NDArray, NDArray], template: CCP, + predictor: RegressorMixin, ) -> None: """ Test checking that if split and prefit method have exactly @@ -428,24 +443,28 @@ def test_same_results_prefit_split( y_train, y_calib = y[train_index], y[val_index] z_calib = z[val_index] - phi = clone(phi_template) - phi.fit(X) - phi.init_value = phi.init_value_ - if isinstance(phi, GaussianCCP): - phi.points = (phi.points_, phi.sigmas_) + calibrator = clone(template) + calibrator.fit_params(X, y, z) + calibrator.init_value = calibrator.init_value_ + if isinstance(calibrator, GaussianCCP): + calibrator.points = (calibrator.points_, calibrator.sigmas_) - mapie_reg = MapieCCPRegressor(estimator=estimator, phi=phi, cv=pred_cv, - alpha=0.1, random_state=random_state) - mapie_reg.fit(X, y, z=z) - y_pred_1, y_pis_1 = mapie_reg.predict(X, z) + mapie_1 = SplitMapieRegressor( + clone(predictor), clone(calibrator), pred_cv, alpha=0.1, + random_state=random_state, + ) - estimator.fit(X_train, y_train) - mapie_reg = MapieCCPRegressor( - estimator=estimator, phi=phi, cv="prefit", alpha=0.1, - random_state=random_state + fitted_predictor = clone(predictor).fit(X_train, y_train) + mapie_2 = SplitMapieRegressor( + fitted_predictor, clone(calibrator), cv="prefit", alpha=0.1, + random_state=random_state, ) - mapie_reg.fit(X_calib, y_calib, z=z_calib) - y_pred_2, y_pis_2 = mapie_reg.predict(X, z) + + mapie_1.fit(X, y, z=z) + mapie_2.fit(X_calib, y_calib, z=z_calib) + + y_pred_1, y_pis_1 = mapie_1.predict(X, z) + y_pred_2, y_pis_2 = mapie_2.predict(X, z) np.testing.assert_allclose(y_pred_1, y_pred_2) np.testing.assert_allclose(y_pis_1[:, 0, 0], y_pis_2[:, 0, 0]) @@ -453,15 +472,15 @@ def test_same_results_prefit_split( @pytest.mark.parametrize("dataset", [(X, y, z), (X_toy, y_toy, z_toy)]) -@pytest.mark.parametrize("phi", PHI) +@pytest.mark.parametrize("calibrator", PHI) @pytest.mark.parametrize("cv", CV) -@pytest.mark.parametrize("estimator", [ +@pytest.mark.parametrize("predictor", [ LinearRegression(), make_pipeline(LinearRegression()), ]) def test_results_for_ordered_alpha( dataset: Tuple[NDArray, NDArray, NDArray], cv: Any, - phi: CCP, estimator: RegressorMixin + calibrator: CCP, predictor: RegressorMixin ) -> None: """ Test that prediction intervals lower (upper) bounds give @@ -469,17 +488,17 @@ def test_results_for_ordered_alpha( """ (X, y, z) = dataset if cv == "prefit": - estimator.fit(X, y) + predictor.fit(X, y) + + calibrator.fit_params(X) - phi.fit(X) + mapie_reg_1 = SplitMapieRegressor(predictor, clone(calibrator), cv=cv, + alpha=0.05, random_state=random_state) + mapie_reg_2 = SplitMapieRegressor(predictor, clone(calibrator), cv=cv, + alpha=0.1, random_state=random_state) - mapie_reg_1 = MapieCCPRegressor(estimator=estimator, phi=phi, cv=cv, - alpha=0.05, random_state=random_state) mapie_reg_1.fit(X, y, z=z) _, y_pis_1 = mapie_reg_1.predict(X, z) - - mapie_reg_2 = MapieCCPRegressor(estimator=estimator, phi=phi, cv=cv, - alpha=0.1, random_state=random_state) mapie_reg_2.fit(X, y, z=z) _, y_pis_2 = mapie_reg_1.predict(X, z) @@ -489,14 +508,14 @@ def test_results_for_ordered_alpha( @pytest.mark.parametrize("dataset", [(X, y, z), (X_toy, y_toy, z_toy)]) @pytest.mark.parametrize("cv", CV) -@pytest.mark.parametrize("estimator", [ +@pytest.mark.parametrize("predictor", [ LinearRegression(), make_pipeline(LinearRegression()), ]) def test_results_with_constant_sample_weights( dataset: Tuple[NDArray, NDArray, NDArray], cv: Any, - estimator: RegressorMixin, + predictor: RegressorMixin, ) -> None: """ Test predictions when sample weights are None @@ -504,19 +523,19 @@ def test_results_with_constant_sample_weights( """ (X, y, z) = dataset if cv == "prefit": - estimator.fit(X, y) + predictor.fit(X, y) - phi = PHI[0] - phi.fit(X) - phi.init_value = phi.init_value_ + calibrator = PHI[0] + calibrator.fit_params(X) + calibrator.init_value = calibrator.init_value_ n_samples = len(X) - mapie0 = MapieCCPRegressor(estimator=estimator, phi=phi, - cv=cv, alpha=0.1, random_state=random_state) - mapie1 = MapieCCPRegressor(estimator=estimator, phi=phi, - cv=cv, alpha=0.1, random_state=random_state) - mapie2 = MapieCCPRegressor(estimator=estimator, phi=phi, - cv=cv, alpha=0.1, random_state=random_state) + mapie0 = SplitMapieRegressor(predictor, clone(calibrator), + cv=cv, alpha=0.1, random_state=random_state) + mapie1 = SplitMapieRegressor(predictor, clone(calibrator), + cv=cv, alpha=0.1, random_state=random_state) + mapie2 = SplitMapieRegressor(predictor, clone(calibrator), + cv=cv, alpha=0.1, random_state=random_state) mapie0.fit(X, y, z=z, sample_weight=None) mapie1.fit(X, y, z=z, sample_weight=np.ones(shape=n_samples)) @@ -532,28 +551,28 @@ def test_results_with_constant_sample_weights( @pytest.mark.parametrize("dataset", [(X, y, z), (X_toy, y_toy, z_toy)]) -@pytest.mark.parametrize("phi", PHI) +@pytest.mark.parametrize("calibrator", PHI) @pytest.mark.parametrize("cv", CV) @pytest.mark.parametrize("alpha", [0.2, 0.1, 0.05]) -@pytest.mark.parametrize("estimator", [ +@pytest.mark.parametrize("predictor", [ LinearRegression(), make_pipeline(LinearRegression()), ]) def test_prediction_between_low_up( dataset: Tuple[NDArray, NDArray, NDArray], cv: Any, - phi: CCP, + calibrator: CCP, alpha: float, - estimator: RegressorMixin + predictor: RegressorMixin ) -> None: """Test that prediction lies between low and up prediction intervals.""" (X, y, z) = dataset if cv == "prefit": - estimator.fit(X, y) + predictor.fit(X, y) - mapie = MapieCCPRegressor(estimator=estimator, phi=phi, cv=cv, - alpha=alpha, random_state=random_state) + mapie = SplitMapieRegressor(predictor=predictor, calibrator=calibrator, + cv=cv, alpha=alpha, random_state=random_state) mapie.fit(X, y, z=z) with warnings.catch_warnings(record=True) as record: @@ -569,21 +588,21 @@ def test_prediction_between_low_up( assert (y_pred <= y_pis[:, 1, 0]).all() -@pytest.mark.parametrize("phi", PHI[:2]) +@pytest.mark.parametrize("calibrator", PHI[:2]) @pytest.mark.parametrize("cv", CV) @pytest.mark.parametrize("alpha", [0.2]) -@pytest.mark.parametrize("estimator", [ +@pytest.mark.parametrize("predictor", [ LinearRegression(), make_pipeline(LinearRegression()), ]) def test_linear_data_confidence_interval( cv: Any, - phi: CCP, + calibrator: CCP, alpha: float, - estimator: RegressorMixin + predictor: RegressorMixin ) -> None: """ - Test that MapieRegressor applied on a linear regression estimator + Test that MapieRegressor applied on a linear regression predictor fitted on a linear curve results in null uncertainty. """ X_toy = np.arange(0, 200, 1).reshape(-1, 1) @@ -591,10 +610,10 @@ def test_linear_data_confidence_interval( z_toy = np.ones((len(X_toy), 1)) if cv == "prefit": - estimator.fit(X_toy, y_toy) + predictor.fit(X_toy, y_toy) - mapie = MapieCCPRegressor(estimator=estimator, phi=phi, - cv=cv, alpha=alpha, random_state=random_state) + mapie = SplitMapieRegressor(predictor, clone(calibrator), cv=cv, + alpha=alpha, random_state=random_state) mapie.fit(X_toy, y_toy, z=z_toy) y_pred, y_pis = mapie.predict(X_toy, z=z_toy) @@ -607,13 +626,13 @@ def test_linear_data_confidence_interval( def test_linear_regression_results() -> None: """ Test that the CCP method in the case of a constant - phi = x -> np.ones(len(x)), on a multivariate linear regression problem - with fixed random state, is strictly equivalent to the regular CP method - (base, jacknife and cv) + calibrator = x -> np.ones(len(x)), on a multivariate linear regression + problem with fixed random state, is strictly equivalent to the regular + CP method (base, jacknife and cv) """ - mapie = MapieCCPRegressor( - phi=clone(PHI[0]), + mapie = SplitMapieRegressor( + calibrator=clone(PHI[0]), cv=ShuffleSplit(n_splits=1, test_size=0.5, random_state=random_state), alpha=0.05, random_state=random_state @@ -627,11 +646,11 @@ def test_linear_regression_results() -> None: np.testing.assert_allclose(coverage, COVERAGES["split"], rtol=1e-2) -@pytest.mark.parametrize("estimator", [ +@pytest.mark.parametrize("predictor", [ LinearRegression(), make_pipeline(LinearRegression()), ]) -def test_results_prefit(estimator: RegressorMixin) -> None: +def test_results_prefit(predictor: RegressorMixin) -> None: """Test prefit results on a standard train/validation/test split.""" X_train_val, X_test, y_train_val, y_test = train_test_split( X, y, test_size=1 / 10, random_state=1 @@ -639,9 +658,9 @@ def test_results_prefit(estimator: RegressorMixin) -> None: X_train, X_val, y_train, y_val = train_test_split( X_train_val, y_train_val, test_size=1 / 9, random_state=1 ) - estimator.fit(X_train, y_train) - mapie_reg = MapieCCPRegressor( - estimator=estimator, phi=clone(PHI[0]), cv="prefit", alpha=0.05, + predictor.fit(X_train, y_train) + mapie_reg = SplitMapieRegressor( + predictor=predictor, calibrator=clone(PHI[0]), cv="prefit", alpha=0.05, random_state=random_state ) mapie_reg.fit(X_val, y_val) @@ -654,9 +673,9 @@ def test_results_prefit(estimator: RegressorMixin) -> None: np.testing.assert_allclose(coverage, COVERAGES["prefit"], rtol=1e-2) -@pytest.mark.parametrize("phi", PHI) +@pytest.mark.parametrize("calibrator", PHI) @pytest.mark.parametrize("cv", CV) -@pytest.mark.parametrize("estimator", [ +@pytest.mark.parametrize("predictor", [ LinearRegression(), make_pipeline(LinearRegression()), ]) @@ -666,18 +685,18 @@ def test_results_prefit(estimator: RegressorMixin) -> None: ) def test_conformity_score( cv: Any, - phi: CCP, - estimator: RegressorMixin, + calibrator: CCP, + predictor: RegressorMixin, conformity_score: ConformityScore ) -> None: """Test that any conformity score function with MAPIE raises no error.""" if cv == "prefit": - estimator.fit(X, y + 1e3) + predictor.fit(X, y + 1e3) - mapie_reg = MapieCCPRegressor( - estimator=estimator, - phi=phi, + mapie_reg = SplitMapieRegressor( + predictor=predictor, + calibrator=calibrator, cv=cv, alpha=0.1, conformity_score=conformity_score, @@ -690,13 +709,13 @@ def test_conformity_score( def test_fit_parameters_passing() -> None: """ Test passing fit parameters, here early stopping at iteration 3. - Checks that underlying GradientBoosting estimators have used 3 iterations - only during boosting, instead of default value for n_estimators (=100). + Checks that underlying GradientBoosting predictors have used 3 iterations + only during boosting, instead of default value for n_predictors (=100). """ gb = GradientBoostingRegressor(random_state=random_state) - mapie_reg = MapieCCPRegressor(estimator=gb, alpha=0.1, - random_state=random_state) + mapie_reg = SplitMapieRegressor(predictor=gb, alpha=0.1, + random_state=random_state) def early_stopping_monitor(i, est, locals): """Returns True on the 3rd iteration.""" @@ -705,6 +724,6 @@ def early_stopping_monitor(i, est, locals): else: return False - mapie_reg.fit(X, y, monitor=early_stopping_monitor) + mapie_reg.fit(X, y, fit_params={"monitor": early_stopping_monitor}) - assert cast(RegressorMixin, mapie_reg.estimator).estimators_.shape[0] == 3 + assert cast(RegressorMixin, mapie_reg.predictor).estimators_.shape[0] == 3 From e45bf488aaf83e8de17083ffc4231f976e6f6811 Mon Sep 17 00:00:00 2001 From: Damien Bouet Date: Wed, 12 Jun 2024 15:38:50 +0200 Subject: [PATCH 049/165] ADD: Draft of Classification, to assess the generaliation capacities of the implementation --- mapie/calibrators/__init__.py | 2 + mapie/calibrators/standard.py | 137 +++++++ .../classification_scores.py | 75 ++++ mapie/futur/__init__.py | 3 + mapie/futur/split/__init__.py | 3 + mapie/futur/split/classification.py | 348 ++++++++++++++++++ 6 files changed, 568 insertions(+) create mode 100644 mapie/calibrators/standard.py create mode 100644 mapie/conformity_scores/classification_scores.py create mode 100644 mapie/futur/split/classification.py diff --git a/mapie/calibrators/__init__.py b/mapie/calibrators/__init__.py index efecabf53..6249f87d4 100644 --- a/mapie/calibrators/__init__.py +++ b/mapie/calibrators/__init__.py @@ -1,8 +1,10 @@ from .base import Calibrator +from .standard import Standard from .ccp import CustomCCP, PolynomialCCP, GaussianCCP __all__ = [ "Calibrator", + "Standard", "CustomCCP", "PolynomialCCP", "GaussianCCP", diff --git a/mapie/calibrators/standard.py b/mapie/calibrators/standard.py new file mode 100644 index 000000000..ace75d83c --- /dev/null +++ b/mapie/calibrators/standard.py @@ -0,0 +1,137 @@ +from __future__ import annotations + +from typing import Optional, List + +import numpy as np +from mapie._typing import ArrayLike, NDArray +from mapie.calibrators import Calibrator +from mapie.conformity_scores import ConformityScore +from sklearn.utils.validation import _num_samples + + +class Standard(Calibrator): + """ + Base abstract class for the calibrators + + Attributes + ---------- + fit_attributes: Optional[List[str]] + Name of attributes set during the ``fit`` method, and required to call + ``transform``. + """ + + fit_attributes: List[str] = ["q_up_", "q_low_"] + + def fit( + self, + X_calib: ArrayLike, + y_pred_calib: Optional[ArrayLike], + z_calib: Optional[ArrayLike], + calib_conformity_scores: NDArray, + alpha: float, + sym: bool, + sample_weight_calib: Optional[ArrayLike] = None, + random_state: Optional[int] = None, + **optim_kwargs, + ) -> Calibrator: + """ + Fit the calibrator instance + + Parameters + ---------- + X: ArrayLike of shape (n_samples, n_features) + Calibration data. + + y_pred: ArrayLike of shape (n_samples,) + Calibration target. + + z: Optional[ArrayLike] of shape (n_calib_samples, n_exog_features) + Exogenous variables + + conformity_scores: ArrayLike of shape (n_samples,) + Calibration conformity scores + + alpha: float + Between ``0.0`` and ``1.0``, represents the risk level of the + confidence interval. + Lower ``alpha`` produce larger (more conservative) prediction + intervals. + ``alpha`` is the complement of the target coverage level. + + sym: bool + Weather or not, the prediction interval should be symetrical + or not. + + sample_weight: Optional[ArrayLike] of shape (n_samples,) + Sample weights for fitting the out-of-fold models. + If ``None``, then samples are equally weighted. + If some weights are null, + their corresponding observations are removed + before the fitting process and hence have no residuals. + If weights are non-uniform, residuals are still uniformly weighted. + Note that the sample weight defined are only for the training, not + for the calibration procedure. + + By default ``None``. + + random_state: Optional[int] + Integer used to set the numpy seed, to get reproducible calibration + results. + If ``None``, the prediction intervals will be stochastics, and will + change if you refit the calibration + (even if no arguments have change). + + WARNING: If ``random_state``is not ``None``, ``np.random.seed`` + will be changed, which will reset the seed for all the other random + number generators. It may have an impact on the rest of your code. + + By default ``None``. + + optim_kwargs: Dict + Other argument, used in sklear.optimize.minimize + """ + signed = -1 if sym else 1 + quantile_search = "higher" if sym else "lower" + + alpha_low = 1 - alpha if sym else alpha/2 + alpha_up = 1 - alpha if sym else 1 - alpha/2 + + self.q_up_ = ConformityScore.get_quantile( + calib_conformity_scores[..., np.newaxis], + np.array([alpha_up]), axis=0, method="higher" + )[0, 0] + self.q_low_ = signed * ConformityScore.get_quantile( + calib_conformity_scores[..., np.newaxis], + np.array([alpha_low]), axis=0, method=quantile_search + )[0, 0] + + return self + + def predict( + self, + X: ArrayLike, + y_pred: ArrayLike, + z: Optional[ArrayLike] = None, + ) -> NDArray: + """ + Predict ``(X, y_pred, z)`` + + Parameters + ---------- + X : ArrayLike + Observed samples + + y_pred : ArrayLike + Target prediction + + z : ArrayLike + Exogenous variable + + Returns + ------- + NDArray + prediction + """ + return np.ones((_num_samples(X), 2)) * np.array([ + self.q_low_, self.q_up_ + ]) diff --git a/mapie/conformity_scores/classification_scores.py b/mapie/conformity_scores/classification_scores.py new file mode 100644 index 000000000..b390e994a --- /dev/null +++ b/mapie/conformity_scores/classification_scores.py @@ -0,0 +1,75 @@ +from mapie.conformity_scores import ConformityScore +from mapie._typing import ArrayLike, NDArray +import numpy as np + + +class LAC(ConformityScore): + def __init__(self): + super().__init__(True, False, None) + + def get_signed_conformity_scores( + self, + X: ArrayLike, + y: ArrayLike, + y_pred: ArrayLike, + ) -> NDArray: + """ + Compute the signed conformity scores from the predicted values + and the observed ones, from the ``LAC `` formula. + + Parameters + ---------- + X : ArrayLike + Observed values + y : ArrayLike + Target class + y_pred : ArrayLike of shape (n_samples, n_classes) + Predicted probas of X + + Returns + ------- + NDArray of shape (n_samples, n_classes) + conformity scors + """ + y_pred_arr = np.array(y_pred) + y_arr = np.array(y) + return 1 - np.array([y_pred_arr[i, yy] for i, yy in enumerate(y_arr)]) + + def get_estimation_distribution( + self, + X, + y_pred, + conformity_scores + ): + """ + Compute the signed conformity scores from the predicted values + and the observed ones, from the ``LAC `` formula. + + Parameters + ---------- + X : ArrayLike + Observed values + + y_pred : ArrayLike of shape (n_samples, n_classes) + Predicted probas of X + + conformity_scores : ArrayLike of shape (n_samples, ) + Correspond to the threshold, used to select the classes of the + prediction sets + + Returns + ------- + NDArray of shape (n_samples, n_classes) + Prediction sets + """ + y_ps = np.zeros_like(y_pred) + + for i in range(len(X)): + for j, p in enumerate(y_pred[i, :]): + if p >= 1 - conformity_scores[i]: + y_ps[i, j] = 1 + + return y_ps + + def check_consistency(self, X, y, y_pred, conformity_scores) -> None: + return diff --git a/mapie/futur/__init__.py b/mapie/futur/__init__.py index f163a2b20..bcc60c484 100644 --- a/mapie/futur/__init__.py +++ b/mapie/futur/__init__.py @@ -1,4 +1,7 @@ from .split.regression import SplitMapieRegressor +from .split.classification import SplitMapieClassifier + __all__ = [ "SplitMapieRegressor", + "SplitMapieClassifier", ] diff --git a/mapie/futur/split/__init__.py b/mapie/futur/split/__init__.py index 4164a92ab..50016746a 100644 --- a/mapie/futur/split/__init__.py +++ b/mapie/futur/split/__init__.py @@ -1,4 +1,7 @@ from .regression import SplitMapieRegressor +from .classification import SplitMapieClassifier + __all__ = [ "SplitMapieRegressor", + "SplitMapieClassifier", ] diff --git a/mapie/futur/split/classification.py b/mapie/futur/split/classification.py new file mode 100644 index 000000000..473fd424e --- /dev/null +++ b/mapie/futur/split/classification.py @@ -0,0 +1,348 @@ +from __future__ import annotations + +from typing import Optional, Union + +import numpy as np +from sklearn.base import RegressorMixin, ClassifierMixin +from sklearn.linear_model import LogisticRegression +from sklearn.model_selection import BaseCrossValidator, BaseShuffleSplit +from sklearn.pipeline import Pipeline +from sklearn.utils.validation import check_is_fitted + +from mapie._typing import ArrayLike, NDArray +from mapie.calibrators.ccp import check_calibrator +from mapie.futur.split.base import SplitMapie, Calibrator +from mapie.conformity_scores import ConformityScore +from mapie.conformity_scores.classification_scores import LAC + + +class SplitMapieClassifier(SplitMapie): + """ + This class implements an adaptative conformal prediction method proposed by + Gibbs et al. (2023) in "Conformal Prediction With Conditional Guarantees". + This method works with a ``"split"`` approach which requires a separate + calibration phase. The ``fit`` method automatically split the data into + two disjoint sets to train the predictor and the calibrator. You can call + ``fit_estimator`` and ``fit_calibrator`` to do the two step one after the + other. You will have to make sure that data used in the two methods, + for training and calibration are disjoint, to guarantee the expected + ``1-alpha`` coverage. + + Parameters + ---------- + predictor: Optional[RegressorMixin] + Any regressor from scikit-learn API. + (i.e. with ``fit`` and ``predict`` methods). + If ``None``, ``predictor`` defaults to a ``LinearRegressor`` instance. + + By default ``"None"``. + + calibrator: Optional[CCP] + A ``CCP`` instance used to estimate the conformity scores. + + If ``None``, use as default a ``GaussianCCP`` instance. + See the examples and the documentation to build a ``CCP`` + adaptated to your dataset and constraints. + + By default ``None``. + + cv: Optional[Union[int, str, ShuffleSplit, PredefinedSplit]] + The splitting strategy for computing conformity scores. + Choose among: + + - Any splitter (``ShuffleSplit`` or ``PredefinedSplit``) + with ``n_splits=1``. + - ``"prefit"``, assumes that ``predictor`` has been fitted already. + All data provided in the ``calibrate`` method is then used + for the calibration. + The user has to take care manually that data used for model fitting + and calibration (the data given in the ``calibrate`` method) + are disjoint. + - ``"split"`` or ``None``: divide the data into training and + calibration subsets (using the default ``calib_size``=0.3). + The splitter used is the following: + ``sklearn.model_selection.ShuffleSplit`` with ``n_splits=1``. + + By default ``None``. + + conformity_score: Optional[ConformityScore] + ConformityScore instance. + It defines the link between the observed values, the predicted ones + and the conformity scores. For instance, the default ``None`` value + correspondonds to a conformity score which assumes + y_obs = y_pred + conformity_score. + + - ``None``, to use the default ``AbsoluteConformityScore`` symetrical + conformity score + - Any ``ConformityScore`` class + + By default ``None``. + + alpha: Optional[float] + Between ``0.0`` and ``1.0``, represents the risk level of the + confidence interval. + Lower ``alpha`` produce larger (more conservative) prediction + intervals. + ``alpha`` is the complement of the target coverage level. + + By default ``None`` + + random_state: Optional[int] + Integer used to set the numpy seed, to get reproducible calibration + results. + If ``None``, the prediction intervals will be stochastics, and will + change if you refit the calibration (even if no arguments have change). + + WARNING: If ``random_state``is not ``None``, ``np.random.seed`` will + be changed, which will reset the seed for all the other random + number generators. It may have an impact on the rest of your code. + + By default ``None``. + + Attributes + ---------- + beta_up_: Tuple[NDArray, bool] + Calibration fitting results, used to build the upper bound of the + prediction intervals. + beta_up[0]: Array of shape (calibrator.n_out, ) + beta_up[1]: Whether the optimization process converged or not + (the coverage is not garantied if the optimization fail) + + beta_low_: Tuple[NDArray, bool] + Same as beta_up, but for the lower bound + + References + ---------- + Isaac Gibbs and John J. Cherian and Emmanuel J. Candès. + "Conformal Prediction With Conditional Guarantees", 2023 + + Examples + -------- + >>> import numpy as np + >>> from mapie.futur import SplitMapieClassifier + >>> np.random.seed(1) + >>> X_train = np.arange(0,400,2).reshape(-1, 1) + >>> y_train = np.array([0]*50 + [1]*50 + [2]*50 + [3]*50) + >>> mapie_reg = SplitMapieClassifier(alpha=0.1, random_state=1) + >>> mapie_reg = mapie_reg.fit(X_train, y_train) + >>> y_pred, y_pis = mapie_reg.predict(X_train) + >>> print(np.round(y_pred[[0, 40, 80, 120]], 2)) + [0 0 1 2] + >>> print(np.round(y_pis[[0, 40, 80, 120], :, 0], 2)) + [[1. 0. 0. 0.] + [1. 0. 0. 0.] + [0. 1. 0. 0.] + [0. 0. 1. 0.]] + """ + def _check_estimator_fit_predict_predict_proba( + self, estimator: Union[RegressorMixin, ClassifierMixin] + ) -> None: + """ + Check that the estimator has a fit and precict method. + + Parameters + ---------- + estimator: Union[RegressorMixin, ClassifierMixin] + Estimator to train. + + Raises + ------ + ValueError + If the estimator does not have a fit or predict or predict_proba + attribute. + """ + if not (hasattr(estimator, "fit") and hasattr(estimator, "predict") + and hasattr(estimator, "predict_proba")): + raise ValueError( + "Invalid estimator. " + "Please provide a classifier with fit," + "predict, and predict_proba methods." + ) + + def _check_estimator_classification( + self, + estimator: Optional[ClassifierMixin] = None, + cv: Optional[Union[str, BaseCrossValidator, BaseShuffleSplit]] = None, + ) -> RegressorMixin: + """ + Check if estimator is ``None``, + and returns a ``LogisticRegression`` instance if necessary. + If the ``cv`` attribute is ``"prefit"``, + check if estimator is indeed already fitted. + + Parameters + ---------- + estimator: Optional[ClassifierMixin] + Estimator to check, by default ``None``. + + Returns + ------- + ClassifierMixin + The estimator itself or a default ``LogisticRegression`` instance. + + Raises + ------ + ValueError + If the estimator is not ``None`` + and has no ``fit`` nor ``predict`` nor ``predict_proba`` methods. + + NotFittedError + If the estimator is not fitted + and ``cv`` attribute is ``"prefit"``. + """ + if estimator is None: + estimator = LogisticRegression(multi_class="multinomial") + + if isinstance(estimator, Pipeline): + est = estimator[-1] + else: + est = estimator + self._check_estimator_fit_predict_predict_proba(est) + + if cv == "prefit": + check_is_fitted(est) + if not hasattr(est, "classes_"): + raise AttributeError( + "Invalid classifier. " + "Fitted classifier does not contain " + "'classes_' attribute." + ) + return est + + def _check_fit_parameters(self) -> RegressorMixin: + """ + Check and replace default value of ``predictor`` and ``cv`` arguments. + Copy the ``predictor`` in ``predictor_`` attribute if ``cv="prefit"``. + """ + self.cv = self._check_cv(self.cv) + predictor = self._check_estimator_classification(self.predictor, + self.cv) + return predictor + + def _check_calib_conformity_score( + self, conformity_score: Optional[ConformityScore], sym: bool + ): + if not sym: + raise ValueError("`sym` argument should be set to `True`" + "in classification") + if conformity_score is None: + return LAC() + elif isinstance(conformity_score, ConformityScore): + return conformity_score + else: + raise ValueError( + "Invalid conformity_score argument.\n" + "Must be None or a ConformityScore instance." + ) + + def _check_calibrate_parameters(self) -> Calibrator: + """ + Check and replace default ``conformity_score``, ``alpha`` and + ``calibrator`` arguments. + """ + self.conformity_score_ = self._check_calib_conformity_score( + self.conformity_score, self.default_sym_ + ) + calibrator = check_calibrator(self.calibrator) + self._check_alpha(self.alpha) + return calibrator + + def predict_score( + self, predictor: RegressorMixin, X: ArrayLike + ) -> NDArray: + """ + Compute conformity scores + + Parameters + ---------- + predictor : RegressorMixin + Prediction + X: ArrayLike + Observed values. + + Returns + ------- + NDArray of shape (n_samples, n_classes) + Predicted probas + """ + return predictor.predict_proba(X) + + def predict_cs( + self, + X: ArrayLike, + y: ArrayLike, + y_pred: NDArray, + ) -> NDArray: + """ + Compute conformity scores + + Parameters + ---------- + X: ArrayLike + Observed values. + + y: ArrayLike + Observed Target + + y_pred: NDArray + Predicted target. + + Returns + ------- + NDArray + Conformity scores on observed data + """ + return self.conformity_score_.get_conformity_scores(X, y, y_pred) + + def predict_bounds( + self, + X: ArrayLike, + y_pred: NDArray, + z: Optional[ArrayLike] = None, + ) -> NDArray: + """ + Compute conformity scores + + Parameters + ---------- + X: ArrayLike + Observed values. + + y_pred: 2D NDArray + Observed Target + + z: ArrayLike + Exogenous variables + + Returns + ------- + NDArray + Prediction sets, as a 3D array of shape (n_samples, n_classes, 1) + (because we only have 1 alpha value) + """ + # Classification conformity scores always have ``sym=True``, so + # the calibrator_.predict result is a 2D array with + # column 1 = -1 * column 2, So the true values are in res[:, 1] + conformity_score_pred = self.calibrator_.predict(X, y_pred, z) + + y_pred_set = self.conformity_score_.get_estimation_distribution( + X, y_pred, conformity_score_pred[:, 1] + ) + + return y_pred_set[:, :, np.newaxis] + + def predict_best(self, y_pred: NDArray) -> NDArray: + """ + Compute the prediction + + Parameters + ---------- + y_pred: NDArray + Prediction scores (can be the prediction, the probas, ...) + + Returns + ------- + NDArray + best predictions + """ + return np.argmax(y_pred, axis=1) From f08f8ae0fcd0d28c814b38a84285f802ae812969 Mon Sep 17 00:00:00 2001 From: Damien Bouet Date: Thu, 13 Jun 2024 18:37:48 +0200 Subject: [PATCH 050/165] UPD: improve abstract calibrator class signature --- mapie/calibrators/base.py | 15 +- mapie/calibrators/ccp/__init__.py | 4 +- mapie/calibrators/ccp/base.py | 72 +++++++--- mapie/calibrators/ccp/custom.py | 6 +- mapie/calibrators/ccp/gaussian.py | 8 +- mapie/calibrators/ccp/polynomial.py | 4 +- mapie/calibrators/ccp/utils.py | 8 +- mapie/calibrators/standard.py | 22 ++- mapie/futur/split/base.py | 202 ++++++++++++++------------- mapie/futur/split/classification.py | 96 ++++++------- mapie/futur/split/regression.py | 86 ++++++------ mapie/tests/test_ccp_calibrator.py | 40 +++--- mapie/tests/test_futur_regression.py | 92 +++--------- 13 files changed, 322 insertions(+), 333 deletions(-) diff --git a/mapie/calibrators/base.py b/mapie/calibrators/base.py index d990f9bcf..fe354ec3f 100644 --- a/mapie/calibrators/base.py +++ b/mapie/calibrators/base.py @@ -1,7 +1,7 @@ from __future__ import annotations from abc import ABCMeta, abstractmethod -from typing import Optional, List +from typing import List from mapie._typing import ArrayLike, NDArray from sklearn.base import BaseEstimator @@ -24,14 +24,8 @@ class Calibrator(BaseEstimator, metaclass=ABCMeta): def fit( self, X_calib: ArrayLike, - y_pred_calib: Optional[ArrayLike], - z_calib: Optional[ArrayLike], - calib_conformity_scores: NDArray, - alpha: float, - sym: bool, - sample_weight_calib: Optional[ArrayLike] = None, - random_state: Optional[int] = None, - **optim_kwargs, + conformity_scores_calib: NDArray, + **kwargs, ) -> Calibrator: """ Fit the calibrator instance @@ -94,8 +88,7 @@ def fit( def predict( self, X: ArrayLike, - y_pred: ArrayLike, - z: Optional[ArrayLike] = None, + **kwargs, ) -> NDArray: """ Predict ``(X, y_pred, z)`` diff --git a/mapie/calibrators/ccp/__init__.py b/mapie/calibrators/ccp/__init__.py index 8f4197903..270583dfc 100644 --- a/mapie/calibrators/ccp/__init__.py +++ b/mapie/calibrators/ccp/__init__.py @@ -1,10 +1,10 @@ -from .base import CCP +from .base import CCPCalibrator from .custom import CustomCCP from .polynomial import PolynomialCCP from .gaussian import GaussianCCP, check_calibrator __all__ = [ - "CCP", + "CCPCalibrator", "CustomCCP", "PolynomialCCP", "GaussianCCP", diff --git a/mapie/calibrators/ccp/base.py b/mapie/calibrators/ccp/base.py index 97b49c7a7..c941208d6 100644 --- a/mapie/calibrators/ccp/base.py +++ b/mapie/calibrators/ccp/base.py @@ -14,9 +14,11 @@ from sklearn.utils import _safe_indexing from sklearn.utils.validation import check_is_fitted from sklearn.base import clone +from sklearn.model_selection import BaseCrossValidator, BaseShuffleSplit +from mapie.utils import _safe_sample -class CCP(Calibrator, metaclass=ABCMeta): +class CCPCalibrator(Calibrator, metaclass=ABCMeta): """ Base abstract class for the phi functions, used in the Gibbs et al. method to model the conformity scores. @@ -165,7 +167,7 @@ def fit_params( X: ArrayLike, y_pred: Optional[ArrayLike] = None, z: Optional[ArrayLike] = None, - ) -> CCP: + ) -> CCPCalibrator: """ Fit function : Set all the necessary attributes to be able to transform ``(X, y_pred, z)`` into the expected transformation. @@ -200,15 +202,19 @@ def fit_params( def fit( self, X_calib: ArrayLike, - y_pred_calib: Optional[ArrayLike], - z_calib: Optional[ArrayLike], - calib_conformity_scores: NDArray, - alpha: float, - sym: bool, - sample_weight_calib: Optional[ArrayLike] = None, + conformity_scores_calib: NDArray, + y_pred_calib: Optional[ArrayLike] = None, + z: Optional[ArrayLike] = None, + cv: Optional[Union[str, BaseCrossValidator, BaseShuffleSplit]] = None, + sample_weight: Optional[NDArray] = None, + groups: Optional[ArrayLike] = None, + y: Optional[ArrayLike] = None, + alpha: Optional[float] = None, + sym: Optional[bool] = None, random_state: Optional[int] = None, + reg_param: Optional[float] = None, **optim_kwargs, - ) -> CCP: + ) -> CCPCalibrator: """ Fit function : Set all the necessary attributes to be able to transform ``(X, y_pred, z)`` into the expected transformation. @@ -222,14 +228,16 @@ def fit( X: ArrayLike of shape (n_samples, n_features) Calibration data. + conformity_scores_calib: ArrayLike of shape (n_samples,) + Calibration conformity scores + y_pred: ArrayLike of shape (n_samples,) Calibration target. z: Optional[ArrayLike] of shape (n_calib_samples, n_exog_features) Exogenous variables - conformity_scores: ArrayLike of shape (n_samples,) - Calibration conformity scores + cv, group, y: used to get z_calib and sample_weight_calib alpha: float Between ``0.0`` and ``1.0``, represents the risk level of the @@ -267,9 +275,32 @@ def fit( By default ``None``. + reg_param: Optional[float] + Constant that multiplies the L2 term, controlling regularization + strength. alpha must be a non-negative float i.e. in ``[0, inf)`` + optim_kwargs: Dict - Other argument, used in sklear.optimize.minimize + Other argument, used in sklear.optimize.minimize. + Can be any of : [method, jac, hess, hessp, bounds, constraints, + tol, callback, options] """ + assert alpha is not None + assert sym is not None + assert y is not None + + z_calib: Optional[ArrayLike] + # Get calibration set + if cv != 'prefit' and z is not None: + cv = cast(BaseCrossValidator, cv) + + _, calib_index = list(cv.split(z, y, groups))[0] + ( + z_calib, _, sample_weight_calib + ) = _safe_sample(z, y, sample_weight, calib_index) + + else: + z_calib, sample_weight_calib = z, sample_weight + if sym: q_low = 1 - alpha q_up = 1 - alpha @@ -290,16 +321,17 @@ def fit( phi_x = self.transform(X_calib, y_pred_calib, z_calib) - not_nan_index = np.where(~np.isnan(calib_conformity_scores))[0] + not_nan_index = np.where(~np.isnan(conformity_scores_calib))[0] # Some conf. score values may be nan (ex: with ResidualNormalisedScore) optimal_beta_up = minimize( calibrator_optim_objective, self.init_value_, args=( phi_x[not_nan_index, :], - calib_conformity_scores[not_nan_index], + conformity_scores_calib[not_nan_index], q_up, sample_weight_calib, + reg_param, ), **optim_kwargs, ) @@ -309,9 +341,10 @@ def fit( calibrator_optim_objective, self.init_value_, args=( phi_x[not_nan_index, :], - calib_conformity_scores[not_nan_index], + conformity_scores_calib[not_nan_index], q_low, sample_weight_calib, + reg_param, ), **optim_kwargs, ) @@ -395,8 +428,9 @@ def transform( def predict( self, X: ArrayLike, - y_pred: ArrayLike, + y_pred: Optional[ArrayLike] = None, z: Optional[ArrayLike] = None, + **kwargs, ) -> NDArray: """ Transform ``(X, y_pred, z)`` into an array of shape @@ -419,6 +453,8 @@ def predict( NDArray Transformation """ + assert y_pred is not None + phi_x = self.transform(X, y_pred, z) y_pred_low = phi_x.dot(self.beta_low_[0][:, np.newaxis]) @@ -434,7 +470,7 @@ def __call__( ) -> NDArray: return self.transform(X, y_pred, z) - def __mul__(self, funct: Optional[Callable]) -> CCP: + def __mul__(self, funct: Optional[Callable]) -> CCPCalibrator: """ Multiply a ``CCP`` with another function. This other function should return an array of shape (n_samples, 1) @@ -462,5 +498,5 @@ def __mul__(self, funct: Optional[Callable]) -> CCP: new_phi.multipliers.append(funct) return new_phi - def __rmul__(self, other) -> CCP: + def __rmul__(self, other) -> CCPCalibrator: return self.__mul__(other) diff --git a/mapie/calibrators/ccp/custom.py b/mapie/calibrators/ccp/custom.py index 6ee64f1ff..d3c9e4078 100644 --- a/mapie/calibrators/ccp/custom.py +++ b/mapie/calibrators/ccp/custom.py @@ -3,13 +3,13 @@ from typing import Iterable, Callable, Optional, Union, List from mapie._typing import ArrayLike -from .base import CCP +from .base import CCPCalibrator from .utils import (compile_functions_warnings_errors, format_functions, check_multiplier) from sklearn.utils import _safe_indexing -class CustomCCP(CCP): +class CustomCCP(CCPCalibrator): """ This class is used to define the transformation phi, used in the Gibbs et al. method to model the conformity scores. @@ -210,7 +210,7 @@ def fit_params( self._check_fit_parameters(X, y_pred, z) for phi in self.functions_: - if isinstance(phi, CCP): + if isinstance(phi, CCPCalibrator): phi.fit_params(X, y_pred, z) check_multiplier(phi.multipliers, X, y_pred, z) self.is_fitted_ = True diff --git a/mapie/calibrators/ccp/gaussian.py b/mapie/calibrators/ccp/gaussian.py index 6b978cd2f..66f16e3c3 100644 --- a/mapie/calibrators/ccp/gaussian.py +++ b/mapie/calibrators/ccp/gaussian.py @@ -4,13 +4,13 @@ import numpy as np from mapie._typing import ArrayLike -from .base import CCP, Calibrator +from .base import CCPCalibrator, Calibrator from .utils import format_functions, compute_sigma, sample_points from sklearn.utils import _safe_indexing from sklearn.utils.validation import _num_samples -class GaussianCCP(CCP): +class GaussianCCP(CCPCalibrator): """ This class is used to define the transformation phi, used in the Gibbs et al. method to model the conformity scores. @@ -277,8 +277,8 @@ def _check_fit_parameters( def check_calibrator( - phi: Optional[CCP], -) -> CCP: + phi: Optional[CCPCalibrator], +) -> CCPCalibrator: """ Check if ``phi`` is a ``CCP`` instance. diff --git a/mapie/calibrators/ccp/polynomial.py b/mapie/calibrators/ccp/polynomial.py index aae613724..bb94b8e80 100644 --- a/mapie/calibrators/ccp/polynomial.py +++ b/mapie/calibrators/ccp/polynomial.py @@ -3,11 +3,11 @@ from typing import Callable, Optional, Tuple, Union, List from mapie._typing import ArrayLike -from .base import CCP +from .base import CCPCalibrator from .utils import format_functions -class PolynomialCCP(CCP): +class PolynomialCCP(CCPCalibrator): """ This class is used to define the transformation phi, used in the Gibbs et al. method to model the conformity scores. diff --git a/mapie/calibrators/ccp/utils.py b/mapie/calibrators/ccp/utils.py index 15495f376..57b92f9a2 100644 --- a/mapie/calibrators/ccp/utils.py +++ b/mapie/calibrators/ccp/utils.py @@ -492,7 +492,7 @@ def fast_mean_pinball_loss( def calibrator_optim_objective( beta: NDArray, phi_x: NDArray, conformity_scores: NDArray, q: float, - sample_weight: NDArray, + sample_weight: NDArray, reg_param: Optional[float], ) -> float: """ Objective funtcion to minimize to get the estimation of @@ -531,7 +531,11 @@ def calibrator_optim_objective( float Scalar value to minimize, being the sum of the pinball losses. """ + if reg_param is not None: + reg_val = float(reg_param * np.linalg.norm(beta)) + else: + reg_val = 0 return fast_mean_pinball_loss( y_true=conformity_scores, y_pred=phi_x.dot(beta), alpha=q, sample_weight=sample_weight, - ) + ) + reg_val diff --git a/mapie/calibrators/standard.py b/mapie/calibrators/standard.py index ace75d83c..5d1090c74 100644 --- a/mapie/calibrators/standard.py +++ b/mapie/calibrators/standard.py @@ -25,14 +25,10 @@ class Standard(Calibrator): def fit( self, X_calib: ArrayLike, - y_pred_calib: Optional[ArrayLike], - z_calib: Optional[ArrayLike], - calib_conformity_scores: NDArray, - alpha: float, - sym: bool, - sample_weight_calib: Optional[ArrayLike] = None, - random_state: Optional[int] = None, - **optim_kwargs, + conformity_scores_calib: NDArray, + alpha: Optional[float] = None, + sym: Optional[bool] = None, + **kwargs, ) -> Calibrator: """ Fit the calibrator instance @@ -90,6 +86,9 @@ def fit( optim_kwargs: Dict Other argument, used in sklear.optimize.minimize """ + assert alpha is not None + assert sym is not None + signed = -1 if sym else 1 quantile_search = "higher" if sym else "lower" @@ -97,11 +96,11 @@ def fit( alpha_up = 1 - alpha if sym else 1 - alpha/2 self.q_up_ = ConformityScore.get_quantile( - calib_conformity_scores[..., np.newaxis], + conformity_scores_calib[..., np.newaxis], np.array([alpha_up]), axis=0, method="higher" )[0, 0] self.q_low_ = signed * ConformityScore.get_quantile( - calib_conformity_scores[..., np.newaxis], + conformity_scores_calib[..., np.newaxis], np.array([alpha_low]), axis=0, method=quantile_search )[0, 0] @@ -110,8 +109,7 @@ def fit( def predict( self, X: ArrayLike, - y_pred: ArrayLike, - z: Optional[ArrayLike] = None, + **kwargs, ) -> NDArray: """ Predict ``(X, y_pred, z)`` diff --git a/mapie/futur/split/base.py b/mapie/futur/split/base.py index b33f654f9..6678d3377 100644 --- a/mapie/futur/split/base.py +++ b/mapie/futur/split/base.py @@ -1,10 +1,11 @@ from __future__ import annotations from abc import ABCMeta, abstractmethod -from typing import List, Optional, Tuple, Union, Dict, cast +from typing import List, Optional, Tuple, Union, Dict, cast, Callable, Any import warnings +import inspect -from sklearn.base import BaseEstimator, RegressorMixin +from sklearn.base import BaseEstimator, RegressorMixin, ClassifierMixin from sklearn.model_selection import (BaseCrossValidator, BaseShuffleSplit, ShuffleSplit, PredefinedSplit) from sklearn.pipeline import Pipeline @@ -12,12 +13,12 @@ from mapie._typing import ArrayLike, NDArray from mapie.conformity_scores import ConformityScore -from mapie.calibrators.ccp import CCP +from mapie.calibrators.ccp import CCPCalibrator from mapie.calibrators import Calibrator from mapie.utils import fit_estimator, _safe_sample -class SplitMapie(BaseEstimator, RegressorMixin, metaclass=ABCMeta): +class CCP(BaseEstimator, metaclass=ABCMeta): """ This class implements an adaptative conformal prediction method proposed by Gibbs et al. (2023) in "Conformal Prediction With Conditional Guarantees". @@ -31,7 +32,7 @@ class SplitMapie(BaseEstimator, RegressorMixin, metaclass=ABCMeta): Parameters ---------- - predictor: Optional[RegressorMixin] + predictor: Union[RegressorMixin, ClassifierMixin] Any regressor from scikit-learn API. (i.e. with ``fit`` and ``predict`` methods). If ``None``, ``predictor`` defaults to a ``LinearRegressor`` instance. @@ -110,16 +111,17 @@ class SplitMapie(BaseEstimator, RegressorMixin, metaclass=ABCMeta): fit_attributes = ["predictor_"] calib_attributes = ["calibrator_"] + @abstractmethod def __init__( self, predictor: Optional[ Union[ - RegressorMixin, + Union[RegressorMixin, ClassifierMixin], Pipeline, - List[Union[RegressorMixin, Pipeline]] + List[Union[Union[RegressorMixin, ClassifierMixin], Pipeline]] ] ] = None, - calibrator: Optional[CCP] = None, + calibrator: Optional[CCPCalibrator] = None, cv: Optional[ Union[str, BaseCrossValidator, BaseShuffleSplit] ] = None, @@ -127,6 +129,9 @@ def __init__( conformity_score: Optional[ConformityScore] = None, random_state: Optional[int] = None, ) -> None: + """ + Initialisation + """ self.random_state = random_state self.cv = cv self.predictor = predictor @@ -135,13 +140,15 @@ def __init__( self.alpha = alpha @abstractmethod - def _check_fit_parameters(self) -> RegressorMixin: + def _check_fit_parameters(self) -> Union[RegressorMixin, ClassifierMixin]: """ Check and replace default value of ``predictor`` and ``cv`` arguments. """ @abstractmethod - def _check_calibrate_parameters(self) -> Calibrator: + def _check_calibrate_parameters(self) -> Tuple[ + ConformityScore, Calibrator + ]: """ Check and replace default ``conformity_score``, ``alpha`` and ``calibrator`` arguments. @@ -227,6 +234,56 @@ def _check_alpha(self, alpha: Optional[float] = None) -> None: raise ValueError("Invalid alpha. " "Allowed values are between 0 and 1.") + def get_method_arguments( + self, method: Callable, currentframe: Any, + kwargs: Optional[Dict], exclude_args: Optional[List[str]] = None, + ) -> Dict: + """ + Return a dictionnary with ``calibrator_.fit`` arguments + + Parameters + ---------- + local_vars : Dict + Dictionnay of local variables + + currentframe : FrameType + ``inpect.currentframe()``, called where the + ``get_method_arguments`` is called. + + kwargs : Optional[Dict] + Other arguments + + exclude_args : Optional[List[str]] + Arguments to exclude + + Returns + ------- + Dict + dictinnary of arguments + """ + local_vars = {k: v for k, v in currentframe.f_locals.items() + if k != 'self'} + self_attrs = {k: v for k, v in self.__dict__.items()} + sig = inspect.signature(method) + + # Build the kwargs dictionary + fit_kwargs: Dict[str, Any] = {} + for param in sig.parameters.values(): + if param.kind in (inspect.Parameter.POSITIONAL_OR_KEYWORD, + inspect.Parameter.KEYWORD_ONLY): + param_name = param.name + if exclude_args is None or param_name not in exclude_args: + if kwargs is not None and param_name in kwargs: + fit_kwargs[param_name] = kwargs[param_name] + elif param_name in self_attrs: + fit_kwargs[param_name] = self_attrs[param_name] + elif param_name in local_vars: + fit_kwargs[param_name] = local_vars[param_name] + elif param.default is param.empty: + raise ValueError(f"Missing required argument:" + f" {param_name}") + return fit_kwargs + def fit_predictor( self, X: ArrayLike, @@ -234,7 +291,7 @@ def fit_predictor( sample_weight: Optional[ArrayLike] = None, groups: Optional[ArrayLike] = None, **fit_params, - ) -> SplitMapie: + ) -> CCP: """ Fit the predictor if ``cv`` argument is not ``"prefit"`` @@ -295,12 +352,11 @@ def fit_calibrator( self, X: ArrayLike, y: ArrayLike, - z: Optional[ArrayLike] = None, - alpha: Optional[float] = None, sample_weight: Optional[ArrayLike] = None, groups: Optional[ArrayLike] = None, - **optim_kwargs, - ) -> SplitMapie: + calib_kwargs: Optional[Dict] = None, + **kwargs, + ) -> CCP: """ Calibrate with (``X``, ``y`` and ``z``) and the new value ``alpha`` value, if not ``None`` @@ -313,24 +369,6 @@ def fit_calibrator( y: ArrayLike of shape (n_samples,) Training labels. - z: Optional[ArrayLike] of shape (n_calib_samples, n_exog_features) - Exogenous variables - - By default ``None`` - - alpha: Optional[float] - Between ``0.0`` and ``1.0``, represents the risk level of the - confidence interval. - Lower ``alpha`` produce larger (more conservative) prediction - intervals. - ``alpha`` is the complement of the target coverage level. - - If ``None``, the calibration will be done using the ``alpha``value - set in the initialisation. Else, the new value will overwrite the - old one. - - By default ``None`` - sample_weight: Optional[ArrayLike] of shape (n_samples,) Sample weights for fitting the out-of-fold models. If ``None``, then samples are equally weighted. @@ -349,7 +387,7 @@ def fit_calibrator( By default ``None``. - optim_kwargs: Dict + calib_kwargs: Dict Other argument, used in sklear.optimize.minimize Returns @@ -358,7 +396,7 @@ def fit_calibrator( self """ self._check_fit_parameters() - calibrator = self._check_calibrate_parameters() + self.conformity_score_, calibrator = self._check_calibrate_parameters() check_is_fitted(self, self.fit_attributes) # Get calibration set @@ -367,41 +405,31 @@ def fit_calibrator( _, calib_index = list(self.cv.split(X, y, groups))[0] ( - X_calib, y_calib, sample_weight_calib + X_calib, y_calib, _ ) = _safe_sample(X, y, sample_weight, calib_index) - if z is not None: - ( - z_calib, _, _ - ) = _safe_sample(z, y, sample_weight, calib_index) - else: - z_calib = None else: - X_calib, y_calib, z_calib = X, y, z - sample_weight_calib = cast(Optional[NDArray], sample_weight) - - if alpha is not None and self.alpha != alpha: - self._check_alpha(alpha) - self.alpha = alpha - warnings.warn(f"WARNING: The old value of alpha ({self.alpha}) " - f"has been overwritten by the new one ({alpha}).") + X_calib, y_calib = X, y if self.alpha is None: warnings.warn("No calibration is done, because alpha is None.") return self # Compute conformity scores - y_pred_calib = self.predict_score(self.predictor_, X_calib) + y_pred_calib = self.predict_score(X_calib) - calib_conformity_scores = self.predict_cs( + conformity_scores_calib = self.conformity_score_.get_conformity_scores( X_calib, y_calib, y_pred_calib ) - # Fit the calibrator + calib_arguments = self.get_method_arguments( + calibrator.fit, inspect.currentframe(), kwargs, + ["X_calib", "conformity_scores_calib"] + ) + self.calibrator_ = calibrator.fit( - X_calib, y_pred_calib, z_calib, calib_conformity_scores, - self.alpha, self.conformity_score_.sym, sample_weight_calib, - self.random_state, **optim_kwargs, + X_calib, conformity_scores_calib, **calib_arguments, + **(calib_kwargs if calib_kwargs is not None else {}) ) return self @@ -410,13 +438,12 @@ def fit( self, X: ArrayLike, y: ArrayLike, - z: Optional[ArrayLike] = None, - alpha: Optional[float] = None, sample_weight: Optional[ArrayLike] = None, groups: Optional[ArrayLike] = None, - fit_params: Optional[Dict] = None, - calib_params: Optional[Dict] = None, - ) -> SplitMapie: + fit_kwargs: Optional[Dict] = None, + calib_kwargs: Optional[Dict] = None, + **kwargs + ) -> CCP: """ Fit the predictor (if ``cv`` is not ``"prefit"``) and fit the calibration. @@ -477,16 +504,16 @@ def fit( self """ self.fit_predictor(X, y, sample_weight, groups, - **(fit_params if fit_params is not None else {})) - self.fit_calibrator(X, y, z, alpha, sample_weight, groups, - **(calib_params - if calib_params is not None else {})) + **(fit_kwargs if fit_kwargs is not None else {})) + self.fit_calibrator(X, y, sample_weight, groups, + **(calib_kwargs + if calib_kwargs is not None else {}), **kwargs) return self def predict( self, X: ArrayLike, - z: Optional[ArrayLike] = None, + **kwargs, ) -> Union[NDArray, Tuple[NDArray, NDArray]]: """ Predict target on new samples with confidence intervals. @@ -510,28 +537,32 @@ def predict( - [:, 1, :]: Upper bound of the prediction interval. """ check_is_fitted(self, self.fit_attributes) - y_pred = self.predict_score(self.predictor_, X) + y_pred = self.predict_score(X) if self.alpha is None: return y_pred check_is_fitted(self, self.calib_attributes) - y_bounds = self.predict_bounds(X, y_pred, z) + # Fit the calibrator + bounds_arguments = self.get_method_arguments( + self.calibrator_.predict, inspect.currentframe(), kwargs, + ["X", "y_pred"] + ) + + y_bounds = self.predict_bounds(X, y_pred, **bounds_arguments) return self.predict_best(y_pred), y_bounds @abstractmethod def predict_score( - self, predictor: RegressorMixin, X: ArrayLike + self, X: ArrayLike ) -> NDArray: """ Compute conformity scores Parameters ---------- - predictor : RegressorMixin - Prediction X: ArrayLike Observed values. @@ -542,39 +573,12 @@ def predict_score( in classification) """ - @abstractmethod - def predict_cs( - self, - X: ArrayLike, - y: ArrayLike, - y_pred: NDArray, - ) -> NDArray: - """ - Compute conformity scores - - Parameters - ---------- - X: ArrayLike - Observed values. - - y: ArrayLike - Observed Target - - y_pred: NDArray - Predicted target. - - Returns - ------- - NDArray - Conformity scores on observed data - """ - @abstractmethod def predict_bounds( self, X: ArrayLike, y_pred: NDArray, - z: Optional[ArrayLike] = None, + **predict_kwargs, ) -> NDArray: """ Compute conformity scores diff --git a/mapie/futur/split/classification.py b/mapie/futur/split/classification.py index 473fd424e..ccc4d4069 100644 --- a/mapie/futur/split/classification.py +++ b/mapie/futur/split/classification.py @@ -1,22 +1,22 @@ from __future__ import annotations -from typing import Optional, Union - +from typing import Optional, Union, List, Tuple +import inspect import numpy as np -from sklearn.base import RegressorMixin, ClassifierMixin +from sklearn.base import ClassifierMixin from sklearn.linear_model import LogisticRegression from sklearn.model_selection import BaseCrossValidator, BaseShuffleSplit from sklearn.pipeline import Pipeline from sklearn.utils.validation import check_is_fitted from mapie._typing import ArrayLike, NDArray -from mapie.calibrators.ccp import check_calibrator -from mapie.futur.split.base import SplitMapie, Calibrator +from mapie.calibrators.ccp import check_calibrator, CCPCalibrator +from mapie.futur.split.base import CCP, Calibrator from mapie.conformity_scores import ConformityScore from mapie.conformity_scores.classification_scores import LAC -class SplitMapieClassifier(SplitMapie): +class SplitMapieClassifier(CCP): """ This class implements an adaptative conformal prediction method proposed by Gibbs et al. (2023) in "Conformal Prediction With Conditional Guarantees". @@ -30,7 +30,7 @@ class SplitMapieClassifier(SplitMapie): Parameters ---------- - predictor: Optional[RegressorMixin] + predictor: Optional[ClassifierMixin] Any regressor from scikit-learn API. (i.e. with ``fit`` and ``predict`` methods). If ``None``, ``predictor`` defaults to a ``LinearRegressor`` instance. @@ -134,15 +134,39 @@ class SplitMapieClassifier(SplitMapie): [0. 1. 0. 0.] [0. 0. 1. 0.]] """ + def __init__( + self, + predictor: Optional[ + Union[ + ClassifierMixin, + Pipeline, + List[Union[ClassifierMixin, Pipeline]] + ] + ] = None, + calibrator: Optional[CCPCalibrator] = None, + cv: Optional[ + Union[str, BaseCrossValidator, BaseShuffleSplit] + ] = None, + alpha: Optional[float] = None, + conformity_score: Optional[ConformityScore] = None, + random_state: Optional[int] = None, + ) -> None: + self.random_state = random_state + self.cv = cv + self.predictor = predictor + self.conformity_score = conformity_score + self.calibrator = calibrator + self.alpha = alpha + def _check_estimator_fit_predict_predict_proba( - self, estimator: Union[RegressorMixin, ClassifierMixin] + self, estimator: ClassifierMixin ) -> None: """ Check that the estimator has a fit and precict method. Parameters ---------- - estimator: Union[RegressorMixin, ClassifierMixin] + estimator: ClassifierMixin Estimator to train. Raises @@ -163,7 +187,7 @@ def _check_estimator_classification( self, estimator: Optional[ClassifierMixin] = None, cv: Optional[Union[str, BaseCrossValidator, BaseShuffleSplit]] = None, - ) -> RegressorMixin: + ) -> ClassifierMixin: """ Check if estimator is ``None``, and returns a ``LogisticRegression`` instance if necessary. @@ -209,7 +233,7 @@ def _check_estimator_classification( ) return est - def _check_fit_parameters(self) -> RegressorMixin: + def _check_fit_parameters(self) -> ClassifierMixin: """ Check and replace default value of ``predictor`` and ``cv`` arguments. Copy the ``predictor`` in ``predictor_`` attribute if ``cv="prefit"``. @@ -235,28 +259,29 @@ def _check_calib_conformity_score( "Must be None or a ConformityScore instance." ) - def _check_calibrate_parameters(self) -> Calibrator: + def _check_calibrate_parameters(self) -> Tuple[ + ConformityScore, Calibrator + ]: """ Check and replace default ``conformity_score``, ``alpha`` and ``calibrator`` arguments. """ - self.conformity_score_ = self._check_calib_conformity_score( + conformity_score_ = self._check_calib_conformity_score( self.conformity_score, self.default_sym_ ) calibrator = check_calibrator(self.calibrator) + self.sym = True self._check_alpha(self.alpha) - return calibrator + return conformity_score_, calibrator def predict_score( - self, predictor: RegressorMixin, X: ArrayLike + self, X: ArrayLike ) -> NDArray: """ Compute conformity scores Parameters ---------- - predictor : RegressorMixin - Prediction X: ArrayLike Observed values. @@ -265,40 +290,13 @@ def predict_score( NDArray of shape (n_samples, n_classes) Predicted probas """ - return predictor.predict_proba(X) - - def predict_cs( - self, - X: ArrayLike, - y: ArrayLike, - y_pred: NDArray, - ) -> NDArray: - """ - Compute conformity scores - - Parameters - ---------- - X: ArrayLike - Observed values. - - y: ArrayLike - Observed Target - - y_pred: NDArray - Predicted target. - - Returns - ------- - NDArray - Conformity scores on observed data - """ - return self.conformity_score_.get_conformity_scores(X, y, y_pred) + return self.predictor_.predict_proba(X) def predict_bounds( self, X: ArrayLike, y_pred: NDArray, - z: Optional[ArrayLike] = None, + **predict_kwargs, ) -> NDArray: """ Compute conformity scores @@ -323,7 +321,11 @@ def predict_bounds( # Classification conformity scores always have ``sym=True``, so # the calibrator_.predict result is a 2D array with # column 1 = -1 * column 2, So the true values are in res[:, 1] - conformity_score_pred = self.calibrator_.predict(X, y_pred, z) + predict_kwargs = self.get_method_arguments( + self.calibrator_.predict, inspect.currentframe(), predict_kwargs, + ["X"] + ) + conformity_score_pred = self.calibrator_.predict(X, **predict_kwargs) y_pred_set = self.conformity_score_.get_estimation_distribution( X, y_pred, conformity_score_pred[:, 1] diff --git a/mapie/futur/split/regression.py b/mapie/futur/split/regression.py index 35264d052..1ff71f727 100644 --- a/mapie/futur/split/regression.py +++ b/mapie/futur/split/regression.py @@ -1,18 +1,21 @@ from __future__ import annotations -from typing import Optional - +from typing import List, Optional, Tuple, Union +import inspect import numpy as np from sklearn.base import RegressorMixin from mapie._typing import ArrayLike, NDArray -from mapie.calibrators.ccp import check_calibrator -from mapie.futur.split.base import SplitMapie, Calibrator +from mapie.calibrators.ccp import check_calibrator, CCPCalibrator +from mapie.conformity_scores import ConformityScore +from mapie.futur.split.base import CCP, Calibrator from mapie.utils import (check_lower_upper_bounds, check_estimator_regression, check_conformity_score) +from sklearn.model_selection import BaseCrossValidator, BaseShuffleSplit +from sklearn.pipeline import Pipeline -class SplitMapieRegressor(SplitMapie): +class SplitMapieRegressor(CCP): """ This class implements an adaptative conformal prediction method proposed by Gibbs et al. (2023) in "Conformal Prediction With Conditional Guarantees". @@ -131,6 +134,29 @@ class SplitMapieRegressor(SplitMapie): [11.76 13.16] [15.76 17.16]] """ + def __init__( + self, + predictor: Optional[ + Union[ + RegressorMixin, + Pipeline, + List[Union[RegressorMixin, Pipeline]] + ] + ] = None, + calibrator: Optional[CCPCalibrator] = None, + cv: Optional[ + Union[str, BaseCrossValidator, BaseShuffleSplit] + ] = None, + alpha: Optional[float] = None, + conformity_score: Optional[ConformityScore] = None, + random_state: Optional[int] = None, + ) -> None: + self.random_state = random_state + self.cv = cv + self.predictor = predictor + self.conformity_score = conformity_score + self.calibrator = calibrator + self.alpha = alpha def _check_fit_parameters(self) -> RegressorMixin: """ @@ -141,28 +167,29 @@ def _check_fit_parameters(self) -> RegressorMixin: predictor = check_estimator_regression(self.predictor, self.cv) return predictor - def _check_calibrate_parameters(self) -> Calibrator: + def _check_calibrate_parameters(self) -> Tuple[ + ConformityScore, Calibrator + ]: """ Check and replace default ``conformity_score``, ``alpha`` and ``calibrator`` arguments. """ - self.conformity_score_ = check_conformity_score( + conformity_score_ = check_conformity_score( self.conformity_score, self.default_sym_ ) calibrator = check_calibrator(self.calibrator) + self.sym = conformity_score_.sym self._check_alpha(self.alpha) - return calibrator + return conformity_score_, calibrator def predict_score( - self, predictor: RegressorMixin, X: ArrayLike + self, X: ArrayLike ) -> NDArray: """ Compute conformity scores Parameters ---------- - predictor : RegressorMixin - Prediction X: ArrayLike Observed values. @@ -171,40 +198,13 @@ def predict_score( NDArray of shape (n_samples, ) predictions """ - return predictor.predict(X) - - def predict_cs( - self, - X: ArrayLike, - y: ArrayLike, - y_pred: NDArray, - ) -> NDArray: - """ - Compute conformity scores - - Parameters - ---------- - X: ArrayLike - Observed values. - - y: ArrayLike - Observed Target - - y_pred: NDArray - Predicted target. - - Returns - ------- - NDArray - Conformity scores on observed data - """ - return self.conformity_score_.get_conformity_scores(X, y, y_pred) + return self.predictor_.predict(X) def predict_bounds( self, X: ArrayLike, y_pred: NDArray, - z: Optional[ArrayLike] = None, + **predict_kwargs, ) -> NDArray: """ Compute conformity scores @@ -226,7 +226,11 @@ def predict_bounds( Bounds, as a 3D array of shape (n_samples, 2, 1) (because we only have 1 alpha value) """ - conformity_score_pred = self.calibrator_.predict(X, y_pred, z) + predict_kwargs = self.get_method_arguments( + self.calibrator_.predict, inspect.currentframe(), predict_kwargs, + ["X"] + ) + conformity_score_pred = self.calibrator_.predict(X, **predict_kwargs) y_pred_low = self.conformity_score_.get_estimation_distribution( X, y_pred[:, np.newaxis], conformity_score_pred[:, [0]] diff --git a/mapie/tests/test_ccp_calibrator.py b/mapie/tests/test_ccp_calibrator.py index 309f53698..1497abb95 100644 --- a/mapie/tests/test_ccp_calibrator.py +++ b/mapie/tests/test_ccp_calibrator.py @@ -7,7 +7,8 @@ from sklearn.base import clone from sklearn.utils.validation import check_is_fitted from sklearn.datasets import make_regression -from mapie.calibrators.ccp import CustomCCP, GaussianCCP, PolynomialCCP, CCP +from mapie.calibrators.ccp import (CustomCCP, GaussianCCP, PolynomialCCP, + CCPCalibrator) from mapie.regression import SplitMapieRegressor random_state = 1 @@ -95,17 +96,17 @@ def test_custom_phi_functions(functions: Any) -> None: """Test that initialization does not crash.""" mapie = SplitMapieRegressor(calibrator=CustomCCP(functions), alpha=0.1) - mapie.fit(X, y, z) + mapie.fit(X, y, z=z) mapie.predict(X) @pytest.mark.parametrize("calibrator, n_out_raw", zip(PHI, N_OUT)) -def test_phi_n_attributes(calibrator: CCP, n_out_raw: int) -> None: +def test_phi_n_attributes(calibrator: CCPCalibrator, n_out_raw: int) -> None: """ Test that the n_in and n_out attributes are corrects """ mapie = SplitMapieRegressor(calibrator=clone(calibrator), alpha=0.1) - mapie.fit(X, y, z) + mapie.fit(X, y, z=z) assert mapie.calibrator_.n_in == 10 assert mapie.calibrator_.n_out == n_out_raw @@ -117,7 +118,8 @@ def test_invalid_multiplication() -> None: lambda X: (X[:, [0, 1]] > 0)), alpha=0.1, ) - mapie.fit(X, y, z) + mapie.fit(X, y, z=z) + def test_phi_functions_warning() -> None: """ @@ -130,7 +132,7 @@ def test_phi_functions_warning() -> None: calibrator=CustomCCP([lambda X, d=d: X**d for d in range(4)]), alpha=0.1, ) - mapie.fit(X, y, z) + mapie.fit(X, y, z=z) mapie.predict(X) @@ -147,7 +149,7 @@ def test_phi_functions_error(functions: Any) -> None: f(np.ones((10, 1)), np.ones((10, 1))) with pytest.raises(ValueError, match=r"Forbidden required argument."): mapie = SplitMapieRegressor(calibrator=CustomCCP(functions), alpha=0.1) - mapie.fit(X, y, z) + mapie.fit(X, y, z=z) def test_phi_functions_empty() -> None: @@ -158,14 +160,14 @@ def test_phi_functions_empty() -> None: with pytest.raises(ValueError): mapie = SplitMapieRegressor(calibrator=CustomCCP([], bias=False), alpha=0.1) - mapie.fit(X, y, z) + mapie.fit(X, y, z=z) # ======== PolynomialCCP ========= def test_poly_phi_init() -> None: """Test that initialization does not crash.""" mapie = SplitMapieRegressor(calibrator=PolynomialCCP(), alpha=0.1) - mapie.fit(X, y, z) + mapie.fit(X, y, z=z) @pytest.mark.parametrize("degree", [2, [0, 1, 3]]) @@ -178,7 +180,7 @@ def test_poly_phi_init_other( """Test that initialization does not crash.""" mapie = SplitMapieRegressor(calibrator=PolynomialCCP( degree, variable, bias, normalized), alpha=0.1) - mapie.fit(X, y, z) + mapie.fit(X, y, z=z) @pytest.mark.parametrize("var", ["other", 1, np.ones((10, 1))]) @@ -189,14 +191,14 @@ def test_invalid_variable_value(var: Any) -> None: with pytest.raises(ValueError): mapie = SplitMapieRegressor(calibrator=PolynomialCCP(variable=var), alpha=0.1) - mapie.fit(X, y, z) + mapie.fit(X, y, z=z) # ======== GaussianCCP ========= def test_gauss_phi_init() -> None: """Test that initialization does not crash.""" mapie = SplitMapieRegressor(calibrator=GaussianCCP(), alpha=0.1) - mapie.fit(X, y, z) + mapie.fit(X, y, z=z) @pytest.mark.parametrize("points", [3, [X[0, :], X[3, :], X[7, :]], @@ -211,7 +213,7 @@ def test_poly_gauss_init_other( """Test that initialization does not crash.""" mapie = SplitMapieRegressor(calibrator=GaussianCCP( points, sigma, random_sigma, bias, normalized), alpha=0.1) - mapie.fit(X, y, z) + mapie.fit(X, y, z=z) @pytest.mark.parametrize("points", [np.ones((10)), @@ -223,7 +225,7 @@ def test_invalid_gauss_points(points: Any) -> None: """ with pytest.raises(ValueError, match="Invalid `points` argument."): mapie = SplitMapieRegressor(calibrator=GaussianCCP(points), alpha=0.1) - mapie.fit(X, y, z) + mapie.fit(X, y, z=z) def test_invalid_gauss_points_2() -> None: @@ -234,7 +236,7 @@ def test_invalid_gauss_points_2() -> None: with pytest.raises(ValueError, match="There should have as many points"): mapie = SplitMapieRegressor(calibrator=GaussianCCP( points=(np.ones((10, 3)), np.ones((8, 3)))), alpha=0.1) - mapie.fit(X, y, z) + mapie.fit(X, y, z=z) def test_invalid_gauss_points_3() -> None: @@ -245,7 +247,7 @@ def test_invalid_gauss_points_3() -> None: with pytest.raises(ValueError, match="The standard deviation 2D array"): mapie = SplitMapieRegressor(calibrator=GaussianCCP( points=(np.ones((10, 3)), np.ones((10, 2)))), alpha=0.1) - mapie.fit(X, y, z) + mapie.fit(X, y, z=z) @pytest.mark.parametrize("sigma", ["1", @@ -260,7 +262,7 @@ def test_invalid_gauss_sigma(sigma: Any) -> None: with pytest.raises(ValueError): mapie = SplitMapieRegressor(calibrator=GaussianCCP(3, sigma), alpha=0.1) - mapie.fit(X, y, z) + mapie.fit(X, y, z=z) @pytest.mark.parametrize("ind", range(len(GAUSS_NEED_FIT_SETTINGS))) @@ -271,7 +273,7 @@ def test_gauss_need_calib(ind: int) -> None: """ mapie = SplitMapieRegressor(calibrator=GaussianCCP( **GAUSS_NEED_FIT_SETTINGS[ind]), alpha=0.1) - mapie.fit(X, y, z) + mapie.fit(X, y, z=z) check_is_fitted(mapie.calibrator_, mapie.calibrator_.fit_attributes) @@ -283,5 +285,5 @@ def test_gauss_no_need_calib(ind: int) -> None: """ mapie = SplitMapieRegressor(calibrator=GaussianCCP( **GAUSS_NEED_FIT_SETTINGS[ind]), alpha=0.1) - mapie.fit(X, y, z) + mapie.fit(X, y, z=z) check_is_fitted(mapie.calibrator_, mapie.calibrator_.fit_attributes) diff --git a/mapie/tests/test_futur_regression.py b/mapie/tests/test_futur_regression.py index 332698904..aca86b9ed 100644 --- a/mapie/tests/test_futur_regression.py +++ b/mapie/tests/test_futur_regression.py @@ -24,7 +24,8 @@ ResidualNormalisedScore) from mapie.metrics import regression_coverage_score from mapie.regression import SplitMapieRegressor -from mapie.calibrators.ccp import CCP, CustomCCP, GaussianCCP, PolynomialCCP +from mapie.calibrators.ccp import (CCPCalibrator, CustomCCP, GaussianCCP, + PolynomialCCP) random_state = 1 np.random.seed(random_state) @@ -280,7 +281,7 @@ def test_invalid_cv(cv: Any) -> None: ]) def test_fit_calibrate_combined_equivalence( alpha: Any, dataset: Tuple[NDArray, NDArray, NDArray], - cv: Any, calibrator: CCP, predictor: RegressorMixin + cv: Any, calibrator: CCPCalibrator, predictor: RegressorMixin ) -> None: """Test predict output shape.""" (X, y, z) = dataset @@ -304,68 +305,13 @@ def test_fit_calibrate_combined_equivalence( mapie_1.fit(X, y, z=z) mapie_2.fit_predictor(X, y) mapie_2.fit_calibrator(X, y, z=z) - y_pred_1, y_pis_1 = mapie_1.predict(X, z) - y_pred_2, y_pis_2 = mapie_2.predict(X, z) + y_pred_1, y_pis_1 = mapie_1.predict(X, z=z) + y_pred_2, y_pis_2 = mapie_2.predict(X, z=z) np.testing.assert_allclose(y_pred_1, y_pred_2) np.testing.assert_allclose(y_pis_1[:, 0, 0], y_pis_2[:, 0, 0]) np.testing.assert_allclose(y_pis_1[:, 1, 0], y_pis_2[:, 1, 0]) -def test_recalibrate_warning() -> None: - """ - Test that a warning is triggered when we calibrate a second time with - a different alpha value - """ - mapie_reg = SplitMapieRegressor(alpha=0.1) - mapie_reg.fit(X_toy, y_toy) - with pytest.warns(UserWarning, match=r"WARNING: The old value of alpha"): - mapie_reg.fit_calibrator(X_toy, y_toy, alpha=0.2) - - -@pytest.mark.parametrize("dataset", [(X, y, z), (X_toy, y_toy, z_toy), - (X, y, None), (X_toy, y_toy, None)]) -@pytest.mark.parametrize("calibrator", PHI) -@pytest.mark.parametrize("cv", CV) -@pytest.mark.parametrize("predictor", [ - LinearRegression(), - make_pipeline(LinearRegression()), -]) -def test_recalibrate( - dataset: Tuple[NDArray, NDArray, NDArray], - cv: Any, calibrator: CCP, predictor: RegressorMixin -) -> None: - """ - Test that the PI are different for different value of alpha, - but they are equal if we calibrate again with the correct alpha - """ - (X, y, z) = dataset - if cv == "prefit": - predictor.fit(X, y) - - mapie_1 = SplitMapieRegressor( - predictor=predictor, calibrator=clone(calibrator), cv=cv, - alpha=0.2, random_state=random_state - ) - mapie_2 = SplitMapieRegressor( - predictor=predictor, calibrator=clone(calibrator), cv=cv, - alpha=0.1, random_state=random_state - ) - mapie_1.fit(X, y, z=z) - mapie_2.fit(X, y, z=z) - - y_pred_1, y_pis_1 = mapie_1.predict(X, z) - y_pred_2, y_pis_2 = mapie_2.predict(X, z) - - with pytest.raises(AssertionError): - np.testing.assert_allclose(y_pis_1, y_pis_2) - - mapie_2.fit_calibrator(X, y, z=z, alpha=0.2) - y_pred_2, y_pis_2 = mapie_2.predict(X, z) - np.testing.assert_allclose(y_pred_1, y_pred_2) - np.testing.assert_allclose(y_pis_1[:, 0, 0], y_pis_2[:, 0, 0], ) - np.testing.assert_allclose(y_pis_1[:, 1, 0], y_pis_2[:, 1, 0]) - - @pytest.mark.parametrize("dataset", [(X, y, z), (X_toy, y_toy, z_toy)]) @pytest.mark.parametrize("calibrator", PHI) @pytest.mark.parametrize("cv", CV) @@ -375,7 +321,7 @@ def test_recalibrate( ]) def test_predict_output_shape_alpha( dataset: Tuple[NDArray, NDArray, NDArray], - cv: Any, calibrator: CCP, predictor: RegressorMixin + cv: Any, calibrator: CCPCalibrator, predictor: RegressorMixin ) -> None: """Test predict output shape.""" (X, y, z) = dataset @@ -387,7 +333,7 @@ def test_predict_output_shape_alpha( cv=cv, alpha=0.1, random_state=random_state ) mapie_reg.fit(X, y, z=z) - y_pred, y_pis = mapie_reg.predict(X, z) + y_pred, y_pis = mapie_reg.predict(X, z=z) assert y_pred.shape == (X.shape[0],) assert y_pis.shape == (X.shape[0], 2, 1) @@ -401,7 +347,7 @@ def test_predict_output_shape_alpha( ]) def test_predict_output_shape_no_alpha( dataset: Tuple[NDArray, NDArray, NDArray], - cv: Any, calibrator: CCP, predictor: RegressorMixin + cv: Any, calibrator: CCPCalibrator, predictor: RegressorMixin ) -> None: """Test predict output shape.""" (X, y, z) = dataset @@ -413,7 +359,7 @@ def test_predict_output_shape_no_alpha( alpha=None, random_state=random_state ) mapie_reg.fit(X, y, z=z) - y_pred = mapie_reg.predict(X, z) + y_pred = mapie_reg.predict(X, z=z) assert np.array(y_pred).shape == (X.shape[0],) @@ -424,7 +370,7 @@ def test_predict_output_shape_no_alpha( make_pipeline(LinearRegression()), ]) def test_same_results_prefit_split( - dataset: Tuple[NDArray, NDArray, NDArray], template: CCP, + dataset: Tuple[NDArray, NDArray, NDArray], template: CCPCalibrator, predictor: RegressorMixin, ) -> None: """ @@ -463,8 +409,8 @@ def test_same_results_prefit_split( mapie_1.fit(X, y, z=z) mapie_2.fit(X_calib, y_calib, z=z_calib) - y_pred_1, y_pis_1 = mapie_1.predict(X, z) - y_pred_2, y_pis_2 = mapie_2.predict(X, z) + y_pred_1, y_pis_1 = mapie_1.predict(X, z=z) + y_pred_2, y_pis_2 = mapie_2.predict(X, z=z) np.testing.assert_allclose(y_pred_1, y_pred_2) np.testing.assert_allclose(y_pis_1[:, 0, 0], y_pis_2[:, 0, 0]) @@ -480,7 +426,7 @@ def test_same_results_prefit_split( ]) def test_results_for_ordered_alpha( dataset: Tuple[NDArray, NDArray, NDArray], cv: Any, - calibrator: CCP, predictor: RegressorMixin + calibrator: CCPCalibrator, predictor: RegressorMixin ) -> None: """ Test that prediction intervals lower (upper) bounds give @@ -498,9 +444,9 @@ def test_results_for_ordered_alpha( alpha=0.1, random_state=random_state) mapie_reg_1.fit(X, y, z=z) - _, y_pis_1 = mapie_reg_1.predict(X, z) + _, y_pis_1 = mapie_reg_1.predict(X, z=z) mapie_reg_2.fit(X, y, z=z) - _, y_pis_2 = mapie_reg_1.predict(X, z) + _, y_pis_2 = mapie_reg_1.predict(X, z=z) assert (y_pis_1[:, 0, 0] <= y_pis_2[:, 0, 0]).all() assert (y_pis_1[:, 1, 0] >= y_pis_2[:, 1, 0]).all() @@ -561,7 +507,7 @@ def test_results_with_constant_sample_weights( def test_prediction_between_low_up( dataset: Tuple[NDArray, NDArray, NDArray], cv: Any, - calibrator: CCP, + calibrator: CCPCalibrator, alpha: float, predictor: RegressorMixin ) -> None: @@ -597,7 +543,7 @@ def test_prediction_between_low_up( ]) def test_linear_data_confidence_interval( cv: Any, - calibrator: CCP, + calibrator: CCPCalibrator, alpha: float, predictor: RegressorMixin ) -> None: @@ -685,7 +631,7 @@ def test_results_prefit(predictor: RegressorMixin) -> None: ) def test_conformity_score( cv: Any, - calibrator: CCP, + calibrator: CCPCalibrator, predictor: RegressorMixin, conformity_score: ConformityScore ) -> None: @@ -724,6 +670,6 @@ def early_stopping_monitor(i, est, locals): else: return False - mapie_reg.fit(X, y, fit_params={"monitor": early_stopping_monitor}) + mapie_reg.fit(X, y, fit_kwargs={"monitor": early_stopping_monitor}) assert cast(RegressorMixin, mapie_reg.predictor).estimators_.shape[0] == 3 From d43775006db65913fa2d7da08d25fd5f10969002 Mon Sep 17 00:00:00 2001 From: Damien Bouet Date: Thu, 13 Jun 2024 18:54:06 +0200 Subject: [PATCH 051/165] FIX: Coverage --- mapie/calibrators/ccp/base.py | 2 +- mapie/calibrators/ccp/custom.py | 2 +- mapie/futur/split/base.py | 14 +++++--------- mapie/tests/test_ccp_calibrator.py | 4 ++-- mapie/tests/test_futur_regression.py | 13 ++++++++++++- 5 files changed, 21 insertions(+), 14 deletions(-) diff --git a/mapie/calibrators/ccp/base.py b/mapie/calibrators/ccp/base.py index c941208d6..23b6932c7 100644 --- a/mapie/calibrators/ccp/base.py +++ b/mapie/calibrators/ccp/base.py @@ -191,12 +191,12 @@ def fit_params( By default ``None`` """ + check_multiplier(self.multipliers, X, y_pred, z) self._check_fit_parameters(X, y_pred, z) result = self.transform(X, y_pred, z) self.n_in = len(_safe_indexing(X, 0)) self.n_out = len(_safe_indexing(result, 0)) self.init_value_ = self._check_init_value(self.init_value, self.n_out) - check_multiplier(self.multipliers, X, y_pred, z) return self def fit( diff --git a/mapie/calibrators/ccp/custom.py b/mapie/calibrators/ccp/custom.py index d3c9e4078..46d05f8c3 100644 --- a/mapie/calibrators/ccp/custom.py +++ b/mapie/calibrators/ccp/custom.py @@ -207,6 +207,7 @@ def fit_params( By default ``None`` """ + check_multiplier(self.multipliers, X, y_pred, z) self._check_fit_parameters(X, y_pred, z) for phi in self.functions_: @@ -219,5 +220,4 @@ def fit_params( self.n_in = len(_safe_indexing(X, 0)) self.n_out = len(_safe_indexing(result, 0)) self.init_value_ = self._check_init_value(self.init_value, self.n_out) - check_multiplier(self.multipliers, X, y_pred, z) return self diff --git a/mapie/futur/split/base.py b/mapie/futur/split/base.py index 6678d3377..03683e8f1 100644 --- a/mapie/futur/split/base.py +++ b/mapie/futur/split/base.py @@ -111,6 +111,10 @@ class CCP(BaseEstimator, metaclass=ABCMeta): fit_attributes = ["predictor_"] calib_attributes = ["calibrator_"] + cv: Optional[ + Union[str, BaseCrossValidator, BaseShuffleSplit] + ] + @abstractmethod def __init__( self, @@ -132,12 +136,6 @@ def __init__( """ Initialisation """ - self.random_state = random_state - self.cv = cv - self.predictor = predictor - self.conformity_score = conformity_score - self.calibrator = calibrator - self.alpha = alpha @abstractmethod def _check_fit_parameters(self) -> Union[RegressorMixin, ClassifierMixin]: @@ -279,9 +277,7 @@ def get_method_arguments( fit_kwargs[param_name] = self_attrs[param_name] elif param_name in local_vars: fit_kwargs[param_name] = local_vars[param_name] - elif param.default is param.empty: - raise ValueError(f"Missing required argument:" - f" {param_name}") + return fit_kwargs def fit_predictor( diff --git a/mapie/tests/test_ccp_calibrator.py b/mapie/tests/test_ccp_calibrator.py index 1497abb95..38505c680 100644 --- a/mapie/tests/test_ccp_calibrator.py +++ b/mapie/tests/test_ccp_calibrator.py @@ -112,9 +112,9 @@ def test_phi_n_attributes(calibrator: CCPCalibrator, n_out_raw: int) -> None: def test_invalid_multiplication() -> None: - with pytest.raises(ValueError): + with pytest.raises(ValueError, match="The function used as multiplier "): mapie = SplitMapieRegressor( - calibrator=CustomCCP([lambda X: X])*(lambda X: (X[:, 0] < 3))*( + calibrator=CustomCCP([lambda X: X])*( lambda X: (X[:, [0, 1]] > 0)), alpha=0.1, ) diff --git a/mapie/tests/test_futur_regression.py b/mapie/tests/test_futur_regression.py index aca86b9ed..4826cf969 100644 --- a/mapie/tests/test_futur_regression.py +++ b/mapie/tests/test_futur_regression.py @@ -102,6 +102,14 @@ def test_fit_predict(z: Any) -> None: mapie_reg.predict(X_toy, z=z) +@pytest.mark.parametrize("z", [None, z_toy]) +def test_fit_predict_reg(z: Any) -> None: + """Test that fit-predict raises no errors.""" + mapie_reg = SplitMapieRegressor(alpha=0.1) + mapie_reg.fit(X_toy, y_toy, z=z, reg_param=0.1) + mapie_reg.predict(X_toy, z=z) + + def test_not_fitted_predictor_fit_calibrator() -> None: """Test that calibrate before fit raises errors.""" mapie_reg = SplitMapieRegressor(alpha=0.1) @@ -496,7 +504,10 @@ def test_results_with_constant_sample_weights( np.testing.assert_allclose(y_pis0, y_pis2, rtol=1e-2, atol=1e-2) -@pytest.mark.parametrize("dataset", [(X, y, z), (X_toy, y_toy, z_toy)]) +@pytest.mark.parametrize("dataset", [ + (X, y, z), (X_toy, y_toy, z_toy), + (np.arange(0, 100).reshape(-1, 1), np.arange(0, 100), None) +]) @pytest.mark.parametrize("calibrator", PHI) @pytest.mark.parametrize("cv", CV) @pytest.mark.parametrize("alpha", [0.2, 0.1, 0.05]) From 33573a3a59caf0596328a050edab2e9205cdfd6b Mon Sep 17 00:00:00 2001 From: Damien Bouet Date: Fri, 14 Jun 2024 18:44:27 +0200 Subject: [PATCH 052/165] UPD: docstring --- .../plot_gibbs2023_simulations.py | 8 +- mapie/calibrators/__init__.py | 4 +- mapie/calibrators/base.py | 92 +++---- mapie/calibrators/ccp/base.py | 254 ++++++++---------- mapie/calibrators/ccp/custom.py | 109 ++++---- mapie/calibrators/ccp/gaussian.py | 89 +++--- mapie/calibrators/ccp/polynomial.py | 10 +- mapie/calibrators/ccp/utils.py | 16 +- mapie/calibrators/standard.py | 108 +++----- mapie/conformity_scores/conformity_scores.py | 97 +++++-- mapie/futur/split/base.py | 121 +++++---- mapie/futur/split/classification.py | 23 +- mapie/futur/split/regression.py | 27 +- mapie/tests/test_ccp_calibrator.py | 6 +- mapie/tests/test_futur_regression.py | 2 +- mapie/tests/test_regression.py | 225 +++++++++++++--- mapie/tests/test_time_series_regression.py | 61 +++-- mapie/utils.py | 58 ++-- 18 files changed, 749 insertions(+), 561 deletions(-) diff --git a/examples/regression/3-scientific-articles/plot_gibbs2023_simulations.py b/examples/regression/3-scientific-articles/plot_gibbs2023_simulations.py index 76535fc74..1f414873e 100644 --- a/examples/regression/3-scientific-articles/plot_gibbs2023_simulations.py +++ b/examples/regression/3-scientific-articles/plot_gibbs2023_simulations.py @@ -191,12 +191,12 @@ def plot_results(X_test, y_test, n_trials=10, if experiment == "Groups": # CCP Groups - phi_groups = CustomCCP([ + calibrator_groups = CustomCCP([ lambda X, t=t: np.logical_and(X >= t, X < t + 0.5).astype(int) for t in np.arange(0, 5.5, 0.5) ]) mapie_ccp = SplitMapieRegressor( - model, phi=phi_groups, alpha=ALPHA, cv="prefit", + model, calibrator=calibrator_groups, alpha=ALPHA, cv="prefit", conformity_score=AbsoluteConformityScore(sym=False), random_state=None ) @@ -210,7 +210,7 @@ def plot_results(X_test, y_test, n_trials=10, other_locs = [0.5, 2.5, 4.5] other_scale = 1 - phi_shifts = GaussianCCP( + calibrator_shifts = GaussianCCP( points=( np.array(eval_locs+other_locs).reshape(-1, 1), [eval_scale]*len(eval_locs) + [other_scale]*len(other_locs), @@ -219,7 +219,7 @@ def plot_results(X_test, y_test, n_trials=10, normalized=False, ) mapie_ccp = SplitMapieRegressor( - model, phi=phi_shifts, alpha=ALPHA, cv="prefit", + model, calibrator=calibrator_shifts, alpha=ALPHA, cv="prefit", conformity_score=AbsoluteConformityScore(sym=False), random_state=None ) diff --git a/mapie/calibrators/__init__.py b/mapie/calibrators/__init__.py index 6249f87d4..d89a527ee 100644 --- a/mapie/calibrators/__init__.py +++ b/mapie/calibrators/__init__.py @@ -1,9 +1,9 @@ -from .base import Calibrator +from .base import BaseCalibrator from .standard import Standard from .ccp import CustomCCP, PolynomialCCP, GaussianCCP __all__ = [ - "Calibrator", + "BaseCalibrator", "Standard", "CustomCCP", "PolynomialCCP", diff --git a/mapie/calibrators/base.py b/mapie/calibrators/base.py index fe354ec3f..6aa20b8d5 100644 --- a/mapie/calibrators/base.py +++ b/mapie/calibrators/base.py @@ -1,24 +1,35 @@ from __future__ import annotations from abc import ABCMeta, abstractmethod -from typing import List +from typing import List, Optional from mapie._typing import ArrayLike, NDArray from sklearn.base import BaseEstimator -class Calibrator(BaseEstimator, metaclass=ABCMeta): +class BaseCalibrator(BaseEstimator, metaclass=ABCMeta): """ - Base abstract class for the calibrators + Base abstract class for the calibrators. + + The ``BaseCalibrator`` subclasses should have at least two methods: + + - ``fit`` : Fit the calibrator to estimator the conformity scores + quantiles. + + - ``predict`` : Predict the calibrator estimation the conformity scores + quantiles. Attributes ---------- fit_attributes: Optional[List[str]] Name of attributes set during the ``fit`` method, and required to call - ``transform``. + ``predict``. """ fit_attributes: List[str] + sym: bool + alpha: Optional[float] + random_state: Optional[int] @abstractmethod def fit( @@ -26,62 +37,28 @@ def fit( X_calib: ArrayLike, conformity_scores_calib: NDArray, **kwargs, - ) -> Calibrator: + ) -> BaseCalibrator: """ - Fit the calibrator instance + Fit the calibrator to estimator the conformity scores + quantiles. The method can take as arguments any of : + ``X, y, sample_weight, groups, y_pred_calib, conformity_scores_calib, + X_train, y_train, z_train, sample_weight_train, train_index, + X_calib, y_calib, z_calib, sample_weight_calib, calib_index`` + or any other argument, which the user will have to pass as + ``**kwargs``. Parameters ---------- - X: ArrayLike of shape (n_samples, n_features) + X_calib: ArrayLike of shape (n_samples, n_features) Calibration data. - y_pred: ArrayLike of shape (n_samples,) - Calibration target. - - z: Optional[ArrayLike] of shape (n_calib_samples, n_exog_features) - Exogenous variables - - conformity_scores: ArrayLike of shape (n_samples,) + conformity_scores_calib: ArrayLike of shape (n_samples,) Calibration conformity scores - alpha: float - Between ``0.0`` and ``1.0``, represents the risk level of the - confidence interval. - Lower ``alpha`` produce larger (more conservative) prediction - intervals. - ``alpha`` is the complement of the target coverage level. - - sym: bool - Weather or not, the prediction interval should be symetrical - or not. - - sample_weight: Optional[ArrayLike] of shape (n_samples,) - Sample weights for fitting the out-of-fold models. - If ``None``, then samples are equally weighted. - If some weights are null, - their corresponding observations are removed - before the fitting process and hence have no residuals. - If weights are non-uniform, residuals are still uniformly weighted. - Note that the sample weight defined are only for the training, not - for the calibration procedure. - - By default ``None``. - - random_state: Optional[int] - Integer used to set the numpy seed, to get reproducible calibration - results. - If ``None``, the prediction intervals will be stochastics, and will - change if you refit the calibration - (even if no arguments have change). - - WARNING: If ``random_state``is not ``None``, ``np.random.seed`` - will be changed, which will reset the seed for all the other random - number generators. It may have an impact on the rest of your code. - - By default ``None``. - - optim_kwargs: Dict - Other argument, used in sklear.optimize.minimize + Returns + ------- + BaseCalibrator + Fitted self """ @abstractmethod @@ -91,19 +68,16 @@ def predict( **kwargs, ) -> NDArray: """ - Predict ``(X, y_pred, z)`` + Predict the calibrator estimation the conformity scores + quantiles. The method can take as arguments any of : ``X, y_pred`` + or any other argument, which the user will have to pass as + ``**kwargs``. Parameters ---------- X : ArrayLike Observed samples - y_pred : NDArray - Target prediction - - z : ArrayLike - Exogenous variable - Returns ------- NDArray diff --git a/mapie/calibrators/ccp/base.py b/mapie/calibrators/ccp/base.py index 23b6932c7..be0254b92 100644 --- a/mapie/calibrators/ccp/base.py +++ b/mapie/calibrators/ccp/base.py @@ -9,59 +9,67 @@ from mapie._typing import ArrayLike, NDArray from .utils import (compile_functions_warnings_errors, concatenate_functions, check_multiplier) -from mapie.calibrators import Calibrator +from mapie.calibrators import BaseCalibrator from mapie.calibrators.ccp.utils import calibrator_optim_objective from sklearn.utils import _safe_indexing -from sklearn.utils.validation import check_is_fitted +from sklearn.utils.validation import check_is_fitted, _num_samples from sklearn.base import clone -from sklearn.model_selection import BaseCrossValidator, BaseShuffleSplit -from mapie.utils import _safe_sample -class CCPCalibrator(Calibrator, metaclass=ABCMeta): +class CCPCalibrator(BaseCalibrator, metaclass=ABCMeta): """ - Base abstract class for the phi functions, - used in the Gibbs et al. method to model the conformity scores. + Base abstract class for the calibrators used for the ``CCP`` method + to estimate the conformity scores. + It corresponds to the adaptative conformal prediction method proposed by + Gibbs et al. (2023) in "Conformal Prediction With Conditional Guarantees". + + The goal of to learn the quantile of the conformity scores distribution, + to built the prediction interval, not with a constant ``q`` (as it is the + case in the standard CP), but with a function ``q(X)`` which is adaptative + as it depends on ``X``. + + See the examples and the documentation to build a ``CCPCalibrator`` + adaptated to your dataset and constraints. Parameters ---------- functions: Optional[Union[Callable, Iterable[Callable]]] - List of functions (or CCP objects) or single function. + List of functions (or ``CCPCalibrator`` objects) or single function. + Each function can take a combinaison of the following arguments: - ``X``: Input dataset, of shape (n_samples, ``n_in``) - ``y_pred``: estimator prediction, of shape (n_samples,) - ``z``: exogenous variable, of shape (n_samples, n_features). It should be given in the ``fit`` and ``predict`` methods. The results of each functions will be concatenated to build the final - result of the phi function, of shape (n_samples, ``n_out``). - If ``None``, the resulting phi object will return a column of ones, - when called. It will result, in the MapieCCPRegressor, in a basic - split CP approach. + result of the transformation, of shape ``(n_samples, n_out)``, which + will be used to estimate the conformity scores quantiles. By default ``None``. bias: bool Add a column of ones to the features, for safety reason (to garanty the marginal coverage, no matter how the other features - the ``CCP``object were built). - If the ``CCP``object definition covers all the dataset - (meaning, for all calibration and test samples, ``phi(X, y_pred, z)`` - is never all zeros), this column of ones is not necessary - to obtain marginal coverage. + the ``CCPCalibrator``object were built). + If the ``CCPCalibrator``object definition covers all the dataset + (meaning, for all calibration and test samples, the resulting + ``calibrator.predict(X, y_pred, z)`` is never all zeros), + this column of ones is not necessary to obtain marginal coverage. In this case, you can set this argument to ``False``. - Note: Even if it is not always necessary to guarantee the marginal - coverage, it can't degrade the prediction intervals. + If you are not sur, use ``bias=True`` to garantee the marginal + coverage. By default ``False``. normalized: bool - Whether or not to normalized ``phi(X, y_pred, z)``. Normalization + Whether or not to normalized the resulting + ``calibrator.predict(X, y_pred, z)``. Normalization will result in a bounded interval prediction width, avoiding the width to explode to +inf or crash to zero. It is particularly intersting when you know that the conformity scores are bounded. It also prevent the - interval to have a interval of zero width for out-of-distribution or - new samples. On the opposite, it is not recommended if the conformity + interval to have a width of zero for out-of-distribution samples. + On the opposite, it is not recommended if the conformity scores can vary a lot. By default ``False`` @@ -72,6 +80,16 @@ class CCPCalibrator(Calibrator, metaclass=ABCMeta): By default ``None``. + multipliers: Optional[List[Callable]] + List of function which take any arguments of ``X, y_pred, z`` + and return an array of shape ``(n_samples, 1)``. + The result of ``calibrator.transform(X, y_pred, z)`` will be multiply + by the result of each function of ``multipliers``. + + Note: When you multiply a ``CCPCalibrator`` with a function, it create + a new instance of ``CCPCalibrator`` (with the same arguments), but + add the function to the ``multipliers`` list. + Attributes ---------- fit_attributes: Optional[List[str]] @@ -82,18 +100,17 @@ class CCPCalibrator(Calibrator, metaclass=ABCMeta): Number of features of ``X`` n_out: int - Number of features of phi(``X``, ``y_pred``, ``z``) + Number of features of ``calibrator.predict(X, y_pred, z)`` beta_up_: Tuple[NDArray, bool] Calibration fitting results, used to build the upper bound of the prediction intervals. - beta_up[0]: Array of shape (calibrator.n_out, ) - beta_up[1]: Whether the optimization process converged or not + beta_up_[0]: Array of shape (calibrator.n_out, ) + beta_up_[1]: Whether the optimization process converged or not (the coverage is not garantied if the optimization fail) beta_low_: Tuple[NDArray, bool] Same as beta_up, but for the lower bound - """ fit_attributes: List[str] = ["functions_"] @@ -120,7 +137,8 @@ def _check_fit_parameters( z: Optional[ArrayLike] = None, ) -> None: """ - Check fit parameters + Check fit parameters. In particular, check that the ``functions`` + attribute is valid and set the ``functions_``. Parameters ---------- @@ -143,14 +161,16 @@ def _check_init_value( ) -> ArrayLike: """ Set the ``init_value_`` attribute depending on ``init_value`` argument. + If ``init_value=None``, ``init_value_`` is set to + ``np.random.normal(0, 1, n_out)``. Parameters ---------- init_value : Optional[ArrayLike] - Optimization initialisation value, set at ``CCP`` + Optimization initialisation value, set at ``CCPCalibrator`` initialisation. n_out : int - Number of dimensions of the ``CCP`` transformation. + Number of dimensions of the ``CCPCalibrator`` transformation. Returns ------- @@ -170,11 +190,11 @@ def fit_params( ) -> CCPCalibrator: """ Fit function : Set all the necessary attributes to be able to transform - ``(X, y_pred, z)`` into the expected transformation. + ``(X, y_pred, z)`` into the expected array of features. - It should set all the attributes of ``fit_attributes``. - It should also set, once fitted, ``n_in``, ``n_out`` and - ``init_value``. + It should set all the attributes of ``fit_attributes`` + (i.e. ``functions_``). It should also set, once fitted, ``n_in``, + ``n_out`` and ``init_value_``. Parameters ---------- @@ -204,14 +224,8 @@ def fit( X_calib: ArrayLike, conformity_scores_calib: NDArray, y_pred_calib: Optional[ArrayLike] = None, - z: Optional[ArrayLike] = None, - cv: Optional[Union[str, BaseCrossValidator, BaseShuffleSplit]] = None, - sample_weight: Optional[NDArray] = None, - groups: Optional[ArrayLike] = None, - y: Optional[ArrayLike] = None, - alpha: Optional[float] = None, - sym: Optional[bool] = None, - random_state: Optional[int] = None, + z_calib: Optional[ArrayLike] = None, + sample_weight_calib: Optional[NDArray] = None, reg_param: Optional[float] = None, **optim_kwargs, ) -> CCPCalibrator: @@ -225,101 +239,64 @@ def fit( Parameters ---------- - X: ArrayLike of shape (n_samples, n_features) - Calibration data. + X_calib: ArrayLike of shape (n_samples, n_features) + Calibration data with not-null weights. conformity_scores_calib: ArrayLike of shape (n_samples,) - Calibration conformity scores - - y_pred: ArrayLike of shape (n_samples,) - Calibration target. - - z: Optional[ArrayLike] of shape (n_calib_samples, n_exog_features) - Exogenous variables + Calibration conformity scores with not-null weights. - cv, group, y: used to get z_calib and sample_weight_calib + y_pred_calib: ArrayLike of shape (n_samples,) + Calibration target with not-null weights. - alpha: float - Between ``0.0`` and ``1.0``, represents the risk level of the - confidence interval. - Lower ``alpha`` produce larger (more conservative) prediction - intervals. - ``alpha`` is the complement of the target coverage level. + z_calib: Optional[ArrayLike] of shape + (n_calib_samples, n_exog_features) + Exogenous variables with not-null weights. - sym: bool - Weather or not, the prediction interval should be symetrical - or not. + By default ``None``. - sample_weight: Optional[ArrayLike] of shape (n_samples,) - Sample weights for fitting the out-of-fold models. + sample_weight_calib: Optional[ArrayLike] of shape (n_samples,) + Sample weights of the calibration data, used as weights in the + objective function of the optimization process. If ``None``, then samples are equally weighted. - If some weights are null, - their corresponding observations are removed - before the fitting process and hence have no residuals. - If weights are non-uniform, residuals are still uniformly weighted. - Note that the sample weight defined are only for the training, not - for the calibration procedure. By default ``None``. - random_state: Optional[int] - Integer used to set the numpy seed, to get reproducible calibration - results. - If ``None``, the prediction intervals will be stochastics, and will - change if you refit the calibration - (even if no arguments have change). + reg_param: Optional[float] + Constant that multiplies the L2 term, controlling regularization + strength. ``alpha`` must be a non-negative float i.e. in ``[0, inf)`` - WARNING: If ``random_state``is not ``None``, ``np.random.seed`` - will be changed, which will reset the seed for all the other random - number generators. It may have an impact on the rest of your code. + Note: A too strong regularization may compromise the guaranteed + marginal coverage. If ``calibrator.normalize=True``, it is usually + recommanded to use ``reg_param < 0.01``. By default ``None``. - reg_param: Optional[float] - Constant that multiplies the L2 term, controlling regularization - strength. alpha must be a non-negative float i.e. in ``[0, inf)`` - optim_kwargs: Dict Other argument, used in sklear.optimize.minimize. - Can be any of : [method, jac, hess, hessp, bounds, constraints, - tol, callback, options] + Can be any of : ``method, jac, hess, hessp, bounds, constraints, + tol, callback, options`` """ - assert alpha is not None - assert sym is not None - assert y is not None - - z_calib: Optional[ArrayLike] - # Get calibration set - if cv != 'prefit' and z is not None: - cv = cast(BaseCrossValidator, cv) - - _, calib_index = list(cv.split(z, y, groups))[0] - ( - z_calib, _, sample_weight_calib - ) = _safe_sample(z, y, sample_weight, calib_index) + assert self.alpha is not None + n_calib = _num_samples(X_calib) + if self.sym: + q_cor = np.ceil((1 - self.alpha)*(n_calib+1))/n_calib else: - z_calib, sample_weight_calib = z, sample_weight + q_cor = np.ceil((1 - self.alpha / 2)*(n_calib+1))/n_calib + q_cor = np.clip(q_cor, a_min=0, a_max=1) - if sym: - q_low = 1 - alpha - q_up = 1 - alpha - else: - q_low = alpha / 2 - q_up = 1 - alpha / 2 - - if random_state is None: + if self.random_state is None: warnings.warn("WARNING: The method implemented in " "SplitMapie has a stochastic behavior. " "To have reproductible results, use a integer " "`random_state` value in the `SplitMapie` " "initialisation.") else: - np.random.seed(random_state) + np.random.seed(self.random_state) self.fit_params(X_calib, y_pred_calib, z_calib) - phi_x = self.transform(X_calib, y_pred_calib, z_calib) + cs_features = self.transform(X_calib, y_pred_calib, z_calib) not_nan_index = np.where(~np.isnan(conformity_scores_calib))[0] # Some conf. score values may be nan (ex: with ResidualNormalisedScore) @@ -327,22 +304,22 @@ def fit( optimal_beta_up = minimize( calibrator_optim_objective, self.init_value_, args=( - phi_x[not_nan_index, :], + cs_features[not_nan_index, :], conformity_scores_calib[not_nan_index], - q_up, + q_cor, sample_weight_calib, reg_param, ), **optim_kwargs, ) - if not sym: + if not self.sym: optimal_beta_low = minimize( calibrator_optim_objective, self.init_value_, args=( - phi_x[not_nan_index, :], - conformity_scores_calib[not_nan_index], - q_low, + cs_features[not_nan_index, :], + -conformity_scores_calib[not_nan_index], + q_cor, sample_weight_calib, reg_param, ), @@ -358,7 +335,7 @@ def fit( f"{optimal_beta_low.message}\n" "The returned prediction interval may be inaccurate." ) - if (not sym + if (not self.sym and not optimal_beta_low.success): warnings.warn( "WARNING: The optimization process for the lower bound " @@ -367,12 +344,10 @@ def fit( "The returned prediction interval may be inaccurate." ) - signed = -1 if sym else 1 - self.beta_up_ = cast(Tuple[NDArray, bool], (optimal_beta_up.x, optimal_beta_up.success)) self.beta_low_ = cast(Tuple[NDArray, bool], - (signed * optimal_beta_low.x, + (optimal_beta_low.x, optimal_beta_low.success)) return self @@ -385,7 +360,8 @@ def transform( ) -> NDArray: """ Transform ``(X, y_pred, z)`` into an array of shape - ``(n_samples, n_out)`` + ``(n_samples, n_out)`` which represent features to estimate the + conformity scores. Parameters ---------- @@ -401,29 +377,28 @@ def transform( Returns ------- NDArray - Transformation + features """ check_is_fitted(self, self.fit_attributes) params_mapping = {"X": X, "y_pred": y_pred, "z": z} - phi_x = concatenate_functions(self.functions_, params_mapping, + cs_features = concatenate_functions(self.functions_, params_mapping, self.multipliers) if self.normalized: - norm = np.linalg.norm(phi_x, axis=1).reshape(-1, 1) - phi_x[(abs(norm) == 0)[:, 0], :] = np.ones(phi_x.shape[1]) + norm = np.linalg.norm(cs_features, axis=1).reshape(-1, 1) + cs_features[(abs(norm) == 0)[:, 0], :] = np.ones(cs_features.shape[1]) norm[abs(norm) == 0] = 1 - phi_x /= norm + cs_features /= norm - if np.any(np.all(phi_x == 0, axis=1)): + if np.any(np.all(cs_features == 0, axis=1)): warnings.warn("WARNING: At least one row of the transformation " - "phi(X, y_pred, z) is full of zeros. " - "It will result in a prediction interval of zero " - "width. Consider changing the CCP " + "calibrator.transform(X, y_pred, z) is full of " + "zeros. It will result in a prediction interval of " + "zero width. Consider changing the `CCPCalibrator` " "definintion.\nFix: Use `bias=True` " - "in the `CCP` definition.") - - return phi_x + "in the `CCPCalibrator` definition.") + return cs_features def predict( self, @@ -433,7 +408,7 @@ def predict( **kwargs, ) -> NDArray: """ - Transform ``(X, y_pred, z)`` into an array of shape + Transform ``(X, y_pred, z)`` into an array of features of shape ``(n_samples, n_out)`` and compute the dot product with the optimized beta values, to get the conformity scores estimations. @@ -455,10 +430,10 @@ def predict( """ assert y_pred is not None - phi_x = self.transform(X, y_pred, z) + cs_features = self.transform(X, y_pred, z) - y_pred_low = phi_x.dot(self.beta_low_[0][:, np.newaxis]) - y_pred_up = phi_x.dot(self.beta_up_[0][:, np.newaxis]) + y_pred_low = -cs_features.dot(self.beta_low_[0][:, np.newaxis]) + y_pred_up = cs_features.dot(self.beta_up_[0][:, np.newaxis]) return np.hstack([y_pred_low, y_pred_up]) @@ -472,7 +447,7 @@ def __call__( def __mul__(self, funct: Optional[Callable]) -> CCPCalibrator: """ - Multiply a ``CCP`` with another function. + Multiply a ``CCPCalibrator`` with another function. This other function should return an array of shape (n_samples, 1) or (n_samples, ) @@ -484,14 +459,14 @@ def __mul__(self, funct: Optional[Callable]) -> CCPCalibrator: Returns ------- - CCP - self, with ``funct`` as a multiplier + CCPCalibrator + self, with ``funct`` append in the ``multipliers`` argument list. """ if funct is None: return self else: compile_functions_warnings_errors([funct]) - new_phi = clone(self) + new_phi = cast(CCPCalibrator, clone(self)) if new_phi.multipliers is None: new_phi.multipliers = [funct] else: @@ -499,4 +474,7 @@ def __mul__(self, funct: Optional[Callable]) -> CCPCalibrator: return new_phi def __rmul__(self, other) -> CCPCalibrator: + """ + Do the same as ``__mul__`` + """ return self.__mul__(other) diff --git a/mapie/calibrators/ccp/custom.py b/mapie/calibrators/ccp/custom.py index 46d05f8c3..3ebac5071 100644 --- a/mapie/calibrators/ccp/custom.py +++ b/mapie/calibrators/ccp/custom.py @@ -11,17 +11,28 @@ class CustomCCP(CCPCalibrator): """ - This class is used to define the transformation phi, - used in the Gibbs et al. method to model the conformity scores. - This class build a ``CCP`` object with custom features of - X, y_pred or z, defined as a list of functions in ``functions`` argument. + Calibrator used for the ``CCP`` method to estimate the conformity scores. + It corresponds to the adaptative conformal prediction method proposed by + Gibbs et al. (2023) in "Conformal Prediction With Conditional Guarantees". - This class can be used to concatenate ``CCP`` instances. + The goal of to learn the quantile of the conformity scores distribution, + to built the prediction interval, not with a constant ``q`` (as it is the + case in the standard CP), but with a function ``q(X)`` which is adaptative + as it depends on ``X``. + + This class builds a ``CCPCalibrator`` object with custom features, + function of ``X``, ``y_pred`` or ``z``, + defined as a list of functions in ``functions`` argument. + + This class can be used to concatenate ``CCPCalibrator`` instances. + + See the examples and the documentation to build a ``CCPCalibrator`` + adaptated to your dataset and constraints. Parameters ---------- functions: Optional[Union[Callable, Iterable[Callable]]] - List of functions (or CCP objects) or single function. + List of functions (or CCPCalibrator objects) or single function. Each function can take a combinaison of the following arguments: - ``X``: Input dataset, of shape (n_samples, ``n_in``) @@ -29,35 +40,33 @@ class CustomCCP(CCPCalibrator): - ``z``: exogenous variable, of shape (n_samples, n_features). It should be given in the ``fit`` and ``predict`` methods. The results of each functions will be concatenated to build the final - result of the phi function, of shape (n_samples, ``n_out``). - If ``None``, the resulting phi object will return a column of ones, - when called. It will result, in the MapieCCPRegressor, in a basic - split CP approach. + result of the transformation, of shape ``(n_samples, n_out)``, which + will be used to estimate the conformity scores quantiles. By default ``None``. bias: bool Add a column of ones to the features, for safety reason (to garanty the marginal coverage, no matter how the other features - the ``CCP``object were built). - If the ``CCP``object definition covers all the dataset - (meaning, for all calibration and test samples, ``phi(X, y_pred, z)`` - is never all zeros), this column of ones is not necessary - to obtain marginal coverage. + the ``CCPCalibrator``object were built). + If the ``CCPCalibrator``object definition covers all the dataset + (meaning, for all calibration and test samples, the resulting + ``calibrator.predict(X, y_pred, z)`` is never all zeros), + this column of ones is not necessary to obtain marginal coverage. In this case, you can set this argument to ``False``. - Note: Even if it is not always necessary to guarantee the marginal - coverage, it can't degrade the prediction intervals. + If you are not sur, use ``bias=True`` to garantee the marginal + coverage. By default ``False``. - normalized: bool - Whether or not to normalized the output result. Normalization + Whether or not to normalized the resulting + ``calibrator.predict(X, y_pred, z)``. Normalization will result in a bounded interval prediction width, avoiding the width to explode to +inf or crash to zero. It is particularly intersting when you know that the conformity scores are bounded. It also prevent the - interval to have a interval of zero width for out-of-distribution or - new samples. On the opposite, it is not recommended if the conformity + interval to have a width of zero for out-of-distribution samples. + On the opposite, it is not recommended if the conformity scores can vary a lot. By default ``False`` @@ -68,6 +77,16 @@ class CustomCCP(CCPCalibrator): By default ``None``. + multipliers: Optional[List[Callable]] + List of function which take any arguments of ``X, y_pred, z`` + and return an array of shape ``(n_samples, 1)``. + The result of ``calibrator.transform(X, y_pred, z)`` will be multiply + by the result of each function of ``multipliers``. + + Note: When you multiply a ``CCPCalibrator`` with a function, it create + a new instance of ``CCPCalibrator`` (with the same arguments), but + add the function to the ``multipliers`` list. + Attributes ---------- fit_attributes: Optional[List[str]] @@ -78,28 +97,20 @@ class CustomCCP(CCPCalibrator): Number of features of ``X`` n_out: int - Number of features of phi(``X``, ``y_pred``, ``z``). + Number of features of ``calibrator.predict(X, y_pred, z)`` + + beta_up_: Tuple[NDArray, bool] + Calibration fitting results, used to build the upper bound of the + prediction intervals. + beta_up_[0]: Array of shape (calibrator.n_out, ) + beta_up_[1]: Whether the optimization process converged or not + (the coverage is not garantied if the optimization fail) + + beta_low_: Tuple[NDArray, bool] + Same as beta_up, but for the lower bound Examples -------- - # >>> import numpy as np - # >>> from mapie.calibrators import CustomCCP - # >>> X = np.array([[1, 2], [3, 4], [5, 6]]) - # >>> y_pred = np.array([0, 0, 1]) - # >>> phi = CustomCCP( - # ... functions=[ - # ... lambda X: X, # X, if y_pred is 0 - # ... lambda y_pred: y_pred, # y_pred - # ... ], - # ... normalized=False, - # ... ).fit(X, y_pred) - # >>> print(phi.predict(X, y_pred)) - # [[1. 2. 0.] - # [3. 4. 0.] - # [0. 0. 1.]] - # >>> print(phi.n_out) - # 3 - >>> import numpy as np >>> from mapie.calibrators import GaussianCCP >>> from mapie.regression import SplitMapieRegressor @@ -153,12 +164,8 @@ def _check_fit_parameters( z: Optional[ArrayLike] = None, ) -> None: """ - Fit function : Set all the necessary attributes to be able to transform - ``(X, y_pred, z)`` into the expected transformation. - - It should set all the attributes of ``fit_attributes``. - It should also set, once fitted, ``n_in``, ``n_out`` and - ``init_value``. + Check fit parameters. In particular, check that the ``functions`` + attribute is valid and set the ``functions_``. Parameters ---------- @@ -186,18 +193,18 @@ def fit_params( ) -> CustomCCP: """ Fit function : Set all the necessary attributes to be able to transform - ``(X, y_pred, z)`` into the expected transformation. + ``(X, y_pred, z)`` into the expected array of features. - It should set all the attributes of ``fit_attributes``. - It should also set, once fitted, ``n_in``, ``n_out`` and - ``init_value``. + It should set all the attributes of ``fit_attributes`` + (i.e. ``functions_``). It should also set, once fitted, ``n_in``, + ``n_out`` and ``init_value_``. Parameters ---------- X: ArrayLike of shape (n_samples, n_features) Training data. - y: ArrayLike of shape (n_samples,) + y_pred: ArrayLike of shape (n_samples,) Training labels. By default ``None`` diff --git a/mapie/calibrators/ccp/gaussian.py b/mapie/calibrators/ccp/gaussian.py index 66f16e3c3..11f62123f 100644 --- a/mapie/calibrators/ccp/gaussian.py +++ b/mapie/calibrators/ccp/gaussian.py @@ -4,7 +4,7 @@ import numpy as np from mapie._typing import ArrayLike -from .base import CCPCalibrator, Calibrator +from .base import CCPCalibrator, BaseCalibrator from .utils import format_functions, compute_sigma, sample_points from sklearn.utils import _safe_indexing from sklearn.utils.validation import _num_samples @@ -12,10 +12,21 @@ class GaussianCCP(CCPCalibrator): """ - This class is used to define the transformation phi, - used in the Gibbs et al. method to model the conformity scores. - This class build a ``CCP`` object with features been the gaussian - distances between X and some defined points. + Calibrator used for the ``CCP`` method to estimate the conformity scores. + It corresponds to the adaptative conformal prediction method proposed by + Gibbs et al. (2023) in "Conformal Prediction With Conditional Guarantees". + + The goal of to learn the quantile of the conformity scores distribution, + to built the prediction interval, not with a constant ``q`` (as it is the + case in the standard CP), but with a function ``q(X)`` which is adaptative + as it depends on ``X``. + + This class builds a ``CCPCalibrator`` object with gaussian kernel features, + by sampling some points (or set by the user), and computing the gaussian + distance between ``X`` and the point. + + See the examples and the documentation to build a ``CCPCalibrator`` + adaptated to your dataset and constraints. Parameters ---------- @@ -87,8 +98,8 @@ class GaussianCCP(CCPCalibrator): bias: bool Add a column of ones to the features, for safety reason (to garanty the marginal coverage, no matter how the other features - the ``CCP``object were built). - If the ``CCP``object definition covers all the dataset + the ``CCPCalibrator``object were built). + If the ``CCPCalibrator``object definition covers all the dataset (meaning, for all calibration and test samples, ``phi(X, y_pred, z)`` is never all zeros), this column of ones is not necessary to obtain marginal coverage. @@ -102,15 +113,16 @@ class GaussianCCP(CCPCalibrator): By default ``False``. normalized: bool - Whether or not to normalized ``phi(X, y_pred, z)``. Normalization + Whether or not to normalized the resulting + ``calibrator.predict(X, y_pred, z)``. Normalization will result in a bounded interval prediction width, avoiding the width to explode to +inf or crash to zero. It is particularly intersting when you know that the conformity scores are bounded. It also prevent the - interval to have a interval of zero width for out-of-distribution or - new samples. On the opposite, it is not recommended if the conformity + interval to have a width of zero for out-of-distribution samples. + On the opposite, it is not recommended if the conformity scores can vary a lot. - By default ``True`` + By default ``False`` init_value: Optional[ArrayLike] Optimization initialisation value. @@ -118,6 +130,16 @@ class GaussianCCP(CCPCalibrator): By default ``None``. + multipliers: Optional[List[Callable]] + List of function which take any arguments of ``X, y_pred, z`` + and return an array of shape ``(n_samples, 1)``. + The result of ``calibrator.transform(X, y_pred, z)`` will be multiply + by the result of each function of ``multipliers``. + + Note: When you multiply a ``CCPCalibrator`` with a function, it create + a new instance of ``CCPCalibrator`` (with the same arguments), but + add the function to the ``multipliers`` list. + Attributes ---------- fit_attributes: Optional[List[str]] @@ -137,6 +159,16 @@ class GaussianCCP(CCPCalibrator): sigmas_: NDArray of shape (len(points), 1) or (len(points), n_in) Standard deviation values + beta_up_: Tuple[NDArray, bool] + Calibration fitting results, used to build the upper bound of the + prediction intervals. + beta_up_[0]: Array of shape (calibrator.n_out, ) + beta_up_[1]: Whether the optimization process converged or not + (the coverage is not garantied if the optimization fail) + + beta_low_: Tuple[NDArray, bool] + Same as beta_up, but for the lower bound + Examples -------- >>> import numpy as np @@ -239,12 +271,8 @@ def _check_fit_parameters( z: Optional[ArrayLike] = None, ) -> None: """ - Fit function : Set all the necessary attributes to be able to transform - ``(X, y_pred, z)`` into the expected transformation. - - It should set all the attributes of ``fit_attributes``. - It should also set, once fitted, ``n_in``, ``n_out`` and - ``init_value``. + Check fit parameters. In particular, check that the ``functions`` + attribute is valid and set the ``functions_``. Parameters ---------- @@ -277,34 +305,33 @@ def _check_fit_parameters( def check_calibrator( - phi: Optional[CCPCalibrator], -) -> CCPCalibrator: + calibrator: Optional[BaseCalibrator], +) -> BaseCalibrator: """ - Check if ``phi`` is a ``CCP`` instance. + Check if ``calibrator`` is a ``BaseCalibrator`` instance. Parameters ---------- - phi: Optional[CCP] - A ``CCP`` instance used to estimate the conformity scores. + calibrator: Optional[BaseCalibrator] + A ``BaseCalibrator`` instance used to estimate the conformity scores + quantiles. If ``None``, use as default a ``GaussianCCP`` instance. - See the examples and the documentation to build a ``CCP`` - adaptated to your dataset and constraints. Returns ------- - CCP - ``phi`` if defined, a ``GaussianCCP`` instance otherwise. + BaseCalibrator + ``calibrator`` if defined, a ``GaussianCCP`` instance otherwise. Raises ------ ValueError - If ``phi`` is not ``None`` nor a ``CCP`` instance. + If ``calibrator`` is not ``None`` nor a ``BaseCalibrator`` instance. """ - if phi is None: + if calibrator is None: return GaussianCCP() - elif isinstance(phi, Calibrator): - return phi + elif isinstance(calibrator, BaseCalibrator): + return calibrator else: raise ValueError("Invalid `calibrator` argument. It must be `None` " - "or a `Calibrator` instance.") + "or a `BaseCalibrator` instance.") diff --git a/mapie/calibrators/ccp/polynomial.py b/mapie/calibrators/ccp/polynomial.py index bb94b8e80..14753fabd 100644 --- a/mapie/calibrators/ccp/polynomial.py +++ b/mapie/calibrators/ccp/polynomial.py @@ -11,7 +11,7 @@ class PolynomialCCP(CCPCalibrator): """ This class is used to define the transformation phi, used in the Gibbs et al. method to model the conformity scores. - This class build a ``CCP`` object with polynomial features of + This class build a ``CCPCalibrator`` object with polynomial features of X, y_pred or z. Parameters @@ -40,8 +40,8 @@ class PolynomialCCP(CCPCalibrator): bias: bool Add a column of ones to the features, for safety reason (to garanty the marginal coverage, no matter how the other features - the ``CCP``object were built). - If the ``CCP``object definition covers all the dataset + the ``CCPCalibrator``object were built). + If the ``CCPCalibrator``object definition covers all the dataset (meaning, for all calibration and test samples, ``phi(X, y_pred, z)`` is never all zeros), this column of ones is not necessary to obtain marginal coverage. @@ -154,8 +154,8 @@ def _convert_degree( bias: bool Add a column of ones to the features, for safety reason (to garanty the marginal coverage, no matter how the other features - the ``CCP``object were built). - If the ``CCP``object definition covers all the dataset + the ``CCPCalibrator``object were built). + If the ``CCPCalibrator``object definition covers all the dataset (meaning, for all calibration and test samples, ``phi(X, y_pred, z)`` is never all zeros), this column of ones is not necessary to obtain marginal coverage. diff --git a/mapie/calibrators/ccp/utils.py b/mapie/calibrators/ccp/utils.py index 57b92f9a2..76c6d390e 100644 --- a/mapie/calibrators/ccp/utils.py +++ b/mapie/calibrators/ccp/utils.py @@ -20,7 +20,7 @@ def format_functions( Parameters ---------- functions: Optional[Union[Callable, Iterable[Callable]]] - List of functions (or CCP objects) or single function. + List of functions (or ``CCPCalibrator`` objects) or single function. Each function can take a combinaison of the following arguments: - ``X``: Input dataset, of shape (n_samples, ``n_in``) - ``y_pred``: estimator prediction, of shape (n_samples,) @@ -35,8 +35,8 @@ def format_functions( bias: bool Add a column of ones to the features, for safety reason (to garanty the marginal coverage, no matter how the other features - the ``CCP``object were built). - If the ``CCP``object definition covers all the dataset + the ``CCPCalibrator``object were built). + If the ``CCPCalibrator``object definition covers all the dataset (meaning, for all calibration and test samples, ``phi(X, y_pred, z)`` is never all zeros), this column of ones is not necessary to obtain marginal coverage. @@ -491,8 +491,8 @@ def fast_mean_pinball_loss( def calibrator_optim_objective( - beta: NDArray, phi_x: NDArray, conformity_scores: NDArray, q: float, - sample_weight: NDArray, reg_param: Optional[float], + beta: NDArray, calibrator_preds: NDArray,conformity_scores: NDArray, + q: float, sample_weight: NDArray, reg_param: Optional[float], ) -> float: """ Objective funtcion to minimize to get the estimation of @@ -504,8 +504,8 @@ def calibrator_optim_objective( beta : NDArray Parameters to optimize to minimize the objective function - phi_x : NDArray - Transformation of the data X using the ``CCP``. + calibrator_preds : NDArray + Transformation of the data X using the ``CCPCalibrator``. conformity_scores : NDArray Conformity scores of X @@ -536,6 +536,6 @@ def calibrator_optim_objective( else: reg_val = 0 return fast_mean_pinball_loss( - y_true=conformity_scores, y_pred=phi_x.dot(beta), + y_true=conformity_scores, y_pred=calibrator_preds.dot(beta), alpha=q, sample_weight=sample_weight, ) + reg_val diff --git a/mapie/calibrators/standard.py b/mapie/calibrators/standard.py index 5d1090c74..2a4e6f51e 100644 --- a/mapie/calibrators/standard.py +++ b/mapie/calibrators/standard.py @@ -1,15 +1,15 @@ from __future__ import annotations -from typing import Optional, List +from typing import List import numpy as np from mapie._typing import ArrayLike, NDArray -from mapie.calibrators import Calibrator +from mapie.calibrators import BaseCalibrator from mapie.conformity_scores import ConformityScore from sklearn.utils.validation import _num_samples -class Standard(Calibrator): +class Standard(BaseCalibrator): """ Base abstract class for the calibrators @@ -17,7 +17,7 @@ class Standard(Calibrator): ---------- fit_attributes: Optional[List[str]] Name of attributes set during the ``fit`` method, and required to call - ``transform``. + ``predict``. """ fit_attributes: List[str] = ["q_up_", "q_low_"] @@ -26,83 +26,49 @@ def fit( self, X_calib: ArrayLike, conformity_scores_calib: NDArray, - alpha: Optional[float] = None, - sym: Optional[bool] = None, + allow_infinite_bounds: bool = False, **kwargs, - ) -> Calibrator: + ) -> BaseCalibrator: """ Fit the calibrator instance Parameters ---------- - X: ArrayLike of shape (n_samples, n_features) + X_calib: ArrayLike of shape (n_samples, n_features) Calibration data. - y_pred: ArrayLike of shape (n_samples,) - Calibration target. - - z: Optional[ArrayLike] of shape (n_calib_samples, n_exog_features) - Exogenous variables - - conformity_scores: ArrayLike of shape (n_samples,) + conformity_scores_calib: ArrayLike of shape (n_samples,) Calibration conformity scores - alpha: float - Between ``0.0`` and ``1.0``, represents the risk level of the - confidence interval. - Lower ``alpha`` produce larger (more conservative) prediction - intervals. - ``alpha`` is the complement of the target coverage level. - - sym: bool - Weather or not, the prediction interval should be symetrical - or not. - - sample_weight: Optional[ArrayLike] of shape (n_samples,) - Sample weights for fitting the out-of-fold models. - If ``None``, then samples are equally weighted. - If some weights are null, - their corresponding observations are removed - before the fitting process and hence have no residuals. - If weights are non-uniform, residuals are still uniformly weighted. - Note that the sample weight defined are only for the training, not - for the calibration procedure. - - By default ``None``. - - random_state: Optional[int] - Integer used to set the numpy seed, to get reproducible calibration - results. - If ``None``, the prediction intervals will be stochastics, and will - change if you refit the calibration - (even if no arguments have change). - - WARNING: If ``random_state``is not ``None``, ``np.random.seed`` - will be changed, which will reset the seed for all the other random - number generators. It may have an impact on the rest of your code. - - By default ``None``. + allow_infinite_bounds: bool + Allow infinite prediction intervals to be produced. optim_kwargs: Dict Other argument, used in sklear.optimize.minimize """ - assert alpha is not None - assert sym is not None - - signed = -1 if sym else 1 - quantile_search = "higher" if sym else "lower" - - alpha_low = 1 - alpha if sym else alpha/2 - alpha_up = 1 - alpha if sym else 1 - alpha/2 - - self.q_up_ = ConformityScore.get_quantile( - conformity_scores_calib[..., np.newaxis], - np.array([alpha_up]), axis=0, method="higher" - )[0, 0] - self.q_low_ = signed * ConformityScore.get_quantile( - conformity_scores_calib[..., np.newaxis], - np.array([alpha_low]), axis=0, method=quantile_search - )[0, 0] + assert self.alpha is not None + + if self.sym: + alpha_ref = 1-self.alpha + quantile_ref = ConformityScore.get_quantile( + conformity_scores_calib[..., np.newaxis], + np.array([alpha_ref]), axis=0 + )[0, 0] + self.q_low_, self.q_up_ = -quantile_ref, quantile_ref + + else: + alpha_low, alpha_up = self.alpha/2, 1 - self.alpha/2 + + self.q_low_ = ConformityScore.get_quantile( + conformity_scores_calib[..., np.newaxis], + np.array([alpha_low]), axis=0, reversed=True, + unbounded=allow_infinite_bounds + )[0, 0] + self.q_up_ = ConformityScore.get_quantile( + conformity_scores_calib[..., np.newaxis], + np.array([alpha_up]), axis=0, + unbounded=allow_infinite_bounds + )[0, 0] return self @@ -112,19 +78,13 @@ def predict( **kwargs, ) -> NDArray: """ - Predict ``(X, y_pred, z)`` + Predict the conformity scores estimation Parameters ---------- X : ArrayLike Observed samples - y_pred : ArrayLike - Target prediction - - z : ArrayLike - Exogenous variable - Returns ------- NDArray diff --git a/mapie/conformity_scores/conformity_scores.py b/mapie/conformity_scores/conformity_scores.py index d8d46322a..f0c7db6b1 100644 --- a/mapie/conformity_scores/conformity_scores.py +++ b/mapie/conformity_scores/conformity_scores.py @@ -214,7 +214,8 @@ def get_quantile( conformity_scores: NDArray, alpha_np: NDArray, axis: int, - method: str + reversed: bool = False, + unbounded: bool = False ) -> NDArray: """ Compute the alpha quantile of the conformity scores or the conformity @@ -235,25 +236,45 @@ def get_quantile( axis: int The axis from which to compute the quantile. - method: str - ``"higher"`` or ``"lower"`` the method to compute the quantile. + reversed: bool + Boolean specifying whether we take the upper or lower quantile, + if False, the alpha quantile, otherwise the (1-alpha) quantile. + + By default ``False``. + + unbounded: bool + Boolean specifying whether infinite prediction intervals + could be produced (when alpha_np is greater than or equal to 1.). + + By default ``False``. Returns ------- NDArray of shape (1, n_alpha) or (n_samples, n_alpha) The quantile of the conformity scores. """ - n_ref = conformity_scores.shape[-1] - quantile = np.column_stack([ + n_ref = conformity_scores.shape[1-axis] + n_calib = np.min(np.sum(~np.isnan(conformity_scores), axis=axis)) + signed = 1-2*reversed + + # Adapt alpha w.r.t upper/lower : alpha vs. 1-alpha + alpha_ref = (1-2*alpha_np)*reversed + alpha_np + + # Adjust alpha w.r.t quantile correction + alpha_cor = np.ceil(alpha_ref*(n_calib+1))/n_calib + alpha_cor = np.clip(alpha_cor, a_min=0, a_max=1) + + # Compute the target quantiles: + # If unbounded is True and alpha is greater than or equal to 1, + # the quantile is set to infinity. + # Otherwise, the quantile is calculated as the corrected lower quantile + # of the signed conformity scores. + quantile = signed * np.column_stack([ np_nanquantile( - conformity_scores.astype(float), - _alpha, - axis=axis, - method=method - ) if 0 < _alpha < 1 - else np.inf * np.ones(n_ref) if method == "higher" - else - np.inf * np.ones(n_ref) - for _alpha in alpha_np + signed * conformity_scores, _alpha_cor, + axis=axis, method="lower" + ) if not (unbounded and _alpha >= 1) else np.inf * np.ones(n_ref) + for _alpha, _alpha_cor in zip(alpha_ref, alpha_cor) ]) return quantile @@ -281,7 +302,7 @@ def _beta_optimize( ------- NDArray Array of betas minimizing the differences - ``(1-alpa+beta)-quantile - beta-quantile``. + ``(1-alpha+beta)-quantile - beta-quantile``. """ beta_np = np.full( shape=(len(lower_bounds), len(alpha_np)), @@ -323,6 +344,7 @@ def get_bounds( ensemble: bool = False, method: str = 'base', optimize_beta: bool = False, + allow_infinite_bounds: bool = False ) -> Tuple[NDArray, NDArray, NDArray]: """ Compute bounds of the prediction intervals from the observed values, @@ -362,6 +384,11 @@ def get_bounds( By default ``False``. + allow_infinite_bounds: bool + Allow infinite prediction intervals to be produced. + + By default ``False``. + Returns ------- Tuple[NDArray, NDArray, NDArray] @@ -405,29 +432,41 @@ def get_bounds( X, y_pred_up, conformity_scores ) bound_low = self.get_quantile( - conformity_scores_low, alpha_low, axis=1, method="lower" + conformity_scores_low, alpha_low, axis=1, reversed=True, + unbounded=allow_infinite_bounds ) bound_up = self.get_quantile( - conformity_scores_up, alpha_up, axis=1, method="higher" + conformity_scores_up, alpha_up, axis=1, + unbounded=allow_infinite_bounds ) + else: - quantile_search = "higher" if self.sym else "lower" - alpha_low = 1 - alpha_np if self.sym else beta_np - alpha_up = 1 - alpha_np if self.sym else 1 - alpha_np + beta_np + if self.sym: + alpha_ref = 1-alpha_np + quantile_ref = self.get_quantile( + conformity_scores[..., np.newaxis], alpha_ref, axis=0 + ) + quantile_low, quantile_up = -quantile_ref, quantile_ref + + else: + alpha_low, alpha_up = beta_np, 1 - alpha_np + beta_np + + quantile_low = self.get_quantile( + conformity_scores[..., np.newaxis], + alpha_low, axis=0, reversed=True, + unbounded=allow_infinite_bounds + ) + quantile_up = self.get_quantile( + conformity_scores[..., np.newaxis], + alpha_up, axis=0, + unbounded=allow_infinite_bounds + ) - quantile_low = self.get_quantile( - conformity_scores[..., np.newaxis], - alpha_low, axis=0, method=quantile_search - ) - quantile_up = self.get_quantile( - conformity_scores[..., np.newaxis], - alpha_up, axis=0, method="higher" - ) bound_low = self.get_estimation_distribution( - X, y_pred_low, signed * quantile_low + X, y_pred_low, quantile_low ) bound_up = self.get_estimation_distribution( X, y_pred_up, quantile_up ) - return y_pred, bound_low, bound_up + return y_pred, bound_low, bound_up \ No newline at end of file diff --git a/mapie/futur/split/base.py b/mapie/futur/split/base.py index 03683e8f1..103609e85 100644 --- a/mapie/futur/split/base.py +++ b/mapie/futur/split/base.py @@ -4,18 +4,18 @@ from typing import List, Optional, Tuple, Union, Dict, cast, Callable, Any import warnings import inspect - +import numpy as np from sklearn.base import BaseEstimator, RegressorMixin, ClassifierMixin from sklearn.model_selection import (BaseCrossValidator, BaseShuffleSplit, ShuffleSplit, PredefinedSplit) from sklearn.pipeline import Pipeline -from sklearn.utils.validation import check_is_fitted +from sklearn.utils.validation import check_is_fitted, _num_samples from mapie._typing import ArrayLike, NDArray from mapie.conformity_scores import ConformityScore from mapie.calibrators.ccp import CCPCalibrator -from mapie.calibrators import Calibrator -from mapie.utils import fit_estimator, _safe_sample +from mapie.calibrators import BaseCalibrator +from mapie.utils import fit_estimator, _sample_non_null_weight class CCP(BaseEstimator, metaclass=ABCMeta): @@ -39,11 +39,11 @@ class CCP(BaseEstimator, metaclass=ABCMeta): By default ``"None"``. - calibrator: Optional[CCP] - A ``CCP`` instance used to estimate the conformity scores. + calibrator: Optional[CCPCalibrator] + A ``CCPCalibrator`` instance used to estimate the conformity scores. If ``None``, use as default a ``GaussianCCP`` instance. - See the examples and the documentation to build a ``CCP`` + See the examples and the documentation to build a ``CCPCalibrator`` adaptated to your dataset and constraints. By default ``None``. @@ -114,6 +114,7 @@ class CCP(BaseEstimator, metaclass=ABCMeta): cv: Optional[ Union[str, BaseCrossValidator, BaseShuffleSplit] ] + alpha: Optional[float] @abstractmethod def __init__( @@ -145,7 +146,7 @@ def _check_fit_parameters(self) -> Union[RegressorMixin, ClassifierMixin]: @abstractmethod def _check_calibrate_parameters(self) -> Tuple[ - ConformityScore, Calibrator + ConformityScore, BaseCalibrator ]: """ Check and replace default ``conformity_score``, ``alpha`` and @@ -233,20 +234,19 @@ def _check_alpha(self, alpha: Optional[float] = None) -> None: "Allowed values are between 0 and 1.") def get_method_arguments( - self, method: Callable, currentframe: Any, - kwargs: Optional[Dict], exclude_args: Optional[List[str]] = None, + self, method: Callable, local_vars: Dict[str, Any], + kwargs: Optional[Dict], ) -> Dict: """ Return a dictionnary with ``calibrator_.fit`` arguments Parameters ---------- - local_vars : Dict - Dictionnay of local variables + method: Callable + method for which to check the signature - currentframe : FrameType - ``inpect.currentframe()``, called where the - ``get_method_arguments`` is called. + local_vars : Dict[str, Any] + Dictionnary of available variables kwargs : Optional[Dict] Other arguments @@ -259,26 +259,23 @@ def get_method_arguments( Dict dictinnary of arguments """ - local_vars = {k: v for k, v in currentframe.f_locals.items() - if k != 'self'} self_attrs = {k: v for k, v in self.__dict__.items()} sig = inspect.signature(method) - # Build the kwargs dictionary - fit_kwargs: Dict[str, Any] = {} + method_kwargs: Dict[str, Any] = {} for param in sig.parameters.values(): + # We ignore the arguments like *args and **kwargs of the method if param.kind in (inspect.Parameter.POSITIONAL_OR_KEYWORD, inspect.Parameter.KEYWORD_ONLY): param_name = param.name - if exclude_args is None or param_name not in exclude_args: - if kwargs is not None and param_name in kwargs: - fit_kwargs[param_name] = kwargs[param_name] - elif param_name in self_attrs: - fit_kwargs[param_name] = self_attrs[param_name] - elif param_name in local_vars: - fit_kwargs[param_name] = local_vars[param_name] + if kwargs is not None and param_name in kwargs: + method_kwargs[param_name] = kwargs[param_name] + elif param_name in self_attrs: + method_kwargs[param_name] = self_attrs[param_name] + elif param_name in local_vars: + method_kwargs[param_name] = local_vars[param_name] - return fit_kwargs + return method_kwargs def fit_predictor( self, @@ -306,8 +303,6 @@ def fit_predictor( their corresponding observations are removed before the fitting process and hence have no residuals. If weights are non-uniform, residuals are still uniformly weighted. - Note that the sample weight defined are only for the training, not - for the calibration procedure. By default ``None``. @@ -333,8 +328,8 @@ def fit_predictor( train_index, _ = list(self.cv.split(X, y, groups))[0] ( - X_train, y_train, sample_weight_train - ) = _safe_sample(X, y, sample_weight, train_index) + X_train, y_train, _, sample_weight_train, _ + ) = _sample_non_null_weight(X, y, sample_weight, train_index) self.predictor_ = fit_estimator( predictor, X_train, y_train, @@ -366,14 +361,8 @@ def fit_calibrator( Training labels. sample_weight: Optional[ArrayLike] of shape (n_samples,) - Sample weights for fitting the out-of-fold models. - If ``None``, then samples are equally weighted. - If some weights are null, - their corresponding observations are removed - before the fitting process and hence have no residuals. - If weights are non-uniform, residuals are still uniformly weighted. - Note that the sample weight defined are only for the training, not - for the calibration procedure. + Sample weights of the data, used as weights in the + calibration process. By default ``None``. @@ -394,22 +383,26 @@ def fit_calibrator( self._check_fit_parameters() self.conformity_score_, calibrator = self._check_calibrate_parameters() check_is_fitted(self, self.fit_attributes) + + if self.alpha is None: + warnings.warn("No calibration is done, because alpha is None.") + return self - # Get calibration set + # Get training and calibration sets if self.cv != 'prefit': self.cv = cast(BaseCrossValidator, self.cv) - _, calib_index = list(self.cv.split(X, y, groups))[0] - ( - X_calib, y_calib, _ - ) = _safe_sample(X, y, sample_weight, calib_index) - + train_index, calib_index = list(self.cv.split(X, y, groups))[0] else: - X_calib, y_calib = X, y - - if self.alpha is None: - warnings.warn("No calibration is done, because alpha is None.") - return self + train_index, calib_index = np.array([]), np.arange(_num_samples(X)) + + z = cast(Optional[ArrayLike], kwargs.get("z", None)) + ( + X_train, y_train, z_train, sample_weight_train, train_index + ) = _sample_non_null_weight(X, y, sample_weight, train_index, z) + ( + X_calib, y_calib, z_calib, sample_weight_calib, calib_index + ) = _sample_non_null_weight(X, y, sample_weight, calib_index, z) # Compute conformity scores y_pred_calib = self.predict_score(X_calib) @@ -419,12 +412,26 @@ def fit_calibrator( ) calib_arguments = self.get_method_arguments( - calibrator.fit, inspect.currentframe(), kwargs, - ["X_calib", "conformity_scores_calib"] + calibrator.fit, + dict(zip([ + "X", "y", "sample_weight", "groups", + "y_pred_calib", "conformity_scores_calib", + "X_train", "y_train", "z_train", + "sample_weight_train", "train_index", + "X_calib", "y_calib", "z_calib", + "sample_weight_calib", "calib_index", + ], + [ + X, y, sample_weight, groups, + y_pred_calib, conformity_scores_calib, + X_train, y_train, z_train, sample_weight_train, train_index, + X_calib, y_calib, z_calib, sample_weight_calib, calib_index, + ])), + kwargs ) self.calibrator_ = calibrator.fit( - X_calib, conformity_scores_calib, **calib_arguments, + **calib_arguments, **(calib_kwargs if calib_kwargs is not None else {}) ) @@ -471,14 +478,13 @@ def fit( By default ``None`` sample_weight: Optional[ArrayLike] of shape (n_samples,) - Sample weights for fitting the out-of-fold models. + Sample weights for fitting the out-of-fold models and the + conformalisation process. If ``None``, then samples are equally weighted. If some weights are null, their corresponding observations are removed before the fitting process and hence have no residuals. If weights are non-uniform, residuals are still uniformly weighted. - Note that the sample weight defined are only for the training, not - for the calibration procedure. By default ``None``. @@ -542,8 +548,7 @@ def predict( # Fit the calibrator bounds_arguments = self.get_method_arguments( - self.calibrator_.predict, inspect.currentframe(), kwargs, - ["X", "y_pred"] + self.calibrator_.predict, {}, kwargs, ) y_bounds = self.predict_bounds(X, y_pred, **bounds_arguments) diff --git a/mapie/futur/split/classification.py b/mapie/futur/split/classification.py index ccc4d4069..16500036d 100644 --- a/mapie/futur/split/classification.py +++ b/mapie/futur/split/classification.py @@ -10,8 +10,8 @@ from sklearn.utils.validation import check_is_fitted from mapie._typing import ArrayLike, NDArray -from mapie.calibrators.ccp import check_calibrator, CCPCalibrator -from mapie.futur.split.base import CCP, Calibrator +from mapie.calibrators.ccp import check_calibrator +from mapie.futur.split.base import CCP, BaseCalibrator from mapie.conformity_scores import ConformityScore from mapie.conformity_scores.classification_scores import LAC @@ -37,11 +37,11 @@ class SplitMapieClassifier(CCP): By default ``"None"``. - calibrator: Optional[CCP] - A ``CCP`` instance used to estimate the conformity scores. + calibrator: Optional[BaseCalibrator] + A ``BaseCalibrator`` instance used to estimate the conformity scores. If ``None``, use as default a ``GaussianCCP`` instance. - See the examples and the documentation to build a ``CCP`` + See the examples and the documentation to build a ``BaseCalibrator`` adaptated to your dataset and constraints. By default ``None``. @@ -143,7 +143,7 @@ def __init__( List[Union[ClassifierMixin, Pipeline]] ] ] = None, - calibrator: Optional[CCPCalibrator] = None, + calibrator: Optional[BaseCalibrator] = None, cv: Optional[ Union[str, BaseCrossValidator, BaseShuffleSplit] ] = None, @@ -260,7 +260,7 @@ def _check_calib_conformity_score( ) def _check_calibrate_parameters(self) -> Tuple[ - ConformityScore, Calibrator + ConformityScore, BaseCalibrator ]: """ Check and replace default ``conformity_score``, ``alpha`` and @@ -296,7 +296,7 @@ def predict_bounds( self, X: ArrayLike, y_pred: NDArray, - **predict_kwargs, + **kwargs, ) -> NDArray: """ Compute conformity scores @@ -322,10 +322,11 @@ def predict_bounds( # the calibrator_.predict result is a 2D array with # column 1 = -1 * column 2, So the true values are in res[:, 1] predict_kwargs = self.get_method_arguments( - self.calibrator_.predict, inspect.currentframe(), predict_kwargs, - ["X"] + self.calibrator_.predict, + dict(zip(["X", "y_pred"],[X, y_pred])), + kwargs, ) - conformity_score_pred = self.calibrator_.predict(X, **predict_kwargs) + conformity_score_pred = self.calibrator_.predict(**predict_kwargs) y_pred_set = self.conformity_score_.get_estimation_distribution( X, y_pred, conformity_score_pred[:, 1] diff --git a/mapie/futur/split/regression.py b/mapie/futur/split/regression.py index 1ff71f727..edaaf7785 100644 --- a/mapie/futur/split/regression.py +++ b/mapie/futur/split/regression.py @@ -6,9 +6,9 @@ from sklearn.base import RegressorMixin from mapie._typing import ArrayLike, NDArray -from mapie.calibrators.ccp import check_calibrator, CCPCalibrator +from mapie.calibrators.ccp import check_calibrator from mapie.conformity_scores import ConformityScore -from mapie.futur.split.base import CCP, Calibrator +from mapie.futur.split.base import CCP, BaseCalibrator from mapie.utils import (check_lower_upper_bounds, check_estimator_regression, check_conformity_score) from sklearn.model_selection import BaseCrossValidator, BaseShuffleSplit @@ -36,11 +36,11 @@ class SplitMapieRegressor(CCP): By default ``"None"``. - calibrator: Optional[CCP] - A ``CCP`` instance used to estimate the conformity scores. + calibrator: Optional[BaseCalibrator] + A ``BaseCalibrator`` instance used to estimate the conformity scores. If ``None``, use as default a ``GaussianCCP`` instance. - See the examples and the documentation to build a ``CCP`` + See the examples and the documentation to build a ``BaseCalibrator`` adaptated to your dataset and constraints. By default ``None``. @@ -143,7 +143,7 @@ def __init__( List[Union[RegressorMixin, Pipeline]] ] ] = None, - calibrator: Optional[CCPCalibrator] = None, + calibrator: Optional[BaseCalibrator] = None, cv: Optional[ Union[str, BaseCrossValidator, BaseShuffleSplit] ] = None, @@ -168,7 +168,7 @@ def _check_fit_parameters(self) -> RegressorMixin: return predictor def _check_calibrate_parameters(self) -> Tuple[ - ConformityScore, Calibrator + ConformityScore, BaseCalibrator ]: """ Check and replace default ``conformity_score``, ``alpha`` and @@ -178,8 +178,10 @@ def _check_calibrate_parameters(self) -> Tuple[ self.conformity_score, self.default_sym_ ) calibrator = check_calibrator(self.calibrator) - self.sym = conformity_score_.sym self._check_alpha(self.alpha) + calibrator.sym = conformity_score_.sym + calibrator.alpha = self.alpha + calibrator.random_state = self.random_state return conformity_score_, calibrator def predict_score( @@ -204,7 +206,7 @@ def predict_bounds( self, X: ArrayLike, y_pred: NDArray, - **predict_kwargs, + **kwargs, ) -> NDArray: """ Compute conformity scores @@ -227,10 +229,11 @@ def predict_bounds( (because we only have 1 alpha value) """ predict_kwargs = self.get_method_arguments( - self.calibrator_.predict, inspect.currentframe(), predict_kwargs, - ["X"] + self.calibrator_.predict, + dict(zip(["X", "y_pred"],[X, y_pred])), + kwargs, ) - conformity_score_pred = self.calibrator_.predict(X, **predict_kwargs) + conformity_score_pred = self.calibrator_.predict(**predict_kwargs) y_pred_low = self.conformity_score_.get_estimation_distribution( X, y_pred[:, np.newaxis], conformity_score_pred[:, [0]] diff --git a/mapie/tests/test_ccp_calibrator.py b/mapie/tests/test_ccp_calibrator.py index 38505c680..b659a6a50 100644 --- a/mapie/tests/test_ccp_calibrator.py +++ b/mapie/tests/test_ccp_calibrator.py @@ -123,7 +123,7 @@ def test_invalid_multiplication() -> None: def test_phi_functions_warning() -> None: """ - Test that creating a CCP object with functions which have + Test that creating a CCPCalibrator object with functions which have optional arguments different from 'X', 'y_pred' or 'z' raise a warning. """ with pytest.warns(UserWarning, @@ -142,7 +142,7 @@ def test_phi_functions_warning() -> None: ]) def test_phi_functions_error(functions: Any) -> None: """ - Test that creating a CCP object with functions which have + Test that creating a CCPCalibrator object with functions which have required arguments different from 'X', 'y_pred' or 'z' raise an error. """ for f in functions: # For coverage @@ -154,7 +154,7 @@ def test_phi_functions_error(functions: Any) -> None: def test_phi_functions_empty() -> None: """ - Test that creating a CCP object with functions which have + Test that creating a CCPCalibrator object with functions which have required arguments different from 'X', 'y_pred' or 'z' raise an error. """ with pytest.raises(ValueError): diff --git a/mapie/tests/test_futur_regression.py b/mapie/tests/test_futur_regression.py index 4826cf969..e9792091d 100644 --- a/mapie/tests/test_futur_regression.py +++ b/mapie/tests/test_futur_regression.py @@ -582,7 +582,7 @@ def test_linear_data_confidence_interval( def test_linear_regression_results() -> None: """ - Test that the CCP method in the case of a constant + Test that the CCPCalibrator method in the case of a constant calibrator = x -> np.ones(len(x)), on a multivariate linear regression problem with fixed random state, is strictly equivalent to the regular CP method (base, jacknife and cv) diff --git a/mapie/tests/test_regression.py b/mapie/tests/test_regression.py index be305424d..3fcf876a5 100644 --- a/mapie/tests/test_regression.py +++ b/mapie/tests/test_regression.py @@ -18,6 +18,7 @@ from sklearn.pipeline import Pipeline, make_pipeline from sklearn.preprocessing import OneHotEncoder from sklearn.utils.validation import check_is_fitted +from scipy.stats import ttest_1samp from typing_extensions import TypedDict from mapie._typing import NDArray @@ -100,6 +101,13 @@ test_size=None, random_state=random_state ), + "cv_plus_median": Params( + method="plus", + agg_function="median", + cv=KFold(n_splits=3, shuffle=True, random_state=random_state), + test_size=None, + random_state=random_state + ), "cv_minmax": Params( method="minmax", agg_function="mean", @@ -131,35 +139,35 @@ } WIDTHS = { - "naive": 3.81, - "split": 3.87, + "naive": 3.80, + "split": 3.89, "jackknife": 3.89, "jackknife_plus": 3.90, "jackknife_minmax": 3.96, - "cv": 3.85, - "cv_plus": 3.90, - "cv_minmax": 4.04, - "prefit": 4.81, - "cv_plus_median": 3.90, + "cv": 3.88, + "cv_plus": 3.91, + "cv_minmax": 4.07, + "prefit": 3.89, + "cv_plus_median": 3.91, "jackknife_plus_ab": 3.90, - "jackknife_minmax_ab": 4.13, - "jackknife_plus_median_ab": 3.87, + "jackknife_minmax_ab": 4.14, + "jackknife_plus_median_ab": 3.88, } COVERAGES = { - "naive": 0.952, - "split": 0.952, - "jackknife": 0.952, + "naive": 0.954, + "split": 0.956, + "jackknife": 0.956, "jackknife_plus": 0.952, - "jackknife_minmax": 0.952, - "cv": 0.958, - "cv_plus": 0.956, - "cv_minmax": 0.966, - "prefit": 0.980, + "jackknife_minmax": 0.962, + "cv": 0.954, + "cv_plus": 0.954, + "cv_minmax": 0.962, + "prefit": 0.956, "cv_plus_median": 0.954, "jackknife_plus_ab": 0.952, - "jackknife_minmax_ab": 0.970, - "jackknife_plus_median_ab": 0.960, + "jackknife_minmax_ab": 0.968, + "jackknife_plus_median_ab": 0.952, } @@ -212,7 +220,7 @@ def test_valid_agg_function(agg_function: str) -> None: @pytest.mark.parametrize( "cv", [None, -1, 2, KFold(), LeaveOneOut(), - ShuffleSplit(n_splits=1), + ShuffleSplit(n_splits=1, test_size=0.5), PredefinedSplit(test_fold=[-1]*3+[0]*3), "prefit", "split"] ) @@ -220,7 +228,7 @@ def test_valid_cv(cv: Any) -> None: """Test that valid cv raise no errors.""" model = LinearRegression() model.fit(X_toy, y_toy) - mapie_reg = MapieRegressor(estimator=model, cv=cv) + mapie_reg = MapieRegressor(estimator=model, cv=cv, test_size=0.5) mapie_reg.fit(X_toy, y_toy) mapie_reg.predict(X_toy, alpha=0.5) @@ -237,7 +245,7 @@ def test_too_large_cv(cv: Any) -> None: @pytest.mark.parametrize("strategy", [*STRATEGIES]) -@pytest.mark.parametrize("dataset", [(X, y), (X_toy, y_toy)]) +@pytest.mark.parametrize("dataset", [(X, y)]) @pytest.mark.parametrize("alpha", [0.2, [0.2, 0.4], (0.2, 0.4)]) def test_predict_output_shape( strategy: str, alpha: Any, dataset: Tuple[NDArray, NDArray] @@ -252,6 +260,134 @@ def test_predict_output_shape( assert y_pis.shape == (X.shape[0], 2, n_alpha) +@pytest.mark.parametrize("delta", [0.6, 0.8]) +@pytest.mark.parametrize("n_calib", [10 + i for i in range(13)] + [50, 100]) +def test_coverage_validity(delta: float, n_calib: int) -> None: + """ + Test that the prefit method provides valid coverage + for different calibration data sizes and coverage targets. + """ + n_split, n_train, n_test = 100, 100, 1000 + n_all = n_train + n_calib + n_test + X, y = make_regression(n_all, random_state=random_state) + Xtr, Xct, ytr, yct = train_test_split( + X, y, train_size=n_train, random_state=random_state + ) + + model = LinearRegression() + model.fit(Xtr, ytr) + + cov_list = [] + for _ in range(n_split): + mapie_reg = MapieRegressor(estimator=model, method="base", cv="prefit") + Xc, Xt, yc, yt = train_test_split(Xct, yct, test_size=n_test) + mapie_reg.fit(Xc, yc) + _, y_pis = mapie_reg.predict(Xt, alpha=1-delta) + y_low, y_up = y_pis[:, 0, 0], y_pis[:, 1, 0] + coverage = regression_coverage_score(yt, y_low, y_up) + cov_list.append(coverage) + + # Here we are testing whether the average coverage is statistically + # less than the target coverage. + mean_low, mean_up = delta, delta + 1/(n_calib+1) + _, pval_low = ttest_1samp(cov_list, popmean=mean_low, alternative='less') + _, pval_up = ttest_1samp(cov_list, popmean=mean_up, alternative='greater') + + # We perform a FWER controlling procedure (Bonferroni) + p_fwer = 0.01 # probability of making one or more false discoveries: 1% + p_bonf = p_fwer / 30 # because a total of 30 test_coverage_validity + np.testing.assert_array_less(p_bonf, pval_low) + np.testing.assert_array_less(p_bonf, pval_up) + + +@pytest.mark.parametrize("delta", [0.6, 0.8, 0.9, 0.95]) +def test_calibration_data_size_symmetric_score(delta: float) -> None: + """ + This test function verifies that a ValueError is raised when the number + of calibration data is lower than the minimum required for the given alpha + when the conformity score is symmetric. The minimum is calculated as + 1/alpha or 1/(1-delta). + """ + # Generate data + n_train, n_all = 100, 1000 + X, y = make_regression(n_all, random_state=42) + Xtr, Xct, ytr, yct = train_test_split(X, y, train_size=n_train) + + # Train a linear regression model + model = LinearRegression() + model.fit(Xtr, ytr) + + # Define a symmetric conformity score + score = AbsoluteConformityScore(sym=True) + + # Test when the conformity score is symmetric + # and the number of calibration data is sufficient + n_calib_sufficient = int(np.ceil(1/(1-delta))) + Xc, Xt, yc, _ = train_test_split(Xct, yct, train_size=n_calib_sufficient) + mapie_reg = MapieRegressor( + estimator=model, method="base", cv="prefit", conformity_score=score + ) + mapie_reg.fit(Xc, yc) + mapie_reg.predict(Xt, alpha=1-delta) + + # Test when the conformity score is symmetric + # and the number of calibration data is insufficient + with pytest.raises( + ValueError, match=r"Number of samples of the score is too low*" + ): + n_calib_low = int(np.floor(1/(1-delta))) + Xc, Xt, yc, _ = train_test_split(Xct, yct, train_size=n_calib_low) + mapie_reg = MapieRegressor( + estimator=model, method="base", cv="prefit", conformity_score=score + ) + mapie_reg.fit(Xc, yc) + mapie_reg.predict(Xt, alpha=1-delta) + + +@pytest.mark.parametrize("delta", [0.6, 0.8, 0.9, 0.95]) +def test_calibration_data_size_asymmetric_score(delta: float) -> None: + """ + This test function verifies that a ValueError is raised when the number + of calibration data is lower than the minimum required for the given alpha + when the conformity score is asymmetric. The minimum is calculated as + 1/alpha or 1/(1-delta). + """ + # Generate data + n_train, n_all = 100, 1000 + X, y = make_regression(n_all, random_state=42) + Xtr, Xct, ytr, yct = train_test_split(X, y, train_size=n_train) + + # Train a model + model = LinearRegression() + model.fit(Xtr, ytr) + + # Define an asymmetric conformity score + score = AbsoluteConformityScore(sym=False) + + # Test when ConformityScore is asymmetric + # and calibration data size is sufficient + n_calib_sufficient = int(np.ceil(1/(1-delta) * 2)) + 1 + Xc, Xt, yc, _ = train_test_split(Xct, yct, train_size=n_calib_sufficient) + mapie_reg = MapieRegressor( + estimator=model, method="base", cv="prefit", conformity_score=score + ) + mapie_reg.fit(Xc, yc) + mapie_reg.predict(Xt, alpha=1-delta) + + # Test when ConformityScore is asymmetric + # and calibration data size is too low + with pytest.raises( + ValueError, match=r"Number of samples of the score is too low*" + ): + n_calib_low = int(np.floor(1/(1-delta) * 2)) + Xc, Xt, yc, _ = train_test_split(Xct, yct, train_size=n_calib_low) + mapie_reg = MapieRegressor( + estimator=model, method="base", cv="prefit", conformity_score=score + ) + mapie_reg.fit(Xc, yc) + mapie_reg.predict(Xt, alpha=1-delta) + + def test_same_results_prefit_split() -> None: """ Test checking that if split and prefit method have exactly @@ -265,12 +401,12 @@ def test_same_results_prefit_split() -> None: X_train, X_calib = X[train_index], X[val_index] y_train, y_calib = y[train_index], y[val_index] - mapie_reg = MapieRegressor(cv=cv) + mapie_reg = MapieRegressor(method='base', cv=cv) mapie_reg.fit(X, y) y_pred_1, y_pis_1 = mapie_reg.predict(X, alpha=0.1) model = LinearRegression().fit(X_train, y_train) - mapie_reg = MapieRegressor(estimator=model, cv="prefit") + mapie_reg = MapieRegressor(estimator=model, method='base', cv="prefit") mapie_reg.fit(X_calib, y_calib) y_pred_2, y_pis_2 = mapie_reg.predict(X, alpha=0.1) @@ -334,8 +470,8 @@ def test_results_single_and_multi_jobs(strategy: str) -> None: mapie_multi = MapieRegressor(n_jobs=-1, **STRATEGIES[strategy]) mapie_single.fit(X_toy, y_toy) mapie_multi.fit(X_toy, y_toy) - y_pred_single, y_pis_single = mapie_single.predict(X_toy, alpha=0.2) - y_pred_multi, y_pis_multi = mapie_multi.predict(X_toy, alpha=0.2) + y_pred_single, y_pis_single = mapie_single.predict(X_toy, alpha=0.5) + y_pred_multi, y_pis_multi = mapie_multi.predict(X_toy, alpha=0.5) np.testing.assert_allclose(y_pred_single, y_pred_multi) np.testing.assert_allclose(y_pis_single, y_pis_multi) @@ -463,7 +599,7 @@ def test_linear_data_confidence_interval(strategy: str) -> None: """ mapie = MapieRegressor(**STRATEGIES[strategy]) mapie.fit(X_toy, y_toy) - y_pred, y_pis = mapie.predict(X_toy, alpha=0.2) + y_pred, y_pis = mapie.predict(X_toy, alpha=0.5) np.testing.assert_allclose(y_pis[:, 0, 0], y_pis[:, 1, 0]) np.testing.assert_allclose(y_pred, y_pis[:, 0, 0]) @@ -506,7 +642,7 @@ def test_results_prefit_naive() -> None: is equivalent to the "naive" method. """ estimator = LinearRegression().fit(X, y) - mapie_reg = MapieRegressor(estimator=estimator, cv="prefit") + mapie_reg = MapieRegressor(estimator=estimator, method="base", cv="prefit") mapie_reg.fit(X, y) _, y_pis = mapie_reg.predict(X, alpha=0.05) width_mean = (y_pis[:, 1, 0] - y_pis[:, 0, 0]).mean() @@ -516,20 +652,17 @@ def test_results_prefit_naive() -> None: def test_results_prefit() -> None: - """Test prefit results on a standard train/validation/test split.""" - X_train_val, X_test, y_train_val, y_test = train_test_split( - X, y, test_size=1 / 10, random_state=1 - ) - X_train, X_val, y_train, y_val = train_test_split( - X_train_val, y_train_val, test_size=1 / 9, random_state=1 + """Test prefit results on a standard train/calibration split.""" + X_train, X_calib, y_train, y_calib = train_test_split( + X, y, test_size=1/2, random_state=1 ) estimator = LinearRegression().fit(X_train, y_train) - mapie_reg = MapieRegressor(estimator=estimator, cv="prefit") - mapie_reg.fit(X_val, y_val) - _, y_pis = mapie_reg.predict(X_test, alpha=0.05) + mapie_reg = MapieRegressor(estimator=estimator, method="base", cv="prefit") + mapie_reg.fit(X_calib, y_calib) + _, y_pis = mapie_reg.predict(X_calib, alpha=0.05) width_mean = (y_pis[:, 1, 0] - y_pis[:, 0, 0]).mean() coverage = regression_coverage_score( - y_test, y_pis[:, 0, 0], y_pis[:, 1, 0] + y_calib, y_pis[:, 0, 0], y_pis[:, 1, 0] ) np.testing.assert_allclose(width_mean, WIDTHS["prefit"], rtol=1e-2) np.testing.assert_allclose(coverage, COVERAGES["prefit"], rtol=1e-2) @@ -748,3 +881,19 @@ def test_predict_infinite_intervals() -> None: _, y_pis = mapie_reg.predict(X, alpha=0., allow_infinite_bounds=True) np.testing.assert_allclose(y_pis[:, 0, 0], -np.inf) np.testing.assert_allclose(y_pis[:, 1, 0], np.inf) + + +@pytest.mark.parametrize("method", ["minmax", "naive", "plus", "base"]) +@pytest.mark.parametrize("cv", ["split", "prefit"]) +def test_check_change_method_to_base(method: str, cv: str) -> None: + """Test of the overloading of method attribute to `base` method in fit""" + + X_train, X_val, y_train, y_val = train_test_split( + X, y, test_size=0.5, random_state=random_state + ) + estimator = LinearRegression().fit(X_train, y_train) + mapie_reg = MapieRegressor( + cv=cv, method=method, estimator=estimator + ) + mapie_reg.fit(X_val, y_val) + assert mapie_reg.method == "base" \ No newline at end of file diff --git a/mapie/tests/test_time_series_regression.py b/mapie/tests/test_time_series_regression.py index 086dd6171..5b445576c 100644 --- a/mapie/tests/test_time_series_regression.py +++ b/mapie/tests/test_time_series_regression.py @@ -94,13 +94,13 @@ } WIDTHS = { - "blockbootstrap_enbpi_mean_wopt": 3.76, - "blockbootstrap_enbpi_median_wopt": 3.76, - "blockbootstrap_enbpi_mean": 3.76, - "blockbootstrap_enbpi_median": 3.76, - "blockbootstrap_aci_mean": 3.87, - "blockbootstrap_aci_median": 3.90, - "prefit": 4.79, + "blockbootstrap_enbpi_mean_wopt": 3.86, + "blockbootstrap_enbpi_median_wopt": 3.85, + "blockbootstrap_enbpi_mean": 3.86, + "blockbootstrap_enbpi_median": 3.85, + "blockbootstrap_aci_mean": 3.96, + "blockbootstrap_aci_median": 3.95, + "prefit": 4.86, } COVERAGES = { @@ -108,9 +108,9 @@ "blockbootstrap_enbpi_median_wopt": 0.946, "blockbootstrap_enbpi_mean": 0.952, "blockbootstrap_enbpi_median": 0.946, - "blockbootstrap_aci_mean": 0.95, - "blockbootstrap_aci_median": 0.95, - "prefit": 0.98, + "blockbootstrap_aci_mean": 0.96, + "blockbootstrap_aci_median": 0.96, + "prefit": 0.97, } @@ -148,7 +148,9 @@ def test_predict_output_shape( mapie_ts_reg = MapieTimeSeriesRegressor(**STRATEGIES[strategy]) (X, y) = dataset mapie_ts_reg.fit(X, y) - y_pred, y_pis = mapie_ts_reg.predict(X, alpha=alpha) + y_pred, y_pis = mapie_ts_reg.predict( + X, alpha=alpha, allow_infinite_bounds=True + ) n_alpha = len(alpha) if hasattr(alpha, "__len__") else 1 assert y_pred.shape == (X.shape[0],) assert y_pis.shape == (X.shape[0], 2, n_alpha) @@ -211,8 +213,8 @@ def test_results_single_and_multi_jobs(strategy: str) -> None: mapie_multi = MapieTimeSeriesRegressor(n_jobs=-1, **STRATEGIES[strategy]) mapie_single.fit(X_toy, y_toy) mapie_multi.fit(X_toy, y_toy) - y_pred_single, y_pis_single = mapie_single.predict(X_toy, alpha=0.2) - y_pred_multi, y_pis_multi = mapie_multi.predict(X_toy, alpha=0.2) + y_pred_single, y_pis_single = mapie_single.predict(X_toy, alpha=0.5) + y_pred_multi, y_pis_multi = mapie_multi.predict(X_toy, alpha=0.5) np.testing.assert_allclose(y_pred_single, y_pred_multi) np.testing.assert_allclose(y_pis_single, y_pis_multi) @@ -290,10 +292,10 @@ def test_linear_regression_results(strategy: str) -> None: def test_results_prefit() -> None: """Test prefit results on a standard train/validation/test split.""" X_train_val, X_test, y_train_val, y_test = train_test_split( - X, y, test_size=1 / 10, random_state=random_state + X, y, test_size=1/3, random_state=random_state ) X_train, X_val, y_train, y_val = train_test_split( - X_train_val, y_train_val, test_size=1 / 9, random_state=random_state + X_train_val, y_train_val, test_size=1/2, random_state=random_state ) estimator = LinearRegression().fit(X_train, y_train) mapie_ts_reg = MapieTimeSeriesRegressor( @@ -404,10 +406,10 @@ def test_MapieTimeSeriesRegressor_beta_optimize_error() -> None: def test_interval_prediction_with_beta_optimize() -> None: """Test use of ``beta_optimize`` in prediction.""" X_train_val, X_test, y_train_val, y_test = train_test_split( - X, y, test_size=1 / 10, random_state=random_state + X, y, test_size=1/3, random_state=random_state ) X_train, X_val, y_train, y_val = train_test_split( - X_train_val, y_train_val, test_size=1 / 9, random_state=random_state + X_train_val, y_train_val, test_size=1/2, random_state=random_state ) estimator = LinearRegression().fit(X_train, y_train) mapie_ts_reg = MapieTimeSeriesRegressor( @@ -423,8 +425,8 @@ def test_interval_prediction_with_beta_optimize() -> None: coverage = regression_coverage_score( y_test, y_pis[:, 0, 0], y_pis[:, 1, 0] ) - np.testing.assert_allclose(width_mean, 4.22, rtol=1e-2) - np.testing.assert_allclose(coverage, 0.9, rtol=1e-2) + np.testing.assert_allclose(width_mean, 3.67, rtol=1e-2) + np.testing.assert_allclose(coverage, 0.916, rtol=1e-2) def test_deprecated_path_warning() -> None: @@ -518,3 +520,24 @@ def test_method_error_in_update(monkeypatch: Any, method: str) -> None: with pytest.raises(ValueError, match=r".*Invalid method.*"): mapie_ts_reg.fit(X_toy, y_toy) mapie_ts_reg.update(X_toy, y_toy) + + +@pytest.mark.parametrize("method", ["enbpi", "aci"]) +@pytest.mark.parametrize("cv", ["split", "prefit"]) +def test_methods_preservation_in_fit(method: str, cv: str) -> None: + """Test of enbpi and aci method preservation in the fit MapieRegressor""" + + X_train_val, X_test, y_train_val, y_test = train_test_split( + X, y, test_size=0.33, random_state=random_state + ) + X_train, X_val, y_train, y_val = train_test_split( + X_train_val, y_train_val, test_size=0.5, random_state=random_state + ) + estimator = LinearRegression().fit(X_train, y_train) + mapie_ts_reg = MapieTimeSeriesRegressor( + estimator=estimator, + cv=cv, method=method + ) + mapie_ts_reg.fit(X_val, y_val) + mapie_ts_reg.update(X_test, y_test, gamma=0.1, alpha=0.1) + assert mapie_ts_reg.method == method \ No newline at end of file diff --git a/mapie/utils.py b/mapie/utils.py index 80ed12866..9b7d192bf 100644 --- a/mapie/utils.py +++ b/mapie/utils.py @@ -23,7 +23,8 @@ def check_null_weight( - sample_weight: Optional[ArrayLike], X: ArrayLike, y: ArrayLike + sample_weight: Optional[ArrayLike], + X: ArrayLike, y: ArrayLike ) -> Tuple[Optional[NDArray], ArrayLike, ArrayLike]: """ Check sample weights and remove samples with null sample weights. @@ -36,6 +37,8 @@ def check_null_weight( Training samples. y: ArrayLike of shape (n_samples,) Training labels. + z: Optional[ArrayLike] + Exogenous varible Returns ------- @@ -47,7 +50,7 @@ def check_null_weight( y: ArrayLike of shape (n_samples,) Training labels with non-null weights. - + Examples -------- >>> import numpy as np @@ -77,12 +80,14 @@ def check_null_weight( return sample_weight, X, y -def _safe_sample( +def _sample_non_null_weight( X: ArrayLike, y: ArrayLike, sample_weight: Optional[ArrayLike], index: ArrayLike, -) -> Tuple[ArrayLike, ArrayLike, Optional[NDArray]]: + z: Optional[ArrayLike] = None, +) -> Tuple[ArrayLike, ArrayLike, Optional[ArrayLike], + Optional[NDArray], ArrayLike]: """ Perform several checks on class parameters. @@ -100,30 +105,47 @@ def _safe_sample( index: ArrayLike Indexes of the training set. + z: Optional[ArrayLike] + Exogenous varible + Returns ------- - Tuple[NDArray, NDArray, Optional[NDArray]] - - NDArray of training observed values - - NDArray of training target values - - Optional[NDArray] of training sample_weight + Tuple[ArrayLike, ArrayLike, Optional[ArrayLike], Optional[NDArray]] + - ArrayLike of observed values + - ArrayLike of target values + - Optional[ArrayLike] of exogenous varible + - Optional[NDArray] of sample_weight + - ArrayLike of index of non-null weights """ - X_train = _safe_indexing(X, index) - y_train = _safe_indexing(y, index) + X_select = _safe_indexing(X, index) + y_select = _safe_indexing(y, index) + z_select = _safe_indexing(z, index) if z is not None else None if sample_weight is not None: - sample_weight_train = _safe_indexing( + sample_weight_select = _safe_indexing( sample_weight, index) else: - sample_weight_train = None + sample_weight_select = None + + index = _safe_indexing(index, sample_weight_select != 0) + + X_select, y_select, z_select = indexable(X_select, y_select, z_select) + y_select = _check_y(y_select) - X_train, y_train = indexable(X_train, y_train) - y_train = _check_y(y_train) - sample_weight_train, X_train, y_train = check_null_weight( - sample_weight_train, X_train, y_train) + if sample_weight_select is not None: + sample_weight_select = _check_sample_weight(sample_weight_select, X) + non_null_weight = sample_weight_select != 0 + X_select = _safe_indexing(X_select, non_null_weight) + y_select = _safe_indexing(y_select, non_null_weight) + if z_select is not None: + z_select = _safe_indexing(z_select, non_null_weight) + sample_weight_select = _safe_indexing( + sample_weight_select, non_null_weight) + sample_weight_select = cast(NDArray, sample_weight_select) - sample_weight_train = cast(Optional[NDArray], sample_weight_train) + sample_weight_select = cast(Optional[NDArray], sample_weight_select) - return X_train, y_train, sample_weight_train + return X_select, y_select, z_select, sample_weight_select, index def fit_estimator( From 9168201dbf10a0ebf66bb649fb384619c61b899e Mon Sep 17 00:00:00 2001 From: Damien Bouet Date: Sat, 15 Jun 2024 00:15:11 +0200 Subject: [PATCH 053/165] UPD: docstrings and rename --- .../plot_gibbs2023_simulations.py | 10 +-- mapie/calibrators/__init__.py | 4 +- mapie/calibrators/ccp/base.py | 28 +++--- mapie/calibrators/ccp/custom.py | 10 +-- mapie/calibrators/ccp/gaussian.py | 13 +-- mapie/calibrators/ccp/polynomial.py | 45 +++++++--- mapie/calibrators/ccp/utils.py | 77 ++++++++-------- mapie/calibrators/standard.py | 2 +- mapie/futur/__init__.py | 8 +- mapie/futur/split/__init__.py | 8 +- mapie/futur/split/base.py | 90 ++++++++----------- mapie/futur/split/classification.py | 69 +++++--------- mapie/futur/split/regression.py | 60 ++++--------- mapie/regression/__init__.py | 4 +- mapie/tests/test_ccp_calibrator.py | 36 ++++---- mapie/tests/test_futur_regression.py | 84 ++++++++--------- mapie/utils.py | 7 +- 17 files changed, 259 insertions(+), 296 deletions(-) diff --git a/examples/regression/3-scientific-articles/plot_gibbs2023_simulations.py b/examples/regression/3-scientific-articles/plot_gibbs2023_simulations.py index 1f414873e..2e89c5323 100644 --- a/examples/regression/3-scientific-articles/plot_gibbs2023_simulations.py +++ b/examples/regression/3-scientific-articles/plot_gibbs2023_simulations.py @@ -33,7 +33,7 @@ import numpy as np import pandas as pd from mapie.conformity_scores import AbsoluteConformityScore -from mapie.regression import SplitMapieRegressor, MapieRegressor +from mapie.regression import SplitCPRegressor, MapieRegressor from mapie.calibrators.ccp import CustomCCP, GaussianCCP from scipy.stats import norm from sklearn.linear_model import LinearRegression @@ -195,13 +195,13 @@ def plot_results(X_test, y_test, n_trials=10, lambda X, t=t: np.logical_and(X >= t, X < t + 0.5).astype(int) for t in np.arange(0, 5.5, 0.5) ]) - mapie_ccp = SplitMapieRegressor( + mapie_ccp = SplitCPRegressor( model, calibrator=calibrator_groups, alpha=ALPHA, cv="prefit", conformity_score=AbsoluteConformityScore(sym=False), random_state=None ) mapie_ccp.conformity_score.eps = 1e-5 - mapie_ccp.fit_calibrator(X_calib, y_calib) + mapie_ccp.fit(X_calib, y_calib) _, y_pi_ccp = mapie_ccp.predict(X_test) else: # CCP Shifts @@ -218,13 +218,13 @@ def plot_results(X_test, y_test, n_trials=10, bias=True, normalized=False, ) - mapie_ccp = SplitMapieRegressor( + mapie_ccp = SplitCPRegressor( model, calibrator=calibrator_shifts, alpha=ALPHA, cv="prefit", conformity_score=AbsoluteConformityScore(sym=False), random_state=None ) mapie_ccp.conformity_score.eps = 1e-5 - mapie_ccp.fit_calibrator(X_calib, y_calib) + mapie_ccp.fit(X_calib, y_calib) _, y_pi_ccp = mapie_ccp.predict(X_test) # =========== n_trials run to get average marginal coverage ============ diff --git a/mapie/calibrators/__init__.py b/mapie/calibrators/__init__.py index d89a527ee..5845e53fb 100644 --- a/mapie/calibrators/__init__.py +++ b/mapie/calibrators/__init__.py @@ -1,10 +1,10 @@ from .base import BaseCalibrator -from .standard import Standard +from .standard import StandardCalibrator from .ccp import CustomCCP, PolynomialCCP, GaussianCCP __all__ = [ "BaseCalibrator", - "Standard", + "StandardCalibrator", "CustomCCP", "PolynomialCCP", "GaussianCCP", diff --git a/mapie/calibrators/ccp/base.py b/mapie/calibrators/ccp/base.py index be0254b92..ac193e861 100644 --- a/mapie/calibrators/ccp/base.py +++ b/mapie/calibrators/ccp/base.py @@ -1,24 +1,25 @@ from __future__ import annotations from abc import ABCMeta, abstractmethod -from typing import Iterable, Callable, Optional, Union, List, Tuple, cast +from typing import Callable, Iterable, List, Optional, Tuple, Union, cast import warnings -import numpy as np -from scipy.optimize import minimize from mapie._typing import ArrayLike, NDArray -from .utils import (compile_functions_warnings_errors, concatenate_functions, - check_multiplier) from mapie.calibrators import BaseCalibrator -from mapie.calibrators.ccp.utils import calibrator_optim_objective -from sklearn.utils import _safe_indexing -from sklearn.utils.validation import check_is_fitted, _num_samples +from mapie.calibrators.ccp.utils import (calibrator_optim_objective, + check_multiplier, + compile_functions_warnings_errors, + concatenate_functions) +import numpy as np from sklearn.base import clone +from sklearn.utils import _safe_indexing +from sklearn.utils.validation import _num_samples, check_is_fitted +from scipy.optimize import minimize class CCPCalibrator(BaseCalibrator, metaclass=ABCMeta): """ - Base abstract class for the calibrators used for the ``CCP`` method + Base abstract class for the calibrators used for the ``SplitCP`` method to estimate the conformity scores. It corresponds to the adaptative conformal prediction method proposed by Gibbs et al. (2023) in "Conformal Prediction With Conditional Guarantees". @@ -111,6 +112,11 @@ class CCPCalibrator(BaseCalibrator, metaclass=ABCMeta): beta_low_: Tuple[NDArray, bool] Same as beta_up, but for the lower bound + + References + ---------- + Isaac Gibbs and John J. Cherian and Emmanuel J. Candès. + "Conformal Prediction With Conditional Guarantees", 2023 """ fit_attributes: List[str] = ["functions_"] @@ -287,9 +293,9 @@ def fit( if self.random_state is None: warnings.warn("WARNING: The method implemented in " - "SplitMapie has a stochastic behavior. " + "SplitCP has a stochastic behavior. " "To have reproductible results, use a integer " - "`random_state` value in the `SplitMapie` " + "`random_state` value in the `SplitCP` " "initialisation.") else: np.random.seed(self.random_state) diff --git a/mapie/calibrators/ccp/custom.py b/mapie/calibrators/ccp/custom.py index 3ebac5071..650242668 100644 --- a/mapie/calibrators/ccp/custom.py +++ b/mapie/calibrators/ccp/custom.py @@ -1,17 +1,17 @@ from __future__ import annotations -from typing import Iterable, Callable, Optional, Union, List +from typing import Callable, Iterable, List, Optional, Union from mapie._typing import ArrayLike from .base import CCPCalibrator -from .utils import (compile_functions_warnings_errors, format_functions, - check_multiplier) +from .utils import (check_multiplier, compile_functions_warnings_errors, + format_functions) from sklearn.utils import _safe_indexing class CustomCCP(CCPCalibrator): """ - Calibrator used for the ``CCP`` method to estimate the conformity scores. + Calibrator used for the ``SplitCP`` method to estimate the conformity scores. It corresponds to the adaptative conformal prediction method proposed by Gibbs et al. (2023) in "Conformal Prediction With Conditional Guarantees". @@ -113,7 +113,7 @@ class CustomCCP(CCPCalibrator): -------- >>> import numpy as np >>> from mapie.calibrators import GaussianCCP - >>> from mapie.regression import SplitMapieRegressor + >>> from mapie.regression import SplitCPRegressor >>> from mapie.conformity_scores import AbsoluteConformityScore >>> np.random.seed(1) >>> X_train = np.linspace(0, 3.14, 1001).reshape(-1, 1) diff --git a/mapie/calibrators/ccp/gaussian.py b/mapie/calibrators/ccp/gaussian.py index 11f62123f..2652bff23 100644 --- a/mapie/calibrators/ccp/gaussian.py +++ b/mapie/calibrators/ccp/gaussian.py @@ -1,18 +1,19 @@ from __future__ import annotations -from typing import Callable, Optional, Tuple, Union, List +from typing import Callable, List, Optional, Tuple, Union import numpy as np from mapie._typing import ArrayLike -from .base import CCPCalibrator, BaseCalibrator -from .utils import format_functions, compute_sigma, sample_points +from mapie.calibrators import BaseCalibrator +from mapie.calibrators.ccp import CCPCalibrator +from .utils import compute_sigma, format_functions, sample_points from sklearn.utils import _safe_indexing from sklearn.utils.validation import _num_samples class GaussianCCP(CCPCalibrator): """ - Calibrator used for the ``CCP`` method to estimate the conformity scores. + Calibrator used for the ``SplitCP`` method to estimate the conformity scores. It corresponds to the adaptative conformal prediction method proposed by Gibbs et al. (2023) in "Conformal Prediction With Conditional Guarantees". @@ -173,11 +174,11 @@ class GaussianCCP(CCPCalibrator): -------- >>> import numpy as np >>> from mapie.calibrators import GaussianCCP - >>> from mapie.regression import SplitMapieRegressor + >>> from mapie.regression import SplitCPRegressor >>> np.random.seed(1) >>> X_train = np.arange(0,400, 2).reshape(-1, 1) >>> y_train = 1 + 2*X_train[:,0] + np.random.rand(len(X_train)) - >>> mapie = SplitMapieRegressor( + >>> mapie = SplitCPRegressor( ... calibrator=GaussianCCP(2), alpha=0.1, random_state=1, ... ).fit(X_train, y_train) >>> y_pred, y_pi = mapie.predict(X_train) diff --git a/mapie/calibrators/ccp/polynomial.py b/mapie/calibrators/ccp/polynomial.py index 14753fabd..27694c397 100644 --- a/mapie/calibrators/ccp/polynomial.py +++ b/mapie/calibrators/ccp/polynomial.py @@ -9,15 +9,25 @@ class PolynomialCCP(CCPCalibrator): """ - This class is used to define the transformation phi, - used in the Gibbs et al. method to model the conformity scores. - This class build a ``CCPCalibrator`` object with polynomial features of - X, y_pred or z. + Calibrator used for the ``SplitCP`` method to estimate the conformity scores. + It corresponds to the adaptative conformal prediction method proposed by + Gibbs et al. (2023) in "Conformal Prediction With Conditional Guarantees". + + The goal of to learn the quantile of the conformity scores distribution, + to built the prediction interval, not with a constant ``q`` (as it is the + case in the standard CP), but with a function ``q(X)`` which is adaptative + as it depends on ``X``. + + This class builds a ``CCPCalibrator`` object with polynomial features of + ``X``, ``y_pred`` or ``z``. + + See the examples and the documentation to build a ``CCPCalibrator`` + adaptated to your dataset and constraints. Parameters ---------- degree: Union[int, List[int]] - If ``degree``is an integer, it correspond to the degree of the + If ``degree`` is an integer, it correspond to the degree of the polynomial features transformer. It will create the features ``1``, ``variable``, ``variable``**2, ..., ``variable``**``degree``. @@ -29,6 +39,11 @@ class PolynomialCCP(CCPCalibrator): If ``None``, it will default to ``degree=1``. + Note: if ``0`` is in the considered exponents (if ``degree`` is an + integer, or if ``0 in degree`` if it is a list), it is not + ``variable**0`` of shape ``(n_samples, n_in)`` which is added, but only + one feature of ones, of shape ``(n_samples, 1)``. + By default ``None``. variable: Literal["X", "y_pred", "z"] @@ -84,15 +99,25 @@ class PolynomialCCP(CCPCalibrator): exponents: List[int] List of exponents of the built polynomial features + beta_up_: Tuple[NDArray, bool] + Calibration fitting results, used to build the upper bound of the + prediction intervals. + beta_up_[0]: Array of shape (calibrator.n_out, ) + beta_up_[1]: Whether the optimization process converged or not + (the coverage is not garantied if the optimization fail) + + beta_low_: Tuple[NDArray, bool] + Same as beta_up, but for the lower bound + Examples -------- >>> import numpy as np >>> from mapie.calibrators import PolynomialCCP - >>> from mapie.regression import SplitMapieRegressor + >>> from mapie.regression import SplitCPRegressor >>> np.random.seed(1) >>> X_train = np.arange(0,400, 2).reshape(-1, 1) >>> y_train = 1 + 2*X_train[:,0] + np.random.rand(len(X_train)) - >>> mapie = SplitMapieRegressor( + >>> mapie = SplitCPRegressor( ... calibrator=PolynomialCCP(1), alpha=0.1, random_state=1, ... ).fit(X_train, y_train) >>> y_pred, y_pi = mapie.predict(X_train) @@ -137,7 +162,7 @@ def _convert_degree( ---------- degree: Union[int, List[int]] If ``degree``is an integer, it correspond to the degree of the - polynomial features transformer. It will create the features + polynomial features. It will create the features ``1``, ``variable``, ``variable``**2, ..., ``variable``**``degree``. @@ -212,8 +237,8 @@ def _check_fit_parameters( z: Optional[ArrayLike] = None, ) -> None: """ - Fit function : Set all the necessary attributes to be able to transform - ``(X, y_pred, z)`` into the expected transformation. + Fit function : Set all the necessary attributes to be able to + transform ``(X, y_pred, z)`` into the expected features. It should set all the attributes of ``fit_attributes``. It should also set, once fitted, ``n_in``, ``n_out`` and diff --git a/mapie/calibrators/ccp/utils.py b/mapie/calibrators/ccp/utils.py index 76c6d390e..1711ab3b4 100644 --- a/mapie/calibrators/ccp/utils.py +++ b/mapie/calibrators/ccp/utils.py @@ -1,11 +1,11 @@ from __future__ import annotations import inspect +from typing import Callable, Dict, Iterable, List, Optional, Tuple, Union, cast +import warnings + import numpy as np -from typing import (Iterable, Callable, Optional, Tuple, Union, - cast, Dict, List) from mapie._typing import ArrayLike, NDArray -import warnings from sklearn.utils import _safe_indexing from sklearn.utils.validation import _num_samples @@ -15,40 +15,47 @@ def format_functions( bias: bool, ) -> List[Callable]: """ - Validate functions for required and optional arguments. + Validate ``functions`` and add a column of ones, as a lambda function + if ``bias=True``. Parameters ---------- functions: Optional[Union[Callable, Iterable[Callable]]] - List of functions (or ``CCPCalibrator`` objects) or single function. + List of functions (or CCPCalibrator objects) or single function. + Each function can take a combinaison of the following arguments: - ``X``: Input dataset, of shape (n_samples, ``n_in``) - ``y_pred``: estimator prediction, of shape (n_samples,) - ``z``: exogenous variable, of shape (n_samples, n_features). It should be given in the ``fit`` and ``predict`` methods. The results of each functions will be concatenated to build the final - result of the phi function, of shape (n_samples, ``n_out``). - If ``None``, the resulting phi object will return a column of ones, - when called. It will result, in the MapieCCPRegressor, in a basic - split CP approach. + result of the transformation, of shape ``(n_samples, n_out)``, which + will be used to estimate the conformity scores quantiles. + + If ``None``, return an empty list. bias: bool Add a column of ones to the features, for safety reason (to garanty the marginal coverage, no matter how the other features the ``CCPCalibrator``object were built). If the ``CCPCalibrator``object definition covers all the dataset - (meaning, for all calibration and test samples, ``phi(X, y_pred, z)`` - is never all zeros), this column of ones is not necessary - to obtain marginal coverage. + (meaning, for all calibration and test samples, the resulting + ``calibrator.predict(X, y_pred, z)`` is never all zeros), + this column of ones is not necessary to obtain marginal coverage. In this case, you can set this argument to ``False``. - Note: Even if it is not always necessary to guarantee the marginal - coverage, it can't degrade the prediction intervals. + If you are not sur, use ``bias=True`` to garantee the marginal + coverage. Returns ------- List[Callable] ``functions`` as a not empty list + + Raises + ------ + ValueError + If ``functions`` is empty or ``None`` and ``bias=False``. """ if functions is None: functions = [] @@ -76,7 +83,6 @@ def compile_functions_warnings_errors( Raises ------ ValueError - If no functions are provided and `bias` is False. If functions contain unknown required arguments. Warns @@ -180,7 +186,7 @@ def sample_points( Returns ------- - points_ + NDArray 2D NDArray of points Raises @@ -275,7 +281,6 @@ def compute_sigma( - For 100 points, the sigma value will, in general, be multiplied by a value between 0.5 and 2 - Returns ------- sigmas_ @@ -313,7 +318,7 @@ def _init_sigmas( """ If ``sigma`` is not ``None``, take a sigma value, and set ``sigmas_`` to a standard deviation 2D array of shape (n_points, n_sigma), - n_sigma being 1 or the number of dimensions of X. + n_sigma being 1 or ``X_n_features``. Parameters ---------- @@ -407,7 +412,8 @@ def check_multiplier( z: Optional[ArrayLike] = None, ) -> None: """ - Check is ``funct`` is a valid ``multiplier`` argument + Check if ``multipliers`` is a valid ``multiplier`` argument for + ``CCPCalibrator``. Parameters ---------- @@ -436,22 +442,26 @@ def check_multiplier( def fast_mean_pinball_loss( - y_true, y_pred, *, sample_weight=None, alpha=0.5 + y_true: NDArray, + y_pred: NDArray, + *, + sample_weight: Optional[NDArray] = None, + alpha: float=0.5 ) -> float: """ Pinball loss for quantile regression. - Copy of the sklearn.metric.mean_minball_loss, but without the checks on - the ``y_true`` and ``y_pred`` arrays, for faster computation. + It does the same as ``sklearn.metric.mean_minball_loss``, but without + the checks on the ``y_true`` and ``y_pred`` arrays, for faster computation. Parameters ---------- - y_true : array-like of shape (n_samples,) or (n_samples, n_outputs) + y_true : NDArray of shape (n_samples,) or (n_samples, n_outputs) Ground truth (correct) target values. - y_pred : array-like of shape (n_samples,) or (n_samples, n_outputs) + y_pred : NDArray of shape (n_samples,) or (n_samples, n_outputs) Estimated target values. - sample_weight : array-like of shape (n_samples,), default=None + sample_weight : NDArray of shape (n_samples,), default=None Sample weights. alpha : float, slope of the pinball loss, default=0.5, @@ -464,23 +474,6 @@ def fast_mean_pinball_loss( Weighted average of all output errors. The pinball loss output is a non-negative floating point. The best value is 0.0. - - Examples - -------- - >>> from sklearn.metrics import mean_pinball_loss - >>> y_true = [1, 2, 3] - >>> mean_pinball_loss(y_true, [0, 2, 3], alpha=0.1) - 0.03... - >>> mean_pinball_loss(y_true, [1, 2, 4], alpha=0.1) - 0.3... - >>> mean_pinball_loss(y_true, [0, 2, 3], alpha=0.9) - 0.3... - >>> mean_pinball_loss(y_true, [1, 2, 4], alpha=0.9) - 0.03... - >>> mean_pinball_loss(y_true, y_true, alpha=0.1) - 0.0 - >>> mean_pinball_loss(y_true, y_true, alpha=0.9) - 0.0 """ diff = y_true - y_pred sign = (diff >= 0).astype(diff.dtype) diff --git a/mapie/calibrators/standard.py b/mapie/calibrators/standard.py index 2a4e6f51e..a88ff8e33 100644 --- a/mapie/calibrators/standard.py +++ b/mapie/calibrators/standard.py @@ -9,7 +9,7 @@ from sklearn.utils.validation import _num_samples -class Standard(BaseCalibrator): +class StandardCalibrator(BaseCalibrator): """ Base abstract class for the calibrators diff --git a/mapie/futur/__init__.py b/mapie/futur/__init__.py index bcc60c484..5209e005c 100644 --- a/mapie/futur/__init__.py +++ b/mapie/futur/__init__.py @@ -1,7 +1,7 @@ -from .split.regression import SplitMapieRegressor -from .split.classification import SplitMapieClassifier +from .split.regression import SplitCPRegressor +from .split.classification import SplitCPClassifier __all__ = [ - "SplitMapieRegressor", - "SplitMapieClassifier", + "SplitCPRegressor", + "SplitCPClassifier", ] diff --git a/mapie/futur/split/__init__.py b/mapie/futur/split/__init__.py index 50016746a..1222aeac3 100644 --- a/mapie/futur/split/__init__.py +++ b/mapie/futur/split/__init__.py @@ -1,7 +1,7 @@ -from .regression import SplitMapieRegressor -from .classification import SplitMapieClassifier +from .regression import SplitCPRegressor +from .classification import SplitCPClassifier __all__ = [ - "SplitMapieRegressor", - "SplitMapieClassifier", + "SplitCPRegressor", + "SplitCPClassifier", ] diff --git a/mapie/futur/split/base.py b/mapie/futur/split/base.py index 103609e85..9538bab53 100644 --- a/mapie/futur/split/base.py +++ b/mapie/futur/split/base.py @@ -1,50 +1,37 @@ from __future__ import annotations from abc import ABCMeta, abstractmethod -from typing import List, Optional, Tuple, Union, Dict, cast, Callable, Any -import warnings +from typing import Any, Callable, Dict, List, Optional, Tuple, Union, cast import inspect -import numpy as np -from sklearn.base import BaseEstimator, RegressorMixin, ClassifierMixin -from sklearn.model_selection import (BaseCrossValidator, BaseShuffleSplit, - ShuffleSplit, PredefinedSplit) -from sklearn.pipeline import Pipeline -from sklearn.utils.validation import check_is_fitted, _num_samples +import warnings +import numpy as np from mapie._typing import ArrayLike, NDArray -from mapie.conformity_scores import ConformityScore -from mapie.calibrators.ccp import CCPCalibrator from mapie.calibrators import BaseCalibrator -from mapie.utils import fit_estimator, _sample_non_null_weight +from mapie.calibrators.ccp import CCPCalibrator +from mapie.conformity_scores import ConformityScore +from mapie.utils import _sample_non_null_weight, fit_estimator +from sklearn.base import BaseEstimator, ClassifierMixin, RegressorMixin +from sklearn.model_selection import (BaseCrossValidator, BaseShuffleSplit, + PredefinedSplit, ShuffleSplit) +from sklearn.pipeline import Pipeline +from sklearn.utils.validation import _num_samples, check_is_fitted -class CCP(BaseEstimator, metaclass=ABCMeta): +class SplitCP(BaseEstimator, metaclass=ABCMeta): """ - This class implements an adaptative conformal prediction method proposed by - Gibbs et al. (2023) in "Conformal Prediction With Conditional Guarantees". - This method works with a ``"split"`` approach which requires a separate - calibration phase. The ``fit`` method automatically split the data into - two disjoint sets to train the predictor and the calibrator. You can call - ``fit_predictor`` and ``fit_calibrator`` to do the two step one after the - other. You will have to make sure that data used in the two methods, - for training and calibration are disjoint, to guarantee the expected - ``1-alpha`` coverage. + Base abstract class for Split Conformal Prediction Parameters ---------- predictor: Union[RegressorMixin, ClassifierMixin] - Any regressor from scikit-learn API. + Any regressor or classifier from scikit-learn API. (i.e. with ``fit`` and ``predict`` methods). - If ``None``, ``predictor`` defaults to a ``LinearRegressor`` instance. - + By default ``"None"``. - calibrator: Optional[CCPCalibrator] - A ``CCPCalibrator`` instance used to estimate the conformity scores. - - If ``None``, use as default a ``GaussianCCP`` instance. - See the examples and the documentation to build a ``CCPCalibrator`` - adaptated to your dataset and constraints. + calibrator: Optional[Calibrator] + A ``Calibrator`` instance used to estimate the conformity scores. By default ``None``. @@ -100,11 +87,6 @@ class CCP(BaseEstimator, metaclass=ABCMeta): number generators. It may have an impact on the rest of your code. By default ``None``. - - References - ---------- - Isaac Gibbs and John J. Cherian and Emmanuel J. Candès. - "Conformal Prediction With Conditional Guarantees", 2023 """ default_sym_ = True @@ -284,7 +266,7 @@ def fit_predictor( sample_weight: Optional[ArrayLike] = None, groups: Optional[ArrayLike] = None, **fit_params, - ) -> CCP: + ) -> SplitCP: """ Fit the predictor if ``cv`` argument is not ``"prefit"`` @@ -317,7 +299,7 @@ def fit_predictor( Returns ------- - SplitMapie + SplitCP self """ predictor = self._check_fit_parameters() @@ -347,9 +329,9 @@ def fit_calibrator( groups: Optional[ArrayLike] = None, calib_kwargs: Optional[Dict] = None, **kwargs, - ) -> CCP: + ) -> SplitCP: """ - Calibrate with (``X``, ``y`` and ``z``) + Fit the calibrator with (``X``, ``y`` and ``z``) and the new value ``alpha`` value, if not ``None`` Parameters @@ -377,7 +359,7 @@ def fit_calibrator( Returns ------- - SplitMapie + SplitCP self """ self._check_fit_parameters() @@ -394,7 +376,8 @@ def fit_calibrator( train_index, calib_index = list(self.cv.split(X, y, groups))[0] else: - train_index, calib_index = np.array([]), np.arange(_num_samples(X)) + train_index, calib_index = (np.array([], dtype=int), + np.arange(_num_samples(X))) z = cast(Optional[ArrayLike], kwargs.get("z", None)) ( @@ -446,7 +429,7 @@ def fit( fit_kwargs: Optional[Dict] = None, calib_kwargs: Optional[Dict] = None, **kwargs - ) -> CCP: + ) -> SplitCP: """ Fit the predictor (if ``cv`` is not ``"prefit"``) and fit the calibration. @@ -502,7 +485,7 @@ def fit( Returns ------- - SplitMapie + SplitCP self """ self.fit_predictor(X, y, sample_weight, groups, @@ -519,7 +502,6 @@ def predict( ) -> Union[NDArray, Tuple[NDArray, NDArray]]: """ Predict target on new samples with confidence intervals. - The prediction interval is computed Parameters ---------- @@ -532,11 +514,10 @@ def predict( Returns ------- Union[NDArray, Tuple[NDArray, NDArray]] - - NDArray of shape (n_samples,) if ``alpha`` is ``None``. - - Tuple[NDArray, NDArray] of shapes (n_samples,) and - (n_samples, 2, n_alpha) if ``alpha`` is not ``None``. - - [:, 0, :]: Lower bound of the prediction interval. - - [:, 1, :]: Upper bound of the prediction interval. + - Predictions : NDArray of shape (n_samples,) + if ``alpha`` is ``None``. + - Predictions and confidence intervals + if ``alpha`` is not ``None``. """ check_is_fitted(self, self.fit_attributes) y_pred = self.predict_score(X) @@ -560,7 +541,8 @@ def predict_score( self, X: ArrayLike ) -> NDArray: """ - Compute conformity scores + Compute the predictor prediction, used to compute the + conformity scores. Parameters ---------- @@ -582,7 +564,7 @@ def predict_bounds( **predict_kwargs, ) -> NDArray: """ - Compute conformity scores + Compute the bounds, using the fitted ``_calibrator``. Parameters ---------- @@ -598,13 +580,13 @@ def predict_bounds( Returns ------- NDArray - Bounds (or prediction set in classification), as a 2D array + Bounds (or prediction set in classification) """ @abstractmethod def predict_best(self, y_pred: NDArray) -> NDArray: """ - Compute the prediction + Compute the best prediction, in an array of shape (n_samples, ) Parameters ---------- @@ -614,5 +596,5 @@ def predict_best(self, y_pred: NDArray) -> NDArray: Returns ------- NDArray - best predictions + predictions """ diff --git a/mapie/futur/split/classification.py b/mapie/futur/split/classification.py index 16500036d..7f23e0268 100644 --- a/mapie/futur/split/classification.py +++ b/mapie/futur/split/classification.py @@ -1,48 +1,41 @@ from __future__ import annotations -from typing import Optional, Union, List, Tuple -import inspect +from typing import List, Optional, Tuple, Union + import numpy as np +from mapie._typing import ArrayLike, NDArray +from mapie.calibrators.ccp import check_calibrator +from mapie.conformity_scores import ConformityScore +from mapie.conformity_scores.classification_scores import LAC +from mapie.futur.split.base import BaseCalibrator, SplitCP from sklearn.base import ClassifierMixin from sklearn.linear_model import LogisticRegression from sklearn.model_selection import BaseCrossValidator, BaseShuffleSplit from sklearn.pipeline import Pipeline from sklearn.utils.validation import check_is_fitted -from mapie._typing import ArrayLike, NDArray -from mapie.calibrators.ccp import check_calibrator -from mapie.futur.split.base import CCP, BaseCalibrator -from mapie.conformity_scores import ConformityScore -from mapie.conformity_scores.classification_scores import LAC - -class SplitMapieClassifier(CCP): +class SplitCPClassifier(SplitCP): """ - This class implements an adaptative conformal prediction method proposed by - Gibbs et al. (2023) in "Conformal Prediction With Conditional Guarantees". - This method works with a ``"split"`` approach which requires a separate - calibration phase. The ``fit`` method automatically split the data into - two disjoint sets to train the predictor and the calibrator. You can call - ``fit_estimator`` and ``fit_calibrator`` to do the two step one after the - other. You will have to make sure that data used in the two methods, - for training and calibration are disjoint, to guarantee the expected - ``1-alpha`` coverage. + Class to compute Conformal Predictions in a ``"split"`` approach for + classification tasks. + It is based on a predictor (a sklearn estimator), and a calibrator + (``Calibrator`` object). Parameters ---------- predictor: Optional[ClassifierMixin] - Any regressor from scikit-learn API. + Any classifier from scikit-learn API. (i.e. with ``fit`` and ``predict`` methods). - If ``None``, ``predictor`` defaults to a ``LinearRegressor`` instance. + If ``None``, ``predictor`` defaults to a ``LogisticRegression`` + instance. By default ``"None"``. calibrator: Optional[BaseCalibrator] A ``BaseCalibrator`` instance used to estimate the conformity scores. - If ``None``, use as default a ``GaussianCCP`` instance. - See the examples and the documentation to build a ``BaseCalibrator`` - adaptated to your dataset and constraints. + If ``None``, use as default a ``StandardCalibrator`` instance. By default ``None``. @@ -99,31 +92,14 @@ class SplitMapieClassifier(CCP): By default ``None``. - Attributes - ---------- - beta_up_: Tuple[NDArray, bool] - Calibration fitting results, used to build the upper bound of the - prediction intervals. - beta_up[0]: Array of shape (calibrator.n_out, ) - beta_up[1]: Whether the optimization process converged or not - (the coverage is not garantied if the optimization fail) - - beta_low_: Tuple[NDArray, bool] - Same as beta_up, but for the lower bound - - References - ---------- - Isaac Gibbs and John J. Cherian and Emmanuel J. Candès. - "Conformal Prediction With Conditional Guarantees", 2023 - Examples -------- >>> import numpy as np - >>> from mapie.futur import SplitMapieClassifier + >>> from mapie.futur import SplitCPClassifier >>> np.random.seed(1) >>> X_train = np.arange(0,400,2).reshape(-1, 1) >>> y_train = np.array([0]*50 + [1]*50 + [2]*50 + [3]*50) - >>> mapie_reg = SplitMapieClassifier(alpha=0.1, random_state=1) + >>> mapie_reg = SplitCPClassifier(alpha=0.1, random_state=1) >>> mapie_reg = mapie_reg.fit(X_train, y_train) >>> y_pred, y_pis = mapie_reg.predict(X_train) >>> print(np.round(y_pred[[0, 40, 80, 120]], 2)) @@ -278,7 +254,8 @@ def predict_score( self, X: ArrayLike ) -> NDArray: """ - Compute conformity scores + Compute the predicted probas, used to compute the + conformity scores. Parameters ---------- @@ -299,7 +276,7 @@ def predict_bounds( **kwargs, ) -> NDArray: """ - Compute conformity scores + Compute the prediction sets, using the fitted ``_calibrator``. Parameters ---------- @@ -316,7 +293,7 @@ def predict_bounds( ------- NDArray Prediction sets, as a 3D array of shape (n_samples, n_classes, 1) - (because we only have 1 alpha value) + for compatibility reason with ``MapieClassifier``. """ # Classification conformity scores always have ``sym=True``, so # the calibrator_.predict result is a 2D array with @@ -336,7 +313,7 @@ def predict_bounds( def predict_best(self, y_pred: NDArray) -> NDArray: """ - Compute the prediction + Compute the prediction from the probas, using ``numpy.argmax``. Parameters ---------- diff --git a/mapie/futur/split/regression.py b/mapie/futur/split/regression.py index edaaf7785..abbd08c77 100644 --- a/mapie/futur/split/regression.py +++ b/mapie/futur/split/regression.py @@ -1,31 +1,25 @@ from __future__ import annotations from typing import List, Optional, Tuple, Union -import inspect -import numpy as np -from sklearn.base import RegressorMixin +import numpy as np from mapie._typing import ArrayLike, NDArray from mapie.calibrators.ccp import check_calibrator from mapie.conformity_scores import ConformityScore -from mapie.futur.split.base import CCP, BaseCalibrator -from mapie.utils import (check_lower_upper_bounds, check_estimator_regression, - check_conformity_score) +from mapie.futur.split.base import BaseCalibrator, SplitCP +from mapie.utils import (check_conformity_score, check_estimator_regression, + check_lower_upper_bounds) +from sklearn.base import RegressorMixin from sklearn.model_selection import BaseCrossValidator, BaseShuffleSplit from sklearn.pipeline import Pipeline -class SplitMapieRegressor(CCP): +class SplitCPRegressor(SplitCP): """ - This class implements an adaptative conformal prediction method proposed by - Gibbs et al. (2023) in "Conformal Prediction With Conditional Guarantees". - This method works with a ``"split"`` approach which requires a separate - calibration phase. The ``fit`` method automatically split the data into - two disjoint sets to train the predictor and the calibrator. You can call - ``fit_estimator`` and ``fit_calibrator`` to do the two step one after the - other. You will have to make sure that data used in the two methods, - for training and calibration are disjoint, to guarantee the expected - ``1-alpha`` coverage. + Class to compute Conformal Predictions in a ``"split"`` approach for + regression tasks. + It is based on a predictor (a sklearn estimator), and a calibrator + (``Calibrator`` object). Parameters ---------- @@ -40,8 +34,6 @@ class SplitMapieRegressor(CCP): A ``BaseCalibrator`` instance used to estimate the conformity scores. If ``None``, use as default a ``GaussianCCP`` instance. - See the examples and the documentation to build a ``BaseCalibrator`` - adaptated to your dataset and constraints. By default ``None``. @@ -98,31 +90,14 @@ class SplitMapieRegressor(CCP): By default ``None``. - Attributes - ---------- - beta_up_: Tuple[NDArray, bool] - Calibration fitting results, used to build the upper bound of the - prediction intervals. - beta_up[0]: Array of shape (calibrator.n_out, ) - beta_up[1]: Whether the optimization process converged or not - (the coverage is not garantied if the optimization fail) - - beta_low_: Tuple[NDArray, bool] - Same as beta_up, but for the lower bound - - References - ---------- - Isaac Gibbs and John J. Cherian and Emmanuel J. Candès. - "Conformal Prediction With Conditional Guarantees", 2023 - Examples -------- >>> import numpy as np - >>> from mapie.regression import SplitMapieRegressor + >>> from mapie.regression import SplitCPRegressor >>> np.random.seed(1) >>> X_train = np.arange(0,400, 2).reshape(-1, 1) >>> y_train = 2*X_train[:,0] + np.random.rand(len(X_train)) - >>> mapie_reg = SplitMapieRegressor(alpha=0.1, random_state=1) + >>> mapie_reg = SplitCPRegressor(alpha=0.1, random_state=1) >>> mapie_reg = mapie_reg.fit(X_train, y_train) >>> y_pred, y_pis = mapie_reg.predict(X_train) >>> print(np.round(y_pred[:5], 2)) @@ -188,7 +163,8 @@ def predict_score( self, X: ArrayLike ) -> NDArray: """ - Compute conformity scores + Compute the predictor prediction, used to compute the + conformity scores. Parameters ---------- @@ -209,7 +185,7 @@ def predict_bounds( **kwargs, ) -> NDArray: """ - Compute conformity scores + Compute the bounds, using the fitted ``_calibrator``. Parameters ---------- @@ -248,16 +224,16 @@ def predict_bounds( def predict_best(self, y_pred: NDArray) -> NDArray: """ - Compute the prediction + Compute the prediction, in an array of shape (n_samples, ) Parameters ---------- y_pred: NDArray - Prediction scores (can be the prediction, the probas, ...) + Prediction scores Returns ------- NDArray - best predictions + Predictions """ return y_pred diff --git a/mapie/regression/__init__.py b/mapie/regression/__init__.py index 2c8ac38aa..6e262b200 100644 --- a/mapie/regression/__init__.py +++ b/mapie/regression/__init__.py @@ -1,11 +1,11 @@ from .quantile_regression import MapieQuantileRegressor from .regression import MapieRegressor -from mapie.futur.split import SplitMapieRegressor +from mapie.futur.split import SplitCPRegressor from .time_series_regression import MapieTimeSeriesRegressor __all__ = [ "MapieRegressor", "MapieQuantileRegressor", "MapieTimeSeriesRegressor", - "SplitMapieRegressor", + "SplitCPRegressor", ] diff --git a/mapie/tests/test_ccp_calibrator.py b/mapie/tests/test_ccp_calibrator.py index b659a6a50..fc539b3a9 100644 --- a/mapie/tests/test_ccp_calibrator.py +++ b/mapie/tests/test_ccp_calibrator.py @@ -9,7 +9,7 @@ from sklearn.datasets import make_regression from mapie.calibrators.ccp import (CustomCCP, GaussianCCP, PolynomialCCP, CCPCalibrator) -from mapie.regression import SplitMapieRegressor +from mapie.regression import SplitCPRegressor random_state = 1 np.random.seed(random_state) @@ -95,7 +95,7 @@ ]) def test_custom_phi_functions(functions: Any) -> None: """Test that initialization does not crash.""" - mapie = SplitMapieRegressor(calibrator=CustomCCP(functions), alpha=0.1) + mapie = SplitCPRegressor(calibrator=CustomCCP(functions), alpha=0.1) mapie.fit(X, y, z=z) mapie.predict(X) @@ -105,7 +105,7 @@ def test_phi_n_attributes(calibrator: CCPCalibrator, n_out_raw: int) -> None: """ Test that the n_in and n_out attributes are corrects """ - mapie = SplitMapieRegressor(calibrator=clone(calibrator), alpha=0.1) + mapie = SplitCPRegressor(calibrator=clone(calibrator), alpha=0.1) mapie.fit(X, y, z=z) assert mapie.calibrator_.n_in == 10 assert mapie.calibrator_.n_out == n_out_raw @@ -113,7 +113,7 @@ def test_phi_n_attributes(calibrator: CCPCalibrator, n_out_raw: int) -> None: def test_invalid_multiplication() -> None: with pytest.raises(ValueError, match="The function used as multiplier "): - mapie = SplitMapieRegressor( + mapie = SplitCPRegressor( calibrator=CustomCCP([lambda X: X])*( lambda X: (X[:, [0, 1]] > 0)), alpha=0.1, @@ -128,7 +128,7 @@ def test_phi_functions_warning() -> None: """ with pytest.warns(UserWarning, match="WARNING: Unknown optional arguments."): - mapie = SplitMapieRegressor( + mapie = SplitCPRegressor( calibrator=CustomCCP([lambda X, d=d: X**d for d in range(4)]), alpha=0.1, ) @@ -148,7 +148,7 @@ def test_phi_functions_error(functions: Any) -> None: for f in functions: # For coverage f(np.ones((10, 1)), np.ones((10, 1))) with pytest.raises(ValueError, match=r"Forbidden required argument."): - mapie = SplitMapieRegressor(calibrator=CustomCCP(functions), alpha=0.1) + mapie = SplitCPRegressor(calibrator=CustomCCP(functions), alpha=0.1) mapie.fit(X, y, z=z) @@ -158,7 +158,7 @@ def test_phi_functions_empty() -> None: required arguments different from 'X', 'y_pred' or 'z' raise an error. """ with pytest.raises(ValueError): - mapie = SplitMapieRegressor(calibrator=CustomCCP([], bias=False), + mapie = SplitCPRegressor(calibrator=CustomCCP([], bias=False), alpha=0.1) mapie.fit(X, y, z=z) @@ -166,7 +166,7 @@ def test_phi_functions_empty() -> None: # ======== PolynomialCCP ========= def test_poly_phi_init() -> None: """Test that initialization does not crash.""" - mapie = SplitMapieRegressor(calibrator=PolynomialCCP(), alpha=0.1) + mapie = SplitCPRegressor(calibrator=PolynomialCCP(), alpha=0.1) mapie.fit(X, y, z=z) @@ -178,7 +178,7 @@ def test_poly_phi_init_other( degree: Any, variable: Any, bias: bool, normalized: bool ) -> None: """Test that initialization does not crash.""" - mapie = SplitMapieRegressor(calibrator=PolynomialCCP( + mapie = SplitCPRegressor(calibrator=PolynomialCCP( degree, variable, bias, normalized), alpha=0.1) mapie.fit(X, y, z=z) @@ -189,7 +189,7 @@ def test_invalid_variable_value(var: Any) -> None: Test that invalid variable value raise error """ with pytest.raises(ValueError): - mapie = SplitMapieRegressor(calibrator=PolynomialCCP(variable=var), + mapie = SplitCPRegressor(calibrator=PolynomialCCP(variable=var), alpha=0.1) mapie.fit(X, y, z=z) @@ -197,7 +197,7 @@ def test_invalid_variable_value(var: Any) -> None: # ======== GaussianCCP ========= def test_gauss_phi_init() -> None: """Test that initialization does not crash.""" - mapie = SplitMapieRegressor(calibrator=GaussianCCP(), alpha=0.1) + mapie = SplitCPRegressor(calibrator=GaussianCCP(), alpha=0.1) mapie.fit(X, y, z=z) @@ -211,7 +211,7 @@ def test_poly_gauss_init_other( points: Any, sigma: Any, random_sigma: Any, bias: bool, normalized: bool ) -> None: """Test that initialization does not crash.""" - mapie = SplitMapieRegressor(calibrator=GaussianCCP( + mapie = SplitCPRegressor(calibrator=GaussianCCP( points, sigma, random_sigma, bias, normalized), alpha=0.1) mapie.fit(X, y, z=z) @@ -224,7 +224,7 @@ def test_invalid_gauss_points(points: Any) -> None: an error """ with pytest.raises(ValueError, match="Invalid `points` argument."): - mapie = SplitMapieRegressor(calibrator=GaussianCCP(points), alpha=0.1) + mapie = SplitCPRegressor(calibrator=GaussianCCP(points), alpha=0.1) mapie.fit(X, y, z=z) @@ -234,7 +234,7 @@ def test_invalid_gauss_points_2() -> None: an error """ with pytest.raises(ValueError, match="There should have as many points"): - mapie = SplitMapieRegressor(calibrator=GaussianCCP( + mapie = SplitCPRegressor(calibrator=GaussianCCP( points=(np.ones((10, 3)), np.ones((8, 3)))), alpha=0.1) mapie.fit(X, y, z=z) @@ -245,7 +245,7 @@ def test_invalid_gauss_points_3() -> None: an error """ with pytest.raises(ValueError, match="The standard deviation 2D array"): - mapie = SplitMapieRegressor(calibrator=GaussianCCP( + mapie = SplitCPRegressor(calibrator=GaussianCCP( points=(np.ones((10, 3)), np.ones((10, 2)))), alpha=0.1) mapie.fit(X, y, z=z) @@ -260,7 +260,7 @@ def test_invalid_gauss_sigma(sigma: Any) -> None: error """ with pytest.raises(ValueError): - mapie = SplitMapieRegressor(calibrator=GaussianCCP(3, sigma), + mapie = SplitCPRegressor(calibrator=GaussianCCP(3, sigma), alpha=0.1) mapie.fit(X, y, z=z) @@ -271,7 +271,7 @@ def test_gauss_need_calib(ind: int) -> None: Test that ``GaussianCCP`` arguments that require later completion have ``_need_x_calib`` = ``True`` """ - mapie = SplitMapieRegressor(calibrator=GaussianCCP( + mapie = SplitCPRegressor(calibrator=GaussianCCP( **GAUSS_NEED_FIT_SETTINGS[ind]), alpha=0.1) mapie.fit(X, y, z=z) check_is_fitted(mapie.calibrator_, mapie.calibrator_.fit_attributes) @@ -283,7 +283,7 @@ def test_gauss_no_need_calib(ind: int) -> None: Test that ``GaussianCCP`` arguments that don't require later completion have ``_need_x_calib`` = ``False`` """ - mapie = SplitMapieRegressor(calibrator=GaussianCCP( + mapie = SplitCPRegressor(calibrator=GaussianCCP( **GAUSS_NEED_FIT_SETTINGS[ind]), alpha=0.1) mapie.fit(X, y, z=z) check_is_fitted(mapie.calibrator_, mapie.calibrator_.fit_attributes) diff --git a/mapie/tests/test_futur_regression.py b/mapie/tests/test_futur_regression.py index e9792091d..a8b98f03a 100644 --- a/mapie/tests/test_futur_regression.py +++ b/mapie/tests/test_futur_regression.py @@ -23,7 +23,7 @@ GammaConformityScore, ResidualNormalisedScore) from mapie.metrics import regression_coverage_score -from mapie.regression import SplitMapieRegressor +from mapie.regression import SplitCPRegressor from mapie.calibrators.ccp import (CCPCalibrator, CustomCCP, GaussianCCP, PolynomialCCP) @@ -49,31 +49,31 @@ ] WIDTHS = { "split": 3.87, - "prefit": 4.81, + "prefit": 5.768691, } COVERAGES = { "split": 0.952, - "prefit": 0.980, + "prefit": 1, } # ======== MapieCCPRegressor ========= def test_initialized() -> None: """Test that initialization does not crash.""" - SplitMapieRegressor(alpha=0.1) + SplitCPRegressor(alpha=0.1) def test_fit_predictor() -> None: """Test that fit_predictor raises no errors.""" - mapie_reg = SplitMapieRegressor(alpha=0.1) + mapie_reg = SplitCPRegressor(alpha=0.1) mapie_reg.fit_predictor(X_toy, y_toy) @pytest.mark.parametrize("z", [None, z_toy]) def test_fit_calibrator(z: Any) -> None: """Test that fit_calibrator raises no errors.""" - mapie_reg = SplitMapieRegressor(alpha=0.1) + mapie_reg = SplitCPRegressor(alpha=0.1) mapie_reg.fit_predictor(X_toy, y_toy) mapie_reg.fit_calibrator(X_toy, y_toy, z=z) @@ -81,14 +81,14 @@ def test_fit_calibrator(z: Any) -> None: @pytest.mark.parametrize("z", [None, z_toy]) def test_fit(z: Any) -> None: """Test that fit raises no errors.""" - mapie_reg = SplitMapieRegressor(alpha=0.1) + mapie_reg = SplitCPRegressor(alpha=0.1) mapie_reg.fit(X_toy, y_toy, z=z) @pytest.mark.parametrize("z", [None, z_toy]) def test_fit_predictor_fit_calibrator_predict(z: Any) -> None: """Test that fit-calibrate-predict raises no errors.""" - mapie_reg = SplitMapieRegressor(alpha=0.1) + mapie_reg = SplitCPRegressor(alpha=0.1) mapie_reg.fit_predictor(X_toy, y_toy) mapie_reg.fit_calibrator(X_toy, y_toy, z=z) mapie_reg.predict(X_toy, z=z) @@ -97,7 +97,7 @@ def test_fit_predictor_fit_calibrator_predict(z: Any) -> None: @pytest.mark.parametrize("z", [None, z_toy]) def test_fit_predict(z: Any) -> None: """Test that fit-predict raises no errors.""" - mapie_reg = SplitMapieRegressor(alpha=0.1) + mapie_reg = SplitCPRegressor(alpha=0.1) mapie_reg.fit(X_toy, y_toy, z=z) mapie_reg.predict(X_toy, z=z) @@ -105,14 +105,14 @@ def test_fit_predict(z: Any) -> None: @pytest.mark.parametrize("z", [None, z_toy]) def test_fit_predict_reg(z: Any) -> None: """Test that fit-predict raises no errors.""" - mapie_reg = SplitMapieRegressor(alpha=0.1) + mapie_reg = SplitCPRegressor(alpha=0.1) mapie_reg.fit(X_toy, y_toy, z=z, reg_param=0.1) mapie_reg.predict(X_toy, z=z) def test_not_fitted_predictor_fit_calibrator() -> None: """Test that calibrate before fit raises errors.""" - mapie_reg = SplitMapieRegressor(alpha=0.1) + mapie_reg = SplitCPRegressor(alpha=0.1) with pytest.raises(NotFittedError): mapie_reg.fit_calibrator(X_toy, y_toy) @@ -120,7 +120,7 @@ def test_not_fitted_predictor_fit_calibrator() -> None: def test_calib_not_complete_phi() -> None: """Test that a not complete calibrator definition raises a warning""" with pytest.warns(UserWarning, match="WARNING: At least one row of the"): - mapie_reg = SplitMapieRegressor( + mapie_reg = SplitCPRegressor( alpha=0.1, calibrator=CustomCCP([lambda X: (X < 5).astype(int)], bias=False) ) @@ -130,7 +130,7 @@ def test_calib_not_complete_phi() -> None: def test_predict_not_complete_phi() -> None: """Test that a not complete calibrator definition raises a warning""" with pytest.warns(UserWarning, match="WARNING: At least one row of the"): - mapie_reg = SplitMapieRegressor( + mapie_reg = SplitCPRegressor( alpha=0.1, calibrator=CustomCCP([lambda X: (X < 5).astype(int)], bias=False) ) @@ -140,14 +140,14 @@ def test_predict_not_complete_phi() -> None: def test_no_fit_predict() -> None: """Test that predict before fit raises errors.""" - mapie_reg = SplitMapieRegressor(alpha=0.1) + mapie_reg = SplitCPRegressor(alpha=0.1) with pytest.raises(NotFittedError): mapie_reg.predict(X_toy) def test_no_calibrate_predict() -> None: """Test that predict before fit raises errors.""" - mapie_reg = SplitMapieRegressor(alpha=0.1) + mapie_reg = SplitCPRegressor(alpha=0.1) mapie_reg.fit_predictor(X_toy, y_toy) with pytest.raises(NotFittedError): mapie_reg.predict(X_toy) @@ -155,7 +155,7 @@ def test_no_calibrate_predict() -> None: def test_default_sample_weight() -> None: """Test default sample weights.""" - mapie_reg = SplitMapieRegressor(alpha=0.1) + mapie_reg = SplitCPRegressor(alpha=0.1) assert ( signature(mapie_reg.fit_predictor).parameters["sample_weight"].default is None @@ -168,7 +168,7 @@ def test_invalid_predictor( ) -> None: """Test that invalid predictors raise errors.""" with pytest.raises(ValueError, match=r".*Invalid estimator.*"): - mapie = SplitMapieRegressor(predictor=predictor, alpha=0.1) + mapie = SplitCPRegressor(predictor=predictor, alpha=0.1) mapie.fit_predictor(X, y) @@ -182,7 +182,7 @@ def test_invalid_prefit_predictor_calibrate( """Test that non-fitted predictor with prefit cv raise errors when calibrate is called""" with pytest.raises(NotFittedError): - mapie = SplitMapieRegressor(predictor=predictor, cv="prefit", + mapie = SplitCPRegressor(predictor=predictor, cv="prefit", alpha=0.1) mapie.fit_calibrator(X, y) @@ -197,14 +197,14 @@ def test_invalid_prefit_predictor_fit( """Test that non-fitted predictor with prefit cv raise errors when fit is called.""" with pytest.raises(NotFittedError): - mapie = SplitMapieRegressor(predictor=predictor, cv="prefit", + mapie = SplitCPRegressor(predictor=predictor, cv="prefit", alpha=0.1) mapie.fit_predictor(X, y) def test_default_parameters() -> None: """Test default values of input parameters.""" - mapie_reg = SplitMapieRegressor(random_state=random_state, alpha=0.1) + mapie_reg = SplitCPRegressor(random_state=random_state, alpha=0.1) mapie_reg.fit(X, y) assert isinstance(mapie_reg.predictor_, RegressorMixin) assert isinstance(mapie_reg.calibrator_, GaussianCCP) @@ -219,7 +219,7 @@ def test_default_parameters() -> None: ) def test_invalid_alpha(alpha: Any) -> None: with pytest.raises(ValueError): - mapie = SplitMapieRegressor(alpha=alpha) + mapie = SplitCPRegressor(alpha=alpha) mapie.fit(X, y) @@ -228,13 +228,13 @@ def test_invalid_alpha(alpha: Any) -> None: ) def test_invalid_phi(calibrator: Any) -> None: with pytest.raises(ValueError): - mapie = SplitMapieRegressor(calibrator=calibrator) + mapie = SplitCPRegressor(calibrator=calibrator) mapie.fit(X, y) def test_valid_predictor() -> None: """Test that valid predictors are not corrupted""" - mapie_reg = SplitMapieRegressor( + mapie_reg = SplitCPRegressor( predictor=DummyRegressor(), random_state=random_state, alpha=0.1, @@ -256,7 +256,7 @@ def test_valid_predictor() -> None: def test_valid_cv(cv: Any, predictor: RegressorMixin) -> None: """Test that valid cv raise no errors.""" predictor.fit(X_toy, y_toy) - mapie_reg = SplitMapieRegressor(predictor, CustomCCP(bias=True), cv=cv, + mapie_reg = SplitCPRegressor(predictor, CustomCCP(bias=True), cv=cv, alpha=0.1, random_state=random_state) mapie_reg.fit(X_toy, y_toy) mapie_reg.predict(X_toy) @@ -274,7 +274,7 @@ def test_valid_cv(cv: Any, predictor: RegressorMixin) -> None: def test_invalid_cv(cv: Any) -> None: """Test that invalid agg_functions raise errors.""" with pytest.raises(ValueError, match="Invalid cv argument."): - mapie = SplitMapieRegressor(cv=cv, alpha=0.1, + mapie = SplitCPRegressor(cv=cv, alpha=0.1, random_state=random_state) mapie.fit_predictor(X, y) @@ -301,12 +301,12 @@ def test_fit_calibrate_combined_equivalence( predictor_2.fit(X, y) np.random.seed(random_state) - mapie_1 = SplitMapieRegressor( + mapie_1 = SplitCPRegressor( predictor=predictor_1, calibrator=calibrator, cv=cv, alpha=alpha, random_state=random_state ) np.random.seed(random_state) - mapie_2 = SplitMapieRegressor( + mapie_2 = SplitCPRegressor( predictor=predictor_2, calibrator=calibrator, cv=cv, alpha=alpha, random_state=random_state ) @@ -336,7 +336,7 @@ def test_predict_output_shape_alpha( if cv == "prefit": predictor.fit(X, y) - mapie_reg = SplitMapieRegressor( + mapie_reg = SplitCPRegressor( predictor=predictor, calibrator=calibrator, cv=cv, alpha=0.1, random_state=random_state ) @@ -362,7 +362,7 @@ def test_predict_output_shape_no_alpha( if cv == "prefit": predictor.fit(X, y) - mapie_reg = SplitMapieRegressor( + mapie_reg = SplitCPRegressor( predictor=predictor, calibrator=calibrator, cv=cv, alpha=None, random_state=random_state ) @@ -403,13 +403,13 @@ def test_same_results_prefit_split( if isinstance(calibrator, GaussianCCP): calibrator.points = (calibrator.points_, calibrator.sigmas_) - mapie_1 = SplitMapieRegressor( + mapie_1 = SplitCPRegressor( clone(predictor), clone(calibrator), pred_cv, alpha=0.1, random_state=random_state, ) fitted_predictor = clone(predictor).fit(X_train, y_train) - mapie_2 = SplitMapieRegressor( + mapie_2 = SplitCPRegressor( fitted_predictor, clone(calibrator), cv="prefit", alpha=0.1, random_state=random_state, ) @@ -446,9 +446,9 @@ def test_results_for_ordered_alpha( calibrator.fit_params(X) - mapie_reg_1 = SplitMapieRegressor(predictor, clone(calibrator), cv=cv, + mapie_reg_1 = SplitCPRegressor(predictor, clone(calibrator), cv=cv, alpha=0.05, random_state=random_state) - mapie_reg_2 = SplitMapieRegressor(predictor, clone(calibrator), cv=cv, + mapie_reg_2 = SplitCPRegressor(predictor, clone(calibrator), cv=cv, alpha=0.1, random_state=random_state) mapie_reg_1.fit(X, y, z=z) @@ -484,11 +484,11 @@ def test_results_with_constant_sample_weights( calibrator.init_value = calibrator.init_value_ n_samples = len(X) - mapie0 = SplitMapieRegressor(predictor, clone(calibrator), + mapie0 = SplitCPRegressor(predictor, clone(calibrator), cv=cv, alpha=0.1, random_state=random_state) - mapie1 = SplitMapieRegressor(predictor, clone(calibrator), + mapie1 = SplitCPRegressor(predictor, clone(calibrator), cv=cv, alpha=0.1, random_state=random_state) - mapie2 = SplitMapieRegressor(predictor, clone(calibrator), + mapie2 = SplitCPRegressor(predictor, clone(calibrator), cv=cv, alpha=0.1, random_state=random_state) mapie0.fit(X, y, z=z, sample_weight=None) @@ -528,7 +528,7 @@ def test_prediction_between_low_up( if cv == "prefit": predictor.fit(X, y) - mapie = SplitMapieRegressor(predictor=predictor, calibrator=calibrator, + mapie = SplitCPRegressor(predictor=predictor, calibrator=calibrator, cv=cv, alpha=alpha, random_state=random_state) mapie.fit(X, y, z=z) @@ -569,7 +569,7 @@ def test_linear_data_confidence_interval( if cv == "prefit": predictor.fit(X_toy, y_toy) - mapie = SplitMapieRegressor(predictor, clone(calibrator), cv=cv, + mapie = SplitCPRegressor(predictor, clone(calibrator), cv=cv, alpha=alpha, random_state=random_state) mapie.fit(X_toy, y_toy, z=z_toy) @@ -588,7 +588,7 @@ def test_linear_regression_results() -> None: CP method (base, jacknife and cv) """ - mapie = SplitMapieRegressor( + mapie = SplitCPRegressor( calibrator=clone(PHI[0]), cv=ShuffleSplit(n_splits=1, test_size=0.5, random_state=random_state), alpha=0.05, @@ -616,7 +616,7 @@ def test_results_prefit(predictor: RegressorMixin) -> None: X_train_val, y_train_val, test_size=1 / 9, random_state=1 ) predictor.fit(X_train, y_train) - mapie_reg = SplitMapieRegressor( + mapie_reg = SplitCPRegressor( predictor=predictor, calibrator=clone(PHI[0]), cv="prefit", alpha=0.05, random_state=random_state ) @@ -651,7 +651,7 @@ def test_conformity_score( if cv == "prefit": predictor.fit(X, y + 1e3) - mapie_reg = SplitMapieRegressor( + mapie_reg = SplitCPRegressor( predictor=predictor, calibrator=calibrator, cv=cv, @@ -671,7 +671,7 @@ def test_fit_parameters_passing() -> None: """ gb = GradientBoostingRegressor(random_state=random_state) - mapie_reg = SplitMapieRegressor(predictor=gb, alpha=0.1, + mapie_reg = SplitCPRegressor(predictor=gb, alpha=0.1, random_state=random_state) def early_stopping_monitor(i, est, locals): diff --git a/mapie/utils.py b/mapie/utils.py index 9b7d192bf..06ccf5611 100644 --- a/mapie/utils.py +++ b/mapie/utils.py @@ -12,7 +12,7 @@ from sklearn.utils import _safe_indexing from sklearn.utils.multiclass import type_of_target from sklearn.utils.validation import (_check_sample_weight, _num_features, - _check_y, check_is_fitted, + _check_y, check_is_fitted, _num_samples, column_or_1d, indexable) from ._compatibility import np_quantile @@ -117,6 +117,8 @@ def _sample_non_null_weight( - Optional[NDArray] of sample_weight - ArrayLike of index of non-null weights """ + if _num_samples(index) == 0: + return np.array([]), np.array([]), np.array([]), np.array([]), index X_select = _safe_indexing(X, index) y_select = _safe_indexing(y, index) z_select = _safe_indexing(z, index) if z is not None else None @@ -133,7 +135,8 @@ def _sample_non_null_weight( y_select = _check_y(y_select) if sample_weight_select is not None: - sample_weight_select = _check_sample_weight(sample_weight_select, X) + sample_weight_select = _check_sample_weight(sample_weight_select, + X_select) non_null_weight = sample_weight_select != 0 X_select = _safe_indexing(X_select, non_null_weight) y_select = _safe_indexing(y_select, non_null_weight) From 328130c9acc024b4c02fd112e6549a319de81c41 Mon Sep 17 00:00:00 2001 From: Damien Bouet Date: Sat, 15 Jun 2024 00:15:54 +0200 Subject: [PATCH 054/165] ADD: demo notebook CCP Regression --- notebooks/ccp_regression_demo.ipynb | 770 ++++++++++++++++++++++++++++ 1 file changed, 770 insertions(+) create mode 100644 notebooks/ccp_regression_demo.ipynb diff --git a/notebooks/ccp_regression_demo.ipynb b/notebooks/ccp_regression_demo.ipynb new file mode 100644 index 000000000..3be54b726 --- /dev/null +++ b/notebooks/ccp_regression_demo.ipynb @@ -0,0 +1,770 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "84586a93", + "metadata": {}, + "source": [ + "# Using ``SplitCPRegressor`` to get adaptative prediction intervals" + ] + }, + { + "cell_type": "markdown", + "id": "7d3cf90e", + "metadata": {}, + "source": [ + "[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/scikit-learn-contrib/MAPIE/blob/master/notebooks/regression/exoplanets.ipynb)" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "15c8f6a0", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Requirement already satisfied: mapie in /Users/damien.brouet/Documents/Repo Mapie/MAPIE (0.8.3)\n", + "Requirement already satisfied: scikit-learn in /opt/miniconda3/envs/mapie_env/lib/python3.8/site-packages (from mapie) (1.3.2)\n", + "Requirement already satisfied: scipy in /opt/miniconda3/envs/mapie_env/lib/python3.8/site-packages (from mapie) (1.10.1)\n", + "Requirement already satisfied: numpy>=1.21 in /opt/miniconda3/envs/mapie_env/lib/python3.8/site-packages (from mapie) (1.22.3)\n", + "Requirement already satisfied: packaging in /opt/miniconda3/envs/mapie_env/lib/python3.8/site-packages (from mapie) (23.2)\n", + "Requirement already satisfied: joblib>=1.1.1 in /opt/miniconda3/envs/mapie_env/lib/python3.8/site-packages (from scikit-learn->mapie) (1.3.2)\n", + "Requirement already satisfied: threadpoolctl>=2.0.0 in /opt/miniconda3/envs/mapie_env/lib/python3.8/site-packages (from scikit-learn->mapie) (3.3.0)\n" + ] + } + ], + "source": [ + "install_mapie = True\n", + "if install_mapie:\n", + " !pip install mapie" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "c5438c1b", + "metadata": {}, + "outputs": [], + "source": [ + "import warnings\n", + "\n", + "import matplotlib.colors as mcolors\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "from mapie.calibrators import CustomCCP, GaussianCCP, PolynomialCCP\n", + "from mapie.calibrators.ccp import CCPCalibrator\n", + "from mapie.conformity_scores import AbsoluteConformityScore\n", + "from mapie.regression import MapieQuantileRegressor, MapieRegressor, SplitCPRegressor\n", + "import seaborn as sns\n", + "from scipy.stats import norm\n", + "from sklearn.linear_model import LinearRegression, QuantileRegressor\n", + "from sklearn.model_selection import PredefinedSplit, ShuffleSplit\n", + "from sklearn.pipeline import Pipeline\n", + "from sklearn.preprocessing import PolynomialFeatures\n", + "\n", + "warnings.filterwarnings(\"ignore\")\n", + "\n", + "random_state = 1\n", + "np.random.seed(random_state)\n" + ] + }, + { + "cell_type": "markdown", + "id": "69c9e9b0", + "metadata": {}, + "source": [ + "## 1. Data generation" + ] + }, + { + "cell_type": "markdown", + "id": "7999c773", + "metadata": {}, + "source": [ + "Let's start by creating some synthetic data with different domains and distributions to evaluate the adaptativity of the methods\n", + "\n", + "- baseline distribution of ``x*sin(x)``\n", + "- Add noise :\n", + " - between -1 and 0: uniform distribution of the points around the baseline\n", + " - between 0 and 5: normal distribution with a noise value which increase with ``x``" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "6aa6ee6d", + "metadata": {}, + "outputs": [], + "source": [ + "ALPHA = 0.1" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "8184e7fe", + "metadata": {}, + "outputs": [], + "source": [ + "def x_sinx(x):\n", + " \"\"\"One-dimensional x*sin(x) function.\"\"\"\n", + " return x*np.sin(x)\n", + "\n", + "def get_1d_data_with_heteroscedastic_noise(\n", + " funct, min_x, max_x, n_samples, noise, power\n", + "):\n", + " \"\"\"\n", + " Generate 1D noisy data uniformely from the given function\n", + " and standard deviation for the noise.\n", + " \"\"\"\n", + " # np.random.seed(59)\n", + " X = np.linspace(min_x, max_x, n_samples)\n", + " np.random.shuffle(X)\n", + "\n", + " y = (\n", + " funct(X) +\n", + " (np.random.normal(0, noise, len(X)) * ((X)/max_x)**power*max_x)+\n", + " (np.random.uniform(-noise*3, noise*3, len(X))) * (X<0)\n", + " )\n", + "\n", + " true_pi = np.hstack([x_sinx(X).reshape(-1, 1)]*2)\n", + " true_pi[X<0,0] += noise*3*(1-ALPHA) \n", + " true_pi[X<0,1] -= noise*3*(1-ALPHA)\n", + " true_pi[X>=0,0] += norm.ppf(1 - ALPHA/2)* noise * ((X[X>=0])/max_x)**power*max_x\n", + " true_pi[X>=0,1] -= norm.ppf(1 - ALPHA/2)* noise * ((X[X>=0])/max_x)**power*max_x\n", + "\n", + " return X.reshape(-1, 1), y, true_pi\n", + "\n", + "\n", + "def generate_data(n_train=10000, n_test=4000, noise=0.8, power=2):\n", + " X, y, true_pi = get_1d_data_with_heteroscedastic_noise(x_sinx, -1, 5, n_train + n_test, noise, power)\n", + " indexes = list(range(len(X)))\n", + " train_indexes = np.random.choice(indexes, n_train)\n", + " indexes = list(set(indexes) - set(train_indexes))\n", + " test_indexes = np.random.choice(indexes, n_test)\n", + " \n", + " return X[train_indexes,:], y[train_indexes], X[test_indexes,:], y[test_indexes], true_pi[train_indexes,:], true_pi[test_indexes,:]" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "fe89b2d3", + "metadata": {}, + "outputs": [], + "source": [ + "X_train, y_train, X_test, y_test, train_pi, test_pi = generate_data()" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "afb83741", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAksAAAHHCAYAAACvJxw8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd5xdZZ3/3+ece24v0/tkUia9ERISCJggIE3A7qKoC7qui+Lqqujq6irL/nTXrugilgVXxYJ0BEINgQRI72Vqptc7t9dz7jm/P87MzUwyMykEMoTn/XrlNZm595zznFue5/N8q2SapolAIBAIBAKBYFzkMz0AgUAgEAgEgqmMEEsCgUAgEAgEkyDEkkAgEAgEAsEkCLEkEAgEAoFAMAlCLAkEAoFAIBBMghBLAoFAIBAIBJMgxJJAIBAIBALBJAixJBAIBAKBQDAJQiwJBAKBQCAQTIIQSwKBQCAQCASTIMSSQCA4K7nnnnuQJCn/z+l0UlVVxRVXXMFPf/pTYrHYKZ1306ZNfOtb3yIcDp/eAQsEgimLEEsCgeCs5j/+4z/43e9+x5133slnP/tZAD7/+c+zePFidu/efdLn27RpE7fddpsQSwLBWwjbmR6AQCAQvJ5cddVVrFixIv/7V7/6VZ577jmuueYarrvuOg4cOIDL5TqDIxQIBFMdYVkSCARvOS655BK+8Y1v0NbWxu9//3sAdu/ezY033sjMmTNxOp1UVFTw8Y9/nGAwmD/uW9/6FrfeeisAM2bMyLv4Dh8+DMDdd9/NJZdcQllZGQ6HgwULFnDnnXe+4fcnEAhOL8KyJBAI3pJ89KMf5Wtf+xpPPfUUn/zkJ3n66adpaWnhpptuoqKign379vHLX/6Sffv28corryBJEu9973tpaGjgj3/8Iz/60Y8oKSkBoLS0FIA777yThQsXct1112Gz2Xj00Uf59Kc/jWEYfOYznzmTtysQCF4Dkmma5pkehEAgEJxu7rnnHm666Sa2bNkyxg03moKCAmbOnMn27dtJpVLHuOP+9Kc/8aEPfYgNGzbwtre9DYDvf//73HrrrbS2tjJ9+vQxzx/vHFdeeSWNjY00NzefvpsTCARvKMINJxAI3rJ4vd58VtxokZNOpxkcHOT8888HYPv27Sd0vtHniEQiDA4OsnbtWlpaWohEIqdx5AKB4I1EiCWBQPCWJR6P4/P5ABgaGuJzn/sc5eXluFwuSktLmTFjBsAJC52NGzdy2WWX4fF4KCgooLS0lK997WsndQ6BQDD1EDFLAoHgLUlnZyeRSIT6+noAPvjBD7Jp0yZuvfVWzjnnHLxeL4ZhcOWVV2IYxnHP19zczKWXXsq8efP44Q9/SG1tLXa7nccff5wf/ehHJ3QOgUAwNRFiSSAQvCX53e9+B8AVV1xBKBTi2Wef5bbbbuPf//3f889pbGw85jhJksY936OPPkomk+GRRx5h2rRp+b8///zzp3nkAoHgjUa44QQCwVuO5557jttvv50ZM2Zwww03oCgKAEfnu/z4xz8+5liPxwNwTFHK8c4RiUS4++67T+PIBQLBmUBYlgQCwVnNE088wcGDB9F1nb6+Pp577jmefvpp6urqeOSRR3A6nTidTtasWcN3v/tdNE2jurqap556itbW1mPOt3z5cgD+7d/+jeuvvx5VVbn22mu5/PLLsdvtXHvttXzqU58iHo/zq1/9irKyMnp6et7o2xYIBKcRIZYEAsFZzYhbzW63U1RUxOLFi/nxj3/MTTfdlA/uBrj33nv57Gc/y89//nNM0+Tyyy/niSeeoKqqasz5zjvvPG6//XZ+8Ytf8OSTT2IYBq2trcydO5e//vWvfP3rX+dLX/oSFRUV3HzzzZSWlvLxj3/8Db1ngUBwehF1lgQCgUAgEAgmQcQsCQQCgUAgEEyCEEsCgUAgEAgEkyDEkkAgEAgEAsEkCLEkEAgEAoFAMAlCLAkEAoFAIBBMghBLAoFAIBAIBJMg6iydBgzDoLu7G5/PN2ErBIFAIBAIBFML0zSJxWJUVVUhyxPbj4RYOg10d3dTW1t7pochEAgEAoHgFOjo6KCmpmbCx4VYOg2MVAHu6OjA7/ef4dEIBAKBQCA4EaLRKLW1tWOq+Y+HEEungRHXm9/vF2JJIBAIBII3GccLoREB3gKBQCAQCASTIMSSQCAQCAQCwSQIsSQQCAQCgUAwCUIsCQQCgUAgEEyCEEsCgUAgEAgEkyDEkkAgEAgEAsEkCLEkEAgEAoFAMAlCLAkEAoFAIBBMghBLAoFAIBAIBJMgxJJAIBAIBALBJAixJBAIBAKBQDAJQiwJBAKBQCAQTIIQSwKBQCAQnCVEkhr7uiNEktqZHspZhe1MD0AgEAgEAsFrJ5LUuPOFJtqCSeqK3dy8tp6AWz3TwzorEJYlgUAgEAjOAjrDSdqCSSr8TtqCSTrDyTM9pLMGIZYEAoFAIDgLqClwU1fspjeapq7YTU2B+0wP6axBuOEEAoFAIDgLCLhVbl5bT2c4SU2BW7jgTiNCLAkEAoFAcJYQcKsE3IEzPYyzDuGGEwgEAoFAIJgEIZYEAoFAMCXpCCZ5ZFcXHUERqCw4swg3nEAgEAimHB3BJJ/903Z6ImkqA07uuP5caotFwLLgzCAsSwKBQCCYcuzoDNETSVPsttMTSbOjM3SmhyR4CyPEkkAgEAimHMtqCqkMOAkms1QGnCyrKTzTQxK8hRFuOIFAIBBMOWqL3dxx/bns6AyxrKZQuOAEZxQhlgQCgUAwJaktdguRJJgSCDecQCAQCAQCwSQIsSQQCAQCgeCEiSQ19nVHiCS1Mz2UNwzhhhMIBAKBQHBCRJIad77QRFswSV2xm5vX1r8l2qqcVZalb33rW0iSNObfvHnzJj3mvvvuY968eTidThYvXszjjz/+Bo1WIBAIBG8GRHHMI3SGk7QFk1T4nbQFk3SG3xqvyVkllgAWLlxIT09P/t9LL7004XM3bdrEhz70IT7xiU+wY8cO3v3ud/Pud7+bvXv3voEjFggEAsFUZaQ45v/72wE++6ftb3nBVFPgpq7YTW80TV2xm5qCt0YA/lnnhrPZbFRUVJzQc3/yk59w5ZVXcuuttwJw++238/TTT/Ozn/2MX/ziF6/nMAUCgUDwJmC84phv5Qy9gFvl5rX1dIaT1BS43xIuODgLLUuNjY1UVVUxc+ZMbrjhBtrb2yd87ssvv8xll1025m9XXHEFL7/88qTXyGQyRKPRMf8EAoFAcPYhimMeS8CtsrAq8JYRSnCWWZZWrVrFPffcw9y5c+np6eG2227jbW97G3v37sXn8x3z/N7eXsrLy8f8rby8nN7e3kmv853vfIfbbrvttI5dIBAIBFMPURxTAGeZWLrqqqvy/1+yZAmrVq2irq6Ov/zlL3ziE584bdf56le/yhe+8IX879FolNra2tN2foFAIBAcn0hSe0PcQaI4puCsEktHU1BQwJw5c2hqahr38YqKCvr6+sb8ra+v77gxTw6HA4fDcdrGKRAIBIKT462awi44M5x1MUujicfjNDc3U1lZOe7jF1xwAc8+++yYvz399NNccMEFb8TwBAKBQHCKvFVT2AVnhrNKLH3pS1/ihRde4PDhw2zatIn3vOc9KIrChz70IQA+9rGP8dWvfjX//M997nM8+eST/OAHP+DgwYN861vfYuvWrdxyyy1n6hYEAoFAcAK8VVPYBWeGs8oN19nZyYc+9CGCwSClpaVcdNFFvPLKK5SWlgLQ3t6OLB/Rh6tXr+bee+/l61//Ol/72teYPXs2Dz30EIsWLTpTtyAQCASCE2Aqp7C/UbFUgjcOyTRN80wP4s1ONBolEAgQiUTw+/1nejgCgUBwRnkriwURS/Xm4kTX77PKsiQQCASCM8tbXSyMF0sVcAfO9LAEr5GzKmZJIBAIBGN5ozvEv9UDr0Us1dmJsCwJBALBWcqZsPKMiIWRa77VxMJUjqUSnDpCLAkEAsFZyplwCb0WsXC2xDoF3KpwvZ1lCLEkEAgEZylnyspzKmLhrR7rJJjaCLEkEAgEZylvJpeQCIwWTGVEgLdAIBC8STiVYO0z1SH+ZMcqAqPPPB3BJI/s6qIj+NYKyj8RhGVJIBAI3gS8GdxUHcEkOzpD1Jd4eWR390mN9c1kBTudTJU4rY5gks/+aTs9kTSVASd3XH+uaB48CiGWBAKBYApy9CI61d1UoxfbgEulMuBkZon3pMb6VguMPlEB/EYIqh2dIXoiaYrddnoiaXZ0hoRYGoUQSwKBQDDFGG8Rneop+aMX28FEhmlFrlN2qU0Va8vrzYkI4OMJqtf6Wo1YA8u9TioDzrxlaVlN4Wu+v7MJIZYEAoFgijHeIrqwKjCl3VTLagrzi21VgYsvXDYXU+KUygdMdXfj6eJEBPBkguq1vlZHu96+euV8+uJpltUUCqvSUQixJBAIBJNwJqwcEy2iU9lNVVvs5o7rz2VHZ2jMYjsS6H2ir9/xrC0jlpCjrzFVReRknEic1mSC6rW6Zo92vfXF01y3tPq03NvZhhBLAoFAMAFnyspxosHOU00k1Ba7x1gkTuX1m0wcjBeE7Hepb2pL1PEE8GSfhdfqmh1tDRzP9TbVPl9nEiGWBAKBYALOZFC1tTi5h3urHbtYTSREpsoCF0lqvNDYT1N/nNpC96QxOaPHO5k4GC8IeVapd0oHvp8OJhJUrzWDcCJrILy13KEnghBLAoFAMAF+h4qqSOzvibKg0v+6B1WPFg7ApIvV+A1r3VNigRtZaJv64wzGMwDUl3mPef0mWpAnEgfLagop8zrojqSoCrhYVlOI36VO6cD315vX6po92ho4wlTPvnyjEWJJIBAIxiGS1Pjfja3s7AijGyazSk//Ijw6/uZod9LFc8smXazGc8FMJKDeaEvTyDhqC63X7Lpzqlg7u+yY65/sgux3qSyu8SPLEgurfPhdk1uiBKfOVM++fKMRYkkgEAjGoTOcpKEvhgSoskxbMDWpG8nvUIlmtBNesI+Ov7nlktljhIMEk8bu7OgMcd2SqqMyzsYucH7HmYnnGb3QlvnspDI5ointmGuf7ILcGU4SSuqcO62Q3mg6/35M5cD3NytTRYROFbeyEEsCgUAwDjUFbuaU++iOpACJOeUTu5FG3E0lXgf1Zd4TEiVHx98EY5kxwmFehZ95Ff5jForxgpxHHjt6gTtTrpSRcWxpG+InTzfw7MEB/ril/Ziq0JMtyOMtksLa8cZypkXoVIqbEmJJIBAIxiHgVvn8ZXO4clEFJjC/wj+hG8ltV+iJpKkrmjiQeYSJigCunlXClYsqjxEIR59nRGQFnCodQ0k2Ng9yffG0MeM+cswRcVHhdxJL60SSx1p4Xg8CbpVkVqc/npm0KvR4C/JksUxTwdohGMt45RxOB1MpbkqIJYFAIJiAgFtl1cziCR8fsXQ09cepDDhJZHNjApmPXkROpAjg8RaDkSDn5sEEqiyxuzPMVYsqxxUOI+LiYG+UJ/f28NtNhyfcoY9YciQTmgbjp2XhO15q+kRMtkieaWvHW43jCaHXs6fcVLIkCrEkEAgEkzBZzMRoS8fRMUvjLSInWgRwsmvWFrv5/Dvm8NNnG5ld5iU0/NyJBETAreJ12uiNZiYt9PiT5xroCadp7I9hAuV+J1+4dA7LpxedsgVnstT0yRhvkXy9rBdvZk41Xu5EOREh9Hr2lJtKlkQhlgQCgWACTiRmYiJLx3iLyESWlpMpGQCwoq6IC2YVj7vj3t8VYX1jPxfPLmNBtTWuyXbokaTGT55r4MXGQVRFIpzUqPQ7aRlI8JPnG7lgZvFr6kc2UWr6ZBy9SEZT2utmvZiKnMjr+1ri5U6UExFCp2o9PFGmiiVRiCWBQPCWZyKrxYHeKHs6I3mhcTIxE/UlXgIulYFEhuoCV/7coy0tsbTGD586RHc4RSKbo67YzdrZJTR1D1HsgH0NvfwxO0j7QIi1C+q4YvVSwFpALinXCPplZlZ4iMVitA9JJDMGn/3TdiIpjXs2HuaeG1eyoDow6Q69M5xkIJbB57AxmMjgUBVC6SyqIjGn1DfmviNJLe/S641mXteg29GL5AuN/a+b9WKqcaJBzacSL3eynIgQOlXr4ZsNIZamOPu7Iqzb18vMMi8Xzzm2TslkO5CpknIpEExlJnI1RJIa6/b20h1J0R1Jc/GckhOOmYgkNR7Z3U1VwEVtkZtPXjiD9p4+Wg4OEBropq2tjQcPNLG+T8W24DIk4LLZBXzzfWvJphJjzvX74Z//M+c8Nj33dN5a9Pa3XUAymRzzXMXuBNWJt24xvOdfWd/Yz4LqAD//+c/xeDxI3lIe0D0smjWDnkSWi2eX4XeqRFIawWSGnAEzSzwUuFVKvU7iWT1fguCVliDr9vbS0BejO5LmgplFJ7w4j4jR+hLvKTXXfb2tF1OJEw1qPl683OnA71K55ZLZBGMZVs8qmVAInYr18M2GEEtTmP1dEf7+7s0EE1kUWeKqhRXc/u7F+Ulmsh3IVEq5FAimEkdbkSZyNXSGk/RG06yeWczhYJIrh4OoJ9uEpNNpIpEIgzknTf1xnGaaP3/94/xuoBstkzpmLJ7ZK5m19ApiGZ2mIQ3TyI15XFFVTMWOrNgx7N68+AEoLi5GURTi8TimaQKQy6Yhm0ZLJ3DbbSyvLWJ/V4Rbv/JVUonYkRNLMjZ/Ka7iSt55+SUEzvsgXruNvmiGREan1OfgAytq8Dpt+B0qf9jcxp7OCN2RFCumWSJp6+EQK6YXHndxHhGj3WHr/udX+plf6T+pOWmyJr1v1g3hRGM/nst09DETxcudrvGNXkOuXFR5Ws77ZkWIpSnMwzu7aXn2XnJaBteslTwjGVQGXHzk/Lr8ZD7RDmQqpVwKBGeK42Wj3XH9uRNaLUYvWotrAlQFXDy6o4u/7uhEyxmUOE3WFiXpaNzLtm3b2Lp1Kw0NDVx77bXc8Zt7GYxn6A5niA/2og8LJZe/iKraaTgCpeQ8xcTctaS0HMUeO7dcUs/3tu2ksrQQt9uNy+Vi/aFBPv+XnWS0HAVulYtnl+Xvrb29HYBwIstPn9rLoc5B2nuHiMQiZHNQ5Lbzqxeb2XJ4CLX+AuToANlwL1pkAAwdPdJHLNLHzm1+3nnJR9nfE8XvUtn03RtpLC/Ht3sNy85dTr+jhg3dBrNLfHRH0rQMxsnoORJZnT2dkXGLTY5mRIx6HTa6hgXTeHPS8YTP6WjSO1WYbOwTuUwnLqfw+szrZ3oNmWpCWIilKUpHMMm6vT1Etj5KLh4ksvGPDHiL+K+/nccDK9by+2/8A5JiR8vlaBmMM/+ovlUT7U6m2gdQIHi9OJFstKcP9uFRFf7uvFpkpDGuhqN37ne+0MQju7pJpLP03PMvZAZauWPYojOazs5OuiIpHDaZc6cVUvz5H1JVWU7OVUw4Cw6bQm8kzfxKHwPRNFVFLj6ycjqrZhUfM/47nm9EVSS8djv/+e7FeavSaAo8dm5aM4+fr2/g1R4N3e0DoH0oweFggpwJFdd8jpxhYpNltJxONjqEGevHnujnn991HtdcMse6Zncv2/rbaO9v48d7NuevIbsDvFg1mwsuuZoL3/dhOra0U+l30h/PjIkfGm9+GRGj3eEUAZf1t/EsJicrfM70Yv5aON7YR4ugEcHvttve0Ps9k2n7U1EIC7E0RXnmQB+Hg3EK1nyUVNNmUod3kIsPEd25jq0717Ho/75F5YorCbzjZoo9Dj49PKmPdCcPuFVuWFmX31WPuA+m2gdQIDhZTjSF/HjZaMUelT9vbqcjlESVZd65pCLvajBNk6amJp555hlefPFFeoNhfNd+DS1nIEsKpqKCaeIuLKWobh5x7zTsFfV4quq5+f0X8OjObvpjGXojGZYuWcE/rZlF02CcR3Z2U+iyc6AnysbmIA6bjNel8nxDP/Mq/fmSAzs6QwzGs/RE0lT4nASTWRKaPu59Wj3sWnhybx+6ceTvpgmGCaoskdVN7DaZueVeHHaFtbPncbAvyruX1nDpgnIAvvHOhezpqOCqB58m1t3Mi5te4akNm4h0NWMkI8SbtpJdPJ8Cj0qJ18FAOE5k05+Izn4fnRUuuhLmuIHfo11oE8UsnYrwmUo1eE6WEx37aMFf5nWwuMZPbzT9htzvG5W2P57AnopCWIilKcpQMguygnfxZXgXX4YDjWT7PuKNm0k3byYd6iWqyaiZHKlskh8+tZemdb9j5ZpL+X+ffA+KovCHzW20BZPs747mP/TH+wAKy5NgKnMidV9GPsP1Jd68MCr1OfCqNvwuNb9wB2NZfvZ8I4okkc0Z7Gzu5bd/2suWF9fz1FPr6O/uyJ9TURQ+/eF/40APmBJUXvd5ZlSWIXsLGYinUVKWSjGAO9c343OpzCv3sbUtRFswyf9uauXjq2dQX+ZlR3sYAFWRSGR0NN3gQE+UFxr7qS/x8rWH9tAVTuG12/A6bPTG0lQNZ9ONh9XDLo5LVYikdExABlwOBYdNYVqhk2zOxGO3saAqwP7uKL97pQ3NMOgYSjGn3Jd/DV9qCdEUCVBQuopv/ff1zH61nUe2Hybe04Iz1EJm2jzueqGFIo+dtwXC/Oip3/HRp36HYrNRNHMJrhnLWPP2yzhszBozvxwvAPho8SCZ8MiurkkF8VSqwXOynOjYRwv+/niGpTWFLKoJnPL9nuz8/nqn7U+0gZ+KQliIpSlKsduOjDX5ArjdLmaufBvxpedTU+gi1t3Gnv4kJtYOsmnXVrY//Bu2P/wb7v3PIpatvpho0XxWXXQxbZD/gtQVuznQE0VVJKSjPAjC8iSYSow3sR+v7ktHMMn3njpIXyTNgio/3373YnZ3h9nTEeW+7Z1sbhvi5rX1XLe0mo5gkge2d9I8GMeuyLQ++H0+9/Iz+XNJso3AjEWUzl7Geeev5ppz6jgYbCaazuIsmktnOIU2kDxm3IVulaGkxquHh0hlc3SEknSEEnQMJfnCZXOZXuyhJ5JG0w1ihs6e7jAu1cYD27owTWgdjCNLMl3hJEUeB4VuO/PK/fhd6oQ1lOaUe+mOpCnzmbgdNj66qo4SvwOPauNQf5TltUU839DPwZ4YB3qjRNM6TptMRyg5JqC9qT9ObzTNnq4IAB84t9YK8nbOx2VXuGtDM8VuO4PxDK05g7lvu5aeg9uIDnQz0LAdGrbz+3W/wR0o5ryf3cnCj3zghN/fEfEgmfC1h/ZMKIhfbQ7y+L5url5YxapZxSe0mHcEk2xsGaDM43xNRTZPJyciRI6Op5ssI+14Qmgqzu8TbeCnohA+q8TSd77zHR544AEOHjyIy+Vi9erV/Pd//zdz586d8Jh77rmHm266aczfHA4H6XT69R7upFw6v5zfv9pGy2ACw4RoSselZolndOaW+7BPm8k0Z5zeaAa7Tcbh8TF95Tvo3PMy0dAQL/ztAQB2/O7/UVo3h2vu+h9q3raGhZV+nt7fRyyt8bWH9nDH9edaz+sM4TnKJ36gN4rPaZsyH1bBW4eJJvbJUsgjSY3vPXWQZw70Y5MleqIZrlhUyeLqAp7c04eJye72EHf8+QkaNz/HK88/ya9//1e6jTqKfQ72l76P/+psQqtcjHvGuSjVizBUFzqwK6ewtSNC80CcnAkSWUxAlUEzwCaDYYBLlemOZMjmctgkGZ9LJZTIgAQ72sN845G9/PiD53BRfRFP7+9HkcBrV0lkdTqHErSHUhiGiUEOr10hnNKQJNjWHuLJvd384OkGIimNu15oYc3sYj6yagY+pw2fy8YHzq3mgR1dBJMZ7nn5MJ9eO4ufPddEOJnlqYI+vv3uxfhd/ezuCuOwSWR0gzK7Y0xAu9uu0BNOUe63Yoz+7aE9hJJZqgIuvv7OBfnXvsBtxx+YzTW3/AcHemPIsV72vLqBZMt2go3bSUaC7ByS8n3oXnrpJXbu3Mm73vUuamtrJw1WfmRXF13hFD67FRA+WhC/2hzkpns2k9IM7tvSyd03rhwT6zWeYOgIJrn53m20DCRQFYlrFlfx5SvnndScNp5IPVFeS+XxE61hdCJC6Ey6tk4l82+qFKMc4awSSy+88AKf+cxnOO+889B1na997Wtcfvnl7N+/H4/HM+Fxfr+fQ4cO5X+XJOmNGO6k1Ba7+ciqOr7/9CEMwyCjm/RGMkgSvNo6xMoZRcws9RJJ61QEnFRNP4cPXLGWTU399DXsZNerG0i37iDb18xAWwNdKZkfP9PA9o4QTTtfwRXtJDV9KX/eUsQDO3qIpjVKvA6qAk6SWZ2ZJR7W7e3N+8enwi5E8NZhoon96MXD71LZ1x2hpsCyjPRFMyiYZHSDrJ5DAqKJLC9uWM/gng0kGl4hFw/mr/PXBx6k7uIPYmJy3hXv4xerr+U/H99PKJHNx/8YQDyb4y9bO8kNW2NHjLIjQmlhlZ9Sn4PqgJM/bukEA1KmgZ7IYJiQM8Bpg6FElqbBOO86p4bmgSTBeIaOUBJNN4mmj1ip7BJIMtiQUGQJMHlqbx+DsSwOG0RSOo/u7mPdvn5siklWB7sCmBI6EE7ofPPRfeQMk4BTpTOUZH1jPzUBNw5FRrfJFLlVvnnNwjELsNeh4FAV4hmdQpedrnAKmyzRPBjncDCRf+3LvU7u3tTKU/v70A2D2sIyrvrA3zOU+BC94QQ12Xa0grr8+/arX/2K//u//+Ozn/0sy5cvZ/WlV9FXtIQF8xccs3DXl3iRgK6IFRBeX+LNj+/xfd2kNAO7IpHSDB7f150XSxMJhh2dIbrDKRQJsrrB3p7ISQmF/V0Rbrxn8zGFPk+E19I3bbTIGq8lzmhORAidKdfWqWT+TUXOKrH05JNPjvn9nnvuoaysjG3btrFmzZoJj5MkiYqKitd7eCfNpfPLuX/YTWCTwcCk3OdkMJ7lUG+MeEanwK0SjGeYVeJlIJ5mMJkjVjSHwrUzYe2NGMkISt8+HuuwEcv0s6Q6wIbdT9O++zkAvvrrAGrNApy1ixiqXcxAzSyqizxcvbCCB3Z0UeSxs7szzG9eamFpbQEr6iY2YYt4J8HpYrKJfST+5ehJ+LolVRS5VXQD9JyJQ5HpbNzHR69/P6nwQP54ye7CNXMFgbnn84yxgORzTQD4nDJaDrScgWlacT+jqx4lMzqWbAFFsoo3VhY6ef+yWsoDTmIZnd9tOkw2d8S/rQ0LLocC2ZxJLmeAYZ1jWpGL5oE4hmkyKi4bgKwJ2VQORYLaQjfTiz08e7AXA0iNivPO5kyyw4O0xJ11bQnI6CYyEE5peJ02Ht3RTetQkoxmYAJ+p8q9W9qpDDhZUB2gM5wklNS5eE4pbcEkq+uL2dsdIZszsCsyBmY+SPuR3d10hpJkdYOaQhfhlMbauWXMKPEMB3kXjXnfLrzwQlpaWti4cSPbtm1j27ZtABTWzOK8S95JxXX/lb8nU4IFlQFMTCQkzFF716sXVnHflk5SmoFLlbl6YVV+3oml9XEFw7KaQqoKXLQMJLDbZBZVBk5KKKxv7CeS0nCrNiIpbUytq+Nxqn3TTlZknYgQOlPC5GQy/6YyZ5VYOppIxPK7FxUVTfq8eDxOXV0dhmFw7rnn8u1vf5uFCxe+EUOclNpiN//9viU8vLOb7e1B9vXE6Y9lsMkS/bE02Zy1wyzxqpiY9MeyLJ9WwIuNAzhtEtmcicsfoKT6EuaU+9jWHmYwnuXCi9bS4dY5uHML2WQEveFlUg0vA9Dv8uG49Q88vKuH/T0xUpqOLEtsbwthtymsnlXMv129YEyq8MHeKPGMzrMHemkLpphT7uXzl809bgE/gWAiTmRiHz0JN/XH+d9Nrezdf4BQezfO2kW0h1LsiZaRSUSRHB7cc1bjmbsaZ905SDbrfKNrZUfTlmRRJMiZ4FAkcsPCR5GgutBNbzRJzrQWJ0mWkJDY0REm06qzrztGbySFTWZMVhpAZljQhFI6t96/i/oyL4lMjqxuIOcl2LHkTOiNpplV5kHLgcJYAXc8DEA2QZYkOiNp0tqRgXWG0/RE0nQMJfnNx87D71DxOBT6YxkW1wS4bkk1XaEk+7pjVPod/ObFViJpjUK3ncqAk3kVfjqGUoSSWWqL3Fw4HE8zr8I/5n17ZEcXL9mWcOtP/8Rfq2z85f6H+Pk999K4fROhzmYOb36aYv9P8uPySRrzKq02K16Hwrp9PUgmLKgOsGpWMXffuDIfszSv0p8XzBV+JxV+x5hssUhSI5rR+O57l7C7O3xKMUsXzy7jno2HiaQ0Aq6xta6Ox6lWHj9ZkXWiQmi0MHmj5ubXYtGaSuuHZJrjFAo5CzAMg+uuu45wOMxLL7004fNefvllGhsbWbJkCZFIhO9///ts2LCBffv2UVNTM+4xmUyGTCaT/z0ajVp++EgEv99/2u5hZOe8oz3MgZ4oOT1HxjBRZYmUbubjJZbW+Cn1OSlwq/SE03RHUiypDtA8mOCdiyqsFOZohgq/gysXVTKvwkpRbu4J8+H/+gONu7aQat9DpusAzsJKVt/6G0ygPZik896vYepZXNVzcFTOxVc7n4rqGq5eVMW7llVz37ZO1jf0k87mSGR0Am47NkXmO+9dzPwKPz9+poGGvhhzyn18/jKrlstIEGfTYPwYP/yI+DKB+cPjHI3oPH72ciIBqqMfH/l+NLT30vTyU+x+/iEi7QdRS6dT9fGfATCrxEOs4xD9ajnYVGQsWXIik54C1JW4mF3mI5XNsbsrQmTYrKPI4HOq1BS4sCsSvbEMEhLhlEZW1/PWnonwqDIGUDgcLO112IilNXKjXH8j2BWJD51Xy+9fbSd3grO10yaT1o18koht+Mb1o45XAJ/bxpWLKlCQ6YulKXCrfO6SOXnr3YHeKHc+38wrrYN4HTYkCc6pLUBVFDx2meoCN1csrGBBdSD/Ho1UlF5/sJ/vPdUAWNaun/zdOcwq9/Kz55oIyBleXb+Oq5fVcevNHwcgkUhQUVHB4qXncM7ad7KJ2aQkFwGXOq77a193hJ8910SF30lvNM2Nq6fjHY6zBKsh8UhCyxcum3vS8UYjvNExS6/FfXcivNHB3qciet6oMUajUQKBwHHX77PWsvSZz3yGvXv3TiqUAC644AIuuOCC/O+rV69m/vz53HXXXdx+++3jHvOd73yH22677bSOdzxGds4OVSKZ1cG0dpqGYeb3og6bjMMmU1/m5bolVezuirD+YD97u6PUFLioKnQzt9yP22k7RnyUBDxctnYNRTMXU+S28/5zKtmwq4G2jEJLMElW08h0HcDUs2S6DgDQB7S4C9hWNYdfzlvJ9DXvJa3lSGVzJLUcDk3Hq6hIwLbDQzy1vxdJgs5QkjKvnQN9MQbjGQ71xtByJjWFLu76yAr8LpWDvVEe3tnFxqZBdMNk7ZwSPrJqOnu6IhT7HFT5nfksmYBL5YIZRayYXsSacXrmCd5cHG9iPPrxaxZV8MDfnuTVJx/g6SceRcsOb15kBZu/FENLI6tOMloOW8UsCrUcOdNE0020nIFugM+hAJDScsdYgsASGe3BFIPxLFndID2sNGTJshzZZIn+eIb6Ei+GmUbGxGGTKPG6iac1YmkNEwktZx4jzlKagVOV8btspLQcsiwxu9zHO5dUMRBJ86etbaSH3W2yJFFX6mFOmZfGgfi4Yx2NTYIZJR4a+2LopiVSynwO+mMZHBJkRh2fA2Ipncd39yBJEpfPryCe0emKpPLtM3xOSyD5nCrRVJaKgItPXjQLU8LqFdcfJ5PrBuB/N7UyGMsSTmVx2xU2twzlr2UCf93RwR3XLx/uaWaw/B3v4frhgphgbV7j8Tgvb3yJlze+hKSoBOZdQHzRJTx7sOYYoXK01WLeqDluX3eEAz1R9ndHiaY12odS/OZj5x2zOTuRRXxBdeCUhdaJ9E07ehyvd3PaUwn2fi2C8VRcbVOt1tJZKZZuueUWHnvsMTZs2DChdWgiVFVl2bJlNDU1Tficr371q3zhC1/I/z5iWTrd1BS4KXSrbGwazBeYM7EmaUmGyoCTCp+T2uF4jfu2dbKjPcSB3igZ3aRlIMHWtiH8LpVL5pZTvdY15gvZGU4ylMxy/oxiOkJJnjo4yIsdOZLZKB6HjGpTqLzpDqT+BsyBJoZa95Pua8FIhkk1baZPkrEtuYpczsQwTfru+xZDxZWsWHYOHft1nuyUGEpo2GQJE4lfb2ollTXw2hWCCQ0ZaOiL8bPnG0lpObpCKdqGkqSyOoYJzx7o5+XmIfpiaVRZZkG1P19/pqEvTkNfnHs3t/PuZdXctHrGuJYqwZuDkbR1j12hqT9+zMQ4euI80BPlp7d9mZ5XH8s/7iqfwbTzr4b6i5Bdfis+yIDeWAbDsMSK1yFT7LGCsHd1hTEBn9PGh86bxgM7uhhMZMeMycSyxETTY81ExrDyiac1ltQU4FQly6Wm6XidKqFklrSWw6YoLKjy0TKQxCZDLK2jGyZ2RSKpGdhtCpIEM4vdVBe5iaQ0DvVG2dkRRhrlmkvrBm6bwuwKH82DCSayi0mA3SZhGiYZzchbp2yKhIwl8HQsl6KqWDYnw5TIGSaFLjsDiSwNAzHOrS0Yk9xxXl0RSU2nOuDEY7dRU+ji+YZ+3j63jN5oOu8G/eEzh9jTFcXnsBFNaxR77MdYsi6eXZYvmPvtx/dxoCfGnS808pUrFxBwq1x22WV0dHTwpz/9iV/95m4aDu4nvG8D4X0b+Oaz/0PNb+7mPdddnT/fZO6nmgI3qiIRTWt4HDbCyewx1canQir9RON4PZvTnqxr7LUEub9RY3y9OavEkmmafPazn+XBBx9k/fr1zJgx46TPkcvl2LNnD1dfffWEz3E4HDgcjtcy1BMi4FZZUlPAun29zCjx0BtJo+UMJBlkrAmwtshNImO5CNY39DOUyJIZnqFMIJk1yOqZ4XTcJDZFpsCt8vHVM4hldLwOhe0dIUq8Dhr6Y2h6DkWWSGYMJCTUompsJdUsqXk33aEUPaE42b5mMt0N2AvKKPXY6Y1mMOODpFu3kW6Fp7c+xtO/su7B5vSiFlVRtOTt1K39AJpmEEtlyEUHkH3F5AyFx3Z3kzPApSoks9aC4lIV0rpBImtlAMYzOns6IvidNvqjR8o6aAa82DDAjvYwsYz+upisBaeHyXbxfofKYDzDnuEeYr95qZm/W17HqlnFaJrGtvVPEsiV0BstsAKwpy1H3vk83oUX84mP30SzWUZPJE1GN8joVrZU2jDQjSOrdSxjUOGXaRlK4LIrxNI66WyOv+7oQDmFDNiUbrL5cAg4Il9U3SCRzVkB4qpJPKOzcnoh0bROsUdlf49lWXUiYWLS2BfHJlviaXa5l75IGgk4eji/ffkwP/jAOfSEk2xpixwzFrsioUomOazvREvwSDSWljPpimSOOcayXFlW6oF4mlKvk39YPYOygJN7Nh2mwu9kT2eEP25uI5HJ4VQVFlb6mVNuxROZkF/MCtwqA7EMZV7HsCvPTiJzrC/ygZ1dvGNBBYf6Y2xqHiKbM2gfSlJf5ud959ZYBQlravjSl77EF7/4RR546kV+8ovfsPW5RwkN9vNCn8wlw+UIGhsbKSgooLS0dFyLQ8Ct8oXL5tI+lCKczB5T2PP1sFycisvteOM4nXE7o891MsHeryXI/VSZaplyZ5VY+sxnPsO9997Lww8/jM/no7e3F4BAIIDL5QLgYx/7GNXV1XznO98B4D/+4z84//zzqa+vJxwO873vfY+2tjb+4R/+4Yzdx2iWVAco9joYjGcocKvMrfDTHU7RGUrRPpRiINbDlYsq6QmliKX1YyZ9E2vy1DI51jcMUlfkIp7R2dg0SKXfQXsohZ4z6RxKYldkTElCAbxOG/FsDr9qLSr7OiJkTJBsdhzV8ymasZDKgItoWsPnUkjqXirf9SWc0U4KMj10tjYz0NuFno6jdzdQufwC7DYFnwvsqQTr7/w4SDKKtxDVX4riL8XmKSRQUIhavQD7rKU4VRvJdIZgfz+oTnTVSTJr4+K5JbzYGMxnGsUzOSJpnWmF7pPKOBG8cRxvFx/NWKUrPKqNl1uDtAwkePDFvSyJb2XLuvvp6enmX754Kzd++iv8eUs79unnUnPL75BsdkqmT+dfzp/Bo3u6eKlxkGAsS9tQ4pgMM4CmgYSVzYblgvKoMpGkVaDxRBj5dplH/Rwhlc3lLU8pzaAnkmJZbQHvX1HLS42DVBfqVBc6CSV09nZFMADdMGnoi1HqVa3ebbqBosigHREbOcPkldYhXOrYBUORwG1X+JfL5tA0EOfFhgE6wmNrxB0dPq4oEgpG/u8mVubcQCLDhqYB/vmSOXkRlNZ0YqkcsgTJbA7NMIatSQ4k4IaVdUQzGn6Hyh82t9HUH2dupY8PnFvL9vYhfv58I/GsdXW3DbqH6yalMta5ZAlSWZ0HtnfSH0uP+VxIksT7rlhD9eyFfOW+jxJu3cuOkIMn9nVz1cIqvvjFL/Lkk0/y7ne/m09+8pNceumlyPLY93FBdYDffOy8cQXM6bZcnGqc0WTjOJ3Wr/HOtbDqxATPawlyP9WxjoikEx3j681ZJZbuvPNOAC6++OIxf7/77ru58cYbAatT9+gvVCgU4pOf/CS9vb0UFhayfPlyNm3axIIFC96oYU9IJKlx37YOVFlC0w1SQE84RYnHzoHeGACJrMGB3ijr9veRzOgoioQqgddlQ9MNHDaZYPJIrnHbUAp1OFsnnNTQcwZFHgfBRIaFVX4KPHbeVl/KqhlFfOWBXYSTGrIEmaNWhUTWwO9UuXRuGc83DtBrmhSseAdLqgto6I9TEE1TYGgU6kPcMFfl3EXzCDkq+dEzDbR2dSPJNkxDJxcLkosFoeugdc9A2UUfoGj2uayeWcy+Q03sunNU0VBJptPhQnU60VDxL72cGVffyEAiQ1ckxbQi9wlnnAhefzqCSZ490Ed3NEVDb5wZJZ5xd881BW7qy7z8bVcXiZYdxHb8jVTTZg6bluQpKC5Bcfm5b1sHe7siSLICshVz9GrrEJfOq6DI7aAq4KJjKIl+nEjoERmSGFbcCe04gUDDeOwK8Umit492O6WyBod6Y9SX+2joi1FX7OZwMEHbUHyMmMuZsKllCI/dig8q9TnRc9Z9SJJELK3xw6cbyBzVHy5nQiyT48l9vXxq7SwymkHnjq4x4shth2TWEk2qTeIf3zaTZw/2c6g3lg8YN0xrrC80DPD+5bX5Hf3mliG2t0fysU/XLqlmfpWfdXt7uWfT4TEL+OimwyOtli6ZV0HzQIK2YAwDmRKvg6FYlvmVfmaVeGkfSqLYZeZV+Ca07kiArCj4ZiwmnMry4PYumvui9Pb1o2ka9913H/fddx/Tp0/nE5/4BDfeeOOY8IvaYjd+lxV2MFIkE06/5eJUywSMN46R+KDaAvdps369FkvaguoA99y48pRjlk6GqeIePZqzSiydSGLf+vXrx/z+ox/9iB/96Eev04heGwd6o6xvGCSW0khkc1YG20CMhv4jzzGxdmt6zsCpKsgSFPhUsjmTSr8LpyoTTI412+sG2G0yWs7AabNShU1gT2eUigInvdEUlQEnb59bZrm30hp9sbHxHADbO8Ls7orgVEGRFYbiGpuaB5Flq2yB06aScVUx/bxFXLS0mkd2dRFJa3iq6pnx5QewZ2M4MiF6urrQogPkkhHMVBR75VxSWZ0DvTGq3SayYsPIDS8SpoGWTqClLTeDT84Qy2pkgx3kUjHS6qzX6d0QnCwdwSSf+v1WGvpimCb5Ca+6wMWerjDxlE5fPJ3f8f/Tmln86ovX039gd/4cjtpF+JddTdXSNWzxuUk2DFDoslulMXQTWYLDg0luvPsVsjnwOGQUWT5GtLhViZxJ3kUNViD00c87HpMJpaOtTmBdb1dHhPZgEs0waRmIk83liKSOPY9ugJazgs0X+hzWd9omE0pqhJIaWd1kImfhgZ4Iv3yh2WpN4rIRTenI0nD/uewRt7xNlnixaZBvXrOQ5w7187fd3XSH0xjD41cVGZMjAbmvtgTHWNFMTHxOWz5W6egWFQF3gH3dEfZ0RkhpOi7Vxr9fu4BEWudAX5SHd3bzk+caKfbY+epV8xmIZ9jdGSaU1Ca07syr8HPxnDK2d4SQkChy22kNprn7wXVo/a385je/4fe//z2HDx/mG9/4Bt/85jf5l3/5F77//e8Dxy+KeKri42j32ImUCZjIpWb93yqserBH57N/2k4kpeFz2vKxYa/V+vVaLWknE+R+qlnLHcEkj+7p4kBPlJkl3ikR2D3CWSWWzjasidEKCLXJEqGExjhhABjDmTk5E6YXe/j6OxewvyfKfdvaaR0VuwDgUgBJxq7KlPvdLKr08cDOHus8gKbrvNo6ZGXfIfG22aU09MXI6GHC407wJvEMWKGjVhzHyHKR0U28TjlfgXdZTSFVAReN/XEkSaa6qoqkVobHO31MOrddkTBMkEyT2tnzOdwX4Y+vNLNuVzuzCmzktDQdAyGi8SQFxeW4i9w8+7tfE23YjPmeL7Kjc4Vww00BdnSG6AqnME2rf2EyrVPksfFKa5An9vWQzuYwI92UVk/ne+8/h1Wzillz4WraWptxL3g73nOuwl5aB0BMg1goSbHHzlAqy/wKH/t6YmRzJrG0nrfSWLWSxlqJbMP+ptFCSeHEhNLo/ozHfa5kWWiOFmG6CQMJDbDqoqnKxOdIaiZeu0xK06kKOAmntHxguDk8FlWWkCVzzFyQ1gyaBuKYmKyoK2RWqZfBWIYHd3aPOb+eM2gLJmkNJnjX0ir++Grbkf6TDonldYVUB1zs647gd6g8tKNzzPHP7u/lHfMrJl10e8NptraFyOoGdptMPK1z6YJy+uMZ2gbj6DkIJTX+75XD/PT6c7lqUeWk1p2AW+Xzl81h2+EhfvhsA9s7wlQGnPgdKrXnnMMdd9zBd7/7Xe6//35+9atfsWHDBmbOnJk/vqGrn937G5g7u/64i++JxgeNJ8COl8E2mWgb/VgwkSGc1PDYbcTSOpUFTq5YWPmarV9vVAzQqbojR47rDqfyf5tf6T/jgd0jCLE0hRnZUTX0xVhd76Q/mmFD0+CYGAS/Q0G1ybx3WQ0zSz35wnB98TTBhPWFi6Z0itwq0bSG3W6jOuDi/efVUuK28+NnG8ZcM5zUKfTIhOJZqovc7O+Jktb0cYXS8Qi4bMwt99EbSecz1f7nhuU8faCPdXu7OdQXx8QYsxjZZCteyq3aWFJbQG80w6H+GOsbQ7TF4XBMR5ZVSjw1xBUdm6oyw+fCqSpEh68p3HBnhqN3k8tqCqkucHGoN4aBVW163d5+MrpGpnU7g688RLptJ6Ebvsu/5Ex+/ffn4Tr/g8wrvZyEYR9jockNq+n+WBafXaYtlCKbsywtxxMzugn6UcroRD7NLpslfsbboByNqkC510F/Ikt2EhVmwqQ1mGSgyGOneSBJMmuVO5ABWbZc69UFVpygbpj0RzN5N5pmQDChoUgQT+usnFnM9548eExMVSYHRlrjmf29tPbHiI26uenFXv5pzax87FHHUJJDffExxx8OprjzhUZml/s5b3oRc8p8Y+qiAfzyxWYyujFcRdzgly82s2J6EWCiGUfer86hFC809INkbaSOXryPFi7lBU4q/E5mlnhIZnNEM1r+uS6Xi4985COsveq9PPrSVi5eeqQcwaZ1j/DHL32a6gXncdE1H6Tk6jnjiqKTcf9M1o5nImEwmRtsJBtUla3MSrddIanpBFwqVy6oZMFpitt5I6plT+SOPJ4QHTmuxONgMJFh1cwiblg5fUq44ECIpSnNyI5qJA7gJ882YFcsF5cCeJw2MnqOigIXHz2/Lv8l7Qgmae6LgWnQHdas3lYZnWKPg6W1BUTSGg09Uf5rZ9cxE7tmwEAsSyytU+C2c3gwfowL7uidsypb5nvNMNGHa8o4bTI2xWok+sNnGxiIZagMOPnqlfNJZ3Ps740TS4+Nv/A7FKqL3HxwRS3twQS90Qx1xW6CsUzeQmGYYORMwqksKc0ko+eItQxSU+imH/jwyjphVToDjN5NlvocfOHSOSyfXsT337+Ubz28l63tYWQ9Re/2Z4ltewRtaNjiIclkuw/SV7uAh3Z1krV5mVamcKjPiqcZr2J1LGtA1jglN9rxUBUJCROHKhFLH//kNtnq+2ZXFOs78BoGZJPBqdoodNtpDx0J0jYAOxJVBS6+9/6lNA7E2d8VZSCW5m97e8ZYzHIm9MfS7OmwFh6HTULPmaiKRKHbTkrTyegm29rDtIWSY8TUzGIPpgRtwSQeu0JXKMXR1BW7eHBHNw5bL7WFbuZW+NjWHgIkLp5TwtvqS0lrufw85bBZve06w0kkJOyKTFa3NkjBRIbbH9uPJEGJ18H7l9fyjvnlx7SyqfA7uWJRBdUBF/Vllmumvsx7TCD0iOVpIJblqc4m7rjeT22xm/bWJiRJomv/Fv68fwt/+8V/UnPeFcxZ8y4uOG9ZXhQd6I2ypzOSt5qNZ4EaXXTzZF1ak7nB/A6Vvkia5sE4qixzwcxi5lT4uHK42OepMJEgfL0tS+O5IzuCSX7yXAPhpEZ9mXdcITr6uKoCF9curp4yQgmEWJryjOwEXmkJ0hNJc8ncMhoH4kwvdqMbZr4y7WihNBInkhvuQeW0WdWCp5d6SGo5mvrjbD08dMwO16FYk61bVUhpORr74+NWDHbbFRLZ3HD3dZhT7mNpbYDZ5X5SmRzPHuxFkSWmFXtYWBlge9sQHoeN9qEkt96/i6F4dtzYj4xucG5tIZfNK6exL0Z/Is2FM0sBK86loT+GBCiyREYbjsMwrOaYIx/kQs/U+XK9lRjZFRY4VVoGEvzk+UbOrS2gN5Jhe2sfwQ1/ILZrHWbGcgtLDg/+JZfjXX4NtkD5sNvVKmuh5QwK3Co720OkdXPc9iFw+oUSWGn2pmmSyWqYuoZp6Jg5HXIappHLB5aP/Czxu0nZVNx2hcF4+oQqg4+Hzy5TWeCi2Gtnb1dszGMyUOl3Uupz0BtJc9f6ZpoG4xNasLrCaX77cttwGQ7LrX35gkrsNokn9/aS0Q3cqoJbteUrfQO82DzIR86fPlwwMk51oYvm/ng+uLvAZbPcaznLndc+lCSjGxjD6X/b20Ps6owQjFs1lgzTpK7YzZKaAmoK3PgdKrPLvLQNJckZJjNLPezrjlLqddDQF+MnzzTwyK4u7rj+XKIZjbZgkiK3yvqGfhr6YiyuCeSz78azCL3cYmVR1ha4xlg0fvCDH/DP//zP3PnLX/Pzu35FPNjHwWf/wsFn/8LLMxdx5XPPM6M0wLq9vXRHUnRH0lw8pyQvZkYLpJHA9bpi97hjmYzJ3GAN/TESmmVRctpsxDI6VyyqOGWL0nhWMuANCZw+2h0JcNtje9ndGaHM7wQYV4i+3oU4XytCLL0JiCS1/Bd5ZAd3UX0pG5r6uXph1Zidx2O7umgeiJMzjqQM64aBS1W4qL6EtGawrzt6TKDo6hlFXL9yGv/5+H4iw403S7xW13FlePcMVuf0Iq+DVCiJ3SaR1kxqCt3cvHY2XZEU6/b2Uuhx5Gs5jTQK7Q6nUBWZcC5LkcdOIps6ZmEp9ztYNbOI7z11kJ0dYRRZ5lBPjM9fNpdvXruQbz+xn2AiSzCWAQWMYb1VVeBC9lh1r87S7j1TnpFdYftQElWRmFPqY0vrEAf7YmiSjWTDJsxMAlthJf7l1+FffCmm/chkqCpwoDeC3aYQcKkkM3reoqTIEm67lO/ddiqYOY1cfAg9FiQXGyQXC6LHg5iJEHoqjpGOY2SGf6bjRz5cx6ETQJKQVBey04PssP4pngIUbzGKrwjFW4zNV4wtUI7iK7GE1lFIioRhmuzrjuZdY8rwF7jQoxLL6tgUmYO9MVoG45NasAzDJJbR8Tus6b084OLD509DAloHEwwlLctxIqNjk6zz2CRIZnI8d6ifGaVuVtYVURFwcttj+9jdGcEwTSJpq1isLFkWaMM0mVniZXd3GAyTtmCSeEZHlWXqSjzcesVcKgLOvDAIuFX+54blbGoeZFdniK6wVYk/krbiI0u8DtqHknz3qQN8ZKUl2vZ0RgCJYo+dl5uDnDe9iBV1RXSGk8CR4rptwSRzSn0cHkzQH09T6nPiUW08squLZTWF1NXVcfkNt/CguYpw03biu9aRbNqMwxtgRqnVRLg3mqbeNkTEWcncYZfiaNHhcSiEkxq1hW4O9ER5dE/XSVs/xnODdQST/PjpBnrCKXKmidNrY0659zXF6ozn8gPesIrYo5td3/63fezqjFhu9GiaeRW+Ce/t9SzE+VoRYulNwMgXefXMYg4Hk8yr8PPVB3cTSWk8saeXe25cSSyt87tX21h/oDdvlpewTPt2m4xqk3m1dYjqAicFLpVIMpsXU2VeO1+/ZgELqgPUl3l5aGcX6xsGaA+l0HIGdUUueiIZ9JyBQ7URcKkMxhXiw5P68w39SEj0RFME41nmVnhpHUjwiw3NBONZXKpCdYHVYT2tGfTrGSr9TlRVojuUsgpS2mVml/t4eFc3W1uHyJkmBS4729tD/NeT+xmIZemNZnDbFUwst4dNNllQ5ef26xbx1Q3WR1mIpdef8Uz5I7vCFw51cd9f7ueP//kIgWv/Fd2wrDCFb/8EyAquWStQJPmYOCPdgJebhyjz2XGqNtqGkvmCkhndPKH31TRy6OFetKEu9FA3Wqgbfcj6mYsOcGId4cZDshrvypZCN43cWDFlmpjZJLlskhwDk59KUVELK7EVVaMWVlM+bRZy2Uzm1s1jZ3sMbdQQFdmq4x1OaUiSxMGuKHs6w5jGsfcxElwOlsXNoyooioTbbuPcaQVIQFXAxXkzimjqjwMmoXiWhMtOUrdinzyqwuN7egglslQXurhiQTmHBxN47DaCCat9SXK4jpRblakqcDIQT1PktpMzDWJDWatKuGHQ2BfjYE+UFXVjm9bWFrv5u+JpXLmokoO9UXqjabqHkjy6u4feWJpoSmPd3j5ebRnijuvP5e1zy7hvawdP7+9DM0x+8NRBzqktzGfP3by2Pu/e2tMZobbQ6tWXM+Dzf9mJqkhMK7I+m4dDCXQkXDOX45q5nAIzwbevmZXPRAvkwvz3Fz6At6yWtovfzd53fYBrVs3PC4yOkFV8s2UwzoGeKAd6ojy1r+81F8Hd0RmiP56httDNQDzDe5dX8YkLZ70mq89ELr/JXIevte/mePNCZzhJOKlR7nfSF02zpCbA5y6Zc9x7GzmXU0twYM92rrnmmpMez+lGiKU3ASNtT/Z2R5ldZu3YQwkNj10hktL43SuHeXhnN8mjasUUeWxkcyZu1UZK18E02dcd48OrprGpeZD+aJqBeJZphR4e2d1NdaGbBdUBmgbjPLyrG7/TRlc4RaHbSzCZRUImmc2R0nKsrCviuYYBVAmyusn6hn4CLpWhRIaBeBpVkemPZVg1o4j2oQSHeuN5c7+Mgcdp7dKcqmKllbtsdIWSdEcyGKZp9ZtTdA71ZdjfHUWSJGoL3UTSGqU+B0Vuu7V7vXwetcVupOFinEIsvb5Ekho/fuYQDX1x6ordnD+z2Aq2DQX59a9/ScPzDxAJWrUtjBkbcC94O7oJ7jlH+i+OfEpVWUIbXuEN07JUWJWmj602rR1l6MmlYmgDrWT7D6MNHCbb34o22IapH1viIo+iYvMVD1t8irF5i1G8RcguH7LTe+Sfw4tkdyIpNiRFHdcSZJommAY2UyebTmFkEta/tPXTTIYw40HMxBCZaJBsdBA93Ac5DW2wHW2wnRQQfdU6X6Pdia2kDnt5PY7KOThqF2IGynHYZFRFIqWZdI2qXB9wKaQ1q6hjzjDHuNRtMiiyiYTE7DIv8bTOt584wKLKADesmsburggeVeGFxn56YhnKvHaqC93MLvPw561WjaZDffExwd0Om0Ry+CI2GWwKHA5a7jRFlnAoMtlRPvucCT95tpGucJKvXGnVrDt6IX3+UH++ye0XL5/LQ7s6Wbe3D4/dqhK9rWOIT188m9bBBM8f6h9ecDPs646yqMrPns4IB3ujzKvwU1fs5s+b24lldCRJQpWtzEK7ItEZskTA9EIPHrsVYqBIEl+97nyuXjnNej3dKktcYRwOJ/G+djb/+ads/evP2XjZVVSvuppw1RLmVQb4+IUz86ntJR7HaSmCOzpWp67YzQfOnfaa3WMTufxG18IabZ07lQy20eKoK5TkB880kMuZzKv05V18I/XTwEpcCDhVusOpSc8dSWr81xP7WffIXzn44M8wtTS7d+9m9uzZr+k1ea0IsTSFGVH65V6r7UBnOEVnKDkcw2ESTusEXAqdoTQpzRiT5myTwTAl9JzBQCaDTZbY1DKETZZ4cHsXX3/nAn71UjNd4TRdkSS2Tilvlh358naHUwRcKqZpYBgSWT2H22HDpcpcNKeETa1B0sMCLaMbBBMZJMBrt+FUZQzTpCeSZmaJj4HYYP6+TCyrVySlYRommmnVr7HFrHEGXHZ8TpUFlT5ebBzEpdqIZ3RSmmXiL/M6mFHmzXdGB7jiuvfjrZlD7exFb+Rb9JZjpABqIq2zvT3EH598ieCrDxPfvz4vVGzeIgqWvxNb3bnjxryNoI1jIRkPU8+S7m0m23OITPchMj0N5CJ94z5XsjmwFVWhFlZhKxz+Ofy77C7Ii+rXiiRJICkgKdi9DnKegvxjTmU4rk63hEShx85gPIum6+jRAeRIF5mhblIDnWgDrWj9LRjZNNnuQ2S7DxHf8TcAFG8RztqFOGoW4qxbiq2oJj/+eDqHIkHqKBPdSA+4WNogJWc52BcjnNAwTJOW/jiN/TH6ohlMrJZCAZdKdYGL61dO46HtHRPa3lRZwlTIZyoVuOx0hNJWwVrdxDBzuOwyWf1I02DTsDZnB3ujPH+of9hC4+Ci2aUc6onx3IE++uMZUtkc7UMpvnLFPF5tGTqmSvSFs0r4Q8BFdyRFud/B7DIfm1qC5Ay4Z2MrhR6VrYfDRNI6XrtCLJMjl7PcmFrOxG23MmT9LpVrl1SztyfCosoAVy6qHHOPH/7g+1iz9u187ts/56W//YX+5r2sX/cYrHsMd2EZ/q/fgf+yuVy7uJqn9vVNWk/pZHi9YnXGc/mNWNGOjl062YKao92ThW4bm1tDdISS+JxHLEojtbduXlvPk3u7+eaj+8loBk/s7eXuG1eyalbxMefsDCd5actufv6vXyDWtBWAGXPmk06njxnDG40QS1OU0UrfYbMsOgVulc5QCq9dQRnOBMoZMJS0duIj82apR2VGiYcDvTGyukHOBIcEmm5S4XfQH8+wrWOIVNbqYzWU0IimNDYc6rdql4z68npUG798sRmbLOFxWNl3A/Esm1uGqCpw0j/cj8vtsJHM5Cjz2bEpCrIMi6sCTC91U+V38WprkBE3iFuFZEZHVWQSuSNbYt2AIo/K9BI3Cyr9XLmwkt2dEYLDDU77Y9Z9JrM6PdE0K+oKub64jv1dER6M1BKqLOeXB0wWL01OWb/3m522wQS9w0UMtXAv3b/6TP4xe0U9vhXvwjPvIiTFmjRPxc6nx4JkOvaS6dpPpruBbH8rGPoxz7MFylHLZmAvnYFaNh176XRshZVI0om1LjkdWAkRkhXDk7N6s6Vzww9gxQ8lMlaqvyQrqAUVUFCBu245I59QnyphRnvpaz1o9V3sOkCmp5FcfIjEgRdJHHgRACVQjmvGubhmrsBZt4Sc3XXMeBy2I6UJNAP6I2lyBjhUaw7Z3RkGJNx2mf5oBp/TRsdQkt5wip7oxAvSzBIPbaEUSV2nwK3ic6mo0Uw+uBsTcjmJxVU+DvbF0XImdlWhxKPy0I4u2oYSTC/28OzBAcvVl7ReE8OEgFMhnMyS0PRxq0T7XSpzK3xkdIP6Uj8Lqn20DsZIaQabDw/hVBUWVwU4HEwQz+SwyRJOVUKRZVx2hU+vnZUXIl++ct4Ya8vRrqOa8iL+9zv/SudX/ploVwt3/vJX/OVP96KlYui+CjrDSRZWBfj0YpVBqZC3LZjxmueaSFIjmtFYO9xk+Hh0BJNsbBmgzONk+fSiY445njttvHimEymoOdE5treHCCYyeB02YmkNRZHGuPgCbpX9vVEymtWzMaUZPL6ve4xYiiQ1fvT4Dh66+2fsWfdHjJyOpKiUrPkw//Gf32Dx4jNfbFiIpSnKaKXfF0/jtaskMjoFLhXNyKEPp1VbzSol/C4Fl6qg50wKvQ5cdtuwa8M6Xw5QZKuEQF2xh4tnl7GtLYyeM7DLVn+1X2xo4dHdPbx/RQ3vmFfB2tllfOPhPTT0xTFNEy1niaL55T6eOdiHbpCvAQNW5ssnL5pBsd9JKqNz14stvHp4CKdNxmm3LEaxVBYkhb54FpcqU+KxMZiwFsKA08Z33rOEioIjQaFfesccbn9iP/G0gTGsBiNpnUha57ZH9+NWbfxhcxuHBxP4ht2GojfcayOS1MbUzhmZjLsHwtz70GMYWIUi1YIKnNOXITvc+Fa8C0f1/FOy3OjRQdIde8i07yHdsRc91H3Mc2R3AY6quTiq5mKvnIOjcjayw/Oa7vN0YRomhjF+7SbDhETmOIHpsozmq8CzoBzPgrXWcVqabE8DBdFmeg5sJ9q2h1ykj/jOJ4jvfAJkG866JbjnXoR7zvkoLisgucDtIJMzSGV0UrqZ75+Y0qzvuZYzyZkmGd3AaYNERietGTT0x6zgbaxNlyKBy34kLvFgX5w1s0tYUO23MlQluG9rOzs6wvRGMpimiWGaVBe6+dD5dTy2s4dgIsNLTUF0w8SmSESSGrF0llTWsMoKKJYb1oB8k9vaYvcxqfIHeqNsa7fmqmcP9rKpZQBFlkllc5T5HGg5g1hG522zSzgcTLCwMkBvNEUim8OhSPzwGauWXInXkZ/bRoTSeNlheYtM1TIWLPwJc679FNt37GR2TWleBNz62X/k4MGDXHPNNXzkIx/h6quvPqXm6ifb2qMjmOTme7fRMpBAVSQuX1DO+5bX5r+nJ+JOqylwU+F30tAXY065Lz/Xnox1a3RM1MIqH4Zh0htLU1fs4YuXHRuTdPXCKu7b0klKM3CpMlcvrBrzeOtAhB/e/B5ig9Z3v3jeKsov/0dmzprN2rljLYBnCiGWpiijlX5toZuvXjmfvniacq+TJ/b28OetHWSGZ8K+SBpVUUhpBqlsDodNoSEdw26T0HKQy4FdkVlVX8RlCyryhSs/fN40NhzqZ2Qu99oVGvpi/GBdAw9s7+If3zaT7W1hMlqOlGZgU8CJbJUUGD7GAJyyzNxyP0VuO+sbB6krdlPuc9I1bJaNZXT8TjsZ3cDvdjCUyOK120hqOu9eVotsQjpnsHpWCXPKfXRFUkdiEUq9qNKxdZRtklW1+CfPNRBJ6eQifQz0xpk+rVYUpXwNWDFJDaxv6Gck8/LCCvjpz37OU/f/gWwmTfU//S+K13qNyz7wrXFjeiYjl4yQPryT1OGdZDr2oId7j3qGhL18Jo6ahTiq5+GomoviLzttLrTTzfHqtU5kXZMAj8PaqBz9HJvqpHzBci6bdzVb20Mc6gySbt9NqmUb6Zat6JE+0q3bSbduZ2jdz3DVLSUw/0LKL70KxelnIJGhfWispUgfVRDSxDJ+2YaLwmZzllDyOpVh95ydlsEjMUs5w2QgnuXVlhC72iPMrfTzgeXTeP+Kafx202FeaQnid9poDyXZ3RnGZpNQFInMsIUtp5tE0iPVyK1zZnImM0o8fPSCabxjXsW4C3QkqXF4MDFsodNJZA0SWesENgn6gSsWWoKhOuDKF9QMp3TCySx2m0w4qVHmt8oT/PjpRh7Z2T2mPMFk2WEBt8pnL1tA54rpeVERCoUwDINsNssDDzzAAw88QGFhIR/84Af5yEc+wurVq49p6DsRJ9uvbUdniI6hJIZhkjZyrG8YoDucZnFN4CTdaeZRP08uE+3omKhoSst7ItY3WjGLo0XvqlnF3H3jSh7f183VC6tYNauYXC6HLMtIksSM0gArr3gP2557jHf907/y5U98KF/IeKpsfIVYmqKM58ce2YV0hlNU+J0MJrKU+xw4bTKmBOlsjo5simzOwKZIzK/wsbMjgmkaFHocfOEdc1lQHSCS1NjXHWFXR3hM/ZruiNUjzmbkaOmPs7UtRCyjoeUMTKDY7SCl63gcCsqo2jdJ3WDr4RCKDEtqAgTjaZCsSrTRlE6hR+Wb1ywkoel4VFs+k8/vVAknNPpiaRLZHL2RDL/a0EIkraPIcPGcMj5+4QwWVxfwYtOg1S1+OIUvZw5n+ckymCZ9z/6GxMGNzL7py/hd73zj37CzhA0N/Tx3sI9kNkesYz933fswt+16AXPYrGcrqESP9OXF0okIJTOnk+k+SGp4cc/2NjNGQkgy9vJZOGsX4Zi2GGfNAmSn9/W4vTyqDKPzIU60wOW0IhedQ6kTboFy9HVGU+pTMUyJeObYoHQDGIhr/GlrJy5VQrE7cdevxF2/0rLihDqJH3qZxMGX0PpbSB3eQerwDh5e9wsCc1dRu+oqzJJFSMqRKV6WyVtnAfQcGKPWdBOYXebl9nct5s/b2mnoPyKWDBMa+2LkcgYZAzY0DvLg9k5+e9NKPvv2ehr7YnQMJdBC0NyfwK5KSKMKlEiArhvDf7NeaLsCHzi3hvctqz2myW0kqfFCQz/3b+9Eyxn4nbbhFkxHcNplbIrE8umFnD/TcuncvLaeFxr7uX9bJw5FpjuawuOwuhiARJn3SFD22tll42aHHe2aOzr2p7CwkJde3c6/3/M3XvjbA7S+uo5QsJ+77rqLu+66i1tuuYU77rhjzFgnKgZ5sv3ayr1OslqO9HCfQJskjSmieSLuNCu7OsOcch+90fQplxAY/boE3CqxtMbf372ZcErjVxta+Me3zeSaJdV5sbNqVjGrZhWj6zp//OMf+dZtt/Hl277L+6+9ioBb5Q8//Q49sW8xo9SKdXo9m/WeCkIsTWGOVvoju5DaQjfJrE6Z32HVoFFtbG4LEhve4sYzOoUuy5JjYgWjhpJZeqJpqguPBPd1h8fWOhr5f1oHVTZwKRIFLjsORSaU0ggls6g2mXgmx8IqP3s6o4A1sZtYi8KOjgiqIg1n8cj4HDJ1RR4qCpwsHC6wdk/Aiksoctu5a0MraU0nktLxqAqHB+NIsozXobC9fYhoWqM1GM+nRrvtCudOK6SqwMXsMi/fe+oQKc3ANIcDXzO5KdN4carSEUyyqXmQYp+D84ZTuyNJjfUN/Xzrkb30tTUTfOKnZHsO5Y9x1S3Bu+JduGauOCGBpIV6SLduJ3V4B+m2XZjZsdWg1dLpuGaci3PaYhw1C5Edb+zuUTdgfrmXrkgawzCIZyeXPx67zHfes4Rl0wq5b1sHj+/ppmkgedzr5Awo9tgIJsYu9F6HxAUzS9jaFpr0eBMrq2s0fqdCsqiWwAW1BC74oFUioWkTsQMvkeppInJgI5EDG1E8BXgWvB3vkstRS2qPKexpMFY8OWwSl80vp7rQTZnXOc44xp4glMjy0+caWDmjhIDTxqDdhpbSMQyDaMoSSLLEcNKGysIqP68eDqNnrNfCblNoGYzz42cO5av1jxRP/O8nD/DQji5SmkHAZWNBlZ9L5tbyixdb8qVRNN1keokrX7gWrEV77ewy9ndHaeqPM6PUw4UzixlKZnlkdw9DiWxeRIyXMTZe5fARF9dowdMZTpL11/KeT32F7r+7hZWOXl568kHuv/9+Lrvssvx49uzZw09/9j8wYxVy5XxmlPmPaeQ7UYbaaEau3ToUx+NUKZAhmTWYU+Ed04T4RNxpr7Wh7kQ8ua+XYCKLZEIoqfOz55tZt/9IaYVIJMKvf/1rfvrTn9Le3g7Af3znuwz4Z3Pz2nrKi3yUF/lOy1heD4RYehNwdIn9pv44yWwOj93GQDwDRoZEOoc0ummcbKX/ZnTDStHWDQZimbzgsssywXhm3OrIVhySRFMwyYX1RTQPJJhhQDSrM6fUx9b2IQZjVt2VkUrcI5cdSc31OlXCySyyLJHWczy5tycfPD7SvfrVliCGYWCYlsWoeSBOQjMwTINoWqc/lmFPV9Sq7jx8jbRuoBkGH7mgjnV7e8keNfhwMovfIap4T8RIhfeWgQR2m8w1Syr4yKrp/GZjC9vawoSSOoq3EG2gFRQbngUX419xHfaymZOe1zRyZDr3kWzaTKpp8zFxR7LLj3PGMksgTV+GzVv0et4mMH6rFDgSl9MVSVnlLExzTL/F8fjMxfWsnVvGj585xHMHB0jrOj6HlaU52XEOm0xNoYcCp0Zz8Ii48qgqn1ozi9VdEe7d3MZgLEtXZPKMH5tkCZqaQmuxjg0X6VQLq1DPez9lF11Ppq+VwZ1PEd/7PFoiTHTLg0S3PIizbgm+c6/BVb/qGLErYYlBj93Gk/t6OdATY0fH8UWcbsKzB/pZf2iQyoADu2KZqUZ0pzrc8iRnmESSWQ70xbl57Uz6Yxk2twSpK/awuzOCz6Ewr/JIKQCv08aOjlBenIWHrUIff9ssqgpd/Hx9MzUFLgYTWT71tpnHCIIRAXKgN8q6vb2sbxykwu/kn9bOIp3NsXo4DGHkuaM3VqN7tD13sI/93RFqi918fPUMHtndPaZ694jgmFHq4/1rl/GJv7uOO++8E0WxXt9IUuNnv/4/fv3LXwC/wB0oonbJhdjb38f7rr2aOPZRlqZjM9TG61lX5LZTEXAyEMswo9TDV66YjylxTM2zyVxXr1dD3aoCJ/IoC22By0ZPJM2Dz22k+aXHuPvuu4nFrOr0RcUlzLr4/Vz6/htf9wKZpwshlqY4R6dozinz43eoPHuoj6F4hsODCaoCDktQSNY/RZYYjKXzNYwyOROnTWJGsYeaAjceu41Hdneh6yayDJU+Oz1H9X/DNDnYHeXdV80jmzMZiGXIGAaHh+L0RdMYhhUwbpPApkhkdRNZsiw7igyVPgezS31sbwuyrzvL/u4Y6/b18ZuPnZf/IlcFXPidKtFwCp9LRZHAltbz9Vp0Y6QEwpGFzBhu8eJ3WPU6JEmyWtoPx7M4bfKYBpuCsWxqHqRlIEE2Z6DlDNa/spMHf3473R1tTL/hdgAUl5+Sd/0rjsrZKJ6J47+MdJxUyzaSzZtJN2/FGG5lAoCs4Kieb4mjGediL5/5hmapwcTNcg2s1j4Om0Jay+WrUsuS9Zk7WvysnlnIDedPpzOcZH9PlGA8Q1bP4bLbKHLbCCaPzdQDKwO1wK0SjGeIpq0mt7nhIOqUnmN9Yz/XLq5mY9MgB3uix70fw4TqIg8fWz2dX7/YSiydGPN4LKNDQS3+iz+B721/T7p1G7mDzxHc/zLptt2k23aj+ErxLbsK79IrUIYXJ69DwWGTGEhkCSaz7O6MHjeLcUSIagZohkF3JI3XYRvjnhz5HueG3ebd4TR/3trBL25YjpbL8ehua7PjUmU6wimcqo2Hd3Zy2bwK5KN6DMwp9RBwq1y5qIqDvfF8TN329hBr5lhZZPu7ImMy6XxOGx2hZF74jLRMObpkwGj8DpXBeIaOoSSabuBQFQ43DhJKakhAbaElkKIZbQKLkGWRG5m3+/xzWXbZezj46nMkI0McevFRvvjio9z6aYXy2Uu58Rs/4ivvueC4TXZHHuuNpvnCpXOIa/priuc53Q11I0mNQ71xyv1OYilteJNs4HWo3PX/vsT+XdsBWLBgAV/4whe45j0f5O5XO0+7dev1RIilKc7IF8VjV/jb7l6ekPuQJUikNStFGTg8lEbGEi4lPieFbpW0btAXTSMBdpuEaRpsbB6kqsCFarNEh91miRzVplDusyNJkMrmiGdyZHPQF0uztytMIpNjZomXQ31R9ndH85Yowxhp/qlQ4rMRTWdxKDY0I8elC8tJZw02Ng/kd+3doRQbWwaYEfHmay0Vee0ktRyRVBafU+XoGF7dsArgycMTrlNVKPM56YpY2S4Xzy5lQ9MA8vBxZT7Hm+KLd6Zw2hUwc8QObiK2/TFa2vfkHxtoa8xbkNz1K8c9Xgv1kGraTKr5VdId+8ZUspZdflyzzsNVvxLXcJbc68nxrEHjUei2gQnJbI5wUsvHE8lAdaGbygIHuzojJIfNIxIwp8zLA9s72dsdRtNzJLJWQHY2rWObIOZcAmaWeemPZwhGjxXvsiTx6K4eXmkeYktrkMxRys42HF80WnzYFKth9RN7e7ArMj67bDUVHu/6is2yItWvwrmmn9jOJ4nvfJJcbIDwhv8jvPGPeJe8g5Lz38ucRfNoGojnazQBuGwSqeG+fKZxxNVuk6yfVjHMI9fL5UzCybH36bBZLVxGFxQNp7Ksb+ynptCNphvYZIildZw2mUK3nY1NQ7QFh314o7DbraUq4Fa5YlEFDX0x6ord9EYta3lXCG68ZzORlMY9Gw9zz40r8TuPCB89Z3Le9OMHUUczGiVeB5V+Jzs6wgTjGSoLXORyJiU+O73RNIVulT2dEfwOq+jieBahEQvVtAXnUlK/lG//4KdsfXUTHTs38szT62hpPESoq4mg7shbeHpeeYR98SwrLriQ6sDi/JiOdpuNVy7gTNMZTtLS3om/9UVaXnqGf/2vn3H/gSjxrIZ90eVcXVfHP3/6U1x++eX5RI3Xw7r1eiLE0hQmktSIp3VMw+T5g/2ktRzlw8Uijy5UbVes+i49kTShZJYl1QHKfU52doTI6AayJLGhYYANjQMYhkHOsApbKhL83Xm1HOqN8eS+XquR6PA5dQP+uq2TAo+d9qEEJV7HMdd1qRLvWlbFmvqyfOD26IJyv3vlMKGkjgSUB5xsOxzirhdaMAyYX+nDZbdcGWU+Jy5VZuX0Iu7f3ok+3NtuWqGLioATn9PG5sMh5lX4CCU1BqJptFyOUEqjMuBC9zuJA4uq/W+KL94bSUcwySO7u3hlbxMvPPoXul9+lFw8aD0oybhmr8K//FrU0hnHHGsaOTLdhyyB1LQZLdg+5nG1eJoljupX4qiae9KZccfDZbNi6MYTRbJkuXrSoyKzlWHr6niNdwGiKR1FAruqkBpV9toADg8lGUqmx7h2TeD3r3bkXQuKZFlVJMWqKu5SjxUsElbz2jVzSvnLto4xj3lUmUKPnaFElpaBGAd6xjbNBfA7FLK5HEe3wsvm4EBPFNO0grVtJ5AdaAI2fxmFaz5GwerrMZo3MvjqI6R7GonveJz4zicxz7uUwKr3obtr8seldBNVhjWzS3n1cIi0pmOaVhXmAo+dZEanN5rON+suHP5bUrPiJB2KRKnXQVd4rGtR0ww2NgbxOW2oNpmsboUPFPscDMQzuFSF6cVumvoNvA6FdDZHwK3y7qVHUs3nV/hZXBPIiwfJhDs3NBFKZPE6VCIpjfWN/aydU0bApeIp99E2lKQnYmWNTbaZGqk43RZMcsm8MuIZnWQ2R32ZlxtW1tHQH+MHTx1i3b5e/hBw8bl3zBnXIjRioeqJpCn1OXixKcSQaxZVVyzkrlu+xu/WbWHX/gPopmUlD7hVtj/6Wzra23jxt/CHfy9jzZo1rFq1ihUrVvCRc5cQySnHNBA+k2IjnU6zceNG/vzQ4zz51NN0NO5lZIHY98qzZDzLKfc6CS64lE+98xauWFp9TA2oqe56G40QS1OUETPujrYQ29pDefEQTmZRZBk9N3YmHb1DzugGM0u9XDa/nM/cO0TOtNozuB0KzQMJSj32I4mjJnjsNqaXujFME7cqkRgOKFUkCCZ1gkkdGVg+zeo3NZpCj5N/uHAW0YzG7DIfKU3HpdryfvTL5pez9XCIUr+D9y2r4d4t7aSyOWJpnZdbsiys8rO4yk9Df4KUZrVSWVpTQHsoSVYzqC/34nHYGIxncKoyh4MJSrx27lzfzGAig8+psnJGId3Dqbql3pOvdXI2s78rwj/8dgvd0QyJgy8x+PQ9AMjuAN6lV+I750ps/tIxxxjZFOnWHSSbXiXVvAUjNcpFJMk4ahfhrl+Fq34lauHrWwNFlqxCh21DCSLpseaXMp/Vb2qEcp+Dj62u40B3jMf29BwZMkfElvVdAHTjGOEPjNusd3SWXM6EIreNnAEJUx9XKAGoNpnppR5cNoUQR9x0IxnlumGMaVEymng2N+7YwHLFOYZjgRbV+NneGRkjJEeuP97hNtWOuvDtyHMuJtOxh8grfyXdup22zU/D5qdxzlxOwerrcVTPxybD/Co/8axOqcdOMGkJwMW1BVw4q5j/Wd+UF6QK1qamwG232oD47Picdl5tDR4zDlmWiaY0bIrEhbOK6QylMAyTUr+DgEvF51Dpi6VJZnPUFbtx2hS+fMW8fBbviDgYsUpIJnztoT10DCUxgXhGo9Bj5+LZZfiGhVNPJE2Z18FNF83IJzRMxNHxPDC2Tcum5kEOBxMokkTzYJzOYcF2tDtpxEJVV+SmN5rmcDDB9GI36xv62d4+xKFBhUzRAjY0DvKTZw/x1Svn8Q+f+DgvvPACmzZtor+/n7/+9a/89a9/BWDFihVs2bIFsDY/d/3xIQYlH6avnBmlvuPWZzoVRr/eXodMJpPB7bbub+PGjVx22WXHVNYumDafFRdfyQevu5r+rZExWXlH14D69rsXHxNvNZURYmmKMuJ+G0pazSlHUpt9ThU9kQVZwiZBfamHgVia/rg1IeewJq/Z5V5ebOi33GzDx7YPJa2O7pqRz1SRJAlDMrlwZim/3tBKQjvifhjdqsIAdnSGcasKqiLhUiUK3Q6++76l1Ba76QgmSWR1q8aHx5oo+wrTxDM5Lp5bRkcoycbmQYbiGYLxLDnTRNFhd2eEBRV+Sj0qZX4nkZRGgcdOZzhFqdfBjvawZRYvcFJf5qXE66B5IEFvNEW5z0kwmWX59ELKPvpBelYvYc2F57/B79TUoyOYZOOhDg6++CQP7u4jUnshAO7Z5+OafT7uuRfimXuR1Rx2GD06QKppM8mmV0m374bcqAXe4cE5cwXu+pW4Zi5/3dP6RyPLMrZMhJuXuHhsWyfb20LIkmUprbEH6O0KoVbOQXW4KHKrzPKZLFvgYldjhoGMjZKAB69DoWUwmY+hMYGaQieGIdE2vMiOxqEwxi02WmwpEtzy9tncv72DfT3xMcfJkiWkJElm7ZwSZCRyQIXPzkDcKvOxYkYRhwfjx1hcRjNeFxirEa6TYCJLZjjO58tXzad1MM63Ht1LWrc2SgA2G4zOsh8RUDnTKoQuSRLOaUtwTltCtq+ZyCt/JXloI+mWbfS2bMM16zxK195At2s+LtVKIrGKTkrsaAux/XCQ0KjiUjmgcTCOjOV2k+Kg58xjrHs2CSr9TvrjGeZW+vjcJXOIZjT8DpVoRssLjft3dPLLF5qt85FlX2+UqgIXd77QxL7uKAur/Pmsud1d1oJc7rNihVbXF3PzmnoWVAfY1x3JC5ZENkdlwHlCi3LArdIVgv9Z34TfqXLd0qr8ccU+B6osk80Z2BWZmmI37zm35hgLz2gL1YJKPyDR0BfLvxuWtd+qX7W7M0pvPMu///u/W49lMmzZsoUXX3yRrVu3snXrVlasWAFY3+1P/+5lHvvCR8E0UGwq/vJaHp9bz4LZM6itrWXVqlX5jDzTNBkaGiIQCGCzHbvcm6aZd4tlMhk2b95Mb28vLW2dPP7KXtoPt5Dsbyfc18mXv/xlbr/dimusr68nnU4TKCnDqFyEf+a5SNWLOG/hLMr9Liprp3FHvTrGivTIrq58DajucIofPnMIVVEmLMZ5pi1nRyPE0hSlpsBNmcfGzrQ16+nDGWH90TS6YXX9NiWJcr+Tg0dN2pIE977aQX/UqgczMvkORNMsqgrgdaokMlkSWYPaIjfvmFdBNKNxzrQCesIpq46Tz5qYU8NmdbBcG16HDd3QWDOnlK9csSBf/2lHZwiHIlPkVmkdiHPHs41UF7pZWl1AbzRNgVslnNRYWBUgkhrEME3iGYNcNsee7gilXgetQ0kcisznLp2NKltuw6RmVedNZHSWTy9Ey5ksrfEjA/3xDJUBp5U6PPN6dnSGqHuLFqSMJDU6QgmeeGYD37vjToJ71mNk0yi+Uqr/6XwkWUFSbJS99+uANUlmeptINb1Kqmkz2b7mMeezFVbimrUS9+xVOKoXjKnXc1po20q4qwkjGSGXjGIkwxip4f+nE9Tc8jtkh5tEJscLj/6MB3esO+YUIw6u+lvuRna5SWoGt/+/77DpoXvyz2l3e7B7/Gg2D4bdS8kVNxMoq8FtV2k+3IYWiSIHypHt1mIrAS6HjZLhZq4uVWEwbiU/KFjteA71xdh/tFAC3j63jA+vmobHYWN+hZ9oSuOPW9rpCqeYUeLhnNoAiayBy37819KKP7STyhqU+hzYFJkPnleL2ybz+L4erl5Yiddlo9TnxOdUSce1fHzTiFByKlDgtudFYjStU+JW6Y0fSeawl8+i9F1fQQt1k9l6P8GdT5Nq3kJ78xYG56wmcNGHsZdOR8Gq/p3AGNdqpUgS8UwOCZNY2qqZdjRel41in4MFfj9rZpfSFUnhd9jyCyrAwd4om1uCRFLD7VAMk19taGZT4wCbD4fQcgatgwmGElkkSaLQrVLmtVo41Ra5+fLl8/NBz6MFS32ZNy/GjtcOZH9XhI/+76sEE1ZQ9yM7u/j131uJKefVFfHOJRXs7ohQU+Rmbplvwh5sR1uoDvZGeXJvD4f6YjhVmYxuYJMlltT4iad0/md9Yz44/aKLLuKiiy7Kn0/XrTd1R2eIju4+fJUziPd3kNOzhLpaeLGrhRefs55700035cVSNBqlpKQEsESyoigoioLNZkPXdT72sY/xy1/+EoBIJMKaNWvGeXctdu7cmf9/eXk5jY2NZJwl3PTbLYSTWWyyjEu1jSljMPr1rS/xEnCpDCQyFLrtaDmT2sLx48hOtrL5G4EQS1OUgFvlpV/9O02HWqhb9jbiZUtI+2rIGRImlqWn2u9ky+HwmKwfGZhW6KY3kiJ1VKv2TA4aB+JkdQNVkfDabSyrKSCW1mjuj9MbTeO22yh020npBi67gmGaY2JCuqPWJPhy8xCxtJb/UO/uDLOjM0x2+LmqYtIfTbP4fD+LqwvoDaf5n/VNJLJWT7hoygoGNUyrEnc4mSWtGwzlTP7fEwd53znVSJJlPbO6qhu865xqKgLOfMXYkVpBsbTG1x7ac1Ids88GRrJ//GaGn/36bvY99yDx3tb847aiGnxLL7eCsGXFakjbtttyrzVtPhK3BJZ7rXoervqVuOtXjWnaeqIYWgZHso9Ib6dV+yfcix4dIBcbQI8Fqb3l98g2FRMI73+RyO5nJzlXGtnhRpHBcPpwBoopLfCRyJpkDRNVUTAlCVWRmVFRhN3nYWlNgL+9kMPpdJFOW3WdUskEqeSRrLFin5uAz4Vdgd5XHib8suXmsAXKKKiczspzFlNQPZ3zz13GE71OmoKZIy48rEKRD+7sOkYwfPT8aayZU8aGxn6uXliVL2b47Xcvzndj9zntvH9FBZIJn/r91uGU+PFx2RWuW1LNs4f6cNtlZFnmmf29NPXHMUyTgz0xZhR72d8TITZsBpOxLGCqbG2ubDYZmywTz2bRcyYuVUZRJJy2sXFeAM7CKuZc/6/krvwY+x77DUO7nyfZsIlkw8t4FqylcO3H8JeUo+fMY4LRParVykjT08SzVqzTMeVIJKsJ75o5JbQOJPnRMw1ouklGz6EbJnZFYlltIbGMTmcoRbHHTlc4bWUQGgYtwWR+3srqBp1DSc6bUUxHKMl7z63BZVfynQlGGC9F/kRcQesb+4kMz08mjGmhZJ1zNj95roGBWIafPNcwpqH3aI4WUatmFjOvwk9nOEk8pbOpeZCZZV4qfE4++6ftY4LTj3Y7joxtWU0h0+um4fjMLyh12/i7BW7cyX6GBnro6Oigo6ODiy++OH/Njt5RDcxNE13X0XWdTGa4z2bySDmL4uJi5syZQ1lZGZ6CEjrSdjxlNSxaMJ/Pv3cti+aO7c9WX29Z90b6+S2vLcLrso1bLyqS1HhkdzdVARe1RW7+8aKZPN/QP2E23MlWNn8jEGJpiqJpGlteep5YLMZgy14AFH8p7vqVeOpX8q5rL6eiKMDdG1uxK1bwZ1XAgdtuI5TMUupz0h1Okjuq7Xt0OO5DN0zimSx/3trBY3t6iKX1fJbLJy6czr7uCAf7YmgTlDWOpvV8EGVbMElGy+WFEkAsk6OiwCoYF0tr/OsDuwkmssgS+J0qHodKeHhCsskS2ZyVgadIEE/rPLy7yzqRBC6bwpLqAnZ1hqj0V+a/gK3BBOsbBtByOdo6u/HLOh0p11nbG25k8oyndL63bj/b2q0U7+ATPyW++ykAJJsD97wL8S69Akf1AoxUlMSBFy0LUut2TO2I+0dSnVZj1vpVuGatyKeST4ZpmuTiQbT+VrRgJ74V1+WDuoeevIPE/vUTHqvHg1YjWcA5fRmKzYbHX4TiDpBzesmpPgxnANnpxeEO4HIoJDI5yi65Cd/Vn+TiuWVjXDd/2NyW72QPEr3RNNff8lVuvu83+JwKkUiEYDBIW1cfv39hLy2dvSxaOps1cyr4+QvNVskAhwcjk0CP9DMY6efxg5sBuBf4+YMv8BAKnaEk4e5WME2cZXXkDHlMDadSr40yv5NP37udrG5w35ZO7vjQuVQUOIlndOyKTEWhlfbtc9pYWBXgro+s4AdPHWJXR8hqwguoChS57QRcdmqL3PzulcOkdauv2qwSN267YiVQOFWGElk89vRwb8gjjFTWV20SlX4XrcFEPgh7RokLv8vOzFIvLzYFxxxX4XfQFU4ScJUw7X234ljxPiIv/YFkwyYS+9eTPLQRx8UfoOCCD2BgR8IqEHvp3FL29MQIxjOU+l3YUxlCwwU43aqM266g5UwWVfvpCKV4al8fvdGUlUhimETTer40yDMH+njHgnLAapY9UstpMK6xuKoAVZbojaSpKXRQW+SmZTBOJKWxsXmQ+jIvV41TEuBowTK6HUj7UJIv37+LYq+D+ZVHikVePLuM37zYSjBhzU+lPvuYSthdkRQdQ0liKZ2DvVaA/jfeuXCM5WMi69Xo8Yw0kv2f9Y1EUhpu1ZYPTh9dPHi0ZWW8zg6jGbluR9BqJi75SvjHe16hQNHpCcf5+/NrqS/1kMvlUBSFgoKCI58dReHQoUN5QekJpyhw2/nSB88ZJd5ix7jFRurmwcQWoRHxM6PEQ280jddlmzQb7vUqnPlaEGJpiqKqKvv37+evDz7CPX+6n92bXyIXHSC2/W/Etv+NOx/+L869YA1awQKkaedSWFzG7e9azLMH+9jXHaUy4KTQrdAeSjEYP5LSK2NNqCMB4RKW8BnBMOGeTYet3lHDtZTG6+2gSFDstucLZR7ojox53ARuubgev0vl1xubCSWzKMNZSpphkNWPxE3pw41IR+KkZKx04oBLpdSrcu60Il5oHOCl5gH+tLmDe25cSeNAnOcO9DOvwkcya9L3zP+yc+s6Frzrn1j2+StO63txpokkNTYc6uePW9rZs2cP7Vuexj33QhyVswHwLrmcTG8TvqVX4J6/BiMZJtm0mfALvyXTddDK/R5G8Rbhql+Fu34VzrolSDb7pNfWQj1kuvaT7W9F628l2986JuDbNfv8fJC3vbAKze2jum4GurechKMER6AM01OC7C/F5rPcAYoEzvkXM23lFYSSWQzDxKHIeBwKQwnNyuCyScwscdMfy5LNGVQEXISHu7OPVIKfLBAXrLYUhYWFZNylKIftnDNbIZHNEUxlSWk5pl/xD0TW3oiZiqBEuiHShS3ajRHqYqC7gyFbMYoSxGlXSLxyH9H9LyC7/PhnLOHqd1xKm6MOf9VMzqkt4LHd3WSGP9NJzeD7Tx1keomXQrcNVZFoHUxQ4rO+Lx3BJPdt7yCh6RjSka+XhESR2861y6o40BUjpZt591dnKE1/LIvDJhFMZDFM6ImmrVpnw8dXFbgwgM6hFLphWinzo767jf1x5pT5uGZJJS+3BMc8NpDIks2ZhFM6qgT20jpK3/M1Mr1NRNb/L6m23TQ/ey/OzU+w/H3/yJXv+RBLppWwtzvKQMMgZV4HwaRlwRrZMmV0g0vnl+J3Omjqj6EbJiUeO/t7ouRyZr7cR97Nb0JDf5yltQG2t4UIJ/V87bj6Mh8VARfbO0KkNYOhhAaSicduy9c+2nCon8aBOPVlXisTbhy3TbnXidNmtUFJZXMc7I0RcKXzn5+A21r4v/u+pfzrA7tJZfUxbtNIUmPd3l7ag0lCSY1pxW7Cw5uYERE0WTPbSFLjQG8UCZg3XBn84tll3LPx8JhM4sksKxMVnRzvujUFbmaU+a3YqVlFrFhQP+53ZbQVa0RQlnis97RpMD6heDuaicY9nviZrNZTwK1yw8q6vCg80y44EGJpSlNTU8Pl772B34XrqTn/06Tb9wzHmGxBiwd5df06wIrlWLh0GQ/GrqQ3sJBli5fSGkwQzxrkDKtWil2RsNusIpUpLYdTMdFN8tWzRxugcgb4nTbCaT1fS0XiSO0XJCvQ/BcbWjjYG+cDy2vwOVR+8swhRicHbWsPsr83SlNfAlWRSWuWGd2jKmh6Dq9dtpp46gYeh41YWsdlV5AliURWJ5jQSGR0trYNEUpq+BzWzutPWzv42+5uhhIaLYNx1s4uYVqxmx7gXUur39RWpaNN7x3BJJ/+1TNsfOoR4vueR+tvAcDIJPJiyVZSR8FFN5Bq3Ubkt58nF+kbc061bKaVvTZ7FfbyWeO613LJSF4QeRZdkrcyxfc8TfTlv4x9siSjFtWglkwbI8Sq3/5h6q//FAnNZCiRJZ7RcdgkVFlicFS7D9MEn9OGS5UJGiZeh42UplNd4MnHCWV0g4XVAT45o4Snh3vVjY47gWOtBhNNvCNp3HuGF5HltUU8VdBHVzjFTK+LmsJiMvp0ZpV6cdhkWgYTHOiJcv/2LvScwYJKP+ECL2mnm2wqSnj/S9y7/yUASsrKUS9+B44LP56vDC4BQ4ks1QU5NjZFKfGoxLI5TEz+d2MLwUSWTc1B4ml9TA0ic/j7uLklRMtwX7aRh62q9jmcNmW41piDcCpLeZGLgViWhVU+PA47LzYNIElW4+ysZoyp0O+ySQQTGTY2Bzm3toDdXWEUoMDrIJ7O4bCZxDM5HHYZCUv0OCvqWfrPPybZvIXdD/ycSG87G+/5b7Y89kemXf0p1GnnoBlWfTaHKpEcZenKmdDUn2DZNJUij4PeaJrdXREk0yTgVtH0HAGnSl8sY7kNZZhR7Oaf1szifze28siubnTDpMhtZ1GVn4d3d5PVDbpCSYYSGVRFpshjx2VXcKs2vv7wXmIZHZsssWZ2Cd+8dtGYuaAjmOQ7Tx4gkdWRTcmqZQuEhutDjf5sJTQdWZaYVuQhmMjmrdWd4SQdoSR+l0ooqRFLa9QWusYcO1EzW6tJ9SHWNwwCJhfPKePzl81hQXUg78oaiVl6tTnIUCJDJJVlSU3BCVlWxrvudUurj9lUHC16wGovMxI8/5FVdcf0lztRt9hEFqHxYrj2dUcmFGxA3nL8avMQi2v9XDiz9IzO7UIsTWEiSY0fPNNAJKkhq07cs87DPes8zMtNzMFWEk2bcffuorNhD/t27WDfrh0APFFYysxlF1I8ZyXnLFlJU1SlyGunrsjNYDyDXZHRciZOVaZjKMW8Ci+D8SybDw8B1qSd1HK4VBktZ+C220hpOT6wrBrVLrOzPUI4qWEYJhubBnn6QC9FbpWaYjctw/2yJEAyJdqCSeaUW/1+phW58Tlt3Lu5A92w0qeXVPkJp3W6wikKPXZmlXhIZHUO9cZw2RUyeo5Sj53eaIaklsPvtNHYG7N2llgLwaaWIQaGF5e0NkE+9puA0SbsgANeXvcgW557gtThnUdEiWzDOXM5atlMolsesrrQd+wZk72GYsNZuxj3bCu93+YvG3MdPT5EpmPvKGtRC7n4UP5xtWQarpnLASiqWwA9SyiorWfG7AUsO/ccLl+9gpZwlj9v6WQokUHTDRQJ0jmTnmgW3TApGy7h8I4FZYQTGs8c6EMbLmK6vK6QL1w2l/5Ymtse20csreN12lhQGaChL2Et2KpMKK7zp60d1BW7uGFVXX4nfrJZMiNp3NOK3CSzObwu2xhXht+lHjVJH2ZfdxSPXaE3qnGwN8aSD/8rz9z/B/pa9/PQ355i3TPPcnDXVgb7+zi0bzczL1DyFiKjcxexqtls1gwkySpq2RmJML/CR0NfHN0wcSgSQd3AaZPI6CYuu4xTVbDZZGJpjVAyw2ijblIbrpCfzaEqEkOJLCYmzQMJdANePRxiaXUAp2pVJTdNk0KvSrnfSUt/gpRukMia5Ewd0zTZ0RnBNK1ij599+2zuerGF1kHruxvPGqjDG6PldQXYbDKO+aup+vh85M1/I7Lxj2QH22n6v3/DPWc1pZd9EgKlxFJjjdBuVWZ2mY993TFsktWkt3kgQSSVJZzUsNskJBlcdolsDt5WX4JmmPzfK4fJ6Ab/tGYmSBJXLqygutDNC00DRNMabrtCIqtT5HZQ4LJx2YIy7tvSmbeQZ3MmLzQOcNtj+/jBB87Jf0ZGxESZ1ypqq8gSpinhUCSuXFQxJs5mooa0NQVuCtwqe7o0ZpZ48LlUrlxUOeZzONGxneEk+7ujpLNWl4OGvtgYa9aIK2t/V4TP/mk74aSGx2Hjc5fMOaHP+UTXHb2p2NcdOUb09EbS/G13D9mcweHBBJfOLx+3ifuJuMUma6Uy0tZlJND96H6Ao0Xc2+da4R1eu43H9nTzxL4ephV1nNF4VCGWpjCd4STp7P9n77zD7Krr/P867fY6vU+SmfSeQAKEXiMCsio27HV1cXXZVVdXLLsqqy4u2HUVXVYQFBFRKUIglIRASG+TKZne7tzezz3t98e5czOTQtnfrqI77+fhyUNyy7n3nvM9n+/n8y4GLodEVjVQRFuNllF1zLoFtLUvps7/PmoiERjeQ0PyME9v3UIuMcXBx++Hx+/nSUGguXMFCy+/nPM3X8FRXz0jKY0l5XyjacnuQ4fG6JrMUOt1MpktsKolxJXLG/nGY90k8xouWWRhQ4BLl9ZzW7GHJ3siWCYMxm0i7UiiiM9ph3waJjQEXSxtChDvizGcyLOyJciHL+jk4YPjmJaJUxExDLhmTQsb5ldVSLDza7wsavDx46f7SRZKeJwSPo+Da1Y3YVoWz/ZF2Tcan0WwLekmZjlI9+meyKz08j8n7B2MsOXwBJPpAqmiyegv/wMjHQHA0bAQR0MnlqGjDu0n0fvcrOdKwXrcC9bjXrAeV9sqRIcbU81Tmhqg0Ps8rnlrUaqaASge20XsodtOen851ICjbgHNNSFURcSpSNRvvIjL3/MWLMFi87LGWUng16xq5oH9o9z13BBTGRWvU6Yp6CRbMonlS7SE3Vy6tIF7d41w5YomDo6neOPaZt521rzK79NR6+P+fSM8eTTKo0cmkUWBjkY/CHBgLIksioylilyzpuWkoNOXq5IRLACLVEFjaWPglEqdmbvk6bHIZKaIKAisaQ2hyCIFE1oWrebobgP5qnOYd1EBc/wQHodUJimDXswzcPcXAGhddTbepRcSD19AY9BFrmSwqN5HLFuiazyNUBYvyJJAyGWPQ0fiefIlY5aT/TRxe1rVqhkWqRnFsSyAqlvsGkraj7fA55H5yAWd1ASc/Ocz/QzE82SKGpphsnMgjmbaFgkFzWBrd4SpzGwrA9OyvaJiuRKJgt3hLRkigfVX41t+EcltPyez67fku7cz1L+b8Ka3EDjzdYiigkMWuWxZPZpu8OyxGLIokFU18iUTSbRVWUG3HcidLOjU+t1oukUir9ETyfBkmVfpkkW+9oZV9Eaz+F0KH7t4ESXdpHsyw7GpHLGsalsVlDde01l09ncET3VP8fDBMVaUOzMzi4m2sIf5NR4G4wUW1nnpnsjyVHe0ck6dyA0CeGDfKJ01Ps5oD9M/lcOlSKxsCbKkITDruzsdryjgVMiXDFJFDVmwu/enyrGcJph7HTL5ks6u4XiF3/RieCk+E5y683NgJIVmWsiigGba0VaXLK1/SbI8nJqbdbrx2vS1e2AkxViqyNkLqioFGzCriLOA9moPzx6LoRkWDX7XrC7dnwJzxdKrGAGnUlaPCSiSgEuRaAy5+Nt1rSQKGhYWdzw7iMdfhbbkIq676IO8//MW8Z593HHvbzi08xkSI32M9hzgJz0H+Ml3bsHl8bJ8/TmoZ53HsaprOH/DKgRBYNOCWtqqhhlNFnBIEiIiA/E8n71yGV968DCpgsYtjx7l+f443ZEMuaKOMTOyHMASWdES5Ix5YcYSKt9/qh/TtJhXbRtejibynNNRQ0eNj7FUgaZqd+Wi/MZ1ayo7jqe6o6xpDdEUcrO6JURO06n3ufj7X+5jPF2qREzIoi1ZdsgiU+U7SckwXxXKiRfDNG9hKlXkQPcxdm97nOcef5Dx/m6aP/JTW6ZvaLg7zkSLDmAWc5Qm+yhN9Bx/EUnG1bICd8cZuBesR/CEKI0cojTRR/bAY2iRfvTkROXhVZf9daVYcjR04mxchFI3H0fdAvvP2nm2+kyAK9a3cN/eMfJ5jVRBYyiWxRJEHu+a4ntvW3988Xcr9Edztu+PQ0KWRBbU+XnvOfPpjWYrXZudA3EGY3kuW1Y/q1ACmxzaG83ym73jVHudjCQLyJJIe7WHfcNJphkt07XDK1XJDMfyfOb+A4yVyaqfumLJSxZXlgBLGwNohlnm/VgsLY8An+yJMJ4q2p0hS6JpyQY0w6TW52A8LVOYjOCoakKdGmRoz1Ow5ykGf+Pl6mvfwCVveSer1izkw3ftIVXugiii3b0xTLsrGp8sIWDNMqycDsi2OHXEy7SuYnqUbmCTor/84BH+6cqlLG700zWZrQgoph3GS4aFIsETXVOoJwhBTAtM02QyW0TVTKwyp1AEcPmouuQD+FZeSuLR71EcOUx860/JHNhC1WUfZsEZ57C2LcSPnuknmddQJLszBmAYIGKr4KZfL6fqnLWgmsaAm73DycoxFHWTf/7dISRJpDHo4tOblwKgagaGaeGQRbKqzgP7xohmShgzDKpE7KLyrueHaJpRBJ1YAO0ZSeBTZH65e+Skc2qaGzTNBRpLFjBMC1W36Q3NITf/tMo+phNHSqfiFaVVjfqgi7qAk8PjGeJ5jTufHzyp4L9wYR23PzNwUhrCy0GmqDGSyNNZc2ovtHRBY361lzPmVVUMOjd11NBR47XX5KCbTR01p3zuiUXQi3GzToXpa3detYexVIHBWH6Wo/rMIm5pQ4ClDQE2tFfxjS228nBmt+xPgbli6VWM6fGBxyGzezCOUxLJqiZLm4MIFnz2/oOkCzqpgs0NuWvHIBlVJ+iuouOqj3D+229ky+6jRI++QKrnBRI9uyjmU+x6+lF2Pf0oP/n65/BX1XLuuedx9eZLeUvHan437GcgliPolhmM5Qm4ZTTDxLQgpxps7Z6sqN5OWF8JexysagmxqaOWb27pwTQtSrrB9mMxth+Lcf+eUX767g189/r1p9yN+FwyE2mVKo/C9mMxhuN5nuqZosbnRDNMprJ21p1ugVMEj1Omzu9kXVuI2x+UyQCabpxyt/anxvTo6MG9I3z7Fw+R7H6BQt/zaJH+WY+LP/o99OQ4xZEjYMzO2pLDTTjbVqJUtSBICs7GhTibFgNQHD7I1H1fOul9JX8Njrr5SD57Z+qUQKybT9t7/x3BsiXqhZKObtpk+/m1Pvxuh+347hDJlczymAjGZkiowV78knmNxoCLyUyRlS2hiox6ZgfqpTKgZu74O2q8/O0lC1lU5+f2bf10T2ZYVO+v7N5fqUrmVGTVmcd2KrSEPCxttEmxi5f62byisTICnD7WkUQBtyKi6gYtYQ//9NplPNcf51e7PSy5/H6OdR9B6t/Oc4/9luGhQe658w7uufMO/vozXyGhrKu8l4XAuZ11dE2m6ZrIoBsmJwpQDcvusuiGiSge756AXRSc11nD4YkUU1ntpOd97ZEuvnjNCvYMpRiM58p5jgLtNfb3ViyZjCSOy8cF7PFZTjMpmWCo5qzrPOgW0TQT1QBn3Xw63vNvGN1P0vu7H6DFhpm8+zN4Bzfzrdj7SZouFFmoFErTsLMq7cy4gm6yoiXEJy5fwtFIhv/aMUC+rD6xjXgt6somhrc8dpTBmO3FJghgWhaKJJItK+dMC7wOkXzJxMQuDCNplRVNQXojWZ7siXDBwjquWd08q0PZEHBWQmpPdU5Nn0M+p8xQPI8ggEuWSORL7B9N8cD+sZfV6Zz2fTowksKliHTWek9Z8DeHPVy4qI49wwnmV3vxu05+vVN1dA6Ppk7Kx2sOeyrXXrqgnVTcTHdYv/qGVRXO1Mvt3JyOm3U6zLx2L1xUxxUrGljacDye6lTrxMXL6llY73/RbtkfC3PF0qsYLSEPrWEPOwfiKLKESxGRRDgyluKWR7vJziBT6obFZEalNeRmKmcbtPVO5dCdQQKrLkZadAEe3UCL9FPo34M+tIfs0CEy8SkeeuA+HnrgPsCOwXC1LOdo20rO2nQu53WcQ8jtIFWwFwnNsCqKNUmgIvsVgLdsaOPtZ80DYFG9j6F4nnRRQzcsPIrIVKbEP//+EJ977XI6an0E3KeWix4YSaHpFkXNYDhZIOi2xy9KWZpnmRYGAomCTqKg0xvJVfK8PIpEWj05uPSPjcOjKe7fO0pJM0gVdXYOxBhJqqSe/QXJp+6Y9VjB4cHSVTANsvuOmy9K3irk6mZElw9L19GT4+T2P1rhL/nPeF2lWHLUzUepW4Cjbj6Ouvm46ubjaZiP6AnikEUUScBZXuDDXpmGoIuaMq8o6FbYtKAaSxDY1FFDpqhx/96RyvhVFu0bb3vIPWtnN734AxVH5pfjN3MiTjc++Pili05aPF+ME3EqnI7H8WJ4sfeYeaz1PheT2WLlmJvDHiYzRQZjeTasX8OHb3wjAfc32bZtGz/84Q/59a9/zXvf+iYGt4zSPZlBnRygtj5Ea5WbX+4eRjPMShdpGhJ2jl2VR0EU4cz2Kh48OEGxrLzrqPVSG3TyltY2vvVE34kfBc2w6ItmWFjvI6tqmBacvaCK685ooyno5t/+0EV/zPahkgT7XFANe12R4aTCzbJEzumsYSqn0h72sqmzGrdjFf+6dBPHHvoxk8//lmPPPoy8fwfVl30Ia9G5OCShIiZxSALLGm0ekyDYppN6+f3ObK/i2rVNPNcXR5IE3rtpPne/MMx4qkjI40ARRWr9TiLpIi1hD27F/n/dtBhOFHApNhezzu+kUNJwKRL5suLNsCwe2DvG4bF05bed7lBOpIu865x5+F3yKc+p6XNorLwWqbpdQDYF3dT6nTzZPfWyOp3T59WRiTSPHJw4bXE2ksyTLJSQBYGdg3G+8uAR/vUNq2aNvk7V0Zke301bEDx8eJySblUKuXnV3tMSz6cLvnRBpzn88riAr+Tamt4szqR+nM5qIV3QeLInUrmuWqs9FV7hn5JiIVjW6VKI5vBykU6nCQaDpFIpAoHASz/hZWJaPXF4PE2moGNa9uJiYdEzlZ/1WJcsUu1V0EyLppCbT29eyk+3D/BM7xT5kjGrqLHVMgKFoooxcZTs4EGM0UPkho/YN+0ZEB0uGjuW425eRKmqE2/LYlRHCEGAkEehqGkUNZto3V7l5mfvO8u2tt8zyhd+d5CiapA/YcUNuEVWNIWo8Tm5dnXzrBTtVF7jye4IX/ztIVIFzVZOuWVaQx4W1HoZiOcpqAbdkdkOyvnDTyJEe7j8itfw7U+8509yQT2wZ5TvPNnL1FSE4cN7KA7upzi4j+A5b8JZvxB1oseOFOnePktFNg1BcaLUzsO3/CJc7asRHF5Gv/vOkx4nugM46ubjWbwJ/9orAfum6nWJmJYF2O7ATUEXn7tqOTlNZ21LmExR4xuPHUUzLJY2Bk67cMFxw8v1rVXkVJ1IrnhKNcqrLZLgVHgpx+b/SZzq+3iuL8aDh8a4eEGIC1a0MhzLs+XIJF//u3dwZNd2lp11MeKqqwjNX0VJLzvWl+dwbgnWtFUhigKL6n04RJH/3DGAQxLJawa1fhemZbGkwU/PRIbxtDprTBdyyXTUeCkaBkGPgzef2caFM2T1d+8c5OYHj+CUJXIlDSyBYrmz45IFBElE0wxUw+48NvhdfOnaFWRKOsciWa5Y3oDfpfCRO3cxlirgjB+j+95/IzZiF26BRRs5712fIisFaa2xibv7hpM8cmiCom4hAE5F5MJFtbxn03yagm5GU4VyvIubo5EMsYzKyuYgD+wfozeSJeRRuG5dK3c+P8i+4SSGab9GtVch4FZY2xrm9m39CNjUhdeva+bweJrWsJ3T9u5z5gGcRDKeef6eSpW6vS+K22F7ikVzJdqrPCyq81dUWy+XQ3eifUDXeJoHD41x5fImljQGODKR5kdPH2PrUZuv6HFI3PqmtVy8rJ7hWJ4fbevj9/snqPM5ieZU3r1pHlevbOaZvim++lAX+ZJByKNw02uX8eDBCRoCLobLFIhf7x6pJB9MF1mHxlJ8+/HeSuF4w8WdFXuOl8LLubZejGeYymvsHIxz26PdTGSK+B0yiiyQLOiVYwy4lf9VN++Xe/+e6yy9ijGSzNM9mbXHYEBfNIde7onPlAQHXNOdAgceh8SNly7GEiBdtKtwt2ITUKWyscn6tiraql3c/swAQstKQi0rAagyNNTxHtThgxSHDqCOdWGWCowe2QVHdlWOyxmsxd28GKt9CVqwFbOqHYe/mkShxKNHJlFLOt/e2kuudHJBAJAumBydyLBLTbJzIM7m5Y18/NJFFdfjQskgXzIqZnqCBVU+B2/d2I7fJTORLPKRu3ahzijC6tdcxKKGa/mbzYv/KDft4VieHz99jCd6JknEk0T2PkVurIvi6BH02Oyk+diDt9ku2idCdgAW6GW3YE1Fcgfwr7vK/n/Lwtm2Etlfg1I7H0fdPBy18xG9IQRBQADefEYzrVU+frNvlKmMimmYqLqJ32UrGHOazjWrmytvect1a19WcTNTnfNieKmu0asBp/Ol+d/A9PcxHMvzZE8ETGy/Hs02q/yJ28PGjmreemYT/xX2c9iyOPTsFnh2C+H2pbzmnTew7pyL+eEzx1B1i4IBOwfjfObKpdR4nfzDvXspGVDUDSQBEjmVlpCHg2NJkjm9siHyuyXOnl/DobG0rXzDHn/V+JxcuOg4B2ZVU4gan4vxZAHTssUSDlmwuTmGhaHZ7xNySVT7XJy1oBqvU+Yff72fVDnO5aYrl1EfdLGg1kuuFObz73qCz33py+y8/8eku5/jwX9+O9UXvof02VeRLgfbehwSJcM2pNQ0k6d7phhPFVnXFgbsTlE0q1Ljc9JZ52Nlc3AW12YkmSc2HUMjCtT4HFx/VjudNT7+4d59JPO2X1dLyI1Llqj324VAlcfBnc8Nki8ZtIY9vOucebNGQam8dlq11s7BOOPJIrIkUOtzsbM/Tnu1h2tWNVU4ei+nUJo5/ts1EOfWLd1oBtyzc4QrltVTMizyJQ1ZFJBFAd2ESK5Y6SiNJPLkVYMJyyZlb+uJ8dD+CVJFHY8i0VHr45NXLGFJY4BD42l6I1miWZXtfVFWtgRY3RLmnBlu5/8/BpAnXlun2iycjmc4/V082xejdyqDS5EZSuQRBYH55S7YnpEEHbW+V4Wb919ksfSd73yHr3/960xMTLB69Wq+9a1vsWHDhtM+/pe//CU33XQTAwMDLFy4kK9+9atceeWVf8QjPjWyBZ3dQ7YJm1j2QnKIUDKhxuugPuhm4/wqGoNutvVFKzunafv+RfV+xlIFFEni7AVVXLK0vpJbtWsgzo+eHpj1foKk4G5ZhqtlGcGz34RlGmixYRzxPs70xDm0bxddhw+jpqZQU1Mky14zMN3tmMdnH12IGW5DCLegVNkjJIcAmjUjjBQq7riJfIk9Qwl+vXuERK5EwbC9V0zruLldomDLnadSRQaiBps6avju29bz1YePMJ7Oo2oWTofE4gYfSxv+5zp7YBdFP3u2nz8cmWQ8kSU9OYI2NYDgcOOoW4AWHUQd7SK1/eenfxHTQFCcOOo7cNR3ktn3MOgl+7/p78RXjVI3D2frisrfCYJAw1tvRgCW1vvojWbRDLtQPmtBNTdctJCNHdU8sG+UVMHmDk1kbJdoo9xhPLE1/udQ3Py5Y+aYxDBN8pqJUxIoaCY/2zHIruE461ureMNnvsnk0qdIP38/Iy88QmLwCHf9y99wcM06zDVvhvrlgL0puveFEawTiN+NAScGkCxotgP/jJaSQxJpr3GzrW8KC/va0w2L0UShIpHfNRDnF7uGkcq+TCYWRf24E//0Vke37P98LhmHLLCtLzpr3NMTzczKYAsGPKy79gO0r7+IB779edSxo0Qf+Q65rqcR3vwpsnIIEwtFFOyCDMiVTA6PpciqOjU+Bw0BFwdSRdqqPBwZT/N4lz1immm2OL2+gcCyxgAXLKyrEPDFsgHuaLLAfzzTR0PQzTWrGtk3kmLPcJI6n5N0oYSJScApz7p57+yPMxTPc/aCagZjeY5MpLl31zBbj06RVXVKmokkwTkLqnm2L8bO/jg+l8yewcQsftupMF04hD0Kj3dNEc0WKRl2gVvUTPYMJ7lkST35kj0OS+RLNJWTEGZaH0xYRVY0BzAMqPE56JpI45AkHLJtQYFAZey1ZyTBA3vHKveHFS1BAm5lFin9lYy2T4fp72+6+zc9lj9dMTb9XSys89EXyZJVdfxOBd00mcqptFV5KiKRV4Ob919csXTPPfdw44038v3vf5+NGzdy6623csUVV3D06FHq6k5WFWzfvp23vvWt3HzzzVx11VXcddddXHvttezevZsVK1ac4h3+eNjWF6WgmXa0Qtk8smSCUxZ459nz6JrMcCyaI6va3iPDiTytYTfZstLm45cuYvOKBiyYtXsCe6ciSyeTRWe28AVRora1E2neQpatbuSLX2vj2HiM32x5hkeeeJr0aC/5iWNosRHMQpri4H7GB/fP+gyiJ0iooY1wYxs1TfNoaGtnQvcxbvjBE6SoifROZfnaI0cqRNBpl/GZiGRUPvubg5QMkxqfgy9cvYK3bWjne0/2YpkGqWSakVGTTKaFoKfqFX3Pz/XF+PYTPezsj1FWLWNZFrmup9Emem0/otgwRiZ2/BsSxFOO0k4FKVBP84d+WIkFESQZRAmluhWlugWlqgXReXwBcEoC6+eFafS78Lkl3nxGO5YAX3/4KBYWAgKf2Ly40iqfJYmu8vDpzUtncWnm8MfF9E3N75QZTxWQRdv7xyHB071TPHJ4HFkUWdoYwFPXhvuqv2X56z7IvLEnuOPHP2D/3t2cu/bKSlDwNI1JFGYbyBqWxZrWKsaSedx5kdFksTJrd4giXeN2DuR0t0mRRJrDbgJOhVsf6+bhQ+NMZUrIglU578Eukk64/NANk4V1PibSKmvbwjaPsKzW2ryskeawXXxFckUEC7xOiUiwhc733sLkjt8Q23oHhcH97L3tA1Rf+iHcyy/GITErNkYzbesEpyTiVnTqfE4mU0VkUSCSLhJ0K4wlC2zvi7KiJch161tY0uCn2u+sKLvWtoSp9jpIFTTEMqfSLUsMxvL8eu8YqmZS5XUwmsqTU032Dqd46MAEP333BiwBjoynGYjlSOQ1Hj8a4ZrVjQhg8/cUkVjW/j5NA57qiVU2sV5FpHsiQ/dklvZqT1noUnPS9TeTl6mbtoddrlSqdP7WttrB40sbA3zqiiWzVKUeh2x/Jxn7O9ENi3zJQCmINAXdpIo6ogjzqr2zOmPXb2jn8Fi6UmwEnKcea73YJurljNtHknl6I1kmU0UOjKbIqQYXLK5h04LaUxZjM4uozSvqmcpoCAI0h9wnmVD+TxRz/7/4i+Msbdy4kTPPPJNvf/vbgC1/bW1t5aMf/Sj/+I//eNLj3/zmN5PL5fjd735X+buzzjqLNWvW8P3vf/9lvef/Fmfp7ucH+cyvD1b8VXwOuyUbciu01Xjpj+ao8jhI5DSqfQ7aqz1Ue+2LaWZlf6oTfTiW58N37aJ/KothWtT4nCQLKoWSVVmMHZKA1ymhaiYuh4QkCDhlEd2wmMqqlcdZeolSdAg9cgw10k9pahA9PjLL6PCUkGQUfw1yoAbRX4vkDSO6A4juAJKn/Kc7gOz20lZXRaRgUjLsIGG/S2ZBjYe+SA5VN4g8/F3Sex4kuOlthM592ynfzrIsu/CJj2KkJtGS4xjpKEY+iZlPgSDgqO/AyMYwMvHZQbOngiihhJtRatooDh/EzCdBkJCCdSjhRuRQA3KwAaW6GU/nxpOe3hJ0EfbKmKZAumjzsxbU+3j3WfNm8bjgpVO4/5i8nDm8OIZjeT70s510T9q8uqagmzPmh3BKEvftGcUhSWRVnbVtQQIuBxsWhLl6pe08PzU1xb98/TaKy65GNSyePRZHG9pHa0Mt5559JvuGUwzF86xtDWFY8KYzW/nJtn7GkgUkQSCnamiGhW7aZbUkgGZaNARcrGoJ8rcXL6Q3muXOHUP0RTJEcy8thhCBsFdmSUOw4pc2msjPCk8VLCoWDQCddT5bQGDB070RUhMjJB/6dxIDhwHwLDqbqitumJVHKAB1fgfzqr28fl0L+0YS9EVyxLIlhhJ5dMPCpUh01nrwuW3Poukx3TT/LuBU2DuU4L+eG6QvkiVd1BBFW9xw0eJa9o+mCLgUYjmViVQRv1Mhr+l87NKFXL9hHn//yz083RPFU444+cfNS9i8orHiD7RrMFEh159o5SCJcNGiWnYOJJAlgaagm49ftogz2k++lo9MpPnt3jG2H4tSLHOM/uHyJZwxr+qkCJ+ZOYhhj0yNz8W+kSQLanwMJ/Jcs6aJtS1hdg/bzu8L6nw8PIOrNP3v0/zEkWT+FXGUXq63WSqv8S+/P8TTPdHyRqGIQxZor/ae1lZgmrM0zUvLqPqszf0fY137P8lZKpVK7Nq1i09/+tOVvxNFkUsvvZRnn332lM959tlnufHGG2f93RVXXMH9999/2vdRVbWS2gz2l/2/gfk1Pqq9DqbKs/lsyUIEJjIlprIl3IrEsVwWw4K8phPPqVR5HAiCwIFRO6vtYxcvOiUBsbXaw/fetp5tfVEeOzLJzoE4qm7vkpRyMvm7N80nXdT47b5x3LJIJKMSdCuUymqQaYfh+pCPgncx0vzFpApGZRFpDwicU63xxM59OHKTjA/1Q3qC8bFRsokoGDpacgJthh/Q6TBU/lOQHQiKC1FxMuhyoZlgWAJ6xk7XTm27i9S2u2Y8U0B0ebF0DUsvcbJLzWwU0lMv+u+C7ET0BFGqW6h7w00Ikr1olKYGbJ8iX3WlgzQNGVjR4sfjUMipOiGv7fczkxP0Uju3l2qV/zF5OXN4cbRWe7hufRu3PtZNrc9JpqRz4eJ6Omt8bOmKkMyXcCsibkVmSaOf6zfMO35jGCvx1x/7BA/sH+PASIo6j8S+h77JQGwCx1Vv4Nr330h3bS2D8QLLm/w0BGxVY3uVh5FkgaGYhWbqSAKohoWiCIimbRFR5XXwy13DDCcKJPKlSszHqTDTPXza6WpTRzXFctzIsubgrLwwzTAYSxbwOWVGkwWUckpAZ52XBw+amIFGAtfdjGfP/Yw+/l/ku5+lOHKE9td9jKYV5+JwSGSKGiXdpD7gor3Gy9buKeqDLromMzhE0A07WWD/WAa/S8IpS7SXx3Sfvf8gyUKJnKrTHHbTEHRhGCY+l0wkrdJe66NkWKxvq2LvcIKsanffcyU7g3K6OPnAuR10T2bJqho1Phcrm4Ozrr2+ySz/9JuDFDUdSbAjU1TDQhFAEkW6I1k006LW76QvmuObW3o4u6N6VoER9CictaCapQ0BuibSJ3X+Z44EB2N5vE6JZF6rjNEuWRpiLFVgOGGPPS9YWEe6oPGTbf0VtVvII3NoNIlpQiKnsaclwccvneZzvjKO0sv1Ngt6jhuHbu+LUdQMHJI8y3LkxHUuXdD49uM95fGik5UtARJ5vcIF+8z9B162j9P/Nv6iiqVoNIphGNTX18/6+/r6erq6uk75nImJiVM+fmLi9Dfwm2++mS9+8Yv//wf8EljSEKCtylspluD4AmZYdvSBgF2YFFQD0wTDKpEvGbRX2wGPe0YSDMbyVHkU9gwleejgOK9Z0Ui6YP+b1yHRM5lB0010w0Ium9Y1hjy8aX0bY8kCD+wdZypbQpZEHJKIgIBYMiociayqEfI68TkkZEkjkSshiQIpTeKJuIN8y0YUj8IlVwZ4onuKGs2kUTB4x6oAZibGll2HyUTHGRidQMulMQtpjPz0nyms0nHln6WXsPQSZgEyL6tGtTCL2Rf5dwFEEUFSEN1+gmddh+SrRvJVUYoOIshOZG8IyV+D5KtCVJynfBVH7TwkYEmTnw+d18HB8RRuWWRla7gyInixgujlcInm+EZ/Prh0aT2/2Tc6S1bdWu2pZIBNd2Rmqq1mysG/cu1KLlpcx33PdhFZspaebQ+x5Xe/4omHf0vdOa+n9ry3YpoWb98oV/hCq5pDzK/28OyxOJZpoRp2YLWowIrGIIMx+zpqDLroKuqYL7JvMIGwW0Y3Taq8ThL5Et98vBfTsrh751BlbDV9Ez0WzRLyOEjmS3idMpF0kbVtIWIZFX36jUQJ38Y3cv7aTTz7039Bmxqk/+dfxHPhNdz8tW9w04O95FSdZ4/FuH5jO+3VHnYPximUjFl0AQHIqwZVHgfRbImheI6pTAndtP3gTMtCD7rJlAxGyjfhK1c04HXK7BtO8lSPRlPAzYiZp8HvpCHo4Z6dw+w4FrVjoGRbEFPrc/LA/rGKlD7oCRJwKnz4gg6SeY1LltRxLJblu0/0UtBMGoIu3rGxjZ/tGGIkWUAUoL3Kc9oCI+hR2Ljg1M7cMwuU4USekEdhIl2kIeDkmZ4oybxGqBw2G/QoFa5WyKVwbCpT3kTar5XIq0SzKpsW1tIYdNES8lQsDE5OiTwZr4QA3lrt4W0b2xlNFDAti5yq0+R1EM2UOHwKT6qZXk1jqQKiKLCuLcxgzO5cvhIfp/9t/EUVS38sfPrTn57VjUqn07S2tv6Pv0/Qo/DJKxbzoZ+9QKpgtydnchYEQBSpjMb8LpmzFlTxwmCCgMteRNe2hHns0CS/PzBeIXg+dniCsWSRWL6Ep+xFImBzIkIeheVNIT61eTEBt8Jtj3cjiVDjdxL2OLhuXQstZWuAXYMJpnJFdNMinlVxBt1Ylj3GMwyLUkGnVhIJuBXCHgcWFmpZllyyJLZNCnziinOhYQn90RxLDZPGgJMDo2lS+RKT5SLRskwuXRjk3RubOTI8xc+39VDrsoinsqxoCvCLF4ZJPP9rin07Ueo6cDYuRFCcCIoLyR2wHa5lB4KsYFkWotODIDtPGSg7E9NBtSeixiuhSDJvXN/C5pWNp0y9v2Zt80nPmyt2/u/gdN5Rp1MZ7hlJMBTPIQkiQ/EcvdEsFyys4/VnL+Gvzv4vHnziGb75lc+TOraPiafuJrH/cQpXfpie8+efFFBauQla8N0ne+mL5Ng/luScBTWous6jhyft/LjTHLtHFlENk8uXN3B0MsNIokC+ZNjGpdghwffsHGZZU4CwR57FsdkxEOee54eIZFT2DqcIepRZoypFFEj7Wmh6562kt/2MxI77OLT1Aa6/ajfBK/+eqvalJAslth2bssnJQwkAfMpxc0tRhNawh7+71O6aJwt2HqFp2v8Wzdo+c41BFwtqvBwZz3DnjkFUw8RbHq+NJPNkiwY9xTy90Ty1Pgc9k1lyJR3dtB26lzX4ZxU6Jxa0165pYlVLiB+8/YwKt6i12sPK5hBffaSLvkiOvSMp1rQGX5ZR7szN1MwCZeaYMVvUuW1LN7mizlSmyFiqQGv18SiXoXgeSxDKFiI2VMOiZBg8sHcUzbAqXZt7dw2TzGuzXv90G7lTdbWn7UWmw3+nsbQhwJnzq/C5ZDTdJJZT+cFTfdy9c6j8m/gq3+tMvmVT0M3yJn/Ff+rChXX84dDkK/JI+9/EX1SxVFNTgyRJTE7OTl2fnJykoaHhlM9paGh4RY8HcDqdOJ2n7jD8T2NjRzU/ePsZfOWhwwzGcui6SdGwMMqOy20hD1U+B7V+Z4WvtL49zDVrmjmzvYrRRJ4ne6ZIFXQEwLSKPNNjFzghj8JYTsWlSGimSbXPQWPQxYcv6mBZc5AdZRdtn9MmVhqGyWA8x1+ta2FxnZ9P/Wof46kiJiALFk5Fwlk2mJteIIuagUMWWVjnY0GNl0cPRyrF3mA0y78/2s2SBj8jCduILZJ2sKY1xMGxVKVYEgSRoiXz450xLEtk8eIljKdVNiz3c82aFsY8Xey3Moz6qnF3nnlKftDLRZVb5Dc3XPDf2sHMFUJzmIlXMhr1KjLpgu2kLgkwEstz6+BRJtIqigh/6HcQfOOXcPY+R2LLD1GTEXrv+iLiuy8muKYFOO7UfFa5W3FoLIXHIXP+ohoGY3muXtPEYDTHE0enCDvscOqZUARwKhIlwyZBr2kLcW5nDduORXnwwDi5ooFh2QG7v9o9wkOHbEn+xy5bVOme9kazJAsa9eUsL1W3N0CTaZUqn0zY4yKnaiRkhcAF78Gx4Eyiv7uFTGSEzB2fIHfBO6k+668YTxYZTRVwKRJBt0K6aAe5XrW6kSqPk43zq7h9ez/90RyyKCFYGo6ygarXKVPrc+B3OeiezFQ+37FIloagi1qfk4Fo7viY0bJVuT6ngm7aKj3dtOiazHDBwrpKETqzCzKaLHDLY9226nAGvSGV1+iNZlEkkbMWVPHssRh9Uzn+/t69fOi8DhpCrlMWJNOeeruHkkiiwKeuWHLKAmXL4Ul2DSZQdTtY+c4dAyxpCFSK823Hpniya4otXRFKhv2YsFdhTUu4YpfQG8nyjceOcmA0bZt6Gha3Pd5NTjVOy0k6caN3KrfwmQXThYvrWN4YYPuxKN2RbMUTqq3KfZIZ5w0XLySWUTmno2ZWqHXQo7xk1t0fE39RxZLD4WD9+vVs2bKFa6+9FrAJ3lu2bOGGG2445XPOPvtstmzZwsc//vHK3z366KOcffbZf4QjfnnwuWWcsm3jXzJs3lKNT6FkmCxp9PGalU0USgbzqr38cre9W3hhIM6Z7VVs7YlQKBk4JVumm9esCh8hmtMQgOWNXvaPpYnn7OIk4JRJ5TUeOTjBWLLAeKqIbtrS1mPRXCX40LAs3OUdn2HBRKqAxyFXXl+RYGVzEFW3fZWGE3lqfA5yqkG2ZFDQbfVJQTPKoZgwFM/THHbzpjPb+MHWPnIlDVkUSeV1JjI50gVbMeFWJDTDZHVziGqvg7q1l9G4/jIuXFRX8Wyawxz+XHA0kkYUBDwKFHWLe14YRhRFzl5QxTM9UVTdth8QF57F5ssvpf/xu3AXY1x92fmnJeBOdyd6I1kaQy6ag26ag25aqzyMJAoooq1Am0bAI+OSJUIehaBb4ftbjyGKcEZ7mLYqL8cm0+TL+b3ZkoHfJRHJquRLeuV6m+l2DXYR4pRE2qo96KZFQTNm0QpcrStofM+3SDz8TXJHt5N44nb80cNEmr6AQCtLG23CrSIJ3HjpYpY12x2e3x4YZTxpx9j0x3IEPQodNT50y85s64nkeO+5dZzXWcPXHz3K3qEEqgnpSM52pJ/xuQXApUisbQsxnrS7NYphki3q7BtNki5os6JuxlNFwh4HhmHREHZVolTWtoS58/lBusYzjKUKJJwyWBZ9kSyqbrJveBfr28MsrvefZDFwZCJtd1HSRUwLPvSzF7jr/WfRUo4rAbtQ+MHTfRVrB8uCronsrCy7t1S385rlTTzZHeHQWJp5NR4W1PhoCror3NWQR2Eqo1LncxLJqNQHXBVO1Mv1MTrRLXxrT4RlzUGe64vZxre6wUjS3pQXSwYRoCXsrngAThdKM8/bzSsaTyrKXk1czL+oYgngxhtv5F3vehdnnHEGGzZs4NZbbyWXy/Ge97wHgHe+8500Nzdz8803A/Cxj32MCy64gFtuuYXXvva13H333bzwwgv88Ic//FN+jAqGY3l2HovTH8tVCiULKJRM6oMuDo1lODTejaobBN0KTUE3zSEXB0ZSdE2kKwnqybxmZ1lpZmVHJQu2m/fhiQyGSUX59vDhcTZ11DKRLlLrdzKcsBPJU0WdQslAsGD/WJLWsJehWAHNVDFNi2RBJ1nQcUoCTSE3Z82v4sBoioagiwNjadaGQ0woKqp+fKUyZvgvZYo6iixQLBm0V3lY1x5m73ACWRRIFjTSBa0cnmkQ9kj0R3P826PdiKJtonfOgmom0sVXfZDuHOZwIqav00S+hCzavkFdkxn6prI0h23VkmZYKJLAUNpEXX0d4YCT4VietKpxpG+IJ3/wWdZf97dcvbqJoCdIuqBRH3AxEM2RnBHaOr1b9yoyt23pZjieBxHcDhkBgUimxEiiiGlZeBwyx6I53ri2hd8fGGfnYKJyzLG8RmeNj4JqcPsz/bRXe2gMuLhmTTPdE2ke2DtaDusV+cAZLewaTFIo6QwnCrM+u+LyUf9Xn8HVt5Xu33yboQM7uO+m63ld63/y4csuryjC0qrG4dHULNVdY9BFldfB+rawrQJ2KjzZPYVmmvzoqWO8//wFSIAiS6glA5HjZr7TaAo4OXthDR+7eBHALIfsqYxa4crMHK121vgqjuLRrMoDe8d4qnuKaKZENKeSzJdoDDqpMV2MpezuYEm3OTxbu6N0T2YrysLpUWVes3lkAna48IlxJRctrkMRRZyySFE3kUWBVS2BkzhEQY/CNWuauWbNbCrAhy/opGsiTUbV2dYTRZHyLG60g6+nuUQNAReZok6qTP4/Hcdy+nydGfZ7eDTFX9+5i2ReQ5YELNOiOezGME0uW1bHRy5YOKvwOTSWYjCWxyGKPN4VYXlDgKtPQV94teAvrlh685vfzNTUFJ/73OeYmJhgzZo1PPzwwxUS99DQEKJ43EXknHPO4a677uKzn/0sn/nMZ1i4cCH333//n9xjCY7L+4djeUq6WfEkUURoDrvoj+bRyjOtedW2gVlj0MX2YzFA4OGD47x30wJueu0ytvVFOTyWYv/o8ba0YdkFk1Zu1+ZUA1kSuG/XGNGMSkN5oZ3JOVB1k0/et5+pjEqt38nHL+nkjh1DHBo/zrbWDHsH+bsD4xQ0g4FYniqvg/FUAaciIhaPc4WcErx9YxsPHxzn8HiGQsmgZyrLL3eOkMirCILAxvnVjKVsh+FUoYRLFilqBlLZ4Tar6qiFPM8eyXDFqrY/mWnZHOYwE68kCmZZc5CfvnsDDx8eZ2AqTyxX4oz2MJmizpHxDGGPgmaY+F0Kk5mifW3G8vxsxwBORWLXr77H4MEXGDr8btpSN/KRGz/NJ+4/zHDcltxftqy+0jVY3hSsxFw0hz2saA6yrTeGbppYWDhlkYBLYTCep2SUMGMWT3RHaAw6ccl2lI4oQFPARcmw+NLvD1PQDBRRxOUQkSURSTjOMTJMEwuBRfV+frlr+KTPfuWqRta1h1jecBZPv+EKvvu5v6W/+whvuPYqPviRv+VLX/4K333KDlWWRZGRRB6/SyFT1LlgUR3RbJFnjyUAC1kUbU5TwM7pu2vHoN2tMc2K79JMeGR43wUdvGFtS+U3ev+mDvYNp07JlZkumlJ5jQsX1zGv2stjRyap8zvpi2RxOSSmMir1fheKJPGWDY0MxfPkVB23Mr3uWcyrnt3FWdIQYF1rmK3dU3YgsFOmOehma3e0okKzgJUt9iawqJm88YxmrlzR9LK66NNxLftGEiTyOg0BJx84b0Glu9Uc9lScy/9z+wANARdgnTYOZvp8nclZ+u7WHnKqjkMWKOkWLkVkKqMiiQJDsQKZ4mz1ZUvIg9ch88D+UXTD4ou/P0xHne9lJQf8KfAXVywB3HDDDacdu23duvWkv7vuuuu47rrr/peP6pVj27Epjk3ZxUpRN1HK7WPNhL4pO0Hc75RIqwZTWZXOOh9XLm/grp3DLKzzMZwocNvj3YwnixV/kGnY3ikKmmEhSwLpgoZbkfA7JQzLpG8qx99dtpjzOmv4wm8PMZYq4HfJlAyTiVSBsNvBZLqIJUJj0MmR8eNKPUWGbFFHM02csp3Mni3p5EsGmml7lNR4FRRZ5OOXLGLzikYOj6fpjmQwLYjnNB7rmuCyJQ1EsirjqSLzqj1Es7Y0uCHo5PXrmjk6nmX7sSglwyT31O30PPd71t/4GYLXnfEn+LXmMIfjeLneNDMxLce/9bGjxHIlVN0kkbdHVqIgIAgCC+t8xHMlW9lmwQ+f7rd5Omddz/kueOrh33DrN/6NX973a4KbP0bLwlUMJ/P0RLKc3VE9ayMxc0y3ujXIpo4aojmVPYNJ+qM5PIrI/BovY+kiIbdCsqBx5cp6RuJFdNOgpcrL1qN29qRhgW6aFHWTGp9CtDxqE7FJ11VeB5s6a9jZH+PQeKay+arxKnzkgg78LoUP/uwFRhMGbe+5Fe1332dk26/54Xe/ydann6bq6k/iCNahmxa6YVVCbTcvbyCj6vRN2YrfdFGn1u8ini9hGCbPDySQAFkWOGdBFc/0Hfd+EwVY2BDkrLK3Ubpgd68EC65Z3Yxa0llYHgPOdLueHVnios7vqBSbZ7SH2Ti/inzJsNfjFU2sbg5VFJCWwClDdNMFjUhGxeOUMQyTBTUeuiYyFS+k9moPSxsCLG0IvGJzxmli+szCeSKt4nPJs+wMfC6ZibS9SZ7mei2q9592NLesOYjfpbBnJIHfpcyaYoQ8Ch84dwG/3T/GRLrIC4NxPv6Lvfz4nWdWukvpgkZGLWGaFgGnTKZ4fJz3asRfZLH0l4I6rwtFssdSAnYGEqZVaSW7yqqVKq/COza001nnY0d/nHRRY9dQkpXNAZJ5jYKmzyqUAIIemYuX1HFkIkMkXWRetZd51V529MfQTQuPo0TAKXPWgmoagq5KAGud38lUxiZfBlwK8ayGZlrMr/UyWCFNCiiyiGDYXSZFlnBKEuliqZIXJwpw0eK6ypz6YxcvYudAgmTe5kPpJuwfTdJZ7+P161oolgy2dE1R63cylVURAZ/L3sHabrb269b6/zjE+znM4cXwcr1pTvW8ibTKono/w4k89QEXkUwJhyzaJo+CwMqWAPtHUmi6nd9mAXnRwwc/9XU+9J538PG/vYHRgT7Gfvh3JC+8nsVXvJO3bGhlQY1v1nsFy9Lz2x7vZiqj8l/PDZLIlojnVDTTwrSgazJLa8hNNFviyITtyuyQRBpDbgZjuYqD9TQEYCp7vIPgkAWCboVEzl5Pzl1Ui25aHJ3MYmGP9m/fNsD8Wg/dExksCzJFkM59H3X1y4k+eCvdB/Yg932IJW/+RwKLNtBe7SmrayGt6mRVnbyqMxDL0Rh08akrlvCNx7o5NGZ3u3VA1y2OziB7A2WTXYFP3rcfqdxZr/Y66I/lMC0LURDorPNVzC9bw242r2jEAvaPJFE1k1ShxOVLG3iyO4plWewcTPDpK5awoN5XKWiCnuBJarETC549IwkiWZVan6Oci1fi4UOTfOC8+bzxjJZZj30559FMM8dpYnrY42AkUaBrIs25C2tP6sDPVOAtqvdjZ/TZHKdTqflOVAd+6y3rZnWbmsMedg/HORbN4nPIJPOlykhz+rlDcXu9z2kGYY9dcL1aMVcsvYqxfl4Vly+r54mjU+RUHcM8ntnkkgW+cPUy4oUS61ureGDfGA9t7aVQMjirPLZ63Zpmdg7EOTBi4JgRbeKSBT543gLetnFexW+ps8bH95/qQxIFRMEed92+vZ+bXrucZc3BSgDreKrIsak8kmjnLj24fwxBEAi5FTI+B5IAIFLlVVjS4Kcp7GYwWuDZ/iglw6qM9EwLnuuPMZqwbyKZokYsO1udkyhoHBpLkSpofPSihXgdNk9JEATueWGEoFtGFAQCLplkOSTY7Zg7pefwp8d/N5z0VJLx0VQBAdsJfLrz8fFf7KU/avuHGSb4PTLrW6t4orCMq754F7vvvoV9W3/P2ON34HAo/FR5B61VHjrrfLOCX9OqRk61+Y77R5IUSibFGQHVqm6SKxl01nnYNRhHNyx0wyCaVQm6ZLsr4JLIqwZORbRjTjLHiyXNsJjMlPju1l4eOzzJ569eztM9UxXjWsO02D+axCHNLroA3AvPovHdt8GWbzDac4iDP/kMG659L6vf+VGmcgYNASePHJygezJDqqixqilIuqjRPZmmLzK7MFIkqA+4iee0yvv4XXaO2t7hJGAr4FIFjVShRI3fRTRTJJErEcuVaAy42NodZf+IbfZ7cDRFybBwKyKXLq1HEkWSedvC4NGuST7RFq4Qs0/lsXZiwTNT+m8YFkNlnuhXHz7KHe/ZQLDp5QtWhmN5PnLnLkaSeaq9Tj79mqXU+Zz0RbM4ZJGWsKfizzQTJ1oEpAsatz3ePYvvNjMB4kfb+hhJ5KnzuSo+SNesbp5VGN546WKG4gWS5Yy76ZHmdAHX4HcBsKmzmg+f3/mq7SrBXLH0qkbQo/CG9a2MJYtUex3sGkoQcClIInzwvA46yruXXQNxfndgDFUzMIFj0SxLGgJMZYtcs6qJq1c3MZEs8s3HeyiUDM6cV8UFi+p46NAYdV4XFyysYySZJ18yqPU5GU7kqfO7iGZKPNkTqTjEHhhNsmsgQTyvkioTrlVNx+NUeM858+mN2GMxTbeIZFSmsvbsfn6Nh7BboaAaaGVrARFQNaPSdt3aE6GkG8ii3VVyKyKabhDwOxlNFrhr5xBORUISBZqDbjKqRskwiOdLWBaVzpKqmaf/Qucwhz8S/rvhpKd63qnUQLe+aQ23PNZNMldCLivFfG7ZLs4a63C+74usPfsifv6T72Mu3Uz3ZJaGgHNWKG2dz8kHz1tAQ8DJcKJAldfJWCl/kpdbIq8iIOCQRXSzbEZrWcSyJbKqnQLrkAQag27etqGNLz90pKI2m34d3YShRJ4HD43hc8g273CapNwcornKW1GpCYKdGWcJ4K1pYMMnfsAjP/k648/+hufvvx19/Cjf+P7tpPHyo239zAt7GUkUODyRRhZF7np+GFWfXXlVe520Vnm4aHEtv3xhhEX1PgbiBQ6OpcvhxPZGLl8y8DpkipqOLIpMZlREAQZieUq6QX+sRCpvF1xeh+1SnsprLG/0sa03Ro1XIZpVZ0nxr9/QfsoUBZjdAfrWW9bxo2193P3cEGo5ME/VTR48NMbGjlObV54K2/ui9E5l0E1IFXLc8ewg7z9/Abc/08/COh/J8gY54FZe1CJgJJknpxoVldxTRyMcGE8hWBZP90aJZErkVYMIRVrCnlP6IC1rDvLjd555kvx/ujgcSeTxOWXevmHeq7pQgrli6VWPpQ0BVrbY7ruXL6tn84rGigz0oUMTtFd78LtkVM1EFkUMy2JxnZ8d/TEePTJBU8jNt96yjuXLgpXcIcGCT963n2NTORRJ4KqVTfz1BR20ht1MZYplzyYHyUKJB/aOsaMvyoGRNKOpAoZpsbwpwEDUJhxGczoNosTSpgCXLq1nVUuQvmiO+/eMUON1MpIsMJEuVo5tab2P7kgWAQh7HZW26/S8O54tIQm2VFhAJKVqVHudFEsGTSEXo4kCKVUj7HFQ1Ay8Trm8M5aIYLfl5zCHVwP+uyakL+d5y5qDfOO6NbOUYgHn7HR289zX0GguQhJEdAuGEwXyux9A67yQ6lCIvmiOH23rZ11bmPeft4CAU+aWR4/ybF+MgmYHxioiOGWJte1V5EoGu4eSNPhd9EezjOdVZNHuFM+r8SILAjV+JxcurOXJ7ilOqFfAMnm2N4YkiaxuCVLUDS5YVMt169vIFDXufWGYaK5End9ZHuepVHmdpEsW8666Aat+CZMPfpPdz23jDZefx8K3/BPJ4EL6IlnWtYdRNdvVe0d/DJHjAb2KYBtVPtMzhdch8ZqVjUyki6xpddA1niGv6nbX3QJZEtg4v4ZFDT6eOxZDFgUGYjkAdNMiW9TxOmXSRR1Vt/2ozumoYTRZwASmsiUM0yKnGixvCjBYLoZONZKdHkWNJQuEPA5ufdMarlzexEMHJohkbM6XSxbLk4PRl+01VO13IgkiqmkgC5AtafgdMgvrfUxl7I3uA3vHODyWflEu3cwup9ch87nfHqpE5IjAglovAK9d1cD7N3Wc9thOlP+n8hpp1Z4W/PPvDpErGdz88JE/eZzJS2GuWHqVY5pXMLMyn5ZcNgRsjw9FFFEk2wCy3u+iayLFUDyH1zk7lydd0OibytI3kWWgTBwv6SY7B+KYllV2hC3ikERcDgkXEiG3wlNHo8TzKm5FIl/SOTKWnhUiGfYqNM/w8Qh7ZOr9LiJZlWqvXdQAOCQRj1Nm08Iagk6FdW0hMqotU51WV9yza4iusQz1QRexbIlNC6tZ31rFzQ8foSdSIORRuGhRHcsa/Xz/6X5EQcAwLNJlTlbI7fhT/VRzmMMfFdM5XzOJ5DOdmEcTee7bPUqqoFHlkpk39gQ/+fmt+Orvo/WN/4RS087COh8T6SJ+l0xzyMPypiC7BhM4ZNG2AVEkLltWx8JaH1uOTFLjc1Dtd6CZbvKaQb5k4FZEhuMFNMPk5gePUBdw4nVKpIpG5VjDXglNtws2RRK5+vwOprJFDo9n+PofusACl0NiVTDIW85s5Tf7x1jeFCBV0Am4ZYYSBdxLzmNxy0IGfvElYpEBYt/+OxovfieeDa9H1y2WNQYYThTwyjIJjm+aNAuwbE7SobEUn79mBX6XHf77qV/tRxAEFAlELLwOiaORNFeuauCpnil6p2zFsc9poRkmDllAECw6a7xcsqye161uwhJgPFUk6FaI51SiuRKpok4yr3HxklrWtoQ5PJY+aSS7ZyRRNvu1GIzl+PKDR0gVNXTTIuyRWdcS5nVrm7l9e/8rykc7s72KzSvqebI7iksRWVIf4OneKZJ5DUUS8DpkvA6J3kiWXQNxspp+ykJsZpfzkUPjs9RsJjCZUemo9b5ooXQiZpLjS4ZJXjOo8zlfFXEmL4W5YulVjuFYvjI3nt4JzKz4pw3GavwuhuN54nmNeL4EFmQKOvNqvKxtCVd2MSOJAtmiTkm3d45uRWQonudYNIth2rN9URARyFIfcLBrMEFetcd7ec1egGRRwClBybCjVv7h8iW218t4Gt0wiaSLvP/8BQgCdNb4+OWuEbonMzQG3WRVjf2jKeJZlUcOT1DtdbB5RSMfv3QRy5qD3BheUrmYFtX7CXsc3L93tLyQyYylCty3d4RIppazF4QZjBVor/bwwl4fA/CSESZzmMNfEk4kkqdVrZIgH/QEueM9xwm3XfskHrjzP4hNDtH3o49x+Qc/S660mfZqDwGnwvee7OXIeBpBEMipOtVehXnVXi5YWMc3HjvKvpEU9QEX6YJOW7UXt0NGkeyx+B07hrCA8bSKYVo4ZBERO1LFKQssqPZzeDyFKAqoukHfVJZYrsRkpshwPE9Rs21LxmQJaKWzzseR8TSKJHD9hnYuXVrPN7f0kPS2seyvv0n8D99jYMdDjG/5KcHRo/A3X2LzioVkVZ1/um//Kb8rE7tgEizom8riU2Tqgy48ikR3JAOChSJJgFAhddf4HOwdThHJFmkMuEkWbdXwwno/r1vdxFi6yEgsT2PQyUAsh2XZm8KASybkVdi8opHW8uht10CcSK44y+Qy5HHQP5XFqUhMpIvEcyoiArmSgSBBXtdfcT5a0KNw01UreGM59sYC/nP7AK1hD8eiWaayKr1TWaq9Dv7tD0eJlS1nvvWWdSc5aE93OQULfrZjiHjOLpg8isDK5iCfvXLpKQNyT4XhWJ6fPTfIk91TrGgKUMgahD2Oyvv/qeNMXgpzxdKrGKm8TbB7uidaUXlN+6RMd5s6a3x841HbWE43QTft3Zydyi3ywfPmk1Y1DozYviFOSSCmm4TcMqpmsLgxwKHRFG5FIqPa+U+mZTKaLDKZLtqxKqIdcTCNgm7yrnPmM54ucNmSBhpCLrIFnUNjKRI5DUkUeKZnir+9eBFpVeO9m+xjyBR1vv5wF9FMscwTsBfXhw6OsaTBh9sps7YlXDFPu3PHADfdP4Bu2n5QigyqDqpu8NiRST5z5VLO6qihs8bHkSeWsXDTazhmhEnltTkH7zn8n8BLEcmns+iGY3nu6HfS9v5vId73Naa6dvK7b32WN7ytm89/81vEVI3BWB63LOGUROprfdQHnHZEUdekTWy2YDJdZEGNlyuXN+JxySxtCHDzg4dn5czlSjrza3zMr/Uxlbbl8ACNQbc9rrLg2b4oTkViMm2bX+omCIJFSTMYSuZxigJd42lyJYOxZJEfvP0MfvLuDfz2wCjPHYsz/x+/xsP3rWHnXbeQ6nqWR//1fbxv3b08NCpR0A1OBZcs4pQFPnbPHjTTpDHoRhFgz4itmpMEaApJbJhXxaaOGo5OZNjaHcGtiDhkBbdDIlfScUoiuwbj/M3PdxPL2gG+86q93HBxJ08eneLQWArTgvawh/5YlqagG4BvPtHDeKrI3cHhSofoU1cs4eO/2IuqGSTzJfxO20fL77JtXeq8ropr+CspKIIepRJ7k8prlXNk+j6ypMFP31SOiXShEk2zrS/KQCx3Sm7VsuYgP3vvRn607RgHR9KsbgmRLelYwuwNfWed75SjveFYng/97AW6J20D5NF4jqvXNPPJKxbPytV7NWOuWHoVYySZJ5nXqPY46I9miWZUtnZFCDgV7nx+kN5IFlkU6JrInORKq+kmTUE3+0fSPHokgiwK+J0yE6kiggCJgm7/ncPOXkoVNByyYBOvdZvsOM2VNk94bbcsklV14lmNf3v0KC1hNx6HREm3HYYt4Mh45qS8oXRBI1nQKoXSNCbSJW564BB+p0y1z8mtb1qDzyWzfyRV+Vy6BWL5eQJ21Mq9u0eQy8TS6jNey/WXXTfn4D2H/1M4FSH8VLv8ivqotg75+n/hgqE/8Ksf/Tu/uusOjh05wB0//yWKCL87NIlpQbKg8Z6z25lX6+M/nj5GXcBFJF1kaaMfpyzynSd78TkUPnJhB8emsrOOqWSYdNR6mUjZ0SEl3VaN3XBRJ/fvHSNbduoXBZAkEadoUdQNNAMQLe7ZOcJYMl+59o9OZLj3hSEuX9nI1SubmUqXODyeZu2lb+C6yzfx9U98iMnRAV576fmsetunaV5xPoVSZtY6Iwngd8mMp1VyqoFTFhnUM2SLx8s8w7I75Wtbw/z2wChL6n3sH0nhVAQEBK5e08hjhyPs7I8T9ChEMyolw8QhiUymi3idMv905TK+/ocuBmM5th+LsqM/xt2hYa5d3XxShwjgqd4IiiRQ43OTU3XeemYru4YTaIbF0sYA6+dV2Zlvfcc3zDM9n17pOWJ3EHs4NJaho8aLCIyni3gdEoJlvajdxbLmIJ+/asWssW/AqfCVBw+zvS9GfcBFoWRw5/MDXL2yeVbxs2ckwWiygGVRMQet8TlpDnte9cTuacwVS69itIQ8tIbd7BtOkFNNcqrK1//QzbbeKRyyTDSnMhTLo2rGrJwnqZydlsxrdE2kUQ2TiVQRTTcwLJvIKACmaXF4PMNHLuqgqBssrgtw7+4RnumZIqOeencGgCBwdDxNXzRHqqCTLmgsqPEglN3AJVGg2utguCx/nr7wwM4HKqg6YyeEeJZ0i6JkMBjL8Y3HjvL5q1ZQ7XMwED8ejVDtc5EqqKiahVMS6J1MgyDQO5GhOeQiX9JZ1RKac/Cew/8pzCSEn84Mc2auWX3Aw8LN7+LK8AK2fv8mDh48SHJqHJ8zgGXZpG5VN9k7kmLzyiY662x/piUNfi5YWMvXHuliMlVEM2HfSILmkPukY9raPcW8ai+maeFzyqi6TtEw2NRZzdbuKJpukFV1dMNE1Y4XLJoJY4n8LBsBw4Jf7hnl0ESG1rCHTLHEUCzPkfEUhz0eXv/F/+Ker91IvHcvO398E03nv4WN132Y3miebNFAFGFhrY+lTQG2HIkgC7bJ78xkgmn0TKb5u3v22ko8h4ws2Qq5oFuh1jufsWQBVTeJ5+womamMim7aG9NpKwbNsAh7HBwZT1PjdzEYz7F/LEH1jJFTvc9VpkXkKZYMREGgJexmXXsVVT4n1X4nZ7ZXlY8pw/a+KKmCRixXQhIEQh6FT12x5CULjef6Yjx4aIwrlzexsaOa4VieAyNpOxHBtPjAeQv4t0ePkivp/Oy5IVa2BE8yzJzGdBE+kxf3wmCcbb1R8po9Wp1MF+mOZPjDoclZ/Kq1LWGaQ266J20vLadDYv9Iiu892fuyDFtfDZgrll7FCHoU1rWFuWfn0Ky/75rIsrY9zFRGpTHgYiRZQNUNFElAxG5p227ZFi5FYiRZQBEFEqpBlddBUStR5jySLmrsHU7yL69bSdCjsKjez89Cbv7jmX5mNpSUsqRfxA7H1Azbf8Uh2/N9RZZY0RQELLKqjtshMZQoEMnGOGdBDZmiTnPQzdLGAJphkiyUKnEIYKvfSrpNsMyXDMZSBWp9LgRSlQVNkQTqA24mM0VKmllW21ioWPROpphM5rjhgo4/iwtvDnP438DpzDBn5pp5HTL37hrhzE0XEmq8gzO8cc4991zUw5P8as9IJdE+V1aWzuxcHZlIUyxfe6IIWVXHKUsE3XaupG5YtAQ9RLJFFAk8Tpl8ySDkdrB5WSPNYQ9XrGjk2d4oP985RGvYw3A8N/tDnFDFCEBe1fE6JA6Pp0nkSpiWhWZYlAyD3qxC01u/jPDoj4ntuI+xp+5mW6SPS2/4Mg01dewcTBLJqYwfjdgdrPJrWwjIgoVe3jx6HYKt2sWwOZ+qjkOAmqCLkm7wVG+EWK5Ee5WHaE7lHRvbaan2EMuozKv2VmgR7dUe9o8kkUWRSKoIAjx5NEp9wMWHzu/gsqX1bOuLMhy3fZBA5bWrGrhyeRM3P3ykMnL79Oal3Pn8IDsH4iTyGl6HRLqgYSFgWhajiT385N0bTju+eq4vxnt++jwFzeTu54f56/MWEPI6iZQtXSJZlV3DcVTdpM5n//+qlhArW4Inda5OV4RPZVR0i4oVhGlZ1HpPJmy3Vnv4wdvPYMuRScbSBbonssyv8b4iw9Y/NcSXfsgc/lQYjuX5wdPHKinT02gNu3jdqiZqfQ6CHpnXrKhndUuIoFumPugGyx5TWabFOR3VdNR4SRVK5SiREj6HWPnhBQFi2RIjyTypvMbt247x+wPjnOhW5HcptlsvIIsimqEjYLet59V4ufHSxaxsCRJwO1hY7ydd1GgMOgm4ZDKqxn9uH+DO5we5fkM75y6swedSaAm6cEhw8ZJabnnjahqDLiTJLr6yqs54uohcPlBZABOLdFEj7FYwLMoGmDbiD3+T/V+6mm/cduv/zo8xhzn8GWCaw3Sq7kBrtYdrVjdzRntV5TErFnfwnuvfSiqvsXMwToM+RXbrj7lgQRjNtMo3MoXlTUGCHoWlDQEuWFSDW5GwTFtQcWQiTbZoIJRb1sOJPLmSya7BFPmSQb3PwQWLamgOeypcmjeub6Up5CZV1Ah5HJX1SAQ2zKtiVXMAr8zx4HDNoG8qRyJfIlUokSsZKJLtW6BIAjV+N3WXfYCW138KUXER6drJvTe9kwP791PUDHyKTKZgr1lgrx1F3d5MLm3wcfNfraCzPkDhBJ+2kgVTGRVREDi/s47GoItkUaO1ysMlS+u5dGk953TU8KXfH+amXx/kPT/dybKGAG/Z0MbatjALau2unM8pE8uVqPHbat2tRyNohsVIskBjwM37N3UwmS1WRnVjyQLfeOwo23qjpAsaJc0kltPQTNvCQCrbIfz2wCipvEYqbxv4DsfytpFvXuPBQ2MUNBNZsKkVP3imnzt2DBByK5UO15XLm2gMuir/v6mjpiIQmH6d4VieO58foGs8M6sIB9jUUUNHjRenItFR66W1ynNawnZrtYd3nzufv7lwIUsa/aftYB0eTfHdrT0cHk39f18P/5OY6yy9irFnJMFURqU17GEgnkcQoN7v5H3ndvClBw+TzGt4nTJ/f9kSmkJubnu8m/5ojniuRKlkUNRM7twxSNDjwLQEWsMuEoUSdT4nA7E8iihglSW707vGLV1TxPOzAw9XNfnJlnQ0wyaAS6JFQbPHeJJgccGiGppC7soONFvQ+ejdu0kVNDwOCZcs0xB00hvJ0jOZwaXIOGWJ0aTtTDySKDCczFPrc7DcHyCvGUxlVBbW+eiLZDFKBoossqIxxGgyz3i6iFMRUUTwOCRUHeJlYlVHre8U3+Qc5vB/Ay9mhjmTy3TiYw6NpTg2meLAf36OxMQQDyYGePdN3yRbTqCfmSF201UrWNYc5L5dI3gUid1DSUwLirqtlBVFMMoxLJphoZkWyYI+q4Mw3en6xa4hfrC1r7I5q/Y5+Ngli8ipOt/Z2sP+0TS+cnhvslAindfwuWT8TokLF9Xx2wNjxHIlfC6ZD2yaT+frV/LzDWu572t/hxof5/Gvf4il1/0D2uLzkUQBv0uhlC1hlLkzPpdEldfJytYQ82t8/PuWo+w4lpj1nfocEn6nwr27hnnvOfNBZBYheVtflJ5IlqJukirqfOb+A/z4nWeWc9VyiIJAJKPSWeujs8bHbY93s2c4SWPAhSjB5pWNjKUKdNb4KqPSgEuhqNmKvP5KjNRxCALIkshzx+JMpVVAYDiRJ5pV8TgkPA6JS5fU41ZE8uUC0CEKjCULrG8Lc+3qZpxOqeLDN9OaZmYXqcrjYN9o0s4BtSwyRZ1VLYFKgdNa7eG716+vPB84yYDydOdo10T6pDHo4dEU7/7p86QKGj96up8PbJrPVaubXxXk77li6VWMtS1hqj0ORhJ5Am6JpqCHtW1BeqMZUgUNr0MmX9LZNRynKWTvGC/orOW/dvTz/KBdlY+lVRoCTpyySK6k0xh0E3LbpmqpQomGoJu/v3QRQY+CgO2qXTLsLDpRgLBHpmhYJPIatT57V+V2SOQSRRTRVsb9/Llhnj0W5x0b27AQKJQMdNPC77SdcAdiWfaPJFBkkX1l8mK2qGNa4JBgKJbjJ88MoJkmk+kSYY/CY0cmCXsUQh4HRd0uqnwuka++YRW/2TvKgwfGMUyLpc1B3nZmG596yseuQ9A4x1eaw/9xnMrU8lRjlOkOQipvK1Wbq/xsfOvHefz7NxHp3sOPP/UOhm+8lVXLFs2KSGmt9vCGta0Mx/I8fHCi4rlmArU+O7NtKqvaGysBNNMk5FFO6iC0VnuIZlVKMyqBRL7ET7f3k9cMDNMi6JLRDLsD1Bb2sDuTxDCxY0pGEnZWnSyQLepYosWCOh+ffftmquoa+c2tn2Zk/3YO3vUV1l/Zz4Vv/FtyOvjbZMbTBabSJWRZoNrnYCJZ5EsPHmEwOnskKIt2KHiioNMXzbGla5J/e+Ma0qrdcUmrGl5Fwppx2y+WDLb3RVnc6OPwuJt1bWEG43k+eslCLAGSeds9fTJjF0X37Bzm3l3DrGwKsaolxPkLZcaSRXYNJdF0kxXNQfoiWVJFHRG7UFrfHsYhSyyo8VVCb2t8DvYk7LiUgmYwFC/wr69fxZM9EZ4/FieSVQm4FHTT5Nf7RsvmlKN85dqVdNT6CLjtgnjmKHf3sO0FVet1MpTIk1G18q89+3ecWcy8WGEzXbAHnApPHI2c5A/2yOFxUgUNpyQSz2l858k+Hjky+aowrJwrll7tKCsHBBNWNAVJ5HXOXlBD0K2QzGs4ZImiavKhn73AZLpIfcBFwDWbszOWKrK8KcDy5iBVHoW+qRyGYeGs9/G61c30RbLsH0uCCVlVsyMHsEniHqfCkvoAiVyJ0ZSd9P3RCzv50u+PkC3LTUJuhb7JDF/87WEQBOr9TnKqXokcyJZsN1pb0mvM/GhoBjhkykaYor0rcsq0hj3sHk6QKmooooBumuweTjH/aITbtw+glRmg0WwEr0OivcrDLuZ8luYwh1PhdFymmUVUQ8DJF254J59764W8/tprmBgb4Df//B5SN3ydx7s6SRW0WcaIm1c0sn8kRaFkkCrqSIJ9I79ocT0ddV5+v38cWRQIex00B938as8wly1pqNz0hmN5+iZzJx3rgVE7DzKj2pu2aq/CmtYQPZEcsmSvBZ11ATJFDZciUtRMgm6ZsYTKtx/vpb3aw6euOYMPXvpbvnvLzfzgtn9j14M/p7+ni8/9+w95/VnLAHhg/yjbe2PEsiW+8NuDjCWLszo4LlmkIeC0xTHl9aZkwBd+d5CVzSFSBa0SsHteZw1bu6cwTLtYHU3mOTSeRtVt48WzO6orhO1pwnx90EkiVyKa1SiUdB46NA7YI7tFdT4W1Hg4PJZBEQXOXlDDM31TqLodx3L5sgaG4nkm0kUW1fuY7ix5Hbbi2eeSmcoUebRrgg+f38n7Ni2ohKErksBALE+N146SuuWxbhySWCmiZ9pRrGgMYpgWY8kCiiTQHvYwnPjv8YxmnmuKJDCZLtJR66M3kq0op31OCb9LJpnXyr+9g+F4nu19Ud5c3faK3u9/GnPF0qsYe0YSHHrsF7gw0FvXcTTi5ZyOGs5fVMfNDplP3ruXVFHn+0/2Vkh23ZMZWsJupLI3ki3ltzg8kWbvcBKHLGKYFs0hN5mSwS1/OEqioGGVVXJ6WQ3jdIi8bUMrlyxpIKvqjCYLOBUBhyRR0Gxy9zTGU0UUWcSyLBRRYCqjlouWE5uss2EBAZfEmpYgw0kVwzTpqPES9jrsRaDOx1AsR6ZcdE2minz/yb7KwgX2brZvKoeatwuyuWJpDnM4GafzY5pZRE2k7Zvs8jPX8sRTz3DJ5isZ6z3Mw1//CO2v/yRLzrqM8VSRx45MUu130FnjY36tl2PRHB6HSMClUON3cfWaJs5aUM0b1rWyczDO1x/u4rEjk2DBj546xr+/aS1LGgN85aEj7B5OIEKlSBEFmyOklq9xC9vGYDRVIOSRcSoiUxmVombSVuWxsyAFuHBRLYfGbbVcbyTL9r4o7TVeLnrbR3k86uPYvV8l3rOHz7zzGro+/228DQt4snuKrKpT53cSSauVfokIhL0ya1qqyJZ0SrrFWLpY+S5LZU+D8VSR9ioPE2mV95/fwaaOGp4biLFhfjU7BxK0hu3v+Jo1TVywsK4yypwp479ty1GOTU1R0DR0AwIumZyqMxjPoxk2Yb61ykOuZHDTlUv5xa4RJlJF7tgxxNkLqnjXOfNoDrrpmcwQyRV565ltfPWRLqYyRTIFnYcOTPBsX5w73rOhEoYuWPCZ+w8wkrCFP9mCzrJyNMu0j9/MMW3XeJp7dg2xfzjF/rEUjUEXAecrF9FMn2thj8K23hi6aRLJlFjZHCCZ12gN2zy6z1+1nANjSR4/MsVYqoAiiuwbSbB5ReOfVLwzVyy9irGmOcTUtnspJCYByLa0U/faq3jSvJq9ej3Jgj5LYpvXTCTB5u3U+Z1UeZ1E0kUOjdsBkwXNRNVNDAsGY3kMy8IwrVmvIWGr3urdDs6aV0NT0M3t2/qJ5+25+IWLani8a3JWGaTIUOVRSBXt42kN2y6/49pse4CZEAFRFJBEkWhOY+O8MLuHksRzGg1BN+86pxmAY1M5eiNZCmWH31RhdvabBGSLGtGUvZjNFUtzmMPJOB2X6XRF1JKOdu7//R+48q/eSPTwDiZ3PEB4+XnU+138fOcQsaxKU9DNZ1+7jJJusm84WQ6ztuiPZlnaECDoUciXdCbSRUzTLojGUir/cO9e3rqhna6JtO3hVt5XuWUR07IjRdQZi5IkCkymVXxlZZ0kChydzDCZLhJ0yZQMixcGk0xlVfIlnUxB57tbexFFkfVtQTrPvAgh0ED/3V8gHx/nPz5xPW1/9Q84Os+uiF5kScTnsqOTmqs8uBSJY7EcZy+oAstCN02msiVk0R4BaoZJY9BFrmTQWecj4JT5zf4xxlNFRhNFVrYEGU7k8TgkvA6ZdGG299V0NtzeYbuLZmKPLAvlvMu2KjfVXieHxjMMJwrUB5w2WVsSkSUB07Q9kQBu39bP1u4IIHD2gjAfvaiTX+8dZevRKSTsz/fw4XFuvGxJpRv06c1L+cSv9pFVNXqnMqRVjXWtYbIFne9u7WF9axU+t0zXeJqbHjjIVMY2KN4wLwyCQFqdzWt9OZg+1w6MpBBFOGdeDWOpAq9b08zOgTi9kSwhj8Ka1jBXr2lmw/xJvrWlh4V1PhJ5/U+umpsrll7FaAw6+PSnPsm9v76fQ7t2EBkZ5Mc/+A4//sF3kF1ePCsuJXzJB2Y9RwASORW/W2F1c5Cnixo+p0wqryGVU70lwfZRkUR7ITJmLEwuRaTK52BtaxV37RxCMwyyRZP1bWHGU0V7/h6b3Tov6jY3SgLeflYb7z+vgwf2jfLtx3sxDJPSCQ0mtyLic0qkCjp+l8yxqRxHxzMY2NEIsiTwxjNaaAl5WNUSZCpbgnwJSRSQymNJC2gOOGkIu1lS7+fukl1EzRVLc5jDqXEqLtOLEcLHCzD/LV8g/Owvca99DVetbqTO7+Lbj/ciCNA7laU/luNfXreShw+O8c+/PcJoSuXQ2EF2DcS56aoVFX+drmLGDqoVIJJWuX1bP6pmIEkCWBYioMgC+SJkDLtzIwC1fgeaYdIcdON3yximRX80R8ClkCpqNIfdHB5PU9AMkoUSDklAEu01QNNNuiYyNAZdWIuWoHzwWwz84svk+vfSf8+XqD3vrYTPextt1T5SWY1YvkS110Gtz0Wtz8lEKsqhsTRD8RyJvL2+WNjO3K9b3Uy134nfKeN3ytyza4iheI6Qy8FEpshf1beQVXX2DafYO5zC5xTxuxwsawzw8TJH9N5dQxXytq0sFrhkWT1v3zCPJ7ptPs+5nVXEc1r5dZL4nDKabqKZFo1BO3C4ezKDadob3ye7o/RN5cG0/e4M00KWBBbW+Gf97pPZoh0E7HbSH8uhaiaabvDwofGKPcHiBj/ZosZYsmAXiKbFREZlQY2X8VTxZRtjTvOUBAvmV3tZ2hhg71CSibRdVJ7RXsWiOn/FBfz7T/bRWeejyudgXVv4tKq5PzbmiqVXMRRF4aZP3cjr3/E+vvrAHg6/sI3+3U+R6XkeLZtEFq2KGaVl6KRfuJ/wwjMZ8nSQUU12DyZpDLlxSAJ+l8ySBh8jySLpok5RMzANC9OycEq2sqIh6ObtG9tprfZw9/NDjCYLDERzSKJANKty5rwqfvD0MSZSBRQREOwTqFCeyBnAs/0x1rdX8e+PdVcceBsCDhJ5DU238DglvE4ZWRDwuyCZK2FhYWB3m0q67dN0YDRJwKnw3k0LWNzoxyvLIMD3tvYxni5S7XXw5WtX8kR3xDZ/W7CMBdVuOjo6/iS/1Rzm8OeKmUXUcCxfUTOtbQnTVOVFOPctNAZdvH9TB9v7pkgeehpX50YUh4JXkQh6FPYOp8iVA7N1E3Yci1dGOj94+xn8bMcgP9sxQFE3bWNcLAIumRaPgw3tVTzRHWE4Xqh0rCXs9SRb1HEqIn63zKqWENesauL27f1MZVR8Bfv2FfY4iOfszvdEWsXvlCmUDAolnaKuk8zrrGwOMJEusvhdNzP+6I8Y3/Yrpp7+OWZskLZ3fJaxjIllwWRWZUG9jxeG4siiiCxSCQKf/mwI9lhoMFagMejk6ESW0VSBdMHuaoW9Dmq8DmLZEmChanZeZtijEckU2byiAb9T5ifbBypdfQuoD7r55OV21prfJfPw4XHckkxfJALYBZUg2CadmmFydCKL3ymzqN7PWKqAZtqThUxBYyqn2nEuksDa1jDnL66rfIZUXsPjkKnzORkqq6wbgi7GEnkK+jRV3eLIWNoOHBYFsqqB3yVR7XGwezDBrsEEFyyq4VObl71owTTNU+oaz3B43PbMaw65+cq1K7EEKgVX10Sa8WSRGp+D3+4fo6QbOGU7xPnd58xjSblT+afEXLH0Z4CWkIe66hBHF2xk7dJNRNMFxHg/K+Y3Mq+jjXtfGCU+tJ/k1p+S3PpThoP1uBesxz1/Hc7lZ6BJTkREhhMqn9i8hN1DcX6zd4y8qqMZ9sK0ujXMZ69cyrLmIM/1xRhJ5BmO55DF46GQTWEnT/eq1PlcmBZs6qzGpyj8/IXhyrEaJty7Z3hW/Eo0Y3s8CQJYpp3YHS+U6PR5iWRU0nmNSK5kq15kgUS2xL8/2sNP3ANUex0ossjSxgAfvqCTNa3hk6SpDx0Yx1hxNd6wmxUb1v2Rf505zOEvA9Nh2zMT7mfKygNuhe98+1tM/PoWvB1nsvCt/8TvDo5RF3CRKc4ejztlcZa8/OKldfz+wDi5kkamoJMpGmiKxYWLwyxrCvDb/aMAFf7SdHlS5XVQMkzOXVjD1SubSasaHytnTgacCmlVQ7DgG48dZf9Iimqfk2xRx+uUbS8mUSRT1IikizSHPWQKOguv+Rtq2hdx6Be3EDu8nR23fYTANZ/BVdWEYVoogkCdz0l9wEVPJEvY7aBQphQEnBIXL6nlzueHEBHonsygmxYhj0K2qLOg1ktDwE19wEVj0M3RiTS6ZSJLArJk7zAtYGtPhKJm4JAESoZFa8jFxy9dBMCWI5Pc8ocuBmIFZFGwO2OAgEC6oJHI21YJY6kC9+wa4s3r29i8ooGMqvPA3lGe64/T4HdR5XNw0aI6XE6xEt47k2S9siXAlSsa+e2BUSbL5pIzhwAmdrdPlCR8fpkqr+1AnsyXUA2TLUemuGZNupJBdypM85QsLFIFjeagm/FUkd5olmtWN1fOuzufG2QonufweNo2WBYFSoZJTyRHVtV5sifyJ8+PmyuW/gwQ9Ch87OJFZIs6z/REyZVMBF87Y5aXfzyjDcOALZljiCvOYfLoC+ipSTJ7HiSz50EivxZxNi+h6oJ342lbxmOHJrh2bQtbu6ZI5W0pKgKkihq90SyZos4N5YBIE/AoFrIksq41zOZljTzVHWUsaV/E6YKO3ynTXuVmJFnAJUtsnF/FWfOr2d4bm5XrBoAFBc1k52AChyySymn4XQp53WBRnY9IRqVQMhhLF2kKuOiNZOkTIOSxjdymd6rTF0wqr/Efz/TZxFSHzFiy8LJSuecwhzmcjOn8uJn5ZdfM8Lg5NJbCXduKqDjJ9e3kyE8/Q+wNn+Pp7ij/cPliHj08gWrY3e7PXLlsVk5dJFXEwsIhSciSQUetF5cisbIlwNf/0EUir1dSBcC+MZlAuqjTXmWPYKZv8ovq/ZVw7mzBtk65ZlUzFgLJnEZRM+io8TKRLlIoGfhcMted2camjhr2DCd49liUwfDVrF25jLu/8nGyEwPk77iR+td9En/nepJ5jbxucKR7qhJlsrrZRVrVWFIfYFtflFhZxOJzivicMpmiRsijUB9wsaTRj98pc3g8SaaoIwh2wVMXcLKsMcDShgABp8xPtw2QzJcIumQW1Hq5b/cIPymPJ/umciiSUFavibxn03wA7ts9TKaokynqiILA7/aPs284VVEoLp4xzqr3u7h3zwhTGZW7g8N85dqV7B9NsWcwQUedj0Re45o1YRY1+nnwwDgPHhjHicV00pXfJfEPly3mhaFEmYDt5lg0x6FREwvb5mEqdZz4fmIm4XAsz4HRJFUeB4VyZEympNMcclc8mabD4ncci6GbNjfMVj/bBXd7lYdbH+0mklVnKTH/FJgrlv5M0Frt4aLFdTzdE7UXFQuG4nkOjKb45OYlvO2sNjJ/+2a+/vt9vLDtaZI9L1AY2IMWH0UdOYykONBN+N2BCX7/2FbOqiqQk+eTU8LIkkBB1fnVrhEKmkEiX6osWqIo8O5N89k4r4reaJZPb17KruE4jx2aIFvUGYjluenq5UQzKrV+J2e0VxH0KBwcTfIfzwycpIcTRQi6ZWRRJFsyiOZKOGSRsWSBkmFS47PlrFNZFQQqC5EiCZWd6vRFmS3qaIaF36WQKWq0V3tfdir3HOYwh9mYzo8bSxYIeWy120wEnAorz7oA0fktHrv1RtSRw0ze9Y9Yb/pnBhMt3PHejbNyyKa7GL2RLBPpIkKZye11ykxlVZpCbo5N5ckUddvpv6jjc8nYkUkGLllgaYOf1ioPdz43RNd4GqcisH8kwY5jUTwOmSPjaTTDRJFEVjYHaQ67WNLgZ6DMq8yWdBRZZFU5Q+32bf2MJe28yc66Ds775H+w5/abiPcfYvwXX0C84gMUX/M2jDJFoSnoJp4v4XXJnLOgmq3dU2SLOrpp2SkJWLRX+wh5HXzw3AX43DItIQ9P9kQYT6mYloVuWCTyJd559jxev66lMvb86bs38PDhcQ6NZTg4msLvlEmWjXztKBcLjyKyqiXIa1Y0MprIc/u2fkxMnJKIIFrU+1yzokVaqz3c9NrljCTtQuWxrkmqPQ5GkwW++kgXA9E8yXyJ8bTKuZ1VPHJwgomy4aQiiWiAVxJoDrmo9bsYiOdndfL+67lBdvTFEMu77OnR68zfOuRROKMtzG2P96DqJk0hNzdesoiGoGuWVxfAkYk0w7E8XqfMaKKAxyEhKgIdIS+Xr6jHrcg8NxCfVcDPFUtzeEmc01FDXcBJfzRfiRqp9jtnqSuaa0KMrdpEeOlZ1PiceEpx9j63DbFuAWDv3KZeeIifH9wCQFV9E4H5q0jVLSHWsZrmtvm4FYmMaiBCef6v89G79zCZKlLjd3LhwloOj2dQy2nifofMpRvqK8eZymscjWRPOn6XLNAccjOZVikZOpZpoVlgmQbF8rGNJgvMq/Zy5YpGHuuaIJotUe1z8rrVzXSNp9nSFeHYVAYEgZBbRtct6gNOpn79FbbsfYoHPd/lQx/60P/6bzGHOfylobXaw1euXVnx43lg/1gloiSV17jz+UGSeY3la8/kNT/9NX//vjdTmhpg8s5P0Hn1AyxpDFSKBTg+gvE6JKYyKmtbQ4ynisiSQEvITTRbQtUNfE6ZrKpT7XNwwaJa+qM5huJ5zl5QTSxXYjieRxIFCiWddNFeJ45MZHHKdp6kW5EoaAaaaaIZFhctrePpnghHJlI0ulxkSjo7BuL0TmQYiOao8TntjLdqD4rUhOOG23j+Z18jtucPjD78A4oTfSx+w99jWTCazDO/2seKxiADMZuW4HVKpIs6bllEN03yZXHJg4fGePP6NoIehc4aHz6nRKLsF1QoGewZTvD6dS2AvUZaApzTUcvhsQxVXgcTqYKtnCuW7GgpC0RB4HXlcdXt2/uJZu0gccMwEUWBiUyBtqrZm8Tp+0HAqXB3cJjxVJGwx0G2qAMWAbdC2KOwuiXM1u4pGgIuhhN5zumoLhsgyzgkuZLdNh2a+70nezk6kSbgVtBNi5aQm00dNZXfujeSZTJVZPdQnPv3jNpZomW9TVbTWdYcZFmzfZ96YN8onTU+Hjk4wViqSK6kU+V1opkG9X47aWJ7b4x51V5q/U47B/UUESp/TMwVS39GaK328J23ruNLvz9MIl9ibVuoYnQ2vZhFsyqFcrXvkAU+cPFGti3q4N5dI5WxmLNxIVZqnMLYUeKTY8Qnx4CHGQYO+2v42t1beGYgi6rbpnC/2j1iKyyAbCzPHbHB8ohORDctdg3H2dhRXTmOJ3siaIZJldc2zpRFgZDHQb5Uoi+aP+lzTQdbtoXdpAoab9vYzmVL6wn7HORVg7Fkgbt3DrNrKGH7qgCNARfJgoZh2btKRQTTPDEUYA5zmMMrgSWAIkm0hm3zyp2DcfIlHY9DZjCWr3jhXHLxmfzkVw/xoetfTz46yg3XX8Phb99PUldOMjfsjWRpDLrQTYt1bSFA4Fg0S08kQ08kQ7XPyRvWtXDtGrsoePjQBM3RHLFcqUKgnswUkSSR0oxrXNNtpZeqGzgVEbci0xBwsq0nykA0X+5e6wRcCj988hjxbBHNhExRx6VI7B9JU+NViBUtVr/1H+lp7GTk4R8Q2/sY+6PDLH77FxG8VXzowg4uXFRH10Sahw+O0z2ZpaCZGJaJpkJPJIthwr7hJA8dmOBbb1nHE90RmoJuYtkSJcPE55JJle0DusZ1bnnsKIoosqjeT53fQc9kFo9DZl1bmJ5IhlS+XAwaJruG4/jctlGjxyGRyNnK5unO11euXXnKbsus8GRF5o4dA0Qyqk2raAtxTkcN/bEcg7E8nXW+WeT5ZKFEfxRq/A4CTqVS+C4odxs3Lqji6pXHR7QtIQ8hj8KB0RSKKFZC103L3tRPFzkzeXFBt0LYrZAr2WPFxqDM2sZq4jmVgmbSXu0hni9x4yWLyGr6HGdpDq8My5qDfO/tZ5wk9Z0+mRVJpKAZNJd3br/ZP0oiW0IUBGTRQjeh5oyr0Ndfha4WKI52URw+gDp0EHW8G8Hp4dnhLJ+8YjH37Brkv774UQy9hFnTiaNpMc7GRVBWzuQ1kxqfgwsX1pHKaxyZSPPIwQmORbNEsyU6ar0Igp3kLUsCT3ZHT/mZpmWzuZLO/Fov7VUe3nfHTpL5EiGPg8agi6JmoGpmZaw3bRInizZlcjohfc46YA5z+O9jpu9S2CNzW5kvUudzsrIlMFvGvWIxb/z8j3noa39D69lXMZSBRfWuU5obChaVEUzArXDn8wO2itXrJJYvsaIliN+l8NG7dzOWLGBZ0FbloWRYVPucLKj1MhLPczSSJVsm1TSHXSyq8zOcLLC0wc/bNrYD8NPtA9T5XER8Kp01Pp7pm6pI/8G+gRdLBofH0gRcMsubAxwcTeNZexXt1a2M/upmsiNH2f+dj7D8HV8klu1k10Acj0vmvZsWVEjl9+wa4rf7xrBMSBR0nLJIqmAH2I4mirgcEi6HRJXDQUk3qfU7yRZ0PnDHTtKqgUOyj+ea1U0MxgrMq/YQz2u8++x5/OsjR8mpOiGPwuK6AAdGk9T7XWQKOpG0Ssmwu/oBt4IlzFYxnip65KN372Y0WSDgUvj4xQs5f3HdSbYR04q0eeXnyJIdzTIdgD59XixtDHD9hnmz1GnTvFqwjyVT1NEME48i8cHzOipRKjN5cdGcikMSyKn2GLagGaxsDlLU7Q1yIq/RXu1h/byqP7kSDuaKpT9LnMovZXqROzKeJuhWyKo6IY8DzbBoCXvpjqTJlT0iDewFQ3S4cc9fi3v+WgBMrYhUiKNqBn93zx4mUjli3buwdBW6X6i8lxxqwNG4mLrF6/n8526kOWy3aA+MpBhO5HFIIpGMSo0vyGevXMrPnhtgW1/8tJ9HkQQuX9bAOZ01rGoO8o3HjjIQzeFSJKYyRUIeBVkUbLM6fTYLyjBBFi0ckl0kzRVLc5jDfw/TXMDpnK6dx+I8cmiSGq+TSFZldUuYFS3BGZs0D0s72nB84T9pqQkB1kmeONOP+9rDXRwcT7GiMc4nNy/h6pXN/OHQZEV5t7YlXLmROiSRiXSRBbVeUgXb/HAknqe5ysNHLlrIcwNx3JJI0Otge1+UTR01DCfyTGaKNs/KgkcOT1AyTHonM2gnNJwt7DXQIQkUNPtGLQi2/5zVtJKVH/k2XT/7PPmJfvb94Eb+NTKIe8WlhNwOLl5Sy8cvXUzQo/B+Vwf7hlMMxfMV77qQV+H8zjq+9UQPo2UhTHuVl8aQi49dvIhvP9FDulzslQy7GDmno4auiTTdk1kW1fvYvLKJlS0htvZEWFwX4FtP9DCeKlLrd/LGtS3ohsFwsoBuWjSF3GQLOn93z16S+VIlGHdmwTT9vVa57QIlX548HBpL0RLyEHAqPHxwnJ0DMcZSRcZSBZbUB4jnS3TWHh/Fnc6Paxoz+VLZgs6WoxP0T+XY1hdlMlPkwxd0Vnhx46kiTSE3H71oIV99pItYTsXnkLm/nFlX53Py8csWVTiwrwbMFUt/IZi5S5jexXXW+PjZc4P8fv84Bc3CBHwOkWzp1OMqxeFiXuNCknmNyYyKiUjD9V9FG+/GnTxGbOAw+cgQenICPTmB7IU1bWGe7InQM5lh908+R0oOY4TaUKpb2V9q58BoEwdG0kTKnSCHyKzgTAH4q7XNFfXMobEU+ZIBWKSLuu3nZFm0Vnu5fmM7X37oMJPpUuX5FuBxykyVHWWLJ66Mc5jDHF4SJwbtXr+hne5IGt2wGE7m6ajxcU5Hzayb8ImdCYDDg2P80w3v5/L6r7JunW3jsWsgzu8OjFHSTQaiOS5ZUsfFy+pPSrsHOwuseyKDYcGh0RTNYQ/pQolkwXYCr/Y6ee+m+dz5/CBbjkzSE8mwdyiBW5G4p2SQK+kUdZOSbufFTWZKs+JU7PdQSBc0DMPC45LYMK+a5/oT5DUTWQTLW8c7vnIHe+74Ms9vfZiee/+N8GA3rms+TPdktuIkHXArfPTihfa4sj9OXzTLkno/Uzl7xNRe5SFZ0HjD+hYuWGj7HB0aTc363le1BMpdl+lNnv3nNL/ngX2jlU7MVEbFFKyKrUKNz8l161r5j2f6GIzlTqsIXtsSps7npC+aRRFFtvXG2NYXJV8yqPM7OTCSYixVoGRYrGsNklUNLCwiGZVIpsiFi+pmOY9Pny+nKpymH5PKa/xy9zD7R9PU+ZzAcTXzib97Y9DFLY91M5bMMxgr0BJyE8mq5Er6q6ZQgrli6S8KM0/mZWX1x6qWEI8cmqAp6GY4USBfMhGApoCTZFFjfVuYg+MpLMsmXf7V+mYeOzxJslAiVQBXYyeNHUtZ0RxkaWOApWGJnz/0ONZkLxtWL+e2x7uJZkqMj4/S9eyjs45nFHj/D+oQQk00rL4AYdFlmECNV6HdZ3IgaiAKIofH0hUfkGxBZzJVZDp6TjPtQN+calAXdLGutYqHDk3Meh9rWh4IJAol5jCHObwynBi0u2ckQSKvc9myenoiWT56ycJT8kVO7HLf8c1/5YnHH+OSSy7hkUceYcOGDQzE86iaiSzaUvhIzt44ZYoaI4l8RXXXWu3hjetb+ffHjuJ3yKRLOqpuki4aqLpJsqCzfyTJL3cNs6MvRl8kQ6ay89IwLAvdtFjdHGI8WbAjksoZmaJgryOKJNBZ60MSBXoiWTTD5D+eOUZTyI3XKZEvGaxrC/FPV63Ad939vOFDf88Td32HxM4H6I4Pc8EXbqMl5KkUl/tHkqQLGl6HwpntYbYfizGZsd2xFcn2h5vOhTs0liLgUXCUieleRUSRRZ46GikH4vqZSBdnxXrM7MQ0Bl3MC3up8Tlpq/KQLxlMZosvqQhurfbwscsW8a0tPTQF3Ozoj9qu6GEPE6ki46kCYY+DgViOXUMJfE4FSYT1bSF6Ilk2LayZVbScWFh/+ILOk4qakWSeZF6j1u8kklFZ3Oif5bs181yyBDtIfXljkLFEkVhOpbXK86pTNs8VS3/h2NRRw91VHsZTdjDturYQu4aTpAoaC+v9fPmvVgHMMp4bjuUrCpSFdX5uvHQxPrdcCWAcc3Tg7VzM86KT/u4p6gIuqgJ+/vqfbmay/yiPb3+BbGQYI58iG49APIK7oYOWtQoXLqrlmoUeLly/BNHhwh2qYzxQw3ufWMiC1hYe6s2iVXXibFkKgGWZ9A1PsnndPAQgXdQIOKVKKxtss8tpVHlcf8yvdw5z+IvAiRlx/4+9Mw+Pq6DX/+fMzJkts2aZ7EvTJm3She6ForSFIgWkooAioCC44RVluYp4ceX+5OKCuIFeZVEpooBC2ZdCC7TQFrqke7YmTTJJJjPJrGeWc2bO74+TDEl3EG4Rz+d5fGTSmXPOnKSdN9/lfedUedntj9IdkjhlclF+keRY3HbbbezcuZNXX32V5cuX8/fVT9E+7MqbL9YXF3BqfQm7+yJccd8mIkmZ+9Z3cd8VC2mudHPypEJsopGQlMFuNmITDShZzZlayeYYiqf5+5Y+gvEUqYNa8sOSTE2hHVWAj86soMgpsr4tRErJ5gXB9HI3UkZh70CMaEqrRkeSCvF0llmV7ny7bOzD/B+//zm//fAifnDD1YQ7tvLXmz/LJTP+geibREtvmC0HwqTkHBaTgbSSBQSqvXZ6RpKc2VSaD3/d3Rfh2d39VLjtzK+FiKTQOyLxl009PNnSz7KppQxEU3jtIjt6I7gsYl5U3LSiKW/J4LSaUIFoUmFauTP/fQJtnOH65VMn+NCNVX8W1BYyt8bLc7sHiKUUbGYjgagWXyWgiRvRYEAYzcpLyVn84TSiSWB9W5AF49phBwvrw2W2VXnsVHttxFIyZRVumitc+V+Ij/azd2ZzKRUeGyuml73v/PJ0sfQBZ/xGxFjZ83DDgON/MFfMKKd1MJ4fOHTYTEyv0ErC/nASWVHpjkn0Dku4bCKBaIppjSV8/ZKvsWpTN84zoohGgSvn+TAmBnnwudd5rFsTOq+0B1nk1P7C5DIpEoEDEDjAC+1b8ud3L/pEXiwJ8RDrf/w51gM/MJkwWmyoRjM5owXBZKZ4znJuvOVmnh38EN2VLhrqa/7vbq6OzgeEw2XEHWtG5XC4XC6efvppzjvvPNauXcvHV57LR/7z13xk+kzaAnG+Nlqh+tGTexhOZLCL2pbY2rYATqvI2rYAk4ocgMru/ij9kRRW0aiFx6oqoWgSBMMh5xWAkycV8s2zpuVjNKJJmRd2B2gPxMnmVJxmkY5gnO6QREbJ5qvXVpMBkxFObSg67ODyjV/+DB/98FzOP/982tvbOfmUxXzx2/+D3zqDlJzTIqeUHGVuC80VLl7rDAECeweirJhRPkEYOq0i3zizkU1dI+wZiCKoEErI5HI5LpxXxR3Pt7Jmb4AHNx/gVxdrbcxbn9lDfyTF+tYQSUUhlpaxiyKfOVmLpjq4FbqxM0Q8rfBq2xAD0XS++nPWjDJ290dwW0WGEmlmVbn52ukNtA/FeXBzD7v8YaLJLA6rdn/tZiML6rz5alc0KbK1d4QpxY78lqPHLuKyHOlnQ0DJqmzrDbO9L8zqbf7DmkqO/ayNLQi1BeJksm/ZVrxf0MXSvwEHlz0Pfnww08pczKxyH5JEPqfKi8duZn8wgdEoYB79B2xOlSdvXDa2XjoQTeEu9CJ4vbTYJXLFEqIgEJZkek01vNHeT2fXAV7dvhd3NsZIwM9gYIjnt7YhljZgQLM+qPWqdI9el6IoKEpswrW61QQzqjx86tc/fbdvm47OvxUHt9QOt0hypFmV8TgcDp544gnOPvtsXnnlFZ76yVf56I13csq8ucyvLaQnJLGuNUA2B9G0gsdmYqrPxdUPvEnfiFbRLnFayKpQ7rQyFE/jspgIJlIkFBibQKryWDEZDdQU2jl3ZhkrZlRMuKa9A1GGExlyqkpWhb5IkiLZgpzNMRb3ZgQsZoFKj51pPtch7yUiybzRPcxQwsmfHn2Bz15+Ge1vvsqvvvt1PIs+jvu0K5DR1to27h/hW2dNzf+7ORBNs3cgylM7/YQlWfNQSmb4+7Y+UnIWVX1rluqFPYNUe7UkBJf1rdmjnmGJtsE4XqtIRzCR3waOJtP88IldNJY6qS6y5+eE7nihlbWtATJKDqPBwIemFOWrP01lLprL3ez2R5hS6uBjJ1Vy+wv7GEnIDEZToGpRLFI6x5QSO/PqPAyPbqQJKhOicG5a0UQwnp6wLTfmx+S2a1YDA9EUDqtmKjwWc3IkU0m3XcRpNTEQTVE2mt6wri2Qb2G+H9DFks4hHOm3yuoiO3d8cja3PbuXjkACgwFmV3v4xkemUV2k9fHHl/IFFa792zYODCcRgLSi4rFp/xDc9WqUYDyD2zOV7qRM8YyFzPU5+NKNhfzvKx2oqkphgYUCcwVD33sSj5gjEI5y1aJyapxG/ueJ7UTiCUorqxkMH38Cto7OvxPHI27ezrEON6ty8DkikkxvROGBhx7lkx//KK+99hrbV/2In35pY95ZOpRII44ue1hFI3sHo3QOJTAK2pLGR2cUYhLCDMa00OzCApEDI8kJ12MRjZzZXJq/jp6QxDM7+1FHk9TsZiMmw1tVKKtooMprgzAEYtr5jQaBk+uKKHZYeWhLL5u6hye8r9ue2cOTLf3IOZUKt5WZl/838YK7GHj5r4Q3/oPMYCdFK2/E7fEiZRT6okkaS5209IaxiAYeeqMXf0TCZNCsUQosWnpBXZGVlt5o/tokOcsL+4aIpxXCkhadQg7ueXU/iUyWRCY74b0bgEQmO0F8vNwa4MW9g2SUHCajZpipZcC587/wghZfhary/cd3MhhNa67pqookZ/HYTGRV+PTCGj4+tyr/fdUcyd+KwnmzZ5hEOku1V6sw/eLFVhLp7CEeW1u7w1hMRsIprUV6tDmk8b5cwXia1dv87PZHDzsTdSL4wIilrq4ubrnlFl588UUGBgaoqKjgsssu47/+678wm81HfN3SpUtZt27dhK996Utf4re//e17fcnvaw73WyVog+O/vHiuVkKGCWnQB4usdW0BwlIGl8VENK1QU2jjCx+uZ11rkAKzkR2jxmT9kRS1hZrIOu+kCv73MwvY3D3ML55vpT+aJKmAlDVicRTRlytk/3AWoWwalRYTsqJy9/r9E/6R09HROb5B3ONld1+Ev755gPbBBI2lzny1AuyHbNGt2tSdf/zgI6v5+le+wH997xb+8kYP3SGJQrsZq2gklJOxmgSUnEpfKImqqqSVHGbRyLzaQj65oCbvJu5zWugZTjIQTaMCXrvmFzS7xktvWKJvBG58pIX2obh2DKNAfUkBU8scRNMZBFVANBmY5CvgK8umcPOjO+iPppFzKq93DjOj0j3hfbntbnrDErv8UTJZbTg9lMhQ6XUz+ewvQtEkBp+4A6lrO8qfrkO44L8onTSNKcVOVr3ezZ7+CNkc7DCFOXlSMTMqXTRVuDhnegXP7BpgfUcQ0QhKVqsuWUxGsjkVVdWkXlrOatEqox5E0YOCikWjQJX3rYy13X0RfvDELoYT2hxWudvK0sYSTm8qxWnRPua1ao/Wlnt+9yBhSTO3jKcUZle7GYrLhKUMdV4bZzSVTvgMOHjQfGmDj2hSoTskYTcb6RlO5m0GxrbeVs6q4MW9AYxGLbbqphVNR+1ojH1+rGsLsHqbn2qv/YgzUSeCD4xY2rt3L7lcjt/97ndMmTKFnTt38oUvfIFEIsFPf3r0Fs0XvvAFfvjDH+Yf2+3vr8Gy9xtuu3jEpOmD/4JVeGz4w0kmFRdwxydnU+m10xWS8q6+oP3FTmSyTPE58r+dShll1AzPij+bxG0TWVhXhD+i+Yv4XFb6w0ksopG6ovfXXyodnfcDxzOIeyTGV4v6RiSuuG9T3o0fyFcrDj7H83sHea0zRGOJJjxiqsg//vEPdvkjdO9sp8xlpW84zjXLpnDn2g4SmSw+p5k3e0ZQVc3/yGIy8HL70GjumEB9cQGdwTj1JQ7sFhMOi4lvn93EtHJXXqjJ2Sy94SQ5VSU32qsajKa5cH4N3gJt7b7EackPbz+6tYcndgxiEzUT33haYUvPCBUuK8/uHEBQocprZ3qFi86hBGklS7nHxleWTOHVjiH+lj0De0kN/of/m9Swn/77v8llt/ycX6810zmkOXpbTQKJdI7X9oeoKy7g86dOJpaS6QzGMBuEfGyIzWTkprObeGRrL62DMUSDZolS5bXhtolEkjJeu4iiZIlntGH3k6rcfH/lDFw2bcvu2d39xFJasHkio/DhxmKuXjJlgnC9dGEtBWYDr7YFMQgqLptp1Dnbyg1nTuOx7b3s8seYXuHMm0iOcfDsK8CkogKay1283hlkx0E2A6DZ10SSMuVOGyEpw2A8NeGYh5udHYuKAZXOYJymcte4qtiJ5QMjllasWMGKFSvyj+vr69m3bx933XXXMcWS3W6nrKzs/cRwRgAArpdJREFUvb7EfzsON1wO5KtPLouYD2gc3++Gib/JVBXaOanSw7CUobHUAQj0jEjUFxfgsJjyffX3y18qHZ33AwdvuB3v34+DK1Jmk0AkKWM1GZEyCqUu67gq1UTH74c399A1LNEVTPDRmRX5c45dy6svreH1VT/hgodWc8XiSagCCCr89uUOih1m/OEUuZzKMzv7eaNrGJtoQs7m6I+kCEsZfC4rJU4LDptpglDrDMZxWUXiKQWDAKqqBfam0lmuHD3P2L8za3YP8tzugDafI+c0gZFSCMST7OyL5Aes77tiIZctquW1jhDBRBoBeOjNA6xrDRKMZxC8NRR/5nYST/+MkdbN/OibV+NbfAHepVegoG3/GY0CdtFILKmwvmOI37zUzkAkjctmYkqJg5NqvJS7rMyp8TLF56BvZCuhRIYqj42L5lWzYnoZa9sCLG3w0TYU5zcvtjOtzImcU4mmFVaPfp8cFiMFFiOxlOb6/dlFdfkZ0rwdRM8I61qDoxUlgbpiOzMq3dx41jT6oyl2+WM0+ByMSMohwnq8sAEmRJaUu62cUl9Id0jirBllh/03/OBct56QxFdWvYk/kqTCbePOS+fhsom82TXM7WtaCURTeOxmbjxr2vumW/CBEUuHIxKJUFh47JXXVatWcf/991NWVsZ5553Hd77znaNWl9LpNOl0Ov84Go0e8bn/7hxumPxILb6DXzdeaLls4oSNj8P99/vlL5WOzvuBd7rRdnC16JzpZTgsJkIJLRR2lz+SXwMff46dvRHW7B2i2mNjKJFmZvXEFv2XPlzPn2/8NCH/AT6x8mwaP387tdVV3LSiiXK3di6TUQCDSjyZI6OkMItGPtSghbVaRpMBppW95dkzJtSqPJo9itWsBXuXuKx0DsX59dp2ntrVz48/MStfZekZTpDOqpgEUFRoKCmgL5pCQNASAUxqfkOvymtHkrNUe+wMxlK09Ebz1bUcINocVH36eyxoe5znHvgdgQ2PEO1rp+Lj32L5nMls64kgmrRFmHte7aJvJIUKjEgy8YzCo1t6kdUcj23v41cXz+XeKxYe8svlmGdepVdLaBgTsVJKYUdvhLoiO4OxNPNqvHQPa9EvA5EUOQHKXNa8q3p7IE40JWMza6IqllY4pbiA/kiK7z++k6FYhq5ggnNnlU8Q1hs7Qnzjke1IGYUqr52Pza6cEFlSU2hjRJKZWeWmqeytIfkj/bIMsL4jSEdQm1HrCCZ4fs8ggViK1zpDdAbilDgthKUM7cF4/v2faD6wYqm9vZ1f/epXx6wqXXLJJdTW1lJRUUFLSws33ngj+/bt4+9///sRX3Prrbfygx/84N2+ZJ2DOFhoTdzUOfx/6+jovMXx/GJyMAdXpE6b6uOqcJI7X2rXPsSSMus7h5iZ9kxwdnZZRP6y+QD9kRQ1hXZOrS+ZcFyvw8ILzz7N3EWnMNDTTfsfv41w1U8ZjE/iVxfPZUNHkM1dIbb2hIklJUwmASWbI56SUQGXTWRquZOvn96YF2FXL5nC3oEo6zuGCEsZqj12BmIphhNpMtkcosGAP5xkbVsgLwCH4xmso9FJdtHAFadO4jcvtbMvqv0CnFbAazeytMFHLKVlvgXiKUpdVsrdVnb7FcxGbdYKwCCYKD/jSpa4a3n5Dz8k1b2dA/dey377/2B21ZBIa8fol7TjC2iZlh1DCVKy1lbrzMX4w/oOPn/qZFaeVDnhvo1VdaYUO1g21YcKVLpt3LO+k+6QROtgjFnVHkBgfq2X9e0hNnUNYxAETqkv5IrFdUwrc9E3IvGXTQcIxTXjXpvJyL7BGM/sHGQgmsJsEhAEzch47P72hCS++ch2eoaTWEwGekckVJV8xchrN2veUXVeljQeurl2pM3rEqcF0aAFBZuNBgQBukMSdYV29vij+Ed9scYMS98PCKqqqsd+2onjW9/6FrfddttRn7Nnzx6mTZuWf9zX18eSJUtYunQpf/jDH97W+V588UXOOOMM2tvbmTx58mGfc7jKUnV1NZFIBJfr0PVTHR0dnX8lDt5wG58WX+K05NviBw+OHynQdfxxn3h1K1d98lzSkSCe2iZeW7eW8hJvvjW/LxDj9uf20R/RZlyUbC6fg/ari+fQXOnOX5/LIrJqUzd7+qPs6dcq/MUFFjLZHF2hBCDQUOrgZxeexOoWf14ALqgt5OX2AOdMr2DR5CJufWoPd7/aicVkICXnuGxRLZ//cD3XPLiF3pEkNtHAnGovkpxFVVXaA3EGoylUBArtIsum+dg3EGNbSwsH/noLSrgfwWSh4RPXk5v8IQQBCiwmpLSM3Wyi0mNlXyBBNqvFUJkM4LGbqfJOzHYbu+/+sLYJ2FTuoqncxbKpPu5c205Lb4SIJOOymTh5UiGxdJbOYJx4SkEeDdv9/sdm8LHZmgBbva2PX6xpQ1AhllGoK7KzbzCGlM6SyarUFtq4/6qT8+dfvb2PHz6+m1hKJqOolLks3H35ApxWkYffOMC9r3WTkrN47GLeWPR4f75ue2YPu/xRple48vNVO3ojHBhOUF1oRzQa+OaKaUyveG9/GY5Go7jd7mN+fr/vK0s33HADV1xxxVGfU19fn/9vv9/PsmXLWLx4Mf/7v//7ts+3aNEigKOKJYvFgsViedvH1tHR0flX4OCK1PiWikM08dCW3sMOjrtsIpNLHIcMCMP4WSgjn/3+//KX711JuHsPX77i05xx7c/wx95aPf/dZfN5fEcfj2/vpyuYwGQQGBlty4wFd3eHJAosRsKSTP1oBeKkKg8eu5l1rQEmFRXgj6W44YxGmivdVHrtEwTg/LpCesMSEUnmYydV8Lc3eogmZVw2kU8tqM4H0PocFgZjKTqH4tT7HAxGUjisIhlFRRBUBEHQWoFeG6H6RnJX/JzBx35Mcv8WWv92K87ZZ+Nb/kVyopFpZS5WTC+nsczJTf9oISzJGAQBi2jA57DQH0mxoSPIjLQ2QD92DQ6Lid4RiXhKoT0QZ+lULWsuLGlVt3BS4ZW2EDef18TL+4K8tC9AJpsjreT40ZN7KHNaWTS5iCWNPnb3R9nRG6Ewl+Pjsyu5/YVWJLI4rSa++9Hph+TKVXltHBhWMZs0+4R7NuznysWTeG73YD6/MyxpbcvjEUtjQvfqJVMmzKpevWQKL7cGeHhLDyC8r4a74V9ALJWUlFBSUnLsJ6JVlJYtW8a8efO49957MRgOdXo9Ftu2bQOgvLz8bb9WR0dH54PKWEslIsls6h4+ZHD8WFYF42ehBqjh93/5O1/41ErWrX2RdNl9rPj0Fyasnl+6sI7OgBa9pORUaj3aqvzYcRxmE3v6o1R7tbmc+uICYimF3f1RIkmZYoeFD08pZl6dNrd6cBDsbc/szm9/feykKtRRi8ix/x8bUPaHk7hsInJWZeP+YXwOC01lDt48EAFUFtcXM6vSxU+ebyUsZcDioPJT32Nk/V8JvfIXYtueJjPQTsMlNxO0VPC3LT0sbfTxq4vn8mbPMFN9Ln71UltemG3vHWFt6xC1RXZWzqqg3G2ld0TCZDDQPSyRVVUq3TYunFPFho5g3mBTkrVYl2+f00QglmJbTxjQPKW+8ch2Vo1WjMZW+sNShns2dDGpqABruRElq5KQFSLSW7EkYyL58R19vNoWJJZUeKUtyP6hOHsG44CW3+kwG1g6GhZ8NI72MxJNyty9fj/+cPKQ4e530y/snfK+F0vHS19fH0uXLqW2tpaf/vSnDA0N5f9sbNOtr6+PM844gz/96U8sXLiQjo4OHnjgAc455xyKiopoaWnhuuuu47TTTmPWrFkn6q3o6OjovG850uD4sawKDp6FOnvJLFavXs0f/7yKhk9cRW84dcjWntNqYmqpE4fVxI1nTcNlE+mLJBENAk/v6ieXU8nlVK4/aypOi4k717YjoEV1rJxdcYgD9NiHbnsgzpMtA2SyOfYPxRmMppHSWVxWzbZkbVuA82ZWcmZTGRs6gqTkLMF4hrnVHuScykXza7hwPiTSCg6LifUdQ8RSMg6z5olktZiZfNYVOKqb6P3Hj0kPtLH7zv+g5KM3UDh1Ievbh5hT46HKa6ex1MmPzp+pDZR77Dy9cyB/D1WBvFhZ3xai2GEmkckSTcucNtXHrAo3b/ZEAG0WqtJto7rIzi0fm8FVf9rMQCSNxWQgkVHyBpbtwThhKUOBxcRwIkNNoQ0QiCQPNYKMSDLRtMx5Mytp6Ymwqy9KmcuKPzzRBmBhvRdVYILQOhxH+xkZq6IVF1gIjRvufjf9wv4ZPjBi6fnnn6e9vZ329naqqqom/NnYWJYsy+zbtw9JkgAwm8288MIL3HHHHSQSCaqrq7ngggu4+eab/8+vX0dHR+f9wrFmjw43OH4sq4LDiaxly5axbNmyvIipdNuISBnWtQVwiFr8xawqDwPRFLG0wl3r2mkPxNnbHyUlZ3FaTAQTaaSMQoXLym5/lHBSxmPT/HoOFkpjH7rajE4WoyAgyVltE89gIJGR8djNTPW5+NKf36BrWAJVZUljCcNShmhKYWaVm2mjW193rWtnR2+EcFLGJhpJylkKLCYmFdtZ2lCCv8HHk75aOv/632T6Wxl8+AckT/kkiQ9dyncf24nZZKDUaWVmlZsRSWYomp6wwTZ2ny5dWJc3gRzzowMocVkRjZpYKiqwUDvajmyudHPHJ+fwjUe2k8golLttOEQTEUnOD037w5p/3Rc+NJnBeGqCEeTegSgq8OzOgXzAb3sgTlLO0hdJUmg3I6D5QZlNWgbcz59vZYrPcVQxM/Yzsqdfyw8Vxk1Mz6nyUuK04A8nqRitIkYkmVUbu3h+1yDTK1wn1E/vAyOWrrjiimPONtXV1TF+nr26uvoQ924dHR2df2fGD3OXu62HDT89HMdjVXCk7Ty3XaTAXMCnL/8826NWPCdfgM9l5aRKT144qJB3jE4pWRwWE5Kcpdalefis7wgSS8kIqIxIGV5qHZowQzO+qrE/mKDSo63cW0wC0ytcuG0iRkFlTnUh23vDtAZiKKPhbRu7hjl7ejnnza7Ir8evawuwuXOYHf1hMgpYjAKTS+zsGUjQ0htltz/K9csbKSgspeyS2xh56W5iW54g+trfyPj3op73DeqqK/BHkhgMAnNrtNDayxfX4bSaJtzDw93bXf4ISk6locTJQCzFwkmFNJW5Jgjd3146j2d29+MfSfPQll5eaR+iurCAwgIzHpuIxy4SzyhI6Sw+pyWfzfbMzn5aB+P4I0kW1xexvTdC70gS0SiQUXIUWIyc1VzKzv4IPoeZfYPauv/YfT6SmHHbxQltwG8/uiMfGLy+c4j6ogKMBoEZ5drrv/VIC8/uGiAHdIcSnD+n8oTNMX1gxJKOjo6Ozj/PWDtkLAfsSOGnh+OdWBWM8eDD/+DhB/4IQJXoIjf3TC472cXMSs8EX6X2QJwqr50Cswmb2cD1y6dSXWTH3mNEyal5gfO3zQdYOasif+3jK1/Typ1cvWQyv3hxHx0BiTe6R5AyCrGUwpaeCEUFZnKjxxEAt9XE6U0+nFYT0aSc38DbOxgjM5pEks6q7B5I5N+PkoPXO4eRcyqCSaTwzC9jqWwi9MyvSHW34L/v66jn38iUkxbQ4HPSMyLhsYv5VhocWuEbf2+1qoyKp0CkudKlhZkn5bzQ9Tks+UD0A8MJXFYTr7QNYTBAPJkFAdw2kR8/s4dwUsHnsPDxuZW0DcbpHk5QV1SAP5Kia3R4vXtYQsnmsIpGaosKEASBk+uLGIql8WU5xAPrSHNGY87eLotI51CCh97s4eW2IQ4MS2RzKh9pKmNYyrBmzyBr9g7kw4azKhQWmPWZJR0dHR2dE8/RnJff0/Oe9hGmnnkx+55/kN7Hbsfi9DLrcwtprnjLKmAs3f5wrv+lLisuq8iIJGMUNOPHDR1BPlVUA0yszrgsIus7h+gbSSMaDSTSMmkly1jjIZHJUuqyEkqkMZu0rLpX24YYiKbzG3hum6i1ktDaUQdjFGBquZO9g1HKXWZCiQzVp36EA2X19P/jVuTgAXpX3YQjfBXRC69CNGjHXbWpW9sUGxU+vSNJCsxGfnzBSSyarMVM9YQkbnykhd5wkqICMzef04zLJrJqUxf+cJLiAku+YlVXZOf1jhA9B18fkFayDETSVHps9EWS/PyFNtJyNm+8ubSxmLnVXoJSBrNRoHs4SbnLSk1RATMqXMyp9rJqUzftgfgED6yjzRnNqfLitol0BOIIAjz0Rg+SrFBSYMUfTdE6FOOU+iISmWw+ugbAIMDME2hQqYslHR0dHZ08R3Nefi+p8tg596pvEBgYYGTHWrr/+t/sumQxld7FEzx5blzRdPjqggrlHhtSJouSy6EC23tHWDGjfEI7ayz8d+uBEcLJDHbRgCAIeGxmAnHNP6/CY+Nzp9aRzuSoKrLjsJj444YuylzWfAVoKJbGbDLgtBqRMloirsEo4LQacVlFrls+lTk1XjZ3DdMfSdFc4ebKxZP45t9lyj5zO8PP/YbErpfY+8Tv6d25kcaLv82KBU35uZyOoTi9I0niKZlQPJPfaHPZRB56s4f2oTgmg0BfOMmj2/3ISpbOoFbZCibSVLhtTK9wsb0vkq/OHHS7cFtFlFyOgVgKoyAQTmtD6iklS0Opg4vmVfPtR3fkK1Ufn1vJXWs7eHFfgAKLid9eOo+rl0xhc/cwodhb3oMHD3LvGYjmW4sum0hJgYVOIY7dbGJY0kwy+yJJ6ooL+PqyBhpKndy1rh2LAc1V3QDLm8o4rfHYG3fvFbpY0tHR0dGZwJGcl99LokmZ6VVeLrj2//HkT79O/543+OpnP8VP/7yaJ1tGyGRzdA7FcVpMXHZy3YTr290X4ZoHt+SrSiUOCwvqCg+bc7ZnQPMZqvba6R2WGJZkAIqdFs6bVUEqmyWRVni5NUhtkZ2Pz60impQpsBhpHYxhNAosqC1EFVSSGYVsDuRslukVHhpKHaTkHDazkTk1mtD80fkzeWZ3Pw0lToYSGSwmA85CJ5aVN5BumEfvk78m3tVCyy+/iOOKmznp1DO4/7VuTqkvosBsJBTXXiNlFNZ3DtEVlNi8f5js6CagCrzSOkRKyXFKvWaTsKi+kPNmVuKyifxjSy8/HtyDpGhlGgGYVGTDaTPROSSRkrNYTEZcVhOqCtG0QlGByDnTK1jbFshXqgLxNFt7RogktdibsCRz+wv7+N5Hp/PrF9voCyfxrt/PHZ+cTZV3fGagyAMbu5FGw9KXTvVhMgl47GbNagHwFoiAwFdOm8zpzaXs8kfoCycxm0VSWZkSl5VrTj8xW3Bj6GJJR0dHR+c95Vg+OeOHyn0OC7/941/4r6suYOeOFr71pctwfPp2jEYj8XSWBzYfYGPX8ITB87VtAc3gEZWUAsNShtf3hygqMDMQTuVdoHtCEg9s7ObAsERXKEGl144kxylxWDTTy1CCVCaLP5LKh8PuGYiydl+A/nCKnf4IaSXH9p4wi+uL6QwmiEgyBoOAaDSyvXeE3uEkiqrypw3dTK9woWRV9gVi5HL9WEUDORWiKQWzychpKy/izUkz6HzoR8R6W3n5zm/Ssuk8XEs+x9+39vG106fw1zd68rlsvgIr6/YFmVbmZDCa1kKDgcZSB5u6hmnpCbNgUhGXLqzL3+ePz63ilY4ga/cGMIzOKS2fXs7rnUHi6Sxmk0BSyUIKLWcukmR+nZfHtvfSN2oREEykqfDYOHNaGev2BbUYGNGA0SCwti1AXzhJLqfSHUrwsxdauf2i2fkomlUbu9m4fzg/AL5sqo+mchdyNkdHQJtfSssqHrsJn9sKaFVG0SgQT8mIJoFkRjnhOXG6WNLR0dHRedcZn2k2PmrkcKvl44fKA/E0wbSR6392D//vq5cx76Jr2GMSSWayGAQodVgPGTxf2uDj9y/vH3XEBqtoYCiWYSiW4Zq/bOHeKxYyrdzFj57axasdwxgEMAgCLqtIlcdGIJ7GazeTymRxWU30juToGIpTXWgnkVbyIb9SRkE0GMgoOXb3R8goKiaDgZSSozecJJFSSClZjAbYH0qwP5RAAEocZnJANKUyt9rNLn8Uo1GgNRCjoKSKist+QuCl+xjZ+A/CbzxOonsHJStv5OmdBfz20nm0B+NMKXYQTSt5a4GT64sodJgYCKfZ1hMhKsnEkjJVXtuEe+u2i1yysEaLg8mpJDJZNrQHGUlkEA2QVlQKRANFDjPhVAYEgY2dw6gqnNlcCuUuFtUXsrTBx+oWP9Wjw961RXZmVXlY2uDj0a1+ukMJnFaRbFbNG4s6rCakTBafw5IfAJ9W5mJamYt1bQH+/mYfgWiKwViK2dWevCWDtjVXyUt7h5BlFSWrUCCeWLmiiyUdHR0dnXeV8ZUit02kwm1jUnHBEX1yxg+VF9nNPPxmD6FEhklf/A1WbwEfcVjY1R8hlckRTWteSONDVpsr3fz20nnc9uxeBiMpwkktBkQ0QFLO8dQuPwOxFC+3BUnJObIq1BbaQIAvfrienoiUd9LeNxhDNAjISo6hWJpX24KUuSzsD2Zx20QS6Sxmk4HmcjcbOodIKjkMaNUzJZtDUclv5JkEUFQYScqYDAIWk4FwUsZpE5lV6ebVjiCJlEJaNeJeehXm6lkMPXUH8lAX/X+8Fud5XyJ8ThNzqrz84sVWwpJMtdfGOdPL+N9XOvFHkxgFAbPBQFLOkQPW7BtibWuAj82unCBYz2ouY1PXMGo8Q7XXxlAshcFowEQO0WSgzGXFkTExMBqQ2zuSZO9AlA81lHDpwjp6wxItvWE6gloA8IHhJMsafTRXurll5Qx+9PQeknKWSo8tvxFX5bEzxad9nw4OQV7S4GO3P4rJKOS3+SY4vkckDAYBq1Egk1XZF4hyRnPpe/Yzeyx0saSjo6Oj87Y5WmttfKVoKJGmutA+wWjxYMYPlYfiGe5a247DYmIkqVBbLJDIZJnhTBHb9TLyzJUoOVjd4qfS+9a5F00u4sazpnH/61281hkkkdGiOKwmA6dN8fGn17tIyjkEVdtUs5tNVHvtbOkZYSCapnMogcWoVY1CKYVALE1NoZ1QLM2XTpvMhfOrEVR4vSuEQRWoKrITSqTY5Y+RyGRJjSoku0lbc5ezmlCymARqCgtQcjliKU3oNfhc7BmIkpa1OaKxpS/r5AVUfO5XhJ78Ocmurez7xy+5tGMTS7/wHXZHzfgcWiurxGXBH02SSGnnNRsFcmjzSNmcSmcgTk9I4iur3sQfSVLqtHL54loOjEgE42nWd4QwCgKqqlLmsjIUT2M1G7GajaTlHP5IErPJQJXXzqULa/OD8dmcSlrOYTEKpOUsb/YM47Sa+OWLbXQMxVGyKkaDQDQpj9pIiFy6sPawywLH8uVa2uDjvvVdRJIyXrt4XHEq7yW6WNLR0dHReVscK4JifKWo0mPjhuWNqAJHzfYaGyrf3RfhLqBvnMO0KidYedo5DA0FOOWSJGd96qpDqlRjQ97DiQzZHJQ5zERSCl/4cD1lHivJjIJ91GW7ptDOV5ZOpnc4yeodfqrcNoYyCqoASTmLyQA5VTPBNJsM/O8rndx56TxcNpHAaEuxe1iizG1jT39sgn2ApGgCyWk1gqCyaFIR2ZzKTn+UcpfWIstkswho6/Bmo4GUks3fB7uniMLP/j8Cmx4n+OI9dLW8zqpvformC77O4LQlTCopoNJjxy4aGY7LWEwCZpOAyWBAzubw2EXOmq7FtHQE4xiA1kCM377cyXAig3lUEM6tceeFnns0+Lip3MUn5lZxz6v7KXdZ6R1J8vyeQS6YW4XbLnL98ql8edWbJNIKHrvIVJ+La/+2jc6hOEoOCsxGBqNvtUgjo1YI3SEpH6MCTBBIbrubnpDEurbABEHVXOnmvisWsrYtwLzqwuOKU3kv0cWSjo6Ojs7b4lg5cP+M/YAqaB/aYzhsJqZPruHGG7/Jf/7nf/LaX+7A5C7ljBXnTqhSrW0LEEnK2Efz2WKZLFPLnayYUUZ7IM7+oEQmm6PAYuK65Y283DbE49v6SGVhX3+MaeVObjhzKrc+vYe+cBIVyOVyVHm1maatvSOUOq3s6I1QV6RVyi6aW0VYyrC+PURW1So7NtGAaDRQWGCmKyTx4t4AbpvI7GqPZlFgFwlLMrOq3MRSCqJRIDaUyIutjKJy8fwaEtO/SMvCD7Plz/+P0P5dbL///1E1Zz2RK7/NPa9KNPocoGrD2VVeG9csa2BfIMq86kJiaYXekSQgkMlqQsxrExmMprGatHZgNgfnzirjpCovMyvdeTELsLEzxBMt/UgZhZ+/0Ep7IMqNK5pZNLmIVVctYm1bgKUNPtqDcUakDA6ziXBKQc7mmFRSwJRiB7v8EeIpZcLPyd6BKC/tC0wQ2WN+Uv5wEqdV5NozGvIWAaoA582szAsuPRtOR0dHR+dfhmPlwME7tx+o8thpKncdcuzrr7+ePfvauPv3v2PDH77HtMl1sHxq/nXj2zZFBSJXfmgSyxp9rNp4gFfah4ilFMrcVlJylo6hOGv2BkiNFnRygJJTKfNYufeKhazvCCKoKvdvPEAgnqbcbaXUYWXVxm56R5L4I0mWNvpoKHXisZspsBjJZsFoVFlQV0QgmmZ/UBNAdtFEPK0wo8LNR2aU4bKI+Q//06eVMLXMxW1P72EkqVmBq8BgLInDIuLHS9HF/4O48WEG195P79a1rLpxG6Vnf4Wi6R/mpnObCMdlRlIZyt1W5tcVcscLrazZOzi6HQgOi0iJ04zLZqa+pIACs5Fqr40FdUUsnlxMdZE9P9vksoi4bCLFDgsqYDEZkJUsr7aFOL1pmOVNpTRXuvNbaU6rqBlahpPUF9i5YH41yxpL8gP9ZS7LhKy7scia8SK7YyiOP5wkk83RFUxwy5O7ObNzGLNJoGckCajIWZX6YoeeDaejo6Oj86/D8eTAvdvHFgSBa27+fzy3cQc9LRtYdct/cNGHmzlz4UxgYttmaYM2ePzi7kGe2OEnmVFQcpo3UJnbSpnHeojtttcmEk8puCwiM6vcVHnsLJ5Skh+Q/uWLbbzWEcJtEzEIArNrPETTMlImS01RAT3DCZxWMx87qZI5NV4eb/Fz96udxFIKdrORMo81/36uXjKFda0B2gNxJhUVsGhSEc/sHgQ0A8ZFdUU8ut1PNqdiNBopWHQR06YuZP8jPyEV6ML/yI+I7jiZvVNv4+n9aSJJmUe39vGdc5rZ3R9FSmtVHpdNpMxt5evLGgDoHpYodJjZdiDM2tYh9ocSrJxVMcF4cmaVi75wCqvJQDSZRc6pBGJpbn9uHwALagvz35PDVRB3+SN5QTQQTXHhvCoSGYU5VV5cNjEvsgvMJp7d1c9JlV48djOdQ/H8luLO/ghWowEpk2UwlsJjNyMaDRNChP+vEdTxybI674hoNIrb7SYSieByuY79Ah0dHR2dt0VEktkzEOWxTe38/pufIdTTRnPzdDZsWE9UEQ/b8ntwczfff2w3clbbgPPaTNQU2ZlR4SGWyvDCniHkXJYyl5VFk4oJJzME42mKHRaqvXZObShGAFr7Y9y5rp1EOksOLTS3sdTJbRfMYnWLn82dIbb1RsipWhvu3isWsmhyERs7Qvz42b30h5NYzCaWNhZz7fKpvNE1zHV/24aUUbCZTfy/j80gmEizaf8wF82rZn5dIbc9s4cnW/rJZHPYzUZt+DyToXftAwRe/StqVsFid+A+7XLKFp6LpKhcsrCGLd0jtA/FyOag1GVheVMZF82rygui8duJA9EUpQ4zD2/to6jATDgp56tOncE4dtHIa50hih1afEqDz8kpk4sO2wobG/gfq5xt7hxmOJmmvsiBWTRS5rIwrcxF51Act03kng1dRKQMFpORZY3FvHFghJGkgsVk4CPNpaSVXN6fqbjAwifmVbKkwfeut+CO9/Nbryzp6Ojo6LwvOfgDWKtYFHDPAw/zpYtW4HQ66Owf4QdrevNZduPNKicVOsipufw8kSRnCUTTbEgF+c45zaycU0UolqbYaeHhN3spMBvZNiKh5lT2+KM8vbOfREYbxo6ns/lilLtA84NqD8a5eskU+sISW3oimI0CSTnHo9t7cdhMIIBVNCKaDORyKq2Dcd7oHua/Ht1BNKW13WIphR8+uYvvnjudqaVOuocTBONpLltUyxlNpQzF0qCq/PG1LgwOC8v+4z/xffmz/OWnN7P1zc0EnvkNkZ0v4TvnGvYHCyl0mFnq9RGIpvjkghpWzCjn6V1+DgxLlBRYGJYy+e1Es1Hgka29xNM54mktgy6TVdndH6G53MVF86rpj6boGZYQDQbKXVZe6wgxv66Q5U2lE75P4wf+6wrt/P7lTrIq7A8mWdJQxLO7w9z/+gGyqopoEFByKqoK8UyWx3cOIhpgZqUL0WTkgnnVVLptebuEKT7HeyKU3g66WNLR0dHRed8x/gN4LLzWLhpZ3x5izulTePzp5xCcxewLZfI2BQebVQ7GU1jNBoSMSiarYhAETEYDIGC3mji5vih/rs1dw+zojZBIZ9nlj4Ig4LIa85Em41swqUyW+pICLRTWLnLZwjrW7A6QlHNYTAb8Iyl+/MxerYrjseKPaMPWjaUOhmLp/Dbc2DFHEjLXP7Qtfx6LESaXOPnPj0xlUlEBX171JmFJxiIa8NhErjh3Eddf9Brf/dHPuO2/v0e6dze9d1/DS60Xcu5n/wMEEwvqi1gxoxyAHT1RsjmVnnCS+pICbljeSCyt8ONn9hBP5zACWaDaayMp50ZtEAQqvXZuWtHEY9v6GIwmea0zhJzL8YvnW5nqc+bv88ED/7v7I3mBqgK7/FGyqjYXBpDOqhhgQmadnIOWvijnz66iqcyF2y5y5eJJ+bbqiRRKAIa3+4LLL7+cl19++b24Fh0dHR0dHWDiB3BYkkFVeWbXAO1DcX7w+C4ebJX5w2t9tPSG8Tks9Ha1Ue625jexIpJMqcOKokAmq2I2CSyuL6Sm0M7SxmKayt5quYzNEdUU2pCVHEYDqKqaN5c0CBOvzWMzcdOKprxYWDS5iHuvWMjFC6tYNKmQPQNRdvujvNYZIq3k+M45zdz6iZlcu3wqp04upqawAKfNiFF4S1Ao4wRZToXOYIJfvNTG7S/sI56SMZsE0nKOcDKDyyLiD6fZ7FhE5efvxDZ5PmpWoXftgzxy0yepj23ny6dNxm0X6Q1LDEsZPtJURn1JARfOqaLSa8dhNWERjZhNBrKA2SiQVWE4kUZKK7QOxnije5hbn9nDmn0BWgNxBAEq3Db8kSTP7x3M3+exgf+xQe4L51RjMmjvxyDAJ+ZUMqvSrd1XwGrShKPXbuKgW0uF14LbLtITkrjxkRbufmU/Nz7SQk9Ietd/xt4Ob7uyFIlEWL58ObW1tXzuc5/j8ssvp7Ky8r24Nh0dHR2df1PGb9xN8TnI5WBdWxCnRbMGaOmNcuqUYvojSTx7/8GTv72DL/7hfla3FOXbQZOKCrBbTHjtAumsykemlzNjdHh7rFIx1uobCKd4dGuv5sCdhQLRyMXzq9npjzAQTbE/KOXFjH8kxQ+e2MXvLps/QTA5bCZ+/nwrLqtIz4hEudvGYDQ1oYrltotvGXDGMty5th1QCSVkVPUtwWQ2GWgsceKPJHFYTaM5bgYcZhOrNnVTV2wnLGUo9FVguPB7CAfeZGTN7wkO9vHNr1zF3++/j2/+8H+YP3s2tUV22gNxTAaBVzuCDMRSXLqwlklFDlp6wmQNUFwg4g8nSWSyxAIJukMJ5td4xsXQpHBaTfgjKUwGgYc397ChPcgUn4Orl0w5rPnkHS+2YjMZWdsWpMRh4dTJJYSTaQosJmZVeVg5q4LHtvVx/8Zu5KyKxy6yolmrhq3vCNIRTGAUoCOYYH1HkIuLav6vfvwO4W2LpUcffZShoSH+/Oc/88c//pHvfe97LF++nKuuuoqPfexjiOKJLZXp6Ojo6Pzrc/BWXN+IxKPbeokkZTw2kVlVLgaiKeqKC+jIJlFVlW9e80XO/fbvmTFzFt0hifl1hVR5bfRHUlR5bflV+THGWn3tgTjbe0cY3d4HoMJrRc6pmE1GJpU4OGOajwff6CGWypIF2gMxNnQE+dS4D3CXRcRjFyl1WVGBjJJlIJLmvg1dJNIK80c3ycZsFSKSzIFhidbBGMUOM2UuG0lZZu9AHJdVJJ5RmFnl5munN/DULj/tgwkaS510hyQW1hZS6rTSG05SV1TA9Rd/nmk//ipfuekHvPTX/+X1Da9wwUdOY+GKC/nNT35Ec4WL1dv8+JwWtnaPUFdUwOTSAsyikUqPnb5wEinzljmmkoVkNps3F63y2vn0/Gr+vPEABWYj+0MJppQ6JoQNjzefnFzqoL7Ywf5ggt4RiVxOpa64gG+f04zDasoL1uZKNx+bXTlhixGgxGlBNAhksjnMRkM+iPdE8Y5mlkpKSrj++uu5/vrr2bJlC/feey+f+cxncDgcXHbZZXzlK1+hoaHh3b5WHR0dHZ1/I8YcnrX/nmgNUOm154WUffkv2d/Rxpo1a3jhFzdg/959NNVXs6C28LDmmGPVpNioaaLdbERK5yace0FtIT0jEsFEmqFYmgKzkRkVLl7rHMm3zRIZhV3+CIIKLf4wO3qihCWZco+VixdUc//GA4wk0rzcOkRLb5izmsu4dvlbGWhuu8i1yxvz72Nvf5TP3bdJm30SDfzgvGZWzKjAbReZVu6aMETdUOpkZpUbg0FgeoWL0xp99IYlKpZdypyKRex57E4S+zaw8am/8uG1T/DFr3wNU9PZvNwaI5yUaXtmL03lLkpdVoYTGSo9NgaiKSKjg+cFFoHzT6rijKll3P96NwVWE8VOKyajwP5QgmxOpW0gxpxaLwKH+idVeex47CLRlIzdbGQwlmaKz8G00Xmk8Yz3bhpjfm0h584qZ5c/yvQKF/NrC9+Dn7Dj558a8O7v7+f555/n+eefx2g0cs4557Bjxw6am5v58Y9/zHXXXfduXaeOjo6Ozr85B3+ojjcnfOihh1i0aBFtbW203PddfvLcC7jtItGkPOEY4wfHy1xWylwWekaS1BTZORCSyCg5yj02HFYTu/qjDESSlLtsSJksdUUFbO4awYDm+/TYNj+rt/npDSdRcjlUFT7SVEY8rVDislLqsrC3P4pRELTYkcEYvWEJsOe3/KJpOV9leWqXn6SsZb2l5Ry7B6J8amHt6HudWGnrDUuMSDJza7wMRFP54/VHUkRMXqouupmcfxexl//IQPtOfvHTW7E4f0vJaZ/GPP1M4oLI650hPtxQzOWLazm1voTV2/u4/flWsioYDUb6Iyl+/OxeWgfjqMAT2/3UFNnwOSzsD8bxR1RMvREuW1R7iEmp2y7y9dMbiacUXm0PoWRzHBiW8rlxx8JtF7lxRdN74uX1TnjbYkmWZVavXs29997Lc889x6xZs7j22mu55JJL8h4F//jHP7jyyit1saSjo6Oj857yVqCvg8cff5yTTz6ZbW9s5BvX/ge3/OxOvvbXrRNsBaJpeYJp4hWL63BYTbgsIvsCMdr6YzyytZd71u9HVaHAYsRpM+GxiWzoCKKqoAA2k8C+gSgIkJZVfA4zI1KGV9qH+NCUIirdNhwWIzazCSktYzQYaCx1Ek8qXP/8NlKZLImMQrHDkp/7OWd6BQ9t7iUp57CJBs6ZXjHhvY6vtMGhLuq9YYkSh4VoUiYqZaiZPp//+I+L+fs/HuHh3/0UaaiX3ifvxPjKw7hPvhD3rDNpD8QpcVjxh5P86sV2sqNDU5Gkwh9f62J/6K0olngmS+tgAlVVyalQ6zQzEEuxti3ApQtr88IPYJc/QpXHzrKpPjZ3DVPpthNKZDSncJt4XCJo4vs9sbxtsVReXk4ul+PTn/40mzZtYvbs2Yc8Z9myZXg8nnfh8nR0dHR0/h14S/QcfxXhcIG+f/vb3zj77LP505/+xLQlK+mPuHFbRXqGJdZ3BDl7RvkEkTG+LVRdZEfKKAzF0ozZNSs5aPQ52dEXoS+cQkDbVhMMAqIgkFFyCAIEExlyKgzF0qxrDfLhRh8jksLp00roCMT5+NwqZlW6ufZv2+gOJTT/JaOBmkJ7vnU1tlX31C4/50yvYNHkoiO+97FK056BaH6jzGURCcbTBGJpciq0BxJ885EWVKGB4st/TaLlOSIb/oISDTD83J1ENvyVxOIL+bExh9VmHbUM0FCBfQMRMspbpgkmAQRUCh1mhhMZQlIam2hkU+cI0aSieU6NSNz+wr7RiJIC5tZ4KffYGIql89uK479nK2dV0B6MHzFD8J38XLwXvG2x9POf/5yLLroIq9V6xOd4PB7279//T12Yjo6Ojs6/B4cTPcfzwXi4QN8zzzyTX//61zgcDpacfTYbVr1JRzCBaBBo6Q1z9ozyo0a1zKnyUum1sm8wTi6n+eu83DpESErnfZAEwGYyYDQYsIoqJoMB0QQ9wynsZhNhKcMzO/rxFoiMSDJzar3MqnTz1zcPEIyncFhMxFIKHreIlMlOiPGYVu7CYTMdEutxONGwtz/K7S/sQzQYmFnlZnq5i8FoilE7I3JonkaiAQSjicL551K58CxmxLfw+J/uIjYcIPDc73hxw0OUn/Ix1GnLMY5WcgpMIMkqdlEgJauYRQOTigoIJdKoQGOpkw81FLGrL4bbZqI9EGdz9zA/fmYv3aEEDouJzqE4rYNxTqr0MLPaxaRCB2vbAuztj1HpsbJ5/zBP7+gnnJSp9NgmbBdGJJm9A1Ge2dnPQDR9QkN04R2Ipc985jPvxXXo6Ojo6PybcjjRczztlzF7gfZAHI9dxGXRPkhPO+/TrG0LEEvJXHtmI79c00aDz8HIqOCYXuE+5PjjxcjvLlvAn1/v5pW2ISo8Vlr6IlhNRiJo22IqmjP3Nz8yDZvVxPq2IK2DMYKxDMmMAgJs6hqmwm3j62c2UuGy8u1Hd9A7kiSVyWE1G6grLuCWlTNAeMsu4EiiMSLJ3PFCK62DMRpLnVy7vJG+EWmCWaWSzbGnP0JKyU0wvDSgVcEMqorBIFDt8/JfX76OS6+4km/9v1+y77k/k4kE6Hn+XoSXVlHQvBT3/JVMmTMLOavSFUrgtBo5s9nHRfNrcFpM+UoQwDUPbqG1M4bXbqatP0ZYylBgMRFNyRgNAnVFdoalDL4CK7c+s4e+cBJVhY6hOImMwnBCmymLJWM8/MYBrjtrWv4+bD0QpndE4pT6ohMaogu6g7eOjo6OzglmvKfS2PzN8eC2i1y6sDYfi7FqUzfLGn1c8+AWhhMZfvlCO1+aX8j+v/0/vBffwLRJlROOfbg4lTGR8h/LpmAwQHsgTqXHhtkoIMk5UrJCgdlEdaGd+lIH0yvcTPU5Wd85xPKmUl7fH+SNrhG8djMHhiV6hiWkjJIPqg0A584q41PzaoillQmVk2VTfYcVjXsHoqxtDZDLqfgjSVbMKOPNA8Mk0krerDKRUTAaRcpdVoZiaQRBpbHUhckgsGhyIZVuO6qgMqvCw+oWP90hiY9e/Bkuu/xyVv/jEVrX/JWhrr3EW54j3vIcyYa5fP3qL/Lp5csoL3FPCNAFeHxHH5UeO+7RAOKwlGG7P4LPZSUQTVFTWMDcGg+DsTQeu0jXsIQ/nMRpMRFKpCksMFPiNDOciABaFeyhrX1cOL+GaFqmPRAnlpQZkWQ2dIY4q7nshIXogi6WdHR0dHROMAdver2dVks0LZNIZ6n2amLrqV1+hhMZlBwouRzfvvaLpLpbMCTDXPmnR/KvG++xBCpKFiYVF+RFyvQKd95ocUqxA1WAeFLh9692IGdVmspdVHk0r6R71neytjUIqMyv9VLssNAxFAcEHtrcw/fOm06520rviJa/dtoUH6tb/OzojeCPpJhX42FHb4T5dYUTRKPLIrKxM8Su/gi5HGRzIOdyxNIKU30uzCYDKTmL22biix+ezD0b9hPPKJS6rcyt8RBPZ6ktsnPVqZPzFap1bQHaA3GqvZrj9sdm15EzfIquJR+lY8cbbHrifqJ7X2O4bQvfu/7LuFxuLr30EjxXXsmUplm80jbED57YRTSpYDcbOanKTSyt4HNZUbI5rj+jkbisMKfKSywlc/sL+xiKpdmtRsmMbsQ5rNrrhmIZCsxGEpksogHScpatvSMsafDhsYvs6ItQV2THaTFx1oyyf62ZJR0dHR0dnXebd7r5dHBValmjj79u6kXJacPKhWdeTeiBb7D9jdf54pe/zOU3/g9fWdpAb1iiPRBnIJpiMJrCazdjMgr5+aHIaKVqQkusQvM7Gj9U3RuWaB2Mk8upgIo/nGJJo4+BSIpih4WQlGH3QJTZlS66gwkiqRy3PbuXcreVuiI7XaEEa/YM4rCKrG8LcuWpk4imZVwWkV+saWNdawCzUaDAKhJJZlBz8OcN+xmIppGzOYwGgZMnFeFzWyl2WKgptCNlslwwrxrnOPPH8eIwGE8D5H2PppW5WNsaYKvzQwjlTfT39TCw6WmiLS8QjQS46667uOuuuyiqqMXZ9CEy1Quwl08mklQJJ2UWTSrMz17NqyvMn+8XL7ayoy+Kz2EhnMiQkXMYBAFFgbpiBxfM8/KJSCU3P7aTlJzFaBCYUuwgmpRpLneTSCnIOZUpPseEeJoTgS6WdHR0dHT+ZTlcVer75zVz82O7yOZU3GW1XH7rnfzPtVew7+XHeaKmkZWzv5M3TdzeG8ZmMoKqsnhyMRfMrcJt1yo6O3q1ysbB8zJjbtW1RXYuXVhLY6kDfyQFaIPP58+uYFNXiP5ICrdN5O5XOvFHtMFri1EgQAqnxcROf4R4SiGRUTAIAvuDCaJpmekVbtbsGeTpnf1ImSwGASoMAtmcVn15rXOYnKoiGg2oqPTHtC29KT4He/qjAASiKZrK3gqgHZsLq/ZqrayVsytY0uAjmpRZ3dLHPa/uJ55WcFhMLJ3TzGseH4UrP8++ba+R3fsSgy2vEPJ3E/J3A6swuUspaDyZofmLufYrF+MrnBgj0xuWCEsyJU4LgViaKo+NnKplxSXlLE+09BFLySyd6mNOjQcBkDIKj23z83L7EIFYCrto5MrFk2iqPPH2AbpY0tHR0dH5l+bgqtTFi2qZVOzIr+BPK3expWUnz979Y1574A6eWnYypy1dxkVzq3mja4TeES2k9eE3ezizqRSAZ3b244+k8EeSLG305edlDh5Gj6ZlVkwvJ6lkmVPlZfHkYqJpmWuWNbBmzyB7B6J0DsXzG2rprIo5qzIQTSFlsqRkBafVRDyjYDQK+fN0D0uk5CwqkB21JHBZRZScismgbailczlMRoHG0QqR02Lihd2D9IWTbDsQ5txZZdy4ohm3XTwka29MKF3z4BbaBuMkMllcVhPxtEK5x0bVaFvTOXkup5+zgnA0SmDXa+ze8Dz+nRtQIoNENj/Ga5sf4yN/uJkPnXoqp59+OosWLWLhwoVUeQqY4nMAMK3MydnTy/nmI9vzA92yrNIeiLNsqo+mchd7+qN0hST2DsRJpLV7MRyX+fmaNubUeGgqd/1rbcPp6Ojo6Oi831k0uSjvUxSRZE4+7zPs27WTrtef4tvXXMW8r93JwllN2EQDRoOAySgwGE2xtXeEySUOBqJpTqkvpDskTZiXqfLYKXNZ85tp8aTCNQ9uIZKUWbM7wJLGYYbiafb0R5GzKko2h91sJJrSKkRFBWZKXVZiozEgGSWHklOp8tq5YVwUSm2hHdFoIDu63SYaBRpKnXQG40STCmYjeAoslLqsXDCvGrddZF1bnBEpg0GAlJKjpSeSr4gdrgK3ri2QHzzvGh1ELywwc/7sCs6fXcFtz+6lIxBnhz/KKfVeqnznUjRrGTklxaaX15Dcv5XQvjfIhAdZu3Yta9euzd//qVOn0jxzNvbSWhrmn0R8MEW1y4iKSlrOMZLMMNvuybcBV23qYk9/FJ/TQmdKIaOomI2QkrUNRH0b7l2krq6O7u7uCV+79dZb+da3vnXE16RSKW644QYefPBB0uk0Z511FnfeeSelpaXv9eXq6Ojo6Pwf0BuWGIylOefLN3NfTztqJkUum2MwmqauyI4/nELO5ahw25hT5cVlE/NVmJlV7kPmZdKKQjytkFYU1ncEiSRl7KKJcFKmpTdCucdKJClrLuGRFC6riZMq7Zw1o5yljT4eerOXta0BTAhUeW2YTAZmV3qo9L617TW/tpCPNJfy/J5BVFWlrsjB105vYH1HkHWtAWRFZSiRpsRpptJtAzSPqFKXlX2DMVAhmlYQxhy5D+PTNKfKmw/KrSuyUV/s4JJFtTRXutnlj2A3m1jSWEJXSOKkKi9rW4doLHWyP2hg8sLlRGYuYYHLwg0L3ex841XWr1/Pxo0b6ejoYN++fezbtw+AVePuncnuwuwqoriklLYpVfzncx4KCgrIGsxEdg/Sm0xjElTkTIaYFCObjPF4Jo6QSXDdK68AJ0YsCaqqqsd+2r8GdXV1XHXVVXzhC1/If83pdFJQUHDE11x99dU8+eST3Hfffbjdbr761a9iMBhYv379cZ83Go3idruJRCL5yBcdHR0dnRNHT0jKB+i6bCJ3rWtnR2+Etu4eBKMZu9PF0kYfV546iX2BGKFYmsWTiw8J2z14O+/1zhA3/X0HGTlLJpvjisV13Lehi3BSxmU1sWyqb1xlKUdsNJjWazfzx88tpNJr55kdfjZ2D1PttvP6/hCpbJaMrHJmcykXzauecA2bu4cJxdLMrHSzusWfH9C2m40E4xkq3DamlTvzLarHt/bxvcd3kZQVQODM5lK+8ZFphw6rj76nnpDE83sHeXhzD0OJNG6ryDVnNDC32jvhNZcurJ3weOWsClr6IpQ4Lcw/yFYgGAzy0NMv8ccnXiY1dAB/dzuJwQNIifg/9T3dsGkLpyyY808d42CO9/P7A1VZAk0clZWVHddzI5EId999Nw888ACnn346APfeey9NTU28/vrrnHzyye/lpero6OjovIuMCRxBhW8/umNCJtzKWRW8uDdAzurBYxP5+ukNnDbVR3jIz/Km2kOOdaTtPAGQlSyBeBo5q3Lvhv00lznpC6eZVGznylMnoQogqHDXy+08u3OQArNm0vjM7n78I2lWt/ShZFWcFhNJOUtmNJCtMxjnpb0B7rx0HtVFmkhbPjpDtcsfoTskUeq0EEspLKgtZFd/NG+ZMNaiKnFbsYhGEhkFs9HAYERrLR7J9LO6yE6xw8xQIo2SVekMJvj+6p3UFxfwlaUNnHdSRV4wjm/jAaxu8bOudYhX24ZYMaM8Hx1TXFzMJRecT6R4Rl5cffm0yfT0B/j6vS/i9/uxK1HOm+ahJzDCPzZ3kM1oA/IV3gKKXXbimRzmAhcmm5PailKSBhsm74nr+HzgxNL//M//cMstt1BTU8Mll1zCddddh8l0+Lf55ptvIssyy5cvz39t2rRp1NTU8Nprr+liSUdHR+dfhPHu13I2iz+cpLjAQv+oWACIJGV8o+v8OUHlnt/9mm9+85s88sgjrFy58rjOM63MRanTQm9Y+3APxmU2do1QW1RAS1+En73Qyvc/Op3qIjtXnzaF1zuGGZEyOC0mKl02ntk5iJJVMQrkq05jjtuqqtIbTvL4jj4uXVg3oVozNiu1tjUACAzFU3mvpDKXhXhKISLJVLpteG0iI4k0AiqTfQXMqfKy2x89ounnnCovXruZ/cEEBiAsKbx5IMIND23jZxfNpmPorey2MZE1Jt68dpG1rUFaB+PMrHLnq1aHm5F6OSGQKKig/qQ6QlKGpjMb2L+jH7ctlL8WWYDiSjceVSUQTeGwmykotHOSz0FjRck7++F4F/hAiaWvfe1rzJ07l8LCQjZs2MBNN91Ef38/t99++2GfPzAwgNlsPiT0t7S0lIGBgSOeJ51Ok06n84+j0ei7cv06Ojo6OhNbaIcLVz0c47fUOoNxPHYzISlDuduaj+YYm88pd1uZW13I8x0dKIrCZZddxuuvv05zc/MxzxNNygRHN7rGyKkqA5EkZpORHb1hfvFiK985dzqVXjun1BfxSnsQu9lIS1+UaaUuukIJlKxKgcVARsmR1maYEQQBo0FgY+dwPph2TDC57SJnzSijdTBGudtKdyjJlR+aRIHFxOPb/PxyTRuNpU7OmlFGhddGidNM70iSk+u11uLRTD+ri+zc8cnZ3PbMPrYcGCY2ekGRpMK3/9ECgoDPYeHrZzbmnbzHtut29EbI5nK4rFo+3Piq1cHVufEzUiVOCzt6oiRS2Yk3WAWjUaB/JEWp00qhw8zyZh+TihzH9XPwXvG+F0vf+ta3uO222476nD179jBt2jSuv/76/NdmzZqF2WzmS1/6ErfeeisWi+Vdu6Zbb72VH/zgB+/a8XR0dHR0NHpCEtc8uGVCC+14BNP41fimchc3njXtkDT7X108d4II+/nPf87OnTtZt24dH/vYx9i0aRNer/eo59naO0JSVnCaDcQyOUQD1Bc7KHKYaQ/EKXVaCUsyewaiBGIpBmMpXFYR0HLWvnZGA6dOLuTVjiG290TpCycRAJ/TzIoZZXSFJOqLHYfd/moqc1FXVMDa1gACAo9t6+PMplJebhsiKWc5MCzx4SnFmAR4Zf8IAvD7lzuZUqI5kB/NHb250s0vPz2HW5/azV/f6AXAaNA8kcpdNjqCcX61po1TJhflRdzVS6awuXuYXzzfypaeMOVuaz6f73BUF9nz3wOHaOKhLb3MqvIQSyl0jNoreB1mvrJkCk/v6icsyVR7bezrj7NuX/CEhum+78XSDTfcwBVXXHHU59TX1x/264sWLUJRFLq6upg6deohf15WVkYmkyEcDk+oLg0ODh517ummm26aIMyi0SjV1dVHfyM6Ojo6Osdka+8I/ZEURXZzvoV2PGLpcG2f5oPMDKuL7BOOJYoiDz30EAsWLKC9vZ2LL76Yp556CqPReMTzzKnyUuGxaW0+p4mL5ldx3qxKAH7xYitDMW34+vFtfgZjKRIZrXJiMAg0ljqpcNt4aV+AAyMpBqIp1FGjxpSco7ncjc1sOmpGXiwtazlwgsDrnSEGItpxlKyKaBTYOxBlfUeItJLDAPSGk9z+wj5EozE/mN0ejOcjXMYLqL4RiTV7A9r1CrCg1kM8ncMfSSIaDDT4Joo4t12k3G2l1G2lymtjWJLxR5JH/X6NfQ8iksym7mEtbkbQvn92s5HawgLKPFa+c+50esMS8ZTCfRu63nbI8rvN+14slZSUUFLyzvqU27Ztw2Aw4PP5Dvvn8+bNQxRF1qxZwwUXXADAvn37OHDgAKeccsoRj2uxWN7VSpWOjo6Ojsb4Vs34Ftrx8E4iU0pKSnj00UdZvHgxzz33HDfddBM//vGPj/j88dWRg9uEXz+9kV+82ErPsMSOWITF9ZrP02Una22kaWWufLuwscRJZyBONpdFEKDSa2Xx5GJWzCg/YrusNywhZbIUFVjoHdHcuMOSTHZ0QFzOqrzaPqRFhwiamaXRoH3d5xTZvH+Y53cPMpzIkFFyTC0tYGF9cb5as7YtQDQl47aaSMhZFk4q5sJ51WzoCLK9d4QRScln1u3yR6jy2BFUkLM59vYnEE0GntnZnx/0HmunHk6YjYnbdW0BHnmzF4vRQCCeptxjnSASK9y2dxSy/G7zvhdLx8trr73Gxo0bWbZsGU6nk9dee43rrruOyy67LF9W7evr44wzzuBPf/oTCxcuxO12c9VVV3H99ddTWFiIy+Ximmuu4ZRTTtGHu3V0dHROAEcTI2Mcaa3/nTJ79mzuvfdeLr74Yn7yk59w/vnns3jx4qNe4+GuayzUd3KJg0AsQ9eoT9PZ0yvGXedb7cKVJ1VS6bFhtRg5c1pp/phHEnxVHjtTfI58JlyF24bVbKR3OI6kzYrTFZRwWE1EkwoOi5HvnjudrT0jrG0NkkjLRJIKaUXLzdvhj2IyGljXFmBJg4+lDT7ufVWzQfDYRM6aXkZ1kZ1PFdXkRZzLIuYtBLx2kR29EXrDSeRsjtOn+hiIptk7ECWWVvjF860MxFKgQk2RnVmVHq4dZ7zptossafCx2x+lPRBnarmTr5/eCJAf1q8tsrOgtpCkrLCs0XdCWnDwARJLFouFBx98kO9///uk02kmTZrEddddN6FdJssy+/btQ5Kk/Nd+/vOfYzAYuOCCCyaYUuro6OjonBiOJEZg4tbbuznD8qlPfYqdO3fi8/loPml+vnLydo49fm5qaWNxfp0+mpRZ1xbIi7+jDVsfiTGBeOnCWqJpGUGF9mCcUoeVlp4wUiSF2SSQymZp8DkJJ2VOqnKzZKqPUreV1sE4NtHO2tah/DHlLPQMJ1m9zc9uf5RLF9aypLGYlt4os6pcE0wyteu0s64tQHsgTrXXzpYDI/gjSUocFg4MS2zrDbOwrohndvaz5UCYjmCcogIzfWGt3TicyLBiRhmLRituY8e9dGEtL+wdZMz1cc9AlB29EWqL7GztDrNqYzdpOcvTOwa474qFh7RX/y/4wIiluXPn8vrrrx/1OXV1dRzswWm1WvnNb37Db37zm/fy8nR0dHR03gUOzmZ7N2dYbrnlln9KjI198I+vih1uYB2gYyiOyyIe89iR0WHxZ3cOMBBNTTCIbA/EAZVyt5V4WkbKZLGLJuxmE9Mr3AxEU/SGJZwWE0oux4aOEQyCgICKQQC7xURNoT3v1bS1d4REJsepU4rzrx27txFJ5o4X9rG7P0oik0XJaueVs1kCsQwImjXDtp4RKr02GnwO9gcTDCcymAwColEgreSIpZVD3t9v13XwxA4/clbloTd7mFHhwh9J0juSJKUoxFJZLCYDYSnD2raALpZ0dHR0dHSOxvjqzXsxwzImxjxGmb/d9RNWNN3G7Lrjm5uNSHK+RbXbH+XqJVMOGVhfs2eQR7f3Hde235hw29EbwR9Jsri+KC9q2gNxBiMpBka37ZxWEYtoZGalB9Ek0DOiBeYKKvznw9tpHYihqOAQBexmEx9uLObMaWWsbumjdTCG1Wzkzf0jFJhNeVE2/t7uGYiytjVILqeSUbJkszm8BWZmV3tRUXl+9yA+h5VgIk2d0U44KVPptYGqIisqCVlBNAisbwvm7QfG7vfO/ggZJYfJINA3ksRsMrC4void/VGyipFIUiYt5/DYTSxtOPwM8nuNLpZ0dHR0dP5lONzW2zvhSF5OVR47NYU27rjmcgKdu/ilz8Q9f/jf4zrm4apeBw+s5wT1uLf9xo5XW2THH0lp1gRuK6hgNxsJxNOUuqxYjAYUq4m6QjtvdI9Q5rIyqaSAlbMqeGZ3Px1DCXKjTZW4rOIVBc4/qYpfvdRG70iSjJJFSmfJAV67yPc/Op3Tpk6cDxIAUJGzWYKJDMF4GrfdjGg0cM70Mja0hwjE01R5bVy/fCrtwTirt/mp9trZ3R+hQDExo9zFQDTFMzv97B6IctoUHwVWE40+B52BOGklR02hjRnlboalDHOrvYCK225GyeW4fvnUE1JVAl0s6ejo6Oj8i/FOtt7g6HEobw1Xi3xlaQPu732Xr15xMffe/XsWLZjHl770pWMe/0hVr2tOb2AolubUycUArN7mP65tv/HHO6Xey0hCYXtPmG09ESYV2Zlc7MBsMjCp2E5GUVnbGmBEknFbRYZiae7ZsJ89/VGyuVz+mEUFItPKXOwLROkfDfntDmXIqiAaIJpS6IlIh4jQaWValt76jiAjkozVZCKWkpGVHPdvPEAio2A3m7hpRROVXjuxtEK118ZANEVzuQsQGIimMBsFvvf4btJyjvtfO0BdkZ0Gn4vCAjMjiQxGg4FF9YUIKiTkLLMq3cf0iPq/QBdLOjo6OjofWMYE0vgtrkw2R184Scm4OJTx1R23XeQrn/0kA/v3ccv3v8s111zDjBkzOPXUU496jiqP/ZD8tPHzT2fPKMdtF4+57Tf+mGMD3fGUwi/XtJHNqUSSMoFoCq9dZMGkQq48tZ6+SJL2oRgum0gokaHEZaFtMEbPiEQ2ByYjVDhtTPYV0FTuYmmDj+d2DeIPJ3HZTMRTClkViuzihFbX+Arctcsb+VBDMXc838pgLEWtq4APNZTwx9e68DmshKQM+4fjvNQayFfYLl9cR1OZFlDbG5a4//Uu0nIOowCKCl0hCX8khdlkoMxto2ckyZ1rOxhOaCkZFR4bPzp/Jr1hCThxgkkXSzo6Ojo6H0jGD2sXWIyjjtB29gcTeA8Th3Lwa20LLqB+4ct0bnqBT3ziAt588w2qqqomPG93X4TbX9iHnFVpKndx9ZIpTK+YmJ928DD60bb9QBMoP3luL4PRNM3lLq5drq3TN5Y66RyKk1ayiEYBk9FAKJ4hmpZpKnMxp8ZLeyBOg8+B2WhgR1+EaDKLABgEgU8vrGFenRcBqPS+ZdEwpdhB21CczkCcs6aX0VzpJiLJvNE9zB3Pt2r+R24rPzp/JmVuK7ddMCu/ibehfQiTAIF4iiqvHV+BlXX7gpS5rAxEUzitpnFWAW6WTyvj71v6SCtaX9BsFFBVcFlNhBJpRIOA22pifzBO5aj553hTTd3BW0dHR0dH511k/AxRz4iExy4yEE0xrdzJN8+aekgcysGvPTCc5OIbfsTv/rObQE8bH//4x3n55ZcJSipbe0codVj5zuqddIcSOK1vDSyPtQjHt9HGh92OPS+eVHizZ5ilDb78LM7uvgjfeWwnu/xRzEaBgUgqv25/0bwq9g1GUXKq5tAtCDSWOvItqrGqViyl8IdXOrEYDYAW0ptTVYoLRNbuC0zY9Ft5kuY+Pn4WaExkvtYRoiOYoOowomXlrAptcHwwhqpCmcvCTSuamFbuYlP38GEH8COSzObuYWZXeRiRZFJylkRGocJt4+Zzm3nzwDCvtgdRsjncNpF4WsFjNyNnVaq9uoO3jo6Ojo7Ou854sTLF58i3tI4Uh3Kk1175g99w9zc+zeDgIJt3tHH7Zm3ex2IyEE8rOMza/I5oFCaIgzEBM7b6PxbbASr7BmNsOxBGyanct76L+65YiNMqcu3ftmnO3iqoqoCSy6GiCY17NuynYyhBicOCzWzkogVVEwwvx2a5IpKM3WxkeFSYGQCP1YwqCMdluzAmMht8DrqCCUKJNEUOywTRsrYtQN9IMu+NFE9nGYynWGQvOuIA/thxm0dtDS6aW0VcVvKVvVuf0dqCHruZWz8+i4SsMKXYweoWv+7graOjo6Oj817wz2zOHfzaC5qfZNKkSbzeL9MfCeA0mxiIpXBbTcg5ldqiAq5fPhW3XTzEYdxp1dbxy1xWWgdjAKTlHEk5h9OircavbQtQ5bUznMhgGJ3nUVWVU+qLaCpzsWcgSs+wRGGBmWA8zSyvm1PrSw77ntx2kY/NrmRz1wixpIycU2koczCr0k1XKJEXHvGkwp1r2yZUtgBcFjHftjx3VjmzqjzMqnRPEC2FNjOCALnRSJVKjy0veo40gH/wAPy8urcsBFaP2ikUF1gISRkSspKvelV67e+qY/s7QRdLOjo6OjofWN7J5tx4sTM2f7Ro0SIA5hgliuxm9vYFMYgWylxWPr+oluVNpfmA2INNLas89rxQqisqwGwS2DcYwyYaSCk5PKND1U6riNsmjho5gttu5uyZ5QA88Ho3rYNxzEYDTquInFVZtan7iDM882sLWTG9lJbeKKFEmrSc46E3e7jy1HptYDypcM2DW4gk5Xxla2xWadWmbsKSjGdUMI61KcdEy0A4xVf/soWkrG3ZTSq2c95J5Yfcu/HCccxxfOWsClRBE2S9YYloUqQvkkRQocRpYSiWPmSO7J1uP76b6GJJR0dHR0dnlONx8M61raPnz79g4Vd/SSxtochpzguKw3ktaa2j0YFmkzBBsBw8s3TtGQ3c8uRuRIOAWTTisJh4uTXAM7sGkLOa83aB1YhdNPLi3gDTy1ycN6dywvWPnfPa5VN5epefu17qJBjPsLY1yFkzyjm5vog717YRScrYRVO+stVc6X7LlNMm0jYYZ18gNsFWAez8dl07KTmHMPquukJJ/vDqfp7aMcDMKhcjkkKZy8qpDcWsbwvSGYyzpz9KToXCAjO3rJzBw2/0srs/SiyVISIpZHI55tcUctnJNZxaX3LUAfgTgS6WdHR0dHT+7TiSKWVvWGJPfxQB2NMfnTDX0xOS+I9Vm3hl9SqUWIit99zM6d/8LXOqvKzZPcij23s5c1oZtUV22gNx7GYjg+EUsZTC/qCEySiwPygRTctvVawmF024rtMafZx7IEzrYIzGUifTylys7xgim1MxGkDJwWAkRdeQBAL84MndTPY58lWhg4XepCIHBgPkRl0phdHzzKsuxG42EU/JOKwm5lUXAlqrzGs38WTLAHIuxy+eb2WqzzmhajYYSeWvBcAggNdu5sCIhIrKSVUe1rYG2HJghOFEBrPJwHAig1000h1K8ONn9xKMZ8goWYYTGbKqSi4Hr7QPcdG8qvedUAJdLOno6Ojo/JtxuLy2sQ9oQdVEUiQp47aJCOPiRLf2jjAYV1h41X/z6s++SHJwP/KLd/Lcgsnc+vRelBw8vWOA//7YDPzhJNt7IuzoizCzws1Of5hYSsFpNdEZiB9x/sZtF7l2eeMEr6bJJU48dpFIUkY0gGgUSACiANHDVIW8dpGt3SM8vbOfWZVuZla68zYE08pcRCSZl1oDNPgK6BlJUuMt4KXWANPKXbjtIidVeXl21yBlLjuBeDrvQzV2/OkVHgCKCizMqHSzers2yyQaDWRVRjPrBMpdVvb0R8lktZsYS2cpLBBRsjmUXA6T0YBgEMjKKiajQDanEkikgEPbeScaXSzp6Ojo6PxbcXBe23hTyvZgHNDMEBNphfZgPN8ieyu6xMPJX/hvXv/1tTz35GPsTnsxzrsQAa3a8tSufrJZbV0/k8mxqz9KNqdS5rQSiKf5w/r97OqPHnHeaPxW21ilaNnUEoocVrZ2j7CjL4xh9Fzj89JcFhHRKPBya5BYSubXL7bjtYsUOsxUF9q4aF5V3lqgOyRR5rbRPZykzG2ZsB23eHIx1YX2Q1zGJ24XOvOD31sOjNA3kqTUaaHUaeXsGWXsHYiy5UAYAbCaBLJZFavZSF2hnanlLoYTGUakDHNrPGzvjRBJZqj02jm1vuSfCjN+r9DFko6Ojo7OvxUH57WNHyaeU+WlwmOjP5KiYtyGF0B1kX2c+/Zi7i6T+cGN19K75o+UuGuwT1mIyQAXzqnm9f1BdvZFkHM5XDaRMreNwWgK0WigpMBMeyB+TM+g8fNPA9EUH65w8fCbPaQVFYMBppa5+O65zTRXuvPmmEOxNGkli8NiIpvL4Y8kqS8pIDxqPZBIZylzWSlzWegMJrCLRloDMeZUe/OVrInv0zthZunqJVPyZpVr9gZwWkwkM1kMBgF/NElzpYsVM8pZMaOcl/cFuH1NKwORFHaLkTObfZwzo4JX2odQcirVhXa+frpmuDn+XEcy8zyR6GJJR0dHR+ffiiOJgWP92difj33tuq9+hSdf2sAbz/yN8JM/5cwfPciVZy3kjOZSBAE27h+h2mvDZDRwyYIaukYSPPxGLzv8UcrdVlyWQ20Gxj8+eNW+MxAnnlZwWU0k5CxnNJWwaHIRPSGJa/+2je5QAptoBFQEAayikWKHhUQmi8cu5h3MxzyO+iMphuJplKyKgNbSG6vgjH+fB19jIqMQiKe1ylw0iclgwGUVyaGycnZl/n3sGohSU2inptDOJ+ZWsbTRp23TRdP4nFo1qy+S5OT6IqqL7PSEJFZv72NKseOwGXsnEl0s6ejo6Oj823G0yJFjxZGMZ8Xnb+JARytNc0/m11/4CF6HhZ6QxO9e6aQ/kiIYT/PRmRXMqyuk1GNlQ3uIKT4HUiaLP5LM59XVFtm5dGHthMdXL5kyweupb0TiL5sPEEnKeO0iK5q1df2tvSOEpQxWk5FwUkE0grfAypdOm4TPYcVuNVHptk04tt1qoj+SIptTEY0C/nCKP6zv4POnTs4fc06VF5dNPKQlNr4yV+WxM6nYQfdwgukVLhbUaoPiY1Wx+mIHA9EUU3yO/DZdmcvC2tYgoPLszgGaylxEk/KEObIfnT/zfRGgO4YulnR0dHR0dN4BvWGJYDLLl/7nXoakLP5oCq/DwtbeEYZiaao9NoYSaWZWu/JCYYrPkXcUV2FCu2lr78gh7afpFe58C8ptd3PfFQt5Znc/DSVOKr2aoBtrHXYOJTAKUOW2k0jLvLBncEKm2sEhv9MrXHQFE6SVHEpO5cmWfjbvHwZVyOfmffX0hsNe01j1jRz88bUuUFUsJkP+3oxt1W05MML0Cmf+nG67yIoZ5bQOxqkrstMzIrGuLYCUzk6YI2sPxvOmlO8HdLGko6Ojo6PzDhhrk+3o1WaT4kmFZDJJ/9Z1lLtr6I+kqCnUhpbhUFdw0DLVNJsAB3OqvOz2R4/afqr02skoKk/tHMgPibtsIl89vYG2gSirW/oZTmQOm6k2XngB3LiiiVMmFfHkTj+bukbwOaz0jSS184zObYVi6QktMZdFZJc/QpXHzpRiB5fevZGwJGMVDRRYTbzRPUwio1DqsLKjN4o/kiSXUye0+KaVuZhZ5aY9ECcYT7N6mx+f00KR3cxA7NBZsfcDuljS0dHR0dE5AkdbYXfbRZY1+vjr5h4SaYWr//Q6sYf/i/bd27nz7j9T+aFl+Q/91dv7mFPlJZaSWdcWYGmDb7QyNOZ8JOCyHTue5WDTy70DUV4aF477swtPoj0YP+5MtV0DUZJyDpNBIJhIU+m1ks2SFy2LJxezYkY5vWEJl0XknvWdtA7GaSx14LKKJNIKZpNASs6RSCnc8Xwrg7EURkEgk81R6rQyGEvx+I4+Ll1YN7rpp73PdW0BVm/zU+3VKky1xQWIooEZ5W5cthPfehuPLpZ0dHR0dD5wvBs+Pcezwv5mzzBSRsEuGgmnFXK+abB7O/95zZfYsGED4M3P4nhsIsF4mnha4b71XXznnGYGoikaS50MRFPsHYjisJryUSBw6LUfPPStwgQTzfNOqjjuTLXxc0UAi+oLWdrgY9XGA+zsj+RFy5iVweudIda2BsnlVPyRFF88bVJ+cNxjFzltqo+/bj5ANqsykspgNZsIxNMYBNjYOUw0qeTvodsusqTBl6+kjR1nbrWXgWjqfbEBNx5dLOno6OjofKB4t3x6DhddcvAH+NIGH/et72JEkjEZBc668gYeDXbRu3Mj559/Prfcuzo/i3NgWCKlZHFaNIPJtmAsL3zKXFae2dlPz0iSYDxNscPCFJ/jkGs/uJXXNyId0UTzWJlq44VXU7mLSxfW0RuWGJYyzCh30RVKsHcgyqJ6zWVcq4GpjEW3lDqs/Ne5zXQG4pw1vQynVeTZXQN0hxK47Wbqi+00VbjoCmqCrDsksWcgitNqospjJ5qUKXVacVpNVHvtbD0QZiCaet9swI1HF0s6Ojo6Oh8ojkfkHA8HV3EO9wHeXPnW0LV/JE0io/C57/ycP3/rMrr2d3LXd6+h9MLv0x9LU+QwE00pSBkFt03bZhur/sRSCn/c0EWB2ciO0VmnI137eBG0ru3IJprHw7KpPlSgqeytIfQyl5W1rQFA4Jmd/Uwb/TOnxUSNt4BwMk2F284LewcYkRRqi+xUerXq1R2fnM3tL+xDzqqjAuytDb8yl4Vndw4wEE3htZvYdiDC/lCCbE6lxGlhZqWbT86rZl5d4ftiA248uljS0dHR0flAcTwi53g4uIpzpA/w5kp3Pptt7LmfbH6Mk08+mQ2vrOO8mlU0L/sCggDFDgsVXgun1pegjo4rTa/QXjuWKVfutiJlskzxOY557Ucz0TwaB1ffmspc+fd81owyWge1qtdANE1vWCKaFPn2ozvoGZHI5QAE9g4qnFJfmBd1YKd9KI7NZESWZRbUFlI9WtnrDUvEUwr3beiizGXVXL/D2jC5nFUJxdNs6hrWcurqCo/rPfxfooslHR0dHZ0PFMcrcsY41hD3wZWdIz1//HPdM2bw8zv/wBcv/zTPPvoQ8yevYOlJDQxLMqdOrpowlD3Wahu7ZpdFZF8gRiiWnrBFdjiOZaJ5OHb3Rfjzxi72+GNMr3AdUsFqGt1WGy8217UF6I+kcFtE+iJJHBYT0ZRMd0hiZpUbl0Xklid28ei2vnzA7uv7h/nTlYtYNLkoH98ytv3X4CsgJWfpGIqjApmsis9iomd0aH2s9fd+QRdLOjo6OjofOI41rzPG251vOt7nRySZfbZp1H3sWmpnnYxaUEjXqLA42F9pTKiMXXNPSOLXL7bRH0nxl80HJgT9jrFm9yCPbu/l/JOqOKO59JgiaUzgxZMK//GXLYTiGQQBhuJpPtJcdkgFa3qZC7NJ4KRKL+vaApQ6rJS7rfSFkxRYTAwn0syrKeTC+VU0lbnoDUu09EbyQgkgnVV5apefRZPHCx+tnOa0mvnKsin85sU2+sJJEpkc/nCSXI4Jrb/3C7pY0tHR0dH5t2J8Zag3LNEeiGM3G992XtvR5qF6wxJhSWb6GZ9gKJZmUbWbSxfVUuG24Y8kKXNZjjjMfLSgX9CE0pfufwMlB0/vGOB3l83njObSo77fMYE3nEgTljKYDFoQr9EgcNaMsrwwiUgyNz68nZdah1BVFYMgYBUNVHvt3HxuM7sGIjy4qYdALI3QHyaRLgO01ue0MicdQ3Gyo0PmogFOm+KbcE/Gb/+VuazUFNnpHpZwWYwk5Sy1hbZ86+/9tA1nOPZTdHR0dHR0PhiMCYdfv9jOXevaEVQIxtNs3D9MMJ7GZTl6NWNsHupYW1tVHs2tu8xl5cMNxXzjI9Po2voKy1es4O51rYDA5YvrDluZGosTGXPRPngO6dHtvSg57QNcyWmPj8Z4gWcyGLSQXRVEo0BjqZNKty3/3JdbA7ywZ5C0kiOTVUkpOZIZhdZAjBf3BigQTUSSMqLRwN6BOD9YvYu71rUTTcoUOSzMqHRRX2KnrtDO3Bovm7uHiUjyYe/dtDIX1y+fSm1RAWbRiLfAjMlk0LfhdHR0dHR0TiQHV4bag3GKHRZqC+0kMlmiafmorz/eeSi3XeTShbVvZayZZL70+SuJhEdwPHg7hstuxGk1HfH1K2dXIqiwvOnQFtv5J1Xx9I4BlByYDNrjozF+4H1mlZuvnd7Amr0BOodiAKza1J0XbW1DsXxlaAw5B6qq8uj2Pj48pQjRINAbTgFwYCTJax0hmitcDERTzK0ppHVQO25jqfOQNuPB985td3P3ZxewtXeEKcWO91Ue3Hh0saSjo6Oj82/DmHBoD8Tx2EWmFDsm5LUdT0XjeOahIpLMqk3dtAfivNw6xNdPb+Tue//ERZ9YyZbnHqa6oZmqC24+5DVvdA9zx/OtBOJpyt1WFk0qzMeLjAmIM5pL+d1l8yfMLB3reg8WKQ6biV+/2H5IO3FFczkPbDzASFxGNAk0+px0BhOAitlooD+SxmU3Qfit44cSaaYUOyiwGOkZkWgsdQACA9EUBWYjz+4cQFC1rcExe4LxpptjwcVj7VGAntGsvOMdWn+vEVRVVY/9NJ2jEY1GcbvdRCIRXC7Xib4cHR0dHZ2j0BOS+MWLrYQlmSk+B5curCWalt/VisYuf4SfP9/KQDTFUCzNhxuK+c6507njZz/h+9/9L0wmE2vWrOG0004D3moPvtYRoi0Qp8pjI5zMMKvKPSEM93iv72gbfhFJZu9AlGd29jMQTR9y7I0dIW5/YR8mg9YSG5Zk9vijGAwCSxuLmVrq5KZ/7GRMPHz33CYC8XR+9uv8kyppKHWytWeEW57YTTSlGWbed8VCKr127nhhXz4y5drlU3Hbxfz739sfQ87mCMbShFMy5W7rYQfc3y2O9/Nbryzp6Ojo6PxbEU3LJNJZqr1aayqalple8e4OE1d57HjsIjv6IvgcFsKj4uW7N9/E3t07ePDBB7nwwgt54403qKmpybcHG3wOuoIJQok0LptI30jqsOv9R+JYQmj8sHeh3cySqcVMKnSwri2Qr+I4bCYKCyyUuawMRFNcsbgOASaYV9rNJh7e2sOFc6qZXOrg1y+243NaWN8eontYYm61F6fNSDQlYx+dc1rbFmBuTSFr9g4hKzl6RpKcNaOck+uL6A1L7O2PsaM3TDiptULrigoOO+B+IvjADHivXbsWQRAO+7/Nmzcf8XVLly495Plf/vKX/w+vXEdHR0fn/5LjHdL+Z3DbRb5+eiMfbiim1G3Nt/gEQeDuu+9m9uzZDA0N8fGPfxxJkvLXlMhkOXdWOVd9aBJmo0D3sMTzuwfx2sVjXueYEPrlmjbWtgbx2sVxhpEaY6Ks0C6yoTPIXzb28OVVb/LDx3dxzYNb6AlJh9yfpjIXi+qLOLm+KC+6Vs6p5E9XnszKOZX553cMxQknM4Tiada2Bqh023DbRCRZcyxf2uAjkVaISBnCyQwRKUMireS/J6oKI0kZQYCsSr4VebxGm+8lH5jK0uLFi+nv75/wte985zusWbOG+fPnH/W1X/jCF/jhD3+Yf2y3n/j+qI6Ojo7Oe8PbNa0c4+3O0VQX2fnOudMPOY/dbufRRx9l/vz5LFq0CJPJhN088ZrWtQUIJxWqPDZCiTSzqjzHvM4xIVRXZMcfSeYHuseLrDFhs6M3Qi4HQ7EUI5KMw2ykd0R7fytPqnxb92fsfj6ytYcDoSSaNblAbbGD+65YyNq2AEsbfDRXuomlFTx2Mxkli8loYCiWJiJpxpufmFfJm93DKLkcVtHIpxdWccbUMtZ3BCkJWJhfe+JiUD4wYslsNlNWVpZ/LMsyjz32GNdccw2CIBz1tXa7fcJrdXR0dHQ+2ByvaeUYPSGJax7cQn8k9bbmaI50ntraWlpaWigvLz/sc8fsA/ojKaoL7Zw6ufioc0gwcettaaOPs2aUjct8e+scVy+Zwt6BKKs2dvNqexCjARKZLKLJwJRixzHPc+R7lMRsElByKqfUe/PnHp9VN63MxenTfGw5MMxwIsPq7X10hRJcvWQKSxt9rJxdzi5/jOkVTs4/qYobH2mhI5hANAicO6ucG1c0nRDB9IERSwezevVqQqEQn/vc54753FWrVnH//fdTVlbGeeedx3e+852jVpfS6TTpdDr/OBqNvivXrKOjo6Pz/uRYRpHvhPFCSZZltm3bxoIFCwCtKvWj82fmqzIum3hM5/C3Y2uwqL6ICrcNKbOTLQfC2M1GagsLiKYVVq9rz28LXjS3msF46pjVtDHDyQ9NKaYrJLF8WtmEjbfx575oXhUv7h1kMJomKWuW3+vaAixp8HHjimY2dw8TiqV5vWsYfySJUYBMNscuf/SEmVV+YMXS3XffzVlnnUVV1dH9Jy655BJqa2upqKigpaWFG2+8kX379vH3v//9iK+59dZb+cEPfvBuX7KOjo6OzvuU8ZUen8OC3WzKt4/eCeOrN8Zcmo9//OO8+uqrrFu3joULFxKRZFa3+LUB9KTC0qm+43IOfzsVs+oiO9/76IwJm4EC0B6IMxhJsa1nhDV7AohGgQqP7ZBq2vi25PiqVmOpk1fah+gZSeIZnd0a/7r2YJyknMVpMRFNZugbSbJ6m5/d/igrZ1Xko16K7GaKHBZ6R5KYjQamV7hOmFnl+14sfetb3+K222476nP27NnDtGnT8o97e3t59tln+dvf/nbM43/xi1/M//fMmTMpLy/njDPOoKOjg8mTJx/2NTfddBPXX399/nE0GqW6uvqY59LR0dHR+ddkLLB2Q0eQ7b0jPPJmL290Db+tdf4xDs6X++KHJmG1WkmlUqxcuZLNmzcTNbomiCMB8mJk/FD6O22ZjX9f4+eqgPwWn000MhhNU+m15atpLptIb1hCUOHGR1rwR5JUuG3ceem8fFUrllL4wyudDEZS7OiLAPCdc6fnr29OlZcKjw1/OEmZ20aV157fTHx21wA9wxLFBRZCUoYvnzYZm9lIiVOfWToqN9xwA1dcccVRn1NfXz/h8b333ktRURErV6582+dbtGgRAO3t7UcUSxaLBYvF8raPraOjo6Pzr0t1kZ0ZaTdrW4eOWeE5Gge7iPfH0jzwwAN86EMfoqWlhfPOO48nn3sJr93ElgMjTK9wMq3MxbTRwFqXRRMs0aTIqk3dxx0CfCQOrkZ9/fRGAPrDKdJKjkRaocJjY0qxIy/ypHSW9qEYJoOBjmCcDR1BPrWwhmhSZEdvBFQVfyRJqdOat00YO8eY8Bxz7R6roJW5rPSFJZSsSk9YYnKx47AO5ieC971YKikpoaSk5Lifr6oq9957L5/97GcRxbf/Q7Nt2zZgYi9ZR0dHR0cHJg5Rv1PbgcMdw2kXWb16NQsXLmT79u1cecVnET/yn/TH0uRyKtGkPCoa7HnBUmAxEpbkfFXmWMLtSNt8B399fLVJULW22ZwqL9G0nBc1LX1hjIIBJac5exc5LfkheH84STanYjIaSGQ0P6uD79PYeQAqvfZ8ReqPG7o4s7mUtkCca85omODsfSJjUN73Yunt8uKLL7J//34+//nPH/JnfX19nHHGGfzpT39i4cKFdHR08MADD3DOOedQVFRES0sL1113HaeddhqzZs06AVevo6Ojo/N+5p3aDhztGKA5fleVVPDYY4+xdOlSnnv6CcrjdmZ/4j8IxNP5gfLxVameEQmPXTwuv6iekMQX73+DvpEklV4bP7vwJFQBBBW+/eiOQ7b8xseSLGnw5V22x0TerEoPk4rstAUSTK9wsqC2kHVtAfzhJKJBICzJLKj1giBw1owy3HaR3X2RCTYC4++H2+6ecPxTJhexoLbwkJblO62e/bN84MTS3XffzeLFiyfMMI0hyzL79u1DkjSDLrPZzAsvvMAdd9xBIpGgurqaCy64gJtvvvmQ1+ro6Ojo6MDbtx042jEOFQPzuOeee7j00ksZ2vwE/ad8nNqaqrwx4/iq1NuJanl+7wBtg3FUVaVtMMZ/P7ULt82CnM3iDycpLrBM2PI7kkg5WOSNF41Tih0ADMUzmAwCqgCzqtw0lbnY3Rfhivs2EUnK3Le+Kx99MjFU91AhurEzxI7eCHVFx1c9e6/4wImlBx544Ih/VldXx/govOrqatatW/d/cVk6Ojo6OjqHcPD8Um9Y4pJLLmFoaIja6Qvwm0pY2uDLt6zeaWXLoI4FlqA5ZSdkppa66QzG8djNhKTMBLfsw13XWKVp/HnHCxdVgKZyFwIgZ1U+tbA6X5VatSlAJPlW9MmzuwZIZ3OHiLHxQjQiyTyzsx9/JIU/kmRpo++EbcN9YOJOdHR0dHR0/tU4UvTKFV/4CntlLzt6o6xu8RNOZPKvcdvFfJbdLn+EiCQf8zxnNJXSWOrEYTUxxedgTo2HgWiKpnIXd3xyNv91btMEa4CDr8tl0Xyefv58K7c8uYuekHTIOVwWkRKnBZPRwMwqd14oASxt8E2IPqn3OdjTH0XKKOzpj06IZBlD825Kc0p9IRVuW76ddyL4wFWWdHR0dHR0/hUYG1w+XCttfGXn9Q0bePDmy3nh2acoLi7Ov/ZYszzjB6Ori+z87rL5+UHuMQuAsXOOnyGCQytYvWGJ9kCcgejh7QAiksyqTd2EJRmPXeTShbXA6CyWx05zpZv7rljIo9v6sIoGhuMZdvkjxFKaeBJUDrn2eErJ59s1lv7/9u48Lqp6/QP4ZwaGYYbZ2PdFhBR3BVGsrmuReg27ZVlWkN0sc8nMUu/PXDKXrpZrV7tZkoZpddPMNVxQc8UFQ0EURQFZZZkBZoYZZs7vD5oTAzPDoMAM9rxfr3nlnDnLc44Sz3yX5ytGhI+k1f8OrEXJEiGEENLOGic7E6KDkVmkAAf1S4IYWnZyShQ4lbgEpfk5iIuLw6FDhyAQCEx2kzXsEjOVTDWcgQagRWN/AmRCtv6Sl4jfpByAIZ5A1/rWqAK5qklZA7EzD6duleFWaQ0YhgHDMPCROEOl1SH7XjWbsMmVWqw+dB0ZhQpUKDXgOXBRW6drnQd/nyhZIoQQ8pfQ0oVw21LDZCe7pBorfr2Gy3ly1On1GPKIFz54qivbsjOxx07EDh+MU6dOIT4+Htu3b2eTKcOyJBI+z+z5zSVTlsY9mUq2DPWXDNW+A2R/TuuX8HlG5RAYoMn1b5ZWo6BS9ceYJj0cuFxU1dYhyE3IjpUCgPN3ynEwowhanR4VNRq4uTjh9K06XCtSYECoe5v8fTSHkiVCCCEPvftdCLetNJzVJhPykFNajQqlBlqdHinXS/B0Hz8MCHWvnzEn64ZVX27FmxOexQ8//IDg4GCsWLECE6KD2aVKks7dMeqKs5RMGVpurhdX4RFvMWaMeIQtDdCw2y2zsL6lyzCmqLuftEm1708OZOL3vEoEuAkxfVg4GA7Yzwz35yNxRpW6DmEeIniK+LheXA0GgIsTF/98LBRjevmxfxdypRY/p91FpVILMPWD0TkcAOCgUU9du6JkiRBCyEOvLRbCfRANxwRJ+Dys+PUaMouqwXPgwpHLZRMDtoWn1g/PzPgY36+YjZUrVyIkJARDnnkZNbU6o6KUChUPW8/k4GZJDZ7o5o171bVNkqnj10uwN70APC4HBXIVnurhAz+pAGuOXEdpVS08xXyM7O6LzEIF5Cqt0ZiihrPVDmcW45ffC6HS1OFacRUA4JNne0Oh0uJSfgWe7uWHqto6HLhSiG9O3UawuxBP9/bHxmPZkAl4UOv0CHATGP095FcqodToEOImRKFCDW8pH15iPrr5SmjMEiGEENKWGi6E23CKvC01TDzef7K+NmCxQm2UGDTsTkOv4Zj2wTys+/fHmD59On7u3AXB7v5s1xeHAV79+ixy/pipdvR6KfoGyNArUGaUTK0+fANl1Ro4cDnwlvBRXVuHNUeu49j1UjAMwOUAueVK6BnAU8SHQqXF2dvlTQaBl1bVQlunr2/9AZBfocKF2+VYe/QG+5ynDgtHkaKW7Y57LjIAnb1EKJSr4f/HEiqGQeBSIQ8BMiHCvOrrNXXzl2Bcv0AUV6vRN8DVZjPhAEqWCCGE/AU0XI/MHsYsNRboLsTiuJ5NxhE1XhrlrfkfQlVeBLlcjhFDHsPjegf2mGM3SlAgV7Hn1DNApVpjVJbg2I0SVKm1kDg7olpTh1BPF7jwHVGp1ELqzENeRf0gbR6XC2dHLgoq1QCATcdvopuPBH4yAfsMH+3sgVBPIW6VKuHkyEWvAClKatRGLXj5fyzLkldRX0QzKtjN5Lpwpgpfchjg61M5qFRqkVGgsFn1boCSJUIIIX8RjWeD2RtTlcFNFaHcsGEDuFwuqtQ6Nqk4dqME3iJneLrwkS+vT3A4ACZEB2NAZ3f22L4BrvCTCVBQqUIniQizYyPg71rfmqPV6cHlcuAnFcBP5oxbpdXQ/xHHXXkt3t1xCTIXJ5TVaNhxX1+83B8nb96Dp5iPqGA3KFRabJfmoVCuhpeIj+slCqNyAobCk4HuQlwtkLOtZun5cnx26BpeiAz6owVLiMV7r+LEjXvwEtUvXG+r6t0AJUuEEEKIXWk8U61xEuXo6MiOZcq4W4mjP34Nj36x8PH2grOTA5wdOdDUMRDyOdj9ewGe6PZnMUdzLWwNx08parVIz5fj14xiOHKAOgZw5AKK2jrUaHXwlwpwt1KFX9LvYkJ0CMZHB7GxSYU8rBvfD4euFaNQrkRWUTVCPUQoUqhxV64yqidlaDVLz5fjUm4FUm+XY3daITZOiIRI4Ih7VRqI+Y4orlKji6/YZtW7AUqWCCGEELth7cKxhrFMF3/8HPkHkyDPPAnNhKVw5Avg7uKEAnktpM58k4PZTbWwNU7IOAwgE/BQpdJCp2PgAMBPJoAjl4PS6lpwAJy7VQGFqs5kjD+n3UVB5Z9dgqEeLjh4pYjtEpw8OAwAMKSLF0qqaqHR6cHl1Jcl+PfBa1gc1wOVKg0Uai1kQidMHNTJpmOWaLkTQgghpJ3IlVqLS5SYXpOtKUOrTOfH/g4HgRhVuZko2bkMviJH1OoYCHhcqHW6+xrMLldqsfv3AkidHSER8DC8qye6+ksxJ7Yrvng5Cq89GoJuvlL4y+q7z64VKYyON8w89HCp7z4bEOqGp3r4okihZu/rWpECG45lY9OJW7iaLwfAgeaPupPZJVU4llUKDxEfA0PdEeQmBMNp0S20OmpZIoQQQtqBpVYjc8UdzXU9GcYyjenth/G9fsJrLzyNe9fOQXD6v5j3fyvhKxGys8haOk7LkLB18ZWgXFUHlVaPmFB3RIa4QSrkYUJ0CEoVGvyaUQSlRoekM7kQ8x2Rfa8afQNcjWYe+skEGNPTHxIBz6juU1VtHe6UKSF0ckClWotHfETIKKgCA0Cu1mH7+Vw8GuaBigYFMG2JkiVCCCGkHZirqm1q6ZPGa8WZYug66/70CNR9sw2vTRiHXf/7HsEBvli1ahU4nPtrjmk4A2/IIx54qocvuvpIjGIROTuiWKGGTg/su1KAy/mVUNfp2IHfhnFR3iJnnLx5DxyGgZjPA4/LRaVSi5M37sFHwkdehQq+Umc4cDlwduSitk5fPz5KXYdeATL0DJA2+xzaAyVLhBBCSDtoXAbA0FrSOIlS1GrR3c/6WV95ZUp8X+QOv6dnIu+nf2PNmjXw9vbG3Llz7ytOUzPwDAyJ3a8ZxajTo34AuB64V12LYDchO0bq6d7+AIC3ky7gRkk1NLr6JMiZ54jYbj4oUqiRMCgEImdHSPi8+rXkzuTiSFYxdHoGATIBHu3sYTezFylZIoQQQtqBuSTEXBJlrVM37+FGSRUcw/8G12EVqDy2GVKvgAeO1dQ0fUNi18NXgvxyJfQMA5nAEd5iZ5QpNUZjpC7lV6BArgIDBvo/li2p1epw+W4lHu3sbtRaFeguRFcfCeLu+KG0qtauEiWAkiVCCCGk3VhbS6kl3MV8cDgc6MFA2j8O3j1iEBA1zOz+zS2ia0nDxO7p3r7wlwkR290HYmce9vx+FxUqDarU9YPX+wa4wk8qwI2SanA5DMDUd9+J+Y6orwJl7G6FElnFCgwJ9zJaK+5+Y21NlCwRQgghNiYV8qBQ8XDsRkmLB2X3D3bDExHeSM4sBsMAYZ3D2Nad3Nxc3Lx5E0OHDgVgfWmChhonLKYSu4y7cmw+dRtylRa7LhUgMSEa3fyl+M+ESHbM0l25Gr/ny9HJwwVFCrVRkcmMu3IkJJ6DXKVF4snbSEyIhtiZxy4UHOYlogrehBBCyF9ZXpkS07ZfZNdUWze+X5OEKeOuHCk3SjAk3MtonTapkIfFY3sirq8/Sqtq0ctfCkWtFlev38KoJ4aitLQUBw4cgEfn3thxIRfZxTV4xFtsNMjcnIbJlY+Ezw72bjymKuVGCeQqLYQ8R8hVWhy8WgSGU98SZSha2ThRa9jdeCCjEBVKLVx4DpCrtDiQUYiCSjVV8CaEEEJIPUNtIsOaao0LSZpqeWmcMA2P8DZKSPwljojo1gO5B/Zh5KjRCH55Cercw+DIre8CM8w0s8QwRslVyEPK9Xu4XlyNngHSJq08Q8K98PVvOais0YLP4yKrSIHrJdVGrVeGVqlrRQowDa4hV2pRUFELDqe+SribixPCPcTIKKiCp5iPkqpam1fwpqKUhBBCiA00LFBpqE3UeJC0QeOWm5QbJSbP2XBm3V1FHZZ+/jWGDRsGZU01sr75Fzhld1CnZxDm7WJVt1bDMUo6vR4SZ0dkl1Q3KZbp7ypE/2B3ODhwoNUxOHWzDC5ODkaFNTPuyvHVyZv48UIevjl1GxuOZbNdfDWaOozs5oswLxEWjO6Gv3XxQpiXCD4SZzwe7oF3hj1CY5YIIYSQvxJTY4dMrdlmMCTcC4kn68cESQU8DAn3MnnexjPrOvu44eeff8bjQ0cg7fxZ3Nw6BxH//AwvRD6Ka4UK7LtagFHd/TCgs7vJ8xlag/ZdKcB/jmYj9U4FfCX1BScbjlnKr1SiQKECl8OBA5cDjU6PGyXViPljEV9Dy1iFUgMOOBjZw4dNpBrGPKyrF/7WxeuBB723NkqWCCGEkHZmqkBldz+p2YHd3fylSEyINjlmqSHTSQYPKYcO4tG/DcHV39NQvGMeMuN648OjpVBp9fghNR+bE6LNJkwKlRabT95GsaIWzjwHlCs12PxbDs7fLmdbpyR8HvwkAuSUVqNOD4R6iDBteDj6B9dX/U4692fLWHVtHTKLqjCsq5fFQePmyhfYAiVLhBBCSDu7n9pK3fylZpOkhkyWJ5BKcezIIQwZMgR6Bth3vRwqrR5ODhyotHrsu1pgNlm6lF+BCqUGYmdHKNR14Dty2djru9iESDp3B1q9Ho929kT/UFc80dXHKPFr2DLm6sLDtKFh6OwpMpr9Zy+JkSmULBFCCCHtzBbdTO7u7vjfz/uwNTUfGff04HIqoflj0d1R3f3MHtc3wBX+MgHuVqoQ7CZEn0ApKpRa+EicUaWuw7UiBe6UKRHoKkSRQo0BndybtJA1bhkTO/Oanf1nTyhZIoQQQmygNbqZWlq0UessQaHaEbV6NcQCR2iupeCdF0ZDJHCEXKk1eY5Ad6HReCqJgIdrRQocuFKIb07dho+EDx+JM4oUaoutZA1bxnZfvmtx9p+9oWSJEEII6YDup8BkgEwImZCH9LtyOOScQeZ3yzHr4Nf4+9yN6N29q8lzyJVaKGq1GBzuxX4mcnZEkaKWTZLiB4VA7OxoddLWN8AVXiI+CuQq+EkFTWb/2RtKlgghhJAOyNQg8eZaqqRCHt4Z9ggAoFA0AHcOd0ZZ3k3sWfomMHcD8nv7GZ3DXFHKAJkQPhI+rhdX4RFvESIarPNmDYmAh54BUnC5HHT3k0AisO1st+ZQnSVCCCGkAzIMEs+rUMKF7wAJ37qEI9BdiA9Hd8e/notB8q+H4B0cjuqKUuxd9haUxbmQK7U4klGM7al3kHqnHHfKlGD0DHalFWDpvkxsOJYNhUqLP9d3q/9vw7pRzcmvVKJCqUW/IFdU/NGVaM+oZYkQQgjpgKRCHiZEB7PrpyWdu2P1+mnseCk/KU4eS8GokU/ieuZVjHpyOJ6evR7na6TQ6hiEuAkR5CbAoWslqNMDKo0CIr4jLvlVoEihxiPeYhQp1MgsUiAlq8TqLsH7mQ1oS9SyRAghhHRQilotamp1CHQVGlXLbonOwX44eTwF/fr1w717pdjy4UTUlJfAgQMUVanB4dS3HPEdOKitY1Cn16NvgCuC3YXsoG4OYNQlmFmksNjKZJgNOHVYmNlxUta2UrWHDpMsLVmyBIMGDYJQKIRMJjO5T25uLkaPHg2hUAgvLy+8//77qKurs3je8vJyTJgwARKJBDKZDK+//jqqq6vb4A4IIYSQ1mVooWluJpopDRMSDw8PHDlyBIMeexzRo8bDxc0LOgbwkwnwXGQg3FycoGcYiJwdMOnxzgj8o/XIkOx09ZGwXYI8Bw5+SSvA+iPZ7JImpkiFPHT3k5pMlDYcy2aPz7grx+7Ld5FXZruuug7TDafRaDBu3DjExMTgq6++avK5TqfD6NGj4ePjg1OnTqGwsBCvvvoqeDweli5dava8EyZMQGFhIZKTk6HVavHaa69h0qRJ2LZtW1veDiGEEPLADC00F26Xo6RGjbsVSuRXotlZaSZn0kmlOHIoGao6Di7eqUBJjRoxIe4I9hRhHb8fPjuUBUcuF6l3yhEV4tak9IGhSzCvXIn0KjkGhbqzrV0KFa/JUi7myh40HLieWajAkWv11b9tWY+pwyRLixYtAgAkJiaa/PzXX39FRkYGDh06BG9vb/Tp0weLFy/G7NmzsXDhQjg5OTU5JjMzEwcOHEBqaiqioqIAAOvWrcOoUaOwcuVK+PmZL9JFCCGEtIW8MqXZNeJMUai0WHv0Bu5WqsAB0M1Xiq6+YovjhszNpOPz+eDzgWHdvKFSqTBq1CiMHz8ej40ZDzcXvsWZd4Yuwc6eIpRUaXC7TImeAVJwGDQpQCkR8LDhWDayS6oh+2OGnuFeG45n4jlwUKnUwMOFb9N6TB2mG645p0+fRs+ePeHt7c1ui42NhUKhwNWrV80eI5PJ2EQJAEaMGAEul4uzZ8+avVZtbS0UCoXRixBCCHlQeWVKTNt+EUv2ZmLa9otWdT1dyq9AoVwNsZMj5CotGDDNjl+ypvtuy5YtSElJwVtvvYWtn69EkJvA4v6Gc1YotRjyiAemDw/H5MFhyL5X3aQAZX6lEtkl1SiWq3Hixj2sOXKd7a5rOJ5p5ogu8JMJUKbUwFfqbLN6TB2mZak5RUVFRokSAPZ9UVGR2WO8vIxXbnZ0dISbm5vZYwBg2bJlbEsXIYQQ0loMiU9LKlsbCjzmVyohceaBA06z45esWW5l0qRJyMvLw5IlS/DJ0o/x0su5eP/jT9HJs+k4I0vn7BvgCl+pM9uyFOYhQpW6DkInB5RU18JTzEflH11yjVur/F2Nq4fbqsq3TZOlOXPm4JNPPrG4T2ZmJrp27dpOEVln7ty5mDlzJvteoVAgMDDQhhERQgh5GDROLKxpSakv8CgBl8tBuJcLxkUFoasVRSKbW26Fw+Hg448/RmBgIN5++21s+3YLSosL8dWW75Bfabpat6lzNlwuJcxDhN2/F+BOmRKuQh4GdHKDUqNDmJeITe5Mjad6urd/s8+hLdk0WXrvvfeQkJBgcZ/Q0FCrzuXj44Nz584ZbSsuLmY/M3dMSUmJ0ba6ujqUl5ebPQbAH326fKviIoQQQqzVeB02a1pS6gs81qFfkCuKFGqInB1bdWHeN998EwEBAXjhhReQnJyM6EGPYsSMVegeHmJ1XadAdyEC3YW4WiBnx0qZWyblfiqTtzWbJkuenp7w9PRslXPFxMRgyZIlKCkpYbvWkpOTIZFI0K1bN7PHVFZW4sKFC4iMjAQAHDlyBHq9HgMGDGiVuAghhJCWMCQW1mqPAo+jR4/GsWPHEDtyFCpKiyDj6e8rkWkcq6llUuyxYCWHYRjG1kFYIzc3F+Xl5di9ezdWrFiBEydOAADCwsIgEomg0+nQp08f+Pn54d///jeKiorwyiuv4J///CdbOuDcuXN49dVXcfjwYfj71zfpjRw5EsXFxdi4cSNbOiAqKqpFpQMUCgWkUinkcjkkEknr3zwhhBBiQeNp+Ib3HAbIvlfdauN9fs+8gY0HLoDxDLd68d7G8QGwOFbK1P20FWt/f3eYZCkhIQHffPNNk+1Hjx7FkCFDAAB37tzB5MmTkZKSAhcXF8THx2P58uVwdKxvQEtJScHQoUORk5ODkJAQAPVFKadOnYpffvkFXC4Xzz77LNauXQuRSGR1bJQsEUIIsReGMT+ZhQpkFtbP1vaTCVqtRlHDROZkSjJOnz6NRYsWgcs1PcHe1BikuxVKpNwowZBwL3Tzt10X20OXLNkzSpYIIYTYi6sFcqw/kg2lpg5nbpXBXyZAjUaH/xsd0exA6Za06JSWliIsLAwKhQJxcXFYtvoL3JDXNWnFMsTj4uSAGyXViOvjh43HbkKu0kIq4CExIdpmCZO1v78fmjpLhBBCCPlzzA8ASAU8VNfWWTWzrvEyI82ty+bp6YlPVq6CE5+Pn3/+GQMGDcKH3yQ3qQ8VIBPCVeiI5Ixi3CipwhfHbqGiRgMhr74uVMqNEgtXsQ8PTZ0lQgghhBjXO2rJmKWWzkKTK7WoDIjB6Dlf4OCaWagqvIWr/5kC5TMzcemxTuz1pEIeege44uDVYvhIhCitqYWzkyOU2jpIBTwMCfcyew17QckSIYQQ0o7aY/Byw3pH1nZxtWQWWl6ZEr+k30VmoQK9+0XBYd5mHPrPPFTeuozs7R9jp+ge/v7F5+ByucgrU0Kp0cFbwkdZjRZBbkJMGxqOrBKFzccsWYuSpXai1+uh0WhsHQYhfxk8Hg8ODg62DoMQIyYXsG3D2V4tYU1Vb+DPJVkKKlXstshunfHhkcNY/NFC/Pj1erjwHdhEybAunLvQCW8O7ownunoj0F2I4d28TZ7fHlGy1A40Gg1ycnKg1+ttHQohfykymQw+Pj7gcDi2DoUQAPZZcLGh5qp6A38uyeLhwse9mloMCHXDmJ7+UNRqsWndZ3j75X9g0KBB7L75pRXwkklRptTAQ+RksyVLHgQlS22MYRgUFhbCwcEBgYGBZqdWEkJaD8MwUCqVbIV+X19fG0dESD17LLjYUg2XZPGTCTAk3AtJ5+40aC17DHx+fatUL18Jcr6dhxwXdwx4+X2Lg8zbq7bS/aBkqY3V1dVBqVTCz88PQmHH+6EgpKMSCAQAwFb1py45Yg+s7eqyZ42XZFHUas22luVfvwz57avQ6XRIW30dNyK3IHDYsCbntOfuSYBKB7Q5nU4HAHBycrJxJIT89Ri+oGi1lqdAE9KepEIeuvtJ7SoZaKlAdyGe7u2PwD9ax4LdhShSqJu0lj322GM4efIkwsLCUFhwF8OHD8f06dNRVVVldD5T3ZP2hJKldkJjJghpf/RzR0jbM7SWTR0WZrJFaMCAAUhLS8Nbb70FAFi3bh26d++OvXv3svtYSrjsAVXwbgWWKoCq1Wrk5OSgU6dOcHZ2tlGEhPw10c8fIfYlOTkZb775JnJychAZGYlz586xY3ltMWaJKngTuxMSEoLVq1dbvX9KSgo4HA4qKyvbLCZzEhMTIZPJ2v26hBDSkcmVWlwtkJut/v3EE08gPT0ds2bNwqZNm9hESa1Ww8WJY7fdk5QskSY4HI7F18KFC+/rvKmpqZg0aZLV+w8aNAiFhYWQSu1nWq0lLU0GCSGko2guCTLsY81yKS4uLlixYgX69OnDblu0aBH69OmDw4cPt3borYJmw5EmCgsL2T/v2LED8+fPR1ZWFrtNJBKxf2YYBjqdDo6Ozf9T8vT0bFEcTk5O8PHxadExhBBCWpe1M9WuFSmQni9HyB+lEaytIaVWq7FlyxYUFBRgxIgRGDt2LJYtW4auXbu2xe3cF2pZIk34+PiwL6lUCg6Hw76/du0axGIx9u/fj8jISPD5fPz222+4efMm4uLi4O3tDZFIhP79++PQoUNG523c8sLhcLBp0yY888wzEAqFCA8Px+7du9nPG3fDGbrGDh48iIiICIhEIjz11FNGyV1dXR2mT58OmUwGd3d3zJ49G/Hx8Rg7dqzFe05MTERQUBCEQiGeeeYZlJWVGX3e3P0NGTIEd+7cwbvvvsu2wAFAWVkZXnzxRfj7+0MoFKJnz5747rvvWvLXQQghNmXNTDW5UosDVwpRIFfj1K0y+EicwWGA3ZfvGi2qa4qzszPS09Mxbdo0ODg4YNeuXejevTvGPv8SLmdcb6vbahFKlsh9mTNnDpYvX47MzEz06tUL1dXVGDVqFA4fPoxLly7hqaeewpgxY5Cbm2vxPIsWLcLzzz+P33//HaNGjcKECRNQXl5udn+lUomVK1di69atOH78OHJzczFr1iz2808++QRJSUnYvHkzTp48CYVCgV27dlmM4ezZs3j99dcxdepUpKWlYejQofj444+N9mnu/n766ScEBATgo48+QmFhIZvAqdVqREZGYu/evbhy5QomTZqEV155BefOnbMYEyGEPIi8MqVViYo1rJmpll+pRJGiFjGhbvCTCtA3SIZ/7UrHkr2ZmLb9YrNxuLm5Ye3atbh8+TJG/X0M9Ho9fv7hO0T27o7NW5Ie+B4eGEMemFwuZwAwcrm8yWcqlYrJyMhgVCrVA1+nskbDXLlbyVTWaB74XNbavHkzI5VK2fdHjx5lADC7du1q9tju3bsz69atY98HBwczq1atYt8DYObNm8e+r66uZgAw+/fvN7pWRUUFGwsAJjs7mz3m888/Z7y9vdn33t7ezIoVK9j3dXV1TFBQEBMXF2c2zhdffJEZNWqU0bYXXnjB6L7v5/7MGT16NPPee+81ux95cK3580dIR5F7r4aJW3+CiV6SzMStP8Hk3qt54HM29/unskbDLNuXwby19TyzbF8G893ZO0z0kmRm5KpjTPSSZObntHyrr3XlbiXzzMJEJrRPDOPA4zNHLmQ+cPzmWPr93RCNWeog7K26aVRUlNH76upqLFy4EHv37kVhYSHq6uqgUqmabVnq1asX+2cXFxdIJBJ2iQpThEIhOnfuzL739fVl95fL5SguLkZ0dDT7uYODAyIjIy2uy5eZmYlnnnnGaFtMTAwOHDjwwPen0+mwdOlSfP/997h79y40Gg1qa2upmjsh5L5YM73esHabu9AJhXI1LuVXmFyPraVT9avVdcgsUiDCR9Jk/8aVyRUqLban5qJQroav1NniMieNBciEiI6OhnfnHhBry9Gva+fmD2pjlCx1EPa2+KKLi4vR+1mzZiE5ORkrV65EWFgYBAIBnnvuOWg0Govn4fGMf+A4HI7FxMbU/kw7lAq73/tbsWIF1qxZg9WrV6Nnz55wcXHBjBkzmj2OEEIas/ZLc8O128wlKi35Ai5XarH60HWkXC8BwMGQRzwwY0QXkwmT4feSVMgzWhKlJYvn2uOSMJQsdRD2vvjiyZMnkZCQwLbQVFdX4/bt2+0ag1Qqhbe3N1JTU/G3v/0NQH3LzsWLF42mqDYWERGBs2fPGm07c+aM0Xtr7s/JyYld3qbhcXFxcXj55ZcBAHq9HtevX0e3bt3u5xYJIX9h1n5pbrx2m6lEpSVfwPMrlbheXAW9vv6L6fXiaqu+sAe6C61OkvLKlEbxNky87AElSx2EPWbaDYWHh+Onn37CmDFjwOFw8OGHH1psIWor06ZNw7JlyxAWFoauXbti3bp1qKiosLjsxfTp0/Hoo49i5cqViIuLw8GDB4264ADr7i8kJATHjx/H+PHjwefz4eHhgfDwcPz44484deoUXF1d8dlnn6G4uJiSJUJIi7XkS3NziUpLzhUgE+IRbzEK5CoAHDziLWrVL+x5ZUpM236RbQlbN75fi1qi2gMlSx2IvWXaDX322WeYOHEiBg0aBA8PD8yePRsKhaLd45g9ezaKiorw6quvwsHBAZMmTUJsbKzFFecHDhyIL7/8EgsWLMD8+fMxYsQIzJs3D4sXL2b3seb+PvroI7z55pvo3LkzamtrwTAM5s2bh1u3biE2NhZCoRCTJk3C2LFjIZfL2+wZEEIeTq35pbkl55IKeZj4aCd09RHDXcxH/2C3Vv3CbmqMlUTAs6vGAVobrhXQ2nD2S6/XIyIiAs8//7xR8kP+Gujnj5AH19YTjPLKlHg76QIK5Cr4SQX45Nle2P17QbtMaLJ2bThqWSIPlTt37uDXX3/F4MGDUVtbi/Xr1yMnJwcvvfSSrUMjhJAOqa0nGEkEPPQMkIDL5aC7nxhVtXV2NaEJoKKU5CHD5XKRmJiI/v3749FHH0V6ejoOHTqEiIgIW4dGCCEdkjVFKR9EfqUSFco69AtyRYWyDgzQpte7H9SyRB4qgYGBOHnypK3DIISQh0ZbTzBqPNg8wkeCCB+JXY1ZomSJEEIIIRa15QQjc8mYVCiFXKnF1QK5zZMmSpYIIYQQYlOmkjF7WrmCxiwRQgghxO6YGlhuK5QsEUIIIR1cXpkSuy/fRV6Z7RKK1tbWA8tbgrrhCCGEkA6svStgt3QB3vtlTytXdJiWpSVLlmDQoEEQCoWQyWRNPr98+TJefPFFBAYGQiAQICIiAmvWrGn2vCEhIeBwOEav5cuXt8EdkPsREhKC1atX2zqMB5KQkICxY8c2u98rr7yCpUuXWn3elJQUcDgcVFZWWn3MwoULLa6T15Fs3LgRY8aMsXUYhNicqQrYbcUwjmj9kWxsOJYNuVLbZtcC6hOm7n5Sm8+I6zDJkkajwbhx4zB58mSTn1+4cAFeXl749ttvcfXqVfzf//0f5s6di/Xr1zd77o8++giFhYXsa9q0aa0dfofSOHls/Fq4cGG7xZKamopJkyZZvf/9JBD24PLly9i3bx+mT59u61DaREpKCvr16wc+n4+wsDAkJiZa3F+tViMhIQE9e/aEo6OjyWRz4sSJuHjxIk6cONE2QRPSQfQNcIWv1BllSg18pc7oG+DaZteyp3FE7anDdMMtWrQIAMz+T3bixIlG70NDQ3H69Gn89NNPmDp1qsVzi8Vi+Pj4tEqcD4PCwkL2zzt27MD8+fORlZXFbhOJROyfGYaBTqeDo2Pb/FPy9PRsk/M2p63vq7F169Zh3LhxRs/2YZGTk4PRo0fjrbfeQlJSEg4fPox//vOf8PX1RWxsrMljdDodBAIBpk+fjv/9738m93FycsJLL72EtWvX4vHHH2/LWyDErgW6C7FufD9cyq9A3wDXNu2Ca8kCvA+TDtOydD/kcjnc3Nya3W/58uVwd3dH3759sWLFCtTV1bVDdPbLx8eHfUmlUnA4HPb9tWvXIBaLsX//fkRGRoLP5+O3334z2dU0Y8YMDBkyhH2v1+uxbNkydOrUCQKBAL1798aPP/5oMZbG3XAcDgebNm3CM888A6FQiPDwcOzevRsAcPv2bQwdOhQA4OrqCg6Hg4SEBKuubWiRanhfX3/9NTgcDq5du2YU06pVq9C5c2cA9b/UX3/9dfa8Xbp0sar7tyGdTocff/yxSZfS1q1bERUVxSbzL730EkpKSsyeJzExETKZDLt27UJ4eDicnZ0RGxuLvLy8Jvtu3boVISEhkEqlGD9+PKqqqtjPDhw4gMceewwymQzu7u74+9//jps3b7bonhrauHEjOnXqhE8//RQRERGYOnUqnnvuOaxatcrsMS4uLtiwYQPeeOMNi19kxowZg927d0OlUt13fIQ8DALdhXi6t3+bJkrAn+OIpg4Ls+lU/vb20CZLp06dwo4dO5rtwpk+fTq2b9+Oo0eP4s0338TSpUvxwQcfWDymtrYWCoXC6NVSNTU1Zl9qtdrqfRv/kjC3X2ubM2cOli9fjszMTPTq1cuqY5YtW4YtW7Zg48aNuHr1Kt599128/PLLOHbsWIuuvWjRIjz//PP4/fffMWrUKEyYMAHl5eUIDAxkWyGysrJQWFjIJi7WXrvhfT333HOIiopCUlKS0T5JSUnsWnN6vR4BAQH44YcfkJGRgfnz5+Nf//oXvv/+e6vv5/fff4dcLkdUVJTRdq1Wi8WLF+Py5cvYtWsXbt++zSZ/5iiVSixZsgRbtmzByZMnUVlZifHjxxvtc/PmTezatQt79uzBnj17cOzYMaNxejU1NZg5cybOnz+Pw4cPg8vl4plnnoFer2f36d69O0QikdnXyJEj2X1Pnz6NESNGGMUQGxuL06dPW/2MzImKikJdXR3Onj37wOcihFinrccRGQpRtvV4qBZhbGj27NkMAIuvzMxMo2M2b97MSKVSi+dNT09nPDw8mMWLF7c4pq+++opxdHRk1Gq12X0WLFhgMla5XN5kX5VKxWRkZDAqlcpou6V7HjVqlNG+QqHQ7L6DBw822tfDw8Pkfver8fM+evQoA4DZtWuX0X7x8fFMXFyc0bZ33nmHjU+tVjNCoZA5deqU0T6vv/468+KLL5q9fnBwMLNq1Sr2PQBm3rx57Pvq6moGALN//36j+CoqKth9rLm2uftatWoV07lzZ/Z9VlaWyX+XDU2ZMoV59tln2femnk1DO3fuZBwcHBi9Xm92H4ZhmNTUVAYAU1VVZfJeN2/ezABgzpw5wx6TmZnJAGDOnj3LMEz9v12hUMgoFAp2n/fff58ZMGCA2euWlpYyAJj09HR22+3bt5kbN26YfeXn57P7hoeHM0uXLjU65969exkAjFKptHjPDNP883N1dWUSExNNfmbu548QYp8qazTMsn0ZzFtbzzPL9mUwlTWaNr2eXC43+/u7IZuOWXrvvfea/aYcGhraonNmZGRg+PDhmDRpEubNm9fimAYMGIC6ujrcvn0bXbp0MbnP3LlzMXPmTPa9QqFAYGBgi6/VkTVuBWlOdnY2lEolnnjiCaPtGo0Gffv2bdG5GrZkubi4QCKRWOyeasm1G9/X+PHjMWvWLJw5cwYDBw5EUlIS+vXrh65du7L7fP755/j666+Rm5sLlUoFjUbTohlnKpUKfD4fHA7HaPuFCxewcOFCXL58GRUVFWzLTm5uLrp162byXI6Ojujfvz/7vmvXrpDJZMjMzER0dDSA+q5NsVjM7uPr62v0/G7cuIH58+fj7NmzuHfvntF1e/ToAQAIDg62+v7amkAggFL51xhkSsjDztQA8rZaZqUlbJoseXp6tuoA3qtXr2LYsGGIj4/HkiVL7uscaWlp4HK58PLyMrsPn88Hn8+/3zABANXV1WY/c3BwMHpvKRHgco17Um/fvv1AcVnLxcWlSRwMwxht02r/bEI13O/evXvh7+9vtF9LnyWPZ9z0y+FwjLqIGmvJtRvfl4+PD4YNG4Zt27Zh4MCB2LZtm9GMzO3bt2PWrFn49NNPERMTA7FYjBUrVrSoW8jDwwNKpRIajQZOTk4A6rvCYmNjERsbi6SkJHh6eiI3NxexsbHQaDRWn9uU5p7fmDFjEBwcjC+//BJ+fn7Q6/Xo0aOH0XW7d++OO3fumL3G448/jv379wOof4bFxcVGnxcXF0MikUAgEDzQvQBAeXm5zSYCEEJal70OIO8ws+Fyc3NRXl6O3Nxc6HQ6pKWlAQDCwsIgEolw5coVDBs2DLGxsZg5cyaKiooA1Ccehv+Rnjt3Dq+++ioOHz4Mf39/nD59GmfPnsXQoUMhFotx+vRpdiyLq2vbTb0Emv5StsW+rcnT0xNXrlwx2paWlsb+Yu7WrRv4fD5yc3MxePDgNovDkGzodDp224Nee8KECfjggw/w4osv4tatW0ZjgE6ePIlBgwbh7bffZre1dDC0oRUqIyOD/fO1a9dQVlaG5cuXs62W58+fb/ZcdXV1OH/+PNuKlJWVhcrKSkRERFgVS1lZGbKysvDll1+yM8x+++23Jvvt27fPKBlurGESFBMTg3379hl9npycjJiYGKtisuTmzZtQq9Utbp0khNgneypE2VCHSZbmz5+Pb775hn1v+J/j0aNHMWTIEPz4448oLS3Ft99+i2+//ZbdLzg4mG1tUSqVyMrKYv8nz+fzsX37dixcuBC1tbXo1KkT3n33XaMuNmKdYcOGYcWKFdiyZQtiYmLw7bff4sqVK+zfk1gsxqxZs/Duu+9Cr9fjscceg1wux8mTJyGRSBAfH98qcQQHB4PD4WDPnj0YNWoUBALBA1/7H//4ByZPnozJkydj6NCh8PPzYz8LDw/Hli1bcPDgQXTq1Albt25FamoqOnXqZHXMnp6e6NevH3777Tc2WQoKCoKTkxPWrVuHt956C1euXMHixYubPRePx8O0adOwdu1aODo6YurUqRg4cCCbPDXH1dUV7u7u+O9//wtfX1/k5uZizpw5TfZrSTfcW2+9hfXr1+ODDz7AxIkTceTIEXz//ffYu3cvu8/69euxc+dOHD58mN2WkZEBjUaD8vJyVFVVsV+QGnZxnjhxAqGhoezsREJIx2dqUV2ba9ORU38RlgaIdfQBpuYGeDccQG0wf/58xtvbm5FKpcy7777LTJ061WgAul6vZ1avXs106dKF4fF4jKenJxMbG8scO3bM7PVNDfDeuXOn0T5SqZTZvHkz+/6jjz5ifHx8GA6Hw8THx1t1bUv3xTAM8/zzzzMAmK+//tpou1qtZhISEhipVMrIZDJm8uTJzJw5c5jevXuz+zQ3QJlhGOY///kPM3DgQKNt27ZtY0JCQhg+n8/ExMQwu3fvZgAwly5dMhmz4e/qf//7HxMaGsrw+XxmxIgRzJ07d9hzLliwwCg2hqkfxB4cHMy+T05OZiIiIhg+n8/06tWLSUlJMfncW+Lo0aNMnz59GCcnJyY0NNTo78sQV8MYGKb+7x7NTFZ48sknmWXLlpm9bkf/+SOEtC1rB3hzGKbRQBPSYgqFAlKpFHK5HBKJxOgztVqNnJwcdOrUCc7OzjaKkNg7lUqFLl26YMeOHffdPZWYmIgZM2Z0uOrl98swRvH69euQSk1/C6WfP0LsV16Zsl0KaVpi6fd3Qx2mG46Qh5lAIMCWLVtw7949W4fSYRQWFmLLli1mEyVCiP1q78V/HxQlS4TYiYbVzknzGhe6JITYnlyptWpwtqnFf+05WXpoK3gT8leTkJDwl+mCI4TYH7lSiw3HsrH+SDY2HMu2WIG7PRf/bQ3UskQIIYSQB9aSgpLtufhva6BkiRBCCCEPrKUFJQPdhXafJBlQskQIIYSQB2avBSVbAyVLhBBCCGkVdllQshXQAG9CCCGE2CW5UourBXKLg8XbA7UsEUIIIcTuGGbXGcZATR4cZrOuPWpZIiYNGTIEM2bMsNn1ExISMHbsWLuJhxBCSPsyNbvOVqhliXQIP/30E3i8h2ewICGEEMtaOruuLVGyRDoENzc3W4dACCGkHdnT7DrqhiNm1dXVYerUqZBKpfDw8MCHH34Iw7rLW7duRVRUFMRiMXx8fPDSSy+hpKSEPbaiogITJkyAp6cnBAIBwsPDsXnzZvbzvLw8PP/885DJZHBzc0NcXBxu375tNpbG3XAhISFYunQpJk6cCLFYjKCgIPz3v/81Oqal1yCEEPLgWnNQtlTIQ3c/qc3LEFCy1M4YhkFNTY1NXoZEx1rffPMNHB0dce7cOaxZswafffYZNm3aBADQarVYvHgxLl++jF27duH27dtISEhgj/3www+RkZGB/fv3IzMzExs2bICHhwd7bGxsLMRiMU6cOIGTJ09CJBLhqaeegkajsTq+Tz/9FFFRUbh06RLefvttTJ48GVlZWa16DUIIIdZryZInHQl1w7UzpVIJkUhkk2tXV1fDxcXF6v0DAwOxatUqcDgcdOnSBenp6Vi1ahXeeOMNTJw4kd0vNDQUa9euRf/+/VFdXQ2RSITc3Fz07dsXUVFRAOpbggx27NgBvV6PTZs2gcPhAAA2b94MmUyGlJQUPPnkk1bFN2rUKLz99tsAgNmzZ2PVqlU4evQounTp0mrXIISQvwJrF8BtTkuWPOlIqGWJmDVw4EA20QCAmJgY3LhxAzqdDhcuXMCYMWMQFBQEsViMwYMHAwByc3MBAJMnT8b27dvRp08ffPDBBzh16hR7nsuXLyM7OxtisRgikQgikQhubm5Qq9W4efOm1fH16tWL/TOHw4GPjw/bFdha1yCEkIdda7YGGQZlFynUNh+U3ZqoZamdCYVCVFdX2+zarUGtViM2NhaxsbFISkqCp6cncnNzERsby3ZxjRw5Enfu3MG+ffuQnJyM4cOHY8qUKVi5ciWqq6sRGRmJpKSkJuf29PS0Oo7Gs+M4HA70ej0AtNo1CCHkYdearUH2NCi7NVGy1M44HE6LusJs6ezZs0bvz5w5g/DwcFy7dg1lZWVYvnw5AgMDAQDnz59vcrynpyfi4+MRHx+Pxx9/HO+//z5WrlyJfv36YceOHfDy8oJEImmT2NvjGoQQ8jBojSn6eWVKXMqvQN8AVwS6Cx+KrreGqBuOmJWbm4uZM2ciKysL3333HdatW4d33nkHQUFBcHJywrp163Dr1i3s3r0bixcvNjp2/vz5+Pnnn5GdnY2rV69iz549iIiIAABMmDABHh4eiIuLw4kTJ5CTk4OUlBRMnz4d+fn5rRJ7e1yDEEIeBobWoKnDwu6rSnZemRLTtl/Ekr2ZmLb9IvLKbFc8sq1QskTMevXVV6FSqRAdHY0pU6bgnXfewaRJk+Dp6YnExET88MMP6NatG5YvX46VK1caHevk5IS5c+eiV69e+Nvf/gYHBwds374dQH134PHjxxEUFIR//OMfiIiIwOuvvw61Wt1qrUDtcQ1CCHlYPMgU/Uv5FSiUq+EudEKhXI1L+RVtEKFtcZiWzicnTSgUCkilUsjl8ia/iNVqNXJyctCpUyc4OzvbKEJC/pro54+QtmdoWSqUq+Erdca68f0Q6N4xBnZb+v3dEI1ZIoQQQsh9C3QXYt34fkZjlh42lCwRQggh5IEEugsfyiTJgMYsEUIIIYRYQMkSIYQQQogFlCwRQgghhFhAyVI7oUmHhLQ/+rkjhLQGSpbamIODAwDQSveE2IBSWV8cr/HSOIQQ0hI0G66NOTo6QigUorS0FDweD1wu5aeEtDWGYaBUKlFSUgKZTMZ+aSGEkPtByVIb43A48PX1RU5ODu7cuWPrcAj5S5HJZPDx8bF1GISQDq7DJEtLlizB3r17kZaWBicnJ1RWVjbZh8PhNNn23XffYfz48WbPW15ejmnTpuGXX34Bl8vFs88+izVr1kAkErVa7E5OTggPD6euOELaEY/HoxYlQkir6DDJkkajwbhx4xATE4OvvvrK7H6bN2/GU089xb6XyWQWzzthwgQUFhYiOTkZWq0Wr732GiZNmoRt27a1VugAAC6XS8stEEIIIR1Qh0mWFi1aBABITEy0uF9Lmt0zMzNx4MABpKamIioqCgCwbt06jBo1CitXroSfn98DxUwIIYSQju+hG208ZcoUeHh4IDo6Gl9//bXFqcOnT5+GTCZjEyUAGDFiBLhcLs6ePWv2uNraWigUCqMXIYQQQh5OHaZlyRofffQRhg0bBqFQiF9//RVvv/02qqurMX36dJP7FxUVwcvLy2ibo6Mj3NzcUFRUZPY6y5YtY1u6CCGEEPJws2myNGfOHHzyyScW98nMzETXrl2tOt+HH37I/rlv376oqanBihUrzCZL92vu3LmYOXMm+14ulyMoKIhamAghhJAOxPB7u7kCtjZNlt577z0kJCRY3Cc0NPS+zz9gwAAsXrwYtbW14PP5TT738fFBSUmJ0ba6ujqUl5dbHPfE5/ONzmd42IGBgfcdKyGEEEJso6qqClKp1OznNk2WPD094enp2WbnT0tLg6urq8lECQBiYmJQWVmJCxcuIDIyEgBw5MgR6PV6DBgwwOrr+Pn5IS8vD2Kx2GT5gvulUCgQGBiIvLw8SCSSVjvvw4ieVcvQ87IePSvr0bOyHj0r67Xls2IYBlVVVc1O6OowY5Zyc3NRXl6O3Nxc6HQ6pKWlAQDCwsIgEonwyy+/oLi4GAMHDoSzszOSk5OxdOlSzJo1iz3HuXPn8Oqrr+Lw4cPw9/dHREQEnnrqKbzxxhvYuHEjtFotpk6divHjx7doJhyXy0VAQEBr3zJLIpHQD5OV6Fm1DD0v69Gzsh49K+vRs7JeWz0rSy1KBh0mWZo/fz6++eYb9n3fvn0BAEePHsWQIUPA4/Hw+eef49133wXDMAgLC8Nnn32GN954gz1GqVQiKysLWq2W3ZaUlISpU6di+PDhbFHKtWvXtt+NEUIIIcSucRhalttuKRQKSKVSyOVy+ubRDHpWLUPPy3r0rKxHz8p69KysZw/P6qGrs/Qw4fP5WLBggdkxV+RP9Kxahp6X9ehZWY+elfXoWVnPHp4VtSwRQgghhFhALUuEEEIIIRZQskQIIYQQYgElS4QQQgghFlCyRAghhBBiASVLHcSSJUswaNAgCIVCyGQyW4djdz7//HOEhITA2dkZAwYMwLlz52wdkl06fvw4xowZAz8/P3A4HOzatcvWIdmlZcuWoX///hCLxfDy8sLYsWORlZVl67Ds1oYNG9CrVy+2aGBMTAz2799v67Ds3vLly8HhcDBjxgxbh2KXFi5cCA6HY/Sydq3Y1kbJUgeh0Wgwbtw4TJ482dah2J0dO3Zg5syZWLBgAS5evIjevXsjNja2ybp/BKipqUHv3r3x+eef2zoUu3bs2DFMmTIFZ86cQXJyMrRaLZ588knU1NTYOjS7FBAQgOXLl+PChQs4f/48hg0bhri4OFy9etXWodmt1NRUfPHFF+jVq5etQ7Fr3bt3R2FhIfv67bffbBMIQzqUzZs3M1Kp1NZh2JXo6GhmypQp7HudTsf4+fkxy5Yts2FU9g8As3PnTluH0SGUlJQwAJhjx47ZOpQOw9XVldm0aZOtw7BLVVVVTHh4OJOcnMwMHjyYeeedd2wdkl1asGAB07t3b1uHwTAMw1DLEunQNBoNLly4gBEjRrDbuFwuRowYgdOnT9swMvIwkcvlAAA3NzcbR2L/dDodtm/fjpqaGsTExNg6HLs0ZcoUjB492uj/W8S0GzduwM/PD6GhoZgwYQJyc3NtEkeHWRuOEFPu3bsHnU4Hb29vo+3e3t64du2ajaIiDxO9Xo8ZM2bg0UcfRY8ePWwdjt1KT09HTEwM1Go1RCIRdu7ciW7dutk6LLuzfft2XLx4EampqbYOxe4NGDAAiYmJ6NKlCwoLC7Fo0SI8/vjjuHLlCsRicbvGQi1LNjRnzpwmg9cav+gXPiG2NWXKFFy5cgXbt2+3dSh2rUuXLkhLS8PZs2cxefJkxMfHIyMjw9Zh2ZW8vDy88847SEpKgrOzs63DsXsjR47EuHHj0KtXL8TGxmLfvn2orKzE999/3+6xUMuSDb333ntISEiwuE9oaGj7BNNBeXh4wMHBAcXFxUbbi4uL4ePjY6OoyMNi6tSp2LNnD44fP46AgABbh2PXnJycEBYWBgCIjIxEamoq1qxZgy+++MLGkdmPCxcuoKSkBP369WO36XQ6HD9+HOvXr0dtbS0cHBxsGKF9k8lkeOSRR5Cdnd3u16ZkyYY8PT3h6elp6zA6NCcnJ0RGRuLw4cMYO3YsgPpuk8OHD2Pq1Km2DY50WAzDYNq0adi5cydSUlLQqVMnW4fU4ej1etTW1to6DLsyfPhwpKenG2177bXX0LVrV8yePZsSpWZUV1fj5s2beOWVV9r92pQsdRC5ubkoLy9Hbm4udDod0tLSAABhYWEQiUS2Dc7GZs6cifj4eERFRSE6OhqrV69GTU0NXnvtNVuHZneqq6uNvpXl5OQgLS0Nbm5uCAoKsmFk9mXKlCnYtm0bfv75Z4jFYhQVFQEApFIpBAKBjaOzP3PnzsXIkSMRFBSEqqoqbNu2DSkpKTh48KCtQ7MrYrG4ybg3FxcXuLu703g4E2bNmoUxY8YgODgYBQUFWLBgARwcHPDiiy+2fzC2no5HrBMfH88AaPI6evSorUOzC+vWrWOCgoIYJycnJjo6mjlz5oytQ7JLR48eNfnvKD4+3tah2RVTzwgAs3nzZluHZpcmTpzIBAcHM05OToynpyczfPhw5tdff7V1WB0ClQ4w74UXXmB8fX0ZJycnxt/fn3nhhReY7Oxsm8TCYRiGaf8UjRBCCCGkY6DZcIQQQgghFlCyRAghhBBiASVLhBBCCCEWULJECCGEEGIBJUuEEEIIIRZQskQIIYQQYgElS4QQQgghFlCyRAghhBBiASVLhBBCCCEWULJECCGEEGIBJUuEENJIaWkpfHx8sHTpUnbbqVOn4OTkhMOHD9swMkKILdDacIQQYsK+ffswduxYnDp1Cl26dEGfPn0QFxeHzz77zNahEULaGSVLhBBixpQpU3Do0CFERUUhPT0dqamp4PP5tg6LENLOKFkihBAzVCoVevTogby8PFy4cAE9e/a0dUiEEBugMUuEEGLGzZs3UVBQAL1ej9u3b9s6HEKIjVDLEiGEmKDRaBAdHY0+ffqgS5cuWL16NdLT0+Hl5WXr0Agh7YySJUIIMeH999/Hjz/+iMuXL0MkEmHw4MGQSqXYs2ePrUMjhLQz6oYjhJBGUlJSsHr1amzduhUSiQRcLhdbt27FiRMnsGHDBluHRwhpZ9SyRAghhBBiAbUsEUIIIYRYQMkSIYQQQogFlCwRQgghhFhAyRIhhBBCiAWULBFCCCGEWEDJEiGEEEKIBZQsEUIIIYRYQMkSIYQQQogFlCwRQgghhFhAyRIhhBBCiAWULBFCCCGEWEDJEiGEEEKIBf8Pkl2wYQQqGaYAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.scatter(X_train, y_train, color=\"C0\", alpha=0.5, s=3, label=\"Training data\")\n", + "sort_order = np.argsort(X_train[:,0])\n", + "x_sorted = X_train[sort_order,:]\n", + "plt.plot(x_sorted, train_pi[sort_order,0], \"k--\", label=f\"True interval (alpha={ALPHA})\")\n", + "plt.plot(x_sorted, train_pi[sort_order,1], \"k--\", linestyle='--')\n", + "plt.plot(x_sorted, x_sinx(x_sorted), \"k-\", label=\"baseline\")\n", + "plt.xlabel(\"x\")\n", + "plt.ylabel(\"y\")\n", + "plt.title(\"Data\")\n", + "plt.legend()\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "1e2bccb6", + "metadata": {}, + "source": [ + "## Models : Polynomial regression" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "7ea39c6a", + "metadata": {}, + "outputs": [], + "source": [ + "polynomial_degree = 4\n", + "quantile_estimator = Pipeline(\n", + " [\n", + " (\"poly\", PolynomialFeatures(degree=polynomial_degree)),\n", + " (\"linear\", QuantileRegressor(\n", + " solver=\"highs\",\n", + " alpha=0,\n", + " ))\n", + " ]\n", + ")\n", + "estimator = Pipeline(\n", + " [\n", + " (\"poly\", PolynomialFeatures(degree=polynomial_degree)),\n", + " (\"linear\", LinearRegression())\n", + " ]\n", + ")" + ] + }, + { + "cell_type": "markdown", + "id": "89be07c8", + "metadata": {}, + "source": [ + "## Creation of Mapie instances" + ] + }, + { + "cell_type": "markdown", + "id": "3205e010", + "metadata": {}, + "source": [ + "We are going to test different methods : ``CV+``, ``CQR`` and ``CCP`` (with default parameters)" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "f0d94476", + "metadata": {}, + "outputs": [], + "source": [ + "cv = ShuffleSplit(n_splits=1, test_size=0.3, random_state=random_state)\n", + "train_index, _ = list(cv.split(X_train))[0]\n", + "test_fold = np.ones(len(X_train))\n", + "test_fold[train_index] = -1\n", + "\n", + "pred_cv = PredefinedSplit(test_fold)\n", + "\n", + "# # ================== Basic Split ==================\n", + "mapie_split = MapieRegressor(estimator, method=\"base\", cv=pred_cv)\n", + "mapie_split.fit(X_train, y_train)\n", + "y_pred_split, y_pi_split = mapie_split.predict(X_test, alpha=ALPHA)\n", + "\n", + "# ================== CV + ==================\n", + "# MapieRegressor defaults to method='plus' and cv=5\n", + "mapie_cv = MapieRegressor(estimator, cv=pred_cv)\n", + "mapie_cv.fit(X_train, y_train)\n", + "y_pred_cv, y_pi_cv = mapie_cv.predict(X_test, alpha=ALPHA)\n", + "\n", + "# ================== CQR ==================\n", + "mapie_cqr = MapieQuantileRegressor(quantile_estimator, alpha=ALPHA)\n", + "mapie_cqr.fit(X_train, y_train)\n", + "y_pred_cqr, y_pi_cqr = mapie_cqr.predict(X_test)\n", + "\n", + "# ================== CCP ==================\n", + "mapie_ccp = SplitCPRegressor(estimator, alpha=ALPHA, cv=pred_cv)\n", + "mapie_ccp.fit(X_train, y_train)\n", + "y_pred_ccp, y_pi_ccp = mapie_ccp.predict(X_test)" + ] + }, + { + "cell_type": "markdown", + "id": "32023225", + "metadata": {}, + "source": [ + "## Prediction intervals plotting and adaptativity comparison" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "9c26d26e", + "metadata": {}, + "outputs": [], + "source": [ + "\n", + "def plot_subplot(ax, X, y, mapie, y_pred, upper_pi, lower_pi, color_rgb, show_transform=False, ax_transform = None):\n", + " sort_order = np.argsort(X[:, 0])\n", + " lw = 1\n", + " color = mcolors.rgb2hex(color_rgb)\n", + " x_test_sorted = X[sort_order]\n", + " y_test_sorted = y[sort_order]\n", + " y_pred_sorted = y_pred[sort_order]\n", + " upper_pi_sorted = upper_pi[sort_order]\n", + " lower_pi_sorted = lower_pi[sort_order]\n", + "\n", + " # Plot test data\n", + " ax.scatter(x_test_sorted[:, 0], y_test_sorted, s=1, alpha=0.3, color='darkblue', label=\"Test Data\")\n", + "\n", + " # Plot prediction\n", + " ax.plot(x_test_sorted[:, 0], y_pred_sorted, lw=lw, color='black', label=\"Prediction\")\n", + "\n", + " # Plot prediction interval\n", + " ax.fill_between(x_test_sorted[:, 0], upper_pi_sorted, lower_pi_sorted, color=color, alpha=0.3, label=\"Prediction interval\")\n", + "\n", + " # Plot upper and lower prediction intervals\n", + " ax.plot(x_test_sorted[:, 0], upper_pi_sorted, lw=lw, color=color)\n", + " ax.plot(x_test_sorted[:, 0], lower_pi_sorted, lw=lw, color=color)\n", + "\n", + " # Plot true prediction interval\n", + " ax.plot(x_test_sorted[:, 0], test_pi[sort_order, 0], \"--k\", lw=lw*1.5, label='True PI')\n", + " ax.plot(x_test_sorted[:, 0], test_pi[sort_order, 1], \"--k\", lw=lw*1.5)\n", + "\n", + " if show_transform and isinstance(mapie, SplitCPRegressor) and isinstance(mapie.calibrator_, CCPCalibrator):\n", + " for calibrator in list(mapie.calibrator_.functions_) + [mapie.calibrator_]:\n", + " if isinstance(calibrator, CCPCalibrator):\n", + " if isinstance(calibrator, GaussianCCP):\n", + " sigmas = np.log(calibrator.sigmas_[:, 0])\n", + " else:\n", + " sigmas = np.zeros(calibrator.n_out)\n", + " for i, loc in enumerate(calibrator.points_):\n", + " ax_transform.plot(x_test_sorted[:, 0], calibrator.transform(x_test_sorted)[:, i], lw=lw,\n", + " color=color)\n", + "\n", + "def need_transform(mapie):\n", + " if not isinstance(mapie, SplitCPRegressor) or not isinstance(mapie.calibrator_, CCPCalibrator):\n", + " return False\n", + " for calibrator in list(mapie.calibrator_.functions_) + [mapie.calibrator_]:\n", + " if isinstance(calibrator, CCPCalibrator):\n", + " if isinstance(calibrator, GaussianCCP):\n", + " return True\n", + " return False\n", + "\n", + "def plot_figure(mapies, y_preds, y_pis, titles, show_transform=False):\n", + " cp = list(sns.color_palette())*10\n", + " ncols = min(3, len(titles))\n", + " nrows = int(np.ceil(len(titles) / ncols))\n", + " ax_need_transform = np.zeros((nrows, ncols))\n", + " if show_transform: \n", + " for i, mapie in enumerate(mapies):\n", + " ax_need_transform[i//ncols, i%ncols] = need_transform(mapie)\n", + " row_need_transform = np.max(ax_need_transform, axis=1)\n", + " height_ratio = np.array([item for x in row_need_transform for item in ([3] if x == 0 else [3, 1])])\n", + " fig, axes = plt.subplots(nrows=nrows + int(sum(row_need_transform)), ncols=ncols, figsize=(ncols*4, nrows*5), height_ratios=height_ratio)\n", + "\n", + " for ax in axes[np.where(height_ratio == 1)[0]-1, :].flatten():\n", + " ax.tick_params(axis='x', which='both', bottom=False, top=False, labelbottom=False)\n", + "\n", + " transform_axes = np.full((nrows, ncols), None)\n", + " transform_axes[row_need_transform==1, :] = axes[height_ratio==1, :]\n", + " transform_axes = transform_axes.flatten()\n", + " main_axes = axes[height_ratio==3, :].flatten()\n", + " else:\n", + " fig, axes = plt.subplots(nrows=nrows, ncols=ncols, figsize=(ncols*4, nrows*4))\n", + " main_axes = axes.flatten()\n", + " transform_axes = np.full(main_axes.shape, None)\n", + "\n", + " for i, (m_ax, t_ax, mapie, y_pred, y_pi, title) in enumerate(zip(main_axes, transform_axes, mapies, y_preds, y_pis, titles)):\n", + " lower_bound = y_pi[:, 0, 0]\n", + " upper_bound = y_pi[:, 1, 0]\n", + "\n", + " plot_subplot(m_ax, X_test, y_test, mapie, y_pred, upper_bound, lower_bound, cp[i], show_transform=ax_need_transform.flatten()[i], ax_transform=t_ax)\n", + " m_ax.set_title(title)\n", + " if i % 3 == 0:\n", + " m_ax.set_ylabel('Y')\n", + " if t_ax is not None:\n", + " t_ax.set_title(\"Transformation\")\n", + " if i >= len(titles) - ncols:\n", + " t_ax.set_xlabel('X')\n", + " else:\n", + " m_ax.set_xlabel('X')\n", + " m_ax.legend()\n", + "\n", + " fig.tight_layout()\n", + " plt.show()\n", + "\n", + "def plot_widths(titles, y_pis):\n", + " sort_order = np.argsort(X_test[:, 0])\n", + " cp = list(sns.color_palette())*10\n", + " plt.figure(figsize=(8, 6))\n", + " for i, (title, pi) in enumerate(zip(titles, y_pis)):\n", + " plt.plot(X_test[sort_order, 0], (pi[sort_order, 1, 0] - pi[sort_order, 0, 0]), lw=2, color=mcolors.rgb2hex(cp[i]), label=title)\n", + "\n", + " plt.title(\"Prediction interval width\")\n", + " plt.xlabel(\"X\")\n", + " plt.ylabel(\"Width\")\n", + " plt.legend(fontsize=14)\n", + " plt.tight_layout()\n", + " plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "f6572d17", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABKUAAAMWCAYAAAAgRDUeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3xb9b3/8Ze2ZNny3nsltrOcRcgOSSAQdlpWoRBWGaWUW1pa2nsL9N4fvRRKW7jMllHCHmEGCFmQxEnIdIZjJ45n4iVv2bIsWdL5/SFbsWMnhJDYSfx5PvAjWD6SvpKPz1vnc75DpSiKghBCCCGEEEIIIYQQg0g91A0QQgghhBBCCCGEEMOPFKWEEEIIIYQQQgghxKCTopQQQgghhBBCCCGEGHRSlBJCCCGEEEIIIYQQg06KUkIIIYQQQgghhBBi0ElRSgghhBBCCCGEEEIMOilKCSGEEEIIIYQQQohBJ0UpIYQQQgghhBBCCDHopCglhBBCCCGEEEIIIQadFKWGqfLyclQqFa+++upQN2VAA7Xv4YcfRqVS/eDH3rx5M3q9noqKih/8WINhqH9Xc+bMYc6cOUPy3GeawXivfve73zFlypRT+hxCCCGEEEIIMRikKDXEXn31VVQqVZ+vqKgozjvvPL744ouhbt5xq6+v55e//CVZWVmYTCaioqI455xz+O1vf0t7e/spe95HH32Ujz766Hvd5w9/+APXXXcdycnJp6ZR4rR2IvtMb3v37uXhhx+mvLz8pLXp+7jvvvvYuXMnn3zyyZA8vxDixJSUlHDHHXeQlpaG0WjEYrEwffp0/vGPf5CXl4dKpeI///M/j3r/4uJiVCoVv/rVrwax1UIIIU6mY2WBw+Hwb9fV1cVTTz3F5MmTCQoKIjAwkMmTJ/P000/jdrv7PW5KSkqf80mz2cw555zDa6+9NpgvT4gTolIURRnqRgxnr776KjfffDN/+tOfSE1NRVEU6urqePXVVykoKODTTz/lkksuOenPqygKTqcTnU6HRqP5QY/V1NTE+PHjsdls3HLLLWRlZdHY2MiuXbv47LPP2LVrFykpKd/rMcvLy0lNTeWVV15h8eLFALjdbtxuN0aj0b9dYGAgP/7xj4+7F1F+fj7jx49nw4YNTJ069Xu1aaiczN/Viejp+fP1118P+nOfCt93nznS+++/z1VXXcWaNWv69YpyuVwA6PX6H9jKY7vmmmuoqalh7dq1p/R5hBAnx7Jly7jqqqswGAzceOONjB49GpfLxfr16/nggw9YvHgx69atw+VyUVJSMuBjPPLIIzz88MNs27aNCRMmDPIrEEII8UMdTxa8+OKL2O12Lr74Yr755hsuueQSLrzwQtRqNV9++SWffPIJc+fO5dNPPyUgIMD/2CkpKYSGhnL//fcDUFNTw7/+9S/279/Piy++yO233z5UL1uI76Qd6gYIn4suuohJkyb5v7/11luJjo7mrbfeOiVFKZVK1ae480O89NJLVFZWkpeXx7Rp0/r8zGaznbQTdK1Wi1b7w3bZV155haSkJM4999yT0qbBcDJ/V+LUOtXFqB5XX301V111FaWlpaSlpQ3KcwohTkxZWRnXXnstycnJrF69mtjYWP/Pfv7zn3PgwAGWLVtGUlIS//Vf/8WmTZsGzKi33nqLrKysYxakUlJSWLx4MQ8//PCpeClCCCFO0PFmAcCvfvUrvvnmG55++mnuuece/3Z33XUXzzzzDPfccw+/+c1veOaZZ/o8R3x8PDfccIP/+8WLF5OWlsbf/vY3KUqJ05oM3ztNhYSEYDKZ+hVhnnjiCaZNm0Z4eDgmk4mJEyfy/vvv97v/ihUrmDFjBiEhIQQGBjJy5Eh+//vf+39+tHmKioqKuPrqq4mMjMRkMjFy5Ej+8Ic/HLOtJSUlaDSaAT9EWyyWPgWVOXPmMHr0aLZt28a0adMwmUykpqby/PPPf+d7cuScUiqVCrvdzr///W9/V9WeXlVH89FHHzF37tx+c1OlpKRwySWXsH79es455xyMRiNpaWkDdnltaWnhvvvuIzExEYPBQEZGBo899hher9e/zYQJE1i0aFGf+40ZMwaVSsWuXbv8t73zzjuoVCoKCwuP2uaBfleLFy8mMDCQyspKLrnkEgIDA4mPj/eH0+7du5k7dy5ms5nk5GTefPPNPo/ZM2x07dq13HHHHYSHh2OxWLjxxhtpbm4+5nsI4HQ6eeihh8jIyMBgMJCYmMgDDzyA0+nss51KpeKee+7hvffeIycnB5PJxNSpU9m9ezcAL7zwAhkZGRiNRubMmTPgkLhvv/2WCy+8kODgYAICApg9ezZ5eXl9tunZNw4cOMDixYsJCQkhODiYm2++mY6Ojj7tOdo+U1FRwd13383IkSMxmUyEh4dz1VVX9WnTq6++ylVXXQXAeeed53+Mnl5kA80pZbVa/UVmo9HIuHHj+Pe//91nm57f8RNPPMGLL75Ieno6BoOByZMns2XLln7vyfz58wH4+OOPB/4FCSFOG3/5y19ob2/npZde6nMS0iMjI4Nf/vKXXH/99QD9jtcA27ZtY9++ff5thBBCnFmONwsOHTrESy+9xNy5c/sUpHr8/Oc/57zzzuPFF1+kqqrqmM8ZGRlJVlbWUXvgCnG6kKLUaaK1tZWGhgbq6+spKCjgrrvuor29vU+1G+Af//gH48eP509/+hOPPvooWq2Wq666yl9ZBygoKOCSSy7B6XTypz/9ib/+9a9cdtll/U7kj7Rr1y6mTJnC6tWruf322/nHP/7BFVdcwaeffnrM+yUnJ+PxeFiyZMlxvdbm5mYWLlzIxIkT+ctf/kJCQgJ33XUXL7/88nHdv8eSJUswGAzMnDmTJUuWsGTJEu64446jbl9VVUVlZeVRrzIfOHCAH//4x5x//vn89a9/JTQ0lMWLF1NQUODfpqOjg9mzZ/P6669z44038tRTTzF9+nQefPDBPvN8zJw5k/Xr1/u/b2pqoqCgALVazbp16/y3r1u3jsjISLKzs7/XawfweDxcdNFFJCYm8pe//IWUlBTuueceXn31VS688EImTZrEY489RlBQEDfeeCNlZWX9HuOee+6hsLCQhx9+mBtvvJE33niDK664gmON6vV6vVx22WU88cQTXHrppTz99NNcccUV/O1vf+Oaa67pt/26deu4//77uemmm3j44YcpLCzkkksu4ZlnnuGpp57i7rvv5je/+Q0bN27klltu6XPf1atXM2vWLGw2Gw899BCPPvooLS0tzJ07l82bN/d7rquvvpq2tjb+/Oc/c/XVV/Pqq6/yyCOP+H9+rH1my5YtbNiwgWuvvZannnqKO++8k1WrVjFnzhx/YWvWrFnce++9APz+97/3P8bRfn8Oh4M5c+awZMkSrr/+eh5//HGCg4NZvHgx//jHP/pt/+abb/L4449zxx138D//8z+Ul5ezaNEiurq6+mwXHBxMenr6d/5NCyGG3qeffkpaWlq/nsRHSk1NZdq0abz77rt4PJ4+P+spVP3kJz85Ze0UQghx6hxvFnzxxRd4PB5uvPHGo25z44034na7+fLLL4/5WG63m0OHDhEaGnpCbRZi0ChiSL3yyisK0O/LYDAor776ar/tOzo6+nzvcrmU0aNHK3PnzvXf9re//U0BlPr6+qM+b1lZmQIor7zyiv+2WbNmKUFBQUpFRUWfbb1e7zFfQ21trRIZGakASlZWlnLnnXcqb775ptLS0tJv29mzZyuA8te//tV/m9PpVHJzc5WoqCjF5XIdtX0PPfSQcuQuazablZtuuumY7euxcuVKBVA+/fTTfj9LTk5WAGXt2rX+26xWq2IwGJT777/ff9t///d/K2azWdm/f3+f+//ud79TNBqNUllZqSiKorz33nsKoOzdu1dRFEX55JNPFIPBoFx22WXKNddc47/f2LFjlSuvvPKY7R7ovbjpppsUQHn00Uf9tzU3Nysmk0lRqVTK22+/7b+9qKhIAZSHHnrIf1vPfjdx4kT/e64oivKXv/xFAZSPP/7Yf9vs2bOV2bNn+79fsmSJolarlXXr1vVp5/PPP68ASl5env+2nn25rKzMf9sLL7ygAEpMTIxis9n8tz/44IMK4N/W6/UqmZmZyoIFC/rsgx0dHUpqaqpy/vnn+2/r2TduueWWPm268sorlfDw8D63HW2fOfJvS1EUZePGjQqgvPbaa/7ben63a9as6bf9ke/V3//+dwVQXn/9df9tLpdLmTp1qhIYGOh//T2/4/DwcKWpqcm/7ccff3zUffaCCy5QsrOz+90uhDh9tLa2KoBy+eWXH9f2zzzzjAIoy5cv99/m8XiU+Ph4ZerUqd95/+Tk5D7HeiGEEEPv+2TBfffdpwDKjh07jrrN9u3bFUD51a9+5b8tOTlZueCCC5T6+nqlvr5e2b17t/LTn/5UAZSf//znJ+FVCHHqSE+p08QzzzzDihUrWLFiBa+//jrnnXcet912G0uXLu2znclk8v9/c3Mzra2tzJw5k+3bt/tvDwkJAXxDe3oPKTuW+vp61q5dyy233EJSUlKfnx051O1I0dHR7Ny5kzvvvJPm5maef/55fvKTnxAVFcV///d/9+t1o9Vq+/Ro0uv13HHHHVitVrZt23Zc7T0RjY2NAEe9WpCTk8PMmTP930dGRjJy5EhKS0v9t7333nvMnDmT0NBQGhoa/F/z58/H4/H4J57ueZye79etW8fkyZM5//zz/T2lWlpa2LNnT5/n/L5uu+02//+HhIQwcuRIzGYzV199tf/2kSNHEhIS0ud19PjZz36GTqfzf3/XXXeh1Wr5/PPPj/qc7733HtnZ2WRlZfV5D+bOnQvAmjVr+mw/b968PhPdT5kyBYAf/ehHBAUF9bu9p535+fkUFxfzk5/8hMbGRv/z2O125s2bx9q1a/vt33feeWef72fOnEljYyM2m+2or6dH77+trq4uGhsbycjIICQkpM/f1/fx+eefExMTw3XXXee/TafTce+999Le3s4333zTZ/trrrmmz/7Zs28M9Lvr2QeFEKevnmNP72PdsVxzzTXodLo+Q/i++eYbqqqq+g3dczqdfY7BDQ0NeL1eOjo6+t0uhBBi6HyfLGhra/vObXt+1rNtj6+++orIyEgiIyMZM2YMS5Ys4eabb+bxxx8/0aYLMSikKHWaOOecc5g/fz7z58/n+uuvZ9myZeTk5HDPPff4V/QC+Oyzzzj33HMxGo2EhYURGRnJc889R2trq3+ba665hunTp3PbbbcRHR3Ntddey7vvvnvMAlXPSe/o0aNPqP2xsbE899xz1NTUsG/fPp566ikiIyP54x//yEsvvdRn27i4OMxmc5/bRowYATDgnEIn25FFsh5HFuPAd+Lfe46l4uJivvzyS/8Bv+erZ44fq9UK+Ap1mZmZ/gLUunXrmDlzJrNmzaK6uprS0lLy8vLwer0nXJQyGo1ERkb2uS04OJiEhIR+hcTg4OAB54rKzMzs831gYCCxsbHH/D0UFxdTUFDQ7z3o+R32vAc9jnxfg4ODAUhMTBzw9p52FhcXA3DTTTf1e65//etfOJ3OPvv9QM/VU+A5nnmyHA4Hf/zjH/1zhUVERBAZGUlLS0u/5zleFRUVZGZmolb3PdT2DPerqKg44fYrivKdBWMhxNCyWCxA/xOHowkPD2fBggV8+OGHdHZ2Ar6he1qtts/FBvBNfH7ksfHgwYM8/vjj/W4XQggxdL5PFhyt4NRbz8+ioqL63D5lyhRWrFjBl19+yRNPPEFISAjNzc2DthCPECdKVt87TanVas477zz+8Y9/UFxczKhRo1i3bh2XXXYZs2bN4tlnnyU2NhadTscrr7zS56qqyWRi7dq1rFmzhmXLlvHll1/yzjvvMHfuXL766is0Gs0pa7dKpWLEiBGMGDGCiy++mMzMTN54440+PXqGSnh4OHD0AsXR3pfeRSyv18v555/PAw88MOC2PYUZgBkzZrBq1SocDgfbtm3jj3/8I6NHjyYkJIR169ZRWFhIYGAg48ePP6HXc7T2Hs/r+CG8Xi9jxozhySefHPDnRxabTrSdPUXUxx9/nNzc3AG3DQwM/F6PeSy/+MUveOWVV7jvvvuYOnUqwcHBqFQqrr322uPucfhDfZ/2Nzc3ExERcaqbJIT4ASwWC3FxcezZs+e473PDDTfw2Wef8dlnn3HZZZfxwQcfcMEFF/QrLi1YsIAVK1b0u+8FF1xwzLlIhBBCDK7vkwU5OTmAb67fo33+7Vk06cgVmCMiIvwXyhcsWEBWVhaXXHIJ//jHP/rMfSvE6UaKUqcxt9sNQHt7OwAffPABRqOR5cuXYzAY/Nu98sor/e6rVquZN28e8+bN48knn+TRRx/lD3/4A2vWrPEfrHrrOah9nw/O3yUtLY3Q0FBqamr63F5dXY3dbu/TW2r//v0AfYZ5HY/v01MkKysLYMAJv49Xeno67e3tA76HR5o5cyavvPIKb7/9Nh6Ph2nTpqFWq5kxY4a/KDVt2rRTWiT8LsXFxZx33nn+79vb26mpqWHhwoVHvU96ejo7d+5k3rx5p7SnTnp6OuAL8uN5v4/X0dr8/vvvc9NNN/HXv/7Vf1tnZyctLS3Hdf+BJCcns2vXLrxeb5/eUkVFRf6fn6iysjLGjRt3wvcXQgyOSy65hBdffJGNGzcyderU79z+sssuIygoiDfffBOdTkdzc/OAq+7Fxsb2W8GpZ+XYk3nMFEII8cMdbxZcdNFFaDQalixZctQLDK+99hp6vZ7LL7/8mM958cUXM3v2bB599FHuuOOOfiNVhDhdyPC901RXVxdfffUVer3eP9RHo9GgUqn6rMpTXl7ORx991Oe+TU1N/R6vp9LudDoHfL7IyEhmzZrFyy+/TGVlZZ+ffVcvk2+//Ra73d7v9s2bN9PY2MjIkSP73O52u3nhhRf837tcLl544QUiIyOZOHHiMZ/rSGazuV/R4Gji4+NJTExk69at3+s5erv66qvZuHEjy5cv7/ezlpYWfyERDs8H9NhjjzF27Fj/8LSZM2eyatUqtm7d+oPmkzoZXnzxxT4ruz333HO43W4uuuiio97n6quvpqqqin/+85/9fuZwOAbcF07ExIkTSU9P54knnvAXZnurr68/occ92j6j0Wj67etPP/10v1WwegL9ePa7hQsXUltbyzvvvOO/ze128/TTTxMYGMjs2bO//wvAt1pnSUnJd67gIoQYeg888ABms5nbbruNurq6fj8vKSnpsxqnyWTiyiuv5PPPP+e5557DbDZ/54mHEEKI09vxZkFCQgK33norK1eu5Lnnnuu33fPPP8/q1au54447/KNAjuW3v/0tjY2NA35uF+J0IT2lThNffPGFv/eE1WrlzTffpLi4mN/97nf+ccgXX3wxTz75JBdeeCE/+clPsFqtPPPMM2RkZPi7cQL86U9/Yu3atVx88cUkJydjtVp59tlnSUhIYMaMGUdtw1NPPcWMGTOYMGECP/vZz0hNTaW8vJxly5aRn59/1PstWbKEN954gyuvvJKJEyei1+spLCzk5Zdfxmg08vvf/77P9nFxcTz22GOUl5czYsQI3nnnHfLz83nxxRf7TLp9PCZOnMjKlSt58skniYuLIzU11T9h9kAuv/xyPvzwwxOej+c3v/kNn3zyCZdccgmLFy9m4sSJ2O12du/ezfvvv095ebl/SFVGRgYxMTHs27ePX/ziF/7HmDVrFr/97W8Bhrwo5XK5mDdvHldffTX79u3j2WefZcaMGVx22WVHvc9Pf/pT3n33Xe68807WrFnD9OnT8Xg8FBUV8e6777J8+XImTZr0g9umVqv517/+xUUXXcSoUaO4+eabiY+Pp6qqijVr1mCxWPj000+/9+MebZ+55JJLWLJkCcHBweTk5LBx40ZWrlzZL/Bzc3PRaDQ89thjtLa2YjAYmDt3br9x/eCbSP6FF15g8eLFbNu2jZSUFN5//33y8vL4+9//ftyTHx9p5cqVKIoiJ6pCnAHS09N58803ueaaa8jOzubGG29k9OjRuFwuNmzYwHvvvcfixYv73OeGG27gtddeY/ny5Vx//fVydVsIIc5w3ycLnnzySYqKirj77rv58ssvufDCCwFYvnw5H3/8MXPnzj3uycsvuugiRo8ezZNPPsnPf/7z732uJcSgGJpF/0SPV155RQH6fBmNRiU3N1d57rnnFK/X22f7l156ScnMzFQMBoOSlZWlvPLKK8pDDz2k9P5Vrlq1Srn88suVuLg4Ra/XK3Fxccp1112n7N+/379NzxL0r7zySp/H37Nnj3LllVcqISEhitFoVEaOHKn813/91zFfw65du5Tf/OY3yoQJE5SwsDBFq9UqsbGxylVXXaVs3769z7azZ89WRo0apWzdulWZOnWqYjQaleTkZOX//u//+mw3UPuOfJ2KoihFRUXKrFmzFJPJpADKTTfddMy29iyhum7duj63JycnKxdffHG/7WfPnq3Mnj27z21tbW3Kgw8+qGRkZCh6vV6JiIhQpk2bpjzxxBOKy+Xqs+1VV12lAMo777zjv83lcikBAQGKXq9XHA7HMdurKAO/FzfddJNiNpsHbO+oUaP63X7k6+vZ77755hvlZz/7mRIaGqoEBgYq119/vdLY2Pid74HL5VIee+wxZdSoUYrBYFBCQ0OViRMnKo888ojS2trq344BlqHteT2PP/54n9vXrFmjAMp7773X5/YdO3YoixYtUsLDwxWDwaAkJycrV199tbJq1Sr/Nj37Rn19fZ/79rzOsrIy/21H22eam5uVm2++WYmIiFACAwOVBQsWKEVFRUpycnK//eqf//ynkpaWpmg0GgVQ1qxZc9T3qq6uzv+4er1eGTNmTL+/u6O9Jz3v4ZFLvF9zzTXKjBkz+m0rhDh97d+/X7n99tuVlJQURa/XK0FBQcr06dOVp59+Wuns7OyzrdvtVmJjYxVA+fzzz4/7OZKTk/sdL4QQQpw+jjcLXC6X8ve//12ZOHGiEhAQ4D9PvOmmmxSPx9PvcY92LqMoivLqq68OeN4nxOlCpSgnafZjIY7DnDlzaGhoOKlzV31f8+bNIy4ujiVLlgxZG4baq6++ys0338yWLVtOSq8mMXhqa2tJTU3l7bfflp5SQgghhBDDgM1mY/bs2ZSUlLB27dqjToIuxJlI5pQSw86jjz7KO++8Q0VFxVA3RYjv7e9//ztjxoyRgpQQQgghxDBhsVj44osviIiIYOHChXIeI84qMqeUGHamTJmCy+Ua6mYIcUL+93//d6ibIIQQQgghBllMTAylpaVD3QwhTjrpKSWEEEIIIYQQQgghBp3MKSWEEEIIIYQQQgghBp30lBJCCCGEEEIIIYQQg06KUkIIIYQQQgghhBBi0MlE50fwer1UV1cTFBSESqUa6uYIIcRpQ1EU2traiIuLQ60+e69pSA4IIcTAJAeEEGJ4OxU5IEWpI1RXV5OYmDjUzRBCiNPWwYMHSUhIGOpmnDKSA0IIcWySA0IIMbydzByQotQRgoKCAN+bbLFYhrg1Qghx+rDZbCQmJvqPk2cryQEhhBiY5IAQQgxvpyIHpCh1hJ4uuhaLRUJICCEGcLYPZZAcEEKIY5McEEKI4e1k5sDZOxhcCCGEEEIIIYQQQpy2pCglhBBCCCGEEEIIIQadFKWEEEIIIYQQQgghxKCTopQQQgghhBBCCCGEGHRSlBJCCCGEEEIIIYQQg06KUkIIIYQQQgghhBBi0ElRSgghhBBCCCGEEEIMOilKCSGEEEIIIYQQQohBJ0UpIYQQQgghhBBCCDHopCglhBBCCCGEEEIIIQadFKWEEEIIIYQQQgghxKCTopQQQgyRiopWPv+8lIqK1qFuihBCiCEgOSCEEMOb5ABoh7oBQggxXBUUNLJxYzUAycnBQ9waIYQQg01yQAghhjfJASlKCSHEkBk1KrzPv0IIIYYXyQEhhBjeJAekKCWEEEMmOTl42F4REUIIITkghBDDneSAzCklhBBCCCGEEEIIIYaAFKWEEEIIIYQQQgghxKCTopQQQgghhBBCCCGEGHRSlBJCCCGEEEIIIYQQg06KUkIIIYQQQgghhBBi0ElRSgghhBBCCCGEEEIMOilKCSGEEEIIIYQQQohBJ0UpIYQQQgghhBBCCDHopCglhBBCCCGEEEIIIQadFKWEEEIIIYQQQgghxKCTopQQQgghhBBCCCGEGHRSlBJCCCGEEEIIIYQQg06KUkIIIYQQQgghhBBi0ElRSgghhBBCCCGEEEIMOilKCSGEEEIIIYQQQohBJ0UpIYQQQgghhBBCCDHopCglhBBCCCGEEEIIIQadFKWEEEIIIYQQQgghxKCTopQQQgghhBBCCCGEGHRSlBJCCCGEEEIIIYQQg06KUkIIIYQQQgghhBBi0ElRSgghhBBCCCGEEEIMOilKCSGEEEIIIYQQQohBJ0UpIYQQQgghhBBCCDHopCglhBBCCCGEEEIIIQadFKWEEGKQ5eUd4pFH8sjLOzTUTRFCCDFEJAuEEGJ4kxzw0Q51A4QQYrhZubKClSsrAZg+PWGIWyOEEGIoSBYIIcTwJjngI0UpIYQYZPPnJ/f5VwghxPAjWSCEEMOb5ICPFKWEEGKQTZ+eMKyvhgghhJAsEEKI4U5ywEfmlBJCCCGEEEIIIYQQg06KUkIIIYQQQgghhBBi0ElRSgghznIVFa18/nkpFRWtQ90UIYQQQ0ByQAghhrfTOQdkTikhhDjLFRQ0snFjNQDJycFD3BohhBCDTXJACCGGt9M5B6QoJYQQZ7lRo8L7/CuEEGJ4kRwQQojh7XTOASlKCSHEWS45Ofi0uyIihBBi8EgOCCHE8HY654DMKSWEEEIIIYQQQgghBt1ZVZR6+OGHUalUfb6ysrKGullCCCEGieSAEEIMb5IDQghxZjnrhu+NGjWKlStX+r/Xas+6lyiEEOIYJAeEEGJ4kxwQQogzx1l3hNZqtcTExAx1M4QQQgwRyQEhhBjeJAeEEOLMcVYN3wMoLi4mLi6OtLQ0rr/+eiorK4e6SUIIIQaR5IAQQgxvkgNCCHHmOKt6Sk2ZMoVXX32VkSNHUlNTwyOPPMLMmTPZs2cPQUFBA97H6XTidDr939tstsFqrhBCiJNMckAIIYY3yQEhhDizqBRFUYa6EadKS0sLycnJPPnkk9x6660DbvPwww/zyCOP9Lu9tbUVi8VyqpsohBBnDJvNRnBw8Bl1fJQcEEKIk0dyQAghhrdTkQNn3fC93kJCQhgxYgQHDhw46jYPPvggra2t/q+DBw8OYguFEEKcSpIDQggxvA12DngV7wnfVwghhqOzuijV3t5OSUkJsbGxR93GYDBgsVj6fAlxNsrLO8Qjj+SRl3doqJsixKCRHBCiL8kCMdwMZg4ctB3kR5/8iD31e060uUKccpID4nRzVhWlfv3rX/PNN99QXl7Ohg0buPLKK9FoNFx33XVD3TQhhtzKlRWsXFnJypUVQ90UIU4ZyQEhjk2yQJzthjIHos3RdLg7+O2639Lp7jzlzyfEiZAcEKebs2qi80OHDnHdddfR2NhIZGQkM2bMYNOmTURGRg5104QYcvPnJ/f591SpqGiloKCRUaPCSU4OPqXPJcSRJAeEOLbByALJATGUhjIH9Bo9t425jT9t/BPP5j/Lryb96pQ/pxDfl+SAON2cVUWpt99+e6ibIARer0Kj3UWj3Ulju8v3/+1ObA43dpebDpcHh8uNo8uDVwG1ClQqFRqVCo1aRaBBS5BRi8WkI8ioJdxsICbYSLTFQGSgAa3mxDo4Tp+ewPTpCT/oteXlHWLlygrmz08+6mMVFDSycWM1wLALoeN5f8SpJTkgTgteLziawF7f66sBHC3gskOXvfvfDlAUUKlApfZ9qTWgDwJjsO/LEATmCAiKg6AY35dGd8JN+6FZIDnw3SQLhtZQ58DYiLGMCR/DG4VvsDB1IVnhWUPaHiGOJDlw6kkOfD9nVVFKiMHi9Socanawr66N8gY7FY12yhrtHGp2UN3ioMvTd1FLrVpFgF6DTqNGr1Wj06jQqtWoVL7zEQUFRQGvAi63F6fbQ2eXl063h97rY6qAMLOexLAA0iLMjIgOJCMqiJExQSSEmlCpVKf0dfd09wWOeoAdNSq8z7/DyfG8P0KIs4SiQOtBqNsLTSXQVOb7t7kCWg+Bx9l3e7UWdGbQ6kGt8xWWNDoOB4ECKKB4weMCtxO6OsHt8N3mp4KAMAhJgvAMiMyGyJEQlQ1hab7HO4UkB76bZIGYkziHcls5D218iDcXvolGrRnqJglx0kgOfDfJge9HilJCfAeX20thjY38gy0UVNsorLFxoL4dh8sDgEGrJsysJ9ikI8ZiZER0IMEmHQF6LYEGLSEmHSa9Bq1ajUbt6w2lVoEKFd3/AaAAitJTnFLweBXcXi82h5sWRxctHS7anG5sji6aO7rYWNrIZ7tqcHl8JytBRi05sRbGJYYwISmUc1LDCDPrT+p7cTzdfZOTg4flFREYvCGSQohB5umCugKo2ga1u6B2N9TvA1e77+caPQSEgykUgqJ9RSJjCOgDfT2djCGgD/AVodQaUGm6e0ap6BcEeLuLVF7wesDrBqcNOprA0QydrdBp8/XEqtwEhZ9Cz9w1hiCIGgXxEyHxHEia6mvPSSQ58N0kC4RBa+DqkVfz0p6XeHnPy9w+9vahbpIQJ43kwHeTHPh+VIqiKN+92fBhs9kIDg6mtbX1e628YW3r5PEv9/HHS3MIMp54t3ox9GpbO9lS3kR+ZTNbK5oprGnD5fGiUat8Q+iCDESYDUQE6YkKMhIZqMeo06LXqjFo1ehOcHjd9+H2enG5vXR2ebC2OTnY1EFVayd1tk5qWztp63QDkBZhZkpaODMzIpiWEU5IwMktUonh5USPj2eaE36djmZY/ns4/3/APDyvDJ412urg4CY4uAUOfusrRLk7fcWkoBgIjPYNqTNHQVCs73udEbTGwz2hTnGPJbxucLugywF2KzSX+3potdWArRo6W3zbhaZC8nRInwupsyBQ5lcTJ05y4Lvta9rHpppNJFuS+eeuf7KveR+vX/S6DOMTQpwVTkUOSE+pk8Rqc/LZrhp2V7XywV3TMBvkrT1TNLQ72VTaSN6BBvIONFLZ1AFAuFlPfKiJ2SMjiQsxkhBiwmL09XoyajWo1af4hOMYtGo1Wr2aAL2WMLOBrBjfAcHt8eLo8lDd2sm+WhsVjR18uaeGtzZXolbBmPhgLsiJ4cIxMaRHBg56uz/4YB9LlxazaFEmP/rRyEF//qHUM+FjcLCe1laXTPx4NrI3QNHnvt4rt63yDbESZ4aOJihfD2VrofRraCz23W4Kg5BESDsPguMhJAWMFl+vJ20AqIdwEWO1FvRaX1vM4b7he+ArVnV1+ApTdYXQVArFyyH/dUAFMWMg62LIuRwis0598ewIwzkHwJcFa9YcBBTOOy9JcuAsd3329fy/b/8fD65/kHcufge9Vi4OCiE5IDlwJKmcnCSj44O5d24Gf12xnxtf+pY3bjsXo17Gj5+OnG4Pm8uaWFNkZV1xA8VW3/CLqCADKeEBTEwOISksgKggI2aDlgDd0Bagvg+tRk2QRs1Io46R0UEoioKjy8PBpg72VNsotrbzt5X7efyrfSSEmrhwdAxXT0pkRHTQoLRv6dJi1q49BDDsQqhnwketVoXb7eugKiF0lonIhHkPwfIH4d+Xwi1f+oZTidOPp8tXPCz+CkpW+4bmofh6PoWlQdx4Xw8jS4xvCJ4uwDfs7kyg1oLBApEWX9FJUXy9qVoPQs1OqC+CdX+Fr/8MljjIugTG3wAxYwelQDWccwB8WbB8eRmKAlFRZsmBs1yALoDrs67nuV3P8bftf+O35/x2qJskxJCTHJAcOJIUpU6iiSmhXDo2lk921XDLv7fw6s2T0WvPkA+xZzmrrZM1+6ysLLSSd6CBDpeHkAAd6ZFmLhsXS0pEALGWAMwGDSad5pRPGD5YVCoVAXotI2MsjIyx4PEqNLY7Wb6tioJDNl7bUM6/1pWRFmHmivHx/GhiAvEhplPWnkWLMvv8O5z0TPTYu6eUOAvF5cLoH8Pud+G1y+HGT8FgHupWCfD1ZCteAfu/8BWinG2+1e3CM2HUIghLgeBEXyFRFzDoPYhOGZXK15sqcqTvy+uFjkZqtq/FXbWbuG2vo9n8IoSm+Pbd8df7CnOnyHDOAfBlwYIFqYAiOTBM5ETkMC1uGm8WvcmcxDlMiZ0y1E0SAhi6FeIkByQHjiRzSh3hh4yR3FzWyO5DrRxqdvDvjeVMSg7j3zdPxiRD+Qadoijsr2vn8901rCyso6DahkoFyWEBpEaYSY0wkxIegMWoJ8CgQX22nHwcp7feLiQ/v56sseEk5Eaw61ALxdZ2PF6FSSmh3DQthQWjYk7K/Fg9w9ZkuNqpMZjvr8wlchyqtkN5HjgaYcP/QXQO3PSZb8iXGHwNxbD3I9j3he93g+IbgheR4Vu5LizNNwm5IdA38fgw8tZbheTvtDJlnIlFk1p8k7hbC30r/8VPgsm3wehFoDX84OeSHDi1JAdOvpM1p1SPLm8Xf/72z6hUKj649ANCjCEnucVCfH+PPJLHypWVzJ+fxEMPTT+lzyU5cGqd6Tkg1ZJTYHpGBBq1ilc3lHPNPzfxxq1TCDLJ5OenWk8hatmuaj7dVUNZgx2TTkNmdCCXjYsjI8pMdJARi0k3KJORn85yx0X6/83OjmBedhT1bU42ljayo7KZe97cQViAjkUTElg8PYWE0IATfq6eYWswdMPVjhy7PlRXhk6F0+H9FQNInALTtbDhKXjpfLhpGQRGDHWrhoeGYij4CPZ8APWFvsnHI0dCzhW+fy1xvkLUMJ/bZVyuLweyciMhMwIy5kN7A1Ssh0Ob4aM74cvfwpir4Ny7ITz9hJ/rdDhOSQ6IoaRT67hl9C08ue1JHlj7AM/Pfx71UM5JJwSDu0Lc6XCckhw4fUlR6hQ5Ny0cvVbNv9aVsei5DSy59Rxigk/dsKjhqk8hamcNZY2+QlRWTBBXTUxgRFQgYYEGggzaM2ZeqMGQnR1BdvbhE2S1SkW0xcgVufFcPCaWvTWtrD/QyJJNFbyUV8Z5I6P4xdwMxieFfu/n6umWOpTdU48cu75yZQUrV1YCnHYh9H2vdJwO7684ioSJMOvXsP5JeGke3PAhhJ+6YVHDWkMxFHzYXYgq8hWionJg3HUQme1bcc5gOXPmhRoEOdkR5PTKAVRqCIry9Y7KuQzq9kLJGtjxBmx5CdJmw8xfQ8qM7z208XQ4TkkOiKGWEJTAosxFvLPvHV7Y9QJ35d411E0Sw9z06QmDdvw7HY5TkgOnLylKnUITkkK5Z66GF9aWcMnT63l58WTGJoQMdbPOeMcsRKUkkBUdRHigAbPh7JkbajDpNGpiDXrOCTQzb1o4e5ra+ba0iSuf3cDY+GDuOi+dBTkxx13kS04OHvKK/ZFj1wfzytD31ftKR8/3xwqk0+H9FccQMwbm/N43sfQ/z4Nr3/Cd1Isf7miFqLHX+t53c+SwHJZ3Uqi1EDsWqyadas1BMtmKue5b+PclEDUKZtznm4dLc3wfI0+H45TkgDgdzIifwYHmA7yw6wXGR43n3Lhzh7pJQhzTyRoWdjocpyQHTl8yp9QRTsacUsnhfSe1rWlx8PSaA9g6u/jrVeO4eGzcyWzysHC0oXkjYwLJjAoiKyaIiEADAfqzsxBlrbdTWdlGUlIQUZEDT5p8PNscr63baikqaiIrK4xJE2NwuNysP9BIXkkDh5odJIaauHdeJosmJKAZRj3QBmO8du/n6AmkqVPjWLhw6HvYyFwix6FnTqmIjL63t1th7ePQXgsX/w0m/PTkNXg48Q/Ne7+7EGXwFUkiR0L0GF+PKH3g2TNJeS9Wa69jfNRRcuA4tvk+tm7tlQXjQqB8nW+S+OYy3zDIGffDxJtAM3ymKJAckBz4LgPNKdWby+PiL1v+Qpe3i3cueYcYc8zJaLIYBo7n+HOyj1Gff156Wh2DTgeSAzKn1BkpNsTEgxdl8ezXJdzz5g42lzfxXxfnoB3m8xp9F38hancNn+6s7lOIumpigr8QZR4GE8lXVrZRVNTU5/sji0+9t2lscJC/s94/Z9T3lZQU1Odfk17L+TnRnJcVyfaKFlYV1fGb93fxj1XF/HIYFacGe7z20briymSRZ6DAKDj/EVj/d/jkHqjcCJf87aRMIn3W6zdHVHchatx1ED0aAqNBbz4rC1G9HTUHogbOgYZGBzvz6xmXG9l3mN730CcLdEbIPB/S50L1dtj3JXx+P6x7AmbeDxMXD4vilOSA+KH0Gj0/G/Mzntj2BPesuofXF76OUWsc6maJM8Dx9J7pvc2hQ20/eM6kM31Y2KkgOXDynf1n84OsrKyFDSsq+xUDgow67r9gBO9uPcSSjRVsLW/mhZ9O/EETSJ+NjlaIyooJ4scTE8iODiI8yID5LO0RdTS9Twx6n3T0Lkr13mbVqkp25tdjt3dh73B/795TUZHmftsXFjb4C12/XZBF/qEWlhfU8pv3d/HUqmJ+OX8Ei8bH9xvWdzYdMAcjmHsH3cKFaQO+Z8cbhmfTe38mKStvYdOKwv7FAF0AzP4t7H4Pdr0Nh7bANW9A5Iiha+zpqqcQVfCBb0U4rRGisn2FqKhRvrmP9EFnfSGqt6PmQNTRcyB/py8HOuzuE+o9FRVl7nOfvYUN3YWuVHLm/gFqdkHhJ/D5r2Hdk7451CYu7jd319l0LJIcEMejrKyFDXs7yM0d+OJglDmKm3Ju4sXdL/L7db/nyfOeHIJWijNN7+PP0Y4Bvbd59dU9rFxZSUuLk9ZW1wkdB44cFnaik4OfTcciyYGTT4pSJ9m+/c2U7fJ9UDwyhLRqNT85J4mR0UG8/m0FF/xtLQ9elMUN5yYPqwLLkRRFoai2jS921/DZ7hpK6/sWokZGBxIRaCDQoB2279NARaKek4+BtskdF0l9fQeVlTbq6ztISQlm3rykAQtThYUN5G2oJjzMyPQZ8UctRtXXd1BdZQd8+/aEpFByE0PIr2xh+d5afv3eTl74poQ/XJxNqtHQr8spnJmrQfQ2GOO1jyfoBtpmoMA5m977M8n+4mbyd3YA9O+hotbAuGshMgs2vwgvzIQ5D8K0e2G4r8RUvx/2fgwFS8G6t9ccUddBdI6vR9QwniPqyAIRDJADvbYZl3uUHBigMLW3sIENedWEhRuZMT2+3zY9xaj6+g6qqn05kJMdAXG5EDv2cHFq2a9gw9NwwX9TYZpJwd4myYETIDlw5tu/v5nSnb5j1dF6rI+KGMVlaZfxUclHPJv/LHfn3j2YTRRnoIGOP0ceJ3pvM39+MpWVNgoKGqistDF2bCSLF48e8FiQl3eI99/fT3x8IFddNbLfNj3FqMpKG/v3twDfPTn4QEPQetp4JpMcOPmkKHWSVFS0smlTDbGxgVjUGnLHRR5124nJoSSHB/D6pgr+6+MCPs6v5m9X55IYPnx6TSmKQkG1jS/21LBsVw3ljR0E6DWMjPatmpcZ1V2IMmpRD9NCFAw8T9SRBaqBtsnOjmBFd3CoXXtprfFgLdMRGa7B0WGny+UEwBIShspyATt21GGxGGir30ZcrA5zoIWwiEgiYuLYvqOe3buaiIs3My43ss++rVapmJDsK05tKW9i2e4aFr+yhYxgEyPbfR/GjjxgngnV+qF0PEE30DY9gZOXV0V5eSuLFmUyaZJvngrpcj14amrb0eu1ZGaEMC736DlAXC4seBS2vgwrH/JN2L3oRd/cSMOFovjmhSr4yPf6G/b1LURFZfuGPRotw7YQBQPPE3VkgWqgbXKyI1i5wpcDLV01FNXA9rJthIXraO/opNPpAsBk1DMq+hx/DhxqqiA0Qk1wkJno8BASYiLYsb2OXbsbiY8zkzsusu++rVIfLk5VbffN9/XODQSbR1NpuxmYKznwPUkOnNmqa9ow6LVkZFjIPVYOAPOS51Ftr+b5nc8TFxjHFRlXDE4jxRnnyOPmkceAgY6r06cn8PLLuykoaMBkqqS11UNt7QqSk420t7fjcDgAUKlUBAZewVdflRMRYaKraz/x8V6Cg4OJiooiISGB5ctLWbOmmhEjQpg/P+m4JgfvXQyRHPh+hlsOSFHqJCkoaGTPnnqCkgO57trs79w+ItDAvfMyWVfcwMf5Vcx98mtunJrCr84fcdbOkaQoCrurWvl8dy3LdlVzsNmBWa8hK9bClNQw0iMDCQ80EDTMC1G9HW2oHoDX62V3/l4+/zgPa3UZenUjne01mAIC+d9/vg2AWq2ioeR1DubXDvj4kTEJ/Nf/XY/d3oXBoOGrNx6itrKwzzZqjRaTOYy2pFR+8fZH/t5q7bZW7J0aDh5sJykpiClp4UxIDmHNvnq+3F1LicdNR1U9k2b0nZTvTKjWn4l6gubFF3eybVsd4FvuVt7jwVVa0kqnw01ubtR3z+NjCoEZ/wHl62Hnm/DcVBh/E8x/yPezs5GiQF0B7P3IV4hqPOAb1hg9CnKvh4iRvsnKDcHSc6zb0YbqgS9Xt+SX8vZH2yivqsWjaaexrQmPx8vGd3zDgdRqFdsqNnJoW3W/xwawBAawccnF/hz4+wcvsb2oqM82GrWa4MAgkuOiyHv7L5iMvrnQWmztOB34cyAqYRLE5kLpGoL2fMydmvvpqDmfgKlPkiw5cMpJDpweSkpacTjdTMqNOq55Pa/Pvp4WZwuPbHyEMEMYsxJnDUIrxZnmaMdNRVHIy9vNs89+QUVFKUFBLTgctTQ0NFBQUACARqOmvf1LVq3ayapVAz/++vX30drqIiBAy4cf/j+2bPmqz8/VajVmcxgtLck89tiXRET49u3W1laamrwUFjb3KzD1LkQdWUCRHDg1ztQcODurH0Ng1KhwPv76S9a8vZrm4nnMWXAecXGh/p8P1JtFrVIxe0Qk4xKCWbqjin9vKGfp9kP8Ym4m15+bhEGrOdrTnTGcbg+bSptYubeOlYV11LR2EmjQkh0bxPSMCNIjAgkL1A/bQtR3rZh35ITjPf50361s27iWjva2fvexhEZirbdz/vxkIiMD2GeZhdvZhCnATKdLg61NhcGgp6tLIT7RN9dBdnYEW7fVsjkqi8AgC2o6aWqw0lRfh9fjxm6z0tEe1Gf45O/v/AmVpaWERGWSNWY85y2YSfbYCVyQE8OM9AiW7alh7f4GZj/+NXefl86ds9PRadQnNA6799UU+O5lUYeT3u/NwoVpOBxdmM06/3K3YnBZW8t5ZcVqzmnoJCp6BkmJvXJgoJXRVCpInenrZbL7Pch/3Teh94xfwpS7QH8W9KD1dEFFHuxfDkXLoKXCNzF51CjI/alvTi1zxLAtRH3XinlHy4Fbfv83Ply5kRZbe7/7mAx6tmypYdKkGCIjAyByHLXNcQSZTbhdKuxtCiajjq4uL7ExFnKyI8jJjmDr1lriw+LQjdbgVXVR29BMtbURj8dLk60VrU7lL0gBXHf/Y2zYXkRydDyTx4zg8gUTOHdcFlGZ56NJmQmFnxBQ/BX83ySYdo9vTjWtQXLgJJMcOL14nDXkL/0Ez4RGoiLnkJR8eD8f6O9drVLzszE/4+/b/86v1/6af13wL8ZGjh2q5oshcDy9hgY6bt533328/vrrNDY2Dnifjz8uZOHCNJKSLFRWzqO6OpagoCDsdhWNjV5MJhNOp4e4ODPTpycwfXoCn39eyoYNyUyYMBOt1kldXR1VVVW43W7a2hooLm4jNPTwZ5u77rqLjz/+lKioEUyefA7XXXcBU6ZMIS4u7pi9fSQHTq4zPQdUiqIoQ92I08kPWeLwgksXseKzDwEwBgQy7bwLmDbvQs6ZMY+CorbDyypPHHjp19L6dj7Kr6awxkaYWc9tM1O5aVoKAfozq3bY0O5kdZGVlXvrWFfcgKPLQ7hZT2Z0IKnhZjIiAwk164f10LyeeZqMBg32DveA+0VzQz35m/PYtPZrDpZX8vDTS/yFq9/dfi3bNnyNTm8gOiGD5PRMMrNG4lLCaesMZdqsyQPuZ2+9XcjO/HoyMkMIDzPR2ORg+rQ4srMjBiyQ1dS0sndPOUZdG4FmNeMmT8Nab6eiwsaf751HW2tTv+dIGzmKaXMXcNM9D1Df1sm72w6RX9lCYlgA/33FKGaPiOqz/fFMmNh7OVrghJZFPVu7CQ/mUr2yFPh3u+vGH/P8kg8AMBkMXDxnMlfOn8rFc86heF+vHJh0lCXAm8ph97tQkw8GC5x7F5x7t28I25mkowmKV8C+L+DACnC1gynMNzwxPBMiMsEc6XuNw7AQBYfnaTIYNXTY3QPuFw3NrXz97W4+/3obO/aW8uU//x/R0YEAXPur/+Wdz9ei12lJi48nJyORsVnJjExNwN1hROkMJDs7vN9jvvVWIfk768nMCCE3NwqXy0NFhY1xuZFEhJv6nTB7PB4K9lWzY/dBAoJUXLVwqv/E+prf/YHSQzX9XltORhILpk/gr7+7HZWjCfLf9K04GRQDF/0Fsi/ts73kwA8jOXDy/ZDXecd/3MGLf38RAJ1ezzlzJjNjwQymzp9KcYnjqDnQ5mzjye1P0uXt4tUFr5IRmnHSXo84PfUc+8xmHa2trgH/hpubm/nmm2/4+OMv2bBhE599toLMTN+w0Lvuuovnn38enU5HQkIGo0ZlM2HCaEaOHInVGkB9fSjTpyf2ecyOrg4eeWwV674tY+RYM2MmWbA5bZRV1ZORFURgsIbqWhvhkQYCLRo8igcUsFa0UlncgEnjZdbCc2lv9dBUo/DKH/+XAwX7+r22ESNGMG/ePJ5++mk0mu/uaCE58MOc6TlwZlU7TnNXXPtTbF1aCjatpr21kdXLlrJ62VK0Oj1jJs1g0W3/2+9K55GTTN83P5OiWhsrCup4fPk+nl59gEvHxXHL9FRGxgQd5ZmHVofLzeayJjaUNLJ2fz1FtW2ogOTwAKZlhJMabiYh1ESISY/ZMLxWzTua/J31/uJQbm4USUlBKIrCgcLdbPr6KzZ9vYL9BTv73Gd3/gHmnT8OgFvue5Cf/fqPJKePQKPVYq23k7e+msZDNhJTgvrtZz2Sky1UV7WTkxNORYWNA8UtmM06srMjBpxMvaraQY1VR1ZWBuO6i1yVlW3s29fMA09+SUhAA0W7d7B/Tz5Fu3dwsOwApfsKiIqNB0Dp9DAlKJCu5i+pcqZy40t25mVH8z+XjyYu1ATAypUVrFxZCRx9wsSBrqYceWXlu8LsbO0mLEv1nl5uWLSQrqZqPt1QhLW5mfeXr+f95evRajXMGD+ah26/fcC/zw0bqtiwsZppU+OYNus3UL8Pij6DtX+B9X+DnMt9Pafixw/BqzoOXQ6o3ARl30DJGqjdBYoXQlMgeRqEpUNoKgSEgH74Tlbe2878+j7FoZ4c2LO/nE/XbObTNd/y7a599L52+PXGfVxzxUQAfn/HNfz2tqsYlZGEXq/DarWzPq+aphoHOTnh6PWaAfe1cbmR2O1dhIUb+6zSB3Ddddn9emtpNBpcHTo0XSGkRoUBh4cUvv4/j6APdLBlz34279rP5t372Xugkr0HKgkL9vWutbYbqdRfxbdNRmbYCxj79vWoUmfDpX+H8HRAcuCHkhw4vZx/yfnsqy5h19e7aLbWk/dVHnlf5aFWq8meMJpFd9014N/m7m02DFtnYR/9Fbd8dQuvLHiF9JD0IXgFYrD0HPsmTYrm/PNTGDUqHEVR2LdvH59++imffvopeXl5eL1e/30++mgNv/nN1QDce++93HrrrYwZMwaDwUDBgYO8/tkmPttfSfRIN/bYZj5S2njz81YaHA00dTbhcDsgEUiErcBWW/cDh0N+vQZdsxa1So2mSoO6Wo1apUZRFJxdXXRFeVCrFbZu24Db60ZBwfArLelV6ThKHTjKHDhKHXQe6mT//v3UOevQ/liL0RMMLRbs+2qYc+5ULphxAcHG4AHfC5AcOBFneg5IUeokmjRtFtWeZHIm30mwsZqVyz5j/86vcXXU0dxYx7nnJlFY2MCqVZV427eSPXY0q9d2UXygBaNBQ2lpKwsXppKTHUGYRsMWvYFKl4tlu2p4Z8tBRkQHcvGYWC4dF0daZOCQvc6WDhc7Drawo6KZDaWN5Fe24PYqhJh0pEaYuXRsLBmRgURZjAQZtRh1Z/4wxB/qyF5IPZOF546LJDzCd2X6taf/xPIP/t3nfhnZY8gcPZmI+LGMyIr33x4SlUFlZRuBzU6iIrXkra/is89KUKlVREYG9Cku9fTKyh0XiV6vITrGjF6v6dOGI/XcJznZQlZWWJ8PT72HkkRFJpE1doL/9QUHOakuzSco5PCJy9ZNe1n24v8AEBydyMcpE1m5eioP3nwld8zO8E+UeKwJE4/s/jtQiHxXmPU+WB/rKskPvYJyovc/0fsNxgog4vhNn5xLnP0i5k78EZrAdt78ZB3r8/Npam+k9FANs2emUljUyKpVlVgd5YwZmUiQPpw1ayopLGykvLyVkFADOdlZEDmCpgN78exfSVjRF2h2vQPhGb4C1ZirfCv4DVWR39ECVdvg0FYoXwsHN4PH5RuCF5EB2Zf7ekQFx4ExGHSmoWnnaeTIYTs9k4X37qH0+Mvv8sSr7/W53+jMZKaMzWFEQhqTcw8fJ2NCo6isbKOlxUVUlI71eb4cUKtUmM06rrvu8PyWPb2yxuVGkpMdQYfdTVFRE5WVbX3a0Vvv+xw5hLBPDkQlMHF0JovmzvHlUjDsLSvBoNcBvhzYsv0g9z79EV5FISkyiEvTv+aKrycw54bfoD3vd5IDP/B+kgOnlzHjxzDnp5cyYsIiIix2li/9mr1bttHZWkflgXJmz81k//5mVq2qRN1ZQWJKNFpzNGvWVHLgQCdx7TOxT17LTz+7idcvfQ1NS/hZ2bNjODryb7z3sW/69AQqKlq5884/8mL35+YeWVlZTJo0nYSEccy/YBIHmg9woPUA2+v2srumkPbyehpcdbR3tUMoEAp7O/VEBIZi7jIToA0g0BOOxxbG6KhwEmPCqD3opK7GRWp8BMGmAA7stzMqO4LMjHBUqFCpVBw40MzegkZyRoUTGmKkqrqduDgzYeFG6uvbqaxuISRKjWGcl053Jw0tNuqabYCdmqKDdLo6KWsto6ndhq2jlYL/3sWzrr+hDdESNiGMzBmZTJw5kZzIHCKnhnOu1sTc2YlHff/OpBw40ccYrjkgRamTbN/+ZvZtqyc+LoQLfvxLjJGLcDuriYtRU1jYwNIPiykvq6dy04N4vW6M5khCY3PRRo6jsjKb/J2BZGdHcOhgO60H7UzJCuP6acl8W9bI7iob/7fmAH9bWUxSWADnpoUxa0Qk56SEERlkOOk9kBRFoaHdxf66NvbVtrGnupVtFc1UNPqWOg80aEkKD2B+dhRJYQHEhZiwGHUEGrSo1dIbqrfeE9VGRgSgdh+kpfxDAibfQGWlhaKiJiLixqA3mIhJmcj0uRdw5bVXEhoRSWFhAytWVvDhRxWcPx/CI0ysWlWJzeZbQS8q0kxjUycqlQqzWY/RoMFab/cXpnp6ZdntXaSmBBMbE+Avjh1tAs4VKyvYmW9lXG4U116bRWXl4bmrek6qALZuqyUpKcj/+rKywph94eX+bZOSgsjf7CI2ZTLWQ/m01h2EuoM0ffsRv/jwL/zPmDn8z/2/YPHiXAoKGqmoaB3wgPrBB/tYurSYRYsy+dGPBl6d7LtOanofrHu6uPbc3tsPvYJyovc/W6/cDEf7i5vZurWNuPhA7vzRleRETaats4WQCCgsauTDpcWUl7fwxrcv4nA5CQ4MYmzaSExKNHpHEjvz632TpKvUlLZGUNR8AaMyFjI+9ABU58PGZ2DdXyE4AVJmQvpcX28kS/ypKVLZG8G6F6yFULMTDn7rm6AcxTc3VGgKZJzv+zck2TfU0BAEarkg0VufHIgMwEUr+VUbyRg9g47uHEiLTcGg15GTnMFl86Zw+3VziY+OYG9hAytXVPDZJxXMPx8iwo/IgSgzTY2dqPAVpAxGDVar3d/rqadXlt3eRYfdTYBZ67/gEBVlHnBS/pUrKsjfaaW+voNrr83y3967uAawdWv/HFh0wXT/9klJQXy7o4sxaVnsO1hCZX0bz9TDM5sg6v0/csWYv3PVPf/LQw/dRkVFK59/Xjrgh3HJAXEm2b+/maKtCvHxgcy/6kcYYqbg6Wwl3OJi//5mli4tpqLCxqG853G0tWIMCCQ+M5uQmHSMXRm4NszEOW0dN395M4tNj1C6xXfKJvvFme3Iv/HQUBtu95e4XHOBBAoKGvF6U9FotKSkTOCCS+Zx3rXjaQ5oJm//DlbWf8iy7f9Cyff1nNJ5TeicQUQGhTE+ejz7dzuoLHJh8FiYlJvMlKxEYqIs6NQ6PnjvAId2NuHKCCFIHUVMmBa7we3PgTm5/du7aXUZO3c2YqvTcO21WbSqNYTog/C2gd3qZnyab76iyso20pKC0Ha00VLmy4Fbb43B4/Xg9rqptraw8qsCGjM7aSgppaulC+tqK9bVVjYHbsYyKZjgWRYC0gJYXaYnrDyO7PCRTEudxJjIMYwIGYFOozujcuBEH2O45oAUpU6i2lo7Ho+CWq2iq8tLS4uTlNQQ2tsCCAjSkb+zHkeHB7W3nYT0idRU5NNpr6fmwApqDqxApdbgrB6PRXcLxpCJmAO0tLZ04rJ3sWBULGMjgigoaaZFrVDrcLG6yMq7Ww8BEGLSkRkdRE5sECkRZuJDTMQEG7EYdQQZtQQZdei1vu6XXgW8ikJ7pxtbZxc2h5vmDhc1rQ6qmh0canFQ0dhBibWdFkcXADqNimiLkfgQE+MSgn2PbzESaNRh1mvQamQoxpF691BKSgqipaGGLatf4ek/fEz1wXIATAFmFl53DwBxsRejCRxDwZ5WTBGRdCkBbN1WS36+lfx8Kyp8JzKZmaHYbC6cTg8bNlRxsNJGTk44ZrMOo0HDzl31LP+qnPG5UVy5KJPccb6hGh0dXRwoaWbixBi2batj3dpDzJyVwEUXpvVpa0+hSgFaWjpZ8tpe1BoVASYt27bVoVKruHBBColJFv8J1tEm4gVo7QgnIutXzL/aQmpcLRtXf8mGNcuxtzVSvfEDfrsknUur9UTXuVEUxX8ArqhoZc2ag4DCRx8d6LOCxEB6Jmg8Hsfq4noi3V97h+SJLrt6pne7FT41te143EfkQHIwbe0mggJ17Myvx+Hw4MZJTloGe8sP0NrexrpdWwHfssw7GjJo9lzIOVnjcbk8aDQqDMFhMHIh1pCZ1JZWkqrbT5CjHEpWw863fE9uCIaoLIge7etRFZIIljgwhvjmbjJaQGvwrYCneH1frnZfr6fOVnA0ga0aWg5CayU0l0P9fuho8D2+WgtBsRCcCDFjISQeLAm+ApQ+EDS6IXjHT29H9jZqaG7hw7UrufGhdRSWHATA3tHJH++8CYC4uASMPEJRoY2R0ZHoVCa2bj2cA6gGzoHKg4dzwGDUsGtnPV8tLyd3fBSLrsz0D9nr6Ohi27ZaJk6Mob6+gw+W7mfWzAQuuiitX28qABRfDry2ZC8atQpTgC8H1CoVCy5MISnx+HLAYdMxd+Ql3HdNGOEJnXy8eiMfrdyEtcXGi5sayQ2/l/mWPRRyOxu+9T1ecnKw/4pxcLCep5/ewf79zYDkgDi9Vde09TsfSE4Opr3dRGCgjvzuHNCouohLTaW6ZB8OezslO7fAzi2oVCoi4pOYwLk0z6rk2c7fMTXg5wQHpwBn75w4Z7OeIWWjR0eQk2Ng48a3ePDBd9m1axcApaWlTJo+CWdsCZbzrUzLuIKWoCrWmT9l3b5P0WNE22mhrU4LHcmMSEgkMzaRsr0u3J0q1F4d2vhQ5sYFUtFlw2jUsHNHPeu/KCA3N4pFizKZkBuDw+7tlwNLl+5nZncOWK12du9uABTGjPH1nlW6c2DJkr2o1Spmzkzgq6/K2LWrgbFjI7jggtSj5oBGrUGj1mDWBmJrDCIm+xouui6ckUmd5K3IY+0Xa2lpaKHx6wayYycxf8G5FFSUU91iZZt3C99YV+DFiwYNMfokGvZYaLSF4fyigUWLRgzYIeN0yYEf/WjkCT3GcM0BKUqdROXlNhobHQRbDCSnWHzFgA63fxLRkBADFosOtSaJC297lonjw9i1ZSOfLf2MPVvXYms6RMnerRTsmk3ciCw6O93szt/Pyg/XE586niZ7NEGWQGbOTGDRlEQ6nB6qWxyUNLRTZ+ukos7O7vJmXCpf4en7UgEWk44Qkw6LSce4xGDCAw1EBhqIshgI1Gsx6TUYdZphO0H595G/s5787TWU7f2Gttpv2Lbha//cIAajibScGXh0vrkCeiYlnzTRg1arJ3dcJJWVbaxbV0Vzs4OUFAtGgxajQYPL5cFi0VNf76agoIH9+5q48soRXHdtNhs2VlGydD/t9i42b65l4qQYJk2Mwd7hZtu2OiwWPUlJQSz9YD8HDrTQ1uYC4PNlpbg9vrZlZ0f4V+6rr++gvNxGfFwgm76tobGhE4Dde+qZPsM3nLCn19VAqwfu3lVPc3Mn4eFGJp+TTHb2RGaefzEul5OVy75g1bJPCM+dxapDTVg0ava9+yy//e1abrppMWlps1i+vBxFgVGjIn7wChI9H+IqK1tZt66KRYsyB/wwdyLdX5cuLWbtWl+B+FjLrh7rg+SZ3u1W+JSWtNLY1IklOIiUZAvjciPpsPfNgSCLjkR1BLfffB8TJ0WxflsBr7z3DV9vyaeqvo78omI254/EQjKdnW4qqxt5/5svGZWaAQ4LocFmZs6cyqQZl4OrA9qqfXNQtdXSXncI5eAHmFXtqBX3ib0IYzCYQn3/xo7zTUhujvJNUm0I9K0IqAuQeaGOw878erbn17FtXwHF1r0s+3oznu65QQx6HZNzRhEbnATgL2RMOScBo95XHDoyBwxGLQZj/xzYt787B67LZsOGKpYe2I+9OwcmTYxh0qQYOux9c+CDpfs5UHw4B5Z9XorH7cuBnOwI5p/fNwfi4gP5dlM1DY2+3ll7dtczY3qvHIgyD7h64K7d9bR058A5k+PJyY7g0rlTeO4hN+9/sYk3Pl7FzHMC8Wx7jdnaT/miZCr3vLmT2267lczM89i1qw2tVkV4uIkRI5AcEKe9kpJWGpscBAeHkpxsITc3EvsROZCSYiEhIRDt5Js5d0oUbnstn7y9hp0bt9NUc4j6QxW0HBzJiJrLKAz7jNUhT7DhoTcYl3whtbURRESEcc01WQPuL8czYbQYXCtWlPP++5/x7rub2b9/PW6376K/RqshZlQS+aF7mf7WdBQUjBojwYkRRNjiSA2Mw+QO40C+m/YmhVh0GPVGUgkj3Gum3WSjvr2DffuaOFjmYNKkGObN82XKF1+UUVfXQUdHFZMm+XLAfkQOLF26n+LiFtpsvhxYt+4QbreXyMgAgoONnH9EDsTHB7Jrl5VNm2oB2LOnkdtu860Ueawc2L378PnApMm+BZbOmXMO9z5yL19/uYmvlq7i3KkLqF5vIDc5A/eu9eQt+4xZi2ZiHh1FlbMeu64Fd1IJgZk72adaw+x3XmZc1DjOiTmHc2LOISMkA81x9NAe7Bz4vlkwXHNAilInUUqKhayRYYTptYwZG0lUpBlrvZ1VqyqprbVTXdWO1dpBS4uTzz4tITTEwOSZc0nOmkJlZRsVB0rY8e1a0kfNIDk9jIOVNnZv2sHeDa+ydc2rgJqg0CSaSifw7epsJk2dTGLaSCKdKlJCg6jf2IDWamf8uAimz02iucNFZ5cHp9uLs8uLR1FQoaKjw4Wt1YVKUWhrdpKaHExGcjAhZj0mnQadRo1eq8agVaOTHlAnLHdcJO4uJ+899VccHb7hbwZLNiPHL+RHN/yYvA31NLXjHxpXWdmGOUBLZmYo4REmwoHm5k4qKtqYODGKadPiKSpqoqLChs3moqWlE8ULOr0Gm83JqlUVbPrW191Tp9OQnhGMOUDL1m21mAO0ZKSH4Ov/BDNnJdDW5iIiwsS6tYdoaekkJMTon18qOzuC8AgTeeurCQjQMX1aHLt21ftfW2OjrzjVM2QD6FeUKixsYNO3vlWZzp0S12eooF5vYOGVV7Dwyit46+1CGioacKcE8Omy9+hqPMgDD2zFbA5kwoQLmDnzCm6/fSYpKSE/6PfR0x123bpDlJS0AEe/2v599ZwkfdfJ0nDtkjucpKUHo6sJI1YXy9gxkURFmbFaD+dAVXV3DjQ7+fSzEkJCDcybmsuY9EwqK9vYX17Nqg35TMvNISsrjMqDNr7ZXs7Sr1ew9OsVqFARFRrJN/tHMGJFMudNHcWo9GSsdgsBQVqWryumqa6ZyeODuWxemG8VPJcdPJ3gdoLXDSo17fYuWm0uurxa6lsgNjGchOQoCAjzFZ3UOtAaQasHjX6o39Yz1rjcSDxeD79+9p/UNfp6+UQFxTJn/BTuumE+W75tQHH5jv89+0p1tZ3IKBMR4SYIh+ZmBxUVNiZOjB4wB7wK6HW+HFi5qoJvNx3OgYz0YALMWrZurSXArCU9I4SeHJg183AOrF13iJbmTkJCjf65pXKyI4gIN7E+z5cD06YPnAOTJsVgtdr9w/h6n5DsLWzg202+HJhyblyfYYI6nZbrLpvBdZfN4K23Cvl6fyI/GbGBrXlvU3bQwx/+8B8YDEamTbuQK6+8jptvnsCYMZE/6NgpOSAGQ3p6MFlNYYQSw5gBcqC6up3AQB3V1e0cOtRGR0cX9947kbg0Xw4cqqhl+/ptjBidQdaIFAIPXsXKAy9TsGo521gOgMUST13dFD7+OIcFC2aSkzOG0lIHwcF6nn0239+r8FhFqZ6TYoejiz17GqSIdQrNm5fE08++QVO9r2BhTDITdl4wlskWjNpQdI5QMvVJTMzMRN8ZTFOdl9DUQJwdKsyhWnbVFnGwoo2JE8MGzAGtVkNwsIHaWjuffFJCaqoFs1mHWg2Bgb4ClNVqp7XVSVSUCYvFl+szZybQZnMREWli3bpDVFW1ExkZwIQJUf7jeXi4ibzuHJg+PY5nn8n3vy6DwVcEOlYOFBY2sKk7B849t+/5gEarYd4l05l3yXTeequQnd2LbhRu3oT14CHe/8dbaHVaRk2exIyFc4kekYYl1kOTqoqDbQcpbi5m3aF1eBQPAdoAcqNymRE/g5nxM0m2JA/Yk+p0yIHe7QDJApCi1EkVE2PmnHNiSQ4//IdYWdmGzebC61FQa1QkJVtA1UZbexcrVlb4h0xNmhhDUlIQyRnp/p4nSUlBuNrHYVIvZG/+tzjaG2lrLmfTqnIAPnoVbv71s3j1WWg0KprrSuisKyds8lRSQ9LJivEt0dizMltTk4Pp0+KwezWs29JE4d4GHJ1uDJPd/HhmyuC/YWcZr9fLtryv2fj1V/ziP/9MeISJ7JwYLrr6FjxuF+rAadQ2mMjMDCU0NIgJ49XYbE4KCxtZvryMgAAdMTFmPN09liZNjCEiwkhFRSsNDQ7MAVpiY8zYbE4OtnRSUmIDxUtEhIm8vCpKSluwWAyEhBhBpSI1NYQvvyxj2zYrEydGMXNWItu21WGtd5A7LpIrrsgEFFxdXv8khtXVvg9LY8b6rtDbO7rIzY0iOzuCiy9J5YsvyvG4vXR1eflwaTFlZS00NnYya3YiP71hFHB4Uvf8fCuNjZ3ExwUyZmzf+Up6T/zeUwgbNTqcb371NOu++hDHnpXYG6tYt24p69YtZenSLO69917uuuuuo77/39WdvacbbHy8maVLi3G7PeTlHTopH8B+9KORxxVoJ6tL7tFeq3TpH3qxMYHEToqBiBT/bT054PEqaNQqkpMsqGijva2LlSsq/EOmJk3y5cCIlDj/h7qkpCBaOjOxeaezYcdeGlqbqWu28vEaK7Cex/8N/+/nd5AUmolGo6LS2khpzSEyJuTSEZRKQNThya57r/Cn12tYt7eKvYUNdDrcTJ4cw70zJg7+G3aWURSFr7/dxZvLvua5h+7xF3auLTmfVnsbWTGjsTfryMwMJSrSwvgJGn8O5OdbCQs3UnKgBQUICTYyaVIMEREmDh1qw9HppqXVSYDZ99Gt5WAnJSWtKCj+HCgt6c6BUCMq+ufArJm+HKi3OhiXezgHulxeCvY2MirncA6MHePLgQ67LwdysiO45GJfDrg9vhxY+mExra1OqqvaiYkN5Pz5yf4T8N45EBcfyNgxR+RAr7mpxuVGspMx1I6dyev3f8LSz7/i5XwPe62drFnzEWvWfERaWhp33XUX999//1Hn0JQckBw4HcTFBjF5cizJlsNz2vjPB7y+YX0Wi4HWVicqlW9o1FtvFZLbKwcSkmP65IDW+WM+mtOCdW8tLqsLm62K5cuXAkt58UW4++4/ERZ2HlqtisbGatrbdxEQYKa9vZ3AwMOLI/UeXmQy6XjnnX2sX3+Q9vYuKittUpQ6CRRFYePGjTz/z+e59nfXsrlxM2ur1mG82Ev4oQhip6ZiDIohJTSeUG0MtAUQGhKE0qZjzetNREX55omt0rTg8ShkZYX5c6Cz001rqxNzdw4cPOg7H1CrISrKRE1NO+vXt2Ay6YiONhEWZiQrK4yvv65k+fIKoqMDGDMmEqu1FavVQW5uJFdc2X0+4PKyd28jOTnhgIrdu+sZM8a379rth88HZs6Kp/2LcjweLyaTlqVLi7HZnFRVtRMbG8j8o+RAfHwgY46RA7ndF0RycyOZMum3fPr2V+SvXUv5vhJ2btjEzg2biIqL4pKfXMJPfv4T38qwHhctnS0caDlARVsFB9sO8sSWJ/jLlr8Qpg9navy5zEqYxdS4qYQaQ4HTIwd6t+OHZMGpnqh9MElR6hSy1ttpbXGSkR5MXFwg1dV2QGHSpBgqKmzU13ewM99XEe5Zga2nIOWf42fSNK756WVs2VrD9q378ToqqK0spKZyL/XV+5gy8xx27XZw8JCN5qr1lOS/z7Nb/86zD4ElNJygkGgCLdG0tAcQEL0Qs1nHvHlJ2FvraGk4iIKOTrsOW0sTOr0BnU6PRqs96ZOmn22s9XZ27/KNuU5PN7Ju+VI+f/ffNNRWADB2yvl4NOls324lJvYyrHUd1FS209DQhtXaQXFxM+Nzo7BY9OTlVVFdY8ccoAMFuro8VFe1cbDSxqRJMXS5vKg1Kuwdbmw2F19/fZCWVifOTjd6vQaLxcD27XV43GBrdZKZEUxJiY2iokZKS1tpa3exb38z19+QQ3FxMzabk/yd9f6gmzQxhosuTGPrtlrWrKkEBYJDjJgDtGg0KswBWqz1dtLSQnnssSQ++aSEHTvqKD7QQnVVO06Xm8pKm/+96ZnsNjzMxOTJMeSOi+zXi2r3rnq2b7cyYUIU8+al+K+ajB0dxfwpOby28XqqinYQW7eRog1fUVRUxPr1649ZlPquKw69u8PW1XWwcmUlK1dWDOoHsJ42HGsy3+OxZs1Bli8vY8GCVBYvPnx/uepy+rFa7bS0OknPOHoO5HdfGexZga3nRKRnjp9zc7O45boZbN1ay6at5bR0NrCvopz9lRWUVB1k/ozRHCr3cuigjQN1xXy2ZQWfbPmExQ9DeHAQkaFhpCVG09asJkbvm7D6xp/m0NTWQlV9LSo0tNoDaGy2YdDrMOh1aLUayYHvYLXa2dU990ZGpoX3v1rL828vo+RQFQDTx41h4awprFpVSXLQaDo0XVSWtGNr7fDnQO54Xw5s2VxLTW07Wq2G6CgTBoOGDRuqcLk8JCRaCAjQERZupLbGTlOTgwMlLbS2OOl09sqBbXW4PdBqc5KRGUxJSas/B9rbXOzf18wN1x/OgZ35vXJgUgwXXZTG1q2+HOgpigWYfTkQYNZitfbPgQPFLdTUtuNyegkw6/zziPTkQFi4LwfG5Ub2G9Kxa/fhHJg/L+VwL6pRd3D/pPP41aYX2FJUycuH0nhrQwWlpaWsXr2aX//610f9nUgOSA6cjnp6qGQckQPJyRYSEy2+84HuHDhyAZrCwgby8+vJzc3myqtf4fm819ndsBFzeQSxZVkcKi+mqqqICy+cyb59BgoLG2hr201R0TM88MAzPPAAhISEEhYWS3p6ChUVGlpbfRcgHn10Ju3tjTQ0lOL16rDbLTQ2NmIwGDAYDGjlfOA79Z7/dMrUcF5+7zlee+VlrKW+v8HV6tWkzU9H0xpOzqiL0CSGUbbXhb1dgyo0iP1ON+npGuZfm8iSJXvZtq0OrVZFRkYIQUF6OjrchIcbSezOgfBwIzU1djQaFfv2NbF/fzMejxeNRo3b7cVqddDVpdDV5SIwUAuocDrdfPJJCe3tviGDP/1pJPn59b7zgWPkAEBwsBFzdw6Yj5YDB1qorW3H6fRiHiAHwrtzIHeAHNi9e+DzAYBf/teNwI0U7ynmi3e/YOWHK7FWW9m0ehM/vfenAOg1eqLMUUSZo5jGNFweF+u27mdH1R5UEc18W/sty8qWoUJFekg6cxLmMD9lPhdelI1apR6yHIDDx+eCgsY+338fR8uBnsc9k7JAilInWVOzg/ryNv+wpppaO1lZYWRnR2DvcLNuXRVej5eFC1MByNtQjdvt5dVX9mC1djB9ejxXXjnCv2Ia+AIqOdmCSjWS1pZkgqImcekNYUycEI1KpWLz1kKqq+wEhUSSmD6GhtoyHPZ2bM2N2Jobgb0A5CRfTEiIgahIM6qOr2ne9xoAK/bBiiWHX8OIUeN46s1laLSyexxNZWUb67/ZQeXeZdSVrcbZaQdApw8gOWcBxaVqjIF2amvtHKpqw+uFxkYHHfYuNBoVDoeHri4vKckWbDYXKNDp7KKkpBm3W6G93YXV2sG112Xz0xtz/Ceq+flW6uo6cDrdGAwaAoP0RESamHxONBs31qDVqCkqasbe0YVzv4ewMAMGvYbRo8N9J0bJFvR6DfX1HewtaCQt7fBByhygJTTUSHiY0b//ejwK9g439u55TbweLzmjfJPphoQY2L2rnnZ7F+edl0RhYQN5G6oxGDTExZr9H7yqq9sJjzAdUZhSgQoOHGghP38LU6fFMW2qb26S7FgLf7w0h3digsg7MIpzzrudWeoiLjt/tv/ee/fu5dZbb+Wuu+7i6quvxmg0MmpUOHl5Vbz44k4cjq4Br1T0XDUYPdoXesdafvxoTsaVhxMNip55IlwuD77pyfpOHjdcJ0c83TS1OCgtP7wiWW2NLwdysiPosPtywOM9nAMb8nw58Mqrh3Ng0ZUj/CumgW8ole+DXgotrTGkRKTxy+vDmDgxGoCSoiKqqu2EB1sYm5lBRU0Nre12GlvbaGxto6jcVzC/duoIkhIDiYoy06KU8UXhUgA+L4Q//vvwa8hOT2TbB09hMhoG7407w1RWtrF67T427N3MjtKd2Oy+HDDo9JybM4HmOh3r86ooKGigs9ODSg31VgedTg/2ji4cDjddXV6SUyx0dHSheKGtzYnX60Wn01BeYaOtzUVycjC5uVH+/WnDhqo+ORAUqCcywsQ550SzcWM1Go2GoqJmOuxd7He2EBZmQH+UHCjY2zcHAsy+HAgL75sDHXY3lfY2/747KudwDuzaXY+9vYsLL0ylodHBqlWVhIQY0GhUxEQH0OFwU13dTkS46YgTEhUqDufAtKlxTJvmywEiRqC68M+cE/MG5xxYyZNzk3lbdQWZU8733/vgwYMsWrSIO+64g+uuuw6z2Sw5gOTA6aKp2UH9/sM5UFPT63ygOwe8vXIgrzsHliwpoLLSRkCAjpkzEygubu5TsPrxyB8Rpolhk+VLanP2cUfkg9xx2YUAbN++gf37WwgJCWXUqMlUV5fQ3NxES0szLS3NlJb6zgdSU0eRkxNGcnIwSUll2GyPAfDOO76vHikpKWzfvp3Q0NBBfOfOLHm79vHvTW9TXLycunv3427zzeWo0qmJHp9CTsRsUhpyKNjehtZgRK1T01BZQ1eXm7aWFgwGLVqtmuXLy6mv70Cths5O39xjOp2Gri4PQL8cMJu1rF5did3ehU6nIiBAh1arZtaseL74ogyPR6GlxUlXl5eCgib0eg2BgTB+vK8g1ed84IgcMHfnQPgROWC3u7F354DX6/UvrhESYmD37nrau3Og8YgciI4OwNGdA+ED5ABAcXH3+UDvHOiWOTqTzNGZ3Pn7O/nmi28IDjvcVluLjQdueIAFVy3ggkUXYA4yMyY1ler9KioLbcyZE03iBChsKqTMVsaSwiX8a8+/sOhCSFfnMmLkOcxRJTB/3tmVA3DmZYFUHU6y2toOGivagf4rECQlBeH1eKmqbid/Zz3XXZuNvcPNmjWVlJa24HR5aWzyzdGQOy6Sg5U2Cgsb2bCximlT4/1zVAWH+AoUPVcveoY/5Y77OdnZD1Fnbado7yGc9npqqw7RYatjw/oCmlu1FBe3cNGFEBUVhCUkDGenA5fTiaJ4/a9hf8FOGuvriIrte1AY7nqvUNdQXUje0rv971t4dDKhCQvIzL0Arc5EZVUHXV0N2Gwu1BpISrIQGKihpMRGVKSJpCQLnU7fZIMtLU7f6nYGHS0tTnR6DU6nl5YWFy6Xx//8jQ0OrNYOutwe3/ZmHeFhJlJTLNx261ieenob+flWtFo1Xi8kJAQydWocVmsHO/Lr8XoaSE6xkJRkYevWOuztXej0avR6DeYAbXfvKS+JSRZ/Aam1xUlrSydxcYH+fTcuPpDrrvUNCbrowjR/+956u5AdO+qwWAxkZ4dj73CzfUedv+dV76LUmLERBIcYWL68jAMHWvxX+3t6Cpp0WhZPS2V8Yiiv5pXxmnMk+5e18efwFlJSQnjuuefYtGkTmzZt4le/+hW33HILd955J+XlrWzbVofZrBvwZKTn4D91ahwPPTS938+Px8m48nCiQbFyZQUrV1YyaVI0N944qt/9h+vkiKebutoOisoHXokmKSkIj9dLdVU7O/Prue66bDrsh3PA5fTS1D1Xz7jcSCoPdufAhiqmTYv3d4kPCe6bAz3zAI3LzSEn+1bq6topKKqjxd5K+SErjW3NrFlbjOLSU1vrACA2OoiIUAsdnU46O114lcMfagpLDlJcUc3YkamD86adIXr3jmpobeSxd5/C250DsRERjE0az5zxkwkwmLDWdlB7sIbGxk70OjVZWWF0dXk4dKid6OgAkpJ8Q+x376qnzupAp1VhNGhwONyYTFqcToW9hY2YArRMmBhFZWUbAWYt7e1duLs8aNS+nqxh4SZSUi3cdttYnnpq4BwA+PbbajZtqiU+IZDRoyLYurWW9nY3ep3af/ytrm6nqbmTlFSL/8ShpdVJS6svB3r23fi4QK67rjsHLuqVA28Vkr+znshIEzHRZt+S94fa/D2vep+MjB0TQUjw4Rzo6f3rn49Eq4dJN0PCZLR5z7PY+TTfrq2nInE0ySmh/POf/2Tr1q1s3bqVX//619x0003cddddkgOSA6eF2toOGot9x4YBzwe8Xqqq2snvzgF7dw5UVLTS1eVlxIgwkpKCMJu1HDwiB66NuoCR5Um8V/Ymz7c+iLKrnDvG3uEvsM6fP5Pp0/9ERUUrmzeX43BYKS2tRKtt4Y03NlBXZ/bPD5eeHkpkZCR2u53OTide7+HPneXl5ezatYvZs2cjfDrdnXy+ey0f7VxBOflYWw+y/6X9KN2LRASEBhKVNZGRE2dgMobQUOdg1yE7jY0uAgK8TJoUQ3S0Gau1o08ObNpUjdXqQKtVYTL1zYHCwkYCArRM7M4Bs1nLN98coq3NiUajIijIQFiYkZyccK68cgTt7V3+HOjo6CI5OYjERAsGg4aCgno2baolISGQUaMi2LmzHru9i85ONw5HF2PGRFJd3U5zcyepvXKgtdVJa3cO9Oy7ccfIgZ3dORDdKwfA1/Oqdw6MGRNBcK8c6DwyB3opKbNR0RhNOEasVjtRUWa+fO9L9u3ax75d+3jxzy9y/pXnc/mNl2O1dnDgQAtGo5bZ0yeTFpKGV/HS6mylqKmIjQd2UmDfyg7t1+hSddS0T6CycB7zk+cTGRB5XPvC6ZwDPW06k7JAilInWUxMAJEmvf/kGg5PZB0VaWbhwlTyNlRjNGiw1ttJSgpiwvhoYmLM1FS309HRRWFhA9nZEXz+eRllpS289WYhoSEGsrMjBlzlLDs7ok93xz27G9m4sZmY2GAuu3IClZVt7CrdTVOTg06Hr+vm7ff/F7ff/1/+YWglpU10OTtJSfQwddoIgsPOjKrqqdJ7zqOoSDOKorD+m92UlPsm9EtPH4klPJHwqDhmX/xTNKaRrF9fQ02tG5erlcaGDlxdHjQaNaGhRqKjzQQF6bHZusgdH01ubhRvv1VIS4sTp8uDXqempaUTd5eCRtOF2wM2m5O9extxdLj5+utKHJ0eamra8XoUTCYdSUkWdDo1NpuLDRur6HS4SUgIIj4uEKvVQWycGYtFz/Ll5TQ0OggM1OPocPPtpmpaW53o9VpaWpx88MF+1Gpf0SstLcT/oSkq0kxwiK/rbXCIkYULU/1FOYAvvixl1apKMjNCuHJRpm+1SXuXv6cVwITx0YDSZ4nw3u/teeclYTRoiYoO8C8n27N/W+vtdFk7GWFXsaPNxUYV/OytHbxxzzT+8z//k9jYWJ5//nkOHjzI448/zhNPPEFu7kzS02dz+eWzBvy9noyrBifjMU40KA5/4JTJSE9n0TEBZBnD+nyo8udAlC8HNuRVYzBqsFp9OTB+gi8Hqmt8ObC3sIGc7hwoLW3hzbcKCQk1kJMdMeDqNjnZEX0mkd69p5GNG63Expi54YqZVFa20VQSQVOTA0enLwd+f+c1/P7OawDfhNSffnYARfGSPtLIjKkpRIadOR9mToXec11ERflyYNO2Mvbt6UABEuIDSYtLJNBs5KeXLCDOksj6vBoarW5qXC00NDrocvlyQB9qJCBAR1pqCF0uL+NzfTnwxZdlNDd34nR68Hqhq0uF261g07rocnlwODzs39fC2LF2vv66kk6HLwc83t45oPHlwIYqHJ2+HIiL9+VAXKwvBzZurPENt3Z6aWzsZNO31bS2ONEbDudAZJSJ6io7ajX0XL2OijITEuzLgZBgXw70zIEG8MUXvhzIyAxh0ZWZ/tt7rsIHmLVERgVwZA70NmFCNAajluioXjnQvX9brXYqD0Wwp/kmsts/Zmr0mzS/txtuf5tf/vKXBAcH89xzz1FSUsJTTz3FU089xejR55KSMofLL5854PNJDojBEBMTQKQm5Jg5kJdXjbFXDkzozoGamnZ0OjWNjQ7/+UBpz/lAqO98YHxKFlkJD/LOvnd4Nv9ZNlRt4C+z/8JD0w8XWtesOcjSpSWkp4dy330/Jjk5mOXL4ygvr6G6ugOAe+65h3vuuQfw9b5YvrwEoxEOHapi6tRUpk4d3nMNlpe3sHrXDlrD9rHbvpl8az72OjvG4GAM9gjSdNNpTXej9iicd8UlBEZmkpdXS2O9FpfLRmNjB67uHNDp1DidHrKywlCpILc7B77skwMquro8uN0KWq3v4rTD4WFfrxxwdOeA0+nBZNKRnByETuc7P9mwwTd8PCsrDIC2NheJiRZSUy1s3FhDVa8c+PbbahwODwEmLQ0NDj78sJhdu+qpGiAHgrtzILg7B3xDSo/IgYwQFi3K9N/ekwNms5ao48gBo9G33YA50D03Vc/F78REX8Fs4TUL0Wq1fLLkEyoOVPDpG5/y6RufkjxyBGEpE5k86fC8mmqVmlBjKFPjppKuHcuBigZUYU1UeUoobS3lfzf/L3/e/GeywrK4IOUCLkq9iPjAo3fQkBw4uaQodZKFhZpIzug70XnPHxfQPY4crPUd5K2vptPpJjnZQnZ2OM3NnRQVNfnGDEeYiIoOwBxowO1RyN9Z7y88HVkwOVJ1TTtlZS20tTuprPR19czKDqOywkZmZlifbXuGGKanhREcYiApKYiwAR5zuOn5vXk8bgq2rODdl5+h+uBBpi/6FxoN7NrVwNV3v0h4RDA1tR3s2enrFdXS6qTL5cHV5cHjAZPR16W2Z4WjtNQQ1Gr45JMDuLo8qDWgVoHT6UWrA61OhTlAj6PTjUajoqnRQXiYkebmTtraulC8CgFmHaNGRWDQazhU1caqVRWEhZs4WNlGV5eX+LhAMjJDqK21U1ZuIy7e9/tMSrbQ2ekmOMRAcIgBj1uhpaXTv0xxW5sLr7eFxgaHf79KSgry95ZKSor095Cy1tv5fFmp72pKUycTJ8UwaWIM2dkRFBY2sGpVJbnjIomLM5O/s54DB1r8+2zvv4mMjJCjDifs2S7QoCOpToUSqKbM5mDeE1/z5DXj+P3vf89vf/tbli1bxl//+hRr165ix461REYWcvnlfxjw93oyrhoM5ZWH6dMTzprwOZuFhZgIy4jxf3+0HKi3dvh7v5SXtRIWbsRk1PpzICLcRHRUAIGBvr/Xnfn1/sLTkQWTI9VU+3Kgve1wDmRnhVFR2T8HADrsbkIsvhV5Zk9NGvAxh5ue35vX6yVv504e+9d77N5XwaO3PYBBZ6ShwcEjP7ubqIggams62LnLlwOtLU5cXR66XL4cMJr65kBq2uEcaLe7UKlUqFXQ1QU6rYJWq8IcoKNTrcLt9hIdbaK8rJX6egcOhxuvomAO8OWA3qCh6pCNVavaCQ8zUXnQRleXQlx8IJkZvhwoL7MRbNETGxuI2+3ruWEyaf0XNvbubcLt9lDf4MDW6iQgQEuA6fDHw6SkIH9vqaSkSP+VcavVzrLPS/29qyZN9C05npMd4Z8PbVyuLwd25vfNgagos//9jYk1M2d24oDDCXu20RgCWFl3MW0dpcxSrcL7zLmEX/Z37r//fv7jP/6DFStW8MQTf2f16q/Ys2cTZvNuLrzwwQF/r5IDYjCEhZpITv7uHLB254Bvvp4O0tNDqKxso7S0sXsOIRNR3Tng9ijk5x8+H2hr8jKqYwHx8amssn7BZR9exl25d3FTzk1o1BqKi5vYudNKU5ODgoJkkpODmTUrnuZmB7Nm9T/Zbm11oSga4uJCyM1NZNSocPT64bf6anNnM5tqNrGuah1rStfRrrSgbtIQUGKi7pM6avfWctF99xNgiMLtVHHlrbmERwZRU9PBrt0N2Nq6zwe6PLi6c8B0RA6k9coBe3cOaDTQ1aWgUoFaDQEBOtS9cqCsVw4oikJAdw4YDBoOHeo+HwgzUV/vwOXykJgYREiIkbY2F2VlNiwD5MCIEWYCA3W+odkehb17m2hv7yIszEBZWau/o0RSUpC/t9SROfD5slKqa3y9qyZN8uVAz/lAT/EqLs5M/jFyIDbWzOzuHDhyOGHPNgaDhri4QMLDTbS2dnb3lgpk0c2LuHLxlezctJO3X3yfLV9vomLffg6VlPCf/+/HA/6OD1/cSwbG0+Xtos5ex876nRQ3F/PMjmf4x/Z/kB6czvzk+SxMW0hacFqfx5AcOLmkKHUS1dbafV3tR9LnpL7n38rKNrbvqKPe2oFXgbLSFlxdCtVV7UTH+LYPDjb4PlhWtqFSqVhwQQqdTje54yL9xajWlk5qan1XOBobHP7eKz2TpddUt+P2KBgMWn/h6tprs/wHgR49E7HHxgQwZmzEgAWu4SomWsfGlSv427+W0Gj1Ld+q0Rpoay7hYKWB+nrfykVjxkYCDdjbXZgDdXR0dFFWZkPV5UGtApNJh1oFzc2+LrZqjYo1qytpbe3CYFCj0ajwdo+Y8bghONxAaKiBlhYnXq9vAsCifU1kZITS1NSJrdWJKUBHZ6cblQq8XmhrdxMc4gsYp9PN3sIm5sxOIChIj8fjZfq0BIJDDGzYUMWBA82EhRqJjQ1k504rDoeb2DgzERFGyko9OJ1uPv+8jPIKG3sLGpk6LY7gEIN/1b5585KIivSFSHiEiS63l/HdY9x79J4PDWBnfj3VVe0EBunJz7cSHmYkNiagT4GqrtZOfb1v2fOeuaV6Jlo3GrSkJAej0aiI6vJQrvJw+2vb+MmUJB66dBSXXXYZWu1oRo/eTG3tKiZPTsdg8M2D4/V6+Y//+A+uvvpqpk2bdtZP2Hnk+PaeMec9V1IURaGmpoa4uLihbupZq6a2nZaiRsJHxPoLO0fmwI7tdVjrO1C8vg+dTqfHf/UvNtZMcLCBsPDDOXDBghScnW7G5Ub6i1EtrZ3U1vhyoKHR4S8A9EyWXl3TjsfdKweiBs4B6DsZ+9gx/SciHa6iY4x8/PUe/vjKcsqqfMtZazVa9pSUMjIhk/p6B5GRAYwd48uBdruLQPPhHOhS+eaRMpm0qNTQ3NyJRqNCo1axenUlrbYuAs1aTCYttjZf7zW3B8KDDQQEaHG53EREBGC3u9m9u56Oji70Og0Gg4YAk7ZPDrS3dRES7DvuOZ1uCvc2MntOoj8HckZFMG1aPBs2VJGfb0WlVnHl3GTefLOAhvoOAgN1xMcFYrd34VUUNmz09agt2NvItKlxhAQb/Kv2zZuX5D+ZiAg34e7ykju+bw70ng8NfLlQVd1OUKAvB1JSLcTFBZKVFUZLq++CXG1drxzonlOkZ6J1g1FLcnIw9ZoJfOZO5XzDZwR9cCvsX4760n+wYMECPJ5MsrK2Y7WuJjMzDIvFNyxGURQeeOABLrroIs477zzJAUWhurqa+HiZouFUUBSFN17+AEeiDlNGxFFzYPv2OurrO/D2yoEDB1qorm6ns7MLrVZFeK8cWLAghc5ON7m9cqC1tZOamg6yskayKCSBZQc/4m/b/say0mXcmfobtmyp9fWECdD5e3P87GfjmD49oV/vjoqK1u6iWDDnnZd4Rg37+aG6vF3sqt9FXlUe66vWU9RUhIJCdEA0yYEp1KxpZN9nO6kr9w3VUqnV1O6tJjYzkvr6DiIjfSvaBQe3odf7ji9ut5dDh9pRqTyo1d3nA71yQN2dAzZbF+buHOiZiFxR8PU0DdDicnn65YCuOwdMpiPOB9rcBAd7cbk8tLe7qK21k54egtPpwePxMurIHFCpmDYtnjff3EtzcyeBgTqiogJ9x1yDhh076qiubsNsLmPq1DiCu3PAekQO9JwP5B55PpBf758PDWDnznqqq9sJ7M6B1F450NqdA3UD5EDPROvG7hzQaFTU1HQQHNzm//tSqVTkTs3FrYshdfJCmsp3EBSgEBZ1+CLcy0+8zKiJo5g8ezJqX1cwP51aR0JQAglBCXi8HhodjeTX57OveR8v73mZF3a9QEJQAvOT5rMwdSFZYVmndZZ8Vw4AVFVVnVY5IEWpk6i83EZ5uY1Ik95f4DlyuF1Geih1dR20NDvRG9SEBBvIGRVOZGQA5gAt9g43SUlBNDY4fJPDxQTg6HBTVNREY1MnHo+XjPRQsrJ8Q0NWrapky5ZaduZbcXsUIsJNBJh1xMUFMj436qjtAF/l+UBJCxbL4asg/3ziT3R2Ovjp3fcTEtZ3BZCz0YaNVWzcUM3UaXGEhhhYtmwP5Xs+o2rf57TbfFe09KZgIpIXYI6aS0hkPFOnxVFRYSM52dLdFVvBHKgnKspMcXET5gANjvYm3C4bjtZOimtaUDxtmE1u1KouGhtseD0uXIoL38R0KlCp0WjUtNn1NJbq8CoG1BoTbo8BlS4IozqRqdOzKT+kpb7et/x2SPckhCgKHrdCSIgBnU6Nvd3J8q/KmT49nrjYYHq6y27bqsHp9AWVwaim0+nrHuxyKSQlBRMdbaahwUFdnZ2ioiZabU6KD7Rw4405WCx6bDYnlZVtvkJovpVxYyO5++7cfvtVSIgBt8eLrdXZXbTzdeGtqLCxY3sdHR1dTDk3zr/CX1ZWGGlpwVRU2PxDAwHsHW48HsXXTTfJ4v/7uDTBzLrKFt7aXMm3pY08d8PE7g9X5zBq1EV9Pkh99dVX/iEdY8aM4e677+b6668nKGjg7sOD4VQu0Xrk+PaeMecAaWkabrnlFvbt20d+fr7/hE2cXKUlrdjKbdiNhz8sHTncLj3DlwPNzU7yd1pJTrIwcmQYCYlBZGWF0WH35UBDo6PPZNFFRU00NfpyID2jfw7k77TicSuER5gwB/hyIHd81FHb0WPX7gZ2bK9j/IRooqLMPPTU6zS22PjNrT8iOT56cN64IbRhQxUbNlb7ii+hBj5btp+8gi1s2rcZa1MzACaDkdzk8WTFjGNkQizTpvbPgUDz4RwIMGtptdvocDpw4GF/dTtOTyc6oxfUHuob2uhyu/EqHlApKIoKFSp0OjXmDj2uYlCjw6g3oFHp0KsNGLSBxESEkjMiloZ63/LbvsloTSiA29OTAxra2118tdyXA7Fxh3Ng67bDOVBa2kyd1dF9AqQeMAdsrU4OFPfPgYZGXw6MHdedA1H9c8Dj9tJqc3YX7Q7nwPYddezIr+PcKXFkZ4cTFxdISLDRnwM9QwDB14OvJweSEi0EmLV02ENxJPyOIOsXULAUDm6Gq15l1Kg0YAKjRp3f59i6efNmnnjiCZ544gmysrK46667uPHGGwkJCTm1O9YxDFUOZGWZuOOOO1i/fj27d+8mMvL45k4Rx6+oqIhHf/dHkiaMIep3Dxz1+JvROwfyrSQnW8jICCEnJxyHww0ojOn+22ltdWKzOTEaNb7zge4cyOiTA83YtoxHnxhNycg9/KrpdgzTs4myTeOCC1L8+9nRenf0XsUrOTmYxx57jIMHD/Lzn/+c7Ozsftuf6Q62HWRD1QbWV61nc+1mOtwdqN0GYvQJTDDPxFZioHFHOcu++pz2Zt/5gFZvIDJ9ApbEycRmJjD1iBzoKchUVXVQV9dOYKAOp9ON16ugVkNVVTsej5fmJhNBFgOdnb5J0e12N06nm55pHY1GNXFxZurqOujsdKPTqWlq6sTr9aIoKsLCtCQnW6ir6+iVA0ZA6T5e6tFofMMA8/KqfOcDvXOg+3zAbvflgNXa4S+EJSUFM3p0JK2tTvbsqfddBGtxsm9fE4sXj+57PtCdA+OOkQNut5fWVidjjzwf2FFHfn4dU3rlQHCvHMjtlQP2XjmQmGjBbNZi7/6cdCTfbWkk/Xhcn/ZUHqhkyVO+Vb3ikuK49IZLuejqi/pMmt5Do9YQZY7iAvMFzE+eT3NnM7vqd1HUVMTbRW/zasGrRAdEMzdpLhenXcyYiDGoVep+j/NdhioHxoyx8Itf/IKPP/6Y3bt3k5iYeFKf+0RJUeokSkmxUNHmOOp42ahIM4lJQcRXBBEaaiAoSI/BoPEXpPI2VONxe/29ScrLbWzIq0KrVdPV5SE01EjOqAjGjI2gseHwygbxcYEUFjVht3fR1eUlPT2YnJxwLBY91nr7UXtAJSUFUVzcTG2t3T/c6qO3XsPV2c7YaT9m9tyzvyj15Zdl7OsuwGRnh7Nz2wFqd70OQEhEHGljFxGdeh62NnA5PYSGGfjk4wMoiofqynJK9xXSaD2Iq8OKWmmko60Ot6MeRfEFTWfPE6l0dOrMaDQGVCo9ileLSq1DUVSAgkYDWlR0tnvwuDtRPA68HgeKxwEoFNdA8QYAFXpTCAZzDB3mOGyhCYRGJOF2RmMwRpKaFsyOHVaa6ztYvaoCS7ABc4COTd/W0GZzonjB0emlsLAJxeu7+jB3bgJpaaEkJQWxe1c9X3xRhqvLDYrvintPsSh/Z71/QvQDxS2YcyMH3LdaWpw4HF2UV9iYOCnGP+QvIyOE0tJWbDYXlZU2VCqVbwnaib7u7T09pHq4XB7qau2kpQX7t+lxTXQQOXGW/8/eece3VZ/7/629hy1L3jN24hGPDBJsJ5A0YSRAWS2Fsgotbene0JbeQu8tbW+5vZ2sFkqhJVAgYYdAAglZZDtx4gw7nvGSPLT3+P1xJFnyCKGlwO0vz+uVlyPpSDrn6HvO+/s83+f5PDy+s5tLf7eNH11SzQ2r09NqAYqLi7n11ltZs2YNra2t3H777Xz729+lpuZCvvrVL3HjjSv+0aHzD9t7EUZ87rnjrF3bzlVXVUwr2DvZJte3r1xZTCwWw+/fSXX1pdjtdpRKJbt372blypX/5JGctemsbJYBu0uPaSYOWDQUFeroyU/nwIIFOag1UqETX0TgQKZJ4MD2Hf1IpSJCoSgZGUpqqrOoq81K63SWl6/l2NEEByLMmmWc4EBcEHRmixFD0LHbuKmH+/+2nhHHOEvqF/x/EZR67bUujh0XAjBVVSb2HjjFS/vfIBaLYs4wsqyuiYUV8/C6YwSCUTIzFLzwoqC/1XlqiI7eU/QODXNq2EYw5sbhceD0O4ikCAYDiEUSlDIlMqkMiUhKLCpGKhZadiebjUjFjLndeH0BwtEg4WiIYDgQ/4WALmAPaFUajOoMMnWZWIxZ5JsthP0G9EojZaVGDhywYrN52fRmDwa9ArVGxq53BnG6AkRj4PdF2LLlFIFAFK1OxsUXlyY5cKhV4EAoKDhJgUAoGSw62GJDrZFysMVGe4edBs30mXUJDvR0O1m4ICdZ6jEjBxbGOdA0lQNDw3EOLEznADmfgpw62PUAPHIBxR/7EcWrvgaTVq/NZjO33347TzzxBMeOHePrX/86d9xxJ9XVK/nyl2/n1ltX/WMD55+wD4MD0EJ19VVYrVZkMhnbtm3jyiuv/OcO5KxNsaqqKu746Y+5987/YPtLaznnnC9P2cZi0VBYqCN/EgcaGixoNFLa2kYJh6N0dTlpbs5jYMDN5s29SKWCLlFGhpLq6ixqa7PSOp0V5Os4esSMr2UxlqX9BAtPIv7CCQ6J+jjYbqG+ouQ0ex4jFoORES+vvtrJ73//Z06dOk5GRgP/+Z//94NSjoCDXYO72Dmwk+0D2xn0DCIRSSjQFbAweyF7N/rpaxWjy89BXp5Lz55eWp5/mWgkhFyloercZRTULMbtFREMRsnIUPDiix1ADIcjgMsVxO0O0tvrQqWSEonEUKmEDCivNxzvhCeU5jkdHkLecTI1AYYdY4SDfiLRIJFQELEoisQgwxGU4B71EgpGCMmlhMMiRGIpEpmUUacCWchEhsmIUi9HIpECcoqK9IyP+xGJRJSWGpIcePPNHvR6BRqNjHfeGcTlChCLgc8XTXJAp5Nx8cUlE/5Aqw2bzcepU05isRgeTygZLGppsaHRSJPleJp340CPk4UL/zkODM/EgUk20+KbSqPiE5/9BOufWc9A7wAP3fsQj/zyUUpr53HFTZez6srGaTOfxCIxJpWJ5UXLOb/wfJwBJ60jrRwdO8qLJ19kzbE1mJTC66tLVzPfMh+JWHJGY/KD5gCAUnmcmpprOXXqFGKxmDfffJObb775jPb3X21ng1L/Ahsd8cXrwcdpOWBj6XkFrLq4LFkuV1KsQ6+Xo1LL6OlxJh39AweG8fvCKJRS5s/PxuUMYLcHUCqlqNWCWGiifGrTpt5kucaNN1WzYUM3vb1OZFIxA/0eQsFo/OIaSXbrmxxAsJg1GI0Kdmzvx+kIABCJCBPfo20jnP+xD/rMfTCWqslFcJDA+G6Gh1cK59lQiCb7ImTqYjLzz8URkpIrliAOdzPQ3sKxXV14xnuIBgchJpwzRArEsiwUGgsqQx0SSxbBqAGJVI9ErscfVKHTa6mvt3Cy006GUQmA0xnEHwjjdocw6BVYslUMD/vIzFCgVEkRiUR0dzsIB5z4PKOEA+NIcGIyBtAoxhkd7qHvyHa6QkLoSyrX0ZFRhlheSCiaz3hwFh6PUVgxGROjVEiSAdORER8iEViyNUQiQqmcxayhtg727RtmdMxPdo6cwgI94XBUCJhGoni84ZRuj9OvsBYX6+ns1FJUpKeoSJfWtfCqK8tpOWhDIoG+Xndazfjk36anxzmlpC91u8CQj9vPLeGl48Pc9cJhdnSO8D+frEcln7itVVVV8cgjj3Dffffxl7/8hQceeIATJ06wZ89abrppLbW1B2hoaPinx9R7sfcijLh2bTtvvy2Uj54JhCavgGZledi8+S62bNkCwKxZNTz44COsXLn4H9n1s/YebGR0ggMHWmyct7SAVavKkqVyxSUCB9QqgQMJR//AgWF8/jBKhcABpyuAfTyAUiVwwGJWJ9PmN23qTV5bN904wQGpTEz/gIdgaIIDiW59003WQsEo4+N+rFYvJzvsya6fJ06Mf8Bn7YOzVE0uX8RJx8gRMozzUSqlZGgN1ObNR6PQU11QjUQkRSaR4YlYOdDezgs7Bxkat+EKjhGOCuUWEpEUtUyHTqknz1jEbIUeuUiNUq5GHJUjiirIMKipr7fQedKOMWOCA3q9HOuwF68vjNEgRyIRSrvVGhkGvYLOLjvjDhdOnwtv0E04FkBjjCJW+DhlHWb70RP4WgQOKOVKcozZGJVZyKMZZAaz8biFsTYmFaNQChxQyCXYRnwQi5GZoSASEUrlLBYNdbUCB8ZG/eTkyCkoFDiwY7vAAa8nnNLt8cw4kKoxdeVV5RxsETjQ2zcNB6wzcGCSoyJsl0HR/B9h6forbPwP6N4KV/8JVMbkdmVlZdx///384he/4K9//Sv3338/hw8fZv/+l/jsZ19i1qzNH3h3sQ+SA/n5YXbt+imvvfYaAEVFFdx//x+55JKzHdX+Vbby0lXsPLqXFx57lphIRX5NIy0tNpamcMDhCFAS54AqzoGEo3/gwDB+fxiFQopGI6O314nXG0GlAqVSinkSBw4etFFfb+bGFA7IxvIY6ZuFeO5xDma8yc3b32T+/mXc3vBFzpkzdRz5/WFBg67bgcMRxG4PArBtW/8HffreFwtFQrTYWpJBqGOjx4gSxawyU6IvYXHuYvSRbDw2GRWGbNoG38HV9g62WBbdEifhqJzM8mYCIQkZRXX4VUrkSjWZShE9PQ527RpkcNCLSAQuV4iMDCVHj44SCsVQysMoxB48QTvucRsB1zjhgIto0EMs5MYZ58ZkE0nkIJIQHBEjFosRiSUQgwgRwqEQsUiEWFTIohs/nv5emUKJXGNEpjKgyzBhPWEgItITDeoYH4/idofR6+VIpWKUcQ7I5RJGRnzEYjEy4hzQxDlQWwtHjoxx6hRkZanIzxe0qLbHOeDxhJPZTA1nyIFUjamrriqnJc6Bvn+aAzPPbxJmzjXz5R9/mc9+77O8+eKbPP+X52k/3E77/t38cv9u9Jr/ZMlFS047psQiMUalkaUFS1mSvwRX0MWR0SO0jbaxoXsDz554FoPcwPmF53NJ6SWck3sOMrFsxs/7IDlQWiqmtfV/ee655wDIySni979/mKuvvuhdP+uDsrNBqffJhoaGuPf7X8ey4FbsGh2RSIxd7wxgtQqaH6suLkuKikskIjxDXiQSEZFILOnoezwhIuEoEqmY5qY88vO1bH37FGazinA4Rk21KRlYSg0MWMwabryhBiAZAEh0PHDY/VO6msGE8//GG90MDLiJxmJcc80cnpRJiYRgzhzjB3j2Pjiz2oSssM5j+xnueJGjB7YAYkbU1QwPCemrUdUygt4OPIf/RjTQRee2PmKxEIgkSBR5iOR5SDXzMFpKEUlz8QY0qNUyjEYFw1YvEUASA51eQX2dUG++9Dyhfrevz0UgGCEzQ0V9gwWjUcHWt0+h1yuIRKMoFMIq9uioD71ewRWXV7Dh9W78QSVyRQEZRiVyhZj8Ij3Nl+l5e8sphgcHINiPKHIKn6OT0Ng2IiE7AEFVPpLsucSk5eTNW0xdfSG79wyh08mxWNQYjYqk/lOiu2OmSYVIBAq5lMIiPadOufD7IpRXGAkGI7S3j9NQb07r+JhqcrmE4mIDlZWZaQFUgOuuraKqKos1Tx2lf8DNzh0DlJcb6eiw89ZbvcikYmRyCTk5GoqLhfKy6YJfCS2qSjL52scqePXwEC8dHOCi/q08eMN8qvPS4ZaRkcE3vvENvv71r/Pb3z7NQw89SCQySn19fXKbxx9/nNLSUpYsWfIvrRN/L8KIV11Vkfb3TCyRDpyXJ6KxcR5+vw+VSs31138Di+UCgsGz5Rr/KhsfH+dz3/4JNy2oIKrTE4nEeGdXCgdWCRwYGhQ4MOSZ4EDC0fd4QoQjUaQSMU3NeVRXm3jrrV4ikRgisYjqGlNy4pUaGLBYNNx4o8CBRAAgwYGEZg+QNmlLTObeeKObnh4nAX+Y1ZfMQrlWhtMHs8r/PTVFrFaBA63tnezp2MWm3fuIEcOsycVq9RKOQLZyDmPeYbYcfht7wIb9bRvhaBgRYvRKI1pZBtnaIvKzsjFpzQQ9EiQSMXqDAoc9QKI0OyNTRVGhFqczxIoVRYDAASHzVkVDvYX6BjMb3+ilp9eBVCrG7QqiUEhxu4KIRSJWr57F6xu6idlkGBQmjBlKjAYFixZl09XtpL19HNuYHWdwDE94jGHHEO3Dx/EE3AAYlBmUZBdjlGfT1FDDwvm5nOywI5WKBTFdjTyp/5To7mjKFDggV0gpKhQ44PNHqCif4EB9gzmt42OqpXEgJYAKcN11VVRXZbFmzVEG+t3s2JnOAalMjFyWzoHpgl8TwtGZWJq/ASdeg4NPwQON8MnHofCctO11Oh233347X/ziF3nggXU88MAD2O0nWbJkwhF56qmnMJvNLF++fIrmyPtp/2oOgMCCffv6+MxnluByOZDL5XzqU1+moOAyRKKPRrnGv6udPOnAUjuP+vN9vPjnJ8hvGCekEn6/BAcG4xzwpHAg4eh7PCHC4ShSqZiGBnPyOohEYojFImpSOJAaGEjlgBAA0FOcX4dXYqfFvZ393rf57Dtv0tzXxPVV19OU10Rfr4sjR0Z55JFWDh8eweMJcs89S3jiCRVuNzQ15X4IZ/C9WyAS4PDIYfYN72PP0B5arC34I360Mi0l+hIuLLmQQl0h2epstHIt7rEYb77ZR2/HSV468VcOvL2DWCyKVZOD1ZpNNApibR1EYNweIRD0094+jtcbwukMxhMyI4S941hPdnDKPYx3bIhIYBxXyJvcL5FMjVxlxJCZgURRQHVdETqjkcNtXuRqNSazkdmV2SxcVMCmTafo6XEgk4lxuYKoVDJ8vhB6vYJFi3LZsKEbm80D0TA6TQy1IsysUgV9XTb6e4fxOMbw+Zx4HScIee3xABaIpErkmizE2XlEZRYq66uYt6iAkycdSQ5oNPKk/lNVnANqtTSZoV1RkSn4A/4I5SkcaGg4Q38gJYAKAgeq4hzo73ezcxIHZDIxskkcmC74ldpA4Ez0MJUqJas/tZpV16ziteff4fnHX8Ta086i8xclt9m2YRsyuYyFSxcikU6f9SQSidAr9DTmNXJu7rm4gi6Ojx/nyOgR3j71Ni+efBGtTMvS/KWsKl1FU34TCoki7TM+KA4cPDjEbbctx2odRCKRcNVVt1FWdjUq1dQKkw/Tzgal3icbGBjg0J6NmAb7+MaPHyIUkSKXi5KZUjAhcpjQxgkGI8lMqaqqrCnd9eQyMdU1WeTmaJKd8RKWun2qTX7eavMkM6VSrbfXxb59w9jtARCBTiujqkro4OD3Qmnpv58zcuSIlT/94Sm6WtfiGTsWf1aERFNNwHGAsH+QqO84sZBVeEVqQqIuQ6FfiFhZSlSSj1gsQyoTEYvFCIpESGIiZDJQq6W4XAKkdFo52dkaSksNlJcbqa0TAod/euQQwVCEjEwlTU255OVp8XjDXHrZLPbuHcJu9zNnTiYVFRn097sxZSppXpKH2xNk81u9yOQSnI4AVluY0RE/J06M4/WFUWqyyCwooKTkQqLRGAMDLrpO9hLyHEcaPol9cD/hwAa2ddxP+zu1qE3zqGw4jxs+sywplF9crGfTph6czgAKhYSSEj3huE6VxSy0ca2tMye1awb6BWcnoYEGJFcqUsf53n1DU4JLR4+OYIsL64olInp7XezcMUBb2yg6rYzCIj0d7XYsZnWy9C812yrRBQSEa0okEnFJbS4VFg2PbOvmyvt38B+XVnP9ucVTxoBIJOLrX7+Wr3/9WkKhUDL45PV6+cpXvoLL5aKsrIybbrqJG2+8kbKyD+eGnQgsLVyYc0YrIgnzer3JdODGxjyWL7+C9vZuvvCFH5OVlQ/E/qnWtWft9Ga1Wnnn4F56e47yyE9/jDgmQy4XJTOlYIIDgjbOBAfUGinVVVlTuuslOlTu2zeMXi9P6vMAadun2uTnrVZPMlMq1SY4IGTZyORiVq4oxvDfCqzjUFz076c7dqTNxn33v85bLdvoGelJPm/R5DPs7MPhP8yIdwB30A6ASqrBpMmmJmcROqkJnTwLqUSKUiEmGhXKXaIBESJRFKVSSjAQQSQCrU6RxoGEgPyf/nSIUDBCZsYEB7yeMAsXZgNCR9T8PG2SA5kmJUua8/C4g7y1uRe5TILDGcA+7sPlDuB0hgj4Q2hVWooLzJSU6IlGwesJsvdgLwPj/ThDw3Rbe3D4WtjSvoHyHcWU55Zz0ZKFrFo1l1AomtRF2TgDB8zxdt51tRMc6B8QOOD1zMwBtUbK3r1DU4JLbSkckIgFDuzYKXBAq5NRVKinvcOO2aJOlnykZltVT+IAIhHMWQVZs2Hn7+DPq2DFj6BpajmfSCTiS1+6ii996SpCoRASieB0hMNhvvGNbzA8PExhYSE33ngjN910E3OmySr5IOyf4YBKpeLIkVEOHLBTX38ZfX1tfOELd5ObW8pZDvzrbdYsA+1BPed9/zYel0fZtfEVZi3+OEuXfhxI8Qfi2jhJf0AzyR+YgQO1KRw4M38gnzprCW1dpxhQHeL42FFu33g72epsqmLNuPdUMDwsXM9KpYTVq8uwWDT09EBj40ezMYor6KLV1so+qxCEOjxymFA0hFKipEhfxLm55wrC1doCdHIdGpkmrazq/odfZMvzL+KxnUw+J9UVgkhMJF55HUmpwA6HYwz2DuAd6yPsHiTitRL1j0EsghcQK41IVFloM4uQqjOIivUYzBZy8zMpKTFQUWGkNs6BNWuO0mUbQKGQsPDcPCorM/FM4kBeCgdMJiXNzXm43UE2b+5FJlPjdAZwOyJET6lw+uREdNlkWKRkZakoKdETCUcZGRrm2KEOAi4botA4Y33thH272XbkZfa9qEdvKWROfQ2rVi7CaM6mt9c1xR+orMyMH3+U8nJjcvwl/YE4Bzyn4YBmEgdSg0tGo4JQXJi9t9fFzjgHdDoZhYV6OjrsWFI4kJptNdkfeC8mEolYdWUjq65sJBwKI5UJIZFYLMZD9z7Eqa5TZJozueCqC7jw6gspnVM644J1IkB1Ts45LMxeiCfk4cT4CdpG29g9tJv13etRSpQ05zezqnQVS/OXopapz2g//1EO+P1+5HI5R46MsmePjbq6Kzh69G2+8IV7KCycw0eRA2eDUu+TzZ8/n1//+Sm+etMn+PtDd3D3b/7MwgU5XPPJiTrsyWLj69a1c+iQDaVCmhaQ2rSpF6czkCZobjFrOHp0JKn9NDnwlExdnKZEbzrdn6IiHS0tVgx6BTqdguxsLX965BDRuKxFLKG2929ie3ft57+++UU8DkHkTSSSIFHmEAmHiHgOE/EcRiTLRqyqRJJ5OWJlOSKpHrVaQiwGwVCEWFjoiBGLgVQiIRKJotHIkMkkjI/7iUSj6PVK6urNLI07oMeOjWEwCuLgR9tG8HnD5OdpWbGihL37hoRW1xIRvT1ORsf8zJunxO8TKJjINLroohK0Gjnbd/RjtXqIRUEkjmHMUCCViZkzO5O6uiyCoSj79w9jylLjdObiUZvQaJaRl6/l5Ikuwu4jSGJt9B15iq6Wv9C6eRZLL7yUj11yJSMOCdu39zM8JLQoDoVj+P1h+vvdNDfl0XLQxuiIj4Z6MwP9boKhCK++2oVWN5GWmlipWLggh44OO2ufO4Fer2DlBcXJ4BIIXZgG+j2UVxiTnToam/LwB8IUFenRamR0dNiBWNp7Jmd0TR7Xs7P1fHFxMY/v6uWHzx9mR+co932iLlnON1lQUCab2HeXy8UnPvEJnnnmGTo7O7n77ru5++67mTdvHldffTXXXnsts2bNej+G4mktsY9Wq4eTJx3Au9eZAwwODvLrX/+ahx56iCeffInGxnxqakz89re/5cQJZ/zz7ESjMd54o+eMa9LP2nuzOXPmsPGp+1n+ic/xnf/9La/98T9ZuDCHa65J4cAkvYO1cQ4olNK0gFSCA5DetSmhIzU5S+V0KewzaSwkOKA3KMjMVDNndib3/c8eAgEBBP9uHNh94CRXf/VnnBqJd1BChEGVQTgcwerpx+rpRy3Tk6XOoyJzPiZ1DkqpBq1G0H3y+UJEogIDwpEYMpmYUDBCRoYgND46KnRUNBgU1NdZ0jhgNAji4G1HR/D6wuTla1m5ooS9eyc40NPrZGxU4IDPn8IBi8ABjVbOju0CB8IRIAa5OWqGh72UlBhY/rFCQkGBA1qdnMKcLFQyDRp1DYWFOo62DzDs7scVG2BL6zZe27uJ0oIcrr6wmU9fuoywR8yB7cMMDQscCIei+P0R+vvdNDXncbDFxsio0Hm2f8BNKChwQKedhgMLBQ48t1bgwAUri5NOBQjd+foHPFSUT3CgqTGPgF/ggEY7lQOpHf0SGV1TxrVpFtZ5dyHd/0cy3/gP6N4GVz8CSsEZOh0H3G43V1xxBU8//TR9fX3ce++93HvvvcydO5err76aT33qUx+I4PM/ygGbzcbvf/97fv/737N27VpqahoAWLnyJ7jdUWw271kOfECWl6ujGhPFejP3/vEH/OYuDS/97UWiV1UAZVPGbtIfUErTAlIzcSChIzU5S+XdOTAHmIM/7E8GdHaMv0xwbhBDgQFTVyUVei3X3fB8snwvmnAMPkQLRAIcGzvG4ZHDtI60csh2iD5XHwBamZYiXRHnFZxHriaXPG2eEISSapBJppZOHTvcw8+/eS89x08kn1Nb5iDOnIdMa0EkEhEJxYhFI0S8w0Q8g0Q9g3h8g0RDPgDEShNidTZKczUKfTYxmQlztnCNjo4KzSO0ailVNeakls+xY2MYDII4eHv7GIFAmKwsJYWFejye8AQHepyMJfyBaTig1crZnuBA3C8pKtIxOOjBZFKydGkBSqWU/fuHyS7IxeVXMTrqQ62WUVioo7N9mIh3iEy1A7+9nx0vr+XtdX8nKyeLhUsX4hmuwOo2MTou/O6ZmUp8vjBjY8J90++PMDrqo6HBzMCAm2CcA9rTcGBtnAMrJ3EABN0pmVyCVisX/IHGPPxxDmin4UBqR7+qmTjA6a+Fya8lAlIAAX+ARcsW4bQ7GbON8fRDT/P0Q09TWFbI0lVLWX7Zcsqry2caqohEIrRyLfOz5zPPMg9v2MtJ+0mOjB6hdaSVTb2bkIvlLM5dzKrSVSwrXIZOPjWg9o9ywG6388ADD/Cb3/yGBx98kHnzlgOwcuX3cLu//ZHmwNmg1PtoDeecy5fvfYjf33kbd3/jC3z85p9QWiZEmKcLGo2O+XA4AoyOCTe5RECqu9uBXCYhL0+TBpvJjnkiGOWw+xkcElJFpwtATRe0spg1lJboGR/zk5Gp5NjRUUZb/YSETE9i0X8PZyRx7J0dTryuQUCMICobIRLyIFZVI864BIlqNiKpccr7vd4ISpWESHjiORGg18uxO4RVhOISA6Ju8HnD1NeZqas147D7CYaiSaHuHTv66TvlRiwGiVQoCQgGI5w4MUYkEiUWEwQRR0Z89PY4cbmDtLWNIBaLWbGiiMIiHabjKlyuAJFwlOwcDdnZGhz2IOFwFINRyZbNfbS1jaJSScnL0wIa/L4wgUCEBedUYrMVsfS825hbo+et1zbSe2I7Lz31GGse/g3mvHLKa1eSlbWYkTElblcAny/CwICb7fEspoF+NzfeVM2NN1WzaVMvQ0MeoSNSfKLksAdw2P1YbR527higP55NNXn1IlGqaspUJsekxaxJ6kZZbR4K4/Xnqe9J/TuTjQ77KPWKyLHo2XB4iMP9Dh66cQGVOfrTCgpmZ2fz6KOP8rvf/Y5169bx8MOPsn372xw4cIADBw4gEon4wQ9+AEAgEEAikSCVvv+3z8Q+zpplpLEx77SrGJFIhDfeeINHHnmEF154gVBI0Ch4880XuO+++5LblZdn0dPjwGIZ5eGHD7Jv3zBwZjXpZ+2927y5lbz6yy9w4bcf5JLP38N/3n47s8uF33G6CdLYqMCBsdE4B6wTHJDJJUmdn8R7UsugqquykpMru8PP0GCcA2c4QbNYNJSU6hkb9zN/voVd7wzS1jaKzyuMpei/Cwfix97e5cDmGEWECJFIRDQWxR/ykaXOZ1ZmAyZ1LmrZ1Mmh2xNGpZQQSfPNhG57jnAArU7GvIZsNm7sJhiMUldvprbOjN3hJxSMJoW6W1qs9Pe7iUWFxhkQbw/f52Lf3kFGbF6kUoEDPb1O3K50DhQV6jhuEjgQDkfJz9dRWmrgyJFRlCopRoOSzVvSOWAyqfD5wwQCUc49pwybLYfzll5OzdwM1r2+hwMnjvDYuje479HnKMrJobl2PuWWOXgcUlzuYJIDO7YLHOgfcHPTjdXcdOP0HLA7AtgdfqxWDzt2zsyBRKlqpkmZHJMWiyapF2K1eigqTOfAu+lYJax3MMwxx+UszS6juPMVuL8RrnkcChaclgNGo5EHH3yQX//617z44os89NCjvP32mxw+fJjDhw/j8Xj45S9/CUAoFCIWiyGXy6d8/z9r74UD0WiUzZs38+ijj/Lcc8/h9wtZj48//jiPPHJ+2jGe5cCHYyMjPpqv+BQ+f5j7vncfI1YXNU3L0u7Fo3EOjE7DAblcktT5SeVAqmOeuMc5HH4Gz5AD5+Sew4KcBdj9dp7Z8RYdtBNpaGGPaBexQgkD24RF3MO2wyzxLyFTmfkvP1fhaJg+Vx8d9g7h33gHJ8ZP0OfqIxKLIBVJydHkkKPJocZUQ44mh1x1Llq5FpVMdVr9nsSxj4+FGRkeRSSWoLLUoMlfQExqIBiMEHCNEHH1EnafIuLuh2gIxDIk6mykmbWoMvKJSC2IpEIZllQqwmCQ43KF0OlkNDRks23bKXy+MAUFOrKyVDgcfoLBaFKou6XFyrFjY0SjUFwsTt7j+vpc7N07yMhICgd6nLgn+wOFOkyTOLByZTE74/dbvz9CZ6djCgf8cQ40nzeL0dE8ior0LFyYzfiYB/dIDx2HDrPrrT30PvMaYokEc2E5ClMFAe9sAmE5MpmY9vZxgsEoHk+IhgYLq1eX0tJim+oPOAI44hzYeRoOgKA7NTDgprExb1oOFE7iwLvpWCXsdGV9p3tNqVLy1Xu+yhd/+EV2vbWLF//2Cge276Ovs48n//Ak9lE73/3v7wLCPDwSiiBXTs8BkUiERqahzlxHbVYtvrCPLmcXR0aOcNJ+kh9s+wFSsZQFlgVcXHoxywuXY1IJ9/v3woFYLMaOHTt45JFH+Pvf/47HIywsPfHEE1xxxRX/ZzhwNij1PltYMYe5532XPW/9ghPHbVzzhZ9ROss8ra5Tc1MeGo0smSrZ1e3A5Qoil0nQ6mR4vOG0z57smPf2uti6tR+vN0hRkT4ZEJgcmEq7+MwarDYPrYdGcDqD5ORqGB/3ozco8PrCSaHzj8LKyD9qI8ODPP+3Rzi8fxfZRfPYs3UTrjEhPVesLEaum4dIXUNMkp+WiimVQXiS9qBMLkIuExOJRAkFhXOjUEhQqSWMjgndKCRiEdnZQgBIp5cDMQaHvAwPebDZfLS1jTIy4kcqFWM2q2huyksGbnp6XETCEXJyNMwqMyKWiMjKUuFyBTl2bAyfL8ymTb00N+UTjUaprDQRjcSw2eKrHgV6Rsd8aNTSZLaRyxnA7Q5RXS3cwN55Z4Djx0eF2uxcDXKZhPbefETqa7n+W1/Admo/O998iXfeeJRY9CG0prloLMsQK+fidASonWsmP0+bLLVbuCCHFSuKpgQ6DUZXMjOsusYkrKTMM9Pb66Kjw54sD5HLJZgylXR02NHr5axYIbw/tURvcrc9U5aKiooMTFmqGX/3RCOB/DwttXVmlkUiPLK9i8t/v517Pl5D4xkICmo0Gm644QYyM5vYtKmNcPgwJ05s4eqrr05u8/e//52vfvWrrFixggsvvJClS5dSWVn5nvRHtm8/xcaNPaxcWUxzc0Hy+VTRw5lWRLxeL3feeSfr1q3j1KlTyeebmpq44447uPTSS9O2T80MuPHGajQa2XuuST9r7800aLl+2af48+tPcv337uXer3yZOeXmaSdBTc0THNi4qYfuLoEDMrkEnVaG15POgcmO+WQOJAIC7zYJs1o9HGoVOJCbo6G7y4lKLXQKSsSi/i9zYHhknAfWvMLLm3dzTtVcXtmylz6bcL0YlCZydSXkaArRyLLSOCCTklycSZhcJpQ2RiJRgqEEB6So1RLGxqKMjvjRaGVU12TRfsJOKBQFYgwNehkanuCA1xtGrZIhkYopKNQnnaSxUR/dPU6CgSjZOQoyMpRTOPD21lNcduksnK4AJaVGZDIxNpuPQCDCosW5jI36UGukyWwjp2tmDuTmaDCb1XitBnIlC3j0h5eybX8rr7+zi2ffeoNQ+FUKMguZnV2DRVWCwxlgbq2ZvHxtstRu4cJJHIiPN6PBlcwMq6kWODCvYXoOZJomOLAyzoHUEr3JXZaqq7LIMqno7XXN2FEy0UggJ1eNqvZSkCyAHb+HP18EK+6mpvoG4PQcUCqVXHPNNWi1C5k37zix2BE6OrZyzTXXJLfZsGED1113HcuXL+eiiy5i6dKl1NTUJEsBz8T+GQ6Ew2HuuOMO1q5dS3d3d/L5BQsWcMcdd3DVVVelbX+WAx+O7djRz9NPHyMUirJy5cfJyNTy2H0PUXdeJzd8/ZbkGG5unuQPxDkgl0vQamV4JnFgsmM+xR84Qw6M2Hy0trqwOGtReWbjdrgZjfUxEOglJuoC4KGDD7FGuoYsVRaFukKKdEWUGErI1+aTocwgQ5FBhjIDnVyHTCxDIpKk3VPD0TDBSBB/xI89YMfutzPuH2c8MI7Na+OU+xSnXKfod/dj89mIxjuRamQazCozJpWJcmM5OWohGKWVa1FJVSilSsSi08+7nHYnL//tZba+tpWbf/BDdr4zzPCwG135xahQIxaJcAydJOLqI+LuIxb2gUiCVJuHPPscpLpCxCozIpEYmUyESiXF5wsTinNAKhUhFgt6YCMjfrRaGTU1Zo4dG0UqFWMyKRkc9DI8iQMKhRSpVEx1dVbydxkdFYJQgUCUnOzpObB16ykuvXQWLleA0hQO9PQ4aWzMY+fOAYqL9RQX6/H7w7im4UB7+xgKhRS/P4JUKmZoyIvXK6Oo5HyWfnoJfV2D9J9oxdbdxvC+V4CXURgLMZXUsWDeMtRaDUqlRNB1rcyclgOGOAcMBhfVcQ40zMCB4WEP0WgMn2/CAUst0ZvMgaqqLExnwAGHI0BurnraQNiZlPzJ5DKWXLQEpamcyvMHiLq66Tt6kI9dNtEFrG1fG9+94bvUn1vPOeedQ/259ZRVlk2rQyUSiVDL1NSYaqgx1eAL+zjlOsXm47s43HeSXUP38JOdP6Eio4JlBcuoLDyHxbEcaueaZ+RALBbjRz/6Ec888wwnTkxk/s2dO5fvfe97XHvttWnbf9Q5cDYo9T7boUM2bO5ysqu/znDbb3nhz9/j3gf/AvEyvFRL1Hvv3TfE9u39STFpo1FB25HRZAekydsnrKhIRzQSZXTUj1IhTXZZEv7FklpGqRff0aMjrF3XjnXYi9msRiSGgQE3c+ZkolHLEEfvobbORNGsj84gPVPbuXUn9//8Xoa695JI9Tx2uBVN5jxklqVI1DWIJNrk9glkymQiotEYUqlEyKCa5JCYTCoQiRgb8yJCRGVVJkfbRonGA3ihcAy3O4RSIcHlCtLV7UShEMr78vI1mDKVuFwhFszPZvXq0uRvLpaIKS7WodXIqKgQSjVTNZrWrW2nvcNOfp6GXbsHkUlFlJUZKS7W09PjTI4TsUTEwIAHg1HBbbfVsXlzL2++2UfrIStOVwi73U8kDJFwhJERH4cOWWlvHycSidHRPk52dgHirFsxKD6Jb2wPPuc23Ed/h1SRgUW1GovpZvR6CwODblparEkNtNSS0uJiPcNDXvz+MDabl7Yjo5gtaiIRIY03EaAb6HeTnaPB7w/Hf4CJiUvLQRs7dgzQesjGjTdWp431xESqr9eFPxCeVmg90UggN0eTBOTti0v4y65e7lzbyuX1eVyel8ljjx1OOgGTSzkSJjgF1dTULKW4+M6073n77bdxOBysXbuWtWvXAsIK++LFi2lsbORrX/saGRkZae+Z/D0bN/awcaOwCplwRnp6HDz88CGOHBnhxhurKS424HK5OHjwIAMDA0mHSKVS8cILL3Dq1CkyMzO54YYbuOWWW2bsIpiaGXD11XM+Misi/87W2jpCcFzPqrlXsL71Bf7joT+w/k/3JMuxUy2h/7R3r8CBhJi00ajgSNtUDkzWiyoq0hGJChxQKKdyIKFllMqBtqMjrFvbzrBV4IBYNMGByioTV8o+QU2tiXMbKv/FZ+r9t7d2tvGtn/6ZgyfbkuWHB491U5xVSn3OeZjVhSilU7UcZFKIRklyIJxy2mOIMJlUiICxMR+IRFRVZtLWNkokCpFIFL1egSlTxfHoWFwTUJXkQH6ehkyTkkjER3NzPiWleupqzcn7WqZJRV2dGY87RGNjHmbzxER67bp2OtrtzGsws2PnAG5XCJNJRVNjXpIDR9pGkYgFDhgN6Rw41GrF5RQ4EI5AOCJwoLNznCNHbPgDEXq6najVaiqNSylVL6JnrJNexzHePPoaKrmKZfJFrDRYaGiwADGCwQhr1hxNBo7aUjgwNDzBgSNto1jMExxIBOj6B9zkZAscEAgwwYGDLQIHDrUKHJismZZwviPRKKtXl077+tCgJ6mDsrdLi6b02+R0PkHG6z+keM52BvLufg8cmENNTRPFxd9J+563334bt9vNSy+9xEsvvQQIQuqLFi2isbGRr3zlK2RnZ6e950w4ALB+fSdPPXWca6+dwxe/OA+Px0NraysdHR3ccIMQVJNKpbzxxht0d3ej1+u57rrruPXWWznnnHOm1T05y4EPx3buHGBgwINEAmNjAW6/63aUGj2P/++feEkbpqH++8jksgl/IM6BhJi00aigbRoOTOsPxDmgnIYDtdNw4OjREdaubcca54BKJaW/34/JVEgBhYjnljHnWhVLL8vBGrZi89lwBBzsHtrNa92vEYgEpj1mESKkYilikZhQJESU6Rc3RAhlTka5Eb1CT5mhjDpzHUaFEbPKTIYyA4VEgVKqRCFRvGsAKtVadh/n9z99nM5Du4nFJ/UvPfU6Yl05h/cdIWTvJuzsIuobAUSI1RZkmTXIDIVItblIZXLC4Sip6zLRaIxMsxzUYTw4kOh8aLPDuENOTNIgMk2YXfqdBCqDiGaFGRfDFimItBJiJjGSmIwuqYKYX0lxoZpsfRaGQisHujwMdYgwmdTU1ZlxT8eBte10dNhpaDCzc+cArjgHGlM4sHPnAGKxCJ8vjGESB1pbrTjjHIhEhExPny+Mzxfi8GEbHk+I1lZbUlg9QgXigllk5vuRBfvw2o4zcPBV/n50I+csP5ei6oUoMooFn0AjZeHCnHR/IIUDbW2jmFM4kAjQDQy4hQV9f8LpSvEH4hxobZ3qD8AEB6JxDkzrD6RyYO9QUr8tETybXAI7U7mf8BvkUVQ0B4slPdh/cPdBAv4AuzfvZvfm3QAo1Uoq6yupnl/Nx2/4ONn56RxI/Z4KSwV7u8LEWvOobRCTv9BDl6OLx9sexx95GJFfyayhem5bfhXzM+dzquMUra2t3HLLLcIZE4nYunUrJ06cQKPRcM0113DrrbfS3Nz8f5IDZ4NS77PV1ZlRhaGw6FJOdRbw5t9/yC/v/Aw/+d1fCMVg776hpNB5IsukqEjH/HnZOJ0B9Ho5Xd0prS8b86d8R2o53urVpWzfMUBfn4v2DjtzZhvxeMK4PSFARG1deungpk299PY68fvCeL1hMjIUqJRSCgt0VFZmsn2HAlOmErsjjMWsmHqAHzELh8M8/7c/sfbxh7ENDUy8INGhzjoPc+nl6I1aOtodp/kUQawWEDqghIUHIpHwuKRET0mJgY4OO+XlRoaH7YQCY4hFMjJNeubPt7D97VYC9hb6xyOEQ0H8vgAuVwC1Rkm/SYMms4baefMZtwf42U+3MHiqi+raYi74RCXD1iBOZ4CBAXcykAjwhS80ALBpUw+bN/eiVAmraD5vGItZRVe3k+4eJzqtDKczwGBcD6qv143LFWTIHRKcLBmoVBKUSgl+f5juniAgIhqN4vGG6OpyIBKDTKpAnbUEed75ZJvsuIc3c2L/89yzcw3G3MUUVF6OXCMIfyeE+l9+6STj9gAajQxiMYxGJQ57gP4BN/l5WqFUzxumrMyQtjKiUUsZGPAAsWR2X0O9mdZDNlzuEC0HbVMmXAAtLVY62u14PKG0ayh1m9SOkwBlXhHZZh0vtw7y1qEh1HuFsdDcXMAzz5zgpZc6uOyycr7znYlOTafriPHggw9y22238frrr7Nx40b27NmD3W5nw4YNbNiwgW984xvJbX/5y1/y/PMbGB6WotVm0dw8h8WLi5FIfBQVuVi5cmly24cf/hsPP7wel2uUXbv8fPObI/T1CZoJBoOBT3ziE0KLYJGIn/3sZ2i1Wi688EKUSuVpxvZ7azl71t4fq63NYigko6iwhEXn5PPLNX/kE9+8h5cfvBsQJkgJofPEBKioSMe8+RMc6O6auQUypE9sVq8uZcf2Afr6nHS025k9R+CAxy1woK42vXQwwQGff4IDSpWUgkKBA8btCjJNSlzOMCrlR58D0WiUh59+jV8+8iydp4aSz8vECmZlVbJoViM52Qba2sZm/pCU+ZtEIixUxCDOhtgUDgwNufAE3EQBk0lPXp6Go8cHGPAdQxKC3p0ivD7h3q7VyDFlasg15nHeormoVTL++EgLJ3pO0TA3n+V15ej1cpzOADK5OG1S/MU4B/buHeLkSSdanYyaahNeXxizRUV3l5OebuF5pzPA0KDAgd4+gQOeIUEHSyZN58Du3cNEo8K583qFcgyBA1LKTLOpzKtCnxXmxPARtrfu5bUvv82s7Fnc/PFVlOUUs3fvMP0DbuzjAV56+SRuV4ijR0cZHfORkaHC7ggw0O8mL19LfYMZr2cqB9SaFA7EV7zrG8wcarXhdoU42GKbEnRKBGEH+oWSwtRrKPF64m8i6Cd0Nruc87JLKepYT+XxfTz8zmfZyD/OgZ///Odcd911bNiwgY0bN7Jr1y5cLhebNm1i06ZNfO5zn0tu+8ADD/D4489gs0nRaLJobq5k8eJixGIfhYVOli1rTG77yiuv8POfP8rAwCCtrT5+8Qt7MhNKJpNx9dVXo1IJGcN33303sViMVatWoVafXjT3LAc+HGtszMPhCKDVymhuFgTDb/nm9RizMvjDj/+XL10xxHXf/Bpz6wuTHJifwoGu98iB7XEOtLfbmRPngDvOgdoZOOCPc6C01IDJpEStllFSYiA7W4PJpCRfkc+8wnkABCNBgpEggUgAV9CFK+jCE/LgDXsJRAJEohGisSgRIsRiMSQiCVKRFLFYjEwsQyVVoZKq0Mg0aGVa5BI5UrEUuUSOTCxDJpb9w92PY7EY+7ft55lHnmHXm7uSz4tVJuS6fA7u3EfIsZagzwMSJVJ9MXLLQqS6IkRSYR4ljS9OiMUiZOowsmwn0iwXUpMTudlNzOgDEagBUUxE1K8kOhAjGpAilekpUucwespH5+YOwoEIEpGISDhAIBRCphQhV4uQFynR16s5IergSG8Qf68fiUaCUZuJdkEWxkAODnmM2oK5Exz4YgMwwQGdTkZ1tQmfL4zFoqKry0l3t/C80xlgMM6BvjgHhobi/kAKB8RiaGsTtK1CoQjRaAy/P0I0KizWS6ViFAodZWVN5OdfyKxiGYff2cGmdRvZ/toWVDojxuL5WAeXML5iNi+/fBJXnANjcQ44HAH6+93k52vjXSWn8Qem4UBDg5nWVhsuV4iWFtuUoFMiCNvf72b79oG0YFPi9cTfdA4I/p3FopmiTbV9+wC7dw+yaFEuV145kZgxk2YVwPVfvp7mC5rZs2UP+7bt48j+I3icHlp2ttCys4Xlly5PBqXeWPsGzz/xCi6fHJVOT3VdEXMqLUSdITKkPs6ds4S6sjwi0QhbN2/l4Yefx+MbpDvUwSvff5zQSCgprWVaYOJjlR9DK9dyxx13cPvtt3PJJZeg051e7P2jzoGzQan30YaGPMhkYm68qTruKFdxySVV3Pn567npkhVccO29ZFrK0i6MRPezhnozBqOCY8fGMGWq0DTIptXPSRVCB0FU2uMNs3NHPw5nEK1WRmVlZnxiGptSupfQ82lttWGz+pBI4PxlRTQvycdi1uDxCmJ7vb2uafWpPgoWi8Xo7jjG+nVrefPFv+MYH46/IkKmnY3I8HEkyjJigNMVQywJzfhZIjGoVDKiUaHNbiAQQ6EQo9ZICfuH8YzsZdfrLo6o3HhdVrY8PUzA5wKgoPZ28vPK8PvCBD39tGx5YNrv6AYK596CSldGZ6eDA3v2M97+C46+DesekKBQZyFVmtFn5FG/cC5XfOoySisEIcAdO/t5Z9cA0ViM8TEfe/cOEwiEIQbl5RmUFOsRS0To9YqkDlNjUx4OZ4CuTjtuT4jsbA0LFuTQ3eUgEo1RXWWkqFDH8LAgfh0KxRAB+fk6auZmYcpUUlmZybFjixkauo1tr6/F1vUq4wN3Ys6vRRy6knD4XEZHA1itXqQyCWIRRGOQk6uhutpET49zSjbT5ACrxxtm375hrDYfK1YUUVWVxY03Vie7Ae7dN5TWyUOjlmLKVNEltbNjRz9Hjoxw6SWzkuV/CW2qo0dHsNqEksZEuV9RkY7zQmH+uKWTkQU6VJWC6G1/v0tYue93nXbMTV7hXrRoEYsWLeKuu+4iHA7T2trKzp07OXbsGAbDhBPz+uuvs2PHpuTjgwfh/vsnPvevf/128v97977KyMgrAAxN+NXk5ubS1NSEw+FIZmB9+tOfPu3+ptp7aTl71v55GxxyI5dJuOnG6vhEpoorL69k5Wd+SM0lX+Hbn7qF8oLiNA6MjPqSJUtGgyKZPdOgkU2rnzNZAHfhwhy8njA7dvbjdExwQAhUx6aUbCT0fFpbbVhtAgeWnV/EkuZ8LBYNXk8KB86gxfKHZcc7T/Hn597kyZc30TdsSz6fpcmh3LiALI3gBHrdMfz6MBJJejelhIlF03NAp5Mz6hync7Sdrg37kKmCjLnsWJ8axxXXbFgyexkmUxHHjo1xvHOADQfemHF/l1QuIS+zgM5OBzv3nuSVI0/x+GYQ/0GEXq1HrzJgyTTROL+cz3xyKfNrBDHVHTv6eeutXrzeULwNt51AIEwMgQPFJXokYoEDCR2mpsY8nI4AnZ1CED/JgW4HkUiMsll6cnI1cQ6MEwqBOAr5BVrm1pjJNCU4UMPQ0MU88/rb7Du5hx89/DuqS0uZba4nM6uWt97qxTrsJSNDiUYrY3jYg0opTWZyTRbkn+xYez0CB2xWgQPVcQ4kroeE050I4qo1UsrKjIyP+ZIcuOTSWcnyv4QDkVrGl+hwqCz6OIgXoNnyG/547i/pniMFmv9hDsybN4958+Zx5513EolEOHLkCDt37mTfvn0UFhYm3/fmm2/yzjtvJR8fOgQPpEwXHnjgC8n/P/fcc/T0CBm4Y2PCP+G4LDQ2NjI2NkZ+vnAOJ5fonc7OcuCDtYFBF21HR1lQPoef/GRJ8vkdO/rZuXMAi6WYVZ/9Opue/CP/8807ufX736Z6flWyZMkQ54DJpEKjkU2rnzMdBzyeMDt39uNI4cDQDBxoSOGAkLni4sorZ2MwKNKc+VQOyCVy5BI5WrRJ7ZuPglmtHva9c4L//spERqNUbSIaFRH1jeL3jSJRmcgrn8+ILxuJJgfRpMwriTqIocKJ1DKOLG8MsdEjNO4MS/D1SBl5yYnIIUIdkhB0eHGNjuNxOwEw56ymctENLJQX03nyJG++dNOM+5pXeCG1Y7cgkkXYsmsvtrZfCy+IQGZQILNIkVtkPJ+joHRBKc2NzdRl1dHXKmbz5j683hCBwAQHIO4PlOgRxzmQ0GFKiIafODGOwxEgK0vNokW5Exwo05Ob5EDcHxBBbq6GhoZsTEkOjNN9ykePYxayWVmUqZ1kiLs4sPVthtq2cHDTXKSmWnJKytDGOaBUSpOZXJMF+SdzwBPngNU6yR+IXw8JDiSynTRxDoylcODSS1P8gRQOJMr48vK0aR0CJ5fATtZ1O91YSw3uls4ppXROKdd8/hqi0Si9Hb0c2X+Eo/uPUjhrggMHdx2kbd/B5OMTu9I/9zO3nSeMQ7GEI9uOMLjjIJNNrpOjnqXmO699B1WLigpjBYtzF7Ng7gIC0gA6Th+U+qhz4GxQ6n207m4hUm1WCYJnwqCtYMFFv2THyz/m1ce+yg1f/28aGpcnszw2bepNipdLJLBlcx+WbBU3XD81XTHxmU5nEIlEjMPuZ/1rnezfP0xBoZ4MT4gVK4pYsCA7ecGMjviQSERo1MJPnUj5Xf9aJ5s29VJRbmTFiqJkAOrg9icZOGVlfv1ngZwp3/9h2bDVzYvPbWPXpr9iHzqIY9yGXKEhp/RcvH5AWY8sYzlSRUZS+wkgFI5itXqn/cxY1I84fIqQw4Y0ZiXgHUSZtRKxuhqVSko4MoZ18Dk8wOik94rEEvQ6EWNjAaFr3oLZOIeWo1Qp8fpiuN1RNBo5YnEUERFqFtZRPc+CSi3DdkrLoT4jkZCLaCSCzz0M7mFcI4fpb3+dwgJ9Mii1eeMRWnZuQGuqRizPJRSOsXBhNnm5GmrrzDQvyUvLhLPaPMjlEs4/r4CMDBVebxCdTi5oEyjEOJ0hiuItWXv7XKjVUlyuEBKpCLVGyvCwB4VCgilLhT9go6cnQFTVjKJwEZLQIYhuY89rP+HEniJqm28gy1xHTY2ZvFwtEBNu+t5w2piayYqKdLS3jzM0JEysEiCqqspi06Zutm/rZ/58C05niN17BsnN1aJQSBge8jI+HiAYEHRbID170OMVtNEGBjx4vGE0amnytbsvr+GPWzu5/0Avo9IYV1xVgdGoSHZHmWwJzQ+NRobDIXSimXxDl0qlSedkst11110sWHAhu3YdQ68PIJF48Xon/kUikaRg+tVXf5zy8mJycnLIy8ujqqqKqqqqKaWA0+3fZE2Ss/bhWedJB85uJx6l4OAKY8/E5y++lfuff4KfPvEAP7n9c1y+oimZ5ZEqXi6RwOYtfWRbVFx/w9TypcRnJjhgd/hZv17gQGGBDk9GeAoHRkYFDqg1wlhLlACuXy9woLwizoG44/H6nm0cPzlIWeVFfJQ4YLV6eGrdfp7ZuJGOwZMMjYyhlCuYWzIbny+GQZpDsWEuOqVuUivvKD29zmkDUuFoiEDMjnXUThAXTr+dkow55OlK0evlSHUSXmh9Z9r9kYjFSGXCglRenpZFC4s50NOASikn26LFOuxneNiLSBTDYJTRXF/J/PkW1CoZPcOn0J7U4g/5CEci2D0O7B4HvSO97D1xAGOmNBmU2rSlk5fe3kphVhF6RSbhUJSFC3PIzdNQV2tmSXNe2iTZahU4cN7503BALnCguEjgQF+vE7VKhjsSis8VZNgdAfLzhUDO2KiPnh4POcpZnFdcjD14irFoO8/vfp4d7Vu5rOljmLJKODfe1vxgiy25Ap46pmay6TiQGJ+pTncgEGFw0JPkwNCQl/FxP4FgCgdSnIVEGV9OriYZzOrtdUFRPpZLfw47/0D5sZ/As0f45JU//Kc5IJFIqKuro66ubsr7v/nNb1Jevphdu45jMPgRi9M5kKrdtmLFCpRKJTk5OeTm5lJZWUlVVRVZWVPvA5P37ywHPjp28qSDnh4nZkkqB3Ts3DnA4cMjlJcbueiihTSfP4cH77mPB370ExavvpKwpgaI+wNb+rBYVNxwwxn4AykcKCjQkTENByBdgDrpDyQ4UG6ktjZrQkz9+Q2cPNzN7OIL+ChxAIQx/9rzu8nSe7nuC1ey8Y1uuk/0odRlEPD6iEX8hH12JNoCFFlzkepLkKv1eEQipJKEjxBDnu1CVTKKonCYqH+EQL8f14EIoZejqPNKUUgbyYgUUSgLcvLN70+7L2KxBKVMSne7j8EyP0uaZ3Po4MV4PDEKC40MDwfo6nIhkcTIyVFQW9vEyhU16HRyPENO3jyZSSTiIhwOEbIHCNkDeOPyQDq/js0Fm9nQvQH8UoZPelHLqxAHKwgn/IE8DbW1Zppn4MBtt9WxffsA27adQqORpXMg4Q/0ulCppETiHDAYFDjiHPB4woyO+ujosDM05CYcBk84g0s/1cj8Cz/O1lc20dP6Dr7Og0SsJSy8+RMU5JdQUmr8pziQGJ+pHNDrFQwNebHZPOh08jgHAgRPwwGBG5pkMKu3V7gmJ5fAJnTdZhJQT+hcKZWSpMbb5OMSi8WUzC6hZHYJl1x7Sdprl336MjJzizl6pA+VLIAo4ifgD+Dz+gj4AojEExmCdYvqCPgCZJozybRkUjSriOKKYnQZOjxhD6dcpzhpP0mfu4+17Wt5vO1xAJRhAxX6SlZUNjI3ay7lxvKPVPD43exsUOp9NI1GSjAQpq/XmdYR72MX1uML3kvn3t/yl199jQNNn+aWr303mbkEQveBNU8eZWTEi9MZnFK+lLDUEqXBIS9tR0YYHPIwtyaLe+5uTm6XCAj09rqIRGJTRNPNZjUNDRahzWh8W6vNw+vrnmTMeoqrr//k+3+C3qMlMqI2rHuKV559Gr/HLrwgkpFd/TUCzCGkUqIuCREMCqUWqQEpENJwY6k14cFBwuOvEg30EgtZAfCkbJ9jmIPPNwePJ4RGaaa4aiX5hYW4/RqiogzObaqmoqqUfQccRCMxAsEIpkwlzUsaqaiZy7FjY2jUMkbHfHi9IRQKCQsW5CSFu48eHaF+8RJu/vyVzJmTydiIlaG+HgZP9TDQ101Px3Gq502UD2RoerD3/A17D0hkWjSZtRjkyyktXgWk/86Jv8eOjZGbo2Hp0nz6ep0cOTIqTMy9IUZHfezfP8zQoIeBATcqlZSyWQZysjW4PSHa2kYZHHBTVWVKjs2CQg3btvYTiy2gpv5iKsscvPPGX9j24r2Yc0s5t/5rLFt2DRKJhE2beth/YJj587KTKxYJO3p0hO07BjBlKsnO0bB37xB+XxilSpoGIuGYRAQCEbq6nXi9ofhKhwa9Xo7FokYkElFYpIt3GZw4boddWDHMzVEDsWTKrtMZpL19nBUrivjWBbNZd6CfZ/b2cTDbzh+/upDCzOlLHxKaHwsXZnPBBSXTprzOpEcCcP7553P++edP+9mT3/v5z39+yvNOp5jTxKRm1CQ5ax+elc0ycKxDSkuLld4+Z1Ko/MKPzSbou4n1B9bzg98/yJbdh/n5d25JZi6BwIEn10xwYLryJZjgQKLj3pG2EYYGPdTMzeKeeyZW5RMTpgQHJoump3Egvq3V6uGJFzZxrLuHaz9+7vt/gv4BO955ir88v5EH17zGuEtYmRYhYnnlRWRIC1GrFZQowvgDws1+cvApGoXURoLekIvjI3txBkZwBe1Tvs+gyiRDWoTV5iM7V09lXhWWzEyyMzORizWc31zOsqZyuruE1soD/W4UCgkXfayK6vKvJQVgg8EIL718Er1ewQUri5OCrW1HR2iaV8ntt9xPVaWJ4ZFxOvuG6Dw1RGffEEc6ejhv4dzk/qiMbvb0bGNPDyhkCgozi/FI5nFdocD81N858ffYsTFycgUO9PYJHMjNSefA4FAKB8oMZOdo8LhDHDk8wuioj5rqrGTGXmGBhq3b+lGrS1hVdw7Fs8X8fdMGHnnlGfLMWeRVfpLLyldRXZXFxk09bN/ez7z52ckMpoS1HR1hx/YBMk1KcrIFDvj8YVTKSRywCNqAQ0NeItEokUg0nQPZakRiEUWFUzlgdwgcyMmdmQOW874Hbc/DkbU0DR6k6UtPgnn6e+g/y4Gmpiaampqm/ezEe3fu7KSmxsT111/P9ddfn/aZHo+M08SkznLgI2izZhnY3itwoK/PmXRiGxuF7M3CQi07dvQD8O3/uZvNzz3L2j8/Q8HsIyxfejuvvDY04Q9MU74EKf5AvONeW9sIg4Me5s7AAUgXoE48PxMH3nzxLToOHWbJivp/wRn6x8ztcLPmTy+x9rEX8TuGADGbXt2Fx9pFNOQBiQKpvhSpYZZQlieZ6MYXiwkLFIo8B+rZwyiy+7G9fArbS34CQ34mS1/JR6pw+0rwKGVk1GaRmXkumZm5mM25hMMGLrtsAR//+AL27XOyf/8wJ06Mo1ZLWbq0kszMP7Bz5wCNjXn4fCF+97sDZGWpuPXWWlavFmQwtm8/xeLFdfzwhwdpasrHZrPR2dlJV1cXJ0+epK2tjauuvoolFy9h1+AufvP4nzi88WXgBGKFGE2JGSmLKbxsNTAzB0AIuIyO+ujudqDTyaf6A4MTHMjJ0eB2hzgc50B1dVYyY6+gQMM77wwCsHv3ECtXFvPZb9+ISnUz+7fu5Z3X1vPwT+6jqLyIuvMuIKwsY+E5+dP6Ay0pCxidnePs2zeMXi8kdUzHgWg0Sm2tmYEBNy6XUAGTna1GLBZROA0HQPDLhXu/UNKYyFB3OAIYDOn6UZODVJMtUe5XXm6kocEyrUj6TLpUAHPq5zCnfmYNJ6vVw969QoXI0ouXsvTipWmvnex2URSVY7EYMCgM1GTVEIlG8IQ8DHoGeXHrHvpdg3TGOjnWsp9QVDhHermeUkMpFcYKyo3l5GnzyNPmkavNRS/Xz7g/H4adDUq9j+bxhHG6gnSMBZk/PztN1DYz04i35hsodC9zaMcaft7Xyg/vux+PX9DdaTloQ6eTY8xQkpmhwGhUTClfSmTDJDJiDEYXJpOS/fuHsWSrsdo8aeWAVVVZaNTSZKbUjp1CCUBRkZ6sLBU9PQ5isVjyc3t7XcmOErEPqetSIhD15itreeOFZxi1DqVvIFIg0S3G4S1CJBETCASnfkbELQSdgn1EA73IdLVI9eeiUEhQaBUM9O1NbqvUmjGYSsktnEVuYRljnjxG7EqkEhG5eTlcdeXqZObO/v1WsnItRFFit1shBgWFQmZO6kpUIjqfuMFq1NLkb7l9xwAHDgzj8YSoqsoiy5JDliWHuQsWT3s+5i8spfvo+bQd2I3f58Y5vJOdr+xk1/r/pqhiPpff9F1UusJkADR1HyxmDQ67H78/zPCwh4oKI0qFFEu2mlAoyuiYH7FY6P7xuc/Wsf61TrzeMBXlxjStppaDNpYszef4sXEqKowsXVZHcUUDV32mi1fW/IE//Oc3+fuffkvenE+QN2spo6P+ZDp5qrUctHHgwDB6vYIsk4ojbSOIgMamfDQaoQ6+9ZAgzOl0BsjJ1RCJRFHIJRgNCnJy1Jgy1ZxzTg6jY34ikSgebzhtXCc6HyYcwuEhD9VxB8LpDCTLUj+xoJByi5bHd/aw6jdbue+TdVw8N3fKPidWzmdage7pcfDYY4cZGRHSfadLiz2dszJTe/IjR0ZZv76LPXsG+cxn5s6Ybpu6f2fto2G5OVoOBcO0d9ipIH3ykpmpYdmcizDrcti4902u+no3T/3qDsQRITB1sEXgQIZRSUZmnAN7p+FASmq60TDBgWyLGqvVk1YOWF2VhTo+MVNrpMlSsGk5EJ8ABgJCVCcajc14nP9qO955ijWvbOaxdRvpGbCmvSYWScjXzUISzCIYFREMTuVAMBLAGRjB4R/BGRwlS51NaUYNCoUErUzNm10dyW31Kh0mrZk5ZQVUzSog4jYQcCrQ6+XU1po5Z/7nqG8QJsP791spzbPgGI8yPOTFoFfgcgYZHPJMy4GSYgN6vRy1Rpr8LXdsn+BAdVUWOeZMcsyZNM2vnvZcLJiXx6rzFrJt3xFcHh8dwyfoePUEf17/DHPLZ/HN66+hwJzP0OA0HLBosDv8BFI4oFBKybYIHBgbTeHA5+pYv76TUPgU8xrMlJVlJDPtDrbYWLokn2PHBQ4sO7+IytJivnnzJ/jDmnV88xcP8MtHn2VJVTPnzKlndDQwLQcOtkxwwJSlou3ICIiE8u4EBw61TnBAp5MRiUSJAQajwIFMk8CBsVGBA15POG1cJzofJjgwNOyhpnoSBywamHsVZM2GXQ/AQ+fDpb+Ghmun7PNZDpy192p5uToCwTCdHXaYxAG5XEJLi5WWFisikRAU+tSXbyWzYDbP/OEhfv2dOymcdzEGQxkmkzKNA4n7fuJes3BhDlarB0MKByxxDoyO+pLlT4mMk0Qpk83m5ac/3XlaDnjji9kfdhfWcCjMni17ePbPL9GyYw/RtG5EUVzWbmTGChSGMiSavLSyvFgkQMRnQyTpI8op1JUisq/MJOqVE+zKxr79cHJbhcKAUlnE7NmVVFXNoa8vg/5+LVlZKhobizj//PtYubKY9vZxXnutm8LCEvr7o3R1OTGb1YyO+jl5cuI6B0G758iRUWprzWRlKTEY5Lz6qhCAfvbZE7z+ejd2e4Dm5gIsFgsWi4Vzz526GHR5+eXkXJLDPfsjbN26FbfTjev4MPuPv8j+51/EXJ7PFdffRHbxbAZn4EBpqZ7ubseEP6CUYrFM4w/EORAOn6IhhQOJ8fSxjxXR1jZGcbGgpejxhDGbNdz4xdXc+MXVPPXYZp5/7FlefvQRZCo93sGLWdr8WeRKefJ4EgGehNj5rncGsNq8FBbqqajIEPyBaTgwPOxFJhNTWKglN1eLVitjNM4BzyQOJBgciQjNqKxWL9XVJsxmNQ6HP62U9UwstdxvuuDV5HLamboCzhS0mlxem2qtrSPs3z/M/PnpC/4SsQS9Qo9eoefS2SYOtFipKTCQX6ZgwD3AkGeIUf8oY74xtpzawrqOdURiE6t2KqmKBdkL+MOKP7ynRgL/KjsblHofraRET+WcTDLlUlRqKe3t40lR88EhDyM2H3XnXkv9oka2v/RTvnvzKsrn30rNotW43WFMJhXnnCNoRNntAUZH/fT1uujstCOWiFi6tCAZKEgtjTp3cS4dJx1s2tSLzebl+PExPB4hQvrqq10EQ8IA7Oy0JzNhSkuNDAy4GR/zMzjgJhSOUlFhTAoMfpBBqVgsRteJo7z9+ktsff1lejvbkUhlRMITWlASVSlibSMS7TmIxOnCzrGIj7DzLaKBPmKBXmLhdDFbpVKBWr2U6moTd95xCT/8ehejzixKZ9dw5dXzaDlow+kMUD4rA4NRMUWIHqC2zozBqEze5OfPyya1XC01YJhqqXX5AKZMZbxL0+nFqRNWWtXIhddWsOKTIVSSfo61vM22ja8x0HuSnhN76egMUlsvorIyE4M2QJbJkgxa7t03RF6elowMJf0DbsrK4NvfPidZ6nb06ChtbaPJfRkZ8eH3hVBrZMnjSATRVCoZMrmEvl43rYds8cBPKV+75yG2v7WDp/74aw5u/iUn9j9HTeOt6PVFaSV1qXpmpkwlSpUUhzMgOBReoV2tzxumq9vB4IAHpVISF/sMsn1HP4FAhL5eN8FgLLnSodcLugdPPN5GR4cdpULKRReVYDC6kiVRgk6Im9ISAxazKm1lo6EwA1UUHt/dxxf/up9bmkr44SVVSCUTN+bm5oLTrjwfOTLKyIifrCzVjMKBMzkcMLPooMEgZ2zMx7Ztffz5z4e57bZafvhDYaV9cqnGTE7STA7QWfvX2+yKDMbQYDQqaG8fT+rhDA16sNm8XLCwifMX1fDQS0+y7DPf4cL5K1jdtASPO5LkgNczwYHePoEDEnGcA5YJ3YSELT43l5MdM3MgFEznwMDgBAfGxv0MDLoJhwQOiMXCNfBBB6WOdfbx7IZtPPPaNg4d70ImlRIKTzggRqWJfN1sCvQVyCTpAuyRaJgu+2Ec/hEcgRG8oXR9ILEkQo26gepqEz/8YSOir1gJupU0zptD/dwCQXMvEmVWeQZGg2KKED1AlkmF0aBMu4+oNVLMFiEjJzVgmGqTOZBpEjiQaTozDiw/t55sQz779w8h0bg50n2cta/v5GhnL4fa2+np8lBgFjig0kUxmZRJ53XvXoEDxgwlA/0CB77z7XOSk+MEBxL7MjLii5fLRZOZXS++eDLJAblMQm+fm0OttmTg5/67vsHVyy7kpw+u4e9vP8+mA9v4eOOF6HSFUybhCT2zTJMSlVKK05HOAa8vTHeXg4HBdA7s2C5woLdveg48/oTAAYVS4IDRMJUDJaUGzJZ0DpAzF9v8H6DY9yD6578APdvgkl+BdMKBOsuBs/aP2OzZGejCcoqL9TgcAVpb/QBs3dpPf7+brCwVBQW6pKjzgD2DC279LjtefJqO7c9RUDGH0rprkhwAQffm1Ve7EKewIPV+c+65uXSchgNisYi6OjNbt56iu9vJYCoHxvxIpeJkJ7dgfHEi9iEuTgD86b7HefqBJ9KeE0m1SDPnIMuYg1hpmvBdYlGC1n1EvDai/mGi/vQmR1GvEZX0YqpVi3j6kev4VOt/0NMjpbn5HJqaqjl0yEY4HGXBghwsFjUGgxyHI5h2DRUUCPey1OvVYJDHX48lt53uOk+9D+TnCwGv/HwtZ2KLFy/mh99/mNcXdFJU5OZE1xaefGYNp070YWvv563QWupYwvw5zRj1UTIzFFM4kJGhpL8/xR+YxAHTGXIgGo3h8YQYGHAng2CJ7zp0Qoyi+BKqK87H0bOLrS88y3XbN7Hsyiu4+pbLyMszJAM8xcV6fL4wZbMMRGMx9Hp58rmuLgeDkziwPc6BkhI9IpEIvz+S7g/EOSAE3Caui5YWa5IDZrOgL2WYxPLTBYzg3TOpEuW0iX2ZaZuZAk+pQcRUs1o9dHU5OHlynCNHRhkd9XLNNYLESyLjLBEoS92/LFUWdeY64f0941iKZWiNYux+OyP+ERxBBw6/A6PCiDPgxKg0znhsH5SdDUq9j5aTo2HRolyKTRrWPHU0qRW1YkURAX+YQCDK8LCPa689j49f1cSvfvxDjmz/DeMDO5i/4muM2ZX0nRJTU21KBjtaWqzJTmaTB+q6te3sfGeA/Hwt2dkaOtq9KBTiZNCj5aCN/gE3SoUEpzMQX0EUJtZqjQyZXHA8Dh0aweUMMD4eINGCKMa/FkKxWIyTxw7z1vrneeOFZxkfGUauVJNb0oSu+CICYRXR4UeR6BYj0S5CJLNAxE7Ud5xooA+RxIDUIKQ2ZpiUDHa/DCn7LFFY0BhLkWlKKCirJ7com8amPCQSCTd/+RvJbDKPN5y8idTWZc2ogzQ54DQ5FTXVJgdjElZUpKOoSJcUJD8T6+11sf/AMMRg+cfmcNu3z+e2b/+I9S/vYtubO8jOy0vu9x2fu4bhgVNccf2tZBUvo7snSGVlJqtXlyaPN/VYiop0VFWZUrIwnIzbA/T2OpPH4fWGkUrE6PUyJBIxYokIEJwfjVrKpk29DA1lUHPeDxjobsXa/iR7N9zFcOdLXH3Ldzk1rEuWS5iyVMnVwt5eF7NnZzI85GGg30OP2UlFRQaRSIzcPA2lJXpq67LYtKmXQCCCTiujsSkvrXNfR8c4f/zjIXJzNcytyaKxKS/td0oEwbzeEIdabeTkTP3NXCMBZvvFmDM1PLajm/294zx0wwJyjKrkNpMn9qmPU52JmSb9Mzkcp3MYHI4gmZkq+vvdjI8HeOqp40ln5ExKNU7nAJ11VP71VlpipHRhOWvWHE1qRa1YUYQ/kMqBOq69ah5fuvthXtj5KsdOHeWGC67C75Jzqk9MdY0pKdDc0mJNdjKbfO9Yu66dd3ZOcKC9Y4IDmSYlB1tsQnmZMp0DpiwVGrUMuWyCA06XwAHRB8iBto5ennplC4+t28SpYRtymYz5s2tYVrGKaFDN7v7XyNfNIl9fgV6RiT/sZcw3jDMwgkQsoyyjFoAMg5I3OlsIRycWM7QKPdnGbLI0FqpLS6kuy6YpXj5z15evSWaTeT3h5MS2LkVTZbJNdgAT/5+uxPJ07aWLinRJQfIztYMtNlpbx2ioN/Nf37iZ//rGzbzwaivrXtvD7JLC5H5f84172X3oBF+5/jLmlzcw0BdIciBxvKnHMh0H7OMpHLAKHJBIJzggEU9wQK1JcEDENUuu5kRvL9vb3+bPrz/J7vbd3HHrp/GOqZIcyDJN5cDQsIf+AQ/mngkO5OVqKCnVU1c7wQGtTkZTY15a575UDtTMzaKpMS/td0oEwbzeEK2HpudAz7CE4+5r+FjWO+S2PAn9e+HapyCzZGKbsxw4a+/RSkuNLKsvZu/eIbZvF0r15s/PZnTEh90ewGBQ0NSUj8mk4tixccbG/ORUm1h+7a207NhL995XWfe7e/nYVZew9NLLkkHWRDez1PvH2rXtvJPqD6RwwGRS0tJiS74PYuh0CvLytNTXm8nKUuH3h5HJxAwNedixvZ/RMT/+RFAq9sEEpSLhCG+/vpuNL2ymoNhCf7+L3ZvfIeQSmhmJZFqkxtnIsuoQiaVEfTbCzi5wdqHIFmQvVCopvvEDRHwTWrJSowJ1Rjby6GxK8uczW7GUq66oQC/Xc9dd30kGdx2OIOGwlawsFcuXF854XUwOOCX+/14Cw4n7RnV11nvqhLZxYw9vvtnPypVF/OK/fsEv/usXPPrY2zz89z+iywtzUryXLs9+/H/yM7xvmCtuuoLC6kWcGopM+APxIAacngPj03BAmsIBcQoHNPFM4L4+Jz5fGJVKSm5BHmLFxZx3+aUc3fEGax96lDeeeYEbv3YjS1cto6IiI8kBs1lDNEqy02TSH8gVMrxqUzig08lojHMg0bmvvT3FH5iblSyTTRyfJq6n6fWG2Lr1FDk5milaV6cLGCVsMtdTH0/OTJvOThd4Ol0GVSLby+MJs/Xt/mRQanIHwemst9dF+3EnElEmpXlmzGozFQjdBfuH7LT19NLbZ8dYYZz2/R+knQ1Kvc82Nu7D1u1CIgGxGIxGBRazhtWXlLFpUy8KhZj1r3bR1JTHVbfew8vPnsPJ/Q+y/rHPYim7FGndJzAY86mqyuLo0RHGRn1otTKqa0zJOuGE093eYY+LbnooLTXisAfxB8JotTKyczRkGIWV5OJiPT5vGKczwLmLhRKlwSEvTU35goPf7wYgP09LT3KF/P3PlIrFYpw4cpDX1q5h6+sv4xifJB+ubMAauhqkIBJHkWZeTix4itDI00QDfRB1JzcVKUqRGpZiMMi5+ea5PBO+Cl9ARXl1LWpDKTKFhoqKDOz2wJQucKnRZKtNUJSaHED6Z2xyx8PJAa338j1FRbpkVlbqTWzB4rmYc4uT++3zeGg/cgiX084f7r0LpVrLgqWXs3Del6ismpV2/KlBs4TWFcDy5UUoFVIKi7T86ZFDeL0hIpEYRUV6gvF2sSXF+mQQbO++IUFw0OpFLBYxq3I+UtUs+ju2YR14nt/cdQ0VdRcze+GN9PYKwkj79g3T3j5OQ72Z3BwNsVgMmVyMUiEEmxYsyE77LRKBNKNRkdbRz+MN09pqYzyuIXXRRaXJ82O1eeJlgDEUCgnHjo6i1shRxwXPJwcK+3pdhIZ9rJqdxdsDdi76zVZ+c20Dy+ZYAHjrrT42bOjiootK+cxnDGkT/dWry951Qj9Tt4szWTlXKERs2NDDtddO1KGfSanGdA5QYnJktXo4edIx7feetffHxuw+OruH0jlg0XDJ6gkOvLpe4MB3b7qePG0Zr+x9hXv+8mvmly5gxfzzaTLkJ4MdnZ3jBEMRMjMUExyIT1w62u044ho6paVG7I4gAb/AgZxsDcaMCQ54fQIHFp8rcGBoUOCAWiOlf0C4v+blaxEfFIJS/yoOtJ7o5tHnXufp9VsZsqVntmap8jGHzyEmAhRQY27EERjhqG03zsAIgchEZxyNzEBZRi0GvZzP3DKX8NoVOMZDWPQWsg05FOZnJjkwuQtcQkwbhAkhnH4y+V5t8gR3poDWmVoimJTajbFxYRn5FnNyv0OhMDsOHKV/eJTv/vIRVAo5q5c0cWftJ6muKk07/sklQAlbvrwIhVJKUaGWP/0pnQOhoMCB4hJ9Mgi2d6/AAavNi0Qsom7OLAzKLA6pj3FsZA83/egnNNXO49LFF0zhQH2DmZxcgQNymRiFUgg2JTmQElhK/ZvaqbK11YZ9fBoOWD3xMkCBA0ePjaJRyyY4MClQ2Nvn4pVTi7lgbjnFg3+HB5vhigeg+uPAWQ6ctfduY+M+bCeGsNm8BIMRiooE5zoYjEz4A3EO6PUy1GoZgUAEk0mJLrucc676GjLPIba+9Ao7N2yicdVqvNI55ORoaWzMS2NBx2R/wBHEH+dAdraGjDgHEsEIs9lJZWUGzc359Pa6KC42oNHI6Oy0o9PLEUvEhPtkuPnXBqXGR8bZ+/Ze3nplK3vf3kMo4J94USxHqi9GWdxALCYiFhgj4rPi63iGWGhCDVYkVaHIb8DUMEJO8xDiV3WIQpnodGVkBpqpyKyjqb4C67B/SgluapZhT49wPbyfgdrJ1/dMAa0ztemu+xXL68mx3EN1dSZBg5VHDj3Cb1p+Q8Aa4NH7HkUqe5yGJc3MnX0dVVVz0v2B03BAqZRSOA0HgnEOlJTok8L4e/cOsW/fMCMjgj9QUKBleMiD1ealW2/k+//7A5756052vvoi99/9vzz3yN+Z03QJlfMbaGgwkxvngEwmRqkUgk2TOTC5W15qp8rDh23xxIqpHGhN5cDRUTSamTnQ1+eipcWKRiOdNsgzuYwulfMLF+a8K9eny6SGM8ugkslEHNhvZel5E50LJ5+T6Wy6QFjidx9zuOgZcXBMOU5dRclp9/2DsH/LoNQf/vAHfvnLXzI0NER9fT2/+93vWLRo0Qfy3R3tdrqPjBEMRolGwR53mlddXIbZrGb9q114fSEgRm2dma7u81DqZ2Pvf4Wu1nW4ht5mdtHXqau9iZaDNk6csAuT+EM2RGJRmoD0ihVFAFSUG2luyqPloI19e4fw+sL09DhpaoxHUg/acDoCtLbayMhQsWxZYVLvqrfXRWmZkfoGORazih3Pv7/le8FggIO7d/DO5tfZ/NorOMetUzcSaxDJ84jE5EgST4nFBMfWEQuPp26IVJVHfnElFXPnE1bkCJCvy6L2N/9Nb69wM+lot1PfoGbVxWXvun/Tldz9szZTJPy9WiJ4NF0G1+T9dnnh2/e9Ss/RjWx84Qn6OtvZvuFv7H7rWVZd/Wk+9dmvYMkVbmSpouBO5wCjYz6am/JoasynqTGfNU8dFVJ0lVIWLMyhod7M2nUd9PW6yM6e+N6iIh05cUFxnU5OaYme4hIdLfoVNDV9mlPHX+OlJ/9A99EtGBXf5IIrb6C9XY7TGcDjDWMwKhgc8mA2q+nucdHZ6WD16tJk+WFvrwuNWkpFRUbydwUhqFhUpGPxuXn09jopKtKnBQFTs8uCoSheX5iiYj3lszJw2P1YbZ60Mlh/ICyMGY2MO1bN4ZFtXdzy2B5uP38W37lwDhBDmJMJE7OZVrzfq53ucxITl9Wry7jvvvTX3q2UJPX9qZaYHM2aZaSxMe+f3v+Pun2oHOhwsKXVN5UDqwQOvLq+C59X4EBdrZnurhosumwODxzgzZatHB9qQ2X5BNU1H0etUnL48ChWq5eDB22EQrEJsWaLJsmB8gojTc15HGyxsXffED5vnANNAgcOtthwOGfmQFmpkYZ6OWaLCl4RjuP9Kt8LhcK8vfcwL2/ezd9f3caAbWTKNlKxHJ08AwlyUn2gE6P7cQVTA1cijKoMSvLyqasooyIrm+JiA3W1WTy94mtYrR4ef6KNgXia/qpVZ8CBGSaK/4y9bxxIcRquu64q7bXJ+z0+HuCpn/2UPcdaeOyFDRw63sVzmzbzwpat3HzFCn7whU9RVigEJFNFwZ3OAcZGfTQ159HUlE9TUz5r1ggcUKqkLFyQQ32DmXVrO+jti3PAMj0HSkr1lBTr0OsV3NF0Mfs7D/KrvzzDvmNHcIs/wRevuRS9XuCA1xPGaFAwNChwoKc7hQMpq9BqjcCBLJMqrVPlihVFnLt4Gg7ENXEO7B+ON0CJ4vOGKS7SM6s8A3u8+1hqGWzAL+jAaTQ5FF/2E9j5e/j7jbDoC3DRvZzlwP9N+zA5MDTkpbclQE+PA78/QlmZEYtFk+TA+vVdeOMcqK0109XlpLvbgdcbZtGinLim3QK++L1P8+QfnmTtY2tBLKOgejGzZ11Je2cg6RwnOVBupLk5j5YWm9BEwJfOgUT3sO5uJy0tQgZSc7MwN3Q4/Gi1cvLytFgsKv5yVBAJ/1csThw+PMxdN38Lh21gymsiqQaRMgP1rMsRiQSvwNv+LBFP+rYydQaZhbkYqhXIL94J8jBmbTk3//BuaqTncv/PO+no9FBeXcjtX1zwrvs0U+D4n7H36z6RmnH14x83p72Wvt9GvlTyA6p+dwlP7/5v3n72LbydXva+tYX9W7ay/OPLufGrN1JcIQS1kv5AnAOjoz6ap+OAUsrChTk0NJhZu7aDvmk40N4+jtcbIjtbyG5KaFAtXVrA6KgPhd7C1V/+CtlGD3/7zaO8/fTDnNhTie5rt5JTVMhgnAPdM3BAE+eAKc6BgykcWHwaDuzfL4zzYDCKzxemuFhPeXlGsgtlKgf8/jAdHXY0GtkMmUextL/vF+dP9zkJzi9cmAO3pr/2biWFqe9PtcTvbsmVU1JioHLOaToqfYD2bxeUevrpp/nWt77Fgw8+yOLFi/n1r3/NRRddxPHjx7FYLB/MTsSEgSWVipOZHiA819SURyIgZTFrUCgkDAyHUWpXs+rmSxjtfoY//+9/8OLf7mfpqpvQ6apwuUS4PSF0WjkQSzrsCxZkpwVeTFkqlAopo2O+5PcmNIEi4ShOZwitVpYW5Bgd8aHXy2moN2PKUiGTCQAYG59IfX0v5vN4OLRvJ5vXP8+ebdtwjFshFkUkNSHW1ILIDTEviJRAFGJBiHqI+duJBAch61MAiMSgMZ9L0O8hJivAlF3O9Td/jPkLC09bYqdRS4WWnvUzR43/1Xamga6ZyvwSlho5Tzw+3bZd3X4q532ca2/9HPu2b+bJh3/D4f27eHHNnympqOSyT90MpHdw3L1nEIcjkLwBW20ewuEoOq0ciVSEzSaMg+oqE253EJczyP/8zx4Ki7REIkL2hcUsOCSJMb1sWZHQLWN4OVXnVxAYeZ6/3f9T3njhKVZd+130+tlo1FJMWUKJnEYt5dX+LvoH3Mmuk62HRth/YJiMDCVKpRRTpgpNgyytBPHGG2qmnMfE8c2fl43TGcDtCZGdraa5KQ+PNyx0nTGmZ0slPrOh3kyuQcV3L5zDmj19PLD5JHu6x/jh+RUIZa0xenocaROA07XifrfyiMRzR46Mpj1+v2zy959Jicm/i334HBAK3xIcSM1uSeVAXa0Zi0XgwNCgnwLVXP7z1sXs793JPQ88zu+eXMe3b7kKiTwbmUyMyaRMOvSHWkcwGuIcSAm8ZJlUKJRSxkZ9ye9NCGuHIxMcSC1TGxkVOFDfYBberxCmBuP2iayk92Jen5/t+4/y1KtbWL9lP8OjY0RjUZRSDRZNIQqJl0DEi0QkA2JEYmHC0SDj/mEcgRFqs5cmRTdLTLNwByxopSZKcvL4/C3NLFqQf9oSu8mlah+GnWmg6910LGbkwAzbdne6WVq3iG/cchlbdrfy04eeYuOOFh559nVmFeby/S8IjE3cL+0OP3t2T3CgOi6IHA5H0erkSCUTHKiqFjjgdAW573/2UFNtQiaXoFBKqK3LSpab1tWakxzIG5rNZ5Z9jo6x/fz3I0/zxAsb+fp115JnKEatkZJlEjig1kjpf7WLgX53suvkodYRDuyf4ACkZ01ZLBpuvLFmynlMHN+8+QIHPG6BA03NeXg9AgeMhvRV8rRsLG0WfOwuaHkS9vwR+nazculDQClnOfB/xz5sDuTkqLHrhWCtySRJy2ZI8wdSONDX58Jm86JWS2luTtznNHzl7q8wGqlgz8bXGTi6k999Zxs55XUoosvQ6WRTOGAyqVAqpYyO+pLfuz3OgexsNSMjXgKBCKOj/uS96ujREaxWYfvE+0EIVv0jFvQH6W7v5uTRk7z56m7aDnYi0ZfjH+8h5OqHSOJzRcKkPy7AHAt7iLk9EI2ARPBJNJYKAm4jIoWZzNwCLr1lDmM5RzjubEMuETPfMp8ryq9gfvZ8LGoLYpEY8Rezktflh2VnGuh6t/tEasZV4vHptj3ZIuar5/+W+78v4vt/+z6v/ulVXC0uNj2/CXOOmS/84AtAegfH3bsn+QNxDuh0ciQpHKiOc8DlEvyB6moTcrkEpVJCXZwDHk+Y2hQObN8+EA/2mCmvmc1nfvgDDu7YzUuP/Y1ffesOVl55MU2XXkF2XiavvtpFf7872XUykZ2UyoHUDKF348D8OAfccQ40N+fhiXPAMIkD75Z5VFtrJuEPJAJaifdP1ndKtXfj/OTOie/3Itnk70+cn9wCJSKtl4LCj0YXvn+7oNSvfvUrbrvtNm655RYAHnzwQV555RUeffRR7rzzzn/595dXGCm1aKcNHljMGmrrJgYdwPi4n1AwSjgcpW9Aw6rL7+Kqm77Kmj/+jhcevw+5QoWlZBkVzZ+iqq48qeOTUPef3G3vyisr0r4zIawdCIQJhqJkZqro7XXR0WGnp8eJUiEhEonh8YapMmu48Ru/oqN9BIWufMZjDAWDyOQTIqA//8EP2LH5DXzOIYiFpmwvz/8BYkVBXJSuh1igC2ITMBJJTYjkuYjlueTlKSgrMxEMRmls/DEqtYydOwZojGfyvJudSdT4o2KTy/wm2+QuTme6rVgs5pylH2PhkuUc3L2dZ594FHPx8mR3xi1v7qdpSQ21dWaczlBaEFNoveoBkQiHXdCXUatllJYYqK42sX37AB53kPYOOxIJeDzZNDRY0oI9iX1VKCTk5ptp/OSPsQ1cx9MP/SeP3fcFSqqXYzHdSVVVfXL8VteYyMvXpgQTYzjsAVyuIPMaLDQvEfSijh4dYc1TR5NB1NQyxIS4e1GRjhUritm7b4hjx8ZoaLAkA26p5yphk8eMw+6nRq7APDeHDSdsfObvB2iMyJGOh7FYNGmTgNPpeiQmEVarF4tl+gnEW2/18tpr3Vx8cQmf+Uzt+6rz8W5p4//O9qFzoNyIOMs87QTEYtFQVzuVA8GQwIHBUyFuveQavnnT1fz84Wf5j98+gUQsoa50LivKV7FiRRGHWkeSwtzAlG57V03iQEJYOxAIEwpO5YBCKXDA6wljqdLwky99jqPHbczKKZ3xGIPBEHL5RLvtr93zCE+v38qoY4xILDxl+8b8S8lU5yASiXgn9CoBr5dICi9UUi06RQZaeQbGDAkFeRlotXK+3ngLapWMHTsHaGoUVnDfzVJL8z7q9m46FjNy4F22FYlELFtcx7LFdezY38Yv/vgcTdWLkt0ZX3/zKEuayqirFTiQGsRMcECECLtjggMlpRMccLuDDA16kMnEqDUyVl1cmgz4JCzBgYI8I9dcfQM3XbGSex74C9/59W+ZP7uGHxlupLqqLjl+a6pN5OdpU4KJQutulytIwzxL2vWU0OzMMqVwIN6JLNGpbOUKQc8nwYFEwC31XCVs8pixjgbpjV5IRXURho415D6/Elnw27wzOvcsB/6P2IfNgcwMFStWZE3rjFosGmqn4UAozoGjR0cpLTUktykq0nHBqrlojZnMqzfSfWgXLz/5Muv+8L9seCKDxSuXsmDpIux+I/PnZ0/vD8Q5EA7HkMkkaLVyTCYlO3b0C/5AnAMeT5iqKg2f+OKtHGsbJn92yYzHGAqGkKVw4P6fPc4bz2/GMWJNK7FL2mgvEk0e8qw6wp5+ou5+IJYMSIlkWsTKTMTKTDKMEvIKM9Fq5TQ2zkOlkrG5pRVx9XF2RP+OIWDg0rJLubL8SmZnzsagSB/XZ5JN+FGx05XxQnrG1XvZttho4KkvP0XrNa3cseYOtv9tOz1zBznY047cm8HWt46xcFEhtXEOpAYxk/4AIhwpHCidxIHBOAc0GhkXX1yaDPgkLMEBs1lFcbGe3l4Xx4+Po7HM5qqv38Vo117eem4dW9dvZv7KS2m6+ALy8rQpgaEJDsybxIGWlgk9pckBqQQHVkziQNVpODDZH5gumGS1enE6AxgMykli6jPrO6VmpBkM0wenWltt7N9vZf58CytWaN41kPVebCY5gWAkyIjvH0tC+VfYv1VQKhgMsm/fPr7//e8nnxOLxaxcuZKdO3dO+55AIEAgMNG22Ol0/lP7kJmhQmVIB01C36a2zjwluFBYoKM3z4lUKkKrVeB0BrDaZJQt+DIrr7qd3W89xztvruXx+16moqaOsurzQdVAfnFZUvRwz54hOjvtnDvgRqWWpWnvNC/Jp7BIj83mpe3IKJZsNceOjTE85KHjpFAa2Nycn7wwB20qNm4O8vLfPk8sOECMCMSiQBiiIUAAhzznS0QDXUR97UT97ac9JyLZRGcMqb6RWKgCkTwPtT6f2nnVWEeiSCQizjknl4suKgHSs4LOJBj1f9HeLe1zpm5+qTaTPhSASCSiYfESwtJyjh0bQyqTc/yYjZf/cgcbnozxrbt/yhVXrE7+NkKU30pOjobyWUbcnpCgb5CpZHDIg3XYi0gk6OOUlRkZtnoxZSqnHEdqJpZIJEIul9B43iJyi/7K0b3rWfeX/+FXd1zJUPcdiLRLOHRwlPoGM9ddO1GaUltnFoQ5B9xJsc29+4aSZXx9vU7s9gB6vYKVFxSnBcMS527y/pxpBlsCmJWVmXznwjn8/o12Xgt4KAUkb3RhMMiTE53p6vsTDoXBIKexMQ+r1XOaCYQI4fQLv8G7TTbOxCZ//797ecZk+0hwwKgirNelcSChb1NXa54yQSgo1JHXm84BmzXChfUX8rkrL+P5t97m2Tc289mf/Be1T5XQOLeeHE0pc0oLkhxoOWjDZvNysMWG0ahI01Fa0pxPUaGgBdHWNorXG2LfviFc7hAnO6ZyYGwYdm118vs1v2LcZyUaixIjSjQWJRqLEI07EAtzV+IMjjPqHWTUN7UMI9UUMk3yXlOgr0CvMKGTZ2A2mFg8r4zxkQgKpYQLVpZgNqundL87k2DU/0V7Vw7M0M0v1WbSBUlY0/xqfvTZTI4dG0OjcnH8xCg/f/xRgo/5+O2PPs/1VyxP/jZtKRyYVW7E4xY4kGlSMjToYdga50CGgvIKI1arj9wcTdo+pf7f7pjgwLLGSkrzvs+2gwf42Z/+xrV3/Ig726+lPKs2KeKeWqJYVytwYKDfTcAf58BegQPtHXZ6+yY4cMHK4mS5Ruq1NYUDZ5jB1tvr4tjxcaisYuHKu/Ft+jWfjv2YDNllbHzj5rMc+IjbR4EDky1V36Z2Gg4UFuro6XEik01wIHURWi6XkJ2tQW/Uceu3bqB26Qpef3EX/cf2sXfTZt5a+yJShZoNs6ooq66mvHYOYkUG8+YJjnhzcz6FkzhgtXrp7HRgs/lQqyX4/ZFkB7ZTQzHe2u7i5b/+mrCrF4gSi0WFDKZYwjeIoZ59LcQiRPyjBAa2QyQw/QkAVLOuRKorBEBsP0lEZUGszEShNVE6p5RQRMi4WRnngEYjxeMJIzM7ece+gcHKwxhlRj5R9AmumXMNxfpi1DL1+/o7fRj2bmV+M3XzS7XUYPbq1ell67XmWl7+6sv8V8EjvDT+Fx45+TuyPHPY99he1v1uhC/d9Xkuv+6SZOfdNH+g3Ig7zgGTScngoAdrnAMZRgXl5UZsNh85p+GAI4UDiecTv61m8cdZcP4S/va7x9nx4rMc3/sOP3ngzmRgpzbOgf5+N/5JHOjosNPX5+TVV7uwWNRJjgHvHwcmlQM6nUECgcgU7anpsqxSSw8rKzNxOPynWVgSpf09E+H1d7PJ3//Plhn+q+3fKig1MjJCJBIhOzs77fns7GyOHTs27Xt+9rOfcc8997xv+zA27mPr+l56exzUN1gYH/dz6NAIGrUUEFFbJwzexMBIBI00aikeb5i+XicnO+zk5Gqon19B/fwfsPLKL9LVto3db7/KWy/+iWDAR17RLGwnlpCVX4fJmIXXI2H/fitisQibTSi5qKrKSjrie/cNodW5GB/3o1bLKCzScvToKF5fGOuwN+msH9hvJRaDaKAHoq5pjxEgOPQHEGsRq8oRyXKIRZyIpEZE0iwhCCUxIJKZEEvNqNRqFAoZmSYlNdU3YbGohVr5eLnXdPZ+6zx9FO296FnNtO10GVSTywJTb8ausR5EsSBu+yg/+cZnOXfZhXz1h/diySug5aAtrsdl5sorZyc/a8OGbnp7nVRUGJPZTN09Tmw2L0qVNLlvVpuHdevakxpVwaCMnh4HsZgg0r7onDwWnfNZymqW8tRD/81jv/4xZZXzKKr7PH29CtatO0Hzkvzk561eXcr2HQMoFRK2b+uno8OOXi/HbFZhs3mSbWgnwyYYjCSzqSYH6k5nqTpWiZu3JVPNV5aWsmbPKdpFXvrHXajf6Eo6I9OtxCUcisbGPFavLqOnx5FcIYf0icPy5YVYLOopE5J/xoE4cmSU9eu7yMpS8pnPzP3/ZlU8YR8JDth9PPXqcXp6HTTUT3BArRE4UFebzoFE0CgRiOntc9Jx0k5ujoYF9UUsqL+BWy6/lH3H23hp807+tn4DHp+fkvxsNh+dR3lBCYUlWUQCMVoO2hCLISEDUl2VlTYB8/rCbN7ci0opo6LCwNG2UXy+MMNWb3Kb/QesRCIw7rPhC7unHF/C9g5uRCZWkKHKRifPxBd2o5SqUcv0qGU6lFI1KqkWtUxPhkaPSiXDlKnkkpoLkxxIlDD+/2rvRc/qvYikzpSuX1Skw+6xE4oGGHc5ufF79/HYuo088OMvU1GSz8EWG+0ddhrqzVyV4IA1nQOJbKaebic9PU7y87Vp+7Vt+4RG1WQOnHNOLueck8uCymrufXgN//ngX6ksLWb1glX09ilYu+4ES+JlS4lSzB3bB1AoJWzb/h45sOYo9Q3maQN1M1mqjlVyEq/X4D33Trz7n2AVL1HgaGPDGz85y4GPsH0kODDuY+sLx+npcdDQYCEQiLB//zDRKDidwaSWU9IfiAeNEs56X5+TkyftU5z9RKczrVbGRZefS9FXL8BkUrJ+3TtsemkrXYdb2fLsfrY8G0MqV/FqUTGLllRRVF5EYWkhedkmxixS3tltR6WSU1EhjA2bzcPwsI+2tlFWrSrjwH4r4XCMiHeQWGhmf8B74qn4/0QgloFIjEiiRCQ3IFaZEMt0iOU6xAoDMq0ZrU5GZqaS6uqVwrwyXu41XUZIn6uPLZ2vcOTkEYwKI9fOuTYZjJJL5FN35v+ovZcMxvfSNGFy1uXNC66hpvVc9iqe46XjzxJgiIDHz6++/yuef+IV7vrNHZTOETr0dXTYqa9P8QcmcSCRzdTd7aS3dyoHtm+f0KiazIHUe/LevUP0DYRZddPN5FUu4MDrz/HlK77Cyisv4qt3347Fohf8ge0DKJUStsc5oNNNcGB42Ed5uTFN5BwmONDwD3JgcjAn8TcREEvVnpquUifB5srKzGQmbyJTavJ35eVpMBiKZlzo/0est9fFvn3D6PXyKd0GP4r2bxWU+kfs+9//Pt/61reSj51OJ4WFhf/w5w0NeentcTA65hdaao758XqCSKVCDep0ndhSHzvsfhQKCaUl+jQxZol0OV3DZcjMNzG7eAiX7RC7tm7BOvAXANTaDMx5s8grnoNMnIk4UMHxVj8avQGNVkdujhydTsbwkBu/N0gkIkevC6GSe/A53Xz5c+9QXBBBFe4nZD0BIgkgIZEZBSKQ6BHJshErShDrGpHIs9Oi0iB0B5g9x8g3v3nO/xeBpQ/bprtpna77n+WCxfQNPsEba/+E9eSLvLP5dVp2beOWr91J7Xyhy1CqHldvr4u2tlEcjgBlZcZkNtOrr3YxOOSh7cgoqy4uw2rz8NRTx9m3bxiZTIRGI6RzDwy4cbtD5OVqMRiFgE8wpOCqW+9CGv00j/36R7z93NfIKLyUvr7Lk+KGiZt7QgfK7w8LQ1AqJjtHgyVbjVwxjlYjY3TEl3aca546mizteC+lnGnwSAlmFeXp+e7Hq1izpYu3GWN9zMsne8eZVzRVGPC5547zxBNtaW3CUycQPT0OHnvsMCMjQuB4ctemf6a0oqfHwTPPnODoUUFEemQkxpEjo//fOSP/iL3fHBge8tLT62VsVODA2LgfjzeFA9N0Ykt9bHcIHCgp1aeJcEolEpz9emrNS7AU++ke6WLD1hb+2PcaAAathvysHMoLCzGoDeT7vew+JMao02CI/4vFooSCUWSyCGPjfjQ6EMnD2BxDXPvZv5BbKGU4ZOPQcDcQQ4SYGBNCt3KJCq3MiEGZFc94ypzCAYVCjNms5sYbqv9tM5w+SvauHJjU/W+lpZJffe1OHl23np0ntrNpZwu1H/8SP/rSdVzStAxI7/I3hQPXTXBgaNDDkbgTa7UmODCULOeACQ7k5mkxGoSATzAg4js3X8c3bl3F9371ML969iHqCudxbm9zkgOJkrpEWaDfH0YESCVicrI1ZFvUKOTjaLQyRkZ9ace5Zs3RpCD6eynlnOxEJMySmwmrv0b/9jLm9K2lSvYV6NRB2flTPuPdOABTS/bOcuDDt3+FP9DT42As7g9Eo+DxhABRmpZTwiY/dsQ5UDqJA3v3DvHGGz24XAEuvXRWUg/KFcrk83d+DoDdO3vxjvdzsu0EEa+N/dv28+JfXyQSjiQ/XySWIlMoeUcpRyyWEhNJCAYjDLwTZuvfxISCIbwud7K0bsJEIFEikqoRK41ItEVINTmIlRmIxBNuZYIDN/wDHOhz9fFK5yscGT1ChiKDT1d+mmvnXEuhvhCp+P9713Vamy6YPX35bi1XU8t1DVdxV+5d7HluD9bnbHS2Hee2VbfxqS98ikUXrQbSs35Ox4HBQU8ymDnBgRn8gTwtBoNrIlMqJfDj94exOm5E23uAzS9v5p1N2/nKj7/MhVf/P/bOPK7t+v7jzxwkIQlJIBDuAIW2QEtLW1oFWq+2U2vVeV/zvjanc4fOqdNtOp26Ted+Op3XPOax6by1Hq1Va6naC0qBttAWQgmQEEgCuSDA749vviEJ0MO1Wl1ej0cXB8k3+Ybv9/v8vt+f9/v1/l64LdDvF+wB5HJpyGxdjULRF2KOPOpcefHFpklb6vamSTkQOkc1mpB/8V58K2tqOli92oLZrJu0Qstm84SrIefNy5jwvb6KbDYPa9daaW8Xqj3d7tFx0wYPR32nzuzU1FRkMhnd3d1RP+/u7iYjY+IMqVKpRKlUHrTPkJGhpro6B0evj9JSI91dXtr3uElOFsphIyd/TaSsLC02u4+sLG3Uz83mJPrdAbpsQZSJBZSUVDBddhryHa1kpTnQKntoqtvCji2f4e7r4vP3Jy+fjZW4ZrQDCfrkFLLSUsgtqKKoZCb5U4vJL5pOZm4+Mplsr9uJa+/al7H5V9HeWvwma/UrmppOwrnXkZ5yMW8+excNm7/kkXtvp3jW69z1yPPoDGPJFo1aTmamhsxMTVSyqrIqK/xoswsX1ZaWPkaGhzGkjXlDbd1qZ8+eAV5/o5msLC2KBBnapATh4jvvOCqPquLBu+7mw9eeZMD+Jb3dl9La6uK880uoqhxrJxIrCcVH0UC6rtYeNkcX91Gl65X0yAABAABJREFUlFM01bBXs/vIqihxe5HfW+zfSiqRsHRGOskyGWtsLs56dB2/PGE6Vy6aEhWQv/pqMxs3dqPRJEy6ktXT4yc1NfGgt1M0NDh4660W7HYfxx+fz9Kl+ej1Ct59d1f4vQ6WT8nhrMOBA+kZaqqrU+h1CBzo6vaypz2CAxETXyZSVpYWu21iDrj7A9i6/CQqdSwsOY505tDU3Ik21YdE5eGL2mbqWrbR3dvLc+8PfqXPbzToSE3RsWTeDOaWFDJzaj4zp+VRZM5CLo9z4L/VwfSKgL23+E3W6je10MgPzzqFm9OXc/8/X+DDms38+i/P8vJ7n7HisTvINKWEX6PWjHEgMllVVZkVfhRvrlta+hgeHiEtTR1+rsiBN14XOJCgkJGkDXGgopzF1X/lxnue5eGXXmeXvYXKzmNpbXVx/nklVFWNcUCsJIxs7ZTLpdTW2cPm6OI+KlVyphYZ9mp2H1kVJW4vigOxfyeJhIRpx9FMDtP7XoDnvg9H3QhH/wpCbS+wbw4Iim7ZO1iaiAMzZhij2vlcrsE4BybQoYgHFi5MwhHigM8XJD9fR1+fH6NRtV8csE3Cgf7+AB0dHt57bzdtbW6am/toa3Nht3upqMigp2+Yysq5/OgXJ0dUYiQyOjhAr62X3S1WGuvb8Xu9qJRg3ePC5w3Q2xfA5x9Fm6Jmzmw9UqmU/Gn55E7JRZesIz07HV2ybtxCxMGSxW3hnd3v0OhoJFmZzA9KfsA5088hNykXmfS7xZ6D6R0He2/xm6jVb0+DlvvnPsXf5Y/y9rwX6XqhE+emPl54+AXWrFjDPc/cQ1beWCJHE8GByGRMZYgDleM4MExa2pg3VDgeCHFAoZChDXNAOCfLy9Ow273sTJhPUmYJ7l2ruefn9/CfZ97lp3f9lOLilKhklieCA3V19rA5OgjXd5VKTlGRYa/Jo8iqKM/+cABhkIA4CXAyrVsnmLurVPJJz3OxHVCnUx7U1jqLpT9sXD93ruD9G7kv4r4KRucH7W3/a32nklIKhYJ58+axatUqvv/97wPCKNNVq1Zx7bXXfi2fISU5EVUx1NYJmdxccxKqRBnvvbeboaER3O5BiotToszJbXYPaz+z4uj1YUxRhY3HITqRsfzkQtbVWBkeHqGu1o7PH0SmSCazYLqw8p1xJHNmpHLBD4p5560t2LusTMlXkZOVgKffzdDQEFKpBCQSBgaGGPDIyJuSjsUyxJatHo5dUsYbT1xNa/M2rr31D8w5cuHX8p39r2hfZuUHS5GJqsjjJzLzL1Y8HbPkdf79zD94/m9/YCiYwNsrrMwpHw5f1Ldt66Wz08OC+RlRqwxVldlUVWaHE1JdXR6Kigyo1WlUV2WFnzs6Am53AJ83SJJWQZpJjU6nRKOWh03Jb7zjDornLOEfD9yKreEu+u0nsHbNlVRVZo/bF9GfDXNS1NQ88fdvvrmTtlYXefl6jKmJEyafIv2nZDIJw8PCaNeKeRnh9xJN0iP/VhZLP70WDycVGan3+7n73W18sauXB8+bgzY0rez006dGPcZqfycf7W2a02SaMcPIyScX0dHRz/Tpyaxf34lGk4DLNZaY+G99Sr4NOiw4YEikuNhAXa1wHTfnJpGoGs+BSHNym80TbntKMarCxuMQncQ4eXkhNesEDtTW2fH7hkhMUFNWkM/g0AhDGWZmzEzlwh+U8NpbjbR39mDOU5OZo8LV78EfGEImkyIBBgaG8HlGKSxIxdoeoLHBxYlLpvOnfz3Bmg0N3PXTizjj+DgHDrYOhlfEvhSZqIo8fqI4EFrpPv7Y3/PI8+9z64NPIZPKsNuG+HhVU/jYFDkwf0FGVNWRODZcDEQiOVBVnRV+7siowAGvN4g2SYEpTeCAOtSGZDYn8ZfbLmNR+Vxu/NPfeb/hdXbbysjKSaSqKnvcvoj+bGaSoqfmhX7/5ps7aW1zkZ+nJ9WYOGHyKdJ/KooDFRnh9xLNcSP/ThZLP9talQSm/ph5I+/CJ/dCWw2c/SyohUTevjgAjGvZm0gHiwNiImrdOityuYRgUNjXOAcOrYR4QENtiAN6vZLBweGo46q4OCVqYpdY4eBw+DCGOOCZgAPLlxeyLsSBujo7Pl+Q0dC0+nXrrGzdKlTKFRUZInypMqioyCY7P5uyBWWcEvFZxW3v2tVHba2dRYty+OzlJ6lZWcMN991AxVEVh/S7srgtvLPrHRp7G0lWfbeTUaIOhnfcvhRbqS8mwSLf+4+n/ppLe07n5sKbqf2oFvs/exgZhR4nfFLTFD42w/HAgph4YC8cqK6OiAciOCC03oXigQgOlJSk4vEE8XiC9PcnYDB+n2F1Ie07V3Hjuddy9S1Xs/z85fT0+ML+bJA0zs9J5IA4KdUYwYHI5NN/xYF9MDwyWTeZIpNfk21nb1P99rbdBQsycTh8ZGdraW7uC+935L4GR5Mwlxw+59d3KikF8POf/5yLL76YiooKFixYwF/+8hc8Hk94+sahVFeXh8YmBx3bnbQ0O7F2DJCeoaGxoYdOqwepFBy9fj5c2UZtrY12ixuPN4jL6efL9eMzmgD1W+zU1HSSmaXhlFMKqarMZsV7u3jvvVaUCimF5SaWLsmjtc1NZ5cHrTaBhq0OgiNa8opmcsxi814TIE1NPexst7LwaBWFhSl4vUIAe4gWQf6ndTD6gw9UkRfOid5fKpVSNOskTrp0Cg5HgC11DiQSKXlmFX6vF0evH7c7QHNzX9inKfKiKGb5k5IUFOTrwj5hYgIpLU2Nyx0gPV3DkiV5YZPD8CQKZwC9oR9jRiGVJ/+Rhi9ewrrtZepWNtNy8qMUlcyMeq9Nm7thFPQGFRXzMsJJ3Q0bu2i3uGlqdOByD+LzBTGmJOIPBHG7BSPc4eFR2i39OHp9KJUysjI1gpdBKFkVqYm+q8ifVaWq+bCxmzfrrBx9z0dUDSs59/hCzjhjOmecMX3Sv8f+tmVMNM1pf0aL33DDfAB+97u1rFxpoaIiPbxSLup/wfD2m+RAZ9cAzm0OarZ5aW5x0mEdICNdQ0NjD1arB6kMeh1+Vn4ocMDS7sbrCeJ0+Vk/wcoWwJZ6gQNZmSEOVGWzYsUu3ntvNwqljPJCE0uW5tHW6qarU+BA/dYeJMNKZhYV7NNLoLGph74OK0uPyaSoKCVsrHuoVsP/1/V1s2BfHJBIJCwoLufOy3+OOU9LQ30vtXV2hoJBkgyj9DoiOPDiWLIqcvsiB/ILdGGfMDGBlJaWiNulnZQDTlcAg76fTGMaPzz5Ej78ci0fb/2YR9/t5tjvpVA5pyTqvTZv6mYUMOhVVFRkhJO6GzZ0YWl309jkwO0SOJBiTCTgj+aApb2fXofAgcwsgQNisipSe+NArjkJ0n4EadOg9gUG/zKffw7+kulLT9onB2D/WHCwOABwySUCSyMrpb7r+iY5YO3sF+KBehctLU6s1gHS0zU0hjggk4HD4efDEAfa2914PEFcLv+EFQ4gTOeqqekkcxwHWlEqpRQWmli6NI/WVjednR40mgTq6+37VYlhMmlwOHy43UPMn59Bfr6Ot/oEm4FDyYGoZJQymQtLLuTs4rPJ1X53k1GiDoZ33IEoMhEV+96lqaX8a/m/+LH/VmqmrUDrNbBhm4UddYOMjIxg0AzhiOFAbJIkKh4o0FEWwYH6EAdce+GAOJlucHAYhUJo/UxNTSQt7UjmXH8Cmz58gwdueYDVb63m+Asvob5JuE/RhzgQWSH15ps7qa+34/EE8XqDGI2J+GM40N7ejyPEgawQBzwHyIHY50YmkMRk3d60Py16E03121e1tcmkCU/fjGxhXLzYDBBVKQXx6XuHTOeccw52u53bb7+drq4uysvLee+998aZHR4Ktba6aW11k5GSiKY8gbw8HQqFDIVCgscbRKuVY0xR0evwCavUniFhGo46IVwSGVllIkiC1zdEV6dYJdLDpk3dOJ0B5DLIyU2its6OSikjPV2N2z0ISJg3Lz2qTaypqYfaurGpTGJyobbOzubN3eh0SvyBYXw+YUXG5f5qbR9xTa4DMTY/WIrKwk/y/sJzShgcHA5Pbnz03t/w+ccf8IPr7mXhwoLwVC+PZwir1YM4TVLcvsvpp2WnC5vdx+LF5qgE0qWXlk1oON7U5GDFe7vRahNI0iqQJ8g5/syrKcr7AU/c90uuPfcETrvoOsoXXUBBQTJmcxJz56QDoxN6p/j9QdRqOcHhURITE3D0+hgeHkWnU1I+O41t2/pYW9OBsy9AmimRkhJj+Fxrauph1SpL+LyY6LuK/dnxMzIoTNPy4HvbeWtkkO4V2xkdHWXVKssBrWxHSgw4Zs4UPlfkNKcDWVWLnAYV+Tm+yyvjkfomObBrpwt3q5sUYwrlmmgOeD1DaLXC0AdHrw8k4BkQOKDWjHEgsspEkASfd4jOLrFKZIwDMrmE3Jwk6mrtKFWTcCB009LY1ENdrZ28PB1eXxBxGmBd7RgHAv5h+vuF67+7P86BQ6H/xiviqyh2NXai9xaek4/ZnESPQwhGP6xbxU8f+pS7rr2KhQtzsNu91NZFc2BW2RgHnC4/O1tc2G1jHBATSJdeWjah0WxTk4P3Vggc0CYpSJDJuOy0E/ndL5fz8z8+wsILbuTH553CuUtOpKhQ8B2ZM3ffHBgOjpCYmECvY4wDs8sFDtSs7aCvL4ApxAHxXGsMcUBMuk30XY37WdESMBbife9+Lhr5FR9/2MDa0RtZeZhx4L/xqfq26pvkwM6dLtra3KQbs0NtnBHxgCcUDxhV9Pb6kEiEqtVt23rRRHAgsspEkASvd4iuLnGKX0Q8IIecnCRqa+2oQhwQruPjOSAGznl5utA9/2h4wlk4HvAP43QKQf/AwNBB/37a3G28u+tdGnsbSVGl/E9URsXq6z4nYyv1Y99bJVdxe+Xt/GvjXN7wPcLW4ZcpWHAMtrrtXP771zj/+h+ycOFUIR4IcSCyjU6jkTNvXjoul5+WFhe2CA5s2iS00e6NAytCHEhKUiCVSsjI0EQtqM2c9SOyps3m9cef5IGf3cSxZ55JxXHHjUsMWSz9dHV5GB0FjSYBtToBRwQHysvT8HiCfPRRG1u22DEaE7nwwhnj44FQ0m2/OBBSZAJJ/P8HUuEUKTHxlJenA8b7e+1vtXVkFVns5x4cHqTHF09KHVJde+21X1t5bqTy83W09fuYN92IKU1DzboOPvm4HVO6mvnzM5DJhORUZpYWmUxK6QyjUEni9JOSkkhxccq4A1ec1ieUKI6yabMNnzdIXl4SqamJ+H1B1qzZQ3FxSjhgL5uVOi6gFj0XIqcylZSkYjAoSUxMID9PR/nsNP4jEUoXbXb/of2y4vpatD+JsMjnVFVm4/N62Fa/iT6HnYfvuIJLr7+Zxcedw5Z6ByqljJoaK17fEG73ILmigZ85CZvdh9sdCGfvIxNIsR5NpjQNtm4v3V0D9MhlmExqcnK0mNISGULHojP/QtH2V/jPPx5k9Yp3uej6e1h2ciVls6B+Sw9rP+sAQKdTkJWlRaNOoLfXR5pJTYpxlIwMwQMrsmWvts5OIDCMIVlJfp5OGOeqFsa5rq2xsmlTNx7P0LhzcG9eYEUmLZfNyeZftZ18GfRz07uNjK4TQPFVgpHVq9t5//3dHH98Ab/5TXXU72bMMGKzebHZPOGS5Mk00TSo/zV9UxyYUqjH2a/DOC0Lk0lDY1MPNWuteL1DlJYa0emUeD1BsjIFDswoFTjgdI1xINaYWZzWJ3Jg8yYbPl+QvDwdqamJ+PxjHBAD9lllqeNuVkQPtg7rAKMjo+FqE5EDefk6ZpenIZUJK+OOnjgHvgvanyRY5HNMJg1Tiww8+Ppj9LkGuOau+7n1h+dwzpIT2VrvQKkSOODzChww5wocMJOE3RbNgcgEUuzqrsmkodvmpatrALlcismkISdHS5opEQYTuPaUy9lYtp6HXnyV1z/8gj9cfzUXnLGAWWWwpb6Hz9ZGc0CtEThgSlNjTEkkI0PwwIps2aurFTiQnKwkL1/ggFojp7QklZq1YxyIPQf3ujKdXEDnzF+SuPUZlvAMrSs3smnND4A4B75pfVMcKCzU0zyoY15BVrhaZO1aK83NTvLzdWRkaIRKhRAHSkMccLn2Eg/EcGBTmAOheCCCA3ND513ZBBwQA2erdYCREeGeXx/JgTwd5eVprAjlhnp799+jdl9qdbfy7q53aeptIlmVzAXFF3B28dmYk8xxA/NDrP1JguXl6fll3gVc7FnCLz75BbXD7+Pe4sbn8fHk3Q9w+qWnc+wZZ7K1wYlKJWPjxm4GBgajkkiQhC2GA3NjFhJir6e2MAci4gFTIi0tznCCyOMJMqLM5vo/3sPGD9/ktaefZ0dtLf2XX056lklYVC9PY3BwGIkEcnK0JCTIhHgg9PrI63dNTQcymRSZTCLEA5pQPLB2L/HAPiqUIhNAE1U4HYj2NjnPbE7C5Qrgcvn36U030VTAw1XxK8BBVEaGhsRmWbjiYl2Nla0NPRQFhDGVYiWKSinHm6TA6QyQn6ej3TKE3y+YOIuKDIQXL84L/8ztHsLR6wtXVL32WjN9zgDJySr0BqE819Hji6r6ADAYlEilUDTVEIbOho1ddHQMIJdJ0emVlJSkkpgowwVkpB/eDv1xHTr1e+CSG59i5Sv3seb913jygbs4cvN6fnn3X/ENJuDo9dNp9eDo9Ye9zyrmZYRXRAYHh1m1yhJeGYSJ/bQqq7Lo7PLg7PPR2+tHpZLTstPJQP8QdruPrOxTWXzuDDZ8+Cceuv1cggO/JXPqCWza3I3D4Sc4NEyCQsaSxWb8gSDWDo9gcB4qd4/0otqwsWtstWF2WjhJK45zNaYkotcrMaZEmxaKnlludyDcahibnJpTlkH5zHRWNtl4deMeRiuSkGarvuK3PxryhRgd95u8PD0mk7BKbjJFT1M62IaZcX11ZWZo8atk4YoLsQpJlSinYl4GeXk62trcKFVykrwCB/LydVjaBQ6oNREciLgBWiJywCZwoNfhC1dUvfpaM84+gQMG/VibxspVbYjVLCaTJswBc66WFKMatzuA0+Wno2MAmVyKXqektCSVpCRhWo7JpP7av7+4Dg/19QW4/6c/58k3X+Wp197nrkf/xbrabbzwp18iGVHQ6/Bj7fTQ6/CHvc8qKg6AAyZxISSLrk4PfWEOyNjZ4qR/QOBAQdYsbrkgk2c+eIVLbr+Tjr6LOGZWNZs3CRwYCg6jSJCxeImZgD9Ih9XD1KIIDkR4UW3YMMYB8dysrRM4UFqSSopR4EBKjHlt5IQksdUwNigpKcuFmbfCrtVkb/gnL1T9jq05twDRSaX9U5wD33ZlZSaRuFsWFVB/+WUnvb0+pk1LCXNApZLjDXEgP19He4gDmkk4sDiGAw6HL1xR9dprzfSFOKCP4MCqEAfKYjiQm6vFGOKAK8QBuVyKPhQPJKcoaQdSUyc3c95ftbpaeXe3kIxKUaVwfvH5nDX9LPJ0eSRIE/7r7cd1cJWuSefpE57mtlW/561rXmHKW4Xsen0nr/7jVZpqm/jN336DJEHLqlUWvN4hRkZGw0moiThQXp6G0ZiIxdIPjGdBZWUWnTEcaGlxMhDigN3uRa1OwGhUMXV6GtWLfoIxdzrP3f8wj9x8K8WLTmU4cQoezxAaTQL9/UMhg3PTuGu1eD5VVGSQlqbGbvfS0uIciwdCHIg1MY/kgNhqOI4DEQmgvr4AVutAmDkHKrM5iebmvvD3GjupU68XvkO9vn/C/TtYg1S+TsWTUgdZ23f0sXuLcKJFTiirmJfBho1d4fJBf2AYtzvA2hor25ocABTk68MH89rPrHy5vpMF8zPDfaGmNA255iQ83iE83iA2uwedTsGSxWbc7kFWr7Ywd046tlCrFYxlZzs6BnC5A4yMwHnnloSNnI0RrYZ//3stvaGyfYk07iXyvyqLpZ9du32ceP7tVFQt5KG7buHzjz/g2nNO4I6Hn+WUUwrHmYfDWMXViy81UVdrD3uqwcT911WV2XR3eXn//d0MD48yOjKCTqekrCyNtjY3druXvoFMTrniMZxt/+b/fn8zc6tXsfCkGwkWGmjf04/LKZSnR5qex64ITGTwLkp8XfXCLHIjJm5Evlb0Y4DRSY3qJRIJORIZOY4ROnUSnmzpYuCVLfzu1Bk8/eQWXnppO9Om6fF4hjn99KmT+o0ce6ywGjKZx4DF4mLNmj1kZ4+9/6OPbuaBBzaSlKTg2mvncskl+nhw8g1rR3MftXVCSfTs8jQ8niFSjCoWVmdjsfSHORDwCxyoWWtl504nMrkwPjnVmIjJpOGztVbWf9nJ/AWZnC5ywKTBnJuE1zOE1xPEZhM4sHjJGAfmzE3HoFdGee+YTBo6OgZwuwK43UOcfXZe2MAzxZgYbjV89O+1dHQIN47SOAf+Z2Wx9LNrZz8/OuMcli4s54rbHuSjz+uYd8ZPeOPh28MciDQPh7GKqxdfbApX5YmLXBNyoCqbru4xDoyMjo7jgN+t5s4rrmdr13pu+tM/OKpiA9ecfgGFRQb2tPfjdAkciDQ9j610msjgXZT4uoXVWZhzD4ADsTf8EgmNg7NY23kuJya/zxHtt8HLm+GU/+PRfzQfcg48/HAtqamJHHNMbthDKs6Bb047dvSxq06Yyrh4sTlsPFxdnYXHExyLB0IcWBvigDzEAWOIA2vXWvnyy04WLIiIB0wacnOTwi1UIgeWRHBg7tx09HpluHVKH8EB1wQcMBoTw2Pu//3vJlpa+oD/Lh6ITUadN/08zpp+Fvm6fBJk8WTU4Sy5VM6ioYuw2pPY+v2XKCksoe2xNpo2N3H1SVdzx9/vYPHiwnHm4RDNAbFaaOrU5Em9DauqsumO4MDoBBwQEkdp4evu0lMXojPlsOKZp6lf+RLG/Floqy8LX88na5uLZUGkDxRAdXUWuf8NBxBaANetsyKVSsKLMgArVuxizZo9ZGVpCARGqKzMmtR3ymTShJN7E/nB2e1eGht7MBrHFsFXrNjFu+/sIkmnoKwsLewh9W1JUsWTUgdZ06clo5PKwsFxVaVwsNnsHlzOAJkZ6nBLnsXST7vFHfHqsVUxR68Plysg+I5EyGxOwuUM4HL6qXf66ezyUlycEvHy0XFTyQCMKSp0OiXGFFV4O+KjKU3Dho1dfPllJ0PBYeHz2uJtG/+rijw25ldcwLQZs/jdTy/H2t7KLVefx9PvrsM0gUeUKPG4E1fI9+ZnpdMlkJ2dhN6gYEapMWyUXlWZHfZBK5+dRsmFf2Be1TH8+baf0dZ8MTf94SGqF84Jr8R8uLJtws8iwMaGMUUVdVE3pobGuYZWAMMthaGqKvEzx4JTbxCSceLKY6I6IezDVVtnx9E+QF6WlrT5Rv6zaQ/rdvUw9EkPDZu6aWzsQRma0jdZMCKWV69du4enn946zpNkzZoOdu50smZNBz/84Rza2lw8/HAtu3e70OtViNeQr2OqS1yTa9rUZHrRhIPjyFH1TleAjEx1uCXPYunH0u7G2pmATErUqlivQ+CAuFggymxOwukSqpyc9X66Osc4MBr634m8d1KMAgdSjBNwwKRhwwaBA4FBgQM98fa9/1lFHhsVFUczu7iAM35yF0072znhytvYvfIfE3qDiBIDgygOTNJGKHLAoFdQOsMYruyrqsoO+6DNLk/jwpLLWFo1h4tu+jPX/vFunrrrZ5xbPTPMgZq1VpRKGVbrQDixC4JXVG2tjRRjNAdSQ2O9U0Mr4uLnE6uqxM8cywGDXkjGRVYi9jh81NXasdu9tFoScA+fxdXVO9Fuewss62j69Dw2bTIcUg7s3Omkv3+QmTNTaWgQFjvjHPjmNG1aMklBRdjLRUwo2WwerNYeMjPV4ZY8i6Wf9nY3nZ0JSGM44AhxwDEBB8QWnvp6P50RHBA0OmHrlDHEAeMkHAD428O1BAICB75K+95u127e3f0u23q3kaJK4dzp53LmtDMp0BegkCkOeHtxfTOaMcPIOZzGpXnHcI/2ViRZElyPuejY3sFNF9/ESzUv7ZUDke1sYuXRZCwIxwN6BTNmGMOVfVVV2eMSRyBcr08+dQbLT7mP/zz9Nk/e+wj/+tOd7Fx2HubpxVitA+HELkR7qRUXp0ScD6F44AA5oNcLybjISkSHw0dtiAMdHQNkZ2ujmLNmzR527nRisbhJSBCSVXszQxfP/0iPK1GNjQ46Oz00Njo48cQpAKxaZcHaOUDSgJK8PF24Mu1QT/s9WIonpQ6yCgoMHFMx/gCzWPrp7PJQXJwSFZw3NTlQaxKYOjWZwaER/vzn9ZTOMGJMSWTu3HSqq8aPkrTZvbjdAUxpGmQyCRq1HI1ai83uIytLGw64+5yB8MS06oXZY/4/IbVb+qmttVFdlRUeHxlwno5GPUx2rvnQfEFxHfaKTSAVlZTx0Esr+P3Pr+LcK39CgmLvNxTG1ERMaWp8XqF8VvRXW73agtmso2JeerjCqmxWGnqDakK/ptg+6KrjjmfazI+47+bruOmKszhq2SVc9tNf8smnXdTW2pAAaWnqqNfU1tlpaXaiKU+L2n7s9D/x/WPbDGO/CzGBK5q4S6US7HbhRjG2WuuIThfPfm6hp0xDQUou8xNV+Dwjex0TLipy6hLAK6/sIDtby6JFwrVF3EZDg4OcnCQGB4dZujSPY48Vztuve6pLXNEqyDdQUFE07ucWSz9dnSEOmKI5IJPC3Lnp9PT4eP/93djtXlKMAgeqqsdzwG4TOJBmEjig1shRa7TYbQIHAAyhEeRiK+HC6uyw/0/4M7ULHKiqHuPAHucC5KogpUW5h+DbievboNigoaTQzLqX7uf8G+7j0tOWotXsvaUn1ZhImkmN1xfiQOgm//33W7FY3Mydm05amhqzOYlZZWkY9KoJV3Ijk7oAS6rmsOXNh7nslr9wyjW/46ylx/HHX15GzWfdbN7cDRIhASNWB4Lgpdbc4qQ8YpUdxjgQ25IX21oS+12ICdzISsTm5j5q6+xkZ2mYPz+D2eVpaEuOhKL58MVj/GXOAyxKPYaPZJfh8kgPCQcAzj13OnPmZPzPTVw9HFVQYOCY2Xnjfm6x9NM5CQekIQ4oFDKamhzU1trQ6RIoLDRQWjr+72gLccAU4oBGI0ej0WKL4IA+ggPl5WlUV2eTG8OB9hAHxFbARUdl02OpIFE+k6kzxrNsMu107mTF7hVs79uOUWXk3Onncvq005min4JSpjyQry+uw0CRPlRzCv/FdauvY9PPN6F9UcvJJ56MPmXvyW4hKaQOJ4gqKjKw2Tw891zDOA6UlaWhn4QDe/NFstu95JfN50//msldP7mblc8+ROq0aiqWnhSuDoRoE/LIatnY6X8HyoHISsTm5j7q6uxkhTggJqRFLVokLC5EVkrtS7Hm6WvXWjEaVeHrQeQ2iooM9PX5mDkzjXnzMiacGHg4K56UOkSKNUeeqGzdYumnrtZGX58fs1lHY4ODrQ09OBw+SmekUl5uijoJRX+bri4PMpmExqaecHuFKS2R4eFRPN4gHks/a9Z0sGtnH4RGuZ53bkmUx86qVRY2bujC6wui0SRw3rklXH11OfMqMti2rReZ0vA1fVPfPY2MjtLvD9LvH6LfH8QdevQODhMYGiYQHCEQHGEwOMwoQuuXFOFPJZVIUClkJCbIUIcek1QJJKsTMKgV6BLlyKXSr32f9MlG7nvqlajRwHtad5KZk4dMHu2FtmqVhZZmwQRRb1BhStOwrsYqZPWtAwQCw/T1+Zk7J53Fi/PCSavnnm2ksiorXF0Yuc2x0tMM7nn8X/zl9/fx3sv/R0vjF1z28z9RXm7C7wuiUsqw2T3hYz0yURS5HbHicHeri+Fhwfl/svM0VpEm7pGVUrHQLMnUc3aRif/UWunOVtJq0vDAObMpyzZM2l430dSllSvb+OCDVlJTE7nppiN4/vk54efPmGHkuuvmhoMOcXX8f3HS0uGo2N7+yThQWydwID1dg9MVELwUPEPMKBU4EBmUi74GIgeaGsc4kGYSOOD1BLF4BA7s3NWHhBAHziuJ8thZtcrCho1d+LwhDpxXwg+vLqdinsCBZE3y1/VVffc0OgKBfvC7we+CgDv0bwCCAQj6hcfhAIyOCgCQSAAJSKSQkAgJalBohP9W6kCdAonJoEoG2dd/+6ZP0vD2o7+N4sBOSyc5GakoFWOtOOKx1dwicEBMEFks/Xz+hRVnX4C+vgDp6WrmzE1nyeI8TCYNNTUdPPtcI1UTtDREn0t63vjb7fzqnhd54PmX2NS0nT/f8GPmzEknODyCXCaN8maLbOuL3JZaIycjU0Pr7ggOTHKexiq2ElF8v3Gtg6nTaMz7GQn1L3BG7iecadgFpz0KedPjHPgf0X5zoNaG0ylwoLzcxMqVbbhcAQoLDaSna6LagADq6+20tDhRKqX09PjG4oEQBzyeIB7PBPHARBzY0IUvFA+UlKRy9tklTJkitFtpU1LYm0ZHR9nRt4P3Wt+jxdkSTkadNvU0puinoJJ/VY/NuA4n6VV6nvzek/ym5je8efGb2NPtBIeDyGVyuvZ0oU/Rk6geW6wQj62WEAf0ERz44gsrfREcmDs3FA+EOPDcc40TtrZN5JcU2Y5368O/57H7nqX+kxVs9HexqPJGQKjkiqzaityWRiMnM1PD7q/IgchKRNELbqLWwaamHpzOABdeWBod20/iATXR9L3ICZlnnDGNX/xiStR7nH76VCoqMsLtlOK+HO4VUqLiSalDJNE1v7bWRkG+jrJZaVTEtDyZzUmYQwebMSUxnPUUp/LFngj1W4Sqj8ws4eBqbXWjUspCVVPqqHLEkeERgsOjJBsUUW18kYktc54OtToh6vf7cxLGJSSeHAODdDh9dLv92PsDdPf76RkYpNczyPBItEGpXCpBlSBDIZOQIJeSIBP+SSVCPDLKKCMjwnbFpFUgOExgaGSc1alWKSdNqyBdryJLn0iWIZFsQyKpWkVUsHCwFbnttp07+NmFpzJjznxu/dOjqBIFQ2SLpZ/WVjcud4D8grFR4ZVVWfgDQcxmHVpNAn29fiLbVVevttDY6MAfCEa1vFos/bicflp2umhu7hMmUKRp+MGPrmNKyXz+/ejN3HvDmXzv7BuZOn0xLS3O0KQK4RwpKUnFmCqYK1q32OnsEnx+KuZloDeMefvE+mLtTaY0TXj7IKxMWCz9UckwUdsaenGt7yUpXYldKefUh9ZybFYKlVoNbbuE1t3IoEFsu6uszIqauuR0BsjO1o5b8Y4MOt59d1e8VeMwUyQH8gt0zCpLG1fqbjYnkWcWOJBiHOOAOJUv9lq8pV6o+sjKHOOAUiULVU1Fc2B4ZITh4CiGZEU4IIfoxFaeWeBA5O/jHNhPjY6CtwecFujvgv5uGOgCjw08DhiJGaUulYM8EeQKkCYIj7IEQAqMCttjFEaHITgYSlyFklejI9HbUmhBkwa6LNDnhP7lgjY9HHweCkVyoHVPN4suuJHiKTm89tBt6JPGgoTWVjduV4CC/LSo4+nII7KwWNwYUxNxuweZiAMBfzAqGIk8XiPHhP/i8lOZUzyN2x95jLNuuJ0fnXkmR806gp07XVitA+HkkFhtJbZjOF1jLa8GvXI8B/ZzWuGSxdHPiWwFjFRdvZuamrnMysjiopIvUfxjGZa0M/g08Ufs2C20yMY58N1VVDxQoKNsMg6I8YAxMVy16nD4KC01hltgRdlsHnbvFu4hhoZGcTgEc2ihaiomHhgJxQPJiqj2pygOiPHAAXBgdHSUpt4m3tv9HrvduzElmrig+AJOLTqVAn1BPBn1HVSCLIG7F91Nvj6fhzc/TK+/l3OyzuGX5/4SXYqOe56+J1w9FY4HXAHyYzhwhMgBYyL9/RNzwL+fHIjcrsPh48gTl5MzdRofvfAUv//hDdz211uoXFIZXjgWOeByjbW86v8LDiyegAOxJukgVDzV1Fipr7dz4YWlYeN38XOI2xM1mQ+ixzOEMaYVPfLziBVc35aWvUjFk1KHSKJrfkuzk75ef7hiJFYzSlPHeelMLgmqRFl4QlhpqZHSUiM+bxAxSxs52Ux8jMzIWiz9dHV5GRke5YTj88dlcnus21AyRJK67L/7Ar5DCg6PYOnzstvuob3XS3ufj06Xn8FQRl0hk2JQJ5CiUTA9PYl0nZIsfSLpOiUZ+kRStUqSVDIUchlymQSZVIJMIkEqkQiL46EqhlFGGRkVElPDI6MER0YZCg7j8AzR6fTR5fJjdYmPfiwOLxvb+hgaFi7miQkyclMSyTdqKEzTMC09iSTVoTGS7La2E/D7+PzjD7jpinO48+Fn0RmSMZuTUCRIGRkZFUZ8h3yaFAoZp582FY9XmDIZ2Upqs3tIkEtJ0iowm8emVIg3cjKZBJfTT/OOXlRKOcXFySGvqdn8+I6X+Pu9t/L2c79jyswvKZhzGTAWNEVOzysqTI66UYv1VfuqiizxFf+/3e6lscFBrlmLUinD2TpARYaWgTQ1q/b0UjPSS6kb9I0K9HoFLtcgM2YYJ2y729+x3vvTshc3QP96JXKgucVJb58/qqUoUqUzUsd56UwuCYkqWXhCmMgBry+CAxGTzcTH0gk4MDwyyvEn5I83he7uwMcgCpX2v/sCvksaCYKzHRzN0NcKfW3g7hCSRiAkmdQpoDZCWjEUZIA+G5KyQJcBmnRQGUCeIDxXKgepTKiKgrFE0mgoOTU6IiSnhoeEf94ecFuhv1P4HG6r8P7OdujYICSuQEh6GXIhpQhSp4KpBBINh+Qrae+yM+D1sfqLLRx94U2seOwOMk3CNTZBEcGBUOuexdLPvIp0SkqM4wzSbTYP8gQp2qRoDgBsqe+hZaeTocFhHA4fHs8QpaVG2trczC7P56nf/ppf/vFJ/vrSS6zb3MjJC5YRxYHQe4vJqIxMTRQLINpP56toMg40NDow5woc+GK3EXn6hSzL+oIc22ssG15Nd+/VNDYeG+fAd0iDw4M8UvcIU/RCFUM4Hmhx0tfnj2opitSMGalRXjqiB9VEEgdmZGZqUCplpKerhXhgAg6I7T2VlZPEAyOjnHDC+HjAbe9EMexFKY8OsEdGR9hi38IHbR/Q3t9OhiaDi0ov4pTCU8jT5cWTUf8DumrWVZiTzPx67a/568d/pd/dj9Vi5brTr+O+5+4jI1doHVNMwoGKEAdiDdJtNg8JCVKSJuCAeLx2dAzQ2TkQxQGxTW7VKgt1dXaSkkwsPO+ntK1/g1suu4UzrziT0y6/AGunP5wEyvwaOdDY6CA3xAGbzcvatVbKy01s3NhNICBUNLW3u6O+j4mSwntrY4zU/iws2mwedrX1ok0fgoKvtLsHXfGk1EGSrd/P3z7eyYJ8od1BqKYwY0pTA6No1PIoA2WY3GdqMpXNSkVvUOIKGZyXl5vCU/22betFb+gPb0ehkJGeocHnDfLaa804en1UV2WhUcvxegfxeYNYrZ7wwS2aSr/y0CW4++w8+p9VFBbPODRf1mGuPu8gzd0D7OoZoMU2wJ4+H8GRUWRSCWlaBRl6FWU5eqala5mZpSc3RY1WJScxQUaiQoZSLtv3mxyA8lOBvOg2mqHhEbyDw3gDQVodXhqsLrbscdFs62fdLgcfNAo9zuk6JdNMSczI1lGcoUOrPDin/IJFi7n3iX9z248vpLF2PT+78BT+8NhLmDKzWbasIGxQDmMXaZlMItxEZWjQG8a8BSyWfvQGFRXzE8nK1IQrjsQbObc7wFBwFK8viKPXR21dMDxdcvFiMxdffw9bPn+LD1/5E/29zUwx34XNnhr2iHK7BwkEhtnd6qK01Bg2/tufqqj9UeTFX9zXxoYeOjoGcDh8zJ6dRmOjg/QUDadXZvHvD3ex1ednowFaWrr4os5GhkG4iVu2bAorVuzivvu+5Nxzp/PDH87ZyzsLigwwli2bMunv8vL0vPzydt56aycnn1zIDTcs+K/3Pa4Y+frgk3shcy4wNj0lzSRwQK2RRxlnwuQ+U5NpVlkqBr0yHGCXl5uoqMgIr4wZIsYDKxQyMtI1eH1BXn2tmV6Hj6rqLCEh4B3E5xM4ICalRFPp2566n53tHax+5h6OOWLWofmuDnf5nNCzHXqawb4dnK1CckgiBY1JqFDKKBMSUJnlkFIASq3QcpegBrny4FYsGaeM/9lwEIY8Qkug0wKddWDdBPZtYKmBHe8Kz9OYhORU5mxInwGqg5OIWFQxk0+eu48Tr7qdum27qDrvF7z/xJ1MK8hh2bKCsEE5jOdARqYGgz6aAwa9ivkViWRmCcHL2PkwilIpQ69TYLV66OwSBgaIfn6LF5u549rL+GTjLB548XmsfV2Ycq5gli01yhtErUnA7w/idgfIytKEWyb2ZtS7v5qIAw2N4zmgN+qRVFzCR6sKmTX8FjeY7qam/X2e23IZcr3wOeIc+Har29NNfU89azrWcM70c1iQsSBU1RGKBybhwEQ+U5NJPN7EADuWA/oYDqSna/D5QvFAaAKgRiNnZGSEwcFhamvtYVNo0RB65TMPsqtxO3c8dgeLTlhEIBjg887PWd2+GoffQY42h8tnXs7yKcvJ1eXGPaP+x3RCwQmkqFK4fvX1TPv1NNr+3Eb7rnauPe1a7n3uXgpLCoV4IMKgfFw8kKlBH8MBvV5FRUUiWTEcMJuTyMhQ43B4cTr9dHV5cEVwoKQkNfw+4oAN9Zkzef9fb/Ha0y/y+epNVH7/IjLNWV8rBxon4IBYDSkkq714PEMEAsM4HH7B3mSuicWL89m4sZtXX93BokU5YTPzvSmyFTB2f2LbBNeu7eCLDR3MWKDi/Hn/9a4fFMWTUgdJNneA9199ide2fshZp5/O0cefRGZOHosXa6KqNWBsnPyBtEhE+uFgTkJvEKbNPPHkFpRKGVmZGgYHh8PG5uI2N27oYs2aPSQoZGhChuojw+D3B9nd6sJm9wDw7ru76bAOMDQoZGwPZRvY4Sa3b4jt3f00dbpp6uzHPiD8nQyJCeSmqFk+y8Acs4Hy3GRSk5RolXK0Sjmyb3BceoJMij5Rij4xgUxDIpWFwqro0PAIbt8QLbYB1rb0sL61j61WF2taepAAeUY1c8wG5plTyND/d6tZM+cu4IHn3uDmq87DsquZ6y9Yzj2P/4uSkmlRmXzxWNSo5Xi8QVxOPx9+2Ba+QFfMS2fevPRwslVMroqJXXGykujdBEL5qkopw9HjQ29QcsFVl/L9sxdz648u4x/3XYzbcTtXXHdZ+L1ra220NDtxOQOkZwjn32QJqZp1HayrsVJZlRVuzZuomirynIxtzTUaVaz5dA86nZKsTK2wIqSWY7H0s3hOJkV7+tnk6KdVP8gmHcxXSCkpFXwbXnppe9g4cV/BSFubizvuWMfWrXbOOms6Z501PSr4iJ3C19ExQE+Pj46OgX3/geM6cHl6ePXdVdy35k1OO+10TjvhGKYV5LBksSZceh7mgOkrcCDipsJMEgZ9iANPCBzIzApx4MUmZpePccDp8vPhh604HH4cvT4WH5fH8Aj4/EFad7uw2cY4YO0YwOcT2s7+lzhAYABsjdC9Fbq2Qr9w3qDSgyEPSk6F7HmQuwC0JlAmCT5P0oO7CHFAkslBphc+oz4b8iqFnw8PCV5WjmbY9YmQoOpuhN2fABJIzoPsCsg9Qmj7+y/+znNKC6l58U987/Jfs9PSSfX5N/D+E79n7oyiqAo88VgUK6SEY3KMA/MqBA6IydbI5KpohK7WyLFaPcAo6sQEGhsdKFUyehw+DHol111yAhedfSTLr76T6+67j7bu87nrxnOizoOdLX309vkJ+IcZDlUZT5QEqKnpoGadlarKGA7EPHdvQYDRqOLTNQIHMrO04Qoxi6Wf7PIKtu4pwtG3knmGdczV/5w10vOZVnIbEOfAt1m5ulx+rPkxV95yJX+e9Wcqv1fJD5f+kMWL8w46ByAJfQwHsiI4UB7BAVcEB3p7fRx3XB5arYKeHi8tLU5MJjVlZaF4oGOAgYFBAHzDPt7c+SafdXyGP+hnesp0Liq9iOPMx5GdlE2C9NBU5Md1+GtB5gKeOeEZrl55Nbm35KJ8UElHSwfXn3k9dz91N7OOmDVxPBCqCHLFcKAixAEx2RqZXBUX+UwmNW53AJ1OQWKIAyqVjKamHjyeYLitD2DDhi7Sph7Jj++ezr8efIi3HrmX5ZddjleSS1+fH/9+cEBspf5vOLAmxIGsEAc0IQ4IFV5j++N2D9LX50es9BWn9QH7TErZbB7efHMnbW0u8vL0VFdnhauuJjJudzj89LsDuFyHz31ePCl1kDQzW09+fz2ft27lyfu38uT9dzBl+gyqF59ActYCXC49er0yCjhi4B1r8hxrkg5jrUzNzX3k5eloa3MLpeENPSTIpZx22jQaGx1s2tSNxzPEFZfPwtHjY3OtncHBEbRJSspnp2FMTaSqKouGxh46rR7qt/SgNyiRyqRkZ2lplQsHp+QbTLgcag0Nj7Cju5/6PS4aO91YXUL7RYpGQZFJyynlmSwsTKUgTYtBnUCSKuEbTUAdiBJkUoxaJUatkiOmGBkdHcXtD9LU6eajpm4+a3HwVl0nr222YtQomGs2sLAojezkvU9Smkz5RcU8+M+3uPlqITF1wyWncf+zb5BbUDRp0kZM0u5pd9PX60erSSDXrCMrSxuexCdKPEfEFkBjqvA5NZoEbHYv/sAYUAYHdUxfdBcdDU/yr0dvYcDRxI9+dQcV8zKECZWaBPLydHR3eamttaFRy8OwjPys62qsbG3oAYQVxshpfJGKvMA7enzU1tnDqzPzQom2yPNYrGgsLk7hhKUFnADU73Lwn81WPvf4uOaNLfzhtDLOPVcYEy4+7k0NDQ62brXT2emho8PDyy/v4K23Wjj55CJuuGH+uFaOM8+chsGgZMmS8ROB4joISp3KqwPz+MLyAV88+AK/evAFSgpzOW1JFdOzp+F1JY7nQMgDINbkeTJDz8k4IE+YgANXzKLH4aO21s3I8AijI6N4BoYwm5OoqsqisaEHa6eHLfU9GPRKZFIpWdlaFAqhpUz6LbnufSWNBIUKKGstdNUJbXCMQmIKpE6D0lOg4GhImx4yF9d/swmoA5EsATRG4Z/5SKEdMOAGWxM0fwAtH0HTm7D1FWHfcubDlGMhOf8rJaim5GZS8+KfWXbV7WxsaOG4S25m9TP3MKe0cNKbdTE4b9/jprfPT2aWhlllaTjrA2Rkqic8R2w2T1TLX1ubG7vNG5VgGhyE86ovYM22j/nDU8/S2t3G3393XXjqk3CzP8rQ4AgNjQ6mTNFHfSbxs9ass9KwdQIOmCbnQI/DR13tXjgQ4fVRXJzC4qVFQBE9rd9DtuUFlnieRvL2Glj+lzgHvuVavWI1vS290AJvvPoG76e/T9X3qigpPRpXf1J4ypioSA5EmjwfCAe2b+9FpZIjl2dgtzvYtq03zAFHiAPDwyOMjIwyEOIACFP/GhocuN0BLJZ+pFIpWdkaulXDALyw7QWMGiPlpnJOnnIy8zPnk6HOQPZtuR7GdUg1LWUazy97nis+uIKRG0ZQ/V3Fzs07uemim7jvufsoW1C2Tw7s2eOmr89PVpaGsrI06usDZGaO99Q0mTSUlRGRlBU4YLN5oxJMLS1O1q2zUlpqDLXo5bF02eP88cY/8spDD1F54okce8YZBIclNO6FA+vWWdl6gBwQzrUD4MDivKj3jpyMKU7rEx/3JqG90UNfnx+lUs6HH7bR2elhwYJMTjtt6rjEd3V1FiqNhPwZh895HE9KHUT969knueW+J/jPW2/gb9/Kru0N7NreAEByWi6X/+r5CV8XGQRXVWZHAUc0do5sZVpXY6XDOoBWm0B6uibkfzqKMUUIeJRKGRs2dlFT00HAHyTFmMhFF425/S9erMHtDmC1duF2ByiblcqiRdnCCfia8Jmkkq9/wtuhlNM7yJYOF3XtTrZ19RMIjpCklDM1XcuS0nSOnprG1PQkkjUJaJXy70yFgEQiQZ+YwJFTjBw5xUhweASr08eHjd2sbLKxpqWHD5tspOuUHFlgpKrQiFEbXYK94r1drPl0D4uOyuHEE8Zn6k1ZOTzw3BvcdMU5JKo1pKZnAmMX6XZLP+17BEPOpUvyKClJZfnJhbz6ajNSKTh6/Xi8QYqLU8ZVHIkKj2x1BrDZvWGjQ/GGTKOW8/77u9nR7KVk9o857ZyTeOiuW6jftJ4zr7qXeUfM5LxzBaPAF19qoqXZGZ4yE7l9iPZj29vqpdmcRHtoYo7XO0Rrq5v6LXby8oU++Ip5GVGJrIm2VTbFyIyCFL7c3cvrtR2c9rcaFhUYuey6co6uyNzr33bt2j18+GEr8+dnkJAg48wzp/LKKzuw2310dAgtirHTl/bXlySur677/vYPyoruYNXrT7F69xBNO9tp2vkvANKSk3n81l9P+LrIILiqagIOmKI5ULPOirVjjAPCbIVRUowRHNggcGD79l6ys7VMnZZCVWVW2KQ5kgOzysY48NgH39GklN8lJKGsG6GzHoI+wTA8bToULobCYyF9puALpdIfUsPwr1USibA/5iOFf8feKnhS7VgB29+DtrVCskpjgrwqmHIMJEVfixubelj5YRsAS5bmjfMhMxkNfPTMPZx09W/w+gIU5KQDY9dWS3s/e9rdUa8/efkYB0Cyz1ZWcVtOVwC7bTwH1BqBA83bXRw3YwlXXnAUV972V77cch13/uiHLF5YypJQAPDii03Y7T7a2txhD7dIDkT6se2LA5b2aA5sqbeTHzKtrqjIiNqXibaVmj8F8m6FPethy7/gmeVcnH0MxdddT0HF3lfH4xw4PHXbbbeRmzuNV155jU2b1+Dv9vPRcx/xER+h1idxxW9+N+HrIoPg/eHAunVWOkIcmD5dqLYWq7Am48C0aSlUhjhgMmlwufy0trpxOPzkTVWSsmAPu0Y30/emYJMwN30uvzj2F0w3TseoMn5n7o/jOnCtXbuHp56qB+Cyy8rC15EsbRbPL3ueKz+4kpYft1DyVAkem4fsgvHX1o0bu1mzZk+4JW35BBzYWytrOB5wBbBNwAFNiAOiWfqttwoVxDabh+VX/JC86VN5/v/+gae3g1lLz8NuH5yUA5F+bPuMByI4YLV62LXLiUIhC7fi7YsDMN5cfd689AkH3sRKaLm1kZenY8YMIzqdgoYGBy5XAIfDN+G2S0pSKZymo8fXs9dtf52KJ6UOosxmM+X5y2mqKMN26hCBxi9QtW+gu20Tyanp2B3BsJ/NX+64C3liBqeceRKVVVnY7V7sdg//frkJt3sIl9PPnnY3Hs8Q1VVZeLxBymen4fEGGRwcZl2NFalMwqyyNPSGsZX3XHMSLqefbdt68fuCaDRyCguTaWtzk2xQCpMH7B4coQoVnU4R5a0zNCSsjOza7SSv6Jv5Hg+GRkdH6XD62NjWR227k/Y+HxIgOzmRY6ebWDg1lSMKUkjVKtEnJnz3gq9JJJdJMRs1XL5oCpdWF9Dt9vNufRfv1Ft5p76TN+qsTDVpOa44jTnmZORSKWs+jSgfDSWlYqv5dIYU/vjUKzj6/DQ09WM2j11sa2o6+OKLTuRyGWlpakpKUqmqzA6XwoptfXu76JrNSbicATZu7KKjY4DCouRwa9/w8Gjo9To6rQPk5ek58YzzmT6znFuvuZQHf30u0xb8iGNP/D7VC7PDLYDls9PC+6FRy8OGh7EDByZr8zOlafAHgrQ0O8nK1pCdpWVwaDhqekfs8yfallQi4cgpRspzDby7tZNVjTY+2+1g4R4H/3flAvRqoTQ+1hdk5co2NmzoZskSc9SEpvgK+DerrKwsZBmXsWC2judPf4wXG5W8uNtEfWsLhiQt/c7RMAduuPs5FNJELjl7EVWVERz4t8ABp8tP+x6BA1XVWXg9QWaXp+H1CByoWWdFJpVQNisNQ0QFljk3CadL4IDPHwQJaJMUZGZoMSQLSWebzUOvw49GG+JAxA2LP2S82drmpnruN/AlHky5O8DyhWAG3rsbGAVdtpCAmnIs5C8UJtYlJhO6K/7uSyoTzNAXXAXzr4QBGzS9BQ2vwvZ3ofF1MBbB1O+BuRJkCdTV2qmttYEE0tLU4Wl2kau/Oq2a9x6/kz1WJy07BjCbJRNwQBp+fVVVdlRLhKjJWGA2J+F0jXGgqDCaA0IVlQ5r5wBms45zT5rB3NJCll99JxfddifL55/AD05ZzKKFOWGvq9nlaeH9UGsiOBAzcGAynx+TSUPAH6S5xUl2loasbC1Dg3vhwGQTnSQSoTU0YzZsfwdZ4wqO2nMGHZ3L4ZL7QSt83jgHvh0ymUxIpUeQmJjKUYsupqNzA/7E1XRs28aQ3E+d4jMMuxOBXB6++zkGgzJOPe8YKifggMvlZ0+IA2JLTnl5Gp4QB9atsyKVSqiqyg572US2RwkBtgSVSgj59HolyREcCDKEamonOzU72GKzIpVImZY8Db00BR8dVMhOpDqnevKdjet/RitXtvHhh21IJGA266iuzom6Jj19wtNc+cGVNF7WyKU5lxIcVbJhQxea0LVVo5HzzNO76OoWps2deOKUr8QBVwQHCmM44AlxoDPEAVEWSz+ffWbF6yvktB//nFXPP0lr870cffZllJeXhjmg+Yoc8PuDtLQ4ycrSMHt2GsHgCF1dYnXu+Ofvj3dcbMudqFj21tbaaWlxMnt2GqedNg2ArCwtaWnqqImah7viSamDrPXrO7F82k3+0Rk4Kr5HSvVJXJSlQTbcT2KScJA3NVhY/9E/gFHWvXsPpuwSlLqZBCTT6HP6kctlGI2JBIdH6er0UFtnZ3h4NHySWCz9LFtWEA7kxUBX9IcS26A0aqHix+sbChtDl5Skhk/cwiIDZbMixsPaPQwNCkmp7dudHLv06/3u/luJiagNrX182dqLrT+AUi5larqWo6ensbQknaL0JIwaBaqEw6dc8ZuSVCoh05DI5YsKuLQ6n7ZeD69s3MNbdZ38/dPdaJXtVBYamVstVOwsOmpsZTXqQhk6/rQ6PduafWzb1suaT/fw5UfPUL6gkkTDdPR6Jamp6nBCSHxd5LFrsfTT0uIMe0eVlKSGDfjLZwvJV5vNi8sdoL9fWAnUqOXIZBI0ajmFhQZs3V4KCw0ATJleyj1Pvclt115H09r7sTRvprX1J1zwg1nhqqnIlrrJqrT2pvLZacJ41hQVxcUp487JyH0TARuZzItN7p0+J4cyo5Y36zpZ1+2i6p5VXFyVz9VHF9LQ4GDFit2sX9/JJZfMDAcckYFHfAX88ND69Z189KmZEa7hdxWPc3nlIFtMd+IcGiVNL1zHdzT38MIH7zA8MsxT7/6bgqwcsg1mkqSZ9PX5SQhxYDg4SmeXh7raiTngjfAMiJTYBqXWCBzweYPU1gkcKI3gQFGhgVll0WPCPR7BU2pni+vr+9IOptwdYPkc2taBew/IFEJL3tyLYdqJkF4i+EIlfLW25e+UJBJISocFV0DFZeDaA1tegi3/hs//BhufhryFVBQfid1uAhhnXg5jN8watYp+J2zb1suna/bw2scfUVFWQIFpSogDieHXi68TXyt6m7W0OFm1ysLs8jRKS1LDBvyzy4Xkq83mxe0a44CYrHK6/KSmJlJQYAhzYFpBDh8++QfOue4BXv/8bba0NPPD3Wdx8YWzw2O2I1spvorZ7exygQMpRoEDE52T0T5ARAUU41q0Zp6OS38kI/Wvkt33AfylDCouhUU30NDginPgW6KOjoFQ5UYCC6uWsWzZtfglTt61PkGTdjOvef7GF41TWPvOewwHAnz+5gsYs3JINBYQTMhhwB1AoVIglUoYHR2lq8tD7SQciPSOiTyfxDaoefNM1Nba2bChi66ubhTaYQaSd/PJjvW0jzYzYgqSLDVxTOpSTpuxHJ0vh5W9JwLQuMX9TX6NcR1GWrIkD4vFHf5vIMqzblneFJ464Smu+uAqXu9+nS7nIFveVtGy+QtKSk0UVywgSacAolvS9saB8vKIeCBkmq7XK+nu9uKK4YDLFcA1AQfE34+MjNDS4mR0VErl2dfR+sWrvPP4X8hJ81FQvojt2/u+MgfKQxwwGlVUV49VXUUm1w6IA0xeURVbQSkmniITUPs7qe9wUjwpdZCl1SpQq+Wk+6FMoeaTgJdXdjqZp0jkpKVC4OnMSGR29Tns3rYOt6MN254GQGjzc6p0pE05kzzzqUydOjZxbcAzRG2tjXaLO9zqpFHLefofWxnwDHHCCQXhfleNOgF/IEheno5cs47BwWHBCE4pw2b3RB3kLS3OsJ+VQiFjFKEft6T023EgT5aIKs3Ucea8HI4vzSArOZEUjeJb4wv1TUgqlVCQquXG44v5yeKpfNbcw/NftPHpDjuDwRHKFmcyvcwUfv5kF0rx/6/4z7/p2fUyq1rf4pgz72HRotnhVtSJJAY33V2eqEkatXX2qEl71dU5NDb1oFYnYLH0hyoK+zGlJWKz+8LtGMkGJWtrrBhTVFx98/088eCj7Gl4mtX/3k3p9P/j+GXzJ9yPifzc9qaSklQ83qDg3eANTpjYih0RG5nMmyi5N9Vs4BdmA3U7HbxT38Vjn+7i6ZpWlhenozUq+PxzK6tXt3PddXOiVsbjOnwkcmBLYC4v8hvOHfo9pe3/x6fSCzGXFWAyaehz93PKomNZ39jAHnsnu6zt7LK2A5CoTKSiYD4n5R0bxQHPgMABS7sbr0fggFoj5x9Pb8UzIHBAbPmo39LD8MiI0H6UqwsPC8jL07FhQxdqjZx589LDN0CisXO6Sc3oqMCBadOSJ9y/w1LuDmj7XDD1dncIiSjTDJh5GhSfLPglaVK/Pb5Q34SkUkg2w9G/hIU/g9Y1sP5J2PkRU4c+ZOrMGTDjNDAJ3kT74sDzb6zhs+0fs27HGq47/RIWLSqNMqGNlXg97Ooe40BpSapQpVUXzYGmxjEOmM1J2G1e3O4A/QNDUW154nH98/PP55nXMvmg7j3uefER8op+ytmnzpt0PyYKECZTaUkqXo/AAa8nOGFAMykHJjCgBUjLzYLca+nZvRO2vorxyyeQbHiShUXn0GT8His/741z4DDXmWdOY/NmG+3tbnbudLF7t4u2tgGmpV7Cz5b+ktXu13m1/nVSjtfhqfPibfPgsO4B6x4AehtVZJUcSdr0o8nJ0ZObqwVAp1MwODjMc881IpVKWLQoB41GztNPb2UghgNbtvQwMjJCeqaKaUeO0KXvpItdrFfZWN84ikGWSolqHscXLOW40iNZ94GLJ262kJ/fCaF4YN5XWLCL67upiRLesZ51ifJEnvjeE/xo5Y+o6X6Hvn4T9oaV2BsljIxKKZtfsV8c6O6OiQdq7dRFcGDhwhwaYzhgC3FgYAIOrFtnJTdXS2enh64uD909cPHNv6J21ds8cucjHHFcHcsvu/wrc6CkJBVPiAMWS/+41u3IfRO1Lw5E+ilGTuwUW3i3b3dQX29n+fLC8CLLt1nxpNRB1mWXlWE267BY3OxY3cWR81NZrxjkyyEf6dscLEvTMK04n8t/9mtq6+xIR/to2ryWfnstLQ1f4PW4KShMRW9QkmvW0dLUyFsvPIQubQYJ6iJmzilj7jyht3XVKgtbtghG5sGhES68sJTi4hRqa200NjqwdgywbFkBAAX5Ojq7vGFjc/Gke/utnXRYhaz0smUFzD36YkxpCcyZu+/Rk9+UJk1EZek4Z34u3yvNICc5EYM6Id77/hWklMtYXJLOccUm9vR5ee7zNv6zsYO739tGvlHNiTMzmGNOnjBpI1Y/nXTGqbz0t0/xORupeevXLF7y/KTVQ6JnGsCUKXra2twYDEqeeHILw8ERiqYaKJ+dhilNw2mnTaW4OJnaOjsatRyXUxKqjJVEteXV1tnZvLkbnU7JksV5nHLuxWytnUXtR/fyt9+ej0bxIAuXLIuq1mpq6uHdd3cjlQk3ebFVXBMlqmx2Dy5ngMyMyXu+w9NG1MLkqMjnThQMidVhKqWMXA/MzU+j2efn1fpOJBJQZsrpXefk1VebOeOM6ePaOeL65hXJgcdXGXEs+C1XJt3N0pHHad12BSbTQqYXZfD7n14kVEBJfKzZVI/FsZvP6xtxugcwmw1CS16uju27Orj7iX+Sl2YmVZtF5ZypzK+I4UBghKHgCEVFBszmJIZHRmhrFVY0RQ6IJe4bN3aj0ynCN4Y2m4e33t6JtWMAd56O7x91HPoUGUcdeZj3cLutQjVUZCIqfQaUnQml3xem5v0vteUdTMkSoPA44Z/LChuehNp/wkd3gj4XSk/FZK6c8EZdvJG+8LQqtlnraXXs4pE3n+XYY27bawvChBx4YgvB4RGmFhmYXZ6GyaTh9NOm0licTF2tPTzNzu0eRKdTUlaWRlubO1yNJXq1BfxBLj97KeXFU3juo39zyW9+T4BrufDUxeNaKRpDLJCFAv7JVrEjpdYIVbtqzcS31eK+iRMEI83cJ+KAWB2mVMnwek5idsFSiobWoNn+L34meYFZ+XO5d82RvPqqNs6Bw1TV1TncdddCbr31M3p7/XR0DJCaqqKnx4dtp4wbl93IVWVX8beMf/GB5T1sg824G5x4t/rwbB0g4PZjzAFjegIzZqTg83h47k8PU7agDG1qHu2dCeSaDVEcCARGGBoZRJPtoS+pk57MBtzSbv5udYJ0BJlKTrY6l7ThY/E15JKrmsIV51ZSXJhJW5uLRx9ax44dfcycaWTRorPJzBzl+9+v+qa/yrgOY8V61gEo5UoeXfoo1310HWtPqcG9LR/39lZqXnuGhYvMmExjCZT95kDo/qY8xIFwPFBrD0+zi+WAWDkkerX5/UGqq7Npb3eTm5tEQYGBI265mtK5pdz7i3uxtv6WOx67A0yasZjgADigCXFAsw8OaEIcyNwHB8TqMJVKhscTDP9cnNxXX2+no8PDunXWSQcjfJsUT0odZIlZ5LVr97ByZRtLluQxrJbysze28pbFTlqrlvn5KeEKkNnlafz2vhsBCA4N0Vi3AbU+G6dbgdmcxMrX12Nrq8HWVgNAc42C+tKZTJ9ZjjalkOKpOdj75Oh0ynClhhCsB5DKJKytsdLV6UGnVzKjNAUYjcrSJumUZCOYOnu8QUrmn0lxcQo6w+G1Qj46OorV6Wd9a++4RNS5C3I5vjSDnGQ1usTvjkn5Ny2JREJuioZblpXyk+Om8e8N7Tz3eRuPfLKLVK2C5bMyqZqSOqEf1/kXzCG/4Eke/t2V2PZs5b5fXso1tz+JrU9IMFmtA2zaZAsZAI5dOIuKDFRVZvPiS03hpNIZZ0yLKkG1WgfY096PSilDp1Myd46JslmpmNI0Yc80lVLO9Okp5OYkAaN4vENUHXUExy55iXdf+D2/u/4yzrjoai7/2a0kKIRS4g9XtlG/1Y7ZrIuCQuzKhnjBb2lx8vZbO4XE11KhjHnDxq6ostxIvyyLpZ/OrpB5Yyi5NZHPlHhtKJpqoLzchNmchLHNTULXIAM6KbsBxalZWLUqVtR3Emzz8uUXnQD7DEbigcvXo1gOLFiSh1O/EP3bP2C69VHYOQiFx4UrQMpnp/H3+y4GIBgc5sst29EotQz5BA78+/1mGi3babRsB+CltXJmFxdQMXMq2cZM8gp1eJxSdDpleIVu2bKCcGBdV2unq8sbrpwSRg8Lk5bEFTpdkhKyYerUZKZJqiguTiEr3fhNfo0Ty20NteatjU5EzTobSk4RKqISk787JuWHg/RZsPg2WPRzqPsXfPkYrHsIal8Qkn9Fx4F0/O3k+eeXkV9wEz/6/f1s2bmdC276A497f8moV8fs8mgOLInlQFU2L74YzYHSGA607+lHqRI4UFikZ1ZZWtgDRFxZnlEqHMPpJjVezxDHLizhhMW/4aGXX+Kim/7Mmg0NPHjr1SSqBI+dxqYennuuEWdfgMJQghf2zgGxwlAikWC1Rk8IFL2qxJ9NZOY+kb+IeG2YWiRwIN2cRIMlgz3BcqpSajlaUsfSM7+kN7EUtvhospSx7gvBsDbOgcNHYmJKjAdycpLC3z2AXqVncP0MhlZpWHa8ljk/9VBjraGpp4m2xjb6k6wE0l7CIVPTv8OLrbWJVa1NgDAlu9Wsp2mbEWWOBv33EpCmDzOQEOSJncL7azJ0qJwaVLYy8hKm49+ZgdSn5sRls9kmd9HT5WPXdh/FhUIbltGYyLRpMH9+BlLpSVRWZlFQUPBNfX1xfYulkCl4+LiHuX719Xz6y09x/LWQzrqd3P/Lu/H5R/CRQXn5PuKBCTgwLh7Y048qxIGiIj1lE3CgNMQBk0mNxzPEjBmp6PVjQ50WnbCIgukF3H7V7Vxz6jVc+IsfU78rib6+QHihDybngFht/vbbQkwgvE80B0Sft3A8sB8cEKvDiorG4gHxMxQXp7B8eSHr1lnDhuyTeVBNJrvdS2NbDzPlblKmpuz/H/cQKZ6UOkSKLXH8cJqRK57ZwN8/3UVz9wCzZwknVaTHjjwhgVkVlVHbKZ5diaXVzkDfNhyd2xj0D7Btyya2bdkEwJ+feY2MvFlChti+hWceepa8wmksPCIDf1CPo1dKS4sTAL1BGEHrdluprbVRWmpk6dK8KH8bmNxc7utWOBHV1sv63b10R7TmnTM/l+NnZJCbrA4bQcd16KRVyblsYQEXVubx3tYuHvt0J0/XtPF2XScnz8qksnB8cqpoqolTLvkT/37kOtyOZu6/9VKmHvlbYDamNHW4wgnGe1RFejWNPx6F6qjIqX2TVTtVzMvAZvegNwitfq2WIU67/B4qqhby2B9/x5dr13HD3Q9TOnMqILQxpqYmTjo1L/Jzrl5tYXerm+xs7bjfgVCWK5NJwiNq9za5I1KRFV+R8JVIBNNghSaBz1p6WN/ax4+e30SSUs4so5ZKYwKjo6N7TcpG9v7Hg5FDr2gO5MDUNfCvC4Wg3r6N8lmnAUR57MjlMqrmlkZtZ17pNJYtWEqHo52dVgsDPi8btjazYWszAK8/fBuVZQIHul1WbnvwA0qm5FJWkYIkmEh2ZjId1lasIY+TxYvNfLZW4IBaI8dsTgqzAMb7IHzjEhNRlhrB80hszRMrouKJqK9HCg3MvwzmXgTN78PaB2HjU9D4Wig5tXhccqqoMIVfXXwFv37kYXZ1tnLZ7fdyduW5QBlpJnWIABNwwKSJ8mqaiAMSoNfhD7eyRt6Ef7a2g/VfdjF/QQY3/GJ+eAXZ6fLT1urlhh9cxPFHzeHHv3uYj79o4Nk/3MiR84qoq7Uz0D+EIVnJsmUFE3p7xHKgsdFBYaGBU04pCg8YEPVVORBpxB496XAqmOei0AVh1yekWNbBq1fwvQQtM03HIE+5CEby91odGOfA16vYeCD2Ow/7gh2TR3VJDucVn8fA0AD24+009TbR1NuEtd9KrX0HA6cFGNjVx8AuF8H+IVytTlytTuF9fl7NjPI5MKDB4FVgr91D2Ywy0jLzGfanMSXPzKMbt7BjRx/b8lxccslMXn55Bx9+2Iper2DGDCOXX14WTphFJs/iiuurSC6T8+CxD3L5O1ez6dovCfzRTO8OCw/d+gemH3MhUIHJpA49e2IORHo1TRgPAA6HH88EHFi7toMvv+xiwYIMfhHBAVfEdVp8vkKTzOW3385bTz3BY3f8ibRpCymcv3i/OADw9ts7Q/dOEFsA8pXjgQivqFh/qImM2Pd3u6La2/tpbXWxTdXHrKn5+/WaQ6l4UuprUopGyb+vquTOdxp57vM2WpLV/PikQoxJyr2+zhdMQ5d9CnOPuYj8PB19dgsJkg662raxo6GOqSWzSNQI1RaP3PM3Xn3usajXK5QqtPp0NDoTTbm/wuXMxtHro279Rho3OEhQJDKzLIPZ5VkoFEoclh3oVCUk60vCFSRfp8RE1IY2oSKq2z2WiDprXg7Hz8wkNyURfWK8Ne+bUIJMysmzs1hWlsnKxm4eWt3CP9a18VZ9JyfPyqKy0Mgrr2xjzacdLDoqmxGJEm3BT/D57mPQ287uDb/nokvfJsecGtVGumtXH198bkWhEBIvHm+QU04pHFdF1NTUw+5WF0WFBlSJchobHEyZog//7smntmK3eUgzadCohcubWI0kJF17cLsClFScxokXpbDq5d/yq8uW8+s//42lS2YLkyoiEsWRr4+U2ZyEOO1vdqi1MPJ3oiIrpSabvhericwJY1+7fFYW3yvNoMHqYkNbH1s63ax9bQsZq7Zz9HQTx5emU1mYSqJC8M8RV8b1egWVlVnxG81vSsok+MGrsPr3sPYvlGh3UnLSz0G3dw+/EX8iM7PmcdpRi8nL19Hl6ME/2kdzu4X19c3MnzktvMr2u4dW8ftHXop6vUqpID0lGbUiiSnFZ9PjSGPXLid1Tbv4aMN6VAols8rSmTuagVKRwPY9HYwqc0nS5YUrSL52hRNR68DVPpaImnH6WCJKnRJPRH0Tksmh+CTBNH7nKvj0Ptj4D2h8Q/CcKlzMv1/ZzqdrOjhqUTYMS6kyH8/AwJvY+jv5zxf/5vKLK5hemBo1NXLXrj4+/2KMA15PiAMxK76NTT207nZRWGQgUSWnoXGMA41NPdSstdLY2IPDIXgOQrQ3B/Tgcgc4snQuv73sJ9z/0tMsufyXPH3Pz5ldXgyMTwZNtIotcsDaOcDUqclUVGRgs3kw6KOTupGVUvs7dam0JDUmGTXBZyg9BaafCN1bkbatI6d7Lbz3NqxJg6IlULwcphwDSsGLKM6Bw1OxSSuJREKSIokkRRJTDFM4acpJAPzm008YdO6mfImRkhnJ9PZ2o1baaG/bTu3GWh645AHKZpQhl8r561//yn1/vTPqfRQKBWlpmUilKTidP2PPnjw2b+5my5ZGPv/8HRQKDUcdlYdWOxWlUklfXwudnYWkpMwgKekwWqSI61uju+6q4aWXtnPWuRfTbnQx/PNt+O7MxNfRSfOaFzj3wrlMD1UtTRoPTMKBpqYedu92UVRkQKWS09gYHQ+sDXMgQPtkHHD5aWrqCU+q7Oz0csY1PyYjL483/vEiJoOH3KyK8HtOxgGLpZ+kJCVmMyxfXkhRkQF9DAciK6X2lwMTxgN7ee3+bDeyxS83N4n+ET3F0w+P7ijJqOhoGhcAbrcbvV6Py+VCp9Pt+wVfQSvqO/nVq/UEhoY5Y242x0w3TZpgiZw+Jhoqi5PCatZ1sK7GSukMI2lparpba9hW9xkNtQ3YrBYCvr6obR19zjMoE5PJyNTwyRt/oa3xrUk/4/MrN2LKzJ709wdTo6Oj7HH62NjWx4bWPrrcfpRyKSWZOioLjZwwI4PcFDXJcY+ow04jI6N82NTN/33UzNYON5l6FT1f9tC9zUl2lpZrrinnw5VtBHwu6j+6nTMvvpxTzrt03HZuueVTdu50Ulho4PQzpoWPc7M5ifotPcAoZbPSWLXKwvr1XWRnadEblDQ2OsjO0nLhRaWsWmVh1co2/P4gBQUG5s5Nxx8IRlUcrVrVxscfW/D5hzEaVWSYoHHtX6j9/GPOu+p6Lv7xjcjk+5erP1BT9MhzuaQkNXz+VlZlUVUZfa4dyLZHR0dx+4ao2+Niq9XF7h4Pfd4hFDIpJZlJzMtLRtY7hL3ZxeLKHE4+qXC/9m8ifR3Xx8NBX8t+Nn8Ir18DfifMPBNKloNk4uqGyOljoqGyOCFGNHKeUSpwoNnawscbNvP55mZaO7rp9w0Qifl7fngj5vQMurq8vLXuQ1Zv+XTSj7jljYcpm/41tm64O8DyRUwiqhTyFwkBeMoUSEyJe0QdbhoZgZ0fwaf3QvuXoE3n8Q0zWVGfSlZ2EtdcU87KD9vwBfz885MXOW/5Im754TnjNnNzBAfOOD2aA1vqBQ7MKhvjQFa2FoNe4EBWtpaLLhQ48NlnewgMjqBUSikrS0OvU0YlmVaGOOD3CRwwZSp584u3eXP1On5y4Sn88cbLUSj2rwL7QD08Is9l8fOI53BVZVbUqvcB+4P43WDdDJ214GgBj12oXEufCbkL2OQo5NMdyUw/opwTl0/fr/2bSHEOfDOKtAVxuQbDbTvLlk3hP//ZzquvNnP66VOpqMjgxRffoaHhIzZt2kJr6278/l5GRkbC27rkkkfIzy9j1y43mza9zNat/5j0fT/55BOOOuqor2MX4/qOqazsH+zY0ce0acn839+O5ubNP6Ff0Yb74QGqFx7JVTdfNS6ui4oHYjhQH+JAWQQHsrO16EMcyM7WcmEEBwZDHJg5U5jYF1lxFI4HfMNkZ2uZNSstnBwzmTR8+fGX3HntnRiMBu58/E7yp+VPup8Heq2OnCRYEsEB8Zz+rziwD0VOm501J4UeXw8nFJxAiurA2vcOxfUxXin1DejEskxm5ei56T/1PP9lO1+09nF5dT5pSapxz43Mksa2162rsbK1oQeHw0fpjFSKi6uYUnoUrX21JOsDTJuWxIJ5iShkTnq6regzipDJZLjdg6i06aRmlTE46CNRCT5fAK/Xh2R0mKLS2aRlZB3S72B0dJT2Xh8bLL1saO3D1h9AJZcyPSOJ0+ZkcfyMDHJS1KSoFRN6FsV1eEgqlXD8jAyWlKTzzhYrD6xsZmi6ltQsJbONSVHH7+BPq1EoJq66WHRUTvhxcHCY7i4PU6bosVj62bS5G0aF9tPy2WlYOwboHxjE5Q6gSJDS1+enfktPuOVPqZSRlamhodFBQ0MP69d3YjQmcuyxZmCUvj4//sAImRkaTjq5lIsveYF/P/kw//jrH2jcvJ6b//gIxrT0A/oexCSSOOEstvWuKeRT0j8wBAjntXj+AiQblFEJq4mm8k2kyMTWUZXZLJqayoA/yK4eD02dbjpcPv6zqQOXT3jft9Zu548NFk4qy+SmE4sPaB/jOsiauhR++Bm8/VOoe0FIxFReC/rxiwGRVRPiuGSRA6KRs8PhY0ZpKsXFRcw+r5iEvlrK9AFmzkph8ffS2bTFQu+Ak8pZBaQataRZPdTuTiWv08xgcAiNRobHF2DAE2CUEUoKcymekntov4PRUXDvCVVEfR4xNa8USk+FkpMhuQA0afFE1OEsqRSmLhFM0XesgI/u5MriVSzNTqNFd3LU8fvT6xegnCThc1RoRPhRiwQOdHWPcWDzpm5GAYNexezyNDqsA8ikEoLDI3i9Q3Ts6WdLfU+45U+plJGZpaGxwcFnn+1h61Y7I6PCthMUAjcC/hEyMjWcvGwal138a/72wtv87J7H+bxuG/9+4Gbysg+QA7ZoDsRWW4l+VQP9wvU4nJQKncNuVyDqdfvrDxKd1DoaCo6CQQ/07oTOLUKCd+t/mOt1MFcGoxul0JILU78HJ/3pgPYxrm9OkRVVbW0uYGzi2auvNvPpp8LUvsTEBDweM7NnX01t7VY0Gi+nnJLNtdcWsnZtAwMDNkpL55Obm05zsxO7PQurdQZDQ35SUuQMDPhwu71IJEGmTClg3rx538wOx/Wt17nnTuell7Zz7rnTOWbRFD6qfJnL3r+Mxp81UjW7asJCg0UhDiwKcaA7ggObNnUDoNerwn5UUqmEYFDgwJ49/dTX94Rb/pRKGVlZGhoiODA6KmxbEeKA3z9CZqaGsrLUqOvsgmMW8Ojbj3LblbdxzanXcPMDN7PohEX73OdYDsS23oXjgf6xeADGzNhdIQ6IrzsQDkyU1IrVgbb4fZ2KJ6W+IWUnq3n2sgW8tN7Cfe9t57Y3Gjh2ehqnlmejSph4ZHVsC09llZA4EiulxAkcweFRDAYl+QVG7H0SiotzOfb4peHXrVrVRt6MUzhi8XnI5VLKZ6fR2ubmvfdaMRpVnHXmtENSkTQ6Okqbw8uGtj42tPXSMzBIYoKU4kwdZ87NYekMEznJGoyaeCLq2yaZVMIp5dmcMDODf37ext8+3skXA36Cn+zk3Pm5GNSKqISU29nHC4/9hct+egsKhZITT5jCiScIEx9ffKmJDusA62qswkTIOenAaLhqyJiayOOP19NucWNKV5OkVdDS0if4pM0w4vcNs7vVjVIhI0EuxW730d3tRaWUc+FFpbjdQzh6fVRXZeHo8bFqlYXyhedxX/k87r7xR/zojCXc8sdHKD9i4YT7Gjkdz+MVpmG4nH5Wr26nx+EnIWEseBYTTbV1drq6PQwNDiMLnd7i+VtZlRU2NwcwpibS1OTAYnGHS5EnU2Riq6oyWyj7T0xgdq6B2bkGgsMjeAaH6XL56HD6cHgG6fUM4RgI4B8anvRaE9fXpKR0OPcFqH8Z3r8FVvwSCo+F2ecJ/j0TKLY8uypkcClWSokcGA6OYkhWctRCM5KgDI3UxLwFxeFx9V5PkKoZ85lXNAe1OoGq6izaWt28995ujMZEzjxrGgkJh+AWYXQUnBZoDyWi+jtBrhxrzSteDin5oURU/Pj8VkkqFdr6ir4Htf8k/9P7yHc/BZ/WwtxLQGuKSkj1D3j5zf/9kzt+ciFaTSInnjiFE08MceDFJqwdA9SsEzgwZ24EB0waUo2JbKnv4YvPrQwNjSKTD4c5MKPUiM8/TOtuN4rQQAyb3YfLFQDgZz+dh9s9RK/DR1V1Fj0OgQPHzq1k7QvTOfunf2DO6dfx7D2/YPmxR0y4q9HT8QQOOF1+Pl7dTk9PNAfEyqi6WjvdXR4GIzgAY+fw8PAItaGR56nG/eeAmNQChGBEIhFa9jJnC/9GgkKSqr8L+tqQeHvA4wCfEwL9QltxXN8qxU48O/30qeFHMVH14YetDA2NkJ6u5swzS3C5Eujvz6GycgHLlgnnmcs1SGHhsWRmVqPTKTnzzGnU19v5+9+3kJ2t5eabj0Cj+fZN8Yrr8NCtt1Zx661j0xsT5Yk88b0nuGTFJTzd+DQ/TPgheYl5PPHHJ/jBdT9AZ9CN40BHxwDrQhyYG8MBozGR+voePg9xQC4fprm5L+yb7PcPs3u3G4VC4IA9ggM/DXHA4fBRXZ2FI8SByCRSdn42D7/+MPf+4l5uv+p2LvzJhVzy80uQRiySxU7pc7lC8UAMB8TKqNpaO10TcKAyggN1IQ4YD4ADYlIL2GtSKvIecnB4cK/b/LoVT0p9g5JKJZx/RB5LStK5Z8U23qyzsm5XL8tnZXL0tDQSZHtfGa6qzB7X9hNpkmxMTZzQsLZsluDnU1tro2GrI/zzYHAYny8YDrQPhoaGR9je1U/dHie17U76vEMkJsgozdJxTkUuS0tNZCWrSdUo44mo74AUchmXLZzCmfNyeXh1M899buGW17Zy4swMTizLQC6VMjo6yq0/uoBtWzZh6+zg1j/9HVnElVmshpLKJHi8QRYvzot6D1OahtISIwMDg0ydmkxWppYV7+3GbvfhcPgYBVyuAHPnpnPaadPYssVOh3WA0hlGTGnCGFlRL77UFE4GnXduFY++spI/3HQNN11xNhf9+EbOu+r6KPjAxNPx6p0BnE4/gUCQlGRNOBH16ad7qFkr+Gtp1Ak4B0dotwwA0edvskEZ3ve1n1n5eLUFiVTClCluqiqzoyqiiooM4fM6MrE1keQyKfpEKYGBQfo9o8w0p5CYpMA/NMJIvHP78JBEIkyOK1wMq+4QqqbaaoRJctNPFBI2e1FVVfa4G5BYk+TY6qrI/66ttdHc4kSjEZIFweAIPl8wHGgfFA0Hwd4EHZugYyN4bCBXCW1FZWcJiajkvHgi6rsieQJUXCoc12sfhM8fgXd+AdOXCeb0MuFYO/tnf+C9NRtpaLHw1iO/iWqZi6yG8nqCLInlgEmDQd+PWq1gyhQdZrOOujo7drsXh8MHo2McOOOMaWzZYmPTZhtzQuPET4/kwItN4WTQeeeVsOnVv3Lxr+7n5B/9jpuuPIvfX38Rcnn0cRk7Hc9sTsJZH6AvxIHkFE04EfXpp3tYWyP4a6k1CQwOjmBpHwhvSzyHI1v7LJZ+1q/vwtHrIylJQVVVdlRFVCQHxKSW+DhOUjmo9NjccixuvRDQGRCSUiPDX/GPHNfhpDPOmM4ZZ4y1ZObl6dHrFRgMSpYsyaO6OmdcdVXkf3/4YSsbNnRjCN2LDA4O098/iMt1eAWtcX37pUnQ8OTxT/KDd3/AE/VPIHlewhcrvqBxUyN/euFPqBLHuoYiq6E8ngniAZMG/YQcCMUDE3Bg8yYb5SEOnBbDATEZFFnZlKhJ5DeP/IYX//YiT9z3BDu27uDXD/4arV7w6quttdPRMRAeelRfHxEPpGjCiajYeGBwcIT2CTgQ2doncqA3hgNiRVRUPBC6/ldOxoGQItsBDcbDa1BYPCl1GMikU3H/OeVcVJXHH97dxkvr23mnvpPvlaRzXLEJ5QFUM8Saok3U+iNWXGnUcjSahHAia/JpZwcml2+I+j0u6vY4abC6GRweQZ+YQElGEkdMSWFJSQaZBlW8Ne87LF1iAjcvK+WCI/O58+1G3qyzUrPTwUnFJlS+UU676Kf88VeXs+aDt3n47lu57td/QCKRYLN78HiDLFtWEDYIFxXps1S9MItccxIatZzaOjtabQKKBCmLjsrB7xumfY8bY4qKwaFh7HYvWm0CTmcAm90TdU5EJnEBklPT+MNjL/HPR/7MMw/dx6bPazjm+7eiTjJQNistPBlQfI14rpXNArd7MFyBVVKSSmubm4H+AH7/MB+830ZVdRZ9vYEJE0iR5+3aGisjI6BUyMjL02Gze3j7rZ10WIXEgkIhC5fyioktm93Dho1dk3pQRZb/Fs/Yu6l2XN+QNEY45UFYcAV8eDvU/xua3hISU8XLIEG9722EFGuSPJH5pfgztUbggJjImnza2QEq0A/WWiEJ1VkLQT8odUJF1JwfCAkKgxk0qfFE1HdVCg0cewvMvRg+uE2Y0tf2Gc7Cc2jxT+MnF5zBpxu28sHaTVx261949t5fIJVKsdk8eD0CB7ye4LhjUbypVmvkLFqUjVojp67WjlYrJ0Gh5ahFOfj8w+xpd5NiVGG3e2lucZKdnUSKUc2GDV1R/hyRSVyAZH0Sb/ztdv781Kv86v5/8MkXW7n+nItINeiZFRo3PtF0vFllAgfECqzSklTaWt309wfwB4Z5//02qquz6O0LTJhAim3TNRiU9Pb66enx0djUw1tv78TaIQQxURwIBTPi+PPJvEei2kCSv3mPpLgOrSaa+hc7+U/8WWQCC8DpDJCdrY2b4cd1SKRT6vjdjAe47osr6D+qF81aDQ0bG7jjmju48/E7kcll2GwePCEOePbCAU2IAxqNnNoQBxQKDYsW5eD3D9Pe7sYY4kBLi5PsnCSME3AgctJdrCQSCUvOOpWBoSRee/RRrlx2FXc/dRcF0wuiXmcyaSgLcUCswCopSaU1xIFABAf6+gITJpCibHtiONDU1MPbb++ko2OCeOArcMBgPDAfqUOteFLqMFJ5bjIvXnkkNTt7ePjjnbxa28Hb9Z3Mz09mSUk6Ocn7H5Tsj2ITWLEO//sr/9AwzbYBmjrdNFjddDh9AGQbEjm2OI2FRakcUZCCSaeKT837H5M5Rc3jF1Xwt1cb+fv6Np7e0E4KUsrVZhaecjOfvHYnb730NGkZWZx35U+wWPrZuLEbnU7B4sXmqARL5IV0cHCYdTVWtNoE7HYfOTlJ4Wl9NruHN9/0sXWrA5c7gN3mRadT0Kp08dyzjSxbVrDXY10mk3Hxtb8kyTidJ/50I0315zPnuJvQG47HlKaZdDpe5IoLCDd12iQlQ0M+vL4gfb0BLryoFIulf1xyTJTN7sGYkkjRVANqdQIKhUyY6qFTkg3kmrXU1trGJY/35UF1OPeQxxWjjDJhQp/lc1jzJ2h4DZrehJwFMP0EMBYd1LeLTWDFTvzabwUHwb4NurdCVz30tQKjoMuGKcdCQcjrJikDEpPjHlH/S9Jnw1lPseWtkzFt/B0Z9X8jZzSfHuWpXHf6Rfz5pad4/q3VZKcbufeGy8ZzIObGWrzejY6O0m3zRnBAF57SZLONccDtCmCzewHotA6wamUb8xdkRlVLxUoikXDD5WeQkZzJtXf9lcvvuJPzjz0Dg/5YTCbNpNPxYrfpdAZISlIyFPTh8wXp7Qtw0YUhDtg8EwYNYrB1wgkF1KyzIpNKqKu1o0tSQjaYcwUOxCaP9+U9EudAXJMpNoEV+d9xxXUwJRr2azQJzPdcxxrzH8n5UQE7H9jOulXreODWB/jFPb8IX88yMzXo9eMrxsXfFxenMDg4zEsvbWN4eIQZM1In5IDLFcAe4oDVOsDKlW0sWJA57t59Iokten19Bo4448ds/+Qlfvz9H/Or+3/FUSceFV0MYpo4HkhKUhIMcaCvL8CFB8CBdeusSKUSamvtJCUpyc6G3BAHjN8hDsSTUoeZpFIJC6emUVWYyub2Pp5e28rq7XY+a3GQpVdRkZ/CgoIUMnTjTdG/LglGygPssnvY1tXP7h4Pw6OjaJVyCtM0HD0tjcUlJqaakjBqFWiU8cPsf132+j60nznJPiKFXcoRPvYMoNKVs+B7P+aL9x/iqb/cTVZuHiXzltDc3IfbHcBi6Q8nWGx2Dy5ngMwMwTPnuWcb2drQg9GYSLpJTUG+Lvxci6Wf1t1unE4fWdlJKBKklM9Jo90yQId1gNo6exggtXV2amqsbNzYTXVVFtULs8PbCUimUXjkH7A2/B8b3ruFojwn8+b+ZNKkauzEPLGiSiaDdssAlVVZkyaPxNe6nH5sdi9JSQrU6gQ0ajnG1ESWLs0LewW1NDvRlKdFvT4WMrGT/iL96Ab8B7EtK65DI4kE8ioh92Xo2gKfPyoYSLd9JiR1co+E/GrQ5QjP/SY0OACOndDTDLYG4XEkKFTHGKdC+Q9g2vGQXgpaU9y3Ji5e22Tio1U38NOqjZykfYUlgYeQaefQf/JZ/O31l7jviVcoMmdx6jGLojkQurGOrJAqLk7h/fd309LixGhMxJSuJr9AF36uxdJPa6ubPqeP7KwkEhRSjlqUQ0fHAC5XgF6HL/y56mrHOFBVncXC6uzwdmSBZM498kJWNa7gyff/SXJmgDlzLoxqOY9U7KQksaJKJgNL+wBVlVmTBg3ia50uP12dXtSaBAx6JSlGFcXFKUydmhzmQHOLk3JNWtTrYzkQO+kvqmJyyPtf/z3jiiuuuA5UK1e2sXKlhYqKdJYuLce95od8WfhXCq6cSsvfmnjnxXfIKcjhuNNPBsDl8kddLyMrpMSpfM8914jV2k9iYgIFE3DA6fSRlZWEQiFlUQQHHBEcqI3gQHV1FtURHBBb9IxGFUceWcplV97PU/c+xG+u/g0/uO4HXPLzS6KYEMuB8ggOtLcPULkfHHC5/HR2etFoEtDrlRgn4EBLixPNPjgQO+kv7ikV1wFLKpUwLy+FeXkp2Nx+XtvcwYqtXazY2smbdVbStEqmZ2gpzdQxLT3pkFQgjY6O4vYH6egTTJItvR5abB7sA4JJnFohw5yi5uTZmRw5xcgcswGjVkmyWoEs3pYXV4TEkvAlS/LIL03h2n9sZLPEjabgZBaMOvjygxe551fX8ad//IfFi0vHeaFZLP10dnnIzNBgsfRTGiopjzT5F2U2J5FfoKPTKsNkUmM265gyJZmymWnhRA0IF2q73YtUCs6+AF+u7yLXrAtXW6mUcmbPncrxyx7jo9ce5oVH/kDr9s3c8Pu/sMcapLbOHk445Zq1tFsEH6xFi3LGVVSJSSeNegyikQqvCGVo0OkUtDR7CfiHsVo9UW2MKqVc8LKancaK93ax5tM9LDoqhxNPmBKVpIo0Tv+qFZBxHQaSSiGrHE5/FAZsUP8KNL4O21cIj2qj0A6XMQtMxcL/PxRJKr9bmODlaofe3dCzQzAoB0hIBEMelJwKBQsh5wihJU9tBFn8FiOuMYkcMC05BsXsm7E/dy1LJB9wVJ6JBMkxPPjax/zotw+R95iJxYunT8iBbdt6ycjUYNArmTs3HaVKHmXyL8psTiI/X4eic4wDaWlq8vJ1Ue2qjREc6OsLsP7LLsy5unDwo1TJqZiTy/JlP+WZt97lT0+/zObtO3j+j7+kxxakrtYeTjiZc7VY2gUfrEWLcsZVVMUm1SbjQEamhuLilLDf21QMUW2MSpWcqUUGZpensWLFLj5ds4ejFuVw4olTooIT0fcK/osKyLjiiiuug6jIeKC6Oge9XkHimmHWLniIUl8pDU818Pe7/86wVMMFV52MzeZBrx9jwUQVVJWVWfj9QcxmHWVlY+13Igc6YziQH+KAmCxqiuHAl192kRvBAZVKTmmpkexsLTabj6wsLb/522946ZGXePy+x/nkg80sveBSbI4RSkuNdHQM0NXlobIyk8WLNeNa8mKTapGK3D+RAy0tTsAQ1caoUskpKjJQHuLAmjV7WDQBB2pr7RN6ZR2Oit8xfgtk0qm4+uhCLl9YQHufl/e3drGmpYdtXf181iIYlasVMrIMieQmJ5KepMKoVWBQK1ArZCQmyEhUyJBLJYwiDD8aHR3FPzSCdyiINzCMZzAYmsw1SM9AAHt/gE6XH++gYIIpl0pIS1JSmKbhhJkZzMszUJqpw6BRYEhUoJDHWzHimlyxpeGv/mwh79R3csdbjXTPPhfNthYkrna0Ov24KZMwlvF3Of3hct0LL0qPqkwSZUrTcMophbz/fivNzX3hVQVxcp/F0h8uxe2wDlBYKLTKRbbEWSz9eLxDlJebqK214VcuZ+GppWxa9WcuP3Ux0474OdaeFOQyKUPBEVpbXSCRkKQVqptiFVlmXDEvY9zvNWo5MpmErCwNZbNSMaWpQThbwyspADa70IrY5wzwn1d24AyZkIqTC0XFemXF9R2Q1gSV18ARV4NzD2x/B1pWQncDtH4qPCchUaieSs6DpEzBOFydIvhRJahBoQZpAjAqgkDwehryCNO5AgPgdYC3BwbsgiG5u0PwhwKQyITPkVwA006A3AWQWS68R2LyPk3Z4/rfViwH0n70b9j+Hsp3b+DPZZvY3pDKF9YAqcm6CX3QxOuz0zXGgYsuTI9akRZlMk3CgdDkPouln8YQB6wdYxyIbImzWPrxesY4kCYt4Wdn5vDsypeZufwaTq/8PoPOJGRyKcEhgQMSJGiTElBr9sGBivEcUGvGOFBakhr2e1OqZFEcEFvSnX0BXnllR9iMWpxYJSrWKyuuuOKK65vWRK2i1dWXsbLNzA3cQObuPGxrbdiEQXLjWBCOByIqqIqKDCgUsgPigNEYEw9EcMAYwwFPBAc2beoWPJiNiUxdcCzzlgfZ9O4LPHfP70krOw2HIx+ZTEJfnx+3e2jc/u+LA5oIDpSUpKIJcUAVwwGPZ4iCAj3btvXxxhstDAwI7xXLgb15ZR1u2u+klNVqJStr747ucR1ayWVSClK1/PCYIq46qhCXb4hmWz/rW3tptPbT6vCwZY8Lp6+H4ZGvNlkrSSVHr0ogWZNAdVEq+UY1pVlj1Vi6xAS0CnncoDyuvUrsGRdXQmIlkUhYPiuLo6amcu1TG/jkjJvQSoP4tZkTbk9MOtVHtPDty0epqdFBh9WDXqeMau3btq0XmUyCVCYlO0vL1KnJOJ0BiotTws+LLH9tt/SjTpSTnDmfi37xNC8/djNfvnsTBvN55JUuIyFBRtFUQ6hEOMC2bX2UlKRGtfNFbs9m91C/pQcYDZune7xBhodH8XiDlKRpWLx4rG1RbxhbIWpu7qO11UXN2g6GgiMY9AoWHZUTfq74fhP5XsX1HZFUBil5oQTVD8HvFNro2tZC5xbo3Sk87voERsbfEO2XlEmgMgjJpryFkFIgeF2ZSoXkk0oHSn3cFyquvWpfHAAEn7T8RXQ/9wv+c9a/sA1pyU/un/CpYrDhrA+QkTkBBybwz2hscmDtGECnV0a1dIgckEmlZGXHcMA0ngOW9n4S1XLy0vJ56MZf8ZtHH+exFc8wz1zJ0bOqSUiQMbUomgPi5MsJOWDzsKVe4IBonu71CBwQJ1+KVVaR2wDCrY3vvbcbr3eIRLWMoxaFOBDx3Il8r+KKK664vk7tFweAJXlLuOWIW7hj+A4KFs/khPmVEz5PvD7X1wfI3E8ONDU56OjwoJ+EA1KplOz94EB7ez+JiXK83iD19XY6O70kphSQfcRF9DS8QdfG55k57SJkSUXY7T4GBoQFg71xoD7EgbIQBzwhDnhCHBDv52M5AEJibvVqCx7PEGq1jEUTcODbFA/sd1JqxowZPPzww5x//vmH8vPEtZ+SSiUkaxQsKDCyoEBoZfIPDTMQCOINBOl0+el0+enzBnB6gwwEhhgMCpUXIEEmlaBWyNAlJpCcmECKVkGGXoVWmYAqQRqurlLK41OR4jpwiT3jsHfDTF2igmd/XMXaFju3vraVP72/naOnpTEn0cG0kpkkKBTh54otfJHJIxAu7LEeSpHm4JHT7sSKpLw8XVRfdmyrW2S1VvXCLPyBIG53AIMxm5/+/jnefv7PfPHRcxiTrCz43s8om2ViZAR6erpx9PrCn1eEZMW8jPD2NmzsYt06KwOeIUDC4sWaSY0HY6vGFi8289yzjQSHR8nO0nLhhaXhz7yvJF1c30FJpULiSJ0CufOFnw35Bb+nwIDQYufaA75e8PYKFU9Bv/A8iQQkUsEDSmUQkk1qI+iyQKUHuUqovFJo4hVQcX0l7S8HUGrIuuJRaL+c/Leug0/uhYKj2Kw+hmlFU9Coxzw0LZZ+ujo9UUEDCNfOWA8li6U/bA4eOe1OrEiK5UBsq1vkCv3C6iwCfoEDRr2Bp++8mb/9+1Wee2cFo4kurjjpHGZFcED0rIriQEVGeHsbNggc8AwIHFiyNw7EVAosXmwOeU+1kZgop7zcFF4d31dwFldcccX1dWq/OQCcPf1sOgc6eUL6BG2qDZRwAru37yY1PZUkQ4ylxyQciPVQslj6w+bgkdPuNJNwILbVLfL6W10ttAm63QFAQnFxClOm6GkrMSI7dSbv//MZPnjuCUqrlyAxVBAIDIc/7944MDCwH/FADAfE1sJPPtmDyzXIvHnffg7sd1Lqrrvu4uqrr+a1117j73//Oykph9cYwbhAlSBDlSADrRKz8dtzEMb13VNkzzjAf/6znVdfbeb006dyxhnTxz2/uiiNFdcv4g/vbuPRJ5/m2Xf/wpFLT+V3f3447JUWe6GOTNi8+eZONm8WSmpLSlIxm5PC5uAgJILM5qRwRZJCIQu30UW2usUmt8T3EYMAsQ1wSuHdvF0yl1efvANbx48w3/og1VXThB710PYmAoto2K7Ti8m20XH7IqpmXQfraqxUVmWRbFCGP9eyZQXjPqP4Pi5nIGSWPvF0v7j+B5SgEv5pUiEl/5v+NHH9D+tAOUDufLjqU1h9F2/84wHOffkdTjiylP88di/SUFXeOA5E3KhHcqB0Ig6ExmSLFUkKhSzcPhHZ6jZRFZPJFMMBk4YpBZcxr2Q6tz/yOLc98QD/d8tPqKoujPKsmpADNg9OVwC9LoYDE7Qs1tR0ULPOSlVlFoZkZTjpVlGRgVojx5yri2rPM5uTcLoCOF3+Sac6xRVXXHF9XTpQDvxk7k+weqy8u/tdHPUOXvjVC0yfNZ37nrsPeYKQtthfDkwYD4Q44JmAA5GtbhNVMU3EAZvNg0IhY3BwmMXnX0b5ETN47cnnyC7soPySGyf8vCBwwOUKoNtPDqxbZ6WyMovkZGVU0u2884rD/1+U+D4ajTy8v98GFux3Uuqaa67hxBNP5PLLL6e0tJTHH3+ck08++VB+trjiiutbqnEeUq8289FHFjo6BqioyCAvTz/uNYkKOXd8fyaGvgX84t1R1r3/KrenmLnmymvp2DMQLnu1WITWDjHp0tTUg8XiRi6TYkwZP5UycsVgcHCYHTt6sXYIpuNiWauY3HnxpSbqau14PENhg/HY5I7N7mHVKgtD8tksv+wRPnrlt/z55vP5yW13c+4554WTaGKiyWb3hJNiYrXXjNJU9AblpCNZbXYPb7+1kw6rB4CsbG34c5WXm4Qx6WmaqMRVVWU2eoOwr3pDf3jfI/fBZvewY5eT1IzDH05xxRXXt1tfhQPIFbD0d6QNmBl9+Upe/6yB39x8A9f97HYse/zjORC60W4McUAml5Ji3D8OdFgF03GxzU2skNqwoYvNm7rx+Yex23zC9Tbmht5mEzigGjbx+yt/xl9ffo4Lb/k99//qSq79wcljHAgFGDabJxwciNVepTNSMegn5wDA6tUWGhsdBPxBpkwxUFsncEA0Pj/vvBIam3p44oktpBhVLKzOxqBXsm1bLwZ9DAci9sFu99Ld2oPO4MY8zbCvP2VcccUV11fSgXJAIpFw18K76PZ2s2bPGoZHhtlcs5mH73iY8667IqoNLpYD4XhALsW4Dw4IVVUO3nyzhaYmB8cfnx8VD2zY0MWmTd34/cPY9sEBtzuATqdkZAQqTzyRqmNmcce1d3D/z2/lzifupLCkcNwUWXG63owZqej3kwP+EAfqQhzwRHCgKcQBo1FFdXU2FRUZbNjQxbZtvbhcgbBZfCwHGtt6mCl3kzL1my82OiCj84KCAj766CMeeughTj/9dEpKSpDLozexadOmg/oB44orrm+/Tj99Kh0dA6SmJtLQ4CAvT09bm4uGBgczZhijoPTzS89mxGnlxp//jM9f+itdo0YK9HNQfjzKlCl6PF6hz1pMtNTW2RkYGMJs1lG9MBsYDx7xcdUqC3v29CMBUoyJ4xJPYpWTSimLaoWr32Jn0yYbc+eacLuH2LihC3OenqVL5jJ77gt89Or9/Pm2n7P+s9Vcf/t96AzJwFgCSyj1jf4se6tkim0/TDYox32ulhYnTz1Zj9cXxB8IolDIoqb7WSz9bNzYTXNzH+Wz09i2rY/Gph4UmgTmLRhvrhhXXHHFdSg1EQeACVlQddrlPP6YhIsuu5zfv7GNqYrrkZvO5ONPMpgyRR/2XRJvsOtqxziwsHr/OIAEjCmJ4QRPpIfInLnptO524XYHsFj6MZk0bKmP5sCGjV3kmfUsWTqNivJbeebdN/jJXY/y/mcbefKun5KeGuKAbS8c2Mfqtdmsw9o5gNk8VhEVaXze0uLkhRebGBgYxGhMJOAfZnZ52oQcmF0ucKDX4cOUAnhdqIx9mKeZ/8u/bFxxxRXX/ml/OfDQcQ9xvu98Rq8epfkvzbz+zOsERnUkGGcxMjIixAMxHKiN4ED1PjggLBZ42bnTic3mQS6XRiWezOYk5s5NZ3cMB+pjObChi7w8PeXlaeEkkck0j7+//Xduu+o2rv3+tdz4xxuZeeQRUckocbre/nKgM8QBsSJKFcOBF19oYsAzREqKCr9/mMWLzVGm8OF4IMQBh8OHwSinb9DFNlUfs6bmH6w/8VfW/7N333FVlv8fx1+HDYcN58gQcKGMVBxpQKYmltowLVvOn31tT7OyrQ2tbGhDbapZaaZmZqapaSqSuXAgbgVlyFAOe5/fH3CO58A5CIrMz/Px4EGH+z73OOH95r7u6/pcdZ59LyEhgZUrV+Lm5sbw4cOrNUoJIURVd9/dhd69vfSBAxAXl0lMTDJAtSclzz/7DBvWxfDXX8tI/PU9SsZ8iLJEhfOFAnqEtTF6ohAQ4ExyUi7hET4mC5UbFjkPCHAmLEwNgIe7Hdu2JVFeVk5IqAdZWUWEdVfxwP3B+qLhSgcrdu9JJTu7GBQACjIvFJBfUApUFCbv2ElF+KxPua53JN98+Br/Gz6Aqe99Rs/wm0hMzCE7uxhnZ1v9sdRmWJ1hd2Pd+rri6dHbk4mNTSMxMZv8glIc7K3w93c2ObufriBu7P50DhxI58KFAjp0dsfHx7Hu/xOFEOIqmMoBMJ8FY/9vIqvWxLBy5Tc8uiqDrRMW40kvEjOHEGYiB5KSc4kI9zFZoNawuK1hDrh72HHkyAUSz+Zw7mw2AFGDA4gaFKB/ou1QOQQiO7u4IgZQcCGzgIL8ihzIzyulYwc35r/1BP16deXpd+cSetujfDvjWYYPCq+eAyaGZ5hT8fTeQ/8+XeHz7dGXciDrYiGOjjYE+DuTnV1Efl6p0axOuhzYH1uRAxpNEX17utIrxAXnILc6/T8UQoirUdsccLRx5Otbvub+kvspGFnI2RWJrP/xR/qOcKAQNS4utoSFqavfDyTnEl6LHICKGlOFhaVYW1uQnV1EdHQyZytzYPDgAAYZ5IDSIAcqKMjMLKBAdz9g8HAjLS2Pc+fhjS/f4/uP5vP2k2/Tf/jtdOh9C75tnWvdGKVTNQd0hc+jDXLgYlZlDgQ46xvRdPWr0tLySEsrqLgfMMiBsF4etL/OhaAuTSMH6tSi9PXXX/P8888TFRVFXFwcKlXTn15QCNE0BAS4GN1w6MLIMJR0FAoFn332GSNGnOTw4T1oVs/A4sFZnHTQYn00E6WDlb6xxsbGkjZeSmxsLhXlrzp0TpNVSEpqPkFB7jz9VC+gohfTqVOHSUrOJTOzgPLyivcGB3uiVinJzChg7drTWFgq6NZVxcCBFU8dfHyUFdOzVulN5dupP7dP/IZ/137AS/+7lwG3jWX80y/Tq1eby/aMqspU45Wu3tXZxGzOJGTj5eVAr55tCI/woVMnV32X5j/XnWLb1nP0u6mtfuy70sEKO1srMi8U0LNPGzzc7Wt9LEIIUV+q5gDUnAWzZr1PQsIx9uzZyl3Ly9kzcQ99nNPZcvweHJSd9H/U29hY4tWmSg5UGTqXpSkkNaUyB56uzIHKG47Y2DRiY9NAASqVAyHBnqjVSjIyK3LA0kJB127Vc8Cw15JaraSLb2feeug5Fq1bwV1PvM3dUf2ZNeWhSzlQx7oeVRuwdMXcE89mk3CmIgfCerQhIrxKDvx5iq3bznFTv0s54KC0wtbOiguZBfS9wY0gPwvwc67T8QghxNWqbQ60UbZhftR8xhSNofBcEek7z3Nww4/c8diL+Po6cvz4RZRKK6McaHOZHND1VAKIiPAlIsK3Wg4oKnMguDIHMitzwMJCQTcTOWBXJQd0vbPOnrWmfd8R3KNuy8pvvif59Ble+vgVOnau22iFqjmgK+Z+9mw2ZypzoEePNoSbyIFt287RzyAHlEor7OysyMwsoG+4Cg9/LW2bSA7UulFqyJAh/Pfff3z++eeMGzfuWh6TEKIVMBVKhjp3VvP3339w/fXXc/bsWe4o289/JZFEl5aQvTdFP+7b3EwVcKnbrrfXpW6yOmqVUl803NXVVt9TSid2fzpJybn4+jjStZunvpFIrVLqey0ZTs9a8b0LFtbvsmP9T2xbt4QzR/9j6vtzUauMA8hUQfXLid2fzv7YdGxsLXBxsaXrdWpGjAg0Oh+AbVvPcfJkFgBDh3QgM6PAYF+B5BaWUlBSVqt9CiHEtVZTFnTo4M7Gjb9xww03cPToUT7VjOA1x53cWjaXvbG3Q/C9QO1ywMvbRA5U/rHvoLQiP78EwKhw+P7YdJKTcvHxdaRbV0/9jYFhr6XqORCAjcVo3G3/Yc0/fxN77BiL35+CWm2cA1VnC6yN/bHpxO5Px9amIgeu66pmpGEOVB7f1m0GOTC0AxmZBQb7CoSSfMi/WKt9CiHEtWYuB7q4d+GTgZ/weOHjlGYUc/HkRfKSdpHlNqTaTHm1uh+oIQeUBjlgWDg8NjadpKRcfH0d6VolB4LN5gDExqZx4kQW3bv34aOfujPtsWm89n+Tefurt+kU2gmg2myBtREbm87+/enYVOZA165V7gcqj29blRxQq5XEx2dQWFhKZKQPHTs7k1GQUat9NoRaN0qVlZVx4MAB2rateTpHIYSoL23atOG3335j6dLfuOmmsfS7mM/Xcec4UFbEKwv20stFSb9+bY2GrBm6XA0nw6KGuoYiAA9Pe+xsrQgJ8SAyomIKWV2xcl0PrOjtyWReKDDqtQVgaWmBo9ct3NW/P3s3fciT9w1h3JMvcO//PY5l5XDn2P3p7NqVSnJSLh6e9pftRZWWnoedrRWdAl0JCfHAxsZSf26GjWNqlZJ+N1Vco3XfdY1ZuvMVQojmxNXVldWrV/PFF99yQ9T/2JybxHVHpxLJSk58f5RDyhFE9GtvNGTNUG1qOOkKnesaigA8PeyxtavIgYjIyhwwmMlIN4zuQmYBDgZP6wEsLRV0UoUw9PEwlmz5lRtHv8DLD4/i9ccfxNbGGqhoYNq1K5Wk5Fw8Pexr1YtKN0wxNMQDlcrhUg4Y3BSp1Upu6ldx/dd91zVm6c5VCCGaixvb3sjUG6cyPWc6HXZ14L4nJrJzZxqdOrni6mpbrcC3KbXJAd09ga6hCMDDwx67yhyINJMD0dHJZGYWGPXaArCwgLzcYiwtISw8jC//+JI3Hn6DJ0c8yfPvP8/gEYOJrcyB5ORcPOqQA8nJuYRcJgf6VV7/dd/hUoMWQMfOTaOHlE6tG6U2bNhwLY9DCCFM6tGjBykpLvrpUP97+1aGv/k3cdpC/srU4HTMgVvMNOpcroaTYYOOYeNNYKAbefkVM90FB3uye0+q0VC9xMQc/tuVgkZThFJpTXCwp/4pzInjWeTmlZCZ7c7Elxbx74avWfjpe2zbsIYpb8+mQ5cQwrqrOHUqi4sXCzl4IIOu3eDggcqpZ7upjGbLS0zMQZNVqD+eqg1whkUc1SolQ4d0YOiQDvqhiwEBFaFj2AtMCCGak86dO3PrrY9U5oA//q9Hs+XtJ4i0XIZbzqekHv0fanUfk++9XA0nwz/kDRtvAgPdyK+c8TQk2FM/k5Fum4mJOez671IOhBjkwPETWeTllpB7QcnsyVP49Z8NvP/Ncn7dGMN37z5L3+5BdA+ryIGsi4UcOJhBt65woHIK8m6VU5BXPT7dMEWVysHo5ssoB9RKhg7twNChHfRDVnQ5YNgLTAghmosHgx/kZNZJlnksY8uZGMrz/AkLU3P8+EX27TuPs7Mtfn7OZq/1dckBw4abwEA3/czXwWZy4L//zNwPnKi4Hzh7Npe0tDzOpmh5fd5MFn/yJTOemcHhvYcZeM+9l+4HDmbQtSscrMyBrgY5YHiMBQUltLmCHPD3d9L3AAtrglkgVcqFEE2ebox5u3a2/O9/ExkQeicF+yxI9rdh5ek0bDxtGdBFXeftGl7AdY02AQHOaLKK8PZyqNYV1/B7n+u9ybxQoH+fbpmHhx17956nrEzLxo1JhEc8xJDhI/jo9ed4/N5beGDS0zz48LPc0NebvXvTAC2JiTns3XcetJCdXUJhUSlh3VXk5ZeaHX6oY667su7cgoLceeD+4Dp/NkII0ZTocqBjRyWPPvEEvr43sv5YO14M/IaQpDlw+D4IvgMUijpt1zAHdI02AQHOZGmK8PKuOQeu7+PNhcwC/ftM5cCGDYkMDh/A6OH9mfjKJ0Q8MIXJE0Yw/anR9L3BOAf27T2PloocKCospXuYivy8UpOzRxmqVQ48IDkghGi+Xr3hVc5kn2H3+b/oH3APW1ZswN2nIz4+Hvj7O5v8G7m2jO4HDHJAoynC+zI50KePN5mZBfr3Vc0BpdKa1atPUlZWTq9eXkz9eCqhPUP5fPrnxO+LJ2rMQ5w+a4n+fmDveaDyfqCwVD+0r6YhiKaOzdS59e7tpR81UVxWTFOi0Gq12sY+iKYkOzsbFxcXNBoNzs5Nq1ubEK3ds88+y5w5c1CrfRkz5kv63hTImoyLbD2eQa8ANyZGtEOTVWg0nA1gR0wSMTuS9UXBdb2SfHwcycsvNRqWp5u6u1cvL7PDAi/n11+Ps379KWxtrRgwwB8/fye8vWzY+Os3LPn6U/zadeT/Js/AxrGjPjwOHsggO7uIw/GZZGYWcv31XvrChKaGH1YdtleV4XLDulJ+7V0pKCljeA8fHGzq9lyitVwfW8t5CtEcTZs2jenTp+Pq6sm4cV8xbFAHbs2fBUd+B+8wiHiStCyF0TAGnR07ktgRk0xoiAfWNhU3AT4+juRXmTnJKAfMDAe5nJVVcsDfzwkfHwd+WLueNz79AT9vFbOef5i27pem7j5wsCIH4g+byYEqT/qrDteoynC5UV2pTg4VNaW63gP2rnU6r9ZyfWwt5ylEc5JXnMd9f9xH3K9xnFl8BjsHB+547AX6RAZVu1abuz7u2JFETEyyfvibUmlFcnIehr2T6isHfv31OJs2ncHBwYbOnd1o395Zv49jB48x/bHpaC5qGPXEowy9ZyBQ0VMqO7uIwwY58MADwTVe72u7LDOzQF/DSldTakj7IbjbudfpvK7F9dGiXrYihBANYOLE5/D29ictLYnNm9+jd1dPFk3swwu3duHAuSymrznM3qOZFVN8V075ChCzI5nY2PMs+Sme6O1J7NiRzJ9/niZ6R7JRo07VqbsNxcdnsGRpPPHxNRcFjI/PIHpHEkXF5ajbOJCbV8yKFcf4778M+gyayO3/N4/SckumPXEP29d8jJ11EZkZBaSlV8wG4uBgg6+PI2HdK4bx+fs7kZiYQ1p6ntF+dE8+DM/TkFqlpHcvL9QqpX5oom5YihBCNFf33/8I7dsHkZWVwV9/vU2HYB+4bzEMeR/Sj8CfL5F59KDJ6+O6daf5778U1q07rc+BHdHJ1aYLN5cDh+MzWLIknsOXyYHD8RnsiE6iuKiMNmoH8nIrcuDfnancHjmQdydNxsleyYinpzFn2WLKFUVkZBaQnnYpB3x8HekeVnHzos+BtDrmgFqpnxZclwG6YepCCNHcKG2UzI+aT5tBXjgFOlOYn8+2X75DrbKutq6566NhDhw5coENGxLZsCGB7OziWuVAfGUO1Op+IDqJvLxSXFxssLW1ZOPGRKKjk4iPz2DPoTImfzKDnpE9WfjeR6z8ejFp53NIM8gBX1/HWg21qykLDHNANzQxtgnmgAzfE0I0G+fOlXH77dP5/vvH2LdvO99++xHvvvsuTwzsRJ927jy1dB+rzqQT3sbFKETCI3w4c0ZDUVEZh+MzcXG1QaMpJDUlr7LX1KWeU/qpu6v0PqpaMLxq7yvD2lRFRWV4eNgTEuzB2XM5ZGcXkXmhkNj96ZxLdSHqgU9Rav9lwafvs+2vNXS7cSL59Cawszv9+vlWaygzrBmlozs/pYOVURF2qN6LSjfEUOpKCSGau1OnChg6dBqLFj3MkSP7mD17Gl988QXc8Cj49YVfJhCU9BmO6mHY+g03eq/S0RpLSwssLcHVpSIHUlLzKms5mciBKk+cqxYM1/W8iqgyFff+WF0OOBAc4sG5sxU5cCGzkP2x6aQlKXj+3ocptDnHSx8uYPXfOxlx4y2obDrTxTAH1CZyQF09BxyUVkbFd6H6k3PdEEOpKyWEaM7aOrVljMvLfPHYy5yafpLUxLMs+nAur336GgqD4dvmhrM56nNAgbe3AxcuFJCTU8TZs7ls2pTA5XLAsOZUcGUO6OreGt0PxBrcD4R4cLYyBzIzCw22oWL6l9NZ/u1yvpzxJVvW7cK7x12EdguodQ7ozlGjKUKjKSQtLc9sDkhNKSGEqAcVNUVu4rrrPuOZZyYxY8YM+vTpw/Dhw7m+vTtrn76RZ5bGsu14BkdTc7ivhw/dr2tDRLgvbq62rPz1OAX5pYQEexIa4gloAS1796UZ1XNKT88nK6uIgABn/Ux3VRt2YnYkcyiu4imJjY1ltdpUdraW5OWX4tfWGZXKwahBKKy7iuDg/3HTLXfy9cdvsXH1h6h8Qxh00zR69+qmXy8tPa9afSsdXRH3qkXYoXpDluEsg7mFpfX4f0QIIRpWRQ5cT+/eXzNx4n3MnTuXvn37Mm7cOPDtAY9tR/Hr4/gdWU3S3/Ecue5hgrr6A3DHHR0pLSmnoKCUtn7OhIReyoF9e9OM6jmZyoGqDTs7YpKJO1Q9B3TLbe0syc+r2JdK5WDUINQ9TEVIcCgjoiJ4dfYivvz5N/zV3rxzw0R69zbIgbS8avWtdHTFe6sW34XqNzC6GQYBKMmvn/8ZQgjRCO7o0Z+Msqf5/vH3Sfgggb9/+5vgsGDueege/TpqtZLMzAI2bUrU12WCihywtLSguLiMtLQCevf2QqVywM7Oslo9J5P3A1UadmJikjlkIgd0y+3sLMnLK8WvMgcMG4TCwlQoFApG/W8UIT1CeG3SmxzZ8BWRvZ+ulgNV61sZUquVuLhUXPNdXHLM5oDh/UBTqykljVJCiGYjIMCFgAAXoAMnTx7k008/Zdy4cezatYvOnTvjrrRl0f9dzz1v/M3e4kK+2XuOl3ydaOvmQHCwJzck57J3bxrOztYMGhQAUDksTgFoOX0mmxPHs7CwgPJySE7KpY1XxYW9d69LxQGhoveV7rvRVLOVjUC63kpKByvy8kvx8LTXL9NxV6l5aebnDL17NJ+98zIfvnQf+7bfzYSnXqKNjx+JiTmkpOYRFORudhZBU0+CzD0dEkKI5s4wBxISDjN9+nQeeeQRunbtSo8ePcDWCe5fzJ/TXuDmsu9wPfQOeL8Inp0ICfYk+YZLORCly4G0Szlw5nQ2x09cyoGk5Fy82lTmQG+vSw07QES4j/571SnHQ4I99U+pHZRW5OeV4lk55bfhNtxdnZg37Ukm3n0Lj0//grGvvMNv/9zIjOfGE9jOl8TEHFJTKnPAzOxRkgNCiNYkIMCFaQGPoPTP5uOEj0n9KZX5786n83Wd6db3UmNO1V5Nuu8eHvb6mlE2Npb6mk3OzraAltOnszlhkAPJybm0McgBo/uByhwIN5EDwQY5oFRakZdXikdlDhhuAyC0VygLN37LzOdm8sVrM0g9dZSHpz6MjZ1Nxf1AC88BKXRehRQ2FKJ5KCkp4eabb+b48eOsWrWKG264Qb8sOvoci9efYKeiiLzSMu6/3p8gNwd9gfOu3VQmG3l0Q/L8/B0pK8PoyYi5RiFT4uMz9IXFdTPoBQW56wunGzZY7d5znsTEbG66yQdN8j98//kscnOyuWv0RAaPnMSp0yU1HnNd5RaWSqHzy2gt5ylEc1deXs4dd9xBTEwMy5cv5+abb9Yvi44+x6ENGxhvNwu74vPQ/QHS3Ppz4FAmoKVblem2dXRD8vz9TORADVOKm3I4PoP9sen6HlNBQe76grlVG6zS0/M5GJdOLmdZ+MfvpKRf4JF7h/LYfXdRkGOhX+9KjqOaknwpdH4ZreU8hWjOtFotj254lF+m/UL+/nxe//R1Im+J1C+Pj8/QF/bWNQJVbSQydU3VDcnzq4cc0B2DrseUqRzQHUt6ej5xcemgieOvpUvxa+/Ha5+9htJNfdljrqvisuImVehcekoJIZqVhAQNcXGZhIZ68Msvv1BeXo6Pj4/ROpGRbQFw++s0B9zK+f7fBDo52+OdoyU0xNNk4058fAYxO5KxsFTQoYNbtZn3zM12tyMmic2bE/H3d+bWW9sZFRZPT8/HwcEaW1tLNFmFpKXnoVYp9d1pLS0V7Pw3mYtZRdjZWvH88+MYdNvdLF80n2XffcGfK37ihqjRqNoNwcXVrl4apYQQorkzzIEffviBrKws2rdvb7RORQ4M5pMNvjysmofHvsXYKPeSkX07nYK8Tf5Bfzg+gx0xyVhaVOZAHWZzMsqBymX7Y9PZsSMZW1tLundXkWVQ78MwB8rKtMQdziA1JY/Q6wI4tu5rPvthNe/O/5lFqzbx9Ng7GRgWQWpSCVC9nogQQrQ2uhx4rst0Ep5KIC05jeCbgo3W0TVExRrUhNVdew0bhwzFx2cQE5OMRT3lQGyVHNDUkAOHD2eQkpLHddd1Zf7vA3j7ybd59PZHefTVR7lr/F3s2XPebF2p5k5m3xNCNCtxcZnExCQTF5eJl5eXUYNUTs6lWSc2bkxg+9/n6J1jwbNRgZzOKeSAdSn27jYmtxu7P52k5FzKy7Qmu7mam9li8+ZEDuxPJzo6Sb8srLtKXzvkxPEs0s7nk5Kar1/u7+9EUJA7Yd1V9L3Bh5AQD/1wQHulkrGPP89rn63Fv8vNbPn9W1bOe5B///oKzcVMoKKBbPee1Goz8gkhRGtgmANubm5GDVJVc2Dtpkw+T38ebnkXl4LjjLD9mvZuF0xud39sOslJuZSV1z0H9h8wzgGoqBvl6GRNUVEZ59PySU2pngPdw1QEBblzU7+2hF7nSUS4D3a2Nrzw0D3sXPIZwyJu5OMFq7jz2RdYt3cDtg4VdQHT0vLYvTu12ox8QgjRGuhy4NTRfL66/StsvW355sA3FJcWk597qW5e1RnndNdec0PaYmPTSUrKpfwKcuCAiRwIC1PhVJkDaWn5pJjIgbDKHOjXry3XXedJeLgPHYI6MH/NfAYOv4VP3/iUh+98jvKSPKNjb0k5ID2lhBDNSkWR20vfdZYtW8ajjz7K77//TmRkJFFRFbVCrrvOE/tiK/4X6MWiY6l8Hn2acdpywjsYj+U2LGRu2CNJNxQvIMDZZIj5+ztzNjGbDu0vzfinKyS4IyaJmOJkQkI9UKkuFSfUFSnXrWvKqQQt9l4PcM+TYyjL2sjvSxeyfsUCbrnrfjp2u4MLOa76bQkhRGtiLgf++OMPxo8fz+LFixk6dKhRDqzNGoZ9uzb0OPUybrtmQPl4CBxs9H7DQuaGT6F1w/BqyoHEs9m072A882tIsCd33N6RHTHJhIZUyYHKIuWGhg7tYPQ6Jwt6B0QSNCqMc7nxLN/0N8s3/s3Y4TczMCyc8gJH/baEEKI1McwBfycXPuz/IY9vepyPln3E7o9288SbT3DznTfrC4sHBDize3cqxcVlJCRko1Rambx2GhYyN1yuG4ZX4/3A2Ww6VMmB4GBPbr+9IzExyYTUMQds7WyJun80mfmeHNj0C29NmswL709G3bs/UPOMfM2NNEoJIZqVS0Vujf32229cvHiR++67j3379hEZ2ZbIyLasXXuq4knKqSzcUnIo7+vGt9vPcDQ1hzF9Azh+7IK+0cnO1oroHcmAQZffyqF4AA/cH1xtv7fe2g4fb0cqZnAyVpBfSlZWIXv3pjFwoF9lTav0WtWHMmwkCw6O5L6HnuSz92ez7tdfKF6ygE6hfXG3n0Bpt9uxsrYGLjWgubracvz4RQAGRwWYbfgSQojmyFwOrF27lszMTMaMGVOZA/5VcsCerOSXmN1/CYG7v4W0w9D3MQ4fz9Y3OtnaWbEjuiIHdAXJ98emE1tZLPeBB0znQHCwBw5KK/0TcN0NQn6BcQ4cOFiRA+ZqWhny93eiR882VNTA6sNHr47jpfd+4ue1f/PNL+vp0aUzjz1wG127eWBrU5EDugY0wxyIGhxgVFxdCCGau6o5EOkbyTM9nmHq8qlcSL/ArBdn0SmkE8HB/gQHe+pnKT1/Po/09AKg+oPh+PgMoqOT8fCw4+LFIpYsidfXozIsml5TDihN5EBBlRw4WJkDXWuZA0PuHsCNUWFE//Yz0x6bxnU39MG76xB69A4w2UCma0Azuh8Y3LTvB1pUo1S7du1ISEgw+tnMmTOZOnVqIx2REKKhfPnll+zdu5cjR44wevRo/vzzTywtLfVPUsLCVBw6lEFwiDt/nc/i75OZnM7IJyBXy7EDF0hOyiUjswCNpgil0lp/4TZsHDJFrVLi4qp7UpGBi6th3SktFy8WUppeQMyOZPLzS8kvqKgJMmhQzSFkOG0rgIubB/aqO1F1vR5n68Pknv+bT15/jAWfvEb/IcO5+fa7iT1sz4H9GVhYQOr5PBSASuVgNBughY2CrNwSeng4EtSpboUNmwPJASFar48//pidO3eyZ88e7r33XrZu3YqNjU2VHHDjQMgXlGd9T+dzX6G4eJpTOSOJ3V8x015mxqUc0DXkGPagMkX3tFt305OlKcLVJafyRqEiB9JLC9gRU5EDBfkVORB1mRxQq5XV1gn06MHw63wotj3PsbRDPDztE1765GtG3dqP0XcM4OxxCw4cyMTCAs6n5oGiIgcMZwN0tCuhNPsCzq7Z+Hd2vYpPvGmSHBCidZrYdSJxz8Tx5fEvyTuSx7THpjF39Vzs7O30DTcdOriQkJCt7zllWBsqNjadffvO4+xsi6envVHjlWEPKlOq5oBGU4RLlRwoLS0gpjIH8vNrdz+gVisr1wngzhHd2Pz7Zt6b8hGH9xwk9fRdjHv8zmrv0TWgWVhAamoeCoXB/UBlDtg6aEnNyeA6q2zcAxv/fqBFNUoBvPXWW0yaNEn/2smp6U+BKIS4eo6Ojixfvpw+ffqwYcMG3nnnHd58802jJyl3392FtWtP4X2+jIeD2/LzmfPs1pbSpasbnT2UHD9+EW9vJWHdVUaFzU31kDKkCzpNViF79pzn+PGLDBrkT9duKrKzS8i8UEBIiAeHD2eSkqyberyCqQLqhrPz5eWX6pfp6k6p23REobgTF4d0Uk5u4e8/fuW3n77DXe1LG//r6RJ2I56e7bGyttM3pum6+JZbQFGZlnj1hRbZKAWSA0K0Vra2tvzyyy/07NmTnTt38uKLLzJ79myTOfDDgdu4LaQ7NyS9wTCLb3DvPgyNax99DnQPUxkVtDX1ZLwqXRYkns1m397z9OjZhm5dK3LgQualHEhOqZIDJgrnVp2dT7csonL68Tbq9tymCMfGqYD9pw7x4++b+WrZn7TxcCM0oAuRYd0I9lBja22rb0zT5YCtZTG2ZdnYeVzEv7N/ff4vaDIkB4Rond4b8B5Hpx7lr2f+4vTR08x+dTYvffSS0VC5iAhffeMRXOrRFBamIj29oh5VYKAbWVlFRo1XdcmBs2ez2bv3PD17tqFrZQ5kGuRASh1ywHDWvZvvvJlSKy8WzJrHwY1L+CIlnjHPTWLQLSH6bekazgx7SoVVyQEsyyiw0HDE7iLdAttd6cddb1pco5STkxNeXtUr6QshWr7Q0FDmz5/PuHHjmD59emVtqagq61wagz7mjkAe/3EvB85p0JZa4e5mR0iwR0U33z0GYWVmtr7oHcl4uNsReaMvvXt5kZaeR1p6AdnZRSQm5tC7lxcjRgTq39Opk6s+cHSMxoNX7qfqbBy6ZRHhvkSE+xo0ZAWgHtGfh557jQO7Yvjr91Xs2f438btXYWNrR+fQ7mwr6kl6Yk9c1R0IDHTB2t6arNwSgoNbZoMUSA4I0Zq1b9+eRYsWMXz4cObMmUO/fv24++67jdbR5YB3aFdwH4DF8v8jImEV6WXJXHQfTOcgFSEGwz3AdL2Ow/EZ7IhOxt3DjhsjffU3PVmawsoB3VrUaiUj65ID6hpyQK0kIsKXiAhfoxuYe4f34u1nxrJjXzzf/7qZ9dv38Pfef7G2tqJXSCdO5wVxw+ku+Km96djJGTdHLaXZCpyD3OrrY29yJAeEaJ2sLa1ZcM8Cok5GceCdA6xfvp6ufbpy2/23Ga2nuwZXrf+Ul1fKkSMXUKkcGDq0w2VzwHDIX6RBDmg0hZVrVORAne4HLpMDtwwLYfDQT1n903q+eW8eHz0zhYtTJjJi/AgsrSzx8LAnMNANf3+narUKdfus6CmlJahL08gBhVarrV4IpZlq164dhYWFlJSU4O/vz4MPPshzzz2HlZX5treioiKKior0r7Ozs/Hz80Oj0eDs7NwQhy2EuEKG04Ibjit/+OGH+frrr1GpVOzfvx9vb2+z7/P2ceTtP+JZ/G8CdiVahgeqGXxTAGnpeURvTybzQgGRET76oXR/rjvFtq3nsLO34vz5PJydbbn77s707lXxx6+pnk81qUtPqcttZ+nSoyScySK0Sxmudqc5vH838fv3kJaSBICllRVtfP0JHzyc77/4AAebuj2XyM7OxsXFpUlfHyUHhGhdzOXAiy++yKxZs3B2dmbv3r107NjR/HuDXAg4+Snl0Z+SWeJGYsAj9OrfjbS0PLZHJ3Mhs4CISB/9cL60tDzWrz9DdHQyhUUleHs5VuRA5dTh5qYMN6cuPaUut52lS4+SkKihQxcbtPYX2LHvMDsPHOXU2VQALC0taO+rZviN3fjwm5/B3rVWn7OO5IAQoqkxlQOxabEMe3IYKb+kYGNrw7zf59EhqEO191a9/u7YkURMTDLh4T76BwDR0clkZhYQGXnpfsAwB4qKSvHyUl6zHDDsKVV1WzlZOXz74besXryajiEdGT/lUfbGKUhI0HDjjb6MGNHZ5P6Ky4rJKMhgSPshuNvV7UH1tciBFtVT6umnn6Znz564u7uzY8cOXn75ZVJSUvj444/NvmfmzJlMnz69AY9SCFFfdNPBAvoQio4+h1p9P4GBO7jzziF4elYv6rd5cyLr1p1hyJB2TJjQlbfvuo7EPWlsLc1jxZl07DxssS+EzAsFnDieZVRjatvWc5w8mYWXtyM9erTB1tYSTVYhael5qFVKMjMKOH78IsXFZbVqnDKcic/Uz3QNVLqfm5KWnsemTYmcPHGR7Jxiyi19GTluMCN5GIDM9PMknDxG0pmTnD55AjfPNnX5mJsVyQEhWhdzOWBndxvdum0hPLwnvr6+1d6XkKBh4cJDZGQUAB0IGDadpdHODNV+TLfkD8k6+BCJRV24kFnA8RNZRjWmEhNz+HdnMhezCnFztSUkxIMsTSFpaXmo1UoyMk3kQA03JaZmYDL8me7GRPdzU9LSKnLgxMmL5GQXE6zw4H9jInlyzB0VyzOziDuewLEzSRw/nUBbN4c6fMrNi+SAEK2LqRzIO+5J1PVP8uvRmfiqfPH28672Pt11Mzu7okFarVaSkJBNenoBCQnZ+h5NmZkFnDhhfD+QmJjDzp3JZGUV4upqS58+XiiVVvqhfpn1nAO6461aB8vJ1Yln33mWoaOG8sGLH/L6/03BPSAMpV8kmZnGM9Q2ZU2+UWrq1Km8//77Na4THx9PUFAQkydP1v+sW7du2NjY8MgjjzBz5kxsbW1Nvvfll182ep/uyYgQoukzNS34xo0J/PPPee6991PeeedmM+9UoFBUfF+x4igrVx4nJMQddwtL9tiWsmjPOfwUVnR1c6B7mMqoyHm/m9rqv/fq1abyJiALF1c71ColsfvT2bUrlYMH0gloV/H0wNzwv9j96ZWz65mfDcPU8D5T62RnF9OxkysODtZEVtae0vFQtaEMRxJSvLD26oF/V7XZ/TVFkgNCCHPM5cDmzcncccd7ZnMgLi6TjIxCPD3tSUzUMHr0GkJCwlnIZzzk/DGuh+bhVN4bD/fbUXZXGRU59/d34oa+PiQmZtOzZxuysoo4eSILVxc71Gol+2MrcuDAwXTaBVTmgJnhf/tj0+kepqpxdrzaTPuty4FOHStyICLSOAfUHq5QZs3FFAfsVCpu7NW8GqUkB4QQ5pjLgdMb29N/3IMkeOzgYPZB+ij7GL1Pd910drYlPT2fjz7ahZ+fI927qwgLU+mvvR4e9iiV1kZFzv39nehrkAMqlQPJybmkpFTUpDp+/GLF/cDBipldwfT1Oy0tr3I2Pu1lZ+OrKQu6dO/CI29NZ9k3v3Lgnz/IToknu+MICgs6Y2dvZ7S/6Ohk0i/kEHK9HbSvzSd87TX5Rqnnn3+eCRMm1LhOhw7Vu+IB9O3bl9LSUs6cOUOXLl1MrmNra2s2oIQQTZupacGjogKMvgOUlJQQHx9Pt27dABg40A+12oGCghKmTdvB+fMVAfLjj7eTX1zK5B/3se5oGhbWJTwzNBBnext9j6VevdowdEjFNWf3nlR9mOnGaId1V5GclEtxSZnRz6uK3Z/O/th08vJKahyiZ2rMe03rZGYUELs/nYOH0jmbmEt4hA8R4b4kJubw364UsvKKsbVv8pd+I5IDQghzapsDZWVlHDx4kLCwMODSzUv1HBgJpbeTveIFOscvooNNOta3vghKD6PhFWPHhgKwe3cqiYk5Rtf77mEqkpJzKSmuOQf2x6YTu78iB2oaolfXHMjILGB/bDqHDqaTeDaXiMphKImJOez6L4Wi3Bw8lE50HF7zZ9uUSA4IIcypKQdu7vsKX+e8zrJjy2jj0IaixCI6d60Y0qa7bhYXl7Hkp3guZlX0mHr++euBigYc3XpVe65WzYEjRy7g7a0kKMgdf38nlEorkpNzKb5MDiQm5rB373kKC8tISytg0CB/sw1Tl8uCdu1duP+Ru3n8pXv46Ysf+eOH5fz965906nMLd//f7fTr519xP/BfCpqcfCydHWFQLT7gBtDk70xUKhUqlempFy8nNjYWCwsL1Orm1StACHHlIiPbEhnZVv86PT2dG2+8hdOnjzN79m88/vggfXhNnx5NSUk5bdo4MHJkRQFCBxsr5k3ozc+7zvL2msO8+fthHunXgdzk/Go9lvz9nTibmEPmhQIyMwpQq5QEB3vi4Wl/2aF7ut5XdraWNfaEMjW8r6Z1Nm1KZH9sOlmaInJyiigsKiUi3Bd/fyf6XO9N6oV8gkOaV5FzyQEhRF1UzYHs7Gz69RtKXNwePvxwOc8+e3uNOYCVDc73zYGDN2H9x2T480UIf4LEFJ9qT6n9/Z1IPJvDhcwCMjILUKuVhAR74ulhf9khG7reV7Z2ljX2hDI1rKOmdTZtSiR2fzqarIocKCosJSKiIgeu7+NNTqY9wUHNq6eU5IAQoi4Mc6Bb0Wfctfwunhs3maz9Gh6Z/jr3je+vv24uWRJPaZkWN1dbwsMv9TI1de011VvJ39+Js2dzOH1aQ2Skj/59HrXIAX9/J3r2bMPp0xr9REnm1r1cFhgu79hnKBklHTi16y/2b/yF47v+Ju+N/9E9MoI+fbxJv5BDly52ZrfV0Jp8o1RtxcTEsHPnTgYOHIiTkxMxMTE899xzjBkzBje3plFVXgjR8FxcXMjMLKCkJI/XX3+Uhx46pH8aavg03fAGRqFQcH8ff7q1deGpJfv4aOMxBnXypEsXN/3TiR0xScTsSKasrJwLF4qMxpnX1JBkWNj8gfuDjV7rtrt5cyL+/s7cemu7WhVLN6Rr7EpNyePkyYt4etize0/F+PMRIwLJLSyloKSsTttsLiQHhBCmKJVK0tLyKSsr4s03H+N//xuAo6MjYD4HAOh6N3h3g+X/B1tnEex/C3S59dL1ekcSO2KMc0A3DK+mmwfDJ+0PPBBs9Fq3XaMcqEWRXEO6xq6U1FxOnszCw9NeX4dk5IhAKMmH/It12mZzITkghKjKxdaFeUPm0feTcLTlZSz8YDZD7gzDxa2id5VuWF5YWM0lNaB6byVdYXST9wO1zIFBgwLqPQd05xTQ0ZdDe45Qmr6b959/H/c2au59+H7GjL2VrNKsOm3zWmoxjVK2trYsXbqUadOmUVRURPv27XnuueeMxocLIVofGxsb3nlnHs88M5wLF04wefJkvvjiC6D60/SqQnxcWPVEJC+vPMiaAymc9nDgpvKKCUtjdiRzKC4DPz+nanWnDFWtHaV7wqLJKsLFtSJ8/P2d9EVsY3Ykc/hwJinJuQQHe9S5USo42JPgYE99Y5cmq/CyNalaCskBIYQplpaWvPvuXJ588g6ys8/xyCOP8MMPP6BQKC6bA3gGwsS/4M8XUe77gW4uJzlcOg7wZUdMMnGHKnIgrErdKUNVa0fpciBLU4SrS/Uc2BFTkQPJKZU5UMebkZBgT0KCPfU3OVmawsvWpGopJAeEEKYEeQTx2ONv8cnLUyhMy2LmczOZ8d0MLCws9H8714buGqr/uz0mmUOVOaCrRWVKfHwGsbHp+oYv/f2ApggXEzkQU5kDKVeYA/r7gbQ8Evv54e8/kph/DrLqu5+Z//anLP/6J24ddytDpg+p03avlRbTKNWzZ0/+/fffxj4MIUQjMTctOMCjjw4kIOBnhg0bxty5c+nXrx/3339/jduLjj7Hxo0JREUF8On9Pbi+nTvvrDnMj5n5DCsqIbyymLibuy3JSbn6IoZV6WpHHT9+gcKCw4T1UBEU5G7UWATo/zs8wofColL8/Z1rrB9SVVp6HgcPZJCdXYSzsw1du6no3cuLtPQ8feNXSyc5IIQwlwUTJ4bTufMqBgwYwE8//US/fv149NFHa9yWYQ5E3vkZ+Iej+P0FgrLeI6FkAhHhHQFwd7MlKdl8DuhqRx0/foGCwsP0CKvIAcPGIriUAxHhPhQVXkEOVDZCFReXkZCQTfcwFb17e5GWlqdv/GrpJAeEEOZy4L2JT1Fql8DH4z9m5987WTJ3CaOfHF3jtqo2JoHxED7dcD83N1uSa8iB2Nh09lfmQGHhYcIqc0BjJgfCw30orIccCKvMAYDw/l3xbd8ORckFNqxYTcKRhFpv91prMY1SQojWzdR0sIaGDh3KK6+8wowZM5g0aRI9evQwW/AUKmbt2LgxEajoUTU+oh0Xjmfx5YFzrD6dzshevkye3JuPP97NobgMACLCq087rutB9e+/yaSmVBRMvHdUsMnGIl0NqqrbudxMfWnplVOBH88iL78ED3c7/WyAtalJJYQQLUVNWXDjjTfy3nvv8cILL/DMM89w/fXX06tXL7PbqpoD9BjN5jhXQuJeoHPSPBShI4iYfA8ffryHuEOVORBRPQd0Paj+/TeZlNTKHLg32GRjka72SNXtXG6mPsOpzXNyS0hPLwAqek3VpiaVEEK0FDXlwKwHZrFr9y62frKVbz/8ltBeoYSFh5ndlq4xCdD/DV5cXMb583l06OBCRIQvERG+fPTRLg7VkANhBjmQWiUHXGqZA6YayAwZ5kCuQQ5UH07oRdc+nUjPTzd73g1NGqWEEC2CqelgDSUkaLjhhvH06LGZfftiePDBceze/S8KhcLk+qZmb8o+k4f7nhysItxZvieJY6m59L6h8ulDhI/J7ei6z7q62rJt6zn63VQxTMSwsSg+PoPjxy+idLCq1oAUH5/B4sWHyckt0W9PJy09j/Xrz7B/fzqOjta0beuEh7sdzs42Zp+qZGTmcSoxhx4ejgR1al4Fz4UQ4nJqyoKEBA3BwSPo128D27b9xQMPjOHIkTgsLCxMbstUDsScdGVWzAt8OOA3usethPQj3HR9Rc/biHDTOaAbTufqasvWbee4qV9lDhg0Fh2uzAEHpVW1BqTDlTmQm1Oi355OWppxDnTp4k7Xrip9TylT0tPzOX8mA2fXbPw7u5pcRwghmquaciAxMZunB37O8T1DSNmazLQn3mLu79/h4+tqcluG9aZ0EhKySU8vICEhW99wpOsxFW4mB4zuB7ado5+JHNDfD5jIgbS0PFauPMHZs9nk5ZUY3w/UkAPmhhOmp+dzOCGTrtbZuAc2/v2ANEoJIVoEU9PBGoqLy+S//9K4+eapaDTv8OijM8w2SIHpelP66WUH+XOkvIQP/zrKOdsCHh8fTDtPR30dJ32XWYOeTUOHdKBXrzYkJuaQlp5n1PikG+IHGNWD8vd3InZ/Ojm5JTg5WlerW5WYmMPOf5PJvFBE+3bO3Hlnx8v2ijp3LpeTJzXEqy9Io5QQosWpKQvi4jL5998UIiKeJSnpIk8//abZBimoOQdyB30Gdhth/Sv0sfyIPmOfBXXFzYmpYXQhwZ4MHWqQA2l5RjcduiF+gFE9KH9/J/bHppObU4Kjk3W1hqbExBz+3ZnMhcwi2rV31k8nbupJvc7Zs7mcO6XBzuMi/p39zX+YQgjRDF0uB2L/0/DmE9/xYtZ9+A5rz9mkPLONUqbqTZlqqNL1mNIxNYwu+DI5ULVXlmEOJCbmUFhYgpWVAg8Pe6PjSUzMYefOZDIzi2hf6xzI4cwZDUfsLtItsJ3Z9RqKNEoJIVqF0FAP0tLyyciw4fXXv2XgwLr/Id62rRPXX++Nv58z/QJc6OHvyjNLY3lv3VHu6dkWkvPZty+d4pIycrKNezbphthlZxcBxkXHw7qryMsrobS0nE2bzgCQkpqvX6b7XjUU/f2d6HuDD4mJ2Qwc6G+yl1XVYX9t2zpSXK4lOFgapIQQrUt95kBbP2cI+D/w7VUxO9/f70DXe0jzHMymv8+aHEZnOLQCjIuOdw+7lAMbK3MgNSVfv0z3verQPX9/J27oa5ADJobpVR365+fniE2ZC85BMhudEKJ10eUA+S7M/OAb5qe+xX7L9fRlYq234eFhT2CgW7XGIZ2ahtHVlANhYSbuBypzwN/fiQED/AEtXbsaP5zw93ei72VyoOrQPz8/J3LKXQjq0jRyQBqlhBDNmq4Q7XXXeWJvb22y0DlUPDVRqzM5eTKLkBBP/TqbN2/Gw8ODbt26XXZfVceo927nzvwR3Xj5t0Ms3X0Wl3IFjsVldApwxsrKwqhnU2JiDtnZxVhaWqDJKjTqLRUc7MmRIxfZtOkMbm72DBjgR1CQu77GlLkZQdQqJWPHhAIVjV6796Tq3wPVe2ABeHooUTrb4e9vuhCjEEI0R9HR51i+/Bi+vo6MGtWlTjmwc+dOAPr27XvZ/VSrVeLdjYQhv2H152R8D/yMtfV/JJ++GRd1GyLCfYyG0RnmQJam0OgpeUhNOaBWmqwjBRU3NGPHhupfGz5Z1227ai8slcoBldIT/CQHhBAtR11yICYmmXB1Tx7v/jhf7P+CJX8vIcguiB4RPS67H8NC54YNQLrr79mz2Zw4kYW3t5LwyhwIM5EDmio5UOP9gFrJoEGmR0PUJgeq9sJSqRwIdfSseMDSBEijlBCiWdMVoj127CIdOriSlpaPWm16Fr6qY8yXLVvGAw88QMeOHdm9ezfOzpcuzKZm7jA1Rv3syWzCsi1xsLJjT0kh+X7W3BzmQf/rvIz2ravxpMkqJCU1HxfXHKOeTZkXCigpLcfO3pKu3TzNDsMzHNoHGHXr1Qdk5XsNe1kJIURLtnFjAn/9dQZPT3s8PR1qnQPr1q3jzjvvpE2bNuzbtw9Pz0uNP7XNgbjjxcSkP82ojn0JSviIJwJ+4LjLSLpGdDMaPqG7bmdpCklNycfVJcfohuZCZgGlJeXY21nSraun2eLkhjccgNHNh6mbJcOeVkII0VIZ5kBISMW13NQsfIbX8aH+j7Bp6ya+nvI1DkoHvlv3HWoftX5dUw08umtv1fqtuutvYWEpdnaWtG/vUm1Yn/5+QFNISko+LlVyIDOzgJKScuzsLOlajzlgashhUyKNUkKIZk1X30PXUyotLc/sjBuGY8wTEjSUl3fEy8uH48ePM2nSJJYuXaqvM2Vq5g5TY9R1wTbUxYYjSdksSUhj8d5znM4u5ME+/thYVdQr0RU2NzXrHkBkhA9KZUXdKF2jkmEDlO5nhkEDl6aONRWQpsbBCyFESxQVFUBWVhG+vo6AttY5kJvrg59fAKdOnWDMmDGsXbtWX2eqrjngEvo/0rIHo1z3BF1zlkD0GejzCFjbAZcK2pqadQ8gIrIiB7qHqfQ3EqZuiMzlgFqtNJkFukLrQgjRkhnmQGioh9lZ+KrmwKi2r/JX2w1kn9bwxmNv8Pnyz7GyrmgmMdXAY25GU911V6m0Ii+v1OSkQ4Y5UHXWPYDIyhwIq+ccaOr3BNIoJYRo1iIj29K2rZP+SUhoqIf+CXlN4uIyiYsrYPLkT5g69QGWLVvGTTfdxBNPPAFcfjY/HcNgiwTGlnRh1l9HWRB9hqOpOTxyU3vaeTrq1zecdc+QqbAw1fvJVNDoGq0uV+RcCCFaqrZtnRg8uJ3+ml3bHNi/P5vnn/+UKVPuZv369cyYMYPXXnsNuLIcgG4Qshm2fgDbP4E/JkP4E9Dm0tAKczc0phqPTN0QmcuBmrYthBAtnWEOmOoZZUpcXCYH9+Xy5svf8uKz93F031Hmz5zPk288CZjvFWVKXa6/5ta97P1AC80BaZQSQjR7hk9Chg3rUOMsfDqXbja6Ymk5i+eee47nnnuOPn36cP311192Nj9zbKwtGXOdLw5ZpSw9ncaMP48wJNSL4WG+WFooTPZ+MsdU4GRmFFRMF+tgRXCw6WF+O2KSiNmRTHiEDxHh5mfeEEKIluLqcsADB4e5/N///R9vvvkmERER3HzzzVecA1hakdDhCc6lh9Ln3DSs/34HOt8KYaPB0trkU29zTOVARmZFDjgorQgJNj28Y8eOJHbEJBMR7lPjDExCCNFSVO0ZVZtruOH9QMln7zL1oams+GYF3ft0p9+QflfVwFPTtf5qcyCzMgeUysr7ATM5EBOTTHgzyAFplBJCNHu1fZptyDConnnmGbZt28bKlSsZNWoU+/btw83tymejiIvL5MKRbF683p/t+Xmsik0m5lgGD/ZuS5mmtFrvJ1MMZ84zXM9U8fKqYnYkc+BAOpmZBXTq5KofNpiYmIOnlz1KZ7srPjchhGiKrjYHJkyYwNatW1mwYAEPPvgg+/btw9vb+4qPJy4uk5iDHuT0+YEhfA17v6f07G6Ouz9AUomvfma9mm5GDGfNM1yvauFyU3bEVMmByuEiiYk5BPhYIR1rhRAtzdXmwEsTX2LL1i2sW7SOdye/y3fB3+ET4HPFx2Oqh5PuOqyrKWW4zBTDWfMM16tauNyUmBpywLutHQpHk29rFBaNfQBCCHG1AgJcav1k3BSFQsF3331Hhw4dSEhIYNGiRVd1PKGhHoSH+9C7exs+ub8Hj4S0pai4jLk7zrDqQDL29pYmuwHrZtBLS8/TNz7pbjx0XF1tsbCo+G5OeIQPvr6OODvbkpiYA1wKxnPncq/q3IQQoim62hwA+Pzzz+natSvnz59n/vz5V3U8uhwI7tYW7pgNY1ZSVG5Hl3Of43b8R5wcyk3nQFoeu3enkpaWp88A3YMIndrkQES4+Rw4e1ZyQAjR8tRHDqz+ejW+ob4U5Rbx5RdfXtXx+Ps76WfP00lMzGHbtiT+/TcFpdLqsjmga3yKrZIDYWEqfHyUpKfnEx+fYXL/4TXmQM5VnVt9k55SQggBuLi4sHz5cnbu3Ml1193G9OnRREUFEBnZts7bqtpd+IH+7Qh0tWfOtpMkWpSxJTeXruXlqKu8z/CJirmZ87Kyiigvr/huTqdOrgwaFABoUTpYsXtPKkoHK4KC3PH0sq/z+QghRGvg4ODA8uXLWbNmDX36jKrXHKDjADJGbSD+s6eJctlEUFECyrIngW5G7zPMAXOz5tU1BxyUVuzenYqDsiIH/HysAPPvFUKI1sra2pqta7Yy/PXh5AzK49ufo4no1uWKioSbGvrn7+9EeXk5mZmFFBaWmewlZXQ/YGbWvOBgT6MGK1PHZ3Q/UJkDysoc8G5rB+TX+ZyuFWmUEkKISj169KBHjx5Mnx7Nxo2JAGZvRkxNFW6O7ubEy8OBRetPEGtVwgfrj9K3vTv3X++Hk501cGmseHFxGcePXySsu6payJhrrDIc7peXX0pKah5BQe7k5VcMFwwKcqd3Ly9yC0spKCmr+4cjhBCtQOfOnZk8eXK95wBAQCcfzt07m0Ub/uABh/mwZQb49obeD4FDxZDxqjnQPUxVbYieucYqw+F++XmlpKZU5EB+nkEO9PaCknzIl0YpIYQwpUO7Dvz91d8M/eku9juswSZWabZRqi61oaCioWrYsPb6IXmmVLsfCKt+PwCmG6wMh/vl5ZWSUpkDeVVyoLismIwCaZQSQogmYcWKo6xceZyRIwO5++4uQMWUsgUF2ezZM5e0tEDU6qp9mkxPFX45kZFtiYxsS35RKXM2HWPhjgQOnNMwoocvA7qo9DPoLVkab7ZulLkpXWP3p7NrVyrJSbkMG9a+Wnfh2swaIoQQrZG5HCgqyic2dj6JiX74+/tXe9+V58AjUDoBtn0MMZ/BH89C6N0QdJv+yfqSJfFm60aZmqUPKmpN7dqVSlKy5IAQQtRF1RxQ2at4JuBNPjj9Apv+/pR+vd6gXed21d5nqm7U5Zj7W17HMAdqqhtlajuxlTmQ3MxyQBqlhBCt2sqVx9m69RyA/mYkMrItM2Y8wtq1axkzJp0///wTS0tLo/ddSTFFHQdbK14eFsLdvfyYtjqOn/5LZOvxdMbdEIAjCuxsregU6FqtN1RNwrqrSE7KxcJSQV5+Kb17eemXqVVKdsQk8fXXB/D2cyLiproPRRFCiJbKXA7MnfsSq1b9RErKcbZu3YqNjY3R+64mB7CyhYEvQ/f7Yd1U2L8ETm2G6yeRpgjA1s6KwE6u1XpD1aR7mIqk5FwsLRTk55VW9IqqpFYr2bGjIgc6+tsy+EZnruCohRCiRTKVA2OjbuGnMZ+wbv06nj/6PD+s+wF7B+MyGKZmxqsvAQHOJCfnEhDgXOv3hIWpSE7OxcJCQZ6JHAD4889TbI1OoMeNSoa0r/fDviLSKCWEaNVGjgw0+q4za9YstmzZwoYNG3jnnXd48803jZZfyVThCQkafvnlGElJOdxzT2ciI9vyw0N9+X1/Mu+tO8KMP4/Q3skOda6WHmFqk09FDIfpBQd76mfV8/d3Yuy4EP1/VxWzI5nDhzNJTsujXSfXOh23EEK0ZOZy4J133mHt2rXs3LmTF198kdmzZxstv9Ic2Lz5LBkZ+Xh62jNwoD8BDyyFI3/AX6/B329h4xCMZd5AwsI6m+wRZThMLyTY02j4yLix5nNgR0xFDlxIU3BdR0tplBJCiErmcmDBhwsIXBfIhTMXeG3ya3w470MUCoV+uam6UZeTlpbHwYMZZGcX4exsQ9euKpPbsLGxpE0bJTY2ltWWGQ7TC66SA2NryAGAbdvOcepMFuX2uTC2Tod+zUijlBCiVbv77i76JyKGQkJCmD9/PuPGjWP69OlERkYSFRVltE5t6okYrhMXl8nvv58gPb0AV1dbIiPbYmGhYHgPXwYFq5n3z0kWbj9DgraMwjQNRf+VE9jeBXXl3N3x8RksXnyYnNwSoKLb7sEDGcTEJOPlreTOOzsa9ZAyFB7hQ2FRKd5+Tvj4NKE5YIUQopGZy4H27duzaNEihg8fzpw5c+jXrx9333230TpXkgPr158mKSkXHx9H1GplxfuCb4dOgyDmc5yiP+dOy/loMq8n9t/b8engo79hOVyZA7k5FTkQEuzJgYMVOeDtVZkDvU3nQES4D0WFpXT0t8Xbu243UUII0ZKZywEvLy9WL1/NoEGD2Lt2Lz8u+pExE8YYrVObulKG6yQm5rB373kyMwvx8LDDxcXO5Pv8/Z3QaIrQaApJS8vTr6O/H8gxuB+ozAGvy+QAQL9+bdFalNGjV9PJAWmUEkIIM8aOHcu2bdv4+uuvefDBB/n993/IzLTV33zUpp6I4TqhoR7ccUcnkpJyaNPGgenTo7GyUnD48AVGjgzkhbuDGHNDAJ/8dYyVe5M4lJ5Dt/Qc/m9wRxxsrIjdn05ObglOjtaEdVeRlp7H6TMasrIKgYpx7WqVkrT0PA4eyAC02DtYk5CQTVh3Fa++Ei6FzoUQog7uvPNOXnjhBWbNmsXEiRPx9OxAXp7LVeXArbe2JyMjn4sXC9mw4Qz79qXqc+Duu1/Asud4+Od9nHYv5rrMPWRcjISbR4OtM/tj08nNKcHRyZruYSrS0vI4c7pKDqiVpKXlceBgRQ442FfkQPcwFa++Gl5Z6Pxig3x+QgjR3A0cMJDXp73OW2+8xYK3F9C2XSccHdvpG6FqU1fKcB1/fyd69mxDdnYRubklxMamcerURc6ezSU83IeICF/9tlxcKt7n4pKj33ZsbDo5OSU4OVkTVpkDp09ruHixeg4crMwB+8ocCAtTMXRoBwbd0paMgoxr/MnVnjRKCSGEGQkJGoYOfZbt22OIjz/EQw+NY/jwWUDFzUdoqAdpafmkpeURHX0Ojaa42tNyw5ojAQEuTJlyPYB+ZqesrEL9tN53390Fbxd7PhjVnaEdVXyy6TgHLubywvID3NRZRecQd6CifpSHpz2bNiWSk1NMULAH7ds567vpJibmsHffedCChYWCEyez2BGdxAMPBtOtR5sG+/yEEKIlePjhF1m7djNxcbuZOHEMo0Z9Clx5DkyYULFs+vRotm5NqpYDOKrhto9I9RuLYvO7eGu2wKod0HEAvUIHAD50D1Ph6XEpB4KDPGjX3jgH9u09j5aKHDh5IovoHUk8+EAwEde7NdRHJ4QQLcKEMc/y62/rObhnJx+88DYjHnkDCECtVhr1aIqPzyAvr7RarynD2lNqtZJBgyqWLVkST1xcJnm5xeTmVfR80jVKVX2fjuGsex6GORDsQfsqObB373mg8n7gxKX7gd59a1+vsCFIo5QQQpgRF5fJ3r0XeO652Tz//AguXkylQ4dLNxgBAS6o1RVPwBMSsikt1ep/Hh19jo0bE4iKCmDYsA7Vth0VFQBg1FPK0MCePgzo4U18Sjaf/X2CTfFpbEFLn3buuHg7kHgym+zsYry8lAwa5K8f4gcVwdWpoxuZFwrw9XXkzBkNWVlFxOxIlkYpIYSoo2PHshk06BXOnv0f2dkZ+PsXN0gO+HYLg26/QNoR2PYRxK+mc/lmOgf0hTZ3sPtUqXEOVLkB6tjJjQuZBjlwsYgdMcnSKCWEEHUUH3+Rwf1f52zCeHJyszhjuY47/Z4HjHs0paUVUFam1f/csPaTqSF1ugYmS0v0PaUMmapZZTjr3u7dqTXmQKdObmTqcuC0hotZRcTEJEujlBBCNKba1P/QMXy6vWbNGkJDQ/Hw8DC5jouLjf4J+YoVR5k2bQclJeVAxSxOVVVMC97W6HiqUigUhPi4MHd0T46n5TD/n1Osj0sl+mQmAa72dOnkRL9QtX7Inn48u0qJn78TefklqFQOPPBgMDE7kgmP8Km2DyGEaI3qngXdGTDgZ264IRRvb28Ty69NDgCgDoK7v4aMqbBjDhxeBQnRdHduh3tgPxxDIvVDNQzrmvj7OZGfV5EDDz4QXNEgFS45IIQQcCU5EMzNN6/kmM0evkv+jn9zNjG8zXDgUk8mpdJK31MK4PffT3LgQDpnz2abnMBI18BkeP2ui6o9sKrmgJ+fE3l5BvcDMcnVGr6aAmmUEkK0KrWp/6FjOLNSQMBNRsvKysqwtLQ0OfvSK69sIzk5FycnG667rnoAmTqetLR81GrTwahQKOjcxpmP7w0jLbuQJf8lsnJvEn+du8D2NA29/N3wLFNwISEXALVKaRxSKiUR4b7Ex2ew8tdjBAa7QY+mF0hCCNFQriwLjHs7XS4Hzp/Pw83NDqXSmoQEzWVrTtWUAwB4doQ7P4WbX4fYH7CO/YkO5xdD5nJo25sLJd05kljRC0o3pAQu3axERPhyOD6DX5Yfo2eQNR271uaTEkKIlulKc+A2biI3Jpdlx5bhYevBjX43mp2FLze3hKKicpKSco2KlVelqzml0RTh4lJz0XRDVfdbtb6VqRyIj89g2bKjtAu1hPaX3UWDkEYpIUSrYtj76Up99913zJs3j82bN+PoWH0mu5EjA0lKysXT0x57e2ujZVWfyri42GBlpSAjI5+TJ7OAmoNR7WzHM1GdeaR/R7YeS2fF3nPsOJlJTmEpSisL8jQ5WJ+1I8jbid4q4zCL3Z/OoUMZlGq1V3zuQgjRElxtFvzyyy+88847bN68GXd392rLdUPx2rVzRqMpJi4uU39tv9ocwFEFNz4HNzwOp7dC7I9wagtBBdvoaONIaU43OHsDaq+uqNXGw0X2x6YTfzADe2zoOPyKTl0IIVqEq8mBV294le2btvPuq+/y1qK3uL7z9SbXGzKkPaWl5Tg72+oLkEP1GfuUSissLRVkZxeRkpIHmC+aXpOqNahMNZbFxqZz8GAGRVbWMKjOu7gmpFFKCNGqmHqiXRcajYZXX32V1NRUHnroIZYuXYpCoTBa5+67u9C7t5fJ4RhVn8poNMWUlmrx9HQgJMSz1sFoZ23JLaFeDA5pQ0ZuMRsOn2fp9tPsT9Sw+5wGC8DDzppObRzp3s4NPzcHunXzpESrregpJYQQrdjVZEFhYSFTp07l1KlTPPjgg/zxxx9YWloaraObXtzU0Lz6ygGsbCFwcMVXXgYc/4uc7UuxTIrFPnUH5VhQYOuDQtUZB//rwK0d3bu5YUURwUHWl9++EEK0YFeTA9pyLcnLkilMKuStx97iyxVf4uNafRRCRIQvnTq5VhuaV7VHU15eKWVlWpydbfHzc67zMD4dtVpJZmYBS5ceAWDw4AA8POyNGsDCwlSUUUq7LpaX2VrDkUYpIYQwYFiY1lQNEBcXF3755RcGDhzIsmXL6N27Ny+88EK19XRBl5CgYe3aU/on4lWfyuiekAcGuprc3+UoFApUTrY82NefY38mErsyCYWnNapeKkopZ3+ShpiEiqm/LRTgYGVJqaagzvsRQojW4nI5YGdnx8qVKwkPD2f9+vW88cYbvPvuuya3pbvhiYvL1L+u7xwAQOkJYQ/y2Sp/li/5j+6qs4ztc45gl0S8UvfCub8BCMaCjlbOlGtCgf9d2b6EEKKFu1wOWFpa8uvKX+nVuxfZx7N54fkX+Hre1zjYOFRbV9dTKTExR/+6ao8mXU8pHx+lydpTdREbm05sbBoKBahUDgQGuhk1gHl42NOpkyuOriVXtZ/6JI1SQghhYOPGBDZuTARMF6YFuPHGG5kzZw5PPPEEU6dOpUePHkRFRZlc19R4dd304QMH+uufkGs0xTUe1+WKMSYkaHB0tCW8VxscHW0YdnMHrG2t8OvoTImdBfHJ2WzclcyJ1BwURWVYWVjU+jMRQojWpDY50L17d7755htGjx7NjBkz6NWrFyNHjjS5rrm6JefO5RAXl0laWl695YDS0ZaQXh2xdQwm96YOxNmCopMVfg6ZkHqAhN3/UZx6AodiV9pa2tTq8xBCiNamNjnQqVMnfvrxJ+644w6SNyTz6ievMuuFWVhZVG9iqdozSiczs4DExBw0mkLKyrTk5ZXWeFxVh/2ZWm5nZ0VQkDt2dlaEhanw8LAHLjWAJSbmcOzoRbzLa/FBNBBplBJCCAPXXefJsWMXL1ug/LHHHmPXrl0sXLiQ++67jz179tCuXbtq61V9Ih4Xl8n69afRaitCSffzgoISpk+P1j+RqXrzYXhTo9uO4Y1JXFwmGk0R48d3NTn1eJ/2Hgxo687BQxkEh3hgYyWNUkIIYUptc+DBBx9k9+7dfPLJJ4wfP56goCBCQkKqrWcqB2JikrGyUlBaqqVjR1fCw32ucQ50BP8+KNqM4sShDEJDXMDEE30hhBC1z4HbbruN6dOn88Ybb7D/y/181OkjXhz5YrXSHlV7RukaqSwtFZSVafH2VhIU5I5SacWmTQmAlq5dVfp1dY1Qho1bVZfpXufllXDzzQH07n2ppqBhA5a/vxOl2hIc20hPKSGEaDB1mfLV3t6aDh1cqxUor0qhUDBv3jwOHTrE7t27GTFiBDt27MDe3t5oPd0wvujocyxceIjrrvPk1lvbk5FR0VsqNNSDYcM6MH16tNETmapP1g1vakzN1FSbYo1XW09LCCGaq2uRAwAffPAB+/btY8uWLYwYMYJdu3bh7OxstI6pHNA1Qh06lKEftic5IIQQ1861yoFXX32V3bt3s3r1aja+vRHvtt6M6zvOaB1dwfH4+Aw2bUokIMCZoCB3iovLSEjI1g/b2707lb17zwPg4mIHYHY2PVMz9lVt/DJFrVbi6mFNRkHGZc+toUijlBCixavLlK91mYnDzs6OFStWcP3113PXXXdha2trdl3DbsBvvhnJ2rWniIlJRq2umJEpKioAQP/d8DjMhWhaWp7+vK5mNkEhhGjprlUOWFlZsWzZMnr16sUdd9yBg4P53kemcsBw2J7kgBBCXDvXKgcsLCz4/vvv6dOnD64hruzM2on3GW8Gtxtcbd3Y2HT2708H4IEHgtm9O9Vo2J6/vxM9e7YBtEYNS/7+TmaH7mk0hfqGqystkN7YpFFKCNHi1SVY6voU2d/fn6NHj+Lq6lrjelW7AVe92dBoipkw4Tr9vg2PQ9eAZfhEfNiwDiQkaPSv6xK0QgjR2lzLHFCpVBw4cOCyORAVFUBWVhFKpTUJCRrJASGEaEDXMgdcXFzYuXMnLi4uvPDPC/x+6ndcbF3o493HaL2wMBV5eSXY2VmSlpZn1LNJ1+jUtaunUaOT7r93706t1jOqd28v0tLy9K/N1a5q6qRRSgjR4l3r4QqGNyJ5eXkcPXqUnj17Gq1TtRuwqZsN3c+r0oWn4RNx3furri9PyoUQorqGzIGioiL2799Pnz7GNyORkW3RaIqJiUkmLi6TYcM6SA4IIUQDaagceK/fe6TnpfPNmm9wGulEsEewfp3gYE/y8ko5cuQCiYk59O7tVa3RCUw3KOkasAx7RumGBVZdv7n1mJJGKSGEqCfnz59n6NChnDp1in///ZegoCD9spqezlzuyY0uRA2fiJtbRwghROPJysri9ttvZ9++fWzbtq3aAwpz13vJASGEaBmKi4pJ/jSZE3+fYE75HF554BX8nf31y83VfbpcPShd45Nhzyhz6zQ3Mv2SEELUE1dXV+zt7dFoNNxxxx1cuHBpdoyAABejp+KGDJclJGhYu/YUCQmaauvt3p3Kjz8eZvfu1GrLanqfEEKIhuHo6IijoyP5+fnceeedpKSkGC03lwW1zYGAABcKCkp45ZVtrFhx1GiZ5IAQQjQ+Ozs73F3d0ZZqOfXpKWZvmE1q3qW/3dVqpVEPKVM/T0vLY/fuVNLS8qptX61WUlxcxuLFh9mxI6na8pre21RJT6krUFZWRklJ05lCUYjLsba2xtLSsrEPo8WztbXl119/5frrr+fEiROMGjWKdevWYW1tfdkZP6Kjz7FxYwJKpbW+6K1uPd2ypUuPcOqUhuPHL3D33V2M3i+1RBpWeXk5xcXFjX0YQtSa5EDDsLKy4ueffyY8PJz4+HjuuusutmzZgr29fb3kQE5OEd9/f5iSknIAoyyQHGhYkgOiuZEcaBgWFhYsWLCAU6dOsXv3bo5+dJQ5znOYcuMUynLsTBYr14mPzyA2Nh07O0t98XPderplBQUl/P13ImVlWgAiInyNttEc60pJo1QdaLVaUlNTycrKauxDEaLOXF1d8fLyQqFQNPahtGhqtZrff/+dyMhI/v77b55++mnmzp172ZsF3axMvXu3YfDgdkZDM3TLzp/Po7i4nIsXi6q9vy7FG8XVKS4u5vTp05SXlzf2oQhRJ5IDDcPFxYXff/+dPn368N9//zFx4kR++umnesmB06ezyMoqxNHRlpEjA43eLznQcCQHRHMlOdAwHBwc+O2337j++utJPpfM0c+O8qn9pwyyHkPi8YrOLaYajHSz83Xq5EpYmNpoiJ5u2fnzeeTllWBvb014uE+1bVxuGGBTJI1SdaBrkFKr1Tg4OMg/ZtEsaLVa8vPzSUtLA8Db27uRj6jl69atGz/99BPDhw9n/vz5hIaGcscdYwHzNwuGU4FHRrY1uUylsmPnzlS6dHEnIUFjdFNjWG9k7dpTZp/Ei6uj1WpJSUnB0tISPz8/LCxkFLxo+iQHGl7Hjh1ZsWIFgwcPZunSpYSEhDBu3NPA1eXA/v0VOdCjh5revb2M1pEcaBiSA6I5khxoeD4+Pvz222/cdNNNXIy9yPHFx1GMXUJU5zFmG4zCwlT678HBniaXnT5tzcmTGq67zgMbm4pZ/EzN1peYmGP0uimTRqlaKisr0zdIeXjIEyjRvNjb2wOQlpaGWq2WrrsN4I477uD999/nxRdfZObMmUyYMIFhwzqYXT8ysm21mxDDZampeezbl8aNN/qgViuJi8s0ebMhwzeurdLSUvLz8/Hx8cHBwaGxD0eIWpMcaHgDBgxg7ty5PPzww3zyySc89thjV5UDkZFtmT9/H8ePZ1FerpUcaCSSA6K5khxoeL1792bRokXce++9ZP2TxcVbM9nm+zM93Z4xuX5wsGe1xqiqy/788xS5uRU9pcwN02tuQ/ikUaqWdDWkJHxEc6X73S0pKZEQaiBTpkyhsLCQcePG4ejoeFXbWrnyOHv2nKdXrzYMHdrB7JN2U8M3LlfHRNReWVkZADY2No18JELUneRAw5s0aRIXL15k+PDheHqavtGoi23bksjIKMDDw15yoJFIDojmTHKg4Y0aNYpPP/2Ufv36ka/O5+m/n+bzfZ/zVM+nsLeyr/P2Dh/OJCUlD6XSmt69vUz2ujI1hC8tLU9fz8rVw/rKT+gakEapOpIhe6K5kt/d+lPbP+4VCgWvv/660c/Ky8uvqKu/rnbIyJGB1Z60JyRo2Lz5LKBl4ED/asvlqXn9k39PojmS39v6U5dGnhdffNHo9ZXmABhngeF+JQcanvx7Es2R/N7Wn7rkwFNPPaX/708GfMIzfz/DnL1zeLrH0zhY163Ti66OVHi4j9Ew7rS0PA4ezAC0dO2qqjbE27D3lKuHe532ea1Jo5QQQtRRXf+414VWUtK/fPXVJ/z111+4ubnVaZ+9e3thb29t8sl4XFwmixcf5vz5XDIyCpgypY/Rcil+K4QQ9etKcyAr6xAffPAG69atw8vL67Lvq7oNe3trZszoV22fkgNCCNGwrjQHCgsL0czQUPJICbO1s3mm5zMorWs3xC4tLQ8bG0vGjg0xOWRv8+azZGUVkJ1dzIgRnY2WN+UC6NIoJYQQdVTXP+7j4jLZtu003377Aunpydx111389ddf2Nra1nqfNQVfaKgHTk7WJCaWk5SUW+29uuK3Qggh6seV5EB0dCI//DCFxMTj3Hbbbfzzzz91GtotOSCEEE3HleTAjh1JrFjxEqeOniJgbgDWU6yZvWc2T/d4GifbyzcW1VQryt/fCXt7S9LTtWRmFlZ7r1qt1L+nuKy4VsfcUGS6iBZOoVDU+DVt2rSr2vaqVavqdAxKpZLAwEAmTJjAnj176rzPAQMG8Oyzz9b9YIWoRwEBLgwb1qHWf+CHhnrQpUsbnnrqU5ycnNm6dSvjx4+v01TSoaEehIf7mAy+c+dy8PCw46abfLnnns4m3i1aM8kBIerfleRAYKAnjz/+Ce7uHuzdu5dRo0bpa5bWdhuSA+JKSA4IUf+uJAc6dXLj4Yc/wNvbl4QTCZR/V05Wbhaz980mqzDrstvw93ciKMjdZG+nzMwCnJxsCA31IDLSp66n06ikUaqFS0lJ0X/Nnj0bZ2dno59NmTKlQY5jwYIFpKSkEBcXxxdffEFubi59+/bl+++/b5D9C9GYAgJcUKsdKC5uw8svf4G1tTU///wzL7zwAlqtttbbMBd8GzcmcOxYFv7+zmZnbhKtl+SAEI1PlwO5uS68+upX2Nvbs27dOh599FHJAXHNSQ4I0fh0OXDhgh2vvfY1Li4u7P9vPy4rXMgvzuejPR+Rmpda4zbUaiW9e3uZnFEvNjad5OQ8VCoHszP4NVXSKNXCeXl56b9cXFxQKBRGP1u6dCnBwcHY2dkRFBTE3Llz9e8tLi7mySefxNvbGzs7OwICApg5cyYA7dq1A2DEiBEoFAr9a3NcXV3x8vKiXbt23HLLLSxfvpzRo0fz5JNPcvHiRQAyMzN54IEH8PX1xcHBga5du7JkyRL9NiZMmMA///zDnDlz9E9azpw5Q1lZGQ899BDt27fH3t6eLl26MGfOnPr9IIW4Sron3A8+eAcLFiwA4OOPP2bGjBlXve2oqACiovyJigq46m2JlkdyQIimQZcDd989iKVLl2JhYcF3331XpwcU5kgOiJpIDgjRNOhy4LbbIli1ahU2NjZs+mMTbde1xUphxSd7PuFU1qkr2nZYmIru3VWEhanq+aivPWmUasV+/PFH3njjDd59913i4+OZMWMGr7/+OosWLQLg008/ZfXq1SxbtoyjR4/y448/6sNm165dwKUnHrrXdfHcc8+Rk5PDhg0bACgsLKRXr1788ccfHDp0iIcffpixY8fy33//ATBnzhzCw8OZNGmS/smOn58f5eXltG3bll9++YXDhw/zxhtv8Morr7Bs2bJ6+JSEqJCQoGHt2lMkJGiu6P2GT7hHjx7Nxx9/DMBrr73GunXrrurYIiPbMmHCdWg0xVd8fKJ1khwQovbqMwfuvPNOvv76awA++uijq/5dlRwQV0pyQIjaq88cGDBgAD/99BMWFhYs/2E5Q1KHoHJQ8UXsFxxIP1DnbQcHezJokD95eaWkpeVd0fE1Fil03oq9+eabfPTRR4wcORKA9u3bc/jwYb788kvGjx9PYmIigYGB3HjjjSgUCgICLj19U6kqWmB1TzyuRFBQEABnzpwBwNfX16j78FNPPcX69etZtmwZffr0wcXFBRsbGxwcHIz2aWlpyfTp0/Wv27dvT0xMDMuWLePee++9omMToqr6nk77ueeeQ6PRkJaWxi233HLV2zM8Pt1r3RS1dZmyVrQukgNC1F5958DEiRPJyclh165d+n+DV0NyQFwJyQEhaq++c+Duu+/mu+++49dff+WZR57hER7hkY2P8O2hbxnecTg3+99cp+0ZFkLXvfb3d0KtVpKWlqd/7ephfdXHXp+kUaqRNPYfB3l5eZw8eZKHHnqISZMm6X9eWlqKi0vF8UyYMIHBgwfTpUsXhgwZwu23314vN886uq7qCoUCgLKyMmbMmMGyZctISkqiuLiYoqIiHBwcLrutL774gu+++47ExEQKCgooLi4mLCys3o5ViGsxnfabb75JQoKGdevOmLwWREefY+PGBKKiAi5bI8Tw+KoGZn0HqKgfkgOSA6J5uRY58Mwzz3DmTBYbNpyVHGiFJAckB0Tzci1yYPz48fTvP5y//04mNNSDRbcu4qVtL/HriV9JyUshTDuYA/szCQtTXbZWlK4Aur+/U7WZ+gxfu3q419vx1wdplGokjf3HQW5uxXTBX3/9NX379jVaZmlpCUDPnj05ffo0f/75Jxs3buTee+8lKiqK5cuX18sxxMfHAxVPMgBmzZrFnDlzmD17Nl27dkWpVPLss89SXFzzlJVLly5lypQpfPTRR4SHh+Pk5MSsWbPYuXNnvRynEHBtptNWKBQcPnyBmJhkSktLeOONp7n//vsZOnQoUFG4duPGRIAab0bM/VFbNTjrM0DF1ZMckBwQzcu1yAFAnwNlZWW8//7L9O/fn/vuuw+QHGjpJAckB0Tzcq1zQKvVMnfuVwS3D6Zjn458c/Ab4orPUBrXB6DGRinDnlCGhdANG6oMvzclzaZR6t133+WPP/4gNjYWGxsbsrKyqq2TmJjIY489xubNm3F0dGT8+PHMnDkTK6umd5qN/cdBmzZt8PHx4dSpU4wePdrses7Oztx3333cd9993HPPPQwZMoQLFy7g7u6OtbU1ZWVlV3wMutk/oqKiAIiOjmb48OGMGTMGgPLyco4dO0ZISIj+PTY2NtX2GR0dTUREBI8//rj+ZydPnrzi4xLCnLo8sa4t3TUgOvonvv/+e5YuXcrKlSu57bbbiIoKICurCKXSmoQEDefO5Zjcf9U/ag0D0/CYm/vTccmB+iU5IETdXcscOHToD+bNm8dXX32FVqvl/vvvlxyoQnKgfkkOCFF31zIHzp6N5oMPPgDgyy+/ZGbUTN7Y/ibamzZRWDCUtDR/MjMLiI1Nr9ZzqmrPKN0XQHx8hv49arWS4rKaG3kbWtO7OptRXFzMqFGjCA8P59tvv622vKysjNtuuw0vLy927NhBSkoK48aNw9raul5mt6pv16qVtS6mT5/O008/jYuLC0OGDKGoqIjdu3dz8eJFJk+ezMcff4y3tzc9evTAwsKCX375BS8vL1xdXYGKGTc2bdpEZGQktra2uLm5md1XVlYWqampFBUVcezYMb788ktWrVrF999/r99eYGAgy5cvZ8eOHbi5ufHxxx9z/vx5oxBq164dO3fu5MyZMzg6OuLu7k5gYCDff/8969evp3379ixevJhdu3bpn7gIUV9q+8S6LnTXgsGDX+Lo0VhWrFjBiBEjWLFiBXfccQcaTTExMcnExWWya1eKyf3X9EfttTjmxiI5UP8kB4Som2uZA7fe+jjx8XtZuHAho0ePpry8nAcffFBywIDkQP2THBCibq5lDmi17YmP38OcOXN45JFHmDt3Lovv/Z7H1j7NPsuVcDwT28QgDuzPAIx7TtXUEyo2Np39+9OrvafJ0DYzCxYs0Lq4uFT7+dq1a7UWFhba1NRU/c/mzZundXZ21hYVFdV6+xqNRgtoNRqN0c8LCgq0hw8f1hYUFFzxsTc2U5/djz/+qA0LC9Pa2Nho3dzctDfddJN25cqVWq1Wq/3qq6+0YWFhWqVSqXV2dtYOGjRIu3fvXv17V69ere3UqZPWyspKGxAQYHa/gP7Lzs5O27FjR+348eO1e/bsMVovMzNTO3z4cK2jo6NWrVZrX3vtNe24ceO0w4cP169z9OhR7Q033KC1t7fXAtrTp09rCwsLtRMmTNC6uLhoXV1dtY899ph26tSp2u7du1/tR9aitITf4ca2fftZ7bRp27Xbt5+9JtsvLi7Wjho1Sgtora2ttatWrdKeOZOl/eOPk9ozZ7KuaP+G7zHc1pUwd31saI2VA1pt8/93JDnQujX339+m4FrnQFlZmfahhx7SAloLCwvt4sWLJQdMkBy4cpIDrVtz//1tCq51DpSXl2snT56s//fy+eefa+NOJGnv/+l/2usWXqcd+tNw7YQPPtLOXf+LdnPi5lp9zV3/i/bh9+dq567/Rfvz7jXamSu+1362/VttZkFmnY/vWuSAQqutrC7XTCxcuJBnn322WnfdN954g9WrVxMbG6v/2enTp+nQoQN79+6lR48eJrdXVFREUVGR/nV2djZ+fn5oNBqcnZ31Py8sLOT06dO0b98eOzu7ej0nIRqC/A43D6WlpYwZM4aff/4ZKysrfv7558vOyrRixVFWrjxOv36++Pu7mC2YunbtKWJikgkP92HYsA51Prbs7GxcXFyqXR8bWmPlAMi/I9G8ye9v81BeXs5jjz3GV199hUKhYMGCBYwfP77G90gOVJAcEKJm8vvbPGi1Wl566SVmzZoFwJw5c3jqqaf46chPzN4zGwuFBfd2uZdebXrp37NjR5L++t6pk6vJ+lIAu3encvhIGt6B8PztY3C3q1vR82uRAxb1spUmIDU1lTZt2hj9TPc6NTXV7PtmzpyJi4uL/svPz++aHqcQQtTEysqKH374gQcffJDS0lImTpxosmaGoZUrj7N16zmWLj1KTEwymzefZe3aUyQkaIzWCw31IDzcp8UWupUcEEK0BBYWFsybN4/HHnsMrVbLo48+SnJyco3vkRyoIDkghGgJFAoF77//PlOnTgVg8uTJHD9+nNHBo1l6+1I6uHZgYdxCvtz/JdlF2QDExCRz6FAGMTHJ+vpSBw9msHt3Kmlpefpt+/s70bmLG97ejo1ybqY0ak2pqVOn8v7779e4Tnx8PEFBQdfsGF5++WUmT56sf617MiKEaF0ae1pmQ1ZWVnz//fc4Ojpyzz336OssmDNyZCCA/gl5Wlqeydl8mkLtiqokB4QQTUVTygELCwu++OIL7O3tiYyMxMfHp8b1JQeujuSAEAKaVg4oFApmzJiBra0tAQEBdO7cGYCOrh1ZPGQxC+MW8tWBr3jr37cYHDCYvjcEAxAe7qOvK6XRFBoVP9d9d/WwJqMgoxHOyrRGbZR6/vnnmTBhQo3rdOhQu67FXl5e/Pfff0Y/O3/+vH6ZOba2ttja2tZqH0KIlquxp2WuytLSki+//NLoZwkJCfj5+WFhYdzJ9e67u3D33V0M1tOgVmc2iyfhkgNCiKaiqeWAQqHgo48+MvrZ2bNn8fb2rjaTnORABckBIcTVaIo5MG3aNKOfJSUloVKp+F+3/xEVEMWsXbP449QfuNntYPiY4fRQ+6BQKFCrlaSl5eHikmOy+HlT0qiNUiqVCpVKVS/bCg8P59133yUtLQ21Wg3Ahg0bcHZ2NpqtQQghTGnsaZkv58iRI9x4440MGzaMb775BhsbG7PrNsUn4eZIDgghmoqmngOJiYlERETQp08ffvjhBxwcHMyuKzkgOSCEqLumngPnz59nwIABtG/fnl9++YV2Lu34fNDnbE/azid7PmFB3AL+OP0Hw9oPo4e6B2q1slpNqaaoURul6iIxMZELFy6QmJhIWVmZvoBhp06dcHR05JZbbiEkJISxY8fywQcfkJqaymuvvcYTTzwhTz6EEJfV1P+A379/P1lZWSxevJiEhARWrFiBp6f5KV2bUvfj+iI5IIS4lpp6DsTFxZGens6vv/5K//79+e2332oc1ic5IDkghKibpp4Dx44dIyUlhRMnThAREcGaNWto3749/dr24wafG/jz9J8sOLSAhXELWXViFd1detMmP5Qu7bybdONUsyl0/sYbb9CjRw/efPNNcnNz6dGjBz169GD37t1AxVCXNWvWYGlpSXh4OGPGjGHcuHG89dZbjXzkQghRISFBY7LwbG3ccMMQnnnmc+ztHdm6dStdu/Zi06b/zK6v634cF5d5NYfcpEgOCCGau6vJgZCQCJ5//mscHd3YvXs33br14o8//jG7vuSA5IAQoum5mhzw9+/GlCnf4uqq5vDhw4SF9Wb58nUAWFtYc2fHO1l2+zI+vOlDAl0D2Za2mWU5n/JV/Fy2nt1KVlFWPZ9N/VBotVptYx9EU2JuikOZPlM0d/I73PiudCruhAQNCxceYvfu85SWpvDvv++SlZWCUunE8uXLGDJkiH493VNxoN6fkDeVqcCvtZrOU/4dieZMfn8bX33kgFabyc6dM8jIOIOtrT0//PA999xzj349yYGrJzkgWir5/W189ZEDCkU2u3fPJCXlGFZWNnz99Zf62ny6HAgOcSMx7zRLDi0nweIASfmJaNHiYuOCv7M/bR3bMrXvVNzt3Ot0/NciB5pNTykhhGhKruQpx5VOxR0Xl0lGRiGdOrly3303sXjxn4SG9iYvL4dhw4bxxx9/6NfTPRUPCHDBxcWGhQsPER19rk77E0IIcXmNlQP33HMDP/zwBz179qOoqIBRo0bx008/6deTHBBCiIbRWDkwcmQvvv/+dyIibqW0tJj/+7//Y968efr1YmKSiT98kf6hPRnb9nGuj5/Cy20/5amwp+im6sbFwoskZCdg0USag5pNTSkhhGhKrmR2jisdpx4a6kFaWj6gZeBAfwICXBg8eDvPPPMMe/fuJSoqSr+e4feNGxPYuDERgMjItnXerxBCCPMaOwcGDfqbV155hT/++IM777xTv57hd8kBIYS4dho7B26+eS3vvPMOixYt4r777tOvZ/h948YENm9MwVLrz5tvPoxWqyWvJI/CskJcbJtG/aym0TQmWoQJEyZw11136V8PGDCAZ5999qq2WR/bEOJauNKnHFciIMAFtdqBkyc1+togtra2zJ8/ny1btuiLt3p72+Pmdl4fdFFRAURF+RMVFXDNj1EIkBwQrUtj54CVlRUffPABu3btwtHREYC2bR1xdk6WHBCNRnJAtCaNnQMWFha88cYbHDx4EHf3imF4/v7OODqeM5sDCoUCRxtHPO09USgU1/y4a0N6SrUCEyZMYNGiRQBYW1vj7+/PuHHjeOWVV7Cyuna/AitXrsTa2rpW627ZsoWBAwdy8eJFXF1dr2gbQjSkhp6dw9wUtYZTgr/11lvMmDGDZ599lnfffZfIyLZGT8ajo8+xcWMCUVEB8sS8lZEcEKL+NcUcmD17NlOmTOHhhx/mo48+khwQepIDQtS/ppgD3333Hf/73/8YPXo0n332WbPIAekp1UoMGTKElJQUjh8/zvPPP8+0adOYNWtWtfWKi4vrbZ/u7u44OTk1+jaEaAkCAlwYNqyD2eDTarVkZmai1Wr55JNP6NWrl342Ih3dMI6NGxMa4pBFEyM5IETzdrkcAMjIyADgq6++olu3bmzbts1oueRA6yY5IETzVpscSEtLw8LCgh9//JGuXbuyfv16o+VNMQekUaqVsLW1xcvLi4CAAB577DGioqJYvXq1vovtu+++i4+PD126dAHg7Nmz3Hvvvbi6uuLu7s7w4cM5c+aMfntlZWVMnjwZV1dXPDw8ePHFF6k6kWPVrrZFRUW89NJL+Pn5YWtrS6dOnfj22285c+YMAwcOBMDNzQ2FQqGfPaDqNi5evMi4ceNwc3PDwcGBoUOHcvz4cf3yhQsX4urqyvr16wkODsbR0VEfwEK0ZAqFgnnz5rFmzRq8vLyIj4+nb9++PPvss2RnZwMyjKO1kxyQHBAt38yZM/n777/x9/fn9OnT9O/fn0ceeYQLFy4AkgOtneSA5IBo+V5++WWio6MJDAwkKSmJIUOGMGbMGFJTU4GmmQPSKNVK2dvb65+CbNq0iaNHj7JhwwbWrFlDSUkJt956K05OTmzbto3o6Gj9xVz3no8++oiFCxfy3XffsX37di5cuMCvv/5a4z7HjRvHkiVL+PTTT4mPj+fLL7/E0dERPz8/VqxYAcDRo0dJSUlhzpw5JrcxYcIEdu/ezerVq4mJiUGr1TJs2DBKSkr06+Tn5/Phhx+yePFitm7dSmJiIlOmTKmPj02IJu+2227j0KFD3H///ZSXlzNnzhyCgoLYunUrkZFtefPNyCbTVVc0LskBIVqmgQMHcvDgQSZOnIhWq+Wrr76iS5curFu3TnJAGJEcEKJluuGGG4iNjeXpp59GoVDw448/EhQUxPLly5tkDkhNqauUn5/PkSNHGny/QUFBRmNHa0ur1bJp0ybWr1/PU089RXp6Okqlkm+++QYbGxsAfvjhB8rLy/nmm2/0xc8WLFiAq6srW7Zs4ZZbbmH27Nm8/PLLjBw5EoD58+dX6xpo6NixYyxbtowNGzboZwrr0KGDfrmuMJtarTYaQ27o+PHjrF69mujoaCIiIgD48ccf8fPzY9WqVYwaNQqAkpIS5s+fT8eOHQF48skneeutt+r8WQnRXHl4eLBkyRL+7//+jyeeeIKkpCQCAprO05CWRnJAckCIpsbZ2Zlvv/2WCRMm8Pjjj3PkyBH8/f0b+7BaLMkByQEhmhoHBwfmzJnD2LFjefTRR9m7dy9+fn6NfVgmSaPUVTpy5Ai9evVq8P3u2bOHnj171nr9NWvW4OjoSElJCeXl5Tz44INMmzaNJ554gq5du+oDCGD//v2cOHGi2tjtwsJCTp48iUajISUlhb59++qXWVlZ0bt372pddnViY2OxtLSkf//+dTzTS+Lj47GysjLar4eHB126dCE+Pl7/MwcHB30AAXh7e5OWlnbF+xWiubrllls4ePAgu3fvNmqUKi8vx8JCOsrWF8mBCpIDQjQ9/fr1Y+/evcTExBASEqL/ueRA/ZIcqCA5IETT07t3b3bu3MnWrVuN/t2UlZVhaWnZiEd2iTRKXaWgoCD27NnTKPuti4EDBzJv3jxsbGzw8fExmmVDqVQarZubm0uvXr348ccfq21HpVJd0fHa29tf0fuuRNXZORQKhdlwFKKls7Oz48Ybb9S/LisrkxuReiY5UDuSA0I0Dmtra2666Sb96/Ly8iYzDXhLITlQO5IDQjQOS0tLfc02aHo5II1SV8nBwaFOTygai1KppFOnTrVat2fPnvz888+o1WqcnZ1NruPt7c3OnTv1f+SUlpbW+LSma9eulJeX888//+i76xrSPZkpKysze1zBwcGUlpayc+dOfXfdzMxMjh49avT0T4jWICFBQ1xcJqGhHnWaitbCwqJJhVBLIDkgOSBEY7jSHFAoFJID9UxyQHJAiMbQUnJAHpeLakaPHo2npyfDhw9n27ZtnD59mi1btvD0009z7tw5AJ555hnee+89Vq1axZEjR3j88cfJysoyu8127doxfvx4Jk6cyKpVq/TbXLZsGQABAQEoFArWrFlDeno6ubm51bYRGBjI8OHDmTRpEtu3b2f//v2MGTMGX19fhg8ffk0+CyEaQ3T0OaZPjyY6+pzZdeLiMomJSSYuLrNO225KASSaLskBIRrf5bJAckBcS5IDQjS+1pID0iglqnFwcGDr1q34+/szcuRIgoODeeihhygsLNQ/KXn++ecZO3Ys48ePJzw8HCcnJ0aMGFHjdufNm8c999zD448/TlBQEJMmTSIvLw8AX19fpk+fztSpU2nTpg1PPvmkyW0sWLCAXr16cfvttxMeHo5Wq2Xt2rXVuugK0Zxt3JjAxo2JbNyYYHad0FAPwsN9CA31aMAjE62F5IAQje9yWSA5IK4lyQEhGl9ryQGFVgbXGsnOzsbFxQWNRmPUVbWwsJDTp0/Tvn177OzsGvEIhbgy8jvcfERHn2PjxgSiogKa1HSt5q6PLU1N5yn/jkRzJr+/zUtTzALJAfl3JJo3+f1tXlpLDkhNKSGEaGIiI9s2meARQgjROCQLhBCidWstOSDD94QQopmrTQ0qIYQQLZfkgBBCtG7NOQekp5QQQjRzuvHmQKt4miKEEMKY5IAQQrRuzTkHpFFKCCGauaioAKPvQgghWhfJASGEaN2acw5Io5QQQjRzrWW8uRBCCNMkB4QQonVrzjkgNaWEEEIIIYQQQgghRIOTRikhhBBCCCGEEEII0eCkUUoIIYQQQgghhBBCNDhplBJCCCGEEEIIIYQQDU4apepBYUkZ2YUlDfZVWFLW2Kds1oQJE7jrrrv0rwcMGMCzzz57Vdusj21czpYtW1AoFGRlZV3T/VxrCoWCVatWNfZhCNH6lBRAoabhvkoKGvuMzZIcaFySA0I0jsLSQnKKcxrsq7C0sLFP2SzJgcYlOSCaG5l97yoVlpTxV1wqmsKSBtuni501t4R6YWdtWav1J0yYwKJFiwCwtrbG39+fcePG8corr2BldW1/BVauXIm1tXWt1t2yZQsDBw7k4sWLuLq6XtE2rlRERAQpKSm4uLjU+j0TJkwgKytLLvqiSUlI0BAXl0loqAcBAZd+n6Ojz7FxYwJRUQHNdmaOJqukAI6shcKshtunnSsEDQNr+1qtLjlweZIDoqUwlwMgWXCtFJYWsjlxM9nF2Q22T2cbZwb6D8TOyq5W60sOXJ7kgGgpmlsOSKPUVSouK0dTWIKdlSW2Vte+41lRacX+isvKa90oBTBkyBAWLFhAUVERa9eu5YknnsDa2pqXX3652rrFxcXY2NjUy/G6u7s3iW1cjo2NDV5eXtd8P6bU5+ctRFxcJjExyQD6EEpI0DB3bizHjl0EaDIB1GKUFVc0SFnZVXxda6WFFfsrK651oxRIDlyO5IBoKczlQFxcJhs2nGH37vOAZEF9KikvIbs4G1srW2wtba/5/orKisguzqakvAQ7ap87kgM1kxwQLUVzywEZvldPbK0scLCxuuZfV9rwZWtri5eXFwEBATz22GNERUWxevVq4FIX23fffRcfHx+6dOkCwNmzZ7n33ntxdXXF3d2d4cOHc+bMGf02y8rKmDx5Mq6urnh4ePDiiy+i1WqN9lu1q21RUREvvfQSfn5+2Nra0qlTJ7799lvOnDnDwIEDAXBzc0OhUDBhwgST27h48SLjxo3Dzc0NBwcHhg4dyvHjx/XLFy5ciKurK+vXryc4OBhHR0eGDBlCSkqK2c+nanfdy21j2rRpLFq0iN9++w2FQoFCoWDLli21+txMfd6vvPIKffv2rXZc3bt356233gJg165dDB48GE9PT1xcXOjfvz979+41e06idQoN9SA83IfQUA/9z+LiMrGysqRzZzeiogIa8ehaOCs7sHG49l9X2PAlOSA5IFoHczkQE5OMr68TUVH+kgXXiK2lLfZW9tf860obviQHJAdE69DcckAapVope3t7iouL9a83bdrE0aNH2bBhA2vWrKGkpIRbb70VJycntm3bRnR0tP5CrHvfRx99xMKFC/nuu+/Yvn07Fy5c4Ndff61xv+PGjWPJkiV8+umnxMfH8+WXX+Lo6Iifnx8rVqwA4OjRo6SkpDBnzhyT25gwYQK7d+9m9erVxMTEoNVqGTZsGCUll4ZQ5ufn86Odv8kAAQAASURBVOGHH7J48WK2bt1KYmIiU6ZMqdNnVNM2pkyZwr333qsPppSUFCIiImr1uZn6vEePHs1///3HyZMn9evExcVx4MABHnzwQQBycnIYP34827dv599//yUwMJBhw4aRk5NTp/MSLVtAgAvDhnUw6qobGurBffd1YcaMfk3miYhofJIDlyc5IJojczkQHu7DqFGdefPNSMkCAUgO1IbkgGiOmlsOyPC9Vkar1bJp0ybWr1/PU089pf+5Uqnkm2++0Xcb/eGHHygvL+ebb75BoVAAsGDBAlxdXdmyZQu33HILs2fP5uWXX2bkyJEAzJ8/n/Xr15vd97Fjx1i2bBkbNmwgKioKgA4dOuiX67rlqtVqozHkho4fP87q1auJjo4mIiICgB9//BE/Pz9WrVrFqFGjACgpKWH+/Pl07NgRgCeffFL/hKG2atqGo6Mj9vb2FBUVGXXzrc3nBtU/b6h4CvLTTz/x+uuv68+rb9++dOrUCYCbb77Z6Pi++uorXF1d+eeff7j99tvrdG6idQkIcKk2nly0XpIDtSc5IFoKyQFhSHKg9iQHREvRlHNAekq1EmvWrMHR0RE7OzuGDh3Kfffdx7Rp0/TLu3btanRB3L9/PydOnMDJyQlHR0ccHR1xd3ensLCQkydPotFoSElJMepiamVlRe/evc0eQ2xsLJaWlvTv3/+KzyM+Ph4rKyuj/Xp4eNClSxfi4+P1P3NwcNCHB4C3tzdpaWl12teVbONyn5tO1c8bYPTo0fz0009AxR8LS5YsYfTo0frl58+fZ9KkSQQGBuLi4oKzszO5ubkkJibW6byEEK2T5IDkgBCidZMckBwQoimSnlKtxMCBA5k3bx42Njb4+PhUm2VDqVQavc7NzaVXr178+OOP1balUqmu6Bjs7WtfkPdqVZ2dQ6FQVBvffi22UdvPrernDfDAAw/w0ksvsXfvXgoKCjh79iz33Xeffvn48ePJzMxkzpw5BAQEYGtrS3h4uFE3YCGEMEdyQHJACNG6SQ5IDgjRFEmjVCuhVCr13T5ro2fPnvz888+o1WqcnZ1NruPt7c3OnTu56aabACgtLWXPnj307NnT5Ppdu3alvLycf/75R99d15DuSUFZWZnZ4woODqa0tJSdO3fqu+tmZmZy9OhRQkJCan1+9cHGxqbasdbmczOnbdu29O/fnx9//JGCggIGDx6MWq3WL4+Ojmbu3LkMGzYMqCigmJGRcfUnIlqcmqaBFa2X5ED9kxwQTZXkgDBFcqD+SQ6Ipqo55YAM3xMmjR49Gk9PT4YPH862bds4ffo0W7Zs4emnn+bcuXMAPPPMM7z33nusWrWKI0eO8Pjjj+tnqzClXbt2jB8/nokTJ7Jq1Sr9NpctWwZAQEAACoWCNWvWkJ6eTm5ubrVtBAYGMnz4cCZNmsT27dvZv38/Y8aMwdfXl+HDh1+Tz6Km8zlw4ABHjx4lIyODkpKSWn1uNRk9ejRLly7ll19+MeqqCxXnvnjxYuLj49m5cyejR49u0KdNovnQza4RF5fZ2IcimjHJgcuTHBBNleSAqA+SA5cnOSCaquaUA9IoVU+KSsvJLy695l9FpeUNcj4ODg5s3boVf39/Ro4cSXBwMA899BCFhYX6Fv/nn3+esWPHMn78eMLDw3FycmLEiBE1bnfevHncc889PP744wQFBTFp0iTy8vIA8PX1Zfr06UydOpU2bdrw5JNPmtzGggUL6NWrF7fffjvh4eFotVrWrl1brXvttTZp0iS6dOlC7969UalUREdH1+pzq8k999xDZmYm+fn53HXXXUbLvv32Wy5evEjPnj0ZO3YsTz/9tNGTEyF0TE0DKxpAaSEU51/7r9LCBjkdyYHLkxwQTZXkQOMoKiuioLTgmn8VlRU1yPlIDlye5IBoqppTDii0dR1Y28JlZ2fj4uKCRqMxumgUFhZy+vRp2rdvj52d3aWfl5TxV1wqmsISU5u7JlzsrLkl1As7a8sG26do/sz9DgtRW+aujy1NTedp8t9RSQEcWQuFWQ13kHauEDQMrOXpqKg9yQFxtSQHTP87KiwtZHPiZrKLsxvsGJ1tnBnoPxA7K/m3LGpPckBcrWuRA1JT6irZWVtyS6gXxWUN04MJwMbSQhqkhBCiqbC2r2ggKmvAIqOWNtIgJYQQTYSdlR0D/QdSUt5wD6mtLaylQUoI0SJIo1Q9sLO2lEYiIYRozaztpZFICCFaMTsrO+yQRiIhhKgrqSklhBBCCCGEEEIIIRqcNEoJIYQQQgghhBBCiAYnjVJCCCGEEEIIIYQQosFJo5QQQgghhBBCCCGEaHDSKCWEEEIIIYQQQgghGpw0SgkhhBBCCCGEEEKIBieNUkIIIYQQQgghhBCiwUmjlBBCCCGEEEIIIYRocNIo1cIpFIoav6ZNm9ZgxzJgwAD9fu3s7AgJCWHu3Ln65QsXLsTV1bXBjkcIIVoDyQEhhGjdJAeEEE2ZNEq1cCkpKfqv2bNn4+zsbPSzKVOm6NfVarWUlpZe0+OZNGkSKSkpHD58mHvvvZcnnniCJUuWXNN9CtGcJCRoWLv2FAkJmsY+FNFCSA4I0bxIDoj6JjkgRPPS2nKg2TRKvfvuu0RERODg4GC29dxUy//SpUsb9kCbGC8vL/2Xi4sLCoVC//rIkSM4OTnx559/0qtXL2xtbdm+fTsTJkzgrrvuMtrOs88+y4ABA/Svy8vLmTlzJu3bt8fe3p7u3buzfPnyyx6Pg4MDXl5edOjQgWnTphEYGMjq1avr+ayFaL7i4jKJiUkmLi6zsQ+lyZEcuDKSA0I0L5ID5kkOXBnJASGal9aWA1aNfQC1VVxczKhRowgPD+fbb781u96CBQsYMmSI/nVDdP/My8szu8zS0hI7O7tarWthYYG9vf1l11UqlVdwlOZNnTqVDz/8kA4dOuDm5lar98ycOZMffviB+fPnExgYyNatWxkzZgwqlYr+/fvXet/29vYUFxdf6aEL0eKEhnoYfReXSA5cIjkgRMslOWCe5MAlkgNCtFytLQeaTaPU9OnTgYpxxjVxdXXFy8urAY7oEkdHR7PLhg0bxh9//KF/rVaryc/PN7lu//792bJli/51u3btyMjIqLaeVqu98oM14a233mLw4MG1Xr+oqIgZM2awceNGwsPDAejQoQPbt2/nyy+/rFUIlZWVsWTJEg4cOMDDDz98xccuREsTEOBCQIBLYx9GkyQ5cInkgBAtl+SAeZIDl0gOCNFytbYcaDbD92rriSeewNPTkz59+vDdd9/V+wW7Jerdu3ed1j9x4gT5+fkMHjwYR0dH/df333/PyZMna3zv3LlzcXR0xN7enkmTJvHcc8/x2GOPXc3hCyGEEcmBupMcEEK0JJIDdSc5IIRoLM2mp1RtvPXWW9x88804ODjw119/8fjjj5Obm8vTTz9t9j1FRUUUFRXpX2dnZ9d5v7m5uWaXWVpaGr1OS0szu66FhXEb4ZkzZ+p8LFeiavdfCwuLauFdUlKi/2/d+f7xxx/4+voarWdra1vjvkaPHs2rr76Kvb093t7e1c5ZCCGuhuTAlZEcEEK0FJIDV0ZyQAjRWBq1UWrq1Km8//77Na4THx9PUFBQrbb3+uuv6/+7R48e5OXlMWvWrBpDaObMmfquwFeqLmO6r9W69UmlUnHo0CGjn8XGxmJtbQ1ASEgItra2JCYm1mm8OICLiwudOnWqt2MVQjRvkgP1t259khwQQjQUyYH6W7c+SQ4IIRpKozZKPf/880yYMKHGdTp06HDF2+/bty9vv/02RUVFZlvsX375ZSZPnqx/nZ2djZ+f3xXvsyW4+eabmTVrFt9//z3h4eH88MMPHDp0iB49egDg5OTElClTeO655ygvL+fGG29Eo9EQHR2Ns7Mz48ePb+QzEEI0F5IDTZPkgBCioUgONE2SA0KIhtKojVIqlQqVSnXNth8bG4ubm1uNXUhtbW0v28W0tbn11lt5/fXXefHFFyksLGTixImMGzeOgwcP6td5++23UalUzJw5k1OnTuHq6krPnj155ZVXGvHIhRDNjeRA0yQ5IIRoKJIDTZPkgBCioSi0zaTyX2JiIhcuXGD16tXMmjWLbdu2AdCpUyccHR35/fffOX/+PDfccAN2dnZs2LCBKVOmMGXKlDp1x83OzsbFxQWNRoOzs7P+54WFhZw+fZr27dsbTekqRHMhv8MtS3T0OTZuTCAqKoDIyLYNsk9z18eG0tg5APLvSDRv8vvbskgOSA4IUVfy+9uytJQcaDaFzt944w0WLVqkf63rOrp582YGDBiAtbU1X3zxBc899xxarZZOnTrx8ccfM2nSpMY6ZCGEuGY2bkxg48ZEgAYLocYmOSCEEJdIDkgOCCFat5aSA82mUWrhwoUsXLjQ7PIhQ4YwZMiQhjsgIYRoRFFRAUbfWwPJASGEuERyoDrJASFEa9JScqDZNEoJIYS4JDKybbN+IiKEEOLqSA4IIUTr1lJywKKxD0AIIYQQQgghhBBCtD7SKCWEEEIIIYQQQgghGpw0StVReXl5Yx+CEFdEfneFqD/NZOJaIYxIDghRfyQHRHMkOSCaIqkpVUs2NjZYWFiQnJyMSqXCxsYGhULR2IclxGVptVqKi4tJT0/HwsICGxubxj4kIZota2trFAoF6enpqFQqyQHRLEgOCFF/JAdEcyQ5IJoyaZSqJQsLC9q3b09KSgrJycmNfThC1JmDgwP+/v5YWEgHSSGulKWlJW3btuXcuXOcOXOmsQ9HiDqRHBDi6kkOiOZMckA0RdIoVQc2Njb4+/tTWlpKWVlZYx+OELVmaWmJlZWVPM0Toh44OjoSGBhISUlJYx+KELUmOSBE/ZEcEM2R5IBoqqRRqo4UCgXW1tZYW1s39qEIIYRoJJaWllhaWjb2YQghhGgkkgNCCFE/pN+eEEIIIYQQQgghhGhw0iglhBBCCCGEEEIIIRqcNEoJIYQQQgghhBBCiAYnNaWq0Gq1AGRnZzfykQghRNOiuy7qrpMtleSAEEKYJjkghBCt27XIAWmUqiInJwcAPz+/Rj4SIYRomnJycnBxcWnsw7hmJAeEEKJmkgNCCNG61WcOKLQt/VFHHZWXl5OcnIyTk1OdpsvMzs7Gz8+Ps2fP4uzsfA2P8NqS82haWsJ5tIRzADkPqHgikpOTg4+PDxYWLXf0t+SAnEdTIufRdLSEcwDJgdqQHJDzaErkPJqOlnAO0PRyQHpKVWFhYUHbtm2v+P3Ozs7N+hdUR86jaWkJ59ESzgHkPFryk3EdyYEKch5Ni5xH09ESzgEkB2oiOVBBzqNpkfNoOlrCOUDTyYGW+4hDCCGEEEIIIcT/s3fn4VGV5//H37PPZJLJMtn3AIFAgABhMURRAQVxQ61brVvrWq1aa22tttb+au3yrdpa19at7lpxR1QiyKpAICwhbCHJZJ/sk8xMZv/9EWdMIGwakhju13XlCpmcmfOck0me63y4n/sIIcSwJaGUEEIIIYQQQgghhBh0EkoNEJ1Ox/33349OpxvqoXwnchzDy0g4jpFwDCDHIY5spJxbOY7hRY5j+BgJxwAj5ziGo5FybuU4hhc5juFjJBwDDL/jkEbnQgghhBBCCCGEEGLQSaWUEEIIIYQQQgghhBh0EkoJIYQQQgghhBBCiEEnoZQQQgghhBBCCCGEGHQSSgkhhBBCCCGEEEKIQSeh1HHy4IMPMnv2bMLCwoiKihrq4Ry1xx9/nMzMTPR6PbNmzWLDhg1DPaRjsmrVKs4991ySk5NRKBS8++67Qz2kY/bQQw8xY8YMIiIiiI+PZ/HixezevXuoh3XMnnzySSZPnozJZMJkMlFQUMDHH3881MP6zv785z+jUCi44447hnoox+T3v/89CoWiz0dOTs5QD2tEk3lgaMg8MHzIPDC8yDww+GQeGBoyDwwfMg8ML8N1HpBQ6jhxu91cfPHF3HzzzUM9lKP2xhtvcOedd3L//fezefNm8vLyWLBgAVardaiHdtTsdjt5eXk8/vjjQz2Ub+2LL77glltu4csvv+Szzz7D4/Fw5plnYrfbh3poxyQ1NZU///nPFBcXs2nTJubOncv5559PaWnpUA/tW9u4cSNPP/00kydPHuqhfCu5ubnU19eHPtasWTPUQxrRZB4YGjIPDB8yDww/Mg8MLpkHhobMA8OHzAPDz7CcBwLiuHr++ecDkZGRQz2MozJz5szALbfcEvra5/MFkpOTAw899NAQjurbAwLvvPPOUA/jO7NarQEg8MUXXwz1UL6z6OjowH/+85+hHsa30tnZGcjOzg589tlngVNPPTVw++23D/WQjsn9998fyMvLG+phnJBkHhg6Mg8MPzIPDB2ZB4aOzANDR+aB4UfmgaEzXOcBqZQSQM//5BQXFzN//vzQY0qlkvnz57N+/fohHJno6OgAICYmZohH8u35fD5ef/117HY7BQUFQz2cb+WWW27h7LPP7vM78n2zd+9ekpOTGTVqFFdccQUWi2WohySGEZkHhi+ZB4YHmQfESCfzwPAl88DwIPPA8aEe6gGI4aG5uRmfz0dCQkKfxxMSEti1a9cQjUr4/X7uuOMOCgsLmThx4lAP55ht376dgoICuru7CQ8P55133mHChAlDPaxj9vrrr7N582Y2btw41EP51mbNmsULL7zAuHHjqK+v54EHHuCUU05hx44dREREDPXwxDAg88DwJPPA8CDzgDgRyDwwPMk8MDzIPHD8SKXUMfj1r399UGOwAz/kD7YYSLfccgs7duzg9ddfH+qhfCvjxo2jpKSEr776iptvvpmrr76anTt3DvWwjkl1dTW33347r7zyCnq9fqiH862dddZZXHzxxUyePJkFCxawdOlS2tvbefPNN4d6aN8rMg+IwSbzwNCTeUD0JvOAGGwyDww9mQeOL6mUOga/+MUvuOaaaw67zahRowZnMAMsNjYWlUpFY2Njn8cbGxtJTEwcolGd2G699VY+/PBDVq1aRWpq6lAP51vRarWMGTMGgPz8fDZu3Mg//vEPnn766SEe2dErLi7GarUybdq00GM+n49Vq1bxr3/9C5fLhUqlGsIRfjtRUVGMHTuWffv2DfVQvldkHhCDSeaB4UHmAdGbzANiMMk8MDzIPHB8SSh1DOLi4oiLixvqYRwXWq2W/Px8ioqKWLx4MdBTKlpUVMStt946tIM7wQQCAX72s5/xzjvvsHLlSrKysoZ6SAPG7/fjcrmGehjHZN68eWzfvr3PY9deey05OTn86le/+l5OQABdXV2Ul5dz5ZVXDvVQvldkHhCDQeaB4UXmAdGbzANiMMg8MLzIPHB8SSh1nFgsFlpbW7FYLPh8PkpKSgAYM2YM4eHhQzu4Q7jzzju5+uqrmT59OjNnzuTRRx/Fbrdz7bXXDvXQjlpXV1efpLeiooKSkhJiYmJIT08fwpEdvVtuuYVXX32V9957j4iICBoaGgCIjIzEYDAM8eiO3j333MNZZ51Feno6nZ2dvPrqq6xcuZJPPvlkqId2TCIiIg5av280GjGbzd+rdf133XUX5557LhkZGdTV1XH//fejUqm4/PLLh3poI5bMA0ND5oHhQ+aB4UXmgcEn88DQkHlg+JB5YHgZtvPAEN/9b8S6+uqrA8BBHytWrBjqoR3WY489FkhPTw9otdrAzJkzA19++eVQD+mYrFixot/zfvXVVw/10I5af+MHAs8///xQD+2Y/PjHPw5kZGQEtFptIC4uLjBv3rzAp59+OtTDGhDfx1vAXnrppYGkpKSAVqsNpKSkBC699NLAvn37hnpYI5rMA0ND5oHhQ+aB4UXmgcEn88DQkHlg+JB5YHgZrvOAIhAIBAY+6hJCCCGEEEIIIYQQ4tDk7ntCCCGEEEIIIYQQYtBJKCWEEEIIIYQQQgghBp2EUkIIIYQQQgghhBBi0EkoJYQQQgghhBBCCCEGnYRSQgghhBBCCCGEEGLQSSglhBBCCCGEEEIIIQadhFJCCCGEEEIIIYQQYtBJKCWEEEIIIYQQQgghBp2EUkIMIz6fj9mzZ3PhhRf2ebyjo4O0tDTuvffeIRqZEEKIwSDzgBBCCJkLxIlEEQgEAkM9CCHEN/bs2cOUKVP497//zRVXXAHAVVddxdatW9m4cSNarXaIRyiEEOJ4knlACCGEzAXiRCGhlBDD0D//+U9+//vfU1payoYNG7j44ovZuHEjeXl5Qz00IYQQg0DmASGEEDIXiBOBhFJCDEOBQIC5c+eiUqnYvn07P/vZz7jvvvuGelhCCCEGicwDQgghZC4QJwIJpYQYpnbt2sX48eOZNGkSmzdvRq1WD/WQhBBCDCKZB4QQQshcIEY6aXQuxDD13HPPERYWRkVFBTU1NUM9HCGEEINM5gEhhBAyF4iRTiqlhBiG1q1bx6mnnsqnn37KH//4RwCWL1+OQqEY4pEJIYQYDDIPCCGEkLlAnAikUkqIYcbhcHDNNddw8803c/rpp/Pss8+yYcMGnnrqqaEemhBCiEEg84AQQgiZC8SJQiqlhBhmbr/9dpYuXcrWrVsJCwsD4Omnn+auu+5i+/btZGZmDu0AhRBCHFcyDwghhJC5QJwoJJQSYhj54osvmDdvHitXruTkk0/u870FCxbg9XqlZFcIIUYwmQeEEELIXCBOJBJKCSGEEEIIIYQQQohBJz2lhBBCCCGEEEIIIcSgk1BKCCGEEEIIIYQQQgw6CaWEEEIIIYQQQgghxKCTUEoIIYQQQgghhBBCDDoJpYQQQgghhBBCCCHEoJNQSgghhBBCCCGEEEIMOgmlhBBCCCGEEEIIIcSgk1BKCCGEEEIIIYQQQgw6CaWEEEIIIYQQQgghxKCTUEoIIYQQQgghhBBCDDoJpYQQQgghhBBCCCHEoJNQSgghhBBCCCGEEEIMOgmlhBBCCCGEEEIIIcSgk1BKCCGEEEIIIYQQQgw6CaWEEEIIIYQQQgghxKCTUEoIIYQQQgghhBBCDDoJpYQQQgghhBBCCCHEoJNQSohBUl1djV6vZ+3atUfc9rTTTuO00077Vvvxer3cfffdpKWloVQqWbx48bd6nSN54YUXUCgUVFZWHnHbZcuWER4eTlNT03EZixBCCCGEEEKI7x8JpcSIU15ezo033sioUaPQ6/WYTCYKCwv5xz/+gdPp7LOtz+fj+eef57TTTiMmJgadTkdmZibXXnstmzZtCm0XDGCCH3q9nrFjx3LrrbfS2Nh4VOP6wx/+wKxZsygsLBzQ4z3Qc889x9/+9jd+8IMf8OKLL/Lzn//8uO6vtyeeeIIXXnjhoMcXLlzImDFjeOihhwZtLEIIIYQQQgghhjf1UA9AiIH00UcfcfHFF6PT6bjqqquYOHEibrebNWvW8Mtf/pLS0lKeeeYZAJxOJxdeeCHLli1jzpw5/OY3vyEmJobKykrefPNNXnzxRSwWC6mpqaHX/8Mf/kBWVhbd3d2sWbOGJ598kqVLl7Jjxw7CwsIOOa6mpiZefPFFXnzxxeN+Dj7//HNSUlJ45JFHjvu+DvTEE08QGxvLNddcc9D3brzxRu666y4eeOABIiIiBn1sQgghhBBCCCGGFwmlxIhRUVHBZZddRkZGBp9//jlJSUmh791yyy3s27ePjz76KPTYL3/5S5YtW8YjjzzCHXfc0ee17r///n5DnbPOOovp06cDcN1112E2m3n44Yd57733uPzyyw85tpdffhm1Ws255577HY/yyKxWK1FRUcd9P8fqoosu4mc/+xlvvfUWP/7xj4d6OEIIIYQQQgghhpgs3xMjxl//+le6urp49tln+wRSQWPGjOH2228HoKamhqeffpozzjjjoEAKQKVScdddd/WpkurP3LlzgZ5A7HDeffddZs2aRXh4+EHfe+aZZxg9ejQGg4GZM2eyevXqfl/D5XJx//33M2bMGHQ6HWlpadx99924XC4AKisrUSgUrFixgtLS0tBSw5UrVwLwf//3f8yePRuz2YzBYCA/P5///e9/ffYRfI3+luApFAp+//vfH/IYMzMzKS0t5Ysvvgjtu3dfrPj4eCZPnsx777132HMlhBBCCCGEEOLEIJVSYsT44IMPGDVqFLNnzz7ith9//DFer5crr7zyO+2zvLwcALPZfMhtPB4PGzdu5Oabbz7oe88++yw33ngjs2fP5o477mD//v2cd955xMTEkJaWFtrO7/dz3nnnsWbNGm644QbGjx/P9u3beeSRR9izZw/vvvsucXFxvPTSSzz44IN0dXWF+jeNHz8egH/84x+cd955XHHFFbjdbl5//XUuvvhiPvzwQ84+++zvdB4AHn30UX72s58RHh7OvffeC0BCQkKfbfLz83n33Xe/876EEEIIIYQQQnz/SSglRgSbzUZtbS3nn3/+UW1fVlYGwKRJk45pPx0dHTQ3N9Pd3c3atWv5wx/+gMFg4JxzzjnkcywWC06nk6ysrD6PezwefvOb3zBlyhRWrFiBVqsFYMKECdxwww19QqlXX32V5cuX88UXX3DyySeHHp84cSI33XQT69atY/bs2fzoRz/iP//5DyqVih/96Ed99rdnzx4MBkPo61tvvZVp06bx8MMPD0gotXjxYu677z5iY2MP2nfQqFGjaG5uxmq1Eh8f/533KYQQQgghhBDi+0uW74kRwWazARx1A+1j3T5o/vz5xMXFkZaWxmWXXUZ4eDjvvPMOKSkph3xOS0sLANHR0X0e37RpE1arlZtuuikUSAFcc801REZG9tn2rbfeYvz48eTk5NDc3Bz6CC4fXLFixRHH3juQamtro6Ojg1NOOYXNmzcf+cAHSPAcNDc3D9o+hRBCCCGEEEIMT1IpJUYEk8kEQGdn53HZPujxxx9n7NixqNVqEhISGDduHErl0WW7gUCgz9dVVVUAZGdn93lco9EwatSoPo/t3buXsrIy4uLi+n1tq9V6xP1/+OGH/PGPf6SkpCTUhwp6ekUNluA5GMx9CiGEEEIIIYQYniSUEiOCyWQiOTmZHTt2HNX2OTk5AGzfvp0pU6Yc9X5mzpwZuvve0Qr2m2prazum5/Xm9/uZNGkSDz/8cL/f773Urz+rV6/mvPPOY86cOTzxxBMkJSWh0Wh4/vnnefXVV0PbHSos8vl833rsvQXPQWxs7IC8nhBCCCGEEEKI7y8JpcSIcc455/DMM8+wfv16CgoKDrvtWWedhUql4uWXX/7Ozc6PJD09HYPBcNAd+jIyMoCeKqjgMjzo6TVVUVFBXl5e6LHRo0ezdetW5s2b962qjN5++230ej2ffPIJOp0u9Pjzzz/fZ7vg8rr29vY+jweruo7kSGOrqKggNjb2kBVfQgghhBBCCCFOHNJTSowYd999N0ajkeuuu47GxsaDvl9eXs4//vEPoKey6Prrr+fTTz/lscceO2hbv9/P3//+d2pqar7zuDQaDdOnT2fTpk19Hp8+fTpxcXE89dRTuN3u0OMvvPDCQaHQJZdcQm1tLf/+978Pen2n04ndbj/sGFQqFQqFok/FU2Vl5UF3wjOZTMTGxrJq1ao+jz/xxBOHff0go9F40Nh7Ky4uPmJgKIQQQgghhBDixCCVUmLEGD16NK+++iqXXnop48eP56qrrmLixIm43W7WrVvHW2+9xTXXXBPa/u9//zvl5eXcdtttLFmyhHPOOYfo6GgsFgtvvfUWu3bt4rLLLhuQsZ1//vnce++92Gy2UD8rjUbDH//4R2688Ubmzp3LpZdeSkVFBc8///xBPaWuvPJK3nzzTW666SZWrFhBYWEhPp+PXbt28eabb/LJJ58cdlnh2WefzcMPP8zChQv54Q9/iNVq5fHHH2fMmDFs27atz7bXXXcdf/7zn7nuuuuYPn06q1atYs+ePUd1nPn5+Tz55JP88Y9/ZMyYMcTHx4eqwKxWK9u2beOWW245llMnhBBCCCGEEGKEklBKjCjnnXce27Zt429/+xvvvfceTz75JDqdjsmTJ/P3v/+d66+/PrRtWFgYH3/8MS+88AIvvvgi/+///T8cDgfJycnMnTuXV1555bB31TsWV155Jb/+9a95//33+dGPfhR6/IYbbsDn8/G3v/2NX/7yl0yaNIn333+f3/72t32er1Qqeffdd3nkkUf473//yzvvvENYWBijRo3i9ttvZ+zYsYfd/9y5c3n22Wf585//zB133EFWVhZ/+ctfqKysPCiU+t3vfkdTUxP/+9//ePPNNznrrLP4+OOPiY+PP+Jx/u53v6Oqqoq//vWvdHZ2cuqpp4ZCqSVLlqDT6bjkkkuO9rQJIYQQQgghhBjBFIEDbwkmhDgufvKTn7Bnzx5Wr1491EMZElOnTuW0007jkUceGeqhCCGEEEIIIYQYBiSUEmKQWCwWxo4dS1FREYWFhUM9nEG1bNkyfvCDH7B///6jqrgSQgghhBBCCDHySSglhBBCCCGEEEIIIQad3H1PCCGEEEIIIYQQQgw6CaWEEEIMS6tWreLcc88lOTkZhULBu+++e8TnrFy5kmnTpqHT6RgzZgwvvPDCcR+nEEKI40PmASGEGPkklBJCCDEs2e128vLyePzxx49q+4qKCs4++2xOP/10SkpKuOOOO7juuuv45JNPjvNIhRBCHA8yDwghxMgnPaWEEEIMewqFgnfeeYfFixcfcptf/epXfPTRR+zYsSP02GWXXUZ7ezvLli0bhFEKIYQ4XmQeEEKIkUkqpYQQQowI69evZ/78+X0eW7BgAevXrx+iEQkhhBhMMg8IIcT3j3qoBzDc+P1+6urqiIiIQKFQDPVwhBBi2AgEAnR2dpKcnIxSOfz+T6OhoYGEhIQ+jyUkJGCz2XA6nRgMhn6f53K5cLlcoa/9fj+tra2YzWaZB4QQoheZB4QQ4sR2POYBCaUOUFdXR1pa2lAPQwghhq3q6mpSU1OHehgD5qGHHuKBBx4Y6mEIIcT3hswDQghxYhvIeUBCqQNEREQAPSfZZDIN8WiEEGL4sNlspKWlhf5ODjeJiYk0Njb2eayxsRGTyXTI/x0HuOeee7jzzjtDX3d0dJCeni7zgBBCHEDmASGEOLEdj3lAQqkDBEt0TSaTTEJCCNGP4bqUoaCggKVLl/Z57LPPPqOgoOCwz9PpdOh0uoMel3lACCH6J/OAEEKc2AZyHhh+i8GFEEIIoKuri5KSEkpKSoCeW32XlJRgsViAnv/Zvuqqq0Lb33TTTezfv5+7776bXbt28cQTT/Dmm2/y85//fCiGL4QQ4juSeUAIIUY+CaWEEEIMS5s2bWLq1KlMnToVgDvvvJOpU6fyu9/9DoD6+vrQhQlAVlYWH330EZ999hl5eXn8/e9/5z//+Q8LFiwYkvELIYT4bmQeEEKIkU8RCAQCQz2I4cRmsxEZGUlHR4eU6wohRC8nyt/HE+U4hRDiWJ0ofx9PlOMUQohjdTz+PkqllBBCCCGEEEIIIYQYdBJKCSGEEEIIIYQQQohBJ6GUEEIIIYQQQgghhBh0EkoJIYQQQgghhBBCiEEnoZQQQgghhBBCCCGEGHQSSgkhhBBCCCGEEEKIQSehlBBCCCGEEEIIIYQYdBJKCSHEEKmq6mDp0v1UVXUM9VCEEEIIIYQQYtCph3oAQghxoiotbWH9+joAMjIih3g0QgghhBBCCDG4JJQSQoghkptr7vNZCCGEEEIIIU4kEkoJIcQQyciIlAopIYQQQgghxAlLekoJIYQQQgghhBBCiEEnoZQQQgghhBBCCCGEGHQSSgkhhBBCCCGEEEKIQSehlBBCCCGEEEIIIYQYdBJKCSGEEEIIIYQQQohBJ6GUEEIIIYQQQgghhBh0EkoJIYQQQgghhBBCiEEnoZQQQgghhBBCCCGEGHQSSgkhhBBCCCGEEEKIQSehlBBCCCGEEEIIIYQYdBJKCSGEEEIIIYQQQohBJ6GUEEIIIYQQQgghhBh0EkoJIYQQQgghhBBCiEEnoZQQQgghhBBCCCGEGHQSSgkhhBBCCCGEEEKIQSehlBBCCCGEEEIIIYQYdBJKCSGEEEIIIYQQQohBJ6GUEEIIIYQQQgghhBh0EkoJIYQQQgghhBBCiEEnoZQQQgghhBBCCCGEGHQSSgkhhBBCCCGEEEKIQSehlBBCCCGEEEIIIYQYdBJKCSGEEEIIIYQQQohBJ6GUEEIIIYQQQgghhBh0EkoJIYQQQgghhBBCiEEnoZQQQgyytWtreOCBtaxdWzPUQxFCCCGEEEKIIaMe6gEIIcSJZvnyKpYvtwBQWJg6xKMRQgghhBBCiKEhoZQQQgyy+fMz+nwWQgghhBBCiBORhFJCCDHICgtTpUJKCCGEEEIIccKTnlJCCCGEEEIIIYQQYtBJKCWEEEIIIYQQQgghBp2EUkIIIYQQQgghhBBi0EkoJYQQI1xVVQdLl+6nqqpjqIcihBBCCCGEECHS6FwIIUa40tIW1q+vAyAjI3KIRyOEEEIIIYQQPSSUEkKIES4319znsxBCCCGEEEIMBxJKCSHECJeRESkVUkIIIYQQQohhR3pKCSGEEEIIIYQQQohBN6JCqd///vcoFIo+Hzk5OUM9LCGEEEIIIYQQQghxgBG3fC83N5fly5eHvlarR9whCiGEEEIIIYQQQnzvjbjERq1Wk5iYONTDEEIIIYQQQgghhBCHMaKW7wHs3buX5ORkRo0axRVXXIHFYjns9i6XC5vN1udDCCGEEEIIIYQQQhxfIyqUmjVrFi+88ALLli3jySefpKKiglNOOYXOzs5DPuehhx4iMjIy9JGWljaIIxZCCHEkjz/+OJmZmej1embNmsWGDRsOu/2jjz7KuHHjMBgMpKWl8fOf/5zu7u5BGq0QQoiBJvOAEEKMXCMqlDrrrLO4+OKLmTx5MgsWLGDp0qW0t7fz5ptvHvI599xzDx0dHaGP6urqQRyxEEKIw3njjTe48847uf/++9m8eTN5eXksWLAAq9Xa7/avvvoqv/71r7n//vspKyvj2Wef5Y033uA3v/nNII9cCCHEQJB5QAghRrYRFUodKCoqirFjx7Jv375DbqPT6TCZTH0+hBBCDA8PP/ww119/Pddeey0TJkzgqaeeIiwsjOeee67f7detW0dhYSE//OEPyczM5Mwzz+Tyyy8/4v+qCyGEGJ5kHhBCiJFtRIdSXV1dlJeXk5SUNNRDEWLIrV1bwwMPrGXt2pqhHooQR8XtdlNcXMz8+fNDjymVSubPn8/69ev7fc7s2bMpLi4OXXzs37+fpUuXsmjRokPuR3oLCiHE8CTzgBBCjHwj6u57d911F+eeey4ZGRnU1dVx//33o1KpuPzyy4d6aEIMueXLq1i+vKfxf2Fh6hCPRogja25uxufzkZCQ0OfxhIQEdu3a1e9zfvjDH9Lc3MzJJ59MIBDA6/Vy0003HXbZxkMPPcQDDzwwoGMXQgjx3ck8IIQQI9+IqpSqqanh8ssvZ9y4cVxyySWYzWa+/PJL4uLihnpoQgy5+fMzmD8/nfnzM771axxNtVVVVQdLl+6nqqrjW+/n+0qq0YbeypUr+dOf/sQTTzzB5s2bWbJkCR999BH/7//9v0M+R3oLCiHEyCHzgBBCfL+MqEqp119/faiHIMSwVViY+p0rpI6m2qq0tIX16+sAyMiI/E77+76RarSBFRsbi0qlorGxsc/jjY2NJCYm9vuc3/72t1x55ZVcd911AEyaNAm73c4NN9zAvffei1J58P/F6HQ6dDrdwB+AEEKI70TmASGEGPlGVKWUEOL4Oppqq9xcMwUFyeTmmgdxZMPDQFSjiW9otVry8/MpKioKPeb3+ykqKqKgoKDf5zgcjoMuOFQqFQCBQOD4DVYIIcSAk3lACCFGvhFVKSWEOL6OptoqIyPyhKuQChqIajTR15133snVV1/N9OnTmTlzJo8++ih2u51rr70WgKuuuoqUlBQeeughAM4991wefvhhpk6dyqxZs9i3bx+//e1vOffcc0MXJUIIIb4/ZB4QQoiRTUIpIcSgefvt3SxZspcLL8zmoovGDfVwxPfApZdeSlNTE7/73e9oaGhgypQpLFu2LNT01mKx9Pkf8fvuuw+FQsF9991HbW0tcXFxnHvuuTz44INDdQhCCCG+A5kHhBBiZFMEpI61D5vNRmRkJB0dHZhMpqEejhAjyhVXfMiqVTXMmZPKK6+cM9TDGVRVVR2UlrYQGamlo8NNbq75e1dRdqL8fTxRjlMIIY7VifL38UQ5TiGEOFbH4++jVEoJIQbNhRdm9/l8Igk2gFerFXi9Pf8X8H0LpYQQQgghhBBiIEkoJcQJaO3aGpYvr2L+/Izj3gMpWCGUm2vmoovGnbDL9oKN33tXSg2E3udXQi4hhBBCCCHE94mEUkKcgJYvr2L5cgvAcQ+lghVCcGJXBh2vBvByfoUQQgghhBDfVxJKCXECmj8/o8/n4ylYETRQlUHfxoEN1gezUuxYHWvl03A4v0IIIYQQQgjxbUgoJcQJqLAw9bBhzEAuCTteFULHYsmSvaxaVQPARReNG9RKsWN1rJVPw+H8CiGEEEIIIcS3IaHUAAn4/djXrMF4yikoFIqhHo44AQ1kkDTSloQd2GB9MCvFjlXvyifpFyWEEEIIIYQYySSUGiD2teuovuFGIhYuJPmvf0Gp1Q71kMQIcjThRO8gqaam8zstTxtpS8IObLB+pEqxQxnskGikhYNCCCGEEEII0ZuEUgMk/JSTib7qKtpeeYWKi8pJe/optMnJQz0sMUL0DieCXx8YjPQOkl54YQfLl1tob3eF7vR2LKGGLAnr32CERL33cahwUCqohBBCCCGEECOBhFIDyHTmGdSXN+LesIq955xP+l/+RMQZZwz1sMQI0DucOFQw0jtImj8/A4vFRmlpM62t3Vx6ac5hw4vDhRzBpuAJCWE0NjqOufpqJAUog1FB1nsfhwoHjzYcG0nnXgghhBBCCDHySCg1wHY6ItmhPZ3FymJqfnYbkRdeQOL996PU6YZ6aOJ7rL9wIhhe9Bc8FBam8txz2yktbcbp9GK12qmq6iAjIxK3243L5QJAqVRSUtLGE0+UoFYr+w2vgk3BVSoFPl8g9PqH03tMBwYo3+egZDAqyI5mH/2FY8HzarF0sHp1LRdemI3BoJHlf0IIIYQQQohhS0KpAVJV1cG+9fUkJYZjj4hHMXE64XvX0/He+9i//IqkB/9IeEHBUA9TfM/0F+AcGFqUlrawbl0NjY01pKR043A4WLx4MQAqlZKdOx/i9tut+P0uXC4HHo8n9NzMzEyuueZl9uxpY+zYaB555BZuu20vkZGRJCYmkpqait8fQUyMhqysTKKico+qOfjhlqBJn6Tvrr/gKnheV6+uoby8HYA//ekUYOT0BhNCCCGEEEKMLBJKDZDS0hY2b9pPFm1kT0zFnBBB1MQL0Ofm0v7mm1Rf+2O6ppxC7L33kjVp+N3xSwxPhwpwVq9ezYYNG1i16ks2b95KY6MFj6en+mns2LEsXryYH/94EunpJl54wUdlpbXf1/d6/aGQaeLEWO66q4LKyvJ+t42OjqalpSV0d8l//vOftLe7iIgYw9lnFzJ2bHxo28MtQfs2S+C+z9VVgyV4PlNSjKFKKekNJoQQQgghhBjOJJQaILm5Zt5o+orffvwaWXGZnDGjgJsuPYsxY8cSf/fd7Hn+f+i3fYn9ygtpvvVmzFddhULu0HfCCvZpmjgxFoNBc8iwJTfXTGurlfb2HcCo0OO33HIL27dv77OtVqkkzRBGdksbZSfNJk6j5odqNVMyE1FNHY8pOYlOfSI726MhZRQtLi0zZyaG7kS3dOl+Fi78LaNHaxg/3kh9fT07duxj164KnM4WkpPjUCgUoYDo4YcfpaqqAoC779YwdeoUTjrpJObOncupp57KokWj6M+BQUnwXByuV9XRNHo/kpEabPU+ruA5v+mmqUM8KiGEEEIIIYQ4MgmlBkhGRiR+VScAFU2VPLO0kmeWvkZSVCILZ83mvDknEz0ql4TSVTT9/WHaXnmF+LvuYkfkZJYXWY65ebT4fgv2adqzp41Ro6KAbyqhnE4nRUVFLF26lM8//5zdu3ej0xmYMaOKDJ0T29KPKfT5STCZyNVqyTGEMSougay0FDpdStrtfhzRYcTG6MDnY7LTid/hwLd1G+bmzxkV6OkL5TCaqV+fzqYdhUy8eC4TcuKBgj6hzdKl+4mIqKOgIDkUePQsF6zl5JPPIytrJ5s3b8Jma2Pjxo1s3LiRxx57jEmTJrFt27bQ8fr9fpRK5WHPBRy6V9XRNHo/Urg1UpcNjtTjEkIIIYQQQox8EkoNoKfvv5/Lx0znlY1l7GspY9PuHdS3N/D8J0tYsuYTyt9eQnlKMpXaTeQ0babuF3ehjEqltvskntg9k9TUiNBF5Uit6hA9ei+ZC1ZKffjhhzzzzDMsX74cp9MZ2lahUJBoiGTvtZfjba5FodNxe8YounJmEJmdQcyE0Wwps/HsF/WgVTNhciIZp6QSE2ckEAhgbeykprKd1EQ99bsa2P/VHiYlePDU1RPZtB/DayVUvPovFHo9E8aPR58/jc5p+Rim5PW71C747+uvf4CMjEgCgQCVlZV89dVXrFmzhs8//5zTTj6Z7rIy6ipb2FXexk/+3w2ccuopnHfeeSxatIiYmJiDzsXhelUdrtF70JHCrcG4c9538W1/54f7cQkhhBBCCCHEoUgoNcDaGvxEuXP4ySmn8MsLVbz47ufU2PcwbnQi7e1uln5cSU2tjl9Ul5EbF8mMhkp+qKrAv30VL960nXn3XknhyWlS/TDCHBg4FBamMm6cnvDwcBobXZSWtrBq1UY++OADABLikjhn2mROcrmZWFuLSa1BGWEgouAc7PEZrC110OpUMc2cTGJqImve2Mi2vXY0GiWjxsYRH2cEegKtHaWtbN5sZcyYKLpdamxJY+jOT8RoULFtSy15WTpSacNjseBtaKD99Tdo/c+zAPjMCYzJGU/t0gS8U3NQxMWzv8HL+PEJJDjdODbvx9vYgG/7PkaV7mNqZxO3RcfgLvqcis9XAFBvt9NgbeCtt97irbfeQqVSMWfOHM4443yysk6moGAM999feNjz9/bbu1myZC8XXpjNRReN6/d34kjhVu9g63AB0HcNhL/t87/t77z0jRJCCCGEEEJ8X0koNcCSEsOJsHrwevyoCWNaRj7jnXmMGR3F9m1NuD0+nIE2alrrqGmt4xPgj8BofT2n1e1g60/eIPsPv2FC/jxAqh9GimDg4HTaWb16K6+99hqffvopL7/8MhERM1i/vo7sjJNYPG0Rs2x2zlY3oa6yoM3KonPmaayyGulUR3NqxljsTj8t3V5cbi8lW6wYw9QUFCTR0eFCrVFg63Dxn/9so7AwmfHjYwEFLpeXnTtbMRrVJCSGYQxTY3d4Of3MbOLjjJSVNVNiiWLK/NPITtXz1pNf4K6oJMveTdSm7YR5v8S9/A0AUoBuoKLX8fm1ehRqI46YGGLGjcN40kmooqOpbXbTtbKSX6mqqfNV81VLHXucDlasWMGKFStQKlXcccefue226w8b5CxZspdVq2oAuOiicf2e42BvrGP5ecDBAdC3CYd6h2YGg+ZbhUtS8SSEEEIIIYQ40UgoNYDqG+3UN3Th92tpaHCQnBzB1KkJlO5sZt/edvQ6DZmZJqKitBTO+QO76stYvnEju6rLKe92UN7t4NnWVjbd/FPuzMomYd55bO84k+7uNMaNS5Alfd8zwR5H8+al43LtZ+PGf/PII0ux27tC23y6bAW/OTOMuH0fEv7+Bk52ddNlisOXPQv9hPHU+E1s3u1g3d56/D4bdn8VBQVJmEwampq87CxroaPDxZVXTeAPs1N55529LHlnDx63D4vFxq0/m8qkybFYm+w0NjhISAxj3rwMPllWwdq1tYwaFcm5545h6dIKaut6xjV+4gSawlMp8WnZ4tOgV/lJT9XS2dhKZ20TBqWXMRlGJuYlUtPoJHF0EomjE2hucpOSFUN0SgwKlQqA6qJK9oepMJjHceuF2fwz3cDuoiKWfLyU96uq2OVycUa0gtLtTaz/qoHy8p2MH69n7ty5VFd3smJFNRDglFNSALjwwuxv/fMI/v5YLB0sW1ZJbq653wDo24RDvUOzP/3plEM+/3C/w1LxJIQQQgghhDjRSCg1gCr327DbvSQlxZCVZWLS5FgAKio6sHW4gABeT4Cqyk5ibDp+dO4FPPjT6ylatZcPVq5nf+setlaUkpk/n7YuGzEfvELt6//mwtpqMlJzUOjGkZIynnPPPY1x47KYODG2z3Kkt97aQ21tJz/4wVhpmj4MLF9exbJlu3n88StpavqmrigpIY0zJ+YzvTPAnI1f4V7/BVFJSegKZuGKS8NJFNHjkqmu72bN6lpaW51kZprwegKoVAqqLDZsNg/t7d102lzUBgJs39bMvHlGWlqcdDu9uD1+GhvtbN/WTGSUjil58dizvaSnRxAfZ8Ri6aStzUVFhY3PlldhsdiIjOzZDuCM+RmEGTT4fD5UKhWFhcm8/fZutu1ToFBAU7eJyVPyMDu8JH39mgn9ngUFUVE6pk5N+LpqCyacdx7jzz6bO0tK2PH++yS//B/al7xPzqyLeG7tZ9x224ekpKRx2mkXYrNNIiwsnquuyuWVV77bHeWCFVCrV9dQXt6O0ajpNwT6NuFQMCy78MLswz5fluUKIYQQQgghxDcklBpAmaNMaMebSZ42OtTTZ1NxAz5/gMTEcFpautm1q4X6BjtNTQ5iYuqwO7wkx0Xzo7PPpKN9DvX1duITwvBG69lZWs6a5a/g8fvYZykFStm7F1aufBCjMYbc3Cncf//vgRSsVjsffLCPpiYnUVG6g0Kp3ncmS02N4K239rBxYx3h4Vp+/ONJEmINoKqqKjIyMpg4MZY9e9pobY2kq1PPxKhRLFTq+UG4E03NLhyGKGojRxE1aRxxE8ewv0NJuyNAQ4MDn6mb9PQIWludVFR0kJUVyeWX51BXZ8dmc1HdbmN/eQdutxe/H5YXVfLyy6UkJhmJTwijvd1FQoKRurpOlhdVMnNGEoUnp2Cx9Nwh8vTT0wBIT4+grd2F1+cnNs5AXZ2durouJk2OY8rUeHbvamVcTgzjx8fS2FiCUglKJXg8flatqqbR6qC1pZuFCzNZuHB0n/NQVtZMRUUHo0dHhQLaIIVKRVh+PjOmTGH54x8Qs2cT01Y8yceddgwaPbW11bzyyj9QKBRMmHAS+/dfj9udilar/dY/l2DlUkqKkSVL9uL1+li7tmZA3vsXXTTukMsK+xvD8VqiJ9WUQgghhBBCiO8TCaUGUFKCkajxZrRfB1LQc9EP0NHezb7yDtIzTMTHG9AbNOh0SlausDB1agLz5mVgbbITGaUPVbNYM0yYc0dzvrWCVUs/orK+nD3ODva5XNjtrWzY8DmVlXfx1Ve76ejoxuFYSXX1UpYtm4DTOZXw8Hi83khGj87ggw9aqahwATBjRhIffLCPkhIrgYAC6P9uZeLwegcAbrebZ555meXLX2XXrh3s+t/bJK0p4Sc1xVzq7yYhNY0wlYL9bj3FqlTSZk7AZYqlzaOhtNXL3ucrCQ/XkpoSgU6nDPWKio0zsH9/Ox0dLuwOL5FROhoa7Hg8AdRqJRqNloQEI3v2ttHt9GG3e5g6NQGH3YNSCRs21tPY4MBgUJOWbqK4uJG9e1uZkhfPgoVZpKdH0NLsJC7OgF6nZsuWRgIBQu9D+OY9fMopKaxeXYvBoMLu8LJ3Xzs11Z243X5WraoNhVLWJjsWSyclW6zs29eGMfybxutBZWXNlGy1MiUvntQzTmZr7GhM+kbuK93AL4wGijRaPsDPqp07KS1dz89+tp4333yeVatWHdXP40gVUI2NDpYvt7B8edWgvvcHaoneoY5VKrGEEEIIIYQQ3ycSSg2w1jYnNU0NoQt5i6Wz59/pEYCCurpOXAYNhYXJ1NV1UVlpo6Kig7KyZuyOb5ZX9b5on7FoNuaEUezZaeWqDguRtaVYm/ay027n1C9eobFrMh83JtDaVkFXVw1fflnDl19+etDYZsx4mIkTZ5KbayYxsYxAYClut4qVKyM599zXSE6OIjY2gpkzZ3L++ecP8pn7fqmq6uCl/xTTsXsr/2tawfsbPqfFYQdAo1Cw9MYbOSUqBrc6BnVCLsVdenY0aWlyqiHMSOq+MGJi/ISHB9iwoQGbzY1e39OHye3y0dnloaPDRUFBEmEGDWZzT0i0b28bu3e30t3twRSpJSpKx6SJcdjtbioqbGi0Kiore0KsPXvaUanBHwCvJ0B6egR797Zis7kp2WrF7+s5lun5iYwf39N3ymTSAYHQ+zfI2mRn1OhoTjs9nZZmJyVbrURH6diwsYHWlm7mzEkJbWuxdLJ7Vys6nYq4uDAy0k0Hnb+SrVa2ljRRbbGhUqkoKEgie/YkAuedhqO4mAvXrePsffuoHT+Bj6KjeWPvHi644ILQ87u7u/niiy8444wzUCqVwNEFMsEwZ+LEnsqtQ92p70g/++9ajfRdX2PFimo++aSCBQuyuOaab54vzdKFEEIIIYQQ3ycSSg2whgYHu5t9oa9372oFei78I6N6llLZOtwYw9VfV0c5aGxw8Npru3A4PBQWpnDBBWMp2Wpl3bp6tm9r5sorJ4RCAmNYMnZ7PjPD3czZXUJ3SQmXNRZzniGKysICyi45D5faRkdHA2Vl+9i/vwqrtZaurg4Mhkg6O91kZEQSE9NEZ2cxAPv393wEKZVKmpqaiImJGbwTN4wFfD5c5eVsf2c1teu2kaVuoX7fbjZV7uEjmw3v19uZNVrOShjFSTE5+AxxvOk10tQFTqcGQ4QBT6yP7kYnWqWSxkY7kZE6fD4fXq8flQo0WjVulw+tTomr2cP+/e2MGhXJeeePxmLppKXZydtv76W8vB0Ag0GFw+4lOzuaG27I4+mnt9LS2k0A0Os1pKYaSUoKp7aui8wsE0VFVWSkm2hsdLKpuB57lweNpqdSzhimpq7ODgSYNLmnsmlTcUPo/QuwZnUtPp+fRYuyuPyyCQB9luyVlTWzdm0dOp2S5ORwABxOL1UWG2Oy7X2qpYK9q8p2tlJT0wbA7NmpKNRqjLNmETZ9Ou6KCsLWreWmnWVcGx2D++U32FvXSvJFZ/PWzp1c+5OfMHr0aG666SauvfZacnPNrF1byzPPbMXp9PS7nC4YXBUUJHP//YXf6v0wENVI3/Y1gstw3W4fgQBAoM/3pVm6EEIIIYQQ4vtEQqkBlpgYhjc2steyPRcd7d1Ym+ykp0cwc0YyLS1OpuTFEx9nZN68DIqKqqio6KC11cnadbXk5MQwJS+e4uJGrE0O1q6t47rrJh+0BIqcDPwLF9K9Ywe6L78kbPNnTNgM7okzWaadQfqZV3DxJTmUlrbwm998RmmpnU2bGrnmmkn86Ec/Ijc3F4fDQWNjB3v2NOHxuPjkk/9y/fXXD8GZGz78TieOTcU4vvoSx+YtdO/cSaC7GyOQqDDiMEXjiUrgo87NeIHpo0axKG8OalsKDq+G9qgwqqpsNDTY8fn86PUBIqKVxMbqcTi8REfrSU4Jx+f189VXDdjtHtRqJV6Pl7q6TsLDtdhsHlRqLy0t3Wzf1syWLY1ERelpaLDj94NCAVqtmrQ0UyjgASAAMdF60lK1JCWFk5VlosPmZsXnFjRaNaNH9QQWFftt+Hx+Skqa8HgC1NZ2snt3K7GxBiKj9MTHGUlPjwi9f5OTw/H5/NTWdVGy1cr48bEsW1bOqlW1zJmTwsKFoynZamVLSSMmk5bxE2JJT4/A2uTAZnNjsXSG3r/WJjt2h5d58zLISDexfn09ubkxbCpuCFUKKlQqdGPGoBszhrLNVZS+t5ZUZzWGT5di+eB/7OvsxKTVUl5ezi9/+Uvuu+8+LrvsMurrJ1NaasBo1PQbSg1EJdFQvsby5VUsX25h+vQErroqVyqihBBCCCGEEN9rEkoNsJhoA4npiaGvI6N6ljJFRnUyPT+RwpOT2b6tmbq6LsyxhlAwpddpWLuuBpfLT8lWK/PmZZCebsLpaMVisVFW1hy6e1mwZ0/wAj4sPx/DtGl4Gxqwr1mDdfUGzvOuo35jNJb2HzLhJ5ej14fj97dSU9PT6LqwsJDCwsLQMqJJk+yUl3dw2233s2jRqCE5d0PJXVND56ef0fXFFzg3bybg8eAzhKNOSUE/axYrOtr5ZG8d+eZTiU+Not0BPzo1kjnTJ5IZn8n+8jY2VDWg0QSo2N5MW7sLt8uPRqMgPFyJyaRFb9AQY9aTmRFJc7OTXbtbsXe58XrB7fbh7PahADo73QQCoFOoSE01AgHa213YbG5SUozU1toxmw3MmJGAw+FhyZK9aDQK2ttdeDw+0tIiiDEbsNncgIKWZicOhxet1095eTsajYLIKB0ul5cAASorO2ho7KKz001EhDYUqMbHGYmM6gyFowUFSVRZbEzJi8faZOejjyqob7DT2elmWn5izx3+uryhpYbB93ZoCevXgsv7oKc6avbs1D5VWb3DK4ulk3XrmiltMJOelslPrhiFqa2OG/bs4ZLyfbxXtovXWlsoc7l48cUXAUiOTGHx7OcJBAIoFIo+P+eBqCQaytcILjecPz9D+sAJIYQQQgghvvcklBpA9Y126spaSDaYQxfWvZtFW5vsFBVVsWWzFZvNxdp1dSQnhTNhQgxp6RHMN6RTWtpKRroJi6UTnU5NZKSOLruHkq1WzLEGLJZOOtq7aWhwAIT6+0zJi2f8+CSiLr6YZ/cloti1g0JTPbFvP45n7f948NQLeX5UJhf0qh6pqurghRd20NzsJD8/kYKC5BOq8sJVXk7np59iW/YJrt27UWg0aLOyMM6ZQ43PxM4WDXu8Ft5b9jG7LRYAzHPysTdG0NTkoGDKbDLjYygubmTH9iY6O934fH4cDi+BQACNRkFEhIaYGD2xsWFMmBDDzp0aNm9uoKHBjkajQqdT4fP7CPhBAWi1SlQqBQ6nD58vwGuv7UavVxIersXh9GE0qvnBD8aSkxPTU5m0pYnOLjejR0X1VFv5AlRU2sjJiUWvUwMBTjklhZKSJrxeHzU1XahUGtLTw7FYbFRbeiqzoqK0mCJ1KFWwdk0thSenhKqlgn2otDp1aNnepuIGzLEGnE4vsV+/L4O9qcrKmikqqgpVcO3d24rb5cVi6cQYpqaj3UViYljod8Ji6aS5yU5Dg52srG/6T/UOr2LMetIzTNS0Qnr6OOKnTSPS7eaW9nau27ePZcvX8OaOrXze2kC6p42Jj93GnueMaMeMoTM9jbSTTsIwfjy6MWNQfIc7+A21wsLUw4ZRB/aq6n3XTQmxhBBCCCGEEMONhFIDqHK/jfrKDryx3yxVio8zhv69qbiBxgYnnZ0e7A4P+8vbaWyw09HhIjHRiFIFiYlGtDp1KMzKSA+nuNiK1+Nn+7YmGhocJCYaGZcTQ3p6BEVFVWzc2MjWkia0WhXZ2VHEp0azs3MCddNPZ/JYL52ffkrye0/ywJgxJI35Y2i8paUt7N9vw+v1kZ0dRWFhKm1tbTQ3NxMdHY1KpRr8k3iceRoa6PjgAzrefRd3+X4UOh267GxM552Ldkw2lW1K1pe2sN26hXfWf0KLraffkV6jZ1z0NMI0EaGKoYx0Ex3tLlRKBeZYPRERWlJSjOwsa8Xe5UGpgvQ0E1arky0ljdTWddLWbqemsYVutweFz4tWq8KDDx8KVAEFCpUWFFqUSgV+P7S1uVAoIVWjQq1SYOtwsWWLlS1brHR2utFolURF6TAY1CQkhqFSgcPu5f339zF6TBTmGAPjcmK45JLxPP30FqxWJ2npJvLz47FYbHi9frRaJbm5sVgsnVgsnaxdW8v2HU3YbG7mz0tn3rwMtm9rDi1DDYZV55wzGmOYOtSgPyjYxDxoa0kTdbV2wiO0dHW6CY/QkJ+f2KdvVUODnaYmB1UWG7Nn9zzPGKZGqYLp+QlodSl0tHf3qaZSarUo4+PRxMczJzuPzIo2fq+14++0YvJ48FkbqauuYc7f/850QxiXRUVxelQUYZmZ6HNy0E+aiGHiRHQ5OajCwwftPTgQjdIP5cBeVcHlftATaK1Zs4bVq1dzzz33DOh+hRBCCCGEEOLbkFBqAGWOMqGtiST5gDuXBaWnR5CQaMDZHYHfF05YmBqHw0tubgyxcUbcLi+bihtZt64WtysBrU4dqqaprLThcvnJyjIxaXIsLc1OioqqiI7SkZIcTtmuFjptburqu8jKjGTCeDOmSD2dCXHE3XEHzpISOt59l6rLLif6Rz8i4de/IjfXzKhRJvbv72D58ipSUyOYPDkTm83Gnj17yM7OHuQzeHz4uux0fvopHe++i2PjRhRqNbqcHCIvuIBdjgi+2uVmWkQW0R4D//fSZ7xb9l88fhcAkWEmZmWcTF7ydJQBHUlJRlasqCY9PYLGRgebNzfS1OzE4e4iKVPBzob97LHVUNvUhMvvwFfbjdNrxxNw4i1zHXmwXd/8U6XQoEKDVmGgymomQmci4NZR0RWBxmciSh9DUmwsWq2K2tpOAgEwm3v6WblcPnQ6JZ02N1arnZItVjo6XKjVSmw2N1u2NNHc7AAUaHUqlEolEybEEmHS0tzkZO/eduxdbv7X5iIjI5LIKF1oGWrf6rzYgw4hOkqH1+fH1uFi0qQ4ADLSTVRZbNTXd9LS4iQjPYJNxQ0Yw9SMy4khK8sUWhoYZHd48ftAq1MzPT8Ra5OdyKjOg+4MCH3DX/imGvCzTz/B+8ky1jvsrHfYSexo5zIFXNTWhnnZMvD13JRAnZyMftw49JMm9SyHzZuMUq8/8s/rWxiIRumHcmCvquByv1NOieeee+7hr3/9K36/n5kzZzJv3rwB3bcQQgghhBBCHCsJpQZQUoKRqPFm2umpitpf3kZJSVOoETQEL57DmDQ5ju3bmti82YpGo8IYpuaLldVUVfU0oPa4/bg9PlpanKQkh6NUKujqcoeaUBcVVbG1pIm8KXFcedUEPllWyd69bbjdXlpau9Hr1SiVSqCZyCgd6enjSLj3XjqWLKHt5Zdxbt5M6hOPc801E0NL+FasqMbj6bmb16ZN9d/rUCoQCODYuJH2N9+i87PPCLhcaEdlEbFwIc6EDCwuAyljE/ng8a1s39nEtnIHqWkR2JsNKFFj0ho5PWcuo6MnolFp8fv8aHRKNpZUUFZZgf3LVlQRXdS11dHpbsOHByp79q1V6tESgVZhQKcIJ0wVj0FjIMEchcelQK/V4e5W4HFDwAcoAkTH6IiLC6Ou3obX70Gp8eLyumjt6MSn7EapcFHTWovD20W3t4vA13dd0zXoCNdEE6WNJSMuA5NxFOGROvxtAerq7NTXO1CpFOh0KhISjISHa2hv78baaCcQAL1ezfx56cR+Xf1ksUTw4YflKBUK9Ho1/gAsWbKX9PQIXC4/xjB1n0qo/kKpmho7ra3d7N3bTv70pFBfqSl58dTV2qm1dbFuXT0er4+ZM5K54IKe99ns2T19pIINz90ub58lfX2Dp6NzyZkLmDU5jxc+/JAXP15KQ3s7j5aW8phCyam5U/jLBYtIdNjxNlpxlZdjX7eOZpcL1Gr048YRNnMmxsJCwmbOQDlAy/6Opcn522/vZsmSvVx4YXa/jdsPdGCvqsLCVLq7d3PjjYvYt28fABdddDkzZsz4lqMXQgghhBBCiIEjodQA+rJkD5q9LbSo/TQ0OPjyyzqs1p7eTwsXjsZi6aShwU5iohGLpRObzU1PH2YFJVut1NZ1ERWlIz3dxIQJMSx5Zy91tXa8Hj+xsQbCw79pQh2sKAnexe/KK3MBKCtrpmSrlYx0E1qduu+Sp/xEoi+/HN3YsbS++hq7zr2QFXNu5+M1bqZPTwACoVBq7doaLr98UE/fgPC1t9Px3nu0vfY67spKVHFxGAsK0OWMQ5OSSotHw4qVNdhsdna1bue9Ha/RYKtntu8KWtu68bgDTNFdhF5hoq3CzYb6Hbi1zTQ5aqntqMHtdwKgQkMM8SSEpxDnyMaki2FUSiIdVg06tQ6n04tKpSQ6RofD7iU/P4Hx42P46KMK9HoVBoOG8HA1ra3dNLd0k5XZEyR0W9vQ6JWoVEr0ehWRo3X4/H6qKm049R50Og3jciKZPDOcJlsjSz7eQk1zPa3OZirLy/h8nw8FSsLVMUSpkkk0ZjAjJ5cIfQRGY88+9+/vIMKsJz4hjAkTzLS191RDBQMft8uH3x8gPj6MuLgwnE4vO3e2EBNjwO7w9nnv9cds1hMT3dMDKj09InT3wKlTE1i0KIuSrVaqLTbKy+3s3NlM4cnJoX1bLD2N1ffubcXe5T1oSV/Qgc3+DycjMZH7r7uOX191Fe+tXs2fn32dfY3lrC7bTvwf7ycyoud3ytnVhcbtxm2x4N5fjqemhva33qL1+edR6PWETZ9OxPx5hM+diya+/2M/GsfS5HzJkr2sWlUDcFShFHyzPDAtTc3f/nYfL730EgBmcwJz597GNddchslkOsKrCCGEEEIIIcTxJ6HUAPnkk084+8aruPWkizjttLMYlxODRqMIVUrBN03Pg0FRWJiGlNRwkpONJCf3XFhPyYsPNTTPHhNFt9NLjNmATqcmK8sUugAfPz623yqVAx/vb8lTWH4+u9s0hH/wEgXvP8h/685krSuXX/5yJlqtCq8XTjop8aDXHs6c27fT+vLLdH68jIDPh378eCIvuQTd2LGoY2JCS7G2L6+gaEMxxXVrKG/aG3p+u68erSeKdn8t7b5qOnz1OAJt0AkahQ6TKpEk1SQi9XGYNLGofRFEReowGFQ49D4mTTKzZ087nm4nfpWPqCg9qakRLFyYGeoRVlRUhUarQqNRkZIaTn5+IsYwNUuXVqBSKTCbDej1atLSwrHZPJjNegpPTuHfz2zD6fQSCAAEKNvZRnubG53OQBJTyEieRkKCEYXKx26LBWtXHXW2apo9VVS3bmPjug+I0sWRahpFYe40TJFmTBF6Fp41ir17Ww+qeho/3ozD4UGnUzFhghmTSYfN5sJk0uJ2eSnZYsVs7jmfwaomIBQSFZ6cQlq6qVdg1BQae/D9WVbWHDpui6WTfXvbWLGimthYPSqVCpvNTXycEWO4ut/wq3cT9KOtntJptVwybx6TkvP48PMtKMM7iY745vfirLt/SURYGJefuYDzz1pEpE6Hr6sL9/79uHbtwr1/Pw0P/AF+/wD63FxM55yN6eyzv1NAdSQXXpjd5/PRCC4P9HrjWLt2PQqFggsuuIp5824kLCz8hLqZgRBCCCGEEGJ4k1BqgMyfP5+FhXN4fO3bTJ4zgXn5c5ien8gll4wPbRNcfhQMijrau3E0eLA7vKE7lwXv0GezuRkzJob86Un9NpPu7XBVI4da8pSSN5pley5g4rZ3eCL5E/5P0XOhajRqcThg6tSEATw7x0fA56NrxQpann0O55YtqMxmjIWF6CdMQJOSgtJkQqFUAlDfaOOf/13KW6s/xGrv6eejQEG0JhkNYexyrsDu72lqHqaIIVqdSroinzhjMiaNGbfbi8fTs1+jTonb7aez043brSIiQkt1TRdutxeDQUl0jJ78aUkUFiaHfm4tzU527Gimq9PFxInJTJ4cH/q5FhQksam4kbb2bhYtyjoobExPN1FR2YHf76e9zYXXC1VVNqKi9AQCAaKjdaSkhuOwe4nWJhAbl0iSJhevx4dC56TBbqHeXsXelh3sWPkVRn0YU0dNJKl6DpPHTgR6ej4VFVVRurMZW4eLGLMea6ODri4PF1wwNjSW117fyZaSRkwmLd2unp5PQcGQaHp+T6C5fVsz0ERycjiRUfrQ+zdYzVdQkBQK7F767052lrUQHaVj3rxMul0ecnKiQ+ci+JxgH6ved7U8Vj3B2Bl9Hqusr2fz7t0AfLFlC3f98x+cc/LJLJ4zh7nTZxA9ZQoBjwdPQwPOrVtx7d6F9W//h/Wvf0M/eTKmc84hctFZqM0DE/gEq52mT0886gqp5uZmnnnmGS688Fqg506a11//AHv2dJKRMZH6eh8FBcYB72MlhBBCCCGEEN+WhFIDRKVS8cpf/8QlN93ELQ//ieSESAon5wEHh0bBj3Xravr0zAkGUpWVNrQaFcnJxj4BRVlZM0VFVQc1mP42VSPxcUZSxiXzcfUZnG/7jLudb3DP5frQ8j2/3z8g5+V48DudtC9ZQusLL+KprkabmUnk4sXoxo9HHRfXb4PqT9Zs4fFlzwCgVCiJMITT4bDR6qnFoIwkSplKumYmUcoUdMpvzqEWBXq9Co/XD/ScE5fLj8mko8vuRq1WotGoaLI6gQDTpiWQn58EBKir66KhoWf55rp1teze3YoCBW2tLqbnJ/LOO3tZudKCQgFutx+73UNzk5Ps7Cja2l3Yuzy0tDqZOSORefPSqay0Ub6vjba2bvR6DUnJRlzdPjQaFaavG5TbOt0YDGqSkox0O324XDrCdVFkhE/EbNaRV6Cl1lHOx+vW8fPH/g+9VsvCk05iqisfV4OZJmtPM3a73U1np4f6+s4+gdCUvHjsXV50OiV6nRqTSdurAtAVukPf2jW1PY34ow2cv3hMKKiCnrvzbdzYSF2tnSuvmkB8nJGCgiS6u3sCPJNJEwprez+nd0XXocLWwwW0h/teZlIS2195ldc/+4xXP/2Eiro6Xv/sM17/7DPCDQZ+f9313LB4Mdq0NLRpaQTOOqsnoNq8GdeuMqwPPYT1T3/CMG0qpgULiJg/H01y8tG8nfsIhlFWq53y8g6gZ7lfwOvFXVmJp7YWFApUUVFo09NRRUVRWlrKU089xbPPPovT6SQqKoqf/vSnAFx++dmUlrYQGamlo8ONxdLBFVd8eNQ9qoQQQgghhBDieJJQagBp1Gqeu+UWrnjySS781T1cMvVqLj+nEK1O3W9oVGWxhXrmjMnuCaQaGxxoNSrCIzR9Lsrh4Avznov/OqprbKSlRhx1JZW1yc72bc3YbG5Omj8WdcRo/C8+ya3N/+U9Z0850HAMpfxOJ22vv0HLM8/ga29Hn5uLcc4c9NnZqMxmFCpVaNtWm42SPXsYnZjFc2+uZOXWDagUanwBLwSU6H1xJGinE6NKJ1zbc96MRg12uwdvr9Pudgfo6HD1eUynUxEdraOry41SqejpG+Xw4PMFz1mAhgYHfn8Aq9WB2ayjucmJRq0iIkJDQUES1iY7O3e20NTkRKEAo1GNVquko8PFV1/V43B4cTg8eH0BtBoVd/w8n+3bmskZF8POnS20tHaTlRmF2WygpcXJlLx4MtJ7wk2fP4DH7SM6So/T6aWpyY7d7ae11YWyO4HrFl3MmRMX0tndztKv1rBi6zreXbUKvUZPekQOoyImEU4Cfj90dXlZu7aOnWUtoRDpuusms6m4gd27WklL/2ZJaWRU5zd36GvpxuPxo9er+rwvrU129DoN5hh9aOlefJyR2bNTmT07NbTNgUtOj9THKuhwAe2RwtuMxER+deWV3P2jH/HiktW8s3IlO2q30dTRSlLsNxVQOysqWL5xA/Omz2DCOefAokV46upwFhfTvWcPjX/+C41/egjt6NFEnH4aYQUFGPLyUIWHh15j7doali+vYv78DAoLU0OPl+5oZuvnO8gJ62Cho56492oof7wCd1UVvd+ErV4vy7u6eKfbydaOjtDjU6dOJTMz85tj+roqqrS0hdxcM6+8svOYe1QJIYQQQgghxPEiodQA272zndlxF1Kuf46XNjyLx+fmD3ddCBy81Ch4gR1cOtXY4CAhMaynGqWf5XoHXphbLJ1s2FiHrcNNmEGDxdIJHP5ivKXZyZIle7FaHcTFGcjIiKTE6iB54nnk73iXRUY9XbNPJioqamBPzHfgdzppe+MNWp75N772dgxTpmDIn4Y2IxNVVFRoiR7AG+9t5Ikl/2NH/Rb8AT8qpQq314NBGUmiKhezOpMoZQpKharPPgIB8AfAd0AWp1JBWJiGQCBAZ6cXhQIMBg02awepdJChsJPr8qM0tBMe6Caq2oO+zk82AXw+Py6/Cp9Fx2K1HltGJKl5o0hL8rC9oh2jUcOYMVEAGMLUxMWGYTbr6epy96mUmjIlju3bmqmo6MDn9zNhQizdLk/ofeJweKirsxMZpeP6Gyazdk0tGzbUExurx+X2s39/G3a7D4ez572wdk0tK1ZUo1RCZuYUbjplJpvL9lJi2UJ5+w72tJYQrYtnSsoMwiJmotOp0OtUtLQ4eem/O1m0KCv03nS7vLz2+k6m5PUsR1SqwBimZsKEGDo6XOTmxoR6RlVZbOh1ahwOb+gYjGHf/AkqK2vms+VVAJwxP6PP+9gcayA7O4a2tu7Q/g5c5mhtstPR7iIxMazfgDY9PYJqSyclW6wYw9ShYPfA6imFQsGiOflMzBxLaqqR6tYaJo4aFXqdd774gr+89F/ue/ppEs1mCiZOZMaECcyckMvkM85A2d6Oc9s23OXltL7yKi3/eRYUCjQpKWjS09Cmp9OwrRNtpZP67eE0rIrB29hI155yUi0Wsrw91WoKnQ5lXBxKsxnjnDmo4+NQm2NxeDzM+9XduL4OqdTAqeHh/HjuXC564gl0KSl9jjvYYwq+XY8qIYQQQgghhDheJJQaYNu3N7F3HyzK/iFfVL/Dm1v+y4KdaVxw6mmhbXpfCF9+2QQ2FTdgs3kID9cSHxdGW1s3VRYbxjB1nwvzYJNoa5OdTcUNGMPUzJyRTHWNDYfTQ3FxAx3tLmy2OlpanBQWJmOONfS5UC8qqsJisdHd3RNm1NR00t3tg0lxhE09n99sXoK7s4uUYRBK+d1u2l9/neann8HX1tYTRk2bhm7UKJSRkSh6bl1IIBDg4y/X87un/sOemsrQ89VKDVNSZpJumESTRR3a/kAKBfh84HL50GmVdHf7Ual6HleqFGSlhzE5wYdzXznxnmbSVW2Y9D134etZ1GeiI0yPgwg6Iky4osNRadTU1NtReVxE6fyYFC7ivc0E1u6jafXHxKLkjPA4ogvyUeXmsaPaDwSYNDnuoFCxqKiS5csrUauVX1e+BELvk03FjQCEhalpaLAD9IRabd20tDjp6vLi9fWEaxqtEp8/wKbiBurqO1GgoLW1G71eRWenhgz1TNLNM2gP1FDvLeWLio9ZV/0Zp+SexJTEArrbDNTWdVGy1crll03oCTjf3kNbu4v95R0kJBjx+f3s2tXG/v3tqFQK2tpdtLS4aGiw09TkYMyYaKZMje/TTy2oZKuVkhIrCiAuztDvEtXg69i7vKHgtved+3rf3bL3c4Pbdbs87NvXhjG8J5Rau6aODRvrmDkjmQsu+Cao6b08MDHhm75wABOyMjlj5kzWbN1KQ0sL73zxBe988QUAWo2Gkv++ROpZZxHw+SgrK6OjqgpDQwv6FhsRdVbc+8rJcXST7XajqtDQaTWgDAvDiYHtgRTKnX5INmGeHMXeRivb9+7Bsd1F0b/+BYABmJ2XR2tHBz+YO48f5Odj3L4d+9q1VCw8C/NNNxJ7882hsDbY2Dw310xGRqRUSAkhhBBCCCGGDQmlBlB9o53oaAOjR+s4/fQ0Hpr5KDf99S9c/Yc/UHldPT+cdy7V1V10tHeHeg1BTy+eMaN7ltk0NDhCF95Av9UgwUbo+fmJXHBBNpuKG1jy9h6sVgcOuwdrkwNbhxtjuJrs7BgaGuyMy4khPs4Y6gm0Y0cTVqsTvV5JcnI4BQVJREfr2drpZPr+j9l3xdVkv/UaKoNh8E7g1wI+Hx3vvU/TP/+Jt7ERw9SpGC68AF1W3zCqorqZx15/m9dWvo+92xl6fpgimnTNDBLUYzHYVUREhNOishE4xIrEQACUStCoFfh8fmI1TjI0HWRpOxilbSOsqYOmBjddXi8bVFpe6waLM0Ba9AwWXnYRZ144iUceWcJr7/4Ff8CL1+vB7w+GLUpUKjWnnXw9V195BXu2WCh+70MqbEVkhbWRVbWTNPVrRBvNBBInYjKc2SeUsjbZqaiw0dnpxueD1NRwysvbvx6zgv0V7ZhMWnInxIbueFeyxYrb46ejvRuvF8LD1aSnR+Gwe2lssKPRKDHo1bhcXjo63LS3f33ewlREx4QxKWUaCQmnUNfcxJ7WElbvXsvyklVMSs/l5DGn4XHHUlRUSenOFqxWBxqNio4OF62t3Ywfb6alxUltXRcpyeGhaq6sLBNVFluowsnaZAeaQz2ogu/Npqaen+OBy/SClU9ZWSZ27myltdXBx0v3M3t2CvPmGftsE7y7ZVDvJXsHVhu2tDixdbhpafnm/dOf3kHyBaeexgWnnobL7WbDzp1ff5SyYedO7E4nSV83O1eoVPzfe+/yv88/7/kaBVHGCEzhBgxaLUadns9+9yAolShUKn764EN8unNDzw4twJd9x9BqsxFj6lmi+cYfH0Sv1X7zzTFjCD/tNDqWLKH5sX/RtfILUh55GG1qKhkZkdLcXAghhBBCCDEsSSg1gCr321AqYcHCrFBj53//+h7UXiP3/+fffLxyG1cUXk5qSiTjcmJIT49g+7ZmtmxpZOrUBDweLxs31qPVKklNM/XbP8di6cRm84QaTK9bV8OKFdU0NHbR1emhtq6LwtmpoT5D5tieUCl4wR6stlq2rJzlRRayx0RxwYVjQ0FImy2XEpzklRdRff0NpD/3LMreF7/HUSAQoKuoCOvDj+Devx/9xImYzlqIdvQYVNHRKBQKupxOPlyzho/WrmXZl1/i8rgBUKAkxTCOKfEn092uD7Xfcbn8dHS4UACBfvapVfmYbO4mxt9IwFNLntHFKG3Plh/aullcacF9iDRLN+lsdrlj6VzdSYtTTbers5+t/Ph8bhpb3Hz0RTPTp4/CnjOGXateZld37+3qoXwHxvVv8quZM7nlzl+gMZtZvbqGsrJm3G4fbref5uZuTjopGQhgMKiJjNRhNuuZNDk21C/MbDaQMy6asrJWbDYXERFaUlMiaGp20NriIjs7ilknJbFjRzOlO1oIfH1itFolapWC7OwoTjs9nfffA4WngLDkCWyr3oKlYStPWh4n0ZRMQeYcpmZNJS7ewITxZlwuPw0NXWRlmUhODscYrj5oid3s2d8cbXyckcioToqLG6mosJGVZWLS5Dhu+1k+QKgaMD09gn1721i/vp7c3Bhi44z4fD527mzFaNSEfqq9Q6OWMDXWJgfGMHWoUjAYfgXf/0GFhcmhsfYn2OQ9uOwwOHYAnVbLKVOmcMqUKUDP+7e+uRlVr95mapWKKGMUHfYOAgRos9tos9tC31fGxKD8uqIpOroncFIqlcRHxTA+K4OcjAxyMjKZlZtLVK+eVMFA6sC7Epp/8hPskyfT8dZbVFxwIcl/+ysRp53W77EJIYQQQgghxFCTUGoAZY4y4S4z0NHeTVlZc2h50VhjIdOi3Gwo/4xWRwvP33cfk8YF70bW9HUoEKC42EpNTSc6nZqp0xIOqpKCb8IlY5gai6WTFSuqKS9vJypaT2JCOHPmpLBw4ejQ9j0VKQeLjTMydUpCqIIq6PpH76ba2sgbV/2ESRvXU3PbbaQ98USfvk3Hg/3Lr7A+/He6t21Hm51N1BVXoB83DlVMDHaXi0eefIP/fvIRjV21AGTGpXPGhAXMGDONj78oQeWIR6PQY28hFLJAT/VTa6vr668CxCodRKprgRps/maq3J08X+WixecD4Kq4XOJ0U9nSnUidqgt34CkADIYYdDoz2dlZTJ48hvZ2Nc3NaRQVWRg1KpKzzjqNSy75nO5uBT6fguLiFhob7TgcbmbMiCUlJZ6wsHBOPz2dSy9NZOnSRJqamti5cx9bt+6iyVpDa2sDdr8PQ309jfffj2HKFEprdPx3++ukR2eSHJFJgns8ycnZoffG7NmpoUAGekJLh8NDWroJrVaD1WonwqQlITEMu91DvctOe7sbtVpFc5OT+AQDBECj7ekb1dzcTUlJE6ednk5Wlom2tm4cnT7ileNJVOeQPt1FSf063tn2OlsaV3PF3AuYf+ZUVEoVFksnbpe3T0hyoN7hkdvlpaqyA5/PT319F9YmB/Pm9fSS2r6tiXXr6khKCqex0U55eTstLU4yMiMpKWmmu9tHbJyBSZPjQsfduzrK74O6OvvXywN7Gs9HRnUetDTywJDqQMGbCwSXHfbXq6r3MSXHxfX53jO/voeysmY2b2kgfZSO6DglDpcLp6sbR7cLa5Odmho76ekR/PHGm3jo5p8SYzKFgqojOfDmBwDGGTPQjhpF67//Tc1Pb8F8443E3fazQy5fFUIIIYQQQoihIqHUAGttc1Lf2o61yYG/J+egoCCJysppmCPi+LLpPRbceSsP/vg2zp5TACiYNi2e5ORwNBoFRqOW8AgN0VG6UKVI7wvpYK+b4N3P0tNN6PVqCgqSQncv6633xXqw4qSgIAmAhgY7WVmm0LbWJjtfZzPETJ9CZGYqHW+8geW660l9/F/HZSmfY/MWmv/1L+zr1qFJSyPq4ovRjR9Pd3g4727YwAsffcjabdvw9boboAIlKY4z6NoXxop9rehJh6+vt3sHUgalm2hlLakGOzONLjK0NrY7O/hxTXW/Y4mJTmBDzEzaO6aj1iuZOTOGBy79EeefP53XXtvDsmWVLFyYyemnp/PCCzvYtq0J6CYyUkd6ek8YsX59HQUFyaSmpvHxxxXExuqZPz+Djg43ublmamo6Wb7cwvz5Z/e56xqAx+Nh9+7dxKtU+N9eQse77+KpqsLlc7K3uYy9zWV8UfExb2+LZ+60WVx4+imcOXtan59x79DSnu3tCX6+XjaX8fV7JT7ewMqV1bS2dmM0arn22lzmzctk3boaPvxwPyaTFoul8+vAR4HX62frViugIDc1i/tuO49P15bw1pr3ePC1f/HW2ve5+fxLmJgyhU3Fjeze3Yq9y3tQ2FNW1szSpRWoVAoyMiLZuLGetnYXqSnhJCQYsdncoXCtosLWU+GmAKNR29MUPjsKg0FNQqIBY7iavK8DqbKyZkq2WDGb9RjD1NTV2UlMDAMC7N7VSmKikcREY5+lgker93K/Q4VsweW00P9d/cyxBsaNiz3odxkI/R4DoerK4Ose2ID9SOPrTWM2E/eLX9D+2mu0PPkk3du3k/LoI33uACiEEEIIIYQQQ01CqQFUud+G3e7FlKglI90Ualaenh7B3LkZtLTEM719FK+se4Xbn/gTKzYvZHxEITnj4qioqMNm8zB2bAyxcfpQg+igAy9Qg+FD8LPF0om1yd4neIqO1rNuXU9lkTFMzRcrq9m2rYmWFiejRkVRW9fF+vX12GwuSktbCQ9X0+3sSaUCgQARp56KQqWi/c03qbzkUtKeeAJt2sHB17EKBAI4vvqK5ieexLFhA+rEREyLF+MdPZplFft576mnWLpuLZ5gQvY1nSKcJHUuSeoJaAg74DW9GJR1qBTVOPxWGr1tVLgdOAMBro42o1Nms12ZxaTrT0H34G8xR2eQmTWR0dkTsVgimDFjIrm5KaxYUUNVVQcZGSYuvTSHRYt67rp2+unpxMcbyc01U1raQnNzN5Mnx/UJnIIO/Hfvu5999lkln35aSXu766BQSqPRMHHixJ4v7rsX8803c91fHmH6229Q3GVjPUo2NTVitVl5feUHvL7yA/7vhns5ZXJeaDlo7wbd0BN6NDY4WVpbwaJFWfziFzOwNtlxOLx89VU9Go0Sm80DgM3mwu3xER2tC72WzVaHrdNFZmYkbW3dNDd3s31bEwp7NL+9/E5uvaiev778Ej9/7P+I1sdy6pgFJEeMxmzWH/RzL9lqDfWaqq6xYbU60OlVRJi0TJgQg1anxhimpqioiq4uNzk5ZrKyTFRU2DAaNfh9PaGPXqempaUbh9OL5eu76QWXwNod3lAPNbfLGwpetTo1u3e19lstdThHqqQ6cDntobbp3deqtwN/j3s/p7i4kb17W0PVY8cyvlCoddZFRGVm0rFkCRWLLyDtySfQZcud94QQQgghhBDDg4RSAyhzlAnteDPJ0zLYvq2Jmuou4uPCsDu8bN1mpaXZydRp8dxz8W2UNn3FUx++wWp9MT8MXI7eG093t5f4hDDGjI4iOTkcu6On0uWl/+5EpVJw8impoYvT+Dgj+/a28e9ntqHRKPD5Qft1w+mamp5qk+QUI7t3t2LQqynZaiU3N4aWFidanQqH04M5Ro/b4+Ojjyro7HQTG2cguMLH/3VlUvjJJ6OKiaHthRfYf955xN/9S6IvvfRbLefz2+10fPgRba++imv3bjSpqWjPPpsiu503l3/G6r//HbfXQ6whiRhlFo2+fShRE6saRYI6h2hVGkqFEn/Ah542xuo9ZGhtRKms/LR2M67AwV2jVAoN642TUc64mbN/MJHpF4/nV75ZfP55LfPnpzNjRhIvvVRKdbWH3FwFl146jshI7UFBU3/NooN3M+stIyOSqqoOSktbDvp+bq6ZnTubiY01kJJy5IoVjTkGy2nXsqN1MmfUfMwNNRvpSohjTWIK79a2sLvGgq8tGrvDy/T8RJ794H3CDWFccOqptLf3VB0Zw9T4fP7QXfPGj+/pPXXjjVMYMyaKzZutmEwaAFatqqXa0olWowq9z4KNwDMyIoiLC0OlUgAKxuXEYAxTs3evjrOzf0i8Zwpf1nzOuzteISMmi3FTr8LalML2bc0E7yrYu6pn16426uu70KhV1NV2URVnYN68DIqKqmhscJCQGMa8eRm0NDsp3dlCcko4ZrOehgY7ShX4/IFQEFRt6cQUqcVsNvQJeYqKqqit62LFimrS0yNwufwYw/r+yTuaiqQDt+n9de/9Her5hwqeDrdvY5iark43ZTubKVpu4cwzM7jkkp67AB7YR6o/vYOw6XPmoE5Joe2556i4+BKSHnyQyLMX9fs8IYQQQgghhBhMEkoNoKQEI1HjzWjjjEDz1wGPoqf5crOTxkY727Y2MeukJK4843wKJ+bzq6f+wb+WP8bJ4wqZEjcHvy9AZJQ+dLH52us7qa3rwhyjP2j50bJllezc2YzJpCUxMZzOLg8QQKdTk5YWzqRJcdi7vDicHmw2N9nZMdzx8/zQcqPck5KxNtnptPVUZM2ckciyGi0tdgj0agtumDABza9/Tdurr9L4wB9oe+klYm++mYgzz0Sp0x32nPidTuzr1mH75FO6iorwOxwox4xh64QJ/KtsJ1+u+Dy0NG9M7Djiu2ehDUTi1biJUmSSqE5Br7TiDVjo9G/G6mmjxuPgtHAjN8Wm4vBr6AqLRlOvgUCAmIg0DGFZJKWOJ8KcQ2WljoULR/HII3NDYzrzzFEolSrmz88gNTWCBQuygACnn552VHcpO9LdzHpXRgW3DW5/8cXjmDAhtk/gdTi5uWY2bkzmY8MPOe8HVzBuw5ssXL2aM/RGdkw/B1tkTzDj9fn483//S2NrK/c9/RQL809nvDmfmdMyWbQoKxRi9DZpchyRUfpQWDJnTkqfz8Gm6eNyYkhLjSAnJybUJy24hLSxwYnV6iDemMLCrB/S5K5iffVn3P70A7z75UnkRp5CdJg5tJ/4OCN1dV3k5ESTFuwr9fXywmDVUTCQio8zUlRURV1tF8kp4bS0dGM268nJiaGuzs6+fa38+5ltZGdHMXlyHDk50X0qxabkxVNXa6etrZudO1uIiTF83WPqG4erYjrUNn0Cn/zEI1ZeHVi9djT7tju8hEdoaWlx0tXlYfXq2lAo1V8fqQMdGITpR49G8ZOf4XrpBep+8Qt2frCW5HvulrvyCSGEEEIIIYbUiAylHn/8cf72t7/R0NBAXl4ejz32GDNnzhyUfVdUtLN5XRcqpQKFQoHB0FN1cvbZWSwvshDwB9i4sRGA7OxELpn0E77cv5aN+79g4/5NnDPtLH6QfCXQUxFRbbERbtQQG6tny5aevj7z5vVcwIaHq9Fq1cTHh3HOOaNYv76eqiobSmUAnz8QWtpjbbKzfVvPa3W0dzMlLz4ULrQ0G6mrtRMfr8BsDgs1Q/b7+1YdqWNiiP3pT3EUF9O1fDl1v7wbxf2/J2zqVAxTp6JJSUGp1xHw+vC2NOOurqa7ZCvdu3eD14siLo5d0dH8pcnKVx99SOCgqiYFGpuPeVE2EtX1JKi7uLehhFUOZ793zdvareK2mrl0RiXywB/O4gmng93lPb2ILJZO5s9PZ/78DJYvr2L+/Iw+zy0sTO2zdO6aawb2wjwYOPUXPB0p0OotWHEVXCI4NtdM2k/m4tiwgeo//x95ZWvAuYvwnAtwR4znhsWL+c9771Hf0sKLn72NRv0+l7Ut4DfXXsnll00IvW6wQufAqqGFC0ezcOFoysqa+c9/tuFwetDpVMTFGdi1u5WNGxs455xRfZaQJiQagADh4VqyskwUF5sw+pLxx1SzrqqI1ds3cu6sM/lB/LVYLJ1s2dJIIEAopLJYOkPvR2OYmvz8hD6VQxnpJupq7XQ7PdTVdmEMj2P8+FjsDi/btzfT1u7CbveQmxsbCpyC73cIkJsbQ3GxldhYPfHxB/eVClZalWyxYgxT9xvyGMPUKFWEztehKp+O1eFeJ/iYRqNgy2Yrp5ySEvreofpI9dZfEFbTBrtHnUO2chWOykbaS+ollBJCCCGEEEIMqREXSr3xxhvceeedPPXUU8yaNYtHH32UBQsW9DSQjj/0RdxA2b2nla3lCpRKBX5/gCqLjdmzey74Y+OMrFldi8/nZ0pePOZYA8lJJiZ1zWJCQh57nV+yZMN7fHnnWu649DJ0XZns2dNOINATQCkUSiAQChVOPjmVtHRTaBnPmOxo1q6po6XFGbpgXbeuhvXr61Eqoby8nehoA+cvHhNqqrx9WxMOh4ekpHAggNvVU7XkD/gPOjaFUolxxgzCpk6le/duuku24Kmrw7F5MwGn85vtNBqUUVHsVav5IqBkbaONdbt3HfR6ShSYVRoMSrD5fLixcEmUhjafjmavAVdAQwAnBoUBrSKBGPNosrImUDCnkJSsMXzyqYWZuWZyCrLJAcwJLUyd6mHHjmbmz884KHwaLEcbPB1qmV9QsOKqoCA51NsKwDhrFuP+9zqdy5fT9Ni/aP33v1EkpXDm1Hn88B//YX1ZMU8seZtNZWW89MmHvPH5Jzx6xx38aOFZwDcVOkoVNDY48fn8LFqUFQpkSrZa2bixHo/HR4w5jPnz0thuc1P3dQ+y2bNTQ0vIMtJNZGd/088qOTmcmJgwzOZsrj7nDJ5d+i5LN33Kut0b+NGci8mKH4/bHQjdPbK/cfReIud0eklMNBIWpqHb5Qm9r9PTI5g1KxmLxUZ+fjyxccY+/dWC4ZdSqaCz082o0ZGkpZsO6isVH2ek2+Vh3742jOH9h1J2hxe/j1Do1TvwOZqldIdyqAqq3t+bnp8I1/b93pH6XB1KqAl+7jloOrpIz4k65tcQQgghhBBCiIE04kKphx9+mOuvv55rr+25knvqqaf46KOPeO655/j1r3993Pc/bmwM9gg10VE62tpdfaoZ0tMjOPmUlD6VIKmpRr78sg6v109u8lxu+M1i3vlyKXc//i+ijBFkhk0hjhwgitPnpocaQdtsbvLzE5mSF0/JVivQc7F6wQV9mxivX19PaWkzKAJ0O/1odcoDqkUUGAxqsrIimTQ5lunZk2i2JaP0H3pZnkKtxpCbiyE3F7/LRVdbG+UVFRTv3s0HG7awadd+Or320Pazw0bz2/iZzArz8+OaEqzenot7PwGafG74up95hzvAFXXn4tVF4FXpSMk7hxRNFG0dOk4/PZ1f/nJmn/Dm5p/m9xlX8HsXXTTu2H5oQ+TAZX4H6l1xdWCApVCpMC1YQPhpp9Hx7rtUP/oE5qX/xbUplbMvPp8L//kYq7eW8Of//pd127eTn5MD9L1TXU5ODEtrK/r0m7I22fF6AhgMajweH12dbmpq7Iwfb8bvD9DY2MXvfreG8HA1ra09yz7nzcsI3TUvWMW0e1cr+/d3kKaczu8umsnHOz7k7+8+xdikbC456WLsjvhQlVJ1jY3WVidddk9oHNu3NbNypQWFQsHUqfEUnpx80F0or7wyt8/5sjbZ2VTcgDFMzdSpCdhsLrq63ERG6kIhMBxcmXRg5dGBvZ7S0yPoaHf1e/e+wy2lO5p+Vd8l1DqSA/cf/PB1dRHoNhCZZjryiwghhBBCCCHEcTSiQim3201xcTH33HNP6DGlUsn8+fNZv379oIwhKyuK6AlmLJZOph3Qbyb47+AFfHyckdLSVlyunpCms8uDzarlT9ffzrn5i/hw0ye8s+pzvL7VtOzLY9IpP8DtTe1zt6+ioio2bmykrtaOOdZAS7Ozz0VuQUESAK1tTurr7YQbdTQ0OLDZ6ti7t4XWVhe5uWYmTe5pgP3zi69h965W6uo6We7bgMPlwu500mqz0djairWtlZq6DrIC86iuaaPF1cCO7g/x4en3fCiAfyUrUSjslLsjSVDHYfXWoyEKpSIefyARL0mo1IlkZmZz5Y0zKChIDjUaH8nLiw63zA/6VlwtXbq/3wCruqGb0ogZRD74LIGP3yX2q49oefxx1MnJzDjrLJb+/WHWluzC3mLAarRTstXKq18sYdyoZM477ycAffpNWSydNDb29JIaNTqKMIMGs1mPw+ElLi6MLVsa8Xj8ZGVFEhcXRka66aDeSMHQx2zWUVoK+blJXLr4d7z92Roe/+C//OndP7Otdj5//On1dLs8oZ5R4yfE9ApxA7S1deP1Buj++vdjU3FDqAdVdJSOmho7ZrOewpNT+vR6GpcTw7x5GWwqbmD3rlamTP2msqi/cOjAyqP+ej1Zm+xUVtooKWnqU1XW31K6YBjU0d5NQ4ODjnYXkVH9h1MHhlpHE2QdyYH7P9RxCyGEEEIIIcRQG1GhVHNzMz6fj4SEhD6PJyQksGvXwcvHAFwuFy6XK/S1zWb7TmNobXPy5nu7sFTZyMuLAxSUljYTE6Pj3HPHhKpIoOdCMRgapaWF4/MHyEg3fV0JBTcuvJpfXXENz7+/jE82r+TS++7FaDAwa9xUzp9zMqgSQ82c3R4fRUVV2Lu87NvXBvRc5M6encrs2amhZXzB/ezd28LmzVb8/gBxcWGhi9Zt26y89245a7r+jYfuQx5nMftx0EKAg5f5AWgUCpLVGqJU4fyzZQpf2kfR5DPS5vMAeiJiwikoSOHaayeyebOV0tJmrrxywvemymkgHEt/qUMFWH2W+P3tLnzdt1Lx/OvYX38V77PPooqJIWb0NLYpe5b/RSV42Fy/hk11frb/dBP/+PmdoX5TwSqqhIQwkpPDmTQ5DoBPllVisdjIzo7C5/PR1eUlOzsKpVKJVqf+ZllYmJp33tlLS4uTwsJkiDOSmOhCq1MTH2fk5h8u4CcXz+XX/3ieFz99mw0/38I9l19P3pTkgyqFJk2Ow2bzUF1jQ69Ts3ZNLfv2teN2++jsdOP1+Wlt6SYmRk9auqlPGHaoz0fSu9fWuJyYPssBbTYPnTY33S5fqJoL+l9KFwy1EhONjMuJoaO9u8/vfO/g6cBQ62garx/Jgfv/rr2vhBBCCCGEEOJ4GVGh1Lfx0EMP8cADDwzY6zU0OLBU2Wht7cZi6aS+vouGBjt6vZq0dBPz5vU03Q5eKAZDo6CioirK97WTmBgeqpZ48Larub3pB7zw+npWbv2Kivo93P7Pv3L7PyEpKpEpY8YTpYujozyeSaPHkDcl7qAmyFqdmvAILdXVXYRHaAAFYWFqDGEacnNj2FTcQHp6BMXF9Th8HfTUOB2KAoPSRLJ6ApGqZFy+LkyqNhaamplicEEggi8dWXzSnc3Y06Zw6gWT+P3cjEMGMCdSEPVtHSrAOjCsUun17MmYw1cnZ3J6WBWZpZ9iKv6cQsUXqDxTGX/WGdxx0VU89cGbbNu3j3k/u5Ubzl/Mb3/8Y0q2Wtm3r428KXHMm5cJ9FQn7SxrxtbR05fp7rtPAmDZsnJWrarFbNaF+pO9/145mzY1AGAMV5ORbqKysgO/348xTB1qZn721AVMy8jjpdWvcfsTf+KsmXNobDmTXbtaQ1VP8XFGLrggO1Tt5HR6USggNtaAXq9GqQSnw4vX68ft6tvrqaysmaKiKqbkxYfGdjR6V1r1fl7wd3XSRHPoToGHsm5dDStWVJOeHhGqPrQ22UOVUtYme2j5LfTcva93qPVdm6gHg0Wdrqf/3HepuBJCCCGEEEKI421EhVKxsbGoVCoaGxv7PN7Y2EhiYv8Xp/fccw933nln6GubzUZaWtq3HkNiYhiFheG0tDiZMCGG8vKOUKXUlLz4wzY37tl/z93EzGZ9n+0slk4suwNEd+cxL/9Mfnh1Fvf97V2Kd+1gy55dNHWtwuf3wecQHWEi8bNYTHoTCeZI4syRqBVaaqrtdHW6MYZrUCqhMdBBmAr+8NoHNLa04VHY6XB0EPj6fncKlIQpozEqzBiVMRiVsZhUiWgVhtC4zOEBfjtbibZsHypzLJGLzydy8WIWpafzR632W5/HkehIjc2/jf7CqmBAlZU7lfTUH9G9YwetL71M5+ef07Z5Az+ITME45kI+6d7FhvJNPPXOEt5fvYpf/OA68qakHtQHbeaM5D7N8wFKS1tpaLBTWtrKtPxEioqq2LOnFa/PT3JSeKjXWTCYdbn8GAw9d7Hz+yAnJ4NlP3iEVz/5hF/88198vmkjU8xzWbV6ChHhOhYuzGT27NQ+VVh2hze0JC0x0YjfD7V1XaGbCUBPtdPSpT19suDgPk9B/S2T6x0I9dePCQjt51DWr6+nvLwdvV7dp5l68N+bihv6LL890JH+PhxO72NPSQ5HqVQCzaFADHr+jqTFKjEbDxc6CyGEEEIIIcTgGFGhlFarJT8/n6KiIhYvXgyA3++nqKiIW2+9td/n6HQ6dLpDN/U+VjHRBi64ID30dbAKKniRa22yH9T3qTeTSUtMjAGTqW+g0/tuY2lp4axcbiUjfDyB2BSmTImnu9vNl1v3YEpwk5WjYWNJOc22drrdVioba7HZ7ThdbgJ+ULcpUSoUaFU68Jno7vahI5Ix8dl49A3Y7HZ+++Mfs2h2IRr1od8irvJyWp9/Hv++LiIWLSL62mvQjx2LUsKofh2psflAOTCoMuTlkZKXR0XxPupfeAXjxiIu927i0pgotp90Bb/6rAiLtYH7nnuUP176e6BvJVBaesRBjcaDy04LCpJCy9siI3WYTFoKCpJD7+uNGxuor7OzbVsTM2YkEBamDQUyCoWCKxYuJCN6DHc++hhfWT9if3spE8PnExmpY/bs1INCmt5VR8nJxj79sKAndHF7fOh1KjLSTYfs0RSsijqw31Pv8Ki/vlJH6vfU+7z0p3fwNdAVTBZLJyqVkpTkcAoKktDq1H2WDgLs3tWKIlOPeZws6RNCCCGEEEIMvREVSgHceeedXH311UyfPp2ZM2fy6KOPYrfbQ3fjGwzBO2plpJvQ6tQ0N9lZtqwSj8fP/PkZVNd0UlJipanJGWpuvHZNXai66vS56aGL17KyZtaurcNs1rNgYSbxcUZee30n69bVo1LClCnxnDE/g6qqDtrbPMyZk0JsnJHEQCMmk4Z58zIOe/FbVtbMBx/so6vLy8KFmfz82d+xp7qaqIiIwwZSXStW0P6//6FJSiLurl9gmjsXVVTUQJ/KEeVIjc2Ph97VWWWNStZHzWP2ry9htmofrS+/TN6mYpbEJ/CgPhpMOZTvchKu/6Zn0to1tWzYWM/MGUlccMHY0OsGl51am+xs39bMmNGRzDklBbvD+02j81gDSqUSt9tHS4sTq9WJUqkkLb3nrm/BO+Xp1eE8+rNf8tySz/hg+xLW2V5mlvHHBALTUSi+qegJ7gsCkB5xUD8na5OdaksnTocXpVKB0+k7KHwKNkrPSDf12+8pqL9ldIfq99T7DnoHLsc90NFWQvV3V74jhWK97+4ZDL6Dx9n7OFJjlUfc/3Dz+OOP87e//Y2Ghgby8vJ47LHHmDlz5iG3b29v595772XJkiW0traSkZHBo48+yqJFiwZx1EIIIQaKzANCCDFyjbhQ6tJLL6WpqYnf/e53NDQ0MGXKFJYtW3ZQ8/Pjob7RTl1ZC5uq29m3r426WjuJiUZKS5upq+tCqVTQ0tLTPFwBdDs9bCpuoKO9mw0b67B1uDGGq0ONp6Hn7lxbShoxmbSYTDqgmYZ6O502F1qtijCDBrvDi0ajIiMzkrZ2FxkZkeTnJ/R78XrghW3JVisNjU5SksOJjtbT2dnT66ajw93vMQb8ftrfegv7F18QNmsWcb+4E8OECSgOE2CJHsfS2Hyg9K7OCoZhE3LNRGaMx7RoEY6Nm6j511P8cfMGAv591EXoiBw/mhXFxXxZugNzdx42m5u9e1t57fWdB1X3WSydNDT0vM/r6uwEA6Ng76TwcDVpaT1VTcHqnfT0CCyWToqLG+nqdKNSKfD5AmREjuOnc+5kc8tn/PmtJ9htLeXh2+/AHBkZ2teWLY0EAhAZpT+ogqnaYmPDhnocDi9hRjU2W88NDBITw4AAu3f1LDmsreuirtbOlVdNgPSIPsvbgvoLjw7V76n3HfSCX/dXBXk0gsdSssXa54YFweM/XBP03mMuKqoKjan335P4OCO+ri4C3c5jHttQeeONN7jzzjt56qmnmDVrFo8++igLFixg9+7dxMcf3N/L7XZzxhlnEB8fz//+9z9SUlKoqqoiSkJzIYT4XpJ5QAghRrYRmSTceuuth1yudzxV7W6mrrIDc3wKxnA1KqWC6uouUlKMOBwejOEazGY9qQYjHref+HgDu3e1EhamISkpnKQkDmqiPCUvHnuXF7NZDwTYssVKZWUHarWS2FgDOp2SlSssjB4djcmkwWZzY3d4D2rwHKy88Hr8NDQ4mDYtnnnzjERH6fC4fXR1uSnZaqW72wNAU9PBF60Bv5+2l1/G8dVXmM49l7if3Yo2Pf2g7cTw0bs668BQTKFSYTxpFmNnzcS1axfNzzyD8rPlOJ/fyY0V+2no6mJWTh4XT7+M7i41W0uasHd5Q+FTcnI4He2uUOizZYs1FBgB2Gwexo2LCTX3P7DKZ926WiwWGwaDCo1GRUSEhpgYM5dceCc7G7Zz5z/+wfRrr+WOxT/h8rNOIz09gtGjo2lpcWIMU4cCnGCfKafTi1qtJDJSx9Sp8ZhMWhoa7KFKIZutDp/PR7hRQ2eXi5f+u5NFi7KYnp/Ypzn6gWFS7yC3v8bpve+g1zug+jahVDB4MpsNGMPVB/X36v35cA68q9/32cMPP8z1118fqnZ96qmn+Oijj3juuef49a9/fdD2zz33HK2traxbtw6NRgNAZmbmYA5ZCCHEAJJ5QAghRrYRGUoNBcfGjSS9+he6Rs2hvMVJYWEya9fWsb+ineSkcGbMSEKpAofDS7fLS3iEFpfLj9mspaXFiU6nIv+AO3FB31vOW5vsgIKEhDBcLj+Fhcns2tXKzrIWEhLCSE6OID4uDGOYOnQ3vWAA8NnyKkpKrMTHhREbayB4d722dhcarYrw/8/encdFVe4PHP8MAwzMsC/DPrgRIKkolgG2mJRmdW23Mpfseiu1cummtqn1M+uWXbvtu9X1Zrt5zTLlZiaSuaGGuCujsq8DAwzb/P6gGWfYRGMR/L5fL1405zznOc85jnOar9/n+7g5EztIi/NXSjBCUKB9JoZtQMrrjjvwm/YgTp2QfSb+nLZkZykUClyiown95z+pzMggf+nLzCwoYFFFBVv37+ZkYRaLJjyCv78/LipHtmw5RUVlDX37eOPq6mgzPUwBmNGoHcnKMtKvrycDBvqj9dc0qdGk9degdnWiqqqW2rp6HJV1KBQKPL3q2b+/mGpTAC/c8zQvffU+T320lM3p23j/6b8TpnMnL7+ClJQsKiprMJSaiInxQ612orCoEn+tGpVKSZjOA90fWVAatSN6fRmFhZUUFZno18+b0lITp7LKSdvdMFUxJSWLXbtyMZbXNvk7eKYMpcbTCOHcg0EadUMx+Kgo7yZ9Ws6t15e1OJbWxtQdVVdXs2PHDubPn2/d5uDgQFJSEqmpqc0es3r1auLj45k+fTrffvst/v7+3H333cydOxelUtlZQxdCCNEO5DkghBA9nwSl2olL//44eXkSdmATG52uJs3NEV9fF2tR58goH7t6Npl6AwZDNVWmWsrLa6irq0ejPv3HsWXLSVJTs4mPD7LWqNH6axgwEDy9VNZsicLCKtSuTphM9daskKwsI7t25TJ4cAAjRzZ8ca2qrKHaVIda48hVI3TWwFX4H/V9wnUebNp0kvLyhilPtrV8AEq/+eaPgNTt+M+YjqO/f4ffU9H5XKOjqX/yRS6JGc3Kz5Yyc9cOjuXn88ArC3juwQe5OvFaCguryM4ux9fXlTCduzX4aXmvJScfZ+fOPPr187IGUJrL8klMDCY318ipU+WYauswm814eDQEaQ8fLsbBQcHlQbcSFbCf5N+/Y/j9f2Pp9Efx8FBx+FAJJSUmnJ0d8PBQkZdvJOtUOf36eRM7WGtXuNwSEGucfWRbJN3X1xUPT2d8fV1tbwd5+UZrNlhzwd7GfP1ciYjwwdfPtdn9Z2KsqKW+ruF3c5oLkP3wwxF++OE4Pr6u3H7bRT0iGGVRUFBAXV1dk+nXAQEB7N+/v9ljjh49yv/+9z/Gjx/P2rVrOXz4MNOmTaOmpoYFCxY0e4zJZMJkMllfGwyG9rsIIYQQ50yeA0II0fNJUKqdOGg0hLz2KsduH8dtjjtxHDAYX63GmrEBDXVeDIZqnFWOjBwZ3rBSmKmWo0dKqaxsmBZl+UKZmppNenoBgF3hZNsvpQB19Wb6RXhZA10adcOKW2YzgNnaLiLCh+ISEwMu9mdoXKD1i3pklA933dmf7Tty+O23bGpq6wHIyzs9fa/8l18oT07G/frr8Zs2TQJSPdy+fUWkFgUQP/8DNuz7hukvvMAPpaU89tpr7Dt2jLl3/ZXsrMpWgjMKFIqGgGnFH8GVoXGBTdpGR/vRv38xxcVVaLVq4uICGDDQn8KCSjRujnh7qSguMRE7aCDPeI7lvsWLGbfgMR65fTzxl12JsbwGDw9nBgz04/AhJVmnjPTv79Nkil1LK97ZBm8ShwdbA2y2LDWzIqN8MFbUtpoxlZFRwNq1x1AqFQy/PNQuaLRp0ylCQjRUVdXbBZobs5y/2lTbbA2vgnwj6ekF+PqeXjF006aGaZDZ2RVERORZF08400qBPVV9fT1arZZ33nkHpVJJXFwcp06d4sUXX2zxy8iSJUtYtGhRJ49UCCFER5DngBBCdC8SlGpHrlFRBD39FIqnnsL9yK94xvzFbol5g6HGmjllW5C4srKWuvp6Dh8uIi0tj/j4oBaXlteoHamsrOWE3kBAgBoPD6eGulM2GRbBwW7k5VdQU1Nn/WKbODzELkCmUTtSWFTJli2n0Kgbik9femkQ/8txhfpqQoMbMqiq9u2j5LPPcL3kErQPPyRT9i4AdnWoxs7nqzHX83+3387zhw6Sf+QIQQHuhAS1PCVwwMCGIIrBYLK+321XkYz6I8Cj07nj4eFEQIDmjxpnvYCGgE9z2T4/vvIvlnz0EUs//YTLB+3hnXnzCfb3JyOjgJ9+OkFlZS2VlXV2x9iuYmcbnGkctLH85OUb7bKhmsvw0qgdSU7OBMy4ujqSqTdY60mdyionJNjNrv2mTac4cqSEEycMODk1TBtoKShlGcenK/c1W5sqPb2hWHt6ehGjR/clL99IeLgHpQYTAQEaa+bXmaYcdhd+fn4olUpyc3Pttufm5hIY2LS+F0BQUBBOTk52UzSio6PJycmhuroaZ2fnJsfMnz+f2bNnW18bDAbCwsLa6SqEEEKcK3kOCCFEzydBqXbmffttVO7cQem3q9HXeBBwxSVNvtza1oY5cKCYwsJKYmP9KSio4siREqqqahk1ujcTJvZv8kU6bXce2dnlFBdXUWWqxWCosS797qBs+MJsrKglN6eSLSlZ8Mc0vLvuPN2XpR99poHKylr8/V25687+3H9/LDff8q71y3ptURGFH3yAc69eaB/7O87h4Z18N0VXaFyHSj1oIM/u2smg8eOJ2JdByaef4n3XXSgcHFrsIy/fiMFQTZjOA62/htXfHmHLllP4+LhQWFhFSUkVgwc3ZEZ5erm0aWqck6MjT993HyPi4piyeDGXTrmPFx58GAdDMHp9GQqFmWPHSsnLN1r7sC087uvnan1vW4I2pSUm6+p7Wn9Nk2BO41X4LNMBLasAOjgoyM+vAOyLi1uOycgowMVVSVCQhogIL2umVEuZTJbtlmm1sYO0dgG9mBgf4HSwWq8vw83NmXvvHWCXIXY2RdHPZ87OzsTFxZGcnMxNN90ENPwLeHJycouLWSQmJvKf//yH+vp6HP54jx48eJCgoKBmv4gAqFQqVCpVs/uEEEJ0HXkOCCFEzydBqQ4QuGgRedv24vbTKn4tUnDZTUNbXGK+2lRHZWUt5eW1jBgRhouLo3VVPrDPctDryzAYaggKckOlcrCukGcwmMnUG6yZUjqdO3V19dTWmfH2cm5SdNnSjy7cA7Wrk91+65fy+jr4aQUKpRL/2bNwjYnpqNslugGlRsMd33xD3ssvU/Te+9QWFfEPcz03X3UViQMHWdvl5RtJTs4kN6eCgEC1NSji6+uKj48LunAPfH1dKC6uAszWvxeffPI7W7dmM2xYEBMmXGx37rx8I3v3FABmBgz05/LYWN566DkWfvg6Dy59jhEXX8HlUaOor1GQk1PO3j351vpWltUrXVSO7N2TT05OQwBJp3OntMTEsWOl1NU3TFltKTOqMZ3OncGDA7BkSu3bV4SLyhFfv4bgrq203XlUGGsZdlmQ3b7Ghd8tLH//LNNqAT5duY9dabl4eDhz662RzJnT124slt/NZX/1BLNnz2bSpEkMHTqUSy+9lGXLlmE0Gq2rME2cOJGQkBCWLFkCwIMPPshrr73GI488wkMPPcShQ4d47rnnePjhh7vyMoQQQpwjeQ4IIUTPJkGpDuDg7Izn0lcpmjyeyL1r+Fml4crroltYucsXjcbJWmcmISHU7sulLY3a0TpdL213nl1hZ0uGlOULqe30P9vpP3n5Rk7oy1A6KLgmKbzJNCnLOYP3/0y1Xo//I4/gNnx4q1kx4sKgUCgImDMH55BQls2ayTs5OXy0di0fPPkkNw6/HGgIqhw/bqDMUM2llwZap8R5eDiTmBiCh4czwcFudlNJ8/KN7N6TT1GRyVoY3bJ9754Cjh0r5fjxUurq6gEFI0dqGBAdzMvT5/LlxnW89+OnHMw6zIzr/oZDkQuWlSWhYeqbpRaUh4fKulKg1l+Dp1cZdfVm6xRDoE3BHNui7gDOKkcO7C+yjl2vL/uj9lMRYWFuBIe4kZ9fSUZGAb5+ruzdU0BWVhnFJSZO6A122VLNBcUsgTVfX5cmnwm2420p0NXdjRs3jvz8fJ5++mlycnKIjY3lhx9+sBa91ev11n8JBwgLC2PdunXMmjWLgQMHEhISwiOPPMLcuXO76hKEEEL8CfIcEEKInk2CUh2k96DemP/5KuUz7qP/7tXoLwpo8kVRry/DwUHBqNG97abetPTF2FI3KivLiIvKiX79vElMDLablmQ5zlnlSGCghsrKOrtpUXp9GUeOFGM2N7/C16NvvEhBdjZP1NZx8V9uxOvWW3BwcWnnuyO6M+87x/FAfT0p999PcnkZExYtYunDD3PfjX9Bp3PH2UlJlamOTL2BhITTxcIdlFCRU4unl4vd+12vL7OuemfJ+LG8V3ftyqWyshYHBwVVVfUYDCa7OlFzJt2OvzqUt358j0WfL2H2rfcxYODprD7L6nlqtSNgRqN2bHZFwD8TxLHtx5LplJ5ewKlT5RQWVhIYpOHA/qKGrMTBWnbtyqWwsCHLsbTERGFhFb17ezBgoD9afw2FBZUkJ2dai5xbflpiCWJr1I7WoFtLtmw5yY7NxxgW682IG875kjvdjBkzWpymsXHjxibb4uPj+fXXXzt4VEIIITqLPAeEEKLnkqBUOzp06BB6vZ4rrrgCJycn+lwVx5EFS1Au+DuK//6bZMMdDBgc2GpWRGss7UpLqqioqCF2sBZfP1frqn5Ak753bM9m2/Zc/HxdmTQpBo3aEWdVQ+FHjfr0H7/li/4vu9IoLDNQe/kV+E2fjqNfz1leXrSfoLvv4jNnJx6cOpUvSkqYtWwZuUVFzJ84iTFjeluDRnD6vWjJ5tOoHfnkk3QOHSomIsKLoUMDueaaXpSWVJGTU4FeX2adSmeZJmcwVHP4cAkeHs6k7c5j27Zcsk4ZmTCxPxNvj2dYbD/e/fETnlv5BruPZvDCjOnoQnysAbHKyloOHy7h2DEDrq4N7/vmVgRsrC2r2DUXRPb1VbFp0yk8PBpqV3h4OqNSKSktMdG3rxd9+3oBDSsUWmrEeXq5oPXXsH5DJrvT8sjPr2w1GGUZ38qV+9FnGkhMDOHmmy9qdfypqdkc3V+EU301I1rtWQghhBBCCCE6ngSl2tHbb7/N0qVL8fb25sYbb+Tmm2/m2uuvZdu+h/H7dBmadZ+h955s/QLb0opfzbH9cnnYVEtOjhEnJwU/bzxBdU0dvXp5UJBvZOnSbdapgIUFlaSlFVBUWEllRS1pu/OIiPCh2lRHSYmJtWuPAQ0FoNeuPUb2KQPmyoYMDt8J96Dq27fZsQgB4HvbbbxeUoL/vHm8UVjI8x9/THFZGf+YPoPoaD+797VtZtT2HTls3ZpFfn4lRUWVRPf3Y2hcIHn5RmvRcbCfJpeXb7RO+SssqCTrlBGlUsHePQV4eqmIjPDnxX6zcCeIT7d8TsbcI3yx5Bl0uoaVBE/oDZSUVOHr60qYzv2M2USpqdnExwdZp+ZZxmOr8TRby39brnVIXKA1g8lYUftH0M1IZJSPtY1tvSzbMZnb+Geg15ehzzRQVFxFYWGV3dgTEkKbFG6Pjw/Cua6KIbHebTyDEEIIIYQQQnQcCUq1I7VajY+PL0VFhXz88cd8/PHHuLi4csUVV9PPvz9/y/sdxS+rMA99EIXidN2blM2n+G1bNpdeEsTNN1/UpLCzZSrTjh25HDpUhLG8lvz8CgoLKykrr8HdraHO1Nq1x0hPLwAalpxP250HioYi0xERXsQOasisGjw4gF9/zeJUVrk1UKVUOjDK5QBfmhuKPrsNHix1pAQAKSkn2bAhk6SkcBITQ+32+f/1rzyVnYPfa6/xTF4u769ezYTR1zGwXz9rQOSEvowqU411OppO586wYcGkpxfg46Oi2lTbbPCqOYUFlWRlGenTx/OPLCSzNehyQl+Ga3lfHrjiYdYe+IwrH3yQZ/86nUFhQ4iK8rELatlOjwP7AFNqarb179GEiQ3FxpsLYtkGfEpLTKSmnsLDU0VMf1/r39vGK+vZBt2gaX0qgKFxAdRU1zM0LqDVe5GRUUDarjwiIrxQKpUkJgY3+QxonI2ZkBDKsIFemKsqW+1bCCGEEEIIITqDBKXa0TPPPMMll9zDF1/8yO+/b+TAgV+oqMjjxx+/Y7uPlvgRfyXu96/JevUNfvKNp6rSkcTEYAoLq8jJNvLjj5kEBKhxVjmyZcspKiprABgwsOFLr9JBgcFQbf2iW1dXR0FBFRqNE8aKWmtx85gYH7bvyEHpoMDbS8UVV4QwevTprKcBAyErqxyA8D++qI8MN+J98HfqHZ2gro7ckjoGdPL9E+enDz7Yy/r1mej1hiZBKYCAJ5/gr1lZqFZ/i9vlV1Nd6kZevtEaCNmy5RR7duezY0cu900ZQHS0HxMmxFgLc1tWjoSWC3RbgrLlZdVUVNTg4uLIiKt1aNSO5OVXoFE7cuKkgaKiKmLDg/jl7beZueyfzHr1JS6PTOTxiVNJvEwHQHJyJrvT8gGs9dgsUwcBu0UCWit8rtO5c0JfRtquPFQqB4zGGkpKTJiq6qxT8Wy1dUU8Sz04Z1XrH89pu/M4fLiYQbH+1pX6GlY1PH0NPWkVPiGEEEIIIUTPI0GpdlZdbaaurhcJCfcTETGRmBgTdXW/U1WlwOfKiTgd1FH51jLmH14NSndifoshIiASB6UH5eXV/PDDcXQ6D1QqB0wmB44dMwCQk1NB796ef5zFjIeHEzk5FfTr54Onl8oaAHBWOVJaUsWB/UXk5Biprzdz8FAJxSX7rJkhen0ZublGnJ2VOKsc8XGooiZlNU79+lGjPwnAtm25JCV1xR0U5yObxD4AMjNLSU8vJCbGl/BwT4KX/ZM7s7Ko3Pc727mIXza58PuBE1x2SS8AamvrKSkxkbY7z5qdZFtrKivLSGlJlbXIeWM6nTuHDhWRnV1GSbGJ4GCNdVpcfV1D0X6VswMKhQKVswPuajXvzX+cQX2iWfTBW0x+/ii3DrqLYbEXEa7zABpWtbNkOwUGauxW5ktIaBp8a0zrr6HKVMO+jEJ8fVy49NKGQJDtan5n0lzNqpZqzTXOoLTU7LL8BqwreAohhBBCCCFEdyBBqXa2du1RfvnlJP36eREU5IZW2w+dLs765Z0x9/N9SSnli+ZSV1fEliO/sOXILzg6ONHbty9luX05nqNj6IA+hOk8yM2p4Ngxwx+rc/nZfYlWq51I2XKS2hozo0f3sta/qa83k5dX8cdy9Bry8yuthaF9/VztCkgXZRVx4ONP0Dgqcbz7r9Ru2AiAQiFT90SDKVMGoNN5kJQUbt2Wnl5IamoWAOHhnihVKsLefYfDY29hyJHvWVsYw3+Pf0ZqVjAzxkxlSFxAw+pzNgEU2yweY0UtB/YXYTBk2U31s11pb+TIcLJOGcnOqqC4xISxopbqP+qr9e7tgVKpxMVViVKptB53zaArqBrrxrLVb/NOymscPHkjj0+71ZpZlJdvBM59Bb7YQVprfaswnUez0w9bqj1lmZbbuGZVS9lNltUIzWasKxieqRC6EEIIIYQQQpzPJCjVARSKhmk0NTVmfvnlFD4+RWzbls3kyRcTHu7JdQsf41hcNF/PnMnPJQY2VpoorizjUP5+DuXvZ0jg5QylD7GDtPxacwJ9ThY+Pi4kJ2cSrvOwZnQkJ2dy8EAx1dV11NbWM2FCfyKjfEjblUd+fgXBIRruurM/GRkFrF17DKVSgV5fxtC4QEaO1GCurWX73OdxqS5nfcANRKsvwsHBEaXSifj4kK6+jeI8kZgY2mTaXkyMr91vACetll7vvkXmPRNIdNrGl2YjJ40H2HBkFa8/+ihBAR7Wto0zhCwBm7RdDVPS8vMrSUnJQq83UG5smMZ61539GTOmN56eKnx9Xax/B/LzK8jUG0hMDEbj5kjsIK3dCn0DY/py00X38bP+v2w4/hVBySYGDJiBytnZLgCUkVFASkoWvr4uJA4PsW5vbQU+Xz9XYmO1NC5Ubss28ATYBaFaW4GzcTDLsnJfXp6RdT8co9pUK1lRQgghhBBCiG5NglLtzJJVEhCgJje3gosv9uP33wsoKKgkPb2wIVsK0PsMpm7s8zyz7U0civI4ddllpCod+H7LVhJ7x6FSKTFW1GJyymbpDy+hdtagVYcysG8Ek24bTm/nSGIHaTmhN5CVZcTDwxljRS1D4wLRqBv+WF1UjmzZcpJMvcG6kphG7cj2HTmEhaip/eLfBFTl8LPv5fSedBse/u7Mnbum2YLWQtgKD/e0vpdtuV58MUGL/49r/v4Y/0oczsOpm9mwczPP/duDB0ZPZM/eAmIHaa2ZUXA6M0jr3zAlT+PmSH5+JbvScnFUOqDTeVgzrKKj/ax1oAC7KWzR0X7WVf9cVE74+rigVCooLjExaEAIgwc+wP6i7Szf8Bnpxw/x0dMLCA88ndmUtjuPXWm5eHg4E6bzsAagmstmstDry6wr6gHNrqLZeJpiYKDaboXBxn1asrxcVI5UVNRat1vOc/RoKUeOlODi4khCQmirQbPG8vKNnDiYR6ifI03/9IQQQgghhBCic0lQqp01l1UydGigtf6OxYYNmWzYVkvl5fOZWPotocnJjO/bl4cWPk1Rncr6JXP5d6dwdHCkotrI8eoDHN9xgNU71gAQHhjIu/Mfp0/AAPT6Mvy0TlTX1BAd7Wf90p+ams2prHKyThmZMLE/en0ZqT8fpzbrJ4IrT3Gw3wj6jp/MqDuHsnbtUWprzZSWVnfqPRM9i+f111N99BhXv/46j158OS/t3cRHa9eSebycaPVVQEMQyUGJNYBqG1ixZPepXZ2aZC0B7N2Tz86defTr50WYzoORI8Ptsp0sWYGXXRaMp5fKWnuqtKQKtTqewdOieOGL17n8/r/x9tx5XJeQAIC3lwpXV0d6hXvYZS7ZZjPZjnPnjhw2JOuJ6OeFTufeJCNKry+zntuy3xJYai14lLY7j91p+fTr503sYG2TsdgWYrecp6WgWWN6fRlHDhXjUO1Kn1ZbCiGEEEIIIUTHk6BUJ2guq8RSn+eqpHBCE5Io+fJL8v7xIjmLFuGelETc6NEonJyIDR5GbUQYDm6lVDkWUGzKJrNAz+GTJ8nMyUHr423NtnhpxQqe+2g5fUJCCPELwMPFCz83H0pwgFIfDh8JoK+vA876NbhXl7I3/Cq8x08mKj4CaH5KlhDnwm/GdIr37mfSpv+R0+9KPj60kY37NuE80JlJA6faFSgH2LungF27chk8OIABAxu2/2Vs3xaCLAoUCigsrLJmElnapaRkkZFRiJe3ilGjetnVXGqoH1UAqPn6//7JY28uY9xTT/K3G29lyYz7KS4x4ah0wMNTZXde22wmy4qBAJs2neKEvgxnJ2WTzChLoMhBiXVlwdam6tlqnP1lOw7Lb9tpe23p1xJM06gd6RfhTbCffPQLIYQQQgghup58M+kijTOqvG+/Hc3w4eQteZ6ydeswpqTgnpRE4qX90bg5Eq7zoLKyDsvKW86uZv6zagtf/+cUCQlmEhJCOZp1itq6Og7q9RzU65ucM149ntBTe3B3dOLxam9+3bYa8/Yf8fd3JzjYCxcXF77//ntuuOEGPvjgA/z9/TvxjoieYvHiLaxceYC7b7uNy32OMrtQzwnf4fxUuBl96SHCemmoNJqB04GUw4eLyMgowt3dCU8vlV3Gke2Kc4UFlRw7Vkrfvl64uipJTy+id++GWlUZGQXo9QZQgKuLE/v3F1uLpEdH+/0R1Clg48YTKH5WcFXorbjWBvDed9+w99hBHr9zOuBvV4y9MdsA0BVXNNRds/xubiqebaZUYUElhw4VoVE7tprRZDtFsaXVCG21VBjdliVIFhnlw+BBWsxVla22F0IIIYQQQojOIEGp84hzUBAhryyjYutW8l97jdJvvsHD5XtGDx2KJmw4e3KdOXCgGE+vhmLllbne7NtXgMlUh7PKkQWTpvHE5Hv55vsdbNlxGDefGsyORo4fPcqJrGwuPvYbJ917kx49hgOpaygsPglAUREcOHB6HD/++CPOzs5ddBdEd7dy5QEOHizmP1/CFf/4B5XzpvJSYAVrRt7HhHHX465W4662n2pWUFBFlamWgoIqu8BP4xXnDh0qYl9GISHBbnh6qjiVVU5qajb9IrxJ251HubGG3r08ueyyII4dM7Avo9C66mTD+cwUF1dRXl5DRUUNN156LRNuSWTWqy8y+cW5vP/4E62uaGcbABoSF4ifTbFywG61wMYr8SUnZ7I7LR9oCDxt2XKS1NRs4uOD8PZ2sQugtXVKnm0frRU9t8+mMrfYTgghhBBCCCE6kwSlzjMKhQLNZZehvvRSKrbvoOijj6j49VeMv/xCoLsHntpw3HwjqT5eRcIQLzCb0QaorV9gNcoaSn4r47IKJbGOFfSqLcRB5YLiiqvI7J1AUf8E6mvciTJoCAy5ghMnCklI0JKVVcqOHafw8nJk1qwb8fSUMsji3Nx5ZyQrVx7gzjsjSbzuYkwRn3D87vHcqd+HpynJ2i63qIgAn4YC4SNGhOHi4kh8fBCFBZWk7crjhN5AVJQPgwcHYFndTqN2JOuUkcLCCk6cMOCgbFjpcu+ePwqol9fi6+vCgIH+uLo6cvRoCdk55Sz75w5uuKEPAwb6YzDUcOKkgbBQd2u9qksufoe/LnmOm+fNZe6ECcy9ZwJKpbLZ62uuEHlhQSXrN2Ry9EgJdfUN7WyDWxkZBeTnVxIc4mbNxEpNzSY9vQCA4BCNXcCqrVP9bPtoLShlG0yrKy9vtU8hhBBCCCGE6CwSlDpPKRwc0Fx6CepLhlKbn4/hxx8xbvoFx/37qV29l7zVEAaMUyggy4X6ujocfq2HulomA/UuUIk3Wb4Xobp8BJdNvZ7IoCAUTk5kZpbSP8af9euPA7lERupwdTWwb98R/PzcGDZsWJdeu+jenngigSeeSLC+VvXrR/jHH6P/61/JX7oU32nT+PfePTz+5pt8+dwSLo+NJSEh1BpU+XTlPrtV8EaODLf2pfXX4OvnyrJ/7qCkxISfvyuenioOHy4iLS0PrdaVzMwyjh7dR58+noT38iRtVy5ZpUZ++ukECQmh3HxzhLW/jIwCkpMziR2k5eslz/PSf1bw3Ecf8evvv/Pe/MfR/hE0s9VcIfLk5EzS0vKoqakjLLRhtUDbrKm03XlkZBThqFQwNC4AwK5gube3C9BQRyov30jK5iwKCyvPONWvcdHzltgWaPd1bbWpEEIIIYQQQnQaCUqd5xQKBU5aLb733IPP+PHUGwzU5OZStX8/1cczqSsspM5gAIUChZMTuRWO7CtS0S9pKAHR4eRn1XNRXBjOutOZT5bC656eznh5qaxF16uq6nB0dJDV90S7c4mKpNeKf3N00hRyX1rK93V1VJpM3PX0U6x9+Z8M7NcPaAieuKiciIz0ISzUvdlMIa2/hhtu6ENqajYxMT44OTny/Q9HKcivJCLCGxcXR45nGqiqquWyy4LAXM+uXXk4OSma1GiyBJigIUPpsXsmMCwmhin/t5jhD9zPh08+SeLAQXbnb64QeewgLfn5DXWarkkKJzraj3+9uoOtv2az9rujeHmrMJlqKK82k5qabQ3C2WY3Wfr65ptDrFlzGIWDAo2bY5Opfv0ivK0BpsZ9tMR2OqBvpFvb/tCEEEIIIYQQooNJUKobUSgUKD09UXp64nLRRc22CQGG2Lzu3Up/jYuth4a6k55eKKvviQ7hHB7OsRkv4/LKQl7I3YchMJBfc3K4Zd5cNrz6Gr2Cgv4o7l2Bv7+rdWqdhW22jyUYk5FRwNq1x3B2ciA42I0RI8Lw9nbh668PUVlZy+HDJRQUVNGnjyfOzo4kJ2cycmS4tV9vLxUODgq8vVTW81w5eAgp77zDlMX/xw1z5nD3lbdw02WjGTQoAK2/huhovyZ1p5rbBmCqrqWm2kxlVR39+nrh768+Y1ZTYWEl9fVmXJwbFjjIyzeyZs1RsrIapt05qxyb1JuyvTfNZVZJTSkhhBBCCCHE+UiCUsLKkkElRHtLSTnJhg2ZXHyxH+bH/oHjtx+w7OevmaQp50BxMbc9Pp/1/3oVnc6dQ4eKMBiq0evL7IIuycmZGAwNWXyHDxWTmppNXV0dObmVhAS7MWFif7T+GvLyjbh7OFNcXMWevfmUlJjo28cLnU7NkcMlaP3VjBzZ0G9xiYmy8ho2JOuprKyzBsICfX15Yco85v7rHT756Ut+/f13/jFtFiP9I1q8xsaBoWuSwqmqrOHEyXI0akf+8pe+1iynxhlblmM1akd8fV3p188bjcYJZ5Ujen0Z7h7OBONGWJgbabvy8PV1scsiO1NhdKkpJYQQQgghhDgfSVBKCNHhNmzIZMMGPQALFiSyaOcNFHkp+ZdyFROPHuSgXs/ERQv5asnzjBwZbg3uWOj1ZRgMNXh4OKPTufPJx/tITy8gNNSdSy4JIHaQ1hp00evLMJSacHJywMNTgwKIiPAmONiNkpIqQAGcniqoUjlQUmzit23ZhOk8rIGtH9fp6euSQODAMH449BXTX3+ST/wXckl0tLVelNJBwYkT5YSFuXHiRDlKpYLhl4c2yaiyBJ327sknJ6cCsA8eWYJKDkowGGpw93BG7erUEKTyc+Waa3qhUTuydu0xTmWVc8klAezckcOmTae44ooQhvyx0p/lntnWs2ptNUEhhBBCCCGE6EoSlBJCdDhL3TLb3xu4DrcBN/Da87OZtGMrP+/axVc//cRd117bJNvHEmzRqBsyh2JiGgqQx8cHNamppNO5Ex8fwuHDRZw6ZWTYsCBGje4FgKeXCp3Onbx8I6u/PUJOTjmDBvpjMtXbZR/p9WUolQ70CvcgLGwYob7B/HD4C0Y/8gj3X383vdWDOXKkBKOxBqOxhuPHS3FyVhIS7NZsHSxL0CkwUENklE+TNrbXl7Y7j8OHjJiq6sjKMmKsqEWnc7eOKSTYDW8vFV9+eYiSUhMAo0f3bbVWlhBCCCGEEEKcjyQoJYRod5bpeklJ4dbaZbb1y2xfP7tzMX/LexJlxSGSDh+m7oorULq42PVnmX62fUcOB/YXERnlw4SJgc1OhdP6axgwEJKTM8nKKsfTU9UkK6m0pIqcnHKMxhrc3FRE93e3q8ek07kz/PIQa1ZW5qFaRgTdRUTQb7y2+mMGhKZxWcAYoqJ8qaqqJyzMDYOhBl9f+3Fb2Nd0gr17CoB8Bgz0txubr5+rTc0rM2C2TsvT6dwZMMAPMHPsmAEHB/DyVHHFFSGA/fRB22LsQgghhBBCCHG+anNQKisri+Dg4I4cixCih7CdrmcbjGrO1ddFsMHpH1xv3kH1V++R/9JL+D38MI4eHnbt8vKNlJaYCAxUWzOHWqqjZFuHybaw+N49BezalUvfvt7Ex4cAZgyGan76n54hQ7TWWlO2NZji44MoLKzEw8OZay+5i6FRMSz59E30+Sf5q/8Urr96CDqdOymbs/htWxag4OabI5rUmLL0t31HDrt25WI2g6eXC1p/jd21DI0LtI4jL9+Ip9fpPjy9ytj8yymKiiq5eIC/daU/yzXb9iEZUkIIIYQQQojzXZuDUjExMbz++uvcfffdHTkeIUQP0Hi6XmtOZ00lUn5NHAdmPMSDU6Ywe8YMLr/qKms7vb6MnBwjkVE+dkEonc69SQ0lnc6da67pZc1M2r4jx7rynNkMHh5OjBzZMLbk5EwUCgBFs6vYJSSEWguU63TujBx5I2G+wTz+/j955cdl7D/xF+77y/UUFlZiKK2msLDSOt7mVskrLTEREKDGZKpHo3a0XoPtb4AtW06SmpptDapt35GDRu1IXV095cYaovv72AWemutDCCGEEEIIIc5nbQ5KLV68mPvvv59vvvmGt99+Gx8fn44clxCiG2s8Xe+rrw7w9deHuOWWCG69NbLF49wSE/n3kMEkp+1i55Ln2ODmRsTQoUDToItt9tHqb4+wKy0XY3ltkwwh2+CQq6sj1dV1ZGWVW6f9DRjoZ601ZcmkGjw4wJqt1FhevpGaclcevvYR1qR9y3fpX1OuyGbhvQ+icXO0TpmzrRNlCYpZAmuOTg44ODhgrKhtci2Wc6xZc5SsrIaV8ior66wZXn36eOHpqSJ2kNYucGWpraXXl9ldu22ATQghhBBCCCHOJ20OSk2bNo3rrruO++67j/79+/Puu+9y4403duTYhBA9xNdfH+J//9Nz6lQ5Q4cGEh7uSWZmKenphcTE+BIe7mltu/jVV/l52zZ27d3LXQue5t1HFlDnG45O524N7MDp7KOMjAL0egOOSgdrTSfbQJRtMCs5ORO93kB2djlubirC/uhz6B+r10E+ZjMYDCZrIKnx9LoT+jJ2bM9FF+7BP2fOZHXKYP759fs88MpTvP/EE0T387MbX3JyJgZDtd1YNGpHawHz5jSeflhZWYvZDIWFlbi6OhI7uCEjbOnSbaSnF1BVVYuzyvGPWlkV1n5sM7UyMgpISclC625mWKw3ns2eWQghhBBCCCE6z1kVOu/duzf/+9//eO2117jllluIjo7G0dG+i507d7brAIUQ3d8tt0Rw6lQ5fn6upKcXEh7uSXp6IampWQB2QSm1Ws23333HoAGxHCwt4tk3n+eGS/7Gzyo/+vTxpMImuwgaVporN9ag03mQOLyh6LdtIMrSTq8vI1zngU7nQVVVHYWFlWRmGqirq2fMmN5ER/sxYKA/nl4ulJZUcWB/EaUlJjy9yqg21eKgbAgmFRZWUlnZMAZjRS33jh3NTdcMZcri/2PE9Gk8de8UHrr9dpRKJXp9GQZDDR4ezk1qS7XGdvqh1l/zR20pFzRqR/bvLyZtVx5HjxSTn1+BVuuKTufe7Op+pSUmSkuqyMgoYO3aYxw8WEyQN4RpnejTHn+wQgghhBBCCPEnnPXqe5mZmXz99dd4e3szduzYJkEpIYRo7NZbIxk6NNCaGQU0+W0rLCyM9z74lHHjbmCDoZR+uz/GO+h2DtXVoVQq6d37dBH0cJ0HWaeMxMcHWQM+jYM/lkynyCgfpv5tIHp9GRq1I2vXHuNUVjnrN2Raa1INjQskL9+IwZDFr79modE4ERCopr6uIQiVmBiMxs0RF5WjTWHxcFYufJFn3/+QBe+9y7qtv/L2vHnNBsfaovH4bV+npGSxa1cu9fVgMtUSE+PHqNG9m52q5+nVcN15+RUolQ4NK/j1UxMc7NbmsQghhBBCCCFERzmriNK7777LnDlzSEpKIj09HX9//44alxCihwkP97TLiGr8urFbbrmWt99+i/vuu4+3CnJ5Uf0dyrB7OJzvQKbeQEJCQztnlSOBgRqcVU0/ziyFyzVqR2sGUeOAT9ruPPLzK9mdlg9AdLQfWn8NVaYaCouqcHFpqBNlmW6n9dcQHe1nVxQdIDe7iiv7jKK390W8vf4Dhk25j3/OnMm4pCQUDZXUrRoXZm8LyzF1dXV4eDqj9ddQX2+2BuMs1/TDD0fYtOkUV1wRwpC4QE7oyzhx0kB4uDuJw0PwdTVjrqps0zmFEEIIIYQQoiO1OSg1evRofvvtN1577TUmTpzYkWMSQggApkyZwt69e1n5n08Jc1UTnbsBz4tv5uI/iolD66vO2WZIna4bdVp0tB/R0X5kZBSwfkMm+fmVZGQUEB3tZy1YHjtIi6+fK0abAuIAhQWVHDpUhEbtiNZfg0btiIMSynPcGaa5ixMOW/jb80v44ddUXn5kJj4ep7O70nbnsW1bLlmnjPj6ubYpiyptdx670/Lp18+bW2+NbDH7atOmUxw5UgLA6NF9qTLVkHWqHH//hvPUlZef8VxCCCGEEEII0RnaHJSqq6tjz549hIaGnrmxEEK0kxdffJFLL72bUykHuHjTUq449SNFgybx3nt78PV1IXF4SLMBJ2g9YAXYZTv5+7uyOy2ftN15DUGoilpGjgxH669h+44cu6LheflG69Q/aAhuGStqG6b4lddAnTNX6MZy04jh/OvbDxl23xT++chMbhg+HGgIdGWdMqJUKqyF25ubfmeb6eWicqJfP28SE4Ptsqtsr0Hrr+GKKxrqall+2wbXhBBCCCGEEOJ80uag1Pr16ztyHEII0SxHR0cSEi4i3dMXlxFa9s2djueny9llGIqHlwthOo8WM43OVFjcdlU92+CN7Xatv6ZJcEuvL0OpdCAk2M16nGWfr6+KHTvyqKs3U50dyMtTnuHLbV9w94KnueWqEbz00EPWoFLa7jw0akf0+jJ27Mjl0KEiayDMdnwOSqivw7rqXkvXoPXXMHp0X0aP7ktevtG6guBdd/Y/y7suhBBCCCGEEB1PqpQLIc57lvpTK1ak8ld9JuOKCrmptxs50SNbzIKytWXLSVJTs4mPD6JfhLc1s6hxIXJfP1f27inAYDARGKi27m8c3NLp3Bl+eYhdZpNtGz9/DT98fxSjsQZf9xA++7/FfPG///HYa68y9N7JvPjQQ/Ty6G8tnq7TuXPoUBEGQzUpm7OoMtUQO0hrPb9G7WhtZ9FcvSxbjYNVQgghhBBCCHG+kaCUEKLbKC+vp6qmho+Kixngso3EAb3R+l9s16bxdDaA1NRs0tJyOX68lKuv1pGXX0narjx69/ZgwEB/u8ykXbtyMZthxNW6c87AqjbVolAo6N/fl5qaWl5+eTvx8ZGsmL+UJ999k/sWL2bE4KHcd+14dDp3CgsqMZbXonZ1ZN++AgqLqgC4687+LZ7nTPWybANutoXVLwpzOcNdFkIIIYQQQojOIUEpIUS3ERaWSELCeLZsWcGTebl8tnkNfS6JwDU62tqmuQyh+Pggjh8vpbbOTGFhFUoHBfv3F5KTU46nl4u1nU7nzuDBAYC5SeZRW1fMy8goYM2aoxSXmHBxaZiaZyk8HhyiYZjvjVzaN47/7v6Wv/5zLrPvuptgh0EcPlyCv78ajcbZuuIfNB9ks4zV9retxsckJ2daVxe8KEx3NrdcCCGEEEIIITqMBKWEEN1GTIwv8+Yt4B//OMXmzRt5JCebz999l77z5uGkta/tZBusSUgIxdvbhZSULHx9GzKFvLxUBAa6oVE7kpycCZgJDnbD00tlDebYBncsq99BQ2HzlqYEpu3Oo6y8BkelAqVSgU7ngYuLI/HxQXh7N5w7dlAMTz9yEy+u+Dcvrvg3AV7fc/PQW4iPj8dZ5WgXgGppGp4lW8u2dlRLx0ixcyGEEEIIIcT5SIJSQohuw1JbKj7+C+Li4jiu1zM3M5M333mHwMcew8HZGa2/hsKCSpKTM+2ymqKj/cjKMrJrVy59+3oz+ro+6HTudlP2jh0zUFJSRUCABkcnBS4qRyoqaoGmq9ilpmaTnl4AgLPKsUnB9HCdB84qR7t6UFp/jV2W1cK/TuXua0cx51+v8OoPb3LUsIdn/jbVGlzKyzdSWmJf36qx5oJWjQNz0dF+1vPWlZf/6T8HIYQQQgghhGgPEpQSQnQ7fn5+fPXVVwwfPpyfSor59uAB7vjkE3ymTEGhUDTJajrNjNkMHh5OdnWYLFP2srLKKSyqxGCoprq6jn79vIkdrG02oBQfH2T93bhgum277TtymgSNbDOwLtLpWP3iS3y9cSML3n2HS6dMYfL11zNv4iRO6KvJyTESGeXTYm2p5jLDzlTzSgghhBBCCCHOBxKUEkJ0S0OHDuWNN97g+PHjTAoJoeifyygLD8cjKanZ6Wp5+UZAwZAhWgYM9Ldu1/prGDmyIYCTnJxJbm6FNVOqtfpRCQmhJCSEsmXLSd59Z4/dan6W+lPeXipOnjSiUjlQWlJFXr4Rrb/Gmt1UWmIiK+s4er2BESMi2L78I95dtYoX/7OClevXM+X6m7ms1+V2xzYmASghhBBCCCFEdyVBKSFEt5KZWUp6eiExMb5MmTIFALPZTPWePRhWr8ZZpyM6+iIA0nbnAQ3ZUnp9WatZRxkZBRw7Vkrfvl4kDg9p0qalguM//XSCPXvyOXmyjOj+fmj9NdZMLQcHBfX1Zvz91Tg4OODpVYbWX2MNXpWWVLF1a5a1KHpCQigP3XEH91x3HU+89j5vrvqC9x2/ZUT0lUx1vpmr/fu1OhYhhBBCCCGE6E4kKCWE6FbS0wtJTc0CGmpMASgUCnyefZZ/DhvGvR98QOi8edbAkLG8FmNFLdWmWhyUoFE3/7GXtjuPw4eL0bj52wV6LFlPtvWlGq+Cd+KEgd69PazBJkuGltJBwYkT5cTE+OBnE4yyLVKelWVErzdYpwMCeLu7c3nva3HI78vxqp1sSE9m4/6N/G3/WB685VZO6muaLX4uhBBCCCGEEN2JBKWEEN1KTIyv3W+LW+66ix8PHybLz4/F779H7OgJALj8UYS8srKWkpKqJjWfLFpaoc4S3LKtL2Vr1OjeRPf3s8tashQWT07OZO/eAnbsyGfECBV6fRlwOpCk9dcwYUJMs9dpGcf0QfH4BT7M6199yTurVvHqF18welgi18aOICxMZ3eMJYOq2lRLpt7Q6vRDIYQQQgghhOhqPSoo1atXLzIzM+22LVmyhHnz5nXRiIQQ7c2yAl9jc+bMYf369XxWUEDcrl3c2as30Xfeag3UnNAbKC6uAsx2x1kyocJ1HrionEhJacjCsgRzbINVzQV4LAGmxgGnBmaKi6uora0kNTUbN3dnDh0qYuTI8DNmONmumAcNK/Ul9rmSd79Zy46MX1mzZRPRa/swacx13DZiBFofH/buKWDXrlxMpnpyco3s3VPAhAn97fopKKwg62gBukEGekWqWx2DEEIIIYQQQnSkHhWUAnjmmWeYOnWq9bW7e/PLqAshepZrr72WJ598kmeffZaFBQVE//ADl0ZEoB040FrHKUzngUbtyPYdOdbMJksm1NEjpWRnl1Nba0bj5oivn6u1btNdd/Zv9dy2hcuhADAzYKA/Awb6YzDUUFhYSf/+PuzbV8SRwyVo/dXW4urNsQTSNGpHjBW11rHu2VWKmzGSWyJicfAuZOfJrTz1zts88dabXBUXR/+AAThVBdM3XIvRWE1ZeQ1pu/OIjvaz9lmWW0xhVinGfUX0igxscQxCCCGEEEII0dF6XFDK3d2dwED5oiXEhWjBggVs2bKF5ORkZufl8dknn9Br3jwcfX2tdZy278ixq8dkyYSqramnqqoWFxcnYgdprYEmS7vGMjIKSEnJwtfXhagoHyKjfCgtqWLXrjzMZvD0cmFoXCA33xxhPaayso6SkipAYd3WXNFyy7kdlFBfh3UMlrpTDTWqonhENxpHVR2rfv6Zz5M38OqaD1CgIDq8D/H9B+PtG0S/iyLs+gz2dqBvX090/X3a9+YLIYQQQgghxFnqcUGp559/nmeffRadTsfdd9/NrFmzcHTscZcphGiGUqlkxYoVDB48mEPZ2Sw8doylH36I/6xZOCiVQENh8tISE6UlVeTlG63T5LZsOUleXiXx8UHWzKIT+jLSduWhUTtap8BZgkhpu/LYlZaLh4czYToPhsYFkpdvpCHgZG5SewpgwEA/PL1UdvuaC35Z9ttmSgEkJISSkBDapN8pN97IlBtvZPmK7Xy7cQvlypN89csPlJSX88r3CqLCw4kI7YW3qy+DHIOJD+6FLsyj3e67EEIIIYQQQpyLHhWtefjhhxkyZAg+Pj5s2bKF+fPnk52dzcsvv9ziMSaTCZPJZH1tMBg6Y6hCiHaQmVlKenohMTG+1jpThw/XMHr0k3z88cNsqqkm88ABVN9+i9cttwANgR9Pr4ZAkKdXmTUQlKk3kJ9fQabeQEJCQ7sqU80fK/KdDkqt++E4W7dm0bevN4NjA/D1dbFbVS84uJK03XkUFlQ2ybCyZGvZshxrG6hqrt2Z5OUbOXW8Bq1DFNcPvYopUy7m0IkTbMvYx7Z9GezPzCT19918tL6YcZdfzn8eeOCs+hdCCCGEEEKI9nbeB6XmzZvHCy+80GqbjIwMoqKimD17tnXbwIEDcXZ25v7772fJkiWoVKpmj12yZAmLFi1q1zELITpHenohqakNhcktQakNGzI5dMibsWOf4OWXp+D83vuUfPUVqogIXAcMABoykByUDb+3bDlJamo2YWFuDIr1J3aQ1poNFa5ryCayXZFPrzdQXGKioqKGWbOGWtsCdjWqjOW1dvWgGrMUWI8dpGVoXMtTjpub3tdcm+TkTByUCi66yJvExGAcHByIDA8nMjyce0ZfR16+kZTNWeSezObiKClwLoQQQgghhOh6531Qas6cOUyePLnVNn369Gl2+7Bhw6itreX48eNERkY222b+/Pl2wSyDwUBYWNg5j1cI0XliYnztfgMkJYX/8ftywsNDMT/9FBVpaRSvWIHT3Lk4entjrKilvg6MFbWkpmaTnl4AwJw5lwBY605FRvlYi5xbgkNxcVpcXByJjw+yBoMMhmrgdI0qY3ktFZU17NiRY93emCV4BTS7qp/FmWpbWdoYDDX06uVBuM6DtN15ZGaWUlxisq4aqNeX8du2LGpKyghwc27jHRZCCCGEEEKIjnPeB6X8/f3x9/c/p2PT0tJwcHBAq9W22EalUrWYRSWEOL+Fh3taM6QsEhNDSUw8XXdJ4eTEnltu5t+P/p0XPvgA/5kzrVPlqk211NXVERrqbi0iDs1PqbMEhyKjfJgzpy/QELw6ftxAmaGaARc3BJaio/0wVtSyY0cuHh5OzdaWgtPZV+E6D7vVABtrbiyttUlOzmR3Wj61dfVUVtRiLK8lOtoPnc6dSy8JxpBbTHS0d4t9CSGEEEIIIURnOe+DUm2VmprK1q1bGTFiBO7u7qSmpjJr1izuuecevL3lC5gQF6qsrCzG3f8ANTXVRGzbxoz//hftTTeh9dfw6cp9FBWZGBTrb1dAvC21n7ZsOclPP52grMxEdY3ZWouqcduWspssBdYbrwYITafsnam+lG0bS7ArJ9vIkSMl1NXVWYNeN98cQV15OeaqyjbfPyGEEEIIIYToKD0mKKVSqVi5ciULFy7EZDLRu3dvZs2aZTc1Twhx4QkODmbgwHvZseNtXirIZ+Dq1SRFROAaE2MN4NjWjGqJJehjqR+VmprNkSMlhIa6MyjWx64P2yCRbe0oy6p+en2ZdWU9jdqRwECNdTXAw4eKWbPmKB4eziRd0+usC55bgl3JyZnU1ZlRKpVnnP4nhBBCCCGEEF2hxwSlhgwZwq+//trVwxBCnIfmzZvJnDnp6PWbmZObwzcffkjUU09ZAzjNaRxMAvv6Tpbpft4+KrJOGQnXVTXbT+PaUZY+HJRQXweRUT54eqmsqwGmpmZz6lQ54NbqlL3G8vKN7N1TgMFgwsPDmeBgNzy9dNbg19n0JYQQQgghhBCdwaGrByCEEO0hM7OUtWuPkplZ2mTfbbdF8fvva7nooovIqari74cPUfDBB9TX17fYnyWYlLY7z7pNp3MnMsoHnc6dhIRQ5sy5hOIiE+npBaSmZjfbT+wgLYNi/amsrOXxxzdx9EgxkVENmVWWvmz7jY8PYuBAf264oY9dttWnK/eRkVHQ7DksBde3bDnFb79ls3NnHsaKWobGBRId7cfQuMBunSX1+uuv06tXL1xcXBg2bBi//fZbm45buXIlCoWCm266qWMHKIQQokPJc0AIIXquHpMpJYS4sKWnF5KamgXQpPg5QFFRPY88soxZs25mc1kZr/6ayt/79cPzxhub7a+5qX2FBZUcOlSERu1oDfJYMqZsC6XbsmRjPf74Jo4cKQHgjjui7dpkZBRY+01ICLWrb5WXb2Tt2mOcyiq39mdry5aTrFlzFGeVktAQd3x9XfDwcG4xM6qgsIKsowXoBhnoFaluts355LPPPmP27Nm89dZbDBs2jGXLljFq1CgOHDjQ6iIWx48f59FHH+Xyyy/vxNEKIYRob/IcEEKInk0ypYQQPUJMjC/x8cHExPg2uz89vZDsbHeuu66hztwp70AM69ZRtX9/s+2jo/24687+dkGg5rKnLBlTtoGk5lxxRQh9+3pxxRUhTfY116/F3j35FBdX4evj0qT2VV6+kTVrjnLiRBnVpjr+MrYvN998ESNHtlyL6uTJco4cKSVjX1Gr4z1fvPzyy0ydOpV7772X/v3789Zbb6FWq/nggw9aPKauro7x48ezaNEi+vTp04mjFUII0d7kOSCEED2bZEoJIXqE8HDPZjOkLCzBqtGjpzF8+GBu/cuV1D8ymaKPPyZg/nyU7meuuRSu8/ijfpRHs/stRcyrTbVk6g129ahGj+7LkLhA9Poy8vKNdkGj2EFajOW11NbUk5x8nOBgN5s6UAq8vFQMHhzQJEtKry/D3cOZsDB3u+l+rQkNdcOhugpdf58ztu1q1dXV7Nixg/nz51u3OTg4kJSURGpqaovHPfPMM2i1Wu677z5++eWXzhiqEEKIDiDPASGE6PkkKCWEuCBYAlbp6YXcfvu1hId7UvXaqxy55Vby3nuPgEcewcGh9eRRZ1XDSnnOqtMfnbar6aWkZJGTU45CoaCsrBo4Pd3OUvfJYGjYbhtAio72Y//+YpKTj+Pt7Ur/GB/q6xr2DRjoh6eXqtnpeDqdO9dc0wudzr3ZgFRzxdr9fNX4avzxDGs+sHY+KSgooK6ujoCAALvtAQEB7G8hw23z5s28//77pKWltfk8JpMJk8lkfW0wGM5pvEIIIdqXPAeEEKLnk6CUEKJbS0k5yYYNmVx8sR+urk7ExPi2mDHVuO6Uwd2d6ZiJ3LKFpy+6CI/rr2/1XJbAkG2AyHY1vZyccozGGvr398PRSWE33U6vL8NgqEHp4EBpSVWTbKnCwkpqaupxcVE2ZE79kSml9dfYtbMEwRrva7wdmq7819OVlZUxYcIE3n33Xfz82n69S5YsYdGiRR04MiGEEJ1BngNCCNH9SFBKCNGtbdiQyYYNeg4eLKZPHy/y8irQagubDU5ZpvDFxPiSmVnKO+98yc979vAzMPiLL7gtIgLVRRcBzQd5GgeI4HSA6nTxczMDBvq32K60pIqcnAo8vcrs2iQmBqNxc7TLasrLN7J9R47dGCxBMAvLGG23W9o2V6y9O/Hz80OpVJKbm2u3PTc3l8DAwCbtjxw5wvHjx7nRpni9ZYVFR0dHDhw4QN++fZscN3/+fGbPnm19bTAYCAsLa6/LEEIIcY7kOSCEED2fBKWEEN1aUlI4JSUm1GpH+vb1BMwtrsJnW3dq7dqjODgM5IYbJrBmzSfMz8km6p13iF2wAKV780Ge5tgGqlrLRrK0y8s34ulV1mQ6nmWVPlvNjcE2W8t2f3NZXM312Z04OzsTFxdHcnKydTnv+vp6kpOTmTFjRpP2UVFR7N27127bk08+SVlZGa+88kqLXzBUKhUqlardxy+EEOLPkeeAEEL0fBKUEkJ0a4mJoZSWVpOamoVWqyEmxteaKdUay/4JE14iJyeD7du3M/PAflZ+8D5BDz3cbJCnrZrLsrJoLtuqJc2NobCgkkOHitCoHe322/a7ZctJUlOziY8POuOqgOe72bNnM2nSJIYOHcqll17KsmXLMBqN3HvvvQBMnDiRkJAQlixZgouLCxdffLHd8V5eXgBNtgshhOge5DkghBA9mwSlhBDdnu20vDOtwmdh2+7zzz9nyJAh7C4pYckvv7A44iK0Y8a0OXjUWOMMJ9sglWV/S8XJLVoKbNnWibrrzv7N9pGamk16egFAtw9KjRs3jvz8fJ5++mlycnKIjY3lhx9+sBa91ev1ZyxQL4QQovuS54AQQvRsEpQSQnR7bQ1EtaR379589NFHjB07lo+Lixny+WfcHRGBS0TEOfXXOMOpcR2otkwL3Lsnn5078xgyRMvIkafbeXupcHBQ4O3V8jSD+Pggqqpq0WpdrQXVLUGuMD8HfDWKc7qurjJjxoxmp2kAbNy4sdVjly9f3v4DEkII0ankOSCEED2X/LOCEEIAf/nLX/j73/9ORL9+9AkNpXj5curOcUlorb+GoXGBdnWgIqN8qDbVkrYrD7XN1DtblsLmeflGQIFCAWAfQCouMVFfb6a4xNTkeIuEhFBGje6Ng4MDen0ZcDowdvJk+TldkxBCCCGEEEK0NwlKCSHEHxYvXsz2HTvwm/UiVWUVnHzlDepra5ttax9Aap0lSJWpN3D4cDFVptpms6QsgaO9exqm3g0erGXAQPtC5bGDtAyK9W91Rb28fCOlJSYCA9Vo1I5s35GDRu1IZJQPoaFuZxyvEEIIIYQQQnQGmb4nhLigffXVAb7++hC33BLBrbdG4uTkxI/7oMj1Rq7P/A8en3+O9913Nzmuravz2bIEkloKKFmyp07oDRw5UsLgwQFN+m5pRb2MjAJSUrLw9XXBw8OZnJwKIqN8MFbUcmB/EZFRPgyNC6SuvBxzVWWbxiuEEEIIIYQQHUmCUkKIC9rXXx9i06aTANx6ayQASUnhLN5azvU7j7N47XdM0OlwGz7c7rhzWZ2vpYCShSUAlbYrj6qqWsDc5r7TduexKy0XDw9nkkb2IjLKx25sOp07eflGThzMI9TPkXOvwCWEEEIIIYQQ7UOCUkKIC9ott0TY/QZITAzl0ks9+f77ehbm59P/359wWXAwqj59rG20/ppzWp2vpVX1LPT6MurqzfTt58WAgf5t7jd2kBZjeS2+vi4MGOhn17fWX8OWLSdZs+Yofpp6RiRo6dNKX0IIIYQQQgjRGSQoJYS4oN16a6Q1Q8rWU089RUpKChs2bGBWVhZfvPMOvebPR+l57jlGeflGVn97hOzschISQuxW1bOwZDdp1I7WIuWWAFNGRgHrN2QCcE1SONHRfnbT9v4ytm+LgbLU1GxOnSpHFeREcLDUlRJCCCGEEEJ0PSl0LoQQzVAqlaxYsYKgoCAOG40sOHyIgrfeor6mxtqmLcXObdvo9WVkZ5dTUVmDZWreli0nWbp0G1u2NEwhtBRFt9SCsgSmoGGKXlpaHrvT8kjbnUdevpG1a4+xbVsOv23LtmvbeGzx8UEMHOjPqFHh+Pq6tuetEkIIIYQQQohzIplSQgjRAq1Wy8qVK7n66qtZXVxM3J493PDPt/GYPJkArZtdsXOg2Wl5tm10OncSEkIAM66ujny6ch8Z+4o4ebIhmJSQEGo9rrmaVbGDtOTnV1r/W68vQ6l0QKdzp39/X2vbvHwjycmZGAzVnNCXcehQIeXltYwe3YtLBnpJoXMhhBBCCCHEeUGCUkII0YLMzFLKy0N59NGneOGFhSzOz+eSg2nUff0tAQ+MR6dzp7TERGlJFXtLqsjJqQAasp0yMgpI251HuM7DWnRc66+xTtn7dOU+dqfl4+OjIibGj/j4ILtzN1ezyrZQel6+kaw9BQwY4MuAgf5NAmEGQw0eHs4UFlayZ08BNTX1eHqqGDbQqwPvmBBCCCGEEEK0nQSlhBAXlMzMUtLTC4mJ8SU8vPX6UOnphaSmZjF8+HgOHEijf/84vE/k4/bbjxi39EabkICnV0MmVGCgxm7Fu7TdeexOywfgrjv7N+k7dpDW+ru1FflaoteXkZNjJDLKB62/xq6AuiVYBmZcdY4UFVVQXl7bJPAlhBBCCCGEEF1JglJCiAuKJdAEnDEoFRPja/399ddfo1AoMNfXo59yH8WffYbS1xedrmHKne20vS1bTpKxrwgfH5U1+NSYJevJUvtJo3bEWFHb4qp8jTWe3mc7TXBoXKA1WBYZ5cNjj10GNGRXpe3OJdTPkXMv1y6EEEIIIYQQ7UOCUkKIC4ptoOlMwsM9mwSuFA4OeD6/hO+vv54R772H36xZaOOC7dqkpmaTmWkgJMQNX7/Wi4rv3VPArl25eHm54Ora8JHclqBU4+l9jYNUzdWk2rungPTtJ4mN9qTPGc8ghBBCCCGEEB1LVt8TQlxQwsM9GTOmzxmzpFpSWlpK4siRTNu1i80mE4Wvv05tcbFdm/j4IEJC3PDwcLZbEQ+aW7HPjNkMvr4udtP/zpbWX4NG7cjqb4/wzTcHgYaMKfsAV8O5LCv/CSGEEEIIIURXkkwpIYQ4Cx4eHiQkJLBv3z7+fvIEn+t0KF57Ff85j6JUq4GGVfT6RXhbazzZsp1mp/XXEBzsRl5+BVFRPudUW8pW2u48tm3LxsnJAVAQ9kd9KUtgasBAf7xc6gn1k49+IYQQQgghRNeTTCkhhLCRknKSRYtSSEk52ex+hULBa6+9xqWXXkpxaSmzKispKyig8I03qK+psbbT+msYGhcIYJcZpVE74qBs+A1grKilvq7h958VO0iLTueBt7crhYWVHNhf1CRTSwghhBBCCCHOF/LP5UIIYePLLw/y44/HKSkxkZgY2mwblUrFV199RVxcHL8fPsySq65i0fHjFL37Lj4PPICDw+l4f+PMKGNFLQZDDWm78/D1c2229hNgt5pe49X1LP3aZkHl5RsxVtRyyy0RGCtq7Qqn247lyKFiHKpdpaaUEEIIIYQQostJppQQQtgICXHDz8+VkBC3VtuFhobyxRdf4OjoyJcbN/JN3BCqfv+dkhUr7NrpdO5ERvlQbarl05X7qDbV4uHhhMFQjV5fZs2oKiyo5NOV+8jIKABOB7MsmU62rxvvs91vrKhlaFwg0dF+TWpK6XTu9IvwJji49WsTQgghhBBCiM4gmVJCiB4vM7OU9PRCYmJ8z1jg/PbbI+nf369Nq/NdccUVLF26lEceeYS3f/6Zex5+hIr33sPBwwOvsWOB06vkfbpyH7vT8gEYOTKcvXsKKC2pIi/fiNZfQ9ruPOv+6Gg/uwyqvHwjpSUmAgPVdplPGrUj23fkoPujdpSlfUu0/hp8XbWYqyrPeG1CCCGEEEII0dEkKCWE6PHS0wtJTc0COGNQKjzc86xW5nvooYeoqKhg0qRJBAUFkVVaSukXX6D08MB9xAhru9hBWutvrb8GT6+GzCZPr4ZsKdv9cDqYBQ01qXJyjERG+Vi3af01bN+RY50aeK6r9gkhhBBCCCFEV5GglBCix7NkPbUl++lsKRQK5s2bZ30d9MwiagsKKP3qK5SenqiHDAHA18+ViAgffP1cAZpkQhkrahk5Mtxuup2Fpa1tZpTWX2PXR+PaVUIIIYQQQghxvpOglBCixzvb7Kc/47PPPuM7QykLY2Io/vhjlB4eqPr1axI0apwJ1VpAydK2cTvbPiwkY0oIIYQQQgjRXUhQSggh2smJEyeYNGkS1dXV9Jo7l0kGA4XvvIP/rFnodB5A80GjxllTjVfWsyjIN5KeXoCvr6rjL0YIIYQQQgghOpisvieEEO0kLCyMN998E4D/e+EFfh37FxQqZwrefIP6MkOLx1mm4un1Zezdk99kZb2MjAI+XbmPLVuyyckxkp5e1KSP5lbkE0IIIYQQQojzmWRKnYO6ujpqamq6ehhCtJmTkxNKpbKrh3FBmDJlChkZGbz00ktMnTOHdcuXo33+Bao/fJeDEadX5Gts754Cdu3KpW9fbyKjfOwyqiwr85WXV1NRUYPZXNfk+LasvieEEEIIIYQQ5xMJSp0Fs9lMTk4OJSUlXT0UIc6al5cXgYGBKBSKrh5Kj/f888+zf/9+1qxZw52zZvG/V1/D6ekFDDuxHs2o+1s4yozZDB4eTgyNC7TbY1mR76f/6amurmP//hLy8o12wa3m6ksJIYQQQgghxPlMglJnwRKQ0mq1qNVq+XIvugWz2UxFRQV5eXkABAUFdfGIej6lUsl//vMfEhIS+P333xn/3GJWPz4fw7PPotq4FsaNa3LMgIH+eHq5NJvpFB3tR3S0H0oHBT/+mElAgCt6fVmzQajWalIJIYQQQgghxPlEglJtVFdXZw1I+fq2/7LyQnQkV1dXAPLy8tBqtTKVrxO4u7vz3//+l0svvZRrr72WoLvuxPGEnqLlH+EUFITbFVfYtT9TptOWLSc5caKc226LwO+PGlTNabzKH9gHqnxd2+kChRBCCCGEEOJPkqBUG1lqSKnV6i4eiRDnxvLerampkaBUJ+nVqxf79u3Dz88PAO1jj2E6dIjSr77CMTAQl4suanNfqanZpKcXADBnTt8W2zVXW8o2UOUb6XbW1yGEEEIIIYQQHUGCUmdJpuyJ7kreu+0nM7OU9PRCYmJ8CQ/3bLWtn5+ftX3fvmoyRo3i4pOnKPrwQ/wffRSnNmZexsT4UFhYSUyMT5N9eflG1v1wHL3ewIgRYSQkhNrttw9Umdt2kUIIIYQQQgjRwRy6egBCCNHdpKcXkpqaRXp6YZvb//LLMW655QZuHjeOX2+8AerrKXr7beqrq9vUh5+/hpgYP/yameKn15exdWsW+zIKSU3NbrJf669haFyg1JgSQgghhBBCnFckKNXDKRSKVn8WLlz4p/petWrVWY1Bo9EQERHB5MmT2bFjx1mf86qrrmLmzJlnP1gh2lFMjC/x8cHExLQ1y8mXyMgAQkOjAbhvzhyOTpxATVYWJZ9+2qY+dDp3IqN8mq0lVW2qxc3NmbBQN+LjpZC9EEIIIYQQonuQoFQPl52dbf1ZtmwZHh4edtseffTRThnHhx9+SHZ2Nunp6bz++uuUl5czbNgwPv744045vxDtKTzckzFj+pxx6p5te61WzSWXTCUx8Tqqq6u566mnyL9pLBVbt1K+adMZ+2gt2ylTbwBgUKy2ydQ9IYQQQgghhDhfSVCqhwsMDLT+eHp6olAo7LatXLmS6OhoXFxciIqK4o033rAeW11dzYwZMwgKCsLFxYXw8HCWLFkCNBRwBrj55ptRKBTW1y3x8vIiMDCQXr16ce211/Lll18yfvx4ZsyYQXFxMQCFhYXcddddhISEoFarGTBgAJ/aZJFMnjyZn3/+mVdeecWaeXX8+HHq6uq477776N27N66urkRGRvLKK6+0740U4k+KifElISGU99//kOHDh1NaWsrdH39M0cABlH7zDabjx8+579hBWgbF+hM7SNt+AxZCCCGEEEKIDiZBqQvYihUrePrpp1m8eDEZGRk899xzPPXUU3z00UcA/Otf/2L16tV8/vnnHDhwgBUrVliDT9u2bQNOZ0BZXp+NWbNmUVZWxvr16wGoqqoiLi6O7777jt9//52//e1vTJgwgd9++w2AV155hfj4eKZOnWrN9AoLC6O+vp7Q0FC++OIL9u3bx9NPP83jjz/O559/3g53SYgGmZmlrF17lMzM0nM63pJdFRkZwLfffkv//v05deoUk7Zvp1CtpujDD6kzGs+p7+hoP0aODMdYUUte/rn1IYQQQgghhBCdTVbfu4AtWLCApUuXcssttwDQu3dv9u3bx9tvv82kSZPQ6/VEREQwfPhwFAoF4eHh1mP9/f2B0xlQ5yIqKgqA439kiISEhNhNJ3zooYdYt24dn3/+OZdeeimenp44OzujVqvtzqlUKlm0aJH1de/evUlNTeXzzz/njjvuOKexCdGYpbg50OZpey3x8fFh/fr1DB8+nOLSUhxe+Af1zzxD8Ucf4fPAAzg4nP2/F+j1ZRzYXwTQZIpfXr4Rvb4Mnc4dX9c/NXQhhBBCCCGEaDcSlLpAGY1Gjhw5wn333cfUqVOt22tra/H0bPjCPXnyZK655hoiIyMZPXo0N9xwA9dee227jcFsbliaXqFQAFBXV8dzzz3H559/zqlTp6iursZkMqFWq8/Y1+uvv84HH3yAXq+nsrKS6upqYmNj222sQliKmre1uPmZBAcHs2HDBo4cyaO4Rov//Y9Q9dpLlP3wA55jxgCQkVFA2u48YgdpiY72a7U/SwF0nc7dLgil9dfYBax8I93aZfxCCCGEEEII8WdJUKqLZGaWkp5eSEyM75/OujgX5eXlALz77rsMGzbMbp9SqQRgyJAhHDt2jO+//54NGzZwxx13kJSUxJdfftkuY8jIyAAaMpsAXnzxRV555RWWLVvGgAED0Gg0zJw5k+rq6lb7WblyJY8++ihLly4lPj4ed3d3XnzxRbZu3dou4xQCGrKj2vvvap8+fdi/n4YMrPgROF3yM37ffYdz7964RkeTtjuP3Wn5AK0GpRoHobbvyLHLmrINWIG5Xa9BCCGEEEIIIc5VtwlKLV68mO+++460tDScnZ0pKSlp0kav1/Pggw/y008/4ebmxqRJk1iyZAmOjuffZbbnVKBzERAQQHBwMEePHmX8+PEttvPw8GDcuHGMGzeO2267jdGjR1NUVISPjw9OTk7U1dWd8xgsqwEmJSUBkJKSwtixY7nnnnsAqK+v5+DBg/Tv3996jLOzc5NzpqSkkJCQwLRp06zbjhw5cs7jEqIzWTKvSkvT+duqb4h1ceG1Dz5AN38+sYO0GMtrcVE5kpdvpLCgstnMqcZT92yDULbZVlp/DXV/BKSFEEIIIYQQoqudf9GaFlRXV3P77bcTHx/P+++/32R/XV0d119/PYGBgWzZsoXs7GwmTpyIk5MTzz33XBeMuHXtPRXoXCxatIiHH34YT09PRo8ejclkYvv27RQXFzN79mxefvllgoKCGDx4MA4ODnzxxRcEBgbi5eUFNKzAl5ycTGJiIiqVCm9v7xbPVVJSQk5ODiaTiYMHD/L222+zatUqPv74Y2t/ERERfPnll2zZsgVvb29efvllcnNz7YJSvXr1YuvWrRw/fhw3Nzd8fHyIiIjg448/Zt26dfTu3ZtPPvmEbdu2WTOwhGgvKSkn2bAhk6SkcBITQ9ulT0sG1i+/nMJsNrO5oIBpJhNvvfUWkY89hrGilgP7i9Dryzh0qKjZzCn7TKiGwJSlrlRycmabsq2EEEIIIYQQorN1m6CUpZD18uXLm93/448/sm/fPjZs2EBAQACxsbE8++yzzJ07l4ULF+Ls7NyJoz2zjpgKdLb++te/olarefHFF/n73/+ORqNhwIABzJw5EwB3d3f+8Y9/cOjQIZRKJZdccglr1661FmFeunQps2fP5t133yUkJMRasLw59957LwAuLi6EhIQwfPhwfvvtN4YMGWJt8+STT3L06FFGjRqFWq3mb3/7GzfddBOlpadXO3v00UeZNGkS/fv3p7KykmPHjnH//feza9cuxo0bh0Kh4K677mLatGl8//337X/TxAVtw4ZMNmzQA7RbUMri8ssv5/vvv2fMmDFsKStjauoWPvzkE3Q3NBTr1+nc0agbPrJjB2ntjrUNQjVmadv4GCGEEEIIIYToagqzpdp0N7F8+XJmzpzZZPre008/zerVq0lLS7NuO3bsGH369GHnzp0MHjy4Tf0bDAY8PT0pLS3Fw8PDur2qqopjx47Ru3dvXFxc2uNShOhU8h7+8zoiU6rpOVK47rrrKCsr41JXNf+ZPRvt1Ve3S995+UZOHMwl1M+RPpNux6ENiwjYaunzsae5UK5TCCHO1oXy+XihXKcQQpytjvh87DaZUmeSk5NDQECA3TbL65ycnBaPM5lMmEwm62uDwdAxAxRCdHuJiaEdFow6fY5E1q1bx6hRo/itrIxx/3yZL7VafC++uMVjtmw5SWpqNjExPvj5a9CoHTFW1FoLn1vo9WUcOVSMQ7UrfTr0KoQQQgghhBDizBy68uTz5s1DoVC0+rN///4OHcOSJUvw9PS0/oSFhXXo+YQQ56fMzFLWrj1KZmbpmRt3sPj4eNavX4+npyfebm4YP/qI6laC66mp2aSnF7Bp0ykO7C8ibXeetQ6VLZ3OnX4R3gQHu3X0JQghhBBCCCHEGXVpptScOXOYPHlyq2369Gnbv+cHBgby22+/2W3Lzc217mvJ/PnzmT17tvW1wWCQwJQQF6CuXhGzsWHDhpGamkqIszM5kyZT+Npr+P/97zh6Nh1bfHwQQLOZUra0/hp8XbWYqyo75RqEEEIIIYQQojVdGpTy9/fH39+/XfqKj49n8eLF5OXlodU2FPRdv349Hh4edqu3NaZSqVCpVO0yBiFE93U+rIjZWHR0NADO773L8fH38PeHZjDhkZkMiYuza5eQEEpCQtunFXazUoJCCCGEEEKIHqpLp++dDb1eT1paGnq9nrq6OtLS0khLS6O8vByAa6+9lv79+zNhwgR2797NunXrePLJJ5k+fboEnYQQZxQe7smYMX3OiyypxlyiolhzTRLvnzrFmHlzWbNmzRmPycs3sn1HDnn5Ruu2muxsilesoPx//+vI4QohhBBCCCFEm3SboNTTTz/N4MGDWbBgAeXl5QwePJjBgwezfft2AJRKJWvWrEGpVBIfH88999zDxIkTeeaZZ7p45EII0eDP1K0aNX4agyJjqaiv555/vsxT8xaRk1vWYnu9vqyhrlSmAdPhwxS8/Ta5//d/VB89ilNwCArHHrPOhRBCCCGEEKKb6jbfSpYvX87y5ctbbRMeHs7atWs7Z0BCCHGWzrVuVWZmKV9/fYKLhy7EyeUttu/+gVe2/czJmQdZNusRPIYMQeHoSF6+Eb2+jLAwN8I8alHXHsTz+3Tys0+h9PHBc+xf8LrjDlQXRaJwdu6oyxRCCCGEEEKINuk2QSkhhOjuzrVuVXp6IQUFVZjNSoYNn02/qBg++/xlvsrL5vgzi3g5TEdwWBjl9U64llVSVVuGstKIh1KJU+/euE2Zgvv1Y3Dp1QsHjaYjLk0IIYQQQgghzpoEpYQQ4hxkZpaSnl5ITIxvm7OewsM9z6lmVUyML3l5FRQUVODn58qIEU8x/p6ruPvuu9ldUYEhIR5ddTUuRQbMSnecAnvjdXEUx7wv4pfDDiQMG0hiTK+zPq8QQgghhBBCdCQJSol2M3nyZEpKSli1ahUAV111FbGxsSxbtuyc+2yPPoToCOc6Fe9chId7otUWcuRICf37+/0R3LqB7du3s337dm64+27MNTXUm0xgNqNwckKhUvHWM1vYkKqnQnOKxCt7degYhRBCCCGEEOJsSVDqAjB58mQ++ugjAJycnNDpdEycOJHHH38cxw4sdvz111/j5OTUprYbN25kxIgRFBcX4+XldU59CNGZznUqXnue76KLLuKiiy4CQOHkxO69e3niiSd45513CAsLIykpHMD6OyXlJBs2ZJKUFE5iYminjFsIIYQQQgghWtJtVt8Tf87o0aPJzs7m0KFDzJkzh4ULF/Liiy82aVddXd1u5/Tx8cHd3b3L+xCiI4SHezJmTJ8Oz5Jq6/nMZjMPPPAAP/zwAxdffDEff/wxCQkhLFiQaA1AbdiQyYYNejZsyOyUMbeX119/nV69euHi4sKwYcP47bffWmz77rvvcvnll+Pt7Y23tzdJSUmtthdCCHH+k+eAEEL0XBKUukCoVCoCAwMJDw/nwQcfJCkpidWrVzN58mRuuukmFi9eTHBwMJGRkQCcOHGCO+64Ay8vL3x8fBg7dizHjx+39ldXV8fs2bPx8vLC19eXxx57DLPZbHfOq666ipkzZ1pfm0wm5s6dS1hYGCqVin79+vH+++9z/PhxRowYAYC3tzcKhYLJkyc320dxcTETJ07E29sbtVrNddddx6FDh6z7ly9fjpeXF+vWrSM6Oho3NzdrQE6InkyhULBixQouu+wyDAYDkyZN4uabb+bkyZPWNklJ4SQl6ayZU93BZ599xuzZs1mwYAE7d+5k0KBBjBo1iry8vGbbb9y4kbvuuouffvqJ1NRUwsLCuPbaazl16lQnj1wIIUR7kOeAEEL0bBKUukC5urpas6KSk5M5cOAA69evZ82aNdTU1DBq1Cjc3d355ZdfSElJsQZ3LMcsXbqU5cuX88EHH7B582aKior45ptvWj3nxIkT+fTTT/nXv/5FRkYGb7/9Nm5uboSFhfHVV18BcODAAbKzs3nllVea7WPy5Mls376d1atXk5qaitlsZsyYMdTU1FjbVFRU8NJLL/HJJ5+wadMm9Ho9jz76aHvcNiHOaxEREfzyyy8899xzODk58e233xIVFcXSpUupqakhMTHULnOqO3j55ZeZOnUq9957L/379+ett95CrVbzwQcfNNt+xYoVTJs2jdjYWKKionjvvfeor68nOTm5k0cuhBCiPchzQAghejapKfUnVVRUsH///k4/b1RUFGq1+qyPM5vNJCcns27dOh566CHy8/PRaDS89957ODs7A/Dvf/+b+vp63nvvPRQKBQAffvghXl5ebNy4kWuvvZZly5Yxf/58brnlFgDeeust1q1b1+J5Dx48yOeff8769etJSkoCoE+fPtb9Pj4+AGi1WruaUrYOHTrE6tWrSUlJISEhAWj4H4+wsDBWrVrF7bffDkBNTQ1vvfUWffv2BWDGjBk888wzZ32vhOiOHB0dmT9/PjfccAMPPPAAW7Zs4dFHHyU0NJRx48Z19fDOSnV1NTt27GD+/PnWbQ4ODiQlJZGamtqmPioqKqipqbF+xjTHZDJhMpmsrw0Gw7kPWgghRLuR54AQQvR8EpT6k/bv309cXFynn3fHjh0MGTKkze3XrFmDm5sbNTU11NfXc/fdd7Nw4UKmT5/OgAEDrAEpgN27d3P48OEmtZyqqqo4cuQIpaWlZGdnM2zYMOs+R0dHhg4d2mQKn0VaWhpKpZIrr7zyLK/0tIyMDBwdHe3O6+vrS2RkJBkZGdZtarXaGpACCAoKajHFW4ieasCAAfzyyy8sX76cb7/91hq0hYbgtCXgfD4rKCigrq6OgIAAu+0BAQFt/seAuXPnEhwcbA2GN2fJkiUsWrToT41VCCFE+5PngBBC9HwSlPqToqKi2LFjR5ec92yMGDGCN998E2dnZ4KDg+1W3dNoNHZty8vLiYuLY8WKFU368ff3P6fxurq6ntNx56Lxan0KhaLFYJkQPZmDgwNTpkxhypQp1m319fUA3SIo9Wc9//zzrFy5ko0bN+Li4tJiu/nz5zN79mzra4PBQFhYWGcMUQghRAeS54AQQpz/JCj1J6nV6rPKWOoqGo2Gfv36tantkCFD+Oyzz9BqtXh4eDTbJigoiK1bt3LFFVcAUFtb22r21oABA6ivr+fnn39u9l+qLJladXV1LY4rOjqa2tpatm7dap2+V1hYyIEDB+jfv3+brk0I0RCs6g78/PxQKpXk5ubabc/NzSUwMLDVY1966SWef/55NmzYwMCBA1ttq1KpUKlUf3q8Qggh2pc8B4QQoufrHt9MRKcaP348fn5+jB07ll9++YVjx46xceNGHn74YetKXo888gjPP/88q1atYv/+/UybNo2SkpIW++zVqxeTJk1iypQprFq1ytrn559/DkB4eDgKhYI1a9aQn59PeXl5kz4iIiIYO3YsU6dOZfPmzezevZt77rmHkJAQxo4d2yH3QoiukJJykkWLUkhJOdlim8zMUtauPUpmZulZ9d1dAlLQEKyOi4uzK05rKVYbHx/f4nH/+Mc/ePbZZ/nhhx8YOnRoZwxVCCFEB5DngBBC9Hzd59uJ6DRqtZpNmzah0+m45ZZbiI6O5r777qOqqsqaOTVnzhwmTJjApEmTiI+Px93dnZtvvrnVft98801uu+02pk2bRlRUFFOnTsVoNAIQEhLCokWLmDdvHgEBAcyYMaPZPj788EPi4uK44YYbiI+Px2w2s3bt2iZT9oTozjZsyGTDBj0bNmS22CY9vZDU1CzS0ws7cWSdb/bs2bz77rt89NFHZGRk8OCDD2I0Grn33nuBhlU9bQvgvvDCCzz11FN88MEH9OrVi5ycHHJycpoNdAshhDj/yXNACCF6NoVZiu3YMRgMeHp6Ulpaajd1raqqimPHjtG7d+9W56QLcb6S93D3kZJykg0bMklKCicxMbTZNpmZpaSnFxIT40t4uGenjKulz8eO9tprr/Hiiy+Sk5NDbGws//rXv6wLHlx11VX06tWL5cuXAw1ZmZmZTYN5CxYsYOHChW06X1ddpxBCnO/kOSCEEBe2jvh8lKBUIxKUEj2VvIfFn3Wh/E/6hXKdQghxti6Uz8cL5TqFEOJsdcTno0zfE0KIbq4tNaiEEEIIIYQQ4nwjq+8JIUQ3Z6lBBbQ43U8IIYQQQgghzjcSlBJCiG4uKSnc7rcQQgghhBBCdAcSlBJCiG4uMTFUMqSEEEIIIYQQ3Y7UlBJCCCGEEEIIIYQQnU6CUkIIIYQQQgghhBCi00lQSgghhBBCCCGEEEJ0OglKCSGEEEIIIYQQQohOJ0Ep0a4mT57MTTfdZH191VVXMXPmzD/VZ3v0cSYbN25EoVBQUlLSoefpaAqFglWrVnX1MIQQQgghhBBCiDOS1ffaQX1VFeaamk47n8LJCQcXlza3nzx5Mh999BEATk5O6HQ6Jk6cyOOPP46jY8e+Bb7++mucnJza1Hbjxo2MGDGC4uJivLy8zqmPc5WQkEB2djaenp5tPmby5MmUlJRIEEicVzIzS0lPLyQmxpfw8NPv55SUk2zYkElSUris1CeEEEIIIYQ4L0hQ6k+qr6qiLDmZOkNZp51T6eGO+8iRZxWYGj16NB9++CEmk4m1a9cyffp0nJycmD9/fpO21dXVODs7t8tYfXx8zos+zsTZ2ZnAwMAOP09z2vN+C5GeXkhqahaAXVBqw4ZMNmzQA0hQSgghhBBCCHFekOl7f5K5poY6QxkOKhVKD48O/3FQqagzlJ11ZpZKpSIwMJDw8HAefPBBkpKSWL16NXB6yt3ixYsJDg4mMjISgBMnTnDHHXfg5eWFj48PY8eO5fjx49Y+6+rqmD17Nl5eXvj6+vLYY49hNpvtztt46p3JZGLu3LmEhYWhUqno168f77//PsePH2fEiBEAeHt7o1AomDx5crN9FBcXM3HiRLy9vVGr1Vx33XUcOnTIun/58uV4eXmxbt06oqOjcXNzY/To0WRnZ7d4fxpP3ztTHwsXLuSjjz7i22+/RaFQoFAo2LhxY5vuW3P3+/HHH2fYsGFNxjVo0CCeeeYZALZt28Y111yDn58fnp6eXHnllezcubPFaxIXppgYX+Ljg4mJ8bVuy8wsRaNxZujQAJKSwrtwdEIIIYQQQghxmgSl2olCpcLB1bXDfxQqVbuM19XVlerqauvr5ORkDhw4wPr161mzZg01NTWMGjUKd3d3fvnlF1JSUqyBGctxS5cuZfny5XzwwQds3ryZoqIivvnmm1bPO3HiRD799FP+9a9/kZGRwdtvv42bmxthYWF89dVXABw4cIDs7GxeeeWVZvuYPHky27dvZ/Xq1aSmpmI2mxkzZgw1NoG6iooKXnrpJT755BM2bdqEXq/n0UcfPat71Fofjz76KHfccYc1UJWdnU1CQkKb7ltz93v8+PH89ttvHDlyxNomPT2dPXv2cPfddwNQVlbGpEmT2Lx5M7/++isRERGMGTOGsrLOy9IT57/wcE/GjOljlyWVnl5IaamJa67pJVlSQgghhBBCiPOGTN+7wJjNZpKTk1m3bh0PPfSQdbtGo+G9996zTiP797//TX19Pe+99x4KhQKADz/8EC8vLzZu3Mi1117LsmXLmD9/PrfccgsAb731FuvWrWvx3AcPHuTzzz9n/fr1JCUlAdCnTx/rfss0Pa1Wa1dTytahQ4dYvXo1KSkpJCQkALBixQrCwsJYtWoVt99+OwA1NTW89dZb9O3bF4AZM2ZYM47aqrU+3NzccHV1xWQy2U37a8t9g6b3Gxqyov7zn//w1FNPWa9r2LBh9OvXD4Crr77abnzvvPMOXl5e/Pzzz9xwww1ndW3iwmLJmrLNnhJCCCGEEEKIriZBqQvEmjVrcHNzo6amhvr6eu6++24WLlxo3T9gwAC7AMnu3bs5fPgw7u7udv1UVVVx5MgRSktLyc7Otpty5ujoyNChQ5tM4bNIS0tDqVRy5ZVXnvN1ZGRk4OjoaHdeX19fIiMjycjIsG5Tq9XWYBJAUFAQeXl5Z3Wuc+njTPfNovH9Bhg/fjwffPABTz31FGazmU8//ZTZs2db9+fm5vLkk0+yceNG8vLyqKuro6KiAr1ef1bXJS484eGedplTQgghhBBCCHE+kKDUBWLEiBG8+eabODs7Exwc3GTVPY1GY/e6vLycuLg4VqxY0aQvf3//cxqDq6vrOR13Lhqv1qdQKFoMlrVnH229b43vN8Bdd93F3Llz2blzJ5WVlZw4cYJx48ZZ90+aNInCwkJeeeUVwsPDUalUxMfH200LFEIIIYQQQgghugsJSl0gNBqNdRpYWwwZMoTPPvsMrVaLh4dHs22CgoLYunUrV1xxBQC1tbXs2LGDIUOGNNt+wIAB1NfX8/PPP1un79myZA7V1dW1OK7o6Ghqa2vZunWrdfpeYWEhBw4coH///m2+vvbg7OzcZKxtuW8tCQ0N5corr2TFihVUVlZyzTXXoNVqrftTUlJ44403GDNmDNBQUL2goODPX4gQQgghhBBCCNEFpNC5aNb48ePx8/Nj7Nix/PLLLxw7doyNGzfy8MMPc/LkSQAeeeQRnn/+eVatWsX+/fuZNm2adfW65vTq1YtJkyYxZcoUVq1aZe3z888/ByA8PByFQsGaNWvIz8+nvLy8SR8RERGMHTuWqVOnsnnzZnbv3s0999xDSEgIY8eO7ZB70dr17NmzhwMHDlBQUEBNTU2b7ltrxo8fz8qVK/niiy8YP3683b6IiAg++eQTMjIy2Lp1K+PHj+/U7DPRfWRmlrJ27VEyM0u7eihCCCGEEEII0SIJSrUTs8lEfWVlh/+YTaZOuR61Ws2mTZvQ6XTccsstREdHc99991FVVWXNAJozZw4TJkxg0qRJxMfH4+7uzs0339xqv2+++Sa33XYb06ZNIyoqiqlTp2I0GgEICQlh0aJFzJs3j4CAAGbMmNFsHx9++CFxcXHccMMNxMfHYzabWbt2bZPpdh1t6tSpREZGMnToUPz9/UlJSWnTfWvNbbfdRmFhIRUVFdx00012+95//32Ki4sZMmQIEyZM4OGHH7bLpBLCIj29kNTULNLTC7t6KEIIIYQQQgjRIoX5bAvt9HAGgwFPT09KS0vtgghVVVUcO3aM3r174+LiYt1eX1VFWXIydYayThuj0sMd95EjcbAZhxBn0tJ7WPQ8mZmlpKcXEhPj264Fzlv6fOxpLpTrFEKIs3WhfD5eKNcphBBnqyM+H6Wm1J/k4OKC+8iRmGtqOu2cCicnCUgJIVokq+0JIYQQQgghugMJSrUDBxcXkCCREEIIIYQQQgghRJtJTSkhhBBCCCGEEEII0ekkKCWEEEIIIYQQQgghOp0EpYQQQgghhBBCCCFEp5OglBBCCCGEEEIIIYTodBKUEkIIIYQQQgghhBCdToJSQgghhBBCCCGEEKLTSVBKCCGEEEIIIYQQQnQ6CUoJIYQQQgghhBBCiE4nQakeTqFQtPqzcOHCThvLVVddZT2vi4sL/fv354033rDuX758OV5eXp02HiGEEEIIIYQQQnQdCUr1cNnZ2dafZcuW4eHhYbft0UcftbY1m83U1tZ26HimTp1KdnY2+/bt44477mD69Ol8+umnHXpOIbqTzMxS1q49SmZmaVcPRQghhBBCCCE6lASlerjAwEDrj6enJwqFwvp6//79uLu78/333xMXF4dKpWLz5s1MnjyZm266ya6fmTNnctVVV1lf19fXs2TJEnr37o2rqyuDBg3iyy+/PON41Go1gYGB9OnTh4ULFxIREcHq1avb+aqF6L7S0wtJTc0iPb2wq4cihBBCCCGEEB3KsasH0FaLFy/mu+++Iy0tDWdnZ0pKSpq0USgUTbZ9+umn3HnnnR06NqPR2OI+pVKJi4tLm9o6ODjg6up6xrYajeYcRtmyefPm8dJLL9GnTx+8vb3bdMySJUv497//zVtvvUVERASbNm3innvuwd/fnyuvvLLN53Z1daW6uvpchy5EjxMT42v3WwghhBBCCCF6qm4TlKqurub2228nPj6e999/v8V2H374IaNHj7a+7owaRW5ubi3uGzNmDN999531tVarpaKiotm2V155JRs3brS+7tWrFwUFBU3amc3mcx9sM5555hmuueaaNrc3mUw899xzbNiwgfj4eAD69OnD5s2befvtt9sUlKqrq+PTTz9lz549/O1vfzvnsQvR04SHexIe7tnVwxBCCCGEEEKIDtdtglKLFi0CGopht8bLy4vAwMBOGFHPMXTo0LNqf/jwYSoqKpoEsqqrqxk8eHCrx77xxhu89957VFdXo1QqmTVrFg8++OBZj1kIIYQQQgghhBDdW7cJSrXV9OnT+etf/0qfPn144IEHuPfee5ud1mdhMpkwmUzW1waD4azPWV5e3uI+pVJp9zovL6/Ftg4O9iW+jh8/ftZjOReNpwM6ODg0ycaqqakoPlQYAAAVX0lEQVSx/rfler/77jtCQkLs2qlUqlbPNX78eJ544glcXV0JCgpqcs1CCCGEEEIIIYS4MPSooNQzzzzD1VdfjVqt5scff2TatGmUl5fz8MMPt3jMkiVLrFlY5+psajx1VNv25O/vz++//263LS0tDScnJwD69++PSqVCr9efVf0oAE9PT/r169duYxVCCCGEEEIIIUT31KVpKvPmzUOhULT6s3///jb399RTT5GYmMjgwYOZO3cujz32GC+++GKrx8yfP5/S0lLrz4kTJ/7sZXV7V199Ndu3b+fjjz/m0KFDLFiwwC5I5e7uzqOPPsqsWbP46KOPOHLkCDt37uTVV1/lo48+6sKRCyGEEEIIIYQQorvo0kypOXPmMHny5Fbb9OnT55z7HzZsGM8++ywmk6nFaWUqleqMU84uNKNGjeKpp57iscceo6qqiilTpjBx4kT27t1rbfPss8/i7+/PkiVLOHr0KF5eXgwZMoTHH3+8C0cuhBBCCCGEEEKI7kJhbu+l3DrY8uXLmTlzJiUlJWdsu3jxYpYuXUpRUVGb+zcYDHh6elJaWoqHh4d1e1VVFceOHaN37964uLicy9CF6FLyHhZ/Vkufjz3NhXKdQghxti6Uz8cL5TqFEOJsdcTnY7epKaXX6ykqKkKv11NXV0daWhoA/fr1w83Njf/+97/k5uZy2WWX4eLiwvr163nuued49NFHu3bgQgjRAVJSTrJhQyZJSeEkJoZ29XCEEEIIIYQQ4qx1m6DU008/bVevaPDgwQD89NNPXHXVVTg5OfH6668za9YszGYz/fr14+WXX2bq1KldNWQhhOgwGzZksmGDHkCCUkIIIYQQQohuqdsEpZYvX87y5ctb3D969GhGjx7deQMSQogulJQUbvdbCCGEEEIIIbqbbhOUEkIIcVpiYqhkSAkhhBBCCCG6NYeuHoAQQgghhBBCCCGEuPBIUOosdbPFCoWwkveuEEIIIYQQQojziQSl2sjJyQmAioqKLh6JEOfG8t61vJeFEEIIIYQQQoiuJDWl2kipVOLl5UVeXh4AarUahULRxaMS4szMZjMVFRXk5eXh5eWFUqns6iEJIYQQQgghhBASlDobgYGBANbAlBDdiZeXl/U9LIQQQgghhBBCdDUJSp0FhUJBUFAQWq2Wmpqarh6OEG3m5OQkGVJCCCGEEEIIIc4rEpQ6B0qlUr7gCyFEJ3n99dd58cUXycnJYdCgQbz66qtceumlLbb/4osveOqppzh+/DgRERG88MILjBkzphNHLIQQoj3Jc0AIIXouKXQuhBDivPXZZ58xe/ZsFixYwM6dOxk0aBCjRo1qcRr1li1buOuuu7jvvvvYtWsXN910EzfddBO///57J49cCCFEe5DngBBC9GwKs6wTb8dgMODp6UlpaSkeHh5dPRwhhDhvdMXn47Bhw7jkkkt47bXXAKivrycsLIyHHnqIefPmNWk/btw4jEYja9assW677LLLiI2N5a233mrTOeU5IIQQzZPngBBCXNg64vNRMqWEEEKcl6qrq9mxYwdJSUnWbQ4ODiQlJZGamtrsMampqXbtAUaNGtVieyGEEOcveQ4IIUTPJzWlGrEkjhkMhi4eiRBCnF8sn4udlWBbUFBAXV0dAQEBdtsDAgLYv39/s8fk5OQ02z4nJ6fF85hMJkwmk/V1aWkpIM8BIYRoTJ4DQghxYeuI54AEpRopKysDICwsrItHIoQQ56eysjI8PT27ehjtZsmSJSxatKjJdnkOCCFE8woLC+U5IIQQF7D2fA5IUKqR4OBgTpw4gbu7OwqFos3HGQwGwsLCOHHiRLeeey7XcX7pCdfRE64B5Dqg4V9EysrKCA4O7qDR2fPz80OpVJKbm2u3PTc3l8DAwGaPCQwMPKv2APPnz2f27NnW1yUlJYSHh6PX63vUl66z0VPe73+W3IcGch/kHliUlpai0+nw8fHplPPJc6DryHu+gdyHBnIf5B5YdMRzQIJSjTg4OBAaGnrOx3t4ePSIN6lcx/mlJ1xHT7gGkOvozP85d3Z2Ji4ujuTkZG666SagocBtcnIyM2bMaPaY+Ph4kpOTmTlzpnXb+vXriY+Pb/E8KpUKlUrVZLunp2eP+LP+M3rK+/3PkvvQQO6D3AMLB4fOKUsrz4GuJ+/5BnIfGsh9kHtg0Z7PAQlKCSGEOG/Nnj2bSZMmMXToUC699FKWLVuG0Wjk3nvvBWDixImEhISwZMkSAB555BGuvPJKli5dyvXXX8/KlSvZvn0777zzTldehhBCiHMkzwEhhOjZJCglhBDivDVu3Djy8/N5+umnycnJITY2lh9++MFaxFav19v9S01CQgL/+c9/ePLJJ3n88ceJiIhg1apVXHzxxV11CUIIIf4EeQ4IIUTPJkGpdqJSqViwYEGzqb/diVzH+aUnXEdPuAaQ6+hKM2bMaHGaxsaNG5tsu/3227n99tvP+Xzd8R61N7kHDeQ+NJD7IPfAoqvugzwHOp/cgwZyHxrIfZB7YNER90Fh7qw1XYUQQgghhBBCCCGE+EPnVCkUQgghhBBCCCGEEMKGBKWEEEIIIYQQQgghRKeToJQQQgghhBBCCCGE6HQSlOogixcvJiEhAbVajZeXV1cPp81ef/11evXqhYuLC8OGDeO3337r6iGdlU2bNnHjjTcSHByMQqFg1apVXT2ks7ZkyRIuueQS3N3d0Wq13HTTTRw4cKCrh3XW3nzzTQYOHIiHhwceHh7Ex8fz/fffd/Ww/rTnn38ehULBzJkzu3ooZ2XhwoUoFAq7n6ioqK4eVpc528+6L774gqioKFxcXBgwYABr167tpJF2nLO5B++++y6XX3453t7eeHt7k5SU1O2eDy051+feypUrUSgU3HTTTR07wE5wtvegpKSE6dOnExQUhEql4qKLLrrg/k4ALFu2jMjISFxdXQkLC2PWrFlUVVV10mjb37n8P9TGjRsZMmQIKpWKfv36sXz58g4fZ3uR54A8ByzkOdBAngXyHIAuehaYRYd4+umnzS+//LJ59uzZZk9Pz64eTpusXLnS7OzsbP7ggw/M6enp5qlTp5q9vLzMubm5XT20Nlu7dq35iSeeMH/99ddmwPzNN9909ZDO2qhRo8wffvih+ffffzenpaWZx4wZY9bpdOby8vKuHtpZWb16tfm7774zHzx40HzgwAHz448/bnZycjL//vvvXT20c/bbb7+Ze/XqZR44cKD5kUce6erhnJUFCxaYY2JizNnZ2daf/Pz8rh5Wlzjbz7qUlBSzUqk0/+Mf/zDv27fP/OSTT5qdnJzMe/fu7eSRt5+zvQd33323+fXXXzfv2rXLnJGRYZ48ebLZ09PTfPLkyU4eefs61+fesWPHzCEhIebLL7/cPHbs2M4ZbAc523tgMpnMQ4cONY8ZM8a8efNm87Fjx8wbN240p6WldfLI29fZ3ocVK1aYVSqVecWKFeZjx46Z161bZw4KCjLPmjWrk0fefs72/6GOHj1qVqvV5tmzZ5v37dtnfvXVV81KpdL8ww8/dM6A/wR5DshzwEKeAw3kWSDPAYuueBZIUKqDffjhh90mKHXppZeap0+fbn1dV1dnDg4ONi9ZsqQLR3XuumtQqrG8vDwzYP7555+7eih/mre3t/m9997r6mGck7KyMnNERIR5/fr15iuvvLJbBqUGDRrU1cM4L5ztZ90dd9xhvv766+22DRs2zHz//fd36Dg70p/9vK+trTW7u7ubP/roo44aYqc4l/tQW1trTkhIML/33nvmSZMmdfsvI2d7D958801znz59zNXV1Z01xE5xtvdh+vTp5quvvtpu2+zZs82JiYkdOs7O0pb/h3rsscfMMTExdtvGjRtnHjVqVAeOrH3Ic0CeAxbyHGggzwJ5DjSns54FMn1PAFBdXc2OHTtISkqybnNwcCApKYnU1NQuHJkoLS0FwMfHp4tHcu7q6upYuXIlRqOR+Pj4rh7OOZk+fTrXX3+93d+R7ubQoUMEBwfTp08fxo8fj16v7+ohdbpz+axLTU1t8uc+atSobvvZ2B6f9xUVFdTU1HTrz6VzvQ/PPPMMWq2W++67rzOG2aHO5R6sXr2a+Ph4pk+fTkBAABdffDHPPfccdXV1nTXsdncu9yEhIYEdO3ZYp3YcPXqUtWvXMmbMmE4Z8/mgu342ynNAngMW8hxoIM8CeQ78Ge3x+ejY3oMS3VNBQQF1dXUEBATYbQ8ICGD//v1dNCpRX1/PzJkzSUxM5OKLL+7q4Zy1vXv3Eh8fT1VVFW5ubnzzzTf079+/q4d11lauXMnOnTvZtm1bVw/lnA0bNozly5cTGRlJdnY2ixYt4vLLL+f333/H3d29q4fXac7lsy4nJ6fZ9jk5OR02zo7UHp/3c+fOJTg4uFsHac/lPmzevJn333+ftLS0ThhhxzuXe3D06FH+97//MX78eNauXcvhw4eZNm0aNTU1LFiwoDOG3e7O5T7cfffdFBQUMHz4cMxmM7W1tTzwwAM8/vjjnTHk80JLn40Gg4HKykpcXV27aGStk+eAPAcs5DnQQJ4F8hz4M9rjWSCZUmdh3rx5TQoFN/6RAI5oT9OnT+f3339n5cqVXT2UcxIZGUlaWhpbt27lwQcfZNKkSezbt6+rh3VWTpw4wSOPPMKKFStwcXHp6uGcs+uuu47bb7+dgQMHMmrUKNauXUtJSQmff/55Vw9NdDPPP/88K1eu5JtvvunWfyfOVllZGRMmTODdd9/Fz8+vq4fTZerr69FqtbzzzjvExcUxbtw4nnjiCd56662uHlqn2rhxI8899xxvvPEGO3fu5Ouvv+a7777j2Wef7eqhCdHh5DlwYT8HQJ4FIM+B9iSZUmdhzpw5TJ48udU2ffr06ZzBtDM/Pz+USiW5ubl223NzcwkMDOyiUV3YZsyYwZo1a9i0aROhoaFdPZxz4uzsTL9+/QCIi4tj27Zt/H97dxMS1d+Gcfzyrx1DslxkNIRZCqKEJSVFLyBm0KoWQbkQMyIEw2hRwYCFRgYSEvQGSfSyKyJoUxGmqYESSo0mZYpmRpC4ibAES72fRejz9NS/HB3PGe37gbM5jnDNj+N9n7nneM65c+dUVVXlcbLJe/bsmQYGBrR27dqJfaOjo3ry5IkuXryo4eFhRUZGephwauLi4pSSkqLu7m6vo7hqKrVu6dKlc6o2TqfeV1ZWqqKiQjU1NVq9evVMxpxxwa5DT0+P3r59qx07dkzsGxsbkyRFRUWps7NTycnJMxs6xKZyLPh8Ps2bN++HupeWlqb+/n59/fpVjuPMaOaZMJV1OHHihPLz83XgwAFJUnp6ur58+aLCwkKVlJTon3/m/ve+/1YbFy5cGLZXSUn0AYk+MI4+8B29gD4wHaHoBX/HSoVIfHy8UlNTf7vNtj/AcY7jaN26daqtrZ3YNzY2ptra2ll7D6DZysxUXFysu3fv6vHjx1q5cqXXkUJmbGxMw8PDXscISk5Ojtrb29Xa2jqxZWZmKi8vT62trbNyICVJnz9/Vk9Pj3w+n9dRXDWVWrdx48YfXi9Jjx49mrW1car1/syZMzp16pQePnyozMxMN6LOqGDXITU19adasHPnTmVnZ6u1tVUJCQluxg+JqRwLmzdvVnd398QHMUnq6uqSz+f7q86BhoaGfvrAMd4Pvt8bdu6brbWRPkAfGEcf+I5eQB+YjpDUxyBvwI5J6uvrs0AgYCdPnrQFCxZYIBCwQCBgg4ODXkf7V7du3bLo6Gi7ceOGvXr1ygoLCy0uLs76+/u9jjZpg4ODE2styc6ePWuBQMD6+vq8jjZpRUVFtmjRIquvr7cPHz5MbENDQ15HC4rf77eGhgbr7e21Fy9emN/vt4iICKuurvY62rTNxqfvHTlyxOrr6623t9caGxtt27ZttnjxYhsYGPA6muv+VOvy8/PN7/dPvL6xsdGioqKssrLSOjo6rLS0dE48CjyYNaioqDDHcezOnTs/1KVw7mmTEew6/L+58NSlYNfg3bt3Fhsba8XFxdbZ2Wn37t2zJUuWWHl5uVdvISSCXYfS0lKLjY21mzdv2ps3b6y6utqSk5Ntz549Xr2FafvTOZTf77f8/PyJ148/BvzYsWPW0dFhly5dCvox4F6hD9AHxtEHvqMX0AfGedELGErNkIKCApP001ZXV+d1tN+6cOGCLV++3BzHsfXr19vTp0+9jhSUurq6X657QUGB19Em7Vf5Jdn169e9jhaU/fv3W2JiojmOY/Hx8ZaTkzMnBlJms3MolZubaz6fzxzHsWXLlllubq51d3d7Hcszv6t1WVlZP9WM27dvW0pKijmOY6tWrbL79++7nDj0glmDxMTEX9al0tJS94OHWLDHwv+aKx9Ggl2DpqYm27Bhg0VHR1tSUpKdPn3aRkZGXE4desGsw7dv36ysrMySk5Nt/vz5lpCQYAcPHrSPHz+6HzxE/nQOVVBQYFlZWT/9TkZGhjmOY0lJSbPqXIU+QB8YRx/4jl5AHzDzphdEmP1F15YBAAAAAAAgLHBPKQAAAAAAALiOoRQAAAAAAABcx1AKAAAAAAAArmMoBQAAAAAAANcxlAIAAAAAAIDrGEoBAAAAAADAdQylAAAAAAAA4DqGUgAAAAAAAHAdQykAAAAAAAC4jqEUEEZGR0e1adMm7dq164f9nz59UkJCgkpKSjxKBgAAAABAaEWYmXkdAsB/dXV1KSMjQ1euXFFeXp4kae/evWpra1NLS4scx/E4IQAAAAAA08dQCghD58+fV1lZmV6+fKnm5mbt3r1bLS0tWrNmjdfRAAAAAAAICYZSQBgyM23dulWRkZFqb2/XoUOHdPz4ca9jAQAAAAAQMgylgDD1+vVrpaWlKT09Xc+fP1dUVJTXkQAAAAAACBludA6EqWvXrikmJka9vb16//6913EAAAAAAAgprpQCwlBTU5OysrJUXV2t8vJySVJNTY0iIiI8TgYAAAAAQGhwpRQQZoaGhrRv3z4VFRUpOztbV69eVXNzsy5fvux1NAAAAAAAQoYrpYAwc/jwYT148EBtbW2KiYmRJFVVVeno0aNqb2/XihUrvA0IAAAAAEAIMJQCwkhDQ4NycnJUX1+vLVu2/PCz7du3a2RkhH/jAwAAAADMCQylAAAAAAAA4DruKQUAAAAAAADXMZQCAAAAAACA6xhKAQAAAAAAwHUMpQAAAAAAAOA6hlIAAAAAAABwHUMpAAAAAAAAuI6hFAAAAAAAAFzHUAoAAAAAAACuYygFAAAAAAAA1zGUAgAAAAAAgOsYSgEAAAAAAMB1DKUAAAAAAADguv8AjJXeC3rjjjAAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxYAAAJOCAYAAAAqFJGJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAAA9hAAAPYQGoP6dpAADNyklEQVR4nOzddXxV9R/H8dfddtfBNja6W0BBkW6QkrIAA0nBQEFKupEUEFAQlRAMrB9hoEi3tEpJjK6NsY2x3j2/P+auzAUb6+39fDz2ePA95/v9ns+93MH53PMNk2EYBiIiIiIiIulgk90BiIiIiIhI7qfEQkRERERE0k2JhYiIiIiIpJsSCxERERERSTclFiIiIiIikm5KLEREREREJN2UWIiIiIiISLopsRARERERkXRTYiEiIiIiIummxEJEJBuULl2anj17Wstbt27FZDKxdevWDLuGyWRiwoQJGdZfak2YMAGTyZTl180OTZs2pWnTppnSd1o+E2mJo2nTplSrVi19wYmIJEGJhYjkO8uXL8dkMll/HB0dqVixIgMGDODGjRvZHV6a/PTTT9mSPGSW3bt3M2HCBIKCgrI7lFzt6tWrTJgwgSNHjmR3KCKSjyixEJF8a9KkSaxcuZKFCxdSv359Fi1aRL169QgLC8vyWBo3bkx4eDiNGzdOU7uffvqJiRMnJnkuPDycMWPGZER4aTJmzBjCw8MfqO3u3buZOHGiEgse/DMBcYnFxIkTlViISJayy+4ARESyS9u2balVqxYAffv2xdvbmzlz5rB27Vqef/75JNvcvXsXFxeXDI/FxsYGR0fHDO0zo/tLLTs7O+zsctZ/L2FhYTg7O2d3GGmSGZ8JEZHMpCcWIiL/aN68OQB+fn4A9OzZE1dXV86ePUu7du1wc3PjxRdfBMBisTBv3jyqVq2Ko6MjhQoVon///ty+fTtBn4ZhMGXKFIoXL46zszPNmjXj2LFjia6d3Hj6ffv20a5dOzw9PXFxceHhhx/m/ffft8b3wQcfACQY2hUvqTkWhw8fpm3btri7u+Pq6kqLFi3Yu3dvgjrxQ8V27drF4MGD8fHxwcXFhaeeegp/f//7vo9JzbEwmUwMGDCANWvWUK1aNRwcHKhatSobNmxI0G7YsGEAlClTxvp6zp8/b62zatUqHnvsMZycnPDy8qJbt25cunQpwbXi5xAcPHiQxo0b4+zszKhRo2jfvj1ly5ZNMuZ69epZk0yAZcuW0bx5c3x9fXFwcOChhx5i0aJF933tSXn66ad59NFHExzr0KEDJpOJdevWWY/t27cPk8nEzz//DCT/mViyZAnlypXDycmJ2rVrs2PHjgTnt27dyuOPPw5Ar169rO/j8uXLE9Q7fvw4zZo1w9nZmWLFijFz5swHen0iIvFy1ldKIiLZ6OzZswB4e3tbj8XExNC6dWsaNmzI7Nmzrd969+/fn+XLl9OrVy/eeust/Pz8WLhwIYcPH2bXrl2YzWYAxo0bx5QpU2jXrh3t2rXj0KFDtGrViqioqPvGs3HjRtq3b0+RIkUYOHAghQsX5sSJE/zwww8MHDiQ/v37c/XqVTZu3MjKlSvv29+xY8do1KgR7u7uDB8+HLPZzEcffUTTpk3Ztm0bderUSVD/zTffxNPTk/Hjx3P+/HnmzZvHgAEDWL16darf03vt3LmT77//ntdffx03Nzfmz5/PM888w8WLF/H29ubpp5/m77//5ssvv2Tu3LkULFgQAB8fHwCmTp3K2LFj6dKlC3379sXf358FCxbQuHFjDh8+TIECBazXunXrFm3btqVbt2689NJLFCpUiMcee4yXX36Z/fv3W2+8AS5cuMDevXuZNWuW9diiRYuoWrUqHTt2xM7OjvXr1/P6669jsVh444030vS6GzVqxNq1awkJCcHd3R3DMNi1axc2Njbs2LGDjh07ArBjxw5sbGxo0KBBsn19+umn9O/fn/r16zNo0CDOnTtHx44d8fLyokSJEgBUqVKFSZMmMW7cOPr160ejRo0AqF+/vrWf27dv06ZNG55++mm6dOnCt99+yzvvvEP16tVp27Ztml6fiIiVISKSzyxbtswAjN9++83w9/c3Ll26ZHz11VeGt7e34eTkZFy+fNkwDMPo0aOHARgjRoxI0H7Hjh0GYHz++ecJjm/YsCHB8Zs3bxr29vbGk08+aVgsFmu9UaNGGYDRo0cP67EtW7YYgLFlyxbDMAwjJibGKFOmjFGqVCnj9u3bCa5zb19vvPGGkdw/5YAxfvx4a7lz586Gvb29cfbsWeuxq1evGm5ubkbjxo0TvT8tW7ZMcK23337bsLW1NYKCgpK8Xrzx48cnigkw7O3tjTNnzliPHT161ACMBQsWWI/NmjXLAAw/P78E7c+fP2/Y2toaU6dOTXD8zz//NOzs7BIcb9KkiQEYixcvTlA3ODjYcHBwMIYMGZLg+MyZMw2TyWRcuHDBeiwsLCzR62rdurVRtmzZBMeaNGliNGnSJIl34V/79+83AOOnn34yDMMw/vjjDwMwnnvuOaNOnTrWeh07djRq1qxpLf/3MxEVFWX4+voaNWrUMCIjI631lixZYgAJ4oi/5rJlyxLFE//+fPbZZ9ZjkZGRRuHChY1nnnkmxdciIpISDYUSkXyrZcuW+Pj4UKJECbp164arqyv/+9//KFasWIJ6r732WoLyN998g4eHB0888QQBAQHWn8ceewxXV1e2bNkCwG+//UZUVBRvvvlmgqFBgwYNum9shw8fxs/Pj0GDBiX4Jh54oKVcY2Nj+fXXX+ncuXOC4UBFihThhRdeYOfOnYSEhCRo069fvwTXatSoEbGxsVy4cCHN14e497tcuXLW8sMPP4y7uzvnzp27b9vvv/8ei8VCly5dErznhQsXpkKFCtb3PJ6DgwO9evVKcMzd3Z22bdvy9ddfYxiG9fjq1aupW7cuJUuWtB5zcnKy/jk4OJiAgACaNGnCuXPnCA4OTtPrrlmzJq6urmzfvh2IezJRvHhxXn75ZQ4dOkRYWBiGYbBz507r04WkHDhwgJs3b/Lqq69ib29vPd6zZ088PDzSFJOrqysvvfSStWxvb0/t2rVT9XchIpIcDYUSkXzrgw8+oGLFitjZ2VGoUCEqVaqEjU3C71vs7OwoXrx4gmOnT58mODgYX1/fJPu9efMmgPUGvEKFCgnO+/j44OnpmWJs8cOyMmq/AX9/f8LCwqhUqVKic1WqVMFisXDp0iWqVq1qPX7vjTZgjfm/80hS67/9xfeZmv5Onz6NYRiJ3st48UPP4hUrVizBzXe8rl27smbNGvbs2UP9+vU5e/YsBw8eZN68eQnq7dq1i/Hjx7Nnz55Eq4QFBwen6Ube1taWevXqWedC7Nixg0aNGtGwYUNiY2PZu3cvhQoVIjAwMMXEIrnPk9lsTnbuSHKKFy+eKEH19PTkjz/+SFM/IiL3UmIhIvlW7dq1E0zYTYqDg0OiZMNiseDr68vnn3+eZJv4OQG5na2tbZLH7/22P6v6s1gs1onNSfXj6uqaoHzvE4d7dejQAWdnZ77++mvq16/P119/jY2NDc8995y1ztmzZ2nRogWVK1dmzpw5lChRAnt7e3766Sfmzp2LxWK5b7z/1bBhQ6ZOnUpERAQ7duxg9OjRFChQgGrVqrFjxw4KFSoEkGJikZEy+u9WRASUWIiIpFm5cuX47bffaNCgQbI3sAClSpUC4r5tv/cbZX9///t+Sx8/ZOivv/6iZcuWydZL7bAoHx8fnJ2dOXXqVKJzJ0+exMbGxjr5Nzsl93rKlSuHYRiUKVOGihUrPnD/Li4utG/fnm+++YY5c+awevVqGjVqRNGiRa111q9fT2RkJOvWrUvwlOW/w63SolGjRkRFRfHll19y5coVawLRuHFja2JRsWJFa4KRlHs/T/ErmAFER0fj5+fHI488Yj2WX3Y+F5GcRXMsRETSqEuXLsTGxjJ58uRE52JiYqybu7Vs2RKz2cyCBQsSfBP832E3SXn00UcpU6YM8+bNS7RZ3L19xe+pcb8N5WxtbWnVqhVr165NsHzrjRs3+OKLL2jYsCHu7u73jSuzJfd6nn76aWxtbZk4cWKib9UNw+DWrVupvkbXrl25evUqn3zyCUePHqVr164Jzsd/m3/vdYKDg1m2bFlaXkoCderUwWw2M2PGDLy8vKxDzho1asTevXvZtm3bfZ9W1KpVCx8fHxYvXpxgVbHly5cner9S+7kQEclIemIhIpJGTZo0oX///kybNo0jR47QqlUrzGYzp0+f5ptvvuH999/n2WefxcfHh6FDhzJt2jTat29Pu3btOHz4MD///LN1KdXk2NjYsGjRIjp06ECNGjXo1asXRYoU4eTJkxw7doxffvkFgMceewyAt956i9atW2Nra0u3bt2S7HPKlCls3LiRhg0b8vrrr2NnZ8dHH31EZGRkjtnDIP71jB49mm7dumE2m+nQoQPlypVjypQpjBw5kvPnz9O5c2fc3Nzw8/Pjf//7H/369WPo0KGpukb8niRDhw7F1taWZ555JsH5Vq1aYW9vT4cOHejfvz+hoaF8/PHH+Pr6cu3atQd6Xc7Ozjz22GPs3bvXuocFxD2xuHv3Lnfv3r1vYmE2m5kyZQr9+/enefPmdO3aFT8/P5YtW5ZojkW5cuUoUKAAixcvxs3NDRcXF+rUqUOZMmUeKH4RkdTQEwsRkQewePFilixZws2bNxk1ahQjR45k8+bNvPTSSwn2IZgyZQoTJ07k8OHDDBs2jLNnz/Lrr7+mavfu1q1bs2XLFipWrMh7773H4MGD2bRpEx06dLDWefrpp3nzzTfZsGED3bt3T3bHcICqVauyY8cOqlWrxrRp05g4cSKlSpViy5YtifawyC6PP/44kydP5ujRo/Ts2ZPnn3/euinfiBEj+O6777CxsWHixIkMHTqUdevW0apVK+teEKnh6OhIx44duXPnDs2aNUs0Cb9SpUp8++23mEwmhg4dyuLFi+nXrx8DBw5M12uLTxwaNmxoPVa4cGHKly+f4HxK+vXrx4cffsjVq1cZNmwYO3bsYN26dYmGsZnNZlasWIGtrS2vvvoqzz//PNu2bUtX/CIi92MyNFNLRERERETSSU8sREREREQk3ZRYiIiIiIhIuimxEBERERGRdFNiISIiIiIi6abEQkRERERE0k2JhYiIiIiIpFue3yDPYrFw9epV3NzcrBsSiYiIiIjI/RmGwZ07dyhatCg2Nik/k8jzicXVq1cTbRwkIiIiIiKpd+nSJYoXL55inTyfWLi5uQFxb4a7u3s2RyMiIiIiknuEhIRQokQJ6z11SvJ8YhE//Mnd3V2JhYiIiIjIA0jNlAJN3hYRERERkXRTYiEiIiIiIummxEJERERERNJNiYWIiIiIiKSbEgsREREREUk3JRYiIiIiIpJu2brc7Pbt25k1axYHDx7k2rVr/O9//6Nz584AREdHM2bMGH766SfOnTuHh4cHLVu2ZPr06RQtWjTTY4uOjiY2NjbTryMiIjmXra0tZrM5u8MQEckVsjWxuHv3Lo888gi9e/fm6aefTnAuLCyMQ4cOMXbsWB555BFu377NwIED6dixIwcOHMi0mEJCQggICCAyMjLTriEiIrmHg4MDBQsW1F5IIiL3ka2JRdu2bWnbtm2S5zw8PNi4cWOCYwsXLqR27dpcvHiRkiVLZng8ISEhXLlyBVdXVwoWLIjZbE7VZiAiIpL3GIZBdHQ0wcHBXLlyBUDJhYhICnLVztvBwcGYTCYKFCiQbJ3IyMgETxtCQkJS3X9AQACurq4UL15cCYWIiODk5ISbmxuXL18mICBAiYWISApyzeTtiIgI3nnnHZ5//vkU/2GfNm0aHh4e1p8SJUqkqv/o6GgiIyPx8PBQUiEiIlYmkwkPDw8iIyOJjo7O7nBERHKsXJFYREdH06VLFwzDYNGiRSnWHTlyJMHBwdafS5cupeoa8RO1NUlPRET+K/7/Bi3qISKSvBw/FCo+qbhw4QKbN2++72NoBwcHHBwcHvh6elohIiL/pf8bRETuL0cnFvFJxenTp9myZQve3t7ZHZKIiIiIiCQhWxOL0NBQzpw5Yy37+flx5MgRvLy8KFKkCM8++yyHDh3ihx9+IDY2luvXrwPg5eWFvb19doUtIiIiIiL/ka1zLA4cOEDNmjWpWbMmAIMHD6ZmzZqMGzeOK1eusG7dOi5fvkyNGjUoUqSI9Wf37t3ZGbZkgaZNm+baoQcTJkzAZDKxdevWBMdNJhNNmzbN0GutWbMGk8mUZ34nevbsiclk4vz589kdilXp0qUpXbp0doeRJ50/fx6TyUTPnj2z9LqffPIJtra2/Pnnn1l6XRGRvC5bE4umTZtiGEain+XLl1O6dOkkzxmGkeE3Z/Lvf/D//XFxceHhhx9m4sSJhIaGZneYGeLWrVuMGDGCqlWr4uzsjLOzM6VKlaJFixZMnDiRGzduZFks6bmRjo6OZvjw4bRu3Zr69etnfHCSLy1fvhyTycTy5cszpL+cmJj16NGDUqVKMWzYsOwORUQkT8nRcywk65UrV46XXnoJiNscyt/fn59//pkJEyawYcMGdu7cia2tbabH8dlnnxEWFpbh/V6+fJn69etz6dIlatSoQa9evShQoADXrl1j9+7dTJgwgQYNGlCoUKEMv/aJEydwdnbOsP5WrlzJ6dOnWbx4cYb1md2mTZvGiBEjKFasWHaHIlmgWLFinDhxAg8Pjyy9rtls5u233+att95i165dNGjQIEuvLyKSVymxkATKly/PhAkTEhyLjIykXr167N27l23bttG8efNMjyMzdlYHGD9+PJcuXWLSpEmMHTs20fk///wzxQ0Y06Ny5coZ2t+iRYsoUaIEzZo1y9B+s1P8cEfJH8xmc4b/XqRWt27dGDx4MIsXL1ZiISKpZrl7l9jQUGxcXLB1dc3ucHKcXLGPhWQvBwcH681rQEBAgnNbtmyhd+/eVKpUCVdXV1xdXalVqxZLlixJsq9Dhw7x7LPPUrJkSRwcHPDx8eHxxx9n6tSpCeqlNMdi7dq1tGrVCm9vbxwdHSldujTdu3fnr7/+uu9r2bNnDwBvvvlmkuerV6+eaFPF+LkRly9f5vnnn6dgwYI4OzvToEEDfvvtt/te87/9xCtdujQrVqwAoEyZMtbhZ6kZ6vfXX39x4MABnnnmmUTv09atWzGZTEyYMIEDBw7wxBNP4ObmhoeHB0899VSyw678/Pzo27ev9e+mSJEi9OzZkwsXLiSoV7NmTTw8PBKs52+xWPDy8sJkMvHJJ58kqB8/52Tbtm33fV1JDQ279/Xs3r2bZs2a4ebmho+PD6+//jrh4eEA/Pjjj9SrVw8XFxcKFSrE8OHDiYmJSdD/vcN81q5dS+3atXF2dsbHx4fevXunaRicYRgsXbqUBg0a4O7ujrOzM7Vq1WLp0qWJ6t4772bZsmVUr14dJycnypQpw/z58639vffee1SqVAlHR0cqVKjAZ599luS1o6KimDNnDo8++iguLi64ubnRqFEj1q1bl+x76ufnx/z586lcuTIODg6UKlWKiRMnYrFYEtTt1asXAL169UowLDLewYMHGTBgANWqVcPDwwMnJyeqV6/O9OnTE2weFz+88sKFC1y4cCFBX/FfXqQ0x+LChQv06dOHYsWKYW9vT/HixenTpw8XL15MVDf+34vo6GgmTJhA6dKlcXBwoGLFinz44YdJvoc+Pj40bdqUb7/9Ns8M8xSRzBF94yY3583jXIcOnHqsFmeaNOXvWo9zullzrk+aTOS5c9kdYo6hJxZyX1FRUdabuxo1aiQ4N2PGDM6cOUPdunV56qmnCAoKYsOGDfTv359Tp07x3nvvWeseOXKE+vXrY2trS6dOnShVqhRBQUEcP36cJUuWMHr06PvGMmTIEObMmYOXlxedO3fG19eXS5cu8dtvv/HYY49RrVq1FNvHL1n8999/U7t27VS/B7dv36ZBgwb4+PjQt29f/P39Wb16NW3atOHbb7+lc+fOqe4r3qBBg1i+fDlHjx5l4MCB1iclqRmPvmnTJgDq1q2bbJ39+/czc+ZMmjVrRv/+/Tl8+DBr1qzhzz//5K+//sLR0dFad9++fbRu3Zq7d+/Svn17KlSowPnz5/n888/5+eef2bNnD2XLlgWgWbNmHDlyhEOHDvH4448DcPToUW7fvg3EJZt9+/a19r1lyxYcHR1TjDU19u3bx4wZM2jdujX9+/dny5YtLFq0iJCQEDp06EDPnj3p1KkT9erV48cff2TWrFm4uroybty4RH199913/PLLLzz77LO0bNmSvXv3smzZMnbs2MHvv/+Op6dnirEYhsGLL77Il19+SYUKFXjhhRewt7dn48aN9OnTh+PHjzN79uxE7ebNm8fWrVvp1KkTzZs357vvvmPgwIE4Oztz+PBhvvvuO9q3b0+LFi346quv6NGjB6VLl6Zx48bWPiIjI2nTpg1bt26lRo0a9OnTh+joaH788Uc6derEggULGDBgQKJrDxs2jG3bttG+fXtat27NmjVrmDBhAlFRUdbEvnPnzgQFBbF27Vo6deqU6Pcd4OOPP2b9+vU0btyYdu3aERYWxtatWxk5ciT79+/nu+++A6BAgQKMHz+eefPmAXGf93j3S57//vtvGjZsiL+/Px06dKBq1ar89ddfLF26lPXr17Nz504qVqyYqN3zzz/P77//Ttu2bbG1teXrr7/mjTfewGw288orrySqX69ePX777Td2795Nq1atUoxJRPIfIzqaW59+SsCHizCiohKdj7l2jdtffMHtL7+kQJcu+A4bhq2rSzZEmoMYeVxwcLABGMHBwSnWCw8PN44fP26Eh4dnUWQ5i5+fnwEY5cqVM8aPH2+MHz/eGDdunPH6668b5cqVMxwdHY1Zs2Ylanfu3LlEx6Kjo40nnnjCsLW1NS5cuGA9PnjwYAMw1qxZk6hNQEBAgnKTJk2M/348169fbwBG9erVE9WPjo42rl+/ft/XOX/+fAMwfH19jXHjxhlbtmy572cDMADjhRdeMCwWi/X40aNHDXt7e8PHx8cICwuzHh8/frwBGFu2bEnUT5MmTRIc69GjhwEYfn5+9439Xs8995wBGKdPn050bsuWLdaYv/rqqwTnunfvbgDGl19+aT0WFRVllC5d2nBzczMOHTqUoP6OHTsMW1tbo3379tZj69atMwBjxowZ1mPvvfeeARgtWrQwihQpYj0eFhZm2NvbG82bN0/V60rq/bj39dz72YmKijIefvhhw2QyGQULFjR+//1367mQkBDD19fX8PLyMqKioqzHly1bZu1rw4YNCa49YsQIAzAGDBiQ4HipUqWMUqVKJTi2ZMkSAzB69eqVoP/IyEijQ4cOBmAcOHDAejz+M+Hl5WWcPXvWevzixYuGvb294eHhYVSsWNG4efOm9dzevXsNwOjQoUOCa48aNcoAjLFjxyb4PIaEhBi1atUy7O3tjStXriR6T8uUKWNcvXrVetzf398oUKCA4ebmZkRGRiZ6j5YtW2Yk5cKFC0ZMTEyCYxaLxejdu7cBGDt37rzv+xcv/t+dHj16JDjerFkzAzA++uijBMc/+OADA0j0eYr/96JOnToJfp9Pnjxp2NnZGZUqVUry+mvXrjUAY9y4cUmev1d+/z9CJL+JDgw0zr/U3TheqfK/Pw9VNc4986xxacCbht8LLxonqj+c4Pzp5i2M8GPHsjv0DJfae2nDMAw9sUiFDgt24n8nMrvDSJGPmwPr32yY7n7Onj3LxIkTEx1v3749LVu2THS8TJkyiY7Z2dnx6quvsnHjRrZs2UKPHj0SnHdyckrUJjWbH8YPaXj//fcT1bezs0vVhOsBAwZw6dIl3n//fSZNmsSkSZMwmUxUqVKFDh06MHDgwCTH+Nva2vLuu+8mGBLy8MMP0717dz799FN++uknnnnmmfteP6NcvnwZIMXX3LhxY7p27ZrgWO/evVm5ciX79++nW7duAPzwww+cP3+eSZMmWZd+jtewYUM6derEmjVrCAkJwd3dncaNG2Nra8vmzZsZPnw4EPdUolKlSrz44ov07t2bkydPUrlyZXbv3k1UVFSGrOTWrFkzOnXqZC2bzWaeffZZ/vjjDzp06GB9egLg5uZG+/btWbp0KZcvX070OW3ZsiWtW7dOcGz06NEsXryYzz77jPfffx8bm+RHii5cuBAXFxc++OADzGaz9bi9vT1Tp05l/fr1fPnllzz22GMJ2g0cOND65AegRIkSNGzYkM2bNzN//nx8fHys5+rUqUPZsmU5evSo9ZjFYmHRokWUK1eOiRMnJvg8urm5MW7cODp27Mj333+f6KnF2LFjE3y2CxYsSKdOnVixYgWnTp2ievXqyb7eeyU1/8lkMvHGG2+wdOlSfvvtt3TNWbh48SJbtmzhoYceSvSU4dVXX2XBggVs3ryZS5cuJRq2OG3aNNzd3a3lSpUq0aBBA7Zt28adO3dwc3NLUD/+9yf+90lEBOKGPl3s0YOo+GG5NjZ4dX8Jr959MBfytdaLDQ3l9pdfErBoMUZYGNFXrnDhpe4Umz8f14b5c+6WEotU8L8TyfWQiOwOI0u0bt2aDRs2WMu3bt1i165dDBw4kAYNGrB582bq1KljPX/nzh1mz57NmjVrOHv2LHfv3k3Q39WrV61/7tKlC/PmzeOpp56ia9euPPHEEzRu3DjVKwD9/vvvODg40KRJkwd+fSaTiZkzZzJ8+HB++ukn9u7dy4EDBzh48CDHjx/no48+YsOGDQleI8TdTJUqVSpRf40aNeLTTz/l8OHDWZpY3Lp1C1tb20Q3Svf6700tQPHixQEICgqyHtu7dy8Ap06dSjRxH+D69etYLBb+/vtvatWqhYeHBzVr1mTnzp1ER0djY2PD9u3befHFF61zcbZs2ULlypXZsmULQIZMME9qWE78jXJK565evZoosWjUqFGi+q6urtSoUYOtW7dy7tw5ypcvn2QcYWFh/PnnnxQtWpQZM2YkOh8/z+DkyZMZ8hr27dtnLZ86dYrbt29TtGjRJL8A8Pf3T/baqf083E9UVBQLFy7kq6++4uTJk4SGhmIYhvX8vb/zD+LIkSMANGnSJNH8IRsbGxo3bszJkyc5cuRIosTifq/xv78vXl5eQOK5YyKSf8Xcvs3FPr2tSYVtwYIUXzAf5/988QZg6+pKwVdewb1NG64MHUrE0T+whIVx+fXXKbHkI1zSOQQ4N1JikQo+bg7ZHcJ9ZVaM3t7edOzYEWdnZ5544gnGjBnDxo0bAazfRB86dIiaNWvSvXt3vL29sbOz4/z586xYsYLIyH+f9NSpU4etW7fy7rvv8sUXX7Bs2TIAHn/8cWbMmHHfm8/g4GCKFSuW4jfJqVWwYEFefvllXn75ZSDu5nnAgAF899139OvXL8G3xJD8k4H448HBwemOKS2cnJyIjY0lOjo6wTfm97r3m9t4dnZxv/L3TrwODAwE4PPPP0/xmvcmjc2aNePAgQPs378fs9lMSEgIzZs3t+5ZsGXLFl577TW2bNmCs7NzmuazJCel15PSuXsnFMdLz9/n7du3MQyDK1euJHlzH++/Sfb94kzu3L0T0OP/ro4dO8axY8cy7Nr3fh7u59lnn2X9+vVUrFiRrl274uvri9lsJigoiPfffz/B7/yDCAkJAZL/O4pPxOLr3SutrzF+4n9GLgMtIrmXER3N5QFvEnXmLADm4sUptWI55vt8AWpfogSlVqzg6rBh3Nn4G0ZUFJdef4NSn32GU7WqWRF6jqHEIhUyYohRbhf/Df7+/futx9auXcuhQ4fo06dPopWAvvrqK+uKR/dq1KgRP//8M+Hh4ezbt4/169fz4Ycf8uSTT/LXX38lGCbyXwUKFLB+e54RycW9ChcuzMqVK/nhhx/4448/uHXrVoLhVsmtFhR/PKvX4Y8fMhMYGJjuPTfib8bWr19P+/btU9WmWbNmzJo1iy1btmBvb59gNatmzZrxww8/EBoayv79+2natCn29vbpijGjpefvM/79euyxxzhw4EDGB5eC+Gs/88wzfPvtt1l6bYj7/V+/fj2tW7fmxx9/TLCnzd69e3n//ffTfY3415jc39H169cT1EuP+ETt3iFoIpJ/3Zw9m/CDBwGw9SlIyaWf3jepiGfj6EixOXO4/NZAQrdswQgL4/Kbb1Lm22+wS8Vw77xCy81KqsSv+HPv0pRnz8Zl9PeOe4+3Y8eOFPtzcnKiadOmvPfee4waNYrw8HDrk5Dk1K5dm8jIyFQtW/ogHBwckv32/+LFi4mWXYV/X+d/5yakVvyNWVq+MQas4+FPnTr1QNe9V3zSGL8Ub2o0atQIOzs7Nm/ezJYtW6hevToFCxYEoHnz5vj7+/PRRx8RHR2dIfMrMlpSn8/Q0FCOHDmCu7t7igmum5sbVapU4cSJE2kaQpQRqlSpgru7OwcOHEjySUxGSOkzGf87/+STTybaKDO533lbW9s0fb7jh4Rt3749wRAriFuNa/v27QnqpUf8709q55eISN4V8suvBK6IW+LbZDZT4oMPsE/jnloms5li8+bi9M+/TzHXrnH5rYEYmfTvdU6kxEJSZc6cOQAJlr2Mn3Owc+fOBHW3bdvGxx9/nKiPPXv2EBGReK5K/DeT9y5/mpQ33ngDiJsAG/9NY7yYmJhU7UHw3nvvJTn+HOIm5IaGhlK5cuVEk8NjY2MZNWpUghudP/74g5UrV+Lj40O7du3ue+2kxI/xvnTpUpraxc8zuXf8/YPq1KkTJUuWZM6cOdabtntFR0cn+juO369k9+7d7NixI8GmifFD2uLnH+TEDfx+++03fvnllwTHpk6dSlBQEC+//PJ9n4i99dZbhIWF8corryQ57MjPzy/Z/ULSw87Ojtdee40LFy4wdOjQJJOLv/76i5s3bz7wNVL6TCb3O3/s2DGmTZuWbH8BAQFJ/u4npWTJkjRr1oxjx44l2hNkyZIlnDhxgubNmyeaX/Eg4n9/0jNvS0Ryv5jbt7l+z9DWQqNH4fTwww/Ul42DA8Xmv4/dP6MJwg8exH/hBxkSZ26goVCSwJkzZxJM4A0MDGTXrl0cOnQIT0/PBJNVO3ToQOnSpZk5cyZ//fUX1apV49SpU/zwww889dRTiYZqzJgxgy1bttC4cWPKlCmDo6Mjhw4dYtOmTZQtW5annnoqxdjatWvH0KFDmT17NhUqVOCpp57C19eXK1eusGnTJoYOHZpgrfykrFy5kqFDh1K9enXq1KmDr68vQUFB7N27l0OHDuHk5MSiRYsStXv44YfZuXMnjz/+OC1btrTuYxETE8OSJUuSXOkqNZo3b87s2bPp168fzzzzDC4uLpQqVYru3bun2K5Fixa4ubmxceNGhg0b9kDXjufg4MC3335L27ZtadKkCc2bN6d69erWzc127NiBt7d3ooSsWbNm1onf9yYPxYoVo0KFCpw+fRpXV9cEqzXlFO3bt6dDhw48++yzlC5dmr1797JlyxbKlSvHpEmT7tu+f//+7N27lxUrVrBr1y5atmxJ0aJFuXHjBidPnmTfvn188cUXqdqTJK0mTpzIoUOHmD9/Pj/++CONGze2/h78+eefHD16lD179uDr63v/zpJQr149nJycmDdvHrdv37YOExozZgy1a9emdu3afP3111y7do26dety8eJF1q1bx5NPPpnk8KzmzZtz4MAB2rZtS6NGjbC3t6dx48YJvqT4r0WLFtGwYUNeeeUV1q9fz0MPPcSxY8dYt24dPj4+Sf6OppVhGGzatIkqVaokuSeGiOQfN6a+S+w/X1i6PfEEBf6zomJamX19Kb5gPudfeBFiYri1ZAmujRriXKtWRoSbs2Xqwrc5gPaxSJ349eT/++Pg4GCUK1fOeO211xLsSRHv3LlzxjPPPGP4+PgYzs7OxuOPP2589dVX1r0Hxo8fb627YcMG4+WXXzYqVapkuLm5Ga6ursZDDz1kjBo1yvD390/Qb1L7WMT77rvvjGbNmhkeHh6Gg4ODUbp0aaN79+7GX3/9dd/XeejQIWPixIlGkyZNjBIlShj29vaGk5OTUblyZeO1114z/v7770Rt+Gf/iUuXLhldu3Y1vLy8DEdHR6NevXrGr7/+mqh+WvaxMAzDmDlzplGhQgXDbDYnWycpr732mmFra5tgbwLDMJJ87+Mlt2+AYRjG5cuXjYEDBxoVKlQwHBwcDHd3d6NKlSpG3759jU2bNiWq/+uvvxqAYWtrawQFBSU4169fPwMwWrdunarXEi+lfSySej0p7bmQ1N/DvfXXrFljPP7444aTk5Ph7e1t9OzZ07h27VqiflLah2H16tVGy5YtDU9PT8NsNhvFihUzmjZtarz33nsJPtPJfSaSe83xkvs9iImJMT766COjQYMGhru7u+Hg4GCULFnSaNOmjbFo0SIjNDQ0Vf0nF9ePP/5ofW/i/y2Id/PmTaN3795G0aJFDUdHR6N69erGBx98YJw7dy7Jz9adO3eMV155xShSpIhha2ub4O8ypc/j+fPnjV69ehlFihQx7OzsjCJFihi9evUyzp8/n+r3KaXXv3XrVgMw5s2bl2S7/8rv/0eI5FUhmzZb96E4WbuOEX3PfkLp5f/Rkn/3uGjW3Ii5E3r/RjlQWvaxMBnGfwax5jEhISF4eHgQHByc4mS/iIgI/Pz8rN+ki8QzmUw0adKErVu3ZncoCZw6dYpq1aoxYcKEVO1aLrB8+XJ69erFsmXL6NmzZ3aHI9nopZde4ueff+bs2bPWXe9Tov8jRPIeS0QE59o9SfQ/y2QXmT6NAp07Z1j/RmwsF3v0JOyfhT68erxMoZEjM6z/rJLae2nQHAuRXKtSpUr07duXuXPncufOnewORyTX+Pvvv/nqq68YM2ZMqpIKEcmbApcvtyYVLvXr4ZHEYjTpYbK1pci0dzH982VE4MpVhP/5V4ZeI6dRYiGSi02cOJEBAwZkykRhkbzq8uXLjB8/3roghIjkP9E3bhKw5J+FZmxtKTRyZKJNOTOCfYkSFHzj9biCxcK1ceMw7tmfKK9RYiGSi/n6+jJhwgQtlymSBs2bN2fs2LE5bn8VEck6/gvmY4SFAeDZtSsOFSpk2rW8e/bEoVIlACJPnCBw5apMu1Z2U2Ihch+GYeS4+RXyYHr27IlhGJpfISKSj0WdP0/w/9YAYOPmRsE3B2Tq9UxmM0UmTYR/nogEfPghMf9ZNj+vUGIhIiIiIvmG/wcfwj8bd3r37oWdp2emX9PpkUfweDpuWX3LnTv4z5+f6dfMDkosRERERCRfiDx9mpAffgDAtkABPLu/nGXX9h00CBtnZwCCvv6GiFN/Z9m1s4oSCxERERHJF/wXLIR/dlrwfqUvtq4uWXZtOx8fvF99Na5gsXBj+jTy2q4PSixEREREJM+LOHWKO7/+CoBtwYJ4vvBClsfg1eNlzMWLAxC2Zy+h27alWD84MphjAce4GXYzK8JLN7vsDkBEREREJLPd+vgT658LvtIXGyenLI/BxsEB36FDuTJoEAD+c+bi2rgx0UYMJwJPcCrwFKcCT3Hy9kkuhFwgODIYgBG1R/BilRezPN60UmIhIiIiInla1KVLhPz0ExA3t6LAc89lWyxurVvhUL0akX/+ReTffzN7WidWl7pGZGxksm0u3bmUhRE+OCUWIiIiIpKnBS5bBhYLAJ4vd7dOos5KYdFh7Lyyk82XNnOz5nmG/Rl3/PH1Z/i8ny3YJtygr7BLYUq6laSEWwke9X00y+N9EEosRERERCTPigkIIOi77wEwOTvjlYVzK2IsMey+upu1Z9ay9dJWoixRcSeKwdHSJh45b1AoCJ497k5452ZU9a5KZa/KVPSsiKu9a5bFmVGUWIiIiIhInhW4chVGZNwwI88uXbAtUCDTr3n5zmW+PvU168+tJyA8INF5N7MbF1+oziPvbgegyx4byk8chY1L1q1SlRmUWIiIiIhInhQbGsrtL76IK5jNePXskWnXMgyDAzcOsOr4KrZe3orFsCQ47+XoxROlnqB5yeY8XuhxzLZmLh96mzsbNhB76xaBn31Gwddey7T4soKWm5VEDh48SJ8+fahQoQIuLi44OTlRrlw5unfvzsaNGwkODsbZ2RlPT08iIiJS7Ovjjz/GZDLRr1+/LIpeREREJE7w999juXMHAI8OHTAXLpzh14i1xLLh/AaeW/8cvX/pzeZLm61JhZ2NHS1LtmR+s/n89txvjKk7hvpF62O2NQPg89ZbYGsLwK1PlxIbFJTh8WUlPbEQK4vFwtChQ5k7dy52dnY0b96cjh07YjabOXfuHD/++COrVq1i0qRJPPPMM6xatYrvvvuOF19MfvmzpUuXAtCnT5+sehkiIiIiGLGxBK763Fr27tUzQ/uPTyiW/LGEc8HnEpzzdfKla+WuPFvxWbwcvZLtw6FsGQo8/RRB33yLJTSUW8uW4/v2oAyNMyspsRCrMWPGMHfuXGrUqMG3335LuXLlEpwPDw9n4cKF3Lp1iz59+rBq1SqWLl2abGJx4sQJ9u7dS9WqValTp06K1+7ZsycrVqzIcztQioiISPYI3baN6IsXAXCpXx+HChUypF/DMNh4YSMLDi/gfMj5BOeqF6xO94e607JUS8w25lT1V/DVVwlasxaiowlcuRKvHi9j55V8MpKTKbEQAM6cOcPMmTPx9vZmw4YNFCpUKFEdJycnhg0bRmRkJPb29pQrV44tW7Zw/vx5Spcunai+nlaIiIhIdgn8bKX1z54vd8+QPo/cPMLsA7M56n80wfFHfR/l1UdepW6RuphMpmRaJ81crBiezz3L7S++xAgL49ann1Jo2LAMiTeraY6FALB8+XJiY2Pp379/kknFvRwcHDCZTPTu3RvDMFi2bFmiOjExMaxcuRJ7e3u6d8+YX2YRERGR1Ig4dYqwvXsBsC9VCtfGjdPV36U7lxi8dTDdf+6eIKl4rNBjLG29lOVtllOvaL00JxXxvPv3x2RvD8Dtz78gxt8/XfFmFyUWAsCuXbsAaN68earb9OzZE1tbW1asWIHFknDlg59++okbN27QsWNHChYsmKGxioiIiKQk8LPPrH/2fLk7JpsHu+WNio1i0dFFdF7TmY0XNlqPl/UoywctPmBZ62U8XvjxB04o4pkLFaJAt64AGBERBHz8cbr6yy4aCpUaHzWB0JvZHUXKXH2h/7YHbn79+nUAihcvnuo2RYsWpU2bNvz4449s2rSJJ554wnoufhhU7969HzgmERERkbSKCQwkZP0PANi4uVGgc+cH6mfP1T1M3TeVCyEXrMe8HL14o8YbPF3haexsMvY2uuArrxD09TcYEREEfbUa7969M2UVq8ykxCI1Qm/CnavZHUWO1LdvX3788UeWLl1qTSxu3rzJjz/+SPHixWndunWiNqVLl+bChQuJjgNJZvzLli2jZ8+eGRq3iIiI5E1Bq1djRMXtcF3g2WfTvOnc7YjbTP99Oj/5/WQ9Zmuy5aUqL/HqI69m2o7Ydj4+eL74AoGfLsWIiuLWkiUUHjcuU66VWZRYpIarb3ZHcH/pjLFw4cKcPHmSK1euUKlSpVS3a9++PYUKFWLNmjXcvn0bT09PPvvsM2JiYujZsyc2STx6HDRoEEH/Wad5zZo1HD16lPHjxyeqX6NGjbS+HBEREcmHjKgobn/xZVzBxgbPFJbET8qmi5uYtGcSgRGB1mM1fGowpu4YKnml/v7oQXn37UvQl19hCQvj9jff4t2nD+ZixTL9uhlFiUVqpGOIUW7RoEEDtm7dyqZNm9I0z8LOzo6XX36ZWbNm8fnnnzNgwACWLVuGyWSiV69eSbYZNGhQomPnz5/n6NGjTJgw4QFfgYiIiOR3Ib/8Yp347NaiBfbFU3dTHhwZzPTfp/PDuR+sx9zt3RlSawidy3fGxpQ105LtPD3x7N6dWx99BNHRBCxeTJHJk7Pk2hlBk7cF+Hci9pIlS/C/z0oEkZGRCcrx8yiWLl3Kvn37OH78OM2aNaNs2bKZFq+IiIjIvQzDIHDFv5O2vVK5xOyuK7t4au1TCZKKpsWbsqbTGp6u8HSWJRXxvHv1xMY1brhV0Pf/I+qfvThyAyUWAkD58uUZPnw4AQEBtG3bFj8/v0R1IiIimDNnTqKnCpUrV6ZBgwYcPnyYIUOGANq7QkRERLJW+OEjRPz1FwAOD1XBqVatFOtHx0bz3oH3ePW3V/EP/+cph9mNqQ2nMr/5fHycfTI95qTYFiiAV/zc0thYAj5clC1xPAgNhRKrKVOmEBERwdy5c6lUqRLNmzenWrVqmM1m/Pz8+O2337h16xZTpkxJ1LZPnz7s2rWLXbt2UaBAAZ5++ulseAUiIiKSXwWuvOdpRfeXU1wC9mLIRYZvH86xW8esxxoUa8DEehMp5JLyfl5ZwavHywSuXIklOJjgdevw7tcPh7Jlsjus+9ITC7GysbFhzpw57N+/n+7du3P27Fk+/PBD5s6dy759+2jdujUbN25k9OjRidp26dIFNzc3AF544QUcHR2zOnwRERHJp6KvXePOr3H7TNh6e+P+ZLtk6/507ie6/NDFmlSYbcy88/g7LGqxKEckFQC2bm54xy/Zb7EQ8MEH2RtQKumJhSRSq1YtPv300zS1cXFxISQk5IGvuXz5cpYvX/7A7UVERCT/uv3FFxAbC4Bnt27Y/LOL9b2iY6OZsX8Gq0+tth4r5V6KmY1n8pD3Q1kWa2p5vfQigcuXg40NTo88nN3hpIoSCxERERHJtSzh4dz++pu4gtmM5z87WN/rZthNBm8dzFH/o9ZjHct1ZFSdUbiY07bPRVaxcXGhxEeLcShfHhtn5+wOJ1WUWIiIiIhIrhW8bj2W4GAAPNq1xc4n4aTrgzcOMmTrEG5F3ALA3saeMXXH8FSFp7I81rRyejh3PKmIp8RCRERERHIlwzC4vWqltezZ/eUE5744+QWz988mxogBoIhLEeY2m0tV76pZHmt+oMRCRERERHKlsD17iDx9BgCnRx/FqVpcwhBtiWbq3ql8d/o7a906Reows/FMvBy9siXW/ECJhYiIiIjkSoGf/fu0In5DvODIYIZsHcK+6/us53pV68VbNd/Czka3vplJ766IiIiI5DpRFy4Qum0bAHZFiuDWsiWXQi7x+qbXOR9yHoibTzGpwSSeLPtkNkaafyixEBEREZFcJ3DV52AYAHi+8DyHbh1l0JZBBEUGAeDl6MX7zd6nhm+N7Asyn1FiISIiIiK5SmxoKMHffw+AydGRQ3W9GPHrK0RbogEo51GOhS0WUtyteHaGme8osRARERGRXCX4+++x3L0LwM3GVRh6aCIGcU8v6hetz+wms3Gzd8vOEPMlm+wOQEREREQktYzY2LhhUP+YVvIPa1LxVPmnWNhioZKKbKInFiIiIiKSa4Ru20b0xYsA/FHaxGUfEwCvVH+FN2u+iclkys7w8jUlFiIiIiKSa/h/+on1zz/VMmHCxDu13+HFKi9mY1QCSixEREREJJcIPLiPyIOHAbjsDX9WNDOz8XTalG6TzZEJaI6FiIiIiOQCwZHBbJkxyFr+tb4THz6xWElFDqLEQhI5ePAgffr0oUKFCri4uODk5ES5cuXo3r07GzduTFQ/IiKC999/n0aNGuHt7Y2DgwMlSpSgW7dubN++PclrnD9/HpPJlODHbDZTrFgxunTpwoEDBzL7ZYqIiEguERgRyLAvulP5zyAAgl1M9Hx7KXWL1M3ewCQBDYUSK4vFwtChQ5k7dy52dnY0b96cjh07YjabOXfuHD/++COrVq1i0qRJjB07FoAzZ87w5JNP8vfff1O2bFm6dOlCgQIFOHfuHD/88AOrV69m4MCBzJkzBxubxHlsuXLleOmllwC4e/cuBw8e5JtvvmHNmjX89ttvNG7cOEvfAxEREclZ/MP8eeXXV2i68Qw2cYs/UeClF6lctEa2xiWJKbEQqzFjxjB37lxq1KjBt99+S7ly5RKcDw8PZ+HChdy6dQuA4OBg2rRpw9mzZxk7dizjx4/H1tbWWv/q1at07tyZ999/Hy8vL8aNG5fomuXLl2fChAkJjk2fPp2RI0cyduxYtm3blvEvVERERHKF63ev0/fXvgReP0/TP/7JKpwcqdB7QPYGJknSUCgB4p48zJw5E29vbzZs2JAoqQBwcnJi2LBhTJw4EYBZs2Zx9uxZXnzxRSZNmpQgqQAoWrQo69evx8vLi8mTJ3Pp0qVUxdKnTx8gbkiWiIiI5E9XQ6/Sc0NPLoRcoNUhA4eYuOOezz2HrYdH9gYnSVJiIQAsX76c2NhY+vfvT6FChVKs6+DgAMCyZcsArMOiklKoUCFeeeUVYmJiWL58eZpisrPTAzUREZH86Prd6/T5pQ9XQq9gjjZ48tA/J2xt8Xq5R7bGJsnTnVsqdP2hKwHhAdkdRooKOhVkdfvVD9x+165dADRv3jxV9S9cuMDVq1cpVqwYlSpVSrFuixYtmDFjhvUa9/PJJ3HrUzds2DBV9UVERCTvuHH3Bn1+6cPl0MsAPHfKE9e7cfdh7q1bY1+8WHaGJylQYpEKAeEB3Ay7md1hZKrr168DULx48TTVL1GixH3rxte5cuVKonNnzpyxzrGIn7y9ZcsWChUqxKxZs1IVi4iIiOQN/mH+9P21LxfvxO2sXcapBE//Horln/PefftkX3ByX0osUqGgU8HsDuG+ckOMFosl0bGzZ89a52zEK1y4MDt27KB8+fJZFZqIiIhks4DwAPr+2pfzIecBKO5anAVhTxN24z0AXJs2xfGhh7IxQrkfJRapkJ4hRrlF4cKFOXnyJFeuXLnv0Kb4+kCqJmTH1ylWLPGjy9atW7NhwwYA/P39WbFiBe+88w4dO3bk999/x9XVNS0vQ0RERHKhwIhAXvn1Fc4FnwOgqEtRPmmxhPBne1vrFHz9tewKT1JJk7cFgAYNGgCwadOmVNUvVaoURYsW5cqVK5w6dSrFuvF9PnSfbxl8fHwYOnQoo0aN4sSJE4wZMyZVsYiIiEjuFRIVQv+N/TkTdAaAwi6F+bT1p7hsPUj05bh5Fi4NGuD08MPZGaakghILAaBnz57Y2tqyZMkS/P39U6wbGRkJQO/ecd8iTJ06Ndm6N2/etE7Gfvnll1MVy6hRoyhatCgffvgh58+fT1UbERERyX3CY8IZsGkAJwNPAuDr7MvSVksp5lyEW4s/stbT04rcQYmFAHEb1Q0fPpyAgADatm2Ln59fojoRERHMmTPHOtl62LBhlCtXjpUrVzJp0iRiY2MT1L9+/TqdOnXi1q1bdOzYkUcffTRVsTg5OfHOO+8QHR3N5MmT0/3aREREJOeJjo3m7a1vc/jmYQC8HL34uNXHlHAvwZ1ffiHqny8XnR9/HOfHHsvGSCW1sjWx2L59Ox06dKBo0aKYTCbWrFmT4LxhGIwbN44iRYrg5OREy5YtOX36dPYEmw9MmTKFt99+m4MHD1KpUiXatGnD0KFDGTlyJN26daN48eIMGTLEOu/B3d2dDRs2UKFCBcaPH0+lSpV44403GDVqFN26daNChQrs3buXRx55hJUrV6Ypln79+lG0aFE+++wzzp49mxkvV0RERLJJrCWWkTtHsutK3FL0rmZXFrdcTFmPshixsfgv/MBaV08rco9sTSzu3r3LI488wgcffJDk+ZkzZzJ//nwWL17Mvn37cHFxoXXr1kRERGRxpPmDjY0Nc+bMYf/+/XTv3p2zZ8/y4YcfMnfuXPbt20fr1q3ZuHEjo0ePtrYpX748R48eZe7cuRQuXJgvvviCadOmsXr1akJDQxk9ejS///477u7uaYrF0dGRkSNHEhMTk2jVKBEREcm9DMNg8t7J/HL+FwAcbB1Y2GIhVbyrABC8dh1R5+ImcTs99hjOdetmW6ySNibDMIzsDgLAZDLxv//9j86dOwNxH7qiRYsyZMgQhg4dCkBwcDCFChVi+fLldOvWLVX9hoSE4OHhQXBwcIo3txEREfj5+VGmTBkcHR3T/Xryu9mzZzNs2DC6dOnCl19+iY2NRt2JSO6l/yNEMs6cg3NY9tcyAOxMdrzf/H0aF28MgCUqinNt2hJ99SoApVatxLlWrWyLVVJ/Lw05eI6Fn58f169fp2XLltZjHh4e1KlThz179iTbLjIykpCQkAQ/kvWGDh1Knz59+Prrr+nfv392hyMiIiI5wNK/llqTChMmpjWaZk0qAIK+/saaVLg0bqSkIpfJsftYxO/sXKhQoQTHCxUqZD2XlGnTpmnoTA6xaNEiKlSoQHh4OCdPnqRy5crZHZKIiIhkk/Vn1zP34FxreWy9sbQp08ZatoSFEbB4sbXsM3BglsYn6ZdjE4sHNXLkSAYPHmwth4SEUKJEiWyMKP8ym82888472R2GiIiIZLPdV3czbtc4a/mtmm/xXMXnEtQJXLmK2IAAANzatMGpatUsjVHSL8cOhYrf2fnGjRsJjt+4ccN6LikODg64u7sn+BERERGR7HHi1gne3vI2MUYMAF0rdaVv9b4J6sQEBnLr44/jCjY2+Lz1ZlaHKRkgxyYWZcqUoXDhwgl2gg4JCWHfvn3Uq1cvGyMTERERkdS4EnqF1ze9TlhMGADNSzRnZO2RmEymBPX8FyzAEhoKgMfTT+FQtmyWxyrpl61DoUJDQzlz5oy17Ofnx5EjR/Dy8qJkyZIMGjSIKVOmUKFCBcqUKcPYsWMpWrSodeUoEREREcmZgiKCeHXjqwSExw1vquFTgxmNZ2BrY5ugXuTp0wSt/hoAk7MzPm+9leWxSsbI1sTiwIEDNGvWzFqOnxvRo0cPli9fzvDhw7l79y79+vUjKCiIhg0bsmHDBi31JyIiIpKDRcRE8ObmNzkfch6A0u6lWdB8AY52ie/hbsycBRYLAAX7vYLZ1zcrQ5UMlK2JRdOmTUlpGw2TycSkSZOYNGlSFkYlIiIiIg8q1hLLiB0jOOJ/BICCTgVZ/MRiCjgWSFQ3dMcO7u7YAYBdkSJ49eyZdYFKhsuxcyxEREREJPeZfWA2my7GzZF1tnPmwxYfUsy1WKJ6RlQUN6ZNt5Z9Bw/GRqNScjUlFiIiIiKSIb4+9TWrTqwC4nbVntt0LlW8qyRZ99ay5USdOweA0yOP4N7+ySyLUzKHEgsRERERSbfdV3bz7r53reUxdcdQv1j9JOtGXb5MwKJFcQUbGwqPH5dopSjJfZRYiIiIiEi6nA06y5BtQ4g1YgHoWbUnz1R8Jsm6hmFwY8pUjIgIADxfehHHhx7Kslgl8yixkDyhc+fOVKlShdjY2FTVnzBhAiaTia1bt6brutHR0UyYMIEKFSrg4OCAyWRizZo16eoztUwmE02bNk11/ejoaMqWLUuXLl0yLygREcl3AiMCeWPTG4RGx+1D0axEMwY9OijZ+qGbNhH6z/+/dr6+Wl42D1FiIYkcPHiQPn36UKFCBVxcXHBycqJcuXJ0796djRs3JtkmJiaGZcuW0a5dOwoXLoy9vT0eHh48/vjjjBkzhgsXLiSoX7p0aUwmk/XH1taWggUL0qpVK9auXZumeLdt28batWsZP348tra292+Qgd577z0mTpxI0aJFGTp0KOPHj6dy5cpZGsO9evbsiclk4vz584nOmc1mRo8ezTfffMPevXuzPjgREclzImMjGbh5IFdCrwBQxasK0xtNT7RXRbzY0Ltcn/rvcKlCI0dg6+qaJbFK5svW5WYlZ7FYLAwdOpS5c+diZ2dH8+bN6dixI2azmXPnzvHjjz+yatUqJk2axNixY63tLly4QKdOnTh69CiFChXiiSeeoESJEty9e5dDhw4xffp0Zs+ezV9//UX58uWt7WxtbRkzZgwAUVFRnDx5knXr1rFx40Zmz57NkCFDUhX32LFjKVWqVLZ8E//DDz/g6urKxo0bsbe3z/Lrp1WPHj0YNWoUY8eOTTZJFBERSQ3DMBi3a5x1WVlfJ1/mN5+Ps9k52TY3Z88i5to1AFwaNMCtTZusCFWyiBILsRozZgxz586lRo0afPvtt5QrVy7B+fDwcBYuXMitW7esx+7cuUPr1q05deoUw4YNY/LkyTg4OCRod+bMGQYPHkxoaGiC43Z2dkyYMCHBsV9//ZU2bdowbtw4XnvtNZydk//HCeDYsWPs2LGD0aNHY2OT9Q/grl69ire3d65IKiDuPe/WrRsLFizgzJkzCRI9ERGRtFj8x2J+8vsJACc7J+a3mE9hl8LJ1r+7Zw9BX60G4nbYLjxhvCZs5zEaCiVA3M3/zJkz8fb2ZsOGDYmSCgAnJyeGDRvGxIkTrcdmz57NqVOneOmll5g5c2aipAKgfPnyrFu3jodSMTGrVatWVKpUibCwMI4dO3bf+suWLQPgueeeS/L8pUuXeP755/Hy8sLV1ZUmTZqwffv2FPvcvn07HTp0oGDBgjg4OFChQgXGjBlDWFiYtU78HA0/Pz8uXLhgHdJVunRpIO4JzIIFC2jdujUlSpTAwcEBX19fnn76aQ4fPpzominN+Vi+fDkmk4nly5enGHfp0qVZsWIFAGXKlLHG9N95GF26dMEwDGtdERGRtPr1/K98eORDAEyYmNZwGlW9qyZbPzb0LtdGj7GWfYcMxr5EiUyPU7KWnlgIEHfzGhsbS//+/SlUqFCKde9NHpYuXQrAuHHj7nuNtH6rn5pvMTZt2oSLiwvVqlVLdO7atWvUq1ePK1eu0Lp1ax599FFOnDjBE088QbNmzZLsb9GiRbzxxhsUKFCADh064Ovry4EDB5g6dSpbtmxhy5Yt2NvbW2/W582bB8CgQYMAKFCgAACBgYEMGjSIRo0a0a5dOzw9PTl37hzr1q3j559/Zvv27Tz++ONpej/uZ9CgQSxfvpyjR48ycOBAayzxyU68xx57DLPZzKZNm5g8eXKGxiAiInnfycCTjNn1b5Iw6LFBtCjVIsU2N2fNIvrqVQCca9fG8/nnMzVGyR5KLASAXbt2AdC8efNUt7lw4QKXL1+mePHiVKhQIUPi2LRpE6dOncLFxYWqVZP/5gMgNDSUP/74g3r16iU5aXvkyJFcuXKFKVOmMHr0aOvxJUuW0L9//0T1jx8/zltvvcXDDz/Mpk2b8Pb2tp6bPn06I0eOZMGCBQwZMoSmTZvStGlT61OE/w7p8vT05OLFixQrlnCn0WPHjlG3bl1GjRqV4XMcBg0axJEjRzh69CiDBg1KlFDEc3R0pFq1ahw4cIDIyMgknzKJiIgkJTAikIGbBxIeEw5Ah7Id6FW1V4ptQnftImj1v0Ogirw7FVM2DF+WzKfEIhX8nnmWmICA7A4jRXYFC1Lmu28fuP3169cBKF68eKa2uVdMTIz1hjw6OppTp06xdu1aDMNg8uTJODk5pdj+6tWrWCyWJJ+wREVFsXr1anx9fRNNAu/bty+zZ8/m9OnTCY5/9NFHxMTEsGDBggRJBcDw4cOZM2cOX375ZaomlTs4OCRKKgCqVq1Ks2bN+OWXX4iOjsZsNt+3r8xQqFAhDh8+zM2bNymhR9EiIpIK0ZZohmwdwtW7cU8eqnlXY3z9lOdJxAQGcm3ESGvZd+gQ7B/wvkFyPiUWqRATEEDMjRvZHUaeExsba52vYWNjg6enJ82bN+eNN96gY8eO920fP4k8fsjPvU6dOkVERATNmzfH0dExwTkbGxsaNGiQKLGIX4L1l19+YdOmTYn6NJvNnDx5MlWvDeDIkSPMnDmTnTt3cv36daKjoxOcDwgIoEiRIqnuLyN5eXlZY1BiISIiqTHj9xkcuHEAAB8nH+Y1m4eDbfJPvQ3D4NrIUcT4+wPgUr8+nt26ZUmskj2UWKSCXcGC2R3CfaU3xsKFC3Py5EmuXLlCpUqVUt0G4MqVKw90TQcHByL+2XXzQcQ/0Uiqj+DgYAB8fX2TbJvUU47AwEAApk6d+sAxxdu9e7d1WFmrVq2oUKECrq6u1g30jh49SmRkZLqv86DCw+MeYd9v1S0RERGAb/7+htWn4oYzmW3MzG02l0IuKc/JvL3qc0K3bQPA1suLojOmawhUHqfEIhXSM8Qot2jQoAFbt25l06ZNqZ5nUapUKYoVK8alS5c4ffp0hs2zSC0fHx/g34TgXh4eHgDcvHkzybY3kngC5e7uDkBISAhubm7pim3q1KlERkayY8cOGjZsmODc3r17OXr0aIJj8UvlxsTEJOorPknKSPHvWfx7KCIikpyDNw7y7t5/N7UbV28cj/g8kmKbiJMnuTlzprVcdPo07PR/Tp6ntFGAuB2bbW1tWbJkCf7/PLJMzr3ftPfp0weAKVOm3PcaUVFR6QvyP4oWLYq3tzenTp1KdK5ixYo4Ojpy4MCBRE80LBYLu3fvTtSmTp06ABmyK/XZs2fx8vJKlFSEhYVx6NChRPU9PT2BpJ/+JLU8bXLiJ7HHxsamWO/UqVMUK1bMOiRKREQkKddCrzF462BijLgvvl6q8hKdy3dOsU1s6F2uvD0Y458hwF49euDauHFmhyo5gBILAeL2mhg+fDgBAQG0bdsWPz+/RHUiIiKYM2dOghWQhg4dSqVKlfjss88YNWpUksN7/Pz86Ny5M8ePH8/QmE0mE40aNcLPzy9RMuTg4ECXLl24efMm7733XoJzn3zyCX///Xei/l5//XXs7Ox48803uXjxYqLzQUFBqb7JL1WqFLdv306wF0dsbCxDhw5NMnGLX3r2s88+w2KxWI/v2bOHzz//PFXXhH/nTly6dCnZOhcvXuT69es01j/yIiKSgsjYSAZtHURgRNxT7rpF6jKkVsoLmBiGwbVRo4j65z7C4aEq+AwZnOmxSs6goVBiNWXKFCIiIpg7dy6VKlWiefPmVKtWDbPZjJ+fH7/99hu3bt1K8HTCzc2NX375hU6dOjFt2jSWLVtGq1atKF68OGFhYRw+fJhdu3ZhZ2fH7NmzMzzmp556ijVr1rBx40ZeeOGFBOemT5/Opk2bGDNmDDt37qRmzZqcOHGCn376iVatWvHrr78mqF+tWjU+/PBDXnvtNSpVqkS7du0oV64cd+7c4dy5c2zbto2ePXuyePHi+8b15ptv8uuvv9KwYUO6dOmCo6MjW7du5cqVKzRt2jTRRnh169alQYMGbN68mXr16tG4cWMuXLjA2rVr6dChA//73/9S9X40b96c2bNn069fP5555hlcXFwoVaoU3bt3t9aJX+a2c+fOqepTRETyH8MwmLp3KsdvxX0pWNy1OLObzMbOJuVbx8Bly7nzz/+vNm5uFJ87F5s07mMluZiRxwUHBxuAERwcnGK98PBw4/jx40Z4eHgWRZZz7d+/3+jdu7dRvnx5w8nJyXBwcDBKly5tvPDCC8bGjRuTbBMVFWUsXbrUaNOmjVGoUCHDbDYbbm5uxqOPPmqMGjXKuHjxYoL6pUqVMhwcHNIda3h4uOHl5WW0bds2yfMXLlwwunbtahQoUMBwdnY2GjVqZGzbts0YP368ARhbtmxJ1Ob33383unXrZhQtWtQwm81GwYIFjUcffdQYMWKEceLEiUSvo1SpUkle+9tvvzUeffRRw9nZ2ShYsKDRpUsX4+zZs0aPHj0MwPDz80tQPyAgwHj55ZcNLy8vw8nJyahbt67xyy+/GMuWLTMAY9myZQnqA0aTJk0SXXfmzJlGhQoVDLPZnGSdpk2bGr6+vkZUVFSScYtIYvo/QvKbb059Y1RbXs2otryaUWtlLePkrZP3bRO6d59x/KGqxvFKlY3jlSobIZs2Z0GkktlSey9tGIZhMgzDyMa8JtOFhITg4eFBcHCwdXJuUiIiIvDz86NMmTKJlieVnG3s2LFMnz6dM2fOUKpUqewOJ0c7ffo0lSpVYsKECanaLV1E4uj/CMlP/vT/kx4behBtiZsjMa3RNNqXbZ9im+gbN/B7+hli/1kK3vu1V/EdODDTY5XMl9p7adAcC8kDhg8fjpeXV4YsE5vXTZo0iSJFiqRqkz8REcl/AiMCGbxtsDWpeKHyC/dNKixRUVwZOMiaVLg0aIDPgAGZHqvkPEosJNdzc3Nj5cqVlC5d+r6rIeVn0dHR1on2Li4u2R2OiIjkMDGWGIZvG871u9cBqOlbk6G1hqbYxjAMro8dS/iRIwDYFS1C0dmzMP2zSqHkL5q8LXlCq1ataNWqVXaHkaOZzWbGjBmT3WGIiEgONf/wfPZd3wdAQaeCvNfkPcy25hTb3FryMcFr1wFgcnSk+PwF2P2zhLrkP3piISIiIpLPbbywkWV/LQPAzmTHe03ew8c55Q3tQn75Ff+5c63lotOn41StaqbGKTmbEgsRERGRfOxc0DnG7Pz3ifbQx4fyaKFHU2wT/tcxrr7zjrXsM2gQ7m1aZ1qMkjsosRARERHJp+5G32XQ1kGExYQB0K5MO16o/EKKbaJv3ODy669jREQA4NGpI979+2V6rJLzKbEQERERyYcMw2DC7gn4Bcftkl3BswLj643HZDIl28YSHs7l198g5uZNAJxq1qTw5MkptpH8Q4nFf+TxbT1EROQB6P8GyYtWn1rNhvMbAHAzuzGv6Tyczc7J1jcsFq6+M4KIY8cAMBcrRvGFC7SztlgpsfiH7T/LokVHR2dzJCIiktPE/99gqyU0JY84dusYM/fPtJYnN5hMSfeSKbbxf38+d379FQAbFxdKLF6Enbd3psYpuYsSi3+YzWYcHBwIDg7WN1MiImJlGAbBwcE4ODhgNqe89KZIbhASFcKQrUOsm+C9VOUlWpRqkWKb4LVrufXRR3EFGxuKzZ2DQ4UKmR2q5DLax+IeBQsW5MqVK1y+fBkPDw/MZrPGDIqI5FOGYRAdHU1wcDChoaEUK1Ysu0MSSTfDMBi3axxXQq8A8HDBhxn82OAU24QdOsS1MWOt5UIjRuDauHGmxim5kxKLe7i7uwMQEBDAlStXsjkaERHJCRwcHChWrJj1/wiR3GzViVVsurgJAHd7d2Y1mZXiJnhRl69wecCbGP8MByzQrSue3V/Kklgl91Fi8R/u7u64u7sTHR1NbGxsdocjIiLZyNbWVsOfJM846n+UOQfmWMvvNnyXoq5Fk60fGxrK5ddeIzYwEADnenUpPHq0RnNIspRYJMNsNus/ExEREckTgiKCGLZtGDFGDAC9qvWiSYkmydY3YmO5OmQokadPA2BfujTF583DpHsjSYEmb4uIiIjkYRbDwuhdo7l29xoAj/o+yps130yxzc1Zswndtg0AGw8PSixehK2HR6bHKrmbEgsRERGRPGz5seVsv7wdAE8HT2Y2nonZJvknD7e/+YbA5cvjCnZ2FH//fexLl878QCXXU2IhIiIikkcdunGI+YfmA2DCxPRG0ynkUijZ+nf3/c71iZOs5cJjxuBSt06mxyl5gxILERERkTwoMCKQYduGEWvELUbzysOvUL9Y/WTrR124wJW33oKYuHkYni93x7Nb1yyJVfIGJRYiIiIieYxhGIzdNZab4TcBqF24Nq8/8nqy9WPv3OHSa68TGxwMgEujRhQaPjxLYpW8Q4mFiIiISB6z6sQq67wKL0cvpjeajq2NbZJ1DYuFq++MIOrcOQDsy5Wj2Jz3MNlp8VBJGyUWIiIiInnIsVvHmHPw3/0qpjacio+zT7L1AxYvJnTzZuCfFaAWfYitm1umxyl5jxILERERkTzibvRdhm8bTowlbp5Ez6o9aVisYbL1Q7dtI2DBwriCyUSx2bOxL1kyK0KVPEiJhYiIiEgeMXXvVC7euQhANe9qvFXzrWTrRl24wJVhw8EwAPAZOBDXRsknISL3o8RCREREJA9Yf3Y968+tB8DF7BK3X4Vt0vtVWMLCuPzmW1hCQgBwe6Il3v37ZVmskjcpsRARERHJ5c4Hn2fy3snW8ri64yjhXiLJuoZhcG3sOCL//hsA+7JlKTJtGiaTKUtilbxLiYWIiIhILhYVG8Xw7cMJjwkHoHP5zrQr2y7Z+kFffUXIjz8CYOPiQvGFC7B1dc2SWCVvU2IhIiIikovNPTiXE4EnACjtXpqRtUcmWzfi5EluTJtuLReZ9i4OZctmeoySPyixEBEREcmltl/ezqoTqwCwt7FndpPZOJudk6xruXuXK4PexoiKAsCze3fcW7XKslgl71NiISIiIpIL3bh7gzE7x1jLQ2oNoZJXpSTrGobBtYkTiTp/HgDHhx7Cd9jQrAhT8hElFiIiIiK5TKwlllE7R3E78jYAzUo04/nKzydbP/h/awhZF7dilI2LC8XmzsHG3j5LYpX8Q4mFiIiISC6z4vgKfr/+OwCFnAsxucHkZFd1ijx7luuT/10xqvCkidiXKpUlcUr+osRCREREJBc5dusYCw4vAMCEiWmNpuHh4JFkXSMqiqvDhmOEx60YVaBLFzyefDLLYpX8RYmFiIiISC4RFh3GiO0jiLHEANCneh8eL/x4svX9P/yQiOPHAbAvV45Co5JfMUokvZRYiIiIiOQSsw/M5nzIeQCqelfl9UdeT7Zu2OHD3FrycVzBzo6iM2dg4+iYBVFKfqXEQkRERCQX2HRxE9/8/Q0ATnZOTG80HbOtOcm6lrt3ufrOCLBYAPAZ8AZOVatmWaySPymxEBEREcnhbobdZMLuCdbyiNojKO1ROtn6N2bOIvriRQCcatTAu2/fTI5QRImFiIiISI5mMSyM2TmGoMggAFqWbMlT5Z9Ktv6drVsJWr0aAJOzM0VnTMdkZ5cVoUo+p8RCREREJAdbdXwVe67tAcDXyZfx9cYnu7RsbFAQ18aOtZYLvfOOlpaVLKPEQkRERCSHOhV4inmH5lnLUxtNpYBjgWTr35g+g1j/AABcmjSmQJfnMjlCkX8psRARERHJgSJiInhn+ztEW6IB6Fm1J3WL1E22fuiOHQSvWQOAjZsbRSYlv2meSGZQYiEiIiKSA805OIezwWcBqOxVmTdrvpls3djQu1wbP95a9h0+DHMh30yPUeReSixEREREcpjtl7fz5ckvAXCwdWBGoxnY29onW99/zhxirl4DwLleXQo8+2yWxClyLyUWIiIiIjlIQHgAY3f9OwF7WK1hlC1QNtn6YQcOcPuLLwAwOTlRZNIkDYGSbKHEQkRERCSHMAyDcbvGERgRCECT4k3oUqlLsvUtERFcGz3GWvYdNBD7EiUyPU6RpCixEBEREckhvvn7G3Zc2QGAt6M3E+tPTPHpQ8CixURduADEbYTn+dJLWRKnSFKUWIiIiIjkABdCLjD7wGxreVKDSXg7eSdbP/LsWW4tXRpXMJspMmUyJlvbzA5TJFlKLERERESyWYwlhlE7RxEeEw5Al4pdaFy8cbL1DcPg+sRJEB23FK13n944lC+fJbGKJEeJhYiIiEg2+/TPT/nD/w8ASrqVZEitISnWD1m/nrDffwfAXLw4BV99NdNjFLmfHJ1YxMbGMnbsWMqUKYOTkxPlypVj8uTJGIaR3aGJiIiIZIhjt46x+OhiAGxMNrzb6F2czc7J1o8NDubGjJnWcuGxY7BxdMz0OEXuxy67A0jJjBkzWLRoEStWrKBq1aocOHCAXr164eHhwVtvvZXd4YmIiIikS0RMBCN3jCTGiAGgb/W+POLzSIptbs6dS+ytWwC4PfEErk2aZHqcIqmRoxOL3bt306lTJ5588kkASpcuzZdffsnv/zz6ExEREcnN3j/0Pn7BfgBU8arCq4+kPKQp/I8/CFr9NQAmZ2cKjRqZ6TGKpFaOHgpVv359Nm3axN9//w3A0aNH2blzJ23bts3myERERETSZ8/VPaw6sQqI2117WqNpmG3MydY3YmK4NmEC/DMk3OfNNzEXKZIVoYqkSo5+YjFixAhCQkKoXLkytra2xMbGMnXqVF588cVk20RGRhIZGWkth4SEZEWoIiIiIqkWHBmcYHftQY8OolyBcim2uf3VaiKPnwDAoVIlvLprzwrJWXL0E4uvv/6azz//nC+++IJDhw6xYsUKZs+ezYoVK5JtM23aNDw8PKw/JbT7pIiIiOQw7+57lxthNwCoU6QOL1R5IcX6Mbdv4z9/vrVcePx4THY5+vthyYdMRg5eYqlEiRKMGDGCN954w3psypQprFq1ipMnTybZJqknFiVKlCA4OBh3d/dMj1lEREQkJRv8NjBs+zAA3MxufN/pewq7FE6xzbUJEwj6ajUAHp06UXTG9EyPUwTi7qU9PDxSdS+do1PdsLAwbGwSPlSxtbXFYrEk28bBwQEHB4fMDk1EREQkzW7cvcHkvZOt5dF1R983qYg4ccI6YdvG2RmfIYMzNUaRB5WjE4sOHTowdepUSpYsSdWqVTl8+DBz5syhd+/e2R2aiIiISJoYhsG43eMIiYqb/9m6dGvalWl33zbXp061Ttgu+PprmH19Mz1WkQeRoxOLBQsWMHbsWF5//XVu3rxJ0aJF6d+/P+PGjcvu0ERERETS5KtTX7H76m4AfJx8GFt3LCaTKcU2IT/9RPiBgwCYS5XE8+WXMz1OkQeVo+dYZIS0jAsTERERyQx+wX50Wd+FiNgIABa3XEyDYg1SbGMJC+NsuyeJuX4dgOKLF+HWtGlmhyqSQFrupXP0qlAiIiIiuV20JZpRO0ZZk4pulbrdN6kACPj4Y2tS4dKksZIKyfGUWIiIiIhkok/++IS/bv0FQGn30gyudf/J11GXLhH46dK4gtlMoREjMjNEkQyhxEJEREQkkxy7dYyP/vgIAFuTLe82fBcnO6f7trs5cyZGVBQAXi93x6FMmUyNUyQjKLEQERERyQRRsVGM2TmGWCMWgFcefoXqPtXv2+7u3n3c2fgbALYFC1LwtdcyNU6RjKLEQkRERCQTfHjkQ84EnQGgsldl+lXvd982hsXCzZkzrWXft9/G1tU102IUyUhKLEREREQy2FH/oyw7tgwAOxs7pjacitnWfN92IevXE3H8OAAOlSvj0blTpsYpkpGUWIiIiIhkoIiYCMbsHIPFsADw+iOvU9Gz4n3bWcLDuTl3nrVc6J3hmGxtMytMkQynxEJEREQkAy04vIDzIecBqOZdjV7VeqWqXeCKzxIsL+tSr15mhSiSKZRYiIiIiGSQgzcOsvL4SgDsbeyZ2nAqdjZ2920XExDArSVL4go2NhQaNiwzwxTJFEosRERERDJAWHQYY3eNxcAA4M2ab1K2QNlUtfVfuBBLWBgABZ57Dofy5TMtTpHMosRCREREJAPMOzSPS3cuAVDDpwbdH+qeqnaRZ84Q9PU3ANg4O+Pz5oBMi1EkMymxEBEREUmnfdf28eXJLwFwtHVkSsMp2NqkbuL1zVmzwRI30du73yvYFSyYaXGKZCYlFiIiIiLpEBoVyrhd46zlQY8NopR7qVS1vbtnD6HbtgFgV7gwXj16ZEqMIllBiYWIiIhIOrx38D2u3r0KQK1CtXi+8vOpamfExnJjxr+b4fkMGoiNk1OmxCiSFZRYiIiIiDygXVd28e3f3wLgZOfEpAaTsDGl7vYqeN16Ik+eBMDhoSp4dOyYaXGKZAUlFiIiIiIPICQqhHG7/x0CNbTWUEq4lUhVW0t4OP7z5lnLhYa/g8lGt2WSu+kTLCIiIvIAZv4+k5thNwGoW6Quz1V8LtVtA5cvJ+bGDQBcmzXDpW6dTIlRJCspsRARERFJo22XtrH27FoAXM2uTKo/CZPJlKq2Mf7+BHz8SVzB1hbfYUMzK0yRLKXEQkRERCQNgiKCmLBngrU8/PHhFHEtkur2/gsWYvyzGZ5n1y44lE3dJnoiOZ0SCxEREZE0mPb7NALCAwBoVKwRnct3TnXbiL//JujbuMneNi4uFHzjjcwIUSRbKLEQERERSaXfLvzGT34/AeBm78aE+hNSPQQK4ObsezbD698fO2/vTIlTJDsosRARERFJhcCIQCbvnWwtj6w9El9n31S3D921i7vbdwBgV7QIXi93z/AYRbKTEgsRERGR+zAMgyl7pxAYEQhA8xLNaV+2ferbx8Zyc+Ysa9n37bexcXTM8DhFspMSCxEREZH72HB+AxsvbASggEMBxtYbm6YhUMFr1hB56hQAjtWq4f7kk5kSp0h2UmIhIiIikoKA8ACm7ptqLY+uO5qCTgVT3d4SFob/vPetZd/hw7QZnuRJ+lSLiIiIJMMwDCbunkhwZDAArUu3pk3pNmnq49bSZcT4+wPg2qIFLrVrZ3icIjmBEgsRERGRZKw/t56tl7cC4OXoxeg6o9PUPvrmTW59+mlcwc4O36FDMjhCkZxDiYWIiIhIEq7fvc70fdOt5XH1xuHp6JmmPvznz8cIDwfAs2tXHMqUydAYRXISJRYiIiIi/2EYBhP2TOBO9B0A2pdtT4uSLdLUR8SpUwR/9z0ANq6uFBygzfAkb1NiISIiIvIf35/+nl1XdgHg4+TDiNoj0tzHzZmzwDAAKPhqf+w80/a0QyS3UWIhIiIico+roVeZdeDfPScm1J+Ah4NHmvoI3bGTu7viEhNz0aJ4dtdmeJL3KbEQERER+YfFsDBu1zjuRt8F4KnyT9G4eOM09RG3Gd5Ma9ln8GBsHBwyNE6RnEiJhYiIiMg/vj71Nfuu7wOgsEthhj0+LM19BH33HZGnTwPg+PDDuD/ZLkNjFMmplFiIiIiIAJdCLjHn4BxreWL9ibjZu6Wpj9jQu/jPX2AtFxrxTpp26BbJzZRYiIiISL5nMSyM2TWG8Ji4pWG7VOxC/aL109zPrU8/ITYgAAC3Vq1wfvTRDI1TJCdTYiEiIiL53ucnPufQzUMAFHMtxpBaad/ILvr6dQKXLY8rmM34DhmcgRGK5HxKLERERCRf8wv24/1D71vLkxtMxtnsnOZ+/Oe9jxERAYDXC89jX6pUhsUokhsosRAREZF8K9YSy5hdY4iMjQTgxSov8njhx9PcT8Tx4wSvXQuAjYcHBV97LUPjFMkNlFiIiIhIvrXi+Ar+8P8DgJJuJRn46MA092EYBjdmzPx3M7zXXsW2QIGMDFMkV1BiISIiIvnSmdtnWHh4IQAmTExpOAUnO6c09xO6ZSth++KWqDWXLInXCy9kaJwiuYUSCxEREcl3oi3RjN41mmhLNAA9qvagpm/NNPdjREdzc9a/u3T7DhmCyd4+w+IUyU2UWIiIiEi+s/TPpRy/dRyAMh5lGFBzwAP1c/ubb4jy8wPA6dFHcWv1RIbFKJLbKLEQERGRfOVU4CkW/7EYABuTDVMbTMXB1iHN/cTeuUPAgoXWcqF3hmszPMnXlFiIiIhIvhEdG82onaOIscQA0KdaH6r7VH+gvm4tWULs7dsAuLdrh9Mjj2RYnCK5kRILERERyTc++uMj/r79NwAVPCvw6iOvPlA/0VeuELjiMwBM9vb4DNZmeCJKLERERCRfOBZwjE/+/AQAO5MdUxtMxd72wSZa33zvPYyoKAC8Xu6OffFiGRanSG6lxEJERETyvMjYSEbvHE2sEQtAv4f7UcW7ygP1FXbgACE//QyArZcX3v37Z1icIrmZEgsRERHJ8z488iFng88CUMWrCn0f7vtA/RixsVx/911r2WfQQGzd3DIkRpHcTomFiIiI5GlH/Y+y/NhyAOxs7JjacCpmG/MD9RX8v/8RefwEAA6VK1PgmWcyKkyRXE+JhYiIiORZ4THhjNk5BothAeCNGm9QwbPCA/UVGxrKzbnzrOVCo0ZisrXNiDBF8gQlFiIiIpJnLTi8gPMh5wGoXrA6Pav2fOC+AhYtIvbWLQDcWrfGpXbtDIhQJO9QYiEiIiJ50sEbB1l1fBUA9jb2TGk4BTsbuwfqK+r8eQI/WwnELS/rO2xYhsUpklcosRAREZE8Jyw6jDE7x2BgAPDWo29R1qPsA/d3Y+YsiI4GwKtPby0vK5IEJRYiIiKS58w9OJfLoZcBqOlbk5eqvPTAfYXu3EXo5s0A2Pn6UrDvg60oJZLXKbEQERGRPGXvtb18deorABxtHZnSYAq2Ng82ydqIieHG9GnWsu/QIdi4uGRInCJ5jRILERERyTNCo0IZt2uctTzosUGUdC/5wP3d/vIros7E7X/h9MgjuLdvn+4YRfKqB5rBFBQUxO+//87NmzexWCwJzr388ssZEpiIiIhIWs0+MJtrd68BULtwbZ6v/PwD9xXj74//++9by4VGjcRko+9kRZKT5sRi/fr1vPjii4SGhuLu7o7JZLKeM5lMSixEREQkW+y8spPvTn8HgLOdM5MaTMLG9OCJwM3Zs7GEhgLg8czTOD3ySIbEKZJXpfm3bciQIfTu3ZvQ0FCCgoK4ffu29ScwMDAzYhQRERFJUUhUCON3j7eWhz4+lGKuD75yU9j+/QSvXQeAjYcHvkOGpDtGkbwuzYnFlStXeOutt3B2ds6MeERERETSbMbvM7gZdhOA+kXr82yFZx+4LyM6muuTJlvLvm+/jZ2XV7pjFMnr0pxYtG7dmgMHDmRGLCIiIiJptuXiFtadjXu64Gp2ZWL9iQmGaqdV4KrPiTx9GgDHatUo8NyDJyki+Umq5lisW7fO+ucnn3ySYcOGcfz4capXr47ZbE5Qt2PHjhkboYiIiEgygiKCmLhnorX8Tu13KOxS+IH7i75xg4AFC+IKJhOFx4/DZPtgS9WK5DepSiw6d+6c6NikSZMSHTOZTMTGxqY7KBEREZHUmLpvKrcibgHQpHgTOpXrlK7+bs6YiSUsDIACXbrgVL16umMUyS9SlVj8d0lZERERkez2y/lf2HB+AwDu9u6Mrzc+XUOg7u7ZQ8hPPwFg6+mJ79uDMiJMkXwjzXMsPvvsMyIjIxMdj4qK4rPPPsuQoERERERSEhAewJS9U6zl0XVG4+Ps88D9WaKiuD753/58hw7BtkCB9IQoku+kObHo1asXwcHBiY7fuXOHXr16ZUhQIiIiIskxDIPJeyYTFBkEwBOlnqBtmbbp6vPWko+JOncOAKcaNfB46qn0himS76Q5sTAMI8nHjJcvX8bDwyNDghIRERFJzg/nfmDzpc0AeDl6MabumHQNgYo8c4aAjz6KK9jZUXjCeO2wLfIAUr3zds2aNTGZTJhMJlq0aIGd3b9NY2Nj8fPzo02bNpkSpIiIiAjAjbs3mLZvmrU8ru44vBwffI8Jw2Lh2thxEB0NgHfv3jhWrpzuOEXyo1QnFvErQx05coTWrVvj6upqPWdvb0/p0qV55plnMjxAEREREYgbNTF+z3juRN8B4MmyT9KiVIt09Rm0ejXhhw8DYC5VkoKvv5buOEXyq1QnFuPHjwegdOnSdO3aFUdHx0wL6l5XrlzhnXfe4eeffyYsLIzy5cuzbNkyatWqlSXXFxERkZzh+9Pfs+vKLgB8nHwYWXtkuvqLvnGDm7Pfs5aLTJyETRbd34jkRalOLOL16NEjM+JI0u3bt2nQoAHNmjXj559/xsfHh9OnT+Pp6ZllMYiIiEj2uxp6lVkHZlnLE+pPwMPhwed2GobB9UmTsdy9C4DHs8/gUrdOuuMUyc9SlVh4enqmelJUYGBgugK614wZMyhRogTLli2zHitTpkyG9S8iIiI5n8WwMG7XOO5GxyUBT5V/isbFG6erzzu//Eropk0A2BYsSKFhw9Idp0h+l6rEYt68edY/37p1iylTptC6dWvq1asHwJ49e/jll18YO3Zshga3bt06WrduzXPPPce2bdsoVqwYr7/+Oq+88kqGXkdERERyrtWnVrPv+j4ACrsUZtjj6UsCYm7d4vrEidZy4dGjsNXKliLpZjIMw0hLg2eeeYZmzZoxYMCABMcXLlzIb7/9xpo1azIsuPh5HIMHD+a5555j//79DBw4kMWLFyc7JCsyMjLBBn4hISGUKFGC4OBg3N3dMyw2ERERyXwXQy7y7PpnCY8JB2DJE0uoV7TeA/dnGAaX33yT0N/inla4PfEExea/n67lakXyspCQEDw8PFJ1L53mxMLV1ZUjR45Qvnz5BMfPnDlDjRo1CA0NTXvEybC3t6dWrVrs3r3beuytt95i//797NmzJ8k2EyZMYOI930LEU2IhIiKSu8RaYun9S28O3TwEQNdKXRlTd0y6+gxet46rw98BwNbTk7I/rMfO2zvdsYrkVWlJLNK8+4u3tzdr165NdHzt2rV4Z/AvZpEiRXjooYcSHKtSpQoXL15Mts3IkSMJDg62/ly6dClDYxIREZGsserEKmtSUdy1OIMfG5yu/qJv3OD6lKnWcuGJE5RUiGSgNK8KNXHiRPr27cvWrVupUydu9YR9+/axYcMGPv744wwNrkGDBpw6dSrBsb///ptSpUol28bBwQEHB4cMjSO9/vT/E09HT4q7Fc/uUERERHKFc0HnmH9oPgAmTExpOAVns/MD92cYBtfGjMUSEgKAe/v2uLdqlSGxikicND+x6NmzJ7t27cLd3Z3vv/+e77//Hnd3d3bu3EnPnj0zNLi3336bvXv38u6773LmzBm++OILlixZwhtvvJGh18lM35/+nh4bevD21ret40NFREQkeTGWGEbvHE2UJQqAlx56iccKPZauPoNWf83dHTsAsPPxofCY0emOU0QSSvMci6z2ww8/MHLkSE6fPk2ZMmUYPHhwmlaFSsu4sIwWERPBs+uf5ULIBSBuh9BpDadpgpiIiEgKPv7jY+YfjntaUdq9NN90+AZHuwffuC7y9Gn8nn0O45/FXUp8tBjXJk0yJFaRvC7DJ2+HhIRYOwr55xFicnLaBOnsTCwAztw+wws/vWB9WvHO4+/w0kMvZXkcIiIiucGpwFN0+7EbMZYYbEw2rGy7kod9Hn7g/iwREZx/rguRp08DUOD5bhQZPz6jwhXJ8zJ88ranpyc3b94EoECBAnh6eib6iT8uCZX3LM+UBlOs5dkHZrP/+v5sjEhERCRnio6NZsyuMcRYYgDoXa13upIKgJszZ1qTCocKFSj0zjvpjlNEkpaqydubN28mODgYX19ftmzZktkx5TmtSrei963eLP1rKbFGLEO3DWV1+9UUdimc3aGJiIjkGEv+XMLJwJMAVPCswGuPvJau/u789hu3v/gSAJODA8XmvIeN44MPqRKRlKV6joWNjQ2lSpWiWbNm1p/ixXP+KkfZPRQqXqwlltd+e4091+L236hesDrL2izDwTZnrWAlIiKSHY7dOsaLP75IrBGLncmOL578gireVR64v6jLl/F75lkswcEAFJ4wAc9uXTMqXJF8I1P2sdi8eTM9evTg3Llz9OvXj1KlSlGhQgX69+/PV199xY0bN9IdeF5ma2PLzMYzKeZaDIA/A/7k3X3vksPnzouIiGS6yNhIxuwcQ6wRC0C/h/ulK6mwhIdz+c23rEmFW6tWFOjaJUNiFZHkPdCqUBEREezevZutW7eydetWfv/9d6Kjo6lcuTLHjh3LjDgfWE55YhHvxK0TdP+5O5GxcStTjK07li6V9I+diIjkX7P3z2bF8RUAVPGqwudPfo7ZxvxAfRmGwbURIwheuw4A+1KlKP3tN9i6uWVYvCL5SYavCpWcqKgodu3axc8//8xHH31EaGgosbGxD9pdpshpiQXA+rPrGbVzFAB2NnYsa72MGr41sjcoERGRbLD/+n76/NIHAwN7G3tWt19Nec/yD9xf4KrPuTElbtEUk7MzZVZ/hUOFChkVrki+kylDoSAukdi+fTsTJ06kWbNmFChQgFdffZXbt2+zcOFC/Pz80hV4ftGhXAdeqhK35GyMJYYhW4cQEB6QzVGJiIhkrdCoUMbuGotB3Hecbz36VrqSirD9+7kxfbq1XPTdqUoqRLJQqlaFAmjevDn79u2jTJkyNGnShP79+/PFF19QpEiRzIwvzxpcazAnA09y4MYBbobfZMjWIXzS6hPMtg/26FdERCS3mXVgFldCrwBQq1Atuj/U/YH7ivTz4/KANyEmbqla7759cG/TJkPiFJHUSfUTix07duDt7U3z5s1p0aIFTzzxhJKKdDDbmJnVZBa+zr4AHLp5iJn7Z2ZzVCIiIlljy8UtfH/6ewCc7ZyZ0nAKNqY0DaSwirl9m0uvvkrsP5O1XRo2xGfQoIwKVURSKdW/wUFBQSxZsgRnZ2dmzJhB0aJFqV69OgMGDODbb7/F398/M+PMkwo6FWRe03nWCWpfnfqKtWfWZnNUIiIimSswIpAJeyZYyyNqj7CumphWlogILg94k+gLFwFwqFiRYvPmYrJL9aAMEckgDzx5+86dO+zcuZMtW7awdetWjh49SoUKFfjrr78yOsZ0yYmTt//r+9PfM373eADsbez5rN1nVPWums1RiYiIZDzDMHh769tsurgJgKbFmzK/+XxMJlPa+4qK4tKAAdzdvgMAOx8fSn+9GrNGVIhkmEybvH0vFxcXvLy88PLywtPTEzs7O06cOPGg3eVrT1d4mucqPgdAlCWKt7e8TWBEYDZHJSIikvF+OPeDNanwdPBkfP3xD5ZUxMRwZdhwa1Jh4+JC8UWLlFSIZKNUJxYWi4Xff/+dmTNn0rZtWwoUKED9+vX58MMPKVy4MB988AHnzp3LzFjztBG1R/Cwz8MAXLt7jeHbhhNjicnmqERERDLO9bvXeXffu9byuHrjKOhUMM39GBYL18aO484vvwBgcnCgxOJFOFXT036R7JTqoVDu7u7cvXuXwoUL06xZM5o1a0bTpk0pV65cZseYLrlhKFS8m2E36bK+C7cibgHQ46EeDH18aDZHJSIikn4Ww0K/X/ux7/o+ADqW68jUhlPT3I8RHc3VkaMI+eGHuANmMyU+/ADXRo0yMlwR+Uda7qVTPbNp1qxZNGvWjIoVK6Y7wPzE79g+7ty8lOr6b7h3ZGrECmKxsOL4CtxuhFLPpVomRigiIpL5NtzZx77bcUmFt6077SOr8MeWb9PWSXQ0tp9+jc3RkwAYNjbE9nyaczE3IK19ieQinsUrUKLCI9kdxn2la+ft3CC7n1j8Pu95agf9lKY2X7q58m5BLwCcLBZWXr1BpejozAhPREQk050z29GlaGEibeJGYH987QZ1IyLT1EdMhA2Xd3oSHuAAgMnGoFiDQNyKpa0fkdxoT7Ge1Hvl/Wy5dpZM3pbM0+1OKB3vhAIQbmPDoEIFCbZJ+8Q2ERGR7BYNjPLxtiYVLwbfSXNSERFkh9+vBf9NKuwslGh8S0mFSA6jRZ4zmfmhJ9lzKe1rc7ciliPG71w0hXDZbObVEjUZYHkUG5RgiIhI7vGD6QzHbM8CUMhwoa5LS/a42Ka6vfnkVZw3/YEpOhYAi6sDd5+qxR+FC2RGuCI5klvF3DGHSIlFJqvZ6iXgpQdqWyH0Kt1+6MbtyNv8ZRPAwUdK8dajb2VsgCIiIpnkWMAxfvzpRTDA1mTL3HYfU92neqraxoaGcuPdaQSvP2w95li9OsUXLsRcyDezQhaRdNBQqBysqGtRZjWZhY3pnzGpf35sXftbREQkJ4uIiWDkzpHEGnFPGl55+JVUJxV3Nm/m3JPtCf7+e+sxj04dKbXyMyUVIjmYEoscrk6ROgx+bLC1PHrnaM4Fa78QERHJ2d4/9D5+wX4APOT9EP0e7nffNhEnT3KxXz8uv/4GMTduAGDj7EyR6dMoMn06No6OmRqziKSPEotc4OWHXqZt6bYA3I2+y8DNAwmNCs3mqERERJL2+7XfWXViFQD2NvZMazgNs405ybqGYRD+xx9cGTYcv6eetu6kDeDSsCFl1q2lQOfOD7Q7t4hkLc2xyAVMJhMT6k/gTPAZTt8+zfmQ84zeOZq5zeZah0mJiIjkBMGRwYzaOcpaHvTYIMoWKJuoXszt24SsX0/Qt98R+fffCc7ZFS2C7+AhuD/ZTgmFSC6ixCKXcDY7837T9+n6Y1fuRN1h86XNfPzHx/R/pH92hyYiImI1dd9UboTFDWOqXbg2L1Z50XrOsFgI27uXoG+/5c7G3zD+s0eTrYcH3q+9iufzz2Pj4JClcYtI+imxyEVKuJdgRqMZvLHpDQwMPjjyAQ95P0Sj4rljCTIREcnbfjz3Iz/7/QyAm9mNqQ2nYmOyIfraNYL+9z+Cv/ue6CtXErVzqlGDAs8+g3vbtti4uGR12CKSQbTzdi605I8lLDi8AAA3eze+evIrSrqXzOaoREQkP7saepVn1z3Lneg7AMxsNING1zy4/fkXhG7dChZLgvq2np54dOpEgWefwaF8+WyIWERSIy330npikQv1rd6XYwHH2HxpM3ei7jBo6yBWtV2Fs9k5u0MTEZF8KNYSy+ido+OSCsPgteBHqfjWh1w6czZhRZMJl4YNKfDMM7g1b4bJ3j57AhaRTKEnFrlUaFQoL/z0gnUpvzal2zCz8UxNchMRkSy39K+lzD04lxL+BgN+saXMpagE5+0KFaLAc89R4OmnMBctmk1RisiD0BOLfMDV3pV5zebxwo8vcDf6LhvOb6Cqd1V6VuuZ3aGJiEg+cuLWCRYemk/HvRa6brdgjo21nnN65BG8evXErUULTOakl5sVkbxDa5XmYmU9yjK14VRree6huey9tjcbIxIRkfwkIiaCsZuG88b/onhpiwXzPzmFfZkyFP/wA0p99SXubdooqRDJJ5RY5HItSraw7mZqMSwM2zaMq6FXszkqERHJDxbsnMFLH52h/ol/RlWbTHj16U2ZNf/DrXlzDc8VyWeUWOQBrz/yOg2LNQQgKDKIQVsGERETkc1RiYhIXrbzzG+Un/wVleJXj3V2ovgHH1Bo2DDtQSGSTymxyANsbWyZ3mg6JdxKAHAi8AST904mj8/LFxGRbBIY6s+NgUOo/E9SEePmRJnPP8etebPsDUxEspUSizzCw8GDec3m4WTnBMC6s+v48uSX2RyViIjkNYZh8Os73XnobNzKTxHOdpRfsQrHKlWyOTIRyW5KLPKQip4VmVh/orU8a/8sDt44mI0RiYhIXrP5kwk8sukCALE2UGj+XJweeiiboxKRnECJRR7TtkxbejzUA4AYI4YhW4dw4+6NbI5KRETyggt/H6TAwq+t5TsDulG0YctsjEhEchIlFnnQoMcGUadwHQBuRdxi8LbBRMVG3aeViIhI8qJjojg25DWcI+PK5+uVot7r47M3KBHJUZRY5EF2NnbMajKLIi5FAPjD/w+m/z49m6MSEZHc7Kf33qLM6TsABHnY0mj2imyOSERyGiUWeZSnoydzm83F3sYegG/+/obv/v4um6MSEZHc6PCJLRT/Ypu17DJhBK7ehbIxIhHJiZRY5GFVvasyrt44a3nqvqn84f9HNkYkIiK5TUhUCH9MHGYdAnW1eVUebvtS9gYlIjmSEos8rlP5TnSr1A2AaEs0b299m4DwgGyOSkREcgPDMPho1dvUPnIXgHBnWxpNXpzNUYlITqXEIh8Y/vhwHvV9FICbYTcZum0o0ZbobI5KRERyurVn1lDh893WstebA7D3LpiNEYlITqbEIh8w25p5r+l7+Dr5AnDwxkHmHJiTzVGJiEhOdj74PD+tmkylf3bXji5ZmFIvv5K9QYlIjqbEIp8o6FSQ95q+h52NHQCrTqxi/dn12RyViIjkRNGx0YzYNpynN4dbj5UZPhqTrW02RiUiOZ0Si3ykhm8NRtYeaS1P3DORE7dOZGNEIiKSEy04vIACO49Ryj+ubF+tKq4tWmRvUCKS49lldwCStZ6r+BzHbh1j/YnvKHYtgi/fe4W+zk9gunqTmIAAYvz9sYSGYsTGQkwMJgcHbN3csHF3x1yoEOaSJbEvWRLHqg/h+NBD2Dg6ZvdLEhGRDLTn6h4++2Mpc7dbrMcKDx6MyWTKxqhEJDdQYpFPGIZBxLHjhG7fRs+9fjx7yIJdjAHc4i5fJd8uKgrLnTtw9SqRJ08mPGlnh2OlSrjUr49r0yY4PfIIJjt9pEREcqvAiEBG7RxF478MCgfFHXOuWxeX+vWzNS4RyR10F5jHRZz6m5D16wj55VeiL12yHk/yL95kwtbLC1s3N0xmO7C1w4iIIDY0FEtwMEb0f1aSiokh4tgxIo4d49bHH2Pr4YFbq1Z4PPUUTjVr6NstEZFcxDAMxu4ay627/nTa++/TCp+Bb2VjVCKSmyixyIOMqChCft3I7S+/JPzgwSTrmIsXJ6xqKb6K2ct5H4Mr3iZGtZtJ63Ltku7TMIi56U/0pYtEnjlL+J9/EPHHH0SeOQuGAUBscDBB33xD0DffYF+qFAW6daPAc89h6+qSaa9VREQyxpcnv2T75e3UPm1QNDDumHPt2jjXrJm9gYlIrmEyjH/uCvOokJAQPDw8CA4Oxt3dPbvDyVSWsDBuf/kVt5YtIzbgP5vg2driUqc2bq1a49KwIfbFiwGw6vgqZuyfAYCTnROft/ucCp4VUn3NmMBAQrdvJ3TrNkK3b8cIC0tw3sbNDc+uXfDq2RO7glr7XEQkJzoVeIoXfnyBqNhIpq6IpcK1uOMlPl6Ca6NG2RuciGSrtNxLK7HIA+ISii+59elSYgMDE5yzL18Oz67dcH+yHXZeXonaGobByJ0j+fHcjwCUdCvJl+2/xN0+7e+V5e5dQjZuJHjNWsL27k1wzuTsjHfPnnj17oWtq2ua+xYRkcwRHhPO8z88z9ngszx0wcKEL+KGQTlUrkyZ/32vYa0i+ZwSi3vk5cTCiIkh6Jtv8F+wMGFCYTL9v737Do+i3Ns4/t3d9N4INXQEkY5Klw7SFCt6LKiovEgVbAiCBUREERFQFBUbYgULiCIldEWQpiCIdBICJGx62d15/1hciLRAyiTh/lzXXifz7DMzt2c1yS/zFIK7dCH8rv8RcM01F/yhkOHI4N4f7mVHontydttKbZnaYSpWy6WvRpy1ezfH33+f5G++zTU3wxYRQZkhQwi7/TYsVq12LCJithfWvsDnOz8HYNzXflzxVyoAFSZNIrRXTzOjiUgxoMLiNKW1sEhbt44jL04ga+fOU40WCyHduxP1yAB8a9S4qOsdSj1En+/7YM+yAzCg4QAeafRIvnM6jh7l2FszSfrsM3A4PO3+jRtT/vnn8K2V92FXIiJSsH7a+xMjYkcAUOuYN+PfcW+I512xIjV+XKSV/kTkon6X1p+MS5ic+HgODh7C/vvuz1VUhHTvRvXvv6Piq69cdFEBUDGoIi9f97LnKcWbm99k2f5l+c7rVaYM5Z4ZTY2FCwjp3s3TnvH77/xz080cnTHDvWeGiIgUqQMpBxi7Zqzn+PGdp/7QE3H//SoqROSiqbAoIQyXi6S5c/mnR09SFi/2tPvVq0eVOXOoOHnyJRUUp2tZoSVDGp9aVvDpVU+zx74nX9f8l0/lylScPJnKs9/Hp0oVd6PDwbGpb7D/vvvJiY8vkPuIiMiF5ThzeCL2CVJz3MOebgtqS9iqPwCwhYcTdsvNZsYTkRJKhUUJkLVnD/vv7Uv8s8/hSksDwBYVRfnx46n6+WcENCm4pQAfqPcAnat0BiA1J5Vhy4aRlpNWYNcPbN6cat9+Q+T/9YeTcyzS169nz429SV25ssDuIyIi5zZl4xS2Hd8GQExwDPdvi4STT4/D774Lq7+/mfFEpIRSYVGMGS4Xx2fPZs+NvUn/7TdPe+itt1BjwfeE3XJzgU+AtlgsjGs1jpphNQH4x/4Pz6x+hoKcimP19SV62DCqfPgBXuXLA+49MA70/z8SP/igQO8lIiK5xR6I5cM/PwTA2+rNKw2eIW3etwBY/P0J/9//zIwnIiWYCotiKufIEQ48+CAJL03EyM4GwDsmhsrvv0eFceOwhYYW2r0DvAOY0n4Kwd7BACzet5h3t71b8Pe5+mqqz/uaoI4d3Q0uF0cmvET82GcxTpvoLSIiBSM+LZ5Rq0d5jkdcPYIyC3/DyMwEIOy2W/EKDzcrnoiUcCosiqHkH39izw03krZmractou+9VP9mPoEtWhRJhiohVZjQZoLneOrGqaw+tLrA72MLC6PSG1PdQ6NOOvH55xx6dDiukwWViIjkn8Pl4MkVT3pW/+sQ04E7Ym4k8ZNP3B28vIi87z7zAopIiafCohhxpqZxeOTTHBo6FKfd/Y3fq2xZKs9+n7IjR2INCCjSPG1j2vJIQ/eSswYGT6x4ggMpBwr8Pharlehhw6gwaRIWb28AUhYv5uCAR3BlZBT4/URELkczNs1gY8JGACoEVuD5Vs9j/+orXCd/3oT26IF3hQpmRhSREk6FRTGRuX07e265Gfu8eZ624Ouvdz+laN7ctFz9G/anXaV2ACRnJ/PoskfJcBTOL/uhvXpS6c03sfj5AZC2ejUHBw3WkwsRkXxac3gNs7bOAsDL4sXLbV8mxBrA8dkfePpEPtjPrHgiUkqosDCZYRgkff45e/vcQc6+/QBYAwIoP2ECFV+bjC0szNR8VouVF9u8SNWQqgD8lfQXY1ePLbQJ1kGtW1H5vXexBgUB7uLi0PDh2utCROQSHcs4xsiVIzFwf98e0mQIDcs0xL5gAY64OACC2rXThqUikm8qLEzkSk8n7qmniB8z1jNB269ePap9M5+wm3pjsVhMTugW7BPMlPZTCPByD8X6Ye8PvLP1nUK7X0CTJsS8PRPLyaFfqT8vIWHSK4V2PxGR0srpcvLUiqdIzEwEoHXF1vS9qq971cFZszz9Ih9+yKyIIlKKqLAwSdbff7Pn9tuxf/Otpy38rruoMucTfGJiTEx2djXCajChzQQsuIudN35/gyX7lhTa/QKaNCFm2htwcufXxNmzSZo7t9DuJyJSGs3aOotf4n8BINo/mvGtx2O1WEldvpzsv3cD4N+0KQFNmpgZU0RKCRUWJrB/9x17brvd803dGhBAxcmvUu6Z0Vh9fExOd24dKndgcOPBnuORq0byV+JfhXa/wJYtKTfmGc9x/AvjSF1V8CtTiYiURr/F/8aMzTMA97DWl657iQi/CAzD4PjMtz39Ih960KyIIlLKqLAoQq6sLOLGjOXw409gnFztyPeKK6j61ZeEdO9ucrq8ebD+g3Sr1g2ADEcGQ5YO4XjG8UK7X/jttxPR7wH3gdPJoREjyDl8uNDuJyJSGhzLOMYTK57AZbgAGNBwANeUuwaAjN9+I2PzZgB8a9UiqG1b03KKSOmiwqKIZO/bx9477uTE55972kJvuZmqn83Ft1o1E5NdHIvFwvMtn6deZD0ADqcdZvjy4eQ4cwrtntEjRng20XPZ7Rwa8RhGTuHdT0SkJHO6nDy54kmOZhwFoFn5ZjxU/9QcimNvn5ojF/nwQ8VmPp+IlHwqLIpA8o8/seeWW8navh0Ai58f5V98kQrjx2P19zc53cXz8/Lj9Q6vE+0fDcDGhI28sO6FQlspymK1UmHCi3hXrAhAxu+/c/SNaYVyLxGRkm76pun8Gv8r4J5XMbHNRGxWG+Be2jxt5UoAvCtWJKRbN9Nyikjpo8KiEBk5OcS/+CKHhg7FlZoKgE+1alT97DPCbr7J5HT5Ex0QzesdXsfX5gvAvL/n8fH2jwvtfraQECpOftUzmfv4O++QvnFjod1PRKQkWnlwpWfVPpvFxqS2k4j0j/S8f+y0uRUR/R7AcvJ7qohIQShRhcVLL72ExWJh2LBhZkfJG4uFrD+3ew5Dunen6hdf4Ff7ChNDFZx6UfV4vuXznuNXfnuF1YcKb3K1f8OGlBk6xH1gGMSNGo0rK6vQ7iciUpLEpcYxctVIz/GwJsNoUvbUak+Zf+0kZdEiAGxRUYTdfHORZxSR0q3EFBbr169n5syZNGjQwOwoeWbx8qLC5FfxqlCecmPHUOHVV7AFBZodq0B1r97dM3bXZbh4PPZx9tj3FNr9Ih94AL+T/w5k79nDsRlvFtq9RERKihxnDiNiR2DPsgPQIaYDfa/qm6vPsenTPV9HPtgPq59fkWYUkdKvRBQWqamp3HXXXbzzzjuEh4ebHeeieEdHU+OHHwi/885SO0FuUONBdIjpAEBKTgqDlw72/HAraBabjQrjx4G3NwDHZ80ic8eOQrmXiEhJ8cpvr7D12FYAKgVV4oXWL+T6mZO5YwcpP/0EgK1MFOF33GFKThEp3UpEYTFw4EB69OhBp06dzI5ySay+vmZHKFRWi5UJbSZwRbh7iNe+5H08Hvs4DpejUO7nW6sWUf/X333gdHJk3PhCmzguIlLcLdq7iDk75gDgY/Xh1XavEuITkqvP6U8roh56SE8rRKRQFPvCYu7cuWzcuJEJEybkqX9WVhbJycm5XlL4ArwDmNphKuG+7idKa+PW8spvrxTa/SIfegjvKpUBSP/tN1J+/LHQ7iUiUlztse9h7OqxnuORzUZSN7Jurj6Zf/5JyuKfAfAqU4aw228v0owicvko1oXFgQMHGDp0KJ988gl+efzryoQJEwgNDfW8YmJiCjml/KtiUEVea/8aXlb3KiOfbP+EL3d+WSj3svr4UPbJpzzHR15+GdfJTQdFRC4HGY4Mhi8fTrojHYBe1XtxS61bcvUxDIOEV079kSfy4Yf1tEJECk2xLiw2bNhAQkICTZo0wcvLCy8vL2JjY5k6dSpeXl44nc4zzhk5ciR2u93zOnDggAnJL19NyzblmebPeI7HrxvP+vj1hXKvoPbtCGzVCgDH4TiS5nxaKPcRESluDMNg3Lpx/H3ibwBqhtVkdPPRZ8zlS1u1irQ1awHwrlSJsD56WiEihadYFxYdO3Zk69atbNq0yfO6+uqrueuuu9i0aRM2m+2Mc3x9fQkJCcn1kqJ1c62bufvKuwFwGA6GLRvGXvveAr+PxWIh+skn4OQP0uPvvIMzNa3A7yMiUtx89tdnfLv7WwACvAJ4td2rBHgH5OpjOJ0kvDzJcxw9/FGsPj5FmlNELi/FurAIDg6mXr16uV6BgYFERkZSr149s+PJeYy4egStK7YGIDk7mUFLBxXKSlF+V1xBSI8eADhPnCDpow8L/B4iIsXJpoRNTPx1ouf4uVbPUT20+hn97PPnk7VrFwB+DRoQrF22RaSQFevCQkouL6sXk66bRM2wmoB7pahhy4aR48wp8HtFDXwETj69Ov7e+zjthbPUrYiI2Y6mH2X48uE4DPeqe/dddR/XV73+jH7O1FSOTnndc1z28cdK7ZLnIlJ8lLjCYvny5UyZMsXsGJIHQT5BTO84nUi/SAB+O/Ibz659tsCXhvWtVo3Q3jcC4EpJIfGjjwv0+iIixcG/m+AdzTgKwLXlrmVok6Fn7Xt06lQcR939gjp2JOCaa4osp4hcvkpcYSElS4WgCrzR4Q18be69PL7d/S3vbnu3wO8TNeDUU4ukTz7RClEiUuq88tsr/J7wOwDlAssxqe0kzyp8p8v880+SPv4EAIufH2VHjizSnCJy+VJhIYWufpn6jG893nP8+sbX+WnvTwV6D59KFQm53j0cwJmUhP2bbwr0+iIiZvpu93eeTfC8rd681u41IvwizuhnuFzEPfccuFwARA0YgE+likWaVUQuXyospEh0rdqVIY2HeI6fXvU0W49uLdB7RPZ7wPP18fffxzjLcsQiIiXNjsQdPL/2ec/xqGajqBd19gVMkubOJXPzFgB8qlcn8v77iiKiiAigwkKK0IP1H+SGGjcAkOXMYvDSwcSlxhXY9f3q1iWgRXMAcvbtJ2XJkgK7toiIGexZdoYtG0amMxOAW2rdwi1X3HLWvtn795Pwyque43JjxmDR8rIiUoRUWEiRsVgsjG0xlqZlmwJwPPM4A5cOJDU7tcDuEflAP8/XiR9o6VkRKbmcLidPrniSQ6mHAKgfVZ+nmz191r6G08nhp0ZipLt34Q7r04fA5s2KLKuICKiwkCLmY/NhSrspVA6uDMCupF08vuJxHC5HgVw/sHUrfGrWACBjwwYyd+4skOuKiBS1GZtnsPrwagAi/CKY3G4yPrazP4E4/t57ZGzcCLh32I5+/PEiyyki8i8VFlLkwvzCmNZxGiE+7l3RVx1axcvrXy6Qa1ssFsL73OE5PvHZ5wVyXRGRorRk3xLe3vI2ADaLjUnXTaJcYLmz9k3fsOHUnhUWCxVemoAtKLCoooqIeKiwEFNUC63Ga+1ew8viXirx0x2f8tGfHxXItUNvvAGLvz8A9m++wXVyaICISEmwM2knI1edWiL20aaPcm35a8/a13H8OIceHQ4nF6uI/L/+BFx9dZHkFBH5LxUWYppry1/LmBZjPMeT1k9i8b7F+b6uLSSEkB7dAXClppK8cGG+rykiUhSSMpMYsnQIGQ73Xjw9q/fk3rr3nrWvKzubQ8MexZGQAEBAs2aUGTSoyLKKiPyXCgsx1U21bqJ/g/4AGBg8teIpNiVsyvd1Tx8OlaThUCJSAuS43Dtr/ztZ+6rIqxjbYiwWi+WMvoZhEP/MM6SvXw+ArUwUFV+ZhOXkRqEiImZQYSGmG9hooGcZ2mxXNoOXDmavfW++rulfvx6+da8EIHPrVrJ2785vTBGRQvXyry+zPt5dKET5R/F6+9fx8/I7a99j02dg/+ZbwL27dsyMGXiVKVNkWUVEzkaFhZjOYrHwbItnaV7evQfFiawTDPh5AMczjufrumG9e3u+/vcHsIhIcfTlzi+Z+9dc4NTO2mUDy561b+KHH3Fs2jT3gcVChZcn4l+/flFFFRE5JxUWUix427yZ3G4ytcJrAXAw9SCDlw72jDO+FCE9esDJYQH2b7/FcLkKJKuISEHaeGQj438Z7zl+pvkzNIpudNa+SXM/48iLL3qOox97jJAuXQo7oohInqiwkGIj2CeYGR1nEB0QDcDWY1t5csWTOF3OS7qeV2QkQW3aAOCIjyf9118LLKuISEGIS43j0eWPevbyufvKu7mp1k1n7Xv8vfeJf/ZZz3HUIwOI7PdAUcQUEckTFRZSrJQLLMeMjjMI9Havwb7swDImrp+IYRiXdL3Q3jd6vrbP/6ZAMoqIFIQMRwZDlw0lMTMRgOblmzPi6hFn9DNcLo5MeImEl0/t9xP5YD+iBg8usqwiInmhwkKKndoRtZncbnKuPS4+/PPDS7pWUPv2WIODAUj+6SdcmZkFllNE5FIZhsGY1WPYnrgdgJjgGF5p+wpeVq9c/ZypqRwcMoTEDz7wtJUZOoQyI0acdbUoEREzqbCQYqllhZY82/JZz/Erv73Cor2LLvo6Vl9fgru6xx8b6emkrlhRUBFFRC7Zm5vf9HxPC/AKYGr7qYT6hubqk7lzJ3tvvY3Un5e4G6xWyr3wPFEDBqioEJFiSYWFFFs31ryRgY0Geo6fXvk0G45suOjrhHS93vN1yqIfCySbiMilWvDPAt7c/CYAFiy81OYlaobX9LxvOJ0cnzWLvbfcSvbevQBYQ0OJeetNwm+7zYzIIiJ5osJCirX+Dfpzc62bAffmUYOXDmZn0s6LukZg82bYQt1/CUxZvlzDoUTENJsSNvHM6mc8x8ObDqd95fae46y//2bfXXeT8MqrGDk5APheeSXVvvyCoOuuK/K8IiIXQ4WFFGsWi4XRzUfTqmIrAFKyUxiweACHUw/n/Rre3gR16gicHA61cmWhZBUROZ+DKQcZumwoOS53wXBLrVvoe1VfAJx2O/HjX+SfG3uTsWmT+wSLhYgHHqDq3E/xiYkxKbWISN6psJBiz9vqzeS2k6kf5d4AKiEjgf6L+5OUmZTna4Rcr+FQImKelOwUBi0Z5FkBqlm5ZoxqPgpXSgpHp03n706dSfroI3C6l9f2rlKZKp98TNknHsfq62tmdBGRPFNhISVCgHcA0ztOp2pIVQD2Ju/lkZ8fIT0nPU/nBzZvjvXkcKjUZcs0HEpEiozD5eDx2MfZbd8NQNWQqrx81UhOTHuLvzt15ti0abhSUgCw+PtTZugQqn/zDQFNmpgZW0TkoqmwkBIj3C+cmZ1nEu3v3kBv2/FtPLr8UXKcORc81+LtTXBH93AoV3o6aatWFWpWEZF/Tfx1IqsPrwbDoHFCAK8uq8SR63tzbMYMXMnJ7k42G6G33EyNhQuIGjAAq5+fuaFFRC6BCgspUSoEVeCtzm8R7OPem2LN4TWMXj0al+G64LkhJ5edBUhZuqzQMoqI/OuT7Z+w5JdPuWmNi8mzXIx8NxnnT8vB4d5p21NQLPqBCuPH412+vKl5RUTyw+vCXUSKl1rhtZjWYRoPL36YLGcWC/csJMIvgieueeK8a7sHNG+Oxd8fIyOD1OXLMZxOLDZbESYXkcuF88QJNs6dRsCXc5h+0DjjfVt4OGG33074nXfgXa6cCQlFRAqeCgspkZqUbcKk6yYxbPkwXIaLj7d/TJR/FP3q9zvnOVZfX4JatyJl8c84ExPJ2LKFgMaNizC1iJRmrsxMUpcvx/7d96TGxhLkcFDnP338mzYl7JZbCOnRXZOyRaTUUWEhJVb7yu0Z22IsY9eMBWDKxilE+EVwU62bznlOULv2pCz+GYDUpctUWIhIvhguF+nrf8P+7Tek/PgTrtTUM/oklQuk1h0PEtqzFz6VKpqQUkSkaKiwkBLt5lo3k5iZyOsbXwfgubXPEeobSofKHc7aP6hdW7BYwDBIWbaU6BHDizKuiJQSWX//jf2bb7F//z2OuLgz3k8MgtV1LSS0vpIX7v8Yf29/E1KKiBQtFRZS4vWr149jGcf4ZPsnOA0nj8U+xoxOM2hevvkZfb0iI/Fv1IiM338n++/dZO/fj0/lyiakFpGSxpWVRfIPP5D06adkbt5yxvuWwEC21PVnXs1E/qhsoXJYVT7qNktFhYhcNlRYSIlnsVh44ponOJF1ggX/LCDHlcOQpUN4u/PbNIpudEb/oPbtyfj9d8C9p0VE375FnFhESpKcw4dJmjOHE19+hfPEidxv2mwEtm5FSK9evOS7lAWHFwNWIvwieLPjm4T7hZsRWUTEFFpuVkoFq8XKC61eoH1MewAyHBk8suQR/kr864y+wR3ae77WsrMici7Ze/dyeNQo/u7SleOz3s1VVPjWqUPZp5+m1opYKs+cyXvldp4sKsDfy5/pHacTExJjUnIREXOosJBSw9vqzaS2k2hWvhkAKdkpPLz4Yfba9+bq51OjBt4x7h/46Rs24ExNK+qoIlKM5Rw6xKHHn2B39x7Yv/ras+eExdubkF69qDJnDtXmfU3EvffgFRnJpzs+5f0/3gfcf+SYdN0k6kXVM/MfQUTEFCospFTxtfkytf1UGpRpAEBiZiIPLX6IuNRTkystFgtBbdq4DxwO0n9ZZ0ZUESlmnCkpJLz6Kru7dSf5u+/A5d540xoSQtQjA6i5fBkVJ71MQJPGnj1zlu5fyku/vuS5xqhmo2gb09aU/CIiZlNhIaVOgHcAMzrOoHZ4bQDi0+J5aPFDHMs45ukT2Ka15+vUlSuLPKOIFB+GYWD/7jt2d72e4+/MwsjOBsAWFkaZ4cOpuXQJZYYMwSsyMtd5vyf8zpMrnsRluAuQfvX6cXvt24s8v4hIcaHCQkqlUN9Q3ur8FlVDqgKwL3kfDy9+GHuWHYDAa6/F4u0NQNrKVRjGmTvjikjpl3P4MAf69+fw40/gTEwE3EOeIh/sR43FPxH18EPYgoLOOG9n0k4GLhlIpjMTgO7VujOkyZAizS4iUtyosJBSK8o/irc7v025wHIA7EraxSM/P0JaThrWwED8r24KuMdTZ+/Za2JSETGD/bvv+afXDaStOPXUMrhLF6r/sJDoxx7DFhx81vMOphzk/xb/HynZKQC0rNCSca3GYbXoR6qIXN70XVBKtfJB5ZnVZRaRfu4hDFuObWHw0sFkODIIat3G0y9tlYZDiVwuXGlpHH5qJIcffxxXmnvxBq/oaCpNn0alqa/jU6nSOc89lnGM/ov7czTjKAANohrwWrvX8LZ5F0l2EZHiTIWFlHpVQqows/NMgn3cf31cH7+eIUuH4N3yWk+f1JWrzIonIkUoe98+9tzeB/v8+Z620BtvpPqC7wnu2PG856Zkp/DIz4+wP2U/ANVDqzO943QCvAMKM7KISImhwkIuC7UjajOz00wCvQMBWBe3jicOvoGtbDQA6b/+iisz08yIIlLI0tatY8/tfcjevRsAa0AAFV6eSIWJL51z2NO/spxZDF02lO2J2wEoF1iOmZ1nEuYXVtixRURKDBUWctmoX6Y+b3V6iwAv918XVx9ew9bqNgCMrCzS1/9mZjwRKURJn37K/n4P4rK7F3DwqVGDal9/RegNN1zwXIfLwZMrnmR9/HoAwnzDmNl5pmf+loiIuKmwkMtKo+hGzOg0A38vfwAWlT3ieU/zLERKH8MwODr1DeKfex6cTgCC2ral6mdz8alaNU/nv7DuBZbsXwK4d9We0XEG1UOrF2ZsEZESSYWFXHaalm3K9I7T8bP5sbWqBZd7nytStJ+FSKliuFwcGTeeYzNmeNoiHniASjOmn3UJ2TPONwxe/e1Vvt71NQBeVi+mtJ9C/TL1Cy2ziEhJpsJCLkvXlLuGqR2m4gjy4+/y7racf/aQGXfI3GAiUiAMp5O4kU+T9MknnrayI5+i7BOPY7HZ8nSNGZtn8MGfHwBgwcKENhNoWaFloeQVESkNVFjIZatFhRa83v51/qjm5Wn78MPHcbqcJqYSkfwyXC7ixozB/s037gabjfIvTSCib988X+O9be/x1ua3PMdjWozh+qrXF3RUEZFSRYWFXNZaVWxF+5uHeo5d6zcxevVoHC6HialE5FIZhkH8Cy9g/8o9fAkvLypOeY2w3r3zfI1Pd3zKaxte8xw/ec2T3HrFrQWcVESk9FFhIZe9Zp3vxeXrA0D9vQbf7/6Op1c+reJCpIQxDIOEl17ixKdz3Q1WKxVfmURI5855vsa8XfN48ZcXPcdDGg/h7rp3F3RUEZFSSYWFXPasPj4EX9sMgIhUqHgcftj7A0+seIIcV47J6UQkr47PmkXiBx+6DywWKkycSMj1eR++tGjPIp5d+6zn+KH6D/FQg4cKOKWISOmlwkIECGzRwvN1o33u/ywW71vMiOUjyHZmmxVLRPLI/t13HH11sue4/LhxhPbqmefzl+1fxsiVI3EZLgDuvvJuBjceXOA5RURKMxUWIkBgy1OFxZ2pV+Fr8wVg2YFlDFs2jCxnllnRROQC0tat4/DTozzHZYYNI+yWm/N8/oqDKxgROwKH4R7+eEutW3jimiewWCwFnlVEpDRTYSEC+F5xBbbwcAD8tvzN9HZTPZvorTy0kiFLh5DpyDQzooicRebOnRwcNBhy3MMWw/r0IbL/w3k+f8XBFQxbNswz7LFH9R480/wZFRUiIpdAhYUIYLFaCWzRHABXaioNjgUwo+OpHbrXHF7DoCWDSM9JNzOmiJzGkZTEwUcG4kpNBSCoXTvKPTM6z0XBf4uK66tez7hW47BZ87bPhYiI5KbCQuSkgNPmWaStXcvV5a5mZueZBHoHAvBL/C8M+HkAKdkpZkUUkZMMh4NDjw4n5+BBAPyuuoqKk1/F4uV1gTPdYg/EnlFUTGgzAS9r3s4XEZEzqbAQOSmwxakdddPWrAWgcXRj3u78NsHewQBsTNhIvx/7kZiZaEpGEXFLmDSJ9HXrALBFRlJp2htYAwLydG7sgVgeXf6oigoRkQKmwkLkJJ9KFfGuXBmA9E2bcKW7hz01KNOAWV1nEe7rnoOxPXE7fX/oS3xavGlZRS5nJ+bPP7WsrLc3laa+jnf58nk6V0WFiEjhUWEhchrPsrM5OaRv2OhprxtZl9ndZlM2oCwAe5P3cu8P97LXvteElCKXr4wtW4gfM9ZzXG7UKAKaNs3TuSoqREQKlwoLkdP8O4Eb3PMsTlc9tDofdvuQysHupxpxaXH0XdSXHYk7ijSjyOXKeeIEB4cOw8h27y0T1qcP4Xf0ydO5P+79UXMqREQKmQoLkdMENGsGJ1eU+W9hAVAhqAIfdPuA2uG1AUjMTOSBRQ/we8LvRZpT5HJjGAaHnx6FIy4OAP8mTSg36uk8nfvN39/wxIonPPtUdKvaTUWFiEghUGEhchqv8HD8rrwSgKzt23EknjlJO8o/iveuf49GZRoBkJKTwsM/PczqQ6uLMqrIZSXpo49JXboUAFtYmHsFKB+fC543d8dcRq8e7dlRu3fN3ioqREQKiQoLkf84fRfuf1ed+a8QnxBmdp5JywrulaQynZkMWjqIBf8sKJKMIpeTjK3bODJpkue4/EsT8C5X7oLnvbftPcb/Mt5z/L86/+O5ls9pnwoRkUKiwkLkP/67n8U5+3kH8EaHN+hcpTMADpeDp1Y+xextszEMo9BzilwOnKmpHBoxwrOzdsT99xPcrt15zzEMg2m/T+O1Da952h6s/yBPXfsUVot+7ImIFBZ9hxX5j4CmTT1DLNJWrzlvkeBj82HSdZO49YpbPW2vbniVl9e/7Bl6ISKXxjAM4seMIWf/fgD8GjQg+tFhFzxn0m+TmLllpqdtSOMhDG0yNM87couIyKVRYSHyH1Y/P/ybNAEg5/Bhcg4cOG9/m9XGmOZjGNRokKft4+0f83js42Q5swo1q0hpduKLL0he+AMA1uDgC86rcLgcjF0zlo/+/MjT9tS1T/FQg4cKPauIiKiwEDmrwNOHQ60593Cof1ksFvo37M/zLZ/HZnGP3/5p30/0X9wfe5a90HKKlFaZf+3kyPgXPcflX3gBn0qVztk/w5HBsGXDmPf3PAAsWHiu5XPcdeVdhZ5VRETcVFiInMXpE7jPN8/iv26qdRNvdHgDfy9/ADYc2aBdukUukis9nUPDh2NkuZ/4hd15ByHXdz1nf3uWnf6L+xN7MBYAb6s3k9pO4uZaNxdJXhERcVNhIXIWfnXrYg0JAdwrQxlOZ57PbVOpDe93fZ8IvwgAdtt3c9fCu/gr8a9CySpS2sSPG0/27t0A+NauTdmnnjp337R4+v7Q17OXTKB3IG92epOuVc9diIiISOFQYSFyFhabjcBmzQBw2u1kbr+43bWvirqKj7t97NmlOyE9gXt/uJfYA7EFnlWkNLF/+y32r78GwBIQQMXXXsPq63vWvv+c+Id7friH3XZ3ERLpF8n7Xd+nWflmRZZXREROUWEhcg6BrVp6vk5bu+aiz48JieGj7h/RIKoBAOmOdAYvHcyHf3yo5WhFziJrzx7inn3Oc1x+7Bh8q1c7a99NCZu4d9G9nmGGMcExfNTtI66MvLJIsoqIyJlUWIicw+kTuNMvYp7F6SL8Ini367tcX/V6AAzcS2E+v+55clw5BZJTpDRwZWVx6NHhGOnpAITedBOhN9541r6L9i6i34/9PAsjXBlxJR92+5CYkJgiyysiImdSYSFyDt6VK+NdoQIA6b9twJWZeUnX8fPyY+J1E/m/hv/nafty55cM+HmAVowSOSlh4stk7XAPOfSpXp1yz4w+o49hGMzaOovHYx8n25UNQLPyzXiv63tE+UcVaV4RETlTsS4sJkyYwDXXXENwcDDR0dH07t2bv/7SBFgpGhaLhYCTq0MZ2dlkbNx4ydeyWqwMbDSQCW0m4G31BuCXuF+4e+Hd7E/eXyB5RUqq5B9/ImnOHAAsvr5UfG0y1oCAXH1yXDk8u/ZZXt/4uqetd83evNnxTYJ8goo0r4iInF2xLixiY2MZOHAg69atY/HixeTk5NClSxfS0tLMjiaXiVz7WVzicKjT9azek/e6vudZMWpv8l7+t/B/rDl88XM4REqD7IMHiRt96ulE2aefxq927Vx9UrJTeOTnR/h619eetiGNh/B8y+fxtnkXWVYRETk/i1GCZpEePXqU6OhoYmNjue666/J0TnJyMqGhodjtdkJOLh8qkleO48fZ1ao1AH5XXUW1r74skOseTDnIoCWDPKvZWC1WHm3yKH2v6ovFYimQe4gUd0Z2NnvvvofMLVsACO52PRUnT87138Ch1EMMWjKIv0/8Dbj3qBjXahzdq3c3JbOIyOXmYn6XLtZPLP7LbnePR4+IiDhnn6ysLJKTk3O9RC6VV2QkvnXqAJD55584kpIK5LqVgivxUfePaFupLQAuw8WrG17lyZVPkuHIKJB7iBR3Ca9O9hQV3jExlH/++VxFxfr49dzx/R2eoiLMN4xZXWapqBARKaZKTGHhcrkYNmwYrVq1ol69eufsN2HCBEJDQz2vmBitEiL54xkOZRik//JrgV032CeYqR2m0r9Bf0/bD3t+4J6F93Aw5WCB3UekOEpZsoTEDz4AwOLtTcXXXsMWHAy4J2nP3TGXh396mBNZJwCoElKFj7t/TJOyTcyKLCIiF1BiCouBAweybds25s6de95+I0eOxG63e14HDhwoooRSWgW2LNh5FqezWqwMajyIKe2nEODlnqz6V9Jf3LHgDtbFrSvQe4kUF9kHD3F45NOe4+gnn8S/3lUA5DhzeH7d84z/ZTwOwwFAq4qtmNNjDlVCqpiSV0RE8qZEFBaDBg3i+++/Z9myZVSqVOm8fX19fQkJCcn1EsmPgKZNwds9QbSgC4t/dazcMdcvTvYsO/0X9+e9be/hMlyFck8RMxjZ2RwaMRzXyWGqwV26EH7X/wA4nnGcB396kC93nprLdN9V9zG9w3RCfPS9XESkuCvWhYVhGAwaNIh58+axdOlSqlU7+w6sIoXJGhBAQKNGAOTs30/2wcIZplQjrAZzesyhTcU2gHvexWsbXmPI0iHa70JKjYTJr5G5+bR5FePHYbFY+PP4n9y54E42JriXdfax+vBi6xcZcfUIbFabmZFFRCSPinVhMXDgQD7++GPmzJlDcHAw8fHxxMfHk5Ghya1StHINh1pTeEvDhviEMK3jtFzzLmIPxnLbd7ex5eiWQruvSFFIWbqUxNmzgVPzKqxBQXyx8wvuWXgPcWlxAET7RzP7+tn0qtHLxLQiInKxinVh8eabb2K322nXrh3ly5f3vD777DOzo8llJtd+FmsKZzjUv/6dd/FmpzcJ8w0DIC4tjr6L+vLxnx9TglaIFvHIPnDgjHkV1KnO6NWjeX7t856dtBuUacDcnnOpX6a+WVFFROQSFevCwjCMs77uu+8+s6PJZcavXj2sJ1esSV+7FsPpLPR7tq7Ymi96fUHj6MYAOFwOJq6fyPDlw0nJTin0+4sUFFdGBgcHD8F1csnw4M6dsfdsyV0L7+Lb3d96+v2vzv+Y3XU2ZQLKmBVVRETyoVgXFiLFhcXLy/PUwmm3k7GlaIYllQssx7td3+X+q+73tP28/2du++42NiVsKpIMIvlhGAZxz4wha8cOAHyqVmXHgE7cufBOdiXtAsDfy5+Xr3uZkc1GaidtEZESTIWFSB4FXdfG83XaypVFdl9vqzfDrx7OGx3e8KyMcyj1EPctuo83N7+Jw+UosiwiFyvxgw9I/v57ACwBAfzQvyGPrh9FWk4aANVDqzO3x1y6VetmZkwRESkAKixE8iiwzXWer1NXFF1h8a92Me34vNfnNCrTCACn4WTGphk88OMDHEo9VOR5RC4kbd0vJEx6xXP8yS0RzExe4DnuXq07n/b4lOph1c2IJyIiBUyFhUgeeZeNxrdOHQAyt23DcexYkWeoGFSR969/n0caPoLV4v7P9/eE37n121tZ8M+CC5wtUnSyDx7i0KOPwsn5SN+28mZ+pXjAvZTs6GajeanNSwR4B5gZU0RECpAKC5GLENTm1HCo1FWrTMngZfViQKMBfHD9B1QMqujOkpPKUyuf4onYJziRecKUXCL/cqakcOD/+uNMSgJgUzULn7R2b/RYM6wmc3vOpU+dPlgsFjNjiohIAVNhIXIRcs2zMGE41OkaRTfii15f0LN6T0/bD3t/oPc3vVmyf4mJyeRyZuTkcGjoMLL/3g3A4Qh4/UYrhtXCHbXv4NMen1IrvJbJKUVEpDCosBC5CP6NGmENCgIgbfXqIll29nyCfYKZ0GYCE9tM9EzsPp55nGHLhvHkiif19EKKlGEYHHz+Oc8mksn+MOF2G95h4UxtP5VRzUfh5+VnckoRESksKixELoLF25vAVq2Aol129kK6V+/O/Bvn065SO0/bwj0L6f1Nb5buX2peMLmsbH79eVK/+AqAHBtMusVG1brN+bLXl7Sv3N7kdCIiUthUWIhcpNOHQ6WuWGFiktzKBJRhaoepvNj6RYJ93Jv5Hc88ztBlQ3lq5VMkZiaanFBKq0xHJp9Mfgjft+Z62t7t5cett47m7c5vUzawrInpRESkqKiwELlIga1PKyxiY01MciaLxUKvGr2Yf+N82lZq62lf8M8Cbph/A/N2zcMwDBMTSmnzS9wvPDPxehq+c2oxg5XXV2TE099wR507PKuXiYhI6afv+CIXybtsNH516wKQ9ed2cuLiTE50puiAaN7o8AbjW4/3PL2wZ9kZs2YM9y26j90ndpucUEq6pMwkRq0axauz+nH3nCPYTtarR7o15YFXF1E5pLK5AUVEpMipsBC5BEEdO3i+TllSPOcwWCwWbqhxA9/2/jbXrsYbEzZy63e3MnXjVDIdmSYmlJLIMAy+3f0tN8y/ge2x3/DkF058Tq5hYO3ajravfoiXzcvckCIiYgoVFiKXILhTJ8/XqUuL99KuUf5RvHzdy8zsNJOY4BgAHC4H72x9h5u+uYkl+5doeJTkyV77Xh5a/BCjVo2i7N9JjP7MSUC2+73A667jilemYrHqx4qIyOXKYpTy3yiSk5MJDQ3FbrcTEhJidhwpJQzDYHenzuQcOgReXlyxZjW2EvDvV6Yjk3e2vsN7297D4XJ42puVb8aT1zyp/QXkrFKzU5m5ZSYfb/8Yh8vBlfsNRn7uxC/H/X5gyxZUmj4dq7+/uUFFRKTAXczv0vrTksglsFgsBHfq6D5wOEiNLT6rQ52Pn5cfgxsP5qteX3FtuWs97b/E/cKt393KuHXjSMpMMjGhFCcuw8X8v+fTc15PZv8xG4fLQf09LkZ97jpVVLRpQ6UZM1RUiIiICguRSxXUoaPn65RiPhzqv6qHVWdWl1m81u41KgZVBNy/RH7212f0mNeDD//4kGxntskpxUxbjm7h7oV388zqZzieeRyA9n9YGfUF+OS4H3QHtW1LpWlvYPXTpnciIqKhUCKXzHA42NWqNU67HWtgILXWrsHq42N2rIuW5czioz8/4u0tb5PhyPC0lw8sz8BGA+lZvSc2q83EhFKU9iXvY+rGqfy076dTjYbB8B3VaT5/l6cpqFNHKk6eXCL/nRcRkbzTUCiRImDx8iKoXTsAXGlppK9bZ26gS+Rr8+XB+g/y/U3fc0ONGzztcWlxjF49mlu/u5Vl+5dpgncpdzT9KC+sfYEb59+Yq6ioE1idjze1yFVUhN15B5Vef11FhYiI5KLCQiQfgjufWh0qedGPJibJv+iAaMa3Hs8Xvb6gdcXWnva/T/zNkGVDuOeHe1hzeI0KjFImJTuFqRun0mNeDz7f+TlOw712bIRfBGOrD2TiXG98Fp3a/K7MsGGUGzMGi01PsUREJDcNhRLJB1dWFrtatsKVloY1JIRaq1aWmr/iro9fz5SNU9hydEuu9gZRDejfsD9tKrbBYrGYlE7yy55l55Ptn/Dx9o9JyU7xtAd4BXBfvfu4/URtjj81GmeSezK/xc+P8uPGEdqzh1mRRUTEBBfzu7QKC5F8OvTEEyR/+x0AlWbMILhDe5MTFRzDMFh2YBlTN05ltz33bt1XRlxJ/4b9aR/THqtFDz9LiqTMJD768yPm7JhDWk6ap93L6kWf2n148Ip7cb75AYkffOh5z7tSJSpNewO/OnXMiCwiIiZSYXEaFRZS2FKWLePggEcACOnVi4qTXjY5UcFzupws3r+Yt7e8za6kXbneqx5anXvr3kvPGj3xtfmalFAuJD4tno///JjPd36ea5K+l8WLnjV60r9BfyJ2HSV+7Biydv3teT+wTRsqTnoZW1iYCalFRMRsKixOo8JCCpuRnc3O1m1wJSdjDQig1prVpXb5TZfhYtmBZczcPJPtidtzvRfhF0Gf2n3oU7sPkf6RJiWU/9p2bBsf/vEhP+37yTN/AtxPKG6qeRP96vejbE4ACa++iv3LrzzvW3x8iH5sBOF3363dtEVELmMqLE6jwkKKwuFRo7B/9TUAFae+TkiXLiYnKlyGYbDy0Ere3fouGxM25nrPx+pDj+o9uL327VwVeZXmYZjA4XIQeyCWD//88Kyfzy1X3MID9R4g2hpK4scfc3zWu7jsdk8fv7p1qTDxJXxraSd2EZHLnQqL06iwkKKQumo1Bx58EIDg66+n0pTXTE5UdLYd28aHf37IT3tz/0UcoE5EHW674ja6V+tOkE+QSQkvH4dTD/P1rq+Zt2seCRkJud4L9w2nTx33E6UIlz8nvvqaY++8jfPoMU8fa2AgZYYNI/x/d2rVJxERAVRY5KLCQoqC4XCwq811OJOSsPj6UmvVSmzBwWbHKlJxqXHM2TGHL3d+SWpOaq73/L386V6tO71r9qZhmYZ6ilGAHC4HKw6u4IudX7D60GoMcn9Lrx5anXvq3kPP6j2x7D3Iia++5sSXX+JKObUSFFYrob16UWb4cLzLRhfxP4GIiBRnKixOo8JCikr88y+QNGcOAOWee47wPrebnMgc6TnpLNq7iC93fsnWY1vPeL9SUCV61uhJz+o9qRJSxYSEJZ9hGGw+upmFexby494fScxMzPW+zWLjukrXcfsVt9E0oyzpK1ZhX/A9WX9uP+NawV26UGbIYHxr1iyq+CIiUoKosDiNCgspKhnb/mDvrbcC4N+wIVU/m2tyIvPtSNzBF399wYI9C3ItbfqvqyKvolOVTnSo3IHqodVNSFi4DJcLIzMTV1YWRkYGRk4OWK3uYUY2GxabDYu3N9bAQCxeXue/lmGwM2knP+79kYV7FnIo9dB/O1DdVo47fFrRMrUc3jv3krbuFxxHjpxxLYuPDyG9ehJx77341a5dkP/IIiJSyqiwOI0KCykqhmGw58beZO3cCUD1Bd/jW6OGyamKh/ScdBbvW8z3/3zPL3G/nDFcB6BaaDU6Vu5Ip8qdqBtZt9gPlzJcLhzx8WTv30/2vv1k79+HI/4IjmPHcBw/hvPYcZwnTuT5ehZfX6yBgblelsAA7NYs4rOPcTjzCMmudJxWsBngl+1++edYqJAdQFhSDtaMrPPew69+fUJ79SSkZ0+8IiLy+f+AiIhcDlRYnEaFhRSl47Nnk/DSRAAiH+xH9GOPmZyo+DmSdoRFexfx/T/fsyNxx1n7RPlH0bx8c1pWaEnz8s0pE1CmiFOeYhgGjrg4Mv/6i6y//nL/765d5Ow/gJGdbVquvLD4+RFw9dUEtmpFULu2+FarZnYkEREpYVRYnEaFhRQlR2Iiu65rCw4HtjJR1Fq27IJDXC5nB1MOsmT/EpbuX8rvCb+f9UkGQM2wmlxb7loaRzemUXQjygWWK5Q8hsNB1u7dZG7bRub2He5CYufOXEux5oXFzw+vyEhsERHupw9+flj8/LB4e4PLheFygsOJ4XSSmZFCmv0YGclJuNJS8cp0EJAFXq6LuJ+3N14VyuNTsSLeMZXxu/JK/OpeiW/t2lh9tWmhiIhcOhUWp1FhIUXt4ODBpCz+GYBKM6YT3KGDyYlKhmMZx1h+YDnLDyzn1/hfc+0O/V9lA8rSOLox9aPqUzuiNrXDaxPmF3ZR9zNcLrL37iPzj21kbN1K5tZtZG7fjpGZecFzLd7eeFeujE+VKvhUroxPFffX3hUqYIsqgzUw4KxDuexZdnYm7WTbsW1sObqFLUe3nLEs7L+8HAZRRiCtw6+mRZlraRrVkECLL4bDgcVmwxoQgCUgAOvJlzaxExGRwqDC4jQqLKSopSxfzsH/GwBAYKtWVH53lsmJSp4cZw6bjm5i7eG1rD28lj+O/3HOpxn/ig6IpnZ4bWqG1SQmJIaY4BgqB1embEBZbFYbOXFxZGzZSua2rWRs3UbmH3/kXnL1HLzKlsW39hX41a6Db53a+NWujU/Vqud8EuV0OTmacZSDKQc5kHKAf+z/sCtpF7uSdp2ziPDcy+JFgzINaF6+Oc3KN6N+VH28bd4XzCgiIlJYVFicRoWFFDXD6WT39d3IOXAAgOoLF+JbXWPb88OeZWfrsa38nvA7mxM2s+XYlvM+0bC6DKocgToHDeoctnDlIQizO8/Z/1+WiuWx1b0CW93aeNW5Aq9aNbGEhZDpzCTTken533RHOkmZSSRmJnr+93jmceJS4zicdhiHy5Gnf65A70DqRdWjQVQDGkc3pmnZpgR4B+T5/xcREZHCpsLiNCosxAzH359NwkT3JO7wu++m3OhRJicqXRwuB7uSdrEjcQd/Jf3F7vjtuLb8SbV/0qh9CGoeNvDLOf81EoNgd3nLyRfsLmchNaDwVqIK8QmhVngtaobV5MqIK2lYpiHVQqths2qHaxERKb5UWJxGhYWYwWm3s6ttO4zMTKyBgdSMjcUWFGh2rFLDcDjI3LaNtHXrSFu7jozffz/vCk2Z3rCrgoWdFU8VE0nBBV9EBHoHUjGooudVKbgSVUOqUiu8FmX8yxT7JXRFRET+62J+l9ZyNSKFwBYaSmivXpz44gtcaWnY580j4p67zY5VojlPnCB15UpSli4lbdXq886P8CpfnoDGjfFv3Bj/Jo3xq12b2kY2xzOPcyzjGMcyjpGUmUR6TjqpOamk5aSRlpNGjisHl+HCMAxcuHAZLixY8PPyw8/mh6+XL342PwK8AwjzDSPcL5xIv0jC/cIJ9wsn2DtYxYOIiFy29MRCpJBk/rWTPTfeCIBXhfLU/PFH93Kjkmc5hw6R/ONPpC5dSvrvv4Pz7PMkvCtUIKBFcwKbNyfg6qvxLl++iJOKiIiUTnpiIVIM+NW+gsC215EWuwLH4TjsCxYQ1ru32bGKPUdSEimLFmH/fgEZGzactY81NJSgVi0JaN6cwBYt8ImJKeKUIiIi8l8qLEQKUdTDD5MWuwKA4+/MIvSGG7TfwFkYDgepsbGc+PwLUlevBseZqyr5VK1KUPv2BHdoj3/jxtp4UEREpJjRT2aRQhTQtCn+TZuSsWED2bt3k7L4Z0K6djE7VrGRcySBE199yYnPv8ARH3/G+z41ahDaqyfBXbpqyV4REZFiToWFSCGL6v8wBx7uD8DRN6YS3KkjFtvlvcRoxubNHH/vfVKWLDnj6YRX+fKE9uhOSM+e+NaurcnQIiIiJYQKC5FCFtimDf4NG5KxeTPZf+/G/s23hN18k9mxipxhGKStWMHxWe+Svn597jetVoLatiX8zjsIbN1aw8VERERKIBUWIoXMYrFQZsRw9t/bF4Cjb7xBSI/uWH19TU5WNAzDIDU2lqNTp5L15/Zc79miogi79RbCb78d7woVTEooIiIiBUGFhUgRCLz2WgKva0PaipU44uJI+vgTIvs9YHasQmUYBunr1nF0yutkbN6c6z2fatWI7PcAITfcgNXHx6SEIiIiUpBUWIgUkejhw9mzchUYBsemTyekZ0+8y0abHatQZPzxBwkTXyb9119ztfvWvZIyjzxCUIcOGu4kIiJSyugnu0gR8atTh7DbbgPAlZ5OwsSJJicqeI6kJOLGjGXvrbflKip8a9Wk4htTqfbVVwR36qSiQkREpBTST3eRIlTm0WHYwsIASF64kLQ1a8wNVEAMh4PETz5h9/XdOPH552AYAHhXqUyFSZOoNn8+IZ07a4UnERGRUkyFhUgR8goPp8yI4Z7jw6NH40xJMTFR/qWvX8+eW2/jyAvjcNntAFgDAoh+/HFqfPcdob16XvbL64qIiFwOVFiIFLGwW24h4NprAXAcjuPIixNMTnRpco4c4dCIx9h3z71k7djhaQ+98QaqL/qByH4PYNHEbBERkcuGCguRImaxWin/4otYAwMBsM+bR/KiH01OlXeu7GyOvf0Ou7t1J3nBAk+7b90rqTJnDhUmTsQ7unROShcREZFzU2EhYgKfShUp+/TTnuO4p58m659/TEyUN6mxsezpdQNHJ0/GSE8HwBYWRrlnn6XaF18Q0KSxyQlFRETELCosREwSevNNhPToAbhXiTo4aDDOk3MUipvsffs48H8DOND//8jet8/daLUS/r87qbHoB8Lv6KN5FCIiIpc5FRYiJrFYLJR/4Xl8r7gCgOx//uHAgEdwZWSYnOwUZ2oaCZNf45+evUhdvtzT7n91U6p9/RXlxozxrHIlIiIilzcVFiImsgYEUGnaG9giIwHI2LiRQ48Ox8jJMTWX4XJxYt58/unWjeNvv+3J4xUdTYVXXqHKRx/hV6eOqRlFRESkeFFhIWIyn8qViXl7pmcyd+ry5RwcNNi0Jxfpv//O3j53EDdyJI6jRwGweHsT+dBD1PhhIaE9e2g/ChERETmDCguRYsD/qquoNH2aZ3nW1NhY9j/QD8fx40WWIXPnTg4MGsS+O/9H5tatnvagTh2pvuB7okcM9xQ/IiIiIv+lwkKkmAhs3pyYd97x/PKe8fvv7LnpZtJ/+61Q75u1Zw+HRjzGnht7k/rzEk+7b61aVH7/PWKmTcOncuVCzSAiIiIln8UwDMPsEIUpOTmZ0NBQ7HY7ISEhZscRuaDMP/9kf//+OI8eczdYrUTcczdRg4dgCyqYJwaGYZD+63oSP/iA1GXL4LRvA17R0UQ9MoCwW2/F4uVVIPcTERGRkulifpdWYSFSDDmOHuXQY4+T/ssvnjZbVBSR/foR3ud2rAEBl3zd5IULOTFvfq7dsgFs4eFEPvww4XfegdXPL1/5RUREpHRQYXEaFRZSUhlOJ8dnvcuxGTMwsrI87dbAQIK7dCHk+q74N2mCLTj4nNdwZWaStXMnaWvWkrZqFekbN4LLlauPV9myhN99F+F3/q/AnoiIiIhI6aDC4jQqLKSkyz5wgIRXXiXlp59yDVkCwGrFp0oVvGMqYQsOweLri5GVhTMpkZz4I2Tv3XtGIfEvvwYNiLj3XkK6dsHi7V34/yAiIiJS4qiwOI0KCyktsnbt4vgHH5Cy6EdcqamXdA3vKpUJ6daN0F698K1Ro4ATioiISGmjwuI0KiyktHFlZpK6YgXpv/xK+saNZO/Zg5GZeUY/i7c3PjVr4le7Nv4NGxDYqpVWdxIREZGLcjG/S2vJF5ESxurnR0iXLoR06QK4V3hyJibiSk/HyMrC4u2NLSICa1CQNrITERGRIqPCQqSEs1gseEVGQmSk2VFERETkMqYN8kREREREJN9UWIiIiIiISL6psBARERERkXwrEYXF9OnTqVq1Kn5+fjRr1oxff/3V7EgiIiIiInKaYl9YfPbZZwwfPpyxY8eyceNGGjZsSNeuXUlISDA7moiIiIiInFTsC4vJkyfz0EMPcf/991O3bl3eeustAgICeO+998yOJiIiIiIiJxXrwiI7O5sNGzbQqVMnT5vVaqVTp06sXbv2rOdkZWWRnJyc6yUiIiIiIoWrWBcWx44dw+l0UrZs2VztZcuWJT4+/qznTJgwgdDQUM8rJiamKKKKiIiIiFzWinVhcSlGjhyJ3W73vA4cOGB2JBERERGRUq9Y77wdFRWFzWbjyJEjudqPHDlCuXLlznqOr68vvr6+RRFPREREREROKtZPLHx8fGjatClLlizxtLlcLpYsWUKLFi1MTCYiIiIiIqcr1k8sAIYPH07fvn25+uqrufbaa5kyZQppaWncf//9ZkcTEREREZGTin1h0adPH44ePcqYMWOIj4+nUaNGLFq06IwJ3SIiIiIiYh6LYRiG2SEKU3JyMqGhodjtdkJCQsyOIyIiIiJSYlzM79LFeo6FiIiIiIiUDCosREREREQk31RYiIiIiIhIvqmwEBERERGRfFNhISIiIiIi+Vbsl5vNr38XvUpOTjY5iYiIiIhIyfLv79B5WUi21BcWKSkpAMTExJicRERERESkZEpJSSE0NPS8fUr9PhYul4vDhw8THByMxWIp8vsnJycTExPDgQMHtI9GCaLPrWTS51by6DMrmfS5lUz63Eqe4vCZGYZBSkoKFSpUwGo9/yyKUv/Ewmq1UqlSJbNjEBISov+ISyB9biWTPreSR59ZyaTPrWTS51bymP2ZXehJxb80eVtERERERPJNhYWIiIiIiOSbCotC5uvry9ixY/H19TU7ilwEfW4lkz63kkefWcmkz61k0udW8pS0z6zUT94WEREREZHCpycWIiIiIiKSbyosREREREQk31RYiIiIiIhIvqmwKGLjx4+nZcuWBAQEEBYWZnYcOYfp06dTtWpV/Pz8aNasGb/++qvZkeQ8VqxYQa9evahQoQIWi4X58+ebHUkuYMKECVxzzTUEBwcTHR1N7969+euvv8yOJRfw5ptv0qBBA8+a+i1atOCHH34wO5ZchJdeegmLxcKwYcPMjiLn8eyzz2KxWHK96tSpY3asC1JhUcSys7O57bbbGDBggNlR5Bw+++wzhg8fztixY9m4cSMNGzaka9euJCQkmB1NziEtLY2GDRsyffp0s6NIHsXGxjJw4EDWrVvH4sWLycnJoUuXLqSlpZkdTc6jUqVKvPTSS2zYsIHffvuNDh06cOONN/LHH3+YHU3yYP369cycOZMGDRqYHUXy4KqrriIuLs7zWrVqldmRLkirQplk9uzZDBs2jBMnTpgdRf6jWbNmXHPNNUybNg0Al8tFTEwMgwcP5qmnnjI5nVyIxWJh3rx59O7d2+wochGOHj1KdHQ0sbGxXHfddWbHkYsQERHBpEmT6Nevn9lR5DxSU1Np0qQJM2bMYNy4cTRq1IgpU6aYHUvO4dlnn2X+/Pls2rTJ7CgXRU8sRE6TnZ3Nhg0b6NSpk6fNarXSqVMn1q5da2IykdLNbrcD7l9SpWRwOp3MnTuXtLQ0WrRoYXYcuYCBAwfSo0ePXD/fpHjbtWsXFSpUoHr16tx1113s37/f7EgX5GV2AJHi5NixYzidTsqWLZurvWzZsuzYscOkVCKlm8vlYtiwYbRq1Yp69eqZHUcuYOvWrbRo0YLMzEyCgoKYN28edevWNTuWnMfcuXPZuHEj69evNzuK5FGzZs2YPXs2tWvXJi4ujueee442bdqwbds2goODzY53TnpiUQCeeuqpMybY/PelX0pFRM5u4MCBbNu2jblz55odRfKgdu3abNq0iV9++YUBAwbQt29f/vzzT7NjyTkcOHCAoUOH8sknn+Dn52d2HMmjbt26cdttt9GgQQO6du3KwoULOXHiBJ9//rnZ0c5LTywKwIgRI7jvvvvO26d69epFE0byJSoqCpvNxpEjR3K1HzlyhHLlypmUSqT0GjRoEN9//z0rVqygUqVKZseRPPDx8aFmzZoANG3alPXr1/P6668zc+ZMk5PJ2WzYsIGEhASaNGniaXM6naxYsYJp06aRlZWFzWYzMaHkRVhYGFdccQV///232VHOS4VFAShTpgxlypQxO4YUAB8fH5o2bcqSJUs8k39dLhdLlixh0KBB5oYTKUUMw2Dw4MHMmzeP5cuXU61aNbMjySVyuVxkZWWZHUPOoWPHjmzdujVX2/3330+dOnV48sknVVSUEKmpqezevZt77rnH7CjnpcKiiO3fv5/ExET279+P0+n0zPavWbMmQUFB5oYTAIYPH07fvn25+uqrufbaa5kyZQppaWncf//9ZkeTc0hNTc31V5w9e/awadMmIiIiqFy5sonJ5FwGDhzInDlz+OabbwgODiY+Ph6A0NBQ/P39TU4n5zJy5Ei6detG5cqVSUlJYc6cOSxfvpwff/zR7GhyDsHBwWfMXQoMDCQyMlJzmoqxxx57jF69elGlShUOHz7M2LFjsdls3HnnnWZHOy8VFkVszJgxfPDBB57jxo0bA7Bs2TLatWtnUio5XZ8+fTh69ChjxowhPj6eRo0asWjRojMmdEvx8dtvv9G+fXvP8fDhwwHo27cvs2fPNimVnM+bb74JcMb3vffff/+CQ0vFPAkJCdx7773ExcURGhpKgwYN+PHHH+ncubPZ0URKlYMHD3LnnXdy/PhxypQpQ+vWrVm3bl2xHyGjfSxERERERCTftCqUiIiIiIjkmwoLERERERHJNxUWIiIiIiKSbyosREREREQk31RYiIiIiIhIvqmwEBERERGRfFNhISIiIiIi+abCQkRERERE8k2FhYiIiIiI5JsKCxERKVJOp5OWLVty880352q32+3ExMQwatQok5KJiEh+WAzDMMwOISIil5edO3fSqFEj3nnnHe666y4A7r33XjZv3sz69evx8fExOaGIiFwsFRYiImKKqVOn8uyzz/LHH3/w66+/ctttt7F+/XoaNmxodjQREbkEKixERMQUhmHQoUMHbDYbW7duZfDgwYwePdrsWCIicolUWIiIiGl27NjBlVdeSf369dm4cSNeXl5mRxIRkUukydsiImKa9957j4CAAPbs2cPBgwfNjiMiIvmgJxYiImKKNWvW0LZtW3766SfGjRsHwM8//4zFYjE5mYiIXAo9sRARkSKXnp7Offfdx4ABA2jfvj3vvvsuv/76K2+99ZbZ0URE5BLpiYWIiBS5oUOHsnDhQjZv3kxAQAAAM2fO5LHHHmPr1q1UrVrV3IAiInLRVFiIiEiRio2NpWPHjixfvpzWrVvneq9r1644HA4NiRIRKYFUWIiIiIiISL5pjoWIiIiIiOSbCgsREREREck3FRYiIiIiIpJvKixERERERCTfVFiIiIiIiEi+qbAQEREREZF8U2EhIiIiIiL5psJCRERERETyTYWFiIiIiIjkmwoLERERERHJNxUWIiIiIiKSbyosREREREQk3/4fIjTV35pnri8AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "mapies = [mapie_split, mapie_cv, mapie_cqr, mapie_ccp]\n", + "y_preds = [y_pred_split, y_pred_cv, y_pred_cqr, y_pred_ccp]#_1, y_pred_ccp_2, y_pred_ccp_3]\n", + "y_pis = [y_pi_split, y_pi_cv, y_pi_cqr, y_pi_ccp]#_1, y_pi_ccp_2, y_pi_ccp_3]\n", + "titles = [\"Basic Split (new implementation)\", \"CV+\", \"CQR\", \"CCP (default)\"]# 1\", \"CCP 2\", \"CCP 3\"]\n", + "\n", + "plot_figure(mapies, y_preds, y_pis, titles)\n", + "plot_widths(titles, y_pis)" + ] + }, + { + "cell_type": "markdown", + "id": "50af1a1f", + "metadata": {}, + "source": [ + "The ``SplitCPRegressor`` is a very adaptative method, even with default parameters values. If the dataset is more complex, the default parameters may not be enough to get the best performances. In this case, we can use more advanced settings, described below." + ] + }, + { + "cell_type": "markdown", + "id": "3bd4052c", + "metadata": {}, + "source": [ + "# How to improve the results ?\n", + "## 1/ How does the ``CCP`` method works ?" + ] + }, + { + "cell_type": "markdown", + "id": "f5d6d295", + "metadata": {}, + "source": [ + "The CCP method is based on a function $\\phi : X \\to \\phi(X) \\in \\R^d$\n", + "\n", + "This vector $\\phi(X)$ constitute features that should be able to represente the distribuion of the conformity scores, which is here (by default) the absolute residual: $\\lvert y_{true} - y_{pred} \\rvert$\n", + "#### Examples of basic $\\phi$:\n", + " - $\\phi : X \\to 1$, will try to estimate the absolute residual with a constant, and will results in a prediction interval of constant width (like the basic split CP)\n", + " - $\\phi : X \\to (1, X)$, will result in a prediction interval of width equal to: a constant + a value proportional to the value of $X$ (it seems a good idea here, as the uncertainty increase with $X$)\n", + " - $\\phi : X \\to (1, X^3)$, will result in a prediction interval of width equal to: a constant + a value proportional to the value of $X^3$ (it seems a good idea here, as the uncertainty increase with $X$)\n", + " - $\\phi : X \\to y_{pred}$, will result in a prediction interval of width proportional to the prediction (It is sometime the case, when the uncertainty is proportionnal to the value).\n", + " \n", + " Note that using $\\phi : X \\to y_{pred}$ is somewhat similar to using a standard Split CP (``method=\"base\"`` in ``MapieRegressor``) with a ``GammaConformityScore``.\n", + " \n", + "\n" + ] + }, + { + "cell_type": "markdown", + "id": "d47d625c", + "metadata": {}, + "source": [ + "#### Using custom definition:" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "5c783830", + "metadata": {}, + "outputs": [], + "source": [ + "calibrator1 = CustomCCP([lambda X: np.ones(len(X))])\n", + "calibrator1_bis = CustomCCP(bias=True)\n", + "# calibrator1_bis is equivalent to calibrator1, as bias=True adds a column of ones\n", + "calibrator2 = CustomCCP([lambda X: X], bias=True)\n", + "calibrator3 = CustomCCP([lambda X: X**3], bias=True)" + ] + }, + { + "cell_type": "markdown", + "id": "d0d8e515", + "metadata": {}, + "source": [ + "#### Using ``PolynomialCCP`` class:" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "f25b8c98", + "metadata": {}, + "outputs": [], + "source": [ + "calibrator1 = PolynomialCCP(0)\n", + "calibrator2 = PolynomialCCP(1) # degree=1 is equivalent to degree=[0, 1]\n", + "calibrator3 = PolynomialCCP([0, 3]) # Warning, degree=2 is equivalent to degree=[0, 1, 2]\n", + "# Note: adding '0' in the 'degree' argument list is equivalent to having bias=True, as X^0=1" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "77f2c8a4", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABKUAAAMWCAYAAAAgRDUeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3zb5bX48Y/2smV575HETuw4wxmQHUbC3i1lQym0ha7b3o57294OaPtrezvgdjJaCiUFSltCWQmBBEhCBmTZSRw7HnEsb8lDlq29fn98bcVOHAiQ2CE57xd+mdhfS49k+Xt0zvd5zqOKxWIxhBBCCCGEEEIIIYQYR+qJHoAQQgghhBBCCCGEOPtIUUoIIYQQQgghhBBCjDspSgkhhBBCCCGEEEKIcSdFKSGEEEIIIYQQQggx7qQoJYQQQgghhBBCCCHGnRSlhBBCCCGEEEIIIcS4k6KUEEIIIYQQQgghhBh3UpQSQgghhBBCCCGEEONOilJCCCGEEEIIIYQQYtxJUUqICXT48GFUKhVPPPHERA9lTGON77777kOlUk3coIQQQgghhBBCnBGkKCUE8MQTT6BSqUZ9ZGRkcMEFF7B27dqJHt4JczqdfPWrX6W0tBSTyURGRgbnnnsu//3f/83g4OApu9+f/vSn/Pvf/z5lty+EEGeqxsZG7rnnHiZPnozRaMRqtbJkyRJ+85vfsGXLFlQqFd/73veO+/P19fWoVCq+/vWvj+OohRBCnArvFRN8Pl/8uFAoxG9/+1vOOeccEhMTSUhI4JxzzuF3v/sd4XD4mNstKioaledYLBbOPfdcnnzyyfF8eEKMSRWLxWITPQghJtoTTzzBZz7zGX70ox8xadIkYrEYXV1dPPHEE1RXV/PSSy9x5ZVXnvT7jcViBAIBdDodGo3mI91Wb28vc+bMwe12c9ddd1FaWkpPTw979+7l5ZdfZu/evRQVFX2g2zx8+DCTJk3i8ccf58477wQgHA4TDocxGo3x4xISErj++utP2xlfQghxOnrllVf41Kc+hcFg4I477mDGjBkEg0HefvttnnvuOe688042b95MMBiksbFxzNu4//77ue+++9i1axdz584d50cghBDiZDmRmPDoo4/i8Xi44oor2LhxI1deeSWXXnoparWaV199lRdffJELL7yQl156CbPZHL/toqIikpOT+cY3vgFAR0cHf/7zn6mrq+PRRx/lc5/73EQ9bCHQTvQAhDidXHbZZcyfPz/+77vvvpvMzEyeeeaZU1KUUqlUo4o7H8Vjjz2G3W5ny5YtLF68eNT33G43er3+pNyPVqtFq5VThxBCfBRNTU3cdNNNFBYW8sYbb5CdnR3/3pe+9CUaGhp45ZVXKCgo4Pvf/z7bt29n4cKFx9zOM888Q2lp6XsWpIqKirjzzju57777TsVDEUII8RGdaEwA+PrXv87GjRv53e9+x5e//OX4cV/4whf4wx/+wJe//GW+9a1v8Yc//GHUfeTm5nLbbbfF/33nnXcyefJkHnzwQSlKiQkly/eEeA82mw2TyXRMEeZXv/oVixcvJjU1FZPJxLx58/jXv/51zM+//vrrLF26FJvNRkJCAtOmTeO73/1u/PvH6ylVW1vLDTfcQHp6OiaTiWnTpvE///M/7znWxsZGNBrNmEmL1WodVfw6//zzmTFjBrt27WLx4sWYTCYmTZrEww8//L7PydE9pVQqFR6Ph7/+9a/xKcHDs6qEEEKM7Re/+AWDg4M89thjo5KPYcXFxXz1q1/l1ltvBeDpp58+5phdu3Zx8ODB+DFCCCE+nk40JrS2tvLYY49x4YUXjipIDfvSl77EBRdcwKOPPkpbW9t73md6ejqlpaXHnYkrxHiRopQQI/T399Pd3Y3T6aS6upovfOELDA4OjrqqAPCb3/yGOXPm8KMf/Yif/vSnaLVaPvWpT8WvYABUV1dz5ZVXEggE+NGPfsSvf/1rrr76arZs2fKeY9i7dy8LFizgjTfe4HOf+xy/+c1vuPbaa3nppZfe8+cKCwuJRCKsWrXqhB5rX18fl19+OfPmzeMXv/gFeXl5fOELX+Avf/nLCf38sFWrVmEwGFi2bBmrVq1i1apV3HPPPR/oNoQQ4mzz0ksvMXny5GNmth5t0qRJLF68mH/84x9EIpFR3xsuVN1yyy2nbJxCCCFOvRONCWvXriUSiXDHHXcc95g77riDcDjMq6+++p63FQ6HaW1tJTk5+UONWYiTRdbgCDHCypUrR/3bYDDwl7/8hYsuumjU1+vq6jCZTPF/f/nLX2bu3Lk88MADXHHFFYAySyoYDLJ27VrS0tJOeAxf+cpXiMVi7N69m4KCgvjXf/7zn7/nz9111108+OCD3Hnnnfz85z/n/PPPZ/ny5Vx++eUkJSUdc3x7ezu//vWv481x77nnHhYsWMB3vvMdbr/9dnQ63QmN97bbbuPee+9l8uTJxxTvhBBCHMvtdtPW1sY111xzQsffeuutfOlLX2LDhg1cfPHFAESjUZ599lkWLVrE5MmTT+VwhRBCnEIfJCYcOHAAgNmzZx/3mOHvDR87LBQK0d3dDUBnZye/+MUv6Ozs5Etf+tKHHboQJ4XMlBJihD/84Q+8/vrrvP766/ztb3/jggsu4LOf/SyrV68eddzIglRfXx/9/f0sW7aM3bt3x79us9kAeOGFF4hGoyd0/06nk02bNnHXXXeNKkgBo5bMjSUzM5Oqqiruvfde+vr6ePjhh7nlllvIyMjgxz/+MUfvaaDVakfNaNLr9dxzzz04HA527dp1QuMVQgjxwbndbgASExNP6Pgbb7wRnU43agnfxo0baWtrO2bpXiAQoLu7e9RHNBrF6/Ue83UhhBAT74PEhIGBgfc9dvh7w8cOe+2110hPTyc9PZ2ZM2eyatUqPvOZz/DLX/7yww5diJNCilJCjHDuueeycuVKVq5cya233sorr7zC9OnT+fKXv0wwGIwf9/LLL7Nw4UKMRiMpKSmkp6fz0EMP0d/fHz/mxhtvZMmSJXz2s58lMzOTm266iX/84x/vWaA6dOgQADNmzPhQ48/Ozuahhx6io6ODgwcP8tvf/pb09HR+8IMf8Nhjj406NicnB4vFMuprU6dOBZReV0IIIU4Nq9UKHJswHE9qaiqXXHIJzz//PH6/H1CW7mm1Wm644YZRxz7zzDPxpGP4o6WlhV/+8pfHfF0IIcTE+yAx4XgFp5GGv5eRkTHq6wsWLOD111/n1Vdf5Ve/+hU2m42+vr6TthmSEB+WFKWEeA9qtZoLLriAjo4O6uvrAdi8eTNXX301RqORP/7xj6xZs4bXX3+dW265ZdRsJJPJxKZNm1i/fj233347e/fu5cYbb+Siiy46pi/IyaZSqZg6dSpf+cpX2LRpE2q1mqeeeuqU3qcQQogTY7VaycnJYf/+/Sf8M7fddhtut5uXX36ZYDDIc889x8UXX3xMcemSSy6Jz/gd/sjMzOT2228/5utCCCEm3geJCdOnTweUHrTHM/y9o5d2p6WlsXLlSi655BK+8Y1v8Le//Y1///vf/OY3v/kIoxfio5OeUkK8j3A4DMDg4CAAzz33HEajkXXr1mEwGOLHPf7448f8rFqtZsWKFaxYsYIHHniAn/70p/zP//wPb7755jH9q+BI8Pggicr7mTx5MsnJyXR0dIz6ent7Ox6PZ9Rsqbq6OkDZPvyDeL+lhUIIIUa78sorefTRR9m2bRuLFi163+OvvvpqEhMTefrpp9HpdPT19Y256152dvYxOzcZjUYmT548ZtwRQggx8U40Jlx22WVoNBpWrVp13GbnTz75JHq9/n17VF1xxRWcd955/PSnP+Wee+45ZgWFEONFZkoJ8R5CoRCvvfYaer2esrIyADQaDSqVatRsp8OHD/Pvf/971M/29vYec3sVFRWA0vNjLOnp6Sxfvpy//OUv2O32Ud87uifU0d555x08Hs8xX3/33Xfp6elh2rRpo74eDod55JFH4v8OBoM88sgjpKenM2/evPe8r6NZLBZcLtcH+hkhhDib/dd//RcWi4XPfvazdHV1HfP9xsbGUVevTSYT1113HWvWrOGhhx7CYrGccKN0IYQQp7cTjQl5eXncfffdrF+/noceeuiY4x5++GHeeOMN7rnnHlJTU9/3fv/7v/+bnp4e/vSnP52UxyHEhyEzpYQYYe3atdTW1gLgcDh4+umnqa+v59vf/nZ8vfcVV1zBAw88wKWXXsott9yCw+HgD3/4A8XFxaOm0v7oRz9i06ZNXHHFFRQWFuJwOPjjH/9IXl4eS5cuPe4Yfvvb37J06VLmzp3L5z//eSZNmsThw4d55ZVXqKysPO7PrVq1iqeeeorrrruOefPmodfrqamp4S9/+QtGo5Hvfve7o47Pycnhf//3fzl8+DBTp07l2WefpbKykkcfffSEd94bNm/ePNavX88DDzxATk4OkyZNYsGCBR/oNoQQ4mwyZcoUnn76aW688UbKysq44447mDFjBsFgkK1bt/LPf/6TO++8c9TP3HbbbTz55JOsW7eOW2+9Va5qCyHEGeKDxIQHHniA2tpavvjFL/Lqq69y6aWXArBu3TpeeOEFLrzwwhNuXn7ZZZcxY8YMHnjgAb70pS994BxAiJMiJoSIPf744zFg1IfRaIxVVFTEHnrooVg0Gh11/GOPPRYrKSmJGQyGWGlpaezxxx+P/fCHP4yN/JPasGFD7Jprronl5OTE9Hp9LCcnJ3bzzTfH6urq4sc0NTXFgNjjjz8+6vb3798fu+6662I2my1mNBpj06ZNi33/+99/z8ewd+/e2Le+9a3Y3LlzYykpKTGtVhvLzs6OfepTn4rt3r171LHnnXderLy8PLZz587YokWLYkajMVZYWBj7/e9/P+q4scZ39OOMxWKx2tra2PLly2MmkykGxD796U+/51iFEEIo6urqYp/73OdiRUVFMb1eH0tMTIwtWbIk9rvf/S7m9/tHHRsOh2PZ2dkxILZmzZoTvo/CwsLYD3/4w5M8ciGEECfbicaEYDAY+7//+7/YvHnzYmazOZ6/fPrTn45FIpFjbrewsDB2xRVXjHmfTzzxxJj5iBDjRRWLvc+aICHEGef888+nu7v7pPauEkIIIYQQQow/t9vNeeedR2NjI5s2bYq3DBHi40B6SgkhhBBCCCGEEB9TVquVtWvXkpaWxuWXX05zc/NED0mIEyY9pYQQQgghhBBCiI+xrKwsDh06NNHDEOIDk5lSQgghhBBCCCGEEGLcSU8pIYQQQgghhBBCCDHuZKaUEEIIIYQQQgghhBh3UpQSQgghhBBCCCGEEONOGp0fJRqN0t7eTmJiIiqVaqKHI4QQp71YLMbAwAA5OTmo1WfOtQ6JB0II8cGdiTFB4oEQQnxwJxoPpCh1lPb2dvLz8yd6GEII8bHT0tJCXl7eRA/jpJF4IIQQH96ZFBMkHgghxIf3fvFAilJHSUxMBJQnzmq1TvBohBDi9Od2u8nPz4+fP88UEg+EEOKDOxNjgsQDIYT44E40HkhR6ijDU3KtVqsEHSGE+ADOtCUNEg+EEOLDO5NigsQDIYT48N4vHpwZC72FEEIIIYQQQgghxMeKFKWEEEIIIYQQQgghxLiTopQQQgghhBBCCCGEGHdSlBJCCCGEEEIIIYQQ406KUkIIIYQQQgghhBBi3ElRSgghhBBCCCGEEEKMOylKCSGEEEIIIYQQQohxJ0UpIYQQQgghhBBCCDHupCglhBBCCCGEEEIIIcadFKWEEEIIIYQQQgghxLiTopQQQgghhBBCCCGEGHdSlBJCiNNIc3M/a9Ycorm5f6KHIoQQYgJJPBBCCDHsTI4J2okegBBCiCOqq3vYtq0dgMLCpAkejRBCiIki8UAIIcSwMzkmSFFKCCFOI+XlqaM+CyGEODtJPBBCCDHsTI4JUpQSQojTSGFh0hl39UMIIcQHJ/FACCHEsDM5JkhPKSGEEEIIIYQQQggx7qQoJYQQQgghhBBCCCHGnRSlhBBCCCGEEEIIIcS4k6KUEEIIIYQQQgghhBh3UpQSQgghhBBCCCGEEONOilJCCCGEEEIIIYQQYtxJUUoIIYQQQgghhBBCjDspSgkhhBBCCCGEEEKIcSdFKSGEEEIIIYQQQggx7qQoJYQQQgghhBBCCCHGnRSlhBBCCCGEEEIIIcS4k6KUEEIIIYQQQgghhBh3UpQSQgghhBBCCCGEEONOilJCCCGEEEIIIYQQYtxJUUoIIYQQQgghhBBCjDspSgkhhBBCCCGEEEKIcSdFKSGEEEIIIYQQQggx7qQoJYQQQgghhBBCCCHGnRSlhBBCCCGEEEIIIcS4k6KUEEIIIYQQQgghhBh3UpQSQgghhBBCCCGEEONOilJCCCGEEEIIIYQQYtxJUUoIIYQQQgghhBBCjDspSgkhhBBCCCGEEEKIcSdFKSGEEEIIIYQQQggx7qQoJYQQp4ktW1q5//4tbNnSOtFDEUIIMYEkHgghhBh2pscE7UQPQAghhGL9+mbWr7cDsGRJ3gSPRgghxESReCCEEGLYmR4TpCglhBCniZUrC0d9FkIIcXaSeCCEEGLYmR4TpCglhBCniSVL8s7Iqx9CCCE+GIkHQgghhp3pMUF6SgkhhBBCCCGEEEKIcSdFKSGEEEIIIYQQQggx7qQoJYQQZ6Hm5n7WrDlEc3P/RA9FCCHEBJOYIIQQAiYmHkhPKSGEOAtVV/ewbVs7AIWFSRM8GiGEEBNJYoIQQgiYmHggRSkhhDgLlZenjvoshBDi7CUxQQghBExMPJCilBBCnIUKC5PkargQQghAYoIQQgjFRMQD6SklhBBCCCGEEEIIIcbdGVWUuu+++1CpVKM+SktLJ3pYQgghJoDEBCGEECDxQAghTmdn3PK98vJy1q9fH/+3VnvGPUQhhBAnSGKCEEIIkHgghBCnqzPubKzVasnKyproYQghhDgNSEwQQggBEg+EEOJ0dUYt3wOor68nJyeHyZMnc+utt2K32yd6SEIIISaIxAQhhBAg8UAIIU5XZ9RMqQULFvDEE08wbdo0Ojo6uP/++1m2bBn79+8nMTFxzJ8JBAIEAoH4v91u93gNVwghxCn0QWOCxAMhhDgzSTwQQojTlyoWi8UmehCnisvlorCwkAceeIC77757zGPuu+8+7r///mO+3t/fj9VqPdVDFEKIjz23201SUtJpf958v5gg8UAIIT66j0NMkHgghBCn3onGgzNu+d5INpuNqVOn0tDQcNxjvvOd79Df3x//aGlpGccRCiGEGC/vFxMkHgghxNlhvONBNBb9SD8vhBBnsjO6KDU4OEhjYyPZ2dnHPcZgMGC1Wkd9CHE22LKllfvv38KWLa0TPRQhxsX7xQSJB+JsJfFAnG3GMx64/C5ueeUW3rS/+aFvQ4jxJDFBjLczqij1zW9+k40bN3L48GG2bt3Kddddh0aj4eabb57ooQlx2lm/vpn16+2sX9880UMR4pSQmCDEiZF4IM50ExkPkgxJqFVqfrj1h/T4ek75/QnxUUlMEOPtjGp03trays0330xPTw/p6eksXbqU7du3k56ePtFDE+K0s3Jl4ajPp0pzcz/V1T2Ul6dSWJh0Su9LiJEkJghxYsYrHoDEBDExJjIeqFQqvjj7i/zHm//BT7b/hAcvePCU36cQH4XkCGK8nVFFqb///e8TPQQhRgmGo/R6gnQPBujxBOkZDNDrCTIYCOMJRPAGw/hCEXzBCDFArVLevGhUKjRqFRaDhkSjDqtRS6JRR6pFT4bVSKbVQHqiAYNW86HHtmRJHkuW5H2kx7dlSyvr1zezcmXhcW+rurqHbdvaAc7agHMiz5M4+SQmiNNKLAZ+F3h6wOM88uHrhaAPQoMQ9ELIC5EgoAaVClRqUGtBawRDAhiTjnwkZEJiNiRmgSlZOf5DGK94ABITJB5MjImOB7mJuSzKXsR6+3peP/w6FxVdNKHjEeK9SI4wfiQmKM6oopQQE8EfilDfNUi9YwB7r5fD3R7svV5a+3w4BwIcvb2lQavGqFOj0xz50GpUqFBylhgxYjGIxpSiViAcwR9SPkePurEkk45cm4lJaRamZFiYmplIcUYCxekJaDWnfnXu8PRe4Lgn0vLy1FGfz0Yn8jwJIc4AsRi428BRAz0N0NsEvYfA1Qz9LRDyjT5epQadGbQG0OhArR/6rEYJHrGhwBCFaBjCAQj7lY9IcPRtafSQkAUpkyCtBNJLIW0qZM4Ay6k//57oee5sjwkSD85e8zPn0+Bq4Kfv/pRzs88lyXB2JuHi7CA5womRmKCQopQQH4DD7aeyxcX+tn5qOgY42DVAS683XnhKNGpJNuuxmXVMzUzgnKJkEgw6zHo1VqOeRJMWk06DRq3MhFKrVMrsKFQM/QcouUgsNlycihGJKh8DgRAuT4g+X4jBQAi3P0K/N8i+NhdvHnTgDUYA0GvUTMmwMDM3iTn5ycwvSqY4IwHVh7yKfjwnMr23sDDprL36MWw8l8YIIcZJOAhd+6BtN3Tug6794DwIwUHl+xodmFLBnALmNEiZosxu0lvAkAgGKxgTlWKSSgNqjVKkUqlQZkkN3c/RxamRBSp/H3h7weeCwIDyedABjgPg/YtyLCgzqTJnQu5cyD8X8hcoYziJTvQ8d7bHBIkHZy+1Ss2np3+aX+z8BT/Z/hN+ed4vJ3pIQpwykiOcGIkJClUsFjt6IsdZze12k5SURH9//wfaaSMSjfHjlw9ww/w8puec3X9cZwp/KEJVi4vKFhe77X1UtrjocgcApfiUaTWSlqAnxaInPdFAltWI1ajDoFVj0GrQaVVo1ad+tlI0GiMwNKOqzxukpddHe7+PTrefLneA7qHZWkkmHfMKbCwpSWdpcRpTM09+kUqcnT7sefN095EeV8sOqHkRLvrRh15SJU4jsZgy26nlXWjdqXx27IdISFlal5ClLKWzpIIlQykCJWSMmAU1NBPqVL8WYjGIhpSCVdCjzNrqawZ3Owx0wEC7MltLpYaMMihcClMugMIlYDxz/nbFxDoTY8JHfUxN/U1satlEYVIhaw6tYe3htfx86c+5YsoVp2C0QghxejjRc6fMlDpJvMEwWxu7eW5XK099bgGz8mwTPSTxAQXCESrtLrYd6mFrQzeVLf0EI1EMWjW5NhNT0hNYPCWVPJuJjEQjZoMWo079kfo6nQxqtQqTXoNJr8Fm1jMpLQFQZlj5QxF6B4PUOQY43OOl3jHIxrpuIrEY6Ql6zpuWwaXlWSwtScOoG//H8dxzB1m9up5PfKKET35y2rjf/+lguMljUpKe/v6gNHs8U3QfhK2/VYoBn/yzFKY+jlx2OPw2HNoIhzcpv0tQik/WPCi5BKzZYCtSCjo6E2jNytK7iaJSKTOvNHplJlRiFuTOU74XDiqzuPqawVkLfU2w9+/w7iNKYS13HpReAaVXQuqUCRn+2R4TJB6cHS6ddCkHeg/w03d/ytysuWRbsid6SEKcds72eABnV0yQotRJkmjU8bNPzOLev+3i9sfe5e+fX0hZ9plxdehMFYvFqO0c4M2DDjbVOdltdxEMRzHrNRSlWjh/Wjp5KSbyksxYTVrMei167QQmGx+QWqXCrNdiTtGSl2IGjjRer+lwU+cY4I0aB//a1Ypeq+bcohSunZPDZTOysRjG59SwenU9mza1Apy1AWe4yaNWqyIcViaunqkB56wy5zY4vBmq/q4UB658UApTpzufCw69CfXroWmj0gMKFSTlKUvvJp0PyZMgIR30CaA3KzOOPi60etCmKMsJc+coS/sCg0pxqnMfOOtgw4/g9R+ArRDKroKKWyCzfNyGeLbHBIkHZwe1Ss1nyj/Dz979Gd/e9G0ev+Rx1BNZzBbiNHS2xwM4u2KCFKVOolSLnpvm5/HUuy3c+ud3+PvnFjI16+T2bBAfzWAgzNv13bxZ6+DNgw4cAwEMWjWT0yycV5JGXoqZwhQzVqMOi0GLRn1mJZF6rZqsJCNZSUYuKM3AGwhzqNvDW/s6qWzo4e2Gbr77/H6WFqdx/dxcLizLPKUzqD7xiZJRn89Gw80dR14FEWeIyRfCYDfselxZunXZL6QwdTqJxZTeS/WvwcFXoXUHxCJgzVGKUEVLlc8JGUr/J51xokd8cqnUygyv7NnKRzQMgw4697xNuH0/2e/8Gc2230PKZCj/hFKgOsUzqM72mCDx4OyRakrl+qnX81TNU/xp35+4Z/Y9Ez0kIcY0UbvDne3xAM6umCA9pY7yUdaMH+728PqBThIMWn6x7iDRGDx51znMzk8+RaMVJ6K1z8ur+ztZX9PFzsN9hKMxMq0GJqclUJRqZnKahWSLngSDdlx2rDsdPfP3GiqrnBTOTCZpipUDHW663AEsBg1XzsrhzsWFlGWfnMr88FTUM3kK6kQb7+f4TOwfAifhcVU9q+ySVr8Oal+Bilvhmj9IYWoihYNw6C2ofVkpRg10KD2fUkuUAlRqCdjyhopQprPyd/XMMzVUVTlYMNvIdXP7oH23stwvEoTsCjjnszDzeuX5+YgkHowPiQkf3cnsKTXSY/seo7qnmj9f/GfmZs49WcMV4qS5//4trF9vZ+XKAn74wyWn9L4kJpx6p2s8kJlSp0B6opFvX1rKA6/XcfOf3uHR2+extCR9ood1Vmnu8bB2fycvV7Wzv92NTqNicloCK8symJRuIc9mJsmkm5A+Sqejitnp8c9lZWkEw1EOdrl5t6mXl/e28+yOFsqyE7l1QSGfmJuLWf/hTx3DU1FhYqegHr1WfaKuBJ0Kp8tzLIbMuR00Rqh8Cvz98KknlJlTYnyE/ND4BlQ/D3VrlV3qEjIhbZrSFyqtBMypyjJLtcSE2RVKPJhWkQ7T0mDqxcqMP/sWZTbZi1+GV78N5dfBgnsga+aHvq/T5Vx1JscDOH2eZ3GsW8tu5X93/C/f2vgt/nnVP0kxpUz0kIQYZTx3hztdzlVnckw4XZ7jo0lR6hRJTTDwX5dO48H19dz1xE5+/smZfGLux/tFfLprcAyydn8HL+/t4GDnAHqNmqmZCVxbkcPUrATSE4wkGrXjsiPex01ZWRplZWnxf+u1ambm2piZa8PtC7LtUC+7mvv4/r/387O1NVw/L497z5tCdtIHv1I+PPV0oqegHr1Wff36ZtavtwOcdgHng17VOF2eYzHCrE8pPYgqn4K/Xg03/x1Mp8+bgTNO0AsNr8P+55WZaiGvsiwv71xl17nkSWBKVn4nYpTpZWlMHxEPUKkhMUMpQpVdBc6Dymyz6n/DnlWQOx+WfE1pkv4B4+vpcq76OMUDkJhwJjFqjXxuxuf49a5f882N3+TPF/9Z+kuJ08qSJXnjdh48Xc5VH6eYcKbEAylKnUJJJj3/dck0/vhWI9/4RxX1XYP816XTUJ2FywFOhVgsRl3XIGv2tfPy3g4anR4MWqUQdd2cHEozraQnGkgwalHLc/6hWU165mQkkuyLwZQ0Kh0D/P3dFv62zc6FZRl88fwpzCk48SWqhYVJp0Vl/ui16uN5JeiDOvqqxvsFoNPlORZHKb1CWRa248/w6HK4bfWE7XJ2RgoMQN06OPBvqH9dWTqZlAeFSyBzutIbyWhTluuJD0ethcxyHKoi2lTtlKirSOh+B/5xm/JcL/gCzP8M6C0ndHOny7nq4xQPYHRMGP73eyUkp8vzLMaWk5jDDdNu4G81f+M3e37Df877z4kekhAn7GQuBztdzlUfp5hwpuQIUpQ6xcx6LV9bWcJT79h5aGMj9Y4BfnfzHEwfYfnT2SwWi1Hd7mbNvg7W7OvgcI8Xo07NtMxErp+bS2mWlbQEAxaD5owt/jmcHuz2AQoKEslIH/uN/4kc80HY7QPUHeyjtDSFzy+bTPdAgDcOOnj3cC/X/bGLinwb37h4KkuL0z42z/snPzlt1G4eH/ZK0HiszT76qsbpOvVWnIBJy5Td27b8Bh49X1nKV7xiokf18eXvV5qUV69WluhFgmArgEnnjS5EncHLJR2OEef7jOPEhBM45oOw2weobQgRKV3K/EuuhbYd0LAeXvsebPy50ndqydfAZPvI9zUeTlY8gPGPCRIPzgwLshfQ6Grk8f2PU55azsVFF0/0kMTH0Imcf072OepMPAdJjjD+pDIyDrRqNZ9eVEROkonndrdyyf9t5uHb5jE958xo/niqxWIx9rb2s2ZfB6/s66C1z4dZr6E0K5FzilIozUokLcGAWX/mFqJGstsHqK3tHfXvo4tPI4/p6fZRWeWM94v6MAoKEkd9Tks0cMP8fK6amc3mhm421Tu5/bF3mZFr5esXTeWCaRlnxe8CxufkP3y71dU9wPGn3kqDyI+J9FK46Eew6dfw1PVK8n7h9z/w0qezlrcXDq5RekQdekvZNS55EkxZAZnlkFykFEPUZ8dbnOPGhIyxY0J3j4+qSiezK9JHL9P7AEbFBI0WChZB/gLoaVCa+m/9PbzzCMy7C5Z/A8xnT5+c8U4IJB6cOW6cdiPtg+18b8v3yE/Mpyy1bKKHJD5mTmQW5chjWlsHPnKvpNN1OdjpQHKEE3d2vGMbR02H+9m+vmXMAsBF0zMpSDHxly2HufYPb/Pty0r5zJJJZ03y/kFEozH2tPSxZm8Ha/Z30tHvJ9GgZVpWIkuL05iamUiqRY/FcPa9hEcmAyMTjZFFqZHHbNhgp6rSCUBqmulDzaDKSLccc3xNTXe82PWDK6ezpbGHN2sd3PXETkqzEvnGxVNZWZZ5zOv7dD8pflDjFYxHBrbLL5885nN3osHvTPsdnK7q6nup3d9BcYX62OTfkq4UpnY9Dm8/CE2b4IZVkJQzMYM93Xm6lR3zqp+Hw29DNKIsfSy5RClE2QrOqkLUSMeNCRnHjwmVVU48nhBeT/hDzZ7KyLCM+pkDNd1HCl1L/xP6muHAi/DuI7DzMZh7B5z/7WOKU2fiuWg8YoLEg4+npsMuth7wUlEx9kVCjVrDvbPv5Zc7f8mX3/gyf7/i76SbZaMkceJOZBblyGOeeGJ/vFdSXl7ihzoXjLUc7MM2Bj/TzkeSI5y4s+/d2ylWX9dH017lDeFYAWdalpUfXDmdx7c28aOXa1hX3cWvPzWbvBRpthqORNlxuI+1+ztYu78T50AAq0lLaVYiF0xLpzhDKUSdLTOijmesAtFwwjHWMcM769lsBv70p734vGEuuKCAFSvGTkK2bmtj29Z2Fi3OYfGi3FHfG1mIqqxyxotdZWVpXDAtg6XFqWw/1MuGWgefe3IXs/KS+P6V08lQaeInuI/rtNLjGa+12ScS2I4+5niB5Uz7HZyu9u3vpv5ADx5sY89I0eqV3csyy2H3X+EP58BF98P8u+EsPsfFuduVWTfV/wb7VuVrqSUw7XKlWXlS/llbiBrp6AIRjBETRhwzuyIdp9OL3e7G6fRSVJTEihUFYxamDtR0s3VLOympRpYuyT3mmOFilNPppa3dAyiN0kkuhCVfgf5WOPCCUnzd8zdY9EXshZ9l/0HvGRkPYHxiwoeJBzB2TDgTfwenq7q6Pg5VKTNijzdzPUGfwD2z7uHBXQ/yxQ1fZNVlqzBqjeM5TPExNtb55+jzxMhjhnskZWaa+epX32BgIMjtt5dz551jnwuO3pVupJGFqA/SGHzkeelMOx9JjnDizu53cidZW/sAer2G4hJbvBAwFotBy5fOL2ZjnZMXKttZ+cBG/vOiqXx22WQ06rMrEQmGo2xt7Gbt/k7WVXfi8oZINuuYlpXIJdMzmZKeQLJFj+UsL0TB2H2iji5QjXXMtGkpDPT38PSqt+lq70Sr8bBba6Wn2YjP6+Giq28gp6AIgIP79vDEb/5Ed2+Epv1puNqmY0lIwJKYRGpGJjt2+DhwYBA4Uuwa+VrXaTQsK0ln4eQUtjb28Gp1F596eBtlyRaK3coxJ3pSFKOdSGA7+piRgWXnzs74G4n587MAmWp9KjU392M0aCkqsjKr4n2udBcthbSpyoySV74BVc/CtQ9BWvH4DPZ00ncYal5SClFtO0GlgfRpUHYNZJSCNXeoR5S8fRmrT9TI4tPx+kgVFibQ3d/Ljv3NqHQhatp17GzcSUqajuz0FO765JFeNvf99mkaDvVgtZjZXpvHzOlZWBPMZKTYyM9Op6rSSWWVk9wcCxWz05l99Gs9KQ8WfQmmXwP7/gWbHyBz65/YF7yBA7HPUT4jE3j/wokY7cPEAxg7JixblsuiRTkSD06x9vZB9AYNxcVJVLxPTMhJyOHO8jt5dN+jfO3Nr/GHFX9Ao9aM00jFx9FY582jzwFjHbNwYTa9vU7uv38dhw+3YjT6eeONfTidSQwODnL33XdTUFAAwLZt2/j+939Fa2uAmpos+voWYrVaSU5OJicnhzVrOtm0yQF8sMbgI89LkiN8OGdCjiDv6k6i+noXPn+Ycysy3rd3j0ql4vxpGczKtfHMDjs/W1vLM+/a+f6V01lRljlOI54Y/lCEjXVO1u7rYH2Ng8FAmPQEAzNyrExJT2BSmgWbWQpRRzveUj1Q+m4drDnEi6s342g7zOXXf5ILV8wE4LknH+HRX94/6vjOmiP/n104nXankYKCRJrqa2jatxqAg21w8N3RY7jtKz9ldsUiKmanY9Q4cR1+hkZ1McHBYgomlxCKmuNJ0HlTM1g4KZX1NQ5eP9BJbSSCr6Ob+UtzuPzyyfHbPNOuipxORgb3735386jtbeW5PrWqq3vwekNMn556Yn17EjLgvP+Gxjdh3z/hjwtg7qdhxQ8+Ns2iPzRnHdS8ANUvQNc+UOuUmVAzrlcKUonZUogaw/GW6gH4A0H++fIONm+vZ9rUNO7/5nWAEitSF95IIBga8zYXzynjymVL4ufxtyq34+xzAbDxwOhjp03KY/UDPwWU2Ver33qdpo1qalvyKJ2cT5I5iY5231BRLA+Wfg2662HXM1zR+yjhA2vQFv6YwsuuGzUzUGLCqXO8mPDUU3MmclhnhYb6Pvy+CPNPIEcAKE8r54apN/D3g3/nu29/l58v+7m8JxbH9V7nzVgsxvbtB/j979dgtx/ii1+8i8LCcwD46U9/yg9+8INRx69adeT/y8rOYf/+MOXlqezevZuaGiVH2LMHPve5x0b93E9+8ggrV5azcmUhBkMnbvdqDhwoJRotpaysDI9HN2aBaeR56b0KJxIPTq7TLUeQd3gnUXpahD0v/4SgfTnJ1quZUpI/6vtjzWJJSdDzxfOnUNni4oWqdu7+607mFyXz7UtLmV905jQG7ez38+ZBB+sPdLGlsRt/KEp2kpH5hclMSbdQkGLGZj67l+a93455I3uCDPS72LfrHer2V1J3oIr6A3tx9XTHj1156TxgJg6nB9eAHpVKhcFsIyUtnaycLMyWRIIhDe5BaG5R43AriU1RcSnX33kvLfYenF19GPQhdNogblcfPY4uZs+ZSsUCpfHmy/9Yw+pVj44aY1JKFklpxZTNnsOtn72N7LxCrpiVzXlT03hlfweb67s575dv8YXzp/CF86eg06g/1HrrkVdO4P23wz4bHX116ejtbcWpVV6eys8eeYeX3vVwSyDExctnoR7RyHzMWSwqtbITX+582Pcs7FkF+/4Bi76izDYxJEzQoznJIiGwb4O6dXBwLfQ2gtYIGdNh1k2QNk3ZofAsX5r3fjvmDceE/PwEdlc3sL2qll3VDeyqbqC6oZlwOAJAqb2I+795Xfz2MlJsOHv7sVoSyclMIS8rmQSziVAQ9CTy9pY2vJ4wAF+5/Up6XAM0NffQ4XCj0UaIqkJ0dbuYlJfJ9LK0eNF1+WdeoMfljo/PoNORn5HDvPJirr98AddfuhTSSjBc/H1or0S7/1/wr8/AOw/DFQ9CVjnw4XpwSEx4byOfn+GLQhITxleSNcjOZ5/DP2cRKbYVTC4efQF6rL/3JblLGAwN8vKhl7EZbHxnwXcmYujiNPB+M4ZGnjd7enrYtGkTO3fuZNeuXezevRun0xk/9gtfuCx+m06nkneZzTays7OZNCmXxMREvF41PT0Rdu3yYDQqRaGKigq+/vWvU1vbhd3uwGyOYDSG6enpob29nRUrZrFw4UIA/u///sUDDzwwaozp6TmkppawcOECfvSjL5Ofr+TJ7zXLR+LByXe6xoOz993eKVC7bwuH923k8L6NrHn6/zFj3rksvuBSFl94KTkFRced6aJSqZhTkMyMHCsb67p5vaaL6x/eRkW+ja+tLOG8qekfu0JNNBqjqtXFG7UO1tc4qOlwo1ZBYaqFJVPSKE63kJ9iIcmkw6Q/u6ckD/dpMho0eLxKInB0Uaq/rweTXhNvZHto/6v86RffHnWMSq0mPbuIwikl5OYpU8Pt9gH0SfP58WPvsmDB6CLpM3+voarSicpgo7Q0hWAwwp56E8uv/PJxG6I7nB527uqkoCCRyVOn88lP30PjwYPYDzXQ52yjv7eT/t5O7HVvs/Ky88jOU6btdrc2UuRtZeH5Fbxy0MWDr9fx7I4W7r+6nJXTM0cFihNpjnj07iIf9irKmTwt+OirS0dvbytOrYICK/9+eytdvS5WvbaR7PQUrr5wAdesWMiFCyvec5YLpiQ49/NKE++9z8LGn8O238H8z8KS//h47mQ26ISG16HuVWjYAMFBZfZTeinkL4T0qUrzd2MSnOXLVIb7NBmMmnhxaORrJBKJ0NzuYHJ+NgDNzW6u/OoPcPS6Rt1OalIiRTm5nDtLeZM5/Jp7+v/9iCWLC455X/HMMzVUVjnp7fGTkmqistLBJy+4mOllacctkA1/PTfXzNfvvI7Kmiaq61to7ujA4/PT0NZMQ1sz3QM9SlEKQKXimT39zJn2OaZNqkN14N/wyDKouAUu/jGFhckTEhPOpngAx255Lk6tfbu30bhzP4079/PSY48xe+FsFl+0mKUXLyUrP+u4MeGSokvwhDw8Xfs0ifpEvjznyxP1EMQEGD7/WSw6+vuDwLHnNYfDgc1miPdk2rVrNT/4wbdGHaPRaMjLm0J5eRlTpigF0erqHhISFvHCC7VcddXU+LGhSIgf/Ox1Nm4/RI/Oy+x5DnYNNHKoxsGUC6dw8XXTaOt0k5ahx5KoIRKLECPGBvcW/vnPt8jJstKT7ODSOy6lpa6d9kPt9Dm6cTrbcTrbqa3dyN2fvSpelKqqqqKzs5MlS5aQkDD64tvRBSvJET660zUeSFHqJJp7zgJW3vhFqrdtoMN+kH07t7Nv53Ye+eV9FBVP4+5v/pzS0knHNCAd2Vh65aJclpSksrmum80N3dz5+A7yk03cdE4BN52bT2qCYYIe3XuLxWI0OgfZ2tjDloZuth/qpd8XwmLQUJKRwLUVOUxOs5CeaMRq0mLQnt1Jx0jDDcOLS2xUVGRQUJCoPJ+11byz8XXe2bSe2r27ufe/7qeg/Gpqa3vJyJhB/uQSps+eR8n0WZSUz2by1DKMJqVh/tZtbfz61zuYXp5KeXnmMa85UHpBeTwhUlOMx+zSd/NNZWPO1hr5pmn+vPlMr5jPzl2d1Nb2MqnQQIKhi7rqKur2V1IyfVb851597hmee/IR1GoN+VNmUnzucvoCs7j7r16WFKfxk2tnMDldCUQn0hxxrCsnY11Feb/gdSZPC5YteidWJBLhvntu4Pn177Bl/0E6nL088uxaHnl2LWajkduuWsHnrvnkMX+bxzSWXv4t6GlQdp7b9nvlY9qlcO49Si+q0/WChd+tzIZq2gSH3oSuobVfyUVQuBhSpij/b0pWZoCp1O91a2eV4T5NJcVHYoLLPci6t3fx8lvvsnbTLtRqFV1bnsZuH+DgwT6WzJ6NNzTI/BnFzCsvYV55MfnZygUth8PD6ufraW1xk5efyNSStDEvdBUWWmlrH2T69FSam93UN7iwWHRML0sbs5k6jI4J3733RnbuVOLB1Kk2kjNi7NhXx8799ZROPnJRpLuvn1u++QsAMlOTWVheys0zMrlix99JqHkRzv+O8voemll4smKCxAOJBxNp0bJFXPTpy9j35n467S3s2bqHPVv38If7/8Dkssl84Ydfp7Q09dgcYWsbh7blMWneTB7Z+wiAFKbOIsPnv/nzM7nooiLKy1OJRqPs2bOHV155hZdffpkdO3bwyCOPkJe3km3b2snJmUF5eTkLFy5k3rx5zJs3j5kzZ2IymahpbGfVi9v47dptZE0L453dx1qNh+fWuuj2d9Pr72UgOAD5QD7sAHb0Dw0mDXY51ej7dKhUKjStGtQqNRqVktP5gyHC4Qhqbww0MaIroqgujJJLFlm+dHyHffiafPgO+7jnwD0kNSeRbEym4bEG6tbUodaoyZ1axPKLzuPWmz/F8rnLsegtYz4fIDnCh3W6xgMpSp1Ek6YUc8MXv47/U19k88Z9HNj9FodrNuPtq6W5sY5pZcV0OlVs2GDHSD0GQ5Sk9Jm8tclBQ4OLfneA5mY3FbPTubg8i+kpZt6qdtIaCPLA+joeXF/HuZNSuGJmNpfMyCJtAgtUwXCU2k43lS0udh7uY2tjN92DQTRqFYUpZubk28hPMVGUYsFm0ZNg0J51TdyP5+hlesONwmfOSMbRspffPP4i9fvepq+7c9TPdbQ2s/Sy4SV8hVz80uZRt+cejGE0KTOvnnm6BpcrAMA3vjF51H3v29sNxJg5K52Kigxqa3ux2wfGbFwOo3fcG7mEcNjIr2WkT2H2OYtxOD3U1A1QUKAhI91Coi2Z7PxCOlqaaa6vpLm+EoCk9BxeK5rPO3Wf5vMrpvOfK6eeUHPEo6+cHC9YvF/wGnlifq8rIifjasmHuY2Pcr/jteOHGJtWq+XeGy9kxewytu0L4lM7+eeaLWzfvxeP30MsFmP+/CwO1HTz6rpDHOio4orz57N9k5uGehcGo4ZDh/q5/PJJTC8rgSVfo6epjnDtetKatqKpeUlp+l16Jcy8Xlnyp57Aws5AJ7TuhNYdcHgztFdCLAKmFEgthhmfVD4nZimzoXSmiRvraeboWUjDzcIz8zSs2b6RF36ynar6eiKRaPxnkhIttHZ2x8+/D1/85WManBu1XjIyLLy9pY2XX25ErVKRnm4eddzefUo8mDUzHb1eQ1amBb1eEx/DMY3LOTKTa3bFsTFhVDzIsFBSlMvKBeditw/gcHjIyLDQ3efmwoWz2bqnhq6ePl7YtI0XNoFep+WCkihf2/9NLl3yN6XZf/askxYTJB5IPJhIU6ZO4dZv3oj3lrvYtKGG6nd30rS/ksGeFprrmiktL6Sl3c+GDXZ0oVYsFi3WjEm8tamDhgYXef1lZJwb5pG9jxCOhrku7TNn5CyOs93Rf+fD573zz8+huXkP99zzLHv2bMLhGJ0jNDY2csklNwIwtczKRTf9m8b+RnY3H+D/Gh9j0O6gO9SlFJxSgBTYH9CSYrZhCViwaC0kqpJRB5LJwUh+diqDfVGcHUEKc1Oxmsw01XkpL8ugeEoKKpUKNWoaGvs4UN1DeXkaNpuBtvZBcnIspKaaiMaiOLoHsbf3YitUY5wP3rCXnv4Bunr70SdEiGoDNCU2Ycow4XP4aKk5xFM1h3jqt4+jS9eRNi+NRZ9bxKTUSUxLnkbGomQWak1ceF7+0U9dnOQI7+10jQdSlDoFtmxtp2p/mMLiy0kvupQeZy82cwedThVr1jRxuNmN48Dv6e3Yi0qtISO3HGvGbKL+Cir3KFP1y8rS6Gz3QleAC6clk72okK2HuqnrHOR7L+zn+y/sZ1pWIounpLK0OJ05BTZsZv0peTyeQJh6xyB1nQPUdrrZY3dR3e4mGImiUavIsRkpzUokL9lMYYqZ5KEilFEns6HGcvQyzrKyNMrK0nC7+vjGLXcRjSivAb3BRFbhXBZfeBHX3HgtaRlZ1NR0s3VrG1u3wkUrC0lNM7Fhgx23OxC/vcoqJ+FIDEuCjoxMMw6nJz7ryW4fYPeeLvy+CA6nj4rZ6ZSWpsQLZGM133x9fTNVlQ6cTi833VQ66nsjC2xAfGnf0Y/x1nu+xq33fI3qfXWsfvoF6vdtxtlaSb+znRTVu8wv/m8efquRf26385lSHd/73nJaWwdZs+bQmCfb99qSdqT3S2ZGnpjXrDl03CsiJ+NqyYe5jTP1Ks3ZpKaml8o9fnJyE/nGbbeycdNyega7KMvO5kBNN8+vrmdb1QFe2fsc//uXp7FZrEzJnkxR+iTCh/OoqkxQevaoVDT1JlHbewHTiy9nbnqzsjtd1dPw7iNK8adwEUy+4MhufqdiGVw0Cq5mcNaCowba9yiFqIEO5fumZGUGVNlVkFwI1jwwWkGfOLFFs9PY0ct2hvs0ffX/PcxvV70YP25Kfi7T86fyqSsWc/M1C9FqNaxde4hNm1tZviyPefMysdsHcPX76ezwxm+vt8dPNBpDb9BSWGgddb97dnfh80dwOnzMrhgRD4bGMZb1rzdTWXVsTBhZXANlN59j4kGGhdLJ+Wx44mf4A0Fe2rCLv/5rE+9W78PZ38u6A33cdNlVMFhN7NHz2Ge5CsPSb3LnnTOoru6hublf4sFHuF8x8bZsaWdvjZ/CGYvJnLaQbkcfyaYBWtr9So5w2E3rO3/D1WlHrdGQWTiFpOwpxHwlDGyeTuYyFY/tf4w6Uzcp+y4B5PVwJjn673zJkjyWLMmjs7OTCy/8FNGocnHCZLJQVDSfi646n/NumEWXpovv7fgWtc56/F29oFaO00VNaAMJpCemMjtjNvX7fdgPhjBEE5k/q5CF0wrIyrCiVWvZu6eHjbvb8PijpBbbmFuRjscQPrJsu+LY8W5/o4mqqh7cXRpuuqmUfrUGmz6RVJMFh8ODzxFh3mQlTtjtA5QUJGLwDuA+3EtpaQrzZmdy2//eRjgaZl9lAy88/QYNVXvpbmom5Azh2etBq9NS2bmXDYffwNM5iD5Hz4YmAymHsyhNncqiovnMTJvJ1OSpGLVGiQkfU1KUOona2gfYsaOT3h4fJqOWkpJkrFYD6zeEUJtSqKxyotaoSUzQEUibTCzcS5+zla6WvXS17AVWYTTb0AyupKTke1jMWrKzLAz0ByiKxLhxfgFtnQNU1ffRq4rg9If4585WHnv7MADpiQamZiQwLSuRojQLOUkmMq1GEo1aEo1aEozKsrlYLEY0BtFYDG8ggtsfot+nfHT2+2l3+Wh3+Wjp89Lo9NDR7wdABaQm6MmxmTh/Wjo5SUZykkxYzToSDFoMWvXHrvfVeDl6tlFXawObXn6KV57s5Ie/UXavsNqSWbLyKgJBNedfegWdrlyq9/djTk8nqkpk565OKisdVFY6UAHp6WZKSpJxu4MEAhG2bm2jxe6msNDK8uV5GA0aqvY6+fGPtrFseS6TJydjMWspnpLMgZpuOjs9eEqSCQYj/OlPeykosHLJJUVkpFtGjRcgBrhcflY9eQC1RsWyZXns2tXF86vrUalVXHpJEfkF1njiMdaMKoD0rFzMaeeTNm0+K29IoiS/G69ngBXLppAWPcwbTQ7+4+4b+K97tSxbfCnZmUuJxS6isDApfkUgKUnP7363h7q6PoD3DDjDwfxEvNd01g8z1fXooPhhbuN0nWIr3l9zcz99VQ6siXoMxhChUBSXK8CkIhtpg2bMWh1VlU58vgg6nZrZJdOobT6Ey+NmV0MluxoqUalUbG2eTFLWXWQkZhMMRtBoVBiTEmHK+TgS5tGua2ey6TBWXwN07lcah8eioDEoM5Myy5Ud7GwFyswqU7JSJDJYQZ+gLP+LxZSfiYbA33/kw+OE/lbobwGXHXoPQXcDhH3Kg9SZlNtMnwaTzoekPLBmKbert5zVTcrfz8jZRqnpOho31/DImnf40X/cygULZwNw0+Xn8U5VHUtnz+HGK5bQUBOgssqJNphCb68fu32ADRvs2FuU5uLp6WZqa3uJxWLY7W5isRgFBYksXpKDqz+ARq1i7z4nq1fXU1xiY/nyPObMzeRAdTcNjS7SM0ysXFE0qtB12WWTR401XqiKKTHhyVUH0KiVmPDaa01U7e1m9qw0Lr540vvGA6NBz3nzZ9Fco6Uk6RxyJ6vB3MMV162EBB3O1x/j9XX/5L/+axVzy0rJKLqKT3/6FgoLKwDlb+zNN1t4+OFK7PYBQOKBOH21tw+yY2cHvb0qjCNzhPUh1JZkKiudqNVqEhK02DLzIOLD5XTScaiOjkN1wFpMCVbmuBZTett8NvteYPqUXiY77okXa8/UHjhnupHLyMrLUzl0qIZ//esp/va3fp5++mkAsrKyWHnpZQxEAkxdOQm7vpdufQtvmJ7jjf3PYVCZ0HitDHTqwVfEtLx8irPzaDoQJOxXoY7q0OXauDAnkeaQG6NRQ9UeJ+++XhPPEawJRkqKUzhwYChH8CTjdHpZvbqOZUPxAIZymkonFUMzaWND8WDVqgOo1SNyhOfrUalUXHppEfn5Y+cIKpUKnUqHTq2jqGAyKbl+cpnFFbfbmJztIRgIct6s83hnVwv7G9pY/dOfoDNpyZqfT7TCzZ7pe3jb+SaRWAQVajJ0OfTVJNHrS8H32hyuva4YzXEu0ElMOL3IO8aTqL7eRe3BXlSBKPPmZ7FkaW78e253gEFPiMREHbm56bSk3s2ixd+nKDfEc8+8wJ5tG+myV+L3uuh1tFNbq1SQIcbf/nA/RcVTySmqoKs3EUuCkWXL8rh5cRED/hAtvV4O93pxDgQ43DXIzsZeQsSIHn+o7ynBoMVm0mE16ZicbmF+YTJpiQYyEw0kGnWY9RpMeg1auep9wiqrnOze0UztrhfpbXmL2n174t+r3ldHp8MAxLj3O7+Kz2qqqelGq9VTMTsdu32AzZvb6OvzUVRkxWjQYjRoCAYjWK16nM4wBw/2Ym92M29+FitWFACwdm0TTqeP9a/bWX5ejNLSFPILEnE4vVitegoKEln15AEOHOihxe6mr08pQHZ3+xgcVLYMv2hlIenpZpxOL4cPu8nNSaCgIJGHH6rE4VCS0337nfHX+/Csq7F6Uu3b66Svz09qqpFzzimgrGxu/HtLpqejdbXRSAxvfw/r1j4FPMWrrxZxxx2fprz8Yurro2i1KlJTTUyd+tF2iRh+82a397N5c9t7XlH5MFNdV6+uP2Z71ePdxvHeSJ6uU2zF+6uu7sFT34dBE6aoMAmrVc/sinS8njDBYITmZjc2m4FEq46ZU0r41qUXUzEnlU079/Pkc5vZuLOK9m4HVXWN2JsH6dX24veH2VJVxbNvdlFWNAW1P4m0ZCvhZbOZv+gSCHnB06PMYhroYKCjhci+t0jUvIQm4vtwD0StUwpZJpvSmHzK+UpD8oRM5bPeAjqzsnueXJQ4YZV7HKx9q4o/vVTPOwcq8fqVc+9fnltPxGNDWVJXwPZ/HNm9yGJQdlidXZHO21va2fFuBykpRnR6NXMq0rG3DOD3h/F6Q7S3D9Lb50erVbNiRQF33D6dt7e08+IL9fT3B+nt8zN/XhYrVyhXiPfs7kK59ASbNrfSUO9iYEBpqvvKmkNEwjEAppelsfKi0TEhJzeBvXsdbNuuLCfZt7+Hz35W6Sk4fIV9rH5UDoeHDRvshIIRcvMSuXzlpNGzs865i3f+3UU0tpudB2rhQC0b1v+WP/7xYu6++zPYbDNYt64JtVrF1KnJH3nXoLFiwljnX4kH4sNoqO/jYG0v0UAy8+dnsWTJUTnC4HCOkEFL2rUsXJhNYQ7868n17H57F51NdfgG3fQ6uylrvorZRSYq/Zt585E1LHrxExRPOoeGBh02m5kbbywd87VyIk2ixfhbv76ZV189wLvvPkdn50Z2794NgEqlZubN57K7p4Y2DjJwQw8AB3WDWFWppLsKmZyYgzmcwsE9IQZ7o2Sjx6g3UEQKqVELgyY3zkEvBw/20tLkY/782LE5wno7y5cP5Qj5iTgcR3KE1avraGx0EQxG8fsjtLS4R+cIR8WD3FwlR3jooUqczqEcYZ8z/np/r5iwb9+IHGFB/qjVG8WF6XQf7kKlUjPYM0jDuhpYB2m5OSy7ZhlJs7JpC3fj17qI5raQMPkA9erNLH7mz8xIm8H8zPmck3UOM9JmYNQa3/d3IjnC+JOi1ElUUmKj9HAKqXotM2elk5FuweH0kGQz4HYHOHCgB4tZh90eobV1AJ1ezeJF87jxrs+yaOWN9HYPsHfXTlJTTfEp9Fua7LQeXEvrwbUAqNR6ktKm4Gmby+4tZSw+bwmZOQU4nCEKYhDqi+I75GFaeQqLLyzA5Q3iC0UIhqMEQlEisRgqVHi9Qdz9QYjGGHQFmFSYxOSCJGxmHWa9Fp1GhV6rVj40MgPqo6irrmLvxt+xb+vrRMLKMjuVSoPBNpuyuZcx4DGye08nxCDJppwo7fYBLGblSlpqmolUoK/PT3PzAPPmZbB4cS61tb00N7txu4O4XH60Wg3WJAOdnR5efLGRSUVWLBYdzm4vFouO0tIULGYt7e0eiqckkZOTgN0+wPTyVPyBMDqtGnuzm55eP9ZEPQUFVipmp8eXF27d1kYoGGXR4hwy0i2EQkfKnj09SkI1vFQDjt1BsKamm+3vKEt8Fi7IOWapYEa6hauuWYJ78Dk2bnwTl2s7rrotdHYe5he/uB+1+sfcc88PufXWuzjnnOyPfCVweNrr5s2tNDa6gPe+yv5BfZDtVc+0KbhCuXLV152MxRAhJ5wUfyM2nIh3dnpoax/E4fDi6gvw0suN2JINXLpsPnOnlWG3D1DX1M6b7+xlUm4eqckm7C1u9h0+wK76Kl7Y9AYAKYnJnLu/hJL8Qs5bUMaCWaV09s/EbJnDq7UN9Hb2cc7cZK65JFOZ+RQYhIgfwgHlA0ClYtATxt7iod+rorA4g5z8NGXJnSlJKThp9MrsK63hrN8d76PwB4L84amXeeiZtTS2tMW/nmiwsmjGPK6/4GL27O4iBtiSjPHXjN0+gNmixIS0VBP19Y3YW9zMmpXOz366nJ07O3nzTTs+fwRbkp7MTDM9PX4OHuzF4wlRNMlKb4+PWAx0OjXFU5IwW7Ts3NlJTo4FyARiOBweli/LY2AgSFqaiU2bW3H1+bElG+P9paaXpZGWauLtLe2YzToWL8nhj3+sPPJYEnRjLuM7Ogl5e0sbO3d1Ulhg5aabSo/5fkaGhX/86Sf87qFN7Nn2HO80HeKAM8DGjS+xceNLFBQU8f3vr0ar1XLBBQUf+dx5KmOCxANRXJLMtN4Uksli5sz0+N92UtKIHMEyIkfQqVmyZB63fOFTLL3iUnq6B6h6Zz8ZmYlDOcIVDLzup/qdx3mRBwFQqQykpRXj9y/kzTfLufbaleTlFfDmmy1AjKoqJzt3dgHHbxINR5Jgny/E/v3dUsQ6hd555x3efvuX7NixhkhEKfSoNCoSZydhW27lacdf0AVt6Hw25mTPZFp2ET6ngeSEBMIGLZMKkwHYs3YPLc0DzJuXctwcIWlkjjBpKEdwjsgRLEM5QvGRHGF4NlRBgZV33+2gs9MzVLCyUlExIkfY2kYoFGXRohwyMiyEw++TI2SMkSNsH8oRFo6RI2RYuPpTC3D7f87m17YT6a+j+UAV3W3tPP/HZ1Fr1Fx/7+c476qrcXk8JGXG6Nd0YB+w0+5p57H9j/HHqj+iUWmYljKNRdmLWJa3jFlps9BpdMf8XiRHGH9SlDqJcnMSOeecLCalHdnOcriXgt8fxmzSkZVtobfHhwrw+8Js2NDMcNPpgoJEUtIuiM80AZgxK5OLr/8S9oZKGg7sJhz04XLUsHFNDQBtTbdw1W3/xe49XQz2u+ltfY3UzCImp89jSooBfZbSP8Lh9LDl7XZ6e30sWZyDJ6ph845eag504/OHMZwT5vplReP8jJ0dmhvr2LnpZQCy8qYwd9k1FEy7kNr6EAUFVpKSzMydk4nbHaCmpod165owm3VkZVmIRJSr0/PnZZGWZqS11Y3fF6bfFcBiVv58W1x+GhvdqNWQkWGio32Qtw+5MJt0ZGSYSEk2MmlyEk6nlz+/0IjJpOHKKybj8YbZtasLjUbFwgXZ5OQkUFvbR0urm/w85U1Pe7uH9vZBZs5SmuBmZilNcAGuuHISL73YSCgURaVCWdqnhsZGFwsW5nD7beXAkb5TlZUOenr85OYkMHPW6GAzsjfV3LnZqDUXMXvWzezr7ubFl/7N4P4NeO37+dznrmLOHOWNUUNDAwcOtDF9+vSxn/f3mcY+PN01N9fC6tX1hMMRtmxpPWlvvD7I9qonYwruqW7CKD6YwsIkCmdnQNgPCRnxr9vtA7jdQSLRmLIxRIEVFQMMDoRY/3pzfJnU/PlZFBQkMnVSTjyhLyhI5GbHcibtT2bL7mo6epz0DvTx6pZ3eZV3+f2zKt545Pe02n1oNCp21h2gzz1IbvksnKSQllcUv8CwdWsbW7e1s3hRDosX5/La8/U8/1Id4XCURe4c/mPpvIl66s5oOq2G3/3tRZrbHRj0ei5ZfA7leTMxkcb8eVno9BqmFBuGZsB6+dWvd5CZYVZ2OtKo4jHBZNRiGDoX79zZidmiZUpxMpV7umhtHSQajREMRmltG6S2todIBKZPTyEnN4HBgRAJCXr++tf99PT4OW95PmVlqeza1RXvLXXttSVAjFAwSvWBHsqnp8bjwayZyuxdrydERUUG08vSWL4sl7WDh9Hq1CSnGHj55QZ8/gh+X5is7AQuWll4TCP21pYB/L4wZrPumARlZH+qFedPJ82WzrenRenZ8ReeeruBp6vhnDkz+Oxn58R/5rXXXmP58uUYjWNfBZ/ImDDe8QAkJpxucnISOGd+NoVJR/rXjMoRht739fb6UKnA7x+RI8xUcoTUtMRRBd7LKs7HcUMz1dU78TQMEg0EcDqr+cc/qgFobr6XO+/8FuvWNdHT001v7yaysycxdWoOgUAAg8EwdFw///xnHW1tA1x//VT6+4M8++xB3n67hcHBEHa7W4pSJ1ksFqOpv4lHX32U9etfAMCQZyB9eQYFC6YS9lpJN2UxL7OEwW4tgZAaXxO8tdGN2RwjK0tDJBJDo9Iyf34WaWkmWluV2bL9/QEslqEcoeWoHKFjkLffdmEy6cjMNJGSYmTSpKEc4c9DOcKVk/F4juQIK1YUHMkRWtzk5x+VIwxtlJGZOSJHuGISL77YSDg8lCOsGpEjLMjh9tuHcgTHUTlCbgIzZx6VI4yIB/PmZ6PRLqWi4jpMhiivPPs6e7e8Td3eWq745GIKitOBdOyNdhJDeSwuXUw4GmYwOMhh92Ga+ptoHWzlbwee4rH9j6FXG6jImM2S3CUszV1Kia0ElUolOcIEkKLUKeRweuh3BcjOMpOTk0B7uweIMX16KvkFVowGDbv3dMVnyBzdb0Hp6+Plypu+QFlZGu/uaGPjht343U2ownaa66uZt2ghFrMWg0FDW88hat99EoAtLym3kZScRmJyJpbEDCKmBaiM5VgsOhaea8PZWoWrO0gMHb5BLf19Pej0BnQ6PVqdTmZHnaCR/ZcSzW6e/cufMCXmcsEVN+Hxhimbu4J5592AJuEcrKklOPqD+BrCtLQM0tIyQH19H3MqMrBa9WzZ0kZ7hweLWQcxCIUi9Pb6CAYj5OdZMZt1pKYY6ej0oNGoOHiwl7q6PiLhKBqNmnAoisPpIxSM0R8MYrFoUalUBAJhnvtXHT09/qFApaKgIJH6+j4a6l309fpJshm57rojFfuduzrjr8/hZR3ZWWYKChJxOD1MnpzMeecXcOBAD6FghLb2QbzeEAMDQex2d/x2ht90paaYOOecLCpmpx8zi2rfXie7dzuYOzeDFSuK4ldIppPOhXMm8cTWT1Bd18ADuwM8MMVPutXIT37yE/7617+yfPly7r33Xj7xiU/E32DB+19ZGDnttavLy/r1dtavb56QN17D46iu7hn17w/izTdbWLeuiUsumcSdd578Jozioxk522XevEzMQ1ckQdmFr7nZjdPppbLKCUBaqmnUjmzDfX0uW34O37jnMnbu7GTXnlb6gz3U2Zupszej1kSYXppBONRNR/sgW2vepdlh59U9r/LFn4PJoCcjJYXC3HQCg3pKbYsAWLw4lz3V9XS4OtCq9PQOmOnq7sOg12HQ69DrtGg0MjvqRIzc0W7aNBsvvbWNZ17ZxO++81XCQeVK8f/7z0+zc3cbNm0BRp0Bh8NLSB3kH/84iFqtYvbsDG66aRpPrjrA7l1daLQqSoptTJpkA5SCot6gYfHiXFJSjfHl/g6Hh/oGFyrAYNBgtepBBV5fhFgM6updzJ2TTkfHIPv3d9Pb6yc61H/qkkuKqK/vw+0OUFXpJBJRlnLMn5/FZZdNjs/EGp7BZbZo0WhUmC1aHA4lHvzv/xawYYOdHTs68Xj89PT4CYeimC26Ue9vhmNCXr6V9HTzMTv8Dc8mHN7AY/78rCPL+ip+waLla/h11XP0BnZD5TNQcTN1dXVccsklpKam8pnPfIbPf/7zlJSMvgL9cYkJw+Nobu4/7mYfJ0JiwunN4fDQ3x8gO3uMHCHfitGoYfduZVZTUtJxcoS9Hu64+wvY8kP8/t2HcbZ0kX5gBjkhK9XVVVx88XKSkvSYzVoOHqxnz54nAHhZuU5KenomyclZWK0ZBALzCYeLsdkMXHttLm1tlXR3u4lGtXg8Vnp6ejAYDBgMBrRareQIJ2jkkkmnu5af//ZnWMsNBOZ56Q32QA7krCwgpawYW/Jk/J2JGBsSaWsK0h9V4c7wMGdOBslWPdvebqKjw4PFogNihEJR2tsHaGlxM39+FunpZoxGDR0dR+UIkaEcIRzF4fARCsUIhYIkJCj5QCAQ5l//qqO3d4wcocFFX5+fpKSjcoSdnfHXZzxHyB7KEYZiwvkjc4S298kRUodyhIr0Yy5S7Ns3do4A8KXv3ArcSmdLJ1n5WfGvP/7rx3nr5beYs3gOV992NUsuXkJFRgUVGRVEohHe3tFIZUstmsxeurxd/G7373hw14PYDDbOzTqXFQUrWLpyKVb9ZMkRxokUpU6yvr4APc2D8SmKHZ0eSktTKCtLw+MNs3lzG9FIlMsvn0RqmgmrVZm2u2tnJ3//ey1pqSZWXlQY30WtqlJJUMrK0igqstFYVIzbnc+8eVnMn6f88e3c1UkgEMFgTGDKzIuIBjroaDmE3+elv6+b/r5uoJq5F8wgYtJhsxnodzayY+134+NefxDW/+3I40hJy+B3z6whI0eujLyfPZVdbH7tddY9/QZtje8CYErMQmdbSjSqwmrVU774Hir3OHC1DBAOx2htHWBwIIharcLni9Dd7cNs1mEwatDpNPgDIRob+wiHY4RCEQYGghQWJlFRkRF/bVnMWt7YYMfjCWHQq0hIMBAIRJg/P4NNG1sJR2K4XAFC4SjV1b3odWpsNgMlU5NpOtxPTo6FFSsKCIej2O1ugsFI/DENF1SLp9iUxIYYHZ1eSktTyEi38Pzz9by7o4OiQivnnJOFzWbA5Qqg0UCLfZBFi3Ooqelmy9Z2DAYNOdmW+Juu9vZBUtNMRxWmVKCChgYXlZU7WLQ4h8WLlPXn6YlGvnFRCRvyk3ixqoMLH9jID6+aTjAYRK1Ws2nTJjZt2kRaWlo8GSkuLqa8PJUtW9p49NEqfL7Qca9INDf3Y7HomT8/8z23HH8vJ+Mqw0cJClu2tPLvf9cPrfGPHfP9M60Z4seFs9tLR0sPWVMs8Tdew4k+gNejxIRIVIkJAFu3tBMOR3n8if04HF6WLMnlE9dNparSGS9YTS9LG0pQ8nD1p5GTlM+9n7o6fru2JGVXtUmZRSQlmugd7KG1qxtfIEhzRyfNHZ2k2WwsLV5BQoIOh8PDyztepbK+AYB1dXD/qiOPQ6VS8b0v3MSP/uP28XvyPqbs9gHe2lzPtpod7GmqpM+tLFX445OvM69k1tBFiJn0NFlptrvxagP09fqVDSuCUbQaaLb3s27dYZxOLyo1BPwRDje7QaXG5wvR2+MnJcXIJz85NR4PCgoS+fvfa/H7lOUfWp2KpCQDJSXJbH+nnY6OQbRaFdUHeuh3BdDpNCQm6rBaDZSU2NiwwU5hoRW9XoPT6aX6QA+TJx85D5ktWpKTjaSkGuP3GYnE8HrC2D0D8ddx+fTUeEzYu8+JZzDEpZdOihdWt25RYoIlQYfVqiOnNBmvJ4zD4YknIsOzCa1WQ3y22PCMPtQaKLsKQ958st95BP59L1Q/T3PiDeTl5dHa2sqvfvUrfvWrX7FixQruvfderrnmGnQ63QnFhOFz+YwZStLzcYwJw0lwMKgUIyUmnD76XD6c9Ud2pezoGJEjDMWD6FA8SE09kiPsHM4R0kysHJp1WFnppGooJtxcVsa9pV/hT4G/0pd/kEmGZex8ejNmnZk1aw7h9YYxm5OYOfNiYrEuDh2qx+v14nR24XQqhYVzz51OUlICM2ak0dpazYYNR3KEZ59VPobl5uaya9cuMjMzx/X5+7gJRAKs2rSW9bv+wYN/303/UKNv0z4zy8svJ6unhAxVHpoVZvbvcdN7OEo4HKPT62Vw8NgcwTicI/hDNDa6CIdjDA4G6erycvPNZdx8c1n8ApjFouWNN5QcQa9X4sFwjrBxYyuR4RwhNJQj6IdyhJJkmpreJ0cYKqgWF4/IETqGcoSMoRzh3Q4Kx8oRWgZZtGgoRxiKBzk5R+UIqaajClNK0au+fihHGI4HI4wsSEWjUSLhCCqVij1b97Bn6x6S05K57MbLuPLmK8kuyKZsUi72uhD2TeksP/9CyhaaOdh7kEZXI3sce3it+TXUKjXFCaVY0qZRtqQ03ovrg5Ic4cRIUeok6+z00GsfBI7dcaagIJFoJEpb+yCVVU5uvqmMFSss7NzVyYYNzfT0BtDr1PHjCwut1NQoDahraropK0tjxYqCUb0ahm937pxMmJPBzFnXkJFuocsxSO2BFgIeJx1trfgGnDS0ZuJ0+qivd5F9LuRPLmHA1Yvf5yUYCBKNKieczNwpfPn7v8KSaEUcy+H0sG9vN+GQn9b6N3n1ucdxOZsBJXkrmLoQXfIFRMJRPB5lplO/K0B3jx9roo6pJTa6ezw0NkZISTaQkWmhvW2QbqeP1DQjNpsBjyeIyxXAZjMQCMSoOdCD2aRl3tyMeEFq06ZWBgYCaDQq0tLM5OYlYjbrWLgwl2gUKisdGA1avL4wGekm8vITSU42Ur3fSc2BHhrq+yifkUZVlROPJ6T0I/GGmDkr/ZiZSw6nB+im3+XH4fTQ0+ujvz+ARqvm5pvKxnyenvl7DXv2dGG1GigrS8XjDY+aGTiyKDVzVhpJNgPr1jXR0ODCHwij12viS1nVajUXTc9idp6NP26o55v/3EtR8Wd49Y1vs/Wt5/nTn/5EW1sbv/zlL/nlL3/JXXfdxWOPPcbhw/3s2tWFxaI7blGqurqH/v4AF11U9KGvgJyMqwwfJSisX99MW9sgU6cmc8EFxwbNM60Z4sdFW9sgTY39BHUDx8SD4f+PRKO0tw1SVenk5pvL8HrCvPmmnUOHXAQDUXqHejHMrkjH4wnR7w7w5z/vZfGSHObPz8Lh8GBLOjYmzJmbyZy5NzFrpjILpb6hlwG/m8OtDkIxL1V7HfT2+Wg6pBQBJhVk0DvQj8vtwecPEgqH47f306/exScvXTgeT9nH0vDsqKa2Vla/9Qavb3+HyNC23Wk2G7MKKihIKyAQCNPQ6MXe4qa+zgUqZZZcSoqBmpoeNL4wKSlGMjLMbN/ejtPpQ69Xk5ioIwYcbuojFgOPJ0zW0KzVYd09PnQ6NTFAr9Og02owmXWUlaWi1arZurWdhEQdep2auoCLvLwEFi3KweHw8sYbrUSiUYoKrRQUWNm5s5PBwTB6nTp+Hh5unF40yRpPFlz9AVz9fnJyEuKv49ycBG6+WYkJwzs1DauqdMZjwqxZ6XR6vDgdvviSxOHbHfm38uSqA1Tv7ybgHxETMiyQmA0Xfh9qXyGybzWLw1v4v3u+his7n9WrV7F27Vo2bNjAhg0byMrKYu3atVRUVLxvTBg+ly9alMMPf7jkQ78mJjImrF/fzPr1dubPz+SOO8rH/HmJCROjs8NLd4NybhgzR4hGaWsbpHIoHqxYYWHnzqEcoSeAXj9GjtByJEf4ovrzvNzwKvuDW7n2hWv5xfJfUF4+iUsumQQUccEF91JYmMThwy62bavH63XS1NTM/v0N1Nam43K5aWrqp7xczbRp0+jp6cHr9eL3B+I5wpQp5fzmN3/AbDaP/xN4movFYmw6sId/7HiNxsBOqre+i2NdF8EuZdMIlVpF5rQpZJScS1b7ufQ4g3QHI/T3e+lxBpUcYaqN7u6hHCHFQEaGhba2QZxOH2lH5Qg6nYZAIIrLFSQYjIwqSG3ceCRHSE83k5s7Ro5g1OL1hsnIMJGXN5QjVDs5cKCHhoY+ysuPyhF8IWbOTD9m5pLDMZQj9PtxODz09Cg5glarjseDoz3zzFE5gic8ambgyKLUzJlpJCWNyBGOjgcjDBe75lx2Gzd+6TO88/qbvPLMK/Q6e3n6D0/zzB+f4erbr+ZrP/kaDoeXhgYXRqOWZUvOIS03jSW5S/CH/bQOtFLdU83etoPUW14kVvY8hzr+wtKtS1lZsJIF2QvG7EU1FskRTowUpU6yrCwLGWb9qL5QIxs/X375JLZsbcdo0OBweshIV/qELFiYg93ujl+xrJitrM8NhaLU1fWxatUBbr99OmVlaccsfcpIt7Bixeiv7d/Xw7ZtLrKybVx93Tzs9gH2PraPgN+H3xeiYsFS/vLS5vjxNTXd7N7TiU4TZWDAh0qfI0UpRvc6Gvn73L2ni/2b/o/2RqXZsNGcwIVX3kj5uddRXRujam831Qd6MZm09PcrV8JBWf5WUZFO9QE1bneInJwECguTGBwM0ufy4+jyotNrCIcjhEMx1GoVwVAEny/CwToXs2Z5eOstpZltR8cggUAEk0lHydQUigqT6On1sWtnJ35fmNJpKWTnJNDX56ffFcRs1tHZ6aHL4cPnD9Hl8DK4vR2/P4LJpKW728fzz9fjdgdxOLzU1vZgtepZsUJ5jSXZlJkeSbYBlizOwWLRUTFbSXhrarp5fX0zfl+YkpJklizNpWK2kkSnphyZdj53jtJM9+hp6MPmzs3EaNCSkWmObx07/LwP/y5yeiN0dHg5nBfj6+vb+f1tX+B//ud/WLNmDQ8//DCvvvoqU6ZMAZQGgpFIiGXLjt3lY9jJuEJwMm7jowSF4av5K1cWnhaBRShycxNQRwNkjdhtxuHwjGr8fPnlk5TZI0YNDocnXlDKyrLQ3qFMdz9Q0830sjS8njBPrqqmp9uH1xtielnamLvYZGRYWDkiJqzf0My2be1kZ1n4xNXnkpFh4Qc/eJsaey+JCUM77Pzue/HjD9R0U7nHgUYHbrefkpJkSopGX5U8W43sbTFyZs9rbx7gl//6Xfy4mcUl3Hb5ReQlF7F1ayfeARUDrkE6OjwEAmEikRiJCXq0GjWpKSZSkk3kzEigoiKdPbsdhMNRQqEIwWCEYChKNBIjGosSi0IkCu0dysyi9RuaeestOwPuIF1dHlSAXq8mPz+BaCSKvcWNRqMs5ysstJKRYUajVWavWq161q07TE+3j4QEHT5fmO3vtNPvCqA3aHG5Ajz3XB3pGSba2zwoG+4qV6wzMizYkpSYYEsycvnlk+L90ADWrj3Ehg12iktsfOK6EjIyLPHCakqqkdLSFLyeMGaLFq8nfNyYsHhRDgCZGSNiwnBvqm4/du+5HBpM4Jzw83zS+hNavVdy9/P/5HC7gz//+c/8+c9/JhgMMm2aUoD6xCdKGBzs4pprJo95fyfrivFExoSR8UD6AJ1esrLNpGltx5w/gHg82LKlHeNQPBjuJbhgwVE5QoWSI/T3B2hsVJLqsrI0srIS+WzWpzjkmsfTtU/z6Vc/zWfKP8OX7vgSOvWRBPqtt1pZvbqFKVOS+drXbuHNN1u4//6t9Pf7qKnp4ZvfvIzLLrssfvyWLa2sW9eI0Qi9vR6i0WwSE8f+mz2bNDf3s21vPb6MRmoDu9nesZ1efy+qmIaWRzpw7XEAYLSYWfnJS5i1+AL2H/RTVdXNrh3OeI7QO5wjZA/lCNXH5ggulx+Hw4tON5QjhGNoNCHCYeKN8n2+sJIj+EbnCPn5SlNzs1lpbA5QWppCdvZQjtA/Ikfo8uH3h+jq8jI42I7PF8E8IkfYu9dJ2xjxIGkoHiQlDbBkyVCOUHEkR3jppUYGh2bOLl6cS8VQPEhNHZEjzD2BHMGoJWOseDCiN9VwsSs/fyp3ffMu7vjqHWxdv5WX/vYSOzfvJHfo/cyiRTlEwiGmTxvdh9CoNVKcXExxcjELEt3UHG7Dk9hKZ6SZ9c3rea7+OUxaE4tyFnFp0aWcl3ceZt3xi7SSI5wYKUqdZMnJBiaVHHnRDS/ZgCPJdb8rwMBAkPwCKz3dPiqrnEyZYiMnO4Ht77TT0+PH4wkxqSiJ6dNTqQpFGRgMUVnlpKwsbcxCydHaOwZpanIxMBjAbleWfJWWpWBvdlNSknLM8R5vmFhMTWpaIpOLM457QjjbjPz9RQLd6A1GLGZlGcOCFZ9kfU81OVOv5JN3fJpEq5Xa2l7a2h34vCECgQgqIBgKEwrFMBk16A0aGhpdJCcbmTzJhsGoprLSgVajxqDX4vOF8HrCaHXK8guzRYfaryIcjpKZaabpcD9Opw+fL0wsGsNs0VFenkZWlpLs7tvnJBCIEg5H0WhURKOQlm6i3xXE6w1RPMVGLBqj8ZALgCSbgamZFrKyzLz+mh2vL0RL6wDd3T763UF27eqKX4Ebfk1YzFo83jArVhTEd5hcs6aJvfu6iYQj9LkC5BdYmT8vi7KyNGpquuOF1pwcZVlqQ4Nr1Gt4+HnOzrJw3vn5OJ1eDlSPXj4yfIzJoKNArcMU1NBugE8/voPbFhbwgyuv5Oqrr6apqYn+fliz5hDz52cRje7lpptWsmbNFdx7771ccsklo/rjnIwrBBN9lWHJkjxJPk5D6Wlm0m1qSDhynh55TgGG+oiA0+Hl7S3tBPxhCgutlJWl0tfnp7a2F7NZR1qqCVd/AJNJg1arHnU/YxVKRupoV+LB4IASDzIyLJSUJNPT62P+/KxjfsbrCRONQkaKhSmTUiQejDD8+wuHwzR3tXHOzKmYLVqmFuVSWlCMUWfgpksuZl55CZ0dXvbt68btDuL3Rwj4wwwMBolGwTjU82lgIEjhUKx3DwTYtLEVW7KBzEwLfX0BfH7looRep8JgUJqbuwcCaDUq1m84jNsdpK/PT2+vn3BEeQ+ydGkevX0B2lrdbNgwSGqKie4eLx2dHpYty6Wk2EZnp4fDTW5yc5TffWGBFb8/jC3JgC3JMLT824fHE8HZ7cPdH8Bs1mI2HXnbWFCQGJ8tVVCQHr8i7nB4eGXNofjsqvnzlNfYcF+o4bYEZouWqkonhYXWUYn58HPs6g9gSzJwx+3TaWhwsXVb+5gxIabP5OnOm7jMsIOKnrWEfnsORTc+wU9+8hN++MMfUlNTg8MRpLq6g3nzMvnud3/BN7/po67u89x9991kZ2fHb/NkncsnMiZIPDh9JdtMFBYeWWY0KkcYOg/39w/lCPlWenp8VFYO5Qg5CWzfPiJHmJQ0FA9G9/tzODz02s18uvCLbHa9yl/2/4XXml/j/kX3c072OQDU1/dSVeWgt9dHdXUhF1yQz+bN+ezf333MrmfKmILEYhpycmxUVORP+DKfieQL+9jdtZst7VtYd/AtHJEW6AWr20phRiHTE8+l64CZosXdbLL/g7wZS/jkZ64i0WpRcoQ2Dz7fUI6ggmBwKEcwadDrNTQ0DOUIk20YDEM5glaNwTCUI3jDaLWg1aqwWPT4fGF0OqVfVFPTiBwhFsNsVnIEvV5DU1M/oVAEu92N06n0qo1GIS3NRH//UI5QbCMWi8V3m0tKMjB1qoWEBJ2yRDsS4+BBF4ODAUwmHdXV3eTkWOI5Qn9/gP4x4sGaNU1UVjqJRKIkJRlYvDg3vmtfPEeoGMoRKo/KEUbEhOxsC+edN5QjHBg7R1CWAyaQmmqKz9zKyLCw/LLlLL9sOW2H2whGlJ1ni4ttDLTv5xdf+T5bX1jMVbddxfxl81Grj7zHysq0kpVpBcqIxWJ4Q14a+huo7q5mv3M/b9jfQKfWMS9zHhcXXszKwpUkG5NHvWYkRzgxUpQ6idraB6ip6cVSqooXi46enltZ5eRwsxuDQUNNTQ92u5ueHj/tbYNEYzF83jC5OQnxZtZlZanMn5dJZZXyxm3nrk76XX46OpVK93BRq2J2+qiCVUf7IOFIDINBG0/8b7qp9JilfzC6IfvMWWnse+dVXnu3mSUrL2NSydjTLs8WBQWJtB6q5h8P/y+V217n3As+RXLRbag1KpYtW0JS+lPs29tLZ1eE8hmJ9LsCeIptmM1aBgeDdHR4iERiaDUqklNM+H1h2to8JFiUqw4trcpMCKNBg0oF0aGlvpEwJKUaMJu1BIMR0tLMeDwh9u1z4vWG0Os1GAzK8gy/P0xnp4e+vgADAyGsSXoGBqIMekJ09/jIzUtArYFIJEZ+gZUlS3P505/2UlfnIuCPsHhxLm9saKa3zzdUHNOQYNGh12kIBMI8M9THID8vkSVLc9m3t5vde7qYOyeTFSuUYKHWqCksTCTBoqOkJHnUa2xkbzRQEpL2tkESEvVUVjqYVGQlJyeB0tIU+l1KEt7V6cHp9NHc7I73liooUJ7fpsP9pA31Y0sLRehNMfL0O3a2Nfbw+1vmUDZpEmvWHIpPld2xYwfRaJSXXnqJl156iYKCAj7/eSUZyco68ubwTDXWWvaRjTeXLMkjFArR09NzVjwf46W5uZ++Kgd5WTpGbMg6KibY7UrvJ4fTSywKh5pchIIx2toHycpUYkhSkoGUoabnnR0eFizIJeAPM7siPV6McvX76exQYkJ3jy8+Y2V6WdrQMW6iUYhElEIAwCWXFFFWlnpsPHB4cPUHyMo2M2tmGt7gII8+9yJpyVbuvemKcXjmTm8paVp2N+3kvx55nR5XP6t/+b/UVA+iUau486Jb6O0JUpCezqyZ6diSBtDrlSvJahXYWwbi/2+2aNEbNPT1+SksspKSamTDG814PWFsNgMJCToCgSM9PFRqFRazDpNJRywGXm+Yf/6zDhXKVt3ElG23ExMN2JKNhEIxolEYHAhhS1I2gAgEwtQc6OG88/NJTNQTiURZvCQPW5KBrVvbaGjoIznFSHZ2AlVVDny+MDnZFhIT9Xg8IaKxGFu3tdPfH6D6QA+LF+VgSzLEd+1bsaIgnkCkpZoIh6JUzBl9kWtkbzRQ4kNb+yCJCXrq6/uYXZEef/1BLJ6wKxsBDMWEoV4iw83WDUYthYXJHNRcgjNSynmBl9E9fiks/U9053+XWbNmxWNCR4ednp4eenp6+P73v899993HNddcw7333suKFStGJSNnqhOJCa2treTlnf5JzMfJ3598EafNi2l62phLVQEqK50cPjxGjtCu7Kjp84XJzU0gNdVIx1A88PvDVIyIB/39fjo6vEAKcywX4+pLoVP7Lne9dhfLM1awPHwHDQ19hELRoaKF8jr4wQ8Wx18XIzU39+NweJkyJYkLLsjnzTefZ9euFm644Yb4DMQzWTQWpba3lm3t29jSvoVKRyWhaAir3kq2OR/dvqkcXlfH1u3bUF+VzMCkOajVKpZdWEpmbhn79vfS2RWkfEYW/f0BBgfHyBG0KqxWA/39gfi5v6vLQ0vLUI5gHMoRlJWfhMOQmmogOVnp1TRczAqFIni9IXS6oRzBpOQIwz87MBAmKSlKMBjB4wnR3e1TZnSrh3KEfCtLlhzJEfxDOcK//lWLy+XHZNJSUJBCb68OrzdEdXU33d0+JUfIT8Rq1dPQ0I/jqHigVivLTvV6DYuGZr8OG9kbDaCqykl7+yAJCUM5wqQROUL/UI7Q5TkmHgwXxZqajuQIHR1ekpIGRl14yy3KZefOznhsObj3INFIlLfXvc3b694mpyCHK2+5kktvuJTktNHFJZVKhUVvYXb6bGanzyYQCdDc38ze7r00uhr58fYf8+PtP2ZG2gwuLrqYiwsvJidh9OM93ZxIPAgGg7hcLjIyMt7n1j4aKUqdRPX1Lg4395Nh1seLUhnpllGzmSpmp3PokAtHl5eqSgdqtQqjQcP08lT0Og0QY+YsZbrjvr1KD59gUJly29joorPDQ3GxjdJS5er1hg12qiqV9b47d3VRVeUkLdWE2aIjJyeBORUZxx3LsJFFhox0C6/9+1l2b9tETn7RWVOU2rqtjW1b21m0OIdkm4E9lV30dexm+/q/0dlcFT+usb6ZxGAPhYVJFBQkYjFr8fmiGA3KlaokmwFLgp6SkmTq6/tITPDhH3QRCrvpafPR5nWh1/jQaUN4PR5CAT/RaJBALDh0DypQqdFo1Ax49PQc0hKNGdDozKAygtoCGhspqZkUTs3H2R2ivW0QrzeM1arHZjNgMmnRatREYwYMBjVb3m7DmqRcee93+aEgkYICKw0NLgYGg2ze1ErtwV6iUTCYNWi0apJsRhYuylYKZy0D1BzoRadTM+gJkZNtGeqTF1N2f6l0UFSYyK23lo75+tJowOMJotHAzBnKa7uw0Epzs5s9u7uo3NPFgoU5lJWlkpOTQJLNyOTJSTQ3u+PLA+HIEsJIJIbValCWB3qVZR+OYJgntzVzze+38o2Lp3LJ9CNTZS+//BfcfffdPProozz++OPY7Xa+973vcd9993HttdeyatWq424hPp5O1ZasY61lH+45AsoVlIceeoi//e1vbN26Fa1WwsLJUF3dg6e+D3XUTNqIXslHL7ebUpxMV5eXvr4ABoOaJJuB8umppKebj1na5OoP4HYHMBg11Nb20tvjJxKJMqU4eVRM2LGjk8oqB9ZEPQUFVsxmPdnZFjLSzXg94THHMcxuH6CxwTXUvBQOt3Xx/d+sYnpxwVlVlNq6tY2t29qVwkuygef+vY+Ne7fz7sFdDHiVAmCiOYGnn9tFijGbwiIry5bk09zsjs/8Gf69tbV56ewaxGDQ0Nfvxxf0ExyI0NjlwRv0smFPFJ0B2jrcBMMhoh1hYkSJxZSCll6nwWLRE+2GcEiNVqVHp9GjRodZZ6Y/kM7yRVN4d7sTtztA5R4HBQVWyqanUl/fRzgSw2YzoNNpGBwM8tq6wyxZkkt2ThIQw2zR4vOHCUdi+H1hjAY1AX+EcDhKMBijoCCJzEwL3d0+XH1+Xn65ka4uLwcP9vKZO2dgtepxuwPY7QN09/iorHQwa3Y6X/xixTGvMZvNQCQcpd8diPc7G44HbneA9a8302x3U1iQxMqLCrAN7To2XEwduVOf1xOOx4OCfOvQ30sy7pz5GJufhU2/hIYN8KknRi2faG1t5bnnnuPhhx/m7bffZvXq1axevZopU6bw4IMPctVVV53S19aJOJVbdL9fTJg7N5V58+bxxBNPjFrCJT48p9PJj/77u9jys8n48X3xv4ujz8MVFUM5gsNLZaUDjUaF0ahh+vRU9PqhHGHo72bf0C6fmZlmKiudhMNROjuPzRHsVWaMlvPQ5ezn7egmtrCZjBlLKe6ey8UXF8VfA8ebzTFy167CwiT+9Kc/sXXrVmbOnHnGFqU6PZ3xItT2ju30B/pRRbSka3MoM83H22omUN/P5rUbcRxuiv9c7d4WslRuioqsFBZalWXR/ihG41COkGQgYUSOYLWGCAYjRCIxent9qFRqtFoVJpOe9vZB/P4QsRj4fEcuUGg0YDLpSEzU0dXlJRCIoNWq6O72oVJBLAbJyVoKC610dXlpaxskOdlIaqoRiA2dM/UkJOiVHGFLG1brUI7Q7weO5AiDg0E2b26ho8NDLKYUZXQ6NZddNgm3O8iePV1KjlCj5AjLl+eRlGSIx4OeoXhQVDSUI4zxnkOjAc/gUI5wVEzYs6eLysouFiwYkSMkjcgRRsSD4SWE8RyhIh3PcZaGjywGz//Rf3D1bVfz0lMvse65dbTb23n054/yl1//heWXL+c7D3wHrW7s98UGjYGpKVOZmjKVUDREx0AHVd1V1PfV83+7/o9f7/w1U2xTWFmwkssmXcbkpMkfatfKiYwHS5bk8eCDD/LKK6/w5ptvntKdmCX7OIlKSmwUdR87E2mksrI0FrZ72LatHWuSMhMmEoni90XiOxOsevIAixbn0N4xyDvb20lI0BMMRVGrVSRZDVitBubPy6Kmphun00tOroXUFGO8WXooFGXKFGU5gNWqj/euOr4YxJQ1yTt3ddIz1Fj3YF0PF57k5+h09eqrTRys7aXfHcAQqWL764/jH2wFQKXWMGvBpSRkXkJS2mTa2gbQadWsW3eYpiYXHe0uNNEuqra7OdzQSH9PO5FQN0GPg0jIxfBOB76h+/KpjegNZqIxHSq1HlVMR0yli++So9GAFhX+wQiRsJ9YxEco4ica8QHKZRJvM7TuBp3BisGcwWBCNglJedjS8gl6MjBYcikuSWX3ri56e/0EQxEcDi/79zuprHSSkKBDrQKvV1kWGvCHMOg1zJmTwZLFOfFiz769Tp5bXY/L5SeGsgPH/HmZOJw+cnISlKV49S4sFenHfY212AcZ9IRosQ9yw6fK4lPDi4ttHDrUj9utbA+rUqmUncmGdpUcniE1bLgAlpFuYsnS3FH3lwH84KoyntzWzM/W1vLW5FR+f8scUhOUGQLTpk3j17/+NT/5yU/417/+xcMPP8zWrVtpa2vDaDTGrwosW5bBhReO3kZ8vHyQRojPPXeQ1avr+cQnSo7bwH3YWGvZR64vB7jnnnt4/vnnqampYebMmR/6MYgjystT6etOJifr+I0wMzIsFOQn0pybSHKygcREPQaDJl6Q2rqlnXAkSmWlg8VLcuhoH+TNt+zotGq0OjXJyUbKp6cxa2Ya3T0+NmywY7MZyMlNoLaml9ahmTll09PQaCA52YhrxHT2sQxvA93Z6WHDBjshnbJ1c2+vL97b6mzw6qtN1B7spbWjm8rW7Wyu2kU0ppx/8zMzOX/2EmYXzWDAHSYQjJKSbOCFFxuIxaI0tXXRaG+jzdmFvcOBNzyI29vPQKCfcCQ86n5UqDDojBj1elQxDcQ0qFVaNGo1kUgMlSqGWq8hEA3gGvDhDwaIECIYDhKJKre1tQX+vg00ag2JpkRSm1LJTk1n7owiElNsePsMmIwmUpKN1NT2EXKHeO21w5SUJKPTqZXlQN4QKiAciVFT00s0BhaLjgsvzGPyZGX26959TrZu7SAcjhKNxfB6QjQ3u5ldkU5VpTO+HK++wUWF5dhtvQFcrgA+X4jmw27mz8uKL/EoLrZhtw+wdWtbvLm/1xOO7yg5cvkfDPU9q3SQkmpk1sy0Y+8r50uQXQG7/woPLaLw8l9TePnN8W/feuut3Hrrrezfv59HHnmEJ598ksbGRhISEkbFgwsuKP5QScRHdariAbx/TDCZTPz617/mpZdekqLUSZKens7//uE3fP3z9/Linx/lnHN/OGZyV1aWxsKFQzmCdUSO4B+RI6w6wKJFObS3D/LOO0M5QnAoR0gayhHmj8gRcizKRe39+eROKyB5cRMdeW+hu+UdmjTXcPBQIdMmv9cuejFiMeju9rJmzSG6upSi/JYtLVx77al5vsZbf6CfnZ072daxjW3t27AP2FGhIjchl+kp06l8K0DrPi3WnCzaXC28s3Y1/oEeANQaDXOWLSWcMAOtOQ29Xs306als2dLOvn0Ourq8WCw6BgdD1Nb24HT6MBg0DA6GyMxUVkG43SGCwRgQIeAPYbPGiAVd6KNefN5BoiE/4VAIohEsZjXasJq2Dj/hUBRUaoKoCYWiaLRadHoDPW4DunAKthQrhkQdWo0WlcpAQYGVvj4/KpWKKVNs7N7dRU+Pf6hJ+pEcwWLRoVYP5QiV3QQCEYxGLeXlqcydm8HMoXOu1arjueeGcoRYlJ4eH+edlzd0G9r4UjzLceIBKLvxDXpCtLQMcsMNJ5AjDMWEo3ffi+cIGSaWLMk97v3BscXgoqlFfOX+r/C5b3+ON196kxf/9iK1lbW4ul1oddqh23YyvczK7Iqx+2vq1DoKkgooSCogEo3g9DmpcioFqsf3P84jex8hNyGXFQUruGzSZZSnlp9wbJnIeADwH//xH7zyyis0NjYyderUExrzhyFFqVOgp9uH3T7AoUN9VO5xsmx5HpddOjm+tM5k1jKl2EZhoRWfNwzEaDrspqHehccTZNCjbOnsD4TpcwVISNCTmmpUltjlWJg5S/mDraxy0t7mYXZFOkuW5jLoCWG3u9Fp1bS3eQgFo0Mv+G6SbMfvQRUMRenrUxroebzKfQLU1/Uec+yZZGRvrgSLDp1Ojd8Xprl+L/7BVlQaI3rbMqbNuw69KY2egRDmxD4inmp2vVnLYH8zIW8bsZATiHEQUGmsqHRp6IxpJOVMw2jJZMBrVL6uSSQQMpOZlcjCRbns2NFBsk2ZoeN2B/EHwgwOhkiyGsjINNHV5SMl2YDRpMVo1NJ0yMWA20XQ20sk5ELDAKnJARJNbnoddhxN+2je7wJArdZTn1JIVJNHTJuHOziFsCoTvy+EWq0mNdVIapqJQCCKQa+mtTWCwajMkhpeDpqRbsFkdmE260hNNaHVasjOtrBmTRNqjQpPSXJ8JtPIGU1Hm16eSk+Pj+lDJ7yamu74fXziumIqq5zKNrH2wVHrw4/+Hb1XAWz4uOvLs5mRk8Q/d7Vy0YOb+L8bK1g+9cjYTCYTt99+O7fffjv79u3D41H6+axf38zatdX87GeXcv3113DXXXdx/vnnj+tSjg/SCHH16no2bVKKpu8XdMa6+hkM1rN37++59dZHWLPmEOXlqbzxxhsTknyd6fr6/Bx2dnLoUB97Kp0sX5YX35VseKlcYZEy7d1s0tHc7I4n93v2dOHzhzEatFgsOux2Nz5vBExgMGrJSDfHp8hv2GCP/13dcft01q07jN3u5oILCmhudtPW7iEYiuL1hkcttTpaRoYFm83Alq1t9LsDxAz9APj8YaoqnWdsUerovlyWBB0qlYqeHh9b9u4mGouSkZhNaUYFkzMmkxAzYvn/7J13fFv1uf/f2nvYsmRbjldiJ7aT2M7GdoAsCAmrjLbQlg5aum97y6W3t+t278nl3rYX2lKgBQplQwgkIYHE2cMZHonteMWyLVm29h6/P44kS44dQgstvT+e1wtiSWfpnKPzfD+f7+f5PBo5NqedtjPdPL1vjLFJB97IBLGEkMPFIglqmQ6dUk+RoYRa7UJkIjWiuBypSIkEBUatmg99aDHtHU56U12FJFIxhRYVw8OCUW1+vhKtTo7LFSIeh+XLCxka9NB1ZgKNPs6oYxKX30NCFMJUJMITdtE/dpZ9fzlEPC7MsOvVekwaCzpZPlqZibywhbNnRalmGGGkMpg3z0gsJnT/EgGFFk2m5NNi0VC/GDraJxg+B+YCFSUlWmKxBHtbbcTjCQL+WEbJlK1oyo6GRnPGaDetfuroHM+UnG64opxgKIbfF81pQT79OrW12S9IftntfgbH51G+/OuYu++Hpz8Jva/Adf8FMlVmuUWLFnHPPffwwx/+kGeffZY1a9bw7W/vZfv2QbZu/S/c7pPccccdvP/973/LSxey463KB3B+TnC73fz5zz9mzZo1zJmziC1bzrJ69TW8//3v/yuP/p2YKZZdsoprP/8BnvnFg3z9Uz+iYf27OH58nEtTOSF9b6tUUubNS2GEYAoj9Hno6XHh92VhhFCMycksjOAOU1ysYfHiFEZoc2Cz+WloMFNdncfu3ee4tGkOk5PzcPfNQVR7mtf0j3DgtadpPryZjy+9nUVVpecdd9oior/fjdsdYXxcII3377f93c7dmx3heJg2exv7R/azz7aPTmcnCRIUqAoo15XTYG7AkLAQGFdSnVfIOe8ZbB4HEa2MvpPdhLxOxFIFCvNiapvWIFfr8E+GkQISiYh9+2wMDXmZnAyRTIJWK8PjiTI+7icWSyAXB5DEPfScmyDsdxH2e4iHvSSjPtqP+2lPJs8/aJEYRBJiEik+mZREQoxEIiKZTJBMJojH4iQTcZLxKJBksit3daVajVJrIJpUocvLx9VfiMuvBLEBv19PJJIkFMrCCKYURlCkMIJCglYrx24P4nQGsVg0qFQyZDIJBoMCg0FJdbVRwAhiEX5/XkbJ1DhLPgCoq0thhLosjNDmoLHRzI03VtHWlsIIQzNghKy8fSEC7PV8NzPnSKVk03s2sek9m+g+1U0iLkxEtbU5OLT/LPf/53+z9prL2PTeTdSvrJ8VI0jEEoo0RRRpirii/AomQhOcHD/JmckzPH7mcR7seBCTysS60nVcVXEVSwuXIhXPTsn8PfMBgN/fQUfH77jttl9nMMKrr776lmOEd0ipNyni8Tjf/PK/kyhejds6n3g8yYH9Nux2YfC16aq5GRM2iUREPJ5kYMBDPJ6kpiaflmYtGo0sA86bmqdqUMvK9Gg1Mnp6XFRW6DOAPJsQsJg13PaBhcAU6C8v1wvdOVI+PUAOmE8D+W3b+hkY8BAKx3jf++rIz1fjsUNV1dvXof/NiJMnHOzd3U5wfDt6yzKUygKcziCu2CXIC8SItZeQiIzRdWwbiVA/iVA/XdFJAEQSHRJlCVLNIsTKEnR55SApJBKXIRGDVCpFLIYYIErE0OkVNNQLg/FLLxN8Go63SQhH4uTnqWhotGA0Ktj92jn0egXxRAKFIkwiCU5nEL1ewebN83jp5X4cMSUyZQnFRRpKSwVVnsoapkwixj7qYOxcL6LYEInIECH3aWKhXUASkVSHKK+GycRCPM75lM5dQHGxgkBAGOAYUgRZ2v+ptraAgQEPiUQSi1lNeYWeyYkwwzah7XdZmQ7neJDXC7NZTd3CAsxmoTNFtsfUrbcIsyKPPNrJsM3Hvr02qqqM9PS42LlTUITI5BKKijSUlwvdIGciwLLNQi9bVkSVRct9u8/yofsP8rHVlfzHplok4tyHabYiaMOGco4d20I47ONPf/oTf/rTn5gzZw7vf//7ue2221i4cOHrfs+/Nd6IEeKNN1bn/HsxMTDgZsuWfTz55H+xffuLACgU85g377rM/t+JNy+eeGI7r/7lz9x+xVq8iTj7D2TlgxQplfaJkkhEjPoDmdyQBvd+f5RYPIFUIqah0Zz5DcTjSURiEXULTZkBVjYZYLFouO22qXvWmCcoBrPLpAYHc30Wsgdtu14dwmbzkkwkaVoveCoo5OJZiYb/C3HipIPDh0cJiG14og7qi5qAJH63iNqCJvLU+cglKsb9dl7t3IUn4sC1w0k8EUckEqNX5KGV5VGoLaOkoBCTpoBIQIpEIkZvUOB2hQVMgRiNRkpJiZZwOMH69WWUV+jp7p5ELhcDwqTV5s2VdHVN0tkxzthYANdkCJlcAskEA/0eVqwsprLSyMmTDvwuCVqDicIiDcVFwjVVrJDi8YQ42TWEw2vHG3Hi9Ns5N3GcaDyMCBFmvYVqdyWKpImWxoUsWlzAoYOj6PQyLIVqjEZFxv8p3elRrZYSjSbIy1dSXZ3PuXNegqE41VVGIpF4xhdqNvIy3UWyq2siU0qa7TN16621HG9zcOjQKHv3TeWDvftsLKwz4XKFGR0VfjPVVcZZ78mpnJCPee1X4dQT0P4kDB+G9/4RCnOf6RqNhltvFZRUGzaUk0gk+M1v9mC327jzzjv54he/yMaNG/ngBz/Iddddh0qlmmGvb1681fkA4MwZOz/72T089tivcLkmePzxJ/j1r7dz5IigAKmoML6h7b0TF46e7kkURRVcesP7eO2JP3HmjAexpQkQcsIFMUJLFkYY8uX48pSVCWViPT0uKiv1med6NiFQW1uQyTudneOIEFFmWcmkxMYJ/352BZ5id+szbBhez/tr30+DuYHBQQ/t7U5+97uTnDo1jt8f4VvfWs1jj2lxu2Hlygupq95eEYgGaHO0ccx+jMOjhznhOEEkEUEn01GuL+fKiisp1ZViUVvQyXWopCp2vjLInl1dvDj8BKaKxSgUcpzOIF7JApRzZEjzFiKSyOkfigCTyGQiZDIR4+MBfL6oUEoX9REP2Jm0jzMenCAZniQWnCSZUrkikiBR6FBoDBgKizAVFrBs1VyCETltJ9xIZCp0eXo2blqATq/i+ed7BYwQT2Cz+VCpZASDUfR6BStXFvPSS/3Y7T5IRtFrQK1MUj1XyUDvKO4JJ27nBFG3C+fwAGM9bZnjEImliJX5KOeUEhCX4rabKK0qp7hYO4URDCmMcDwXI4RCMbRaGdddNxe7PcjwsI+SkhRGcF4kRqjLwghZHlO33prCCI90MjzsY9++aRhBJkYmm4YRZsgJMzUUeL2oXjT1PG1sNNOx7zWi4RAvP/EyLz/xMoVzCrnihiu44sYrKJtXNut2xCIxBaoC1pau5fI5l+OOuOkY7+D0xGle6n+Jx888jk6u49KSS9lUuYkmaxMKiSJnG3+PfDAw4Oa55/bwxBN3s2vXNgBUqhpKS6/IHMNbHe+QUm9S+P1+Bs8eY2j381zynT+gyy9HLhdllFIwVcOa7l4WicQZGPCgUUszXQggVx0ilwveIXq9grXrynJKA7PXyY7p79sd/oxSKjsGB70cOTKGK6WMksvELF9WxNOFGvq7YO68/7sg9cnHdvHob/+HSdteSMaR6U6itH4CcWyQyGQHiWA3CedzkIyBSIFYUYZUtxy1sYqYqJRY0ohUJkKllBCLQygSJxEDqRQKCtQZQ0qlSkrpHB2VlQaqqowsrhcIxN/+7gSRaJy8fCXNzcVYrVr8gRjXXDuPw4dHcblCLFiQT3V1HsPDPkz5SlpWW/H5I+zaOYhMLiESjXPihIN4IkkkHEckFlFcrGPO3EaUquUYjQq8nghDg+NEA71EfWeI+c9wruMhSMYZPpHPvIUtaAuWsHhpExuvmp8xzi8v17NjxwCelOlinlGJRCKmbqEJa4k2Q4Q++2wvx46NCW1dC1Q5Pirpv7Pv+8NHRs8jl9ISc61WhlgiYnDQy769Njo6nOi0MkrL9PR0u7CY1dx6S21mnWyD/+lmoVajiq9squWRQ4P8dncfB/om+M37l2LNm7llq9CZ4nscPnwD9913H4899hjnzp3jRz/6ET/60Y9YunQpv/vd72hsbHzL7snXi+ya8ptuWnBRMyDp6O3t5ZOf/BI7djxFMplALBazZMn11NZeRSIhwmCQv4VH/v9nxOOjPLuvlfw8KZ++9YPI5aKMUiod6fs17R2VzglqjZS62oIMsE8TRlVVRuRyCUeOjKHXyzOePEDO8tMj+7N0mdRM+SDd8cznjSBChFYnY16lQEppdbL/syqpI23D/Px3z7C38wDuoAuAK2vkiGISRr0jTIbG6JloIxjzAaCR6cnXWCg1VGNQFqCWmJBKJCgVYhIJodQlEREhEiVQKqXC81kEWq2cwkJNJh/ULxYIxEce6aS/34PBIJRXNLdYKTCp0Ov9mApUeLwRSuZoqV9sZnjYR75JyeoWK4ODXhyOIB5PhGAwysRECNdkmFgsgVgiwpSvorKkmDnRQoqK1Hg8URzjflz+SUbcNiaCIxzrPUkg4mfX6Rep2T+XMtNcLm2s52MfWpYxzS8v17N9x4DgZ6aQsKBG6OAbiyWYV2XM3ItpP7Nhm3Cesv3Qsmeps7v22e3+89RVRqOCSDSOzxcRSvr22Wg/NY7TGaSi3EAgECWegLqFwn2drbRK36M5OUEsgfr3gGUhHPgV3LcWrvwerLxjxvsh3anozjs7+NOf/sQDDzzAwYMH2bJlC1u2bEGv1/OZz3yG73//+2/B3Xjxkc4Jy5cXvaF8EI1Gefjhh/nSl77G2Jgwo24ylfGBD3wNlyvOvHmG/6+7q71VUVWdR0VYz+X17yI/X87T991PkQxWrxbuw8xYSSPFn5UPNJppGME+C0ZY+9dghDmsGKvjRH8v5+Qn2Wfbx9b+rZTpypgfb8ZzYC5jY4KiXKmUsHnzXH76Ux1nzsCKFW/fxiiOgIMTjhMcsR/h8OhhTk+eJpFMoJVpmaOdQ0tJC6W6UqwaKzq5Do1Mg0Q8VU75+J/28Miv/szkuXZIJlGaBlDP3YxCIQGpAVnBksyy0SiIRAkS0QC27l78E6NEfWMkgg6SMWEiSiRRIlaaUOiLsVQtQSQ3Ek7qkKuNLFtWSEWFAb1ezuJUTvjtb08g049QWKjh8svnCBjBH+Oaa2bBCCYlLS1WfL4Iu3YNIpNp8HjC+FxxEoNKPMESIpIiShoET1ilSorBIMM5Ns5Q7xAhj4NY0IlvfJjRM0eBJH17pBRVVKK3VFDdsJBbPtSIxxujrW0KI7jdYfLyhDJTjyeSQwxZLNMwgul1MIJG6Ig3nVzKwQjiFEbYl8IIOhmlpYL/lcWizpSDZ6utZsIIbzRqawv49t0fp/PDl/L8I8/z2pbXGDs3xh/v+SN/vOeP1DTW8B8/+w/Kq8svuB2xSEyeIo+WkhaarE34Ij5OT5yma7KLAyMH2NK3BaVESZO1iU0Vm7is9DI0sosj0f7afABw+vRpPvnJL7Fr17MINjJSli27gaqqtcTjfz+M8A4p9SaFXq/nkaef59pNV/Kb732cnz3wFMuX1fKed08ZhU83Gn/qqW5OnHCgVEhzCKkdOwbxeASiKPuHZDFrplpnpsB4OrKJrOmlTbMZnAtyRzsGvYL8fBXzF+Tzs58dYnJS2HcyMYN89J84kskku17ezl/+8BvOnGjNvC+Rm4mHJ/GeuROSURCrECvnI8u/AbGqGpHcikgkQaMV2rW6XBFECaFDXiIBYjFIpWKSJEkmwO4IUlKio7RMj1ot49IUCO3qmsBg9OIcD9LZMZ7ptLh+fQWHj4xmZsgGBzw4J0IsWaIklDI3rKnJx2LWsHFjBVqNnNa9w/T3u4jHkuh0cgoKVHjcETRqGdddX0Vvr4vu7kkKCzXIFRLGxrSEgosw5ikhEWKo9yQ6eTeu0eOcPvocJ3YpOLPvMi7fdD3XX3sVHV0+WluHGRv14/NFsdn8GA1yKisMNDaYM7Papnwler0ChUKSc9+mvy8IZFRbm51AIIpCIWHZsqIMuQRTZahV1UYaG4VOTU3NVkLhWI5KMO3NlV4nW9E10z0uk4q5qsqMPJhg75ibjXfv5sc317Np0VT77+nmgcuXL2f58uXcfffdvPDCCzz44INs2bKFEydOUFIyVUd+9OhR8vPzqaio+BvuyIuL9DHa7X56e4VSqoudsYhGo7zvfe/jiSeeIJmSg1911bXcddfXCYdNmW1u2dLHr37VdtE16O/E68cXv/gZ1BNH+OwP76d4TiHf+8KHeM97chtHTPc1eDKVExRKaQ4hNWtOsGhmBOTp9WaSq89mcJ4ZKA550GhkzJmjo7BQw7PP9QIwUzXBP3t0nhnhl394lj9t2YY/JIAHuVSOVq5nd88WgjEBjOkVJoq0FZjUVvJVhcglStRqCckkRCNxYnHh/MTiSWQyMdFInLw8FUlgwhnMtOZesMDEFSmPhq6uCYwGwRi8u3sCry+C3iCnsdFCXW0Bhw+PcuzoGP0DbmLRBHqdnPGUMrWmJj9zDa+4ohyxBPbvs5FIgN4gmNr7fFF0egWLFprwB6I4x4PU1eUzMqJgdFSOSmKgQd9A/WITr+3rweYZxBOzseP4K2w98jIP7CjhpitbuOXqywl7xBxrHWM0BU7z85QEgzHaJ5xsuKIcq1WT42cWjcTZsqUPnXbKTy17lrqnx8WOHQPo9QqMBiXLlxfl3LsuVxi5TCgVKSvT0ZxShaQbAAwOeXJyQrbSKr2dGe/zooU4ln0d2ZH/xbjlLji7E971G1AKIGh6PjAYDHz605/m05/+NKdPn+ahhx7ij3/8IwMDA0Sj0cxmI5EIO3fuZO3atcjlb/3g/W/JCc899xyf/vSnOXdOIKPy8y189KN3cumlN+B0huntddHUZOXw4VG+8pXd7+SENzGsVi21cRPlhgJqv/5BKiuN/OIrv+B0ayFXXfX58+7ZDEZQSnMIqQvlgwxGaJyGES5QvlRYqOWKwgagAV/ExzH7MY47jrPL9wSxxVEMc/Iw9c1nvkHHrR94OlO+l3ybJIXJ0CQdzg5OjZ/i1Pgp2p3tOILC8yBPkUeprpQNZRuwaqwUaYrQyrVoZJrzyqWSySTbnt3N4/c9Ts+JU5n3lXnlSPIXkl2plUwmSYZdxP02Yv4R4n4bybALAJFUjVhtQWZahNJQiERtQSzXIpUKvk8hkYiSEh0Wi+p8jGAQzME7O8eF7qdpjHB4CiMMDHiYSGOEUBZGsKQwglZOa+swdrufWEzITWVlOkZG/Gg0Mq67bgojlM21osszMTTkIRiMU1dXQMDn5/TJHgq0XvJUE5w6vJfT+7fx8h9+xcJlC1m5ZiUux3zazwhlnUIXvxBud4TNm+fS2GimLTU+N5kuAiNoZsAIt2ZhhFQZalVVFkZoshIKxXJUgjkYIUttVZtS+c5a5n2Bsr7pn9ctraNuaR2f/87naX25lW1PbuPgqwc523kWU+EUkd91vIt8cz4W6+wl32KRGL1Cz4riFSwvWk4gFqDX1UuHs4POiU52Du1EKpayvHA5G8s3sq58HfnK/PO287fkg1AoxC233MKzzz6b+T1fc82N3HXX1/D7DX93jPAOKfUmRr6pgDt//iB33/kB7vrwTdz+7/fRuLwWi1kzI2nknAjidodxTkzJG0+eEHxzDEZ5plNa2vgZzgfj6e26XSFGRoVB9UwE1Ez7t5g1VFbomZwIsXSphbY2BydOOAjYheN5uyScNyPsDj8/+o/PcGL/1qk3RTJIRonHPEhU85EbLkGkWIBIXoJIdH6dcDgcJx6DlNctAAqlDJlMhM8bobhYRzgSJxSKoVSKqas1odcrGBr04PNHCYfjaNRStm0fYOicD7EYJFJhP5FInDNnJojHEySTSVQqKePjQQYHPHh9ETo6xhGLxaxfX0ZpmQ7TaRVeb5h4LEFZuYENG8rZt9fGsM3HwIAH+1iA3l4XeUYFqy6xEgjEkEii6HUyzBYDJXNMKFUb2LC+jEhwlJ0vvkj3yV386D8+i0yuZOGyy6msW0dJyXy6TkfweQWDzb5+N339bjo6nNiGfWzeXElpmR63K0RPr1vogpQaJLldYdyuEG1tQgcNlVLKsuVF581UNDYIZUqmfGXm/rSYNRmjc7vDT2mZPme9i/GyAmEmJjYS4l1zC9g36eNTfzzK+1aW8a3rFyKTiGc1D1Qqldx0003cdNNNjI+Ps2/fPgIBeaa2+vOf/zx79uxh6dKlXHfddVx55ZWsWLHiLelclz7GefOMNDVZX3cG2+fzodVqAZDJZPj9fpLJJFdddRXf+MY3uOSSSzLLDgy4sVic3HvvcY4cGQMurgb9nbi4+MwtGwmHgvzbLx8lGknynvVXZWYBZxoITTiFnDCRkrynAUh/vxuZXJLx9sleZzogTw+iXO4QoyOpnHARg630fy53iAKzOmWK7eR0v7DtRCJx3jb+WcNu9/PizuN84rs/IpwiFyQiCfFknEgsQkwSp1BbQYHaSr6qCIVUKFvITomBQDyjlJ2KJFqNHHcsjFYnY0ljIXv2nCMQjFFaqqOiXOgQ19U1ycREkMEhD+eGvHR2TZBMgKxcnHnORSJxxp3BjKfFuWEfg0NeJGIRfX0u3J4Il11awnveU8vgkJczpycIBGOUleq4+up5DAx46O5xMTLqZ3IyxOiIH58/isWsQSwWo9XJyTMqKSjQ8O53NXCszcpll86hplbPky8d4sjpU/zmz1v4wb2PUV5UTPPiJcyzzCfgluEYD+DzxZDLxHg8YRz2AIcOjWIt0bJ5cyXH2xyMjvpz8kG2MmrvPhvDw4KaaqaZ6/JyPcM2H81N1sx9mW1qW1amo6x0Kie8no9VdgyMQpf3Zi63tFHa/RL8qgne8wDMWX5BM9kFCxbw3e9+l29/+9vs3r0bicSYyQednfvYtGkTBoOBa665hk2bNrFhwwYKC9+a8qY3khOSySSBQACNRngGmExC98HCwkK+8IUv8C//8i+o1YKCOJ0PFi408ZWv7H5DviTvxBsLu92PtWYln/ja57j3e/fgmvCx6YMfYe68vMzz2pnKB9klUCdPCr45BoM80yktbfwM54Px9HPe7Q4xcpH54NI5l9JS0sJ4cJwn971Kr7iH2JI2DooOkCyVMHRwGIB2RzuOgAOz+u9T1u2NeDnrPkuvq5deVy/dk930uHoyBJRKqsKqsVJlrOIS6yUUa4qxqCyoZWrUUnWOEmqm7/+tT32DjkNHhDdEIlQFNWhKliFSmolEYoT9k3hdQ8S9gwIJFROui1hVgFRXhrzkEuT6OcSYUuRrtLIMmTVvnhGHIziFEepSGGHIg8+XwggaKdu2DTA05MtMeEMuRoApjDAw4ME3HSOU6jCZBIwQiyUoKdEJGCH13B0Y8GC3pzBCnoJVqwSMEAhEiUZj5BfoWLxiEdXVeWzcWEEiHufA7nac53o5deg4v/vp74lFouQXFZE/ZwEhSQkRsVnACH1u+vpSGMGWwgiletzuED090zCCO4zbPYURlEopy2fCCCkrA5NJmTNeSecEu91Paek0jHARXlbw+mV9s32uUCpYd9061l23jgnHBKdPnCYQEtF1ZpSyMh0///LP6T7VTU1DDc1XNLP8suXMXzx/1s51IpEIjUxDvbmeenM9gWiAIe8Qp8ZP0evu5dv7v82393+bxQWL2VixkXVl65ijE8jMvwUjKJVK3G43yWSSa6+9lm984xssW7Yss+zfGyO8Q0q9yaHPL+A9n76He77xEX7+lQ9w8yd+ycc+eVXujZ0ihVqarWg0MsrL9Rw+MopGLaWvX+h0pFbLGBkNYDB6c0im6WB8cNDL7t3DBAIRylLkwEzd9qbv3+7wc/LEOB5PhKJiDX39HkrLtAwOeZFxM+uu+yhNa1a/tSfrLQ6PaxKFUsmk08Ej9/+Z3s6Tmc/E8gIUhiUk5HWIFPMQiaZmdEXiXOIJQCIFqUQEIkEZlUiASATFRWrGx4OEwwniiQRXbKjgWNsYoWAM50QIvV5OT68LpzOEKV+JzeZnfDyEVCrGbFbR0mzF7vCzb6+NgQEv8VicoiIN8+YaEUtEFBSo8HojdHVNEAzG2P3aOa65dh5eT5jKCiMymRiHQ0hMTc1W9u21UV4utKJNK43C4TiJRJKSEqE2vHXPMMmkUCJhNquxmPVMhJsoqGmhrMFDf+dOznS+Rtu+l5DKNRiKVoOmGaWying8gcWsocSqFczOAzGWLytKlYgqc0hPg1G450z5KhYsENj9dKv0nh5XpnW6XC7BlK+kJ9WGfv16Yf3sEr1sYhaEwVa6XHC27pJ2h19oDlCkZlFVPpeZSnjiyDCPHhrk8MAE/3vbsosyDywoKODaa69ly5az7NtnIxaLIpfLEYvFHD16lKNHj/LNb34Tg8HAunXruPnmm3nf+973Bu5UIdIdnzZsKKelZarEK/sYZ5v9GB0d5fnnn+e5557j5Zdfpquri/JyQZHx4x//mB//+McsWrQos3y2ImDz5rkEg1E0GtkbrkF/J14/Lq9bwrrFo/z0D49z6OgwP/niRxGJRDMOdJpbpnLC9h0D9Pe58XojyOQSdFpZxoMnO6YD8j2tNg4dHKG8Qo9Br8iYSU+P7JyQfq3WSBmx+YlG4pSUaHFOBBl3FvCpq2/nxnf9cwPTZDKJze6kIM/Aw8/s4fEX9xCJCudTLBJTqJtDobacAlUJCok2Z125XEw4nJsUdFopIrGIeDxBJCqwVQqFFLVawsREAud4CI1WxsKFZrq6nBlfsIA/Rm/PJE5nCJc7QiwaR6mQIpGKqa0TlA2HD4/S0eHEYQ8QjsTRauWo1VIsFjWmfBUHDo7gHA/y2u5h1qwRvCzmzjUyNhZgcjLMwICH9evLUCilTDiDVJTrGDSpWFhnor3DSSIBlRV6Cgs17N9vY2jIIzSyKNIgk0uYPKelStvEr++6mh5bL09ua+UvO7cRjW3BmldCbfEiirSVKBQq9Ho51hotwzYfErGIgD/G+vVl55GuRoM3ow5rbrISTs1yjzuFxjCRSJyODif5JoEATCSSBILRnHOerQrMBuJ1tQUUpEpDLtRZMt1YoKhYg2Lxu0C8CvbdA7+/CtZ+lYV1HwEunA/EYjGXX355Jh8ATE46KSwsZGxsLONJCNDQ0MCVV17J5z//+Ryl7cXGX5sTYrEYe/fu5dlnn+Xpp59mw4YN/OY3vwGgubmZJ598ks2bN6NQTPmWTFeJ/bW+JO/E68fevcP8+c9dRKMJrrhiIV/9r6/ygy/8gJ7TNj71zS9isQjeTy1Z+eDw4VE0Gil9fVkYYSSAwZDrDTgdjJ+HEWbpvjodfI87gpw8GaTQ04DaV4PP5WU8eY6R8CBFN8ookhfwhOgJnnn8GYwKI2W6Mkr1pZTry5mjnYNJacKoNJKnyEOv0COXyJGKpDlGyYlkgkg8Qjgexhvx4g67mQxP4gq7mAhOMOIf4ZzvHDafjRHfCN6o0E1WhIh8ZT4FqgLmGeexomgFReoiLOopAkoukb+uKbPL6UKtVSNXyBkc9CLWzEEsPYG2uB65uRGJTIF7rI+49xgx7xDJiAcQIdEUITMtQqKxItEUIZIohK7ZUhEikZhEJE56DqeoSI3TGcLrjeD1RrjiigqOHRsjFIrhdKYwQk8KI5jSGCE4hRFarNjtQjfGgQEv8XicwkIN8+YZEYtnwAi7z3HNNfPwesNUVk7DCE1W9u3LwgihmTHCgQMjAHi9EWprTbjdYQ6fjCESVVDRVEt+7bWM9J1h8lwXQx1HCQdeRSzXkihbiKO4hQX1Cygp0abMzoUOqna7H4NBmZMTDKmcYDJdBEYwzYIRUiV62fkAUhjhdXKC3e5PNQdQz1rWdzFlf/nmfJrWN2XUbNFwBJVaJYzzjnfRdbyL3//09+gMOpY0L2HttWtZc82aC96bapmaBfkLWJC/gHAszIh/hJ1dB+i29fCz8Z/zk8M/yZSh1hWvZPklZTQuKp4VIwwPD2cwwiuvvMLZs2cpKhLO2S9+8QuUSiU1NTWZ5f9RGOEdUuotiPbOGKrSu/AN3M1T9/4LzU2PUlYmXOyZ6r2zS7fi8STFVg0KhYRQKIZGnXuJpteIl5XpSMQTOJ0hlArhge/x2AiFYzklftk/rM7OcZ58qhv7WACzWY1KJc2YV8+bZ6CrqwSZtpC8gn9OU9ujB49xz/d/yLmePeiMBXgnxxBLZOgK6pDJViBWL0UsMyMSgXiaGEypkiCViggGYsSzZsDlMglyuRipVEJ+noJwJIFOJxO8o0IxEqkp9HQHPaVCgtcboa/fg14nx+sVyD9IkpenZNnSQjZvrsxcf7FETHm50AWwujqPmpp8/IEpP46nnuwWOg0tMbNvrw2vT6jPbmq2MjDgwWhUsG+vDbFEOHaDUcEdd9TT0+Pi2Wd6gCQ+X5TTp53EUuP8aDTB6Iif/fttOBwBwqE4KpWUWGw1qtLVSEw2ou79TI7sJRF9ieREDTVl76VyxdXo9RZsIz7a2uwZT7R0eemzz/ZiyldSWKRBIhGhVEmIRgSPk7Rx59ioH4cjiG3YR2GRhlAoBiJI/Q8QVIF799o4ecLBbbfVneeNkB5sJeKJzLmc/vnIqJ+alP9J2zE7ayvyKVbL+MtxG5t+uZuPLJ5DqMuDwSDPPMynD87TkQ0EduzYgcPh4LnnnmPr1q1s376dyclJnnrqKaRSaYaUSiaTfPvb36auro7a2lqqq6szQGD6frZvH2D79kGAHABy+PAoDz3UwcKFJj7+8QbKyw1MTk6ydetWWltbaW1tpa2tLee7P//883zmM58ByCGj0jFdEfBGPareiYuPI0fHMIlrWDonzqsndvPzRxT87K5PAOcPdNLeT4cPj9LaOpwxkDYaFbR3OGfsRjbdSyqttnKOB9Fq5Nhsfmw2P5DMeBhl77usTMdLL/Wz/4CNsjI9rskwExNBFEop1dV5TE6E0WhlGFX/nPkgGApzz4Mv8OPf/gW3349MKiYYDpOnzaPKUkuetByTuhiJWIJEQs5zXyYTkUgkkcskJOIJUhwWUonQYSkvX4UImJgIgkhEbU0+HR1O4gmIxxOplu4hQqEY/oBQBj1i8+H1Rqio1COViPF6BbBYUamnfrE5Aw7zTSoaGy0EQzGsxVqKrZrM9dPrZby2e5ilSyzs2DFId48LEPzC1GoZRqOCHTsGUSglKJVS8k1q5s7No6xMh9cbpqd7kjG7n54eFy5XiFgcorE44+NBTpyw0909STyepLvHRWGhmsUFl1GuXMHgRB+D7tPs6HgJhUzBpQ3LkahLKDCZaWy0MGITcoJaI8x4d6RKicrL9YyOBQiFBJ+cQDBGYaGGQCDK8TYH8XiS0TE/fWdd6PUK5s0zpjJBLqjcvm2AtjY7DkfgPH+z9HkbHPISDsVmNFtPNxYoKtYwOOiFsmJY+nWkR+8jf8c3KZ/7KiOl3+UPfxjJEEEXkw/Ky9/PLbfcwv79+3n22WfZtm0bx44d4/jx4xw/fpw77pjyrnrppZfo6elh4cKF1NXVYTabM+D5YnLCwICbe+89QXv7OLfdVpc5pgMHDrBr1y5aW1vZs2cPk5OTmX2GQiHi8Xhmlv6GG24473fyTk74+8W+fTZsNj8SCTidIW742HpEMjU/ufO73Pet77Dgjz/GXGyewgiHczGCwSAnEJhSjmTHjBghkcIIyiyMEIrllPidhxGe7MZuFzCCSAQ2m58FC+ahiVZybsRNwwoDl1yqY8g7hD1oxxP20GZvY+fgTgIpH6WZQiqSIhFLiCfixJLnT7KkQy6WY1AYMMgN6BQ6lliWoJPryFPlYVaZ0cl0KKQKlBIlcskbK5k91HqKX//wj/SfPMymD36Ia27dRFubHZ11EaoKCHlt+DqfIxG0AyBW5CHVVyI3lqI0liFXCuXLORhBLkEmEyE3RFHkhYgp/CjzIyS0Z1HG/chlEaK6BHs0SSKXxBCJk5wUw6kEiOolJKJixqUKdqMi0iCjslZFfVUZsYIRTp4VIxIjYARtFkbI8ux78sluenpcNDaa2bfPhtebwghNWRhhnw2xWEQwGMNgyMIIz07DCKnL4vNFOXx4lM5Op4ARwmmMkAAsxI0FaA2XYko6CNi78Nraefn3B2ibU0zNslUUVS8VMELKEy1dXvrss72YTEoKC1MYQSkhGk0gFmdhhLEURrD5KCxMYQQgByO0pTDCydfBCIkLYISRKYxw+PDoeX5XTmeQ7u5JNCmVOsxe8pf9G7r7L3cz4Zhg77a9HHz1IEdbj+J1e3ntxddQqpUZUioej/PgLx9kbs1cyqvLKakoQSaXnbefCksFyrNB4ics1C+RUb4qxFn3WV7se5E/R/6MKC7FNDCPG+o38q76jWiimhyMcOLEiZzv/uKLL/KRjwiTMDN55f6j8sE7pNRbEE3NVtyeMIqlP2Tw2M/40kdv5ss//jVViy8VBkKpmMkI2mbz09fvpr/Pg1IpwR+Y+aGdXY63eXMlrXuF9qPdPS5MJgXBYBzbsA9TgSpnXxaz4P0wOOghFIwRCMSonGvAZFIilogonSP4IJnylbMqUN6OkUgkeOGxB3n8D79mZGgg877PG0Yz52PkFS+ltq6EPXumWthOr04UAEmCZEKMSi0jkUgQ8AtZJxKNU1mpp7LSiMcToarKiHMiRFenE6lEhFIhQpk8g3ukj5DzHGKViHMTMeKxCKFgGH9YTyx6BQUFKnQ6GeODr7FnewcP3BshEJKzsL6cK99dy+hYCI8njM3my5iiA3ziE40AHD4ySm+vB51WRlOzlTyjgoEB6O6epH9AeN/jCTMyKnh/7NtrY+icF6VCgsfjIRYVlGBGo4Lq+UZOnXLg98dIJBKZmelEXABchoJygmorpsqbUNJF0tfKU7//Ns8+9FPKajdRVnM13oBwfF1dkzgnggQCUdrbnYhIUlqmp6BAhW3YlyE9GxvM+AMx5s415MyCpO99SGbuu8YGMydPOPD6orQdd5yXUNKE7LDNR9txR47RusWsyUkQ2bOAaqA+LmdAleTXxwZRj0WIb0tmBv2PP36G557r4dprq7jrrhWZ/U3vfmE2m7n99tu5/fbbicfjHDlyhG3btrFgwdSDu7e3l29+85tZ95iEefPmYTQWMT4uo6ysiS9+8SOUlxtobi7g9Ok9qFRhnnxyjEgkgt/v5557XuP06QGOHWukpWUO5eUGjh8/fp4aa8WKFVx77bVcf/311NfXz/5j4Y21l30n/rZYtrSQcxNulmnX8V79Qr5yz734gwH+9JMvEgwkOXx4NGN0nm0EvWRpIR5PGL1eTn+fJzPbmV3GlI7swUtabXXunIedOweZN89APAF+XxQQsWG95rxB1eCgB9dkGLHISyKRBJFAWuv1ClauKmbCGZxVcfV2jTN95/iPn/2BF149mFFEAVi1NaxtakIrzSMajWMbmQJQ8fM4v2RGNSuTS4imavWSQCSapKJCT0WFgZ4eF1VVRiacIdrbnQJppQzRPtDB6bMOnAk3ExNJ/vBsBwMDbvyBCOuWraJ55TwUCgm954bpsrXzp6djxMIS6hdaWVM3D71eDiSxWrU5Krn3vKeW97ynlsOHR9m9exiJGGrrTBQVaoSyve5J+vs9mExKVl1SDCQzz7/BIYEU848KZuEyKahUEpRKYSJsoD8MiEgk4gT8Cfr7hC5SUqmUSlM1C6w15FmS9Dg6OHTmGOs+0sq84grW1Dczv7SaUVtAKNWbDPPc8734vFE6O504J4Lk5alS9+ZUx760emzuXANGg4J8k5KamnwC/hjqlPFtzuB/FvFD+nnf1manu8eF3x/N+U1lL+Nyh3JUgl3u61ldVEXF4AssPHstDx7+CNtZT0vLnIvOBxKJhJaWFlpaWvjRj36E3W5n+/bt7N69m6qqqsxyv//973nssccyr/Pz85k/fz5KZT42m5gVKz7K+95XT3m5gZKSScrKzqFQBHj8cRvhcJg9e87wxBNH8fl8aDR3ZYDCv/3bv9Ha2pqz3auvvpprr72WTZs2zVo2ko53csLfL5qarLhTTWRaWgS/tHWbm9Abf8z3PvsN7tj0cf71B19Ca644zwjaZhMmEp3OkKB0v4AqMAcjtAqKyO7uLIxg82EyTcMIliyMEBIwQl6eAqVSSmmpjpqafFpbbRjkSvLjJdRUCBPu0USUSDxCJB7BH/XjiXjwRXwEY0FC8RCxRIxEMkE8GSeejCMRSQSCSiRBIpYgl8hRSVWoZWq0Ui0qmQqZWCb8J5EhF8svWH73ehGPx9m7bS9P/P4Jju8/nnl/2zN7aN1nJ+EbIDxxlkjQj0iiRKIvR15Qj0RXilgunH+JBJIiEdFoEpVGgtjkIql3IyvworD4kBcEQCLkCCkgiStIBOSIAxISfgmRs1EUUjnekTBSkQjiSeLxBLFIgKRWjvmSPNSFEuJqD6On2jk3uJ+tWjFSrRRpqYz8xgLiCTODIQtxWzktC2sz1/+Tn2wEBGKlt9eDTiejrs5EMBjDYlHR1+ehv1943+MJMzKSwgj7BOyoVKYwQkyoAjEaFVRW6jl0aAS/P0Y8nsIIgSiJhIAR9HoFwWAUuaqEsvnzWbe2BI+9n6cfepHWLS8Sjz6D0VrF0OnLqV+1jElXZAojiJKUlqYwgs2X6dgnlOrNgBE0WRghpXxqbDRz8qQDrzdKW9ssGCGRYHjYR1ubI8doPT3OSi83XTme/ru7ezKnHBagtdXGwYMjrFxZzA03TCmHplsr5JvzueZ913DN+64hHotz+sRpDr12iKq6qXzQf6afB+9+MPNaLBFTUlGCzpiPNyjDWl3PzR+6AotFw4JqNQMddnR+I/IOFXPDczH5TLyw7TAT7hE8K0/zO0039/X+F+IuMSd+OEVEiUQiVq1alcEIr9dR/B+VD/65Rplv8xi2eensnGB5jYlvf0sofQsFm/jSJ+7gG//yEZZcfjuLm6eAZLYRdHf3JI0NZgxGRUYtVVmRWyMLzOghtXxZEf5AjH17h3F7IigUEspKdZlOZtn7SoN9vz/KyZMOHPYgtmEvN9wwH4NRqPV9+bktHNzZgSRxOdfdtOatPm1/dSSTSfp7uviv73ydzrb9xONTg3aZuhKR/hrE6loSIhEerwiZTIJUJiIWndkrS6GQoFBKCQVjRCNxNFoZSombSecgiYCToXY/nsEAId84B54dxWCpo2HNnVgsaoKhKK2Pf4ZjO85XMgCo82rxWtfQ0e4kkUzy2nN3Ew1PEZSdr8GTv5aiUBegNi5g2fp/w2BUYjFrCPr9qDQa9u4bZufOQQKBKJFInLHRAAMDHo63ObCWaKgo1yNOJYq0B1PaMFytknHihINYPERxkZbKSgMKpQSTSUVePohFYLP5iCeS+H0x5HIxS5ZYUKtlKBQStJoFwPW8trONnrbn6Dv5An0nn6K0+jLUsuvp6izE64tQWKihsFCNyxUmFIyh1ytYvNjMwIDnPHP+tGdUOvyBGEeOjGF3BFm/voza2gJuu60uU8KXvvfT3Ss1ailz5xqZmAyyf7+N0RE/sXiCpUsKWb9ek/Gmyi7jy/49XT1Hw3MnRjmEm+3SEB+0e6my6BgeFjpaDQ97uVBMn9VeuXIlK1euPG+522+/nfb2djo7O/F4PJw5cwY4I9wXakvmoW+1xnjkkf/gkUdm3l9JSUlm2bq6OpYvX54BQatXr6a4uHjmFWeIN9Je9p3468MxHkAmE/PZzy7JDFYW1xVz8+d+wPwrP8MXb70dS54pMwMOZDqeNTSaMRoUU6oZjWxGz5zpxrdp0+jP/st2JidDDA6KWb68KEVUC/uYXqqxdq1Q6uVw+Dk35EOrk1FRrqd+cQHHTw3zxCt76XUa+EHtrX+Hs/bXh9cX4FePvMAvH3ia0fEppYhCqqBUv4C5eY3IJQrcY5BfKcLnm/l5DcIzscCkJhiMIRaLiAUTiKVxYiIvrpALr9vL6a0hpKook143jskJvvjeT7FgQR5jYwE67Ed48Mevzbr9aus8enpMiMUidh85ySundkx9+Brwa1ArVOTpjNxx3U3Ms1YAoDfIkEokTEyE6Ox0MjzsRSYXc/asm3NDXoZtfkqsGqwlWiRiEcZUyYTR4M2YhnvcYc6eFYibwkINy5YV0d/vJh5PUltnpLRMz9iYn97eSaJR4VyUzNGyaKE5QxrZbPVMTF7HfY9s58jZI/zupYcpLbTQUL4UqWIRW7f2YR8LkJenRKOVMTbmR6WU0tBoxmxRM125B5xHuB4+PMqRI2N0d0+yfn0ZG64ox2xW09BozgHdMFV+qlBIiEZiHDo0wpkzE1y5sZINqXKPNGjo6BzHYReI1oIUKFeXbQbpcuS77uae5b/gXGUYks1/dT6wWCy8733vO2/yoLm5GZ/PR2dnJ/39/UxMTLB//34ARCIJy5bdkXnOv/DC73j66adn3ed11/135u/LLruMoqIimpubaWlpYdmyZW/I4/CdnPDWh83mo7PTydKqBXz721P2GHv3DrNvnw2LRc3mj3+RA88+yHc+9VVWbLqBm26/Ca1WJmCERjMGgwK1Wo5SKZ3RL2cmD6nly4vw+2Ps2zeM253CCGW6TCczyG1EkPbwOXnSgcMRRCKByy8vo6WlBItFw4Gd+9n/Uh/SxCquvUkY86QJJI1MQ54y760+lRcdyWSS//3h/bz8lxeZdIwDAkCXqs3EkxCd7MY9eQaJykTlwhWMec0klYXn+cqK5DF0cz0oS9yILRNICzwgShBxxAj2JpnsBCZFaKJSYp4wPqebQutiVrTcQcCbxO+O8tLzH5r1OHX6evL6b6JocR5xYhx75IPE4+GcZUQSMfJ8OZqFaqwftrK7Q0LFcDlVqiqWlS2j73iCXbuGCAQEf6rubhfhsICLqqryqKjQIxanMELKgyltGK5WSzlxYpxYLER+voqVK4uQSMS4XGHy8gTbEpvNRzyexO+PIZNNwwhaGT5/nEOnJESMl1G0qoXSPDvdR/by2p9/y75n/oyuZDHVy1ZTWKgTMEJoGkaYZs4/PR/4/SmMYJ+GEVIlfOl7P929UqNJYYSJFEYY9RGLJVm6NIURUvlgtjK+sjIdmtRkXPZvbSavt+kxfeJPIpVkTNKzQyqVctW7r6L/TD8DPQME/UGGeoeAIQA0eeYpUloW4qUHfjPrPivzruKjH3g3dvrpSHbQX9WPbJ4MdZWasoYyVlWvoqq4CnGBmGgiikwsm3Vb/6h88A4p9SZGd7eL/gE3FrUgJU3fkKX1n2NoVMOxV39HMjrC2jU/Qa4QfBPKynTs2DGYMS93OgMc2D/CqkuKWb++4rx9pMGERi1DIhGhUUszZMWcUj15/ijr15exbFnhlPxwPJhZFqbkvS9uPcuOHYNUVxlZXF+QUeWcPrqVwztfoG6hGVjzlp+3NxJjdh9PP7aL9iM7cJ7bh93Wj0gsIZmII5YokOhXI9atRaEuIJpFPiVJcujw6IyEVDIZh+gosfgoeSoDheUrmJgIEY9HOdf2pYzBVACwZ62n1RewsM7EyGiAsVE/2vxa1GoZhjwDyaQUhVJOIJjE602QbymnolxP3UITcpmEcyea8HnsOO3jREJe4lEfiXiMoHcUk2UOS5daMg+i268VBi9iRRlhKtGaapEo5tC6d5j168toaDTT2GA+Tylkd/iRyyXccUc9g4NeQuE4Xk+Y8nI9Hm+EeCyJVComL1/BuXN+5i/Ip7/fTSAQI5mE8fEgTU15mM1q3K4QR4/Z8Qb1SAtuRJp/NbLoQSbGdjJ4eiem4sXMqbsZo3EpDfVCt4m0yqOqyngeATVTlJXp6O6eZHRUANnppJM29E8Db71ewehoAIfdj04vZ2w0gMcTIRxOMG+ugbTaKn0u0mV8xUWaDKkFIBGL+fgV1TTb3Dywt59r7tnDd65fxM03z8doVLBhw8ytXdM+HxqNDLc7Asze6aKqqorf/e53qfssic1mo6uri507T7B//2luumljZl2JRMKKFcJMvFwuRy6Xo1KpsFgsFBUVsXbt2syyFouFQ4cOzXouZ/MieSf+vjE87KOv101EJgz8Bwe9LKup41NXf5R7n3+Ir//2bn75xc/R0liXUXXs2DGYMS6XSGDXq0MUWlS8/wN155Ujpbfp8USEAaQ7xIsvnqW9w0l56vlx2aUlrFlTlgPg1RopEokoo35qbi6hubmEF18UckJVtZH168uwWDTIVDEe3vYsBXkGfvCltx8p9dL2bu5/fBc2Tx8H29sJR6Z8iPLVFuYZ6ynUliMRi0l5hhOLg80WmFWJHI4FCcYniPiibGy6BJczzsiIn73dBzllOzrrsZiLxVSVlLBj+yCSETXzrOUUFxrRqBTEoiCTSggFkoLfoFpPVZWRokINI54yXNEaxsbd+IIBIvEQwXCYQDhIIBxkwQITVSX5lJXpuP/Jbdz5w/uotFrRiAvIUxRSai7FNRlGLhczb56RDVeUZzyWso1h7XYhJ1x2+Rzy8lQEAhF0qfJyuVyMxxOlvEww4h8a9KBWyfDFo6nxgwyXOyz4jvhjQJKBPi8GcSktpXMIJB0Elf1sOfQSO9p20bLwEhZZG2lusVJTk8/xVBvxgD9G/eKCWRUe2TFTTkh3Zdq+o5+jR+0sXWrB44ly6OAIxcVaXO4wY3ahHD0aS5KeWc8+FwF/jHg8ic3mzyiyhHI+C5ZrfwiH7qP87H/DAye45brvXzAfgPC8/dWv2pBKxbz3vTUXHMx//vOf5/Of/zwAgUCAM2fO0NvbS2trJydOnOMzn1maWb+yspJly5Yhk8kyOSEvL4/CwkKKioq47rp5me1+//vfv+DxvZMP/vHRk1K0F0in8kFZmY59+2ycOjVOVZWRjRsruea6H/DI/zzAcw89QSJgo2b1uzjTK3S8czoDHDkywiWXFJ+nDElvs6trAo0mhRE0UvbuTWGEOTry8mLnYwRnMLMsZGGEdD6omsoHAKdad3Nk90Eal5YA50/E/SPDbvezZ88wExMhWlqsmEwq9mw7xKRjHJFYSlIkJRkPEQ2MI9GWoCi5DKm+ArnGiF8phVg0JcZMIjP5UVU4UZbZIekgNBwkElRgEFcSOllI5Gw+/c/+Nmf/jqy/rYV+1q9aSG+vm7NnXej1CzAaNZjN+cTjYjQaJW53HKczgtVaxYIFhVzaUoJSKeNs52r8fhfDw2OEQh7icT+JeJywI0S5o55NyQ+TLD5HT7CDu2+6G5FChLpci6KgCI28DlF4LrFYkuXLC7FaNSxebKalxZrzHEzngwxGCCWwDXsxFajQ69M+WWLy8lIYYf4URoBpGMEd4uhRO+PjISKROFGRCHuonOs/s5rhs/2cOdzKYMdhDvUfYFFTE5dcuRGVwTKFEWZQgE+PC2IE+wwYweFHp5Mzmo0R5qUwgn0aRhjxU5wq69ZkqcKnl8PClNfbbCbqnZ3jbNnSh1gs4tJL51ww15VXl/Oln31JuOOSScZHxxnsGeT40bN0tZ9j7aZLMutLZBJqGgRlolQmRSaXIVfKySvII9+cz/JLl7OobC4wl7Wla7n9sttxBp10u7oZ9A5ywnGC7QPbSZBAKpKhDRVTb17MVfUtzM+bT6Wh8g2Xwr7Z8Q4p9SZGdbURVfsobW12hgY9mQFvc8scRKI7iHgaePXpH3HXh67lsuu/xtorVmaUSyAYvG15oRePJ0rbMceM+5jqbBbCPxpNKaRs9PS4WLSwgG99syWzbJpkGhz0Cuz2tAG42aymsdEitBJNLWt3+AkGhdljjXp2FvXvGclkktMnj/HSU4+y7dmnCIe8IFYi0y+laOGN+PwiJMkJRJqlhMPCLR2dRj4lk+DzCmAlEeonER4iERkiGR4kERmGZIwQEPfM56OfvY1nn+2hu9uFTCWoT6QKC/nmYqprKpEpTLj8amoXzQcEsk+rlbFs43dYu7aM5qaSjE9YMpnEPhbAUqhGJBJhNqtZvqyI9esfzDHynj8/D6d9lNHhQaRSGXWNFQB43S7Gx0ZS32IEOIB7EMQSJRN5dWjEm7n2PTdjKlDlXO/0v+nZr7IyHRUVekZH/UikYpYusbD/wAgjo376+z2EwzEC/ihVVXnI5V5kMhFDQ15i0XPULSyguEjD0iWFFBVp6Otz0dPtIhZfR33Tjcwp6Kf1pfs5vuMbuKobqV/wr6zftJEjR8dylE/TS0E7O8dp3WvL+E8dPjxKKBhDqZLi8YQ5eWIcg3EqaYyOBkjEEyxebMY27MPrE66nxaJGKhOzYH4e9fUFLK4353x3jVoA4OmyxrQqxe0KZ7b/1atr+d2ePr74lxNc32jlR1+5BKVsZql42udj+fJCrriiYkZ560w+JCKRiJKSEkpKSli/fv1569TU1HDw4MFZ17/Q+7MdI/AOCPkHhlotJRyOMTjkyemGd+PVjRCT8eSBp/jk93/MzWs28rVPvxeLRZNRQ5WX63n4kU7Gx4UB1fE2x4ykVHZJ0uhIgPaOcUZH/CxcVMB/37Mhs1z2wCgNyqcbp+fkhNTy4lTroOTbqPvehMvLEy/v4e4Hnqe9tw+AfHUhK+c2M8dQyanBDgq15ShFxsw68WmHHwgK3z0cCzIZGsMdcuIJj+MJOwnGhNIGBmDd6jpWX1rD1hf7UIkNKKQqjOo85s4porLMQiwoRy7ScFnLPDauqeXMGQ/lFXpksqV8qHo9GzdWYLFoMr4wyWSSjk6n0IWoVM/y5UU0N7+bjs61GYVcXW0BXl+AvuEx+s6Nsv6SerQaQdHT3j1AKByhs68f6M98nwJ9AXOMFRgK1lBgUuUQUekSuPRzsahYw6WXljA45KG93UlxkeDv5HQGOXp0jJFRPzabD5VKyty5BgqLNPh9UdpPjeN0BllYV0BRsYYlSwuJRhOcPDWOXmylrLSGT7/7Zp7fs5Ond73Gvq4DiAs2s2bte6irrWX7jgFaW4dZsrQwo15KR9rEPF2uEYnEOXx4lGAohkopzQEiwr0pIhyO09/nIRCIpma6NViLNUxMBIhGEpSV67FateeVZghm54JaK9urx+UOYzQoKJv3ESzmWmj7E6scN7Dqg/dD5ezP0e3bBzhzZpL58/NmLXeY6dmtVqtpbGyksbGRm246f52f//zns6479f7IO/ngnySqqvNQDkkEjDDkwZ96/jY1CSV8paVaursncTgCFC/awMf/cy6P3nMvp9s6aL7+fZSXz+OFFEY49noYwR3C74+mFFIpjLCogG99a0qhlX7GZzDCReQDu91PKNX0Qat5e2CEdIwMjnD39x7hyK7X0FZdx9N/dJD0DRBwngUgKZIiNVQi1Vci1ZUhygLgyWQSvz+CrMiNTH8GsBEZ8+LcHiJ8LkQypWQ2mufzk9//lHu3dXFwvx2JxIxUKkcqLcBiKWHFigXIZCbGxmRccskiQITBICcvT8HatT/gttvquOmmBZlGCYlEkv5+d0rFJKaszMDmzXOprv5DDpEcj8cZHh6mr68PlUqVUeX3D/bztP9p8INnwgW4cNCFWClGW2FBrbyc2tp3AbnXO/3vdIwASeRyCY2NZrZs6WNkJAsjBGbACLFz1NUVUFysYenSLIzQ4yIYjDE46GHj1cu4/VNr8Ht9PHH/s+x/6WXu27OH6obFWGubGRurZ8OG8vPIm87OcVpbbRn/qcOHR1OdC1MY4eQ4BsM0jJBIYQSbD28K8xUWqpHJxCxYYKS+3szixdMwgiYLI4xkYQR3OLP97GObiajKjrY2R6YccTaD9Jl8qUQiEeZiM+ZiM8suXXbeOlV1Vfz6uV/Puv5M76tlakr1pSSTSULxEK6Qi35PPzuPnGQsaOeA9DVe2/MCIDR8sWqszDXOpdpYTbm+nCJNEVatlSJNEQqJ4rxjerPjHVLqTYwSq45IJE5ftwuqjTQ2Tqld5HIJbW0KFrQYOHvkFzx93ycZ6v00N972oYy5tdsVIt+kJhr1saAmj8NHRnNUL+kbbarbmTenRMtSqMbu8OMcD2bIjtraggwoz1ZVlaX8fgYGhFaQ6f0MDnrxpH7I/0gQkkgk6Dx+hB3PP8GuF5/G63blfC7Rr0Fquh53CJBAHCBX6UoyESQRPgdxH7K8pchUYuKxBN6Be0nGJnO3J1Oh1JZRVlVPWZmO6uo8JpxBaq79L2LRBEqVjBtvqKK2toAdqRnacEyZITk83kjKDF0gMrLJQ5FIRHGRBoNRgUYtzVzX1r02jh0bw++PCiaAxSVYinNnC3QGI88c7OFsVzsdxw9z8vB+Th49gN/rwTd+FLe9jK6udbhdYfQGD8MDQ/hC2pxjSF/b9evLePTRLro6nZjyVaxdW4ZSIcXjjdDbM0kyCR5PhHffPB+VWsrOnYMUmFQUF6kzSrrOznGkUjH5+UpOd00yf4GJNWuWsHD5eiZsR3j+4f/hR1/8MH/69SLyym/AYGnAPibBYlZnOmako+24g2PHxtDrFRSYVLR3jCMCmppLaGy04HaFOHJkjLY2O6Z8JTqdjHg8wdhoAJlcTOkcLcVWLVqNDOdEiHg8gcEodOhI3+PpZBWPJ9HrFYCIoXMeSufoyPZZWb6siH9dX83zJ0Z44cQIx4dc3HvbMuYX6c+7N9Mz5rPNOg8MuPnDH04xPi5Ie2cCC69HLs3Wmry93cmLL/Zx6NAIH/7wolmBSPYxvhP/uAgEYkLb4wkXS5cWUlOTn1En1VQXcVPyvew9vYfHXnmR9r5uHv7ZF4kEhDK9420OdDo5eUYlefkKjEZFjr9O9uAj3d3GaPBiMik5enSMQosau92fUw5Yl5pRTINytUbKk091c27Ig1whwe0Oo1JKc/yjxlJl4rHprM7fOexOF09t28vvn3iZQ6e6SWaZAkpEUlZZNyNJSPFOQrmu4bz1k8kk/qgbd8hJnsqCQa1DhJhz3n7aRvact3y+Lp855iJKS4wYDQpMJhVL5tWzoqYRa7GOG26soq62IKPYqbRasI+FGR3xY9Ar8HoijIwK1yjbv8LlDhEIxNDr5TmeSXtbp/JBXW0BOq2a+gWV1C+ozDmu//raJ/nXD72Lw6e62X3kFK8dOsWp7gHGPeM4vU5ulKznxMlxjAYvCnUMv1dET7cbmJYTLBpc7hDhUIyxMT/V1UYUSimFFjXRaIIJZwixWExdXQEf+1g9L754lmjsHEsazRnT9HFnkMpKA0VFajo6Jiiv0HPlmmquXLOAD197Nc/sfoVf//l57n18C+9aswZ9rAq5RE5envK8jkjH2xy0HXcwbPNRVKhhdMxPR/s4iIRSb41G8EI5cXIcGMfjCVNcpCEeTyBXSFCrZcgVEppbrFRUGujvcxOPJwj4YzgcAllrSnX2G02Z20YicUbH/CysM2E2q3O8pizLN0BBNez7b3jwOrj0LljzZTL93bMi+3k72/P+b8kJ7+SD/xthtWqJhOOc7XEBM2EEOz09rkyH56qqUj7/0x/x5G/uZesffs1o7ykMupXEYhJqavJeNx+kAXW6RMuSyglOZzBT8lRbW5AB5dmqqhkxgkXACD5fGiPMbIXx9wz3pJtXn3+VJx98gYHTZzLvu07+EUgiVpqQFzQg1VcgVhfldORLxsLEg3akejeG1XLU8x2I1SG6/qWL+LTSbplMjVJZSl31ClYurqRtuZczXS6qqn5CY6MFvV7BzTfPp6VlDn/4w0m2bu3H51PS2+tCKhVljOZVKoHIS5PXdrsfsVjEvHlGLBY1BoOcLVvOsm1bP3v2DHPmzCRz5ugoLzdQVlZGWVlZznFVlFXgdrtpa2tj7969vPLqK7TuaSXgC+DpGqW7YjuPj48x372EWk0D9nMT+EICuTA9H6QxwsCAh66uyQxZ6vGE6e11kUikMMK756NSCRjBZFJRXKxm8eIpI/NsjFBdbcyMw8vKdNz13TuIfeMj3PeLp3jx0afpPv6/HN0xB8/IzXzizutyrk9bWxZGKFDR3j6OSARNTSmM4M7CCKYsjDAm2CaUlmopLtai1cpwOlMYwXARGGHIQ2lpLka4GGVvOrI7YM7W9S/bcmG2ZWYindIx3YIh+/3skvdswkslVaHSqijWFmN0V3O0bZTaYh2mMhj2DjMeGscZdDLkGeKY/RjeSG7JukFu4IMLP8jH6z9+0efijcY7pNSbHNXz89CLJZSX63G7wpx0CZLb3XuGGT7no7RsLuu/+hAvPfYzDm//Jf1de7jkqn/FZLGiUcsoKxXY6qIiTeaGc44HBSmgJCUFNOf65cjlEi5ZVUxPr5sdOwZxOAKcPj2B3y8kji1b+ohEhQfs2bMuOjqcjNh8VFYasdl8TE6EkErFme4MoZRSKpH8+4KQeCzGqaMH2L3tBV576TkmnefPBEk18xGpL0GizWWRk3GvoH4Kp9VPQySjwvoiiRbTnJVUVefh8UTpHl+EWuHHWl6DN2yhtr6BxQ019A96iccTDA562bixgtpaU8a/KE3sACyuN2MwKnO8jSxmYdY1/ZDPvj5p8tBi1mQUVACmfCV6vQJTvvKC50Wt0bJo2SoWLVvF4qb3cvTYKGbDBI6hI5QvWEY4oaGv383Y0Cl2/eXfmFuzHPm1N7Gw5t0ZAjNNhKnVMgLBGM6JIDfcUE1zUwl2h5+TJ8Zp7xjH446Q9p3x+6JIxOKMtxWQIdJUKhkyuYShQR8nTzgYGQ1QU7Ocr/3X4+x44WWe+MN/cW7nd9Dk17Kw6XagOIdYzfY2M+UrUaqkuD1hAUQEomjUUjRqLW1tDiYnQ0xOhFi6tBCPJ0Lr3mHC4TgV5XpEIhGhcDyTUMrKdDz0YAc9PS6UCmmOOitdGtXf7yEaEbpxGIxT3WskYjHXN5ZgVkh5rM3GNffs4VvXL+LWlbmDgJaWORecbW5vdzI+HqKgQDXrrPlsICMds5kMGgxyXn1VMCHt7XXz4IObM59NL9GYjTC7GKXVO/HmREmJloWLCrD7NakBSBKXG0ZHAtjtASacId61+grWrqrn3uceZfUHvsBVy67gipWX4PPFMJlUrFhRRMAfw+UK43QK+WTcKeQESZY8PHtgsuqSYnp7zs8HdbUF7Gkd5tDBUerqTDjsQQ4fGWXCGUIkFiqVi4o02Gx+jhwWBjZilQCkX6e79lsSw2PjPL19H0+83MqugydziCgAhVSFVTuPMkMNEvHUcCaRTOCLTOIOjeMOCwood2iCeFLIictKLqOqfAkajYxAvIiiUCFXrVlMMqgl6FKxeEEldTUWenpcFGgF4HjFFeWoNfPOM8+uX2zO+DalQ62RZnyTMjkhS7mUXj57YJlvEvJBvunC+UAsFlNVbqWq3Mq6Fcs50TKOx+dlPGCjZ9DGpvULGBzycPToGI/sfhjbuJ0NK1dSMvcKLJaiHPWU1arFmKfENuxj7ly4699WZAbDnZ1OOjqcmeMZHw/i8YQJhxOZ9tvPPtubyQeJRDIDVgcHvYyPJfjodTfy2fe/ix/f9wSPbt1OMrmDZZUrmTtvQ4Y4S5/LbIVgugW4bdhLOBynpERLeYWe420OASD1uEgCxUUaxuxC3ggGowz0ewgsi2E0KHJywq5Xhxgd8dPe4eSDtxUCU/lA8IvyYTarhfORfS3zyrE3fhnx0d9T8NqPYWAPvPtB0OaWbbzVOeFC+WBiIsiePUPcf/8p7rhjMV/9ajPwTj54u8b8+XnoYnIBI7jDnDyZwgi7hxke9lFaqmPFiiJcrjCxWIIjbR4arvoQRusCDr38DMnkERZeejUl1nlTGCGVD8TT8kF2idYllxTTM0NOgBRGiEzDCCNTGGFiOkYIpxs+/ONIqdGhUX765V9wbM9hEtMm0EXKfGT5C5EZ5yGWCxOLiWiAuHeAeNBBImAnEXKQCHsAkJlkaGoXoQvMIdFZjkImQW8VUzVvMeOOfJqalnPppQ2CL2ssQXu7k49/vJ7q6jwgydq1ZTm/n7VrBTLAYJDjdkeyujsnM7/htGfPwIAbi2XqN5hWUJWU6Jg/Pw+pVEx7u/OCv0+9Xs9ll11GeXkDRUXXcMu7YxQUTNJ6cCuRCjFt0uO0ibbReuA5+n7ey7zFtShu3MiihVdmCMw0walWywgGYzidKYzQXILd7ufkyXHa28fxeLIwgj+KRCLGYFBm8mFr6zSMMOTj5ElHxt8MhPwwEZ1Dfv37KYqPMn5mN3+++5ccfOk5LnvXu9h00xoKC7UZbzOTSYlSKcXtzsIIGikaTRZGmMzCCK0pjFCRwgihaRjhoRRGUEpzxk05GCGawgiG8ztcvh5h9HpKqrTlQvp4ZlvmQoRYNqGYHRqNlFOnHDgcAUZH/XzhC8szn3V2jueQ0dnHWK4XJizGxrycHZzAUilHbYDx4DiusAt3xI0n7CE8zefszY53SKk3OSorDKxbLpRvtbYOQxKWLi3EOS4Yo5mDKi5pKsda8j1ee6mFHU/+lBcfuIN113+aefXXMDkZQqWWZgZm6R9JunvZ9BvwqSe72bffRkmJlsJCDT3dARQKcYbsSM88Ct3XwpSl/CIKTCrUGhkyuTDrNzrqZ2/rME5niHCqzO/voZSKRiK0HdjDjuefZN+ulwn4PBjyC1HnL4WJnZCMIJJbkWhXItGuQCTNIxmbIBHqRqKe6h4QGf0tidCZ87YvkZtQGypQq5NYrTo2bDCxr+jfM53r0ooyfyBGvM+TeUikSaWZYqbPZnoATSdhIPdBUlamyxiSX2y0HXdw8sQEDY1m3v/JLwBCR754PIl/shuSSc52HuJs5yH+9KvvsfFdtzC3/hrGXcI+WppTtdANU4NqQUWlYXF9QeZ4H3qwg+FhX84x2x1+JpxB4rEkJVYtiUQSsUQECEowtyvE0KCHYeccWq7/CT3trdg6H+bgC1/EcfYyIh++k0GbKsPgmwpUmZnCwUEv8+fnMzbqxzbsp+24g+rqPLQ6OQajgsoKPYvrC9ixY5BwOJ7pPpjdua+nZ5L77jtBcbGGRQsLaGq2nne9ysv1qY5+EdqOO2YsK5QHktTHZAxpknz5yZO09ozzk5sbUMmnyvmmD+azX+e2Cp95IDEbyMjezubNc89bz+2OcO6cIEs+cGAk57OLKdG4EPB5B6C8+WEuUGNuLuFwV4KdOwdJQkYx1dZmx+uLMDYW5JZbVvL+m1fwyf/8NY/vfob2oXbev+EGAm4p54bE1C00ZTqwpXOCbdiHdZo8fE/rMNu3DSASCZL1Mbs4kw/S5MKEU+jwOTjooaBATXmZnvIyPbF4AtdkmOrqPDyeMDt3DeL1RJFrBdD094IffedG+ctLrfz+Ly/T1TeEVCKhoXo+5aZK+sfPIhFJKdJWUKKvokBdQiIZxxuewBdxo5UL9+1EcIT957act22JWEpRXiFzK01o1HIKC9VYrYv5etNGmptLMiVkDY1mbDZ/yltEdB7plx3TP0v/PVOp5YVaSZeV6SgrfWP5YHDQy7GjYySBdWvr+fitVwJCeVokGqbfZsPl8/Hw1pd5eOvLtCyt418+cC3l+fPo6fFQU5PP5s2Vme+c/X3KynTU1pqyjMSFDo2Dg57MdwkEYkikYvR6GRKJGEnKOLmsTCd04HOHGByKsKhwFV9532Ie3/ESB3v30nn/CW6//hoaKhpSJXOCSXl1dV7m3Bw+PIpCISUUiuNyhTGnSk71egVLlhYCyUxXyhKrhiVLCsk3KTMKLr1ejkQCDz7UQX6egoWLCmhusuZcr4YU6AkEouzefY6iIk3O7DLAoC1Cl2sTLcVVVNqeg1+tgpvvh7mXZ5a5UD4oLze8aTlh+rpud4T8fBXDwz4mJ8M8+ujpDCn1Tj54e0ZlhZE1DeUcPpzCCExhBJcrjNmsyvg9DQ15CIfjBINx1r5rI7XLl/HM/X+kbdvjOM4e4erbbqWsrFzACLOUCz35ZDf7szFCTxZGMCkzpUZC97UpjGAyCZ0yZbJpGGEiRDCFEaaTQW9luJwuTrcPEpcY6DxynG1P7WSsty31qQixqgCZaRFSYzXEwyTCrgwhBRDse55EYPS87cqMSlT6QhJ/vJHlqxpYc3k1T01s5MYbqykq0mSIXbc7QixmzxDL5eUGPvzhmX8XM5lEXywpnP0cePe752c+v5hob3fy0kt9JJPwwQ8u5Eff/REAz73QzWN7drL/9K8gmaT3RAe/OtHBA7+4l6vfezVzG5txuGSp4zzfL0lQUWlYvDgLIzw0A0aw+5mYCBKPJykp0ZBIgFicwgjFGtzuEK2tHnp6XKjVMqxWLWr1AuT6UlZb/bTvfokHfvgznn/wz3zs3z/Kkpbl52OEMT82m5+2thRG0MoxGIROgYsXZ2EEnYymJmtO577u7iyMsKggowTLzgnl5fpUR78IbW2O8/IBvD5hlD4X0/270q+nK9RmitlIp+mKyOnh98dwOkMEg3FOn86tCGprc5zXSXB6DA356T3tRyZSMK+kiGLtVAOlM+fOMdYXZiDf/ZblhHdIqbcg7A4/nZ1OvN4I1dV5LK4vIBKNs2PHIOXlelr3DNPT66Kq9lKuvr2W/S/9L9v+8jPaWp/GWPFerBUrkMslLF9WRGfnOEODHrRaGXULTZla4DSQ7u5xpcyW/VRWGnG7IoTCMbRaGYVFGvKMgkyzvFxPMBDD4wlzySrhJhsZDdDcXIJGLWXLlj50OjliiZhJnxwPnDcr/WZFOBTk4O5XePGJP9F2oJVoRGBexVINhqovE5eU4oqJkJlLQCSBZJRkeIio/QESkXOQEBh3ZcXPEEnUwt/6SpT6EPmF1SQkJagMFaj0lRSXWKiuzsPlCmfKGbNNt9M/TLtD8BDJJpD+1sh5cKW2OZ3QeqP7SpNJ2aRS+qF1ww13kfzS7bzywlNsffIRbIN9PPXH+4D7mF/fwoqlP2FB7dzzHkbTS0OBDKFTWqbN3LcDAx48ngh5+UoKzCrC4TimfGWGzOrqmmBiIsTERIjiYg3N665kv6qOc2d2Mtz/HL/88k1UN26ieun7GRwUurOkZaaNDWaKizQkk0lkcjFKhUA2LVtWmHNNpn//NKloMCo4edLBpCuMUiHltg/WMTjozVzXkyfGScNqnV6BbdjLgMIjlNZMuwZlZTqGBr3EJvzMKTfyUvsoJ865ufe2ZdQUC4OcnTuHeOmlPjZurOTDHzbkDO43b577ug/s2TpbXIyC6ppr5nHgwAgf/GBtzmcXU6IxE/BJD4zsdj+9ve5Z9/1O/HUx7gzicoNOL8c5HkStkrJ8eREOR4AdOwZRKMRsebGP5mYrX7/jdh74SzUvHnmRb9z/c5ZWLmP9kstoNpRkSI69e4fp7HRSWKSmuck6lRMsGiacIZwTQRJxUKlk6A0KwiEhHxQVCvd5c2rQaTQqcLnClJcXIJdLMp5UNTX5DA55UCqkyPLF6M3CYPWtBCBdZ4d48OkdPPLCLvqHp9pJzMtfRMOclcSjEow6H1pxMUqpBl/ExTlPNx2O/fgibiDJ3Lx66syrAMhTmZBL5FRa51CcX4RanEdRXiGL5pexcaNA9maXNKajrrYg87rApBL8hd4ASfR6MX0wOxuhdbFRVqbLEDTZx1m/uACjQcGHP3Qvx06f5sFndvD0jn20Hu2g9WgHhaY8Pvau67nyyquxWDQ552C2QW+6Q2NZqZbf/vYEgUCUeDxJWZmeaCROIpGkPNUx2GLRYDQIZQTj4wESSSgpymdlxWXMUdcyFDzBLx5+mPLiV7j92uupNFchlYrxeCKZSQu1RkpxsQZjngKFUoJaI6WmJj9nIN/ROY4mqyvl8TYH485gxjPtxEnBXy1tIJ0NnoQywCQKhYTOLicatQy1Wpopt8w+x4NDXnb0zWXt0s8xb+xheOh6aLkT1n0NxOIL5oP0s/6tyAnp57hCIeKllwa45ZYFmc/eyQdv37Dbp2GExQVEIgJGKCvT09o6TE+Pi6qqPIqKNIyM+AERRXPMzGu6kdK6FThO7+Teb36PV59eTF7VpWi1xdTVmXLyAUDPdIzgjhBK5YTCQg15eVkYIZjCCJekMMJICiNoUhhBL2CE5GgKI7yF5XvxeJzTJ05z+LXDbH9mF0M9fYglchKJOCTjiBV5iHXlSNTFiOUaEiEnsckzhG2tkIgAIrT1n0IkliJWRtDOUxMZV6Eol6MqMlBUWMMc8WUYk1U0N1RhHwtlVIU331yTOY40mTQwIPwW3kySdqbf9vTnwBvZ18KFJjZurCRbkQVQv8iCRLSB737yvQx99yT/+d//yd5n9uJ3+Hns3scQiR6nZtkSLvnBv1G14HyVz0w5IdsH7TyMkKekoEAtYASTMkNmTccIdXUFHNhvwzEeRG/I5wcP/pSH7tvOgRef40f/+i3mLqxl3oqrqKytprHRTHFxCiPIxCiVAtmUwQip+z27dA7IKIMMBgWnTjmYnAyjVEq57bYURrCnMEIqH9hsfsLheCofhc/LB5DCCENe2trsaDTSGQmekyfHOXp0LNPpLzv3L19e9Lq5fraJsItRUK1YUcTp05OsW5dLhE4/NzPFTGRY+vqPuCcYH4vSrrywcu9vif+TpNT//M//8JOf/ITR0VEaGhq45557ZmzV/lbFyRPjHNhvIxZLUltrwmLWsOmquZjNarq6JnBOhCAJer0Mvb4Ym+2jFFetw9n7CN37vk9schXh1XcBRWzbPsCJEw5MJmE27NSp8UzLe4D164XSouoqIy3NVtqOOzhyeJRAMMbAgIfmJgG4th134HGHOXnSQV6eijVrSjMDvMFBL1qdHGuJFotZxV9+K5j/vZkJZ3xshAOvbufZPz9E3+lTJGcoDUygJBTRI5YJ89OJUDdxz+4ZtiZGpi5h45Um5i2Yz9GjY5SWfpGrrqrMlMw99GAHwzZBkr/pqvMVJ9PjQsqovzZmY7r/msgmjm69JZeMyD12Dbfe8TnWXvcRdmx5mbY9f+H4gV24xweYV1U647bTNch79w6jVstoabbS3FRCc1MJjzzayfE2B7ZhH1qdnIpKA5UVeto7nHR1TbB0aWHOeRsaFAwRS+foKS3TIZeLaNNvoqnpgwx2bmHLo7+hr30nBvnnufKG2+jWy/F4wvgDMQxGBSOjfsxmNf0DXs6edbN589Q1TXfOq67Ow1SgyulauX59GasusTI46KGp2Xqese3RY2MZ1aJcJgaRCJlMnOPxlU0chsIxznZ7aNAo+Pz6av6wt5/r/ruVr19bxwdWlQFJBM5W+I3MNsv9RuP1tlNebsgp2cuO1yshSa8/m1/JvHlGmpqsf/N3eLvFPzofdJ2e4NjxKJFIAo83KjyXm0vYtEnICVte7CMYiAJJ6hebubyvgWKDlXZbG6+07aZzpB15wY3U1L4LrUbF1q19dJ2eoGZBPoFgLMc4urnFinMiiN8XpanJissV5vCRUYKBWGa/aQJiy5Y+fN4wJ046sJjVLK43Z3KCyx2mstJAXp4ST1AYjL+ZcxSRSJQ9R9t5bMtuHt3yGm6f/7xlJCIJyYSYSGhKoXjK3jrj9pQyNQadkk9/qgGDQcHOnYPc8u7vctVVgh/Tgw91YBv2UVSoy3z/mZRM2XEhddRfG29WTsgGCRvWn086ZB/7nJJVrFq0iNuvuYFXjuznjy9sZ9QxSXVV/gUHvS53GI/HxoQzSHOLNdOh8ZFHOjl2bAylSsryZUU0NJp56skeBoe8FBZO7besTOiUFAhEKSoSyvNi8QQ93So+v341/vgE3/7VH/nGvf/LqkUL+erHPwDIM0AAID9fhUQiIuCP0dU1STgUy/idpb//+vVCZ8m2NjvdPS5galxkMilp73BSaFHnDOSzFWbRSIJgIEZ5mZ55VXm43KEcvyuLRUM4FKO7x4VGY2bezd+CI3+APT8Xyvne8xBvVT54vW2ln+ebN8/lpz/N/eydfDB7/KNzwsmT4xw4kIURLJpMPujqmsiUaQsYQUZ/v5v9+22sXVuWIhnLWLToerrb2vjxf/w3p9t+hdpUiihwJRpzFcuWF5+HEaqqjLS0WGlrcwgNBNIYoTmFEdocuN1hTp2aBSNo5VitWiwWFQ/3ChMVb8XE9TN/2sozf9rK4OlO4tFIzmeJRAJZ4UrkxirEyjyCAy8THdt//kZEYpQ6M2s2y4hWjzAs6gI0LDBex2Xm9RgmajiyK8CxQxMs3zCHT33yfFPp6XExxPIbjTfzOZEmk9euLT3vOLOPvbx8Na/c9wpH/62Xr/3+q+zduhX3STe20V7y58xcOn4eRpiWD44fd2Cz+dBq5VRUGKis1NPenoURsvKMoP6LUVqqp7Q0hRHaHFx66RycziCGwkpuufOLqBnh4Xv+wLY//ILS2gbyPvthCoqLGBlJYYT+LIyQpUTSpBS3JlMKIxzPwgirUhihaQaMcHQMgEgkQTAYo7xcz7JlRWiyfB+zc0IoFKOnx4VGI5tFdZTM+ffNyv2vtx2LRZNTspcdr1dWmF5/NmWYoRiqq2dv5vFmxP85UurPf/4zd955J7/5zW9YtWoVv/zlL9m4cSOnT5/GYrH8nY4iidGoRKWWzqhoyfYp6ulxMe4MEQ6ZaVz3XS7dfJpXnv4V3/zMu2lY0YzSsgmJ1IrBKJTjTU4IpRdpIL3pqrk5pIupQIVSIcU5EczsO+0DFI8l8HiiaLWyjHE1CJ5Ver2cxgYzpgIVjqs/xPJLr2bxqvq/6tsnEglGhgbYs2MLu19+EdvwON6JfkAMYo1gXAKp14rUrEYcYk6Iu0FmFD6VlxAXK5GpSkFWgkRZxrzahWy6pokly0oyxz+ddLKYNWzeXJlR0fyj4o0QXTOV+mXH9AfohZYFOHfOT1Jey3s//Qu+8I0QTscoUpkwkIhFo3z3rk9w3S0fZmnTZRnwcOTwBIFgLPOQtTv8xGIJdHoZpWVaRlOGx1arFo8nSlfXBCdPjrN33zB5RgXd3ZOUl+tTZoHJjPIq3Y5+zH4FtWtqCDuf5eHf/JCXn3qEq957J3r9IjRqKaYCobuURi1ly3AfwzYfbccd1NYWcPLEOEePjZGXJ9SWQ65qymLWcNsHpso5s5VvAEuXFGY8fZqarVhLtJmyzelqtunbrinS85VNtfxhXz9ff/oUrd3jfH51JSACkgwMuHOS/oXab79eSUS2z8CWLWffktKJv6a05J813i75IIlwL0ql4oyqg9R7zc1W0oSUxaJBoZAwNhJmjmoR37l9FceHD/C9+x7mvx5+is994DqQlgiEqlaW2bbHE84MnL7076sy27fb/SiUUiacwZz97m21ceqUg3A4gVYrw2RSUZ8yKk3PHC5ZasFq1dLXr+JH//I5qqvy/+oz4PMHee3wKR57cTdHT/Vxun+ISCyCTKQkmgxllpOIhGdUPBklnozjj7oznymlGmRiBUqZkjxVARpZPtb8Im69aSUNdSU5g8bp7aWnl6j9o+Jiia43YnKafn2hUoDBQS/OsSTv3bCJ7935AZ7esY8bNjRnPr//iZfpHrDxpTvenXlmutwhDh0cwe0Oo9HIMib5sVgCrU6OVCLC4RByQm2dCZ8vgscb4ac/O8TCOhMyuQSFUsLi+oJM6emNN1Rn7rEHH3KyfsF1XLlygid2v8ANX/gaN61byxVL16DWSCkwCflArZES8MdySKfq6ryMytZsUTE6EiDfpKIxpZrKPs+bNs3NOZ8wpTDzeML4fVEKC9U0t1hT5NcERkPu7Hj6vmloNINMCas+AZYaOPZH+NUlbFr9S2AeM+UD+NtzAghkUfbrNyv+f8oH8PbJCUajEpVKmqNayGAEjRS/PwsjjIcIh2PodAqam62Z33rhxtUc6VTQum0v4bGjvPbY71Dr85nsW00icgUNyyrZtGkumzZlYQSTCqVSitMZzOw77QMUj2dhhFQ+AMGzSq+X09hoxmRSseHmd+HfuI7a5XV/1bdPJBKMDo1y9vRZ2g504BVXc3j3cfzOQcKO9hQmSIVIksIMSUjGkBnnIlYKSnuJqoC4R45MawFFATKNmXl181j2rnxG9G30B3egk+vYULSOG6puoK6gDpPShEgkosp0DpNh4B9q/v9GiK430hwn/fpCv+HRsyKWKT7LB793F/sCD/Fy+8t859B3WFe6jnXF6/jB537Au+94Nw2rGjIY4fDhCYLZGCGVD3Q6GaWlF8AIe4fJy5sFIyyfwgitrUKXyIYGM6vXryC/ZD4Hd7zK1kce4yefu4srbtpE89XXYy4ysmVLH8PDPtraUhghpUzKwQjTDMdvuy0LI9inYYRUPvCl8kFLi5Xa2oJM11zIVSa9nupo8WIzaYyQnuRIrz/d2yk7Xi/3z9RV982ePJt+DOlzpC+KUWx588nZ7Pg/R0r9/Oc/54477uAjH/kIAL/5zW944YUX+P3vf89//Md//F2OIW2EPZ00SP+dTSjs2DFIOBQjGo3jdoeIRKq4/qO/wzt+hNatv+f4oa+jy5sD+ddSUnwLpWVlDA162PnKIEuXWli/Xuh2kN1t74YbqnOOJ22oHQ7HiEQT5OerGBz00tPjYmDAg1IhETyJAjFqzRqqamvp6pogGL24G+/0qTZ2v/w8u3e0YhvqgbiPbAcSkaISmeV2JOo6ohPPEfe8mvokAYlg6m8pInkhyWQYkRhKrBryG64nP/99VFbk4ZwIYspX0rK65KKInothhN9OMVOpX3ZkD6Zfb9npy1vMRVjLKgCBrHnqT3+kdfsWWrdvoWTeSm779H+wfn3DeWSm0GLVj1wmIR6HkRE/bncYtVpGZYUBkQhGbD62bu2jrEyf6hxVSGOjRWDVjd5MR8eurgkUCgnFJRaa3v2fOEffz5/v/R4P/fJfmFPdRL7+K9TWrsh0jqxbaMoQR0IkcbvCeL0RlqRqzC1mDbW1BXR2jvPIo50ZUnV6l8rBQW9OiWFNTX5GbTadvErH9Psn5ItwiV5LYbWcV7rstA1OsiIsg8koFosm5yF9IS+P9MDBbg/kmFtmx0ydmt5Mf4+/prTknzXeDvmgZoEJZb5ixsGDxaKhfvFUi2aAyckQkWiCWCzByLkoH9p0M1/44E38+L4n+fFv/0I8nmBheS1NBRtZvKgAENHf58ZhFwaE07vt3TgtH4Bgqi0Wi5DJRBj0CubONdDT4xLKCZUSAv4YNTX51NUWEPDHmHSWUWq6OFIqkUjwiwee5tX9Hew7dpoJr4tEcqqTkQgx1aYlFGrK0MnzebHnfpIIExVpI3IAhUSNLNWC2GRSUFioYenyO7lsdSlWq5a9rTbyTUpWt5S87qAsuyzvnyHeiMnpxfhbZC8vl8t4z6bLMp8N29x85ecPMep08ptHX+S65vX86+3XUb/YjMcTzSE00zlBhAiXO8zkpJAPKioN1NWZaG214fNFGB3xI5OJUWtkbLqqMkP2pI9xcNBLNJJAqZJy7ZVN3LhxFXc/+AzP7NrOi637+Jfxm/nOv707515Ol502NJopMAnehP39bs6edVFbZ2J1i+AX1dE5ziOPdGaWm96RLD2Q37C+PAM4GhstGdIt+3ylY/r9Y3cEGJyooWLJv1Nw5n4Kt32IZfpb+P7BTQB8+MOLc9b/W3PCzp2DbN3az1VXVfDhDy9+Jx/8DfF2yAmLF5szBsozle9mA0LBI0fACC5XkJ07B6mqyqO0VPCmuXJjJRqtApNpEwqcvPL0Vo5sf4n9W56jvGYBK9c1I9VVcum6GqHLs0VzPkYwZWGEyAwYQZnCCP4YtbUaqhdV0dU1QSBy4aYM6Wg/0s6el/ew/7V2BnuGUgbj51dLiGQ6RFIlyUgWKZXOHSIJYkUexCOIRFBSoiF/8XryTddRWWlk3BkgWWjDbjrGodAerGIrt9XexjVzr6HCUIFaps7Z18UoCd9O8Uaa47zestOXv6X8boa8Q9x99G629W/jifufYuDlPlpfbqW8rp4PfuEjrF9ffR6ZmcEI8hkwQqWAEWwXwggp8j8bI5jNKsrL9QwOejnT7cJU2cjNd9bi6DnIrqeeYc/WV1m64VpWXbEWq1WbRQolcbtTGGGJJfP7yWCERzozpOr0nDA46M0pMWxstGTG/7Mpk6ZjhJnIJLs9gMcTzjGChwt7O6WPwe0OZ7pnTs/rM3Xvez0y643EbDYDE8GJ11nzb4//U6RUJBLhyJEjfPnLX868JxaL2bBhA/v27ZtxnXA4TDg85Sbv8Xj+5uPIJp+c40FsNj+QZHG9+TxCobHBzNmzLoKBGEajCrcrTOfpCQoK6rjjqw8hT5zlof+9jwPbf8vB7fextPkyCkouIUwNIHSRaTvuYO9eGydPOLjttrrMe2mSqmV1CaVleiKROB0dTgKBKEeOjOLzRnE4gqg1EkLBeKZd8okTdv7yh3uJuV4F4qlSuwQkY5CMQjKOxHQjUmUViXAfUdc2iM1+s0o0DUh1K1J/N5KMDCOSFSCSWZAqi9Hnl5NvKaHYaiAUilFdncfGjRWZc/hm+jy9XeN1JZkzqK7OM8CbpraaTXElUS+m+cr3sW/7nxnuPciP7rqZjTe8l9v/9SvkmYTBisDk2ykq0mAt1mC1ajOklSlfycioH51WjtsVRquRYcpXotMJar7p3yX9r9sVQiQSIZdLWLV6GUWlf+DM8R08ef9P+MWXb2Kg67OoC6/i1EkXDY3mnDLFxfVmwZDT5iMUjueU9LW12enocNLZ6USRag2e7lKZ/Xub6RxfrJptcNDLmdOT1NTk07C+int3neX5cJiqBEi29WEwyDMDnJm8PNIgwmCQ09RkxW73zzpomKlT08UMMl4vph/D/8WyjOx4u+SDApOKhEqTQzyl/WzqF5vPGwDMKdVhHfQglYrQahV4PGEc9jhrF67jo++6hudfa+Wxl3fyLz/+KT9/uIiW+kasugrqF8zLmKC3HRe6r2Srg7KJqtUtJYCIc0PC93PYA5w968bhCKJRSwiGpvJBWZmO++47zqd//H1iiShJEiSTSZIkSCTjxBNxFFIVq8uuZzJoxxWy0zt5YtbzIZcomG9amnldpC0nkUyglunQyvPI1+Qzr8yKFDkarYwrNlRgNqszipn0oOufiWR6o3ExEv2ZfC6mx+uZogLYhgPcuv46ntqzlX7bCA9sfZqtB/fwm29/khve1ZRp0d2RlRPmVRnx+6KEw3HyTUpGR/yM2QOIRGDMU1BVbcRuD1JcpMk5ruzvVVGhx+MJpxq6GPniR2/mUx/YyI9//yjf/90DPPfqHm5suZagW7gPb721Nuear19flinLDIcE4Hr48GhGUTU45MHlCqPXK7hiQ3kO+Emfw+nn+WKVbJnt1ORTsP4bcOwhFvU+yrfLD/JE99f51rc8OaqovzUngCjV/VK4Fu/kg78u3mhOeCvyAeSST05nFkaYIR80NqYwQjCFEdxhOjrGMwTq8uVF+FOkb2lNJT994Fu8+MJptj7xCt6Rdp743wdIxOO88LtiympqaVqzhHmLajg7EM0oNVpaSigt1eNwBOjocGJJlbuOjfnp6XGRTCZpaSnJ/E5OnLDz2L2PEhnvSKmYhJxAyu+JZBxl6QakedUkwm5Cg9tIBO0znQoApMYFKIqbECv0xNx9ROxHESn0iBVGZOp89AXFmArNFFv152GE/gE3fuMAHc5XGA2MUiYr47M1n2VjxUZKtCXIJLI35Zr9o+NirB1m85xLx3QyO3v5Ul0pP738p/z35HM8uPCXeNe5mdg1yUDHCb77iX/jmluv5qNf/CiGfGGdHIxgTWGEFGllMikZGfGj08lxu8MpNXYKI5gugBHcUxghWzVos/kpLbuS696/iZ9/9VfsfvJhOvbv5hv3fDFD6ixebM6Y9odC8Ryipq3NLpQftg6zclVxJqdNzwkzYoQ3mhOytuvxRAiH4+d5T82kssouP6ypycftDs062TRT976LmZx6vZh+DG+mn+bFxv8pUmp8fJx4PE5hYWHO+4WFhXR1dc24zg9+8AO+9a1vvWnHMDkZpm33CB2d44jFIhKJJMPnfCQS4PFEaFktlBWkL3ZtbQF3pNQdGrWU1r02+vvcSCRiysv1WMwtFFc20tk+ROeRlzi2bxuHW38ISTh3fDFn21aTV7QQlVyJ1yeQUUDGa6e2tiAHeAcDMXbtGkSpklFdLTxcHA4/Y/YgHe1ONl01l2NH7SRCgyRjjlm/Z9z5BHGSgAQkqRtXJAOJDrE0H5HMjEhiQCQ1IlYLRJmlUIlMtgyxeDmXXz4HU77QMntxvfmCne7+f4g3Uup3IcJpJgVVNlkl3Hdzue6G77D+2g/w0K9+RH/nq2x98hFefekFPn7X19h88wdoO+6gp1sgh9avrwDIqJAcDgHALl1moaHRQnm5nt5eFzqdYK6fPj67w89TT3XjnAjS0mwlEpExMOAmmRRkuyuWF7Ni+QeorG3hsd/9kifuvxuL9RnmLvsEQ4MKnnrqTEYZly7JbN1rQ6mQZNSBo6N+JBIRJpOSsbEA4XCM+dX5OcllKJWUNGppxsj9YiPbyypjsmvW8NnVlTx8aIhuUYghpxfNtv4MAJlpBi4NIpqarGzePDenDXA6skHCpk2Vs3Zk+Wujvd3Jiy/2UVCg5MMfXvR/ejYc3h75wDEeYGTIyfEeBx0dTurqTExOhjhxYjzljSOifnHujNzqlhLKSvUZEmZwyENPr4viIg0Ni0poWPQePnD1VXT09/Lszr28uHcfTtdWzPkG1h1uYH5pJQXFFhKJRCYfwFRuqEvNlt94QzWHD4+ybdsAI6N+qquMwjE7/NjHgrR3ONm0aS4WiwbbSABvZPaJh1DMz/azDwNCmZ0IMZBEKpajlGrQyHWopDoUUhUamXDfKRUS5AoxN1fcQN3CAqqqjDkdBt9sSfo/U7wRP6sLLTvTQHX6jGp5uZ73XXcpd31yI/c+tpWfP/AXxibGueGz3+WaNSu552ufomJOIcfbHHT3uGhsMHPjDfMz23rppX4GBz1UVxspsWppaDQz0O9hYMBDSYk259j2tE55VJWX69m5c5DOTmcWaVbEmpavc+8fX+Vbv76f7z70X1zdtIZL1Nfw29+eyFHGWSxCTtjbakOhlLCndZhTp5woFGKqq4wMDnrO6w6V/jcSiWfUVLORdTNF+txlm64jU8KKj+FRVFJx+lE+F/0M3zz2IbZzzd+UE7IB5Nq1pVgs6vPywDv54I3FG80Jb3Y+AJh0BTn6SjcdHVkYYTgLI7TMgBHuUGXAYmurjf5+ASNk39dudxh3yg9t2Yo5mAtvoKzsg5wbdPLiE7s5fewY3ceOcmrPKwDINUYKS0tovnwRFfMrsFgtJCOgkCeZnAyhVgslWR0dToLBWErJJ/yWjx21E/PZSUbcM3xDIULDr8HQdnL7topAIkcs0yJWmhArDIhkGqS6CsQKPRaLElnJIsSLFgsYwZTCCKnS9uyIJ+IctR9la+xFHEMOKvWV3LnsTq6quIpCTSFikfjNuWBvk3gjCsY30jRhOlF17ZLLKJfWcG51K/+7+276/nwWzzEPz/3pOV55bhef+c9PcdW7r6KtzZEptctgBNM0jLDUQkPDNIxQOKW8sdtTGMEZpKXlfIyQfjanSVeDIZ9//f6/8ecHXqNt+1N87qbPcemmtfzrdz+LxSJ0km1ttaFUSjIlcmmMkEzCpEvoHpvd9GK6afkbyQcwO5GT/retzX6e99RMlTzZlRxpBVdaKTXTvqYbvL8ZnlVp7zC9Xj5j18G/R/yfIqX+mvjyl7/MnXfemXnt8XgoLZ3ZEPpiYnTUz8FDI0xMBDHlqxCLRfgDUUCEcyI0I6GQ/Z7N5mNyIkRlhT63Y9uaGjQ6I5PRS9CXOygrHMDrOMVLTz+Oe+J/ANDozeyfqKGodB6yqB5JdD6nT4XR6PRotDo0Oj3JZIJINI5cJsI1GSQc8mLJj+B2jnDqyGl+9t2DaJLDgreTWAPJiKCOSodIhUhmRqxeiFSzCJG8FERihJk8IQmoNRJisQSNDWa+9rWWv/pcvhNvLGZ7KOV0fVhWNHVfrVvKZev+zC9/8jivPPkzgp5+Xnn+STbf/IEZu/yltzM26sfhCGIt0XLrLbUcPjJKR4cTtzucMtcvobNznCef6qavz4NUIkKjEWarbDYfPl8Ua7EWg1Ege4JBMde+7wu8/2O38eDdX2fvM/+OwbqWwf5bM0aG6Yd42gOq7bgDjydCIp5ErZaysM6KbcRHd/cklsIpmXbatLyn+0KGhLNHTqLIIrTmzjHwFaueh3adZS+TvEiA9wxN0lCad942nnjiNA891MHChaYMiJg+aMgu2du0aS6bN+f6pP0tJRUDA24ef/wMnZ3jAIyPJ2lvf+u6Z/wzx5udD4aHffT1uhkcFKUMnD1MTIbwByJIpYLfwEwd2LJfu9whFAoJFZX6HKNNkUiErUdGlWEllTUi+sfPsvXVo/xl6x7iiQQKuQyrqZBuTyXl1iIiIhlRmZhTZ/ox6DQYdBrmzNEglYkIBqM4nAHUailSZQylIUzPuX4+8Ml2zFYxtmg3ComaeCJKLBkjDTREiFBKNegU+ZTq52NUmlHJtCSSccQiwaBcIgaxBBbMz+MLX1jx/zXZ9PeOmXLChToAfvNf30OZsZr7nnyeQz0HeX7XQe66/SYq5hTm+iplbSv97J8718ittwrq1i1b+hgd8WeITbvdz6OPnubIkVHBD21aPii2ajEavBkidvWyhTz+0+/w7J5X+MWDT7C/4zgryy+nsrAykxPSJXXp0sBQKEYwEEUkktHYaKGkREsgIBjWpiP9XR95pDOHpL3YmA4cMiESYWjYAJW1RHfew48bf8XwHA/EV4Ekd5j9xBOnefLJbi69tCRHoZT9jJ9ewj29o+s7+eDvE292PgAYHQlw8KBPwAimFEbwpzCCMzQjyZz9ns3mY3IyROW0fGAwCPemzdaP3R6gqUkoZ3U6g8ytX8rSy5qEbqslYnrbuziyt5140MmuF3Yx9r9jOfsTS2RI5XJkCgWJpAQQ81oX7Lg/jkIpJhwMEfd6OT8E0kkkVSFWW5FqihAr8xErjIikqoxCRa1OYYTGN44R4ok4h0YPsbV/K86Qk2pjNR9b/DGuKL+CAlVBZh/vxPkxE5k9e/luNe9Zci3fX/V9nnrpKWwPjOEf8fLKs69w1buvmlHtk8EIYymMYNVy6621HD48DSM0pzDCkymMIJ0BI1i1GAwCAeN2hykuVmdImAUNtdg9WnTDJ9i/cye3XX6QT//np9j83s0ZAqutLYUREgJGaGkRTM5NJhVudwiYUse+vmn57DFbTkj/ZjWa/8femce1Xd9//Jk7JJAEQgIECEehBVpaeir08GjVVq1O61Fv3dycv+k2N49dHtPpNjfn3NS5uanTeUznMXX1aGvVWlp7QmmhLbSFAAESAkkgF1d+f3yTLwmEWl09x+vx4JGWJN/kG/L9vr+v1+f9fr3kaLWKIybeVVe3s2GDkLw5Uddu7Mje3LmZ48Sz/yaYxeHwsWmTndZI57zXG06YOvhZ4CslSqWnpyOTyejqij/BdnV1kZmZWP1UqVSoVKpj9h4yM7UsmJ+FqydAWZmRgH8Ie4dQRIxpahxO3xE7YspnxpijjXms1ZpCnzeEwyUjKXkW6dbjsQyswujrwprpZjjUxr66PXS0rcXb62DLm4MTvs5EaKsFQ5qRwoJsTJmLycmfQn7RNPKKpmEtLEadpPnojUziI/FRxuafBBN1UE0kVkXfw4JFVZiyS/Ha17L87OVIpVJKS9OZMiUlbrXJak3B4w4RDofRG1SiYGW1pojf+YpZJhxOH2vWHObwIS9IwuRadeJj9+xx0tbWzyv/bsRiSUapkJGcohBOsnPnMWfB6/z1gYd55cnf0dS9kz7XZQwNLWPNmsNUVlkoinRzRMMCYkMD9AYVnZ0+OjuE/Yp+Fnl5Ouzt/XHkJBFiu6Ki24wNJxib0ieVSlhRnkmaXE6108OqP23m5uXT+ObiwrgLo5deamTHji60WsWEF/6JRvaOFfbudfHaa004nQFOOy2fU07JR69Xikbq0cd81Yxtvwj1IDs7GelIiIxCAy0tXvLydHR2+Wlr9ZKaKowlxSZ9JYLFkozTIVzgxcJqTcHbF6LT7kel0DGr9Hg086ZRnuZEbx5ApvGzeecBGg7ZeG9HDT2ePh5++ePvg1wmJz/HzML5xeRnZ1A2xcr0YiszivPJzjBOkoBjhGPpCRHFkcb8xtWDyOuXTDXz3YvOQ2s8i/2tjZywQPBHKitNx2rVkqxNEp+j0crJytKSlaWNE6uqInHh0dvddU721nczODiCyaQRH+t0+unq8vHC80KXSkaGluzsZObOzaSqMpeqyiv4+nlLueiG+3i95iVKc0qZ41lEc7OHiy8qpapqdKRIo5WTX6AnaqArbE+D1zsQd4EdNf8vLjIc0fg+tisq2r0X+9kl/HvpsulfcDN9u57B0voM/LUOLvgHpFrF7b70UiPvv98GwNNPz0742p91PZg+3RjXqevxDHzl6gF8/JpwrOsBQGaWhgULUnC5IhwhMCQKTUaj+iPrQSIDZRg9nt966zBNTW48HiH84uBBNyMjUFUldCcK3XnzOG3VMvH7q0uR0d3ZTXdnN4ca29m/187AQIh+rx9nlwdTupq2dh8e7yCa1CS+tryYFH0KKfoUkvXJpKWnkZGTgT5N/6nVg8GRQT7s+JC3mt/CHXIzLXUa182+jpOtJ5Om/uQhHF9UHEvfuCiONOKX6DzT75Cz1P8d0mZV8PLtj9D+ziFmrJxBmDClpekUFqQgl4/KCNGOvXA4jF6vEoUYqzWFBQuyRD8qh0PgCIcOGo1tDQABAABJREFUeZFIwuTm6sTHihzhlQhHUMpIThY4QvS7XlFhwun0c1Axm+SMafQdfpff3vxbXnz8db571/cpKUkTwwJiQwNstj42bLCxc6cjzucpL0+H3X4UHCGmU8k3piYkSukDoXssmgY4ETZvFgze1Wr5Ebuex47sHSvYbH1sjYSazJkjeH7F7k/0MVGj808TXylRSqlUMnfuXNavX8/XvvY1QDBdXb9+Pdddd91n8h5SU1UklaRSUztEqkFFUZEBe0c/+/f3iKuTJSVpcZ5PDqePTR/YxTEnvUEVZxQdK2CcuXIKm6vtDA+PUFPjYHBwmNycXM695DTWrDmMyrWEudPTmTXTyJbqAxTkwfTSZPy+fnx9XgYHB5FKJSCR0Nc3gM8vw5pvxtY6xO49/Zy4dAaFOf3YbYcpLptJwdTSj9jjSXwSHI1Z+bFCrFgV+12KVfgvuXgGMAOH0yeKL3+7705qt1XzzZvvZelplYIJeY0DqUzC4sU54oqC2TRqnOlwCmr+wOAwBYU6ykqNceb04REhKSzgHyIlWYnJrEGnU8WJPtf84HqKypfwt9/dgX3Pg/i7t5JkuQSAqsrsuH2p2y148xApDnNmZxBLShoautmwwUbAP0TAP5RQeIr1gNu3rweZTMLwsNAJEu0s276jM+Hfy2brw9Pq44wiI3XBIPes2cemJhd/WF2BXqME4Nxzi+NuE+FoEo+OlOB0JEyfbmTlyiLa2/uYNi2Vbds60GoVeDyjZqL/rT/JFxFfhHpgStdgMkipb5XS0iL8zpqbgrs3wLvvtpKRqcGgV48zJ3c4fOKoU5pRzfBwGL9vCIgXL1aeOYXqzZF6UOskGBhEIVUyNSeHgcERvEYz02ekc/llZfznjUZa2h3k5mvIzlXj6fPR5wsgkUiQSCRIJRL8/mEGAhLSjSm0Ngfw9oxw0on52L3NKBVyLl550mfyuf0v4lh4QhwNYoWq2O9SXBDERdG6P0t8DIoAp37zR5w2fzE/ufYCymcIZrUdHT7mL8iM6ziKxoVHjcW93gFMpiSsuTrOObdIfKzfN8TjT9Th7PYjlUhQqeWUlhrHiD6pPPLTm/nbC2t5eu2rHO5qZm7OEvI366mqyo7bn3RjErvrutld58RiSWb2nPh64HD4ePXVgzS3eMjP05NuTEooPsV6jcTVg3mjxGiiVCZb+wD7ek6i0lLIlN5/wyNVcPbDUHYWcOzqAXyympCoHkSFqM2b7cjlEoaGhP39KtUD+GLUhFRDEqoSLTU1Q6SmRjiCPQFHiEnninYyRMec9HpVnFF07HF80klW1Gp5PEeIkP41aw6zZ4/QIRcIDLJzpyMSmJRPTkEOOQU5VFRWiO81drs7dnSxcWMbixfnkJXqpbO1k6nlU8kr/nTT6waHB6m2V/N2y9t4B7xMT5vOD+f9kBNzTsSgNnyqr/154lj4xh0NEnXtR8Ww0RHjhXzv3HP45fRf8urBVzn0XisXTbmMZ375DPtrD3Dt7d/nxFNn4XJFOIJ0DEeIMdePdvwMDAxTWKijrMzIwpiwknBY4Ah+/xApKUpMpghHiBFJSkvT8fmG8PmG6OtToE9byZCmiK5D67n54uu55LpLuOjai3B7BqmL+HdChCPMmYAjBIYiY6rjhadYD7iJasKE9eAo6nplZPEmepsIsQsiE23nSKl+R0KsaJidnUxjYy9qtQxf5JoTYN++HnJGZJOi1MfFD37wA6644grmzZvHggUL+P3vf4/P5xOTNj5t9PaG2LBGiLMHIbr4wy12MY3G1RNk7boWamoctNq8+PxDeNxBtm4bjV5eulRYVbNaU0SS39npIzNTy9KlVlINKtauayHdmERoYJjFS3IwpidhztCQ603BnKGhr38IlTaNzNwMKo47ctFoaOjmULudxSeqKS5O4+8PPMCOjf/mG9//6aQo9SnhWMz/fhJ8lKlf9P6Az0v1+lcI+j3ce9MFuNp/xKD6BNrt/WRbkgVPjkjiXezJL6rmm0waCvJ1ol9YVEAymTR4vCEyMrQsW5YnGhqKiRPuEHpDH0nJ6cxd9hO6mj+gfvMj+Ny3kjL/x8D8uNfauasLwqA3qJk3N5OlS0cFq/XrW9jyoZ3Dh7zI5bC3vpvDzR6Gh0fQ6VRiUWlqcrO52k7ZdKOwwhIjWEUx0d8r9vdV6Rre2efglZp2Tvj1BqrCKi45rYhVq6axatW0I/5djmYcI1GC09GspuXl6bnxRuFz+/nPN7FunY158zLEFfIovopGt593PYh6Sm3dO0xjk5t2ez+ZGVo2bbLT0yOM5litKTz33D5qahzYWr34fUO4PUG2jVm5Ek1m65xUV3dgydJy1llTqKrK5o03DvHmm4dRqmRUTDGz7JQ8Wpq9dHb4SE5WsLvOyUBQwrSC3I/0Cqhv6Ka2xskJxwvHp6uvh6t+cj/aJPWkKPUp4vOoCR9VD2Ifs7F+I73ePp5bv4Yd+/fyn7/+jB5XEK83RGNjr+jRVDamHuzb14NGq2B6WXqc6Gqz9TEwMIzVqkOllGEwqJhRbhI9o6IX+W6PYDR9auXxTM2ewqOvvcCmw2+hqnFxZe9U0lP1ca+3a2cXYcCgV7NsqXDtExXHbK1e6htceD0DBAJDpBmTCAWH8HpDYk2wtfbR4woIabERA9+oWBWLj6oJKdZ8SJoDWx6G5y+jM/t8Hm2/lJNPKeLpp8884t/laMfzPklNSFQPAK68cgZAXKfUVxGfd03odQdYv8Yh+p0VF6fy4Yd2OjsjHMEVZO3aCEdo9eLzDeHxBMVOhnEcwZGAI6SqWLu2hfT0JEKhYRYvzsFoTMJs1pCbm4LZLHQQCpi4sykq+DY0dNPe3s/8+Znk5+v4y11/peaDzVx3x3Wfmig1MDzAB+0fsK5lHf2D/ZSnl3NRyUUszlmMXvXVEksT4Vj4xn0SxIphse8hWZnM3YvuJsVRwgvuh3hwx285sL6RwUCIX1x7E66fXkNIVUJ7ez/Z2cmib99YgSSOIxToRL8wh8NHXV03JlMSHk/yxBwhkko3MDCMUinFZNKQnp6EyaRl3g3LOfDhOp76w1NseHUDZ119NQfbhcVhvV7NvHkxHMER4Qhb7Bw65EWhgL17uzl8eAKOsNlOWZkxrgvr43KEWMQKSNFFnCPhaMbzEqX6HU0Hdqxo+OyzDdTWOikqMsRddwLoMocSPv9Y4isnSl144YU4nU5uu+02Ojs7qaio4M033xxnbPhpobPTh1QmJduSLEbUl5ebCCO0ppeVGXnzzWaGh6HfN8i+fT1kZQq/t9m8EXPz0c6W7Ts6Re8crzfEpg/sbNvWQV//ICnJCqRSKY2NvdTvdSGVSSgtNTI8HEanU3HSSda4L1TUHDovT0fAL/iClM80UVPrZNeuLnQ6FcHQMN3dQrS4L/Dxx/8mcXT4OMbmxxJxavsREv2s1hR++sAr/OXeH9PauIVH77uLaTPXMWfZTVRWFVBT66S2xonPNxiXLimmaLiDNB304HAGWLrUGicgXXVVeULD8YYGF2+8eZjkZAUpyUqkMgmzFy7nm9efy7MP38kLf/4xLfve55Tzb6JsRl7Czqgooq/ncYcwpKowm5LwuAfwuAcoKjZQMcuEzz8kFM5nGnC7BeLzwx8Wxryfbtavt4nCW6K/19jPcFlpBkWmZO5fs4814X463thHOBxm/Xrbx+5wiiJKMmbMEIpMbILTx11Ni02Bin0vX7UV8Sg+73oQ9ZRKM5qo0CrIy9OhVMpwuwPs2uVk9mwhbSkQHAIJ+PoHRRIfHYuqWmgZ43sjIeAfpKPTF0nx62bnzi7c7hAyuYRpU9Ow2320t/ej06si5EMyzhgzKj6NTeerrXFSU+sUBTRbRycgrGBO4tPDf+MJ8UkxdvU10etHH3PKKZdgzTZz91+eorGthTnnfpfbvn0lixYV4XT6qakV6oHfNyR2HUUNwd2eIAcdQhpkesQMN7rinG1JYenJeeM8MpxOP3vru+n3DSBBQl//ADKpilu//i28tPLTBx6jZMU13Hz5pVx53klimt7Y7igYFceCwSE0GjnDQyMkJSnocQXE66VZFSb8viHWv9PC7t1OjMYkLr9sunjs1UfqQVRYm+jziv+9Fk6+FWqfxbz/RS7u38Sjf7+ZdeumfuJ6AMeuJsTWg//Gp+rLhM+7JnR2+JFKpWRnJ4sR9TNmmAiHYznCYYEjROpBVtYYjhDzHYt2Io6MRDjCpghH6BskJSWGI9S7kEqPgiPURDhCIMIRIqlmIkcIDuNyCQsq/f3HniMEh4K83/Y+77S+Q2AwwEzTTC4uuZiq7Kr/CTEqis/reBzbpTn2PVw09yzyd5fyuvFBBn8xgOOvPbgbunnwjgeZsWAOc5av5viFBaJAEscRymM4gidIU5MHhyOGI+wUxmqvuqo8oeF4Q4MQzpCcrCAlRYlUKhGF2OjxUFp2MZlFs3jl0b/y4E9up3L5CpZ87ezEHGFnFx5PiNRUFWZzEh7PAB7PQESQMeHzjXKE3iNxhIjw9tH1YBSxAlL0/x+3wymKqPAUHT9M5PMVfS8fhVivsNj3YjZr6QlMHHZzrPCVE6UArrvuus+sFXcsMjO1mBcrxQNg0wd2ul0BiopSWbxYuABJTVWjUkmxWnVkZWoon5mO3qASozBjEetp4/MPUVPjEAWpxUtycLtDtNq8HDzkxhrx7hk7lhRFVEiwt/czEg6LHSYGg4qkJAX5ecLz33tFeLzHMylKfdXwUWJY7P1mUynHvfwyb7z4DA//8mfs370ZZ8e1zC1/mIpZQuePWiWjutqOPzCI1ztAbtSoz5qCwxmImDv3jROQxnpqmU1aHF1+ujr76ZbLMJs15OQkYzYl4XTJKTruh0yZcSLPP3o3tVvPYdU3fspV115O+Uyo291N3W4nSRo3LS1eKmYJhS8zU0tXl590YxJzRREsPu3x2ecaGBoOi+3uDQ3d4kjtmpiOx7GF4kieYPnpWq6ancsLNe3sGgpxw3/2ItvqBvhEJORIKUnRC4hYj6gjXcgkSoH6quPzrAdRT6nMKYLpbHV1O+++10qGWcNJJ1mRySTs29eDJSsZmUzK9DIjJpMGtydIWloSJSVp44yYo2l9Qkt6mF07HQQCgqFzenoSKpWMdWtbkCsk5OfpyS/QMbN8/AVTVHyKIvrvWRG/hkBQEBV0emGlcdI76quHoxHCYh/z0++cw2XnLOTyW+7jvW113Py7P3HNhSv41jmr2N/gQaWWsWNHF339A6QkK5hSlIpBrxJ90WLrARA3Mjd2RXdvvYv29n78vkHMZg2Dg8Mkp6hITVUjcVt56f67uf2hx7nlDw+zfut2nr7/BsxmPTPLYXddNx9sagdAp1NisSSj0Sro6QlgNmkwpiWRmakVhahYsba6uh25TIpcJqGmxoFGK6esNJ3qTXZ27uzC5xscd0wecTVapoA5l9M2kIvl8NP8XHMzDzacy7rwZZ/4XLxhQytvvXWY004r4Pbb442ip0834nD4cTh8tLR4JutBAnyuHCFLQ/piwyhHiIzlxXME4TxuterIytJQXp6OXv8RHCHSvVFT4xAFqcWLIxyh1cvBgxGOECHbib6rUaJst/czMiKsQuj1oxwhL094/lq5UAvcMRYA/y0CQwHea32Pd1rfITQcosJUwSUll3Cc5bj/KTHq88ZHiWHC/fO4YOQxntj7BH9M/yO+91Jp/kcze7buxNHWxoLZt1FRIYi8anWEI/gjHCE3auadgmNMTYgdrRt7ThW6qfx0dvYjj+UI5iSamtyiOOTzDeEJJPOtn99O47YNPPG7v9NYW8NZV19NYWmxwBEqxnCE9DEcISbt8dlnBY6QlDSGI0R8saIdj+M4wkd0KMWKP4k6nD4OjpSa91GeV2ORKBnws8RXUpT6POH2BOlq8ooiUjSJLxpT7+oOkJmpYWhITWenj2Stkrrd3Xi9IbIyNXFqbiLiq9UIfzJjmpq5czMwm7S8/HIjve4QVqtOFKRc3YG4Lg8Ag0GFVAq51mSMaRq83hAed5D29n7kMik6vYrS0nQyM7UcrEM04p3E/y6c3X7MBUu5809lPPyL79Fy8AC3f/cqnl67ndLSUhxOH66eIB124dbnF9o7hVE6K3W7u2m1efG4g1gsyeL9iTy1KqssdHT6cPcG6OkJolbLaTropr9vMJL2V8Ypl/yZuo0P8cyDN9N5eAuLzvw+O3e5IQwDg8PY7f34fINc/Y2ZyOVSRkbCKBRSymfGdzpFj628PB1LluTgdPqxt/uoqXVSWpqOzdYX1/EYi+hIrXD8COOGY8WpinIzFeVmNjV18+yWFgbmJtNvVhAOhz82uZ8+3ci2bR10dwfGpSRFLyDWrDmUcHX80zDLnMTRo7c3SHOzF7khIIhSm+3s3dNNqMjAaacVMDAwTEuLF5VaTopfKaQj5euwtQ4KXR3a0RIde5ETO5bk9Q7S4wqIHVXr1rfQ3OIlK1PosvL7huh2BSJdVWFmRi64ovXAYFCRl6/D5xtEpZaRbkzCZNJQU+skFBxm9mwzAAr5VytiexKfDGq5ll9d912eX/8mv3/qJf78zzfIs5j58TUXiqNEfv8gOp0KCIs+VdHVcI1WLn4XNdpR8/6xK7pVlRY6O3z4/YN4PCFGRmBoGHbu7MLbNwiYuPv/ruWhf7zF61vfYMbK/+Pxe76PSZPLrp1duFxBBoeGUSpkLF1mJRQcot3uozhmLCHWWyt6wb7slDxMJg1Op5/GSCJTWWk6acYk9HoVaWMMa2NTkdyeEAZ9YiJiPf4kmDWLnjf/wA9LnqNLexD6noaUT9KhE450Lo5vX8zL02M2C91SZrNrsh58weB2h+ho7BVFpK1bIxxhaoQjuMZwhGQldXURjpA1hiMkIL7aSM0wGiMcwRzhCL0RjhARpFyuQFyXB8RwhNxkjMYIR/BEOIJcij7CEUzpSRyGI5o3Hy18gz7ebX2Xd1vfZXBkkDnmOawuWc1xWZNi1BcZUqmUr5d/ncyRIu6W3Iq0QIbrL904Wh387Oqf8cymZ0TxxuUK0tEh3EZ9ioRROit1dd20tnrxeCIcwZeAI0S+25WVFjo6fPSKHEFGU5Ob/n6BIzidfjQaBUajmoICA8cddym6zGL+ds8feOzOu8iffSLqrPkCR7h6DEcYs3AX230kcgS7j5qaGI4Q0/EYi9iaEB03HFsTYsWf3t7QURmtTwSrNYXGxl5R4EuU5jyR59WnEbDy32BSlDrGaDzQy+Hdwh9+6VKrmEq2sMqC2SSYZw4PhwmFhiEMrW1eOjp8yGUSyqbHq5ObPrCzdVsHC+ZnifOepaXp+PxC5GXd7m70hj5KSlLJtabQavOyYYONObMzcDiFVvnoc0AYJfF4Q3i9g1xwfp5o3mxMS0JboaBilonnX2igtkZooZRKJ0nI/zpGzW+z+ONzb/Dg3T9hbtWJaFOEk6fZJPjajDUPj96nN4yO7TmcAXFGO9GcdVVlNl2dft566zDDw2HCI8Jcd3m5iZYWL06nnza7hBPOvYMLr9jHA3fdQu32LZx24W1Yiyqwd/jo6xvEmCaIqVExqWKWaVw3U5yp7+pScbQ1NlFw8eLshJ1QsSkYUdIV3d+xSBuEbOcInSkSXmhx4nh8G7+7YBYv/KOe557bz+rV0zCZNLz0UiPnnluc0HsqL0/PlVfOEMlE4r+Th40b28jOFt7DI4/s4rnn9mO1pjA4OMJppxVw5ZX6SVLyGaNuTzeN9S58GCgrTY9LJZs3L5Pt2zvFUYpQcBivN0T1JjsN+1wA5Bfoxa6MDzbZ2ba1g/kLsjg3Ug/MZi3W3BT8kbEph8MHQGVlFjPLTeyu62bXzi5SU9X09gZFrx2zWYvbHSIUHGZvvYu5cwXfqn37erDZ+sSRPpfLzytrGoHJejAJATZbH02NHi4+9QxWnDCb+//+Cj+46lxA+D5GxafouT1WpIleHEd9n5yOiWtCVVU2nV1+Nm1qQ62WMzISZmhwBOvUVORyqThqmqsv5lfXzOC1ba9z+rdu5+vnLufcxSsIBcO0tfZFujkk4nd6rO9VdJ+i5/F58wTT9rHjrYsWWrDmpsTVrOhzE9aDRBf4SWm8G74IWds6VuRsg4fmwxm/45FNU466HgCcdJKwGn609QCEmvDQQzWkpydx4om5oofUZD34bHHgQC+HaoVz6dKlVtFgeOFCi2iwL3IEoLU1whHkEsrKxnCETXa2bu1gwYIxHMEX4Qh13ej1EY6Qm0Jra4QjzMnA4fCP685ob+/H44lwhAvyRCJrNCaJsfbPP99Afb1glv7fdM/2DfSxoXUD77W9x8jICHMz5rK6ZDXzMuZ9pQ3Mv3Joz6Gq8RYOTHuKxp/Uov+nnssvupwkjSBYms0xHGGMF5PZrEWvHx3bcxyhHoBQE7q6YjhCODyOIzQ1udFqRzudjl8yA3XKnXzw+mt88NprJB2uZ86MbwHx3Upjz9djgz9iPaCi70vkCAmee7Q1oaGhm82b7Uil8V2Qb7xxSAwW0OtVEcN5S0LvqUR1dyycTj/19d0Yjeq47ZtMSQwNhZkzJ4OlS7Wfu0g1KUodYxRPTUUnlYlEODaVbPuOTrQaeZyZstBFMoBUxqjKGSG3rp4AHk8IV8QQNwqrNQWPOySaNs+dm8m8uZl43MHIwlk4jpBHYUxTo9OpRNI+1l8I4OGHawhEvKTc7mPXmjuJLydivyNJGi033f1A3P3763ah1emZN7cw0dPjxvainVIT+VkB6HQKsrNT0BuUTC8ziqN2VZXZccJRaWkZ0+fM59c/up5n/3gtF37jOlZc+H9iclP15nY2bLBhteowpo+u5sX6qpWUpIn7Z0yPxLZGHiuOFMakEUbf79hiqTcIgtz69S1ExwNd3QFqap04nX6cbf3kWpIpXJzBhoMult73HooaD/sjhTg7O1mMCJ+IhEQ7ojZtauOJJ/aM8yPZuLGdgwfdbNzYzre/PZsnntjL7t1OWlu9zJ+fRXRF/bNKdJmEgPIZ6SgYpChyITM2lSzquRP9LtlsfdhavTFbGO2E6HEJ9aDHNb4euD0h3J4g7rognR1+SkrSIhcUTsJAmlFNfoGeWK+dWRUm2u39yKSSuIuZ6MVIWWk6112/Dme3IHRFxzkm8b+N2O/JPPMcTlk4R7xveHiYd3fs4Pzli0XCOq5jKMb3KdZEPNEooU6nICNDS1GRQbzAn1k+nkDMqjBx7Tfv5MF/vMZNv/kbW3bX8/RvbmLRwhLRUH3d2paE+1Pf0E1NjYM0ozrugj49EuWdbhwlV1FD3tgxiLH1wKAXusHWRerBzHJTXLpmT0+IXc1TCaWWcUH6u/DiNyh1zqZpz3Kee+7TqQcATzyxl8bGXnp6gsyYkc7evYLwPVkPPltMnZpKypBSJMKxqWTbt3eijdSEKIEXukgGkEoZ1wnhitQEV4Ka4PGERNPmuXMzmTcvE48nGHlEOI6QR2E0RjiCMQFHiLzmww/VEAwK3Sy9vaGPvf/ekJf1tvVsbN8IwPzM+Vw49ULmZMyZFKO+hBCE8RL+r/RhXnE9weNJj7Ndv525g3PRKrTs3bEXo9mY0CMKiBvbi3ZKHcnjUOQIeiXTpxvFUbuqquxxwhEI5+1TT5vCqad9ny3nn8Tvf/xbnr//l3i6mgkop5GXp4/r+Iv1VYvjCJF6YPyIehDdp9hbvV4Q5ESOUG6KJBUKHCFqDh9bfzZubOPgQbf42tHUzIkM0WNDCcZ2QALU17vo6PBRX+9ixYpC1q+30dzsobs7QHFxKtFrzc8qBXgiTIpSxxgF+XpOnjf+SxOrusaaPGs1clrb+ggGhtBoFDQ0uKipcVBWZsSYlsScORksrBofE+lw+unrGyAlRYnHHcTh9GGxJONwBrBYkkWS3esOiSlpCxdlj3r+RNBq66OmxsHCKgulpeksXpKNrVaGvx9Uqsmvx/86juRB5ey0c+t3LmdwcICf/vbPzFt4YsLnR32f7Pb+uDS+t95qxmbzMmdOBiaT0JZePtOE3qBO2KE0dtY5w5LLbx5/kecfe4i/P3gvH76/gXO+8Qus1nI2V9uFk7C9n9JSo7itqK8awEWrR5Mlx6b/RV8/0Zjh2M/EbNKyfUdnXBJgY2MvtTVOLNla5s/PFMdoj5tq4snNzRycpiHHmMfZs3OwZgrH45EiwqOITVsC+Ne/DpCdnczixdlx25g3L5OOjn4WLsxh9eqScUkuX9VkpS8aphanMbVAA8mJOzNKStLGXaw1NLjQahQUF6cyODDCb+/bRlWlhbIyI25PiLKy8X87p8OP1xvCZNYik0nQaOWRrikJc+aYmVluEl836r8wq8LE5ZeVxQlSbk8I2yYvOp2SmeUmlizOpqvXAYcBJDgcvi9Ei/ckPj8cyYfqp79/kl8/+gKvrNvMX3/xPTRJR7YASDcmYS4VLuyfemrvuHows9yEQa+ecNW2rDQ9ruvp+svO4uTjZ3Hxjfey4Pzvc+35q/jxNavYsKGNmhoHSMBk0sQ9p7bGSWOTmwptvNgVPUbHjuSNvWgf+3mM7QYz6IV6EPVsq1poQatVMKPCBFOXQMO/WVj3Mru/1cSHplvwWwUR6VjWAxitCSecYGXFisKvfPLqFxUF+QZOnDU+sW6imqDVymlt7YuY9I/hCMYIR1iYgCM4YjiCJ4jDEeEIjghHiJDs3t6QmJK2cGF2jOePgNbWCEdYOMoRDm2WMgSo1UfPEXoCPayzrWNzx2akSDku6zgunHohs8yzSFWnfrwPcRJfGMR6UN1QcAPTjNO4o/oO7t12L+emncttX78NgJ8/8nMqKivGPd9s1lJeDnV1EY4QEZmqq0cXlufNyxDFqvJyE/oJasJH+SEVlhTxvXvv5v1X/sXrTzyJKrWAtvkrBY4Q2Vasv9NFFyXgCGPG8RKJOBPVhGhHmD5SE2prnVgsEY4wplsr6i8X7ZQCYXzxozDWQH3TJjtGo1q8boxuo6jIQG9vgNJSI4sX54wT0ibquPq0Mak6fIqI9YSa6A9tt/s4sL+HoaEwMpmU7sjKh8cdIiNTS0WFOe4gi/rZdHb6kMkkdHX5cDr9OJwBzKYkhofD+PxD+Gx9bNzYzqGDvRBZsbxodalIpqPb2bG9E39gCK1WQWlpOhecX4ps+P+orzuVvGnzPqNP6quLoeERvMEh+oKD9AWH8EZug4PDhIZGIj/DDAyNAEI7tBThTyaVSFArZKiVUjQKOUlKGSlqOYYkJQaNAn2SAoXs8xupkcnkZOXmUV+znZ9++2Ku/dGdfO2Sq+MeE/2eNTW6Uatl6A1qUez5cIudXneI3t4QGRka5szOYOnSPMwmLdWb23nqyXoqqyxUVWaP22as19pF3/wucyqXcMf3ruGBn17Iyktv5PiF5xAMDZFuTBJFW7NJO66DMLotrUZOVqZW7D4EQWw62hP0WCP3qPdbrKcbQLYhiZVWI/92DdBmlvCkq4c7Fmbx9NNn0tLiSWhWHjtyF5uWtG5dC2+/3Ux6ehK33HIcTz89W3zOTTfN5/TTR4lHdFX8fyVh6YuI2Lboib5XNlsfNbUOenuDWK069ta72BtZITvxhFwyM7TjjG531wmkWqWS0t0dQCoVzvcmc1Jc19RLLzeybWsHCoWU0IDwHb/oolLxQmjd+mbWrbUxODRMRoYWg17NBReUcuryXOY8mUxXV3CcX8EkPibCYRjwQcgLQc/o7YAPhoIwFIr8BGFkOFK7JcKtRCqYZsuTQKkFhQaUGkhKHf1RJov1/vNAfrYZuVzGs/95jwPN7bz2pzvIMqfFPWZ3nZN1a21okxXiKKnN1seWD+24e0P0+wbJz9PT2NjL0qVW5s3LpL6hm1dfPUiaUc2ihdlH9MSYXpzH1hd+z9U/+hN/ePZ5qmvr+PUN11BRYSYQHEKllsWJq7FjfbHb02jlZGZpaT4cUxMSdEYlwtgUwKg3XHR0MFYUq5ctoQUDJ+rfZIXnZzD0Iav+8gBojROOWydK3ztSPYDRmqDXK/FEDKon68Hni6OpCXa7jwMHYjhCd4QjeEJkZCTgCI4JOIIjgNkc4Qi+IXy+BBwhph5Et7N9eyeBWI5wQSmS0CU01LWSM7XkI/exy9fF2pa1bOvahlKqZJFlEedPPZ+ZppmTnVFfQZxecDp5KXlc/871PNbwGPpMPa0Nrdx4yY3ccPcNnHHRGXGPj37PmpoiHCFSEzZvjiwsd/QTCg3T2xuMjJjliaLVU0/VJxxpm2gEzWbr4+DhfpZeeDHm/Gk894c/0fzBY+wok2K1LsNs1o7rIIxuS6uVk5WlFbsP4ejrQfT+WCP3qPdbosS9hoZu3O4Ql11WJt4X22E/dr9i93esgXo0NXPVqqlxyYHnnlvMvHmZcV360X36PK/xJkWpTxF1u4VZ0cwsYaY2tkNqFGEMBjVJGjmVVRa6Ov24egKUlRlRKmXjvuh1u500NbrJsghfmuZmL2qVDK83hNmkiWs3HBkeYWg4TKpBGTfGFytsWfN0aDSKuPsXL11EXvGsz00p/bIhNDRMhydIhzuIsz9ElzdId3+I7v4BvIHBcVakSrkUlVyKQiZFKZOikElQyKRIJAJnCRNmZARGwuE44So0NDIull2jlGHUKjHr1Fj0arL0SVgMwq1M+umSkzSTmd88/iJ/vOtHvPnSszx0z89wdLRz9Q9uFf1nbLY+mpu9eLwh8gtMcSfw4463YLN5STcmRWLrR3duwwYb9fUugqGhOFEq9rsrRsGatEybUcGvH3+dv/zmTl554m72bH+fJWfdjC8opemgWxTDoisp0bE8jztIR6dA3PUGlejvE+uLdaS0wijMJi1Ll8Y/LnYcMBZ1dS46t3aTnKYkaaaB7z1Xw1MfNFPoHCbQM0oWoogduTv99MK4MQ23O0R2dvK4le5YsjGRCfokPltEE1JqahyRRLzxY0hWawp5VsGvLc2YJK5uVVVaEl78OBw+mg8L435Dg2FcriAqtSzSNRVfD6Ljf3n5OkpzdSIJj92OXC7BYtFTNn30eQZdMt+4YOkR/QomEYNwGPwu8LRCXwf0d0FfF/Q7wN8Nw2PG4iVSQWiSK0GmFIQnmRIkUfExDOER4Wd4cIxwNSYhVyoDdapgnp1iAX0O6CyQmgeqT2ai+nHw7dVnUFpo5bzv3c2OvU1Urv4Bbzx6J6VTrLE7zMjICB53iIEBwTfHak3h+OMsYqeU2x2KG1Wq3mRn06Z2YcQuVzeOOMfVA7MWlVLBfT/6BlWzyvn5X/7K2d/9MT+49FJmFU+nqcmNTqdkWeR8HRWJohf8bs/oCKxBn6AmHGVi4bKl8Svl6cYkbLa+cd2GQgqmnCbLeZxg2sn0/W/DwQr2ZP+AXSNLOXhIOL4T1YTKSktc+t5E9SD6/COFYkzis0ddXYQjZEY4QsIRpwhHSJJTWWmhq8uPy3UEjlDnpKnJTVZWDEeI1ATzmJowMhLhCKnKuJGn2OMqL8oRYu4/4bT5FJSWHLEetPW18XbL29Q4atAoNCyzLuO84vMoSy+bNDD/imN6+nT+eeY/+c7679DwgwZ0z+vYu3Yvv73lt3TZu7jqB1eJ490iR/CEyM8f5QiVlRaCwSGsVh3JyQp6e4Mk5AjBoThRaqKaAPFJdNaSGVz+kztY8/fHeO73v6f1QAO3/f4HoxwhUg88niAdkXqg/4T1IPq4hBwhQVhATY2T6mo7dXVOLrusDGOkdkTfS3R7UYz1RIwVuXy+QYxjRtPHvu+JTNA/D0yKUp8qwvT7Buns8MV5RcXCYklm+oz0cR0VE0OCOkmGMU34IpeVGSkrMxLwDxFVYGPTzKK3sdu22fro7PQzMhxm+Wn54173aIn4/yLc/gEOd/tocflp7fXT7g7g6h8QT5ValYxUjRKjVkm+UUumXk2GTkWmTo0pRY0pRYVWJUcuFYQoqRRkEglSiURYDEc4UYcJMxIWhKmRkTCDI2GGhkZw+Qbo8gbp9Abp8ATocAv/dnhDNHR48Ucu8uVSCVl6NXlGDQXpyRSbk8nSq495rLtSqeIHd/6ObGshf/v93bzw+J9wdtq56Z4/oFQKJ26lQki4kMul4uiezdbHvLkZlJYaxxmkO5w+FHIpKclKrNZ4IhX97jodfjyeEPb2fk4/vQCAmtpuLvm/25k2axHPPvwznvrdlZRV/YC5C6viiXxMel7RlNS4izSI91j7pIgtEtH/O51+6ve6yLUmo1LJ6G33UZybwqLKHF7Z2c6OwRHSewaw7nWKq9nTpxsnHLk72jjvoxnZmzRA//QRTUhpbHLT0xsUu0TGomx6OmXTjaJoFXvBlchQc3g4jCVLi0olIyNDQ1mZEX8gph5EnhMd/6tKsLK4u66bjk4f+fl6zjpryrjX+bxXz76wGB4Edwu4mqDXBh4beNoEwQhAKhc6mDRGME6BvCpBJErJEm61ZtAaR8UoqVwQoyTSSHdU5HwdXY0IjwgdVOFh4bUH/YLw5bWDxw597cK/vXboqIGD64XngPA+DHnC+0ifKvwo/vv0rLE4YUE5W/55P8u/eStNLXYWXnwj/37oNhbPE4y1Z5anU1PjwN7eT0uLl6IiAzZbH3PnZYiegIAogjocQgJfik5JnlUfd66O1gOH0y+khNlH60FtjZMTFpTzdN7P+f6v/sSdjz7KSRWVLJt1MjBaB6OrzFExKjNLm7gm/Jff/0TjgE1NbhoaXKSlqfAHwzyycQonzZ3KacYNzDp8B3ieod53HXp9ftw5OtE5fbIefLExEh7hz7V/xqg2kqePju+F6e8fpLPTl7ALNTqCfdJJuXEx9UeGBLVaJpJdkSMkqAnRUZ7Kygk4wkiY5csTcIQJ6kE4HKbR3ch623rqXfXolDrOKDyDc4vPZWrq1Ekx6n8IJo2Jp05/ih+9/yPWXryWeZnz2P7Udp564Ckc7Q5++KsfolAqBI6gjOEIEZ8mpVLGuecW4/MNodXK48ZKHQ4fCoWUlJQjcIRITbDH1ISo35TPN8TOSELrtBMvJb+shq1vvsK3Vx7g1gdvRZtqHuUIRRNwhGNUD2L/L5iRu8jNFTiCw+Fn0yY7FRVmduzoIhQSvNxaW71xpvETdWt91Dhj7P4ken4sHA4f9c1O8nJSYcrH3t2jxqQodYwwPBLmj+80kqpRUJAuxByXzzQhXPwIhWDs2BGAzz8kjtwdDcpnpqM3qMQOj4oKM/PmZopJenrDqPilVMrIyNQS8A/x8suNYgqgViPH7x8g4B/CbveJX9qoCbRO1UqKJkTx9Jlk5Yyfff9fweDwCIe7fRxy+jjo7OdQtw9PxAReo5SRqVMzLTOFvDQtJZkplFl0pCer0ChlJCllJClkyI/xeF1e+vgT4fBIGP/AEIEBoWOrocNLXbubfZ397O/qZ1OTizCgVcooNCVTlpVCWZYei+HYiFQSiYTV37ye9Mws7vvZDbz7xr+x5BZw1fd+hNmk5fTTC+KS7aInY5lMwvBwmKxMLXqDStyezdaH3qBm3vwkLFlacfQOhJNmZqYGCON0+Gn39oteHVGvqNPOPpNkQwEvP/Yzdm+4lRzzd2ieciWAODro9Q4QCg1zuNlDWZlRPC4TdzN+fMSe5KP7W7+3m/b2flyuALNmmaivd2FK03JqWSaB1n7ebOrGmavicbuTPS/2EbIHWL48nyuvLOeNNw5x771bWb16mmhc+1GIJRann16Y8PdRwvHCC/t57bWDrFw5hRtvXHBMPoP/ebRugz3/gmlCu3o0IcVkFr6/Gq18XCu2zdZHZ4cvxqj8yBj1ghIIdUWFWUz127evB4N+lOgolTIyM7T4A0O89HIjPa4AVQstlJWmC3H27iB6nTJu+/UN3Wza3EL/SBfTik2cfsL8Y/gBfckQDoPPCd0HoLsRXI2CIDUyLAhJySahO2nqckifBlmzwFgojNQptYIAJFcf+/E6c2n8/8NhoZNq0A+BXuG92mugs1YQz/b9B4ZeFIQvfQ6YyiCzHDJKhZHAY4Ap1iyqn72Ps679OVtq97Hy2p/TvP5xDLpkzGahJkSNv8fWA0G0UYnHxfbtnahUciqPt4iPh9HRiWg9cDj9eNv7xToQrQtLl1r53Y3X89rG9/jzSy/R4mwlK+8bOBzpcZ4gGq2CYHAIrzeExaIdrQkTGPR+XMQeq1EysmGDjYMH3ZSVGSktS8fdG0KWlkWw8mY+fOlZjtNUc1fyD9m39WKeWnsuXS7hOlGvV/Lii/t58UX4+tfLj0qMgonFprG/n6wHxx6ekIf6nnpsXhu9oV5OyTuF8vIxHGHM2JHN1kfHx6gHAOXl6ej1KrGrYmxN0I+pCRkZWgKBCEeIpABqtRGOEEjAEWqcaGVO9NowJRUlZGRnMDQyxI6uHWxo3UB7fztGtZFVRas4t/hcCg2FJCuTP6VPdRJfZKhkKu474T7u3X4vT0ue5rjU49j20Dbe+tdb5BTkcOn1l4r1INagfBxHyNKKvkrR+/V6NfPmJWGxaOO6T+M4QsREvCZSE2pjasKcORl4vSF0OiUWy1SOP2kez//xIa5deS1nX30VUn2JwBEOj+EIx7gexHGE+vEcwWhMEhc0m5r8+HyDhELDuFzByEijmaVL89mxo4uXXjrA4sU5rFiROHhqLGLPN7H7NfY81NDQzZo1hxlW+ZBLFMdk/yfCpCh1jOAfGGLrngNsfegHnHjqClacvpLSinksXSqIOrHdGUAcyY69nQixgta8uZk4nD70BiFV5q9/241KJcOSpWVgYFg0No9uc8f2TjZubEOhlKHVCga6I8MQDA5xuNmDwymkK61Zc5h2ez+eQ49gO1DNDT+/j6zz/ndEqagIta+zj4YOL4e7fQyNhFHIJFj0SczK0VOSlcL8vDQKTFp0SQpSVAqSxni8fNaQSSWkqBWkqBWYdWpm5RpYjZWRkTB9oSE6PQG2Hu5hy6Ee9to9vLCjjZFwGzq1nOkWPXPzDJRm6VDJ/7v9WLbyPNJMGTz36B9YffX14u/HqvViC22kQ8rjDrJ2bYt4Ip43N4O5czNE4TVWaBXG5KxiolJLi5eKWSZ63ULXlMGgwmbrY+EJ0znra2t46k/38cyff8+OzR9w1Q/v5eSl5eLr19Q4aGp0i/5t0e2PRUNDN5uq7RjT1CxcJHSYjBWXoxh7nMbCaFSz8f02dDoVlqxksUts+45OploNaGVy9vX4aJKFeG84hDFdwuKI19hzz+0XTRKPRpTatKmN3/xmG319A6xYUUhZmVEkHIkS+Nrb++nuDtDe3v+R257EUaJ7P9++/990DL/P2eddxMqTj8ds1rMsErsbVw8mSG05EuL8SEjBoI/Ug78K9SDLIpD2aLR9NE3G7Qmydm0zLldQGBUvTY8km0GLzcvuum5mlkf8rWocbNzWyFPvPUmexUzzO098Op/VFxU+J3TVQ9ce6NoLgcjKpsYodB3NWACWOZA7H7TpwoicKkUYo/u8IJGAQi38aNKEzqhpy4X7BgMQ8EDXbjj8Ptg+hNbN0PimIKwZp0D2PMhdACn/3cW3KU3P+ifu4bKbf8tFZ5yIQTdKTGN9lYRuENBo5fh9Q6Jos31HJy0tXmZXmJg7NyPu4h1GuzXG1oPoWKrPN4hKLaPbFSDVoOZn3zmPr69exNnX/oJrf/lLfuK4nNu+f26cWHSwqZee3iCh4LAYTZ5IDKiubqd6s52qSovY6TXR6vnYC3+Hwyd2SlmtOuwd/VitOhYttGDNFfynbK0+tLPO4PX6Mhar36Pc8xTW4dd5y/htpk+fzxNP7GHt2hYkErBadR8pSrW0eNiwoZWNG1txOAKccELuEWvCZD049khVp3JH0R2ccsYpPDrjUTYt2cR3v/bdUY6QoCZ80noQ/Z7px9QEiyXCESLG5tHtbt/eyQcftKFQxHCEEQgEhjh82CMeo2vWHKa9vR9H7fO0N+7jh/f9EPk8Oe+3v0/fQB8FugK+MeMbnF5wOrm6XJLkx74TcxJfLkilUn604EdkajK5n/tZ8OMFDLw3wPnfPF98zIQcIdIN5PGM4QjzIhwhIrzGCq2JakJFhYne3hB2+yhHKC9Pjxtf8wSSufbuO9n07+d5/sFHmHvSEoqOO5OmJrfo3xbd/lg0NHSLhuILF47hCAm6HycSuIxGNRs3RjiCJcIRtHJstr6IEbpGFNK83oHISKOwyBWb1nc0olRDQzcvvdRIIDDE3LmZ5OamxInhsXW2psZJe3s/GflCOuyniUlR6hghRa3gdF07H/S08/Zzf+Xt5/6KIc3I8SeeSuVJy5EkTcPrHYibRQWBBDc1uceZOo/tqhqbDhY92JxOP3v3dqOQS1m6NF/48tiFC4mLVpfi6g6wq8bJwMAIySkqKmaZMKYnUVVlYW99Nx12H3W7u9EbVEhlUrItyYw4BSX0WI96fdEQDodp6w1Q1+5hr93LQWc/QyNh1HIp+elazpiZxYL8VGZb0zAmK9EnKVArPl8B6uNAKpWgTxIM0adl6risMp/g4DAdngAfNHbz7n4nu1rdbD7kQi6VUGxO5vjCNObmpX3i/Zxz/GJmH7dI/O6Ew2H6PG50htQJBZuoYNvW6qW3J4glS0v5TBN17hBZmZrxs9Cm0a6SpUsFr5KaWifJKQrc7hAulzA609TkxjVwMquuKeCtZ+/kodsuJEX1EPMXnYTZpEWrkaPVKjAYVLS399Nq84rHW+x7rakdNQvMjbQKj03kiyL2ZO7qDlBTK4gBSqWMuRGxLfa4jnY4lpSksWxZPsuA4OAw/9zSwpaWXh5ssSN7L5kLLpwKwOrViSPCx2Lduhb27nWhUknZts3Oa681sXJlETfeOD/h+MZ5503FYFCJRuqT+O8xVL6aFxqvocfr4NWaB5BI/sDCOWWcffLxFGYU4fUyvh5EiHZ1dTtPPlUvjtolMu6MelQ1NvaSl6cT68H+/T2ok+TI5Zl0uwKsWXMYe4RczqowUVPjZWR4hPBIGF+/0Pk5szyd5sMemls8NB/2AGE6O/ykGZMoKjLAe4g+cV9pDPigs07oLOraI3hAIREEmsyZYJkNhScIHk1JqaDSw5fpc1EkCT+6TCg+FYF59kJHLTS+LQhVu/8Jtc+A1gQ5C6BgCRisn6jDS5Ok5l9/+GnctUSPu480Q8oRV2kN+j6eemov7e39DA6McOKJVtF8fOwoRWw0t1IpIz0ytqTVKnA6/HEC08CAmitOvJJ39q7j9kf+yqHOZh689VqRxEe7VgYHRthb76KwUB/3vqLvt3qzXQwgUCplR/TjiB3bg26RVFhJ4bTT8sWRxeh+RDtaSkrSuPjqRcAievdtR1H/PKtDd8M773Hm8bdgs42GXnwU9u518dZbhzl0yI1aLf/ImjBZDz4drFuzjh5bD9jg/TXvU/3LasqXlHPeOech0eSM4wix9WCsqXOirqpoOpjXaxe7nhobe9m2TQi4EDlCpB5cdFGpGE0fCo2QnKyiosKE0RjhCHu76ejwUVfXjV6vQiqVYsnW0tsodOz9q/FfpKanMiN9BqcXnM7C7IVkJWehkH663RST+PLhyhlXYtKYuE16G2kz0whJQqhQEQ6H6ff0ExiQxn2fxxp5r19vo63NS29vEItFS3m5ibq6EFlZCTiCOQFHqHGSnDyeI2zebKeszCjWlap7b2LWcbO4/yf3037wIItWXUVhSY7AEVq94vuLPf5iDcVzc8dwhASWCyJHiBx7E3KEMfUgKmBHP5PYkcbYtL6jQU2NE5utD4VCQmNjD1u3drBgQRbnnFM8TgyPdrBNmaEgPYFP7rHEpCh1DHHdNVcTliTzmyeexdu0DXePizdfepY3X3oWhVLNKRf9miWLl44jspur7ezZK1zgREWpWMKxdKlV/HJ43MIqYlenj3Z7P8nJCjIytIRHwNUTEIWlvDwd23d0Ul3dTig4RJoxicsvH3XyFwzXwlRXd3C42cPCKguLF2djtabwh9sjotSnbJT9eSAwMExDp5fdbR7q2j14AoMoZBIKjFqWz8jk+II05uWnkZ6iwpCkOObjd5831AoZBenJFKQnc1llPt7AALtaPby1p5NNB7t5vLqFp7bYKMvSUTXFyKxcw7iEvzfePMTG99tYvCSHFcvHK/KxBOSZP/+e/7zwFL/+6/N09SSzb18PrbY+WtsE89ZTluVRWprOmSun8NJLjRF+JxHa1jsjbesJupdiRVqH0y+aGkbJuVYj5713W9m920l2dia/fuI/PPbbH/GTay5iyRlX8o0bfiSuzmzf0cmePd309gTJteriRGAQEvR8vkGMafFmgYlWL63WFFojHSZ+/yDNzV7qdjvJyxcK1by5mXH7k2glVK2QccXiQk4tD/CvnW38+o19ZKSoWHHlNJafWPBRf2I2bWqLGAabmD8/i4YGF06ni/Z2YewlUeLS0fqRTOLoIZPJeOf9av75y+t56/1N7OwY4YMde/lgx14AFlVUcPs3v5XwubGkt6oqe1w9iK6iNzb24vWGqN5sx94u1INp04S0M683RG2NE5lUitGoRqWWUb1JSLQxpKqxWnWcdJJwwWY2C0a7r756EHuHjzRjkniRlpU/xO1/Q0z1+0ohHAa3TfBfat8pjOSFRwSvJ3Op0AU1ZSkYCyApDVRfsTEUqVTwtCo6WfgZHoTeFjjwpvBz6B3Y/x9IzhD8sApOGNdBVd/Qzbq1LQAsOyUvLlkO4utBc1sXiy+9icvPXsrXFp3K/v29AHS7AnHbmDdPsCTo6x+gqNggno9LStImHJ+IFX+cjvE1QaOV89ZbhznY2MeKitP51iUn8n93PsSmnfX8/JpvsWzxdJZFLvqffbYBpzNAS4tXFAFia0JVxItnogCCWFitKdhahbTZQGCIQHAIZWTRZ9nS/IRhB2O3l1oyD4pnQdNaqH+Vubav8cBJ57Il+Vvk5By5i2bTpjbWrm2msFDP3LkZpKcnsXFj2xFrwmQ9+HRwzTXXkJSUzr/+9TLbtm0g4PGx67Vd7HptFwq1kjOu/j5Llswf953YvNnOnph6AEfgCJ4gW7d24PEIHVdGY5LAEcICCZZKpWRnRzjC9ghHCA1hTMARvN4QdnsnXm+IglIVaQtaORSuxfl2BwBlpjJuPPFGZqTPID0pHankq3W9PIlPhkce2cVzz+0fZzdxRuEZpCel8913vsv9O+/n+tnX8+IDL7Lh1Q1c8eNbcLoF7ulyBVgbqQennBLhCGcm4AhHGG2NFWkdCeqBVivnvfcEjuByBfj+9+eKYlNa3kzufvJ+HvzZvbz2p99w9tVX0S8poLc3SG4kaCOOI1SYEhqKT8gRWsdwhDpBmALBqDx2fyaqL2OFu7lzMzCZxgt0idDQ0I3T6WfKFD3Fxam0tvbh8XhxuQIJtx3lSj2Bnok2ecwwKUodQ6SkpKAMz6I0M4XOk6/Hb68nuXk7fe3bcDm60KcXit5RD/32T+zdfYiTV5zGcccL3Q+paSpuu/0DkrUKFi3OIRQaZsf2ToaGRkYNQK0p6A19FBbq2VxtRyqTMLPchN6gijOMjh4wwYBgEjdlSiotLV5SDSoxfQwkZFm0DA+P4PMPid0rfZH24c5O/+fyOR5rdPeH2GnrpabVzUGHj+FwGKNWSXm2ngUFaZxQbCLToCZNqxwnwHzVoUtScsJUEydMNREcHKauzcPLu9p5d7+DR94/hFohZV5eGktLzOSmCX4jG9+PaRONiFKJ/NKCAT9rX3sJZ6ed7192Nj/6zd8pKcmhurqdDz/sQC6XYTJpKC1Np6oyO24MIoojXegDtNq87NrZxUgYjjsuC6VSJnq0VVZZcLkC6HQqPH0q7n7kae7/xa9564UH2b97G/NPvQVrQT4lJWnMmT0a1epw+vDEdGlFU/tiMZERutmkJRgaoqnRjSVbS7YlmYHB4XEdMbGPn2hbWYYkrjupiN1tHv65pYXH99l5y+biV6tnsWSqsHKRyCNk3boWDhxws2yZlRtvXMCmTW1YrbrJVe/PGBKJhP5+Iy2ym7l5xRNU6t7ikd3prO/SsHP/fqbm5dDZ4ceg76PfH+CaW//ElMwCrrhgMVWVFpxOP06nj+efb8DrHcTtCdLa5sXnG6RqoQW/b4hZFSb8viEGBoap3mxHJpVQVZUt1gCNVk5xZCQq2vlkNKpxdvshRYUhVZXgfYNOpxDJf2ObMELa3z9IfUP3ONHhS4fhQaEbqm0b2HdB0C0YjRuLYNZFUHwaZM4YHcf7incMx0GmgPQiSL8Ojv8/6O+Ehtdh78uCF9XelyGtEIpOgbyFIFcK6XE1DpCAyaQRk+wSjS+srd5FW2c39/z5n9jaern+wgvQaOWsWXOYut1OZHKJuI1zzylm3tzMo6oH0fvcnhA7dnTS3t5P0ZRUcYxjeDiM3zcUNy532dcqOW7mNFZ++06uuO0XrJh7Cld87VQWL8oRRwBnVZjEfYnt0vqoAIJYmM1aQsEhXK4gRqMas1mD2zNArNn62Mcn3J5MAdNOh7xFsOdFkg6+ygnDr9DacSFcdQ+ohfP/2Jqwbl0L27d3ifUAhNSnyZrw2UOv1xMKzQCSqKq6iI7O3YzoPuDw/u0M9A9gn7adgx4jJWEjD9z1D/bXd7D0rEUcd1wuAKmpKm677QOSkxUsWiRwhO1jOQIpeL2DuFwBjEY1Pt8gJ5yQi16vijNHFjlCMMoRDAJHSFWJ6WOOHi+yglbqdFvZsM+GVCJlaupU0mRmfBxmruxUTrae/Ll+ppP44mGs3UTsOem4vOP422l/45q11/Dbjb+l6d+HcLZ18adbf843b/8pVmsKr756cDxHqPqEHKHVy65dXYyMjOEIviEqK0c5QjRoIHpcaLUKFpz7f9RteIXnH3yEmQsXsvyyy9BGvEC1Y+pBojCARDCbtQSDQzQ1ubFYtGRnJzMwcASOcJQhM2NH7qJIVItrapzY7T5mzTJxzjlTaWjoxmTSxCVsfl6YFKWOMdrb+7E3ekjqUaI8qYLhotmcl3sLxnAvGt3oqtqG157F032Axh1PodYYmD5nIe2SqbQ6LCjUqchkUhRKKYHgEDZbn7jaGBWObLY+Tj+9QBShosQ2Kg5oNcIBo9XIkUgk+AODogFoaWm62IlSkK9Hbxg9GBxOnzg/HjUU/TKiyxtkp62Xbc292Hr8yKQSCowazqqwcPI0EzNzDRiTVSSrJg+BKNQKGfML0phfkEZwcJgPD7l4fkcr7+3v5oOmbnJSkzhhqonKxcLF+OIloyupcSfEyHdRnaThqpv+wsN3fpOeriZ+9u0LWHbhr1ClTEGvV5GerhHNz6PPi/0eg9Beu369TUyndDiFcVMIUz7ThMcdwu8fJBgaYXO1ndNPLyArU4vHHSRJo6BwikHscJJKpVx27XcpmDaXJ353I/954tukF32Dk89YKSSORV57+47OI3ZpfRRiO6tKStLGHaPR/YsV8Y70/1m5BsxKOevruqj3+rj8sa3MzUvlh6dMpXe/hzffbGbbtg6uvHIGeXl6kWhEbydXvT8/rFvXwo4dXWwPL+d3Zxm4Z/ELeHU57NDch1KjQCUTTCyfevl91m3bzDo285fXn2VKthWLLpdkaSa9PUEUCiFNaXgoTEenj9oaJ8PDYfGiKFoP/BHCEXsh43D4cNeFyMzSMLPchE6n4OWXG7G1eqmtcYoiU5S8F00xMLN89LiMrp4NhIbjHv+lwtAAdO4G22Zo3yGk42mMghl5XhUUnwK6HOF3ssmaAAhdVDoLHPctmH81eFqh7gWo+xds/TPs/DvkHs+CqcfjdJoBRDFnogvkb16wnEOHe/nV40/xj/+8TbOth29/7UIGB4bJy9ORnp4kbiPRxbjN1kdTk1v0jiorTRc902ZVmDDoVTgcfryeEH19wuKaRitHJpOgiRDvLoefKVMMAEwrzGHd337N6u/9nte2vsHupgN8++CFfP2K2Vx0kWAgHzs+8UlNbvPydLTb+8d5UMUiljxE9zXRqIjZrIN5V9FrPAH2vkSB859w/7/huG9D1fXs3evijTcOizVhbD2AyZrweaI9kjqp1So4/vgTOP30q5ApR9jQ9Szble/xlv8p6rauZ9Or2/A5etlX/QZJyTrKj6ugTW6hzaVHoU4WOIJCSnAsR5iXycKFFoEHxIhQsfUgel9JSRpabYQj+IeorXUyIPXh1jeysWk7bXlNhCUjZCZls9KyklPzTyXZb2GF4xwA9u+d9BybxHhEbSait2M962akz+CJ5U9w9dtXY7nJwsAvw3g6Hdx/420sv+o7KFMyIhwhKU4oGXtdAzEcocIkiql1dRGOUG7C44lwhOAImzdHOEKWFo8nSFKSgsJCQ1yHU/S2urqdHTscKPWLqfxaATvffAGPo43zr7uOXp/mv6oHsZ1VJSVp447R6P5NVA/G3n8k/7lEXfbRzzR6e7QpfZ8FJq++jjHOO28qu3Y56OkJMssNO3QjrGnpplSu4tIZo8R0yYrz+fC9dbjstQT9bnZ88B/gPwDoTDMZmHknCqWU2bMzyM5Oxu0O4XT6efa5BtQqGT7/ECUlaRw61Mvfn9jD4iXZXHB+6ajKq1EQDA2Rl6cj16pjYGCY+noXapUMh9MX9wU2m7RUb27nqSfrMWeMpu/k53+54lvt7gA7WnrZ3tJDuzuIXCphakYKV1bls3xGBvnGZIzJ/3vdUJ8EaoWME6aZOWGame7+EK/saufFnW08/aENtUJK1dfyOG56lvj4iU6IpdOtXHfHY9x7yzcIehtZ+9wtnHT+vSxePEM4QU4g+kS/x12dPpxOgRRHxdSdu7ogDHqDmvKZ6Xi9A9Q3dCOVSSKdiGF27nQwMDhMn3cQbYUJs0kbY1iez1lX/4XXn7oL5/4/8kH4EDOm3z5h+ECiLrAjobQ0HZ9/iH37euI6EBPtHzBuXDDR/7Mykrk0I5m2Di9v7+5iv7Ofi//6IcXpWnINUhq32NmwoZXrr5/NqlXTJgnHFwTLluWxYUMrPT1BXupZhVSbymneR5nW08sm+cWcsNSM2axlfkUBZy48kR376ulwOWhqa6EJoX09Sanm9NkrseaVUVycKm5bp1MyMDDMk0/VI5NKWLw4B41WzuNP7MHXP8jy5QXi6F/d7m6GR0awWJKZWW7C6x2kxxUQRzgE0+XR731Tk1v0tOrsEi7+FAqZKBh8KTAUFLyhbFuEjqjhkDCGVniSkJCXVwUpGWKHySSOAKlU8NFaciMs/B60boVtf4Omt5kSepfvlhRB6VmQI4yOHmmk7YarzqL6g07eb1zHB3XbGRkJ83+rVnPKsvGjbLGInhM7u0ZrQllputCpFZOqtHBhDg313Wg0Cmy2vkiHYR8mcxJORyBuLC9qWP791atJ/7eFN2ve4FfPPkSW9btccWHlhPsyUSfYRIgmXyqVsglXvsdGhMeKeolEvvSCQii4kZ6meiT1L2PY+Dskmx9iUfFF7DUu5Z0tPWJNuP32hR/5Hifx2SCWIwC89FIjweAQM2eexl8vvZaagXf55/5/ojtVjbROh6/BR6Dfy9b174vbSM2ZxkD5lSgUCTjCsw2o1TJ8vgQc4YIYjhBJm7RYVUzNGqIj1ILbv5/tKhc79kkwqTOYIa1kxZRTOLFkAZve7uUvj9jIz+8Qe/wqKjI+h09wEl90fPvbs+PG9hL5mBanFvPkiie54j9XkX8r7L81TLDHyRuPPcipV1zP4sX5ooiSCCJH6ErAESJdWnq9mvLyCEeo70YqleDzxXCEgWH6+gbRak1iylzUsDw1VU1SkozhYdCYy7j+3rv514MP8scf3cr5//ctrNZTxffycetBaWk6Pl+EI/iGEopbR6oHY++P1pToAkZsqnPU5mH/fhd1dU7OPHMKVVXZXxgRaiwmRaljjIULc7j77kWsW9eCzeYlqbqb4dk66nUDPL+tje+smIpEIuG7P7qehrMv4q23DtLbtQ+trJHm/VtprN9N6fQc8vP1eL0h8vN0/P2+b6HR5ZBsLGVElkfZrGnMni2k0fz9iT202/t5551WCgtTxQ6pmhoH9fUu7O39nH664ENTkK+jo9MvGpvHdmW8/tpB2u0+8rwpKJVCycnJ/mJfrIfDYdrdAba39LK9uZdObxClTMq0zGTOmJnFihlZ5KZpSNMov5p+KJ8R0pNVXL24kCur8tnV2stjHzTzzj4H7+53MjNbz+nlWRSakhMKNkL301Rs33mA5x66gaB3P5v+/RNOfuAfR+wcihKAwkI9LS1eDAaVmDJZNMUgGMVGHrtwkQWdTkl0/K7OHYJIKpFcLhW7saKG5UlqOSWlRi7//u/Y8+FLVL/xMI/9ugXrA3/FYs2P69iKRqFKZQLpH9uROJFQpdUIq/NaTeJTrJguEknfix63YwlQ9LahoZuaWidqlQylf4ivFZtwSIfZdLCHxsFB5FPVBGvdvPByI6tWCatTE8V/T+Kzw9h6cM/6OXRXfo/Vmoc5deTP2Jq+g9lczpLjSkjXCQR7MOzng1112FzNbN1bT6+nn6r5U9AqVFhzdTz3xju8/t4WFs2dTnZqDi67nPw84buzfr2N3budDIRGGBwaoajIgNWawvDICPb2fqo32ckv0KPTKVgUWU2PXUWLGj6/9vpB0Rw93SqI+Ckpqi9+l9RgQPCGat0iCFIjg5CSBVNPhWkrwRpJlVNMpkJ9YsgUkL9Q+Ol3Qs0zQtfUB78DTTpMXY65eBlmc+JVZLNZy3cuW476BSVr96yheu8OsrKSuWj1TeJjEl3kx9aE7ds7cTr9VFe3o1LLKS4yMKtCIBbnnlNMfUkqtTVONFo5bo8kQqIlcWN5MOrdFgoOceV5J1NRUsiz773IN++6h97gN/je5WePE5HqIzUhKgRPtHIdi9hurYkQ3T+NVo7d7iMzxsA3kTAW7RBTqeX4fV9jdv4pFA5sQtvwFD+UPMnMvDn85oPjeOmlZFatmjZZD74gGFsTDhzoRatV0N0d4PD+ABedfhHnTT2PrfO38rctz7Gj60O8Nie+Oh+hhhDew17yypLJKpQSdEvJy0vhbz+/i5R0CylmKyPKDKbPyk/AEWxY8pUElb2ECzuocdjoUdsh6AUJKFFhUGaR6S6jQn88UzVFLJg+hWmFGbS0eHjkwU0cONDLjBlGVCqhJpSVfYkWKSbxuSGRjylAni6P51Y+w5VvXcnwnSM03Q5Bl5P3n3uYn//1V0ccQ0vIESIpk0VFMRzBrGXhwjEcoU7oohU5QqQeRA3L1Wo5paVGTjtN4M46nZLychMnn/owv73lt/zjvj8Q9Ni55sfX0NjkFjjCx6gHDocPjyexSXsUIkeI1IOxj03IEWqcoiAdRTS5r67OSXu7j82b7ROGJXwRMClKfQqItkZv2tTGunUtlJSl8e92F9WdHv64oYlrFheiUsioqXXS2RliVsUCLlp9BQC9Lie+/j6UGsGB//CBA3TadgO7gTUANG1JoXFmBVOnz6LIWgSkU1ioH20xn5uJViPH4w4hlUnYVG2ns8OHTq9ielkaEB7XlZGiU5GN4DWglV9A5ckrKZk55/P4+I6IcDiMrccvCFEtvTj7QqjkUkqzUlg1N5sVM7LINiRh0Ci+8umBnzXkMinz843MzzfS1uPnsU2HeaXGzj1v7KPAqOHs2dlMz9Il/NwvuXQO+fmP8dBd38LZthdn+34aGqZQU+ukYpYJu72fnTsdzJljjpjwCygqMlBVmc2zzzWI6RarVk2N6z6q2+1k506HOBZhsWjRG6zjxlrVKrloAj08PII1T8+ixd9l1vzjeOHPP+La85bxgzvv44TlZ4vbXruuhbo9TqxWXVxBGLuKET2xNzW52Vxtx5yhQSKRYLf7xPG96OMSeb9Fj9soxnpN1dQ6qa1xUlRsoKLCjNWagsLWR9mADEV2MvWufrqOS2WnTMqPXtzNNxYV0DimZfpImCQsnx7G1oPCZYvpViwm7e1vMr39d2D/PlhmiR0fFbNM/OU3VwIwPDzM9j2N5Gfm0Nraj9Wawrb6eva3NbG/rQkQvKvysjKpc5SRY8piWmkuLseA6JMwb14mp59eECGwMnbt7MLjCVFT46Sq0hKJFw7FeSroUlSQLRg5e319fPPMCyia8gUlIAM+YSTPtlnwihoZEkbxSlcKPznzhA4p+Xj/rEn8l0g2waLvwfHXCoboWx6Bmqdhz4vCSGTZ2aAcf7F7wQWlXHBBKXf/IZtb//QotfsP4u33Y28PUlvjZGhohI5OH3PmmFm2dOz4mpaWFi81tU4GNtvJzNBSUWGOE0zt9n5a2/pQqWXodCpmzzEzMxIBHvW82r69k+llwsp9hlmD3zfIWSvK+dbX53PLb57ghl/+hQ0f7ubxe24gzSCcv+sbunnqqXrcvSGmRATfKGKN1g360fdaXd3Oa68fRKdTUVycGudR5fcNibdWq5BCuH17J51jDHwTdVdFzxfFRUJNMFnz2duSS7t9LpWpNZwk2c1p531Ir7oEarw0tM1m84cu4KPrAUzWhE8TY2vCjBnpJCUpxE4ShUzBwuyFrNsD+96fzXGnBcj5mYtaRy0HWw/iC3jZYXoKmUnO3pYwXbbDdNkOA5sAqF+vZMNUI/oiPfLSZLJPkyJJCvLPfsEfUCqRkpJqIMmlJ8k+lYyhYjz7U8lISefE44uRIuPAVg9GmY9phcL4ldGYxNSpMH9+Jmlpl5KZGWb27NkT7eIkJnFUyEzO5B+n/4Mr37wSyZ3Q9ks57vZOXPY2GhoyqKlxUlHxERyhKptnnx3DEWK6j+rqEnAEvXXcOJxaHc8Roul2USubJE0SP/vDzyibXcaffvEnDuw+QPbcr1G/P/CxOMLrkXoQHamOdjZFHzfW+y2RofvYmlBT46S21klR0ShHiOUXZ545hc2b7VRGQjrGvsePEqUcDh/1zU7yclJhytH8ZT8ZJkWpTxGxc/sXAo9vOszd/2ngjtfqufaEQrGDI9ZXJ9VoItUY8VQwaTGnS2m95B4O7tuBu6ue7o4mgv4+dm3ZyK4tG7nwG9fxxz+uxuH0sXf3YV79+63s21qKtbCYxZUZBAZScPVIaGpyA8LIk9Wagtdrp6bGgVYjx2pN4ZRT8mIOCuNRjyp9FgiHwxx2+djRLAhRLt8AaoWU6RYdFy+wcur0DHIMGnRJ8kkh6jNCTpqG21ZO54ZTpvLP7a08samZ369rxJqm4ewKCzOz9eP+FhKZmlkn3kY4VE/fyHzWrmvB3i6MBplNmojvq/CcseNrEyXgRbYMEnD1BMWx1liBZ2y3U/RkHb3tC2Xy7duf4b1XfsMvfngNa/+zjm/fcgc5OcIFolQqIT09acLUvNj3umGDjfp6F1OmGDjrrCIxLTOKfft6kMkkYkT5kcZcYhF7rhjbdmu1prDaqOGgo5+NTd28VmvnuW2t5KUmMdOiJd360cfx2Jn/SRx7xPu45MDU9+CZ1fD+r6HkTGbNWgYQNyInk8k4blYJABkZQvLb1eesxKA24xlw0HDoMI7eXprtHTT/WzAG9W7/F31ewWfkP9Xv8tRbbkqn5FJSmItWpSJJY2Tndgf2iLfJ0qVWPtgk1AONNr4eRNvB01MNH/kd/UwR6oO27YIQ1bUXwsNgsELZ14Sf7NmCECWbjCb/TCBXwvRzoPRsaN8Omx6A/Wug8S2Ysky4L0Fy4Unz5nN+VQ/T8gpEQaqm1okuRYFSKSNhPTBrxWMkGqWdqCZIgB5XEH9kjCl60T220+nGHxbGiV42Wx8r5p3KnNJp3P3Y48w6+zv8/Nvf4syls6mtcdLfN4ghVcXppxckTElye+LP+a+9fpBWWx+51vh6Ea0DsfXgSN4gYxHb9RXXwSiZCta5KHWDcGgjqa2b4ZVrOVWuYaZpETL9pTBs/UjvtMma8Onjo7y9RD+whXksrMwhNBzCHXRz2HuY+u56DnsOc0jVQvhaOd37HfQfcuNv7WfQN0DHrg46dnUw4+IZVJ5ciXJYi/fgCAde38GCOXMon15OakEug34jba0jvNZ6CLdBRqZZx/TpRrq7D7B2bTN6vZLp04184xvlomi2d2/OpFg5iWOG9KR0/r7876x64SKGbxphRu0iegat7F/bgt0e4QjmqLVM4powUQJe7HNcrqA41horWokcQZqYI8S+jtPpJ2/mQm57xMoffvJr9u+9n7TSlaSnZ0yYmjeWIxw+7CU7O3ncffBfcIQYn6hEHGFsOMfH2TYIn/fBg27kkk/3mmpSlPoMcdXCAsqydHz/nzXc88Y+Vs3OYfWFJUcUUqx5ZrIKK3F4i5h9ggFrjgZnx0Fk4TY6bfuZU3UCIBD3Nk0Pm9e/xub1r8VtQ6VOIlmfwaxFF+NxZ+HSyKnfc5ADte9Rvz0NhVLD9PIMFCMWFEoVBo0SfcrnW2xGwmEOOvsFIcrWi9s/iEYpY7pFx+WVeZxSlkG2QYNeM0k6Pk+kqBVcvaiQS4+z8q8dbTy68TB/fKeJnNQkvlZhYVaOgRf+tY+N77ej0ysZHpIglU6ntsaJJVtLaUkSFrOf0nJrnOH+oUO9fLjFjlIpwWpNwecfijMjj6KhoZvDzR6KphhQJ8mp3+uisFAv3ldT66Q10iJvSFWj1cjjupBc3QFkMglGo4Grb76PAekUtrz5R1oaa7nnT49xyrI8IZViVnyXSKLUPMGXR0eHvZ/i4lTmzc3E4fShN8Sb2sZ2Sh0pfS8WiYwIxz53amYKUzNTcPsG2HLYxR67lzdaXbz2j27KsnScXGLm5FIzs3IMyCLjrNHVcL1eSWWlJW7mfxKfMgxW+OY78J8fQs3TlBnrKTvrBtAe+W8gH9ZRklFBxSwTsypMvLvxIKi9ODxd9Hj6SVKrSFKrhDGpe7ewdfeBuOdLJBLSDXrSUlJZterH7K7rpqG+my17atl2IIn83DQOHuxjVrmZObOzUCkUpGfqP//27qBHSMyzbQFHPYTDgs/RjPOEjhzLrEkh6vOGVAq5C2D104JY+N5vhA6qprUw5WSYsQpUKTz/fAPvb2xHr1OiDWfR1hIUzcoP2Vs58fhCVCp53EXz9h2dPPfcPpxOP3PnZkQS5MaPHdQ3dNN82MOUIgNJajl760drQn1DN4/9bQ8Opw+zSSuO08WuOne7hJpQWT6TJ39+O7c88DDfvPNXfGf/Kr51/hlAAiEoZhsOh0/slIp2HeZaYeWZU+Lea6JOqbHv5UgoK02f8D2MPmglTFsOjgaktmosXbtg7duw0QCFJwppfkVLhaTJCCZrwhcHY0UrlUxFhjaDDG0Gx2cdD8BIeITbD7zHO/ubqVhlpHhaMh3th1HKumhtPsDFl17MksVLUMqUvP7a65z91h/48K1Nca+j0WgxGDI46aSvU1+fg8Pho6GhiffeW8uWLWkolRqWLMkjObkYlUqFxaIiI8PCJCZxLHD33dU899x+0nIuQL7iSXorm9i5M4tcrZVpxRpyMkaYNiMdvf4IHMEX4QjmBBzhsIeiIgNqtZz6+jEcocZJa6uX/ft7SU1Vo9XK486jrkg90GrlOBw+1q+34fWGmDs3l7+s+Qu3XPUzDu58Dtk8JeHwHJHPJzqPixyho59Zs0wJRSxgXEDB0fpUJUoA/Khk2KPpkIp2b02ZYiA7e/zi0rGEJBwOhz/VV/iSwev1otfr8Xg86HS6T+U1en0D3PhCLev3OSg2J/P1RQWYkiceLYiS64pZJtFAOeo/s+kDO66eAGVlRvrdHbQeeB9XVzMNdfU4OtoYCLjF7az6xh0kZyxBJpOwZ8cmtq75WcLXSzMX8PUbfsqCquNITf/sRjaGR8I0OvrY0dLLTpsbT2CQZJWc6RYdi4vTWVqagUWfNClEfYExMDTMy7va+fN7hzjU7SPfqMH+QRedBzwY05I4eakVg0GF2x1iSr6Ux37zHbzuHu5/6t9kWHLF7fzkJ+9z8KCbKVMMnLtqatx3PjZ9b/16G9u2dZJtSUZvUFFf7yLbksxll5exfr2N2honSpWUHlcAhUJGTk4Kp59eIJ68t+/oZMeOLkKhIfr6BpBKJeiSuvnwjXvo7e7ke7ffy7KV5x31/n9cU/TYYzv6nqo3t7O52k5llYWqytGVjY+77eGRMF3eINtbemh09NPc7ScwOEyKSk55jp451lSGHUG69ns4uTKbM8/45D25n8V58/PAZ7Zfu5+HNTcKKXGzLhJGnyZYrIhNG/P7RuvBvHmZonFzNOXrz8++TUdPJzUNzTQ22/H6PQwMCX4DBTmZPP+re9iwwYbHE+LvG/5Om8ue8DUvW76SC1cexxlLP+ORbn8PtG0F24fg3Cd8JqkFkHucMJqXWS54RE0KUV9cOPbB+7+BhldBIoVpK7jhb3paWoOkGZOYWS6c95adkse7u7Zw3V1/4ufXX8Kt/3dx3GZ+HFMTVp0r1ITMrOh5MMzMcuEi/69/3c2uXV3Mnp2BVqtg27ZOLNnJXH6ZUBPWrWshGBqioMDAnDkZhIJDcSLTuvUtvPuujWBgmOzsZEqnp/Hs2//hydffYMWSefz9Vz/ElHZ0i3Yf17Mj9tiOvp/YY3rsSvfH9gQJ9UPXHmHctecgeO2ABNKnQvZcsB7PB4dMvLNbybzKQk4/vfCo9jMRvoo14Yu6T9ExwGXL8vB4BsQxnUBgkJdeauTcc4uZNy+Tt9/eTmPj+3R1NVNdvYu2tlaCQbe4nZtuup/W1imEw5CUdIAnnrgx4etlZ0/jF7+4izPPPIn09C+4z+AkvvAoL3+cAwd6yc5O5oKrctiYcx8+PCyVnsVL9zxOMBDkDy/+AVPmKB+N4wjnjuEIMel7IkfITkavj3CE7GQui9SD2lonSqWUnp4JOML28RwhP18vmrAPDQ7x6K8f5fm/PM9JK0/ipntvIkk7sWflxz1nR4Wz2A6o6up28RiPrQmfhkdUbPps4XQlCpmClVNWfuztHO25c7JT6nNAqlbJX6+YxzNbbdz75n5u//deVs7K4rSyzISG3LEKqMMptDJGV+G2buvA4wnhcYfIyNSSZl2JJmOIfoULWvsoKNCwYG4SKpmHrNxC+gNatBo5w4Ec7I2L8Lp7GR4MkpwsJRgI4vMF6PO4eebP97Gg6vlP/bMYGh6hobOPHS097Gp14wsNo1NHhKipJk4uMZOpU6NPmvSI+jJAKZdx4Xwr58zO5oXtbTy0oYmB0hTSs9Qcb07hotWl4mM9vS4GB0I4O+3ccvWF3P/Uv8XR1cVLcsTbgYFhujp9FBbqx6XvVcwyYW/vRyqTMDw0wuDAMD09Adavt5GXJ5z48vJ0BPxDbPnQTnOLl0f/uhupVMrSpVbmzs2gsbGXHdt76OsfYGpxGudffBJfv/ok/vCLW/j1j66jdusmvvOTu1Enacbv8BEQFZEGBoZpafGOG71riPiT9PUPAoj3ba62s2dvNwCpBtU4QRr4SFEqVtg6qzKboZERPP5B9nf2ccDZT6cnyGObDuMfGAbgter93NfQyqXHWfnG4k9ORCbxCTHzAkFoee27sOMxaN4Ix/8f6LLGPTS2QyIaixxdZYsaN4OQ+FVgnMZ06wykPS0UKkPMqjBx+socdu62odMLY0+z52QAYeq6pqE9rGFweIDQ4CBKlQR/YACfL8TL727AbEr+bESpfge0fiiYlbsOgkQGxilQcYkgRGVMj3hEKT/99zKJ/x7mEjjvb4I49c5dUP8qvzxexWvmmVB0CudfOF186Lptw4TDYW77wz9I1aVw3aWjF79LFueItwMDw3R2+QiHw3R2+ggDBr0as1lLmlGNTqdiaHgEp9OPQinF3Rtkd103syIjHiqVjCyLlvq9Lvbv72HPHicjYWHbCqWU3t4goeAImVla5lRksPzU67no7Eouu/m3VHztOp6972aWzC//2B+Fw+Hjg012elwBqhZa4jqdon5V/X1CPRBFqZhj2pCqihOtjtYTJF7YOh6sx8OAHzyt0FELbhscehdqn2URYRbJYHh3OtgL4LJXEo5eTuKLg9iOqpYWDyAknf3kJxt5//02AJKSFNhsKszmM9FqB+joaCcY7KGiwsBZZ5nQan0UF5ewd+8AECYQGOLDD0+gs9PJ0FCItDQ5/f0BvF4/TmcXv/zlLzj77GWf1y5P4iuE1aun8dxz+1m9eho//WkVDv88Ln/jcjZ0vUIgGKCrtYubL72ZB/71ADqDcF2/OFIPFkfqQVdXDEeISd+L+lFJpRKGhkbw+wdpa+ujrq5bHHnLy9MRCAyxZYud5mYvjz46niNs395Df/8AU6emxaUCyhVyrv3ZtZTNLuPXN/6aa8+6ljv/cifWKdaP3O+oiCRyhIoJOELfGI6w2c6eSE1ITVWJolU00Q8+2iNqImFrLOJH/EIfuU//LSZFqc8JEomES47L46RpJm77915e3NnOxsZuLpyXy6xcw4TPGzuys2B+ltgppVTKqKlx0NToJi1NxYzp6ZgzNHT3SigpsVJSNjpD6/NX4Bu8lVBoCI1GwcIqC80tXt58sxmjUc35500l9VNaARkYGmGv3cP2ll5q29wEB0dI1SiYY01lcXE6J0w1kTEpRH2poZTLuOT4PM6Zk81jHzTztw8OsTkQZOj9Q1w4Lwe9Rok+1civHv0n3790Je0th/jJNRfz28dfRJuiY8XyQlYsF8SRZ59roN3ez+ZqO6efXsCc2QKJjnYMGdOTqNvdzZYP7SCREA7D/v091O12snhJTsSbBFJSlIRCwxw+7CEQGGLj+22sWF7I0qVW1Co5rp4AC6ssuLoDrK91svKy25m1YCEP/uInNNTu4NbfPUpe0bSE+xubjufzC50oHneQDRta6XYFUSik4mOjIlNNrZPOLh+DA8PIZKPbqqyyiLdRg/MokbLZvGLr8ZEQK2xVVWYjl0oxJquoKlJRVZTOwNAI/aFB7O4gdk+AHt8Abv8g7Z4AIyPhybTKzwOpeXDpy7DrH7D+DqFzaspJMGs1KBOTwrHt11URE8uqSot4MVFT42B4KIwhVcXCqmwCfVIkIR3ZaYLPzjLRNPQCNm+2o9epKJuexsxyE+++a+Odd1qZOi2VSy8p+/T23dsOrVuF0Tx3C0jlQvfGnKug9EwwTZsUor7sMJcIY32t21Cvu4Pz+QCSDkLLxYJIIpHw3cvPpsfTx88feobrf/En0vTJXLzyJABWrChkxYpITXi2AXt7P6HgEKVlRjFpCWDRwmysuTqqq9vZt6+H9PQkklOUNDX1UlPjYHqZkUBwmObDXpQqwQjd4Qzg8QgX3Dd8fy5e76AoHJnNWuobuult0/L8b+7kjkf+yklX/JifX38JP/7WBchiT94xSJTS99Zbzbz51mGUCilarYKy0nSxO8rp9NPdHWBwcBiPN4TD4RN8QGKO6ajnFkC6MYmGBtdR1YRYYUskIEqNcFyZpsHICAz6we+CnsPgdyDz9wghAv1dk6LUlwixSWfnnlss3kbHMNeubWb79i4sFg1LluSQn6/DZpNSWVnA/PmFzJ8vbGfNGi1Ll96K3y+EZpx33lTq6pz8+c+7yc5O5sc/Po7U1NTPZR8n8dXCT39axU9/WiX+36wx8+SKJ7n8jcsJ/yDMwD0DNB9o5kdX/Ij7nrmPJG3SuHrQ3t7P5s0RjjAnhiOYtRiNSdTVdbNli53BwTBy+TCNjUI9iHJnSMARNraxYkWEI6jluFwBFi604HIJC9+xItIJZ5xA/tR8brvmNq5deS233HcLS1YsEfcpUTqexxPhCN1jOEJEZKqpcdLZ6WNgLEeI1ITKSotocP6xOUKMsHUkUSr2GrMnMClKfeVhMWh49PJ5rK3v4t439/PHDU0UmZNZNTub4owjm4+ZTVrOOac47ndajRytViF2ZcSO/MQilrA0NbrRaoXxh6GhYQKBIZFYHyv0+gfY3eZhd5ub+g4vg8NhTMkqqqYYOWGqicpCIxm6pEmz8q8YNEo5151cxKXHWfnDO408u7WV2jY3y6dnsmJGJqZMC7/+6/PccPnZNDXUcet3LueXf3kWlXq0/TW2G8rnH2Lp0ry41zCbtOgNfWg0SvLz5FRWWXjppUbs7f0MDNqoqDDT1enD6QxQVGwg25JMfUMPeXk60Vsk9jh69rkGamuEC/+LVl9Eafkc7vrBN/nOhcu57mf3cNrXVo/7jiZKx6tzh3C7g4RCQ6SlakUh6v3326je1M7iJdloNQrcAyO02vrFbVVVZotje6kGYaxXrZKx4d1WelwBUlKUVFVmjxvziz3WY4WtRFDKpaTJVQz5hwgGoCLfiCxJiC2fxOcIqRTmXg5Tl8OGu6D2OWjZBCVnwrQzQKE+4tOrqrLjLjDMZsE3R6tViN0VY7urophZno7T4aexyc3OnQ4MejW21n5CoWFGRj565e1jYXhIGMez7wL7DujrBJkSTCWw4FtQshKMhZMeUV9F5M6HK1+Hxrdh/V1Q/QAceAPmXw0GK7dfdwkudx8PPv0aV/z4d+hTtJxx4oK4TcyqMNFu70cmlWDN1cWZ1kYvom2tQmpRcXEqWZZk3nzjME6nH5crAGHweELMmZPBqlVT2b3bwc5dDmZXCCOA5465rhKTMTGx/olf8vOHnua2P/yD97bV8Y97byIjfTw5r61xYm/vxxIxtAXBLHZoKExKskI0Kq+tEWrC4NAIKqWUkWFoafaKaZixx7QhVSXu/web7Gx414ZUIqGw0EtVVfa48d1oPYgVthJCKgVVMg6PBFuvCqt1vnC8O/dDeOQT/JEn8UXAqlXTWLVqdCEtL0+PXq/EYBCSvxYuzIlLWYzFWBHLELkWGRgYpq9vAI9n4LPbkUn8z8GsMfP4aY9zyZpLkNwoYfDuQRp2NXDrN2/lnsfvQakaXaCK7Yby+RJwBLMWvV7gCIWFOsrKjOza5eDgQTcdHT6BI3RFOEKRAYslmYaGHqxWnbg4EMcRnm2gNrI4ENvZlFecx59e/RP33nQvt19zO6u/vZqrb74amVyWMB2vri6GI6RpRSFqLEcYGBihtTWGI8TUhNRITVCrZWzY0EpPT4QjROpBbDdU7HhfrLB1JMQ+R/4ZZN1MilJfAEgkEk6dnskJU00886GNR94/yK/f2k9BupazZlqYka07aqFmrNnZREbK0d/HiljAERLOPh5GRoTEvN1tHmpb3bS5A0gkkJOaxNLSDE4uMTE3Lw1ziooU9STp+KrDoFVy28rpXFGZzy/W1PNqrZ0PDnazYqqZ5JCWm371OHffcDF1O7bwix98i9sfeAy5QoHD6cPnH+L00wtEc/BYRIUYrUbO4sXZool4cZGBYGCQ4iKDMAtdqKe+3kWfdwB/YJB58zLw+4dYv94mtOLGHCNjUzHziqbx4D/f5KF7fsp9P7uBD99/jwWnfA+lKonymSYxHTD6nOjxVz4TvN4BsQMr+vsN79jodobYuLEdrVaBViufUDyKHs8Op49dNQ56e4J0dwdoaOjm9dcO0h5JJqmqzI4b5aiqzBZJSVR4S4TY5xSWpH38P+wkPh2kmOGsP8KCa2Dd7bDnRWh4XfCaKj0TVEfvZzLWEHkic0uzWcvSpVZMZg3RVcaPJLMfB0EP2GsEP5vO3TAUBGUKZJRB+QVQcgYY8kBr+shksEl8ySGRwNTToPBk2PUkvPtLePNHBDKr2Kc+nZ9+81J6vf08/doGzvvePbz9t1+weN4MQLhI9vuEmhBrEB69L3oBvWihBWtuChqtnNoaJ8nJchTKZJYsziEQHKat1UuaUY3TKQix2dkppBk1Yjx37DESm3Qnl8u463uXc8L8ci69+beUn/V/3HjJlcwpmSb6Wo19TvR3J52Ui0oto6pydHTPYFDR1xciGBomKUlOcZGBGeWmhNdgscdy9SY7IyNhlCq5sMDi8PHa6wextwvkRamUjdaDCIlxOHwJ9y+KceOA0sRdYJP48mKseXpsZ1Usor+PFbEA3O4Q2dnJkwb4k/jUkZWcxV0zfs8Pgt9myg+L2P+rfez4YAd3f/dubnv4NmQyGQ6HD1+kHvh8CThCjFH34sXZool4V5efnh5BhIrjCH0h/P6h8Rwh5nwZm3Q3FppkDdfecSOK5Ez++Zfn2bOjnjv/fEfCdLzy8ghHiHRglZam09zspa8vRCg0zFtvtbBwoYXe3tCE4pHIERw+du1y0BPLEV4/SHsk4byqagxHqIrhCBHhLRHiOML0T79TffLK7wsElULGVYsKuGBeLs9sa+HJ6hYeeKcRo1bJ4uJ0lhSb0CUdWwFnrIg11r3/aBEOh+nwBNnX2Ud9h5f9nX0EBodRK6QUm1M4qcTMySUmiswppCerSFJOXuz8LyIvXcujl8/nkZcbeGRrM//Y2YYBKbM0KZy46hesffZmDtTvxtlpJys3TzwhZmVq0RvGhwFE7y8pSWNgYJiXXjyAUiWYFZ5zTrEoGjmcPurrXdTUOhmM+ChlZGjZu6cbn28wYbJfLNRJGn541/2YcmbyzMM/Z3v1VmaffAt6wwmYTdoJ0/HGdjKWlqZTVGRg926h3ba/f5AZ04Xfbd/RmdDEPCq8LV9ewOZqO1KZhJpaJyk6FdkI3VBCa7AjTlCOIxgT7NvHiYSdxOeAzBlwyb8EIWfj72D/G7B/DVhmQ/Fpgr/SMewsjR/nI2GM8FFj0A+OBiGFrbNO8K9BAvpsQYwoWAwFJ0BKBiSlCd0ak/jfglwB87/BFl8lvHsP8zrepCy8na6+Fdx02SXU7+9i14F63t60UxSlbLY+duzoQqdTjiMLsee8gYFhqjfbSU5W4HQGyMnRielMDoePV18NsGePC68nhMPpB6DD3s/6dS3MX5AldkslMh8HWFY1m3WP/przv/drbvnjA5xYvphf3XSF+H4SpeON7WQEgeSnpKgYHAowPBRGo1WyaKFAICBxh6LD4SPNmERxUSoajQKlUiYm/ZEN1txkamocpI2JR/8oD6rJejCJsRgrYsX+exKT+LQQNe/XahUsCFzHppz7ybu2iKYH9rGvdh+uLhdmi3mUI2Rp0euPgiO8dAClMoYjlJvExxmNajZvbicQiOEIe2M4wlEak69Zc5iAajoLztaz953nuOaMa7jjkTu46KJ4C4SxHVgwWg+GhgIEAkP09ob44Q/nH3FBISq8LV9ewObNdqRSCTU1TlJSVGRnC91QIkcwTsARJti3SU+pSaBVy/nm4ilcelwe/6nr4J9bW3ltdwev1topNqcwPz+VOdbUYy5QfRwMDY/Q2hvgcLePJkcfDZ199AWHkEogOzWJqilG5uWnsrjYhFmnIk2jRC6bJB2TENC1uwftB25yF6RxKCnM+75+1LJcTjr/bq648kTMFuHCJ3pC9LiDcQJLbIdUNHHjqSfraW/vR6dTCgXKoBbFmLrd3exrcKGQS0hKUjFnTgZKhZSmJjedHcK2oo+tqXVSXW1nx44uFlZZWLgoW7xPoT+eKcffTfueP7J1zU2UFt3K3DlXT9jJmCgxb+XKKeRadchk0Grrp7LKklBAij7X4w7S0eknK1NLYaEBV0+AvDzdaCS6ScuzzzUIY7gVJvH5YwlGoqS/2E7KHt9kO/4XEhIJ5MwT/HgcDbDtUaFrasMvBDEnZz7kVUF6sZBu9nnB3wOuJnA1CkJUb7Mw+qPWg7EIipYJY4mmqUI3lGqS+E5CwFvv9bJu/RmcsWAZ38h+Bmv3y6R0V7N6ZiULy+dw1/dGk/is1hQaG3vxekPiiBsIF+ZuT4jMLA1WawpPPlXP3j3dGI1JmDM05BfoxMfabH00N3vpdQfItqSgUEpZsjiH9vZ+PJ4QPa6A+Hq1NaP1oGqhhUULs8XtBH1yVi9azVvb3+W9PR/wg9+5eOGBH2PJSNxFkigdKdpRJZOBrbWfqkrLhGQh+ny3J4jT4SclRYlGo0CjlZNuTOKUU/KwWlNYv95GY5ObCm3i2PHo7VjB7WjjxycxiUlM4tPEunUtrFtnY968DFaccjx91d9iR8nDFH2njFsvvBmzxQzEcARPMO6cGdshJXKEpyIcISXCESLhGNGEve5uP0lJchQKucARlBGO0OmLqzU1MTVh4UILC2NqQk2Nk/b2foxGNcefVMmV36ziwVt/w/fP/z7X3XEdKy9ZGccXxtaEiph60NraL3ZIJaoJ0ed6PEE6OvxkZUU4gmsMRzBrefbZBpqa3GhjakJCjjAm6W/SU2oSIpKUcs6bm8s5s3M40NXH89taea/RydMf2nj6QxvZqUmUZKRQZtFRmJ5MsvrT+XMGB4exuwO0uwO09QY41O2jtcfP0EgYqQQy9Wpm5xqYmWtgcZERi0GDMVmJRjn59ZpEYkRbwZcty6NklonrH99OtcRNp2oG3ehwRQSU4kIl8xZMweH0oTf0jVP4YzuooiNwZdONmEyaMau9YfR6NalpatLTk2LulxAdVXI4fdTt7mZoaASVSoa7N8TWbZ3kWnWiEKZWyZm9oJzTznyctS/cz2O/u5VDDdv5/h2/xdYaoqbWKYpNudZkWm2CF9bixTmi+BM7kjfW7y3RqnZWppaSkjQ87iBNB3sJBobRahXi2GH0fRUVG6iYZeKNNw+x8f02Fi/JEc3iYdT3KvoeJvElg0QijLqdeT8svQP2vQZ1/xI8pxrfEszQTSWQUS48Tmf5dMZvwiNCQp6nTfjpOSiIUYFe4X6VDlLzBYP2vCVgqYBkEySlTo4DTSIhovVg8bI8TFVXwN6X0bx2CzdO/zdu4yIa9tqp2e2hdLqBoikGli61jjt32mx9dHb4yMzSYrP1Mb1MEIaml42vB1ZrCvn5OpQdMsxmDVarDpNJQ16+TvRfA+Gif2hohMHBEfr6Q2zb2ok1VyeSHrcnRHm5icKCr7GwaTpPrn2BinOu46lf30hueh61NU5RbJpeZqS9vZ+OTh+VlVliR+LYNE2brQ9NDJGKRbQmZGZp0emUNDb5CYaGsdt9caOMKrUwBjirwsQbbxzi/Y1tLFmcw4oVhXGiU6xx+tiurklMYhKT+LwQyxEWLsxBr1eS9MEIm2c/wguOF1jqWc2e3b0UF6qZd1wBDocPvT4BR4jpoIoKPGVjakJ0ocPvH6SgwEBysiIxR3D4qKsb5Qi9vSG2bu0kN6YmqNVyysqMZGcn43AEsFhM3P/P+3n4roe5/yf3858XN3PCeavp6BwgNzeZ1lbBCysahhE7dRGtBw6HL2EXa+w+lpSk4fEEaWrqJRiM4Qgx70vwsxJqwsaNbSyO1IQoor5X8PlxhEnV4EsAmVRCaZaO28+aTnBwmAOdfayp6+DD5h4+bO5h3T4HADq1HIshiZzUJMwpKtK0KgxJCpKUMpIUMpKUMuRSCWEgHBZG7oJDIwQGhvEPDOELDdMbGKDHN0BP/wDd/SE6vUF6/YPie0nVKMhOTeL08izKs3WCL5ROhUGjRKuUTZqUT+KoMLYl/JnrF7KpycnPXtnL79YdIEMqw7FuHU/V/ok7H3yMeQtPjBtBS9RBVVRkQKmUJRyBK59pQm9Qc+hQLzW7nFitOubNzWTp0tGuq1ablw+3dpKsVbCwKhtXT2DcOJzPP0hFhVlINEs5n8ozytmy4QG+vvJkihfcgL07FblMyuDQCM3NHpBISElWoNWMP9XGrnzMm5s57j1rNYLxuMWiFUUskHC42TPaJWDSRnyj/IRCQ2yqtlNX56SzQ5gjjxWlxnplTeJLjCQ9zL4UZl0sCEQH1wujfZ27YdffBeFIKoeULDBYQZctdCdpjYKPkyJJSN+SqwGJUBAYgZFhIXFr0C/chrzg6wZ/N/Q7ob8T+jpgOFIT5CrhNbJmg7lUSFEzlQgCVJJh0qR8EkeFsfWAGeeiKj4F1t5G2s4nUbtq2LB/AZf8fTe5OQZe+9Pt4zp6oudpd2TFvKQkjcsvyxjXmQTC6u9ZZ03hrbeaaWzsjVtRTjcmYbP1iV1Eh5u9pKerSUpKprTMGFcPOjt8lJSkUVPjwOfU8qPV3+H1Ha+z/Ju3smLBiRSkzI6k+klwuQLIZBJ6e4N4vYMkQuyoSax5exQa7WhNmFmeLvq/QVisJQBOhx+dTom7N8S//nVANKWOJSAQ73s1iUlMYhJfFCQaG1248BrePJzHLRtv4YXAP2j/t4rHd6zh3qd+ScXxFQm7QmM7qOI4wph6EF3oOHSol5qaCEeYF+EIEXGotdXLhx92kpysYOHCbFyuwLhxOJ9vlCPs3Nkl+DQbk1h49oUcaldS985LtBw4RHr512g+bBI4QorgLTsWcRxhXua4mqfVjuEIjghHOOyJ6yQWhK0IR9gU4QidEY4QUxOO5JX1WeGoRSm73Y7FcgzMTifxX0GtkDEz0pU0NDxCj2+A+g4vO2297Ovow9bjZ0dLL57AICPhT/YaGqUMnVqBQaNgZo6BnNQkpkU6stKTVaSo5eiSFCgmx/EmcZSIzodHVz0SYWGRiTe/t5g/vtPEn987SHdgF4MDfu78/jf43ZP/pqh0hvhYcSzPHSIrU1jROJKHUvT/L714gHa7j/q9LlGwiT4vGBwiWatAp1cBYQrydaInFcS3ujY0uJBKoHjmySw88Xgev++HbF1zMwbrheSVnYlCIaOo2EBzsxe3O8S+fb3juqM+arzO5x9ieDgsJmGaTdo4EW3sKs/G9x14vSEslmSmTDGweElO3GMT+V5N4ksOqRR0mTD7EuEn1Cd4N7VsgY5d0N0IbpuQcjfo/4SvIRdG8NSpggCVPV8Yx8sqh7QiUOuEH2XyMfW3msRXGx9ZE1QpQlfgrIsZ+ed3OF73NjfZA9Q3j3Dtzx/k0bu+l3ARzGJJxqBXj68JCcbS6htc2Nv70elVcaN9+/b1IJNJ8HoHsGRpUalkhELDlJSkJRx9sLX2kaSRI0PNLZdejUm7hhfefRNLahOV+ctISzGQl6djIDTMQGiYhvpu6ktSxTTMRDUhkZeV3yfUBL9vCHPpqP+bw+HDENMlEB1vfPPNw/j9gyRpZCxZnCM+Nvp6iXyvJjGJSUzis8bRcASA5QXL8Qx4uGvzXfQF3AyGgtx69a08+PKD5BWPpu5Fz9N1dSGyshJwhDH1IPr/l146QHu74EEbFWziOEKyAp0uwhEKdJSXJx6Ha2hwCaGmKpn4fH1OOZYFGrrr/k3n9qeYdv7lDCpy4jnCBPUAxo/X+SL1wOcbEvchVkQbxxE2juEIi3PiHvtF4AhHLUpNnz6dhx56iIsvvvijHzyJzwRymRSzTo1Zp+bEaWbC4TCBwWF8oWF8oSE6PAG6vCF6fSHcgSH6Q4MMDAmraiBBKgWNUk6KSo5BoyBVoyTLoCZFrUCtELqrNEoZKrl0sgNqEv8VovPhcGSjTJVCxo2nTePsCgs/smj5z2+6Cdh285NrL+HBZ9dgzho1ibXZ+ujoFFaqx3ZRJfJPstn64szBo4h2JJWVGamoMONxB9m5ywFh4nypYv2XLFla8vL0WLK0lM/MR3/3P3j96fv48J2nSdW0ctzyG5k508zICHR3d+HqCYjvYaLuqE3VdnbtElZWSkvTJzSdHZuoKYhVVhoaXPj8Q+TkpvDd6+cCsH1H50eanU/iKwRVCpjLhB8QOpoG+oWuJ3+PIFD5XBBwCWl4A77RyHeJVOhsUumELqekNKG7KiULFGqhu0qhEX4m0/Em8V/iaGsCufNJvqGaOZv/yHP+u/ja07387V9vk5+dwc+uvUh82JG6jBKJPLHG4LHpktFupLw8nbiqvn69jT17XWi1ClHEifXaWLTQQig4hNcbQiqVcePXz+PSVZV887b7eaP+ea4//xKStUoyi7QMDI5gb++ntsYpvo9Eq+Hr19vYtq2Tdns/6cYkzGbtxDVhjBdUdNXf7WkhKUlORYV5HMGKPm8Sk5jEJD5vHHU9AC6cdiEOn4NHrn0E+QMjdOzt4JYrbuHhVx4mzTyaIm2z9dER6WYd20WVyD/JZuuLMwePItqRJHIET5CdO4UJpagvFcSfhy2WCEewjJ63Cwv1tJQa4eyZvPHEY2x45i+UL1nOYHIFLlcCjjCmO2rTpqPkCGPqQbQTrKHBhc83RE5OCt/9boQjbO/8QtWDo76yvPvuu7nmmmt4+eWX+fOf/0xa2mR8+BcNEokEjVKORinHlKIiP/3z/4JNYhIQPx8O8OKL+3nppUbOPbeYVaumjXt8cUYKL/zfEh6e8iQ3XnE2vc4Wbvj6hfzlhTfQJsefiKO3sWLNq68ejDt5Rx8XNYIFxLS7aEeSUilj3txMcUwuOkeeSOCKjgNGRwXNJi2FU+7hjRnH8a+/3s5rj30Lyy33s7CqHK1WIY7MJSoi0W4mlUqGTqfCmKYetz+xqN7czuZqO2XTjSgVMiBM+UwTF60uEd9nFNHX0WrkE6b7TeIrDJkiMkqXCvocyJr5eb+jSUwC+Jg1QSaHRTewsnQlD3IW//ePBm594CnyTMlcdt5KIPG5NfbiPLYmlEUu6OPqQSTZKNqNpFTKRHErdszN4fCxu64bCDMzskoeO/4RHQ1xOFJ46hd38Iu/PcYvn3yUVScv5fc//QYWi1YUxyZ63w6HD5VajtGoRiaViGMYiYzIq6vbqd5sp6rSgiFVJW573rxMNP/P3p3HRVXvfxx/DTsMmywDgoKoqIAL7gGuiaWWWdpuLmVl+zXrVla3tL1fy832XbNFMzPzmmlqmgqkoYKKuCsgoAODbMMO8/tjmHFmmEFAccHP8/HgQcycOefMhOfN93u+389X6UBIR0+z6XmG47gpHWyu5iSEEBdSc9sIj/Z7lFNlp/j5gZ+p+r8qTmWdYs7dc3jvp/dwdXMFrLQRbOSBzTZC/fVRa5EJhmlyZm0Eiw6uXr388aofsWs4rlqtxcnJnqqqWsZMf4DcfZv57buf6Ng9i753P2H1nOHM6FZjG8HXpcH7MZWYmE1SUg4dO7pTW4vxvO64o4fxPA2MbYRLJA+a3Cn10EMPMXbsWGbMmEFkZCRffPEF48ePb81zE0K0EZbzw5cvP8Sff2aSnV3KgAGBhIZ6NXiNnZ2CR8b2od+6NYwaPhR15mHuu3sK897+iqL8auPwVuPS2fWdLenp+WRmFuNgb2fs4LFcBc90BFFVVS0HDxaQk61fzS8iwo9Ro85clA13rHOyS/H1czXrLDIc27BdhSKS8TM+Z+PP8/jv81O4b/bz3D5tpnGkoelrLVfXC2rvTkSEr1kYWVLnaVn1vyNk52jRaMpp5+OiH/iIAi9vZ2Pxc0PHVUxsELExwWbv13Deph1U6jwt+46cpkOwrIgmhGh9lpnw7bf72Lo1G6222mojBADfrjy4cA8ZjOXN79Zx74uf0MW1mK4DbzSbrmD5x/W++kywd7DDp/4PelOmd6cNUy9WrjxMerqGa6/tZDbNLTn5JLt2nqK8opY8dbmxmKzp9L98TTmpKXkUF1dy/7i7CPbuyI8bV5OVn8WSd5/hjjsijMc2bbAYzjszs4QybTWDrwrC28vZZiao1Vr+t+oIOdmlAAQHuZOSmodWW20sfH7HHRHsS8/nyy934+PrwpC4YAYMCDTeIS8sqjRO/bNc6S//oAYv9xKCZYafEKIVtaSN8FLcS+SX5/PXo39R+XolB/cc5I3H3+DBeU9y4oS2YRtBZdFGcLAzdvBYroJnOoLI2EbI0a/mZ7ONkFOqX+3VIg9MtysursTT05k6nYLhN93EkPh+vPrYq7w7+znmfT6PrpFdba6uFxTUhDaCWsuqVUfIztZy/FgRSncnAHx9XdFqa4x5Zei4iokJIjY22Ph+i4oqjQXjLfNg3/E8Qju0gy7N+B/bTM0agx8WFsaff/7Jhx9+yMSJE4mIiMDBwXwXO3fuPK8nKIRoeyZODCc7uxQ/P1fS0jTGwMnIKCItTUNUlK/xsdg+Pdi8bjVDhg4jb9/fvPj+Z4SGjMKvxo7Onb3Mai6BfpW50tJqQkI8iRuin+5nWW/K9G7Ehg2ZnDhRggLw8XVFW1Zj1mET3cefnGz9KnqG4uLqPK0xYACyMkvYkXySkFAvRsf3onffb0la8ymfvTWXfxI28uTL/8U/8MxwYNPXd+3SzrjS0tlGMZlOQRw6rINxpJSh0G16ugb1qTLy8rTk5pah0ZTTtau3ef2TzBJ27DjFoUOnie7jz/79p9mXno+j0hHFYJmmK4S48KKifDl8+DRRUb7Gx6zlAfb2vPbNGg6eHsMvv61j2quLWffgPtYcGEpk/y6EdPRoMB0hNeVMJgyJa5gJptdHlUrJKXUZR44Uoikop32Qu1mnTUiIB337BXDcopisWq01a3QcP15McUklw4Z24PHpNzHl5hgefHk+fSY8zPvPPcC0m+KNNytMX2vtfGyxnILo3U6/ypSzi73xvR0+XMgPi9MpLa3C19eVyopaRo0KaVAYvrCoEsgnN6eUyspafHxdcNUW4+ZdSLAMsBRCXEBNbSPMHzmfqZVT0T2i48gbR9j8+2YcvLvg4N0NJyd7fRvBpOYS6FeZM7YRrOSB5VRpYxtBAT4++s4d02tzdLQ/OTn6VfSs5QFAVlYJycknCQ31Ijra32Qfg/l01ae8+MCLPHLjIzzxxhP0GRJr1hllWF2vKaOYTKcgRkf7G0dKGd5feroGtdp2G8FQGN7QOaVUOujbCPvycfSqxEHRuovXNLswREZGBsuXL6ddu3ZMmDChQaeUEEKczaRJ3RkwINAYLgZpaRqSknIAzO6MDBw4kG8XfcOC79ZwMjyePEc7CoqqcSsoY2B0oNmdg+g+/voVL3zO3BG3NffasH1enr4ItK+PC1u2ZFNXW0dklC+FhZVE9/FnytRI410UQ4fSyZNaAgP14ZWSoqasvAbQFybv3NmHq158lV4DhvDJ609x7w3DeeyFN7j6uokoFPrgKi6uwtPTmV69/Zo8pc50eLHpaxKTsjl1UktenpZT6nICVG4EB7vj6elMZmZJg/pVhkK4Kal57N6dR0FBOWHdfQgOdm/SeQghxPl0//19iIvr0KQ8sLOz49sff2H06JuY2juQQMUaHu+2mKTC6wiJuw4wv9aHhnqSnVNKbEyQ1aK0lne1Y2P0NaJCQjwBHVu2ZFNbV0dUpD4T+kT707uX35lMUJtnQp9of7JzSqmsqCU7uxR/fzf6RYaTsuJDZv7nQ+5+9r/8uHor37z5OCpfb7M8MJ3ucTZmeVC/vaF4+taEHFJS1GRmFlN4ugJ3dydCQzyNHWmGeiWGIumFRRXs2qnmeEYRujro1y+A2B6eeIV7t/D/qBBCtExT2wjODs58Pvpz7qi8g5p7amifH45/WC8yM0uoqKjFy8uZ6GiVeRshur6N4NvENkK0SRvBt76NUFdHZH0eREf7M2VKpM08MLQRyg1tBJNOLbVaS06eHS9+9ibfvfc5r816jdix19At5jo6dPRqcmeU6fuwzATQT+k7daq+jXCqnIAAizaCSR54eZUYO6fs7RXGNkLnKKdWbyM0q0fpiy++4IknniA+Pp60tDT8/WUZWSFEy4SGejUYkmsIH9MQMrj11lsZPPhadu/J44/j+axGw15FLTX781C6ORg7XQwr1+3fX2Ac2WQ5bc70DsaA/oHGeeDqPC1Hj+4jO6cUjaacuvoa0HfcHoHKX0l6ej6rVx+jqrqWTp28jNPl4mKDUCodcXG2NxuR5R3Yl3HTvyT970954+mHWbJwKff/+xVCO+tHTTW3xpNlnSlDvauszGKOZxQTGOhGzyglMbFBdO3qbTal5fc1R9my+QRDh3Uw1j9Rujng4uyApqCc3gNU+Pm5NvlchBDifGluHiiVShYv/om0NA2bTt9Fr0PPEu+4nMKdWRw9HY+b0sH4R7mTkz2BAUqcnOyNr7ecNldYVMHJXH3DIzY2mNhY/R10tVpLSkoeOdkWmXBHBCqVkn31mVBdZZIJJiO0TEctDRgQyJN3TSPQvRMLfl9G+Oj7eeWxGdw2bghw9pFRlqx1XhkKumdmFZNxXJ8J0X0DiI0xz4Tffz/K5i0nGDa0A2PHdjbWSQkMVFJZWUtsXBCRqkIIkindQogLr6mZ4OXsxZfXfskdNXegqysjysmL3r1VZGQU4+3tzKFDp1Ga5IFh5TpjG8GiXp/lKKcBA0zaCOr6NoKNPDC2ESzyIC6uvo1gkgcqldI4gikry5GQATdwe/sQfvpkAdlHj/HMf5+jR0/zRTvOxjITDPWusrKKOV6fBz17KomxkgdbtpxgqEkeGEZKubg4oNGU03uwW6u3EZrcKTVmzBi2b9/Ohx9+yNSpU1vznIQQVyhrIWTt+WsqO1L48CySHQeS6qkif8cJ/tPNBwd7O6Dxux6Wd6VNqfyVjBsXRkpqHt7ezsaRUgYpqXlk55QSHORu7JACjEupmtauOnP8UMZP+JAvP1jE5pXv8PJjE3ju/+YzePhos2NbK6h+NimpeaSm5OHkbIeXlzO9eqq46aZws/djsGXzCY4cKQRg7JjOaPLLTY4XToG2qknHFEKIC6GpeQCd+etPBxZ8+wpz2Mmoyv3sSLmVyAj9NfZsebB/fwGBJlMkTKlU+kxITTmTCaaFw1PrO6yCgt3NOqQMdaisLc99143DCfHvwCe/LOWxN+azY38a85+biZfHmeu15WqBTZWakkdKah7OTvpM6NlLxUTTTKg/v81bTPJgbGdUKiVBQeXkqcvoPyBAf0xNYZOPK4QQrc1WJgS5B/Fx/MfcveZuttv9wsw+M9m++idKgwZyJLMWwOzv6ha3EerzIMUkD0wLh6ek5JGdXUqwRR4Y2whW8kD/OjWHDxfSp09f3v85mhdnvsizUx/nhY9eIDomGsBqQfWzSUnJIzU1D6f6POjVy6KNUH9+W6zkgUZTbnK8cArKC6wd4rxqcqdUbW0tu3fvpkOHxpdqFEKI1jZ79my+++pTVKq1dL/1LbKUCmZ9t5MBSiXjhofYXLkOLKZtWNnGEB7p6fmkFOYZH1fnaXFxdiAy0pe4WP1IJ9MV7dR5WhK25qApKDcbuQWwY8cpKhS9iLvxA/KPfM3zD01hzKQ7mfnki7h76gPW0MGk1VY3qGtlS2ioJznZpURG+eLv72Z1VT/DfoYO01+7Dd8NxzO8ZyGEuBwdO3aM0WPGUF1dTcm9D/BM8AbiWcDOb/Zz3GM0Q4Z0NK6kZ6kp9ZsMHUz70vMprL9mGhoXoaGegP5abFlQ1zCNrkBTjptS/+e24Zrc4agP1/S8ntExOXz3x0r+3JbKly//i2uG9APOdC6ZFi0/2ygqw6p94V29iYz0xcnJ3vj+LAv5DhuqzwHDd9NjGt6zEEJcLqJ8o3h96OvM3jSbWY/N4si6I/gF72TUlEfx9nbmyy934+vrQlxccKNTpM+WCWZthBSTNoJai4tLfRshrr6NYLLohlqtJSEhB42m3GzkFoCdHWhLq7C3h8i+kXy++nNefuRlnrjzCWbOmckt991i7GDSaqsb1LWyJTTUk5ycUiIjzdsIlnkwtD4HhprkgeF4hvd8ITS5U2rdunWteR5CCNFkzz33HD/++DNq9TFC/v6AUdf+hw0lWrbqSqnZmc2Ma8KNRWQtNdZhZdqRY9lpk5lZgrasmuhoFRERfmYr2qn89cNwt/+TS1FRJUqlo/E1+/cXsC8tn9yTWnpG+fHsOwv4edE3/P7jf9m+eQOPPPcaQ0dfZxyRVVNTx8aNmXTt0g5PTydAR6/e/mbnbDjP8rJqAgKV+Pu7MaC/eaPLsrj72DGd6d8/gMzMEtR5WuPxTEeCCSHE5SYsLIxJk+5nyZKPeHfhV4xfuwqPzR/Tz2kj/qcPkXtkJipVlNXXnq1+k+kf76adNuHh7di/v4AePXy4444Is9WaTGtU/bP9TCYYXgOQmVVKmbaGru278f2r8/i/RYu49t7nmTphFO8+c59xNJYhD7p0bUdIRw/clA4NOqkM51hYVEGZVp9Rlp1wloV8x47tbJymYWg4GY5pOhJMCCEuF6NCRjG7/2xey3sN520u5GdnkbbxJzy9prFr1yk8PZ3p2NGz0Wt+Y5lgmgeWnTaZmSVotSZtBItMyMwsYft2622Ew4cLKdVWk5VVWn+MSv797lxWLlzMJ698wr5d+5hw7wzApI3Q1aSN0Mu/wWp5mZkllJdXExBQ30YwyYSm5IFhBFj0BcwDqVIuhLjsBAUFsWDBEm65ZSzJyX/RoUM3ohRjKezmxN+nijm97iAzh3XG06V5K0WYXqhNO23UeVqKCitpH+jWYNit6fdBA9ujKSg3vtbwnK+vCzt3nsLd3ZH//e8o9p5xzHptCH/9+i4vzZpBXPw4HnnuNe64PYING45zMleLpqCcw0dOgw68vF3MptsZama1D7Q+5cTa+Vm+P9NaWkIIcTl77bWXyco6QkLCGibdMYWXX17KusTuPBT6HcFZb0HgPRA2rNn7Nb1mWnba2NsrjCOgrF1vQ0I8GDioPQWacvpE++Pn62p8PCrSF42mHFc3B9L3lPHCPQ9yYtIhZr/5Jb9vSWb+szO5/fbhbPgzg9yTWgo05ZRpq7G3V1BbqyMzq4TKihr6RPtTVl8fxdYURFvnZ/n+BgwIlBFSQojL2rSoaWQUZ/DNo99w/M0M9m77B1XHjgQFDSAkxNPq9bGpzNoIJp02arWWoqJK2rc/SxthUHs0mnLjay3bCEqlIytXHqG2tg4IZOazM+kR3YM3n3iTo/uP8sJHL5CR68DJk1o0mnIOHz4NgJeXi9l0O0PNrPY2MqGpeXCh2wgKnU6nu6BHvMQVFxfj5eVFUVERnp6eF/t0hBCN+PHHH7n99tsBmDhxHjNm3EWRrwOv/LYPOzsFM+LCUDk5mE1jM0hMyiYpMcdYFHzP7vz65bydzEYmmRZG798/sMGIpKb65ZdDbNhwHDelE926tSOskyc9e/lxYNdGPnz1WSorK7j/iRfoP/xGTpzQonRzICdHC+gICnJn9epjZOeUMnBgoLFQubUpfpbT9mw9Z15Tyo8CbRV2djCxbwfs7KyPMrOlrV432+r7EqIt0mq1xMXFkZqaSrduvZk48V1GD3Lj6tPzIDMJQofAoPtQF9SYTV0wSEzMJjEph6j6qQ5uyjPX4N71d6JNRyWdzC2jRw8fm1MDG7P8l0P8sz0X73bO2CkUxpFQLsoaXv78W5b+voVxwwfy8iN3U1fpYhwhZTinbX/noNFUNMwDK3f4Ladq2HouX1NuXsdKcxi6jQG/8Ab7PJu2eO1si+9JiLaoTlfHA+seYO2ytWR+kQlA/JSZXHvTiAbXa1vXx8TEbJKScoxT35QmeWA6Msm0MHr//oEtygMwaSO41bcRwjyNx8k8kslLD79E5pFMpsy6lx6DhuLu7tiwjZBtpY3QyDW/sefMa0r5UVBegKO9I+O7jG/2e2vqtdOu2XsWQohLxFVXjWHSpPsA+O23N7Czy+WOwSGseDiOIC9X5m84xJLtWaSna4z1PgySEnNISTnF4h/SSdiaTWJiDgkJ2Rw7Xmy2XWNFD9PT81m8JJ309PxGzzM9PZ+ExGy0ZTV4eTnh7GzP+g2ZJCbk4B8Sw7i7v6L34NG8N+/fvD77DjxdThER4UdQkBJ1Xjn79xdgZ29HcJD7WafbGe50WL5f0E/jG9A/EJW/0jg90TAdRQghLmdKpZIPP/wGDw9vDh7czY4dn9K5bwRM+w2GPwVZf8Oap1EfPGD1GrlmzTG2b89lzZpj7N9fQGJCDomJORw/diYTztxJVjS4A70vPZ/Fi9PZd5Y8ADh0qIDMrGIqK2ro0rUd6fvy2bLlBAf3l3PjoBv5YM4sUvcfZdi02azb8RddunjhpnQgNSWP4uJK3NycCAp2p0+0vtESEuKhn5qt1jY4VqOZoFIalwM35EFqimSCEOLyZaewY/7I+USN7o1/vAqALcsWYV9X2GBbW9fHpKQcdu06xbJlB9my5QQJ9Xlw7Fgz2wiLm9hGSMhGqzVpI6zPJCEhW//cdi2PvfkS191+HV+/+QmrvvyUslItanUZQUHuaLU12NnZERzsftbpdk3NA8P0xJQLmAcyfU8IcdlKS9PQvftk+vZN59ixvTg56ZdwDQ/wYOUjccz9XxqLt2fh7+LIYH8Xs9fGxAZx6PBpSkuryTpRQvsgJUVFFZzM1bJndz6Qj+EORP/+AVZHHlnWnbIcfWVan6qyshZfX1ciI3zJOlFCcXElmoIKUlLz2H+ggj6xj3LzlLv48NVneeS2MYydNBmvkEkcPFRN13Bvhg4NNp6DZT0rU4ZQVLo5mBViB/ORUlJTSgjR1hQXezB+/IssWfIEvr4OBAcrwd4eRj4HnYbB8vuIyv4vHgE34Boyzuy1SndH7O3tsLeHwPZuFBdXceRIIcczili58gidwjwJCnI3dkZZ3mW2VijcMPoq1mIJblcXBxzs7aip0VGgKUejqcDZxYECTTmHDhcS3acj+377jLkffMcLH3zHVz//wU1x47Ar9ye8q0kemNSvsqxpZRAS4kFhUSWFRRWo1VqrtUekppQQoi1xdXTlLpcXOHXzo1RkVYBah72u4SrTtqayxcQEcejQacrKqikrq6ZTJ0+OHCnk5Ekte/bYaCNYXHst604ZRl/FWORBSopJGyHSl6ys+jaCpsJsH/96+V/0je3LW/9+i51/7yVk4ESgH6NGhZhlgrUah5bvV6l0MCvEDuZ5IDWlhBCiGaKifAG49dZvUSpr6Nq1q/E5Z0d7Xp/YmyFd/Zjzyx7mbzlKNxy5pl97IiL8iI0J5tRJLQkJ2QDExQYR1skL0AE6du5Sgw6Ki6vJOlFMYiKMjg/F18/VZsdOUmIOe9P0d0ScnOwb1KdycbZHW1ZDxw6e+Pu7mXUI6afRRfDpsvX878eFfPPhW9TWrqTPkGlcNXgGPXvqhwRbq29lylDI3VrHldSUEkK0ZVFRvkyefAO33daH8eNHmC94ETYUHkxAsXwmoYd/JmvDXtJ73ktEr44AjB/fBXt7O6qraslT6+tAeXo6c/xYETm5WgpOVwD6/aWv1VBZWUtsXBB+vq5mK/GZduokJuWQtrdhJsSPDqWqug57OwU+vq4MHBhofJ1S6ag/trsb7865n3tvGcO/XvuUtxd/RXR4BMPjp5tNEVGrtRQWVRLY3kYmqJR4e+mv/d5eJWaNFKkpJYRoq+J6d6O07iU+evTf+Dn4ETEgosE2hsLm6en5bNiQaZyuFhsbzKlTWrZuzcbDw4kePXzw9HTG2EbYqQbq2whZ9W2E0aH4+rra7NhJSsphr5U8MDzv4mKPVltDx471bQSTLDH897Cxw+jWsxvP3vsC6eu/plvHCvxu627WsWRZ38ra+7W1OMfFrCklnVJCiMtWaKgXoaFeDR4/ffo07dq1A+C63kH07uDFjW9tYY+uEs2OE7zQ3QcHOzvihgRTUVlLcXEl2rIaRo0KBfQdP/rGh45jx4tJSVGjAPz93cxWULLs2ImJDTJ+N1tW1l9JRISfcaSS0s0BbVkNvn6uxucM7B0cuHHyvYwYeyNfv/c6a5Z/SPbB37n7sWcYMvo6MjNLyD2ppUcPH5urCBqOa/rd1mNCCNFWnMmEzsbHdDodRUVFeHt7g5svTP6JP+bNZkTtInz2vgLt/w1+XYmM8MPP19VYH6RMW0P8qFDUai279+jvioOOXTvVHM8oQleH2ap6hpX4TMXGBBm/Wy41bujMMtSL8vN1RaVSNugYiuwawh9fvcov6xKZ/cYXTJj1LDNvHcvzD95OoL8PmZklnMytz4QmLHPelMeFEOJyFxrqxf2h19A5w44nNj3B9/u/Z3rUdEoKS/DwNr/mWY5qAoiLC6aior6NoDVpI6hN2gjH6tsICittBIuOnZj6PIixkgcREX7GkUpKpQNabQ2+9Zlg2TkU2DGQz1d9zNdvf83iT74j+/ABnnrrKfwC9Sv65Z4lDwzHNf1u67ELSQqdW5BChkJc3tauXcsdd9zBJ598wm233WZ8/K8tmfzfmoPsq60kyNuVB0d0xq6yrn6qns6suLmpxKRs1qw5hrvSkfHju5iNlGqsU8ia9PR8UlLzjCOmevTwMRZOt+ywyssrY1+ahtDgIpI3fMmOxE107xnNpHuewMOvl3G7lpyHNVLovKG2+r6EuFKUlJQwffp0srKy2Lx5My4u+mncCQkn2LfuD6a4vI1L1SnoeTNqv3gys0qNnUTWpmPsS88nMSGHmto6HOztzEZK2So0bsu+9HxSU/JwdrGnTFvToGi6oYHipnRgR/IpMjOLiY0LZPuhZN744ieqqqt5fNqNTL9hLMePlWNakP28kELnZtriexLiSvHl7i+Zv2s+3XK6sfaNtTzz7jMMuWaI8fn09Hyzwt6WHUS2CoMnJORw6FABLi4ODUZKNfdabDgHw4gp00ywPJ+8vDL27dPg55bPyi+/pKa6hsdfe5zIQQPPet4tcSEKnctIKSHEZS0jo4i0NA1RUb6EhnqxceNGTp8+zT333ENERAS9e/cGwMHOjkFOrozt2Z4F+3J4ZVU6sQFe1J2stDrqyLQDqVs3H3r08DHerbBWo8lyZb+NGzMJCfHk2ms7GZ9LSc0jMTEHZ2d74mKDzOo+GYbNGpb83peWT+5JLeDHG18sYdffW/n6vVd5bfYU+sUMY8DIaVToOpmdjxBCXOlMM0GnO82mTZsoKCjgwQcf5Ouvv0ahUBAX1wG4hnfXdeR+1ef47V6Cs+sujpTeQJcewVZXUNqXns/q1cewt1MwdGgHs20MK/NZ1ugAfV0pszyof85Qg8rHxxl7ezt8fV3MXm+aCX9vy6HwdCXOLg48/cQt3H/rGP7vy2W8u3AFnyxeze3XXkOfkGi8vVzOX6eUEEJc5gx5MDrqFg6FHeKr779CW6zl9Vmv88nKTwjpGmL1dYbrr60VVtPr88DOTsHVV4c2yANofGU/a5mQkmLSRogLMqv71KCNsC+f3FwtPXv68fX6r/nvnP8y76F5jL5pNI+99Bj7D5XarCt1qZLV94QQl7W0NA1JSTmkpWkAePXVV7nmmmsoKyvjxhtvpKBAf1Fevz6D9esz0ewtZPVjQ+nVwYs/s0+T4w5BwQ0v2IYi5pqCigarLBnYWsVi48ZMdqfmkZCQbfZcdB9/PNwdqayspaKyFm1ZjfH1ISEe9OjhQ3Qff3r08GHosA70jPIzTgnse9UQnn//J26a8SZZGdl8/toM/lo2m/wT/6DT6VDnaUnecbJ+6qEQQlyZTDOhU6dO/Pjjj9jZ2bFw4UI+/vhj43br12fw+4Z8PsqbBePewaMqg5ucPqOzR67V/aam5JGTXUptna7ZeZC6u2Ee9In2J7qPP64uDuTllZO2T2P2ekMm9In256rBQURG+hqnA7bz8uDxKbfy9X/mEtsrmi+W/8rsj17j2zX/Q60pBDB2kllbkU8IIa4EpnnwypBXuPqhq3Hv4U5ZaRnP3/c8pcWlAA1WmzNcf21NZUtJySM7u5Q6G3kAZ2kjWMmE6Gh/PDzq2wgVtWi1VtoI0fVthKEd6NnTj5iYILzaefHiJy/yyEtPsHnNViYPn8aJQ/vNzv9yyAMZKSWEuKwZip0bvtvb27N48WIGDBjAsWPHuOuuu1i1ahXx8fq54PHxoVQUVjLGyZ061wp2FZXxQcIxHosPp72Xq3G/pkXMLedzG0ZRhYZ6Wg2tkBBPsjKL6RzmZfZcRIQf14/vQlJiDqGhng3qTlmOeBo7prPZz1lZpWjrIoge/S7tfTJI3vgt7zx7H8sXRhAddzOuvlcBwTJySghxxbLMhPj4eN58803+/e9/M2vWLPr160dMTIwxE3r29GN1/tU4hX1B9OFn8N35FlRNgp4TwaRQuunqdNam9aWkqPHxdbGaB5lZxYR1Ns8DQw2rrQk5uLk5Ehnpi5OTvXEbQ0Faw7aWMjNLyDpaydDuo3jothv5c1ciny5Zzec//ca0G0cxrPdg6srdjfsSQogrjWkeONo58um1nzIhbwL/PPMPWUey+L8n/495n80zK0quVutX2CsurqSoqIJevRpeQ023t3zOMA2v0TZCVjGdO1tpI1zfhaQkK20EkzwwGDv2TBtBoVAQ2nMAsbf9i93rf2L+0/O4+d6b6fnvGUDjK7ReKqSmlAWZMy5E25CamspVV11FRUUF8+bN44UXXjA+t3r1Ub79No3s7FLcOruT09GRijoddw7uyJCu/madTqdOlqEpKCcuNsjYObV4STqpKXn0ifbnjtsbruZhWR/KdHrfhg0ZbNqUiYurIyNHdqS8rIbGalpZ7te0Bpa/nxt7dvzN5+/+lwOpW3B0dmPkdZO4ddoMQrt2N77O8H7Ky6s5fKiQocM6NOjwkppSDbXV9yXElUan03H77bezdOlSgoOD2blzJyqVCtDnQVJSDkePFnLqRD7vjlxOb/4CVRTE/QtcPI21pHx8XQgMUJKRUUyfaH9jZ9HixemkpOYR3ce/QbFz09pQlrWqkpNPsm5dBsUllYy/vgtdu3obi6qfrT6UaQF2w7ani0p4+o0f+HHtnxSXldA7vCszbxvHPbdcjYuzE3CmlpW3tzOHDp0G9KsBNuj4kppSZtriexLiSnSg4AA3fnAjB185SF1NHQ889wC3zTxTgzY5+SQbN2ai0VTg6+vCyJEhZtPzTDudTp0qQ6MpJy7OpI2wOJ3U1Dz6WMkDaFgfyjQTjG0El/o2Qnl9G6EJ9QINnWm6ulqy9iax5ONF+AX4MWbqNDLzPBpMF7R8P+Xl1Rw+XMjQoR3MOrxAako1W6dOncjIyDB77PXXX+eZZ565SGckhLhY+vTpw6effsr06dOZO3cuw4cPZ/jw4YD+jsm114aRn1+Gn58r/h3cmf/PcRYmZpCeW4LriQr2puaTk11KvqacoqJKlEpHY+CYjqKyxjDqKXmHfsnVosJKvLxL6u966Dh9uoKavHKSEnMoK6uhrLwagFGjGg8clb+ywTa9B8QQ1t+B03XXY1+RxN8bf+OP5Yvo0qMnI8fdyMixN5KSWkJqSh75+WWUlFQB+lFYpjWxisqrycnR0t/Xg7BO3i392C8ZkgdCCAOFQsGXX37J7t272b9/P9OmTeP3338HztxJj472Z+/edpTEf4ymdCVe215C8duT2A/5F6kpduzadQpPT2d8/VzJyysHzoxgMh1FZclyCe7Cokq8vfTX3ZAQD4pLKsnJLiUxKQcnJ3sSE3MoL9NnQnwjmaBSKRs8387Lg25+/bixVzDVzmoOa9J4+JX3mfPel9wUH8sd1w0nL9OZPXsKsLODUye1UL9qVKRJcV83pQNoNHi5lxB8YVcFbzWSCUIIgO4+3Xl/2vtMPzqdnEU5fP7G5/Qa1IvIvpGAfmRSv34BFBdX4unpZFbbSaVSGqf65eSUkp9vpY1gMorKGstMKCqqxMvLoo1QU05SUn0boayJbQSVSRthdGdG3zict59+m69feR1l+14UDbmOa6/t1OB1hveTl1dGaWl9G2FsZ7OaWIVVZahzq+jtUGR11fPzoU11SgG89NJL3HfffcafPTxkmVshrlTTpk0jMTERgMGDBxsfDw31Yvr0MxfV1auPMrDUni4hvqzLKMDd0Z6QcE/aOTuiCnCjsrKW6D7+Zp041kZIWTIMvc3KLGbnrlP06xtAr97+FBdXoykoJzLSl337NOTmGJaX1bNWQL2x0VcxsUFoNOV4enZnxMhnqSnZw8bVv7Doo7f58t1XCA3vTbv2fekW1o/TpQEMHdYBMB/OW1pdw5HDRaQFaNpEpxRIHgghzvDw8GD58uXcdNNNZiNnQ0O9jH9kT5qkH2G6evUYjlZ7MN3pHdw3vkp8wDXkde8JKAgPb0dhYSWhoZ7GhkpkhJ/VKXamDHlQWFTBjh2nOHToNKNGhTD++i4kJuUQW79MeFB7JTm5ZzLBVrFcWyOwDHWnAlRhKBRX4XZ3NXuO72Xxb3/xzYr1tPP0IKpTN2J696Rr9/a4uyqNnWmmxXS9a4tx8y4kuPd5+fgvCZIJQgiA0Z1G89ys53juyHN0DexKeNSZEaFmnTtg7DwyPBcd7Y9WW42zsz0qVX0boX7an7GNYGWElCVjGyGrmJ07T9GvXwC9etW3ETQmbYRcizaClUywNvqqQ1gH3l3yLu+/8j2rvvme1N+O81tYJdMfHo/CZGq6ofPMdKQUWLQR6rQcO1xKmotGOqWaysPDg8DAhlXyhRBXpo8//hh7e/tGtzGdcz65uoonfkwlzamSLjoFV0cGMKC//ppiGPkE1le8S0/PJyExB18fF+KGBBtHTBUVVoAOQIfKX8lNN50Jv65dvY3hYmA297v+OJYrb5g+FxsTbLYflf84hsSPo0xbSuKfa9i0ZjWp25eTsvkb3D29UJzuj/pwNIEhkQT6d6BDByUllbUoUBg/i7ZA8kAIYSoiIoK0tLQmZkIcmm6jcN89F//dP3J3x4Os0d6Iv78bY8d2btBQsWQ65W9IXLDx7rharSVPXU5xcSWZmSXExgYTGxtsfN0NN3QxywRbtUCsZoJKadyfacNl4vV9eOHhO0lJP8qCnzewdutO3vruGxQKBb26dWJvXncG9upG56AOhHbywNdXCZpivMK9z+HTvvRIJgghDB6MfpCD8w6yKXsT+4v208u/l9XtTGs7gb72k6EIuenqfGfLhPT0fBIScvD1dSHOJBOKiirqt9ChUjWzjaBqpI2gUmJnZ8esF6YwZuIwPpz7IYv+778cSE7kkRcfoUOYvvPJ19eV8PB2DW58mL7vwqoaHBSOrdpGaFM1pTp16kRFRQXV1dWEhIRw55138vjjj+PgYLvvrbKyksrKSuPPxcXFdOzYUeaMC3EZMl0K3FpPfm1tLb/99hs33HBDo69183HmgYXJ7MguwqdOwV0DOtK7pwp1npaErTkNakz9vuYoWzafwMXVgVOntHh6OjNpUjdjZ5a1kU+Nae5IqbPta8mSA2QcK6BLaBEejsfYv2cXB/bsoui0PtScnF1QBYcw5tZpfPbqnDZRU0ryQIgr29nyAGDPnj24ubnRpUsX26+P9CG0YCXVq56mulrH0fZT6TlqJGq1lq0JORRoyomNCzIbKfX770dZtuwgVdV1dAh21+eBSU0SW6OfrGnuSKmz7WvJkgNkZBYR2dsDB49Ctu5MY/vug+w9lEFdXR0A7f19CA9ux5qVv+Da0XpDrTFtIRMkD4RoW6xlQlVNFZNXTyazJJNHej/CieQTxMTHNHit5XVYrdaSkJBjVk8qMTGbpKQcYmKCzG40/P77UbZsOYGLi0UboT4TmpMHtrZvrE6VgU6nY+varXz00kcUqAu45b5buPb2iaz4NYOMjCKGDAnmppu6WT2m1JRqpscee4x+/frh4+NDYmIic+bMITc3l3fffdfma15//XXmzZt3Ac9SCNFaDEu/AmaNkISEE/zxx1H++GMuf/+9kYULFzJt2jTj8xkZRSxcuJf8fH2dkHHjOrP04Tgm/WcDKXUVfLEzi3td7aku1E+7O3yo0Gz++JbNJzhypJDA9u707RuAs7M9RYUVqPO0qPyVaPLLOXToNFVVtU3qnLK2Ep/lY+o8Lck7Tja6L3Welg0bMjly+DTFJdVERIUzZcYkQB9OJ7MzyTx6iOyMYxw9cgRvnzZSPATJAyGudI3lwfr1GSiVR3nhhZmEh4eTlJSEm5ubcRvLTAgdN5UvVtozpvxlotSfo03MItMxngJNOYcO6/PAtFNq85YTFBVV4u7hyMBBgbhZ1CTJ11jJBBuNEWurLlk+bmiQGB63Rq3W58HhI6cpKa5CV+XLtJvimXZTPADasgp2HzjG4cwcDmXkcCLjKK6uLk3+vC91zc0EyQMh2hZrmeDk4MTdXv/hP7kzefS2RylKL+KFj15g5PiRxtcZrp3FxfpOasO1t6KihsP1139fX1eSknLIzi4lI6PYrFNqy5b6NkKgSRuhqAK1WotKpUTTjDwwPX5jj6nVWrPMAX1txaFjhjJoxCAWf7yYHz5ZzK/frca320gUHl3RaCq4mC75TqlnnnmGN998s9Ft0tPT6dGjB7NnzzY+1rt3b5ycnJg5cyavv/46zs7OVl87Z84cs9cZ7oQIIS4/lkuBG6xfn8Gff2bj4hIGbOSBBx4gOjqaPn36APqgys+vwM/PlagoX37++QDLlx9iYKQPAZUO/GNXxceJx+iMI+HtXOkT7W9W5NxQo2nosA707x9Q/4d/IV7eLqj8laSk5vHPPyfZszuP0E76uwTWOpIsV9drrOPK2hQ/a9sUF1fRpas3bm6OxMUGGZ9TKBS07xCKvbMfOZpQXDsOwqfjpT2tQfJACNFUjeXB+vWZDBrkgYeHB7t37+bBBx9k4cKFxjobppmQmVnE5MmriIwMY7H7R9zbfhGqjBWE6HZzqt2dKPv4NyhwPqy+JkffaH9COnqSk1PKydwyQN94SEzIYdeuUxw96m5sHNmaAmhY6bWxmlVNWe7bkAddu+jzIDYuyOx5pZsLXYJDyD3uQIibP9PviLR5vEtFa2aC5IEQbYutTPhnUwlOu27GqdP/QTq89dRbdO7RmdDwUODMtdPT05mQEA/jiKiOHd3p08ef6Gh/MjNLsLOzIzjYvUGBc0ONpqFDTdoIhwvx8nIxFk7/55+T7NmjX9EPrF/HDavrNWU1vsYywdnFmemzpxPUvR+L/vslmf/8gm9QKH7XTm+wH8N77X2VkqsGtu7175LvlHriiSeYPn16o9t07tzZ6uODBw+mpqaG48eP0717d6vbODs722ygCCEuL6YFa03Fx+uD5eqrX+T113P5/fffmTRpEsnJyXh7e5sF1YkTJcydm8ipU/oGxPffX09+SSUPL0pmW1YhTkoXHhzfDRdHe+OUuv79Axg7Rn8dSt5x0iy8QL9KX052KVXVtWaPW8rMLGHnrlNUlNeizitn1KgQmx1OlnPcG9umqqqWjIxiABKTsklKzCEmNojYmGAyM0vY/k8uheVVKN0u7UiQPBBCNNXZ8iA+PpTrr19CfHw8ixYtIjY2lpkzZwLmjZf77lvL33/nkpdXxh9/3Aq6q8nf8CXtEl9kbN1H2A1/FIL0HUaGEUv9+weY1Z0KbK+kRw8f4zXZx9elPgs8zR63lJqSR0pqHlptdaNT9JqTByEhHuRryklNyaPwdCUnT5UZpyCWaWv4Z3suRUWVdFQq6Hxtkz7qi6Y1M0HyQIi25WyZoBzwJnOPP4I2XcuLM1/kk/99gqvS1ezaqdGUs/iHdE4X6kdNPfHEQEB/7R86NNjqlDpDHoC+7lSDNkK0Pzk5pVRVNaGNsPMUFRW1qNX1bQQbHVNNyYTogV3weeNZ9u/aw8qFPzD/6Xms/mE5gZFXM2bCQGJjg0lKymHv3nxqHEulU8rf3x9/f+tLKp5NSkoKdnZ2qFSq83xWQojLSVxcB+Li9HcqIiO/JSKiN0eOHGH06Ils27beLKgWLtxLdXUdAQFuTJyoLzbo5+HMDw/G8ulfh5m/4TAvrkzj4RFdUFsZrRQS4kFWZgmagnI0+eWo/JVERPjh6+d61ql7ISEe9OsbwLHjRcYiuLa2tTbFz9Y2i5ekk5qSB8DRo4Xs26ehorKG2Bh9gA4a2J6cgjKioi7t6XuSB0KIc2WaB9CB1157jWeeeYaHHnqEwkJfnn76ZrNMaNfOGWdne9q1q++gUCjwi78Peg2B5TPgrzehx3XQ584Gd6dDQjzIzCrh+LEiYuOCjA2IIXHBhHT0POs0DcMILGcX+0ZHQtma4mdrmw0bMklJzePo0UJyckupqdGhVDoyalQIAwe1p0BTTnh4ddM+0ItIMkEIca7OZEIc5Y5ZvHTbS2QczuDpe15i/pLXGlw7a2p1tPN2JibmzGhTa9dga6OVQkI8yMoqQaMpR6MpR6WqbyP4up516l5IiAf9+gVw7JhJG6GZ076tbXPo0GnChkwn2iGbhP/9wqHU+Rz4OwrfDx41vsfe/c9e6+pcXfKdUk2VlJTEtm3bGDlyJB4eHiQlJfH4449z11130a5du4t9ekKIS4Svry/9+/+bNWv+TXLyRt58803mzJljfN70LvqZhgvY2yl4eGQ4A0J9mL00hVd/38+Y7v50797OeCfCMAqptraOgoJKs7pTjXUimRY2HzUq1OxnA0Mx9aHDOhhHZTWVYaphdB9/amrqyM0pxc/X1ViT6qabwinQVmFn16zdXrIkD4QQTfXUU0/x4YcrOHHib1566SFmzBiBn9+ZDvrHHutPZKSfMRuMAiLgnnWw5hnY9S2o0+kU8SDgY5zikZhkngeGKXhnazBYLi1u+jPop1Rs3JhJSIgn117bqUnFcU0ZOrtqauoor6jB1cWR0FBPMjNLGGLoPNMcbtY+L2WSCUKIpnh+9PMsvfNP9n62iT1Jf/Pz1z9z84ybjc8bpuZFR/sb/763xXK0kmEqnNU2QiOZYHr9HzUqtEEewJli6kOHdjCOymqqM+8piuDwnvzx81qKM7fzwPUP0Puqvtw9eyodewc0a58t0WY6pZydnVmyZAlz586lsrKSsLAwHn/8cbP54EIIAXDvvWMpKDjC9u0f8uqrr3Lvvfca77aa30VvaHBnX/73yBCeXJbKb+lqevi7E1unX8Q0KTGHvWn5dOzo0aDulKn09HxSUvOI7qMPNcPdlKLCSry89UETEuJxpnCtv9JYTB1odqdURISfMfh8/VyJiPClqLDirDWpLleSB0KIplIoFLz66gc8/PANlJbm8t577/HKK68Yn280E5yVcMP70CkOfn8Kv+0v4hBxD4czu7Bxo75uSMeOHkRbqTtlYK1ulCETCosq8fZqmAmJSTns26chJ7eUiAjfZndKRUb4ERnhh1qtJSLC17jvs9WlulxJJgghmkKhUPDciPk8pb6ZrGWHWPjfhYy5eQzuXu6A+d/TZ2O4jhqu24apcB07ehhrUVmTnp5PSkqesePL2EYoqsTLSh6oVEpjMXWg2Z1SZm0EX1eiek7hdMFEEtclcODvDTx+6+N0i+7G5H9NbtHqe03VZjql+vXrx99//32xT0MIcQmxtST4pEndmTjxfV54wZtJkyY1efi/YdWm+PhQvpg6kC82H+GdPw5yLE/LdZXVxNQXEm/n40xOdqmxYKGllNQ8UlPyOHSogIryfUT39adHDx+zjiLArNPItJh6c6jztCRszUFTUE5crH7ZWpW/EnWe1tgB1tZIHgghLNnKA4CpUwcQHb2GZcuW8eKLLzZpf6Z5EBd3OwT1g59n4L37A5R1gwgNGY2ziwM+7ZzJzrGdB4a6UYcOFVBesY9h9cVwAQqLrGdCbEwQlRU1hIR4NusabrjDbqgz2Cfa37gsuYFkghDiSmArE26/pTdDx2zkqqqr6DC8A/Zu9mfdl2VHkoFpZ79hKly7ds7kNJIJKSl5pNZnQkXFPqKj69sINvJApVKaFVNvKss8MJy7SqVErdbSzucaHnhyIkf37mHxZ4vJP5nf5H23RJvplBJCCEu2lgQH/d2Ql19+uVn7M6zaBPq75w+M6Erp8VK+2HOCFcfymNgvmNmzB/Duu8nsTdNfvGNjghvsxzCC6u+/cziZqwXg1lsirHYUGf577JjOZiOkLEdbWaPO0y9juyP5JGXlNU2eTiiEEG1NY3kA+hXZevfu3eT9WeYB/t1IjFxAXcZzxDqvpavXSRxv+jdvf3actL31eRDbMA8MI6j+/juH3JP6PBg7trOxYWAYKWVgqDliua+zrdRnuqx5SWk1eXnlAE2eUiiEEG1JY5kQ7BHMis9XcN8f97EwbSEze8/ErpEaF4aOJMDsb/KqqlpOndLSubMXsbHBxMYG8847/7C3kUyINsmEk/WZcOut+mncXlbyAPSZYTpCylYnmak9e/LYuVNNVVUtJSXVZudumgcBATF0j+2Og13rdhtJp5QQos2ytfyrgeEuiZeXE9u2bScnZydvv/2K1W3BvN6UgTZDi++OEhxjfVi2M5v0kyX0HaS/y20YOWXJMFTW29vZWCcKzDuK0tPzOXToNEo3hwadR+o8Lct/OUxWZjFabXWDwFHnaVm79jipqXm4uzsSEuqJm5ujzemEABpNGTk5Wvr7ehDWydvmdkIIcTlqah5ERflSWVnJM888y+zZjzFkiPWOKmt5sG7jKdZvncCjo6K5teYzWPMU1/e+BfAnNsZ6Hhim0nl7O7N5ywmGmdzpNm0Y7KvPBDelQ4POo33p+Xz77T5K6xsWpp1SarV5HnTv7kOvXv7GkVLWqNVa8g9q8HIvIfjSXv9CCCFa5GyZ4FfRlfFu97G84GNe+fpd2hf4c99T06xua1prylRGRjF5eeVkZBQbO6AMI6ZibGSCWRuhvk4UmOeBsY1gJQ/Uai3Llx8mK8tGG6E+E5KTT+HsbEevXv44ONjZnE4IkK8pQ51bRR/HIqs3dc4H6ZQSQrRZtpZ/NTDcJdFq1bz//u3U1lYzYEBPbr/9dqvbW6stYmiQXD0qhCOKGt5Ys58TDuU8cFcPwgP0dzAMhcuNQ2TrRzeNHdOZ/v0DyMwsQZ2nNet8MkzxA31AmRY/z8wsoaK8GgcHBb4+rg3OMzOzhG1/56ApqCSskye3397jrKOisnNKOXK4iLQAjXRKCSHanKbmAcAHHzzHmjVL2LNnG3v2/IOLi0uD7RvLg+D4YRBxO/x8Lz2yF9Fj6Cjo3xewPoUuMsKPsWNN8kCtbdDQMEzzA4z1oAyZkJqSR2lJNe4ejg06mjIzS/h7Ww4Fmko6hXkalxG3dofe9DV5x4tx8y4kuOmDx4QQ4rLRlEyoS+mFStGHP1/7Hmohok8Xhlw7pMG2tmpNWeusMoyYMrA1ja6xTLAcmWWaB5mZJVRU1LcRfG20EbbloNFUEhbWtMUycnK0HDtcSpqLRjqlhBDifIuK8kWtLiM/34kxY6by229fce+999K7d28iIyObtI8OHTwYOLA9IR09GRrqxYDQdjy6JIW3/jjA9b2DGNzekz//zKK4uJLSkjNTJgwdTYbpFGBecNwwqsnb25nFS9JxcbZHW1YD6IfrjhgRAujo1bvhnY2QEA8GXxVEZmYxI0eGNOiQsjb1LzjIHQUKm3eMhBCiLTNc+7y8nIiPv4etW9dw+PBeZs2axaefftqkfRjyoEMHD/Dxgrt/hw1z4e9PIf8g+REPsuHvSptT6HbXT6fo109F/Cjz63afaH+02mpqaupYv+E4ACdzy4zPGb5bTt0LCfHgqsEmeWCl8WE59S8kxAO3Ck+8wr2b9L6FEKKtMbQRPPMf4eio7Rz/4xCvPf4aX6z+guBOtjv1Tfn6uhIe3s5q5xCYT6suLbVoI6gt2ggm125DJ5e3tzOLF6fj4mKPVmuljdDLRhuhkUywNvUvKEiJg8KxVdsI0iklhGhzEhJOsGzZQYKD3bnllu42e/VDQ71QqTQcOVLIzJlPUV5+jD///JNJkyaxfft2PDzOXvDVck56zw7efHxjL/7z6z5WpuaQsE+N87FyQgKUxMQGGUdKgf5uRXFxFfb2dhQVVpiNljLcdXn/g52kppyie3cfrh4Vqq8n4q9k1CjbdzVU/kqm3BUF6EdpJe84aXwdNByFBeDr64a/vxuhIa1zB0QIIS4GQ0Hynj39cHV1tFroHM7cNV+9+iiFha489dR/efHFe/jss8+IiYlh2jTr0zZMNahR4uAE177GKeUAvDfNxvvvF/FSx6FVxhAbE2RlCp2Cyspajh8rbnBnPDLCj/37T7Nhw3HatXNlxIiO9OjhY6wxZa2OFOgbMlOmRBl/Nr2jbti/5SgslUqJyt4Xgtpe0XMhxJWtJW2ENx9cwszMURTuL+S5+57j05Wf4uLacAStJWurmppeg/fsyePw4ULat1cSU58Jhg4nszZCUYVZJhjbCO/vJDW1vo1wdajxut5oG8EkE9RqLcnJJ83ywFp9LD9fN9qrGh9Zdq6kU0oI0easX5/BH38cx8/PlchI/QXV1qpLpnPKFy9eTL9+/di/fz/33nsvS5YsQaFQALZX6bA2J/3YwSIiChVEdmvP0sOnKAhyINjHiZirgswKnxsKFBYVVpB7sgwv7xIr0+x01OnAxdWBAf0DscZ0ah9wpsHhrzQPxPp9GzrFGqsxJYQQbYGhIPnBg6fp3NkbtboMlcp6HoDpNb0XOl0mL774Ig888ADR0dH06dPHuJ21TLBVo2RHcTR7KudzQ91/GafahMbxBL59n2gwha53Lz/y1GUUF1eSmVnS4A52gaacmuo6XF3s6d3Lz+aUC9NGD2DWCWWtkWQ60koIIdqylrYRfl/+O8OuGkbGgQzemfMOz/73WWMbwVpnP5z5O9+0OLnpNRgUuLjYExbm1WBan7GNUFRBbm4ZXl4NMwF01NWBi4tDg5VUDZqbB7bqY7U26ZQSQrQ58fGhFBZWEhzsTlSUb6MrbBjujmdkFJGcXMr77y/gttvGsXTpUmJiYpg1axZge5UOa3PSTUPs+kHB/GfVPv4pLKV8wyHuiQvD09UROFPY3Nqqewaj40Px93czdiCZdkAZOpnMAw6zTihrgWhr7rsQQrQ1hjpPhpFSarW20VX4TDOhX787GTFiK5s2rWPSpEkkJyfj7e0NWM8EWzVK9JnQiwLPb9l78Dsicz+E356EAfdApzjjdvo73CFmDQhTsXFBKJX6ulHW7robHrOZCSrrmWAoti6EEG1dS9sIBcdUPPfWK8x94GnWL19P74G9GT95PGB9RJThvy07ksyvwR54eTlbvd4bXmtt1T2D0aPr2wj1HUjnIw8uVhtBOqWEEG1Ohw4ejB7dyeaoJmsMoRQT04V3332Xxx57jISEBP71r3+hUCjOukqHKdOGSShe/B6pYkHicd754wD/WbmXqYND6d/Jx7i96ap7lizDwdrIJ2uhYvjvxvYthBBtXVxcBzp08DDeCY+K8jWOlGpMWpqGbdtOMnPm6xw7dhCNRsP+/fu56qqrgLOv3GTKrLNqyBzIvwVWPABJH0DWNhg0E5z112lrjRgDa51H1hpDjWZCI/sXQoi27tzaCDdz6+M7WPruUtb8ucbYKWXtmmuL5TX4bNfjxq7ZjbYRLrM8kE4pIUSbY3nX42wrbIB5A2Ps2EcICQlh/PjxxqG5TdmHLXZ2CuI7+qDoFcrSTDWfbD7KgIzTTLkqBKWzo9XRT7ZYCxdNfrl+aVg3ByIi/KzuIzEpm6TEHGJizacQCiFEW2eaCePGdW7Stdw0E3799Vc8PDzo3Lmz8flzyQT8upJx9Y9UbHib8NyvsFs9GwbeBx0GALanglhjLRPyNfpMcFM6GGtEWUpMzCYxKYfYmKBGV+ITQoi25FzbCEvGLqHOt479QfvZdWoXfQP6nnPnTmPX/HPNA019HiiV9W0EG3mg73S7eHkgnVJCiDanOXewDSxDacKECcb/1ul06HQ67OzsWnxOaWkaju3W8PDgYA73ruPTv44wZ/leYlSeqLAn96R+FaXGOqXUeVr27M4HdGASONYKl1tKSsxhb1o+FZU1ODnZN5hb7uDm2OL3JoQQl7JzzYTQ0D5mz9XV1Z1THgCk7S8iKfM6ruk9lKH5r8KWtylQ9qK23wwyT2J1Kogl01XzTLezLFxuTWJSDrt356HRlNO1q7dxmoix8WN/Tm9PCCEuSeejjbD46cVMWzON7/d/j5+rH8HuweeUCY0VRDfUlDJ9zhrTVfNMt7NWuNxSUlIOe/fmU1Fho41wAda8kE4pIUSbc053sC1otVpmzpxJhw4deOONN1q8H9MQHB/qxbiegcz8+h82ZJ/GpaKOWB8Pm8N+DSOpigor2LlLDTrw8nYxK1yel1dGXl4Z6en5VkMnJjYIAFWAm9W55Z17+DR4jRBCtAXnMxPWrFnD7NmzWbduHcHBLb+jbMiEkKheELyJA1//h7Dsr2HLM5RVXI2b12CrmWDacWSr88nb2xk7O/13W2JjgtBoyvH0dDYWVTdrGIW1+K0JIcQl63zkgYO9Ax+M+oBJP05i9ozZjB48mvufvL/F+7NVEH3LlmzKyqqIjPS13Uaoz4SUFDWHDxcC5p1P0dFNaCPE1LcRVDbaCFFOLX5vTSWdUkII0YiNGzfy/fffA3D8uBePPjqFuLgOzd6PZQh2b+/JV3f0Y8abCWS4w19lWvzzShjl54Zd/ZRBA0NDoX2gkn59AwBdg6KEhtFSKal5VgOna1dvnJzsUbo5oC2rQenmQE6OlvaBbk2aAy+EEFe6uro6nn32WdLT04mJGcu33/7K8OEt672xzASXa+eQlBxP8M7/MMxlNacq01C5PQGY3xk37TiytWpeYWEldXX677Z07erNqFGhGPJErdZSWFRJYHtDJpS26H0JIcSVwMfFhwm1E9i0bROLty+moNSbCbdd3aIi4bYKotfV1aHRVFBRUWtzlJQhE3x9XVEqHRusmhcR4WccLZWScpY2gtIBrbYGpbK+jWDMA9tZcr6c29hjIYRo466//nrjCnzLlr3Mjz8m2Nw2I6OI1auPkpFR1KR9d+ncjlenRjPJ3Zue/h78mHyCl1bt40ieeWMgJMQDpZsjx44XERSkZNSoTg2m+UX38adPtL9xlT7QD+VdvCSd9PR8Y2hpy2oY0D8QbVkNuSe1ZiOuhBBC2GZnZ8fSpUtxdnYnK2sPzzzzjM1tm5sHoaFeDJ8Uz6mxP7KKh/BxOA2rn4TdP0JttXG7kBAPevTwoaqq1jh1z3KKniELLDur9qXns3hxOvvqM+FkrhZvLxfjKCnTn4UQQjRu1j2zuO7O60AH6xd/yZaN+21uq1ZrSU4+iVqtbdK+VSol48aFMXBgYIOOJlMhIR4olY5oNOVER/tb7XSKjvanTx9/s/2k1+eBWRtBW8OAAYFotTXk5mrxuoB5IJ1SQghh4eefDzB58ip+/vkAAP/3f/9Hr14Dqa0tZ/XqeZSVlVl9naF4YlqapsnHiovrwNvzhrJi9lDevz2a2jodr/++n883H6WkQt8QUfkrqais4fChQuNUDUsREX7ccXuEWRgZRk8lJOZQVFhpNirK0LCRUVJCCNE400zo2rUrc+e+B8Dffy9l6dKlVl/TkjwAiBsSwvVzX8fxsW3QfRzs+xX+9y/9Kn3oGyoDBgSSkVFsVk/QVGSEH3fcEdGgsyo1JY9//jnJ6tXHcFM6mGWAZIIQQpydZRth2VfLCOzagdryatb99CFVlVVWX2fo+MnMLGnysSLqr+WNjb5SqZRUVNRw+HAhKVbywNZ+DKOnEhJyKCqqNBkVdXHyQDqlhBDCwvLlh9i8+QTLlx8CwNHRkTVrVqBSqThyJJ0HH3wQnU7X4HVRUb7ExAQ1q3iigUKh4IboYNY9Poz7hoaxO7uQOcv38PveXGrrdISGeuLv70poqGeT92m4U+7r49JgVJTKX8mA/oEcPlzIq68lsXz5QfLzy5t93kII0dZZZsIzz8wwjpK65557SE9Pb/Cac8kDADyD4NZvYMov+v/e+l/YMA+KslGrtTi7OBDe1bvBaKjG9In2JyjYHXs7BWX1d8QNd8ENnV07dpxizrObSUzKbtl5CyFEG2aZBy4uLiT+sRkXTxfyj5zi5TkvW31da3b0tKiNUD96ytfXpcGoKEMeHD5cyKuvJrH8l9ZvI0hNKSGEsDBxYrjZd4CgoCB+/PFHRo0axaJFi4iNjWXmzJlmr2tJ8cSMjCI2bswiP78MPz9XRo4M4bnrIrl9YAiv/LaPn3dms+lAHtHe7qgC3HBysr4kUnp6PimpeUT30Q/dVedp0ZbVMGpUCHBmBQ1LSYk57NunISdPS3h4u2aduxBCXAmsZcLLL7/Mtm3b2LhxIxMnTmT79u14eJy5xra0mG5CwgmWLTtIcLA7t9zSndDOI+C+jZD8FWx+C37/N3bu/anTDiU6OsTq6nqmq/JFRviZFUefOiXSZh4AbN5ygiNHCtnlWkXstGafvhBCtGnW8iAsLIylPyzlhvE3sHXZVn7s/yO3Tb7N7HXW6kadjVqtZc+efIqLK/H0dKJXL3+r+3BysicgQGm1jWC6Kp9hpJRarUWrbUIbIUnfRsgtrKVHuKpZ595c0iklhBAWJk3qzqRJ3Rs8PmLECF5//XXeeecdunXrZvW1GRlFpKVpiIrytdkgMd0mLU3D2rXHyM4uJSjIHZVKSWioF11U7nw9fSAbD6h5e+1BNmQX4OPsgG9VFck7TuqX7PZXGjuj8vLKyMnWz1OPiPAjYWsO2//JZdDA9tx0U7jNulExsUFUVNYQ0NGD4GD3Fn5iQgjRdlnLBAcHBxYvXky/fv2Ii4vDwcH6n9TNzYT16zP444/j+Pm5Ehnpp3+NgxNc9SD0vBn+ehOfnd8y0WEXpwuHsmvbNQSHqYwNlX3p+Xz77T5KS/TTvyMj/Ni9J5+kpBzaByq54YYuDBgQaPO9DhuqX8ijb9+Go4GFEOJKZ6uNMP668Tw550ne/+R9tlVtY3zVeNyc3My2Mb1BYKuDynSbzMwSdu48hUZTga+vi80aT4YOJaXSgeTkk8b9p9fnQUl9Hhg6pRIScti+PZdBg+rbCDbOJSYmiIqKGgLCFK3eRpBOKSGEaIZ///vf3H333fj766dMWDY4DHVEAJsNENNtoqJ8ufbaMPLzyzh9uoJ1646za9dJ9u0rYOLEcCZN6s6wcH9W7Mrmg42HWX5IjSd2DCv1YcIwN2NNkaBgJX2i/QkN9SR5x0myThRTVFSJpuDMcFt1npY9u/V3XAD9XZfe/sTGBFOgrcJOJnQLIUSTBQQEsGvXLlQq/R1kax1Qzc2E+PhQCgsrCQ52p7y8mnnzEnBwUJhkwtvYXfUQbHyVdmkr8FAnkn96OFx9GzgpSU3Jo7SkGncPR/pE+6NWazl+rIjCwgpAf0dcpVKiVmvZvScf0OHm6khGRjF9ov0ZO7YzY8d2Bs3hVv70hBCibXnjpTe4YcoNPJ78OF/s/YLbgqZz4kS5sZPIdPXUs62mB/rOpn79AigurqS0tJqUFDVHj54mK6uUmJggYmODjftSqZQkJ580239KSh4lJdV4eOhX5TN0eGVl1bcRNCZthPpRWTk5pVRW1hIXp99/bGwwBeUFONo7tuZHJ51SQgjRHJmZxaSllRAV5URoqBd//pnK4cP6O8qhoV5ERfmiVpehVmtJSDhBUVFVgzvkhhojhsenT9c/N29eAps3Z1NYWGFcynvSpO442Ntx84COXN+nPR+tOch3/2SxKiOf3b9pie7oTm+dH32jVURE+LFhw3EStmYT2F7J0KEdzFbjy8wsYecu/R0XgLraOjZsyOT68V3o0bvpdUmEEELolZc7s3r1UaKifNm9W80ff6QA/Y3X/JZkQlycfrTSvHkJrF+f2SAT8O0MN3/Fyc73YP/X67Qv3AC//gWdr6Zf1FAgiD7R/vj5urJhQyYlJVVE9PClU5in8Y56ZmYJu3aeQgfY2Sk4criQhMRs7rwjwtjQEUII0XQnTpRScjSYR8Kf5t39L/P1sQV0LBsN6DuJQkI8KCqqpKiogvT0fLTamgajpkyLjatUSkaN0j+3eHE6aWkatKVVlGr1I58sr9WmrwWMq+0Zpu5t2HCcnTvVBAbWtxGiLdoIO0+RkVFEXR0UFJSzevUxYmKC6NHXtTU+LjPSKSWEEM1gekd7x44NPProNG68cQb33z8P0HdMqVT6bTIyiqmpOdNhlZBwgvXrM4iPD2XcuM4N9h0fHwpgdlfclIujA0+Mj+Sha7uxdMcJFiYcZ+WRPFQezgQq6uhcXQsoQAFB7d0ZNSrU7PVKNwfatXMhMFCJu9KRhMQcsnO0JCXmSKeUEEK0gCETSkoK+fjjp0hL28v06VuNz9vKhBMnSox5EBfXweooqrNlQlC/OOj7P8hN1RdCP/A73XXr6N4pBgKuI/loDcXFVQQGKhk1KqRBw6dL13YUaMoJDnbn+PEiCk9XkpiUI51SQgjRAoY8iInpT7+cfiyau4joSXlce+2zgL5jystLPxJKrS6ntlZnfNy09pO1KdaGDiR7e4wjpSxZ1q2KiPCzWLlPAUBQkJU2glLfRvDwcMLBwY7MzGKysvQrBfbo26XlH0oTSaeUEOKK15SaHwamd7T/+qsUrbaUH354n7vuGkNo6Bizbby8nIx3xQHef38Hf/6Zxb59+cY74abi4joQF9fB7HyscXVyYFpMJ24f2JHVu3P5OuE4P2zP5OedJ+gV6EGfmPb06uYD6KfsGeama8tqcHHRLwM+oH8gAYFKkhJziIltGGxCCHGlakkmhIY6oVZno9Gc4t//vp8//vjDWGfKWiY89dSmRvMAmpgJCgUERcMtCyH/ECS+D/tWwvEt9PEIxTc8FmXEMOOUPdN6JiEdPSjTVuPv78add0ToO6SsNHSEEOJK1dI2wlWZV/FN1TfsWpLIxmGruO06feFz0/pPhpFSAP/73xF2784jK6vYoiNJz9DBZHodb65evfzw8nI2vtZ0X1qtSRthQCCJidn1HWwXJhOkU0oIccVrSs0PA9MVlaZOnUpiYiKfffYZd955J//88w9dunSxuerS6dOVlJfXcPDgaTIyis5aX0StLkOlsh2Ezg723NSvA+P7BLErs5Bvko6z8YCa5MoiNucVcVVnH5TaOrKPFgMNh/XGxgQTGxNMeno+v648RM8oP+hrvXEkhBBXipZmwvLlyxk4cCAbN27kmWee4e23326wjUFT88D0fBrNBIUC/LvBhA9h1IuQ8j2OqYsJO7UY8pdDUD8Ka3px4IT+brthKgmcmSYSGxuMWq1l/YYMPKtzCXYvIbhh20gIIa4YLc2DmTNnkpCYwHfffseXT31Jp7BODI4cbHMVvtLSaior68jOLkWt1p615lRRUSVeXo0XTbdkeWzL+lWm3w31pPRthMP0jgqAVhwwJZ1SQogrnumdjeaaP38+u3btYvv27UyYMIGkpCSzZcFNzZzZh6qqOvz8XElL0xiDy/IujJeXEw4OCvLzyzhypBBoPAgd7O0YGObDwDAf1MUVrNiVzeq9J1m1O5eaOh2+zo5QXk473OnXNwA7O4XZ61NS89iXVoDCxv6FEOJK0tJMiIiIYOHChdxyyy2888479O3bl8mTJ1vdtql5ADQ7E3D3hyGz9Cv2ZSbCrsVwdCPdtEl0dnSlpigKjg1C1T4alcU0EUOtqQDH05R3KCS4d7M+AiGEaFNamgcKhYLPPv2M3bt3szt1Ny898BKf/vIpHX07Wt1+zJgwamrq8PR0Ni5IAQ1X7FMqHbC3V1BcXElurn7V7aZ2SlmyvDFhbT8pKXmkH9Bgr7OHsS06TJNIp5QQ4opna2RTUzg7O/PLL7/Qv39/0tLSmDZtGsuWLcPOylJ2kyZ1Z8CAwAbTMCzvwhQVVVFTo8PPz43ISL9mBaHK04X7h3fhniFhHMvX8vGqA2w5nM/WYxo2HdXgqFCgcnUivL07vUPb0aGdG316+1GhqyMqSm6JCyHEuWTCzTffzLPPPstrr73GvffeS48ePejfv3+D7ZqaB0DLM8HBGTqP1H+VF8LRvyj861vsT+7ERZ2MDqhyDqDEKRSnoB54doogJNiLvv0C8KyuJDjcu0WfgRBCtBXnkgdubm6s/HUl/fr3o+B4AU8+8iRfLfwKd2f3BtvGxgbTtat3g6l5liv2abU11Nbq8PR0pmNHzxZN4zPQaMo5dOg0eXllFBZWEhrqiZOTvdnoq+hofyrsSlq9jSCdUkIIcRamBcqt1f4ICgpi+fLljBgxgl9++YVFixYxffp0q/syXSbc8LPlXRjDXfHwcG+btUbOxsHejvAAD7xPVOKy9TQBLnaUedhhH+yKVldN4rECNh3Rn4O9nQI3ezuUZRUtOpYQQlwpzpYHAC+//DK7d+9m1apVTJ48mbS0NOzt7RtsZ2jsZGQUGVfws3ZX/nxkAq7eEDWBj5b58duvqYR75TKp9zH6+mXgU3EEj5J/4IAOFTDc3h1cvXFU3dGyYwkhxBXibJkQGhrK8p+XEx8fjzpBzQufvMCbj76Jo71jg20NHUGZmSXGny2n1RlGSgUFKa3WnmqOlJQ8UlPzsLODujrIySklIEBpdi6+vq6EhXnh49O6K/BJp5QQQpzF+vUZrF+fCWCzQRATE8Mnn3xCamqqzekaBrbmp584UUJamga1WktNjY6ioqpG99OU4os9e/px8OBpIiN9qKnR0bOnH/ZO9gSHeVDupGB/bgkbd+Zy7FQpurJaFDKHTwghbGpKHtjZ2fHdd99x22238cYbb1jtkDJlmgmGlVk3bswCMhk5MsQ4UupcMyEjowil0oleA8IIDOxJcXg7crp6criggKiOlQRxmCPbtlORc5BA1wp8nVt+B14IIa4ETcmE4cOHM3/+fLbs2cK+XvtYkLaAe3vea3VWheXIKAONppzMzBKKiiqordWh1dY0el6W0/6sCQ31JCenlI4d3amtxWyklOn5HDlSiIOiYSfa+SSdUkIIcRaGjp2ePRu/I3HPPfc0aX+Wd8INDRIHBwU1NTq6dPEmJiaIqChfszswHTp4mDU4TBsyhv1YNkZcXR3p3Nmbvn0DjY0dU8O6qbi2kx979uYTEemLQnqlhBDCpqbmgZeXF2vWrGnSPq1lwtq1x9Dp9I0Sw+Pl5dXMm5dgvCNv2Ql1tkxIS9NQVFTJpEndLfLAsDT4VTj4jCcjTYN7Dw982/k36fyFEOJK1dRMeOihh3iIh/g+/Xve2P4Gyw4t49butzbYznJklKGTyt5eQW2tjvbtlfTo4UNIiAfp6fmkpOQRHe2Pr6+rWSeUaeeWYT+WHVROTvYEBCjp3LkdAyzqC5qeT2mdN8HBDaccnk/SKSWEuCI1Z4lXQ8eOq2vT7xJUV1fz2muv8dhjj9GuXTuz5wxTNhISTrBw4V569vQjJiaI8vJq9u7NN5uisXDhXuMdmIED25uNsDJtyNhqjDSlQOO5zJcXQojLXWvnAcDff//NoUOHmDJlSoPnQkO9OHGihIUL9xIfH0pUlC/9+weSnV2Cl5eT8Ro9b16C2R15y1G31jLBdMU+yQMhhDi71syEyRGTOXH6BO/83zs4PeDEjVE3mj1vKDienp7Phg2ZhIZ60qOHD1VVtWRkFJtN29uwIZPU1DwAwsPbmY2wMu3cstVBZdkBZo1KpcTBw9/qdMPzSTqlhBBXpOYs8dqSlTdmzJjBt99+y99//82qVausTt8wHfL74otxrF59tMEUjfj4UOP3Dh08jOdhKzAtO6hasqKgEEJcSVo7D1JTUxk+fDh1dXWEhYUxZMiQBttY5kFkpC9FRZU288DyXGxlglqtbTA10LSmoRBCCHOtnQnJ/00m79c8vs78mnYftmN4x+ENtjHUewK4444IkpNPNpi2Fx3tb/zu66uv+RQS4mFz6p5lB9W5FEk/36RTSghxRWpOiLTkzvHs2bNZtmwZa9asYc6cOfzf//1fg23i40MpLKxEqXQkI6OowTllZBRRVFTF9Ok9jcc3fF+9+miDu+CW0/MsO6ikASKEEA21dh707t2bCRMm8NNPPzFp0iSSk5Pp2NF8WfCW5sHZMiEjo8j4MzSvsSWEEFei1s6EJ598kpUrV1Kyq4SP/+9jPJ73oF9AP7NtoqP90WqrcXGxR63WNhjVpFZr0WprGDUqxNjxZPienHyS/fsLKCqqxMtL3zllOT3PsoPKVt2pC0U6pYQQV6TWnqIQHR3NggULuP3223nrrbeIiIjg7rvvNtsmLq4DRUVVJCXlkJamYdy4zmbn1FjjwRCUpnfBrTVULLcXQghhrrXzQKFQsGDBAg4ePEhqairjx49n69atuLufqdFxLnkAtjPB8r215K6+EEJcSVo7EwYPHsxnn33G3XffjfpXNR8Ef8DT9z1ND98exm0iIvzQamvYv7+AzMwSBgwINOs4aqxDydBxVVRU0WAbw/RAa9tfTNIpJYQQreS2224jLS2Nl19+mZkzZxIWFsaIESPMtmmsgdDYc6ZLiZveBbe1nRBCiItHqVTy66+/MnjwYFJTU7njjjtYsWKF2dTuluYBSCYIIcTlZPr06ezdu5d33nmHzC8yme83n2dufYZQz1DjNo3VfGrsOUPHk1qtNY6UssZaB9XF0nAdQiGEEOfNvHnzuO2226iurmbixIkcPHjQ7PnQUK8Gd8QtnwP91IyMjCKr25SXV/Pss1v4+ecDDZ7PyCiy+VohhBAXTmhoKL/++isuLi6sWrWKf//73xbPn1seGLaTTBBCiEvfm2++yQ033EBddR1H3jvCe+ve46T2pPF5lUrZYISU5XOgn66nVmutblNVVcu33+4jMTG7wfNqtdbmay80GSnVArW1tVRXV1/s0xCiyRwdHa0W2hatzzBtIyMjg7S0NLKysujWrRtw9tU9MjKK2Lgxi9RUNTU1dYD5tI2EhBMsW3aQX345xKlTWjIzi5g0qbvZPqR+SOuTTBCXG8mEi2fw4MF888033HbbbWRmZlJTU4ODg8N5yYP16zMoKalk0aJ9VFfrt5FMuLAkD8TlRvLg4rG3t+f7779n2LBhHD12FIrhg10fMKvfLHSlblaLlRukp+eTkpKHi4u9sfi56Xbp6fn89NMB0tM1gAKA2Nhgs31ITanLlE6n4+TJkxQWFl7sUxGi2by9vQkMDEShUFzsU7niuLq6smLFCvLy8ujZs6fx8bM1DtLSNKxde4zS0moGDAhoMB1j/foM/vjjOHl55VRV1VFRUdtgH1I/pPVIJojLmWTCxXPrrbfi7+/P8OHDsbPTT1o4H3mwfn0mx44VUlhYgbu7MxMnhjfYj2RC65A8EJczyYOLx93dnf/973+UlJTgHOjMtDXTeH/X+1ztcCfZh3SA9Q4jw+p8Xbt6Ex2tajBFLyUlj337NJSX1+Lqak9kZMNrfmNTAC806ZRqBkPYqFQq3Nzc5B+uuCzodDrKyspQq9UAtG/f/iKf0ZUpICCAgIAA488nT54kMtIHsN04iIry5dprwwAdI0eGNGioGFZrSk1Vc/x4MZ076+uJmG5n+G9ZAvz8k0wQlyPJhEvDyJEjjf+t0+lQqWqJiQk6pzwASE11Ydu2k/Ttq2qw2hJIJrQWyQNxOZI8uDQEB58ZwfTVtV8x+cfJrPf4ntHhU212GEVH+xu/R0T4WX3+0KECTpwoxc/PlcLCStRqrVkHl+G/MzNLzH6+GKRTqolqa2uNYePrK3eXxOXF1dUVALVajUqlkmG6F9mWLVu46aabePzxx3nuuedsbhca6sX06bYbDHFxHTh5UsuxY0UMHBiASqUkLU3ToJEh0zXOP8kEcTmTTLh0VFRUcM8995CUlERSUhKBgdav0U3Ng1271AwZEmQzD0Ay4XyTPBCXM8mDS0vmzkwOPHMAn/E+bLr+B6I9Z1ndLiLCz2pnlOnz8fGVbNyYiaOjHcXFlWRmljToeLpUpvBJofMmMswPd3Nzu8hnIkTLGH53pdbBxbd37140Gg3PP/88CxcuPKd9LV9+iB07TlFZWcfYsZ1trtpk7Q68FLxtOckEcbmTTLg0aLVatm/fzvHjxxk3bhwlJSUt3ldT8gCsZ4LkQctJHojLneTBpSMlJYXiomKOf3ec7K3ZvL/rfQorClu0r6SkHA4fLqS6uo7+/QNtruLXo4dPg+cudBF0GSnVTDIcV1yu5He3dZ2tSK2pBx98kIyMDN58803uvfdeVCoV48aNa9FxDTVDJk4MN67MZHpOGzdmYWu6h9wtP3fy70pcruR3t3U1NRN8fX1Zs2YNsbGx7Nq1i4kTJ/Lbb7/h5OTU7GM2Jw8sn5c8OHfyb0pcruR3t3U1p40we/ZsMjIy+OCDDzj+2XEcPR15T/cej/Z9FF/X5o3EjIkJMn63nM6tVmvZsycf0NGrl3+jI6g6RzU/j5pLOqWEEOI8aO4f9A888AzJyQfZsOEXbrnlFjZu3MigQYOafdwBAwJxdXW0ekf8p58OsnDhHgID3VGplA3OSwreCiFE62hOJnTt2pWvvlrKrbdex/r167n77rv59ttvjUXQm6qxPEhL0/Dtt/s4daqU/PxynnzSPG8kD4QQonU0Jw8UCgWzZs1l164jbN26msz3M3F61snYMaVyUzX5uF27euPkZG91hFRCQg4bNhynXTtXvLxcGnRKmRdBr2zyMVtKpu8JIcR5YGuKnC379hUwaNBj9Os3lLKyMq677joOHjzY7OMags5QtNZUdnYJlZW1uLtbb6SEhnoxblxnuSsuhBDnWXMzwd4+hJtuegl7ewd++OEHnnrqqWYfs7E8iIryxcPDkcrKOrKzSxs8L3kghBCto7l5sH9/IUOGzKZXr8FoS7XkzM+hKq+K93a+R05pTpOPaxjtZChkbkqjKae6ug4XF+udViqVkgEDAi9YnSnplGrjFApFo19z5849p32vWLGiWeegVCoJDw9n+vTp7Nixo9nHHDFiBLNmzWr+yQrRypr7B31UlC9DhoTwxhtfEB7ei/z8fF5++eVmH9dW0CUknKC4uJJhwzrw738PlIaGkDwQ4gJqSSZcc8213HPPPAA++OCDZt+oaKzhc+JECb6+LgwbFszNN3dr1n5F2ySZIMSF0ZI8GDo0jLfe+pqwsB7kncqj847OuDm48f6u9zlefLxJ+7FVLyo9PZ+ysmqiovyYODH8ohY4N5BOqTYuNzfX+PXee+/h6elp9tiTTz55Qc5jwYIF5ObmkpaWxkcffURpaSmDBw9m0aJFF+T4QlxqDAFVXe3I9de/yoQJ0/niiy9avB/LoFu/PoODBwsJCfEkLq7D+TptcRmTPBDi0hUa6oVK5UZAwDBmzvwPa9eupVu35nUeNdbwkUwQliQThLg0Ga7ltbUu3HDD69x44z188/k3LBq7iHbO7fhw14fszd971v3YGu2UkpJHTo4Wf3+3Rlfwu5CkU6qNCwwMNH55eXmhUCjMHluyZAkRERG4uLjQo0cPPv74Y+Nrq6qqeOSRR2jfvj0uLi6Ehoby+uuvA9CpUycAbrrpJhQKhfFnW7y9vQkMDKRTp05cc801LFu2jMmTJ/PII49w+vRpADQaDXfccQfBwcG4ubnRq1cvFi9ebNzH9OnT+euvv5g/f77xrsrx48epra1lxowZhIWF4erqSvfu3Zk/f/75/SCFaCVRUb7Ex0cxf/57uLi4AKDT6aisPLf52/HxocTHhxAfH3o+TlO0AZIHQlzaDCOd5sx5ghEjRhgfP9c8AMkE0ZBkghCXNv0I2t689967ODk5EeQexPdjvyfULZQv93zJ1uytLdpvdLQ/ffr4Ex3tf57PuOWk0PkV7Pvvv+eFF17gww8/pG/fvuzatYv77rsPpVLJtGnTeP/991m5ciVLly4lJCSErKwssrKyAPjnn39QqVQsWLCAMWPGYG9v3+zjP/744yxatIh169Zx6623UlFRQf/+/Xn66afx9PTkt99+Y8qUKXTp0oVBgwYxf/58Dh48SM+ePXnppZcA8Pf3p66ujg4dOvDTTz/h6+tLYmIi999/P+3bt+fWW289r5+ZEKaas5qGLaGhXmav1el0PP3002zfvp3Vq1e3eInpuLgOxMV1MC7zfS7nKNo+yQMhzk1r5AHAvn37GDduHB9//HGLV2kFfSZ06OBBWpqGjIwiyQPRKMkEIc5Na2RCXV0dc5+ZS/H+Ygb+ayA/HviR0xWnub7z9c1aQTEiwo+ICD/Uai3JyScJCfG46FP4pFPqCvbiiy/yzjvvMHHiRADCwsLYt28fn332GdOmTSMzM5Pw8HCGDBmCQqEgNPTM3TV/f33PquHuRkv06NEDgOPHjwMQHBxsNlT40UcfZe3atSxdupRBgwbh5eWFk5MTbm5uZse0t7dn3rx5xp/DwsJISkpi6dKlEjiiVbXGEtoZGRl89tlnFBcXM3HiRH799VecnZ3PyzkafjYE5PkITNE2SB4IcW5aIw8APvzwQzIyMpg4cSKrV6/m6quvbvG+GssDOD+NKNE2SCYIcW5aIxMOHz7MV199RVlZGTe43sCE2RP49fiv5JfnMyVyCg52zevaMRRCN/3Z0EGlVmuNPzs0rIN+3kmn1EVysYNfq9Vy5MgRZsyYwX333Wd8vKamBi8v/flMnz6d0aNH0717d8aMGcP111/PNddcc97OQafTARh7dmtra3nttddYunQp2dnZVFVVUVlZ2aSRIh999BFff/01mZmZlJeXU1VVRXR09Hk7VyGsaY0ltDt16sTXXy9l8uSbWLt2LbfffjtLly7F0dER0BcwX78+g/j40CbVBTE9R8uAbK1GlGgeyQPJA3H5a408AJg/fz6HD2ewbt1qxo+/gXXr/iA2Ntb4fHMyobE8gNbrWBPNI5kgmSAuf62RCd26deOLLxYzffotrFy5Ejc3Nx556hE+2fMJ6mQ1V7vewuG9lURH+zepVpShAHpIiIdZB5VKpTT7uXOU03l7D7ZIp9RFcrGDv7RUvxzwF198weDBg82eMwyz7devH8eOHeP3339n/fr13HrrrcTHx7Ns2bLzcg7p6emA/q4FwFtvvcX8+fN577336NWrF0qlklmzZlFVVdXofpYsWcKTTz7JO++8Q0xMDB4eHrz11lts27btvJynELZYm2pxPri6hnPzza+xdOnTrFixgilTpvDdd9/h4ODA+vUZrF+fCXDWBoitP2wtg/J8N6JE80geSB6Iy19r5YGjoyMPP/w2R47kcfToP4wdO5Z169YxaNAggCZnwtnywPS/JRMuLskEyQRx+WutTPD27snEiS/z88/Ps2TJElxcXHjnxXf4T+J/WFz0KXbHBwORZ+2UMh0JZTp1z7Sj6sz3c69reDaXTafUq6++ym+//UZKSgpOTk4UFhY22CYzM5MHH3yQjRs34u7uzrRp03j99ddxcLj03ubFDv6AgACCgoI4evQokydPtrmdp6cnt912G7fddhs333wzY8aMoaCgAB8fHxwdHamtrW3xORhW+oiPjwcgISGBCRMmcNdddwH6ebMHDx4kMjLS+BonJ6cGx0xISCA2NpaHHnrI+NiRI0dafF5CNEdzRy41RVSUL3feeQOjRgUxc+Zd/Pjjj9TU1LB48WJjkdqePf1Yvfoo5eXV7N2bb/X4ln/Ymgak6XlfjnfE21ImSB5IHoi2ozUyITo6iLfeWsCbb97P9u2JxMfH8/vvvxMXF0d8fCiFhZUolY5kZBRx4kSJ1eM3lgeW5325ZUJbygOQTADJBNE2tFYbYerUmxkxIpBHHrmHhQsXUl1dzcL3FvLgH4+RN2gzpyqqOHWqIwUFFaSk5FkdOWU5MsrwBZCenm98nUqlpKBcOqWMqqqquOWWW4iJieGrr75q8HxtbS3XXXcdgYGBJCYmkpuby9SpU3F0dOS11167CGfcuNbqPW2OefPm8dhjj+Hl5cWYMWOorKwkOTmZ06dPM3v2bN59913at29P3759sbOz46effiIwMBBvb29AP81ow4YNxMXF4ezsTLt27Wweq7CwkJMnT1JZWcnBgwf57LPPWLFiBYsWLTLuLzw8nGXLlpGYmEi7du149913OXXqlFngdOrUiW3btnH8+HHc3d3x8fEhPDycRYsWsXbtWsLCwvj222/5559/jHdXhGhNzRm51FRnrg+d8fNz5eabb2b58uVs2bKFq6++mri4DqxefZSkpByOHi0kM7PE6vEb+8O2Nc77QmpLmSB5IHkg2o7WzIRrrlnL+PHj2bRpE3PnzuWPP/4gLq4DRUVVJCXlkJam4Z9/cq0e/2wdHZdzJrSlPADJBMkE0Va0dhvB19eVO++8kyVLlvDQQw/x6y3LuHfZ46QpEvlqfy7BuSNIT9WPfLTslLIcEWUqJSWP1NQ8q69rNbrLzIIFC3ReXl4NHl+9erXOzs5Od/LkSeNjn3zyic7T01NXWVnZ5P0XFRXpAF1RUZHZ4+Xl5bp9+/bpysvLW3zuF5u1z+7777/XRUdH65ycnHTt2rXTDRs2TLd8+XKdTqfTff7557ro6GidUqnUeXp66kaNGqXbuXOn8bUrV67Ude3aVefg4KALDQ21eVzA+OXi4qLr0qWLbtq0abodO3aYbafRaHQTJkzQubu761Qqle7555/XTZ06VTdhwgTjNgcOHNBdddVVOldXVx2gO3bsmK6iokI3ffp0nZeXl87b21v34IMP6p555hldnz59zvUja1Pawu/wpWjr1izd3LlbdVu3ZrXaMX7//XfdggULzB47frxQ99tvR3TLlu1v0fFNz9uwr+PHC1t0fraumxdCa2ZCY+/rcv/3JHkgLvff4UtVa2eCVqvVzZo1S3f69GnjY6bX8JYevy1kguRBy0kmXNnawu/wpehCtBFWrFih++GHH4w/Hzt2WvfcTx/o+i8aoBu4aLDulnef0X289ifdxsyNTf76eO1Puvvf/Fj38dqfdD8mr9K9uOxT3dd//9ii82tqHih0uvpKcpeJhQsXMmvWrAZDc1944QVWrlxJSkqK8bFjx47RuXNndu7cSd++fa3ur7KyksrKM0PSiouL6dixI0VFRXh6ehofr6io4NixY4SFheHi4nJe35MQF4L8DrcdJ06cwNvbG3d390a3+/nnAyxffoihQ4MJCfGyWTTVMOoqJiaIceM6N/t8iouL8fLyanDdvBDOZyY0NQ9A/j2Jy5/8Drcd+/fvN65WZoshDyZODGfAgMBGC2lfrpkgeSBEy8jvcNuRkZGBv78/WRVZPL3laY4UHmFQ4CBu6XYLLg5n/t8mJmaTlJRDZKQv/v5uDWpLGSQnnyT1UAbdu/rz/MR7mn0+Tc0Du2bv+RJ18uRJAgICzB4z/Hzy5Embr3v99dfx8vIyfnXs2LFVz1MIIc5Ffn4+8fHxjBw5ErVa3ei2y5cfYvPmEyxZcoCkpBw2bsxi9eqjZGQUmW0XFeVLTExQmypu25JMkDwQQlxu3nvvPXr27MmCBQsa3c6QB8uXHzLWl7pSMkHyQAhxJTh58iQjR45k9OjR+OPPj9f9yPSo6exS7+Klv18iVZ1q3DYpKYe9e/PZsuUE+/cXsGdPPsnJJ1GrtWb7DAnxoEsXb4KDG78Rfq4uaqfUM888g0KhaPRr//79rXoOc+bMoaioyPiVlZXVqscTQlw+MjKKrP7BfjGdOHECjUZDcnIycXFxHD161Oa2EyeGM2xYB26/vTsxMUGAzlh3xFRoqBfjxnW+6DUsLnYmSB4IIWy5FPNAp9ORkpJCbW0t99xzD2+88Qa2JkAY8mDixHBjp9OlnAmSB0KIS9mlmAmZmZmcPn2axMREhgwZgjpXzRMDnmDR2EUEuwfz5d4veX/n++SU6kfC9uzpx9ChHejRwwfQsX9/gbFOrYFKpaR3L3/8/Fxb9dwvaqHzJ554gunTpze6TefOTRs2HBgYyPbt280eO3XqlPE5W5ydnXF2dm7SMYQQV5aLvSyzNdHR0SQkJHDttddy+PBhYmNjWbNmDdHR0Q22nTSpO5MmdTf+nJFRhEqluWTvfl/sTJA8EELYcinmgUKhYMGCBQQEBPB///d/zJkzh9zcXP773/9iZ2d+39kyD0JDvS7pTJA8EEJcyi7FTBg0aBBbtmxhzJgxpKenG9sIPaN68sO4H1hyYAlf7P6CN7a/waDAQdz7yHi8nPXnrlZr8fIqsVr4/EK4qJ1S/v7++Pv7n5d9xcTE8Oqrr6JWq1GpVACsW7cOT09Ps5UZhBCiqS72ssy2dOvWjcTERMaMGcPu3bsZNmwYS5cuZcyYMY2+7lJY0acxkglCiEvVpZoHCoWCN998k/bt2/P444/z/vvvk5OTwzfffIObm1ujr72UM0HyQAhxKbtUM6Fnz57GNkJ6ejpDhw5l2bJlXH311UyJnML4zuP5KOUjfjn8C8mnkukf0J+xYWNRqfys1pS6UC6bmlKZmZmkpKSQmZlJbW0tKSkppKSkUFqqX+bwmmuuITIykilTppCamsratWt5/vnnefjhh+VOhxCiRS6FKQy2tG/fns2bNzNixAhKSkq47rrr+Omnn876uktxuHFLSCYIIS6kSzkPAGbNmsUPP/yAo6Mjy5YtY8SIEdTU1Jz1dW0hEyQPhBAX2qWcCSEhIWzZsoXY2FhOnz7Ntddey//+9z8AvF28ee6q51hxwwpu7Hoje/P38lLSS3yw6wP+OrSN7f9kN6grdSFcNp1SL7zwAn379uXFF1+ktLSUvn370rdvX5KTkwGwt7dn1apV2NvbExMTw1133cXUqVN56aWXLvKZCyGEbefSICgshMmT32Xo0Jto3z6YLl36nXVfhuHGljVELjeSCUKItuZcO4hiY8fx5JNf4u7ejpiYcfzxR+ZZ99UWMkHyQAjRFp1LJpSWOjB9+vtcddV1dOwYSmhob7N9dfDswNzYufw64Vem95yOtlrLsqzvWFz0X77f/x2783ZTWVt5lqOcPxd1+l5zLFy4kIULFza6TWhoKKtXr74wJySEEOdBS+ekZ2QUsXDhXpKTT9G+/XQefHAOJ08qSErKQafT4eWlw9vbm4yMIrOlvy/V4cbNJZkghGhrzqVGiSET9uxxZ9So92nXrpNxX4Y8MGzX1jJB8kAI0RadjzZCSMj9PPZYe06cqLXRRihjUtQMHuzzIL+mrOeXQ7+SrTvIF3u+QIGCAGUAgW6B9A/o31pvE7iMOqWEEOJSZ/nHflO0tEGQlqYhP7+Crl296dPHn9jYEJPnVjNjxit8//33VFaGmQVaaKgXJ06UsHDhXuLjQ4mL69Cs4wohhDi7C5kHYJkJ4YSHt6OoqIqQEEcGDRrEsGHDeP/99xs0ck6cKOGff3Lx8nK6JKehCCFEW3CptBGSk3/m/vvfY8mSJZSUBJvkQWc6VvYl4mA7Zoz0xSUsj6TcJNI16WSWZBLqGdqsc2gu6ZQSQojzpCV3NFpaaDYqyhe1ugzQMXJkiHEfHTt68NJL33Hq1ClGjx7Nv/71NFdffY9ZoK1fn8H69ZkA0iklhBCt4ELmAdjOhOXLl3P48GEOHTrEtm3beO+9r4mJCTJmguSBEEK0vkuhjRAcrOTZZ78nJyeHkSNHMnv2cwwbNsUsDzasz0KBgheHDWNYx2HU1NVQWlWKQqFo9nk0x2VTU0pc+qZPn86NN95o/HnEiBHMmjXrnPZ5PvYhxIUSFeVr9sd+awoN9UKlcuPIkSKzWiB2dnb8+eef3Hvvveh0Ot577w3ee+8B7OyKjdvEx4cSHx9CfHzr3vUQVzbJBHElu5B5ALYzYeLEiaxfv56AgAD27t3LhAkjUas3ExLiCUgeiAtD8kBc6S6FNoKDgwNbt27lrrvuora2lrfeeomPPnoUJ6cywHoeONg54O3ijZdz646klZFSV4Dp06fzzTffAODo6EhISAhTp07l2WefxcGh9X4Fli9fjqOjY5O23bRpEyNHjuT06dPGugfN3YcQF9uFXl7b1rBeNzc3vvjiC4YPH84DDzzAn3/+Sa9evXjvvfeYNm0acXEdzO6IJyScYP36DJnOd4WQTBCi9V3oPADbmXD11VeTkpLC5MmT+fPPP7n77rtZvnw5n332WYM8AMmEK4nkgRAXxqXSRnB3d2fRokWMGDGCRx55hDVr1hAVFcWHH37IHXfccdHyQEZKXSHGjBlDbm4uhw4d4oknnmDu3Lm89dZbDbarqqo6b8f08fHBw8Pjou9DiLbqbMvR3nXXXezcuZOrrrqKoqIiZsyYQXp6eoPtDNM31q/PaO1TFpcIyQQh2p7GMiEwMJA//viDN954AycnJ/73v//x9NNPW92PZMKVRfJAiLansTxQKBTMmDGD5ORk+vXrx+nTp5k2bRrHjh1rsO2FygPplLpCODs7ExgYSGhoKA8++CDx8fGsXLnSOJz21VdfJSgoiO7duwOQlZXFrbfeire3Nz4+PkyYMIHjx48b91dbW8vs2bPx9vbG19eXp556Cp1OZ3ZMy2G1lZWVPP3003Ts2BFnZ2e6du3KV199xfHjxxk5ciQA7dq1Q6FQMH36dKv7OH36NFOnTqVdu3a4ubkxduxYDh06ZHx+4cKFeHt7s3btWiIiInB3dzeGrRBXom7durF161befPNNnn/+eSIjI43PGf7NyvSNK49kgmSCuPLY29vz9NNPs2PHDq655hqzjgfTf6+SCVcWyQPJA3FlioqK4u+//+all17ipZdeonPnzsbnLnQbQTqlrlCurq7GOx4bNmzgwIEDrFu3jlWrVlFdXc21116Lh4cHW7ZsISEhwXjhNrzmnXfeYeHChXz99dds3bqVgoICfvnll0aPOXXqVBYvXsz7779Peno6n332Ge7u7nTs2JGff/4ZgAMHDpCbm8v8+fOt7mP69OkkJyezcuVKkpKS0Ol0jBs3jurqauM2ZWVlvP3223z77bds3ryZzMxMnnzyyfPxsQlxWbK3t+epp55i3rx5xsf27NlD//792bx5M3FxHXjxxTiZpnEFk0wQ4srRs2dP1q5dS0BAgPGxO++8kzlz5qDVaiUTrnCSB0JcORwdHfnPf/7DnDlzjI8lJyczcOBAkpKSLlgeSE2pc1RWVsb+/fsv+HF79OiBm5tbs1+n0+nYsGEDa9eu5dFHHyUvLw+lUsmXX36Jk5MTAN999x11dXV8+eWXxkr7CxYswNvbm02bNnHNNdfw3nvvMWfOHCZOnAjAp59+ytq1a20e9+DBgyxdupR169YRHx8PYNYb6+PjA4BKpTKbL27q0KFDrFy5koSEBGJjYwH4/vvv6dixIytWrOCWW24BoLq6mk8//ZQuXboA8Mgjj/DSSy81+7MSoi174YUX2LVrF8OHD+emm27i1VdfJSIi4mKf1mXvYmRCS/MAJBOEEPDPP/+wZMkSAL755htefPFF7rnnHqnXc46kjSB5IMTl6LnnnmPHjh3ExsZy66238sorrxAeHt6qx5ROqXO0f/9++vfvf8GPu2PHDvr169fk7VetWoW7uzvV1dXU1dVx5513MnfuXB5++GF69eplDBuA1NRUDh8+3GCedkVFBUeOHKGoqIjc3FwGDx5sfM7BwYEBAwY0GJ5rkJKSgr29PcOHD2/mOz0jPT0dBwcHs+P6+vrSvXt3szo5bm5uxrABaN++PWq1usXHFaIt+vLLLwkICOCLL77gl19+YeXKlRw6dIiwsLCLfWqXtYuRCc3NA5BMkEwQ4owBAwbw66+/MmvWLI4dO8YDDzxASkoKn3zyycU+tcuatBH0JA+EuLx8++23zJkzhwULFrB06VJWrFjB8ePHad++fasdUzqlzlGPHj3YsWPHRTluc4wcOZJPPvkEJycngoKCzFbUUCqVZtuWlpbSv39/vv/++wb78ff3b9H5urq6tuh1LWF5Z0+hUNgMQiGuVL6+vnz66ac89thjPPfcc9jZ2UmH1HlwMTKhuXkAkgmSCUKcoVAouOGGGxgzZgyfffYZr732Gg8//PDFPq3LnrQRmkbyQIhLi0ql4quvvuJf//oXzz77LN7e3q3aIQXSKXXO3Nzcmn2H+mJQKpV07dq1Sdv269ePH3/8EZVKhaenp9Vt2rdvz7Zt2xg2bBgANTU1jd6Z6dWrF3V1dfz111/GobmmDHdhamtrbZ5XREQENTU1bNu2zTg0V6PRcODAAbPizUJcyTIyikhL0xAV5dukpWcjIyP55ZdfzuuqOlcyyQTJBCEuFc3NAycnJx599FFmzpxpNjpGtIzkgeSBEJeS5mZC7969WbVq1QVpI0ihc9HA5MmT8fPzY8KECWzZsoVjx46xadMmHnvsMU6cOAHAv/71L9544w1WrFjB/v37eeihhygsLM2ncXsAAQAASURBVLS5z06dOjFt2jTuueceVqxYYdzn0qVLAQgNDUWhULBq1Sry8vIoLS1tsI/w8HAmTJjAfffdx9atW0lNTeWuu+4iODiYCRMmtMpnIcSlJCHhBPPmJZCQcMLmNmlpGpKSckhL0zRr39IAEbZIJghx6ZE8EBeD5IEQl6bLPROkU0o04ObmxubNmwkJCWHixIlEREQwY8YMKioqjHdFnnjiCaZMmcK0adOIiYnBw8ODm266qdH9fvLJJ9x888089NBD9OjRg/vuuw+tVgtAcHAw8+bN45lnniEgIIBHHnnE6j4WLFhA//79uf7664mJiUGn07F69WopximuCOvXZ7B+fSbr12fY3CYqypeYmCCionwv4JmJtkwyQYhLj+SBuBgkD4S4NF3umaDQyURaM8XFxXh5eVFUVGQ2LLWiooJjx44RFhaGi4vLRTxDIVpGfocvfwkJJ1i/PoP4+NBLaqluW9fNy11j70v+PYnLnfwOX94u1TyAtpkJkgeiLZPf4cvfpZoJTc0DqSklhBCXibi4DpdU0AghhLg4JA+EEEIYXO6ZINP3hBCijWrK/HIhhBBtn+SBEEIIg0stE2SklBBCtFGG+eXAZX33RAghxLmRPBBCCGFwqWWCdEoJIUQbFR8favZdCCHElUnyQAghhMGllgnSKSWEEG3U5T6/XAghxPkheSCEEMLgUssEqSklhBBCCCGEEEIIIS446ZQSQgghhBBCCCGEEBecdEoJIYQQQgghhBBCiAtOOqWEEEIIIYQQQgghxAUnnVLnQUV1LcUV1Rfsq6K69mK/ZZumT5/OjTfeaPx5xIgRzJo165z2eT72cTabNm1CoVBQWFjYqsdpbQqFghUrVlzs0xDiylZdDhVFF+aruvxiv1ubJA8uLskDIS6+ipoKSqpKLthXRU3FxX7LNkkmXFySCeJSJqvvnaOK6lr+SDtJUUX1BTuml4sj10QF4uJo36Ttp0+fzjfffAOAo6MjISEhTJ06lWeffRYHh9b9FVi+fDmOjo5N2nbTpk2MHDmS06dP4+3t3aJ9tFRsbCy5ubl4eXk1+TXTp0+nsLBQLvDispCRUURamoaoKF9CQ8/8nicknGD9+gzi40MvqVU4LlvV5bB/NVQUXpjjuXhDj3Hg6NqkzSUPzk7yQFwJJBNaX0VNBRszN1JcVXzBjunp5MnIkJG4OLg0aXvJhLOTTBBt3aWQB9IpdY6qausoqqjGxcEeZ4fWH3hWWaM/XlVtXZM7pQDGjBnDggULqKysZPXq1Tz88MM4OjoyZ86cBttWVVXh5OR0Xs7Xx8fnktjH2Tg5OREYGNjqx7HmfH7eQtiSlqYhKSkHwBg4GRlFfPxxCgcPngaQBsj5UFul75BycNF/taaaCv2xaqua3CkFkgdnI3kgrgSSCa2vuq6a4qpinB2ccbZ3bvXjVdZWUlxVTHVdNS40PX8kExonmSDaukshD2T63nni7GCHm5NDq3+1tOPL2dmZwMBAQkNDefDBB4mPj2flypXAmeG0r776KkFBQXTv3h2ArKwsbr31Vry9vfHx8WHChAkcP37cuM/a2lpmz56Nt7c3vr6+PPXUU+h0OrPjWg6rrays5Omnn6Zjx444OzvTtWtXvvrqK44fP87IkSMBaNeuHQqFgunTp1vdx+nTp5k6dSrt2rXDzc2NsWPHcujQIePzCxcuxNvbm7Vr1xIREYG7uztjxowhNzfX5udjOTT3bPuYO3cu33zzDb/++isKhQKFQsGmTZua9LlZ+7yfffZZBg8e3OC8+vTpw0svvQTAP//8w+jRo/Hz88PLy4vhw4ezc+dOm+9JCFNRUb7ExAQRFeVrfCwtTYODgz3durUjPj70Ip5dG+TgAk5urfvVwk4vyQPJAyEkEy4cZ3tnXB1cW/2rpR1fkgmSCeLKdinkgXRKXaFcXV2pqqoy/rxhwwYOHDjAunXrWLVqFdXV1Vx77bV4eHiwZcsWEhISjBddw+veeecdFi5cyNdff83WrVspKCjgl19+afS4U6dOZfHixbz//vukp6fz2Wef4e7uTseOHfn5558BOHDgALm5ucyfP9/qPqZPn05ycjIrV64kKSkJnU7HuHHjqK4+M4WyrKyMt99+m2+//ZbNmzeTmZnJk08+2azPqLF9PPnkk9x6663GEMrNzSU2NrZJn5u1z3vy5Mls376dI0eOGLdJS0tj9+7d3HnnnQCUlJQwbdo0tm7dyt9//014eDjjxo2jpKSkWe9LXJlCQ70YN66z2bDcqChfbrutO6+9NlTuiF/BJA/OTvJAtDWSCcIWyYSzk0wQbcmlkAcyfe8Ko9Pp2LBhA2vXruXRRx81Pq5UKvnyyy+NQ0S/++476urq+PLLL1EoFAAsWLAAb29vNm3axDXXXMN7773HnDlzmDhxIgCffvopa9eutXnsgwcPsnTpUtatW0d8fDwAnTt3Nj5vGIKrUqnM5oubOnToECtXriQhIYHY2FgAvv/+ezp27MiKFSu45ZZbAKiurubTTz+lS5cuADzyyCPGuwlN1dg+3N3dcXV1pbKy0mxIb1M+N2j4eYP+jscPP/zAf/7zH+P7Gjx4MF27dgXg6quvNju/zz//HG9vb/766y+uv/76Zr03IUAfQqYBJK4skgdNJ3kgrgSSCVc2yYSmk0wQbd2FzgMZKXWFWLVqFe7u7ri4uDB27Fhuu+025s6da3y+V69eZhe/1NRUDh8+jIeHB+7u7ri7u+Pj40NFRQVHjhyhqKiI3Nxcs+GkDg4ODBgwwOY5pKSkYG9vz/Dhw1v8PtLT03FwcDA7rq+vL927dyc9Pd34mJubmzEoANq3b49arW7WsVqyj7N9bgaWnzfA5MmT+eGHHwD9HwaLFy9m8uTJxudPnTrFfffdR3h4OF5eXnh6elJaWkpmZmaz3pcQ4someSB5IIQQBpIJkglCXGwyUuoKMXLkSD755BOcnJwICgpqsKKGUqk0+7m0tJT+/fvz/fffN9iXv79/i87B1bXphXjPleVKHAqFosFc9tbYR1M/N8vPG+COO+7g6aefZufOnZSXl5OVlcVtt91mfH7atGloNBrmz59PaGgozs7OxMTEmA35FUKIs5E8kDwQQggDyQTJBCEuNumUukIolUrjEM+m6NevHz/++CMqlQpPT0+r27Rv355t27YxbNgwAGpqatixYwf9+vWzun2vXr2oq6vjr7/+Mg7NNWW4K1BbW2vzvCIiIqipqWHbtm3GobkajYYDBw4QGRnZ5Pd3Pjg5OTU416Z8brZ06NCB4cOH8/3331NeXs7o0aNRqVTG5xMSEvj4448ZN24coC+WmJ+ff+5vRFwxbC35Kq4skgfnn+SBuNxIHggDyYTzTzJBXG4udibI9D1h1eTJk/Hz82PChAls2bKFY8eOsWnTJh577DFOnDgBwL/+9S/eeOMNVqxYwf79+3nooYeMK1NY06lTJ6ZNm8Y999zDihUrjPtcunQpAKGhoSgUClatWkVeXh6lpaUN9hEeHs6ECRO477772Lp1K6mpqdx1110EBwczYcKEVvksGns/u3fv5sCBA+Tn51NdXd2kz60xkydPZsmSJfz0009mw3JB/96//fZb0tPT2bZtG5MnT76gd5bE5c+w5GtamuZin4q4jEgenJ3kgbjcSB6IlpJMODvJBHG5udiZIJ1S50llTR1lVTWt/lVZU3dB3o+bmxubN28mJCSEiRMnEhERwYwZM6ioqDD27j/xxBNMmTKFadOmERMTg4eHBzfddFOj+/3kk0+4+eabeeihh+jRowf33XcfWq0WgODgYObNm8czzzxDQEAAjzzyiNV9LFiwgP79+3P99dcTExODTqdj9erVDYbStrb77ruP7t27M2DAAPz9/UlISGjS59aYm2++GY1GQ1lZGTfeeKPZc1999RWnT5+mX79+TJkyhccee8zsLokQZ2NtyVfRSmoqoKqsdb9qKi7IW5E8ODvJA3G5kTy4cCprKymvKW/1r8raygvyfiQTzk4yQVxuLnYmKHTNnUTbxhUXF+Pl5UVRUZHZBaKiooJjx44RFhaGi4vLmcera/kj7SRFFdXWdtcqvFwcuSYqEBdH+wt2THH5s/U7LMS5snXdvNw19r5s/nuqLof9q6Gi8MKcpIs39BgHjnJHVDSPZIJoLW0xE1qSBxU1FWzM3EhxVfEFO09PJ09GhozExUH+TYumkzwQraWpeSA1pc6Ri6M910QFUlV7YUYwATjZ20mHlBBCXIocXfWdRLUXqLiovZN0SAkhxCXIxcGFkSEjqa67cDeuHe0cpUNKCHHZkU6p88DF0V46iYQQQug5ukpHkRBCCFwcXHBBOomEEKIxUlNKCCGEEEIIIYQQQlxw0iklhBBCCCGEEEIIIS446ZQSQgghhBBCCCGEEBecdEoJIYQQQgghhBBCiAtOOqWEEEIIIYQQQgghxAUnnVJCCCGEEEIIIYQQ4oKTTikhhBBCCCGEEEIIccFJp5QQQgghhBBCCCGEuOCkU6qNUygUjX7NnTv3gp3LiBEjjMd1cXEhMjKSjz/+2Pj8woUL/5+9+45vs7z3///SXpbkvXem7STOIpDFSoCwWkahUFZKSwuFUlr49duWUtbh0HPo6eluoYcCpexZRggZBLLJtOPEGV6xvLct27IkS7p/fyhW7CwyLVv5PB8PYyzfkq5bke+3rs99XddNdHT0sLVHCCHOJpIHQgghBkgmCCFGCilKRbiGhobQ1+9+9ztsNtuQ2x566KHQtoqi4PP5zmh77rrrLhoaGigtLeXGG2/k3nvv5bXXXjujzynEaFdd3cWSJZVUV3eFuyliFJM8ECIySCaI00EyQYjRL1LyYNQUpZ566inmzJmD2Ww+aqX8SFX+119/fXgbOsIkJyeHvux2OyqVKvTznj17sFqtfPLJJ8yYMQODwcDatWtZvHgx11xzzZDHeeCBB7jwwgtDPwcCAZ5++mlycnIwmUwUFhby9ttvf2V7zGYzycnJ5Obm8thjjzFu3Dg++OCD07zXQkSWXbva2LChnl272sLdlBFDMuHESR4IERkkE4aSPDg5kglCjH6RkgfacDfgeHm9Xm644QZmz57N888/f9TtXnjhBRYtWhT6eTiGevb29h71dxqNBqPReFzbqtVqTCbTV25rsVhOopVH97Of/Yzf/OY35ObmEhMTc1z3efrpp/nXv/7F3/72N8aNG8fq1au59dZbSUhI4IILLjju5zaZTHi93pNtuhBnhYKCuCHfhWTCAMkDIc4+kglDSR4cJJkgxNklUvJg1BSlHn/8cSA4p/hYoqOjSU5OHoYWHRQVFXXU311xxRV8/PHHoZ8TExNxuVxH3PaCCy7g888/D/2cnZ1Na2vrYdspinLyjT2CJ554gksuueS4t/d4PPznf/4nK1asYPbs2QDk5uaydu1ann322eMKHL/fz2uvvcaOHTv43ve+d9JtF+JskJVlJyvLHu5mjCiSCUGSB0KcfSQThpI8OEgyQYizS6TkwaiZvne87r33XuLj45k1axb/+Mc/TvvBORLNnDnzhLYvLy/H5XJxySWXEBUVFfr65z//SUVFxTHv+5e//IWoqChMJhN33XUXP/7xj7nnnntOpflCCHFUkgknRvJACBGpJA9OnGSCEGI4jJqRUsfjiSee4OKLL8ZsNrNs2TJ+8IMf0NPTw/3333/U+3g8HjweT+hnp9N5ws/b09Nz1N9pNJohPzc3Nx91W7V6aI1w//79J9yWk3HoUF+1Wn1YUPf394f+f2B/P/74Y9LS0oZsZzAYjvlct9xyCw8//DAmk4mUlJTD9lkIIU6XE82E05EHMLozQfJACBGJJA9OjmSCEGI4hLUo9bOf/Yz/+q//OuY2u3fvZuLEicf1eI888kjo/6dNm0Zvby/PPPPMMYtSTz/9dGjY78k6kfnbZ2rb0ykhIYGdO3cOua2oqAidTgdAfn4+BoMBh8NxQnPDAex2O2PHjj1tbRVCRI5wZ8LpyAOIrEyQPBBChIPkwenb9nSSTBBCnAlhLUo9+OCDLF68+Jjb5ObmnvTjn3vuuTz55JN4PJ6jVud//vOf85Of/CT0s9PpJCMj46SfMxJcfPHFPPPMM/zzn/9k9uzZ/Otf/2Lnzp1MmzYNAKvVykMPPcSPf/xjAoEA8+bNo6uri3Xr1mGz2bjjjjvCvAdCiNEo3JkgeXA4yQMhRDhIHoxMkglCiDMhrEWphIQEEhISztjjFxUVERMTc8zhogaD4SuHk55tLrvsMh555BF++tOf4na7ufPOO7n99tspKSkJbfPkk0+SkJDA008/TWVlJdHR0UyfPp1f/OIXYWy5EGI0C3cmSB4cTvJACBEOkgcjk2SCEOJMUCmjZJU/h8NBe3s7H3zwAc888wxr1qwBYOzYsURFRfHhhx/S1NTEeeedh9FoZPny5Tz00EM89NBDJzT81ul0Yrfb6erqwmazhW53u91UVVWRk5Mz5PKtQowW8h6OfOvW1bJiRTULF2Yxd276sD3v0Y6bZ9JwZMKx9kv+nsRoJ+/hyHe2ZILkgRCnRt7DkW+k58GoWej8V7/6FS+99FLo54FhoqtWreLCCy9Ep9Px5z//mR//+McoisLYsWP57W9/y1133RWuJgshxLBasaKaFSscAMMaOOEgmSCEEMd2tmSC5IEQQhzbSM+DUVOUevHFF3nxxReP+vtFixaxaNGi4WuQEEKMMAsXZg35HskkE4QQ4tjOlkyQPBBCiGMb6XkwaopSQgghjm3u3PQRefZDCCHE8JNMEEIIASM/D9ThboAQQgghhBBCCCGEOPtIUUoIIYQQQgghhBBCDDspSp2gQCAQ7iYIcVLkvSvE6Sd/V2K0kveuEKeX/E2J0UreuyLcZE2p46TX61Gr1dTX15OQkIBer0elUoW7WUJ8JUVR8Hq9tLS0oFar0ev14W6SEKOeZIIYrSQThDi9JA/EaCV5IEYKKUodJ7VaTU5ODg0NDdTX14e7OUKcMLPZTGZmJmq1DJAU4lRJJojRTjJBiNND8kCMdpIHItykKHUC9Ho9mZmZ+Hw+/H5/uJsjxHHTaDRotVo5cyfEaSSZIEYryQQhTi/JAzFaSR6IkUCKUidIpVKh0+nQ6XThbooQQogwk0wQQggBkgdCCHGyZIyeEEIIIYQQQgghhBh2UpQSQgghhBBCCCGEEMNOilJCCCGEEEIIIYQQYtjJmlKHUBQFAKfTGeaWCCHE6DBwvBw4fkYKyQMhhDhxkZgJkgdCCHHijjcPpCh1iO7ubgAyMjLC3BIhhBhduru7sdvt4W7GaSN5IIQQJy+SMkHyQAghTt5X5YFKiaTTGKdBIBCgvr4eq9V6wpfGdDqdZGRkUFNTg81mO0MtPPMiZT9A9mWkipR9iZT9gFPbF0VR6O7uJjU1FbU6cmaFSx4Eyb6MPJGyHyD7MhKd6n5EYiacSh6AvDdGItmXkSdS9gNkXwYcbx7ISKlDqNVq0tPTT+kxbDbbqH/zQeTsB8i+jFSRsi+Rsh9w8vsSKWfDB5M8GEr2ZeSJlP0A2ZeR6FT2I9Iy4XTkAch7YySSfRl5ImU/QPYFji8PIuP0hRBCCCGEEEIIIYQYVaQoJYQQQgghhBBCCCGGnRSlTiODwcCjjz6KwWAId1NOSaTsB8i+jFSRsi+Rsh8QWfsyEkTS6yn7MvJEyn6A7MtIFCn7MZJEymsaKfsBsi8jUaTsB8i+nChZ6FwIIYQQQgghhBBCDDsZKSWEEEIIIYQQQgghhp0UpYQQQgghhBBCCCHEsJOilBBCCCGEEEIIIYQYdlKUEkIIIYQQQgghhBDDTopSZ8hTTz3FnDlzMJvNREdHh7s5J+TPf/4z2dnZGI1Gzj33XDZt2hTuJp2w1atXc/XVV5OamopKpeL9998Pd5NOytNPP80555yD1WolMTGRa665hr1794a7WSflr3/9K1OmTMFms2Gz2Zg9ezaffPJJuJt1Wvz6179GpVLxwAMPhLspJ+yxxx5DpVIN+Zo4cWK4mxVRJA/CTzJh5InUTJA8EF9FMiG8JA9GnkjNA5BMOF5SlDpDvF4vN9xwA/fcc0+4m3JC3njjDX7yk5/w6KOPsm3bNgoLC7nssstobm4Od9NOSG9vL4WFhfz5z38Od1NOyRdffMG9997Lxo0bWb58Of39/Vx66aX09vaGu2knLD09nV//+tds3bqVLVu2cPHFF/P1r3+dXbt2hbtpp2Tz5s08++yzTJkyJdxNOWkFBQU0NDSEvtauXRvuJkUUyYPwk0wYeSIxEyQPxPGQTAgvyYORJxLzACQTTogizqgXXnhBsdvt4W7GcZs1a5Zy7733hn72+/1Kamqq8vTTT4exVacGUN57771wN+O0aG5uVgDliy++CHdTTouYmBjl//7v/8LdjJPW3d2tjBs3Tlm+fLlywQUXKD/60Y/C3aQT9uijjyqFhYXhbsZZQfJgZJBMGLlGcyZIHogTJZkQfpIHI9dozgNFkUw4UTJSSoR4vV62bt3KwoULQ7ep1WoWLlzIhg0bwtgyMaCrqwuA2NjYMLfk1Pj9fl5//XV6e3uZPXt2uJtz0u69916uvPLKIX8zo1FZWRmpqank5uZyyy234HA4wt0kEWaSB6ODZMLIIXkgIplkwsgneTCySCacGO0ZeVQxKrW2tuL3+0lKShpye1JSEnv27AlTq8SAQCDAAw88wNy5c5k0aVK4m3NSSkpKmD17Nm63m6ioKN577z3y8/PD3ayT8vrrr7Nt2zY2b94c7qacknPPPZcXX3yRCRMm0NDQwOOPP878+fPZuXMnVqs13M0TYSJ5MPJJJowckgci0kkmjGySByOLZMKJk5FSJ+BnP/vZYYt9HfolB2Zxptx7773s3LmT119/PdxNOWkTJkygqKiIL7/8knvuuYc77riD0tLScDfrhNXU1PCjH/2IV155BaPRGO7mnJLLL7+cG264gSlTpnDZZZexZMkSOjs7efPNN8PdtBFN8kCEm2TCyCB5IEAyQYSX5MHIIZlwcmSk1Al48MEHWbx48TG3yc3NHZ7GnAHx8fFoNBqampqG3N7U1ERycnKYWiUA7rvvPj766CNWr15Nenp6uJtz0vR6PWPHjgVgxowZbN68md///vc8++yzYW7Zidm6dSvNzc1Mnz49dJvf72f16tX86U9/wuPxoNFowtjCkxcdHc348eMpLy8Pd1NGNMkDEU6SCSOH5IEAyQQRPpIHI4tkwsmRotQJSEhIICEhIdzNOGP0ej0zZsxg5cqVXHPNNUBwOOjKlSu57777wtu4s5SiKPzwhz/kvffe4/PPPycnJyfcTTqtAoEAHo8n3M04YQsWLKCkpGTIbd/+9reZOHEi/+///b9RGzYAPT09VFRUcNttt4W7KSOa5IEIB8mEkUfyQIBkghh+kgcjk2TCyZGi1BnicDhob2/H4XDg9/spKioCYOzYsURFRYW3ccfwk5/8hDvuuIOZM2cya9Ysfve739Hb28u3v/3tcDfthPT09Ayp4lZVVVFUVERsbCyZmZlhbNmJuffee3n11Vf597//jdVqpbGxEQC73Y7JZApz607Mz3/+cy6//HIyMzPp7u7m1Vdf5fPPP+fTTz8Nd9NOmNVqPWzOvsViIS4ubtTN5X/ooYe4+uqrycrKor6+nkcffRSNRsPNN98c7qZFDMmD8JNMGHkiJRMkD8SJkkwIL8mDkSdS8gAkE07asFzj7yx0xx13KMBhX6tWrQp3077SH//4RyUzM1PR6/XKrFmzlI0bN4a7SSds1apVR3z977jjjnA37YQcaR8A5YUXXgh3007YnXfeqWRlZSl6vV5JSEhQFixYoCxbtizczTptRuvlXr/5zW8qKSkpil6vV9LS0pRvfvObSnl5ebibFVEkD8JPMmHkieRMkDwQxyKZEF6SByNPJOeBokgmHA+VoijK6S91CSGEEEIIIYQQQghxdHL1PSGEEEIIIYQQQggx7KQoJYQQQgghhBBCCCGGnRSlhBBCCCGEEEIIIcSwk6KUEEIIIYQQQgghhBh2UpQSQgghhBBCCCGEEMNOilJCCCGEEEIIIYQQYthJUUoIIYQQQgghhBBCDDspSgkhhBBCCCGEEEKIYSdFKSFGKL/fz5w5c7juuuuG3N7V1UVGRgYPP/xwmFomhBBiuEkmCCGEAMkDEXlUiqIo4W6EEOLI9u3bx9SpU/n73//OLbfcAsDtt99OcXExmzdvRq/Xh7mFQgghhotkghBCCJA8EJFFilJCjHB/+MMfeOyxx9i1axebNm3ihhtuYPPmzRQWFoa7aUIIIYaZZIIQQgiQPBCRQ4pSQoxwiqJw8cUXo9FoKCkp4Yc//CG//OUvw90sIYQQYSCZIIQQAiQPROSQopQQo8CePXvIy8tj8uTJbNu2Da1WG+4mCSGECBPJBCGEECB5ICKDLHQuxCjwj3/8A7PZTFVVFbW1teFujhBCiDCSTBBCCAGSByIyyEgpIUa49evXc8EFF7Bs2TL+4z/+A4AVK1agUqnC3DIhhBDDTTJBCCEESB6IyCEjpYQYwVwuF4sXL+aee+7hoosu4vnnn2fTpk387W9/C3fThBBCDDPJBCGEECB5ICKLjJQSYgT70Y9+xJIlSyguLsZsNgPw7LPP8tBDD1FSUkJ2dnZ4GyiEEGLYSCYIIYQAyQMRWaQoJcQI9cUXX7BgwQI+//xz5s2bN+R3l112GT6fT4boCiHEWUIyQQghBEgeiMgjRSkhhBBCCCGEEEIIMexkTSkhhBBCCCGEEEIIMeykKCWEEEIIIYQQQgghhp0UpYQQQgghhBBCCCHEsJOilBBCCCGEEEIIIYQYdlKUEkIIIYQQQgghhBDDTopSQgghhBBCCCGEEGLYSVFKCCGEEEIIIYQQQgw7KUoJIYQQQgghhBBCiGEnRSkhhBBCCCGEEEIIMeykKCWEEEIIIYQQQgghhp0UpYQQQgghhBBCCCHEsJOilBBCCCGEEEIIIYQYdlKUEkIIIYQQQgghhBDDTopSQgghhBBCCCGEEGLYSVFKCCGEEEIIIYQQQgw7KUoJIYQQQgghhBBCiGEnRSkhhBBCCCGEEEIIMeykKCVEBKqpqcFoNLJu3boTvm9bWxsWi4UlS5acgZYJIYQ4VadyjD9TJDuEEOLUjMRj+3C76aabuPHGG8PdDDHMpCglxCmoqKjg+9//Prm5uRiNRmw2G3PnzuX3v/89fX19Q7b1+/288MILXHjhhcTGxmIwGMjOzubb3/42W7ZsCW334osvolKpQl9Go5Hx48dz33330dTUdFzteuKJJzj33HOZO3du6La9e/fy4x//mDlz5mA0GlGpVOzfv/+w+8bFxfHd736XRx555OReFCGEiBCReIw/EbfeeitGo5F9+/Yd9rtf//rXqFQqPvroI0CyQwgxesix/fiP7YNlZ2cf83Efe+wxXnzxxcNur6+v59Zbb2XChAlYrVaio6OZNWsWL730EoqiDNn2//2//8c777xDcXHxCe2TGOUUIcRJ+eijjxSTyaRER0cr999/v/Lcc88pf/rTn5SbbrpJ0el0yl133RXa1uVyKYsWLVIA5fzzz1eeeeYZ5fnnn1ceeeQRZcKECYpKpVJqamoURVGUF154QQGUJ554Qnn55ZeVv//978odd9yhqNVqJScnR+nt7T1mu5qbmxWdTqe8+uqrQ25/4YUXFLVarUyaNEmZOnWqAihVVVVHfIzS0lIFUFauXHlqL5IQQoxSkXyMP15NTU1KTEyMctFFFw25vbKyUjGZTMr1118/5HbJDiHESCfH9hM7ti9fvlzx+XyKoihKVlZW6PalS5cqiqIoJSUlSm1traIoivLoo48qL7zwgqIoirJnz55QO4uLi5ULLrhA+cUvfqH87W9/U/74xz8qX/va1xRA+fnPf35Y+2bNmqXcdtttp7SPYnSRopQQJ6GyslKJiopSJk6cqNTX1x/2+7KyMuV3v/td6Od7771XAZT//d//PWxbn8+nPPPMM4eF2ubNm4ds95Of/EQBDgurQ/32t79VTCaT0t3dPeT2trY2xel0KoqiKM8888xXhtqkSZMkEIQQZ6Wz4Rh/vJ577jkFUF588cXQbYsWLVJsNluoIzKYZIcQYqSSY/tBx3NsDwQCyo033qjMnDlTKSoqUrKyspTKykrl0ksvVS655BKlu7tbefXVV5WMjAzlr3/9q/KrX/1Kee6555Qnn3xSycnJUT777LNjtuGqq65SLBZLqOg14De/+Y1isVgOey1E5JKilBAn4e6771YAZd26dV+5bU1NjaLVapVLLrnkuB77aKH20UcfKYDy1FNPHfP+559/vnLhhRcec5vjCbUf//jHSnR0tBIIBI6r3UIIESnOhmP88QoEAsrcuXOV+Ph4pbW1VXnttdcUQPnDH/5wxO0lO4QQI5Uc2w86kWP76tWrlfPOO0/R6/XK1KlTlX//+99Dft/c3Kx8//vfV2w2mxIXF6c8/PDDSk9Pz1e24b777lNUKpXicrmG3F5cXKwAyrvvvntqOylGDVlTSoiT8OGHH5Kbm8ucOXO+cttPPvkEn8/HbbfddkrPWVFRAQTX7Tia/v5+Nm/ezPTp00/puQBmzJhBZ2cnu3btOuXHEkKI0eRsOMYfL5VKxbPPPktXVxf33HMPP/7xj5k5cyb33nvvEbeX7BBCjFRybD/oRI7tarUalUo15L6HPpZarT7q7wf09fXR2trK/v37eemll3jhhReYPXs2JpNpyHb5+fmYTKazesH3s40UpYQ4QU6nk7q6OiZPnnxc2+/evRvguLcf0NXVRWtrK7W1tbzxxhs88cQTmEwmrrrqqqPex+Fw0NfXR05Ozgk915Hk5uYCUFpaesqPJYQQo8XZcow/EQUFBTz00EO89dZbtLS08Oyzzw7pgAwm2SGEGInk2H64rzq2K4rCLbfcwgMPPMBf//pXUlJSePfdd/njH//IpZdeSk9PD2+88QYzZsxg8uTJPPDAAzz99NPo9XomT57MqlWrhjzf73//exISEsjJyWHx4sWcd955vP7664e1S6vVkpGRITlyFtGGuwFCjDZOpxMAq9V6RrYfsHDhwiE/Z2Vl8corr5CWlnbU+7S1tQEQExNzQs91JAOP0draesqPJYQQo8XZcow/UfHx8QCkpqYyadKko24n2SGEGInk2H5kxzq2q1QqFi9ezMUXX4xGowEgJyeHZcuWsXTpUqKioigoKGD9+vWkpaXx2GOPodPpeOSRR7jhhhswGo1DHu/mm29m5syZtLS08NFHH9HU1HTY1Q4HxMTESI6cRaQoJcQJstlsAHR3d5+R7Qf8+c9/Zvz48Wi1WpKSkpgwYcJRz0wfSjnk8qonY+AxjjYEVwghItHZcow/ETU1NTz66KNMmjSJnTt38t///d/88pe/PGbbJDuEECOJHNsPdzzH9ksuueSI9120aBHAUU9STJw48bDbsrKyyMrKAoIFqu9973ssXLiQvXv3HjaFT1EUyZGziEzfE+IE2Ww2UlNT2blz53FtP3BQLikpOaHnmTVrFgsXLuTCCy8kLy/vuAJtYL56R0fHCT3XkQw8xsAZFCGEOBucLcf4E3HfffcBwTVWbrjhBp566ikqKyuPuK1khxBiJJJj++FO5NgOsH///mM+3mOPPcbixYuP+/m/8Y1vUFNTw+rVqw/7XUdHh+TIWUSKUkKchKuuuoqKigo2bNjwldtefvnlaDQa/vWvf53xdmVmZmIymaiqqjrlxxp4jLy8vFN+LCGEGE3OhmP88Xrvvff44IMPePLJJ0lPT+d3v/sder3+qAudS3YIIUYqObYfdKLH9jNhYOpeV1fXkNt9Ph81NTWSI2cRKUoJcRJ++tOfYrFY+O53v0tTU9Nhv6+oqOD3v/89ABkZGdx1110sW7aMP/7xj4dtGwgE+J//+R9qa2tPuV06nY6ZM2eyZcuWU36srVu3YrfbKSgoOOXHEkKI0eRsOMYfj+7ubu6//36mTZvGD3/4QyC47siTTz7J0qVLeeuttw67j2SHEGKkkmN70Mkc209FS0vLEW9//vnnUalUh111sLS0FLfbfVxXSRSRQdaUEuIkjBkzhldffZVvfvOb5OXlcfvttzNp0iS8Xi/r16/nrbfeGjJ89X/+53+oqKjg/vvv59133+Wqq64iJiYGh8PBW2+9xZ49e7jppptOS9u+/vWv8/DDD+N0OkPz4SF4FmIgVAcusfqnP/2J6OhooqOjQ0N4Byxfvpyrr75a5nMLIc46kX6MX7x4MS+99BJVVVVkZ2cf9bl++ctfUl9fz7vvvhta5Bbg3nvv5aWXXuKBBx5g0aJFQxYCluwQQoxUcmwPOplj+6l46qmnWLduHYsWLSIzM5P29nbeeecdNm/ezA9/+EPGjh07ZPvly5djNpuPup6ViECKEOKk7du3T7nrrruU7OxsRa/XK1arVZk7d67yxz/+UXG73UO29fl8yv/93/8p8+fPV+x2u6LT6ZSsrCzl29/+trJ9+/bQdi+88IICKJs3bz6pNjU1NSlarVZ5+eWXh9xeVVWlAEf8ysrKGrLt7t27FUBZsWLFSbVBCCEiQaQe46+//nrFZDIpHR0dR32eLVu2KBqNRrnvvvuO+PtNmzYparVauf/++0O3SXYIIUYDObaf2LH9VC1btky56qqrlNTUVEWn04Ve7xdeeEEJBAKHbX/uuecqt95662l7fjHyqRRlmJf5F0Kccd/5znfYt28fa9asOan7P/DAA6xevZqtW7fK2W4hhBhhTvUYn5SUxO23384zzzxzWtsl2SGEECdvpB7bh1NRURHTp09n27ZtTJ06NdzNEcNEilJCRCCHw8H48eNZuXIlc+fOPaH7trW1kZWVxZtvvskVV1xxhloohBDiZJ3KMX7Xrl3Mnj2bysrK03plI8kOIYQ4NSPx2D7cbrrpJgKBAG+++Wa4myKGkRSlhBBCCCGEEEIIIcSwk6vvCSGEEEIIIYQQQohhJ0UpIYQQQgghhBBCCDHspCglhBBCCCGEEEIIIYadFKWEEEIIIYQQQgghxLCTopQQQgghhBBCCCGEGHbacDdgpAkEAtTX12O1WlGpVOFujhBCjHiKotDd3U1qaipqdeSc65A8EEKIExeJmSB5IIQQJ+5480CKUoeor68nIyMj3M0QQohRp6amhvT09HA347SRPBBCiJMXSZkgeSCEECfvq/JAilKHsFqtQPCFs9lsYW6NEEKMfE6nk4yMjNDxM1JIHgghxImLxEyQPBBCiBN3vHkgRalDDAzJtdlsEjpCCHECIm1Kg+SBEEKcvEjKBMkDIYQ4eV+VB5Ex0VsIIYQQQgghhBBCjCpSlBJCCCGEEEIIIYQQw06KUkIIIYQQQgghhBBi2ElRSgghhBBCCCGEEEIMOylKCSGEEEIIIYQQQohhJ0UpIYQQQgghhBBCCDHspCglhBBCCCGEEEIIIYadFKWEEEIIIYQQQgghxLCTopQQQgghhBBCCCGEGHZSlBJCCCGEEEIIIYQQw06KUkIIMYJUV3exZEkl1dVd4W6KEEKIMJI8EEIIMSCSM0Eb7gYIIYQ4aNeuNjZsqAcgK8se5tYIIYQIF8kDIYQQAyI5E6QoJYQQI0hBQdyQ70IIIc5OkgdCCCEGRHImSFFKCCFGkKwse8Sd/RBCCHHiJA+EEEIMiORMkDWlhBBCCCGEEEIIIcSwk6KUEEIIIYQQQgghhBh2UpQSQgghhBBCCCGEEMNOilJCCCGEEEIIIYQQYthJUUoIIYQQQgghhBBCDDspSgkhhBBCCCGEEEKIYSdFKSGEEEIIIYQQQggx7KQoJYQQQgghhBBCCCGGnRSlhBBCCCGEEEIIIcSwk6KUEEIIIYQQQgghhBh2UpQSQgghhBBCCCGEEMNOilJCCCGEEEIIIYQQYthJUUoIIYQQQgghhBBCDDspSgkhhBBCCCGEEEKIYSdFKSGEEEIIIYQQQggx7KQoJYQQQgghhBBCCCGGnRSlhBBCCCGEEEIIIcSwk6KUEEIIIYQQQgghhBh2UpQSQgghhBBCCCGEEMNOilJCCCGEEEIIIYQQYthJUUoIIYQQQgghhBBCDDspSgkhhBBCCCGEEEKIYSdFKSGEEEIIIYQQQggx7KQoJYQQQgghhBBCCCGGnRSlhBBCCCGEEEIIIcSwk6KUEEKMEOvW1fL44+tYt6423E0RQggRRpIHQgghBkR6JmjD3QAhhBBBK1ZUs2KFA4C5c9PD3BohhBDhInkghBBiQKRnghSlhBBihFi4MGvIdyGEEGcnyQMhhBADIj0TpCglhBAjxNy56RF59kMIIcSJkTwQQggxINIzQdaUEkIIIYQQQgghhBDDTopSQgghhBBCCCGEEGLYSVFKCCGEEEIIIYQQQgw7KUoJIcRZqLq6iyVLKqmu7gp3U4QQQoSZZIIQQggITx7IQudCCHEW2rWrjQ0b6gHIyrKHuTVCCCHCSTJBCCEEhCcPpCglhBBnoYKCuCHfhRBCnL0kE4QQQkB48kCKUkIIcRbKyrLL2XAhhBCAZIIQQoigcOSBrCklhBBCCCGEEEIIIYZdRBWlHnvsMVQq1ZCviRMnhrtZQgghwkAyQQghBEgeCCHESBZx0/cKCgpYsWJF6GetNuJ2UQghxHGSTBBCCAGSB0IIMVJF3NFYq9WSnJwc7mYIIYQYASQThBBCgOSBEEKMVBE1fQ+grKyM1NRUcnNzueWWW3A4HMfc3uPx4HQ6h3wJIYSIDCeSCZIHQggRuSQPhBBiZIqootS5557Liy++yNKlS/nrX/9KVVUV8+fPp7u7+6j3efrpp7Hb7aGvjIyMYWyxEEKIM+VEM0HyQAghIpPkgRBCjFwqRVGUcDfiTOns7CQrK4vf/va3fOc73zniNh6PB4/HE/rZ6XSSkZFBV1cXNpttuJoqhBCjltPpxG63j/jj5ldlguSBEEKcutGQCZIHQghx5h1vHkTcmlKDRUdHM378eMrLy4+6jcFgwGAwDGOrhBBChMNXZYLkgRBCnB0kD4QQYuSIqOl7h+rp6aGiooKUlJRwN0WIEWfduloef3wd69bVhrspQgwLyQQhjkzyQJxtJA+EODrJBDHcImqk1EMPPcTVV19NVlYW9fX1PProo2g0Gm6++eZwN02IEWfFimpWrAgu8jl3bnqYWyPE6SeZICKJElDo9/rpd/vxun143X78vgAoCooCKKAAWp0arV6DzqBGZ9CiM2rQ6TXHfGzJAxHpJA+EOH6SCWK4RVRRqra2lptvvpm2tjYSEhKYN28eGzduJCEhIdxNE2c5RVEI9PTg7+jA396O3+kk0OdG8bgJuN0obg+Kz4dKowa1BjRqVBotaqMBtdWKOioKjdWK2mpDm5iAWq8/5TYtXJg15PvJWLeulhUrqlm4MOuooVVd3cWuXW0UFMSRlWU/6ecazY7ndRKnn2SCGE08fT66ml10Nrvoau6ju91NT4cHV5cHl9OLu6efk10FVKtXY4rSYbLqMdv1WGONxCRZsCeZsCeYWXBxJnDm8wAkEyQPwkPyQIjjJ32E4SOZEBRRRanXX3893E0QZylFUfDV1+Op2k9/XR39dbV4HQ76a+vob2zE39UF/f1HfwCdFpVaA0oAJaBAIHj2+2g9ELXNhjYxEW1iIvrUVPTjxmEYMwZDbg7a5GRU6q+emTt3bvopH/yO50zKrl1tbNhQD3DWBo6ccQoPyQQxEgX8AToaXbTUdNNS3U2Lo5uOJhfunoMZoTdqMFh06I0adAYN8elWdEY1Wp0GjVaFRqdGo9Wg1qhQqVWoVEMf39evEPAF8PsU/L4A/W4fXo8fn8dPZ1MfTVXOIUUutVrFuEQTvXu6KOoLkJhlJT7Dit54/B8Tj/c4d7ZnguRBeEgeCHH8pI8wfCQTgiKqKCXEcPA7nbh37sS9dx+evXvx7NuHp6oKpa8vuIFKhSY6GrXdjsZuwzB+PGqTCbXZjNpsQm0yo7JYUBuNqHQ60OtRq9UwuJB0oCAV6O8n4HIRcLlQ3G4Crl4Cvb0EursJ9PTga2nBW1GB7/33wecLPr1ejz43F+PkyZimFmKeMgV9bi4qzbGnb5yM4zmTUlAQN+T72eh0nHESQoxO7p5+Gio6qS8LfrXW9RDwBatBJqueqBgDiZlWDFFajBYdFrsBg0WHRqNGrVWh0aqDxafBlaeTFPArBPwB/H4Fn9ePq8tLb6eHvm4vvV0eGso7Kd/aHDw5ooKYZAupY+2kT4ghdXwMZtvRR+ke73HubM8EyQMhxNlA+gjHRzIhSKUoJzsYPDKd7GVsFb+f5v/5LfZrr8E4btwZbKEYTgGvF8+ePfTtKKGvuIi+4h30O4LVbJVOhzYxEU18HJrYWLSxcWjj49DExqE2m1Hp9ah0uuDXGSgIKYEAis+H4vUScLvxNzcHR2W1tdLf3IyvsQl/W1uwrUYjxsmTscw+j6i5czEWFKDSSk1anB6j4fLfJyNS90ucWV63j9o9HThK26jb20lnkwsAg1mLLcGEJdqAxW7AGmfAaNGj1QdHQKk1p150OhWKouDrD+B1++huddPV7MLZ6qa7zY27NziKy55oIjM/lpzCBFLHRaPRRvT1csRJisRjZyTukxBCnGnHe+yUotQhTjZ0/D097P/mN/G1tJL1z39inDjhDLZSnCkBrxd3SQmuTZvo3bCRvuJiFI8HtFp0ycloU5LRJiYG/z8pGfXAiCeD4bimzA0XJRBAcbvxdXTgraqiv7aW/poa+uvqULxeVCYT5unTsV6yEOuCBWjDtKbCO+/s5d13y7juunFcf738zYxWkfphPVL3S5xeiqLQVteDY1c7+0taaax0ogQUTFY99kQTUTEGbPFGomKM6I1atAYNanV4C1DHS1EUfB4/3R1u2ut66Wxy0dnkwuv2o9WrSRkbzdgZiYyZloDBrDvl55NMiAyReOyMxH0SYiSTPIgMx3vslKESp4kmKoqUJ5+k9r4f4rjzTrL+9TKG3NxwN0t8BSUQwL17N71r1tK7YT19RcEilMpkQp+ZiWXuXLRpqehSUtHYbMERUAbDaZlGcSap1GpUZjN6sxl9WhoAis+H3+nEU1aGp6IC7/79ND7+BI2PPY5h/HisCy7GdvXVw/q+fffdMlavDl5u9mwNnIFFHu12PV1d3rN6sUchRgsloNBQ2UXl9mYqtrXQ0+FBo1URnWQme0oc0UlmbHEm9EYNWoNmxGfG0ahUKnRGLbEpUcSmRKEoCl63j476XlpqeuhscrHq5T18/speUsfZGT8r+ZQKVGd7JkgeCCFE0NmeB3B2ZYIUpU4jbVwc9m98g8433qD6jsVkvfIvDJmZ4W6WOIS/q4ve9evp+WI1PatX429vR2UwoM/OxjJnDtqMDPQZGcGr3VksZ2TqXTiotFq0sbFozz0Xy7nnoni99Dc10bejGG95OW3P/4PWv/4N/Zgx2K+6Cvs1X0eXknJG23TddeOGfD8bDSzyqNWq8B1YZyZSA0eI0SwQUKjb10HF1mYqi1ro6+7HYNYSm2ohMz+W6GQzxig9epN21IyEOlEqlQqDSUfymGiSx0Tj9wVwtvbRWNFJa20vq17ewxev7iUjL4aC+WlkTYpDrTn+UcRneyZIHgghRNDZngdwdmWCTN87xKkMz/VWV9P92WegN9D6u9+hMhjIfOlFjGPGnKHWiuPlqaqie/kKelZ9Rl/xDggE0CYloc/NQZ+ZiS47B210NOqoqIgpQp2I3buaKd1cQaGuGXtrFZ6KSvD5ME6ZQvRN38R+xRWojcbT8lxy+dehzsRZkOF+jSN1WkOk7pc4Ma213ezZ2EjZpiZcTi/GKB1xqVFEp5iISbZgtOjQjeLRUIfaXdpKcXEzhYWJ5OXHH/f9/P4AXc19NFZ00VztxNXlxRSlY9ysJCZfkE50kvmw+0geDHWmzopLJpy6SNwnIY7HunW1rFhRzcKFWWf86nCSCUOdTX0EGSl1BuhTUoj/yU9o+8MfqP7WLWQ+/3+YJk0Kd7POOp7ycpyfforzk6V4y8tDV6WzXnIJ+pwcdKmpqKOiTluxZTQrKmmleI8X79Rx3PTDq/G1tODasgX3zp00/uJhmp/6T2xXXEHM7bed8kL+cvnXobKy7Kf9dZDXWIhT09PhYd+mRvZubKS9oRe9UUN8ppXc6QnEJAVHROkMkXkCo7i4maKiFoATKkppNGpiUyzEplgYf24SrTU91O3roHRNPTs+qyU510bhggxypyWGRpLJsWqoM5EHIK+zEOLkrVhRzYoVwYs8nemilByrhjqb+ghSlDpD9ElJJPzkJ7T8/vc47lhM2u9/R9S8eeFuVkRTFAXPvn04l35K9yef4N2/H5XRiGHcOOzXXIN+7Fi0sbGordazcjTUsUwtTAx9V6nV6JKSsF95JbZFi/CUl9O7YQPOJUvofOstjAUFxN55J7ZFl53U6zhSLv966AKKw3km6ESd6FmNkfIaCzGa+P0Bqne0sXN1LTV7OlCrVcSlRzFxdjKxaVGYbXr0xsj/2FR4IA8Gvp8MrU5Dcq6d5Fw7fT1e6vZ20FDWxad/34XZXsak89OYfGH6iDlWjaY8AMkEIcTwWbgwa8j3M2mkHKtGUyZESh5E/qerMNLGxZH4k5/Q+pe/UPP9u0n6xS+IveVb4W5WRFEUBXdpKd1LP8W5dCn9NTWoTCYM48dhv/ZaDBMmoImNDa4NFSFTK86EvLx48vIOPyOu0mgwTpiAMzadhjHzSWnbg3/3DuoffJDm//4vYm67jdibb0ZtsRz3c52pM8En6tAFFIfzTNCJOtGzGiPlNRZiNHC29lG6rp7d6xpwOb3YEkyMnZ5IXLoFS7QRg1l7VuVHXn78V46QamnuxeHoJjPTSkLisY//pig9Y2ckkTs1gebqbmpK29j88X62frKfsTOTmHNFNtGJh0/tG06jKQ9AMkEIMXzmzk0/5nHwdE4HGynHqtGUCZGSB1KUOsM00dEkPPgg7f/4B01PPom3vJykR36JSn38C3+KoRRFwb1zJ86lS+n+ZCn99fWozGYM48djnjULw4QJwRFR5vB+yA2n5paDHYbEhOMvGB2Nw9HNXocHZeIMZly9CPeOHfSsXUvLb/+Xtr/8Ffv11xF/991o40ZW1f1YDl1AcTjPBJ2oQ89qyJx7IU5NaFTUmjpqdrej1alJyLIydmYiMSnBdaI02sjJ6RMpIh0Ph6ObPXvaAY778dQaNcm5dpJybPS0u9lf0kbl9hb2ftlI9uQ4Zl2VS0Km9ZTbdjJGUx7A0EyQPBBCnIjTfcwYqdPBTsVoyoRI6SPIQueHOB0Lneuzsg/7XSAQwPnuu/R89hnGqVNJ/+Mf0CUknKZWRz4lEKCvuDg4NW/pUnxNTagtFgwTJmAYk4t+/IFClMkU7qaeccdTcNqytZG9e9qZMDEWi1lLUXEzUwsTjzga6mSfUwkE6Hc46F71Ge7iHQDYr72W+Ht/gC7x5Kd9jDbDdfAf/DwDHwBmz07liityz9hzHq9IXQA2UvfrbNbX42XX6npKPq8NjYpKzLSSkBmFJcY4KqfnHU/BaeuWRvbsaWfixFjMZu1JLWR+os95PNy9/ewvbqFuXycel4/U8dHMujKbtAmxJ/2Y4TYcmTCS8wAi89gZifskRg8lEKCvp5s+pxOXs5M+ZxcupxNvnwuvuw+fx4PX3UdnWzedHS5sNj1msxZQoVIRXJrDYERnMOKoc1Nb7yV7TALW2GhKdrs4d95Y5l44AWNUFGr1iS3NMVqLIMNB+giy0PmIo1arif7GN9BlZND51ltUXXU1qc/8N1Hnnx/upo1Yit9P3/btOD/9lO6ln+JraUFttWIYP56oCy5AP3482piYs6IQNZjD0c3eA2eoB34+tECVeeBsc2amlZUrqyk+sGhtXLzppEZQJSZYDttepVajz84m7tt30t/URPeyZXS9/z5d776L7ZprSLjvPnRJkV+cGq4zRIOf52jzweWDgRBH1l7fS/FKB3u/bEJRFJJybAdHRUXp0GhG76iowaOWBn4+tFh0aCYUFbXQ0+vD5fKdVGEpIdFyWkZcGS06Js5JJXdGEo6SVmr2dPD+/xaRnGtn9nW5pI6NOeXnGG7DkQmSB0JEHndPD221Djoa63G2NNHZ1EhXcyPdrS30dLSjBAJDtlepVGgNBjRaHRqtFrVWi9uj4HYH8HRo0Rs0eD1+9AYNWo0Kv6+fgM+H1+PF3N9P8xYfTYEAJmBHNex4BUCF0WonOikRe2Iy9qRkYpJTiU5KJi4jC1PU4aNZR+p0sJFA+gjHT4pSp1lVVSfbNpQedVSK5dxz0Wdl0f7iC9R8/26ib/gGST//+VlXWDkaxefDtWVrsBC1bBn+tjbUdjuGCeOJWnAx+jFjz5oRUUczuHMxuEA1uGg0uIg0sIh5TLSBl/9ZikajYt789KMWpY41Emv37tbQqCtg0AisJGJvuw3fokXBKx5+8AHO998n+oZvkPCjH6GxHzz4jfSD4okargUDBz/P0T4AHG/4Rdq/wUg1khfGPBsoikJNaTvbVzio3d2BwawlfWIMidlWbPEm9KbIWCvq0Ew40rS6wUWkwsJEWlr6cDic9HR7mT8//ZgFpmONitpd2kpxcTPR0QY6Oz0nPPpq8GOPnZlEdmE8NaXt7C9p473fbCdtfDSzrxtDUvboOU4NRyZIHoxOkgkCwO/rp6V6P81VFbTWVNNas5+22hpcXZ2hbQwWC8YoK0ZLFDEp6SSNGY/BaERnNKIzmjBERaE3mtBoNKg0GlQqNSq1irY2N7V1PWSk26it7WZfWQfjx8UwdWoiiqKgKAGUQPB7wO+nbHcT+3Y3YDb6aKrrQKPykRalJeD301i+l6qiLXhdrkHtsqG2xJMyJpcxkyeSlDOW+MxsNFrtkPc3cFLv9Ug7Hkkf4fhJUeo027evg+LK4BnXo02V0iUnk/DgQ3S9/z6d77xLzxerSXnqP87aq/MpXi+9Gzfi/HQZPStX4u/sRBMTg2HCeAyXXYoudwza6Oizeo2owY40ammgU3KkgtLA+/Dll0tpbXURH2/GYg7+6QcOnHVRH1jjzOf389mqKoq2t3LurFSuvXb8kOcpKm4OjboCQv8/8BzahARib701WJxaupTOt96m698foL7uZsonXUn+1JTDDoqjPYCG6wzR8TzPseaVb9nSGLqSiMmki7j5/yPRSF4YM5L5vH72ftlI0YoaOptcWGMNjJ2ZSGK2jagYA1pdZF199UijljIzrUctJuXlx7NiRTUOhxOvx09nl5uW5l7iE8z4/X602oMfDYuKaln2qQO9Xn/E4lVxcTNFRS2oNSoCfiX0+McyuF2HFtG0Og1RKWai3P3EeQK07u/m7V9vJTM/ltnXjSU+PeqUXqvhMByZcDJ5AEfOhOxsW+gzgOTBmSWZcPZRAgHaah00VpTRWL6PhvK9tNY6CPh8qFRqzHY75ugYEjJzMNvtmOzRRMXEYjCZ0Oj0aHRaNFod6uO82nWaJYq0zAOfyQ1G1DoDmZk29CYTzc0uHI4eMjNtJCYG+w3T5sRijE7k5ZdLaWlVSIg3c96V+UyYEE2/14u/vx+fx013exsdLU3sKqqir7YVV3sTlRtWAKDWaolPz6K208qeKhMqzxQUfQwrVtYAX/1eP9LUM5A+wul+npHeR5Ci1GlUV9eNQa9l7Fh7aCTJ0ah1OmJuuAHztGl0vPEGNd+9i6iLLiLplw+jT0sbphaHT8Dtpnft2mAhatUqAj09aOLjMeTnY8jNQZeVHZyaJ4WokCMVnA4tUDkc3ezZ3YaiKKHb1xYX819/f5fK2ib6fD34G9y88jMfHp8Xl9vNv//7GS6aMQOA15cv4wfPPgPA89sM/Px1K1azBXuUhZS4eK6YuZDCqQlMLUzE7fXS5+074ntdGx9P7K234l2wgO4PPsD1r+dJ0r9J9dW3k3/nzcDBg2IkLpAYLoeG0uDXdvCVRP7zP+cDI+9ysJGkuroLi0XPzJlJI3JhzEjU2+WhZFUtO1fX4XH5iE+PouD8VOLTozBZDag1o39U1GBHKjoNLlANrCOlKEroNkVR+K/fPcnqNbtobG6kuLybpevc+P1uPN4+Zk49l1effz/0HIvvvQRnTytqtZZ/vmfDZrURZYkiLjaeCePyufbyHwIQHW2gtq6RSZO/+pgyuBA1eJTX4N/vK+tk4sRY5t80nv3FrTh2tfHGU5sYOyORudePJSrGeOovYIQ7UiflSJnQ25vE975XKHlwhkkmnB0CAT8t+6uoKS2hZtcO6vaU4nH1AiosMTFY4xLInXYOUbFx2BISMJgt6AwGtHrDcReejiRYcHIeKDgF+06JiebQ/wM4HE52D/QRDty+7stN/Om596h2NOLp70Ypc/Ppxn68/R763G7efP45phdOwZaQyKodu3jsxWcB0OuMRNstmPR6TDotVuMu5o7JZmaMASo24NcYWZiTxKSE2bTXZxGTknbUkcnHmnomfYTTZ6T3EaQodRrt3dtOicNByripxMUfPr3sSEUFw9ixJP70p3R/+im9X3xB5aLLib75ZhLu/cGQKU+RwNfRQe/atXSvWEnP6tUofX1ok5MxTZuGPjcHXUamjIg6hiNN1XN7veysrKBo3z42luxm+55y6tsbeeHnjwEpAOxzOPhi95qjPm59UwdbtjaSmWll8GUPPD4P9a0eoDV0202XXMKVV+UD8O/Vq3ngpcdI+jCW8RmZjM/KZExyFgmWNObPnEhqsg19Sgpx3/8+/ZtL8H6yhIS3/4R/28ec/+ijRGUFF987maGto/3MyXAZ/NoOvpKIzP8/83btamPHjj2kpyeTnn74GgzyHj59WhzdFK1wUL61GZVaRVK2jeRcO9HJZgzmyJiidySHjjJSFIWGpnp2lhazs7SYjZu3ULm/nLG5E3j9hTeB4Bokb73/Ch2d7Ud8zN6+3iHFLq02+NoFAj46u9rp7Dp4vy5nF7948PHQyKiFX7+V3zxbQ07WGMbkjCUjdRzxMeO4YN65jB178Ez54ELU0UZ5DXzX6TWMOyeJrMlxVG5vZn9JG1VFLUy6IJ1ZV+eEFqaXv6fjc7RMGAmL4Ua6HTua2LatmPHjJ0omRBBFUWivq6GqaCv7d2ynfu9u+t19qLVa7InJpIybgDUhEXt8IiabDZ3RhM5gOO255HA4Q3kwUHByu93sLitn5+49bC3aRUnpXppaGvjrb37HQB9hb3kFm4tXHfVx6xo6CPQ3kplpG9JH8Pa7aW51D9n2+9//PoXjx9BeV8uHny7jT6/9Bdvbz5P4eBSpcbFMnJBHzoTZfO3mG8kvPHjMOdbUM+kjnDkjrY8gRanTyNVfw+NfPE/MlliW7ZnFnddcwpwpU9AeqHwfbf0ftU6H/aqrsMyZg/Pjj+h49VU633yT6BtvIP7730cbNzrPXimKgmffPno+/yJ4hbYdJRAIoEtPx3LuuejG5KJPS0djt5/Va0QNrNOUlWlDb9AedRHywR/Ul335JU/+43l2VVXh8/sP27attw0IFkLNJHDfdd8kNyOZpNhYEqJjsJrNNNa5KS/vRu+yhd6XN11yCddeeCEbNjnYWdpIUqqejCwT7U4nDW2tpMWmhQpYNc1NADS1t9PU3s6a4qLQ8xt1Bl554nEumTULgORzJqPMKKCvqAjnRx9Sc8diohYsIOmRX5KVlTzk4Hc8ay4Mru4P/Hwy4RPJwXXovmVl2bn++gnhbtZZo6AgjrVrf0919Q6WL5/Dd797M1/72tdISQl+EJSzf6cmEFDYv6OVohUOGsq7MEbpyCyIJTnHhjXejM4weqfoDazTlJllw6DXHnUh8oFMyMiI4gcPfpvNWzfS1tF62HaO2uBHvYFi07euvwurzUhCXCLx8YlE22OwmC3U1XqoKHexdl0drl4fAGuWbqG/v58NG6vYVVpHcrKG1HQtrW0tmE3m0GOmpZlpam7A6/Wwt6yUvWWloed/6n9h/uwLeelvbwFfvUj6ob8feD0KCxOZd+M4yr5sZMeqWvZsbOCcK7KZfGH6acmEsyUPBgpQkgnDq6dnL6+9dhd2eyo7dlzOAw/czty5c9Ec6CNIJoweHlcvjpJiqoq2UFW0lZ72NtRaLTHJqaRPLMCWkEh0SgpGixW9yYRGe/Ld7d2lbcE+QpYNvV4zZCTUYJmZttD35Z9/we+f/TtllVX4j9BHcPYEl95obnZhMaRz57duJyszicT4eOJiYrBYzNTXeago78HTY2VP64E+wnXXcO2Vl/PllzXsLG0gJUVHRpaJzs4umltbSErMoaJWTWbmJPTJwQxw9nlw9nkob25j9e4y4AMe/Z9f8uNrr+Dyq69h7DnnkTFuwlHf84cWSKSPcOpGah5IUeo06uxpwqDV0dHbzrtrl/Lu2qWYDWbOnzKDb11+MYW5BUwgdsgwdRi6eHTebbcTddHFdC9fTufrb9D5+htYFy4k5vbbMBUWjvgzvr62NlybNtG7YQM9X6zG19SEymBAPyYX62WXoc/ORpecjNpmQ20whLu5I8LAOk31db0kJx+clgfBkVBri4tZ9uWXXDV3LhMzx+NwdNPn8lNcXg5AnN3O1PHjGZ+WTUJUCudOGcc5k4MVb4ejG7/TxnXnfZ2ZM5KHPO+OTaVU7XWjGWti6rREvB4fb7+9j6mFiRTmpxMTZT+sQLZla2OogHXfN27g9suv4IPlRWwqLsNFG9WtDkoqynF5+shOOfh8f//3v3nl06WcP3UaF162iClNTfSuXk3lZYuIvfPbxN9zD2q9Hji+NRcGV/eP9UHuq8Irkj8ERvK+jQZ6fwC/p5NAoJ8tW75gy5YvuPvuu0lLy+PKK6/mhhuuY/bs1MPO/slCuMfmdfvYvb6BHZ/V4Gx1Y080Mf7cJBKzbFiiDWi0o/cqegMG1mmqG5QJA0Wa6poqVq1eTk29g0f+v/8Agsf52ro62jpa0Wg0jBszkUl5U8jOyCPKnM450yeFttuzp50L59zKjJnJhz3vpg2l7NntYuw4A3FxJrYXNWM2a8nLj2f61HHExyYfViAbmCIIULS2gk+XbePLzSWgbqa5rZwdu4poaKomPu7gNG+/38+i6+eTN76A886ZxwXzFpCWcvT3+sDrAcH1qgoXZpI1xcW+LxtZ+1Y5O1bVMuGitNDf09GOfZIHkblvo4Gvv58NH/wTvV5PV1c97733PO+99zwmk50LL7yEu+76Fnl55wGSCSNVR2M95Zs2UL5lIw1le1ECASwxscSmpJFdOIOY1DTMNht6k/mUilCHOthH6CFpoI8waCTUxi3b+Hzder626FIyM8cGL2DR42dP2YE+QmwMkyZOJDsjl1h7GjOmTWBa4UAfwUm/O45Lz7+OmYdkwrbNuynf52HsOBNTpybi9fp5+60yphYmMnlSJnZb9GEFsi2D8uAHdy7m1huu5+Ol29m6fS/9gRZqG6rYU7YPj9dDUlwcxcuXsOWjd1lbWUNpcwcXXHA+N9xyGxdefDE6ne6Ir4f0EU7dSN0vKUqdRrdefz2XmM28vr2S9z5fTfH+ElweF0s3rwl+/e/viDGnsnJlNZMnxzOpIPghbd26erYXNdHb4yMvLx59ejqxixfTVFqFc8UqlNVrcC5Zgj43F9vVV2G/8kr0mZlh3tsgX0cHfdu20fvll/Su34D3QKFEm5iILjsby/z56LOz0cTEoLFaUZ3GA3WkGFiTaWCklCHKy0sff8zSjRtZtW0rLndweKxarcJ8bgp797STPSadF375CLPy89GrLNTU9IQKSLt3t/KH322jp8fHnDkpTJg4tBA6MI00K9NGb4+PuDhj6DLhAwuX33xT/leO1gKwWSxcOncqEzPGhJ4/EAhQXlvLmLSDB/jPt21l2969bNu7l9+98ToWk4mLCws5HzjvT3+m6/33SX70UawXXhhaa+FYay4caWjpkYb2flV4DddVMU7WqZylGen7Funa61z8f1c9S6+xheU7V9HQuJnS0u3U1e3mued2U11dzNKlS1m3rpYXX9zJRRelc/75WaxYUc1HH1Wyb18H6enWIf/ukXrW7ng42/ooWVVL6dp6+j1+EjKtZE6KIz4tCqNVj1o9sk/YnIjCA5mQmWVDo1Zo6djJ07/9G5+tXkZFVRkQvDjFA/f8PxyOXvbsaeeGq+/n8V8kkze+gG5nYMhaU+vX1/KrX61Fp1UxaXLCkDwYPFUvM8tGXV0v+fmxOKqdlJd1EGUJFqWONrppcCZoNBrOmZFPUkLGkOKV09mFq+/g1Zt279tJRVUZFVVlfPTp+wCMy83j0gWLuPj8S5lSMC00emTw61E4aP3C6EQz51yVQ3O1k31fNrH5rQoy8mOJPiflqMc+yYORu2+Rzt/vZUZ6Ev9x/RV0pU7nw+Xr2LNnHX19XXzyydt88snbbNmyBbs9aUgeALz99j6WLdtPZ6dnyPv2bM6D4aAoCs1VFZRv3sC+L9fRXleLRqsjNj2DsefMJiYlFXtCIvoDa0KdKaE+woGRUkazh9feeY/P1q5lw6YtuD0eAKxRFi44N5E9e9rJys7hj7/+T6ZOnoQaCzU13aEC0vr1dTz1H5uIitIxb146EyfGhkZZwcG1qbKybPT29h/oI9iG9hFuzvvK0VoANquVBRfMZFzO+NDz+/1+qhwOcrOy8LpctDiq+NcTT7PPUcO+l1/h7y+/gslg4Pw553Hjt27ha9dcS3z8wYtnSB/hoJM9BozU/ZIKwWlmNhiwK1lMsy/i8suvw9G2n90Nu+j0N5CTlM2r/9pLXX0P/1rzGq3uBgqzC0gyZGGJisbv9/Pa66XBEVN58dS6zeyNn83EGRcx3l+De9s2Wv/8F1p//wf0ublEXXQRUXPnYJo2bVimvwV6e/GUldG3Ywd9RcX0FRfTX1cHgCY2Fn1WFrarrkSXmYk2ITFYhDKZRvzoruF26NpieXnx5OXF09bVxTd+/gu27t09ZPuE6FiumjuHRefNJjPjYAdgbkImzS29rFxZjdPpBYIjrIqKm9mxo5X+/gB2u4EHHxwz5LlXrqymqdFFUrKZnBwbjY0uHI7uUPAdunD54JF8h66VdqR10tRqNdGmOLZtbw7d/t/3/ZCr5s3j3RXrWVeyjZ6+Hj7cuJEPAb1Wy6a0NGrvvofeSeeR+vAjPPro3GO+hu+8szd0lYjrrz/6sN+vCq/BwXWsg/vp+PB3Mo9xKmczZN2o8CqYn0ZztZNda1Wcl3wNunm3kpqu8Oc/v0pPTxEXX3wl1dVd/OUvRZSUlPHrX1/OggULMJsLiI3Nor29j1/8Yg0/+MHU0IelkXp260xRFIXGii6KP6uhcnsLWr2GpFwbiVk2ohPNGCyRsV7UoQuW5+XHk5cfzwuvPMvv//obnN2doW3Vag2T887hissWoQQCg4pCwWPcrp1ddHa5aWwIFoESEi1sWN/A3r3t6HRqxo2LCRWLWpqDedDY6CI52UxCopnkZAsGvfaIhaABg6fTxQ/KhKNd7c/j1lJXo0Kj6iUh0cK4MRN5/YUP2LhpHZ8sX8a+imLKKndTVrmbP//9f7n/7v+PB+756ZDHu+nm/MPaoVKpSMq2U1bbRVNDD6q9Hbz6+EamXJTOpVfnotUPncIpeRD5x4yRymC2sPC79/LR/z6Nqq6IjLgrmf6t+2hq2kl19Ua02nri4sbw8MNr2bevg/fe+w8CgUby8maj1+cRGxtNf7+fxx9fFxrVcbblwXAI+P3U7t5F2eb1lG/aQE97GzqjkfiMLPLPv5i49EzM9mgMZvMpLUp+LIcuWJ6XH0defhxNLS1874GfsuuQPkJ8bAKXXjyf+bPPIzP9YFEoMTGH5mbX0D5CopkN6+vZu7cDnVZNRoaNm2/OG/LcgzMhJ9tOQ2MvDofz6H2EA9MLj9hHOMLi6xqNBpsliW3bmsnMtJGRP5k//O63rNv4JR99vJLtpSW4PH18uuoLPl31BYYf3Mvaf79DdM5M9lX2UVAQJ32EA072GDBS80CKUqdZR3sfvn4Fq1XPrJkpJDks0BNPWmoUpTvb0WjUxMUa2b15D63dbezeXwmAUW8gt24scdpMmrrOIS/vwoPrRWRasSbkEjVvHv2trbiLivDs20fHa6/R/vzzoNViGDMGQ14epkkFGMaNR5+ehjYp6YRHJgXcbvobGvA1NNDf0ICnshLPvn14ysrxNTYGN9Jq0aWmoktPxzR9GrrUVLRJyagtFtQWCyr16J8+cSYNrC3W1duNod7FvMJCAGJtNuqaW1GhYmLmGMYlTMToTuPi2ZP41s0FQLBAtH59HevXwyULs+h1+XA6+/F4/BRtb8Zi1jK1MJEah5P2dg9qNfzf/+1g7txU8vLicTi6aWrso7k52GFJTLAwYWIsFrOWXpePBQuyQqOtBkJm+YpqiouaKSvrwGLWo9GomDc/nW1bg5cPVanULFqUzdx5aUMu8z14/bS0hARuvuRSpqZP55//3Mn+1hqIbqSuuxybxUL2L37B3hffxVS8nl9deh6Tr7yCi+79BS0t2iMeoAdfJeJYc6Dnzk0/7uHuxzq4n8yB/9BQPJnHGKlnM8TxSR0bQ2V5B0mKgq+1H016LHl5V9LTcyl9fUmsWuXA7fbj8ezB7e7m44/fB94HwG7PwGjMR62+lOnT78FkMp017we/L0D51maKV9bQ4ujGYteTMzWBxCwrUbHG0OLWkcLh6KZ0dyu7923l8kXnEhcbPCtsMppxdndiNtk5Z9oFpCZOp687h1nnZIeKNEvXVbB6TR3nz08jIcHCnj3tBBSF5iYXObnBDsrsOSm0tLgABbVGxeuvlVJYmIjrQH70uvopL+/EYNQycWIsZrMW14E8SEi0DClC5eXHs2JFNUXFwUwwH8iE+fPTWbasiuLiVgoL4/nud6cMyYPBC7Ib9AZmTZ/NrOmzueT8xfzfPzZS5diCX72b/bVbmD/7wtDrsnT5Kmqb1nHtVdcRY5tIdrb9sBFbX25sYteuVqYUxHPh1CSKV9awb1MTc78xlnEzk0KFS8kDEU4mq5X06eez6/PlzI//jPTZ91DeMJ+WljTGj4/h889r0Go1pKZa+OyzTfT0tFNSUhS8rymK+vopqFQTaG9fxNy5N8r74TRRAgHq9u1mz7rV7Nuwhr5uJ0arjfiMLHKnnUNsegYmqw39MJ1kH1iwvMvZiT3WzcypUwGIj42lrqERUDE+dwKZqQWo+jOZP3cy3/pWMA92l7Yd6CPUccnCbHpd/TidXjweH0VFzVjMOmbPSaXL6UGrVdPV5Qn2EeakkZcfh8PhpLHRRUuoj2AmJdlCV6eHzMyDBazBhajlK/ZTXNRyoI+gQ61RM38+bD3QR1CrVcE+wtz0UIHq0EXZU5OTueGarzNp/Dz++c+d1DVWoDdWsL9uF1aDji9efBbU/0e/MYvf/XofX7/xKmbPuZzGRpX0EYicY0BkfbILs7q6bjZtbmR/kwGjUYveECwQ1Nf14u33U1XlZPKByyXHJj1IfW8Vu2p3s7WshI7uLkrrdwG7cLh3MG/mxOBw+kwrm4oqmTklm+QkK53qKBzxhWQUzibJ4Ke/uhpPRQW+piZcGzfg/PBDGFjUTq0OTZtTW62oo6JQGw2gAIqCoigEXC4CPT0EurvxO50EuruH7JMmNhZtQjz6nBxM06ehiU9Al5KCJioKtdmMymCQItRxGCjyTJ4cT1XbXl7b/AkbXtpGlNnM+r++REN9H5mZVn73owdR9UcxY3IWba19oYP+wIikou3NFBU1E/Ar9HsDzJ6dgs2mo6XFR+nuNrq6PNx2ez4//el5bNnayN+fK6at3U3V/k6uvXY8FrOWpGQToJCUbGbylHjKyzp495196A0aJkyIYWphIkuWVFFX3xNqvwK0t7np7PSSlhpFZqaVd9/ZR1NTH6igZGcLGZkHF0w/0mW+Aerre9BoNEzKHst1111OXl48Hq8XtVZL3NevpCghnVf+8EuUl15C/dJLjMmcwrU33cljj32P5mYvu3a1Ybfryc6209vbH7paxMkYOCvhcHSxZk0d8+enHXGNHzi5A/+hoXisxzjaGZKRejZDfLXq6i6Ki5sJmLXUevpJQ4e7pJOF89NZv7WRLVuasFj0TJkST3LydXzve5fgcGzm00+XUVa2g66uGrq6avjXvz5l/vwk0tNnY7frcTo76O7WAfaIm77R1+1l15p6Sj6vxeX0EptqIW9OCrHpFix2I1pd5GTNQKEnNd3Phi0f8/7Hb9DUUktn96PMnvENMjOtXH7J1dijkomLyScnO5rW1r5QcWhgFNHKlQ4cNd30e/3MmZtOn9tHn6ufuvoeNqxvYNzYGObMSceg17JmTR0rllfT6+qndHc7N980kRkzknDUOKko78RmMzBjZjIvv7yTdWvryB1j5+qrxg7Jg4Er7SkKtLW56RiUCSUlrbj6fJSUtA4pRB0tD1qaeykubiY+Lp7U5Cu54or7GDvOHpq6l5lppbJ2FavWvsenq97AFpXAxed/jfu+/11ys8fS0tzLjpJWoqK0jBkbzaw5KUydk05mQSx71jew/PlSSj6v46LbJhKbfPSF1QcMzoSlS/dTUBAneSBOm/q6bopKnFS5pjHGsI2mL/7GzCvvYd/4GNxuH8XFLVx0UbCDnJPzPL29pZSXf0lR0Vo6O9uprFwPrOfjjzdz2WUzQ+/Pzz4r5qKLppCdHR1xmXCmKIpCU2U5e9Z9wZ71q+ntaMdotZGYlUNsegYxKWmYrFZ0BuOwFKIGijyTJ8XhaNjJx6s+ZNvOLcRGR/Pui69TV9dLZqaNpx7+FWrsFE7OHtpHODAiqagouP5eIBAI9hHmpGKz6YN9hNI2ujo93HZ7AU88kcaWLY38/e87aGtzU1XVxbXXjsNi1pGcHBzRlJxsZvKUBD79tIovNzZQVt7BzJnJWMw6liypPKyP0NbWR2en50Ae2Hj3nTKamlyoVFBS0kpGhm1QJgyd5jegvr4HjVbNhHH5XHft18nLj6PP5cLV2U7Z1iL27NzB8jWfsnzNp6hVKsZkTeH6b97JY49/n8ZGt/QRRjkpSp1GZWWduFw+UlLiyMmxhT6ATZ2aSFVVFz09XppbXPT1+Sgt7mH+/Kk8+aOb2bS5ns82lODoqmCno5T0uNRQ5761rYfbn3kQo97A+NRxWEkkOzGLhbMLSUuJJTNzHIlTp9LU6KSuohVfdzedZQ7GxEOCyY+/uxulvx/F68Xf0Y7fHwg2VnXgP3o9aosZTUwMer0OdZQVjTUKtc2GJjoGzUDhaeArAqZKhMOy1bt4b81KKl/dSWdvZ+j2WEs023c6qKsKUFbWzoIFBUPWcho3Lpa4eBMORzdr19TR3t5HdrYNX7+CRqOi2uHE6eyns9NNn8tHe3sfK1dWs2BBFpmZVtxuP15PgLraHvbuaSc52UJigoXEhGDYJCZYePmfpdTV9WCz6dlv0FCyoxW9QU1aalRomG5CggmNWkVNTQ+zZ6eQmGDBbNagKMG3UnubG4tZG1q/KvgcR+oEqIiONjBtWhJ5ecHOjeHAAueJCRbOuXgy99fcxpJVn1LW2UyZYwf//d8P8Ne//op5864kI+MyUlPHolar+N73Ck/pMtYDZyXWrKmloiL4b/LKK9OOuO3JHPgHX171qx5DhuFHnl272igr7yAxwcy4wgQCfT5ULR76d3eRbDbQouoDFLzeADt2tNHaauH++3/I73//X7zxxjbefPMjWlqK2LNnIx5PBhs21NPT08/y5c9RWvomqanjMRjGkJIykSuuOJ/Jk/OYMiVxyFDzt97aR11dN9/4xvgRvUBuW13PgdEtjShAUraNceckEp1kwWTVo9ZEVu54vB5efv11Pl/3b5pai1EIXmfbaLTQ2NjJ1q1NB/Igi8svu2TIfceNiyU+3sTadfVs2lRPbKwJnV5DVqaVivIO+tw+ou0G9DoVlZUdvP76Hm66KXiSy+8P0OX04nH7aWrqpb6hl2i7gYkTYsnMOPiZxeHopqPTQ1WlkxUrqnE4nNijDaGpfAsXZmEy6/D7/Gi0GubOSWXV5w7c7uAV+6xWHZ1dHpJTzKGpfEdaj8rh6Mbp7Ccn2xYalTVYQqKF795xOxoNrNmwDGdPC+8veZ73lzzP5PzpzJ55FSrfDNQqLYsuywkt3h6bEsV5146hprSD8i1NvPHkJqZcnM55XxuD5hiFzUMzwWLRHfF4LHkgTkZZeSe9vT4SUuKISb0Spe5z9n30Z86ffCN7mpNpb3dTXe2ku9vDypUd3HTThfz977/go4/Kee+9z+ns3MHevRvJypocen84HC384AcXYzbbyMmZSiCQTlpaHtdccwHZ2cmhTuxAp7avr5+dO1vPykXTFUWhtaaavetXs3vt5zhbmtGbLSRm5zD2nNnEpadjjLKhNxqHvW3LVxWz9LNl1P9tOz29XaHbLeZoSnbVUFXRT1lZBwsWFA5Zy2ncuJgDfQQna9bU0dFxoI/gC6DWqKmuduJ0euns9OBy+Whrdw/qI9jo6/Ph9fiprQ2eREhJDvYPQn2ERHMoD8rLO+nr89PS7DpCH8GMRqOixtHN7DmpJCaaMZs1oBwsWFnMutD6VYmJ5iOuSQVgtxuYPi2JvPxgccZkNmMym4lLTWfM7POo9Gj5YsMa6tpaKNtfzK//60f86Q8/Y97cRWSPvY7k5BzpI4xSUpQ6jcaNi8Y8MZaUGWNCHfItWxtpbOwlLs5EV5eHpkYXFRWdNDe72LS5kdwxMVij9CycW0hX5wTm5l5IUpKZ6Jjg4tMlZZWAih53L9sqiwD4ohJe2gjx1nhuuGARD976TT77vJbOLjc93f20tdpoT0jg5muCwzkVvx/F72fv7mZ27mhm0qR4YmNNfPllIxWVHehNei5ekM3E/EQZ9XQG/OWdd3jkzT+Hfo6x2hgfNxmLawz5WbmMSU+hu60Zp9OLwxEcqeZwdNPV6aaxMTiENjPTSnt7Hw6Hk/z8WGbMScHpDC5uWNPppLKiC0VR0GpVrF1bx0cfVjJpUhzpGVG43X7S0qMwm3Vs3FiPxaJj3vzgh5EtWxspKIgFoKAgll272unu6Sc7zsYVV+RQX98LKCxYkIXD0U1/v4LeEDxsNDX1oVJxoMAJS5ZUERNr4N139nH++WksWnRwLSsIjharqupizJhoJk+J50hirFby48+lf1wud6a7qdjxbz6uLqeh28knn7zGj35UyMKFC+jq8p7ycNWB+6elWXj33TJ8Pj/r1tWetg9q118/4bgvr3qmh+DK2dPhV1AQR09NDynJZtJzogFw9/az+u0yUnr9mDOiqavtYf2GOioqunA4nKSm7qOry0t6eiLf+c6tNDdfS3l5J1ZrDGPGmCktbaW7ux5FCVBXtwfYQ2Xlx6xb9z/odCbGj5/EK6+8SV1dgObmXj74YC+trV6iow2Hva8PverMO+/s5dlni4mJMXD//TPOeIfF7wtQVdxKyRe11O/rxGDRkpEXR0JWFNZYU8SsF3Uol6uXC648h7b2ltBtqUmTsRlnM2vGQubPy6WqqiuUBwmJltCoqMFrRZWVtVFT082E8Vquv248ZrOWPXs72L69idraHjweP05nP1u2NFFc3ILBqGbGjGRSki20tLpISrJQX9/NihX7mTUrhXlz00L5c9FFGUAwdzo7PPj8ARLiTdQ39FLf0MOUyQlMmxpcUHfixFjy8uP5y1+KCChgMKiJiTGyZk0N7j4/y5dVUzApjkWX5RxWdPJ4fXR3e5k0Oe6IRSuA2bPmUV0Ri91wIwZzGXsqV1BUso6S0m10dLbxqwevRqU6fBSWWq0ma1IcKWPs7FnfQPGKGsq3NnPhLRPJOspx9kxmwkjKA5BMCIdxY6PpqYll7OQxJCaa6Xdns/yll+kueo209AU0+8ZSWdnFtm1NVFc7+fDDSqZNSyYmxsj1119Mc/O55OffSG6unaQkCwUFcXz55WbUag29vR3s3LkKgNJSWL4cYmLSufnm7/HTn97Piy/upKWll/Z2NzU1vcDhCzsPzoT0dCtvvbWPzZvriYrSc+edk0dtEau9vo69G1azZ+0XtNfXojMaScjMIWvKNOIyMjHb7OiNZ35d3qP524v/5A8v/CX0c2xMDBmJU6F/AhPGjCEjNYm2loE+ghMITvHr6vTQ0Bj8t8zMtNHRUUF1dTcFBbHMmJ6Gs/tAH6HGTUVFF4oSONBHqOXDDyuYNCmejAwrHo+f9HQrFouOjV82YDbrmD8/DQheTW/69ESMBg35BXGU7mqju8d7oI+QS/2B0VLBPoITrzeA/sBafo1NLlCB6sDXkiWVB/oIZcw/P43LLx9aMNpd2kbV/i7Gjo1m8pSEI75WCfHx5E24Gm/feaSleyiv+oK1WzbQ5epl6Yr3uCPQQV7erRjTZ0of4QSMlDyQotRplJZmxZYXh37QCJGBD0pdnW6irHpsNh2pqRaKilrIyrKydWsTNpuOBQuyINOKPXrootFXLihkYs7z1LQ5+PiLLezaX067p5HW7lZau1ux2rSU7GildFcbHX2tvLrjryRYE9nnz2JfTw52czTagIXslCRKtrhoae7HpzMybpyeDUXtVFV2oSgq/GodeZMOv0S0+GqHLva9u7yOiqp2Zk3NJTHBwsJzzkGtVpOXOpGLJs1jYmoejqoedu5sw+Xqp76+l8QEC0aDlq1bGnj99d1ERelJT7NiMKhDa0XFJ5ioreump8dHY2Mvag0E/NDfr6DVqtHpNKSmRVFc1IzL5Wfz5iYmTIzBatURE63niy8cNDW5SEoyc9ll2Tgc3Wzd2oRGrWLq1AQmT0kgK8seGg7c6/KxfXsTigL2aONhUzDmz0/jww8r0GjU+P0KdfU97N7dRnd3cEHFgaLU4KmH5eUdWKISDhtFNXgNq8GLKd7wzXnc8flGyla9w4dNTfwoU0f27FRUajXPPfccK1eu5O677+bCCy88rAP7VQfZwWclmppcrFjhYMWK6rB88DodQ3CPtb9ny1mWkSQry467MBGfLxC6zWjRUXhZBqVrG1E192H0K0yfFE92to2oKD1ms5aXX97FZZflsHjxJKqru0hMtIT+TQsK4sjPfwGvt40XX/yYkpKtqFS11NTsxevtw+HYS02Nj08/rcbl8lJW9ic6OvbxzjsTaW6ehs2WRCBgZ9asiXzySQfr1vWGruj07rtlrF1bC6iJitKfsb8DZ1sfpWvrKV1bT193P9FJJsbPSiIuI4oouwFdBKwXNXiB7kAgwOdrvuTiC2aTkGjBbLZwzvRz2bR1E5MnXMacc66msV5PdbWTxnova9bUkp5uZczYaFpaennqqQ0E/AFQqZg0KQGzRcf2omY8bj96vYZ+nxIqDmVmWNm1s4X29r7QNIymJhfNLX0A6LQtTClMYM3qWly9XlZ9VoPH4yM1JSqUB2Vl7RQWJrLoshwyM620tvaRkGDCYNSyfVswD6LtR8iD89NYs7oOu12Pq89Pb6+btrY+vF4/Pb1e8vPihyyw7nB0U1raTkuLC0e1kzlzhr5+O0paAYUpkxMGLbo+lfj42yneUUnJ3hWkpiSwcGE2EBx9dsMdV3DZxVdx/ddvIiY6eLJFb9IyZUEGaRNj2PF5LR/9sZjk8XYu/84kzPahV8waKZlwuqZkSCaMLKlpVtx5ccQcGCGiMxqZ/rWbKP70A/pqVzDeUAs5X2P8+GiWL3cwaVIcn3xSRXy8kcWLJ1FQEEdi4tB/zzvvXMT06UU0NOzlzTc/pbS0CI+nms7OBjo6aklMNLBqVQ1r1tTS07OfLVt+RUxMBgZDAQ8/PAmLJQGfz0ZOThYffdRBZWXwWHHOOSl8+GE5RUXNKMrBNdlGi+621tCIqOb9lWj1ehIycyi4cCHxGVlYoqPRGYdnjajBi30DFJfsD06NK8gGYP555/Lbv/yNsVmTOW/6heRkTKK6qpudO9vodXmpr+8hMcGM0ahhy5ZGXn99T7CPkB6FwaAJrRUVH2+ktrabnp5+Ghp70WhU+P3KgT6CCp1OT1paFMVFLbhcPrZsaWLChBiionRER+v5/HMHzc0uEhPNLLosG4fDGewjaFRMnZrI5CkJZA/pI/SzLdRHMBw2Je/889P54IMKtFoVPl+wj1C6u42enn6AUFFq8NTD8rJOLJaEw0ZRDV7DanAf4Zvxc9m/v4Pahp0sX/ExcyePp3bDv4F/894/PLT2Kzz4819wwQUXSB9hFOTB6P/0N8J0tPdR09o4ZBh8ZqYVMq2Aivr6bno9AW67LZ+4eFPoSmgrV1Yf86pns8+dQ25SLp+vcqAoMPO8WFQWJ9kpKVSUevD5AjR0NuDz+2jorKdhWz0rtm0Y8ngXjVtEQex5ZGXacCmtrKx5DZdbRcCnoWGzmc2PLCMuxkKMzUxGUhJ3XHHFkMsyiyMr2dHC1q1NWJN72Fb3Je+u+pzCzEIeVt8HBD9YP3fPb6ipCi4o++X6Znp7+/H5Fdrb3XzxRQ0msxa9TkNZWQftHW4M+uCINa/Hj9sTXCMsI92G2aQjPz8WvUGLxaxl9epa6ht6iI01EGXVY7HomDkzkY0bG1EUqN7vxOv1s3NncOpmv8+PokCvy0dmppWysnbKyzrp6HBjjzYyc0ZyaFpdc0sv06YlAQoWs3ZI4a25pZfcMTHcc89Uqh1OYqINdHR66OvzUV7Wyfnnp4Ven4FFzw0GDQkJZrIOmUMOUFTcTHFRCzUOJxqNhtmzU0LtSLxhAZMuP5eL3niDvuf+TtWataT+5hn++Mc/snPnTt58803Gjx/P3XffzR133EFsbLAzcrwH2erqLiwWPTNnJh3zErPHEq4rbwy2alUNn35adaCgceRL4UbKYoijRWubi1pHNznjooGDeXDRN8axd3szFZuaKMBAW4KBBd8cR3lFJzt2BNcaWreuNjQiMCvLfsjIpnPQ6+PYsGEhWq0Kr9dHenofOTmQl5fA1q1NbNnSRVdXDR5PByUlGygpGZoHBoOFKVP+gtPppbq6i46O14Fi/H4Dn30WzZVX/oukJBsJCTZMJhM33ngj+fmHXwHteAT8ARyl7ez8og7HrjY0OjWJ2TbGz4oiOsmC0apDo4mMUboDV7Rrbmnn4+Ub+XTV6zQ0VfOU/z0SEzIAhTtu/AUL5vjp6PDS3u6iqqoDl8tHf78fp9OL0aghJ8fO6jV1VJR3oigKCQkmUlKiACgtbSMqSsecOWnk58di0GvJzLSy6nMHdXU9RMcY0Ok0pKVaGDs2mrVr6+h19eN2+9i6tZGuLg9OpxeVWoXRqCU9wxrKA6fTS3Fxc2hpyhkzk8nLj6eluRebzQAoR1wbakxuDBddmBla9yo62sCOkhba2zwUTIobcp+BApjH42PsuJjDrvDncHSHCmD19b00N7mYPScltJ7VwoWTWbhw8pD7LFu5hK1Fm9latJnf/Ok/ueKSr/GtG+5gxtRZqFQq4tKiiBpno21HG00VTv716EbO+1ouky9KH9JZGTgOT5o08FySCeL0ae/oo6K+MdRxr63rZerl11BTvIHaoo34Kl+i2f41nnpqHunpVl58cSeVlV28+OLOw96LgzPh61+/hszMKbz88i4UBa65JpW4uHYmTJjAZ5914fUGaGmpwu/30tpawcqVFaxc+cGQxyss/C7R0QuYNCken6+aurr/QVEUvF4tq1bZufrq10hJsZOQYCMnJ4c777wT9QiaXdHX003ZxnXsXvs5tXt2oVZriM/MIv/8i4hLz8ISE4PBbBn2EbglO1rYsrWR6LhO1m5ZzpfbNnD+eRfyn798mJIdLYCR//jpX6jZH+wjbFjfhMvVj88foKPDzRerazCZBvcRPOgH9RG6e7x0dXqYPSc1+Bk7y4Zer8Fi1vHF6lrq63uIizWG+ggzDvQRUKB6fxceb4Bdu9rx+QL09wdAgV5XP5mZNsrKOigv76S93Y092sDMmcmhaXXNzS6mT0sCwGLWDbnKXnOzi9zcaH7wg6lUVzuJjjbQ2emhr6+f8rIu5g/pIwQXPTcYtCQkmMjKOkYfocaJRq1m9pzUUDsSE83MIo3rvn4ZSiCAs7WF6pIifv3Ub2hxdvPRsuVkpiTzvbvu4t4f/4To6GhA+giDjZQ8kKLUadbY5GJvmxL6eWBtqJkzkrFHd7Ni5X6cXV4sUVpuvimfBQuyWLmymr1721m/rp60tCgWXpJNYoKFouJm1q9voGRHK7fdlk9mpjVUJCiYmEBiwlgAzNpeQMXMziSuVWaijeql2dlMdWMjFbUNVNc30dzZSpTejkajpq/Ph0/Tw576faF21tZBUV3w/7OSk5kydixzp0xhQtbJ/QFGsuaWXkp2BItNiUkm3lm1ihU7P6Oxu+7gNp1t1NZ20dLipq/PR5fTQ2eHB4NRg8mkxWbXU1vTjVqtoqmpF5NJi6KAzabD7fah1qjxevzoDWpcrn7Ky9vp6Yli8uSEIQWpZcv24/MpmM0abDYjfX0+rr9+Aq6+ALt2tgWDTK8hMdFElFWPq9dHUpI5NPoqK9NGcVELHZ19bN3SQFenm8lTEoYsoJiXF8+WrY1Drqa3bm09mzbXM+ucVG6+6cgd1d27W1m3rh6DQU1qarAz5erzUe1wMnZc75DRUgMF2d2l7dTWdgAwZ87BsxGaqCjivvMdegsL6XrnHaquuZafTL2YlYXn8O9/v8W+ffv4yU9+ws9//nNuvPFG7rnnHgoK8lm3ro7nniumr6//qMNkd+0KLhB/ySXZJ30G5HScZTiVx1i3rpb33y87cAZKOez3kbYY4mhRV9tDRUUnGkOwuD/4CmQTpiXS1dfP7nUNxJt1bH29jAtumUj1TCeVlV08/vh6uro83HDDBB56aBYrVlSzYoUDhyO4zs+kSfHMnp2K3a4fUrwCWLx4EllZdmbN+idebwM2WxcdHXXs2VNBWdl+Ojsb0WotmM16uro87NrVRkPDLvr6dgKwf3/wa8CVV16JRqM54aJUW10PezY2sndjA33d/VjjjIyZnkhcehRRMQb0psiYojd4ZE9lVSXvLXmRCscq+vvdABj0FjZu2kZ8jBqjQUtMrJEdO1rwevykpUVhteqDFx4J+NFoVOi0Gurrg1O4NRpQCI6E7en20t3toc/Vj92uZ9rUxNDV7Vpb+1jycRXtHR6amnqJitLh6u3n5pvzyMqy8fbbZQQCoNeoMRq1xMYZibLoiY0zYDJqWLmymswsG01NwSzo6elHpw/+2wyMmGpp7qWwMJGERAtbtzSG3s8Aa9bU4fcHuOKKnNCVARddfsgU7tJW1q0PZoJao8JgCBbfXC4fLc29oZFUmZlWpk0PftbZuLGBivJOYGgmHGpK/ly+f/ujfL7+bfaW7+L9j9/i/Y/fYvyYiXzrhju49upvkp1tZ8/eDqpqnBRmRLPmzTJ2b2jg4jvySEgPFs0GjsOzZ6d+5WXHjyWcmTBQrPB6gyehJBNGjqZGF5UNntDPA39DMy9diMtnoXnH58T1vsiq99r55W++zeLFk3jxxZ1s3FjP22/vY8KEWO68czJZWXZWrKjmnXfKWLWqhqeemkdBQRyXXZYDKMyenRn6973ooi5ARXNzNopyNfHx3bS1Oaiurmbv3goqK6tpaqrH57MTH2/CZNLhcrVRUbE11M6qquAXwJgxY5gyZQoXXXQRY8YM/Rsfbv1uNxVbv2T32s/ZX7wNJRAgNi2DCbPnE5+RRVRsLAZL1LAWz5qbXQeKTZCQaODDZUtZv3UZ7V0H+wj7q+tZu7aGioou3G4/XV0eOjo8GI0aTCYNdruempoAarWapiYXRmNwfSabTY/b40etVoX6CO5WHxWVneSOsYem0Q0UpJYv20+/L4DFosVmMxzoI4ynr8/Prl1tmEw69AaFxISBPkI/SUmW0OirrCwbxUXNdHT42bKlka5Oz+F9hPw4tgzKg8REM+vW1bFpUwOzZqWErth3qN2lbaxbX4fBoCH1wAkXl6uf6monY8fGDBktFeoj7G6jpiY4ZXDOnLTDHlOlVmNPTCJ58nx+dLeB1es/5osvN+JoaOSXTzzJE//5NJdeMI+fPvwIBQUzpI9wwEjJAylKnWbJSWb6E2IGTdvz0NXpprmll8xMK7POSaWtrS/0B5aYYGHBgixKdrTS2elBo1ENKRisX1dPR6eHouLmA0Wsw9ddCD7G4dOh1jnrmTfbyNx5wbUi/vXyTqqqOklPj+Jr14/lhV8+QrvTicvdR3uni5a2HlAFCPjh54tvIytdzqAdicPRzfbtTRTVbmVt1Qrae4JFFL1Oxw0XX0ymaQpddWa6nP1ERxvp6OyktqYbny9AQoKZlJQo/H5/cHHwKB1xsSZaW13UN/QQZdFhMAQLh/X13aSlW+nr6z+wthNkZdnYvr2J6GgjGzbU098/sECujsxMK/n5cXg9Ptrb+tDr1UyYEENsrJmGhp7g8wYUduxopr3NTenuFuJizTQ29uLzBfB6WnE6+7FHG/ls5X527GilxuEkLy+ezEzrkPdyW1sfzi4vbW3Bod67d7eyfEU1AJcszCIvL56i4ma2FzVhs+nJyw8+RnOLK7RWyuCiVFy8iXHjYomJNrBrl4GCgli2bG0cMpUVwDJzJg51Ap2vvc55m5dRmJPPH7YX8dbKFfztb3+jqKiIl19+mZ6eHt5991327+9i69YmLBbdUQPndJwhCPdjrFhRTV1dD+PHx3DRRZkn3QZxeqWlR6EEho4sMZu1bN0SfG/njI2mrrGXjhY3iToN6/65h4JxdtQZAYqLm6mv7+Htt/cxe3YqCxdm0dnpYdeuVnbsaAU4aqc5K8t+4EzYJCD4geTtt/cxZ841/O//TiAry86NN77PihU1FBTEUlAQxzPPPENNTQ2dnZ00NHRSV9eJWu2np6eP6667ittuu/a49tnl9FK2uYk9Gxpore1Bb9SQkGkldkYU0ckmzFbDMRebHo0cjm7WrN3Fms3PUlWzgYEPfePH5nHB7G+AtxCfX0e03UBnp5uNG9pwOj1otBoSk8yMHRtNeXknZrOWuHgziUkmtm9vormlD7UK9HoVLlc/paWtuD1+3H1+7HY9mZlWdpS0sn1bEwaDhl5XcFpEIABqjZqsrODi5evX1+H1+oiNNTFjZhL79ztJSYkiJ8fGmjV1vPLKbnR6LWPGBD+UVlZ24Q8oFBW10O9VKN3dxqYvG/AduFDKwPG8s8tDZ5eb1JQo/P4AdfU9FBc3k5cfz9JPKli9po7z56eFilPFxc1s3x7MhIULs4OvR5d7SLF2QLTdQGamFZNJi9GgpaAgNvR3c+j6U7tLW1mypBqD5jye/Nn16EyNvPrWi3y49D32VezhsV//nNmz5jNuzASam1zsLutErddy09fGsndjI2/95xYmX5jG7GvHnLYzxuHMhIEC9syZSdx+e0HYz36Lg5KSzejtltBIqeDnKg/NzS4mziykzWlAqVuHoeYdlj/Xy0Xf/j6LF09i1aoamppcaLVqli/fj92uZ9KkeN5+ex+Njb2sWFHNo4/OPWwEBAzOg4PWrauloWEfixZFccMNE3jxxZ289NJOtmxpZOHCTK688lxee+012tracLlcNDV1UVfXiUrlIxDQ8Pjjv2LMmKRhec0O5ff5qN6xnd1rP6d8y0Z8Hg/RySnkzphFfEYW1vgEjJYoNNrwdHEdDifbtjdRWr6e4r2f4jzQRzAYDHz98suIt86gud5EbW0PMTFGqqq6qK3ppt8XICHBRGqKHX8gQHu7G4tFR1ycidYWF3UNPVgG9RHq6p1Yowx0O71otGra2tyU7Ghh2/YmYmJMB/oIwWO20aAjM9NGfn4sXq+ftjY3Op2aCRNjiI010dDQe6BvEmDHjmba2tyUlrYSF2emodGFP9RH8FLf0MuXX9bj9wdzLi8/jsxM25D3cltbH12D+wilbSxfsR+ASxZmk5cfF+wjbG8O9hHygo9xsI/gHFKUCvYRYoiONmC3tZFfECyEDYzMGmx3aRtLllSi1li589YH+a//iOLt9//NK2++zf76Bj5a+Tl15WX8/LuL6axMYPs2nfQRRggpSp1mMbEmkrIOrs1kjw5OXbJHdzNzRjJz56VSsqM1OJwy3hS6StlVV+WyYUMDfr+f8vLgAcwSpSU1LYo+l4+Wlj52724lLy/+sDWMjmT5imo2fdlAXJyJjMzgB1OtTksgAK2tfaTEx3P9RReFth94zIHFtVua+skaPdPHz5gjvdYWs5boaCOmLj/tPR2Y9Raun3cZP7zpOno61ezY0Yyjq5GeHi8ulw+Xy0ufO4BWA6AKngnX64iNM2Iy6ejocNPR4cHXH6Ct7cAZNFVw/fBAoBtFUfB4/Xj7A9hsejo7g1MvEhNN9PcHiIszcdFFGZhMGrZubebLL+vp7PQQCCjodBri4ox0dLiJizPi9vjoc/no6/PhcHTT29NPcrIFjVZFe7ub/dVdtLb00t7uwe320d4ebE9igiX0XoZW4uJMTJuWxNy5qTS39LJkSRUlJcEzQ/3eAHHxpuCc8x4fcXHG0Os3sGD6odM/Bqb4TZgYy4MPjjlsZNbgf4v161vZ5Szk4rgU5jYW03LTTdz0+GN8b9s2Nm/ezN/+9jcWLryGJUsqmT8/je7uBpqb/8m2balMnz79sH/j03GGINyPMTCkeOHCrBFxtkMExceZibYbMduCV5g8dITJjJnJzJuXxo6SVgJ+Pyk6HW37ncR5/Hx7YS4fbaqjqdPDihXVLF48iehoA16vH7c7OOJxwFcN6/7HP0r44IMK0tKiyM+PJyvLTmenF58vgMmkO/DeW3jY4zU391JR0UVcXOox97O3y0Pl9hbKtzXTUNYJKhXx6VFMnJ1MbIoFk82A3qSJmFFRA8ewgeKI2awlMTGOhuYSQCFv3Gxu++b3GZs9ncqqTjZvasRiCbBnbxtNTS76vQoaLZgtGsxmLSazjoQEE3qDhv7+ACU7Wmlt6cPjCXYoPJ4ALlfwynZqjYr+foWOzoHRFgqdXR56ur3ExZrwev2kplqYMDEWV28/z/19B32ufvr7leDUcIOGcWOjcTq9gIq21j5cLh96f4CK8k50ehX2aAMejx9FUdhf3UVbm4uWlj5iYg5egS8h0UK0PTgNr6U5OL3OUe2ksDCRluZePv64iobGXrqdXmbMSCYh0UJhYSI9vcFMmDI5PrSIe7R9aCY4HN2hv5E5c9KZMyd9yN/NoWtTrV9fx76ydjIzbWRl2UhITKFw0jQefvAJ3v/4LUr37iTaGnyMgoJYNhW/gjuQS3R6HvNuHMfeDQ2UfF5L5fYWLrxlwildsWlAODNhcB6MpnWAzgaxMSbGFAzuIxjYs6c9NDVq7sUTKS6Kxlu3jZLPlrG/eCuX3v0AP/zhtNBiy1u2NAEQHW0gLs5IW5v7hPIADs+EhQuzePvtfTQ1uVizpo67757GTTfddNhjDmRCRUUvE45vjebTIuD3U7t7F3s3rGHfxjW4e3qIio0ns2AKcelZ2BMTMVptaHW64WsUQ9eLGiiOWMw6YmKMmCxenD0dmI02rrzkar5z6w10dsCOHc3s62qkp8dDr8tPn8tLn9uPVhO8cpBao0anVxMbG+wjtLf30d7hpr/fT1tbcF71wOLhPd1eAgoY1VrS0oKjjbq6PHR3e0lKNNHf7yc+3sQ55yTT29tPaWk7ZWUddHd7g30ErZq4OCPt7W7i4gy43X5cruBnDIejm97eflKSLQQCAdra3TQ19tLe1kd7uxuTSRuaapeYaMYebWDr1iaaW1zk58dhseiYWphIc7OLJUsq2V7UDAqYzTry8uOCfYTe/gN9hODrNzDSK/OQZT4GpvhNnBjLgw/lHjYya/C/RTAPOsjMtJGZacMaZebbt97C4lu+xbbiHfzztdeZmZ1NfWU1uYEirs93s3W3k5UfBbj4yqsP+5wS7s/3p+MxRksfQYpSp1FdXTd1u9tIMR9cyPnQxUBLdrSwZEkVPl+AXaVtxEQb8HgC5OfHMnVqIvX13cTGmomLM9LcEry0Z2+Pj/LyDtatq6fX5RtyVbZDp1kNcPf1EwiAyaQJFQSuu3YsGzY0MHt2ypB2N7cE18BwOr2MHRPDhImxhxUNzlYDxZL9TbWs2rWKvLQ8PA1JaDQqbrnsCrRqPZa+XGaMSaWnU83WrU3sLGmhq8uLz+/H1x9ApQKTUYvdrsNq1R1YoNBCa0sfVZWddPd4MZu0GI06el39KAEOnB1Xo1ZDT48PjRp6e4KL4FZWdqHRQlKShW98YzwTJ8bS6/Lx6dIqSncHp+xptWrcbh8VFZ1kZ0cTExO8xO3UwkR8/QqrVjkOhBJcckkWzS0uPvygAm9/gK1bWygoiKO1rQ9vv4/33tvH3HlpQxbtd7n6mTrt4NQ+jUYdChGNRoXD0R1an2r37tYha6aVlbXj9QQDz2LW0uvyYTFrmTAxFotZy5atjbS29NLY2EtOju2wfwuA2DgT3rzpNKefQ9LGD6l/8CF6PvuMGU8+yT/+8Q+WLKkMTcHIyyvnv//7LWbMeItzzjmHu+++m29+85tYLEcu6I5Gc+emH7XzcaQPqIdeeU2cftXVXRQXN5OSbA4VpWBoJgysP7RtWzNOp4e0NCupyVFkxRig08s1+Ul0+PzkpkSxc2crra1uILgOUFOT67COAkBtbfcR/20HPsTa7cG2fP/7hSQkmEOXIx7c7hdf3Elrax8zZiQze3bqYWfmFEWho8GFo7SNyqIWGiq6UKkgJtlC7rQEYlMtRMUYMZh1qDWjvxA1mMPRTcnOBlZ88Tb767bww+88wyef7Eej0XDReT8i4IvjgvnTGZcTy5497RQVNVPf0ItOp8bV24+vX0GjAZtVT2KCmfh4M3PnpLJnbwdLl1bQ0e7BbNZisxtwufrx9kNAAa1KhVarRq1W0e/10dnh5plnNuH1BtBogyOpDAYtt9+Rz7ixMaxcWc327S1093gZMyYai0VHZ5eHzZsaWXR5LgajFlCYf34aRUUt+Pr91Nb2oNHqDkwJdFJT002URU90tJ4oqw6TWcOeve3Ex5tISLQMWYfKoNeGpu1t3dJIXLyJvj4f8Qmm0FUEB9aEKi5uprW1L7T+VGaWLXTlP4DOLg/JKeYhowo93uAFPnJyh2bCQMckNtYYmsoIwcKVzWbn9pu/G2rTnj3tpKRB8e632LzDyxvv/y/XXHUD37phMbPG51K6tp6P/rSD3GkJXPCt8ZitQxdCHy2OlQcgmRAu9XXd7N7dxlhtdKgjfeji0CU7Wli6tBqfL4a8nHPwde7m7f94GEvGNC4+/0oqHV5SU62kpUVRXd3NyeZBT48Xv1/BatWF3gePPTaHd98tO6lMOBMCfj81u0rYu3EN5Zs20NftxGS1kZQ7jrj0TKKTkzFZ7egM4fs7HSiWVNfuZ8O2T5kycRYt9fGoNWq+8bVrMBvtqPrHMWV8Cp0dsHVrEyUlLTi7vPj8Afr7/ahVqmAfIVqPzarHatWTlmahtbWPqsoOunv6gycvBvURVGrQ6dShJVkCAVi50oHFoqOyoguNVkVSkoUbbhjPxAnBUUlF25vp7ulnzBg7ZrMWV28/FRVdZOdEExs7qI/gU/jsMwc93R4CfoVLLsmiqKiZqv1d9PT0U1AQR/aB40ZwBF8vc+emh9agcjq96PWa0LS9LVsaUWuCxS8Ugt8JjrDKy49jd2nbIX2EDrxef2gaYq+rH4tZx8SJsVjMOrZsaaSlxUVTYy+5ufbD/i1ANSgPglcrTEw0o1KpmDG1kBlTC4NFrdJmsnLdrPjwJVZv38rCq79ObnIit9zwDX74s1+QkHr49MDRarT0EaQodRqVlXXSvN9Jf8LBqUkDI6EOUuHzBejq8lBR3onfH0BRgpVtRVFQFLjo4szQh6vMTCvbtjZSWdmJ3+9n7552kpMtocLRypXVFBe10NsTvJJCWVkH48ZFk5ISRUenh1nnpISef+CM46FKdrRSUd5JcnIUk6fE8/3/eYJVW7fy95//nBsuXjAcL92IVFrawttL17GuYjXF1SUApMeUcFnmYtLTrORPSOL+uOtYt64e44F1nmw2HXHxRgxGDXGxJuobeujqdGM264iJNdJQ34tOr6Zyfzv7ylvpc/f9/+ydd3hc5Zn2f9N7kUYz6qNuy5Jt2ZZtsFzAmGIcSEJCCAmBBFI3u8mmbzZls8lmk2xIIZteNiSQQgsdG4ONbbBlcJWLJNvqozaa0fTevz+O5mgky+AkkPZxXxcX1syZM6e8c573vt/nuR/SuQxxcmRzWdJkyeYkSLMSkCrJJOSks1LUChXhcJpTp6bJZnPI5BKCgQTHjwvpr4lEBrlCgtmsQqeVo1DKMMaUyGUS9u1zoFLJ8Pm0VNuN3HprK5Bj3/NjWCxqNBo5zskouRxo1DJKSlRUVBioqzXhcAgTmn37Rqmo0HH99Y3otHpc7ig6rfD4sNsNbNg4K1rNz4TKGxTmcaLLzcR4BL1BSTiURG9Q0N5exur2MjFDyumM4HZHGXHMdmXKlxBqtXJaZwwOeyeiZK98F01TxwjufIboseNUfufbtLYKK92trRaKit7M2NgYDz30EIcPH+bw4cN84hOf4NZbb+WDH/wgS5cufa2H0kXhtWrJulAder68A4Rg9eyzzzIwMMCHPvShV+17/39Hd7eHvn4fuWyOqjqz+LrVphMzPY4eceJ0xgiFkkSjKQYG/DidEfz1ZsptGtQpMEpk+I55iJ0LckmNiZZ6Ezv3jZJMZtizx8HAQICGBrNIFH71q9M8+eQgu3aNYLFo2Lq1liVLSvB44phMKgIBoTvmhdoRd3d7GBwMkk5naGoyk0r109CwiObFzTx273M4ejyMnPYS8SeQyiQUlWlpbLdRVK5FZ1Kj0sn/YUzLC9HbM83BF/s4M/g0z+67j0BQEEPMug0kIg1UVui55ea34hgJYq8xisJKY9hELJ6issKAezqKyxVBLpOxeHERLleUl16aIBCIEgxFcDpdJFJJEqkMiRSEogkkSJHJZaSyMjIpGRLUSCQqMhkJfX1+JBKhtEGnVeD1JXjg/rNUVOoIBlOUlKgFjxK1nLIyLTK5YGD7+GP9NDaaKS7W0NxczObL7dz9q9N4fQmamswsX2bF4QiSTmVRqqS0Li3B4QjhcIQ4dGiS4eEggwN+Nm6qZMuWGk6emsYfiIu+UHa7geuvaxCIz0xTjTxOnHDRVRAPurrcjI9HMBiU9PV5sdq0OCejNDcXE42mRdHJMRI8r1OfVitHJoP21aV0KCsvWAoIs2JwsQU+9ZHP89uHfsWIY4jf3H83v7n/btpXrOHmt7ybxW2XMnLaw2//4yU63tJAy4aKv0qG32vZovuVYsKqVRY+9alP8bWvfQ2T6W93Vf3vDX39foZHAihNs6VJNpv2vPKjdDpLIJikd0hJd6aZOtM4tZwkN3qKGG1sueUdLGsrp7vbw+WXV7F9+yAOR5AHHzxLIJA8Lx7s2uXg8OFJwuE0V11lZ+XKMhobi3A6o1x/fYM4Bi4UE/bsGeXo0SkaGorYvLmaW2+9ngMHDvDwww/zpje96VW9Rpl0GsfpE5x7cT/9hw8SD4fRmsxYa+uxVFZhLq9AYzCiVGte1e/9U9DTPc2jT+7lWM8uzg0KfoxHjvWxatF7qazQs7SlinLbjRzoHEetFozHjUYlJSUawdevWM3kZJhAIIFWo0CnVzAxEcZkVjI+4efMGSfReIxsNk0qM8MRMlnISZBkpcgUSiRZORKJnGxWwthoiExG2EYmkxIo4AihYAqFUorZrEStlmOzaVEqZchlEvbudaBSySkp0VBdbeTWW1uAHPv2jWKxaNBo5SSSGSQSKUqlFLNZzVU31rB9+yDn+nyMj4fYu3eMykodGzZUEYumxTI+m02L3W5k40bYek2taKBeiIU5QriAIyhpby9l9eoyMUNqyhnB7Y4xMhIUvaXyJYQ63SxHmJ9NlUehGHxb6fvI6fTs2vcCg04X//X9H/Gtn/6czatW8OGP/AvX3HgzcqWSvyb+mvFg/foqnnrqKaamprjjjjte1e+ej9dFqVcRTU1mtLVGyl8my2jZ8hKGhgIMDwewlWpRKaVMT8dpbS1GoZDT3+9l59NDbN5cTWNTEQ5HiLGxCNlsjkQyi1EGFRU6MQPF7Y5RUanHYlGze/cIbneMickwdbUmWpZYMBqVuNyRC5b5CcihUsmxWNQ4HCHi8RTZbJZs9nwztH9UdHaOiVlkBqOCXz32LNuPPcO4fwwACRIWl7awpfUK9GjQ6+XsfHoInz9BPJZicjJMOJyiu3eKkckpikozTDj9uEPTONwuEpkoqcEYyWyc1GiMLOlXPqjI7D8lSJBLlMglKjQyPSatCY3PwLmgAXlGi1ltocpajtGgJBRKkoukqa83c+aMB683TlGRGpVKzgvPj9J13IVKJcVsUhGLZXj88QGGhvykUllKS40zk5UILS0lGIxKTp9yMzkZZmw8hFojdHzKZoQOfoUdIguF2ELIpBIikRQyqYRly6wA1NiNjDiCTE6G8Hhi1NgNHDnqFDOm6uqE9ws7UuZLCJ3OiFiSajILAphpzXWoW1rw3XMPI++6Fcv73se1H/0IEpmMmpp1rFu3jrvuuotf/epX/PSnP2VgYIAf/OAH3HvvvTidTtRq9Z85gv58vFYtWReqQy9M5QUoKiriU5/6FBs3bqS1tfVV++7/n9HaaiE8Gqa8THvBbex2A2VlGmJxI9lsTiTxra3FWK06Esk0x45MoUVCnUpFaChENpNjo9WAayRCfzBN/bJiNm+uZmwsxK9+dZrSUi2LFhXR2TlBb68Xvz8hjqeqKj0uV4SRkcAFx1hrq4X6OgPO4RAvPD5IJjFAJpPBMxHi6Z+dRmdWYi7VYW8txmzToDYoUWnkSP/BhKjOzjEOdk6yrqOceMLN/3z3uwyOPkcmK5TNmY2lLFv8JnTqevRqNUXFQut1u93A1FSUgX4/oVCC/oFxdMYIE+4gE84xxsZHSaT8dPVFSCSDpDMhdh+KspD56MtBKlUilWiQy/RYIqUYDVbCQTUT7iImXFVUltfSsqSWgD/B8EiAXBY0agWTk2FyOSFrzlykoqd3mqd3DgmTea2CVCrH8eNupt1RQIJKKUMqkdLSUoLRIEzMT51y43bHeOLxAZYttWI2CSVIZlNIzH5qa7OJmVGFMJtVZDLCwtyy5UI8sNcYcYwECQaTpNI5HI4g2VyW1e1lNM8swGlnFkEKO/VFo2kyGVAp5bSvLluwFDCPQjH4fXUf5o5bP8TBw/v53YO/4tk9O8TOfZ/75Fd4+4230/PCBHt/e5YzByfZctsSzGV/2cza17JF9yvFBLVajcPh4OMf/zi//OUvX9Xv/v8ZTY1mwqOm80h5IZYttzI0PMMRbDqUSikejwlV0yqy7pNU+I9x6jc9uE5dyWU33cDZvjBGo0os6bPbjTQ1mVm/vooDB8ZwOIIsWmTm2LEpBgYCeDwxzp0LEAjE2bChkpISzcvGAwE5tFoFlZU6urs9xGJ5jpB9Va5LNBhg+MQxBo8eYqjrKMlYFJ25iNKGJoorqjCXlaPRG1Go1X+1EvDOznEOdk6wrqMCg17Obx96ir0HtzPtm+EIEgk15W20NG7GYtHQ0mrhwIFxRkeDxONpJicjhMNpunumGB2bxGJLMeDw4Qm4GZ9wkkxFyGRjZHJRDp2Lkc1dBEcogAQpUqkSmVSNWmlErzXhTxiZmDZCTo9Ba6WstBydSsXEeJhsDhrqTZw548XrjWMuUqFWy3jh+TG6ulyoVDJMJsEY/fHH+hkaDpBOZzGZlKJ/4bZt9Sh2DXPq1DROZ5jx8RBqtZyOjkqxJHW+IfpCkMkkhCNJZDIJy5bOcIQaIyMjQSYnw3g8cex2A0eOOMWMqfp6EyMj8zjCTAnhpDNCdbVQumcyqxb8vRWKwTbbStauWol72sODjz3OfQ8/wsSUi+0vHub54+/nv55+jOZLN7Dsyq1UNDX/VcbgXzMeAJjNZm6++WY2bdpEY2Pjq/r9hXhdlHoVUVlpwLjEgh84ctTJ4ICPri43mzZVsnVrg+iJs359BStW2tBp5XSdcIFEQiyWxeePMD4eYWxM+GEPDAR46aUJGhqKaGwsIhpLEQwmicx4S3SdcDExHqZthZX1GyoJh1MzaY9pPN44arV8puPEtEjeFxKnli23YjKrCfjjnD3jxTvja3T2nAeuPG/zfxgU+kU9/fQwZ896GZ8Isc/xCH3ebgCkyFhTt5a3rL8WR1+GcqOeZCJD/6CXwckxnH4nkayHlDxA4OA0wYTgB4YDQIJWrkeR06OQaDBKbcikGnRKLdUVJYQCGdRKJYk4pBOQy0qAHEUWFTarhvHJEJlsGokiTTqXwOMLkiaJXJvEF/YznZ4ilgmRzgrmtpJJCSZ1EWrMVBZVYFMsIyWVolDIyWSynDvnRSYXxKjFzcVotQJBCYWSpNM5JBIJFRW6mfEgXJcD+6H7tBu5XIpcLsPvj9PZKXQQyY/f/ApHYfloIfr6/Ph8cfr6/Nx00xIsJUI5x4o2GxPjEcaDYTo7J0mlM6xdU8ENNwip4x0dwj3KG557pmN0HXfN8agqHM+q+nps//7v+O+7D89Pf0qks5Oq7/8vijLBv8FqtfLpT3+aT37yk+zevZuf/vSn2O121Go1Bw6M8eyzwzidT/KJT9zBokWLXuXR9sr4Y0wM//CHs2Ka/YXMGfNYqA69o6MSjcaFxWJg+/ZBWlubePTRR1/TYPP/G2pqTMTbbLimwhw94mRgcCYeFBg/Q54sa1m+zMrJU26OHXWhUApeQ3v3jjLiCJJJZ9GWqEirYOycn4piLWVaBcoUxI552TMYwRdLMj0eRhXN8IkPtNFYZaS3z8vmK+3sPzDB+LhgkhoKpHAMBbjxhkVYizWEfXHCvgQhb5yAK4pnPELJdJIStYpcIMXgtKCOp8lhW1pE83IbSrUMheofwyMqj/leUU8/PUxPj4fDx45yuPtL5BAImEFXw7r2m6gouRSZXEk2m0WplHLsWB/n+ntJpCdR67x4/SP4AqNkc3HxO2QyNQqZBbnUjFxWhF5tR6kw0NxcTS6rxOtJE49JkEoUyORKEvEscnmOpiYzEmmWiYkAwXAIm1XGtNeL3x9AqY6jUkUYmzhHIuklmQ4yOJHjSA88c0CPRlWOVl1OZdli1MoapFIrEokc93SUo0emkMul+P0JiopUaDQyRh0horEUuRyo1TK2bLFjtepmsrcNPPPsMNksqFRSZHIpDz/SJ5TXJbJotfI5mVALiVJ+f4JgKMWp09M0NhVx8ztacLsixGIZrDYtQ0NBhgYDDA760etVYjzIl/+5XRGOHnGSSKbp6fGK8SC/zfwMqQtBKpWy/pJNrL9kE+7pKR549Hc8/Pj93HDd2xibDDMUjhHhLCf3TTEx6GXNtQ2seUMdMvlfRnx9reIBLBwTqquzfPjDi4hGlezYMcR//Me3kUpDF9jD6/hTUFFpIL7EQgqhpGlw0E/XcTcbN1Vy7bX1oifO+o5KVqywodMq6DrhQiKRkERLXL8ax0QRRdlBFCef4OHTz3LSWYOiah2rV5cSDCaYno6J2bC7do1w7pyfK6+0s2ZNGffdd5arrrLT0+MV44HAEUax2S6chbF5sx2bTYfLFeHgwQmmpgT7kM7OUW64uP4Xc5DL5Zh2DDN47DADR1/C2X+OXC6HyVZGxeIlM0JUGWq9AYXqrydEFfpFPf30EGfP+hifCHOk914m3D0ASCUKljd3sHXzG+k6GkOSlqBQSHG7Qzy39wSOCQfJtId0zkM45iKe9As77wWQoFIYkUsNSKValHIzMpmGhroylAotXk8akJJKSJFK5aTTOXLZHGXlWmw2DUPDfrLZFFJ5mlQ6hs8XAmkctSaFL+DBH5ogkQqSyXOEPgkGrQW5tJhSaxX2hjayyJErFGQzOc6d9SGTSzCZ1DQ3F6HTKZiciBAMCWXnEiRUVxtoby8VPaDOnPXS3T2NTCZFIZfh9ycKOIJiLke4gCjV1+fH70vMcITmGY4QnOEIYcaDYdG0fe3a8gKOUInLFRUNzz3TMbq6XHM8quZnSL0crCUWPvze2/nge25j/4sv8buHHqaipJiKxsWcefEgp/bu4vnBCW655WauvPFmSqr/ct3p/9LxYN26CrRaN8XFAkeoqyznM+96O3HnGLwuSv194J4HnqR6zEdMD05nlBdfnMDlEh7eW7c2iJ44ZWU6TGYVExNhgsEURqMSjydGf7+P4mIVra0lrFtXzp49o3g8CdSaEOs7KnF2hykr04sTsLxCnM9SEcqyELNXauxGlCq5KDbB3CyWvCiTF89WrLCyuLmY+KOC6NXX5/uLXbu/Bk6ddHPsmIv6xWo8/gDxRIbJiTC6RB0KyQAV8uVUKpaj86l4eucAwcwUUqefIfcwnqhLJCkqiZ4SnY0qXRNSuQG90kyx3oI0pUGjFlquSyQSiopVRCNp2ttLWbKkmKeeGppp/6pAr5fj9caZ9sSpqxUeDpEpHwqVUDOuVssw1ajIZLOMDAeJqVKojAqWLCmi4zIr7qCLF46c4XjvIFOBKXpdXRx9bL9wfFItxaoydLkyaorr2dS2EptVRzCQQKNRIFdIMRepKCvVsny5Vazttll1eDwxUqkcRUUqLBYtapWMs2e9GI1KItH0nDF4IdjtBiYnwwW+atMcPz7FypWlbNtWR9cJF6OOIAMDEXp6plm/oUIcpw6HYKTb1+cVvdV0eut54uocQ/p3vxtVSwuBBx5g8Po3Uv71r2G8clZdlUqlXHXVVVx11VXkhH7Z7No1wsMPP8OpU//DT3/6P2zcuJFbb72Vt73tbZjN5ldhtL0y/hgTw4cf7uP554UVuosJOjCb/pvLjXLnnV/iwIEDfO97jzM5KdyXbdv+gRXovwJOnBjm/t/toK6qnanpuBAP3DPxYEaUcjhCOCcjlJXrcDhCBINJhPm3hBMnXIxPhDHPrPS1rSjl4Uf6OD0UYMAdpbJMT321keWLi8kls6Snsiyy6pAG0rz4+z5sgM1mJHvST4dBS0f7zOQsDUwl2fOT0+KxSqQSFGoZOSkYitVgVNDb56PYpkFuFbIIo/EU/eMhVm+q/stdxL8g8oLgylVWmhZDKJggmcySStlQKcpQyIsoMV6NVtXM2HAU19RL5CRjeHznmPKcI5UWvCskEgWmeDXFZjsq2XI0ShtlZdXEIwZUSi2ptIRcNotCKSWTznHJpeVsvaZO7I4TjiTRqBWsWVtKV5cbny9ONiUlmcqiVaZRmrLYinSsX1vEiCNIZYWOAwcm0NjS6HRybnt3MxKpj/2dxxlyDNA/1Ic/6GDcdYBcLoNEIkOvqUatqCOSaGXdmg0UFZvQaRUkU2n8/gSWYjWlNi1LWixipl1e7AmFkiQSGcrK9FhtWmKxND3dHoqLNUSjaTGTqe0CMaGtzcbAYIBYLI3QzgOxg+DKVaWs76jg7BkPHk+Mnp5pNqyvmCM05WPC8IjQSn3tmtIFhaiFDOkvBGtJKf/8vo/z4fd+DIlEwrM7e+g6Mc2h0z9heOwkRp2ZlQc2c8Xjb+C9/3YDlYuK/+jx9cfitY4HIMSEo0fHePHFB/jhD7/FjTfeyNvf/iXRj3HbtvY/6dhfx8L47e8fQxODrCLFpDPCiy9O4HYL3cmuvbZe9MQpn8MRkrMcoc9PscVGSFLKoqUyRroOs6zkHJLEOSSRBryeeuSG2W6L8w3vP/ShlcCsX8zSpSVoNApRbIK5WRj5OcPx406efdbBVVfZWbeugh//WDDbfvHFiYs+d/+UE8fpE+J/sWAAmUKJpaqaRZdupKi8Ar3Fgkqr+6t6RBXi1Ek3R49N0dioxOcLEY+nmZgII881IZcOU6Rtp0i3EqJant7ZRzAyjkTuZv9JB4HwJPnsV4XMiE5tw6xbgsFagl5nQSkzEY+qkMsVyOXSGW8pKK8wcN0b6kmmMjz11ODMgrCUxkYzExNhJiYi1NUJ90ir9KJQCO+rVTLamlVkMjlGhgMYpGlUKjlLlhTTsaEYX2CKg4d6Odndh8fvZHD0ML2DzwGglOsxaCpQyqootzayYsUqrFYtwUASjVbwqC0qUlFWpmXZMit9fT50WgU2mxaPJ0YslkGvV9HYaMZgUHD2rG+GI6QuniNMFHIEoYPgqpWlbNtWL3CE0SADAwF6ejysX18pik0OR3CGI/iIRFL09/nR6azniVELGdJfCDKZjMvWd3DZ+g6RI5z7zQle6nyaJ4928eTRLhq+/k02Ll/KO265hdXXbKO44rX1XfpLxYPubg/J5BB33vkfHD16lP+961Fcp05xxn8Qs1LO9NAAbLj8TzmFi8LrotSrBL/fz8e//O9Uaor48u2fY3FzMQqFRMyUgllPg7xIpNUqMBoV4o9Vp5ezos0mZpK0twudCYSAFEelklNXZxQJ+ZIlJQtmp8x/3eWOiJkvhchP7vbvHyM842ly001LKCnRMuRFbA/9jwiXO8KhkwM8eXwnvc900ahdS6W0nUwmiyFbTYtyK8Gck974ToJRJxmElQZjyIIOK43KxRSpbBRrbWSTMuRyKRKJhOJSNZZiDf39fhKJNLlsCqNRRVWVga1ba1Gq5KIXmEIpQ6GQUVmlp729DJ1WzvbtQ8hkEiwWoea8ulpPMCh0p1i/oZKf/+wksViaXA7kchgZCRJ6MkkgkCAaK2NDTQPZHOSyOfzRIBP+UVyRCfwpJ0OpQ/RPdLL/Dw9SJK+kuWIx61vbSYZUqNVyNl9hp6/POyfzqaWlGIcjSDKZxmbTUlNjEo347XYD/X0+JsYj1Njjc4QhmPWWumZrndhCXIDgnQY5caz29k6L5+5whOjv87FnzyglJWpkMpnQbdCqE38j81Fogm6z6tCtWYOythbv3Xcz/i8fIXLzzZR9/nNI5nVmya/AXXllDePjNRgMWzh48DleeOEFXnjhBT7ykY/wxje+kVtvvZWtW7ei+At3drkQ8kak8w1JXw7PPnuU7373v+npESYiKpWavr4ezOZLRfPr1/Hq4Rvf+BYPPPATPnzbN7ls49UolBIxUyqP/G8i74Wj1SmoqtJTUa6jolx4zre12SjJx4RVQkyIx9Ik0hkqG4ysuKyKXC5HJp0lncySjKeJh1IkY2mSiTSZVFbwK8xKyOVyxONpAqEElhIN5mINSq0ctVZB7xkPA4MBJCopj+4VSsFraoxc/2YhlqhU0gsKDf8I8HojHD25gz/sfIpwxMOy+v9BKpGRzUmoLvkQseQwgchhxj2/JZl2ASCTadEqazFrN6DT1qBXVyOlGINBhcGoxO9LsGRJMSMjIYKJGJlMFotFTVOTmaamYoxGJcuXCQsB4+NhDEYlFouGVe02tmypZdlSK9u3DxEKJ1AoZJRY1CSTWaqqDWxYL4yj7951lHgiTTYHmUyO3bvGiERTxKLVVNqaWVQjx+OJk82lmHQN4AsMEIoOEor24O7bw8m+H6DXVlNqWcqq5RsxGuswGjVce209fX3e87KeliyxEI2kUKlltLRYMBpVBIMJjEYliWSa4zMr1YBoUg6z8WBJSwkfmBnPC8aElhLuuGPZnHjQ1+/jYOekYHOglCOVSTAYlFiKZRcck4Um6BebPZWPB21tNrK5LFLteqKJKVzuKfadfoR9px/hRw9/hTdsuYHPfu2jNC3687v0vRr4U+JBOp3mW9/6Ab/+9V2EQtMAnDhxhg0bfDQ0mP4iRtb/P8HtdvNvX/wM5ZZKPvHB/6C5uRilUipmSsGsz03An+DMGS86neBBJHKEmW5m+UwSa5uZIwfOUWlwYw5NslzVj8T9PKcfu4RUxybWrm5b0KR4vunxyEhAzJQqRHe3hx07hnjggTN4vXECgTif/3wH5eV6PB5Ys6Z0wXPNpFO4hgeZ7DvHZN8Zxs/2EJp2I5FIMFpLsdXWY7RaKSqvRGMwotLqkMpkr8p1frXgckU5cvwMuzuf4hcPHaXashmjajWZTBaNrJ4K8/XEkuOM+R4jlpoglxM4gk5tQyUrpcy4FKO2DIO+lHRSBuSQK2S0tpag0yo4enSKbDZFJpPFatVQV2tiXUcFSqUMu93I7t0jKJUy1Co5NbVG2ttL0WkVbN8+iFQmFXypVDKq7QaCwaTAEdZX8fOfnyQWy8zIYTnOnvWi1sgYG8vg9VazcnEz2RxkM1mCET9u7wje4Bjh2Di+8PNM+p+jx6FFq6ym3r6E1W1riUXUqFQyrrjCTl+fb07mU0uLhVOn3KRSQsOu5sUWtFqFmK3U3+9jYjxMTY1xjjAEiP++5po6liyxzCmzm9GC5pih58/d4QjS3y9wBItFjVwunelIrhV/I/Mxa4J+vr/UyyEfE1a0VzPqWsrKuIOu08cZcHsZ2P08v927n9aKMi5vb+OGm99B6/rLKK6s/qtmkf8p8QDg6acPcddd/82ZM/sAUClVHLzvq7SWFmGoWsziVa1Yquyv+vEW4nVR6lWC2WzmV9/5Ebf+y3v5wc6f8sj/fJ3V7WXcdNMScZt8uVFeJAr440SdKSLRtNiprLATXnt7GR/7ePucLmUX6oo3J1NkXhbJ+WbrAux2A13HXZDLIZNJ0OkVHDnqRK8XCGpDg/nVu0B/I3C5I+zcf5yfP/EHukZOiK9PJYbIKSV44mN4k+NkSSNDiVlWgV2xmiJlGWWGCjRKLYFAnHQaZBLQKlXEMmmSSWHlyOeNk4insZSoyWZzKBVSWlutrF9fId4/z3SM06enCYcSLF1awfLlNvH+rltXzpGjU/j8cbZtqztPdLTbjQwNB8hms4TDKQLBFH5/gpn0CpLJLJddVs3hw06yXiUr6pbj9zWTSKbJZNIE0lOM+odwJ0d5fvAZ9g7uoLqkgtVNbSyLbWb5MuGBUzMTFLt7polGhcDpckVZu7ZMTJ0FuPeeHrq7hQmtUiUXhSFA/PfqdqF87tTJacBNRYUek3m25CKf2bduXbko2t17Tw89vUJ3yi1baoknUjQ3F4nXo9DLasmSWcGr8PehsFqxfuITBB99FP/99xM7doyqH3wfpf38h6owSXsv8F7Gxsb43e9+xz333EN3dzcPPvggDz74IPv27WPTpk1/5Ih79VBodHghQ9KFcOrUKb797W/z29/+lnQ6jUQi4bLL3sjSpbdgNleQTufEdP/X8erhq1/9MoNnz/Cz3/47a9fVcNNNl82JBzBbbpT3wvEH4jgjKaLRNO2ry8RypcKY8PGPtXPy1DSQY/mMR5tEIkGukCFXyFDrFBgtGtyuCFOOJPaaV84UAahfVIRcLccxGiSRyCCVgkwuESdXer1iwXKsv2e4XRHOnJ3k6ece4LEd9xCNeQCQyVSMOp8invQTjp0TRSi1ogKDpgWN8nos5ga0mjLisTSpGfsPs1FOPC48m9OZHBq1jIGBAOlMBo1GSlGxmvb2ctZ3VIgG4NPTMaFFdzhBaZmQrbp8mRW3K8LEZAS9Xk48kWbz5urzGpUcPeLEYFCi1ysJBZPEYhkGBwPI5TKkUgiFEhiMKrQ6OT5vhtbFbfj9zYTDScLhNDl8BGNncXu7GZ08xMDoDlQqLa2LLqGq7g00N3YAVuw1Qjzo6Z4mEEjQ0GDG5YrS0+PlLTc0smWLkJFx3+97OH58ShCo4oLfUx7zBSJ/IIH/VJzly2D5Mitmk3rO89s00+7ebjdwz0yc8XhjtLaUYLFo0Ovkom9Vb8/0eT5WC8WEi8WSlpKZ/Swlnf4P9r+4l0eefJBnntvOlN/BL//wPV460snDDz5O0+rSvxoByceE1avLLjoexGIxfv3rX/Ptb3+b/v5+ACyWCjZsuIO2tqtxOGKsW1f0N902/O8RVquVH373x3zwX97HfU/+iJ9/705Wry7jppuaxW3y5UYuVxSTWUXAnyASSRGJpli9uowlLRZcrmhBPCjlQ/96GQ5HELUih3dsEFlsEsfpE5w5sA+pTIa1po6qlmWoSupxhQy0rW2kttY859gulIXR2mrh2WeHyeWyyOUSiorUbN8+iNEoZDKtXl1K2OfFM+rAMzbC9OgIruEh3I4hsuk0UpkMQ4kVs60Me2sb5rIytCYzSo0WuVL5N1n+PTUV4dk9L/H7hx/g7GCX+Lo33Ec6myLkHSEUHSNHGqlEhU5VjVW/Hr2mHIupGrVKiz8QI5MGmQyUCiWppNDpWpqBgQE/crl0hiOoUCpktC61sr6jQjQBz3OEUCjJ0qWWGY4gdKFb11HBkSNOfL4Y27bVn1cSZ7cbGRryk83m8PniZDJw/JgbqUxCPJ4mkcxy+eVVHD40hc+noaVpFT7fUvy+OKlMGmtZiHODPUz7Bzna8zhHuh+lsszO8iXthKJXznKEGiO7dwkcIW+H2NPjpXmxhfe9b7l4PPfe083pbiGuKpUyMQ7AbExYvTrPEQSxS+AIs15QvT0egSMUiHb33tNNz0wH+y1X1hCPp2leXCxej/xn8l5W87tc/rEQxLHrgOsYn5zksR07eXT7DgaHR+ganaBrdAJJLMLhh+/HYCmhftVami7poGpJKzL5X2Yx+0+JBwBdXV3ceeed3H///WQyQjfI1Q11XNVch8HSQEJdha6mgaJyy2v+m31dlHoVcf01G/n9xz/GzXfdxbv/6yvc+6X/RCEXLvF80chm1dHZOXZe2/tTJ9309/lnAlIc7AaR1INAxvPlVYWCxfxMkYuBzaqjrs7I8LAJjUZOSYma+37fy+Sk4CHyapkY/q3gmZde4ss//zWnhs6Ir2kVBlKZBL7UJKG0B5OsnFrlJZillRhkViQI/hESCWhVqpkOFMJnMxlIJDKo1XKhI54MEok06UyWujozb3lLExMTESDHxEQYpzNfhz/O2bNeJEjweROsbi/jkUf62LvXgUQiCEuRSIppd4ymJjM+f4JIOIXHG2PtmjK2bLEzPBxkbCyE35dAKoXych3JZJZMFjwewcMkkcgSCibp6KjgxEkXPm8cq6KKKnMNgWCShiYd9SuTdHYfZ+dLnTxycAcVJSW8dfNmcpoVjJ+T4nRGCYUThENp9Po0I44gRUWzgtC6deUAtLYWE/AnKCvTFmQEJgj446KJvM8ndP8ymdVzxnTXCReHD08xMR7h1ttasFl1rFtXTjwukDajUSGKt4WfKczoupDwOu1L4KjbQGVZDaknH2LwzTdQ/p//iemN1wMLd7SoqqriM5/5DJ/+9Kfp6uri3nvv5eDBg1RXL5vxX7Lwox99jampKd761rdy5ZVXotG8dp1gFmrzfLGEIZVKcdVVVzE1JZigbt26la9//esUFdXR3e3BZFISCCRxOALccsuTF12D/jpeGQ0NFn7xvV/yz5+5nQ/+62386sf3s2bVpcD5pUX5/8SYMNP2Pi9IDQ0HUSoEnymrTceWLbNjfSFCDn98pkj+GPyBONV2I4l4GoVSyv33nwUQ09j/UTDtcfPf376Tnc89QCIpxDy5TI1WqycYmmbC8yQqRQV6TSs61Q3o1ItQyAyiHblMIkGpkJFIZGGmlDsSSVNUpMbnS6DTKdDrFIyNh5FJYXGzhcsuq6KiXM+JEy6CQUEIPt7lorfXK6zAqxVs2liN1abjkUf62L59gHBIaK/t98U5ddKNTC4jEU9x5oyPlatsXH1VLVVVevY8N0okkkSplFJTY8JoUuKaihGPpQgFU8RiaZKpLLW1ZoaH/aTTWaTSEmrs1QSCm9Dp5FyyTsq0/zi79z3DV+78FDKZjA2XXsYy95XEw014PDPr7zmYno6BRDA1B6GrntmsYuXKUlQqKSq1HKNRWZANmBA79O0/MM7u3SMUmTWYTWraV5fNGaMHOifEEm+rTce6jtk4Y7Xq5oi3+e+en9F1IX+plyvrW+g9uVzO5Ruu5PINVxIKh3h61xM8+PB9tNdezbP/18Px3aO0bjXy/n96D295y1u44YYbXnNvvj8nJvz0pz/l4x//OAAWi4UvfvGLXHvtO+jvD4vxoLXV8kf7kryOV8abrr+C0OS/8an//gaf+MKX+O5Xv4w8zxHmlRfZbFo6O8fPa3t/6qSb/n6/cK/8CbDPknrayunpnsbRNU7DogzanIeAe4pTu3eSjAnzz4HHVFirqzBZbRitNowlNtQGwURcqdKgUKvIZXPkslmkuSxLKrxc3R7BoMmgU5/jke8ewDU0BMDOn3yPycd+B4BUJkdXVITOXET9ytXoi0swWq2odHqUas3frAhViGf3Ps93fvh/9A2dFV9TK42kMnFCsRGiCSdaZTU2w0a0KjtqhU3kCEhArVaTTKaRSiCDwBHi8TRKhZwcOdRqBZFIEqlUQn29mbfc0MTERBiAiYkwk04hDp3HEVbPcIQ9DpBISCUzhCMppqdjNDUV4fPFCYdTeL1x1q4tY8uWGoaHA/T3+wkGE+j0CqqrDXg8MbLZXAFHyBAKpli/vpIXX5zA74+jUVTTtqiKqako7WvMLFmeYPe+F9jXuZsdex6hoqyM666+EqWmnYFzUqacUWLxNOFQilQqJ/gkwyxH6KgAoKXVQsCfoLxMNycjMDDjQXWwcwKfP47RqMJkVs2OafIcwcnEeJhbb2vFZtOyrqOCeCIjcASDUhRvCz9TmNF1IX+pVyrrW+j9yvJyPnzHe/in29/N6d4zPPLUdnrP9XHd7f/K4KleZAk3X/3OXcTi32BFXTVbrriCRWsupWbZCsxlr3431z8nHsTjca644gp8PsGuZ2lVGduWN9PcugL01ZhLK0jk1ExPx/j5z07SvqaCltdwbf51UepVxobmZn775a/w9i98nnW3/ivf+tAnufyy+gVFoxFHcE7be5c7wtCQ4Euh1ShwOqOYzKE5ZHs+GXe5IxzYP8HoWJDqKsNFZ1K53BFOnZwmGEyyeXM1y5ZbefyxAbzeOFosrF60jPKSf5xVcedUiK//8r45ghSAPKvBKmumWFmDWVE6EzwglcqSK9DkhEl4AomUOa+bTEqSqQyZTI6KCj0yuRSvJ4bTGeHAgQnq6oz0DwRIJNJoNQqSiTTT7hgKuQyDQcG6deW43BF6ejy43TEkEtDp5CiVQjvXl16aJBpNE40KK+9KhYyPfbydUyenaV5cTE+PB483zspVpdTYjRw8OElLSzEtLcViJyi9XgE50OuVaDRypqej5LI5gr4slZrFfOWO9dx+xa0MOAd47IV9/PqppwlGH8SstlBvbqVWvwyJRIVMJkGtknPgwAQ9vR5RROroqOLIUSdnz3hZ3FwsjleTWRjzTmeE8YkwlmI1q1bZ5oxRlzuCWqXAUqwWSzVsVh0dHVViVsBC5acXU6cOBWJtczUrP/vveO++m4nPfIZI5wFKv/zll+1oIZFIWLlyJStXCj4M27cPcvDgBJlMhrvvvhu3282vf/1r1Go1mzZt4qqrruLqq69m2bJlf1LQyfs85P0f8sgfY2Gb54WQy+Xo6urikUce4Ytf/CIKhQKFQsG//uu/cvz4cT75yU9yySWXAEIQA6iqMrB+vYlbbnnyT6pBfx0vD6VCyXe/+jPu+OgtvOsDb+O97/gmt9/6xgsKRoVt75saBUHK6YyiVAjPi2j0/I488wl5vmtca2ux2LlsIRQScBB+K0KHMwmbN1dTUa7n3t/04PNKqC5fSfvKfxwTfLcrwiNPHOLxp+8GQCKRkstlyeWkKKQNVFqux6BpRakwolBIBYP4YELMiAJIZ3IEAgnSBdlASqUMg0GJ358gk86yZEkx2WyO6ekYfl8MkBCNpnE6Y0SiSXp6p/F6o6jVwlSspsaIVivn6BEnY6NBMeNKksoyPR3D64ujVskJBhOiSH/HHctnnvMqOg+MkUhkWbq0hC1bath/YAKPJ8Yyo4JRR5jW1mLGxiPkcmAyqbGVaolEkoTDSRLxDMm4nZve9EEuXflO4kkf+w48w8EjO/jB/30OuUyJzbKK8pL1RKMriMez6PVK7DVGTpxwcejwFJUVem67rUUc3/Zqozi+zaaQ2KHP44mTSmVRa2Rzxmd+TKpUUoxGpVgGWBgP8tsVdtl7JR+rQrycWPtKQq5Bb+Btb34nb3vzOzlyaJLhUx48Y2G+/JFf8eKLL/Liiy/ymc98hsbGRq6++mquuuoqNm/ejMn0p2Ud/bkxwefz8eSTT1JcXMwb3vAGAG6//Xbuvvtu3vve93LHHXeg1+sBUKlUcxZoPve5F16PCa8BOtpX8b/f+G/++TP/zra3efjCxz/Lpk21C5YXjYwE57S9d7miDA0LsVurVTLpjGAyq+aQ6RMn3Zw4GQCplXe84yqckyEOvjCIa9yJzZiktCQHqQjTow7Gz/QQj0TIZl6+09tKo/CMTKVlaDUyyoxGtNpa6hc307qiDa25CK25CKVajUKlQq5Szxio//3A6Qxz14/vmSNIAUjQUaRZhl5Vj1Fbhky2MEcgB57p+AIcQUUikSEaSVNSpcZiUePxRJmcDHOgc5y6WhP9A4Ldh1arIJnMMD0dRy6XYjAoWddRMZOVKnAEJEIZp0opI+BP8NKLk0SiaWLRFOlMtoAjuGluLqanx4vHI4hXV15Zw8HOCVpmyu5mOYIctVpGiUWDSillbDxMNpsjEpayevk6Vi9fx03X+RgZO8fTzz3Hbx96lEj0Nxh1NiqsbZQWrQCJCplMaI5xoHOcnh6PKCJ1dFRy5IiTM2e8NDcXi+PVZBa6tk7lOYJFQ/uq0jnZTC6XEB8tFo1YumezaenoqKSjo1LcZn6XvYvnCC9f1vdy70skEpa1LGFZi5ABf+SIk/FIBQ0Nizjq+DnhSJRDQ6P86vlD1FuLWGQrYXlTA2vXr6eurZ2KxUsoKqtAcpG/lT83HmSzWY4dO8YTTzzBf3zxi7hHhhg4eoj1jbWMT2m4asVSLu3owFbXQEpqxDmdpcxuwmbT8u1vHWbgnI+sRMa7L+po/zS8Lkq9BtClK1hXcgMHph7loz/8OgfWfG/BVPL8j6XGbuTIUScBf5xMNkdjk5kVbbYFy/Xm/9AcjhCHDk8QDCTRahQ4HEK3lPlZI4WimGc6xsMP9+FyRbFaNbS2CoJUJpOhts5IVeoqtm6tpeOS19a47bXEYztO8JOHH2VtWyNxiY+Hdu/FHfAiQUaRtBqbvBGLwo6C2euUywpZqBqNnGRitpxpZiELqVSCVCYhncqSToNCAVqdEu9YkHQ6RzSa5ootdvbuGSUaTeF0hqmrM2E0Kujvi5CIZxhxBCku1rB6tUoszzty1IlOp6Cx0QyARivHWiL4NoXDyTmZUps2VYodJmQyCS0tJcQTKXG8lJXpiMUymMwq3v8BIYX28ccGkEolmEwqfP4Y7un4TLptjGAwweOPDXDunJdsDmokG7DWXsJoYJB+72lOTh3kuPMFqo2NXNGwgVC4HJVKhlolw+OJce89PWzbVieO02Qize/v62FFm1CSKJUJq9smk1CKUVGhFz2jRhxB1Co50WhaPA+ddvaR1Ns7zbO7RgC46sqaOWN6yZISLCUaDuyf4MCBCdavrziv1NHljszJ3pKZdVg++lFCTz1F4IkniZ04Qfr6TzA4mGDFCqv4uYWyp2C268WSJUU8+OCDPPLIIzz88MOMjo7yzDPP8Mwzz/DpT3+abdu28dRTT4mfSyQSqC7CuHPXrhF27XIAzAk4DkeAF14Yo7JSx7Ztcz1M3G43nZ2d7Ny5kyeeeIKxMYFErF69mje+8Y0AfPaznz1PJJsvxv2pNeiv45XRfdpPhfmfGFV/i5/95pOYTBLeMpOpN//5nifV+XIppzNKWZmWtjabWO41H/MJ+cHOSbq7p4kn0my9pu6Cx1VIwHt6p3nppUnsdgNKhYJINElLi4UVK6ykkhm2bP4f3vKWv3xHylcL6XSaH/70tzy//yArVjRz5PguTp85DIBSbsWoXYNRuwytsg4ksxNEqUTw3pBKJHNK0WRSUGvkyGRC3AiF00gAjUbB1FSUZCpHLJaisamYcDjN9HSMSDQD5LDbDZSVaejrT9DT7UGrU9CxvpK6OiPLl1nF+1JVbaQDcE/HkEoRPaUKM6U2bqrE7Ypw8tQ0Hk+MYosGpULwWbLadNirDUQjKSwWLQ31RdjtBmLxceQKKaWlGsrL9ezcOUwolEYqSeNwhNh/YJw9e0aRSqC2dj1vumozTZX99PTtYcx1gAnXt1Eri1lUdzX1jdtQKeXYa4zCMXhj3HNPD+s6ymluLiaRTHPf73toa7Oh1QrXS6uVs35m9dxiEVZgHY4QiWSag52TyGQSampNtC230rx4rqH40zsGeP6F8fM6WC5pKRF91zo7x3CMBM/LHARBzPIHEpSVaxf8LdntBhyjIY53udBq5WL57EKZVTW1RiRSCbYiFcqi65GhoHuik96RY/T399Pf38+PfvQjZDIZBw8eZM2aNYAQD5QXmTWyUEwYGQlw4MA43d3TrFhhnRMT0uk0J0+eZO/evTz55JM8//zzZDIZ1q5dK4pSJpOJrq6u12PCXxE6ZSNL7DfRM/IgX7rzy2xf++MFy4tEjlBj5MgRJwF/gkwmR2NjniOkzitHms8RxsYjHDoeIBCQsWpVDdWVNqqqdBSbFWTTKdKpFOlkku6TkzhGvFSWC/5BLx1yEvAnMRjVWMuL8HhSGIvVjI5FWdZ2KVu3NtKytPSiCfXfGh574ji//v0DXLpmKbHUJE/u3I0v4EOCHJ2qDqN6MUZtHVJmhYhcbmGOIBM5ghSZTBCsMmlQKCQYjSrGxoKkUlmCgaTAEfaOEoumcU5GqKs1YTQq6e+PEo9nGBkJUlSkZs3qMrE878gRJ1qtgsYmM8x8v9Wa5wipOZlSGws4glQmpaXFQjyeFsdLaZmOWDQtcIT3z3CEx/uRSaXozEp8vpiQxZuDwcEAp066GRoOcO6sj2xOSon2SjYu34Bzuo8xVxfnRvZydng3pZZmOuo2EwpVoFLJUasEL8N77+lm27Z6cZwmkxl+//veGY6gEHhMq0Us1xY4guAZNTISRK2WEYmkxfPQaWdL4Xp7PDy7axiAq66snSMaLWmxCBzhwDgHOsdZ31F5XqmjyxU9L3trPpLJzHnZihfKrsrvo7JSx4+/9U12PreXZ/ftY8rl5syk8N/jJ3pZdewU71y9FACFWkNRlR37klYqmpoprqrGXFqOTH6+PPOncASXy8WBAwfYsWMHjz/2GFMuIZPNe+gFao1aFCoV77j6CkpqarFUVM6IyxqOHHFy9qwPiUQiZqbJczHaVy/sI/dq4XVR6jXAwYOTmCV2Lit/Gy95H+FNn/k0D3z1v+eULLncESLRNFu21MzpytfYYCYYFEwOjUYlzJs45Y2hXe6IIGZo5axdU8HoWJBoLMXRo05GHSE8nphojg3MIee7d4/gcASJx4UMHOGBlqbYoqLEop2TvfX3hFwuR+epk3z+hz/nWL/QrvXA4D50Cj1LypdyRV0rU/1qyC0cROVyyGWzpJIZFAoJqVQOiQTSaVCqJJTadNTUGJiejotposFAAoVcRlYF9fUmVrTZcLuFkonycj2Qw2RSkEymUamk1NiNNDUVi95S3/zmi3i9CVpbLbzzFsFbQPBeyrFs+cJd5u69p4fhkSC1NUZKSzWMOFKMjAQ41+cHhEm/cyYNeNQR5NQpNxKJ0DVpaiqCVAIqtZTGRhMvvTSJyxUhGk2TzuRQq2TEYmk0igo2VNaSzCSYiJ9jINjFrw7czROnitiyfCOLS9vxTeUYnwiLabp9fV7c7hh9fX5OnZxmzZoyshmIxbIEAgnC4aRgyJsBpzOC2x2lsbGIFSttc/zV8ug64aKry4UEsFo154lOhYKsTi8XGwTkswEdjhBOZ4TFzQKxOXJ0xnR33Ra8lFDc+QR1P/wk1ZprOH26SFwNfvDBczzxRD/XX9/Ipz61Rvy+Qt+FurrLuOyyy/jud79Lb2+vKErt27ePRYtmyXs4HKakpISGhgaWLFnCkiVLaGlpoba2lmxWz/S0nBUrKqipMc3plFOI558fo7d3jN/8Jsq119ZTU2Pi0KFD3HrrrZw7d27OtlqtlmuuuQabbXZ1aCHyM7+97B/jUfU6/jgcP+YiFMqxuuVTOIN3860ffgxbqZQbrr9J3KaQ+N78jhaOHnESDKbQG5RYbVp8/jiOkaBYvleIQkLudkXEUie9Xs5zzzlmJrISPJ4Y6zsqRKJdSM6f3jmEz5dAKpEQDCVJJjL4vHFWry6ltFRHMJjC4QhdtGH03woCQT//++Pvcf8j9xCNCVnIx3skNNa1s2b5BzBqluOcnJ0GSaVQWLUukQglGNFoCpVaSiwmvKlUSoEcNXYTdfVFdJ92E55pSjLqSCKVgs2mZ/myEjQaGYFgAr1ejkYj54X940xNhbGWqEmZVKJp+fR0jLt/dQqvJ0HrUstM17kmUXTKe4gV3oN8eWdfvx8As0mFRqsQhIvOCVQqKRUVQhzKC5DhcJJIOEl/MEHXcTeZTA6ZVDinbCbH0SNOJiZCSCSSmcwsGaGQnCLdVRTVX0UyPUogeoAzg49x6twD9I1uZtOlN1Jjb2TEEWR8IiyKQn94+BzhUAq3O0YymUUmk2C1RQqOPyp6T+Uzaisr9BiNijnleXk8/8I4AwPCuRaKUjArsuZjSziSFoXc/DWb3+2y8LP57RLxFP19PvQ6QZTaf2CCQ4cmWLu2Yo6fYmF5YGVdO80rGug7dCOeaR8J8yhjkdPsfm4XAwMDNDfP+gZ97nOf495776WlpUWMB4sWLaKyspJMRs/YWIalS0suGBO6uz0880w/4+NT1NWZxOf2HXfcwQMPPEAkMnt9AVpaWti2bRuZTAbZjJn06zHhr4uDnRPolI0sq3snZ8Ye4I6PfIyffPubc0qWXK4okWhqhiPMduVrbDAzMZNls76j8rzsjbwxtMsV5cgRJzqtgrVryxkdDRKNpjh6dIrRUe0sR1hfBRI1cUkCW20xzTMdmLtHgsRiClReObLRGLF4huXLDDQ2V3Kiy83Jbj+ty8v/0pfuz0Iul+Pg4SN8464f03NO4Agnz+1BpzHTVLuStUtbGRvWkMsuzBGELKgcqWQWhUJKKpUFCWTSoFRJsdm01NYamXbnOYLg1ymXy1CqoE7kCFHi8fQMRwCjUUEymRI4Qo2RpqYi0Vvqm998Ca8nTuvSEm65RcjIyXsvLVu+cJe5e+/pZngkSFmZDshhswpziCNHnIBQjZEvFRwdDQr7k0AwlGBqKopMCiqVjJoaA88+O8yUK0osKliTCBwhg0JRQ1vTIpKpGJ5QNxPuIzy884fsO1TC+tVXUFW6hukp5nEEH253dJYjrC0lk8kRj2cI+BOEQinicaHyZMoZwe2OCUkaK2xz/NXy6JrJEhc4gvY80cnhCHLo0CSBQBKdTiE2CMiLSQ5HkElnhOY8RzjiPM+EfX62IsCBA+McOjTJ2rXlc2JCYYlgeflq1q1ZzZc+80nODQzwwosvceClwxw6dozV6zdy+c1vxTM2xsToMLd/7bvYjHqseh2lRj2lJgPVVVXYyqvR6Muobaqhur6SNYuzSGNK1q1WE/Z6kKtUAu/d18dIfz9/+L2LS1pzmPVZXti/n89/7RuMOafmXBOVXEZrTTVVdfUsX7USc1kFWoMRlU43Jy7MF8k7OipZ0ap7zf2xXhelXkWMj4cY7/XQ2ioM8HXrVqC2bOJtn/scV/zLP/PjT34BVVZYrSzMXMpnlFRU6IhE0xw/PiWsehZrMJnVc4SJfBlewB/H6YyyuLmYG25o4shRJw//4RwuV5TSMi1+v9ANp3pmQOXJuc2qExTzcJrTp924XDFyQF2tiZYWC6WlWnp6vKhVclzuyEX7U/01Mehw8/Vf3cOzx17AGwqKr6skeirly6lWrEITkVHbaMMjc5J+mUzl/KqPRiPHYJDi8ycgB6lkjlQ6hUwXo8ISxx304nXlqCiuJZnMIJPBH3r+j9+djuENhEmn06SzaTLZDNlclhJVFdvqb2VqKorRqOLKb32GeCJNMiZDgZqDzmLORZogroOEnqqi6gXv/e7dI0w6w8SiKaqr9Yw4gpzociOVSgjMdEBqbSmh2m4UjexD4SQGvZJQKEk6DWq1lKYmCwqFjOHhIMmkQLSymSzhcJZsFnK5NJVVFvx+JZaidtbWXYLMEOKc7xiPvbiTTHY7V6xYR1t5B+lUlocf7sM5FaXIrEKlEq5bT4+HSy8tZ2goKJKNfEZXXZ2REUdQ9EZzuSPANAF/XBx3eYEPFk7BtdsNoiCrVsk5sF8gLCtXlrJli25OdmLh7w3gbMhM83Xvw7L/Md7teJJEf5hMbBUyjYbx8RBud4zx8dB531mI2YyqSj72sY/xsY99jEQiQTgcFrc5fvw4iUSCnp4eenp6zttHS8sN3Hnnt6ipMVFZmebxxz/KE09ISCaTJJNJIpEITucU6XSKkpJ30t19OTU1JnQ6nShItbS0sGnTJq6//no2b958Uf5Wf0x72dfxp2PaE8VSoqF5iYXNm6tZu/Y+PveVT/DJL/wzw45B3vnWf2ZsLCJ45ExGxc/5AwkaGoX745yMikQbWDD7I298C7OlTt/97hFOnHQRCCTIZIVV2jzRzpPz5uZirDYdmzdXo1bJcbsjuFxCZk5NjZG2NhsqtQKPJzZT2vf3gSe3P80P/+/bnBs4SW6mlkKCDJ26hbKiGylSVaJXqNCoFMBszFjIRlEqFQhHOpVDJs2Sywl+fVIpTE65MBZNU1kbwutzYtJ2EI9rhGeq6iVu+cB/4vV7SSYTJJNJfn5fmkxGmFSvX/ElNnZsACR84zs/ZPf+e8mk1cikeo6fKeHsUCPZrJmS4goaapcRDioxm2aFwUK/sUg4hVIlIxZPMT4eZnDQTyAgxIOWmUYQ+XK3410ukqksAb/QsEOvl2O3m4lEUzidERQKKRq1nEQiTcCfxD9zHbQaGUVFaqqqVlFauhGv18+U5yDHu5/ia3f9E6XWWq6/5jasstW43TGeeLIf11SUoiIVsXiKgYHAzAQ3x/FjLmLxNE2NZjELsK7eKIpZJSUazKaQWMqYF4zynSsLO1jmkX/eWywqurshk86wZ4+DlatKRQ+2+d0u8ygs2ZufeejxxAgGkng8sQuON6lUgtKkRFtvQGdR4xnRU2Fczqcf/DJqawqDYXZx8fDhw7jdbvbt28e+ffvO29c73/kwt9zSRk2NiUcf/R579+7l0UfTJJNJEokE09MeAgE/EomCiooXxM95vV4ikQgmk4l169ZxzTXXcP3119PQ0HDedyyE12PCa4+J8RC9vR5aZoS/dR0rUes38YGPf5Ib3/M+vvHFr5LLGLHbjXPKhvIZJRUVeiLRFLt2j4hEe6HsD4cjSMCfEAn3DTc0ceSIk4f/0MeUK0JZmW6WI1QLHCG/rc2mFeZpkRSnTrlxu2Ko1DIqK/Ss66igyKwmEkmhVstwuaJ/VCezvxYGBqf43k9+wQsv7SUUmZ3XKaRGinVrKNa1o0grqLBZmXBMkrmAnW4uJ1RLgMAR9AYJfn+CXE7wgk2lkyjVEWoaYnj903g9UiyWOpKJDBJphucO/4CdB6P4A2HS6RTZbIZ0Jk0ul8Wsb+DS1tuZaopgNKi44Qu3kMlISMTlyKQauocsTHgWk0npyKZNWIvt55Vu5k3wJ51hotEUWo2M/n4/uRzIpBIGhwKzHKFaGGddXS5C4RQGvYJwKEkmnUOpkrJiRSkKhZSTw9OkZho5ZTI5wpEU2Qxkc1kqKy34/QosxR0sX7QBlc7PiPMQO/Y8Si73CBsuuYzG6o2k01kefqQPpzNCUZEKlUqGzx+np8fLpZeUMzQcmMcRUtTXmxgZCYpG5S6XMP8J+BPiuMsLfHAhjmAUBVm1WsaBA2P09/tZtbKULVfWzBFeCn9vMBsTFioD9HhiBF4hJhRmUy1ubGRxYyPve9ctJBIJYvE4ZpMJc2k548kMmWyWSX+QSX+wYA/HANi8ZAnXrWjmdCaJKxjmty8d52c/k5DJZklnsyTTGcKJBJlsjmUlS3juB88A4PD6GXNOIQEqrSUsa6xn4yVr2NjRgbG4+BWbDVzIg+u1xt/PLPPvAH19flzDQSrXVPLJT85OBO684wt85md3csO/f5L3b76DG67cMIcwnzo5zfhYGJtVx4gjQHf3NDU1xvP8d4A5WVWLZ/xCOjvH2LNnFOdUmHAohV6vYOWKUrFzTR75f+ezrZ5+eoBdux00NZq54S2LRAHkrsf+j70PvcQ/TdzCl//5ltf6sv1JSKXT7Dt+nMee38e9O54mKxIPCVZlLcstm1BliohEhIdpPJ4VycmFoFbLMZkEP5BkMoNMkWMw+xz+uIdYNkCyPwb9s9uvrF/Kf9y8QfSMGjkyTiKdWHDfMqkMqVTK6FiIZMKP0ztNPB0X358aHeD4qFBOUqqv4Cvv+Jx4v77z+99hMZrwjWtwnM0RDqVIp7OMjobZtk0ozykyqxgbi2CxqFm2vET0DbNYNKxYYaPIrKLz4ASxWBpLiQaTSUkqJaz2VFYJqzUjw8JKWjYrZAeMOoI0NZnZsKGKEUeQKacGW2wdl5kXM5Hq5mDPCZ459gL1JU0st66j0lBHcbGalTWlDA76kckkmMxq1q/Xo9PLzzPnL8zEs1l1mMwhjh6dYmgoSF2dkWXLrXz0I+3iNnlBVqeVc+aMT/RRUyml7N49gq1Uh0YtB3JzPNRgbqagZzqGVAZaiwn7Zz5GeOdOgjt2MPTGN1H1g+9z442LMJtV52Us5ZGv69bpFGLXuvxkXqVSzSnV27BhAw6Hg+7ubnp7e+np6eHMmTOcPj1AIOBGpSoSV6b9fj/Hjh27wOiExYs14rZNTU08+eSTrFu3juLi4vO2vVDt+ev4y2J8LIxUImHrNXW0z6yC/8+Xv4dUUsL3f/Ztntt7hLds+xx2u0X0fzp5aprjx6ZYuaqUVDLN4cOTKJVSqquNC3rmOBwhgsGUaCqd95Tq6/MSj2cIh5Ncdrkdjyc2Wx44r5w8L2Q9vWOA3bsdNDaaectbFmG16Tjbd4Zv//Rd/N99RRzcdfwvdOX+eIyNO3h615P87qFfM+wYFF9XKoqpLNlKVelmfD7BqDsWy6LVZMWJ7kKQSaGsXDsTO3IkEmmCsWN4Q50kUlMkU16ygyn2Hpn9zP/8x1oWLarl2NEpzo346J/nYViIWAykMikeT4zBwSmCIaf4XjACfcN7xb//9QPfZ8MllwsLDSePcuClfSikVYyPFuGdFiaokpAEa0kxK1YYMZtVjI1HxDlAYZdHi0VDc3MRvT1egsEEBoOSykoD09NRPJ44TU1mLr20nNOnpznd7RH9UZQqKXKZlKYmM5svtwstyxVb8LuXIU+fwh97jv/77X+h1ZiprbialqZtWG061q4Vsil8vgQtLZaZjpESFsr8KowJVpuOo0ecHD06xfEuF3V1Rtrby8QMqcLswr5+n+ij5vcnCIUT9Pf7MJqUQG7Otu2ry+jtmcbtiqLVyikp0cwxYZ/tvCdgfUeF2OnvQujtmWb79iFkMgkbNlSyZqmFsy862fHjU9Qss2B6lwWdSYgLO3fu5PTp0/T29or/DQwMMDAwSjKZAhTic763t5cjR44s+J1SaY5rr60Q//7CF77AV7/6VVpaWs7z83k9HvxtoK/fz/BIgEXLrXzyU/kym0o+/9Gv8d93fYV3/8uHePt1/8K1V3XMIcynTroZGwths2oZcQQYHw9RVqpbkIgXZlUJMcVIZ+e4yBFCoRR6vZKVK20zz4fZsqX8v/PZVjt2DM6JB3mS+rX//TpHTx7hvWMf4JMfeedre9H+RCSSSToPHWbHrt088tQOsVGHBClm/SIWVW8hGTPONKqAaDRNLpvl5apqNWoZJpMSnz9JIplBI8vhjj5NOOIimQ7QMxFlT8EUbkXrGv7p1k30D/iJx1M4dg9esIGUTCpHKpMwOhomkfAz7XWTyc6uoPsHoXewEwCbpZ6PvOeL4v364S9+ibWkBLdTx8A5CIXSgqVILMOllwjPX41WLpbI5TOsXK7oDEewUlSkprNznEgkhUGvpKbWSCyWQqmQUlXIEWJJspk8RwjRtGiGI4wEcTp16CSbaa1eji/SxaFjh9jbuQt7eQsNVRspMTVQVKRh5UojgwN+pDIpJrOK9R2V6HQKUYDKI5+ZBIJIYjKrBI4wHKCu1iRwhI8WcIQZIUinVXDmrJfR0SDV1QaUShm7dzmwlepQq2Vzti00Xc+X8XmmY0JHeq1C/C0UovB4F0Jvj4ft2weRyqRs3DjXi2o+R9h46SXse+IR+gaG6B8eYmBomMHhEQaGxgmG/GQ1zax8820Y9XDk6DHGnz5/ISOPnL6Uxo3XUmIzsVYqY9HlV7OybRlFRUXIlao5cWF+d8K/FbwuSr2KaGoyky3REPDH6e2dFj2hhs6kWVd0E13BHfzgmR8Tzrn57mc+WJAF40Z4XuY4fGgKvz+BWh1jy5ba874jTyJ0WrlY6nTw4CQDA37MRWrKSvVs2lTJ1q2zopiQhXI+Sqw6Vq4onWNODSBX5oin4ugNf1u14olkkrt+/RR3P/UY05EpktkENqOVGkst3sg01ao2jMnFKCUaMmGIZGdNQJQqKV1drjlZUolshHDWTSjrJpJzE417sCVKuabh7UxPx8jlskzGB0hmZsUjpVxJsb4IjcxAY3k9y5YLE+x9+0ZZZ3szjQ0WLl1tx6RXk0pJCAaSDPSFMOiVpOJyqqsMGI0qvl7571hKZWSlSbzBANP+AOdGxjkzNIq9pJItWwQPpVQ6zdd//WsSKWF1XSFVUW2uocJQw7hvMblcLe+4uUU8vrwYAwJZjUZT4oP97Fk/MqmESy4pZ0lLCTufHiKTyREMJonH0lRU6NBqBV+yVCpDPJ4hlcqhVAmCUhcu+vp8ZFNyrNk2qvRtGFo9HB0/wKO999Ba28QtrW+mY30z6zdUcOrkNKOOIEajUjyf+SgUj5KJNCPDATKZLD5fHJDMMTh//LEBJifDlJfrGRj0MeUUDKEjkTSBQILiYg2bt9kXzIxyOoXVwXyWYTYDkWgaqVSK8dprUTY24vv1rxl+2020fPbfWP+lC0+08nXdq1eXctVVtQuaCs71paqmurqarVu3iu8fODDGs88Os3lzZUFJYJ3oReXzpRgfj9HcXEpbWz2lpaWo1erZcahUih4hL3eMwOsk5K+Iyio9gRnC29szPVtOZLiWZnuWM/2/4Jf3fYTvfeNnrFqZF0Fn48HRYy7GxkKoVDJWrSo9L0sKZmOCVivH4QixZ88oA/1+zEUqFlk05/nvvBysVh0rVpSKGVQAZWVaEskIyZT6FT79l8dze45x149/wPDoUcLRCWQyBfU17SgUE5SVLEOZ24RauQiJRCIKUiBIItFoilh8liBkcykSyQliSQfx5CiJ9Cg9o5PcduNdpBJWxsfDuPxeApGTc45BqylCqy7BXl3N8uXlFJsq6enxIs8tY8u6L7Hu0gZaW8tRKpS4XEmCgRQvvDCJSqWlrs5IRbkeJG/l1nduxWTO4gt48ft9DI+M0ntugGnvOJvWL2flCkHU/M1Du/j+T78lfr9BZ6fc1kpNVRuJ5Bra2mrmjBO3KyJmGzkcIaKRFPZqI0qFApc7gsGgpKxMSySaIjERwT9TbuKejlFq05DLgUIpRa2W4/Mm6Ovz01BfNCPSuDj4Ygq1chFV2kVccxlM+Xaxr/NRBkafYOuWd9Da+mGKzBbs1UYSyTS7d48s6PdUeLz5mJBIphkeCZBJZ5mcDON2RdmypQarTcfJU246OycoL9czNRVhoN+PxxvDZtUxNhomFktRVKye49MFgtgVjQolgxOTkZkSwRzOyeicTLQ85otUC+HECZe40l9TY8Ri07H2TVqGT0wzdGKa3/7HizRtLCeqkbF0aQlr1qwRPabyOHBgjJ07B7jmmgYxJnz5y1/mQx/6EF5vkvHxGIsWlbBkSTWlpaUUFRXNIRmrV6++4PG9Hg/+NtDUaMZ5RkPAn6C3xyN6Qg325Wiuvp1B5x+49+Fvkcrexpc/98E5ZDbf/PTQoSlCwRRabWpBMpkn2TqtQix1Otg5QX+/n6IZjrBxUyXXXjvrPXMhcd5q1bJihW2OOTWATJ4lmYxjNP1tUchEIsEPf/4YDzz6B3zBSTLZJEWmUuwVDfiDXoq0q1DRgkyqIRRgjiO5QiHleJeL9Ex1WC6XI50NE09NEU9NkUhPkZh2YyuuYU3LO3HPcITpQA/Z7GxJmVKhwmwsRik3UlOZ5wiw7/lRltffQmOjlbVr7Bj1WpKpHMFAmv7+IAaDmkRcRnW1HqNBxb+X/je2Mhk5YvgCAbw+PwNDY/QNOKipahDm1DYtsXic7/3sF6LYJZdpKCupx1pURzDSQnl5Iy2twvMrb5bvcAgZOQ5HkEikkCP4yGWFTnlbttRw7z3dpDM5gsEE8ViGigodGq1Z5AixeFrgCEpZAUfwkkkr0CvWYKlYi6V8gt6Bvew5/FOWNLVwQ8tNdHQ0s359JadOuhkdDWI0qMTzmY9C8SiZzDAyHCSdyeL1Crys0OD88cf7mZyMCBxhwIfTGWVkhiMEAwmKLWquuKJuwcyoSWeE8jKdmGWYyeTmlAoWYiGhqhBdBfHgQl5VhedVWV5OZXk5l2+YXZXp7fFwvGuK5ctKsDcI4teaDRv5xV3fASASyeD1JqmuLmJRYwWW4mJUSuWc76iom+svNf8YC7sT/q3gb+uJ8neOykoDZ8lx7JiLoaEgGo1wedetm2lnnH43T596mruffZCXek7xH+/6F2yWYioq9JjManRaOQaDHI9HMCHNe+AUknmbVYfNqhO7nRXuf9268jkdavIoJOj9fT4OHpwUP+N0RqirK+h04I6IPg5a3WtbO3oxiCUS7Dp0iF88/hj7T54kNaMqWWUN1KjXoM+WkIlmsEtkSFISgW0wt/sFgFIhIToTd0/HtxPMTpLMnR+I/UkZN729med2D9PT4+WSiiuxFhsoKyrlzVuXccnqWp57boRjx1w0NppnBKAc2SzYTfVsbKvhhusWifdHKtNQb9dQVqbDZFaJYuL1y1cJZoQnXKxvW3qeX1Ie8WSSD95wAyf7+znU00s0HmPQe45B7zn2jzzLkfEDfOdfPj3HRyl/r+dnQ2zeXE1wpsTPbjcIJTtqOd09bvy+BPF4mg0bq7ju+kaSiTQHD05is2nErnpbttSQTuU43jXFtDtKNgtrG9r52qdu5pHdB7n/hUf53N138mDn43zojTeR89no6RZanYNkTht7EIzM86vLNTUmDh+exOdPUFWpZ9UqG5Dj7BmvkK7rjjA8HCCTzZLJZFDIZdTWGTGb1Xi9MXR6OU1NZjETquu4S8wSyGdGBYMJUZxa3FyMTiuf/Y01NWH77Gfx3XsPzq/8F5EXX6TiG99Aqj0/SBb6fCw0wR8ZCfCrX50WWqazcGvWqioDa9dWUFs7m+VkMpnYtm0bIHT6O3NmArm8gpqa2YytC5mwv9wxvo6/LjzTUQKRFG5XVDTLXtdRzvDwBoqKKugd+iG3fGAbH/vQf/GW698KSFjVbqOiXI9CIUGnU6I3yDGbVXNKmfLIZ8EcneluY7cbUavkrOtYOB7ArP+OP5AgGBQ6tFVV6uZk1+SRL2m+0ArvXxqDw/089OjveOTJB5lyC9lFUomGKsv7KDYuh5yaprIEUumFmwtIJJBKC+cTjHbhDjxBPDlBjsx528qUHi5du4p9+0bxBdpQKrQ0L2rkzW+8hPXrW3jh+QmOHXWxqt1Gsck6I6jomZwsp8hcT9vSRtpXl3H0iJNplxeZTMnS1hqMRgUV5Xqi0TRvur6N6ekYJ064aGtrf1kRpLV5GW/adiOneroYHO4nFHEQGnJwbmgHu/bL8Pl/yMc+unWOj9KZeTFBq5XT1JQmkUyLJXP2GmHc2Eo17N07itcTR6dXcvvtrWzZUitm4NlKNWIXpbY2G6dPTzM0FEAqlSCXFfHBd3+RT33k3/jJ3T/imT338cye3/Out9/BDdvew94nXIyMBBkfj1BSopkzjnt7pjlxwoVKLScaSeMYDQkxwRenqsow422WFBddhoYE8iABdHql2CxEq5HjD+iJhFMsWSI8XxPJtDDXqTfO8VPLe22VlQtZJfPLBS8WhSV/+c/JFTIaV5dS1mDmxN5RenaNESdHMpi8YEy49NJqqqpmf3vt7UIWwPbtg/T1TaDRVNDSMks0Xo8Hf1+oqBTu7dFjQrZHvuvmuhnj/6UtH2bfoUf53SO/4uiJLv71/R+juMg8wxFU6LQKjAbFDEfQih44hWQ+X3aT73ZWuP91HRVzsk/yKCTo/f0+DnZOiJ9ZyOQ5EROek/q/BY4Qj7N3/wF++9DDHDneRXomyBrVLZToL0UlLyGXSaPVyeeWKuXm7kcuk5BIClmxo74/EEtNksmezxEicS03vX0xzz03wqlT0zTXXEtDfSklRWVcdUUra9bU8NxuB0ePTdHUZBYFoGwWyiyLuaTdzg1vWiTeH5lMSW2NhnKRIwhiokbbOFu+dvWFRYNEIsF73vF2es6eo+tUN/FEjLGpbsamujl+5knOjezn8x//zBwfpdl4MNc3aPPl1QRDCYwGIXbmx0B3zzQ+X4JYPM3GjVVcf30DyWSGg50T2Eq1YjzYsqWGdDrH8eNTTE9HyWZytC3p4D8/924e376HJ559iK/973+yfc9Sbnvbuwj7bfT0eEinhZuxZd7zqTDjqLY2xOFDTnx+IR60rxIMt8+IHCEqcIRMjnQ6g0Ihpa5OyBr2euPo9Yo5Xl1dXS4xUzCfGRUMJURxqrm5GJ1WseBv7JVQWPJ3IaGt0HJhoW0sJRoWLSrGVqoXXzMZjaJwdeSIE5/bi15dTEXZXC+6hUzYX+4Y/5bwuij1qkOCRAIWiwajUUnAH6eiQs9ll1eTTKSpqbmZztPNPHD4d7zvu//OdcveyrXrLqXabuTMGa8gbtiNVFUZRXEhX4pVaOJcKDjYrDoam4pwOEK43JE5wlM+JROE7Kp9e0c5edKNxxOjvt7M+ESYgwcnaWwqor/Px8OP9DE6M+nLZXMLn+JrjGg8zrOHDvHr7U+x99gxMcjkoZYYscqb0MuskAOZZHYY53JZojm/kAGVcRHOTpOTZNlkuBmTSU4ymSadiJDMRZFKJJSaSmm212NW2pDETKxubcRuN9DUZMHnT7Cq/DIsxRoWNxeLRvXLllsxmdUE/HGxlHLz5mry5uRwfkZb/j4Violdx10c75oiEk5fUJQyaLV89YMfAiCdyfD8kdPs7DzKsb5ujg9001rTKAo3KCb49a4HuWzZOqqqqkUBM48tW3Q88kgfu3aPEAymuOGGJjo6qnjggV6eeWYEvV5BOCR0wEsm0qIRfmNjkXj8er0SlUpGRYUBny/O9HSc06emMWQr+eYdX2A8OMSdv/sNH7zzvyjRlHFp9RUsqVjCeTMA5q4mjI4FcbmiqNQyDEYlFRV6LCUaQCA84XCS2loTdXVGhoaCJJMZ7PYi6upMBIMJPJ440ZjQParruIvjx6dYubJUFOqyGTAaVYCEoaEA69dXEImm5/zGZHo9lg9+iNCzzxLavp2B666n6vv/i6a1dc5xr19f9bKrzd3dHqan45SUaC7YmnV+p6P5mG86W/i5HTuGOHx4kve8Z+kFiciFjvFiSczreHUwPhYmHE5jNCmx1wieOYlkGpVSzjve2YxjpIKV48088ex3+J///ST7X9zH4pp30dpaydDQBMFgikWLi7GWqPH7E3g8QnlwvhSr0KB5vgidNz7PlzblRap8ubewXY5DhybweuOc6JIhkUioqTGyYX2luF04KnR0zFzIaOMvgL6Bszy2/Q88/Pj9OF0Tc96TIEOvacWobSObFSbThYJUOhMhnnSIGVCx5AgVxW/DVrwSlQriKSmx5CgABr0Ji7mBirImLOZ65NJy1q2+BL1ORXGRhkWNzdisq9i4sUosx1y+zIrZpBYzkc6c8VJRYeCGG4TrO/++aLVyMWOuUDA63iU8t8KR9MuKUldfsY2rrxDE6zNnh9m95wVGJ0/SeWgfHq+PkuJqTp6axmwK8dKxh0EiYUnj5XPK+PI4esSJ0xljfHyIbdvq+OSn1uB2RYhG0rz00iQKpZRgcLaph8cbo9quFzv57T8wQSabo6GxCL8vQSKRQauVEwpCe+ttvPGa9/D8i/dx7313c/dvfo697Gqaat6ETGY6zzj/xIxpbWNTEStX2OjsHGdsLIRUKqF9lY329jIcDsFnavfuEcKhJM1LLGJMUChl+LwJ1m2rwGrTMTQUIBYVYkJPj5fBQT8mswqVUi76qRWKVXnhsDCj6mLxctlU+iIVqiodHmeEIomEiecneS4FHW9tRF1A6l8uJrweD/6xIHIEg5KAPzHLEZIZampu59DxFnY+fw+f/srHuGzNO9m88VKqq42cOeshk81htxuprjbMaVU/n4wWCg42m5bGxiIcDmGeVSg8FZkLOYKCfXtHOXHSjccTp77BJHCEzgkaG4vo7/fx8MN9jE8I1Rf5kri/NCLRKHv2H+CBR5/gpSNHyWTncgSlrAiTphm1QpiPS5j9neVyWRJpj5ABlRayoCTIWKy5BZtNRyyWYtgbIpONIpFIsRaX01TfiE5dTiZpZsWyRdhnGhY5RkLU1mziTW9unGNSL3AEFQF/Qiyl3Hx5tfgenJ/Rlr9PebFqaqbxw8R4GEuJ5oICg9lk4nMf/1cAJiaCvNB5gsnpAV48fJSu7i4W1S8WhZusJMLjOx/i0vZNVFfXnOcbtOXKmlmOEErOcIRKHnjgDDt3DmMwCL5TOq2CZDJDPJEhEknR1FgkHr9erxA4QrkBnz+OxyNwBI2ini9+/OtMus/y47vv5hP/8VnMhiqWNV5Lg71lwXObwxFGg0y5IqjVcgwGRQFHgKHhAKFQSuAItSaGhgMkE1nsdiN1tSaCoRmOEE3jcATp6nJx7JiLVatsolCXyeRmxDgJQ8MB1ndUEomm5vzGLhavlEnlcAQJBpMzCQILZ1IViocLffdC3Trznzt6dIq+Pt8Fs89e7hgvVtR6rfC6KPUqo7HBhKquCJ1WTtcJF8FgEpc7ytmzPjzTMd7whjo+fMvVtNbXcfeee7nv6K/o85zm5o4bkeXUqNVCh56WlmKUKjl2u2FORsmGjVWi2GCz6ujsHOPnPzuJQiEhkwWlQkYgkGBsTBCWKip1nD3rRaMWjqe1tRiPJ4ZSJSMaS2EpVpNMZdi9e4TBgQDjYxGSCeEBn30FD6ZXE8FIhJ0vvcjjz7/AM4deIpaY680kR4lV3ohNvhiztPI8c7aR5GE8mWHC2WmyzHUylyBBrsjS2lLC8uVWSp5/EyvaSpGnzPSeDtC2wkpTUzF79ziIBQUyt35DBdV2wxxRKY/8tXe5I2J52fzStPzfhUIizM1eype2WSwXVxYjl8nIhc1YM0v57Fu3sH5jOZNTQQbPRRgaCrD/3H4ePbqLRw/s4ruPlHLbtm28Z9sbIKMSj2Mh09abblrC5ZvtonIfiQpZUj29HorMKtpXl4vHn/98TY0Bq1WLTCYBJJSV6QgGEuSCJdzQ/B7qlb3sH97Fk+d+R7enAXvzbbjc1jmdBQuV+jNnfExOhlHIZUyMC906tmypweWOEA4nKS3TsmVLDZ7pGN09Hioq9VgsapzOCFIZZLI5MQNs1BHCaFJisWjOu+aPPzbA4cOTOBxBVq60iT5T4liRSomv2sB0ughL5xMM3/wOSj/9aYpufdecMTd/Ml/4dyGBuNBE/0Iko3A/81u7AphMSvbtc+BwBBkYCHDPPdvE9y7GN+SVxLDX8eqiskpPLpvDUKTixEw8cIwEyWSELmgjjiCNjWY+9O7/Zsr3Aj/79TfoOnWAbbGPoVcvJx5LU2rT0tBoFrNq7HbDHA+bjRur5ogNT+8c5uQJFwqlDEuxhkAwwdioEA86Oqo42DnJwEy3tooKAy0tFhyOEJFIklAwRSqd4eSpaXbvHmF4KIBMIRj3SyR/OQKSy+XoPnOSp3c9yc7dTzEw1IdUIiObmyUfGmU9Zt1aTLo1yGVzvRfjyXGm/I8RTzpIZbzzd09WMoalZB3t7WVMTuq5rqiet775cp7fG+TEiWlWrBCIQ1eXm8mJOFu2lLJxY+UcQSmP+UIPsGCmTWHm0vz37XYDjtE/Lh4AREJqFJLlrGhu55P//J/4A16CAQWO0SBHDk/wuye+RyjsRS6Xc8XGq3nXzXew/pJNTLujosCTyWQZnwhz4oSLJS0lWG06PvihFTQ2mTl21IXRKBC6ws53N90kdIES40GtAZNRhUwmEa+PPyCUQCxb/E6k12/k4LEHOTv0JCOTu5Fr38Nm+Qc4esQ5e01rhMl1vrTPMRqi64QLiUQwE85jYjJMMJgSnt0zQm9VpY6APyF+v9mkIpuZjQmO0dmYUBgPdu8eYXwizJ49o0xNCVkR+Y6UecwXfxfC/G3m/11TY0QikVBeqsU3HOLcoSn6j7po31bLiiurkcmkFxUT5j+zTSYlXm+M/ftHufvu07z//cv4/OeFlfTX48HfJhoazBRX6NBpFedxhOnpKG94Qz0feM/1LG5o5KEdv2D78z9izHWCay+/GQlqNBo5Go2ClhYLSqUMu924oIdN/r/OznF+/vMZjpDJCRwhmGB0VHiuV1TqOXvWh1oto+uEi5ZWCx5PXOAI0RQWi2aWIwwGGB8Pk0z+FThCKMTu5/ez87k9PH/wRZLJ5Jz3ZVI1RnUzRk0LWkXVeRzBFXqBSGKIeMpNbj5HkMhRKmHlShvLl1t58JGbWLWykmy6iN7u4AxHKGLPHgehoED816+vxGgQyqXmCwP5a+9yRcXysvkEP//3fAEgv6/6ehMHOyeQyqQ4HMGLEggmJqL4PUZKTZfwv1+/CYNRitsVpe9ciKHhAC91PcueF7ez47nt/OJ3lbz9hjdx05vfSDqpFI9jIRPvm25q5vLLCzlCioOdE/T0CBxh9eoy8fjyn6+tNWC1apDKhEzr8jIdwUCSTKKCzWs+TJnpFF1nd/DC8Z8zPLmExub34XJZ53QWnMMRznqZnIygUMiYGI8UcIQooZAQD2Y5wjQVlTosFjWTzggymTD28yLQ6GgI0xyOMCvwPP54P4cPO0WOkPeZmjOWLkK4mb9N4d/zBeOFcCHRqXA/hUJoHjqtgtOn3bjdMZyTUT7+iVnPrYvxkXolMey1xuui1KuMomINpTVlHDnqFM1nV7TZ6DwwwdRUhOefH+fWW02YtCa+86F/5+F9e/jN8/fzlUfOcsfVb8NkbkIhl6FUycXMnPzEyVKsntOdDODpp4fp6ZnGaFRSVqYnFBbakKpUcqqr9SxbZiUSThONpQgGkzQ1FfOxj7eLD5fWSytwuSNMOaMoFBKamsxMO/WMDLz2qyCeQIAn9r/AvTt2cPTsWbLZLI3ldSwvWY/EX0lPbBdKiYZS+WKM0nJiOT/h7DRT6TNEsl5WqW9EIhEeeAmpn2BKKOWQSxWUaMoo1pRSX1ZDmaGcmFdFcbGWrVsbRL+t3t5plHLh/lhKNKxcWUp+ZXt+ltFCeKVtCkvp8tsVfmb9hkqxS97FIyf6zaiVSuqqS/C40mSyORZX13Gj4SqeOdyJY2qKr959N9/8zW/YtOwSVlVcytZNq1i/vkI0HZ9/LkLrYWEivW5dOfG4QC7yx+dyR2aypPRs2FAlZucVejh5vDE83hhN5Y1Ummrod5/h4NhuPvKTL7H54DpaTRso0lowmdXidZ6YCNPcXER13ldqpitf3sA5L0jZrDp27x5hYjxM2worpaVaDh4UzG1tVh39/V5+/rOTtLfbuHJLLXnD88JrbrGoUSikBAIJ+vv9bL7Cft49dDhCnPXrWbztdmpPP8vU175G5OBBKu68E5le2Hb+ZL7w723b6l9xgn+hTkevRBICgSRjY4JZ6UsvTc5572J8QxYiPnnSYzIpCQSSr6+av4oosWgxm9T0nvOK8SDfbey++3pxjAoeP5deWs41m29k1fL1/Nedn+XBJ79Iy6LLWNp4C5mMAbNJPScTQ4wJFrVo0Gy16dh/YJydO4dIpbIY9ErCoXw8kFFtF9LA13UIpdu2Ug3OyQgtS0rYek0du3eP4HRGKSvTEgwmyKSzQovrhnIOnIDcAtmOryay2Sxdp47y0KO/Z+dzT+Hze9GodbQs2sSi6muJxuK4/I9i1l2KUbsaiQTiyVGmg88ST45i1K6i2LBxZm8SQrEucd9adSlmQy22kiY2rFtNLFyGxyNFq5Hz+c9fIW63YsU0Eolkjql1viTrYjJnXmm7+d5GhdtvWF+JvfqPiwd2u4G+Pq9Y1ta+WliN9wcS5HJprt3ybnrO7eZ070me2bOdZ/Zsp6Guics73kZ5yUballexbVvdTNng3JhQmAEGnNf5btY0vZiqagPNi4tnPdNsOswmoXGFezoKOQ2XXfoeDMqNDDsf46ldP+Hg0Ye57JLbWbXsKnI5GWXlwrWYmAxTUqJhw3qhdCRv0J+/dmXlOtrbS0VRqavLzYoVVtZ1lHOwc5JEMk2RWY3RqEAqk3DPPT1U2/W0LbfSvLhozjVva7MxPh7B549z6KVJios1XHGFfc49nH/PLua+vtx9rqg2Ut1q4dyLTl58dIDu58dZf2Mj9Susf3RMCASSFBdrGB8P4/MluO++s6Io9Xo8+NtEcZGGhtYyjhxxitkSK9psHDgwztRUlBeeH6f2VhMmo4Uvf/qrPLFzO48/+zuGRk/zjhtuw2xqRCaXo1TKRFI6Gw80c7qTATz99BDd3R6MRiXlZXpC4QizMcHAsqVWIpEU0WieIxTN5QgtJbjcUZwFHCGCjukAZF/jagqPz8fTu5/jocefpLv3DNlcjjp7E4uqt5AIVzPqeQyl3IxJ04pGUTGTAeXEHz1JMu2n1vJOUZxK56aJpYQ5k0yqpNhchUlbTlVFLRZzJUGfCrlcSkdHJR0d7wIEEq9UuESOsGqlUDKWFxPml5vNxyt1MFtIACj8TD677ULZNPNhtxvp6/PNxIMgq1eXYbercbmSZDI5muoWo9ZdzfMH9zM6Ps63fvAj/vdnv2Bd+wYW127gistWXdDE22bTznAE4XjWdVQQT2RmOIJwfC5XFJVKTmXlDEcoOP78uXq9cXy+BHX2FkpLmhgZP8npgR184X8+xca9l1FtvRy9tnhWzLNqBY6wuJjqaoPgKzWS5whCxlFekLLZtDMcITLDEXQc7JygpdWCzaqlr9/Hz39+klWrbFy5pUY85sJrbrGoUcilBPyCf+IVV9jPu4cXI9zM36bw70IR70K40Nh5pe+ORFN4puPEYmnOnpu7IHcxPlILiWF5IUxJnFgyh64m8JrFhH9IUeqHP/whd955J06nk7a2Nr7//e+zdu3av9j39/ZO89zuYcLhNMu21rJkSQlveEMdu3Y7qKkxcODABP39PgBW168m4izilG8P33vsl5SbKnj7+rdity8R9zXqCKLXKSgpUXP8uItCfx69Xo5SKcdm03LddfUcPDjJyEgQqTRHJpsTO+253BHReDrgj8+03UzPeO7o2D4+hFIp57LLyul9RlipfS0CzrjLxa93bOeh556jf2xsznsSpJQFrkYuEVYfquTLcWX6GUgeIJ4LnrevnCqEImsinYYGYxu3X3klb7lmNV6nnEcf6SMYSLJhXaVgwDejDhcif23ymO959OdiftnGfFyM8JVHvnwz7z+2UFdFu70Rm/VaYokEjz3/PD977FGO9Pay69h+njt+gDdc8wuWLKk7r1QwPzbyGUz54+roqKK3V8iYqLEbGXEEGZ7xQRgYCIglooXnMOoIkkxkaGgQRKbndqvRZ6vJFjk4OLKbFwKHuHb1Ft5ScgcOR4jjx6fI5RDPyeEIiWNTp5WL5CP/HTV2IxPjEfF43O4oPr+OpiYdp05N4/MnUKvlXHZ5NWfPeDGZhQyR/Pk1NxcTDqfo6/NRVqad6ytVkM026gjR1RtGt/EGqurrCT71FIPXXUfV/34PzfLlmExK5HIJJpMwVi+0yv3H4pX209pq4brrGnjppUluu23JnPcuxjdkITEsT3rkcolY2/+PREL+2vGgv8/L8S4XuVyWcERYoW1fXYbbHWH3bgfZXI5Dh6cAaGqysmn15ygxPUf3wG85O/DPrF/zNt705s+K++vsHKOn10tZmYbycj3Hj83GBI8njkIuxaBXsvmKakYdYUYcQaRSCdmMcG/znfbyHj6JpFDi1NZmo6kpPVOWNY5UJqF9dSnFFmHFNPcaeEqlUileOLiX3z5wN50v7SeRnNtiWa/aTCLwRpRSkKiC6NRLCMe7mQ7uJJubm02rkOvRai4nHs+gU5expP5W3n7jZmqrm9mxY4JgIMnGjZXc/I4W8dznCzHzy7BeyeD6j8XLxYSLFb5gbmZO4WJCHsuXlWA2qbDbV2G1fY5z/Wf43YO/4g+P38fAUB8DQ1/j6svfzvXX/Q9Wm+48Y/R8FlUhtl7bwNZrG+jtmeYXvzhJLJpCpZJhtQoeU4cPO7nuunrxHPKCWTSqoKxMS1ubjXA4jVr1HrZtuQXH1MM8vOPrHDv9B959878Byzl+zEUuhyiG2asNNC8uIhpNo9XKxQ6VhaJSOJJGpZbT0+PF7RaaX6iUcjIZOHnKjXMygscbo7WlRPTLdLsinDwlxITW1mKOHnNRYlFjK9XNEXnz5+EYDXG8y4VWK19wTGi1cmQyxGv2SrHfWKym/doa3I4QfYemePqnpylvMLHhpiZsNXMJ6MvFhPxrKpWEnTtHuPnmxeJ7r8eDC+OvHRN6ezw899wI4XCKZcvqWNJi4Q1vqGf3bgf2GgMHOsfp7/MD0LZkIwGPjcGJnfzsN9+ntMTOdVveOcsRejyMjgbR6xVYLGqOHRdiSV4w0esVqJQySm1arru+noOdEzMxATKZnFjG43JFRePpgD8xMw9LiZ4728cHUSjkXLapjCGXwBFeqaP1n4LxSSf3PfIo25/Zxch8jiBRoEq+kWxKjkIKxbrVhOJ9OIO7SWUC5+1LroxCTkcmDZUla7ntHW+krroen1eJeyqG2x2jbYX1whxhXonTK4lQfywulA2TxyuJWoXICweF9+3872nCZruOaCzGjl27ufeBhzjde4Z9B59j/0v7eON199O8uOw8wSI/NgCxc5/NpqWjo5LeHo/AEWqMjIwIHEGlkgkcYaZEtPAcRkeDJBJpGhuLqK428NxzalTyeuTac5w89wwHj+znig3bsJR8AIcjyDGRI6hEcSt/jjqtYoYjzGYc1dQYmRgPi8fjdsfw+xM0NRVxOs8RVDIuu7yaM2e8mMxCqX/+/NRqOeUVQiVGU2PRgr5S+Wyrri6X2KFvPnRahdjB72Lu9cXilfZjtxtZs6acs+e8XHFF9Zz3LsZHaqExlxfC5LkomawMc7fndVHqYnH//ffziU98gp/85Cdccskl3HXXXVxzzTWcPXsWm+0vY+jVdcLFmbM+JMCII0hHB2zd2kCJVcfZM160WsWcbJXeHi/tvIFrVm5h++nHuWv79zk8to9P3/IuTnXCyZPTM2nnRnK5FMFgQiTS11/fSLXdKKTjLSmhsamIA/sF49r8/js7xzh4cBKpFAY1W9ieAAEAAElEQVQG/BQVaYQa6JlMrFMn3USjKcrL9UAOdc7EstrFlJf8+RPyaDzOC0e7+b+HdnG47wSemPO8baTIUUq0SJCQzEaRywSiH8l5mc4MiNupJAYMshIqiypZVFnLlrWrKDbpOHrUhd3exDVb64SyOnWEtWsqxGswX3z6S+FPEZ0WKgWE2ayrQm+rC32PRqXiihUdNBYvw5+a5MG9O5FKJaxsqRO3OdHXx/LGRiQSiSgO+f0JurrcbNs2K1zllfXBgQDBoOAZ0t5eOlM+5gcEkuuZjtHX56XGbhSzv2xWHTqtnOJiLRZLE++5/mru3vE4z3Q9Q+fHD/GODW9hsW05qaTgvZU/R6kMppwxMpks27bVzfFUi8XSlJXpxI6AgLiKdcklFTgcQdatK59DCuaLX3KFhGQyg1whPc9XKv//eCJFf78PnV7OkpuvQllfj+83v2H4nbdg+8THCZReRjqdIxAQUsgLJ/d/TvvtC2VQFb5fWLJXiFfyuroQ8sSmcGX8HwV/C/Ggt9dDf58PqUwQhvQ6gdhuvbYBq1XHCy+Mk8lkaWuzUVKiobzCQDi8kbrqdXjCz/D8i7/nhluf4t3vfD+33/IBnn56mLNnvSxeLDTJcE5GCQYTHD3ipKWlWGxfv6SlBLcrwv4DE2K2SR6dnWM8+eQgACdPTWOzakWfJLcrgscTR6tVkEhkcThiLG5cibXkz5+E5HI5JqcmePjRHTzx9HYGRw6TycbnbSVBLjMilahJZ0LiqzKpCl/4efL+dBKJArWiiiJTHYsbWzAbmnjrDasAZjyz7mDrVcIzz+NhzjW4mI5qrwUuVnh6pZKxwkyc9tVlC5YKFr5WZKzm+qs+xrtv/hgvvPgkv3ngbv7tEx8Xt5lwjqNSqrAUl4j7lsnAWfAczl+vEydcHD48SSqZwWLRsmVLNaFQkonxMAc7J+noqBJFH5VazrLlJSxfZsVq0/GOm5s5ccKFvcbI1FQL1WXbeKnrF3z5zvfS3nYlmy55HxqVVewkmT+OTEZovJKIp0ThJ399Vq6wceaMF4tFI479khmvEYtFRXe3l9bWYqwFXpwOR4jjx4SYIJVKCAWTNNSbsFcL3p6FXfisNh2JeIr+Pp/4252PfDe/vOg1//oXiqD5z0skEmw1RiyVekZ7vQwed/Pg149Qs8zC+rc2UlQ2sxDzMjEh/962bfV861tz33s9HiyMv4WY0HXCxZkzMxxhJEhHh9ANz2oVTKN1OsWcbJXeXg8K2Y1suuQa9h1+iP+7/xv0Du3iw3fczksHcpw8MT1j2mwil4NgKCES6euva6S62iiW7DQ2FnHgwPg8jjAulIpJJTMcQT3HJ+nUSTfRWJrycmFMKmXFLG5cgvXV4AjRKAcPnebe+3dysucowcgCHEGiRCYViHImE0UqFwh5Iu0mlDgnbqeQGVErSiktqaa+pp7LOtowGnUcO+bCbl/ENdcI8cDhCJJsmM24eSUPoNcKf4rodKGSr7xw0NxcfF5Z1/zv0Wo0bLzkCuxl7YRi4zz5zOPodTqaF88+L7rPnKVl8aIZjiCIQ4FAgq4uF9u21YvXS+QIgwECAYEjrF4tcIT+GZuAjo7KGY7go6bGSHW1UTwPnVZBcbEGi6WJd954Pb9/+EH2du7g2KkDvPGqd1BVuoJkMotOqxDPUSaT4HRGyWaybNtWP6c8LhZNU1qmEzsCQgFHuHSGI3RUzBF3CsUv2Uw8qK83seXKmjkNAwqz2eLxNP19fnS6hUWpSDQ1p4Nf4T24mDK6C+GVxozNpp1TsleIP3Wc56+VEi2xZO41jQn/cKLUd77zHd7//vdz++23A/CTn/yEp556il/+8pd89rOffYVPvzpY0WbD7Y6J/85jvjk5CJlQwWACnz9OScTMR6/6KEHJCL9//gne/G+fodJcTamkFXOuTfSZGnUE2fOcg1WrbGzZUgsIDwYQsn9uuKFpzvEcPDhJd/c0SHLEY1mUKum8MkAJGo2cujoTy5aX8B7eQqFp98Ugm83i9HjoHRnmUHcPj+w+wMDEKKmZ1Ww5KoplNRgkOUK5qbmfJS1mQsVyfrSYUSollMkaMBt01JXZUaaKKC0pYnV7Ges3VM4RYfLleHnYrLrzrsHfOhYq9StE4dh5JQGrcH+Lm8v56Wc/O6cUs290lMs+/E8sq1vE1tY3sHlNGytXlvLiixOMTwh+TvnsunQqh8GgpKREzeRkmHQ6R2LGQHBsPER3j5sHHuglk82JaaH5lXsQxmNe+BkcDFApWcWX3rqWZ3t38IOnfkmttYa3X/o2IlGbmKE0OhbE640RjqTEYzl1cpq9ex1IJBJWrrSJ514oNt5661xD8ryYFfAnaGgwAxDwx6mZecDmA1Xh9c1j/opCwFjG2FW3UXFsJ65v3knD6v14NnwQlyvCyMjcVNaXK5u4GGPZkZEAe/aMAjk2b7a/6isS84/hlYSwv2f8NeNBLpsjHkmxZImFnEyC2azC70/MEYfsdgMbN1bOER+qKnW8eHCCdDpLReV1/Ow772ZP5+/4+a9/yC/v/TE1FVcgy1yCQm5h+TIrefN+tytKe3sZbW02TuTjQcv58QDgYOckIzOdavJdVgvJfjaTo6nRTFubjYlJE59q+tnMd108otEIQyMD9Jw9zY5ndnHk+GHCURcgrK5rlLUU6a5gOrQdoW1q/hmVI50JAAHkKaHkUCGXoFbrqLa+BZu1HHvlYjJpCxUVBq6/rvE8oWB+18G/x3jwciVjhfHgYjyP8vtrbi7mtne8j1tvfu8cz5VvfPfL7H3hWW54w3sp+3/snXd8W/XZxb/ayxq2LFlecoadxM5yYmfZSRhJSgh7lEKZbaGD0kFLBx20tKUttHRA27eliwJllg2BkISVCRm2k9hOYjux5XhJli3JmtZ6/7jWjWQ7Awij1OfzMSaydHV1daXnPud3nnNyPoHNZmLG9By6ug5n+E25nAGisSQatZzocJyhoWGOdAUoLzeTiCfp6/Nz222bKSsz0dcbJJmEM8+0A4ipdpdfUcGunb28/XY3Pm8OV138W3r7t3H/o79mT+O1LFt0JTNn3kjpVMFX6kinj6JiwQ+xtUVQmJeV5bBrV59o0FxUrGdpbcGYVEoQFF4puJwB0cdq3vw8fL4Ifv8wRpMqg8waXQ/S0/VS2xkdMuDxRsaorFJImbjDWPXdwEAIdyRG+ZmFDHUHcTQO8Mjtb1FaZWXxRVMxmDXvaaHjRPhfqgfw4daESFAwCBd6hKD4/ymM5zXT3OTG640wOBgmN9fKtZfcSnC4hedeeZKrvvhl8i1TyFLMxZRTKfQIShmdnT5efdVB1fw8CgqyMvbBatWO7RG2drOv0Y1EkiQcio/0CJljgGq1jMmTjMyeY+HTXAnwznsEp4uWQ4fY3bCXZ154gx7nEVHxKpNoyFJPQSVPEomN6hGSwyTiwgLgcNyDQm5AoQCLaQbmnGwK8iYhTeZiyTVRXZ1HbW1RRuN+9tmZ/pypv42XRPhRxTsxvj4ZzyOHw8eBA4PMmFHEb372k4we4UBrKxdcdS1zyudQU3URNQvnMH9eHtvf6jnaI4yo62KxJPoRL8Sebj+xWIJIJC70CEd8NDb18/jj+4nHR/cIQs9XXmEWDcUPtQUwa2v5ynVL2bzraf7x2B+wF5Rx9umfHukRBIVSZ6ePwcEQfn9U3Je9e1xCjyCVMm+eRXzt6STM1VdnGqqnyCyvJ0JpqQkAvz+K0aQSP5fHUiaN7hHGCxrweiJjPkdw/DG6k/WrGq1cO5UYvQ+pn6DXg0yueF/rw8eKlBoeHmbXrl3ceuut4m1SqZSVK1eybdu2D2w/ystzMedqcDiGxKYXMs2vU/+ub3Di90dRKqTEosKKR2lpEb/+7G10eFr505NPsPPgyzT73ySw7jS+8unz0etVCNeTwkVlfYOTHTv66O4KYM7VCHGXKRa2PJclSwQPkYHBED09AbJ0Knp7g/h83YQjUUKhGAMDYaLRGFaLDqNpiLd3t+MY7KBkkpZgOEIwEsYz5Kff68E5MMDpM5fhOCClvq6PrUfW0R3fe8zjkSebznTVSqQSKV3RfQwNCwVHggytNBudJAetNIcsWTa5ahuTiw2cd95UCgqyMpLrPs54J6N+6Ql+6cclnawavb1UA+J0BXhuw26UcjkNbftpaNvPhr3z+PtPvkFBQVmGhNnhGKKvL4BSKaO0NAerNQu3O4TZrCYYjBEdTuAZHGbTpi6uuGKGOFY3mmBL7YOwag2VFflcesGtvPDGDv743L+48/lfs6NjKb+46YuEI1G6u/wUFGZRXpGTdsGWZHAwTCyWJByJZainUj5U2SYVR44IkfYp4tLhGKK3N8D0GUI0eEptdsXlR4vTeOfWaHWdwzHEgcMhWHwB0yum4X3ueSoav84DtstZv34qN95YKTYL441NpC78nc4AbW3ekSI1PjnV2Ohm3brDJJNgterGGKm/24Iweh/g4zeWkY4Pux7sePEwDa8eYf5ZdvKLBcVeVZVt3MY5VRMsVh2NjQNEIoLiwj8UpatTwpeu+x5Lqz/Nm289xn+efZhg6HmCiXnMeut6zMZ5GabOKZ8dfyAmevz094cylBpLavJpb/eKEnirRcv+A4M0NDgJhmK0d3hZvqyQ8pGRp/37B3APbqfYriIcCREKhfAHhvB4B3H192EwmCgrvpCnn2mlr8/H3sNfJ8nw2IMCSJAzregXKGTCuecJbhkhoUAuM6FS5KNW5KNSFKBTFzFlsoFZsy1UVOSgUi44LvnyccGJ6kG6Eud4iXHpo3ip0Tcgg5Dq7hqk+UAL/oCfBx//PRrVg6xZcQPnn38zQMaYo8MxRF+vcJ0xdaoJjVYYGQoGYlgsWurq+4hGEyP7bhhRb+jHkGx2u56KilwcDh+TJplYtfLTLJx3Js++fB/PvPQAjS2vcO2nvo2cmXR1+bFYNNTWFGQooVpaBti5c4BQKIbFohGPRWQ4hqPDh8mk4kiXUA+W1hZmeD2l4stTx25e5VHl3Hjn1mhl3XieUeBi9y4n3d1+FHJphipqNKmV/t54vGF6e4J4vBFMRhUVKwrxOAK073XTttvFtEV5bG1xs+ENYZSptrZooh68S3yYNSHo9fD0L2+nYHo5s8/8xEiP4MvsEdLMr1P/PtojyIjFkuxtcFNaNoXbbr6LI33N3P/IwzQeeJpO93rkWSu54dqL0GeleoSjDXAgEM0Yx0tXaiypEfzbBgbDQo+QpaSnN4BvaJiWlgEG3GFmzsoVG2CjScXbO9vocbVRMkk3UhMieIeGcA8M0O8eYNnCT3CgOUldnZM9rU/hDR27RzBpKsk3rkIikeL276BvKNUjyFHJc1DKc1HJzagUuRh0Vux2I+eLPUL0uA38h43Y8DChIR+hIR+RYIBoOMxwKEQkFCQaChGPxUgk4iTicWFEPplEKpMhlcuRyuSCf5hGgzSppNggIUsSx9ObRGvKRqk+GoqRrqAZT90DHNNsG9J6BGeQtet2olQo2NO8hz3Ne9i6czH33PXtcXoEH729fhQKKWWl2eTl6cQeIRCIMTycwOMZ5s03j/DpT5eLY3WjCbbUPpjNapoa3cydXcAlF/2MF1/ZxANP/J37HvkJzW0r+N43biIcjtHdFaCgUEd5uTmD1B0cjBCLJQiHczLUU8PDcXbuFBR41dU2MSAg5fXU0yuksQLs3z9AZeVRBdOxlEmjVUfjkYZOV5D2du8Yddl4Y3SpffV6IvT0CovpxzLJHz3WOF765rvB6H1Ify0fFD5WpFR/fz/xeJy8vLyM2/Py8ti/f/+4j4lEIkTSkt58vrHeRe8EgwMhtu5uoampH6lMgk6nwOMJE4smWb16EkqVPKNhr5xrJeCPYTarycvT0tQ0QDAUZffuPqqqynj1/+7hrYaD/PWZ51lft4knN79EYa6VJeVVlElrCUVsVM61cqjNy+BgmL17+nG6AkdZ2PLcox4izf1s2dJNPB4nFIrR1eWjwzFEIg6RSIzGxgFWr57Knj1Ofvuff9IXaznm63xm7T5UUi2+eB+BpPuY95OjxiybglQiRSKFXNlktGojaokRtTSLKZMNTC3NobhIj0Yjo7FxgCVL8sesdH/c8U5G/Y7VsKSTQdVVNnF76WSVwzGETVnGv771Gx7c+B9e3P4Guw7XseAzn+Frn/oU37ryKjQqFc3N/dTXOcnL01JQkMXsObnic/S7Ahw65GXGDBMdHX6WLStEqZKLY3Wp/dJp5Tz9dAtud4ja2gKw6LDZIihVcqwWHZ+99HSuvWgZP/6/h/nri4+x6utf5GsXX8OcueXMq8zLIIVmz7Hg80XpPOJDrZIL+zeSXOMfitLV7Sc6HGd4OEGOWUWx3ZBBiI3nwXUySB07nVbO9JGmTm85k7ZhI6p1T3HD4ft4qmsZG9abRFJqvLGJlE/H1KkmliwpwOkMjDGvTTeYFWTmR2WypyIlafQ+fNzGMkbjw64HM5cX0vDaEXa81IFLHqdx/yAVFWZAQuO+fnLMKs47t1QkfUBocFNG5MX2LBLxJPYSw4jpbJTzVt3I9Vd/jf888wybtj/FN3/wZeRyBbPLF3H2ynMJD+vExjcaS/Daaw7mzc/D5QxkKDVqaorINqnZsrWbeCyOTC6jpcVNR4egkopE4kI9OHsqdrue+/5az/rtVx/ztUpQkGvcRyhymNDw4eMQUjI0qskiIQVQnHs9UqkWldyMPktPQWEWq1aW4OoP43D4OOOM4v+5evBO/KWOR2ClkzBVIyMdo1U+PT0RrrnkXtzet3j06Xtw9nfz5No7OXD4JX76g19z+RXzAGEEra7eSZ5NqAkp5dzL69pxOHyUlZmIJ+L4/THKykxIJVLsxQbxdXi8EZqahW3U1hRQUW5GKpGgUspHXu9Uli67ky/dcAPf/P4t3HXvV5k94zTWrPiKSPCkE0MrVpSgUis40ulDpZazeYvgwzMcjTPkGyYeT+B2h8nJUYv7MfpYnYj8G41jkXwCJEgk4HD4GfIJ3yGp/R1vXDTduH3GjBw83vDI90AOVUsLMBRpObjDSctOJzmxBBdV5TOnSvgum6gH7w7vtCacynqgNZqYtngpDevX0no4QlOvBamUkR5BaKZXr56MUinLaG4r51oJBKIjPYKOpiY3wWCU3budVFVV8Oy//8bbO5t58PGneHP7q7yw/hkKbPnMn72I2SynolwYWYuN1IP58/JwuoIZSg3B3LtQHOMrtuuJx5O0tAywe5eTeCKJxXK0Od+zx8lfH/oTQ+G28V8s8OJLTcgkKkLRHiKx/mPeTybRkKWaimSkRzBopqNW5KGQGdGo9cyYkUt+fhbFxXrUajlNjW6W1BR8pFRO8WgU/6Cbof5+fG4XPpeLoHeQ0JCPaDhzPF0ilaJQqpCrVChUKqQyOVKZDIlUilQmAyARjxMLhUjEYyRicaKRMNFImNjwMIP7IXWmypVKNAYjWaZsDHk2svPyMVjzKC5Ofa9lqnvGM9t2OoMZnkkOhw+LcQ53//iPPPniI7y+9TX27N/OJy69nC9edw1fuO4aVEqlMIJW78Rm01GQnyWq5hwjXq+H2rzMmJFNR8cQy5cXoVTKxLG61H7ptIqjPUJNIVi05NnCKJUyrFYtn7nqLK66fAW//M39PPrMv/nU9Tu4/srPH+0R0kih2XMs+IaG6ez0oVbLxBE5oUcYZs/efuKxBENDUUpGfPvSCbHxPLhOBikiR6dVjNQEg3gcfD4h0TgcCYmKLhh/jC713uTbhHrg9UTGklxpz5Vuuj/6vX23RNLofXiv/lfvBh8rUurd4Be/+AW33377Kdteb1+Qt3f4GXCHMZsF1VLnSBy30aji6msEhUbqYma0IiMUirNtWxc2W5Z4n0Vzp7Fo7jfp7r2BP/5rA5sb32Zj3Vb+s+klFHI5k3InMSl3ElnSXDpdUqpmlQJjzczKy3Pp7g6wYWM7Oq0CpVKGZGRfEokkVqsGpysgGOcmZcd9nQOJdnSYMchs5DCJaDKIXpaHSpKFUqJFKdGhlGiQSmQoVRJqawq58qqKExIvo0fxJjAWxyKwToasSr/P2Wfexr62Nm7+zR94a38Dv/73v3lp6zY2/+Uv1Dc4aW0dZG6lRRwRTSm0ensDuFxB5lZauOWWxThdAda9LDQmkycLZJC7P8TatYfp6PARjyfQZckpsRtob/eSSCTQaeWimfnp5cuptM/l6V3P8NOH/kTVtJms6rmA/fvtouIpNZKZ2geh2ESRSaVYrRrC4RiBwDDBYIxskwrdyChSal82buygcq51jB/XiXAsL6+Cqhk4DDcg3fwin2x/g2iDl9jgTOTZ2WO28eSTB3jwwSZmzjRzxhnFovIppZQCgZC6//599PeHOPvsKVx33ayMbbxXI/UtW46wfn37yIhWciJR6Rg4lfVAZ1Rhrsqla1MvqoDQKDscQ/T0+OntCaDukmMvNrBiJAUm9dlMLSKksHFjB62tHmz5WSKR8PWbPseVl13OY0+8zda31+MJ7OIXv7uVn//2u5gMNqrmLiLXPJWQ38K0wALmzhUu4NOVGikV1NqXDhEMRsnOVqFRy1GrZUhlUqx5GnEUqbs7SOaIXSaSRBkYeg2NajJm/Uoi0T6UCisqRR5ymQGFzIhcZkQq0aBSSqiqsrFwUf6I19BFp+R4/6/ieATWeDVhPNWScJ/L+dINV/Kr39/Dw//5P/Y17+Hiq87iD7/+O2evPI+GBietLYNUptWEXTt7aWrqx+cVPJm+/e3FALz8UhtvburCbFaJz3v4sJedO4TV6iydHHuJgfYOL4lkAq1WLpqZB4NZ3PG9v7LhjRd54PE7+eP91+ELfp1Nm5djsehE1ZPFKtSElNopFI4RicRQqmSUlmUzNBRh0BNBLpeKo6mpxzU3CQEec+daRbLuZDAeyZdCylw+pdQabaKfwtatR9i2VUiNTTdudzkDmIxD4kjm5m3d+HzDVM6ykJWE7hYvB15wEGgbomheLosX50/Ug/cZp7o/WPG5L9F24AhDHfXEBicTUZTQ3x/iyBE/AEaDiquvEWwIUg3h6AY2FIyxbVs3tnyleJ+F1eVMst/MocPXsvXtnby+eRNvbBMIKoVCQZFtKoV5U1DJrRQUzmHunPF7BKVSRpZeSadjiCy9EpCg0crRauVUzDSL5MXu3U5O1D4OhQ+illvRKovIUk0llgihUdhQyPTIpTrksizkUi0yuQy1SsaiRflcedXMEzbUo0fxPmjEhofx9PXg6e1hsLuLwd5ugl6P+HelRovWaEJvtmCdXIrenIvRYsVotaHLzkal1SGTK5DJR8gomQyJRDJCyo3I25JCynYykSCREBRU8ViMWCRMwOthqN+Fp68XT18PQ24X/sEBXDu2ExsWFoMUKjUmWz6D0UnIo5Mw2fKRymTjEjDHUi3Z7QbOPusX7Nu/n9vu+A17mvdwz31/4/XNW3nyX38XeoQWj9AjjEwFpBRafb0B0UT+W99ahNMZZN3I4sWUKUasVu1Ij3CIDoePWCyJTqcQzcmTySQ6rUJUctfMX8XM0mpefvMR7v7zr5g/ez7dvZey/0CROKqZGktN7UOKkJLJJFjztOS7tPhGFivC4ZhoQJ7aF7FHeAf1IP34jfbySh3H2bNzRe+yY2Hr1q4RH0y9qEZ0OoOiUgoEQiqViFlVlTfGdP+9GqmnSEaVSiZu58NQH36sSKnc3FxkMhl9fZnzyH19fdhs459ot956K9/4xjfEf/t8PoqLi8e978nAlqdl4QIDbneIiooc+vpC7N3nJBZNikllxydmhC+j8dDdFcTbqacosZTzll3E9EoFf354A+0Dh9jh24kn6OHpPSCXycg3WzC/mkNJvpW8XBPGrCyMOh0dh/20uT0Yokq0WjndMQ/eIRmuAS9Hdgzw6xcjeIIeBtOSLKTI0UmFETudxIxeZkUvtYopeRqNlMsvLx/j9TSBY+NkfKHeKU6GrBp9n1lTp/KZpdeTHdvEWz2vcPmqlchksnHlpantTJ4sJN+lj/k1NQuNSYfDR2lZgLVrD9Pa5kGllFJaliOmm6Sa8kgkgUYjRyqDRBymz7Dy0Pm3sXHn2dzws7u4q+VOKkxL2LtvFTOm59LZ6WfJknxKywTSJ0VqeT1henuDLF5cgNMVoLXFg0QiGJinsGVLN3V1fQT8seMa3o/3nqSrvtJT+lI/ySU3EnjzTbzPPcehc8+j8Dd3o1u0KGO7Tz3Vwq5dfSNFV7jwH+3b0djopr8/TG6uZtxG4734fHR0ePnTn+o5eHCQadOykUqlQGcGKfZeR0E+ivgo1IOqpYXEw3GcO1ysrLSRW27k8OEhUSk1d671hKoYny8irpSPiapvjiGJ1bBi8UU88o8yfnT7Q+zes529zU0MeF4iFhvmuQ2QbcrBainA+Eoe+TYrVksOBr2BZELJEacbnzdMOKEjEo/Q2+MjkQyxvX6Q//uXB6nMS5+rm3RCSiEzo1Lmo1YUoFYWo1FORim3iCMAFouaX/5i+cd+zO5U4mS8od4pxju3RhNVo+9TWnwun6iZjsP5GH39jSxbcgYw/gia3a5n4cKCMUb6jY0D9PYERLXdnr0u9uxxMTwcp6hYL/qeZdQDtVw0NZ8xI4ev3ngd1151IXf97qf83z9/hkE3lTll1/PW9jKUKhmrV0+ipqZIfB1arZyGkUZkXqUVjzeMsy+ITqcQDchTx3ntWsErC46dsDje+3E8L6/041hTc+z3ZNvWEY9P4Ju3HF2EGz2S6fNFMRiUTC4zYbHqmDrfSsc+N10HBjnSPIjRqsGrVTKcp0OpPvlL+fHqgdXqHnnf3BkG5x+negDvvCac6nogkUj4xJdu4cmf/4g5knaM0+x4k0Xs3esiFkuISWUnagaTaf9NweHw0drio7/bjFm7iuXnXEb5LAn/fHAD3a6D1Lu34g962Lgd5DI5eVYr2S/mUlSQh9ViQp+VhUSi4nDbEF5fBINBgVwuIZT0olZK+Mej6+nudiNXhRjyDzAU9qS9LgWqkRE7tdyCWpGPRpGHVDrSI2hlXH75jDFeT/8NCPq89Hd20O/oYKCrE//ggDhil5VjxlxkZ2r1InKLS7CUTEGfY0ahVgs/ShUSqfRdPW/miO7Rxc6cwszzL5lIEI2EiYRCDPZ00Xeold62Fvod7RzYtonmTa8hlcnIKSjCVjqN8rLp6ExH34PRZMbo82/WjBlcevbX0cg20Hj4RS46dw0SieQYPYKwjSlTjBlEjMPho6mpH693mI4OH6Wl2axde4jWNg9KpYwZM0xpPYKPnm4/kUgctVqOTCYhHk8yY4aN+353J69u2sy3bvs59ft+xKT809m3bzXTp5vpdAyxpKaA0tJUjyCQWqlRtFWrJuF0BWlt9TAwEBYNyAG2bO1i924ngUD0uEbg443Ipau+0hVn6cfxRKq+bVu7aW31oFbJMszU09+HlPJKsGkYSzy9E9P88V7X2rWH6Or2U1iQJV7HpZNiDocPaw7k5Sne1XOcLD5WpJRSqaSqqoqNGzdy4YUXAoK53saNG7npppvGfYxKpUKlUo37t3eD7BwNF82blHHbRReViQ2v0xUY4/mUjtlzLDhdQXwjq+rpBILdrhcTxux2A9tedVEon8PcisVcfXUF/3lmH2/tPYDOHEZliHCwvZuD7V20djnwBfx4AwEiw1GSySRSqQSJRIJaocLk1xP2QzQix6Yz88mLllFstVJotVJaVIQ9L2+kkZ3AqcKJjM1PJY5FVqXOyUklRi46Yznfnn4O+TaDSL7IjV7+8Uwdn+UsystzMzzRVqwoySBu0tMOHY4hZDIp2SOzzjU1heJ5vmNHLz3dAfbscbFgQR5arVL0wgFYUb2AJ2//Hd/+3V9527GJzq37WdpxLpqEIA2uqSka46NlNKXi0FP7mMxQBqhUMiQS4ffxyMDUeyLMcg9lEFDH8vFy9QdxZE2n6NovwvOP4/jMZzF/4fNYvvIV8WLk4ovLMn6Ph3Ql1KluBBob3cjlMqZNy+bii8vQaBQZ44PAex4F+Sjio1APSkqMlHxuNg2TO9n8eAv6iISrrqpAIpGITa3LGRjj+ZQOg0FJTo4Gg0GZcXt6PSi2Z/HSi92YjfMoLZ7KvEor4XCUnbv3kW32MKU0zq66/bhcvbgH+4jvCzLkHyIQ9JNMJEgiQXpAgkwqR6POQp9lwO+XkohrKcyfw3Wfvo6C/EIKC+xMnVxGli7TPHcC7x0nMjc/VTgWCSqSLCUGoIwvzL2HgiI5oYCEA829FBdncbDjWYIhgaRKnaf2cUzGUyOoqd8gQamQkpOj5rTTisTHth3y0tPjZ8eOHnQ6OdOn5VBali1+fxsNJu647W5yDIt54PE72NLwAwqOnI0t51yMBhU1NUUZryd3xMvTbtdjR09K3TdaKTYcjaNWy7CXGI5JBqbeD8HrKZN8gmN7eZ2IXBx7bMYinfxKbUOlVTBtoY3JlRZ6Wjx0t3jY9HgL255uo6w6j4plBeRNMmT4hY2H8erBzJlmcZxPLpcQiwmEx8epHsA7rwmnuh4ATJ6Sw9f/9Gv+c8dtdB/cRNXqc7noohqx4XU6g2M8n9KR2SP4xjTHKV+eYrueLW+6yNZVMa1kGVdfXcGTT+9hV30zxuwgGl2Y1sNHaD3UyWHHIXxDfob8foajUTGVUoIElVKFcVBPMCglGpFj1edy0RVnUJCXR74tj8n2Ygpsto9NjxD0enA52ul3dNDvaCc0JIxsao0msvMLmDyvmvzS6eRNKUVjMKDS6lCo1Cf83L1TnOyIrkQqRanRotRo0eeYsc+cAwiKroDPQ/f+Jjob99J1oInGNzay77X1aI0m8sumY581B4sl77iG2oLvn5Fzz1rFzWUXUliYLZIvcpWTx56q51N8gvIKc4Yn2ooVJRnn5sKF+Wk9gg+pTEq2SY0l1SOMnOc7dvTS0+Mf6RFsqNVyDPqj5MiZy5by17vv4/Y776WxbQPOV/Yy59AlyEj1CIVjfLTSyRWrJfPzAqBSyZFKhN/H82ZKqaJG+z1ZrdqT8vE61nFOebqlfo+H8UIQThVS70dhQRZLagpQKmUZ44MgeG3FShTk5Z28/cm7wceKlAL4xje+wbXXXkt1dTULFy7kd7/7HYFAQEza+CCQ8rtJpXute7md7W91Q1IwP+48MkR9vROXKySmnG3Z3C1676TSy1JJa3v3CAl9BoOSs1ZPwmrR8cijTfT3B0kkYPnyQsy5GiYVWZAmVJxxRjGhUJy6uj7mzcsTx0OOt7/PP9+K3x9j9epJvLT3RX798L/52qc+xcoFCz6go/a/hXfqZXGqMNpfarTxd4p8CQ2HufW+3+H0uahv38Pjv/4BvUcirF17GJlMwtJlR8mh9LRDpytA955+Zs82U1BQIhrVA5hzNUilUoaH47jdIZzOEFKplOKRL9udu3rRaeXEYzJuv+F6nnxpLs82PMlL7Q9QM+U0rllw1ZjXsndPP5CEEQJpxYrMJqC5uV+YwdYpiUTi7N3jorc3mEE8pS4AS+wGps/IwesJjyGgTjgaOSOH+d/8JoOPP4b7//5M7/rNrJ11HcvOm8sll0znkkumH/d9ORkl1HgJTCdjeDtzpplPfWo6M2eaOXJkiA0bOpg1K3eMj8jH0VPko1APAPwqCYEsGV0HBhkYDHPYF2Lrlm7y8jRcfPF0tm7toi5VE0ZSzjZv6RYVt2eeaRfPveamfrZs7cZsVrP6rElYrDoefaSJrVt7kEphXqWVlStL6OjwMuiZxvJlhVgsOkzaPgwGBStWlByX9EjF10tlEjodfqbNkHDXHz+PTqPj5ac2fVCH7H8OH0ZNSCdQ0kfTLr/iaBDEroPCxfa61x7j/kd+g1r1Tz7V/V1+VPFZNm/p4u23e1i4MJ+LLpomPiY1gppKuyvI13H2milAUvSiKq/I5WLgT3+qx+0O4fVIUankVFfni+NsKf+mytkLsRc+xHMv/4Otux7GH97DhUW/HPc1ebwRPHvDzJltGXPt43IGcHQOEQrFkEolhELxMeRTavzOXmIY5fWUST4dryaMd//U52ruXCvfvOX411XHU08qlDLsM80Uzcih/q1uHE0DHNjRR/PWHvRmNbYZJkJqGZULbePWhPHqgdGoFL//05VSH0d8FGrCWztcHGANBQUxdr/0PFs3d7Jpr4pkElatKqGzc4j6ehcuV1BMOduypUv03kmll6WS1vbuceEbimDQq6iqsnH22VN45JFmXP1BEokky0Z6hBJ7HhI0Qo8QjLG7ro/588aOAo1Gc5Ob519oxe+Psnr1ZDZseZRnXlzLTdd/jmWLFx33sR91xGMx3J0d9B5qpe9QK4FB4bOry84h1z6JvKml2GdVkm0rQJ2VhUqjfdfqp3eC92rZIFcqMeZaMS61Ur70dGLRKN6+Xtp2v0173U469tbTtvMtdKZsCstnUjJrLrrsnAwSJX007YoryoGjI3rBUJA7/3AXHp+bptbd/P0PP+aII8zatYeQyqQsW0aG6kfsEZxBuvf4mTM7N8OoHtJ6hEiC/v4Qzr4gEomO4mKD+Nw6rYJEQs53vvZVnn6umtfeepjtjf/H/IqzWLDouoxjkJ5Sh13Yj9HnenOTG4fDh1anIBKJsXePa4zRuNgjjNSE8fyejjU+dyyvp5TnVeVcq+jpdjycjBIqfZspku9kSDG73cCyZYz7WtNfjzXnuE9/SvCxI6U+9alP4XK5uO222+jt7aWyspKXX355jLHh+4XBgRBrX3WJ0vCyshzeequb3h4/CoUMt1swvZMA4VCUnbt68XrCvL2jG593GF2WnCsuP+q9tHNXL3V1fbjdIXJyNKLZs8cTRqtVEE/AkSMBBj0dBENRFi8uQKmSk52txmiyH/MCN52cqG9w0tsXorAgi+xsNXv3d9HR20uP0/NBHLL/SbwTY/NTiWP5S6WQ+n9bgZo1i5fyr/XP8FbrDpZc/zkuX/RpfN1GCguyGI7EeOTRpjFqv1Tanc2mo7s7QIowcroCbNzYQVaWnOJiPQUFOpYsyReN0R2OIXbt6sM/NCzKdU3KPK6v/TK9kgYe3PgU332gnT/bvkPltGnic9WJCRTqMQqqvXv62b69m96+IPosBX7/MIcPC75XkBSPQ32dk7r6PgKVMa6/fs4o9ZWAkxmNlKrVmK+5lkDZNJyPPM6qtu/T0HcNcNl7ivNOEU/r17ezc6cwdpDazsmspqUTXvffv48NGxwA/OhHtRn3+Tjiw64Ho9+7ZaU5FDrB2zPEwEAIEM6drVtBIoFQOMqunb14vGHefluoCVk6eQZJ0NDgpK6uD4NBicGgAvpHkpIiKBUyNFphXEmhlDGpxIjHE6GkxEhVVd4x1Rvp5EQqvr60LJvTTy/G0XWYru5ONJqJUbz3E+/E3PxUIZ1AORbJkvp3ob2al1+dwpHuQ/zrie8QpZnC3Mvw+YSErkcfaRqj9Es3805HevJcQWEWMpkEs1nNrNkW8fn27O2nbncfpmw1iXiSoaFhpk26lALrQt7e+wdu/9U1uAZv5sbrv45SoRSfr263UBNMxqPjrqnnc3T6ePutHsG/SifHN2JIbsvXAkn2j3gmdnX76eoKcM01FdjRi0qpdBzr/TrWcUx9rlyuY6siTxap11PX5BZ8vmabhQCNdh8t23ohAb3b+5i5OJ+p8yzkTTEiHfGrOV49+LjWgXR8FGpCanzy3DUXkFfwPMkjdeRK8jjQn5/ZI4Rj7NzZi9cT4e23e/B6h9HpFFxxRXlG0truuj7R1D9l9uzxRNBq5SQS0NXlx+PpIBiMsnhRPkqljGyTOkNBMhrpzWx9g5Pe3qDQI5jUNDUf4Uh3D33/pT2Cf3CAvhESqr+zg0QshlKrI7fIzoya5UyurMJky0ejN6DUfDjjhu/FsmE8yBUKzEXFmIuKWXDuRfg9g7S+vZUD2zbTtmM7B7dtJqewCIxlOAZNwPhES+r/82xqTq9dzrMvPcPufZs494orWXPaZ+nr1gs9wnCcRx5pHqP2S6Xd5dt0dI/0ydiPeiZlZckpKtZTWKgTVTspgizVI0hlUhLxBAZdEZd84lsMhrbz7Lon+fWf27DafsiMsjLxuUan1KWQIqy2v9VDb28AfZaSoaEoh9u9TJ4kHPdUbayvd1JXJ4z3XX/9nDHqKzg2aXQssiqVipn+7/GUkSeD1Ge1vl7w+QLE7ZyMAXr6vm/c2CHuV4qITN0n3Tvt/cLHjpQCuOmmm445nvF+o7cviGxEBldiN9DpGMJoUhGNxiksMog+Uyns2tVL6dRsKsqFeOSSUSeu3a5n3rw8USl1+LBw4kmAuZVWLBYNsWiCtlYPNlsWqWZ7tDEzHFVwldgFTyCfTzDFyzapiA7H8fuHqW9w0u8OAuD1jp+gNIH/XhzPXwoyyZd7vvMVrjpvBV/45S9p6zrC79bey7nzz+Gzq69i795+IWbYHxPJp4KCLLyeCDabcIFfV+cUCSMAny/K9Ok54ur16DG6rVu7cDh8aDQyFAoZer2CnBwtF9ReyvWXrOKLd93JGV++kSvPvJDvXncVdrueqVOzcbtD6LTyMSqwuro+vN4I+iwFy5cXMuiJ4PMNYzQJMeVG0xDDkRgOh49YNI7D4aO5uV8cVWxu7hfND0eP2aY/1+jPmW7JEiKSHOLPPM6SbX+l80gdmwJnArwrUipFPBUW6jGZVKxMW+l5p6tpqceuPMHK6McJH2Y9GP3eyeUSetuGmJ6vRyaVILOocDiGKCszMTycwJqnYf/+AbQ6BQX5WRTkM8Ywee5cK/6AkNgKSep2O2nv8CKXScm1aDCb1eza1YdUJkEqk+DzCQEAo42Z05Ub3T1+du9yMr/Kyty5VlyuEA6HD//QMO5BgQhNJD6oozaBDwqjx8TGI1mO3m7jlYWv86t77+CfD/2Fh5+4n8kl27norB+QjCuor3fhD8TSDMtjRIZjyGSCL1pbq0ckiwCRrPrEqknifjgcQ+LzdncP0d7hZapcQiIOQ/4ICoWMxQvn87WbnuexZ+/jj/f9hudefJ6ffv831C5ZINSEUqEmaLXyDPKrtydIKBxDLpdiNKmYN8+KwaCktycgGo6bjEMolBLa27309vl54IEm1qyZTFW1LcMcfTSZNJ6/1GikPscuVygjCfPdIEX2mc0asnRy5s61UlKRi73CTOdhD+2NA8jiSZo2d9OwsROFSoa1RE/h9GwKp5kwF+lRaeT/k/UAPvyakBqfnDUnj8Ntl9LV+iDz7O2UFEiZXl6J03k0sW3Xrj5Kp5qoqBjpEUpG9wgG5s/LE5VSh9u91Ne7RnoECxaLllhspEfIF8auxzNmhqNKi5ThdKpHMJlUDA/H8fuj1Dc4GRgUepjBwQj/DUgmk3j7eulu2U/3gWb8A24kUilGq43SBYuZNGc+BdPL0RmzUel0p3wU76MGiVSKPsfMvNXnUfmJc/D2O2l8fSP7t7yBp+k1DHIV8eyZ6KcvH3OOpBMYv/7pd7jsok/wndt/SmdXN/944k5W1l7C6tVXsyfVIwSiIvmU6hHybcL3YzphBODzDY/qETIVPlu3do/0CHIUCin6EWuDC2uu5Zor1vCtH/2EC6/+DJes+RRfvuE67HYDpaWpHkExRgW2u64PryeCPkvJsuWFeMQeQSCcjCPnvcPhIxYb6RGa3OKoYnOT+2iPMIpMSn+u8czT0z250gmqd0NKpYgns1mDTqcY1+frZA3Qx/MK+yDxsSSlPkxEo3HicYmoAmlsdOH1RCguNrB6JDUiGIyi1Sjo7fVjMKoQGnodUqkEpSrzLRk9ktTc3E8wJBi0rVpZQnl5Lk8/fZBAMIpKJQUk2GzaMcbMAOs3dFBf76SoUE9hkV708mlpGUChlJGVpaRyrpWcbWrogpwczQdyzCbwweGdKrQWVlSw+S9/4Zv33MPDr6zjuV0vMEQPP7ziqwCoVXK2bu0iGIoydUo2Go2c6WJUtuDnodPK6e4OUDrVKCRLjOPRZLXo0GoUhMMxYvEEclkciUSC0ZRg//5BwpEo3z3/m/zl+Sd5aOMzbGncxb9+/H2K7XqcriD1DU5i0QRNzW4WLsindmkheXk6evsCGAxKci065lfZxMYhhaamAfyBKEqlHH9AuOBKjdRmmOGOIqVO5Ak2Y/F0Egu+h//llyla9wp3yVuIFn7/nbxVImbOFOT7kOSTn5yWsXqWWk3r6PCydu2hE3pS1dYWvStibALvDqFQlEOHPFx8cRmXXDKdm29+lVfe6mLNvHxK87IYVkrY3+xGJpeg1yuJRBKYzUrc7hAqlYyqKtuYxjU9Xt7lDAAS8mxaIpEEtSOeBIfahDHbkklGIuEokeEYu3b2ZiilNmzoEEcGK2bmIlyHSyivyKWhwcnhdh9Gg4q5lbn8+1mQy4+fyDqB/z68U3WWWq3hh9/6GacvXck3bv0Shzv285eHvsDNX/wllZY5qNRydu3qY2hoGL1egcGgJB4Hg0HFvPl5pPyd+vtDyGRQkK8Tz+XRHk2RSIJoNEF3l58cs4aAP4paDX7/MG++2cPq0z+HPFnBPx7+MdfdeD5f/eItfPGzX8VerMflDLJlazehYBSvN8LMWblodQoGBkJYrVpUKhn2YoNIRGm1crE2pK6HwqE4Xd1+GhqclFfksmVrN3W7+/AHYmM+kyfjB5b63KaTwe8WWq1gCj9jenbGvkikEuxTs9HolXR0+Jg0P5dkKIGnN4hvIMyulzp4+/nDAOiMSnIKdJwxPRdtME7Lzj7UWQoUShlypRSZXEoyCTn5EwrJU4lQKEosFhf9vN7c3MWhQ/M5Y5qRSYo9eJvWEVBWo9Uq6O0JYDAKBElBvg6JREjIS8fokaTmJjfBYKpHmER5hXlUjwD5Nt0YY2aA9Rvaqa93UVSURWGhXjRVbmkZFJL5soSG17ROBZ1gNn90TcsTiQTuTgfdLfvpObifsH8IuVKFxT6J6TXLmVq1CFOeDa3RiEz+/po3f5QhkUoxWW3UXnYliy++jI69DTS88iIde+t5ZX89BdNmML1mOYZcy7iPXzh/Hs8//CA/uOOXvPDKeta9+TjDiS5uvFYICFCrZWzd1k0wGGXqVBNqtXzMWJhOq6C720/pVJOYPjfao8lq1aLVyglH4sTiSeQyiUAsGpPsPzBAOJzkS1f/iAcff4jHn3+YHQ1v8Ye7fkJxsR6nc6RHiCVoanKzcKGN2toibLYs+vqCGAxKLBYtVVU2kUhKoanJjd8fRaGQiaRsaqQ2ZQ4OY8mkEymURqdqwrsngux2A16PQBDX1mZ6aqWOndMZHPN5Hw/j7dcHiQlS6hSjpyeAyyWlY8TozWbLIhKJY7Nlif41UhmoVIJ/glajoLXNi0wqYfJkQ0bDvHXrEbZt62HJknwxIry8PBfziJknCON9AOYcDZFIgt7eANNn5NDdHUjzlBIuKsKhKMOROHKFhKqqPHQjF2IpdVblXCt797po7xCS9z7uqwUTODFSiqCffPYmls2dyzfu+T0yqYz5cwupnicVjPvdYXp6/JjNGortepEIXbFCJ47t+XzDlE7NFs/b8UYcamsL6OsL0NXlJxKLk0wmMRiEBr21dRCpVEKZbgnTayp4o/M5zvjyjXzjU1czST8Pn2+YflcIn28YtzuM1aJDrpCQSIBCIRujDEuRYmazhgUL8sg2qRj0RDISBVOKx9GFwukKiIqw8cjfFKQyGYZzziFYOJXYfx5D8+vv0NNdR953v4tUmWlafTyUlBixWgXFjdXqHpd0Gj3G9+c/1/Hooweorrai16ve9ejgBN4b9u3rx+EYYt++fi65ZDqFhVnk5mpQlugw5ejwtHiRJBOYy40c6fTj8w0TCcfwD0WJxxNilD0cjZJfUnO0HlisOubMBpNRJX6WNm7sQCYTFicMBgW9gSiODh8+X5SWloEMT6lEIomrP0RBvg5GSAOXMyA2zG53iGefaQFA9jExsp3Ae4PLGUCrmMG//vQiP737ZnbVv01l5VTmz63A5RS+74NBITlu7lwrwRFfwfRRulRKXndPQPz76JpQWyPUA593mEQiiUotH1mt9jM0MnanUZWwaM5P8Q+/wj1/+RWvvvkKP7zlNxgMClpaPXg8EZQKKQaDCpdTqC2lZdnMq7RmqJrSCbHUuW8yqfB4IuK/zWYNBqMSs1kz5nh4vBFs+ULTNJr8HY3cXA1lZTnk5r77Rb9gMEY8TkaqYDocjiEOHBhEIpFQVW2jaEYOL73YypY2NyUFWdhtWah1CvyeCO7uAJFAjHhsfCnk5369FHXWyderCRwf6TXhuutmMXVqNsFgFHnJCqprF7HrqX+gZSMS0yKUKiElu7XNg0wmYfIkY0bDvHVrF9u2drOkpkD0pCmvMI/0CIJB986dQo+Qk6MmEknQ0ysoA7u7/WM8pcLhmNAjyKUjPYIiQ51VOdfK3n0uOo8I25Z+xHqEWDSKq/0Q3Qf309t6kGgkjFKrI2/yFIpnzWXqvAVkmXPRZOk/EF+o/zbI5AqmzKtmcmUVnr5edq19mv2b3qBr/5+xlExmxtLTMI9K/xMUQUPc+rXvsri6ip/8+jcoFHIqKwuYN69QMO53h+npCQg9QrFeJEZWrCwRx/aEHsEknrfjKXxqawrp6wvSdWSISCxBMpE42iO0eJBKJRRbzmRy0Rx27X+CC6++ji9ddwM5+vlCj9Cf1iNYtcjlEhKJJAqFNMO0HI56Zwk9gk2sB+mJgtJj9QjOoKgIG4/8HQ1zroaysmzM77ImWK1ajCYV+/cPjBlTTGE0SfbSS4fY9GYXpWVGNBrFux4dPNWYIKVOMaZNy8ZvEBRHVouO8y+YisMxJBJAXk+YRBwKCvSUV+QyHImxbVsPw9E4uqzMt2PbtqPRwakmBI6qNKQySMTBZtNx+hl2hiMxOhw+dFo5Xk+YZBLSY2PLynIY9ESYPctCdZVNbMzTja7/9Kd6QiNKLK9nYnzvfx3piqArV69m/ozpWEzZYtJKrlkjnuPHSrRLRVun+zhVV9nG3Le8PJeKikEGB4WCUVWVx+w5Ftz9IXRZ8jTiaDZ3TF3Dz/75T+56+H4WVezi6xfcwOxZuXQ4hBhapyuAWqWgotxMbW3BmOcaPcY4Gna7nqXLCo/5mlLkbyAYO65iqrm5n7Ubh5DnnMVq23549DECW7bw1uLr+esbcS6/fDoWi5annmoR1TTjITWeFwpFuf32LWNIJofDy6ZNRygsFPbh0UcPsHt3H+3tXtEksra26KSM0Sdw6jB6POaTn5xORUWuaCYcCMdIdgYIHfJz2plFdPcGiQzHaDvkJRSK0d0TEJUQ6VHyo+tBekqKzxfFZtOyYkUJ/f0hXM4g9hLDCDElpLparDpWrixheDiBTCYhGIxhMgoXNSbjEFXVgkLrKzdtwNUvjHMnMxPIJ/A/inRD9Af/8iR1e3Yyf65g3G2x6jjjjGKOHAkck5gZXRNS525VtS3j/uUVuVQcGOTtt7ux2w0UFAj2BBqNHEeHTySLhPG1HxCJXc3N3/si13xpDTff+GOWLDmDoSEhQnvO7FxaWmV0dQWoqMgZM8o6eoxxvLG6pbUF2Iv1GQspqdeTGgEMBmMnVEyNZw7/8kttvLmpi+XLCjEYVWPI59FI7UNkODaul5fLFaCxqR+z+Why3KYt3RxsHaS9a4i5c6yccUYxJYVZdHYMUWrTkqVVMByOE4smiA8Li0LJJASHhidIqVOI9JpQUmLk61+fT2OjW6wJ+oWfZ3DHQ+gG3mDhtMUorYVs29ot9Ai6TEXPtq3d7Gt0A5mx86kGNOXPmW/TccYZdoaH43R0+NBpFXg9kTHf6WVl2QwORpg9O5fqapvYmKcbXf/xT3WEwwIZ+lEY3xsOheg91EL3gWZc7YeIx2JojSaKymcxeV419tlzycrOQaWdUPydLCQSCdm2fFZ+9kZqL72SunUvsGfjOjb9+35yi0uYecYqsm1Cemg62XH5xRcyd9ZMCmx5oqghN1fN+eeXHjfRzucbFtOFU9uqrraNuW95hZmKAwMMDITIy9NRNT+tR9Ap0oijOfx06vn86g9/4vf3/ZFFVQu47rIvMXt2Lh0dIz2CM4haLaeiwkztqMQ+OHHaXbo5+HivKUX+BoLR4yqmmpvc45rDp0ijZcsLMRpVY8jn8fYHOKaXl8sVpKnRPWL7AJve7KLtkIc+ZwBLrlY8vidjjP5+YoKUOsWYPNnE9NMnif8eHSlvs+nE8SarRcfGje0Eg1GkUgl9vUEefXQ/Wo2C2toCliwZiQ5ekhkdrNPKCYViqFRSsrKEC7uUj04iDoFgjIKCLJyuINFoXDSkrl1aSLH9qBpLp5XjHgixdWsXOq2c8vJcli0r5PVOGQyBOUf9QR22CXxEMXr1unzSZPFvyWSSr/32N6iUSn7xpRtRyMd+naSfa93dAWw2rXhbSgk4c2YOuRYddrseg0FBXp6O+fOtrFgxCRA+Q6PH5wB++oUvsHLhAr7wy1/yxXtu5fff+AZXXH46AE8/fZAtW7qwlxgyVh/SkzHTvaDSPaJSn1mrRVB6jVZCjafy0mnlbNzYASTFIlnfIIxGdXX7BYPQT30Sg2shg489RuVjP+IMfwVPPnIB1qJs3nzzCMAxSanUmN7tt28RjWnTSalNm7poa/OwaVMXX/ziPFatsuN2h1iyxEZhoUG8ED7ZmOEJnBqMHpdMvY9r1x5i27Zupk41YbJqcDe4OfB6N1NrbGx5q5tQKEY8nqC1ZYD6OidLavKPGSWv1coJhWM4On3k5QnqqLlzrVisOhyOIeJxUCkF35mGBicuV0BsZK+5pkI87/v7Q4TCMZqa+/F4hfSyZcsLGfR1cLBrYnxvAgLSv//kcjkL5i8W/7a/pYmvffvz/Obnf8JiHeujkXqcxxsBkhTkZ2EyqkfM/gUl4MyZOVjS6kFOtoaCAl1Gkl5NzdHtHSVjcnn+sdf46V3f5467v83qledyxw/vJtuUQ3NTP6+91kkoFCMUimfsT/o4XTqRNJ5PVCoVMF0NNV490KbVgzmzLfT3HzU3d7vD4mp9Cm+OfH+DoHofj3xOR2pfHn2kaVx/qsbGAXp7AjQ2DrD67KkAVFZaGBwIY7frmV9lpaTEgMMxxME2D1KFlKLJpjHP4+kLTCjmTzFOXBPszLj0Vny7H6Hv4FZkvR1EQlNIStX09gZ59NFmtFoFtTWFx4yS12kFKwSVShi5A0QfnXg8SSAYFXuE4ejRJra2tojiYoPY4Oq0wsir0CMoKK8ws3x5ETv3yxgK866VHe8VoaEheloP0H2gGXdnB8lkEn2uhSlVi5havYiCaTPIMuWgUE/0MO8VGoORmk9eSdV5F1G/7kV2v/gsbzzwN/KmlDLzjFVjFE3l08rExyaTSb71o59gyTXzrZtuRCYbew2Rfq51d/vJt+mw2w00N7nZsrULs1nNjOlmMaXPoFeKhFRK4We1asdV+fzgmzezvGYJ3/nxT/neL77Bz3/wPa64Yjkg9AibN3dRMrpHSEuwS/eCGk3WHG8sbjyVl06rYOOGDoBRPUJQ7BHS758ijQDMZvW45HM6UvvzyCPN4/pTNTW66ekN0NTo5uyzp1A5z4JvKMKMGdmYzdoMBdiJjNHfT0yQUu8j0hvdYykzfL4o/f0hNBo5eoMSR4ePUEhYhaicZ+Xqayoy7u90BahvcNLT40etllNULMXZFsLpClJiNyCVCQ1yIBijr1eIHR8xC8lI9UttJ/V8FouG8vJcLrusnK1HprNhhxdj1gcXTT2BjyaO50FVd/Ag/1q7FoD97e3867YfYTZmEh2px6bkuVUjCimnK8ALLxyiu9tPT68fW56OefOEVQ+jSX3csbh0nDZvPlv/+je+/tvfcO1PfsLDVa9z501fxu0OMzAYJhpNsHFjBytWlGC16DINBUe8o1IKxt7e4EgM7FFyajzvqNHHJEU6pycBtrQM0FDvoqAwiwUL8kTlJJYKPBd/niMPPM4lNHF+sJfeuV8Dili2rHBcX6h0dVP6KuuWLUf4z38OUliYxbJlQqG6+GLhgmDePBvhcIIlSwpYs2aKuK33GjM8gXeP9Pcx/X0oKTHS0+bhpT/vZd/6TnrdAdz9ISorLfS7w7S1egC45poKVEr5GKVGd4+fttZBensURMImfL4oDQ1OAHGsyG7Xs3lLNw17XCgUMoYjQmN++RUVYiO+Z6+LttZBotEEvT1BTEY1l11WTvVCJdd/pRSVMguXM/CBJ8T9tyARTxCNxMWf2HCCRCJJIp4gEU+SiCdJJpJIJBIkUglSmeABJJVKkCtlKFRHf2QK6UeWDDieD9Wdv72dlkMH+OR153LX7b/n3NUXjXs/lzOAzzeMyaimqtqGyzlSD7r8uAdCTCox0tIywNy5VkxnCqTVaJJoPGTpsrjz9t9z+rKV3Prjm1l5wTJ+eutv8Q0W4XAMISHJ4cPejPM4lYoHArEz2hzd442I6XspojddDTX6eKTGAdNTAFtaBsTnqK0pEM3JQSDFNGoZ+TadqJQCgXw+1msWbx8Zq5o710pzUz9btnZjNquZOTNH3EYKU6dkEx1OMmPGsZViE/hgcbyakLxwFrvWPsvrDz1AmaKX9kApsqwpdHQMicRqZaWVq6+ZOSZVTOgRAqhUshFPHY/QI5QYkMkk6LQKAsEovb1BtmzpEr9r0lP9Utvp6PARCsWxWITG/7LLZrCzcTrbd/nR67I+sGPlHxyg5+B+ug82M9jTjUQiwWQrYMay0ymrXoJ18hR0phzk78AaYQInD5Vay6ILPsncVWvY9cIz1K97gVf/8Wfss+Yy+7QVqLRjCYxdDQ08+9LLABxobeP3P/8pBn3md0166pvQI+RhtWp57rlWtmzpJidHhdsdZnAwzHyxR1Cd1FgcwPIli3nh0Yf43k9/zpdu+TYrl53FrTd/dWSbEWJRz9EewaodYzqeIqO8ngg9vYGRHkElPu94JM7oJL6UR1a6sXtLy+BIj6BjwQKb0COMPKa5yY1aI8Nm04pKKYCKmeZxX3M6YZZuVJ5O7FWMfL+kCOwpU4RwndGBB+/UGP1UY4KUeh+xd09/mq9TybjNtcGgIB5P4PFEKC3Npra2CLc7hNmsHncsKCV9z8/PQqWS4nIJKRg+X5IOh09UStnteuLxBLF4kmyTcszMa2o79hIDWk2mW/9Vp13GgryVTC/JeT8Oy/8EkrEY8cFBYm438cFBEkNDxIeGjv4OBkkOD5OMRklGoxCLkYzHQTrSjEilwv8rFEjVaiRqNVKNBqlWi8xkQpaTI/w2mZDn5CDVffCN4vzp03nkJz/lhl/8nDfr61n5la/w1C9/yeSCo6t2KU+pvt4geWkqKYdjCL1BSQFZlJTo8fmiQFIkfB58cB9vvdXDokX5XH31rIzndboC7N3TT0qVZLUY+NdtP+KO+x7n90/dz1k3N/P5FZ9hxvRs/P4Yfb3CzLvVohPP8xK7gZ27ekUyymbTYbPpOHzYS3wkZsxqGX8VfDykUjJTqsXhSIzurgDVVXljVrvrm700KOYzXDaTqv63mfSP2/jVBRfQYL2KreOomNLVTWvWTBFXWW+/fQuvvNJObq6G73xnEf/+9zzxMekXuKNH9iYUUh8OGhvdvPTSYXbs6OG662ZlkIX5U0188tYFPHNPHWWxBMncGH5/jDPOKEatkrOkJv84ZsoSdDoFSpUsox40NDiJx2HGjBwsVh1udwifd5iSSXrs5TnjGC0L2zEaVVTMNIvn/JRJU/nVj55m//4BcfTvfw2x4TgBb4Sgb5iwP0rYHyU08jsciDIcjpGInbr5RokElBo5ap0CdZYCjV6J1qgkK1tNVrYKlVb+kSStfv/L+/jadz/PG1te5avf+TydXQ6++NmvZuzrnr0uWlo95OdnZdYDvZKCwiyWLzuagpRKjdy69QgvvHAIg0HJqpWTxhA0e/YK9WDObAsWq46zV56HLFHMXfd+h5u+cyWnLbmCOTOuIBqV0NvjZ89el+i1mfoc2EsM7NrZK5JRtnwdtnyhJiTiQk04ljJqNOx2fYaxu1Yrxx+IoVLLyc3VcPkVFeJ9GxqcBAIxFi/OF1VNqZox2vw9hfQRytS2Hn2kibq6PgwGJZdeMp1v3jJ1zD4BY3yv/hc/zx8VvPZaJ+vWHeassyZz3XWzMmqzRCKh+pwLqT9s4ODL91OmP0A07qJ4wULcfhVms3pcRUNqHCo/X4dKJcPlEsavfT7o6DiqlLLbDSTincTjSbJNqnF6BGE7JSUGtNrMHuGy8z7DnLILKH0fe4RkMonX2UfPSGLekLsfqUxGTkERc1aupnTBYsyFdrSmbOSK/12j8g8aaq2O2suuZP7Z57P1iYfY++ordB9oZtriWkoXLhGtPQCqKyv5/S9+xnd+/FM2bdvOpz73Bf5+z28osGUqkDZu7Bi5DteKZIjZrCEnR0VJiRGzWc3AgKAsTRE+Dz7YyFvbe1i0OJ+rr56ZsY9OZ5C9ewRiSTBOz+bPd9/Fnb99gPsf/zt7m/dw+flfYsaMbPx+gZx1OHxYrUcVQyUlBnbu7BXJqHybjnybjsPtXuLxpLgvJ0vipFIyU/8/PBynu8tPdbVtjPqpvsFJMBBj8eICzh4JSKupKRxj/p5COjFWXW0TFVKPPNJMXZ0Tg0HJJZdM45u3HL3mTN/v8VRgHxYmSKn3FUlCoRiHD3txugLjklIFBVlMmy58sdfWFohjSukqq3TotHIMBoUYI9nd5ae0NJvKeVZRIZVSeaSP/6WPPzldATodQ8ikEjHBLx0n24j/ryOZTJLweon29Ag/XV3EenuJDQyQ8Hoz7itRqZBqNUi1OiQ6HbLsbKRKJRKlEolSgUSpQiKTkSQpZK/HEyTjcZLDwyRCIZKhEIlgkJjbTaKpiYTfn2HyItFqkVssKGw25Pn5KIuLUZaUIB1n9eJU4pzaWjb+4Q988nvfo63rCCu/8hUev+MOqmbMAISL5/Z2H0O+YRYuPKqS8noizJieg8GgpKAgSzxvQTg/G/a4GBiIZESEp/723LNt7N/vRqOR43QFRcL38xefy+zJM/jpQ3/gjqd+zWllKzlt2pkZZFh5eS7l5bnjjtM6HEPEE0kxlRJOPq1wdEqmwzGEzaZDqZKLn+V+lzBOUVycRUFhFm3RLKZc8Dny27bjeXEt1hc3oMlfQ5PhnAy11LHUTStXluDxRCgszBrzt3TyKTUWkLp9Ah8OZs40s2NHD4cOebn//n1jmhB9jpqlV8/giXvqmZavR66TM7fCIjaoQtJe5vdy6rYlNQUcPuyjtWVQNHLWauWiiTRARUUOXk9kXK+a5qZ+Dh/2MnNWLktrC8c0qv8LNSGZTBL2R/G5w/gHwgQ8EfyeCEFvhOG0kS+pVIJSI0ellaPSyTHkqlHpFKi0CtQ6OZosBeosJUq1DLlShkwhQa6QIZVJkMmkJBNJUUEVjyeJRxMMh2NEAlHCAeF3KBAl4I0QGhKIL68rRCQQFb/yZQopWoMSQ66GbJsWU56WrBw1UumHS1QZDEb+du/D/OI3P+YfD/2ZX93zM7p7u/jRd36OXBzvljAcidPXF6S/XyBRPd4IM2bkjPg/CSlPqeuflIqq0zEkBmmk4HIGePa5NvY3C/XA5QyKRv7zKsv4xQ//yX+e/wdPvvBHDrbt4JrLfsKQx4iQDCsglYqXIoBs+bqRdKiUJUJmTTgZIsdizawHFqtO9Jvas7dfVF61tA7S1DxAjlmFyaQSx2pzczVs3tJNS4sbjVqREXgA438e58614g/EMJvV435OxzN1nyCkPmwk8fsFZWtHh3dMfe7o8CLPsqKY/VkG+3djie4g1rmOqllzsVQsodcVG9MM67RC6uXRHiFAaZmJykqrqJBKNZ/p43/poz5OZ5DOziFkMomY4JeO90tNkYjHcR9x0NvaQnfLfkI+LzKFktxiO2WLaimtXoTJVoDWaEI2jl3EBD44aPR6Vnz2S1SedS5vPPA3mt58lfaG3VSedQ7WSUfJj3NWrWRScTGfv/kWWg4d4pOfuYG//u5uKqYLfnoOh0/sERYtsokjcQa9kqVLCzHoVRQUZGWMlTqdQRoaXAwMhMf2CM4gzz3XRnNzP9r0HsGq5bNXfZLyaTP5/V/v5t5//piFc85j/syVGWRYKn0uRQDl23RiWmBq/DWVSgljVVHHwuiUTIfDR55Nh1IpE0mhlO9TsV1PQaEOlytIc5Mbc66GvXtcdPf4GRwM09mZ6fl0rM9j5VwrgUB0pCZk/m08U/fU7R8mJj7VpxAxl4tkGlEwe44FpysomsuO19wGgjHMORqmz8jJIIeO1QwHgjEScejuFoycBXVVgZjIlz7upFTJsdl0hELxjFEoh2OItrZBkklhe6Nxso34/xKSySTxwUGG29uFn8OHiXZ3kwwJF9XI5cjNZuRWC9qSEuR5VhRFxShK7CgLC5FlZY0QUEokcjkShQLkciQy2VF11DGel1iMZCJBMhojGRXUVYlQiFhfH7GeHiIOB8PtHUSPHGHY4SC4ezdEBbN6WU4OiuJilFOmoC4rQ2G3n/LUkfJJk9lw7x/45PdupaG1lXO++Q3u/+FtrF68GLtdj1IhIxyJ0+HwUVNz1ChcKoNgbwyjSZ3h7+RwDIkJR3a7PoPQFR7rJ5kUVhJbWzxYLToKCkIjc+CFPHfX3Xzz139mbd06uv3t/POH3x8zAuv1REYu9JNiCIFOK6eqKu+EI4Mng/SmITUC2NjYT1eXH7c7hC1fx4H9A2g1Cq6//iLedGWTW7eRizqfoPORt3hp4Av0qfNEQ/MjR4a4//59GQbno70pRiOlkDIalSxZUnDckb0nnzxwQrP1Cbw3lJQYue66Wdx//z76+0M0No5NUmw+MMiQQcGkmQaGDnjZ9PhBpi+yMWlO7rjNcMpk2ZavEz8ztTUF5KbVg9RjVMqj9WB0QlhDg5PWlkGydJZxG9WPm6IiFk0w5A4x5A7jc4fwucIMDYSJRwVFjEwuQa1XotUrKSjLxmBWY7RpycnToTUqUKjkyBVSZAopMrnw834gHk8QjyaIDScYDsUYdAYY7A4y0BPA6wrh6Q3QdWAQAKlMQlaOGnOhjtxiPTk2HTLFB58wJZPJ+MG3fkphQRE/+9UP+ffj/6S3r5t77rwPjUbLnNm51Nc56er209DgpKwsh96eADIZ9AZiotF+6nzbtbMXvV5JsV3P8mWFYhOSGqXr7fGTRBiFbGn1YLHqKMg/6uF0y1duJs88m4efvp3f3fc5brj6h8yZ/Wlxf1OjcFqtHFu+DkiiHakJ2rSa8F7P/1RN8HjDYgPw2mudtLV5qKgwc6QrQN3uPvyBGPMqrbz9dreoMO7uCdDdEyBdDdbfH2Ljxg7R5Dz1czykJwUej2BO+XstnGth0uzjb3MC7x5nnGGno8N3zHrQ2Oimrc1D7TI7a9acTmjIx5bHHmTf6xvobNqLfXYlhhnLMh4TCEaJx5N0dwsWH6VlJmprCsVEvvRmVqmUkWfTEQrGMsaCHA4fra2pHiE6Zr9PpZoiNDRE3+FW+tpacLYfIh6NotRosZRMomjFaqbMX4DRmofGYEAqnfA1/KjBXFjMRd/9MYfrdvL6A39j6+P/pnBGBXNWnY1KI5wjM2dM54l//o3PffVmWg4d4orPf5E/3vkLli5ehN1uQKmQEo7E6OjwUVNTKBqFy2QSAoEARpMqY8TM4fBl9gjOoHg+Ohw+env8kASJVEprqwerRUtBQdZIjzCZB//0Z77/s9+xecezuL2H+N0vbh8zDuf1RNDpBIoklUKp0ypG6sF7NwFPJ5JSSqemRjdHuoZwu8PY8rXs3z8oqBQrreyu6xN9CMPhOCAhHI6JhubukXqQbnCeItiOhRQZptMqROJtPIhjgIY4CxcVj3ufU4UJUuoUIe710valG3lNpeTCb32bbL1+RD1RIja86UbIxzNNPh5S9/N6wgSDUSrnWTHnasR5XGDMtnft7GHHzj5yzRquvXYmOq0cpUr4ctelrcClTKA3HHiBfY793HrNtVx42mnv/eD8FyIZjzPscBA5eJDhtjaG29sFdRIgNRhQFBSgW1qLcvIU1BXlqKZMQabXI9VqkWq1Aul0CiCRSEChENZ1VSrg6IWxqqQk477JWIxEMEjc7ydy8CChhgbCjY0MH27H19iILxZDolKhnDwZ1YwZaGbORF5QcErGQGxmM2t/+zuu+cntvLZrl3i71aJjzZrJonEgZJqfB4IxdFo5Dz7YSEvLIGVlJqqrbaxaNUkcrUsndO12PUuWFAJJfL5hWls9QJItW7qpq+8j4I9x/fVz+P13vswZr1Zx5+N/4rzvfo1vX/oFLlm1VCRle3sDhEIxWls9HD7sQ6ORM31GTgY5diyMNkUfD+MRu2azijff7BJTRgxGJSqVjJ27esmdWUoTJoLeA0zt2U3h0z9kk3oer0evo7a2iH/8Yy8bNnTgcPiOS0SlsGXLEX71qx0MDQ1z9dUzue66oyOQ4yXwPfVUywnN1ifwzvHmm2+i1+uprKxEIpGIxNRrr3XS1NSP0xngjDPs46rizJepeP2h/TRv6aGn1cucM4rIGhU+kd7oBgNR5lUKKov0epBqptPv++RTB3H2BfnEWSVcdlk59hIDbYe8RGOJDL+d5qZ+1q3fxjPr7sBeXMwDf3ni/T9opxjJZBL/YARPX5DB3iCe3gB+T0QMptXoFWRlq5k020y2TYulxIDJqkGploseT1LZhxMfLpNJkcmkKNWgNSgx5WmZPFv4WyKRZDgUI+CL4Dzso/ewj/7OIY40D3K4vh+JBAwWDbnFevKnGtGb1R/oyN9nrvwCtrwCvvG9GwmGgqKywWIVakKKNModMZlNKftS42Vthwapr3dRWWnhE6smiQR/usrHbtezpCatHrR4AGF09e0dfXR1Bbjmmgqu/vRKFlbP5tFn7uQPf/8ee5u38+Pv/oKSEqu4TVu+TvS6cjmD4ujraP+l0TgZr6vU/qaM0lNKKbtdT0+PH7tdT1aWSqwJHm+EigozBflZFBXrgSR1u52iR1V/f4gHH2rCPyQQBidDRu3Z209TYz8eb4Samkw15OjXkEr6VEslnHf8t3kC7wDBYJDnn3+es88+G4PBINaD1OLR/ffvA5JiTRitktboDay8/svMP+dC3nryUQ6+tYWOPfXkl01javVicgoKxcbS64kQCESprBynRxilsNi5s5edO3tHeoRZ6LQKVGKPcPRaNmUCvWnnoxzubOFbX7mRM5ctfUfHIBaNMtDVSb+jnd62VnyuPpBIMORamFxZRfGsuRRXzCYrOwd1lv4jOaY8gUxIJBKmzF+AfdZc3nr6MXa+8DQb/vonZp6+kpLZc5FIJBTY8njs73/hS7d8h131DeL7arVqWbNmyqge4aj5eSAYRadV8OCDTbS0DFBWlk11lY1Vq0rE0brU6F3qsUuWCApA31CElhYPAFu2dlFX5yQQiHL99XO46/Zv8dxLC/jzA/dw7Zdv4EvXfp2zV9WKpGxPb4BwOE5Li4fD7V7UavkY/6Vj4WQS7MYjds1mNZvSegSjUYlKJcfriVBaaqK0VLifQa/icLt3pN4J5NP6De001LtwuYLHJaJSaG5y89TTLYRCUc443Z6h4hq9//UNTurqnOSaEhQUmU647feCCVLqFEFmNHKgpoav3fN7vrn1QpbOm8c5tbWsWVJDdZVtjBFyumkyIK7+HavJTW+Eq6sEj4Xe3gAKhYQ3Xu9kOBrHkquluamf+jqnOAro7g9RX9/PgDtEKBijfmRlcjgSx+OJsHbtYUBI0Vi79jBd3X4ODByh2dGOLxD4AI7cRwPpJFTkwAGGDx0iOTyMRKFAUVSItroK5YwZaOdXoSqxIzUYBPXTR2iWXSKXIzMYkBkMKAsK0J9+OoA49hfcuZPA9u2E9+7F9/zz+J55BqnRiHrmTDTz5qGePh3Je5BE67VaHv/ZHWzft49llZXi7amRufQku3TyZ+euXt56qxuXK8TAQIjyilyqq2w4XQHRdDyF9DE5pysgpkmmImVVKqn4HBeeuZjJtiJ+9tAf+c7f76T+UDN/+O5N4vY6HT48njBms2bMWEg6mpv72bJFMJCtXVo4rvl5CqPHbtM/swDzq2wiSR0IxvB6whzYP8D0GTlcf0MlUEk8cC4d/3qcZU274aXv4S7rRprIGRPffDxs2NBBY6NbOB47e1i/vl1UQY2XwJcySE/9nsCpwS233MKOHTuw2+1ccMEFXHDBBSxfvhyrVcu6dYdJJsFq1YnvQ2rssqPDy5tbu5l17iQmV1rY/swhNj12EPtMM9MX25ArZRmNZKQ1JtQDpYTXR+rB5EkGtFo5Tz/dgtsdoramAK1WTl29jyNHhhjyDbPpzS4uu6wclVJOMpGkvt5FJJKgtqaAYDBGXb2TxqZeHF1tJJJjV8w/ihgOxQQCqi/AYE8QryskKqC0BiUGi4biihysJXosdgMavQKlWo5SI//Qx9/eCaRSieA5pVNgzs+ivKaARDxBOBClr91HZ/MgvW1e2vf007bLiUorx2LXYys1kluY9YEQbWevPI+CvEImTypFqThqQFxekSuq+YAM4ic1XrZ9ezfOET+cyy4rz9hu+ihdqh64nAHsxUI96O8P0dUlrLQL43Iqpk/L40ff/g1a5XSeXfdbrvrCXu6755/Y7ZMAgaz1+aIYDErmzrVmjL6ORkpJtKQmH5VSftxxuHQlVmqbqde7+qzJVJTnHl2cLNaPeFoFqCjPFe8njOlKSHlUbdzYgX8oSpZeMY433Fg4HEPU7e4b+Y6QZqR61tQUjSH7UgbpcyZUUqcU69ev5/LLL0ehUHDGGWdw4YUXcv7557NmzRTWrj00piak14P0EJSc/ELOvumbLL7kcna+8DQHt2+h+8A/kWtNFJTPRmmaxOF2H2azmuHhOA8+0Cj0CBYtzc1u6uud1NYUigqL+nphFCoo9gjZRCJxvN4Ia9ceAlI9wiG6uv20tXfS5jiE/yR6hHg0ymBvN66Odlwdhxns6SKZSKBQq8kpKGJyZRVTqhaQU1CM1mhEqf5wEv0m8N4hVyqp/dTVzKg9jfV//QP1Lz9PZ2MD1edciMZgxKDX8497f0f93n0sqpovPq68wiwq+VKqp3TCZufOXt7a3o2rP8SAO0x5uZnqahtOZ1A0HU8hfUzO6QyKY3++ochIjyATVYHnn3069sJJ/P6+u/nZ726j6eBl/Py2r4rb6+z0MTgYEnqEYv2JlURmNbW1RcdNsEsnfADx/1NkV1WVTVQvBYJRkXgbTYg1N7nR6TK93t6Jq2V9gxOHw4dCLqWldZD6eidLagpEpVr6/otjgIY4RYXvr4XDBCl1CqFauYLShx+mtd/F67t38/ru3Xzr3nuZW1rKwmnzyFfOpLTYNuZCZ8vmLt7e0cPCBflcdJEwZzvazDnVCKfSwZqaBnC5grjdIYb8UfRZCmZMz+HtHT34vMPosuSUl+dS3+AEiWAaV1ZmonKusGoyb14e27d309XtF4kqmUxKYUEW+qhw8fhxX6GIDQ4SbmwkvG8fkQMHSEYiAgllt5N15ploquajra5GnmNGZjIiVak+7F1+V5BqtSi1WpTFxZguuojE8DDR3l4Cmzfjf/11Qg17CG7dikSpRFVRgW7JEtQVFcJo4ThIKeoq51rH+JEp5PIMQqqjt5dn3nidr172KfEc7nQMEY5Excfb7XoWLSqgsbGfnBwVOq38hGqk1N91WvnI5wRWjkSGpwijTscQb+/o5bPLbmDvjO38/eXH2H/kIN+69EssnDsFu11Psd2ATiunuzvAXk+Y2XMQfa9Sz1/f4KSuXjCQTZFgML66MZ2w8noibNvWhcGoYmaFWVRIjh4lHE28yXQ6ptz4GYYdK/A+9yzOX/6Sm4y5lMxcRfnZp5/o7WbLliM4HD7mz7ewYEE+mzd3sWtXHyCooMbzqLrkkukTCqlTjGg0SlFREXv37sPhcHDvvfdy7733YjKZOO20VWRnL8JkmofRODYt6IknDvD8822cd95UbrllIYocFa8+cpCORjdHDg4ydb4VTyzO7jonLS0D+AMxoR4MhAiH45jNaixWLd09ft5+uxufd5isESl6a8sg9mI9Xu8wy5YLBpt2ux5bfhYeT4TeHr9oki7UDSMbt5NhYPpRQSKewOcOCyRUTwBPX5DQiHpErpJhyBUUUJYSPQWl2YJJuEZQQEn+iwiok4VUJkVrUDF5joXJcywk4gn8ngiOxgHa9/bTe8jLkf2DyJVSrJMMFJfnkFOge0+1vrmpX1Q9jafYmTv7aPORTCb52wN/YvWKc3H2qsQL3/7+o+N2qe/CyHCMut1OKistGQTsiZRL/f0hunsCTJlqHFlxTorP4+gcIhGZx6cvuJctdXdz0ZVncfMXf0jVnPMpyM/CZFSLpFZLywBarVwkmtL3IaUkAiEVE46tdk8RPjKZkLa8dWsXGq2C2poCyityxyT3pSup0m9P96hK94/KzT1+E9/c1E9dvZM8m5appSYMBiXbt/eIqZ41NUVjalpNTRE1NUV4+v53FiY/CESjUaZMKePQoRZeeeUVXnnlFW688Uaqq6uprDwdvX4R06bZx4zaj64HICieX3ttEBSn8YlvXsT2ta/QvWcLjt1bILkJdVRHLGqn05tHR0eYrCw1M2aoefvtXrzeYXQ6BeUVZuobnEgkYM7RUDbtaI8wf14e29/qSesRspGO9Ajt/cJirFSSWROSiQT+wQEGe7oY6O5ioPsIQ/0ukokEcqUSk62A6UuWUVwxm/xpM9AZTaj1+omxvI8Z9ndIOSA5n9lnVNL91rNs/MdfmL3iE5TMrkSlVGYQUu0OB69v2casstPE72l3f+hoj1Fhxm43sGhxAY37XOSY1ei0ihOqkdJH01Km56keIfU8nZ1DvP12P5edczP72zfy5IuPccixnxs+/VUq507GbjdQXGxAp1XQ3e1nr8c1YpyuzXj+lJLIYFBmeF+NR2KlEz5Cj9Cd2SOMIuTGI95g7GhedbWN6HDipJRczU1uXK4gU6caKSvLpqlpYGTqRDBUH73/qecKej3I5O+vEGOClDqFOO+885D9azsdd36fQ80beSGU4GBggIbWVhpaW/n+BVMpthuwWnSsfaWJfQ1eltYW43aH8fmG2bvPxaFDXpYsyUepkrN1axfBUHREBaLCZtMCSQ7sHxDnaePxOP39YXQ6BQaDioULCnC7Q2K6mEwqIdukYvnyQlavPprGMnsO+HzDdB7xoVbJ0WnlLF1WiN2u5407hULj9w9/GIfxfUMyHme4rY3QCBEV6+kBiWRkFG8p2oUL0C5YgMJiQWYyfaRUUKcSUqUSld2O6tOfJvuKK4j7fAR37GRo/SsEtm7D/X//h0SjQTN3LtolS1CVlmY0Les3dFBf78TlCo0hpdIRDIc55xvfxNHXQ1tnL9+/5noAtm7tYk+Di127+vjcZ2dTXp7L1VfPFM3HA8EYgeOokeAo+RMKxWhrG0SnU7D67CkjhFYQnVaO2y2sqhzp9PPtz3+aT66u4aof3c7n7v4ut17+Rb5+7XlYLboxKkYgQ+peOddKwH/UQPZ4nmt2u55OxxD1dU5UKimBQBSPJ0IkHM9QSKZwvG0p7XZyb/wy4cZGev7zHJccfpjIn7bhz/8+upqaYzaSGzZ0cPCgh5Ur7dxyy0ImTz6ATqcQVVATCXwfDBQKBU899RRPPdXI7373CO3t23C7d+PxeHj22SdYujTA6acvwusdpr3dw9/+tplAQMull06jq8tPW5uHv/51L5MnG9FoFLxY34ssEueseTYOvtULUgn6pIQh7zC5ecI5FI/FkcllmM1qMUFs4cICjnT6UKnl5OVpxYS+K6+sEEkEi1VHbU0BoRH/EHuJAZVSLowYTR7kzw9CZDieMdr3QSNlRC6ooAQSytcfJplIIpGALltFToGO3CI9+WVGzAU61Drlf50C6lRCKpNiMGuYtbyQWcsLCQejdB8c5ODbfRzZP0j3QQ8qrRzbVCMls3PJMr3zhZeGBidbt/awZ28/V19VcdxRsgcf+we/+M2P+cs//8TPv/9PZsywo9XKWbv2MK1tg+I2UsSTSiln6pTs4yRPHoXDMcSuXX0MDQ0TDEVRq+SceaawfZcziFYr50inj4GBMCUlxTz3yCvccfePuPOeHzBz+ga+ddPPWb5c+I7cuLGD+pFY8JSiK5XKB4hKoiU1+Sf0W7Pb9Tg6hzjS6QOEBLRQKEaWTj7usToZ/7byilzROP1EiZgpv7jKSou46KnRyMVUz5N9zgm8d1x66aVotfN5/vlt7N37Ovv3b2Zg4AA7d+5k586d3Hjjw1RU5FJSYuTvf9/Chg0uLr20nK4uP/39IV5/3UFdnZOLLy5Do1Hw5JMH8fki9PdPJTd3AdbT5xEP9HNg22b0dKAMtJAcaub0IinDUgNKj42FM4x4QmqKC1Ts2NGDTCYh26Rm2fJCMekLBE9cwcdMSCKz2w0sWwbFxXq2fVtQnnYf6uDAtk0M9bvwuZz4BwdIxIVQCI3BiMmaR9GMmeSXzRBIKIMRtd4wkZb3Mcc//rGX9es7WLWqhN/cdQ8v//G31L30PD0H9zNvzfmi19SQ38+VX7iJPpeTS889wiXnfBq73cBzz7WybVv30R6hwszVV1eIhtyBYJSAI3pcc+4U+RMOx2ltHSRLp2D12ZMFQssVRKdVCD3CQJgjR/zc/KUbuPDcZdz07R9wy0++xlc+dzM3XHcOVquWnTt72T3SIwAYTSpRwQRjDcWP57lmtxvo7Byivt6JSiXDH4gy6AkTDscwmlRjHney/m0pfzil8sQEbyoAYe5ITcjL60KtkonBBx9mAt8EKXWKEQpF2Vz4aS6U6/hs1xYOFS6jY34Zr++q58ya2eJK1M8e+BvNvY3Y35rMzOIKSgunEQ0mqD/YR3u7lyuumCGc+N4InUeGMOfExJQwEBRUBoOC3t4gpaU5I0zq0ZEhryfM4cM+ensDJBJJDrZ4GPQ0ieoUh2OIYDCKxaIhGIwRCMbEESOvVzBT6+ryfxiH8JQiGY0Sbm4muHs34T17SIbDSLQaVKVl6FeuRHfGGagnlSDLyUGqVp94gx8zSCQS5EYjhpUrMKxcQdzvJ/DWW/iee57A9u0Et29HZjajq61Ft3Qpsqws4XGjtjOeskmrVnPRktX8/pl/cv9Lz7FlWwdfWnMtALFYAo8nQn2DUyS20ldr3f0hpLJMz7N0pI/gtbQk6e8P0dzUT0FBFom4YOBfVKSjoUFGLJbA4RhiUdVM1v7qXr72u99w2wO/Ze3mtzl96lkUF5qYOtUkJiw5HEPiGEfq9RyPfEuH1aIjHInS1OzGnKNm4ULhoj89velkkHE8Z89GZynB9dpWTM3b6fzc9agqyrF8+SbcU+fz+utHSPehWDkiXU79nlBBfXjYsuUImzb1sWzZJ6iqOpPh4SiTJ3txOndSXl5NXp5gQP/SS9u5447zUCoLWL9+IYWFVSgUJgYHw/zlLw3MnJmLViujPxjlYCTKzHIjvhYfxigYpVKkoRiTirLo6w9nJIelzrmNG6O4nEHsxQYsFg1bt/bQ0xvIIBGCwRiRSJxkUiADUsRA+xGhAQmH4uzZ68pQbLyfiA3H8ThDePqC4s9wSAjmUGnlGHI1lFZZsU0xYJtiRGdUodLKkZ/ERdn/KtRaBVMqrUyptBIJRGnf5+bgW710HRikY68bU56Wktlm8qcaT3q8b+5cK3v29uMfElLEyityj+mztHrFOfz9X3+js7uVr3z3cq697NdMsc9gOBpHLpNmbGO0esfjjeDxho9JjNrtelpaBujuGcIzGKGgUCeOzMXjwvmtVEqRSCUolVLUag0//f5dzJqxkNvv/BZfufUiVtZ+m6VLFmMvMYivLd1zKvXZslh1YxIsjwWLVYfbHWL/gQFmTM+hdmkRbnfopMbuUhjveB5LsZvyj0qZoqeeJ/35UkqoCXzwCIWi+HxGKisvo6jofJYs0aPTtfL669s455xFokrqxz++ha6uOjZunE1p6SIqKubj9SZYv76dPXtc/PjHNVitGpzOAM3NAxQUDI8EmkxGrreRTMRIRIY4sr+RHFkP2pCTROAIkuB+soH+tyApkUNSSUWWDE/jPv7TqiYnR4vRpMLtDpPs9WNXxPDs28e+gwmi4TDdb/jxObsA6GnaTUvEjdaYTZbZQsH0CsxFxeSXlWOwWFBpdah1WUiPobqfwMcXqTVToyWPhdd+h+H//AdXw0ts/Nv/MX/NBdimlqLPymLV8jU89OT9/OeFJ3h7RydXXnwdwWCcWCyJxxMWeoQRRVC6gsfdH0Imk2R4nqUjfQTv4MEkrv4Qzc1uCvKziMeTBIJRCguzqK+XEosmcDh8LKqez7///He+//M7uPMPP2X9q1uZV76GoiITpaUmDHph0WZ0Kp/Vqj0pHycQCJ9wOEZTkxuzWcOiRcJ1lkE/Vg11PIxWih1LneV0BkWlWEqJlRr5S/2uqSmkpqbwpJ/7/cQEKXWKsW9fP3v3uWnTns5X7SrmOV7FEIdPfOEm8vKOXjz44/3Ek1EODx7k8OBBAGzZFgwUkZeYzLZtRqZMMRIJx8k2qcQG3WrRYTQNiXH2TmeQzZu7OOOMItG76sD+ARKJ5Mg8bdZItGSIHTv66O4KYM7VjDGb7ncFuPvuHcycmUNwZLVcwkdvXONkkBgeJtLYKBBRe/eSHB5GZjajXbwYXc0SdIsXI7dYkBmNpzyJ7r8dsqwsDCtWYFixgpjXi3/DBjxPPYXvxRfxvfgi6pkzWT19PpZcO5WVeeLjjuWz9JXLL0atVHHX43+hxdPA75/9Gzeu+Rzzq/LQajLnodNVQ0IUN+zfP5gxKjh6rNVu13PokJeDBwdpanZTUKBHq1VQX+ckGIqiUMrIyhIIIWHs0M2vv3ALd93/OM/seoZmRwvnzvwUn7tyyRiT83ebwlc510r3iJ9Jsd0wrnn6aBJv9L9HH888m4G8K1aTGD6T4LZt+Ddt4siXv8xwXjFH1EtpNM0RfShOlMo3gQ8OGzZ0sHGjg5wcNatW2WlqCpKVVUZFRXWG0Xwk4kAikTI83E1j4zM0Nj6DTKbEYpnJkSOzaW+fw7JlFVRU5HLokJfGwzBnfi6VZWbqN3YS6AmS8EQxKiS8tbGDF4JRVp01SYyAP9zuY2homFmzczNIhC1bu0WfG7tdz7z5eUASlyvA3b/ewZKafPzB4MirkTCWjj41SCSS+AfCIvk02Bsk4IkAQhJeVo4a2xQD5sIsCkpNmGxa1FoFSu3/rgrqvUKlUzB9kY1pC/PweyLs39rDwbd7adjQSdOmbgqnm5hSaUWddXxVQ3lFLldfVSGO3wHHVDZZLTb+ds/jXHrNxQwF27n/sZu56uK7mTa1gtNOK8LR4RO3MVq9YzIK2/T5uomEo+K4YPr44IoVJXR1BejpCTI4GBGI1mHBb23yFAMyuQy1WoZMLjTJzU39JIcr+PQFf+CJF37CM+u+TeuhK/nhd27h8iuEsTzBz4kTGpkfD2azGoNBSVGxnosuGt+3L514Sh3D1HOOdzyPpW5K+UelTNGrqm0nNEKfwAeHffv62bu3H61WTnV1Hnv2hCgvn8Mdd3xSrAfJZJJYrJtkMoLLtROXaycANlsJ8fhU+vtn8tRTFubNsxIIxLDZtMjlEoxGJSUlRqxWwTdy6tRs2gbtPPyWgmuuWsHXvzKbl59roHHnfiTDbkKefkxZUTTxKMPhMCGvB1fISywoLNCaNDGQytHq1IQi4PQpycmbRExaDwygLV3BlT+/CaVaI/xoNBME1AT47GdnY7cbxIXR5uZBDvrKmXd2BUP1j7D9qUeZWr2IWaet4MbPXYNapeFvD/8ZR992/vnYMFddfANVVVYheS69R0hT8DgcPuLxJPsPDGSM+o0mYex2A4favBxsGaSpSSCldDoF9fVOgsEoSqWMrCwFdrthxMjfw4+/+SN+/5cHeG3bkxw4tJ/Tqq/mmqsWj/GxerdqIqFH8COVSSkuNow7cncs76n015+uFDuWusnh8Ikqr5QS60SpfB8mJkipU4yVK0t47bVOBgbC3KdexnJJhMt7t+D63b0kv/xFbEU5ANT/+372HTrEI2tfZ8PbO2lzttE76KIXFwFjP0uj1bjdYebPt1J/aB+asJn9+xXUNzgpsRtE1dQzz7TQ1xfgtdc6mTI1G51WSBGrr3PicgUpKNRxxeUVNDf3s3btYWQyCQ7HENVVtoyG++67d9DY2I/bHSIxolFMrRb+NyARDhNubCS0axfhxkaS0ShyiwXd8uXoV5yJtqoKudmMVDchUT9ZyI1GTJdcgvGii4i0tuJ57HF869ah3bOHM2w29CUrScZMSOTyY67aWi06vv+Fy/AORvnL+n/QEWji1UPPcs83v0F+3tHzazQpk9pOfZ2T1tZBXK4QW7Z0EwwJxn9qtRyjSU11lY01ayZjNKowm9XMnpPLxo0dtLYOUlCYxYIFeVTOtWK16Ni4sYMdO/o41OalIreKyCQDm3ue5cmmv7LwiIbqqtXiPqc+G6NNzlO3H8/zKqWqqm9wHlPpNZp0Gv3vYx3Pfm8UR9Z0ij4zB9m+BuJvvMklfY9wds8LbLujmmdc13LhtYveyds8gfcR6fVg/XoH8XiSTZu6yMkZYMeOHq67bhYlJUa+9rUbuPrqS9i4cSMPPPAUb775Kj6fk97eOnp765g+/dtABStXlvDYY1vo6jrEGWesIihJsmcwSKFdw+xCI/vf7qMkS02xTs3hbX0YJVLy8nUoFTLC4TiODh81NUUiiaBSHzVprqq2iSqou3+9Q/TMseQLTblSKT8lxsexaJwhdxhffxhffwifK8TQQJhEPAkS0I2Ykdtn5pA32YC1xIAmS4FKq0Chmmh4TjUkEgn6bDULzpnM/NUlHGkeZN+bR+hsFtRTeZMNlFbnYTiOd1F5RW4G8XE8372ysmK++aU/8fu/fp1B30GeePE7/PnuR6ipqaCmRrjP8ZRBdfVO9jS42LO3n3PPncK2rYLvDcDlV1QI9WCrShy33rixA5criKPDR21NAVk6uUh8bdnaTV1dH7Y8E6dV/4S9LQ+zt+UB7vlbF78v+xPZppwx5E9zUz9btgo1YWlt4bieU6PJohnTc4iEY8yYnnPMY5hOPAFjUgaPdTxHk1keb4SppSacfQFeXneYyHBsQhX1EUJ6Tdi3T/B22bevn0AgKtYDiURCV9dh6urquO++x1m37hWOHNlHb28H0IHV6iQcPpOuLj+rV09i797NhEJFbNumZMOGDmbNyh1RTZm5++4dtLd7eeChg8yrKsI2tRRNrp3169vZ2djHyhXFfO97C9i62cHf/9aAXC7hwlVTWbGiRLAIkEiQSmXc8Pn1vLmth8lTsolKhXNtXu0ccovsH+4BncBHDqMXRtN9TAs/9Rte++d97NnwMu5OBwsv+iTf/ca1eL1xnnjxr/QO7Kb+4LPc/p1vkZeX5r96DGVQfb2T1hYPLleQLVu7CAajeL3DqFQyjCYV1dU21qyZgnHEiHz2HIvQI7R4KCjUsWCBTegRrNqRHqGXQ4e8lBYvJeDNYe+hx3lt5z0sO11DdbVtDPkz2uQ89bfjeV6ZczVUVmYmDY5GOukEjBlVPJ4yKp3MSiX39fUFWbeuneHh+EdGFTUeJkipU4za2iLuuGMpGzZ0kJen5cABK+taClnZ9hThP/6W2De/hjw3F6lUiiJqYo61hmu+fyHFk3Rsqqtjw84d5BpymaQ24PMNExqO8NPHfkcimSA3K5ccVQFzy8q4/vLl6LKMLFtWyKZNXUyZYhRTvKqrbGIzrFbJ2br1CB0On+hVpdPKxYSylEpDkBSaKCsz8Xa/gbxhM/mWj7bvTCIUIrxvH8Fduwg3N0M0ijwvj6wzz0T/iVVoKyuRWSxIlWONhCdw8pBIpainTcP2wx9g+cbN+F56icGH/s3gQw/hffYZdMuWk3vmmVjHUQSlcNd3r2TmTAtfu+cu1u16k3+8NImLF50rrnAEgrEMUib1o9PK0WXJcblC1NX3oVHLmTHDzOTJRw3HzbkaKudZxfM5XZqaIoicrgBqlQJzjppQKEYiIeP8VVV8c/rp3PHQX/jaPXdR39bEL7/8ZTRphvajTc7TlVzH87wKBGMk4tDdHSAwokRJv1+6UnHnrl6RTE7dPtprKmUur1YJ4yiQA7kzOFhuZpbOTWjrNpb3v4H0l2/Quf00jJdewkDJXJoO+jIUOcdCR4eXxkb3Sd13AieP0fWgry/IrFm57NvXT39/iMZGt3i8m5uDNDUV8N3v/ornniukubmZdevW8eyza6mpWcnQkASvdxiX61WeeOI+XnhBi81WTjRawJIlC7jkiqvQTJrCg3/ZgyqUoMSspaOuH+r6mZ2jZapRjVGnZP3aQ/jDUSxWLQX5WXT3BDLGolzOANY8LeGIiSU1+fQ6PZgMeRTk55+0UiSZTBINx/F7IgRGfvyDEfwDYYIjXm0SCWgMSrKy1VhK9FiK9eSXGtEahDG8/2UvqA8LMpmUkllmSmaZ8TqDNLzaycG3+9j8eAvZ+TpKq6zkFmed0Bj9RB5F11yzgIsufpkrr7+Efc11fOW7V/PaC2/RfSQmkqXBQEzcVvo2tVo5hw558A9F2ba1RwxoSRFNo5P90sfXUuSZyxlg185eVCopBoMSk0lNXl4WNTXfIRI/j9/8362sufQM7v3VfVTPyyT5Gxqc1NUJNcFebBD373i+V+kjhMcir1Lf/VqtnO6eALZ8bUbK4OhtphRi6ccKoLdHSGo61OalrdWDWiWnpqbouKTZeHA5A7Q2D6A0q8m2TSzmnSqM7REGR3yhMuuBVColHM6joOB8/v3vrzB7toHXXnuNdevWYbNNJpm00N8fwu/38pvf3AhAdnYRCsVk5s+fzw9/eBkWi43LL5/Oo48eYN48C9u2dbNkSYHQpI8EbOiylDz3fDv79vVzwSWz0WgUGI1K3tg6KF4PdHR4sU/OZV4QFizIo6/PTDxewKRJlg/tOE7gvwejfUxX3XAT9plzWf/XP/DaP+9j/tnn84vbP0t5uZmf3v1LNrz5MvPmTGH5wnPSeoTouMognVaBTqfA5QpSV+dErZZRXm5m8iSjSMykSKAUQZTRI4wohpzOIGq1HLNZQygUJZGQc+7Zi/l66Zn89r7fcuvPfkRzyz6+87WvoErrKUebnB9LyZQOh8MnJuoBYhpg+v1S+54yWc+36cakDI4mx+obhNcfSKsHqec51OaltdWDWiUTSakTmcWnw+kMcuiAi2J79nHv914xQUq9DxjNEnd0VNH67DwKHvolzjvvJPuzn0VTXk59g5OGETPN8vIKzq6p4eyRpcKUEqOprR2r3kavr4d+fz/9/n4OuvfwxPYnkUqlfO2yy7j33s/jdAVoOzRIXO4jFrdQXp4rNvrbtgkrid1dAa6+pgKHY4jNm7qIxxOsWTOZQDCGVCrhrNWTAfhM9DqR3PqoIREMEtq7V1BE7d8PsRjy/HwMq1aRddYn0M6Zgzw392NrUv5hQ6bTkX3ppZguuojAtu247/8nQ+vW4V+/Hm1tLYY1a0TfqdGYWTCHzyy/ltcPvMoN55/Pxld6xfO/cq41w0MqXYmUUvppNYoxiiWAvXtc7N7tpLTUJKbjXXF5hfj3dJXg4sUFI7ceTbW8ZN4VzCudyR+e+xdvNzXxr9tuY5pdWP3LNqnQaORMKjFkrFKnr1yn7+vuXb28+WYXlZUWps/IwesJi+QVICYGpoiqFLl1os9b6ruitDRbJOBSsNmn0Jo3lQ1vNFGr60bV2Ij/tdeIq7UkbPNoO+ts7F8+D8lxyNnGRkHuD0yQUqcY441TVlfbRBIwhQ0bOtiwwSE+pqKigoqKCm6++eYM0rC3N4RcriMUCnD48C5gF0888TxPPHEbOTk5HDhwgEBAwd4GFwoGUYaU+HoSwkjcEWEUT5FM4ukMMnwkiCZLQXuXn0N73FQtsjEcSyJPwqoz7MyrslFfL+WWzz9GWWk2kWCMeCxBNBInNhwnGhF+woEoYX+U0NAwYX+UcCBKbDghvjaVVo5GryQ7X8fkubmYi7Kw2PVospRCGp5GhuwkPYwm8MHAaNWy/PLpLDxvMvve7KZxUxc7XjiM0aJh2uI8LMXvTUmtz9Jzy41/5Ac/v541Ky/BaDDxUkMT9fUuCguzsFg0aEfqQTqhkj4umG7In0607NnrYvcuJ6VlJuzFBlasKBH/3tx0tB7MnmOhojxX9J4SvpNz+MJVf+WFjb/gis9dwDe+fCtf+MxXkEqlNDf143KFKCnRU1aWM25N0Grl7NrZK/775XXttLQMUlZmEr/z9+8fwOONYDIOZTx3VbWNXTt7RWLpRAbm9fUuSsuymVdpHbMv6WbscHzSbDw4HEN0dHjR2rTMnJ93wvtP4OQxtkfwjqkHMLom1HLBBRdwwQUXZDxm1646srMnMzjYzuDgEeAIL7+8iZdf/j1SqZTbbruNvXt/REeHl7q6bnQ6L/F4nNraIrzeYbZt6+app1o4eHCQgwcH+fnPl9HY6Oaxxw4Qi8W58cZKvN5hpFIJn//8XADC4TtYsqSAs86awgQm8G4wvWYZtqllPPfbX/DW049RtqiG8qkLuWDVZ9mz/3Uuu/ACXn6pO6NHSPeQSidUrriinOYmN1qtYoxiCYQeYdfuPsrKTGI63hVXlIt/b25ys3btIaQyKYsX5Yu3Cz2Cj7OX38DM6XN46Ml/sqthD7//xc+YVFwMgGmkR0iFAaSQrmRK39ddu3rZuNFBaakJu90wRhGVSgwMBKPi31PE0vGII7FHKDOJBFz6vqRMzFO/U891PLP4dDgcPtraPEhk7y9tNEFKfQAoKTFS8tULGb5gHp1fvgn3H/6A/hOfoHLOEoCMmdkUUkoJu12Pq/NrHHL0E1f3M5Rw4g73crivnR63G5s5V7x/r7eHpV/4IkqFgqmFhRSY89CrjJj12XiQoY/YxQu7eDwhRr2uGInJHO8C66OARCBAaM8egrt2ETlwAOJxFIWFGFavRn/WJ9DMno3cbJ4goj5ASGQyspbWoqutIXLwIO777mNo/QYCW7agW7IE/Zo1yA2ZTctwJEaRdgbfPnceG1/pJdukYm6lRVRKpQzKAfbu6aeuro958/KYPUe4/fwLph7D40mCRAJud3hERZSpXtqypZvmZjembBVnnTUpw7Tc3R9CJpfwydNXcenqxVz5ox+z9PNf4Kc33MgXLjmPQU8EuUyKwajK2Ga6kinl4wbw5ptdtLV5ALjssnKcrgBG01AGASWVQUIIqDnuWEY6xlN/pb9Oq0VHTa1QJBPhMOH9+/Fs38mklgZkf9nCgX/9DO2CBWSdfjra6mpUpVORyGTiha3RqBTl/hN4/zFeAuJog/pj3b+y8jp6e5dTXQ05OS42b34Ln6+Njo4DyOVyzGYzubkSSkqMnHPOOaxdu5a8vDymlU3HZMgjEc6CYQMmtYUlWbXEhqLkyqRI5TJ6690AGIH+ejfrR/5tAlx1/Wys6x/39ShUMpQauWhAbp1kwGBWk52vJduWhSZLgUItQ6ESfk6ktJnARwdqnZLqsycxd0UR+7f0UrfBwY7n2zFaNUxfZCO3+N1fK8jlGpZX/wRpQkVzU7+oakqpf1Lf56lkvZaWAVasKCE3VyOSQuMTLGk1YZTiastWoR5kp+rBKL+l/v4QOSYrd/3oX7z8+t/59b138Mqrr/HL235PQ0OAri5/RpJdCik1066RhKgU3nqrm8HBCEaDKmNfPd4w+/cPIJPBSGDZCUf10jFaAZa+H6nf6WN7J7vdFAGo1copKTFSVmo67v0n8N5xrETck6kJM2ea2b//HpqaOjEae0kmjxAOt+NwNNHb20tBQYF4/66uRmpra1GpVEybNg2brRi1OheTKQ+VSkI4XC6SY7FYnIMHB9mwoYPrrpsFkHF9MHGtMIH3CmOejSt+9ite/ftf2PvqOpSmDgpMM6m6rIaXX+rGlNEjREWDchhZjK7rY/68PGbPsRAIRjn//NJjkitCPYgQCIwlYbZs7aKp2U12tprVZ03K8Fty94eQy6VcvOYCLjy3li9/+3ucd8U13Pq1W/j0J8/BM9IjGI2ZyXnpSqadaTVh05tddHYOoVTIxiijUiSRTCYhHk+Kt6f/PhbGU3+lv06rVTtmbO9ktp0i1HRaBVOnmigqfH+5gQlS6gOEsqSEyU88Ts/tP8H3zDOYW1r45Oc+hzz72HI4q0XHmjWTqW/QUWKfTSgUJ6XycA4OULfLzd/+tofa2gJ6fW40KhWhSITm9naa29sztvWZlZfj9UzDrZWT0Lh5uOmPPNOi5bZHFeSYtOTmZKFUKigw53LXTTe9vwfjBIgPDRFqaCC0ezeRgwchkUBRXIxhzRr0q1ejqSifUER9BCCRSFBPn07h3XcTOXyY/v/7M0PrXiawdSu6JUswnHceT67tZNOmLgxGJfFYUvAtSySZW2khkd3Jo5s3c+MFnwaOXjC3tg7Q3DyAXq/AaFJlqI3Sjc7d/SEOH/YydaoJjUZGY+MAkycLX7Cpkbd4PI5aLSMeS7J27WHgqO9TIBjD54uyfkMHAFfO+yJr9z3Dt/70W+rbmrjhE1cC4xPHKaRf7C9fLnzpp36PHsMDMpRS7v4QLS0DYojBsVBenot5ZCTF6Qoc975StRptZSWauXNJBAJEWlqI7N/P8OHD9G3eDMkkEo0GdUUFfao8+kMm1ItmsvLiauTWdx4JP4FTg5M1qL/00mmYTCqxUcnJWc7KlSVUV1v461/f4KqrXuTii8u45JLpeDweAPr6+ujr68vYjl5v4vPfv5rWg4O4Dnl44N/fwjfkQKvRE4/JMOg1GPVaFHIlF63+NLULzkAqkyJXSlFpFah1CtRaBSqdDIVSjkwhRa6QCr+VsonRu48ZFEo5s88oonxpPk1beqhf7+Dt5w9jytNSsawA0zswfX388WY2vdmF0aikuydIT08Qe7GTT6zOY+Off86XP/d94tGcjO/Wja92UFfXRzSWoKI8V1QbpdKI58y2YLHqaG7qF2pCqQmNeqQmTBmpCU39OBw+kIBarWD/gUHRJD1F7HT3BGhsdNPUPMC8eZ/ka5+fyl8f/CGfvuFsvv3VX1NZOem4yXmjyZ9FiwpwOHyiYilFXrmcgTFKqXTT9hOpmdLHFI+VSJiOE41UppBSVM2YkUN5eQ4FBeMrnyfw/uNkakJJiZEbb6xkw4ZsZs06k6GhKKk03ldeaeCVV7rJyTnAJZdMp7e3F7VaTTgcZu/evezduzdjW9dc80OamipwOgOUlbl5+umvc/BgFr/9rZK8PAOFhdmoVCpKSko488zfvX8vfAL/M5DLlezor2J3t5P/Z+9MA5o6sz/8hAQCCYQ1YQ/usqi4W6DaWrVqN6u2Vjvd1+kynba20073dbrv7Uy3ma7/0bYuXay1Vaq1FWwFAS2gggtBtgQkBBICBPh/CDckISB2uur7fBg0971vbnB6T87vnvM707qLiO1qoGz3GGwONenjtciUe/nq2+9YttD5XVwSUMrKG9lTeoSQkABCw5QeDwLcjc4b6ls5eKiJESPCCAxUUFLcwLBhPZYJPS1vDkcXQYGKnhzhAIBL2LHaOrBY2tm46RAAZ864hW92fMB9TzxMyb7dnHfmJcDRcoRe8Wd6T24g/fRlUO5eKeXMERpRq/wHrGZKSY3syREsGI22QZmw92eO7o4klCUnRzBunBa54pfNuYUo9SvjFxRE/OOPoZ42lbpH/0HdQw8Reu65qGfM6PfpcUpKlCuJlqoyQsOaAX9KdjdhaXJ6dIyfkETRWx/S1m3lky93kpu/n+BIB93+rRw21jE6KYnaWhtGk43DdQ3Y2q3Y2p0mtnXNQKXz/UJVGnaV7ee1v99B6tChv/SvxEWn2ewUogoKaCsrA8Bfr0dzztloTj+dwORkFFqtEKJ+pyiHDiX+ySdov+F66v/1Kpb167F9/z10DMFUm4DdHsxps/SEhylpNLcRGt3OskefpLu7m9DgYG5ddqFrr/p6O/Y2B/X1do8v+QZDMwWuSRKBlJUdoaS0gfi4YEJDlVRVt5CbW8OIkeEeLW8LF45i+/Zqqqpb2Lat2iUKSWPE8/OOcOSInYiIQK6ecykX+J/M/f/5F3mle3jnvvtIGdq/wbO78DRxUgxRbkbl0CuOjU/X9WnRy86ucGvhdb5HTs5hcnNryMiIJTw8sF/frYFw3yMzcwKqCRPoamvD0dBA+/79tB8+TGddHZoDB5lsNiMr6GL/qxB63mLiHnlksP/kgt8A90Rl/foDOBzdPcaeSnJz29m69TDgbBG8++73SEoKYN267Xz66XaGDu1Go2mlsrKSoKAgWmwONm420N0NVnsDjU11NDY5xatat6Iog7GOfaZdvP76S7/65xX8vlD4yxl3agKpWbGUfFtN/pcV5KwqJ3qohpSTY1GFHF3Y/nZrFVXVLdjbApkwvrfi595Hbyf7my8pP7CXD99ehzaqt+qno6MLS3M7BkMz8+Y6v5eYm+wU7DS6Js1pdWqXefmECdEEqxXOmJBTw8gR4RQVGWlp6WDo0FBOOimWgwctlJc10tJTleW8b3fTaLbT0txBR0cns2dn8NzDa3jtvbu5+9HL+cu1tzFq9K39fjZ38cdktJKaEsm8nkmYgIfwNGly33hQKMWDVLd4kFNDRmYs4WGBHiLaYFvy3Pc4mum5h6jWPeBSwe8E75iQm1uNTtfAli0Wtm83ExBQxuTJMQQGjqe4uAqZrIk339zIxo2FJCQ4CAqyYjAYSE4eTX6+8/tVeLiJ1lYzra1mAJqaYJ9zUDgaTRTbt+exatVKRowY8Rt9asHxwsqVe9m3L5yaURksHFvIuPAi2sInow5t5ub7HgdAExLC5RcudZ3T0GDH3tZJQ4PdQ/TxnjZX1jN1Lz4umNCwnhwhp5oRI8I9Wt4WLhzJ9u+dVjfbcqpcopBer6GsrJG8vCMcOdJGRISSCxdch9Uxnedfe4WC3bt58fFHGT6k/8pBd/Fn0qQYtFqVR3WSJI6NT9f1mcTnkSP0CGU5OVXk5lSTkRlHeFhgv75bA+G+x0DG557VVO0D7vlzIESp34iwhQtRTZlC7X33Y/7gA2w7dhD2pz8REBs74HneT+GmTomjoaGVyMhA9u45QqWhGXtbB/X7NQS1jGBIdBhz5w71GDOsVilo60hFJb+VGtMRjpitpI4Jo/6IjX1l9ajUfpwxPZXkpL4lwz83joYGWgsLad25k/ZDh0AmIyApidBzzyVk7ukEjhrlrIgSZuV/GAKSkoh7/DEir70G03PPcdLGbMZHH6J2xDSmnz8HmdvI4EdM13L3a6/ywJtvEhYcwhVnnw3AzJmJBAYqyMiIpaG+lcICI5UGC8nJEUyY4Bxbr9eHoFYpqK6y0t7RSXVNM602B0eOtJKdXUGSXoO1xeGayhcXp2bbtmoOHjKTl1dLVlY8F1+cxqxZSQQq/ak8bCExIaTHsyqVmVPSufShhzj1+ut46sa/cMkZZ/QrHPc1IneW/W7cVMGB/WY6e+x13FvvSkud/iRx8cEeT1lyc2tck8/i4tWugOSrzbY/3PeQkhA/pZKAuDgCesr5uzs66LLb6bJa6TAacVRX4a/X093VhcxP+Pv8EXCfagOwaNFI10/JJ6ykRMn77zdTVzeUIUOSuOOO6R7+JXPnDgW6GTbsGb79di/NzU20tto55ZRY9u0zkZ9fBQRw8snLfouPKPidovCXM+60RJIzY8nfUMHuLYf55v/2oU+LYNS0GPwD+p+UOH1GPN9urWL6jHiWLOn19rj/jn/wY8kuKioPcel1F7Di3x8TqgkDemKCUkFGZiz19a0UFBpRKv0YPiLMaTouDb6IDESjCaC5uc1ZFUUXjWY7u3Y72wNbrM6YMG6slqAgBU3mNkxGG2+9vZtp0+KYN3cIFksHhystJCSGMG5sFFpdEjNnruXlN57lxVef4of8XJ77xz/Rafv3AXT3rpo+PQGtTs2GL/azalWZq4rQve1O8quKjw/2qMTKzem9l8fHqz1Eq8G25LnvcTRRyl1UM9dZB1wr+P3hHhN8x4MGrNZ2duwIo6ZmHHFx0fzpT+mu82JjK4FuWlu1LF36Onv2VGI0NnHqqTFUVzeRl1eFRiNn4cLpDB8+/Lf6mILjCMmM/8ylo7nuumv4+KlHqDu4nZGpp3LLn6/huVdf59FnnydMo2HhWWcAUjyQk5EZ58wRCo1UVlpIHh3JxAlODzy9XuM0Cq9qceYI1S00W9o53N3C7l0mp5Bj7XBN5YuLC2ZbThUHDzaRt6OWrJMTuPjiVGeOEKigstJCYmJIj2dVKjMyJ3LTnXez8OLLefDOv7HwzPn9fkZfRuTOHOEQ+/eb6ZJyBLfWu9IS53TOuHi1Z46QU82PxU5rhbj4YB85wtH9Ht33GEiUchfUbE2/vCgl6+7uFs9C3LBYLISGhtLU1IRGc/R/2P+V7q4umtaswfjMs3Q2NaE66STCFi7ET31s004ks+XCAiPl5Y1ERCiRy+XodEH4+fn1MVL2Xp8+XovJ1MqOH2qIjAzi2mvTPRLon5OOujpaCwpoLSigo7IS5HIChg4laMJ4QubMIXD4cGdFlBCijgtai4owPvsstu9/QB4ZSeiiRQSNH+8SeB769795+r//h0wm4z9338PimTM9zl+xsoTvvqtCowlg8eLRfaqNjCYr2dkV5OfV0dzcTmRkEAFKP9rbukhJicDPzw+Vyh97WweBSgVffnmII0da0Sdp+NvfpvapOnKvbBoyLIQ7X3mFtz5fx/mzZvH8zbcQour7BGLFypI+RuTZ2RVs3FhBR0cniQkaLr7Yab4u7V1YZGTr1ioUchnLliW7kgVflVJJeg11da00NLSSlRV31P82PSul+k9C3E3aIxTtyGQyQs9dcMyi1K993/y1+CN/LskvbOPGQ3zxxUH8/f144IFMgoL8PaYwua9/++0fycurQ63255JL0njnnd1s3GggLS2C998/S5jgC/qlxWxn+ycHKPuhDrnCj1HTYtCnRRyzf1hF5UGWXHYWpnojk8ZP4Z1/fYRK5XmPXrmihG97YsJ5i0d7VBxJnkgbvjzI/nIzkZGB6HRqNBp/Wloc6KKDaKhvo7Ozi2HDQ7FZHezYUUNNrZXRoyN46KGT+1yTe3WTuWUPN//9Wrq6unn2H/9kesapPj/HyhUl/LCjjvi4YC65JBWtTs1dd21l375GwkKVLF8+mZTUKNfeJlMrZWVmlEo/MrPiOTkrHq1O3W+lVFRUEN9tq3bGhMy4Pt5Y7gy2Usp7Qp+5zsqQsVE/afreH/ne2R9/5M/kHg/y8uqIi1OhUMgZMkSDn5+fz3jgvn72bD0Gg4XPPttPfHwwL788e1Dt5gLBsdLp6OCLV55jb85WEtPGsWHvQd7670rkcjkvP/EYc06d4bF+xYpStxxhVJ9qI6PRRnZ2BXl5tdTXtxISHMCYsVFYWzrQRauQyWSo1f7Y7Q4CA+V8ueEQDUfsJEk5glfVkXtlk35IEA8++TRr1q1n8dlncv/fbkMVFNTnM61YUdrHiHxwOcJh5HIZF16Y4hKPfFVKJSVpqKuz9cSDeA9xyxeDrZRyN2kPVrYjV/iTOuO0Aff2xWDvnaJS6jdG5udH2HnnETxrFqYXXqRpzRpa8/MJnjGDkLlz8fORAPtCaiFSqxSogxUuQ2T3pPNo6wE62ruQy2Uuw+mfg+7OTtrKy7H/+CP23btxGI3g749y+HDCL1xG8Ow5KIckiYqo45Sg9HT0b79NyzffYHrueY688QYBI0YQtmwZZoWG+elnUG08wn83fcE1jz9GaHAws6dMAZyiSaDSn9GjI0hMCPH5RFinVbuqnRoaWklNjWDN2nKqq1pQKPw4Z8EICguMlJQ2EBkRyIQJWsrKzQQHB5CdXcGsWUkewpTnVMwoXrj1VqaPH89Nzz7Dzj17eee++xjnVbLuy4h8fLoOk6kVgDmzk0hJiWLFyhI2bqxg/ecHGDJEQ+ORVrq7nZVNUrKQmZngkTikpESRl1/L5s0GjhxpxdbaQUpKVB/hyf2/de89+kMyXweIGCb8pI4nJCPc0NAAlwdVVlYCFRVNQF+j2qSkUC67bEyP8NRNWlokU6bEUltr4+yzhwtBSjAgwWGBzL40lfGnJfLdR2UUb62isqSBsacmEDpIvymT0Up9XRDP/+Ndrlt+AfmFO7jhtit47YX3CPAPcK1RBvqTPDqChMS+MUGq9GlrdxCoVJCWFoF/gIINXxzAZGplZFs4gUoFFRUW7G0OTjoplpSUCBydXcTHqV2T89zb4aRJdwBLl53M5x9uYfnd13PZdUu4/qqb+euf/4ZC4fl12t2IXNprxvR4109JRNq0qYLt26vp6oLu7i4U/nJ++KEGfaLGZVbuEQ96zlu7tox168qRyWQEqxWkpEZ5iE8jR4T/pHhwLBP6BH8cBooHvib/+VoPYLd3olD40fQrVE0ITkzkCn/O+uvfCIuO5fu1HzA+LJb5p83hi6838te77uE/Lz7HSZMnAU7RJDBQwejR4SQmhvisEtLpVH2qnQoKjOzf38Tw4aGcc84ICguNlJQ0EBkZxPgJOsq9cwS3GOaRI6Sm8OQD93HS5Enc//hTFBWX8OJjjzJquOdkSl9G5M4cwTkRec5sp8H6iy/ms317DZ9/foDwcCVtbQ7a27vIzal2iUeZmfEeQlJKaiR5eT05QoMdm62DlNTIPsKTu8DkvUd/uE/oSx0ZOLh/wP8BIUr9TlCEhxP7wP2EX/QnTM89T/PmzbR88w2qzExCZs9GERExqH3c/afAt9HyQOslM+X/dfpeZ3Mz9uJi7Lt3Yy8pobutDT+1moCRIwk58wxCZs8mICEBRUSE8Ig6AZDJZISceirqrCzMH3xA/Sv/xPjoo1hHTWB/6CQun/0n7A47a7Zs5qIH7ufbV19jZGIiBkMzNlsHaalRhIb1FU3chZiFC0diNFnZvave+VS8OYCRI8OZPCkGtUpBXZ2VmpoWGs1tzJ6lp9HcRl2trY8wFR6mxM9PRrjb+5132mmMHzWKyx9+iNNuvIHLTlvKvImnMi5dh06r7vPfEfT9bwucQWj95wdoaemgrMyMXO5HUJCzTXEg9PoQwsKUNDbaqTe1Ulpaz7p1B6iubgGcQpa7wKTTqj1+N/3dAzzbP8SXzOMRb7Pc/iY9Sccuu6z32PnnjyY1NUpMWhIMmqjEEBbcPIF9O+rIXbufbavLSRgdTnJmLAGBA3/l7DXZjuffL/+XS649n2+2fc3DT97Dw3c/6VpjMtrQaoNc1UQS7pU+khAjtdH5B/gRFx/MzJmJhIcFsmZtGa2tDsrLzNQ32Jk2LZbg4AA2bzYwYWI0s2b1ekB5t9VFRWp5658f8OpbL/Lcy4/zVfYWrrroYU6dPsZ1PSmpUX2ql+bNH868+X1bntraO+lo70augPDwIKZOjT3qd7CGhla6OrsJDJSjT9JgMlqdMaHKGROUAYo+ApN3JZQ3g20HFPxxOZZ44Gt9QkKITxFLIPi5OXnpxRiMcqpzPmB2QhRtWZl8vS2Ha2+9nc9Xvk9CnHOIhNU6QI7gJsQsXDgSo9HG7l0mFAo/QoL9GTkygsmTY1Cr/Kmrs1FT3UJjYxuzZukxm9uodc8ReoSpsJ4cIczt/RaddSbj0lK56c57WHjJ5Sw56zKyJs905gg6FSmpkX2ql3y9BtDe3kl7exd2u4MRw8PQalVkZMYN+LvS6zWEhSk5csROfX0rpSUNrPvsAFWuHCHeQ2DS6VQev5v+PKiEp9QJTuCIESS8/BL2PXtpeP01WrK/xvrNNyhHjUJ96qkEjRnj4cnzc3M0Eas/umw255SvvXux792Lo6YGAEVMDOrMTFTTpqKadhL+0TrkYWHCs+YExc/fn4iLLqJUO5HGF59n2L4cMv1LaeQUZg09hxqjmekTxzAiwfklSPpy3GS2+xRcmsx2amudTxrKyxpZt+4AnZ1dBAcHcMqpCa4ea4lGcxsdRhv5+UoWLRrJ+qqD1NXaMBiaXf+/bzS30dzSwaZsA62tnT0eU2pGJCTw0g0PsPz5f/L6l+/xbWEhT1x/Ezpt/74K3sJQSkoUZ589nG+/rSIpKRiZTE5GRiwjRoaTl1/rISBJ50rT+ubNG0Jubg1yuYzCIiMhmgDiCCYjI9bZclhgJDIy0MM/7mjG6O7/vTsahSgl8ORoCYtA4AuZn4zR02IYOi6K7z87wI9bq6g7aCHl5FgSRvd9wCa1sOmTNCQnO6fu1dcP44JzHmRzzmtcefGfXWul4RQWi9P03F1wyc6uwGJx3sfKyhvJzamhs6uT2tpWjzY6k9GKJiSAxiN2du02YjY7z0lNjaThSCsWS5vr/YqKjK62uj17jxAVFYRWp8bPz4/zz76auiotH617iPseX8atTY9z9RVL+v29+BKFZs9OotXeweHKFlQqBecsGOGqcgJ8im4qlYLIyCBGjAxHrfJHGaDAYGgmJCSAuPhgEvXBFBR6xgM4eiXUYCf0CU5cREwQ/Bps23aYTZsqGDNmEklzIji8+d/MjtNhHJXC6bNPIb7Hf1kSTZrMbT4FlyZzGzW1Tm+88vJG1n12AEdnFyEhAZxyaiKzZiVhNNqorm4hJMSfPZY26ow2du5UsmjhSNZXHaC21rmXJNyYzW00t7STnW3Abnf0eEypGDF0KP/4+1Pc+4+neW/1a+TuyOfuW5ej0/U/MMxbGJozewh2u4PKymbUKn/OWTDCVeWUl1frISBJ50rT+ubNG0puTjV+cj9XjhBPMBmZcc6WQ1dMcP7OvEUqX/zanlJClPodIpPJCEpJJuG552g3VNL4wQdYvviCI6+95hzlnpZG0OTJBKWk/CZVRt3d3XQ2NNB+8CBthw7RXl5Ox+HD0N2Nn0ZDwLChBJ96CsEzZqAcPhx5RCTyYPFFR9DLpu2NbLLMZPHpp3KuaT1+339Bil8E16YvYNHlvf3ikmhiNFkJDWvuI7jExKgZ3ZPEvPduCVVVLWh1QWRmxjF2nNYluBQWGWk4YicsTEmnoxu9XoPV5iA4JACNxt+1r9QuqFT6YW5s44cdNSTqNa5ryN5YRWrwTOLHJPFV2cfc8Mo9vBt1P5OSk11eVHI/GZWVLSQmBlNZ2YJcLuPk6Qmua1myJIUlS1I8BCtfApL0mp8cujohJkbNsGFhNDS0kqTXMHJk78j0994toaq6hSlTotmZX8vWrVWMH691/W7A0yvrl/KLEwgEAomAIAXTl4wiNTOOLf/dw67sw1TvNTN2ZgJBIb2t+p7tcU5fjezsCmyWoVx94esM0fe2Qmh1znZt74pug6EZi6XDZXr+7rslFBfXk5AYwtQp0R5tdAZDM01Nbfj7+xEaGoxMZkWv16DRKImMCEKj6X0Crk/SsG1bNfX1rR5tdZII1tmu57RpT7LP8AaPvXADDU2lLL/xLsrLmigqMuInl1FpaCEtLYLDVVZqa1rIyIxzVWK5V1RJotOu3SZqa2yuz+v+GffsOYJcjvOzhgQQpPJHpVIQFRXE6XOGoFIpWL/+IFXVLUydEk1+fi1bv61ixvR4JvX4MbpigptX1kCeVAKBQPBrsmlTBZs2GQC4//55PLS/Ddne/+Pi9FHMmH2qy6tQEk2MRhuhYco+gktsjLrnQYeG994t5nBVMzqdisyMnhxBpyIvr5adBXXY7Z3ExwVjNrf15AgdPTlCgGtfqV1QqZTT2NjGDz/UkpiocV1D9qYqhkSfiS5iONt3fcT9T93Oy9p/kDp6lMuLSi6XUWloJlEfQqWhGT+5H9On06eiShKdpJ/eApL0mlwuo7Ozm9gYNcOG9+QISRpGjgx3Xfd77xb35Agx5OfX8u3WKsZP0Lp+N+DplXU0T6pfCiFK/c4J0CcSffttaG+4npZt27B8/jm2HXm05uU5DcL1epSjR6McMQL/hATkP7P5Ynd7Ox11dXRUV+OoqaH98GE6KirosjqVZ3lYGP4JCaimTkV90jQCU1ORh4cjDw39RSu6BH9sJH+CKbOTSMpYSt5TbxH239eILvoI89oGakZm8ENhLTurv+Oxm67qU8EnfamWqogAVwucL3NvqZ9batfQanufIEvVSaWlvdOSsjITXFMt3YUwudyPIUkaEhNPRh+lZ0PZR5x+001cfcYyhqsnsn+/Gau1A6u1g0OHmvAPkBMfF+yzHcJdiPLVNuH9GZvMdvbvb6S11YE6WOFqOczLr0Uu9yNY7Y/J1Mr322uoqXH+9+k+2crbK0sgEAh+DSITglm4fCI/flPF9k8PsHXlPkZPiyFpbCQymczDf0nC/TVJPOno3kNsnIrZp87rU9Ej3S9VKmfVUFqasyLLl7m3Xh9CRmY85WVHqKq2Mm1aLPPmDgEgLFSJXh+CyWhl1+56Dh5sIi4+mK6ublJTIz3igcXSwZAhoXQ6gomJ/jtTJ33Dv997ic1bt3L69Dsx1QW44kHDkVZUQQqs1g7At/m7JDrFxKpdFWP9fcaiIiNl5Vbs9k6qa6zYbA7XAw653I/4uGDCwpSsWlWGuclZ+TVv/vB+vbKEKCUQCH4vSDmC9HPWmZPY5KckuH4121etQJc+i9LD/uyr2ML9d97gUdEDvRVUUhUR4GqB8zb31us1rol9DUdaKSwwERXVW1EkVSeVljSwfv0B/OR+ZGXFu+UIvUKYn5Qj6GcRFz2EbYXvc95lV3LReVeg1Uxkf3kTLdZ2rFYHBw81EeDKEfrm7u5ClGcbne/P2GRuo7y8Ebu9E7Xa39VymJdXi5/cj+Bgf0wmG9u3V7s6TJYsSXbt5+mVJUQpwQD4qVRo5sxBM2cODrOZ1oICWr7ZSmtRES1bttC8YYNznVqNIjYWRWQkcq0WRXg4fkFByIKCnD/9/aG7G7q76e7uprutjS67nW6bjS6bjU6zGceRI3QeOUJnYyOdjY3O9YBfSAgKrZagKVMIHDWSoEmTCdAnIg8NRa7RIFOI/zsJfCOV4krmmt4+BVPuuBLHNYuoe/wJLJ9+iuLb73n5YC17LQZMLXW8d/8DyN1ETkmkysuvdQk7I0aGE6BU+BSAUlKiiIwK4vnn8qmubqG4+Ajz5g13VUDl5ddSWGCkqrqF+LhgkpPDsdpCPNrp9PoQTp4ej14fwhuv7+Lg3g7OGX0pFcO+55+fvUdq3E4yY88kOVmL3d5FYmIwFotz3KwvvEWxhvpWsrMr+lQyRUYFkdJznSDj4MEmV+uKTqtGrw9h7Ngotm+v5tAhCxGRgahU/syYEe9RjeVutCgQCAS/Jn5yP8adlsiQ9Ci2/N9eSr6rZlduNUmTtKRPju0jirhXEK1cUcLGr7/hmx0PEqAM4L9vrGX8uEke66XWs/y82h5fqgguuSSmx4PK6iHGaHVqxo11VmNVV7UQqlH2qUgyN9kp2Gmk1e4gNjaYoUM1jBurda1zv3+/+24JZfuaiE84mdtvGMurb9/Ffz64ltlZtxAamk54RCCZGbG02rtoaGglLvboHn/1PfHAVxVTVFQQs2Yl9VxLN9DtlryEMHZcFNDNwYMW/PycQptksu7eQuhLDBQIBIJfm6PlCNLf26zTWfWPe6nK+5L/ZBdRfeQwrW2NPPPwA/i52cJIIlVeTzwAGDEinIAAeR8BSKdTMWu2s43v+efyqapuoaS4gfnzh7kqoPLyaiksdMsRRkdgtXV4tNPp9RqmT3f+fOONXRwoh1MmXU9d02b+s+I1Rg2dRGrSApKTI2mzd5GoD8FiaR8gR/AUxTxyBDfRKDIqiBRdJEajU2g6eEjKEZwth3q9hnFj29j+fQ2HDlmIjAxCrQpg+gxP8/PfQ44waBWhurqauLiBjbYEvw6KsDBCZs4kZOZMutrbcTQcoX3fXlp3/0jb3r10VFXRbjDQuWsX3a2tg99YJsMvJAS5RoM8NBT/1FQUsbEohw9HmZKMv06HPDgYv+Bg/HyMvBQI+sO9FLe/McKK8HDin3icsHPP5cCd93J3aC1Xtfixbts27vzXP3nyhhs9xosbTVaazG3ExKj6bYFzx2Bo9vBhkti9q56Cgjqio9VMmRJNkl5DYZHR5U0i7eVeraXXh1BT08LQIeH8ed51pA9P4dH//gtD/atcHn45C0+fhl4fwrbvqvlhRzUgcxmxu3tMDTT1z/vzOKcMqvtM1NRp1YSGNdPh6KKjvZOpU2KYN8/pc+Uu2k2eFCMqpAQCwW+KJjKIs/+SzhN3fEvAkXYO/2AiVOlP0phIj/u7O+npOjq7smhuzySv8FuuvukiVr23nqTEXq8Od78lqcpoIA8ldw+mjMzeeLBrdz0FO+sYPiKcCROjgW4slnZ25hsBXG137v5LGZmxNBxpRaMJYPiQcTz3yCre/uAhPst+iJFJZ7LwzBvRatWYm+xUHLKwfv1BwCm8eftMSXtmZ1f0qWJy/zyTJse4rsVktBIW2rtHWKhzXaejiyitihnT410G6957iAopgUDwWzOYHAFAqVZzwf2P8fbd93DmGBP/+a6az778irjYGG6/8XqPtUajjSZzG7ExavR6zVE9lAwGi4cPk8TuXSZ2FtQRExPMlCkxJCV55Qg9e7lXa+n1IdRUtzBsaATXzb2NtNFj+OfbL1FVe5DzIv7M/NOnotdr2Latih9+qMGVI3h5TPU/9S+yz+dxF9ekPaRjoWFKOjq6aG/vZMqUGObPd7bEu4t2kyfH/GYVUhKDFqXS0tJ45ZVXuPDCC3/J6xEcI34BAQTExhAQG0PwKacA0NXWRpfNRrfdTpfVisNsprOpic7mZrC30d3VBTIZMj8ZMpUKuSYUuSYEv5AQ/AICkCmV+CmVyAIDkSmV/X5RFAgGi3cp7kCoM04i7at16F55hceff4FbKw28tnYtSdEx3Hj++a51BkMztbVWRidH9Gnt8+WfpNeHMGfOEJeYIxmLQzfd3RAXp2bWrCHk5dd6eJP4mmI3d95QUlKjXK/ddPGZ6CPjufs/L/BK9kuUGPZx/eLFNDS0Ymlqp6Gh1XXN3sKZtH94mBKtVkWS6+mI70lI5WWN5ObWkJYWQVRPpZReH0JIcAAWSzuN5l6TXjFNSSAQ/N6QyWRMXzCM7A0HGaLwp+TbauoOWhg/OxGlqq9PplQ1de7Cd1l2xQJ+LN3F5dcvZdW764kId36J7p3cF8GkyTEe5+v1IX38k/T6EE53iwf5eZ7xQKPxdw3KyM6uwPk1SObTrDwzM8FlTi69npL8Go8/9yKfffkyb3+4j6ame5g8KY3Ozi6qqlsoKjKSkhrlUzgzGa0oA/2Jjw9GGahwVXr5up/n5BwmN6fGJazl59W6hLmCQiNdnd2YRUwQCAS/Y44lR1AEKLni8ceJeflpLPY2PvihiNfefpf4mBguPG+Ra53BYKGm1kpyckSf1j5f/kl6vYY5c5JcYo5kLA7OhqG4WDWzZieRl1eLxdLu8pryNcVu7tyhpKREul674ZpFxMck8eTLT/Dex0+w78ACLr1gCQ0NrTR55Ah9hTNp/7AwJVptEElJnq183pVf5eWN5OZUk5oWiVbrrJTS6zWEBPtjsci94oHvPX4rBi1KPfroo1x77bWsXbuW1157jYiIvhNUBL8P/HpEJYm+QzIFgl8X71Lc1av3smZNGYsWjWTx4tF91vsplUTfeit/njcP05IlPFZczN2v/oukqEjOnnka0PfLtXvl0aef7KegsA5ri4OUlKg+wpJ7BVFQkIL29k6qq1swmqx92uqysysoKKhjwoTeMeHuZuQSrZYAbph9I1/9uIHs0i8w/vcQj1z5F9TB8a5yWPe9vScI+smdZuYBSkWfzyNhNPWM/a5ucZoZDgmlrOwI49N1DBsWRmiokvHpOmeiklvj8teSWhTd/VDcRTaBQCD4NZFiQnd3Nz9+c5hvPyrny7dK0AwJ4dQzh/k8R60K5t8v/5dFF8/nkOEA1916Ge+9vpoA/wCfYot75dEnn+6noKCOFqujT3WQuzA0bqyW6mor27fXEBSkIDMzgXFjo1xeUwZDM/n5dZSVHXFrocPDRL2+vpWiIiPJQ88g/pIU/m/N/bz10Z+Jin6A+fPPZtcuk6tlzt0nShLGDIZmbNYOtNogbFaHa8qg93Q8k7EnHlQ5x363tna6qrz0iSGkpkYQrFYQFqbkzTd3ERkZyMlZ8UyaHIPJaHUJWJIflZi8JxAIfguOOUeQyznzpr8RqA7BbH2BL4v38cCTT5OYEM/0k6YBfQUX98qjTz8tp6DAiNXaQUpqZB9hyb2CKEiloKOji+qaFoxGW5+2uuxNFewsqGPihGhm9Yhq7mbkEq1WFRedewff5q0lt3ANFtsBbr/hVtRq9xyhd2/vCYJyuYzoGDUBAfI+n0fCaLSx7rMDVFW3UFNrJTpaxcQJ0Ywdp2XY8DBCw6QcoYrcnGqXv5bUoij5U7kLbL8mgxalrr/+eubPn8+VV15Jamoqb7zxBmefffYveW0CgeA4Zc2aMr7+2kBVVQuTJ8e4RgxXVDRRXNxAWlokSUmhBKWm8vDOndTOmsVb333HVf/4B8/sriM2LYOx47SuL/DQKxSVltZjMFhQyP1cvdreFUruCUx2doXziUpNC8HBShL1IV6CTTetrQ4OHmzCaLL2mY4HUGloJj+vDn2ShsduuJZvi6bx9OrXueSJ23n6pr+SnJziem/XJL+e8eUjhoczOjnCZWg+0BNs9xbEGTPiaTS3YbG0U1hkpKsTxk9wVoY988wOdu0y0dDQyoiR4R7XCnj8LkpL69m2rZoYdQdTpsYhhj0LBIJfC5lMxthTE/nHS/kMkStQyGQUbjSQdko8ZrO9T1WSNiqa/7y8gsWXzGfHzu1c99cbWH7DP2ht7exT9SSdU1riOybs8TFoQqtTY6yzsW9vI1ZrB+FhgX1Em7KyI9TW2sjOrvAQptyn4x08ZKG5uZ0Z08fxwj/WsGrdczz67B3MmbmFR+99hqhIpzDm3q4ntYO4C1W2AWKCdwtia6uD7m5oaGjFZu0gOTmCpctSWbmihIKCOoICFbTZHa7phdK1dnbiuhapokyfpEHW3k1AZCDhMUKsEggEvx6DzRFmX3U9cn8FDQ88TN6hw/zljru47dqHiNUl9OQIGpcwJIkspSUNPfFA5hYPPCuU3MUhV45Q3UJwcACJiSF9RBu7vZODh5owGm19puMBVFY2k5dXS1JSKPfddgvf/ZDBm//3CjffdyMP//1OUlJTPK7RXYySJgi6C0b94d6CqE8KccUUg8GC1drB+PHOyrBnnt5B0S4TDQ12RowI7zPJz/v3tS2nikhNJ1OnJf5P/65H45icqYcOHcrXX3/Nyy+/zKJFi0hJSUHhZW69c+fOn/UCBQLB8ceiRSOpqmohKiqI4uIGV8ApLm4gN7cawPWaPCCA177+mkMzZlCYn09owZdwoJL/5meRNFKLrWf6niQWFRYZabE6b9xZJzvNXQdqWRifruPA/ibs9k4aGlqpqLDQ2dnFGWcMJSUlirHjtBhNNpe5ODh9qCyWXj+rwgIjra3O67DaHJw7K4Pzz5zGbS+9yNWP/YMvcnN49q83E6GRpnT0ji8fOy5q0BVL7i2IkrhlMDRTb7JSXHyEtnYH32ypJDxCSXx8MBpNgIf/lPSzydxGk9numji4b18jieGdxMdrGH4s/5ACgUDwMzAsOYJPPinnotlDqT3QRGOtlSB9MPsrnfdc9yqekcNH89KTb3DFDRdisXSwceNBautamTo1Dn1iSJ92uKIiIy0tzphwclbfmOAuKoGnR1RRkZHa2tbemJAaxaxZSS4RSTpn1+6emBCrIi42mKoq52S8w1VWJozXcc/yJzlz7pnc9dCtzD/vFB67/1lmnzrP9b7uLePeFVH94d6CqNWpe7ylAlGpFOzZ20hBoZH9BxopKT1CTLSKsLBA1zV7C18qlYLs7Aq2b6+mocFOVZWVeG0QqhgVaROj/7d/XIFAIDgGjiVHmHnpNTwu8+Pq5X+jwdbGrl3V7FF0UVhoZNjwUKzWnhyhR2QpdIsHUnXWQG1s49N1HDjQhL3VQUNDK4cOWejqrOSMM4aRkhrplSM4BbDdu0xYmnv9rAoLjbS2dgLdWG0dLDhjJovPzeLefzzBX+68i3PPmM/9f1tOSHCwSyCSxKhjqVrybkGUqr/Kyxupq7XS7pYjJMSH9OQIvf5TkvClVvm7KqfWrz/AvrJGYqIgLiHsWP8pj4ljHpdWUVHBmjVrCA8PZ8GCBX1EKYFAIDgaixePZvLkGNcTDwnpz+6vAfj7+7N6/Xp2Fx6g/Z1VRG//jLhDa/i+dToNwfEMHdobSMan67C2ODwmWni3wrlXDk2eFMPV1wRhMDSjVilYv/4gVdUtbNxU4eo5l54st7c5eO/dEhob7YSGKpl5mh6dVk1WVhzqYAWBSoXHvo9dfTPJ0am8+MlbnHTVlfzz9r8xe8qUPi2Cg8X7c0h/f/PNXRw4YKarHNraHKSlRXHzLZP6NVUPDXN+fqPJhlzu55zENMz5xF0gEAh+ba65Jp2srATS0iIJcHTz1b+LaSxtJDE+mMTEvvelU7Jm8c4/PyXQX09ubrXLuy86OojaWitDh7mNzk7SUFVlJSMz1qPdznviniRmuXtEqVQKqqqcMWHTpgqXL5UUE9raHbz7bgmNZjuhGiWnnaZ3tQcWFRlRBipc+55+2hno41O599HbuOavF3PBoou4+7aHfQpkg8H7M7j/fVtONQU76+jq6qatrZO0tCiWLk32aaoOzuqygp11tLY6iI9zVl7J2rsZOSJs0NcjEAgEPwfHmiPMuuQqXupwsP3jj4iKb6PIKKequoXOri7kfn4MG9bbAzA+XYfV6jkZ27sVzr3KafLkGK6OCsJgsLhEGmeOcMgrR7DQ3t7Je+8W02i2o+mJBzqdiqzMeNRqfwID5R773rf8Hobrx/HOh2/yff5OnnzwPobrnVVTP6WFzvtzuLcr7j/QRFe5Mx6MSYvsyRF8m6pL7YtyuQw/uR96vYbUkU4h65fkmBSlN954g+XLlzN79myKi4vRarW/1HUJBILjnKSkUNeTjoFekwgPD2fGzEkwcxLb35tF7VP3cFrtVxQqR1MRN4vMTOcTj5SUKKw2B3v3HMFgaPbpy+Q+tQ/6ij2FRUZMplbXpItlS1PRadWsWFlCVXULkRGBTJyoc52fkhLVx7sKnIlOXOBoXr/5cZ5d/QaL7ryDxdNP56U7/srkSZ5mvL7M2Y+GdE5nZyea0AB0WjVdXd1kZMT2+UwbNuxn69YqZsyIZ+KkGCoNzVQetpCUFELWyfFEKNrFUAOBQPCb4H3vX3rPVLLfKeVgUT0VMhlhcwJdfnsSJ2c6vUPUan8iIwNI1MswVFgwmWwYKixkZjrXKQMUxMSoUQb0/crra2of9BV8inpigjQRb+myVLQ6NStX9MSEyEAmTnKLCT3m7O7G6ADW5kAWzHmQYfoNrP3sBbZ8t4UXnvgnUydneFyXtzH7YJHO63T0xASdmq7ObpcgJ32mDV/sZ+u3Va7JfHp9CNExatraO8nIdHoRmuusxMWJBxUCgeDX51hzhDOv/DNRkRF8t+JdpulllEUk0N4up6baRkWFhcxMZ5VsSmokVlsHe/YcwWCw+PRlcp/aB33FHmeOYOvNEZaloNOpWLGitCceBDFpYrTr/JTUyD7eVeBs69OFpfPXKx5hxSevcfGfb+DyC5dy6/V/Jigw0OO6fJmzHw3pHIeji1BXjtBFRmacx2f64osDfLu1iukz4pk/fxh6vYbKymYqKy0MGRJCVlYCwcp25Iq+g0h+TgYtSs2bN48ffviBl19+mUsuueSXvCaBQCAYkPpwOxft/5Hz9Wnc3r6PrhIzHXVa/KOdbQYDtev1N7VPQhKYNmzYT22NlfCw3lEBkhnh+HQdkVFBffysGupbKSs7glqlQKdVo1Yp8JNDc72M0bIz6NRF82nOZnZcWcQLt97KrMlTXHtL416tLQ6Xt9TRqqikc0aMCGfx4tEDnrN1axX795sBmDdvOPa2DqqrWtBqg9Bp1Tga2wd8L4FAIPi1UKr8OeO6cRRlV5L78X6+W1nGhNP1hMf2vb/FJwbwyLMPUX6wjAf/9i7jx2tdRuJw9HjQ39Q+CUlg2vDFfmpqrYS5xQSXYXmSxqfoVd8TE1Qq5zFzUxuxcWoOHsxgzNBwqhvfZunl53DRBZdz+033EhLsvMaiIiOFhSZarI5jMiKXzhsxMpzzemKCr/O2fusWD+YPR6tT46+Q0Wxp9xD0BAKB4I/CtHOXIJf789Ljj7Dyh13MO/UCUkee4vruLjFQu15/U/skJIHpiy8OUFtj84gHfXMETz8rZ47QiFrlj06nQq3yRy6Xsb/UgS7oPKLTf+T/Vq0he+t3/OOev3PS5EmuvV05grVj0GbkrhxhZBiLF4/q95xvt1ax/4AZgPnzh6HTqbDbHVRXWdFqneKVremXzxEGLUp1dnaya9cuEhISjr5YIBAIfkEqKyux2qy8vecHhl18M4tKt1P18KNUjZzOiGXzidYF9yvODJSguFc6NZrb6OrqprFnfKrRZMVqc5rEek/wk/ydpNY/6K3Y6up09pc3NbWRFjWZG/50Oi999hYL77iDC0+fyz+uu44IjcYVzKQWwCZzG6FhvqfkSdcZHqZEq1WRmhrRp/LKe+LgjBnOp0TST/fgKRAIBL9H0mclEjsilC/fLGb7J/sZNTWaYRN0HlWdnZ0ODlTsx1RfxYtv3M7a/37KgfLmPhPnfDFQPAA8Kp3M5ja6Orsxm9s8Xl+6LJV8t2lNkghkMnrGhJEjI6itcSY7HY4u5H5RTJ/4ICGRBaxY8wLZ33zFI/c8xczpc1xil9T+Z25qIyy02afI5F7tpQz0Z8TIcLIy4zwqrNyvV6tTM2N6Tzzo+Qm9Alu6iAkCgeAPyuSzFxLxyae05+zks+z/kjJ6KBDvigdZWQk+J9dJDCRYuVc6mXtyBLOUIxhtWG0dzhzBa4KfTqfCaLS5Wv+gt2Krs7OblpYOHJ3djI4/mZtvWMgDTz7BRX++gaULz+WOv95ISHBwb47Q0wLozBGUPoUm6TrDwpRotUGkpkYy2S0Gek8bnN6TF0g/4bfJEQYtSm3cuPGXvA6BQCAYNNdddx3btxfw7rtv8PjqNzBd8CQn5XzGhL2baX6zkqibrkEe7LvtwLutzR13rynvG/JAE/yk43K5H/FxwW7jXZ3HIiOV5Of7ExUVSGOtnKUTr2DWhL28vv7/2PjDDzxz000smDGDlJQoV0uexdJG+X6za/S4L08sPznExKj7tLX4ut5584YzcVIMBkMzRpPVVREmEAgEv2d0SRouuHsKX79byt7tdTTW2hg/W4+iZzR2eFgELz72FpffuJA9ZTu595HbmZB8LQUFdU7z8ERNv1VGRzMVd/eachdt3F/X6vrGA+lcKSakp+uIigpyrcnMiMXh6EKrDcLRcTL335bB+q+f48obL2TBGedx798eYWlqqqsdz2Jpo7bG6lOc8p6kN2F835Y/7+udN3848+YPx2S0uqYVShVhAoFA8Efm2Tf+Q8neA3z13VZefPNJWq33s7e0G40mgMTEgSuMBhKs3L2m+uYI/U/wk4779ckRnMciIwPZudNIZGQghTvbOOvUv5A5pZAPPn2Pzd9t48E7b2f2KTNISY10teRZmqUcodElhHlfp1wuIzpGTUBPrPT1OXQ6FfPnD2P+/GEYjTby8mrR6zWuirBfE+FSLhAI/pD8+9//pLr6IJs2beKDzx+jfOIjOEIOMmXvx9Q9/DDhl15KUGpqv+fn5BwmN7eGjIxYRowMdxmdj+7xFdFp1S6fKOekpYF9qPT6EE6eHu9R2eS+JkqrZstmA62trYwYGcaiWWdz1XmzWf7iC1zy0IOcmZnFEzfegNUGXZ2g0Sixtzlc05Ia6ltd/eTSNahVClern4RUIeX+WSS8hSqBQCD4IxAQqGDeNWMp3GQgd+1+vvuojEnzkwiJcAo9Uyan869n/83lNyxl1ScrUAcNIS4uA70+pN8qKG9ycg6Tm1NDWloE2p4HD94m5FE9bdtt7Q7kclxteb7ELb0+hOk9McHdYB1Aq1WTlhpFq92BudFOZEQcb/3zA9au+5CHn7yHb3M38/dbH0AfM4POnnigT9RgbrI7vVAqm2mzd5DuFg+kSXren9dkdIpZMbGqPse8xSqBQCD4oyOTyfgseyNTx4+jqHQvH3z8NLNPvp0RwyN9VkD5IienitycalLTItFqnSKTu9Ck06lcPlHZmyo8pu1BX3FLr9cwfbqngbn7Gq1WxebNBuz2TkaMCGPRogu47E9ncN9jT/Dn5X9j/uxZ3HXLX7Hauujs7EYTosRu73RN/fPMETyn6bl/Zl+eWRLeYtWvjRClBALBHxKFQsHTT7/B3LkzqKurZO++Vwh//v8YOvpCqpbfRsMrrxA8cyZt0+dSedjapw0uN7eGwsI6Dh1q4rTT9BhNrcj9ZM5Jfl5CTkFBHd3duKbt+WKgCiyA9jYHbW2dDBmiITxMyXvvlpCREcs9S28iLjCZtXlrmHL55fx5wfnMTZ/NiOGRlJfJyc2tod5k5ZviI66yX8l43ReS8DQ6uW9Ln3uC9VOM1QUCgeC3ZPxsPbokDV++8SM5q/cz9tR44kaGAzA9cyY3XHUnL73+D97/8Ekuu+A5UlNm9tvu5t0Kt2HDIfbuPUJlpYUpU2IxN7X1HOlGT29FrHtVks3m6PdaB6rCamt3UFtrJS0tgsjIIEqK650PPqKzuP7St9iW9wa33/sXxqVO4qLz72Tc2CnU17dSUGhBqfSjpKSehgY70Gu63h8GQ7OrbdCXcCb9/Knm6gKBQPB7IyAggH+/t445p02hztxIftEbnHnGM/22unm3weXmVFNQaKSktIExY7SMG9vWe5K+948Gg4WdPTmCNG3PFwNVYAG0t3fS3t7FkCEawsKUvPduMRmZcdx6zV1EhX7Kpm0fMve8C7hs6cVkTppDV5cfVmsHOl2Qx1RA6DVe98VAnlnuottPMVb/XxGilEAg+MNSVdXFOec8xDvvXM+BAzsoKvqMs8++laEffUjtP/5B04cf0b5rDweHzAE8W+AyMmI5dKgJR2c3DQ125H4y9uxpoLa2hdCwQNdavT6ECROige4+T5kHK+yUltazbt0BGs1tBAYqMBiaXSazcfFqFJYE7jn3bg607uCl1Sv4+LuveeKGG2k0aDCZbBQX49Ea6O0X5c7RPFIkJANEQIhSAoHgD0PcyDAuuHsK61/bTeHGShprbaSeHIdMJmP61KVs2bqd3Xu+5tONT3DFJfP7nN9fdVBwsAJ/fz8iIwNJTo7AUGnhh+9rUKv9CQsN9GjT81WVdCyiTn5eHbt/NNFkaUOv17Bn7xGqa1qIilRhMnUy75Q7uPaKq3ngsTu58+EL+NP5lzEkdhHlZXa0WhVqVQCBSoWrpbA/oQ0GHxMkk3RAiFICgeAPT12dHwvPe5J337mePZUH2fLl20ydepfHmv6qgzIy4zh4qIm2tk66OruwNLfx/fe1BKv9CQ1Tutbq9RomToh2/dmdwQo7pSUNrPvsAI1mO4FKOQZDM+XlZgDi4oOhbQQ3XPwoVQ1bee3df7Ph6y+ZPvl8rGYdarUWq63DozWwP6HN/RqPVjHmkSMIUUogEAgGJi0tEphBevo/2bt3J3fc8RcA/AIDiXvoIdQZmVTfex/Tdn2A//Dzgd7KocxM59CG3NwaUlMjaG3tpLa2hZiYYNQqBdnZFUA3cXHBPWaCIS5Dc+nLv7ew46slUFrX3NKBQi5DLpeh12sIDFSQkRFLeLhz7Ov4dB2Xp0zk4vnzuf2ll1hy912cPGYis5PP4KT0WAKUCtc1eJusuyNVbBlNVvLyaz2Eq4E8swQCgeCPgipUyaJbJ/LtqjJ+3FKFxdTKpPlDSErS8LebHuP19+7mb3/9O7FxYX3O7U+kOfusEUREqIiMDHQamze1oVb7ExqqxFBpwdxkJy7W6VUYFRXkYWhuMDRTUGikvKwR6BV1pJbAjMxYRo7ojQkADkcXTeY2IicEMWFCNJGRgURHqzBUWHqErVTWfbiZd1a8yYuvPomf31pmZl7OlGlLUQcF+fSVgr5teO5rvI/355klEAgEf3ScOcIsUlJeYEf2xwz376D0uy2knHyqa01/Ik1mptP0OzenmozMOFptDoLV/sTEBqNW+ZO9qQLALUfQuAzNJUHIW9iRWgIzMuMYMSLcY11zSztyuQw/uR96vZpApZyMzDjCw3pzhJTUSZy/4GweePIZ3ln9NKkjJzFn7rV9WgO9TdbdkSq23P2jpDUDeWb9GghRSiAQ/GFJSgolKSkUGAZc1ud46Px5BI0dQ9XNt2D/4D12fLOT4EXnkTLG+VQjQKkgOCSACoOF8ek65s0fhl4f4tGyd/CghYqKJgID/Vm0aARWm6NfYSc3t4bi4nrX3t7rkvQaApQKDy8oybtKYpRez8dPPsknW7dy7+uv8dCaf3BJ63z+fsml6KKcYlOT2dPfyhe+/KPckzHv9xUIBII/En4KP05ZOpqYIRq2/Hcv331YxqQzksjKGkZW1op+z9Pq1NTXt5KdXeFR1ZSSGoXN5iA/v851bP78YZib7BTsNNLdDaZEGxZLBzk5VQSp/MnKjMNmc7BnzxEiI4MIVis8RJ3cnN6YoAxQuL7wz56dRJDK31mVNTocmy3EJTJlZvZeq7+/P1ddch3nzF/IE88/zMefP8euPZ9w2013M3HSWcDAnlES/YlW3p5ZokJKIBAcL0g5whlnXE/38uv48l/PU/xNNgGBQQyfPA3oFWlKSxrIzq7wqGoKCJA7c4QKKUcYil6v8WjZO3ioiYpDTQQG+bNo4Uisto5+hZ3cnGp+LG5w7e29LilJQ0CA3MMLSvKukhg9YgT/fe2ffPblVzz50ivc8PfruGDRufzlqiuIilQN6Bnljq8KMV+eWb8mQpQSCATHFR0dHTz22GPceOONREREEJCQQNLKFXxy3q2M2rMJ2zsv0/G3m/DXatHrQygrO4LF0o7V5vDwYJJa9qqrW6iubkHmJ6OwyMisWUmAb2EnIyPW9XMgAchXpZN3S965p5zC/IwM3vzsU556/30+2LSJGxafx4zRM6mttTM6OWJADytf1QBH870SCASCPxqjT4olIj6Y9f/cxfa1Bxg7s9dnCqBo907KD+5j8TlLe1/rp1XNPSbYbA4mTY7BZLQCMqCboCAFuTk1VBgsdDq6CFYrPGKCd5VSRmas62d/AlC+21Nt9/PdW/J0uhieefQVrrz4zzz14iPcsPwKJoybzB0334u8e1i/nlHun8v9p8TRpg8KBALB8YBMJmPudTfTYmni6Zde5sbru0ibluE67qtdTa/XUFbW2JMjdDB5cm+OMHFCNJbmNiormzGZWoFWrxyhr7CTkRnn+jmQAOSr0sm7Je+ceXM5/dRTeO/DVfzrrXdYu249V150IRPTZlNT2+rTM8odXxViR/O9+qWRdXd3d/9m7/47xGKxEBoaSlNTExrN4Bz6BQLB74fLLruMd955h9NPP53169cjlztHoW7bdpjidz4jq+Ad5O12wpYuxTpsDLt31QPdjB2n9SnYZGdXsGWLwVUpNZjqopycw2zeXIleH8LceUNd+5aW1rNxUwX21g5GjowgOTnCVTElVTbFxKgJDVNSb7JSXHyEjIxY0saF8cIHH/DK6lUo5AoWZMzh4jln4e+n8ukr9VNwNDYik8kIPXcBMj+/Yzr3eL1vHq+fSyA4Hmltbmf9v3ZRe8DC8IlaRk2LYV/5HhYsm01Xdxfvv76aqZOcZUi+/J8kEcjdL8pbsMnPqyU/v462NoerUupo1UXu8WDe3KGuPaVr8JPLqDS0eEz90+rULrEqJlZNdXULBoOFmTMTycxMIOf7b3n8+Qf5saSISeMzOOWki0keOZn0cbqfTWQy11kZMjaK8Jhj3+94vHcej59JIDjRWLJkCR999BFp8dG88uRjJIx2Tun29n+SRCDvqiV38tzigUrlT1Zm/KCqi3JyqnpzhLlDXfuWljSwcdMh7HYHI0eGkzw60vXeUmVTbE+OYDLZKCluICMzjrQxIbz61ju888FHKAOUzD31TBafeS4yWaDP6/4p2JrMyBX+pM447ZjPHey989gyD4FAIPidUVHRxPr1B6ioaALg1ltvRaVS8dVXX3HXXZ6GhjXx42i6/zUCx46h8Z13aHrvXeqqmzyMzSVKS+tZsbKEoCA5C84dydXXjO0jSEm+TUaT1eP1zZsr2bXLRE5OtcvHA5xPYgoLjezd24i9zeFqBZSeho9OjgC62bvnCFu3VlFcXE9ubg2hwcHcd+WVZD//OqeNPZmPtq5nwb038Og7b7Jzt2HAaxEIBIITgaCQAM69dSKJ4yLZv9NEzsf7GZY0ktNnnYnD4eCG266iurYKcFZHpafrKCoyUlribK+TWtykCilvcae0pJ6CQiNaXRBLlyZz1VXjPAQpk9FKfl5tT2VVL654sM0zHkjVWoWFpp6BFkfY0xMPwFnVlNwTE77/vpqSkgZyc2oAyJw2nTeeW8t1lz1Ffb2ZZ1+9noeevow1n35GV1fXgNcjEAgEJwreOcLtt9+OUqmkuKqOxx5/AlPFQZ/nSSKQVCHlLeyUljRQWGhEpwti6dKUnnjgKUhJvk1Go83jdSkmbNtWhcFgcb1e2BMT9u5pxG7vdLUCShVSzngAe/Yc4dutVfxY3EBuTjWhGg13/PUvfPjme0wZdzKfbFjN5TdfzktvvsauHw0DXsvvCdG+JxAI/tAUFzeQm1sNOPvHx40bx1tvvcUFF1zAk08+yeTJkzn//PPZtKmCTZsMgJ5LHnqRqkeeJTb3Y6bVVqGedEWffd1LeZctTfU4Jk3dC1QqXCPB3UUtvT6EykoLQ4dqPNolxqfrqDRYaGlxkKTX4N3iJxmUh4Y1ExmpdFVKSdib/UmPmMmI6VMxtBWyPn8TWx/fyrnbT2FG8nTktsg+1yIQCAQnCnKFH4ohITTtN0Otjdw1+7nv1icpP7CPPfuKuf7Wy/ng7c9QBihdolCL1YHN5qCt3YFc7pys54uiIqeRebBa61OwWr/+IHK5jOnTE/r4NlUaLAwd5hkP0tN1tFgddDo6kSvkpKZGoAxQuNZIrXUmo5XqaisGg8XVDghw+LAVmSOV+TOeQqk+wJdb3uaJl/7CR5+9wMUXXMGwxJkYKtpdewkEAsGJhneOMGXKFF599VUuv/xyvty9F/1LL3LNbbdTWNTk+s4fGRVEZWUzdrsDtcrf576FRUbKy8yo1VrfglWRkcBAOVZrT47gtkaKCcOGhXq0z41P11FZaaGlpYOkJE2fFj/JoDw0TElkZKCrUkrCblMyMnE+cVFZmJp28M32L/mhcBNnzZ3D5LEz6bBH9rmW3xNClBIIBH9onNM1en+Cszw3Ly+Pp556iiuuuIIxY8Ywe7azz3v27CRK95h5r3Ua0bGhXHJkNY7XXsC6ZAnqrCzXHgNNnpAEqxEjwhk/QdfHp2PuvKGkpEb1aa1LSYmiutrKli0GNm8+DDgN0d1x932aN2+4xzG9PsTldTV23FSeDbqa9zZ8wRuffMJH2dmMjB/CJfIzGDbydCLcSmQlv6r2NofL1F2YnAsEguMRKRbogvwp/OwghZ9X8fjf/8Wlfz2HXcUFPPLUvTx895MuQ3JloNOAvNXuwNxo79fwe6DpdEVFRqqqW4iPC+4TD+bNHUpqSlSfdkDJWP2rjYdobm4nNTXC1coNvUKSVqfm4ovT+rynXh/ChInOeDBu7Bj+euMyduzczrsr3uTRZ+4jwF/JydPOIi5xKd3d0chkMqC3TbGt3eE26U/EA4FAcPzhK0e47LLLyM/P5+WXX+b9nDzi3nqTsaddCGgZn67DYLBQXu6sViosMhIZFdRHyBlUjjAyjPHjdX0Mx+fOHUpKSmSf1rqU1Eiqq1t6coRKwGmI7o6779P8+cM8jun1GiZOiAaiGTsuE2XgDXz0yWe8/9Eq1n6+nuFDRnL+OecwavQ8NCG9cUpqVWxv73SZuv/aJudwnHlKDRkyhIqKCo/XHnvsMe68885B7yF6xgWC4wOHw8GcOXPYsmULKSkp/PDDDwQHO8d5V1Q0sXlzJUVFRhRWM0trPkRVVkTQ5MlEXHQRe/ZbKCwykqTXUFfXSkNDK1lZcS4hR6qUOpq4421eDpCdfYi1a8twOLoZOTKc4JAANBp/Zs1K+skVTt99Z+A/a76mtCGP0qo9yOV+nD51GhfMns3p06aRu62OgoI66utbMZpsjB+v46a/TPLYo668iupqG/pLz2fI0PB+3sk3v8f7pogHAoGgyWRj3cu7sJhaadaUc+eT19Ld3c0zj7zCwrOXAL0ijaHSQnmZmYmTdMyaNcRjn9KSerblVBMZGUh0tKqPmOPLo8obd+NySXAyGa0893w+1VUtjB2r5dRTE8nPr3PFhJ9S4ZSTc5iNm3ZjMn9Dbv5nNJqNJCUOYcGZ53PO/EUc3O9Pwc462tq7qKu1Ehziz8UXpfZpRSwvOUL6yXGkTYw+5mv4Pd47/9eY8Hv8TAKB4KfR3t7OqaeeSm5uLgmR4Sw/ew6zL72aoJAQjEYbu3eZOHioic7ObiZNivYwOZcqoZKSNNTV2Zw5gpuflLc/VX94m5cDZG+q6MkRutxyhABnjvATK5y++87Aeyu/4lDNdg5WlqBQKJh5chbnnjGP6SdNY9t3dewsqKOh3t6TI2i56SbPHMFwoJaa2layzpnfM/V88Az23nncVUo99NBDXH311a6/h4T0PzJdIBAcvygUClauXMnEiROprKykqKiIrJ5KqKSkUC67LJSKiiaKixuwB0/CvuZ9IjaupLaign2Js9hR2snuXfW0t3fS2upAHawgMirIlVR4t/T5QjIvrzQ0Y2/rYHy6jrHjtFgsHTQ0tJKaGkFJyRH2l5vRaVXMmtV/AiIJXGqVwmWOLolY339fR5sxiklhC3jwnr+w/0gxH2zayCUPPYjS35/UxNHolEOJVOihO6jPnnp9CFXVVvbvb6KluOGYRanfKyIeCAQnNqFaFef/fRIbXvuRytLhLDvjWv77+ats/najS5SS2uT0+hD0ic4WO28BqajIyI4dtfj7y4iNDabZ0u5q+9PrQ0hJjTpqtZHkWWVuagOcAzbGjdVy1lnDyM2pcU3oKyg0Ul5uRqsbOCb0Z8yem1NDxUGIiT2Dm6/8E52yA5SUZfOf9/7Fi68+hS4qkejICYwfezKBQfG0NDsrvVJSo1x7mpvsmA63oIpR/SRR6veKiAkCgQAgICCADz/8kIkTJ2Kx26ky1ZO76r9MX3YpOp2KWbOTPMzO8/JqXeJRYU882L2rnrZ2B62tnajV/j05glNkWrYs5ajXIPlWSa2Crhyhub0nR4j0zBF6Oj58MZAx+/fb62hpjGVkzFKWXxdHZW0hn3yxgetuu4NApZKRQ9PQqIYTohzqmSO4iWbVVc3sP9BCWHHDMYtSg+W4E6VCQkKIiYk5+kKBQHDcEx0dzdq1a9FoNCQnJ/c5npQUSlJSKOvXHyA35BRmXpNK4prnmVi0iu7wyZSqRqFW+6MK8u8p6XWKTODbt6m0tJ5t25xP07NOjne1cRQWGCkvbwSc/lQLF450ndPa2onZbMc5ctyJrwor6b395NDVicc1ZGTEYrc7k5LxaQmcrh3NdYsWUX74MBu257L26+/YtHc9nV2dhAQGU1c+mvb/24N/ZyiOZhWZjlEMi1MjQ4Y+7dcv2f2lEPFAIBAEBPpz1l/S+faDMrq2LCbqgnhuuO3KPuskcQpwTb6TXk9P17H/QBOtrQ70eg3+Cpmr7U9a4417ddXJWb3xwNxkp2Cnke5uCAsNJDMzgczMBNd5Q4eGYm7sjQm+KqygV+SSy6Gzs/czSL5TvdP8hnHZxQt46K4n2LZ9K2s+/YycH75m995P8fOTE6MdDoGT8QucSoc9AmtzKMOHx5OUFMrIEWH/2y//d4aICQKBQCIhIYGPP/4YnU5HQGsLqx9/gO8//pDM8/+En1zuapXLc4sHOp2K8ek6qqtaaO/oJEatQqXyd7X9ua/zprSkgW05Vc4cISvB1dZXWOj0pwJYtizFM0ewOWhsbPXYx1eFlfTecrmMzs5uj2vIyIzD3tbpzBHGDeH02alcedGF7D90iM3fbuPzr7aQW7iGrq5O1CoNbf6pvPp2MXSGYbeqOalzNHHxIcjkCo82yJ+b4659z26309HRgV6v58ILL+SWW25BoRi89ibKcwWC45vu7m6Xt4aE1M4H3ZwyIQT5i49g3baNI7qR5MfO4KQZSaSkRGE0Wdn2XXWfdj5JRCosMFJQWIdGE8DixaOZPMn55Xegdj9fAlRefi179xxhdHKEa4+BKqWOxtq1+/hu+yFCYpqRhzWxo6SEnXv3YrE6pzLJ/fyIiYjgujPP4q7//BuZ37ENZv093jdFPBAIBN4UZhvIWb2fkAglk88aijLIeT/wjgkmo5Vdu3urmbQ6NTk5h10VTZmZCZiMVr7b1hMPMuP6tL+9+24J+8oaiYhQct7i0Uzqaf/wtbf3e7uLUJJAlpwc4drDfZ13pdTRWLt2H99/X03SUDuhEXUU7NrBzqI8DhkOIKUEIcEadJExfPdNLjFJEcf8e/493jv/15jwe/xMAoHg56P0uy18/tLTxI9OZfLZC/Hr+S4stfMBjB2ndRmOb9tW5dG6l5NTRW5ONRmZcWRmxrv2lUSkwkIjBQXGnhxhlKslcKB2P18CVJ5bTJD2GKhS6misXbuPbdsOEq4zE6g+QsHuH9ldUorV5pzUJ5fL0UVGcuWFS3n4uReO+fd6Qrbv3XTTTUycOJGIiAhycnL4+9//Tk1NDc8++2y/57S1tdHW1ub6u8Vi6XetQCD4fSO146WlRXqUl27bdphNmyqIjKzmrbceZ/369URH97YkJCWFotM5J3TodGrmv/E6Da+/TueLrzDVVE2Z35mkpJyKTqvG3tZBeXkj6mCFS2D6csMhvv++muHDw5kwPprIyMA+Zrf94W5sLuE+lW+gdYPBaLJSUtJAixlSRo7kqsvHAU5xrrahgfLDhymrrKSy0sDI+PiBN/sDIeKBQHBi4ysejJ+lp7rexv4t1Wx8t4iN5W+QljaGay//i8e5Wp2asFBnJVJYaDNanRpDhQWTyYahwkJmpnNNm72jZyKfwkOU2vDlIUr3NKDRBDB1aqzHvVyrUxMX20pRkZH6+tY+QpJ7xRb4jge+1g0Gk9EZDxob2xkxIo4Lz5/HhedfCoDd3spBwwEOHiqnovIQNVW1KJXKY9r/98yxxgQRDwSC44uj5QgaTRX/2bmHZW3tBIWEMPa00wFnxVFomJI9e44QGqZ0VVDZ7Y6eCXz+pKRGUlFhwWRqpaLC4iFKffnlIb7f3pMjTND15AiDE7bdjc0l3KfyDbRuMBiNNkpKjtDcLCM5OYWrrurNEepMJg5WGDhQUUGloZIhiQlH2e1/43cvSt1555088cQTA64pLS0lOTmZW2+91fXauHHjCAgI4Nprr+Wxxx7rN7A+9thjPPjggz/rNQsEgt8G79GvEps2VbBx4yHKyu7HaNzP0qVL2bhxo+sJaUVFE0ajjeHDQ0lLi2TN2jLWfJvA9NnLmfzdG0woWk3NZ21UxY4jqScIuE/cMBgsNJrbsNk6uOWWya6qJnCKSdIkDmuLY8AqJ6PJyu5dzifoY8dpBxShfFVY+VqTnV2Bn1zGqFHhZGX1jo6VyWTERkUh7w6i/qAafyIZqvl9tzWIeCAQCAZLf/Fgx54GdpQ1ECkrYt2mNazP/phxaRPImHqya43JaMXc1EZMrAqTycozT+8gUR/M+PFa0tN1vdVMSc544D2Rz2Cw0NrqYOjQUBYuHIXJaCU/r9bDo6qw0OThS9VfC6BkoD6QANVfi5/3muzsCvz8ZIwaGU6W2yhxgMDAIKLChrDHGoB/91AWzf39T+T7JWOCiAcCwfHFQDnCV18dYO/eu2loqGRdUCCBAdsJCtEwYspJGI02msxtxMao0es1roqoRH0I6eOdE/uMRhuBgQrnxD0f8aDR3IattYNbbp3kqmoCXB5VRYUmrNaOAaucfFVs9YevCitfa5wxgZ6Y0CukyWQyYnQ6DpR3UHuom6yJY5g6+QQXpZYvX85ll1024Jphw4b5fH3atGk4HA4OHTrE6NGjfa75+9//7hGoLBYLiYmJP/l6BQLBb4ev0a8As3vMAa+77g3+/Odz2LJlC/fccw+PP/444AxU+/ebyciIIykplLvu+patWw/DjASuyl5H9R13Yv3iExQRu5CducRlci4JQ5Mm6QgMVJCREesSgiyWdsApSo1P12FtcWBr7SA/v9b1ujcGQzMFBXV0d0NoWOCAotTR/K2kNRZLh8sXC/q2EhoMzfywo5pucxMqtT+TB/er/k0Q8UAgEAyWo8WD6ZmTOFRfwNbC9dyw/CrWr9pMTLTTj8lgaKa2xkpycgRbtlRSXFwPwPLbpgB4tNQtXdY79EIShyZN1BGoVJCWFkF+Xi3mJju1Nc5WCK1OjT5JQ1WVFaXSb0BfKkm8AgY0Upf8pfrbR1pjsXQwdIgGfZKGoiKjx/ukp+uw2Rz88EM1lqZ2NEo5p/b7jr8PfsmYIOKBQHB8cbSYcPXVb3L99efyw+5ihsdGI9+yCaU6mDpbFDW1znig06l4791ifixuAHpjQl5eLVZrB+PH97bgScLQxIk6ApVyMjLjXEKQK0fo8aiyWjuw2TrIz69zve6NwWBhpytHUA4oSh3N30paY7G0O3MEVU+O4NVKmJtTzY/FDSi6W5k67QQXpbRaLVqt9iedW1hYiJ+fHzqdrt81SqXyuCpPFghOZCTjcm+yshLIynLeTP39/80FF1zAE088wUknncS5557rEai2bTuMw9FJSkoEixaNRBEeTuKr/6L8mVeIeOcN/D59jba4a1EmJbmEodHJESxfPhxw+kEdOmSh2dLO2DHOJCIlJQqrzeEa9d1fa59eH8KECdFYLG00me0YTdZ+Baf+Wjp8rZGM1tXBCqwtDgoK6rC2OEhJiUKvD2HqlDhaavxJG2B07e8BEQ8EAsFgGUw8mLR5JePHTOZQ1T6uuPZi1n74OcoApcf9NVEfzKFDTSTqg1179Hf/lcSh5OQIlt82nPy8Wr79tgqrrZ3U1EjXemWAgpgYNTGxasJClf3ex6UKLH2SxqPSyptjiQd6fQjZ2RWuSq0mcxtV1S0AzJqVxNSpcTQ0tDJq1O9/CusvGRNEPBAIji8GExP8/F7l0ksvZeXGzeiXLqLwy3Ukn7aQ5OQI9HoNpSUNdHZ1kZgYTIZbtamvljpJGHLGA6c4npfnliOM7ckRUiOx9ghSGk1Av619er2GiROisTS30WRuw2i09Ss4+bqe/tZIRutqtT9Wawc7dxqxWjtISY10fcaJE395H73fvSg1WHJzc/n++++ZOXMmISEh5Obmcsstt3DRRRcRHv77D6wCgeDXYcmSJbz77no+//wd/vSniyks3MnIkSNdgertt3+kutrG7Nl6Fi92Pj2V+fkx8va/YD0ti5q//Q3T008Tes45JKZnAL1f9nNyDrN5cyXNzW20d3RTYXB6j7ivGajdTqdVM2uW2mV0HhrW7Frr3a43GI8paY1apUAdrGB8uo68vFpkMujs7CQv35nkLFw4EkdjVB+z3z8qIh4IBILBEBoWwpdff8b49EnsOVjEDdfezKuvv+zh19TV2Y1a7U9XZ+9coP78nNzv8654YHHGgza7w3WO+7qB2vJSUqNISY3qMw0Q+rbsHc1fyn2NJHZ1OLpoNNudHidJGgyGZk7OikOrU2Ousx79F/gHQcQEgUAwGC655BLef389Gzd+wCufbeLeJWdS9s1nnHzhpWiiVGRnV3CkoY308VoP36jBeD/l5FS5xYQuD+8p97X9CU06nYpZs5NcRufu1VLe7XqD8ZiS1qhV/qjVzgmCefm1+MnA4egiL6+WESPCycyMx9ZkPvZf5jFy3IhSSqWSlStX8sADD9DW1sbQoUO55ZZbPEpvBQKBACAk5FwCAr7DZtvP4sWLyc3NRa12flmXyniln+6oJ01kyOpV1Nx9N01r16Lct4/Ecy5w+Ufl5tawf7+ZhIQQ0sdHePSVu4tI3i103pP11CrnU3T3aqkvNxzk++9rmDYtlosvHnNMnzclJcplyl5dbWXIEBtyufyo7X9/VEQ8EAgEg2XUqFFMmfpXtm59lK93ruK5h8fylzuuJlDtbGeQBBxv3yhfSKKPwdDM5s2V7C83k5AYwvjxER7nuwtE7r5RUoue92Q9lUpBTKwac5Mdk9FKWXkj69YdQKMJYM7sIcdseC6JXdnZFdTV2pgwMRplgOKoLYB/VERMEAgEgyUi4gL8/bfT0lLByp0lXDYxhe2rVzLjostd3+u9faN8IYlCkn9Ubk415eVmEhODSR+v88wR3EQk7xY678l6apU/sTFqj2qpL788yPfba5h2UiwXX5x2TJ83JTXS1XJYXd1C0hANCoX8qO1/PzfHjSg1ceJEtm/f/ltfhkAg+ANw3nkp2O33smXLbYwZ4ynwuJfxeiNN6Ji99A6Sp0zF9PzzOF54iurhpwNpZGQ4/UjCI5RUV1lJ0tt97iOZGgIuX6e9e47gJ4euThidHEFomNKjWspgaKbR3OYSwAaL0WRl23c9Y8uz4hg7LorQMKVLABvslMA/EiIeCASCY+Gmmy6mvn4vhyuzCZKHsG1VGZPPHEpoVJBLwPHGl5gEvS18er2GQKWC8AglVVVW9Em+44Ev3yhpD7kcOjshOTmCsFClaxpgbk4NVYdbICH4mO7hktjV1u7AUGFBn6Rh5ky9xx4iJggEghOZ889PxW6/j+zsW0kfP55zbruNTx+7n+1rPmD60ktcAo473kKShLu3k9QK58wRWkhK8t0S55EjpEa69pDLZXR2dpPckyO4V0v9lBxBErva2zupqLAwPl3H2HHanhzB32W6/mtx3IhSAoFA4E1/418XLx7N4sWjqaqaTVxc3KDb1jZtqmDTJgMAWfdfimrCBCpuWc6EH9ci11qJXXw2mZkJPPPMDpcxbmZmX4FLejrS2urgrru2Mn68ltHJET6FIunPM2cmuszUoW+1lS8k0/X8vDpaWx2ogxUsW5p63FVGCQQCwdHoLx6AMyYsWLCC+vp6/DuDWfdyEdvX7mf8nESih/T1IIH+Tci9W/OeeXrgeCBVUNl64sGM6fFMmuSchCpVSnnHhIxMZxzIyIwdsOLKHWn6nsXSTnNzByaT03jd3aj9eKuQEggEgv44eo4w15UjnPnX2/nk6UfJW7eWKQvOw8/Pz2MvbyFJwrstLzMznmee3uEySndvAZTozRE6uOvv3zJ+gpbk5AifQpH055kzE11m6tC/SObO7l0m8nfW0dHRRXOP8fqyZSm/WmWUN0KUEggExy39jX+VcDiC+eKLg4SGBmA2txEV1c60aSn97ufd2heUPo6Gu16m5YmH0X+9gfqqg0RceaVLOJJ+eiO1091111b27zcDsGSJ5/uWltZTVnYEtUqBTqsmMzPBI6HZtq3aw7Dcm5ycw6xbd4AApRx9kgZVkP+A5cYNDTaqq23oJzQxZKjw2BAIBMcXR4sHVVVWiottpKUFcdJFo/jkle/IW99JalY8Q9P73mN9tfW5C0OSwOMuIPlCqsRyjwfz5g/vIxCVljhjgkql6BMPTEYr69cfdBmWe4tSrngQICd5dDhjxkZhqLD025JoMlopLz1CQGQg4TFCqBIIBMcfx5IjNDZGEpc1n6pvP6f4m02MnXm6x9r+2voa6lspK2tErfJ3iT2ScORulO6O1E5319+/Zf8BMwBLliR7rCktafDYNzMz3kPg2pZT5WFY7k1OThVfbDiIn5+MsWO1KBSyAXOE+gY7NbWNqJOafP6ufg6EKCUQCI5b+hv/KiEFJIfDytq1j3LkyH5KSoqIivJdeeSrtW/Ttno2tZ7BtZOTmVy8hrpHHmHi5ZeTuXzKUa9vxox4j5/ueLf4uWM0WbG1dhAUpCAyMqjPuUaTlXXrDlBZ2UxiYghLlyYftTqqqtrK/v1NtBQ3CFFKIBAcdww2HgDk5n7Fk/9ezqKZVyPjHGxNbaRO96yq9dXW56t6yltA6o8Z0+M9fnrTX2UWwK7dJpdhubfQZDL2xANDM4n6EGbNSkKrU7uGcPjCYGimoqIJVYyKtInRR712gUAg+KMx2JjQ3t7M6tUPYbNV86+7/kr5t1+jDg1n2MTe7/nuvkzu+Kqg8haQ+mN6T24w/Wg5gtf7Go02bLYOgoLkvnMEo411nx2gttaKPlHD3LlDjlodVV3VzP4DLYQVNwhRSiAQCI6V/sa/SkiBSC638+67Bkymav70pz+xfv165HL5oN5jzJgo9u1rJGjh+Qy55zyqbr2V+hdfJHjWLEIXLEAml7uMzNvbHFQYLK6Wu3nzhjNxUgwGQ7PL0FxCemIRHqZkxcoSkvQaApQK9PoQDIZmlEoFkyZHk3Vy3yctBkMzIZoAEhNDOOusYYNq14uPUyNDhr6f4CwQCAR/ZAYbD9LSItmxw0J7u41V2a8w/b5pVPwINks7E+bqUfj3Hxv0SZoe/6j+fTi8fZ2kdrt584czqScemIzWPpVS6ek6WqwOOhxdZGcfIi422K21T0ZYqJIJE6P7CFYGQzMhIQEk6p3xYDAtenp9CO0tHYwcEXbUtQKBQPBHZLAxAay8/XYlRmMV/9n4DRdPm8SPmzeiCg0jZvjIo7yHZkD/KPDt7ZSSGsn8+cN6YoLFZWguIeUIYWFKVqwoJSlJQ0CAHL1eg8FgQalUMHlyDFlZfQUtg8FCiCYAfaKGs84eNqh2vbj4EGRyRb8C3s+BEKUEAsEJixSMiosb+Pe//49Fi+bw1Vdf8fDDD/PAAw8Mao+gIH+GDQsjKMifwORhDF21ivI776f5q89p2fUjLXPO4/PtVpdBoeTjIU3dkzw+wHMKntTi9+JL+RQVGomPD2H06AjA07PEl+Ck14cwZ86Qfo/78qOKjFQRFaUm9Bd6AiIQCAS/Z6QEpaKiicmTF3P22T/w2WerefTV2/i/l9ZRmm0md/V+ppw91DWZzxtlgHNyqjLA8+u1uxCVm1PTNx70CEm7dpvYmW9k4iQds2Z53rtTUqPYs7eR7OxDhIcFkZYWQWen89i4sVGEhSp9mpTr9SGc3hMP+hOkvP2otDo1/t0QFxd8TL9DgUAgOF7ozRHgzTff57zz5vLpp58ybepUEuITyf/8Y05eejGhuph+9wgIkBMdoyYgoPdhhiRC6fUaGupbWb/+AH5yP7o6uzCZWgFcU/c8cgQ38UiqzHrxxZ3OHCEhhFGjnF0O3j5W3uj1GubMSer3uC8/qqjIQKKjQ36xKikAv6MvEQgEgj8W27Yd5pZbvubpp3+goqJpwLVSeW5XVyyvvfYaAA899BBffPHFoN4rLS2SjIw419MDP5WK8nnXsTXzOhytdoJW/Ivoip10OrrIyIglfbzW9YTDYGjGYulA7udHk9mO0WT1+R7d3RAcrGB0coRLaJo8KcYlOBlNVvLya13nux/3Pga9Zb+FRcZBfUaBQCD4o7Jt22EefHAbq1fvZf36A4OKCdu313DppfeTkpJCdXU1D728nDlXpdBm62DbR2VY6m0+z9XrQ0juuU+7I03Ty82poaq6hc7ObjIyYxk/XuvVbiejrc3BwYMWTMa+8aChoZWOji4Cg+Skp+tc76XVqZk0OcYlOpmMVvLzal0VV/0dk5BaA4tETBAIBMc5PyVHkMv1vPTSSwDce999RM2YQ0CQiu/XfIi9paXf8/V6Tc99urdSSpqmZzBYKCwyUlXdQldnFxmZcV45ggWLpR25XEaTuQ2j0Vfc6aarJ0eQ3kenUzF5coxLcDIabeTl1brOdz/ufQx+uxxBVEoJBILjjk2bKvjqq0NERQWR2vMEur+pS5KYFBoaAGRx0UVX8v77/+ZPf/oTO3fuZMiQIUD/Uzp8lf869zyT4JvOwvLYQ5xatB2H3UxCyjUe3iJS4tJktlNbayM0rLlPZdOc2UlotUGuqiZJZHKvgjIYmtnbM3JW+rt03P2YtL4/Q0aBQCA43pCmpu7b18iwYWE9bRC+4wF4xoS//vUFli9fxObNm3nzg+e57ba7+fyVXeSuPcCwqTosHV0eFUhandpnNZJ0rx86TOPRsuft6zRubBQmoxWLpR2DobnPXlmZcQSrFR4T9iSRyf06JBFMQooJWp3a45i03pdpu0AgEByP/NQcobt7FueddyGrVv2Xy6+6ho2ffsyWfz7D9tUrGT37fKpqWvtUH+l0qj7VSO6VTGqVs+pWqkpy95qS1jWZ26iptRIapuyz15zZQ9BqVa7zJZHJ/TokEUxCqtLS6VQex6T1v1WOIEQpgUBw3DFmTBQFBUbS0iJJS4sccMKGJCqtX3+A3NxqzjtvOXv37mLHjh1ceOGFbNu2DZlMdtQpHb72BOhe+R/MH36E8amnqHvkEcKWLEE9bRrgFImkaqbQsGafrRdSG5+EL5HJvZ3P+7j7sf72FAgEguOV2bOTMJvbUKkUDB8eCnQPeC93jwmHDwfxl7/8g8cfv4knnniCOXPmcN6dJ7Pu5SLKttViUzqNz4/m0+QuVg1kMK7VqZk1K8klInnjy1zdl8jkHRPcj/uMCT72FQgEguORn5ojbN9ew7Jld1FWVkxRURG33n0vrz/5OB8/9RBFX35MvWISwFE9mtyFKp1O5dMg3X2d0WgjNEzpUW0l4W2w7ktkchfBvI+7H+tvz18LIUoJBILjjqAgf8aO1ZKREecRYAYy6HM3uV21ahULFizg2WefdU1bOtqUjv6QyWSEX7AEsz4N84P30v3OO9jy8gi/6CIUoc5rk8SpweAroXCOnD2CWqXoc1zaOyfnMO+9W0JGRuygJkEJBALB8UBWVgJNTe3k5laj06lJS4t0VUoNRO89fyx2+wG6u7uZPn06AQEBLLx9Ip+8WISxvInuBjvd3d0ek/kGg+Qz5e311F+1VX/4ign1PTFB5SMmSPvn5Bzm3XdLyMgUMUEgEJw4/Bw5wpIlS3jyyScZNnEiMy+9hq/fepWYRA16/bCfdE3uPlPeopavaqv+8CUyOXOERtQq/z7Hpb1zcqp4791iMjLjBjUZ8JdAiFICgeC4w1tAOtqEjb5rQtm5c6dHkjGYPQaitDGI3El/Ze7YHWizV1D34IP4zT6DKl0aarU/1p4pSoMVp9xxHw27bGmqzz1yc2soLq4HEAmIQCA4oXCPCYO9l7uvc39AARAQoGDxLRPYtrqcXV8fJu/zQ0ycl4RcMXirVu8KJneRSjo+kDk59C9sSR5RAEuXpfrcIzdHxASBQHDi8XPkCPn5+a6YMGHeWTTWHKZgwzpaqhLR6SYf8zX5qnCShCq1yh+rraNfY3KJ/oQtjxxhWYrPPXJzqvmxuAFAiFICgUDwc/G/CkiARwJSVFSETCZj3LhxP3k/Kfglpo0n9i9LqLnvPmzr1hAYkktp8mxaA3qrpvqjv2l949N1mEytmEytlJbW+2zNy8iI7bmOCJcnFfQmPhEiGggEguOU/zUmuMcDh8PBqlWruOCCC5i+ZBSh2iC2rSonZ1X5gJP5vPGuYPL2gfJuyfNFf9P6wsKU+MllhIUp+z03IzMWe5sDXXSQyxDdXeQa3KcQCASCPxY/d46Ql5dHzLQZDKmp5sevv0IdFk700OHHtJ+vCidJqJKmtcLArYG7d5nI31nHpInRzJqd5HrdmSPYMJlslJY0+GzNy8iMAyA1LdLlSSVdg16vIbj/UPKzIabvCQQCwQBs3LiRk046iUWLFmE2m3/yPklJoZxxxjCSkkIJ0OvR/+c/+N90B6p2C5Py/suwugIS430HG8ncfPcuExZLBxpNQB+PKK02iOqqln6nZWRmJrB8+RSitGr27jmCwdDs8p8yGJp/8ucSCASCE4Wuri7mzp3LsmXLeOONNwAYNzOR+X8eS1vrwJP5vPGeiidN7mtrd1BQaESlVuDLV8pzep4MZ27k2TpoNrfR1dmN2dzW7/tnZiYwb+5Q/GR+rhggCWMiJggEAsHRWbduHVlZWSxevJiZ19xEeFwCeZ+txVJvOqZ9vCfmQY8Rutofk8mGWq3w6SkFvdP1LM1t+OoiT0mNRKtVUV1lHSBHiGf5bVPQalWuyYDuUwJ/DYQoJRAIBAMwceJEoqOj2b9/PyeddDbffmvod21FRdOgRo4DyPz8GHH9ZWyY9wC7/YeTUL6N7lefxb5vX5+1BkMz+fl1HDxoYcTwUGbNSupTUTU+XecxStYbSdhSqxSMTo5ArVLQZG4jJkblM/ERCAQCgSd+fn7MnTsXgOuvv5F///tzAIaMjeLcWyfir5STu/YAdYeavMSjoyOJVIYKC+VljbTZHT6rpCThaNduZ+vdhIk6xo31rI5NT9cxfrx2wGl6JqMVc1MbMbHOGOD9d4FAIBAMzJQpU4iKimLPnj3MOHUpibP+jL9SyfbVK2mzeT6gkMQjo3FwDy50OhV2u4PqKit2e2e/VVIGg4X8/DoaGuxMnBDN2HHaPmuOmiP0XJta5U9ycgRqlT9N5jZiY9T9imE/N0KUEggEAi9Wr97Ln/60jtWr9xIZGcnq1auRy/3Zu/c7HnrosX7PkyZ4FPf0ZQ+Gk88Zz75Ft9Ny44PIAgOpf/556l9/HYdbVZZeH4LcT0ZNTQsg89nil5ISxbKlqR6te6Wl9axYWUJOzmGysyvIz6/FanMweVIMVpuD2loroWGBP8nHSiAQCE4U3GPC7bffTnLydDo7O1i+/CoaGpz3e21iCOfdOZmIWBU7v6ig9Ie6n1R1dDRBSaqosljaKNhZB8j6iFcpqVEsXZbaZ6JeaUk9b765i7Vr97Frt4naGithoYFodWoMhmaPvwsEAoGgL+7xIDo6mg8//BA/PznFxdk8/eK/WXjH/bS3trJ9zUo6Oztd5/2UyqOjiUngrKiSy2XU1DgfgPgSr1JSI1m2LMWjda+0pIEVK0rJyanqyRHqsNo6mDw5Bqutg5paK6FhykGbrP+vCFFKIBAIvFizpoytWw+zZk0ZAJMmTWL58kcA+Prr1/n66699npeWFklGRtwxTejLykrg/gdOZuqNSxj66SdE/vla2vbto+6BB7Bs2EC3w4FOqyYyMhBbawcWS//tGN5I5oa5uTV92v70+hBGJ0eg14dgNFnZtdtEfUProPcWCASCEwX3mCCTyXj++VeJiEigqamWiy66yJV4qEOVnHvbRJLGRtFiaCEu0J/ExOBjeq/+BCUJrU6NXh9CQ4Mdu90BdA9676IiIwUFdfzwQw0gI7knBkCv2KVSKcjPq6Wx0X5M1y0QCAQnAt45QlZWFjfeeC8AGze+woE6E/NvvBVzTTU7P/+Y7m7nPVqv1/TccwdfeeRLTPJGp1M5cwRbB5bmn5Aj5FRjsbT35Ai93lbStRqNNnbtMlFf/8vmCMLaViAQCLxYtGikx0+Axx+/HaOxlLfffpulS5dSUFBAfLznhIqfap5YUdFEcbFzRHnSzTcTtnAhdY8/geWzz2jZupXQc85BExJDZEQQGs3g3QalJytJeg0BSoXHdD+dVo1O6xwLvm7dAWJUHUyfoefYrBkFAoHg+Mc7Jsydm8rmzZ9z0kknsWHDBh555BHuv/9+wDmZb/6fx5Czupyi7MMc+sFIxNwgFAHyQb1XfxP13DEYmunq7GbEiDDGje3bqtEf6ek6WqwOIiMDGTc2ymN/rU6NVqfmvfd+5Pvva8iaHMuEGWIqn0AgELjjK0d4/vn7qK0t4cMPP+T888+noKCArKWX8N2KdwiOiCTl5FPR6VQ/qeqov6l67mhClEREBKIJ+Qk5QpKGgAC5x/7StebkVLHuswNEaDqZfsovKxsJUUogEAi8WLx4NIsXj/Z4TSaT8corr1BQUEBRURHPP/88Tz311P/8XhUVTbz99o8cONDEsGGhXHbZGJKSkkj45ytYc3IxPfccje++S7I2Gu3EWfjHqV3T83RaNaWl9RQWGQkPU9JobmN8uo6UlChycg6Tm1tDRkbsgOO+c3NrqKpqQR3rR1z8sT3RFwgEghMBXzFh3LhxvPrqq1x66aU8++yzXH/99Wi1ToHIz8+Pk88fRVi0im8/KGPbqjImnzEU9QDT8CR27TaRk1NNbGwwC84Z7lOYkqqbVCqFqz1QWldaUs+mTRUAzJ6dREpqFKUl9WzLqSYyMrDfPSUMhmYaG9uorR2cF5ZAIBCcSPSXI7z55pvs2rWLPXv28Morr/Dggw/SWF1F8dZs1OER6NOOfYK30WgjO7uC2lobMTGNTk9ZH8LU2HFaQsOUqFX+rul5Op2K0pIGNm46BMCc2UNcFVc5OVXk5lSTkRlHZmZ8n/0kcnOqOVzVTICfPwnxv6zXoBClBAKBYJCoVCpWrVrFihUruOuuu3yu8ah66qdqyn1NcXED9fV2HI4u6utbKS5uIC+vljVryli0aCSLVq6gaf0X1L/yChFf/pf2nfEc0E2G7nHotGpX+a2fn4yurm6sLQ6sNgebN1eyf78ZwEOUMpp6n8LrtGoyMmIBOHmcmqjIoJ/3FyYQCATHMZdccgmVlZUsWrTIJUi5M2ZGAm3d3fywej/ffVTGxLl6tD5aN9yro0CGzdZBbU0LBkMzWp2zojU3p4aMTOdDBqmqKT+vlj17jgC9olRRkZGCQiMyGWi1QURFBbF+/UH2lTUSEaFEn6hxrfVVlTVzZiKBSgWT0wdfgSUQCAQnOiEhIaxZs4aPP/6YO+64A4A5195Ik7GGoi8/Rx0aTmdA5FGrntwrowwGCxZLO12dXVgs7RgMFsrLG/sISlJlU55bTNDpVBQWGSksNCEDtFoVkVFBGAwWNm+upLzcDOAhSnlXZWVkxgEwdaKGqKhfNkcQopRAIBAcAyNGjODee+91/d1bhJLMziV8CVTuayT/qdDQAHJza9i48RDFxfWUljqDyuLFowk752xC5p5O0wcfYHzzLdKLP0HWsINW/7MZP84ZMKRKqUClgr17jqDXawgMVLhEJ3AKUtnZFdTV2ggODqCzs5P6ejszZyYyKUUY2woEAsGxcvfdd7v+7OuhRJ21g9pgP+I7ZOz4/BDB8WqSp0Wji+6tTJUm6gFuk/S6aWt3sHJFCSWlRzhc6ayIcn/I4O4HJZGersNkanX92WBoRi73Q68PITU10rXWZHTGA4ulHUNlM2VlDbS0OJg3bwjLb5uCuU5USgkEAsGxkJKSQkpKiuvvhw9bUaVfTKDxOb7/+EMi0s+hvKLDddyXQCUZogMujye1yp89e49QWGjEYLBQWdkC0KfKyd0TCpwteiaTzfVnaW+9XkOgUu4SnaC3KuvQoSYC/OUk6kOoNDSTkRnH+LRfPkcQopRAIBAcA+5JR3S0kr/801FRnAAAUo9JREFU5Sbi4+cAmSQlhZKWFonRaMNotGI0Wtm/vwlw+k1t23aYTZsqGDMmymWI7u5DtWlTBXl5dcTFqZgxI8GjX12uVBJxySWELllC0+o1HHn3HRpee41wnY6zTzsN1Ukn4RcQ4Grnmzgx2mMSHzgTH4ulg87ObmpqWjh0qAl7WyeBgQqmpoz41X6HAoFAcLzgHhM++OALPv30C+66637XfV2KCV2dnXTtb6blsJXdtipix0Swa7eJ9HSdh7ik1amZNcuZAKxcUUJhoYmISCVpaVFkZMZ6vLdUMeVOSmqUyyTdZLSya3c9Y8dFMm6s1mOtFA80mgAaGlrZtauejo4uQjXKAVu+BQKBQOAb93ig1fpz/fU3MGTIWcyecQ3VG5+jqeQropNOp8ncxm6ziZra3ol5pSUNFBYZSUrqNRl396EqLDJSXmYmIlLJmLRID0FJwtu3KiU1ss/EPblc5rT68DJPl6qymi0d2NtaOXioCavVAcD4tJH80ghRSiAQnPAMpuVOwr3K6Zlnnuezz94lIWEbN964BXCKTzqdc83w4WEe0/g2bapg0yYDAPffn9Vn79mzk1w/s7J8JwXywEAi/nQhoectpvnz9TS+/z7mlStp+vhjVNOmYdeOoatThtXmDCTu7XpqlQKNxp+xYyJpbe1Epwuivt7uUU0lEAgEJzo/JSYYjdXcc88ldHR0sGdPBmec8WfAMyYMGxlKQFMHTXvN7P+uhuIKMwBLl6X69HlK7zGiTU/X9TuNbyAMhmZqa6wkJ0eg1ak92vX0+hDMTW1AN/ogBUeO2GhpcfQRvgQCgeBE5qfmCGvXPsb69f/H0KE7uemmr5k89m5W/+NeFIatNASdRGxssMc0PsmOA2DZspQ+e0vG5L4EpcFitTkfTFttzmot93Y9tcofjSaA6TPiMZvbkMtlrkqpXwMhSgkEghMe9yBytIAjCUxpaZFMmnQ3q1ev5vDh/Tz44K188MEHyGQyjzXu+ykUMsxmOwqFzOfeWVkJZGUlUFHRxPr1BwgNDaCpqd1nIJQrlYQtWkjoOWdj27mTI++/j3Xrt2jt35AZEY0yeCqdo07GYLCyt6cMGKCrEwKUCjIzE5g1yymCGU1Wdu2uIj4+hGOfHSgQCATHFz81Jtx11108+OCD3HPPrcyalUF6enqfNUlJoRzcVc+6f+1iYqyGzs7ufveWqp5MRiv5ebWoVApsNseAk/nc8W7vc28TnDQ5hrBQ59+TkyP4299OAnC9V0SwP0OO+g4CgUBwfPNT40F6+gN88sknHDxYymOP3clbb73FrKtu4KtXX0AXVMzYcWd5VDXJ5TJarO3I5b5zBKnqyWi0kZdXi1rlj9XWMaA/lTfe7X3urYIAnZ3daLUq5s8f5nrNaLSxa1cVifrwQb3HT0WIUgKB4ITHPYgcDfd2Owjlo48+4pRTTuGjjz5i4sSJ3HnnnV5reikpOUJ9fSsbNxq46KK0foPb5s2VfPnlQWJiggkO9ne9ry9kCgXqqVNRTZlCR20tls/W0fzlBuwbP6fmq3XExieiihlBROAEZNpowNN/BGD3rnr27KhizBgtw4/6GxAIBILjm58aE+677z6+//57NmzYwIIFC8jLyyMqKqpPTBg6LoqCZhv6LjlRchlFWyoZd0oCMpnvZGTX7noKdtYRFh5IUKDzq/tgRCnv9j5vkcqXJ5XB0Ex+fh1hKgXRI8IIjxF+gwKB4MTlf8kRVq5cyZw5c3jnnXeYOHEiN910E+aaKn74ZBVNhxLR6TJc51YamrFY2iksMHHqqfp+habdu0zsLKgjPDyIwEA5wKBFKe/2Pm+RyvvP0vvt2llNs7WLGYN6l5+G3y+4t0AgEPwhSEoK5Ywzhh31CYgvMjMzeemllwC46667WL9+fb9rFy0ayejREURFBVFc3OB6XaqMqqho6nmlm+5uiI9Xe7T/DYRMJiMgNpaoa65myMqVDF31ERGXXUaHzJ/g/G9wvPIM9iceJPa71QTt2k7bwYN02e0e7ycQCASCnx4T/Pz8+O9//8uIESOoqKhgyZIldHR0+Fx75sKRbK1uoq7NQVVJIzs+O0i73eGqVDIZ3Y3GnffoyMjAnnaPnzaaW6tTo1Ip+OTT/axduw9wVkx5C1cajT9WawdlPdOZBAKB4ETlf8kRTjvtNJ5++mkAbr31Vr7++muyll7CyKmZlHyTTU3ZXtfajMw4EuJD0GgCMBgsrtelyiij0eZ6zRkPlB7tfz+FhvpWysoaKS9vHHAqYLfb//5SiEopgUAg+B/585//TEFBAa+//joXXnghP/zwA6NGjeqzbvHi0UyeHOPqTZfwLg0eOTKcigoLGRlx/XpLDYTM35/A1FQCU1N53TqNgo27mepfQbJ9PwnVJrrK9iDr6gTALySE5LAIkvwCUfun/8TfgEAgEAgAwsPD+fjjjznppJPYvHkzt912Gy+88EKfde7xQG3vpHRzFd99UEZQUjAHDjsn7UliUVxsMKZEG8mjI36St5Q7RUVGCgrqCApU0GZ3kJ6u82gJdBqtJ1FecoSRI8L+p/cSCASCE52bb76ZgoIC3nvvPZYsWcKOHTuY/5flfHD/HeSt+5jpF15KWHQMmZnxjBgR7hKHJNxb7HQ6FXFxwRhNNpJHR/5kbykJycfqwIEmAgL8GDEinMTEEA9xauw4LWplu2jfEwgEgt8aaWreQAbkL730EsXFxZSUlFBTU+NTlILeNjypUiopKZTQ0AAUChmhoQEANDW143B009TU/j9f+2lzh9MlV9DcPo6V5Wb0WjkRCjsZkU0kq8y0HzqItaIKef0RsIkR4AKBQDAQg4kHaWlpvP/++5x77rnU19fT2dmJXC7vs05q9aioaKLB7qCpqAHznkaiIpU0mlsxGa1odWpsNgednWDrGWDxv5CerqPF6qDV1oHF0k5RkZFO5zMKDzP0mBhn8iMQCASC/jlaTJDJZLz22muUlpZy6NAhamtrGTp0KAvvuJ//u+sWtq9eyamXXElgcIhLCJIqpXQ6FWqVP3K5DLXKaefhbVb+vyCZpzscXdTUWGloaMVq7XC996+JEKUEAoHgKKxatY+vvjqE2dzWbxISEBDA6tWraWlpYfjwgZ2ZvCujJBGqrMxMU1M7oaEBPtv2vCeAuP9d2tfbFD0hIYQpU2JdpunSzyFpkUQnhdLd3c2GT/eSl1PB5KlxjPITXd0CgUDQH4OJBwALFiwgJyeHk046qV+vKIni4gYKShuYmhGDX7WNQ7vqaTHZya61Muv0oT69nwCPaXre0/UAj2PSepvNwYJzhruOu5unS6/t2XOEYQk/rUVQIBAITiQGExOCgoJYu3YtnZ2dJCU5hwypw8JZeOf9rLzvDnI+WsGMiy5H4e/fpzJKEqGqq1uw2jpQq/x9tu25T9LT6VQefwd8tudFRgUxcmS4yzTd3TxdwmCwsH+/GZn8l5WNhCglEAgERyE+PpioqCDi4wd+ahwdHU10dLTr742NjYSH9y13lUSk1tYOHnxwG2PGRJGREYfRaCU3t5qMjDjOOMM5+cL9CUxTU7uHmOUubgE+p4NIa9z3dEcmk5E6PpZu/wBSB+FdJRAIBCcyg40HABkZvSa2XV1dWCwWwsLC+qxLS4ukpKSBr78xsHjxSFK1gRRnHybA0knZrnoyZyeh1akpLaknO7uC9HQdKalRHtP0tDq1x98Bj2PQd/qeL7N0SZyK6BmyIRAIBIL+GWxMSEjwFKwaGxvR6ody5k2388nTj7Dj09WctOgClyDU3t7JihWlJCVpSE6OoMnc5pqWOnlyDAClJQ0UFhkZn67DauvwELO8J+u5H5OQ1rjv6Y1er8HRGkZC/C/7oEKIUgKB4ITEu+poIM4/fzSpqVGDMhyX2LBhAxdeeCGvv/465513nscxqWXjwQe3sWmTAYD7789i27bDVFRYXG18AJs2VbjWXHbZGMCZwFRUNGE02hg+PNTjuqRj0mcbzNSQ/qYFCgQCwYnALx0PmpubueSSS6itrWXLli0olUqP40lJoVit7eTl1REWpuT++7NwBPpR8qUB874migOqSMmKpajISGGhCYCU1CiPCiqT0Yq5qY2YWJVHRZVKpSA/rxa9PqTfiit3JF8pc51o5xYIBCcmv3RM+PTTT7nkkkv4v//7P84880xmXHQFW955gx83b2Tsaaej06lYsaKUop77/bJlKZSWNGA02VxtfNDrCQUwa5azAkuv12A02mgytxEbo+4zWc+9gsrX9D1vdDoVwUotcsUv+6BCiFICgeCExLuFbiB+imizadMmGhsbufTSSxk1ahTjxo3rs2b27CSPn768pNzXuF/H+vUH2L/fTEZGnOs192PSZzuWICkQCAQnIr90PDAajWzZsgWz2cz111/Pm2++2aelzzsedMj9qA9VMDIkEENxA/WHW0juMR5P7/EBkQQkgPy8WmprrCQnR7he0+rU5OfVelRHgbNiSjouEAgEAk9+6Zjw5Zdf0tTUxIUXXsj333/PpDMW0FhTTdFXnxMcEcXQ8RNdfk/ST19eUu5rdDqVqwoqL6+WmlpnPJBecz8mxYT/ZXLfz40QpQQCwQnJYCqI/hcef/xxdu3axcaNG1mwYAHff/89Op3OY01WVgIJCSEUFzdQUdHU55oqKppoamrnssvG9Al40prQ0ADWrz/g8TTHfZ9jCawCgUBwIvJLx4Phw4fzwQcfMH/+fP7zn/8wduxYbr75Zo81A8aDZgcb3y6hOr+e0aPCGD2673VK1U/ulVFanbpPdZR3y59AIBAIPPmlY8Jzzz3H7t27+fbbb1mwYAG5ubmcdtk1mOtq2LXpC9Rh4aSkDiUyKgiDwYLRaOtT1WQ02rDaOpg1K6mPKbm0Rq3yJy+v1sNLyn0fb/+q3xIhSgkEghOSX7plTaFQsHLlSqZOncr+/fs599xz+frrrwkMDPRY5y4anXHGMJ9+UNL1+rp+96oo94qp/kQsgUAgEHjya7Qwn3766Tz11FMsX76c5cuXM2LECM466yyPNQPFA93J0ezbXEXNXjOWulbSZyUSFt2bREhVU+6VUdJr7uLTYFr4BAKB4ETml44JAQEBrFq1iilTprBv3z7OO+88NmzYwNm33MmKe25jxycfMeOiKzAYHK77+eTJMT79oKCvoCRVTblXRblXTPUnYv2WiDFLAoFA8AsRERHB559/TlhYGLm5uVxxxRV0d3d7rElLi/Q5ac/9mFQNVVHR5HNNV1c3r79exOrVe3+xzyIQCASC/41bbrmFq6++mq6uLpYuXUpRUZHH8YHiQfqEaFLnJjF0Zhz2Ngc5a8op/raKTkeXxzq9PoSu7m42fHmQnJzDv+jnEQgEAsFPQ6fTsW7dOkJCQti8eTPXXXcdAYFBLPz7A/gHqcj96L/ERvuetAdOISk5OcJVDWU02nyu6e6GL788RE5O1a/xsX4yQpQSCASCX5DRo0ezevVqFAoFK1as4K233nIdG6yRYllZI7m51RQXN3i8vm3bYd5++0d27KghP7+ONWvK+pwrPXn3PlcgEAgEvy4ymYxXXnmFWbNmYbVaOf/883E4HMDg44GxtYMqlYxgfTCG4iNseX8P1WVmSopNrFxRQn19K8Y6G/vLzeTm1PQ5X2rfk3ylBAKBQPDbMHbsWD744AP8/Pz4z3/+wwcffEBolI5zlt9Fm91O4ecfkZCgHrC1rrq6peeebvF4vbSkgezsCsrKjlBebiY3p7rPuVK1lfe5vwWife8n0NnZSUdHx9EXCgS/E/z9/ZHL5b/1ZZywnHbaafzrX/8iJyeHiy66yPX60fyeiosb+OKLgygUMtLTtX2enm/aVMG6dQc4cqQVq7UDtbrvv/Ev3RcvEDFB8MdDxITfDn9/fz766CMWLVrE448/jkLh/Cp+rPHg1Jl6/Du6+e7DfRRuNOCQw15DEz/+WE91tZXgYH8yMmP77CPa935ZRDwQ/NEQ8eC3Zf78+bzwwguUlJS4pnXHj0oh+qSlVG19l6INnxJ96YV9hmPs3mViZ0EdI0aE+6ymKiwy8vXXBqwt7Wg0SlJ95AGDmb73ayFEqWOgu7ub2tpazGbzb30pAsExExYWRkxMTJ+bmuDX4aqrruLKK6/0+P0fTTBKS4tkx44a6utb0enUfRKV2bOT2LevkU2bLNhsHeTm1lJR0eSx7tfwSjlRETFB8EdGxITfjvDwcL7++uufJR4s/tskSr6tYdvH+5kcH8qheisHrO34+ckYOSK8zz7eHlOCnwcRDwR/ZEQ8+G258cYb6e7u9vj9Z551Ot9Y6jEVfs6e774hZfqpfc7r7gZNSACTeyarujM+XcemTRW02rsIUHZiNrdhNNo8qq58+Uv9VghR6hiQgo1Op0OlUon/cAV/CLq7u7HZbBiNRgBiY/s+ORX8Okj3jM7OTh544AEuv/xyzjhjWL/rk5JC/7+9O4+Lqtz/AP4ZhnVYBkQQZFOERE1RMQ1IcSEl0zBLzQ0or/dexdxz6ZaoZXpv2U+9mbuS5loqmdpFIVFBxe1iieCCCpooigoKsg3n94eXyZFFBpg5M8Pn/XrNq2bmzHO+zzTMp3nOc56DiIiXlad0PK/iak12duY4eDATbm5Pr9z0/CBUbU8LIfUwE0gfMRN0w7PfF2fPnkVcXBxmzJhR7fbV5YHUWIr2vVzRqosjkn/KABKz4dbdA7cLSnD9Wl6VA1B3cwqQlfVIeYU+qj/mAekj5oHuqPjOKC0txZw5czB+/HiMnvV3/OfbIlw4Eg/LJk3g3q6Dcvv2HRwgtzWrdpZTm7b2ePfdlxAfnwUbG1Pk55cgKyu/0iBUTk4hsrLyVa7QJwYOStWSQqFQho29PU+DIf1iYWEBAMjJyYGjoyOn6Yrs448/xr/+9S9s374dx44dQ9OmTavd9kUznU6fvo0HD4owZUpnuLvLqxy8qu60EA5W1R0zgfQZM0F3/PHHH+jRowcKCgpgY2ODv//979VuW1MeyKxNcd/CCP99XIjOLnK4Ghvh/m/3cUlihJa+DjAx+/O/ccW6UgCUg1IcqKo75gHpM+aBbpk6dSq++eYb7N27F0ePHkXfv01A/t07SPnPXljK7WDv6gagdrOc5HIzODtZom07ezg4yKocwKruKn7PDlZZmTVgB6vBhc5rqeL8cJlMN6a4Eamr4rPLtQ7EN2nSJLi7u+Py5csYMGAACgoK6tzWrl2XceTITRw9+kelS4hXqO6KTlwEve6YCaTvmAm6wcXFBdOnTwcAREZGYvfu3XVua9euyzhw+CaO3czDkFld4NLaFhln7+LX7y4g9egfKHr89L+1u7v1/9Yg+XNdKS6AXnfMA9J3zAPdMX36dDg7O+P8+fMIDQ1FaZkCoR99ArljMyTv3o6CBw9q3dbxY7dwPjUXF1Jz0aWLU5WDWBVX8Xt+wErbi6BzUEpNnI5L+oqfXc3KzMzD/v1XkZmZ98JtmzdvjvXrf4C1tS2Sk5MxbNgw5RWY1NW9uwtatbJF9+4ulZ7bufMiBg3ajdWrz1U5G6qmy49T7fDvivQVP7uapU4mREVFYfjwcJSXl+O994YjMTGxTvt8Ng8cPWwwINIX787sgpa+DriRdh/xG9OwZclZXDh7B539mqnMiKpqoIrUw78p0lf87GqWOnng4eGBdet2QCazwpEjRzBq1CiYmFvg7VlzITU2wbEft6CkuKhW+23bzl45U+p5x479gQULTiA29lqVp+5VN1ilKRyUIiJqAOrOOiouborBg7+AqakZ9u3bh7/97W8QBEHt/bq7y9G9uyvc3SvPkNq16zISE//ATz9dqbIuDw95tbOriIio7tTJBIlEguHDP8ZLL72GkpJiDBw4EKmpqWrv8/k8kEgkcPSwRt+/tEPzHs1x/o98SBUCCq4+xqFN6bh08jYeP3j648bB0RJ+XZx46h4RUQNT9zeCIDTH4MELYGxsip07d2LSpEmwbeaMt6Z9jKLHj3Fi5zYI5eUvbMfBQaY8de95x4/dwoULuUg+kV3lbChHR1m1s6s0gYNSBk4ikdR4mzt3br3ajomJUasGS0tLeHt7IyIiAmfOnFF7nz179sTkyZPVL5ZIw9SdddSunT2GDu2H+fO/hZGREdavX4+oqKgG229S0k2UlSnQpk0ThIZ6cTYUMQ+ItEjdTOjQoRmmTv0aXl4d8fDhQ4SEhODmzZsNsk+JRIIyKZD6sBCx13Nh084WTZxkuJpyF0e2XkLC5nSkH8/G/ewClCte/EOHDAMzgUg76vIbYfjwAfj00yWQSCRYvnw5Fi1aBNc2L6Pv3ybg/h83cfaXPS9sp7rZTmkXcqEoL4ebqxW6veqstdlQNeFC5wYuOztb+e/bt2/HnDlzcPHiReVjVlZWWqljw4YNCAkJQVFRES5duoTVq1ejW7duWL9+PcLCwrRSA5EmvWhB8pq2DwmZhvj4f+OVV15psP3GxWXi1q1CBAd7ICoqUO12yfAwD4i0py6Z4OZmj9DQBdixYxLat38JdnZ2DbbP8+fvAZCgZ293jP6wM4RyAfn3nyDjzF1c/+0ess7n4up/78JIKoHcUQaZjQlcW6u3f9IvzAQi7aj7b4R+6Nt3Ig4fXgM/Pz8AQNvuvfHw9m0c/3ELLO3s4RPQvdp2qlsMPeVcDu7nFsO3oyOGD2+jdn80gTOlDJyTk5PyJpfLIZFIVB7btm0b2rRpA3Nzc/j4+ODbb79VvrakpAQTJkyAs7MzzM3N4eHhgYULFwIAWrRoAQB4++23IZFIlPerY2trCycnJ7Ro0QJ9+/bFjz/+iJEjR2LChAl48L8F23JzczF8+HC4uLhAJpOhffv22Lp1q7KNiIgIHD58GEuXLlUeVbl+/ToUCgXGjBmDli1bwsLCAq1bt8bSpUsb9o0k0pB27ewRGfl3HD58FgMHDmywdoODPRAc7I7gYI8Ga5P0G/OASLe1a2eP3r19sGvXfsTExMDSsuFOpXs+EyRGEsibytC5nwcGTeuMEfNfxetj2uGlbk4wMgJybxZAasKrcBkyZgKRbmvXzh4TJ05EQsJp9O3bV/l4wJAR8AkMQnrSYdy8cF7tdjv6OsK3owM6+jo2ZLn1wplSjdjmzZsxZ84cfPPNN+jUqRP++9//YuzYsbC0tER4eDiWLVuGPXv2YMeOHXB3d8eNGzdw48YNAMCpU6fg6OioPLpRl8uHTpkyBRs3bsTBgwcxdOhQFBUVwc/PDzNnzoSNjQ327duH0aNHo1WrVujatSuWLl2KS5cu4eWXX8b8+fMBAA4ODigvL4erqyt++OEH2Nvb49ixY/jrX/8KZ2dnDB06tEHfM6JnZWbmITU1t8pFxGurqqMnV65cQVpaWr0GqQIDXREY6KpcXLE+NZLhYx4Q1Y+m8kAQBKxevRqjR4+u19XdAgNd4epqjdTUXGRm5qnsx8hIAms7c1i/Yo6XXmmGslIFSp4oYCbjz4TGiplAVD+ayoS0tDRkZmYiJHIK8u/l4L+xe2FuI0dTV7dat9umrT3atLVHTk4hTp++XeVC59rGtGnEoqKisHjxYgwePBgA0LJlS1y4cAGrVq1CeHg4srKy4O3tjddeew0SiQQeHn/OuHBwcADw59GNuvDx8QEAXL9+HYDqZZEB4MMPP0RsbCx27NiBrl27Qi6Xw9TUFDKZTGWfUqkU8+bNU95v2bIljh8/jh07djBwSKMqFi4E0GADPllZWejRowfu3buHmJgY9O/fv17t1VRjQwQmGQbmAVH9aCIPAGD27Nn45z//id27d+Onn36CmZlZndt6UY3MBKrATCCqH01kQkZGBoKCgpCfn499+/bh7Zlz8P3sqTi5ewdeey8MNv/726utrKx8pKffB4BKg1I5OYXIysqHu7sNrOoeO7XG0/caqYKCAmRkZGDMmDGwsrJS3j7//HNkZGQAeDoVNiUlBa1bt8bEiRNx4MCBBq2h4kpjFZchVSgU+Oyzz9C+fXs0adIEVlZWiI2NRVZW1gvbWr58Ofz8/ODg4AArKyusXr26Vq8jqg91Fy6sDRcXF/j5+aO0tBSDB7+DQ4cOqTyflHQT8+YlISmpdgvgPlvj85ekVfdqIGSYmAdE9aeJPACAgQMHwsJChtjYWLz11jsoLS1VeV6dTKgpDwBmAj3FTCCqP01kgru7Ozp2fAXFxcUYOPAtnEn5DUPnLICJmRmO/7gF505nYuvWNKRdqN13+LMLoVfMmsrJKQTw54BVVVfm0wTOlBKJ2EejHj9+DABYs2YNunXrpvJcxTTbzp0749q1a/jll18QFxeHoUOHIjg4GD/++GOD1JCWlgbg6VELAPjyyy+xdOlSLFmyBO3bt4elpSUmT56MkpKSGtvZtm0bpk+fjsWLF8Pf3x/W1tb48ssvkZyc3CB1ElVH3YULa0MqlWLs2C9w6VIOLl1KxMCBA3HgwAEEBAQAeLqAeVzc0/+ZCgx0rbGt579n9u+/qnLUpiIoeWU+cTEPmAek/zSRBwAQGBiITz5ZiTlz/oIDB/YhPDwcmzZtUv5t1jYTXpQHAJgJOoKZwEwg/aeJTDAxMUFk5FfIyLiLq1dPoX///vj111/xzj8+w/aomcg4sgvnczoAeHqKXk2enQnl6CjD6dO3VWZNVVyR7+k/a/47awh6M1NqwYIFCAgIgEwmg62tbZXbZGVl4c0334RMJoOjoyM++ugjlJWVabfQWhL7aFSzZs3QvHlzXL16FV5eXiq3igAAABsbGwwbNgxr1qzB9u3bsXPnTty///QDa2JiAoVCUecalixZAhsbGwQHBwMAkpKSEBoailGjRsHX1xeenp64dOmSymtMTU0r7TMpKQkBAQEYP348OnXqBC8vL+WRHCJ95OvrhH/+czW6d++FgoIChISEIDExEcCfi9W+/HJT7N9/FTt3Xqz2KPnz3zPPHrVJSrqJ6OjzkMtN9fI0DUPKBOYB84CoJiNHvoVPPvkWxsbG2Lp1K8LCwpTfZcHBHujSpRksLU2QmZlX7cypmvIAgF5ngiHlAcBMAJgJRNXp2LE5vvxyA7p2DUB+fj6Cg4Nx/c5dvD0zCsYoQUeHVJibCMjJKUTahdxqZ049PxPq2VlTaRdyER+fCUuZidbWmtKbmVIlJSUYMmQI/P39sW7dukrPKxQKvPnmm3BycsKxY8eQnZ2NsLAwmJiY4IsvvhCh4prpwtGoefPmYeLEiZDL5QgJCUFxcTFOnz6NBw8eYOrUqfj666/h7OyMTp06wcjICD/88AOcnJyUgd+iRQvEx8cjMDAQZmZmNV66+OHDh7h9+zaKi4tx6dIlrFq1CjExMdi4caOyPW9vb/z44484duwY7Ozs8PXXX+POnTto27atsp0WLVogOTkZ169fh5WVFZo0aQJvb29s3LgRsbGxaNmyJTZt2oRTp06pBCeRpiQl3URcXCaCgz1eOHOptiqOrvTtuxcDBgzAoUOHEBISgri4OAQGvorAQFflUe6rVx8iK+sRgMpHyZ//nnn2qE109Plaz7jSRYaUCcwD5gEZDk1lwty5Y9Chgx2GDRuGLVu2oLy8HFu2bEFgoCvy8kqUgxinTmVX+d1eUx4A6s3C1TWGlAcAM4GZQIZCk78RXn/9PwgJCcGxY8cQHByMhIQEvDVtNmK+/BxlN4/g+nU5MjLycS7lLoDKM6dUZ0I9nR1VMQAVH59Z7es0RtAzGzZsEORyeaXH9+/fLxgZGQm3b99WPrZixQrBxsZGKC4urnX7eXl5AgAhLy9P5fEnT54IFy5cEJ48eVLn2sVW1Xu3efNmoWPHjoKpqalgZ2cn9OjRQ9i1a5cgCIKwevVqoWPHjoKlpaVgY2Mj9OnTRzh79qzytXv27BG8vLwEY2NjwcPDo9r9AlDezM3NhVatWgnh4eHCmTNnVLbLzc0VQkNDBSsrK8HR0VH45JNPhLCwMCE0NFS5zcWLF4VXX31VsLCwEAAI165dE4qKioSIiAhBLpcLtra2wrhx44RZs2YJvr6+9X3LDIohfIZ10dy5icJrr20R5s5N1Ej7BQUFQt++fYXOnTsLDx48UD5+/fpDYd++DOHHH9OFuXMThcTEG2q1m5h4o06vq0p135vaoMlMqKlf+v73xDwgff8M6ypNZ8JPP/0kmJubC5s3b1Y+VpEH168/rPN3uyFkAvOg7pgJjZshfIZ1kabz4NGjR0KPHj0Ef39/IT8/XxAEQTi882fhq6EDhPUfTRL2fLdX+GzaBuHnjfuEK6dP1Pr288Z9Kq/7Lf4/Qurh+DrVWNs8kAjC/1aS0xPR0dGYPHkyHj58qPL4nDlzsGfPHqSkpCgfu3btGjw9PXH27Fl06tSpVu3n5+dDLpcjLy8PNjY2yseLiopw7do1tGzZEubm5g3RFSKt4mdYMzRxFOR5RUVFePLkSY1HGuujvutXVPe9qQ2azISa+sW/J9J3/AxrhjYyITs7G87OzhppG9DfTGAeENUNP8OaoY08KCwsRGlpKeTyP7+rT+/djcOb1sGjQ0d0ChlYr/Zzcgpx9eIfcHO3Q4/Bb6r9+trmgd6cvvcit2/fRrNmzVQeq7h/+/btal9XXFyM4uJi5f38fO2sME9EhiEw0FXjpzqYm5ur/E/Cl19+CTc3N7z33ns1vm7nzovYtesyund3gbu7HHK5KfLySir90NDUpczFVJdMYB4QUX1pIxOeHZC6efMmZs2aheXLl6v8KHleRR4MHuyNLl2ckJqa22gygXlARGLQRh7IZKprPn3++edo27Ytug4agpMxP8DYxBTt+/Sr9Lpjx/7A8WO30LadPRwcZLCUmaCgsFS58HmFrKx8ZGQ8hESq2WEjURc6nzVrFiQSSY239PR0jdawcOFCyOVy5c3NzU2j+yMi/VHVJbPFdujQIcyYMQPDhw/HkiVLatx2167LOHLkJrZtu4jjx28hLi6zysVTNXUpc3WJnQnMAyKqji7mgSAIGDZsGDZv3oygoCBkZ2dXu21FHuzadVk56KTLmcA8ICJdpouZsG/fPnz66acYMmQIUvOeoPMbbyHjzEmkHo6vtO3xY7dwPjUXR4/8gfT0+0g5l6Oy8HkFd3cbtGplC1cXa43WLupMqWnTpiEiIqLGbTw9PWvVlpOTE06ePKny2J07d5TPVWf27NmYOnWq8n5+fj6Dh4gA6ObR4qCgIEycOBHLli3DlClTkJ2djUWLFkEikVTadvBgbwCocqbUszR1KXN1iZ0JzAMiqo4u5oFEIsE333yDN954A+fOnUNAQABiY2Px0ksvVdq2Ig8GD/ZWZoAuZwLzgIh0mS5mQr9+/TB27FisWbMG48aNw5w5cxDYux9+/zUWUmNj+AQGKbf1D2gOAFXOlHqWo6MMVmYOkBqbaLR2UQelHBwc4ODg0CBt+fv7Y8GCBcjJyYGjoyMA4ODBg7CxsVG5MsPzzMzMYGZm1iA1EJFh0YUr4DzPyMgIS5YsgbOzM2bPno1//etfuH37NtasWQNTU1OVbd95pzXeeae1SJWqT+xMYB4QUXV0MQ8AoFOnTjh27Bj69euHK1euIDAwEPv27UPXrl1Vtns+D3TlR1R1mAdEpMt0MROMjY2xatUqODs7Y/78+Zg/fz7Gjh2LtwKDkJ50GEZSY7z0aiAAICDABQEBLiJX/CdRT99TR1ZWFlJSUpCVlQWFQoGUlBSkpKTg8ePHAIC+ffuibdu2GD16NM6dO4fY2Fh88skniIyMZKgQUZ14eMjRv7+nzv3Pu0QiwaxZs7BhwwZIpVJs3LgR/fr1Q25u7gtfq4vTjeuCmUBE2qSreQA8nTGUlJSELl264N69ewgKCsK2bdtq9VpDyATmARFpm65mgkQiwbx587BixQpIJBKsWbMGy/YehEvHLrhw5FdcOXWi2tfm5BTi9OnbyMkp1GLFT+nNoNScOXPQqVMnREVF4fHjx+jUqRM6deqE06dPAwCkUin27t0LqVQKf39/jBo1CmFhYZg/f77IlRMRVa8+Pwh69Xobc+ashpWVNRISErB1654XtlUx3fj5NUT0DTOBiAxNffLA0dER330Xg1de6YWioiJ89tkX+PnnSy9syxAygXlARIaoPpnwxhvD8Y9/fAsLCxkOHjyIR/besHLvgPOH4pBx5mSVr8nKyq9yXSlt0Jur70VHRyM6OrrGbTw8PLB//37tFERE1ADqek56ZmYeoqPP4+pVJ4SFLYetbSY8PYMqtfX8pb11cbpxXTATiMjQ1GeNkszMPPzww3W0bj0FlpYtMWDAMJw8mQOp1FilLUPMBOYBERmi+v5GyMpyR1jYcjg6ZsPF1R/HM93g6laO3+NjUa5QQN7CF1lZ+cor7lWsJ/X8ulLaoDeDUkREhqiuPwhSU3Nx714RysrKYWTkjMDAQGUbTZuWYNGiRfjoo48qBZouLGBLRESV1WeAqCITysslePnl4bC3d0KbNjK0a2ePb775BsHBwfDx8WEmEBHpiYb4jWBi4opXX+2hbMPGZgTW/XMWyg8dhG2rh7hV5AHg6YLmFTcxcFCKiKiBPH8Eujbq+oOgXTt75OQU4t69QjRtaqHcp5ubNfr06YOEhAQcPHgQixatqHRp76Skm4iLy0RwsAcCA13V3jcREdVMm3kAVM6EXr3c4OEhR2xsLD788ENYWlpi1apVeO21AcrtAeYBEZE26MJvBBcXS3Tv3h0nTpyAX5vWGFhcAmcfBdzdWwAA0i7kIuVcDjr6OqJNW+3OntWbNaVI90VERGDQoEHK+z179sTkyZPr1WZDtEGkLdpcm8PDQw5HRxny8krg6GipDC0jIyOMGTMGlpaW+PXXXzFwYA+Ym19XCbW4uEzExWUhLi5T43VS48VMoMZM22s1VZcJvr6+6N27NwoKCjBq1Ch8/vl09OzppHyeeUDawDygxk4XfiNIpVL85S9/gbm5Oc6kXcS/j5zCuVPxyElNAgCknMvBuZS7SDmXo/Ean8dBqUYgIiICEokEEokEpqam8PLywvz581FWVqbR/e7atQufffZZrbZNSEiARCLBw4cP69wGkdjatbOvNCtJjP2NGjUKp0+fxssvv4w7d+4gODgY06dPx5MnTwAAwcEeCA52R3Dw0ym7SUk3MW9eEpKSbmqlbhIXM4FI87SdB9Xt08nJCQcOHMDcuXMhkUiwdu1a+Pn5ITk5GUDlPACYCY0J84BIO3ThN4JEIsGYMWNw8uRJ+Pj4IPdhHlYmnMCyddE4+fNu+HZwgG9HB3T0dVS+Ju1CLvbsuYJLl+9rtF6evtdIhISEYMOGDSguLsb+/fsRGRkJExMTzJ49W2W7kpISmJqaNsg+mzRpohNtEGmLttfmqGl/Pj4+SE5OxuTJk7FmzRosXrwYe/fuxb59+xAY2ErlNI2KI+UAePpGI8FMINIsMdZqqm6fUqkUUVFR6N69O0aNGoX09HQEBARgwYIFmDVrVqXvfWZC48I8INI8XfqN0L59e5w6dQqRkZHYuHEjfk3PwIUl32LWqHsYOvp9SI3/HCJKOZeDtAv3AYkxBmmwXs6UaiTMzMzg5OQEDw8PjBs3DsHBwdizZ49yOu2CBQvQvHlztG7dGgBw48YNDB06FLa2tmjSpAlCQ0Nx/fp1ZXsKhQJTp06Fra0t7O3tMWPGDAiCoLLP56fVFhcXY+bMmXBzc4OZmRm8vLywbt06XL9+Hb169QIA2NnZQSKRICIioso2Hjx4gLCwMNjZ2UEmk+GNN97A5cuXlc9HR0fD1tYWsbGxaNOmDaysrBASEoLs7OyGfUOJ9IBMJsPq1auxd+9eODs7QyKRwMXFpdJ2VR0pJ8PGTGAmUOPTu3dvnD9/HqNGjUJ5eTk8PKr+zmcmNC7MA+YBNT5WVlb47rvvsGvXLjg4OEBu3xTFObeRuG0TSouLldt19HVE27ZN0O5lzc7w4qBUI2VhYYGSkhIAQHx8PC5evIiDBw9i7969KC0tRb9+/WBtbY2jR48iKSlJ+cVd8ZrFixcjOjoa69evR2JiIu7fv4/du3fXuM+wsDBs3boVy5YtQ1paGlatWgUrKyu4ublh586dAICLFy8iOzsbS5curbKNiIgInD59Gnv27MHx48chCAL69++P0tJS5TaFhYX46quvsGnTJhw5cgRZWVmYPn16Q7xtRHrpzTffRGpqKnbv3g1zc3MAT494/vTTTxAEAYGBroiKCuQR8UaMmUDUODRp0gSbNm3CsWPH8N577ykfP3r0KO7cuQMAzIRGjnlA1Hi8/fbbSE1Nxc//iUXo5JnIv5uD+Og1+M+BgxAEAW3a2uOtt7zwkrdmZyby9L16KiwsRHp6utb36+PjA5lM/Us2CoKA+Ph45dVY7t69C0tLS6xdu1Y5Jff7779HeXk51q5dC4lEAgDYsGEDbG1tkZCQgL59+2LJkiWYPXs2Bg8eDABYuXIlYmNjq93vpUuXsGPHDhw8eBDBwcEAAE9PT+XzFVNwHR0dYWtrW2Ubly9fxp49e5CUlISAgAAAwObNm+Hm5oaYmBgMGTIEAFBaWoqVK1eiVatWAIAJEyZg/vz5ar9XRIbEzs4OdnZ2yvvLli3DRx99hN69e2Px4sXo2LGjeMUZEDEyoa55ADATiBorf39/5b8/fPgQ77zzDkpKShAVFYXx48fDzMxMxOoMA38jMA+I9IGDgwMcHBwAb29YyOUYN2oE9q/5HgE7d+OTj6bB1UHz62BxUKqe0tPT4efnp/X9njlzBp07d6719nv37oWVlRVKS0tRXl6OESNGYO7cuYiMjET79u1VzhE/d+4crly5Amtra5U2ioqKkJGRgby8PGRnZ6Nbt27K54yNjdGlS5dK03MrpKSkQCqVIigoSM2e/iktLQ3GxsYq+7W3t0fr1q2RlpamfEwmkynDBgCcnZ2Rk6P9qwgQ6TJBEGBubo5ff/0VnTp1wogRI/B///d/cHR0fPGLqVpiZIK6eQAwE5gJRH+6e/cu3N3dcebMGUydOhVLly7FV199hXfffVfs0vQafyM8xTwg0h/u7TqgQ59+OPBbGo6dOYs3h4/CwNf7YOaHkRrdLwel6snHxwdnzpwRZb/q6NWrF1asWAFTU1M0b94cxs8sYGZpaamy7ePHj+Hn54fNmzdXasfBwaFO9VpYWNTpdXVhYmKicl8ikVQbhESN1UcffYR3330XH3/8MbZt24b4+PhK3wWkPjEyQd08AJgJzASiP3l7eyM5ORnR0dGIiopCZmYmbt26JXZZeo+/EWqHeUCkWxZ+tRjvjRiBv44cjpPpl3Hs5CmYm2p29iwHpepJJpOpfYRaDJaWlvDy8qrVtp07d8b27dvh6OgIGxubKrdxdnZGcnIyevToAQAoKyur8chM+/btUV5ejsOHDyun5j6r4iiMQqGotq42bdqgrKwMycnJyqm5ubm5uHjxItq2bVurvhHRn1q2bImtW7dixowZuHXrFgelGgAzgZlApI+kUinGjBmDESNGYN26dRg7dqzYJek95gHzgEhf+Xb2Q9Lv5/HvmdORdjoZN8+noHPfNzS2Py50TpWMHDkSTZs2RWhoKI4ePYpr164hISEBEydOxM2bNwEAkyZNwqJFixATE4P09HSMHz8eDx8+rLbNFi1aIDw8HB988AFiYmKUbe7YsQMA4OHhAYlEgr179+Lu3bt4/PhxpTa8vb0RGhqKsWPHIjExEefOncOoUaPg4uKC0NBQjbwXRLokKekm5s1LQlLSzWq3yczMw/79V5GZmVfrdjt16oQ333yzIUokA8RMINI9msoDCwsLTJgwgWtKUZWYB0S6SROZYGxsiimLl2HMlGl46dWAhiq1ShyUokpkMhmOHDkCd3d3DB48GG3atMGYMWNQVFSkPCoybdo0jB49GuHh4fD394e1tTXefvvtGttdsWIF3n33XYwfPx4+Pj4YO3YsCgoKAAAuLi6YN28eZs2ahWbNmmHChAlVtrFhwwb4+flhwIAB8Pf3hyAI2L9/f6XpuESGKC4uE3FxWYiLy6x2m9TUXBw/fgupqblarIwMGTOBSPcwD0gMzAMi3aTJTOg2aCh8Auq+5lttSASeSKsiPz8fcrkceXl5KtNSi4qKcO3aNbRs2VJ5SXUifcLPsP5LSrqJuLhMBAd7VHup7szMPKSm5qJdO3t4eMi1Uld135v6rqZ+8e+J9B0/w/pNV/MAMMxMYB6QIeNnWP/paibUNg+4phQRkZ4IDHStNmgqeHjItfrjg4iItI95QEREFfQ9E3j6HhGRgarN+eVERGT4mAdERFRB1zKBM6WIiAxUxfnlAF549ISIiAwX84CIiCroWiZwUIqIyEAFB3uo/JOIiBon5gEREVXQtUzgoBQRkYGqzfnlRERk+JgHRERUQdcygWtKERERERERERGR1nFQioiIiIiIiIiItI6DUkREREREREREpHUclCIiIiIiIiIiIq3joBQ1qIiICAwaNEh5v2fPnpg8eXK92myINl4kISEBEokEDx8+1Oh+NE0ikSAmJkbsMoiImAciYx4QkS5hJoiLmUC6jFffawDlRUUQSku1tj+JiQmMzM1rvX1ERAS+++47AICJiQnc3d0RFhaGjz/+GMbGmv0I7Nq1CyYmJrXaNiEhAb169cKDBw9ga2tbpzbqKiAgANnZ2ZDL5bV+TUREBB4+fMgveNILmZl5SE3NRbt29vDw+PNznpR0E3FxmQgO9tCpq3Dos7ISBRQKQSv7kkolMDaV1np75sGLMQ+oMWAmaEdpSTHKy8q0tj8jY2OYmJrVentmwosxE8jQ6UIecFCqnsqLivAoPh6K/Eda26fUxhrWffqoNTAVEhKCDRs2oLi4GPv370dkZCRMTEwwe/bsStuWlJTA1NS0QWpt0qSJTrTxIqampnByctL4fqrSkO83UXVSU3Nx/PgtAFAJnLi4TMTFZQEAf4A0gLISBa6du4eiQu0cqDCXmaClb1O1BqaYBzVjHlBjwEzQvNKSYmScOoGiggKt7dPc0hKtXnlVrYEpZkLNmAlk6HQhD3j6Xj0JpaVQ5D+CkZkZpDY2Gr8ZmZlBkf9I7ZlZZmZmcHJygoeHB8aNG4fg4GDs2bMHwJ/TaRcsWIDmzZujdevWAIAbN25g6NChsLW1RZMmTRAaGorr168r21QoFJg6dSpsbW1hb2+PGTNmQBBUZwc8P622uLgYM2fOhJubG8zMzODl5YV169bh+vXr6NWrFwDAzs4OEokEERERVbbx4MEDhIWFwc7ODjKZDG+88QYuX76sfD46Ohq2traIjY1FmzZtYGVlhZCQEGRnZ1f7/jw/NfdFbcydOxffffcdfvrpJ0gkEkgkEiQkJNTqfavq/f7444/RrVu3SnX5+vpi/vz5AIBTp07h9ddfR9OmTSGXyxEUFISzZ89W2yeiZ7VrZw9//+Zo185e+VhmZh4sLU3RpUszBAd7iFid4VAoBBQVlsLYRAozmYlGb8YmUhQVlqo9K4t5wDwgYiZoXnlZGYoKCmBsagJzK0uN34xNTVBUUKD2zCxmAjOBGjddyAMOSjUQiZkZjCwsNH6TmNX+yEdNLCwsUFJSorwfHx+Pixcv4uDBg9i7dy9KS0vRr18/WFtb4+jRo0hKSlJ+6Va8bvHixYiOjsb69euRmJiI+/fvY/fu3TXuNywsDFu3bsWyZcuQlpaGVatWwcrKCm5ubti5cycA4OLFi8jOzsbSpUurbCMiIgKnT5/Gnj17cPz4cQiCgP79+6P0mYG6wsJCfPXVV9i0aROOHDmCrKwsTJ8+Xa33qKY2pk+fjqFDhypDKDs7GwEBAbV636p6v0eOHImTJ08iIyNDuU1qaip+++03jBgxAgDw6NEjhIeHIzExESdOnIC3tzf69++PR4+0N0uP9JeHhxz9+3uqHAFJTc1FXl4xXn+9BY+INzCpiRFMzKQavUlNGibCmQcvxjwgQ8NM0B5jU1OYmJlr/GbcQDNqmAkvxkwgQ6ILecDT9xoZQRAQHx+P2NhYfPjhh8rHLS0tsXbtWuUU0e+//x7l5eVYu3YtJBIJAGDDhg2wtbVFQkIC+vbtiyVLlmD27NkYPHgwAGDlypWIjY2tdt+XLl3Cjh07cPDgQQQHBwMAPD09lc9XTMF1dHRUOV/8WZcvX8aePXuQlJSEgIAAAMDmzZvh5uaGmJgYDBkyBABQWlqKlStXolWrVgCACRMmKI8m1FZNbVhZWcHCwgLFxcUqU3pr874Bld9v4OkRjy1btuDTTz9V9qtbt27w8vICAPTu3VulvtWrV8PW1haHDx/GgAED1OobEQDlEZFnj4xQ48E8qD3mATUGzITGjZlQe8wEMnTazgMOSjUSe/fuhZWVFUpLS1FeXo4RI0Zg7ty5yufbt2+v8uV37tw5XLlyBdbW1irtFBUVISMjA3l5ecjOzlaZTmpsbIwuXbpUmp5bISUlBVKpFEFBQXXuR1paGoyNjVX2a29vj9atWyMtLU35mEwmUwYFADg7OyMnJ0etfdWljRe9bxWef78BYOTIkVi/fj0+/fRTCIKArVu3YurUqcrn79y5g08++QQJCQnIycmBQqFAYWEhsrKy1OoXUQUPD7nKURFqHJgHzAOiqjATGidmAjOB6HnazgMOSjUSvXr1wooVK2BqaormzZtXuqKGpaWlyv3Hjx/Dz88PmzdvrtSWg4NDnWqwsLCo0+vq4vkrcUgkkmqDsCHbqO379vz7DQDDhw/HzJkzcfbsWTx58gQ3btzAsGHDlM+Hh4cjNzcXS5cuhYeHB8zMzODv768y5ZeI6EWYB8wDIqIKzARmApHYOCjVSFhaWiqneNZG586dsX37djg6OsLGxqbKbZydnZGcnIwePXoAAMrKynDmzBl07ty5yu3bt2+P8vJyHD58WDk191kVRwUUCkW1dbVp0wZlZWVITk5WTs3Nzc3FxYsX0bZt21r3ryGYmppWqrU271t1XF1dERQUhM2bN+PJkyd4/fXX4ejoqHw+KSkJ3377Lfr37w/g6WKJ9+7dq39HiKhRYR40POYBEekrZkLDYyYQqYcLnVOVRo4ciaZNmyI0NBRHjx7FtWvXkJCQgIkTJ+LmzZsAgEmTJmHRokWIiYlBeno6xo8fr7wyRVVatGiB8PBwfPDBB4iJiVG2uWPHDgCAh4cHJBIJ9u7di7t37+Lx48eV2vD29kZoaCjGjh2LxMREnDt3DqNGjYKLiwtCQ0M18l7U1J/ffvsNFy9exL1791BaWlqr960mI0eOxLZt2/DDDz9g5MiRKs95e3tj06ZNSEtLQ3JyMkaOHKnVI0uk/zIz87B//1VkZuaJXQrpEebBizEPSN8wD6iumAkvxkwgfSN2JnBQqoEIxcUof/JE4zehuFgr/ZHJZDhy5Ajc3d0xePBgtGnTBmPGjEFRUZFydH/atGkYPXo0wsPD4e/vD2tra7z99ts1trtixQq8++67GD9+PHx8fDB27FgUFBQAAFxcXDBv3jzMmjULzZo1w4QJE6psY8OGDfDz88OAAQPg7+8PQRCwf//+SlNpNW3s2LFo3bo1unTpAgcHByQlJdXqfavJu+++i9zcXBQWFmLQoEEqz61btw4PHjxA586dMXr0aEycOFHlKAnRi6Sm5uL48VtITc0VuxSDpygtR2mxQqM3RWm5VvrCPHgx5gHpG+aB9pSVlKC0uEjjtzItnarFTHgxZgLpG7EzQSKoexKtgcvPz4dcLkdeXp7KF0RRURGuXbuGli1bwtzcXPl4eVERHsXHQ5GvvUtuSm2sYd2nD4yeqYPoRar7DFPjkZmZh9TUXLRrZ9+gixdW972p72rqV3V/T2UlClw7dw9FhaXPN6cR5jITtPRtCmNTqVb2R4aDmdC4aSoPAMPMhLrkQWlJMTJOnUDR/wZWtMHc0hKtXnkVJqZmWtsn6T/mAYn9G4FrStWTkbk5rPv0gVCqnR8gACAxMeGAFBGpjVdW0jxjUyla+jaFQqGd4z1SqYQDUkSkNuaB5pmYmqHVK6+ivKxMa/s0MjbmgBQRqU3sTOCgVAMwMjcHOEhERER4OjDFcCUiIhNTM4CDRERENeKaUkREREREREREpHUclCIiIiIiIiIiIq3joBQREREREREREWkdB6WIiIiIiIiIiEjrOChFRERERERERERax0EpIiIiIiIiIiLSOg5KERERERERERGR1nFQioiIiIiIiIiItI6DUgZOIpHUeJs7d67WaunZs6dyv+bm5mjbti2+/fZb5fPR0dGwtbXVWj1ERI0J84CIiCowE4hIV3BQysBlZ2crb0uWLIGNjY3KY9OnT1duKwgCysrKNFrP2LFjkZ2djQsXLmDo0KGIjIzE1q1bNbpPIn2XmZmH/fuvIjMzT+xSSI8xD4gMAzOBGgIzgUj/GUoecFDKwDk5OSlvcrkcEolEeT89PR3W1tb45Zdf4OfnBzMzMyQmJiIiIgKDBg1SaWfy5Mno2bOn8n55eTkWLlyIli1bwsLCAr6+vvjxxx9fWI9MJoOTkxM8PT0xd+5ceHt7Y8+ePQ3cayLDkpqai+PHbyE1NVfsUkiPMQ+IDAMzgRoCM4FI/xlKHhiLXUBtLViwAPv27UNKSgpMTU3x8OHDSttIJJJKj23duhXvvfeeRmsrKCio9jmpVApzc/NabWtkZAQLC4sXbmtpaVmHKqs3a9YsfPXVV/D09ISdnV2tXrNw4UJ8//33WLlyJby9vXHkyBGMGjUKDg4OCAoKqvW+LSwsUFJSUtfSiRqFdu3sVf5JzIQKzAOixoeZoIp58CdmAlHjYih5oDeDUiUlJRgyZAj8/f2xbt26arfbsGEDQkJClPe1cf6xlZVVtc/1798f+/btU953dHREYWFhldsGBQUhISFBeb9Fixa4d+9epe0EQah7sVWYP38+Xn/99VpvX1xcjC+++AJxcXHw9/cHAHh6eiIxMRGrVq2qVeAoFAps3boVv/32G/7617/WuXaixsDDQw4PD7nYZegUZsJTzAOixoeZoIp58CdmAlHjYih5oDeDUvPmzQPwdKG7mtja2sLJyUkLFRmOLl26qLX9lStXUFhYWCmkSkpK0KlTpxpf++2332Lt2rUoKSmBVCrFlClTMG7cOLVrJqLGjZmgGcwDItI3zAPNYSYQkTbozaBUbUVGRuIvf/kLPD098fe//x3vv/9+lVN2KxQXF6O4uFh5Pz8/X+19Pn78uNrnpFKpyv2cnJxqtzUyUl3i6/r162rXUhfPT/U1MjKqdKSltLRU+e8V/d23bx9cXFxUtjMzM6txXyNHjsQ//vEPWFhYwNnZuVKfiYgakjqZ0BB5AOh3JjAPiMhQMQ/Ux0wgIm0wqEGp+fPno3fv3pDJZDhw4ADGjx+Px48fY+LEidW+ZuHChcojLHWlzvnbmtq2ITk4OOD8+fMqj6WkpMDExAQA0LZtW5iZmSErK0utc8MBQC6Xw8vLq8FqJSKqjrqZ0BB5ABhWJjAPiMgQMA8aBjOBiDRB1CHoWbNmQSKR1HhLT0+vdXuffvopAgMD0alTJ8ycORMzZszAl19+WeNrZs+ejby8POXtxo0b9e2W3uvduzdOnz6NjRs34vLly4iKilIJIGtra0yfPh1TpkzBd999h4yMDJw9exb//ve/8d1334lYORHpM7EzgXlQGfOAiMTAPNBNzAQi0gRRZ0pNmzYNERERNW7j6elZ5/a7deuGzz77DMXFxdVOGTUzM3vhdNLGpl+/fvj0008xY8YMFBUV4YMPPkBYWBh+//135TafffYZHBwcsHDhQly9ehW2trbo3LkzPv74YxErJyJ9JnYmMA8qYx4QkRiYB7qJmUBEmiARGvoyDRoWHR2NyZMnV3m51+ctWLAAixcvxv3792vdfn5+PuRyOfLy8mBjY6N8vKioCNeuXUPLli1VLt9KpC/4GSZNqe57Uxs0mQk19Yt/T6Tv+BkmTRErE5gHRHXDzzBpSm3zQG/WlMrKysL9+/eRlZUFhUKBlJQUAICXlxesrKzw888/486dO3j11Vdhbm6OgwcP4osvvsD06dPFLZyISEuSkm4iLi4TwcEeCAx0FbscjWImEBHVrLFkAvOAiKhmup4HejMoNWfOHJVzkSsuK3ro0CH07NkTJiYmWL58OaZMmQJBEODl5YWvv/4aY8eOFatkIiKtiovLRFxcFgDoZOA0JGYCEVHNGksmMA+IiGqm63mgN4NS0dHRiI6Orvb5kJAQhISEaK8gIiIdExzsofJPQ8ZMICKqWWPJBOYBEVHNdD0P9GZQioiIahYY6KqTRz+IiEj7mAlERATofh4YiV0AERERERERERE1PhyUUpOeXayQSImfXaKGx78r0lf87BI1LP5Nkb7iZ5fExkGpWjIxMQEAFBYWilwJUd1UfHYrPstEVHfMBNJ3zASihsE8IH3HPCCxcU2pWpJKpbC1tUVOTg4AQCaTQSKRiFwV0YsJgoDCwkLk5OTA1tYWUqlU7JKI9B4zgfQVM4GoYTEPSF8xD0hXcFBKDU5OTgCgDB0ifWJra6v8DBNR/TETSJ8xE4gaDvOA9BnzgMTGQSk1SCQSODs7w9HREaWlpWKXQ1RrJiYmPPpB1MCYCaSvmAlEDYt5QPqKeUC6gINSdSCVSvnHS0REAJgJRET0FPOAiEh9XOiciIiIiIiIiIi0joNSRERERERERESkdRyUIiIiIiIiIiIireOaUs8RBAEAkJ+fL3IlRET6oeL7suL701AwD4iI1GeImcA8ICJSX23zgINSz3n06BEAwM3NTeRKiIj0y6NHjyCXy8Uuo8EwD4iI6s6QMoF5QERUdy/KA4lgSIcxGkB5eTlu3boFa2trSCQStV6bn58PNzc33LhxAzY2NhqqUPMMpR8A+6KrDKUvhtIPoH59EQQBjx49QvPmzWFkZDhnhTMPnmJfdI+h9ANgX3RRffthiJlQnzwA+NnQReyL7jGUfgDsS4Xa5gFnSj3HyMgIrq6u9WrDxsZG7z98gOH0A2BfdJWh9MVQ+gHUvS+GcjT8WcwDVeyL7jGUfgDsiy6qTz8MLRMaIg8AfjZ0EfuiewylHwD7AtQuDwzj8AUREREREREREekVDkoREREREREREZHWcVCqAZmZmSEqKgpmZmZil1IvhtIPgH3RVYbSF0PpB2BYfdEFhvR+si+6x1D6AbAvushQ+qFLDOU9NZR+AOyLLjKUfgDsi7q40DkREREREREREWkdZ0oREREREREREZHWcVCKiIiIiIiIiIi0joNSRERERERERESkdRyU0pAFCxYgICAAMpkMtra2YpejluXLl6NFixYwNzdHt27dcPLkSbFLUtuRI0cwcOBANG/eHBKJBDExMWKXVCcLFy7EK6+8Amtrazg6OmLQoEG4ePGi2GXVyYoVK9ChQwfY2NjAxsYG/v7++OWXX8Quq0EsWrQIEokEkydPFrsUtc2dOxcSiUTl5uPjI3ZZBoV5ID5mgu4x1ExgHtCLMBPExTzQPYaaBwAzobY4KKUhJSUlGDJkCMaNGyd2KWrZvn07pk6diqioKJw9exa+vr7o168fcnJyxC5NLQUFBfD19cXy5cvFLqVeDh8+jMjISJw4cQIHDx5EaWkp+vbti4KCArFLU5urqysWLVqEM2fO4PTp0+jduzdCQ0ORmpoqdmn1curUKaxatQodOnQQu5Q6a9euHbKzs5W3xMREsUsyKMwD8TETdI8hZgLzgGqDmSAu5oHuMcQ8AJgJahFIozZs2CDI5XKxy6i1rl27CpGRkcr7CoVCaN68ubBw4UIRq6ofAMLu3bvFLqNB5OTkCACEw4cPi11Kg7CzsxPWrl0rdhl19ujRI8Hb21s4ePCgEBQUJEyaNEnsktQWFRUl+Pr6il1Go8A80A3MBN2lz5nAPCB1MRPExzzQXfqcB4LATFAXZ0qRUklJCc6cOYPg4GDlY0ZGRggODsbx48dFrIwq5OXlAQCaNGkiciX1o1AosG3bNhQUFMDf31/scuosMjISb775psrfjD66fPkymjdvDk9PT4wcORJZWVlil0QiYx7oB2aC7mAekCFjJug+5oFuYSaox1gjrZJeunfvHhQKBZo1a6byeLNmzZCeni5SVVShvLwckydPRmBgIF5++WWxy6mT33//Hf7+/igqKoKVlRV2796Ntm3bil1WnWzbtg1nz57FqVOnxC6lXrp164bo6Gi0bt0a2dnZmDdvHrp3747z58/D2tpa7PJIJMwD3cdM0B3MAzJ0zATdxjzQLcwE9XGmlBpmzZpVabGv52/8YiZNiYyMxPnz57Ft2zaxS6mz1q1bIyUlBcnJyRg3bhzCw8Nx4cIFsctS240bNzBp0iRs3rwZ5ubmYpdTL2+88QaGDBmCDh06oF+/fti/fz8ePnyIHTt2iF2aTmMekNiYCbqBeUAAM4HExTzQHcyEuuFMKTVMmzYNERERNW7j6empnWI0oGnTppBKpbhz547K43fu3IGTk5NIVREATJgwAXv37sWRI0fg6uoqdjl1ZmpqCi8vLwCAn58fTp06haVLl2LVqlUiV6aeM2fOICcnB507d1Y+plAocOTIEXzzzTcoLi6GVCoVscK6s7W1xUsvvYQrV66IXYpOYx6QmJgJuoN5QAAzgcTDPNAtzIS64aCUGhwcHODg4CB2GRpjamoKPz8/xMfHY9CgQQCeTgeNj4/HhAkTxC2ukRIEAR9++CF2796NhIQEtGzZUuySGlR5eTmKi4vFLkNtffr0we+//67y2Pvvvw8fHx/MnDlTb8MGAB4/foyMjAyMHj1a7FJ0GvOAxMBM0D3MAwKYCaR9zAPdxEyoGw5KaUhWVhbu37+PrKwsKBQKpKSkAAC8vLxgZWUlbnE1mDp1KsLDw9GlSxd07doVS5YsQUFBAd5//32xS1PL48ePVUZxr127hpSUFDRp0gTu7u4iVqaeyMhIbNmyBT/99BOsra1x+/ZtAIBcLoeFhYXI1aln9uzZeOONN+Du7o5Hjx5hy5YtSEhIQGxsrNilqc3a2rrSOfuWlpawt7fXu3P5p0+fjoEDB8LDwwO3bt1CVFQUpFIphg8fLnZpBoN5ID5mgu4xlExgHpC6mAniYh7oHkPJA4CZUGdaucZfIxQeHi4AqHQ7dOiQ2KW90L///W/B3d1dMDU1Fbp27SqcOHFC7JLUdujQoSrf//DwcLFLU0tVfQAgbNiwQezS1PbBBx8IHh4egqmpqeDg4CD06dNHOHDggNhlNRh9vdzrsGHDBGdnZ8HU1FRwcXERhg0bJly5ckXssgwK80B8zATdY8iZwDygmjATxMU80D2GnAeCwEyoDYkgCELDD3URERERERERERFVj1ffIyIiIiIiIiIireOgFBERERERERERaR0HpYiIiIiIiIiISOs4KEVERERERERERFrHQSkiIiIiIiIiItI6DkoREREREREREZHWcVCKiIiIiIiIiIi0joNSRERERERERESkdRyUIiIiIiIiIiIireOgFJGOUigUCAgIwODBg1Uez8vLg5ubG/7xj3+IVBkREWkbM4GIiADmARkeiSAIgthFEFHVLl26hI4dO2LNmjUYOXIkACAsLAznzp3DqVOnYGpqKnKFRESkLcwEIiICmAdkWDgoRaTjli1bhrlz5yI1NRUnT57EkCFDcOrUKfj6+opdGhERaRkzgYiIAOYBGQ4OShHpOEEQ0Lt3b0ilUvz+++/48MMP8cknn4hdFhERiYCZQEREAPOADAcHpYj0QHp6Otq0aYP27dvj7NmzMDY2FrskIiISCTOBiIgA5gEZBi50TqQH1q9fD5lMhmvXruHmzZtil0NERCJiJhAREcA8IMPAmVJEOu7YsWMICgrCgQMH8PnnnwMA4uLiIJFIRK6MiIi0jZlAREQA84AMB2dKEemwwsJCREREYNy4cejVqxfWrVuHkydPYuXKlWKXRkREWsZMICIigHlAhoUzpYh02KRJk7B//36cO3cOMpkMALBq1SpMnz4dv//+O1q0aCFugUREpDXMBCIiApgHZFg4KEWkow4fPow+ffogISEBr732mspz/fr1Q1lZGafoEhE1EswEIiICmAdkeDgoRUREREREREREWsc1pYiIiIiIiIiISOs4KEVERERERERERFrHQSkiIiIiIiIiItI6DkoREREREREREZHWcVCKiIiIiIiIiIi0joNSRERERERERESkdRyUIiIiIiIiIiIireOgFBERERERERERaR0HpYiIiIiIiIiISOs4KEVERERERERERFrHQSkiIiIiIiIiItI6DkoREREREREREZHW/T8KR2cDPx5y+AAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxYAAAJOCAYAAAAqFJGJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC/JklEQVR4nOzdd3QUVR/G8e+mJ6QROgmQEKoUQZr0gEgTEBBRERXEF1BRivReRRABFUVBpYhdEVQQpIRelC69hRZqKAmQnp33j5iVGCAJ2WRTns85nMPM3Lnz24XAPjtz7zUZhmEgIiIiIiKSAXa2LkBERERERHI+BQsREREREckwBQsREREREckwBQsREREREckwBQsREREREckwBQsREREREckwBQsREREREckwBQsREREREckwBQsREREREckwBQsRERvw9/enW7dulu1169ZhMplYt26d1a5hMpkYO3as1fpLq7Fjx2IymbL8urYQFBREUFBQpvSdnr8T6akjKCiIypUrZ6w4EZG7ULAQkTxn/vz5mEwmyy8XFxfKlStHnz59uHTpkq3LS5fly5fbJDxkli1btjB27Fhu3Lhh61JytPPnzzN27Fj27Nlj61JEJA9RsBCRPGv8+PF8+eWXzJo1i3r16jF79mzq1q1LZGRkltfSqFEjoqKiaNSoUbrOW758OePGjbvrsaioKEaOHGmN8tJl5MiRREVFPdC5W7ZsYdy4cQoWPPjfCUgMFuPGjVOwEJEs5WDrAkREbKVVq1bUrFkTgFdeeYUCBQowffp0li5dynPPPXfXc27fvk2+fPmsXoudnR0uLi5W7dPa/aWVg4MDDg7Z67+XyMhI3NzcbF1GumTG3wkRkcykOxYiIv9o2rQpACEhIQB069YNd3d3Tpw4QevWrfHw8OD5558HwGw2M3PmTCpVqoSLiwtFihShV69eXL9+PVmfhmEwceJE/Pz8cHNzo0mTJhw4cCDFte/1PP327dtp3bo1+fPnJ1++fFStWpX333/fUt9HH30EkOzRriR3G2Oxe/duWrVqhaenJ+7u7jz22GNs27YtWZukR8U2b97MgAEDKFSoEPny5aNDhw5cuXIl1ffxbmMsTCYTffr0YcmSJVSuXBlnZ2cqVarEihUrkp03aNAgAAICAiyv59SpU5Y2ixYtokaNGri6uuLj48Ozzz7L2bNnk10raQzBzp07adSoEW5ubgwfPpw2bdpQunTpu9Zct25dS8gEmDdvHk2bNqVw4cI4Ozvz0EMPMXv27FRf+9107NiRRx55JNm+tm3bYjKZ+OWXXyz7tm/fjslk4vfffwfu/Xdizpw5BAYG4urqSu3atdm4cWOy4+vWraNWrVoAdO/e3fI+zp8/P1m7gwcP0qRJE9zc3PD19WXq1KkP9PpERJJkr6+URERs6MSJEwAUKFDAsi8+Pp4WLVrQoEEDpk2bZvnWu1evXsyfP5/u3bvz5ptvEhISwqxZs9i9ezebN2/G0dERgNGjRzNx4kRat25N69at2bVrF82bNyc2NjbVelatWkWbNm0oVqwYffv2pWjRohw6dIjffvuNvn370qtXL86fP8+qVav48ssvU+3vwIEDNGzYEE9PTwYPHoyjoyOffvopQUFBrF+/njp16iRr/8Ybb5A/f37GjBnDqVOnmDlzJn369OG7775L83t6p02bNrF48WJee+01PDw8+OCDD3jqqac4c+YMBQoUoGPHjhw9epRvvvmGGTNmULBgQQAKFSoEwKRJkxg1ahSdO3fmlVde4cqVK3z44Yc0atSI3bt34+3tbbnW1atXadWqFc8++yxdu3alSJEi1KhRgxdffJG//vrL8sEb4PTp02zbto13333Xsm/27NlUqlSJdu3a4eDgwK+//sprr72G2Wzm9ddfT9frbtiwIUuXLiUiIgJPT08Mw2Dz5s3Y2dmxceNG2rVrB8DGjRuxs7Ojfv369+zr888/p1evXtSrV49+/fpx8uRJ2rVrh4+PDyVKlACgYsWKjB8/ntGjR9OzZ08aNmwIQL169Sz9XL9+nZYtW9KxY0c6d+7Mjz/+yJAhQ6hSpQqtWrVK1+sTEbEwRETymHnz5hmAsXr1auPKlSvG2bNnjW+//dYoUKCA4erqapw7d84wDMN46aWXDMAYOnRosvM3btxoAMZXX32VbP+KFSuS7b98+bLh5ORkPPHEE4bZbLa0Gz58uAEYL730kmVfcHCwARjBwcGGYRhGfHy8ERAQYJQqVcq4fv16suvc2dfrr79u3OufcsAYM2aMZbt9+/aGk5OTceLECcu+8+fPGx4eHkajRo1SvD/NmjVLdq3+/fsb9vb2xo0bN+56vSRjxoxJURNgODk5GcePH7fs27t3rwEYH374oWXfu+++awBGSEhIsvNPnTpl2NvbG5MmTUq2/++//zYcHByS7W/cuLEBGJ988kmytuHh4Yazs7Px1ltvJds/depUw2QyGadPn7bsi4yMTPG6WrRoYZQuXTrZvsaNGxuNGze+y7vwr7/++ssAjOXLlxuGYRj79u0zAOPpp5826tSpY2nXrl07o3r16pbt//6diI2NNQoXLmxUq1bNiImJsbSbM2eOASSrI+ma8+bNS1FP0vuzcOFCy76YmBijaNGixlNPPXXf1yIicj96FEpE8qxmzZpRqFAhSpQowbPPPou7uzs///wzvr6+ydq9+uqrybZ/+OEHvLy8ePzxxwkLC7P8qlGjBu7u7gQHBwOwevVqYmNjeeONN5I9GtSvX79Ua9u9ezchISH069cv2TfxwANN5ZqQkMAff/xB+/btkz0OVKxYMbp06cKmTZuIiIhIdk7Pnj2TXathw4YkJCRw+vTpdF8fEt/vwMBAy3bVqlXx9PTk5MmTqZ67ePFizGYznTt3TvaeFy1alLJly1re8yTOzs5079492T5PT09atWrF999/j2EYlv3fffcdjz76KCVLlrTsc3V1tfw+PDycsLAwGjduzMmTJwkPD0/X665evTru7u5s2LABSLwz4efnx4svvsiuXbuIjIzEMAw2bdpkubtwNzt27ODy5cv07t0bJycny/5u3brh5eWVrprc3d3p2rWrZdvJyYnatWun6c9CRORe9CiUiORZH330EeXKlcPBwYEiRYpQvnx57OySf9/i4OCAn59fsn3Hjh0jPDycwoUL37Xfy5cvA1g+gJctWzbZ8UKFCpE/f/771pb0WJa11hu4cuUKkZGRlC9fPsWxihUrYjabOXv2LJUqVbLsv/ODNmCp+b/jSNLqv/0l9ZmW/o4dO4ZhGCneyyRJj54l8fX1TfbhO8kzzzzDkiVL2Lp1K/Xq1ePEiRPs3LmTmTNnJmu3efNmxowZw9atW1PMEhYeHp6uD/L29vbUrVvXMhZi48aNNGzYkAYNGpCQkMC2bdsoUqQI165du2+wuNffJ0dHx3uOHbkXPz+/FAE1f/787Nu3L139iIjcScFCRPKs2rVrJxuwezfOzs4pwobZbKZw4cJ89dVXdz0naUxATmdvb3/X/Xd+259V/ZnNZsvA5rv14+7unmz7zjsOd2rbti1ubm58//331KtXj++//x47OzuefvppS5sTJ07w2GOPUaFCBaZPn06JEiVwcnJi+fLlzJgxA7PZnGq9/9WgQQMmTZpEdHQ0GzduZMSIEXh7e1O5cmU2btxIkSJFAO4bLKzJ2n+2IiKgYCEikm6BgYGsXr2a+vXr3/MDLECpUqWAxG/b7/xG+cqVK6l+S5/0yND+/ftp1qzZPdul9bGoQoUK4ebmxpEjR1IcO3z4MHZ2dpbBv7Z0r9cTGBiIYRgEBARQrly5B+4/X758tGnThh9++IHp06fz3Xff0bBhQ4oXL25p8+uvvxITE8Mvv/yS7C7Lfx+3So+GDRsSGxvLN998Q2hoqCVANGrUyBIsypUrZwkYd3Pn36ekGcwA4uLiCAkJ4eGHH7bsyysrn4tI9qIxFiIi6dS5c2cSEhKYMGFCimPx8fGWxd2aNWuGo6MjH374YbJvgv/72M3dPPLIIwQEBDBz5swUi8Xd2VfSmhqpLShnb29P8+bNWbp0abLpWy9dusTXX39NgwYN8PT0TLWuzHav19OxY0fs7e0ZN25cim/VDcPg6tWrab7GM888w/nz5/nss8/Yu3cvzzzzTLLjSd/m33md8PBw5s2bl56XkkydOnVwdHRkypQp+Pj4WB45a9iwIdu2bWP9+vWp3q2oWbMmhQoV4pNPPkk2q9j8+fNTvF9p/XshImJNumMhIpJOjRs3plevXkyePJk9e/bQvHlzHB0dOXbsGD/88APvv/8+nTp1olChQgwcOJDJkyfTpk0bWrduze7du/n9998tU6nei52dHbNnz6Zt27ZUq1aN7t27U6xYMQ4fPsyBAwdYuXIlADVq1ADgzTffpEWLFtjb2/Pss8/etc+JEyeyatUqGjRowGuvvYaDgwOffvopMTEx2WYNg6TXM2LECJ599lkcHR1p27YtgYGBTJw4kWHDhnHq1Cnat2+Ph4cHISEh/Pzzz/Ts2ZOBAwem6RpJa5IMHDgQe3t7nnrqqWTHmzdvjpOTE23btqVXr17cunWLuXPnUrhwYS5cuPBAr8vNzY0aNWqwbds2yxoWkHjH4vbt29y+fTvVYOHo6MjEiRPp1asXTZs25ZlnniEkJIR58+alGGMRGBiIt7c3n3zyCR4eHuTLl486deoQEBDwQPWLiKSF7liIiDyATz75hDlz5nD58mWGDx/OsGHDWLt2LV27dk22DsHEiRMZN24cu3fvZtCgQZw4cYI//vgjTat3t2jRguDgYMqVK8d7773HgAEDWLNmDW3btrW06dixI2+88QYrVqzghRdeuOeK4QCVKlVi48aNVK5cmcmTJzNu3DhKlSpFcHBwijUsbKVWrVpMmDCBvXv30q1bN5577jnLonxDhw7lp59+ws7OjnHjxjFw4EB++eUXmjdvblkLIi1cXFxo164dN2/epEmTJikG4ZcvX54ff/wRk8nEwIED+eSTT+jZsyd9+/bN0GtLCg4NGjSw7CtatChlypRJdvx+evbsyccff8z58+cZNGgQGzdu5JdffknxGJujoyMLFizA3t6e3r1789xzz7F+/foM1S8ikhqToZFaIiIiIiKSQbpjISIiIiIiGaZgISIiIiIiGaZgISIiIiIiGaZgISIiIiIiGaZgISIiIiIiGaZgISIiIiIiGZbrF8gzm82cP38eDw8Py4JEIiIiIiKSOsMwuHnzJsWLF8fO7v73JHJ9sDh//nyKhYNERERERCTtzp49i5+f333b5Ppg4eHhASS+GZ6enjauRkREREQk54iIiKBEiRKWz9T3k+uDRdLjT56engoWIiIiIiIPIC1DCjR4W0REREREMkzBQkREREREMkzBQkREREREMkzBQkREREREMkzBQkREREREMkzBQkREREREMizXTzf7oOLi4khISLB1GSI2ZW9vj6Ojo63LEBERkRxAweI/IiIiCAsLIyYmxtaliGQLzs7OFCxYUOvAiIiIyH0pWNwhIiKC0NBQ3N3dKViwII6OjmlaDEQkNzIMg7i4OMLDwwkNDQVQuBAREZF7UrC4Q1hYGO7u7vj5+SlQiACurq54eHhw7tw5wsLCFCxERETknjR4+x9xcXHExMTg5eWlUCFyB5PJhJeXFzExMcTFxdm6HBEREcmmFCz+kTRQWwNVRVJK+rnQhAYiIiJyLwoW/6G7FSIp6edCREREUqNgISIiIiIiGaZgISIiIiIiGaZgIdlSUFBQjn38ZuzYsZhMJtatW5dsv8lkIigoyCY1iYiIiGQ2BQsB4NSpU5hMphS/8uXLR9WqVRk3bhy3bt2ydZlWcfXqVYYOHUqlSpVwc3PDzc2NUqVK8dhjjzFu3DguXbqUZbV069YNk8nEqVOnsuyaIiIiIplB61hIMoGBgXTt2hVIXCDtypUr/P7774wdO5YVK1awadMm7O3tM72OhQsXEhkZafV+z507R7169Th79izVqlWje/fueHt7c+HCBbZs2cLYsWOpX78+RYoUsfq1Dx06hJubm9X7FREREckOFCwkmTJlyjB27Nhk+2JiYqhbty7btm1j/fr1NG3aNNPrKFmyZKb0O2bMGM6ePcv48eMZNWpUiuN///033t7emXLtChUqZEq/IiIikjsd3baJooHl8CxU2NalpIkehZJUOTs706RJEyBxdfI7BQcH8/LLL1O+fHnc3d1xd3enZs2azJkz56597dq1i06dOlGyZEmcnZ0pVKgQtWrVYtKkScna3W+MxdKlS2nevDkFChTAxcUFf39/XnjhBfbv35/qa9m6dSsAb7zxxl2PV6lShRIlSiTblzQ24ty5czz33HMULFgQNzc36tevz+rVq1O95n/7SeLv78+CBQsACAgIsDx+pnEYIiIiEhl+g99nTefzvv9j9eezbV1OmuiOhaQqNjaWdevWYTKZqFatWrJjU6ZM4fjx4zz66KN06NCBGzdusGLFCnr16sWRI0d47733LG337NlDvXr1sLe358knn6RUqVLcuHGDgwcPMmfOHEaMGJFqLW+99RbTp0/Hx8eH9u3bU7hwYc6ePcvq1aupUaMGlStXvu/5BQoUAODo0aPUrl07ze/B9evXqV+/PoUKFeKVV17hypUrfPfdd7Rs2ZIff/yR9u3bp7mvJP369WP+/Pns3buXvn37Wu6U+Pv7p7svERERyV12Ll9KfFwsAA6OOeMje86oUrLM8ePHLY9CGYZBWFgYK1euJDQ0lKlTp1KuXLlk7WfPnk1AQECyffHx8bRu3Zr333+fvn37Wh5r+vLLL4mJiWHJkiU8+eSTyc65evVqqrX99ttvTJ8+nSpVqhAcHGwJCUnXTEsfnTt3ZtOmTbRt25bevXvTpEkTHnnkETw9Pe973r59++jSpQuLFi2y3Enp27cvtWrVomfPnrRo0QJXV9dUr3+nfv36sWfPHvbu3Uu/fv0UKERERASAmMjb7Fm5DAA7ewdqtOlg44rSRsEiDdp+uIkrN2NsXcZ9FfJw5tc3GmS4nxMnTjBu3LgU+9u0aUOzZs1S7P9vqABwcHCgd+/erFq1iuDgYF566aVkx+/2AfzOkHAvH3/8MQDvv/9+ivYODg5pGnDdp08fzp49y/vvv8/48eMZP348JpOJihUr0rZtW/r27UuxYsVSnGdvb8/bb7+d7PGsqlWr8sILL/D555+zfPlynnrqqVSvLyIiIpKaPSuXERuVOIlNpcZN8fApaOOK0kbBIg2u3IzhYkS0rcvIEi1atGDFihWW7atXr7J582b69u1L/fr1Wbt2LXXq1LEcv3nzJtOmTWPJkiWcOHGC27dvJ+vv/Pnzlt937tyZmTNn0qFDB5555hkef/xxGjVqhK+vb5pq+/PPP3F2dqZx48YP/PpMJhNTp05l8ODBLF++nG3btrFjxw527tzJwYMH+fTTT1mxYkWy1wiJg8lLlSqVor+GDRvy+eefs3v3bgULERERybC4mGh2Ll8KgMlkR612OefzhYJFGhTycLZ1CanKrBoLFChAu3btcHNz4/HHH2fkyJGsWrUKSBx7ERQUxK5du6hevTovvPACBQoUwMHBgVOnTrFgwQJiYv6901OnTh3WrVvH22+/zddff828efMAqFWrFlOmTLEMEL+X8PBwfH19sbPL+JwDBQsW5MUXX+TFF18E4OLFi/Tp04effvqJnj17snfv3mTt73U3JGl/eHh4hmsSERER2R+8iqiIxM8V5R6tT/5iafsCNjtQsEgDazxilNMlfYP/119/WfYtXbqUXbt20aNHDz777LNk7b/99lvLjEd3atiwIb///jtRUVFs376dX3/9lY8//pgnnniC/fv3U7p06XvW4O3tzcWLFzGbzVYJF3cqWrQoX375Jb/99hv79u3j6tWryR63uteieUn7vby8rFqPiIiI5D0J8XH8+ctPlu3a7Z+2YTXpp+lmJU2uX78OgNlstuw7ceIEQIqB2AAbN268b3+urq4EBQXx3nvvMXz4cKKioix3Qu6ldu3axMTEsH79+vSWnybOzs44Ojre9diZM2c4ffp0iv1Jr7N69eoPdM2kxQYTEhIe6HwRERHJPQ5uCObW1cSp/UvXqE1h/3t/4ZodKVhImkyfPh2ARo0aWfYljTnYtGlTsrbr169n7ty5KfrYunUr0dEpx6okfevv4uJy3xpef/11IHE2pmvXriU7Fh8ff8+7Cnd67733OHz48F2PzZo1i1u3blGhQoUUg8MTEhIYPnw4hmFY9u3bt48vv/ySQoUK0bp161SvfTc+Pj4AnD179oHOFxERkdzBnJDAn0t+sGw/2uEZG1bzYPQolCRz53SzANeuXWPz5s3s2rWL/PnzM2XKFMuxtm3b4u/vz9SpU9m/fz+VK1fmyJEj/Pbbb3To0IEff/wxWd9TpkwhODiYRo0aERAQgIuLC7t27WLNmjWULl2aDh3uP5Va69atGThwINOmTaNs2bJ06NCBwoULExoaypo1axg4cCD9+vW7bx9ffvklAwcOpEqVKtSpU4fChQtz48YNtm3bxq5du3B1dWX27JSL0FStWpVNmzZRq1YtmjVrZlnHIj4+njlz5qR7qtkkTZs2Zdq0afTs2ZOnnnqKfPnyUapUKV544YUH6k9ERERypiNbNnDj0gUASlapRrGy5W1cUfopWEgy/51u1tnZGT8/P1599VWGDh1qWZMCwN3dnbVr1zJo0CA2bNjAunXrqFSpEl999RVFihRJESxeffVVvLy82L59O+vXr8cwDEqWLMnw4cPp379/qmtJALz77rvUrVuXWbNm8eOPPxIdHU2xYsVo2rQpjz/+eKrnz5s3j19//ZW1a9eycuVKLl26hL29PaVKleLVV1+lf//+lC1bNsV5+fPnZ9myZQwcOJC5c+cSGRlJ9erVGTduXJquey+tWrVi6tSpzJ07l/fee4+4uDgaN26sYCEiIpKHGGYz237+3rL9aMecd7cCwGTc+WxHLhQREYGXlxfh4eH3/eAaHR1NSEiI5Zt0kSQmk4nGjRuzbt06W5diM/r5EBERyTxHt2/m1+mTAfCt8BDPjJ2SbO0sW0rrZ2nQGAsREREREZsxDINti7+zbD/a4ZlsEyrSS8FCRERERMRGQnbv4MqpkwAUKV2WUg8/YuOKHpyChYiIiIiIDSTerfjWsv1ox5x7twI0eFskVbl8GJKIiIjYyNkD+7hw7AgABUuUIrBGbRtXlDG6YyEiIiIiYgN3jq2o06EzJruc/dE8Z1cvIiIiIpIDhR4+yNkD+wDIX6w45eo2sHFFGadgISIiIiKSxbb//O/ditrtO2NnZ2/DaqxDwUJEREREJAtdOnmckD07AfAsVJiKDYJsW5CVKFiIiIiIiGShO8dW1H6yE/YOuWM+JQULEREREZEsEnb2NMf/2gpAvvw+VGrczMYVWY+ChYiIiIhIFtn207/rVtRq2xEHJycbVmNdChYiIiIiIlng6rkzHNm2CQA3L2+qPtbSxhVZl4KFiIiIiEgW2PrTt/DPwrs123bE0cXFxhVZl4KFiIiIiEgmu3ruDEe2bgTA1dOLao+3tnFF1qdgISns3LmTHj16ULZsWfLly4erqyuBgYG88MILrFq1ivDwcNzc3MifPz/R0dH37Wvu3LmYTCZ69uyZRdWLiIiIZD/bFn9nuVtRKxferQAFC7mD2WxmwIAB1KxZk4ULF1K6dGl69+5N3759qVGjBsuWLaN58+Z88MEHPPXUU9y4cYOffvrpvn1+8cUXAPTo0SMrXoKIiIhItnP13FkOb9kAgKuHJ9WaP2HjijJH7pg0V6xi5MiRzJgxg2rVqvHjjz8SGBiY7HhUVBSzZs3i6tWr9OjRg0WLFvHFF1/w/PPP37W/Q4cOsW3bNipVqkSdOnXue+1u3bqxYMECjH+SvIiIiEhusW3xv2MrarV7KlferQAFC/nH8ePHmTp1KgUKFGDFihUUKVIkRRtXV1cGDRpETEwMTk5OBAYGEhwczKlTp/D390/RXncrREREJK+7Gpo37laAHoWSf8yfP5+EhAR69ep111BxJ2dnZ0wmEy+//DKGYTBv3rwUbeLj4/nyyy9xcnLihRdeyKyyRURERLK1bbl8Jqg7KVgIAJs3bwagadOmaT6nW7du2Nvbs2DBAsxmc7Jjy5cv59KlS7Rr146CBQtatVYRERGRnCDF3YoWufduBehRqLT5tDHcumzrKu7PvTD0Wv/Ap1+8eBEAPz+/NJ9TvHhxWrZsybJly1izZg2PP/645VjSY1Avv/zyA9ckIiIikpNtv2MmqJptO+Lk4mrjijKXgkVa3LoMN8/buops6ZVXXmHZsmV88cUXlmBx+fJlli1bhp+fHy1atEhxjr+/P6dPn75rfyaTKcW+efPm0a1bN6vWLSIiIpKZroae5fDmxLsVLnngbgUoWKSNe2FbV5C6DNZYtGhRDh8+TGhoKOXLl0/zeW3atKFIkSIsWbKE69evkz9/fhYuXEh8fDzdunXDzi7l03b9+vXjxo0byfYtWbKEvXv3MmbMmBTtq1Wrlt6XIyIiImJT2xd/h2EkPipes02HXH+3AhQs0iYDjxjlFPXr12fdunWsWbMmXeMsHBwcePHFF3n33Xf56quv6NOnD/PmzcNkMtG9e/e7ntOvX78U+06dOsXevXsZO3bsA74CERERkezh2vlzye5WVM8DdytAg7flH0kDsefMmcOVK1fu2zYmJibZdtI4ii+++ILt27dz8OBBmjRpQunSpTOtXhEREZHsatt/71a4utm4oqxh02CxYcMG2rZtS/HixTGZTCxZssRyLC4ujiFDhlClShXy5ctH8eLFefHFFzl/XmMdMkOZMmUYPHgwYWFhtGrVipCQkBRtoqOjmT59eoq7ChUqVKB+/frs3r2bt956C9DaFSIiIpI3XTsfyuFNiU+7uLh75Jm7FWDjR6Fu377Nww8/zMsvv0zHjh2THYuMjGTXrl2MGjWKhx9+mOvXr9O3b1/atWvHjh07bFRx7jZx4kSio6OZMWMG5cuXp2nTplSuXBlHR0dCQkJYvXo1V69eZeLEiSnO7dGjB5s3b2bz5s14e3un+PMUERERyQu2Lf42T96tABsHi1atWtGqVau7HvPy8mLVqlXJ9s2aNYvatWtz5swZSpYsmRUl5il2dnZMnz6dLl26MHv2bDZs2MCGDRswm80UK1aMFi1a0L17d5o1a5bi3M6dO9O3b19u3rxJly5dcMnFi7+IiIiI3M3Vc2c4tGkd8M/dipZtbFtQFstRg7fDw8MxmUx4e3vbupRcrWbNmnz++efpOidfvnxEREQ88DXnz5/P/PnzH/h8EREREVvb8sPXlnUrarV7Kk/drYAcFCyio6MZMmQIzz33HJ6envdsFxMTk2xwcUY+7IqIiIiIpMXlUyc5um0TAG5e3lRvkbfuVkAOmRUqLi6Ozp07YxgGs2fPvm/byZMn4+XlZflVokSJLKpSRERERPKqLT98Zfl9nfZP45gHHwvP9sEiKVScPn2aVatW3fduBcCwYcMIDw+3/Dp79mwWVSoiIiIiedGF40c4sWM7AO4+Baja7O5jiHO7bP0oVFKoOHbsGMHBwRQoUCDVc5ydnXF2ds6C6kREREREYPN3iyy/f7TjMzg4OdmwGtuxabC4desWx48ft2yHhISwZ88efHx8KFasGJ06dWLXrl389ttvJCQkcPHiRQB8fHxwyqN/YCIiIiKSfZw7tJ/T+3YD4FmoCJWbPG7jimzHpsFix44dNGnSxLI9YMAAAF566SXGjh3LL7/8AkC1atWSnRccHExQUFBWlSkiIiIikoJhGGz+/t+7FXU7PYe9g6MNK7ItmwaLoKAgjH+m5Lqb+x0TEREREbGlM/v3cu7gfgDyF/PloYZNUjkjd8v2g7dFRERERLIbwzDY/N2Xlu26T3fBzt7ehhXZnoKFiIiIiEg6hezewYVjRwAoWKIUFeo2tHFFtqdgISIiIiKSDol3K/4dW1Hv6ecx2eljtd4BEREREZF0OP7nVi6fOgFAYf9AytSua+OKsgcFCxERERGRNDKbE5LNBFX/ma6YTCYbVpR9KFiIiIiIiKTRka2buHruDADFypYnoHpNG1eUfShYiIiIiIikQUJ8PFt/+MqyXf+ZF3S34g4KFpLCzp076dGjB2XLliVfvny4uroSGBjICy+8wKpVq1K0j46O5v3336dhw4YUKFAAZ2dnSpQowbPPPsuGDRvueo1Tp05hMpmS/XJ0dMTX15fOnTuzY8eOzH6ZIiIiIulyYN1qrl84D0CJh6pQsvLDNq4oe7HpAnmSvZjNZgYOHMiMGTNwcHCgadOmtGvXDkdHR06ePMmyZctYtGgR48ePZ9SoUQAcP36cJ554gqNHj1K6dGk6d+6Mt7c3J0+e5LfffuO7776jb9++TJ8+Hbu7zJYQGBhI165dAbh9+zY7d+7khx9+YMmSJaxevZpGjRpl6XsgIiIicjdxsTFs/fFry3aD517S3Yr/ULAQi5EjRzJjxgyqVavGjz/+SGBgYLLjUVFRzJo1i6tXrwIQHh5Oy5YtOXHiBKNGjWLMmDHY37EwzPnz52nfvj3vv/8+Pj4+jB49OsU1y5Qpw9ixY5Pte+eddxg2bBijRo1i/fr11n+hIiIiIum0Z8Vv3Lp+DYDAmo9SvFwFG1eU/ehRKAES7zxMnTqVAgUKsGLFihShAsDV1ZVBgwYxbtw4AN59911OnDjB888/z/jx45OFCoDixYvz66+/4uPjw4QJEzh79myaaunRoweQ+EiWiIiIiK1F377Fn0t+SNwwmWjw7Au2LSibUrAQAObPn09CQgK9evWiSJEi923r7OwMwLx58wAsj0XdTZEiRfjf//5HfHw88+fPT1dNDg66oSYiIiK2t+PXxUTfvgVApUZNKViilI0ryp70yS0NnvntGcKiwmxdxn0VdC3Id22+e+DzN2/eDEDTpk3T1P706dOcP38eX19fypcvf9+2jz32GFOmTLFcIzWfffYZAA0aNEhTexEREZHMcvvGdXYuXwqAvYMDdTt1sXFF2ZeCRRqERYVxOfKyrcvIVBcvXgTAz88vXe1LlCiRatukNqGhoSmOHT9+3DLGImnwdnBwMEWKFOHdd99NUy0iIiIimWXb4m+Jj4kBoOrjrfAqfP8nO/IyBYs0KOha0NYlpCon1Gg2m1PsO3HihGXMRpKiRYuyceNGypQpk1WliYiIiKRw49JF9q1eAYCjswuPdnjGxhVlbwoWaZCRR4xyiqJFi3L48GFCQ0NTfbQpqT2QpgHZSW18fX1THGvRogUrViT+wF65coUFCxYwZMgQ2rVrx59//om7u3t6XoaIiIiI1Wz5fhHmhAQAarTpgJuXt20LyuY0eFsAqF+/PgBr1qxJU/tSpUpRvHhxQkNDOXLkyH3bJvX50EMP3bddoUKFGDhwIMOHD+fQoUOMHDkyTbWIiIiIWNvlUyc5tDlx2nsXD09qtulg44qyPwULAaBbt27Y29szZ84crly5ct+2Mf88Z/jyyy8DMGnSpHu2vXz5smUw9osvvpimWoYPH07x4sX5+OOPOXXqVJrOEREREbGmzd99CYYBQJ32T+Ps5mbjirI/BQsBEheqGzx4MGFhYbRq1YqQkJAUbaKjo5k+fbplsPWgQYMIDAzkyy+/ZPz48ST8c6swycWLF3nyySe5evUq7dq145FHHklTLa6urgwZMoS4uDgmTJiQ4dcmIiIikh7nDh/g5K6/AHAvUJBqzZ+wcUU5g8ZYiMXEiROJjo5mxowZlC9fnqZNm1K5cmUcHR0JCQlh9erVXL16lYkTJwLg6enJihUraN26NWPGjGHhwoW0aNECLy8vTp48ybJly7h16xYPP/wwX375Zbpq6dmzJ1OmTGHhwoUMHz78rgv2iYiIiFibYRhs/HqBZbve011wcHKyYUU5h4KFWNjZ2TF9+nS6dOnC7Nmz2bBhAxs2bMBsNlOsWDFatGhB9+7dadasmeWcMmXKsHfvXj799FN+/PFHvv76a27cuGE5PmLECEaPHo1TOn8gXVxcGDZsGG+88Qbjxo1j4cKF1nqZIiIiIvcUsnsH548cBMCnuB+VGj2W5TVExUdx7uY5zt08R+itUGoUqUHFAhWzvI70MhnGPw+P5VIRERF4eXkRHh6Op6fnPdtFR0cTEhJCQEAALi4uWVhh7jRt2jQGDRpE586d+eabb7Cz01N3OZl+PkREJC8wmxNYNKQvV86cAqDdgOGUrVMvU695M/Ymey7vYX/Yfo7dOMbR60c5E3EGg38/ovd7pB89qvTI1DruJa2fpUF3LCSTDBw4kMOHD/P555/j6enJ3LlzbV2SiIiIyH0d2rjOEiqKBpalTO26Vr9GVHwU2y9sZ+v5rey6vIuj149iNlKu9XWn0FspFxnOjhQsJNPMnj2bsmXLEhUVxeHDh6lQoYKtSxIRERG5q7jYGDZ99++Y0IZdumMymazSd1hUGGvPrGX9ufVsv7CdmISYe7Z1sXch0DuQ0l6l8fPww9fdN0c8BgUKFpKJHB0dGTJkiK3LEBEREUnV7t9/5dbVMABKP1KLkpWrZqi/yLhIgs8G89vJ39h6fisJRkKKNiZMlMtfjhpFalC9cHUq+FSghEcJ7O3sM3RtW1GwEBEREZE8LTIinO0/fw+AyWRHwy7dHrivA2EH+PbIt/xx6g8i4yNTHC/kWohGfo1o7NeYGkVr4Ol0/3ELOYmChYiIiIjkadsXf0dsVGIIqNykGQVLlErX+bEJsaw8tZJvD3/LvrB9KY4Xy1eM1gGtedz/cSr6VMTOlDsntVGwEBEREZE868bFC+z5YzkADk7O1Hv6+TSfezvuNj8c+YEFBxcQFhWW7JiHowfN/ZvTpnQbHinySK4NE3dSsBARERGRPGvTtwsxJ8QDULNNe9x9CqR6TnhMOF8d+oqvDn1FRGxEsmPl85fnuQrP0bp0a1wdXDOl5uxKwUJERERE8qQLx49wZOtGAFw9vajZ9qn7tr8dd5uFBxYy/8D8ZOMnTJh4rORjvPDQC1QvXN1qs0nlNAoWIiIiIpLnGIbBhkXzLNv1OnXB2c3trm3jEuL48diPfLL3E65FX7PstzfZ80TpJ+hRuQelvUtnes3ZnYKFiIiIiOQ5J3f9yblD+wHIX6w4VR5rkaKNYRj8cfoP3t/1PmdvnrXsdzA50KFsB3pU6YGvu2+W1ZzdKViIiIiISJ5iTkhgw1fzLdsNn+uGvUPyj8Unbpxg8vbJbL+4Pdn+Fv4teKP6G5TyTN/MUXmBgoWIiIiI5Cn7g1dxLTTxDkSxchUoU7uu5djtuNvM3jObrw59RbwRb9lfu2ht+tfoT+WClbO83pwi9897JXlC+/btqVixIgkJKVe1TKsjR47g4ODAxx9/bMXKREREJDuJjY5iyw9fWbYbP/+yZbD1mtNraPtzWxYcXGAJFb7uvrzf5H0+a/6ZQkUqFCwkhZ07d9KjRw/Kli1Lvnz5cHV1JTAwkBdeeIFVq1bd9Zz4+HjmzZtH69atKVq0KE5OTnh5eVGrVi1GjhzJ6dOnk7X39/fHZDJZftnb21OwYEGaN2/O0qVL01Xv+vXrWbp0KWPGjMHe3t6y//Lly0yePJlOnToREBBguda9lC9fnueee45x48Zx8+bNdNUgIiIiOcPO35Zw+8Z1AMrUqotvhYe4GnWVgesH0m9dP65EXQHAyc6JVx9+lSVPLqFpyaZ5dqan9DAZhmHYuojMFBERgZeXF+Hh4Xh63nvJ9OjoaEJCQggICMDFxSULK8w+zGYzAwcOZMaMGTg4ONC0aVMqV66Mo6MjJ0+eZPXq1Vy/fp3x48czatQoy3mnT5/mySefZO/evRQpUoTHH3+cEiVKcPv2bXbt2sXWrVtxcHBg//79lClTBkgMFufOnWPkyJEAxMbGcvjwYX755RcSEhKYNm0ab731VprqbtSoEWfOnOHkyZPY2f2bldetW0eTJk0wmUyULVuWc+fOERkZyf3+yv/9999UrVqViRMnMmLEiAd5G3Ml/XyIiEhucOv6Nb7o25O4mGhMdnZ0m/YxW2L2MOXPKdyIuWFp19C3IcPqDKOERwnbFZtNpPWzNGiMhdxh5MiRzJgxg2rVqvHjjz8SGBiY7HhUVBSzZs3i6tWrln03b96kRYsWHDlyhEGDBjFhwgScnZ2TnXf8+HEGDBjArVu3ku13cHBg7Nixyfb98ccftGzZktGjR/Pqq6/ido9p35IcOHCAjRs3MmLEiGShAqBixYqsX7+e6tWr4+HhQYUKFThy5Mh9+6tSpQpVq1Zl7ty5DBs2LEWfIiIiknNt/u5L4mKiASgf1IQxR6aw7uw6y3FvZ2+G1h5K64DWukPxABQsBEj88D916lQKFCjAihUrKFKkSIo2rq6uDBo0iJiYGMu+adOmceTIEbp27crUqVPv2neZMmX45ZdfiI2NTbWO5s2bU758eQ4fPsyBAweoVavWfdvPm5c4//TTTz+d4liRIkXu+jpS07lzZ0aOHElwcDCPPfZYus8XERGR7OdSyAn2r1sNgL2LM++7LuXC2X+/LG3p35KhtYdSwDX1lbfl7vR1rAAwf/58EhIS6NWrV6ofxu+8I/HFF18AMHr06FSv4eTklK6a0vJNwZo1a8iXLx+VK1tvMFXdunUtfYuIiEjOZxgG67/8HP55HHqb/0UuGImhwsfFh5lNZvJu43cVKjJIdywEgM2bNwPQtGnTNJ9z+vRpzp07h5+fH2XLlrVKHWvWrOHIkSPky5ePSpUq3bftrVu32LdvH3Xr1k02aDujatasCfz7noiIiEjOdmLHds4e2AdAhFsch0pFAIljKcbXH09B14K2LC/XULBIg5CnOhEfFmbrMu7LoWBBAn768YHPv3jxIgB+fn6Zes6d4uPjLWMs4uLiOHLkCEuXLsUwDCZMmICrq+t9zz9//jxms/mBHne6H09PT1xcXDh37pxV+xUREZGslxAfx7J5H1i2d1S4jqOTM2/VfItnyz+rsRRWpGCRBvFhYcRfumTrMnKdhIQExo0bB4CdnR358+enadOmvP7667Rr1y7V85MGkXt7e1u9Nh8fH8KyeZgUERGR+4uOj2baJ31xvZp4h+KiTzQuFfz4ttFUyuQvY+Pqch8FizRwKJj9b49ltMaiRYty+PBhQkNDKV++fJrPAQgNDX2gazo7OxMdHf1A5wKWOxoZ6eNeoqKiUp2RSkRERLKvMxFnGLyyP1W3RgL2GBh4t6zJ123G4WzvnOr5kn4KFmmQkUeMcor69euzbt061qxZk+ZxFqVKlcLX15ezZ89y7Ngxq42zSKtChQoBcO3aNav2azabCQ8PT3WMh4iIiGRPa8+sZcSmETy0xxHn+MS1F7weqcD/nnzHxpXlbpoVSgDo1q0b9vb2zJkzhytXrty37Z3Tzfbo0QOAiRMnpnqNtEw3mx7FixenQIECqa5NkV7Hjh3DbDZTpUoVq/YrIiIimcswDGbvnU3f4L7YX4+mwhkPAOydnHj2f8NsXF3up2AhQOJaE4MHDyYsLIxWrVoREhKSok10dDTTp09PtqjdwIEDKV++PAsXLmT48OHJQkeSkJAQ2rdvz8GDB61as8lkomHDhoSEhKQahtJj+/btADRu3NhqfYqIiEjmioqPYuD6gXy852MAah7Oj52RODC7drtOePhk/0fbczo9CiUWEydOJDo6mhkzZlC+fHmaNm1K5cqVcXR0JCQkhNWrV3P16tVkdyc8PDxYuXIlTz75JJMnT2bevHk0b94cPz8/IiMj2b17N5s3b8bBwYFp06ZZveYOHTqwZMkSVq1aRZcuXVIc79atm+X3Fy5cSLFv6NChVKhQIdk5q1atwsHBgTZt2li9XhEREbG+i7cv8ubaNzl07RAAxcNcKHE5cayku08BarXtaMvy8gyTYfyzUkguFRERgZeXF+Hh4Xh6et6zXXR0NCEhIQQEBODi4pKFFWY/O3bsYPbs2WzYsIHQ0FDMZjPFihWjXr16dO/enWbNmqU4Jy4ujkWLFvH999+ze/durl27houLC2XLlqVly5b07t2bEiVKWNr7+/tz8eLFDA+8jo6OxtfXlzp16rB8+fIUx1ObQi44OJigoCDLdmRkJEWKFKFZs2b8/PPPGaotN9HPh4iIZFd7r+yl79q+XI1OnC0yn0M+XvyrAlEXEmd3bPlafyo1fsyWJeZoaf0sDbpjIXdRs2ZNPv/883Sd4+joSPfu3enevXua2p86deoBKkvJxcWF1157jXfeeYfTp09TqlSpZMfTm5u//vprbt26Rf/+/a1Sn4iIiGSeZSeXMWrzKOLMcQD4ufvxlmMX9l74DoAipcvyUMMmtiwxT9EYC8nxBg8ejI+PD5MmTcpQP/Hx8bz99tu0a9eORo0aWak6ERERsTbDMPj8788ZunGoJVTUKlqL+U0+49hvKy3tgl7sgclOH3ezit5pyfE8PDz48ssv8ff3JyEh4YH7OXPmDC+++CLTp0+3YnUiIiJiTQnmBCZtn8TMXTMt+54q+xSfPv4ph5atIDL8BgBl69TDr2Jl2xSZR+lRKMkVmjdvTvPmzTPUR+nSpZPNeCUiIiLZS1R8FEM2DCH4bLBl35vV3+SVKq9w/UIou3//BQAHRycad+1hqzLzLAULEREREcn2rkdfp8/aPuy7sg8AB5MD4+qPo11gOwzDIHjBXMz/PLlQs11HvAoXsWW5eZKChYiIiIhka+dunqP36t6cjjgNQD7HfEwPmk694vUAOLnrL07t2QmAR4FC1H6yk81qzcsULEREREQk2zpx4wQ9/+jJ5ajLABRyLcTHzT6mgk/iOlTxcXGsWzjX0r5R1+44OmtqdFtQsBARERGRbOlA2AF6r+7NjZgbAAR4BfBJs08o7l7c0mbX8qXcuJi4CK5fxcqUr9vQFqUKChYiIiIikg39dfEv3lj7BrfjbgPwUIGH+KTZJ+R3yW9pc+v6NbYtTlyzwmSyo0m3nqkujiuZR9PNioiIiEi2suHcBl5d/aolVNQoUoPPm3+eLFQAbPx6PnHRUQBUbdaCwv6ls7xW+ZeChYiIiIhkGytOraDv2r7EJMQA0NC3IZ80+wR3J/dk7c4fPczBDWsBcMnnTr3OXbO8VklOwUJEREREsoVlJ5cxZMMQ4o14AFr6t+T9Ju/j4pB8MLZhNhM8/1PLdr3Oz+Pm6ZWltUpKChYiIiIiYnO/nfyN4ZuGYzbMQOJq2u80fAdHe8cUbQ+sX8PFE8cAKFiiFA8/3jpLa5W70+BtEREREbGpX0/8ysjNIy2h4ulyTzPy0ZHYmVJ+Bx4TeZuN3yywbDfp1gs7e/ssq1XuTXcsJFdo3749FStWJOGfFTezs88++wx7e3v+/vtvW5ciIiJic0uPL2XEphGWUPFM+WfuGSoAtv70LZHhNwAoW6ceJStXzapSJRUKFpLCzp076dGjB2XLliVfvny4uroSGBjICy+8wKpVq+56Tnx8PPPmzaN169YULVoUJycnvLy8qFWrFiNHjuT06dPJ2vv7+2MymSy/7O3tKViwIM2bN2fp0qXpqnf9+vUsXbqUMWPGYH/HNxaXL19m8uTJdOrUiYCAAMu1rOXcuXN4e3tTqFAhLl++fNc2r776KiaTiYkTJ1r2vfTSS5QqVYpBgwZZrRYREZGc6OdjPzNq8ygMDACeq/AcI+qMuGeoCDt7mt2//wKAg6MTjbv2yLJaJXU2DRYbNmygbdu2FC9eHJPJxJIlS5IdNwyD0aNHU6xYMVxdXWnWrBnHjh2zTbF5gNlsZsCAAdSsWZOFCxdSunRpevfuTd++falRowbLli2jefPmTJgwIdl5p0+fpmbNmrz88svs2rWLxx9/nIEDB9KtWzdcXFx45513KF++PMePH092nr29PWPGjGHMmDEMGTKERo0asXbtWtq3b897772X5rpHjRpFqVKl6Ny5c7L9Bw8eZPjw4SxevBgnJyfc3Nwe/M25Cz8/P2bOnElYWBi9evVKcXzlypV88skn1KpVi2HDhln2Ozo60r9/f1auXMnmzZutWpOIiEhOsfjYYkZvGW0JFc9XfJ5htYfd80tAwzBY+8UnmP95OqHWk0/hVbhIltUraWDY0PLly40RI0YYixcvNgDj559/Tnb8nXfeMby8vIwlS5YYe/fuNdq1a2cEBAQYUVFRab5GeHi4ARjh4eH3bRcVFWUcPHgwXX3nNsOGDTMAo1q1asbx48dTHI+MjDSmTp1qDBkyxLIvIiLCKF++vAEYgwYNMqKjo1Ocd+zYMaNt27bG7t27LftKlSplODs7p2i7cuVKw2QyGW5ubsbt27dTrXn//v0GYIwYMSLFsYsXLxrr1683IiIiDMMwLHVaW5s2bQzAWLBggWXf9evXDV9fX8PFxcU4dOhQinMuX75sODg4GF27drV6PZlBPx8iImJNvxz/xagyv4pReX5lo/L8ysaUP6cYZrP5vucc3LTOmNb5CWNa5yeMuW/0MGJjUn7mEOtL62dpwzAMmwaLO/03WJjNZqNo0aLGu+++a9l348YNw9nZ2fjmm2/S3K+CRdocO3bMsLe3NwoUKGBcvHjxvm3vDA+jR482gDR9QI6JibH8/l7BwjAMo0KFCgZg/Pnnn6n2+dZbbxmAsWfPnlTbZlawuHDhguHj42N4e3sb586dMwzDMLp27WoAxvTp0+95XrNmzQwXFxfj5s2bVq/J2vL6z4eIiFjPypCVRtUFVS2h4t0/3001VETfvm3M7vWCJVic2Jn6ZwSxjvQEi2w7xiIkJISLFy/SrFkzyz4vLy/q1KnD1q1b73leTEwMERERyX5J6ubPn09CQgK9evWiSJH731Z0dna2/P6LL74AYPTo0alew8nJKV01pWU8xJo1a8iXLx+VK1dOV9/WVLRoUT766CNu3LhBjx49WLx4MYsWLaJx48b069fvnufVrVuX6OhotmzZknXFioiI2NCGcxsYsmGIZaD2cxWe462ab6X6f/7WH7/i9vVrAATWfJTSj9TK9Fol/bJtsLh48SJAig+5RYoUsRy7m8mTJ+Pl5WX5VaJEiUytM7dIeta/adOmaT7n9OnTnDt3Dj8/P8qWLWuVOtasWcORI0fIly8flSpVum/bW7dusW/fPqpVq5Zs0LYtPPvss3Tq1ImVK1fSpUsX3N3dmTdv3n3/oaxZsyaAxlmIiEiesPX8VvoH97csfte+THuG1h6aaqi4cuYUu37/FUgcsN3kpf9leq3yYHLdOhbDhg1jwIABlu2IiIgMh4vv3/6LyIjYjJaWqdw8neg8/MHTe1JY8/Pzy9Rz7hQfH8/YsWMBiIuL48iRIyxduhTDMJgwYQKurq73Pf/8+fOYzeZU77BklcmTJ/Pjjz8SExPDpEmTCAgIuG/7pLrPnTuXFeWJiIjYzK5Lu+gb3JdYc+LnqVb+rRhbd+w9Z39KYhgGaz6fjWFOvMNRp0NnDdjOxrJtsChatCgAly5dolixYpb9ly5dolq1avc8z9nZOdmjOtYQGRHL7RsxVu1TICEhgXHjxgFgZ2dH/vz5adq0Ka+//jrt2rVL9fyrV68C4O3tnZllptmds2UtWbKE/v37Y2d3738wfXx8AAgLC8v02kRERGxlf9h+XlvzGlHxUQA0KdGESQ0nYW+X+tMGhzatI/TwAQC8ixajZrunMrVWyZhsGywCAgIoWrQoa9assQSJiIgItm/fzquvvpqltbh5pm9sgC1ktMaiRYty+PBhQkNDKV++fJrPAQgNDX2gazo7OxMdHf1A5wKWOxoZ6cNali5dysKFCwkKCsLPz49Fixbx/vvv079//3ueExWV+A+stafBFRERyS6OXz9O79W9uR13G4D6xeszrfE0HO0cUz03+vYt1n/5uWW7affeODimfp7Yjk2Dxa1bt5KtbRASEsKePXvw8fGhZMmS9OvXj4kTJ1K2bFkCAgIYNWoUxYsXp3379llaZ0YeMcop6tevz7p161izZk2ax1mUKlUKX19fzp49y7Fjx6w2ziKtChUqBMC1a9ey9Lr/lbSORdK4Ci8vL9auXcuIESNo06bNPd+XpLqTXoeIiEhucuHWBXqt7kV4TDgANYvUZEaTGTjZp+3L0C0/fPXvCtu16xFQrUZmlSpWYtPB2zt27KB69epUr14dgAEDBlC9enXLDEODBw/mjTfeoGfPntSqVYtbt26xYsUKXFxcbFl2rtStWzfs7e2ZM2cOV65cuW/bmJh/Hwvr0SNxxcs7V5a+l9hY645TKV68OAUKFODIkSNW7Te9XnvtNS5dusR7772Hv78/+fPnZ86cOURFRdG9e3fM/zwX+l9JdVepUiUryxUREcl016Ov03NVTy5HXgbgoQIPMeuxWbg63H/8ZJLLp06yZ8UyABycnQl66ZVMq1Wsx6bBIigoCCNxLY1kv+bPnw8kTjc6fvx4Ll68SHR0NKtXr6ZcuXK2LDnXKlOmDIMHDyYsLIxWrVoREhKSok10dDTTp0+3DLgGGDhwIOXLl2fhwoUMHz48WehIEhISQvv27Tl48KBVazaZTDRs2JCQkJBUw1BaBQUFYTKZWLduXZraf/PNN/zwww+0aNGCnj17WvY/8cQTdOvWjc2bNzNjxoy7nrt9+3YAGjdunOG6RUREsovIuEheW/0apyJOAeDv6c/sZrPJ55gvTecbZjNrvvgE458paR/t+CyeBQtnVrliRdl2jIVkvYkTJxIdHc2MGTMoX748TZs2pXLlyjg6OhISEsLq1au5evVqsrsTHh4erFy5kieffJLJkyczb948mjdvjp+fH5GRkezevZvNmzfj4ODAtGnTrF5zhw4dWLJkCatWraJLly4pjnfr1s3y+wsXLqTYN3ToUCpUqGDZTrq74OCQ+o/GhQsX6NOnD97e3nz++ecpjs+cOZPVq1czcuRI2rRpk2zsimEYrFmzhooVKyosi4hIrhGXEEe/4H7sv7ofgMKuhfnk8U/wcfFJcx8HNqzl/JHELyPzF/ejZpv2mVGqZAKTYRiGrYvITBEREXh5eREeHo6np+c920VHRxMSEkJAQECef9Rqx44dzJ49mw0bNhAaGorZbKZYsWLUq1eP7t27J1u0MElcXByLFi3i+++/Z/fu3Vy7dg0XFxfKli1Ly5Yt6d27d7Jpf/39/S13ojIiOjoaX19f6tSpw/Lly1McT21u7ODgYIKCgoDED/sFCxbE09OTY8eOpRou2rRpw7Jly1iwYAEvvvjiXdusXLmSli1bUrduXTZt2mSZJWr9+vUEBQUxc+ZM+vbtm4ZXalv6+RARkdSYDTNDNgxhxakVAHg4ebCg5QLK5k/7GMyomxHM69+bqJuJCxw/NWIC/lWrZ0q9kjZp/SwNumMhd1GzZs27fgN/P46OjnTv3p3u3bunqf2pU6ceoLKUXFxceO2113jnnXc4ffo0pUqVSnY8Pbn5wIEDXLt2jQkTJqTpjsVvv/2WapsWLVrctYa5c+fi4+PDSy+9lOb6REREsivDMHjnz3csocLF3oWPHvsoXaECYMNX8yyholzdhgoVOUy2XXlbJK0GDx6Mj48PkyZNylA/GzdupEiRIrz88stWquzujh49yrfffsvIkSOzzRocIiIiGTFn3xy+OfwNAPYme94Leo/qhdMXCs4d3M/+4FUAOLm6aYXtHEjBQnI8Dw8PvvzyS/z9/UlISHjgfl599VUuXryY6Y/6nDt3jjFjxvD6669n6nVERESywpLjS5i1Z5Zle3z98TTya5SuPhLi41j12UeW7YbPvYR7/rSPy5DsQY9CSa7QvHlzmjdvbusy0qRp06ZpXitEREQkO9t6fivjtoyzbA+sOZB2ge3S3c9fvyzmWuhZAIqWKUfVx1tarUbJOrpjISIiIiLpduTaEfqv60+8EQ/A8xWf58WH7j6Zyf1cv3ie7Yu/A8BkZ8fj/+uDnZ29VWuVrKFgISIiIiLpcun2JV5b8xq3424D0LREUwbVHJTqbIz/ZRgGaz6fTXxc4iK6j7R+ksL+pa1er2QNBQsRERERSbNbsbd4fc3rllW1qxSswjuN3sH+Ae4yHN6ygdP7dgPgUbAQ9Z5OuSaV5BwKFiIiIiKSJnHmON5a/xZHrh8BwNfdlw+bfoirg2u6+4q+dYt1C+Zath97uTdOLunvR7IPBQsRERERSZVhGEzYOoEt57cA4OXsxexmsyngWuCB+tv4zXwiw28AUKZWXQJr1LFWqWIjChYiIiIikqo5++bw8/GfAXCyc+KDJh8Q4BXwQH2dP3qIfasTF9NzdHGlafdeVqtTbEfBQkRERETua/nJ5cnWqpjUYBKPFHnkgfpKiI9n1dx/16xo8ExXPAoUzHCNYnsKFiIiIiJyT/uu7GPU5lGW7f41+tMy4MHXmdi5bAlhZ04BUDggkGot22S0RMkmFCxERERE5K4u3LrAm2vfJNacOB3sU2Wfonul7g/c3/ULoWz94WsATCatWZHbKFiIiIiISAqRcZG8sfYNrkZfBaBmkZqMqDMi3WtVJDEMg1VzZt2xZkU7igaWtVq9YnsKFpIrtG/fnooVK5KQkGDrUrK91atXYzKZWL58ua1LERGRbMpsmBm6cahlWtkSHiWYETQDR3vHB+7z77UrOXvwbwC8ChehfueuVqlVsg8FC0lh586d9OjRg7Jly5IvXz5cXV0JDAzkhRdeYNWqVXc9Jz4+nnnz5tG6dWuKFi2Kk5MTXl5e1KpVi5EjR3L69Olk7f39/TGZTJZf9vb2FCxYkObNm7N06dJ01bt+/XqWLl3KmDFjsLf/93bq5cuXmTx5Mp06dSIgIMByLWs5d+4c3t7eFCpUiMuXL9+1zauvvorJZGLixIl3Pe7v78+6detSvZbJZOLUqVN3Pfb777/z7LPPUqFCBby9vXFzc6NChQr06NGDo0ePpmjfrFkzGjRowODBgxXERETkrt7f9T7BZ4MB8HD0YNZjs/B28X7g/m5du8qGRfMs24//7w0cXVwyWqZkMwoWYmE2mxkwYAA1a9Zk4cKFlC5dmt69e9O3b19q1KjBsmXLaN68ORMmTEh23unTp6lZsyYvv/wyu3bt4vHHH2fgwIF069YNFxcX3nnnHcqXL8/x48eTnWdvb8+YMWMYM2YMQ4YMoVGjRqxdu5b27dvz3nvvpbnuUaNGUapUKTp37pxs/8GDBxk+fDiLFy/GyckJNze3B39z7sLPz4+ZM2cSFhZGr14pp8lbuXIln3zyCbVq1WLYsGEAREREcOPGjXv2efbsWQCuXLlCdHT0XdskJCRw/vx5y/by5cvZtm0bDz/8MN27d6dPnz6ULVuWBQsWULVqVdauXZuij8GDB3PgwAG+/fbb9LxkERHJA5YeX8oX+78AwN5kz7SgaZT2Kv3A/RmGwZovZhMTeRuASo2bUapqNWuUKtmNkcuFh4cbgBEeHn7fdlFRUcbBgweNqKioLKos+xk2bJgBGNWqVTOOHz+e4nhkZKQxdepUY8iQIZZ9ERERRvny5Q3AGDRokBEdHZ3ivGPHjhlt27Y1du/ebdlXqlQpw9nZOUXblStXGiaTyXBzczNu376das379+83AGPEiBEpjl28eNFYv369ERERYRiGYanT2tq0aWMAxoIFCyz7rl+/bvj6+houLi7GoUOHLPs/++wzo0iRIsbChQsNw0h8H4KDg42DBw8aTZo0MRo2bGgYhmGMGjXKCAwMNJYvX24YhmEARkhIiLF161ajWrVqxgsvvGDp815/Z1evXm0ARs2aNVMci42NNQoWLGg0aNAgTa9RPx8iInnDzos7jWoLqxmV51c2Ks+vbHx96OsM93lk2yZjWucnjGmdnzA+/t/zRuTNCCtUKlklrZ+lDcMwFCz+kdc/OB07dsywt7c3ChQoYFy8ePG+be8MD6NHjzYAo2vXrqleIyYmxvL7ewULwzCMChUqGIDx559/ptrnW2+9ZQDGnj17Um2bWcHiwoULho+Pj+Ht7W2cO3fOMAzD6Nq1qwEY06dPT9F+/fr1Ru3atY3GjRsbPj4+Rps2bYyiRYsa7733XrL36OeffzYqVKhgdOzY0QCM9u3bGyVLljS++OILIyEhIU215c+f3/D29r7rsVdeecUAjGPHjqXaT17/+RARyQvORpw1Gn7T0BIqJm6dmOE+o27eNGb37GoJFoe3bLBCpZKV0hMs9CiUADB//nwSEhLo1asXRYoUuW9bZ2dny++/+CLxVuno0aNTvYaTk1O6akrLeIg1a9aQL18+KleunK6+ralo0aJ89NFH3Lhxgx49erB48WIWLVpE48aN6devX4r2jRo1Ytu2bRQrVoxr166xc+dOtmzZwoABA5K9R+3bt2f37t1cvZo4G8eRI0fYvXs33bt3x84u9R/drVu3cv369Xu+N3Xr1gW466NSIiKSt9yOu80ba9/gesx1AOoWq8uQ2kMy3O/6RZ9z+0Zin4E161Du0QYZ7lOyLwULAWDz5s0ANG3aNM3nnD59mnPnzuHn50fZstaZLm7NmjUcOXKEfPnyUalSpfu2vXXrFvv27aNatWrJBm3bwrPPPkunTp1YuXIlXbp0wd3dnXnz5t01HG3YsIFHH32UCxcu4OPjwyOPPEK9evWYMWMGsbGxlnZLly6levXq+Pj4AFC+fHmqV6/O/PnzMZvNKfr9448/GDt2LMOGDaNTp040adKEggULMmPGjLvWXLNmTeDfP3sREcmbzIaZEZtGcPxG4lhIf09/pgVNw8HOIUP9nv57D/uDEyd9cXJ147Eer1p1EhXJfjL2NyaPWDSsnyVtZ1f5vPPTdfLMBz7/4sWLQOKA5Mw8507x8fGMHTsWgLi4OI4cOcLSpUsxDIMJEybg6up63/PPnz+P2WxO9Q5LVpk8eTI//vgjMTExTJo0iYCAgBRtvvjiC4YPH87UqVN58cUX8ff3Z+DAgRQpUoTXXnuNn3/+mQ0bNjB69Gi++uorZs2aRatWrTCZTMyYMYOLFy/y6quvsnbtWhYuXJis7z/++CPZoPcyZcrw7bffUqNGjbvWm/S+nTt3zorvgoiI5DRz9s1hzZk1QOIMUB82/RBPJ88M9RkXE82qubMs242e74aHT8EM9SnZn4JFGty+cZ1b167auoxcJyEhgXHjxgFgZ2dH/vz5adq0Ka+//jrt2rVL9fykR4S8vb0zs8w0u3O2rCVLltC/f/8Ujyx16tSJjh07pqi5YsWKBAcHc+bMGQDeeOMNhg8fjst/puJ79NFH2bFjhyXU3WnatGlMmzaNW7ducfDgQcaPH0/9+vX54osv6NKlS4r2SXdCwsLCHuj1iohIzhd8JpiP9nwEgAkTUxpNwd/LP8P9bv7+K8Iv/fMFZMXKVH2sZYb7lOxPwSIN8nnnt3UJqcpojUWLFuXw4cOEhoZSvnz5NJ8DEBoa+kDXdHZ2vueUqmmRdEcjI31Yy9KlS1m4cCFBQUH4+fmxaNEi3n//ffr375+snafn/b8BKlmyJACFChW6Zxt7e3t8fX3vedzd3Z3atWuzZMkSatasSc+ePXn88cdT9BkVFQVg9Wl4RUQkZzh54yTDNg2zbL/5yJs09GuY4X4vnjjGrmWJa1LZOzryeM8+mNIwNlByPgWLNMjII0Y5Rf369Vm3bh1r1qxJ8ziLUqVK4evry9mzZzl27JjVxlmkVdIH5WvXrmXpdf8raR2LpHEVXl5erF27lhEjRtCmTZv7vi/3WvTuvwzDSHddDg4ONGnShL1797Jjxw5atWqV7HjS+3a/ECMiIrlTRGwEbwa/ye24xLUlWvi3oEflHhnuNz4ujhUfz8AwEscC1n3qOXyKP9gj05LzKD4KAN26dcPe3p45c+Zw5cqV+7aNiYmx/L5Hj8R/hO61svSd7hyYbA3FixenQIECHDlyxKr9ptdrr73GpUuXeO+99/D39yd//vzMmTOHqKgounfvfteB1lklaSE9R0fHFMeS3rcqVapkaU0iImJbCeYEhm4YyumI0wCUy1+O8fXGW2Vg9bafvuHqucTHegv7B1KzbccM9yk5h4KFAIkDfQcPHkxYWBitWrUiJCQkRZvo6GimT59uGXANMHDgQMqXL8/ChQsZPnx4stCRJCQkhPbt23Pw4EGr1mwymWjYsCEhISGphqG0CgoKwmQysW7dujS1/+abb/jhhx9o0aIFPXv2tOx/4okn6NatG5s3b77nrEzWsmPHjrvuX7lyJT///DPe3t6WqWXvtH37dgAaN26cqfWJiEj28tGej9gYuhEAb2dv3m/yPm6OGX8s9uKJY/y59EcA7OwdaPlaP+wd9HBMXqI/bbGYOHEi0dHRzJgxg/Lly9O0aVMqV66Mo6MjISEhrF69mqtXrya7O+Hh4cHKlSt58sknmTx5MvPmzaN58+b4+fkRGRnJ7t272bx5Mw4ODkybNs3qNXfo0IElS5awatWquw5Q7tatm+X3Fy5cSLFv6NChVKhQwbKddHfBIQ3/EF64cIE+ffrg7e3N559/nuL4zJkzWb16NSNHjqRNmzZpHruSXrVq1aJy5cpUrVoVPz8/bt++zb59+9i4cSOOjo588cUX5MuXL8V5q1atIn/+/DRq1ChT6hIRkexn5amVzP17LgD2Jnvebfwufh4Zf1TJ8gjUP/+PPvrUMxQqlXJ2RMndTMaDPLydg0RERODl5UV4ePh9B85GR0cTEhJCQEBAipl48podO3Ywe/ZsNmzYQGhoKGazmWLFilGvXj26d+9Os2bNUpwTFxfHokWL+P7779m9ezfXrl3DxcWFsmXL0rJlS3r37k2JEiUs7f39/bl48WKGB15HR0fj6+tLnTp1WL58eYrjqd3WDQ4OJigoCEgcx1CwYEE8PT05duxYquGiTZs2LFu2jAULFvDiiy/etc3KlStp2bIldevWZdOmTWla2C69Jk+eTHBwMAcPHuTKlSvY2dlRsmRJgoKC6NevHxUrVkxxzqlTpyhdujR9+/ZN0x0V/XyIiOR8R64d4YXfXyAqPnHyjsG1BvPCQy9Ype9N337J9p+/AxIfgeoy6T3drcgl0vpZGhQsLPTBKecaNWoU77zzDsePH6dUqVIP3M/+/fupUqUKH330Ea+99poVK8x+Ro4cydSpUzl06BCBgYGpttfPh4hIznYj+gbPLnuW0FuJMzm2C2zHxPoTrTKu4uKJY3w98i0Msxk7e3u6Tp6puxW5SHqChcZYSI43ePBgfHx8mDRpUob62bhxI0WKFOHll1+2UmXZ0/Xr1/nwww959dVX0xQqREQkZ0swJzB041BLqKhUoBKjHh1llVARHxfHytkz/30EquOzChV5mIKF5HgeHh58+eWX+Pv7k5CQ8MD9vPrqq1y8eDHXfyMfEhJC//79GT16tK1LERGRLDB772w2n98MgI+LDzObzMTFwTr/12376VvCzibOLlXIvzS12z9tlX4lZ9LDb5IrNG/enObNm9u6jBzhkUce4ZFHHrF1GSIikgU2nNvAp/s+BcDOZMe7jd6laL6iVun70snj/Ln0h8S+7e1p+apmgcrrdMdCREREJBc6e/MsQzcOtWz3faQvtYvVtkrfKWaB6vgshf1LW6VvybkULERERERymej4aAasG8DN2JsAPFbyMbpX6m61/rcv1iNQkpKChYiIiEguYhgGE7ZN4PC1wwD4e/pbbQYoSHwEavsSPQIlKSlY/Ecun31X5IHo50JEJOf44egP/HLiFwBcHVyZETQDdyd3q/QdHxvL7x9NtzwCVafDM3oESiwULP5hb28PJC70JiLJJf1cJP2ciIhI9rQ/bD/v/PmOZXts3bGUyV/Gav1v+u5Lrp47AyQ+AlWnQ2er9S05n4LFPxwdHXF2diY8PFzfzorcwTAMwsPDcXZ2xtHR0dbliIjIPVyPvk7/df2JMyd+GfR8xedpXbq11fo/e/Bvdi5bAoC9gwOtXx+gR6AkGf1tuEPBggUJDQ3l3LlzeHl54ejoaLXnEUVyGsMwiIuLIzw8nFu3buHr62vrkkRE5B4SzAkM3jCYi7cvAlCtUDXeqvGW1fqPiYxkxccz4Z8vX+s/+yIFS/pbrX/JHRQs7pC0THlYWBihoaE2rkYke3B2dsbX19fy8yEiItnPR3s+YtuFbQAUcCnAe0Hv4WhvvbvM6xbOJeLKJQB8K1SixhNPWq1vyT0ULP7D09MTT09P4uLiMrSKs0huYG9vr8efRESyufVn1zP377kA2JvsebfxuxR2K2y1/o/v2M7+4FUAOLq40ur1/tjZacydpKRgcQ+Ojo76QCUiIiLZ2vlb5xm+abhlu98j/ahVtJbV+o+MCGfVnA8t201e+h9eha2zcrfkPhq8LSIiIpIDxSXEMWj9ICJiIwBoWqIpL1V6yWr9G4bBqjmziAy/AUDpGrWp3ORxq/UvuY+ChYiIiEgONGPXDPaF7QPA192X8fXHW3XSmYMb1nL8r60AuHp40rznG5rUJgsZhsHFkHA2/3iM2+Exti4nTfQolIiIiEgOs+b0Gr48+CUAjnaOvNf4PbycvazWf0TYZdbO+9Sy3ex/r5PPO7/V+pe7MwyDS6ciOLHzMid2XeHmtWgAPAu6UiXIz8bVpU7BQkRERCQHOXvzLKM2j7JsD6w5kEoFK1mtf7M5gd8/mk5sVCQADzVsQrk69a3WvyR3rzBxpxO7LytYiIiIiIj1xCbEMnD9QG7G3QSgeanmPFfhOateY8evP3Pu4H4APAoUokn3XlbtX9IWJuzsTPhVyE9gjcKUfriQDapMPwULERERkRxi2o5pHLx6EICSHiUZV2+cVcc9XDp5nM3fJT5ihclEqz4DcMnnbrX+87IHCRMu7jlrhlIFCxEREZEcYMWpFXxz+BsAnOyceC/oPdydrPehPy46mmUfvIv5n3W8aj/ZiRIPVbFa/3lRXggTd1KwEBEREcnmTkecZuyWsZbtoXWGUsGnglWvEbxwLtcvhAJQpHRZ6j3dxar95xV5LUzcScFCREREJBuLSYhh4PqB3I67DUDrgNZ0KtvJqtc49ucW/l6zEgAHZ2davzEQe4fc8WE3K+TlMHEnBQsRERGRbGzKn1M4fO0wAP6e/oypO8aq4ypuXbvKH5/eubp2T3yK+1qt/9xKYSIlBQsRERGRbGrZyWX8cPQHAFzsXXgv6D3cHN2s1r9hNvP7xzOIvpU4y1SZWnWp0rS51frPbRQm7k/BQkRERCQbCgkPYdzWcZbt4XWGUy5/OateY+fypZz5ew8A7vl9aN5Lq2v/l8JE2ilYiIiIiGQz0fHRDFw/kKj4KACeDHySDmU7WPUal0+dZNM3CyzbLV8bgKuHp1WvkVMpTDwYBQsRERGRbGbajmkcvX4UgECvQEY8OsKq/cfFJE4tmxAfD0CNNh0oVbWaVa+R0xiGweVTNzm+85LCxANSsBARERHJRlafXs13R74DwNnemXcbv4urg6tVrxE8fw7XQs8CUKhUAA2efdGq/ecUChPWpWAhIiIikk2cv3We0VtGW7aH1B5C2fxlrXqNw5vX8/faP4DEqWWfeHMwDo5558OywkTmUbAQERERyQbizHEM3jCYm7GJMzS18G9h9fUqbly8wKq5syzbj738KgX8Slj1GtmRwkTWULAQERERyQZm75nN3it7AfB197X6ehUJ8XH89v5UYqMSB4RXbBBEpcaPWa3/7EZhIuspWIiIiIjY2NbzW/ns788AcDA5MLXRVDycPKx6jY1fL+DSyWMAeBctRrNXXst1U8sqTNhWtg4WCQkJjB07lkWLFnHx4kWKFy9Ot27dGDlyZK77QRAREZG8KSwqjOGbhmNgAPDmI29StVBVq17j5K6/2LlsCQD2Dg606TsEJ1frLbRnS2kJEyY7EyUUJjJdtg4WU6ZMYfbs2SxYsIBKlSqxY8cOunfvjpeXF2+++aatyxMRERHJELNhZuSmkYRFhQFQv3h9Xqr0klWvcfNaGL9/PMOy3ajryxQpXcaq18hqChPZU7YOFlu2bOHJJ5/kiSeeAMDf359vvvmGP//808aViYiIiGTcggML2Hx+MwAFXQsyqcEk7Ex2VuvfbE5g+YfTiL4ZAUBgzTpUb9nWav1nJYWJ7C9bB4t69eoxZ84cjh49Srly5di7dy+bNm1i+vTpti5NREREJEP2XtnLB7s+AMCEibcbvE0B1wJWvca2n77j3MH9ALgXKEiL3n1z1OPkChM5S7YOFkOHDiUiIoIKFSpgb29PQkICkyZN4vnnn7/nOTExMcTExFi2IyIisqJUERERkTSLiI1gyIYhxBuJK1+/UuUV6hava9VrnD34N9t++hYAk8mOJ94YiKuHp1WvkRkUJnKubB0svv/+e7766iu+/vprKlWqxJ49e+jXrx/FixfnpZfu/vzh5MmTGTduXBZXKiIiIpI2hmEwbss4Qm+FAlCtUDVerfaqVa8RGRHO8g+nYRhmAOo93QW/ipWteg1rUpjIHUyGYRi2LuJeSpQowdChQ3n99dct+yZOnMiiRYs4fPjwXc+52x2LEiVKEB4ejqdn9k/pIiIikrv9cPQHxm8dD4CHkwc/tv2R4u7Frda/2ZzA4sljOb1vNwAlK1flqRETsLOzt9o1rMESJnZd5sTOywoT2VRERAReXl5p+iydre9YREZGYmeXfACTvb09ZrP5nuc4Ozvj7Oyc2aWJiIiIpNux68eY8ucUy/b4euOtGiogcVxFUqhw8/KmVZ+B2SZUKEzkbtk6WLRt25ZJkyZRsmRJKlWqxO7du5k+fTovv/yyrUsTERERSZeo+CgGrR9ETELikxXPln+WZqWaWfUap/btZutP3wD/jKt4czDu+X2seo30UpjIO7J1sPjwww8ZNWoUr732GpcvX6Z48eL06tWL0aNH27o0ERERkXR59693ORF+AoBy+csxsNZAq/Z/82oYyz94F/55yr3+M10pWdm6C+2llcJE3pStx1hYQ3qeCxMRERHJDGvPrKVvcF8AXB1c+bbNt5T2Km21/hPi4/l+3DDOHz0EQED1mnQYPBqTnfXWxEiNwkTulGvGWIiIiIjkdFcirzBmyxjL9uBag60aKgA2fj3fEio8Chai1esDsiRUKEzInRQsRERERDKJ2TAzYtMIbsTcAOCxko/xVNmnrHqNY9u3sHPZEgDs7B1o239opq5XoTAh96JgISIiIpJJFh1cxNYLWwEo7FqYsXXHWnXl6+sXz7Ni9kzLdtCLPShWprzV+k+iMCFpoWAhIiIikgmOXDvCzF0zLdsTG0zE28Xbav3Hxcbw64x3iI2KBKB83YZUa9HGav0rTEh6KViIiIiIWFl0fDRDNgwhzhwHwEsPvUTd4nWteo21X3zKlVMnAchf3I/mvd7I8N2QtIYJvwr5KaMwIf+hYCEiIiJiZe/teM8ytWwFnwq8+cibVu1/35oV7A/+AwAHJ2fa9R+Kk6vbA/WlMCHWomAhIiIiYkXrz67n2yPfAuBs78yUhlNwsneyWv8Xjh1h7RefWLYf79mHgiX909WHwoRkBgULERERESsJiwpj9JZ/F/IdVHMQpb2tN7Xs7RvX+WX62yTExwNQvVVbHmrYJE3nKkxIZlOwEBEREbECwzAYtXkU16KvARDkF0Tn8p2t1n9CfDy/zZzCrWtXAfCtUInGXXukWpPChGQVBQsRERERK/j68NdsCt0EQAGXAoyrP86qU8tuWPQF5w7tB8A9vw9t+w/F3iHlRzmFCbEVBQsRERGRDDp2/RjTd0y3bE9sMBEfFx+r9X9wYzC7fv8F+GcRvAHDyeed33JcYUKyAwULERERkQyISYhhyMYhxJpjAehasSsNfBtYrf/Lp06yas4sy/ZjL/emeLkKChOS7ShYiIiIiGTAzJ0zOXb9GABl85elX41+Vus76tZNfnlvEvGxMQBUbvI4hUvXZfNPxxUmJNtRsBARERF5QJtCN7Ho0CIAnOycmNJwCs72zlbp22xOYNn7Uwm/fAmAfD4luXiqOsen7kzRVmFCsoMHChY3btzgzz//5PLly5jN5mTHXnzxRasUJiIiIpKdXYu+xshNIy3bA2oOoGz+slbp2zAM/vj0c07v2524w+RKfEILbt2It7RRmJDsJt3B4tdff+X555/n1q1beHp6JpvtwGQyKViIiIhIrmcYBmM2j+FqdOLUr/V969OlQpcM95k0ZuLAumBuXv7lnyMmHPO1wWTnoTAh2Vq6g8Vbb73Fyy+/zNtvv42b24MtHS8iIiKSk31/5HvWnVsHgI+LDxPrT3ygqWXvNgDbHH+R2Ju/Wdo4ugXh//DDChOS7aU7WISGhvLmm28qVIiIiEiedPLGSd7d8a5le0L9CRR0LZjm8+83m5NhvkXsraVAAgB+lRrQrv8buHo4Wa1+kcyS7mDRokULduzYQenS1lueXkRERCQniE2IZcjGIcQkJM7S9Gz5Z2nk1yjV8wzD4PLpmxzfeZkTuy5z82rK2ZwwJWBKWA7GbQB8KzxEp+FvYe+gOxSSM6QpWPzyyy+W3z/xxBMMGjSIgwcPUqVKFRwdk/9lb9eunXUrFBEREckmPtj1AYevHQYg0CuQt2q+dc+2aQkTSWMmAqsX4uTOrzm69RwAHgUK0W7AcIUKyVFMhmEYqTWys7NLW2cmEwkJCRkuypoiIiLw8vIiPDwcT09PW5cjIiIiOdTW81vpuaonAI52jnzzxDeU9ymfrE16wkSZRwoTUK0gru5O/PXrYjYs+gIAB2dnnhv/LoX99XSI2F56Pkun6Y7Ff6eUFREREclLbkTfYMSmEZbtfo/0s4SKBw0TSU7u/osNX82zbLd6fYBCheRI6R5jsXDhQp555hmcnZMv/hIbG8u3336r6WZFREQkVzEMg7Fbx3Il6goAdYvV5fmKz3PpVMQDh4kkV0PPsuz9d+GfB0jqdnqOcnXqZ+4LEskkaXoU6k729vZcuHCBwoULJ9t/9epVChcurEehREREJFf58eiPjNs6DgwoHfsQfTxHcOHvWw8cJpJE3Yzg65FvcePiBQDK1q5H2/5DMaXxEXSRrGD1R6HuZBjGXedpPnfuHF5eXuntTkRERCTbOnnjJJ+v/ZpHL7Wj9LVqeMYU4ChhydqkJ0wkSYiP45f33raEikIl/Wn5en+FCsnR0hwsqlevjslkwmQy8dhjj+Hg8O+pCQkJhISE0LJly0wpUkRERCSrJI2ZOPrXBf7ccog2UX1StHmQMHFn/6vmzOLcof0AuHl5037waJxcXK32GkRsIc3Bon379gDs2bOHFi1a4O7ubjnm5OSEv78/Tz31lNULFBEREcls9xqA7cK/j36Y7MCvgs8DhYk7/bnkBw6sXwOAg6MT7QePwrNQ4VTOEsn+0hwsxowZA4C/vz/PPPMMLi4umVaUiIiISGZLy2xOZhI4732cx4JqUb9B1QcOE0mObN3Ipm8XWrZb9RlAsTLl73OGSM6R7jEWL730UmbUISIiIpLp0jY1LFz0PsEh7z855fM3rz3ai2aVa2b42uePHub3j6Zbths89xLlHm2Q4X5Fsos0BYv8+fPfdcD23Vy7di1DBYmIiIhYU3pXwJ4X+QErLy4HoE7ROrxUKeNfqoZfvsTSaRNJiIsDoFJQM2o/2SnD/YpkJ2kKFjNnzrT8/urVq0ycOJEWLVpQt25dALZu3crKlSsZNWpUphQpIiIikh5JYeLEzsscT8c6Ez8f+5mVWxJDhaeTJxMbTMTOlLGZmmIib/PzlHFEht8AoMRDVXj8f6+n+UtbkZwi3etYPPXUUzRp0oQ+fZLPkDBr1ixWr17NkiVLrFlfhmkdCxERkbzhQcNEkjMRZ+j0ayei4qMAmB40ncdLPZ6hmswJCSx+Zyyn9+0GIH8xX56bOA1Xd48M9SuSVTJ1HYuVK1cyZcqUFPtbtmzJ0KFD09udiIiIyAPLaJhIEmeOY+jGoZZQ0bFsxwyHCsMwWPP5bEuocHH3oMPQMQoVkmulO1gUKFCApUuX8tZbbyXbv3TpUgoUKGC1wkRERETuxlph4k6f7P2Ev8P+BqCkR0mG1BqS4Tq3//w9+9asAMDO3oEnB44gf9HiGe5XJLtKd7AYN24cr7zyCuvWraNOnToAbN++nRUrVjB37lyrFygiIiKSGWEiyc5LO/ns788AcDA5MKXRFNwc3TJU74H1a9j83ZeW7Zav9cOvYuUM9SmS3aU7WHTr1o2KFSvywQcfsHjxYgAqVqzIpk2bLEFDREREJKMyM0wkiYiNYNjGYZgNMwCvV3+dygUzFgBO7d3FH59+YNlu2KUbFRsEZahPkZwg3cECoE6dOnz11VfWrkVERETyuKwIE3dea+LWiVy4fQGAGkVq0L1S9wzVf/nUSX6ZPhlzQgIA1Vo8Qa12T2WoT5GcIk3BIiIiwjIKPCIi4r5tNfOSiIiIpEdWhok7/XbyN34/9TsAHk4eTG4wGXs7+wfuL+LKZRZPHkNcdOIA8DK1HqVJt56aVlbyjDQvkHfhwgUKFy6Mt7f3XX9ADMPAZDKR8E9CFxEREbkXW4WJJGdvnmXS9kmW7dF1R1PMvdgD9xd16yY/TR7D7RvXAShWrgKt3xyEXQaCikhOk6ZgsXbtWsLDwylcuDDBwcGZXZOIiIjkQrYOE0nizfEM2ziM23G3AWgX2I6W/i0fvL/YWJa+O5FroWeBxLUq2g8ahaOTs1XqFckp0hQsGjdujJ2dHaVKlaJJkyaWX35+fpldn4iIiORg2SVM3GnuvrnsvbIXAD93P4bVHvbAfRlmM7/Peo/QwwcAcPPypuOwcbh5elmlVpGcJM2Dt9euXcu6detYt24d33zzDbGxsZQuXZqmTZtagkaRIkUys1YRERHJAbJjmEiy5/IePtn3CQD2JnveafQO7k7uD9SXYRisnT+Ho9s3A+Do7EKHIWPwLlLUavWK5CRpDhZBQUEEBQUBEB0dzZYtWyxBY8GCBcTFxVGhQgUOHDiQWbWKiIhINpWdw0SSW7G3GLpxqGVq2d4P9+bhQg8/cH/bfvqWPSt/A8BkZ0eb/kMoGljWKrWK5EQPNN2si4sLTZs2pUGDBjRp0oTff/+dTz/9lMOHD1u7PhEREcmmckKYuNPb298m9FYoANULV+eVKq88cF97Vi5jyw//Tr3fondfSlevleEaRXKydAWL2NhYtm3bRnBwMOvWrWP79u2UKFGCRo0aMWvWLBo3bpxZdYqIiEg2kNPCRJLlJ5fz68lfAXB3dGdyw8k42D3Q96sc3ryeNfM+sWw3fqEHlRo/ZpU6RXKyNP9ENW3alO3btxMQEEDjxo3p1asXX3/9NcWKPfjUbCIiIpL95dQwkeT8rfNM3DbRsj3i0RH4uvs+UF+n9uzk949mgGEAUPvJTtRs08EqdYrkdGkOFhs3bqRYsWI0bdqUoKAgGjduTIECBTKzNhEREbGRnB4mkiSYExi2cRg3424C8ETpJ2hTus0D9XX+6GGWTn8bc0I8AFWaNqfBcy9ZrVaRnC7NweLGjRts3LiRdevWMWXKFJ577jnKlStH48aNLUGjUKFCmVmriIiIZKLcEibu9Pn+z9l1eRcAxfMVZ0SdEQ/Uz9VzZ/h5yjjiY2IAKFu7Hs3+97pW1Ra5g8kw/rmXl043b95k06ZNlvEWe/fupWzZsuzfv9/aNWZIREQEXl5ehIeH4+npaetyREREspU0h4ny3pSpUSRHhIkk+67s48XfXyTBSMDOZMf8lvOpXrh6uvuJuHKZb0YP4ta1qwCUrFyVDkPG4uCUM94HkYxIz2fpBxu1BOTLlw8fHx98fHzInz8/Dg4OHDp06EG7ExERkSySm8NEkttxtxm6cSgJRgIAPav2fKBQcfvGdX6cNMoSKoqULsOTA0cqVIjcRZqDhdlsZseOHaxbt47g4GA2b97M7du38fX1pUmTJnz00Uc0adIkM2sVERGRB5QXwsSd3vnzHc7ePAtA1UJV6VW1V7r7iLoZwY8TR3L9QuIUtfmL+dJx2DicXN2sWqtIbpHmYOHt7c3t27cpWrQoTZo0YcaMGQQFBREYGJiZ9YmIiMgDymthIsnKUytZcnwJAG4ObrzT4J10Ty0bE3mbn94eTdjZ0wB4FCxEp5ETcPP0sna5IrlGmn/K3n33XZo0aUK5cuUysx4RERHJgLwaJpJcvH2RcVvHWbaH1xlOCc8S6eojLjqaxe+M49LJ4wDk887P06Mm4VmwsFVrFclt0hwsevVK/y1EERERyXyGYXDlzE2O78ibYSKJZWrZ2MSpZVv6t6RdYLt09REfG8uSaRM5f+QgAC4ennQaOZH8RYtbvV6R3OaBB2+LiIiI7ShMpDT/wHx2XNoBQNF8RRn56Mh0TQebEB/HrzMmc+bvPQA4u+Wj04gJFCxRKjPKFcl1FCxERERyCIWJezsQdoBZu2cBYMLE2w3exss57eMhzOYEln/4Hid3/QWAo7MLHYeNpUiAxpKKpJWChYiISDamMJG6yLhIhmwcQryRuCL2K1VeoVbRWmk+3zCb+eOTDzi6bRMADo5OtB88muLlKmZKvSK5lYKFiIhINqMwkT5T/5rK6YjE2ZsqFajEq9VeTfO5htnM6s8/5sD6NQDY2TvQ7q3hlKxcNVNqFcnNFCxERESyAYWJB7Pm9Bp+OvYTAK4OrkxpNAVHO8c0nWsYBmu+mM2+1SsAMNnZ0abvYAKq18y0ekVyMwULERERG1GYyJhLty8xZusYy/bQ2kMp5Zm2gdaGYbDm89nsXfU7ACaTHa1eH0DZOvUypVaRvEDBQkREJAspTFiH2TAzYvMIwmPCAWhWshkdynRI07mJdyo+Ye+q5cA/oaLPACo2CMqsckXyBAULERGRTKYwYX0LDixg+4XtABR2K8zYemPTNLWsYRisnfcJe/9YBiTdqeivUCFiBQoWIiIimSA9YSLwkcKUrl5IYSKNDl49yAe7PwASp5ad3GBymqaWTQwVn7Jn5b+houXr/anYsEmm1iuSVyhYiIiIWInCROaLjItkyIYhxJsTp5btXrk7tYvVTvU8wzAInj+HPSt/S9xhMtHy9f48pFAhYjUKFiIiIhlgCRM7L3Ni12UiwhQmMtPUv6ZyKuIUAA8VeIg+1fqkeo5hGKxbMJfdK35N3GEy0fLVfgoVIlaW7YNFaGgoQ4YM4ffffycyMpIyZcowb948atbUVHAiImIbChO2kWJq2YZTcLS//9SyhtnM2vn/Pv6UFCoqNX4ss8sVyXOydbC4fv069evXp0mTJvz+++8UKlSIY8eOkT9/fluXJiIieYzChG39d2rZIbWG4O/lf99zzOYEVs35iP3BfyTuMJlo0buvQoVIJsnWwWLKlCmUKFGCefPmWfYFBATYsCIREclLFCayh7tNLduxbMf7n5OQwO8fTefw5vXAvwO19fiTSObJ1sHil19+oUWLFjz99NOsX78eX19fXnvtNf73v//ZujQREcmlFCayn/ROLZsQH8eyD97l2PYtANjZ2/PEm4Mo92iDLKlXJK/K1sHi5MmTzJ49mwEDBjB8+HD++usv3nzzTZycnHjppZfuek5MTAwxMTGW7YiIiKwqV0REciiFiewrvVPLxsfG8uuMyZzc9RcA9g4OtB0wjMAadbKkXpG8LFsHC7PZTM2aNXn77bcBqF69Ovv37+eTTz65Z7CYPHky48aNy8oyRUQkB1KYyP7SO7VsXHQ0S6ZN5MzfewBwcHLmyYEj8H/4kawoVyTPy9bBolixYjz00EPJ9lWsWJGffvrpnucMGzaMAQMGWLYjIiIoUaJEptUoIiI5h8JEzpKeqWVjoyJZ/M44Qg8fAMDR2YUOQ8dQ4qEqWVGqiJDNg0X9+vU5cuRIsn1Hjx6lVKlS9zzH2dkZZ2fnzC4tzcyGmVm7Z1G9cHUa+jW0dTkiInmOwkTOlJ6pZaNuRvDzO+O4cDzxM4OTqxtPDR9H8XIVs6xeEcnmwaJ///7Uq1ePt99+m86dO/Pnn38yZ84c5syZY+vS0iQmIYYhG4aw5swa8jnmY1GrRZTJX8bWZYmI5HoKEzlbeqaWvXktjJ8mjebquTMAuLh70GnEBIqU1v+3IlktWweLWrVq8fPPPzNs2DDGjx9PQEAAM2fO5Pnnn7d1aWniaPfvNyu3427TZ20fvnniG/K7aB0OERFrU5jIHdIztez1C6H8OGkUEVcuA5DPOz9PDR9PoVKaml7EFkyGYRi2LiIzRURE4OXlRXh4OJ6enll+/ci4SLqt6Maha4cAeKTwI3zW/LNUVwoVEZHUKUzkPvP2z2P6zulA4tSyi9stvussUJdCTrB48hgiw28A4FWkKJ2GT8C7aLGsLFck10vPZ2kFiyxw8fZFnlv2HGFRYQC0L9Oe8fXG33cObhERuTuFidzr4NWDPL/8eeLN8Zgw8Vnzz+46C9S5g/v5eep4YqMiAShY0p+nho/HPb9PVpcskuul57N0tn4UKrcomq8oHzT5gO4ruxOTEMOS40sI9AqkW+Vuti5NRCRHUJjI/dI6teyJndv5bcYU4uNiASheriIdhozBxd09S+sVkZQULLJIlUJVmFh/IoM2DAJg+s7p+Hv5E1QiyLaFiYhkUwoTeUtappY9uGEtK2bPxDCbAfCvVoN2/Yfh6OKSlaWKyD0oWGShlgEtCQkP4eO9H2NgMGTDEBa2Wkh5n/K2Lk1EJFtQmMib0jK17M5lS1m3cK5lu0L9xrR8rR/2DhqzKJJdKFhksd4P9+Zk+ElWnFpBZHwkb6x9g6+f+JqCrgVtXZqIiE0oTORtqU0ta5jNrF/0BTuXLbHse7j5EzzWvRcmO7ssrFREUqNgkcVMJhMT6k/g3M1z7L+6nwu3L9AvuB+ft/gcZ/vss7CfiEhmUpgQgARzAiM23Xtq2fjYWH7/eAZHt2607Hv0qeeo93QXTYAikg1pVigbuRJ5hWeXPcvlyMS5t58o/QSTG0zWP5QikmspTMh/zd03lw92fwCknFo2+tYtlk6byLlD+wEw2dnR7JXXqPpYS5vVK5IXaVaoHKCQWyFmNZ3FSyteIio+imUnlxHoFcj/qv7P1qWJiFiNwoTcy57Le/hoz0cAmDDxTsN3LKEiIuwyiyePtaym7eDsTNt+Qyn9SC2b1SsiqVOwsKGKBSrydoO36b+uPwAf7P6AAK8AmpVqZuPKREQenMKEpCYiNoIhG4aQYCQA0LNqT2oVTQwNl0+dZPE7Y7l9/RoArp5edBwyhqJlytmsXhFJGwULG2tWqhlvVn/Tcit4+KbhFHcvzkMFHrJxZSIiaacwIWllGAbjt47n/O3zAFQvXJ3eD/cG4PS+PfwyfRKxUVEA5C9WnI5Dx2k1bZEcQsEiG3ilyiucDD/Jbyd/Iyo+ijfWvsE3T3xDYbfCti5NROSeFCbkQfx8/GdWnloJgIeTB+80fAcHOwcOrF/DH59+gDkh8S5GsbLlaT94NG6eXrYsV0TSQcEik8VdvEhCeESq7YYXfJ7oI0c5cv0IcImJX/2PCfUn4GyvRX9EJPswDIOwS3GEHIvk1NEobkYkpGhjMkGxEs4ElHPFv4wrLq72wG0IvU3K6CF5ybmb51i0YRIlEhLnjRlUqxf5z0awbu337Nyw2tIuoEJlHu/UFbsLl4i+cMlW5YpkGw4++XEoVMjWZaRKs0JlsvPDRxC+eHGWX1dExFoM4KZ7CS4XfoTLhR4h+i7r7piMBLyvH6XwlV0UCtuLU9ztrC9UcpwEk4m9JQtz0dvdsq9kWDiVQsPQHIki/yrQqxeF+/ezybU1K1Q2cjX0uN5kEclxFCYks0U72LMzoCjhbv/cmTcMHjp/lVJh4QoVIv9x5cwRcsID8vrMm8niXK9TsHT6/rM97+DAFlcXkv5lrRMVTYm4+EyoTkTkXwZww7EUoflqc86tFpEOKf8bMxkJFIo+hG/kXxSP2omz+Ra4AiWyvFzJQc47OLDlnwBhbxjUjDLY6VycSLvEMTcORgL1o87g63kTss+SUyLZRqjjdVuXkCYKFpksvkIBihUNT9c5xYC/PT14r0B+ABaYXZl34TJVYmMzoUIRycsMA67El+Z4dH1ORNcjIqFoijYmEvBz+ptAly2UdtmGq91NG1QqOdUle3v6+Rblhr09AG8di2fbCX/izIkfQTwcoulQ4gCFXCJtWaZItnbKt4itS0gTjbHIZKcP7STiyrl0n2cYBnPDfmbdrV0AeNu7M6F4bwo4eFu5QhHJawwDbl2348ppB8LOOBJ92y5lI5OBd5EECpWMp6BfPI4uufq/CskkZsPM2xfncTA6BAxoEVqGYvviLMe9ihSmWqvHcc7nZsMqRbK//MUD8StT2SbXTs9naQWLbCwuIY7/rfofOy/tBKCCTwUWtFyAm6P+ARaR9Enr1LC+5bwpU0NTw4p1zNk3hw93f4hdAjQ54kuJU/8+KFGubkNavtYPRydnG1YoIqlRsLhDTg4WANejr/PcsucIvRUKwGMlH2N60HTsTHf5hlFE5A4KE2JLey7voduKbjhFQdNdhSh0498A8ehTz1KvUxdMdvq/TCS7U7C4Q04PFgAnbpyg6/Ku3Iq7BcD/qvyPNx9508ZViUh2pDAh2UFEbASdfulEXOhVmu4shFtM4p0KBydnmvd+k4r1G9u4QhFJK003m8sEegfybuN3eX3N65gNM3P/nkuAVwBtA9vaujQRyQYUJiQ7MQyDcVvGke9wBHUPFMXenDjFoUfBQjw5cCRFAgJtXKGIZBYFixyigW8DBtcazDt/vgPAmC1jKOFRgmqFq9m2MBGxCYUJya5+PPwDN5b/RYPT/6594lexMm37D8XNy9t2hYlIplOwyEG6VOjCiRsn+OHoD8SZ4+gb3JdvnviG4u7FbV2aiGQBhQnJ7g6e28tfH37GQ1f/fVyiWosnCHrxf9g76COHSG6nn/IcxGQyMazOMM5EnGH7xe1ci77G62teZ1HrReRzzGfr8kQkEySFiRO7LnN8p8KEZF+nj+7n53dGUOR24t8/w85E81f6UPWxFjauTESyigZv50DhMeE8v/x5TkecBqCxX2Peb/I+9nb2Nq5MRKxBYUJyEsMw+HvNSv744iNMCYkfKWJd4NkhEwl4qJptixORDNOsUHfIjcEC4FT4Kbos78LN2MQVcLtV6sZbNd+ycVUi8qAUJiQniouJZs3nszmwfo1lX1j+OLoOmUylgEdsWJmIWItmhcoD/L38mR40nd6repNgJDD/wHwCvALoWLajrUsTkTRSmJCc7PqFUH6dPpkrZ05Z9h30j6Ddy/0VKkTyKAWLHOzRYo8yvM5wJmybAMCEbRMo4VGCWkVr2bgyEbkXhQnJDY79tZUVH80gNioSgDh7M1uqXKVKw2Y8Wb6DjasTEVtRsMjhOpfvzIkbJ/j68NfEm+MZsG4AX7f+mhKeJWxdmoj8Q2FCcgtzQgKbvl3IX7/8ZNl3I18cwTUu4+NbghF1RtiwOhGxNQWLXGBQrUGcjjjN5vObuRFzgz5r+7Co9SI8nDxsXZpInqUwIbnNzathLP9wGucO7bfsCyl2m81VrmLv7MS0xtNwc3SzYYUiYmsavJ1L3Iy9SdflXTkZfhKA+sXrM+uxWTjYKTuKZJV0h4lqhXD1UJiQ7O/Ezj9ZMXsm0TcjADDZ27HroZvs9QsDE4ytO5anyj1l4ypFJDNo8HYe5OHkwayms3hu+XOEx4Sz+fxmpu2YxtDaQ21dmkiupjAhuVl8XBwbv57PruVLLfs8ChZke81b7LULA6B1QGtNHCIigIJFrlLCswQzgmbQc1VP4s3xfHXoK0p7laZz+c62Lk0kV1GYkLzg+sXzLHt/KpdOHrfsK1OrLodrGfx56jsASnmWYnTd0ZhMJluVKSLZiIJFLlOraC1GPTqKMVvGAPD29rcp6VmSR4s9auPKRHI2hQnJSw5tXs/qubOIjYoCwN7BgcYvvsLVCi4sWtcfACe7xHEV+Rzz2bJUEclGFCxyoY5lO3LyxkkWHFxAgpFgmSnK38vf1qWJ5CgKE5LXxEVHs3b+p+wPXmXZl7+YL236DSG+oAuv/9rJsn9QrUFU8KlgizJFJJtSsMil+tfoz6mIU6w/t56bsTfps7YPX7X+Ci9nL1uXJpKtKUxIXnXx+FGWz5rG9QvnLfseatSUx3q8isnJgW4runEz9iYAj5d6nGfKP2OrUkUkm9KsULnY7bjbdF3eleM3Ep+PrVO0DrMfn42jnaONKxPJXhQmJC8zJySwfcn3bP3xGwyzGQBHZxce6/EqlRo/BsD0HdOZd2AeAL7uvvzQ9gdNaS6SR6Tns7SCRS4XeiuULsu6cC36GgBPl3uaUY+O0kA7yfMUJkTgxsULLP/oPS4cPWzZV7RMOVq9/hY+xX0BWH92PX3W9gHAwc6BL1t9SeWClW1Sr4hkPU03Kxa+7r7MbDKTHit7EGeO44ejPxDoHcjzFZ+3dWkiWU5hQiSRYRjsX7eK4PlziYtOHKBtMtlRp+MzPNrxGewdEj8ehN4KZfim4ZbzBtQYoFAhIvekYJEHVC9cnXH1xln+c5j611RKeZaigW8DG1cmkvkUJkSSi4wIZ9WcDzn+1zbLPu8ixWjVZwDFy1W07ItNiOWtdW8REZu4KF6zks3oWrFrltcrIjmHgkUe0TawLSfDT/LZ359hNswMWj+IRa0XEegdaOvSRKxOYULk7k7u+os/Pv2A2zeuW/ZVadqcoJf+h5OLa7K2U/+ayoGrBwAo4VGC8fXH6zFaEbkvBYs85I3qb3DyxknWnl3Lrbhb/2/vvsOjKhM2Dv9mJr0TSICEQOi9SBHpVYpYWHZdlwUE1oqAIPJhw4IFWNaGDVlYRVcR22IDEaQjRYpU6b2FhJaeyZTz/REYEzqknEzy3NeVKzPvOZl5ZEwyT855z8uwhcOY2WsmZQLKmB1NJN9UJkQuLystjcUf/Zvfly3yjAWGhnHrQ8Op2aLVRfvP3TeXz3fmLILnZ/Xj9Y6va7K2iFyVJm+XMhmODAbOG8iO0zkT9ZqVb8a0W6fha9OVosT7qEyIXN2+DWtZ8O+3STtz2jNW9abmdH94BMERF/9had/Zffxtzt/IdObMvXih1Qv8udafiyyviBQvmrwtlxXkG8Tbnd+m75y+nMw8yfoT63lp9UuMaz1Oh7jFK6hMiFybSx2l8AsMotPAB6jfseslf+ZnODIYtWSUp1TcWf1O+tTsU2SZRcS7qViUQhWCK/BWp7cY/NNg7C47s/fMpnpEdQbWH2h2NJFLUpkQuT6XOkoR36QZ3R4cTmjZcpf8GsMweGn1S+xN3gtAjYgaPNPyGf3RSUSumYpFKdUwqiEvtXmJMcvGAPDauteID4unQ1wHk5OJ5LimMmGB2NplVCZEzslMS2XJR9Ou6yjFeV/t/oof9v0AQJBPEK93fJ0g36BCzywiJYeKRSnWs2pP9ifvZ8qmKRgYjFk2ho97fkztyNpmR5NSyjAMTh5OY8/6EyoTItfBMAx2rFzG4hn/JjMl2TN+taMU5/1+6ncmrpnouT+u9TiqhlcttLwiUjKpWJRyDzd+mH3J+/jpwE9kODMYvmg4M3vNpFzglX8JiRQUlQmR/ElOPMHP/3mPAxvXe8b8AoPoOPB+GnS89aqnMqVkpzBqySiy3dkA9K3Tlx5VexRqZhEpmVQsSjmrxcpLbV7iSOoRtp3axvH04zy2+DGmd5+Ov83f7HhSQqlMiOSf2+Viw9xv+eXLT3Ha7Z7xmje3ptPgBwmNvPofiAzDYOyKsRxNOwpAg7INGN18dKFlFpGSTZebFQASMxLpO6cviRmJANxR7Q5eafuKJu1JgVGZECk4J/btYf7Ut0k8sNczFhJZls7/ePiS61JczoytM3ht/WsAhPmF8eUdXxITElPgeUXEe+lys3LdooOiebvz2wz8cSBZriy+3/c91SKqcX/D+82OJl5MZUKkYGVnZrDyy5lsmPsdhuHOGbRYaNKtF23/di/+Qdc+2Xr9ifW8ueFNz/0J7SaoVIhIvqhYiEe9svUY3248o5aMAmDyhsnEh8XTtUpXk5OJN1GZECl4hmGwc9Vyln48Pc8lZMvFVeHWB4cTU6vOdT1eYkYijy95HJfhAuD+hvfTvlL7As0sIqWPioXkcWuVWxl+03De/u1tAJ5e8TSxIbHULVvX5GRSnKlMiBSeU0cOs+jDKRzautkzZvP1pdWf+9L8jj7YfK7vV7nD5eDxJY9zKusUAC0rtGRok6EFmllESicVC7nIAw0fYF/yPubsm0OmM5Phi4bzWa/PiAqKMjuaFCMqEyKFKzszg1Vfz2LD3G9xu1ye8WpNW9Bp4INEVKh4Q4/7r3X/YmPSRiBnwdRJHSbhY9XbARHJP/0kkYtYLBbGtR7H4dTDbE7azImMEzy66FE+7PEhAT4BZscTE6lMiBS+y532FB5dnk6DHqR6s5Y3/Njf7/2ez3Z8BoCv1Zc3Or5BZEBkvjOLiICuCiVXcDLzJH+f83eOpx8HoEd8Dya1n6QrRZUyKhMiRSfxwD6WfDydw9vynvZ0811/ocVdf8HX78YvA77z9E76z+1Plivne/j5Vs/zl1p/yXdmESnZdFUoKRDlAsvxdue3GfDjADKdmcw7MI9q4dUY0mSI2dGkkKlMiBSt9LNn+OWLT9iyaD7k+ntffk97Oi/ZnszIxSM9paJPzT4qFSJS4FQs5IpqR9bmn+3+yYjFIzAweG/Te8SHx9Ozak+zo0kBU5kQKXrO7Gw2/Pgda2Z/TnZmpmc8vHwFOg18IF+nPZ3nNtw8tfwpjqQdAaB+2fo83fLpfD+uiMiFVCzkqjpV7sRjzR7j9fWvA/DMimcoH1SepuWbmpxM8uuPMpHInvUnVCZEiohhGOxe8wvLPv2Q5MQTnnG/wEBu6fM3bup5Jz6+vgXyXO9vep/lR5cDEOEfwesdX8ffduOnVImIXI6KhVyTQfUHsT95P7P3zMbhdvDo4kf5b8//UjW8qtnR5DqpTIiYK2HvbpZ8PJ2jO7Z5xiwWKw27dKPNX/sTFB5RYM+17MgypmyaAoDVYmVS+0laBE9ECo2KhVwTi8XCs62eJSE9gVXHV5FsT+aRnx/hk9s+oWxgWbPjyVWoTIiY78zxo6z4/BN2rVqeZ7xyg8Z0HPgAUZXjC/T5Dqcc5snlT3ruD79pOK1iWhXoc4iI5KarQsl1SctO495597L7zG4AGpVrxPTu0wn0CTQ5mVxIZUKkeEg/e4ZVX33GlkU/5VmPokzFGDoMuI9qTW8u8KvtZToz6T+3P7vO7AKgS+UuvNHxDV3VT0Su2/W8l1axkOuWkJ5Avzn9SMxMBHJ+Yb3W4TVsVpvJyURlQqT4sGdksO77r1k35xucdrtnPCg8glv63EOjrj2w+RTMPIrcDMPgyeVPMnf/XADiw+L5rNdnhPiFFPhziUjJp8vNSqGqEFyB97q+x8B5A0l3pLPw0EJeXfcqT9z8hNnRSiWVCZHixelwsGn+XFbP/pys1BTPuG9AIC3u6EOzXnfhFxhUaM8/Y9sMT6kI8glicqfJKhUiUiRULOSG1I6szWsdXmPowqG4DBefbP+ESqGV6Fe3n9nRSgWVCZHix+V0sm3pQlb/bxapJ5M841abD4279eSWP91ToBOzL+WXo7/w5oY3PffHtx1PtYhqhfqcIiLneVWxmDhxIk899RQjRozgzTffNDtOqdcmtg3PtXqO51c+D8A/f/0nFYIr0KVyF5OTlUwqEyLFk9vl4vdli1j9v1l5Lh2LxULdNh1o/df+RJSvUOg5DqYc5P+W/R9uww3AkMZD6FJFP49FpOh4TbFYu3YtU6dOpVGjRmZHkVz61OzDkdQjTNsyDQODJ5c9yQfdP6BhVEOzo5UIKhMixZfb5WL7iiWs/t8sziYcz7OtapNmtO07kOj4ojlakJadxqOLHiU1OxWAznGdebjxw0Xy3CIi53lFsUhLS6Nfv35MmzaNl19+2ew4coHhNw3nWPox5uybQ5Yri2GLhvHJbZ8QFxpndjSvpDIhUry53S52/rKMVV/P4szxo3m2VWl0E63v7kdMrTpFl8dw89SKp9iXvA+AGhE1GN9uPFaLtcgyiIiAlxSLoUOH0qtXL7p27XrVYmG327HnuvpGSkrKFfaWgmCxWHix9YskZiSyNmEtp7NOe9a4CPcPNzueV1CZECn+XE4H25cv4ddvv7qoUFRu0JjWd/cjtk69Is81ZdMUlhxeAkCoXyiTO00m2De4yHOIiBT7YjFr1iw2bNjA2rVrr2n/CRMmMG7cuEJOJRfys/nxRsc3uPfHe9mXvI8DKQd4dNGj/Lvbv/G3+Zsdr1jKUyY2JJKSlHnRPioTIuZz2LPYsmgB677/H6mnkvJsq1SvAW3u7k+leg1MyfbzwZ95f9P7QM7K2q+2f5XKYZVNySIiUqzXsTh8+DDNmzdnwYIFnrkVHTt2pEmTJpedvH2pIxZxcXFax6KIHE07Sr85/TiVdQqAnvE9mdh+og7Jn6MyIeI97BnpbPxpDuvnfktmSnKebXH1GnLLn/9G5QaNTUoHu87sov/c/mQ6c36OPN7scQY1GGRaHhEpmUrMAnnffPMNf/rTn7DZ/lh4zeVyYbFYsFqt2O32PNsuRQvkFb1tJ7cx+KfBnl92g+sPZlTzUSanMo/KhIh3yUg+y4Yfv+O3eT+QnZmRZ1u1pi24ufdfia1d16R0Oc5mneVvc/7G0bScU7J6VevFhLYTtLK2iBS4ErNAXpcuXdiyZUuescGDB1OnTh2eeOKJq5YKMUf9cvWZ1H4SIxaPwG24+XDbh0QHRdO/Xn+zoxUZlQkR73PqyGHWz/2G35ctwuVweMYtFiu1WrXl5rv+UmRXeboSp9vJ6GWjPaWiXtl6vNDqBZUKETFdsS4WoaGhNGiQ97zV4OBgypYte9G4FC8d4zryTMtneGn1SwBMWjuJcoHl6FG1h8nJCo/KhIj3MQyDw9s2s+6H2ez/bV2ebVabD/U7dKbFnX+mTMVYkxJe7LV1r7Hm+BoAIgMimdxpMgE+ASanEhEp5sVCvNtfa/+VpMwk3t/0PgYGT694mjIBZWhZsaXZ0QrM9ZSJ6k1zykRQmMqEiNlcTgc7Vy5n3ZxvSDqwL882v8BAGnbuTrNevQktW86khJf2xc4v+GT7JwD4WHx4vePrVAgu/MX3RESuRbGeY1EQNMfCXIZhMG7VOL7e/TUAwb7BfNTjI2pH1jY52Y1TmRDxXhkpyWxZNJ+N874n7czpPNtCy0XRtOedNOzcHf+gIJMSXt6a42t4aMFDuAwXAONaj6NPzT4mpxKRkq7EzLEQ72exWBh7y1hOZZ5iyZElpDvSGfLzEP5723+JDSk+pxZcjcqEiHc7vmcnG3+aw85Vy/PMnwCoUKMWzW//EzVvbo21mM7dO5B8gFFLRnlKxcB6A1UqRKTY0RELKRKZzkzun38/m5M2AxAfFs/HPT+mTEAZk5NdnsqEiHdzZNvZ+csyNs6fy4l9u/NutFio2aIVzXr1JqZ23WI98TnZnkz/uf05kHIAgPaV2vNWp7ewWYtnCRKRkqXEXG62IKhYFB9ns84y4McBnl+OjaIaMb3bdAJ9As0NlovKhIj3O3sigU0L5rJ18QKy0lLzbAsIDqF+p1tpcuttRFSoaFLCa+dwOxjy8xDPZO0aETX4b8//EuIXYnIyESktVCxyUbEoXo6mHWXA3AEkZeasXtuhUgfe7PQmPlbzzspTmRDxfk6Hg73r1rB18XwObP4NLvjVVr5aDZp060XtNu3x9fM3KeX1MQyDV9a8wuc7PwdyrgA1s9dMrzqNVES8n4pFLioWxc/O0zsZNG8QaY40APrU7FPk12BXmRApGU4ePsjWxfP5fdliMlNT8myz+fhQu1U7mnS/nQo1ahXr050uZeb2mUz4dQIAvlZfpnebTtPyTU1OJSKljSZvS7FWO7I2kztN5uGfH8bhdvC/3f8jKjCKYTcNK9TnVZkQKRmyszLZuXI5Wxb9xPHdOy/aHh5dnoZdetCwczeCwsJNSJh/K4+u5J9r/+m5/3yr51UqRKTYU7EQU9xc8WbGtxvPmKVjMDCYunkqUYFR3FPnngJ9HpUJkZLBcLs5uuN3ti1bxM6Vy3DYs/Jst/n4ULNlGxp0upXK9RthsVpNSpp/+87uY/TS0bgNNwD/aPAP7qpxl8mpRESuTsVCTNMjvgcnM056/ir3yppXCPMPo2fVnvl6XJUJkZLj1NHDbF++mO0rlpCSlHjR9nKV42nYuTt123UkMCTUhIQF61TmKR5Z+AipjpxJ553iOjGi6QiTU4mIXBsVCzFV/3r9ScpM4oOtH+Sszr38aUL9Qmkb2/a6HkdlQqTkSD97hp0rl/H78sWc2Lfnou1+gYHUadOBhp26Ub56Ta+bO3E5mc5MHl30KEfTjgJQu0xtJrabiNXivUdfRKR0UbEQ041sOpJkezJf7/4ap+HkscWPMa3bNJpEN7ni16lMiJQc9ox09q5bw45flnJg828Ybnee7RaLlSqNb6Jeu07UaH4LvgEBJiUtHG7DzdPLn2bzyZy1fqKDonmnyzsE+Ra/FcBFRC5HxUJMZ7FYePaWZ0nJTmHBwQVkubJ4ZOEjfNj9Q2pH1s6zr8qESMlhz8hg7/o17Fy1nIObNuByOi/ap3y1GtRt24k6bdoTHFF8F9TMr9fXvc7Ph34GIMgniPe6vEeF4AompxIRuT4qFlIs2Kw2JrabSFp2GquOryI1O5WHf36Yj3t8TKXQSioTIiWEPSODfevXsHP1Cg5sXH/JMhFaLop67TpRt21HylaqbELKovXZjs/46PePALBZbLzW8bWL/qgiIuINtI6FFCsZjgwemP8Am5M2UzYjliYp7WmS2p70U9kX7asyIeIdMlKS2bdhLXvWrubApvW4HI6L9gkpE0mtW9pS65a2xNSq49VXdboeSw8v5dHFj3quAPVcq+e4u9bdJqcSEfmD1rEQr2QYBunHXdyf8TTrNu8kKCMCgHT+KBUqEyLe4czxo+xZt4a961ZzbOcODMN90T7BZSKp1bINtVq1JbZW3VJTJs7bdmob/7fs/zyl4r4G96lUiIhXU7EQU11uzkQQEZ593LhJKZdAzy5tqNMsVmVCpBgy3G6O79nF3nWr2bNuDaePHr7kfsERZajZsg21W7Ultna9UlcmzjuedpxhC4eR6cz5mdcjvgePNn3U5FQiIvmjYiFF7lonYJetHsg865dsDVtFlm8ah5yteSf4HRMSi8ilZKamcHDzbxzYtIH9G9eTkXz2kvuVialEjeYtqd78FirWrIXVaivaoMVManYqjyx8hJOZJwG4KfomXm77si4rKyJeT8VCisSNXs2p8ekyDJ63Chyw8thKnlz+JJPaT8JWyt+YiJjB7XZxYu8e9m9cz4FN60nYs/uSpzhhsRBTq+65MtGSyJhKRR+2mMp2ZfPY4sfYczZnfY4qYVWY3Gky/jZ/k5OJiOSfioUUGk+Z2JDInvU3djWnOpF1eKfLOzy04CHsLjvzD84nYGUAL7V5SX/dEykCqadOcmjrJg5s2sCBzb+RlZpyyf18/P2p0rAJ1Zu3pHrTmwkKjyjaoF7Abbh5ZsUzrElYA0CEfwTvdXmPMgEl9zK6IlK6qFhIgSqIMnGhZuWb8XrH1xmxeAROt5Pv9n5HoE8gz7R8psSsuCtSXGQkn+Xw71s4tHUTh7dt5szxY5fdt2ylylS9qTnxjZsSW6c+Pr6+RZjUuxiGwb/W/ot5B+YBEOgTyLtd3qVyWMm/nK6IlB4qFpJvhVEmLtS+UnsmtZ/E6KWjcRtuPt/5OYE+gYxqNkrlQiQfstLSOLJ9K4e2beLw1s2cPHzwsvv6BQZRpWET4ps0I75xU8LKRRVhUu82Y9sMPtn+CZCzVsWrHV6lUVQjk1OJiBQsFQu5IUVRJi50a5VbebnNyzyz4hkMDGZsm0GgTyCPNHkkX48rUpqknEzk6M7tHN3xO8d2/k7SoQNwmeWMrDYbFWvWJq5+Y6o0aEzFWnWw+ejXxvX6fu/3vL7+dc/951s9T/tK7U1MJCJSOPQbQq6ZGWXiQndUv4MsVxYvrnoRgCmbphDoE8jgBoML9HlESgK328XJQwc5umMbR3du59jO7aSeSrrs/haLlfLVqhPXoDGV6zUktk59fAMCijBxybPy6Eqe++U5z/3hNw3nTzX/ZGIiEZHCo2IhV1QcysSF7q51N1nOLCatnQTA6+tfJ8AngL51+hbq84oUd2mnT5GwdzcJe3eRsHc3x3fvIDvz4u9ZD4uFqMrxxNVvROUGjYitU5+A4JCiC1zCbTu5jZFLRuI0nADcU/seHmj4gMmpREQKj4qFXKQ4lokLDag3gCxnFm/99hYA49eMJ8AWoL8ESqmRlZZGwr7dJOzJKREn9u4i7czpK36Nj78/MTVrE1O7HrG161GxZh38g4KKKHHpcijlEI8sfMSzAF7Xyl156uanNCdMREo0FQsBvKNMXOiBRg+Q6cxk2pZpADy/8nkCfALoWbWnqblECpJhGKSfPUPSwf0kHthH0sH9nNi3m7MJx6/6tcFlIomtVZfYOvWIqV2PqCpVNUeiCCRmJPLQgoc4nZVT9JqVb8bE9hO1/o6IlHj6DVOKeWOZuNDwm4aT6czkk+2fYGDw1PKn8LP60aVKF7OjiVw3l9PJmWNHckrEwf2eMpGZknzVr/ULDKJC9RqUr16LCtVrUqF6TULLRukv5EXsbNZZHlrwEEfSjgBQI6KGFsATkVJDxaKUKQllIjeLxcKYFmPIdGby9e6vcRkuRi8dzasdX6VLZZULKZ5cTidnE45z6ughTh05xKkjhzl95BCnjx3B5XRe9ettvr5Ex1ejwrkSUb56TSIrxmKxatFIM6U70nlk4SOeVbVjQ2J5v+v7hPuHm5xMRKRoqFiUAiWtTFzIYrHw7C3P4nA7+G7vdzgNJ6OXjOa1jq/RuXJns+NJKWbPSOdswnHOHD/KqaOHPSXibMIx3C7XNT1GYGgYUfHViKpSlegqVYmKr0ZkTCWd0lTM2F12RiwawZaTWwAoF1iOabdOo3xweZOTiYgUHf1mKqFyl4m96xNJvkyZiKlVhhrNvK9MXMhmtfFi6xcxDIPv932P03Dy+NLHeaPjG3SM62h2PCnBstLTcspDwjHOJhzLdfv4NZ3CdJ7VZiOifEWiqlTNKRHnykRwmUidzlTMOd1Oxiwdw5qENQCE+YUx9dapxIXFmZxMRKRoqViUIKWtTFzIZrXxUpuXMDD4Yd8PON1OHlvyGG92fJMOcR3Mjideyp6RQcrJRFKSEnN9TiIl6QTJJxLITE25rsez+fgQGVOJyEqVKVspjrKxcZStVJmIChWx+fgW0n+FFBa34eb5lc+z6PAiAAJ9Anmv63vUKlPL5GQiIkVPxcLLlfYycSGb1cbLbV7GbbiZu3/uH+Wi05ta6VYukp2VSdrp06SfOUXamdOknTlN6qkkUpKSSDmZSGpSIlnpaTf02CGRZYmoUJEyFWKIqBBDZEwlylaKIzy6Alabrg5UEhiGwaS1k/hu73cA+Fp9mdxpMo2jGpucTETEHCoWXkhl4spsVhuvtH0FA4Mf9/+Iw+1g5OKRKhelhNvtIistjcyUZDJSkslIPkva6dOknTlF+rnykHYmp0xccfG4q7FYCCkTea44VCSiQkzO7YoxRERX0IrVpcCUTVP4dPunAFgtVia1n0SrmFYmpxIRMY+KhZdQmbg+PlYfxrcdDwb8eOCPcjG502TaVWpndjy5Rm6XC3tGOlnpadjT07Gnp5OZlnKuNOR8zkxJJiM1mYzknNtZaWkYhjvfz22xWgktG0VYVBRh5aIJiyqf63Y0oWWj8PHVqUul1YytM5iyaYrn/rjW4+hapauJiUREzKdiUYypTOSPj9WH8e3GY2Aw78C8P8pF58m0jW1rdrwSze124cjKIjsrE0dWVs7tzAyys7JwZGV6PtszcspC7vLgKREZafk7onAFvv4BhESWJaRMJMFlIvPeLhNJWFQ0IWXK6pQluaRPt3/Ka+tf89wf02IMvWv0Ni+QiEgxoWJRzKhMFCwfqw8T2k3AwOCnAz+R7c7m0UWP8lqH1+hUuZPZ8QqEYRgYbjdulwu3y4nL5cLtdOJ2u3A7c8ZytuV8uJzOc2NuzzaXy4nb6cKZbcflcOB0ZOPMzvlwnb/tyM7Zdu52zjYHzmw7TocDhz2L7MycIuHMthf5v4OPvz9BYeEEhoYTFBZGUHgEgWHhBIWFnysNZQmJzCkOfoFBRZ5PSoYvdn7BxF8neu4PazKMAfUGmJhIRKT4sBiGYZgdojClpKQQHh5OcnIyYWFhZse5JLPLhNvl8ryZdDkcuJwOnA6H57bL4cDlcHpuOz1jOdvdLtcfb2zdLtwuN4b73BtZtxvDM55r27n9c287/29hGAac/3xuDMONYZAzjgEGGBeN5f5aAMPzeIbh5njacVKzU3P+PbFQIag8Ib4huZ7DIOfLDCD3c5Pr8T2v2kXbzn2B5zFyf2td/PgX/rfkfs68287vnzfDhf8+Jefb2MfXD//gYPyDQ/APDiYg6PztEAKCQwgIDvYUhj8+h+HrrzkNUri+2fMNz/7yrOf+g40eZPhNw01MJCJS+K7nvbSOWJjkRspEYKgvTrsde0Yqp45kkJ2ZkXMqSUbOZ0dWFg57ro8sO85s+7nbOWNOux2H3Z5rPzuGO//no3sDXyCSPwqZPfU0dk6bF6iksFjw8fXDNyAAv4AAfAMCz90OxO/cbd+AQPwCA/Hzz709AP+g4JwSERRCQEgI/kHB+PjpCJwUP3P2zeG5X57z3B9cfzDDmgwzMZGISPGjYlGEzpeJXWuPsWfdQVJOnsFwZ4KRhWFkgTsTyCIwxE1AiAtfPxcpCZms/jKdpR/lFIlrXa23VLNYsGABC1gsViyWP8YMwGk4cBp//Dv6+fjja/UBLDkLkVk49/WWXI937nOuhcpy9v1j28XPbYGcrXky/LENzt3J1+NbrBasNh+sNitWmw82mw2rjw9Wqw3r+du2c7fzbLfm2pYz7uPnj83PFx8/f3x8ffHx9cPHzw/buc8+fn74+Pph8z23j58vVpuPFnCTEm3+gfk8s+IZzh1zpH/d/jzW7DH9fy8icgEVi0L267dfsWftelJOniEzNQW3MxNwXPFrUrMg9WTh5PHx9cPH3x9f/wB8/f3x8fc/9ybSB5uPLzZf3z8+57qd82YyZx+f3Nt8fDxvYi02W86bW6sNi9Wa84b1/Jtb27kxq/Xcfhdvg5wr8VzqjfP5sfNvrC3Wc9suKALX8ovebbgZv2Y8n+/83DP2dMun6Vunb+H8o4uI11p0aBFPLHsC17k/RtxT+x7GtBijUiEicgkqFoVsw7wNpJ/ecsNfb7X54B8UhH9QMH7nPue5HxiE37kxz2kn/gH4+Pl7bvv6+3tKhNWqq9xYLVaeafkM/jZ/Pv79YwDGrxmP3WlnUINB5oYTkWJjyeEljF46GqfhBKBPzT483fJplQoRkctQsShkwRHhpJ+GnD+rB+IbEExwRDhlykcSXCaCwNBQAkJCCQwNIzA0jIDQUAJDwnS+eSGzWCyMbj4af5s/07ZMA+C19a9hd9l5qPFDJqcTEbMtPLQwp1S4c0rFHdXu4LlbnsNqsZqcTESk+FKxKGRt7+nHhgXtqXVzHNVvitalYYsRi8XCo00fxd/mzzsb3wHgnY3vkOHMYGTTkfqrpEgpteDgAsYsHeM5UnFb1dt4sc2L2HTEV0TkilQsClnVJpWo2qSS2THkCh5q/BD+Nn/PglcfbP2AlOwUxrYcqzcSIqXMvAPzeHLZk545FXdUu4OX2ryknwUiItdAx3RFgEENBjG25VjOXYOJr3Z9xZhlY3C4rjzRXkRKjjn75uSZqN27Rm+VChGR66BiIXLOPXXuYWK7ifhYcg7kzT84n2GLhpHhyDA5mYgUtu/3fs/TK57GbeSs6/Pnmn9mXOtxKhUiItdBxUIkl9uq3cbkzpMJsOWs4rzy2EoeXPAgyfZkk5OJSGH5Zs83PLPiGU+p+Gutv/JcK03UFhG5XvqpKXKB9pXaM/XWqYT6hgKwKWkTg+YNIikjyeRkIlLQZu2YxbO/POtZ/K5vnb6MvWWsSoWIyA3QT06RS2havikf9viQsgFlAdhzdg8DfhzA4ZTDJicTkYIyfct0Xlnziud+/7r9eermp3RFOBGRG6RiIXIZtSNr83HPj4kNiQXgaNpR+v/Yn22ntpmcTETywzAM3lj/BpM3TPaM3d/wfq2oLSKSTyoWIldQOawyH/X4iBoRNQA4nXWawfMGs/zIcpOTiciNcBtuXl79Mh9s/cAzNrLpSEY0HaFSISKSTyoWIldRPrg8M3rMoGl0UwAynZkMXzSc2btnm5xMRK6Hw+3gqeVP8cWuLwCwYOHZW57lvob3mZxMRKRkULEQuQbh/uH8u9u/ubXKrQC4DBfPrXyOKZumYBiGyelE5GrsLjujFo9i7v65ANgsNia0m8Bfa//V5GQiIiWHioXINfK3+fNqh1fpX7e/Z+y9je8xbtU4nG6niclE5EpSs1N55OdHWHJkCQB+Vj/e7PQmvar1MjeYiEgJo2Ihch2sFitjWoxhdPPRnrGvd3/NiMUjtJCeSDGUmJHIoHmD+DXhVwACfQJ5r+t7dIzraG4wEZESSMVC5DpZLBYG1h/IpPaT8LX6ArDsyDLu++k+TmaeNDmdiJy3L3kfA+YOYNeZXQBE+Ecwvdt0WlZsaXIyEZGSScVC5Ab1rNozz0J6W09tpe+cvuw8vdPkZCKyMXEj9/54L8fSjwEQGxLLxz0/plFUI5OTiYiUXCoWIvnQokILZvScQYXgCgAkpCdw74/3svTwUpOTiZReiw8t5oH5D5BsTwagTmQd/tvzv1QNr2pyMhGRkk3FQiSfapWpxWe9PqNhuYYAZDgzGL5oOB9v+1hXjBIpYl/t+oqRS0aS5coCoGXFlnzY/UOigqJMTiYiUvKpWIgUgHKB5fig+wd0j+8OgIHBv9b9ixdXv4jD7TA5nUjJZxgG7/z2DuNWjcNtuAG4reptTOkyhRC/EJPTiYiUDioWIgUkwCeASe0n8XDjhz1jX+36iiELhnhOyRCRgpflzGLMsjFM3TzVMzaw3kAmtJuAr83XxGQiIqWLioVIAbJarAxtMpQJ7SbgZ/UDYE3CGvrP7c+B5APmhhMpgU5mnuS++fcx78A8IGc17TEtxjC6xWisFv2KExEpSvqpK1IIbq92O//p/h8iAyIBOJBygL/P+TvLjiwzOZlIybHnzB76zenH5qTNQM4aFW91fosB9QaYnExEpHRSsRApJE2imzCz10xqRNQAINWRyrCFw/j35n9rUrdIPv1y9BcG/DjAcznZ6KBoPu75sRa+ExExkYqFSCGKDYnlk9s+4dYqtwI5k7rf/u1tRi0ZRboj3eR0It7p8x2fM3ThUNIcaQDUK1uPz3p9Rp3IOiYnExEp3VQsRApZsG8wr3V4jUdvehQLFgB+PvQz/eb042DKQZPTiXgPh8vBi6te5OU1L+MyXAB0juvMh90/JDoo2uR0IiJSrIvFhAkTaNGiBaGhoURHR9O7d2927tSqxuJ9LBYLDzR6gHe7vEuoX85K3XuT99L3h76adyFyDZIykvjHT//gy11fesYG1x/MG53eIMg3yMRkIiJyXrEuFkuXLmXo0KGsXr2aBQsW4HA46NatG+npOoVEvFO7Su2Y1WvWRfMu3t34Li63y+R0IsXT5qTN/O2Hv7ExaSMAflY/xrcdz6jmo3TlJxGRYsRieNEs0qSkJKKjo1m6dCnt27e/pq9JSUkhPDyc5ORkwsLCCjmhyLVJd6Tz7C/PsuDgAs9Yy4otmdhuIuUCy5mYTKR4mb17Ni+tfsmz0GT5oPJM7jSZ+uXqm5xMRKR0uJ730l71p57k5JxFxiIjIy+7j91uJyUlJc+HSHFzft7FyKYjsVlsAKw5voa7v7+btQlrTU4nYj6H28Erq1/huZXPeUpF0+imzLp9lkqFiEgx5TXFwu12M3LkSNq0aUODBg0uu9+ECRMIDw/3fMTFxRVhSpFrZ7FYuK/hfUzvNp2owCggZ7Gv++ffz7TN03AbbpMTipgjIT2BwfMGM2vnLM/Y32r/jendpuuInohIMeY1p0INGTKEH3/8kRUrVlCpUqXL7me327Hb7Z77KSkpxMXF6VQoKdZOZZ7iyeVPsvr4as9Ym9g2TGg7gTIBZUxMJlK0VhxdwVPLn+Ks/SwAvlZfxt4ylj41+5gbTESklLqeU6G8olgMGzaMb7/9lmXLllG1atXr+lrNsRBv4XK7+PfmfzNl0xQMcr4to4OimdhuIi0qtDA5nUjhcrqdvLfxPaZtmeYZiwmO4dUOr9IwqqGJyURESrcSM8fCMAyGDRvG7NmzWbRo0XWXChFvYrPaGNJkCFNvnUpkQM48osSMRO776T4mb5jsOc9cpKQ5mXmSBxc8mKdUdKzUkS/u+EKlQkTEixTrYjF06FA++eQTZs6cSWhoKAkJCSQkJJCZmWl2NJFC0yqmFV/e8SU3V7gZyFmte/qW6dw7914OpRwyOZ1IwVp9fDV/+e4vnosW2Cw2Hm/2OG91fotw/3CT04mIyPUo1qdCWSyWS45/+OGHDBo06JoeQ6dCibdyuV3M2DaDd357B6fhBCDQJ5Cnbn6K3jV6X/b7Q8QbOFwO3v7tbWZsm5Hn1L9XO7zKTdE3mZxORETOK3FzLPJDxUK83baT23hi+RMcTDnoGetWpRtjbxmrid3ilfYl7+PJZU+y/fR2z1jrmNZMaDfBcxqgiIgUDyVmjoWIQP1y9fni9i/4U40/ecbmH5xP7297s+jQIhOTiVwfwzD4YucX3PP9PZ5S4Wv1ZXTz0UzpOkWlQkTEy+mIhYgX+enAT7y0+iWS7cmesTuq3cETNz+h89GlWDuTdYbnVz7P4sOLPWPVwqvxz/b/pE5kHROTiYjIleiIhUgJ1T2+O7PvnE2HSh08Y9/v+54+3/ZhxdEVJiYTubyFBxfS+9veeUrFPbXvYdbts1QqRERKEB2xEPFChmHw7d5v+eev/yTNkeYZ712jN6Obj9bRCykWzmadZfyv4/lx/4+esTL+ZXixzYt0jOtoXjAREblmOmIhUsJZLBZ61+jN7Ltm06piK8/4N3u+4c5v7mTuvrmU8L8ZSDG38FDOUYrcpaJjXEe+vvNrlQoRkRJKRyxEvJxhGHy560veWP9GnqMXbWPbMvaWscSGxJqYTkqbM1lnmPjrRObun+sZC/ML48mbn+T2arfrMskiIl5Gl5vNRcVCSovEjEQmrJnAz4d+9owF+gQytMlQ+tXth4/Vx8R0UtIZhsF3e7/j1XWvctZ+1jPesVJHnmv1HFFBUeaFExGRG6ZikYuKhZQ2Cw8tZPya8SRmJHrG6kbWZewtY2kU1cjEZFJS7U/ez0urX/Ksng06SiEiUlKoWOSiYiGlUVp2Gm/99hazdszyrGoMcFf1uxjZbCTlAsuZmE5KCrvLzn+2/IfpW6bjcDs84z3iezCmxRgdpRARKQFULHJRsZDSbFPSJsatGsfuM7s9YyG+ITzc+GH+Xvfv+Fp9TUwn3mzZkWVMWjspz4rwsSGxjL1lLG1j25qYTERECpKKRS4qFlLaOd1OPt/5Oe9ufJfU7FTPeLXwajxx8xO0jmltYjrxNvuS9/Gvtf/Ks26Kj8WHQQ0G8WCjBwn0CTQxnYiIFDQVi1xULERynM46zVsb3uJ/u/+X5/SodrHtGNlsJLXK1DIxnRR3KdkpvL/pfT7b/hlOw+kZbxrdlLG3jKVmmZomphMRkcKiYpGLioVIXttObmP8r+PZnLTZM2bBwl017mJok6FUCK5gYjopbpxuJ//b/T/e3fgup7NOe8YrBFfg8WaP0z2+uyZni4iUYCoWuahYiFzMbbiZs28Ob/32FgnpCZ5xf5s//ev2576G9xHqF2piQjGbYRgsOLiAt397mwMpBzzj/jZ//tHgHwxuMFinPYmIlAIqFrmoWIhcnt1lZ+b2mUzbPI1Uxx/zL8L9wxlYbyB/r/t3gn2DTUwoZlh9fDVvrn+Tbae25RnvEd+DUc1GUTGkoknJRESkqKlY5KJiIXJ1yfZkpm2exswdM/NcNjTcP5xB9QfRt05fFYxSYOvJrUzeMJnVx1fnGW8a3ZTHmj1Gk+gm5gQTERHTqFjkomIhcu2Oph3lvY3v8cO+H3Abbs94hH8EA+sPVMEooX5L/I2pm6byy7Ff8ozXKlOLEU1H0C62neZRiIiUUioWuahYiFy/gykHmbppKnP2z8lTMML8wrin9j38ve7ftcielzMMg7UJa5m6eSq/JvyaZ1tsSCzDbxpOz6o9sVqsJiUUEZHiQMUiFxULkRt3IPkAUzdPZe7+uXkKhp/Vjztr3MnAegOJD483L6BcN5fbxZLDS5ixbQYbkzbm2RYbEss/GvyDP9X4E742LZ4oIiIqFnmoWIjk3/7k/UzfMp25++fidP+xhoEFC53iOjGg3gCalW+m02WKsQxHBrP3zOaT3z/hSNqRPNsqh1bm/ob3c3v127Uau4iI5KFikYuKhUjBSUhP4NPtn/Llri9Jd6Tn2VYjogb31L6H26vdTohfiEkJ5ULH0o4xa8csvtr1VZ4rfwFUD6/O/Y3up0d8D3ysPiYlFBGR4kzFIhcVC5GCl5qdype7vuTT3z8lMTMxz7YgnyDuqH4Hf639V63mbRKn28nSI0v5atdX/HL0lzwrrQO0qtiKe+vfS+uY1ppDISIiV6RikYuKhUjhyXZls+DgAj7f+Tm/Jf520fb6ZetzZ/U7ua3qbUQERBR9wFLmWNox/rf7f8zePfuiwudr9eX2arfTv15/FT4REblmKha5qFiIFI2dp3fy+c7P+WHfD2Q6M/Ns87H60LFSR+6sfidtY9tqYnABSrYn89OBn5izbw4bEjdctL1icEX61OzDX2r9RVfyEhGR66ZikYuKhUjRSs1O5fu93/PNnm/Yfnr7RdtD/ULpFNeJblW60SqmFX42PxNSercMRwbLji5jzr45rDi6Is+EegCbxUaHSh34S62/0DqmNTarzaSkIiLi7VQsclGxEDHPrjO7+G7Pd/yw7wdOZZ26aHuwbzAd4zrStXJXWsW00uJ7V3A66zRLDy9l0eFFrDq2CrvLftE+1cKr0ataL+6qfhflg8ubkFJEREoaFYtcVCxEzOd0O1l5bCVz9s1h6ZGlF11RCnJOl2oa3ZS2sW1pG9uWGhE1SvXla11uFztO72DV8VWsOLqC3xJ/y7OWyHnRgdH0rNqTXtV6USeyTqn+NxMRkYKnYpGLioVI8ZLtymbVsVXMPzifxYcXk5qdesn9ygeVp3mF5jQv35xm5ZsRHxZfot80G4bBodRDrE1Yy6pjq1iTsIZke/Il9y0XWI6OcR3pHt+dFuVb6FQnEREpNCoWuahYiBRfDpeDNQlrWHp4KSuOrrho4bbcygaUpVn5ZjSKakS9svWoG1nXq9fLyHRm8vup39mYuJGNSRvZlLiJM/Yzl90/PiyezpU707lyZxqWa6jLxIqISJFQschFxULEOxiGwYGUA6w4uoIVR1ew4cQGslxZl93fgoUqYVWoW7YudSPrUi28GvHh8cSGxBarxd5cbhcnMk6w5+wedp3Zxc7TO9l5ZicHUw5e8tSm80L9QmlZoSWtYlrRqmIr4sLiijC1iIhIDhWLXFQsRLyTw+Vg26ltrD+xnnUn1vFb4m+XnJtxIR+rD1VCq1AlrAoVQypSIagCFYL/+CgTUAZ/m3+B5bS77CRlJHEy8yRJmUkkZiRyJPUIh1MPcyj1EEdSj+BwO676OGF+YTSJbkKTqCa0rNiS+mXr6xQnERExnYpFLioWIiWDy+1i15ldbDu1jd9P/c72U9vZeWbnNb1pv1CALYBw/3DC/cMJ8Q3B3+aPn80PP5uf5/b553Qbbty4yXZlk+5IJ82RRnp2OunOdNKy00hzpF338/tafakRUYO6ZevSJKoJjaMbEx8Wr9ObRESk2Lme99LF53wBEZErsFltOac9la3rGXO4Hew9u5c9Z/ewP3m/5+NgysErFo4sVxZZGVmcyDhRqJn9bf7EhcYRFxpHfFg8tSJrUbtMbeLD4/G1apFAEREpWVQsRMRr+Vp9qRNZhzqRdfKMn5/XkJCekPORkfM5MSORs/azJNuTSbYnc9Z+9oaOeAT6BBLiG0KwbzBlAspQLrAc0UHRlAssR1RgFDEhMVQOrUxUUJSOQoiISKmhYiEiJY7NaiMmJIaYkJgr7mcYBg63g2xXNnaXHYfbgd1l9yw+Z7PYsFqs2Cw2/Gx+BPsGE+QTpLkPIiIil6BiISKllsVi8cytCMF7L10rIiJSHOgYvYiIiIiI5JuKhYiIiIiI5JuKhYiIiIiI5JuKhYiIiIiI5JuKhYiIiIiI5JuKhYiIiIiI5JuKhYiIiIiI5JuKhYiIiIiI5JuKhYiIiIiI5JuKhYiIiIiI5JuKhYiIiIiI5JuKhYiIiIiI5JuKhYiIiIiI5JuKhYiIiIiI5JuKhYiIiIiI5JuKhYiIiIiI5JuKhYiIiIiI5JuKhYiIiIiI5JuKhYiIiIiI5JuP2QEKm2EYAKSkpJicRERERETEu5x/D33+PfWVlPhikZqaCkBcXJzJSUREREREvFNqairh4eFX3MdiXEv98GJut5tjx44RGhqKxWIp8udPSUkhLi6Ow4cPExYWVuTPLzdGr5t30uvmffSaeSe9bt5Jr5v3KQ6vmWEYpKamEhMTg9V65VkUJf6IhdVqpVKlSmbHICwsTN/EXkivm3fS6+Z99Jp5J71u3kmvm/cx+zW72pGK8zR5W0RERERE8k3FQkRERERE8k3FopD5+/vz/PPP4+/vb3YUuQ563byTXjfvo9fMO+l180563byPt71mJX7ytoiIiIiIFD4dsRARERERkXxTsRARERERkXxTsRARERERkXxTsShir7zyCq1btyYoKIiIiAiz48hlvPvuu8THxxMQEEDLli359ddfzY4kV7Bs2TLuuOMOYmJisFgsfPPNN2ZHkquYMGECLVq0IDQ0lOjoaHr37s3OnTvNjiVXMWXKFBo1auS5pn6rVq348ccfzY4l12HixIlYLBZGjhxpdhS5ghdeeAGLxZLno06dOmbHuioViyKWnZ3N3XffzZAhQ8yOIpfx+eefM2rUKJ5//nk2bNhA48aN6d69O4mJiWZHk8tIT0+ncePGvPvuu2ZHkWu0dOlShg4dyurVq1mwYAEOh4Nu3bqRnp5udjS5gkqVKjFx4kTWr1/PunXr6Ny5M3fddRfbtm0zO5pcg7Vr1zJ16lQaNWpkdhS5BvXr1+f48eOejxUrVpgd6ap0VSiTzJgxg5EjR3L27Fmzo8gFWrZsSYsWLXjnnXcAcLvdxMXFMXz4cJ588kmT08nVWCwWZs+eTe/evc2OItchKSmJ6Oholi5dSvv27c2OI9chMjKSf/3rX9x3331mR5ErSEtLo2nTprz33nu8/PLLNGnShDfffNPsWHIZL7zwAt988w0bN240O8p10RELkVyys7NZv349Xbt29YxZrVa6du3KqlWrTEwmUrIlJycDOW9SxTu4XC5mzZpFeno6rVq1MjuOXMXQoUPp1atXnt9vUrzt3r2bmJgYqlWrRr9+/Th06JDZka7Kx+wAIsXJyZMncblclC9fPs94+fLl2bFjh0mpREo2t9vNyJEjadOmDQ0aNDA7jlzFli1baNWqFVlZWYSEhDB79mzq1atndiy5glmzZrFhwwbWrl1rdhS5Ri1btmTGjBnUrl2b48ePM27cONq1a8fWrVsJDQ01O95l6YhFAXjyyScvmmBz4YfelIqIXNrQoUPZunUrs2bNMjuKXIPatWuzceNG1qxZw5AhQxg4cCC///672bHkMg4fPsyIESP49NNPCQgIMDuOXKOePXty991306hRI7p3787cuXM5e/YsX3zxhdnRrkhHLArA448/zqBBg664T7Vq1YomjORLuXLlsNlsnDhxIs/4iRMnqFChgkmpREquYcOG8cMPP7Bs2TIqVapkdhy5Bn5+ftSoUQOAZs2asXbtWiZPnszUqVNNTiaXsn79ehITE2natKlnzOVysWzZMt555x3sdjs2m83EhHItIiIiqFWrFnv27DE7yhWpWBSAqKgooqKizI4hBcDPz49mzZqxcOFCz+Rft9vNwoULGTZsmLnhREoQwzAYPnw4s2fPZsmSJVStWtXsSHKD3G43drvd7BhyGV26dGHLli15xgYPHkydOnV44oknVCq8RFpaGnv37mXAgAFmR7kiFYsidujQIU6fPs2hQ4dwuVye2f41atQgJCTE3HACwKhRoxg4cCDNmzfn5ptv5s033yQ9PZ3BgwebHU0uIy0tLc9fcfbv38/GjRuJjIykcuXKJiaTyxk6dCgzZ87k22+/JTQ0lISEBADCw8MJDAw0OZ1czlNPPUXPnj2pXLkyqampzJw5kyVLlvDTTz+ZHU0uIzQ09KK5S8HBwZQtW1Zzmoqx0aNHc8cdd1ClShWOHTvG888/j81mo2/fvmZHuyIViyL23HPP8dFHH3nu33TTTQAsXryYjh07mpRKcrvnnntISkriueeeIyEhgSZNmjBv3ryLJnRL8bFu3To6derkuT9q1CgABg4cyIwZM0xKJVcyZcoUgIt+7n344YdXPbVUzJOYmMi9997L8ePHCQ8Pp1GjRvz000/ceuutZkcTKVGOHDlC3759OXXqFFFRUbRt25bVq1cX+zNktI6FiIiIiIjkm64KJSIiIiIi+aZiISIiIiIi+aZiISIiIiIi+aZiISIiIiIi+aZiISIiIiIi+aZiISIiIiIi+aZiISIiIiIi+aZiISIiIiIi+aZiISIiIiIi+aZiISIiRcrlctG6dWv69OmTZzw5OZm4uDieeeYZk5KJiEh+WAzDMMwOISIipcuuXbto0qQJ06ZNo1+/fgDce++9bNq0ibVr1+Ln52dyQhERuV4qFiIiYoq33nqLF154gW3btvHrr79y9913s3btWho3bmx2NBERuQEqFiIiYgrDMOjcuTM2m40tW7YwfPhwxo4da3YsERG5QSoWIiJimh07dlC3bl0aNmzIhg0b8PHxMTuSiIjcIE3eFhER03zwwQcEBQWxf/9+jhw5YnYcERHJBx2xEBERU6xcuZIOHTowf/58Xn75ZQB+/vlnLBaLyclERORG6IiFiIgUuYyMDAYNGsSQIUPo1KkT//nPf/j11195//33zY4mIiI3SEcsRESkyI0YMYK5c+eyadMmgoKCAJg6dSqjR49my5YtxMfHmxtQRESum4qFiIgUqaVLl9KlSxeWLFlC27Zt82zr3r07TqdTp0SJiHghFQsREREREck3zbEQEREREZF8U7EQEREREZF8U7EQEREREZF8U7EQEREREZF8U7EQEREREZF8U7EQEREREZF8U7EQEREREZF8U7EQEREREZF8U7EQEREREZF8U7EQEREREZF8U7EQEREREZF8U7EQEREREZF8+38DEo5yo1eGTAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# # ================== CCP 1 ==================\n", + "mapie_ccp_1 = SplitCPRegressor(estimator, calibrator=calibrator1, alpha=ALPHA, random_state=random_state)\n", + "mapie_ccp_1.fit(X_train, y_train)\n", + "y_pred_ccp_1, y_pi_ccp_1 = mapie_ccp_1.predict(X_test)\n", + "\n", + "# # ================== CCP 2 ==================\n", + "mapie_ccp_2 = SplitCPRegressor(estimator, calibrator=calibrator2, alpha=ALPHA, random_state=random_state)\n", + "mapie_ccp_2.fit(X_train, y_train)\n", + "y_pred_ccp_2, y_pi_ccp_2 = mapie_ccp_2.predict(X_test)\n", + "\n", + "# # ================== CCP 3 ==================\n", + "mapie_ccp_3 = SplitCPRegressor(estimator, calibrator=calibrator3, alpha=ALPHA, random_state=random_state)\n", + "mapie_ccp_3.fit(X_train, y_train)\n", + "y_pred_ccp_3, y_pi_ccp_3 = mapie_ccp_3.predict(X_test)\n", + "\n", + "mapies = [mapie_split, mapie_cv, mapie_cqr, mapie_ccp_1, mapie_ccp_2, mapie_ccp_3]\n", + "y_preds = [y_pred_split, y_pred_cv, y_pred_cqr, y_pred_ccp_1, y_pred_ccp_2, y_pred_ccp_3]\n", + "y_pis = [y_pi_split, y_pi_cv, y_pi_cqr, y_pi_ccp_1, y_pi_ccp_2, y_pi_ccp_3]\n", + "titles = [\"Basic Split\", \"CV+\", \"CQR\", \"CCP (1)\", \"CCP (1, X)\", \"CCP (1, X**3)\"]\n", + "\n", + "plot_figure(mapies, y_preds, y_pis, titles)\n", + "plot_widths(titles, y_pis)" + ] + }, + { + "cell_type": "markdown", + "id": "7f8ac6b0", + "metadata": {}, + "source": [ + "Note: The small width different between ``Basic Split`` and ``CCP 1`` is just because of the variance induced by the finite number of calibration and test points. The two values would both converge toward the same width if we would reproduce the experiment many times and average the results." + ] + }, + { + "cell_type": "markdown", + "id": "1d40c5b6", + "metadata": {}, + "source": [ + "## 2/ Improve the performances using what we know about the data" + ] + }, + { + "cell_type": "markdown", + "id": "18e437ec", + "metadata": {}, + "source": [ + "To improve the results, we need to analyse the data and the conformity scores we chose (here, the absolute residuals).\n", + "\n", + "1. We can see that the residuals increase with X for X > 0.\n", + "\n", + "2. For X < 0, the points seem uniformly distributed around the base distribution." + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "599cd91f", + "metadata": {}, + "outputs": [], + "source": [ + "calibrator1 = CustomCCP([lambda X: X < 0, lambda X: X >= 0])\n", + "\n", + "calibrator2 = CustomCCP(\n", + " [lambda X: X < 0, (lambda X: X >= 0)*PolynomialCCP(1)]\n", + ")\n", + "\n", + "calibrator3 = CustomCCP(\n", + " [\n", + " (lambda X: X < 0)*PolynomialCCP(5),\n", + " (lambda X: X >= 0)*PolynomialCCP(5)\n", + " ]\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "055808e8", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABKUAAAMWCAYAAAAgRDUeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3zb5bX48Y/2smV575HETuw4wxmQHUbC3i1lQym0ha7b3o57294OaPtrezvgdjJaCiUFSltCWQmBBEhCBmTZSRw7HnEsb8lDlq29fn98bcVOHAiQ2CE57xd+mdhfS49k+Xt0zvd5zqOKxWIxhBBCCCGEEEIIIYQYR+qJHoAQQgghhBBCCCGEOPtIUUoIIYQQQgghhBBCjDspSgkhhBBCCCGEEEKIcSdFKSGEEEIIIYQQQggx7qQoJYQQQgghhBBCCCHGnRSlhBBCCCGEEEIIIcS4k6KUEEIIIYQQQgghhBh3UpQSQgghhBBCCCGEEONOilJCCCGEEEIIIYQQYtxJUUqICXT48GFUKhVPPPHERA9lTGON77777kOlUk3coIQQQgghhBBCnBGkKCUE8MQTT6BSqUZ9ZGRkcMEFF7B27dqJHt4JczqdfPWrX6W0tBSTyURGRgbnnnsu//3f/83g4OApu9+f/vSn/Pvf/z5lty+EEGeqxsZG7rnnHiZPnozRaMRqtbJkyRJ+85vfsGXLFlQqFd/73veO+/P19fWoVCq+/vWvj+OohRBCnArvFRN8Pl/8uFAoxG9/+1vOOeccEhMTSUhI4JxzzuF3v/sd4XD4mNstKioaledYLBbOPfdcnnzyyfF8eEKMSRWLxWITPQghJtoTTzzBZz7zGX70ox8xadIkYrEYXV1dPPHEE1RXV/PSSy9x5ZVXnvT7jcViBAIBdDodGo3mI91Wb28vc+bMwe12c9ddd1FaWkpPTw979+7l5ZdfZu/evRQVFX2g2zx8+DCTJk3i8ccf58477wQgHA4TDocxGo3x4xISErj++utP2xlfQghxOnrllVf41Kc+hcFg4I477mDGjBkEg0HefvttnnvuOe688042b95MMBiksbFxzNu4//77ue+++9i1axdz584d50cghBDiZDmRmPDoo4/i8Xi44oor2LhxI1deeSWXXnoparWaV199lRdffJELL7yQl156CbPZHL/toqIikpOT+cY3vgFAR0cHf/7zn6mrq+PRRx/lc5/73EQ9bCHQTvQAhDidXHbZZcyfPz/+77vvvpvMzEyeeeaZU1KUUqlUo4o7H8Vjjz2G3W5ny5YtLF68eNT33G43er3+pNyPVqtFq5VThxBCfBRNTU3cdNNNFBYW8sYbb5CdnR3/3pe+9CUaGhp45ZVXKCgo4Pvf/z7bt29n4cKFx9zOM888Q2lp6XsWpIqKirjzzju57777TsVDEUII8RGdaEwA+PrXv87GjRv53e9+x5e//OX4cV/4whf4wx/+wJe//GW+9a1v8Yc//GHUfeTm5nLbbbfF/33nnXcyefJkHnzwQSlKiQkly/eEeA82mw2TyXRMEeZXv/oVixcvJjU1FZPJxLx58/jXv/51zM+//vrrLF26FJvNRkJCAtOmTeO73/1u/PvH6ylVW1vLDTfcQHp6OiaTiWnTpvE///M/7znWxsZGNBrNmEmL1WodVfw6//zzmTFjBrt27WLx4sWYTCYmTZrEww8//L7PydE9pVQqFR6Ph7/+9a/xKcHDs6qEEEKM7Re/+AWDg4M89thjo5KPYcXFxXz1q1/l1ltvBeDpp58+5phdu3Zx8ODB+DFCCCE+nk40JrS2tvLYY49x4YUXjipIDfvSl77EBRdcwKOPPkpbW9t73md6ejqlpaXHnYkrxHiRopQQI/T399Pd3Y3T6aS6upovfOELDA4OjrqqAPCb3/yGOXPm8KMf/Yif/vSnaLVaPvWpT8WvYABUV1dz5ZVXEggE+NGPfsSvf/1rrr76arZs2fKeY9i7dy8LFizgjTfe4HOf+xy/+c1vuPbaa3nppZfe8+cKCwuJRCKsWrXqhB5rX18fl19+OfPmzeMXv/gFeXl5fOELX+Avf/nLCf38sFWrVmEwGFi2bBmrVq1i1apV3HPPPR/oNoQQ4mzz0ksvMXny5GNmth5t0qRJLF68mH/84x9EIpFR3xsuVN1yyy2nbJxCCCFOvRONCWvXriUSiXDHHXcc95g77riDcDjMq6+++p63FQ6HaW1tJTk5+UONWYiTRdbgCDHCypUrR/3bYDDwl7/8hYsuumjU1+vq6jCZTPF/f/nLX2bu3Lk88MADXHHFFYAySyoYDLJ27VrS0tJOeAxf+cpXiMVi7N69m4KCgvjXf/7zn7/nz9111108+OCD3Hnnnfz85z/n/PPPZ/ny5Vx++eUkJSUdc3x7ezu//vWv481x77nnHhYsWMB3vvMdbr/9dnQ63QmN97bbbuPee+9l8uTJxxTvhBBCHMvtdtPW1sY111xzQsffeuutfOlLX2LDhg1cfPHFAESjUZ599lkWLVrE5MmTT+VwhRBCnEIfJCYcOHAAgNmzZx/3mOHvDR87LBQK0d3dDUBnZye/+MUv6Ozs5Etf+tKHHboQJ4XMlBJihD/84Q+8/vrrvP766/ztb3/jggsu4LOf/SyrV68eddzIglRfXx/9/f0sW7aM3bt3x79us9kAeOGFF4hGoyd0/06nk02bNnHXXXeNKkgBo5bMjSUzM5Oqqiruvfde+vr6ePjhh7nlllvIyMjgxz/+MUfvaaDVakfNaNLr9dxzzz04HA527dp1QuMVQgjxwbndbgASExNP6Pgbb7wRnU43agnfxo0baWtrO2bpXiAQoLu7e9RHNBrF6/Ue83UhhBAT74PEhIGBgfc9dvh7w8cOe+2110hPTyc9PZ2ZM2eyatUqPvOZz/DLX/7yww5diJNCilJCjHDuueeycuVKVq5cya233sorr7zC9OnT+fKXv0wwGIwf9/LLL7Nw4UKMRiMpKSmkp6fz0EMP0d/fHz/mxhtvZMmSJXz2s58lMzOTm266iX/84x/vWaA6dOgQADNmzPhQ48/Ozuahhx6io6ODgwcP8tvf/pb09HR+8IMf8Nhjj406NicnB4vFMuprU6dOBZReV0IIIU4Nq9UKHJswHE9qaiqXXHIJzz//PH6/H1CW7mm1Wm644YZRxz7zzDPxpGP4o6WlhV/+8pfHfF0IIcTE+yAx4XgFp5GGv5eRkTHq6wsWLOD111/n1Vdf5Ve/+hU2m42+vr6TthmSEB+WFKWEeA9qtZoLLriAjo4O6uvrAdi8eTNXX301RqORP/7xj6xZs4bXX3+dW265ZdRsJJPJxKZNm1i/fj233347e/fu5cYbb+Siiy46pi/IyaZSqZg6dSpf+cpX2LRpE2q1mqeeeuqU3qcQQogTY7VaycnJYf/+/Sf8M7fddhtut5uXX36ZYDDIc889x8UXX3xMcemSSy6Jz/gd/sjMzOT2228/5utCCCEm3geJCdOnTweUHrTHM/y9o5d2p6WlsXLlSi655BK+8Y1v8Le//Y1///vf/OY3v/kIoxfio5OeUkK8j3A4DMDg4CAAzz33HEajkXXr1mEwGOLHPf7448f8rFqtZsWKFaxYsYIHHniAn/70p/zP//wPb7755jH9q+BI8Pggicr7mTx5MsnJyXR0dIz6ent7Ox6PZ9Rsqbq6OkDZPvyDeL+lhUIIIUa78sorefTRR9m2bRuLFi163+OvvvpqEhMTefrpp9HpdPT19Y256152dvYxOzcZjUYmT548ZtwRQggx8U40Jlx22WVoNBpWrVp13GbnTz75JHq9/n17VF1xxRWcd955/PSnP+Wee+45ZgWFEONFZkoJ8R5CoRCvvfYaer2esrIyADQaDSqVatRsp8OHD/Pvf/971M/29vYec3sVFRWA0vNjLOnp6Sxfvpy//OUv2O32Ud87uifU0d555x08Hs8xX3/33Xfp6elh2rRpo74eDod55JFH4v8OBoM88sgjpKenM2/evPe8r6NZLBZcLtcH+hkhhDib/dd//RcWi4XPfvazdHV1HfP9xsbGUVevTSYT1113HWvWrOGhhx7CYrGccKN0IYQQp7cTjQl5eXncfffdrF+/noceeuiY4x5++GHeeOMN7rnnHlJTU9/3fv/7v/+bnp4e/vSnP52UxyHEhyEzpYQYYe3atdTW1gLgcDh4+umnqa+v59vf/nZ8vfcVV1zBAw88wKWXXsott9yCw+HgD3/4A8XFxaOm0v7oRz9i06ZNXHHFFRQWFuJwOPjjH/9IXl4eS5cuPe4Yfvvb37J06VLmzp3L5z//eSZNmsThw4d55ZVXqKysPO7PrVq1iqeeeorrrruOefPmodfrqamp4S9/+QtGo5Hvfve7o47Pycnhf//3fzl8+DBTp07l2WefpbKykkcfffSEd94bNm/ePNavX88DDzxATk4OkyZNYsGCBR/oNoQQ4mwyZcoUnn76aW688UbKysq44447mDFjBsFgkK1bt/LPf/6TO++8c9TP3HbbbTz55JOsW7eOW2+9Va5qCyHEGeKDxIQHHniA2tpavvjFL/Lqq69y6aWXArBu3TpeeOEFLrzwwhNuXn7ZZZcxY8YMHnjgAb70pS994BxAiJMiJoSIPf744zFg1IfRaIxVVFTEHnrooVg0Gh11/GOPPRYrKSmJGQyGWGlpaezxxx+P/fCHP4yN/JPasGFD7Jprronl5OTE9Hp9LCcnJ3bzzTfH6urq4sc0NTXFgNjjjz8+6vb3798fu+6662I2my1mNBpj06ZNi33/+99/z8ewd+/e2Le+9a3Y3LlzYykpKTGtVhvLzs6OfepTn4rt3r171LHnnXderLy8PLZz587YokWLYkajMVZYWBj7/e9/P+q4scZ39OOMxWKx2tra2PLly2MmkykGxD796U+/51iFEEIo6urqYp/73OdiRUVFMb1eH0tMTIwtWbIk9rvf/S7m9/tHHRsOh2PZ2dkxILZmzZoTvo/CwsLYD3/4w5M8ciGEECfbicaEYDAY+7//+7/YvHnzYmazOZ6/fPrTn45FIpFjbrewsDB2xRVXjHmfTzzxxJj5iBDjRRWLvc+aICHEGef888+nu7v7pPauEkIIIYQQQow/t9vNeeedR2NjI5s2bYq3DBHi40B6SgkhhBBCCCGEEB9TVquVtWvXkpaWxuWXX05zc/NED0mIEyY9pYQQQgghhBBCiI+xrKwsDh06NNHDEOIDk5lSQgghhBBCCCGEEGLcSU8pIYQQQgghhBBCCDHuZKaUEEIIIYQQQgghhBh3UpQSQgghhBBCCCGEEONOGp0fJRqN0t7eTmJiIiqVaqKHI4QQp71YLMbAwAA5OTmo1WfOtQ6JB0II8cGdiTFB4oEQQnxwJxoPpCh1lPb2dvLz8yd6GEII8bHT0tJCXl7eRA/jpJF4IIQQH96ZFBMkHgghxIf3fvFAilJHSUxMBJQnzmq1TvBohBDi9Od2u8nPz4+fP88UEg+EEOKDOxNjgsQDIYT44E40HkhR6ijDU3KtVqsEHSGE+ADOtCUNEg+EEOLDO5NigsQDIYT48N4vHpwZC72FEEIIIYQQQgghxMeKFKWEEEIIIYQQQgghxLiTopQQQgghhBBCCCGEGHdSlBJCCCGEEEIIIYQQ406KUkIIIYQQQgghhBBi3ElRSgghhBBCCCGEEEKMOylKCSGEEEIIIYQQQohxJ0UpIYQQQgghhBBCCDHupCglhBBCCCGEEEIIIcadFKWEEEIIIYQQQgghxLiTopQQQgghhBBCCCGEGHdSlBJCiNNIc3M/a9Ycorm5f6KHIoQQYgJJPBBCCDHsTI4J2okegBBCiCOqq3vYtq0dgMLCpAkejRBCiIki8UAIIcSwMzkmSFFKCCFOI+XlqaM+CyGEODtJPBBCCDHsTI4JUpQSQojTSGFh0hl39UMIIcQHJ/FACCHEsDM5JkhPKSGEEEIIIYQQQggx7qQoJYQQQgghhBBCCCHGnRSlhBBCCCGEEEIIIcS4k6KUEEIIIYQQQgghhBh3UpQSQgghhBBCCCGEEONOilJCCCGEEEIIIYQQYtxJUUoIIYQQQgghhBBCjDspSgkhhBBCCCGEEEKIcSdFKSGEEEIIIYQQQggx7qQoJYQQQgghhBBCCCHGnRSlhBBCCCGEEEIIIcS4k6KUEEIIIYQQQgghhBh3UpQSQgghhBBCCCGEEONOilJCCCGEEEIIIYQQYtxJUUoIIYQQQgghhBBCjDspSgkhhBBCCCGEEEKIcSdFKSGEEEIIIYQQQggx7qQoJYQQQgghhBBCCCHGnRSlhBBCCCGEEEIIIcS4k6KUEEIIIYQQQgghhBh3UpQSQgghhBBCCCGEEONOilJCCCGEEEIIIYQQYtxJUUoIIYQQQgghhBBCjDspSgkhhBBCCCGEEEKIcSdFKSGEEEIIIYQQQggx7qQoJYQQp4ktW1q5//4tbNnSOtFDEUIIMYEkHgghhBh2pscE7UQPQAghhGL9+mbWr7cDsGRJ3gSPRgghxESReCCEEGLYmR4TpCglhBCniZUrC0d9FkIIcXaSeCCEEGLYmR4TpCglhBCniSVL8s7Iqx9CCCE+GIkHQgghhp3pMUF6SgkhhBBCCCGEEEKIcSdFKSGEEEIIIYQQQggx7qQoJYQQZ6Hm5n7WrDlEc3P/RA9FCCHEBJOYIIQQAiYmHkhPKSGEOAtVV/ewbVs7AIWFSRM8GiGEEBNJYoIQQgiYmHggRSkhhDgLlZenjvoshBDi7CUxQQghBExMPJCilBBCnIUKC5PkargQQghAYoIQQgjFRMQD6SklhBBCCCGEEEIIIcbdGVWUuu+++1CpVKM+SktLJ3pYQgghJoDEBCGEECDxQAghTmdn3PK98vJy1q9fH/+3VnvGPUQhhBAnSGKCEEIIkHgghBCnqzPubKzVasnKyproYQghhDgNSEwQQggBEg+EEOJ0dUYt3wOor68nJyeHyZMnc+utt2K32yd6SEIIISaIxAQhhBAg8UAIIU5XZ9RMqQULFvDEE08wbdo0Ojo6uP/++1m2bBn79+8nMTFxzJ8JBAIEAoH4v91u93gNVwghxCn0QWOCxAMhhDgzSTwQQojTlyoWi8UmehCnisvlorCwkAceeIC77757zGPuu+8+7r///mO+3t/fj9VqPdVDFEKIjz23201SUtJpf958v5gg8UAIIT66j0NMkHgghBCn3onGgzNu+d5INpuNqVOn0tDQcNxjvvOd79Df3x//aGlpGccRCiGEGC/vFxMkHgghxNlhvONBNBb9SD8vhBBnsjO6KDU4OEhjYyPZ2dnHPcZgMGC1Wkd9CHE22LKllfvv38KWLa0TPRQhxsX7xQSJB+JsJfFAnG3GMx64/C5ueeUW3rS/+aFvQ4jxJDFBjLczqij1zW9+k40bN3L48GG2bt3Kddddh0aj4eabb57ooQlx2lm/vpn16+2sX9880UMR4pSQmCDEiZF4IM50ExkPkgxJqFVqfrj1h/T4ek75/QnxUUlMEOPtjGp03trays0330xPTw/p6eksXbqU7du3k56ePtFDE+K0s3Jl4ajPp0pzcz/V1T2Ul6dSWJh0Su9LiJEkJghxYsYrHoDEBDExJjIeqFQqvjj7i/zHm//BT7b/hAcvePCU36cQH4XkCGK8nVFFqb///e8TPQQhRgmGo/R6gnQPBujxBOkZDNDrCTIYCOMJRPAGw/hCEXzBCDFArVLevGhUKjRqFRaDhkSjDqtRS6JRR6pFT4bVSKbVQHqiAYNW86HHtmRJHkuW5H2kx7dlSyvr1zezcmXhcW+rurqHbdvaAc7agHMiz5M4+SQmiNNKLAZ+F3h6wOM88uHrhaAPQoMQ9ELIC5EgoAaVClRqUGtBawRDAhiTjnwkZEJiNiRmgSlZOf5DGK94ABITJB5MjImOB7mJuSzKXsR6+3peP/w6FxVdNKHjEeK9SI4wfiQmKM6oopQQE8EfilDfNUi9YwB7r5fD3R7svV5a+3w4BwIcvb2lQavGqFOj0xz50GpUqFBylhgxYjGIxpSiViAcwR9SPkePurEkk45cm4lJaRamZFiYmplIcUYCxekJaDWnfnXu8PRe4Lgn0vLy1FGfz0Yn8jwJIc4AsRi428BRAz0N0NsEvYfA1Qz9LRDyjT5epQadGbQG0OhArR/6rEYJHrGhwBCFaBjCAQj7lY9IcPRtafSQkAUpkyCtBNJLIW0qZM4Ay6k//57oee5sjwkSD85e8zPn0+Bq4Kfv/pRzs88lyXB2JuHi7CA5womRmKCQopQQH4DD7aeyxcX+tn5qOgY42DVAS683XnhKNGpJNuuxmXVMzUzgnKJkEgw6zHo1VqOeRJMWk06DRq3MhFKrVMrsKFQM/QcouUgsNlycihGJKh8DgRAuT4g+X4jBQAi3P0K/N8i+NhdvHnTgDUYA0GvUTMmwMDM3iTn5ycwvSqY4IwHVh7yKfjwnMr23sDDprL36MWw8l8YIIcZJOAhd+6BtN3Tug6794DwIwUHl+xodmFLBnALmNEiZosxu0lvAkAgGKxgTlWKSSgNqjVKkUqlQZkkN3c/RxamRBSp/H3h7weeCwIDyedABjgPg/YtyLCgzqTJnQu5cyD8X8hcoYziJTvQ8d7bHBIkHZy+1Ss2np3+aX+z8BT/Z/hN+ed4vJ3pIQpwykiOcGIkJClUsFjt6IsdZze12k5SURH9//wfaaSMSjfHjlw9ww/w8puec3X9cZwp/KEJVi4vKFhe77X1UtrjocgcApfiUaTWSlqAnxaInPdFAltWI1ajDoFVj0GrQaVVo1ad+tlI0GiMwNKOqzxukpddHe7+PTrefLneA7qHZWkkmHfMKbCwpSWdpcRpTM09+kUqcnT7sefN095EeV8sOqHkRLvrRh15SJU4jsZgy26nlXWjdqXx27IdISFlal5ClLKWzpIIlQykCJWSMmAU1NBPqVL8WYjGIhpSCVdCjzNrqawZ3Owx0wEC7MltLpYaMMihcClMugMIlYDxz/nbFxDoTY8JHfUxN/U1satlEYVIhaw6tYe3htfx86c+5YsoVp2C0QghxejjRc6fMlDpJvMEwWxu7eW5XK099bgGz8mwTPSTxAQXCESrtLrYd6mFrQzeVLf0EI1EMWjW5NhNT0hNYPCWVPJuJjEQjZoMWo079kfo6nQxqtQqTXoNJr8Fm1jMpLQFQZlj5QxF6B4PUOQY43OOl3jHIxrpuIrEY6Ql6zpuWwaXlWSwtScOoG//H8dxzB1m9up5PfKKET35y2rjf/+lguMljUpKe/v6gNHs8U3QfhK2/VYoBn/yzFKY+jlx2OPw2HNoIhzcpv0tQik/WPCi5BKzZYCtSCjo6E2jNytK7iaJSKTOvNHplJlRiFuTOU74XDiqzuPqawVkLfU2w9+/w7iNKYS13HpReAaVXQuqUCRn+2R4TJB6cHS6ddCkHeg/w03d/ytysuWRbsid6SEKcds72eABnV0yQotRJkmjU8bNPzOLev+3i9sfe5e+fX0hZ9plxdehMFYvFqO0c4M2DDjbVOdltdxEMRzHrNRSlWjh/Wjp5KSbyksxYTVrMei167QQmGx+QWqXCrNdiTtGSl2IGjjRer+lwU+cY4I0aB//a1Ypeq+bcohSunZPDZTOysRjG59SwenU9mza1Apy1AWe4yaNWqyIcViaunqkB56wy5zY4vBmq/q4UB658UApTpzufCw69CfXroWmj0gMKFSTlKUvvJp0PyZMgIR30CaA3KzOOPi60etCmKMsJc+coS/sCg0pxqnMfOOtgw4/g9R+ArRDKroKKWyCzfNyGeLbHBIkHZwe1Ss1nyj/Dz979Gd/e9G0ev+Rx1BNZzBbiNHS2xwM4u2KCFKVOolSLnpvm5/HUuy3c+ud3+PvnFjI16+T2bBAfzWAgzNv13bxZ6+DNgw4cAwEMWjWT0yycV5JGXoqZwhQzVqMOi0GLRn1mJZF6rZqsJCNZSUYuKM3AGwhzqNvDW/s6qWzo4e2Gbr77/H6WFqdx/dxcLizLPKUzqD7xiZJRn89Gw80dR14FEWeIyRfCYDfselxZunXZL6QwdTqJxZTeS/WvwcFXoXUHxCJgzVGKUEVLlc8JGUr/J51xokd8cqnUygyv7NnKRzQMgw4697xNuH0/2e/8Gc2230PKZCj/hFKgOsUzqM72mCDx4OyRakrl+qnX81TNU/xp35+4Z/Y9Ez0kIcY0UbvDne3xAM6umCA9pY7yUdaMH+728PqBThIMWn6x7iDRGDx51znMzk8+RaMVJ6K1z8ur+ztZX9PFzsN9hKMxMq0GJqclUJRqZnKahWSLngSDdlx2rDsdPfP3GiqrnBTOTCZpipUDHW663AEsBg1XzsrhzsWFlGWfnMr88FTUM3kK6kQb7+f4TOwfAifhcVU9q+ySVr8Oal+Bilvhmj9IYWoihYNw6C2ofVkpRg10KD2fUkuUAlRqCdjyhopQprPyd/XMMzVUVTlYMNvIdXP7oH23stwvEoTsCjjnszDzeuX5+YgkHowPiQkf3cnsKTXSY/seo7qnmj9f/GfmZs49WcMV4qS5//4trF9vZ+XKAn74wyWn9L4kJpx6p2s8kJlSp0B6opFvX1rKA6/XcfOf3uHR2+extCR9ood1Vmnu8bB2fycvV7Wzv92NTqNicloCK8symJRuIc9mJsmkm5A+Sqejitnp8c9lZWkEw1EOdrl5t6mXl/e28+yOFsqyE7l1QSGfmJuLWf/hTx3DU1FhYqegHr1WfaKuBJ0Kp8tzLIbMuR00Rqh8Cvz98KknlJlTYnyE/ND4BlQ/D3VrlV3qEjIhbZrSFyqtBMypyjJLtcSE2RVKPJhWkQ7T0mDqxcqMP/sWZTbZi1+GV78N5dfBgnsga+aHvq/T5Vx1JscDOH2eZ3GsW8tu5X93/C/f2vgt/nnVP0kxpUz0kIQYZTx3hztdzlVnckw4XZ7jo0lR6hRJTTDwX5dO48H19dz1xE5+/smZfGLux/tFfLprcAyydn8HL+/t4GDnAHqNmqmZCVxbkcPUrATSE4wkGrXjsiPex01ZWRplZWnxf+u1ambm2piZa8PtC7LtUC+7mvv4/r/387O1NVw/L497z5tCdtIHv1I+PPV0oqegHr1Wff36ZtavtwOcdgHng17VOF2eYzHCrE8pPYgqn4K/Xg03/x1Mp8+bgTNO0AsNr8P+55WZaiGvsiwv71xl17nkSWBKVn4nYpTpZWlMHxEPUKkhMUMpQpVdBc6Dymyz6n/DnlWQOx+WfE1pkv4B4+vpcq76OMUDkJhwJjFqjXxuxuf49a5f882N3+TPF/9Z+kuJ08qSJXnjdh48Xc5VH6eYcKbEAylKnUJJJj3/dck0/vhWI9/4RxX1XYP816XTUJ2FywFOhVgsRl3XIGv2tfPy3g4anR4MWqUQdd2cHEozraQnGkgwalHLc/6hWU165mQkkuyLwZQ0Kh0D/P3dFv62zc6FZRl88fwpzCk48SWqhYVJp0Vl/ui16uN5JeiDOvqqxvsFoNPlORZHKb1CWRa248/w6HK4bfWE7XJ2RgoMQN06OPBvqH9dWTqZlAeFSyBzutIbyWhTluuJD0ethcxyHKoi2lTtlKirSOh+B/5xm/JcL/gCzP8M6C0ndHOny7nq4xQPYHRMGP73eyUkp8vzLMaWk5jDDdNu4G81f+M3e37Df877z4kekhAn7GQuBztdzlUfp5hwpuQIUpQ6xcx6LV9bWcJT79h5aGMj9Y4BfnfzHEwfYfnT2SwWi1Hd7mbNvg7W7OvgcI8Xo07NtMxErp+bS2mWlbQEAxaD5owt/jmcHuz2AQoKEslIH/uN/4kc80HY7QPUHeyjtDSFzy+bTPdAgDcOOnj3cC/X/bGLinwb37h4KkuL0z42z/snPzlt1G4eH/ZK0HiszT76qsbpOvVWnIBJy5Td27b8Bh49X1nKV7xiokf18eXvV5qUV69WluhFgmArgEnnjS5EncHLJR2OEef7jOPEhBM45oOw2weobQgRKV3K/EuuhbYd0LAeXvsebPy50ndqydfAZPvI9zUeTlY8gPGPCRIPzgwLshfQ6Grk8f2PU55azsVFF0/0kMTH0Imcf072OepMPAdJjjD+pDIyDrRqNZ9eVEROkonndrdyyf9t5uHb5jE958xo/niqxWIx9rb2s2ZfB6/s66C1z4dZr6E0K5FzilIozUokLcGAWX/mFqJGstsHqK3tHfXvo4tPI4/p6fZRWeWM94v6MAoKEkd9Tks0cMP8fK6amc3mhm421Tu5/bF3mZFr5esXTeWCaRlnxe8CxufkP3y71dU9wPGn3kqDyI+J9FK46Eew6dfw1PVK8n7h9z/w0qezlrcXDq5RekQdekvZNS55EkxZAZnlkFykFEPUZ8dbnOPGhIyxY0J3j4+qSiezK9JHL9P7AEbFBI0WChZB/gLoaVCa+m/9PbzzCMy7C5Z/A8xnT5+c8U4IJB6cOW6cdiPtg+18b8v3yE/Mpyy1bKKHJD5mTmQW5chjWlsHPnKvpNN1OdjpQHKEE3d2vGMbR02H+9m+vmXMAsBF0zMpSDHxly2HufYPb/Pty0r5zJJJZ03y/kFEozH2tPSxZm8Ha/Z30tHvJ9GgZVpWIkuL05iamUiqRY/FcPa9hEcmAyMTjZFFqZHHbNhgp6rSCUBqmulDzaDKSLccc3xNTXe82PWDK6ezpbGHN2sd3PXETkqzEvnGxVNZWZZ5zOv7dD8pflDjFYxHBrbLL5885nN3osHvTPsdnK7q6nup3d9BcYX62OTfkq4UpnY9Dm8/CE2b4IZVkJQzMYM93Xm6lR3zqp+Hw29DNKIsfSy5RClE2QrOqkLUSMeNCRnHjwmVVU48nhBeT/hDzZ7KyLCM+pkDNd1HCl1L/xP6muHAi/DuI7DzMZh7B5z/7WOKU2fiuWg8YoLEg4+npsMuth7wUlEx9kVCjVrDvbPv5Zc7f8mX3/gyf7/i76SbZaMkceJOZBblyGOeeGJ/vFdSXl7ihzoXjLUc7MM2Bj/TzkeSI5y4s+/d2ylWX9dH017lDeFYAWdalpUfXDmdx7c28aOXa1hX3cWvPzWbvBRpthqORNlxuI+1+ztYu78T50AAq0lLaVYiF0xLpzhDKUSdLTOijmesAtFwwjHWMcM769lsBv70p734vGEuuKCAFSvGTkK2bmtj29Z2Fi3OYfGi3FHfG1mIqqxyxotdZWVpXDAtg6XFqWw/1MuGWgefe3IXs/KS+P6V08lQaeInuI/rtNLjGa+12ScS2I4+5niB5Uz7HZyu9u3vpv5ADx5sY89I0eqV3csyy2H3X+EP58BF98P8u+EsPsfFuduVWTfV/wb7VuVrqSUw7XKlWXlS/llbiBrp6AIRjBETRhwzuyIdp9OL3e7G6fRSVJTEihUFYxamDtR0s3VLOympRpYuyT3mmOFilNPppa3dAyiN0kkuhCVfgf5WOPCCUnzd8zdY9EXshZ9l/0HvGRkPYHxiwoeJBzB2TDgTfwenq7q6Pg5VKTNijzdzPUGfwD2z7uHBXQ/yxQ1fZNVlqzBqjeM5TPExNtb55+jzxMhjhnskZWaa+epX32BgIMjtt5dz551jnwuO3pVupJGFqA/SGHzkeelMOx9JjnDizu53cidZW/sAer2G4hJbvBAwFotBy5fOL2ZjnZMXKttZ+cBG/vOiqXx22WQ06rMrEQmGo2xt7Gbt/k7WVXfi8oZINuuYlpXIJdMzmZKeQLJFj+UsL0TB2H2iji5QjXXMtGkpDPT38PSqt+lq70Sr8bBba6Wn2YjP6+Giq28gp6AIgIP79vDEb/5Ed2+Epv1puNqmY0lIwJKYRGpGJjt2+DhwYBA4Uuwa+VrXaTQsK0ln4eQUtjb28Gp1F596eBtlyRaK3coxJ3pSFKOdSGA7+piRgWXnzs74G4n587MAmWp9KjU392M0aCkqsjKr4n2udBcthbSpyoySV74BVc/CtQ9BWvH4DPZ00ncYal5SClFtO0GlgfRpUHYNZJSCNXeoR5S8fRmrT9TI4tPx+kgVFibQ3d/Ljv3NqHQhatp17GzcSUqajuz0FO765JFeNvf99mkaDvVgtZjZXpvHzOlZWBPMZKTYyM9Op6rSSWWVk9wcCxWz05l99Gs9KQ8WfQmmXwP7/gWbHyBz65/YF7yBA7HPUT4jE3j/wokY7cPEAxg7JixblsuiRTkSD06x9vZB9AYNxcVJVLxPTMhJyOHO8jt5dN+jfO3Nr/GHFX9Ao9aM00jFx9FY582jzwFjHbNwYTa9vU7uv38dhw+3YjT6eeONfTidSQwODnL33XdTUFAAwLZt2/j+939Fa2uAmpos+voWYrVaSU5OJicnhzVrOtm0yQF8sMbgI89LkiN8OGdCjiDv6k6i+noXPn+Ycysy3rd3j0ql4vxpGczKtfHMDjs/W1vLM+/a+f6V01lRljlOI54Y/lCEjXVO1u7rYH2Ng8FAmPQEAzNyrExJT2BSmgWbWQpRRzveUj1Q+m4drDnEi6s342g7zOXXf5ILV8wE4LknH+HRX94/6vjOmiP/n104nXankYKCRJrqa2jatxqAg21w8N3RY7jtKz9ldsUiKmanY9Q4cR1+hkZ1McHBYgomlxCKmuNJ0HlTM1g4KZX1NQ5eP9BJbSSCr6Ob+UtzuPzyyfHbPNOuipxORgb3735386jtbeW5PrWqq3vwekNMn556Yn17EjLgvP+Gxjdh3z/hjwtg7qdhxQ8+Ns2iPzRnHdS8ANUvQNc+UOuUmVAzrlcKUonZUogaw/GW6gH4A0H++fIONm+vZ9rUNO7/5nWAEitSF95IIBga8zYXzynjymVL4ufxtyq34+xzAbDxwOhjp03KY/UDPwWU2Ver33qdpo1qalvyKJ2cT5I5iY5231BRLA+Wfg2662HXM1zR+yjhA2vQFv6YwsuuGzUzUGLCqXO8mPDUU3MmclhnhYb6Pvy+CPNPIEcAKE8r54apN/D3g3/nu29/l58v+7m8JxbH9V7nzVgsxvbtB/j979dgtx/ii1+8i8LCcwD46U9/yg9+8INRx69adeT/y8rOYf/+MOXlqezevZuaGiVH2LMHPve5x0b93E9+8ggrV5azcmUhBkMnbvdqDhwoJRotpaysDI9HN2aBaeR56b0KJxIPTq7TLUeQd3gnUXpahD0v/4SgfTnJ1quZUpI/6vtjzWJJSdDzxfOnUNni4oWqdu7+607mFyXz7UtLmV905jQG7ez38+ZBB+sPdLGlsRt/KEp2kpH5hclMSbdQkGLGZj67l+a93455I3uCDPS72LfrHer2V1J3oIr6A3tx9XTHj1156TxgJg6nB9eAHpVKhcFsIyUtnaycLMyWRIIhDe5BaG5R43AriU1RcSnX33kvLfYenF19GPQhdNogblcfPY4uZs+ZSsUCpfHmy/9Yw+pVj44aY1JKFklpxZTNnsOtn72N7LxCrpiVzXlT03hlfweb67s575dv8YXzp/CF86eg06g/1HrrkVdO4P23wz4bHX116ejtbcWpVV6eys8eeYeX3vVwSyDExctnoR7RyHzMWSwqtbITX+582Pcs7FkF+/4Bi76izDYxJEzQoznJIiGwb4O6dXBwLfQ2gtYIGdNh1k2QNk3ZofAsX5r3fjvmDceE/PwEdlc3sL2qll3VDeyqbqC6oZlwOAJAqb2I+795Xfz2MlJsOHv7sVoSyclMIS8rmQSziVAQ9CTy9pY2vJ4wAF+5/Up6XAM0NffQ4XCj0UaIqkJ0dbuYlJfJ9LK0eNF1+WdeoMfljo/PoNORn5HDvPJirr98AddfuhTSSjBc/H1or0S7/1/wr8/AOw/DFQ9CVjnw4XpwSEx4byOfn+GLQhITxleSNcjOZ5/DP2cRKbYVTC4efQF6rL/3JblLGAwN8vKhl7EZbHxnwXcmYujiNPB+M4ZGnjd7enrYtGkTO3fuZNeuXezevRun0xk/9gtfuCx+m06nkneZzTays7OZNCmXxMREvF41PT0Rdu3yYDQqRaGKigq+/vWvU1vbhd3uwGyOYDSG6enpob29nRUrZrFw4UIA/u///sUDDzwwaozp6TmkppawcOECfvSjL5Ofr+TJ7zXLR+LByXe6xoOz993eKVC7bwuH923k8L6NrHn6/zFj3rksvuBSFl94KTkFRced6aJSqZhTkMyMHCsb67p5vaaL6x/eRkW+ja+tLOG8qekfu0JNNBqjqtXFG7UO1tc4qOlwo1ZBYaqFJVPSKE63kJ9iIcmkw6Q/u6ckD/dpMho0eLxKInB0Uaq/rweTXhNvZHto/6v86RffHnWMSq0mPbuIwikl5OYpU8Pt9gH0SfP58WPvsmDB6CLpM3+voarSicpgo7Q0hWAwwp56E8uv/PJxG6I7nB527uqkoCCRyVOn88lP30PjwYPYDzXQ52yjv7eT/t5O7HVvs/Ky88jOU6btdrc2UuRtZeH5Fbxy0MWDr9fx7I4W7r+6nJXTM0cFihNpjnj07iIf9irKmTwt+OirS0dvbytOrYICK/9+eytdvS5WvbaR7PQUrr5wAdesWMiFCyvec5YLpiQ49/NKE++9z8LGn8O238H8z8KS//h47mQ26ISG16HuVWjYAMFBZfZTeinkL4T0qUrzd2MSnOXLVIb7NBmMmnhxaORrJBKJ0NzuYHJ+NgDNzW6u/OoPcPS6Rt1OalIiRTm5nDtLeZM5/Jp7+v/9iCWLC455X/HMMzVUVjnp7fGTkmqistLBJy+4mOllacctkA1/PTfXzNfvvI7Kmiaq61to7ujA4/PT0NZMQ1sz3QM9SlEKQKXimT39zJn2OaZNqkN14N/wyDKouAUu/jGFhckTEhPOpngAx255Lk6tfbu30bhzP4079/PSY48xe+FsFl+0mKUXLyUrP+u4MeGSokvwhDw8Xfs0ifpEvjznyxP1EMQEGD7/WSw6+vuDwLHnNYfDgc1miPdk2rVrNT/4wbdGHaPRaMjLm0J5eRlTpigF0erqHhISFvHCC7VcddXU+LGhSIgf/Ox1Nm4/RI/Oy+x5DnYNNHKoxsGUC6dw8XXTaOt0k5ahx5KoIRKLECPGBvcW/vnPt8jJstKT7ODSOy6lpa6d9kPt9Dm6cTrbcTrbqa3dyN2fvSpelKqqqqKzs5MlS5aQkDD64tvRBSvJET660zUeSFHqJJp7zgJW3vhFqrdtoMN+kH07t7Nv53Ye+eV9FBVP4+5v/pzS0knHNCAd2Vh65aJclpSksrmum80N3dz5+A7yk03cdE4BN52bT2qCYYIe3XuLxWI0OgfZ2tjDloZuth/qpd8XwmLQUJKRwLUVOUxOs5CeaMRq0mLQnt1Jx0jDDcOLS2xUVGRQUJCoPJ+11byz8XXe2bSe2r27ufe/7qeg/Gpqa3vJyJhB/uQSps+eR8n0WZSUz2by1DKMJqVh/tZtbfz61zuYXp5KeXnmMa85UHpBeTwhUlOMx+zSd/NNZWPO1hr5pmn+vPlMr5jPzl2d1Nb2MqnQQIKhi7rqKur2V1IyfVb851597hmee/IR1GoN+VNmUnzucvoCs7j7r16WFKfxk2tnMDldCUQn0hxxrCsnY11Feb/gdSZPC5YteidWJBLhvntu4Pn177Bl/0E6nL088uxaHnl2LWajkduuWsHnrvnkMX+bxzSWXv4t6GlQdp7b9nvlY9qlcO49Si+q0/WChd+tzIZq2gSH3oSuobVfyUVQuBhSpij/b0pWZoCp1O91a2eV4T5NJcVHYoLLPci6t3fx8lvvsnbTLtRqFV1bnsZuH+DgwT6WzJ6NNzTI/BnFzCsvYV55MfnZygUth8PD6ufraW1xk5efyNSStDEvdBUWWmlrH2T69FSam93UN7iwWHRML0sbs5k6jI4J3733RnbuVOLB1Kk2kjNi7NhXx8799ZROPnJRpLuvn1u++QsAMlOTWVheys0zMrlix99JqHkRzv+O8voemll4smKCxAOJBxNp0bJFXPTpy9j35n467S3s2bqHPVv38If7/8Dkssl84Ydfp7Q09dgcYWsbh7blMWneTB7Z+wiAFKbOIsPnv/nzM7nooiLKy1OJRqPs2bOHV155hZdffpkdO3bwyCOPkJe3km3b2snJmUF5eTkLFy5k3rx5zJs3j5kzZ2IymahpbGfVi9v47dptZE0L453dx1qNh+fWuuj2d9Pr72UgOAD5QD7sAHb0Dw0mDXY51ej7dKhUKjStGtQqNRqVktP5gyHC4Qhqbww0MaIroqgujJJLFlm+dHyHffiafPgO+7jnwD0kNSeRbEym4bEG6tbUodaoyZ1axPKLzuPWmz/F8rnLsegtYz4fIDnCh3W6xgMpSp1Ek6YUc8MXv47/U19k88Z9HNj9FodrNuPtq6W5sY5pZcV0OlVs2GDHSD0GQ5Sk9Jm8tclBQ4OLfneA5mY3FbPTubg8i+kpZt6qdtIaCPLA+joeXF/HuZNSuGJmNpfMyCJtAgtUwXCU2k43lS0udh7uY2tjN92DQTRqFYUpZubk28hPMVGUYsFm0ZNg0J51TdyP5+hlesONwmfOSMbRspffPP4i9fvepq+7c9TPdbQ2s/Sy4SV8hVz80uZRt+cejGE0KTOvnnm6BpcrAMA3vjF51H3v29sNxJg5K52Kigxqa3ux2wfGbFwOo3fcG7mEcNjIr2WkT2H2OYtxOD3U1A1QUKAhI91Coi2Z7PxCOlqaaa6vpLm+EoCk9BxeK5rPO3Wf5vMrpvOfK6eeUHPEo6+cHC9YvF/wGnlifq8rIifjasmHuY2Pcr/jteOHGJtWq+XeGy9kxewytu0L4lM7+eeaLWzfvxeP30MsFmP+/CwO1HTz6rpDHOio4orz57N9k5uGehcGo4ZDh/q5/PJJTC8rgSVfo6epjnDtetKatqKpeUlp+l16Jcy8Xlnyp57Aws5AJ7TuhNYdcHgztFdCLAKmFEgthhmfVD4nZimzoXSmiRvraeboWUjDzcIz8zSs2b6RF36ynar6eiKRaPxnkhIttHZ2x8+/D1/85WManBu1XjIyLLy9pY2XX25ErVKRnm4eddzefUo8mDUzHb1eQ1amBb1eEx/DMY3LOTKTa3bFsTFhVDzIsFBSlMvKBeditw/gcHjIyLDQ3efmwoWz2bqnhq6ePl7YtI0XNoFep+WCkihf2/9NLl3yN6XZf/askxYTJB5IPJhIU6ZO4dZv3oj3lrvYtKGG6nd30rS/ksGeFprrmiktL6Sl3c+GDXZ0oVYsFi3WjEm8tamDhgYXef1lZJwb5pG9jxCOhrku7TNn5CyOs93Rf+fD573zz8+huXkP99zzLHv2bMLhGJ0jNDY2csklNwIwtczKRTf9m8b+RnY3H+D/Gh9j0O6gO9SlFJxSgBTYH9CSYrZhCViwaC0kqpJRB5LJwUh+diqDfVGcHUEKc1Oxmsw01XkpL8ugeEoKKpUKNWoaGvs4UN1DeXkaNpuBtvZBcnIspKaaiMaiOLoHsbf3YitUY5wP3rCXnv4Bunr70SdEiGoDNCU2Ycow4XP4aKk5xFM1h3jqt4+jS9eRNi+NRZ9bxKTUSUxLnkbGomQWak1ceF7+0U9dnOQI7+10jQdSlDoFtmxtp2p/mMLiy0kvupQeZy82cwedThVr1jRxuNmN48Dv6e3Yi0qtISO3HGvGbKL+Cir3KFP1y8rS6Gz3QleAC6clk72okK2HuqnrHOR7L+zn+y/sZ1pWIounpLK0OJ05BTZsZv0peTyeQJh6xyB1nQPUdrrZY3dR3e4mGImiUavIsRkpzUokL9lMYYqZ5KEilFEns6HGcvQyzrKyNMrK0nC7+vjGLXcRjSivAb3BRFbhXBZfeBHX3HgtaRlZ1NR0s3VrG1u3wkUrC0lNM7Fhgx23OxC/vcoqJ+FIDEuCjoxMMw6nJz7ryW4fYPeeLvy+CA6nj4rZ6ZSWpsQLZGM133x9fTNVlQ6cTi833VQ66nsjC2xAfGnf0Y/x1nu+xq33fI3qfXWsfvoF6vdtxtlaSb+znRTVu8wv/m8efquRf26385lSHd/73nJaWwdZs+bQmCfb99qSdqT3S2ZGnpjXrDl03CsiJ+NqyYe5jTP1Ks3ZpKaml8o9fnJyE/nGbbeycdNyega7KMvO5kBNN8+vrmdb1QFe2fsc//uXp7FZrEzJnkxR+iTCh/OoqkxQevaoVDT1JlHbewHTiy9nbnqzsjtd1dPw7iNK8adwEUy+4MhufqdiGVw0Cq5mcNaCowba9yiFqIEO5fumZGUGVNlVkFwI1jwwWkGfOLFFs9PY0ct2hvs0ffX/PcxvV70YP25Kfi7T86fyqSsWc/M1C9FqNaxde4hNm1tZviyPefMysdsHcPX76ezwxm+vt8dPNBpDb9BSWGgddb97dnfh80dwOnzMrhgRD4bGMZb1rzdTWXVsTBhZXANlN59j4kGGhdLJ+Wx44mf4A0Fe2rCLv/5rE+9W78PZ38u6A33cdNlVMFhN7NHz2Ge5CsPSb3LnnTOoru6hublf4sFHuF8x8bZsaWdvjZ/CGYvJnLaQbkcfyaYBWtr9So5w2E3rO3/D1WlHrdGQWTiFpOwpxHwlDGyeTuYyFY/tf4w6Uzcp+y4B5PVwJjn673zJkjyWLMmjs7OTCy/8FNGocnHCZLJQVDSfi646n/NumEWXpovv7fgWtc56/F29oFaO00VNaAMJpCemMjtjNvX7fdgPhjBEE5k/q5CF0wrIyrCiVWvZu6eHjbvb8PijpBbbmFuRjscQPrJsu+LY8W5/o4mqqh7cXRpuuqmUfrUGmz6RVJMFh8ODzxFh3mQlTtjtA5QUJGLwDuA+3EtpaQrzZmdy2//eRjgaZl9lAy88/QYNVXvpbmom5Azh2etBq9NS2bmXDYffwNM5iD5Hz4YmAymHsyhNncqiovnMTJvJ1OSpGLVGiQkfU1KUOona2gfYsaOT3h4fJqOWkpJkrFYD6zeEUJtSqKxyotaoSUzQEUibTCzcS5+zla6WvXS17AVWYTTb0AyupKTke1jMWrKzLAz0ByiKxLhxfgFtnQNU1ffRq4rg9If4585WHnv7MADpiQamZiQwLSuRojQLOUkmMq1GEo1aEo1aEozKsrlYLEY0BtFYDG8ggtsfot+nfHT2+2l3+Wh3+Wjp89Lo9NDR7wdABaQm6MmxmTh/Wjo5SUZykkxYzToSDFoMWvXHrvfVeDl6tlFXawObXn6KV57s5Ie/UXavsNqSWbLyKgJBNedfegWdrlyq9/djTk8nqkpk565OKisdVFY6UAHp6WZKSpJxu4MEAhG2bm2jxe6msNDK8uV5GA0aqvY6+fGPtrFseS6TJydjMWspnpLMgZpuOjs9eEqSCQYj/OlPeykosHLJJUVkpFtGjRcgBrhcflY9eQC1RsWyZXns2tXF86vrUalVXHpJEfkF1njiMdaMKoD0rFzMaeeTNm0+K29IoiS/G69ngBXLppAWPcwbTQ7+4+4b+K97tSxbfCnZmUuJxS6isDApfkUgKUnP7363h7q6PoD3DDjDwfxEvNd01g8z1fXooPhhbuN0nWIr3l9zcz99VQ6siXoMxhChUBSXK8CkIhtpg2bMWh1VlU58vgg6nZrZJdOobT6Ey+NmV0MluxoqUalUbG2eTFLWXWQkZhMMRtBoVBiTEmHK+TgS5tGua2ey6TBWXwN07lcah8eioDEoM5Myy5Ud7GwFyswqU7JSJDJYQZ+gLP+LxZSfiYbA33/kw+OE/lbobwGXHXoPQXcDhH3Kg9SZlNtMnwaTzoekPLBmKbert5zVTcrfz8jZRqnpOho31/DImnf40X/cygULZwNw0+Xn8U5VHUtnz+HGK5bQUBOgssqJNphCb68fu32ADRvs2FuU5uLp6WZqa3uJxWLY7W5isRgFBYksXpKDqz+ARq1i7z4nq1fXU1xiY/nyPObMzeRAdTcNjS7SM0ysXFE0qtB12WWTR401XqiKKTHhyVUH0KiVmPDaa01U7e1m9qw0Lr540vvGA6NBz3nzZ9Fco6Uk6RxyJ6vB3MMV162EBB3O1x/j9XX/5L/+axVzy0rJKLqKT3/6FgoLKwDlb+zNN1t4+OFK7PYBQOKBOH21tw+yY2cHvb0qjCNzhPUh1JZkKiudqNVqEhK02DLzIOLD5XTScaiOjkN1wFpMCVbmuBZTett8NvteYPqUXiY77okXa8/UHjhnupHLyMrLUzl0qIZ//esp/va3fp5++mkAsrKyWHnpZQxEAkxdOQm7vpdufQtvmJ7jjf3PYVCZ0HitDHTqwVfEtLx8irPzaDoQJOxXoY7q0OXauDAnkeaQG6NRQ9UeJ+++XhPPEawJRkqKUzhwYChH8CTjdHpZvbqOZUPxAIZymkonFUMzaWND8WDVqgOo1SNyhOfrUalUXHppEfn5Y+cIKpUKnUqHTq2jqGAyKbl+cpnFFbfbmJztIRgIct6s83hnVwv7G9pY/dOfoDNpyZqfT7TCzZ7pe3jb+SaRWAQVajJ0OfTVJNHrS8H32hyuva4YzXEu0ElMOL3IO8aTqL7eRe3BXlSBKPPmZ7FkaW78e253gEFPiMREHbm56bSk3s2ixd+nKDfEc8+8wJ5tG+myV+L3uuh1tFNbq1SQIcbf/nA/RcVTySmqoKs3EUuCkWXL8rh5cRED/hAtvV4O93pxDgQ43DXIzsZeQsSIHn+o7ynBoMVm0mE16ZicbmF+YTJpiQYyEw0kGnWY9RpMeg1auep9wiqrnOze0UztrhfpbXmL2n174t+r3ldHp8MAxLj3O7+Kz2qqqelGq9VTMTsdu32AzZvb6OvzUVRkxWjQYjRoCAYjWK16nM4wBw/2Ym92M29+FitWFACwdm0TTqeP9a/bWX5ejNLSFPILEnE4vVitegoKEln15AEOHOihxe6mr08pQHZ3+xgcVLYMv2hlIenpZpxOL4cPu8nNSaCgIJGHH6rE4VCS0337nfHX+/Csq7F6Uu3b66Svz09qqpFzzimgrGxu/HtLpqejdbXRSAxvfw/r1j4FPMWrrxZxxx2fprz8Yurro2i1KlJTTUyd+tF2iRh+82a397N5c9t7XlH5MFNdV6+uP2Z71ePdxvHeSJ6uU2zF+6uu7sFT34dBE6aoMAmrVc/sinS8njDBYITmZjc2m4FEq46ZU0r41qUXUzEnlU079/Pkc5vZuLOK9m4HVXWN2JsH6dX24veH2VJVxbNvdlFWNAW1P4m0ZCvhZbOZv+gSCHnB06PMYhroYKCjhci+t0jUvIQm4vtwD0StUwpZJpvSmHzK+UpD8oRM5bPeAjqzsnueXJQ4YZV7HKx9q4o/vVTPOwcq8fqVc+9fnltPxGNDWVJXwPZ/HNm9yGJQdlidXZHO21va2fFuBykpRnR6NXMq0rG3DOD3h/F6Q7S3D9Lb50erVbNiRQF33D6dt7e08+IL9fT3B+nt8zN/XhYrVyhXiPfs7kK59ASbNrfSUO9iYEBpqvvKmkNEwjEAppelsfKi0TEhJzeBvXsdbNuuLCfZt7+Hz35W6Sk4fIV9rH5UDoeHDRvshIIRcvMSuXzlpNGzs865i3f+3UU0tpudB2rhQC0b1v+WP/7xYu6++zPYbDNYt64JtVrF1KnJH3nXoLFiwljnX4kH4sNoqO/jYG0v0UAy8+dnsWTJUTnC4HCOkEFL2rUsXJhNYQ7868n17H57F51NdfgG3fQ6uylrvorZRSYq/Zt585E1LHrxExRPOoeGBh02m5kbbywd87VyIk2ixfhbv76ZV189wLvvPkdn50Z2794NgEqlZubN57K7p4Y2DjJwQw8AB3WDWFWppLsKmZyYgzmcwsE9IQZ7o2Sjx6g3UEQKqVELgyY3zkEvBw/20tLkY/782LE5wno7y5cP5Qj5iTgcR3KE1avraGx0EQxG8fsjtLS4R+cIR8WD3FwlR3jooUqczqEcYZ8z/np/r5iwb9+IHGFB/qjVG8WF6XQf7kKlUjPYM0jDuhpYB2m5OSy7ZhlJs7JpC3fj17qI5raQMPkA9erNLH7mz8xIm8H8zPmck3UOM9JmYNQa3/d3IjnC+JOi1ElUUmKj9HAKqXotM2elk5FuweH0kGQz4HYHOHCgB4tZh90eobV1AJ1ezeJF87jxrs+yaOWN9HYPsHfXTlJTTfEp9Fua7LQeXEvrwbUAqNR6ktKm4Gmby+4tZSw+bwmZOQU4nCEKYhDqi+I75GFaeQqLLyzA5Q3iC0UIhqMEQlEisRgqVHi9Qdz9QYjGGHQFmFSYxOSCJGxmHWa9Fp1GhV6rVj40MgPqo6irrmLvxt+xb+vrRMLKMjuVSoPBNpuyuZcx4DGye08nxCDJppwo7fYBLGblSlpqmolUoK/PT3PzAPPmZbB4cS61tb00N7txu4O4XH60Wg3WJAOdnR5efLGRSUVWLBYdzm4vFouO0tIULGYt7e0eiqckkZOTgN0+wPTyVPyBMDqtGnuzm55eP9ZEPQUFVipmp8eXF27d1kYoGGXR4hwy0i2EQkfKnj09SkI1vFQDjt1BsKamm+3vKEt8Fi7IOWapYEa6hauuWYJ78Dk2bnwTl2s7rrotdHYe5he/uB+1+sfcc88PufXWuzjnnOyPfCVweNrr5s2tNDa6gPe+yv5BfZDtVc+0KbhCuXLV152MxRAhJ5wUfyM2nIh3dnpoax/E4fDi6gvw0suN2JINXLpsPnOnlWG3D1DX1M6b7+xlUm4eqckm7C1u9h0+wK76Kl7Y9AYAKYnJnLu/hJL8Qs5bUMaCWaV09s/EbJnDq7UN9Hb2cc7cZK65JFOZ+RQYhIgfwgHlA0ClYtATxt7iod+rorA4g5z8NGXJnSlJKThp9MrsK63hrN8d76PwB4L84amXeeiZtTS2tMW/nmiwsmjGPK6/4GL27O4iBtiSjPHXjN0+gNmixIS0VBP19Y3YW9zMmpXOz366nJ07O3nzTTs+fwRbkp7MTDM9PX4OHuzF4wlRNMlKb4+PWAx0OjXFU5IwW7Ts3NlJTo4FyARiOBweli/LY2AgSFqaiU2bW3H1+bElG+P9paaXpZGWauLtLe2YzToWL8nhj3+sPPJYEnRjLuM7Ogl5e0sbO3d1Ulhg5aabSo/5fkaGhX/86Sf87qFN7Nn2HO80HeKAM8DGjS+xceNLFBQU8f3vr0ar1XLBBQUf+dx5KmOCxANRXJLMtN4Uksli5sz0+N92UtKIHMEyIkfQqVmyZB63fOFTLL3iUnq6B6h6Zz8ZmYlDOcIVDLzup/qdx3mRBwFQqQykpRXj9y/kzTfLufbaleTlFfDmmy1AjKoqJzt3dgHHbxINR5Jgny/E/v3dUsQ6hd555x3efvuX7NixhkhEKfSoNCoSZydhW27lacdf0AVt6Hw25mTPZFp2ET6ngeSEBMIGLZMKkwHYs3YPLc0DzJuXctwcIWlkjjBpKEdwjsgRLEM5QvGRHGF4NlRBgZV33+2gs9MzVLCyUlExIkfY2kYoFGXRohwyMiyEw++TI2SMkSNsH8oRFo6RI2RYuPpTC3D7f87m17YT6a+j+UAV3W3tPP/HZ1Fr1Fx/7+c476qrcXk8JGXG6Nd0YB+w0+5p57H9j/HHqj+iUWmYljKNRdmLWJa3jFlps9BpdMf8XiRHGH9SlDqJcnMSOeecLCalHdnOcriXgt8fxmzSkZVtobfHhwrw+8Js2NDMcNPpgoJEUtIuiM80AZgxK5OLr/8S9oZKGg7sJhz04XLUsHFNDQBtTbdw1W3/xe49XQz2u+ltfY3UzCImp89jSooBfZbSP8Lh9LDl7XZ6e30sWZyDJ6ph845eag504/OHMZwT5vplReP8jJ0dmhvr2LnpZQCy8qYwd9k1FEy7kNr6EAUFVpKSzMydk4nbHaCmpod165owm3VkZVmIRJSr0/PnZZGWZqS11Y3fF6bfFcBiVv58W1x+GhvdqNWQkWGio32Qtw+5MJt0ZGSYSEk2MmlyEk6nlz+/0IjJpOHKKybj8YbZtasLjUbFwgXZ5OQkUFvbR0urm/w85U1Pe7uH9vZBZs5SmuBmZilNcAGuuHISL73YSCgURaVCWdqnhsZGFwsW5nD7beXAkb5TlZUOenr85OYkMHPW6GAzsjfV3LnZqDUXMXvWzezr7ubFl/7N4P4NeO37+dznrmLOHOWNUUNDAwcOtDF9+vSxn/f3mcY+PN01N9fC6tX1hMMRtmxpPWlvvD7I9qonYwruqW7CKD6YwsIkCmdnQNgPCRnxr9vtA7jdQSLRmLIxRIEVFQMMDoRY/3pzfJnU/PlZFBQkMnVSTjyhLyhI5GbHcibtT2bL7mo6epz0DvTx6pZ3eZV3+f2zKt545Pe02n1oNCp21h2gzz1IbvksnKSQllcUv8CwdWsbW7e1s3hRDosX5/La8/U8/1Id4XCURe4c/mPpvIl66s5oOq2G3/3tRZrbHRj0ei5ZfA7leTMxkcb8eVno9BqmFBuGZsB6+dWvd5CZYVZ2OtKo4jHBZNRiGDoX79zZidmiZUpxMpV7umhtHSQajREMRmltG6S2todIBKZPTyEnN4HBgRAJCXr++tf99PT4OW95PmVlqeza1RXvLXXttSVAjFAwSvWBHsqnp8bjwayZyuxdrydERUUG08vSWL4sl7WDh9Hq1CSnGHj55QZ8/gh+X5is7AQuWll4TCP21pYB/L4wZrPumARlZH+qFedPJ82WzrenRenZ8ReeeruBp6vhnDkz+Oxn58R/5rXXXmP58uUYjWNfBZ/ImDDe8QAkJpxucnISOGd+NoVJR/rXjMoRht739fb6UKnA7x+RI8xUcoTUtMRRBd7LKs7HcUMz1dU78TQMEg0EcDqr+cc/qgFobr6XO+/8FuvWNdHT001v7yaysycxdWoOgUAAg8EwdFw///xnHW1tA1x//VT6+4M8++xB3n67hcHBEHa7W4pSJ1ksFqOpv4lHX32U9etfAMCQZyB9eQYFC6YS9lpJN2UxL7OEwW4tgZAaXxO8tdGN2RwjK0tDJBJDo9Iyf34WaWkmWluV2bL9/QEslqEcoeWoHKFjkLffdmEy6cjMNJGSYmTSpKEc4c9DOcKVk/F4juQIK1YUHMkRWtzk5x+VIwxtlJGZOSJHuGISL77YSDg8lCOsGpEjLMjh9tuHcgTHUTlCbgIzZx6VI4yIB/PmZ6PRLqWi4jpMhiivPPs6e7e8Td3eWq745GIKitOBdOyNdhJDeSwuXUw4GmYwOMhh92Ga+ptoHWzlbwee4rH9j6FXG6jImM2S3CUszV1Kia0ElUolOcIEkKLUKeRweuh3BcjOMpOTk0B7uweIMX16KvkFVowGDbv3dMVnyBzdb0Hp6+Plypu+QFlZGu/uaGPjht343U2ownaa66uZt2ghFrMWg0FDW88hat99EoAtLym3kZScRmJyJpbEDCKmBaiM5VgsOhaea8PZWoWrO0gMHb5BLf19Pej0BnQ6PVqdTmZHnaCR/ZcSzW6e/cufMCXmcsEVN+Hxhimbu4J5592AJuEcrKklOPqD+BrCtLQM0tIyQH19H3MqMrBa9WzZ0kZ7hweLWQcxCIUi9Pb6CAYj5OdZMZt1pKYY6ej0oNGoOHiwl7q6PiLhKBqNmnAoisPpIxSM0R8MYrFoUalUBAJhnvtXHT09/qFApaKgIJH6+j4a6l309fpJshm57rojFfuduzrjr8/hZR3ZWWYKChJxOD1MnpzMeecXcOBAD6FghLb2QbzeEAMDQex2d/x2ht90paaYOOecLCpmpx8zi2rfXie7dzuYOzeDFSuK4ldIppPOhXMm8cTWT1Bd18ADuwM8MMVPutXIT37yE/7617+yfPly7r33Xj7xiU/E32DB+19ZGDnttavLy/r1dtavb56QN17D46iu7hn17w/izTdbWLeuiUsumcSdd578Jozioxk522XevEzMQ1ckQdmFr7nZjdPppbLKCUBaqmnUjmzDfX0uW34O37jnMnbu7GTXnlb6gz3U2Zupszej1kSYXppBONRNR/sgW2vepdlh59U9r/LFn4PJoCcjJYXC3HQCg3pKbYsAWLw4lz3V9XS4OtCq9PQOmOnq7sOg12HQ69DrtGg0MjvqRIzc0W7aNBsvvbWNZ17ZxO++81XCQeVK8f/7z0+zc3cbNm0BRp0Bh8NLSB3kH/84iFqtYvbsDG66aRpPrjrA7l1daLQqSoptTJpkA5SCot6gYfHiXFJSjfHl/g6Hh/oGFyrAYNBgtepBBV5fhFgM6updzJ2TTkfHIPv3d9Pb6yc61H/qkkuKqK/vw+0OUFXpJBJRlnLMn5/FZZdNjs/EGp7BZbZo0WhUmC1aHA4lHvzv/xawYYOdHTs68Xj89PT4CYeimC26Ue9vhmNCXr6V9HTzMTv8Dc8mHN7AY/78rCPL+ip+waLla/h11XP0BnZD5TNQcTN1dXVccsklpKam8pnPfIbPf/7zlJSMvgL9cYkJw+Nobu4/7mYfJ0JiwunN4fDQ3x8gO3uMHCHfitGoYfduZVZTUtJxcoS9Hu64+wvY8kP8/t2HcbZ0kX5gBjkhK9XVVVx88XKSkvSYzVoOHqxnz54nAHhZuU5KenomyclZWK0ZBALzCYeLsdkMXHttLm1tlXR3u4lGtXg8Vnp6ejAYDBgMBrRareQIJ2jkkkmnu5af//ZnWMsNBOZ56Q32QA7krCwgpawYW/Jk/J2JGBsSaWsK0h9V4c7wMGdOBslWPdvebqKjw4PFogNihEJR2tsHaGlxM39+FunpZoxGDR0dR+UIkaEcIRzF4fARCsUIhYIkJCj5QCAQ5l//qqO3d4wcocFFX5+fpKSjcoSdnfHXZzxHyB7KEYZiwvkjc4S298kRUodyhIr0Yy5S7Ns3do4A8KXv3ArcSmdLJ1n5WfGvP/7rx3nr5beYs3gOV992NUsuXkJFRgUVGRVEohHe3tFIZUstmsxeurxd/G7373hw14PYDDbOzTqXFQUrWLpyKVb9ZMkRxokUpU6yvr4APc2D8SmKHZ0eSktTKCtLw+MNs3lzG9FIlMsvn0RqmgmrVZm2u2tnJ3//ey1pqSZWXlQY30WtqlJJUMrK0igqstFYVIzbnc+8eVnMn6f88e3c1UkgEMFgTGDKzIuIBjroaDmE3+elv6+b/r5uoJq5F8wgYtJhsxnodzayY+134+NefxDW/+3I40hJy+B3z6whI0eujLyfPZVdbH7tddY9/QZtje8CYErMQmdbSjSqwmrVU774Hir3OHC1DBAOx2htHWBwIIharcLni9Dd7cNs1mEwatDpNPgDIRob+wiHY4RCEQYGghQWJlFRkRF/bVnMWt7YYMfjCWHQq0hIMBAIRJg/P4NNG1sJR2K4XAFC4SjV1b3odWpsNgMlU5NpOtxPTo6FFSsKCIej2O1ugsFI/DENF1SLp9iUxIYYHZ1eSktTyEi38Pzz9by7o4OiQivnnJOFzWbA5Qqg0UCLfZBFi3Ooqelmy9Z2DAYNOdmW+Juu9vZBUtNMRxWmVKCChgYXlZU7WLQ4h8WLlPXn6YlGvnFRCRvyk3ixqoMLH9jID6+aTjAYRK1Ws2nTJjZt2kRaWlo8GSkuLqa8PJUtW9p49NEqfL7Qca9INDf3Y7HomT8/8z23HH8vJ+Mqw0cJClu2tPLvf9cPrfGPHfP9M60Z4seFs9tLR0sPWVMs8Tdew4k+gNejxIRIVIkJAFu3tBMOR3n8if04HF6WLMnlE9dNparSGS9YTS9LG0pQ8nD1p5GTlM+9n7o6fru2JGVXtUmZRSQlmugd7KG1qxtfIEhzRyfNHZ2k2WwsLV5BQoIOh8PDyztepbK+AYB1dXD/qiOPQ6VS8b0v3MSP/uP28XvyPqbs9gHe2lzPtpod7GmqpM+tLFX445OvM69k1tBFiJn0NFlptrvxagP09fqVDSuCUbQaaLb3s27dYZxOLyo1BPwRDje7QaXG5wvR2+MnJcXIJz85NR4PCgoS+fvfa/H7lOUfWp2KpCQDJSXJbH+nnY6OQbRaFdUHeuh3BdDpNCQm6rBaDZSU2NiwwU5hoRW9XoPT6aX6QA+TJx85D5ktWpKTjaSkGuP3GYnE8HrC2D0D8ddx+fTUeEzYu8+JZzDEpZdOihdWt25RYoIlQYfVqiOnNBmvJ4zD4YknIsOzCa1WQ3y22PCMPtQaKLsKQ958st95BP59L1Q/T3PiDeTl5dHa2sqvfvUrfvWrX7FixQruvfderrnmGnQ63QnFhOFz+YwZStLzcYwJw0lwMKgUIyUmnD76XD6c9Ud2pezoGJEjDMWD6FA8SE09kiPsHM4R0kysHJp1WFnppGooJtxcVsa9pV/hT4G/0pd/kEmGZex8ejNmnZk1aw7h9YYxm5OYOfNiYrEuDh2qx+v14nR24XQqhYVzz51OUlICM2ak0dpazYYNR3KEZ59VPobl5uaya9cuMjMzx/X5+7gJRAKs2rSW9bv+wYN/303/UKNv0z4zy8svJ6unhAxVHpoVZvbvcdN7OEo4HKPT62Vw8NgcwTicI/hDNDa6CIdjDA4G6erycvPNZdx8c1n8ApjFouWNN5QcQa9X4sFwjrBxYyuR4RwhNJQj6IdyhJJkmpreJ0cYKqgWF4/IETqGcoSMoRzh3Q4Kx8oRWgZZtGgoRxiKBzk5R+UIqaajClNK0au+fihHGI4HI4wsSEWjUSLhCCqVij1b97Bn6x6S05K57MbLuPLmK8kuyKZsUi72uhD2TeksP/9CyhaaOdh7kEZXI3sce3it+TXUKjXFCaVY0qZRtqQ03ovrg5Ic4cRIUeok6+z00GsfBI7dcaagIJFoJEpb+yCVVU5uvqmMFSss7NzVyYYNzfT0BtDr1PHjCwut1NQoDahraropK0tjxYqCUb0ahm937pxMmJPBzFnXkJFuocsxSO2BFgIeJx1trfgGnDS0ZuJ0+qivd5F9LuRPLmHA1Yvf5yUYCBKNKieczNwpfPn7v8KSaEUcy+H0sG9vN+GQn9b6N3n1ucdxOZsBJXkrmLoQXfIFRMJRPB5lplO/K0B3jx9roo6pJTa6ezw0NkZISTaQkWmhvW2QbqeP1DQjNpsBjyeIyxXAZjMQCMSoOdCD2aRl3tyMeEFq06ZWBgYCaDQq0tLM5OYlYjbrWLgwl2gUKisdGA1avL4wGekm8vITSU42Ur3fSc2BHhrq+yifkUZVlROPJ6T0I/GGmDkr/ZiZSw6nB+im3+XH4fTQ0+ujvz+ARqvm5pvKxnyenvl7DXv2dGG1GigrS8XjDY+aGTiyKDVzVhpJNgPr1jXR0ODCHwij12viS1nVajUXTc9idp6NP26o55v/3EtR8Wd49Y1vs/Wt5/nTn/5EW1sbv/zlL/nlL3/JXXfdxWOPPcbhw/3s2tWFxaI7blGqurqH/v4AF11U9KGvgJyMqwwfJSisX99MW9sgU6cmc8EFxwbNM60Z4sdFW9sgTY39BHUDx8SD4f+PRKO0tw1SVenk5pvL8HrCvPmmnUOHXAQDUXqHejHMrkjH4wnR7w7w5z/vZfGSHObPz8Lh8GBLOjYmzJmbyZy5NzFrpjILpb6hlwG/m8OtDkIxL1V7HfT2+Wg6pBQBJhVk0DvQj8vtwecPEgqH47f306/exScvXTgeT9nH0vDsqKa2Vla/9Qavb3+HyNC23Wk2G7MKKihIKyAQCNPQ6MXe4qa+zgUqZZZcSoqBmpoeNL4wKSlGMjLMbN/ejtPpQ69Xk5ioIwYcbuojFgOPJ0zW0KzVYd09PnQ6NTFAr9Og02owmXWUlaWi1arZurWdhEQdep2auoCLvLwEFi3KweHw8sYbrUSiUYoKrRQUWNm5s5PBwTB6nTp+Hh5unF40yRpPFlz9AVz9fnJyEuKv49ycBG6+WYkJwzs1DauqdMZjwqxZ6XR6vDgdvviSxOHbHfm38uSqA1Tv7ybgHxETMiyQmA0Xfh9qXyGybzWLw1v4v3u+his7n9WrV7F27Vo2bNjAhg0byMrKYu3atVRUVLxvTBg+ly9alMMPf7jkQ78mJjImrF/fzPr1dubPz+SOO8rH/HmJCROjs8NLd4NybhgzR4hGaWsbpHIoHqxYYWHnzqEcoSeAXj9GjtByJEf4ovrzvNzwKvuDW7n2hWv5xfJfUF4+iUsumQQUccEF91JYmMThwy62bavH63XS1NTM/v0N1Nam43K5aWrqp7xczbRp0+jp6cHr9eL3B+I5wpQp5fzmN3/AbDaP/xN4movFYmw6sId/7HiNxsBOqre+i2NdF8EuZdMIlVpF5rQpZJScS1b7ufQ4g3QHI/T3e+lxBpUcYaqN7u6hHCHFQEaGhba2QZxOH2lH5Qg6nYZAIIrLFSQYjIwqSG3ceCRHSE83k5s7Ro5g1OL1hsnIMJGXN5QjVDs5cKCHhoY+ysuPyhF8IWbOTD9m5pLDMZQj9PtxODz09Cg5glarjseDoz3zzFE5gic8ambgyKLUzJlpJCWNyBGOjgcjDBe75lx2Gzd+6TO88/qbvPLMK/Q6e3n6D0/zzB+f4erbr+ZrP/kaDoeXhgYXRqOWZUvOIS03jSW5S/CH/bQOtFLdU83etoPUW14kVvY8hzr+wtKtS1lZsJIF2QvG7EU1FskRTowUpU6yrCwLGWb9qL5QIxs/X375JLZsbcdo0OBweshIV/qELFiYg93ujl+xrJitrM8NhaLU1fWxatUBbr99OmVlaccsfcpIt7Bixeiv7d/Xw7ZtLrKybVx93Tzs9gH2PraPgN+H3xeiYsFS/vLS5vjxNTXd7N7TiU4TZWDAh0qfI0UpRvc6Gvn73L2ni/2b/o/2RqXZsNGcwIVX3kj5uddRXRujam831Qd6MZm09PcrV8JBWf5WUZFO9QE1bneInJwECguTGBwM0ufy4+jyotNrCIcjhEMx1GoVwVAEny/CwToXs2Z5eOstpZltR8cggUAEk0lHydQUigqT6On1sWtnJ35fmNJpKWTnJNDX56ffFcRs1tHZ6aHL4cPnD9Hl8DK4vR2/P4LJpKW728fzz9fjdgdxOLzU1vZgtepZsUJ5jSXZlJkeSbYBlizOwWLRUTFbSXhrarp5fX0zfl+YkpJklizNpWK2kkSnphyZdj53jtJM9+hp6MPmzs3EaNCSkWmObx07/LwP/y5yeiN0dHg5nBfj6+vb+f1tX+B//ud/WLNmDQ8//DCvvvoqU6ZMAZQGgpFIiGXLjt3lY9jJuEJwMm7jowSF4av5K1cWnhaBRShycxNQRwNkjdhtxuHwjGr8fPnlk5TZI0YNDocnXlDKyrLQ3qFMdz9Q0830sjS8njBPrqqmp9uH1xtielnamLvYZGRYWDkiJqzf0My2be1kZ1n4xNXnkpFh4Qc/eJsaey+JCUM77Pzue/HjD9R0U7nHgUYHbrefkpJkSopGX5U8W43sbTFyZs9rbx7gl//6Xfy4mcUl3Hb5ReQlF7F1ayfeARUDrkE6OjwEAmEikRiJCXq0GjWpKSZSkk3kzEigoiKdPbsdhMNRQqEIwWCEYChKNBIjGosSi0IkCu0dysyi9RuaeestOwPuIF1dHlSAXq8mPz+BaCSKvcWNRqMs5ysstJKRYUajVWavWq161q07TE+3j4QEHT5fmO3vtNPvCqA3aHG5Ajz3XB3pGSba2zwoG+4qV6wzMizYkpSYYEsycvnlk+L90ADWrj3Ehg12iktsfOK6EjIyLPHCakqqkdLSFLyeMGaLFq8nfNyYsHhRDgCZGSNiwnBvqm4/du+5HBpM4Jzw83zS+hNavVdy9/P/5HC7gz//+c/8+c9/JhgMMm2aUoD6xCdKGBzs4pprJo95fyfrivFExoSR8UD6AJ1esrLNpGltx5w/gHg82LKlHeNQPBjuJbhgwVE5QoWSI/T3B2hsVJLqsrI0srIS+WzWpzjkmsfTtU/z6Vc/zWfKP8OX7vgSOvWRBPqtt1pZvbqFKVOS+drXbuHNN1u4//6t9Pf7qKnp4ZvfvIzLLrssfvyWLa2sW9eI0Qi9vR6i0WwSE8f+mz2bNDf3s21vPb6MRmoDu9nesZ1efy+qmIaWRzpw7XEAYLSYWfnJS5i1+AL2H/RTVdXNrh3OeI7QO5wjZA/lCNXH5ggulx+Hw4tON5QjhGNoNCHCYeKN8n2+sJIj+EbnCPn5SlNzs1lpbA5QWppCdvZQjtA/Ikfo8uH3h+jq8jI42I7PF8E8IkfYu9dJ2xjxIGkoHiQlDbBkyVCOUHEkR3jppUYGh2bOLl6cS8VQPEhNHZEjzD2BHMGoJWOseDCiN9VwsSs/fyp3ffMu7vjqHWxdv5WX/vYSOzfvJHfo/cyiRTlEwiGmTxvdh9CoNVKcXExxcjELEt3UHG7Dk9hKZ6SZ9c3rea7+OUxaE4tyFnFp0aWcl3ceZt3xi7SSI5wYKUqdZMnJBiaVHHnRDS/ZgCPJdb8rwMBAkPwCKz3dPiqrnEyZYiMnO4Ht77TT0+PH4wkxqSiJ6dNTqQpFGRgMUVnlpKwsbcxCydHaOwZpanIxMBjAbleWfJWWpWBvdlNSknLM8R5vmFhMTWpaIpOLM457QjjbjPz9RQLd6A1GLGZlGcOCFZ9kfU81OVOv5JN3fJpEq5Xa2l7a2h34vCECgQgqIBgKEwrFMBk16A0aGhpdJCcbmTzJhsGoprLSgVajxqDX4vOF8HrCaHXK8guzRYfaryIcjpKZaabpcD9Opw+fL0wsGsNs0VFenkZWlpLs7tvnJBCIEg5H0WhURKOQlm6i3xXE6w1RPMVGLBqj8ZALgCSbgamZFrKyzLz+mh2vL0RL6wDd3T763UF27eqKX4Ebfk1YzFo83jArVhTEd5hcs6aJvfu6iYQj9LkC5BdYmT8vi7KyNGpquuOF1pwcZVlqQ4Nr1Gt4+HnOzrJw3vn5OJ1eDlSPXj4yfIzJoKNArcMU1NBugE8/voPbFhbwgyuv5Oqrr6apqYn+fliz5hDz52cRje7lpptWsmbNFdx7771ccsklo/rjnIwrBBN9lWHJkjxJPk5D6Wlm0m1qSDhynh55TgGG+oiA0+Hl7S3tBPxhCgutlJWl0tfnp7a2F7NZR1qqCVd/AJNJg1arHnU/YxVKRupoV+LB4IASDzIyLJSUJNPT62P+/KxjfsbrCRONQkaKhSmTUiQejDD8+wuHwzR3tXHOzKmYLVqmFuVSWlCMUWfgpksuZl55CZ0dXvbt68btDuL3Rwj4wwwMBolGwTjU82lgIEjhUKx3DwTYtLEVW7KBzEwLfX0BfH7looRep8JgUJqbuwcCaDUq1m84jNsdpK/PT2+vn3BEeQ+ydGkevX0B2lrdbNgwSGqKie4eLx2dHpYty6Wk2EZnp4fDTW5yc5TffWGBFb8/jC3JgC3JMLT824fHE8HZ7cPdH8Bs1mI2HXnbWFCQGJ8tVVCQHr8i7nB4eGXNofjsqvnzlNfYcF+o4bYEZouWqkonhYXWUYn58HPs6g9gSzJwx+3TaWhwsXVb+5gxIabP5OnOm7jMsIOKnrWEfnsORTc+wU9+8hN++MMfUlNTg8MRpLq6g3nzMvnud3/BN7/po67u89x9991kZ2fHb/NkncsnMiZIPDh9JdtMFBYeWWY0KkcYOg/39w/lCPlWenp8VFYO5Qg5CWzfPiJHmJQ0FA9G9/tzODz02s18uvCLbHa9yl/2/4XXml/j/kX3c072OQDU1/dSVeWgt9dHdXUhF1yQz+bN+ezf333MrmfKmILEYhpycmxUVORP+DKfieQL+9jdtZst7VtYd/AtHJEW6AWr20phRiHTE8+l64CZosXdbLL/g7wZS/jkZ64i0WpRcoQ2Dz7fUI6ggmBwKEcwadDrNTQ0DOUIk20YDEM5glaNwTCUI3jDaLWg1aqwWPT4fGF0OqVfVFPTiBwhFsNsVnIEvV5DU1M/oVAEu92N06n0qo1GIS3NRH//UI5QbCMWi8V3m0tKMjB1qoWEBJ2yRDsS4+BBF4ODAUwmHdXV3eTkWOI5Qn9/gP4x4sGaNU1UVjqJRKIkJRlYvDg3vmtfPEeoGMoRKo/KEUbEhOxsC+edN5QjHBg7R1CWAyaQmmqKz9zKyLCw/LLlLL9sOW2H2whGlJ1ni4ttDLTv5xdf+T5bX1jMVbddxfxl81Grj7zHysq0kpVpBcqIxWJ4Q14a+huo7q5mv3M/b9jfQKfWMS9zHhcXXszKwpUkG5NHvWYkRzgxUpQ6idraB6ip6cVSqooXi46enltZ5eRwsxuDQUNNTQ92u5ueHj/tbYNEYzF83jC5OQnxZtZlZanMn5dJZZXyxm3nrk76XX46OpVK93BRq2J2+qiCVUf7IOFIDINBG0/8b7qp9JilfzC6IfvMWWnse+dVXnu3mSUrL2NSydjTLs8WBQWJtB6q5h8P/y+V217n3As+RXLRbag1KpYtW0JS+lPs29tLZ1eE8hmJ9LsCeIptmM1aBgeDdHR4iERiaDUqklNM+H1h2to8JFiUqw4trcpMCKNBg0oF0aGlvpEwJKUaMJu1BIMR0tLMeDwh9u1z4vWG0Os1GAzK8gy/P0xnp4e+vgADAyGsSXoGBqIMekJ09/jIzUtArYFIJEZ+gZUlS3P505/2UlfnIuCPsHhxLm9saKa3zzdUHNOQYNGh12kIBMI8M9THID8vkSVLc9m3t5vde7qYOyeTFSuUYKHWqCksTCTBoqOkJHnUa2xkbzRQEpL2tkESEvVUVjqYVGQlJyeB0tIU+l1KEt7V6cHp9NHc7I73liooUJ7fpsP9pA31Y0sLRehNMfL0O3a2Nfbw+1vmUDZpEmvWHIpPld2xYwfRaJSXXnqJl156iYKCAj7/eSUZyco68ubwTDXWWvaRjTeXLMkjFArR09NzVjwf46W5uZ++Kgd5WTpGbMg6KibY7UrvJ4fTSywKh5pchIIx2toHycpUYkhSkoGUoabnnR0eFizIJeAPM7siPV6McvX76exQYkJ3jy8+Y2V6WdrQMW6iUYhElEIAwCWXFFFWlnpsPHB4cPUHyMo2M2tmGt7gII8+9yJpyVbuvemKcXjmTm8paVp2N+3kvx55nR5XP6t/+b/UVA+iUau486Jb6O0JUpCezqyZ6diSBtDrlSvJahXYWwbi/2+2aNEbNPT1+SksspKSamTDG814PWFsNgMJCToCgSM9PFRqFRazDpNJRywGXm+Yf/6zDhXKVt3ElG23ExMN2JKNhEIxolEYHAhhS1I2gAgEwtQc6OG88/NJTNQTiURZvCQPW5KBrVvbaGjoIznFSHZ2AlVVDny+MDnZFhIT9Xg8IaKxGFu3tdPfH6D6QA+LF+VgSzLEd+1bsaIgnkCkpZoIh6JUzBl9kWtkbzRQ4kNb+yCJCXrq6/uYXZEef/1BLJ6wKxsBDMWEoV4iw83WDUYthYXJHNRcgjNSynmBl9E9fiks/U9053+XWbNmxWNCR4ednp4eenp6+P73v899993HNddcw7333suKFStGJSNnqhOJCa2treTlnf5JzMfJ3598EafNi2l62phLVQEqK50cPjxGjtCu7Kjp84XJzU0gNdVIx1A88PvDVIyIB/39fjo6vEAKcywX4+pLoVP7Lne9dhfLM1awPHwHDQ19hELRoaKF8jr4wQ8Wx18XIzU39+NweJkyJYkLLsjnzTefZ9euFm644Yb4DMQzWTQWpba3lm3t29jSvoVKRyWhaAir3kq2OR/dvqkcXlfH1u3bUF+VzMCkOajVKpZdWEpmbhn79vfS2RWkfEYW/f0BBgfHyBG0KqxWA/39gfi5v6vLQ0vLUI5gHMoRlJWfhMOQmmogOVnp1TRczAqFIni9IXS6oRzBpOQIwz87MBAmKSlKMBjB4wnR3e1TZnSrh3KEfCtLlhzJEfxDOcK//lWLy+XHZNJSUJBCb68OrzdEdXU33d0+JUfIT8Rq1dPQ0I/jqHigVivLTvV6DYuGZr8OG9kbDaCqykl7+yAJCUM5wqQROUL/UI7Q5TkmHgwXxZqajuQIHR1ekpIGRl14yy3KZefOznhsObj3INFIlLfXvc3b694mpyCHK2+5kktvuJTktNHFJZVKhUVvYXb6bGanzyYQCdDc38ze7r00uhr58fYf8+PtP2ZG2gwuLrqYiwsvJidh9OM93ZxIPAgGg7hcLjIyMt7n1j4aKUqdRPX1Lg4395Nh1seLUhnpllGzmSpmp3PokAtHl5eqSgdqtQqjQcP08lT0Og0QY+YsZbrjvr1KD59gUJly29joorPDQ3GxjdJS5er1hg12qiqV9b47d3VRVeUkLdWE2aIjJyeBORUZxx3LsJFFhox0C6/9+1l2b9tETn7RWVOU2rqtjW1b21m0OIdkm4E9lV30dexm+/q/0dlcFT+usb6ZxGAPhYVJFBQkYjFr8fmiGA3KlaokmwFLgp6SkmTq6/tITPDhH3QRCrvpafPR5nWh1/jQaUN4PR5CAT/RaJBALDh0DypQqdFo1Ax49PQc0hKNGdDozKAygtoCGhspqZkUTs3H2R2ivW0QrzeM1arHZjNgMmnRatREYwYMBjVb3m7DmqRcee93+aEgkYICKw0NLgYGg2ze1ErtwV6iUTCYNWi0apJsRhYuylYKZy0D1BzoRadTM+gJkZNtGeqTF1N2f6l0UFSYyK23lo75+tJowOMJotHAzBnKa7uw0Epzs5s9u7uo3NPFgoU5lJWlkpOTQJLNyOTJSTQ3u+PLA+HIEsJIJIbValCWB3qVZR+OYJgntzVzze+38o2Lp3LJ9CNTZS+//BfcfffdPProozz++OPY7Xa+973vcd9993HttdeyatWq424hPp5O1ZasY61lH+45AsoVlIceeoi//e1vbN26Fa1WwsLJUF3dg6e+D3XUTNqIXslHL7ebUpxMV5eXvr4ABoOaJJuB8umppKebj1na5OoP4HYHMBg11Nb20tvjJxKJMqU4eVRM2LGjk8oqB9ZEPQUFVsxmPdnZFjLSzXg94THHMcxuH6CxwTXUvBQOt3Xx/d+sYnpxwVlVlNq6tY2t29qVwkuygef+vY+Ne7fz7sFdDHiVAmCiOYGnn9tFijGbwiIry5bk09zsjs/8Gf69tbV56ewaxGDQ0Nfvxxf0ExyI0NjlwRv0smFPFJ0B2jrcBMMhoh1hYkSJxZSCll6nwWLRE+2GcEiNVqVHp9GjRodZZ6Y/kM7yRVN4d7sTtztA5R4HBQVWyqanUl/fRzgSw2YzoNNpGBwM8tq6wyxZkkt2ThIQw2zR4vOHCUdi+H1hjAY1AX+EcDhKMBijoCCJzEwL3d0+XH1+Xn65ka4uLwcP9vKZO2dgtepxuwPY7QN09/iorHQwa3Y6X/xixTGvMZvNQCQcpd8diPc7G44HbneA9a8302x3U1iQxMqLCrAN7To2XEwduVOf1xOOx4OCfOvQ30sy7pz5GJufhU2/hIYN8KknRi2faG1t5bnnnuPhhx/m7bffZvXq1axevZopU6bw4IMPctVVV53S19aJOJVbdL9fTJg7N5V58+bxxBNPjFrCJT48p9PJj/77u9jys8n48X3xv4ujz8MVFUM5gsNLZaUDjUaF0ahh+vRU9PqhHGHo72bf0C6fmZlmKiudhMNROjuPzRHsVWaMlvPQ5ezn7egmtrCZjBlLKe6ey8UXF8VfA8ebzTFy167CwiT+9Kc/sXXrVmbOnHnGFqU6PZ3xItT2ju30B/pRRbSka3MoM83H22omUN/P5rUbcRxuiv9c7d4WslRuioqsFBZalWXR/ihG41COkGQgYUSOYLWGCAYjRCIxent9qFRqtFoVJpOe9vZB/P4QsRj4fEcuUGg0YDLpSEzU0dXlJRCIoNWq6O72oVJBLAbJyVoKC610dXlpaxskOdlIaqoRiA2dM/UkJOiVHGFLG1brUI7Q7weO5AiDg0E2b26ho8NDLKYUZXQ6NZddNgm3O8iePV1KjlCj5AjLl+eRlGSIx4OeoXhQVDSUI4zxnkOjAc/gUI5wVEzYs6eLysouFiwYkSMkjcgRRsSD4SWE8RyhIh3PcZaGjywGz//Rf3D1bVfz0lMvse65dbTb23n054/yl1//heWXL+c7D3wHrW7s98UGjYGpKVOZmjKVUDREx0AHVd1V1PfV83+7/o9f7/w1U2xTWFmwkssmXcbkpMkfatfKiYwHS5bk8eCDD/LKK6/w5ptvntKdmCX7OIlKSmwUdR87E2mksrI0FrZ72LatHWuSMhMmEoni90XiOxOsevIAixbn0N4xyDvb20lI0BMMRVGrVSRZDVitBubPy6Kmphun00tOroXUFGO8WXooFGXKFGU5gNWqj/euOr4YxJQ1yTt3ddIz1Fj3YF0PF57k5+h09eqrTRys7aXfHcAQqWL764/jH2wFQKXWMGvBpSRkXkJS2mTa2gbQadWsW3eYpiYXHe0uNNEuqra7OdzQSH9PO5FQN0GPg0jIxfBOB76h+/KpjegNZqIxHSq1HlVMR0yli++So9GAFhX+wQiRsJ9YxEco4ica8QHKZRJvM7TuBp3BisGcwWBCNglJedjS8gl6MjBYcikuSWX3ri56e/0EQxEcDi/79zuprHSSkKBDrQKvV1kWGvCHMOg1zJmTwZLFOfFiz769Tp5bXY/L5SeGsgPH/HmZOJw+cnISlKV49S4sFenHfY212AcZ9IRosQ9yw6fK4lPDi4ttHDrUj9utbA+rUqmUncmGdpUcniE1bLgAlpFuYsnS3FH3lwH84KoyntzWzM/W1vLW5FR+f8scUhOUGQLTpk3j17/+NT/5yU/417/+xcMPP8zWrVtpa2vDaDTGrwosW5bBhReO3kZ8vHyQRojPPXeQ1avr+cQnSo7bwH3YWGvZR64vB7jnnnt4/vnnqampYebMmR/6MYgjystT6etOJifr+I0wMzIsFOQn0pybSHKygcREPQaDJl6Q2rqlnXAkSmWlg8VLcuhoH+TNt+zotGq0OjXJyUbKp6cxa2Ya3T0+NmywY7MZyMlNoLaml9ahmTll09PQaCA52YhrxHT2sQxvA93Z6WHDBjshnbJ1c2+vL97b6mzw6qtN1B7spbWjm8rW7Wyu2kU0ppx/8zMzOX/2EmYXzWDAHSYQjJKSbOCFFxuIxaI0tXXRaG+jzdmFvcOBNzyI29vPQKCfcCQ86n5UqDDojBj1elQxDcQ0qFVaNGo1kUgMlSqGWq8hEA3gGvDhDwaIECIYDhKJKre1tQX+vg00ag2JpkRSm1LJTk1n7owiElNsePsMmIwmUpKN1NT2EXKHeO21w5SUJKPTqZXlQN4QKiAciVFT00s0BhaLjgsvzGPyZGX26959TrZu7SAcjhKNxfB6QjQ3u5ldkU5VpTO+HK++wUWF5dhtvQFcrgA+X4jmw27mz8uKL/EoLrZhtw+wdWtbvLm/1xOO7yg5cvkfDPU9q3SQkmpk1sy0Y+8r50uQXQG7/woPLaLw8l9TePnN8W/feuut3Hrrrezfv59HHnmEJ598ksbGRhISEkbFgwsuKP5QScRHdariAbx/TDCZTPz617/mpZdekqLUSZKens7//uE3fP3z9/Linx/lnHN/OGZyV1aWxsKFQzmCdUSO4B+RI6w6wKJFObS3D/LOO0M5QnAoR0gayhHmj8gRcizKRe39+eROKyB5cRMdeW+hu+UdmjTXcPBQIdMmv9cuejFiMeju9rJmzSG6upSi/JYtLVx77al5vsZbf6CfnZ072daxjW3t27AP2FGhIjchl+kp06l8K0DrPi3WnCzaXC28s3Y1/oEeANQaDXOWLSWcMAOtOQ29Xs306als2dLOvn0Ourq8WCw6BgdD1Nb24HT6MBg0DA6GyMxUVkG43SGCwRgQIeAPYbPGiAVd6KNefN5BoiE/4VAIohEsZjXasJq2Dj/hUBRUaoKoCYWiaLRadHoDPW4DunAKthQrhkQdWo0WlcpAQYGVvj4/KpWKKVNs7N7dRU+Pf6hJ+pEcwWLRoVYP5QiV3QQCEYxGLeXlqcydm8HMoXOu1arjueeGcoRYlJ4eH+edlzd0G9r4UjzLceIBKLvxDXpCtLQMcsMNJ5AjDMWEo3ffi+cIGSaWLMk97v3BscXgoqlFfOX+r/C5b3+ON196kxf/9iK1lbW4ul1oddqh23YyvczK7Iqx+2vq1DoKkgooSCogEo3g9DmpcioFqsf3P84jex8hNyGXFQUruGzSZZSnlp9wbJnIeADwH//xH7zyyis0NjYyderUExrzhyFFqVOgp9uH3T7AoUN9VO5xsmx5HpddOjm+tM5k1jKl2EZhoRWfNwzEaDrspqHehccTZNCjbOnsD4TpcwVISNCTmmpUltjlWJg5S/mDraxy0t7mYXZFOkuW5jLoCWG3u9Fp1bS3eQgFo0Mv+G6SbMfvQRUMRenrUxroebzKfQLU1/Uec+yZZGRvrgSLDp1Ojd8Xprl+L/7BVlQaI3rbMqbNuw69KY2egRDmxD4inmp2vVnLYH8zIW8bsZATiHEQUGmsqHRp6IxpJOVMw2jJZMBrVL6uSSQQMpOZlcjCRbns2NFBsk2ZoeN2B/EHwgwOhkiyGsjINNHV5SMl2YDRpMVo1NJ0yMWA20XQ20sk5ELDAKnJARJNbnoddhxN+2je7wJArdZTn1JIVJNHTJuHOziFsCoTvy+EWq0mNdVIapqJQCCKQa+mtTWCwajMkhpeDpqRbsFkdmE260hNNaHVasjOtrBmTRNqjQpPSXJ8JtPIGU1Hm16eSk+Pj+lDJ7yamu74fXziumIqq5zKNrH2wVHrw4/+Hb1XAWz4uOvLs5mRk8Q/d7Vy0YOb+L8bK1g+9cjYTCYTt99+O7fffjv79u3D41H6+axf38zatdX87GeXcv3113DXXXdx/vnnj+tSjg/SCHH16no2bVKKpu8XdMa6+hkM1rN37++59dZHWLPmEOXlqbzxxhsTknyd6fr6/Bx2dnLoUB97Kp0sX5YX35VseKlcYZEy7d1s0tHc7I4n93v2dOHzhzEatFgsOux2Nz5vBExgMGrJSDfHp8hv2GCP/13dcft01q07jN3u5oILCmhudtPW7iEYiuL1hkcttTpaRoYFm83Alq1t9LsDxAz9APj8YaoqnWdsUerovlyWBB0qlYqeHh9b9u4mGouSkZhNaUYFkzMmkxAzYvn/7J13fFv1uf/f2nvYsmRbjldiJ7aT2M7GdoAsCAmrjLbQlg5aum97y6W3t+t278nl3rYX2lKgBQplQwgkIYHE2cMZHonteMWyLVm29h6/P44kS44dQgstvT+e1wtiSWfpnKPzfD+f7+f5PBo5NqedtjPdPL1vjLFJB97IBLGEkMPFIglqmQ6dUk+RoYRa7UJkIjWiuBypSIkEBUatmg99aDHtHU56U12FJFIxhRYVw8OCUW1+vhKtTo7LFSIeh+XLCxka9NB1ZgKNPs6oYxKX30NCFMJUJMITdtE/dpZ9fzlEPC7MsOvVekwaCzpZPlqZibywhbNnRalmGGGkMpg3z0gsJnT/EgGFFk2m5NNi0VC/GDraJxg+B+YCFSUlWmKxBHtbbcTjCQL+WEbJlK1oyo6GRnPGaDetfuroHM+UnG64opxgKIbfF81pQT79OrW12S9IftntfgbH51G+/OuYu++Hpz8Jva/Adf8FMlVmuUWLFnHPPffwwx/+kGeffZY1a9bw7W/vZfv2QbZu/S/c7pPccccdvP/973/LSxey463KB3B+TnC73fz5zz9mzZo1zJmziC1bzrJ69TW8//3v/yuP/p2YKZZdsoprP/8BnvnFg3z9Uz+iYf27OH58nEtTOSF9b6tUUubNS2GEYAoj9Hno6XHh92VhhFCMycksjOAOU1ysYfHiFEZoc2Cz+WloMFNdncfu3ee4tGkOk5PzcPfNQVR7mtf0j3DgtadpPryZjy+9nUVVpecdd9oior/fjdsdYXxcII3377f93c7dmx3heJg2exv7R/azz7aPTmcnCRIUqAoo15XTYG7AkLAQGFdSnVfIOe8ZbB4HEa2MvpPdhLxOxFIFCvNiapvWIFfr8E+GkQISiYh9+2wMDXmZnAyRTIJWK8PjiTI+7icWSyAXB5DEPfScmyDsdxH2e4iHvSSjPtqP+2lPJs8/aJEYRBJiEik+mZREQoxEIiKZTJBMJojH4iQTcZLxKJBksit3daVajVJrIJpUocvLx9VfiMuvBLEBv19PJJIkFMrCCKYURlCkMIJCglYrx24P4nQGsVg0qFQyZDIJBoMCg0FJdbVRwAhiEX5/XkbJ1DhLPgCoq0thhLosjNDmoLHRzI03VtHWlsIIQzNghKy8fSEC7PV8NzPnSKVk03s2sek9m+g+1U0iLkxEtbU5OLT/LPf/53+z9prL2PTeTdSvrJ8VI0jEEoo0RRRpirii/AomQhOcHD/JmckzPH7mcR7seBCTysS60nVcVXEVSwuXIhXPTsn8PfMBgN/fQUfH77jttl9nMMKrr776lmOEd0ipNyni8Tjf/PK/kyhejds6n3g8yYH9Nux2YfC16aq5GRM2iUREPJ5kYMBDPJ6kpiaflmYtGo0sA86bmqdqUMvK9Gg1Mnp6XFRW6DOAPJsQsJg13PaBhcAU6C8v1wvdOVI+PUAOmE8D+W3b+hkY8BAKx3jf++rIz1fjsUNV1dvXof/NiJMnHOzd3U5wfDt6yzKUygKcziCu2CXIC8SItZeQiIzRdWwbiVA/iVA/XdFJAEQSHRJlCVLNIsTKEnR55SApJBKXIRGDVCpFLIYYIErE0OkVNNQLg/FLLxN8Go63SQhH4uTnqWhotGA0Ktj92jn0egXxRAKFIkwiCU5nEL1ewebN83jp5X4cMSUyZQnFRRpKSwVVnsoapkwixj7qYOxcL6LYEInIECH3aWKhXUASkVSHKK+GycRCPM75lM5dQHGxgkBAGOAYUgRZ2v+ptraAgQEPiUQSi1lNeYWeyYkwwzah7XdZmQ7neJDXC7NZTd3CAsxmoTNFtsfUrbcIsyKPPNrJsM3Hvr02qqqM9PS42LlTUITI5BKKijSUlwvdIGciwLLNQi9bVkSVRct9u8/yofsP8rHVlfzHplok4tyHabYiaMOGco4d20I47ONPf/oTf/rTn5gzZw7vf//7ue2221i4cOHrfs+/Nd6IEeKNN1bn/HsxMTDgZsuWfTz55H+xffuLACgU85g377rM/t+JNy+eeGI7r/7lz9x+xVq8iTj7D2TlgxQplfaJkkhEjPoDmdyQBvd+f5RYPIFUIqah0Zz5DcTjSURiEXULTZkBVjYZYLFouO22qXvWmCcoBrPLpAYHc30Wsgdtu14dwmbzkkwkaVoveCoo5OJZiYb/C3HipIPDh0cJiG14og7qi5qAJH63iNqCJvLU+cglKsb9dl7t3IUn4sC1w0k8EUckEqNX5KGV5VGoLaOkoBCTpoBIQIpEIkZvUOB2hQVMgRiNRkpJiZZwOMH69WWUV+jp7p5ELhcDwqTV5s2VdHVN0tkxzthYANdkCJlcAskEA/0eVqwsprLSyMmTDvwuCVqDicIiDcVFwjVVrJDi8YQ42TWEw2vHG3Hi9Ns5N3GcaDyMCBFmvYVqdyWKpImWxoUsWlzAoYOj6PQyLIVqjEZFxv8p3elRrZYSjSbIy1dSXZ3PuXNegqE41VVGIpF4xhdqNvIy3UWyq2siU0qa7TN16621HG9zcOjQKHv3TeWDvftsLKwz4XKFGR0VfjPVVcZZ78mpnJCPee1X4dQT0P4kDB+G9/4RCnOf6RqNhltvFZRUGzaUk0gk+M1v9mC327jzzjv54he/yMaNG/ngBz/Iddddh0qlmmGvb1681fkA4MwZOz/72T089tivcLkmePzxJ/j1r7dz5IigAKmoML6h7b0TF46e7kkURRVcesP7eO2JP3HmjAexpQkQcsIFMUJLFkYY8uX48pSVCWViPT0uKiv1med6NiFQW1uQyTudneOIEFFmWcmkxMYJ/352BZ5id+szbBhez/tr30+DuYHBQQ/t7U5+97uTnDo1jt8f4VvfWs1jj2lxu2Hlygupq95eEYgGaHO0ccx+jMOjhznhOEEkEUEn01GuL+fKiisp1ZViUVvQyXWopCp2vjLInl1dvDj8BKaKxSgUcpzOIF7JApRzZEjzFiKSyOkfigCTyGQiZDIR4+MBfL6oUEoX9REP2Jm0jzMenCAZniQWnCSZUrkikiBR6FBoDBgKizAVFrBs1VyCETltJ9xIZCp0eXo2blqATq/i+ed7BYwQT2Cz+VCpZASDUfR6BStXFvPSS/3Y7T5IRtFrQK1MUj1XyUDvKO4JJ27nBFG3C+fwAGM9bZnjEImliJX5KOeUEhCX4rabKK0qp7hYO4URDCmMcDwXI4RCMbRaGdddNxe7PcjwsI+SkhRGcF4kRqjLwghZHlO33prCCI90MjzsY9++aRhBJkYmm4YRZsgJMzUUeL2oXjT1PG1sNNOx7zWi4RAvP/EyLz/xMoVzCrnihiu44sYrKJtXNut2xCIxBaoC1pau5fI5l+OOuOkY7+D0xGle6n+Jx888jk6u49KSS9lUuYkmaxMKiSJnG3+PfDAw4Oa55/bwxBN3s2vXNgBUqhpKS6/IHMNbHe+QUm9S+P1+Bs8eY2j381zynT+gyy9HLhdllFIwVcOa7l4WicQZGPCgUUszXQggVx0ilwveIXq9grXrynJKA7PXyY7p79sd/oxSKjsGB70cOTKGK6WMksvELF9WxNOFGvq7YO68/7sg9cnHdvHob/+HSdteSMaR6U6itH4CcWyQyGQHiWA3CedzkIyBSIFYUYZUtxy1sYqYqJRY0ohUJkKllBCLQygSJxEDqRQKCtQZQ0qlSkrpHB2VlQaqqowsrhcIxN/+7gSRaJy8fCXNzcVYrVr8gRjXXDuPw4dHcblCLFiQT3V1HsPDPkz5SlpWW/H5I+zaOYhMLiESjXPihIN4IkkkHEckFlFcrGPO3EaUquUYjQq8nghDg+NEA71EfWeI+c9wruMhSMYZPpHPvIUtaAuWsHhpExuvmp8xzi8v17NjxwCelOlinlGJRCKmbqEJa4k2Q4Q++2wvx46NCW1dC1Q5Pirpv7Pv+8NHRs8jl9ISc61WhlgiYnDQy769Njo6nOi0MkrL9PR0u7CY1dx6S21mnWyD/+lmoVajiq9squWRQ4P8dncfB/om+M37l2LNm7llq9CZ4nscPnwD9913H4899hjnzp3jRz/6ET/60Y9YunQpv/vd72hsbHzL7snXi+ya8ptuWnBRMyDp6O3t5ZOf/BI7djxFMplALBazZMn11NZeRSIhwmCQv4VH/v9nxOOjPLuvlfw8KZ++9YPI5aKMUiod6fs17R2VzglqjZS62oIMsE8TRlVVRuRyCUeOjKHXyzOePEDO8tMj+7N0mdRM+SDd8cznjSBChFYnY16lQEppdbL/syqpI23D/Px3z7C38wDuoAuAK2vkiGISRr0jTIbG6JloIxjzAaCR6cnXWCg1VGNQFqCWmJBKJCgVYhIJodQlEREhEiVQKqXC81kEWq2cwkJNJh/ULxYIxEce6aS/34PBIJRXNLdYKTCp0Ov9mApUeLwRSuZoqV9sZnjYR75JyeoWK4ODXhyOIB5PhGAwysRECNdkmFgsgVgiwpSvorKkmDnRQoqK1Hg8URzjflz+SUbcNiaCIxzrPUkg4mfX6Rep2T+XMtNcLm2s52MfWpYxzS8v17N9x4DgZ6aQsKBG6OAbiyWYV2XM3ItpP7Nhm3Cesv3Qsmeps7v22e3+89RVRqOCSDSOzxcRSvr22Wg/NY7TGaSi3EAgECWegLqFwn2drbRK36M5OUEsgfr3gGUhHPgV3LcWrvwerLxjxvsh3anozjs7+NOf/sQDDzzAwYMH2bJlC1u2bEGv1/OZz3yG73//+2/B3Xjxkc4Jy5cXvaF8EI1Gefjhh/nSl77G2Jgwo24ylfGBD3wNlyvOvHmG/6+7q71VUVWdR0VYz+X17yI/X87T991PkQxWrxbuw8xYSSPFn5UPNJppGME+C0ZY+9dghDmsGKvjRH8v5+Qn2Wfbx9b+rZTpypgfb8ZzYC5jY4KiXKmUsHnzXH76Ux1nzsCKFW/fxiiOgIMTjhMcsR/h8OhhTk+eJpFMoJVpmaOdQ0tJC6W6UqwaKzq5Do1Mg0Q8VU75+J/28Miv/szkuXZIJlGaBlDP3YxCIQGpAVnBksyy0SiIRAkS0QC27l78E6NEfWMkgg6SMWEiSiRRIlaaUOiLsVQtQSQ3Ek7qkKuNLFtWSEWFAb1ezuJUTvjtb08g049QWKjh8svnCBjBH+Oaa2bBCCYlLS1WfL4Iu3YNIpNp8HjC+FxxEoNKPMESIpIiShoET1ilSorBIMM5Ns5Q7xAhj4NY0IlvfJjRM0eBJH17pBRVVKK3VFDdsJBbPtSIxxujrW0KI7jdYfLyhDJTjyeSQwxZLNMwgul1MIJG6Ig3nVzKwQjiFEbYl8IIOhmlpYL/lcWizpSDZ6utZsIIbzRqawv49t0fp/PDl/L8I8/z2pbXGDs3xh/v+SN/vOeP1DTW8B8/+w/Kq8svuB2xSEyeIo+WkhaarE34Ij5OT5yma7KLAyMH2NK3BaVESZO1iU0Vm7is9DI0sosj0f7afABw+vRpPvnJL7Fr17MINjJSli27gaqqtcTjfz+M8A4p9SaFXq/nkaef59pNV/Kb732cnz3wFMuX1fKed08ZhU83Gn/qqW5OnHCgVEhzCKkdOwbxeASiKPuHZDFrplpnpsB4OrKJrOmlTbMZnAtyRzsGvYL8fBXzF+Tzs58dYnJS2HcyMYN89J84kskku17ezl/+8BvOnGjNvC+Rm4mHJ/GeuROSURCrECvnI8u/AbGqGpHcikgkQaMV2rW6XBFECaFDXiIBYjFIpWKSJEkmwO4IUlKio7RMj1ot49IUCO3qmsBg9OIcD9LZMZ7ptLh+fQWHj4xmZsgGBzw4J0IsWaIklDI3rKnJx2LWsHFjBVqNnNa9w/T3u4jHkuh0cgoKVHjcETRqGdddX0Vvr4vu7kkKCzXIFRLGxrSEgosw5ikhEWKo9yQ6eTeu0eOcPvocJ3YpOLPvMi7fdD3XX3sVHV0+WluHGRv14/NFsdn8GA1yKisMNDaYM7Papnwler0ChUKSc9+mvy8IZFRbm51AIIpCIWHZsqIMuQRTZahV1UYaG4VOTU3NVkLhWI5KMO3NlV4nW9E10z0uk4q5qsqMPJhg75ibjXfv5sc317Np0VT77+nmgcuXL2f58uXcfffdvPDCCzz44INs2bKFEydOUFIyVUd+9OhR8vPzqaio+BvuyIuL9DHa7X56e4VSqoudsYhGo7zvfe/jiSeeIJmSg1911bXcddfXCYdNmW1u2dLHr37VdtE16O/E68cXv/gZ1BNH+OwP76d4TiHf+8KHeM97chtHTPc1eDKVExRKaQ4hNWtOsGhmBOTp9WaSq89mcJ4ZKA550GhkzJmjo7BQw7PP9QIwUzXBP3t0nhnhl394lj9t2YY/JIAHuVSOVq5nd88WgjEBjOkVJoq0FZjUVvJVhcglStRqCckkRCNxYnHh/MTiSWQyMdFInLw8FUlgwhnMtOZesMDEFSmPhq6uCYwGwRi8u3sCry+C3iCnsdFCXW0Bhw+PcuzoGP0DbmLRBHqdnPGUMrWmJj9zDa+4ohyxBPbvs5FIgN4gmNr7fFF0egWLFprwB6I4x4PU1eUzMqJgdFSOSmKgQd9A/WITr+3rweYZxBOzseP4K2w98jIP7CjhpitbuOXqywl7xBxrHWM0BU7z85QEgzHaJ5xsuKIcq1WT42cWjcTZsqUPnXbKTy17lrqnx8WOHQPo9QqMBiXLlxfl3LsuVxi5TCgVKSvT0ZxShaQbAAwOeXJyQrbSKr2dGe/zooU4ln0d2ZH/xbjlLji7E971G1AKIGh6PjAYDHz605/m05/+NKdPn+ahhx7ij3/8IwMDA0Sj0cxmI5EIO3fuZO3atcjlb/3g/W/JCc899xyf/vSnOXdOIKPy8y189KN3cumlN+B0huntddHUZOXw4VG+8pXd7+SENzGsVi21cRPlhgJqv/5BKiuN/OIrv+B0ayFXXfX58+7ZDEZQSnMIqQvlgwxGaJyGES5QvlRYqOWKwgagAV/ExzH7MY47jrPL9wSxxVEMc/Iw9c1nvkHHrR94OlO+l3ybJIXJ0CQdzg5OjZ/i1Pgp2p3tOILC8yBPkUeprpQNZRuwaqwUaYrQyrVoZJrzyqWSySTbnt3N4/c9Ts+JU5n3lXnlSPIXkl2plUwmSYZdxP02Yv4R4n4bybALAJFUjVhtQWZahNJQiERtQSzXIpUKvk8hkYiSEh0Wi+p8jGAQzME7O8eF7qdpjHB4CiMMDHiYSGOEUBZGsKQwglZOa+swdrufWEzITWVlOkZG/Gg0Mq67bgojlM21osszMTTkIRiMU1dXQMDn5/TJHgq0XvJUE5w6vJfT+7fx8h9+xcJlC1m5ZiUux3zazwhlnUIXvxBud4TNm+fS2GimLTU+N5kuAiNoZsAIt2ZhhFQZalVVFkZoshIKxXJUgjkYIUttVZtS+c5a5n2Bsr7pn9ctraNuaR2f/87naX25lW1PbuPgqwc523kWU+EUkd91vIt8cz4W6+wl32KRGL1Cz4riFSwvWk4gFqDX1UuHs4POiU52Du1EKpayvHA5G8s3sq58HfnK/PO287fkg1AoxC233MKzzz6b+T1fc82N3HXX1/D7DX93jPAOKfUmRr6pgDt//iB33/kB7vrwTdz+7/fRuLwWi1kzI2nknAjidodxTkzJG0+eEHxzDEZ5plNa2vgZzgfj6e26XSFGRoVB9UwE1Ez7t5g1VFbomZwIsXSphbY2BydOOAjYheN5uyScNyPsDj8/+o/PcGL/1qk3RTJIRonHPEhU85EbLkGkWIBIXoJIdH6dcDgcJx6DlNctAAqlDJlMhM8bobhYRzgSJxSKoVSKqas1odcrGBr04PNHCYfjaNRStm0fYOicD7EYJFJhP5FInDNnJojHEySTSVQqKePjQQYHPHh9ETo6xhGLxaxfX0ZpmQ7TaRVeb5h4LEFZuYENG8rZt9fGsM3HwIAH+1iA3l4XeUYFqy6xEgjEkEii6HUyzBYDJXNMKFUb2LC+jEhwlJ0vvkj3yV386D8+i0yuZOGyy6msW0dJyXy6TkfweQWDzb5+N339bjo6nNiGfWzeXElpmR63K0RPr1vogpQaJLldYdyuEG1tQgcNlVLKsuVF581UNDYIZUqmfGXm/rSYNRmjc7vDT2mZPme9i/GyAmEmJjYS4l1zC9g36eNTfzzK+1aW8a3rFyKTiGc1D1Qqldx0003cdNNNjI+Ps2/fPgIBeaa2+vOf/zx79uxh6dKlXHfddVx55ZWsWLHiLelclz7GefOMNDVZX3cG2+fzodVqAZDJZPj9fpLJJFdddRXf+MY3uOSSSzLLDgy4sVic3HvvcY4cGQMurgb9nbi4+MwtGwmHgvzbLx8lGknynvVXZWYBZxoITTiFnDCRkrynAUh/vxuZXJLx9sleZzogTw+iXO4QoyOpnHARg630fy53iAKzOmWK7eR0v7DtRCJx3jb+WcNu9/PizuN84rs/IpwiFyQiCfFknEgsQkwSp1BbQYHaSr6qCIVUKFvITomBQDyjlJ2KJFqNHHcsjFYnY0ljIXv2nCMQjFFaqqOiXOgQ19U1ycREkMEhD+eGvHR2TZBMgKxcnHnORSJxxp3BjKfFuWEfg0NeJGIRfX0u3J4Il11awnveU8vgkJczpycIBGOUleq4+up5DAx46O5xMTLqZ3IyxOiIH58/isWsQSwWo9XJyTMqKSjQ8O53NXCszcpll86hplbPky8d4sjpU/zmz1v4wb2PUV5UTPPiJcyzzCfgluEYD+DzxZDLxHg8YRz2AIcOjWIt0bJ5cyXH2xyMjvpz8kG2MmrvPhvDw4KaaqaZ6/JyPcM2H81N1sx9mW1qW1amo6x0Kie8no9VdgyMQpf3Zi63tFHa/RL8qgne8wDMWX5BM9kFCxbw3e9+l29/+9vs3r0bicSYyQednfvYtGkTBoOBa665hk2bNrFhwwYKC9+a8qY3khOSySSBQACNRngGmExC98HCwkK+8IUv8C//8i+o1YKCOJ0PFi408ZWv7H5DviTvxBsLu92PtWYln/ja57j3e/fgmvCx6YMfYe68vMzz2pnKB9klUCdPCr45BoM80yktbfwM54Px9HPe7Q4xcpH54NI5l9JS0sJ4cJwn971Kr7iH2JI2DooOkCyVMHRwGIB2RzuOgAOz+u9T1u2NeDnrPkuvq5deVy/dk930uHoyBJRKqsKqsVJlrOIS6yUUa4qxqCyoZWrUUnWOEmqm7/+tT32DjkNHhDdEIlQFNWhKliFSmolEYoT9k3hdQ8S9gwIJFROui1hVgFRXhrzkEuT6OcSYUuRrtLIMmTVvnhGHIziFEepSGGHIg8+XwggaKdu2DTA05MtMeEMuRoApjDAw4ME3HSOU6jCZBIwQiyUoKdEJGCH13B0Y8GC3pzBCnoJVqwSMEAhEiUZj5BfoWLxiEdXVeWzcWEEiHufA7nac53o5deg4v/vp74lFouQXFZE/ZwEhSQkRsVnACH1u+vpSGMGWwgiletzuED090zCCO4zbPYURlEopy2fCCCkrA5NJmTNeSecEu91Paek0jHARXlbw+mV9s32uUCpYd9061l23jgnHBKdPnCYQEtF1ZpSyMh0///LP6T7VTU1DDc1XNLP8suXMXzx/1s51IpEIjUxDvbmeenM9gWiAIe8Qp8ZP0evu5dv7v82393+bxQWL2VixkXVl65ijE8jMvwUjKJVK3G43yWSSa6+9lm984xssW7Yss+zfGyO8Q0q9yaHPL+A9n76He77xEX7+lQ9w8yd+ycc+eVXujZ0ihVqarWg0MsrL9Rw+MopGLaWvX+h0pFbLGBkNYDB6c0im6WB8cNDL7t3DBAIRylLkwEzd9qbv3+7wc/LEOB5PhKJiDX39HkrLtAwOeZFxM+uu+yhNa1a/tSfrLQ6PaxKFUsmk08Ej9/+Z3s6Tmc/E8gIUhiUk5HWIFPMQiaZmdEXiXOIJQCIFqUQEIkEZlUiASATFRWrGx4OEwwniiQRXbKjgWNsYoWAM50QIvV5OT68LpzOEKV+JzeZnfDyEVCrGbFbR0mzF7vCzb6+NgQEv8VicoiIN8+YaEUtEFBSo8HojdHVNEAzG2P3aOa65dh5eT5jKCiMymRiHQ0hMTc1W9u21UV4utKJNK43C4TiJRJKSEqE2vHXPMMmkUCJhNquxmPVMhJsoqGmhrMFDf+dOznS+Rtu+l5DKNRiKVoOmGaWying8gcWsocSqFczOAzGWLytKlYgqc0hPg1G450z5KhYsENj9dKv0nh5XpnW6XC7BlK+kJ9WGfv16Yf3sEr1sYhaEwVa6XHC27pJ2h19oDlCkZlFVPpeZSnjiyDCPHhrk8MAE/3vbsosyDywoKODaa69ly5az7NtnIxaLIpfLEYvFHD16lKNHj/LNb34Tg8HAunXruPnmm3nf+973Bu5UIdIdnzZsKKelZarEK/sYZ5v9GB0d5fnnn+e5557j5Zdfpquri/JyQZHx4x//mB//+McsWrQos3y2ImDz5rkEg1E0GtkbrkF/J14/Lq9bwrrFo/z0D49z6OgwP/niRxGJRDMOdJpbpnLC9h0D9Pe58XojyOQSdFpZxoMnO6YD8j2tNg4dHKG8Qo9Br8iYSU+P7JyQfq3WSBmx+YlG4pSUaHFOBBl3FvCpq2/nxnf9cwPTZDKJze6kIM/Aw8/s4fEX9xCJCudTLBJTqJtDobacAlUJCok2Z125XEw4nJsUdFopIrGIeDxBJCqwVQqFFLVawsREAud4CI1WxsKFZrq6nBlfsIA/Rm/PJE5nCJc7QiwaR6mQIpGKqa0TlA2HD4/S0eHEYQ8QjsTRauWo1VIsFjWmfBUHDo7gHA/y2u5h1qwRvCzmzjUyNhZgcjLMwICH9evLUCilTDiDVJTrGDSpWFhnor3DSSIBlRV6Cgs17N9vY2jIIzSyKNIgk0uYPKelStvEr++6mh5bL09ua+UvO7cRjW3BmldCbfEiirSVKBQq9Ho51hotwzYfErGIgD/G+vVl55GuRoM3ow5rbrISTs1yjzuFxjCRSJyODif5JoEATCSSBILRnHOerQrMBuJ1tQUUpEpDLtRZMt1YoKhYg2Lxu0C8CvbdA7+/CtZ+lYV1HwEunA/EYjGXX355Jh8ATE46KSwsZGxsLONJCNDQ0MCVV17J5z//+Ryl7cXGX5sTYrEYe/fu5dlnn+Xpp59mw4YN/OY3vwGgubmZJ598ks2bN6NQTPmWTFeJ/bW+JO/E68fevcP8+c9dRKMJrrhiIV/9r6/ygy/8gJ7TNj71zS9isQjeTy1Z+eDw4VE0Gil9fVkYYSSAwZDrDTgdjJ+HEWbpvjodfI87gpw8GaTQ04DaV4PP5WU8eY6R8CBFN8ookhfwhOgJnnn8GYwKI2W6Mkr1pZTry5mjnYNJacKoNJKnyEOv0COXyJGKpDlGyYlkgkg8Qjgexhvx4g67mQxP4gq7mAhOMOIf4ZzvHDafjRHfCN6o0E1WhIh8ZT4FqgLmGeexomgFReoiLOopAkoukb+uKbPL6UKtVSNXyBkc9CLWzEEsPYG2uB65uRGJTIF7rI+49xgx7xDJiAcQIdEUITMtQqKxItEUIZIohK7ZUhEikZhEJE56DqeoSI3TGcLrjeD1RrjiigqOHRsjFIrhdKYwQk8KI5jSGCE4hRFarNjtQjfGgQEv8XicwkIN8+YZEYtnwAi7z3HNNfPwesNUVk7DCE1W9u3LwgihmTHCgQMjAHi9EWprTbjdYQ6fjCESVVDRVEt+7bWM9J1h8lwXQx1HCQdeRSzXkihbiKO4hQX1Cygp0abMzoUOqna7H4NBmZMTDKmcYDJdBEYwzYIRUiV62fkAUhjhdXKC3e5PNQdQz1rWdzFlf/nmfJrWN2XUbNFwBJVaJYzzjnfRdbyL3//09+gMOpY0L2HttWtZc82aC96bapmaBfkLWJC/gHAszIh/hJ1dB+i29fCz8Z/zk8M/yZSh1hWvZPklZTQuKp4VIwwPD2cwwiuvvMLZs2cpKhLO2S9+8QuUSiU1NTWZ5f9RGOEdUuotiPbOGKrSu/AN3M1T9/4LzU2PUlYmXOyZ6r2zS7fi8STFVg0KhYRQKIZGnXuJpteIl5XpSMQTOJ0hlArhge/x2AiFYzklftk/rM7OcZ58qhv7WACzWY1KJc2YV8+bZ6CrqwSZtpC8gn9OU9ujB49xz/d/yLmePeiMBXgnxxBLZOgK6pDJViBWL0UsMyMSgXiaGEypkiCViggGYsSzZsDlMglyuRipVEJ+noJwJIFOJxO8o0IxEqkp9HQHPaVCgtcboa/fg14nx+sVyD9IkpenZNnSQjZvrsxcf7FETHm50AWwujqPmpp8/IEpP46nnuwWOg0tMbNvrw2vT6jPbmq2MjDgwWhUsG+vDbFEOHaDUcEdd9TT0+Pi2Wd6gCQ+X5TTp53EUuP8aDTB6Iif/fttOBwBwqE4KpWUWGw1qtLVSEw2ou79TI7sJRF9ieREDTVl76VyxdXo9RZsIz7a2uwZT7R0eemzz/ZiyldSWKRBIhGhVEmIRgSPk7Rx59ioH4cjiG3YR2GRhlAoBiJI/Q8QVIF799o4ecLBbbfVneeNkB5sJeKJzLmc/vnIqJ+alP9J2zE7ayvyKVbL+MtxG5t+uZuPLJ5DqMuDwSDPPMynD87TkQ0EduzYgcPh4LnnnmPr1q1s376dyclJnnrqKaRSaYaUSiaTfPvb36auro7a2lqqq6szQGD6frZvH2D79kGAHABy+PAoDz3UwcKFJj7+8QbKyw1MTk6ydetWWltbaW1tpa2tLee7P//883zmM58ByCGj0jFdEfBGPareiYuPI0fHMIlrWDonzqsndvPzRxT87K5PAOcPdNLeT4cPj9LaOpwxkDYaFbR3OGfsRjbdSyqttnKOB9Fq5Nhsfmw2P5DMeBhl77usTMdLL/Wz/4CNsjI9rskwExNBFEop1dV5TE6E0WhlGFX/nPkgGApzz4Mv8OPf/gW3349MKiYYDpOnzaPKUkuetByTuhiJWIJEQs5zXyYTkUgkkcskJOIJUhwWUonQYSkvX4UImJgIgkhEbU0+HR1O4gmIxxOplu4hQqEY/oBQBj1i8+H1Rqio1COViPF6BbBYUamnfrE5Aw7zTSoaGy0EQzGsxVqKrZrM9dPrZby2e5ilSyzs2DFId48LEPzC1GoZRqOCHTsGUSglKJVS8k1q5s7No6xMh9cbpqd7kjG7n54eFy5XiFgcorE44+NBTpyw0909STyepLvHRWGhmsUFl1GuXMHgRB+D7tPs6HgJhUzBpQ3LkahLKDCZaWy0MGITcoJaI8x4d6RKicrL9YyOBQiFBJ+cQDBGYaGGQCDK8TYH8XiS0TE/fWdd6PUK5s0zpjJBLqjcvm2AtjY7DkfgPH+z9HkbHPISDsVmNFtPNxYoKtYwOOiFsmJY+nWkR+8jf8c3KZ/7KiOl3+UPfxjJEEEXkw/Ky9/PLbfcwv79+3n22WfZtm0bx44d4/jx4xw/fpw77pjyrnrppZfo6elh4cKF1NXVYTabM+D5YnLCwICbe+89QXv7OLfdVpc5pgMHDrBr1y5aW1vZs2cPk5OTmX2GQiHi8Xhmlv6GG24473fyTk74+8W+fTZsNj8SCTidIW742HpEMjU/ufO73Pet77Dgjz/GXGyewgiHczGCwSAnEJhSjmTHjBghkcIIyiyMEIrllPidhxGe7MZuFzCCSAQ2m58FC+ahiVZybsRNwwoDl1yqY8g7hD1oxxP20GZvY+fgTgIpH6WZQiqSIhFLiCfixJLnT7KkQy6WY1AYMMgN6BQ6lliWoJPryFPlYVaZ0cl0KKQKlBIlcskbK5k91HqKX//wj/SfPMymD36Ia27dRFubHZ11EaoKCHlt+DqfIxG0AyBW5CHVVyI3lqI0liFXCuXLORhBLkEmEyE3RFHkhYgp/CjzIyS0Z1HG/chlEaK6BHs0SSKXxBCJk5wUw6kEiOolJKJixqUKdqMi0iCjslZFfVUZsYIRTp4VIxIjYARtFkbI8ux78sluenpcNDaa2bfPhtebwghNWRhhnw2xWEQwGMNgyMIIz07DCKnL4vNFOXx4lM5Op4ARwmmMkAAsxI0FaA2XYko6CNi78Nraefn3B2ibU0zNslUUVS8VMELKEy1dXvrss72YTEoKC1MYQSkhGk0gFmdhhLEURrD5KCxMYQQgByO0pTDCydfBCIkLYISRKYxw+PDoeX5XTmeQ7u5JNCmVOsxe8pf9G7r7L3cz4Zhg77a9HHz1IEdbj+J1e3ntxddQqpUZUioej/PgLx9kbs1cyqvLKakoQSaXnbefCksFyrNB4ics1C+RUb4qxFn3WV7se5E/R/6MKC7FNDCPG+o38q76jWiimhyMcOLEiZzv/uKLL/KRjwiTMDN55f6j8sE7pNRbEE3NVtyeMIqlP2Tw2M/40kdv5ss//jVViy8VBkKpmMkI2mbz09fvpr/Pg1IpwR+Y+aGdXY63eXMlrXuF9qPdPS5MJgXBYBzbsA9TgSpnXxaz4P0wOOghFIwRCMSonGvAZFIilogonSP4IJnylbMqUN6OkUgkeOGxB3n8D79mZGgg877PG0Yz52PkFS+ltq6EPXumWthOr04UAEmCZEKMSi0jkUgQ8AtZJxKNU1mpp7LSiMcToarKiHMiRFenE6lEhFIhQpk8g3ukj5DzHGKViHMTMeKxCKFgGH9YTyx6BQUFKnQ6GeODr7FnewcP3BshEJKzsL6cK99dy+hYCI8njM3my5iiA3ziE40AHD4ySm+vB51WRlOzlTyjgoEB6O6epH9AeN/jCTMyKnh/7NtrY+icF6VCgsfjIRYVlGBGo4Lq+UZOnXLg98dIJBKZmelEXABchoJygmorpsqbUNJF0tfKU7//Ns8+9FPKajdRVnM13oBwfF1dkzgnggQCUdrbnYhIUlqmp6BAhW3YlyE9GxvM+AMx5s415MyCpO99SGbuu8YGMydPOPD6orQdd5yXUNKE7LDNR9txR47RusWsyUkQ2bOAaqA+LmdAleTXxwZRj0WIb0tmBv2PP36G557r4dprq7jrrhWZ/U3vfmE2m7n99tu5/fbbicfjHDlyhG3btrFgwdSDu7e3l29+85tZ95iEefPmYTQWMT4uo6ysiS9+8SOUlxtobi7g9Ok9qFRhnnxyjEgkgt/v5557XuP06QGOHWukpWUO5eUGjh8/fp4aa8WKFVx77bVcf/311NfXz/5j4Y21l30n/rZYtrSQcxNulmnX8V79Qr5yz734gwH+9JMvEgwkOXx4NGN0nm0EvWRpIR5PGL1eTn+fJzPbmV3GlI7swUtabXXunIedOweZN89APAF+XxQQsWG95rxB1eCgB9dkGLHISyKRBJFAWuv1ClauKmbCGZxVcfV2jTN95/iPn/2BF149mFFEAVi1NaxtakIrzSMajWMbmQJQ8fM4v2RGNSuTS4imavWSQCSapKJCT0WFgZ4eF1VVRiacIdrbnQJppQzRPtDB6bMOnAk3ExNJ/vBsBwMDbvyBCOuWraJ55TwUCgm954bpsrXzp6djxMIS6hdaWVM3D71eDiSxWrU5Krn3vKeW97ynlsOHR9m9exiJGGrrTBQVaoSyve5J+vs9mExKVl1SDCQzz7/BIYEU848KZuEyKahUEpRKYSJsoD8MiEgk4gT8Cfr7hC5SUqmUSlM1C6w15FmS9Dg6OHTmGOs+0sq84grW1Dczv7SaUVtAKNWbDPPc8734vFE6O504J4Lk5alS9+ZUx760emzuXANGg4J8k5KamnwC/hjqlPFtzuB/FvFD+nnf1manu8eF3x/N+U1lL+Nyh3JUgl3u61ldVEXF4AssPHstDx7+CNtZT0vLnIvOBxKJhJaWFlpaWvjRj36E3W5n+/bt7N69m6qqqsxyv//973nssccyr/Pz85k/fz5KZT42m5gVKz7K+95XT3m5gZKSScrKzqFQBHj8cRvhcJg9e87wxBNH8fl8aDR3ZYDCv/3bv9Ha2pqz3auvvpprr72WTZs2zVo2ko53csLfL5qarLhTTWRaWgS/tHWbm9Abf8z3PvsN7tj0cf71B19Ca644zwjaZhMmEp3OkKB0v4AqMAcjtAqKyO7uLIxg82EyTcMIliyMEBIwQl6eAqVSSmmpjpqafFpbbRjkSvLjJdRUCBPu0USUSDxCJB7BH/XjiXjwRXwEY0FC8RCxRIxEMkE8GSeejCMRSQSCSiRBIpYgl8hRSVWoZWq0Ui0qmQqZWCb8J5EhF8svWH73ehGPx9m7bS9P/P4Jju8/nnl/2zN7aN1nJ+EbIDxxlkjQj0iiRKIvR15Qj0RXilgunH+JBJIiEdFoEpVGgtjkIql3IyvworD4kBcEQCLkCCkgiStIBOSIAxISfgmRs1EUUjnekTBSkQjiSeLxBLFIgKRWjvmSPNSFEuJqD6On2jk3uJ+tWjFSrRRpqYz8xgLiCTODIQtxWzktC2sz1/+Tn2wEBGKlt9eDTiejrs5EMBjDYlHR1+ehv1943+MJMzKSwgj7BOyoVKYwQkyoAjEaFVRW6jl0aAS/P0Y8nsIIgSiJhIAR9HoFwWAUuaqEsvnzWbe2BI+9n6cfepHWLS8Sjz6D0VrF0OnLqV+1jElXZAojiJKUlqYwgs2X6dgnlOrNgBE0WRghpXxqbDRz8qQDrzdKW9ssGCGRYHjYR1ubI8doPT3OSi83XTme/ru7ezKnHBagtdXGwYMjrFxZzA03TCmHplsr5JvzueZ913DN+64hHotz+sRpDr12iKq6qXzQf6afB+9+MPNaLBFTUlGCzpiPNyjDWl3PzR+6AotFw4JqNQMddnR+I/IOFXPDczH5TLyw7TAT7hE8K0/zO0039/X+F+IuMSd+OEVEiUQiVq1alcEIr9dR/B+VD/65Rplv8xi2eensnGB5jYlvf0sofQsFm/jSJ+7gG//yEZZcfjuLm6eAZLYRdHf3JI0NZgxGRUYtVVmRWyMLzOghtXxZEf5AjH17h3F7IigUEspKdZlOZtn7SoN9vz/KyZMOHPYgtmEvN9wwH4NRqPV9+bktHNzZgSRxOdfdtOatPm1/dSSTSfp7uviv73ydzrb9xONTg3aZuhKR/hrE6loSIhEerwiZTIJUJiIWndkrS6GQoFBKCQVjRCNxNFoZSombSecgiYCToXY/nsEAId84B54dxWCpo2HNnVgsaoKhKK2Pf4ZjO85XMgCo82rxWtfQ0e4kkUzy2nN3Ew1PEZSdr8GTv5aiUBegNi5g2fp/w2BUYjFrCPr9qDQa9u4bZufOQQKBKJFInLHRAAMDHo63ObCWaKgo1yNOJYq0B1PaMFytknHihINYPERxkZbKSgMKpQSTSUVePohFYLP5iCeS+H0x5HIxS5ZYUKtlKBQStJoFwPW8trONnrbn6Dv5An0nn6K0+jLUsuvp6izE64tQWKihsFCNyxUmFIyh1ytYvNjMwIDnPHP+tGdUOvyBGEeOjGF3BFm/voza2gJuu60uU8KXvvfT3Ss1ailz5xqZmAyyf7+N0RE/sXiCpUsKWb9ek/Gmyi7jy/49XT1Hw3MnRjmEm+3SEB+0e6my6BgeFjpaDQ97uVBMn9VeuXIlK1euPG+522+/nfb2djo7O/F4PJw5cwY4I9wXakvmoW+1xnjkkf/gkUdm3l9JSUlm2bq6OpYvX54BQatXr6a4uHjmFWeIN9Je9p3468MxHkAmE/PZzy7JDFYW1xVz8+d+wPwrP8MXb70dS54pMwMOZDqeNTSaMRoUU6oZjWxGz5zpxrdp0+jP/st2JidDDA6KWb68KEVUC/uYXqqxdq1Q6uVw+Dk35EOrk1FRrqd+cQHHTw3zxCt76XUa+EHtrX+Hs/bXh9cX4FePvMAvH3ia0fEppYhCqqBUv4C5eY3IJQrcY5BfKcLnm/l5DcIzscCkJhiMIRaLiAUTiKVxYiIvrpALr9vL6a0hpKook143jskJvvjeT7FgQR5jYwE67Ed48Mevzbr9aus8enpMiMUidh85ySundkx9+Brwa1ArVOTpjNxx3U3Ms1YAoDfIkEokTEyE6Ox0MjzsRSYXc/asm3NDXoZtfkqsGqwlWiRiEcZUyYTR4M2YhnvcYc6eFYibwkINy5YV0d/vJh5PUltnpLRMz9iYn97eSaJR4VyUzNGyaKE5QxrZbPVMTF7HfY9s58jZI/zupYcpLbTQUL4UqWIRW7f2YR8LkJenRKOVMTbmR6WU0tBoxmxRM125B5xHuB4+PMqRI2N0d0+yfn0ZG64ox2xW09BozgHdMFV+qlBIiEZiHDo0wpkzE1y5sZINqXKPNGjo6BzHYReI1oIUKFeXbQbpcuS77uae5b/gXGUYks1/dT6wWCy8733vO2/yoLm5GZ/PR2dnJ/39/UxMTLB//34ARCIJy5bdkXnOv/DC73j66adn3ed11/135u/LLruMoqIimpubaWlpYdmyZW/I4/CdnPDWh83mo7PTydKqBXz721P2GHv3DrNvnw2LRc3mj3+RA88+yHc+9VVWbLqBm26/Ca1WJmCERjMGgwK1Wo5SKZ3RL2cmD6nly4vw+2Ps2zeM253CCGW6TCczyG1EkPbwOXnSgcMRRCKByy8vo6WlBItFw4Gd+9n/Uh/SxCquvUkY86QJJI1MQ54y760+lRcdyWSS//3h/bz8lxeZdIwDAkCXqs3EkxCd7MY9eQaJykTlwhWMec0klYXn+cqK5DF0cz0oS9yILRNICzwgShBxxAj2JpnsBCZFaKJSYp4wPqebQutiVrTcQcCbxO+O8tLzH5r1OHX6evL6b6JocR5xYhx75IPE4+GcZUQSMfJ8OZqFaqwftrK7Q0LFcDlVqiqWlS2j73iCXbuGCAQEf6rubhfhsICLqqryqKjQIxanMELKgyltGK5WSzlxYpxYLER+voqVK4uQSMS4XGHy8gTbEpvNRzyexO+PIZNNwwhaGT5/nEOnJESMl1G0qoXSPDvdR/by2p9/y75n/oyuZDHVy1ZTWKgTMEJoGkaYZs4/PR/4/SmMYJ+GEVIlfOl7P929UqNJYYSJFEYY9RGLJVm6NIURUvlgtjK+sjIdmtRkXPZvbSavt+kxfeJPIpVkTNKzQyqVctW7r6L/TD8DPQME/UGGeoeAIQA0eeYpUloW4qUHfjPrPivzruKjH3g3dvrpSHbQX9WPbJ4MdZWasoYyVlWvoqq4CnGBmGgiikwsm3Vb/6h88A4p9SZGd7eL/gE3FrUgJU3fkKX1n2NoVMOxV39HMjrC2jU/Qa4QfBPKynTs2DGYMS93OgMc2D/CqkuKWb++4rx9pMGERi1DIhGhUUszZMWcUj15/ijr15exbFnhlPxwPJhZFqbkvS9uPcuOHYNUVxlZXF+QUeWcPrqVwztfoG6hGVjzlp+3NxJjdh9PP7aL9iM7cJ7bh93Wj0gsIZmII5YokOhXI9atRaEuIJpFPiVJcujw6IyEVDIZh+gosfgoeSoDheUrmJgIEY9HOdf2pYzBVACwZ62n1RewsM7EyGiAsVE/2vxa1GoZhjwDyaQUhVJOIJjE602QbymnolxP3UITcpmEcyea8HnsOO3jREJe4lEfiXiMoHcUk2UOS5daMg+i268VBi9iRRlhKtGaapEo5tC6d5j168toaDTT2GA+Tylkd/iRyyXccUc9g4NeQuE4Xk+Y8nI9Hm+EeCyJVComL1/BuXN+5i/Ip7/fTSAQI5mE8fEgTU15mM1q3K4QR4/Z8Qb1SAtuRJp/NbLoQSbGdjJ4eiem4sXMqbsZo3EpDfVCt4m0yqOqyngeATVTlJXp6O6eZHRUANnppJM29E8Db71ewehoAIfdj04vZ2w0gMcTIRxOMG+ugbTaKn0u0mV8xUWaDKkFIBGL+fgV1TTb3Dywt59r7tnDd65fxM03z8doVLBhw8ytXdM+HxqNDLc7Asze6aKqqorf/e53qfssic1mo6uri507T7B//2luumljZl2JRMKKFcJMvFwuRy6Xo1KpsFgsFBUVsXbt2syyFouFQ4cOzXouZ/MieSf+vjE87KOv101EJgz8Bwe9LKup41NXf5R7n3+Ir//2bn75xc/R0liXUXXs2DGYMS6XSGDXq0MUWlS8/wN155Ujpbfp8USEAaQ7xIsvnqW9w0l56vlx2aUlrFlTlgPg1RopEokoo35qbi6hubmEF18UckJVtZH168uwWDTIVDEe3vYsBXkGfvCltx8p9dL2bu5/fBc2Tx8H29sJR6Z8iPLVFuYZ6ynUliMRi0l5hhOLg80WmFWJHI4FCcYniPiibGy6BJczzsiIn73dBzllOzrrsZiLxVSVlLBj+yCSETXzrOUUFxrRqBTEoiCTSggFkoLfoFpPVZWRokINI54yXNEaxsbd+IIBIvEQwXCYQDhIIBxkwQITVSX5lJXpuP/Jbdz5w/uotFrRiAvIUxRSai7FNRlGLhczb56RDVeUZzyWso1h7XYhJ1x2+Rzy8lQEAhF0qfJyuVyMxxOlvEww4h8a9KBWyfDFo6nxgwyXOyz4jvhjQJKBPi8GcSktpXMIJB0Elf1sOfQSO9p20bLwEhZZG2lusVJTk8/xVBvxgD9G/eKCWRUe2TFTTkh3Zdq+o5+jR+0sXWrB44ly6OAIxcVaXO4wY3ahHD0aS5KeWc8+FwF/jHg8ic3mzyiyhHI+C5ZrfwiH7qP87H/DAye45brvXzAfgPC8/dWv2pBKxbz3vTUXHMx//vOf5/Of/zwAgUCAM2fO0NvbS2trJydOnOMzn1maWb+yspJly5Yhk8kyOSEvL4/CwkKKioq47rp5me1+//vfv+DxvZMP/vHRk1K0F0in8kFZmY59+2ycOjVOVZWRjRsruea6H/DI/zzAcw89QSJgo2b1uzjTK3S8czoDHDkywiWXFJ+nDElvs6trAo0mhRE0UvbuTWGEOTry8mLnYwRnMLMsZGGEdD6omsoHAKdad3Nk90Eal5YA50/E/SPDbvezZ88wExMhWlqsmEwq9mw7xKRjHJFYSlIkJRkPEQ2MI9GWoCi5DKm+ArnGiF8phVg0JcZMIjP5UVU4UZbZIekgNBwkElRgEFcSOllI5Gw+/c/+Nmf/jqy/rYV+1q9aSG+vm7NnXej1CzAaNZjN+cTjYjQaJW53HKczgtVaxYIFhVzaUoJSKeNs52r8fhfDw2OEQh7icT+JeJywI0S5o55NyQ+TLD5HT7CDu2+6G5FChLpci6KgCI28DlF4LrFYkuXLC7FaNSxebKalxZrzHEzngwxGCCWwDXsxFajQ69M+WWLy8lIYYf4URoBpGMEd4uhRO+PjISKROFGRCHuonOs/s5rhs/2cOdzKYMdhDvUfYFFTE5dcuRGVwTKFEWZQgE+PC2IE+wwYweFHp5Mzmo0R5qUwgn0aRhjxU5wq69ZkqcKnl8PClNfbbCbqnZ3jbNnSh1gs4tJL51ww15VXl/Oln31JuOOSScZHxxnsGeT40bN0tZ9j7aZLMutLZBJqGgRlolQmRSaXIVfKySvII9+cz/JLl7OobC4wl7Wla7n9sttxBp10u7oZ9A5ywnGC7QPbSZBAKpKhDRVTb17MVfUtzM+bT6Wh8g2Xwr7Z8Q4p9SZGdbURVfsobW12hgY9mQFvc8scRKI7iHgaePXpH3HXh67lsuu/xtorVmaUSyAYvG15oRePJ0rbMceM+5jqbBbCPxpNKaRs9PS4WLSwgG99syWzbJpkGhz0Cuz2tAG42aymsdEitBJNLWt3+AkGhdljjXp2FvXvGclkktMnj/HSU4+y7dmnCIe8IFYi0y+laOGN+PwiJMkJRJqlhMPCLR2dRj4lk+DzCmAlEeonER4iERkiGR4kERmGZIwQEPfM56OfvY1nn+2hu9uFTCWoT6QKC/nmYqprKpEpTLj8amoXzQcEsk+rlbFs43dYu7aM5qaSjE9YMpnEPhbAUqhGJBJhNqtZvqyI9esfzDHynj8/D6d9lNHhQaRSGXWNFQB43S7Gx0ZS32IEOIB7EMQSJRN5dWjEm7n2PTdjKlDlXO/0v+nZr7IyHRUVekZH/UikYpYusbD/wAgjo376+z2EwzEC/ihVVXnI5V5kMhFDQ15i0XPULSyguEjD0iWFFBVp6Otz0dPtIhZfR33Tjcwp6Kf1pfs5vuMbuKobqV/wr6zftJEjR8dylE/TS0E7O8dp3WvL+E8dPjxKKBhDqZLi8YQ5eWIcg3EqaYyOBkjEEyxebMY27MPrE66nxaJGKhOzYH4e9fUFLK4353x3jVoA4OmyxrQqxe0KZ7b/1atr+d2ePr74lxNc32jlR1+5BKVsZql42udj+fJCrriiYkZ560w+JCKRiJKSEkpKSli/fv1569TU1HDw4MFZ17/Q+7MdI/AOCPkHhlotJRyOMTjkyemGd+PVjRCT8eSBp/jk93/MzWs28rVPvxeLRZNRQ5WX63n4kU7Gx4UB1fE2x4ykVHZJ0uhIgPaOcUZH/CxcVMB/37Mhs1z2wCgNyqcbp+fkhNTy4lTroOTbqPvehMvLEy/v4e4Hnqe9tw+AfHUhK+c2M8dQyanBDgq15ShFxsw68WmHHwgK3z0cCzIZGsMdcuIJj+MJOwnGhNIGBmDd6jpWX1rD1hf7UIkNKKQqjOo85s4porLMQiwoRy7ScFnLPDauqeXMGQ/lFXpksqV8qHo9GzdWYLFoMr4wyWSSjk6n0IWoVM/y5UU0N7+bjs61GYVcXW0BXl+AvuEx+s6Nsv6SerQaQdHT3j1AKByhs68f6M98nwJ9AXOMFRgK1lBgUuUQUekSuPRzsahYw6WXljA45KG93UlxkeDv5HQGOXp0jJFRPzabD5VKyty5BgqLNPh9UdpPjeN0BllYV0BRsYYlSwuJRhOcPDWOXmylrLSGT7/7Zp7fs5Ond73Gvq4DiAs2s2bte6irrWX7jgFaW4dZsrQwo15KR9rEPF2uEYnEOXx4lGAohkopzQEiwr0pIhyO09/nIRCIpma6NViLNUxMBIhGEpSV67FateeVZghm54JaK9urx+UOYzQoKJv3ESzmWmj7E6scN7Dqg/dD5ezP0e3bBzhzZpL58/NmLXeY6dmtVqtpbGyksbGRm246f52f//zns6479f7IO/ngnySqqvNQDkkEjDDkwZ96/jY1CSV8paVaursncTgCFC/awMf/cy6P3nMvp9s6aL7+fZSXz+OFFEY49noYwR3C74+mFFIpjLCogG99a0qhlX7GZzDCReQDu91PKNX0Qat5e2CEdIwMjnD39x7hyK7X0FZdx9N/dJD0DRBwngUgKZIiNVQi1Vci1ZUhygLgyWQSvz+CrMiNTH8GsBEZ8+LcHiJ8LkQypWQ2mufzk9//lHu3dXFwvx2JxIxUKkcqLcBiKWHFigXIZCbGxmRccskiQITBICcvT8HatT/gttvquOmmBZlGCYlEkv5+d0rFJKaszMDmzXOprv5DDpEcj8cZHh6mr68PlUqVUeX3D/bztP9p8INnwgW4cNCFWClGW2FBrbyc2tp3AbnXO/3vdIwASeRyCY2NZrZs6WNkJAsjBGbACLFz1NUVUFysYenSLIzQ4yIYjDE46GHj1cu4/VNr8Ht9PHH/s+x/6WXu27OH6obFWGubGRurZ8OG8vPIm87OcVpbbRn/qcOHR1OdC1MY4eQ4BsM0jJBIYQSbD28K8xUWqpHJxCxYYKS+3szixdMwgiYLI4xkYQR3OLP97GObiajKjrY2R6YccTaD9Jl8qUQiEeZiM+ZiM8suXXbeOlV1Vfz6uV/Puv5M76tlakr1pSSTSULxEK6Qi35PPzuPnGQsaOeA9DVe2/MCIDR8sWqszDXOpdpYTbm+nCJNEVatlSJNEQqJ4rxjerPjHVLqTYwSq45IJE5ftwuqjTQ2Tqld5HIJbW0KFrQYOHvkFzx93ycZ6v00N972oYy5tdsVIt+kJhr1saAmj8NHRnNUL+kbbarbmTenRMtSqMbu8OMcD2bIjtraggwoz1ZVlaX8fgYGhFaQ6f0MDnrxpH7I/0gQkkgk6Dx+hB3PP8GuF5/G63blfC7Rr0Fquh53CJBAHCBX6UoyESQRPgdxH7K8pchUYuKxBN6Be0nGJnO3J1Oh1JZRVlVPWZmO6uo8JpxBaq79L2LRBEqVjBtvqKK2toAdqRnacEyZITk83kjKDF0gMrLJQ5FIRHGRBoNRgUYtzVzX1r02jh0bw++PCiaAxSVYinNnC3QGI88c7OFsVzsdxw9z8vB+Th49gN/rwTd+FLe9jK6udbhdYfQGD8MDQ/hC2pxjSF/b9evLePTRLro6nZjyVaxdW4ZSIcXjjdDbM0kyCR5PhHffPB+VWsrOnYMUmFQUF6kzSrrOznGkUjH5+UpOd00yf4GJNWuWsHD5eiZsR3j+4f/hR1/8MH/69SLyym/AYGnAPibBYlZnOmako+24g2PHxtDrFRSYVLR3jCMCmppLaGy04HaFOHJkjLY2O6Z8JTqdjHg8wdhoAJlcTOkcLcVWLVqNDOdEiHg8gcEodOhI3+PpZBWPJ9HrFYCIoXMeSufoyPZZWb6siH9dX83zJ0Z44cQIx4dc3HvbMuYX6c+7N9Mz5rPNOg8MuPnDH04xPi5Ie2cCC69HLs3Wmry93cmLL/Zx6NAIH/7wolmBSPYxvhP/uAgEYkLb4wkXS5cWUlOTn1En1VQXcVPyvew9vYfHXnmR9r5uHv7ZF4kEhDK9420OdDo5eUYlefkKjEZFjr9O9uAj3d3GaPBiMik5enSMQosau92fUw5Yl5pRTINytUbKk091c27Ig1whwe0Oo1JKc/yjxlJl4rHprM7fOexOF09t28vvn3iZQ6e6SWaZAkpEUlZZNyNJSPFOQrmu4bz1k8kk/qgbd8hJnsqCQa1DhJhz3n7aRvact3y+Lp855iJKS4wYDQpMJhVL5tWzoqYRa7GOG26soq62IKPYqbRasI+FGR3xY9Ar8HoijIwK1yjbv8LlDhEIxNDr5TmeSXtbp/JBXW0BOq2a+gWV1C+ozDmu//raJ/nXD72Lw6e62X3kFK8dOsWp7gHGPeM4vU5ulKznxMlxjAYvCnUMv1dET7cbmJYTLBpc7hDhUIyxMT/V1UYUSimFFjXRaIIJZwixWExdXQEf+1g9L754lmjsHEsazRnT9HFnkMpKA0VFajo6Jiiv0HPlmmquXLOAD197Nc/sfoVf//l57n18C+9aswZ9rAq5RE5envK8jkjH2xy0HXcwbPNRVKhhdMxPR/s4iIRSb41G8EI5cXIcGMfjCVNcpCEeTyBXSFCrZcgVEppbrFRUGujvcxOPJwj4YzgcAllrSnX2G02Z20YicUbH/CysM2E2q3O8pizLN0BBNez7b3jwOrj0LljzZTL93bMi+3k72/P+b8kJ7+SD/xthtWqJhOOc7XEBM2EEOz09rkyH56qqUj7/0x/x5G/uZesffs1o7ykMupXEYhJqavJeNx+kAXW6RMuSyglOZzBT8lRbW5AB5dmqqhkxgkXACD5fGiPMbIXx9wz3pJtXn3+VJx98gYHTZzLvu07+EUgiVpqQFzQg1VcgVhfldORLxsLEg3akejeG1XLU8x2I1SG6/qWL+LTSbplMjVJZSl31ClYurqRtuZczXS6qqn5CY6MFvV7BzTfPp6VlDn/4w0m2bu3H51PS2+tCKhVljOZVKoHIS5PXdrsfsVjEvHlGLBY1BoOcLVvOsm1bP3v2DHPmzCRz5ugoLzdQVlZGWVlZznFVlFXgdrtpa2tj7969vPLqK7TuaSXgC+DpGqW7YjuPj48x372EWk0D9nMT+EICuTA9H6QxwsCAh66uyQxZ6vGE6e11kUikMMK756NSCRjBZFJRXKxm8eIpI/NsjFBdbcyMw8vKdNz13TuIfeMj3PeLp3jx0afpPv6/HN0xB8/IzXzizutyrk9bWxZGKFDR3j6OSARNTSmM4M7CCKYsjDAm2CaUlmopLtai1cpwOlMYwXARGGHIQ2lpLka4GGVvOrI7YM7W9S/bcmG2ZWYindIx3YIh+/3skvdswkslVaHSqijWFmN0V3O0bZTaYh2mMhj2DjMeGscZdDLkGeKY/RjeSG7JukFu4IMLP8jH6z9+0efijcY7pNSbHNXz89CLJZSX63G7wpx0CZLb3XuGGT7no7RsLuu/+hAvPfYzDm//Jf1de7jkqn/FZLGiUcsoKxXY6qIiTeaGc44HBSmgJCUFNOf65cjlEi5ZVUxPr5sdOwZxOAKcPj2B3y8kji1b+ohEhQfs2bMuOjqcjNh8VFYasdl8TE6EkErFme4MoZRSKpH8+4KQeCzGqaMH2L3tBV576TkmnefPBEk18xGpL0GizWWRk3GvoH4Kp9VPQySjwvoiiRbTnJVUVefh8UTpHl+EWuHHWl6DN2yhtr6BxQ019A96iccTDA562bixgtpaU8a/KE3sACyuN2MwKnO8jSxmYdY1/ZDPvj5p8tBi1mQUVACmfCV6vQJTvvKC50Wt0bJo2SoWLVvF4qb3cvTYKGbDBI6hI5QvWEY4oaGv383Y0Cl2/eXfmFuzHPm1N7Gw5t0ZAjNNhKnVMgLBGM6JIDfcUE1zUwl2h5+TJ8Zp7xjH446Q9p3x+6JIxOKMtxWQIdJUKhkyuYShQR8nTzgYGQ1QU7Ocr/3X4+x44WWe+MN/cW7nd9Dk17Kw6XagOIdYzfY2M+UrUaqkuD1hAUQEomjUUjRqLW1tDiYnQ0xOhFi6tBCPJ0Lr3mHC4TgV5XpEIhGhcDyTUMrKdDz0YAc9PS6UCmmOOitdGtXf7yEaEbpxGIxT3WskYjHXN5ZgVkh5rM3GNffs4VvXL+LWlbmDgJaWORecbW5vdzI+HqKgQDXrrPlsICMds5kMGgxyXn1VMCHt7XXz4IObM59NL9GYjTC7GKXVO/HmREmJloWLCrD7NakBSBKXG0ZHAtjtASacId61+grWrqrn3uceZfUHvsBVy67gipWX4PPFMJlUrFhRRMAfw+UK43QK+WTcKeQESZY8PHtgsuqSYnp7zs8HdbUF7Gkd5tDBUerqTDjsQQ4fGWXCGUIkFiqVi4o02Gx+jhwWBjZilQCkX6e79lsSw2PjPL19H0+83MqugydziCgAhVSFVTuPMkMNEvHUcCaRTOCLTOIOjeMOCwood2iCeFLIictKLqOqfAkajYxAvIiiUCFXrVlMMqgl6FKxeEEldTUWenpcFGgF4HjFFeWoNfPOM8+uX2zO+DalQ62RZnyTMjkhS7mUXj57YJlvEvJBvunC+UAsFlNVbqWq3Mq6Fcs50TKOx+dlPGCjZ9DGpvULGBzycPToGI/sfhjbuJ0NK1dSMvcKLJaiHPWU1arFmKfENuxj7ly4699WZAbDnZ1OOjqcmeMZHw/i8YQJhxOZ9tvPPtubyQeJRDIDVgcHvYyPJfjodTfy2fe/ix/f9wSPbt1OMrmDZZUrmTtvQ4Y4S5/LbIVgugW4bdhLOBynpERLeYWe420OASD1uEgCxUUaxuxC3ggGowz0ewgsi2E0KHJywq5Xhxgd8dPe4eSDtxUCU/lA8IvyYTarhfORfS3zyrE3fhnx0d9T8NqPYWAPvPtB0OaWbbzVOeFC+WBiIsiePUPcf/8p7rhjMV/9ajPwTj54u8b8+XnoYnIBI7jDnDyZwgi7hxke9lFaqmPFiiJcrjCxWIIjbR4arvoQRusCDr38DMnkERZeejUl1nlTGCGVD8TT8kF2idYllxTTM0NOgBRGiEzDCCNTGGFiOkYIpxs+/ONIqdGhUX765V9wbM9hEtMm0EXKfGT5C5EZ5yGWCxOLiWiAuHeAeNBBImAnEXKQCHsAkJlkaGoXoQvMIdFZjkImQW8VUzVvMeOOfJqalnPppQ2CL2ssQXu7k49/vJ7q6jwgydq1ZTm/n7VrBTLAYJDjdkeyujsnM7/htGfPwIAbi2XqN5hWUJWU6Jg/Pw+pVEx7u/OCv0+9Xs9ll11GeXkDRUXXcMu7YxQUTNJ6cCuRCjFt0uO0ibbReuA5+n7ey7zFtShu3MiihVdmCMw0walWywgGYzidKYzQXILd7ufkyXHa28fxeLIwgj+KRCLGYFBm8mFr6zSMMOTj5ElHxt8MhPwwEZ1Dfv37KYqPMn5mN3+++5ccfOk5LnvXu9h00xoKC7UZbzOTSYlSKcXtzsIIGikaTRZGmMzCCK0pjFCRwgihaRjhoRRGUEpzxk05GCGawgiG8ztcvh5h9HpKqrTlQvp4ZlvmQoRYNqGYHRqNlFOnHDgcAUZH/XzhC8szn3V2jueQ0dnHWK4XJizGxrycHZzAUilHbYDx4DiusAt3xI0n7CE8zefszY53SKk3OSorDKxbLpRvtbYOQxKWLi3EOS4Yo5mDKi5pKsda8j1ee6mFHU/+lBcfuIN113+aefXXMDkZQqWWZgZm6R9JunvZ9BvwqSe72bffRkmJlsJCDT3dARQKcYbsSM88Ct3XwpSl/CIKTCrUGhkyuTDrNzrqZ2/rME5niHCqzO/voZSKRiK0HdjDjuefZN+ulwn4PBjyC1HnL4WJnZCMIJJbkWhXItGuQCTNIxmbIBHqRqKe6h4QGf0tidCZ87YvkZtQGypQq5NYrTo2bDCxr+jfM53r0ooyfyBGvM+TeUikSaWZYqbPZnoATSdhIPdBUlamyxiSX2y0HXdw8sQEDY1m3v/JLwBCR754PIl/shuSSc52HuJs5yH+9KvvsfFdtzC3/hrGXcI+WppTtdANU4NqQUWlYXF9QeZ4H3qwg+FhX84x2x1+JpxB4rEkJVYtiUQSsUQECEowtyvE0KCHYeccWq7/CT3trdg6H+bgC1/EcfYyIh++k0GbKsPgmwpUmZnCwUEv8+fnMzbqxzbsp+24g+rqPLQ6OQajgsoKPYvrC9ixY5BwOJ7pPpjdua+nZ5L77jtBcbGGRQsLaGq2nne9ysv1qY5+EdqOO2YsK5QHktTHZAxpknz5yZO09ozzk5sbUMmnyvmmD+azX+e2Cp95IDEbyMjezubNc89bz+2OcO6cIEs+cGAk57OLKdG4EPB5B6C8+WEuUGNuLuFwV4KdOwdJQkYx1dZmx+uLMDYW5JZbVvL+m1fwyf/8NY/vfob2oXbev+EGAm4p54bE1C00ZTqwpXOCbdiHdZo8fE/rMNu3DSASCZL1Mbs4kw/S5MKEU+jwOTjooaBATXmZnvIyPbF4AtdkmOrqPDyeMDt3DeL1RJFrBdD094IffedG+ctLrfz+Ly/T1TeEVCKhoXo+5aZK+sfPIhFJKdJWUKKvokBdQiIZxxuewBdxo5UL9+1EcIT957act22JWEpRXiFzK01o1HIKC9VYrYv5etNGmptLMiVkDY1mbDZ/yltEdB7plx3TP0v/PVOp5YVaSZeV6SgrfWP5YHDQy7GjYySBdWvr+fitVwJCeVokGqbfZsPl8/Hw1pd5eOvLtCyt418+cC3l+fPo6fFQU5PP5s2Vme+c/X3KynTU1pqyjMSFDo2Dg57MdwkEYkikYvR6GRKJGEnKOLmsTCd04HOHGByKsKhwFV9532Ie3/ESB3v30nn/CW6//hoaKhpSJXOCSXl1dV7m3Bw+PIpCISUUiuNyhTGnSk71egVLlhYCyUxXyhKrhiVLCsk3KTMKLr1ejkQCDz7UQX6egoWLCmhusuZcr4YU6AkEouzefY6iIk3O7DLAoC1Cl2sTLcVVVNqeg1+tgpvvh7mXZ5a5UD4oLze8aTlh+rpud4T8fBXDwz4mJ8M8+ujpDCn1Tj54e0ZlhZE1DeUcPpzCCExhBJcrjNmsyvg9DQ15CIfjBINx1r5rI7XLl/HM/X+kbdvjOM4e4erbbqWsrFzACLOUCz35ZDf7szFCTxZGMCkzpUZC97UpjGAyCZ0yZbJpGGEiRDCFEaaTQW9luJwuTrcPEpcY6DxynG1P7WSsty31qQixqgCZaRFSYzXEwyTCrgwhBRDse55EYPS87cqMSlT6QhJ/vJHlqxpYc3k1T01s5MYbqykq0mSIXbc7QixmzxDL5eUGPvzhmX8XM5lEXywpnP0cePe752c+v5hob3fy0kt9JJPwwQ8u5Eff/REAz73QzWN7drL/9K8gmaT3RAe/OtHBA7+4l6vfezVzG5txuGSp4zzfL0lQUWlYvDgLIzw0A0aw+5mYCBKPJykp0ZBIgFicwgjFGtzuEK2tHnp6XKjVMqxWLWr1AuT6UlZb/bTvfokHfvgznn/wz3zs3z/Kkpbl52OEMT82m5+2thRG0MoxGIROgYsXZ2EEnYymJmtO577u7iyMsKggowTLzgnl5fpUR78IbW2O8/IBvD5hlD4X0/270q+nK9RmitlIp+mKyOnh98dwOkMEg3FOn86tCGprc5zXSXB6DA356T3tRyZSMK+kiGLtVAOlM+fOMdYXZiDf/ZblhHdIqbcg7A4/nZ1OvN4I1dV5LK4vIBKNs2PHIOXlelr3DNPT66Kq9lKuvr2W/S/9L9v+8jPaWp/GWPFerBUrkMslLF9WRGfnOEODHrRaGXULTZla4DSQ7u5xpcyW/VRWGnG7IoTCMbRaGYVFGvKMgkyzvFxPMBDD4wlzySrhJhsZDdDcXIJGLWXLlj50OjliiZhJnxwPnDcr/WZFOBTk4O5XePGJP9F2oJVoRGBexVINhqovE5eU4oqJkJlLQCSBZJRkeIio/QESkXOQEBh3ZcXPEEnUwt/6SpT6EPmF1SQkJagMFaj0lRSXWKiuzsPlCmfKGbNNt9M/TLtD8BDJJpD+1sh5cKW2OZ3QeqP7SpNJ2aRS+qF1ww13kfzS7bzywlNsffIRbIN9PPXH+4D7mF/fwoqlP2FB7dzzHkbTS0OBDKFTWqbN3LcDAx48ngh5+UoKzCrC4TimfGWGzOrqmmBiIsTERIjiYg3N665kv6qOc2d2Mtz/HL/88k1UN26ieun7GRwUurOkZaaNDWaKizQkk0lkcjFKhUA2LVtWmHNNpn//NKloMCo4edLBpCuMUiHltg/WMTjozVzXkyfGScNqnV6BbdjLgMIjlNZMuwZlZTqGBr3EJvzMKTfyUvsoJ865ufe2ZdQUC4OcnTuHeOmlPjZurOTDHzbkDO43b577ug/s2TpbXIyC6ppr5nHgwAgf/GBtzmcXU6IxE/BJD4zsdj+9ve5Z9/1O/HUx7gzicoNOL8c5HkStkrJ8eREOR4AdOwZRKMRsebGP5mYrX7/jdh74SzUvHnmRb9z/c5ZWLmP9kstoNpRkSI69e4fp7HRSWKSmuck6lRMsGiacIZwTQRJxUKlk6A0KwiEhHxQVCvd5c2rQaTQqcLnClJcXIJdLMp5UNTX5DA55UCqkyPLF6M3CYPWtBCBdZ4d48OkdPPLCLvqHp9pJzMtfRMOclcSjEow6H1pxMUqpBl/ExTlPNx2O/fgibiDJ3Lx66syrAMhTmZBL5FRa51CcX4RanEdRXiGL5pexcaNA9maXNKajrrYg87rApBL8hd4ASfR6MX0wOxuhdbFRVqbLEDTZx1m/uACjQcGHP3Qvx06f5sFndvD0jn20Hu2g9WgHhaY8Pvau67nyyquxWDQ552C2QW+6Q2NZqZbf/vYEgUCUeDxJWZmeaCROIpGkPNUx2GLRYDQIZQTj4wESSSgpymdlxWXMUdcyFDzBLx5+mPLiV7j92uupNFchlYrxeCKZSQu1RkpxsQZjngKFUoJaI6WmJj9nIN/ROY4mqyvl8TYH485gxjPtxEnBXy1tIJ0NnoQywCQKhYTOLicatQy1Wpopt8w+x4NDXnb0zWXt0s8xb+xheOh6aLkT1n0NxOIL5oP0s/6tyAnp57hCIeKllwa45ZYFmc/eyQdv37Dbp2GExQVEIgJGKCvT09o6TE+Pi6qqPIqKNIyM+AERRXPMzGu6kdK6FThO7+Teb36PV59eTF7VpWi1xdTVmXLyAUDPdIzgjhBK5YTCQg15eVkYIZjCCJekMMJICiNoUhhBL2CE5GgKI7yF5XvxeJzTJ05z+LXDbH9mF0M9fYglchKJOCTjiBV5iHXlSNTFiOUaEiEnsckzhG2tkIgAIrT1n0IkliJWRtDOUxMZV6Eol6MqMlBUWMMc8WUYk1U0N1RhHwtlVIU331yTOY40mTQwIPwW3kySdqbf9vTnwBvZ18KFJjZurCRbkQVQv8iCRLSB737yvQx99yT/+d//yd5n9uJ3+Hns3scQiR6nZtkSLvnBv1G14HyVz0w5IdsH7TyMkKekoEAtYASTMkNmTccIdXUFHNhvwzEeRG/I5wcP/pSH7tvOgRef40f/+i3mLqxl3oqrqKytprHRTHFxCiPIxCiVAtmUwQip+z27dA7IKIMMBgWnTjmYnAyjVEq57bYURrCnMEIqH9hsfsLheCofhc/LB5DCCENe2trsaDTSGQmekyfHOXp0LNPpLzv3L19e9Lq5fraJsItRUK1YUcTp05OsW5dLhE4/NzPFTGRY+vqPuCcYH4vSrrywcu9vif+TpNT//M//8JOf/ITR0VEaGhq45557ZmzV/lbFyRPjHNhvIxZLUltrwmLWsOmquZjNarq6JnBOhCAJer0Mvb4Ym+2jFFetw9n7CN37vk9schXh1XcBRWzbPsCJEw5MJmE27NSp8UzLe4D164XSouoqIy3NVtqOOzhyeJRAMMbAgIfmJgG4th134HGHOXnSQV6eijVrSjMDvMFBL1qdHGuJFotZxV9+K5j/vZkJZ3xshAOvbufZPz9E3+lTJGcoDUygJBTRI5YJ89OJUDdxz+4ZtiZGpi5h45Um5i2Yz9GjY5SWfpGrrqrMlMw99GAHwzZBkr/pqvMVJ9PjQsqovzZmY7r/msgmjm69JZeMyD12Dbfe8TnWXvcRdmx5mbY9f+H4gV24xweYV1U647bTNch79w6jVstoabbS3FRCc1MJjzzayfE2B7ZhH1qdnIpKA5UVeto7nHR1TbB0aWHOeRsaFAwRS+foKS3TIZeLaNNvoqnpgwx2bmHLo7+hr30nBvnnufKG2+jWy/F4wvgDMQxGBSOjfsxmNf0DXs6edbN589Q1TXfOq67Ow1SgyulauX59GasusTI46KGp2Xqese3RY2MZ1aJcJgaRCJlMnOPxlU0chsIxznZ7aNAo+Pz6av6wt5/r/ruVr19bxwdWlQFJBM5W+I3MNsv9RuP1tlNebsgp2cuO1yshSa8/m1/JvHlGmpqsf/N3eLvFPzofdJ2e4NjxKJFIAo83KjyXm0vYtEnICVte7CMYiAJJ6hebubyvgWKDlXZbG6+07aZzpB15wY3U1L4LrUbF1q19dJ2eoGZBPoFgLMc4urnFinMiiN8XpanJissV5vCRUYKBWGa/aQJiy5Y+fN4wJ046sJjVLK43Z3KCyx2mstJAXp4ST1AYjL+ZcxSRSJQ9R9t5bMtuHt3yGm6f/7xlJCIJyYSYSGhKoXjK3jrj9pQyNQadkk9/qgGDQcHOnYPc8u7vctVVgh/Tgw91YBv2UVSoy3z/mZRM2XEhddRfG29WTsgGCRvWn086ZB/7nJJVrFq0iNuvuYFXjuznjy9sZ9QxSXVV/gUHvS53GI/HxoQzSHOLNdOh8ZFHOjl2bAylSsryZUU0NJp56skeBoe8FBZO7besTOiUFAhEKSoSyvNi8QQ93So+v341/vgE3/7VH/nGvf/LqkUL+erHPwDIM0AAID9fhUQiIuCP0dU1STgUy/idpb//+vVCZ8m2NjvdPS5galxkMilp73BSaFHnDOSzFWbRSIJgIEZ5mZ55VXm43KEcvyuLRUM4FKO7x4VGY2bezd+CI3+APT8Xyvne8xBvVT54vW2ln+ebN8/lpz/N/eydfDB7/KNzwsmT4xw4kIURLJpMPujqmsiUaQsYQUZ/v5v9+22sXVuWIhnLWLToerrb2vjxf/w3p9t+hdpUiihwJRpzFcuWF5+HEaqqjLS0WGlrcwgNBNIYoTmFEdocuN1hTp2aBSNo5VitWiwWFQ/3ChMVb8XE9TN/2sozf9rK4OlO4tFIzmeJRAJZ4UrkxirEyjyCAy8THdt//kZEYpQ6M2s2y4hWjzAs6gI0LDBex2Xm9RgmajiyK8CxQxMs3zCHT33yfFPp6XExxPIbjTfzOZEmk9euLT3vOLOPvbx8Na/c9wpH/62Xr/3+q+zduhX3STe20V7y58xcOn4eRpiWD44fd2Cz+dBq5VRUGKis1NPenoURsvKMoP6LUVqqp7Q0hRHaHFx66RycziCGwkpuufOLqBnh4Xv+wLY//ILS2gbyPvthCoqLGBlJYYT+LIyQpUTSpBS3JlMKIxzPwgirUhihaQaMcHQMgEgkQTAYo7xcz7JlRWiyfB+zc0IoFKOnx4VGI5tFdZTM+ffNyv2vtx2LRZNTspcdr1dWmF5/NmWYoRiqq2dv5vFmxP85UurPf/4zd955J7/5zW9YtWoVv/zlL9m4cSOnT5/GYrH8nY4iidGoRKWWzqhoyfYp6ulxMe4MEQ6ZaVz3XS7dfJpXnv4V3/zMu2lY0YzSsgmJ1IrBKJTjTU4IpRdpIL3pqrk5pIupQIVSIcU5EczsO+0DFI8l8HiiaLWyjHE1CJ5Ver2cxgYzpgIVjqs/xPJLr2bxqvq/6tsnEglGhgbYs2MLu19+EdvwON6JfkAMYo1gXAKp14rUrEYcYk6Iu0FmFD6VlxAXK5GpSkFWgkRZxrzahWy6pokly0oyxz+ddLKYNWzeXJlR0fyj4o0QXTOV+mXH9AfohZYFOHfOT1Jey3s//Qu+8I0QTscoUpkwkIhFo3z3rk9w3S0fZmnTZRnwcOTwBIFgLPOQtTv8xGIJdHoZpWVaRlOGx1arFo8nSlfXBCdPjrN33zB5RgXd3ZOUl+tTZoHJjPIq3Y5+zH4FtWtqCDuf5eHf/JCXn3qEq957J3r9IjRqKaYCobuURi1ly3AfwzYfbccd1NYWcPLEOEePjZGXJ9SWQ65qymLWcNsHpso5s5VvAEuXFGY8fZqarVhLtJmyzelqtunbrinS85VNtfxhXz9ff/oUrd3jfH51JSACkgwMuHOS/oXab79eSUS2z8CWLWffktKJv6a05J813i75IIlwL0ql4oyqg9R7zc1W0oSUxaJBoZAwNhJmjmoR37l9FceHD/C9+x7mvx5+is994DqQlgiEqlaW2bbHE84MnL7076sy27fb/SiUUiacwZz97m21ceqUg3A4gVYrw2RSUZ8yKk3PHC5ZasFq1dLXr+JH//I5qqvy/+oz4PMHee3wKR57cTdHT/Vxun+ISCyCTKQkmgxllpOIhGdUPBklnozjj7oznymlGmRiBUqZkjxVARpZPtb8Im69aSUNdSU5g8bp7aWnl6j9o+Jiia43YnKafn2hUoDBQS/OsSTv3bCJ7935AZ7esY8bNjRnPr//iZfpHrDxpTvenXlmutwhDh0cwe0Oo9HIMib5sVgCrU6OVCLC4RByQm2dCZ8vgscb4ac/O8TCOhMyuQSFUsLi+oJM6emNN1Rn7rEHH3KyfsF1XLlygid2v8ANX/gaN61byxVL16DWSCkwCflArZES8MdySKfq6ryMytZsUTE6EiDfpKIxpZrKPs+bNs3NOZ8wpTDzeML4fVEKC9U0t1hT5NcERkPu7Hj6vmloNINMCas+AZYaOPZH+NUlbFr9S2AeM+UD+NtzAghkUfbrNyv+f8oH8PbJCUajEpVKmqNayGAEjRS/PwsjjIcIh2PodAqam62Z33rhxtUc6VTQum0v4bGjvPbY71Dr85nsW00icgUNyyrZtGkumzZlYQSTCqVSitMZzOw77QMUj2dhhFQ+AMGzSq+X09hoxmRSseHmd+HfuI7a5XV/1bdPJBKMDo1y9vRZ2g504BVXc3j3cfzOQcKO9hQmSIVIksIMSUjGkBnnIlYKSnuJqoC4R45MawFFATKNmXl181j2rnxG9G30B3egk+vYULSOG6puoK6gDpPShEgkosp0DpNh4B9q/v9GiK430hwn/fpCv+HRsyKWKT7LB793F/sCD/Fy+8t859B3WFe6jnXF6/jB537Au+94Nw2rGjIY4fDhCYLZGCGVD3Q6GaWlF8AIe4fJy5sFIyyfwgitrUKXyIYGM6vXryC/ZD4Hd7zK1kce4yefu4srbtpE89XXYy4ysmVLH8PDPtraUhghpUzKwQjTDMdvuy0LI9inYYRUPvCl8kFLi5Xa2oJM11zIVSa9nupo8WIzaYyQnuRIrz/d2yk7Xi/3z9RV982ePJt+DOlzpC+KUWx588nZ7Pg/R0r9/Oc/54477uAjH/kIAL/5zW944YUX+P3vf89//Md//F2OIW2EPZ00SP+dTSjs2DFIOBQjGo3jdoeIRKq4/qO/wzt+hNatv+f4oa+jy5sD+ddSUnwLpWVlDA162PnKIEuXWli/Xuh2kN1t74YbqnOOJ22oHQ7HiEQT5OerGBz00tPjYmDAg1IhETyJAjFqzRqqamvp6pogGL24G+/0qTZ2v/w8u3e0YhvqgbiPbAcSkaISmeV2JOo6ohPPEfe8mvokAYlg6m8pInkhyWQYkRhKrBryG64nP/99VFbk4ZwIYspX0rK65KKInothhN9OMVOpX3ZkD6Zfb9npy1vMRVjLKgCBrHnqT3+kdfsWWrdvoWTeSm779H+wfn3DeWSm0GLVj1wmIR6HkRE/bncYtVpGZYUBkQhGbD62bu2jrEyf6hxVSGOjRWDVjd5MR8eurgkUCgnFJRaa3v2fOEffz5/v/R4P/fJfmFPdRL7+K9TWrsh0jqxbaMoQR0IkcbvCeL0RlqRqzC1mDbW1BXR2jvPIo50ZUnV6l8rBQW9OiWFNTX5GbTadvErH9Psn5ItwiV5LYbWcV7rstA1OsiIsg8koFosm5yF9IS+P9MDBbg/kmFtmx0ydmt5Mf4+/prTknzXeDvmgZoEJZb5ixsGDxaKhfvFUi2aAyckQkWiCWCzByLkoH9p0M1/44E38+L4n+fFv/0I8nmBheS1NBRtZvKgAENHf58ZhFwaE07vt3TgtH4Bgqi0Wi5DJRBj0CubONdDT4xLKCZUSAv4YNTX51NUWEPDHmHSWUWq6OFIqkUjwiwee5tX9Hew7dpoJr4tEcqqTkQgx1aYlFGrK0MnzebHnfpIIExVpI3IAhUSNLNWC2GRSUFioYenyO7lsdSlWq5a9rTbyTUpWt5S87qAsuyzvnyHeiMnpxfhbZC8vl8t4z6bLMp8N29x85ecPMep08ptHX+S65vX86+3XUb/YjMcTzSE00zlBhAiXO8zkpJAPKioN1NWZaG214fNFGB3xI5OJUWtkbLqqMkP2pI9xcNBLNJJAqZJy7ZVN3LhxFXc/+AzP7NrOi637+Jfxm/nOv707515Ol502NJopMAnehP39bs6edVFbZ2J1i+AX1dE5ziOPdGaWm96RLD2Q37C+PAM4GhstGdIt+3ylY/r9Y3cEGJyooWLJv1Nw5n4Kt32IZfpb+P7BTQB8+MOLc9b/W3PCzp2DbN3az1VXVfDhDy9+Jx/8DfF2yAmLF5szBsozle9mA0LBI0fACC5XkJ07B6mqyqO0VPCmuXJjJRqtApNpEwqcvPL0Vo5sf4n9W56jvGYBK9c1I9VVcum6GqHLs0VzPkYwZWGEyAwYQZnCCP4YtbUaqhdV0dU1QSBy4aYM6Wg/0s6el/ew/7V2BnuGUgbj51dLiGQ6RFIlyUgWKZXOHSIJYkUexCOIRFBSoiF/8XryTddRWWlk3BkgWWjDbjrGodAerGIrt9XexjVzr6HCUIFaps7Z18UoCd9O8Uaa47zestOXv6X8boa8Q9x99G629W/jifufYuDlPlpfbqW8rp4PfuEjrF9ffR6ZmcEI8hkwQqWAEWwXwggp8j8bI5jNKsrL9QwOejnT7cJU2cjNd9bi6DnIrqeeYc/WV1m64VpWXbEWq1WbRQolcbtTGGGJJfP7yWCERzozpOr0nDA46M0pMWxstGTG/7Mpk6ZjhJnIJLs9gMcTzjGChwt7O6WPwe0OZ7pnTs/rM3Xvez0y643EbDYDE8GJ11nzb4//U6RUJBLhyJEjfPnLX868JxaL2bBhA/v27ZtxnXA4TDg85Sbv8Xj+5uPIJp+c40FsNj+QZHG9+TxCobHBzNmzLoKBGEajCrcrTOfpCQoK6rjjqw8hT5zlof+9jwPbf8vB7fextPkyCkouIUwNIHSRaTvuYO9eGydPOLjttrrMe2mSqmV1CaVleiKROB0dTgKBKEeOjOLzRnE4gqg1EkLBeKZd8okTdv7yh3uJuV4F4qlSuwQkY5CMQjKOxHQjUmUViXAfUdc2iM1+s0o0DUh1K1J/N5KMDCOSFSCSWZAqi9Hnl5NvKaHYaiAUilFdncfGjRWZc/hm+jy9XeN1JZkzqK7OM8CbpraaTXElUS+m+cr3sW/7nxnuPciP7rqZjTe8l9v/9SvkmYTBisDk2ykq0mAt1mC1ajOklSlfycioH51WjtsVRquRYcpXotMJar7p3yX9r9sVQiQSIZdLWLV6GUWlf+DM8R08ef9P+MWXb2Kg67OoC6/i1EkXDY3mnDLFxfVmwZDT5iMUjueU9LW12enocNLZ6USRag2e7lKZ/Xub6RxfrJptcNDLmdOT1NTk07C+int3neX5cJiqBEi29WEwyDMDnJm8PNIgwmCQ09RkxW73zzpomKlT08UMMl4vph/D/8WyjOx4u+SDApOKhEqTQzyl/WzqF5vPGwDMKdVhHfQglYrQahV4PGEc9jhrF67jo++6hudfa+Wxl3fyLz/+KT9/uIiW+kasugrqF8zLmKC3HRe6r2Srg7KJqtUtJYCIc0PC93PYA5w968bhCKJRSwiGpvJBWZmO++47zqd//H1iiShJEiSTSZIkSCTjxBNxFFIVq8uuZzJoxxWy0zt5YtbzIZcomG9amnldpC0nkUyglunQyvPI1+Qzr8yKFDkarYwrNlRgNqszipn0oOufiWR6o3ExEv2ZfC6mx+uZogLYhgPcuv46ntqzlX7bCA9sfZqtB/fwm29/khve1ZRp0d2RlRPmVRnx+6KEw3HyTUpGR/yM2QOIRGDMU1BVbcRuD1JcpMk5ruzvVVGhx+MJpxq6GPniR2/mUx/YyI9//yjf/90DPPfqHm5suZagW7gPb721Nuear19flinLDIcE4Hr48GhGUTU45MHlCqPXK7hiQ3kO+Emfw+nn+WKVbJnt1ORTsP4bcOwhFvU+yrfLD/JE99f51rc8OaqovzUngCjV/VK4Fu/kg78u3mhOeCvyAeSST05nFkaYIR80NqYwQjCFEdxhOjrGMwTq8uVF+FOkb2lNJT994Fu8+MJptj7xCt6Rdp743wdIxOO88LtiympqaVqzhHmLajg7EM0oNVpaSigt1eNwBOjocGJJlbuOjfnp6XGRTCZpaSnJ/E5OnLDz2L2PEhnvSKmYhJxAyu+JZBxl6QakedUkwm5Cg9tIBO0znQoApMYFKIqbECv0xNx9ROxHESn0iBVGZOp89AXFmArNFFv152GE/gE3fuMAHc5XGA2MUiYr47M1n2VjxUZKtCXIJLI35Zr9o+NirB1m85xLx3QyO3v5Ul0pP738p/z35HM8uPCXeNe5mdg1yUDHCb77iX/jmluv5qNf/CiGfGGdHIxgTWGEFGllMikZGfGj08lxu8MpNXYKI5gugBHcUxghWzVos/kpLbuS696/iZ9/9VfsfvJhOvbv5hv3fDFD6ixebM6Y9odC8Ryipq3NLpQftg6zclVxJqdNzwkzYoQ3mhOytuvxRAiH4+d5T82kssouP6ypycftDs062TRT976LmZx6vZh+DG+mn+bFxv8pUmp8fJx4PE5hYWHO+4WFhXR1dc24zg9+8AO+9a1vvWnHMDkZpm33CB2d44jFIhKJJMPnfCQS4PFEaFktlBWkL3ZtbQF3pNQdGrWU1r02+vvcSCRiysv1WMwtFFc20tk+ROeRlzi2bxuHW38ISTh3fDFn21aTV7QQlVyJ1yeQUUDGa6e2tiAHeAcDMXbtGkSpklFdLTxcHA4/Y/YgHe1ONl01l2NH7SRCgyRjjlm/Z9z5BHGSgAQkqRtXJAOJDrE0H5HMjEhiQCQ1IlYLRJmlUIlMtgyxeDmXXz4HU77QMntxvfmCne7+f4g3Uup3IcJpJgVVNlkl3Hdzue6G77D+2g/w0K9+RH/nq2x98hFefekFPn7X19h88wdoO+6gp1sgh9avrwDIqJAcDgHALl1moaHRQnm5nt5eFzqdYK6fPj67w89TT3XjnAjS0mwlEpExMOAmmRRkuyuWF7Ni+QeorG3hsd/9kifuvxuL9RnmLvsEQ4MKnnrqTEYZly7JbN1rQ6mQZNSBo6N+JBIRJpOSsbEA4XCM+dX5OcllKJWUNGppxsj9YiPbyypjsmvW8NnVlTx8aIhuUYghpxfNtv4MAJlpBi4NIpqarGzePDenDXA6skHCpk2Vs3Zk+Wujvd3Jiy/2UVCg5MMfXvR/ejYc3h75wDEeYGTIyfEeBx0dTurqTExOhjhxYjzljSOifnHujNzqlhLKSvUZEmZwyENPr4viIg0Ni0poWPQePnD1VXT09/Lszr28uHcfTtdWzPkG1h1uYH5pJQXFFhKJRCYfwFRuqEvNlt94QzWHD4+ybdsAI6N+qquMwjE7/NjHgrR3ONm0aS4WiwbbSABvZPaJh1DMz/azDwNCmZ0IMZBEKpajlGrQyHWopDoUUhUamXDfKRUS5AoxN1fcQN3CAqqqjDkdBt9sSfo/U7wRP6sLLTvTQHX6jGp5uZ73XXcpd31yI/c+tpWfP/AXxibGueGz3+WaNSu552ufomJOIcfbHHT3uGhsMHPjDfMz23rppX4GBz1UVxspsWppaDQz0O9hYMBDSYk259j2tE55VJWX69m5c5DOTmcWaVbEmpavc+8fX+Vbv76f7z70X1zdtIZL1Nfw29+eyFHGWSxCTtjbakOhlLCndZhTp5woFGKqq4wMDnrO6w6V/jcSiWfUVLORdTNF+txlm64jU8KKj+FRVFJx+lE+F/0M3zz2IbZzzd+UE7IB5Nq1pVgs6vPywDv54I3FG80Jb3Y+AJh0BTn6SjcdHVkYYTgLI7TMgBHuUGXAYmurjf5+ASNk39dudxh3yg9t2Yo5mAtvoKzsg5wbdPLiE7s5fewY3ceOcmrPKwDINUYKS0tovnwRFfMrsFgtJCOgkCeZnAyhVgslWR0dToLBWErJJ/yWjx21E/PZSUbcM3xDIULDr8HQdnL7topAIkcs0yJWmhArDIhkGqS6CsQKPRaLElnJIsSLFgsYwZTCCKnS9uyIJ+IctR9la+xFHEMOKvWV3LnsTq6quIpCTSFikfjNuWBvk3gjCsY30jRhOlF17ZLLKJfWcG51K/+7+276/nwWzzEPz/3pOV55bhef+c9PcdW7r6KtzZEptctgBNM0jLDUQkPDNIxQOKW8sdtTGMEZpKXlfIyQfjanSVeDIZ9//f6/8ecHXqNt+1N87qbPcemmtfzrdz+LxSJ0km1ttaFUSjIlcmmMkEzCpEvoHpvd9GK6afkbyQcwO5GT/retzX6e99RMlTzZlRxpBVdaKTXTvqYbvL8ZnlVp7zC9Xj5j18G/R/yfIqX+mvjyl7/MnXfemXnt8XgoLZ3ZEPpiYnTUz8FDI0xMBDHlqxCLRfgDUUCEcyI0I6GQ/Z7N5mNyIkRlhT63Y9uaGjQ6I5PRS9CXOygrHMDrOMVLTz+Oe+J/ANDozeyfqKGodB6yqB5JdD6nT4XR6PRotDo0Oj3JZIJINI5cJsI1GSQc8mLJj+B2jnDqyGl+9t2DaJLDgreTWAPJiKCOSodIhUhmRqxeiFSzCJG8FERihJk8IQmoNRJisQSNDWa+9rWWv/pcvhNvLGZ7KOV0fVhWNHVfrVvKZev+zC9/8jivPPkzgp5+Xnn+STbf/IEZu/yltzM26sfhCGIt0XLrLbUcPjJKR4cTtzucMtcvobNznCef6qavz4NUIkKjEWarbDYfPl8Ua7EWg1Ege4JBMde+7wu8/2O38eDdX2fvM/+OwbqWwf5bM0aG6Yd42gOq7bgDjydCIp5ErZaysM6KbcRHd/cklsIpmXbatLyn+0KGhLNHTqLIIrTmzjHwFaueh3adZS+TvEiA9wxN0lCad942nnjiNA891MHChaYMiJg+aMgu2du0aS6bN+f6pP0tJRUDA24ef/wMnZ3jAIyPJ2lvf+u6Z/wzx5udD4aHffT1uhkcFKUMnD1MTIbwByJIpYLfwEwd2LJfu9whFAoJFZX6HKNNkUiErUdGlWEllTUi+sfPsvXVo/xl6x7iiQQKuQyrqZBuTyXl1iIiIhlRmZhTZ/ox6DQYdBrmzNEglYkIBqM4nAHUailSZQylIUzPuX4+8Ml2zFYxtmg3ComaeCJKLBkjDTREiFBKNegU+ZTq52NUmlHJtCSSccQiwaBcIgaxBBbMz+MLX1jx/zXZ9PeOmXLChToAfvNf30OZsZr7nnyeQz0HeX7XQe66/SYq5hTm+iplbSv97J8718ittwrq1i1b+hgd8WeITbvdz6OPnubIkVHBD21aPii2ajEavBkidvWyhTz+0+/w7J5X+MWDT7C/4zgryy+nsrAykxPSJXXp0sBQKEYwEEUkktHYaKGkREsgIBjWpiP9XR95pDOHpL3YmA4cMiESYWjYAJW1RHfew48bf8XwHA/EV4Ekd5j9xBOnefLJbi69tCRHoZT9jJ9ewj29o+s7+eDvE292PgAYHQlw8KBPwAimFEbwpzCCMzQjyZz9ns3mY3IyROW0fGAwCPemzdaP3R6gqUkoZ3U6g8ytX8rSy5qEbqslYnrbuziyt5140MmuF3Yx9r9jOfsTS2RI5XJkCgWJpAQQ81oX7Lg/jkIpJhwMEfd6OT8E0kkkVSFWW5FqihAr8xErjIikqoxCRa1OYYTGN44R4ok4h0YPsbV/K86Qk2pjNR9b/DGuKL+CAlVBZh/vxPkxE5k9e/luNe9Zci3fX/V9nnrpKWwPjOEf8fLKs69w1buvmlHtk8EIYymMYNVy6621HD48DSM0pzDCkymMIJ0BI1i1GAwCAeN2hykuVmdImAUNtdg9WnTDJ9i/cye3XX6QT//np9j83s0ZAqutLYUREgJGaGkRTM5NJhVudwiYUse+vmn57DFbTkj/ZjWa/8femce1Xd9//Jk7JJAEQgIECEehBVpaeir08GjVVq1O61Fv3dycv+k2N49dHtPpNjfn3NS5uanTeUznMXX1aGvVWlp7QmmhLbSFAAESAkkgF1d+f3yTLwmEWl09x+vx4JGWJN/kG/L9vr+v1+f9fr3kaLWKIybeVVe3s2GDkLw5Uddu7Mje3LmZ48Sz/yaYxeHwsWmTndZI57zXG06YOvhZ4CslSqWnpyOTyejqij/BdnV1kZmZWP1UqVSoVKpj9h4yM7UsmJ+FqydAWZmRgH8Ie4dQRIxpahxO3xE7YspnxpijjXms1ZpCnzeEwyUjKXkW6dbjsQyswujrwprpZjjUxr66PXS0rcXb62DLm4MTvs5EaKsFQ5qRwoJsTJmLycmfQn7RNPKKpmEtLEadpPnojUziI/FRxuafBBN1UE0kVkXfw4JFVZiyS/Ha17L87OVIpVJKS9OZMiUlbrXJak3B4w4RDofRG1SiYGW1pojf+YpZJhxOH2vWHObwIS9IwuRadeJj9+xx0tbWzyv/bsRiSUapkJGcohBOsnPnMWfB6/z1gYd55cnf0dS9kz7XZQwNLWPNmsNUVlkoinRzRMMCYkMD9AYVnZ0+OjuE/Yp+Fnl5Ouzt/XHkJBFiu6Ki24wNJxib0ieVSlhRnkmaXE6108OqP23m5uXT+ObiwrgLo5deamTHji60WsWEF/6JRvaOFfbudfHaa004nQFOOy2fU07JR69Xikbq0cd81Yxtvwj1IDs7GelIiIxCAy0tXvLydHR2+Wlr9ZKaKowlxSZ9JYLFkozTIVzgxcJqTcHbF6LT7kel0DGr9Hg086ZRnuZEbx5ApvGzeecBGg7ZeG9HDT2ePh5++ePvg1wmJz/HzML5xeRnZ1A2xcr0YiszivPJzjBOkoBjhGPpCRHFkcb8xtWDyOuXTDXz3YvOQ2s8i/2tjZywQPBHKitNx2rVkqxNEp+j0crJytKSlaWNE6uqInHh0dvddU721nczODiCyaQRH+t0+unq8vHC80KXSkaGluzsZObOzaSqMpeqyiv4+nlLueiG+3i95iVKc0qZ41lEc7OHiy8qpapqdKRIo5WTX6AnaqArbE+D1zsQd4EdNf8vLjIc0fg+tisq2r0X+9kl/HvpsulfcDN9u57B0voM/LUOLvgHpFrF7b70UiPvv98GwNNPz0742p91PZg+3RjXqevxDHzl6gF8/JpwrOsBQGaWhgULUnC5IhwhMCQKTUaj+iPrQSIDZRg9nt966zBNTW48HiH84uBBNyMjUFUldCcK3XnzOG3VMvH7q0uR0d3ZTXdnN4ca29m/187AQIh+rx9nlwdTupq2dh8e7yCa1CS+tryYFH0KKfoUkvXJpKWnkZGTgT5N/6nVg8GRQT7s+JC3mt/CHXIzLXUa182+jpOtJ5Om/uQhHF9UHEvfuCiONOKX6DzT75Cz1P8d0mZV8PLtj9D+ziFmrJxBmDClpekUFqQgl4/KCNGOvXA4jF6vEoUYqzWFBQuyRD8qh0PgCIcOGo1tDQABAABJREFUeZFIwuTm6sTHihzhlQhHUMpIThY4QvS7XlFhwun0c1Axm+SMafQdfpff3vxbXnz8db571/cpKUkTwwJiQwNstj42bLCxc6cjzucpL0+H3X4UHCGmU8k3piYkSukDoXssmgY4ETZvFgze1Wr5Ebuex47sHSvYbH1sjYSazJkjeH7F7k/0MVGj808TXylRSqlUMnfuXNavX8/XvvY1QDBdXb9+Pdddd91n8h5SU1UklaRSUztEqkFFUZEBe0c/+/f3iKuTJSVpcZ5PDqePTR/YxTEnvUEVZxQdK2CcuXIKm6vtDA+PUFPjYHBwmNycXM695DTWrDmMyrWEudPTmTXTyJbqAxTkwfTSZPy+fnx9XgYHB5FKJSCR0Nc3gM8vw5pvxtY6xO49/Zy4dAaFOf3YbYcpLptJwdTSj9jjSXwSHI1Z+bFCrFgV+12KVfgvuXgGMAOH0yeKL3+7705qt1XzzZvvZelplYIJeY0DqUzC4sU54oqC2TRqnOlwCmr+wOAwBYU6ykqNceb04REhKSzgHyIlWYnJrEGnU8WJPtf84HqKypfwt9/dgX3Pg/i7t5JkuQSAqsrsuH2p2y148xApDnNmZxBLShoautmwwUbAP0TAP5RQeIr1gNu3rweZTMLwsNAJEu0s276jM+Hfy2brw9Pq44wiI3XBIPes2cemJhd/WF2BXqME4Nxzi+NuE+FoEo+OlOB0JEyfbmTlyiLa2/uYNi2Vbds60GoVeDyjZqL/rT/JFxFfhHpgStdgMkipb5XS0iL8zpqbgrs3wLvvtpKRqcGgV48zJ3c4fOKoU5pRzfBwGL9vCIgXL1aeOYXqzZF6UOskGBhEIVUyNSeHgcERvEYz02ekc/llZfznjUZa2h3k5mvIzlXj6fPR5wsgkUiQSCRIJRL8/mEGAhLSjSm0Ngfw9oxw0on52L3NKBVyLl550mfyuf0v4lh4QhwNYoWq2O9SXBDERdG6P0t8DIoAp37zR5w2fzE/ufYCymcIZrUdHT7mL8iM6ziKxoVHjcW93gFMpiSsuTrOObdIfKzfN8TjT9Th7PYjlUhQqeWUlhrHiD6pPPLTm/nbC2t5eu2rHO5qZm7OEvI366mqyo7bn3RjErvrutld58RiSWb2nPh64HD4ePXVgzS3eMjP05NuTEooPsV6jcTVg3mjxGiiVCZb+wD7ek6i0lLIlN5/wyNVcPbDUHYWcOzqAXyympCoHkSFqM2b7cjlEoaGhP39KtUD+GLUhFRDEqoSLTU1Q6SmRjiCPQFHiEnninYyRMec9HpVnFF07HF80klW1Gp5PEeIkP41aw6zZ4/QIRcIDLJzpyMSmJRPTkEOOQU5VFRWiO81drs7dnSxcWMbixfnkJXqpbO1k6nlU8kr/nTT6waHB6m2V/N2y9t4B7xMT5vOD+f9kBNzTsSgNnyqr/154lj4xh0NEnXtR8Ww0RHjhXzv3HP45fRf8urBVzn0XisXTbmMZ375DPtrD3Dt7d/nxFNn4XJFOIJ0DEeIMdePdvwMDAxTWKijrMzIwpiwknBY4Ah+/xApKUpMpghHiBFJSkvT8fmG8PmG6OtToE9byZCmiK5D67n54uu55LpLuOjai3B7BqmL+HdChCPMmYAjBIYiY6rjhadYD7iJasKE9eAo6nplZPEmepsIsQsiE23nSKl+R0KsaJidnUxjYy9qtQxf5JoTYN++HnJGZJOi1MfFD37wA6644grmzZvHggUL+P3vf4/P5xOTNj5t9PaG2LBGiLMHIbr4wy12MY3G1RNk7boWamoctNq8+PxDeNxBtm4bjV5eulRYVbNaU0SS39npIzNTy9KlVlINKtauayHdmERoYJjFS3IwpidhztCQ603BnKGhr38IlTaNzNwMKo47ctFoaOjmULudxSeqKS5O4+8PPMCOjf/mG9//6aQo9SnhWMz/fhJ8lKlf9P6Az0v1+lcI+j3ce9MFuNp/xKD6BNrt/WRbkgVPjkjiXezJL6rmm0waCvJ1ol9YVEAymTR4vCEyMrQsW5YnGhqKiRPuEHpDH0nJ6cxd9hO6mj+gfvMj+Ny3kjL/x8D8uNfauasLwqA3qJk3N5OlS0cFq/XrW9jyoZ3Dh7zI5bC3vpvDzR6Gh0fQ6VRiUWlqcrO52k7ZdKOwwhIjWEUx0d8r9vdV6Rre2efglZp2Tvj1BqrCKi45rYhVq6axatW0I/5djmYcI1GC09GspuXl6bnxRuFz+/nPN7FunY158zLEFfIovopGt593PYh6Sm3dO0xjk5t2ez+ZGVo2bbLT0yOM5litKTz33D5qahzYWr34fUO4PUG2jVm5Ek1m65xUV3dgydJy1llTqKrK5o03DvHmm4dRqmRUTDGz7JQ8Wpq9dHb4SE5WsLvOyUBQwrSC3I/0Cqhv6Ka2xskJxwvHp6uvh6t+cj/aJPWkKPUp4vOoCR9VD2Ifs7F+I73ePp5bv4Yd+/fyn7/+jB5XEK83RGNjr+jRVDamHuzb14NGq2B6WXqc6Gqz9TEwMIzVqkOllGEwqJhRbhI9o6IX+W6PYDR9auXxTM2ewqOvvcCmw2+hqnFxZe9U0lP1ca+3a2cXYcCgV7NsqXDtExXHbK1e6htceD0DBAJDpBmTCAWH8HpDYk2wtfbR4woIabERA9+oWBWLj6oJKdZ8SJoDWx6G5y+jM/t8Hm2/lJNPKeLpp8884t/laMfzPklNSFQPAK68cgZAXKfUVxGfd03odQdYv8Yh+p0VF6fy4Yd2OjsjHMEVZO3aCEdo9eLzDeHxBMVOhnEcwZGAI6SqWLu2hfT0JEKhYRYvzsFoTMJs1pCbm4LZLHQQCpi4sykq+DY0dNPe3s/8+Znk5+v4y11/peaDzVx3x3Wfmig1MDzAB+0fsK5lHf2D/ZSnl3NRyUUszlmMXvXVEksT4Vj4xn0SxIphse8hWZnM3YvuJsVRwgvuh3hwx285sL6RwUCIX1x7E66fXkNIVUJ7ez/Z2cmib99YgSSOIxToRL8wh8NHXV03JlMSHk/yxBwhkko3MDCMUinFZNKQnp6EyaRl3g3LOfDhOp76w1NseHUDZ119NQfbhcVhvV7NvHkxHMER4Qhb7Bw65EWhgL17uzl8eAKOsNlOWZkxrgvr43KEWMQKSNFFnCPhaMbzEqX6HU0Hdqxo+OyzDdTWOikqMsRddwLoMocSPv9Y4isnSl144YU4nU5uu+02Ojs7qaio4M033xxnbPhpobPTh1QmJduSLEbUl5ebCCO0ppeVGXnzzWaGh6HfN8i+fT1kZQq/t9m8EXPz0c6W7Ts6Re8crzfEpg/sbNvWQV//ICnJCqRSKY2NvdTvdSGVSSgtNTI8HEanU3HSSda4L1TUHDovT0fAL/iClM80UVPrZNeuLnQ6FcHQMN3dQrS4L/Dxx/8mcXT4OMbmxxJxavsREv2s1hR++sAr/OXeH9PauIVH77uLaTPXMWfZTVRWFVBT66S2xonPNxiXLimmaLiDNB304HAGWLrUGicgXXVVeULD8YYGF2+8eZjkZAUpyUqkMgmzFy7nm9efy7MP38kLf/4xLfve55Tzb6JsRl7Czqgooq/ncYcwpKowm5LwuAfwuAcoKjZQMcuEzz8kFM5nGnC7BeLzwx8Wxryfbtavt4nCW6K/19jPcFlpBkWmZO5fs4814X463thHOBxm/Xrbx+5wiiJKMmbMEIpMbILTx11Ni02Bin0vX7UV8Sg+73oQ9ZRKM5qo0CrIy9OhVMpwuwPs2uVk9mwhbSkQHAIJ+PoHRRIfHYuqWmgZ43sjIeAfpKPTF0nx62bnzi7c7hAyuYRpU9Ow2320t/ej06si5EMyzhgzKj6NTeerrXFSU+sUBTRbRycgrGBO4tPDf+MJ8UkxdvU10etHH3PKKZdgzTZz91+eorGthTnnfpfbvn0lixYV4XT6qakV6oHfNyR2HUUNwd2eIAcdQhpkesQMN7rinG1JYenJeeM8MpxOP3vru+n3DSBBQl//ADKpilu//i28tPLTBx6jZMU13Hz5pVx53klimt7Y7igYFceCwSE0GjnDQyMkJSnocQXE66VZFSb8viHWv9PC7t1OjMYkLr9sunjs1UfqQVRYm+jziv+9Fk6+FWqfxbz/RS7u38Sjf7+ZdeumfuJ6AMeuJsTWg//Gp+rLhM+7JnR2+JFKpWRnJ4sR9TNmmAiHYznCYYEjROpBVtYYjhDzHYt2Io6MRDjCpghH6BskJSWGI9S7kEqPgiPURDhCIMIRIqlmIkcIDuNyCQsq/f3HniMEh4K83/Y+77S+Q2AwwEzTTC4uuZiq7Kr/CTEqis/reBzbpTn2PVw09yzyd5fyuvFBBn8xgOOvPbgbunnwjgeZsWAOc5av5viFBaJAEscRymM4gidIU5MHhyOGI+wUxmqvuqo8oeF4Q4MQzpCcrCAlRYlUKhGF2OjxUFp2MZlFs3jl0b/y4E9up3L5CpZ87ezEHGFnFx5PiNRUFWZzEh7PAB7PQESQMeHzjXKE3iNxhIjw9tH1YBSxAlL0/x+3wymKqPAUHT9M5PMVfS8fhVivsNj3YjZr6QlMHHZzrPCVE6UArrvuus+sFXcsMjO1mBcrxQNg0wd2ul0BiopSWbxYuABJTVWjUkmxWnVkZWoon5mO3qASozBjEetp4/MPUVPjEAWpxUtycLtDtNq8HDzkxhrx7hk7lhRFVEiwt/czEg6LHSYGg4qkJAX5ecLz33tFeLzHMylKfdXwUWJY7P1mUynHvfwyb7z4DA//8mfs370ZZ8e1zC1/mIpZQuePWiWjutqOPzCI1ztAbtSoz5qCwxmImDv3jROQxnpqmU1aHF1+ujr76ZbLMJs15OQkYzYl4XTJKTruh0yZcSLPP3o3tVvPYdU3fspV115O+Uyo291N3W4nSRo3LS1eKmYJhS8zU0tXl590YxJzRREsPu3x2ecaGBoOi+3uDQ3d4kjtmpiOx7GF4kieYPnpWq6ancsLNe3sGgpxw3/2ItvqBvhEJORIKUnRC4hYj6gjXcgkSoH6quPzrAdRT6nMKYLpbHV1O+++10qGWcNJJ1mRySTs29eDJSsZmUzK9DIjJpMGtydIWloSJSVp44yYo2l9Qkt6mF07HQQCgqFzenoSKpWMdWtbkCsk5OfpyS/QMbN8/AVTVHyKIvrvWRG/hkBQEBV0emGlcdI76quHoxHCYh/z0++cw2XnLOTyW+7jvW113Py7P3HNhSv41jmr2N/gQaWWsWNHF339A6QkK5hSlIpBrxJ90WLrARA3Mjd2RXdvvYv29n78vkHMZg2Dg8Mkp6hITVUjcVt56f67uf2hx7nlDw+zfut2nr7/BsxmPTPLYXddNx9sagdAp1NisSSj0Sro6QlgNmkwpiWRmakVhahYsba6uh25TIpcJqGmxoFGK6esNJ3qTXZ27uzC5xscd0wecTVapoA5l9M2kIvl8NP8XHMzDzacy7rwZZ/4XLxhQytvvXWY004r4Pbb442ip0834nD4cTh8tLR4JutBAnyuHCFLQ/piwyhHiIzlxXME4TxuterIytJQXp6OXv8RHCHSvVFT4xAFqcWLIxyh1cvBgxGOECHbib6rUaJst/czMiKsQuj1oxwhL094/lq5UAvcMRYA/y0CQwHea32Pd1rfITQcosJUwSUll3Cc5bj/KTHq88ZHiWHC/fO4YOQxntj7BH9M/yO+91Jp/kcze7buxNHWxoLZt1FRIYi8anWEI/gjHCE3auadgmNMTYgdrRt7ThW6qfx0dvYjj+UI5iSamtyiOOTzDeEJJPOtn99O47YNPPG7v9NYW8NZV19NYWmxwBEqxnCE9DEcISbt8dlnBY6QlDSGI0R8saIdj+M4wkd0KMWKP4k6nD4OjpSa91GeV2ORKBnws8RXUpT6POH2BOlq8ooiUjSJLxpT7+oOkJmpYWhITWenj2Stkrrd3Xi9IbIyNXFqbiLiq9UIfzJjmpq5czMwm7S8/HIjve4QVqtOFKRc3YG4Lg8Ag0GFVAq51mSMaRq83hAed5D29n7kMik6vYrS0nQyM7UcrEM04p3E/y6c3X7MBUu5809lPPyL79Fy8AC3f/cqnl67ndLSUhxOH66eIB124dbnF9o7hVE6K3W7u2m1efG4g1gsyeL9iTy1KqssdHT6cPcG6OkJolbLaTropr9vMJL2V8Ypl/yZuo0P8cyDN9N5eAuLzvw+O3e5IQwDg8PY7f34fINc/Y2ZyOVSRkbCKBRSymfGdzpFj628PB1LluTgdPqxt/uoqXVSWpqOzdYX1/EYi+hIrXD8COOGY8WpinIzFeVmNjV18+yWFgbmJtNvVhAOhz82uZ8+3ci2bR10dwfGpSRFLyDWrDmUcHX80zDLnMTRo7c3SHOzF7khIIhSm+3s3dNNqMjAaacVMDAwTEuLF5VaTopfKaQj5euwtQ4KXR3a0RIde5ETO5bk9Q7S4wqIHVXr1rfQ3OIlK1PosvL7huh2BSJdVWFmRi64ovXAYFCRl6/D5xtEpZaRbkzCZNJQU+skFBxm9mwzAAr5VytiexKfDGq5ll9d912eX/8mv3/qJf78zzfIs5j58TUXiqNEfv8gOp0KCIs+VdHVcI1WLn4XNdpR8/6xK7pVlRY6O3z4/YN4PCFGRmBoGHbu7MLbNwiYuPv/ruWhf7zF61vfYMbK/+Pxe76PSZPLrp1duFxBBoeGUSpkLF1mJRQcot3uozhmLCHWWyt6wb7slDxMJg1Op5/GSCJTWWk6acYk9HoVaWMMa2NTkdyeEAZ9YiJiPf4kmDWLnjf/wA9LnqNLexD6noaUT9KhE450Lo5vX8zL02M2C91SZrNrsh58weB2h+ho7BVFpK1bIxxhaoQjuMZwhGQldXURjpA1hiMkIL7aSM0wGiMcwRzhCL0RjhARpFyuQFyXB8RwhNxkjMYIR/BEOIJcij7CEUzpSRyGI5o3Hy18gz7ebX2Xd1vfZXBkkDnmOawuWc1xWZNi1BcZUqmUr5d/ncyRIu6W3Iq0QIbrL904Wh387Oqf8cymZ0TxxuUK0tEh3EZ9ioRROit1dd20tnrxeCIcwZeAI0S+25WVFjo6fPSKHEFGU5Ob/n6BIzidfjQaBUajmoICA8cddym6zGL+ds8feOzOu8iffSLqrPkCR7h6DEcYs3AX230kcgS7j5qaGI4Q0/EYi9iaEB03HFsTYsWf3t7QURmtTwSrNYXGxl5R4EuU5jyR59WnEbDy32BSlDrGaDzQy+Hdwh9+6VKrmEq2sMqC2SSYZw4PhwmFhiEMrW1eOjp8yGUSyqbHq5ObPrCzdVsHC+ZnifOepaXp+PxC5GXd7m70hj5KSlLJtabQavOyYYONObMzcDiFVvnoc0AYJfF4Q3i9g1xwfp5o3mxMS0JboaBilonnX2igtkZooZRKJ0nI/zpGzW+z+ONzb/Dg3T9hbtWJaFOEk6fZJPjajDUPj96nN4yO7TmcAXFGO9GcdVVlNl2dft566zDDw2HCI8Jcd3m5iZYWL06nnza7hBPOvYMLr9jHA3fdQu32LZx24W1Yiyqwd/jo6xvEmCaIqVExqWKWaVw3U5yp7+pScbQ1NlFw8eLshJ1QsSkYUdIV3d+xSBuEbOcInSkSXmhx4nh8G7+7YBYv/KOe557bz+rV0zCZNLz0UiPnnluc0HsqL0/PlVfOEMlE4r+Th40b28jOFt7DI4/s4rnn9mO1pjA4OMJppxVw5ZX6SVLyGaNuTzeN9S58GCgrTY9LJZs3L5Pt2zvFUYpQcBivN0T1JjsN+1wA5Bfoxa6MDzbZ2ba1g/kLsjg3Ug/MZi3W3BT8kbEph8MHQGVlFjPLTeyu62bXzi5SU9X09gZFrx2zWYvbHSIUHGZvvYu5cwXfqn37erDZ+sSRPpfLzytrGoHJejAJATZbH02NHi4+9QxWnDCb+//+Cj+46lxA+D5GxafouT1WpIleHEd9n5yOiWtCVVU2nV1+Nm1qQ62WMzISZmhwBOvUVORyqThqmqsv5lfXzOC1ba9z+rdu5+vnLufcxSsIBcO0tfZFujkk4nd6rO9VdJ+i5/F58wTT9rHjrYsWWrDmpsTVrOhzE9aDRBf4SWm8G74IWds6VuRsg4fmwxm/45FNU466HgCcdJKwGn609QCEmvDQQzWkpydx4om5oofUZD34bHHgQC+HaoVz6dKlVtFgeOFCi2iwL3IEoLU1whHkEsrKxnCETXa2bu1gwYIxHMEX4Qh13ej1EY6Qm0Jra4QjzMnA4fCP685ob+/H44lwhAvyRCJrNCaJsfbPP99Afb1glv7fdM/2DfSxoXUD77W9x8jICHMz5rK6ZDXzMuZ9pQ3Mv3Joz6Gq8RYOTHuKxp/Uov+nnssvupwkjSBYms0xHGGMF5PZrEWvHx3bcxyhHoBQE7q6YjhCODyOIzQ1udFqRzudjl8yA3XKnXzw+mt88NprJB2uZ86MbwHx3Upjz9djgz9iPaCi70vkCAmee7Q1oaGhm82b7Uil8V2Qb7xxSAwW0OtVEcN5S0LvqUR1dyycTj/19d0Yjeq47ZtMSQwNhZkzJ4OlS7Wfu0g1KUodYxRPTUUnlYlEODaVbPuOTrQaeZyZstBFMoBUxqjKGSG3rp4AHk8IV8QQNwqrNQWPOySaNs+dm8m8uZl43MHIwlk4jpBHYUxTo9OpRNI+1l8I4OGHawhEvKTc7mPXmjuJLydivyNJGi033f1A3P3763ah1emZN7cw0dPjxvainVIT+VkB6HQKsrNT0BuUTC8ziqN2VZXZccJRaWkZ0+fM59c/up5n/3gtF37jOlZc+H9iclP15nY2bLBhteowpo+u5sX6qpWUpIn7Z0yPxLZGHiuOFMakEUbf79hiqTcIgtz69S1ExwNd3QFqap04nX6cbf3kWpIpXJzBhoMult73HooaD/sjhTg7O1mMCJ+IhEQ7ojZtauOJJ/aM8yPZuLGdgwfdbNzYzre/PZsnntjL7t1OWlu9zJ+fRXRF/bNKdJmEgPIZ6SgYpChyITM2lSzquRP9LtlsfdhavTFbGO2E6HEJ9aDHNb4euD0h3J4g7rognR1+SkrSIhcUTsJAmlFNfoGeWK+dWRUm2u39yKSSuIuZ6MVIWWk6112/Dme3IHRFxzkm8b+N2O/JPPMcTlk4R7xveHiYd3fs4Pzli0XCOq5jKMb3KdZEPNEooU6nICNDS1GRQbzAn1k+nkDMqjBx7Tfv5MF/vMZNv/kbW3bX8/RvbmLRwhLRUH3d2paE+1Pf0E1NjYM0ozrugj49EuWdbhwlV1FD3tgxiLH1wKAXusHWRerBzHJTXLpmT0+IXc1TCaWWcUH6u/DiNyh1zqZpz3Kee+7TqQcATzyxl8bGXnp6gsyYkc7evYLwPVkPPltMnZpKypBSJMKxqWTbt3eijdSEKIEXukgGkEoZ1wnhitQEV4Ka4PGERNPmuXMzmTcvE48nGHlEOI6QR2E0RjiCMQFHiLzmww/VEAwK3Sy9vaGPvf/ekJf1tvVsbN8IwPzM+Vw49ULmZMyZFKO+hBCE8RL+r/RhXnE9weNJj7Ndv525g3PRKrTs3bEXo9mY0CMKiBvbi3ZKHcnjUOQIeiXTpxvFUbuqquxxwhEI5+1TT5vCqad9ny3nn8Tvf/xbnr//l3i6mgkop5GXp4/r+Iv1VYvjCJF6YPyIehDdp9hbvV4Q5ESOUG6KJBUKHCFqDh9bfzZubOPgQbf42tHUzIkM0WNDCcZ2QALU17vo6PBRX+9ixYpC1q+30dzsobs7QHFxKtFrzc8qBXgiTIpSxxgF+XpOnjf+SxOrusaaPGs1clrb+ggGhtBoFDQ0uKipcVBWZsSYlsScORksrBofE+lw+unrGyAlRYnHHcTh9GGxJONwBrBYkkWS3esOiSlpCxdlj3r+RNBq66OmxsHCKgulpeksXpKNrVaGvx9Uqsmvx/86juRB5ey0c+t3LmdwcICf/vbPzFt4YsLnR32f7Pb+uDS+t95qxmbzMmdOBiaT0JZePtOE3qBO2KE0dtY5w5LLbx5/kecfe4i/P3gvH76/gXO+8Qus1nI2V9uFk7C9n9JSo7itqK8awEWrR5Mlx6b/RV8/0Zjh2M/EbNKyfUdnXBJgY2MvtTVOLNla5s/PFMdoj5tq4snNzRycpiHHmMfZs3OwZgrH45EiwqOITVsC+Ne/DpCdnczixdlx25g3L5OOjn4WLsxh9eqScUkuX9VkpS8aphanMbVAA8mJOzNKStLGXaw1NLjQahQUF6cyODDCb+/bRlWlhbIyI25PiLKy8X87p8OP1xvCZNYik0nQaOWRrikJc+aYmVluEl836r8wq8LE5ZeVxQlSbk8I2yYvOp2SmeUmlizOpqvXAYcBJDgcvi9Ei/ckPj8cyYfqp79/kl8/+gKvrNvMX3/xPTRJR7YASDcmYS4VLuyfemrvuHows9yEQa+ecNW2rDQ9ruvp+svO4uTjZ3Hxjfey4Pzvc+35q/jxNavYsKGNmhoHSMBk0sQ9p7bGSWOTmwptvNgVPUbHjuSNvWgf+3mM7QYz6IV6EPVsq1poQatVMKPCBFOXQMO/WVj3Mru/1cSHplvwWwUR6VjWAxitCSecYGXFisKvfPLqFxUF+QZOnDU+sW6imqDVymlt7YuY9I/hCMYIR1iYgCM4YjiCJ4jDEeEIjghHiJDs3t6QmJK2cGF2jOePgNbWCEdYOMoRDm2WMgSo1UfPEXoCPayzrWNzx2akSDku6zgunHohs8yzSFWnfrwPcRJfGMR6UN1QcAPTjNO4o/oO7t12L+emncttX78NgJ8/8nMqKivGPd9s1lJeDnV1EY4QEZmqq0cXlufNyxDFqvJyE/oJasJH+SEVlhTxvXvv5v1X/sXrTzyJKrWAtvkrBY4Q2Vasv9NFFyXgCGPG8RKJOBPVhGhHmD5SE2prnVgsEY4wplsr6i8X7ZQCYXzxozDWQH3TJjtGo1q8boxuo6jIQG9vgNJSI4sX54wT0ibquPq0Mak6fIqI9YSa6A9tt/s4sL+HoaEwMpmU7sjKh8cdIiNTS0WFOe4gi/rZdHb6kMkkdHX5cDr9OJwBzKYkhofD+PxD+Gx9bNzYzqGDvRBZsbxodalIpqPb2bG9E39gCK1WQWlpOhecX4ps+P+orzuVvGnzPqNP6quLoeERvMEh+oKD9AWH8EZug4PDhIZGIj/DDAyNAEI7tBThTyaVSFArZKiVUjQKOUlKGSlqOYYkJQaNAn2SAoXs8xupkcnkZOXmUV+znZ9++2Ku/dGdfO2Sq+MeE/2eNTW6Uatl6A1qUez5cIudXneI3t4QGRka5szOYOnSPMwmLdWb23nqyXoqqyxUVWaP22as19pF3/wucyqXcMf3ruGBn17Iyktv5PiF5xAMDZFuTBJFW7NJO66DMLotrUZOVqZW7D4EQWw62hP0WCP3qPdbrKcbQLYhiZVWI/92DdBmlvCkq4c7Fmbx9NNn0tLiSWhWHjtyF5uWtG5dC2+/3Ux6ehK33HIcTz89W3zOTTfN5/TTR4lHdFX8fyVh6YuI2Lboib5XNlsfNbUOenuDWK069ta72BtZITvxhFwyM7TjjG531wmkWqWS0t0dQCoVzvcmc1Jc19RLLzeybWsHCoWU0IDwHb/oolLxQmjd+mbWrbUxODRMRoYWg17NBReUcuryXOY8mUxXV3CcX8EkPibCYRjwQcgLQc/o7YAPhoIwFIr8BGFkOFK7JcKtRCqYZsuTQKkFhQaUGkhKHf1RJov1/vNAfrYZuVzGs/95jwPN7bz2pzvIMqfFPWZ3nZN1a21okxXiKKnN1seWD+24e0P0+wbJz9PT2NjL0qVW5s3LpL6hm1dfPUiaUc2ihdlH9MSYXpzH1hd+z9U/+hN/ePZ5qmvr+PUN11BRYSYQHEKllsWJq7FjfbHb02jlZGZpaT4cUxMSdEYlwtgUwKg3XHR0MFYUq5ctoQUDJ+rfZIXnZzD0Iav+8gBojROOWydK3ztSPYDRmqDXK/FEDKon68Hni6OpCXa7jwMHYjhCd4QjeEJkZCTgCI4JOIIjgNkc4Qi+IXy+BBwhph5Et7N9eyeBWI5wQSmS0CU01LWSM7XkI/exy9fF2pa1bOvahlKqZJFlEedPPZ+ZppmTnVFfQZxecDp5KXlc/871PNbwGPpMPa0Nrdx4yY3ccPcNnHHRGXGPj37PmpoiHCFSEzZvjiwsd/QTCg3T2xuMjJjliaLVU0/VJxxpm2gEzWbr4+DhfpZeeDHm/Gk894c/0fzBY+wok2K1LsNs1o7rIIxuS6uVk5WlFbsP4ejrQfT+WCP3qPdbosS9hoZu3O4Ql11WJt4X22E/dr9i93esgXo0NXPVqqlxyYHnnlvMvHmZcV360X36PK/xJkWpTxF1u4VZ0cwsYaY2tkNqFGEMBjVJGjmVVRa6Ov24egKUlRlRKmXjvuh1u500NbrJsghfmuZmL2qVDK83hNmkiWs3HBkeYWg4TKpBGTfGFytsWfN0aDSKuPsXL11EXvGsz00p/bIhNDRMhydIhzuIsz9ElzdId3+I7v4BvIHBcVakSrkUlVyKQiZFKZOikElQyKRIJAJnCRNmZARGwuE44So0NDIull2jlGHUKjHr1Fj0arL0SVgMwq1M+umSkzSTmd88/iJ/vOtHvPnSszx0z89wdLRz9Q9uFf1nbLY+mpu9eLwh8gtMcSfw4463YLN5STcmRWLrR3duwwYb9fUugqGhOFEq9rsrRsGatEybUcGvH3+dv/zmTl554m72bH+fJWfdjC8opemgWxTDoisp0bE8jztIR6dA3PUGlejvE+uLdaS0wijMJi1Ll8Y/LnYcMBZ1dS46t3aTnKYkaaaB7z1Xw1MfNFPoHCbQM0oWoogduTv99MK4MQ23O0R2dvK4le5YsjGRCfokPltEE1JqahyRRLzxY0hWawp5VsGvLc2YJK5uVVVaEl78OBw+mg8L435Dg2FcriAqtSzSNRVfD6Ljf3n5OkpzdSIJj92OXC7BYtFTNn30eQZdMt+4YOkR/QomEYNwGPwu8LRCXwf0d0FfF/Q7wN8Nw2PG4iVSQWiSK0GmFIQnmRIkUfExDOER4Wd4cIxwNSYhVyoDdapgnp1iAX0O6CyQmgeqT2ai+nHw7dVnUFpo5bzv3c2OvU1Urv4Bbzx6J6VTrLE7zMjICB53iIEBwTfHak3h+OMsYqeU2x2KG1Wq3mRn06Z2YcQuVzeOOMfVA7MWlVLBfT/6BlWzyvn5X/7K2d/9MT+49FJmFU+nqcmNTqdkWeR8HRWJohf8bs/oCKxBn6AmHGVi4bKl8Svl6cYkbLa+cd2GQgqmnCbLeZxg2sn0/W/DwQr2ZP+AXSNLOXhIOL4T1YTKSktc+t5E9SD6/COFYkzis0ddXYQjZEY4QsIRpwhHSJJTWWmhq8uPy3UEjlDnpKnJTVZWDEeI1ATzmJowMhLhCKnKuJGn2OMqL8oRYu4/4bT5FJSWHLEetPW18XbL29Q4atAoNCyzLuO84vMoSy+bNDD/imN6+nT+eeY/+c7679DwgwZ0z+vYu3Yvv73lt3TZu7jqB1eJ490iR/CEyM8f5QiVlRaCwSGsVh3JyQp6e4Mk5AjBoThRaqKaAPFJdNaSGVz+kztY8/fHeO73v6f1QAO3/f4HoxwhUg88niAdkXqg/4T1IPq4hBwhQVhATY2T6mo7dXVOLrusDGOkdkTfS3R7UYz1RIwVuXy+QYxjRtPHvu+JTNA/D0yKUp8qwvT7Buns8MV5RcXCYklm+oz0cR0VE0OCOkmGMU34IpeVGSkrMxLwDxFVYGPTzKK3sdu22fro7PQzMhxm+Wn54173aIn4/yLc/gEOd/tocflp7fXT7g7g6h8QT5ValYxUjRKjVkm+UUumXk2GTkWmTo0pRY0pRYVWJUcuFYQoqRRkEglSiURYDEc4UYcJMxIWhKmRkTCDI2GGhkZw+Qbo8gbp9Abp8ATocAv/dnhDNHR48Ucu8uVSCVl6NXlGDQXpyRSbk8nSq495rLtSqeIHd/6ObGshf/v93bzw+J9wdtq56Z4/oFQKJ26lQki4kMul4uiezdbHvLkZlJYaxxmkO5w+FHIpKclKrNZ4IhX97jodfjyeEPb2fk4/vQCAmtpuLvm/25k2axHPPvwznvrdlZRV/YC5C6viiXxMel7RlNS4izSI91j7pIgtEtH/O51+6ve6yLUmo1LJ6G33UZybwqLKHF7Z2c6OwRHSewaw7nWKq9nTpxsnHLk72jjvoxnZmzRA//QRTUhpbHLT0xsUu0TGomx6OmXTjaJoFXvBlchQc3g4jCVLi0olIyNDQ1mZEX8gph5EnhMd/6tKsLK4u66bjk4f+fl6zjpryrjX+bxXz76wGB4Edwu4mqDXBh4beNoEwQhAKhc6mDRGME6BvCpBJErJEm61ZtAaR8UoqVwQoyTSSHdU5HwdXY0IjwgdVOFh4bUH/YLw5bWDxw597cK/vXboqIGD64XngPA+DHnC+0ifKvwo/vv0rLE4YUE5W/55P8u/eStNLXYWXnwj/37oNhbPE4y1Z5anU1PjwN7eT0uLl6IiAzZbH3PnZYiegIAogjocQgJfik5JnlUfd66O1gOH0y+khNlH60FtjZMTFpTzdN7P+f6v/sSdjz7KSRWVLJt1MjBaB6OrzFExKjNLm7gm/Jff/0TjgE1NbhoaXKSlqfAHwzyycQonzZ3KacYNzDp8B3ieod53HXp9ftw5OtE5fbIefLExEh7hz7V/xqg2kqePju+F6e8fpLPTl7ALNTqCfdJJuXEx9UeGBLVaJpJdkSMkqAnRUZ7Kygk4wkiY5csTcIQJ6kE4HKbR3ch623rqXfXolDrOKDyDc4vPZWrq1Ekx6n8IJo2Jp05/ih+9/yPWXryWeZnz2P7Udp564Ckc7Q5++KsfolAqBI6gjOEIEZ8mpVLGuecW4/MNodXK48ZKHQ4fCoWUlJQjcIRITbDH1ISo35TPN8TOSELrtBMvJb+shq1vvsK3Vx7g1gdvRZtqHuUIRRNwhGNUD2L/L5iRu8jNFTiCw+Fn0yY7FRVmduzoIhQSvNxaW71xpvETdWt91Dhj7P4ken4sHA4f9c1O8nJSYcrH3t2jxqQodYwwPBLmj+80kqpRUJAuxByXzzQhXPwIhWDs2BGAzz8kjtwdDcpnpqM3qMQOj4oKM/PmZopJenrDqPilVMrIyNQS8A/x8suNYgqgViPH7x8g4B/CbveJX9qoCbRO1UqKJkTx9Jlk5Yyfff9fweDwCIe7fRxy+jjo7OdQtw9PxAReo5SRqVMzLTOFvDQtJZkplFl0pCer0ChlJCllJClkyI/xeF1e+vgT4fBIGP/AEIEBoWOrocNLXbubfZ397O/qZ1OTizCgVcooNCVTlpVCWZYei+HYiFQSiYTV37ye9Mws7vvZDbz7xr+x5BZw1fd+hNmk5fTTC+KS7aInY5lMwvBwmKxMLXqDStyezdaH3qBm3vwkLFlacfQOhJNmZqYGCON0+Gn39oteHVGvqNPOPpNkQwEvP/Yzdm+4lRzzd2ieciWAODro9Q4QCg1zuNlDWZlRPC4TdzN+fMSe5KP7W7+3m/b2flyuALNmmaivd2FK03JqWSaB1n7ebOrGmavicbuTPS/2EbIHWL48nyuvLOeNNw5x771bWb16mmhc+1GIJRann16Y8PdRwvHCC/t57bWDrFw5hRtvXHBMPoP/ebRugz3/gmlCu3o0IcVkFr6/Gq18XCu2zdZHZ4cvxqj8yBj1ghIIdUWFWUz127evB4N+lOgolTIyM7T4A0O89HIjPa4AVQstlJWmC3H27iB6nTJu+/UN3Wza3EL/SBfTik2cfsL8Y/gBfckQDoPPCd0HoLsRXI2CIDUyLAhJySahO2nqckifBlmzwFgojNQptYIAJFcf+/E6c2n8/8NhoZNq0A+BXuG92mugs1YQz/b9B4ZeFIQvfQ6YyiCzHDJKhZHAY4Ap1iyqn72Ps679OVtq97Hy2p/TvP5xDLpkzGahJkSNv8fWA0G0UYnHxfbtnahUciqPt4iPh9HRiWg9cDj9eNv7xToQrQtLl1r53Y3X89rG9/jzSy/R4mwlK+8bOBzpcZ4gGq2CYHAIrzeExaIdrQkTGPR+XMQeq1EysmGDjYMH3ZSVGSktS8fdG0KWlkWw8mY+fOlZjtNUc1fyD9m39WKeWnsuXS7hOlGvV/Lii/t58UX4+tfLj0qMgonFprG/n6wHxx6ekIf6nnpsXhu9oV5OyTuF8vIxHGHM2JHN1kfHx6gHAOXl6ej1KrGrYmxN0I+pCRkZWgKBCEeIpABqtRGOEEjAEWqcaGVO9NowJRUlZGRnMDQyxI6uHWxo3UB7fztGtZFVRas4t/hcCg2FJCuTP6VPdRJfZKhkKu474T7u3X4vT0ue5rjU49j20Dbe+tdb5BTkcOn1l4r1INagfBxHyNKKvkrR+/V6NfPmJWGxaOO6T+M4QsREvCZSE2pjasKcORl4vSF0OiUWy1SOP2kez//xIa5deS1nX30VUn2JwBEOj+EIx7gexHGE+vEcwWhMEhc0m5r8+HyDhELDuFzByEijmaVL89mxo4uXXjrA4sU5rFiROHhqLGLPN7H7NfY81NDQzZo1hxlW+ZBLFMdk/yfCpCh1jOAfGGLrngNsfegHnHjqClacvpLSinksXSqIOrHdGUAcyY69nQixgta8uZk4nD70BiFV5q9/241KJcOSpWVgYFg0No9uc8f2TjZubEOhlKHVCga6I8MQDA5xuNmDwymkK61Zc5h2ez+eQ49gO1DNDT+/j6zz/ndEqagIta+zj4YOL4e7fQyNhFHIJFj0SczK0VOSlcL8vDQKTFp0SQpSVAqSxni8fNaQSSWkqBWkqBWYdWpm5RpYjZWRkTB9oSE6PQG2Hu5hy6Ee9to9vLCjjZFwGzq1nOkWPXPzDJRm6VDJ/7v9WLbyPNJMGTz36B9YffX14u/HqvViC22kQ8rjDrJ2bYt4Ip43N4O5czNE4TVWaBXG5KxiolJLi5eKWSZ63ULXlMGgwmbrY+EJ0znra2t46k/38cyff8+OzR9w1Q/v5eSl5eLr19Q4aGp0i/5t0e2PRUNDN5uq7RjT1CxcJHSYjBWXoxh7nMbCaFSz8f02dDoVlqxksUts+45OploNaGVy9vX4aJKFeG84hDFdwuKI19hzz+0XTRKPRpTatKmN3/xmG319A6xYUUhZmVEkHIkS+Nrb++nuDtDe3v+R257EUaJ7P9++/990DL/P2eddxMqTj8ds1rMsErsbVw8mSG05EuL8SEjBoI/Ug78K9SDLIpD2aLR9NE3G7Qmydm0zLldQGBUvTY8km0GLzcvuum5mlkf8rWocbNzWyFPvPUmexUzzO098Op/VFxU+J3TVQ9ce6NoLgcjKpsYodB3NWACWOZA7H7TpwoicKkUYo/u8IJGAQi38aNKEzqhpy4X7BgMQ8EDXbjj8Ptg+hNbN0PimIKwZp0D2PMhdACn/3cW3KU3P+ifu4bKbf8tFZ5yIQTdKTGN9lYRuENBo5fh9Q6Jos31HJy0tXmZXmJg7NyPu4h1GuzXG1oPoWKrPN4hKLaPbFSDVoOZn3zmPr69exNnX/oJrf/lLfuK4nNu+f26cWHSwqZee3iCh4LAYTZ5IDKiubqd6s52qSovY6TXR6vnYC3+Hwyd2SlmtOuwd/VitOhYttGDNFfynbK0+tLPO4PX6Mhar36Pc8xTW4dd5y/htpk+fzxNP7GHt2hYkErBadR8pSrW0eNiwoZWNG1txOAKccELuEWvCZD049khVp3JH0R2ccsYpPDrjUTYt2cR3v/bdUY6QoCZ80noQ/Z7px9QEiyXCESLG5tHtbt/eyQcftKFQxHCEEQgEhjh82CMeo2vWHKa9vR9H7fO0N+7jh/f9EPk8Oe+3v0/fQB8FugK+MeMbnF5wOrm6XJLkx74TcxJfLkilUn604EdkajK5n/tZ8OMFDLw3wPnfPF98zIQcIdIN5PGM4QjzIhwhIrzGCq2JakJFhYne3hB2+yhHKC9Pjxtf8wSSufbuO9n07+d5/sFHmHvSEoqOO5OmJrfo3xbd/lg0NHSLhuILF47hCAm6HycSuIxGNRs3RjiCJcIRtHJstr6IEbpGFNK83oHISKOwyBWb1nc0olRDQzcvvdRIIDDE3LmZ5OamxInhsXW2psZJe3s/GflCOuyniUlR6hghRa3gdF07H/S08/Zzf+Xt5/6KIc3I8SeeSuVJy5EkTcPrHYibRQWBBDc1uceZOo/tqhqbDhY92JxOP3v3dqOQS1m6NF/48tiFC4mLVpfi6g6wq8bJwMAIySkqKmaZMKYnUVVlYW99Nx12H3W7u9EbVEhlUrItyYw4BSX0WI96fdEQDodp6w1Q1+5hr93LQWc/QyNh1HIp+elazpiZxYL8VGZb0zAmK9EnKVArPl8B6uNAKpWgTxIM0adl6risMp/g4DAdngAfNHbz7n4nu1rdbD7kQi6VUGxO5vjCNObmpX3i/Zxz/GJmH7dI/O6Ew2H6PG50htQJBZuoYNvW6qW3J4glS0v5TBN17hBZmZrxs9Cm0a6SpUsFr5KaWifJKQrc7hAulzA609TkxjVwMquuKeCtZ+/kodsuJEX1EPMXnYTZpEWrkaPVKjAYVLS399Nq84rHW+x7rakdNQvMjbQKj03kiyL2ZO7qDlBTK4gBSqWMuRGxLfa4jnY4lpSksWxZPsuA4OAw/9zSwpaWXh5ssSN7L5kLLpwKwOrViSPCx2Lduhb27nWhUknZts3Oa681sXJlETfeOD/h+MZ5503FYFCJRuqT+O8xVL6aFxqvocfr4NWaB5BI/sDCOWWcffLxFGYU4fUyvh5EiHZ1dTtPPlUvjtolMu6MelQ1NvaSl6cT68H+/T2ok+TI5Zl0uwKsWXMYe4RczqowUVPjZWR4hPBIGF+/0Pk5szyd5sMemls8NB/2AGE6O/ykGZMoKjLAe4g+cV9pDPigs07oLOraI3hAIREEmsyZYJkNhScIHk1JqaDSw5fpc1EkCT+6TCg+FYF59kJHLTS+LQhVu/8Jtc+A1gQ5C6BgCRisn6jDS5Ok5l9/+GnctUSPu480Q8oRV2kN+j6eemov7e39DA6McOKJVtF8fOwoRWw0t1IpIz0ytqTVKnA6/HEC08CAmitOvJJ39q7j9kf+yqHOZh689VqRxEe7VgYHRthb76KwUB/3vqLvt3qzXQwgUCplR/TjiB3bg26RVFhJ4bTT8sWRxeh+RDtaSkrSuPjqRcAievdtR1H/PKtDd8M773Hm8bdgs42GXnwU9u518dZbhzl0yI1aLf/ImjBZDz4drFuzjh5bD9jg/TXvU/3LasqXlHPeOech0eSM4wix9WCsqXOirqpoOpjXaxe7nhobe9m2TQi4EDlCpB5cdFGpGE0fCo2QnKyiosKE0RjhCHu76ejwUVfXjV6vQiqVYsnW0tsodOz9q/FfpKanMiN9BqcXnM7C7IVkJWehkH663RST+PLhyhlXYtKYuE16G2kz0whJQqhQEQ6H6ff0ExiQxn2fxxp5r19vo63NS29vEItFS3m5ibq6EFlZCTiCOQFHqHGSnDyeI2zebKeszCjWlap7b2LWcbO4/yf3037wIItWXUVhSY7AEVq94vuLPf5iDcVzc8dwhASWCyJHiBx7E3KEMfUgKmBHP5PYkcbYtL6jQU2NE5utD4VCQmNjD1u3drBgQRbnnFM8TgyPdrBNmaEgPYFP7rHEpCh1DHHdNVcTliTzmyeexdu0DXePizdfepY3X3oWhVLNKRf9miWLl44jspur7ezZK1zgREWpWMKxdKlV/HJ43MIqYlenj3Z7P8nJCjIytIRHwNUTEIWlvDwd23d0Ul3dTig4RJoxicsvH3XyFwzXwlRXd3C42cPCKguLF2djtabwh9sjotSnbJT9eSAwMExDp5fdbR7q2j14AoMoZBIKjFqWz8jk+II05uWnkZ6iwpCkOObjd5831AoZBenJFKQnc1llPt7AALtaPby1p5NNB7t5vLqFp7bYKMvSUTXFyKxcw7iEvzfePMTG99tYvCSHFcvHK/KxBOSZP/+e/7zwFL/+6/N09SSzb18PrbY+WtsE89ZTluVRWprOmSun8NJLjRF+JxHa1jsjbesJupdiRVqH0y+aGkbJuVYj5713W9m920l2dia/fuI/PPbbH/GTay5iyRlX8o0bfiSuzmzf0cmePd309gTJteriRGAQEvR8vkGMafFmgYlWL63WFFojHSZ+/yDNzV7qdjvJyxcK1by5mXH7k2glVK2QccXiQk4tD/CvnW38+o19ZKSoWHHlNJafWPBRf2I2bWqLGAabmD8/i4YGF06ni/Z2YewlUeLS0fqRTOLoIZPJeOf9av75y+t56/1N7OwY4YMde/lgx14AFlVUcPs3v5XwubGkt6oqe1w9iK6iNzb24vWGqN5sx94u1INp04S0M683RG2NE5lUitGoRqWWUb1JSLQxpKqxWnWcdJJwwWY2C0a7r756EHuHjzRjkniRlpU/xO1/Q0z1+0ohHAa3TfBfat8pjOSFRwSvJ3Op0AU1ZSkYCyApDVRfsTEUqVTwtCo6WfgZHoTeFjjwpvBz6B3Y/x9IzhD8sApOGNdBVd/Qzbq1LQAsOyUvLlkO4utBc1sXiy+9icvPXsrXFp3K/v29AHS7AnHbmDdPsCTo6x+gqNggno9LStImHJ+IFX+cjvE1QaOV89ZbhznY2MeKitP51iUn8n93PsSmnfX8/JpvsWzxdJZFLvqffbYBpzNAS4tXFAFia0JVxItnogCCWFitKdhahbTZQGCIQHAIZWTRZ9nS/IRhB2O3l1oyD4pnQdNaqH+Vubav8cBJ57Il+Vvk5By5i2bTpjbWrm2msFDP3LkZpKcnsXFj2xFrwmQ9+HRwzTXXkJSUzr/+9TLbtm0g4PGx67Vd7HptFwq1kjOu/j5Llswf953YvNnOnph6AEfgCJ4gW7d24PEIHVdGY5LAEcICCZZKpWRnRzjC9ghHCA1hTMARvN4QdnsnXm+IglIVaQtaORSuxfl2BwBlpjJuPPFGZqTPID0pHankq3W9PIlPhkce2cVzz+0fZzdxRuEZpCel8913vsv9O+/n+tnX8+IDL7Lh1Q1c8eNbcLoF7ulyBVgbqQennBLhCGcm4AhHGG2NFWkdCeqBVivnvfcEjuByBfj+9+eKYlNa3kzufvJ+HvzZvbz2p99w9tVX0S8poLc3SG4kaCOOI1SYEhqKT8gRWsdwhDpBmALBqDx2fyaqL2OFu7lzMzCZxgt0idDQ0I3T6WfKFD3Fxam0tvbh8XhxuQIJtx3lSj2Bnok2ecwwKUodQ6SkpKAMz6I0M4XOk6/Hb68nuXk7fe3bcDm60KcXit5RD/32T+zdfYiTV5zGcccL3Q+paSpuu/0DkrUKFi3OIRQaZsf2ToaGRkYNQK0p6A19FBbq2VxtRyqTMLPchN6gijOMjh4wwYBgEjdlSiotLV5SDSoxfQwkZFm0DA+P4PMPid0rfZH24c5O/+fyOR5rdPeH2GnrpabVzUGHj+FwGKNWSXm2ngUFaZxQbCLToCZNqxwnwHzVoUtScsJUEydMNREcHKauzcPLu9p5d7+DR94/hFohZV5eGktLzOSmCX4jG9+PaRONiFKJ/NKCAT9rX3sJZ6ed7192Nj/6zd8pKcmhurqdDz/sQC6XYTJpKC1Np6oyO24MIoojXegDtNq87NrZxUgYjjsuC6VSJnq0VVZZcLkC6HQqPH0q7n7kae7/xa9564UH2b97G/NPvQVrQT4lJWnMmT0a1epw+vDEdGlFU/tiMZERutmkJRgaoqnRjSVbS7YlmYHB4XEdMbGPn2hbWYYkrjupiN1tHv65pYXH99l5y+biV6tnsWSqsHKRyCNk3boWDhxws2yZlRtvXMCmTW1YrbrJVe/PGBKJhP5+Iy2ym7l5xRNU6t7ikd3prO/SsHP/fqbm5dDZ4ceg76PfH+CaW//ElMwCrrhgMVWVFpxOP06nj+efb8DrHcTtCdLa5sXnG6RqoQW/b4hZFSb8viEGBoap3mxHJpVQVZUt1gCNVk5xZCQq2vlkNKpxdvshRYUhVZXgfYNOpxDJf2ObMELa3z9IfUP3ONHhS4fhQaEbqm0b2HdB0C0YjRuLYNZFUHwaZM4YHcf7incMx0GmgPQiSL8Ojv8/6O+Ehtdh78uCF9XelyGtEIpOgbyFIFcK6XE1DpCAyaQRk+wSjS+srd5FW2c39/z5n9jaern+wgvQaOWsWXOYut1OZHKJuI1zzylm3tzMo6oH0fvcnhA7dnTS3t5P0ZRUcYxjeDiM3zcUNy532dcqOW7mNFZ++06uuO0XrJh7Cld87VQWL8oRRwBnVZjEfYnt0vqoAIJYmM1aQsEhXK4gRqMas1mD2zNArNn62Mcn3J5MAdNOh7xFsOdFkg6+ygnDr9DacSFcdQ+ohfP/2Jqwbl0L27d3ifUAhNSnyZrw2UOv1xMKzQCSqKq6iI7O3YzoPuDw/u0M9A9gn7adgx4jJWEjD9z1D/bXd7D0rEUcd1wuAKmpKm677QOSkxUsWiRwhO1jOQIpeL2DuFwBjEY1Pt8gJ5yQi16vijNHFjlCMMoRDAJHSFWJ6WOOHi+yglbqdFvZsM+GVCJlaupU0mRmfBxmruxUTrae/Ll+ppP44mGs3UTsOem4vOP422l/45q11/Dbjb+l6d+HcLZ18adbf843b/8pVmsKr756cDxHqPqEHKHVy65dXYyMjOEIviEqK0c5QjRoIHpcaLUKFpz7f9RteIXnH3yEmQsXsvyyy9BGvEC1Y+pBojCARDCbtQSDQzQ1ubFYtGRnJzMwcASOcJQhM2NH7qJIVItrapzY7T5mzTJxzjlTaWjoxmTSxCVsfl6YFKWOMdrb+7E3ekjqUaI8qYLhotmcl3sLxnAvGt3oqtqG157F032Axh1PodYYmD5nIe2SqbQ6LCjUqchkUhRKKYHgEDZbn7jaGBWObLY+Tj+9QBShosQ2Kg5oNcIBo9XIkUgk+AODogFoaWm62IlSkK9Hbxg9GBxOnzg/HjUU/TKiyxtkp62Xbc292Hr8yKQSCowazqqwcPI0EzNzDRiTVSSrJg+BKNQKGfML0phfkEZwcJgPD7l4fkcr7+3v5oOmbnJSkzhhqonKxcLF+OIloyupcSfEyHdRnaThqpv+wsN3fpOeriZ+9u0LWHbhr1ClTEGvV5GerhHNz6PPi/0eg9Beu369TUyndDiFcVMIUz7ThMcdwu8fJBgaYXO1ndNPLyArU4vHHSRJo6BwikHscJJKpVx27XcpmDaXJ353I/954tukF32Dk89YKSSORV57+47OI3ZpfRRiO6tKStLGHaPR/YsV8Y70/1m5BsxKOevruqj3+rj8sa3MzUvlh6dMpXe/hzffbGbbtg6uvHIGeXl6kWhEbydXvT8/rFvXwo4dXWwPL+d3Zxm4Z/ELeHU57NDch1KjQCUTTCyfevl91m3bzDo285fXn2VKthWLLpdkaSa9PUEUCiFNaXgoTEenj9oaJ8PDYfGiKFoP/BHCEXsh43D4cNeFyMzSMLPchE6n4OWXG7G1eqmtcYoiU5S8F00xMLN89LiMrp4NhIbjHv+lwtAAdO4G22Zo3yGk42mMghl5XhUUnwK6HOF3ssmaAAhdVDoLHPctmH81eFqh7gWo+xds/TPs/DvkHs+CqcfjdJoBRDFnogvkb16wnEOHe/nV40/xj/+8TbOth29/7UIGB4bJy9ORnp4kbiPRxbjN1kdTk1v0jiorTRc902ZVmDDoVTgcfryeEH19wuKaRitHJpOgiRDvLoefKVMMAEwrzGHd337N6u/9nte2vsHupgN8++CFfP2K2Vx0kWAgHzs+8UlNbvPydLTb+8d5UMUiljxE9zXRqIjZrIN5V9FrPAH2vkSB859w/7/huG9D1fXs3evijTcOizVhbD2AyZrweaI9kjqp1So4/vgTOP30q5ApR9jQ9Szble/xlv8p6rauZ9Or2/A5etlX/QZJyTrKj6ugTW6hzaVHoU4WOIJCSnAsR5iXycKFFoEHxIhQsfUgel9JSRpabYQj+IeorXUyIPXh1jeysWk7bXlNhCUjZCZls9KyklPzTyXZb2GF4xwA9u+d9BybxHhEbSait2M962akz+CJ5U9w9dtXY7nJwsAvw3g6Hdx/420sv+o7KFMyIhwhKU4oGXtdAzEcocIkiql1dRGOUG7C44lwhOAImzdHOEKWFo8nSFKSgsJCQ1yHU/S2urqdHTscKPWLqfxaATvffAGPo43zr7uOXp/mv6oHsZ1VJSVp447R6P5NVA/G3n8k/7lEXfbRzzR6e7QpfZ8FJq++jjHOO28qu3Y56OkJMssNO3QjrGnpplSu4tIZo8R0yYrz+fC9dbjstQT9bnZ88B/gPwDoTDMZmHknCqWU2bMzyM5Oxu0O4XT6efa5BtQqGT7/ECUlaRw61Mvfn9jD4iXZXHB+6ajKq1EQDA2Rl6cj16pjYGCY+noXapUMh9MX9wU2m7RUb27nqSfrMWeMpu/k53+54lvt7gA7WnrZ3tJDuzuIXCphakYKV1bls3xGBvnGZIzJ/3vdUJ8EaoWME6aZOWGame7+EK/saufFnW08/aENtUJK1dfyOG56lvj4iU6IpdOtXHfHY9x7yzcIehtZ+9wtnHT+vSxePEM4QU4g+kS/x12dPpxOgRRHxdSdu7ogDHqDmvKZ6Xi9A9Q3dCOVSSKdiGF27nQwMDhMn3cQbYUJs0kbY1iez1lX/4XXn7oL5/4/8kH4EDOm3z5h+ECiLrAjobQ0HZ9/iH37euI6EBPtHzBuXDDR/7Mykrk0I5m2Di9v7+5iv7Ofi//6IcXpWnINUhq32NmwoZXrr5/NqlXTJgnHFwTLluWxYUMrPT1BXupZhVSbymneR5nW08sm+cWcsNSM2axlfkUBZy48kR376ulwOWhqa6EJoX09Sanm9NkrseaVUVycKm5bp1MyMDDMk0/VI5NKWLw4B41WzuNP7MHXP8jy5QXi6F/d7m6GR0awWJKZWW7C6x2kxxUQRzgE0+XR731Tk1v0tOrsEi7+FAqZKBh8KTAUFLyhbFuEjqjhkDCGVniSkJCXVwUpGWKHySSOAKlU8NFaciMs/B60boVtf4Omt5kSepfvlhRB6VmQI4yOHmmk7YarzqL6g07eb1zHB3XbGRkJ83+rVnPKsvGjbLGInhM7u0ZrQllputCpFZOqtHBhDg313Wg0Cmy2vkiHYR8mcxJORyBuLC9qWP791atJ/7eFN2ve4FfPPkSW9btccWHlhPsyUSfYRIgmXyqVsglXvsdGhMeKeolEvvSCQii4kZ6meiT1L2PY+Dskmx9iUfFF7DUu5Z0tPWJNuP32hR/5Hifx2SCWIwC89FIjweAQM2eexl8vvZaagXf55/5/ojtVjbROh6/BR6Dfy9b174vbSM2ZxkD5lSgUCTjCsw2o1TJ8vgQc4YIYjhBJm7RYVUzNGqIj1ILbv5/tKhc79kkwqTOYIa1kxZRTOLFkAZve7uUvj9jIz+8Qe/wqKjI+h09wEl90fPvbs+PG9hL5mBanFvPkiie54j9XkX8r7L81TLDHyRuPPcipV1zP4sX5ooiSCCJH6ErAESJdWnq9mvLyCEeo70YqleDzxXCEgWH6+gbRak1iylzUsDw1VU1SkozhYdCYy7j+3rv514MP8scf3cr5//ctrNZTxffycetBaWk6Pl+EI/iGEopbR6oHY++P1pToAkZsqnPU5mH/fhd1dU7OPHMKVVXZXxgRaiwmRaljjIULc7j77kWsW9eCzeYlqbqb4dk66nUDPL+tje+smIpEIuG7P7qehrMv4q23DtLbtQ+trJHm/VtprN9N6fQc8vP1eL0h8vN0/P2+b6HR5ZBsLGVElkfZrGnMni2k0fz9iT202/t5551WCgtTxQ6pmhoH9fUu7O39nH664ENTkK+jo9MvGpvHdmW8/tpB2u0+8rwpKJVCycnJ/mJfrIfDYdrdAba39LK9uZdObxClTMq0zGTOmJnFihlZ5KZpSNMov5p+KJ8R0pNVXL24kCur8tnV2stjHzTzzj4H7+53MjNbz+nlWRSakhMKNkL301Rs33mA5x66gaB3P5v+/RNOfuAfR+wcihKAwkI9LS1eDAaVmDJZNMUgGMVGHrtwkQWdTkl0/K7OHYJIKpFcLhW7saKG5UlqOSWlRi7//u/Y8+FLVL/xMI/9ugXrA3/FYs2P69iKRqFKZQLpH9uROJFQpdUIq/NaTeJTrJguEknfix63YwlQ9LahoZuaWidqlQylf4ivFZtwSIfZdLCHxsFB5FPVBGvdvPByI6tWCatTE8V/T+Kzw9h6cM/6OXRXfo/Vmoc5deTP2Jq+g9lczpLjSkjXCQR7MOzng1112FzNbN1bT6+nn6r5U9AqVFhzdTz3xju8/t4WFs2dTnZqDi67nPw84buzfr2N3budDIRGGBwaoajIgNWawvDICPb2fqo32ckv0KPTKVgUWU2PXUWLGj6/9vpB0Rw93SqI+Ckpqi9+l9RgQPCGat0iCFIjg5CSBVNPhWkrwRpJlVNMpkJ9YsgUkL9Q+Ol3Qs0zQtfUB78DTTpMXY65eBlmc+JVZLNZy3cuW476BSVr96yheu8OsrKSuWj1TeJjEl3kx9aE7ds7cTr9VFe3o1LLKS4yMKtCIBbnnlNMfUkqtTVONFo5bo8kQqIlcWN5MOrdFgoOceV5J1NRUsiz773IN++6h97gN/je5WePE5HqIzUhKgRPtHIdi9hurYkQ3T+NVo7d7iMzxsA3kTAW7RBTqeX4fV9jdv4pFA5sQtvwFD+UPMnMvDn85oPjeOmlZFatmjZZD74gGFsTDhzoRatV0N0d4PD+ABedfhHnTT2PrfO38rctz7Gj60O8Nie+Oh+hhhDew17yypLJKpQSdEvJy0vhbz+/i5R0CylmKyPKDKbPyk/AEWxY8pUElb2ECzuocdjoUdsh6AUJKFFhUGaR6S6jQn88UzVFLJg+hWmFGbS0eHjkwU0cONDLjBlGVCqhJpSVfYkWKSbxuSGRjylAni6P51Y+w5VvXcnwnSM03Q5Bl5P3n3uYn//1V0ccQ0vIESIpk0VFMRzBrGXhwjEcoU7oohU5QqQeRA3L1Wo5paVGTjtN4M46nZLychMnn/owv73lt/zjvj8Q9Ni55sfX0NjkFjjCx6gHDocPjyexSXsUIkeI1IOxj03IEWqcoiAdRTS5r67OSXu7j82b7ROGJXwRMClKfQqItkZv2tTGunUtlJSl8e92F9WdHv64oYlrFheiUsioqXXS2RliVsUCLlp9BQC9Lie+/j6UGsGB//CBA3TadgO7gTUANG1JoXFmBVOnz6LIWgSkU1ioH20xn5uJViPH4w4hlUnYVG2ns8OHTq9ielkaEB7XlZGiU5GN4DWglV9A5ckrKZk55/P4+I6IcDiMrccvCFEtvTj7QqjkUkqzUlg1N5sVM7LINiRh0Ci+8umBnzXkMinz843MzzfS1uPnsU2HeaXGzj1v7KPAqOHs2dlMz9Il/NwvuXQO+fmP8dBd38LZthdn+34aGqZQU+ukYpYJu72fnTsdzJljjpjwCygqMlBVmc2zzzWI6RarVk2N6z6q2+1k506HOBZhsWjRG6zjxlrVKrloAj08PII1T8+ixd9l1vzjeOHPP+La85bxgzvv44TlZ4vbXruuhbo9TqxWXVxBGLuKET2xNzW52Vxtx5yhQSKRYLf7xPG96OMSeb9Fj9soxnpN1dQ6qa1xUlRsoKLCjNWagsLWR9mADEV2MvWufrqOS2WnTMqPXtzNNxYV0DimZfpImCQsnx7G1oPCZYvpViwm7e1vMr39d2D/PlhmiR0fFbNM/OU3VwIwPDzM9j2N5Gfm0Nraj9Wawrb6eva3NbG/rQkQvKvysjKpc5SRY8piWmkuLseA6JMwb14mp59eECGwMnbt7MLjCVFT46Sq0hKJFw7FeSroUlSQLRg5e319fPPMCyia8gUlIAM+YSTPtlnwihoZEkbxSlcKPznzhA4p+Xj/rEn8l0g2waLvwfHXCoboWx6Bmqdhz4vCSGTZ2aAcf7F7wQWlXHBBKXf/IZtb//QotfsP4u33Y28PUlvjZGhohI5OH3PmmFm2dOz4mpaWFi81tU4GNtvJzNBSUWGOE0zt9n5a2/pQqWXodCpmzzEzMxIBHvW82r69k+llwsp9hlmD3zfIWSvK+dbX53PLb57ghl/+hQ0f7ubxe24gzSCcv+sbunnqqXrcvSGmRATfKGKN1g360fdaXd3Oa68fRKdTUVycGudR5fcNibdWq5BCuH17J51jDHwTdVdFzxfFRUJNMFnz2duSS7t9LpWpNZwk2c1p531Ir7oEarw0tM1m84cu4KPrAUzWhE8TY2vCjBnpJCUpxE4ShUzBwuyFrNsD+96fzXGnBcj5mYtaRy0HWw/iC3jZYXoKmUnO3pYwXbbDdNkOA5sAqF+vZMNUI/oiPfLSZLJPkyJJCvLPfsEfUCqRkpJqIMmlJ8k+lYyhYjz7U8lISefE44uRIuPAVg9GmY9phcL4ldGYxNSpMH9+Jmlpl5KZGWb27NkT7eIkJnFUyEzO5B+n/4Mr37wSyZ3Q9ks57vZOXPY2GhoyqKlxUlHxERyhKptnnx3DEWK6j+rqEnAEvXXcOJxaHc8Roul2USubJE0SP/vDzyibXcaffvEnDuw+QPbcr1G/P/CxOMLrkXoQHamOdjZFHzfW+y2RofvYmlBT46S21klR0ShHiOUXZ545hc2b7VRGQjrGvsePEqUcDh/1zU7yclJhytH8ZT8ZJkWpTxGxc/sXAo9vOszd/2ngjtfqufaEQrGDI9ZXJ9VoItUY8VQwaTGnS2m95B4O7tuBu6ue7o4mgv4+dm3ZyK4tG7nwG9fxxz+uxuH0sXf3YV79+63s21qKtbCYxZUZBAZScPVIaGpyA8LIk9Wagtdrp6bGgVYjx2pN4ZRT8mIOCuNRjyp9FgiHwxx2+djRLAhRLt8AaoWU6RYdFy+wcur0DHIMGnRJ8kkh6jNCTpqG21ZO54ZTpvLP7a08samZ369rxJqm4ewKCzOz9eP+FhKZmlkn3kY4VE/fyHzWrmvB3i6MBplNmojvq/CcseNrEyXgRbYMEnD1BMWx1liBZ2y3U/RkHb3tC2Xy7duf4b1XfsMvfngNa/+zjm/fcgc5OcIFolQqIT09acLUvNj3umGDjfp6F1OmGDjrrCIxLTOKfft6kMkkYkT5kcZcYhF7rhjbdmu1prDaqOGgo5+NTd28VmvnuW2t5KUmMdOiJd360cfx2Jn/SRx7xPu45MDU9+CZ1fD+r6HkTGbNWgYQNyInk8k4blYJABkZQvLb1eesxKA24xlw0HDoMI7eXprtHTT/WzAG9W7/F31ewWfkP9Xv8tRbbkqn5FJSmItWpSJJY2Tndgf2iLfJ0qVWPtgk1AONNr4eRNvB01MNH/kd/UwR6oO27YIQ1bUXwsNgsELZ14Sf7NmCECWbjCb/TCBXwvRzoPRsaN8Omx6A/Wug8S2Ysky4L0Fy4Unz5nN+VQ/T8gpEQaqm1okuRYFSKSNhPTBrxWMkGqWdqCZIgB5XEH9kjCl60T220+nGHxbGiV42Wx8r5p3KnNJp3P3Y48w6+zv8/Nvf4syls6mtcdLfN4ghVcXppxckTElye+LP+a+9fpBWWx+51vh6Ea0DsfXgSN4gYxHb9RXXwSiZCta5KHWDcGgjqa2b4ZVrOVWuYaZpETL9pTBs/UjvtMma8Onjo7y9RD+whXksrMwhNBzCHXRz2HuY+u56DnsOc0jVQvhaOd37HfQfcuNv7WfQN0DHrg46dnUw4+IZVJ5ciXJYi/fgCAde38GCOXMon15OakEug34jba0jvNZ6CLdBRqZZx/TpRrq7D7B2bTN6vZLp04184xvlomi2d2/OpFg5iWOG9KR0/r7876x64SKGbxphRu0iegat7F/bgt0e4QjmqLVM4powUQJe7HNcrqA41horWokcQZqYI8S+jtPpJ2/mQm57xMoffvJr9u+9n7TSlaSnZ0yYmjeWIxw+7CU7O3ncffBfcIQYn6hEHGFsOMfH2TYIn/fBg27kkk/3mmpSlPoMcdXCAsqydHz/nzXc88Y+Vs3OYfWFJUcUUqx5ZrIKK3F4i5h9ggFrjgZnx0Fk4TY6bfuZU3UCIBD3Nk0Pm9e/xub1r8VtQ6VOIlmfwaxFF+NxZ+HSyKnfc5ADte9Rvz0NhVLD9PIMFCMWFEoVBo0SfcrnW2xGwmEOOvsFIcrWi9s/iEYpY7pFx+WVeZxSlkG2QYNeM0k6Pk+kqBVcvaiQS4+z8q8dbTy68TB/fKeJnNQkvlZhYVaOgRf+tY+N77ej0ysZHpIglU6ntsaJJVtLaUkSFrOf0nJrnOH+oUO9fLjFjlIpwWpNwecfijMjj6KhoZvDzR6KphhQJ8mp3+uisFAv3ldT66Q10iJvSFWj1cjjupBc3QFkMglGo4Grb76PAekUtrz5R1oaa7nnT49xyrI8IZViVnyXSKLUPMGXR0eHvZ/i4lTmzc3E4fShN8Sb2sZ2Sh0pfS8WiYwIxz53amYKUzNTcPsG2HLYxR67lzdaXbz2j27KsnScXGLm5FIzs3IMyCLjrNHVcL1eSWWlJW7mfxKfMgxW+OY78J8fQs3TlBnrKTvrBtAe+W8gH9ZRklFBxSwTsypMvLvxIKi9ODxd9Hj6SVKrSFKrhDGpe7ewdfeBuOdLJBLSDXrSUlJZterH7K7rpqG+my17atl2IIn83DQOHuxjVrmZObOzUCkUpGfqP//27qBHSMyzbQFHPYTDgs/RjPOEjhzLrEkh6vOGVAq5C2D104JY+N5vhA6qprUw5WSYsQpUKTz/fAPvb2xHr1OiDWfR1hIUzcoP2Vs58fhCVCp53EXz9h2dPPfcPpxOP3PnZkQS5MaPHdQ3dNN82MOUIgNJajl760drQn1DN4/9bQ8Opw+zSSuO08WuOne7hJpQWT6TJ39+O7c88DDfvPNXfGf/Kr51/hlAAiEoZhsOh0/slIp2HeZaYeWZU+Lea6JOqbHv5UgoK02f8D2MPmglTFsOjgaktmosXbtg7duw0QCFJwppfkVLhaTJCCZrwhcHY0UrlUxFhjaDDG0Gx2cdD8BIeITbD7zHO/ubqVhlpHhaMh3th1HKumhtPsDFl17MksVLUMqUvP7a65z91h/48K1Nca+j0WgxGDI46aSvU1+fg8Pho6GhiffeW8uWLWkolRqWLMkjObkYlUqFxaIiI8PCJCZxLHD33dU899x+0nIuQL7iSXorm9i5M4tcrZVpxRpyMkaYNiMdvf4IHMEX4QjmBBzhsIeiIgNqtZz6+jEcocZJa6uX/ft7SU1Vo9XK486jrkg90GrlOBw+1q+34fWGmDs3l7+s+Qu3XPUzDu58Dtk8JeHwHJHPJzqPixyho59Zs0wJRSxgXEDB0fpUJUoA/Khk2KPpkIp2b02ZYiA7e/zi0rGEJBwOhz/VV/iSwev1otfr8Xg86HS6T+U1en0D3PhCLev3OSg2J/P1RQWYkiceLYiS64pZJtFAOeo/s+kDO66eAGVlRvrdHbQeeB9XVzMNdfU4OtoYCLjF7az6xh0kZyxBJpOwZ8cmtq75WcLXSzMX8PUbfsqCquNITf/sRjaGR8I0OvrY0dLLTpsbT2CQZJWc6RYdi4vTWVqagUWfNClEfYExMDTMy7va+fN7hzjU7SPfqMH+QRedBzwY05I4eakVg0GF2x1iSr6Ux37zHbzuHu5/6t9kWHLF7fzkJ+9z8KCbKVMMnLtqatx3PjZ9b/16G9u2dZJtSUZvUFFf7yLbksxll5exfr2N2honSpWUHlcAhUJGTk4Kp59eIJ68t+/oZMeOLkKhIfr6BpBKJeiSuvnwjXvo7e7ke7ffy7KV5x31/n9cU/TYYzv6nqo3t7O52k5llYWqytGVjY+77eGRMF3eINtbemh09NPc7ScwOEyKSk55jp451lSGHUG69ns4uTKbM8/45D25n8V58/PAZ7Zfu5+HNTcKKXGzLhJGnyZYrIhNG/P7RuvBvHmZonFzNOXrz8++TUdPJzUNzTQ22/H6PQwMCX4DBTmZPP+re9iwwYbHE+LvG/5Om8ue8DUvW76SC1cexxlLP+ORbn8PtG0F24fg3Cd8JqkFkHucMJqXWS54RE0KUV9cOPbB+7+BhldBIoVpK7jhb3paWoOkGZOYWS6c95adkse7u7Zw3V1/4ufXX8Kt/3dx3GZ+HFMTVp0r1ITMrOh5MMzMcuEi/69/3c2uXV3Mnp2BVqtg27ZOLNnJXH6ZUBPWrWshGBqioMDAnDkZhIJDcSLTuvUtvPuujWBgmOzsZEqnp/Hs2//hydffYMWSefz9Vz/ElHZ0i3Yf17Mj9tiOvp/YY3rsSvfH9gQJ9UPXHmHctecgeO2ABNKnQvZcsB7PB4dMvLNbybzKQk4/vfCo9jMRvoo14Yu6T9ExwGXL8vB4BsQxnUBgkJdeauTcc4uZNy+Tt9/eTmPj+3R1NVNdvYu2tlaCQbe4nZtuup/W1imEw5CUdIAnnrgx4etlZ0/jF7+4izPPPIn09C+4z+AkvvAoL3+cAwd6yc5O5oKrctiYcx8+PCyVnsVL9zxOMBDkDy/+AVPmKB+N4wjnjuEIMel7IkfITkavj3CE7GQui9SD2lonSqWUnp4JOML28RwhP18vmrAPDQ7x6K8f5fm/PM9JK0/ipntvIkk7sWflxz1nR4Wz2A6o6up28RiPrQmfhkdUbPps4XQlCpmClVNWfuztHO25c7JT6nNAqlbJX6+YxzNbbdz75n5u//deVs7K4rSyzISG3LEKqMMptDJGV+G2buvA4wnhcYfIyNSSZl2JJmOIfoULWvsoKNCwYG4SKpmHrNxC+gNatBo5w4Ec7I2L8Lp7GR4MkpwsJRgI4vMF6PO4eebP97Gg6vlP/bMYGh6hobOPHS097Gp14wsNo1NHhKipJk4uMZOpU6NPmvSI+jJAKZdx4Xwr58zO5oXtbTy0oYmB0hTSs9Qcb07hotWl4mM9vS4GB0I4O+3ccvWF3P/Uv8XR1cVLcsTbgYFhujp9FBbqx6XvVcwyYW/vRyqTMDw0wuDAMD09Adavt5GXJ5z48vJ0BPxDbPnQTnOLl0f/uhupVMrSpVbmzs2gsbGXHdt76OsfYGpxGudffBJfv/ok/vCLW/j1j66jdusmvvOTu1Enacbv8BEQFZEGBoZpafGOG71riPiT9PUPAoj3ba62s2dvNwCpBtU4QRr4SFEqVtg6qzKboZERPP5B9nf2ccDZT6cnyGObDuMfGAbgter93NfQyqXHWfnG4k9ORCbxCTHzAkFoee27sOMxaN4Ix/8f6LLGPTS2QyIaixxdZYsaN4OQ+FVgnMZ06wykPS0UKkPMqjBx+socdu62odMLY0+z52QAYeq6pqE9rGFweIDQ4CBKlQR/YACfL8TL727AbEr+bESpfge0fiiYlbsOgkQGxilQcYkgRGVMj3hEKT/99zKJ/x7mEjjvb4I49c5dUP8qvzxexWvmmVB0CudfOF186Lptw4TDYW77wz9I1aVw3aWjF79LFueItwMDw3R2+QiHw3R2+ggDBr0as1lLmlGNTqdiaHgEp9OPQinF3Rtkd103syIjHiqVjCyLlvq9Lvbv72HPHicjYWHbCqWU3t4goeAImVla5lRksPzU67no7Eouu/m3VHztOp6972aWzC//2B+Fw+Hjg012elwBqhZa4jqdon5V/X1CPRBFqZhj2pCqihOtjtYTJF7YOh6sx8OAHzyt0FELbhscehdqn2URYRbJYHh3OtgL4LJXEo5eTuKLg9iOqpYWDyAknf3kJxt5//02AJKSFNhsKszmM9FqB+joaCcY7KGiwsBZZ5nQan0UF5ewd+8AECYQGOLDD0+gs9PJ0FCItDQ5/f0BvF4/TmcXv/zlLzj77GWf1y5P4iuE1aun8dxz+1m9eho//WkVDv88Ln/jcjZ0vUIgGKCrtYubL72ZB/71ADqDcF2/OFIPFkfqQVdXDEeISd+L+lFJpRKGhkbw+wdpa+ujrq5bHHnLy9MRCAyxZYud5mYvjz46niNs395Df/8AU6emxaUCyhVyrv3ZtZTNLuPXN/6aa8+6ljv/cifWKdaP3O+oiCRyhIoJOELfGI6w2c6eSE1ITVWJolU00Q8+2iNqImFrLOJH/EIfuU//LSZFqc8JEomES47L46RpJm77915e3NnOxsZuLpyXy6xcw4TPGzuys2B+ltgppVTKqKlx0NToJi1NxYzp6ZgzNHT3SigpsVJSNjpD6/NX4Bu8lVBoCI1GwcIqC80tXt58sxmjUc35500l9VNaARkYGmGv3cP2ll5q29wEB0dI1SiYY01lcXE6J0w1kTEpRH2poZTLuOT4PM6Zk81jHzTztw8OsTkQZOj9Q1w4Lwe9Rok+1civHv0n3790Je0th/jJNRfz28dfRJuiY8XyQlYsF8SRZ59roN3ez+ZqO6efXsCc2QKJjnYMGdOTqNvdzZYP7SCREA7D/v091O12snhJTsSbBFJSlIRCwxw+7CEQGGLj+22sWF7I0qVW1Co5rp4AC6ssuLoDrK91svKy25m1YCEP/uInNNTu4NbfPUpe0bSE+xubjufzC50oHneQDRta6XYFUSik4mOjIlNNrZPOLh+DA8PIZKPbqqyyiLdRg/MokbLZvGLr8ZEQK2xVVWYjl0oxJquoKlJRVZTOwNAI/aFB7O4gdk+AHt8Abv8g7Z4AIyPhybTKzwOpeXDpy7DrH7D+DqFzaspJMGs1KBOTwrHt11URE8uqSot4MVFT42B4KIwhVcXCqmwCfVIkIR3ZaYLPzjLRNPQCNm+2o9epKJuexsxyE+++a+Odd1qZOi2VSy8p+/T23dsOrVuF0Tx3C0jlQvfGnKug9EwwTZsUor7sMJcIY32t21Cvu4Pz+QCSDkLLxYJIIpHw3cvPpsfTx88feobrf/En0vTJXLzyJABWrChkxYpITXi2AXt7P6HgEKVlRjFpCWDRwmysuTqqq9vZt6+H9PQkklOUNDX1UlPjYHqZkUBwmObDXpQqwQjd4Qzg8QgX3Dd8fy5e76AoHJnNWuobuult0/L8b+7kjkf+yklX/JifX38JP/7WBchiT94xSJTS99Zbzbz51mGUCilarYKy0nSxO8rp9NPdHWBwcBiPN4TD4RN8QGKO6ajnFkC6MYmGBtdR1YRYYUskIEqNcFyZpsHICAz6we+CnsPgdyDz9wghAv1dk6LUlwixSWfnnlss3kbHMNeubWb79i4sFg1LluSQn6/DZpNSWVnA/PmFzJ8vbGfNGi1Ll96K3y+EZpx33lTq6pz8+c+7yc5O5sc/Po7U1NTPZR8n8dXCT39axU9/WiX+36wx8+SKJ7n8jcsJ/yDMwD0DNB9o5kdX/Ij7nrmPJG3SuHrQ3t7P5s0RjjAnhiOYtRiNSdTVdbNli53BwTBy+TCNjUI9iHJnSMARNraxYkWEI6jluFwBFi604HIJC9+xItIJZ5xA/tR8brvmNq5deS233HcLS1YsEfcpUTqexxPhCN1jOEJEZKqpcdLZ6WNgLEeI1ITKSotocP6xOUKMsHUkUSr2GrMnMClKfeVhMWh49PJ5rK3v4t439/PHDU0UmZNZNTub4owjm4+ZTVrOOac47ndajRytViF2ZcSO/MQilrA0NbrRaoXxh6GhYQKBIZFYHyv0+gfY3eZhd5ub+g4vg8NhTMkqqqYYOWGqicpCIxm6pEmz8q8YNEo5151cxKXHWfnDO408u7WV2jY3y6dnsmJGJqZMC7/+6/PccPnZNDXUcet3LueXf3kWlXq0/TW2G8rnH2Lp0ry41zCbtOgNfWg0SvLz5FRWWXjppUbs7f0MDNqoqDDT1enD6QxQVGwg25JMfUMPeXk60Vsk9jh69rkGamuEC/+LVl9Eafkc7vrBN/nOhcu57mf3cNrXVo/7jiZKx6tzh3C7g4RCQ6SlakUh6v3326je1M7iJdloNQrcAyO02vrFbVVVZotje6kGYaxXrZKx4d1WelwBUlKUVFVmjxvziz3WY4WtRFDKpaTJVQz5hwgGoCLfiCxJiC2fxOcIqRTmXg5Tl8OGu6D2OWjZBCVnwrQzQKE+4tOrqrLjLjDMZsE3R6tViN0VY7urophZno7T4aexyc3OnQ4MejW21n5CoWFGRj565e1jYXhIGMez7wL7DujrBJkSTCWw4FtQshKMhZMeUV9F5M6HK1+Hxrdh/V1Q/QAceAPmXw0GK7dfdwkudx8PPv0aV/z4d+hTtJxx4oK4TcyqMNFu70cmlWDN1cWZ1kYvom2tQmpRcXEqWZZk3nzjME6nH5crAGHweELMmZPBqlVT2b3bwc5dDmZXCCOA5465rhKTMTGx/olf8vOHnua2P/yD97bV8Y97byIjfTw5r61xYm/vxxIxtAXBLHZoKExKskI0Kq+tEWrC4NAIKqWUkWFoafaKaZixx7QhVSXu/web7Gx414ZUIqGw0EtVVfa48d1oPYgVthJCKgVVMg6PBFuvCqt1vnC8O/dDeOQT/JEn8UXAqlXTWLVqdCEtL0+PXq/EYBCSvxYuzIlLWYzFWBHLELkWGRgYpq9vAI9n4LPbkUn8z8GsMfP4aY9zyZpLkNwoYfDuQRp2NXDrN2/lnsfvQakaXaCK7Yby+RJwBLMWvV7gCIWFOsrKjOza5eDgQTcdHT6BI3RFOEKRAYslmYaGHqxWnbg4EMcRnm2gNrI4ENvZlFecx59e/RP33nQvt19zO6u/vZqrb74amVyWMB2vri6GI6RpRSFqLEcYGBihtTWGI8TUhNRITVCrZWzY0EpPT4QjROpBbDdU7HhfrLB1JMQ+R/4ZZN1MilJfAEgkEk6dnskJU00886GNR94/yK/f2k9BupazZlqYka07aqFmrNnZREbK0d/HiljAERLOPh5GRoTEvN1tHmpb3bS5A0gkkJOaxNLSDE4uMTE3Lw1ziooU9STp+KrDoFVy28rpXFGZzy/W1PNqrZ0PDnazYqqZ5JCWm371OHffcDF1O7bwix98i9sfeAy5QoHD6cPnH+L00wtEc/BYRIUYrUbO4sXZool4cZGBYGCQ4iKDMAtdqKe+3kWfdwB/YJB58zLw+4dYv94mtOLGHCNjUzHziqbx4D/f5KF7fsp9P7uBD99/jwWnfA+lKonymSYxHTD6nOjxVz4TvN4BsQMr+vsN79jodobYuLEdrVaBViufUDyKHs8Op49dNQ56e4J0dwdoaOjm9dcO0h5JJqmqzI4b5aiqzBZJSVR4S4TY5xSWpH38P+wkPh2kmOGsP8KCa2Dd7bDnRWh4XfCaKj0TVEfvZzLWEHkic0uzWcvSpVZMZg3RVcaPJLMfB0EP2GsEP5vO3TAUBGUKZJRB+QVQcgYY8kBr+shksEl8ySGRwNTToPBk2PUkvPtLePNHBDKr2Kc+nZ9+81J6vf08/doGzvvePbz9t1+weN4MQLhI9vuEmhBrEB69L3oBvWihBWtuChqtnNoaJ8nJchTKZJYsziEQHKat1UuaUY3TKQix2dkppBk1Yjx37DESm3Qnl8u463uXc8L8ci69+beUn/V/3HjJlcwpmSb6Wo19TvR3J52Ui0oto6pydHTPYFDR1xciGBomKUlOcZGBGeWmhNdgscdy9SY7IyNhlCq5sMDi8PHa6wextwvkRamUjdaDCIlxOHwJ9y+KceOA0sRdYJP48mKseXpsZ1Usor+PFbEA3O4Q2dnJkwb4k/jUkZWcxV0zfs8Pgt9myg+L2P+rfez4YAd3f/dubnv4NmQyGQ6HD1+kHvh8CThCjFH34sXZool4V5efnh5BhIrjCH0h/P6h8Rwh5nwZm3Q3FppkDdfecSOK5Ez++Zfn2bOjnjv/fEfCdLzy8ghHiHRglZam09zspa8vRCg0zFtvtbBwoYXe3tCE4pHIERw+du1y0BPLEV4/SHsk4byqagxHqIrhCBHhLRHiOML0T79TffLK7wsElULGVYsKuGBeLs9sa+HJ6hYeeKcRo1bJ4uJ0lhSb0CUdWwFnrIg11r3/aBEOh+nwBNnX2Ud9h5f9nX0EBodRK6QUm1M4qcTMySUmiswppCerSFJOXuz8LyIvXcujl8/nkZcbeGRrM//Y2YYBKbM0KZy46hesffZmDtTvxtlpJys3TzwhZmVq0RvGhwFE7y8pSWNgYJiXXjyAUiWYFZ5zTrEoGjmcPurrXdTUOhmM+ChlZGjZu6cbn28wYbJfLNRJGn541/2YcmbyzMM/Z3v1VmaffAt6wwmYTdoJ0/HGdjKWlqZTVGRg926h3ba/f5AZ04Xfbd/RmdDEPCq8LV9ewOZqO1KZhJpaJyk6FdkI3VBCa7AjTlCOIxgT7NvHiYSdxOeAzBlwyb8EIWfj72D/G7B/DVhmQ/Fpgr/SMewsjR/nI2GM8FFj0A+OBiGFrbNO8K9BAvpsQYwoWAwFJ0BKBiSlCd0ak/jfglwB87/BFl8lvHsP8zrepCy8na6+Fdx02SXU7+9i14F63t60UxSlbLY+duzoQqdTjiMLsee8gYFhqjfbSU5W4HQGyMnRielMDoePV18NsGePC68nhMPpB6DD3s/6dS3MX5AldkslMh8HWFY1m3WP/przv/drbvnjA5xYvphf3XSF+H4SpeON7WQEgeSnpKgYHAowPBRGo1WyaKFAICBxh6LD4SPNmERxUSoajQKlUiYm/ZEN1txkamocpI2JR/8oD6rJejCJsRgrYsX+exKT+LQQNe/XahUsCFzHppz7ybu2iKYH9rGvdh+uLhdmi3mUI2Rp0euPgiO8dAClMoYjlJvExxmNajZvbicQiOEIe2M4wlEak69Zc5iAajoLztaz953nuOaMa7jjkTu46KJ4C4SxHVgwWg+GhgIEAkP09ob44Q/nH3FBISq8LV9ewObNdqRSCTU1TlJSVGRnC91QIkcwTsARJti3SU+pSaBVy/nm4ilcelwe/6nr4J9bW3ltdwev1topNqcwPz+VOdbUYy5QfRwMDY/Q2hvgcLePJkcfDZ199AWHkEogOzWJqilG5uWnsrjYhFmnIk2jRC6bJB2TENC1uwftB25yF6RxKCnM+75+1LJcTjr/bq648kTMFuHCJ3pC9LiDcQJLbIdUNHHjqSfraW/vR6dTCgXKoBbFmLrd3exrcKGQS0hKUjFnTgZKhZSmJjedHcK2oo+tqXVSXW1nx44uFlZZWLgoW7xPoT+eKcffTfueP7J1zU2UFt3K3DlXT9jJmCgxb+XKKeRadchk0Grrp7LKklBAij7X4w7S0eknK1NLYaEBV0+AvDzdaCS6ScuzzzUIY7gVJvH5YwlGoqS/2E7KHt9kO/4XEhIJ5MwT/HgcDbDtUaFrasMvBDEnZz7kVUF6sZBu9nnB3wOuJnA1CkJUb7Mw+qPWg7EIipYJY4mmqUI3lGqS+E5CwFvv9bJu/RmcsWAZ38h+Bmv3y6R0V7N6ZiULy+dw1/dGk/is1hQaG3vxekPiiBsIF+ZuT4jMLA1WawpPPlXP3j3dGI1JmDM05BfoxMfabH00N3vpdQfItqSgUEpZsjiH9vZ+PJ4QPa6A+Hq1NaP1oGqhhUULs8XtBH1yVi9azVvb3+W9PR/wg9+5eOGBH2PJSNxFkigdKdpRJZOBrbWfqkrLhGQh+ny3J4jT4SclRYlGo0CjlZNuTOKUU/KwWlNYv95GY5ObCm3i2PHo7VjB7WjjxycxiUlM4tPEunUtrFtnY968DFaccjx91d9iR8nDFH2njFsvvBmzxQzEcARPMO6cGdshJXKEpyIcISXCESLhGNGEve5uP0lJchQKucARlBGO0OmLqzU1MTVh4UILC2NqQk2Nk/b2foxGNcefVMmV36ziwVt/w/fP/z7X3XEdKy9ZGccXxtaEiph60NraL3ZIJaoJ0ed6PEE6OvxkZUU4gmsMRzBrefbZBpqa3GhjakJCjjAm6W/SU2oSIpKUcs6bm8s5s3M40NXH89taea/RydMf2nj6QxvZqUmUZKRQZtFRmJ5MsvrT+XMGB4exuwO0uwO09QY41O2jtcfP0EgYqQQy9Wpm5xqYmWtgcZERi0GDMVmJRjn59ZpEYkRbwZcty6NklonrH99OtcRNp2oG3ehwRQSU4kIl8xZMweH0oTf0jVP4YzuooiNwZdONmEyaMau9YfR6NalpatLTk2LulxAdVXI4fdTt7mZoaASVSoa7N8TWbZ3kWnWiEKZWyZm9oJzTznyctS/cz2O/u5VDDdv5/h2/xdYaoqbWKYpNudZkWm2CF9bixTmi+BM7kjfW7y3RqnZWppaSkjQ87iBNB3sJBobRahXi2GH0fRUVG6iYZeKNNw+x8f02Fi/JEc3iYdT3KvoeJvElg0QijLqdeT8svQP2vQZ1/xI8pxrfEszQTSWQUS48Tmf5dMZvwiNCQp6nTfjpOSiIUYFe4X6VDlLzBYP2vCVgqYBkEySlTo4DTSIhovVg8bI8TFVXwN6X0bx2CzdO/zdu4yIa9tqp2e2hdLqBoikGli61jjt32mx9dHb4yMzSYrP1Mb1MEIaml42vB1ZrCvn5OpQdMsxmDVarDpNJQ16+TvRfA+Gif2hohMHBEfr6Q2zb2ok1VyeSHrcnRHm5icKCr7GwaTpPrn2BinOu46lf30hueh61NU5RbJpeZqS9vZ+OTh+VlVliR+LYNE2brQ9NDJGKRbQmZGZp0emUNDb5CYaGsdt9caOMKrUwBjirwsQbbxzi/Y1tLFmcw4oVhXGiU6xx+tiurklMYhKT+LwQyxEWLsxBr1eS9MEIm2c/wguOF1jqWc2e3b0UF6qZd1wBDocPvT4BR4jpoIoKPGVjakJ0ocPvH6SgwEBysiIxR3D4qKsb5Qi9vSG2bu0kN6YmqNVyysqMZGcn43AEsFhM3P/P+3n4roe5/yf3858XN3PCeavp6BwgNzeZ1lbBCysahhE7dRGtBw6HL2EXa+w+lpSk4fEEaWrqJRiM4Qgx70vwsxJqwsaNbSyO1IQoor5X8PlxhEnV4EsAmVRCaZaO28+aTnBwmAOdfayp6+DD5h4+bO5h3T4HADq1HIshiZzUJMwpKtK0KgxJCpKUMpIUMpKUMuRSCWEgHBZG7oJDIwQGhvEPDOELDdMbGKDHN0BP/wDd/SE6vUF6/YPie0nVKMhOTeL08izKs3WCL5ROhUGjRKuUTZqUT+KoMLYl/JnrF7KpycnPXtnL79YdIEMqw7FuHU/V/ok7H3yMeQtPjBtBS9RBVVRkQKmUJRyBK59pQm9Qc+hQLzW7nFitOubNzWTp0tGuq1ablw+3dpKsVbCwKhtXT2DcOJzPP0hFhVlINEs5n8ozytmy4QG+vvJkihfcgL07FblMyuDQCM3NHpBISElWoNWMP9XGrnzMm5s57j1rNYLxuMWiFUUskHC42TPaJWDSRnyj/IRCQ2yqtlNX56SzQ5gjjxWlxnplTeJLjCQ9zL4UZl0sCEQH1wujfZ27YdffBeFIKoeULDBYQZctdCdpjYKPkyJJSN+SqwGJUBAYgZFhIXFr0C/chrzg6wZ/N/Q7ob8T+jpgOFIT5CrhNbJmg7lUSFEzlQgCVJJh0qR8EkeFsfWAGeeiKj4F1t5G2s4nUbtq2LB/AZf8fTe5OQZe+9Pt4zp6oudpd2TFvKQkjcsvyxjXmQTC6u9ZZ03hrbeaaWzsjVtRTjcmYbP1iV1Eh5u9pKerSUpKprTMGFcPOjt8lJSkUVPjwOfU8qPV3+H1Ha+z/Ju3smLBiRSkzI6k+klwuQLIZBJ6e4N4vYMkQuyoSax5exQa7WhNmFmeLvq/QVisJQBOhx+dTom7N8S//nVANKWOJSAQ73s1iUlMYhJfFCQaG1248BrePJzHLRtv4YXAP2j/t4rHd6zh3qd+ScXxFQm7QmM7qOI4wph6EF3oOHSol5qaCEeYF+EIEXGotdXLhx92kpysYOHCbFyuwLhxOJ9vlCPs3Nkl+DQbk1h49oUcaldS985LtBw4RHr512g+bBI4QorgLTsWcRxhXua4mqfVjuEIjghHOOyJ6yQWhK0IR9gU4QidEY4QUxOO5JX1WeGoRSm73Y7FcgzMTifxX0GtkDEz0pU0NDxCj2+A+g4vO2297Ovow9bjZ0dLL57AICPhT/YaGqUMnVqBQaNgZo6BnNQkpkU6stKTVaSo5eiSFCgmx/EmcZSIzodHVz0SYWGRiTe/t5g/vtPEn987SHdgF4MDfu78/jf43ZP/pqh0hvhYcSzPHSIrU1jROJKHUvT/L714gHa7j/q9LlGwiT4vGBwiWatAp1cBYQrydaInFcS3ujY0uJBKoHjmySw88Xgev++HbF1zMwbrheSVnYlCIaOo2EBzsxe3O8S+fb3juqM+arzO5x9ieDgsJmGaTdo4EW3sKs/G9x14vSEslmSmTDGweElO3GMT+V5N4ksOqRR0mTD7EuEn1Cd4N7VsgY5d0N0IbpuQcjfo/4SvIRdG8NSpggCVPV8Yx8sqh7QiUOuEH2XyMfW3msRXGx9ZE1QpQlfgrIsZ+ed3OF73NjfZA9Q3j3Dtzx/k0bu+l3ARzGJJxqBXj68JCcbS6htc2Nv70elVcaN9+/b1IJNJ8HoHsGRpUalkhELDlJSkJRx9sLX2kaSRI0PNLZdejUm7hhfefRNLahOV+ctISzGQl6djIDTMQGiYhvpu6ktSxTTMRDUhkZeV3yfUBL9vCHPpqP+bw+HDENMlEB1vfPPNw/j9gyRpZCxZnCM+Nvp6iXyvJjGJSUzis8bRcASA5QXL8Qx4uGvzXfQF3AyGgtx69a08+PKD5BWPpu5Fz9N1dSGyshJwhDH1IPr/l146QHu74EEbFWziOEKyAp0uwhEKdJSXJx6Ha2hwCaGmKpn4fH1OOZYFGrrr/k3n9qeYdv7lDCpy4jnCBPUAxo/X+SL1wOcbEvchVkQbxxE2juEIi3PiHvtF4AhHLUpNnz6dhx56iIsvvvijHzyJzwRymRSzTo1Zp+bEaWbC4TCBwWF8oWF8oSE6PAG6vCF6fSHcgSH6Q4MMDAmraiBBKgWNUk6KSo5BoyBVoyTLoCZFrUCtELqrNEoZKrl0sgNqEv8VovPhcGSjTJVCxo2nTePsCgs/smj5z2+6Cdh285NrL+HBZ9dgzho1ibXZ+ujoFFaqx3ZRJfJPstn64szBo4h2JJWVGamoMONxB9m5ywFh4nypYv2XLFla8vL0WLK0lM/MR3/3P3j96fv48J2nSdW0ctzyG5k508zICHR3d+HqCYjvYaLuqE3VdnbtElZWSkvTJzSdHZuoKYhVVhoaXPj8Q+TkpvDd6+cCsH1H50eanU/iKwRVCpjLhB8QOpoG+oWuJ3+PIFD5XBBwCWl4A77RyHeJVOhsUumELqekNKG7KiULFGqhu0qhEX4m0/Em8V/iaGsCufNJvqGaOZv/yHP+u/ja07387V9vk5+dwc+uvUh82JG6jBKJPLHG4LHpktFupLw8nbiqvn69jT17XWi1ClHEifXaWLTQQig4hNcbQiqVcePXz+PSVZV887b7eaP+ea4//xKStUoyi7QMDI5gb++ntsYpvo9Eq+Hr19vYtq2Tdns/6cYkzGbtxDVhjBdUdNXf7WkhKUlORYV5HMGKPm8Sk5jEJD5vHHU9AC6cdiEOn4NHrn0E+QMjdOzt4JYrbuHhVx4mzTyaIm2z9dER6WYd20WVyD/JZuuLMwePItqRJHIET5CdO4UJpagvFcSfhy2WCEewjJ63Cwv1tJQa4eyZvPHEY2x45i+UL1nOYHIFLlcCjjCmO2rTpqPkCGPqQbQTrKHBhc83RE5OCt/9boQjbO/8QtWDo76yvPvuu7nmmmt4+eWX+fOf/0xa2mR8+BcNEokEjVKORinHlKIiP/3z/4JNYhIQPx8O8OKL+3nppUbOPbeYVaumjXt8cUYKL/zfEh6e8iQ3XnE2vc4Wbvj6hfzlhTfQJsefiKO3sWLNq68ejDt5Rx8XNYIFxLS7aEeSUilj3txMcUwuOkeeSOCKjgNGRwXNJi2FU+7hjRnH8a+/3s5rj30Lyy33s7CqHK1WIY7MJSoi0W4mlUqGTqfCmKYetz+xqN7czuZqO2XTjSgVMiBM+UwTF60uEd9nFNHX0WrkE6b7TeIrDJkiMkqXCvocyJr5eb+jSUwC+Jg1QSaHRTewsnQlD3IW//ePBm594CnyTMlcdt5KIPG5NfbiPLYmlEUu6OPqQSTZKNqNpFTKRHErdszN4fCxu64bCDMzskoeO/4RHQ1xOFJ46hd38Iu/PcYvn3yUVScv5fc//QYWi1YUxyZ63w6HD5VajtGoRiaViGMYiYzIq6vbqd5sp6rSgiFVJW573rxMNP/P3p3HRVXvfxx/DTsMmywDgoKoqIAL7gGuiaWWWdpuLmVl+zXrVla3tL1fy832XbNFMzPzmmlqmgqkoYKKuCsgoAODbMMO8/tjmHFmmEFAccHP8/HgQcycOefMhOfN93u+389X6UBIR0+z6XmG47gpHWyu5iSEEBdSc9sIj/Z7lFNlp/j5gZ+p+r8qTmWdYs7dc3jvp/dwdXMFrLQRbOSBzTZC/fVRa5EJhmlyZm0Eiw6uXr388aofsWs4rlqtxcnJnqqqWsZMf4DcfZv57buf6Ng9i753P2H1nOHM6FZjG8HXpcH7MZWYmE1SUg4dO7pTW4vxvO64o4fxPA2MbYRLJA+a3Cn10EMPMXbsWGbMmEFkZCRffPEF48ePb81zE0K0EZbzw5cvP8Sff2aSnV3KgAGBhIZ6NXiNnZ2CR8b2od+6NYwaPhR15mHuu3sK897+iqL8auPwVuPS2fWdLenp+WRmFuNgb2fs4LFcBc90BFFVVS0HDxaQk61fzS8iwo9Ro85clA13rHOyS/H1czXrLDIc27BdhSKS8TM+Z+PP8/jv81O4b/bz3D5tpnGkoelrLVfXC2rvTkSEr1kYWVLnaVn1vyNk52jRaMpp5+OiH/iIAi9vZ2Pxc0PHVUxsELExwWbv13Deph1U6jwt+46cpkOwrIgmhGh9lpnw7bf72Lo1G6222mojBADfrjy4cA8ZjOXN79Zx74uf0MW1mK4DbzSbrmD5x/W++kywd7DDp/4PelOmd6cNUy9WrjxMerqGa6/tZDbNLTn5JLt2nqK8opY8dbmxmKzp9L98TTmpKXkUF1dy/7i7CPbuyI8bV5OVn8WSd5/hjjsijMc2bbAYzjszs4QybTWDrwrC28vZZiao1Vr+t+oIOdmlAAQHuZOSmodWW20sfH7HHRHsS8/nyy934+PrwpC4YAYMCDTeIS8sqjRO/bNc6S//oAYv9xKCZYafEKIVtaSN8FLcS+SX5/PXo39R+XolB/cc5I3H3+DBeU9y4oS2YRtBZdFGcLAzdvBYroJnOoLI2EbI0a/mZ7ONkFOqX+3VIg9MtysursTT05k6nYLhN93EkPh+vPrYq7w7+znmfT6PrpFdba6uFxTUhDaCWsuqVUfIztZy/FgRSncnAHx9XdFqa4x5Zei4iokJIjY22Ph+i4oqjQXjLfNg3/E8Qju0gy7N+B/bTM0agx8WFsaff/7Jhx9+yMSJE4mIiMDBwXwXO3fuPK8nKIRoeyZODCc7uxQ/P1fS0jTGwMnIKCItTUNUlK/xsdg+Pdi8bjVDhg4jb9/fvPj+Z4SGjMKvxo7Onb3Mai6BfpW50tJqQkI8iRuin+5nWW/K9G7Ehg2ZnDhRggLw8XVFW1Zj1mET3cefnGz9KnqG4uLqPK0xYACyMkvYkXySkFAvRsf3onffb0la8ymfvTWXfxI28uTL/8U/8MxwYNPXd+3SzrjS0tlGMZlOQRw6rINxpJSh0G16ugb1qTLy8rTk5pah0ZTTtau3ef2TzBJ27DjFoUOnie7jz/79p9mXno+j0hHFYJmmK4S48KKifDl8+DRRUb7Gx6zlAfb2vPbNGg6eHsMvv61j2quLWffgPtYcGEpk/y6EdPRoMB0hNeVMJgyJa5gJptdHlUrJKXUZR44Uoikop32Qu1mnTUiIB337BXDcopisWq01a3QcP15McUklw4Z24PHpNzHl5hgefHk+fSY8zPvPPcC0m+KNNytMX2vtfGyxnILo3U6/ypSzi73xvR0+XMgPi9MpLa3C19eVyopaRo0KaVAYvrCoEsgnN6eUyspafHxdcNUW4+ZdSLAMsBRCXEBNbSPMHzmfqZVT0T2i48gbR9j8+2YcvLvg4N0NJyd7fRvBpOYS6FeZM7YRrOSB5VRpYxtBAT4++s4d02tzdLQ/OTn6VfSs5QFAVlYJycknCQ31Ijra32Qfg/l01ae8+MCLPHLjIzzxxhP0GRJr1hllWF2vKaOYTKcgRkf7G0dKGd5feroGtdp2G8FQGN7QOaVUOujbCPvycfSqxEHRuovXNLswREZGBsuXL6ddu3ZMmDChQaeUEEKczaRJ3RkwINAYLgZpaRqSknIAzO6MDBw4kG8XfcOC79ZwMjyePEc7CoqqcSsoY2B0oNmdg+g+/voVL3zO3BG3NffasH1enr4ItK+PC1u2ZFNXW0dklC+FhZVE9/FnytRI410UQ4fSyZNaAgP14ZWSoqasvAbQFybv3NmHq158lV4DhvDJ609x7w3DeeyFN7j6uokoFPrgKi6uwtPTmV69/Zo8pc50eLHpaxKTsjl1UktenpZT6nICVG4EB7vj6elMZmZJg/pVhkK4Kal57N6dR0FBOWHdfQgOdm/SeQghxPl0//19iIvr0KQ8sLOz49sff2H06JuY2juQQMUaHu+2mKTC6wiJuw4wv9aHhnqSnVNKbEyQ1aK0lne1Y2P0NaJCQjwBHVu2ZFNbV0dUpD4T+kT707uX35lMUJtnQp9of7JzSqmsqCU7uxR/fzf6RYaTsuJDZv7nQ+5+9r/8uHor37z5OCpfb7M8MJ3ucTZmeVC/vaF4+taEHFJS1GRmFlN4ugJ3dydCQzyNHWmGeiWGIumFRRXs2qnmeEYRujro1y+A2B6eeIV7t/D/qBBCtExT2wjODs58Pvpz7qi8g5p7amifH45/WC8yM0uoqKjFy8uZ6GiVeRshur6N4NvENkK0SRvBt76NUFdHZH0eREf7M2VKpM08MLQRyg1tBJNOLbVaS06eHS9+9ibfvfc5r816jdix19At5jo6dPRqcmeU6fuwzATQT+k7daq+jXCqnIAAizaCSR54eZUYO6fs7RXGNkLnKKdWbyM0q0fpiy++4IknniA+Pp60tDT8/WUZWSFEy4SGejUYkmsIH9MQMrj11lsZPPhadu/J44/j+axGw15FLTX781C6ORg7XQwr1+3fX2Ac2WQ5bc70DsaA/oHGeeDqPC1Hj+4jO6cUjaacuvoa0HfcHoHKX0l6ej6rVx+jqrqWTp28jNPl4mKDUCodcXG2NxuR5R3Yl3HTvyT970954+mHWbJwKff/+xVCO+tHTTW3xpNlnSlDvauszGKOZxQTGOhGzyglMbFBdO3qbTal5fc1R9my+QRDh3Uw1j9Rujng4uyApqCc3gNU+Pm5NvlchBDifGluHiiVShYv/om0NA2bTt9Fr0PPEu+4nMKdWRw9HY+b0sH4R7mTkz2BAUqcnOyNr7ecNldYVMHJXH3DIzY2mNhY/R10tVpLSkoeOdkWmXBHBCqVkn31mVBdZZIJJiO0TEctDRgQyJN3TSPQvRMLfl9G+Oj7eeWxGdw2bghw9pFRlqx1XhkKumdmFZNxXJ8J0X0DiI0xz4Tffz/K5i0nGDa0A2PHdjbWSQkMVFJZWUtsXBCRqkIIkindQogLr6mZ4OXsxZfXfskdNXegqysjysmL3r1VZGQU4+3tzKFDp1Ga5IFh5TpjG8GiXp/lKKcBA0zaCOr6NoKNPDC2ESzyIC6uvo1gkgcqldI4gikry5GQATdwe/sQfvpkAdlHj/HMf5+jR0/zRTvOxjITDPWusrKKOV6fBz17KomxkgdbtpxgqEkeGEZKubg4oNGU03uwW6u3EZrcKTVmzBi2b9/Ohx9+yNSpU1vznIQQVyhrIWTt+WsqO1L48CySHQeS6qkif8cJ/tPNBwd7O6Dxux6Wd6VNqfyVjBsXRkpqHt7ezsaRUgYpqXlk55QSHORu7JACjEupmtauOnP8UMZP+JAvP1jE5pXv8PJjE3ju/+YzePhos2NbK6h+NimpeaSm5OHkbIeXlzO9eqq46aZws/djsGXzCY4cKQRg7JjOaPLLTY4XToG2qknHFEKIC6GpeQCd+etPBxZ8+wpz2Mmoyv3sSLmVyAj9NfZsebB/fwGBJlMkTKlU+kxITTmTCaaFw1PrO6yCgt3NOqQMdaisLc99143DCfHvwCe/LOWxN+azY38a85+biZfHmeu15WqBTZWakkdKah7OTvpM6NlLxUTTTKg/v81bTPJgbGdUKiVBQeXkqcvoPyBAf0xNYZOPK4QQrc1WJgS5B/Fx/MfcveZuttv9wsw+M9m++idKgwZyJLMWwOzv6ha3EerzIMUkD0wLh6ek5JGdXUqwRR4Y2whW8kD/OjWHDxfSp09f3v85mhdnvsizUx/nhY9eIDomGsBqQfWzSUnJIzU1D6f6POjVy6KNUH9+W6zkgUZTbnK8cArKC6wd4rxqcqdUbW0tu3fvpkOHxpdqFEKI1jZ79my+++pTVKq1dL/1LbKUCmZ9t5MBSiXjhofYXLkOLKZtWNnGEB7p6fmkFOYZH1fnaXFxdiAy0pe4WP1IJ9MV7dR5WhK25qApKDcbuQWwY8cpKhS9iLvxA/KPfM3zD01hzKQ7mfnki7h76gPW0MGk1VY3qGtlS2ioJznZpURG+eLv72Z1VT/DfoYO01+7Dd8NxzO8ZyGEuBwdO3aM0WPGUF1dTcm9D/BM8AbiWcDOb/Zz3GM0Q4Z0NK6kZ6kp9ZsMHUz70vMprL9mGhoXoaGegP5abFlQ1zCNrkBTjptS/+e24Zrc4agP1/S8ntExOXz3x0r+3JbKly//i2uG9APOdC6ZFi0/2ygqw6p94V29iYz0xcnJ3vj+LAv5DhuqzwHDd9NjGt6zEEJcLqJ8o3h96OvM3jSbWY/N4si6I/gF72TUlEfx9nbmyy934+vrQlxccKNTpM+WCWZthBSTNoJai4tLfRshrr6NYLLohlqtJSEhB42m3GzkFoCdHWhLq7C3h8i+kXy++nNefuRlnrjzCWbOmckt991i7GDSaqsb1LWyJTTUk5ycUiIjzdsIlnkwtD4HhprkgeF4hvd8ITS5U2rdunWteR5CCNFkzz33HD/++DNq9TFC/v6AUdf+hw0lWrbqSqnZmc2Ma8KNRWQtNdZhZdqRY9lpk5lZgrasmuhoFRERfmYr2qn89cNwt/+TS1FRJUqlo/E1+/cXsC8tn9yTWnpG+fHsOwv4edE3/P7jf9m+eQOPPPcaQ0dfZxyRVVNTx8aNmXTt0g5PTydAR6/e/mbnbDjP8rJqAgKV+Pu7MaC/eaPLsrj72DGd6d8/gMzMEtR5WuPxTEeCCSHE5SYsLIxJk+5nyZKPeHfhV4xfuwqPzR/Tz2kj/qcPkXtkJipVlNXXnq1+k+kf76adNuHh7di/v4AePXy4444Is9WaTGtU/bP9TCYYXgOQmVVKmbaGru278f2r8/i/RYu49t7nmTphFO8+c59xNJYhD7p0bUdIRw/clA4NOqkM51hYVEGZVp9Rlp1wloV8x47tbJymYWg4GY5pOhJMCCEuF6NCRjG7/2xey3sN520u5GdnkbbxJzy9prFr1yk8PZ3p2NGz0Wt+Y5lgmgeWnTaZmSVotSZtBItMyMwsYft2622Ew4cLKdVWk5VVWn+MSv797lxWLlzMJ698wr5d+5hw7wzApI3Q1aSN0Mu/wWp5mZkllJdXExBQ30YwyYSm5IFhBFj0BcwDqVIuhLjsBAUFsWDBEm65ZSzJyX/RoUM3ohRjKezmxN+nijm97iAzh3XG06V5K0WYXqhNO23UeVqKCitpH+jWYNit6fdBA9ujKSg3vtbwnK+vCzt3nsLd3ZH//e8o9p5xzHptCH/9+i4vzZpBXPw4HnnuNe64PYING45zMleLpqCcw0dOgw68vF3MptsZama1D7Q+5cTa+Vm+P9NaWkIIcTl77bWXyco6QkLCGibdMYWXX17KusTuPBT6HcFZb0HgPRA2rNn7Nb1mWnba2NsrjCOgrF1vQ0I8GDioPQWacvpE++Pn62p8PCrSF42mHFc3B9L3lPHCPQ9yYtIhZr/5Jb9vSWb+szO5/fbhbPgzg9yTWgo05ZRpq7G3V1BbqyMzq4TKihr6RPtTVl8fxdYURFvnZ/n+BgwIlBFSQojL2rSoaWQUZ/DNo99w/M0M9m77B1XHjgQFDSAkxNPq9bGpzNoIJp02arWWoqJK2rc/SxthUHs0mnLjay3bCEqlIytXHqG2tg4IZOazM+kR3YM3n3iTo/uP8sJHL5CR68DJk1o0mnIOHz4NgJeXi9l0O0PNrPY2MqGpeXCh2wgKnU6nu6BHvMQVFxfj5eVFUVERnp6eF/t0hBCN+PHHH7n99tsBmDhxHjNm3EWRrwOv/LYPOzsFM+LCUDk5mE1jM0hMyiYpMcdYFHzP7vz65bydzEYmmRZG798/sMGIpKb65ZdDbNhwHDelE926tSOskyc9e/lxYNdGPnz1WSorK7j/iRfoP/xGTpzQonRzICdHC+gICnJn9epjZOeUMnBgoLFQubUpfpbT9mw9Z15Tyo8CbRV2djCxbwfs7KyPMrOlrV432+r7EqIt0mq1xMXFkZqaSrduvZk48V1GD3Lj6tPzIDMJQofAoPtQF9SYTV0wSEzMJjEph6j6qQ5uyjPX4N71d6JNRyWdzC2jRw8fm1MDG7P8l0P8sz0X73bO2CkUxpFQLsoaXv78W5b+voVxwwfy8iN3U1fpYhwhZTinbX/noNFUNMwDK3f4Ladq2HouX1NuXsdKcxi6jQG/8Ab7PJu2eO1si+9JiLaoTlfHA+seYO2ytWR+kQlA/JSZXHvTiAbXa1vXx8TEbJKScoxT35QmeWA6Msm0MHr//oEtygMwaSO41bcRwjyNx8k8kslLD79E5pFMpsy6lx6DhuLu7tiwjZBtpY3QyDW/sefMa0r5UVBegKO9I+O7jG/2e2vqtdOu2XsWQohLxFVXjWHSpPsA+O23N7Czy+WOwSGseDiOIC9X5m84xJLtWaSna4z1PgySEnNISTnF4h/SSdiaTWJiDgkJ2Rw7Xmy2XWNFD9PT81m8JJ309PxGzzM9PZ+ExGy0ZTV4eTnh7GzP+g2ZJCbk4B8Sw7i7v6L34NG8N+/fvD77DjxdThER4UdQkBJ1Xjn79xdgZ29HcJD7WafbGe50WL5f0E/jG9A/EJW/0jg90TAdRQghLmdKpZIPP/wGDw9vDh7czY4dn9K5bwRM+w2GPwVZf8Oap1EfPGD1GrlmzTG2b89lzZpj7N9fQGJCDomJORw/diYTztxJVjS4A70vPZ/Fi9PZd5Y8ADh0qIDMrGIqK2ro0rUd6fvy2bLlBAf3l3PjoBv5YM4sUvcfZdi02azb8RddunjhpnQgNSWP4uJK3NycCAp2p0+0vtESEuKhn5qt1jY4VqOZoFIalwM35EFqimSCEOLyZaewY/7I+USN7o1/vAqALcsWYV9X2GBbW9fHpKQcdu06xbJlB9my5QQJ9Xlw7Fgz2wiLm9hGSMhGqzVpI6zPJCEhW//cdi2PvfkS191+HV+/+QmrvvyUslItanUZQUHuaLU12NnZERzsftbpdk3NA8P0xJQLmAcyfU8IcdlKS9PQvftk+vZN59ixvTg56ZdwDQ/wYOUjccz9XxqLt2fh7+LIYH8Xs9fGxAZx6PBpSkuryTpRQvsgJUVFFZzM1bJndz6Qj+EORP/+AVZHHlnWnbIcfWVan6qyshZfX1ciI3zJOlFCcXElmoIKUlLz2H+ggj6xj3LzlLv48NVneeS2MYydNBmvkEkcPFRN13Bvhg4NNp6DZT0rU4ZQVLo5mBViB/ORUlJTSgjR1hQXezB+/IssWfIEvr4OBAcrwd4eRj4HnYbB8vuIyv4vHgE34Boyzuy1SndH7O3tsLeHwPZuFBdXceRIIcczili58gidwjwJCnI3dkZZ3mW2VijcMPoq1mIJblcXBxzs7aip0VGgKUejqcDZxYECTTmHDhcS3acj+377jLkffMcLH3zHVz//wU1x47Ar9ye8q0kemNSvsqxpZRAS4kFhUSWFRRWo1VqrtUekppQQoi1xdXTlLpcXOHXzo1RkVYBah72u4SrTtqayxcQEcejQacrKqikrq6ZTJ0+OHCnk5Ekte/bYaCNYXHst604ZRl/FWORBSopJGyHSl6ys+jaCpsJsH/96+V/0je3LW/9+i51/7yVk4ESgH6NGhZhlgrUah5bvV6l0MCvEDuZ5IDWlhBCiGaKifAG49dZvUSpr6Nq1q/E5Z0d7Xp/YmyFd/Zjzyx7mbzlKNxy5pl97IiL8iI0J5tRJLQkJ2QDExQYR1skL0AE6du5Sgw6Ki6vJOlFMYiKMjg/F18/VZsdOUmIOe9P0d0ScnOwb1KdycbZHW1ZDxw6e+Pu7mXUI6afRRfDpsvX878eFfPPhW9TWrqTPkGlcNXgGPXvqhwRbq29lylDI3VrHldSUEkK0ZVFRvkyefAO33daH8eNHmC94ETYUHkxAsXwmoYd/JmvDXtJ73ktEr44AjB/fBXt7O6qraslT6+tAeXo6c/xYETm5WgpOVwD6/aWv1VBZWUtsXBB+vq5mK/GZduokJuWQtrdhJsSPDqWqug57OwU+vq4MHBhofJ1S6ag/trsb7865n3tvGcO/XvuUtxd/RXR4BMPjp5tNEVGrtRQWVRLY3kYmqJR4e+mv/d5eJWaNFKkpJYRoq+J6d6O07iU+evTf+Dn4ETEgosE2hsLm6en5bNiQaZyuFhsbzKlTWrZuzcbDw4kePXzw9HTG2EbYqQbq2whZ9W2E0aH4+rra7NhJSsphr5U8MDzv4mKPVltDx471bQSTLDH897Cxw+jWsxvP3vsC6eu/plvHCvxu627WsWRZ38ra+7W1OMfFrCklnVJCiMtWaKgXoaFeDR4/ffo07dq1A+C63kH07uDFjW9tYY+uEs2OE7zQ3QcHOzvihgRTUVlLcXEl2rIaRo0KBfQdP/rGh45jx4tJSVGjAPz93cxWULLs2ImJDTJ+N1tW1l9JRISfcaSS0s0BbVkNvn6uxucM7B0cuHHyvYwYeyNfv/c6a5Z/SPbB37n7sWcYMvo6MjNLyD2ppUcPH5urCBqOa/rd1mNCCNFWnMmEzsbHdDodRUVFeHt7g5svTP6JP+bNZkTtInz2vgLt/w1+XYmM8MPP19VYH6RMW0P8qFDUai279+jvioOOXTvVHM8oQleH2ap6hpX4TMXGBBm/Wy41bujMMtSL8vN1RaVSNugYiuwawh9fvcov6xKZ/cYXTJj1LDNvHcvzD95OoL8PmZklnMytz4QmLHPelMeFEOJyFxrqxf2h19A5w44nNj3B9/u/Z3rUdEoKS/DwNr/mWY5qAoiLC6aior6NoDVpI6hN2gjH6tsICittBIuOnZj6PIixkgcREX7GkUpKpQNabQ2+9Zlg2TkU2DGQz1d9zNdvf83iT74j+/ABnnrrKfwC9Sv65Z4lDwzHNf1u67ELSQqdW5BChkJc3tauXcsdd9zBJ598wm233WZ8/K8tmfzfmoPsq60kyNuVB0d0xq6yrn6qns6suLmpxKRs1qw5hrvSkfHju5iNlGqsU8ia9PR8UlLzjCOmevTwMRZOt+ywyssrY1+ahtDgIpI3fMmOxE107xnNpHuewMOvl3G7lpyHNVLovKG2+r6EuFKUlJQwffp0srKy2Lx5My4u+mncCQkn2LfuD6a4vI1L1SnoeTNqv3gys0qNnUTWpmPsS88nMSGHmto6HOztzEZK2So0bsu+9HxSU/JwdrGnTFvToGi6oYHipnRgR/IpMjOLiY0LZPuhZN744ieqqqt5fNqNTL9hLMePlWNakP28kELnZtriexLiSvHl7i+Zv2s+3XK6sfaNtTzz7jMMuWaI8fn09Hyzwt6WHUS2CoMnJORw6FABLi4ODUZKNfdabDgHw4gp00ywPJ+8vDL27dPg55bPyi+/pKa6hsdfe5zIQQPPet4tcSEKnctIKSHEZS0jo4i0NA1RUb6EhnqxceNGTp8+zT333ENERAS9e/cGwMHOjkFOrozt2Z4F+3J4ZVU6sQFe1J2stDrqyLQDqVs3H3r08DHerbBWo8lyZb+NGzMJCfHk2ms7GZ9LSc0jMTEHZ2d74mKDzOo+GYbNGpb83peWT+5JLeDHG18sYdffW/n6vVd5bfYU+sUMY8DIaVToOpmdjxBCXOlMM0GnO82mTZsoKCjgwQcf5Ouvv0ahUBAX1wG4hnfXdeR+1ef47V6Cs+sujpTeQJcewVZXUNqXns/q1cewt1MwdGgHs20MK/NZ1ugAfV0pszyof85Qg8rHxxl7ezt8fV3MXm+aCX9vy6HwdCXOLg48/cQt3H/rGP7vy2W8u3AFnyxeze3XXkOfkGi8vVzOX6eUEEJc5gx5MDrqFg6FHeKr779CW6zl9Vmv88nKTwjpGmL1dYbrr60VVtPr88DOTsHVV4c2yANofGU/a5mQkmLSRogLMqv71KCNsC+f3FwtPXv68fX6r/nvnP8y76F5jL5pNI+99Bj7D5XarCt1qZLV94QQl7W0NA1JSTmkpWkAePXVV7nmmmsoKyvjxhtvpKBAf1Fevz6D9esz0ewtZPVjQ+nVwYs/s0+T4w5BwQ0v2IYi5pqCigarLBnYWsVi48ZMdqfmkZCQbfZcdB9/PNwdqayspaKyFm1ZjfH1ISEe9OjhQ3Qff3r08GHosA70jPIzTgnse9UQnn//J26a8SZZGdl8/toM/lo2m/wT/6DT6VDnaUnecbJ+6qEQQlyZTDOhU6dO/Pjjj9jZ2bFw4UI+/vhj43br12fw+4Z8PsqbBePewaMqg5ucPqOzR67V/aam5JGTXUptna7ZeZC6u2Ee9In2J7qPP64uDuTllZO2T2P2ekMm9In256rBQURG+hqnA7bz8uDxKbfy9X/mEtsrmi+W/8rsj17j2zX/Q60pBDB2kllbkU8IIa4EpnnwypBXuPqhq3Hv4U5ZaRnP3/c8pcWlAA1WmzNcf21NZUtJySM7u5Q6G3kAZ2kjWMmE6Gh/PDzq2wgVtWi1VtoI0fVthKEd6NnTj5iYILzaefHiJy/yyEtPsHnNViYPn8aJQ/vNzv9yyAMZKSWEuKwZip0bvtvb27N48WIGDBjAsWPHuOuuu1i1ahXx8fq54PHxoVQUVjLGyZ061wp2FZXxQcIxHosPp72Xq3G/pkXMLedzG0ZRhYZ6Wg2tkBBPsjKL6RzmZfZcRIQf14/vQlJiDqGhng3qTlmOeBo7prPZz1lZpWjrIoge/S7tfTJI3vgt7zx7H8sXRhAddzOuvlcBwTJySghxxbLMhPj4eN58803+/e9/M2vWLPr160dMTIwxE3r29GN1/tU4hX1B9OFn8N35FlRNgp4TwaRQuunqdNam9aWkqPHxdbGaB5lZxYR1Ns8DQw2rrQk5uLk5Ehnpi5OTvXEbQ0Faw7aWMjNLyDpaydDuo3jothv5c1ciny5Zzec//ca0G0cxrPdg6srdjfsSQogrjWkeONo58um1nzIhbwL/PPMPWUey+L8n/495n80zK0quVutX2CsurqSoqIJevRpeQ023t3zOMA2v0TZCVjGdO1tpI1zfhaQkK20EkzwwGDv2TBtBoVAQ2nMAsbf9i93rf2L+0/O4+d6b6fnvGUDjK7ReKqSmlAWZMy5E25CamspVV11FRUUF8+bN44UXXjA+t3r1Ub79No3s7FLcOruT09GRijoddw7uyJCu/madTqdOlqEpKCcuNsjYObV4STqpKXn0ifbnjtsbruZhWR/KdHrfhg0ZbNqUiYurIyNHdqS8rIbGalpZ7te0Bpa/nxt7dvzN5+/+lwOpW3B0dmPkdZO4ddoMQrt2N77O8H7Ky6s5fKiQocM6NOjwkppSDbXV9yXElUan03H77bezdOlSgoOD2blzJyqVCtDnQVJSDkePFnLqRD7vjlxOb/4CVRTE/QtcPI21pHx8XQgMUJKRUUyfaH9jZ9HixemkpOYR3ce/QbFz09pQlrWqkpNPsm5dBsUllYy/vgtdu3obi6qfrT6UaQF2w7ani0p4+o0f+HHtnxSXldA7vCszbxvHPbdcjYuzE3CmlpW3tzOHDp0G9KsBNuj4kppSZtriexLiSnSg4AA3fnAjB185SF1NHQ889wC3zTxTgzY5+SQbN2ai0VTg6+vCyJEhZtPzTDudTp0qQ6MpJy7OpI2wOJ3U1Dz6WMkDaFgfyjQTjG0El/o2Qnl9G6EJ9QINnWm6ulqy9iax5ONF+AX4MWbqNDLzPBpMF7R8P+Xl1Rw+XMjQoR3MOrxAako1W6dOncjIyDB77PXXX+eZZ565SGckhLhY+vTpw6effsr06dOZO3cuw4cPZ/jw4YD+jsm114aRn1+Gn58r/h3cmf/PcRYmZpCeW4LriQr2puaTk11KvqacoqJKlEpHY+CYjqKyxjDqKXmHfsnVosJKvLxL6u966Dh9uoKavHKSEnMoK6uhrLwagFGjGg8clb+ywTa9B8QQ1t+B03XXY1+RxN8bf+OP5Yvo0qMnI8fdyMixN5KSWkJqSh75+WWUlFQB+lFYpjWxisqrycnR0t/Xg7BO3i392C8ZkgdCCAOFQsGXX37J7t272b9/P9OmTeP3338HztxJj472Z+/edpTEf4ymdCVe215C8duT2A/5F6kpduzadQpPT2d8/VzJyysHzoxgMh1FZclyCe7Cokq8vfTX3ZAQD4pLKsnJLiUxKQcnJ3sSE3MoL9NnQnwjmaBSKRs8387Lg25+/bixVzDVzmoOa9J4+JX3mfPel9wUH8sd1w0nL9OZPXsKsLODUye1UL9qVKRJcV83pQNoNHi5lxB8YVcFbzWSCUIIgO4+3Xl/2vtMPzqdnEU5fP7G5/Qa1IvIvpGAfmRSv34BFBdX4unpZFbbSaVSGqf65eSUkp9vpY1gMorKGstMKCqqxMvLoo1QU05SUn0boayJbQSVSRthdGdG3zict59+m69feR1l+14UDbmOa6/t1OB1hveTl1dGaWl9G2FsZ7OaWIVVZahzq+jtUGR11fPzoU11SgG89NJL3HfffcafPTxkmVshrlTTpk0jMTERgMGDBxsfDw31Yvr0MxfV1auPMrDUni4hvqzLKMDd0Z6QcE/aOTuiCnCjsrKW6D7+Zp041kZIWTIMvc3KLGbnrlP06xtAr97+FBdXoykoJzLSl337NOTmGJaX1bNWQL2x0VcxsUFoNOV4enZnxMhnqSnZw8bVv7Doo7f58t1XCA3vTbv2fekW1o/TpQEMHdYBMB/OW1pdw5HDRaQFaNpEpxRIHgghzvDw8GD58uXcdNNNZiNnQ0O9jH9kT5qkH2G6evUYjlZ7MN3pHdw3vkp8wDXkde8JKAgPb0dhYSWhoZ7GhkpkhJ/VKXamDHlQWFTBjh2nOHToNKNGhTD++i4kJuUQW79MeFB7JTm5ZzLBVrFcWyOwDHWnAlRhKBRX4XZ3NXuO72Xxb3/xzYr1tPP0IKpTN2J696Rr9/a4uyqNnWmmxXS9a4tx8y4kuPd5+fgvCZIJQgiA0Z1G89ys53juyHN0DexKeNSZEaFmnTtg7DwyPBcd7Y9WW42zsz0qVX0boX7an7GNYGWElCVjGyGrmJ07T9GvXwC9etW3ETQmbYRcizaClUywNvqqQ1gH3l3yLu+/8j2rvvme1N+O81tYJdMfHo/CZGq6ofPMdKQUWLQR6rQcO1xKmotGOqWaysPDg8DAhlXyhRBXpo8//hh7e/tGtzGdcz65uoonfkwlzamSLjoFV0cGMKC//ppiGPkE1le8S0/PJyExB18fF+KGBBtHTBUVVoAOQIfKX8lNN50Jv65dvY3hYmA297v+OJYrb5g+FxsTbLYflf84hsSPo0xbSuKfa9i0ZjWp25eTsvkb3D29UJzuj/pwNIEhkQT6d6BDByUllbUoUBg/i7ZA8kAIYSoiIoK0tLQmZkIcmm6jcN89F//dP3J3x4Os0d6Iv78bY8d2btBQsWQ65W9IXLDx7rharSVPXU5xcSWZmSXExgYTGxtsfN0NN3QxywRbtUCsZoJKadyfacNl4vV9eOHhO0lJP8qCnzewdutO3vruGxQKBb26dWJvXncG9upG56AOhHbywNdXCZpivMK9z+HTvvRIJgghDB6MfpCD8w6yKXsT+4v208u/l9XtTGs7gb72k6EIuenqfGfLhPT0fBIScvD1dSHOJBOKiirqt9ChUjWzjaBqpI2gUmJnZ8esF6YwZuIwPpz7IYv+778cSE7kkRcfoUOYvvPJ19eV8PB2DW58mL7vwqoaHBSOrdpGaFM1pTp16kRFRQXV1dWEhIRw55138vjjj+PgYLvvrbKyksrKSuPPxcXFdOzYUeaMC3EZMl0K3FpPfm1tLb/99hs33HBDo69183HmgYXJ7MguwqdOwV0DOtK7pwp1npaErTkNakz9vuYoWzafwMXVgVOntHh6OjNpUjdjZ5a1kU+Nae5IqbPta8mSA2QcK6BLaBEejsfYv2cXB/bsoui0PtScnF1QBYcw5tZpfPbqnDZRU0ryQIgr29nyAGDPnj24ubnRpUsX26+P9CG0YCXVq56mulrH0fZT6TlqJGq1lq0JORRoyomNCzIbKfX770dZtuwgVdV1dAh21+eBSU0SW6OfrGnuSKmz7WvJkgNkZBYR2dsDB49Ctu5MY/vug+w9lEFdXR0A7f19CA9ux5qVv+Da0XpDrTFtIRMkD4RoW6xlQlVNFZNXTyazJJNHej/CieQTxMTHNHit5XVYrdaSkJBjVk8qMTGbpKQcYmKCzG40/P77UbZsOYGLi0UboT4TmpMHtrZvrE6VgU6nY+varXz00kcUqAu45b5buPb2iaz4NYOMjCKGDAnmppu6WT2m1JRqpscee4x+/frh4+NDYmIic+bMITc3l3fffdfma15//XXmzZt3Ac9SCNFaDEu/AmaNkISEE/zxx1H++GMuf/+9kYULFzJt2jTj8xkZRSxcuJf8fH2dkHHjOrP04Tgm/WcDKXUVfLEzi3td7aku1E+7O3yo0Gz++JbNJzhypJDA9u707RuAs7M9RYUVqPO0qPyVaPLLOXToNFVVtU3qnLK2Ep/lY+o8Lck7Tja6L3Welg0bMjly+DTFJdVERIUzZcYkQB9OJ7MzyTx6iOyMYxw9cgRvnzZSPATJAyGudI3lwfr1GSiVR3nhhZmEh4eTlJSEm5ubcRvLTAgdN5UvVtozpvxlotSfo03MItMxngJNOYcO6/PAtFNq85YTFBVV4u7hyMBBgbhZ1CTJ11jJBBuNEWurLlk+bmiQGB63Rq3W58HhI6cpKa5CV+XLtJvimXZTPADasgp2HzjG4cwcDmXkcCLjKK6uLk3+vC91zc0EyQMh2hZrmeDk4MTdXv/hP7kzefS2RylKL+KFj15g5PiRxtcZrp3FxfpOasO1t6KihsP1139fX1eSknLIzi4lI6PYrFNqy5b6NkKgSRuhqAK1WotKpUTTjDwwPX5jj6nVWrPMAX1txaFjhjJoxCAWf7yYHz5ZzK/frca320gUHl3RaCq4mC75TqlnnnmGN998s9Ft0tPT6dGjB7NnzzY+1rt3b5ycnJg5cyavv/46zs7OVl87Z84cs9cZ7oQIIS4/lkuBG6xfn8Gff2bj4hIGbOSBBx4gOjqaPn36APqgys+vwM/PlagoX37++QDLlx9iYKQPAZUO/GNXxceJx+iMI+HtXOkT7W9W5NxQo2nosA707x9Q/4d/IV7eLqj8laSk5vHPPyfZszuP0E76uwTWOpIsV9drrOPK2hQ/a9sUF1fRpas3bm6OxMUGGZ9TKBS07xCKvbMfOZpQXDsOwqfjpT2tQfJACNFUjeXB+vWZDBrkgYeHB7t37+bBBx9k4cKFxjobppmQmVnE5MmriIwMY7H7R9zbfhGqjBWE6HZzqt2dKPv4NyhwPqy+JkffaH9COnqSk1PKydwyQN94SEzIYdeuUxw96m5sHNmaAmhY6bWxmlVNWe7bkAddu+jzIDYuyOx5pZsLXYJDyD3uQIibP9PviLR5vEtFa2aC5IEQbYutTPhnUwlOu27GqdP/QTq89dRbdO7RmdDwUODMtdPT05mQEA/jiKiOHd3p08ef6Gh/MjNLsLOzIzjYvUGBc0ONpqFDTdoIhwvx8nIxFk7/55+T7NmjX9EPrF/HDavrNWU1vsYywdnFmemzpxPUvR+L/vslmf/8gm9QKH7XTm+wH8N77X2VkqsGtu7175LvlHriiSeYPn16o9t07tzZ6uODBw+mpqaG48eP0717d6vbODs722ygCCEuL6YFa03Fx+uD5eqrX+T113P5/fffmTRpEsnJyXh7e5sF1YkTJcydm8ipU/oGxPffX09+SSUPL0pmW1YhTkoXHhzfDRdHe+OUuv79Axg7Rn8dSt5x0iy8QL9KX052KVXVtWaPW8rMLGHnrlNUlNeizitn1KgQmx1OlnPcG9umqqqWjIxiABKTsklKzCEmNojYmGAyM0vY/k8uheVVKN0u7UiQPBBCNNXZ8iA+PpTrr19CfHw8ixYtIjY2lpkzZwLmjZf77lvL33/nkpdXxh9/3Aq6q8nf8CXtEl9kbN1H2A1/FIL0HUaGEUv9+weY1Z0KbK+kRw8f4zXZx9elPgs8zR63lJqSR0pqHlptdaNT9JqTByEhHuRryklNyaPwdCUnT5UZpyCWaWv4Z3suRUWVdFQq6Hxtkz7qi6Y1M0HyQIi25WyZoBzwJnOPP4I2XcuLM1/kk/99gqvS1ezaqdGUs/iHdE4X6kdNPfHEQEB/7R86NNjqlDpDHoC+7lSDNkK0Pzk5pVRVNaGNsPMUFRW1qNX1bQQbHVNNyYTogV3weeNZ9u/aw8qFPzD/6Xms/mE5gZFXM2bCQGJjg0lKymHv3nxqHEulU8rf3x9/f+tLKp5NSkoKdnZ2qFSq83xWQojLSVxcB+Li9HcqIiO/JSKiN0eOHGH06Ils27beLKgWLtxLdXUdAQFuTJyoLzbo5+HMDw/G8ulfh5m/4TAvrkzj4RFdUFsZrRQS4kFWZgmagnI0+eWo/JVERPjh6+d61ql7ISEe9OsbwLHjRcYiuLa2tTbFz9Y2i5ekk5qSB8DRo4Xs26ehorKG2Bh9gA4a2J6cgjKioi7t6XuSB0KIc2WaB9CB1157jWeeeYaHHnqEwkJfnn76ZrNMaNfOGWdne9q1q++gUCjwi78Peg2B5TPgrzehx3XQ584Gd6dDQjzIzCrh+LEiYuOCjA2IIXHBhHT0POs0DcMILGcX+0ZHQtma4mdrmw0bMklJzePo0UJyckupqdGhVDoyalQIAwe1p0BTTnh4ddM+0ItIMkEIca7OZEIc5Y5ZvHTbS2QczuDpe15i/pLXGlw7a2p1tPN2JibmzGhTa9dga6OVQkI8yMoqQaMpR6MpR6WqbyP4up516l5IiAf9+gVw7JhJG6GZ076tbXPo0GnChkwn2iGbhP/9wqHU+Rz4OwrfDx41vsfe/c9e6+pcXfKdUk2VlJTEtm3bGDlyJB4eHiQlJfH4449z11130a5du4t9ekKIS4Svry/9+/+bNWv+TXLyRt58803mzJljfN70LvqZhgvY2yl4eGQ4A0J9mL00hVd/38+Y7v50797OeCfCMAqptraOgoJKs7pTjXUimRY2HzUq1OxnA0Mx9aHDOhhHZTWVYaphdB9/amrqyM0pxc/X1ViT6qabwinQVmFn16zdXrIkD4QQTfXUU0/x4YcrOHHib1566SFmzBiBn9+ZDvrHHutPZKSfMRuMAiLgnnWw5hnY9S2o0+kU8SDgY5zikZhkngeGKXhnazBYLi1u+jPop1Rs3JhJSIgn117bqUnFcU0ZOrtqauoor6jB1cWR0FBPMjNLGGLoPNMcbtY+L2WSCUKIpnh+9PMsvfNP9n62iT1Jf/Pz1z9z84ybjc8bpuZFR/sb/763xXK0kmEqnNU2QiOZYHr9HzUqtEEewJli6kOHdjCOymqqM+8piuDwnvzx81qKM7fzwPUP0Puqvtw9eyodewc0a58t0WY6pZydnVmyZAlz586lsrKSsLAwHn/8cbP54EIIAXDvvWMpKDjC9u0f8uqrr3Lvvfca77aa30VvaHBnX/73yBCeXJbKb+lqevi7E1unX8Q0KTGHvWn5dOzo0aDulKn09HxSUvOI7qMPNcPdlKLCSry89UETEuJxpnCtv9JYTB1odqdURISfMfh8/VyJiPClqLDirDWpLleSB0KIplIoFLz66gc8/PANlJbm8t577/HKK68Yn280E5yVcMP70CkOfn8Kv+0v4hBxD4czu7Bxo75uSMeOHkRbqTtlYK1ulCETCosq8fZqmAmJSTns26chJ7eUiAjfZndKRUb4ERnhh1qtJSLC17jvs9WlulxJJgghmkKhUPDciPk8pb6ZrGWHWPjfhYy5eQzuXu6A+d/TZ2O4jhqu24apcB07ehhrUVmTnp5PSkqesePL2EYoqsTLSh6oVEpjMXWg2Z1SZm0EX1eiek7hdMFEEtclcODvDTx+6+N0i+7G5H9NbtHqe03VZjql+vXrx99//32xT0MIcQmxtST4pEndmTjxfV54wZtJkyY1efi/YdWm+PhQvpg6kC82H+GdPw5yLE/LdZXVxNQXEm/n40xOdqmxYKGllNQ8UlPyOHSogIryfUT39adHDx+zjiLArNPItJh6c6jztCRszUFTUE5crH7ZWpW/EnWe1tgB1tZIHgghLNnKA4CpUwcQHb2GZcuW8eKLLzZpf6Z5EBd3OwT1g59n4L37A5R1gwgNGY2ziwM+7ZzJzrGdB4a6UYcOFVBesY9h9cVwAQqLrGdCbEwQlRU1hIR4NusabrjDbqgz2Cfa37gsuYFkghDiSmArE26/pTdDx2zkqqqr6DC8A/Zu9mfdl2VHkoFpZ79hKly7ds7kNJIJKSl5pNZnQkXFPqKj69sINvJApVKaFVNvKss8MJy7SqVErdbSzucaHnhyIkf37mHxZ4vJP5nf5H23RJvplBJCCEu2lgQH/d2Ql19+uVn7M6zaBPq75w+M6Erp8VK+2HOCFcfymNgvmNmzB/Duu8nsTdNfvGNjghvsxzCC6u+/cziZqwXg1lsirHYUGf577JjOZiOkLEdbWaPO0y9juyP5JGXlNU2eTiiEEG1NY3kA+hXZevfu3eT9WeYB/t1IjFxAXcZzxDqvpavXSRxv+jdvf3actL31eRDbMA8MI6j+/juH3JP6PBg7trOxYWAYKWVgqDliua+zrdRnuqx5SWk1eXnlAE2eUiiEEG1JY5kQ7BHMis9XcN8f97EwbSEze8/ErpEaF4aOJMDsb/KqqlpOndLSubMXsbHBxMYG8847/7C3kUyINsmEk/WZcOut+mncXlbyAPSZYTpCylYnmak9e/LYuVNNVVUtJSXVZudumgcBATF0j+2Og13rdhtJp5QQos2ytfyrgeEuiZeXE9u2bScnZydvv/2K1W3BvN6UgTZDi++OEhxjfVi2M5v0kyX0HaS/y20YOWXJMFTW29vZWCcKzDuK0tPzOXToNEo3hwadR+o8Lct/OUxWZjFabXWDwFHnaVm79jipqXm4uzsSEuqJm5ujzemEABpNGTk5Wvr7ehDWydvmdkIIcTlqah5ERflSWVnJM888y+zZjzFkiPWOKmt5sG7jKdZvncCjo6K5teYzWPMU1/e+BfAnNsZ6Hhim0nl7O7N5ywmGmdzpNm0Y7KvPBDelQ4POo33p+Xz77T5K6xsWpp1SarV5HnTv7kOvXv7GkVLWqNVa8g9q8HIvIfjSXv9CCCFa5GyZ4FfRlfFu97G84GNe+fpd2hf4c99T06xua1prylRGRjF5eeVkZBQbO6AMI6ZibGSCWRuhvk4UmOeBsY1gJQ/Uai3Llx8mK8tGG6E+E5KTT+HsbEevXv44ONjZnE4IkK8pQ51bRR/HIqs3dc4H6ZQSQrRZtpZ/NTDcJdFq1bz//u3U1lYzYEBPbr/9dqvbW6stYmiQXD0qhCOKGt5Ys58TDuU8cFcPwgP0dzAMhcuNQ2TrRzeNHdOZ/v0DyMwsQZ2nNet8MkzxA31AmRY/z8wsoaK8GgcHBb4+rg3OMzOzhG1/56ApqCSskye3397jrKOisnNKOXK4iLQAjXRKCSHanKbmAcAHHzzHmjVL2LNnG3v2/IOLi0uD7RvLg+D4YRBxO/x8Lz2yF9Fj6Cjo3xewPoUuMsKPsWNN8kCtbdDQMEzzA4z1oAyZkJqSR2lJNe4ejg06mjIzS/h7Ww4Fmko6hXkalxG3dofe9DV5x4tx8y4kuOmDx4QQ4rLRlEyoS+mFStGHP1/7Hmohok8Xhlw7pMG2tmpNWeusMoyYMrA1ja6xTLAcmWWaB5mZJVRU1LcRfG20EbbloNFUEhbWtMUycnK0HDtcSpqLRjqlhBDifIuK8kWtLiM/34kxY6by229fce+999K7d28iIyObtI8OHTwYOLA9IR09GRrqxYDQdjy6JIW3/jjA9b2DGNzekz//zKK4uJLSkjNTJgwdTYbpFGBecNwwqsnb25nFS9JxcbZHW1YD6IfrjhgRAujo1bvhnY2QEA8GXxVEZmYxI0eGNOiQsjb1LzjIHQUKm3eMhBCiLTNc+7y8nIiPv4etW9dw+PBeZs2axaefftqkfRjyoEMHD/Dxgrt/hw1z4e9PIf8g+REPsuHvSptT6HbXT6fo109F/Cjz63afaH+02mpqaupYv+E4ACdzy4zPGb5bTt0LCfHgqsEmeWCl8WE59S8kxAO3Ck+8wr2b9L6FEKKtMbQRPPMf4eio7Rz/4xCvPf4aX6z+guBOtjv1Tfn6uhIe3s5q5xCYT6suLbVoI6gt2ggm125DJ5e3tzOLF6fj4mKPVmuljdDLRhuhkUywNvUvKEiJg8KxVdsI0iklhGhzEhJOsGzZQYKD3bnllu42e/VDQ71QqTQcOVLIzJlPUV5+jD///JNJkyaxfft2PDzOXvDVck56zw7efHxjL/7z6z5WpuaQsE+N87FyQgKUxMQGGUdKgf5uRXFxFfb2dhQVVpiNljLcdXn/g52kppyie3cfrh4Vqq8n4q9k1CjbdzVU/kqm3BUF6EdpJe84aXwdNByFBeDr64a/vxuhIa1zB0QIIS4GQ0Hynj39cHV1tFroHM7cNV+9+iiFha489dR/efHFe/jss8+IiYlh2jTr0zZMNahR4uAE177GKeUAvDfNxvvvF/FSx6FVxhAbE2RlCp2Cyspajh8rbnBnPDLCj/37T7Nhw3HatXNlxIiO9OjhY6wxZa2OFOgbMlOmRBl/Nr2jbti/5SgslUqJyt4Xgtpe0XMhxJWtJW2ENx9cwszMURTuL+S5+57j05Wf4uLacAStJWurmppeg/fsyePw4ULat1cSU58Jhg4nszZCUYVZJhjbCO/vJDW1vo1wdajxut5oG8EkE9RqLcnJJ83ywFp9LD9fN9qrGh9Zdq6kU0oI0easX5/BH38cx8/PlchI/QXV1qpLpnPKFy9eTL9+/di/fz/33nsvS5YsQaFQALZX6bA2J/3YwSIiChVEdmvP0sOnKAhyINjHiZirgswKnxsKFBYVVpB7sgwv7xIr0+x01OnAxdWBAf0DscZ0ah9wpsHhrzQPxPp9GzrFGqsxJYQQbYGhIPnBg6fp3NkbtboMlcp6HoDpNb0XOl0mL774Ig888ADR0dH06dPHuJ21TLBVo2RHcTR7KudzQ91/GafahMbxBL59n2gwha53Lz/y1GUUF1eSmVnS4A52gaacmuo6XF3s6d3Lz+aUC9NGD2DWCWWtkWQ60koIIdqylrYRfl/+O8OuGkbGgQzemfMOz/73WWMbwVpnP5z5O9+0OLnpNRgUuLjYExbm1WBan7GNUFRBbm4ZXl4NMwF01NWBi4tDg5VUDZqbB7bqY7U26ZQSQrQ58fGhFBZWEhzsTlSUb6MrbBjujmdkFJGcXMr77y/gttvGsXTpUmJiYpg1axZge5UOa3PSTUPs+kHB/GfVPv4pLKV8wyHuiQvD09UROFPY3Nqqewaj40Px93czdiCZdkAZOpnMAw6zTihrgWhr7rsQQrQ1hjpPhpFSarW20VX4TDOhX787GTFiK5s2rWPSpEkkJyfj7e0NWM8EWzVK9JnQiwLPb9l78Dsicz+E356EAfdApzjjdvo73CFmDQhTsXFBKJX6ulHW7robHrOZCSrrmWAoti6EEG1dS9sIBcdUPPfWK8x94GnWL19P74G9GT95PGB9RJThvy07ksyvwR54eTlbvd4bXmtt1T2D0aPr2wj1HUjnIw8uVhtBOqWEEG1Ohw4ejB7dyeaoJmsMoRQT04V3332Xxx57jISEBP71r3+hUCjOukqHKdOGSShe/B6pYkHicd754wD/WbmXqYND6d/Jx7i96ap7lizDwdrIJ2uhYvjvxvYthBBtXVxcBzp08DDeCY+K8jWOlGpMWpqGbdtOMnPm6xw7dhCNRsP+/fu56qqrgLOv3GTKrLNqyBzIvwVWPABJH0DWNhg0E5z112lrjRgDa51H1hpDjWZCI/sXQoi27tzaCDdz6+M7WPruUtb8ucbYKWXtmmuL5TX4bNfjxq7ZjbYRLrM8kE4pIUSbY3nX42wrbIB5A2Ps2EcICQlh/PjxxqG5TdmHLXZ2CuI7+qDoFcrSTDWfbD7KgIzTTLkqBKWzo9XRT7ZYCxdNfrl+aVg3ByIi/KzuIzEpm6TEHGJizacQCiFEW2eaCePGdW7Stdw0E3799Vc8PDzo3Lmz8flzyQT8upJx9Y9UbHib8NyvsFs9GwbeBx0GALanglhjLRPyNfpMcFM6GGtEWUpMzCYxKYfYmKBGV+ITQoi25FzbCEvGLqHOt479QfvZdWoXfQP6nnPnTmPX/HPNA019HiiV9W0EG3mg73S7eHkgnVJCiDanOXewDSxDacKECcb/1ul06HQ67OzsWnxOaWkaju3W8PDgYA73ruPTv44wZ/leYlSeqLAn96R+FaXGOqXUeVr27M4HdGASONYKl1tKSsxhb1o+FZU1ODnZN5hb7uDm2OL3JoQQl7JzzYTQ0D5mz9XV1Z1THgCk7S8iKfM6ruk9lKH5r8KWtylQ9qK23wwyT2J1Kogl01XzTLezLFxuTWJSDrt356HRlNO1q7dxmoix8WN/Tm9PCCEuSeejjbD46cVMWzON7/d/j5+rH8HuweeUCY0VRDfUlDJ9zhrTVfNMt7NWuNxSUlIOe/fmU1Fho41wAda8kE4pIUSbc053sC1otVpmzpxJhw4deOONN1q8H9MQHB/qxbiegcz8+h82ZJ/GpaKOWB8Pm8N+DSOpigor2LlLDTrw8nYxK1yel1dGXl4Z6en5VkMnJjYIAFWAm9W55Z17+DR4jRBCtAXnMxPWrFnD7NmzWbduHcHBLb+jbMiEkKheELyJA1//h7Dsr2HLM5RVXI2b12CrmWDacWSr88nb2xk7O/13W2JjgtBoyvH0dDYWVTdrGIW1+K0JIcQl63zkgYO9Ax+M+oBJP05i9ozZjB48mvufvL/F+7NVEH3LlmzKyqqIjPS13Uaoz4SUFDWHDxcC5p1P0dFNaCPE1LcRVDbaCFFOLX5vTSWdUkII0YiNGzfy/fffA3D8uBePPjqFuLgOzd6PZQh2b+/JV3f0Y8abCWS4w19lWvzzShjl54Zd/ZRBA0NDoX2gkn59AwBdg6KEhtFSKal5VgOna1dvnJzsUbo5oC2rQenmQE6OlvaBbk2aAy+EEFe6uro6nn32WdLT04mJGcu33/7K8OEt672xzASXa+eQlBxP8M7/MMxlNacq01C5PQGY3xk37TiytWpeYWEldXX677Z07erNqFGhGPJErdZSWFRJYHtDJpS26H0JIcSVwMfFhwm1E9i0bROLty+moNSbCbdd3aIi4bYKotfV1aHRVFBRUWtzlJQhE3x9XVEqHRusmhcR4WccLZWScpY2gtIBrbYGpbK+jWDMA9tZcr6c29hjIYRo466//nrjCnzLlr3Mjz8m2Nw2I6OI1auPkpFR1KR9d+ncjlenRjPJ3Zue/h78mHyCl1bt40ieeWMgJMQDpZsjx44XERSkZNSoTg2m+UX38adPtL9xlT7QD+VdvCSd9PR8Y2hpy2oY0D8QbVkNuSe1ZiOuhBBC2GZnZ8fSpUtxdnYnK2sPzzzzjM1tm5sHoaFeDJ8Uz6mxP7KKh/BxOA2rn4TdP0JttXG7kBAPevTwoaqq1jh1z3KKniELLDur9qXns3hxOvvqM+FkrhZvLxfjKCnTn4UQQjRu1j2zuO7O60AH6xd/yZaN+21uq1ZrSU4+iVqtbdK+VSol48aFMXBgYIOOJlMhIR4olY5oNOVER/tb7XSKjvanTx9/s/2k1+eBWRtBW8OAAYFotTXk5mrxuoB5IJ1SQghh4eefDzB58ip+/vkAAP/3f/9Hr14Dqa0tZ/XqeZSVlVl9naF4YlqapsnHiovrwNvzhrJi9lDevz2a2jodr/++n883H6WkQt8QUfkrqais4fChQuNUDUsREX7ccXuEWRgZRk8lJOZQVFhpNirK0LCRUVJCCNE400zo2rUrc+e+B8Dffy9l6dKlVl/TkjwAiBsSwvVzX8fxsW3QfRzs+xX+9y/9Kn3oGyoDBgSSkVFsVk/QVGSEH3fcEdGgsyo1JY9//jnJ6tXHcFM6mGWAZIIQQpydZRth2VfLCOzagdryatb99CFVlVVWX2fo+MnMLGnysSLqr+WNjb5SqZRUVNRw+HAhKVbywNZ+DKOnEhJyKCqqNBkVdXHyQDqlhBDCwvLlh9i8+QTLlx8CwNHRkTVrVqBSqThyJJ0HH3wQnU7X4HVRUb7ExAQ1q3iigUKh4IboYNY9Poz7hoaxO7uQOcv38PveXGrrdISGeuLv70poqGeT92m4U+7r49JgVJTKX8mA/oEcPlzIq68lsXz5QfLzy5t93kII0dZZZsIzz8wwjpK65557SE9Pb/Cac8kDADyD4NZvYMov+v/e+l/YMA+KslGrtTi7OBDe1bvBaKjG9In2JyjYHXs7BWX1d8QNd8ENnV07dpxizrObSUzKbtl5CyFEG2aZBy4uLiT+sRkXTxfyj5zi5TkvW31da3b0tKiNUD96ytfXpcGoKEMeHD5cyKuvJrH8l9ZvI0hNKSGEsDBxYrjZd4CgoCB+/PFHRo0axaJFi4iNjWXmzJlmr2tJ8cSMjCI2bswiP78MPz9XRo4M4bnrIrl9YAiv/LaPn3dms+lAHtHe7qgC3HBysr4kUnp6PimpeUT30Q/dVedp0ZbVMGpUCHBmBQ1LSYk57NunISdPS3h4u2aduxBCXAmsZcLLL7/Mtm3b2LhxIxMnTmT79u14eJy5xra0mG5CwgmWLTtIcLA7t9zSndDOI+C+jZD8FWx+C37/N3bu/anTDiU6OsTq6nqmq/JFRviZFUefOiXSZh4AbN5ygiNHCtnlWkXstGafvhBCtGnW8iAsLIylPyzlhvE3sHXZVn7s/yO3Tb7N7HXW6kadjVqtZc+efIqLK/H0dKJXL3+r+3BysicgQGm1jWC6Kp9hpJRarUWrbUIbIUnfRsgtrKVHuKpZ595c0iklhBAWJk3qzqRJ3Rs8PmLECF5//XXeeecdunXrZvW1GRlFpKVpiIrytdkgMd0mLU3D2rXHyM4uJSjIHZVKSWioF11U7nw9fSAbD6h5e+1BNmQX4OPsgG9VFck7TuqX7PZXGjuj8vLKyMnWz1OPiPAjYWsO2//JZdDA9tx0U7jNulExsUFUVNYQ0NGD4GD3Fn5iQgjRdlnLBAcHBxYvXky/fv2Ii4vDwcH6n9TNzYT16zP444/j+Pm5Ehnpp3+NgxNc9SD0vBn+ehOfnd8y0WEXpwuHsmvbNQSHqYwNlX3p+Xz77T5KS/TTvyMj/Ni9J5+kpBzaByq54YYuDBgQaPO9DhuqX8ijb9+Go4GFEOJKZ6uNMP668Tw550ne/+R9tlVtY3zVeNyc3My2Mb1BYKuDynSbzMwSdu48hUZTga+vi80aT4YOJaXSgeTkk8b9p9fnQUl9Hhg6pRIScti+PZdBg+rbCDbOJSYmiIqKGgLCFK3eRpBOKSGEaIZ///vf3H333fj766dMWDY4DHVEAJsNENNtoqJ8ufbaMPLzyzh9uoJ1646za9dJ9u0rYOLEcCZN6s6wcH9W7Mrmg42HWX5IjSd2DCv1YcIwN2NNkaBgJX2i/QkN9SR5x0myThRTVFSJpuDMcFt1npY9u/V3XAD9XZfe/sTGBFOgrcJOJnQLIUSTBQQEsGvXLlQq/R1kax1Qzc2E+PhQCgsrCQ52p7y8mnnzEnBwUJhkwtvYXfUQbHyVdmkr8FAnkn96OFx9GzgpSU3Jo7SkGncPR/pE+6NWazl+rIjCwgpAf0dcpVKiVmvZvScf0OHm6khGRjF9ov0ZO7YzY8d2Bs3hVv70hBCibXnjpTe4YcoNPJ78OF/s/YLbgqZz4kS5sZPIdPXUs62mB/rOpn79AigurqS0tJqUFDVHj54mK6uUmJggYmODjftSqZQkJ580239KSh4lJdV4eOhX5TN0eGVl1bcRNCZthPpRWTk5pVRW1hIXp99/bGwwBeUFONo7tuZHJ51SQgjRHJmZxaSllRAV5URoqBd//pnK4cP6O8qhoV5ERfmiVpehVmtJSDhBUVFVgzvkhhojhsenT9c/N29eAps3Z1NYWGFcynvSpO442Ntx84COXN+nPR+tOch3/2SxKiOf3b9pie7oTm+dH32jVURE+LFhw3EStmYT2F7J0KEdzFbjy8wsYecu/R0XgLraOjZsyOT68V3o0bvpdUmEEELolZc7s3r1UaKifNm9W80ff6QA/Y3X/JZkQlycfrTSvHkJrF+f2SAT8O0MN3/Fyc73YP/X67Qv3AC//gWdr6Zf1FAgiD7R/vj5urJhQyYlJVVE9PClU5in8Y56ZmYJu3aeQgfY2Sk4criQhMRs7rwjwtjQEUII0XQnTpRScjSYR8Kf5t39L/P1sQV0LBsN6DuJQkI8KCqqpKiogvT0fLTamgajpkyLjatUSkaN0j+3eHE6aWkatKVVlGr1I58sr9WmrwWMq+0Zpu5t2HCcnTvVBAbWtxGiLdoIO0+RkVFEXR0UFJSzevUxYmKC6NHXtTU+LjPSKSWEEM1gekd7x44NPProNG68cQb33z8P0HdMqVT6bTIyiqmpOdNhlZBwgvXrM4iPD2XcuM4N9h0fHwpgdlfclIujA0+Mj+Sha7uxdMcJFiYcZ+WRPFQezgQq6uhcXQsoQAFB7d0ZNSrU7PVKNwfatXMhMFCJu9KRhMQcsnO0JCXmSKeUEEK0gCETSkoK+fjjp0hL28v06VuNz9vKhBMnSox5EBfXweooqrNlQlC/OOj7P8hN1RdCP/A73XXr6N4pBgKuI/loDcXFVQQGKhk1KqRBw6dL13YUaMoJDnbn+PEiCk9XkpiUI51SQgjRAoY8iInpT7+cfiyau4joSXlce+2zgL5jystLPxJKrS6ntlZnfNy09pO1KdaGDiR7e4wjpSxZ1q2KiPCzWLlPAUBQkJU2glLfRvDwcMLBwY7MzGKysvQrBfbo26XlH0oTSaeUEOKK15SaHwamd7T/+qsUrbaUH354n7vuGkNo6Bizbby8nIx3xQHef38Hf/6Zxb59+cY74abi4joQF9fB7HyscXVyYFpMJ24f2JHVu3P5OuE4P2zP5OedJ+gV6EGfmPb06uYD6KfsGeama8tqcHHRLwM+oH8gAYFKkhJziIltGGxCCHGlakkmhIY6oVZno9Gc4t//vp8//vjDWGfKWiY89dSmRvMAmpgJCgUERcMtCyH/ECS+D/tWwvEt9PEIxTc8FmXEMOOUPdN6JiEdPSjTVuPv78add0ToO6SsNHSEEOJK1dI2wlWZV/FN1TfsWpLIxmGruO06feFz0/pPhpFSAP/73xF2784jK6vYoiNJz9DBZHodb65evfzw8nI2vtZ0X1qtSRthQCCJidn1HWwXJhOkU0oIccVrSs0PA9MVlaZOnUpiYiKfffYZd955J//88w9dunSxuerS6dOVlJfXcPDgaTIyis5aX0StLkOlsh2Ezg723NSvA+P7BLErs5Bvko6z8YCa5MoiNucVcVVnH5TaOrKPFgMNh/XGxgQTGxNMeno+v648RM8oP+hrvXEkhBBXipZmwvLlyxk4cCAbN27kmWee4e23326wjUFT88D0fBrNBIUC/LvBhA9h1IuQ8j2OqYsJO7UY8pdDUD8Ka3px4IT+brthKgmcmSYSGxuMWq1l/YYMPKtzCXYvIbhh20gIIa4YLc2DmTNnkpCYwHfffseXT31Jp7BODI4cbHMVvtLSaior68jOLkWt1p615lRRUSVeXo0XTbdkeWzL+lWm3w31pPRthMP0jgqAVhwwJZ1SQogrnumdjeaaP38+u3btYvv27UyYMIGkpCSzZcFNzZzZh6qqOvz8XElL0xiDy/IujJeXEw4OCvLzyzhypBBoPAgd7O0YGObDwDAf1MUVrNiVzeq9J1m1O5eaOh2+zo5QXk473OnXNwA7O4XZ61NS89iXVoDCxv6FEOJK0tJMiIiIYOHChdxyyy2888479O3bl8mTJ1vdtql5ADQ7E3D3hyGz9Cv2ZSbCrsVwdCPdtEl0dnSlpigKjg1C1T4alcU0EUOtqQDH05R3KCS4d7M+AiGEaFNamgcKhYLPPv2M3bt3szt1Ny898BKf/vIpHX07Wt1+zJgwamrq8PR0Ni5IAQ1X7FMqHbC3V1BcXElurn7V7aZ2SlmyvDFhbT8pKXmkH9Bgr7OHsS06TJNIp5QQ4opna2RTUzg7O/PLL7/Qv39/0tLSmDZtGsuWLcPOylJ2kyZ1Z8CAwAbTMCzvwhQVVVFTo8PPz43ISL9mBaHK04X7h3fhniFhHMvX8vGqA2w5nM/WYxo2HdXgqFCgcnUivL07vUPb0aGdG316+1GhqyMqSm6JCyHEuWTCzTffzLPPPstrr73GvffeS48ePejfv3+D7ZqaB0DLM8HBGTqP1H+VF8LRvyj861vsT+7ERZ2MDqhyDqDEKRSnoB54doogJNiLvv0C8KyuJDjcu0WfgRBCtBXnkgdubm6s/HUl/fr3o+B4AU8+8iRfLfwKd2f3BtvGxgbTtat3g6l5liv2abU11Nbq8PR0pmNHzxZN4zPQaMo5dOg0eXllFBZWEhrqiZOTvdnoq+hofyrsSlq9jSCdUkIIcRamBcqt1f4ICgpi+fLljBgxgl9++YVFixYxffp0q/syXSbc8LPlXRjDXfHwcG+btUbOxsHejvAAD7xPVOKy9TQBLnaUedhhH+yKVldN4rECNh3Rn4O9nQI3ezuUZRUtOpYQQlwpzpYHAC+//DK7d+9m1apVTJ48mbS0NOzt7RtsZ2jsZGQUGVfws3ZX/nxkAq7eEDWBj5b58duvqYR75TKp9zH6+mXgU3EEj5J/4IAOFTDc3h1cvXFU3dGyYwkhxBXibJkQGhrK8p+XEx8fjzpBzQufvMCbj76Jo71jg20NHUGZmSXGny2n1RlGSgUFKa3WnmqOlJQ8UlPzsLODujrIySklIEBpdi6+vq6EhXnh49O6K/BJp5QQQpzF+vUZrF+fCWCzQRATE8Mnn3xCamqqzekaBrbmp584UUJamga1WktNjY6ioqpG99OU4os9e/px8OBpIiN9qKnR0bOnH/ZO9gSHeVDupGB/bgkbd+Zy7FQpurJaFDKHTwghbGpKHtjZ2fHdd99x22238cYbb1jtkDJlmgmGlVk3bswCMhk5MsQ4UupcMyEjowil0oleA8IIDOxJcXg7crp6criggKiOlQRxmCPbtlORc5BA1wp8nVt+B14IIa4ETcmE4cOHM3/+fLbs2cK+XvtYkLaAe3vea3VWheXIKAONppzMzBKKiiqordWh1dY0el6W0/6sCQ31JCenlI4d3amtxWyklOn5HDlSiIOiYSfa+SSdUkIIcRaGjp2ePRu/I3HPPfc0aX+Wd8INDRIHBwU1NTq6dPEmJiaIqChfszswHTp4mDU4TBsyhv1YNkZcXR3p3Nmbvn0DjY0dU8O6qbi2kx979uYTEemLQnqlhBDCpqbmgZeXF2vWrGnSPq1lwtq1x9Dp9I0Sw+Pl5dXMm5dgvCNv2Ql1tkxIS9NQVFTJpEndLfLAsDT4VTj4jCcjTYN7Dw982/k36fyFEOJK1dRMeOihh3iIh/g+/Xve2P4Gyw4t49butzbYznJklKGTyt5eQW2tjvbtlfTo4UNIiAfp6fmkpOQRHe2Pr6+rWSeUaeeWYT+WHVROTvYEBCjp3LkdAyzqC5qeT2mdN8HBDaccnk/SKSWEuCI1Z4lXQ8eOq2vT7xJUV1fz2muv8dhjj9GuXTuz5wxTNhISTrBw4V569vQjJiaI8vJq9u7NN5uisXDhXuMdmIED25uNsDJtyNhqjDSlQOO5zJcXQojLXWvnAcDff//NoUOHmDJlSoPnQkO9OHGihIUL9xIfH0pUlC/9+weSnV2Cl5eT8Ro9b16C2R15y1G31jLBdMU+yQMhhDi71syEyRGTOXH6BO/83zs4PeDEjVE3mj1vKDienp7Phg2ZhIZ60qOHD1VVtWRkFJtN29uwIZPU1DwAwsPbmY2wMu3cstVBZdkBZo1KpcTBw9/qdMPzSTqlhBBXpOYs8dqSlTdmzJjBt99+y99//82qVausTt8wHfL74otxrF59tMEUjfj4UOP3Dh08jOdhKzAtO6hasqKgEEJcSVo7D1JTUxk+fDh1dXWEhYUxZMiQBttY5kFkpC9FRZU288DyXGxlglqtbTA10LSmoRBCCHOtnQnJ/00m79c8vs78mnYftmN4x+ENtjHUewK4444IkpNPNpi2Fx3tb/zu66uv+RQS4mFz6p5lB9W5FEk/36RTSghxRWpOiLTkzvHs2bNZtmwZa9asYc6cOfzf//1fg23i40MpLKxEqXQkI6OowTllZBRRVFTF9Ok9jcc3fF+9+miDu+CW0/MsO6ikASKEEA21dh707t2bCRMm8NNPPzFp0iSSk5Pp2NF8WfCW5sHZMiEjo8j4MzSvsSWEEFei1s6EJ598kpUrV1Kyq4SP/+9jPJ73oF9AP7NtoqP90WqrcXGxR63WNhjVpFZr0WprGDUqxNjxZPienHyS/fsLKCqqxMtL3zllOT3PsoPKVt2pC0U6pYQQV6TWnqIQHR3NggULuP3223nrrbeIiIjg7rvvNtsmLq4DRUVVJCXlkJamYdy4zmbn1FjjwRCUpnfBrTVULLcXQghhrrXzQKFQsGDBAg4ePEhqairjx49n69atuLufqdFxLnkAtjPB8r215K6+EEJcSVo7EwYPHsxnn33G3XffjfpXNR8Ef8DT9z1ND98exm0iIvzQamvYv7+AzMwSBgwINOs4aqxDydBxVVRU0WAbw/RAa9tfTNIpJYQQreS2224jLS2Nl19+mZkzZxIWFsaIESPMtmmsgdDYc6ZLiZveBbe1nRBCiItHqVTy66+/MnjwYFJTU7njjjtYsWKF2dTuluYBSCYIIcTlZPr06ezdu5d33nmHzC8yme83n2dufYZQz1DjNo3VfGrsOUPHk1qtNY6UssZaB9XF0nAdQiGEEOfNvHnzuO2226iurmbixIkcPHjQ7PnQUK8Gd8QtnwP91IyMjCKr25SXV/Pss1v4+ecDDZ7PyCiy+VohhBAXTmhoKL/++isuLi6sWrWKf//73xbPn1seGLaTTBBCiEvfm2++yQ033EBddR1H3jvCe+ve46T2pPF5lUrZYISU5XOgn66nVmutblNVVcu33+4jMTG7wfNqtdbmay80GSnVArW1tVRXV1/s0xCiyRwdHa0W2hatzzBtIyMjg7S0NLKysujWrRtw9tU9MjKK2Lgxi9RUNTU1dYD5tI2EhBMsW3aQX345xKlTWjIzi5g0qbvZPqR+SOuTTBCXG8mEi2fw4MF888033HbbbWRmZlJTU4ODg8N5yYP16zMoKalk0aJ9VFfrt5FMuLAkD8TlRvLg4rG3t+f7779n2LBhHD12FIrhg10fMKvfLHSlblaLlRukp+eTkpKHi4u9sfi56Xbp6fn89NMB0tM1gAKA2Nhgs31ITanLlE6n4+TJkxQWFl7sUxGi2by9vQkMDEShUFzsU7niuLq6smLFCvLy8ujZs6fx8bM1DtLSNKxde4zS0moGDAhoMB1j/foM/vjjOHl55VRV1VFRUdtgH1I/pPVIJojLmWTCxXPrrbfi7+/P8OHDsbPTT1o4H3mwfn0mx44VUlhYgbu7MxMnhjfYj2RC65A8EJczyYOLx93dnf/973+UlJTgHOjMtDXTeH/X+1ztcCfZh3SA9Q4jw+p8Xbt6Ex2tajBFLyUlj337NJSX1+Lqak9kZMNrfmNTAC806ZRqBkPYqFQq3Nzc5B+uuCzodDrKyspQq9UAtG/f/iKf0ZUpICCAgIAA488nT54kMtIHsN04iIry5dprwwAdI0eGNGioGFZrSk1Vc/x4MZ076+uJmG5n+G9ZAvz8k0wQlyPJhEvDyJEjjf+t0+lQqWqJiQk6pzwASE11Ydu2k/Ttq2qw2hJIJrQWyQNxOZI8uDQEB58ZwfTVtV8x+cfJrPf4ntHhU212GEVH+xu/R0T4WX3+0KECTpwoxc/PlcLCStRqrVkHl+G/MzNLzH6+GKRTqolqa2uNYePrK3eXxOXF1dUVALVajUqlkmG6F9mWLVu46aabePzxx3nuuedsbhca6sX06bYbDHFxHTh5UsuxY0UMHBiASqUkLU3ToJEh0zXOP8kEcTmTTLh0VFRUcM8995CUlERSUhKBgdav0U3Ng1271AwZEmQzD0Ay4XyTPBCXM8mDS0vmzkwOPHMAn/E+bLr+B6I9Z1ndLiLCz2pnlOnz8fGVbNyYiaOjHcXFlWRmljToeLpUpvBJofMmMswPd3Nzu8hnIkTLGH53pdbBxbd37140Gg3PP/88CxcuPKd9LV9+iB07TlFZWcfYsZ1trtpk7Q68FLxtOckEcbmTTLg0aLVatm/fzvHjxxk3bhwlJSUt3ldT8gCsZ4LkQctJHojLneTBpSMlJYXiomKOf3ec7K3ZvL/rfQorClu0r6SkHA4fLqS6uo7+/QNtruLXo4dPg+cudBF0GSnVTDIcV1yu5He3dZ2tSK2pBx98kIyMDN58803uvfdeVCoV48aNa9FxDTVDJk4MN67MZHpOGzdmYWu6h9wtP3fy70pcruR3t3U1NRN8fX1Zs2YNsbGx7Nq1i4kTJ/Lbb7/h5OTU7GM2Jw8sn5c8OHfyb0pcruR3t3U1p40we/ZsMjIy+OCDDzj+2XEcPR15T/cej/Z9FF/X5o3EjIkJMn63nM6tVmvZsycf0NGrl3+jI6g6RzU/j5pLOqWEEOI8aO4f9A888AzJyQfZsOEXbrnlFjZu3MigQYOafdwBAwJxdXW0ekf8p58OsnDhHgID3VGplA3OSwreCiFE62hOJnTt2pWvvlrKrbdex/r167n77rv59ttvjUXQm6qxPEhL0/Dtt/s4daqU/PxynnzSPG8kD4QQonU0Jw8UCgWzZs1l164jbN26msz3M3F61snYMaVyUzX5uF27euPkZG91hFRCQg4bNhynXTtXvLxcGnRKmRdBr2zyMVtKpu8JIcR5YGuKnC379hUwaNBj9Os3lLKyMq677joOHjzY7OMags5QtNZUdnYJlZW1uLtbb6SEhnoxblxnuSsuhBDnWXMzwd4+hJtuegl7ewd++OEHnnrqqWYfs7E8iIryxcPDkcrKOrKzSxs8L3kghBCto7l5sH9/IUOGzKZXr8FoS7XkzM+hKq+K93a+R05pTpOPaxjtZChkbkqjKae6ug4XF+udViqVkgEDAi9YnSnplGrjFApFo19z5849p32vWLGiWeegVCoJDw9n+vTp7Nixo9nHHDFiBLNmzWr+yQrRypr7B31UlC9DhoTwxhtfEB7ei/z8fF5++eVmH9dW0CUknKC4uJJhwzrw738PlIaGkDwQ4gJqSSZcc8213HPPPAA++OCDZt+oaKzhc+JECb6+LgwbFszNN3dr1n5F2ySZIMSF0ZI8GDo0jLfe+pqwsB7kncqj847OuDm48f6u9zlefLxJ+7FVLyo9PZ+ysmqiovyYODH8ohY4N5BOqTYuNzfX+PXee+/h6elp9tiTTz55Qc5jwYIF5ObmkpaWxkcffURpaSmDBw9m0aJFF+T4QlxqDAFVXe3I9de/yoQJ0/niiy9avB/LoFu/PoODBwsJCfEkLq7D+TptcRmTPBDi0hUa6oVK5UZAwDBmzvwPa9eupVu35nUeNdbwkUwQliQThLg0Ga7ltbUu3HDD69x44z188/k3LBq7iHbO7fhw14fszd971v3YGu2UkpJHTo4Wf3+3Rlfwu5CkU6qNCwwMNH55eXmhUCjMHluyZAkRERG4uLjQo0cPPv74Y+Nrq6qqeOSRR2jfvj0uLi6Ehoby+uuvA9CpUycAbrrpJhQKhfFnW7y9vQkMDKRTp05cc801LFu2jMmTJ/PII49w+vRpADQaDXfccQfBwcG4ubnRq1cvFi9ebNzH9OnT+euvv5g/f77xrsrx48epra1lxowZhIWF4erqSvfu3Zk/f/75/SCFaCVRUb7Ex0cxf/57uLi4AKDT6aisPLf52/HxocTHhxAfH3o+TlO0AZIHQlzaDCOd5sx5ghEjRhgfP9c8AMkE0ZBkghCXNv0I2t689967ODk5EeQexPdjvyfULZQv93zJ1uytLdpvdLQ/ffr4Ex3tf57PuOWk0PkV7Pvvv+eFF17gww8/pG/fvuzatYv77rsPpVLJtGnTeP/991m5ciVLly4lJCSErKwssrKyAPjnn39QqVQsWLCAMWPGYG9v3+zjP/744yxatIh169Zx6623UlFRQf/+/Xn66afx9PTkt99+Y8qUKXTp0oVBgwYxf/58Dh48SM+ePXnppZcA8Pf3p66ujg4dOvDTTz/h6+tLYmIi999/P+3bt+fWW289r5+ZEKaas5qGLaGhXmav1el0PP3002zfvp3Vq1e3eInpuLgOxMV1MC7zfS7nKNo+yQMhzk1r5AHAvn37GDduHB9//HGLV2kFfSZ06OBBWpqGjIwiyQPRKMkEIc5Na2RCXV0dc5+ZS/H+Ygb+ayA/HviR0xWnub7z9c1aQTEiwo+ICD/Uai3JyScJCfG46FP4pFPqCvbiiy/yzjvvMHHiRADCwsLYt28fn332GdOmTSMzM5Pw8HCGDBmCQqEgNPTM3TV/f33PquHuRkv06NEDgOPHjwMQHBxsNlT40UcfZe3atSxdupRBgwbh5eWFk5MTbm5uZse0t7dn3rx5xp/DwsJISkpi6dKlEjiiVbXGEtoZGRl89tlnFBcXM3HiRH799VecnZ3PyzkafjYE5PkITNE2SB4IcW5aIw8APvzwQzIyMpg4cSKrV6/m6quvbvG+GssDOD+NKNE2SCYIcW5aIxMOHz7MV199RVlZGTe43sCE2RP49fiv5JfnMyVyCg52zevaMRRCN/3Z0EGlVmuNPzs0rIN+3kmn1EVysYNfq9Vy5MgRZsyYwX333Wd8vKamBi8v/flMnz6d0aNH0717d8aMGcP111/PNddcc97OQafTARh7dmtra3nttddYunQp2dnZVFVVUVlZ2aSRIh999BFff/01mZmZlJeXU1VVRXR09Hk7VyGsaY0ltDt16sTXXy9l8uSbWLt2LbfffjtLly7F0dER0BcwX78+g/j40CbVBTE9R8uAbK1GlGgeyQPJA3H5a408AJg/fz6HD2ewbt1qxo+/gXXr/iA2Ntb4fHMyobE8gNbrWBPNI5kgmSAuf62RCd26deOLLxYzffotrFy5Ejc3Nx556hE+2fMJ6mQ1V7vewuG9lURH+zepVpShAHpIiIdZB5VKpTT7uXOU03l7D7ZIp9RFcrGDv7RUvxzwF198weDBg82eMwyz7devH8eOHeP3339n/fr13HrrrcTHx7Ns2bLzcg7p6emA/q4FwFtvvcX8+fN577336NWrF0qlklmzZlFVVdXofpYsWcKTTz7JO++8Q0xMDB4eHrz11lts27btvJynELZYm2pxPri6hnPzza+xdOnTrFixgilTpvDdd9/h4ODA+vUZrF+fCXDWBoitP2wtg/J8N6JE80geSB6Iy19r5YGjoyMPP/w2R47kcfToP4wdO5Z169YxaNAggCZnwtnywPS/JRMuLskEyQRx+WutTPD27snEiS/z88/Ps2TJElxcXHjnxXf4T+J/WFz0KXbHBwORZ+2UMh0JZTp1z7Sj6sz3c69reDaXTafUq6++ym+//UZKSgpOTk4UFhY22CYzM5MHH3yQjRs34u7uzrRp03j99ddxcLj03ubFDv6AgACCgoI4evQokydPtrmdp6cnt912G7fddhs333wzY8aMoaCgAB8fHxwdHamtrW3xORhW+oiPjwcgISGBCRMmcNdddwH6ebMHDx4kMjLS+BonJ6cGx0xISCA2NpaHHnrI+NiRI0dafF5CNEdzRy41RVSUL3feeQOjRgUxc+Zd/Pjjj9TU1LB48WJjkdqePf1Yvfoo5eXV7N2bb/X4ln/Ymgak6XlfjnfE21ImSB5IHoi2ozUyITo6iLfeWsCbb97P9u2JxMfH8/vvvxMXF0d8fCiFhZUolY5kZBRx4kSJ1eM3lgeW5325ZUJbygOQTADJBNE2tFYbYerUmxkxIpBHHrmHhQsXUl1dzcL3FvLgH4+RN2gzpyqqOHWqIwUFFaSk5FkdOWU5MsrwBZCenm98nUqlpKBcOqWMqqqquOWWW4iJieGrr75q8HxtbS3XXXcdgYGBJCYmkpuby9SpU3F0dOS11167CGfcuNbqPW2OefPm8dhjj+Hl5cWYMWOorKwkOTmZ06dPM3v2bN59913at29P3759sbOz46effiIwMBBvb29AP81ow4YNxMXF4ezsTLt27Wweq7CwkJMnT1JZWcnBgwf57LPPWLFiBYsWLTLuLzw8nGXLlpGYmEi7du149913OXXqlFngdOrUiW3btnH8+HHc3d3x8fEhPDycRYsWsXbtWsLCwvj222/5559/jHdXhGhNzRm51FRnrg+d8fNz5eabb2b58uVs2bKFq6++mri4DqxefZSkpByOHi0kM7PE6vEb+8O2Nc77QmpLmSB5IHkg2o7WzIRrrlnL+PHj2bRpE3PnzuWPP/4gLq4DRUVVJCXlkJam4Z9/cq0e/2wdHZdzJrSlPADJBMkE0Va0dhvB19eVO++8kyVLlvDQQw/x6y3LuHfZ46QpEvlqfy7BuSNIT9WPfLTslLIcEWUqJSWP1NQ8q69rNbrLzIIFC3ReXl4NHl+9erXOzs5Od/LkSeNjn3zyic7T01NXWVnZ5P0XFRXpAF1RUZHZ4+Xl5bp9+/bpysvLW3zuF5u1z+7777/XRUdH65ycnHTt2rXTDRs2TLd8+XKdTqfTff7557ro6GidUqnUeXp66kaNGqXbuXOn8bUrV67Ude3aVefg4KALDQ21eVzA+OXi4qLr0qWLbtq0abodO3aYbafRaHQTJkzQubu761Qqle7555/XTZ06VTdhwgTjNgcOHNBdddVVOldXVx2gO3bsmK6iokI3ffp0nZeXl87b21v34IMP6p555hldnz59zvUja1Pawu/wpWjr1izd3LlbdVu3ZrXaMX7//XfdggULzB47frxQ99tvR3TLlu1v0fFNz9uwr+PHC1t0fraumxdCa2ZCY+/rcv/3JHkgLvff4UtVa2eCVqvVzZo1S3f69GnjY6bX8JYevy1kguRBy0kmXNnawu/wpehCtBFWrFih++GHH4w/Hzt2WvfcTx/o+i8aoBu4aLDulnef0X289ifdxsyNTf76eO1Puvvf/Fj38dqfdD8mr9K9uOxT3dd//9ii82tqHih0uvpKcpeJhQsXMmvWrAZDc1944QVWrlxJSkqK8bFjx47RuXNndu7cSd++fa3ur7KyksrKM0PSiouL6dixI0VFRXh6ehofr6io4NixY4SFheHi4nJe35MQF4L8DrcdJ06cwNvbG3d390a3+/nnAyxffoihQ4MJCfGyWTTVMOoqJiaIceM6N/t8iouL8fLyanDdvBDOZyY0NQ9A/j2Jy5/8Drcd+/fvN65WZoshDyZODGfAgMBGC2lfrpkgeSBEy8jvcNuRkZGBv78/WRVZPL3laY4UHmFQ4CBu6XYLLg5n/t8mJmaTlJRDZKQv/v5uDWpLGSQnnyT1UAbdu/rz/MR7mn0+Tc0Du2bv+RJ18uRJAgICzB4z/Hzy5Embr3v99dfx8vIyfnXs2LFVz1MIIc5Ffn4+8fHxjBw5ErVa3ei2y5cfYvPmEyxZcoCkpBw2bsxi9eqjZGQUmW0XFeVLTExQmypu25JMkDwQQlxu3nvvPXr27MmCBQsa3c6QB8uXHzLWl7pSMkHyQAhxJTh58iQjR45k9OjR+OPPj9f9yPSo6exS7+Klv18iVZ1q3DYpKYe9e/PZsuUE+/cXsGdPPsnJJ1GrtWb7DAnxoEsXb4KDG78Rfq4uaqfUM888g0KhaPRr//79rXoOc+bMoaioyPiVlZXVqscTQlw+MjKKrP7BfjGdOHECjUZDcnIycXFxHD161Oa2EyeGM2xYB26/vTsxMUGAzlh3xFRoqBfjxnW+6DUsLnYmSB4IIWy5FPNAp9ORkpJCbW0t99xzD2+88Qa2JkAY8mDixHBjp9OlnAmSB0KIS9mlmAmZmZmcPn2axMREhgwZgjpXzRMDnmDR2EUEuwfz5d4veX/n++SU6kfC9uzpx9ChHejRwwfQsX9/gbFOrYFKpaR3L3/8/Fxb9dwvaqHzJ554gunTpze6TefOTRs2HBgYyPbt280eO3XqlPE5W5ydnXF2dm7SMYQQV5aLvSyzNdHR0SQkJHDttddy+PBhYmNjWbNmDdHR0Q22nTSpO5MmdTf+nJFRhEqluWTvfl/sTJA8EELYcinmgUKhYMGCBQQEBPB///d/zJkzh9zcXP773/9iZ2d+39kyD0JDvS7pTJA8EEJcyi7FTBg0aBBbtmxhzJgxpKenG9sIPaN68sO4H1hyYAlf7P6CN7a/waDAQdz7yHi8nPXnrlZr8fIqsVr4/EK4qJ1S/v7++Pv7n5d9xcTE8Oqrr6JWq1GpVACsW7cOT09Ps5UZhBCiqS72ssy2dOvWjcTERMaMGcPu3bsZNmwYS5cuZcyYMY2+7lJY0acxkglCiEvVpZoHCoWCN998k/bt2/P444/z/vvvk5OTwzfffIObm1ujr72UM0HyQAhxKbtUM6Fnz57GNkJ6ejpDhw5l2bJlXH311UyJnML4zuP5KOUjfjn8C8mnkukf0J+xYWNRqfys1pS6UC6bmlKZmZmkpKSQmZlJbW0tKSkppKSkUFqqX+bwmmuuITIykilTppCamsratWt5/vnnefjhh+VOhxCiRS6FKQy2tG/fns2bNzNixAhKSkq47rrr+Omnn876uktxuHFLSCYIIS6kSzkPAGbNmsUPP/yAo6Mjy5YtY8SIEdTU1Jz1dW0hEyQPhBAX2qWcCSEhIWzZsoXY2FhOnz7Ntddey//+9z8AvF28ee6q51hxwwpu7Hoje/P38lLSS3yw6wP+OrSN7f9kN6grdSFcNp1SL7zwAn379uXFF1+ktLSUvn370rdvX5KTkwGwt7dn1apV2NvbExMTw1133cXUqVN56aWXLvKZCyGEbefSICgshMmT32Xo0Jto3z6YLl36nXVfhuHGljVELjeSCUKItuZcO4hiY8fx5JNf4u7ejpiYcfzxR+ZZ99UWMkHyQAjRFp1LJpSWOjB9+vtcddV1dOwYSmhob7N9dfDswNzYufw64Vem95yOtlrLsqzvWFz0X77f/x2783ZTWVt5lqOcPxd1+l5zLFy4kIULFza6TWhoKKtXr74wJySEEOdBS+ekZ2QUsXDhXpKTT9G+/XQefHAOJ08qSErKQafT4eWlw9vbm4yMIrOlvy/V4cbNJZkghGhrzqVGiSET9uxxZ9So92nXrpNxX4Y8MGzX1jJB8kAI0RadjzZCSMj9PPZYe06cqLXRRihjUtQMHuzzIL+mrOeXQ7+SrTvIF3u+QIGCAGUAgW6B9A/o31pvE7iMOqWEEOJSZ/nHflO0tEGQlqYhP7+Crl296dPHn9jYEJPnVjNjxit8//33VFaGmQVaaKgXJ06UsHDhXuLjQ4mL69Cs4wohhDi7C5kHYJkJ4YSHt6OoqIqQEEcGDRrEsGHDeP/99xs0ck6cKOGff3Lx8nK6JKehCCFEW3CptBGSk3/m/vvfY8mSJZSUBJvkQWc6VvYl4mA7Zoz0xSUsj6TcJNI16WSWZBLqGdqsc2gu6ZQSQojzpCV3NFpaaDYqyhe1ugzQMXJkiHEfHTt68NJL33Hq1ClGjx7Nv/71NFdffY9ZoK1fn8H69ZkA0iklhBCt4ELmAdjOhOXLl3P48GEOHTrEtm3beO+9r4mJCTJmguSBEEK0vkuhjRAcrOTZZ78nJyeHkSNHMnv2cwwbNsUsDzasz0KBgheHDWNYx2HU1NVQWlWKQqFo9nk0x2VTU0pc+qZPn86NN95o/HnEiBHMmjXrnPZ5PvYhxIUSFeVr9sd+awoN9UKlcuPIkSKzWiB2dnb8+eef3Hvvveh0Ot577w3ee+8B7OyKjdvEx4cSHx9CfHzr3vUQVzbJBHElu5B5ALYzYeLEiaxfv56AgAD27t3LhAkjUas3ExLiCUgeiAtD8kBc6S6FNoKDgwNbt27lrrvuora2lrfeeomPPnoUJ6cywHoeONg54O3ijZdz646klZFSV4Dp06fzzTffAODo6EhISAhTp07l2WefxcGh9X4Fli9fjqOjY5O23bRpEyNHjuT06dPGugfN3YcQF9uFXl7b1rBeNzc3vvjiC4YPH84DDzzAn3/+Sa9evXjvvfeYNm0acXEdzO6IJyScYP36DJnOd4WQTBCi9V3oPADbmXD11VeTkpLC5MmT+fPPP7n77rtZvnw5n332WYM8AMmEK4nkgRAXxqXSRnB3d2fRokWMGDGCRx55hDVr1hAVFcWHH37IHXfccdHyQEZKXSHGjBlDbm4uhw4d4oknnmDu3Lm89dZbDbarqqo6b8f08fHBw8Pjou9DiLbqbMvR3nXXXezcuZOrrrqKoqIiZsyYQXp6eoPtDNM31q/PaO1TFpcIyQQh2p7GMiEwMJA//viDN954AycnJ/73v//x9NNPW92PZMKVRfJAiLansTxQKBTMmDGD5ORk+vXrx+nTp5k2bRrHjh1rsO2FygPplLpCODs7ExgYSGhoKA8++CDx8fGsXLnSOJz21VdfJSgoiO7duwOQlZXFrbfeire3Nz4+PkyYMIHjx48b91dbW8vs2bPx9vbG19eXp556Cp1OZ3ZMy2G1lZWVPP3003Ts2BFnZ2e6du3KV199xfHjxxk5ciQA7dq1Q6FQMH36dKv7OH36NFOnTqVdu3a4ubkxduxYDh06ZHx+4cKFeHt7s3btWiIiInB3dzeGrRBXom7durF161befPNNnn/+eSIjI43PGf7NyvSNK49kgmSCuPLY29vz9NNPs2PHDq655hqzjgfTf6+SCVcWyQPJA3FlioqK4u+//+all17ipZdeonPnzsbnLnQbQTqlrlCurq7GOx4bNmzgwIEDrFu3jlWrVlFdXc21116Lh4cHW7ZsISEhwXjhNrzmnXfeYeHChXz99dds3bqVgoICfvnll0aPOXXqVBYvXsz7779Peno6n332Ge7u7nTs2JGff/4ZgAMHDpCbm8v8+fOt7mP69OkkJyezcuVKkpKS0Ol0jBs3jurqauM2ZWVlvP3223z77bds3ryZzMxMnnzyyfPxsQlxWbK3t+epp55i3rx5xsf27NlD//792bx5M3FxHXjxxTiZpnEFk0wQ4srRs2dP1q5dS0BAgPGxO++8kzlz5qDVaiUTrnCSB0JcORwdHfnPf/7DnDlzjI8lJyczcOBAkpKSLlgeSE2pc1RWVsb+/fsv+HF79OiBm5tbs1+n0+nYsGEDa9eu5dFHHyUvLw+lUsmXX36Jk5MTAN999x11dXV8+eWXxkr7CxYswNvbm02bNnHNNdfw3nvvMWfOHCZOnAjAp59+ytq1a20e9+DBgyxdupR169YRHx8PYNYb6+PjA4BKpTKbL27q0KFDrFy5koSEBGJjYwH4/vvv6dixIytWrOCWW24BoLq6mk8//ZQuXboA8Mgjj/DSSy81+7MSoi174YUX2LVrF8OHD+emm27i1VdfJSIi4mKf1mXvYmRCS/MAJBOEEPDPP/+wZMkSAL755htefPFF7rnnHqnXc46kjSB5IMTl6LnnnmPHjh3ExsZy66238sorrxAeHt6qx5ROqXO0f/9++vfvf8GPu2PHDvr169fk7VetWoW7uzvV1dXU1dVx5513MnfuXB5++GF69eplDBuA1NRUDh8+3GCedkVFBUeOHKGoqIjc3FwGDx5sfM7BwYEBAwY0GJ5rkJKSgr29PcOHD2/mOz0jPT0dBwcHs+P6+vrSvXt3szo5bm5uxrABaN++PWq1usXHFaIt+vLLLwkICOCLL77gl19+YeXKlRw6dIiwsLCLfWqXtYuRCc3NA5BMkEwQ4owBAwbw66+/MmvWLI4dO8YDDzxASkoKn3zyycU+tcuatBH0JA+EuLx8++23zJkzhwULFrB06VJWrFjB8ePHad++fasdUzqlzlGPHj3YsWPHRTluc4wcOZJPPvkEJycngoKCzFbUUCqVZtuWlpbSv39/vv/++wb78ff3b9H5urq6tuh1LWF5Z0+hUNgMQiGuVL6+vnz66ac89thjPPfcc9jZ2UmH1HlwMTKhuXkAkgmSCUKcoVAouOGGGxgzZgyfffYZr732Gg8//PDFPq3LnrQRmkbyQIhLi0ql4quvvuJf//oXzz77LN7e3q3aIQXSKXXO3Nzcmn2H+mJQKpV07dq1Sdv269ePH3/8EZVKhaenp9Vt2rdvz7Zt2xg2bBgANTU1jd6Z6dWrF3V1dfz111/GobmmDHdhamtrbZ5XREQENTU1bNu2zTg0V6PRcODAAbPizUJcyTIyikhL0xAV5dukpWcjIyP55ZdfzuuqOlcyyQTJBCEuFc3NAycnJx599FFmzpxpNjpGtIzkgeSBEJeS5mZC7969WbVq1QVpI0ihc9HA5MmT8fPzY8KECWzZsoVjx46xadMmHnvsMU6cOAHAv/71L9544w1WrFjB/v37eeihhygsLM2ncXsAAQAASURBVLS5z06dOjFt2jTuueceVqxYYdzn0qVLAQgNDUWhULBq1Sry8vIoLS1tsI/w8HAmTJjAfffdx9atW0lNTeWuu+4iODiYCRMmtMpnIcSlJCHhBPPmJZCQcMLmNmlpGpKSckhL0zRr39IAEbZIJghx6ZE8EBeD5IEQl6bLPROkU0o04ObmxubNmwkJCWHixIlEREQwY8YMKioqjHdFnnjiCaZMmcK0adOIiYnBw8ODm266qdH9fvLJJ9x888089NBD9OjRg/vuuw+tVgtAcHAw8+bN45lnniEgIIBHHnnE6j4WLFhA//79uf7664mJiUGn07F69WopximuCOvXZ7B+fSbr12fY3CYqypeYmCCionwv4JmJtkwyQYhLj+SBuBgkD4S4NF3umaDQyURaM8XFxXh5eVFUVGQ2LLWiooJjx44RFhaGi4vLRTxDIVpGfocvfwkJJ1i/PoP4+NBLaqluW9fNy11j70v+PYnLnfwOX94u1TyAtpkJkgeiLZPf4cvfpZoJTc0DqSklhBCXibi4DpdU0AghhLg4JA+EEEIYXO6ZINP3hBCijWrK/HIhhBBtn+SBEEIIg0stE2SklBBCtFGG+eXAZX33RAghxLmRPBBCCGFwqWWCdEoJIUQbFR8favZdCCHElUnyQAghhMGllgnSKSWEEG3U5T6/XAghxPkheSCEEMLgUssEqSklhBBCCCGEEEIIIS446ZQSQgghhBBCCCGEEBecdEoJIYQQQgghhBBCiAtOOqWEEEIIIYQQQgghxAUnnVLnQUV1LcUV1Rfsq6K69mK/ZZumT5/OjTfeaPx5xIgRzJo165z2eT72cTabNm1CoVBQWFjYqsdpbQqFghUrVlzs0xDiylZdDhVFF+aruvxiv1ubJA8uLskDIS6+ipoKSqpKLthXRU3FxX7LNkkmXFySCeJSJqvvnaOK6lr+SDtJUUX1BTuml4sj10QF4uJo36Ttp0+fzjfffAOAo6MjISEhTJ06lWeffRYHh9b9FVi+fDmOjo5N2nbTpk2MHDmS06dP4+3t3aJ9tFRsbCy5ubl4eXk1+TXTp0+nsLBQLvDispCRUURamoaoKF9CQ8/8nicknGD9+gzi40MvqVU4LlvV5bB/NVQUXpjjuXhDj3Hg6NqkzSUPzk7yQFwJJBNaX0VNBRszN1JcVXzBjunp5MnIkJG4OLg0aXvJhLOTTBBt3aWQB9IpdY6qausoqqjGxcEeZ4fWH3hWWaM/XlVtXZM7pQDGjBnDggULqKysZPXq1Tz88MM4OjoyZ86cBttWVVXh5OR0Xs7Xx8fnktjH2Tg5OREYGNjqx7HmfH7eQtiSlqYhKSkHwBg4GRlFfPxxCgcPngaQBsj5UFul75BycNF/taaaCv2xaqua3CkFkgdnI3kgrgSSCa2vuq6a4qpinB2ccbZ3bvXjVdZWUlxVTHVdNS40PX8kExonmSDaukshD2T63nni7GCHm5NDq3+1tOPL2dmZwMBAQkNDefDBB4mPj2flypXAmeG0r776KkFBQXTv3h2ArKwsbr31Vry9vfHx8WHChAkcP37cuM/a2lpmz56Nt7c3vr6+PPXUU+h0OrPjWg6rrays5Omnn6Zjx444OzvTtWtXvvrqK44fP87IkSMBaNeuHQqFgunTp1vdx+nTp5k6dSrt2rXDzc2NsWPHcujQIePzCxcuxNvbm7Vr1xIREYG7uztjxowhNzfX5udjOTT3bPuYO3cu33zzDb/++isKhQKFQsGmTZua9LlZ+7yfffZZBg8e3OC8+vTpw0svvQTAP//8w+jRo/Hz88PLy4vhw4ezc+dOm+9JCFNRUb7ExAQRFeVrfCwtTYODgz3durUjPj70Ip5dG+TgAk5urfvVwk4vyQPJAyEkEy4cZ3tnXB1cW/2rpR1fkgmSCeLKdinkgXRKXaFcXV2pqqoy/rxhwwYOHDjAunXrWLVqFdXV1Vx77bV4eHiwZcsWEhISjBddw+veeecdFi5cyNdff83WrVspKCjgl19+afS4U6dOZfHixbz//vukp6fz2Wef4e7uTseOHfn5558BOHDgALm5ucyfP9/qPqZPn05ycjIrV64kKSkJnU7HuHHjqK4+M4WyrKyMt99+m2+//ZbNmzeTmZnJk08+2azPqLF9PPnkk9x6663GEMrNzSU2NrZJn5u1z3vy5Mls376dI0eOGLdJS0tj9+7d3HnnnQCUlJQwbdo0tm7dyt9//014eDjjxo2jpKSkWe9LXJlCQ70YN66z2bDcqChfbrutO6+9NlTuiF/BJA/OTvJAtDWSCcIWyYSzk0wQbcmlkAcyfe8Ko9Pp2LBhA2vXruXRRx81Pq5UKvnyyy+NQ0S/++476urq+PLLL1EoFAAsWLAAb29vNm3axDXXXMN7773HnDlzmDhxIgCffvopa9eutXnsgwcPsnTpUtatW0d8fDwAnTt3Nj5vGIKrUqnM5oubOnToECtXriQhIYHY2FgAvv/+ezp27MiKFSu45ZZbAKiurubTTz+lS5cuADzyyCPGuwlN1dg+3N3dcXV1pbKy0mxIb1M+N2j4eYP+jscPP/zAf/7zH+P7Gjx4MF27dgXg6quvNju/zz//HG9vb/766y+uv/76Zr03IUAfQqYBJK4skgdNJ3kgrgSSCVc2yYSmk0wQbd2FzgMZKXWFWLVqFe7u7ri4uDB27Fhuu+025s6da3y+V69eZhe/1NRUDh8+jIeHB+7u7ri7u+Pj40NFRQVHjhyhqKiI3Nxcs+GkDg4ODBgwwOY5pKSkYG9vz/Dhw1v8PtLT03FwcDA7rq+vL927dyc9Pd34mJubmzEoANq3b49arW7WsVqyj7N9bgaWnzfA5MmT+eGHHwD9HwaLFy9m8uTJxudPnTrFfffdR3h4OF5eXnh6elJaWkpmZmaz3pcQ4someSB5IIQQBpIJkglCXGwyUuoKMXLkSD755BOcnJwICgpqsKKGUqk0+7m0tJT+/fvz/fffN9iXv79/i87B1bXphXjPleVKHAqFosFc9tbYR1M/N8vPG+COO+7g6aefZufOnZSXl5OVlcVtt91mfH7atGloNBrmz59PaGgozs7OxMTEmA35FUKIs5E8kDwQQggDyQTJBCEuNumUukIolUrjEM+m6NevHz/++CMqlQpPT0+r27Rv355t27YxbNgwAGpqatixYwf9+vWzun2vXr2oq6vjr7/+Mg7NNWW4K1BbW2vzvCIiIqipqWHbtm3GobkajYYDBw4QGRnZ5Pd3Pjg5OTU416Z8brZ06NCB4cOH8/3331NeXs7o0aNRqVTG5xMSEvj4448ZN24coC+WmJ+ff+5vRFwxbC35Kq4skgfnn+SBuNxIHggDyYTzTzJBXG4udibI9D1h1eTJk/Hz82PChAls2bKFY8eOsWnTJh577DFOnDgBwL/+9S/eeOMNVqxYwf79+3nooYeMK1NY06lTJ6ZNm8Y999zDihUrjPtcunQpAKGhoSgUClatWkVeXh6lpaUN9hEeHs6ECRO477772Lp1K6mpqdx1110EBwczYcKEVvksGns/u3fv5sCBA+Tn51NdXd2kz60xkydPZsmSJfz0009mw3JB/96//fZb0tPT2bZtG5MnT76gd5bE5c+w5GtamuZin4q4jEgenJ3kgbjcSB6IlpJMODvJBHG5udiZIJ1S50llTR1lVTWt/lVZU3dB3o+bmxubN28mJCSEiRMnEhERwYwZM6ioqDD27j/xxBNMmTKFadOmERMTg4eHBzfddFOj+/3kk0+4+eabeeihh+jRowf33XcfWq0WgODgYObNm8czzzxDQEAAjzzyiNV9LFiwgP79+3P99dcTExODTqdj9erVDYbStrb77ruP7t27M2DAAPz9/UlISGjS59aYm2++GY1GQ1lZGTfeeKPZc1999RWnT5+mX79+TJkyhccee8zsLokQZ2NtyVfRSmoqoKqsdb9qKi7IW5E8ODvJA3G5kTy4cCprKymvKW/1r8raygvyfiQTzk4yQVxuLnYmKHTNnUTbxhUXF+Pl5UVRUZHZBaKiooJjx44RFhaGi4vLmcera/kj7SRFFdXWdtcqvFwcuSYqEBdH+wt2THH5s/U7LMS5snXdvNw19r5s/nuqLof9q6Gi8MKcpIs39BgHjnJHVDSPZIJoLW0xE1qSBxU1FWzM3EhxVfEFO09PJ09GhozExUH+TYumkzwQraWpeSA1pc6Ri6M910QFUlV7YUYwATjZ20mHlBBCXIocXfWdRLUXqLiovZN0SAkhxCXIxcGFkSEjqa67cDeuHe0cpUNKCHHZkU6p88DF0V46iYQQQug5ukpHkRBCCFwcXHBBOomEEKIxUlNKCCGEEEIIIYQQQlxw0iklhBBCCCGEEEIIIS446ZQSQgghhBBCCCGEEBecdEoJIYQQQgghhBBCiAtOOqWEEEIIIYQQQgghxAUnnVJCCCGEEEIIIYQQ4oKTTikhhBBCCCGEEEIIccFJp5QQQgghhBBCCCGEuOCkU6qNUygUjX7NnTv3gp3LiBEjjMd1cXEhMjKSjz/+2Pj8woUL/5+9+45vq7r/P/7SHrblKe+VbTvDWWQSCEkgCXuXfIEwWuBL2YUuaMtqv7SlUPpjlRYKpYSGvUMgCQnZO3aGs+x47y1bsjXv7w/FIs524li283k+Hn4kkq+kc2X7vnU+95xziYiI6LH2CCHE2UTyQAghRAfJBCFEbyFFqX6usrIy8PXCCy9gsVg63ffII48EtlUUBY/Hc0bbc8cdd1BZWUleXh7XX38999xzD//973/P6GsK0dcVFzezaNEBioubg90U0YdJHgjRP0gmiO4gmSBE39df8qDPFKX+8Ic/MGXKFMxm8zEr5Uer8i9cuLBnG9rLxMfHB77Cw8NRqVSB23v27CEsLIyvv/6acePGYTAYWL16NbfeeitXXnllp+d58MEHmT59euC2z+fjmWeeYcCAAZhMJrKzs/nwww9P2B6z2Ux8fDwDBw7kiSeeYMiQIXz++efdvNdC9C+7dtWzbl0Fu3bVB7spvYZkQtdJHgjRP0gmdCZ5cGokE4To+/pLHmiD3YCT5XK5uO6665g8eTJvvPHGMbd78803mTNnTuB2Twz1tNvtx/yeRqPBaDSe1LZqtRqTyXTCbUNCQk6hlcf2q1/9ir/85S8MHDiQyMjIk3rMM888wzvvvMPf//53hgwZwsqVK7npppuwWq2cf/75J/3aJpMJl8t1qk0X4qwwfHh0p3+FZEIHyQMhzj6SCZ1JHvxAMkGIs0t/yYM+U5R68sknAf+c4uOJiIggPj6+B1r0g9DQ0GN+7+KLL+arr74K3I6NjcXhcBx12/PPP58VK1YEbqenp1NXV3fEdoqinHpjj+Kpp57iwgsvPOntnU4n//d//8fSpUuZPHkyAAMHDmT16tW89tprJxU4Xq+X//73v2zfvp0777zzlNsuxNkgLS2ctLTwYDejV5FM8JM8EOLsI5nQmeTBDyQThDi79Jc86DPT907WPffcQ0xMDBMmTOBf//pXtx+c+6Px48d3afv8/HwcDgcXXnghoaGhga+3336bgoKC4z72lVdeITQ0FJPJxB133MFDDz3E3XfffTrNF0KIY5JM6BrJAyFEfyV50HWSCUKIntBnRkqdjKeeeooZM2ZgNpv59ttv+elPf0prayv333//MR/jdDpxOp2B2zabrcuv29raeszvaTSaTrdramqOua1a3blGWFRU1OW2nIrDh/qq1eojgtrtdgf+37G/X331FUlJSZ22MxgMx32tG2+8kcceewyTyURCQsIR+yyEEN2lq5nQHXkAfTsTJA+EEP2R5MGpkUwQQvSEoBalfvWrX/GnP/3puNvs3r2bjIyMk3q+3/72t4H/jxkzBrvdzrPPPnvcotQzzzwTGPZ7qroyf/tMbdudrFYrO3fu7HRfTk4OOp0OgKysLAwGAyUlJV2aGw4QHh7O4MGDu62tQoj+I9iZ0B15AP0rEyQPhBDBIHnQfdt2J8kEIcSZENSi1MMPP8ytt9563G0GDhx4ys8/ceJEnn76aZxO5zGr87/+9a/52c9+Frhts9lISUk55dfsD2bMmMGzzz7L22+/zeTJk3nnnXfYuXMnY8aMASAsLIxHHnmEhx56CJ/Px7nnnktzczNr1qzBYrFwyy23BHkPhBB9UbAzQfLgSJIHQohgkDzonSQThBBnQlCLUlarFavVesaePycnh8jIyOMOFzUYDCccTnq2mT17Nr/97W/5xS9+QXt7O7fffjvz589nx44dgW2efvpprFYrzzzzDAcOHCAiIoKxY8fy6KOPBrHlQoi+LNiZIHlwJMkDIUQwSB70TpIJQogzQaX0kVX+SkpKaGho4PPPP+fZZ59l1apVAAwePJjQ0FC++OILqqurmTRpEkajkSVLlvDII4/wyCOPdGn4rc1mIzw8nObmZiwWS+D+9vZ2CgsLGTBgQKfLtwrRV8jvcP+3Zk0ZS5cWM2tWGlOnJvfY6x7ruHkm9UQmHG+/5O9J9HXyO9z/nS2ZIHkgxOmR3+H+r7fnQZ9Z6Px3v/sd//73vwO3O4aJLl++nOnTp6PT6Xj55Zd56KGHUBSFwYMH8/zzz3PHHXcEq8lCCNGjli4tZunSEoAeDZxgkEwQQojjO1syQfJACCGOr7fnQZ8pSr311lu89dZbx/z+nDlzmDNnTs81SAgheplZs9I6/dufSSYIIcTxnS2ZIHkghBDH19vzoM8UpYQQQhzf1KnJvfLshxBCiJ4nmSCEEAJ6fx6og90AIYQQQgghhBBCCHH2kaKUEEIIIYQQQgghhOhxUpTqIp/PF+wmCHFK5HdXiO4nf1eir5LfXSG6l/xNib5KfndFsMmaUidJr9ejVqupqKjAarWi1+tRqVTBbpYQJ6QoCi6Xi9raWtRqNXq9PthNEqLPk0wQfZVkghDdS/JA9FWSB6K3kKLUSVKr1QwYMIDKykoqKiqC3RwhusxsNpOamopaLQMkhThdkgmir5NMEKJ7SB6Ivk7yQASbFKW6QK/Xk5qaisfjwev1Brs5Qpw0jUaDVquVM3dCdCPJBNFXSSYI0b0kD0RfJXkgegMpSnWRSqVCp9Oh0+mC3RQhhBBBJpkghBACJA+EEOJUyRg9IYQQQgghhBBCCNHjpCglhBBCCCGEEEIIIXqcFKWEEEIIIYQQQgghRI+TNaUOoygKADabLcgtEUKIvqHjeNlx/OwvJA+EEKLr+mMmSB4IIUTXnWweSFHqMC0tLQCkpKQEuSVCCNG3tLS0EB4eHuxmdBvJAyGEOHX9KRMkD4QQ4tSdKA9USn86jdENfD4fFRUVhIWFdfnSmDabjZSUFEpLS7FYLGeohWdef9kPkH3prfrLvvSX/YDT2xdFUWhpaSExMRG1uv/MCpc88JN96X36y36A7EtvdLr70R8z4XTyAOR3ozeSfel9+st+gOxLh5PNAxkpdRi1Wk1ycvJpPYfFYunzv3zQf/YDZF96q/6yL/1lP+DU96W/nA0/lORBZ7IvvU9/2Q+QfemNTmc/+lsmdEcegPxu9EayL71Pf9kPkH2Bk8uD/nH6QgghhBBCCCGEEEL0KVKUEkIIIYQQQgghhBA9TopS3chgMPD4449jMBiC3ZTT0l/2A2Rfeqv+si/9ZT+gf+1Lb9Cf3k/Zl96nv+wHyL70Rv1lP3qT/vKe9pf9ANmX3qi/7AfIvnSVLHQuhBBCCCGEEEIIIXqcjJQSQgghhBBCCCGEED1OilJCCCGEEEIIIYQQosdJUUoIIYQQQgghhBBC9DgpSgkhhBBCCCGEEEKIHidFqTPkD3/4A1OmTMFsNhMRERHs5nTJyy+/THp6OkajkYkTJ7Jx48ZgN6nLVq5cyWWXXUZiYiIqlYpPP/002E06Jc888wznnHMOYWFhxMbGcuWVV7J3795gN+uUvPrqq4waNQqLxYLFYmHy5Ml8/fXXwW5Wt/jjH/+ISqXiwQcfDHZTuuyJJ55ApVJ1+srIyAh2s/oVyYPgk0zoffprJkgeiBORTAguyYPep7/mAUgmnCwpSp0hLpeL6667jrvvvjvYTemS9957j5/97Gc8/vjjbN26lezsbGbPnk1NTU2wm9Yldrud7OxsXn755WA35bR8//333HPPPaxfv54lS5bgdru56KKLsNvtwW5alyUnJ/PHP/6RLVu2sHnzZmbMmMEVV1zBrl27gt2007Jp0yZee+01Ro0aFeymnLLhw4dTWVkZ+Fq9enWwm9SvSB4En2RC79MfM0HyQJwMyYTgkjzoffpjHoBkQpco4ox68803lfDw8GA346RNmDBBueeeewK3vV6vkpiYqDzzzDNBbNXpAZRPPvkk2M3oFjU1NQqgfP/998FuSreIjIxUXn/99WA345S1tLQoQ4YMUZYsWaKcf/75ygMPPBDsJnXZ448/rmRnZwe7GWcFyYPeQTKh9+rLmSB5ILpKMiH4JA96r76cB4oimdBVMlJKBLhcLrZs2cKsWbMC96nVambNmsW6deuC2DLRobm5GYCoqKggt+T0eL1eFi5ciN1uZ/LkycFuzim75557uOSSSzr9zfRF+/fvJzExkYEDB3LjjTdSUlIS7CaJIJM86BskE3oPyQPRn0km9H6SB72LZELXaM/Is4o+qa6uDq/XS1xcXKf74+Li2LNnT5BaJTr4fD4efPBBpk6dyogRI4LdnFOyY8cOJk+eTHt7O6GhoXzyySdkZWUFu1mnZOHChWzdupVNmzYFuymnZeLEibz11lsMGzaMyspKnnzySaZNm8bOnTsJCwsLdvNEkEge9H6SCb2H5IHo7yQTejfJg95FMqHrZKRUF/zqV786YrGvw7/kwCzOlHvuuYedO3eycOHCYDfllA0bNoycnBw2bNjA3XffzS233EJeXl6wm9VlpaWlPPDAAyxYsACj0Rjs5pyWuXPnct111zFq1Chmz57NokWLaGpq4v333w9203o1yQMRbJIJvYPkgQDJBBFckge9h2TCqZGRUl3w8MMPc+uttx53m4EDB/ZMY86AmJgYNBoN1dXVne6vrq4mPj4+SK0SAPfeey9ffvklK1euJDk5OdjNOWV6vZ7BgwcDMG7cODZt2sTf/vY3XnvttSC3rGu2bNlCTU0NY8eODdzn9XpZuXIlL730Ek6nE41GE8QWnrqIiAiGDh1Kfn5+sJvSq0keiGCSTOg9JA8ESCaI4JE86F0kE06NFKW6wGq1YrVag92MM0av1zNu3DiWLVvGlVdeCfiHgy5btox77703uI07SymKwn333ccnn3zCihUrGDBgQLCb1K18Ph9OpzPYzeiymTNnsmPHjk733XbbbWRkZPDLX/6yz4YNQGtrKwUFBdx8883BbkqvJnkggkEyofeRPBAgmSB6nuRB7ySZcGqkKHWGlJSU0NDQQElJCV6vl5ycHAAGDx5MaGhocBt3HD/72c+45ZZbGD9+PBMmTOCFF17Abrdz2223BbtpXdLa2tqpiltYWEhOTg5RUVGkpqYGsWVdc8899/Duu+/y2WefERYWRlVVFQDh4eGYTKYgt65rfv3rXzN37lxSU1NpaWnh3XffZcWKFXzzzTfBblqXhYWFHTFnPyQkhOjo6D43l/+RRx7hsssuIy0tjYqKCh5//HE0Gg3z5s0LdtP6DcmD4JNM6H36SyZIHoiukkwILsmD3qe/5AFIJpyyHrnG31nolltuUYAjvpYvXx7spp3Qiy++qKSmpip6vV6ZMGGCsn79+mA3qcuWL19+1Pf/lltuCXbTuuRo+wAob775ZrCb1mW33367kpaWpuj1esVqtSozZ85Uvv3222A3q9v01cu9/uhHP1ISEhIUvV6vJCUlKT/60Y+U/Pz8YDerX5E8CD7JhN6nP2eC5IE4HsmE4JI86H36cx4oimTCyVApiqJ0f6lLCCGEEEIIIYQQQohjk6vvCSGEEEIIIYQQQogeJ0UpIYQQQgghhBBCCNHjpCglhBBCCCGEEEIIIXqcFKWEEEIIIYQQQgghRI+TopQQQgghhBBCCCGE6HFSlBJCCCGEEEIIIYQQPU6KUkIIIYQQQgghhBCix0lRSgghhBBCCCGEEEL0OClKCdFLeb1epkyZwtVXX93p/ubmZlJSUnjssceC1DIhhBA9TTJBCCEESB6I/kelKIoS7EYIIY5u3759jB49mn/+85/ceOONAMyfP5/c3Fw2bdqEXq8PcguFEEL0FMkEIYQQIHkg+hcpSgnRy/2///f/eOKJJ9i1axcbN27kuuuuY9OmTWRnZwe7aUIIIXqYZIIQQgiQPBD9hxSlhOjlFEVhxowZaDQaduzYwX333cdvfvObYDdLCCFEEEgmCCGEAMkD0X9IUUqIPmDPnj1kZmYycuRItm7dilarDXaThBBCBIlkghBCCJA8EP2DLHQuRB/wr3/9C7PZTGFhIWVlZcFujhBCiCCSTBBCCAGSB6J/kJFSQvRya9eu5fzzz+fbb7/l97//PQBLly5FpVIFuWVCCCF6mmSCEEIIkDwQ/YeMlBKiF3M4HNx6663cfffdXHDBBbzxxhts3LiRv//978FumhBCiB4mmSCEEAIkD0T/IiOlhOjFHnjgARYtWkRubi5msxmA1157jUceeYQdO3aQnp4e3AYKIYToMZIJQgghQPJA9C9SlBKil/r++++ZOXMmK1as4Nxzz+30vdmzZ+PxeGSIrhBCnCUkE4QQQoDkgeh/pCglhBBCCCGEEEIIIXqcrCklhBBCCCGEEEIIIXqcFKWEEEIIIYQQQgghRI+TopQQQgghhBBCCCGE6HFSlBJCCCGEEEIIIYQQPU6KUkIIIYQQQgghhBCix0lRSgghhBBCCCGEEEL0OClKCSGEEEIIIYQQQogeJ0UpIYQQQgghhBBCCNHjpCglhBBCCCGEEEIIIXqcFKWEEEIIIYQQQgghRI+TopQQQgghhBBCCCGE6HFSlBJCCCGEEEIIIYQQPU6KUkIIIYQQQgghhBCix0lRSgghhBBCCCGEEEL0OClKCSGEEEIIIYQQQogeJ0UpIYQQQgghhBBCCNHjpCglhBBCCCGEEEIIIXqcFKWEEP3GihUrUKlUrFixIthNEUIIEWSSCUII0XNUKhVPPPFEsJvRLW699VbS09NP6bHp6enceuut3dqe/k6KUqJbFBQUcNdddzFw4ECMRiMWi4WpU6fyt7/9jba2tk7ber1e3nzzTaZPn05UVBQGg4H09HRuu+02Nm/eHNjurbfeQqVSBb6MRiNDhw7l3nvvpbq6+rjtqa+v59lnn+W8887DarUSERHBpEmTeO+9987I/vd3e/fu5aGHHmLKlCkYjUZUKhVFRUXBbtYpa21t5fHHH2fOnDlERUWhUql46623gt0sIfoNyYT+rb9lwk033YTRaGTfvn1HfO+Pf/wjKpWKL7/8MggtEyJ45DguhOgp2mA3QPR9X331Fddddx0Gg4H58+czYsQIXC4Xq1ev5uc//zm7du3iH//4BwBtbW1cffXVLF68mPPOO49HH32UqKgoioqKeP/99/n3v/9NSUkJycnJged/6qmnGDBgAO3t7axevZpXX32VRYsWsXPnTsxm81HbtG7dOh577DEuvvhifvOb36DVavnoo4+44YYbyMvL48knn+yR96a/WLduHf/v//0/srKyyMzMJCcnJ9hNOi11dXU89dRTpKamkp2dLWfRhehGkgn9X3/LhOeff55Fixbxv//7v3z33XeB+wsLC3nqqae45ppruPTSS4PYQiF6lhzHxdnun//8Jz6fL9jNOHsoQpyGAwcOKKGhoUpGRoZSUVFxxPf379+vvPDCC4Hb99xzjwIof/3rX4/Y1uPxKM8++6xSWlqqKIqivPnmmwqgbNq0qdN2P/vZzxRAeffdd4/brqKiok73+Xw+ZcaMGYrBYFBaW1u7sptdZrfbz+jz97T6+nrFZrMpiqIozz77rAIohYWFwW3UUSxfvlwBlOXLlx93u/b2dqWyslJRFEXZtGmTAihvvvnmmW+gEP2cZMLRSSYEx8lmgqIoyj/+8Q8FUN56663AfXPmzFEsFotSVlZ2BlspRO8ix/Gj62/H8TMBUB5//PFgNyPo0tLSlFtuuSXYzehTZPqeOC1//vOfaW1t5Y033iAhIeGI7w8ePJgHHngAgLKyMl577TUuvPBCHnzwwSO21Wg0PPLII53OpBzNjBkzAP8ZzGMZMGAAaWlpne5TqVRceeWVOJ1ODhw4cKJdo7i4mMsvv5yQkBBiY2N56KGH+Oabb45Yn2L69OmMGDGCLVu2cN5552E2m3n00UcBqKmp4cc//jFxcXEYjUays7P597//3el1jrXmRVFR0RHTym699VZCQ0M5cOAAs2fPJiQkhMTERJ566ikURen0+IULFzJu3DjCwsKwWCyMHDmSv/3tbyfc76OJiooiLCzslB4L8Nlnn3HJJZeQmJiIwWBg0KBBPP3003i93k7bdbyXeXl5XHDBBZjNZpKSkvjzn/98xHOWlZVx5ZVXdvr5OJ3Ok2qPwWAgPj7+lPdHCHF0kgmSCSejt2UCwE9+8hOmTp3KI488Qn19PQsXLmTx4sX8/ve/Jykp6ZT3VYi+Ro7jZ8dx/NB9nDJlCiaTiQEDBvD3v//9iG1PZp8Pt3z5clQqFZ988skR33v33XdRqVSsW7eu03tQXl7OlVdeSWhoKFarlUceeeSIXLDb7Tz88MOkpKRgMBgYNmwYf/nLX454r1QqFffeey8ffPABWVlZmEwmJk+ezI4dOwB47bXXGDx4MEajkenTpx8xBf1oa0r95S9/YcqUKURHR2MymRg3bhwffvjhcd8HALfbzZNPPsmQIUMwGo1ER0dz7rnnsmTJkhM+9mwh0/fEafniiy8YOHAgU6ZMOeG2X3/9NR6Ph5tvvvm0XrOgoACA6OjoLj+2qqoKgJiYmONuZ7fbmTFjBpWVlTzwwAPEx8fz7rvvsnz58qNuX19fz9y5c7nhhhu46aabiIuLo62tjenTp5Ofn8+9997LgAED+OCDD7j11ltpamoKBHpXeb1e5syZw6RJk/jzn//M4sWLefzxx/F4PDz11FMALFmyhHnz5jFz5kz+9Kc/AbB7927WrFlzyq97Ot566y1CQ0P52c9+RmhoKN999x2/+93vsNlsPPvss522bWxsZM6cOVx99dVcf/31fPjhh/zyl79k5MiRzJ07F/APFZ85cyYlJSXcf//9JCYm8p///KfTtAshRM+TTPCTTDi+3pgJKpWK1157jTFjxnD33XezatUqxo8fzz333NOt+y5EbyfHcb+z4Tje2NjIxRdfzPXXX8+8efN4//33ufvuu9Hr9dx+++0Ap7zP06dPJyUlhQULFnDVVVd1+t6CBQsYNGgQkydP7vQezJ49m4kTJ/KXv/yFpUuX8txzzzFo0CDuvvtuABRF4fLLL2f58uX8+Mc/ZvTo0XzzzTf8/Oc/p7y8nL/+9a+dXmfVqlV8/vnngeP4M888w6WXXsovfvELXnnlFX7605/S2NjIn//8Z26//fYTZsbf/vY3Lr/8cm688UZcLhcLFy7kuuuu48svv+SSSy455uOeeOIJnnnmGX7yk58wYcIEbDYbmzdvZuvWrVx44YXHfc2zRlDHaYk+rbm5WQGUK6644qS2f+ihhxRA2bZt20lt3zHEd+nSpUptba1SWlqqLFy4UImOjlZMJlOXh9PX19crsbGxyrRp00647XPPPacAyqeffhq4r62tTcnIyDhiKsD555+vAMrf//73Ts/xwgsvKIDyzjvvBO5zuVzK5MmTldDQ0MDUh2NNLygsLDxiWtktt9yiAMp9990XuM/n8ymXXHKJotfrldraWkVRFOWBBx5QLBaL4vF4TrivXXUqUzUcDscR9911112K2WxW2tvbA/d1vJdvv/124D6n06nEx8cr11xzTeC+jvf2/fffD9xnt9uVwYMHn/RUjQ4yfU+I7iGZ4CeZcGK9ORN+/etfK4Ci0WiULVu2nPTjhOgP5DjudzYcxzv28bnnngvc53Q6ldGjRyuxsbGKy+Xq0j4rypHT9379618rBoNBaWpqCtxXU1OjaLXaTtt1vAdPPfVUpzaOGTNGGTduXOD2p59+qgDK73//+07bXXvttYpKpVLy8/M7tcVgMHTKptdee00BlPj4+E7t7jjuH7rtLbfcoqSlpXV6ncOzy+VyKSNGjFBmzJjR6f7Dp+9lZ2crl1xyiSKOTabviVNms9kATnoIf1e37zBr1iysVispKSnccMMNhIaG8sknn3RpOL3P5+PGG2+kqamJF1988YTbL168mKSkJC6//PLAfUajkTvuuOOo2xsMBm677bZO9y1atIj4+HjmzZsXuE+n03H//ffT2trK999/f9LtP9y9994b+H/H8FSXy8XSpUsBiIiIwG6395phoSaTKfD/lpYW6urqmDZtGg6Hgz179nTaNjQ0lJtuuilwW6/XM2HChE7DshctWkRCQgLXXntt4D6z2cydd955BvdCCHE8kgk/kEw4vt6cCR2jLRITExkxYkSXHy9EXybH8R+cDcdxrVbLXXfdFbit1+u56667qKmpYcuWLcDp7fP8+fNxOp2dpri99957eDyeTsf1Dv/7v//b6fa0adOOONZrNBruv//+Tts9/PDDKIrC119/3en+mTNndpqCN3HiRACuueaaTr+zHfefaAroodnV2NhIc3Mz06ZNY+vWrcd9XEREBLt27WL//v3H3e5sJkUpccosFgvg/0B5Jrbv8PLLL7NkyRKWL19OXl5eYM51V9x3330sXryY119/nezs7BNuX1xczKBBg1CpVJ3uHzx48FG3T0pKQq/XH/EcQ4YMQa3u/GeWmZkZ+P6pUKvVDBw4sNN9Q4cOBQjMh/7pT3/K0KFDmTt3LsnJydx+++0sXrz4lF6vO+zatYurrrqK8PBwLBYLVqs1EEbNzc2dtk1OTj7ifY+MjKSxsTFwu7i4mMGDBx+x3bBhw87QHgghTkQy4QeSCcfXWzOhtLSUxx9/nBEjRlBaWnrUtauE6M/kOP6Ds+E4npiYSEhIyHFf93T2OSMjg3POOYcFCxYE7luwYAGTJk064n03Go1YrdZO9x3tWJ+YmHhEEfRYbUlNTe10Ozw8HICUlJSj3n/oax3Nl19+yaRJkzAajURFRWG1Wnn11VePyK3DPfXUUzQ1NTF06FBGjhzJz3/+c7Zv337cx5xtpCglTpnFYiExMZGdO3ee1PYZGRkAgQXmTtaECROYNWsW06dPJzMz84iD4ok8+eSTvPLKK/zxj3887Tnvx3Jo5byrDg/HDocv7NcVsbGx5OTk8PnnnwfmXs+dO5dbbrnllJ/zVDU1NXH++eeTm5vLU089xRdffMGSJUsC8+EPv9yqRqM56vMohy1gKIToXSQTfiCZcGy9ORM6Rip8/fXXXHfddfzhD384qcWThegv5Dj+AzmOd4/58+fz/fffU1ZWRkFBAevXrz/qKKljHetPx7Ge81RyZdWqVVx++eUYjUZeeeUVFi1axJIlS/if//mfE+bReeedR0FBAf/6178YMWIEr7/+OmPHjuX1118/+Z3p56QoJU7LpZdeSkFBQeDqCcczd+5cNBoN77zzTg+0zO/ll1/miSee4MEHH+SXv/zlST8uLS2NgoKCIw4y+fn5XXqO/fv3H/EBu2NqQscVRCIjIwH/B/VDHevMg8/nO+JD8r59+wA6DVHV6/VcdtllvPLKKxQUFHDXXXfx9ttvd2kfusOKFSuor6/nrbfe4oEHHuDSSy9l1qxZgf0+Fcf6+ezdu/d0myuEOA2SCcd/DsmE3psJn3zyCZ9//jlPP/00ycnJvPDCC+j1elnoXJx15Dh+/OfoT8fxiooK7Hb7cV/3ZPf5WG644QY0Gg3//e9/WbBgATqdjh/96Een1N60tDQqKiqOGJl3sm05HR999BFGo5FvvvmG22+/nblz5zJr1qyTfnxUVBS33XYb//3vfyktLWXUqFE88cQTZ6y9fY0UpcRp+cUvfkFISAg/+clPqK6uPuL7BQUFgUuVpqSkcMcdd/Dtt98ede63z+fjueeeo6ysrFva9t5773H//fdz44038vzzz3fpsbNnz6a8vJzPP/88cF97ezv//Oc/T/o5Lr74YqqqqnjvvfcC93k8Hl588UVCQ0M5//zzAf8BVKPRsHLlyk6Pf+WVV4753C+99FLg/4qi8NJLL6HT6Zg5cybgv2LIodRqNaNGjQLo0iWyu0PH2YhDPwS4XK7j7t+JXHzxxVRUVHSao+5wOPjHP/5x6g0VQpw2yYRjk0zw642Z0NLSwv3338+YMWO47777AP+0lqeffprFixfzwQcfnHLbhOhr5Dh+bP3tOO7xeHjttdcCt10uF6+99hpWq5Vx48YBJ7/PxxITE8PcuXN55513WLBgAXPmzDnhlRKP5eKLL8br9XZ6rwD++te/olKpAldkPRM0Gg0qlarTaLeioiI+/fTTEz728J9daGgogwcP7vH87c20wW6A6NsGDRrEu+++y49+9CMyMzOZP38+I0aMwOVysXbt2sAlQzs899xzFBQUcP/99/Pxxx9z6aWXEhkZSUlJCR988AF79uzhhhtuOO12bdy4kfnz5xMdHc3MmTM7zWUGmDJlyhFztw9111138dJLLzFv3jweeOABEhISWLBgAUajETj2sNxD3Xnnnbz22mvceuutbNmyhfT0dD788EPWrFnDCy+8EJgPHR4eznXXXceLL76ISqVi0KBBfPnll9TU1Bz1eY1GI4sXL+aWW25h4sSJfP3113z11Vc8+uijgbnYP/nJT2hoaGDGjBkkJydTXFzMiy++yOjRowPzruGHsyAd88aPpbm5OfBhY82aNYA/PCMiIoiIiOi0OOPhpkyZQmRkJLfccgv3338/KpWK//znP6c19eKOO+7gpZdeYv78+WzZsoWEhAT+85//YDabT/o5XnrpJZqamqioqAD8l0Du+NB03333BeaXCyFOnmTCsUkm+PXGTPjNb35DRUUFH3/8cadpHffccw///ve/efDBB5kzZ06XF3MWoi+S4/ix9afjOPiL73/6058oKipi6NChvPfee+Tk5PCPf/wDnU7XpX0+nvnz5wcuRPH000+fcPtjueyyy7jgggt47LHHKCoqIjs7m2+//ZbPPvuMBx98kEGDBp3yc5/IJZdcwvPPP8+cOXP4n//5H2pqanj55ZcZPHjwCdeHysrKYvr06YwbN46oqCg2b97Mhx9+eNysPOv0+PX+RL+0b98+5Y477lDS09MVvV6vhIWFKVOnTlVefPHFTpd3VhRF8Xg8yuuvv65MmzZNCQ8PV3Q6nZKWlqbcdtttnS4p23HZ2E2bNnW5PR2PPdbXoZdiPZYDBw4ol1xyiWIymRSr1ao8/PDDykcffaQAyvr16wPbnX/++crw4cOP+hzV1dXKbbfdpsTExCh6vV4ZOXLkUV+7trZWueaaaxSz2axERkYqd911l7Jz586jXjY2JCREKSgoUC666CLFbDYrcXFxyuOPP654vd7Adh9++KFy0UUXKbGxsYper1dSU1OVu+66S6msrOz0ujExMcqkSZNO+F50XML2aF+HXy71aNasWaNMmjRJMZlMSmJiovKLX/xC+eabb456Cd6jvZdHuyxrcXGxcvnllytms1mJiYlRHnjgAWXx4sUnffnvtLS0Y+5TVy5tLoQ4kmSCZMLx9KZM2Lx5s6LRaJR77733qN/fuHGjolarlfvvv/+E+yVEfyLH8f59HO/Yx82bNyuTJ09WjEajkpaWprz00kunvM+A8vjjjx9xv9PpVCIjI5Xw8HClra3tiO93vAeHe/zxx5XDyxUtLS3KQw89pCQmJio6nU4ZMmSI8uyzzyo+n++Ittxzzz2d7uvIrmeffbbT/cuXL1cA5YMPPujUpsNz5o033lCGDBmiGAwGJSMjQ3nzzTeP2sa0tDTllltuCdz+/e9/r0yYMEGJiIhQTCaTkpGRofzhD39QXC7XEft8tlIpiqweLMTJeuGFF3jooYcoKyvr0mVru8utt97Khx9+SGtr62k/V15eHsOHD+fLL7/kkksu6YbWCSHE2UUyQQgh+raz9Tg+ffp06urqTnpR+9Ph8XhITEzksssu44033jjjryf6HllTSohjaGtr63S7vb2d1157jSFDhgQltLrb8uXLmTx5snQ+hBDiJEgmCCFE3ybH8eD49NNPqa2tZf78+cFuiuilZE0pIY7h6quvJjU1ldGjR9Pc3Mw777zDnj17jpjD3lfdc889clUhIYQ4SZIJQgjRt8lxvGdt2LCB7du38/TTTzNmzJgTLoouzl5SlBLiGGbPns3rr7/OggUL8Hq9ZGVlsXDhwlO+jKkQQoi+SzJBCCH6NjmO96xXX32Vd955h9GjR/PWW28FuzmiF5M1pYQQQgghhBBCCCFEj5M1pYQQQgghhBBCCCFEj5OilBBCCCGEEEIIIYTocVKUEkIIIYQQQgghhBA9ThY6P4zP56OiooKwsDBUKlWwmyOEEL2eoii0tLSQmJiIWt1/znVIHgghRNf1x0yQPBBCiK472TyQotRhKioqSElJCXYzhBCizyktLSU5OTnYzeg2kgdCCHHq+lMmSB4IIcSpO1EeSFHqMGFhYYD/jbNYLEFujRBC9H42m42UlJTA8bO/kDwQQoiu64+ZIHkghBBdd7J5IEWpw3QMybVYLBI6QgjRBf1tSoPkgRBCnLr+lAmSB0IIcepOlAf9Y6K3EEIIIYQQQgghhOhTpCglhBBCCCGEEEIIIXqcFKWEEEIIIYQQQgghRI+TopQQQgghhBBCCCGE6HFSlBJCCCGEEEIIIYQQPU6KUkIIIYQQQgghhBCix0lRSgghhBBCCCGEEEL0OClKCSGEEEIIIYQQQogeJ0UpIYQQQgghhBBCCNHjpCglhBBCCCGEEEIIIXqcFKWEEKIXKS5uZtGiAxQXNwe7KUIIIYJI8kAIIUSH/pwJ2mA3QAghxA927apn3boKANLSwoPcGiGEEMEieSCEEKJDf84EKUoJIUQvMnx4dKd/hRBCnJ0kD4QQQnToz5kgRSkhhOhF0tLC+93ZDyGEEF0neSCEEKJDf84EWVNKCCGEEEIIIYQQQvQ4KUoJIYQQQgghhBBCiB4nRSkhhBBCCCGEEEII0eOkKCWEEEIIIYQQQgghepwUpYQQQgghhBBCCCFEj5OilBBCCCGEEEIIIYTocVKUEkIIIYQQQgghhBA9TopSQgghhBBCCCGEEKLHSVFKCCGEEEIIIYQQQvQ4KUoJIYQQQgghhBBCiB4nRSkhhBBCCCGEEEII0eOkKCWEEEIIIYQQQgghepwUpYQQQgghhBBCCCFEj5OilBBCCCGEEEIIIYTocVKUEkIIIYQQQgghhBA9TopSQgghhBBCCCGEEKLHSVFKCCGEEEIIIYQQQvQ4KUoJIYQQQgghhBBCiB4nRSkhhBBCCCGEEEII0eOkKCWEEEIIIYQQQgghepwUpYQQQgghhBBCCCFEj5OilBBCCCGEEEIIIYTocVKUEkIIIYQQQgghhBA9TopSQgghhBBCCCGEEKLHSVFKCCGEEEIIIYQQQvQ4KUoJIUQvsWZNGU8+uYY1a8qC3RQhhBBBJHkghBCiQ3/PBG2wGyCEEMJv6dJili4tAWDq1OQgt0YIIUSwSB4IIYTo0N8zQYpSQgjRS8yaldbpXyGEEGcnyQMhhBAd+nsmSFFKCCF6ialTk/vl2Q8hhBBdI3kghBCiQ3/PBFlTSgghhBBCCCGEEEL0OClKCSGEEEIIIYQQQogeJ0UpIYQQQgghhBBCCNHjpCglhBBnoeLiZhYtOkBxcXOwmyKEECLIJBOEEEJAcPJAFjoXQoiz0K5d9axbVwFAWlp4kFsjhBAimCQThBBCQHDyQIpSQghxFho+PLrTv0IIIc5ekglCCCEgOHkgRSkhhDgLpaWFy9lwIYQQgGSCEEIIv2DkgawpJYQQQgghhBBCCCF6XL8qSj3xxBOoVKpOXxkZGcFulhBCiCCQTBBCCAGSB0II0Zv1u+l7w4cPZ+nSpYHbWm2/20UhhBAnSTJBCCEESB4IIURv1e+Oxlqtlvj4+GA3QwghRC8gmSCEEAIkD4QQorfqV9P3APbv309iYiIDBw7kxhtvpKSk5LjbO51ObDZbpy8hhBD9Q1cyQfJACCH6L8kDIYTonfpVUWrixIm89dZbLF68mFdffZXCwkKmTZtGS0vLMR/zzDPPEB4eHvhKSUnpwRYLIYQ4U7qaCZIHQgjRP0keCCFE76VSFEUJdiPOlKamJtLS0nj++ef58Y9/fNRtnE4nTqczcNtms5GSkkJzczMWi6WnmirOAorLhaexEV9rK77WVrytrfhaWlFcThSvD3w+FJ8XfAoqnQ61yYjKaERtMqE2mdBERqKJikYdYkalUgV7d4QIsNlshIeH9/rj5okyQfJACCFOX1/IBMkDIYQ48042D/rdmlKHioiIYOjQoeTn5x9zG4PBgMFg6MFWif7Ka7PhKi7GVVSMq7gYd1kZ7uoqPDW1eOrq8DU3d8vrqPR6NBERaGJi0CcnoUtLQ5+ejj4lBcOgQWijo7vldYTob06UCZIHQghxdpA8EEKI3qNfF6VaW1spKCjg5ptvDnZTRD/ic7lw5efTvns37Xm7ac/Lw1VYiLepKbCNOjQUTURE4F9dUiLq0FDUJjMqgx61wYjq4AgolV4PanXgSwUoXi+Ky+X/cjpRnE689lYURxs+hwOf3Y7Pbqd9z17s6zfgO2StA01kJIYhQzBmZmIcOQLzmDFoExOPGF21Zk0ZS5cWM2tWGlOnJvfQuydE8EgmCHF0kgfibCN5IMSxSSaIntavilKPPPIIl112GWlpaVRUVPD444+j0WiYN29esJsm+ihFUXAVFdG2LQfH1i205eTiKiwErxdUKrQxMWhjYzGOGOEfvRQViSbGitZiQaXX+790OtBqu33KneL1orjdKC4XPrsdT3U17qoqPLU1eGrraPr0U3z//jcAmuhoTKOzMZ8zgZDJkzAMHcrSpcUsXepf5FMCR/RHkglCnBzJA9HfSR4IcfIkE0RP61dFqbKyMubNm0d9fT1Wq5Vzzz2X9evXY7Vag9000UcoXi/tebtxbFiPY8tW2rZt84+AUqnQxsWhS0ggdOYMdDFWtImJaMLDURv9az+pNJoebatKo/G/ptGIxmJBl5CAqWM/PB58bW146+pwFuTjKivDuXcfrSu+B68XTVQUVwweRcrgoWRMyj7lNpzMmZTi4mZ27apn+PBo0tLCT/m1+jI54xQckglCnJxZs9I6/XsqTvY4d7ZnguRBcEgeCHHyeioTzvY8AMmEDv2qKLVw4cJgN0H0MYqi4C4txb52LfbVa7Bv2ICvpQWVwYAuKQnj8OFoExLQJSejjY72T7czGlGpe/eFK1VaLZqwMDRhYegHDAD80w69jY049+3DuX8/qsJdTK5dAev/SeGoUVguuRjLnDnoYmNP+nVO5kzKrl31rFtXAXDWBo6ccQoOyQQhTs7UqcmnfWw62ePc2Z4JkgfBIXkgxMnrqUw42/MAJBM69KuilBAnQ3G7sW/YSMu339K6ahWeykpQq9GlpGDKzkaXkoIuNRVteDjqkBD/9Lt+QK3Xo46LQxcXR+i0afja23GXl9O+cyfOffuo+eOfqHnmjxiHD8dyycWEX3kl2sjI4z7nyZxJGT48utO/Z6PuOOMkhBC92cke5872TJA8EEKcDaSPcHIkE/xUiqIowW5Eb9IXLmMrus7ndGJfsxbb4sW0Ll+Or6UFTVQU+sGD0ScloUtPRxsdjSY01L/w+FlG8XpxV1XRtm0rzr17cRUWgUpFyJQpRFx/HWHTp/eb4pzofv31uNlf90sIIc6k/njs7I/7JIQQZ9rJHjtlpJTot3wOB60rV2H7ehGtK1ehtLWhsVoxjhyJYchgdGnp/gXJTaZuX4S8r1FpNOiTktAnJaHMvRh3ZSX2Detx7txJ+X33o46IIPySS4i67Vb0yd03tPSjj/by8cf7ufrqIVxzzbBue14hhBB9j2SCEEIIkDw420hRSvQr3pYWWpcvp/mrRTjWrUNxudDGx2MeNw7DsGHoBwxAExYmo36OQ6XRoE9ORp98LcrlV9CWl0fb5k00ffQRje++i3nSJKJvvZWQ86addjHv44/3s3JlGcBZGzgdizyGh+tpbnad1Ys9CiHObmd7Jkge9E/tra188/e/Mf6yq0galhXs5gjRJ5zteQBnVyZIUUr0eZ7GRlqWLsO2aBGOTZvA40GXlIR58iQMmVkY0tJQh4X1+sXJeyOVToc5Oxtzdjaehgbsq1fj2LKF0rvuQpecTNT8+UT86HrUBsMpPf/VVw/p9O/ZqGORR61Whcfjn03dXwNHCCGO52zPBMmD/klvNlFfXso3r77A/D+/hPYsXCZCiK462/MAzq5MkDWlDiNzxvsGd3UNLUuWYPv6a9q2bQNFQZeain7QIEzDh6NLSfEvUn6WT8s7Wbt315GTW8Po7FgyM2OOu63P5aJt61bs69bhys9HEx5O5E03EnXrrWhCQ0/4WnL5187OxFmQnn6P++txs7/ulxDH05OXp5Y86OxMnRWXTDh9p7tPO5cv4Zu//42pP7qJSVffcAZaKMSZIZkQPGdTH0FGSok+w1VWTsuSb7Et+pr2nTtBpUI/YAChM2diHD4cfVISKrNZClGnICe3htycWoATFqXUej0hkyZhnjABZ34+rcuWUffq36n/15tEXHcdMXfdiTYq6piPl8u/dpaWFt7t74O8x0KIU9WTl6eWY1VnZyIPQN7n3iBxWCbW1HQ2ff4xw8+fRVj08T9rCdFbSCYEz9nUR5CiVDdq27kL49AhZ+XV284U54FCWr79FtvixTj37AGtFv3AgYTNmYMxKwtdfLwUorrB6OzYTv+eDJVajXHoUAxDhuAuLaVlyRIa332XpvfeI/JHPyLmnp+iOUpFvLdc/vXwBRR78kxQV3X1rEZveY/PZh63l8YqB9aUsGA3RZylfD4Ft9OLu92L2+nB7fTidft+2OBgbmp1anQGDTqjBr1Ry8yZqUDPXJ66txyr+lIegGRCXzVw3EQ2ffERy/71d678+W+C3RwhTkpHFkgm9M5M6C95IEWpbuJtbqbkllswjRlN8quvopaFtE+Joig49+2j5Rt/Icp14AAqgwHDoEGEXXYpxmEZaGNjZWpeN8vMjDnuCKmaWjslJS2kpoYRaw3p9D2VSoU+NZXoH/8Yd1UVLV9/TcOCBTR9+CGRN99MzJ13oDabA9ufqTPBXXX4Aoo9eSaoq7p6VqO3vMdns01fFbH9u1IuvnskKZm9K/hF/9Bud9NU7aC5xkFTTRst9e3Ym53Ym5202dy0O9xwCgs0qFSQEqqj9LtyPt9cS0iEgbBoI5HxIUTEmgmPNVFZbe+W4f+95VjVl/IAJBP6KmNIKBlTziNv5XfsXvM9mVPPD3aThDihqVOTj3sc7M7pYL3lWNWXMqG/5IEUpbqJJjwc688eovoP/0fZvfeR/MrLqDWaYDerT1AUhfYdO/xrRC1ejLu0DJXJhGHIEMKvvAL9kKForVYpRHXB8YpIp6KkpIW9exoAjvt8uvh4om67jdCLLqJl0SLq//EPGt99l+g7fkL0Lbf0qlGEhy+g2JNngrrq8LMaMue+9xs/N50DW2tY9OoOLr9/NAmDI4LdJNFH+bw+Gqsd1JW0UFPSQm1xCw0VdpxtnsA2BrMWg1mL3qjFYNYRGmlEb9Sg0anRaFQ42j00NjqxxpqwRBgBFR0VK6/Hh9ftw+tW8Hl9eFw+XO3+kVX2ZheN1Q6cdv/tDmq9mnafQv3OeiZekEJsqoVwqwmVum9mdF/KA+icCZIHfcuQiVMo37ub5W/9g9SR2YRYIoLdJHGW6e5jRm+dDnY6+lIm9Jc+gix0fpjTWcjQVVxMzf97kZavviJszhyS/vq8FFGOQXG7cWzahG3pMlqXLMFTW4s6NBTD0CHoBw5EP2gw2qgo1KGh8h4e5mQKTpu3VLF3TwPDMqIIMWtPehHz03nNo3EWFdGyaBHtu3ahjY8n7he/IGzO7H71M+2pg/+hr9PxAWDy5EQuvnjgGXvNk9UfF7WFbljYdmUZm74qwu30csWDY4hL7z/vjThz3C4v1QeaqdjfRPm+JqqLbIFpd6YwPaGRBkxheoyhWkyhOpxeH7UN7SSnhBEbH4pao0KtUXU6zm7ZXMWePQ1kZERhNmvJza0hOzuWzKxjZ4KiKPg8Cl6vD59Hod3hxt7oxGFz0VjroLm+Hdw+3O3+YpVWr8aaGkbikAhSMqKIG2BBqz/7Ts71RCb05jyA/pkJp7tPDRVlHNiyicjERFrq61j+1j9JHZnN1b96ol99JhLBdTLHn0WLDgSOGeHh+tOeltZXiyA9QfoIstB50JhGDEel12P75BPKUUh6/nlUanWwm9Ur+BwOWlevpmXJUlpXrMDX0oImMhL9kCGEzLgA/YCBaCMjpRB1AoeOWuq4fXixKDU1LPDvsmXFgUXMo2NMp1RcirWGnNKIK0N6Ovq776Z9925sX3xB+UMPYXorm7jf/hbTiOFdfr7eqKfOEB36OseaDy4fDHoXnV5L9qxUcpaU8PnfcrjsvmziB8rPRXSm+BRqS1so3llP8Y56akpaUHwKOoMGi9VESmYkIeEGQqONmEL1aPVqtDoNao0/J7dsriK/yIbWqEVv0gaO8dbYY2dCTk4trXYPDofniG07qFQqNDoVGp3/M4wxVEdE7A9Tsb1eH16XD4fNSXNtGy0N7bTUO8ldVsqWr4tRqVXEJIeSOjyKAdlWYlPD+uxIqq7oiUyQPOjbwqJjGHHBLLYvXczGTz9g4lXXB7tJop849NjQcfvwY8Chx4y33toZmJaWnBx2SseM3jodrDeQPsLJk6JUNyssbGJrfRLnTLkIvvmW0v+9m+SXXkTdi6Yt9SRXaSmtq1bR+v33ONatR3G50CYkYBo9Gv2AdHQpqWjCw2VqXhcc2rk41rS6Q4tIHYuXR0YY+M/beWg0Ks6dlnzMItPxRkXt3l0XGHUFnNQILJVKhSkrC8OwYTjWrqVp0dcUXncd2vNmMuD3v0NntZ7iO9E79NSCgYe+zrE+AJxs+PX2YOov9u2rZ9fOOrKyoqnf3cTnf8vh4p+OJHnYsa9OKc4OrnYPJbsaKNpRR8nOetpa3Wj1aiLjzaRnx2CJNmCJMaE36tAZfihAHc3hmbDnYCYcWmiyxoYEbmdnx1Jb20ZJiY3WFhfTpiUftSjVobbGftRCl0ajZl9hA7m5NUREGGhqcjJqpJUxF6XQVN1GY5Wd5to2cpb6i1QGs5akYZEMHG0lfWQ0BrOuXx6LeiITJA/6psKiJhZ/3+z/3DT2HOpKiln7wQISh2WSkjUy2M0T/cChx4ZjHQMOPWZ0TEeLizPz6KOr0GrV/OhHGcc8FhzveHHoYuDAKY3A6m/HI+kjnDwpSnWzffsayT2ghtFDufT6SJo/+ICS239Mymt/RxNy+mv79Ha+tjYcmzbRunIVrStX4i4pAY0GfWoqIeeei37gQHRJSWgsFtQmU7Cb2ycdbdRSR6fkaAWljoLRf/6TR12dg5gYMyFm/5++z+efEqI+OJrP4/Xy3fJCcrbVMXFCIlddNbTT6+Tk1gRGXQGB/59oWmCgXRljqdKm4lr2LclrV1Ewew7a/7mdfRkXMXxkbJ8MoJ46Q3Qyr3O8eeWbN1cFriRiMun63fz/3mjnrnp25zWgaFRcddUQNn5eyJcvbeei27MYOObkr3Qp+ge300vxznr2b6qieFcDXrePkAgD0cmhWKwmIuLNmEJ06Ixa1F0YUXRowalDamrYMYtJmVkxLF1aTEmJDZfTS1NzO7U1dmKsZrxeL1rtDx8Nc3LK+PabEvR6/VGLV7m5NeTk1KLWqPB5/atBZI2wEj9QT/zAcHw+BafDTX1pK3UVrVQXNnNgWy2oIDo1DCL05JXZgB+ORX29U9ITmXAqeQBHz4T0dEvgM0BffL/7kn37Gsnd7Z/umpkVzdiLL2fF26/zxfPP8D//9zwRsfFBbqHo6452bDjeWkMdBaPHHltNaamNlBQL4eH+gRSH9xHcbjcLFuSyeHEpl18+hEcemdDpdQ5dDNx/++QWBj/a1LOOfZE86L7X6e19BClKdaPy8hYMei2DB4czOjuWsMws1EYjjQsWUHTd9aS+8Tq6hIRgN7NbeVvttG3bhmPzZhwbN9K2cye43WiiotAPHIB53Fh0aeloo6PRhIX1qoWu+5qjFZwOL1CVlLSwZ3c9iqIE7l+dm8uf/vkxB8qqafO04q1sZ8GvPDg9Lhzt7Xz252e5YNw4ABYu+ZafvvYsAG9sNfDrhWGEmUMIDw0hITqGi8fPInu0ldHZsbS7XLS52gKjpo7n0BFdqYNjKNFfhj50Ntrli2h//SUiwz5i/60Pk3bPJd36np1tDg+lQ8P90CuJ/N//TQN63+Vg+5Pi4mYMBg3pA8LJzo7FYNYx8cpBbP7yAIv/sZMpVw9m9IWpwW6mOMN8Xh8leQ3sWVdF8Y46PG4flhgjKZlRRCWaCYs2YTBr0eq6vvbS0YpOhxaoOtaRUhQlcJ+iKPzphadZuWoXVTVV5Oa3sHhNO15vO05XG+NHT+TdNz4NvMat91yIrbUOtVrL259YsIRZCA0JJToqhmFDsrhq7n0AREQYKCuvYsTIzscUtVqFKVRPcmYUyZlReNw+Nq4qo6qgmebaNjzFLcSpoDmnjrxwI4PHxfbLRXOD4WidlKNlgt0ex513ZksenGEV5S0YDFoGDwkLfG7S6vVMvnYe3//nX3z0h99x4x+exxgaGuSWir7oaMWbo30mXLu2HEVRAvcvXbqUX//6ZfbtK8btbqamxsGll7pxudpwOBysWbOGKVOmAPDPf/6Txx67B4ANG8y88EIkFouFyMhIEhMTufDC+cyalcqsWWm0tTlob7ef1MLgx5t6JnnQfXp7H0GKUt1o794GdpSUkDBkNNEx/lFAIRMnogkPp+Ff/yL/yqupmP8bBl96bp/8w1JcLpz5+bTt2kX7zl20bd+Oc+9e8PlQh4aiT00l9Pzz0aWmoktMRBMW5p+WJ2tqdYujTdVrd7nYeaCAnH37WL9jN9v25FPRUMWbv34C8BdA95WU8P3uVcd83orqRjZvqSI1NYxDL3vg9DipqHMCdYH7brjwQi65NAuAz1au5MF/P0HcF1EMTUllaFoqg+LTsIYkMW18BonxPyxmd+j0kkMLacrQu6hauYHQr78k4sWfU168krhHf402IuK470VfP3PSUw4N90OvJCLz/8+8XbvqyS84QJw1hpiDeaA3aph4xSByl5Ww5qN8cjdVcf68oaQPiAhuY0W3a6yys3ttJXvXV+GwuQiNNJCUEUl0YgiWGBOGEB0a7ell4+FT9RRFobK6gp15uezMy2X9ps0cKMpn8MBhLHzzfcA/nfqDTxfQ2NRw1Oe0t9k7Fbu0Wv+ILZ/PQ1NzA03NPzyu2dbMow8/GVgsfdYVN/GX10oZkDaIQQMGk5I4hJjIIZx/7kQGD/afKdfq1AwZEY3Boic5KRSDWkVlfjP15a0s/88eVi7cR+ygcLIHR5KVdfLTXCUTTs6xMqE3LIbb3+3ZW8fegiJSB44M9BEAQiIimXDVdax9bwFv/OLnzHnwCQYNjQtiS0VfdLTiTVtbG7m5uWzZsoWVK9ezceM2qquL+eCDr4BBAOzYsYPNmz895vMWFFTT1HSA4cOjOfTaaC6Xg/JyB+Xl5YH77rzzTu68cyoA77zzDn/84828/XYiGRkZZGZmkpaWSUjIQObMmcjAgT8c34839exUpr9JHpyc3tZHkKvvHeZ0rq7x8T8WcM1dNxEZEsUFYyZw+5UXMmXUKLQaDe6qKsr/9jKqlmYarvlfznv6njO0B92jfd8+nPv24yoqwnWgAOeBAzgLDoDbDSoV2thYtPFx6BIS0CYmoUtIQBMa6i9CaaXW2RUd6zSlpVrQG7THXIT80JFSOQd28vS/3mBXYSEer/eIbV/9xS+5cfZsamrtfLd+B9tLchmYEk9cVBTWiEjCzGaqytvJz28hKsyCy6kwLCOK7OwYnG436zaWsDOvirhEPSlpJhpsNirr65iUMRaPw0hqahjvf7+IR1999aj7ZNQZWPDUk1w4YcJRv384n9OJ7auvsK9ciVerZ9PI6xhyxzymnpty1O0PvXJIx3DfUwmf/hxcPblv/fFKS3B6+1Vc3MzM82dSVLqdUcMncs0VVzJr+mxirfH4fD5WfnYAe6UDY5SBG391DiaLjCLt6zwuL/s3V7NrVQXVhTZ0Bg3W1DCik0P9U/NC9Wh1Jy5E7c6rIze3htQ0Cwa99pgLkXcUj1JSQnniz/exact66hvrjtguPjaVtUu2BLZfsfYdwixGrNGxxMTEEhEeSYg5hPIyJwX5DsLDw3HYPWRkRJE13ILb7Wbd+kJ25ZUTH68hMVlLXX0tZpOZc0bPoqSkhaQkMxdePQq7w37UfZo2eTr//vsHx9xnr9dHU7WDin2N1Ba30m53ExKhZ+iEeJyhGlauqzju2iTdkQmSB92nP2bC6e7Tv159ix//9DYiLFamTpjMjdfPZVz2KDQa/yjJVV9voG7HUkwxydzx3HPojbLEhfhhnaYRI2IwmXTH/Bs+9G9827blPP744+zatQvvUfoIb7z2KpfMmkVJYQ1Llqxh34GtJMVHEx0RToTFgsmgp76mncoKB5bQUNweDWnpkQzLisbr9ZGzo4Y9+xtITAll0LBwWh3t1DY2ct55l1LfaGb48GgWLHiZxx577Kj7ZDSa+frrr5g+ffopvx9nOg+g/2ZCb80DqR50o6bWagxaHY32Bj5evZiPVy/GbDBz3qhx/M/cGYy87U744D2sH7xEWWsBif/3B9Qm00n9gfWk9rw8Cq++BgB1WBja6GjUkZGEnnce2rhYdPEJaMLDUZlMqM1mGQl1mjrWaaootxMf/8O0PPCPhFqdm8u3GzZw6dSpZKQOpaSkhTaHl9z8fACiw8MZPXQoQ5PSsYYmMHHUEM4Z6a94l5S04LVZuHrSFYwf13mtgu0b8yjc245msInRY2JxOT18+OE+RmfHkp2VTGRo+BEFss1bqgKjte699jrmz72Yz5fksDF3Pw7qKa4rYUdBPg5nG+kJP7zePz/7jAXfLOa80WO4YNw4po4ahV6nC3xfbTAQcfXVhEyaxN4X32TihjepKlqPa+HL6I8y5fVkFnKEE4dXfx4W3J/3rS9ISgrBq9jw+txs27GabTtW85vfP0JyQiYzzpvN3AsvQWsMx15m592nNnDRj4eTkhnV6/JAnFhLQzs7vy9j16oKnA4PUYkhDJ0YR0xyKOZwA3pj1z5qdazTVH5IJnQUpYpLC1m+cgmlFSX89ue/B/zH+bLycuob69BoNAwZlMGIzFGkp2QSak7mnLEjAtvt2dPA9Ck3MW78kWvXbFyXx57dDgYPMRAdbWJbTg1ms5bMrBjGjh5CTFT8EQWyjimCADmrC/jm261s2LQD1DXU1OezfVcOldXFxET/MM3b6/Uy55ppZA4dzqRzzuX8c2eSlJBMdGIo0YmhuF0eagptVOY3s/27UjweBXerk+/bDzBlctJRr+B3MpkgedA/962vaG6pRqfT0WSr5auln/PV0s8xG0OZNH4i115xIRnDR6EoPhrzlvP+k7/m6kefxBwWLplwlutYp2nfvkYGDowAOo+EWr58OYsWLWLeDTcwMDmJTcs2kL9/K9u3bwcgPCSEtNhoEsLCiAs1EhsWQu23n/HOsi8BMAAjVUBNK6o6NTa1mhaVGrdHIcyjoLarMKuhpsFH9WYfKvzrTKUC7IPiff52qoHVW1ejqLTsN4eRGhfN27/7JbuLG9lb0kCbYqeqoZLde/fS3u5g0KBBgX187rnn+OCDD7jgggu46KKLOPfcc9Ed0kc42vsBx16rSvoIx9db90uKUt3opmuu4UKzmYXbDvDJipXkFu3A4XSweNMq/9dfXyDyyvlUfvk1yd98S/uOHSQ+/xwffljHt98W0dTk7PRHEawKrdfmX3Q0/LrrMGZmojIYUBsMqIxGKUCdAR1rC3SMlDKEuvj3V1+xeP16lm/dgqO9HfCvzWGemMDePQ2kD0rmzd/8lglZWehVIZSWtgYKSLt31/H/XthKa6uHKVMSGJYRFZg+Bz+MuEpLtWBv9RAdbQxcJrxj4fJ5N2QddbTWodPwACwhIVw0dTQZKYMCr+/z+cgvK2NQ0g+/yyu2bmHr3r1s3buXF95bSIjJxKzx5zBn0iQumjgRa2QkgH/a5813kP/1MgaVbebAxZdgfeghom6+qdPVGY+3kOOhThRePXVVjFN1OseA3r5v/Z1Wq+Xrhd+z9LtNfLHkS4rLN7A3fztllbt5+73dFJXm8tar75OzsZLSbbV8+tctjL0onaU7q/nyq0L27WskOTms08+9v56164sURaF8XxPbvyulaHsdGp2auAEWrGkWImLNGEN0x71i3vFkH8yE1DQLGrVCbeNOnnn+73y38lsKCvcD/oVnH7z7l5SU2Nmzp4HrLrufJx+NJ3PocFpsvk5rTa1dW8bvfrcanVbFiJHWTnlw6FS91DQL5eV2srKiKCm2kb+/kdAQf1HqaIupQ+dM0Gg0nDMuizhrSqfilc3WjKPNEXjM7n07KSjcT0Hhfr785lMAhgzM5KKZc5hx3kWMGj6GpGFRJA6NxGFzkrOqHF8ZaBo9vP2btYyYlsTw85IwhvzQaTmZTJA86L37dja45aYbGZeewterd/H1shXsyc/B0d7Kd6uX8d3qZXz6n7ewpg+lstJBVeFGFvz6Z1z72NN8+OG+XtVHED2rY02mjpFSkREOnv/Tn/jyi89Zu2kzTpcLgL0rljBnuP+EtNft4fYLpjAsLZVISwRurxZLZCiWyDAqqtzk7W1Gr9EzLDMOg9FEQnIk1thQVGo1DQ3tVFS04nYr7N/fSGSkgTHjE1i7pozdefVkZkQyd24aXo8LV3s7bqcTj9OJx+WiuclBY50Nk94LKg+elmaS9W1YExV8bjXEJuEbmkid3c6Xv3+UcGssFmscH77zLhtyctmwYQN//OMfCQuzMHfuHC699FLmzp1LTEzMEe/H8daqkj7C8fXW/ZKiVDczGwyEK2mMCZ/D3LlXU1JfxO7KXTR5KxkQl8677+ylvCaVQmcu5evWMfWCGaQMOZfYyCtwu708+eSaQMU2WJVMxeMf6qlLSEAXL1cC6W6HL1iemRlDZmYM9c3NXPvrR9myd3en7a0RUVw6dQpzJk0mNeWHDsBUayo1tXaWLSvGZvOHUqw1hJzcGrZvr8Pt9hEebuDhhwd1eu1ly4qprnIQF29mwAALVVUOSkpaAsWxwxcu75heODo7ttM6CEfbF/B3liJM0WzdVhO4/8/33sel557Lx0vXsmbHVlrbWvls1Uo+W7USvU5H0Sef4mj9oSOV+fA8PPUX0bRwITX/93/YFn1F4p/+hCHNH0IffbQ3cJWIa64Zdsy/jxOF16HBdbyDe3d8+DuV5zidY4CsGxV8KpWK1uZwIkyzmX7tTYSFt7Pww8+oadjCtElzqK2xs2xlGQUHivh+8y/JWDaWjPRzSLVm0NDQxqOPruKnPx0d+LDUW89unU18Xh8FW2vZsriY+vJWQiIMDBhtJTYtjNAoY5dHRcGRC5ZnZsWQmRXDmwte42+v/gVbS1NgW7Vaw8jMc7h49hwUn++QopD/GLdrZzNNze1UVfqLQNbYENatrWTv3gZ0OjVDhkQGikW1Nf48qKpyEB9vxhprJj4+BINeGyiMZR/lQhYd0wuzs2MD66UdbT86ONu1lJeq0KjsWGNDGDIog4Vvfs76jWv4esm37CvIZf+B3ew/sJuX//lX7v/fn/Pg3b+grtafTUMnxBM520h1oY3yvY1s+OIAm74qZPD4OMbNSeO7NWVH5MHR/j4kD+SYEWxmk4kQ/RCGJEQwbewNlNcUUFi6HZe3BmtUCu/8J4/yCjUl1WXU163k/e/XkpRxBVFRw3tNH0GcWYceG1JTLWQOUBExvZ0dmz7iF8/9Pw5UVXfaPjI0hPEZQzl//BjSBw3D5tCSNCCByxIjaWxys2pNJTaHl7FJCQw/J4HFf9nExl1udFo1ESmRzLssM/BcNTUO1mysDmRC2qAEKqvs1DRA9rgBKNoQsrNjCY/9oZixO6+enN01jM5OJzXdBCU2UlMtxEQbqK5qoaSkicR4E+GhKhzNzdibm2ioaaCxtok2hxP7/r3MHphAmh7yq+vYU1VLS4uN999/n/fffx+T0ci+3G24tVZ272lm+PBoHn986nHfQ+kjHF9vzQMpSnWzxoY2PG6FsDA9E8YnEFcSAq0xJCWGkrezAY1GTXSUkU8LSqlz2NnjsMOGzzCpv6CmMJN243jq6+cwdeoNQatkKh63/z8yKuqM6FiwvNnegqHCwbnZ2QBEWSyU19ShQkVG6iCGWDMwticxY/II/mfecMBfIFq7tpy1a+HCWWnYHR5sNjdOp5ecbTWEmLWMzo6ltMRGQ4MTtRpef307U6cmkpkZQ0lJC9VVbdTU+DsssdYQhmVEEWLWYnd4mDkzLTDaqqMQtWRpMbk5Nezf30iIWY9Go+Lcacls3eK/fKhKpWbOnHSmnpsU6JAcvih7ktXKvAsvYnTyWN5+eydFdaUQUUV5Sz6WkBBCTSb25PmnBr70+dtMGTOUc4ePxzHxapIGD8f13dcUXn4FMffdS/SPf9zpKhHXXDPsmO/11KnJJz3c/XgH91M58B8eiqfyHL31bIY4eYlJoeQX23B7fBgNUWRnXkJb+2xC9BFs31GLy+2l3raDNmcL2w58z7YD3wMQE5GKzpCFWn0hY8fejclkkt+HIPK4vOxZX8XWb4ppqW8nKjGErGkJRCWGEhJuOK1Fy0tKWsjbXcfufVuYO2ci0VH+s8ImoxlbSxNmUzjnjDmfxNixtLUMYMI56dwwz3/BicVrCli5qpzzpiVhtYawZ08DPkWhptrBgIH+tRsmT0mgttYBKKg1Khb+N4/s7FgcB/PD7nCTn9+EwaglIyMKs1mL42AeWGNDOhWhMrNiWLq0mJxcfyaYD2bCtGnJfPttIbm5dWRnx/CTn4zqlAeHLshu0BuYMHYyE8ZO5sLzbuX1f62nsGQzXvVuiso2M23y9MD7snjJcsqq13DVpVcTackgfUIsGZoEinfWc2BbLXvXV9Ho8XJgZx0fI3kgereGxjY8HoUwi54JE5IoLg7D2x5PUmIoO3fUodaoiYoy8t2WfFrtzZTWN8LOPRj1BioqxqFSDaOhYQ5Tp14vvw/9kNfjZtPyTezZuIWdnxVTWbqH5DAzAKbwCOpsLaiAgcmpDEzKRK8ayMSJI7n+RyPQ6HTs2d1AztIicgoauXBWOHaHD1srOF0Kubm1hIbomTwlkWabE61WTXOz099HmJJEZlY0JSU2qqoc1Ab6CGYS4kNobnKSmmph3jx/AWt3Xv0hfYQicnNqD/YRdKg1aqZNgy1bHHz88X7UapW/jzA1mbImH6mpSTQqNmrqGxg2JILsUVF4XE7aW2zs3VHE1g351NSXUGUrY09FKRaDnvd++wioNXi1kTy7axeTJo/jgpmX41SlMmpsyhHHUOkj9E1SlOpG5eUtbNxURVG1AaNRi97gLxBUlNtxub0UFtoYefByyVFxD1NhL2RX2W627smhwdFKXsUuYBeffbiCOXMmMHx4NMOHR/Pdd7lMnz6SAQMie2a47sFF8WSqXvfpKPKMHBlDYf1e/rvpa9b9eyuhZjNrX/03lRVtpKaG8cIDD6NyhzJuZBr1dW2Bg37HiKScbTXk5NTg8yq4XT4mT07AYtFRW+shb3c9zc1Obp6fxS9+MYnNW6r45z9yqW9op7CoiauuGkqIWUtcvAlQiIs3M3JUDPn7G/n4o33oDRqGDYtkdHYsixYVUl7RGmi/AjTUt9PU5CIpMZTU1DA+/mgf1dVtoIIdO2tJSbUEClGHT/PrUFHRikajYUT6YK6+ei6ZmTGBocepqWHUNTfyyZvf8PHqxahVKoYlDuOa82dx9yOP0LLwA2r/8hwVn3xN1pCbsY+LC1wt4lR0/C2VlDSzalU506YlBRZFPNypHPgPD8XjPcex/q5769kMcWLFxc3k5tbgdHox6DVUVTpITAxjzNg48nbVsT+/CYNRx4B0C5ERV3DFpVMoLN3E92uWU1C0i7qmEqCEd95ZzLnnxpGSMpnwcD02WyMtLTogXKZv9ACnw83OleXkLC2l3e7GmhrGgOwYohJCMIbpUR9lfaOT0VHoSUz2sm7zV3z61XtU15bR1PI4k8ddS2pqGHMvvIzw0HiiI7MYkB5BXV1boDjUMSpp2bISSkpbcLu8TJmaTFu7hzaHm/KKVtatrWTI4EimTEnGoNeyalU5S5cUY3e4ydvdwLwbMhg3Lo6SUhsF+U1YLAbGjY/nP//ZyZrV5QwcFM5llw7ulAcdV9pTFKivb6fxkEzYsaMOR5uHHTvqOhWijpUHtTV2cnNriImOITH+Ei6++F4GDwkPLPycmhrGgbLlLF/9Cd8sfw9LqJUZ513OvXf9hJHTBxM1IJSd66oJa2jnpsmpaEO17N1YxZBxsag1Xf/8cmgmLF5cFPgMdjjJA3EqKspb2LSpiqJSNQaDBr1ec7CP0OrvIxQ1M2qk/+8r2vo49U357CvczvZdW2hta+PAgbXAWr76ahOzZ4/v1Ee44IJRpKdHSCb0MT6fl5oDBaxatIoDOdvQtJWSV1bBpqJy8iqqsYSYee23v6PNG0rqwAR+nzYKrTaa0aMGduojNDR5KClpICfHvx6hz+fz9xGmJGKx6P19hLx6mpuc3Dx/OE89lcTmzVX885/bqa9vp7CwmauuGkKIWUd8vL8IFh9vZuQoK998U8iG9ZXsz29k/Ph4Qsw6Fi06cEQfob6+jaYm58E8sPDxR/uprnagUsGOHXWkpFgOyQRL4F+90YjeaMRsCcex20elG0xxGdx/x0AGDwylubEeR0M91SWV7N9fwIptm1mxbTN/fvUfDI2PYdKwTC67eBaWhCE0e2OJTR9Aeno4drtb+gh9jBSlutH+/U04HB4SEqIZMMAS+AA2enQshYXNtLa6qKl10NbmIS+3lWnTRvP0A/PYuKmC71bnUFu0ipyiPIa129A891v23XgHxT4L//u/F2IwmBgwYDQ+XwpJSRlceeV0BgxICPyCdvzCtrW52bmz7rQWROyYvsfBD4bi9H27chefrFrGgXd30mRvCtwfFRLBtp0llBf62L+/gZkzh3day2nIkCiiY0yUlLSwelU5DQ1tpKdb8LgVNBoVxSU2bDY3TU3ttDk8NDS0sWxZMTNnppGaGkZ7uxeX00d5WSt79zQQHx9CrDWEWKs/bGKtIfzn7TzKy1uxWPQUGTTs2F6H3qAmKTE0MJXPajWhUasoLW1l8uQEYq0hmM0aFAVU+AtWIWZtYP0q/2scuf4IqIiIMDBmTByZmf4PXwa9/6pjsdYQJp6TzP1X3sxnq7+nqLaY3eV7+P27e/jbp28yfeREZsSOZkbxHi4rfoJpV93Feddcdco/k46zEqtWlVFQ4P+ZLFgw5qjbnsqB/9DLq57oOWQYfv+za1c9+/MbibWaGTM2DlACHY7Cwmaam52AgtujUFTUSlRLBFdfejeP/fy3rFixl2+/+Zbi4s3sKd5M8+ZQ6veXUuvxsmTpP8nLe5/ExKEYDINISMjg4ovPY+TITEaNiu001PyDD/ZRXt7CtdcOlQVyu8jZ5iF3WSm5S0vwuH3EDbAQNzCcyHj/elGHrnHX5ed2OfnPwoWsWPMZ1XW5KPgvgmw0hlBV1cSWLdUH8yCNubMv7PTYIUOiiIkxsXpNBRs3VhAVZUKn15CWGkZBfiNt7R4iwg3odSoOHGhk4cI93HBDBqmpYXi9PpptLpztXqqr7VRU2okIN5AxLIrUlB8+s5SUtNDY5KTwgI2lS4spKbERHmEITOWbNSsNk1mH1+NFo9UwdUoiy1eU0N7uASAsTEdTs5P4BHNgKt/R1qMqKWnBZnMzIN0SGJV1KGtsCD+5ZT4aDaxa9y221lo+XfQGny56g5FZY5k8/lJUnnFoVFomDo9B5fCw9F95rP+kgDGzUxl+blKXRrAdngkhIbqjHo8lD8Sp2J/fhN3uISEhkgHp4YGO+ejRsRQWNdPS4j7YR3Cza4eD886bwG9+OZ+NGytYuXQJxQdWs6e8nAFRFtav8l/opqSklp/+dAZms+VgHyGZpKRMrrzyfNLT489IH0GcnnZ7K0W5WynYspGibZtpt7dS3dLG6vxKdpYV03LI+nsREbHU+2IoPOCmtK6JmTPPITbWHPj+kCGRB/sINlatKqex8WAfweNDrVFTXGzDZnPR1OTE4fBQ39B+SB/BQlubB5fTS1mZ/yRCQry/fxDoI8SaA3mQn99EW5uX2hrHUfoIZjQaFaUlLUyekkhsrBmzWQPKDwWrELOOjIwoUlMtxMaaO+3HocLDDYwdE8fwkXEAxIaEQHIq6aPGMLixkUKXhiXfL6eippQ9lbXsqazl/XXrGZ2SyNTBqcRawgnXR3PpiMFkxFhoqAghMiGpy5ktfYSeJ0WpbjRkSATmjCgSxg0KdMg3b6miqspOdLSJ5mYn1VUOCgqaqKlxsHFTFQMHRRIWqmfWeWNpHpXFOaV1ZDbsIKI8D82zP6U6ZgAqRcHhaGbXLv+0jt27YelSiIhI5Nprb+M3v/k5b721k9paO/X1bZSV+Q9ohwfOoVcZSE4O44MP9rFpUwWhoXpuv31kYPvA9D0pSnWLVz76iN++/3LgdmSYhaHRIwlxDCIrbSCDkhNoqa/BZnNRUtIC+D+sNze1U1Xl/1mmpobR0NBGSYmNrKwoxk1JwGZzAlDaZONAQTOKoqDVqli9upwvvzjAiBHRJKeE0t7uJSk5FLNZx/r1FYSE6Dh3mv9nvXlLFcOHRwEwfHgUu3Y10NLqJj3awsUXD6Ciwg4ozJyZRklJC263gt7gP2xUV7ehUuGvSgGLFhUSGWXg44/2cd55ScyZ88NaVuAfLVZY2MygQRGMHBXD0USGhZEVMwF3+gASZ8Deuu18tX4FDfZGvtjwHRnX3Un7xT9F/+0nWD/4f5RU55D4x2fQRkV1+efScTYiKSmEjz/ej8fjZc2asm77oHbNNcOOO2z4aG05U0Nw5expzxs+PJrW0lYS4s0kD4gI3L9lcxU+r0J8Qij19e3s2V1PZZWd2joHUVEVOBwe4mKjueaa62hsupS6klZCVWqUVi8WDSy2V6IoPsrL9wB7OHDgK9aseQ6dzsTQoSNYsOB9yst91NTY+fzzvdTVuYiIMBw3D6ZOTeajj/by2mu5REYauP/+cWdth8XV7mH7d2VsW1KMx+UjYXAE8QMtRMSZ0Zu0p1WMAnA47Jx/yTnUN9QG7kuMG4nFOJkJ42Yx7dyBFBY2B/LAGhsSGBV16FpR+/fXU1rawrChWq65eihms5Y9exvZtq2asrJWnE4vNpubzZuryc2txWBUM25cPAnxIdTWOYiLC6GiooWlS4uYMCGBc6cmBfLnggtSAH/uNDU68Xh9WGNMVFTaqahsZdRIK2NGx7JnTwMZGVFkZsXwyis5+BQwGNRERhpZtaqU9jYvS74tZviIaObMHnBE0cnp8tDS4mLEyOijFq0AJk84l+KCKMIN12Mw72fPgaXk7FjDjrytNDbV87uHL0OlgoyRVqKjzdQU2yjaXseqhfvZvKiYMRemMnJ6ElrdiT/PnMlM6E15AJIJwTBkcAStpVEMHjko0CHfvLmKyo4+QpOTqioHBQWN1Na2sXFjFQMHRhAWamD6RbNprJ/KtP0b0bUVoS5+FV/qHCpKjajVGuz2RnbuXA5AXh4sWQKRkcnMm3cnv/jF/YE+QkNDO6WlduDU+wii6xory8nfvIGCzRuo2LcbxecjLMZK3KAhLN66gze+/i6wbVRkJCmxo8E9jGGDBpGSGEd9bUcfwX8hqpISG81NTiqr/D/L1FQLjY0FFBe3MHx4FOPGJmFrOdhHKG2noKAZRfEd7COU8cUXBYwYEUNKShhOp5fk5DBCQnSs31CJ2axj2rQkwP/7OXZsLEaDhqzh0eTtqqel1XWwjzCQioOjpfx9BBsulw+93n+srap2gApUB78WLTpwsI+wn2nnJTF37sBO79HuvHoKi5oZPDiCkaOsR30foyMjGZx6AfaRI0hK9VJcuYXvVi/D1trI2vwiRmZPJWNgGm3NDbRX5rH4lXUAGEJCSRg8lOSskaRkjSRu4CA02qNf3a+D9BF6nhSlulFSUhiWzGj0h4wQ6Tjz2NzUTmiYHotFR2JiCDk5taSlhbFlSzUWi46ZM9MgNYySCCMJqZlEG320Lv+Oces2sHnwQHaaQvnSF8Hqaht2dwWNjeU0NVUQE6Nn+fJSVq0qw+GoYOPGXxEZmYxen8Wjj44kJMSKx2Nh4MA0vviikcJC/5XczjkngS++yCcnpwZF8X/IDvyhdUzfk6LUSTl8se/d+eUUFDYwYfRAYq0hzDrnHNRqNZmJGVww4lwyEjMpKWxl5856HA43FRV2Yq0hGA1atmyuZOHC3YSG6klOCsNgUAfWioqxmigrb6G11UNVlR21BnxecLsVtFo1Op2GxKRQcnNqcDi8bNpUzbCMSMLCdERG6Pn++xKqqx3ExZmZPTudkpIWtmypRqNWMXq0lZGjrKSlhQeGA9sdHrZtq0ZRIDzCeMQUjGnTkvjiiwI0GjVer0J5RSu7d9fT0uKfjtdRlDp06mF+fiMhodYjRlEduobVoQuu3xAznlsuvIbK1iIWb1rFg/MvJ8xsRjnnEV597i+seP895q1axRV/+xvhF3UeUXCig+yhZyWqqx0sXVrC0qXFQfng1R1DcI+3v2fLWZbeJC0tnPbsWDweX6f7O/5+mprbKchvJi3NQmycCZNRh8GgZvnyEsaMjWPmzDR/MSLCREpKKLT72Lepmntn/45mRx15NTvYWpCLSymltHQvLlcbJSV7KS318M03xTgcLvbvf4nGxn189FEGNTVjsFji8PnCmTAhg6+/bmTNGnvgik4ff7yf1avLADWhofqzrgPiavewY0UZ274twe30kjAonPhB4UTEmTGYj//h9XCHLvjt8/lYsWoDM86fjDU2BLM5hHPGTmTjlo2MHDabKedcRlWFnuJiG1UVLlatKiM5OYxBgyOorbXzhz+sw+f1gUrFiBFWzCE6tuXU4Gz3otdrcHuUQHEoNSWMXTtraWhoC0zDqK52UFPbBoBOW8uobCurVpbhsLtY/l0pTqeHxITQQB7s399AdnYsc2YP8E+prmvDajVhMGrZttWfBxHhR8mD85JYtbKc8HA9jjYvdns79fVtuFxeWu0usjJjOi2wXlLSQl5eA7W1DkqKbUyZ0vn9276jDv/oQushi66PJiZmPrnbD7Bj71ISE6zMmpUO+Eef/ej2S5g941KuvvxH+FpjOZBTy9qP89m6uIhRM1OIGhLO3v1NvT4TumtKhmRC75KYFEZ7ZjSRh4wQ6Rgt1dzkPNhH0JOUFELOtlpSA30EfWBkS0n0DGLC3dTu3sj+VYuIVKl58ZFHccWk8NmiTeTl5eB0FtPUVEljYxmxsYZAH6G1tYjNm39HZGQKBsNwHntsRKCPMGBAGl9+2ciBA/5jxXH7COKkNFZVsG/danasWE5zVSlqjZaw2ES8kQOwpiQxdsIoDOYQ9OlDePPTLxicNpJJY6czIGUExYUt7NxZj93hoqKilVirGaNRw+bNVSxcuMffR0gOxWDQkJNTQ4hZR0yMkbKyFlpb3VRW2dFoVHi9ysE+ggqdTk9SUii5ObU4HB42b65m2LBIQkN1REToWbGihJoaB7GxZubMTqekxObvI2hUjB4dy8hRVtI79RHcbA30EQydpuQBnHdeMp9/XoBWq8Lj8fcR8nbX09rqH/jQUZSqqXFQUmIjJ6eG/P1NhIRYjxhFdegaVof2EaJjJnL95fOobshn9YaV3P+zOzEYDCiKwr/+8w7bDpRx4TljiA0Loam6kpJd2/F5PGi0OsIT0yAsjaxJ4xh97jgM5s79kt6SB4e35VT1hTyQolQ3a2xoo7SuqtMw+NTUMEgNA1RUVLRgd/q4+eYsomNMgSuhLVtW3OmqZ5qwMCqGTGW7LZWxhmomV+xlzL79EOmj3JyF56Y7UU0azNBJk1i50o7L5aO2thCv10Vd3QG+++4A3333Zae2jRgxn+jouYwYEYNaXUlZ2V9QFHC5tCxfHs5ll/2X+HgLYQ2VWJoa+WlPvnF92I7ttWzZUk1YfCtbyzfw8fIVZKdm85j6XsD/wfofd/+F0kL/grIb1tZgt7vxeBUaGtr5/vtSTGYtep2G/fsbaWhsx6D3TzlwOb20O/1FwpRkC2aTjqysKPQGLSFmLStXllFR2UpUlIHQMD0hITrGj49l/foqFAWKi2y4XF527mzA6/Xh9nhRFLA7PKSmhrF/fwP5+5tobGwnPMLI+HHxgWl1NbV2xozxTzsKMWs7Fd5qau0MHBTJ3XePprjERmSEgcYmJ21tHvL3N3HeeUmB96dj0XODQYPVaibtYGAdKie3htycWkpLbGg0GiZPTgi0w1/ASuSKC6Z0eszbe/aQ19zM4uZm0i+9lFumncu977xDTEICcPIH2eLiZkJC9IwfH3fcS8weT7CuvHGo5ctL+eabQmbPHsCttx79Urj9ZTHEvqKu3kFZSQsDhkQAP+TBuPHx1NbY6cgEk1PH1CmJVFS2UlRko7Cwmd15dTgO/p12LDZd5nKRMTaGVGcUkftimZx+AT4VOLQK+vgWho7SMWKklS1bqtm8uZnm5lKczkZ27FjHjh3rOrXNYAhh1KhXsNlcFBc309i4EMjF6zXw3XcRXHLJO8TFWbBaLZhMJq6//nqysrJ6/D0807xuHzu+L2PL10U4234oRkXGd70YBT9c0a6mtoGvlqznm+ULqawu5g/eT4i1pgAKt1z/KDOneGlsdNHQ4KCwsBGHw4Pb7cVmc2E0ahgwIJyVq8opyG9CURSsVhMJCaEA5OXVExqqY8qUJLKyojDotaSmhrF8RQnl5a1ERBrQ6TQkJYYweHAEq1eXY3e4aW/3sGVLFc3NTmw2Fyq1CqNRS3JKWCAPbDYXubk1HeemGDc+nsysGGpr7FgsBkA56tpQgwZGcsH01MC6VxERBrbvqKWh3snwEdGdHtNRAHM6PQweEnnEFf5KSloCBbCKCjs11Q4mT0kIrGc1a9ZIZs0a2ekx3y5bxJacTWzJ2cRfXvo/Lr7wcuZdO58JY4dTmFPHpi8KQaPCplfhc/uOeYztOA6PGNHxWpIJovs0NLZRUFEV6LiXHLxSGan+71dUtmK3ezv1EaoO6yOYw6MZf9nV5GzYR8HmjVC2HV/hJq4ZlswI6+XUM5jLrhpIdHQDw4YN47vvmg/rIxSwbFkBy5Z93qlt2dk/ISJiJiNGxODxFFNe/hyKonTqIyQkhGO1WhgwYAC33347all7tpOmqkr2rl/N3rUrqS0uRKPTg8lKjTIEtw7WrVzPxtxNnDdpOsNGn8P6zZWAkd//4hVKi/x9hHVrq3E43Hi8Phob2/l+ZSkm06F9BCf6Q/oILa0umpucTJ6S6P+MnWZBr9cQYtbx/coyKipaiY4yBvoI4w72EVCguKgZp8vHrl0NeDw+3G4fKGB3uElNtbB/fyP5+U00NLQTHmFg/Ph4MrP8x4yaGgdjx/in2IWYdYHf5dhYMzU1DgYOjOCnPx1NcbGNiAgDTU1O2trc5O9vZlqnPoKNPXsaMBi0WK0m0tKO00cotaFRq5k8JTHQDn8BK4nL5pwf2F5RFBZ8/BklZWUsXrGSQQPSueHKK5hz/Ry8tiYaKsooP1BGe+kqVu9axup/qYhKTCYpI4u0UWNIyRqJ2fLDUgjSR+gZUpTqZlXVDvbWK4HbHQs/jx8XT3hEC0uXFWFrdhESqmXeDVnMnJnGsmXF7N3bwNo1FSQlhTLrwnRirSHk5NawdmMDuaFmbr7xBiJn2Khavp6o2hLMS9+Db314rFamZI4idnQ65eecQ1PkR0QnumloKKWoqIi9ewsoKCimtrYCgyEGrVZNS4sLk6mZAwe2BtpZWOj/Aki1Whna1sbsqipGJCUhOquptbNju7/YFBtn4qPly1m68zuqWsp/2KapnrKyZmpr22lr89Bsc9LU6MRg1GAyabGE6ykrbUGtVlFdbcdk0qIoYLHoaG/3oNaocTm96A1qHA43+fkNtLaGMnKktVNB6ttvi/B4FMxmDRaLkbY2D9dcMwxHm49dO+v9QabXEBtrIjRMj8PuIS7OHBh9lZZqITenlsamNrZsrqS5qZ2Ro6ydFlDMzIxh85aqTlfTW7O6go2bKphwTiLzbjh6R3X37jrWrKnAYFCTmOjvTDnaPBSX2Bg8xN5ptFTHh63deQ2UlTUCMGXKsc9G1NY5ePCKO1ixcxWfr1lBUVsbT373Hc8kJ3PtpZdy769+xfDhWaxZU84//pFLW5v7mMNkd+3yLxB/4YXpp3wGpDvOMpzOc6xZU8ann+4/eAZKOeL7/W0xxL6ivKyVgoImNAb/qNNDr0BmjQ0hItw/fcrW7CI0RHtwdJSDqioH/124B4fdzdRzk7jqqqHk5taQk1tHbV07VquJ5GFh4PDhbXWjbXThK7VQUqGiLW8/E9MiSQozMnHMW7T7qgkPb6axsZw9ewrYv7+IpqYqtNoQzGY9zc1Odu2qp7JyF21tOwEoKvJ/dbjkkkvQaDT9qiilKAoFW/0jaVob2okfFE7C4HAi40NOaWRUx8ieA4UH+GTRWxSULMft9o9MNuhDWL9xKzGRaowGLZFRRrZvr8Xl9JKUFEpYmB5FUfD5vGg0KnRaDRUV/incGg0o+EfCtra4aGlx0uZwEx6uZ8zo2MDV7erq2lj0VSENjU6qq+2Ehupw2N3Mm5dJWpqFDz/cj88Heo0ao1FLVLSR0BA9UdEGTEYNy5YVk5pmobranwWtrW50ev8IiY4RU7U1drKzY7HGhrBlc1Xg9xlg1apyvF4fF188IHBlwDlzD5vCnVfHmrX+TFBrVBgM/uKbw+GhtsYeGEmVmhoWWIdt/fpKCvKbgONnwqisqdw1/3FWrP2Qvfm7+PSrD/j0qw8YOiiDedfdwozZl1G2oxVfuZ38r4p5a28jNz4wFp2h84jwjuPw5MmJJ7zs+PEEMxM6pmG5XP6TUJIJvUd1lYMDlc7A7Y6/ofHj4wmPMLB0WTHNzS5CQnTMm5fZqY+wZk05yUlhzLowjdhYM3sKfazdm0hUWBwXTgRnQylprCWNtTg2DyRt8mSMPg/Tz08GVNTUpKMolxET00J9fQnFxcXs3VvAgQPFVFdX4PGEExNjwmTS4XDUU1CwJdDOQ/sIgwYNYtSoUVxwwQUMGtT5b/xs1G5vZd+61excsYTK/XtRa3WozLHoE8cQnZzMf79czdptX9HQ/EMfoai4gtWrSykoaKa93Utzs5PGRidGowaTSUN4uJ7SUh9qtZrqagdGo399JotFT7vTi1qtCvQR2us8FBxoYuCg8MA0uo6C1JJvi3B7fISEaLFYDAf7CENpa/Oya1c9JpMOvUEh1trRR3ATFxcSGH2VlmYhN6eGxkYvmzdX0dzkPLKPkBXN5kPyIDbWzJo15WzcWMmECQmBK/YdbndePWvWlmMwaEg8eMLF4XBTXGxj8ODITqOlAn2E3fWUlvqnDE6Zcuz+aV1dO3fd/CDrt37H0u+/o6CwiD/89W8898rfufSiC/mfa69m7IhzWfL1PuoqKsga4ENncJC/aR07ln0DQGRCIsmZI2nwJmJrCOPCCwdLH+EMk6JUN4uPM+O2Rh4ybc9Jc1M7NbV2UlPDmHBOIvX1bYE/sFhrCDNnprFjex1NTU40GlWngsHaNRU0NjnJ2VHPvBuyiB85BMXtxl1bi3N3Hq6SEtz78xhQvZwBPv80EW18PG2h0RQ6zMy2jiBz9qVUNqt497NiKvM2UL+ojClXJ/KvRx+loa6OVpuNprpmmuqbUZx2NLYm7omKJj0lJWjvY29WUtLCtm3V5JRtYXXhUhpa/UUUvU7HdTNmkGoaRXO5mWabm4gII41NTZSVtuDx+LBazSQkhOL1ev2Lg4fqiI4yUVfnoKKyldAQ/xSetjYPFRUtJCWH0dbmPri2E6SlWdi2rZqICCPr1lXgdncskKsjNTWMrKxoXE4PDfVt6PVqhg2LJCrKTGVlq/91fQrbt9fQUN9O3u5aoqPMVFXZ8Xh8uJx12GxuwiOMfLesiO3b6ygtsZGZGUNqalin3+X6+jZszS7q6/1DvXfvrmPJ0mIALpyVRmZmDDm5NWzL8Q89z8zyP0dNrSOwVsqhRanoGBNDhkQRGWFg1y4Dw4dHsXlLVWBk1qF2765j0aJCNBotP7noZp594B4+WLaM1z/8gJ1lZbz7+ec0l5XxxebNFBU1s2VLNSEhumMWpbrjDEGwn2Pp0mLKy1sZOjSSCy5IPeU2iO6VlByK4us8ssRs1rJls/93OzU1jAkT/JnQ0dnv6IQUFjbT0NDG2jXlZAyLIjs7lla7h5ISG4VFNiCOG+Zl+c9kt3torHTQWNGKrb6dkm21uJ1eItGg1Sej9aSj2DI5f/Ac7r7WSlxCGP94I4etOXVozFqidRp+dtdjlFeU0djYRH2djYb6VrweF22OdrIiJnPTlTcG743sZlUHmln9wX6qC21EJ4UwakYKUUkhp7yAeUlJC6tW72LVptcoLF1Hx4e+oYMzOX/yteDKxuPVERFuoKmpnfXr6rHZnGi0GmLjzAweHEF+fhNms5boGDOxcSa2baumprYNtQr0ehUOh5u8vDranV7a27yEh+tJTQ1j+446tm2txmDQYHf4p0X4fKDWqElL8y9evnZtOS6Xh6goE+PGx1FUZCMhIZQBAyysWlXOggW70em1DBrk/1B64EAzXp9CTk4tbpdC3u56Nm6oxOP1f8boOJ43NTtpam4nMSEUr9dHeUUrubk1ZGbFsPjrAlauKue8aUmB4lRubg3btvkzYdasdP/70dzeqVjbISLcQGpqGCaTFqNBy/DhUYG/m8PXn9qdV8eiRcUYNJN4+lfXoDNV8e4Hb/HF4k/YV7CHJ//4a6Z8PI1Jlw/llec3o2vzoi2Af/96DaNnpTJ6Vgrag+ugdNcZ42BmwtKlxSxdWsL48XHMnz886Ge/xQ/i4s3ow0M6TdtrbnJSU+MgNdXChAkJnfsIsebD+gjqTgWDNWvKqWlUUepI5kfzZ9JUXUnl/r00lJex4eOFrH3/HXQGI7EDBjF5WCbxg4cSnZxNXoGXysoC5swJ5brrhvHWWzv59793snlzFbNmpXLJJRP573//S319PQ6Hg+rqZsrLm1CpPPh8Gp588ncMGhQXzLcyqHxeL8Xbt7FzxVIKNq/H5/USnZxKxrnTqbeHsWFbCzu2bSZ378vYDvYRDAYDV8ydTUzYOGoqTJSVtRIZaaSwsJmy0hbcHh9Wq4nEhHC8Ph8NDe2EhOiIjjZRV+ugvLKVkEP6COUVNsJCDbTYXGi0aurr29mxvZat26qJjDQd7CP4j9lGg47UVAtZWVG4XF7q69vR6dQMy4gkKspEZaX9YN/Ex/btNdTXt5OXV0d0tJnKKgfeQB/BRUWlnQ0bKvB6/TmXmRVNaqql0+9yfX0bzYf2EfLqWbK0CIALZ6WTmRXt7yNsq/H3ETL9z/FDH8HWqSjl7yNEEhFhINxST9ZwfyGsY2TWoXbn1bNo0QHUGhM3XnUnT/36Z3y6aDH//egT9hUU8OEXX+Jyu3j+909RXe9lZ74WryGanz08Hnd7O7baaupKSmiqriR/0zraWmyEA6W2BL4tyyY92z+SyhR25IiuY5E+wsmRolQ3i4wyEZcWH7gdHuGfuhQe0cL4cfFMPTeRHdvr/MMpY0yBq5RdeulA1q2rxOv1kp/vP4CFhGpJTAqlzeGhtraN3bvryMyMobbJRUmlmtRRk7HOmInS3o63uRlXWRmeyko8dXWU5VUQaishrGIHzjwfMW4X9wNYgO3g3Q6TOhqp1YLegEejxx0ehd2SgC85AZVWfj0OXy8KIMSsJSLCiKnZS0NrI2Z9CNecO5v7bria1iY127fXUNJcRWurC4fDg8Phoq3dh1YDoPKfCdfriIo2YjLpaGxsp7HRicfto77+4Bk0lX/9cJ+vBUVRcLq8uNw+LBY9TU3+qRexsSbcbh/R0SYuuCAFk0nDli01bNhQQVOTE59PQafTEB1tpLGxnehoI+1OD20OD21tHkpKWrC3uomPD0GjVdHQ0E5RcTN1tXYaGpy0t3toaPC3J9YaEvhdhjqio02MGRPH1KmJ1NTaWbSokB07/Av3ul0+omNM/jnnrR6io42B969jwfTDp390TPEblhHFww8POmJk1qE/i7Vry9m3r4HUVH+HK8xs5vbLLuO2Sy9lU04Of3/pJebW1LL1yhu5YPr/0tKioabmbbZuTWTs2LFH/Iy74wxBsJ+jY0jxrFlpveJsh/CLiTYTEW7EbPFfYfLwESbjxsdz7tREtu+oo6KylZgYU6AwZTDqWLumDKfTR25uDTNnphEaosXj8eJ2eYmIMACgUqmwtbgob2gjdWgEQ6NNuNs92Jtc2Ooc2Jtd5G2vw9HqgnYt+9dWsd9XRWaomcxz/R9ONn9UAEQRRhRhwIAYNYrVX1pxeX3ofJC/qZoBI49+gYK+wlbXxtpP8inYUktolIGscxOITQ/HFHbyxahD14vqKI6YzVpiY6OprNkBKGQOmczNP7qLweljOVDYxKaNVYSE+Nizt57qagdul4JGC+YQDWazFpNZh9VqQm/Q4Hb72LG9jrraNpxOf4fC6fThcPivbKfWqHC7FRqbOkZbKDQ1O2ltcREdZcLl8pKYGMKwjCgcdjf/+Od22hxu3G7FPzXcoGHI4AhsNhegor6uDYfDg97royC/CZ1eRXiEAafTi6IoFBU3U1/voLa2jcjIH67A1zHSb8uWampr/NPrSoptZGfHUltj56uvCqmsstNiczFuXDzW2JBAYTU62siokTGBRdwjwjtnQklJS+BvZMqUZKZMSe70d3P42lRr15azb78/E9LSLFhjE8geMYbHHn6KT7/6gLy9O4kIS2brlmoGZUXx5rsvMmJYGtMTLmLDFwfI/a6UsRelMuqClG47YxzMTDg0D2QdoN4lKtLEoOGH9hEM7NnTEJgaNXVqEju21/7QRzh4lbJLLxvIurUVeH0+8vc3ARASosMSpsfW4r+YhVqjISoxGY82CoepkVETVPjslTRXVdNSX8u2b77E/Zl/9KaCGrPDSNX+EJY0DGBYVAxjkiqpaVDI+d7H5TOmM2vqZDRaLahUVJS3sH9/E/X1DkqKG9m7s5Jhw86+olRTdRW5SxaRt/I7HM1NmMKjMMVnkDxsCKlDUjCGhrF3TyOW4nJMVW5srY2YjRYuufAyfnzTdTQ1wvbtNexrrqK11Ynd4aXN4aKt3YtW479ykFqjRqdXExXl7yM0NLTR0NiO2+2lvv7gmr8HFw9vbXHhU8Co1pKU5B9t1NzspKXFRVysCbfbS0yMiXPOicdud5OX18D+/Y20tLj8fQStmuhoIw0N7URHG2hv9+JweGlvP9hHsLtJiA/B5/NR39BOdZWdhvo2GhraMZm0gal2sbFmwiMMbNlSTU2tg6ysaEJCdIzOjqWmxsGiRQfYllMDCpjNOjKzov19BLv7YB/BEijABqa0HqJjil9GRhQPPzLwiJFZ8MPaVP48aDzYR7AQFmrm5uuv5abrrmHb9h28+9EnzLlgLps3V5E1PJqG5kr2ln3Jnv0RZA4dQkxqOjGp6SiKgtvZjq22hrqSIhqrqsjfuJYdyxYDEJWYTHLWCNKzx5KcNRJTaOd+zaGkj3BypOrQjcrLWyjfXU+C+YeFnA9fDHTH9loWLSrE4/GxK6+eyAgDTqePrKwoRo+OpaKihagoM9HRRmpq/Zf2tLd6yM9vZM2aCuwOT6ersnUaQjl+POCflvDWn9awu6KGtCQjd/54BJEWHds3FpO3vYbhw6MYPtwKKhVqo5HGVg9rN1TRYveSOiCKsMgQItIj0EZF9Pyb2Mt0FEuKqstYvms5mUmZOCvj0GhU3Dj7YrRqPSFtAxk3KJHWJjVbtlSzc0ctzc0uPF4vHrcPlQpMRi3h4TrCwnQHFygMoa62jcIDTbS0ujCbtBiNOuwON4qPg2fH1ajV0NrqQaMGe6t/EdwDB5rRaCEuLoRrrx1KRkYUdoeHbxYXkrfbP2VPq1XT3u6hoKCJ9PT/z955h8dVn9n/M70XaTSjPuq2im25YXAFY6oTkpAEUkkh2SSbbHo2u5uy2WSzKUvqpm0qARJCgNhUF7CxDbaMiyy5SLKtPmqj6b2X3x9XcyXZMhgCKfvjPA8PtudOu/O9973n3POe10xRkRoQLLCZdJ59+xwzRQmuv74GlzvG448Nkkrn6Ox009ZmweONk0pn2L79POs3VM4L7Y/F0ixfMdvaJ5NJxSIik0lwOMJiPlVfn2deHkJ/v49UUih4Oq2caCyDTitncXMxOq2c451OPO4oTmeUujrjRb8FQPGM0FWYFmWz6pBIJKxZsYI1v/41Pfc9jvLoHq6c+Dw9ixv4weMPsWrVQ1xxxRV85CMf4W1vexs63cLTnv4esX591SXJx0J96BdOXnsNrzxGR4OcPOmivEwrilIwvyYU8odOnHARCiXpODRJeYWe1lYhtFqzxU5Pjw97jRGHI0wolAYkKJQyAoHkglPZCpk+7e02WmaOuX3d05zoc2O1aLjj3a3U1xfReXyKMyc9tC0pZslMPZBIIRxOceToFOFImppaEyUmFb7TXnK5iy3ffy9IxjN07hjh5L4xFEoZDatsVDSZ0ZlVSKUvzRnlcIQ5fWaKPQceZmTiOB//wF3s3DmCTCZj81WfJJexcPXGlTTVFXP2rI/ubheTU1EUCimxaJpMOo9MBkaDEptVS0mJlvXrKjh7zs+uXYP4fUm0WjlGk4pYLE0qDbk8yCUS5HIpUqmEdCpDwJ/grruOkkrlkMkFJ5VKJec9722lqbGIvXtH6epyE46kaGgwo9MpCASTHDvq5Kab61Gp5UCejZsq6e52k0lnGR+PIJMrZs6tIcbGwuh1SsxmJXqDAo1WxtlzPlE8nZtDpVLKxba9zuNOLCUa4vEMJVaNOEWwkAl18qQLjycurtXC+i4gEExSVq6d5ypMpoQBH3X182tCgZgUF8+vCVabDqPRxHve8UHxM50966O8Ek72PcSxUyke0v0PN2++lTW1N9GxPU33njFW3VRD29WVyGR/v1k5L1QP4LWa8NfC5ESYvj4vjXKzSKQvDIcWOMLQLEcoEgTi1laLwBGmIhQXawSO4IoDEpQz9aBAygtT2STNxei0tfT5tCxbuorVtRqigQAht4t9e3qJJoOYdGnSviE8Uz2sq4hCBZDr5g9ffvKS38MIOLxGkjf/CpVWe8nt/q8gn88zeqqLEzsfY7i7E4VKRWl9E4vXbWTCp2LIkSE4FuFXj/6AZc1rcE+WIJVJeesb3oRWbUKSbmLZonICfujsnOb0aTehYIpMNkc6nUUqkQgcwazEaFBiMAhh9x5PnOEhP+FIWrh5MYcjSKSgUEiRyQTXVC4He/c60OkUDA0GkckllJbquO22RTQvFlxJ3V0uwpE0DQ0mtFo5sWiawcEgtXVmiovncIRMnmeecRAJJ8ll81x/fQ3d3S6GR4JEImna2izUzpw39u0bY3o6yvr1VWIGVSiUQqmUiW17x487kcoE8Ys8wv8RHFYtrRb6er0XcAQ/qVRWbEOMxtLotAqam4vRaRUcP+7E7Y4x7YxSXz8rsBSEK5DMqQfCtEKbTYtEImFl+zJWti8TRa3m5mJUxn6e2bmbZw7uZvnSJbzzLbey9botqNVqlGoNJdU1lFTXiCJV0DWNxzFKcHqK80c6OLVnF0iETKrqtqXUtq+iunXJRcHpf038vXCE10SpVxD9/QFcIyHS1tnWpIITahYSMpkcwWCSwYEA2WyOfF5QtvP5PPk8bL7WLl5c2e0GTnQ6GRoKkM1mOXfWR1mZcBfUbjewd+8oJ7vdRCPCJIX+fj9NTWZslWY8oSxLriindLFwN3z1G8tZ/caLP/eZvaP0TEBZmYnWNbV8+LtfY19nJ7/8t3/jtmu3/AX23N8menvdPLzrEIcGn+Xk6GkAqopOc6P9fVRVGmhdXMonLG/m0KFJ1DM5T0ajAkuJGpVahqVYw+RUhGAggVaroKhYzdRkFIVSytCIj/MDHuKJOJl8lgR5cvkcGXLk8hKkOQlIlWSTcjI5KWqFikgkw+nTHnK5PDK5hFAwSVeXYH9NJrPIFRLMZhU6rRyFUoYxrkQuk3DggAOVSobfr6XabuSOO9qAPAeeHcdiUaPRyHFOxcjnQaOWUVKioqLCQF2tCYcjzJ49oxw4MEZFhY5bbmlEp9XjcsfQaYXTh91uYMPGWdHqQidUIaCwgJPdbiYnougNSiLhFHqDglWryli9qkx0SDmdUdzuGKOO2alMhRZCrVZO20zA4YVuqgKsN13LRHkttkOPsObQId7cvpwn+no5duwYx44d4zOf+Qx33HEHH/7wh1myZMmrsn5eKl6tkawL9aEX2jtAKFZPP/00g4ODfOQjH3nF3vf/d/T0eOkf8JPP5amqM4v/XsiTAoEoO51xwuEUsViawcEATmeUYCApOBhlUFamE4OsAex2PZ0nXKQzOU6dduOcilFWrhOmr83UhKPHpunudmMwKlm10kZVtZFQOIVOqyCVA51Zxabratk0M7lsLoYnnEy6E2SzOdbZDQSj5/jYT9+MvaKe4Q/2/yV23SuGbDZH73OTHHl8iEwyS2WTmarmYow2zUsWHfp6PRx+vp+zQ7t4+sADBEPCuces20Ay2kBlhZ53vf0tOEZD2GuMorDSGDERT6SprDDg9sRwuaLIZTIWLy7C5Ypx5MgkwWCMUDiK0+kimU6RTGdJpiEcSyJBikwuI52TkU3LkKBGIlGRzUro7w8gkQitDTqtAp8/yYN/PEdFpY5QKE1JiVrIKFHLKSvTIpMLAbaPPTpAY6OZ4mINzc3FbL7Gzt2/PYPPn6SpycyypVYcjhCZdA6lSkrbkhIcjjAOR5ijR6cYGQkxNBhg46ZKtmyp4dRpD4FgQsyFstsN3PL6BoH4zIT1F3DypIvuOfWgu9vNxEQUg0FJf78Pq02LcypGc3MxsVhGFJ0co6GLJvVptXJkMli1upR1yspLtgLCrBhcbIHPffyL/P7h3zLqGOahJ+7jIe5jWcsqNrS8nuD9V3HiKQdXvK6WlnXlSP9K4tSrOaL7xWrCypUWPve5z/GNb3wDk+lv96763xv6BwKMjAZRmmZbkwpOqLnIZHIEQykGB/xks3lyeaHNLzfDEa691i5M4nOEWLq0RCTphw6NE41mKC8r1AOjyBH6+/0k4lmWr7BSX1+FslzDgN9DdYuVq2+uIZvJkEmnSScSpBMJMskE6XQKsjn6zvkYHgpgNKpob7fyhR98j3Nj4xRvuoF3vvd9f4U9+ZdBKh6j58BeTux8jIBzCkOJlUVXrqe0vhF9sYWBoSg79u3lRO8ezg8JeYzHT/SzctEHqKzQs6S1inLbWznUMYFaLQSPG41KSko0Qq5fsZqpqQjBYBKtRoFOr2ByMoLJrGRiMsDZs05iiTi5XIZ0doYjZHOQlyDJSZEplEhyciQSObmchPGxMNmssI1MJiU4hyOEQ2kUSilmsxK1Wo7NpkWplCGXSdi/34FKJaekREN1tZE77mgF8hw4MIbFokGjlZNMZZFIpCiVUsxmNde/tYYdO4Y43+9nYiLM/v3jVFbq2LChingsI7bx2Wxa7HYjGzfCTTfWigHqc7EwR4jM4QhKVq0qZfXqMlFMmnZGcbvjjI6GxGypQguhTjfLES50UxUwVwy++boteHw+nnpmP92nz9B9+gz/9b0fcuvrtvKOt7yJhtpaQHClK9UarPZarAUnVSJB0OXEPTZK0DnFuY5nOfnUDiQSCZbqGuxL2qltX0llcytKteZlr8W/Zj1Yv76KJ598kunpae68885X9L0vxGui1CuIpiYz2loj5fZLW/iWLitheDjIyEgQW6kWlVKKx5Ogra0YhULOwICP3buG2by5msamIhyOMOPjUXK5PMlUDqMMKip0ogPF7Y5TUanHYlGzd+8obnecyakIdbUmWlssGI1KXO7oRaR9PvKoVHIsFjUOR5hEIk0ul/u7vjP+UtHRMc7hw1OsXVuOwajgt48+zY4TTzERGAdAgoTFpa1sabsWPRr0ejm7dw3jDyRJxNNMTUWIRNL09E0zOjVNUWmWSWcAd9iDw+0imY2RHoqTyiVIj8XJkXnxDxWd/aMECXKJErlEhUamx6Q1ofEbOB8yIM9qMastVFnLMRqUhMMp8tEM9fVmzp714vMlKCpSo1LJee7ZMbq7XKhUUswmFfF4lsceG2R4OEA6naO01EhjYxFOZ5TW1hIMRiVnTruZmoowPhFGrREmPuWywgS/vj6P6NSbK8TOhUwqIRpNI5NKWLrUCkCN3cioI8TUVBivN06N3cDxTqfomKqrEx6fO5Gy0ELodEapnmndM5kvbgUsbGu7bim5TYvRPvwwyw8d4l+vu549K1fw6z/8gcHBQX784x9z33334XQ6UavVL3XJvOJ4tUayLtSHPtfKC1BUVMTnPvc5Nm7cSFtb2yv23v8/o63NQmQsQnnZpe8k2+0Gyso0xBNGcrm8SOLb2oqxWnUkUxk6j0/T0TGBVlsjOlNyuTwjIyGSyRx1dUaWLS3B44mzd+8oZrOKygo9fWe9jI0L9vvCMWkpUc8TD17oMzmdMU6edFFUkiCXz5GbySz8e0A+n2f0tJeDD/UTdMcprTNS3VpMcYUOuUL24i/ATE3omGLtunISSTff/v73GRp7hmxOaJszG0tZuviN6NT16NVqioqF0et2u4Hp6RiDAwHC4SQDgxPojFEm3SEmneOMT4yRTAfo7o+STIXIZMPsPRpjofDRF4JUqkQq0SCX6bFESzEarERCaibdRUy6qqgsr6W1pZZgIMnIaJB8DjRqBVNTEfJ5ofXDXKSit8/Drt3DwsW8VkE6naery43HHQMkqJQypBIpra0lGA2C4+/0aTdud5zHHxtk6RIrZpPQgmQ2hec79Vovbvc0m1Vks8KNuaXLhHpgrzHiGA0RCqVIZ/I4HCFy+RyrV5WJYqt25ibI3El9sViGbBZUSrk40fLCVsAC5orBH6z7KHfe8REOHzvI/Q/9lqf37eRUXyen+jr55Ae+wBrNG9j/+3N07hxlzS11LL6yDMlLdNT9uXg1R3S/WE1Qq9U4HA4+/elP85vf/OYVfe//n9HUaCYyZrqIlM/F0mVWhkdmOIJNh1IpZAW1tlmE6WsDfnbvHhE4QmMRDkcIrVYhtvRZrVoqKvSiA8XtjlFRqZu54REjFE4yMRElFksLx7RJRzAiwWa79Bob8o0SHZumospMSmsEqTCY5++pJrwU+CYn6Nr5GD0H9pJJJbHW1qNvWMuZQTnqRQ1kfUp+/4sH2H94Bx7/DEeQSKgpb6e1cTMWi4bWNguHDk0wNhYikcgwNRUlEsnQ0zvN2PgUFluaQYcfb9DNxKSTVDpKNhcnm49x9HycXP4yOMIcSJAilSqRSdWolUb0WhOBpJFJjxHyegxaK2Wl5ehUKiYnIuTy0FBv4uxZHz5fAnORCrVaxnPPjtPd7UKlkmEyCcHojz06wPBIkEwmh8mkFPMLt26tR7FnhNOnPTidESYmwqjVctatqxRbUi8MRF8IMpmESDSFTCZh6ZIZjlBjZHQ0xNRUBK83gd1u4Phxp+iYqq83MTp6AUeYaSGcckaprhZa90xm1YLH21wx2GZbzhUrluP2eHn48Sf44/ZHGJ+c4rd/eIDHd+/m4I7HUSwQZyORSFBqNFhr6rDW1AlRK7EYIdc0HscIgWknZ/Y9zYkdjyKRSrHV1osiVfmiZhRK1WX/vn/NegBgNpt5+9vfzqZNm2hsbHxF338uXhOlXkFUVhowtlgIAMc7nQwN+unudrNpUyU33dQgZuKsX1/B8hU2dFo53SddIJEQj+fwB6JMTEQZHxcO7MHBIEeOTNLQUERjYxGxeJpQKEV0Jlui+6SLyYkI7cutrN9QSSSSnrE9ZvD6EqjV8plxrR6RvC8kTi1dZsVkVhMMJDh31odvJtfo3HkvXPeX239/aczNi9q1a4Rz53xMTIY54NhOv68HACkyrqhbw5vX34yjP0u5UU8qmWVgyMfQ1DjOgJNozktaHiR42EMoKeSB4QCQoJXrUeT1KCQajFIbMqkGnVJLdUUJ4WAWtVJJMgGZJORzEiBPkUWFzaphYipMNpdBosiQySfx+kNkSCHXpvBHAngy08SzYTI5IdxWMiXBpC5CjZnKogpsiqWkpVIUCjnZbI7z533I5IIYtbi5GK1WICjhcIpMJo9EIqGiQjezHoT9cugg9JxxI5dLkctlBAIJOjqECSKF9Vu4w9HSsnDeTH9/AL8/QX9/gNtvb8FSIrRzLG+3MTkRZSIUoaNjinQmy5orKrj11iYA1q0TfqNC4LnXE6e7yzUvo+qFxVaQKpUUvfOdqFtakP7hD7x5127+8ac/5ZhEws9//nPsdjtqtZpDh8Z5+ukRnM4n+Mxn7mTRokV/3uJ6GXgpIYZ/+tM5tm3r581vbrpkgHsBC/Whr1tXiUbjwmIxsGPHEG1tTTzyyCOvarH5/w01NSYS7TZc0xE6jzsZHJqpB3OCn6FAlrUsW2rl1Gk3JzpdKJRC1tD+/WOMOkJkZwJQ05k8hw6OCxOStAoi4RRmkxqrTcfevaN0d7tZvtzKe97Tyq7dIzgcIVattNHT48PrTaBWyYnHsrhdMbZsqVlQmJobth4KpfBHhHaoWDzNoUPjf/OtPe6xMAcf6mfyfABzmZZl11ZhqzWiVL/w5c6FWVG7do3Q2+vl2IlOjvV8hTwCATPoali76nYqSq5CJleSy+VQKqWcONHP+YE+kpkp1DofvsAo/uAYuXxCfA+ZTI1CZkEuNSOXFaFX21EqDDQ3V5PPKfF5MyTiEqQSBTK5kmQih1yep6nJjESaY3IySCgSxmaV4fH5CASCKNUJVKoo45PnSaZ8pDIhhibzHO+Fpw7p0ajK0arLqSxbjFpZg1RqRSKR4/bE6Dw+jVwuJRBIUlSkQqORMeYIE4unyedBrZaxZYsdq1U349428NTTI+RyoFJJkcmlbNveL7TXJXNotfJ5TqiFRKlAIEkonOb0GQ+NTUW8/R2tuF1R4vEsVpuW4eEQw0NBhoYC6PUqsR4U2v/criidx50kUxl6e31iPShscymx9UJIpVLWX7mJ9Vduwu2Z5sFH7mfbY3/k3e++g+mpPOOhOEODR9n/5Z1sWnM9625dRNPq0pcVhP9y8GrVA1i4JlRX5/joRxcRiynZuXOYf//37yKVhi/xCq/h5aCi0kCixUIaoaVpaChAd5ebjZsqufnmerH9bv26SpYvt6HTKug+6UIikZBIZAkEkkxORhgbi6BWyQSO8PwMR2gyE4sVOIJwTShwhCjty600NRXx3LMTLF9hZcwh3AxUq2Tiei6Q9wsdJVDgCCqCgSRnz/qIx4Vco87OKd79/r/Y7ntVkc/lGO7upPPJR3CcOYlSo6WouoGstpqa1np+/qs+zp3zM+oc4HjffUy6ewGQShQsa17HTZvfQHdnHElGgkIhxe0O88z+kzgmHaQyXjJ5L5G4i0QqILxhH4AElcKIXGpAKtWilJuRyTQ01JWhVGjxeTOAlHRSilQqJ5PJk8/lKSvXYrNpGB4JkMulkcozpDNx/P4wSBOoNWn8QS+B8CTJdIhsgSP0SzBoLcilxZRaq7A3tJNDjlyhIJfNc/6cH5lcgsmkprm5CJ1OwdRklFBYaDuXIKG62sCqVaXiWjl7zkdPjweZTIpCLrSRznIExXyOcAlRqr8/QMCfnOEIzTMcITTDESJMhCJiaPuaNeVzOEIlLldMDDz3euJ0d7vmZVQttJ4vBWuJhX98/3v50HvezcHnj/CHbY/QVF+HQi6nr9fLiW4n/Y793PnuN2Gvunjyn0QiQa3Toa6rx1ZXTy6XIxWPEXBO4h1z4J920v3Ukxx77E9I5XJK6xqpWbqcmmXLKW9ajEx+6am/f+l6sHZtBVqtm+LiAkdYwrZt26ipqXnR1/tz8Joo9Qri3gefoHrcT1wPTmeM55+fxOUScj5uuqlBzMQpK9NhMquYnIwQCqUxGpV4vXEGBvwUF6toayth7dpy9u0bw+tNotaEWb+uEmdPhLIyvXgBVlCICy4VoS0L0b1SYzeiVMlFsQnmu1gKokxBPFu+3Mri5mISjwiiV3+//y+27/4aOH3KzYkTLuoXq/EGgiSSWaYmI+iSdSgkg1TIl1GpWIbOr2LX7kFC2WmkzgDD7hG8MZdIUlQSPSU6G1W6JqRyA3qlmWK9BWlag0YtjFyXSCQUFauIRTOsWlVKS0sxTz45PDP+VYFeL8fnS+DxJqirFU4O0Wk/CpXQM65WyzDVqMjmcoyOhIir0qiMClpailh3tRV3yMVzx8/S1TfEdHCaPlc3nY8eFD6fVEuxqgxdvoya4no2ta/AZtURCibRaBTIFVLMRSrKSrUsW2YVe7ttVh1eb5x0Ok9RkQqLRYtaJePcOR9Go5JoLDNvDV4KdruBqanInFw1D11d06xYUcrWrXV0n3Qx5ggxOBilt9fD+g0V4jp1OIQg3f5+n5itptNbLxKjFgqknwvNihXI7XZ8v/41U5/8FEve8Q4eeuABkAmuiT17Rtm27SlOn/42P//5t9m4cSN33HEHt912G2az+c9YZZePlxJiuG1bP88+K9yhu5yiA7P233x+jLvu+gqHDh3ihz98jKkp4XfZuvX/sAL9V8DJkyP88f6d1FWtYtqTEOqBe6YezIhSDkcY51SUsnLdTGZUCoEjSDh50sXEZATzDFlob7exbXs/wVCKbC5PaamO0lKdeFwVHCSFKX6FegDC2hKze2YcKYWcnwLmijKdnU46O6dpbDRToOCZdJY9e0b/ZkWpiD/J848Ocu55J1qTkua1ZZQ1mNAYlJclJBQEwRUrrTQthnAoSSqVI522oVKUoZAXUWK8Aa2qmfGRGK7pI+Ql43j955n2niedEbIrJBIFpkQ1xWY7KtkyNEobZWXVJKIGVEot6YyEfC6HQiklm8lz5VXl3HRjnTgdJxJNoVEruGJNKd3dbvz+BLm0lFQ6h1aZQWnKYSvSsX5NEaOOEJUVOg4dmkRjy6DTyXnPe5uRSP0c7Ohi2DHIwHA/gZCDCdch8vksEokMvaYataKOaLKNtVdsoKjYJLR2pjMEAkksxWpKbVpaWi0EAklqakziWgmHUySTWcrK9FhtWuLxDL09XoqLNcRimXnrcCG0t9sYHAoSj2dgZnUVJgiuWFnK+nUVnDvrxeuN09vrYcP6innrtFATRkaFUeprrihdUIhaKJD+UrCWlPKxD36aj37gU0gkEp7e3Ut3r5ejZ+5mZPwUDx/+MSsf38yWq17PO//xddSvsL3q4tSrXQ9AqAmdneM8//yD/OQn3+Gtb30rb3vbVzh8eJK1ayvYunXVy/rsr2Fh/P4Pj6KJQ06RZsoZ5fnnJ3G7helkN99cL2bilM/jCKlZjtAfoNiiYkmbhbXrKgSO4EsIHKGuYqaWKEVnyNzrs5ZWCzffXA8I08m6T7qoqTGiVMpEsQnmtzkVRLKCeLZ8hZXm5mJx6lp39/RfbN+9WkhEI5zZ9zRdux4n5HZhtNpYvHYjFYtbONYd5US3B3dsDL8/TCKRYXIygjzfhFw6QpF2FUW6FRDTsmt3P6HoBBK5m4OnHAQjUxTcrwqZEZ3ahlnXgsFagl5nQSkzkYipkMsVyOXSmWwpKK8w8PrX1ZNKZ3nyyaGZG8JSGhvNTE5GmJyMUlcnnBe0Sh8KhfC4WiWjvVlFNptndCSIQZpBpZLT0lLMug3F+IPTHD7ax6mefrwBJ0Njx+gbegYApVyPQVOBUlZFubWR5ctXYrVqCQVTaLRCRm1RkYqyMi1Ll1rp7/ej0yqw2bR4vXHi8Sx6vYrGRjMGg4Jz5/wzHCF9+Rxhci5HECYIrlxRytat9QJHGAsxOBikt9fL+vWV4jp1OEIzHMFPNJpmoD+ATme9SIwqrOVLCa9zIZPJuHr9Oq5ev458fmatn3Tx9DMdHOy+j989fB9XrlrJm7bezE1brsWgX7i+SKVS1Do9ZQ2LKGtYRC6bJRmL4Z8axzs+RmDayfEntvH8tgeQK5SUNTZhX7qC2mUrKK1vRCqbdXX/pepBT4+XVGqYu+76dzo7O/nRj57E4RAcXVu3Xn/Zr/Vy8Zoo9QohEAjw6a/+G5WaIr76/i+wuLkYhUIiOqVgNtOgIBJptQqMRoV4sOr0cpa320QnyapVwmQCoSAlUKnk1NUZRdLd0lKyoDvlwn93uaMLtjkVLu4OHhwnMpNpcvvtLZSUaBn2IY6H/r8IlzvK0VODPNG1m76numnUrqFSuopsNochV02r8iZCeSd9id2EYk6yCHcajGELOqw0KhdTpLJRrLWRS8mQy6VIJBKKS9VYijUMDARIJjPkc2mMRhVVVQZuuqkWpUou5r4olDIUChmVVXpWrSpDp5WzY8cwMpkEi0XoOa+u1hMKCdMp1m+o5Je/OEU8niGfF4Ymjo6GCD+RIhhMEouXsaGmgVwe8rk8gViIycAYrugkgbST4fRRBiY7OPinhyiSV9JcsZj1batIhVWo1XI2X2unv983z/nU2lqMwxEilcpgs2mpqTGJQfx2u4GBfj+TE1Fq7Il5whDMZkvdeFOdOEJcgJCLAHlxrfb1ecTv7nCEGej3s2/fGCUlamQymTBt0KoTj5ELMTcE/VLuKYXFgvUznyG0fTuBP/yBeFcXVT/+EcrKSq67roaJiRoMhi0cPvwMzz33HM899xwf//jHecMb3sAdd9zBTTfdhEJx6TsZf0m8+c1N8/5/OXj66U6+//3/ordXuBBRqdT09/diNl+FyaR8kWe/hpeKb33rOzz44P/y0ff8N1dvvAGFUiI6pQooHBOFLBytTkFVlZ6Kch0V5cI6bm+3UVKoCSuFmpCIZ8hmhda9AuFuaS1Z0Jly4WNNjfOP0wIKodGBYJJt2/pxu+Ok0zlueVMxAFLZrJX7bwmpRIaupxx0P+1AIpNQt9xK5WIzhiL1S2q58vmidJ7ayZ92P0kk6mVp/beRSmTk8hKqSz5CPDVCMHqMCe/vSWVcAMhkWrTKWszaDei0NejV1UgpxmBQYTAqCfiTtLQUMzoaJpSMk83msFjUNDWZaWoqxmhUsmypcCNgYiKCwajEYtGwcpWNLVtqWbrEyo4dw4QjSRQKGSUWNalUjqpqAxvWC+vo+z/oJJHMkMtDNptn755xorE08Vg1lbZmFtXI8XoT5PJpplyD+IODhGNDhGO9uPv3car/x+i11ZRalrBy2UaMxjqMRg0331xPf7/vItdTS4uFWDSNSi2jtdWC0agiFEpiNCpJpjJ0zdypBsSQcpitBy2tJXxoZj0vWBNaS7jzzqXz6kH/gJ/DHVNCzIFSjlQmwWBQYimWXVL8mhuCfrnuqYLQ1N5uI5fPIdWuJ5acxuWe5sCZ7Rw4s52fPGznmtWv4xOf/xBrr2v/izmnXggvpx5kMhm+850fc889PyAc9gBw8uRZNmzw09Bg+rNGl7+Gi+F2u/mXL3+ecksln/nwv9PcXIxSKRWdUjCbc1MQiXQ6IYNI5Agz08wKTpKVK21EIwWOkESpklFXO0u6C0HSF+LCf3e5Ygu2ORUIv8AR0kRjKW6/vRmdVrgOWrbs73caq3fcQeeOR+l7bj/ZTBpbbT0NK9dgrWtAYzDgdsfpPNnN3o4n+dXDnVRbNmNUrSabzaGR1VNhvoV4aoJx/6PE05Pk8wJH0KltqGSllBmXYNSWYdCXkknJgDxyhYy2thJ0WgWdndPkcmmyWcEFXVdrYu26CpRKmZgFplTKUKvk1NQaWbWqFJ1WwY4dQ0hlUiGXSiWj2m4gFEoJHGF9Fb/85Sni8eyMHJbn3Dkfao2M8fEsPl81KxY3k8tDLpsjFA3g9o3iC40TiU/gjzzLVOAZeh1atMpq6u0trG5fQzyqRqWSce21dvr7/fOcT62tFk6fdpNOCwO7mhdb0GoVoltpYMDP5ESEmhrjPGEIEP984411tLRY5q2/GS1oXhh64bs7HCEGBgSOYLGokculMxPJteIxciFmQ9Avzpd6IRTO78vbbYxNlhPLrqTrTBdHOk9wpPME//Hf3+H6qzdx6+tuZv2Va5C/wNR6qUyGxmBAY2ihYlELuWyWRCSCb3IM7/g4QZeTI9v/SMeDv0OhUlO+aDE1S1dQs2wFtpo6JNLLyzd8OfUAYNeuo/zgB//F2bMHAFCrtfT396HTrfiLcYTXRKlXCGazmd9+76fc8U8f4Me7f872b3+T1avKuP32FnGbQrtRQSQKBhLEnGmisYw4qczljoptE6tWlfGpT6+aN6VsoawEeGGnyKXanOx2A91dLsjnkckk6PQKjnc60euFxdfQYH7ldtDfCFzuKLsPdvHLx/9E9+hJ8d+nk8PklRK8iXF8qQlyZJChxCyrwK5YTZGyjDJDBRqllmAwQSYDMglolSri2QyplGBn9vsSJBMZLCVqcrk8SoWUtjYr69dXiL+f1xPnzBkPkXCSJUsqWLbMJv6+a9eWc7xzGn8gwdatdReJjna7keGRILlcjkgkTTCUJhBIMmOvIJXKcfXV1Rw75iTnU7K8bhkBfzPJVIZsNkMwM81YYBh3aoxnh55i/9BOqksqWN3UztL4ZpYtFULxa2aKYk+vh1hMKJwuV4w1a8pE6yzAfff20tMjXNAqVXJRGILZEPLVq4Txx6dPeQA3FRV6TObZlouCs2/t2nJRtLvv3l56+4TplFu21JJIpmluLhL3x9wsq5aWWcHrUsdHAVK5HPNtt6FqasJ///0Mv+lWyr/xX6y//nrWr/8A8AHGx8e5//77uffee+np6eGhhx7ioYce4sCBA2zatOnyF9srjLlBh295y+LLvgNy+vRpvvvd7/L73/+eTCaDRCLh6qvfwJIl78JsriCTyRMMpl7lT///H77+9a8ydO4sv/j9v7FmbQ233371vHoAs+1GhSycQDCBM5omFsuwanWZ2K40tyZ8+lOrOHXaA+RZNpPRthAu5RS5VIuTKB6MhUgms0ilIJNLxIsypVLyN+WSyuXynD08xfOPDpGMpqloMlPVXITJpkUmv7yLN7crytlzU+x65kEe3XkvsbgXAJlMxZjzSRKpAJH4eVGEUisqMGha0ShvwWJuQKspIxHPkJ6J/zAb5SQSwrk5k82jUQstNplsFo1GSlGxmlWrylm/rkIMAPd44sKI7kiS0jLBrbpsqRW3K8rkVBS9Xk4imWHz5mrWrZu//zuPOzEYlOj1SsKhFPF4lqGhIHK5DKkUwuEkBqMKrU6O35elbXE7gUAzkUiKSCRDHj+h+Dncvh7Gpo4yOLYTlUpL26Irqap7Hc2N6wAr9hqhHvT2eAgGkzQ0mHG5YvT2+njzrY1s2SKIlQ/8oZeurmlBoEoIeU8FXCgQBYJJAqcTLFsKy5ZaMZvU887fJrNKvPlx70yd8fritLWWYLFo0OvkYm5VX6/nohyry60JC2FWxF1CJvPvHHx+P9ufeIinntnBdMDBH/f8jJNnj/G1j/6Utbc2UNVc/JLf45VAoSasXl122fUgHo9zzz338N3vfpeBgQEALJYKNmy4k/b2G3A44qxdW/Q3PTb87xFWq5WffP9nfPifPsgDT/yUX/7wLlavLuP225vFbQrtRgWRKBhIEo2micbSrF5dRkurBZcrNqcelM5whNkpZZfKq3ohp8il2pzsdiPd3S7y+TxSmQS9Xsnx406USsHBsXTp35colctlGew8yoknH2W87wwqrY7K5lYqm1spKq9EoVIxPR1l2459/GHbg5wb6haf64v0k8mlCftGCcfGyZNBKlGhU1Vj1a9HrynHYqpGrdISCMbJZgQjvlKhJJ0SJl1LszA4GEAul85wBBVKhYy2JVbWr6sQf78CRwiHUyxZYpnhCMLvu3ZdBcePO/H742zdWn+R6Gi3GxkeDpDL5fH7E2Sz0HXCjVQmIZHIkEzluOaaKo4dncbv19DatBK/fwkBf4J0NoO1LMz5oV48gSE6ex/jeM8jVJbZWdayinDsulmOUGNk7x6BIxTiEHt7fTQvtvDBDy4TP8999/Zwpkeoq0qlTKwDMFsTVq8ucARB7BI4wqxIWnD2zRXt7ru3h96ZCfZbrqshkcjQvLhY3B+F5xRcghdOuXypEMSx1wOvZ2Jqikd37ubRHTsZHBnliaee5omnnmb7vXeztLXlRV+rAKlMhtZkQmsyUdWyhGwmQyISxjvuwDc5QXDayaE/3sdz9/8WpUZLxeIWapetoGbpcizVNRfdEHk59QCgu7ubu+66iz/+8Y9ks1mkUinXXnsrra3vRKcr/YtyhNdEqVcQt9y4kT98+lO8/Qc/4L3/+TXu+8p/iOFoF4pGNquOjo7xi8benz7lZqA/MFOQEmA3iKQeBDJeaK+aK1hcjlPkQtisOurqjIyMmNBo5JSUqHngD31MTQkJ2//XQgyfOnKEr/7yHk4PnxX/TaswkM4m8aenCGe8mGTl1CqvxCytxCCzIkEgNxIJaFWqmQkUwnOzWUgms6jVcmEingySyQyZbI66OjNvfnMTk5NRIM/kZASnU2jd6eiY4Nw5HxIk+H1JVq8qY/v2fvbvdyCRCMJSNJrG447T1GTGH0gSjaTx+uKsuaKMLVvsjIyEGB8PE/AnkUqhvFxHKpUjmwOvV8gwSSZzhEMp1q2r4OQpF35fAquiiipzDcFQioYmHfUrUnT0dLH7SAfbD++koqSEt2zeTF6znInzUpzOGOFIkkg4g16fYdQRoqhoVhBau7YcgLa24pmJYdo5jsAkwUBCDJH3+xOYTCpMZvW8Nd190sWxY9NMTkS54z2t2Kw61q4tJ5EQSJvRqBDF27nPmevoupTweimxVrN8OfLqalw//yXjH/8E8lveStM3v4JELqeqqorPf/7z/PM//zPd3d3cd999HD58mOrqpTO91RZ++tNvMD09zVve8hauu+46NJqXP1XjxVAoNC5XlMHBIHD5QYfpdJrrr7+e6WnBZn/TTTfxzW9+k6KiOnp6vJhMSoLBFA5HkHe964nL7kF/DS+OhgYLv/rhb/jY59/Phz/5Hn77sz9yxcqrgIsFo8J/Yk2YGXtfEKSGR0IoFULOlJD5NLuWFyLk8NKdIoXPEAgmqLYbSSYyKJRS/vjHcwCijf1vAWN9Pg4+1I9vMoqtxkDL2jIsVQYUqssLMQfweN3813fvYvczD5JMCTVPLlOj1eoJhT1Mep9ApahAr2lDp7oVnXoRCplBjCOXSSQoFTKSyRzMtHJHoxmKitT4/Ul0OgV6nYLxiQgyKSxutnD11VVUlOs5edJFKCRc5HV1u+jr8wl34NUKNm2sxmrTsX17Pzt2DBIJC+O1A/4Ep0+5kcllJBNpzp71s2KljRuur6WqSs++Z8aIRlMolVJqakwYTUpc03ES8TThUJp4PEMqnaO21szISIBMJodUWkKNvZpgaBM6nZwr10rxBLrYe+ApvnbX55DJZGy46mqWuq8jEWnC6525/54HjycOEiHUHISpemazihUrSlGppKjUcoxG5Rw3YFIM2T94aIK9e0cpMmswm9SsWl02b40e6pgUW7ytNh1r183WGatVN0+8Lbz3hY6uS4mvL9TWt9BjcrmcazZcxzUbriMcCbNrz+Nsf/xB1i99Hd7pGI/+oBupOcqvd/8nb3vnbdx6662vejbfn1MTfv7zn/PpT38aAIvFwpe//GVuvvkdDAxExHrQ1mZ5ybkkr+HF8cZbriU89S987r++xWe+9BW+//Wvis6KC0Ujm01LR8fERWPvT59yMzAQEH6rQBLss6QeBDIucoQ5gsXLcYrYbFrqak2M1JrQaBRoNXJ+e/cZ8bj7W6oJL4R4JMzpvbvp3v0EYa8HU2kZzeuvpmJRM/pii9gm9fT+Z/neT35N//A58blqpZF0NkE4Pkos6USrrMZm2IhWZUetsIkcAQmo1WpSqQxSCWQROEIikUGpkJMnj1qtIBpNIZVKqK838+Zbm5icjAAwORlhyinUoYs4wuoZjrDPARIJ6VSWSDSNxxOnqakIvz9BJJLG50uwZk0ZW7bUMDISZGAgQCiURKdXUF1twOuNk8vl53CELOFQmvXrK3n++UkCgQQaRTXti6qYno6x6gozLcuS7D3wHAc69rJz33Yqysp4/Q3XodSsYvC8lGlnjHgiQyScJp3OCznJMMsR1lUA0NpmIRhIUl6mm+cIDM5kUB3umMQfSGA0qjCZVfPWtMARnExORLjjPW3YbFrWrqsgkcwKHMGgFMXbuc+Z6+i6lPD6Ym19Cz1eWV7OR+98H//4/vdypu8s25/cQV//ADaLXcy3+vm9/0ssHufGzZtZu2Y1KuWLO41kcjk6cxE6cxH2Je1k02nikRAehwPf5Dj+qUlGT3WTz2VR6w1ULm6lZtkKFCWNjE4rcLtjL7keJBIJrr32Wvx+Ia7nDW94A9/4xjfQ66v+KhzhNVHqFcaG5mZ+/9Wv8bYvfZG1d3yS73zks1xzdf2CotGoIzRv7L3LHWV4WMil0GoUOJ0xTObwPDJ9IRl3uaMcOjjJ2HiI6irDZTupXO4op095CIVSbN5czdJlVh57dBCfL4EWC6sXLaW85O/rLsgLwTkd5pu/eWCeIAUgz2mwypopVtZgVpTOFA9Ip3Pk52hywkV4EomUef9uMilJpbNks3kqKvTI5FJ83jhOZ5RDhyapqzMyMBgkmcyg1ShIJTN43HEUchkGg4K1a8txuaP09npxu+NIJKDTyVEqhXGuR45MEYtliMWEO+9KhYxPfXoVp095aF5cTG+vF68vwYqVpdTYjRw+PEVrazGtrcXiJCi9XgF50OuVaDRyPJ4Y+VyekD9HpWYxX7tzPe+/9g4GnYM8+twB7nlyF6HYQ5jVFurNbdTqlyKRqJDJJKhVcg4dmqS3zyuKSOvWVXG808m5sz4WNxeL69VkFta80xllYjKCpVjNypW2eWvU5Y6iVimwFKvFVg2bVce6dVWiK2Ch9tPL6VOHFxZrFRYLU9e/h/Sux6l64k8MD/RQ9ZMfo6wQiqhEImHFihWsWLECgB07hjh8eJJsNsvdd9+N2+3mnnvuQa1Ws2nTJq6//npuuOEGli5d+rJaOg4dGmfPnlGuu65mniOlMHWjocHM2rUVl2yryOfzdHd3s337dr785S+jUChQKBR88pOfpKuri89+9rNceeWVgEBqAKqqDKxfb+Jd73riZfWgv4YXhlKh5Ptf/wV3fuJdvPtDt/GBd/w377/jDZcUjOaOvW9qFAQppzOGUiGcL2KxiyfyXEjIC1Pj2tqKxcllC2EuAQfhWBEmnEnYvLmainI99/2uF79PwuLKVVRUlb/Ce+elwzcZ5dCf+nH0+DDZNCy5phKb3Yha/9Laat2uKNsfP8pju+4GQCKRks/nyOelKKQNVFpuwaBpQ6kwolBI0ekUhENJ0REFkMnmCQaTZOa4gZRKGQaDkkAgSTaTo6WlmFwuj8cTJ+CPAxJisQxOZ5xoLEVvnwefL4Z6JoS9psaIViun87iT8bGQ6LiSpHN4PHF8fiGsPhRKiiL9nXcumznPq+g4NE4ymWPJkhK2bKnh4KFJvN44S40KxhwR2tqKGZ+Iks+DyaTGVqolGk0RiaRIJrKkEnZuf+OHuWrFO0mk/Bw49BSHj+/kx7/+AnKZEptlJeUl64nFlpNI5NDrldhrjJw86eLosWkqK/S85z2t4vq2V8+2l5pNYXFCn9ebIJ3OodbI5q3PwppUqaQYjUqxDXBuPShsN3fK3ovlWM3FC4m1LybkGvQGbnvTO7ntTe+k87iTs70eqqt17Nq7nc7uY3R2H+Pzn/88jY2N3HDDDVx//fVs3rwZk+nluY7+3Jrg9/t54oknKC4u5nWvex0A73//+7n77rv5wAc+wJ133olerwdApVLNGzn+hS8891pNeBWwbtVK/udb/8XHPv9vbL3Ny5c+/a9s2lS7oGg0OhqaN/be5YoxPCLUbq1WyZQzismsmkemLyTjLldMnAJXXW24bCeVyxXj9Ck3oXCSzdfYWbrMyi9/eQp/IInFYEVWFsVq/dvmCK6RIbp2PUbfwQPkczlK6xppXLMOW20dar1h3nWa0xnhBz+7d54gBSBBR5FmKXpVPUZtGTLZwhyBPHg9iQU4gopkMkssmqGkSo3FosbrjTE1FeFQxwR1tSYGBoW4D61WQSqVxeNJIJdLMRiUrF1XMeNKFTgCEqGNUzWTBXbk+SmisQzxWJpMNjeHI7hpbi6mt9eH1yuIV9ddV8PhjklaZ9ruZjmCHLVaRolFg0opZXwiQi6XJxqRsnrZWlYvW8vtr/czOn6eXc88w+8ffoRo7HcYdTYqrO2UFi0HiQqZTBiOcahjgt5erygirVtXyfHjTs6e9dHcXCyuV5NZmNo6XeAIFg2rVpbOW6Mul1AfLRaN2Lpns2lZt66SdesqxW0ubD+9fI7wwmLtCz0ukUhY2toiuqMK3zGTSfOnx58kEo3y0KOPo1GrWbNyBeuvXMOGK9fQ1FB/WRxBplCgL7KgL7JQ276CntNOprsc2EviqPIB3I5hhk4cJZ/Pk5NpUZfU01y/hNrysgVfL5fLceLECR5//HG+8pWvCJlXajUf//jH6e/v57Of/SyrVgk5gn8tjvCaKPUqQJepYG3JrRyafoRP/OSbHLrihwtayQsHS43dyPFOJ8FAgmwuT2OTmeXttgXb9S480ByOMEePTRIKptBqFDgcwrSUCwn4XHLu9cTZtq0flyuG1aqhrU0QpLLZLLV1RqrS13PTTbWsu/Jvp1XjpeLRnSf5322PsKa9kYTEz8N79+MO+pAgo0hajU3eiEVhR8HsfsrnBBeqRiMnlZy1KhZahKVSCVKZhEw6RyYDCgVodUp84yEymTyxWIZrt9jZv2+MWCyN0xmhrs6E0ahgoD9KMpFl1BGiuFjD6tUqsT3veKcTnU5BY6MZAI1WjrVEyG2KRFLznFKbNlWKEyZkMgmtrSUkkmlxvZSV6YjHs5jMKv7hQ4KF9rFHB5FKJZhMKvyBOG5PYsZuGycUSvLYo4OcP+8jl4cayQastVcyFhxiwHeGU9OH6XI+R7WxkWsbNhCOlKNSyVCrZHi9ce67t5etW+vEdZpKZvjDA70sbxdaEqUy4e62ySS0YlRU6MXMqFFHCLVKTiyWEb+HTjt7Surr8/D0nlEArr+uZt6abmkpwVKi4dDBSQ4dmmT9+oqLWh1d7uhF7q0LkUrnOKxdyeaNjZSd2M3wG9+E/NNf4px5iXhxXkDhwr+lpYiHHnqI7du3s23bNsbGxnjqqad46qmn+Od//me2bt3Kk08+KT4vmUyiUr346Nc9e0bZs8cBMI+AOBxBnntunMpKHVu31s97jtvtpqOjg927d/P4448zPi4UjdWrV/OGN7wBgH/913+9qABeOF725fagv4YXR8+ZABXmf2RM/R1+8bvPYjJJePMbbgEubi0qkOpCu5TTGaOsTEt7u01s97oQFxLywx1T9PR4SCQz3HRj3SU/11wC3tvn4ciRKex2A0qFgmgsRWurheXLraRTWTbVf5vKxUV//s54mYiFUhx9Yojeg5Oo9QoWXVlGab0RvUl1WblRmUyGn/z89zx78DDLlzdzvGsPZ84eA0Apt2LUXoFRuxStsg4ks61/UomQvSGVSOa1osmkoNbIkcmEuhGOZJAAGo2C6ekYqXSeeDxNY1MxkUgGjydONJYF8tjtBsrKNPQPJOnt8aLVKVi3vpK6OiPLllrF36Wq2sg6wO2JI5UiZkrNdUpt3FSJ2xXl1GkPXm+cYosGpUImht3bqw3EomksFi0N9UXY7QbiiQnkCimlpRrKy/Xs3j1COJxBKsngcIQ5eGiCffvGkEqgtnY9b7x+M02VA/T272PcdYhJ13dRK4tZVHcD9Y1bUSnl2GuMwmfwxbn33l7WriunubmYZCrDA3/opb3dhlYr7C+tVs76mbvnFosajyeOwxEmmcpwuGMKmUxCTa2J9mVWmhfPb4vbtXOQZ5+buGiCZUtriZi71tExjmM0dJFzEAQxKxBMUla+cE2w2w04xsJ0dbvQauVi++xCzqq513SNK/8BW5WZPQd2cXbsBAMDAwwMDPDTn/4UmUzG4cOHueKKKwChHiiVlxe+v1BNGB0NcujQBD09HpYvt86rCZlMhlOnTrF//36eeOIJnn32WbLZLGvWrBFFKZPJRHd392s14a8InbKRFvvt9I4+xFfu+io71vxswfYikSPUGDl+3EkwkCSbzdPYWOAIF7frXcwRQhw9OkUwmEKrVeBwCDe+LyTYc8m31xNn2/Z+XNNRrFYtNbUmurtdlJdrSSYzVOo3USop4+oNG16FvfPnIZfNMnDsMJ07HmXyXB9qvQH7knbKGhdTVFaOcsbV/ujjXdzzhwe56oolxNNTPLF7L/6gHwlydKo6jOrFGLV1SJndT/n8whxBJnIEKTKZIFhlM6BQSDAaVYyPh0inc4SCKYEj7B8jHsvgnIpSV2vCaFQyMBAjkcgyOhqiqEjNFavLxPa848edaLUKGpvMMPP+VmuBI6TnOaU2zuEIUpmU1lYLiURGXC+lZTrisYzAEf5hhiM8NoBMKkVnVuL3xwUXbx6GhoKcPuVmeCTI+XN+cnkpJdrr2LhsA05PP+Oubs6P7ufcyF5KLc2sq9tMOFyBSiVHrRKyDO+7t4etW+vFdZpKZfnDH/pmOIJC4DFtFrFdW+AIQmbU6GgItVpGNJoRv0chzwwEV+DTe0YAuP662nlruqXVInCEQxMc6phg/brKi1odXa7YRe6tC5FKZS9yK17KXVV4jcpKHT/7zrfZ/cx+nj5wgGmXmwMdhznQcRiAG6/dzE/++5vi85Kp1GU5qU6d8XOyJ0F+uY13vONqMqkUsVCQAzuP4xlxYA2M4Tx8hp2HH+C5YgtVLUsw2OsYD0U5cKiDxx9/nKmpKQA2btzIddcJw43+4z/+42+mHrwmSr0KOHx4CrPEztXlt3HEt503fv6fefDr/zWvZcnljhKNZdiypWbeVL7GBjOhkBByaDQq4YILp0IwtMsdFcQMrZw1V1QwNh4iFk/T2ekUx70WwrGBeeR8795RHI4QiYTgwBFOaBmKLSpKLNp57q2/J+TzeTpOn+KLP/klJwaEca2Hhg6gU+hpKV/CtXVtTA+oIb9w3ohcLoyFTaeyKBQS0uk8EglkMqBUSSi16aipMeDxJESbaCiYRCGXkVNBfb2J5e023G6hZaK8XA/kMZkUpFIZVCopNXYjTU3FYrbUf//38/h8SdraLLzzXUK2gJC9lGfpsoWnzN13by8joyFqa4yUlmoYdaQZHQ1yvj8ACBf9zhkb8JgjxOnTbiQSYWrS9HQUqQRUaimNjSaOHJnC5YoSi2XIZPOoVTLi8QwaRQUbKmtJZZNMJs4zGOrmt4fu5vHTRWxZtpHFpavwT+eZmIyINt3+fh9ud5z+/gCnT3m44ooyclmIx3MEg0kikZQQyJsFpzOK2x2jsbGI5Sts8/LVCug+6aK724UEsFo1F4lOcwVZnV4uDggouAEdjjBOZ5TFM3kfxzsvDt0tuBXPVZaz9F/+Bd9vfk3ya//CiOYK+t7xUT77+avE95s7/aKu7mquvvpqvv/979PX1yeKUgcOHGDRokXicyKRCCUlJTQ0NNDS0kJLSwutra3U1taSy+nxeOQsX15BTY1JDJG+MEz62WfH6esb53e/i3HzzfXU1Jg4evQod9xxB+fPn5+3rVar5cYbb8Rmm707tBD5uXC87EvJqHoNLw1dJ1yEw3lWt34OZ+huvvOTT2ErlXLrLbeL28wlvm9/Ryudx52EQmn0BiVWmxZ/IIFjNCS2783FXELudkXFVie9Xs4zzzhmLmQleL1x1q+rEIn2XHK+a/cwfn8SqURCKJwilczi9yVYvbqU0lId+RyE/gq5Y5l0lpN7x+jcKYjTtUtLKG8wYSjRXFZuVDAU4H9+9kP+uP1eYnGBjHX1SmisW8UVyz6EUbMM59TsZZBUCnO71iUSoQUjFkujUkuJx4UHlUopkKfGbqKuvoieM24iM0NJxhwppFKw2fQsW1qCRiMjGEqi18vRaOQ8d3CC6ekI1hI1aZNKDC33eOLc/dvT+LxJ2pZYZqbONYmiUyFD7MKJiXv3jtI/EADAbFKh0SoE4aJjEpVKSkWFUIcKhDMSSRGNpBgIJenucpPN5pFJhe+Uy+bpPO5kcjKMRCKZcWbJCIflFOmup6j+elKZMYKxQ5wdepTT5x+kf2wzm656KzX2RkYdISYmI6Io9Kdt54mE07jdcVKpHDKZBKstOufzx8TsqYKjtrJCj9GomNeeV8Czz00wOCh817miFMyKrIXaEolmRCG3sM8unHY597mF7ZKJNAP9fvQ6QZQ6eGiSo0cnWbOmYl6e4vz2QB2f+twn+eg/fYzeIyPs3fMMpwePMuDqwukdp7l5NjfoC1/4Avfddx+tra1iPVi0aBGVlZVks3rGx7MsWVJyyZrQ0+PlqacGmJiYpq7OJJ6377zzTh588EGi0dn9C9Da2srWrVvJZrPIZtqUXqsJf10c7phEp2xkad07OTv+IHd+/FP873f/e17LkssVIxpLz3CE2al8jQ1mJmdcNuvXVV4kLhWCoV2uGMePO9FpFaxZU87YWIhYLE1n5zRjY3M4wozYOZecFzhCPC4cg+PjYeKJLMuWltDSYsHZN0Ze/7fVuhcLBcUWvYjfR1FFJS0bN1Pa0Ii+yIJcoRA4wtFjfOsHP6P3vMARTp3fh05jpql2BWuWtDE+oiGfW7i2CC6oPOlUDoVCSjqdAwlkM6BUSbHZtNTWGvG4CxxByOKRy2UoVVAncoQYiURmhiOA0agglUoLHKHGSFNTkZgt9d//fQSfN0HbkhLe9S7BkVPIXlq6bOEpc/fd28PIaIiyMh2Qx2YVriGOH3cCQjdGoVVwbCwkvJ4EQuEk09MxZFJQqWTU1Bh4+ukRpl0x4jEhmkTgCFkUihramxaRSsfxhnuYdB9n2+6fcOBoCetXX0tV6RV4prmAI/hxu2OzHGFNKdlsnkQiSzCQJBxOk0gInSfTzihud1wwaSy3zctXK6B7xiUucATtRaLTXEFWp1OIAwIKYpLDEWLKGaW5wBFmWu8Kz7XbjRe5FQEOHZrg6NEp1qwpn1cT5rYIlpevZu0Vq/nK5z/L+cFBnnv+CIeOHOPoiS7qa+zic/yBIOtueh21djuN9XU01NXSWFtLZUU5MomOWEROfb3Qfnih4CxXKjGWWDnntNB5Noa9QseHP9BCLjTF4SNH+PKX/xN3aLbOAWg1Gm684QaKimZvMv4t1YPXRKlXEBMTYSb6vLS1CQt87drlqC2buO0LX+Daf/oYP/vsl1DlhLuVc51LBUdJRYWOaCxDV9e0cNezWIPJrJ4nTBTa8IKBBE5njMXNxdx6axPHO51s+9N5XK4YpWVaAgFhGk71zAFWIOc2q05QzCMZzpxx43LFyQN1tSZaWy2Ulmrp7fWhVslxuaOXnU/118SQw803f3svT594Dl84JP67SqKnUr6MasVKNFEZtY02vDInmYs7YEQUphtoNHIMBin+QBLykE7lSWfSyHRxKiwJ3CEfPleeiuJaUqksMhn8qffX3H8mji8YIZPJkMllyOay5PI5SlRVbK2/g+npGEajiuu+83kSyQypuAwFag47izkfbYKEDpJ6qoqqF/zt9+4dZcoZIR5LU12tZ9QR4mS3G6lUQnBmAlJbawnVdqMYZB+OpDDolYTDKTIZUKulNDVZUChkjIyESKUEopXL5ohEcuRykM9nqKyyEAgosRStYk3dlcgMYc77T/Do87vJ5nZw7fK1tJevI5POsW1bP87pGEVmFSqVsN96e71cdVU5w8MhkWwUHF11dUZGHSExG83ljgIegoGEuO4KAh8sbMG12w2iIKtWyTl0UCAsK1aUsmWLbt6d7LnHG8yGsM89ySssFqyf/gwd//lLrnYfx/vQl0m967coKysvem+YGzxeyac+9Sk+9alPkUwmiUQi4jZdXV0kk0l6e3vp7e296DVaW2/lrru+Q02NicrKDI899gkef1xCKpUilUoRjUZxOqfJZNKUlLyTnp5rqKkxodPpREGqtbWVTZs2ccstt7B58+bLyrd6KeNlX8PLh8cbw1KiobnFwubN1axZ8wBf+Npn+OyXPsaIY4h3vuVjjI9HhYycqZj4vEAwSUOj8Ps4p2Ii0QYWdH8Ugm9httXp+98/zslTLoLBJNmccJe2QLQL5Ly5uRirTcfmzdWoVXLc7igul+DMqakx0t5uQ6VWIJmKo1D85aaM5XN5+o9Pc3j7INFgkoqmIiqazJhLtZeVG/XEjl385Nff5fzgKfIzvRQSZOjUrZQVvZUiVSV6hQqNSgHM1oyFYhSlUoFwZNJ5ZNIc+byQ1yeVwtS0C2ORh8raMD6/E5N2HYmERjinqo7wrg/9B76Aj1QqSSqV4pcPZMhmhYvq9cu/wsZ1GwAJ3/reT9h78D6yGTUyqZ6usyWcG24klzNTUlxBQ+1SIiElZlNYFELm5o1FI2mUKhnxRJqJiQhDQwGCQaEetM4Mgii0u3V1u0ilcwQDwsAOvV6O3W4mGkvjdEZRKKRo1HKSyQzBQIrAzH7QamQUFampqlpJaelGfL4A097DdPU8yTd+8I+UWmu55cb3YJWtxu2O8/gTA7imYxQVqYgn0gwOBmcu+PN0nXART2RoajSLLsC6eqMoZpWUaDCbwmIrY0EwKkyunDvBsoDC+d5iUdHTA9lMln37HKxYWSpmsF047bKAuS17FzoPvd44oWAKrzf+gmtOFJZbyvn4lXcy0n0LY2f9TLudPPPrAda8vo7yRjPHjh3D7XZz4MABDhw4cNHrvPOd23jXu9qpqTHxyCM/ZP/+/TzySIZUKkUymcTj8RIMBpBIFFRUPCc+z+fzEY1GMZlMrF27lhtvvJFbbrmFhoaGi95jIbxWE159TE6E6evz0jpD9NauW4Fav4kPffqzvPV9H+RbX/46+awRu904z7lUcJRUVOiJxtLs2TsqEu2F3B8OR4hgICkS7ltvbeL4cSfb/tTPtCtKWZluliNUCxyhsG2B/EajaU6fduN2xVGpZVRW6Fm7roIis5pOrxZiMDERoeiv3NU9PTTAiZ2Pca7jWfJAWcMiFq3diKWqGo3RhFQqZXBomh/+76947sh+wtFZkq6QGinWXUGxbhWKjIIKm5VJxxTZS8Tp5vNCtwQIHEFvkBAIJMnnhSzYbDaBSpmiujqCL+AhGpJQa6sim86Ql2TZc/h77HwuQSgSI5PNkMtlyWSz5PM5zPp6rmq7k+mmKEaDilu/9C6yWQnJhByZVEPPsIVJ72KyaR25jAlrsf2i1s1CCP6UM0IslkarkTEwECCfB5lUwtBwcJYjVBvFIPtwJI1BryASTpHN5FGqpCxfXopCIeXUiIf0zCCnbDZPJJoml4VcPkdlpYVAQIGleB3LFm1ApQsw6jzKzn2PkM9vZ8OVV9NYvZFMJse27f04nVGKilSoVDL8gQS9vT6uurKc4ZHgBRwhTX29idHRkJiN5nIJ1z/BQBKXKyau08J10cIcwSgKsmq1jEOHxhkYCLByRSlbrquZ506ce7zBbE1YqA3Q640TfJGaMNdNtbixkcWNjXzw3e8imUwSTyTE7U739ZHOZOgfGqJ/aOii11nVdhP//PGPYLNpUWrDPPDkt/jjDgnpdJpUKk08mcDt8ZHNZpAq34QvspzVa64ipjPivucPSCQS7GWlLKosY3FJEVU6FXJZhu57/xfv8aXULl9JdVs7Gv18A8xfqx68Jkq9gujvD+AaCVF5RSWf/ezshcBdd36Jz//iLm79t8/yD5vv5NbrNswjzKdPeZgYj2Cz6hh1BOnp8VBTY7wofweY56paPJMX0tExzr59YzinI0TCafR6BSuWl4qTawoo/Lngttq1a5A9ex00NZq59c2LRAHkB4/+mv0PH+EfJ9/FVz/2rld7t70spDMZDnR18eizB7hv5y5yIvGQYFXWssyyCVW2iGhUOJkmEjmRnFwKarUck0nIA0mlssgUeYZyzxBIeInngqQG4jAwu/2K+iX8+9s3iJlRo8cnSGaSC762TCpDKpUyNh4mlQzg9HlIZGZPTNNjg3SNCe0kpfoKvvaOL4i/1/f+cD8Wown/hAbHuTyRcJpMJsfYWIStW4X2nCKzivHxKBaLmqXLSsTcMItFw/LlNorMKjoOTxKPZ7CUaDCZlKTTwt2eyirhbs3oiHAnLZcT3AFjjhBNTWY2bKhi1BFi2qnBFl/L1ebFTKZ7ONx7kqdOPEd9SRPLrGupNNRRXKxmRU0pQ0MBZDIJJrOa9ev16PTyi8L55zrxbFYdJnOYzs5phodD1NUZWbrMyic+vkrcpiDI6rRyzp71izlqKqWUvXtHsZXq0KjlQH5ehhrMdwp6PXGkMkEMLhwLBUjlcixvv42ze6poHj7A8BvfRPk3/gvjDTeI2xRyPnQ6hTiRonDyVqlU81r1NmzYgMPhoKenh76+Pnp7ezl79ixnzgwSDLpRqYrEOxGBQIATJ05ccn0uXqwRt21qauKJJ55g7dq1FBdfPPnpUlkkr+Evi4nxCFKJhJturGPVzF3wb3/1h0glJfzoF9/lmf3HefPWL2C3W8T8p1OnPXSdmGbFylLSqQzHjk2hVEqprjYumJnjcIQJhdJiqHQhU6q/30cikSUSSXH1NXa83vhse+AF7eQFIWvXzkH27nXQ2GjmzW9ehNWm41z/Wf7l7ndj0Jl49xcnXv19ds7PoYf7cY9FsFbraVxto7hCj1r3wrlR4xMOdu15gvsfvocRx+zFnVJRTGXJTVSVbsbvF+7ux+M5tJqceKG7EGRSKCvXztSOPMlkhlD8BL5wB8n0NKm0j9xQmv3HZ5/z7X9fw6JFtZzonOb8qJ+BCzIM5yIeB6lMitcbZ2homlDYKT4WikL/yH7x75/80I/YcOU1wo2GU50cOnIAhbSKibEifB4J2VwOSViCtaSY5cuNmM0qxiei4jXA3CmPFouG5uYi+np9hEJJDAYllZUGPJ4YXm+CpiYzV11VzpkzHs70eMV8FKVKilwmpanJzOZr7MLIcsUWAu6lyDOnCcSf4de//0+0GjO1FTfQ2rQVq03HmjUCa/X7k7S2WmYmRkpYyPk1tyZYbTo6jzvp7Jymq9tFXZ2RVavKRIfUXHdh/4BfzFELBJKEI0kGBvwYTUogP2/bVavL6Ov14HbF0GrllJRo5oWwz07eE7B+XYU46e9S6Ov1sGPHMDKZhI0bq1i1Wseiq8qpXW5l9HQx42f9bPvOCUrrjPzye78nmJvi7Nmz9PX10dfXx+DgIIODY6RSaUAhnuf7+vo4fvz4gu8plea5+eYK8e9f+tKX+PrXv05rayvSC0aHv1YP/jbQPxBgZDTIomVWPvu5QttlJV/8xDf4rx98jff+00d42+v/iZuvXzePMJ8+5WZ8PIzNqmXUEWRiIkxZqW5BIj7XVSXUFCMdHRMiRwiH0+j1SlassM2cH2bblgp/Lritdu4cmlcPCgLI1771BKfO9+EoXs7/rP7PV3enLYBMKsW5w8/RtfsJpgf70RhN1LSvpLShEZO1FJVWRyqd5kDHYXbu2cv2J3eKoewSpJj1i1hUvYVU3DgzqAJisQz5XI6Fu2rz6JRprEU5LKYcZOJoFUk0yjjPBI/hTQQJxGL0TqbY2zn7rCWVpaxbvxo0QifH3c4xcpcIh68wRLi6+ijpgdM48yo8PhfZ3GzPeGAI+oY6ALBZ6vn4+74s/l4/+dVvsJaU4HbqGDwP4XBGiBSJZ7nqSuH8q9HKxRa5gsPK5YrNcAQrRUVqOjomiEbTGPRKamqNxONplAopVXM5QjxFLlvgCGGaFs1whNEQTqcOnWQzbdXL8Ee7OXriKPs79mAvb6WhaiMlpgaKijSsWGFkaDCAVCbFZFaxfl0lOp3ionD+gjMJBBeSyawSOMJIkLpak8ARPjGHI8wIQTqtgrPnfGKOmlIpY+8eB7ZSHWq1bN62c0PXC05BrycuTKTXKsRjYS7mft6F0NfrZceOIaQyKRs3zm+VvZAjbLzqSg48vp3+wWEGRoYZHB5haGSUweEJQuEAWvVsDlwwFKbn7LmL3k9cQ9UKcdumhnp+/cPvsWLZUowG4Tovk0oR9LjwjAzjOD/CqQPPcfqZpwAJxZVVVLcupW75Kqpal6LSXt4whFcar4lSryCamszkSjQEAwn6+jxiJtTw2Qxri26nO7STHz/1MyJ5N9///IfnuGDcCOepPMeOThMIJFGr42zZUnvRexRIhE4rF1udDh+eYnAwgLlITVmpnk2bKrnppllRTHChXIwSq44Vy0vnhVMDyJV5EukEesPljdX+SyGZSvGDe57k7icfxROdJpVLYjNaqbHU4ot6qFa1Y0wtRinRkI1AdM4JXamS0t3tmueSSuaiRHJuwjk30bybWMKLLVnKjQ1vw+OJk8/nmEoMksrOikdKuZJifREamYHG8nqWLhMusA8cGGOt7U00Nli4arUdk15NOi0hFEwx2B/GoFeSTsiprjJgNKr4ZuW/YSmVkZOm8IWCeAJBzo9OcHZ4DHtJJVu2CBlK6UyGb95zD8m0cHddIVVRba6hwlDDhH8x+Xwt73h7q/j5CmIMCGQ1FkuLJ/Zz5wLIpBKuvLKcltYSdu8aJpvNEwqlSMQzVFToZjIHwqTTWRKJLOl0HqVKEJS6cdHf7yeXlmPNtVOlb8fQ5qVz4hCP9N1LW20T72p7E+vWN7N+QwWnT3kYc4QwGpXi97kQc8WjVDLD6EiQbDaH358AJPMCzh97dJCpqQjl5XoGh/xMO4VA6Gg0QzCYpLhYw+at9gWdUU6ncHew4DLMZZnXKjgXglB1C2nvOvy/+Q0Tn/gk0be/nbIvfgGJQiHmfKxeXcr119cuGDI766KyUFNTTXV1NTfddJP4+KFD4zz99AibN1fOaQmsE7Oo/P40ExNxmptLaW+vp7S0FLVaPbsOlUoxI2QhXCqf6jX8ZVFZpSc4Q3j7ej2z7USGm2m25zg78Ct+88DH+eG3fsHKFYUWndl60HnCxfh4GJVKxsqVpRe5pGC2Jmi1chyOMPv2jTE4EMBcpGKRRXNR/s4LwWrVsXx5qeigAigr05JIRVEqXjzz4M+BbzJKx7YBRs94MVk1LNlUgaXagNZ46fydZ/ad4Ac/+zEjY51EYpPIZArqa1ahUExSVrIUZX4TauUiJBKJKEiBIInEYmniidkbFbl8mmRqknjKQSI1RjIzRu/YFO956w9IJ61MTERwBXwEo6fmfQatpgitugR7dTXLlpVTbKqkt9eHPL+ULWu/wtqrGmhrK0epUOJypQgF0zz33BQqlZa6OiMV5XqQvIU73nkTJnMOf9BHIOBnZHSMvvODeHwTbFq/jBXLBVHzdw/v4Uc//474/gadnXJbGzVV7SRTV9DeXjNvnbhdUdFt5HCEiUXT2KuNKBUKXO4oBoOSsjIt0Via5GSUwEy7idsTp9SmIZ8HhVKKWi3H70vS3x+gob5oRqRxcfj5NGrlIqq0i7jxapj27+FAxyMMjj3OTVveQVvbRykyW7BXG0mmMuzdO7pg3tPcz1uoCclUhpHRINlMjqmpCG5XjC1barDadJw67aajY5Lycj3T01EGBwJ4fXFsVh3jYxHi8TRFxep5OV0giF2xmNAyODkVnWkRzOOcis1zohVwoUi1EE6edIl3+ufeCFSq5TRdUUZtu5WzR51Mng+w51f9FJfruOrmG3j3u+9AOpOJdujQOLt3D3LjjQ1iTfjqV7/KRz7yEXy+FBMTcRYtKqGlpZrS0lKKiormiU+rV6++5Od7rR78baCp0YzzrIZgIElfr1fMhBrqz9Nc/X6GnH/ivm3fIZ17D1/9wofnkdmClnH06DThUBqtNn0RWYZZYUmnVYitToc7JhkYCFA0wxE2bqrk5ptns8guJc5brVqWL7fNC6cGQJonmclQXPzSBkz8uQi6nJzcs4vTe3eTiIQpqa6h7ZrrsNpr0BVZyAE/+eWjPPjIn/CHpsjmUhSZSrFXNBAI+SjSrkRFKzKphnCQeYnkCoWU7pPT6BUJzKYkRnUCpdxPPOXCH/fiDAY50h+mutjM269cTTytIJ6W0zs5TmYu11AoMRuKUCqM1LeuYP37P8KpM0H27nXQWmdlcZOVK6+0Y9AqSMbThHxhpsb8GNQQyqUo1mfQ5JN88ubricXDRGIxoqkUsVSGYCqDJ5KgpqKMq1ZoKClRE08k+OEvfiVOS5fLNJSV1GMtqiMUbaW8vJHWNuH8VQjLL+SKORwhotG5HMFPPidMytuypYb77u0hk80TCiVJxLNUVOjQaM0iR4gnMgJHUMrmcAQf2YwCveIKLBVrsJRP0je4n33Hfk5LUyu3tt7OunXNrF9fyelTbsbGQhgNKoEjvMj0u1Qqy+hIiEw2h88n8LK5AeePPTbA1FRU4AiDfpzOGKMzHCEUTFJsUXPttXULOqOmnFHKy3SiyzCbzc9rFZyLhYSqueieVw9efLBAZXk5leXlXLNh9q5MX6+Xru5pli0tEfdLQ20Nv/rB9wCIRrP4fCmqq4tY1FiBpbh4Xi6VRq3m6vXzM3jkSiWWiiosFVWcGC3htGuKZc0K2puy+KcmOdtxgJNP70AilVJSXUN12zJq21dS1dyGYg7/eDXxmij1CqKy0sA58pw44WJ4OIRGI+zetWtnxhln3suu07u4++mHONJ7mn9/9z9hsxRTUaHHZFaj08oxGOR4vUIIaSEDZy6Zt1l12Kw6cdrZ3Ndfu7Z83oSaAuYS9IF+P4cPT4nPcTqj1NXNmXTgjoo5DtoXuTP9l0A8mWTP0aP86rFHOXjqFOkZVckqa6BGfQX6XAnZWBa7RIYkLRHYBvOnXwAoFRJiM3X3TGIHodwUqfzFhTiQknH725p5Zu8Ivb0+rqy4DmuxgbKiUt5001KuXF3LM8+McuKEi8ZG84wAlCeXA7upno3tNdz6+kXi7yOVaai3aygr02Eyq0Qx8ZZlK4UwwpMu1rcvuSgvqYBEKsWHb72VUwMDHO3tI5aIM+Q7z5DvPAdHn+b4xCG+90//PC9HqfBbX+iG2Ly5mtBMi5/dbhBadtRyenrdBPxJEokMGzZW8fpbGkklMxw+PIXNphGn6m3ZUkMmnaerexqPO0YuB2saVvGNz72d7XsP88fnHuELd9/FQx2P8ZE33E7eb6O3Rxh1DpJ5Y+xBCDIv3F2uqTFx7NgU/kCSqko9K1fagDznzvoEu647yshIkGwuRzabRSGXUVtnxGxW4/PF0enlNDWZRSdUd5dLdAkUnFGhUFIUpxY3F6PTyhc8xgpQWCyUfPrTBB95hMCDDxLvOkHVj388L+djoQv80dEgv/3tGWFkOguPZq2qMrBmTQW1tbMuJ5PJxNatWwFh0t/Zs5PI5RXU1MzmicwXuy5trb1UPtVr+MvD64kRjKZxu2JiWPbadeWMjGygqKiCvuGf8K4PbeVTH/lP3nzLWwAJK1fZqCjXo1BI0OmU6A1yzGbVvFamAgoumM6ZyS92uxG1Ss7adQvXA5jN3wkEk4RCwoS2qkrdPHdNAYWW5hdzmr5cRINJjj4xTN/BSdQGJYuvKqOkWo++WI1MdvGNkaGRAR5+5H62P/EQ027BXSSVaKiyfJBi4zLIq2kqSyKVXnq4gEQC6YzwfUKxbtzBx0mkJsmTvWhbmdLLVWtWcuDAGP5gO0qFluZFjbzpDVeyfn0rzz07yYlOFytX2Sg2WWcEFT1TU+UUmetpX9LIqtVldB534nH5kMmULGmrwWhUUFGuJxbL8MZb2vF44pw86aK9fdULiiBtzUt549a3crq3m6GRAcJRB+FhB+eHd7LnoAx/4Cd86hM3zctROntBTdBq5TQ1ZUimMmLLnL1GWDe2Ug3794/h8ybQ6ZW8//1tbNlSKzrwbKUacYpSe7uNM2c8DA8HkUolyGVFfPi9X+ZzH/8X/vfun/LUvgd4at8fePfb7uTWre9j/+MuRkdDTExEKSnRzFvHfb0eTp50oVLLiUUzOMbCQk3wJ6iqMlBaqiMUSok3XYaHBfIgAXR6pTgsRKuREwjqiUbStLQI59dkKiNc69Qb5+WpFbK2ysoFV8mF7YKXi7ktfws9LxBI0DMWJJRM01JrIhvN8PRveunYNsjSaypZsqmSqioDV11VTVXV7LFXmIS0Y8cQ/f2TaDQVtLbOigmv1YO/L1RUCr9t5wnB7VGYurl2Jvh/SetHOXD0Ee7f/ls6T3bzyX/4FMVF5hmOoEKnVWA0KGY4glbMwJlL5gu5NoVJYHNff+26innukwLmEvSBAT+HOybF5ywU8pxJC+dOo/HFB7j8ucjncoycPEHXU08y3HUchUpFeeNibHUNFJWVg1LFs4ef5/cPb+N4VzeZmSJrVLdSor8KlbyEfDaDViefd3NDRg6zPkmJPo5FH8dmTGDSJJBKcvzm4HEcvgDR5MU5ijl5MYvf8gUe3j7Ic8eclJbKWbKsFovFzrvfvZabblrCPfecYdeuEVavLsWXK0FZEsWTSpHXbOKq65bwuc+tEac5yy0SLKY8DQ1mbDYtRqOcgC9GRSTO2Z4prmjXUG6O43EM45ucIOCcIuzzcPKx+zgtl6MwFfHGqzcw5vVx5twAiWSc8ekexqd76Dr7BOdHD/LFT39+Xo7SbD2YH66/+ZpqQuEkRoPwuxbWQE+vB78/STyRYePGKm65pYFUKsvhjklspVqxHmzZUkMmk6eraxqPJ0Yum6e9ZR3/8YX38tiOfTz+9MN843/+gx37lvCe295NJGCjt9dLJiMorlsuOD/NdRzV1oY5dtSJPyDUg1UrSwGhzU7gCDGBI2TzZDJZFAopdXWCa9jnS6DXK+ZldXV3u0SnYMEZFQonRXGqubkYnVax4DH2Ypjb8ncpoW1u5MJC21hKNCxaVIytVC/+m8loFIWr48ed+N0+9OpiKsrmZ9EtFMJ+qc/YPuNOy+fzpJMJgs4p3I4R/FOTnNn3FCd2PIpUJsNaU0/N0uUsXrcRW239JV/3z8VrotQrDgkSCVgsGoxGJcFAgooKPVdfU00qmaGm5u10nGnmwWP388Hv/xuvX/oWbl57FdV2I2fP+gRxw26kqso4b5T9XEeJzTo/L8dm1dHYVITDEcbljs4TngqWTBDcVQf2j3HqlBuvN059vZmJyQiHD0/R2FTEQL+fbdv7GZu56Mvn/jpBhrFEgqePHuWeHU+y/8QJscgUoJYYscqb0MuskAeZZHYZ5/M5YvmA4IDKuojkPOQlOTYZ3o7JJCeVypBJRknlY0glEkpNpTTb6zErbUjiJla3NWK3G2hqsuAPJFlZfjWWYg2Lm4vFoPqly6yYzGqCgYTYSrl5czWFcHK42NFW+J3miondXS66uqeJRjKXFKUMWi1f//BHAMhkszx7/Ay7Ozo50d9D12APbTWNonCDYpJ79jzE1UvXUlVVLQqYBWzZomP79n727B0lFEpz661NrFtXxYMP9vHUU6Po9QoiYWECXiqZEYPwGxuLxM+v1ytRqWRUVBjw+xN4PAnOnPZgyFXy33d+iYnQMHfd/zs+fNd/UqIp46rqa2mpaGFm3N88zL2bMDYewuWKoVLLMBiVVFTosZRoAIHwRCIpamtN1NUZGR4OkUplsduLqKszEQol8XoTxOLC9KjuLhddXdOsWFEqCnW5bOECSsLwcJD16yuIxjLzjrGFIJXLKXrrW1EvWoT//vsZfuObWPK1r7H+K5d2KfX0ePF4EpSUaC45qvvCyRYX4sKQwbnP27lzmGPHpnjf+5ZckoisX191ScHsckjMa3hlMDEeIRLJYDQpsdcImTnJVAaVUs473tmMY7SCFRPNPP709/j2/3yWg88fYHHNu2lrq2R4eJJQKM2ixcVYS9QEAkm8XqE9uNCKNTeg+UIRuhB8XmhtKohUhXZvYbs8R49O4vMlONktQyKRUFNjZMP6SnG7SEyY6JjL58nn85c1NexykE5m6d7j4MTuUSQSCXXtJZTWmTCUqJEr5udG9Q+e49Edf2LbY3/E6Zqc95gEGXpNG0ZtO7mccDE9V5DKZKMkUg7RARVPjVJRfBu24hWoVJBIS4mnxgAw6E1YzA1UlDVhMdcjl5azdvWV6HUqios0LGpsxmZdOdOiJdSDZUutmE1q0Yl09qyPigoDt94q7N8LfxetVi465uYKRl3dwnkrEs28oCh1w7VbueFaQbw+e26EvfueY2zqFB1HD+D1+SkprubUaQ9mU5gjJ7aBREJL4zXz2vgK6DzuxOmMMzExzNatdXz2c1fgdkWJRTMcOTKFQiklFJod6uH1xam268VJfgcPTZLN5WloLCLgT5JMZtFq5YRDsKrtPbzhxvfx7PMPcN8Dd3P3736JvewGmmreiExmwuGY70o6ORNa29hUxIrlNjo6JhgfDyOVSli10saqVWU4HELO1N69o0TCKZpbLGJNUChl+H1J1m6twGrTMTwcJB4TakJvr4+hoQAmswqVUi7mqc0VqwrC4VxH1eXixdxUYoutWUnzahsWi5bpkSDjvT6OPDbEsSdH0JRpGY4Ix/eF5+bX6sH/LYgcwaAkGEjOcoRUlpqa93O0q5Xdz97LP3/tU1x9xTvZvPEqqquNnD3nJZvLY7cbqa42zBtVfyEZnSs42GxaGhuLcDiE66y5wlOReS5HUHBg/xgnT7nxehPUN5gEjtAxSWNjEQMDfrZt6ycQEMh0/hKtaK8EQm4XZ/bv4cy+pwl73RitNhZdtQFbbT1StYaOE108+KOfc+R457w2NwClrAiTphm1Qrgel6BAp0xRaophNYaRS6cJxT1MBUOcHA8Ccm5ZvgV3opjJgJ5hz3ES6RQSiZSSEjstLctQKu34/UWsX7+SFWubGRiX0t2ToKzsDXziE6vnTcHcvNmOzabD5Ypy+PAkDQ1m7rijFcizebMQcl04lk0mJcFgSjwGd+wY4sgxD0NDAc6f93NupIhvfGMjy2/YSj6XI5VIEA14mTh3lslzvTgHzrOxzEzOakCypInptAJPLsepgRG6e06yqH6xKNzkJFEe2/0wV63aRHV1zbxgbhBEIZEjhFMzHKGSBx88y+7dIxgMQu6UTqsglcqSSGaJRtM0NRaJ60yvVwgcodyAP5DA6xU4gkZRz5c//U2m3Of42d1385l//1fMhiqWNt5Mg32222Mu5nGEsRDTrihqtRyDQTGHI8DwSJBwOC1whFoTwyNBUskcdruRuloTofAMR4hlcDhCdHe7OHHCxcqVNlGoy2bzM2KchOGRIOvXVRKNpecdY5eLF3NSORwhQqHUjEFgYSfVXPFwofdeaFpn4XmdndP09/sv6T5b6DNKJBKUag15bRkxrZbGa67EbJDgn5rA4xghMO2ka9djJCJhrv/QP73wDvgz8Joo9QqjscGEqq4InVZO90kXoVAKlzvGuXN+vJ44r3tdHR991w201ddx9777eKDzt/R7z/D2dW9FllejVgsTelpbi1Gq5NjthnmOkg0bq0SxwWbV0dExzi9/cQqFQkI2B0qFjGAwyfi4ICxVVOo4d86HRi18nra2YrzeOEqVjFg8jaVYTSqdZe/eUYYGg0yMR0klhRN87lW6M74QQtEou488z2PPPsdTR48QT87PZpKjxCpvxCZfjFlaeRExGk0dw5sdIZLzkGN+W5YECXJFjrbWEpYts1Ly7BtZ3l6KPG2m70yQ9uVWmpqK2b/PQTwkXECu31BBtd0wT1QqoLDvXe6o2F52oahR+PtcIRHmu5cKrW0Wy+XZIuUyGfmIGWt2Cf/6li2s31jO1HSIofNRhoeDHDx/kEc69/DIoT18f3sp79m6lfdtfR1kVeLnWCi09fbbW7hms11U7qMxwSXV2+elyKxi1epy8fMXnl9TY8Bq1SKTSQAJZWU6QsEk+VAJtza/j3plHwdH9vDE+fvp8TZgb34PLrd13mTBuXcTzp71MzUVQSGXMTkhTOvYsqUGlztKJJKitEzLli01eD1xenq9VFTqsVjUOJ1RpDLI5vKiA2zMEcZoUmKxaC7a5489OsixY1M4HCFWrLCJOVNzcaEADKBZtgxFZSW+e+5h8nOfY/rp/Qxs+SBt7WXU1JjmXdzPJRCXutC/FMmY+zpzL3IKMJmUHDjgwOEIMTgY5N57t4qPXU5uyIuJYa/hlUVllZ58Lo+hSMXJmXrgGA2RzQpT0EYdIRobzXzkvf/FtP85fnHPt+g+fYit8U+hVy8jEc9QatPS0GgWXTV2u+GiDJu5YsOu3SOcOulCoZRhKdYQDCUZHxPqwbp1VRzumGJwZlpbRYWB1lYLDkeYaDRFOJQmncly6rSHvXtHGRkOIlMUgvtfGQKSTec489wEnTtHSMYyVDSZKW80YbJpUc44B/L5PD1nT7FrzxPs3vskg8P9SCUycvlZ8qFR1mPWrcGkuwK5bP4xnEhNMB14lETKQTrr40LkJONYStayalUZU1N6Xl9Uz1vedA3P7g9x8qSH5csFMtPd7WZqMsGWLaVs3Fg5T1Aq4EKhB1jQaTPXuXTh43a7AcfYS6sHANGwGoVkGcubV/HZj/0HgaCPUFCBYyzE8WOT3P/4DwlHfMjlcq7deAPvfvudrL9yEx53TBR4stkcE5MRTp500dJagtWm48MfWU5jk5kTnS6MRsExPXfy3e23C1OgxHpQa8BkVCGTScT9EwgKLRBLF78T6S0bOXziIc4NP8Ho1F7k2vexWf4hOo87Z/dpjXBxXWjtc4yF6T7pQiIRwoQLmJyKEAqlhXP3jNBbVakjGEiK7282qchlZ2uCY2y2JsytB3v3jjIxGWHfvjGmpwXndGEiZQEXir8L4cJtXkgwLrxGeYOZsnoTQVccR4+XqaEg1lSOYJeHfpuO+uVWZHLpCwpHJpMSny/OwYNj3H33Gf7hH5byxS8Kd9Jfqwd/m2hoMFNcoUOnVVzEETyeGK97XT0fet8tLG5o5OGdv2LHsz9l3HWSm695OxLUaDRyNBoFra0WlEoZdrtxwQybwn8dHRP88pczHCGbFzhCKMnYmHBer6jUc+6cH7VaRvdJF61tFrzehMARYmksFs0sRxgKMjERITvjbMnlLnaW/jlIp5IMHHueM888haPnFHKFgtL6RhpWrUFhNvP8qR7+55Ef8+zh50ml5ruYZFI1RnUzRk0rWkUlZm2KMpOPMlOUUlOUQ/29nBx3MxUIkblgooUEOX86s4o33rqU919bQ/ynxVx3XRORiIVnn3Vx7bV2rriinPvu62F6WjhubrttESUlGiB/0XVcISR6dDSIzbbwsVv4+4XHduG1li+3sm1bP3K5lJ4eLzU1JiRSKSqtFpVWS3FFNUs3X082kybi8+E4c5LDuw6QHuvHJomzpK2Sf7zhKoyVi/DG1AyPBDnS/TT7nt/Bzmd28Kv7K3nbrW/k9je9gUxKKQqaC4V43357M9dcM5cjpDncMUlvr8ARVq8uE8WPwvNraw1YrRqkM27n8jIdoWCKbLKCzVd8lDLTabrP7eS5rl8yMtVCY/MHcbms8yYLzuMI53xMTUVRKGRMTkTncIQY4bBQD2Y5goeKSh0Wi5opZxSZTFj7BRFobCyMaR5HmBV4HntsgGPHnCJHKORMzcXluJEu3Gbu3y8UjBfCpUSnua8zd1pnATqtgjNn3LjdcZxTMT79mdnMrb5erzgJ8VKi2VwxrHR1GWUNTZQ1NJHL5QhOO1FqXt2sqddEqVcYRcUaSmvKON7pFMNnl7fb6Dg0yfR0lGefneCOO0yYtCa+95F/Y9uBffzu2T/yte3nuPOG2zCZm1DIZShVctGZU7hwshSr500nA9i1a4TeXg9Go5KyMj3hiDCGVKWSU12tZ+lSK9FIhlg8TSiUoqmpmE99epV4cmm7qgKXO8q0M4ZCIaGpyYzHqWd08NW9CwLgDQZ5/OBz3LdzJ53nzpHL5Wgsr2NZyXokgUp643tQSjSUyhdjlJYTzweI5DxMZ84SzflYqX4rEolwwktKA4TSQiuHXKqgRFNGsaaU+rIaygzlxH0qiou13HRTg5i31dfnQSkXfh9LiYYVK0op3Nm+0GW0EF5sm7mtdIXt5j5n/YZKcUre5SMv5s2olUrqqkvwujJkc3kWV9fxVsP1PHWsA8f0NF+/+27++3e/Y9PSK1lZcRU3bVrJ+vUVYuj4hd9FGD0sXEivXVtOIiGQi8Lnc7mjMy4pPRs2VInuvLkZTl5fHK8vTlN5I5WmGgbcZzk8vpeP/+9X2Hx4LW2mDRRpLZjManE/T05GaG4uorqQKzUzla9wd7kgSNmsOvbuHWVyIkL7ciulpVoOHxbCbW1WHQMDPn75i1OsWmXjui21FALP5+5zi0WNQiElGEwyMBBg87X2i37DhX43ALnFQsknP0nosccIP7WDoo5Ozn3sq9S8b+O8i/utW+tf9AL/UpMtXowkBIMpxseFsNIjR6bmPXY5uSELiWEF0nPhHbvX8OejxKLFbFLTd94n1oPCtLEHHujDMSZk/Fx1VTk3bn4rK5et5z/v+lceeuLLtC66miWN7yKbNWA2qec5McSaYFGLAc1Wm46DhybYvXuYdDqHQa8kEi7UAxnVdsEGvnad0LptK9XgnIrS2lLCTTfWsXfvKE5njLIyLaFQkmwmJ4y4bijn0Mk/vx5ksznOHXZy9IlhosEkZfUmyhtMFJXrUOsU5HI5Tpw8xsOP/IHdzzyJP+BDo9bRumgTi6pvJhZP4Ao8gll3FUbtaiQSSKTG8ISeJpEaw6hdSbFh48y7SQjHu8X31qpLMRtqsZU0sWHtauKRMrxeKVqNnC9+8Vpxu+XLPUgkknmh1oWWrMtxzrzYdhdmG83dfsP6SuzVL60e2O0G+vt9YlvbqtXVgDC9MZ/PcPOW99J7fi9n+k7x1L4dPLVvBw11TVyz7jbKSzbSvqyKrVvrZtoG59eEuQ4w4KLJd7Oh6cVUVRtoXlw8m5lm02E2CYMr3J4Y5DVcfdX7MCg3MuJ8lCf3/C+HO7dx9ZXvZ+XS68nnZZSVC/ticipCSYkPSJtCAAEAAElEQVSGDeuF1pFCQH9h35WV61i1qlQUlbq73SxfbmXtunIOd0yRTGUoMqsxGhVIZRLuvbeXarue9mVWmhcXzdvn7e02Jiai+AMJjh6ZorhYw7XX2uf9hhf+Zpfzu77Q7zwXEokEc6kWc6mWRVeWMtbrY2ogyFO/6kGlldN0RSl+aZ7OMx7g4poQDKYoLtYwMRHB70/ywAPnRFHqtXrwt4niIg0NbWUcP+4U3RLL220cOjTB9HSM556doPYOEyajha/+89d5fPcOHnv6fobHzvCOW9+D2dSITC5HqZSJpHS2HmjmTScD2LVrmJ4eL0ajkvIyPeFIlNmaYGDpEivRaJpYrMARiuZzhNYSXO4YzjkcId6nBC9ijtGfg1w2y1jPac52HOD8kUOkYjGKK6poXrcJuamIg92nePR7P6Kn7yy5fJ46exOLqreQjFQz5n0UpdyMSdNKpbkYtWKSbL6XSOJZnKEot65cSzCuZsJv4PRkBmcgAAhOWpOpDrW6hurqxZjN9TgcOhRKOW95y2Le8pYvAoKwq1Sque66GqqqDNx4Yx0FEaqmxsT73vfyrvMKWOh6b+5zVq8uE0WrS0EmV2CylbL02hswNlzJb3/dScQ5yOKSKdL+IUY7diORK9FKyllUXYladwPPHj7I2MQE3/nxT/mfX/yKtas2sLh2A9devfKSId42m3aGIwiCyNp1FSSS2RmOIAgnLlcMlUpOZeUMR5hx583NcPL5Evj9SersrZSWNDE6cYozgzv50rc/x8b9V1NtvQa9tljMirJZtQJHWFxMdbVByJUaLXAEwXFUEKRsNu0MR4jOcAQdhzsmaW2zYLNq6R/w88tfnmLlShvXbakRP/Ncx5jFokYhlxIMCPmJ115rv0g4ejEX00LbzP37XBHvUrjQxXa57x2NpfF6EsTjGc6dn39Drvuki5Pdguh3KVFqITGsIIQpSRFPJTE1Bl+1mvB/UpT6yU9+wl133YXT6aS9vZ0f/ehHrFmz5i/2/n19Hp7ZO0IkkmHpTbW0tJTwutfVsWevg5oaA4cOTTIw4Adgdf1qos4iTvv38cNHf0O5qYK3rX8LdnuL+FpjjhB6nYKSEjVdXS7m5vPo9XKUSjk2m5bXv76ew4enGB0NIZXmyeby4nQxlzsqBk8HA4mZsZuZmcwdHTsmhlEq5Vx9dTl9Twl3anOvQvvehMvFPTt38PAzzzAwPj7vMQlSyoI3IJcIYW1V8mW4sgMMpg6RyIcueq28KowiZyKTgQZjO++/7jrefONqfE45j2zvJxRMsWFtpRDAN6MOz8WFk9cuzDz6c3Fh28aFuBzhq4CCe6eQP7bQVEW7vRGb9WbiySSPPvssv3j0EY739bHnxEGe6TrE6278FS0tdRe1ChbWRsHBVPhc69ZV0dcnOCZq7EZGHSFGZnIQBgeDYovo3O8w5giRSmZpaBBEpmf2qtHnqskVOTg8upfngke5efUW3lxyJw5HmK6uafJ5xO/kcITFtanTykXyUXiPGruRyYmo+Hnc7hj+gI6mJh2nT3vwB5Ko1XKuvqaac2d9mMyCQ6Tw/Zqbi4lE0vT3+ykr0y6YK1VwW3V3ucQJfQVIZTLMt96KS12KZvd2TN/7OAHTV2hbKRDbF7p4uBxcykE19/HXv76BI0emeM97WuY9djm5IQtdJBUujORyidjb/3+JhPy168FAv4+ubhf5fI5IVHBxrlpdhtsdZe9eB7l8nqPHpgFoarKyafUXKDE9Q8/g7zk3+DHWX3Ebb3zTv4qv19ExTm+fj7IyDeXlerpOzNYErzeBQi7FoFey+dpqxhwRRh0hpFIJuazw2xYm7RUyfJIpocWpvd1GU1Nmpi1rAqlMwqrVpRRbhDumLzdTKp/L0398miOPDxNyx7HVGmhabaOoXIdMBQef38/vH7ybjiMHSabmj1jWqzaTDL4BpRQkqhA6dQuRRA+e0G5y+fluWoVcj1ZzDYlEFp26jJb6O3jbWzdTW93Mzp2ThIIpNm6s5O3vaBW/+4VCzIVtWC8WcP1S8UI14XKFL5jvzJl7M6GAZUtLMJtU2O0rsdq+wPmBs9z/0G/502MPMDjcz+DwN7jhmrdxy+u/jdWmuygYveCimoubbm7gppsb6Ov18KtfnSIeS6NSybBahYypY8ecvP719eJ3KAhmsZiCsjIt7e02IpEMatX72LrlXTimt7Ft5zc5ceZPvPft/wIso+uEi3weUQyzVxtoXlxELJZBq5WLEyrnikqRaAaVWk5vrw+3Wxh+oVLKyWbh1Gk3zqkoXl+cttYSMS/T7Ypy6rRQE9raiuk84aLEosZWqpsn8ha+h2MsTFe3C61WvuCa0GrlyGSI++zFav9CUOuUNF1RRv0KG57xCJPn/Zx93kkmmcVuVKCOpIn4k+iLZltTC3VCpZKwe/cob3/7YvGx1+rBpfHXrgl9vV6eeWaUSCTN0qV1tLRaeN3r6tm714G9xsChjgkG+gMAtLdsJOi1MTS5m1/87keUlth5/ZZ3znKEXi9jYyH0egUWi5oTXUItKeTz6PUKVEoZpTYtr7+lnsMdkzM1AbLZvNjG43LFxODpYCA5cx2WFjN3dkwMoVDIuXpTGf2jgnvy5YpSuVyWybN9nD38LOefP0g8FEJrLqKiqZm8zsiuI8d5+uEf4hifP+1VIlGgSr0BaVaKvSiGRdeEJzKMN7KL54fjF73Pzw8txh+2EIwpMJmL+Jd/aaShoY3RUQXDwyEcjjDXXWfnuutqRFfhXFzY9vpiItRLxYtd772YqDUXBTH5uhsXEQwKA3gqylQ4zpzi6JM7mDp3miZJklXNVXzstm/9P/bOO76NwnzjX+1ly7Jly1vOsBPbIbETZzqDkVBC2KPs1RZa2tJSKB10QCmlLRRaRsuvpQXa0hZK2YWwEkaGE7I8kthJ7DixHC/JsiVZ01q/P053ljySQFNKqZ/PJxjL0t3pdLr33uee93nY09XLX557gT0t+3h/yzts+uB9zj3775TPzBtDWIjHBiAl91ksemprC2lpdgo9QomRjg6hR9BoFEKPkBgRTSZPOjs9hEIRSkszKS5O5513tGiU01DqD9B04C227NjEacvWYM7+Ijabh11Sj6CRyC3x2DToVYkeYURxVFJipLvLK22PwxHA5QpRVpbJHrFH0Cg4+ZRi9u0bIMMknE/F96fVKskvECYxykozx/WVEtVWDQ12KaFvNAx6lZTgJ74m+edHxbGWY7UaWbAgn/0HBjjttOKUvyUrzybCeGSYSIQp436iMQWmhHLv34FPHSn197//nVtvvZXf/va3LFq0iAcffJAzzjiD/fv3Y7FM/EGcSDQ02tm3fxAZ0GHzUFsLq1dPJzvHwP59A+j1qhS1SkvzADWcxRlzV7J2zys8uPYRth95n29deRW766CpqT8hOzcSj4fxeEJSI33OOaUUW42CHK8im9KyTDZvEoxrxeXX1R1hy5Ye5HI4eNBFZqaO884vlZRYu5sc+P1h8vPTgDjaeAazp8wkP/tfvyD3B4Ns3LmXx59bx/bWRpyB3jHPkaNELdMjQ8ZwzI9SIZBSvvgA/dGD0vM0snTSFdkUZhYyo3AKKxfOIyvDwM6ddqzWMs5YPVUYq9P6WLigQNoHo8mnjwsfhXSayHRbVO8ke1tNtB6dRsNp1bWUZs3GFe7hH++9iVwuY27lVOk5ja2tzCktRSaTSeSQyxWiocHBmjUjxJXIrLcfdOPxCJ4hNTW5ifExFyA0uc7+AK2tA5RYjZL6y5JjwKBXkpWlx2wu47pzPsOTr7/CWw1vUXfLNi5fdiEzLXMIDwveW+J7lCugrzdANBpjzZqpKZ5qgUCEvDyDlAgISEq3RYsKsNk8LFmSn9IUjCa/lCoZw8NRlCr5uL5SlhwDwVCYtrZBDGnKcY8dj2Ua7XM+S03Xe/Tc/j2M55zD6p/cjVyj+Zfit491EVJSkpEyspeMiXxDjoXxvA0+Lfgk1IOWFidtrYPIFQIxlGYQGtvVZ04nJ8fAxo1dRKMxqqosZGfryC9Ix+tdztTiJTi9b7Fh69NccPVrXHvFDXzuyi/yxhuH2b9/gJkzhZCM3h4/Hk+InTt6qazMkuLrKyqzcdh9bNrcLalNRNTVHeHVV9sBaNrdjyVHL/kkOew+nM4ger2KUCiGzRZgev5JGDPShAm+47SUikVjtO2ys2PtYQZ7/GQXpTH71EJCSg/Pr3ueV99cS3vHdqKx4KhXylAqjMhlWiLRIelRhVzDoHcD4hihTKZCqyoiM2MqM0srMaWXcdEF8wASnlmfZ/XpwjnP6QRnf4CTKrPxDgTJzdRx6pIiIqEoh3f3EwlFCYeiDIeiREJRotE4sWiMWDROLBonHotLpJ5MmFhGJhP8I2UyGQqVHKVKjkKtQKWSo1QrUOsUaAwqNHolGr3wMztHf1zE07FGxpKVODXz88YdFUx+LNNYzDmnf4NrL/sGG7e+yl+efZLv3HqL9Jzu3i40ag3mrGxp2QoF9Cadh0UyprHRzvbtPYSHo5jNelauLGZoaJjuLi9b6nqorS2SSB+NVsnsOdnMmZ1DjsXA5ZeV09hox1pipK+vkuK8NXzQ8Afu+sUXqKlaxYpF16PT5EhJkuJ2RKNC8EooGJaIH3H/zK22sG/fAGazTjr2sxNeI2azhr17B5g1K4ucJC9Om22I+l1CTZDLZQx5hpk+LQNrseDtmZzCl2MxEAqGaWsdlL67oyGm+Ymk1+j9n0yCHovoVCjl5E4xYilJJ+gN09Pqoq/Dw773umh5p4ucknRmLMiltMYi1Ys1a6Zx//2py5msB+Pjk1ATGhrt7NuX6BE6PNTWCml4OTmCabTBoEpRq7S0OFEpLmbFojN4f/tzPP73n9NyaB1f+fzn+GBznKbG/oRpcwbxOHiGQlIjfc7ZpRQXG6WRndLSTDZv7hrVI3Sxpa4buVyW6BG0Qo8wP6lHCETIz0/cDNeYmJqdiSUn57jfc9DnpaOpnoM7t3GofgdB7xC6dCPG/CKCphhPv9NE41/fxuPrG/NauUyFRqlDqYhzWnkLU7JlyOXwcn0PbfaupOdlIJcVYM6eQWnZLNas+QxZWUbeeOMws2Yt5otfrAIE4nXu3DB79vRL12n/iVTKj0I6TaRcFMnkJUsKUqwfptcsZHrNQnwuFy2b3mXPe2+z75030Wn13HT2RcSuzeKN994kzWCgfObIPti7bz+VM2ckegSBHHK7QzQ02FmzZppExEg9Qrsbt1voEebPF3qEtoRNQG1tYaJHGKSkxEhxsVEieQx6FVlZOszmMq64+ByefuEfvFf3Ort2b+bc0y+nKLea4eEYBr1KIkcUChm9vX5i0Rhr1kxLGY8L+CPk5hmkREBI6hEWJ3qE2oIUcieZ/FIk6sG0aRmsXFWSEhggkjUWi55gMEJbqwuDYXxSyucPpyT4JZM9xzNGNxEmUlAl/z15ZC8Zx/K6mgjivlKjJzA8dlz1ROJTR0r98pe/5IYbbuBzn/scAL/97W957bXXeOKJJ/jud797jFefGFRXWXA4AtL/ixhtTg6CEsrjCTHoCpLtM/H107+OR9bB0xv+yfnf+TaFpmJyZbMwxaskn6lOm4d337Exb56FlSunAMKJAQT1zwUXlKVsz5YtPezd2w+yOMFADLVGPmoMUIZOp2Tq1Axmz8nmOi4k2bT7eBCLxeh1OmnpOMy2vc28uH4zB7s7CSfuZivRkKUoIV0WZyieWnRiRCQlVCDuQo8JtVpGnmI6pnQDU/OsqMOZ5GZnMr8mj6XLClNIGHEcT4QlxzBmH3zSMdHImIjkY+dYBFby8maW5/O77343ZfSmtbOTk7/yZWZPncHqWWdx6oIq5s7NZevWbrq6BT8nUV0XCcdJT1eTna2lp8dLJBInlDAQPNI1xN5mB88+20I0FpdkoeKdexCOR5H4aW93Uyibx50XLeTtltf59WtPMCWnhEsXfxaf3yIplDqPeBgYCOD1haVt2d3Uz3vv2ZDJZMyda5HeezJhdPXVs1L2gUhmuV0hpk83AeB2BSlJnGDFQpW8f0WMvqMwXtCA25XL4eKLqRhowLN2LYGmJooefph16xwTjk0cj7FsR4ebd9/tRDTFPNF3JEZvw4e5MPpvwyehHlRUmIkrZJhMGlyuUAo5ZLWms3x5YQr5UFRoYOuWbiKRGAWFZ/PYL6/l3bq/8fs//YYnnvo/SgpOQxFdhEppZs7sHETzfofdT01NHlVVFhrFelA5th4AbKnroSORVCOmrCY3+7FonLJSE1VVFrp7MrjlwoexlByf6iMaibF/ay91r7TQ1t6GO9ZFc2cD9X/ZzpDPDgh313XqKWQaTqN/aC0C0yWeo+JEom7AjTIsjByqlDK0WgPFORdiycnHWjiTaMRMQUE6Z505jSnFGYT8YUL+CCF/hItXTiHoj3Dogz5C/gjGQARtVIZtcy82Um+MyOSgVCkEYkktkEtyhRy5Qpb4f5nwuzyR7hoTRhnjCCqwWCxOLBIjPBwl6AsTCceIhmNEhqOS98rIumTo0lXo09XoTWrSTBoMJi3GbC0a/Uja7bFGxpLrwfF4HonLKy/P4prLr+fqy76Q4sv481/dxXsb3+aCs75AXtZnyMszUT4zi66uQyl+Uw67j3Akjk6rJDwcZWhomCNdPioqzMSicfr6vNxxxybKykz09fqJx+G00wRjXzHV7rLLK9m5o5dt27rxuLO46sJf0du/hT8+cz9Ne69l+aIrmTXrK5ROF3yljnR6KCoW/BDbWgWFeVlZFjt39kkGzUXF6SxbWjAmlRIEhZcIh90n+VjNnZeLxxPC6x0mw6RJIbNG14PkdD1xOaM9o1zu0BiVlQjRxB3Gqu8m+vxkMhm6dDXT5lkIqmXYfEGKs/REglHqXmhj83NtmCw6rLPMTK3KJn+6CYVqbFrlsfC/VA/gk1EThB7BL/2/iPG8ZlqanbjdIQYHg2RnW7j2otvxD7fyylvPc9WNXyU/ZxppqipMWdVCj6BW0Nnp4Z13bNTMy6WgIC1l3RaLfmyPUNfNnr1OZLI4wUA00SOkjgFqtQqmTslg9pwcws4zCHakM3/eignfYzgYpPvAPo7s24NtTxNdB/bh9vlwI8ceGGbb3sPY7L1EY4I3lEKmI007DY0SQpFRPUI8TCAchjD0DgVweKfSMZCJzVVIfu4ccvMrCQRyKSjIYc2aaXz2szNTjuEbb5ybsjzxbxddNJP/FnyYcJzxrjMNJhPzz76AuavPwbangTf+9AxDHU3IOmVce/JiZi4Z+Sz3t7Vx3lXXMqdiDrU1F1C7cA7z5uay9YOekR4hoa6LROKkJ7wQe7q9RCIxQqGo0CMc8bC3uZ9nn91HNDq6RxB6vopKs2Qo3n7Qh1m/lK9dt4xNO1/kib//GmtBGWeeckWiRxAUSp2dHgYHA3i9YWlbdjc5hB5BLmfu3BzpO5RMwghm8yMQySy3K0RpqQkArzdMhkkjfS8nUiaN6RHGCRpwu0Jjvkdw9DG64/WrGq1cO5EYvQ3iP7/bhUKp+rfWh08VKTU8PMzOnTu5/fbbpcfkcjmrVq1iy5YtH9t2VFRkY87WYbMNSU0vpJpfi783NNrxesOoVXIiYeGOR2lpEfd//g46XG08+vw/2HHgDVq8G/C9eTJfu+Jc0tM1wt3axC3rhkY727f30d3lw5ytE+IuRRa2IpslSwQPkYHBAD09PtIMGnp7/Xg83QRDYQKBCAMDQcLhCJYcAxmmIbbtOoxtsIOSKXr8wRD+UBDXkJd+twv7wACnzFqObb+chvo+6o68SXd094T7I1cxk5maVchlcrrCexgaFgqODAV6eSYGWRZ6eRZpikyytXlMLTZyzjnTKShIS0mu+zTjw4z6JSf4Je+XZOJk9PLEBsTu8PHKul2olUoaD+6j8eA+1u2ey+M/vpWCgrKUMUebbYi+Ph9qtYLS0iwsljSczgBmsxa/P0J4OIZrcJiNG7u4/PJyaaxuNMEmboNw1xqqK/O5+LzbefX97fzmlT9x7z/vZ3vHMn52040EQ2G6u7wUFKZRUZmVdMEWZ3AwSCQSJxiKpKinRB+qTJOGI0eESHuRuLTZhujt9TGzXIgGF9Vml182UpzGO7ZGq+vGIw3tDh+HD3toUBVzzjlXkb7hnxz+7Gc568IvwMp5KVJw8SLBbvdx8KA7UaTGJ6f27nXy5puHiMfBYjGMMVL/qAVh9DbAp28sIxmflHpQWpZFfrGg2KupyRu3cRZrQo7FwN69A4RCguLCOxSmq1PGl6/7HsvmX8GGD/7Ocy//DX/gn/hjcznpg+sxZ8xNMXUWfXa8vojk8dPfH0hRaiypzefwYbckgbfk6Nm3f5DGRjv+QITDHW5WLC+kIjHy1B2Ns3v/bszvegiGgvj9fjweD06nk97eXkwmE9lZZ/HO823MKUjjnr9fTCgydpwCBFPZGUU/Q6UQjj2Xf3OChAKlwoRGlY9WlY9OXYjZaKWqPIvSqZkU5OqRxyrQquQQjRP0CSRUx8ZeOpKIJpkcVFolaq0CtU5JWqYGTaEBXZoKbboaQ4YGXboKXboarV6FSqMYIZ4UMuRyGTK5QCDJ5CNqKGSpIrGEtZ9AUMWR1FTiz2g0xrA/gs8TwucaxusK4RsMMuQM4XOHcHQM0bl3APF+gUqrID1LIKgMWgVlUzMmrAfJSpyjJcYlj+KJo29ACiHV3TVIy/5WvD4vTz37EDrNU6xZeQPnnnsLQMqYo802RF+vcJ0xfboJnV4YGfL7IuTk6Klv6COciIu3Wo0J9Ub6GJLNak2nsjIbm83DlCkmTl91BQvnnsbLbzzGS6//mb2tb3Htpd9GySy6urzk5OhYWluQooRqbR1gx44BAoEIOTk6aV+EhiPYOjyYTBqOdAn1YNnSwhSvJzG+XNx3c6tHxjbHI/ZGj3WO5xkFDnbttNPd7UWllKeookaTWsmfjcsdpLfHj8sdwpQxPrnYtNtBw24n8Wo5l1xSTme7i8Mtg8SjcfZt7aHp3SMolDLMRWnkTc+gsDQTyxQjBpN6wrTM/7V6AJ+cmlBRaU70CJ7UHiHRXIoNu8WiT+oRFEQicXY3Oiktm8Ydt9zHkb4W/vj039i7/0U6nW+jTFvFDddeQHqa2COMNMA+XzhlHC9ZqbGkVvBvGxgMCj1CmpqeXh+eoWFaWwcYcAaZdVK21ADr9Cr6/EFefW0Dfe5u3AMD2Ls6OXKonc7Dh+k6coT5+WbyjGmEIkr+vm03TUfaJ9wfhaYqFk2dT25GgHZHI2/uFXoEpVyOSW9EqzIzHMknEC7knQMzmTJ9Kjf/sIayssz/Gd+zDzPqt3Zt+7gE1sh1ZBln3vwDdm3eQ7RzA7Y92+loaqRkdhXmGQtY++YO1CoVTS1NNLU0UbdjMQ/f9+1xegQPvb1eVCo5ZaWZ5OYapB7B54swPBzD5Rpmw4YjXHFFhTRWN9oXSSR8zGYtzXudVM0u4KILfsJrb23kz/94nMee/jEtB1fyvVtvIhiM0N3lo6DQQEWFOYXUHRwMEYnECAazUtRTw8NRduwQrhHmz8+TAgJEr6eeXiGNFWDfvgGqq0cUTBMpk0arjsbzerI7/Bw+7B6jLhtvjE7cVrcrRE+vcDNd8tUaZ5wueaxxvPTNj4LR25D8Xj4ufKpIqf7+fqLRKLm5uSmP5+bmsm/fvnFfEwqFCCUlvXk8Y72LPgwGBwLU7WqlubkfuUKGwaDC5QoSCcdZvXoKao0ypbmtrrLg80Ywm7Xk5uppbh7AHwiza1cfNTVlvPN/D/NB4wF+/9I/ebt+I89vep3CbAtLKmooky8lEMqjuspC+0E3g4NBdjf1Y3f4RljYiuwRD5GWfjZv7iYajRIIROjq8tBhGyIWhVAowt69A6xePZ2mJju/eu5J+iKtE77Pl9buQSPX44n24Ys7J3yeEi1mxTTkMjkyOWQrpqLXZqCVZaCVpzFtqpHppVkUF6Wj0ynYu3eAJUuE6PL/JXyYUb+JCKxk4mR+TV4KeZJsSJ6nLuNP3/olT61/jte2vs/OQ/Us+NznuPnSS/nWlVeh02hoaemnod5Obq6egoI0Zs/JltbR7/DR3u6mvNxER4eX5csLUWuU0liduF0GvZIXX2zF6QywdGkB5BjIywuh1iix5Bj4/MWncO0Fy/nR//2N37/2d07/xo3cfOE1zKmqYG51bgopNHtODh5PmM4jHrQapbB9ieQa71CYrm4v4eEow8Mxsswaiq3GFEJsPA+u44G47wx6JTOTmjrRhH3IM0wwFGVnYS6XfPe7DD71FPFn/o/rapdQUP4LaTniXa7p000sWVIgRQXDyEVDssFssqFm8uuTn/9hMXobPm1jGaPxSagH/U4/R2xD7G8fpLnZSWWlGZCxd08/WWYN55xdit8fSWlwRSPyYmsasWgca4kxYTob5pzTv8L1V9/Mcy+9xMatL/DNH3wVpVLF7IpFnLnqbILDBqnxDUdivPuujbnzcnHYfSlKjdraIjJNWjbXdRONRFEoFbS2OunoEFRSoVBUqAdnThfOG5t7uPuJz3P34+O/T4Vcw0+vnsfy0kx2HXx/YkJKpsBkmE5Zfj5qpQKdWo41+1bSdenkmvLJTM/AoFOiVytSw/6iMNwXQK1VEtEp0OhVZCUM0nVGQXGUlqkhLUuD1qBCqVagUCZG6pTCP5n8OOcOTyTMkE3q+SYejxMNC8qqUCCCq89Pv22I/i4f7j4/PW1uQokxsKFWN6ZcPVkFBrKL00nL1IwhGY52QyOZhKlJjOKMVub09IS45qJHcLo/4JkXH8be383za+9l/6HXufsH93PZ5YLKoKW5n/oGO7l5Qk0QVHpC2qPN5qGszEQ0FsXrjVBWZkIuk2MtNkoEi8sdorlFWMbS2gIqK8zIZTI0amWC2JnOsuX38uUbbuCb37+N+x75OrPLT2bNyq9JBE8yMbRyZQkarYojnR40WiWbNgs+PMPhKEOeYaLRGE5nkKwsrbQdo/fVh/V+mojkEyAQmDablyGPcA4Rt3f0tid/Nnn5BsrLs3C5gynngeTPKZnUkivk9LuHOeIJMXNmJjWfseLqDTDQ48U7EGL/ll6a1gt+nSqNQjp+MnJ0pGVqBFLWqKbhg152NdiZMjWDhXNzmVqUxmCvj6Avgt8tEKd+zzCLz0tVov8348PWhBNdD0C4OfzeB600NzuRy0n0CEIzvXr1VNRqRUpzW11lwecLJ3oEA83NTvz+MLt22ampqeTlv/6BbTtaeOrZF9iw9R1effslCvLymTd7EbNZQWWFMMIcSdSDeXNzsTv8KUqN2tpCamsLpTG+Yms60Wic1tYBdu20E43FyckZac47Oz08v2s3za+un/B92u1lyNDT3n+EQHjiHkGvVnHGSSrK83tx+zW4AzNYPHUafZ5C/JE8ZlWXMGWa8P1PS1OxcWMXF15Y9l+lcjoR+DAKxokIrNGBPFOmLKOjYza76lqI2N7DtvsDDjU1UKibyi9++BAvvvEP3qt7l6Z9W/nMxZdx43XX8KXrrkGjVgsjaA128vIMFOSnSZM1toTXa/tBN+XlmXR0DLFiRRFqtUIaqxNJKINeNdIj1BZCjp7cvCBqtQKLRc/nrjqDqy5byc9/+UeeeemvXHr9dq6/8osjPUISKTR7Tg6eoWE6Oz1otQppRE7oEYZp2t1PNBJjaChMSSLpNZkQS1ZCfRjfJ5HIMehViZpglPaDxyMkGgdDAUnRBeOP0YmkVn6eUA/crtBYkitpXfPm5qZs6/GYrx8Lo7fhX/W/+ij4VJFSHwU/+9nPuOuuu07Y8nr7/Gzb7mXAGcRsFlRLnYk47owMDVdfIyg0xIuZ0YqMQCDKli1d5OWlSc9ZVDWDRVXfpLv3Bn7zp3Vs2ruN9fV1PLfxdVRKJVOypzAlewpp8mw6HXJqTioFxpqZVVRk093tY936wxj0KtRqBbLEtsRicSwWHXaHTzDOjSuO+j4HYocxYMaoyCOLKYTjftIVuWhkaahletQyA2qZDrlMgVojY2ltIVdeVXlM4mX0KN4kxmIiAut4yKrk55x52h3sOXiQW375az7Y18j9f/0rr9dtYdPvfkdDo522tkGqqnOkEVFRodXb68Ph8FNVncNtty3G7vDx5htCYzJ1qkAGOfsDrF17iI4OD9FoDEOakhKrkcOH3cRiMQx6pWRmfkrFCqqtVby48yXu/suj1MyYxek957Fvn1VSPIkjmeI2CMUmjEIux2LREQxG8PmG8fsjZJo0GBKjSOK2rF/fQXWVZYwf17EwkZeXuB9nn2SW0gIVaWmYb7wR74YNeF55hUNnnU3+PT/hLVcRTz3VzKxZZk49tXhMVDAIhNQf/7iH/v4AZ545jeuuOyllO451l+xY2Lz5CG+/fTgxohX/n7iz+FFwoutB1xEvBw+6sHUOSQlpPT1eent8aLuUWIuNrEykwIjHlHgTQcT69R20tbnIy0+TiIRv3PQFrrzkMv7+j23UbXsbl28nP3vwdn76q+9iMuZRU7WIbPN0At4cZvgWUFUlJKYlKzVEFdTa19vx+8NkZmrQaZVotQrkCjmWXJ00iqRSyJHL5MQSZucyZAlPJQVKhZJMQw4GrXDHf0HZafQMHkKt1JJtzMeoy8SoN2PUZ6FTG1JIFblChlqbj0qjQKWRo9IpUWsEhZPeqMZg0mDI0pBu0qJNU6FSC2N2yYTTf4Rs+hcgk8lQqhUo1Qp0aWpMOXqmnCRcA0QjMYYDEVx2P91tLnoPunF2+7DXeYjHe1DrlJiL0sidYiSnOA2VVjnGvygZ49WE8VRLwnMu48s3XMkvHnqYvz33f+xpaeLCq87g1/c/zpmrzqGx0U5b6yDVSTVh545empv78bgFT6Zvf3sxAG+8fpANG7swm0dMuQ8dcrNju3C3Os2gxFpi5HCHm1g8hl6vlMzM/f407vne71n3/mv8+dl7+c0fr8Pj/wYbN60gJ8cgqZ5yLEJNENVOgWCEUCiCWqOgtCyToaEQg64QSqVcGk0VX9fSLAR4VFVZJLLueDAeySdCNJcXlVqjTfRF1NUdYUudkBqbbNzusPskpZTD7pPSz0DwDUsmtZI/V61BTd50NXnTM4hFY4RDUbyDQdz2AP6hYQJDYboODNLe4CAcjKZsiwXwD/RjA2xvdab8Ta6QoTGomLk4j8zcT7dSfSKc6HoA0NfrZ9u2QQYGgpizdPT3BzhyxAtAhlHD1dcINgRiQzi6gQ34I2zZ0k1evlp6zsL5FUyx3kL7oWup27aD9zZt5P0tAkGlUqkoyptOYe40NEoLBYVzqJozfo+gVitIS1fTaRsiLV0NyNDplej1SipnmSWfqqYDcSJR9VHfZ3NPKzqlhWLzVNI1pQTCgxRn6sk3KcnQa9CpdQxHjAz40ugdykBVfBJfv/s0ps8sQK3TTajwGz2KN4mxmIjAGu86cu9eJ7uaIyxZcgnXXnM1bz/5RzqbPiDeeoTbr72Ab9x4DXf87Fc0tTTx8GN/4L1NdTz/p8eFHqHVJfQIiakA0X+pr9eHwxGgqjqHb31rEXa7nzcTNy+mTcvAYtEneoR2OmweIpE4BoNKMiePx+MY9CpJyV0773Rmlc7njQ1P88Bvf8G82fPo7r2YffsFLzBRzXTBBWXSNoiElEIhw5KrJ9+hx5O4WREMRiQDcnFbpB7hQ9QDGCFyysuzUl4rfjdnz86W0gInQl1dV8IHM11SI9rtfkkpBQIhJdaEmppcaZ+PXt9HJZJEklGjUUjL+bhVUvApI6Wys7NRKBT09aXOI/f19ZGXN/6Bdvvtt3PrrbdKv3s8HoqLi8d97vEgL1fPwgVGnM4AlZVZ9PUF2L3HTiQcl5LKjk7MxJkoebu7y4+7M52i2DLOWX4BM6tV/PZv6zg80M52zw5cfhcvNoFSoSDfnIP5nSxK8i3kZpvISEsjw2Cg45CXg04XxrAavV5Jd8SFe0iBY8DNke0D3P9aCJffxWBinAIEI3KDXBixM8jMpCsspMstUkqeTifnsssqxng9TWJiHI8v1IfF8ZBVo59z0vTpfG7Z9WRGNvJBz1tcdvoqFArFuPJScTlTpxolIgaEC/XmFqEx6bB5KC3zsXbtIdoOutCo5ZSWZUkJiGJTHgrF0OmUyBUQi8LMcgt/OfcO1u84kxt+ch/3td5LpWkJu/ecTvnMbDo7vSxZkk9pWSaARGq5XUF6e/0sXlyA3eGjrdWFTCYYmIvYvLmb+vo+fN7IUQ3vx/tMklVfySl9yfuxtnZkGTKZjPSTT0Y7YwaDTz3Fka/exLB5PrttixJFd2zsLwgXBv39QbKzdeMST/+Kz0dHh5tHH23gwIFBZszIRC6XA50ppNi/Ohr4ScQnoR4UFqURj8UpKc3A1uHBWmLk4EG3pJSqqrIcM3XN4wlJd8rHRNW3RJBFalm5+AKefqKMO+/6C7uatrK7pZkB1+tEIsO8sg4yTVlYcgrIeCuX/DwLlpwsjOlG4jE1R+xOPO4gwZiBUDREb4+HWDzA1oZB/u9PLuQKN98++7fcet7D/PaN71NbfhZLyteQk5GP2+/hUG8fdnec93b3CT5LccjPuYBLLi3HZNIgV8hRqRUC4aRVoNErUWmUqPUK1GqlNDqnUMpQKOXIlTIUiv8+sulfRcqI7nQT+QkfvHAoitcV5EjLILZmJ/bDQ/QkkrkyLDryS00UlJnQGlRjljnesTWaqBr9nNLis/lM7Uxs9r/T17+X5UtOBcYfQbNa01m4sGCMkf7evQP09vgktV3TbgdNTQ6Gh6MUFadLvmcp9UCrlEzNy8uz+PpXruPaq87nvgfv5v+e/AlGw3TmlF3PB1vLUGsUrF49hdraIul96PVKGhONyNxqCy53EHufH4NBJRmQg6B2WrtW8MqCiRMWx/N6OpqXV/J+TK4Jo7GlLuHxCXzztpGbcKNHMj2esDSSOxoTnTPkCjkavRyNXoW5UHhdLBqTfM7CwzHsXR7eXd+Jxx0k06TBmK4lx6LDbNYyMBhCq1cSicUptKaTplenKhb/y/Fha8KJrgcAuXl6Fi7UJnoEM319fnbvdhCJxKSksmM1g/Gk/4qw2Ty0tXro7zZj1p/OirMuoeIkGU8+tY5uxwEanHV4/S7WbwWlQkmuxULma9kUFeRiyTGRnpaGTKbh0MEh3J4QRqMKpVJGIO5Gq5bxxDNv093tRKkJMOQdwON1SeuWyVToVTnkm3IpMpkpzEwn3yTHnBZCpUj0NKoSsvJyyZ82hYIZFeSVzURvNKI1pKHSaP+lffppxImwbBiN8a4jk4mqzPwMLvne9+lpO8DGvz7J7vVvYsjM4pJTL0enOIm9h17jgrPXIJPJJugRBEJk2rSMFCLGZvPQ3NyP2z1MR4eH0tJM1q5tp+2gC7VaQXm5KalH8NDT7SUUiqLVKlEoZESjccrL83jswXt5Z+MmvnXHT2nYcydT8k9hz57VzJxpptM2xJLaAkpLxR5BILXEUbTTT5+C3eGnrc3FwEBQMiAH2FzXxa5ddny+8FGNwMcbkUtWfSWn9CV/j2trC4/6uWyp66atzYVWo0gxU08+D4jKK6EmjCWejue8cbT3tXZtO13dXgoL0iRCOJkUs9k8WLIgN3fsdcaJxKeKlFKr1dTU1LB+/XrOP/98QDDgXr9+PTfddNO4r9FoNGg0mnH/9lGQmaXjgrlTUh674IIyqeG1O3xjPJ+SMXtODnaHX7qrnkwgWK3pUsKY1WpkyzsOCpVzqKpczNVXV/LcS3v4YPd+DOYgGmOIA4e7OXC4i7YuGx6fF7fPR2g4TDweF3wzZDK0Kg0mbzpBL4RDSvIMZj57wXKKLRYKLRZKi4qw5uYmGtlJnCgcy9j8RGIisko8JqeUZHDBqSv49syzyM8zSuSLMsPNEy/V83nOoKIiO8UTbeXKkhTiJjnt0GYbQqGQk5mYda6tLZSO8+3be+np9tHU5GDBglz0enXKhffK+Qt4/q4H+faDv2ebbSOddftY1nE2upggDa6tLRrjo5VhEuPQxW2Mp1zIazQKZDLh59HIQPEzEWa5h1IIqOPx8Up+XJWfT/Ytt+D55z+peuddnspsZ2Dh7UyE5AuDE00M7d3rRKlUMGNGJhdeWIZOp0oZHwT+5dHATyI+CfUg26zHlKFFb1RLjaqoghKbWofdN8bzKRlGo5qsLB1GY+qd6eR6UGxN4/XXujFnzKW0eDpzqy0Eg2F27NpDptnFtNIoO+v34XD04hzsI7rHz5B3CJ/fSzwWI44M+X4ZCrkSnTaN9DQjXq+cWFRPYf4cFHIFU3Ir+Pm1zyOTyTAXpmE9yUzZfAvGbB1q7afqUuI/golGdFUaBZm5BjJzDcw+pYjhYIT+ziEONfXT2TzA/i097KvrwZijo6A0g8KZmSmm6aMxEaEhkSwlRqCML1U9TEGRkoBPxv6WXoqL0zjQ8TL+gEBSicepdRyTcXEEVfwJMtQqOVlZWk4+uUh67cF2Nz09XrZv78FgUDJzRhalZZnS+TvDaOKeOx4gy7iYPz97D5sbf0DBkTPJyzqbDKOG2tqilPeTnfDytFrTsZKOaKA/Wik2HI6i1SqwlhgnNBoXVVGjvZ6O5eV1LOP5sftmLJLJr+NJazwa5Ao5aoUctKADWg+58AGkqSlfmIdGrZRG+zsHgyg8AjGoydCQYTxx58JPAj5sTTjR9QAgK1PHBRcUpDx2wQVlUsNrt/vHeD4lI7VH8IxpjkVfnmJrOps3OMg01DCjZDlXX13J8y82sbOhhYxMPzpDkLZDR2hr7+SQrR3PkJchr5fhcFhKpZQhQ6PWkDGYjt8vJxxSYknP5oLLTqEwTY9RpUAbjxL2evC5BonHBCWtNk2DMTsHU14BOSVTKJhRSXp2NlpDGhq9Abni6JMYkzgxlg3Hg/GIqvzSGXz2jp+yZe16dr70N7SDm7iwpoCbrn+IKdMLJfJFqbHz9xcauJTPUFFpTvFEW7myJOXYXLgwP6lH8CBXyMk0ackRe4TEcb59ey89Pd5Ej5CHVqvEmD5Cjpy2fBm/f+Ax7rr3EfYeXIf9rd3Mab8IBWKPUJhCzoxWHFlyUr8vABqNErlM+Hk0byZRFTXa78li0Y+b0ieu/1heT6Knm/hzPIwXgnCiIH4ehQVpLKktQK1WpIwPguC1FSlRkZt7/PYnHwWfuivJW2+9lWuvvZb58+ezcOFCHnzwQXw+n5S08XFA9LsR073efOMwWz/ohjisWlVC55EhGhrsOBwBKeVs86ZuyXtHTC8Tk9Z2NwkJfUajmjNWT8GSY+DpZ5rp7/cTi8GKFYWYs3VMKcpBHtNw6qnFBAJR6uv7mDs3VxoPOdr2/vOfbXi9EVavnsLru1/j/r/9lZsvvZRVCxZ8THvtfwsf1sviRGG0v9Ro42+RfAkMB7n9sQexexw0HG7i2ft/QO+REGvXHkKhkLFs+Qg5lJx2aHf46G7qZ/ZsMwUFJZJRPYA5W4dcLmd4OIrTGcBuDyCXyylOnGx37OzFoFcSjSi464bref71Kl5ufJ7XD/+Z2mknc82Cq8a8l91N/UAcEqTQypWpF/AtLf3CDLZBTSgUZXeTg95efwrxJF4AlliNzCzPwu0KjiGgjmc0MpmUGjkHrGDqSSeh/Otfyfz97dhjbeR87SZkytRT7/EooTZvPsK6dR1ShDEc3920WbPMXHrpTGbNMnPkyBDr1nVw0knZY3ylPo0eU5+EegAjkfDWEiMatZLGJjt1m7vJzdVx4YUzqavrol6sCYmUs02buyXF7WmnWaVjr6W5n8113ZjNWlafMYUci4Fnnm6mrq4HuRzmVltYtaqEjg43g64ZrFheSE6OAZO+D6NRxcqVJUdtdMVtlStkdNq8zCiXcefPr0Sj0vHkvf+kdEEuluJ0DCaNkEg3iROC4x3RVWuVFJRlUlCWSfT8GK4+P2077Bze3c/+D/rYt7UXc2EaxRVZ5E0zIldMfEMpmUBJHk277PKRIIidB4SL7Tff/Tt/fPqXaDVPcmn3d7mz8vNs2tzFtm09LFyYzwUXzJBeI46giml3BfkGzlwzDYhLXlQVldlcCDz6aANOZwC3S45Go2T+/PwUTyW9Xkn17IVYC//CK288Qd3Ov+ENNnF+0c/HfU8udwjX7iBzZueMufZx2H3YOocIBCLI5TICgegY8kkcv7OWGMf1ehJxtJow3vPF71VVlYVv3nb066pjqSfHW6ZI9B2LFEtO/BTJcL1+xAtSHKW0WtM/VSopEZ+EmpAcCW/O1vHmm4fZurWLeBxOP72Ezs4hGhocOBx+KeVs8+YuyXtHTC+zWo1SEpdnKIQxXUNNTR5nnjmNp59uwdHvJxaLszzRI5RYc5GhE3oEf4Rd9X3Mmzt2FGi87f3nq214vWFWr57KP9/4PX99/31Wz6ngtPlzycjNx3pSFeYiK7nTyzCas9HoDaj1BpSqf6+y4tOKf9Wy4aMi+ZrSJZuG3XINpVP34tr3Ds4drxB0zKXLW4A/4OfeX9+Hy+OkuW0Xj//6RxyxBVm7th25Qs7y5aSofqQewe6nu8nLnNnZiTCr8AihKvYIoRj9/QHsfX5kMgPFxYkeYUcvBr2KWEzJd27+Oi++Mp93P/gbW/f+H/Mqz2DBoutS3ktySh1WYTtGH+stzU5sNg96g4pQKMLuJscYo3GpR0jUhPH8niYan5vI6yn5HCB6uh0Nx6OESl6mSPIdDylmtRpZvpxx32vy+7FkHXX1JwSfOlLq0ksvxeFwcMcdd9Db20t1dTVvvPHGGGPDfxcGBwKsfcchScPLyrL44INuenu8qFQKnM4gINy/CwbC7NjZi9sVZNv2bjzuYQxpSi6/bMR7acfOXurr+3A6A2Rl6SSzZ5criF6vIhqDI0d8DLo68AfCLF5cgFqjJDNTS4bJOiHpkUxONDTa6e0LUFiQRmamlt37uujo7aXH7vo4dtn/JD6MsfmJxET+UiLE/88r0LJm8TL+9PZLfNC2nSXXf4HLFl2BpzuDwoI0hkMRnn6meYzaT0y7y8sz0N3tQySM7A7BIyMtTUlxcToFBQaWLMmXjNFttiF27uzDOzQsyXVN6lyuX/pVemWNPLX+Bb7758P8Nu87VM+YIa2rXkqg0I5RMO1u6mfr1m56+/ykp6nweoc5dEjwvYK4tB8a6u3UN/Thq45w/fVzRqmvBHxYH6/kyFeqLDSVXcAC5zacjz3G0Lp1FP7iPrSVlaMXNy7Ei4S33z7Mjh3C2IFISh3P3bRkwuuPf9zDunU2AO68c2nKcz6N+E/XA9HovKnFSVvrIF1dwnejbnM3AwOCGbjVmk5dHchkEAiG2bmjF5c7yLZtQk1IMyhTSILGRjv19X0YjWqMRg3Qn0hKCqFWKdDphXEllVrBlJIMXK4QJSUZ1NTkTtioJjeyYnx9aVkmp5xSjK3rEANDfWg1ek69shy17lN32fCJwEcZ0VUo5JgL0jCfm8aCs6Yw2OujZUsv7fUOGt62oVTLyS81MbU6mzTT2BGZZAJlonOZ+HuhdT5vvDONI93t/Okf3yFMC4XZl+DxCAldzzzdPEbpl2zmnYzk5LmCwjQUChlms5aTZudI62va3U/9rj5MmVpi0ThDQ8PMmHIxBZaFbNv9a+76xTU4Bm/hK9d/A7VKLa2vfpdQE0wZI+Ou4vpsnR62fdAj+FcZlHgShuR5+Xogzr6EZ2JXt5euLh/XXFOJlXRJKZWMiYijifaj+L1yOCZWRR4vxPdT3yD4fMGIcm0iUmy87RaTOgEuu7xyzPNdfb6PtH2fZPyna8LAYIC1r3cl9QiZfLC1m94e39geIRhhx45e3K4Q27b14HYPYzCouPzyCqnB3LGjl131fZKpv2j27HKF0OuVxGLQ1eXF5erA7w+zeFE+arWCTJM2RUEyGsnNbEOjnd5ev9AjmLS0H+pl0Bcgp3IBl975E9Q6HSqtFrl8UgF1ovCvWDb8K0i+phwhxuZi1FzI+j/8ho7dW8lMzyHffAanLF3By6+/xK49Gzn78itZc/Ln6etOF3qE4ShPP90yRu0npt3l5xnoTnwHsI54JqWlKSkqTqew0CCpdqxWIbFP7BHkCjmxaAyjoYiLPvMtBgNbefnN57n/twex5P2Q8rIyaV2jU+pEiITV1g966O31kZ6mZmgozKHDbqZOEfa7eB5taLBTXy+M911//Zwx6iuYmDSaiKxK6RESv4+njDweiN/VhgbB5wuQlnM8BujJ275+fYe0XZdfXpHyHL/b9aG37cPiU3l1edNNN004nvHvRm+fH0VCBldiNdJpGyLDpCEcjlJYZJR8pkTs3NlL6fRMKiuEeOSSUQeu1ZrO3Lm5klLq0CHhwJMBVdUWcnJ0RMIxDra5yMtLQ2y2Rxszw4h6o8QqeAKJJpqZJg3h4She7zANjXb6nX4A3O7hf+u+msTHj6P5S0Eq+fLwd77GVees5Es//zkHu47w4NpHOHveWXx+9VXs3t0vxAx7IxL5VFCQhtsVIi9PuMCvr7dLhBGAxxNm5sws6e716LG3uroubDYPOp0ClUpBerqKrCw95y29mOsvOp0b77uXU7/6Fa487Xy+e91VWK3pTJ+eidMZwKBXjlGB1df34XaHSE9TsWJFIYOuEB7PMBkmIaY8wzTEcCiCzeYhEo5is3loaemXRhVbWvol88PRY7bJ6xrPPD153r6h0U7jHjex6mWcd8oi3M89x6HPXkLW5z6H5eavIzvGnUTxIqGwMB2TScOqpDs9H/ZumvjaVce4M/ppwn+yHohG52azjjSDUlIfTZkifA/nzs3BZhuirMzE8HAMS66OffsG0BtUFOSnUZDPGMPkqioLXp+Q2Apx6nfZOdzhRqmQk50jeMPs3NmX8GqS4fEIAQCjjZmTVRbdPV527bQzr8ZCVZUFhyOAzebBOzSMczDhvxKXodJMNh2fVMgVcsyF6Sy7OJ0l503nyP4Bmjd3Y2sepLN5gKwCA1Orc7CUpEueEaPHxI5OYuTx1sL3+MUj9/DkX37H3/7xR6aWbOWCM35APKqiocGB1xdJMiyPEBqOoFAIvmgH21wSWQRIZNVnTp8ibYfNNiStt7t7iMMdbqYrZcSiMOQNoVIpWLxwHjff9E/+/vJj/OaxX/LKa//k7u//kqVLFgg1oVSoCXq9MoX86u3xEwhGUCrlZJg0zJ1rwWhU09vjkwzHTRlDqNQyDh9209vn5c9/bmbNmqnUzM9LMUcfTSaN5y81GuL32OEIpCRhfhSIxJN4Xhnt85X882gYzyfsfwH/yZrQ1+uXRmVKSox0diZ6hEiUwsJ0yWdKxM6dfZRON1FZmegRSkb3CEbmzc2VlFKHDrtpaHAkeoQccnL0RCKJHiE/DWBcY2YYUVqIhtNij2AyaRgejuL1hmlotDM0JJC53qCSdPNHO4Yn8cnEaCuJEWIsg4u+fzctm97j3T/9nn1vPMON557KZ88/ne/++Cd0dnXzxD/uZdXSi1i9+mqaxB7BF5bIJ7FHyM8Tzo/JhBGAxzM8qkdIVfjU1XUnegQlKpWc9IS1wfm113LN5Wv41p0/5vyrP8dFay7lqzdch9VqpLRU7BFUKUSrSFi5XSHS09QsX1GIS+oRBMIpI3Hc22weIpFEj9DslEYVW5qdIz3CKDIpeV3jmaeP6RGS0jA/LETiyWzWYTCoxvX5Ol4D9PG8wj5OfCpJqf8kwuEo0ahMUoHs3evA7QpRXGxk9ZnTAPD7w+h1Knp7vRgzNAgNvQG5XIZak/qRjB5Jamnpxx8QDNpOX1VCRUU2L754AJ8/jEYjB2Tk5enHGDMDvL2ug4YGO0WF6RQWpUtePq2tA6jUCtLS1FRXWcjaooUuyMrSfSz7bBIfHz6sQmthZSWbfvc7vvnww/ztrTd5ZeerDNHDDy//OgBajZK6ui78gTDTp2Wi0ymZKUVlC34eBr2S7m4fpdMzhGSJcTyaLDkG9DoVwWCESDSGUhFFJpORYYqxb98gwVCY7577TX73z+f5y/qX2Lx3J3/60fcptqZjd/hpaLQTCcdobnGycEE+S5cVkptroLfPh9GoJjvHwLyaPKlxENHcPIDXF0atVuL1CRdc4khtihnuKFLqWJ5go1M1QTjJ6yuy0ZaWMvj8cww88QTe9espuO9edLNnT/gZzJolyPchzmc/OyPl7pl40dDR4Wbt2vZjelItXVokqawm8e9HKBzB4fAzvzSD2toy/vCHJtoPuSgoSOPUU60oFEKDoFBAerqaUCiG2azG6Qyg0Sioqckb07gmx8s77D5ARm6enlAoxtKEJ0H7QWHMtmRKBqFgmNBwhJ07elOUUuvWdUgjg5WzshF4ChkVldk0Nto5dNhDhlFDVXU2f32ZSV/B/yIoVHJKTsqm5KRsvK4gezd0s29rDzvXHkaXrqJkTjYls8zHPSYmQqvV8cNv/YRTlq3i1tu/zKGOffzuL1/ilht/TnXOHDRaJTt39jE0NEx6ugqjUU00CkajhrnzchH9nfr7AygUUJBvkI7l0R5NoVCMcDhGd5eXLLMOnzeMVgte7zAbNvSw+pQvoIxX8sTffsR1XzmXr994Gzd+/utYi9Nx2P1srusm4A/jdoeYdVI2eoOKgYEAFosejUaBtdgoEVF6vVKqDeL1UDAQpavbS2OjnYrKbDbXdVO/qw+vLzLmO3ksdRKMfG+TyeCPCr1eMIUvn5k5ZlvE9YsE39E+3+RzySQ+HoQjUWLRmKQC2bunX+gRioysPnMqAD5fGL1eRW+PD2OGQCAX5BuQyYSEvGSMHklqaXbi94s9whQqKs2jegTIzzOMMWYGeHvdYRoaHBQVpVFYmC6ZKre2DgrJfGlCw/v8q0Kfkp09GWz0acPRFFoymYzK5adinV3FW797hD3vvk1WYTHP/u433PPwo7z61tu8ueFZhmNdfOVaISBAq1VQt6Ubvz/M9OkmtFrlmLEwg15Fd7eX0ukmKX1utEeTxaJHr1cSDEWJROMoFTJkcjkZGXH27R8gGIzz5avv5Kln/8Kz//wb2xs/4Nf3/Zji4nTs9kSPEInR3Oxk4cI8li4tIi8vjb4+P0ajmpwcPTU1eRKRJKK52YnXG0alUkikrDhSK5qDw1gy6VgKpdGpmvDRiSCr1YjbJRDFS5ememqJ+85u94/5vo+H8bbr48QkKXUC4X71NRy2fhwOAx0Jo7e8vDRCoSh5eWmSf41cARqN4J+g16loO+hGIZcxdaoxpWGuqzvCli09LFmSL5njVlRkY06YeYIw3gdgztIRCsXo7fUxszyL7m5fkqeUUDiCgTDDoShKlYyamlwMiQsxUZ1VXWVh924HhzuE5L2JIlkn8b8DURH048/fxPKqKm59+CEUcgXzqgqZP1cuGPc7g/T0eDGbdRRb0yUidOVKgzS25/EMUzo9Uzpux7ubu3RpAX19Prq6vIQiUeLxOEaj0KC3tQ0il8soMyxhZm0l73e+wqlf/Qq3Xno1U9Ln4vEM0+8I4PEM43QGseQYUKpkxGKgUinGKMNEUsxs1rFgQS6ZJg2DrlBKoqCoeBxdKOwOn6QIG4/8HQ1zto6ysizM2QLJKzcYMF9zLYG583D94x8cvvQyMi+/HMtt30SuG0sEl5RkYLEIaimLxTnuBcPoMb7f/raeZ57Zz/z5FtLTNSk+VJP4eODpD9B30IPTGcTW4aG2VjChFW8GlJdnpfjX2BJ3pkPBCN6hMNFoTIqyh5Eo+SW1I/Ugx2JgzmwwZWik79L69R0oFMLNCaNRRa8vnFh2mNbWgRRPqVgsjqM/QEG+ARKkgcPukxpmpzPAyy+1ApOk1H8r0kxaFp07jZrVJbQ3ONj93hH2be7h4A47U+aYmVqVg1J9/Ao4h92HXlXOnx59jbsfuIWdDduorp7OvKpKHHbhfO/3C8lxVVUWyZ8oeZROTMnr7vFJfx9dE5bWCvXA4x4mFouj0SoTd6u9DCXG7nSaEhbNuRvv8Fs8/Ltf8M6Gt/jhbb/EaFTR2ubC5QqhVskxGjU47EJtKS3LZG61JUXVlEyIice+yaTB5QpJv5vNOowZasxm3Zj94XKHyMsXmqbR5O9oZCfqQXb2R7/p5/dHiEZJSRVMxngk2RuvH2T9ehsFhWnMmZPDnNk5/7KJ+iQ+PHp6fDgcUTo6Ej1CfhqhUIS8fIPk6aJQyNBoFKg1CvR6JW0HXSgUMqZOyUhpmOvquthS182S2gLJk6ai0pzoETyAMN4HkJWlJRSK0dMrKAO7u71jPKWCwYjQIyjliR5BlaLOqq6ysHuPg/5+Qck1WRP+N5FmyuLC79zJ7nfe4t0//YG6v/6J688+l8Xza/jx/b9EpVJSXV3A3LmFgnG/M0hPj0/oEYrTJWJk5aoSaWxP6BFM0nE7nsJnaW0hfX1+uo4MEYrEiMdiIz1Cqwu5XEZxzmlMLZrDzn3/4Pyrr+PL191AVvo8oUfoT+oRLHqUShmxWByVSp5iWg5IpJjQI+RJ9SA5UVA+UY9g90uKsPHI39EQeoRMqUf4sLBY9GSYNOzbNzBmTFHEaJLs9dfb2bihi9KyDHQ61UceHTzRmCSlThCibjeDTz/NrOEIvorzmVVlwZJj4NzzpmOzDUkEkNsVJBaFgoJ0KiqzGQ5F2LKlh+FwFENa6sexZctIdLDYhMCISkOugFgU8vIMnHKqleFQhA6bB4NeidsVFGJYk5wqy8qyGHSFmH1SDvNr8qTGPNno+tFHGwgklFhu1+T43v86khVBV65ezbzymeSYMqWLkWyzTjrGJ0q0E6Otk32c5tfkjXluRUU2lZWDDA4KBaOmJpfZc3Jw9gcwpCmTiKPZ3DN9DT958knu+9sfWVS5k2+cdwOzT8qmwybE0NodPrQaFZUVZpYuLRizrtFjjKNhtaazLGEGO957Eslfnz9yVMVUS0v/uObwb7xxkA0bBjllyWUUt24m+tensb+8lin33InxjDPGLEeUVAcCYe66a/MYkslmc7Nx4xEKC4XlP/PMfnbt6uPwYbdkErl0adG/JWZ4EuOjdUcfukCMqlITFYmLlmVLC7EWG6XxpkBAaC41aqUUcBEajnCw3U0gEKG7xycpGZKj5EfXg+SUFI8nTF6enpUrS+jvD+Cw+1NIL5ttiByLgVWrShgejqFQyPD7I5gyhIsaU8YQNfMFhdbXblqHI9GAfBpNj/+XoFQrmLEwj7L5uXS3udj5RgdtO+20N/RTMsvM9Hk5qI4jRTHZEP2p3z1PfdMO5lUJxt05FgOnnlrMkSO+CYmZ0TVBPHZr5uelPL+iMpvK/YNs29aN1WqkoECwJ9DplNg6PBJZJIyv/YBQ5Gpu+d6NXPPlNdzylR+xZMmpDA0JEdpzZmfT2qagq8tHZWXWmFHW0WOM46mHli0twFqczuixOJttSBoB9Psjx1RMjWcO/8brB9mwsYsVywsxZmjGkM+jIW5DaDgyrpeXw+Fjb3M/ZvNIctyGjV0cOuSmp9dHJByXxiiPZoo+iROPGTMyiWtkVFdZsFj0nHvudCGMJUEAuV0hotE4BflpVFSYGR6OsqWuW+gRDKmj/lvqutmz1wmkxs6LDajoz5mfZ+DUU60MDwtkmEGvwu0KJXqEEZSVZTI4GGL27Gzmz8+TGvPy8izJX+Y3j9YTDgspewMDwX/jnprEJx2zT/sM7f1ZtLz2e9o2vcGMk6r4x+O/o6iwUBI1ZGdrOffc0qMm2nk8w1K6sHj+nD8/b8xzKyrNVO4fYGAgQG6ugZp5ST2CQZVEHM3h7unn8otfP8pDj/2GRTULuO6SLzN7djYdHYkewe5Hq1VSWWlm6ajEPjh22l2yOfh470kkf33+8FEVUy3NznHN4UXSaPmKQjIyNGPI5/G2B5jQy8vh8NO815mwfYCNG7o42O6iz+4jJ1sv7d/jMUb/d2KSlDpBUGRkYP39Y3Rccy3LDq0l58JvAiOjSSIBlJdnkMabLDkG1q8/jN8fRi6X0dfr55ln9qHXqVi6tIAlSxLRwUtSo4MNeiWBQASNRk5amnBhJ/roxKLg80coKEjD7vATDkclQ+qlywopto6osQx6Jc6BAHV1XRj0Sioqslm+vJD3OhUwBOasscaok/jfwui71xVTpkp/i8fj3PyrX6JRq/nZl7+CSjn2dJJ8rHV3+8jL00uPiUrAWbOyyM4xYLWmYzSqyM01MG+ehZUrpwDCd2j0KBzA3V/6EqsWLuBLP/85Nz58Ow/deiuXX3YKAC++eIDNm7uwlhhT7j4kJ2Mme0Ele0SJ31lLjqD0Gq2EGk/lZdArWb++A4hLRbKhURiN6ur2UliQlvL8DRu6OHjQBYDZXI0npONCzQG6bv4Gg4sXk3/33aiLRxoSUVJ9112bJaPyZFJq40ZheRs3dnHjjXM5/XQrTmeAJUvyKCw0Sh5SH1fM8CRg3hklOLt8tG7vQ5cQNIxWZuTlGyQ/m2TzYYGsitHWOkBDvZ0ltfkTRsnr9UoCwQi2Tg+5uYI6qqrKQo7FgM02JJFeVVUWGhvtOBw+qZG95ppK6bjv7w8QCEZobunH5RbSy5avKGTQ08GBrsRd8Unx7H89ZHIZhTMyKSgz4bANsfP1wxze3U/HXidT52QzfZ4FhWpiBUTy+U+pVLJg3mLpb/tam7n521/klz99lBzLWB8N8XUudwgQGm9ThjZh9i8oAWfNyiInqR5kZeooKDCkJOnV1o4sb4SMyeaff3+Xu+/7Pvc88G1Wrzqbe374AJmmLFqa+3n33U4CgQiBQDRle5LH6ZKJmfF8osRUwGQ11Hj1QJ9UD+bMzpFS7qqqLDidQeluvYgNG5PqQZZuXPI5GeK2PPN087j+VHv3DtDb42Pv3gFWnzkdgOrqHAYHglit6cyrsUjXjMci0SZxYjF1iol5SdHvoyPl8/MM0niTxaJn/boO/Im0yN5eP88804Jer2JpbeGEUfIGvWCFoNEII3eA5KMTjcbx+cNSjzAcHmlily4torjYKDW4Br0w8ir0CCoqKs2sWFHEnlZZYtsnj5n/dVQvKkOhvw2OvMuB918lracL6/mfBYQe4Vt3/picbDPfuukrKBRjFbnJx1p3t5f8PEEx2NLsZHNdF2azlvKZZimlz5iulggpUeFnsejHVfn84Ju3sKJ2Cd/50d1872e38tMffI/LL18BCD3Cpk1dlIzuEZIS7JK9oEaTNUcbixtP5WXQq1i/rgNgVI/gT+oRRp4vkkYgKOzHI5+TIW7P00+3jOtP1bzXSU+vj+a9Ts48cxrVc3PwDIUoL8/EbNanKMCOZYz+78QkKXUCoa2ooPj3j2H7/BdwPPQgXH0jR/qjY6TpyYoKjydMf38AnU5JulGNrcNDICB0MNVzLVx9TWXK8+0OHw2Ndnp6vGi1SoqK5dgPBrA7/JRYjcgVQoPs80fo6w1Qt7mbhFlISqqfuBxxfTk5Oioqsrnkkgrqjsxk3XY3GWnHNsqcxKcbR/Ogqj9wgD+tXQvAvsOH+dMdd2LOSCU6xNeK8tyahELK7vDx6qvtdHd76en1kpdrYO5c4a5Hhkl7XGNxACfPnUfd7//AN371S6798Y/5W8173HvTV3E6gwwMBgmHY6xf38HKlSVYcgyphoIJ7yhRwdjb60/EwI6QU+N5R43eJyLpnJwE2No6QGODg4LCNBYsyBXuiiZe09LSj1anID/fwIoVhRiNGrYAPeULUTn2QlMd7WedRdZ115H95RvptA9L6qZko/LNm4/w3HMHKCxMY/lyoVBdeKGQOjJ3bh7BYIwlSwpYs2aatK3/qZjh/0XIZDJWXVdBOBSheXM3Pv8wQaV8TD1IbgZttiH27R/E2R+gujqHfmeQg20uAK65phKNWpnS/AJ093g52DZIb4+KUNCExxOmsdEOII0VWa3pbNrcTWOTA5VKwXBIaMyTE7eadjs42DZIOByjt8ePKUPLJZdUMH+hmqs/V4JBb6Sjw82UKaZ/856bxMcBmUyGpcTImTfOwdnl5YN/tnOw3k7HXifT51qYMseMXDGWnDqaD9W9v7qL1vb9fPa6s7nvroc4e/UF4z7PYffh8QxjytBSMz8Phz1RD7q8OAcCTCnJoLV1gKoqC6bTBNJqNEk0HtIMadx710OcsnwVt//oFladt5y7b/8VnsEibLYhZMQ5dMiNw+6TliGm4oFA7Iw2R3e5Q1L6nkj0JhM5o/eHSDonpwC2tg5I61haW5BiTt7S3I9OqyA/zyAppUAgnyd6z9LjibGqqioLLc39bK7rxmzWMmtWlrQMEdOnZRIejlNePrFSbBIfL5Ib3YmUGZ6hYfodfnQ6FenpKjo6PBKxWl1t4eprZo1JFRN6BB8ajSLhqeMSeoQSIwqFDINehc8fprfXz+bNXZKqJTnVT1yOuL6cHKHxv+SScjZtLWK4vg9j+vGZJ0/i04sRD6oyDtcu4PVfP8B7f/4D1Z85i75wlJdffwOA/W0Heeind2NMTz3XJKe+CT1CLhaLnldeaWPz5m6ysjQ4nUEGB4PMk3oEzXGNxQGsWLKYV5/5C9+7+6d8+bZvs2r5Gdx+y9cTywwRCbtGegSLfozpuPgddbtC9PT6Ej2CRlrveCTO6CQ+kXRONnZvbR1M9AgGFizIk5STIBBjWp2CvDy9pJQCqJxlHvc9J59Hko3Kk4m9ysQ1v0hgT5smhOuMDjz4sMboJxqTpNQJhr66muJHH6XzxhsJPvowWzJX4V4wRWqKR8NoVBGNxnC5QpSWZrJ0aRFOZwCzWTvuWJAofc/PT0OjkeNwCEl+Hk+cDptHUkpZrelEozEi0TiZJvWYmVdxOdYSI3pdqlv/VSdfwoLcVcwsyfp37KJJfEowb+ZMnv7x3dzws5+yoaGBVV/7Gi/8/OdMLRi5ayd6SvX1+slNUknZbEOkG9UUkEZJSToeTxiIS4TPU0/t4YMPeli0KJ+rrz4pZb12h4/dTf2IqiRLjpE/3XEn9zz2LA+98EfOuKWFL678HOUzM/F6I/T1+rHZhrDkGKTjvMRqZMfOXomMysszkJdn4NAhN9GYIE235Ix/F3w8iCmZompxOBShu8vH/JrcMXe7Gxrt+H0RFi3OZ/Vq4S52bW2RQGy5ZlJx7ixK2jbhfPwPuJ5/jt7TrmRLXNgHa9ZMkxRSd921mbfeOkx2to7vfGcRf/3rXGkdyeTT6JG9SYXUxwe5Qs7qL83mtd800bGrn0FZXPJ1Gt0YgnAcDQ9HCQQieL0RTj21GK1GyZLa/KOoGmQYDCrUGkVKPWhstBONQnl5FjkWA05nAI97mJIp6VgrssYxWhaWk5GhoXKWWTrmp02Zzg+v+CN+WZy9e52TpNSnEObCNNbcOIfeQ24+eLmdfVt6ONzkYMbifApnmI7bX/Khnz/Gzd/9Iu9vfoevf+eLdHbZuPHzX095fdNuB61tLvLz01LrQbqagsI0ViwfSUESUyPr6o7w6qvtGI1qTl81ZQxB07RbqAeiT9KZq85BESvmvke+w03fuZKTl1zOnPLLCYdl9PZ4adrtkLw2xe+BtcTIzh29EhmVl28gL1+oCbGoUBMmUkaNhtWanmLsrtcr8foiaLRKsrN1XHZ5pfTcxkY7Pl+ExYvzJVWTWDNGm7+LSB6hFJf1zNPN1Nf3YTSqufiimXzztuljtgkY43s1qZD6+BCNhFN+393kSPF1Gq+5NqariUbjuFxBSstMLFs20iOMp2gQx6Hy8w1oNAocDmH82uOBjo4RpZTVaiQW7SQajZNp0ozTIwjLKSkxoten9ggXrzyP0/LSmTJlMZOYhIgpc+ZyzX2P8M8Hf87O115i2rwFPPTTu/nOXT9h45atXPqFL/H4w7+kIC9VgbR+fUfiOlwvkSFms46sLA0lJRmYzVppVFQkfJ56ai8fbO1h0eJ8rr56Vsp22O1+djcJxJJgnJ7Jbx+4j3t/9Wf++Ozj7G5p4rJzv0x5eSZer0DO2mweLJYRxVBJiZEdO3olMio/z0B+noFDh91Eo3FpW46XxBFTMsX/Hx6O0t3lZf78vDHqJ7FHWLy4gDMTAWm1tYVjzN9FJBNj8+fnSQqpp59uob7ejtGo5qKLZvDN20ZuUCdv93gqsP8UJkmpfwMMixdR/Lvf0n7Dl1nZ9Ro7jedhn5M9LilVUJDGjJkC+bN0aYE0ppQ8TpSybL0So1ElxUh2d3kpLc2keq5FUkiJKo/k8b/k8Se7w0enbQiFXCYl+CXjw0QKT+J/G2ctXcr6X/+az37vexzsOsKqr32NZ++5h5ryckC4eD582MOQZ5iFC0dUUm5XiPKZWRiNagoK0qTjFoTjs7HJwcBAKCUiXPzbKy8fZN8+JzqdErvDLxG+X7zwbGZPLefuv/yae164n5PLVnHyjNNSyDAxFW+8cVqbbYhoLC4ZUcPxpxWOTsm02YbIyzOg1iil73K/QxinKC5Oo6AwDYcjQEtLPxUV2bS09FNX10UwEEavz6LonEvJOflkPP98hZx/PMLFlmLS5t0GjBSVVatKcLlCFBamjVE+JZNPa9e2T47s/QehUMg56yuzeeHBBuJtbvrtQenO3HgNYUWFGYNBJXnKiA2qkLSXel4WH1tSW8ChQx7aWgclI2fRt0p8fmVlFm5XaFyvmpbmfg4dcjPrpGyWLS0cs10KhYzMDA0nnTSZ1PVpRt7UDM69uZrOlgG2vtxO0/pOOpr6mXVyIabjuFA1GjP4wyN/42e//BFP/OW3/OLhn9Dd28Wd3/kpSmm8W8ZwKEpfn5/+foFEdblDlJdnJfyfcoARryNRRdVpG5KCNEQ47D5efuUg+1qEeuCw+6Xv1dzqMn72wyd57p9P8Pyrv+HAwe1cc8mPGXJlkDyHKibQjTdSK1gipNaE4yFyciyp9SDHYpD8ppp290vKq9a2QZpbBsgyazCZNNJYbXa2jk2bu2ltdaLTqlICD2D8a7SqKgteXwSzWTvutdt4pu6ThNTHh8jwMM/dcwcGUyYVy04hq0BoRIPBKIcOu7Hb/WOaQSF1FxYtzicUirK0tlBqOJMbyWQY9ELq5UiP4KO0zER1tUVSSInNZ/L4X/Koj93up7NzCIVCJiX4JcNs1jIAlJaaTuQumsSnAAZTJpf88Ke89+c/UP/GPzEXl/CXRx/hq9/9Pq3t7Xz2czfw+wcfoHKm4Kdns3mkHmHRojxpJM6YrmbZskKM6RoKCtJSxkrtdj+NjQ4GBoJjewS7n1deOUhLSz/65B7BoufzV32WihmzeOj3D/DIkz9i4ZxzmDdrVQoZJqbPjTdOK46/iqmUMFYVNRFGp2TabB5y8wyo1Qrpuyz6PhVb0ykoNOBw+GlpdmLO1rG7yUF3j5fBwSCdnameTxMRY9VVFny+cKImpP5tPFN38fH/JCZJqX8TDIsWYbj/10Rv+zqL979EV0M6ltPnjHmezx/BnKVjZnlWCjk0UTPs80eIRaG7WzByFtRVBVIiX/K4k1qjJC/PQCAQTRmFstmGOHhwkHhcWN5oHG8jPolJgOAzte6RX/PZ791OY1sbZ33zVv74wztYvXgxVms6apWCYChKh01IIBONwuUK8PdGyDBpU/ydbLYhKeHIak3H7vBJx6PwWi/xuDB+0tbqwpJjoKAgkJgDL+SV+x7gm/f/lrX1b9LtPcyTP/z+mBFYtyuUuNCPSyEEBr2SmprcY44MHg+SmwZxBHDv3n66urw4nQHy8g3s3zeAXqeioiKbhkY7+/cPIANkMjkgIxgKU336lViX2eh/6VWGv3czTU/OovRHt6OvqWHp0qKjJuqJCqmMDDVLlhQcdWTv+ef388ILrVx4YRkXXTTzX3rvkxgLhVLBRbfM5aVfNyJrGWTINUxHh2dMU2izDSGXyVh9xtQxSqrxmmHRZDkv3yB9Z5bWFpCdVA/E12jUI/VgdEJYY6OdttZB0gzjJ3LJ5TLy8gyTpOb/AGQyGdZKM0XlWezb0sO2V9qpe66NgjITFUvz0ehVR329QqHgB9+6m8KCIn7yix/y12efpLevm4fvfQydTs+c2dk01Nvp6vbS2GinrCyL3h4fCgX0+iKS0b54HO7c0Ut6uppiazorlhdKTYg4Stfb4yWO4JXV2uYix2KgIH/Ew+m2r91Crnk2f3vxLh587AvccPUPmTP7Cml7xVE4vV5JXr4BiKNP1AR9Uk34VwkcsSa43EGpAXj33U4OHnRRWWnmSJeP+l19eH0R5lZb2LatW1IYd/f46O7xkawG6+8PsH59h2RyLv47GpKTAo9201H091pYlcOU2ZNE9IlAPB5j9qmfoWnd62z4yxNkWHIpOGkRpdMz8AyFJaVGMkTD5IoKc8qIDUzcDPv8YaLRON3dgsVHaZmJpbWFUiJfcjOrVivIzTMQ8EdSxoJsNg9tbWKPEB6zDmO6YEqdXzA5vjeJsZArFJz2uS9hmTad9X94FL/bxRMP/Ixv/OintLa3c/kXb+Q39/6MZYsXYbUaUavkBEMROjo81NYWSse9QiHD5/ORYdKkHP82mye1R0gidG02D709XoiDTC6nrc2FJUdPQUFaokeYylOP/pbv/+RBNm1/Gae7nQd/dteYcTi3K4TBIFAkYgiBQa9K1IN/3QQ8mUgSlU7Ne50c6RrC6QySl69n375BQaVYbWFXfZ/kQxgMRgEZwWBEMjR3JupBssG5SLBNBJEMM+hVEvE2HqQxQGOUhYuK/6X3fSxMklInEMPDwzz//POceeaZmEwmpn2mlvZHHsP37a+T/dqTbOk7B3/+tMTI0cSmyUeD+Dy3K4jfH6Z6rgVztk6axwXGLHvnjh627+gj26zj2mtnYdArUWsEwzlD0h040QR63f5X2WPbx+3XXMv5J598AvbMJD7tyDObWfurB7nmx3fx7s6d0uOWHANr1kyVjAMh1fzc549g0Ct56qm9tLYOUlZmYv78PE4/fYo0WieO3omvXbKkEIjj8QzT1uYC4mze3E19Qx8+b4Trr5/DQ9/5Kqe+U8O9zz7KOd+9mW9f/CUuOn2ZRMr29voIBCK0tbk4dMiDTqdkZnlWCjk2EUaboo+H8Yhds1nDhg1dUsqIMUONRqNgx85eSqxGfNVCeEFBQZqgemkbBKDisvk8uSmKtm87yw7b6LjyKnQ1NeTc8g0M8+ePu/7Nm4/wi19sZ2homKuvnsV1142MQI6XwPfCC61s2HAEYJKUOoHYsGED6enpVFdXI1fIOf9rVaz9w146djnoaXLy9mCA6upcqeH9qPXA5Q7i94WZWy2oLJLrwehlu9xBnn/hAPY+P585o4RLLqnAWmLkYLubcCSW4rfT0tzPm29v4R8v3UWeJZ81X95y4nbOJD7RkMtlVC4toLTGwvZXD7H7/S76DnsoW5DL1KrsY470fe7KL5GXW8Ct3/sK/oAfRUIplWMRaoJIGmUnTGZFZZ84XnawfZCGBgfV1Tl85vQp4xpzW63pLKlNqgetLkAYXd22vY+uLh/XXFPJ1VesYuH82Tzz0r38+vHvsbtlKz/67s8oKbFIy8zLN0heVw67Xxp9HW/MNhnH43Ulbq9olC4qpazWdHp6vFit6aSlaaSa4HKHqKw0U5CfRlFxOhCnfpdd8qjq7w/w1F+a8Q4JhMHxkFFNu/tp3tuPyx2itjZVDTn6PYhJn1q5jHOOuuRJHC9UGi3zzr2IQ8MxTtJraNv0DvvfeQVzZjZF1rnodcoUI+QPMxqUDPG5blcIny9MdfU4PcIohcWOHb3s2NGb6BFOwqBXoZF6hBESWjSBXv/+H2g5sJf81e9wxec+/y/umUl8WnHSyavILirh5fvvofWt13joe9/irv/7PTsbGqX6YbHoWbNm2qgeYcT83OcPY9CreOqpZlpbBygry2R+TR6nn14ijdYlE7pWq5ElSwQFoGcoRGurC4DNdV3U19vx+cJcf/0c7rvrW7zy+gJ+++eHufarN/Dla7/BmacvlUjZnl4fwWCU1lYXhw670WqVY/yXJsLxJNiNRyqbzVo2JvUIGRlqNBolbleI0lITpaXC84zpGg4ddifqnUA+vb3uMI0NDhwO/1GJKBEtzU5eeLGVQCDMqadYU1Rco7e/odFOfb2dbFOMgiLTMZf9r2CSlDqBeP/997niiitQKpWcfPLJnH/++Zx77rmUv/oiey+9jsK656nPmo/NdGaKaTIg3f2bqMlNboTn1wgeC729PlQqGe+/18lwOEpOtp6W5n4a6u3SKKCzP0BDQz8DzgABf4SGxJ3J4VAUlyvE2rWHADBn61i79hBd3V72DxyhxXYYj8/3Mey1Tx/i8Tgxn4/owABRl4uo2y38GxwkNjRELBAgFgwSF/9FIhCLEY/HQfynUCBTqUb+qdXIDQYU6ekoMjKQG40oTCaU2dkos7ORG43H7fvx70K6Xs+zP7mHrXv2sLy6WnpcHJlLTrJLJn927Ozlgw+6cTgCDAwEqKjMZn5NHnaHTzIdF5E8Jmd3+KQ0STFSVqORS+s4/7TFTM0r4id/+Q3fefxeGtpb+PV3b5KW12nz4HIFMZt1Y8ZCktHS0s/mzYKB7NJlheOan4sYPXab/J0FmFeTJ6myfP4IbleQ/fsGmFmexfXXz0lZpyFNKRXpmEJJXWw6oanzuXrWEL5Nm7BddTXaOXMwX/8F0leuRJaUbLJuXQd79zqF/bGjh7ffPiypoMZL4BMN0sWfkzgxuO2229i+fTtWq5XzzjuP8847jzM+t4LnQhH69wzg2e/hUJpGahAnSvgaD8mNZKgtItQDtYz3EvVg6hQjer2SF19sxekMsLS2AL1eSX2DhyNHhhjyDLNxQxeXXFKBRq0kHovT0OAgFIqxtLYAvz9CfYOdvc299Ax0EJONvWM+iU8/1FolSy8uo3J5AZuebWVfXQ/dBwaZfWoRGTlHv1t85qpzKMgtZOqUUtQqtfR4RWW2pOYDUogfcbxs69Zu7Ak/nEsuqUhZbvIonVgPHHYf1mKhHvT3B+jqEu60C+NyGmbOyOXOb/8SvXomL7/5K6760m4ee/hJrNYpgEDWejxhjEY1VVWWlNHX0RCVREtq89GolUcdh0tWYonLFN/v6jOmUlmRPUJGF6cnPK18VFZkS88TxnRliB5V69d34B0Kk5auGscbbixstiHqd/UlzhHylFTP2tqiMWSfaJA+Z1IldULx9ttvc82116FSqTjllFNYWDkTvIP4d7+N59AuDnmn4CebDJPmmAlfo5HcSBr0Khoa7JjNWoaHozz1571Cj5Cjp6XFSUODXRoFFHoEYRTKL/UImYRCUdzuEGvXtgNij9BOV7eXIz0O+jxehrzej3P3TeK/EHnTy7jq5w/yws9+RMu6tfzguivxqK9nUc086TkVlWZJySeqnpKP8x07evlgazeO/gADzqCkHLTb/ZLpuIjkMTm73S+N/XmGQokeQSF9l8498xSshVN46LEH+MmDd9B84BJ+esfXpeV1dnoYHAwIPUJx+rGVRGYtS5cWHTXBbvTYrfj/ItlVU5MnqZd8/rBEvI0mxFqanRgMqV5v8Q/xuTQ02rHZPKiUclrbBmlosLOktkBSqiVvvzQGaIxSVPjvtfWZJKVOIILBIGVl5bS27mP9+vWsX7+er33ta8ydO5e5c5Zzsk/OgoHtyLdFiM+5DplKuAOxeVMX27b3sHBBPhdcIMzZjjZzFhthMR2suXkAh8OP0xlgyBsmPU1F+cwstm3vweMexpCmlMaCkAmmcWVlJqqrhLsmc+fmsnVrN13dXomoUijkFBakkR4WLh7/0yTHJx3xWIyIw0G4s5NIXx/h3l4idjsRh4N4cCTuGZkMucGAPC1N+KfXoczKQqbTIdNqkWvUAqEgV4BcJqQlRiLEQsPEQyHiw8PEQ0GiXh+R/n6GOzqIeb3EQ6GRdSiVKLOyUObmoiouRm21oioqQpGZecI/R1FRV11lGeNHplIqUwipjt5eXnr/Pb5+yaXSMdxpGxJG0xKvt1rTWbSogL17+8nK0mDQK4+pRhL/btArE98TWJWIDBcJo07bENu29/L55Tewu3wrj7/xd/YdOcC3Lv4yC6umYbWmU2w1YtAr6e72sdsVZPYcJN8rcf0NjXbqGwQDWZEEg/HVLMmEldsVYsuWLowZGmZVmiWF5OhRwtHEG4wQeSLm1+QSHo4xd2E+xtoiDMuX49u0Cf/WrXR9/WaU+XlkXX0NpksuYWvjIDabh3nzcliwIJ9Nm7rYubMPEFRQ4yXwXXTRzEmF1AlGOBymqKiI3bv3YLPZeOSRR3jkkUcwmUycfPLpZOlqqM5YwODeQZzWDMxFadJrN23uYtu2HhYuFGrCeGbONtsQO3f20do6gNcXEerBQIBgMIrZrCXHoqe7x8u2bd143MOkJaToba2DWIvTcbuHWb5C8DWxWtPJy0/D5QrR2+OVTNKFupHB+q3iWOkk/leRmWvg7JuqaNvRx6bn2qh7rg3rSWYwqdm9xyGNkY1G1eyR5iMej/OHPz/K6pVnY+/VSBe+/f0j43biuTA0HKF+l53q6pwUAvZYyqX+/gDdPT6mTc9I3HGOS+uxdQ4RC83livMeYXP9A1xw5RnccuMPqZlzLgX5aZgytBKp1do6gF6vlIim5G0QlUQgpGLCxOpGkfBRKIS05bq6LnR6FUtrC6iozB6T3JespEp+PNmjKtk/Kjspznw8tDT3U99gJzdPz/RSE0ajmq1be6RUz9raojE1TfSyc/VN3pg8kQiHw0ybVkZ7eytvv/02b7/9NgCzZpQxJd1ATUEXhZlFZOpSlQ6bNx9h27ZeFi7MG+kRRpk5i42k2xWioUEYj12wII+ODg+HOzykp6kpL9eybVsvbvcwBoOKikozDY12ZDIwZ+komzHSI8ybm8vWD3qSeoRM5Ikeoe2IUAsUSTfCJjEJEZs3H2Hdug5WrSph6dIiDBkmLv/xfbz64L3s3/gO02oWEo/HkclkHLbZeG/zFk4qO1k6Tzv7AyM9RqUZq9XIosUF7N3jIMusxaBXHVONlDyaJn5PxB5BXE9n5xDbtvVzyVm3sO/wep5/7e+02/ZxwxVfp7pqKlarkeJigeTt7vay2+WQVIzJ6xeVREajOsX7ajwSK5nwEXqE7tQeYRQhNx7xBmNH8+bPzyM8HDsuJVdLsxOHw8/06RmUlWXS3DyQmDoRDNVHb7+4Lr/bhUJ59PH9fxWTpNQJxDnnnINCMYvXXvuA3bvfp6VlI07nPurr66mvr0fxhccpNXSRuf5Zdn7n+2zPOpWq02bjdAbxeIbZvcdBe7ubJUvyUWuU1NV14Q+EEyoQDXl5eiDO/n0D0jxtNBqlvz+IwaDCaNSwcEEBTmdAShdTyGVkmjSsWFEoJX0BzJ4DHs8wnUc8aDVKDHoly5YXYrWm8/69QsHxeof/E7vxE4l4NEq4u5vhw4cJd3Yy3NlJpLubeFhQD8gNehSZWShzstFWVqAqKkZltaIuLESZa0Gu0yNTi8onNTKVEplSmaJumXDd8ThEIsSjUeLhsPAvFCLqdjNsszHcYWO4o4NwVxeRnh6877wjkWIynQ611YqmtBTNzJmoS0okMvSj4u11HTQ02HE4AmNIqWT4g0HOuvWb2Pp6ONjZy/evuR6Auroumhod7NzZxxc+P5uKimyuvnqWZD7u80fwHUWNBCPkTyAQ4eDBQQwGFavPnJYgtPwY9EqcTuGuypFOL9/+4hV8dnUtV915F1944LvcftmNfOPac7DkGITUOymqVQuQInWvrrLg844YyB7Nc81qTafTNkRDvR2NRo7PF8blChEKRskwace87nj920R/OLVGOGUrtFqMq1aRfvLJ+Bsa8G/Zgv3++3E89BBey2xk7goq1yznttsWMnXqfgwGlaSCmkzg+3igUql44YUXeOGFvTz44NMcPrwFp3MXLpeLl1/+B8uW+bCWLCE/AltfOYgzNsiwJoulSwtwOgW1xFtvHiY3V49GnagHCX+PObMFc2i5QobHMyw1ttFIFIVSgdmslRLEFi4s4EinB41WSW6uXkrou/LKSolEyLEYWFpbQCCxfGuJEY1aKYwYTR3kt09BLBqno8M9eez8D0Mmk1G2IA/rLDObn29j35YeonHYf9hF0+5+rr6q8qijZE/9/Ql+9ssf8bsnH+Wn33+S8nIrer2StWsP0XZwUFqGSDxp1EqmT8s8SvLkCESSdmhoGH8gjFaj5LTThOU77H70eiVHOj0MDAQpKSnmlaff4p4H7uTeh3/ArJnr+NZNP2XFCuEcuX59Bw2JWHBR0SWm8gGSkmhJbf4xjc+t1nRsnUMc6fQAQgJaIBAhzaAcd18dj5F6RWW2ZJxusw0d9fmiX1x1dY5EaOh0SinV83jXOYl/HRdffDF6/Tz++c8t7N79Hvv2bWJgYD97D7SyFygt/y5ZMhu7X/sb29dl0ROYwaIVlSM9wu5+2g+6WVJbgFqtoG5LN35/WFCBpGvIzxM+Q5E8Kikx0tcnpAvr9SqM6RoWLswXeoREuphCISPTpGX5ikIp6QsEokvwMROSyKxWI8uXC43qxh3CcwZdISYxidF44ondvP12BzabR/I9VarVnPetH/Dun35P/euv4He7KD/tDK780k30OexcfPYRLjrrCqxWI6+80saWLd0jPUKlmauvrpQMuX3+MD5b+Kjm3CL5EwxGaWsbJM2gYvWZUwVCy+HHoFcJPcJAkCNHvNzy5Rs4/+zl3PTtH3Dbj2/ma1+4hRuuOwuLRc+OHb3sSvQIABkmjaRggrGG4kczP7dajXR2DtHQYEejUeD1hRl0BQkGI5JCMhnHa6Qu+sOp1cfuKcUAhKpETcjN7UKrUUjBB//JBL5JUuoEIxAI43KlM2fORRQUnEVtrZH09HbefPNdzrvgZApPyib7slV848yz2di0kxk78ykuWUBp4UzC/hgNB/o4fNjN5ZeXCwe+O0TnkSHMWREpJQyEO+ZGo4reXj+lpVkJJnVkZMjtCnLokIfeXh+xWJwDrS4GXc2SOsVmG8LvD5OTo8Pvj+DzR6QRI7dbIDS6uv53pbmxQIDhQ4cItbcTamsjfPgw8eFhkMlQmM2oCgrQzpqFtnwm2jlzUOflIdPrkesNyPU6ZPITpyqQyWSQGONDq5UeV+Xno02k3IGg3IoHAkS8XsIdHQT27iW4ew+hAwcYevttPK+9BnI5quJitJWV6ObMQVVc/JG2dbT2ajxlk16r5YIlq3nopSf54+uvsHlLB19ecy0AkUgMlytEQ6NdIraS79Y6+wPIFameZ8lIHsFrbY3T3x+gpbmfgoI0YlHBwL+oyEBjo4JIJIbNNsSimlms/cUj3PzgL7njz79i7aZtnDL9DIoLTUyfbpISlmy2IWmMQ3w/RyPfkmHJMRAMhWlucWLO0rJwoXDRn5zedDwYvT8nUmc5XMPs9lig8mxmLQui3tdAUcNuvundQfSN1+lVrebMM8/kwj+feVwE6CROLDZvPsLGjX0sX/4ZampOY3g4zNSpbuz2HVRUzCc3t4iZZZk888ib/OiRy8nJsPLmuzVYi2qQK/LxeuO88cZhrFYjGo2cUEjOoUNCc9vb42fqVJEgStSDHn9Kcph4vKxfH8Zh92MtNpKTo6OuroeeXl8KieD3RwiFosTjAhkgEgOHj8QAiETh3XdtXHfd7I93J07iEweNXsVpV1dQvjiftb/fzXxrBkdcQRob+qiozJ7QZ2n1yrN4/E9/oLO7ja999zKuveR+plnLGQ5HUSrkeIfCNDbaqajMHnPOc7lDuNzBFM+zZFit6bS2DtDdM4RrMERBoUEamYtGheNbrZYjk8tQq+VotTru/v59nFS+kLvu/RZfu/0CVi39NsuWLMZaItwhrqpK9ZwSv1s5FsOYBMuJkGMx4HQG2Ld/gPKZWSxdVoTTGTiusTsR4+3PCWvCKFWluJ7k9SWnek7i40UgEMbjyaC6+hKKis5lyZJ0DIY23ntvC5+54gZmTNfR1/gOX7z1Wxzs+xtvby6gqHg+xYXVhEMx6hvsHDrs5oorKsjIUONyBens9JKVFRljVhzwR/D5wixelJ+itrDZPLhdIdrb3fQleoTW1kFcrhZJnWKzeejt9aJSyVGrFSmNajAoBCS1H3R//DtwEv8VSB7QSPYxPe26L2LKzeO9Pz9OyPcCK5d9hr+9+Beee/UfbNveyZUXXoffHyUSieNyBYUeIaEISlbwOPsDKBSyFM+zZCSP4B04EMfRH6ClxUlBfhrRaByfP0xhYRoNDXIi4Rg2m4dF8+fx198+zvd/eg/3/vpu3n6njrkVaygqMlFaasKYrgEYk8pnseiPy8cJBMInGIzQ3OzEbNaxaJFwnWVMH6uGOhpGK8UmUmeNVlSK43iA9LO2tpDa2sLjXve/E5Ok1AnGnj397N7dj16vZP78XBob/VRUzOLeey8cucNcsoR96ZkE3AM0erpp3P0y7Ia8zByMFJEbm8qWLRlMm5ZBKBgl06SRGnRLjoEM05AUZ2+3+9m0qYtTTy1ifk2epDaJxeKJedq0RLRkgO3b++ju8mHO1o0xm+53+Hjgge3MmpUl3Y2X8b8zrhEPhwUCat8+gi0thDs7IR5HptWiKi4i7dRT0c2Zja6mBmV2DgpjOnKD4RPV6MvkcmQGA2qDAXVuLoaFCwGIDQ8THRgg0NSE/4NtBBoa8L7zDkOvv45Mp0Mzcyb6efPQzp6NXKM55npOX1VCTo4uZZZ5Ip+lr112IVq1hvue/R2trkYeevkPfGXNF5hXk4telzoPnawaEqK4Yd++wZRRwdFjrVZrOu3tbg4cGKS5xUlBQTp6vYqGejv+QBiVWkFamkAICWOHTu7/0m3c98dneWnnS7TYWjl71qV84colY0zOP2oKX3WVhe6En0mx1Tiuefpo0mn076P350SKKpttaETldZqV+VdcQcb5foJNTQQaGnC/8CKDT/0FhcmEYelSDMuWol+wAFVh4eR47seAdes6WL/eRlaWltNPt9Lc7CctrYzKyvkpRvNp04eQyeQ43DYcbhs7976IQqGmwHISw1TR1V1D9ZxSrMVGenv9HDrkYepUI3NmZ6c0zXqDirVrDxKOxFm9eooUAX/osIehoWFOmp1NVZWFpt39eIfCbK7rlnxurNZ05s7LBeI4HD4euH87S2rz8foFdYhMyIb8z+3MSXziUFBm4tp7annhN42wz4UqCAM9Pmxd4yubLDl5/OHhZ7n4mgsZ8h/mj3+/hasufIAZ0ys5+eQibB0eiTwZrd4xZQjL9Hi6CQXD0rhgS3O/NPq3cmUJXV0+enr8DA6GBKJ1WPBbmzrNiEKpQKtVoFAKdbuluZ/4cCVXnPdr/vHqj3npzW/T1n4lP/zObVx2uTCWJ/g5cUwj86PBbNZiNKopKk7nggvG9+1LJp6AFBJqPKXYROom0T9KNEWvmZ93TCP0SXx8GN0jNDUFqKiYwz33fFaqB9NnXIHza98lFIlyoKeTAz2dwItYsnPRKqbgD5expS6DadMzCAajZGZqpAbdYtGTYdJIjbPDHmDTpi5OO62Y+fPzJLVJPA72Pl8ifj4Nh8PP9u29dHd5Ez2CkXlzcwGh0a2r62JLXTeVs8wMh6PA5Ej3JMbH5z8/G6vVyKqEt9NoH9N5Z55LWpaZtY/cz7KcDLSXfIEnnn0CW99Wnvz7MFddeAM1NRYheS65R0giRm02D9FonH37B1JG/UaTMFarkfaDbg60DtLcLJBSBoPgueb3h1GrFaSlqbBajQkjfxc/+uadPPS7P/PulufZ376Pk+dfzTVXLR7jY/VR1URCj+BFrpBTXGwcd+RuIu+p5PefrBSbSN1ks3kklZeoxDpWKt9/EpOk1AnGqlUlvPtuJwMDQfbsEeY29+zpx+cLc911J0lF51DHARobG3n8Bz/lg/ffpMHnpXfQQS8OfBn9LAvPx+kMMm+ehYb2PeiCZvbtU9HQaKfEapRUUy+91Epfn4933+1k2vRMDHohRayh3o7D4aeg0MDll1XS0tLP2rWHUChk2GxDzK/JS2lyH3hgO3v39uN0BoglNIri3cJPI+LxOJHuboLNzQRbWggdPAjhMDK9DvXUqWRceCH6BfPRzp6N0mRCYTT+y2Nv/ynI1WrkeXmo8vIwfuYzxCMRIg4Hvi1b8W7YQKChgYEnngClUiCoFixAN2cO8iRVVjJG+x3BxHdtLTkGvv+lS3APhvnd20/Q4WvmnfaXefibt5KfO3J8TaQMaqi309Y2iMMRYPPmbvwBwfhPq1WSYdIyvyaPNWumkpGhwWzWMntONuvXd9DWNkhBYRoLFuRSXWXBkmNg/foOtm/vo/2gm8rsGkJTjGzqeZnnm3/PwiM65teslrZZ/G6MNjkXHz+a55W4bxoa7RMqvUaTTqN/n2h/jjZSd7tCTJ9uwm738eYbhxgORaitLcKweDH6hQuJDg0RamkhuK8F//btgloOUGRnoy0vR1tejqa8HHWJFVVeHgqz+YSq/P7XkVwP3n7bRjQaZ+PGLrKyBti+vUeqCTfffANXX30Rr73yOo//+u807tuKy+egs2cXnT27WDq3ECilqsqCc3AXR7oHmH3SUvr7A9QnDG3nzBaO/f0HBhkORYlEYpSVZmK1pqNWKQgGo9g6PNTWFnH1VZU0NtrRaEdMmmvm50m+NQ/cv13yzMnJF5pyhULBqaf+e+OAJ/HfB5VKwaXfmEd36yDr/9TC1pcOkjs9g5kzMsdVh5aVFfPNLz/KQ7//BoOeA/zjte/w2weepra2ktpa4TlHUwbVN9hpanTQtLufs8+expY6wfcG4LLLK4V6UKeRxq3Xr+/A4fBj6/CwtLaANINSIr4213VTX99HXq6Jk+f/mN2tf2N36595+A9dPFT2KJmmrDHkT0tzP5vrhJqwbGnhuJ5To8mi8plZhIIRymdmTbgfk4kngNEpg8n7IBmjySyXO8T0UhP2Ph9vvHmI0HBkUhX1CcLx9AgymYzung7q6+t59OEnefetV+joO4K9vw/oIxLrZzjRI9TMy2XP/gY0qlz27VcKPUKJUVJxvPhSK3a7n3fesTFtmkmKfxctGAoK07j88gpamp2sXduOXCHHZvMwf35eSiLXU3/ey569TpzOIPGY0CPMLP9kNraT+M9i6dIiaWwPGNfHdMaipWj0abx8/0+Yn6FhaPXV/OONp+gd2EXDgZe56zvfIjc3yX91AmVQQ4OdtlYXDoefzQmLA7d7GI1GQYZJw/z5eaxZM42MhBH57Dk5Qo/Q6qKg0MCCBXlCj2DRJ3qEXtrb3ZQWL8PnzmJ3+7O8u+Nhlp+iY/78vDHkz2iTc/FvR/O8MmfrqK5OTRocjWTSCRgzqng0ZVQymSUm9/X1+XnzzcMMD0c/Maqo8TBJSp1gLF1axD33LGPdug5yc/Xs3z+IxxOivz/A3r1OiZSSy+X4/TnkLPwGD950BzlvPs66F15kczCAtXIGU0rS8AxFCAyHuPvvDxKLx8hOyyZLU0BVWRnXX7YCQ1oGy5cXsnFjF9OmZUgpXvNr8qRmWKtRUld3hA6bR/KqMuiVUkKZqNIQJIUmyspMbOs3kjtsJj/n0+UdEo/HCXd04K+vJ7BrF1GnE5RK1NZi0letwrB4Mbp5c1GazSgyMj5RKqgTCZlSiSo/H9OFF2C68AJiPh+BpiY8r7+Bb/NmBv/4RwaVSnQnnYR++XK0M2cek6g4ljfSfd+9klmzcrj54ft4c+cGnnh9ChcuOlu6w+HzR8ZVBhn0SgxpShyOAPUNfei0SsrLzUydOmI4bs7WUT3XIh3PydJUkSCyO3xoNSrMWVoCgQixmIJzT6/hmzNP4Z6//I6bH76PhoPN/PyrX0WXpBYbbXKerOQ6mueVzx8hFoXubh++hBIl+XnJSsUdO3slMll8fPT+FM3ltRphHEVEb6+PmeVZtLe7OXjQhVarlBoQhzOAzRbAOn02OYsWEQ8GifT1ETzYRqSzk3BPN4GmJmIej7Q8xepzmfHgvUf9rCdx/BhdD/r6/Jx0UjZ79vSPqQktLX7aO6bwkwd/Q45axQt/WM+OPZtpc9Rz+vJaghEFfn+E9iPrePG1J3n2VT0FeeWo5VbmVlUzf8HZzJmTg63TQ3eXD6NRjc02RM18gbhtbLRjLTEm/NJC5Fj0FOSn0d3jSxmLcth9WHL1BEMmltTm02t3kZlmISfLMuknNYkJUVCWyaV3LGTzs600b+4hzaRBV2oa97nXXLOACy58gyuvv4g9LfV87btX8+6rH9B9JCKRpX6fcJ4brQzS65W0t7vwDoXZUtcjBbSIRNPoZL/k8bWKymxpvHDnjl40GjlGoxqTSUtubhq1td8hFD2HX/7f7ay5+FQe+cVjzJ+7KGXbGxvt1NcLNcFabJS272i+V8kjhBORV+K5X69X0t3jIy9fLz02nipKVIgl7yuA3h4hqan9oJuDbS60GqEmHI00Gw8Ou4+2lgHUZi2ZeZN+UycKH6ZHCAZzsU67nD//4zsUZrl4/IFf8O7GjeQaDZSaOhmMTMPrG+KRJ38GQFZGLum6ImZVzOS6q04h3WhixYoiNmw4wvRpGezbNyCleIljT1qtgrq6Ljo6PJJXlUGvSkn7s9v9WHINlIailJWZ2NNqwOTTUlQ4SUpN4tiYyMe0ZHYVl9xxD8//9E5OLogy7ctf5b7f/oZ1G95g7pxprFh4VlKPEB5XGWTQqzAYVDgcfurr7Wi1CioqzEydkiERMyIJJB7PKT1CQjFkt/vRapWYzToCgTCxmJKzz1zMN0pP41eP/Yrbf3InLa17+M7NX0OjHkmSHW1yPpGSKRk2m0dK1APGTdYUt100Wc/PM6QQUOORYw2Nwvv3JdUDcT3tB920tbnQahQSKXUss/hk2O1+2vc7KLZmHvV5/yomSal/A0azxMnztMlYt66DdetsgJU7H3yQous+x5pf/ILAzp3g/yvuWbXs9GRhSc+j19NDv7effm8/B5xN/GPr88jlcm6+5BIeeeSL2B0+DrYPElV6iERzqKjIlhr9LVuEO4ndXT6uvqYSm22ITRu7iEZjrFkzFZ8/glwu44zVUwH4XPg6idz6b0c8FmO4vR3/rl0EGxqIulzIdDq05eXoL/ks6aeeijI3D2WmCVnSieZ/CXKDAcOSJRiWLCEWChFoasL90st433uPwCOPIDca0S9cSNqKFSizP/oYwKyCOXxuxbW8t/8dbjj3XNa/1Utjwky2usqS4iGVrAgSlX56nWqMYglgd5ODXbvslJaapHS8yy+rlP6erBJcvLgg8ehIquVFcy9nbuksfv3Kn9jW3Myf7riDGVYrAJkmDTqdkiklxpS71Ml3rpO3ddfOXjZs6KK6OoeZ5Vm4XUGJvAKkxECRqBLJrWN93xoa7TQ2OCgtzZQIuORtWbIkYbyb+CmuK5k4k+l0qKdMQT1lCvF4XEh1DASIuFwc+KAV98FOjLIMymKxSbXUCcToegBCUsromjBSD+DOO5fyzapLqX9rCU3vdDIcjKIxacgxqXG5hlGr0giGvLR37AJ2se/QSzz90o8wZWSy7uUtRMNabLYh1FoPHo9OasZ37uilbnM3Pb0+1Co5q06fgilDw8aNXTTUO1izZip+fwS5TMbqM6ZSMz+PnTuU3HXl06QX/GeMLyfx3wO1WsmpV1UwrTqH9X/ex+bn2qhYWoB11tjmNT0tndu+8ht+8NPrWbPqIjKMJl5vbKahwUFhYRo5OTr0iXqQTKhUVGZLSr9kQ/5koqVpt4NdO+2UlpmwFhtZubJE+ntL80g9mD0nh8qKbMl7SjgnZ/Glq37Pq+t/xuVfOI9bv3o7X/rc15DL5bQ09+NwBCgpSaesLGvcmqDXK9m5o1f6/Y03D9PaOkhZmUk65+/bN4DLHcKUMZSybuH71isRS8cyMG9ocFBalsnc6nFqQpIZOxydNBsPNtsQHR1u9Hl6Zs3LPebzJ3H8+PA9glAT7v79H+k7dJCtLzxD+67t5MoOYj+QTrYpn35XLwPuPgbcfXT07mTtu39DLpdz0/Wf59e/vh673U/bwX7kyiGi0RwqKs1So7+lrjvRI3i5+ppZ2GweNm7sIhbtZM2aafj8YWQyOOOMKQBcueoiNN49rDz1lI9pj03i04q86TO47O77+MePv0+up5vzT7mExoM7uOT883jj9e6UHiHZQyqZUBGVfnq9aoxiCYQeYeeuPsrKTFI63uWXV0h/T1YJLl40cg0tplqeueIGZs2cw1+ef5KdjU089LOfMKVYUI2bEj2CGAYgIlnJlLytO3f2sn69jdJSE1arcYwiSkwM9PnD0t9FYuloxJHUI5SZJAIueVtEE3Pxp7iuo5nFJ8Nm83DwoAuZ4t9LG02SUh8DJmKJxXlb8ae+uoqSp/6M97336H/sMdjyOqcZ0rBULucdbw4erY+hmB1nsJdDfYfpcTrJMwskgSXHQK+7h2VfuhG1SsX0wkIKzLmkazIwp2fiQkF6yCpd2EWjMSnqdWUiJnO8C6z/RsSjUUKtrQR27BCUIF4v8rQ0tLNmkbZiBYaTV6DKzUWeljbpqzMKco0Gw4IFGBYsIOrz4X33PdwvvYhvwwa869ahmTGDtFWr0FZWfmjiYjgUoUhfzrfPnsv6t3rJNGmoqs6RlFKiQTnA7qZ+6uv7mDs3l9lzhMfPPW/6BGosGTIZOJ1BSUWU/LzNm7tpaXFiytRwxhlTUkYPnf0BFEoZnz3ldC5evZgr7/wRy774Je6+4St86aJzGHSFUCrkGDM0KctMVjKJPm4AGzZ0cfCgC4BLLqnA7vCRYRpKIaDkCogJlgxHHctIxnjqr+T3ackZa7x7tGXLZDJkGg12TwSbU4thzlz0+SXkFv73fu//mzBeTRhdD9QaJYvOmcas5YXsevMw+7f2suetI5w1+/MUGs5Dm+VGqeliZ8MunK42OrtaUSiUZJqykMlk5FgMfP6mW3hv4zqyzTlMn1qGOTMPGZkEAwYUwUzicWtKPWgcpx5YrenYdzowZvxvkvaT+PAoOSmby36wgHVPNrPn/S4ctiHmrCxGNSoZSKnUsWL+j5HHNLQ090uqJlH9I57PxWS91tYBVq4sITtbJ5FC4xMsSTVhlOJqc51QDzLFejDKb6m/P0CWycJ9d/6JN957nPsfuYe33nmXn9/xEI2NPrq6vClJdiJENdPOhGePiA8+6GZwMESGUZOyrS53kH37BlAoIBodWcbx1oTRCrDk7RB/JteE412uSADq9UpKSjIom0DtNokTh+PtEWRyOXnTyzjvm9+n5+ABdrzyAvL6HXz3M/PoGdLQPqRgMBzE4++hs/sQDqcTS06iR7DoOdLj4pIvfBG1Ws1UazGW7DwMOhMmo5lARIE3MFVqnmPRznF6BKHRHerUM+SbvHaexImBuaCYy3/yAH/89jdZnOOhZtaXeOP1bkwpPUJYMiiHxM3o+j7mzc1l9pwcfP4w555bOiG5ItSDED7fWBJmc10XzS1OMjO1rD5jSorfkrM/gFIp58I153H+2Uv56re/xzmXX8PtN9/GFZ89C1eiR8jISE3OS1Yy7UiqCRs3dNHZOYRapRijjBJJIoVCRjQalx5P/jkRxlN/Jb9Pi0U/ZmzveJYtEmoGvYrp000U/Zt7hElS6j+I8e6gy+Ry0k87jbSTT8a3ZQvOPzzOrO07mBWNEsyZxkDxLHx553LSvALsgwPU73Tyhz80sXRpAb0eJzqNhkAoRMvhw7QcPpyy7M+tugy3awZOvZKYzsnfmn/DS6167nhGRZZJT3ZWGmq1igJzNvfddNPHuCf+dcTDYYL79uHfuZPg7t3EAwHkGRno5s4lbeVpGGqXosq1HJeR9yQEKAwGMs4+C+NZawj39DD47LN4Xn4F56OPosjKwnDyyaQtXz6h95SIZ59tYePGLowZaqKRuOBbFotTVZ1DLLOTZzZt4ivnXQGMXDC3tQ3Q0jJAerqKDJMmRW2UbHTu7A9w6JCb6dNN6HQK9u4dYOpU4QQrjrxFo1G0WgXRSJy1aw8BI75PPn8EjyfM2+s6ALhy7o2s3fMS33r0VzQcbOaGz1wJkGK2OBrJF/srVggnffHneGONyUopZ3+A1tYBKcRgIlRUZGNOjKTYHb7jMmA/1kglkKLUqp6dM0nS/gcxXj0ASDNpWHHpTOadMYWm9Z3s3tTF4qlmFJoc0nLnMMVyCrPn5TKtNJ3X1u7klw/sYEltPrW1RQwNCelI/U4H/U5H6nIN/8/emQc0dWZt/BcSCCQQ1oRNggtUFhX3Fqy2jlqXLrZ20+7rN92m09bu+75OO11nuk5bOzPa1S7WLkp12gouIKAFVHAhyJawhEACgQS+P8KNSQiIztiqfX9/fEjue9/cS+fLyXnuOc8J5883Lmbb9kZ0sSGsXvcQ/ykw8Np7YXR3BxAZqSYmRkNQYBAZ4TMZNeHMX+XvIDg+UGmUnPGnLIrXVLPpqz38/OEuxp+mJzJW7YoJP9YQHh5EbZ2Nujob+iQjp82LJff1J7nx6vtwdkd5fbbm/lBFUVED3Y4eMtJj3NVG0jTicWO1aHVqyssaXTEhJYKQ4L6YMLIvJpQ1YjBYQAbBwYHs2NniNkmXhJ3aOiulpU2UlTczYcL5/Pn/RvHWBw9w0bXzufPmvzB+/PBBJ+f5ij8nnpiAwWBxVyxJ4pXJaO1XKeVp2n6waibPNsWBJhJ6MpAxui9SRVVaWhTp6VEkJIQe9BzBkWGgmCALCCAhNY0zb7uHtkYTX7//MT3FecSHtYJMjlwzhVHjr2Z3Qw/bf2knL7aGnJxETE1NKJVK7HY7Oyt3s7Nyt9e+F519DdXVw2k12wmPaeL9z5/nx2IVL74TSGSEmpgYV44QKg/g1MRo7xFrAsFh8sQTeaxYsZNE3alkR3xPcP0GdrSNYdSYFGTKnXz/088sOcf1XVwSUCoqW9hR3kxYWJDb2F/C0+i8qbGDvftaSUmJIDhYQVlpEyNH9lkm9LW8ORw9hAQr+nKEPQBuYcdq68Zi6WLN2n0AnD7jVv6z5UMefOYxynZt57zTLwMOliMcEH+m9+UG0k9/BuWelVKuHKHFPcRgINIzovtyBIur3XYIJuwDmaN7IgllaWlRjBunRa44st7KQpQ6SpHJ5YSefDLqnBzse/Zg/uhj2r7/npBNX9Ijk2MpHIFseBrVJb3UtLueYI+fkEzJux9h77XyxXdbyS/cTWi0g97ADvYbGxidnEx9vQ2jycb+hiZsXVZsXS4T24Y2oNr13uEqDdsqdvPGPXeRMWLEb/QXODg9djudZWV0FBbS+csv9HZ1IY+OQp2TTeicOahPOonA6Ohj1qD8aEEmkxGUkEDsLbcQc911tH2/BvPy5Vg+/5y21atRT5tG2Ny5yMP8K+g//VRDTU07nZ3B/GGWnsgIJS1mO+GxXSx54ll6e3sJDw3ltiUXuc9pbOyk0+6gsbHT60u+17S5iGAqKpopK28iMSGU8HAlNbXt5OfXkZIa6dXyds45J7Bxo6tEfcOGWrcoJI0RLyxoprm5k6ioYK6dczkXBp7MQ//4OwXlO3j/wQdJHzFw26Kn+DNxUhwxHkblcEAcG5+l69eil5tb5S5PloSyvLz95OfXkZ0dT2Rk8IC+W4PhucdgJrfeCVTXoHsKfltCI5TknJvC5NOHs6fYRPnPtdTuaSW0Bwz5Dchau2nYE0R5met/T6kpkdz9p38QHSPjp7xift5QQmRMJ4FB7dTV1xAcHIzN5nBP6mrvaKSltYGW1gYAjE2ws9L13ru1Bqqt5cy9ZtlvdfuCY5CAgAAmzk0m4YQI1rxTysaVexh9Uiw//VhDTW07nfZgJow/UPHzwBN3kPuf76jcs5OP3luFNuZA1U93dw+Wti4MhjbmzXV9LzG3dlK01eieNKfVqd3m5RMmxBKqVrhiQl4dqSmRlJQYaW/vZsSIcE46KZ69ey1UVrTQ3leV5foc7KXF3El7Wzfd3U5mz87mr499xhsf3Md9T1zJn/54OyeMvm3Ae/YUf0xGKxnp0cybO9yrfVASniZN7h8PiqV4kOERD/LqyM6JJzIi2EtEG2pLnuceBzM994oJvYMuFfzGyGQyNFodS26/ke6ua6jZUcqa5V9hripn139W0QskOkLY9XMVEfIxaBQJrPn4K5y97axaXcDmgkrCI7sJUFiprW9g1IhkKivN9PZCj7wFW2cbtk6XN1uTGSr3ud5XExLCL2XBzNq7l4mxx77Nh+C3ZcWKneza1YLVGkr2xVcSWP0vMuWlOAng7iefBkATFsaVFy12n9PU1Emn3UlTU6eX6OM7ba6ib+peYkIo4RF9OUJeLSkpkV4tb+eck8rGTS6rmw15NW5RSK/XUFHRQkFBM83NdqKilFy08Hqsjum8+MZrFG3fzstPP8Go4QP7q3mKP5MmxaHVqryqkyRxbHyWrt8kPq8coU8okyZhZuckEBkRPKDv1mB47jGY8bl3NdWRzxGEKHWUIwsIIDglhbh770F3y5/Z++3PNH2+Ck3VLwT/vIrLgM5AFbb9CZgbYyiLjqMlKILGyjBC2lMYHhvB3Lkj3F80JE8be3cGKvlt1JmaaTZbyRgTQWOzjV0VjahUASyYlkZacvLgF/cb0NPRQecvv7gqosrKwOFAodMROvNUwubNJ2TiBAJjYo5bk/LfGnlwMBFnnUn4GafT+UspTW+/Tfu6dbT/+COqKVMIW7CAwGjvD2fJjH/69EQuuCDd69jjpj9y3xuv8/DbbxMRGsZVZ7qqMWbOTCI4WEF2djxNjR0UFxmpNlhIS4tiwgTX2Hq9Pgy1SkFtjZWubie1dW102Bw0N3eQm1tFsl6Dtd3hnsqXkKBmw4Za9u4zU1BQz7RpiVx6aSazZiUTrAyker+FpGFhfZ5VGcycksXljz7KqTdcz3M3/YnLFiwYsJLInxF5U2MHa9ZWsWe3GWePa51n6115eaN7+o3nU5b8/Dr35LOERLU7IPlrsx0Izz0GS0I8BTVHixCljgWCghWknRTP6KlxlG83Ufyf/WDpxlDaRHJwEEmTEghUK/jlx1oaLXaqQwMpzJdja83khBE6LuvzFZT+dzRhouv/n6JinmPb9r20Wy102u1kZkawf7+ZikoTk0ZEcNLEU3/T+xYcu8SNCOeC+6eQ+145O/LqmT0+lh9kMM0nJjx015P8UraNqup9XH79hSx/53PCNRFAX0xQKsjOiXdPnVQqAxiVEuEyHZcGX0QHo9EE0dZmd1VF0UOLuZNt213tge1WR9+0Si0hIQpazXZMRhvvvredE09MYN7c4Vgs3eyvtjAsKYxxY2PQ6pKZOXMlr771Ai+//hybC/P565N/Q6cdOCH39K6aPn0YWp2ab7/ZzSefVBAQ4Iojnm13kl9VYmKoVyVWft6Bz/LERLWXaDXUljzPPQ4mSnmKauYG66BrBUcPgUFKho+byGnho9hWtJ84jYXi9Ruw7ixDE2hk139ck3frNwbQKw8m1B7IxBgl6tBI9COiiJyhprenF61jP709TjpsNm6efxZt1lZ6nR309jpx9PTgcPbQ4QggKXkEo0aN/I3vWnA8sHjxaFas2MnixaO5774cbK0nsuKhu2hrKOX/llzAm8s/4okXXiRCo+GcMxYAUjyQk52T4MoRio1UV1tIGx3NxAkuDzy9XuMyCq9pd+UIte20WbrY39vO9m0ml5Bj7XZP5UtICGVDXg1797ZSsKWeaScP49JLM1w5QrCC6moLSUlhfZ5VGczImcjNd9/HOZdeySN338k5p88f8B79GZG7coR97N5tpkfKETxa78rLXNM5ExLV3jlCXi2/lDYBkJAY6idHGLzVz3ePwUQpT0HN1nrkcwRZb2+veBbigcViITw8nNbWVjSag/+H/a3osdmw79uHdUMets2bsVXuwWkyEuBw9ds6CaBTEYIjOBSHQokqSkPMsChX1VBvLzZbN21tXTTXt2JvbSc6FGQdHQR0tBMa0AXqUIY9/uhR0e7mbG+nc9s2bIWF2HftAqcTRUICIRMmoJk3D9X4LORRUUKI+o2w791L01tvYfnmW3rtdtd/l4ULCRyiKfqj77zDX/79L2QyGf+4737OnTnT6/jyFWX8/HMNGk0Q5547ul+1kdFkJTe3isKCBtrauoiODiFIGUCXvYf09CgCAgJQqQLptHcTrFTw3Xf7aG7uQJ+s4c47p/arOvKsbBo+Moy7X3uNd79exfmzZvHiLbcSpur/BGL5irJ+RuS5uVWsWVNFd7eTpGEaLr3UZb4u7V1cYuTHH2tQyGUsWZLmThb8VUol6zU0NHTQ1NTBtGkJXuKWP4ZaKeVp0h6l6EImkxF+9sJD9gs7Vj43D5Vj5b56enrpsHRRt9tMdXkzJkMbraZOujoOTGHpdvagVAciDwzA2uFAE6EkLiEUmcxVENFh66a6ykJbWxdB8gCiIpS0W7oI6IVAeQCJY6I4+6bxv9k9Co59ent72fp9FZu/3EtIWBCTFiQTGuHd/l1VvZcLrjgDU6ORSeOn8P7fP0al8v6MXrG8jJ/6YsJ55472qjiSPJG+/W4vuyvNREcHo9Op0WgCaW93oIsNoanRjtPZw8hR4disDrZsqaOu3sro0VE8+ujJ/a7bs7rJ3L6DW+75Iz09vbzw5N+Ynn2q33tdsbyMzVsaSEwI5bLLMtDq1Nx774/s2tVCRLiSpUsnk54R497bZOqgosKMUhlAzrRETp6WiFanHrBSKiYmhJ831LpiQk5CP28sT4ZaKeU7oc/cYGX42JjDmr53rHx2HgrH4j05HQ7s1nZ2FFdSumUbe37ZRXtLE2HBXcjpJlDeg6zXgUIOgYFyZAEBBMjlyBRBOHoDaW2X0WiWoU2Kx9SmJndDB+ExETz25GxOmTVatPwLjgi21lZWPHwXFlMDmyzdrPjqa+RyOa8+8xRzTp3htXb58nKPHOGEftVGRqON3NwqCgrqaWzsICw0iDFjY7C2d6OLVSGTyVCrA+nsdBAcLOe7b/fR1NxJspQj+FQdeVY26YeH8Mizf+GzVas598zTeejO21GFhPS7n+XLy/sZkQ8tR9iPXC7joovS3eKRv0qp5GQNDQ22vniQ6CVu+WOolVKeJu2hyi7kikAyZvxh0L39MdTPTlEpdYwSoFIRkpFBSEYGvddcTY/VitNspmjVFvasK2R0eAc6WTu2hiY6zVaCO1qwlzfQ2+eoKQM0MhnBPQFYQwJQhYXSGxPOXlMPaoeVBNt+nK2tBOgG7pM9kjhbW+koKcG2dStdFRXQ20tgUhKaM05HM38+wRkZKKKjhRB1FKAcMYKEJ59Ee/PNNL39Nq0rP6ehqAjV1KlozjoLRUTEgOcaTVbmZy2g1tjMv9d+w/89/RThoaHMnjLFfTxYGcjo0VEkDQvz+0RYp1W7q52amjrIyIjis5WV1Na0o1AEcNbCFIqLjJSVNxEdFcyECVoqKs2EhgaRm1vFrFnJXsKUVNILrsqml267jenjx3PzC8+zdcdO3n/wQcalpHhdgz8j8vFZOkymDgDmzE4mPT2G5SvKWLOmitVf72H4cA0tzR309roqm6RkISdnmFfikJ4eQ0FhPevWGWhu7sDW0U16ekw/4clTYPLdYyA8J/RFjfztBWjB4REQIEMdoSRlUiwpk2JxOnqw2xxYzXby1xnYsc1EYkwoqiAF7RY7vb29yLqcNOxt9donLEiBUiODABmqsCA6nT3sr7eSoA9jymlHX+Ws4NhCJpMxae5wYoeH8/3bv5D3cSVjZw4jvs9M22S00tgQwotPLuP6pRdSWLyFG2+/ijde+oCgwCD3GmVwIGmjoxiW1D8mSJU+9i4HwUoFmZlRBAYp+PabPZhMHaTaIwlWKqiqstBpd3DSSfGkp0fhcPaQmKB2T87zbIeTJt0BLF5yMl9/tJ6l993AFddfwA3X3MKfr7sThcL767SnEbm014zpie6fkoi0dm0VGzfW0tMDvb09KALlbN5chz5J4zYr94oHfeetXFnBqlWVyGQyQtUK0jNivMSn1JTIw4oHhzKhT3D0I1coUIVHMPGUyUw8ZTIbNuxn7Zp9nHpqPFMm6zDsa2ZHeSOpqeEMS3Qli5IwFSCXs6XQxLr1tZwyx9Uya+wpRqEIwNYVJAQpwRFDFR7O4kee4Z/33s4kZyNNJ09nzc8/8ed77+cfL/+VkyZPAlyiSXCwgtGjI0lKCvNbJaTTqfpVOxUVGdm9u5VRo8I566wUiouNlJU1ER0dwvgJOip9cwQPYcorR8hI59mHH+SkyZN46OnnKCkt4+WnnuAEnypCf0bkrhzBBsCc2S6D9ZdfLmTjxjq+/noPkZFK7HYHXV095OfVusWjnJxELyEpPSOagoK+HKGpE5utm/SM6H7Ck6fA5LvHQHhO6MtIHdw/+H+BEKWOA2QyGfLQUOShoZx43TBOvO4cgANj37u66HU4wOGgt6cHd52gTAayAGQKOTK5HFlgIJr6TqrfW4Hs49fgVy6iczQ301FcTMfWrXTtdRlSBw0fTvg55xA2by7Bo9NQxAgh6mglMC6OuPvvJ/raa2n8+99p/fwLbAUFqHNy0JxxBvLQ/oapBkMbu3a2cOXsi+l0dPLZ+nVc8vBD/PT6G6QmJWEwtGGzdZOZEUN4RH/RxFOIOeecVIwmK9u3NbqeircFkZoayeRJcahVChoarNTVtdNitjN7lp4Ws52Gels/YSoyQklAgIxIj/c77w9/YPwJJ3DlY4/yh5tu5Io/LGbexFMZl6VDp1WTnh7Tr3rJ32vjs3Ss/noP7e3dVFSYkcsDCAlxtSkOhl4fRkSEkpaWThpNHZSXN7Jq1R5qa9sBl5DlKTDptGqvv81AHlTCU+r4RK4IQKUJQqUJ4qzLMzmr73Wnswdndw89zl56nL309vS64kSv5FkrQxYAAXIZAfIAamraKN/ZzJgxMST6mQ4lEBwOw0ZHcsF9U/jm9e0UfW/AbLSRlh3vYbKdyDuv/pvL/ng+/9nwA489ez+P3fcsQJ+xtw2tNsRdTSThWekjCTFSG11gUAAJiaHMnJlEZEQwn62soKPDQWWFmcamTk48MZ7Q0CDWrTMwYWIss2Yd8IDybauLidby7t8+5PV3X+avrz7N97nrueaSxzh1+hj39aRnxPSrXpo3fxTz5o/q9/ewdznp7upFroDIyBCmTo0/aEteU1MHPc5egoPl6JM1mIxWV0yoccUEZZCin8DkWwnly1DbAQXHLr7m6aPHhDF6zMAPHGacqmHGqQf+NztsWBilpU1kZg5eiSEQ/LeoNOHEzbwR88q/cFoSdGefyPr8Tfzxtjv4esU/GZbgGiJhtQ6SI3gIMeeck4rRaGP7NhMKRQBhoYGkpkYxeXIcalUgDQ026mrbaWmxM2uWHrPZTr1njtAnTEX05QgRHu+36IzTGZeZwc133885l13JBWdcwbTJM105gk5FekZ0v+olf68BdHU56erqobPTQcqoCLRaFdk5CYP+rfR6DRERSpqbO2ls7KC8rIlVX+2hxp0jJHoJTDqdyutvM5AHlfCUEvzPkMa+cwgteMNHqQkfp6P+Y1eycqTprqujo6SEjqIiuqurQS4naMQIIs4/n9C5pxGckuKqiFKI/6keKwTGxhL/8MNEX3stpldeoe3r1dg2biR09mw0c+ciCwx0t8gl6zWMTouiy+5g1siF1BnNTJ84hpRhri9N0pfjVnOnX8Gl1dxJfb3rSUNlRQurVu3B6ewhNDSIU04d5u6xlmgx2+k22igsVLJoUSqra/bSUG/DYGhzCzctZjtt7d2szTXQ0eHs85hSkzJsGK/c+DBLX/wbb373AT8VF/PMDTej0/ZPMiR8haH09BjOPHMUP/1UQ3JyKDKZnOzseFJSIykorPcSkKRzpWl98+YNJz+/DrlcRnGJkTBNEAmEkp0d7/p7FhmJjg728o87mDG68JT6fSGXByCXD701c2RKJCNTIo/gFQl+r4RGBHPu7ZP4z4pdlP1cy65fmohODyctzTV1r7FxJBee9Qjr8t7g6kuvc58nDaewWFym556CS25uFRaL63OsorKF/Lw6nD1O6us7vNroTEYrmrAgWpo72bbdiNnsOicjI5qm5g4sFrv7/UpKjO62uh07m4mJCUGrUxMQEMD5Z15LQ42Wj1c9yoNPL+G21qe59qoLBrxnf6LQ7NnJdHR2s7+6HZVKwVkLU9xVToBf0U2lUhAdHUJKaiRqVSDKIAUGQxthYUEkJIaSpA+lqNg7HsDBK6GGOqFP8PslOTmcZPGAQnCE2bBhP2vXVjFmTAyjF97G3q+f57RhcTSekMFps2eQGO96kCuJJq1mu1/BpdVsp67e5Y1XWdnCqq/24HD2EBYWxCmnJjFrVjJGo43a2nbCwgLZYbHTYLSxdauSReeksrpmD/X1rr0k4cZsttPW3kVuroHOTkefx5SKlBEjePKe53jgyb/wwadvkL+lkPtuW4pON/DAMF9haM7s4XR2OqiubkOtCuSshSnuKqeCgnovAUk6V5rWN2/eCPLzagmQB7hzhERCyc5JcLUcumOC62/mK1L549f2lBKZvqAfh+oncyj09vTQVVVFZ0kJHcXFOIxGCAxEOWoUkRdfTOjsWShHjhRC1HFAUGIiiU8/Tee112J64QXavvkGa14e4QsXUrwnlJISl/HqksUZLF9RRun2Fi7LvpKLLxrj3kMSTYwmK+ERbf0El7g4NaP7kpgPlpVRU9OOVhdCTk4CY8dp3YJLcYmRpuZOIiKUOB296PUarDYHoWFBaDSB7n2ldkGlMgBzi53NW+pI0mvc15C7poaM0Jkkjknm+4rPufG1+1kW8xCT0tLcQps8QEZ1dTtJSaFUV7cjl8s4efow97VccEE6F1yQ7iVY+ROQpNcC5NDjhLg4NSNHRtDU1EGyXkNq6oGR6R8sK6Omtp0pU2LZWljPjz/WMH681v23AW+vrIN5UgkEAsGRJkARwMxL0ti0zYjK3E1LqZmJF41GpVGSm1uFzTKCay96k+H6A60QWp2rXdvTrB9cn5cWS7fb9HzZsjJKSxsZlhTG1CmxXm10BkMbra12AgMDCA8PRSazotdr0GiUREeFoNEceJCnT9awYUMtjY0dXm11kgjm7NLzhxOfZZfhLZ566UaaWstZetO9VFa0UlJiJEAuo9rQTmZmFPtrrNTXtZOdk+CuxPKsqJJEp23bTdTX2dz363mPO3Y0I5fjutewIEJUgahUCmJiQjhtznBUKgWrV++lpradqVNiKSys58efapgxPZFJfX6M7pjg4ZU1mCeVQCAQ/JqsXVvF2rUGAB56aBqPFl+EfOe7XDIhnfmLFrpbRyXRxGi0ER6h7Ce4xMep+x50aPhgWSn7a9rQ6VTkZPflCDoVBQX1bC1qoLPTSWJCKGazvS9H6O7LEYLc+0rtgkqlnJYWO5s315OUpHFfQ+7aGobHno4uahQbt33MQ8/dwavaJ8kYfYLbi0oul1FtaCNJH0a1oY0AeQDTp9OvokoSnaSfvgKS9JpcLsPp7CU+Ts3IUX05QrKG1NRI93V/sKy0L0eIo7Cwnp9+rGH8BK37bwPeXlkH86Q6UoisX9AfWZ8oJbX5/Zf0dnVhr6igY9s2OkpK6LFYkKlCUJ5wApozzyR01h8IShyGIjpKCFHHIcGjRjHs1Vexbd6M8dnnaHn/fXJ0CYSOzCHFo8/a82d5eSObC/eztfZnnrr5Gq+KHjjwpVqqIgLcLXD+zL2lfaV2Da32wBNkqTqpvPzAtKRpOcNoauroV3kklwcwPFlDUtLJ6GP0fFvxMafdfDPXLljCKPVEdu82Y7V2Y7V2s29fK4FBchITQv22Q3gKUf7aJnzvsdXcye7dLXR0OFCHKtwthwWF9cjlAYSqAzGZOti0sY66OteTIc/JVr5eWQKBQHA0MH3hSNZ/vYdoaw8bPqlkwml6L08mSTzp7t1BfIKK2afO61fRI31eqlSuqqHMzCgAv+been0Y2TmJVFY0U1Nr5cQT45k3dzgAEeFK9PowTEYr27Y3sndvKwmJofT09JKREe0VDyyWboYPD8fpCCUu9h6mTvoP73zwCut+/JHTpt+NqSHIHQ+amjtQhSiwWrtxuXr2RxKd4uLV7oqxge6xpMRIRaWVzk4ntXVWbDaH+wGHXB5AYkIoERFKPvmkAnOrq/Jr3vxRA3plCVFKIBAcLcyenez1c9aCLHJ7LiG0djkbPvwncZMXsvWXJnZVreehu2/0quiBAxVUUhUR4G6B8zX31us17ol9Tc0dFBeZiIk5UFEkVSeVlzWxevUeAuQBTJuW6JEjHBDCAqQcQT+LhNjhbCj+J+ddcTWXnHcVWs1Edle20m7twmp1sHdfK0HuHKG/F5anEOXdRuf/HlvNdiorW+jsdKJWB7pbDgsK6gmQBxAaGojJZGPjxlp3h8kFF6S59/P2yhKilOAoQSa1dxxm+15vby8Oo5HO0lI6S0uxV1SAw0FAuIbgjAxUU6cQesopBMbGuqbmHcHKLMHRQV5eDWvXOph9ywtkGrdgevkVJhR/Qoh8L45hF/TzXyouMfKXz/5OVWsFpvYGPnjoYeQeXmKSSFVQWO8WdlJSIwlSKvwKQOnpMUTHhPDiXwuprW2ntLSZefNGuSugCgrrKS4yUlPbTmJCKGlpkVhtYV7tdHp9GCdPT0SvD+OtN7exd2c3Z42+nKqRm/jbVx+QkbCVnPjTSUvT0tnZQ1JSKBaLa9ysP3xFsabGDnJzq/pVMkXHhJDed50gY+/eVnfrik6rRq8PY+zYGDZurGXfPgtR0cGoVIHMmJHoVY3lK/wJBALBb4XUnjF7drLb58bS2MGqV0soWLWP9JPjWbzENY1oxfIy1vzwH/6z5RGClEH8+62VjB83yWs/qfWssKC+z5cqissui+vzoLJ6iTFanZpxYyE3t4ramnbCNcp+FUnm1k6Kthrp6HQQHx/KiBEaxo3Vutd5fn4vW1ZGxa5WEoedzB03juX19+7lHx/+kdnTbiU8PIvIqGBysuPp6OyhqamDhPiDe/w19sUDf1VMMTEhzJqV3HctvUCvR/ISxthxMUAve/daCAhwCW2SybpnC6Gn8CcQCAS/Ff7igaf3mfR7w54xfPTovVSs/5Q3v92CsWUPHfYWnn/sYQI8cklJpCroiwcAKSmRBAXJ+wlAOp2KWbNdbXwv/rWQmtp2ykqbmD9/pLsCqqCgnuJijxxhdBRWW7dXO51er2H6dNfPt97axp5KOGXSDTS0ruMfy9/ghBGTyEheSFpaNPbOHpL0YVgsXYPkCN6imFeO4CEaRceEkK6Lxmh0CU1790k5gqvlUK/XMG6snY2b6ti3z0J0dAhqVRDTZ3ibnx8NOcKQRana2loSEgY32hIcJwQceqWU02zGXlmJfdcuOsvKcDY3g1xOYNIwwmbPRp19EiGTJhEYE0NAeLiY2vE7w7MUd9pD5xI2fz6Nf/87LR/8k86HH0ZzxhmEnnKKW6Acn6Xj/LrTefnb11i1YQN3//1vPHvjTV7/uzGarLSa7cTFqQZsgfPEYGjz8mGS2L6tkaKiBmJj1UyZEkuyXkNxidHtTSLt5VmtpdeHUVfXzojhkVw373qyRqXzxL//jqHxda6MvJJzTjsRvT6MDT/XsnlLLSBzG7F7ekwNNvXP935cUwa9DcylY+ERbXQ7eujucjJ1Shzz5rl8rjxFu8mT4kSFlEAgOCrwigl9yYcmJoTz7p7Ed2+VUvpjLW1NnWTOSCQrS4ezZxptXTkUFP/EtTdfwicfrCY56YBXh6ffklRlNJiHkqcHU3bOgXiwbXsjRVsbGJUSyYSJsUAvFksXWwuNAO62O0//peyceJqaO9Boghg1fBx/ffwT3vvwUb7KfZTU5NM55/Sb0GrVmFs7qdpnYfVq1yCX9IyYfj5T0p65uVX9qpg872fS5Dj3tZiMViLCD+wREe5a53T0EKNVMWN6ottg3XcPUSElEAh+a/zFA3/EjkzhnLse5KPHHuCsiSN4d30VX333PQnxcdxx0w1ea41GG61mO/FxavR6zUE9lAwGi5cPk8T2bSa2FjUQFxfKlClxJCf75Ah9e3lWa+n1YdTVtjNyRBTXz72dzNFj+Nt7r1BTv5fzoq5j/mlT0es1bNhQw+bNdbhzBB+PqYGn/kX3ux9PcU3aQzoWHqGku7uHri4nU6bEMX++qyXeU7SbPDnuN6uQkhiyKJWZmclrr73GRRdddCSvR3A0IBu8UqrX6cTR0EBXVRX2igrsFRU4m5oAkEdGEpSSgmrRIlTTT0Y5bBjy6GgCgo/8KEnB0YtvKa5cpSJ26VIizjmHhsefoPXjj7Hm5RF1ySUEJSeTnh7Dg+lnMWaChisee5Q3Vq4kOTaOm84/372nwdBGfb2V0WlR/Vr7/Pkn6fVhzJkz3C3mSMbi4Jo+lpCgZtas4RQU1nt5k/ibYjd33gjSM2Lcr9186enooxO57x8v8VruK5QZdnHDuefS1NSBpbWLpqYO9zX7CmfS/pERSrRaFcnupyP+JyFVVrSQn19HZmYUMX2VUnp9GGGhQVgsXbSYD5j0imlKAoHgaMQ3JkgEBQdy+o3jyPt0NyW51XS0dTNhnp70jBjOPmcZS65ayC/l27jyhsV8smw1UZGuL9EHJvdFMWlynNeeen1YP/8kvT6M0zziQWGBdzzQaALdgzJyc6vc0yn9mZXn5Axzm5NLr6envcHTf32Zr757lfc+2kVr6/1MnpSJ09lDTW07JSVG0jNi/ApnJqMVZXAgiYmhKIMV7kovf5/neXn7yc+rcwtrhQX1bmGuqNhIj7MXs4gJAoHgKGageOCPYeljOPOWO+GvT3H1vD/w5tdreOO9ZSTGxXHReYvc6wwGC3X1VtLSovq19vnzT9LrNcyZk+wWcyRjcXClwwnxambNTqagoB6LpcvtNeVvit3cuSNIT492v3bj/y0iMS6ZZ199hg8+f4ZdexZy+YUX0NTUQatXjtBfOJP2j4hQotWGkJzs3crnW/lVWdlCfl4tGZnRaLWuSim9XkNYaCAWi9wnHvjf47diyKLUE088wR//+EdWrlzJG2+8QVRU1JG8LsFviCzAVY3S29ODs60NR0ODS4SqrqbLYKC7pga6XT26Cp2WoFGjCF6wAHX2SShHjkQeGUmARiOqoQRufEtxP/10J599VsGiRakseudtLKu/wfjcsxiffRZVdjYR551HQHAwi049lRqjkfveeJ373nidEQkJnD5tGtD/y7Vn5dGXX+ymqLgBa7uD9PSYfsKSZwVRSIiCri4ntbXtGE3Wfm11ublVFBU1MGHCgTHhnmbkEh2WIG6cfRPf//ItueXfYPz3Ph6/+k+oQxPd5bCee/tOEAyQu8zMg5SKfvcjYTT1jf2ubXeZGQ4Pp6KimfFZOkaOjCA8XMn4LJ0rUcmvc/trSS2Knn4oniKbQCAQ/JoMFhPOPXc0J5+fSrg2hJ8/qmDjZ7uZcuZI1KpQ3nn13yy6dD77DHu4/rYr+ODNTwkKDPIrtnhWHn3x5W6Kihpotzr6VQd5CkPjxmqprbWycWMdISEKcnKGMW5sjNtrymBoo7CwgYqKZo8WOrxM1BsbOygpMZI2YgGJl6Xzr88e4t2PryMm9mHmzz+TbdtM7pY5T58oSRgzGNqwWbvRakOwWR3uKYO+0/FMxr54UOMa+93R4XRXeemTwsjIiCJUrSAiQsnbb28jOjqYk6clMmlyHCaj1S1gSX5UYvKeQCD4LThYPPAldWo2s66+gd63XuWCmdP5aN1PPPzsX0galsj0k04E+gsunpVHX35ZSVGREau1m/SM6H7CkmcFUYhKQXd3D7V17RiNtn5tdblrq9ha1MDECbHM6hPVPM3IJTqsKi45+y5+KlhJfvFnWGx7uOPG21CrPXOEA3v7ThCUy2XExqkJCpL3ux8Jo9HGqq/2UFPbTl29ldhYFRMnxDJ2nJaRoyIIj5ByhBry82rd/lpSi6LkT+UpsP2aDFmUuuGGG5g/fz5XX301GRkZvPXWW5x55plH8toEvxV9LVSm557zqpaSR0URmBBP8JzZKE8YjWriBALj45FrNASEhQlvKMGQ+eyzCn74wUBNTTuTJ8eRfPoCQk89hd2PPot11WfYtm0n6pKLUY0bx03nn8/eujre/vILrn7iCR6/5B5GxCYxdpzW/QUeDghF5eWNGAwWFPIAd6+2b4WSZwKTm1vleqJS105oqJIkfZiPYNNLR4eDvXtbMZqs/abjAVQb2igsaECfrOGpG//ITyUn8pdP3+SyZ+7gLzf/mbS0dPd7uyf59Y0vTxkVyei0KLeh+WBPsD1bEGfMSKTFbMdi6aK4xEiPE8ZPcFWGPf/8FrZtM9HU1EFKaqTXtQJef4vy8kY2bKglTt3NlKkJiGHPAoHg1+aDD8r4+ecarNZudxKiGRFGzGQtTUWN5H1SwZQzRqCNieUfry7n3Mvms2XrRq7/840svfFJOjqc/aqeJJGlvMx/TNjhZ9CEVqfG2GBj184WrNZuIiOC+4k2FRXN1NfbyM2t8hKmPKfj7d1noa2tixnTx/HSk5/xyaq/8sQLdzFn5nqeeOB5YqJdwphnu57UDuIpVNkGiQm+LYgdHQ56e6GpqQObtZu0tCgWL8lgxfIyiooaCAlWYO90uKcXStfqdOK+FqmiTJ+sQdbVS1B0MJFxQqwSCAS/Hv1yhGTXN9OqqlZKS5vIzIwma/Y8bOYWej/6J42TJ/BDQRF/uutebv/jo8TrhvXlCBq3MCSJLOVlTX3xQOYRD7wrlDzFIXeOUNtOaGgQSUlh/USbzk4ne/e1YjTa+k3HA6iubqOgoJ7k5HAevP1Wft6czdv/eo1bHryJx+65m/SMdK9r9BSjpAmCnoLRQHi2IOqTw9wxxWCwYLV2M368qzLs+b9soWSbiaamTlJSIvtN8vP9e23IqyFa42TqiUn/1X/Xg3FIRucjRozghx9+4NVXX2XRokWkp6ej8JmWtnXr1v/pBQp+fVSTJhE6axYyeQCB8QkEpYxCmZqKIiqKgNBQ5KGhyIKCfuvLFBzDLFqUSk1NOzExIZSWNpGcHI5crabylMvZ2Z7KzPJ/0/z669jGjyfyoot45sYbqdxfTdHOCraX1rOvDIqLTYwcGY6tb/qeJBYVlxhpt7o+uKed7DJ3HaxlYXyWjj27W+nsdNLU1EFVlQWns4cFC0aQnh7D2HFajCab21wcXD5UFssBP6viIiMdHa7rsNocnD0rm/NPP5HbX3mZa596km/y83jhz7cQpZGmdBwYXz52XMyQK5Y8WxAlcctgaKPRZKW0tBl7l4P/rK8mMkpJYmIoGk2Ql/+U9LPVbKfV3OmeOLhrVwtJkU4SEzWMOqz/ogKBQHD4ZGZGU1nZQmbmAU+L0tImtu01MzE7lpbiJvI/283E+cmkjhrNK8++xVU3XoTF0s2aNXupb+hg6tQE9Elh/drhSkqMtLe7YsLJ0/rHBE9RCbw9okpKjNTXdxyICRkxzJqV7BaRpHO2be+LCfEqEuJDqalxTcbbX2Nlwngd9y99ltPnns69j97G/PNO4amHXmD2qfPc7+vZMu5bETUQni2IWp26z1sqGJVKwY6dLRQVG9m9p4Wy8mbiYlVERAS7r9lX+FKpFOTmVrFxYy1NTZ3U1FhJ1IagilOROTH2v/7vKxAIBEPFX44ArpiQn18LQHJyONnnLcFqbsH57Vc0tIykxtTCtu117JD3UFxsZOSocKzWvhyhT2Qp9ogHUnXWYG1s47N07NnTSmeHg6amDvbts9DjrGbBgpGkZ0T75AguAWz7NhOWtgN+VsXFRjo6nEAvVls3CxfM5Nyzp/HAk8/wp7vv5ewF83nozqWEhYa6BSJJjDqUqiXfFkSp+quysoWGeitdHjnCsMSwvhzhgP+UJHypVYHuyqnVq/ewq6KFuBhIGBZxGP81h84hT9+rqqris88+IzIykoULF/YTpQTHPgqtlmEvvwQ9PcgCA3/ryxEch5x77mgmT45zP/GQcP07h/Db5hP67Qqa3nyLhkceIfz883n/wYfYYzBirlewcWMtNbXtOJ1O5HI5I0YcCCTjs3RY2x1eEy18W+E8K4cmT4rj2v8LwWBoQ61SsHr1Xmpq21mztsrdcy49We6yO/hgWRktLZ2EhyuZ+Qc9Oq2aadMSUIcqCFYqvPZ96tpbSIvN4OUv3uWka67mb3fcyewpU/q1CA4V3/uQfn/77W3s2WOmpxLsdgeZmTHccuukAU3VwyNc92802ZDLA1yTmEa6nrgLBALBr83//V8W06YN8xMPXD+j5g3ny5dK2PLVXsbNHMYp02bx/t++JDhQT35+rdu7LzY2hPp6KyNGeozOTtZQU2MlOyfeq93Od+KeJGZ5ekSpVApqalwxYe3aKrcvlRQT7F0Oli0ro8XcSbhGyR/+oHe3B5aUGFEGK9z7nvaHBegTM3jgidv5vz9fyoWLLuG+2x/zK5ANBd978Px9Q14tRVsb6OnpxW53kpkZw+LFaX5N1cFVXVa0tYGODgeJCa7KK1lXL6kpEUO+HoFAIPhfMHiOgNdrs66+Hqu5hQscThInn4IzMJWNm+pcOUJPD/KAAEaOPNADMD5Lh9XqPRnbtxXOs8pp8uQ4ro0JwWCwuEUaV46wzydHsNDV5eSDZaW0mDvR9MUDnU7FtJxE1OpAgoPlXvs+uPR+RunH8f5Hb7OpcCvPPvIgo/SuqqnDaaHzvQ/PdsXde1rpqXTFgzGZ0X05gn9Tdal9US6XESAPQK/XkJHqErKOJIekKL311lssXbqU2bNnU1pailarPVLXJfiNkcnlIJf/1pchOI5JTg53P/3w+9qNNxI2bx51991Hy3vvoczIIOvSS1FkhpOQoCb35x04OxTU1VqpMljIyXGdlp4eg9XmYOeOZgyGNr++TJ5T+6C/2FNcYsRk6nBPuliyOAOdVs3yFWXU1LYTHRXMxIk69/np6TH9vKvAlegkBI/mzVue5oVP32LR3Xdx7vTTeOWuPzN5krcZrz9z9oMhneN0OtGEB6HTqunp6SU7O77fPX377W5+/LGGGTMSmTgpjmpDG9X7LSQnhzHt5ESiFF3CB04gEPwmHDQeAOfdPYmvX9tG8dpqOq3dnJzj8g5RqwOJjg4iSS/DUGXBZLJhqDoQE5RBCuLi1CiD+n/l9Te1D/oLPiV9MUGaiLd4SQZanZoVy/tiQnQwEyd5xISMmH7T9QCsbcEsnPMII/XfsvKrl1j/83peeuZvTJ2c7XVdvsbsQ0U6z+noiwk6NT3OXrcgJ93Tt9/s5sefatyT+fT6MGLj1Ni7nGTnuLwIzQ1WEhLEgwqBQPDrM5SYACCTyTjjlruwtZpp2FFAzvknkJCQyvqfyujqlFNXa6OqykJOjqtKNj0jGqutmx07mjEYLH59mTyn9kF/sceVI9gO5AhL0tHpVCxfXt4XD0KYNDHWfX56RnQ/7ypwtfXpIrL481WPs/yLN7j0uhu58qLF3HbDdYT4DAjzZ85+MKRzHI4ewt05Qg/ZOQle9/TNN3v46ccaps9IZP78kej1Gqqr26iutjB8eBjTpg0jVNmFXHFkC1WGLErNmzePzZs38+qrr3LZZZcdyWsSCAQCAIJHjSL5X/+iZdkHNL76Kg2PPUbkhReyz+Hgic+fYv74ueSknOo2CZQYrF1voKl9EpLA9O23u6mvsxIZoXQfk95nfJaO6JiQfn5WTY0dVFQ0o1Yp0GnVqFUKAuTQ1ihjtGwBTl0sX+atY8vVJbx0223MmjzFvbc07tXa7nB7Sx2siko6JyUlknPPHT3oOT/+WMPu3WYA5s0bRae9m9qadrTaEHRaNY6WrkHfSyAQCH5LlCGBLLxlAmv+UcqO/HrsHQ7SsuNJTAri8RcepXJvBY/cuYzx47VuI3E4eDwYaGqfhCQwffvNburqrUR4xAS3YXmyxq/o1dgXE1Qq1zFzq534BDV792YzZkQktS3vsfjKs7jkwiu54+YHCAt1XWNJiZHiYhPtVschGZFL56WkRnJeX0zwd96PP3nEg/mj0OrUBCpktFm6vAQ9gUAgONqRKxQsuvsh/nnvrWz+/BPs+hReXfY8c2ecT0bqDD85wsDtegNN7ZOQBKZvvtlDfZ3NKx70zxG8/axcOUILalUgOp0KtSoQuVzG7nIHupDziM36hX998hm5P/7Mk/ffw0mTJ7n3ducI1u4hm5G7c4TUCM4994QBz/npxxp27zEDMH/+SHQ6FZ2dDmprrGi1LvHK1nrkc4Qhi1JOp5Nt27YxbNiwgy8WCASC/xEBcjnRV15B6B9mUnvXXTS/+y47Q9VYOzv4ZOPnjDthBJDgni407eREv5PrJAZLUDwrnVrMdnp6emnpG59qNFmx2lwmsb4T/CR/J6n1Dw5UbPU4Xf3lra12MmMmc+PFp/HKV+9yzl13cdFpc3ny+uuJ0mjcwUxqAWw12wmP8D8lT7rOyAglWq2KjIyofpVXvhMHZ8xwPSWSfnoGT4FAIDgWkCsCmHvtGH5csYtf/lNDV4eDpIlq9lTtxtRYw8tv3cHKf3/Jnsq2fhPn/DFYPAC8Kp3MZjs9zl7MZrvX64uXZFDoMa1JEoFMRu+YkJoaRX2dK9npdvQgD4hh+sRHCIsuYvlnL5H7n+95/P7nmDl9jlvsktr/zK12IsLb/IpMntVeyuBAUlIjmZaT4FVh5Xm9Wp2aGdP74kHfTzggsGWJmCAQCI4xlOpQzrvvcf55761sXPM9drudr9b+i4y0kUDigRxh2jC/k+skBhOsPCudzH05glnKEYw2rLZuV47gM8FPp1NhNNrcrX9woGLL6eylvb0bh7OX0Yknc8uN5/Dws89wyXU3svics7nrzzcRFhp6IEfoawF05QhKv0KTdJ0REUq02hAyMqKZ7BEDfacNTu/LC6Sf8NvkCEMWpdasWXMkr0MgEAgGRZmcTPK//kXTW29x/t/+zg6tjn+bjDz94d/pbg9mXzloNEEk6TWDVhgNJlh5ek35fiAPNsFPOi6XB5CYEOox3tV1LDpaSWFhIDExwbTUy1k88SpmTdjJm6v/xZrNm3n+5ptZOGMG6ekx7pY8i8VO5W6ze/S4P0+sADnExakJUvb/KPe93nnzRjFxUhwGQxtGk9VdESYQCATHEjKZjFOWjCYkNJAtX++jq9PJX5/4B9fcvIgdFVt54PE7mJD2R4qKGlzm4UmaAauMDmYq7uk15SnaeL6u1fWPB9K5UkzIytIRExPiXpOTHY/D0YNWG4Kj+2Qeuj2b1T/8latvuoiFC87jgTsfZ3FGhrsdz2KxU19n9StO+U7SmzC+f8uf7/XOmz+KefNHYTJa3dMKpYowgUAgOBYJ18Vyzp0P0PXIPdS1trGhbCevvPM8trb72Fne48oRkgavMBpMsPL0muqfIww8wU86HtAvR3Adi44OZutWI9HRwRRvtXPGqX8iZ0oxH375Aet+3sAjd9/B7FNmkJ4R7W7Js7RJOUKLWwjzvU65XEZsnJqgIG87Ht9rnT9/JPPnj8RotFFQUI9er3FXhP2aCJdygUBwzBAgl6O97jrCTjmFB2+/nb3r15Nvs/HWD29xwdg/MnpU9IBPvH3Jy9tPfn4d2dnxpKRGuo3OR/f5iui0ardPlGvS0uA+VHp9GCdPT/SqbPJcE6NVs36dgY6ODlJSI1g060yuOW82S19+icsefYTTc6bxzE03YrVBjxM0GiWddod7WlJTY4e7n1y6BrVK4W71k5AqpDzvRcJXqBIIBIJjlalnjiQkLIifPtpFhD2UV595i2tuuYhPvliOOmQ4CQnZ6PVhhxYT8urIzIxC2/fgwdeEPKavbdve5UAux92W50/c0uvDmN4XEzwN1gG0WjWZGTF0dDowt3QSHZXAu3/7kJWrPuKxZ+/np/x13HPbw+jjZuDsiwf6JA3m1k6XF0p1G/bObrI84oE0Sc/3fk1Gl5gVF6/qd8xXrBIIBIJjmYQT0pl/01K6XniapnYrOwz7+Xj1q/xh6p9IGRXttwLKH3l5NeTn1ZKRGY1W6xKZPIUmnU7l9onKXVvlNW0P+otber2G6dO9Dcw912i1KtatM9DZ6SQlJYJFiy7kiosX8OBTz3Dd0juZP3sW9976Z6y2HpzOXjRhSjo7ne6pf945gvc0Pc979ueZJeErVv3aCFFKIBAccwSnp5O6ciUv3vUA5772V/abG1m3azlnnv7ogK1uvm1w+fl1FBc3sG9fK3/4gx6jqQN5gMw1yc9HyCkqaqC3F/e0PX8MVoEF0GV3YLc7GT5cQ2SEkg+WlZGdHc/9i28mITiNlQWfMeXKK7lu4fnMzZpNyqhoKivk5OfX0Wiy8p/SZnfZr2S87g9JeBqd1r+lzzPBOhxjdYFAIDiaGHvqMEJCA1n7Xhmq7iSuu/xO/vbu0/zzo2e54sK/kpE+c8B2N99WuG+/3cfOnc1UV1uYMiUec6u970gveg5UxHpWJdlsjgGvbbAqLHuXg/p6K5mZUURHh1BW2uh68BE7jRsuf5cNBW9xxwN/YlzGJC45/27GjZ1CY2MHRcUWlMoAysoaaWrqBA6Yrg+EwdDmbhv0J5xJPw/XXF0gEAiOJtKyp9N6UR0dXW/xcksrdcZatpR9yOkLHhyw1c23DS4/r5aiYiNl5U2MGaNl3Fj7gZP0B/5pMFjY2pcjSNP2/DFYBRZAV5eTrq4ehg/XEBGh5INlpWTnJHDb/91LTPiXrN3wEXPPu5ArFl9KzqQ59PQEYLV2o9OFeE0FhAPG6/4YzDPLU3Q7HGP1/xYhSgkEgmOSgKAgGuf8kYuqQ3h55WNsb9jDz1+/w9TJ93tNkRuoOig7O559+1pxOHtpaupEHiBjx44m6uvbCY8Idq/V68OYMCEW6O33lHmowk55eSOrVu2hxWwnOFiBwdDmNplNSFSjsAzj/rPvY0/HFl75dDmf//wDz9x4Ey0GDSaTjdJSvFoDBxLapOv1/DkQkgEiIEQpgUBwzJIyOZYglYJv3/iFzNDTGDt6M9t3/sCXa57hqsvm91s/UHVQaKiCwMAAoqODSUuLwlBtYfOmOtTqQCLCg73a9PxVJR2KqFNY0MD2X0y0Wuzo9Rp27Gymtq6dmGgVJpOTeafcxR+vupaHn7qbux+7kIvPv4Lh8YuorOhEq1WhVgURrFS4WwoHEtpg6DFBMkkHhCglEAiOaU485wK2b9nJpbYO/rZuE7v2FFNasZGpUxd5rRuoOig7J4G9+1qx2530OHuwtNnZtKmeUHUg4RFK91q9XsPECbHuf3syVGGnvKyJVV/tocXcSbBSjsHQRmWlGYCExFCwp3DjpU9Q0/Qjbyx7h29/+I7pk8/HatahVmux2rq9WgMHEto8r/FgFWNeOYIQpQQCgWBwMjOj4arLSMqJY+uyN1jUUIvpxReJuvpqFBrpg9f/F/KcHNfQhvz8OjIyoujocFJf305cXChqlYLc3Cqgl4SE0D4zwTC3obn05d9X2PHXEiita2vvRiGXIZfL0Os1BAcryM6OJzLSNfZ1fJaOK9Mncun8+dzxyitccN+9nDxmIrPTFnBSVjxBSoX7GnxN1j2RKraMJisFhfVewtVgnlkCgUBwrKLPiGbhrRP48qVirjr1dj7RwN1L7yM+IaL/2gFiwplnpBAVpSI6OthlbN5qR60OJDxciaHagrm1k4T4UABiYkK8DM0NhjaKio1UVrQAB0QdqSUwOyee1JQDMQHA4eih1WwnekIIEybEEh0dTGysCkOVpU/YymDVR+t4f/nbvPz6swQErGRmzpVMOXEx6pAQv75S0L8Nz3ON7/GBPLMEAoHgWGf2tTfR3d7MeW025PFJXHrhWf3WDCTS5OS4TL/z82rJzkmgw+YgVB1IXHwoalUguWurADxyBI3b0FwShHyFHaklMDsngZSUSK91be1dyOUyAuQB6PVqgpVysnMSiIw4kCOkZ0zi/IVn8vCzz/P+p38hI3USc+b+sV9roK/JuidSxZanf5S0ZjDPrF8DIUoJBIJjluTkcJKTw2HBdXDbdbR88inGp57C+NhjRF56KSHjxrlFmvLyRnJzq7yqmoKUCkLDgqgyWBifpWPe/JHo9WFeLXt791qoqmolODiQRYtSsNocAwo7+fl1lJY2uvf2XZes1xCkVHh5QUneVRIn6PV8/uyzfPHjjzzw5hs8+tmTXNYxn3suuxxdjEtsajV7+1v5w1+FmGcy5vu+AoFAcCwTO1zDuXdO4ou/FnH5tAcZFjPS7zqtTk1jYwe5uVVeVU3pGTHYbA4KCxvcx+bPH4m5tZOirUZ6e8GUZMNi6SYvr4YQVSDTchKw2Rzs2NFMdHQIoWqFl6iTn3cgJiiDFO4v/LNnJxOiCnRVZY2OxGYLc4tMOTkHrjUwMJBrLrues+afwzMvPsbnX/+VbTu+4Pab72PipDOAwT2jJAYSrXw9s0SFlEAgOF4YPiKSq55+nKC7b6GjvQ271YoiPNxrjSTSlJc1HcgR+iqDgoLkrhyhSsoRRqDXa7xa9vbua6VqXyvBIYEsOicVq617QGEnP6+WX0qb3Hv7rktO1hAUJPfygpK8qyRGp6Tw7zf+xlfffc+zr7zGjfdcz4WLzuZP11xFTLRqUM8oT/xViPnzzPo1EaKUQCA4bog871wCx43jgYULueC110icOZOI889HJpf7bVfT68OoqGjGYunCanN4eTBJLXu1te3U1rYjC5BRXGJk1qxk97m+wk52drz752ACkL9KJ9+WvLNPOYX52dm8/dWXPPfPf/Lh2rXceO55zBg9k/r6TkanRQ3qYeWvGuBgvlcCgUBwLBMVr2bRnRP5/IUiNn+5h0kLhlPduJPKvbs496zF7nUDtap5xgSbzcGkyXGYjFZABvQSEqIgP6+OKoMFp6OHULXCKyb4Vill58S7fw4kABV6PNX2PN+zJU+ni+P5J17j6kuv47mXH+fGpVcxYdxk7rrlAeS9Iwf0jPK8L8+fEgebPigQCATHMkqVmkX3PMK/7r2VTZ99yEnnX8Rb/1rOVRcvISw01L3OX7uaXq+hoqKlL0foZvLkAznCxAmxWNrsVFe3YTJ1AB0+OUJ/YSc7J8H9czAByF+lk29L3lnz5nLaqafwwUef8Pd332flqtVcfclFTMycTV19h1/PKE/8VYgdzPfqSCPr7e3t/c3e/SjEYrEQHh5Oa2srGs3QHPoFAsHRwxVXXMH777/PKSmpvKpQoIyPI/qaa6lsUfTzfzKarGzf1gj0Mnac1q9gk5tbxfr1Bnel1FCqi/Ly9rNuXTV6fRhz541w71te3siatVV0dnSTmhpFWlqUu2JKqmyKi1MTHqGk0WSltLSZ7Ox4MsdF8NKHH/Lap5+gkCtYmD2HS+ecQWCAyq+v1OHgaGlBJpMRfvZCZAEBh3Tu8fq5ebzel0BwvNNu7uTzF4rYVbmDpz++jl56+OebnzJ1kqsMyZ//kyQCefpF+Qo2hQX1FBY2YLc73JVSB6su8owH8+aOcO8pXUOAXEa1od1r6p9Wp3aLVXHxampr2zEYLMycmUROzjDyNv3E0y8+wi9lJUwan80pJ11KWupkssbp/mcik7nByvCxMUTGHfp+x+Nn5/F4TwLB74Wq7cV89tRDfFi8g03lu/jD9JN5/flnCej7vuvr/ySJQL5VS54UeMQDlSqQaTmJQ6ouysurOZAjzB3h3re8rIk1a/fR2ekgNTWStNHR7veWKpvi+3IEk8lGWWkT2TkJZI4J4/V33+f9Dz9GGaRk7qmnc+7pZyOTBfu97sPB1mpGrggkY8YfDvncoX52HlrmIRAIBEcZVVWtrF69h6qqVgBuu+02VCoV/6ms4J3x4+m1d2F8+mkUvxT0O9dgaKO+3uplbC5RXt7I8hVlhITIWXh2Ktf+39h+gpTk22Q0Wb1eX7eumm3bTOTl1bp9PMD1JKa42MjOnS102h3uVkDpafjotCigl507mvnxxxpKSxvJz68jPDSUB6++mtwX3+QPY0/m4x9Xs/CBG3ni/bfZut0w6LUIBALB74mqqlZ+zKtl6pITSBudTtaIaTgcDm68/Rpq62sAV3VUVpaOkhIj5WWu9jqpxU2qkPIVd8rLGikqNqLVhbB4cRrXXDPOS5AyGa0UFtT3VVYdwB0PNnjHA6laq7jY1DfQopkdffEAXFVNaX0xYdOmWsrKmsjPqwMg58TpvPXXlVx/xXM0Npp54fUbePQvV/DZl1/R09Mz6PUIBALB7wUpR0AzglMuvZoTE7UEKhT88NPPvPLWOwOeJ4lAUoWUr7BTXtZEcbERnS6ExYvT++KBtyAl+TYZjTav16WYsGFDDQaDxf16cV9M2Lmjhc5Op7sVUKqQcsUD2LGjmZ9+rOGX0iby82oJ12i4689/4qO3P2DKuJP54ttPufKWK3nl7TfY9oth0Gs5mhDtewKB4JimtLSJ/PxawOUxNW7cON59910uvPBCXlyxnKlvv03OzxvoXfclsYoktjkWEB0TwvZtfSO4B/Bm8izlXbI4w+uYNHUvWKlwjwT3FLX0+jCqqy2MGKHx2nt8lo5qg4X2dgfJeg2+LX6SQXl4RBvR0Up3pZREZ1sgWVEzSZk+FYO9mNWFa/nx6R85e+MpzEibjtwW3e9aBAKB4PeEZ0w4945JOHof5t5Xq6hp2sMNt13Jh+99hTJI6RaF2q0ObDYH9i4Hcrlrsp4/SkpcRuahaq1fwWr16r3I5TKmTx/Wz7ep2mBhxEjveJCVpaPd6sDpcCJXyMnIiEIZpHCvkVrrTEYrtbVWDAaLux0QYP9+KzJHBvNnPIdSvYfv1r/HM6/8iY+/eolLL7yKkUkzMVR1ufcSCASC3xue8WDBgrNorK6iwdLOh5tLeOWtdxiTnsasGdO9vvNHx4RQXd1GZ6cDtSrQ777FJUYqK8yo1Vr/glWJkeBgOVZrX47gsUaKCSNHhnu1z43P0lFdbaG9vZvkZE2/Fj/JoDw8Qkl0dLC7Ukqi06YkNWk+CTHTMLVu4T8bv2Nz8VrOmDuHyWNn0t0Z3e9ajiaEKCUQCI5pMjOjvX4CXHDBBRQUFPDcc8/xf7fcwsaNG+n8YBUpX3zAqNKPqYk9n6ISOx0dDlJSI/zuO9jkCSl4paREMn6Crp+oNXfeCNIzYvq11qWnx1Bba2X9egPr1u0HXIbonnj6Ps2bN8rrmF4f5va6GjtuKi+EXMsH337DW198wce5uaQmDucy+QJGpp5GlEeJrORX1WV3uE3dhcm5QCA4HvGMCUpVIEvuyaHd/lfu+OslbCst4vHnHuCx+551G5Irg10G5B2dDswtnQMafg82na6kxEhNbTuJCaH94sG8uSPISI/p1w4oGat/v2YfbW1dZGREuVu54YCQpNWpufTSzH7vqdeHMWGiKx6MGzuGP9+0hC1bN7Js+ds88fyDBAUqOfnEM0hIWkxvbywymQw40KZo73J4TPoT8UAgEBx/+OYIs6+5geaaamrMbfy8aw+3P/gIX/zzfa/v/AaDhcpKV7VScYmR6JiQfkLOkHKE1AjGj9f1MxyfO3cE6enR/Vrr0jOiqa1t78sRqgGXIbonnr5P8+d7D/PQ6zVMnBALxDJ2XA7K4Bv5+Iuv+OfHn7Dy69WMGp7K+WedxQmj56EJOxCnpFbFri6n29T91zY5h+PMU2r48OFUVVV5vfbUU09x9913D3kP0TMuEBwfOBwO5syZw/r160lPT2fz5s3Iysupvf0OHM3N1I+ZSbFsJM6eHiZNivMyOZcqoZL1GhoaOmhq6mDatAS3kCMdP5i442teDpCbu4+VKytwOHpJTY0kNCwIjSaQWbOSD7vC6eefDfzjsx8obyqgvGYHcnkAp009kQtnz+a0E08kf0MDRUUNNDZ2YDTZGD9ex81/muS1R0NlDbW1NvSXn8/wEZGH9P5H4+emiAcCgUDC0e3k0Zv+zuNv3kwvvTz/+Gucc+YFwAGRxlBtobLCzMRJOmbNGu51fnlZIxvyaomODiY2VtVPzPHnUeWLp3G5JDiZjFb++mIhtTXtjB2r5dRTkygsbHDHhMOpcMrL28+atdsxmf9DfuFXtJiNJCcNZ+Hp53PW/EXs3R1I0dYG7F09NNRbCQ0L5NJLMvq1IlaWNZN1cgKZE2MP+RqOxs/O/zYmHI33JBAIDp3O9jbevf0mnlu5mr3GRtJPOIGP//EmwcHBgEuk2b7NxN59rTidvUyaFOtlci5VQiUna2hosLlyBA8/KV9/qoHwNS8HyF1b1Zcj9HjkCEGuHOEwK5x+/tnAByu+Z1/dRvZWl6FQKJh58jTOXjCP6SedyIafG9ha1EBTY2dfjqDl5pu9cwTDnnrq6juYdtZ819TzQ2Con53HXaXUo48+yrXXXuv+PSxs4JHpAoHg+EWhULBixQomTpxIdXU1JSUlTJs2jRFffE7t0qXEbfie+ZnjqJu0ALVKQUFhvVs8Ki4xsmVLA9u3NdLV5aSjw4E6VEF0TIg7qfBt6fOHZF5ebWij097N+CwdY8dpsVi6aWrqICMjirKyZnZXmtFpVcyaNXACIglcapXCbY4uiVibNjVgN8YwKWIhj9z/J3Y3l/Lh2jVc9ugjKAMDyUgajU45gmiFHnpD+u2p14dRU2tl9+5W2kubDlmUOloR8UAgEAAoAuU89LcbqKz+heXfvMFXX61yi1JSm5xeH4Y+ydVi5ysglZQY2bKlnsBAGfHxobRZutxtf3p9GOkZMQetNpI8q8ytdsA1YGPcWC1nnDGS/Lw694S+omIjlZVmtLrBY8JAxuz5eXVU7YW4+AXccvXFOGV7KKvI5R8f/J2XX38OXUwSsdETGD/2ZIJDEmlvc1V6pWfEuPc0t3Zi2t+OKk51WKLU0YqICQKBIDg0jPPvewxTYyN/Wf0D+2trqdizl7EZ6YCrGmnW7GQvs/OCgnq3eFTcFw+2b2vE3uWgo8OJWh3YlyO4RKYlS9IPeh2Sb5XUKujOEdq6+nKEaO8cYXbygHsNZsy+aWMD7S3xpMYtZun1CVTXF/PFN99y/e13EaxUkjoiE41qFGHKEd45godoVlvTxu497USUNh2yKDVUjjtRKiwsjLi4uIMvFAgExz2xsbGsXLkSjUZDWloaAIqICIa99RZNb75J46uvMcxYR93Ji9hpdPWN67RqxmfpqK2x0tXtCjSqkMC+kl6XyCSt86W8vJENG1xP06ednOhu4yguMlJZ2QK4/KnOOSfVfU5HhxOzuRPXyHEX/iqspPcOkEOPE69ryM6Op7PTlZSMzxzGadrRXL9oEZX79/PtxnxW/vAza3euxtnjJCw4lIbK0XT9aweBznAcbSpyHCcwMkGNDBn6zF+/ZPdIIeKBQCCQkMsDWPbFqwz743CSAiezp8jIyAkHWi8kcQpwT76TXs/K0rF7TysdHQ70eg2BCpm77U9a44tnddXJ0w7EA3NrJ0VbjfT2QkR4MDk5w8jJGeY+b8SIcMwtB2KCvworOCByyeXgdB64B8l36sA0v5FccelCHr33GTZs/JHPvvyKvM0/sH3nlwQEyInTjoLgyQQET6W7MwprWzijRiWSnBxOakrE/+aPf5QgYoJAIACISdJz8d0PYTKbSc0Y6xakPJFa5Qo84oFOp+rLEdrp6nYSp1ahUgW62/481/lSXtbEhrwaV44wbZi7ra+42OVPBbBkSbp3jmBz0NLS4bWPvwor6b3lchlOZ6/XNWTnJNBpd7pyhHHDOW12BldfchG79+1j3U8b+Pr79eQXf0ZPjxO1SoM9MIPX3ysFZwSdVjUnOUeTkBiGTK7wskr5X3Pcte91dnbS3d2NXq/noosu4tZbb0WhGLr2JspzBYLjm97eXre3hnVLAbW3346jqZn6sTNpHTmeseO0bsPxDT/XerXu+XsNDohIxUVGioob0GiCOPfc0e6WwMHa/fwJUAWF9ezc0czotCj3HoNVSh2MlSt38fPGfYTFtSGPaGVLWRlbd+7EYnVNZZIHBBAXFcX1p5/Bvf94B1nAoQ1mPRo/N0U8EAgE/uhx9vD9O6Xs3moidWosKZN07pggYTJa2bb9QDWTVqcmL2+/u6IpJ2cYJqOVnzf0xYOchH7tb8uWlbGrooWoKCXnnTuaSX3tH/729n1vTxFKEsjS0qLce3iu862UOhgrV+5i06Zakkd0Eh7VQNG2LWwtKWCfYQ9SShAWqkEXHcfP/8knLjnqkP/GR+Nn538bE47GexIIBP8deR//m/xP/s2YmXNImXKSV44gIbXzAa4coc9wfMOGGq/Wvby8GvLzasnOSSAnJ9HrfIPBQnGxkaIiY1+OcIK7JXCwdj9/AlSBR0yQ9hisUupgrFy5iw0b9hKpMxOsbqZo+y9sLyvHanNN6pPL5eiio7n6osU89teXDvlv/Lts37v55puZOHEiUVFR5OXlcc8991BXV8cLL7ww4Dl2ux273e7+3WKxDLhWIBAc3VRVtVJa2kRmZrRXeemGDftZu7aK6Oha3n33aVavXk1sbCzqKZP72vluJ27D9wQY9mBQn+c2G++0d1NZ2YI6VEF6eozf1wC++3YfmzbVMmpUJBPGxxIdHex3op8/PI3NJTyn8g22bigYTVbKyppoN0N6airXXDkOcIlz9U1NVO7fT0V1NdXVBlITEwff7BhCxAOB4PfNQPEgf2Mtm2pbSUoI5IGnb2XsuDHc9+C9XudqdWoiwl2VSBHhbWh1agxVFkwmG4YqCzk5rjX2zu6+iXwKL1Hq2+/2Ub6jCY0miKlT470+y7U6NQnxHZSUGGls7OgnJHlWbIH/eOBv3VAwGV3xoKWli5SUBC46fx4XnX85AJ2dHew17GHvvkqqqvdRV1OPUqk8pP2PZg41Joh4IBAcX/iLCdnnLWFH4S9sX5fLf4r2sOrnNbz7yotEhB+IGTqdivAIJTt2NBMeoXRXUHV2Ovom8AWSnhFNVZUFk6mDqiqLlyj13Xf72LSxL0eYoOvLEYYmbHsam0t4TuUbbN1QMBptlJU109YmIy0tnWuuOZAjNJhM7K0ysKeqimpDNcOThh1kt/+Oo16Uuvvuu3nmmWcGXVNeXk5aWhq33Xab+7Vx48YRFBTEH//4R5566qkBA+tTTz3FI4888j+9ZoFA8NvgOfrVMwlZu7aKNWv2UVHxEEbjbhYvXsyaNWtQKBQoIiJw3v8c1U+9TOLPHxOw6i02N53NTzt6SEoKJWu8lvFZOnelUnJfEPCcuGEwWGgx27HZurn11snutYDbo6qk2IS13TFolZPRZGX7NtcTdKliayD8VVj5W5ObW0WAXMYJJ0QybdqB0bEymYz4mBjkvSE07lUTSDQjNEd3W4OIBwKBYKgMFg/W5lYTq9vJ5oo1bKnMJTV5DBdcfpZ7jcloxdxqJy5ehclk5fm/bCFJH8r48VqysnQHqpmSXfHAdyKfwWCho8PBiBHhnHPOCZiMVgoL6r08qoqLTV6+VAO1AEoG6oMJUAO1+Pmuyc2tIiBAxgmpkUzzGCUOEBwcQkzEcHZYgwjsHcGiuUf/RL4jGRNEPBAIji/8xQSZTEZ10Bwc9j28vfwfmNraWfrAw7z14vME9HUNGI02Ws124uPU6PUad0VUkj7sQI5gtBEcrHBN3PMTD1rMdmwd3dx62yR3VRPg9qgqKTZhtXYPWuXkr2JrIPxVWPlb44oJ9MWEA0KaTCYjTqdjT2U39ft6mTZxDFMn/85FqaVLl3LFFVcMumbkyJF+Xz/xxBNxOBzs27eP0aNH+11zzz33eAUqi8VCUlLSYV+vQCD47fAd/Soxu88c8Prr3+K6685i/fr13H///Tz99NMAlJe3kB87i1OvH4/+k7+iW/0eIfYMqpnM0qVTAO+WOsnkXBKGJk3SERysIDs73i0EWSxdwAGPKmu7A1tHN4WF9e7XfTEY2igqaqC3F8IjggcVpQ7mbyWtsVi63b5Yrnv1biU0GNrYvKWWXnMrKnUgk4fwd/6tEPFAIBAMlYPFg1mzTkYdupdly5bxxN+XkqDVc/KC8YDrs7O+zkpaWhTr11dTWtoIwNLbXfHAs6Vu8ZIDQy8kcWjSRB3BSgWZmVEUFtRjbu2kvs7VCqHVqdEna6ipsaJUBgzqSyWJV8CgRuqSv9RA+0hrLJZuRgzXoE/WUFJi9HqfrCwdNpuDzZtrsbR2oVHKOXXAdzw6OJIxQcQDgeD4YsCYMDeVXOclXO5o4uXv1vGfvHxee+dd/nTt1YBLVKqrd8UDnU7FB8tK+aW0CTgQEwoK6rFauxk//kALniQMTZyoI1gpJzsnwS0EuXOEPo8qq7Ubm62bwsIG9+u+GAwWtrpzBOWgotTB/K2kNRZLlytHUPXlCD6thPl5tfxS2oSit4OpJ/7ORSmtVotWqz2sc4uLiwkICECn0w24RqlUHlflyQLB75nk5HC/UyGmTRvGtGmuD9PAwHe48MILeeaZZzjppJM4++yz3QEqJXMs+1NTaL7/bs7q3Y61uxunfRxypdJvC4UkDI1Oi2Lp0lGAS7zat89Cm6WLsWNcSUR6egxWm8M96nug1j69PowJE2KxWOy0mjsxmqwDCk4DtXT4WyMZratDFVjbHRQVNWBtd5CeHoNeH8bUKQm01wWSOcjo2qMBEQ8EAsFQGUo8mDjx7xQXF7Nt2zYefvEWnle/T9YpyV6fr0n6UPbtayVJH+reY6DPX0kcSkuLYuntoygsqOenn2qw2rrIyIh2r1cGKYiLUxMXryYiXDng57hUgaVP1nhVWvlyKPFArw8jN7fKXanVarZTU9sOwKxZyUydmkBTUwcnnHD0T2E9kjFBxAOB4PjiYDFhb3EcNY3XsnxTMS+/+TbjMjM4JSfbq12uvKwJZ4+rkyLbo9rUX0udJAy54oFLHC8o8MgRxvblCBnRWPsEKY0maMDWPr1ew8QJsVja7LSa7RiNtgEFJ3/XM9AayWhdrQ7Eau1m61YjVms36RnR7nucOPHI++gd9aLUUMnPz2fTpk3MnDmTsLAw8vPzufXWW7nkkkuIjDz6A6tAIPh1uOCCC1i2bDVff/0+F198KcXFW0lNTXUHqvfe+4W1ysX8aeQvjC3/GuMTTxB97bXokpIO6v2Ul7efdeuqaWuz09XdS5XB5T3iu3YgoUmnVTNrltpdlRUe0eZe69uuNxSPKWmNWqVAHapgfJaOgoJ6ZDJwOp0UFLqSnHPOScXREtPP3PFYRcQDgUAwFFQqFZ9++ilZWRPZ01DKS28+ydKAB8mcnugWf3qcvajVgfQ4D8wFGsjPyfNz3h0PLK54YO90uM/xXDdYW156RgzpGTH9pgFC/5a9g/lLea6RxK5uRw8t5k6Xx0myBoOhjZOnJaDVqTE3WA/+BzxGEDFBIBAcjBHjJ/Pnu+5h7+13sHGPgZvvfoDVH35AYny8W/zJza2iuclO1nitl2/UULyf8vJqPGJCj5f3lOfagYQmnU7FrNnJbqNzz2op33a9oXhMSWvUqkDUatcEwYLCegJk4HD0UFBQT0pKJDk5idhazYf41zx0jhtRSqlUsmLFCh5++GHsdjsjRozg1ltv9Sq9FQgEAoCwsLMJCvoZm2035557Lvn5+ajVri/rUmtH4uxT0CvPpfb2OzA+9xwRixahPuUUL+FGEoUk/6j8/Dp27zYzbFgYWeOjvPrKPUUk3xY638l6apXrKbpntdR33+5l06Y6TjwxnksvHXNI95ueHuM2Za+ttTJ8uA25XH7Q9r9jFREPBALBUElJSWHy5Jv58ccnWP/LZwxfmU5vz3lkzkhEJpO5BRxf3yh/SKKPwdDGunXV7K40MywpjPHjo7zO9xSIPH2jpBY938l6KpWCuHg15tZOTEYrFZUtrFq1B40miDmzhx+y4bkkduXmVtFQb2PCxFiUQYqDtgAeq4iYIBAIhsLUs8/nlH+vZ3/Lv9nf0spNd93Lirded1dNSt/rfX2j/CGJQpJ/VH5eLZWV5j6/Wp13juAhIvm20PlO1lOrAomPU3tVS3333V42bazjxJPiufTSzEO65/SMaHfLYW1tO8nDNSgU8oO2//2vOW5EqYkTJ7Jx48bf+jIEAsExwHnnpdPZ+QDr19/OmDHeAo9nawcMY8TKldTedRfmjz7CVLCNzXHTGTcpyS3yeHo7ZWfHAxAZpaS2xkqyvtPv+0umhoDb12nnjmYC5NDjhNFpUYRHKL2qpQyGNlrMdrcANlSMJisbfu4bWz4tgbHjYgiPULoFsKFOCTyWEPFAIBAcCjfffCmNjTvZv/8HJk4fjaG0md6eXsacOswt4PjiT0yCAy18er2GYKWCyCglNTVW9Mn+44E/3yhpD7kcnE5IS4siIlzpngaYn1dHzf52GBZ6SJ/hkthl73JgqLKgT9Ywc6beaw8REwQCwe8VmUzGpPOux9FRx9/XrGZE0jB6ew9UyXoKOJ74CkkSnt5OUiucK0doJznZf0ucV46QEe3eQy6X4XT2ktaXI3hWSx1OjiCJXV1dTqqqLIzP0jF2nLYvRwh0m67/Whw3opRAIBD4MtBI8HPPHc25546mpmY2CQkJg7atKSIjSHrjdZreeYf6F15i7F4DFR1nkJ5+KtC/LS8nZxjPP7/FbYybk9PfGFB6OtLR4eDee39k/Hgto9Oi/ApF0r9nzkxym6lD/2orf0im64UFDXR0OFCHKliyOOO4q4wSCASCgzFQPABXTFi4cDmNjY3ExcWx8YvdFH5TRU8PjPvDML8xYiATct/WvOf/Mng8kCqobH3xYMb0RCZNck1ClSqlfGNCdo4rDmTnxA9aceWJNH3PYumira0bk8llvO5p1H68VUgJBALBQAwUE86/cCynzXydiJuuIVanRSGXH3QvXyFJwrctLycnkef/ssVtlO7ZAihxIEfo5t57fmL8BC1paVF+hSLp3zNnJrnN1GFgkcyT7dtMFG5toLu7h7Y+4/UlS9J/tcooX4QoJRAIjlsGGgku4XCE8s03ewkPD8JsthMT08WJJ6b3WyeTyYi55hoqA5OQv/wYE0o+xbLWQdisWTQ1dlBR0YxapXCLPZJwJP30RWqnu/feH9m92wzABRd4v295eaPXvjk5w7wSmg0bar0My33Jy9vPqlV7CFLK0SdrUIUEDlpu3NRko7bWhn5CK8NHCI8NgUBwfHGweFBTY6W01EZmZivx42Po2bqL/Tua6e3tJWtWUj9hyl9bn6cwJAk8ngKSP6RKLM94MG/+qH4CUXmZKyaoVIp+8cBktLJ69V63YbmvKOWOB0Fy0kZHMmZsDIYqy4AtiSajlcryZoKig4mME0KVQCA4/hgsJoTrYplzzZ38/I9nWf/hJ4SlziBU4yQzXe93r4Ha+lw5QgtqVaBb7JGEI0+jdE+kaqx77/mJ3XvMAFxwQZrXmvKyJq99c3ISvQSuDXk1XoblvuTl1fDNt3sJCJAxdqwWhUI2aI7Q2NRJXX0L6uRWv/Hzf4EQpQQCwXHLQONfJaSA5HBYWbnyCZqbd1NWVkJMjP/Ko5Mun4vjnGzq7rkXy2efYd+5k+2aHEpKXf3ikjjkmzAMxIwZiV4/PfFt8fPEaLJi6+gmJERBdHRIv3ONJiurVu2hurqNpKQwFi9OO2h1VE2tld27W2kvbRKilEAgOO4YajwAyM//nmefXcoFC67nJNkCep29jD9N7yVM+Wvr81c9NeR4MD3R66cvA1VmAWzbbnIblvsKTSZjXzwwtJGkD2PWrGS0OrV7CIc/DIY2qqpaUcWpyJwYe9BrFwgEgmONg8WEJkciHdEzsO1dwwuffEWr3cY3H32AJqx/i/NAbX3+Kqh8BaSBmN6XG0w/WI7g875Gow2brZuQELn/HMFoY9VXe6ivt6JP0jB37vCDVkfV1rSxe087EaVNQpQSCASCQ2Wg8a8SUiCSyztZtsyAyVTLxRdfzOrVq5EPUK6r0GgY9uorNC/7ANMLLzBVbsAaMZ1k/agB30cyMu+yO6gyWNwtd/PmjWLipDgMhja3obmE9MQiMkLJ8hVlJOs1BCkV6PVhGAxtKJUKJk2OZdrJ/Z+0GAxthGmCSEoK44wzRg6pXS8xQY0MGfoBgrNAIBAcyww1HmRmRrNli4WuLhsrVr3Eqc+cRN0u6Pmuiolzkwdt99Yna/r8owb24fD1dZLa7ebNH8WkvnhgMlr7VUplZelotzrodvSQm7uPhPhQj9Y+GRHhSiZMjO0nWBkMbYSFBZGkd8WDobTo6fVhdLV3k5oScdC1AoFAcCwylJjQ27uIPWvrMa35mRZbB3c89Ch//8szBAQEDPE9NIP6R4F/b6f0jGjmzx/ZFxMsbkNzCSlHiIhQsnx5OcnJGoKC5Oj1GgwGC0qlgsmT45g2rb+gZTBYCNMEoU/ScMaZI4fUrpeQGIZMrhhQwPtfIEQpgUDwu0UKRqWlTbzzzr9YtGgO33//PY899hgPP/zwgOfJZDKiL78M1aSJVFx3M7PqvsFa3kFv9nnIZDK3CKXXh9HU2MHq1XvdBoWSj4c0dU/y+ADvKXhSi9/LrxRSUmwkMTGM0aOjgP4+Vr7o9WHMmTN8wOP+/Kiio1XExKgJP0JPQAQCgeBoRkpQqqpamTz5XM48czNfffUpDz7/Z5a9+CU7fmil8Jt9TJybTIDcf0KiDHJNTlUGeX+99hSi8vPq+seDPiFp23YTWwuNTJykY9Ys78/u9IwYduxsITd3H5ERIWRmRuF0uo6NGxtDRLjSr0m5Xh/GaX3xYCBBytePSqtTE9gLCQmhh/Q3FAgEguMFKUfocf4f19fu5ZlPviD3x594a9k/+eMVlw1pj6AgObFxaoKCDjzolkQovV7TlyPsIUAeQI+zB5OpA8A9dc8rR/AQj6TKrJdf3urKEYaFccIJri4HXx8rX/R6DXPmJA943J8fVUx0MLGxYUesSgqEKCUQCI5DNmzYzyef7CIxMZTzzx896Ieo1LKRnZ3AG2+8wWWXXcajjz7KiSeeyPz58wd9n5AxYwh78wMaH32EsMJ1NLbXEnnllRgMNvdEvoqKZmpq20lMCCU7O95dKQWuJ9gWSzfygABazZ39qqUkenshNFTB6LQot9Dkuc5TBJOOScd9j8HgrYECgUBwPLFhw37Wrq1izJgYQkIC/Rqde1Ja2sTGjXVcfvlDVFaWUV5ezhN/v4Pn7nmHTZ/tpfCbKibOT0buR5jyfGDgiTRNr77eeiAe5MT78XWSYbc72LvX4rdaqqmpg+7uHoJD5GRl6dyVUlqd2mutJIIN5RgM3hooEAgExxOHmiNs3mJiyrn3cv7+albkFfD8315n3JhMsidPOuh7eQpEEp4T+SoqWjxiQoK7UkpaZ7F0IZfLaDXb+1VLueilpy9HSEuLcgtNnus8RTDpmHTc9xgM3hp4JBGilEAgOO5Yu7aK77/fR0xMCBl9X7AHmroklaKGhwcB07jkkqv55z/f4eKLL2br1q0MHz4cGHhKx4iMRIYvfwPzRx/R8MyzGB97jMSzLoC0JPT6MNQq18esVJXk6eMhJS6t5k7q622ER7T1E6XmzE5Gqw1xn280WSkorPcSmQyGNrcIJv0uHfc8Jq0fyJBRIBAIjjfWrq1i7VoDu3a1MHJkRN8Xe//xALxjwp///BJLly5i3bp1fDz1DS5efBM/rdhF4df70E/Rulr1PMQdXwFIQvqsHzFS49Wy5+vrNG5sDCajFYulC4Ohrd9e03ISCFUrvCbsmYxWCgvqva5DEsEkPEUoz2PSen+m7QKBQHA8crg5wtlXPMLuuuvYsreaW+69ny/++T5xOtdnpj9xB+gnEIG3UKVWBQK4q5I8vaakda1mO3X1VsIjlP32mjN7OFqtyn2+0WijoKDe6zo8RTDpd+m45zFp/W+VIwhRSiAQHHeMGRNDUZGRzMxoMjOjB52wIbVsrF69h/z8Ws47byk7d25jy5YtXHTRRWzYsAGZTDboHjKZjMgLL0Q1ZQo1S2/HvvxdRubkEDnuQnRa9YDVSFJFk9FkJTyizW/rhdTGJ+FPZPJ8Ou973N+Te989BQKB4Hhl9uxkzGY7KpWCUaPCgd5Bp/B5xoT9+0P405+e5Omnb+aZZ55hzpw5nHpxGuv/vZPWtXaMva7+uYP5NHmKVYMZjGt1ambNSnaLSL74M1f3JzL5xgTP435jgp99BQKB4HjkcHOEXwwarr3qTmqev4/a5hbufPhRlv3tVQC/4s5AeApVOp1qwGokaZ3RaCM8QulVbSXha7Du7zo8RTDf4/4quQYybT/SCFFKIBAcd4SEBDJ2rJbs7ASvADOYQZ+nye0nn3zCwoULeeGFF9ymtgeb0gGgHDmS4R+uwPTiSzS//z72il1EX3U1QcnJftvoJHzb8QbDX0LhGjnbjFql6Hdc2jsvbz8fLCsjOzt+SJOgBAKB4Hhg2rRhtLZ2kZ9fi06nJjMz2l0pNRgHPvPH0tm5h97eXqZPn05QUBCygADW/bMcnSqQxIShfXb74q+NDgauthoIfzGhsS8mqPzEBGn/vLz9LFtWRnaOiAkCgeD3w3+XI4ylt7OKR//2Jlefs9B93J+4cygMVGkF/qutBsLfdbhyhBbUqsB+x6W98/Jq+GBZKdk5CUOaDHgkEKKUQCA47vAVkA42YaP/mnC2bt3qNWVpKHsABAQFEXvnHainn0zdvfdh/MtfCJs3D0PsRHbubAHo5/ekVimw9nmDDFWc8sSz/3vJ4gy/e+Tn11Fa2gggEhCBQPC7wjMmDPWz3HOd5wMKgPSceOQKGbnvl7M3v4GYs1QoAv1PbB0I3womT5FKOj6YOTkMLGx5ekQtXpLhd4/8PBETBALB74//Nke46qEnCOq00VZeQvvkSYRGRh2ScOQPfxVOklClVgVitXUPaEwuMZCw5ZUjLEn3u0d+Xi2/lDYBCFFKIBAI/lcMNekYDM8EpKSkBJlMxrhx44Z8fmh2NiO++Jz6hx+m7euviR+2nYCcsxnm8TRbarULkENP3xSlwUSpgab1jc/SYTJ1YDJ1UF7e6Lc1Lzs7HoDMzCi3J5V0DXp9GFEiGggEguOU/zYmeMYDh8PBJ598woUXXohMLmPtP8rY9MUeTjxrJIqgoQtTvhVMvj5Qvi15/hhoWl9EhJIAuYyICOWA52bnxNNpd6CLDXGbqnuKXIFDvhOBQCA4dvhv44EiMIhFdz/MB3ffzKaVHxE1KYcwTRgpI0Yc9p6DGaJL01ph8NbA7dtMFG5tYNLEWGbNTna/7soRbJhMNsrLmvy25mXnJACQkRnt9qSSrkGv1xA6cCj5n+F/pq1AIBAIAFizZg0nnXQSixYtwmw2H9K5Co2GxOefJ/6ZZ5BZzMR+/johv2ymt9cVXPT6MFSqQEymDq82C18kc/Pt20xYLN1oNEH9PKK02hBqa9opLjH63SMnZxhLl04hRqtm545mDIY2tyhmMLQd0n0JBALB75Genh7mzp3LkiVLeOutt0idFMvca8bQ3tzJxi/20N3lGPJeWp2aSZPjvHyg0tKisHc5KCo2olL7jwmSsbnJaAVkuPQymdcas9lOj7MXs9k+4Pvn5Axj3twRBMgC3DFAEsZETBAIBIKB0cRoOevWe9j8SxlL/u96brjjbtqt1sPeT6dTMXlynJfopNdrUKsDMZlsqNWKAVsDJXNzS5sdmaz/8fSMaLRaFbU11kFyhESW3j4FrVbVFwMsblHMYLAc9n0dCkKUEggEgkGYOHEisbGx7N69m5NOOpOffjIMuLaqqpXVq/dQVdXqfk0mkxGx8CxGfvkFqhOn0vrxx5ief57uxkZ0WjWd9m5qa9pdT6wHqJIyGNooLGxg714LKaPCmTUrud/a8Vk6ssZrB5yWIQlbapWC0WlRqFUKWs124uJUA4phAoFAIDhAQEAAc+fOBeCGG27inXe+ZuQELXP/byxWs52NK/fQ1ekSprzFo4MjiVSGKguVFS3YOx1+q6Qk4Wjbdlfr3YSJOsaN9a6OzcrSMX68dtBpeiajFXOrnbh4Vwzw/V0gEAgEA5OUOY4Lrr0BVZCCPfuquOT/7qGsryXaH5J4ZDTahrS/Tqeis9NBbY2Vzk7ngFVSBoOFwsIGmpo6mTghlrHjtP3WHDRH6Ls2tSqQtLQo1KpAWs124uPUh+2TdagIUUogEAh8+PTTnVx88So+/XQn0dHRfPrpp8jlgezc+TOPPvrUgOdJEzxK+/qyPQmMiyPpzTeJf/wxHE1NGB97jLa1axk/LmbQQAGuJ+jyABl1de2AzK94lZ4ew5LFGV6te+XljSxfUUZe3n5yc6soLKzHanMweVIcVpuD+nor4RHBh+VjJRAIBL8XPGPCHXfcQVradJzObpYuvYampiZGjIth/h/H0GHpYuPnu+nqcBx21dHBBCWpospisVO0tQGQ9ROv0jNiWLwko99EvfKyRt5+exsrV+5i23YT9XVWIsKD0erUGAxtXr8LBAKBoD+e8eC0Sy7ngeuuIUAm45edm3n9vX8PeN7hVB4dTEwCV0WVXC6jrs71AMSfeJWeEc2SJelerXvlZU0sX15OXl5NX47QgNXWzeTJcVht3dTVWwmPUP5XXlmHghClBAKBwIfPPqvgxx/389lnFQBMmjSJpUsfB+CHH97khx9+8HteZmY02dkJA07wkMlkRJx3HiO++AL1tBxaP/uMqK/e5byZ0X59oCR0WjXR0cHYOrqxWAZux/BFMjfMz6/r1/an14cxOi0KvT4Mo8nKtu0mGps6hry3QCAQ/F7wjAkymYwXX3ydqKhhtLbWc8kll+B0OkkeE8OCG8bR2d5N/srdxOtCSOv7jD0UBhKUJLQ6NXp9GE1NnXR2OoDeIe9dUmKkqKiBzZvrAJnX9Ulil0qloLCgnpaWzkO6boFAIPg94Jsj3PLMX1k0LRuA7/7zIVtLtvk9T6/X9H3mDr3yyJ+Y5ItOp3LlCLZuLG2HkSPk1WKxdPXlCAe8raRrNRptbNtmorHxyOYIwtpWIBAIfFi0KNXrJ8DTT9+B0VjOe++9x+LFiykqKiIx0XtCxVDNE4PiYhn297/T+sUXGJ95lobHH6c9YyqRC88kNiHC7zkajZLoqBA0mqG7DUpPVpL1GoKUCq/pfjqtGp3WNRZ81ao9xKm6mT5Dz6gh7y4QCAS/D3xjwty5Gaxb9zUnnXQS3377LY8//jgPPfQQSelRnH5jFqv/to2Kn+o4ceEogkMPzTJ8oIl6nhgMbfQ4e0lJiWDc2P6tGgORlaWj3eogOjqYcWNjvPbX6tRodWo++OAXNm2qY9rkeCbMEFP5BAKBwBPfeKAIDOSdz79gz5RJbN1r4Ka77uWrfy8jOirK67zDndA30FQ9TzRhSqKigtGEHUaOkKwhKEjutb90rXl5Naz6ag9RGifTTzmyspGsV3LcFQBgsVgIDw+ntbUVjebX6aEUCATHBjabjZycHEpKSrj99tt57rnn/us995bsZcedj6Gv2kiXUo160fnET5/Sb53R5EpU1CoFVpvDLTCVlzdSXGIkMkJJi9nO+Cwd6ekx5OXtJz+/juzs+EHHfT///Ba2bTNxQnwA11ybxairFyMLOLQi2uP1c/N4vS+BQPC/YdmyZVx++eVoNBoqKyvRal0CUd3uVla9Uow8SM5JC0cQcgiJQm7uPvLyaomPD2XhWaP8ClOScKVSKbD1xQNpXXlZI2vXVgEwe3Yy6RkxlJc1siGvucBmGwAAVplJREFUlujoYE6eljhoe94TT+RTVtbE5LFaHnnhVCLjDr2V73j87Dwe70kgEPzv2FGwiVNmzcZoaefGa67i1uv+77/e02i0kZtbRX29jbg4lctT1o8wJQlXalUgVlu3W2AqL2tizdp9AMyZPdxdcZWXV0N+Xi3ZOQnk5CT220/i+b9soWSbiZFJgVz7fxOYsej0Q76HoX52ikopgUAgGCIqlYpPPvmE5cuXc++99/pdU1XVSmlpE5mZ0QNWTXmuKa/p5ZsTLiY0aBwL6r4kePm77PrPj6xVTGT8jFS3oCRVNhUU1rOzb1S4Tqt2l98GBMjo6enF2u7AanOwbl01u3ebAbxEKUnckkSt7Ox4AE4epyYmOuR/9acSCASC457LLruM6upqFi1a5BakAOJHhXPWLRP46uVifv6kEk1KOCNHRw4oBnlWR4EMm62b+rp2DIY2tDpXRWt+Xh3ZOa6HDFJVU2FBPTv64oG0d0mJkaJiIzIZaLUhxMSEsHr1XnZVtBAVpUSfpHGv9VeVNXNmEsFKBZOzhl6BJRAIBL930iafyN/+8izvvPISc9L89x0MperJc43BYMFi6aLH2YPF0oXBYKGysqWfoCRVNhV4xASdTkVxiZHiYhMyQKtVER0TgsFgYd26aiorzQBeopTv9WXnJAAwdaKGmJgjmyMIUUogEAgOgZSUFB544AH3774ilGR2LuFPoPJcI/lPhYePZuPPU4ne8AXjKr5jfs9edn+VQc/EqwgIDnaf6+n/AQfKb6VKqWClgp07mtHrNQQHK9yiE7gEqdzcKhrqbYSGBuF0Omls7GTmzCQmpQtjW4FAIDhU7rvvPve/veLB8HDOXjqBj58txPRLM71OV2OCv9Y8yRQd8Jik14u9y8GK5WWUlTezv9plmO75kME3HoCrRc9k6nD/22BoQy4PQK8PIyMj2r3WZHTFA4ulC0N1GxUVTbS3O5g3bzhLb5+CueHwx5sLBALB75Fzr70etaOLsv+sJTI+gcDIZC+RRzI7l/AnUHmukTye1KpAduxsprjYiMFgobq6HaBflZOnJxS4cgSTyeb+t7S3Xq8hWCl3i05woCpr375WggLlJOnDqDa0kZ2TwPjMI58jCFFKIBAIDgHPpCM2Vsmf/nQziYlzgBySk8PJzIzGaLRhNFoxGq3s3t0KuPymNmzYz9q1VYwZE+M2RPf0oVq7torPW8aTlpbBnPpvGdO6nfoHHiDs9NMJnTEDWUCAu2JKIj09pt/EveISIxMnxvYzTzcY2rBYunE6e6mra2ffvlY67U6CgxVMTU858n88gUAgOM7wjAkffvgNX375Dffe+xDJyeHEJIZxypUZrH+3jOYdLVja7JhauwBobOygpMRIVpbOS1zS6tTMmuX6jF+xvIziYhNR0UoyM2PIzon3em+pYsqT9IwYt0m6yWhl2/ZGxo6LZtxYbT8hTBqA0dTUwbZtjXR39xCuUQ7a8i0QCAQC/1RVteIYNp+IYbvZtGol3+5rI3P0aUA6Op0KvV5Dq9lOq9nOdrOJuvoDE/PKy5ooLjGSnHzAZNzTh6q4xEhlhZmoaCVjMqO9BCUJX9+q9IzofhP35HKZy+rDxzxdqspqs3TTae9g775WrFYHAOMzUznSCFFKIBD87hlKy52EZ5XT88+/yFdfLWPYsA3cdNN6wCU+6XSuNaNGRXhN41u7toq1aw0APPTQtH57z56d7P45bdrl2Eq2YXr+eVo/+oj2desIX7iQkAkTkMlkA16f1eagx+n6Cd7temqVAo0mkLFjounocKLThdDY2OlVTSUQCAS/dw4nJhiNtdx//2V0d3ezY0c2CxZcB0DGeB0VM1rY90MN7LcxPCUcvT6M3NwqiotNACxekuG3tS+rrxI2K0s34DS+wTAY2qivs5KWFoVWp/Zq19PrwzC32oFe9CEKmptttLc7+glfAoFA8HvmUOPBps1GpmRfxT/uP58NOyqpNOxh0cLXAZdoFB6hZMeOZuLj1F7T+CQ7DoAlS9L77S11RvgTlIaK1eZ6MG21dQPe7XpqVSAaTRDTZyRiNtuRy2XuSqlfAyFKCQSC3z2eQtPBAo4kMGVmRjNp0n18+umn7N+/m0ceuY0PP/wQmUzmtcZzP4VChtnciULhX1SaNm0Y06YNo6qqldWr9xAeHkXrBQ8wem4pLH+b5rffRhEXh+bMMwkZP96vOOXbzmEwtLk9qAB6nBCkVJCTM4xZs1wimNFkZdv2GhITwzj47ECBQCA4vjncmHDvvffyyCOPcP/9tzFrVjZZWVkAjJ8cR4A8AHNRE5bdFrqHawiQy7BauwmQD/yQQap6MhmtFBbU+zU2Hwx/8UBqC5k0OY6IcNfvaWlR3HnnSQDu94oKDWT4Qd9BIBAIjm8ONx68/NY7nDJ7DoaaKl5++xWeffgBZDKZV4udZ1WTXC6j3dqFfICYIFU9GY02Cgrq+5maDwXf9j7fdkKnsxetVsX8+SPdrxmNNrZtqyFJHzmk9zhchCglEAh+93gGkYPh2W4H4Xz88ceccsopfPzxx0ycOJG7777bZ80BysqaaWzsYM0aA5dckjlgcFu3rprvvttLXFwooaGBkD2W+Ss/o/Xrr2l6622a33rLJU7Nn0/IxInI5HL3ub7tff48Rzz/DbB9WyM7ttQwZowW/9aMAoFA8PvhcGPCgw8+yKZNm/j2229ZuHAhBQUFxMTEuNd0zRvOqle2UbK2mrbObiyWLoqLTcw8VT+oyLRteyNFWxuIiAwmJNj11X0oopRve59vPPAXHwyGNgoLG4hQKYhNiTis6XsCgUBwvHC48SA5eQYvP/MUV9+6lJVfr2ZM+mguX3xhvxY7iWpDmysmFJk49VT9gELT9m0mthY1EBkZQnCw6/v/UEUp3/f2Fal8/y2937attbRZe5gxpHc5PA5t7rdAIBAchyQnh7NgwciDPgHxR05ODq+88goA9957L6tXrx5w7aJFqYweHUVMTAilpU3u16XKqKqq1r5XeunthcREtbv9TxYYSMTZZzNy5WfEP/UkAaGhNL/7LnX334/l22/p6ejw+55NjR1UVDRTWdHiNXXPG9f7CQQCgeDwY0JAQAD//ve/SUlJoaqqigsuuIDu7m738aDgQBbeMp6kjCjilYFMTY9GownCYGhzr5EqlUxGT6Nx12d0dHRwX7uH94OFoaLVqVGpFHzx5W5WrtwFuCqmfIUrjSYQq7Wbir7pTAKBQPB75b/JEa78823ceMlFADzxwkvkbykYcG12TgLDEsP6YoLF/bpUGWU02tyvueKB0qv973Bw5QgtVFa2DDoVsNfj/x4pRKWUQCAQ/Jdcd911FBUV8eabb3LRRRexefNmTjjhhH7rzj13NJMnx7l70yV8S4NTUyOpqrKQnZ3AtGnehrOyoCAizjmH8DPOoH39epo++ADLqlW0ffstIRMnop4+naDhw92tfVKP+p7drSiVckaNiiSpz09EEqfGjtMSGdhFYuLhJToCgUAgcBEZGcnnn3/OSSedxLp167j99tt56aWX3MflgXJOv2Eca98rgy1GQnQhJCWFuo97tthJYlFCfCimJBtpo6MOy1vKk5ISI0VFDYQEK7B3OsjK0nm1BLqM1pOpLGsmNSXiv3ovgUAg+L3z0nsf8EtZOesLi7jpjrv5/F/LSErs79OUk5NISkqkWxyS8Gyx0+lUJCSEYjTZSBsdfdjeUhLuHGFPK0FBAaSkRJKUFOYlTo0dp0Wt7BLtewKBQPBbI03NcxmQ+59K9Morr1BaWkpZWRl1dXV+RSk40I8uVUolJ4cTHh6EQiEjPDwIgNbWLhyOXlr7pjT5QxYYSNicOYTOmkVnaSnNyz6gff16bBs3ItdqUZ10EuqpU93GiI7uHurrbTQ1dWDrMzjsXzElEAgEgsEYSjzIzMzkn//8J2effTaNjY04nU7kHm3WAfIA5lyViTpcSfHaairz66mKVzF8RLjbgNzc2onJaEWrU2OzOXA6wdY3wOK/IStLR7vVQYfN1T5YUmLE6XQd8zRDj4tzJT8CgUAgGJiDxYSAgAC+/GE9WaNTMbaY2VdZ4VeUggNteFKllE6nQq0KRC6XoVYFAv3Nyv8b3DmCo4e6OitNTR1Yrd1e1/JrIUQpgUAgOAiffLKL77/fh9lsHzAJCQoK4tNPP6W9vZ1RowZ3ZvKtjJJEqIoKM62tXYSHB3lN7ZPwnQBy4Hc93HQfe6csIcVYhGLDWtq++Ya2r74iLEbHhMRUZGljaUsbhjo0CGvfU3EJg6GNvZVmZMiEp5RAIBAMwlDiAcDChQvJy8vjpJNO8juUQiaTMe28VEIjlfz8SSWOBhu9vb1MPSmRiHCXr5PJaGPWrGS/3k+A1zQ93+l6gNcxab3N5mDhWaPcxz3N06XXduxoZuQwUTkrEAgEB2MoMSFMo+G73B/4+MkHsZWXYJ88GaXa/4Nh38ooSYSqrW3HautGrQr027bnOUlPp1N5/S7t69ueFx0TQmpqpNs03dM83fN6du82I5MfWdlIiFICgUBwEBITQ4mJCSExcfCnxrGxscTGxrp/b2lpITKyf7mrJDZ1dHTzyCMbGDMmhuzsBIxGK/n5tWRnJ7BggWvyhecTmNbWLi8xy1PcAsjfbqUn+1TmX385XQYDlu++Y//n3xG8fTOKkg2EKpUEJSeTOHo0QSHJOAMTCAh3PZkPsEaQcJD7EwgEgt87Q40HANnZ2e5/9/T0YLFYiIiI8FqTNUuPrdtJ4Rd7qdvaxLYgOXp9GBUVzVgsXRgMbW7fp/KyRnJzq8jK0pGeEdOv1c/zd6BfG6Dv9D1/ZumSOBUVGngIfxWBQCD4fTLUmJCakck1jz/HiofuZONnHzL2jHOI8pMjSIJQV5eT5cvLSU7WkJYWRavZ7p6WOnlyHADlZU0UlxgZn6XDauv2ErN8J+t5HpOQ1nju6e96HB0RDDvCFh9ClBIIBL9LfKuOBuP880eTkREzpMkbEt9++y0XXXQRb775Juedd57XMWk6xyOPbGDtWgMADz00jQ0b9lNVZXG38QGsXVvlXnPFFWMAl6hVVdWK0Whj1Khwr+vKzIzGsL+d0vJeMucvIfK089mZX0GKdTfBFSV0lpfT9t139Ha5WgNlwcEooqNJCg0lhAlDvj+BQCA4XjjS8aCtrY3LLruM+vp61q9fj1Kp9DqePW8EP/xYTYixC8MmI8P14WRl6SgpMaJSHfiqXlJipLjYBEB6RoxXBZXJaMXcaicuXuVVUaVSKSgsqEff5yUorR8IyVfK3GAdcI1AIBAczxypmKAbPpIFN93Ok0tv5k+vv89fn3qcWTOme6/pm5C3fHk5JX2f90uWpFNe1oTRZHO38cEBTyiAWbOSAZeIZDTaaDXbiY9T95us51lB5W/6Xr9r1qkIVWqRK47sgwohSgkEgt8lvi10g+E54nWorF27lpaWFi6//HJOOOEExo0b12/N7NnJXj/9eUl5rvG8jtWr97B7t5ns7ASP8bMHjkn3lpkZjTNSh+LkdBL/72J6OjpwmM3Yd+2ic8dOunbtoruhAWdLC73O/96vRCAQCI41jnQ8MBqNrF+/HrPZzA033MDbb7/dr6Xv1NNHsu6bvehsveSv3E3o8NB+PlJZff4f0k9JQAIoLKinvs5KWlqU+zWtTk1hQb1XdRTgnvbnr1JKIBAIfu8cyZiQMuUk2sKisdnt3Hrv/az85/uMGj683zrJ70n66c9LynONJGYBFBTUU1fvigfSa57HpJjw30zu+18jRCmBQPC7RHqicShPuw+Fp59+mm3btrFmzRoWLlzIpk2b0Ol0XmumTRvGsGFhlJY2UVXV2u+aqqpaaW3t4oorxvQLeNKa8PAgVq/e4/U0x3Mf38AaEBJCUEgIQfHxhJ1yCgC93d302O3IZDJkAQFH5O8hEAgERytHOh6MGjWKDz/8kPnz5/OPf/yDsWPHcsstt3itkeJBSaERy7YmWistDBumdlc1SX5Qs2YlD9p251kZpdWp+1VH+ZvuJxAIBIIDHOmY8K+VX7BzbCbbd1Vy1Q1/4ovl/yQi3Pt7fnpGNNExIRgMFoxGW7+qJqPRhtXWzaxZyf1MyaU1alUgBQX1Xl5Snvv4+lf9lghRSiAQ/C45nKfdh4JCoWDFihVMnTqV3bt3c/bZZ/PDDz8QHBzstc5TNFqwYKTXNQ32pEa6fs+qKM+KqYFELH/IAgORBwr/EIFA8PvkSMcDgNNOO43nnnuOpUuXsnTpUlJSUjjjjDO81pSWNrGlqIETp8YRU9fB7q0malVNRM9UHVRMkqqmPCujpNc81w+lhU8gEAh+zxzpmBAUFMSaH39mbNpoaowmrr3pz/zrH28R5PNd3FM0mjw5zq8fFPQXlKSqKc+qKM+KqYFErN8S8UhcIBAIjhBRUVF8/fXXREREkJ+fz1VXXUVvb6/XmszMaL+T9jyPSdVQVVWtftf09PTy5pslfPrpziN2LwKBQCD477j11lu59tpr6enpYfHixZSUlHgdlz7zx47TMvfaMUxeMJyaXWY2fr6b+DgVaWlR7kook9G/55NeH0ZPby/ffreXvLz9v8ZtCQQCgeAQiY2N5fsf1hESFERR+Q7uvP+BfjmCXq/xO2nP85hUDWU02vyu6e2F777bR15ezRG7l/8FQpQSCASCI8jo0aP59NNPUSgULF++nHfffdd9bKhGihUVLeTn11Ja2uT1+oYN+3nvvV/YsqWOwsIGPvusot+5UrWV77kCgUAg+HWRyWS89tprzJo1C6vVyvnnn4/D4fKM8o0HMpmME88ayZyrMmhv7qRs7X66bd3U1rWzY0ez2xdKoryskRXLy2hs7MDYYGN3pZn8vLp+1yBVXPmeLxAIBIJfl/ETJrBixQpkMhmrctfz8Sefuo95GpIP1lpXWyvFBIvX6+VlTeTmVlFR0UxlpZn8vNp+50rVVr7n/haI9r3DwOl00t3dffCFAsFRQmBgIHK5/Le+jN8tf/jDH/j73/9OXl4el1xyifv1gxkplpY28c03e1EoZGRlaftVU61dW8WqVXtobu7Aau1Gre7/3/hI98ULREwQHHuImPDbERgYyMcff8yiRYt4+umnUShcX8UHigcnTIkjXBvCyheLafylmVa5jLgUTb/2O2ky3y+/NFJbayU0NJDsnPh+7y/a944sIh4IjjVEPPhtOeucc3j2qSf5atm7hBqrsbW2ogoPP6jf0/ZtJrYW/X97dx7W1Jm2AfwOgbCTIIKAAoJQF9y1WqR1pYpWB2tdal2gtfarYq1b3caK2rE6Y+2nTluXuqDWutSqdZSWCooKuKCOVqm4InFBUZRFkC2c7w8/UpE1QHKScP+uK5dNcnLO82ZC7slz3nPOA3h725c7m+r8hTQcPqxEztMC2NmZo1U5vwOqc/U9XWFTSgOCIOD+/fvIyMgQuxQijSkUCjg7O5e54g/pxocffohx48aVev+rahj5+jogISEVjx49g5OTdZnGVUCAB65efYKoqCzk5hbixIn7SEnJLLWcLs6VUl8xE8iQMRPEY29vj8OHD1c7Dxo1laP3//ji4OqLsC8QYPK4AA4NS/9IKbki3+HDSmRk5MHERAIfb/sy63r5HFNUN5gHZMiYB+KaMWs2xo58F7sWzEbczq14Y1RItRpGggDY2crQ+f+vrPqi9u2cEBWVgmd5xZCZq5CRkY+0tNxSDa7yzi8lFjalNFASNk5OTrCysuIfLhkEQRCQm5uLtLQ0AICLS9k9p6QbJd8ZKpUKCxYswPvvv48BA7wqXN7DQ46QkNbqQzpeVnK1Jnt7Cxw6lAI3t+dX8nu5CVXdwwRJM8wEMkTMBP3w4vfFuXPnEBUVhZkzZ1a4/CstG8JsanvE7r6OrJvZiP/5Ojr394CFjQwA0LJVQ7Rs1RAmUgl+j0xBo0aWUCqzy21APUzLgVKZrb5CH9Ue84AMEfNAfzi5N8U7cxdix8K5mDFlKj6bNw+dO3tUuHybto6QK8wrbFq1bOWAoUNfQXS0EnZ2MmRlFUCpzCrThKruYYLaxqZUNalUKnXYODjwMBgyLJaWlgCAtLQ0ODk5cZquyObOnYt//etf2LlzJ+Lj49GwYcMKl61qptOZM/fx5Ekepk7tCHd3ebnNq4oOC2GzquaYCWTImAn64+7du+jevTtycnJgZ2eHjz/+uMJlPT3t4fnZq7hxLg2Htybh+K5raNu7CRo1ff79HR9/B7eVTzF0qA8cHa0rPESvvCv5sVFVc8wDMmTMA/3h4t0cF4pl+O2/F3Hxo4+x98cf0KCC75TqzHKSy83h4myNVr4OcHS0KreBVdFhgi82q2zMazGoauKJzqup5PhwKyv9mOJGpKmSzy7PdSC+Tz/9FO7u7rh27RoGDhyInJzyr6JUHXv2XMOxY3dw/PhdDBjgVW5zqaIr/PEk6DXHTCBDx0zQD40bN8aMGTMAAKGhodi7d2+Vr2nW0QnDZneCXUNLnI1IwcWYOyhWFeNEfCoSEx8hMfExOnV2rrC55O5u+//nIPmracUToNcc84AMHfNAfyz8cimcGjbE3fQnGP3Bh8itxW+EE/H3cCkxHX8mpqNzZ+dym1gVXeFP1ydBZ1NKQ5yOS4aKn13tSknJRETETaSkZFa5rKurKzZu/Am2tgqcOnUKI0aMUF+BSVNvvNEYzZop8MYbjcs89/PPVzB48F6sW3eh3NlQFTWrqPr4d0WGip9d7dIkE8LCwjByZDCKi4vx7rsjERsbW+VrFI2sMWxWJ7Tt3QR3kh7j+M5raOkth7OLNXx9G5RZ/mFaDrZuTcTixSdw7fqTMk2r8hpVpBn+TZGh4mdXuzTJAw8PD4Rv2QtLCytcvZuKDz4cj4L8/Bptt5Wvg3qm1Mvi4+9i8eKTiIxMLvfQvYqaVdrCphQRUR3QdNZRfn5DDBnyJWQycxw8eBD/8z//A0EQNN6uu7scb7zRBO7uZWdI7dlzDbGxd/HLL9fLrcvDQ17h7CoiIqo5TTJBIpFg5Mi5eOWV11FQkI9BgwYhMTGxytdJzaR4Y/greGtiu+dnvE3NQ0cvezRsWHZvuFKZjVOn7uHPP9NxIj61zPOOTtaVzq4iIqKa0fQ3giC44p2hS2AqNcWZazcxaWIoCgsKNN6uo6OV+tC9l52If54Hp06mljsbysnJqsLZVdrAppSRk0gkld4WLFhQq3Xv27dPoxqsra3h4+ODkJAQnD17VuNt9uzZE1OmTNG8WCIt03TWka+vA4YP74dFi76DiYkJNm7ciLCwsDrbblzcHRQVqdCyZQMEBXlzNhQxD4h0SNNMaNu2EaZN+xre3u2RkZGBwMBA3Llzp1qv9WjtgBHzuqCRtxxWBQKeXsvE08d5pZbJLyiCjbUMbk1s4NeNJzMmZgKRrtTkN8LIkQPx+fxVkEgkOHzhEv4+YwaKNGxMVTTb6fKf6VAVF8OtiQ26vuais9lQleGJzo1caupfe8N27tyJ+fPn48qVK+rHbGxsdFLHpk2bEBgYiLy8PFy9ehXr1q1D165dsXHjRowdO1YnNRBpU1UnJK9s+cDA6YiO/jdeffXVOttuVFQK7t3LRUCAB8LC/DVeLxkf5gGR7tQkE9zcHBAUtBi7dn2KNm1egb29fbVfb2krwzvTOuJqwgPE/XQNx3ddQ7OOjvDu3AgmJhIoU57vCW/f3gndujXReDxkfJgJRLpR898I/dC372TEHFkDR3MpYndshf+7Y2Amk1VrPRWdDP38hTQ8Ts9Hu/ZOGDmyZbXr0ibOlDJyzs7O6ptcLodEIin12I4dO9CyZUtYWFigRYsW+O6779SvLSgowKRJk+Di4gILCwt4eHhgyZIlAICmTZsCAN5++21IJBL1/YooFAo4OzujadOm6Nu3L3bv3o1Ro0Zh0qRJePLkCQAgPT0dI0eOROPGjWFlZYU2bdpg+/bt6nWEhITg6NGjWLlypXqvyq1bt6BSqTBu3Dh4enrC0tISzZs3x8qVK+v2jSTSEl9fB4SGfoyjR89h0KBBdbbegAAPBAS4IyCg4svJUv3CPCDSb76+DujduwX27InAvn37YG2t2aF0EokEzbs4Y+T8rmjWwRHXz6bh2PYreHg7G+3aOaF9e0e0a+ekperJ0DATiPSbr68DJk+ejKPH/ovp/1yO7PSHOL4tHHm1OPk5ALRv54R27R3RXo/ygDOl6rFt27Zh/vz5+Oabb9ChQwf897//xfjx42FtbY3g4GCsWrUK+/fvx65du+Du7o7bt2/j9u3bAICEhAQ4OTmp927U5PKhU6dOxZYtW3Do0CEMHz4ceXl56NSpE2bNmgU7OzscPHgQY8aMQbNmzdClSxesXLkSV69eRevWrbFo0SIAgKOjI4qLi9GkSRP89NNPcHBwQHx8PD766CO4uLhg+PDhdfqeEb0oJSUTiYnp5Z5EvLrK23ty/fp1XL58uVZNKn//JvD3b6I+uWJtaiTjxzwgqh1t5YEgCFi3bh3GjBlT7au7WdrK0PdDX7xy0Rlxu68h4T/JcPSwhf9rrkhLz8PDtByeO4oqxUwgqh1tZELQjHn4PmwuLiz5Bz6aPhPWGsymfVHLVg5o2coBaWm5OHPmfrknOtc1NqXqsbCwMCxfvhxDhgwBAHh6euLPP//E2rVrERwcDKVSCR8fH7z++uuQSCTw8PhrxoWjoyOAv/Zu1ESLFi0AALdu3QJQ+rLIAPDJJ58gMjISu3btQpcuXSCXyyGTyWBlZVVqm1KpFAsXLlTf9/T0xIkTJ7Br1y4GDmlVyYkLAdRZw0epVKJ79+549OgR9u3bhwEDBtRqfZXVWBeBScaBeUBUO9rIAwCYM2cO/vnPf2Lv3r345ZdfYG5uXq3XSSQSeLZtCLcW9vhvlBLnD93GQ2U28kwlKC4qLrcp9TAtB0plNtzdbWFWZyMgQ8RMIKodbWRCsa0C62LPIDMzAyhW4f1PpkDh4lrj9SmVWUhKegwAZZpSaWm5UCqz4O5uB5vqxU6tsClVT+Xk5ODGjRsYN24cxo8fr368qKgIcvnzP5yQkBC8+eabaN68OQIDAzFw4ED07du3zmooudJYyWVIVSoVvvzyS+zatQt3795FQUEB8vPzq7Vn8Ntvv8XGjRuhVCrx7NkzFBQUoH379nVWK1F5Sk5YWJcnEW/cuDE6dfLDgQN7MGTIO/j11wj06tVL/Xxc3B1ERaUgIMAD/v5VnxfkxRpfbkJp60cUGRbmAVHtaSMPAGDQoEFYterfiIyMxN/+9g4OHNgLM7O/WkZVZYKpTIpXB3iihZ8Lon9Iwt3Lj5F+IR3nnhZCZWOGpl5ydYNKqcxW/0Bp5mZbp+Mgw8FMIKo9bWSCu7s7OnZ6DYcOReD7w/GQCsCwcePg4t0cwPMTmJ+/kIb27ZzQslXV2y05wbm7u12pJpSTk1WphlUrH4s6G0NF2JQSidgzFJ4+fQoA+P7779G1a9dSz5VMs+3YsSOSk5Px66+/IioqCsOHD0dAQAB2795dJzVcvnwZwPO9FgCwbNkyrFy5EitWrECbNm1gbW2NKVOmoKCKKw3s2LEDM2bMwPLly+Hn5wdbW1ssW7YMp06dqpM6iSqi6YkLq0MqlWL8+C9x9Woarl6NxaBBg/D777+jW7duAJ6fwDwqSgkAVTalXv6eiYi4WaoJpa0fUaQZ5gHzgAyfNvIAAPz9/TFv3hrMn/8hfv/9IIKDg7F161b132Z1M+FxVj5kzezQw88Zt88+xM3zDyEIwNM7OXgt0AOWNjK4uz9vRLm72wJCnQ+FqomZwEwgw6eNTDAzM0No6Fe4ceMhbt5MwPfHTsIExXhzUBBe8Xsd5y+k4cL5hwBQZVPq5SbUmTP3S82aerFhBWh21b+aMJim1OLFi3Hw4EGcP38eMpkMGRkZZZZRKpWYMGECjhw5AhsbGwQHB2PJkiUwNdW/YYo9Q6FRo0ZwdXXFzZs3MWrUqAqXs7Ozw4gRIzBixAgMHToUgYGBePz4MRo0aAAzMzOoVKoa17BixQrY2dkhICAAABAXF4egoCCMHj0aAFBcXIyrV6+iVatW6tfIZLIy24yLi0O3bt0wceJE9WM3btyocV1EYmvXzhn//Oc6fP11KI4fP4LAwEBERETg9ddfV5+4vHXrhoiIuIlnzwpx6dKjcveSv/w982IT6sW964Y4S8qYMoF5wDwgqsyoUX9DQcF3WLz4Y2zfvh0SiQSbN2+GqakpAgI8kJGRD2trM6SkZOLOnexyZ06pv2f8XNH/o9a4eCoVZyOVyHv4DDFbk2DZwAIP8wvg26kRHJ2skfGgdifS1SVjygOAmQAwE4gq0r69K5Yt24R//vMjnD4dj+9jz6JYEJCZdh9tfLsjJ6cQFhZSpKXlIv3RswpnTr186N6LTagXZ1w5OVkhN5NNKbWCggIMGzYMfn5+2LBhQ5nnVSoV3nrrLTg7OyM+Ph6pqakYO3YszMzM8OWXX4pQceX0YYbCwoULMXnyZMjlcgQGBiI/Px9nzpzBkydPMG3aNHz99ddwcXFBhw4dYGJigp9++gnOzs5QKBQAnl9dIzo6Gv7+/jA3N6/00sUZGRm4f/8+8vPzcfXqVaxduxb79u3Dli1b1Ovz8fHB7t27ER8fD3t7e3z99dd48OBBqcBp2rQpTp06hVu3bsHGxgYNGjSAj48PtmzZgsjISHh6emLr1q1ISEhQ710h0iZND6erjpK9K337HsDAgQNx5MjzxlRUVBT8/V+Dv38T9aynmzczoFRmAyi7l/zl75kX99qEh1+q9owrfWRMmcA8YB6Q8dBWJixYMA5t29pjxIgR+PHHH1FcXIwff/wR/v5NkJlZgBMn7iExMR0JCanlfre/+D0jkUjQ9jVXtH3NFZlpubhw5DYuxNyFtQDcPJYKk6wiyB21f7hGXTGmPACYCcwEMhba/I3w5pu/ITAwEPHx8dgQfw6mUlM0T38EX59euHG7CEplFq5de1LhzKnSM6GeN6ZKzisVHZ1S7RlXdUYwMJs2bRLkcnmZxyMiIgQTExPh/v376sdWr14t2NnZCfn5+dVef2ZmpgBAyMzMLPX4s2fPhD///FN49uxZjWsXW3nv3bZt24T27dsLMplMsLe3F7p37y7s2bNHEARBWLdundC+fXvB2tpasLOzE/r06SOcO3dO/dr9+/cL3t7egqmpqeDh4VHhdvF8ErgAQLCwsBCaNWsmBAcHC2fPni21XHp6uhAUFCTY2NgITk5Owrx584SxY8cKQUFB6mWuXLkivPbaa4KlpaUAQEhOThby8vKEkJAQQS6XCwqFQpgwYYIwe/ZsoV27drV9y4yKMXyG9dGCBbHC66//KCxYEKuV9efk5Ah9+/YVOnbsKDx58kT9+K1bGcLBgzeE3buThAULYoXY2NsarTc29naNXleeir43dUGbmVDZuAz974l5QIb+GdZX2s6EX375RbCwsBC2bdumfqwkD27dyqjxd3vM4VvCkpkxQvj8eGF16BHhm4+jhfs3M2pUo1iZwDyoOWZC/WYMn2F9pO08yM7OFrp37y74+fkJf8QeFb4bP0r4+r0gYf3nS4T4iMPCf7YcFL6Yvkn4z5aDwvUzJ6t9e/l1f0T/JiQeja5RjdXNA4kgCAZ11Hh4eDimTJlSZmru/PnzsX//fpw/f179WHJyMry8vHDu3Dl06NChWuvPysqCXC5HZmYm7Ozs1I/n5eUhOTkZnp6esLAwnL1HRCX4GdYObewFeVleXh6ePXtW6Z7G2qjt+Ssq+t7UBW1mQmXj4t8TGTp+hrVDF5mQmpoKFxcXraxbKBZw+eJD/BF/D516ucGnheZ7ycXKBOYBUc3wM6wdusiD3NxcFBYWQi6XIyfjCSK+WQ7lxfNwbuaD9oGDYGFd9kqrmkhLy8XNK3fh5m6P7kPe0vj11c0Dgzl8ryr3799Ho0aNSj1Wcv/+/fsVvi4/Px/5+fnq+1lZWdopkIiMkr9/E60f/mZhYVHq/yQsW7YMbm5uePfddyt93c8/X8GePdfwxhuN4e4uh1wuQ2ZmQZnmk9jnr9CGmmQC84CIaksXmfBiQ+rOnTuYPXs2vv32W/WV0cpTkgdDhvigc2dnJCaml5sJEhMJbt19isR7T2F3M7NGTSl9wzwgIjHoIg9evAKltcIeSYI5ZJ4t8ejOTUSv/w6+PfvAo20H9ZUsS8TH38WJ+Hto5esAR0crWFuZISe3UH3i8xJKZRZu3MiARKrdtpGJVtdehdmzZ0MikVR6S0pK0moNS5YsgVwuV9/c3Ny0uj0iMhwpKZmIiLiJlJRMsUtRO3LkCGbOnImRI0dixYoVlS67Z881HDt2Bzt2XMGJE/cQFZWiPu/Ii3x9HeDn5yr6VfjEzgTmARFVRB/zQBAEjBgxAtu2bUOPHj2Qmppa4bIlebBnzzX1jgh9zgTmARHpM33MhIMHD2L+/PmYu+xrFLXqjEZe3jgfeRDHftiEx6l3Sy17Iv4eLiWm4/ixu0hKeozzF9KQlPQYSmXpBry7ux2aNVOgSWNbrdYu6kyp6dOnIyQkpNJlvLy8qrUuZ2dnnD59utRjDx48UD9XkTlz5mDatGnq+1lZWQweIgKgnzOIevTogcmTJ2PVqlWYOnUqUlNTsXTp0jJ7QABgyBAfACh3ptSLtHUpc02JnQnMAyKqiD7mgUQiwTfffIP+/fvjwoUL6NatGyIjI/HKK6+UWbYkD4YM8VFngD5nAvOAiPSZPmZCv379MH78eHz//feYMWcu5s+fj7c/DMXJn7fj2NaNcPZuDt+efWDbwAF+3VwBoNyZUi9ycrKCjbkjpKZmWq1d1KaUo6MjHB0d62Rdfn5+WLx4MdLS0uDk5AQAOHToEOzs7EpdmeFl5ubmMDc3r5MaiMi46MMVcF5mYmKCFStWwMXFBXPmzMG//vUv3L9/H99//z1kMlmpZd95pzneeae5SJVqTuxMYB4QUUX0MQ8AoEOHDoiPj0e/fv1w/fp1+Pv74+DBg+jSpUup5V7OA335EVUR5gER6TN9zARTU1OsXbsWLi4uWLRoERYtWoT7H32Er5f9G/89uA///f0gotd/ByfPZnjlNX/4Te9c7k5tMRjMOaWUSiUeP34MpVIJlUqlPlmht7c3bGxs0LdvX7Rq1QpjxoxR/0ibN28eQkNDGSpEVCP6sLe4PBKJBLNnz4azszM+/PBDbNmyBUqlErt374aDQ+XhWNuTmusLZgIR6ZK+5gHwfMZQXFwc3nrrLZw5cwY9evTApk2bqjzvIGAcmcA8ICJd09dMkEgkWLhwIVxcXDBx4kSsW7cOycnJ2LlzJzr0/xvORfyCSzFRiN2+BZZ2cri1ao3GLXxh5+iEhw+fQanMKnNeKV0wmKbU/PnzsXnzZvX9kitlHDlyBD179oRUKsWBAwcwYcIE+Pn5wdraGsHBwVi0aJFYJRMRVak2Pwh69Xob8+cXY9myKYiJicH27fvh5dWj0nXp43TjmmAmEJGxqU0eODk5YfPmfQgJGYOEhCP44osvYW3dEW3bNqp0XcaQCcwDIjJGtcmE/v1H4u9/B5Yvn45Dhw7h559/g6trV/j6v40ug4fhyolYJMXG4MbZ07h6Mg5mFhYwsXZEdr4Vcu+7QmjlDDPz5xdZysl4DGt77c4IM5imVHh4OMLDwytdxsPDAxEREbopiIioDtT0B0FKSibCwy/h5k1njB37LRSKFHh59SizrpcDTR+nG9cEM4GIjE1tGkQpKZn46adbaN58KqytPTFw4AicPp0GqdS01LqMMROYB0RkjGr7G0GpdMfYsd/CySkVrq5d/1rXAC+07dMPdl5d8N/T1yAXbiP7bhIeJKfAIv8WHv95BSf+LL1O7y7d6mxc5TGYphQRkTGq6Q+CxMR0PHqUh6KiYpiYuMDf31+9joYNC7B06VJ89tlnZQJNX6cbExHVd7VpEJVkQnGxBK1bj4SDgzNatrSCr68DvvnmGwQEBKBFixbMBCIiA1EXvxHMzJrgtde6q9ehUOTiq6++wrRp0/Dn5Sc4d6kAfn4dEPTuOyjIe4b83BzkZmQgNzMDebk5AASYySxg17BuzvFXETaliIjqSE2m2db0B4GvrwPS0nLx6FEuGja0VG/Tzc0Wffr0QUxMDA4dOoSlS1eXubR3XNwdREWlICDAA/7+TTTeNhERVU6XeQCUzYRevdzg4SFHZGQkPvnkE1hbW2Pt2rV4/fWB6uUB5gERkS7ow2+Exo2t8cYbb+DkyZOIjo7G4sXflPqNkHA2/YU86KzxdmvDRKdbI6MWEhKCwYMHq+/37NkTU6ZMqdU662IdRLpSsgc6MTFd69vy8JDDyckKmZkFcHKyVoeWiYkJxo0bB2traxw+fBiDBnWHhcWtUqEWFZWCqCgloqJStF4n1V/MBKrPdJkHQMWZ0K5dO/Tu3Rs5OTkYPXo0/vGPGejZ01n9PPOAdIF5QPWdPvxGkEql+PDDD2FhYYHffvsNf/tbD9ja3tWLPGBTqh4ICQmBRCKBRCKBTCaDt7c3Fi1ahKKiIq1ud8+ePfjiiy+qtWxMTAwkEgkyMjJqvA4isfn6OpSZlSTG9kaPHo0zZ86gdevWePDgAQICAjBjxgw8e/YMABAQ4IGAAHcEBHgAeL6nfOHCOMTF3dFJ3SQuZgKR9uk6DyraprOzM37//XcsWLAAEokE69evR6dOnXDq1CkAZfMAYCbUJ8wDIt3Qh98IEokE48aNw+nTp9GiRQvcvXsXPXv2xNy5c5Gfny9qHvDwvXoiMDAQmzZtQn5+PiIiIhAaGgozMzPMmTOn1HIFBQWQyWR1ss0GDRroxTqIdEXX5+aobHstWrTAqVOnMGXKFHz//fdYvnw5Dhw4gIMHD8Lfv1mpwzRK9owA4OEb9QQzgUi7xDhXU0XblEqlCAsLwxtvvIHRo0cjKSkJ3bp1w+LFizF79uwy3/vMhPqFeUCkffr0G6FNmzZISEhAaGgotmzZgiVLluA///kPIiIiEBbmX2pZXeUBZ0rVE+bm5nB2doaHhwcmTJiAgIAA7N+/Xz2ddvHixXB1dUXz5s0BALdv38bw4cOhUCjQoEEDBAUF4datW+r1qVQqTJs2DQqFAg4ODpg5cyYEQSi1zZen1ebn52PWrFlwc3ODubk5vL29sWHDBty6dQu9evUCANjb20MikSAkJKTcdTx58gRjx46Fvb09rKys0L9/f1y7dk39fHh4OBQKBSIjI9GyZUvY2NggMDAQqampdfuGEhkAKysrrFu3DgcOHICLiwskEgkaN25cZrny9oyQcWMmMBOo/unduzcuXbqE0aNHo7i4GB4e5X/nMxPqF+YB84DqHxsbG2zevBl79uyBo6MjTE1N0ahRozLL6SoP2JSqpywtLVFQUAAAiI6OxpUrV3Do0CEcOHAAhYWF6NevH2xtbXH8+HHExcWpv7hLXrN8+XKEh4dj48aNiI2NxePHj7F3795Ktzl27Fhs374dq1atwuXLl7F27VrY2NjAzc0NP//8MwDgypUrSE1NxcqVK8tdR0hICM6cOYP9+/fjxIkTEAQBAwYMQGFhoXqZ3NznVxXYunUrjh07BqVSiRkzZtTF20ZkkN566y0kJiZi7969sLCwAPB8j+cvv/wCQRDg798EYWH+3CNejzETiOqHBg0aYOvWrYiPj8e7776rfvz48eN48OABADAT6jnmAVH98fbbbyMxMRG7du1Sz4TMy8vDgQMHdPobgYfv1VJubi6SkpJ0vt0WLVrAyspK49cJgoDo6Gj11VgePnwIa2trrF+/Xv1B/OGHH1BcXIz169dDIpEAADZt2gSFQoGYmBj07dsXK1aswJw5czBkyBAAwJo1axAZGVnhdq9evYpdu3bh0KFDCAgIAAB4eXmpny+Zguvk5ASFQlHuOq5du4b9+/cjLi4O3bp1AwBs27YNbm5u2LdvH4YNGwYAKCwsxJo1a9CsWTMAwKRJk7Bo0SKN3ysiY2Jvbw97e3v1/VWrVuGzzz5D7969sXz5crRv31684oyIGJlQ0zwAmAlE9ZWfn5/6vzMyMvDOO++goKAAYWFhmDhxIszNzUWszjjwNwLzgMgQODo6wtHRUX3/X//6F8LCwhAYGIhly5ahdevWWq+BTalaSkpKQqdOnXS+3bNnz6Jjx47VXv7AgQOwsbFBYWEhiouL8d5772HBggUIDQ1FmzZtSh0jfuHCBVy/fh22tral1pGXl4cbN24gMzMTqamp6Nq1q/o5U1NTdO7cucz03BLnz5+HVCpFjx49NBzpXy5fvgxTU9NS23VwcEDz5s1x+fJl9WNWVlbqsAEAFxcXpKWl1Xi7RMZIEARYWFjg8OHD6NChA9577z387//+L5ycnMQuzaCJkQma5gHATGAmEP3l4cOHcHd3x9mzZzFt2jSsXLkSX331FYYOHSp2aQaNvxGeYx4QGRYTExPIZDL89ttviIyMxNixY/H1119r9TxubErVUosWLXD27FlRtquJXr16YfXq1ZDJZHB1dYWp6V//01tbW5da9unTp+jUqRO2bdtWZj0vdlE1YWlpWaPX1YSZmVmp+xKJpMIgJKqvPvvsMwwdOhRz587Fjh07EB0dXea7gDQnRiZomgcAM4GZQPQXHx8fnDp1CuHh4QgLC0NKSgru3bsndlkGj78Rqod5QKRf5s2bhxEjRmDu3LnYvXs3Dh8+XOMZ+dXFplQtWVlZabyHWgzW1tbw9vau1rIdO3bEzp074eTkBDs7u3KXcXFxwalTp9C9e3cAQFFRUaV7Ztq0aYPi4mIcPXpUPTX3RSV7YVQqVYV1tWzZEkVFRTh16pR6am56ejquXLmCVq1aVWtsRPQXT09PbN++HTNnzsS9e/fYlKoDzARmApEhkkqlGDduHN577z1s2LAB48ePF7skg8c8YB4QGSofHx/89NNPSEhIwOPHj9XnpNUWnuicyhg1ahQaNmyIoKAgHD9+HMnJyYiJicHkyZNx584dAMCnn36KpUuXYt++fUhKSsLEiRORkZFR4TqbNm2K4OBgfPDBB9i3b596nbt27QIAeHh4QCKR4MCBA3j48CGePn1aZh0+Pj4ICgrC+PHjERsbiwsXLmD06NFo3LgxgoKCtPJeEOmTuLg7WLgwDnFxdypcJiUlExERN5GSklnt9Xbo0AFvvfVWXZRIRoiZQKR/tJUHlpaWmDRpEs8pReViHhDpJ21lwquvvop+/frVRYmVYlOKyrCyssKxY8fg7u6OIUOGoGXLlhg3bhzy8vLUe0WmT5+OMWPGIDg4GH5+frC1tcXbb79d6XpXr16NoUOHYuLEiWjRogXGjx+PnJwcAEDjxo2xcOFCzJ49G40aNcKkSZPKXcemTZvQqVMnDBw4EH5+fhAEAREREWWm4xIZo6ioFERFKREVlVLhMomJ6Thx4h4SE9N1WBkZM2YCkf5hHpAYmAdE+snQM0Ei8EDaUrKysiCXy5GZmVlqWmpeXh6Sk5Ph6emp9elrRNrAz7Dhi4u7g6ioFAQEeFR4adaUlEwkJqbD19cBHh5yndRV0femoatsXPx7IkPHz7Bh09c8AIwzE5gHZMz4GTZ8+poJ1c0DnlOKiMhA+Ps3qTBoSnh4yHX644OIiHSPeUBERCUMPRN4+B4RkZGqzvHlRERk/JgHRERUQt8ygTOliIiMVMnx5QCq3HtCRETGi3lAREQl9C0T2JQiIjJSAQEepf4lIqL6iXlAREQl9C0T2JQiIjJS1Tm+nIiIjB/zgIiISuhbJvCcUkREREREREREpHNsShERERERERERkc6xKUVERERERERERDrHphQREREREREREekcm1JUp0JCQjB48GD1/Z49e2LKlCm1WmddrKMqMTExkEgkyMjI0Op2tE0ikWDfvn1il0FExDwQGfOAiPQJM0FczATSZ7z6Xh0ozsuDUFios+1JzMxgYmFR7eVDQkKwefNmAICZmRnc3d0xduxYzJ07F6am2v0I7NmzB2ZmZtVaNiYmBr169cKTJ0+gUChqtI6a6tatG1JTUyGXy6v9mpCQEGRkZPALngxCSkomEhPT4evrAA+Pvz7ncXF3EBWVgoAAD726CochKypQQaUSdLItqVQCU5m02sszD6rGPKD6gJmgG4UF+SguKtLZ9kxMTWEmM6/28syEqjETyNjpQx6wKVVLxXl5yI6OhiorW2fblNrZwrZPH40aU4GBgdi0aRPy8/MRERGB0NBQmJmZYc6cOWWWLSgogEwmq5NaGzRooBfrqIpMJoOzs7PWt1Oeuny/iSqSmJiOEyfuAUCpwImKSkFUlBIA+AOkDhQVqJB84RHycnWzo8LCygye7Rpq1JhiHlSOeUD1ATNB+woL8nEj4STycnJ0tk0La2s0e/U1jRpTzITKMRPI2OlDHvDwvVoSCguhysqGibk5pHZ2Wr+ZmJtDlZWt8cwsc3NzODs7w8PDAxMmTEBAQAD2798P4K/ptIsXL4arqyuaN28OALh9+zaGDx8OhUKBBg0aICgoCLdu3VKvU6VSYdq0aVAoFHBwcMDMmTMhCKVnB7w8rTY/Px+zZs2Cm5sbzM3N4e3tjQ0bNuDWrVvo1asXAMDe3h4SiQQhISHlruPJkycYO3Ys7O3tYWVlhf79++PatWvq58PDw6FQKBAZGYmWLVvCxsYGgYGBSE1NrfD9eXlqblXrWLBgATZv3oxffvkFEokEEokEMTEx1Xrfynu/586di65du5apq127dli0aBEAICEhAW+++SYaNmwIuVyOHj164Ny5cxWOiehFvr4O8PNzha+vg/qxlJRMWFvL0LlzIwQEeIhYnfFQqQTk5RbC1EwKcyszrd5MzaTIyy3UeFYW84B5QMRM0L7ioiLk5eTAVGYGCxtrrd9MZWbIy8nReGYWM4GZQPWbPuQBm1J1RGJuDhNLS63fJObV3/NRGUtLSxQUFKjvR0dH48qVKzh06BAOHDiAwsJC9OvXD7a2tjh+/Dji4uLUX7olr1u+fDnCw8OxceNGxMbG4vHjx9i7d2+l2x07diy2b9+OVatW4fLly1i7di1sbGzg5uaGn3/+GQBw5coVpKamYuXKleWuIyQkBGfOnMH+/ftx4sQJCIKAAQMGoPCFRl1ubi6++uorbN26FceOHYNSqcSMGTM0eo8qW8eMGTMwfPhwdQilpqaiW7du1Xrfynu/R40ahdOnT+PGjRvqZRITE/HHH3/gvffeAwBkZ2cjODgYsbGxOHnyJHx8fDBgwABkZ+tulh4ZLg8POQYM8Cq1ByQxMR2Zmfl4882m3CNex6RmJjAzl2r1JjWrmwhnHlSNeUDGhpmgO6YyGczMLbR+M62jGTXMhKoxE8iY6EMe8PC9ekYQBERHRyMyMhKffPKJ+nFra2usX79ePUX0hx9+QHFxMdavXw+JRAIA2LRpExQKBWJiYtC3b1+sWLECc+bMwZAhQwAAa9asQWRkZIXbvnr1Knbt2oVDhw4hICAAAODl5aV+vmQKrpOTU6njxV907do17N+/H3FxcejWrRsAYNu2bXBzc8O+ffswbNgwAEBhYSHWrFmDZs2aAQAmTZqk3ptQXZWtw8bGBpaWlsjPzy81pbc67xtQ9v0Gnu/x+PHHH/H555+rx9W1a1d4e3sDAHr37l2qvnXr1kGhUODo0aMYOHCgRmMjAqDeI/LinhGqP5gH1cc8oPqAmVC/MROqj5lAxk7XecCmVD1x4MAB2NjYoLCwEMXFxXjvvfewYMEC9fNt2rQp9eV34cIFXL9+Hba2tqXWk5eXhxs3biAzMxOpqamlppOampqic+fOZabnljh//jykUil69OhR43FcvnwZpqampbbr4OCA5s2b4/Lly+rHrKys1EEBAC4uLkhLS9NoWzVZR1XvW4mX328AGDVqFDZu3IjPP/8cgiBg+/btmDZtmvr5Bw8eYN68eYiJiUFaWhpUKhVyc3OhVCo1GhdRCQ8Peam9IlQ/MA+YB0TlYSbUT8wEZgLRy3SdB2xK1RO9evXC6tWrIZPJ4OrqWuaKGtbW1qXuP336FJ06dcK2bdvKrMvR0bFGNVhaWtbodTXx8pU4JBJJhUFYl+uo7vv28vsNACNHjsSsWbNw7tw5PHv2DLdv38aIESPUzwcHByM9PR0rV66Eh4cHzM3N4efnV2rKLxFRVZgHzAMiohLMBGYCkdjYlKonrK2t1VM8q6Njx47YuXMnnJycYGdnV+4yLi4uOHXqFLp37w4AKCoqwtmzZ9GxY8dyl2/Tpg2Ki4tx9OhR9dTcF5XsFVCpVBXW1bJlSxQVFeHUqVPqqbnp6em4cuUKWrVqVe3x1QWZTFam1uq8bxVp0qQJevTogW3btuHZs2d488034eTkpH4+Li4O3333HQYMGADg+ckSHz16VPuBEFG9wjyoe8wDIjJUzIS6x0wg0gxPdE7lGjVqFBo2bIigoCAcP34cycnJiImJweTJk3Hnzh0AwKeffoqlS5di3759SEpKwsSJE9VXpihP06ZNERwcjA8++AD79u1Tr3PXrl0AAA8PD0gkEhw4cAAPHz7E06dPy6zDx8cHQUFBGD9+PGJjY3HhwgWMHj0ajRs3RlBQkFbei8rG88cff+DKlSt49OgRCgsLq/W+VWbUqFHYsWMHfvrpJ4waNarUcz4+Pti6dSsuX76MU6dOYdSoUTrds0SGLyUlExERN5GSkil2KWRAmAdVYx6QoWEeUE0xE6rGTCBDI3YmsClVR4T8fBQ/e6b1m5Cfr5PxWFlZ4dixY3B3d8eQIUPQsmVLjBs3Dnl5eeru/vTp0zFmzBgEBwfDz88Ptra2ePvttytd7+rVqzF06FBMnDgRLVq0wPjx45GTkwMAaNy4MRYuXIjZs2ejUaNGmDRpUrnr2LRpEzp16oSBAwfCz88PgiAgIiKizFRabRs/fjyaN2+Ozp07w9HREXFxcdV63yozdOhQpKenIzc3F4MHDy713IYNG/DkyRN07NgRY8aMweTJk0vtJSGqSmJiOk6cuIfExHSxSzF6qsJiFOartHpTFRbrZCzMg6oxD8jQMA90p6igAIX5eVq/FenoUC1mQtWYCWRoxM4EiaDpQbRGLisrC3K5HJmZmaW+IPLy8pCcnAxPT09YWFioHy/Oy0N2dDRUWbq75KbUzha2ffrA5IU6iKpS0WeY6o+UlEwkJqbD19ehTk9eWNH3pqGrbFwV/T0VFaiQfOER8nILX16dVlhYmcGzXUOYyqQ62R4ZD2ZC/aatPACMMxNqkgeFBfm4kXASef/fWNEFC2trNHv1NZjJzHW2TTJ8zAMS+zcCzylVSyYWFrDt0wdCoW5+gACAxMyMDSki0hivrKR9pjIpPNs1hEqlm/09UqmEDSki0hjzQPvMZOZo9uprKC4q0tk2TUxN2ZAiIo2JnQlsStUBEwsLgE0iIiLC88YUw5WIiMxk5gCbREREleI5pYiIiIiIiIiISOfYlCIiIiIiIiIiIp1jU4qIiIiIiIiIiHSOTSkiIiIiIiIiItI5NqWIiIiIiIiIiEjn2JQiIiIiIiIiIiKdY1OKiIiIiIiIiIh0jk0pIiIiIiIiIiLSOTaljJxEIqn0tmDBAp3V0rNnT/V2LSws0KpVK3z33Xfq58PDw6FQKHRWDxFRfcI8ICKiEswEItIXbEoZudTUVPVtxYoVsLOzK/XYjBkz1MsKgoCioiKt1jN+/Hikpqbizz//xPDhwxEaGort27drdZtEhi4lJRMRETeRkpIpdilkwJgHRMaBmUB1gZlAZPiMJQ/YlDJyzs7O6ptcLodEIlHfT0pKgq2tLX799Vd06tQJ5ubmiI2NRUhICAYPHlxqPVOmTEHPnj3V94uLi7FkyRJ4enrC0tIS7dq1w+7du6usx8rKCs7OzvDy8sKCBQvg4+OD/fv31/GoiYxLYmI6Tpy4h8TEdLFLIQPGPCAyDswEqgvMBCLDZyx5YCp2AdW1ePFiHDx4EOfPn4dMJkNGRkaZZSQSSZnHtm/fjnfffVerteXk5FT4nFQqhYWFRbWWNTExgaWlZZXLWltb16DKis2ePRtfffUVvLy8YG9vX63XLFmyBD/88APWrFkDHx8fHDt2DKNHj4ajoyN69OhR7W1bWlqioKCgpqUT1Qu+vg6l/iVmQgnmAVH9w0wojXnwF2YCUf1iLHlgME2pgoICDBs2DH5+ftiwYUOFy23atAmBgYHq+7o4/tjGxqbC5wYMGICDBw+q7zs5OSE3N7fcZXv06IGYmBj1/aZNm+LRo0dllhMEoebFlmPRokV48803q718fn4+vvzyS0RFRcHPzw8A4OXlhdjYWKxdu7ZagaNSqbB9+3b88ccf+Oijj2pcO1F94OEhh4eHXOwy9Aoz4TnmAVH9w0wojXnwF2YCUf1iLHlgME2phQsXAnh+orvKKBQKODs766Ai49G5c2eNlr9+/Tpyc3PLhFRBQQE6dOhQ6Wu/++47rF+/HgUFBZBKpZg6dSomTJigcc1EVL8xE7SDeUBEhoZ5oD3MBCLSBYNpSlVXaGgoPvzwQ3h5eeHjjz/G+++/X+6U3RL5+fnIz89X38/KytJ4m0+fPq3wOalUWup+WlpahcuamJQ+xdetW7c0rqUmXp7qa2JiUmZPS2Fhofq/S8Z78OBBNG7cuNRy5ubmlW5r1KhR+Pvf/w5LS0u4uLiUGTMRUV3SJBPqIg8Aw84E5gERGSvmgeaYCUSkC0bVlFq0aBF69+4NKysr/P7775g4cSKePn2KyZMnV/iaJUuWqPew1JQmx29ra9m65OjoiEuXLpV67Pz58zAzMwMAtGrVCubm5lAqlRodGw4Acrkc3t7edVYrEVFFNM2EusgDwLgygXlARMaAeVA3mAlEpA2itqBnz54NiURS6S0pKana6/v888/h7++PDh06YNasWZg5cyaWLVtW6WvmzJmDzMxM9e327du1HZbB6927N86cOYMtW7bg2rVrCAsLKxVAtra2mDFjBqZOnYrNmzfjxo0bOHfuHP79739j8+bNIlZORIZM7ExgHpTFPCAiMTAP9BMzgYi0QdSZUtOnT0dISEily3h5edV4/V27dsUXX3yB/Pz8CqeMmpubVzmdtL7p168fPv/8c8ycORN5eXn44IMPMHbsWFy8eFG9zBdffAFHR0csWbIEN2/ehEKhQMeOHTF37lwRKyciQyZ2JjAPymIeEJEYmAf6iZlARNogEer6Mg1aFh4ejilTppR7udeXLV68GMuXL8fjx4+rvf6srCzI5XJkZmbCzs5O/XheXh6Sk5Ph6elZ6vKtRIaCn2HSloq+N3VBm5lQ2bj490SGjp9h0haxMoF5QFQz/AyTtlQ3DwzmnFJKpRKPHz+GUqmESqXC+fPnAQDe3t6wsbHBf/7zHzx48ACvvfYaLCwscOjQIXz55ZeYMWOGuIUTEelIXNwdREWlICDAA/7+TcQuR6uYCURElasvmcA8ICKqnL7ngcE0pebPn1/qWOSSy4oeOXIEPXv2hJmZGb799ltMnToVgiDA29sbX3/9NcaPHy9WyUREOhUVlYKoKCUA6GXg1CVmAhFR5epLJjAPiIgqp+95YDBNqfDwcISHh1f4fGBgIAIDA3VXEBGRngkI8Cj1rzFjJhARVa6+ZALzgIiocvqeBwbTlCIiosr5+zfRy70fRESke8wEIiIC9D8PTMQugIiIiIiIiIiI6h82pTRkYBcrJFLjZ5eo7vHvigwVP7tEdYt/U2So+NklsbEpVU1mZmYAgNzcXJErIaqZks9uyWeZiGqOmUCGjplAVDeYB2TomAckNp5TqpqkUikUCgXS0tIAAFZWVpBIJCJXRVQ1QRCQm5uLtLQ0KBQKSKVSsUsiMnjMBDJUzASiusU8IEPFPCB9waaUBpydnQFAHTpEhkShUKg/w0RUe8wEMmTMBKK6wzwgQ8Y8ILGxKaUBiUQCFxcXODk5obCwUOxyiKrNzMyMez+I6hgzgQwVM4GobjEPyFAxD0gfsClVA1KplH+8REQEgJlARETPMQ+IiDTHE50TEREREREREZHOsSlFREREREREREQ6x6YUERERERERERHpHM8p9RJBEAAAWVlZIldCRGQYSr4vS74/jQXzgIhIc8aYCcwDIiLNVTcP2JR6SXZ2NgDAzc1N5EqIiAxLdnY25HK52GXUGeYBEVHNGVMmMA+IiGquqjyQCMa0G6MOFBcX4969e7C1tYVEItHotVlZWXBzc8Pt27dhZ2enpQq1z1jGAXAs+spYxmIs4wBqNxZBEJCdnQ1XV1eYmBjPUeHMg+c4Fv1jLOMAOBZ9VNtxGGMm1CYPAH429BHHon+MZRwAx1KiunnAmVIvMTExQZMmTWq1Djs7O4P/8AHGMw6AY9FXxjIWYxkHUPOxGMve8BcxD0rjWPSPsYwD4Fj0UW3GYWyZUBd5APCzoY84Fv1jLOMAOBagenlgHLsviIiIiIiIiIjIoLApRUREREREREREOsemVB0yNzdHWFgYzM3NxS6lVoxlHADHoq+MZSzGMg7AuMaiD4zp/eRY9I+xjAPgWPSRsYxDnxjLe2os4wA4Fn1kLOMAOBZN8UTnRERERERERESkc5wpRUREREREREREOsemFBERERERERER6RybUkREREREREREpHNsSmnJ4sWL0a1bN1hZWUGhUIhdjka+/fZbNG3aFBYWFujatStOnz4tdkkaO3bsGAYNGgRXV1dIJBLs27dP7JJqZMmSJXj11Vdha2sLJycnDB48GFeuXBG7rBpZvXo12rZtCzs7O9jZ2cHPzw+//vqr2GXViaVLl0IikWDKlClil6KxBQsWQCKRlLq1aNFC7LKMCvNAfMwE/WOsmcA8oKowE8TFPNA/xpoHADOhutiU0pKCggIMGzYMEyZMELsUjezcuRPTpk1DWFgYzp07h3bt2qFfv35IS0sTuzSN5OTkoF27dvj222/FLqVWjh49itDQUJw8eRKHDh1CYWEh+vbti5ycHLFL01iTJk2wdOlSnD17FmfOnEHv3r0RFBSExMREsUurlYSEBKxduxZt27YVu5Qa8/X1RWpqqvoWGxsrdklGhXkgPmaC/jHGTGAeUHUwE8TFPNA/xpgHADNBIwJp1aZNmwS5XC52GdXWpUsXITQ0VH1fpVIJrq6uwpIlS0SsqnYACHv37hW7jDqRlpYmABCOHj0qdil1wt7eXli/fr3YZdRYdna24OPjIxw6dEjo0aOH8Omnn4pdksbCwsKEdu3aiV1GvcA80A/MBP1lyJnAPCBNMRPExzzQX4acB4LATNAUZ0qRWkFBAc6ePYuAgAD1YyYmJggICMCJEydErIxKZGZmAgAaNGggciW1o1KpsGPHDuTk5MDPz0/scmosNDQUb731Vqm/GUN07do1uLq6wsvLC6NGjYJSqRS7JBIZ88AwMBP0B/OAjBkzQf8xD/QLM0EzplpZKxmkR48eQaVSoVGjRqUeb9SoEZKSkkSqikoUFxdjypQp8Pf3R+vWrcUup0YuXrwIPz8/5OXlwcbGBnv37kWrVq3ELqtGduzYgXPnziEhIUHsUmqla9euCA8PR/PmzZGamoqFCxfijTfewKVLl2Brayt2eSQS5oH+YyboD+YBGTtmgn5jHugXZoLmOFNKA7Nnzy5zsq+Xb/xiJm0JDQ3FpUuXsGPHDrFLqbHmzZvj/PnzOHXqFCZMmIDg4GD8+eefYpelsdu3b+PTTz/Ftm3bYGFhIXY5tdK/f38MGzYMbdu2Rb9+/RAREYGMjAzs2rVL7NL0GvOAxMZM0A/MAwKYCSQu5oH+YCbUDGdKaWD69OkICQmpdBkvLy/dFKMFDRs2hFQqxYMHD0o9/uDBAzg7O4tUFQHApEmTcODAARw7dgxNmjQRu5wak8lk8Pb2BgB06tQJCQkJWLlyJdauXStyZZo5e/Ys0tLS0LFjR/VjKpUKx44dwzfffIP8/HxIpVIRK6w5hUKBV155BdevXxe7FL3GPCAxMRP0B/OAAGYCiYd5oF+YCTXDppQGHB0d4ejoKHYZWiOTydCpUydER0dj8ODBAJ5PB42OjsakSZPELa6eEgQBn3zyCfbu3YuYmBh4enqKXVKdKi4uRn5+vthlaKxPnz64ePFiqcfef/99tGjRArNmzTLYsAGAp0+f4saNGxgzZozYpeg15gGJgZmgf5gHBDATSPeYB/qJmVAzbEppiVKpxOPHj6FUKqFSqXD+/HkAgLe3N2xsbMQtrhLTpk1DcHAwOnfujC5dumDFihXIycnB+++/L3ZpGnn69GmpLm5ycjLOnz+PBg0awN3dXcTKNBMaGooff/wRv/zyC2xtbXH//n0AgFwuh6WlpcjVaWbOnDno378/3N3dkZ2djR9//BExMTGIjIwUuzSN2draljlm39raGg4ODgZ3LP+MGTMwaNAgeHh44N69ewgLC4NUKsXIkSPFLs1oMA/Ex0zQP8aSCcwD0hQzQVzMA/1jLHkAMBNqTCfX+KuHgoODBQBlbkeOHBG7tCr9+9//Ftzd3QWZTCZ06dJFOHnypNglaezIkSPlvv/BwcFil6aR8sYAQNi0aZPYpWnsgw8+EDw8PASZTCY4OjoKffr0EX7//Xexy6ozhnq51xEjRgguLi6CTCYTGjduLIwYMUK4fv262GUZFeaB+JgJ+seYM4F5QJVhJoiLeaB/jDkPBIGZUB0SQRCEum91ERERERERERERVYxX3yMiIiIiIiIiIp1jU4qIiIiIiIiIiHSOTSkiIiIiIiIiItI5NqWIiIiIiIiIiEjn2JQiIiIiIiIiIiKdY1OKiIiIiIiIiIh0jk0pIiIiIiIiIiLSOTaliIiIiIiIiIhI59iUIiIiIiIiIiIinWNTikhPqVQqdOvWDUOGDCn1eGZmJtzc3PD3v/9dpMqIiEjXmAlERAQwD8j4SARBEMQugojKd/XqVbRv3x7ff/89Ro0aBQAYO3YsLly4gISEBMhkMpErJCIiXWEmEBERwDwg48KmFJGeW7VqFRYsWIDExEScPn0aw4YNQ0JCAtq1ayd2aUREpGPMBCIiApgHZDzYlCLSc4IgoHfv3pBKpbh48SI++eQTzJs3T+yyiIhIBMwEIiICmAdkPNiUIjIASUlJaNmyJdq0aYNz587B1NRU7JKIiEgkzAQiIgKYB2QceKJzIgOwceNGWFlZITk5GXfu3BG7HCIiEhEzgYiIAOYBGQfOlCLSc/Hx8ejRowd+//13/OMf/wAAREVFQSKRiFwZERHpGjOBiIgA5gEZD86UItJjubm5CAkJwYQJE9CrVy9s2LABp0+fxpo1a8QujYiIdIyZQEREAPOAjAtnShHpsU8//RQRERG4cOECrKysAABr167FjBkzcPHiRTRt2lTcAomISGeYCUREBDAPyLiwKUWkp44ePYo+ffogJiYGr7/+eqnn+vXrh6KiIk7RJSKqJ5gJREQEMA/I+LApRUREREREREREOsdzShERERERERERkc6xKUVERERERERERDrHphQREREREREREekcm1JERERERERERKRzbEoREREREREREZHOsSlFREREREREREQ6x6YUERERERERERHpHJtSRERERERERESkc2xKERERERERERGRzrEpRUREREREREREOsemFBERERERERER6RybUkREREREREREpHP/B1YfjDx0VlEQAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxYAAAJOCAYAAAAqFJGJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAD/HElEQVR4nOzdd1xV5R/A8c/lApc9RAUUBUXEvVcigqjgRMtSc6RmObLSTM09KUfmLv3ZcGe5cqS5F+5yC24B9wAVZI97fn8QV28MwXVBv+/Xi9er+5znec73Xuh6vuc8Q6UoioIQQgghhBBCPAcjQwcghBBCCCGEKPgksRBCCCGEEEI8N0kshBBCCCGEEM9NEgshhBBCCCHEc5PEQgghhBBCCPHcJLEQQgghhBBCPDdJLIQQQgghhBDPTRILIYQQQgghxHOTxEIIIYQQQgjx3CSxEEIIA3Bzc6N79+6617t370alUrF79+4Xdg6VSsXYsWNfWH+5NXbsWFQq1Ss/ryH4+vri6+v7UvrOy99EXuLw9fWlUqVKzxecEEJkQRILIcQbZ+HChahUKt2PmZkZZcuW5dNPP+XOnTuGDi9PNm3aZJDk4WU5cOAAY8eO5eHDh4YOpUC7efMmY8eO5cSJE4YORQjxBpHEQgjxxho/fjxLlixhzpw51K9fn7lz5/LWW28RHx//ymNp2LAhCQkJNGzYME/tNm3axLhx47I8lpCQwMiRI19EeHkycuRIEhISnqntgQMHGDdunCQWPPvfBKQnFuPGjZPEQgjxShkbOgAhhDCU5s2bU6tWLQA++ugjHBwcmDZtGuvWreP999/Psk1cXByWlpYvPBYjIyPMzMxeaJ8vur/cMjY2xtg4f/3zEh8fj4WFhaHDyJOX8TchhBAvkzyxEEKIf/n5+QEQFhYGQPfu3bGysuLy5cu0aNECa2trOnfuDIBWq2XGjBlUrFgRMzMzHB0d6d27Nw8ePNDrU1EUgoKCcHFxwcLCgkaNGhESEpLp3NmNpz98+DAtWrTA3t4eS0tLqlSpwsyZM3Xxff/99wB6Q7syZDXH4vjx4zRv3hwbGxusrKxo3Lgxhw4d0quTMVRs//79DBw4kCJFimBpacnbb7/NvXv3nvo5ZjXHQqVS8emnn7J27VoqVaqERqOhYsWKbN68Wa/d4MGDAShVqpTu/YSHh+vqLF26lJo1a2Jubk6hQoXo2LEj165d0ztXxhyCo0eP0rBhQywsLBg+fDitWrWidOnSWcb81ltv6ZJMgAULFuDn50fRokXRaDRUqFCBuXPnPvW9Z+Wdd96hRo0aemWtW7dGpVKxfv16Xdnhw4dRqVT89ddfQPZ/E/Pnz8fd3R1zc3Pq1KlDcHCw3vHdu3dTu3ZtAHr06KH7HBcuXKhXLzQ0lEaNGmFhYUHx4sWZMmXKM70/IYTIkL9uKQkhhAFdvnwZAAcHB11ZamoqAQEBNGjQgKlTp+ruevfu3ZuFCxfSo0cPPv/8c8LCwpgzZw7Hjx9n//79mJiYADB69GiCgoJo0aIFLVq04NixY/j7+5OcnPzUeLZt20arVq1wdnamf//+ODk5cfbsWf7880/69+9P7969uXnzJtu2bWPJkiVP7S8kJARvb29sbGwYMmQIJiYm/O9//8PX15c9e/ZQt25dvfqfffYZ9vb2jBkzhvDwcGbMmMGnn37K77//nuvP9En79u1jzZo1fPLJJ1hbWzNr1izatWvH1atXcXBw4J133uHChQssX76c6dOnU7hwYQCKFCkCwNdff82oUaNo3749H330Effu3WP27Nk0bNiQ48ePY2dnpztXVFQUzZs3p2PHjnTp0gVHR0dq1qzJBx98wN9//6278AaIiIjg0KFDfPvtt7qyuXPnUrFiRQIDAzE2NmbDhg188sknaLVa+vXrl6f37e3tzbp164iJicHGxgZFUdi/fz9GRkYEBwcTGBgIQHBwMEZGRnh5eWXb188//0zv3r2pX78+AwYM4MqVKwQGBlKoUCFKlCgBQPny5Rk/fjyjR4+mV69eeHt7A1C/fn1dPw8ePKBZs2a88847tG/fnlWrVvHVV19RuXJlmjdvnqf3J4QQOooQQrxhFixYoADK9u3blXv37inXrl1TfvvtN8XBwUExNzdXrl+/riiKonTr1k0BlKFDh+q1Dw4OVgBl2bJleuWbN2/WK797965iamqqtGzZUtFqtbp6w4cPVwClW7duurJdu3YpgLJr1y5FURQlNTVVKVWqlOLq6qo8ePBA7zxP9tWvXz8lu69yQBkzZozuddu2bRVTU1Pl8uXLurKbN28q1tbWSsOGDTN9Pk2aNNE71xdffKGo1Wrl4cOHWZ4vw5gxYzLFBCimpqbKpUuXdGUnT55UAGX27Nm6sm+//VYBlLCwML324eHhilqtVr7++mu98tOnTyvGxsZ65T4+PgqgzJs3T69udHS0otFolC+//FKvfMqUKYpKpVIiIiJ0ZfHx8ZneV0BAgFK6dGm9Mh8fH8XHxyeLT+Gxv//+WwGUTZs2KYqiKKdOnVIA5b333lPq1q2rqxcYGKhUr15d9/q/fxPJyclK0aJFlWrVqilJSUm6evPnz1cAvTgyzrlgwYJM8WR8PosXL9aVJSUlKU5OTkq7du1yfC9CCJETGQolhHhjNWnShCJFilCiRAk6duyIlZUVf/zxB8WLF9er17dvX73XK1euxNbWlqZNmxIZGan7qVmzJlZWVuzatQuA7du3k5yczGeffaY3NGjAgAFPje348eOEhYUxYMAAvTvxwDMt5ZqWlsbWrVtp27at3nAgZ2dnOnXqxL59+4iJidFr06tXL71zeXt7k5aWRkRERJ7PD+mft7u7u+51lSpVsLGx4cqVK09tu2bNGrRaLe3bt9f7zJ2cnPDw8NB95hk0Gg09evTQK7OxsaF58+asWLECRVF05b///jv16tWjZMmSujJzc3Pdf0dHRxMZGYmPjw9XrlwhOjo6T++7evXqWFlZsXfvXiD9yYSLiwsffPABx44dIz4+HkVR2Ldvn+7pQlb++ecf7t69S58+fTA1NdWVd+/eHVtb2zzFZGVlRZcuXXSvTU1NqVOnTq5+F0IIkR0ZCiWEeGN9//33lC1bFmNjYxwdHfH09MTISP9+i7GxMS4uLnplFy9eJDo6mqJFi2bZ7927dwF0F+AeHh56x4sUKYK9vX2OsWUMy3pR+w3cu3eP+Ph4PD09Mx0rX748Wq2Wa9euUbFiRV35kxfagC7m/84jya3/9pfRZ276u3jxIoqiZPosM2QMPctQvHhxvYvvDB06dGDt2rUcPHiQ+vXrc/nyZY4ePcqMGTP06u3fv58xY8Zw8ODBTKuERUdH5+lCXq1W89Zbb+nmQgQHB+Pt7U2DBg1IS0vj0KFDODo6cv/+/RwTi+z+nkxMTLKdO5IdFxeXTAmqvb09p06dylM/QgjxJEkshBBvrDp16uhN2M2KRqPJlGxotVqKFi3KsmXLsmyTMSegoFOr1VmWP3m3/1X1p9VqdRObs+rHyspK7/WTTxye1Lp1aywsLFixYgX169dnxYoVGBkZ8d577+nqXL58mcaNG1OuXDmmTZtGiRIlMDU1ZdOmTUyfPh2tVvvUeP+rQYMGfP311yQmJhIcHMyIESOws7OjUqVKBAcH4+joCJBjYvEivejfrRBCgCQWQgiRZ+7u7mzfvh0vL69sL2ABXF1dgfS77U/eUb53795T79JnDBk6c+YMTZo0ybZebodFFSlSBAsLC86fP5/p2Llz5zAyMtJN/jWk7N6Pu7s7iqJQqlQpypYt+8z9W1pa0qpVK1auXMm0adP4/fff8fb2plixYro6GzZsICkpifXr1+s9ZfnvcKu88Pb2Jjk5meXLl3Pjxg1dAtGwYUNdYlG2bFldgpGVJ/+eMlYwA0hJSSEsLIyqVavqyt6Unc+FEPmLzLEQQog8at++PWlpaUyYMCHTsdTUVN3mbk2aNMHExITZs2fr3Qn+77CbrNSoUYNSpUoxY8aMTJvFPdlXxp4aT9tQTq1W4+/vz7p16/SWb71z5w6//vorDRo0wMbG5qlxvWzZvZ933nkHtVrNuHHjMt1VVxSFqKioXJ+jQ4cO3Lx5k59++omTJ0/SoUMHveMZd/OfPE90dDQLFizIy1vRU7duXUxMTJg8eTKFChXSDTnz9vbm0KFD7Nmz56lPK2rVqkWRIkWYN2+e3qpiCxcuzPR55fbvQgghXiR5YiGEEHnk4+ND7969mThxIidOnMDf3x8TExMuXrzIypUrmTlzJu+++y5FihRh0KBBTJw4kVatWtGiRQuOHz/OX3/9pVtKNTtGRkbMnTuX1q1bU61aNXr06IGzszPnzp0jJCSELVu2AFCzZk0APv/8cwICAlCr1XTs2DHLPoOCgti2bRsNGjTgk08+wdjYmP/9738kJSXlmz0MMt7PiBEj6NixIyYmJrRu3Rp3d3eCgoIYNmwY4eHhtG3bFmtra8LCwvjjjz/o1asXgwYNytU5MvYkGTRoEGq1mnbt2ukd9/f3x9TUlNatW9O7d29iY2P58ccfKVq0KLdu3Xqm92VhYUHNmjU5dOiQbg8LSH9iERcXR1xc3FMTCxMTE4KCgujduzd+fn506NCBsLAwFixYkGmOhbu7O3Z2dsybNw9ra2ssLS2pW7cupUqVeqb4hRAiN+SJhRBCPIN58+Yxf/587t69y/Dhwxk2bBg7d+6kS5cuevsQBAUFMW7cOI4fP87gwYO5fPkyW7duzdXu3QEBAezatYuyZcvy3XffMXDgQHbs2EHr1q11dd555x0+++wzNm/eTNeuXbPdMRygYsWKBAcHU6lSJSZOnMi4ceNwdXVl165dmfawMJTatWszYcIETp48Sffu3Xn//fd1m/INHTqU1atXY2RkxLhx4xg0aBDr16/H399ftxdEbpiZmREYGMijR49o1KhRpkn4np6erFq1CpVKxaBBg5g3bx69evWif//+z/XeMhKHBg0a6MqcnJwoU6aM3vGc9OrVix9++IGbN28yePBggoODWb9+faZhbCYmJixatAi1Wk2fPn14//332bNnz3PFL4QQT6NSZKaWEEIIIYQQ4jnJEwshhBBCCCHEc5PEQgghhBBCCPHcJLEQQgghhBBCPDdJLIQQQgghhBDPTRILIYQQQgghxHOTxEIIIYQQQgjx3F77DfK0Wi03b97E2tpatyGREEIIIYQQ4ukUReHRo0cUK1YMI6Ocn0m89onFzZs3M20cJIQQQgghhMi9a9eu4eLikmOd1z6xsLa2BtI/DBsbGwNHI4QQQgghRMERExNDiRIldNfUOXntE4uM4U82NjaSWAghhBBCCPEMcjOlQCZvCyGEEEIIIZ6bJBZCCCGEEEKI5yaJhRBCCCGEEOK5SWIhhBBCCCGEeG6SWAghhBBCCCGemyQWQgghhBBCiOf22i83+6xSUlJIS0szdBhCCGFwarUaExMTQ4chhBAin5PE4j9iYmKIjIwkKSnJ0KEIIUS+odFoKFy4sOwHJIQQIluSWDwhJiaGGzduYGVlReHChTExMcnVZiBCCPG6UhSFlJQUoqOjuXHjBoAkF0IIIbIkicUTIiMjsbKywsXFRRIKIYT4l7m5OdbW1ly/fp3IyEhJLIQQQmRJJm//KyUlhaSkJGxtbSWpEEKI/1CpVNja2pKUlERKSoqhwxFCCJEPSWLxr4yJ2jJBUQghspbx/SgLWwghhMiKJBb/IU8rhBAia/L9KIQQIieSWAghhBBCCCGemyQWQgghhBBCiOcmiYXIl3x9fQvssIuxY8eiUqnYvXu3XrlKpcLX19cgMQkhhBBCvGySWAgAwsPDUalUmX4sLS2pUqUK48aNIzY21tBhvhBRUVEMHTqUihUrYmFhgYWFBa6urjRu3Jhx48Zx586dVxZL9+7dUalUhIeHv7JzCiGEEEK8DLKPhdDj7u5Oly5dgPSNse7du8dff/3F2LFj2bx5M/v27UOtVr/0OBYvXkx8fPwL7/f69evUr1+fa9euUa1aNXr06IGdnR23bt3iwIEDjB07Fi8vLxwdHV/4uc+ePYuFhcUL71cIIYQQIj+QxELoKVOmDGPHjtUrS0pK4q233uLQoUPs2bMHPz+/lx5HyZIlX0q/Y8aM4dq1a4wfP55Ro0ZlOn769Gns7OxeyrnLlSv3UvoVQgghRP6hKArJCQmkJCXqyoxNTdFYWBbYYd65JYmFeCqNRkOjRo04fvw4kZGResd27drFkiVL2L9/Pzdu3ADSL6B79epFr169MvV17NgxvvnmG44cOcKdO3ewsbHBzc2Ntm3bMmLECF09X19f9uzZg6IomfpYt24d33//PUePHiUuLg4nJye8vb356quvqFSpUo7v5eDBgwB89tlnWR6vXLlypjKVSoWPjw9Lly5l8ODBbNu2jfj4eKpXr864ceNo0qRJjuf8bz8Zcy/c3NyIiIgAoFSpUrp6T9YRQgghRP6k1aZxLyKcWxfOEXXjKlHXr/Hg9k0Soh+Slpqaqb7axAQLGzvsnJwpXMKVwiXdKFGhEnZOxXQJR3xKPBcfXuT8/fOEx4Rz7dE1rj+6Ts/KPWlVutWrfot5JomFeKrk5GR2796NSqWiWrVqescmT57MpUuXqFevHm+//TYPHz5k8+bN9O7dm/Pnz/Pdd9/p6p44cYL69eujVqtp06YNrq6uPHz4kNDQUObPn6+XWGTnyy+/ZNq0aRQqVIi2bdtStGhRrl27xvbt26lZs+ZTEwsHBwcALly4QJ06dXL9GTx48AAvLy+KFCnCRx99xL179/j9999p1qwZq1atom3btrnuK8OAAQNYuHAhJ0+epH///ronJW5ubnnuSwghhBAvX3z0Qy79fYjLx45w41wISXFxuW6blpLCo6h7PIq6x7WQU7pyY1tL4oprOFv0PqfMr6JVZb6peuXhlRcS/8smiYXQc+nSJd1QKEVRiIyMZMuWLdy4cYMpU6ZQtmxZvfpz587Vu9sOkJqaSosWLZg5cyb9+/fXDWtasmQJSUlJrF27ljZt2ui1iYqKempsf/75J9OmTaNy5crs2rVLlyRknDM3fbRv3559+/bRunVr+vTpQ6NGjahRowY2NjY5tjt16hSdOnVi6dKlursK/fv3p3bt2vTq1YuAgADMzc2fev4nDRgwgBMnTnDy5EkGDBggCYUQQgiRD6UkJ3Hx0H7O7N7O9dAzKIo227rm1jZY2RfC3MYWU3NzQAUoJCcmkhD9kEcP7pP4KEavTWp0HJroOKqFgoemGJdc4jjv+oh4szQATIxMSExLzHyyfEgSi1xoPXsf9x4lGTqMHBWx1rDhswbP3c/ly5cZN25cpvJWrVplOeTnv0kFgLGxMX369GHbtm3s2rWLbt266R3P6gL8ySQhOz/88AMAM2fOzFTf2Ng4VxOuP/30U65du8bMmTMZP34848ePR6VSUb58eVq3bk3//v1xdnbO1E6tVvPNN9/ojY2sUqUKXbt25eeff2bTpk20a9fuqecXQgghRMEQffc2xzdvIGT3DhLjMq+MaWZtQ4nylXCpUImibqUpVLwEFja2meqlaFM4cOMAG8M2Enz9KClx8dg/MqHIQw3OkWYUfaDBWJu+UKtlkjFVL9tSNcyOojUrU/edDri7VUJt9PIXznkRJLHIhXuPkrgdUzAyxecVEBDA5s2bda+joqLYv38//fv3x8vLi507d1K3bl3d8UePHjF16lTWrl3L5cuXifvPI8GbN2/q/rt9+/bMmDGDt99+mw4dOtC0aVMaNmxI8eLFcxXbkSNH0Gg0+Pj4PPP7U6lUTJkyhSFDhrBp0yYOHTrEP//8w9GjRwkNDeV///sfmzdv1nuPkD6Z3NXVNVN/3t7e/Pzzzxw/flwSCyGEEOI1EHX9GkfWruDs/j0oWv2nE3ZOznjU9aJsnfo4li6Dyij7nRvO3z/Pusvr2HhlI/cT7z8+YAq3HZKIKqLFwqs87g7VKHXPmoTT4UScOIY2LQ20Cnf/PsXGYyFUatSUeu06Yl2o8Mt6yy+MJBa5UMRaY+gQnuplxejg4EBgYCAWFhY0bdqUkSNHsm3bNiB97oWvry/Hjh2jevXqdO3aFQcHB4yNjQkPD2fRokUkJT1+0lO3bl12797NN998w6+//sqCBQsAqF27NpMnT6ZRo0Y5xhIdHU3x4sUxyuF/4twqXLgwH3zwAR988AEAt2/f5tNPP2X16tX06tWLkydP6tXP7mlIRnl0dPRzxySEEEIIw4m+e4fg5Ys4fzAYnlg8Rm1igme9BlRp0pxinuVzXNkpVZvKzqs7WXZ2GcfuHst03NrUmoYuDfEr4YdXcS8sTSwfH2wOsfejOLF1Eye3bSIx9hHatDRObd/M7UsX6TJpRr5fVUoSi1x4EUOMCrqMO/h///23rmzdunUcO3aMnj178tNPP+nV/+2331i0aFGmfry9vfnrr79ISEjg8OHDbNiwgR9++IGWLVty5swZSpcunW0MdnZ23L59G61W+0KSiyc5OTmxZMkS/vzzT06dOkVUVJTecKvsNs3LKLe1zfzoUwghhBD5X1J8PEfWruDopnWkpaToys2srKnRIpBq/i0xt855LmZsciwrLqxg+bnl3I67rXfMxMgE3xK+tHFvQ/3i9TExMsm2H6tCDjTo2JXage04unEtRzf+QXJCAnXfaZ/vkwqQxELk0oMHDwDQPvFI8PLlywCZJmIDBAcH59ifubk5vr6++Pr6Ymdnx+jRo9m2bRu9e/fOtk2dOnXYtGkTe/bseerTjWeh0WgwMTHRe8qS4erVq0RERGQaDpXxPqtXr/5M58zYbDAtLe2Z2gshhBDi2SiKQujenexdtoD46Ie6cnNrG2q3eZeqTZtjapbzwiwxyTEsO7uMJaFLeJT8SO9YKdtSdPTsSMvSLbHV5O0GpMbCgvrvdaJaQEtC9+zAo079PLU3lBd721e8tqZNmwZAw4YNdWUZF9n79u3Tq7tnzx5+/PHHTH0cPHiQxMTMc1Uy7vqbmZnlGEO/fv2A9NWY7t+/r3csNTU126cKT/ruu+84d+5clsfmzJlDbGws5cqVyzQ5PC0tjeHDh+vtq3Hq1CmWLFlCkSJFaNGixVPPnZVChQoBcO3atWdqL4QQQoi8i757h9XfjGbzD9N1SYXa2Jjage3oOetHard+J8ekIiY5htnHZxOwKoAfTvygSypUqPBx8eF/Tf/Hujbr6FS+U56TiidZ2NhSq/U7BeJpBcgTC/EfTy43C3D//n3279/PsWPHsLe3Z/LkybpjrVu3xs3NjSlTpnDmzBkqVarE+fPn+fPPP3n77bdZtWqVXt+TJ09m165dNGzYkFKlSmFmZsaxY8fYsWMHpUuX5u23384xthYtWjBo0CCmTp2Kh4cHb7/9NkWLFuXGjRvs2LGDQYMGMWDAgBz7WLJkCYMGDaJy5crUrVuXokWL8vDhQw4dOsSxY8cwNzdn7ty5mdpVqVKFffv2Ubt2bZo0aaLbxyI1NZX58+fneanZDH5+fkydOpVevXrRrl07LC0tcXV1pWvXrs/UnxBCCCGyp2i1HN+ykX3LF+ntjO1Rtz4NO3+InaNTju1T0lJYcWEF807O42HSQ125WqWmtXtrelbqiZut20uKPv+TxELo+e9ysxqNBhcXF/r27cvQoUN1e1IAWFlZsXPnTgYPHszevXvZvXs3FStWZNmyZTg6OmZKLPr27YutrS2HDx/W7apdsmRJhg8fzhdffPHUvSQAvv32W9566y3mzJnDqlWrSExMxNnZGT8/P5o2bfrU9gsWLGDDhg3s3LmTLVu2cOfOHdRqNa6urvTt25cvvvgCDw+PTO3s7e3ZuHEjgwYN4scff9TbeTs3581O8+bNmTJlCj/++CPfffcdKSkp+Pj4SGIhhBBCvGBxDx+w+YfphJ98PKnaqpADTT7qh3vNnDfNVRSF7Ve3M+PoDK4+uqorN1YZ06ZMG3pW7kkJ6xIvLfaCQqU8ObbjNRQTE4OtrS3R0dE5XrgmJiYSFhamu5MuRAaVSoWPjw+7d+82dChCGJR8TwohCqqwE0f1hj0BVG3aAu9O3dFYWOTY9uKDiwQdCsq0ylPL0i35rPpnFLfK3bL5BVVur6VBnlgIIYQQQojXVFpqKvt+W8w/G9boyizt7GnWbyBuVXJeeCU+JZ65J+eyJHQJacrjRVZqOdZiUK1BVCxc8aXFXVBJYiGEEEIIIV478THR/Dl9EtdCT+vKSlWvRbO+A7Cwtcux7Y6rO5h0ZJLe0rElrUsyuPZgfFx8Csxk6ldNEgshhBBCCPFauXPlEuu++5pHkfcAMFIb49OlB9WbB+aYFDxIfMA3h79hc/hmXZmpkSkfVf6IDyt/iEad/zdNNiRJLIR4itd8GpIQQgjxWjm7bzdb580iNSUZSB/61HrgcIp7ls+x3Y6IHYw/NJ77iY+XtPcq5sXwusMpaVMyh5YigyQWQgghhBCiwFMUhcN/rGD/70t0Zc4engQOHI5VIYds20UnRTPxyEQ2XtmoK7MxtWFY3WG0LNVShj3lgSQWQgghhBCiQEtLTWXHzz9weudWXVmlRv407tkXYxOTbNv9c/sfhgYP5U784012fV18Gf3WaIpYFHmpMb+OJLEQQgghhBAFVnJCPBtmTCb8xFFdmXen7tQObJft04ZUbSrzT83nf6f+h1bRAmBtas2wOsNoVbqVPKV4RpJYCCGEEEKIAik+Jpo1E8dw58olANTGxjT75AvKeflk2+Z23G2+2vuV3r4UtRxrMdF7Ik6WOe+8LXImiYUQQgghhChwYh/cZ1XQSKKup++ErbG0pO2gUbhUqJRtm+DrwQwNHkpMcgwAapWavlX78lHlj1AbqV9J3K8zSSyEEEIIIUSBEn33DquCRvLwzi0ALO0L8e6ICRQu4Zplfa2iZf6p+fxw4gcU0ld7dLZ0ZnLDyVQvmvNGeSL3JLEQQgghhBAFxv2b11kZNJLYqEgAbIo48t6or7FzzHoYU0xyDCOCR7D7+m5dWaMSjZjgNQFbje2rCPmNIYmFEEIIIYQoEKKuX2XF+OHERz8EwL6YC++NDMLaoXCW9S8+uMiAXQO4+ih9uJQKFZ9V/4yelXtipDJ6VWG/MSSxEEIIIYQQ+V7UjWt6SUUR11K8O2ICFrZ2WdbfcXUHw4KHkZCaAICtxpbJ3pPxKu71iiJ+80hiIYQQQggh8rUHt26wcsIIXVLhWLoM744IwszKKlNdRVFYELKAGUdn6OZTlC9UnumNplPcqvirDPuNI8+ARCZHjx6lZ8+eeHh4YGlpibm5Oe7u7nTt2pVt27YRHR2NhYUF9vb2JCYm5tjXjz/+iEqlolevXq8oeiGEEEK8Th7euc2KCSOIe3AfgCJupWk3YkKWSUVKWgqjD4xm+tHpuqSiZemWLG6+WJKKV0ASC6Gj1WoZOHAgtWrVYvHixZQuXZo+ffrQv39/atasycaNG/H392fWrFm0a9eOhw8fsnr16hz7/OWXXwDo2bPnq3gLQgghhHiNxNy7y4rxw3QTtQuXdOO9kUGYW1lnqvsw8SG9tvVi7aW1urJ+1foxscFEzIzNXlXIbzQZCiV0Ro4cyfTp06lWrRqrVq3C3d1d73hCQgJz5swhKiqKnj17snTpUn755Rc6d+6cZX9nz57l0KFDVKxYkbp16+Z47u7du7No0SIURXlh70cIIYQQBVfcwwesnDCCR5H3AHBwKZmeVFjbZKp7LeYafbb30U3S1qg1BHkF0axUs1ca85tOEgsBwKVLl5gyZQoODg5s3rwZR0fHTHXMzc0ZPHgwSUlJmJqa4u7uzq5duwgPD8fNzS1TfXlaIYQQQohnkRQfx+qJY3T7VNgXc+G9UV9nOVE7JCqET7Z/wv3E9KFSDmYOzPKbRZUiVV5lyAIZCiX+tXDhQtLS0ujdu3eWScWTNBoNKpWKDz/8MH2C1IIFmeqkpqayZMkSTE1N6dq168sKWwghhBCvmdTkZNZ+O4F74VcAsHYowrsjJmBpZ5+p7oGbB/hw84e6pMLd1p1fW/4qSYWBSGIhANi/fz8Afn5+uW7TvXt31Go1ixYtQqvV6h3btGkTd+7cITAwkMKFs15bWgghhBDiSdq0NDbOmsL10DMAmFnb0G7EeGwKF8lUd9OVTfTb0Y/41HgAahStwaLmiyhmVeyVxiwek6FQufE/H4i9a+gocmZVFHrveebmt2/fBsDFxSXXbYoVK0azZs3YuHEjO3bsoGnTprpjGcOgPvzww2eOSQghhBBvDkVR2Pbj91z6+xAAJhoz3hk6BofiJTLVXRK6hCl/T9G9blSiEVMaTpFJ2gYmiUVuxN6FRzcNHUW+9NFHH7Fx40Z++eUXXWJx9+5dNm7ciIuLCwEBAZnauLm5ERERkWV/KpUqU9mCBQvo3r37C41bCCGEEPnLgZW/cmbXVgCM1MYEDhqBcxlPvTqKojDr+Cx+Ov2TrqydRztG1huJsZFc1hqa/AZyw6qooSN4uueM0cnJiXPnznHjxg08PT2f3uBfrVq1wtHRkbVr1/LgwQPs7e1ZvHgxqampdO/eHSOjzKPtBgwYwMOHD/XK1q5dy8mTJxkzZkym+tWqVcvr2xFCCCFEARKyZweHVi9Pf6FS0bzfF7hVqa5XR6tomXxkMr+e+1VX1qdqHz6p+kmWNybFqyeJRW48xxCjgsLLy4vdu3ezY8eOPM2zMDY25oMPPuDbb79l2bJlfPrppyxYsACVSkWPHj2ybDNgwIBMZeHh4Zw8eZKxY8c+4zsQQgghREF09cwptv5vtu61T5cPKeflo1cnTZvGhEMTWH3x8f5Zw+sO5/1y77+yOMXTyeRtATyeiD1//nzu3buXY92kpCS91xnzKH755RcOHz5MaGgojRo1onTp0i8tXiGEEEIUfFHXr7H+u6/RpqUCUNW/JTVbttWrk6pNZfi+4bqkwkhlRJBXkCQV+ZAkFgKAMmXKMGTIECIjI2nevDlhYWGZ6iQmJjJt2rRMTxXKlSuHl5cXx48f58svvwRk7wohhBBC5Czu4QPWTBpLUnwcAKWq18Kvey+9YU0paSkM3jOYTWGbADBWGTPZezJtyrQxSMwiZzIUSugEBQWRmJjI9OnT8fT0xM/Pj0qVKmFiYkJYWBjbt28nKiqKoKCgTG179uzJ/v372b9/P3Z2drzzzjsGeAdCCCGEKAhSkhJZ++0EYu7dAaCIW2laDfgKI7VaVycpLYkvdn1B8I1gAEyMTPjO5zsalWxkkJjF00liIXSMjIyYNm0anTp1Yu7cuezdu5e9e/ei1WpxdnYmICCAHj160KRJk0xt27dvT//+/Xn06BGdOnXCzEyWexNCCCFEZoqisGXuTG5fugCAVSEH3v5qNKZm5ro6yWnJekmFmdqMmY1mUr94fYPELHJHpSiKYuggXqaYmBhsbW2Jjo7GxsYm23qJiYmEhYVRqlQpuSgWQogsyPekEOJFOPzHCvb9thgAEzNzOo6bTFG3x/MyU9JSGLh7ILuv7wbA3Nic7xt/T22n2oYI942X22tpkDkWQgghhBDiFbl89DD7fl+S/kKlosVng/STCm0Kg/YM0iUVZmozSSoKEEkshBBCCCHESxd1/SqbZk+FfwfLeLXvQpladXXHU7QpfLX3K3Ze2wmARq1hTuM5klQUIJJYCCGEEEKIlyoxNpa1304gOSEBgLL1GlD37fa646naVIbuHcq2iG1AelIx2282dZ3rZtmfyJ8ksRBCCCGEEC+NNi2NP2dO5uHtW0D6ClDN+g7QLSurVbSM3D+SrRFbATA1MmVmo5m8Vewtg8Usno0kFkIIIYQQ4qXZu2wBEaeOA2BuY0vbQSMx+XcBCEVR+ObwN2y8shFIX1J2eqPpeBX3Mli84tlJYiGEEEIIIV6Ks/v3cHTjWgCM1GoCvxiGTZGiuuOzjs/i9/O/A6BWqfnO5zsaujQ0RKjiBTBoYrF3715at25NsWLFUKlUrF27Vu+4oiiMHj0aZ2dnzM3NadKkCRcvXjRMsEIIIYQQItcir0Ww9X+zdK8bde+NS4VKutc/n/6Zn07/BIAKFUENgmTzuwLOoIlFXFwcVatW5fvvv8/y+JQpU5g1axbz5s3j8OHDWFpaEhAQQGJi4iuOVAghhBBC5FZyQjzrp00kNSkJgIo+TajatLnu+IrzK5hxbIbu9fC6w2lVutWrDlO8YAbdebt58+Y0b948y2OKojBjxgxGjhxJmzZtAFi8eDGOjo6sXbuWjh07vspQhRBCCCFELmTsrP3g5nUAiriWonHPPrrJ2n+F/UXQoSBd/c+rf07HcnJd9zrIt3MswsLCuH37Nk2aNNGV2draUrduXQ4ePJhtu6SkJGJiYvR+hBBCCCHEq3Fs0zouHN4PgMbCksCBwzHRpE/W3nt9L8ODh6OQvpdFj4o9+KjyRwaLVbxY+TaxuH37NgCOjo565Y6OjrpjWZk4cSK2tra6nxIlSrzUOIUQQgghRLrrZ8+wZ+kvutfN+g3EzskZgFP3TvHl7i9JVVIBaOfRji9qfqF7kiEKvnybWDyrYcOGER0drfu5du2aoUMSQgghhHjtxT18wJ8zp6BotQDUafuebmft8OhwPt3xKYlp6fNkA9wCGFVvlCQVr5l8m1g4OTkBcOfOHb3yO3fu6I5lRaPRYGNjo/cjhBBCCCFenoxN8OIe3AegZKUqeLXvAkBkQiR9tvfhQdIDAGo71eabBt+gNlIbLF7xcuTbxKJUqVI4OTmxY8cOXVlMTAyHDx/mrbdkJ0YhhBBCiPzi4OrlXA89A4BVIQdafj4EI7WauJQ4Ptn+CTdibwDgYe/BjEYzMFWbGjJc8ZIYNLGIjY3lxIkTnDhxAkifsH3ixAmuXr2KSqViwIABBAUFsX79ek6fPs0HH3xAsWLFaNu2rSHDfu0dPXqUnj174uHhgaWlJebm5ri7u9O1a1e2bduWqX5iYiIzZ87E29sbBwcHNBoNJUqUoGPHjuzduzfLc4SHh6NSqfR+TExMKF68OO3bt+eff/552W9TCCGEEC/A1TMnObQmfZM7lZERrfp/hYWtHSnaFL7c/SVn758FwMnSibmN52JjKqNJXlcGXW72n3/+oVGjxxuhDBw4EIBu3bqxcOFChgwZQlxcHL169eLhw4c0aNCAzZs3Y/bvNvDixdJqtQwaNIjp06djbGyMn58fgYGBmJiYcOXKFTZu3MjSpUsZP348o0aNAuDSpUu0bNmSCxcuULp0adq3b4+dnR1Xrlzhzz//5Pfff6d///5MmzYNI6PMeay7uztduqQ/Ko2Li+Po0aOsXLmStWvXsn37dho2lN03hRBCiPwqPvohm2ZPBSV9lSevDl0pXq4CiqIw9sBY9t9MXx3K2tSaeU3m4WjpmFN3ooAzaGLh6+uL8u8fYlZUKhXjx49n/PjxrzCqN9fIkSOZPn061apVY9WqVbi7u+sdT0hIYM6cOURFRQEQHR1Ns2bNuHz5MqNGjWLMmDGo1Y/HS968eZO2bdsyc+ZMChUqxOjRozOds0yZMowdO1avbNKkSQwbNoxRo0axZ8+eF/9GhRBCCPHcFK2WTXO+I+5h+twJ1yrVqRPYDoDZx2ez/vJ6AEyNTJntNxt3O/ds+xJZu38zjgt/36ZuYOkCMdE9386xEK/WpUuXmDJlCg4ODmzevDlTUgFgbm7O4MGDGTduHADffvstly9fpnPnzowfP14vqQAoVqwYGzZsoFChQkyYMCHXK3T17NkTSB+SJYQQQoj86e8Na4g4dRwASzt7mvcbiMrIiFUXVvHj6R8BUKFiUsNJ1HSsachQCxxFUQjdd5OVE//m6F8RnD1wy9Ah5YokFgKAhQsXkpaWRu/evTPtHfJfGo0GgAULFgDohkVlxdHRkY8//pjU1FQWLlyYp5iMjQ36QE0IIYQQ2bh54Sz7fluc/kKlovmnX2JpZ8/Bmwf1dtUeWmcoTV2bGijKgikpIZWtP4Wwa+k5UlPSl+4NCb6Jos1+lE9+IVduudDhzw5EJkQaOowcFTYvzO+tfn/m9vv3p4+B9PPzy1X9iIgIbt68SfHixfH09MyxbuPGjZk8ebLuHE/z008/AdCgQYNc1RdCCCHEq5MYG6u3X0Xdtu1xrVyNyw8v8+XuL0lT0gD4oMIHdCrfyZChFji3r0Sz9ecQHkUl6soqNixOg3fLoDLK/0OhJLHIhciESO7G3zV0GC9Vxm7mLi4ueaqfm53NM+rcuHEj07FLly7p5lhkTN7etWsXjo6OfPvtt7mKRQghhBCvhqIobJk3k0eR9wAoXq4C9d/rxP3E+/Tb0Y9HKY8A8C3hy8CaAw0ZaoGiaBWOb7vK4XVX0P77ZEJjYUyjLuVwr1HUwNHlniQWuVDYvLChQ3iqghCj9t87G0+6fPmybs5GBicnJ4KDgylTpsyrCk0IIYQQuXBi60Yu/X0QADMra1p8NpgUUum/s79ur4ryhcoz2XuybICXS3HRSexYGMq1sw90ZU6lbWnaswI2DuYGjCzvJLHIhecZYlRQODk5ce7cOW7cuPHUoU0Z9YFcTcjOqFO8ePFMxwICAti8eTMA9+7dY9GiRXz11VcEBgZy5MgRrKys8vI2hBBCCPGSRF2/yt4lv+heN/tkANYOhfkq+CtO3DsBQFHzosz2m42FiYWBoixYroZEsX1hKAmPUtILVFCzmSt1WpXCSF3wpkIXvIjFS+Hl5QWgt9N5TlxdXSlWrBg3btzg/PnzOdbN6LNChQo51itSpAiDBg1i+PDhnD17lpEjR+YqFiGEEEK8XKkpKWyc9S2pKckAVG/WGveadZl7ci5/hf0FgLmxOXMaz5G9KnIhLVXLgdWX2DD7pC6psLA1pU3/atRr414gkwqQxEL8q3v37qjVaubPn8+9e/dyrJuUlATAhx9+CMDXX3+dbd27d+/qJmN/8MEHuYpl+PDhFCtWjB9++IHw8PBctRFCCCHEy7Pvt8XciwgDwMGlJN6du/PnlT+Ze3IukL6s7GTvyZR3KG/IMAuE6HsJrPn2KMe3XdWVuVZyoOPIOriUK2TAyJ6fJBYCSN+obsiQIURGRtK8eXPCwsIy1UlMTGTatGm6ydaDBw/G3d2dJUuWMH78eNLS0vTq3759mzZt2hAVFUVgYCA1atTIVSzm5uZ89dVXpKSkMGHChOd+b0IIIYR4dhGnTnD0zz8AUBsb0/LzwYQ8PMvo/Y83vv2y1pc0KtnIUCEWGBf+vs3vXx/hbkT6JHcjtQqvd8vQsl8VzK1NDRzd85M5FkInKCiIxMREpk+fjqenJ35+flSqVAkTExPCwsLYvn07UVFRBAWlr09tY2PD5s2badGiBWPGjGHx4sUEBARga2vLlStX2LhxI7GxsVStWpUlS5bkKZZevXoxefJkFi9ezPDhw7PcsE8IIYQQL1fCoxg2/zBN99q7U3fSCpsz4M8epGjTh/C8V/Y9PqiQu1EJb6qUpDT2/n6Bc09sdGdbxBz/jypS1NXGgJG9WJJYCB0jIyOmTZtGp06dmDt3Lnv37mXv3r1otVqcnZ0JCAigR48eNGnSRNemTJkynDx5kv/973+sWrWKX3/9lYcPH+qOjxgxgtGjR2Nqmrcs3MzMjGHDhvHZZ58xbtw4Fi9e/KLephBCCCFyQVEUtv04h9gH9wFwrVKdCk396b61B1GJUQDUcarDsLrDUKny/x4LhnLv2iO2/hTCwzvxujLPuk40fL8spmav16W4SlGU/L+N33OIiYnB1taW6OhobGyyzwgTExMJCwujVKlSmJmZvcIIX09Tp05l8ODBtG/fnuXLl2NkJKPuhCjo5HtSiDfL6V1b2TpvFgBm1jZ8MHkWE0Km6CZrF7cqzm8tf8POzM6AUeZfiqJwevcN9q++iDY1/XLbWKPG5/2ylKvnbODoci+319IgTyzESzJo0CDOnTvHzz//jI2NDT/++KOhQxJCCCFELj24fZNdC+brXvv3+pQVN9fprQA1y2+WJBXZSIxNYeeSs4SdjNSVFS5hRcBHlbBzfH2X4pXEQrw0c+fOxcPDg4SEBM6dO0e5cuUMHZIQQgghniItNZVNs6eSkpQIQGU/f246pzBz50xdnYkNJlLWvqyhQszXbl58wLZfQol9kKQrq+pXgrfedkdt8nqP4JDEQrw0JiYmfPXVV4YOQwghhBB5cGjNb9y+dAEAe+diuLVpygc7e6CQPpynX7V+NHZtbMgQ8yWtVuGfTeH8szGMjIkGZpYmNO5WHrcqhQ0b3CsiiYUQQgghhADg5oVzHF6zAgAjtZqGvfvQ/8Ag4lLiAGjq2pTeVXobMsR8KfZBItt+CeXmxYe6suJl7WjSoyJW9hrDBfaKSWIhhBBCCCFISUpk8w/TURQtAPXadWTqjflcfZS+kZunvSdBXkGyAtR/hJ28x47FZ0mKSwVApYI6rUtRo5kbRkZv1mcliYUQQgghhCD410U8uHUDAGcPT/52u8v+M/sBsNfYM9NvJhYmr+/E47xKTUnjwJrLnN51XVdmZa+hac+KFCtjZ7jADEgSCyGEEEKIN1zE6RMc37wBAGNTDfZv12fimbEAGKmM+NbnW4pbFTdghPnLg9txbPkphKjrsbqy0tWK0KhrOcwsTQwYmWFJYiGEEEII8QZLio9jy9zHKz5VfKc1o85P1b3+osYX1HWua4jQ8h1FUTh38BZ7f7tAanL6kDG1sREN3itDxYbF3/hhYpJYCCGEEEK8wXYt/JFHUfcAKFahIt+r1hKbkn4n3t/Vn24VuxkyvHwjOSGV3b+e5+Lfd3Rl9k4WBHxcCYfiVgaMLP+QxEIIIYQQ4g116Z/DhOzZDoCpuTknaiZyKeoyAO627kzwmvDG34UHuBMew9afzhATmagrq9CgGA3ae2BiqjZgZPmLJBZCCCGEEG+g+Jhots2frXtt2rQim6JWA2BlYsX0RtPf+MnailbhxPZrHFp7Ga02fXMKUzM1vl3K4VHL0cDR5T+SWAghhBBCvGEURWH7T98TH/0QgEKVyjIzda3u+NcNvqaUbSnDBJdPxMcks2NhKFdD7+vKHEvZ4N+zIjaFzQ0YWf71eu8rLoQQubRw4UJUKhULFy40dChCCPHSndu/h4uHDwCgsbJiecljpJEGwMeVP8avpJ8hwzO4a6H3+S3oyOOkQgU1Alx5e1ANSSpyIImFyOTo0aP07NkTDw8PLC0tMTc3x93dna5du7Jt27Ys26SmprJgwQJatGiBk5MTpqam2NraUrt2bUaOHElERIRefTc3N1Qqle5HrVZTuHBh/P39WbduXa7ijIqKYv78+QQGBlK6dGk0Gg2FCxemefPmbNmy5bk/B5F7S5cupXfv3tSqVQuNRvNGXKCfOHGC4cOHExAQQJEiRVCpVPj6+ho6LCGEeKpH9yPZ8ctc3evQGmncIgoAr2Je9KvWz1ChGVxampaDf1xm/ewTJMQkA2BuY0rgZ9V462131Gq5dM6JDIUSOlqtlkGDBjF9+nSMjY3x8/MjMDAQExMTrly5wsaNG1m6dCnjx49n1KhRunYRERG0adOGkydP4ujoSNOmTSlRogRxcXEcO3aMSZMmMXXqVM6cOUOZMmV07dRqNSNHjgQgOTmZc+fOsX79erZt28bUqVP58ssvc4x35cqV9O3bl2LFitG4cWOKFy/O9evXWb16NZs3b2bKlCkMHjz45XxYQk9G8li4cGGcnZ0zJZKvo7Vr1zJx4kRMTU0pW7YskZGRhg5JCCGeSlEUtv5vNklxcQCkejoQbHUMgOJWxZnkPQm10Zs5GTkmMoGtP4dwJyxGV1ayQiEad6+AhY2pASMrOCSxEDojR45k+vTpVKtWjVWrVuHu7q53PCEhgTlz5hAVFaUre/ToEQEBAZw/f57BgwczYcIENBqNXrtLly4xcOBAYmNj9cqNjY0ZO3asXtnWrVtp1qwZo0ePpm/fvlhYZD9prGzZsqxfv56WLVtiZPT4DsLIkSOpW7cuI0aMoHPnzhQrViyvH4XIo59++gkPDw9cXV2ZNGkSw4YNM3RIL917771HYGAglStXJioqCmdnZ0OHJIQQT3V65xbCTxwFwNjagl9LnABAo9Yw3Xc6dmZ2hgvOgC7+c4fdS8+RnJg+HMzISEW9tu5Ua1IClZGsipVb8jxHAOkX/1OmTMHBwYHNmzdnSioAzM3NGTx4MOPGjdOVTZ06lfPnz9OlSxemTJmSKakAKFOmDOvXr6dChQpPjcPf3x9PT0/i4+MJCQnJsa6fnx+tW7fWSyoAPD096dChAykpKRw4cOCp58wQGRlJr169KFq0KBYWFtSuXZs//vgjy7H34eHhqFQqunfvztmzZ3n77bdxcHBApVIRHh4OpA8PmzZtGlWrVsXc3BxbW1saNWrEhg0bMp177NixqFQqdu/enenY084fEhJCy5YtsbOzw8rKCn9/f44ePZqpn1u3btG/f388PDwwNzfHzs6O8uXL06dPH6Kjo3P9OWWlSZMmuLq6PlcfABcuXGDIkCHUqFEDBwcHzMzMKFu2LEOHDs2UmAL4+vqiUqlISUlh7NixuLm5odFoKFu2LD/88EOW57h//z59+vTB0dFR7/ecVxUrVqRGjRqYmLy5O6wKIQqWmMi77Fnys+71zgq3SDZN3+RteN3hlHcob6jQDCYlOY1dS8+x9acQXVJhU9iMdwbXpLp/SUkq8kieWAgg/eI1LS2N3r174+iY8/JpTyYPv/zyCwCjR49+6jlMTfP2GPF51s3OuNgzNs7dn3hsbCw+Pj6EhoZSv359GjZsyPXr1+nYsSMBAQHZtrt06RL16tWjcuXKdO/enaioKExNTVEUhXfffZd169ZRtmxZ+vXrR1xcHL///juBgYFMmzaNL7744pnfX4YrV67g5eVFjRo16Nu3LxEREaxcuZKGDRuyc+dO6tZN3yk1Pj4eLy8vwsPD8ff35+233yY5OZmwsDCWLFnCoEGDsLW1fe54nteaNWv4+eefadSoEb6+vmi1Wg4dOsTkyZPZs2cPe/fuzfJC/v333+fIkSM0b94ctVrNihUr6NevHyYmJnz88ce6evHx8fj6+nL69GneeustfHx8uHbtGh06dMDf3/9VvlUhhHilFEVh2/w5JCckAHDH3YgrDg8BCHQP5O0ybxswOsOIuhHLlp9CeHArTlfmUdsR306emJrLJfKzkE9NALB//34g/SlAbkVERHD9+nVcXFzw8PB4IXHs2LGD8+fPY2lpScWKFZ+pj5iYGFatWoWZmRne3t65ajN58mRCQ0Pp1asX//vf/3Tl3bt3p0mTJtm2279/P6NHj9Z7igOwePFi1q1bh4+PD1u3btUlVcOGDaNmzZoMGTKENm3aULp06Wd4h48FBwczdOhQJk6cqCvr1q0bzZo14+OPP+bUqVNA+ucaFhbGgAEDmD59ul4fsbGx+eaue9euXRk4cGCmJHT8+PGMGTOGFStW0Llz50ztrl+/zpkzZ7CxsQGgf//+VKpUie+++04vsZgyZQqnT5/m448/Zv78+Xrnbdas2Ut6V0IIYXhndm8j/GT6XAqtpQk7Sj/eBG9E3RFv1CZ4iqIQsvcG+1ZdIi0l/YmNsakRDTuWpdxbzm/UZ/GiSWKRC2Ht3iU1n0/MNC5cmFKrVz1z+9u3bwPg4uLyUts8KTU1VTfHIiUlhfPnz7Nu3ToURWHChAmYmz/bcm59+vThzp07jB8/HgcHh1y1Wbp0KaampowfP16vvHHjxvj7+7N169Ys2zk5OTFixIhM5YsWLQLSL2SfvEguWbIkX3zxBSNGjGDZsmV6k+CfhZ2dXabzBwQE0LhxY3bs2MHRo0epWbOm7lhWn6mVldVzxfAiFS9ePMvyTz/9lDFjxrB9+/YsE4uJEyfqkgpIHw7n5eXFnj17ePToEdbW1kB6wpfV7/nJz0wIIV43j+5HsmfxE0Ogyt8g2UTB3Nicab7T3qhN8BLjUti19BxXjt/TlTm4WBHwUUXsnSwNGNnrQRKLXEiNjCT1zh1Dh/HaSUtL093pNzIywt7eHj8/P/r160dgYOAz9Tls2DCWL19Os2bNGD58eK7axMTEEB4eToUKFbIcBubl5ZVtYlG1atUsh3gdP34cCwsL6tSpk+lYo0aNgPTlSp9X9erVs0wMvL292bFjB8ePH6dmzZo0bNgQZ2dnJk2axMmTJ2nVqhU+Pj6UL18+X92ZURSFBQsWsHDhQs6cOUN0dDRarVZ3/ObNm1m2ezJ5ypCR8D58+BBra2tiYmIICwujQoUKODk5Zaqf8ZkJIcTrRFEUtv/4PUnx6cN9wlwSuF40fTjUqHqjKG33fE/OC5Kblx6y7ecQYh8k6coqN3Kh/jvuGJu8mSthvWiSWOSCceHChg7hqZ43RicnJ86dO8eNGzfw9PTMdRuAGzduPNM5NRoNiYmJz9Q2K6NGjWLSpEn4+fmxZs0a1OrcfUnExKQvK1e0aNEsj+c05yS7YzExMZQoUSLLYxmrB2Wc93lkd/6M8oxJ2ba2thw6dIjRo0ezYcMGNm3aBECJEiUYOnQon3zyyXPH8iJ8/vnnzJkzhxIlShAYGIizs7NuTs+4ceNISkrKst2TTysyZMyvSUtLn4z3PL9nIYQoqEL37uTKsb8BSDKDg+XTR2C8W/ZdWru3NmRor4xWq3BsczhHNoShKOllGktj/LqWp3S1IoYN7jUjiUUuPM8Qo4LCy8uL3bt3s2PHjlzPs3B1daV48eJcu3aNixcvvrB5Fs9i1KhRBAUF4evry4YNG/I0jCrjovTu3btZHr+Tw9Oq7O7229jYZNtfxhCyJy+GM1a2Sk1NzVQ/pxWbsosto/zJCdklS5Zk4cKFaLVaTp06xdatW5k1axb9+vXD3t6e999/P9vzvAp3797l+++/p0qVKhw8eFBvqeHbt29nmseSV8/zexZCiIIo9sF9di16PJ9sX8W7JJtoKVeoHEPrDDVgZK9O7IMkti8I4caFh7qyYh52NP2wAlb2ZoYL7DUly80KIH2SslqtZv78+dy7dy/Huk/eNe7ZsycAQUFBTz1HcnLy8wWZjYykwsfHh40bN+a490VWbGxscHNz49KlS1ledOZlydoM1atXJz4+niNHjmQ6lrGkbLVq1XRl9vb2QNZPf44fP57teY4fP57lMqzBwcG6OP7LyMiIatWqMWTIEJYvXw7A+vXrs38zr8iVK1dQFIUmTZpk+h1mvJ/nYWNjQ6lSpbh06ZIuuXvR5xBCiPxCURS2//S9biO8y8XiuOaYgJWJFd/5fIdGnXl5+NdN+KlIfg86oksqVCqo3aoUbb6oLknFSyKJhQDS95oYMmQIkZGRNG/enLCwsEx1EhMTmTZtmt6mdoMGDcLT05PFixczfPjwLIeqhIWF0bZtW0JDQ1943KNHjyYoKAhvb+9nSioydO7cmeTkZMaMGaNXvnv3brZs2ZLn/rp16wakz/lISUnRlV+7do1p06ZhbGysNwm5du3aQPrk4ifnFBw8eJBly5Zle56HDx/y9ddf65Vt2bKFHTt2UKlSJd3cg5CQkCzvyGeUmZk9/oLN2CPDzc0tt2/3hcjYB+PAgQN6n8H169df2IZ7Xbt2JTk5OdPyyFu3bpX5FUKI18q5/Xu4/M9hABJM0zhS4T4A473GU9KmpCFDe+nSUrQEr7jAxh9OkRiX/m+wpZ2GtgOrU6dVKYxkb4qXRoZCCZ2goCASExOZPn06np6e+Pn5UalSJUxMTAgLC2P79u1ERUXpPZ2wtrZmy5YttGnThokTJ7JgwQL8/f1xcXEhPj6e48ePs3//foyNjZk6deoLjXfhwoVMmDABY2Nj6tSpw7fffpupjq+vL76+vk/t66uvvmL16tXMmzePM2fO4O3tzfXr11mxYgWtW7dmw4YNmTbiy0nXrl1Zs2YN69ato0qVKrRq1Uq3j8X9+/f57rvv9JaarVevHl5eXuzcuZO33nqLhg0bEhERwbp162jdunW2G7h5e3szd+5cDh8+TL169QgPD2flypWYm5vz008/6ept27aNwYMH4+XlRdmyZXFwcODKlSusX78eMzMz+vXrp6ubcVGf2z1AIH3n7X379gFw+vRpXVnG05kGDRrw0Ucf5diHs7Mz7dq1Y/Xq1dSqVYvGjRtz584d/vzzTxo3bszly5dzHU92hgwZwpo1a/jxxx8JCQmhYcOGXLt2jRUrVtCyZUs2btyY677OnTvHpEmTgPRd6TPKunfvrqvz5KaGQgjxqsQ9fMDOBY+XTj9YKYokUy1dynehqWtTA0b28j28E8+Wn84Qee3x03y3KoVp/EF5zKzyx9LqrzXlNRcdHa0ASnR0dI71EhISlNDQUCUhIeEVRZZ//f3338qHH36olClTRjE3N1c0Go3i5uamdOrUSdm2bVuWbZKTk5VffvlFadasmeLo6KiYmJgo1tbWSo0aNZThw4crV69e1avv6uqqaDSa54pzzJgxCpDjz5gxY3Ld3927d5WePXsqhQsXVszMzJSaNWsqa9asUaZOnaoAyh9//KGrGxYWpgBKt27dsu0vJSVFmTp1qlK5cmVFo9Eo1tbWio+Pj7Ju3bos60dGRioffPCBUqhQIcXc3FypV6+esmXLFmXBggUKoCxYsCDL8585c0Zp0aKFYmNjo1haWipNmjRR/vnnH72+Q0NDlf79+yvVq1dXHBwcFI1Go5QuXVrp1q2bEhISold33bp1CqCMGDEi159dt27dcvw95PQ5PenRo0fKl19+qbi5uSkajUbx8PBQJkyYoCQnJyuA4uPjo1ffx8dHye5rLCOmsLAwvfKoqCilV69eSpEiRfR+z1l9zjnZtWvXU//+XjfyPSlE/qfVapV1U79WprZvqUxt31Lp199XqbSwkvL+n+8ryanJhg7vpTp78KYy7/PdypzeO5Q5vXcoP/TbqZzceU3RarWGDq1Ay+21tKIoikpRMubHv55iYmKwtbUlOjo6y5VjMiQmJhIWFkapUqX0hoUI0aVLF5YtW0ZoaCjly5c3dDhA+nClUqVK0a1btxd+V3zQoEHMnTuXiIgICheAFdHEqyPfk0Lkf+cPBvPnjMkAJJqm8Yf3TUytLVnZeiXFrbLeK6igS05MZc/y81w4/HjIr52jBf4fVaRICWsDRvZ6yO21NMhQKCF0bt26pVsKNsOePXv47bff8PT0zDdJxcsWHBzMxx9/LEmFEEIUMPEx0ez4ea7u9aGK90nSaJlYf9xrm1TcjYhh608hRN9L0JWVq+9Mww5lMdHI3hSvmiQWQvyrRYsWmJubU61aNSwtLQkNDWXz5s2o1Wpmz55t6PBemcOHDxs6BCGEEM9gxy/zSHiUvmdPuFMc4U7xdPDs8FrOq1AUhZM7rnHwj8to09IH35iYqfHt7EnZ2pk3QRWvhiQWQvyrW7duLFu2jN9++41Hjx5hZ2dH69atGTZsGHXr1jV0eEIIIUS2Lh45wIWD6ctmJ5qkcajifTwKeTCo1iADR/biJTxKZseis0ScidKVFXW1xv+jitgWebbVIcWLIYmFEP8aMGAAAwYMMHQYueLm5sZrPj1KCCFELiXGxbLjl3m614cr3EdlqWFqw6mYGb9e86Gun3/Atl9CiI9+vDdW9aYlqdumNGpj2UXB0CSxEEIIIYQowIKXLSTuQfo+FdeKxhNWLJ7xdcZT2q70U1oWHNo0LUf+DOPo5oj0dfcAc2sTmnSvQMmKDoYNTuhIYiGEEEIIUUBdCz3NqR2bAUhRazlY8T7NSzenbZm2hg3sBYqJSmDbz6HcvhKtK3MpZ0+THhWwtH39dxAvSCSxEEIIIYQogFKTk9k2//HiIkc9H1CoiDOj641GpXo9dpe+fOwuu5aeIyk+FQAjIxV125SmetOSqGQH7XxHEgshhBBCiALo0JrfeHDrJgB37RK5VCqRpT5TsTK1MnBkzy81OY19Ky8SEnxTV2btYIZ/z4o4lbY1YGQiJ5JYCCGEEEIUMHfDr3Bk/WoA0lQK+yvfZ0DNAVQsXNHAkT2/qJuxbP0phPs343RlZWoWxbezJxoLEwNGJp5GEgshhBBCiAJEq01j6/9moaSlAXCqTDRVytWja4WuBo7s+SiKQui+m+xbcZHUFC0AxiZGeHcoS3kv59dmeNfrTBILIYQQQogC5PhfG7hz5RIAD6ySuV3RlFkNgjBSFdzlVpPiU9i19DyXj93VlRUqZknAR5UoVMzSgJGJvJDEQgghhBCigIi+e5vg3xYBoKBwsPJ9vvadQyGzQgaO7NndvhLN1p9CeHQ/UVdWqWFxvN4tg7Gp2oCRibySxEIIIYQQogBQFIUt82eTlpwCwDnXR7Rs0Il6zvUMHNmzUbQKx7ZGcHh9GIo2fXMKjYUxjbqWw716UQNHJ55FwX1mJoQQL9DChQtRqVQsXLjQ0KEIIUSWzgbv4trpkwDEmaUSW8+Rz6p/ZuConk1cdBLrZ53g0NoruqTC2d2W9iNqS1JRgEliITI5evQoPXv2xMPDA0tLS8zNzXF3d6dr165s27YtyzapqaksWLCAFi1a4OTkhKmpKba2ttSuXZuRI0cSERGhV9/NzQ2VSqX7UavVFC5cGH9/f9atW5erOKOiopg/fz6BgYGULl0ajUZD4cKFad68OVu2bHnuz0Hk3tKlS+nduze1atVCo9G89hfo169fx87OjiJFinD37t0s6/Tt2xeVSkVQUNArjk4I8TqKj37I1gU/6F4frfKIbxpPxkRd8FZJigiJ4vegI1w/9yC9QAW1WrjRdmB1bBzMDRuceC4yFEroaLVaBg0axPTp0zE2NsbPz4/AwEBMTEy4cuUKGzduZOnSpYwfP55Ro0bp2kVERNCmTRtOnjyJo6MjTZs2pUSJEsTFxXHs2DEmTZrE1KlTOXPmDGXKlNG1U6vVjBw5EoDk5GTOnTvH+vXr2bZtG1OnTuXLL7/MMd6VK1fSt29fihUrRuPGjSlevDjXr19n9erVbN68mSlTpjB48OCX82EJPRnJY+HChXF2ds6USL5uXFxcmDFjBj169KB379788ccfese3bNnCvHnzqF27NsOGDTNQlEKI18nmX+aQFp8+B+GKcxydW/WntG1pA0eVN2mpWg6tvcyJ7dd0ZZa2pjT5sCIunvYGjEy8KJJYCJ2RI0cyffp0qlWrxqpVq3B3d9c7npCQwJw5c4iKitKVPXr0iICAAM6fP8/gwYOZMGECGo1Gr92lS5cYOHAgsbGxeuXGxsaMHTtWr2zr1q00a9aM0aNH07dvXywsLLKNt2zZsqxfv56WLVtiZPT44dvIkSOpW7cuI0aMoHPnzhQrViyvH4XIo59++gkPDw9cXV2ZNGnSG3Ex3b17d1avXs3atWtZvHgxH3zwAQAPHz6kZ8+emJmZsXjxYtRqmXgohHg+l48dIezQIQASTdIwaVqB98q+Z+Co8ubh3Xi2/RzC3YhHujK3yg74dSuPuZWpASMTL5IMhRJA+sX/lClTcHBwYPPmzZmSCgBzc3MGDx7MuHHjdGVTp07l/PnzdOnShSlTpmRKKgDKlCnD+vXrqVChwlPj8Pf3x9PTk/j4eEJCQnKs6+fnR+vWrfWSCgBPT086dOhASkoKBw4ceOo5M0RGRtKrVy+KFi2KhYUFtWvX5o8//shy7H14eDgqlYru3btz9uxZ3n77bRwcHFCpVISHhwPpw8OmTZtG1apVMTc3x9bWlkaNGrFhw4ZM5x47diwqlYrdu3dnOva084eEhNCyZUvs7OywsrLC39+fo0ePZurn1q1b9O/fHw8PD8zNzbGzs6N8+fL06dOH6OjoXH9OWWnSpAmurq7P1QfAhQsXGDJkCDVq1MDBwQEzMzPKli3L0KFDMyWmAL6+vqhUKlJSUhg7dixubm5oNBrKli3LDz/8kMUZ4P79+/Tp0wdHR0e93/Oz+PHHHylUqBD9+/fnxo0bAHz22WfcuHGDb775hnLlyj1Tv0IIkSE5IZ71c6fqXp+vksqYxkEFak+H84dvs+Lrv3VJhZGxigbvedDikyqSVLxm5ImFANIvXtPS0ujduzeOjo451n0yefjll18AGD169FPPYWqaty+P5/nSNDFJH3NqbJy7P/HY2Fh8fHwIDQ2lfv36NGzYkOvXr9OxY0cCAgKybXfp0iXq1atH5cqV6d69O1FRUZiamqIoCu+++y7r1q2jbNmy9OvXj7i4OH7//XcCAwOZNm0aX3zxxTO/vwxXrlzBy8uLGjVq0LdvXyIiIli5ciUNGzZk586d1K1bF4D4+Hi8vLwIDw/H39+ft99+m+TkZMLCwliyZAmDBg3C1tb2ueN5XmvWrOHnn3+mUaNG+Pr6otVqOXToEJMnT2bPnj3s3btX97t90vvvv8+RI0do3rw5arWaFStW0K9fP0xMTPj444919eLj4/H19eX06dO89dZb+Pj4cO3aNTp06IC/v3+e43VycuL777/n/fffp2fPnvTq1YulS5fi4+PDgAEDnuejEEIIADYsmo02Jh6Amw4J9O48HnuzgjFsKDkxleDfLnDu0G1dmW1RcwI+qkSRktYGjEy8NMprLjo6WgGU6OjoHOslJCQooaGhSkJCwiuKLH/x9fVVAGX79u25bhMeHq4AiouLS57P5+rqqmg0mkzl27dvV1QqlWJpaanEx8fnuV9FSf+dOzo6KmZmZkpkZGSu2owcOVIBlF69emWKB1AAZcGCBbrysLAwXfno0aMz9bdo0SIFUHx8fJSkpCRdeUREhFK4cGHF2NhYuXz5sq58zJgxCqDs2rUrU18LFizI8fxDhw7Vq79582YFUCpXrqwrW79+vQIoAwYMyNT/o0ePlMTExGw/m7yaOHFipnhz6/r163qfV4Zx48YpgLJ06VK9ch8fHwVQ6tatq/f/+Llz5xRjY2PF09NTr37G5/zxxx/rlWd8Zs8a97vvvqsAikajUaysrJQrV67kuY+C4E3/nhTiVQsLPal8276lMrV9S2VSx+bKt1vHGzqkXLt7NUZZOvqgMqf3Dt3PtgUhSlJCiqFDE3mU22tpRVEUeWKRCyu++Zv4mGRDh5EjCxtT2g+v/cztb99Ov5vg4uLyUts8KTU1VTfHIiUlhfPnz7Nu3ToURWHChAmYmz/byhB9+vThzp07jB8/HgcHh1y1Wbp0KaampowfP16vvHHjxvj7+7N169Ys2zk5OTFixIhM5YsWpW9eNGXKFL0nNSVLluSLL75gxIgRLFu2TG8S/LOws7PLdP6AgAAaN27Mjh07OHr0KDVr1tQdy+oztbKyeq4YXqTixYtnWf7pp58yZswYtm/fTufOnTMdnzhxIjY2NrrXnp6eeHl5sWfPHh49eoS1dfqdscWLF2f5e37yM3sWEydOZNWqVSQlJfH1119TqlSpZ+pHCCEypKWmsHL2BN2Y9RvVTJnq95VBY8oNRVE4tes6B9ZcQpuavoysiUaNTydPPOs6GTg68bJJYpEL8THJxD1MMnQYr520tDTdfA0jIyPs7e3x8/OjX79+BAYGPlOfw4YNY/ny5TRr1ozhw4fnqk1MTAzh4eFUqFAhy2FgXl5e2SYWVatWzXKI1/Hjx7GwsKBOnTqZjjVq1AiAEydO5Cq+nFSvXj3LxMDb25sdO3Zw/PhxatasScOGDXF2dmbSpEmcPHmSVq1a4ePjQ/ny5fPVOF1FUViwYAELFy7kzJkzREdHo9Vqdcdv3ryZZbsnk6cMGQnvw4cPsba2JiYmhrCwMCpUqICTU+Z/3DI+s2cxYcIE3X+vXbuWL774ItPcHyGEyIsVi6diFJUAwH3bFD7/aDqm6vw9HyEhNpmdi88RfipSV1akpDX+PSti55j9Yizi9SGJRS5Y2OTv/5Hh+WN0cnLi3Llz3LhxA09Pz1y3AXSTVvNKo9GQmJj4TG2zMmrUKCZNmoSfnx9r1qzJ9Wo8MTExABQtmvWGPDnNOcnuWExMDCVKlMjymLOzs955n0d2588oz5iUbWtry6FDhxg9ejQbNmxg06ZNAJQoUYKhQ4fyySefPHcsL8Lnn3/OnDlzKFGiBIGBgTg7O+vm9IwbN46kpKwT/CefVmTImF+TlpYGPN/vOSfr1q1j8eLF+Pr64uLiwtKlS5k5c+YLmUMjhHgzXbp8imvb9qFGhValUO79tpRx8DB0WDm6ceEB234J1bsRW7VxCd5q647aRG60vCkksciF5xliVFB4eXmxe/duduzYgZ+fX67auLq6Urx4ca5du8bFixfx8DDcl96oUaMICgrC19eXDRs25GkYVcZFaXYbnd25cyfbttnd7bexscm2v4whZE9eDGfc3U5NTc1UP6cVm7KLLaP8yQnZJUuWZOHChWi1Wk6dOsXWrVuZNWsW/fr1w97envfffz/b87wKd+/e5fvvv6dKlSocPHhQb6nh27dv661G9iye5/ecncjISHr37o2VlRULFizA1taWnTt3MmLECFq1amXQ/yeEEAVTWloqv80ci7k2/d+XR1XtGOTbx8BRZU+bpuXvTeEc3RSOkj7yCTMrExp3K49b5cKGDU68cpJCCiB9TX61Ws38+fO5d+9ejnWfvGvcs2dPgFztLpyc/HLmqWQkFT4+PmzcuDHHvS+yYmNjg5ubG5cuXcryojMvS9ZmqF69OvHx8Rw5ciTTsYwlZatVq6Yrs7dPX+Ejq6c/x48fz/Y8x48fz3IZ1uDgYF0c/2VkZES1atUYMmQIy5cvB2D9+vXZv5lX5MqVKyiKQpMmTTL9DjPez/OwsbGhVKlSXLp0SZfcPe85PvnkE+7cucN3332Hm5sb9vb2zJ8/n4SEBHr06KE3jEsIIXLjl2VBmN9J//cyzlLLp/2+y1dDVp/06H4ia6cf55+Nj5OK4p52dBxZR5KKN5QkFgJI32tiyJAhREZG0rx5c8LCwjLVSUxMZNq0aXqb2g0aNAhPT08WL17M8OHDsxyqEhYWRtu2bQkNDX3hcY8ePZqgoCC8vb2fKanI0LlzZ5KTkxkzZoxe+e7du9myZUue++vWrRuQPucjJSVFV37t2jWmTZuGsbGx3iTk2rXTn4otXrxY72L04MGDLFu2LNvzPHz4kK+//lqvbMuWLezYsYNKlSrp5h6EhIRkeUc+o8zMzExXlrFHhpubW27f7guRsQ/GgQMH9D6D69evv7AN97p27UpycnKm5ZG3bt2a5/kVy5cvZ+XKlQQEBNCrVy9decuWLenevTv79+9n+vTpLyRuIcSbIST8KFFbHt+QqvVBF4ra5M8Jz1dO3OP3oCPcupT+VF1lpKJuYGkC+1fH0i7znlbizSBDoYROUFAQiYmJTJ8+HU9PT/z8/KhUqRImJiaEhYWxfft2oqKi9J5OWFtbs2XLFtq0acPEiRNZsGAB/v7+uLi4EB8fz/Hjx9m/fz/GxsZMnTo1h7Pn3cKFC5kwYQLGxsbUqVOHb7/9NlMdX19ffH19n9rXV199xerVq5k3bx5nzpzB29ub69evs2LFClq3bs2GDRvyNBm3a9eurFmzhnXr1lGlShVatWql28fi/v37fPfdd5QuXVpXv169enh5ebFz507eeustGjZsSEREBOvWraN169bZbuDm7e3N3LlzOXz4MPXq1SM8PJyVK1dibm7OTz/9pKu3bds2Bg8ejJeXF2XLlsXBwYErV66wfv16zMzM6Nevn65uxkV9bvcAgfSdt/ft2wfA6dOndWUZT2caNGjARx99lGMfzs7OtGvXjtWrV1OrVi0aN27MnTt3+PPPP2ncuDGXL1/OdTzZGTJkCGvWrOHHH38kJCSEhg0bcu3aNVasWEHLli3ZuHFjrvq5desWn376KXZ2dvz888+Zjs+YMYPt27czcuRIWrVqlet5S0KIN1dyWjLLZ4/HPjX935q0SkVp4dvJwFFllpqSxoFVlzi95/ETdqtCGvx7VsLZ3fD7IQkDe8lL3xqc7GORd3///bfy4YcfKmXKlFHMzc0VjUajuLm5KZ06dVK2bduWZZvk5GTll19+UZo1a6Y4OjoqJiYmirW1tVKjRg1l+PDhytWrV/XqZ7ePRV5k7EmQ08+YMWNy3d/du3eVnj17KoULF1bMzMyUmjVrKmvWrFGmTp2qAMoff/yhq5uxj0S3bt2y7S8lJUWZOnWqUrlyZUWj0SjW1taKj4+Psm7duizrR0ZGKh988IFSqFAhxdzcXKlXr56yZcuWHPex6Natm3LmzBmlRYsWio2NjWJpaak0adJE+eeff/T6Dg0NVfr3769Ur15dcXBwUDQajVK6dGmlW7duSkhIiF7ddevWKYAyYsSIXH923bp1y/H3kNPn9KRHjx4pX375peLm5qZoNBrFw8NDmTBhgpKcnKzbF+RJGftY5BRTWFiYXnlUVJTSq1cvpUiRInq/56w+5+y0bNlSAZRFixZlWydjb4y33npLSUtLe2qfBYF8Twrx8sz4dYQy9d89K775oKVy/+FdQ4eUSdTNWGX5+MN6e1P8Ne+UkhCbbOjQxEuUl30sVIqSMSou/0lLS2Ps2LEsXbqU27dvU6xYMbp3787IkSNzPd4wJiYGW1tboqOjs1w5JkNiYiJhYWGUKlVKb1iIEF26dGHZsmWEhoZSvnx5Q4cDpA9XKlWqFN26dWPhwoUvtO9BgwYxd+5cIiIiKFxYxsiKx+R7UoiX45+IQ2weNQ7zpPTVDKv17Exjf8MuqPEkRVE4e+AWwb9fIDU5/am22sSIBu95UNG7WL6dAyJejNxeS0M+Hwo1efJk5s6dy6JFi6hYsSL//PMPPXr0wNbWls8//9zQ4YnXzK1bt3RLwWbYs2cPv/32G56envkmqXjZgoOD+fjjjyWpEEKIVyA+JZ7lcydQ7N+kQl3WEb+mHQ0c1WNJCansXnaOS/88XtzE3tmSgI8q4lA8/2ywKvKHfJ1YHDhwgDZt2tCyZUsA3NzcWL58eZYr7QjxvFq0aIG5uTnVqlXD0tKS0NBQNm/ejFqtZvbs2YYO75U5fPiwoUMQQog3xrQ/RlMsLP2Of5oJ9Oz/Tb55AnAnLIatP58hJvLxnlMVvIvR4D0PTExzt1eUeLPk61Wh6tevz44dO7hw4QIAJ0+eZN++fTRv3tzAkYnXUbdu3UhJSeG3335jxowZHDlyhNatWxMcHEzTpk0NHZ4QQojXzO6wHaT8dVr3unb7jtgVfrbNOl8kRatwbEsEa749qksqTM2NCfi4Eo06l5OkQmQrXz+xGDp0KDExMZQrVw61Wk1aWhpff/213jKd/5WUlKS35OmL2N1YvBkGDBjAgAEDDB1Grri5uZGPp0cJIYR4ivuJ9/ntl8l4xJsCoHEtim8rw68CFR+TzPaFoVwLva8rcyptQ9MPK2JTOPebz4o3U75OLFasWMGyZcv49ddfqVixIidOnGDAgAEUK1ZMt0/Af02cOPG5d+gVQgghhHhZFEXhm/XDcb9okv7aCN7/fCyqPCxr/jJcDY1i+8KzJMT8u6GtCmoEuFKndSnU6nw9yEXkE/k6sRg8eDBDhw6lY8f0SUyVK1cmIiKCiRMnZptYDBs2jIEDB+pex8TEUKJEiVcSrxBCCCHE06y98Acm2y5jpKRvJFe97Ts4uJQ0WDxpaVoOr7vC8a1XdWUWNqY0+bACJcoVMlhcouDJ14lFfHx8pk3J1Gq13q68/6XRaNBoZMdHIYQQQuQ/N2Jv8Mfvs6kaYwmAmZMDvu26Giye6HsJbP05hLvhj4eOl6zoQONu5bGwMTVYXKJgyteJRevWrfn6668pWbIkFStW5Pjx40ybNo0PP/zQ0KEJIYQQQuRJmjaNsRu/ouLZ9LkKCvDOp8NRG5sYJJ6L/9xh99JzJCemAWCkVlGvrTvVGpdAZZQ/VqYSBUu+Tixmz57NqFGj+OSTT7h79y7FihWjd+/ejB492tChCSGEEELkyaKQRdjsuYWxNj2xqBzQHGcPz1ceR0pSGsErLnB2/y1dmU0RcwI+qkhR15w3QBMiJ/k6sbC2tmbGjBnMmDHD0KEIIYQQQjyz8/fPs3HDz9SPsgdAY29Lo06vfgRG5PVYtv50hge343VlHrUd8e3kial5vr4sFAWA/AUJIYQQQrxESWlJjN42lJqhj58GtOz9BaZmr275VkVROLPnBvtXXSItNX2uqrFGjU/HsnjWc8o3m/KJgk0SCyGEEEKIl2jO8TkUOfgQTUr6hG1Pr4aUql7rlZ0/MS6FXUvOceXEPV1Z4RJW+PesiL2T5SuLQ7z+ZFFiIUS+5+vr+0bdTevevTsqlYrw8PBn7mP37t2oVCrGjh37wuISQuTd37f/ZsfOFZS6lX4Bb2JpiV/33q/s/DcvPuT3oCN6SUWVRi68O6SWJBXihZPEQmRy9OhRevbsiYeHB5aWlpibm+Pu7k7Xrl3Ztm1blm1SU1NZsGABLVq0wMnJCVNTU2xtbalduzYjR44kIiJCr76bmxsqlUr3o1arKVy4MP7+/qxbty5XcUZFRTF//nwCAwMpXbo0Go2GwoUL07x5c7Zs2fLcn4MQQgjxPOJS4hi7exT1Qux1ZU169MHCxvaln1urVfh7Yxhrpx0j9kESAGaWJrT4pAreHcqiNpFLQPHiyVAooaPVahk0aBDTp0/H2NgYPz8/AgMDMTEx4cqVK2zcuJGlS5cyfvx4Ro0apWsXERFBmzZtOHnyJI6OjjRt2pQSJUoQFxfHsWPHmDRpElOnTuXMmTOUKVNG106tVjNy5EgAkpOTOXfuHOvXr2fbtm1MnTqVL7/8Msd4V65cSd++fSlWrBiNGzemePHiXL9+ndWrV7N582amTJnC4MGDX86HJcRLNHHiRIYOHUrx4sUNHYoQ4jl89893OB+LxzIxfW6Fa9XqlG/g+9LPG/sgkW2/hHLz4kNdWTEPO5p+WBEre9nrS7w8klgInZEjRzJ9+nSqVavGqlWrcHd31zuekJDAnDlziIqK0pU9evSIgIAAzp8/z+DBg5kwYUKmDQovXbrEwIEDiY2N1Ss3NjbONExj69atNGvWjNGjR9O3b18sLCyyjbds2bKsX7+eli1b6m2kOHLkSOrWrcuIESPo3LkzxYoVy+tHIYRBOTs74+zsbOgwhBDPYf+N/ew5tJ7mEY4AqE1NafrRpy99WGfYqUh2LjpLYlwKACoV1G5ViprN3TCSvSnESybPwQSQfvE/ZcoUHBwc2Lx5c6akAsDc3JzBgwczbtw4XdnUqVM5f/48Xbp0YcqUKVnuel6mTBnWr19PhQoVnhqHv78/np6exMfHExISkmNdPz8/WrdunWl3dk9PTzp06EBKSgoHDhx46jkzREZG0qtXL4oWLYqFhQW1a9fmjz/+YOHChahUKhYuXKirGx4ejkqlonv37pw9e5a3334bBwcHvXHxqampTJs2japVq2Jubo6trS2NGjViw4YNmc49duxYVCoVu3fvznTsaecPCQmhZcuW2NnZYWVlhb+/P0ePHs3Uz61bt+jfvz8eHh6Ym5tjZ2dH+fLl6dOnD9HR0bn+nP7rybH8+/btw9fXF2tra+zs7GjXrh2XLl3Kst2ZM2do3749RYsWRaPRUKpUKQYMGKCXuGbnp59+QqVSMWXKlCyP79y5E5VKRe/ej8cxu7m54ebmRmxsLP3796dYsWJoNBqqVKnCqlWrsuwnMjKSAQMGUKpUKTQaDUWLFqV9+/acOXMmU92MeRFXrlxh6tSplC1bFnNzcypUqMBvv/0GpD+ZGzFiBG5ubpiZmVGlShX++uuvbPt6co5FcnIys2fPJiAggBIlSujieeeddzh+/PhTP7MMFy9epEePHrr3VKhQIapWrcqAAQNQFCXX/QghsheTHMPY4NHUP1MIFekX894du2Fb1PGlnTMtRUvw7xfY9MMpXVJhZa+h7cAa1G5ZSpIK8UpIYiGA9IvXtLQ0evfujaNjzl98TyYPv/zyC0CuNi00NTXNU0zPc1fHxCR9F1Nj49w9lIuNjcXHx4cff/wRDw8P+vfvT7ly5ejYsSNr1qzJtt2lS5eoV68e9+7do3v37nTr1g1TU1MUReHdd9/lyy+/JDExkX79+tGpUydOnjxJYGAg06dPf+b39qQrV67g5eVFQkICffv2JTAwkF27dtGwYUMOHz6sqxcfH4+XlxezZ8/G3d2dzz77jO7du1O2bFmWLFnCvXv3cjhL7hw6dIjGjRtja2vLZ599ho+PD3/88Qf169fnypUrenX37dtH3bp1+eOPP2jcuDEDBw7E1dWVmTNnUrduXSIjI3M81/vvv4+NjQ0///xzlsd//PFHAD7++GO98pSUFPz9/dm6dSvt2rWjS5cuXL58mfbt27N161a9uvfu3aNevXrMnDkTNzc3Bg4ciJ+fH2vWrKFu3brs27cvy3MPHDiQ7777Dl9fX7p3786tW7fo1KkTW7Zs4Z133mH58uW0bNmSzp07c/HiRdq0acPly5dzfL8A9+/fZ8CAASQlJdGiRQu++OILfH192bRpE/Xr1+fvv/9+ah83b96kTp06LFu2jGrVqvHFF1/QuXNnnJ2d+eGHH0hLS3tqH0KIp5t8ZDJOp5Owi03/d8/R3YPqzVu9tPM9uB3Hqin/cGrXdV1ZqaqF6TCyDsU87F7aeYXIRHnNRUdHK4ASHR2dY72EhAQlNDRUSUhIeEWR5S++vr4KoGzfvj3XbcLDwxVAcXFxyfP5XF1dFY1Gk6l8+/btikqlUiwtLZX4+Pg896so6b9zR0dHxczMTImMjMxVm5EjRyqA0qtXr0zxAAqgLFiwQFceFhamKx89enSm/hYtWqQAio+Pj5KUlKQrj4iIUAoXLqwYGxsrly9f1pWPGTNGAZRdu3Zl6mvBggU5nn/o0KF69Tdv3qwASuXKlXVl69evVwBlwIABmfp/9OiRkpiYmO1n8zS7du3SxTJv3jy9Y/PmzVMApVWrVrqytLQ0xd3dXQGUzZs369UfPHiwAigffvihXrmPj4/y36+rvn37KoCye/duvfKoqChFo9Eo1apV0yt3dXVVAKVNmzZ6v5OM33FAQIBe/R49eiiAMmzYML3yjRs3KoBSpkwZJS0tTVferVs3BVDKli2r3L17V1d++PBhBVDs7OyUBg0aKLGxsbpjv//+uwIon332md45MvoKCwvTlSUmJirXr19X/uvMmTOKlZWV0qRJE73yjN/LmDFjdGWzZs1SAGXGjBmZ+omKispU9l9v+vekELmxM2Kn0mB2dWVyhxbK1PYtle/eD1Tuhl95KefSarXK2QM3lXmf71bm9N6hzOm9Q5nbb5dyatc1RavVvpRzijdPbq+lFUVR5ImFAOD27dsAuLi4vNQ2T0pNTWXs2LGMHTuWESNG8O6779KsWTMURWHChAmYmz/bxkF9+vThzp07DB8+HAcHh1y1Wbp0KaampowfP16vvHHjxvj7+2fbzsnJiREjRmQqX7RoEQBTpkzRe1JTsmRJvvjiC1JTU1m2bFmuYsuJnZ1dpvMHBATQuHFjTp8+nWlIVFafqZWVVZZD2PKqbNmymZ4QfPzxx3h4eLBx40bdU5H9+/dz+fJlmjdvTkBAgF790aNHU6hQIX799VeSk5NzPF+fPn2A9GFRT1qyZAlJSUmZYskwffp0vd9J48aNcXV11bvjn5yczPLly3FwcNAtMJChRYsWNG3alEuXLrF///5M/Y8YMYIiRYroXtepU4fSpUvz8OFDvv76aywtHy/v2K5dO0xMTDh58mSO7xXSnxRmNZm7YsWKNGrUiL1795KSkvLUfiDrv4NChQrlqq0QInsPEx8y7sA46p92QK2kP3WvE/guRVxLvfBzJSemsn1BKDsWnSU1Kf1po72TBe8OrUllX5c3aolukX/I5O1cWDpsAHEPHxg6jBxZ2tnTZeIMQ4eRJ2lpabr5GkZGRtjb2+Pn50e/fv0IDAx8pj6HDRvG8uXLadasGcOHD89Vm5iYGMLDw6lQoUKWw8C8vLwyDZPJULVq1SyHeB0/fhwLCwvq1KmT6VijRo0AOHHiRK7iy0n16tWxsrLKVO7t7c2OHTs4fvw4NWvWpGHDhjg7OzNp0iROnjxJq1at8PHxoXz58i/sHx8vL69M812MjIzw8vLi4sWLnDx5kiZNmujmA/j6+mbqw8rKilq1arF161bOnz9P5cqVsz1flSpVqFevHqtWrWL27NnY2dkB8PPPP2NhYUHnzp0ztbGzs6NUqcz/wLu4uHDw4EHd63PnzpGYmEijRo2yXECgUaNGbNu2jRMnTuDt7a13rFq1apnqOzs7c+XKlUzH1Go1RYsW5ebNm9m+zyedOHGCKVOmsG/fPm7fvp0pkYiMjMxx0nfr1q0ZNmwY/fr1Y8eOHTRr1gwfHx9Kly6dq/MLIXL2zeFvKHI+maIP07+X7Z2LU++dDi/8PHcjYtjyUwgx9xJ0ZeW9nPFuXxYTjfqFn0+I3JLEIhfiHj4g9v7TJ5QWZE5OTpw7d44bN27g6emZ6zYAN27ceKZzajQaEhMTn6ltVkaNGsWkSZN04+DV6tx9ucbExABQtGjRLI/nNOcku2MxMTGUKFEiy2MZF34Z530e2Z0/ozxjUratrS2HDh1i9OjRbNiwgU2bNgFQokQJhg4dyieffPLKYsl439nVz8vn07t3b3r06MHSpUv59NNPOXz4MKdPn6Zbt27Y2mZeJz6rMkifi6PVanWvnydGGxubLPvP6VhunjQcOHAAPz8/IH2RAw8PD6ysrFCpVKxdu5aTJ0+SlJSUYx9ubm4cOnSIsWPHsmnTJlasWAFAuXLlGD9+PO+9995T4xBCZG1L+Bb2nt1K2/OPVyL07/UZxnmcX5gTRatwcuc1Dv5xGW1a+mILJmZqGnUuh0ftlzcxXIjcksQiFyzt7J9eycCeN0YvLy92797Njh07dBcvT+Pq6krx4sW5du0aFy9exMPD47lieB6jRo0iKCgIX19fNmzYkKdhVBkXe3fv3s3y+J07d7Jtm93dfhsbm2z7yxhC9uRFZsad/tTU1Ez1c1qxKbvYMsqfvJAuWbIkCxcuRKvVcurUKbZu3cqsWbPo168f9vb2vP/++9meJzdyG0vG+86uflafT3Y6dOjAF198wU8//cSnn36qGxaV3TCo3HqRMb4oX3/9NUlJSQQHB9OgQQO9Y4cOHcrVcCqASpUqsWrVKlJSUjh69Ch//fUXs2bNokOHDhQrVgwvL6+XEb4Qr7XIhEiCDgZR70whTNLSv8+rNGmGS4VKL+wc8THJ7Fh0lqshj290FnWzwb9nRWyLPNvQYSFeNEkscqGgDTF6Ft27d2fSpEnMnz+fAQMG6I0R/6+kpCTdmPyePXsyfvx4goKCdPMKspOcnJznlaFyIyOp8PHxYePGjTnufZEVGxsb3NzcuHTpEnfv3s305CIvS9ZmqF69Ojt37uTIkSOZhkNlLCn75LAYe/v0xDCrpz85LSV6/PhxYmNjMw2HCg4O1sXxX0ZGRlSrVo1q1arx1ltv0bBhQ9avX//cicX+/fvRarV6w6G0Wi0HDhxApVJRtWpVvZh2797NkCFD9PqIi4vjn3/+wdzcPFdPzszNzfnggw+YNWsWu3bt4vfff6d8+fLPfXFcrlw5zMzM+Pvvv4mPj8/0N5XV7/Blu3z5MoUKFcqUVMTHx3Ps2LE892diYkK9evWoV68eZcqU4YMPPuDPP/+UxEKIPFIUhQkHJ2AfnkyJe+k3UCztC9Gwc48Xdo5r5+6z/ZdQ4mMezz2r7l+SuoGlURvLdFmRf8hfowDS95oYMmQIkZGRNG/enLCwsEx1EhMTmTZtmt6mdoMGDcLT05PFixczfPjwLIdihIWF0bZtW0JDQ1943KNHjyYoKAhvb+9nSioydO7cmeTkZMaMGaNXvnv3brZs2ZLn/rp16wakz/l4cpjLtWvXmDZtGsbGxnpzAGrXrg3A4sWL9YbkHDx4MMdJ3hkTgp+0ZcsWduzYQaVKlahZsyYAISEhWd59zygzMzPTlWXskeHm5pbbtwvAhQsXdMu8Zvjxxx+5cOECLVu21CWrXl5euLu789dff7F9+3a9+kFBQURFRfH+++/nOgnN2KuiS5cuPHr06LmfVkD60sjvv/8+kZGRTJw4Ue/Y5s2b2bJlC2XKlHmlF+Gurq48ePBAb3+XtLQ0Bg0alOvlgo8ePZrl8K2s/g6EELnz55U/2X95N3VCHy+A0PjDPmgsLHNolTtpaVoOrr3M+pkndEmFubUJrT+vSv13ykhSIfIdeWIhdIKCgkhMTGT69Ol4enri5+dHpUqVMDExISwsjO3btxMVFUVQUJCujbW1NVu2bKFNmzZMnDiRBQsW4O/vj4uLC/Hx8Rw/fpz9+/djbGzM1KlTX2i8CxcuZMKECRgbG1OnTh2+/fbbTHV8fX2znCT8X1999RWrV69m3rx5nDlzBm9vb65fv86KFSto3bo1GzZsyDQxOSddu3ZlzZo1rFu3jipVqtCqVSvi4uL4/fffuX//Pt99953ehNl69erh5eXFzp07dU8RIiIiWLduHa1bt+aPP/7I8jze3t7MnTuXw4cPU69ePcLDw1m5ciXm5uZ6qyVt27aNwYMH4+XlRdmyZXFwcODKlSusX78eMzMz+vXrp6ubkdjkdg+QDAEBAXz++eds2rSJihUrEhISwoYNGyhcuDAzZ87U1TMyMmLhwoUEBATQokUL3nvvPVxdXTl48CC7d+/G3d2dSZMm5fq8FSpUwNvbm+DgYDQaDR988EGe4s7O5MmT2bNnD0FBQRw4cIC6devqPl8LCwsWLFiQp7+J5/XZZ5+xdetWGjRoQPv27TEzM2P37t3cuHEDX1/fLDdX/K8lS5bwv//9j4YNG+Lu7o6NjQ2hoaFs2rSJQoUK0aPHi7vDKsSb4E7cHSYenkjts/aYJ6fP6/OoWx+POvWfu++YyAS2/hzCnbDHNwNKVChEk+4VsLB58U//hXgRJLEQOkZGRkybNo1OnToxd+5c9u7dy969e9FqtTg7OxMQEECPHj1o0qSJXruMpTqXLl3KihUr2LJlC/fv38fMzAwPDw+GDBlCnz59sp3M/Kye3OH6u+++y7ZebhILa2tr9u7dy7Bhw1i3bh3//PMPFStWZPny5Vy5coUNGzbkaTy9SqVi1apVzJw5k0WLFjF79mxMTU2pUaMGAwcOzHLVq3Xr1jFw4ED+/PNPTp8+TdWqVdmwYQM3b97MNrEoXbo0c+fOZciQIXz//fekpaXh6+vLpEmTdE8rIP2iPzw8nL1797JmzRpiY2MpXrw4HTp0YMiQIXq7omfsKt2xY8dcv19IT45GjhzJyJEjmTVrFmq1mrZt2zJlypRMqw41aNCAQ4cOMX78eLZu3Up0dDTFihWjf//+jBw5ksKFC+fp3N26dSM4OFi3A/qLUKRIEQ4fPsyECRNYt24dwcHB2Nra0rZtW8aMGUOlSi9u7HRutGrVilWrVvHNN9+wdOlSLCws8PPz448//si0THJ23n//fRITE9m/fz9HjhwhKSkJFxcX+vbty+DBgylZsuRLfhdCvD4URWHMwTFY30yhzI30pxUaS0v8evR57r4vHb3LrqXnSE5In3dnZKSibpvSVG9aEpXsoC3yMZWiKIqhg3iZYmJisLW1JTo6OscLw8TERMLCwihVqpQMBxB6unTpwrJlywgNDaV8+fKGDgdIT6pKlSpFt27dWLhw4Qvte9CgQcydO5eIiIhcXeDv3r2bRo0aMWbMGL1hcq/Sp59+yvfff5+nxQdE3sn3pBCPrb6wmqDgcbQJLoZ1Qvp9Wv/en1PZL/u9j54mJTmNfSsvEhr8eAlqm8JmNO1ZEadSWa9qJ8TLlttraZAnFkLo3Lp1K9MeAHv27OG3337D09Mz3yQVL1twcDAff/xxnp8aGMq9e/dYtGgRnp6euj1ChBDiZboZe5Nv//mW6hfsdElFiYpVqNSo6TP3GXUjlq0/h3D/ZpyurEytovh2LofGXC7XRMEgf6lC/KtFixaYm5tTrVo1LC0tCQ0NZfPmzajVambPnm3o8F6Zw4cPGzqEXNm4cSPHjh1j1apVxMbGMnbsWNlpVgjx0mkVLaP3j8b8Xgrlw9OHXhqbmNK016fP9B2kKAohwTfZt/IiaSn/znEzMcK7Y1nK13eW7zVRoEhiIcS/unXrxrJly/jtt9949OgRdnZ2up2K69ata+jwxH+sXLmSRYsWUaxYMb755ps8zwkRQohn8du53/j75mFanXbGiPSL/rfe64S9U7GntMwsMS6F3UvPcfn445XdHIpb4f9RRQo5P/+qUkK8ajLH4l8ydlgIIXIm35PiTXc15irvbngXj3Om1LhgB0BRN3c6fzMNI7U6T33duhzN1p/PEHv/8TLtlX2KU//dMhib5K0vIV4mmWMhhBBCCPECpWnTGLl/JKYPU6h6KX1fHpWREf69P8tTUqHVKhzbEsGRDWEo2vR7uxoLY/y6lqd09ew3pxWiIJDEQgghhBDiKZaeXcrxO8dpftoRtTZ9CFStVm/jWLpMrvuIe5jEtgWh3Dj/QFfmXMaWph9WxLqQPAUUBZ8kFkIIIYQQObj88DKzjs3C86oVjg/SEwA7R2feeq9TrvsIPx3JjkVnSYxNSS9QQa0WbtRu4YaRWnbQFq8HSSz+4zWfciKEEM9Mvh/FmyhVm8rIfSMxjkuj5nl7XXnTXp9hYqp5avu0VC0H117m5PZrujJLOw1Ne1SguKd9Di2FKHgksfiX+t/xkSkpKZibmxs4GiGEyH9SUtLvtKrzOElViILslzO/cCbyDH4hRTBNTX+yUKmRPyUrVXlq24d34tn6cwj3rj7SlblVKYzfB+UwtzJ9aTELYSiSWPzLxMQEjUZDdHQ01tbWsm60EEI8QVEUoqOj0Wg0mJiYGDocIV6J8/fPM/fkXNxuW1DyrgUAlnb2+HT58OltD99mz6/nSUlKA8DIWEX9d8pQpZGLXGOI15YkFk8oXLgwN27c4Pr169ja2mJiYiL/8wsh3miKopCSkkJ0dDSxsbEUL17c0CEJ8UqkpKUwfN9w1Ila6oYU0pX7fdgHMyurbNslJ6ay97cLnD90W1dm52iBf8+KFClp/VJjFsLQJLF4QsbavJGRkdy4ccPA0QghRP6h0WgoXrz4U9cwF+J1Me/UPC48uIDXWQfMk9OH/5Wp/RZl63pl2+be1Uds+ekM0XcTdGXl3nLCu0NZTM3kkku8/uSv/D9sbGywsbEhJSWFtLQ0Q4cjhBAGp1arZfiTeKOciTzDz6d/xvmeGR430p9OmJpb0PjDPlnWVxSFUzuvc+CPS2hT0xc5MNGo8enkiWddp1cWtxCGJolFNkxMTOQfUiGEEOINk5SWxIh9I1ClaKl/5vEQKJ8uH2JVyCFT/YTYZHYuOkv46ShdWZGS1vh/VBG7ohavJGYh8gtJLIQQQggh/vX98e+5En2FWhftsU5Iv8HoUqESlf38M9W9cf4B234JIS46WVdWrUkJ6rV1R20se1OIN48kFkIIIYQQwPG7x1kYshCHh6ZUCEufaK02MaHpx5+hMnqcKGjTtPy9MZx//gqHf7d3Mbc2oXG3CrhWyvxUQ4g3hSQWQgghhHjjxafEM3LfSNAqeJ12wIj0VSHfercThYo9Xg3t0f1Etv0Swq1L0boyl3L2NOlRAUvbp2+YJ8TrTBILIYQQQrzxZh6bydVHV6lyxYZCj9I3ryviWopard7W1bly/B47l5wlKT4VAJWRirqBpaju74qRkSxPL4QkFkIIIYR4ox25dYRfz/2K7SMTql6yA0ClMsK/9+eojY1JTU5j/+pLnNnzeCl660JmNO1ZEWd3WwNFLUT+I4mFEEIIId5YscmxjNo/CpUCDU47oNamP3moFfgOTu4e3L8Vx9afzhB1I07Xxr1GERp1KYfGQlaPFOJJklgIIYQQ4o019Z+p3Iy7SYUwa4o8TJ8jYe9cnHrtOhK67ybBv18gNUULgNrECO/2HlRoUAyVSoY+CfFfklgIIYQQ4o2078Y+Vl9cjXWcMTUu2KcXqlT4ffgpuxZf4tLRu7q6hYpZ4v9RRRyKWRkoWiHyP0kshBBCCPHGiUmOYcyBMaCA12kHjP8dAuX5lj97f3/Eo6hEXd2KDYvT4N0yGJuqDRWuEAWCJBZCCCGEeONMPjKZu/F38bxqhdN9MwDMrBy4eq4sipKeVGgsjGnUpRzuNYoaMlQhCgxJLIQQQgjxRtl5dSfrL6/HMkFNrXOFdOVpNEKtpE/IdiptS9OeFbBxMDdUmEIUOJJYCCGEEOKN8SDxAeMOjgMF6p92wCQtfQiU2rQyapOSoIKazVyp06oURmqjp/QmhHiSJBZCCCGEeGN8ffhr7ifex+OaNcUj/30aobLC2KIhFramNO1RAZdyhXLuRAiRJUkshBBCCPFG2By2mS3hWygSXZj6IXZACgAmFk1wq1yMxt3KY25tatAYhSjIJLEQQgghxGsvMiGSoMNBlLlXnQYnbUEJA0CtKU/DTv5U9SuBykj2phDieUhiIYQQQojXmqIojA8OolpIC8resCcleSMARmpL2g0dQIkKxQ0coRCvB0kshBBCCPFaW31oI0X/qoNdnA1J8Yt05QF9+0lSIcQLJImFEEIIIV5LiqKwf+tZbq41wV5xIjl+IygJAHjUrU8F74YGjlCI14skFkIIIYR47STGprBzyVnCTkaixoS05EtoU84DYGZlTeMP+xo4QiFeP5JYCCGEEOK1cvPiA7b9EkrsgyQAFG0iiUl/of73eKNuH2NpZ2+4AIV4TUliIYQQQojXglar8M+mcP7ZGIaipJclGMdyi18oFp0KQKnqtSjv3ciAUQrx+pLEQgghhBAFXuyDRLb9EsrNiw91ZTdsLhJqtxzvk1YAmJpb0PTjT1GpZFlZIV4GSSyEEEIIUaCFnbzHjsVnSYpLfyqBSuGIyyZCim7n7X0uuno+XT/E2qGwgaIU4vUniYUQQgghCqTUlDQOrLnM6V3XdWVmtmrWlJzDVatzNDjpgFli+tMJt6o1qOwXYKhQhXgjSGIhhBBCiALnwe04tvwUQtT1WF1ZqaqFWeE8g6vR53C5Y06ZG08Mger1mQyBEuIlk8RCCCGEEAWGoiicO3iLvb9dIDVZC4Da2IgG75XhSKFtHD32N6bJRniHFNG1adTtY2wKF8muSyHECyKJhRBCCCEKhOSEVHb/ep6Lf9/Rldk7WeD/USWire7w/YY5ANQNLYTm3yFQparXoqJvE4PEK8SbRhIL8f/27jM6qnptw/g1Jb0nJNRAgNB7l95BVOyKHlSsxwKKYkV9rSjYEfuxYwO7qKj0Jr1DQq9JCCSk92TK+2F0kCIEMslOuX9rZck8M7P3HSKTeWb/i4iISKV3ZH82cz6MIzu1wF1r3bsufa5uDl4Oxs5+lGJHMQ0P+9H0UAAAPv4BDP2vVoESqShqLERERKTScjqcbJyXwMof9+BwuDan8Pa1MOC6ljTrWhuAdze9T3xaPD7FZvrER7mfO/DG/xIUrlWgRCqKGgsRERGplPKzi5n/aTwH49LdtdqNgxl2SxuCa/kBsC1tG+9teg+A8+Ij8C50Pa5J52607jeowjOL1GRqLERERKTSSdiWzryP48nPLnYVTNB5WCO6X9wYi8UMQLG9mEeXPYrNaaNRsj+ND/kD4BsQqI3wRAygxkJEREQqDbvdwepZ+1g/5wC4Rj7hF+zN0BtbE906/LjHvrPpHXZn7sanyEyf+GOrPg266XYCwyMqMraIoMZCREREKonsowXM+TCOI/uy3bWGrcMZfGNr/IO9j3vsptRNfLT1IwB6xkfgVeSqx3Y7j5Z9BlRUZBH5BzUWIqfgdDqxHT4MDofRUUREaoQ9cdks+fUIJUWu112TGboPiqT9eWGYclIpyTn22EJ7IS/Pe5jwXDt1j/oTk/zXECj/APpfeDm2Q4eM+BZEyo05MBBLSIjRMc5IjYXICZxOJweuu56CdeuMjiIiUu3ZzV7sir2SQ/X6uGu+Bam0jf+YgAUH2PMvz3sUKLJaWNoiguK/3s203LaX5MuuKPfMIhUt4vbbibrvXqNjnJEaC5ETFO/fr6ZCRKQC5AbUI671zeQF1HXXah9ZQ4udM7DaC0/7XCewtX4tiq0WAOpk5lI3M7c844rIGaixEDmRzeb+o1eDBvi1b2dgGBGR6sfphP22RmwpaY0DV2NgwUZ77600jDmCqfHAUz7P5rCxLOlPCmwFFJsDKbAGAuBjtnBey/b4ttHbGqmefJo3MzpCqVT6f4FJSUk8/PDD/Pbbb+Tn5xMbG8vHH39M165djY4mNYD/eT2oN2mS0TFERKqNwrwSFn6+nb0bUt21iPqBDL+tDWF1hp32uU+veJpvdxYTUODN5ctqYylxLRs17N6HaNqjd7nmFpEzq9SNRUZGBr1792bgwIH89ttvREZGsmvXLsLCwoyOJtWY0+k0OoKISLWUvDuTOR/FkZte5K61G9CAXlc0xeplOe1z/0z6k293fgtO6Lclyt1UtO47kOZqKkQqhUrdWLzwwgtER0fz8ccfu2uNGzc2MJHUCP/oK7S5kohI2TkcTtb/vp/Vv+zH6XC9yPoEWBl0fSuadIw8w7MhqyiLJ5Y/AUCr/UHUPupaejYoIpKBN91efsFF5KyYjQ5wOrNmzaJr165cddVVREVF0alTJ95///3TPqeoqIjs7OzjvkTOnRoLEZGyyMssYtbrG1g1a5+7qagbG8Kox7qXqqkAeGH1C6TkpxCSa6XbzmOb5A2/czy+AYHlkltEzl6lbiz27t3LO++8Q7Nmzfjjjz+48847ueeee/j000//9TmTJ08mJCTE/RUdHV2BiaV60FAoERFP2L/lKDMmrSZpRyYAJhN0u6gxl97XiaBw31IdY/7B+fy892dMDui/qTZmu6veacRIGrXrWD7BReScVOqhUA6Hg65du/L8888D0KlTJ7Zu3cq7777LmDFjTvmciRMnMmHCBPft7OxsNRdydpzHjYUyLoeISBVlL3Gw4oc9bFqQ4K4FhPow7JbW1GtW+nmS6YXpPLPiGQA67A4hPMv1tiW8XgP6/udGj2YWkbKr1I1F3bp1ad269XG1Vq1a8d133/3rc3x8fPDx8SnvaFKdqbEQETlnmUfymfNhHKkHj22VHdO+FoNvaIVvoFepj+N0Opm0chLphenUyvSmw55QAExmMyPGTsDLW7/rRSqbc2osMjMzWb16NSkpKTgcjuPuu+GGGzwSDKB3797s2LHjuNrOnTtp1KiRx85R3hxOB29vfJtWEa0Y3HCw0XHkbKmvEBEpte0rk1n81U5sRa7xSmarid5XNKPdgPpnvRjG7/t/Z+6BuVjsJvpvjsL012c+511+DXVim3s6uoh4wFk3Fj///DOjR48mNzeX4ODg414oTCaTRxuL++67j169evH8889z9dVXs3r1av73v//xv//9z2PnKE+FtkLuX3w/SxKXEOAVQOMLGtMktInRseRMtNysiMhZKS60sfirHexcdcRdC63tz7Bb2xAZHXTWx0vNT2XSStceQl12hBKU61qKtnaTZvS47GrPhBYRjzvrydv3338/N998M7m5uWRmZpKRkeH+Sk9P92i4bt268cMPP/DVV1/Rtm1bnn32WaZOncro0aM9ep7y4mPxIcAaAEBeSR7jF44npzjnDM8Sozk1FEpEpNRSDmTz9XNrjmsqWvaqy9WPdjunpsLpdPLUiqfILs6m7lFfWu8PBsDq5c2IcROwWCv1KG6RGu2s/3UmJSVxzz334O/vXx55TnLRRRdx0UUXVci5PM1kMvFUr6fYk7WHnRk72Z+9n0eXPcrrA1/HbKrUC3LJX7SPhYjIqTmdTjbNT2DFD3tw2F0fyHj5WhgwugXNu9U55+P+uPtHliQuwbvERL8tx5aj7Tv6RiLqazEWkcrsrN/dDh8+nLVr15ZHlmrJ38ufqQOnEuzt+sRlUcIi/re5agzlqrE0EkpE5LQKcor59a3N/PntbndTEdUoiFGPdStTU3Eo9xAvrHkBgB5x4fgVuN6mNGzbnk7Dq+aHjCI1SamuWMyaNcv95wsvvJAHH3yQ+Ph42rVrh5fX8Ss8XHzxxZ5NWA1EB0XzYr8XuXPenThxuiZzh7eif3R/o6PJqRw3x0JXLERE/ilxRwZzP4ojP6vYXes4tCHnXdIEi/Xcr8Y7nA6eWP4EeSV5xCT70/SQa+M7bz9/ht95LyazrvSLVHalaiwuvfTSk2rPPPPMSTWTyYTdbi9zqOqod/3e3NP5Hl5f/zpOnDyy9BG+uvArYkJijI4mp6OhUCIiADjsDlb/so91vx9wX9n1C/Ji8I2tadQmoszH/3rH16xKXoV/gYXeW2u564NvvoPgWlFlPr6IlL9Stf8Oh6NUX2oqTu+WtrcwtNFQAHJLcrl34b3kleQZnEpOprFQIiL/lJ1WwA+vbGDdb8eaigYtwxj1eHePNBUHsg/w6rpXMTmh76ZaeJW4PtRp0bMvrfoOLPPxRaRinPV1xenTp1NUVHRSvbi4mOnTp3skVHVlMpmY1HsSsaGxAOzJ2sPjyx4/fhUiMZ5WhRIRcduzIYWvn1vD4b1ZAJjMJs67tAkX39ORgJCyb1Jnc9h4dOmjFNgKaLM3mLrpvgAERUQy5NaxWkRDpAo568bipptuIisr66R6Tk4ON910k0dCVWd/T+YO8nItwTfv4Dw+3PqhwankX+kXmojUULZiO4u+3MHv722lKN8GQFCEL5c/0Jku58dgMnvm9fHDLR+y+ehmwrO86bwr1FU0mRgxbgK+gYEeOYeIVIyzbiycTucpPz1ITEwkJCTEI6Gqu0bBjZjSbwqmvyYGT1s/jWVJywxOJW66giQiNVzaoVy+mbKWuCVJ7lpslyhGPdaNOk0897s+Pi2edze969pde2MtzA7X78XuF19BdOt2HjuPiFSMUu9j0alTJ0wmEyaTicGDB2P9xwY1drudffv2cf7555dLyOqoX4N+jO04ljc3vokTJw8teYiZF84kOlhrdBvuuKFQxsUQEaloTqeT+GWHWPb1LmwlDgCsXmb6jmpOq951PTosqchexKNLH8XmtHHetnBC8lyrTNZuEkuvq6vGRrgicrxSNxZ/rwy1ceNGhg8fTuA/Lk96e3sTExPDFVdc4fGA1dlt7W8jLi2OhQkLySnOYfyi8Xw+4nP8vSpm80E5M43tFZGaoii/hIWf72DP+hR3LbxeAMNvbUt4vQCPn+/19a+zJ2sP0Uf8aHnQNTzY6uPDBXc/gMXqdYZni0hlVOrG4sknnwQgJiaGUaNG4evrW26hagqzyczzfZ7n2l+vZX/2fnZl7OLJ5U/yYr8X9YbWQJpMLyI1zeG9Wcz5II6c9EJ3rW2/+vS+Mhart8Xj51udvJrP4j/Dr8hM7y3HVpUaeMNthNdr4PHziUjFOOs5FmPGjFFT4UGB3oG8Puh1Arxcnwb9vv93Po371OBUNdxxfYUaPBGpvpwOJ+t+38/3L693NxU+/lbOv70t/f/TolyaipziHB7/83FwQu/NtfAtdp2jadfzaDd4uMfPJyIVp1RXLMLCwkr9CXp6enqZAtVETUKa8Hyf5xm/cDwAr61/jRbhLehZr6fByUSrQolIdZWXVcS8j+NJ3J7hrtVtGsKQm1sTHOFXbuedsnoKyXnJtDwQRINU13kCQsMYdvvdulovUsWVqrGYOnWq+89paWlMmjSJ4cOH07On643vihUr+OOPP/i///u/cglZEwxqOIg7OtzBu5vexeF08OCSB5lx4QwaBOmScMXTPhYiUr0diEtj/ifxFOSUuAom6Doihm4XxmC2nPVghlKbf2A+s/bMIjTHi27bw9z18++8F/9grSwpUtWVqrEYM2aM+89XXHEFzzzzDOPGjXPX7rnnHt58803mzZvHfffd5/mUNcSdHe5kW9o2FicuJqsoi/sW3cf0EdPxs5bfJ0dyCppjISLVlN3mYOWPe9g4L8FdCwjxZsjNbWjQIuw0zyy7owVHeXrF01jsJvptrIXlr6VlO19wCTEdu5TruUWkYpicZzlTNTAwkI0bNxIbG3tcfffu3XTs2JHc3FyPBiyr7OxsQkJCyMrKIjg4uMLPv+rrF/E6WPo9KvJMdp4OPcQRq2szop6FAdyeE+ne80LKn/lwAT6/JAJQ0i4UW49IgxOJiJRdQXEIu46MIK+ojrsW6r+X2Npz8bIUlOu5nTiZGpzCRp98emwNp9Vfq0AF+EGX1iYsHtpsT6S6crS8iK4X/deQc5/Ne+lSrwr1t4iICH766Sfuv//+4+o//fQTERER//Ksmst0aAOdcxef1XPeLfTiP/VqU2A2s8I3j755iVyfnVNOCeVE+fneHKAWALVLEqmdG29wIhGRstlZ0Je12aMocbqWMzdTQq+g6bT3/wVT+fYUAPwQGMBGnwgaHvZzNxVWk50r626kVn5++QcQqeJWJDc2OkKpnHVj8fTTT3PrrbeyaNEievToAcCqVav4/fffef/99z0esCaKLSnhudQ0JtR2fVL+SngoLYuL6VZYZHAyERGpSoodvizNuZXtBYPdtRDLIYaHvkKk194KyZBotTAlIoyAAgu9N/9jadnae6nlo6ZCpDo566FQ4Gokpk2bxrZt2wBo1aoV99xzj7vRqEyMHgqVlXaEgvxzu9rw4Z7PmXHgOwBCvYJ5q9vLRPlqWE55K9m0hdwHHgXA5+or8L/tRmMDiYicg8zDxaz68Si5aTZ3rWG7ADoOD8PLp/wmaP+T3WnnwfVPsDUjnvNX1aZ2hmu5+obtO9Ln+jFaBUqklPwCQwkJq2XIuct1KBRAjx49+OKLL84pXE0TElGbkIja5/TcR+r/HwnzD/PnoT/JLMnmuR1T+fT8T/G1ah+R8pSXnM7fM4UCQ8KIio497eNFRCoTp9PJlkWJ/PldAg6b67NDLx8L/f/TghY96pzh2Z71ydZP2JIVT6fdIe6mIjgyipH3PoJvQGCFZhGR8leqjyyys7OP+/PpvsRzLGYLL/R7gQaBriVn49PieXbls9oZurzpr1dEqqjC3BJmv7OFpTN3uZuKyIZBXP1otwpvKnZm7GTahmnUOepL+92upWRNZjMX3vOQmgqRaqrUG+QlJycTFRVFaGjoKS9dOp1OTCYTdrvd4yFrshCfEKYOnMr1v11Pga2AWXtm0bZWW65tea3R0aqv4xo3XaYXkaohaWcGcz+KJy/z2Hy8DoOj6XlpUyxeFTP06W8l9hIeXfoo5gI7/TZFuVc27D3qeuo1b1mhWUSk4pSqsViwYAFZWVlERUWxcOHC8s4kJ2gR3oJnej3Dg0seBODF1S/SPKw5XWpr3e9yp/G/IlLJOewO1szez7rZ+92fi/gGejF4TCti2hkzJvuNjW+wI30HgzdH4l/keqvRsF1Hul98hSF5RKRilKqx6N+/P2azmUaNGjFw4ED3V4MG2hW6opzf+Hzi0uL4JO4TbE4bExZNYOZFM6kTULGXtmsGjYUSkaohJ72QuR/Fkbw7y12r3yKUoTe1ISDUx5BMaw6v4ZOtn9B6fxDRqa7lbf1DQrlg3P2YzBV75UREKlap/4UvWLCAMWPGsHfvXv773//SqFEjmjVrxu23386MGTM4cuRIeeYUYHzn8fSo61p5K70wnfsX3U+xvdjgVNXQP4dC6YqFiFRSezemMnPSandTYTKb6HFxEy4e38mwpiKrKItHlz1KeJYXXbYf28l7xF33ERBavjt7i4jxSr0q1IABAxgwYAAAhYWFLF++nEWLFrFo0SI+/fRTSkpKaNmyJXFxceWVtcpyOp0U5eeVebKa1WzlpX4vcc0v13Ao7xCbj27m+VXP81SvpzwTVE6mvkJEKhlbiZ3l3+5my+Ikdy0w3Idht7SlbtMQA5PBc6ueIy3zCCM31MXidL2Adh15OTEdNXRXpCY4p+VmfX19GTRoEH369GHgwIH89ttvvPfee2zfvt3T+ao0p9PJnnWrWf3j12Ayce0zL5V5ze4w3zD3ZO4iexHf7fqONrXacFXzqzyUWtCqWyJSSaUn5zHngzjSknLdtaadIhlwXUt8A7wMTAa/7P2F3/b+Rv8ttQjOd2Wp07QZfa653tBcIlJxzmqwY3FxMUuWLOHpp59m4MCBhIaGcscdd5CRkcGbb77Jvn37yitn1eR0suyrT0netYPkndtJ3LbVI4dtFdGKJ3s+6b79/Krn2Ziy0SPHFo5fzldDoUSkEnA6ncT/eYhvJq9xNxUWLzP9/9OC4f9ta3hTcSj3EM+tfI6WB4JofDgAAB//AC4c/zAWq7HZRKTilLqxGDRoEGFhYdx1112kpKRw++23s2fPHnbs2MH777/P9ddfT8OGDcsza5VjMpvpfumxKwmrf/zGY8ce2XQk17W6DgCbwzWZOzU/1WPHFxftCisiRisqsDH3wzgWfrYdW7EDgLC6AVz1SFfa9qtv+OuU3WFn4tKJ+KQW023bsXkUw+8cT2htLTAiUpOUurFYunQpERERDBo0iMGDBzN06FDq1q1bntmqhZa9+hEc6dp5e/+m9RzZu9tjx57QdQLd6nQDILUglQmLJlBiL/HY8Wus40ZCqbEQEeMc2ZfN18+tZtfaFHetdd96XDWxKxH1K8cmcx/HfczWpI0M2BDpnlfR5cJLaNa9l8HJRKSilbqxyMzM5H//+x/+/v688MIL1KtXj3bt2jFu3Di+/fZbUlP1afmpmC0Wuo283H179U/feuzYXmYvXur3knvJ2Y2pG3lhzQseO36NpTkWImIwp8PJ+jkH+P6ldWQfLQTA28/K8NvaMnB0S7y8LQYndIlLi+Ot9W/RZ3MEQQWuaZt1m7Wg739uNDaYiBii1I1FQEAA559/PlOmTGHVqlUcPXqUF198EX9/f1588UUaNGhA27ZtyzNrldVm4BD8Q0IB2LnqT9IPJZ3+CWchwi+CqQOm4m32BmDmjpl8v+t7jx2/ZtIcCxExTn52Mb+8uYkV3+/B4XC9HtVpEsyox7oR2yXK4HTHFNgKeGTJIzTf60fDI679KnwDg7joXs2rEKmpznmnmoCAAMLDwwkPDycsLAyr1cq2bds8ma3a8PL2ocuFl7puOJ2s+PZLjx6/Ta02/F/P/3PfnrRyEltSt3j0HDWWGgsRqUAH49OYMWk1B+PTXQUTdD6/EZfe35ngWn7GhjvBK2tfIe/AIbru+Md+FWMnEFyr8jQ/IlKxSt1YOBwOVq9ezYsvvsiIESMIDQ2lV69evP3229SpU4e33nqLvXv3lmfWKq3jsAvwCwoGYPufi0nZ79m/q0tjL+WaFtcAUOIo4d5F93K04KhHz1FjaCiUiFQwu93B8u938/O0TRRkuzY+9Q/25uLxHel5aVMslsq1Y/WSxCX8uOUbBmyIxPzXvIrul1xJk87dDE4mIkYq9T4WoaGh5OXlUadOHQYOHMhrr73GgAEDaNq0aXnmqza8/fzpcdnVLJr+AQB/zvyMyx5+8gzPOjsPdXuInRk7WZ+ynpT8FB5Y/ADvD3sfL7MuSZ+V45abNS6GiNQMWakFzPkwjpT92e5awzYRDB7TCv9gbwOTnVpaQRr/t+z/6LupFgGFrrcR9Vu2ofco7VchUtOV+iOQl156iW3btpGUlMTnn3/OLbfcoqbiLHUYegGBEbUA2Lt+DYnbPbtLuZfFi1cGvEKUn+sy9Loj63hl7SsePUeNo6FQIlKOdq09wtfPrXY3FWaLiV5XxHLR2PaVsqlwOp08sfwJ6sfZaJDqGprlFxzCheMfxGypHBPKRcQ4pW4sbr/9dpo3b16eWao9q7c3Pa+41n170acf4HQ4PHqOWn61eHXgq+6rFF9s+4JZe2Z59BzVnVNDoUSknJUU2Vnw2TbmfBBHcaEdgOBIP654qAudhjbEZK6cH2p8s/Mbdm5aRaedoa6CycQFdz9AUHgtQ3OJSOVQuQZt1gBtBwyhVsMYAI7s3cXWxfM8fo4OkR14rMdj7tvPrHiGuDTPXh2p1v7RWBi98ZSIVD9HE3P5ZvIatv2Z7K4161abUY92I6pRsIHJTm9v1l7eXPIK/TdEYv5rnOh5l19DTPtOBicTkcpCjUUFM1ssDBzzX/ftZV9Npyg/z+PnuaL5FVzZ/EoAiuxF3LfwPtIL0z1+nmpPjYWIeIjT6WTLokS+nbKWjMP5AFi9zQy6oRVDb26Nt1+ppz1WuBJ7CRMXPkzPtcH4FbuGPDVq34meV15jcDIRqUzUWBigYdv2NO/RG4D8rEyWfPFxuZxnYveJtI9sD0ByXjIPLn4Qm8NWLueqVjQSSkQ8rDCvhN/f28qSGTux21xDYGtFB3L1o91o1atupb86+vr61wn6M4WoTB8AAiNqccHdD2A2a16FiByjxsIg/W+4BS8fXwA2z/udg1s3efwc3hZvXhvwGrX8XGNfVx9ezWvrXvP4eaqff3YWlfuXvYhUfod2ZzJz0mr2bkx119oPbMAVD3UhrE6AgclKZ1nSMpbN+ZZWB4MAMFutXHL/Y/gHhxicTEQqGzUWBgmuFUXf0Te6b895bxolhYUeP0+UfxSvDngVq8l1iX16/HRm753t8fNUW5X8U0QRqbwcDidrft3Hj6+sJzejCACfACsX3NmOvqOaY/Wq/J/2Hy04ygu//B89t4a7a0NuuYs6TZsZmEpEKis1FgbqOPQC6rdsA0BWyhGWfvVpuZynU1QnHun+iPv2k8ufZEf6jnI5V7WgVaFEpIxyM4qYNXUDq3/e535JqdcslGse707jDpHGhislh9PBEwsepcsKb6wO19uFdoOG027QMIOTiUhlpcbCQCazmeF33IPVy7VW+Ybff2b32lXlcq6rW1zNZbGXAVBoL2T8wvFkFmaWy7mqvOM2yNMVCxE5O/s3H2XmpNUk7cwEXC8j3Uc25pL7OhEY5mtsuLPwWdxneP+2m6AC1/LltRo3ZtDNdxicSkQqMzUWBgurW59+193kvv3H26+RnZri8fOYTCYeO+8x2ka0BSApN4mHljyE3WH3+LmqFfUVIlJK9hIHS2fu5Ne3N1OYVwJAYJgPl07oTLcLG2OupHtTnMq2tG3Mn/kh0an+AFgD/Ljsgf/D6uVlcDIRqczUWFQCHYdfRLMevQAozMvll6kvYCsp8fh5fCw+vDbwNcJ9XWNlVySvYNqGaR4/T1Xn1D4WInKWMg7n8e2La9m8MNFda9yhFqMe7069ZqHGBTsH+SX5TJnxIO13uiZrO01w6X2PEVwryuBkIlLZqbGoBEwmE8PvGE9IVG0AknfvYM5708plB+g6AXV4uf/LWEyuSYMfbf2I3/f/7vHzVGmaYyEipeR0Otm+IpmvJ6/laEIuABarmX7XNGfEHe3wDah6n/C/OPdpWiy3Y/rrkm3vUdfRqF1HY0OJSJWgxqKS8PEPYOR9E7F6u9YI37Z0ISu+/apcztWtTjce7Pag+/YTfz7Bzoyd5XKuKum41WZ1xUJETq240Ma8j+OZ/+k2bEWuYaVhdfy58pEutBvQoEpe8Zy9/Wfs323Ax+b68Klepw6cd+kog1OJSFWhxqISqd0klgvuecD9ZnbFt1+yeV75XE34T8v/MLLJSAAKbAXcu/BesoqyyuVcVVvVe2MgIuUv5UA2M59bw87VR9y1Vr3rctXEbtRqEGRgsnOXlJ3I/HfeIDTXtaCIV1QoV4x/rEo2SCJiDDUWlUyzbj3pP/rYZO6577/JlgVzPH4ek8nEEz2foFV4KwASchJ4ZOkjmswNGgolIv/K6XCycd5BvntxHdmpBQB4+VoYdksbBl3fCi+fyr83xanYHDamvnkv9Q67mgqHj5nrHn0Bbz9/g5OJSFWixqIS6nLRZXQdebn79pz/vcGWhZ5vLnytvkwdOJVQn1DAtbvq25ve9vh5qh4tNysiJ8vPLuaXtzbz57e7cdhdrxNRMcGMeqw7zbrVNjhd2bzz9dPU2eTapNVpcnLR+IcJr1vf4FQiUtWosaiETCYT/UbfRJcLL3UVnE7mvDuNFd9+5fEJ3fUC6/Fy/5cxm1z/K/xv8/+Yf2C+R89RpamxEBEgYXs6Myet5mBcmrvWaVhDLn+gMyGRfgYmK7vF638lb9Y69+3ml15Aqy69DUwkIlWVGotKymQy0f/6W+hy4SXu2vJvvuCPd6ZiKy726Ll61O3BhC4T3LcfXfYoezP3evQcVYqGQonIX+x2Byt/3MOs1zeSn+167fUL8mLk3R3odXksFmvV/jWanHqQJW+8hZfd9X1Y2zZg5Ki7DE4lIlVV1X5FrOZczcWt9PvHnIu4xfP58v8eIP1QkkfPdUPrGxgRMwKAfFs+4xeOJ6c4x6PnqDKO23nbuBgiYqzsowX8+Mp61v1+wD1CMrpVGKMe707DNhHGhvOAkpJiPnz+PvzzXW8F8mtZuePBVzVZW0TOmRqLSs5kMtHt4isYed8jWL1ck+pS9+/l80fGs2nubJwOh8fO81Svp2ge1hyA/dn7eXTpozicnjl+VaVfsCI10+51Kcx8bg2H92YDYDab6HlZU0be3ZGAEB+D03nG/6Y9hN+hIgAKfRxc/+gL+PhqsraInDs1FlVE8/P68J/nXiG8XgMASooKmffB23z15EOkHtjnkXP4e/kzdeBUgr2DAViUuIj3Nr3nkWNXJeWxMaGIVA22YjuLvtjOH+9vpbjABkBwLV8ue7AznYc3wmSuHh82/DbrIwpX7wbAbnbS5fYxxNRvYXAqEanqrEYHqO4OLd1CVsJRjx2va6fL2ea1kIQDWwBI3rmd6Q/dTb0GrWjWshcBAaFlPseT2bfz675fcTgdxMct4LeVvsQEx5T5uFVF0c5EcsLbEJiXpMnbIjVIWlIucz6MI/1QnrsW2zWKAaNb4uNXfX5dbt+0kq1ffof5r7Ge1mGtOb+3NsETkbKrPq+UldS6bzZxsLieB49oBYbiFdgSW/48nI4MAA4lbuNQ4nbMXs2w+nTEZK1fhmE8DWjO7e5bezfCXmrSp/jNoH0zcDoIzksl3Og4IlKunE4ncUsPseybXdhLXMM/rV5m+l7TnFa96larIZHpyUnMeuV5LE7X95TayodJYyYbnEpEqgs1FlWUxSsac/D12Is2YCtcA85CwImjZCfFJTsxmSOweLfA7N0cs0Vvjc+JyUy6TwOaGp1DRMpNYV4Jiz7fzp4Nqe5aRP1Aht3ahvC6AQYm87zC3FymP/sgliJX83QkqoR7J7yH1ay3AiLiGXo1KWdNu9UjeLfnhkKdrDF2e32OZGwjJWMHNvtfGxw50rAVLofC5fh4BREcUJcg/zoE+Ebg7RVYqk/g7E47cWlx5Je4dpcN9w2jWVgzTNV8qaTMQh8Ss4IA8G4UY2wYESk3yXuymPPhVnLTi9y1dv3r0+vKWKxeVXMH7X9jt9mY8dL/YU9zTUbPCCxm+N33Uy9Ym+CJiOeosShnra8fVGHnspWUsHPlMjbN/Y1DO+Ld9aKSHFIzc0jN3AmAt58fkY0aE1G/IcGRUQRHRhEUUQu/oBB8AwPxDQzEYvUCIDb7INf8cg05Ja6lZ+/pdA+3tb+twr4nI+xcc5jED//6+6vePZRIjeRwOFn/xwFW/7wPp8M1zNPH38qg61vRpFOkwek8z+l08seHb5K2fRcAhd52gq/pzeDmww1OJiLVjRqLasTq5UXrvgNp3Xcg2UdT2LnyT3avWUHyrh047Hb344oLCkjaHk/S9vh/PZaXjy9WHx8sXl78hyYcKUrBboY9y7/mvdC1hPqHYTZbMJnNmC0W15fZgsliwfxXzX2f+a/7LWZMf//ZfOzP3n5++AYGuZqagL/++9dts9ngTw1r0tQSkRogL7OIuR/Hk7Qjw12rGxvC0JvbEBTua2Cy8rN+9iy2LZgHuFaA2jcwkHcGPWpwKhGpjtRYVFPBtaLoetFldL3oMooLXY3EoR3xpBzYR+qBfeQcTT3t80uKCikpKnTfDsXb/efczCRy8ewGfadiMpsJCAsnKDyCwPAIgsJrERhRi5DIKMLq1ie0Tl28fKrnGwER8bz9W44y/9NtFOaWuAom6HpBDN0uiMFsqZ6rr+9dv4ZFn33gvr2uYy4vX/UuXhYvA1OJSHWlxqIG8Pb1o3HHLjTu2MVdK8zNJfNIMtlHU8hOTSE3/SiFubkU5OZQmJtLYW4OtuJi7LYS7DYb9pISiosLMFXgfnlOh4PctKPkpv37HJXA8AjC6tQjrG59IhpEE9moMbUaNcYvMKjigopIpWa3OVjx4x42zUtw1wJCvBl6cxvqtwgzMFn5Sj24n1lTp8Bfe/Nsis3kllFPEB0UbXAyEamu1FjUUL6BgdQJbEadps1K/Zz8knxumH09OzN2YnJA96huvDbgVSxYcNrtOOx2HA47DrsDh92O0+H467bddb/DjsPh+Ouxf99no7iggMJ/NDSFuTkU5OaQn5VJTtpR8rMy/zVTbnoauelpJMRvOa4eGFGLyIYxRDZqTGSjxtSNbU5wZO1STVqv7pPTRWqSzJR85nwQR+rBHHctpl0Eg8a0wi/Q+zTPrNryMjP4fspT2ItcE9P31cmj+UXDGRYzzOBkIlKdqbGQUvP38mfa4De49tdrSS9MZ2XaGqZufZPHz3u8XM9rt5WQm55ObnoaOWmpZB45TObhQ2QkHyIjOYmCnOyTnvP3lY59G9a6a37BIdSNbU7d2BbUadaCurHN8fGvXstJisgxO1YdZvGXOygpcs0xM1tN9Lo8lvYDG1SrvSlOVFJYyA8vPuO+2psaUkRK/3Be6f6QwclEpLpTYyFnpV5gPV4f+Do3/3EzJY4SZu6YSWxoLNe0vKbczmmxehESVZuQqNqnvL8wL5eMQ0mkHtxP6l9zSI4e3E9Rft5xjyvIzmLv+jXsXb/GVTCZCK/XgPotWtGgVVvqt2xDcGRUuX0fIlIxigttLJ2xk+0rD7trIVF+DL+1LZENq/cwSYfdzi/TXuTIHtcKUHm+Nladl8cnQz7Ax+JjcDoRqe7UWMhZ6xjVkSd7Psnjf7quVExZPYWYkBjOq3ueIXl8AwKp26wFdZu1cNecTic5R1NJObCPI3t3c3j3Dg7v3klhXi7/eBDpSQmkJyWwZcEcwDWEKiSqKbaiQCxejSv6WxGRMko9mMOcD+PIPJLvrrU8rw59r2mOt2/1/pXndDpZ8PF77F23GoBiq4O5XVN4cvCLNApuZHA6EakJqverrJSbS2IvYU/mHj6O+xi70879i+7nywu/rDS/vEwmk3uPjtiuPQDXL92M5EMc3r2D5N07SN61k9QDe49bivefk8VtWMg5GgVooqNIZed0Otm8IJHlP+zGYXNNVvbysdD/Py1o0aOOwekqxppZ37Fp7mwA7CYnCzuncvF51zKk0RCDk4lITVGlGospU6YwceJExo8fz9SpU42OU+ON7zyePVl7WJK4hOzibMbNH8cXF35BsHew0dFOyWQyEV6vPuH16tO6n2vjwpKiQpJ37SRpexyJ27ZyaNd2bEV/78JrJyN5F9DLsMwicmYFucUs+HQb+7ekuWuRDYMYdmsbQqP8DUxWcbb/uZilX37ivv1n+zRqt2rJvV3uNSyTiNQ8VaaxWLNmDe+99x7t27c3Oor8xWK28ELfF7hu9nXsydrD/uz9PLT4Id4c/CZWc9X4X8vLx5eGbdvTsK3r/yu7zcYf733OtiXfGpxMREojaUcGcz+KIy+r2F3rOCSa8y5tisVaPfemOFFC/BZ+f/s19+31zTPIbOrD//q/jJdZ+1WISMWpEq+6ubm5jB49mvfff5+wsOq75nhVFOgdyBuD3yDUJxSAPw/9yavrXjU2VBlYrFb8gsONjiEiZ+CwO1g1ay8/Tt3gbir8gry4aFwHel/ZrMY0FWmJCfz08iTsNhsAO6Jz2NI0hyl9p1A74NQLXoiIlJcq8co7duxYLrzwQoYM0TjRyig6KJpXB7yK1eS6SvFZ/Gd8v+t7g1N5hhOn0RFE5AQ56YX8+NoG1s7ez9//RBu0DGPU491p1DbC0GwVKTcjne+nPElRnmsFvMTIAla2SeeuTnfRs15Pg9OJSE1U6cerzJgxg/Xr17NmzZpSPb6oqIgi9xh5yM4+eY8D8bxudbrx2HmP8fSKpwF4duWzNAxqSNc6XQ1OJiLVyd4NqSz4bBtF+a5P6E1mEz0ubkynYY0wm6vv3hQnKsrP54cpT5OdmgLA0eAiFnVKpVeD3vy3/X8NTiciNVWlvmKRkJDA+PHj+eKLL/D19S3VcyZPnkxISIj7KzpaK/pUlCubX8noVqMBsDlsTFg0gcScRINTnb2a89ZEpOqwFdtZ/NUOfntvi7upCAr35bL7O9Pl/Jga1VTYiov56eVJpOzfA0Cun4353VKoFVKbyX0nYzZV6l/tIlKNVepXn3Xr1pGSkkLnzp2xWq1YrVYWL17MtGnTsFqt2P+xTOjfJk6cSFZWlvsrISHBgOQ11wNdH6BnXdcl+IyiDO5ecDd5JXlneFYl888deTUSSsRw6cl5fPvCWrYuTnLXmnaOZNTj3ajbNMTAZBXP4bAz+42XSYjbDEChl5253Y5Q4mfm5f4vE+areYgiYpxKPRRq8ODBbNmy5bjaTTfdRMuWLXn44YexWCwnPcfHxwcfH+0uahSr2cpL/V/iutnXsT97P7szd/Pg4geZNmhalVkpSkQqB6fTybY/k1k6cye2EgcAFi8zfa9uRus+9TCZas5VCnD9fcz/8B12rV4OgM3iZF63FLICbTzS9RE6RHYwOKGI1HSV+p1eUFAQbdu2Pa4WEBBARETESXWpPEJ8Qnhj0BuMnj2a7OJsliYt5aU1LzGxx0Sjo5WKSYOhRAxXVGBj0Rfb2b02xV0LrxfAsFvaEFE/0MBkxln+zRdsnvc7AA4zLOicwtHQYobHDOc/Lf9jcDoRkUo+FEqqrpiQGF4b8Jp7pagvt3/JF9u+MDjV2XM6NRZKpKId3pfF18+tPq6paNO3Hlc+0rXGNhXrf/uZld/NcN9e2j6VQ5GFxIbG8kyvZ2rc1RsRqZwq9RWLU1m0aJHREaSUutftzhM9n+CJ5U8A8OKaF4kOiqZfg34GJxORysjpcLJh7kFW/bQXh8PV1Pv4WxkwuiWxXaIMTmec7X8uZuGn/3PfXtU6nX318gnyCmLqwKn4e9WM3cVFpPLTFQspV5c1u4xb290KgMPp4MHFD7IjfYfBqc5AH/yJVLi8rCJ+fmMjK37Y424q6jQJ4erHutXopmL/pvX89tZr8NfV082xWWyLyQFgct/JNApuZGQ8EZHjqLGQcnd3p7sZ2mgoAPm2fMbOH0tqfqrBqUpJI6FEyt3BuDRmTlpNwrYMV8EEXUY04rL7OxEc4WdsOAMd2rmNWa88j8PuWl53X0wR65tlAnBXh7voH93fwHQiIidTYyHlzmwy83yf52lXqx0AR/KPMG7BOPJL8g1OJiJGstscLP9uNz+/sYmCnBIA/EO8uWR8R867pClmS839FXVk3x6+n/wUJUWFAKRHW1jS6jCYoH+D/tze4XaDE4qInKzmvmpLhfK1+jJt0DTqBdQDID4tnkeXPYrD6TA42ck0CVKk/GWlFvD9S+vYMPegu9aobQTXPN6dBi3DDUxmvLTEBL577v8oynftAVTcIJBfW+/FaYKGQQ15vu/z2gRPRColvTJJhanlV4s3B79JgFcAAPMPzmfquqnGhjoDJ5Wv8RGp6nauOczM51aTcsA1V8BsMdH7ylguvKs9fkHeBqczVuaRw3w76TEKcrIB8Iquxdet47FbwM/qx9SBUwn2DjY4pYjIqamxkArVLKwZr/R/BYvJtbnhx3Ef8+3Obw1OJSIVoaTIzoLp25j7YTwlhXYAQiL9uOKhLnQc0hCTuWZfLcxJO8q3kx4jNyMdgMAGdfm81WZsVtdkr2d6P0OzsGZGRhQROS01FlLhetfvzcTuxzbLe27lc6w4tMLARCJS3o4m5vDN5DVsW57srjXvUZurH+tGVCN9Ap+flck3kx4nK+UIACH16vFdx90UWF1zT25scyPnx5xvZEQRkTNSYyGGGNVyFNe3vh4Am9PG/YvuZ1fGLoNT/UVzLEQ8xul0snlhIt9OWUfGYdeCDVYfC4NvbMXQm9rg7VvltlPyuMLcXL597v/IOJQIQHDtOizpmUWy4ygAPer0YHzn8UZGFBEpFTUWYpj7u9zPgOgBAOSU5HDX/LtIyU85/ZMqmpabFTlnhXkl/PbuFpbO3Ind5pqvVCs6kFGPdqPleXUNTlc5FBfk8/2UJ0k9sA+AwPBa7BsezIaCeADqBdTjxf4vYjWrARORyk+NhRjGYrbwQt8XaBPRBoDDeYe5a95d5BbnGpxMRMrq0K5MZk5azb5NR9219oMacOVDXQmtrZ2iAYoLC/h+ylMk73JtGuofEoplVGd+PjoXcE3WnjZoGuG+NXuVLBGpOtRYiKH8vfx5c/Cb1A+sD8COjB1MWDSBEkeJwclE5Fw4HE5W/7KPH19dT25GEQC+AV5ceFd7+l7dHIuXfu3AX03F5KdI2u66MuEbEEjjWy9l2oEP3I95vs/ztAhvYVREEZGzpld4MVwtv1q8M+QdQnxCAFiRvIKnlj+F02nMOCQT/5xjobFQIqWVm1HIT69tYM0v+/j7n2/95qGMerw7Me1rGRuuEikpLOSHF54maXscAD4BAfS8906e3v0Kzr9ec+7qcBdDGg0xMqaIyFlTYyGVQuOQxrwx6A28za417GftmcXbm942OJWIlNa+TanMmLSaQ7syAdcaCD0ubszF93YiMMzH2HCVSElRIT+8+AyJ8VsBV1Mx4qGJPLHnJXJLXMNAhzYaqp21RaRKUmMhlUanqE5M7jvZfcXg3U3v8v2u7ys+iBaFEik1W4mdJTN3MvudLRTl2QAIDPPh0vs70/WCxphr+N4U/1RSVMiPLz5DQtxmAHz8A7h04lO8mPAOB7IPANA8rDmTek/SztoiUiXplUsqlWExw3ig6wPu28+seIaliUsNy2PQaCyRKiHjcB7fvrCOLQsT3bUmHSMZ9Xh36sWGGhesEiopLuLHlyZxcKurqfD28+eKR5/hq8xfWH5oOQBhPmFMGzQNfy9NbheRqkmNhVQ6N7S5getaXQeA3Wnn/sX3E58WX3EB9AGryGk5nU62LT/E18+vIS3RNXzHYjXT/9rmnH97W3wDvAxOWLmUFBfx00uTOLhlIwDefn5c8egzrDZtZ3r8dACsJiuvDnjVvZCFiEhVpMZCKqUHuz3I0EZDASiwFTB2/liScpMq5NyavC3y74oLbMz9KJ4F07djK3btTRFWx58rH+lK2/4NMGmDyeOUFBXy00uTOLB5AwBevq6m4nBIPk+veNr9uIk9JtK1TlejYoqIeIQaC6mUzCYzz/d5no6RHQE4WnCUu+bdRVZRVsUGUV8h4nZkfzYzn1/DrjVH3LXWvety1cRu1GoQaGCyysm1+d1TxzcVE5/GXieQexfe615We1SLUVzd4mojo4qIeIQaC6m0fK2+vDHoDWKCYwDYm7WXuxfcTYGtwNhgIjWM0+Fkw5yDfP/iOrJTXf/+vH0tDLu1DQOvb4WXj8XghJVPUX4e3z7/hHv1p7/nVAQ1acDYBWPJKMoA4Ly65/Fw94eNjCoi4jFqLKRSC/UN5e0hb7t3nt2QsoEHFz+IzWErv5NqKIeIW352Mb+8tYnl3+/G4XBdwqvdOJhRj3enWdfaBqernApyc/jm2cdI3rkdcG1+d9X/PUdUs1gmLJrAvqx9ADQJacIrA17By6w5KSJSPaixkEovOiiad4a8Q4BXAACLExfz9IqnK2QDPafGQkkNlrAtnZmTVnMwLt1d6zy8IZc90JngWn4GJqu88rMy+ebpiRzZuxsAv6BgrnrieWo3ieW5lc+xKnkV4FoB6s3BbxLsHWxkXBERj1JjIVVC64jWvD7wdfcnez/u/pGp66caG0qkmrLbHaz4YQ+zpm0kP7sYAL9gby6+pyM9L4vFYtGvjlPJTU9j5tMTST24H4CA0DBGPTWFqJgmTI+fzne7vgPAy+zF64NeJzoo2sC0IiKep98OUmX0qNuDKX2nuFdt+mjrR0yPm+7x82gklNRk2UcL+OHl9az/44B78YLo1uFc83h3oluHGxuuEss+msLMpx8hPSkBgMCIWox6agoRDRqy4OACXln7ivuxz/Z+lk5RnYyKKiJSbtRYSJUyLGYYj/V4zH37pbUv8fOen8vvhNohT2qQ3etSmPncGo7sywbAbDbR8/KmjBzXAf9gb4PTVV5pSQnMeOJhMg8nAxASVZtrnppCWN36xKfF88jSR9zDKu/scCcXNrnQyLgiIuXGanQAkbM1quUo0grTeGfTOwA88ecThPqE0rdBX4OTiVRNJcV2ln29i/hlh9y14Fq+DLulLbUbaw7A6RzZu5vvnn+CghxXMxZWtx5XPv4cwbUiOZJ3hLvnH1vJbkTjEdzZ4U4j44qIlCtdsZAq6c4OdzKqxSgAbE4b9y++n82pmz10dI2FkpojLSmXbyavPa6paNatNqMe666m4gwS4jbz9TMT3U1FZEwTRj31AsG1IskryWPcgnGkFKQA0DGyI8/2flYbCIpItabGQqokk8nExO4Tj9ud+675d7E3c68nDu7+owZCSXXldDrZujiRb6asJSM5DwCrt5lBN7Rk6M2t8fbTBe3T2b1mJd9NfpLiAtfViPot2zDqyckEhIZR4ihhwqIJbE93LTdbP7A+UwdOxcfiY2RkEZFyp98cUmVZzBam9J1CdlE2qw6vIqsoi9vn3c5nIz6jTkAdz5xEnYVUQ4V5JSz8fDt7N6S6axH1Axl+WxvC6gQYmKxqiFs8nz/efR2nwwFAk87duOi+R/Dy9sHpdPL08qdZfmg5AMHewbw95G0i/CKMjCwiUiF0xUKqNG+LN1MHTqVVeCsADucd5rY5t3G04KjByUQqp+Tdmcx8bvVxTUW7AQ248pEuaipKYd2vP/L726+5m4pWfQdy8f2P4eXtuhrx9qa3+WnPTwB4m715Y9AbNAlpYlheEZGKpMZCqrxA70DeHvI2jYIbAbA/ez+3z72drKKsczqeRkBLdeRwOFk7ex8/vLqB3PQiAHwCrIy4ox39rmmO1cticMLKzel0svSrT1k0/QN3rdP5Ixlx131YrK6L/9/t/I53N70LgAkTU/pNoXPtzobkFRExghoLqRZq+dXi/aHvu4dA7czYyV3z7iKvJK+MR9ZYKKn68jKLmPX6BlbN2ofT4fp/um5sCKMe606TjpEGp6v87LYSfn/rVVb/+I271uuq0Qy88b+YzK5fo0sSl/Dsymfd9z/U7SH3HDARkZpCjYVUG3UD6/LBsA+I8HWNZd58dDP3LLiHInuRwclEjLN/y1FmTFpN0o5MwLU2QbcLY7j0vk4EhfsaG64KKMrP5/spTxO/dKGrYDIx6OY76Hnlte4VnuKOxvHA4gewO+0AXN/6eq5rfZ1RkUVEDKPGQqqVRsGNeG/oewR7u5bJXH14Nfcvup8SR0mpj6HlIKU6sJc4WPb1Ln59azOFua7//wNCfbjkvk50H9kEs0Uv/2eSm57GzKce5uCWjQBYvby5eMJEOg2/yP2YhJwE7pp/l3uvimGNhvFA1weMiCsiYjj9ZpFqp0V4C94Z8g7+Vn8AFicu5rGlj2F32M/+YNp5W6qgzCP5fPfSOjYtSHDXYtrX4prHu1O/eZiByaqOtMSDfPl/D5B6YB8AvoFBXPl/z9Gsey/3Y9IL07lr3l2kF6YD0DmqM8/3fR6zSb9aRaRm0qufVEvtI9vz5uA33evG/7b/N55d+SzO0jQKumAhVdiOlcl8/fwaUg/mAGC2mug7qhkX3NkO30Avg9NVDYnbtvLVEw+Sc9S1clZwZG2uffYl6rdo5X5MXkked827i/3Z+wFoHNKYaYOmaa8KEanRtI+FVFvd6nTj1QGvMn7BeGxOG9/t+g5/L38e7PpgqYc76XqFVBXFhTaWfLWTHasOu2uhtf0ZdmsbIqODDExWtexYsYzf3noFe4lr+FhU46Zc/shTBIQeu9JTbC9m/ILxxKXFuR7jF8U7Q94hxCfEkMwiIpWFGgup1vo16MfkfpN5eMnDOJwOPov/DH+rP+M6jTM6mojHpB7M4Y8PtpKVUuCutexVl36jmuPlo2VkS8PpdLL6x29YNmO6uxbToTMj73sEbz9/d83usPPI0kdYdXgV4NoA772h71E/sH6FZxYRqWzUWEi1d37M+RSUFPDE8icAeG/ze1jNVu7ocIfByUTKxul0snlBIsu/343D7rq+5uVrYcDoFjTv5qHd52sAW0kJ895/k7jF8921NgOGMPS2ce49KsD19/3symeZe2AuAH5WP94a/BaxYbEVnllEpDJSYyE1wmXNLiPfls+U1VMAeGvjW1jNVm5td+vJD9aqUFIFFOQUM//TbRzYmuauRTUKYtitbQiJ9D/NM+Wf8rOzmPXK8yRtj3PX+lxzA90vveqkIZNvbHiD73Z9B4DVZOXVAa/SMapjRcYVEanU1FhIjTG61WhsDhsvr30ZgNfXv47FZOGmtjf9+5O0KpRUQok7Mpj7URz5WcXuWsehDTnvkiZYrFqTo7TSkhL48YVnyDySDLiWkx0xbgLNz+tz0mOnx03n/S3vA65dtZ/r8xx96p/8OBGRmkyNhdQoY9qMwe6089q61wB4dd2rWEwWbmhzg8HJRM7MYXew+pd9rPv9gHtlAb8gLwbf2JpGbSKMDVfFHNi8kZ9fm0xRfh4AAaFhXPrg/1EntvlJj521ZxYvrX3JfXtij4lc0OSCCssqIlJVqLGQGufmtjdjd9iZtmEaAC+tfQmL2cLoVqMBbZAnlVN2WgFzP4zn8N4sd61ByzCG3NSagBAtcXo2Ns/7nXkfvo3T4QAgslFjLn3oCYJrRZ702AUHF/DEn0+4b9/V4S6ubXlthWUVEalK1FhIjXRb+9uwOW28vfFtAKasnoLFZOGaltcc97hS7XshUs72bEhh4WfbKcq3AWAym+hxcWM6D2uEyaxGuLTsNhuLP/uQDb//7K416dKdC+95EG9fv5Me/2fSnzyw+AHsTtfmmte2vFaLPoiInIYaC6mx7uxwJ3aHnfc2vwfAc6uew2K2EI2GlEjlYCu2s+zb3cQtSXLXgiJ8GXZLG+o00Z4JZyM/O4ufX5tMYvxWd63LRZfRb/SNmM0nL8m75vAaxi8cT4nDtZ/FRU0u4pHuj+iKpojIaaixkBptbMex2J12PtjyAQDPrHiG+2y3G5xKBNIO5TLngzjSD+W5a007RzHwuhb4+GsH7bNxZO9ufnrlOfdO2harlcG33EW7QcNO+fiNKRsZO38sRfYiAIY2GsqzvZ/FbNLEeBGR01FjITWayWTink73YHfY+TjuY8A1prqTwbmk5nI6ncQvO8Syr3dhK3HNAbB6melzdTNa96mnT8zP0rZli5jz7jRsJa4VtALCwrl4wqPUa97ylI+PT4vnrnl3UWBzbTbYr0E/Xuj7Alazfl2KiJyJXimlxjOZTNzX5T4cTgefxn96/J2aYyEVqCi/hIWf72DP+hR3LbxeAMNvbUt4vQADk1U9DrudpV99ytqfv3fX6jZrwcUTHiUw/NTDHXdl7OL2ubeTU5IDQI+6PXh1wKt4WXSFSESkNNRYiOBqLu7vej/eFm9W713krifnHTYulNQoh/dmMefDOHLSCt21tv3q0/vKWKzeJ88BkH9XkJvDr6+/yIHNG9y1tgOHMfiWO7F6nbpJ2J+1n9vm3EZmUSYAnaM6M23gNHwsWnFLRKS01FiI/MVkMnF3p7t5c3UBxduXApCUm8i7m97VSjBSbpwOJ+vnHGDVrH04Ha4rZD7+VgZe35KmnaIMTlf1HNm7m59fm0xWyhEAzBYLA2+8nQ5DR/zrMLKE7ARunXMraYWuXczbRLThrcFv4e+lHcxFRM6GGguRfzCZTPSo24OlLHXX3tr4FiWOEsZ1HKfx7eJReVlFzPs4nsTtGe5a3aYhDLm5NcERJy9/Kv/O6XSyed7vLPzkPew217K8fsEhXHzfRBq0bvuvzzuYfZCb/7iZI/muRqR5WHPeG/oegd6BFZJbRKQ6UWMhUgr/2/w/Suwl3NflPjUX4hEH4tKY/0k8BTmu5UwxQdcRMXS7MAazRasPnY2SwkLmffAW8UsXumt1Y1tw0X2PnHLTu78dzD7ITX/cREq+a05L05Cm/G/o/wjx0VK+IiLnQo2FyIn+0TdEBzUE1gHwcdzHFNmLeLj7w1p2Us6Z3eZg5Y972DgvwV0LCPFmyM1taNAizMBkVVP6oUR+fnUyRxMOuGudRoyk/3U3Y7H++6TrA9kHuPmPm91NRWxoLB8M+4AIP+1jIyJyrtRYiJxGlH8kT/R8gmdWPAPAl9u/JLckl6d7Pa3lJ+WsZabkM/fDOFIO5LhrjdpFMPiGVvgFeRuYrGrasWIpf7w7jZJC19KwXr5+DLv9blr26nfa5x3IPsDNv99MSoGaChERT9I7I5ETnTDS6armV+Ft9uaJ5U/gcDqYtWcWOcU5vNT/Ja0YI6W2c/VhFn25g5JCOwBmi4lel8fSflADDa87S3ZbCYs//4gNv/3srkU0aMjICROJqB992ufuz9rPLX/cclxT8eHwDwn3DS/XzCIiNYEaC5ETmP7ZWfy1jcUlsZcQ4BXAQ0seosRRwsKEhYydN5bXB71OgJf2F5B/V1xoY+nMnWxfcWzp4pAoP4bf2pbIhkEGJquaMg4f4tfXX+LI3l3uWqs+Axh62zi8fH1P+9wTm4pmYc34YNgHaipERDxEA8VFSmlIoyG8Nfgt/Kyu1XpWHV7FrX/cSmZhprHBpNJKTcjhm8lrj2sqWvSow9WPdlNTcQ62LV3I54+MdzcVFquVIbfexYhx95+xqdiVscs1UVtNhYhIuVFjIXIWetbryQfDPiDYOxiArWlbufH3GzmSd8TgZFKZOJ1ONi9M4NsX1pJ5JB8Aq4+FITe2YshNrfH21cXis1FcWMDvb7/G7DdfobjANZ8itE5drn32ZToMveCMQ8nijsZx0x83cbTgKOBaUvbDYRr+JCLiaWosRE5wpjcp7SPb88n5nxDp51rGck/WHsb8PoaD2QcrIp5UcoW5Jcx+ZwtLZ+7CYXONpYtsGMSoR7vR4ry6Bqereo7s28Pnj9xL3OL57lrrvgO5fsrr1G4Se8bnrzuyjlvm3EJWURYAbSPa8tHwjwjz1QpcIiKepsZC5HSczlOWm4U149MRn1I/sD4ASblJ3PDbDWxL21aR6aSSSdqZwYxJq9m/+ai71mFQNFc82IXQ2trF+Ww4nU7Wz/6Jrx6/n4zkJMC16tOIsRMYMe5+vP3O/Pe5PGk5d8y9g7ySPAC61O7C+8Pe1z4VIiLlRI2FyDmKDopm+ojpxIa6PjVNK0zjxt9vZPmh5QYnk4rmsDtY/fNefnptA3mZRQD4Bnpx4dj29Lm6GRYvvdSejfysTH588RkWfvq+exft2k1iuX7KVFr3G1SqY8w/OJ9xC8ZRaC8EoHe93rwz5B3tqC0iUo70207kJKVf+jPKP4pPzv+EDpEdAMi35TN23lhm7ZlVXuGkkslJL+TH1zaw5tf97gtc9VuEcs3j3YlpV8vYcFXQ7rWr+OSBsexdv8Zd63LhpVz77EuE1a1fqmP8svcX7l90PyUO167mQxoOYdqgae6FF0REpHxoBqHIiY5bbfbUQ6H+KcQnhA+GfcDDSx5mQcICbE4bjy17jCN5R7i13a3ao6Aa27sxlQWfbaMoz/WpuslsovtFjel8fiPMZv3cz0ZxQT6Lpn/AlgVz3DW/4BDOv+temnTqVurjzNg+g+dXPe/+tzuyyUie6f2MNrQUEakAeqUV8QBfqy+vDniVyasnM3PHTACmbZjG4bzDPNrjUSxmi8EJxZNsJXaWf7eHLYsS3bXAcB+G3dKWuk01fv9sJW2P57e3XiEr5djqak279mDYf+/GPyS0VMdwOp28seEN3t/yvrs2qsUoHu3xKGaTLs6LiFQENRYiJzm3T5otZguP9XiMugF1mbp+KgBf7/yalIIUXuz3ooZhVBPpyXnM+SCOtKRcd61pp0gGXNcS3wAvA5NVPXZbCcu//oI1s77H6XQArgnaA8fcRtuBQ0t9tc/msPHsymf5ftf37tqt7W7lnk736IqhiEgFUmMhcqJ/vg/5l1Wh/vWpJhO3tLuFKP8onlj+BDaHjUUJi7h1zq28MegNrZtfhTmdTrYtT2bpzJ3Yil1vgi1eZvpc1Yw2fevpDexZOppwgNlvvkLq/r3uWr0WrRkxdgKhteuU+jgFtgIeWvIQixIWAWDCxMPdH2Z0q9EeTiwiImeixkKkHIxsOpJafrW4b9F95JXksTl1M//59T+8NfgtmoY2NTqenKWiAhuLv9jOrrUp7lpY3QCG39qGiPpaZehs2G021v78PSu+/dK94pPZYqXX1aPpdvHlmM9i2GBWURbj5o9jY+pGAKxmK5P7Tub8mPPLI7qIiJyBGguRE3jqg+ee9Xry6fmfcte8u0gpSCEpN4nrZl/Hy/1fpnf93p45iZS7I/uymfPhVrKPFrprrfvWo89VzfDy1tyZs5F6YB+/vzOVlH173LWIBg254O4HiIppclbHOpx3mDvm3sGeLNexArwCeH3g6/So28OjmUVEpPTUWIicxlmOhDpJi/AWfHHhF9yz4B62pW8jtySXsfPH8nD3h7m25bWeCSnlwulwsmHeQVb9uBeHw/U/greflYHXtSS2S5TB6aoWu62EVT98zaofvsZhtwNgMpnpOvIyel01Gqu391kdLy4tjrvn301qQSoAEb4RvDPkHVpFtPJ4dhERKT01FiLlrE5AHT45/xMmLp3IgoQF2J12nl/1PPuy9vFQt4e0DGYllJ9dzPxP4jkYn+6u1W4czLBb2hBcS5Pwz8aRvbv5452ppB7c765FNGjI+XfeS53Y5md9vIUHF/Lw0ocpsBUA0DCoIe8OfZfooGhPRRYRkXNUqdfgmzx5Mt26dSMoKIioqCguvfRSduzYYXQskbPm7+XPawNf4+a2N7trX23/inHzx5FTnGNgMjlRQnw6MyatPtZUmKDz+Y247IHOairOgq2khGUzpvPFYxPcTYXJbOa8y0dx3ZTXz7qpcDqdfB7/OeMXjnc3FZ2iOvH5BZ+rqRARqSQq9UelixcvZuzYsXTr1g2bzcajjz7KsGHDiI+PJyAgwOh4Uk2ZznG52TMxm8zc1+U+Goc05ukVT2Nz2Pjz0J9cN/s6pg2aRqPgRuVyXikdu93B6ll7Wf/HQXfNP9ibITe1JrqVVvM6G4nbtjL3/bdIT0pw1yIbNWb4nfdSu/HZL15gc9h4cc2LfLX9K3dtROMRPNv7WXwsPh7JLCIiZVepG4vff//9uNuffPIJUVFRrFu3jn79+hmUSmqWMk6yOIVLYy+lQWAD7l10L1lFWezN2su1v1zLlH5T6NdA/18bIftoAXM+jOPIvmx3rWGbcAaPaY1/8NmN/6/JCnJzWPrFx8ftnm22WDnv8lF0v/RKLNaz3+cjrySPh5Y8xJLEJe7a7e1vZ2zHsVriV0SkkqnUjcWJsrKyAAgP16eHUo4q4M1K1zpd+eqCr7hn4T3sztxNTkkO4+aPY2zHsdzW/jbtFFyBdq09wqLPt1Nc6JpUbLaYOO/SpnQcHI3JrDeupeF0Otm+bBELp39AQXaWu14ntjnD/ns3kY0an9NxE7ITuHvB3e6Vn6xmK0/1fIpLYi/xSG4REfGsKtNYOBwO7r33Xnr37k3btm3/9XFFRUUUFRW5b2dnZ//rY0WMFB0czecXfM7//fl/zD0wFydO3tz4JtvSt/Fcn+cI8NJwv/JUUmxn2cydxP+Z7K4FR/ox/NY2RDUKNjBZ1ZJ5OJl5H77Ngc0b3DVvPz/6XDuGDkNHnNW+FP+0/NByHlz8INnFrtfwIO8gpg6YSve63T2SW0REPK/KNBZjx45l69atLFu27LSPmzx5Mk8//XQFpZLqrqzLzZ5JgFcAr/R/hQ+2fMAbG97AiZP5B+ez79d9TB04lcYh5/ZJr5ze0cRc5nywlYzD+e5as261GfCfFnj7VZmXRUPZbSWs/fkHVn43A1tJsbverEcvBt74X4LCa53TcZ1OJ5/Ff8Yr617B4XTtcN4kpInmIYmIVAFV4jfouHHj+OWXX1iyZAkNGjQ47WMnTpzIhAkT3Lezs7OJjtaKIVJ5mUwmbmt/Gy3DW/Lw0ofJKc5hb9Ze/vPrf3iuz3MMajjI6IjVhtPpZOviJP78djd2m+tNq9XbTL9rWtCyZx2N2S+lhLjNzP/oXdISj010D4qIZPAtd9C0y7lvUFdkL+KZFc8wa88sd21AgwFM7juZQG/tcC4iUtlV6sbC6XRy991388MPP7Bo0SIaNz7zp7c+Pj74+GiVEDl3Rr257NugLzMunMH4hePZnbmb3JJcxi8czw2tb+DeLvfiZT77ia9yTGFeCQs/287ejanuWq3oQIbd0oawOhp2Vho5aUdZ/PlH7Fh+bCK1yWSm8wUj6XX1dXj7nvtyvEfyjjBh0QQ2H93srv23/X8Z23Gs5hyJiFQRlbqxGDt2LF9++SU//fQTQUFBHD58GICQkBD8/LSevFSEch4LdYKGwQ354oIv+L8//485B1wr60yPn87G1I283O9l6gbWrdA81cWh3ZnM/TCO3Ixj86/aD2xAz8ubYvU6tzkANYndVsK6X39i5XczKCkqdNdrN2nG0NvGUrtJbJmOvzJ5JQ8veZj0QtfeIX5WP57t/SzDY4aX6bgiIlKxKnVj8c477wAwYMCA4+off/wxN954Y8UHEqkA/l7+vNz/Zb7c/iUvr30Zm8PG5tTNXPnzlTzf53n6R/c3OmKV4XA4Wffbftb8ss89X8YnwMrgG1rRuEOkseGqiP0b17Hgk/+RkZzkrvkGBdP32jG0GzgUk/ncryY4nA7e3/w+b2962z2fol5APV4f9Dotw1uWObuIiFSsSt1YOMt75qzIKRk/zt5kMjG61Wg6RHbggcUPkJSbRHZxNuMWjOOmNjdxd+e7NTTqDHIzipj3cRxJOzPdtXrNQhl6c2sCw3yNC1ZFZKUcYdH099m9ZqW7ZjKZaT90BL1HXYdfYFCZjp9ZmMnEZRNZlnRsQY4+9fswuc9kQn1Dy3RsERExRqVuLEQMcVxfYWxz27ZWW2ZeNJMn/nyCBQkLAPg47mPWp6xnSt8pNAg6/WIGNdX+zUeZ/+k2CvNKANfWJN0uakyXETGYtTfFaZUUFrJ61nesnfXdcas91WveikE333FOO2efaHPqZh5Y/ADJea6lfk2YtIeLiEg1oMZC5DQqw0WzEJ8Qpg6cyufbPufVta9ic9rYlLqJK3++ksd6PMbIpiONjlhp2EscLP9hN5sXJLprgWE+DL25NfWahRmYrPJzOhzELVnAshnTyctId9f9Q0LpN/omWvcbVOaFDZxOJ19s+4JX1r2CzWEDINw3nCl9p9CzXs8yHVtERIynxkLkBJVxxVGTycT1ra+nfWR7Hl7yMEm5SeSV5PHoskdZlrSMx857jGDvmr2pW+aRfP74YCtHE3LdtcYdajHo+lb4BmrY2OkkxG1m0fQPSdm/x10zWyx0HH4Rva76Dz7+ZV81K60gjcf/fPy4oU+dojrxUr+XqB1Qu8zHFxER46mxEKlCOkR24NuR3/L8quf5ee/PAMzeN5uNKRuZ3HcynWt3NjihMbavTGbxVzuxFdkBsFjN9L4ylrb962tvitPISE5iyRcfHzePAqBp1x70G30z4fXqe+Q8y5KW8fiyx0krTHPXxrQew/gu4zVXSESkGlFjIXKCSjTF4pQCvQN5vu/z9Knfh0krJ5FTksOhvEPc9MdN3NTmJu7qeBfeFm+jY1aI4kIbi7/awc5VR9y1sDr+DLu1DbUalG1ycXVWmJvLyu+/YsPvv+Kw29z1yJgmDLj+Fhq27eCR8xTbi5m6fiqfxX/mrkX4RvBcn+foXb+3R84hIiKVhxoLkRNVkU+4L2hyAR2jOjJx6UTWp6zH4XTw4dYPWZSwiEl9JtG2VlujI5arlAPZzPkgjqzUAnetVe+69L26OV4+2pviVGzFxWyc8yurfviawtwcdz0gNIw+19xA6/6DMJs983e3K2MXjy57lO3p2921vvX78mzvZ4nwi/DIOUREpHJRYyFyWpXwksU/1Ausx0fDP+KjrR/x9qa3sTls7Mnaw+jZo6vt1Qunw8mmBQms+GEPDrvr5+Pla2Hg6JY066ax+qficNiJX7yA5d98SU7asZ3Hrd4+dB15Gd0uvqJMu2b/k81h45O4T3h749uUOFyrcnmbvZnQdQL/afkfDU0TEanG1FiIVHEWs4Xb2t9G/+j+PL7scbalb6u2Vy/ys4uZ/+k2DsYdG6sfFRPMsFvaEBLpmTfG1YnT6WTP2lUsmzGdtMSDx+4wmWjdZwC9r7mB4Fqe2yhwb+ZeHv/zcbYc3eKuxYbGMqXvFFqEt/DYeUREpHJSYyFykqr5iWrzsOZ8ceEXfLz1Y97Z9M5xVy9ubHMjd3a4E19r1d0YLmF7OvM+iic/+9jeCp2GNaTHxU2wWLX3wYkSt21l6ZefcmjntuPqjTt1pe+1Y4hs1Nhj57I77Hy+7XOmrZ9GscP18zGbzNzY5kbu6ngXPhYfj51LREQqLzUWIif6R1/hrORDoU7kZfbiv+3/y4DoAcddvfho60fM2T+Hx897vMpNmrXbHaz5eR/r/jjgHpnmF+TFkBtb07CNxuqfKPXAPpbNmM7e9WuOq9dt1oJ+/7mJBq09e/VqV8Yunl7xNJtSN7lrMcExTOoziQ6RnpkELiIiVYMaC5Fq6FRXLxJzE7lj3h2cH3M+D3V7iEh/zw2BKS/ZRwuY+1Ech/dmu2vRrcIYfGNrAkL0Kfg/pR9KZMW3X7F9+ZLjdnYMrx9Nn2tvILbreR6d31BoK+S9ze/xydZPsDldK0uZcO23cnenu6v01TERETk3aixEqqm/r14MaTiEZ1c+y9ojawH4ff/vLEtaxj2d7+Hq5ldj8dAqQJ62e10KCz/fTnGB602r2WyixyVN6DS0ISZz1RyuVh4yDh9i5bdfsW3ZYpxOh7seGFGL3leN9uhKT39bcWgFz658loScBHctJjiGp3o9RZfaXTx6LhERqTrUWIic4LhPdavWSKhTahLahI+Gf8SsPbN4ee3LZBZlkluSy/Ornuen3T/xSPdH6BjV0eiYbrZiO8u+2UXc0kPuWlCEL8NubUOdxiEGJqtcMo8cZuX3M4hfsgCn41hD4RcUTLdLrqTj8Avx8vbsVZ20gjReXvsyv+z9xV2zmq3c2u5Wbm13q+ZSiIjUcGosRE6rGnQWuJqlS2IvoX+D/ry67lV+2P0DAHFpcVz/2/Vc0PgC7utyH3UC6hiaM+1QLnM+iCP9UJ67Fts1igGjW+Ljp5crgOzUFFZ+P4O4xfNx2O3uum9gEF1HXk6n8y/y2NKxfyuxl/Dl9i95d9O75JbkuuudozrzZM8naRLaxKPnExGRqkm/qUVqkFDfUJ7p/QyXxF7CpJWT2J25G4DZ+2az4OACbm57Mze2vRE/a8Uu3ep0Oolbeohl3+zCXuL69N3qZabvNc1p1auu9j4Aso+msvrHr9myYO5xu2X7BATQ9cLL6DTiYnz8/T1+3qWJS3lxzYvsz97vrgV5B3F/l/u5rNllmE1akUtERFzUWIicwFRFl5s9G11qd+Gbkd/w7c5veXPjm2QVZVFoL+TtTW/z/e7vGd95PBc0vqBC3jQW5Zew8PPt7Fl/bOO2iPqBDLu1DeF1A8r9/JVdxuFDrP7xW+KXLDiuofD286fLhZfS5cJL8PH3/N/TgewDvLjmRZYkLnHXTJi4rNll3N3pbmr51fL4OUVEpGpTYyFSQ1nNVq5peQ0jGo/gnU3vMGP7DOxOO4fzDjNx6UQ+2foJ93S+h771+5bbFYPDe7OY80EcOemF7lq7/vXpdWUsVq/KOam8ohw9uJ9VP37DjuVLj5uU7e3nR+cLLqHLBZfiGxjo+fMWHOV/m//HNzu/weY41sh0jOzIIz0eoU1EG4+fU0REqgc1FiI1XIhPCI90f4Srm1/Ni2tf5M+kPwHYkbGDsfPH0qV2F+7tfK9HJ3g7HE7W/3GA1T/vw+lwzWPx8bcy6PpWNOlU+ZfBLU+Hd+9k5Q9fs2ftyuPqPv4BdBx+EV0uvAS/oGCPnze3OJdP4j5hevx0CmwF7nqUfxQTukzggsYXaEiaiIiclhoLkRPV0PdOTUKb8O6Qd1l+aDmvr3+d+LR4ANYdWcf1v13PgAYDuLPjnbSOaF2m8+RlFjHvk3gSt2e4a3VjQxh6cxuCwmvm3gdOp5PEbVtZ9cPXHNi84bj7/IKC6XLhpXQcfmG5DHkqshcxc/tM3t/yPplFmcfOa/VjTJsx3NTmJvy9PD93Q0REqh81FiIn+sensk5n9VgV6mz0qteLnnV7MvfAXN7Y8IZ70u6ixEUsSlxE3/p9ub3D7ee0q/L+LUeZ/+k2CnNLXAUTdL0ghm4XxGC21LxJwE6Hg70b1rJm1rckbY8/7r7AsHC6jryC9oOH4+Xr+Yar0FbId7u+46OtH5GSn+KuW81Wrmp+Ff9t/1/NoxARkbOixkJETmIymRgWM4xBDQfx0+6feHvT2+43n0uTlrI0aSnn1T2P29vfTtc6Xc94PLvNwYof97Bp3rEN1QJCvBl6cxvqtwgrt++jsrKVlLBt6ULW/vID6UkJx90XElWb7pdcRev+g7F6eXn83Pkl+Xy942s+ifuEtMK04+67oPEFjOs0juigaI+fV0REqj81FiInqaFjoU7BarZyRfMruKjpRfy460c+3PohyXnJAKxMXsnK5JV0jOzIDW1uYFD0oFPu4p2Zks+cD+JIPZjjrsW0i2DQmFb4BXpX2PdSGRTm5rJp7mw2/P4zeZkZx90XXj+aHpddTcte/TBbPD9xPbMwk693fs1n8Z8dN+QJYECDAYztNJaW4S09fl4REak51FiIyBn5WHwY1XIUlze7nJ/3/sz7m98nMTcRgI2pG9m4aCP1A+szutVoLou9jEBv12pFO1YdZvGXOygpcm3kZraa6HV5LO0HNqhRE4GzU1NYN/sntsz/g5KiwuPuq9+yDV1HXk7Tzt0wmT0/HGxf1j4+j/+cWXtmUWg/dm4TJoY0GsJ/2/9XDYWIiHiEGguRExz3frfmTbE4LS+LF5c3u5yLm17Mb/t+46OtH7k32UvKTeLFNS/y9sa3uSzmCprH9SNp3bFdmkOi/Bh+a1siGwYZFb/CHdm3h7U/f8+OFUtxOo4tGYvJRLPuPek28grqNmvh8fM6nU5WH17NZ/GfsThx8XH3mU1mzo85n/+2/y9NQ5t6/NwiIlJzqbEQOUHN+Rz93FnNVkY2HclFTS5iRfIKpsdPdy9T65MZQsnX9UkqPNZUNOsRxYBrW+LtW/1fchwOO3vWrmLDbz+TEL/luPus3j60GTCELhdeQlideh4/d0ZhBrP2zOLbnd8et1M2uFZ5urzZ5YxuOZroYM2hEBERz6v+v+VFykSXLE7HZDLRq14vetXrxa70XXz/w0L8tsRgcbpeWorNhSxt8g0z/HazacvFXBp7Kc3CmhmcunwU5uaydeEcNvzxK9mpR467zy8omI7DL6Lj8AvxDw7x6HmdTidrDq/h253fMu/gPEocJcfdXyegDqNbjuby5pcT7O35/S9ERET+psZCRMqsILeYnTMKCNwc665lBR9hdpP3yfJLhSKYHj+d6fHTaRHWgouaXMSIxiOoHVDbwNSekZaUwIbffiZuyXxsRUXH3RdWrwGdR1xMm/6D8PLx7JKxuzJ2MXvfbH7b9xtJuUkn3d+tTjeuan4VQxoNwcvs+dWlRERETqTGQuRE/9zHwsAYVUXSjgzmfhRHXlaxu9ZhSDTnXdKfoWmxfLvzW+YemOv+JH1Hxg52rNvBq+tepWudrgxuOJjBDQdTJ6COUd/CWXM6HOzftJ71v81i/6b1J93fuGMXOo24mJj2nTw6ITsxJ5E/9v/B7H2z2Zmx86T7w3zCuCT2Ei5vdjmNQxp77LwiIiKlocZC5HRq4AZ5peWwO1jz637W/rbf3YH5BXkxeExrGrWNAFyfmner041HCh9h9r7ZzN47m81HNwPgxDWEZ83hNUxZPYU2EW3cTUaT0CYGfVenV5SfR9ziBWz84xcyko+/SuDl40ubAYPpdP5Iwus18Mj5HE4HcUfjWJiwkIUJC90T5f/JYrLQo24PLou9jEENB+FtqVlL+IqISOWhxkJEzlpOeiFzP4ojeXeWu9agZRhDbmpNQIjPSY8P8w1jdKvRjG41mgPZB/h176/8uvdXDuYcdD8mLi2OuLQ4pm2YRoPABvSs15Oe9XrSvU53Qnw8Oy/hbB3Zu5tNc2ez7c/FJw13ComqTafzR9J24FB8/APKfK70wnRWH17NykMrWZK4hNSC1FM+rkNkBy5ofAHDYoZph2wREakU1FiIyFnZuyGVBZ9toyjfBoDJbKLHxY3pNKwRZvOZ19RqFNyIuzrexZ0d7mRX5i4WHFzAgoML2Ja+zf2YxNxEvtn5Dd/s/AazyUybiDZ0q9ONTlGd6BDZgTDf8t+tu6S4iB3Ll7Jp7mwO7z552FHDtu3pdP7FNOnSDfMpNgYsrczCTDYf3cyq5FWsSl7Fjowdp3ycCRPtItsxMHogw2OGa3dsERGpdNRYiJyoBm3cdjZsxXb+/G43WxcfGwIUFO7L0FvaULfp2V9RMJlMNA9rTvOw5tzR4Q6ScpNYcHABixIWsT5lPTaHq3FxOB1sObqFLUePLd0aExxDh8gOtI9s7z6Gv5d/mb9HgPRDSWyeN5u4RfMpzMs97j5vPz9a9R1Ex6EjqNUw5qyPnV+Sz57MPWw5uoXNRzezJXXLcVdtTuRj8eG8uucxMHog/aP768qEiIhUamosROSM0pPzmPPBVtKS8ty1pp0jGXhdS3z8PbPiUP3A+lzf+nqub309+SX5rDuyjuWHlrMyeeVJcwv2Z+9nf/Z+ftrzk7sWHRRNi7AWNA1tSsPghkQHRRMdFE2Eb8QZd/m222zsWbeKTXNmc3DrppPuj4xpQsehF9CyT3+8ff1Oeyyn00l6YTpJuUkk5iSyO3O3+ysxJxHnaZYEMGGiVUQretTtwXl1zqNT7U74WU9/PhERkcpCjYWI/Cun08m2P5NZOnMnthLXztEWLzN9r25G6z71zviG/Vz5e/nTt0Ff+jboC0BqfiqbUjexMWUjG1M3Ep8Wf9J+DQk5CSTkJDDv4Lzjj2X1p35QfSL9IqnlV4sIvwgi/SIJ8w3DmllM9todpKzZTFF2znHPM1utNO7RgxYDBxIU04AiexG7cvdSmFVIfkk+GUUZpBekk16UTkZhBmkFaSTnJZOUm0SBraBU36e32ZvWEa1pH9mejlEdK8V8EhERkXOlxkLkBOX1ZrmqKSqwseiL7exem+KuhdcLYNgtbYioH1ihWSL9IxnSaAhDGg0BoNheTHxaPNvSt7EjfQc7M3ayK2MXhfbCk56bb8tnV8YudmXsAsBqM9HosD/NEgKpk3Hy3hLZ/iXsaJjD7gZ5FHnvgfVfwskryp41P6sfTUOa0iysGS3CW9AxsiPNw5rjZdEeEyIiUj2osRA5DWcNXW728L4s5n4YR/bRY2/U2/StR++rmuHlfe4TlT3F2+JNx6iOdIzq6K7ZHXYSchI4kH2AgzkHSchJ4GDOQRJzEjmUc4jgDBPNEwJpnByAt+34vSUcJicHo/LZ0TCX5FqFcI69pZfZi/qB9Y99BdUnJjiGZqHNqB9UH7PJc3taiIiIVDZqLETEzelwsmHuQVb9tBeHw9VUeftZGXhdS2K7RBmc7vQsZgsxITHEhMS4awU52WxbupAty+dy9OD+k55jrhWIo20dilqEEOBVRDt7CW1x4nA6cDgdrsbSBH4WP3ysPvhYfPCz+uFn9SPUJ5Rw33DCfcMJ8w0jzDeMcN9wNQ8iIlJjqbEQOYHpXD+uruLysoqY/0k8Cdsy3LU6TYIZenMbgmtVnQnEdpuNA5s3ELdkAXvWrMBusx13v5ePLy169aPdoKHUbdZSQ99EREQ8RI2FyIlq4PvMg/FpzPs4noKcvyZEm6DL8EZ0G9kYi6XyfwLvdDpJ2beH+CUL2L58CflZmSc9pl7zVrQdNJQWPfuecWUnEREROXtqLERqMLvNwaqf9rJh7rG9FPyDvRlyc2uiW4YbmKx0ctKOsm3ZIuKXLCAt8eT9IPyCQ2jdbxDtBg4jooE2lBMRESlPaixETlRDrlhkpRYw58M4UvZnu2uN2kYweEwr/IK8DUx2esUF+exavYL4JQs4GLcZTphgb/HyommXHrTuN4iYDp2xWPUyJyIiUhH0G1fkdKrpqlC71hxh0RfbKS60A2C2mOh5WVM6DIrGZK58nZWtpIT9m9azY/kSdq9dia2o6KTH1G/Zmtb9BtH8vD74BlTscrgiIiKixkLkJNV5Lm9JkZ2lM3eybXmyuxYS6cewW9sQ1SjYwGQnc9jtHNy6ie3Ll7B79QqK8vNOekxonbq07juIVn0HElq7jgEpRURE5G9qLEROUj07i6OJOcz5II6Mw/nuWvMetel/bQu8fSvHS4HT4SBpezzbly9h56o/KcjOOukxvgGBtOjVl9b9BmlVJxERkUqkcrybEKm0qv5QKKfTyZZFSSz/bjd2mwMAq4+F/tc2p+V5dQ1O52omDu/ZxY4VS9ixYhm56WknPcbbz4/YrufRonc/GrXriMWq3apFREQqGzUWItVYYV4JC6ZvY9+mo+5arehAht/altDa/oblctjtJG2PY9fqFexavfyUzYTVy5smXbrTslc/Yjp1wcvbx4CkIiIiUlpqLERO8M+hNVX5esWhXZnM/SiO3IxjE53bD2pAr8tisXhV/N4UtpISDm7dyK5VK9izdiUFOdknPcZssRLTsTMte/WjaZfuePsZ1/yIiIjI2VFjIXI6VbCzcDicrJ29n7W/7nMvauUb4MXgMa2IaV+rQrOUFBayb9M6dq1azt71ayguyD/pMRarlUbtOxHbvSex3XriFxhUoRlFRETEM9RYiFQjuRmFzP0onkO7Mt21es1CGXpzGwLDKmYoUfbRVPZtWMPe9Ws4uGUTtpLikx5j9fGhSceuxPboRZNOXfHxD6iQbCIiIlJ+1FiIVBP7NqUyf/o2ivJsgGvZ3G4XNabLiBjM5bg3hdPhIHn3TvauX8Pe9atJPbDvlI/zCQigaefuNOvRm0YdOmnOhIiISDWjxkLkBMcvX1r5x0LZSuws/34PWxYmumuBYT4MvaUN9WJDy+WcBbk5HNyyiX0b1rJ3w5pTLgvryhFOky7dada9F9Ft2mk1JxERkWpMjYVIFZZxOI85H8ZxNCHXXWvcoRaDbmiFb4Dn3sTbbTaSd23nwOYN7N+8gcN7dv3rruR1mjajSefuNOncjajGTbXPhIiISA2hxkKkCnI6nWxfcZglM3diK7IDYLGa6X1lLG371y/zm3mn00nm4UPs37yBA5s3kBC3meKCglM+1svHl0btO9KkS3eadOpGQGhYmc4tIiIiVZMaC5ETVfJP2IsLbCz6cge71hxx18Lq+DPs1rbUahB4Tsd0Op1kHkkmMX4rifFbSNi2lZyjqf/6+FoNY2jUvhMx7TrSoHU7rN7e53ReERERqT7UWIichvNfhvsYJeVANn98EEd26rGrB61716XP1c3x8rGU+jhOp5P0Q4muRmKbq5nIzUj/18f7BYcQ074Tjdp3olG7jgSGR5Tp+xAREZHqR42FSBXgdDjZOD+BlT/uwWF3NTvevhYGXNeSZl1rn/H5xQX5HN6zi+RdO0jevYPkXTvIz8r818dbvX2o17yl66pEh85ENozBZK74TfVERESk6lBjIXKCyjYQKj+7mPmfxnMw7tgVhdqNgxl2SxuCa/md9Hi7rYS0xASO7NvtaiR27SAt4SBOp+Nfz+Hl40u9Fq2Ibt2OBq3aUie2mVZwEhERkbOixkLkRJWos0jYls68j+PJzz62yVzn4Q3pfnETLBYzRfl5pO7fR8qBvaTs20vKgb2kJRzEYbed9ri+AYHUbd6SBq3aEt26HVGNm2Kx6uVAREREzp3eSYhUQna7g9Wz9rF+zgGcDic48/DyyaZ5V28KMnfxw5RPSU9KJCft3ydY/81kNhPZsDF1m7Vwf4XVqaehTSIiIuJRaixETlKxlyycDgcFuTnkHE0l+2gKKfuTiFuynbzMozgd2TjtWUAxRcD62ac/lslkJrx+A6JimhAZ04S6sc2p3TgWL1/fivhWREREpAZTYyFyGjlH9zDvg7fwDQzGNzAQn4AArN4+WK1eWLy8sFi9sHi5/hk5HQ4cDgfOv75sthJKCgooLiiguPDv/+ZTkJ1NfnYWBVmZ5GVlUpCTjdPx7/Mf/o1PQADh9aOJatSEqMZNiGrUhIiGjfDy9vH0X4OIiIjIGamxEDmBxevYpOXi/DQ2zf3NsCwms5ngWpGE12tAeP0GhNeLdv/ZLzhEu1qLiIhIpaHGQuQEQRFRmL2a4ijZU67nsVit+IeE4e0XRG6GCVuJHyZzMCZzMNGtG9H32q6E143CbCn9/hQiIiIiRlFjIXICk8mEd+AlOJ1FxHYNodPgKApzcynIzaYoLw+7rQRbcTF2Wwn2Eht2W4nreWYzZrMZk9mMyWTGYrXi7eeHt58/3r5+ePn54e3rh19QEP4hoXj5+hG/LJll3+zC5O3Ayxus3mb6jmpOq151dTVCREREqhQ1FiL/wmTywcc/nNpNYj1+7MK8Eua8H8eeDcdWdYqoH8iwW9sQXjfA4+cTERERKW9qLERO8o8rBU7PHz15dyZzPoojN73IXWs3oAG9rmiK1UvDnkRERKRqUmMhUkEcDifrfz/A6l/2ufamAHwCrAy6vhVNOkYanE5ERESkbNRYiFSAvMwi5n4cR9KOTHetbmwIQ29uQ1C49pgQERGRqk+NhUg527/lKPM/3UZh7l+TvE3Q9YIYul4Qg9mi3a9FRESkeqgS72reeustYmJi8PX1pUePHqxevdroSFKNHbcYk/PcJ1nYSxws+3oXv7612d1UBIT6cMl9neg+somaChEREalWKv07m5kzZzJhwgSefPJJ1q9fT4cOHRg+fDgpKSlGRxP5V5lH8vnupXVsWpDgrsW0r8U1j3enfvMwA5OJiIiIlI9K31i8+uqr3Hbbbdx00020bt2ad999F39/fz766COjo4mc0o6VyXz9/BpSD+YAYLaa6DuqGRfc2Q7fQK8zPFtERESkaqrUcyyKi4tZt24dEydOdNfMZjNDhgxhxYoVp3xOUVERRUXHlvHMzs4u95wiAMWFNpZ8tZMdqw67a6G1/Rl2axsio4MMTCYiIiJS/ip1Y3H06FHsdju1a9c+rl67dm22b99+yudMnjyZp59+uiLiSQ1Q2hkWqQdz+OODrWSlFLhrLXvWoe+o5nj7Vup/ZiIiIiIeUemHQp2tiRMnkpWV5f5KSEg485NEzpHT6WTT/AS+fWGtu6nw8rUw9ObWDB7TWk2FiIiI1BiV+l1PrVq1sFgsHDly5Lj6kSNHqFOnzimf4+Pjg4+PT0XEkxquIKeY+dO3cWBLmrsW1SiIYbe2ISTS38BkIiIiIhWvUl+x8Pb2pkuXLsyfP99dczgczJ8/n549exqYTGq6xB0ZzJi0+rimouPQhlz+YBc1FSIiIlIjVeorFgATJkxgzJgxdO3ale7duzN16lTy8vK46aabjI4m1dVx+1gcf5fD7mDNr/tZ+9t+931+QV4MvrE1jdpEVFRCERERkUqn0jcWo0aNIjU1lSeeeILDhw/TsWNHfv/995MmdIuUt5z0QuZ+GEfynix3rUHLMIbc1JqAEA2/ExERkZqt0jcWAOPGjWPcuHFGx5AabM+GFBZ+tp2ifBsAJrOJHhc3pvOwRpjMpjM8W0RERKT6qxKNhUhFMv1jLJStxMGiL3cQtyTJXQuK8GXYLW2o0yTEiHgiIiIilZIaC5HT2LXm+BXJmnaOYuB1LfDx1w7aIiIiIv+kxkKkFKxeZvpc3YzWfephMmnok4iIiMiJ1FiInMB0wiLM4fUCGH5rW8LrBRgTSERERKQKUGMhcoKQKH/C6wWQnpxHm7716XNlLFZvi9GxRERERCo1NRYiJzCbTVz9WDdKCuz4BmouhYiIiEhpqLEQOQWLxYwlsFJvTC8iIiJSqeidk4iIiIiIlJkaCxERERERKTM1FiIiIiIiUmZqLEREREREpMzUWIiIiIiISJmpsRARERERkTJTYyEiIiIiImWmxkJERERERMpMjYWIiIiIiJSZGgsRERERESkzNRYiIiIiIlJmaixERERERKTM1FiIiIiIiEiZqbEQEREREZEyU2MhIiIiIiJlpsZCRERERETKTI2FiIiIiIiUmRoLEREREREpMzUWIiIiIiJSZlajA5Q3p9MJQHZ2tsFJRERERESqlr/fQ//9nvp0qn1jkZOTA0B0dLTBSUREREREqqacnBxCQkJO+xiTszTtRxXmcDg4dOgQQUFBmEymCj9/dnY20dHRJCQkEBwcXOHnl3Ojn1vVpJ9b1aOfWdWkn1vVpJ9b1VMZfmZOp5OcnBzq1auH2Xz6WRTV/oqF2WymQYMGRscgODhY/4irIP3cqib93Koe/cyqJv3cqib93Koeo39mZ7pS8TdN3hYRERERkTJTYyEiIiIiImWmxqKc+fj48OSTT+Lj42N0FDkL+rlVTfq5VT36mVVN+rlVTfq5VT1V7WdW7Sdvi4iIiIhI+dMVCxERERERKTM1FiIiIiIiUmZqLEREREREpMzUWFSw5557jl69euHv709oaKjRceRfvPXWW8TExODr60uPHj1YvXq10ZHkNJYsWcLIkSOpV68eJpOJH3/80ehIcgaTJ0+mW7duBAUFERUVxaWXXsqOHTuMjiVn8M4779C+fXv3mvo9e/bkt99+MzqWnIUpU6ZgMpm49957jY4ip/HUU09hMpmO+2rZsqXRsc5IjUUFKy4u5qqrruLOO+80Oor8i5kzZzJhwgSefPJJ1q9fT4cOHRg+fDgpKSlGR5N/kZeXR4cOHXjrrbeMjiKltHjxYsaOHcvKlSuZO3cuJSUlDBs2jLy8PKOjyWk0aNCAKVOmsG7dOtauXcugQYO45JJLiIuLMzqalMKaNWt47733aN++vdFRpBTatGlDcnKy+2vZsmVGRzojrQplkE8++YR7772XzMxMo6PICXr06EG3bt148803AXA4HERHR3P33XfzyCOPGJxOzsRkMvHDDz9w6aWXGh1FzkJqaipRUVEsXryYfv36GR1HzkJ4eDgvvfQSt9xyi9FR5DRyc3Pp3Lkzb7/9NpMmTaJjx45MnTrV6FjyL5566il+/PFHNm7caHSUs6IrFiL/UFxczLp16xgyZIi7ZjabGTJkCCtWrDAwmUj1lpWVBbjepErVYLfbmTFjBnl5efTs2dPoOHIGY8eO5cILLzzu95tUbrt27aJevXo0adKE0aNHc/DgQaMjnZHV6AAilcnRo0ex2+3Url37uHrt2rXZvn27QalEqjeHw8G9995L7969adu2rdFx5Ay2bNlCz549KSwsJDAwkB9++IHWrVsbHUtOY8aMGaxfv541a9YYHUVKqUePHnzyySe0aNGC5ORknn76afr27cvWrVsJCgoyOt6/0hULD3jkkUdOmmBz4pfelIqInNrYsWPZunUrM2bMMDqKlEKLFi3YuHEjq1at4s4772TMmDHEx8cbHUv+RUJCAuPHj+eLL77A19fX6DhSSiNGjOCqq66iffv2DB8+nNmzZ5OZmcnXX39tdLTT0hULD7j//vu58cYbT/uYJk2aVEwYKZNatWphsVg4cuTIcfUjR45Qp04dg1KJVF/jxo3jl19+YcmSJTRo0MDoOFIK3t7exMbGAtClSxfWrFnD66+/znvvvWdwMjmVdevWkZKSQufOnd01u93OkiVLePPNNykqKsJisRiYUEojNDSU5s2bs3v3bqOjnJYaCw+IjIwkMjLS6BjiAd7e3nTp0oX58+e7J/86HA7mz5/PuHHjjA0nUo04nU7uvvtufvjhBxYtWkTjxo2NjiTnyOFwUFRUZHQM+ReDBw9my5Ytx9VuuukmWrZsycMPP6ymoorIzc1lz549XH/99UZHOS01FhXs4MGDpKenc/DgQex2u3u2f2xsLIGBgcaGEwAmTJjAmDFj6Nq1K927d2fq1Knk5eVx0003GR1N/kVubu5xn+Ls27ePjRs3Eh4eTsOGDQ1MJv9m7NixfPnll/z0008EBQVx+PBhAEJCQvDz8zM4nfybiRMnMmLECBo2bEhOTg5ffvklixYt4o8//jA6mvyLoKCgk+YuBQQEEBERoTlNldgDDzzAyJEjadSoEYcOHeLJJ5/EYrFw7bXXGh3ttNRYVLAnnniCTz/91H27U6dOACxcuJABAwYYlEr+adSoUaSmpvLEE09w+PBhOnbsyO+//37ShG6pPNauXcvAgQPdtydMmADAmDFj+OSTTwxKJafzzjvvAJz0uvfxxx+fcWipGCclJYUbbriB5ORkQkJCaN++PX/88QdDhw41OppItZKYmMi1115LWloakZGR9OnTh5UrV1b6ETLax0JERERERMpMq0KJiIiIiEiZqbEQEREREZEyU2MhIiIiIiJlpsZCRERERETKTI2FiIiIiIiUmRoLEREREREpMzUWIiIiIiJSZmosRERERESkzNRYiIiIiIhImamxEBGRCmW32+nVqxeXX375cfWsrCyio6N57LHHDEomIiJlYXI6nU6jQ4iISM2yc+dOOnbsyPvvv8/o0aMBuOGGG9i0aRNr1qzB29vb4IQiInK21FiIiIghpk2bxlNPPUVcXByrV6/mqquuYs2aNXTo0MHoaCIicg7UWIiIiCGcTieDBg3CYrGwZcsW7r77bh5//HGjY4mIyDlSYyEiIobZvn07rVq1ol27dqxfvx6r1Wp0JBEROUeavC0iIob56KOP8Pf3Z9++fSQmJhodR0REykBXLERExBDLly+nf//+zJkzh0mTJgEwb948TCaTwclERORc6IqFiIhUuPz8fG688UbuvPNOBg4cyIcffsjq1at59913jY4mIiLnSFcsRESkwo0fP57Zs2ezadMm/P39AXjvvfd44IEH2LJlCzExMcYGFBGRs6bGQkREKtTixYsZPHgwixYtok+fPsfdN3z4cGw2m4ZEiYhUQWosRERERESkzDTHQkREREREykyNhYiIiIiIlJkaCxERERERKTM1FiIiIiIiUmZqLEREREREpMzUWIiIiIiISJmpsRARERERkTJTYyEiIiIiImWmxkJERERERMpMjYWIiIiIiJSZGgsRERERESkzNRYiIiIiIlJm/w+KqNLZeV5m3QAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# # ================== CCP 1 ==================\n", + "mapie_ccp_1 = SplitCPRegressor(estimator, calibrator=calibrator1, alpha=ALPHA, random_state=random_state)\n", + "mapie_ccp_1.fit(X_train, y_train)\n", + "y_pred_ccp_1, y_pi_ccp_1 = mapie_ccp_1.predict(X_test)\n", + "\n", + "# # ================== CCP 2 ==================\n", + "mapie_ccp_2 = SplitCPRegressor(estimator, calibrator=calibrator2, alpha=ALPHA, random_state=random_state)\n", + "mapie_ccp_2.fit(X_train, y_train)\n", + "y_pred_ccp_2, y_pi_ccp_2 = mapie_ccp_2.predict(X_test)\n", + "\n", + "# # ================== CCP 3 ==================\n", + "mapie_ccp_3 = SplitCPRegressor(estimator, calibrator=calibrator3, alpha=ALPHA, random_state=random_state)\n", + "mapie_ccp_3.fit(X_train, y_train)\n", + "y_pred_ccp_3, y_pi_ccp_3 = mapie_ccp_3.predict(X_test)\n", + "\n", + "mapies = [mapie_split, mapie_cv, mapie_cqr, mapie_ccp_1, mapie_ccp_2, mapie_ccp_3]\n", + "y_preds = [y_pred_split, y_pred_cv, y_pred_cqr, y_pred_ccp_1, y_pred_ccp_2, y_pred_ccp_3]\n", + "y_pis = [y_pi_split, y_pi_cv, y_pi_cqr, y_pi_ccp_1, y_pi_ccp_2, y_pi_ccp_3]\n", + "titles = [\"Basic Split\", \"CV+\", \"CQR\", \"CCP 2 groups, 1 and 1\", \"CCP 2 groups, 1 and X\", \"CCP 2 groups, polynomials\"]\n", + "\n", + "plot_figure(mapies, y_preds, y_pis, titles)\n", + "plot_widths(titles, y_pis)" + ] + }, + { + "cell_type": "markdown", + "id": "7839b3d4", + "metadata": {}, + "source": [ + "## 3/ Improve the performances without prior knowledge : CCP as gaussian distances " + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "cdbabe43", + "metadata": {}, + "outputs": [], + "source": [ + "calibrator_gauss2 = GaussianCCP([[i] for i in range(-1, 6)], 1)\n", + "calibrator_gauss3 = GaussianCCP(30, 0.1, random_sigma=True, normalized=True)\n", + "\n", + "# # ================== CCP ==================\n", + "mapie_ccp = SplitCPRegressor(estimator, alpha=ALPHA, cv=pred_cv)\n", + "mapie_ccp.fit(X_train, y_train, reg_param=1e-3)\n", + "y_pred_ccp, y_pi_ccp = mapie_ccp.predict(X_test)\n", + "\n", + "# # ================== CCP 2 ==================\n", + "mapie_ccp_2 = SplitCPRegressor(estimator, calibrator=calibrator_gauss2, alpha=ALPHA, random_state=random_state)\n", + "mapie_ccp_2.fit(X_train, y_train)\n", + "y_pred_ccp_2, y_pi_ccp_2 = mapie_ccp_2.predict(X_test)\n", + "\n", + "# # ================== CCP 3 ==================\n", + "mapie_ccp_3 = SplitCPRegressor(estimator, calibrator=calibrator_gauss3, alpha=ALPHA, random_state=random_state)\n", + "mapie_ccp_3.fit(X_train, y_train)\n", + "y_pred_ccp_3, y_pi_ccp_3 = mapie_ccp_3.predict(X_test)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "id": "70924fa9", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABLkAAAPdCAYAAABm+boPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3iU15X48e/0Js2ojhpqIIFEFb0bbLDBuNtJ3Ftix32zu0nWm97253Q7iePYceISk7jG3cbGgAsgwKZJogiQhKRR75qRprffHyMNEgiMMSAE5/M8egTSq5k7o9F75pz33nMV4XA4jBBCCCGEEEIIIYQQI5hyuAcghBBCCCGEEEIIIcSXJUUuIYQQQgghhBBCCDHiSZFLCCGEEEIIIYQQQox4UuQSQgghhBBCCCGEECOeFLmEEEIIIYQQQgghxIgnRS4hhBBCCCGEEEIIMeJJkUsIIYQQQgghhBBCjHhS5BJCCCGEEEIIIYQQI54UuYQQQgghhBBCCCHEiCdFLiGGUU1NDQqFgmeffXa4hzKkocb305/+FIVCMXyDEkIIIYQQQgghhiBFLiGAZ599FoVCMejDarVy/vnn89577w338I5bW1sb3/rWtygoKMBgMGC1Wpk1axYPPvggvb29p+x+H3roId54441TdvtCCHG2qqqq4q677mL06NHo9XrMZjPz58/nj3/8I8XFxSgUCn74wx8e9ecrKipQKBT893//92kctRBCiFPhWDHB7XZHj/P7/fzpT39i5syZxMbGEhMTw8yZM3n00UcJBAJH3G5OTs6gPMdkMjFr1iyee+650/nwhDgtFOFwODzcgxBiuD377LPcfvvt/PznPyc3N5dwOExLSwvPPvsse/bs4e233+bSSy896fcbDofxer1oNBpUKtWXuq3Ozk6mTp2Kw+Hg61//OgUFBXR0dFBWVsY777xDWVkZOTk5X+g2a2pqyM3N5ZlnnuG2224DIBAIEAgE0Ov10eNiYmL4yle+csbOSBNCiDPRu+++y1e/+lV0Oh233HILEydOxOfzsXHjRl599VVuu+02NmzYgM/no6qqasjb+NnPfsZPf/pTtm/fzrRp007zIxBCCHGyHE9MePLJJ3E6nVxyySV88sknXHrppSxfvhylUsn777/PW2+9xQUXXMDbb7+N0WiM3nZOTg7x8fF8+9vfBqCpqYm///3vHDhwgCeffJI777xzuB62ECedergHIMSZ5OKLL2bGjBnR/3/jG98gJSWFF1544ZQUuRQKxaBi0Zfx1FNPYbPZKC4uZt68eYO+53A40Gq1J+V+1Go1arWcOoQQ4suorq7muuuuIzs7mw8//JC0tLTo9+677z4qKyt59913ycrK4kc/+hFbtmxhzpw5R9zOCy+8QEFBwTELXDk5Odx222389Kc/PRUPRQghxJd0vDEB4L//+7/55JNPePTRR7n//vujx91zzz089thj3H///Xz3u9/lscceG3QfGRkZ3HTTTdH/33bbbYwePZpHHnlEilzirCLLFYU4hri4OAwGwxFFnd/97nfMmzePxMREDAYD06dP59///vcRP79mzRoWLFhAXFwcMTExjBs3ju9///vR7x+tJ9e+ffv42te+RnJyMgaDgXHjxvGDH/zgmGOtqqpCpVINmQSZzeZBxbTFixczceJEtm/fzrx58zAYDOTm5vLEE0987nNyeE8uhUKB0+nkH//4R3QKdP+sLyGEEEP7zW9+Q29vL0899dSgZKZfXl4e3/rWt7jxxhsBeP755484Zvv27ezfvz96jBBCiJHpeGNCfX09Tz31FBdccMGgAle/++67j/PPP58nn3yShoaGY95ncnIyBQUFR50pLMRIJUUuIQaw2+20t7fT1tbGnj17uOeee+jt7R101QPgj3/8I1OnTuXnP/85Dz30EGq1mq9+9avRKywAe/bs4dJLL8Xr9fLzn/+c3//+91x++eUUFxcfcwxlZWXMnj2bDz/8kDvvvJM//vGPXHnllbz99tvH/Lns7GyCwSArV648rsfa1dXFihUrmD59Or/5zW8YNWoU99xzD08//fRx/Xy/lStXotPpWLhwIStXrmTlypXcddddX+g2hBDiXPP2228zevToI2beHi43N5d58+bx8ssvEwwGB32vv/B1ww03nLJxCiGEOPWONya89957BINBbrnllqMec8sttxAIBHj//fePeVuBQID6+nri4+NPaMxCnKlkzZEQAyxdunTQ/3U6HU8//TQXXnjhoK8fOHAAg8EQ/f/999/PtGnTePjhh7nkkkuAyCwun8/He++9R1JS0nGP4YEHHiAcDrNjxw6ysrKiX//Vr351zJ/7+te/ziOPPMJtt93Gr371KxYvXsx5553HihUrsFgsRxzf2NjI73//+2iz4rvuuovZs2fzve99j5tvvhmNRnNc473pppu4++67GT169BHFQCGEEEdyOBw0NDRwxRVXHNfxN954I/fddx/r1q3joosuAiAUCvHSSy8xd+5cRo8efSqHK4QQ4hT6IjFh7969AEyZMuWox/R/r//Yfn6/n/b2dgCam5v5zW9+Q3NzM/fdd9+JDl2IM5LM5BJigMcee4w1a9awZs0a/vnPf3L++edzxx138Nprrw06bmCBq6urC7vdzsKFC9mxY0f063FxcQC8+eabhEKh47r/trY21q9fz9e//vVBBS5g0BLBoaSkpFBaWsrdd99NV1cXTzzxBDfccANWq5Vf/OIXHL7HhFqtHjTjSqvVctddd9Ha2sr27duPa7xCCCG+OIfDAUBsbOxxHX/ttdei0WgGLVn85JNPaGhoOGKpotfrpb29fdBHKBTC5XId8XUhhBDD74vEhJ6ens89tv97/cf2++CDD0hOTiY5OZlJkyaxcuVKbr/9dn7729+e6NCFOCNJkUuIAWbNmsXSpUtZunQpN954I++++y7jx4/n/vvvx+fzRY975513mDNnDnq9noSEBJKTk3n88cex2+3RY6699lrmz5/PHXfcQUpKCtdddx0vv/zyMQteBw8eBGDixIknNP60tDQef/xxmpqa2L9/P3/6059ITk7mxz/+MU899dSgY9PT0zGZTIO+NnbsWCDSK0wIIcSpYTabgSMTkKNJTExk2bJlvP7663g8HiCyVFGtVvO1r31t0LEvvPBCNInp/6irq+O3v/3tEV8XQggx/L5ITDhaAWug/u9ZrdZBX589ezZr1qzh/fff53e/+x1xcXF0dXWdtM2phDhTSJFLiGNQKpWcf/75NDU1UVFRAcCGDRu4/PLL0ev1/OUvf2HVqlWsWbOGG264YdBsKYPBwPr161m7di0333wzZWVlXHvttVx44YVH9FU52RQKBWPHjuWBBx5g/fr1KJVK/vWvf53S+xRCCHF8zGYz6enp7N69+7h/5qabbsLhcPDOO+/g8/l49dVXueiii44oVi1btiw6I7n/IyUlhZtvvvmIrwshhBh+XyQmjB8/Hoj08D2a/u8dvpQ9KSmJpUuXsmzZMr797W/zz3/+kzfeeIM//vGPX2L0Qpx5pCeXEJ8jEAgA0NvbC8Crr76KXq9n9erV6HS66HHPPPPMET+rVCpZsmQJS5Ys4eGHH+ahhx7iBz/4AR999NER/b/gUDD6IonP5xk9ejTx8fE0NTUN+npjYyNOp3PQbK4DBw4Ake3mv4jPW0ophBBisEsvvZQnn3ySzZs3M3fu3M89/vLLLyc2Npbnn38ejUZDV1fXkLsqpqWlHbEzl16vZ/To0UPGHSGEEMPveGPCxRdfjEqlYuXKlUdtPv/cc8+h1Wo/t8fXJZdcwqJFi3jooYe46667jljhIcRIJTO5hDgGv9/PBx98gFarpbCwEACVSoVCoRg0G6umpoY33nhj0M92dnYecXtFRUVApGfKUJKTkznvvPN4+umnsdlsg753eE+tw3366ac4nc4jvv7ZZ5/R0dHBuHHjBn09EAjw17/+Nfp/n8/HX//6V5KTk5k+ffox7+twJpOJ7u7uL/QzQghxLvuf//kfTCYTd9xxBy0tLUd8v6qqatDVdYPBwFVXXcWqVat4/PHHMZlMx924XgghxJnteGPCqFGj+MY3vsHatWt5/PHHjzjuiSee4MMPP+Suu+4iMTHxc+/3wQcfpKOjg7/97W8n5XEIcSaQmVxCDPDee++xb98+AFpbW3n++eepqKjgf//3f6Pr5S+55BIefvhhli9fzg033EBrayuPPfYYeXl5g6YO//znP2f9+vVccsklZGdn09rayl/+8hdGjRrFggULjjqGP/3pTyxYsIBp06bxzW9+k9zcXGpqanj33XcpKSk56s+tXLmSf/3rX1x11VVMnz4drVZLeXk5Tz/9NHq9nu9///uDjk9PT+fXv/41NTU1jB07lpdeeomSkhKefPLJ495Zsd/06dNZu3YtDz/8MOnp6eTm5jJ79uwvdBtCCHEuGTNmDM8//zzXXnsthYWF3HLLLUycOBGfz8emTZt45ZVXuO222wb9zE033cRzzz3H6tWrufHGG+WquxBCnCW+SEx4+OGH2bdvH/feey/vv/8+y5cvB2D16tW8+eabXHDBBcfdTP7iiy9m4sSJPPzww9x3331fOAcQ4owUFkKEn3nmmTAw6EOv14eLiorCjz/+eDgUCg06/qmnngrn5+eHdTpduKCgIPzMM8+Ef/KTn4QH/kmtW7cufMUVV4TT09PDWq02nJ6eHr7++uvDBw4ciB5TXV0dBsLPPPPMoNvfvXt3+KqrrgrHxcWF9Xp9eNy4ceEf/ehHx3wMZWVl4e9+97vhadOmhRMSEsJqtTqclpYW/upXvxresWPHoGMXLVoUnjBhQnjbtm3huXPnhvV6fTg7Ozv85z//edBxQ43v8McZDofD+/btC5933nlhg8EQBsK33nrrMccqhBAi4sCBA+E777wznJOTE9ZqteHY2Njw/Pnzw48++mjY4/EMOjYQCITT0tLCQHjVqlXHfR/Z2dnhn/zkJyd55EIIIU62440JPp8v/Ic//CE8ffr0sNFojOYvt956azgYDB5xu9nZ2eFLLrlkyPt89tlnh8xHhBipFOHw56yBEkKcdRYvXkx7e/tJ7f0lhBBCCCGEOP0cDgeLFi2iqqqK9evXR1ukCHEukp5cQgghhBBCCCHECGU2m3nvvfdISkpixYoV1NbWDveQhBg20pNLCCGEEEIIIYQYwVJTUzl48OBwD0OIYSczuYQQQgghhBBCCCHEiCc9uYQQQgghhBBCCCHEiCczuYQQQgghhBBCCCHEiCc9uQ4TCoVobGwkNjYWhUIx3MMRQogzXjgcpqenh/T0dJTKs+faicQDIYT44s7GmCDxQAghvrjhigdS5DpMY2MjmZmZwz0MIYQYcerq6hg1atRwD+OkkXgghBAn7myKCRIPhBDixJ3ueCBFrsPExsYCkV+E2Wwe5tEIIcSZz+FwkJmZGT1/ni0kHgghxBd3NsYEiQdCCPHFDVc8kCLXYfqnIJvNZgliQgjxBZxtSzgkHgghxIk7m2KCxAMhhDhxpzsenB0L5YUQQgghhBBCCCHEOU2KXEIIIYQQQgghhBBixJMilxBCCCGEEEIIIYQY8aTIJYQQQgghhBBCCCFGPClyCSGEEEIIIYQQQogRT4pcQgghhBBCCCGEEGLEkyKXEEIIIYQQQgghhBjxpMglhBBCCCGEEEIIIUY8KXIJIYQQQgghhBBCiBFPilxCCCGEEEIIIYQQYsSTIpcQQgghhBBCCCGEGPGkyCWEEGeQ2lo7q1YdpLbWPtxDEUIIMYwkHgghhOgnMeH4qYd7AEIIIQ7Zs6eDzZsbAcjOtgzzaIQQQgwXiQdCCCH6SUw4flLkEkKIM8iECYmDPgshhDg3STwQQgjRT2LC8ZMilxBCnEGysy1ydUYIIYTEAyGEEFESE46f9OQSQgghhBBCCCGEECOeFLmEEEIIIYQQQgghxIgnRS4hhBBCCCGEEEIIMeJJkUsIIYQQQgghhBBCjHhS5BJCCCGEEEIIIYQQI54UuYQQQgghhBBCCCHEiCdFLiGEEEIIIYQQQggx4kmRSwghhBBCCCGEEEKMeFLkEkIIIYQQQgghhBAjnhS5hBBCCCGEEEIIIcSIJ0UuIYQQQgghhBBCCDHiSZFLCCGEEEIIIYQQQox4UuQSQgghhBBCCCGEECOeFLmEEEIIIYQQQgghxIgnRS4hhBBCCCGEEEIIMeJJkUsIIYQQQgghhBBCjHhS5BJCCCGEEEIIIYQQI54UuYQQQgghhBBCCCHEiCdFLiGEEEIIIYQQQggx4kmRSwghhBBCCCGEEEKMeFLkEkIIIYQQQgghhBAjnhS5hBBCCCGEEEIIIcSIJ0UuIYQQQgghhBBCCDHiSZFLCCGEEEIIIYQQQox4UuQSQgghhBBCCCGEECOeFLmEEEIIIYQQQgghxIgnRS4hhDhDFBfX87OfFVNcXD/cQxFCCDGMJB4IIYToJzHhi1EP9wCEEEJErF1by9q1NgDmzx81zKMRQggxXCQeCCGE6Ccx4YuRIpcQQpwhli7NHvRZCCHEuUnigRBCiH4SE74YKXIJIcQZYv78UXJ1RgghhMQDIYQQURITvhjpySWEEEIIIYQQQgghRjwpcgkhhBBCCCGEEEKIEU+KXEIIcQ6qrbWzatVBamvtwz0UIYQQw0xighBCCDg74oH05BJCiHPQnj0dbN7cCEB2tmWYRyOEEGI4SUwQQggBZ0c8kCKXEEKcgyZMSBz0WQghxLlLYoIQQgg4O+KBFLmEEOIclJ1tGbFXZ4QQQpxcEhOEEELA2REPpCeXEEIIIYQQQgghhBjxpMglhBBCCCGEEEIIIUa8s6rI9dOf/hSFQjHoo6CgYLiHJYQQYhhITBBCCAESD4QQ4lxy1vXkmjBhAmvXro3+X60+6x6iEEKI4yQxQQghBEg8EEKIc8VZd3ZXq9WkpqYO9zCEEEKcASQmCCGEAIkHQghxrjirlisCVFRUkJ6ezujRo7nxxhux2WzHPN7r9eJwOAZ9CCGEODt8kZgg8UAIIc5eEg+EEOLccFYVuWbPns2zzz7L+++/z+OPP051dTULFy6kp6fnqD/zy1/+EovFEv3IzMw8jSMWQghxqnzRmCDxQAghzk4SD4QQ4tyhCIfD4eEexKnS3d1NdnY2Dz/8MN/4xjeGPMbr9eL1eqP/dzgcZGZmYrfbMZvNp2uoQggxYjkcDiwWyxl/3vy8mCDxQAghvryREBMkHgghxKk3XPHgrOvJNVBcXBxjx46lsrLyqMfodDp0Ot1pHJUQQojh8HkxQeKBEEKcG05nPPAFfTy1+ymuGHMF6THpJ+U2hRBCHN1ZtVzxcL29vVRVVZGWljbcQxHijFNcXM/PflZMcXH9cA9FiNNCYoIQQ5N4IM41pzMe+II+Xt7/Mv/18X8RDAVP+f0J8WVJTBAj3VlV5PrOd77DJ598Qk1NDZs2beKqq65CpVJx/fXXD/fQhDjjrF1by9q1NtaurR3uoQhxSkhMEOL4SDwQZ7vhjAcx2hhun3A7ezv28tze5075/QnxZUlMECPdWbVcsb6+nuuvv56Ojg6Sk5NZsGABW7ZsITk5ebiHJgQA4XAYhzuAw+PH7Q/i8Qdx+4K4/UHCYVAoQKVUoFIoUCoVmLRqYvX9Hxq06pNXl166NHvQ5xNRXFzP2rW1LF2azfz5o4Y8prbWzp49HUyYkEh2tuWE72skO57nSZx8EhPEGS/gBVcH+Fzgd0HA0/fZCwpl5EOpinxW6UBvBp058lkbEwkaJ8HpigcgMUHiwfAY7niwcNRC3qh8gydKn+Ci7IvIiM04LfcrxImQHOH0kZhwapxVRa4XX3xxuIcgzmGhUJhmh4f6Ljd1nS7qu9zUdjhp6HbT4fTR5fTR7fYTDJ34Xg96tZKkWB0psTpSLQbS4/TkJJoYY40hzxpDokmL4jiTnvnzR33pk2n/lZ7+2xvKnj0dbN7cCHDOBrDjeZ7EyScxQQwrby901UC3DbproasWuqqhtwWc7eDuBJ/zxG9foQRDPMSkgjkNzBkQlw1J+ZA0FhJGg1p7XDd1uuIBSEyQeDA8zoR4cEHWBTy751l+tuVn/HXpX4/7/ZoQp5vkCKePxIRT46wqcglxurT2eNjX1MOBlh7Kmxzsa+6hqq0Xjz8UPSZWrybeqMWsVxNv1JBm0WPSqjBqVeg0arQqUKtU6FQKNGoVKiWEwpHZXuEQBENhPMHILC+vP4QvEMLtC9LjDdDrDbC7wU5xVTsOt5/+ulmsTk12kpEJ6RamZ8VTlBXHmOQYVMpT80bqeK70TJiQOOjzuehkXBETQpyhAj5o2wet5dC6F5p3Rf7d03joGJUGDImRopQuBuJzwToBtEbQmkCljRyj1oFSG/k/IQiHIx+EIOiPzPLyeyIzvgKeSCHN6wB7HbTsAXc3BNyR+1SowJIByQUwambkI30qGOJOydNwvOe5cz0mSDw4d8VqYrls9GX8u+LfvFH5BlflXzXcQxLilJEc4fhITDg1FOFw+MSnlZyFvsw2l/ubexiTbEKtOqtanZ3zXL4Au+rtlNZ3s722i5K6blockW2ltSolVrOO5BgdiTFaEkxa4owakkw6YvUaNCoFWrUSjUqJSqlAeZKu2gWCIfzBML5gCJc3QLPDQ7PDQ3uvj45eLy0OL+29XsKAQaNifHos88Ykcd7YZKaMijupyx6FGAnbxZ+IL/W4Aj7oPAjWglMzODE8wuHIbKz67VC/Feo/g5bdkQIUgDERYlLAlAymJDAmgDEp8nW1vq+YpQWVGpQn6TpjuK8AFvQdWv5ob4De5siMsd4WcDREimIAcVmQOQfylkDuosgsMCFOorMxJnzZx1Rtr2Z93XqyzFk8vP1hOj2dvHr5q6SaUk/BaIUQ4swwXPFAZnKdJHa3n688sYk5oxN54sZpqKTQNWL1ePxsrelkU1UHmyo72N/cQzAcRqtWkhFnYHRyDPPGJJFm1mE16zFq1Rg0KnQa5UkrYn0etUqJWgUGVFgMGtLiDNHvBUNh3P4gXU4fB9ud1He5aOh287cNB3n0w0p0aiVTMuO4oMDKxRNTyU40nZYxD+XVV/fz2msVXH11PtdcM27YxiHESffJr+HTJ+DGf0P23OEejThR4XBkVlbNBqj+BGo3gbsr8j1TMlgyIe8isKRHlgsa4kFtAE1fQet0UCgjM8DUOtDFRopryeMOjT/ojSyL7LJBZxXY6yOPZ9fLkWPisiF3IRReAbnnRcY+TCQmiLOdQqHg9gm389BnD/HDjT/kbxf9TZYtCjEEiQfiy5Ai10liMWj4jwvyeWhVOQ+8uJPHbpgmQWuE8AaCfFbdSXFlB8WV7extdBAMh7EYNOQmGblogpX0OAMZcUbMejUGrQqdWjXcwz4qlVJBjE5NjE5NZoIRgEAoRI8nQFVrL/tbe7B1uPjd6v386r19ZCcaWVKQwqVT0igaFYfyFC1tHMprr1Wwfn1ke+JzNYD1N920WLTY7b5zuvnmWWX+t2DXK/D8V+HWdyC9aLhHJI5XVw1UroODn0SKQe7OyKyruOzIcr/YDIjPghgraEygMYLyDL2wpVBEZpCp9ZHZZBlTI4WvgBscTZGllZ0HYd8q2PlP0Bggp6/gVbAiMhPtNDrXY4LEg3NDgiGBq/Ku4sX9L7Jy70pumXDLcA9JiDPOuR4PQGLClyFFrpPowvEp7LB1smpXMw++Wsavr5ksha4zVGO3m4/3t7FuXwubKjtw+4OY9WpykkxcNCGF7EQjGXEGYnUajFrVaS38nApqpZJ4o5YZOQnMyEkgEAzR7vRSWtfNvuYeXtxq4+nialLMOi6dlM61szIZmxJ7ysd19dX5gz6fi/qbbqrVCgKByOpxCWBnAb0Z5v0HfPxLWHkV3P6eLF08UwV8YNsMB1bDgfcjs50UKojPhrQpkeV9CXlgSojsaKjWDfeIvxyFIlKYSxwT+QiHwdcL7RXQuD0yc63iA3hHDTkLoOhGKLg00j/sFDvXY4LEg3PH/Iz5lLWX8ejOR1mQsYDRcaOHe0hCnFHO9XgAEhO+DOnJdZgvs260pt3Jmr3NlNbZeWdXE9fPyuShqyZJoesMEAqF2WHrYt2+VtaVt3CgpRelArITTeQmGRmdaCIzwYjZoMGkVY/4otYXEQ6H2VbWwvpdrfjMKhqcXjz+EKOTTFwzfRTXz8oiwXTylt3IdsGDnYqrNKf7OT4b+6/ASXhcpS9FeiFtehSUKrj1bbAWnvyBii+utw0OvAf734eDH0UauuvjIsv8EsZAYl5kppYuduQXtb6g8j1N2Mp2MyO5mkTfgcjyRo0B8i+CGXdC7oJIoewkkHgw2Km6ai8x4cs7WT25si2Hmkv3+Hr4f5/+PzJjM/nXxf9Ce5y7oQpxOhUX17N2bS1Ll2af8t3/JCYMJjnCiZOZXKfAlVMzCIbDvPBZHS5fkEe+VnROFU3OFKFQmO22Lt4tbeLd3U209XiJ0anJt8ZwZVE6edYYrLF6YvVqNOdwDzWFQkFleRdtu7uZPCWJuy+fwLbabkrru3l4zQEeWXOACwqs3D4/lzmjE7500Va2Cx4sO9ty0p8HeY7PIMZEuOBH8NH/wTMXw02vR5aMidOvtw3K34I9r0V6awHE50D2gkOzmvRxkd0Oz+GLUyVl3ZSU6uicspDrv3YbtB+Amk1QsxH2vhlZtjn9dph+65dezijnqsFORTwAeZ7PVLHaWG4quIm/7vorv9n2G34454fDPSQhjrB2bS1r19oATnmRS85Vg0mOcOKkyHWKXDNtFHq1ijdKGnD7gjx2w1Q0Z3Afp7NFf2HrndImVu1qoq3Xi8WgoTA1lmXjUxiTHEOcUYNJpz5tTeJHgqIpydHP8SYdF45PYUmBlUa7mw0V7Wyr7eKDvS1kJRi5ZW42N8zOwqg9sdPHmbJd8OENLU/nlaov6otedTlTnmPRx5wGS34aKXQ9dxnc8DJkzxvuUZ0b+gtbu1+NLEkESMyP9JyyFkBsWqSwJTMooqYUJR/6rNJCysTIh88FdZ9CbTF8+HP4+CEYtwIW/DekTzmh+zpTzlUjKR6AxISzycTkiSwetZiX97/MzNSZLMtZNtxDEmKQpUuzB30+lc6Uc9VIigkSD4YmRa5T6JLJaeg0Sl7eVse1T27h6dtmEmeUN9In29EKWwWpsSyfmEK+NZY4o+aEizLngsLCJAoLkwZ9TalUMCreyPWzspifGcf6PW3YPF4eWlXOH9ZWcO2MUdy1eAzW2C+2E9epulL9RR3e0PJ0Xqn6or7oVZcz5TkWA8QkDyh0XQmXPwpTrh3uUZ2dhixs5UHBZZA6CczpoLdElpCKI4wvTGL8YfEAiPTkGnM+jF5Ex8H9BPevJbHyI1R734DM2bDgv2Ds8i80C+5MOVeNpHgAEhPONlflX0W1o5qfbvophQmFZJmzhntIQkTNnz/qmOfBk7n87Uw5V42kmCDxYGiS9Z9iSwtTsOjVPLu5lsse3chz35hFblLMcA9rxOvvsfV2aRPv7W6itSdS2BqXGsuyiSmMS4kl3qhFrzk3k5jWNic2Ww9ZWbFYk01f/vYaXdDi5cJx8cTPymLdvhZWfmrjH5trWT4xlf9ckk/eaWhUfzId3tDydF6p+qIOv+oiPQtGKGM8XPgz2PAwvH4XdFTC+d8/p5fGnTSfV9iyjIpsBqA4N5emt7YOiAnWLxkTFEqqu+LZ17mE8fkrmBa7B6o/gReug4TRkQ0Xpt4EKs3JGfxpMJLiAQyOCRIPRj6lQskdE+/gV1t/xX99/F88v+J5dOdYL0Bx+pzsc8bZuPxtJMUEyRGGJo3nD3MyGs8PVcSqauvl8Y+rCIbD/PG6qVxQYD1ZQz5n9Be23iltYtVhha2x1hjGpcaSYNSiO8sLW8dTwNq2vZl9+zopKEhgxvTUU3KfrQ4Pa/e1sLWmi15vgKWFKTy4bNyIK3Z9WcMRTFatOsjmzY3MnZvOihXDvyPT2dhkGE5S4/mAJ9LAfKBQAD77W6QwMP4KuPKJ07Jz3VknWth6DWx9PbYS8yC58JwqbB1PAWvbtgExYcZJiAmH32fAD3VboHIttO+H2HQ479sw7dYRVew6GU53TDjT4gGcnTHhVDSeP9ze9r08UfYEF+dezK/P+/WXGa44Rx3P+edknzOkqHJ0kiNI4/mz3pjkGL53cQF/+biKb/xjK3cuHM2DywtQSUP6Y4oWtsoiSxH7C1sFqbFcND7lnClsDWSz9bBvX+eg/x9e8MrKio1+Li9vp6S0jaIpySQmGU5ohpc12XTE8VaznhtmZXPppHTWlDezsbKDC/+w/pwrdp2uK1gDA+XR1tPLG40RQqmGOfdEls3tegWemA/X/gtSxg/3yM58vW2w7+3IjK3+5vGJ+ef0jK2jxgTr0DFhb3k7pSVtZGeb0WpVJzS7y2o1Df4ZtQZyF0L2fGguhfK34d1vw/rfn3PFrtMREyQenJ3GJ41nxegVvHvwXcbGj+Ubk74x3EMSI8zA80///w8/Bww8ZwzsNTVqVOwJnTPOleVvJ0JyhOEjRa6TrLrGzpa1dRRNST6ix1FijI7/XV7AC1tt/G39QbZWd/LnG6aREW8YptGemfoLW++WNfHugMJWYV9ha2xKLAmmc3cp4sBkZWByM7AINbAotW6djdKSNgDy8+OHPH6gY80UG1gwA6L/vmZaJheNT+WDPS1srGrnwj+s56LxKfzwkvFkJgyeoXK2nWRPVwPHgYFyxYrRQz53xxtMz7bfwZnqQEUn+3Y3kVekHLrH0fgrIjOPtjwOf1sMF/0/mHmHLF883LEKWykTIW4U6CygPHcKWwMdNSYMKEINLEqtW2ejpLSNhsZeUlNMRxx7uGPNFOsvmMXF6eju9jKlKJnxhVMhbQo07YLyNw8Vuy74AUy5YdDv6Ww8F52OmCDxYGSqrulm014XRUVH5gj9lmUvo7G3kUd3Pspoy2jOzzr/NI9SjGQDzz9HOwcMLEo9++zuaK+pmTPTPveccazzxcCCGXBCjdrPtvOR5AjDR4pcJ1nFgS6qyyJvMIcKYBq1klvm5jA2JZYXt9ax9JFPeHB5AbfOzUZxDic2wVCY7bVdrNp1aMZWnEFDQVqksJVnjSHBpJXm8Qw9q6o/yRmqQFU0JZm2NhcVFZ1UVHQSF6fHZDz681i8sYHPtjYza2YqV101dtD3SkrbogUzIPrvwsIkYvUarpk+iosmpPDB3mbWH2jn/N9/zPUzs7h2fBq2SvuQQXekn0xP1xWs4wmUx1qXv21bc3SnGINBc9b1TzgT7drdTsXeDpzEDV3kAkiZAMsegi1/gVXfgb1vwJV/jRRuzmW9rZHZQHtej+zmB5A0tm9XxPFgSY/siijN44+cVUUkJhytODWlKJmKik6qD3ajVEJqmpHWVueQha695e2sWlWNSqlg4cJRRxxTWtJGSWkbSiWEQpGvjS9MisykS58CaZOgqSzye3zzPtj0KM1FP2CHfeJRkzCJCZ/vROIBDB0TcnLMKPsKjyPx+R5JDhzo4mBp5Lk+WpFLoVBwS+EtPOx6mO9t/B4rL15Jfnz+6RymGMGGOv8cq1fT0qXZ2GwOtm5tYuvWJlJSTFgsR98k7ZVX9vP221VcdtkYvvOdWYO+N7A5e+T/x9eofeC4JEc4MZIjHEkqBidRQ2MPWq2KvPy46EyXo5kzOpGxKTGs3GLjp2/t4e3SBn59zWTyrOfGEi+AQDDEZzWdrNrVxPu7m2nv9RFnPDRja4w1hgSjFpNOXqYwdAHr8ILX4TO7HN2dODt309Wwg10llfjcXeh1Xg5sVqJVB7jq5jtZeOElABzYU8qvHryPbrsXn1+NbbuZHWtTMMXEYo5LYM7iCymaEllONXlSIuFwJKM5/LUeq9dwzbRMLhiXwptlDby41cYrW+soCGu4PRSiaFLk+P6T7NnYsPJUOJ5AefgxA5/bgTvFPPTQQuDs3z54ONXW2tHr1OTkmJlcdOx4gN4Mix6EijWw+xV4bGakIf2ce8+tIo6j8VBhy7YlMqMtaVxfYasAzBlgiIss9xRDFrEGFrz6+3D1fx1g264D1DS0smH3Z9Q1tfPhXh8xHytRqIOkpVh48y8/jt7+LQ/+jrUbd+HzhokxGXh7ZwKJ8bHEmU2kJSfw43tvYErfa9sUo8LZG4z+P0qhhPQiSJ0c2RBgz2ukrrmZgvAkbK4fMGHmPGDwuUhiwuc7kXgAQ8cEpzOFb35zisSDU6yxsRetTkVenoWiz4kJapWauybfxW+3/5a7197N8yueJ8WUcppGKkaioYpBx3pPmJ1toa2tjd7ePbS3r2fDhj34fF3ExgYoK9Oj1wf43ve+x4oVKwAoLi7mG9/4Bq2tbtxuBQcPxrNhQxaxsbEkJydz5ZVXsnTpGADOP38U/S2/j6dR+8BxHV6IkXhwfCRHOJK8UzyJKiq66ehwkWExkpj0+UsQE0w6Hrggj+LKdt4oaWDZIxv42sxR/O/yQizGs7N3hT8YYnNVR6SwtaeZbpefBJOWwtRYLp4YQ26SkQSTDpNWdU7PbBvK0ZYmBgMBbAcr2LblM3Z+WsLYKYvIyroQgPKyHfzwnpsG3Y4b6GqI/HvuBcuixTN3dzd11ZXR41p7oLX+0M/FJyVz/Z3nUViYRG3VAe6+eglpWTns35THqJwxjB43gaT0fDyBBHJyLFiTTdw2N5cLC1J58dNaSlt7+cXOan6WZWTFxbnR3+/pmsp7Lhr43A7cKUb6J5x6e/Z00NLaS5JFQ1LicSxJVyhg7EWQMRW2Pg0f/BC2PwPLfwP5S0/9gIdLd12kefye16F+a6SAlVwAE6+GxHFgSQN9PKjk7crhjrY0sb3LzrbdFbz/cRk1tV08NP3W6Pe++ZNH2bm3avANNUU+xddHNs3pL55V1TbT1BGZrdvRC7UtddEfMRn1/OyBmxhfmMT4wiSufuD/2Lh9DwWjRzEudxTjx2QxOn0UcYYkCsdZI+PLmQ+Zs+jZ+TajDq4md/f1KJRfI3v5r8A4dL8YcXIdLSacCc2Jz3YVBzrpbHOTZkoi8ThigkVv4d4p9/LHHX/kzg/u5J8r/olZd3Y08Rcn39GKQYFAgL179/L++5+wbt1nzJ69ggkTJgGwfv16vvKVrwy6HY8H2voWbNTW1kaLZ52dbezfvz96XH19LfX1JdH/5+Tk8K1vLWL+/FFs376duXPnkp+fT2npON59t4ApU6aQljaOnp5YJk5MOmqPsMPfn0o8OHXO9hxBdlc8zJfZAeCldzZz81eXkZ47m4UXreDam69EbzjUj+hYvY563H7eLGtgU2UnWrWS2+flcOei0Zj1I7/Y1eX08fGBVtbtbeXjA230egMkxWgpSI1lTHIMuYkm4oxaTLpzu7D1ebsm9n8/OUmB7cA2dm//lP27S6jatwuP2x097qKv3Md3f/YjAHZ8tpOHf/QAKWlppI3KIMmahjkuHmNMDJ1dYRweKynp2ThdAXKyNFiMHYRCIXbtaqC6soXEBAXJSUrsnR3MWXQhE6fPBqB43Xv89D9uH/JxaHQmLr3hv7n3O/dFvxYOh9nX3MNrOxqo7nAyKzeBh66aeMIzFwdesYKhG2ue607nFO+zcSct+HKPq7bWzo2XLqS5vZ2LF83ngdsuYmzuoSn7x9wRLxyG+m2RpvR2G2TNgyU/gux5J+NhDa9QCBp3wIH3Yf8qaNkTKWxZCyOztpILIDYlshTxHGlUfjSft2ti//d7fB3s2LefT8v2sXVXBTUNLdFjtBoNG556nFmz0mltdfLNHz9KY3sL2RnJZKQkkpoUjyXWhDnGiKM7SJw6A51ehcsZQGV0MirLgNfnZ2dpI5UH27HEq4mNUxAIhPjZfxy6gDLh0rvZW2k7YowKFORlZbDv/SeiS+IA8Dphz2tQtS7ye170v5HNGE5w5qLEhGM73Ut+zsaY8GUf0z/eeJVv3ngzGXmTWHzJeVx3+4Vo9YeWhR3t772iq4LHSx+nIKGAZ5Y/g06lOymPR4wsn/c33P/9zEw1+/Z9ysaNG9m6dSslJSW4B+QId9zxA/72t/8D4J13PuGBB+4iOzuTMWOySE9PJykpidjYWBob/bS1xZOZmYPd7mPiRBPp6b2EQiE++qiSsrI6MjI0ZGfraGtr45prrmHWrMjyxeeff54bb7xxyMeh18dw330/43e/++9T8CwNfi4kHgztXIkHcmn0JNpdsh6/p4fa8rXUlq/llb/+gBkLzmf+BcuZvehCbDbvUZt+xxo03DQ7h8VjrbxV2sjjn1TxVHE1N87O4s6Fo7Ga9cPxkE5IOBymorWXdeWtrC1vYaeti1AYMuMNzMiOJzfJRE6ikTijFqPM2Io2c9frVDhdAWDw68PjduF2OrEmR6a3b17/GX/+8eAddwxGEzn5E0lIzWPG/LnRr4dUaSy/5cnItvHTB28b/8KL5dRUtKHWeygqsuLzBdldEaBoSjIXXTZlyIJbf6FtzMQF/GvNNmzVlWxav5P9e/bidtTQbNuP3+skOzct+jOlWzfx94f/jykz53HRrPl0Zeazen87y/+wgZvmZPM/y8cN6rU2sHHl0dbxH757zNGmMn/ebY30tf7HIlO8h1d6upGyg5X0uNz8+aV/8+eX/s34vCyuWjqXK5fMJeyJZf/+LmCIpt8KBWTOhLQiqFgNlR/AMxfDqJlw3oOQt2RkNVn3OODgx5HC1oH3wdUB2phIQWvS1yB5HMSkyFLEPv3N3PuLTXDoNRIOh6lpaCF3VGr0a1fe/zCby3YPuo2xORlMyMshLSGVtPTIxTabrYevLLg8Eg9mDI4HAC+8UE5JaRv5eXEkJBro7NCRWJjK+BlJTM4bO2QC3p+Yv/Pn/6PL2c2qdbvZXnaQLncHFTYbjW0dGPSaQQWuqx/4P3QaDYtnTWJ50X+T3bwKPvgB7HwOLv3DEcXckxUTJB5IPBhOu3ZsxudyU132GdVln/HCH//M7MWzWbB8AXMumIPN1jvkzMz8+HxuHX8rT+95mvvX3c9flvwFzTl+AeBc0n/eMpk02O0+YPDfcG9vLy6Xi+xsKwCvvLKa73732kG3YTabmTBhCikp+Vx00fzo15XKTG666e/MnZvO8otz6PH10OnppMvTxZbnNlHi3IbNX0LWJD1r/E5aSrtJTFOjmO4nNNZJh0lFj05JOBzm0Y5H8bzux+MKYzEZuflfN+Osd1K3p42Wyg48Ld102FrxeHpRZznY2rwVi85C6YZSHvnVIyxevJglS5awcOFCtNqj9wSTHOHLO1figbybPIluveNu3OZMtn3wHts2rsFpb6F47SqK165CqVLxg0f+RUFBQbRJeL9NmxvYvKmRufPSmTc3g3sWjaG208VbOxp4emMNT22s5ryxydw+L4cF+cmolGdeUaih201xZTubKtspruqgrceLTq0kzxrDiomp5CabSDUbsBg05+yuiEfT38w9Lz+OoiIrWVmxtLc28+nHa9j88Wp2btnIBZdezbd//jA2Ww92VxJZeZOZMmMahVOmM3bCFDJz8wYlEf2vqfETEikoSBj0musvVGVnm3E6/SQm6MnKih20C+P11xUOOZts4PKYGdNHYU0fRdbYmdHkJyFOS03lftJGZUV/ZueWDewr28G+sh289NSf0eoMTJixgOT8WTy7tpO3yxr58aXjuaIoAxjcuPJoAWyo6ctDTWX+vNs6m0/0MsV7eGk0Gva98Xv+9uKHvPpxGeW1VeyttLG30sb/e+IlLpw3nYfuve+IeLC3vJ1NxY0kJOpZMD8Da+GlkaJW1YcE9q9F/fxXCBjTUM++HabfDjHWYXqEx+D3QP1nUL0eqj6Cxp0QDoI5PdKbKWF05MOYCDrzyCrYnQb9zdzz8yIxIS3dwEdbSnn7o09566NPqbI10fDJStJTErHZehibno9KpeLSC6Yxc1I+08bnEWeOid5ea6uT116voL7OwajM2MHxYMDskexsMw2NvYwfn0htrYOKym5MJg3jC5OGbG4Ph2JCpHCWx6jkNGzzDhXDWtq7aOu0R4/vdbp5+6NPCQSCvLjqEwDGjMrgspnj+Up6A3NalqOaeBVc8jCYIueukxUTJB5IPBhOd33rLtQ5ara8Wcq2T7bgtHfzyapP+GTVJ6g1an7+1G8pKEg9MkfY1MDmzT5mzFzGp03v88CHD/DoBY/SWO86KxNwMVj/eWvGjBQuvDCHCRMSqaur45133uGtt97io48+4s477+TRRx/tW1aYzNixk7noovOYM2cOM2bMID8/nyBB6nvq2V61nzv//BuaXE3EpLvoKWhnvb2T76/sIhgOHrpjK5CsoCaspcWvw+9R4A1De6eeNKsZTYyKgEJBwB+ZsatQKOh1eul1+vCGXRhjVATzg1iyDWh9VsKqBEb5UrHX2nlL9zLvrn4VgOYXm2nf3M7mzZv55S9/idqgIX/mWBZffB6XXnIpU3OnkmJKQalQDno+QHKEE3WuxAMpcp1EarWacUWz6WpPp0dxGZ6ealpqP8XVsY2At41Z82ZRXeNi3TobzpaP8Hu7ScmZyd4DBqoO9mB3eKmtdVA0JbK18Nz4WHTNPnwJavY2Orj1ma3EGzUsLUzh8qJ05oxORKM6/clBMBSmorWHnbZudtq62FzVQV2XGwWQEW9gXEoM549LZnSSiQSTDrNejXoYxnmmOnxZYn/j9uyMAGWbXuDPP3mbhuq9g36mpmIfcGgXxeV/fz1ahGptc7JjZ2v09srL23nh+XK6u70AfPvbh3pttLY5WbfORnOzk9RUE7k5ZpqaXdhsPdFxHN5Ivn+mWdGU5EFb1Q/1WADyCifS2uak/EAzWVmxXPq1W8jIyqXks2I2f7SOHns7O4vXQPEaAFL+++9860Ufr2yr5zdfmRxtUnmsZpUDdwG55ppxRw0+n3dbA0/0x7piczKu5pzIbXyZ+z1b1tSPZOnWBKZmFuKanMcDXzHx6e7drPtsGw1dNqaPz2fGjFT2lrfz5jv7eOez91m+cDqtNXoabT50ehUHD9pZsSI3sltdwSWU2ifhqtjMJPYR98lv4ONfQcZ0mHgNjL8iUkQaDq7OyPLKhm1QuwnqPoOgF3SxkJgHBZdGilpxmaC3gMYYma0mgCOXKU0pSiYQDOKkhV8/9y6rN26nx+WKHq/VqCnZd5D0lESysmK5/6bLBs2wam11sq3v/Gu1mthY3MA771ShVChITjYOOm5gPEi2GkhNMaHVqqIN5I9oJM+hmWZTigbHhKGWW6UkxaMIadm2LTKe+Hgda59+iI8/K2Pt5hI27dhLVX0Df6hv4A/AdfNyeEH7fqQ4etEvYNotn3sef/XV/dF4MLDh8uEkHkg8GE5qtZrCWYV0tWfjNs3B3dVIU9VunC0HIOhixrwJVFbZWbfORlfNVhRhH6mjC9lTCVVVDjLtZnKnnscm1vMfH/4HF3v/i62ftgJnVwJ+rjv877z/fDVhgpJPPnmO//iPf1NVtWfQz+zZs6fvmES8YTeLrvsLLkMr1fZqfl3xMAc/q6Y73BotYoVNClDqiPWYyUm1kq7Nw6Q2EfZqqKl00dMJVnM8KfEWOtoC5I1JICZBy57dnUzOT2bc2CQUCgVKlOzf30FZWTuTpySTOE6Pra6HzFExJCYbaGtzYqtzkJFjIiFRTzAcxD/HT31bB7VN7ZgSQvR+o4N9k/ZRvaOauq31+BxeytfvoXz9Hh7//uPk/zKf2PRY0mLSyIrNwliUSoExjkkzcgmGgqiGWOIuOcKxnSvxQIpcp0B2tpnGhl4yZ8ymZOdourqvJjM9THWNi1WrqqmpddCw4zl6umoA0BnMJKRNxaGZyjbHBCCytXB2thmFQkFWViyxFh1lDXZK6+2sKW/hle316DVKijLjWJCXxMycBArSzFgMJ3cKs9MboKK1lwPNPRxo6WFXg51dDXZcviAKBaSZ9YxKMDAzN4GcBCOJMTpi9WoMGlmGeDSHN5AvLEyioCCR2y+ZT0PtQSCyhXR2/mQSM2Zw4aWXcMGyyBLEjnY3mzY1sGkTXLg0m8QkA+vW2XA4vNHbKyltIxAMY4rRoFQq+PtTZcyfl05hYRI2Ww8Oh49QMIzD4cWabIzO9Oofy+HWrK2ltKSVtjYX111XcNTH0v//rKzYw2Z8pXHhFV/jwiu+RnNLD2++8gn7StbjaNtBT1cLP711OZ8c6ODN0kamfPU/mZMdz+M/fYBgMIZVqw4OefIeuAvINdeMO+pzPX/+qGNuXTzwRL9q1cGjXrE5GVdzTuQ2ztarSOeSwsIEWp1eEuL1LJo6A50vHa1OQV5SInvL23n9tQo+2raddeXFvPVxMQoUZCSlM9qaS1tPNmmpxkiRC8jMTcSmWoQvcwXouqG2GFr3wurvw/v/C/G5kLMARp8f2dEuPvfkzpIKhaC7Ftr2QWt5pJ9W/Tborol8XxcLcdmRmWfxORCXFSlq6WJlGeIxHN5AfnxhEp+V7+Se7z8SPSbeHMuiGUXkJI3mhivnMXNaJgDbt7ewfkM95y0cxfTpKdhsPXTbPTQ3uaK319nhIRQKo9WpUakiyxKnFCXjcgZwOHwEQ5F4kGwdEA/6xjGUtWtqKSk9MiYcTzywWk0smjWJRbMm8ZP7b2RfRTN//edHbCotY199JecvuwyWTYZtT9Pwr/v5wf3fY8UdP+fmm69m375uamvtEg++xP2K4ZedbaaxsZfM6UWUJGXQ1bWYzDQVlVX2SI5Q46D6k7dxdrcDoDfFkJg5FodyLE5HFrmLzqOY9bgTAlw9+ztn/WyMc83hf+fz549i3rwMMjMzaWiI7BqlVCqZMGE6iakTWfTVaYyarefbH3+bnY27afM1QuSlg1ltAZcRhcdIYdIsCnNGsXW9nfKtbow6AxljkqBew5S5mUzMT2HbtmZaW1oI9fpQ+DWY4+PJzNdFY8KMiblHjPfjdU2UlrbS2ebnuusK0Ci0aFU6DGoDrQ12ag540CuNmNRqbDY3WVmxhNvDuKogS5PAstmpEGn3S0NTN6+/tJHy7Tvprq/A7ezl2vnX0u3rptnezuqn1hHU+tBP07HF9jd+sVJLpimLSanjmZg4kSnWKeTH50tMEIAUuU6qhsYetm5txtHoIiZWw+jR8UyamMyqVdUoVQpKSttQqpTEmNTkTLocn30XNQe24nU7aDr4CU0HI1P3va2LyM//I1lZsdE3iFlZMDs3kRyTjgMaLT6jiiaXj7ouF39aV4kvGAIg1awnPyWGrAQjmQlG0ix6YvVqYvUaYvVqdGoVoXCYcDhMKBwpYtndfhyeAHaXjya7h/ouN/VdLhq63bT0FU8UQGKMlhSznrmjE0m16MmwGIg3RRrG6zUqlFLUOqqBs6HS0/Xs2V7CG0+vZfKkx9FqdSgUChZffAU7Nm9i3NQLuejyy9i200VpSRut3fG0tUdmW5WUtFJS0ooCSE42kp8fj8Phw+sNsmlTA3U2B9nZZs47bxR6nYr3V1fT0eGlurqbq64ai8moJm9MHA6HF7NZy6TJSVRWdvO3v5WRlGggLy+OSZOT6Wh3R8cLEAa6uz2sfG4vSpWChQtHsX17Cy+/tB+vN4DPF+kb05/IHD7jq19Xp5faRjMB4zKWXn87V16ehUatZun4FJRdHn77yCu8s7aLd57+DQUTZjNuzIXccsu1ZGdbolcsLBYtOTkWnE5/dDeQE3H4FZBjTd89kam9A2cXXHPNuBO6jXNlSvHZqLbWTldpKyYdmEwa2lpdjMmL56qrxlJTbSfgDVFa0obbHSTZksSV513AgYYq9lbVUt/eQH17A7CR93e9SUzyd8lIyMRo6gvZCiXEZdLqu4w67wJyRveQ6N4HXVWRnlc7V0aOU+shaWxkNlV/0cmYCHpzZJmgLhZQQDgU+Qj6wGM/9NHbAvb6SGHLXgfdNvD3NbDVGCA2LTI7a9RMsGSBOSVym9qYc75p/OcZOBsqpHbx0a6P6QpmM2PGJQBcuXQuP/nzP7lw7gzmTihixflT+PjjBkpK26jc30v2qMisqXXrbNjqHEAkJuzb10k4HMZmcxAOh8nKimXe/HS67V56e7ysWWvD5fRTXt7BddcXMH16Cj5fkNpaB+npkcLWe+8dZN06G3n5cVx9VT7tHe7oWKOFr3AkJjy3ci8qZSQmvPHmAfbs7mDCxESuvGLs58aD1lYn9TYvSdoc5o9O5YGv3shXrhwLOi2c/0OeXPcL/rFlC//YcifJ5v8kb8Jl3HLL7dx990VA5G/so4/qiI/XMX16ypeKB/231x8TJB6Ik62xsZet25rorjYSE9OXI0zqyxGUCkpK2lAqlcTEqMibsRhPZzU15XvxOHtp2LeDhn07QKHA3zSb2d9axmedH+Ay/4zAru8DDHqfJEsYR5aBvaHy82MpLi7j8ccf4aKLXkKtVqNQKPjatV/jw42fkDptDEkLTexzH6BdvZVX2Yq2VEcsCQTtRnw1Ywj1mJg5Lo/87FT2HrDjdyvw2FR0tJmZmzOGdIUDvV7F++9HcgTbQRdXXRXGZFKTlzcgR5iUxPbtLbz22gGKipIZPTqerKxYOjrclJS0UdQ30zfcFw9WrtyLUjkgR3j5i+UIju4Aja1mlHHzuHTFV7jyihwMxshOpJs31fHWG2/i87hR/FNB+sRs4qal4zkvyKfhT3mn6h1ChFArNMQsTCd7dCrjJuhodjaTajqyB+XnkRxh5JMi10lUUdHNvv2dKHqC5OXHRf94i4qsOBxeep1+YmM1ZGRYqbNdyNx5tzJrhpXXX1nD5o/W0WrbRkv9ftRqQ/RE0N3p4slf3UXW6ELSc4uwu9OIS0xm8qRkCuJ0nD81Aa1JS22nk8ZuDxV1dnZVdrJL2407GMIbCB33+FUKBRaDGotRi9mgJt8aw6ycBJJjdVhjdcTqNRg0Kgxa1bAskxzJSkrb+HRjGVvXbaF+/1q6+rZl/+dTr3LpV65gV1k7owq/xorr7o8u+wuEIpdiiqYkY7P1sGFDA11dbnJyzOh1avQ6FT5fELNZS1tbgP37O7HVOpg+I5UlSyI9sVatqiYYCNLW6o72TbHE6WhqdpKZZcaabGLlc3vZu7cDvU5FXV0PWz5twusN0tvrByIzxpKTjbS1uaipcZCRHkNWVixPPF5CR4cHgJ07Wrn00jEA0VlhQ/X0Kilto6fXT2yMhqIpyRiMh44Zmx3Lsivv4LPi92ir2c2+3VvYt3sLH3zwCFdeeQ2zZ19Je3sSarUCpVLBN7855Utte95/BaS4uIGaGns00AzlRKb2Hn4l6Vi3cbQ3pufKlOKz0Z49HTgrutCpAjgcRsxmHZMnRQoEDoePzg43cXE6Ys0a8rNGsXz5QubNy6ChpZ2//vMj3t+4nb01FXT39OK0q9jX2onHE+D9LcU0dNuYkJuHLhRPbloGRVNTibPMJWvsUqxxQE8TdFbTUXsQT3MDCfbPMIQ/jBSu+AIbKmuMYEiINIQ3JkL8aDAlR3Y/NCVHvq81RoppCokJX8S2bU38e3Ux/++5cvZUVwBQWJbDtRcvpmxXOxDmsxceIyXlUG+tKUW+vs/JbCxuZOtnTSQk6NFolUwtSsZW14PHE8Dl8tPY2Etnlwe1WsmSJVnccvN4nlu5F2dvNz5fgG67F5czwIwZqWzb1kwwGI42uV+/oZ7q6m46uzyYjBo+/ayJYCDyuhlfmMTSCwfHhPSMGMrKWikt7QBgX3knWQ8cSmKO1c9r544W3O4A6RkxTJuWil7X13BYoWDuhZdzZRt8vHUbbQ4nbZtfZPPmF/nDH4q45ZZbKShYyurV1YTDfOl4AEPHhKHOvxIPxImorOhi/75OQp1h8vKGyBF6+3OEFOrqTMydeyUzZ1h57YUNbFqzhZbqfbTU1aHW6ggfzGXB6MvZ2PE2t/56IZMzljJu9FyamhKwWq2cf34WVuuRr6HjadotTr+1a2t5663NfPDBY1RUrKWtLZIjfP3HD5J5gYVP67fROrGW8OQQbcoqNIZ0ctWjcbXqKMzMQu+LZ+fWbhwdQdKVagx6DcnqeHQBEwkmaHO5+nKEHmYcniMEg7S1DcgRLDqampxkZpqxWk1s2FBPVVU3PQ4fDQ0uXC7f4BzhsHiQkRHJER4/Vo5wlJhQUtJGT0/k76CoKDla4AIYNcrIRdddQ8mGzdRXVdFQVkNDWQ1VLxuZd/ECZs2+mFa1C5euHZeqC3/+Hl7xfsor/34Yq9HKdOt05qbPZXbabNJjPr+1g+QII58UuU6i/Pw4CmoSSNSqmTQ5GWuyiW3bm2lqduLxBKiq6sZk1GCzBamv7yEYDKHVqpg4dRa546Zh7/ZwsLKeeAvk5EeWDFTs2U1X8y66mndRuullAPSmJCrzJhITn8f8JUuZs3Am9soeTIQxt/horexl/OQkLrlsNE5fEKcvgMsbxOMPEgiHUQC9PX46uzwQCNHV4WF8fjyF+Qlo1SrUKgUalRKdWinFrC/J7/OxYc27rH/taSr3bI1+XWuIQxc3j8ZWCzZbDzt2tkAY4uIjJ3SbrQeTUU1+fjyJSQYSga4uD7W1PUyfbmXevAz27eukttaBw+GjuzsSSMLhMDU1dt56q4rcHDNTipIo2dnG5ClJFBQkYDKqaWx0kpZqxGRUs217M+MnJOLxBkhKNNDe4cZm60GvU5GVZY72hyssTGLT5gb8vhBz56VjTTbh9x8qoCYkRnb/7J95CEfuIFpe3k5bm4v8/DguXJp9xNLIUaMS+M/vf5sXXlzBls17sHu20LJrDW57Cy+88A8MBiPXXPMdLBYtdrvvS1+56P/5J58sZfv2FuDY05q/qP5ZBcczu0CmHJ99JkxIpKs9HpMuSHrAEn1jt21bM1WVXbg9QbrtXlpbXXR3eXn7nSoAtFoV1604n8sXLaSj08nmnQewJiQSZ9Fhq3Ow17afctsBtuwuBUCtUpO/LpNRSRksmF7A7V+5gJZmM0bTdFaVJdDcmM+cGQl85YqcyCwsXw94neB3QsBLZJ6uAkevj4pKO129SvLGZ5CTnwFqLai0kVlZKi2odNIk/kvaf7CeJ15axTOvrsHe6wQiTXvTLJnMGD2L2loHO3e0EAbiLHpSUmKiva6MpkhMSEo0UFFRha3OweTJyfzyofPYtq2Zjz6y4fYEibNoSUkx0tLi4rPPGmlrczF+QiLz5qbjcvpoaXExfnwiRpOabduaMZrUpKaZ6LZ7aG11ct7CUfh9IfLy47DZHHR3eYiL10f7c40vTCIp0cDG4kaMRg3z5qfzl7+URB9jXJyejcUNLJgf2Uykvx/X4UmNzxfE5wsyblwCy5blHPH95YuLWL64iJX/3MXWjW9S1biD1RUe9u8v4Sc/2cO2bQdYtiwXCJ+UK9mnMiZIPBB5+fGM60wgnlQmTUqOxoOmpgE5gunIHGHyrMmMmTAeu91D5f5GEhO05OQlkJWVTeMbzZRVlrKp8t9s+uTfAJhMVvbunYLZPIZrrrmcSy6Zx0cf1QFhSkvb2LYt8to+VpGrP6l2u/3s3t0uRbFTxOv18vLLL/Paa49SVnYoR9BYtMQttPBZ8rtUNCYRsMcS4ylgcs4YxmeMpqslRLwlFp9GQdaoSLF0/aqd2Grdx8wRYECOkGtmypQkdu5sY/LkvhzB1JcjpBkx9cWH/tlaRUXJ1NX1RnIEfV+OUDQgR9jUgN8fYu7cdKxWE4HA5+QI1mPkCBcemSNkZiXy7Z9/gxdemMenG/ehdFZQXfYZ3e0dfPjqB5jNFhZedjUmk5qeXh/WDDVho5MqexW2HhvbW7fzXs17kfs2Wplmnca89HnMS59HiinliN+N5AgjnxS5TqKM9FhmzkwlN+nQldf+KzV1NgdNjRpS00x0dkSatPc6/Wzf3oLZrI1U1bNiscTpBzXxnrNgAk7HL6mv3MHunZ9hb7fhcbZzoPRj4GOysw3YsgvYsbMFe0crrdVvk5iSQ6JuOrjiyUxOQalU0trmpHhjIx2dbubPS8eEigO7uynf247bE4BOH0tnSQA7GQY2Y3e0H+SX/3MPAAqFkryJc8ksWEZuwVyqDvaSlWXGZFQzbWoKDoeX8vIOVq+uxmjUkJpqIhiMXD2fMT2VpCQ99fUOPO4A9m4vJmPkz7eu20NVlYNQKIjBaqKxsTeSuBg0WK2GyNLUELS1ufj7m1UYDCouvWQ0TleA7dtbUKkUzJmdFl2mWLypkcQEPQUFCTQ2Omls7GXS5GS0WhUpqZGmxACXXJrL229VRaYpd3kjSxmVUFXVzew56dx804RBz0dJSSuNDU6m9AXFoz1nkSWSEyiaspgm33/x/Ltr6CxdQ/Kci1m+PBelUkFxcTHf//6PuOeee5g/f/6Q/d8+b9p+/xUQt9uPy+UnEAhSXFx/0t7IXXPNuOMOiCdjyvGpboopvpjsbAvZU6wQ8AzaATErK5ap01KoqbbT0+MjO8uMgh56e/x89JENrVbF1GkpLF2STWurk8QEU7RAkJUVy4O+aymp2MfaTaVU1tXi8Xspr66mvLqaDaWfctGcWVRWOlCpFKwv24K9x0lS7kT2NiaRnW7FZIkUHjZtamDT5kbmzU1n3rwM1r5ewetvHSAQCDG3R89/zM4Zpmfu7HJ4M/b/+tWTvLd+GwDWhHguWTCfZN0YdAoTc+emY3f4GJMX1zdD18Xvfr+VFKsRhUKBSqWIxgSDXo2u71zcX6gakxdPyc4W6ut7CYXCeDwhHA4vDQ1ONmxoYO68NOLi9NTUOmhtcfKPf+ymo8PDovMyKSxMZPv2Ftpa3UwpSua66yI7QVdWdqPTq5kwPjEaDyZPiswudjn9FBVZGV+YxHkLM1hPAxazlu5uLx9/XMennzbhcQdITYvhwqXZgxre22w97N3bgaPHj1qtPCLhGfi8TZ+ehlp1DfdOvJm/VD7Pvz/8jOZwElMyAkyZMhGAr3/96xQVFXHLLbcQFxc35O9iOGPC6Y4HIDHhTJOeHsPMGWlkWw41uY7mCHUOmpoi7/s6O90oFNDbe1iOQCwWi35Qwfiy85cQdHjYUrYGx3473iYPTmcr27atAdYwc2Yqe/aMY/Xqalpa6mhtXUNa2misVj1NTU2kpERyhNpaO6+8coCGhh6+8pWx2O0+XnppPxs31tHb68dmc0iR6yQY+HcXYw3w7LvP8p1bvhP5phJip8SSMn8U6YX5eDtiGRXMYEbSGLpCIdwKBc6qAG9/1NaXIwQP5QgzUklKMlBfH5nNa7d7MfW1N6irO5Qj6PWHcgSDQUNKigEYkCP8vS9HuHQ0TuehHGHJkiwmTUqmo8ONxaIjMfGwHGFSX46QMiBHuCSXt96KXLzr7vb2LWXsyxFmp3PzzX05QuuAHKHRyZQpQ+QIA+LBoaLbQuLj7ubDVZ+y99Nirr71MjJHR5Ylbt+wnRd++wFX3HwFS6YuAcAb9NLmauNA1wFsPTa2Nm7n/Zr3Acgx5zA/fT7nZ53PNOs0NCqN5AhnASlynWRdXV46anujgav/jzIrKxazWQeEGT8+kcwsM9nZ5r4quzd63ECRPk7dzF9yGYX338627c1s2VyNr7eGOFMzDdV7mbdoETqjGp1ORXd7JdW73qR6F2xbC38EVGoNloQUYiwpqMwX4FePB2DRAgvN1ZvpavETRkNPp4+muiQ0Oh1arRa90YRWqzvNz97INLDflirUwIerNxOTch72bi+WuGRmL16BxpCOMmYu/rCFujY3vYEuOjq81NX1UFHRxdQiK2azluLiBhqbnJiMGgiD3x+ks9ONzxckc5QZo1FDYoKepmYnKpWC/fs7OXCgi2AghFanIj8/nu3bW/D7wth9PhSKyNXy+roeykrb6Ojw9AW+yIYGFRVdVFZ009XpwRKnZ8b01Ghw2ba9OTrDLDLbA9JSjZFdtNqcjB4dzz33TmXv3g5sNgcNjb24XH56enzYbI7o89PfdDgxwYCpSHPE7o0Au8ra2LGjlWnTrCxZkhMdQyEwq+BG/vXpQl6s6mLPY8X86foiHnvsMV544QWef/55Jk6cyD333MNNN92E2WyO3ubxXvm45ppx7N7dztq1NtaurR2WN3L949uzp2PQ/7+Ijz6qY/XqapYty+W2205+U0zxxbW1u2iq6yB1TCQh6T/P9xew+pelzZiRSm2tg0AgRFOzEwgfURzp7+E0syifW6+dy7ZtzewtbyekclHX1oCttR6lCkaPjqfXGaSpsZfP9m+npbuV9XvX870/R8ZkiYkhOz0ZdcjMhMSFdHS4ycuLo3jnLuo6W1ChobFDyYHqevQ6LXqdFp1WgyX2yKUF4kgDf6+jx8TwxPOrGRWXS7c9gzhLD7devgyVUsnc8TNRuhNxOQO0tDjRaj28/PJ+lEoFU6ZYue66cTy3ci87tregUivIz4sjNzcOiBQotToV8+ZlkJCojy4zaW11UlHZjQLQ6VRYU0yAjv37ugiGYOvWFkaNiqG3x09FRRdud5BQX/+uZctyqKjowuHwUlrSFk2e5s3LYN68jOhMsf4ZZkaTGpVKgdGkprU1Eg8WL86ivcPNpuJGbDYHFZXdBPwhjCbNoPc3/TEhIdFAkUlzxA6O/bs+9m+oMmNG6qFeYJO+x7enbYIdz8ET8+CCH7E7djHPPPMMAP/7v//L9ddfzz333MOMGTMG3e5IiQn9yVVtrf2om68cD4kJZ56ubjdtFc2fnyNkHmeOUNLFxZdcwdfvv4Y/fvo4LY56rHsmMyd2HJWVu7niiosIhbQYjWra2w+wZ88b7NkDa9c+zL33glarJTExlbi4VEKhxTidkcbi112XRk3NZtraegiF1HR3qzl48CB6vR6dTkdsbCxarfZ0P30jUv8S0cVL0nmz+BXWl31E/MUqmoO1hMNhEqYnkpCdQlz+OFS+VByNWvy9sXS3BukGWve0MnWqFYtZS/HGRpqanJhMGiCM3x+isbGHujoHM2akkpxsRK9X0dR0WI7QNyswPz+eHTta8PvD+P0+lMq+HKG+h9LSNjo7h8gRKrvp6vJgseiZMWNAjrCtmR07WvoeZV+OkGaM7rQ7enQ89w7MERo+J0dINGAyaaJFrIF27Ro6RwC44RsXwjcuHHT86/94neIPivng1Q/Im5DHZTdexoVXXUimOZNMc2TTls1baymtr0ab2YFP08YbVW/wr33/QqfSMdU6lcWjFrMoc9GwxwOQHOFESZHrJGtudtJp643+/9AOc6lY4iJ9lULBECtW5FJYmEReXhy7ytrZvq2ZF1/cR1KigaUXZkd3ySstiazLLixM6jvhxOHQFjJ5+vl8/YFIxXrb9ma83iAmcwoT5nwVVaiFlvqDtLU0EQz46Wytp7O1nokLF+NWqNDpVLQ1lLNj7f9Fx/lxJXz88qHHYYo185eXPyA9K+fUP2kj3I6dzXzy3ju888waWuv3oNHq+OoDRTgcaiqrupmw8LsEAiFKdrYSxofRoKapyUlXpwelUoHbHaS93Y3RGNkNkTC43H6qqroIBML4/cHIjI9sC0VF1uh0X5NRzYfrbDidfnRaBTExBnp7/cyZm8b771UTCIZRKECtVuJ0+VEqFcTF6cgfG091jZ30dBNLlmQRCISoqOhi+7Zm7N0eJk2OBBh7t5e8MZEZBRCmqdlFQUEC1mQTr79ewWdbm5g1M407vjE5WuhTqaDO1svceemUl7dTvKkRnU5FepqJ9PSY6FWfxCTDYcsZFaCAyspuSkq2MndeOvPmRmacxOg03HXeGIpGdfDStjqW/2ED1y65jq8bDLzwwgvs3r2b++67j//5n//hxhtv5J577qGoqIgJExIpLm7gySdLcbv9R71iUltrx2TSMmNGylG3Ef48J+MqyJcJMsXF9bzxRkVfj4Qjey5Jc8rh0dDQS3WVHZ8mMj1/4A5zVquJOEskJgRDkZiQlGigbFc7DoeXZ57dTWuri/nzM7j6qrGUlrRRUhqJB+P74gFAt92DOhTDxfPnMmNGJCbEWSK9jopGT8EZ6MTu7sTW3Iq9x4m9t5eyA71kp6ZhztWi06mw2Xp4a/N7VNZFdm76sAp+/dLgx/Jft17Jw9/75ul42kY0m62HtR+Xs3Hvp5RUleL0eLhiwRJGpV1GVWU3ZnMCv/7W/axdU0ttmwOLWYdao6Sl1YXbHUStglqbndWra2hrcxEmhMsZ4uBBOyiUuN1+Ojs8JCToueaasQM2p4nlxRf34XFH+qSoNQrMsRrOPz+Ll737sNkcqNUKXE4/CmWkUXBsrAazWUd+fhzr1tnIzjaj1ao4eLCLsl3taLWRxCUrKxajSU18vJ6ERH30Pvv7eNmcg1/Hd9wxmb3l7bz9dhXOXj/Ll+dGC7WbiiMxwRSjwWzWkF4Qj8sZoLXVGZ2d0r8LsNmsi85m659xCED2PLBOgK1/gw9+SHbydB773f/x+LMvsnv3bp5++mmefvppZsyYwd13383111+P0Wg8rpjQfy6fODGSRI3EmNCfVPt8QcJhkJhw5mhuctFeeWgZVzRHmJGKpS8ehEKH5Qi72tnWnyMkGVjaNyuypKSN0tL+HKGQO8fdy9+3P0fbrN1UanQ8/bOnMevMrFp1EJcrgMWSwZw516LVtlNTU0F9fT0+n4+mJhtNTTamTDkPvV5PRkYM1dWlrF//i+g4X3st8tEvPj6esrIyRo2S2V3HUtdTx+ObnmHDrrf4zT/KcVW7UOqVnLdgOeMMc/E0xTDteisKn5ZdO7sJhsGgUNBc76Gr68gcQaWKnJNdLj9VVd0EAmF6eyNL0K+/vpDrry+MXiAzmdR8+GEkR9D25QhOp585c9J4771qggNzBKcflaovR8iPp7r6yBxh27Zm7HYPkyb15Qh2L3l5A3KEpr4cwdqXI3zWxKxZadxxR1+OUNKXI9T1MnduX47QFw/S0w/LERINh83ujTzuioq+HGFgPBjCDffdgCnWxEfvfETlnkoe+f4j/PWhv3Lh1Rdy+U2XM7pgNGOyk6jc14vtYx2LF8/mxtkWqrqr2N+1n1pHLb/Z9ht+tfVXpBsyibdOIH/heC5YknlCrwPJEYaHFLlOstRUE1ajdtAVl4G7SISCIRoaeykpbaOwMAlrsglLXA+7drXR0elFq1FGj8/ONlNe3kGdzUF5eTuFhUksWZJ1xBWdrKxYpk1NgalWJk2+HGuyidY2J9XVXQQ8XTTW1+HuaaWmMQl3X9Fdq9NTMGkqDns3Pq8Hl9ONz+shGPCRkVvI//zqrySnfn5jvnNRa5uTXWXt+H1uasvX8MFrT+PoagJArdYwdvL51Ns6UGtj6e3x0dnpxt7tpb3DQ0KCjukzU9m3r4PeXj8J8TqsKSYaG3ppbXVh0KvQ6VWEQiG6u73ExenwesOU7+3AaFAzfZo1WuBav76enh4vKpWCpCQjGaNiUKoUTJ5spbfXT0lJK/FxkZ0bzRYtcXF64uP17NndRvneDiorupgwMYnS0ja6u7x0drhxOHxY4vTYuz2Drpq0tjmBduzdHlrbnHR0urHbvXR0RnZa61+TP9ALL5azc2cLZrOOwsJEnK5AdGaYJU4/qMg1aXISljgdq1dXU1nZjccbQKtVDVq6O3t0IuPSYvnLBxU8VxEiM/1aVn/8PXZuWcUTTzxBeXk5Tz75JOvWrePAgQNkZ1uoqbGzfXsLJpPmqEWuPXs6sNu9XHhhzglfoTkZV0G+TJBZu7aWhoZexo6N5/zzs474vjSnHB4ZGTEoQ15Sh4gH/f8OhkI0NvRSWtLG9dcXRgtUBw924/OG6Oxr3DqlKBmn04/d4eXvfy9j3vx0ZsxIpbXVSZzlyJgwdVoKU6ddxeS+N6Q2Ww9BfBy0tRBQuNi5oxVnWxCDQU1WVixTCnPQ6dX0Ot30OD14PD78wQDBYJA///ABbrh84Wl61kae/tlblXU2/v3hWj7cuo1wpLpAdloq8aYEOjs8eL0BKqtc2OocVBzoBkWYoilWcnMtfPxxHQqFj4QEPVarkS1bGmlpjZxfdToVwVCImuouwmFwOgOk9s2q7dfe4UajURIGtBoVGrUKpUqJVqti9qx0ggGIidWQnGwgEAyRkR7DxEnJtLa6+PDDeoKhEDnZZrKyzBQXN9LbG2ly7/NFHke33UNnl4ecXHM0+ei2e+m2e0hPjxn0Oh5fmBT9GKi0pC0aEyZPTqbZ6aKt1R2dNdZ/uwPfMz23ci97drfj9QyICVYTGCyw8Ntw8BMM21dye2Avo67/T3xji3jjjX/yyiuvsG3bNu644w5MJhPXXXfdccWE/nP53Lnp/OQn80/4NTGcMWHt2lrWrrUxY0YKt9wyYcifl5gwPFLTjCSp446eI4RCNDT0UlLSlyNYTVgsPeze3UZHhxetdogcoe5QjnD3zK/zfsU6SvyfcMWbV/Dr837NhAnj+nrX5XD++d+MzhIsK2vB5+ukqqqGnTv3U1GRiFqtJjfXglZrYubMmXR2duLxeOjpceF2ewgEvIwfP42nn16J1Wod6iGe01x+F++Wfcxbu9ZR6d1Ozfr9dKzuwN8Rufig0qgYO2Mq7ByPOScbb6ubFl8Qu72HjnYvCQk6Zg7MERJ0WK0mGvpyBL0+MlGhP0fQaFR4vSG6u334fMFBBa5PPjmUIyQnGyPvR5SH5QjxOkCBZWCOsKeNvXs7qKzsYsKESI7Q1eWls9NNT48Pi0WP3X5YjtDalyP09XXs6OjLETqOkSO8cFiO4AxEZ4ZZLPpBRa5Jk5KwWAbkCIfHgwHKy9vZtD1AwXnXcO29t7Pt4/W8/c+3qa+u583n3qTs0zKe+uAprFYTra0uKiu70evVzJ8/iiJrEUXWIvwhP+2udnZ37GZ77R726T8kOO59qhqeZcHGBSzLWcactDloVcc3m1FyhOEhRa6TLD5eR27+4BfgwEbcK1bkUrypEb1ORWubE2typM/K7Dnp2GyO6BXVoimR9c1+f4gDB7pYuXIvN988PloYG8iabGLJksFf21XWzubNjaSmmbj88kXYbD1se24Pvb1uuro8zLhpMTPmL44e3z8TR69T0dPrpcdlRCNTkQf1iup/3m22HtauWkPpx7/F77EDYIqN56Krb6Jg+uWUlnkoLWuntbMJg0GN3e6lqzOSqOpSjViTDbS1GUhONpCeHkN2toXeXh+dXW6crjAGA/h9IXy+IEqlAp8/iNsdZP+BbiZPdvLxx5Hmwk1NvXi9QQwGDfljE8jJttDR6Wb7tmY87gAF4xJIS4+hq8uDvduH0aihudlJS6sbt8dPS6uL3i2NeDxB4uL1ZKTH4HL78fmCVFZ2s29fR18vCKLF2H37OrHE9UT6upkOLT0sL29nzdpaPO4A+fnxzF+QQdGUSFKemKCPvimbNjUFCB8x7b7ftGkp6HVqrCnGQ7Ne+p73/t9FcnsAW4OT+kwj97xdyaM3XceeBx5g/fr1PP7448ybNw9lX3PsSy/Noqzsn8yff+dRf8cn4wrGybiNLxNk+mcbLF2afVYGqpEqOclIcpwSYiKv4cibKuegRtwrVuRGZrfoVbS2OqMFqtRUE41Nken9e8vbGV+YhMsZ4LmVe+hod+Ny+RnflwQd/ibPajWxdEBMWLuuls2bG0lLNXH55eOxWk1U7NxIfVcnzl4/VquJf//pB9Hj+5dG6vQqent9jM2Ll+WKfQ5fRgpQW+vgP3/9B/bY9kePm1E4nlsuW06yMY2NxU0crO4mGAzT1OTE6w0QDIaJjdHi9QYBsFh0FI5PpKgomZ07WgkEQgT8kZk4GrUKryeMM+gnHIJgCBqbIjOf1q6r5eOPbfQ4fLS0OFEAWq2SzMwYQsEQtjoHKlWkUJadbcZqNdLbGyA9zYTZrGX16ho62t3ExGhwuwNs+bQRj9dPXLyO/Lw4mluc+HwB9u7t7NtzIHJFvX8m4r59ncRZ9KxYkUtpSVt06eF77x1k3TobeflxXH1VPlarKVqoTejr5+JyBjCa1LicgaPGhHlzIxfbUqzGQTMhAVrbXNi6Cqhw3MrMwKtcbvklDU0X85Wnn+aRRx7h2Wef5fXXX+fqq6+O3l5aWhW5ua1cccXQRduTdUV7OGPCwHggfZTOLPFxBrKzUwd9bWAj7hUrcikubkTfFw/6ezHOnn1YjlAUyRHsdi9VVZEkvb8odov1cs7vmcrKvSu5Y/Ud3Dz+Zv7z5v9Eo9JE7/Ojj+p47bUDjBkTz3/+58VYrRPZvn0Lvb09bNzYwCOPXMZll10WPb5/dqDJpKGry0Vrq1qWKwI1Nd2sK9tBd/w+dju3UtJaQiAcwLnDj+2pgwRdkeKWKc7MxddewoTZi9i5y0FpaTvtrc3RHKGzL0dISzNitQ6dI3R1uXH15Qg+Xwi/P4hK5ScQAIfDy969HbjdgUiO4B6cI2RmmjGZNBiNGtraXAAUFCSQltaXI9gH5AgtbjwePy0tLnp7G3G7g8TH68nIMOFyBSgrax0yHlj64oHF0sP8+emDlh6W983s7e2b2TtvXgZFffEgMXFAjjDtOHIEvRrrUPFgQG+v/uJZZqaZr935Nb56x1fZUbyDt1a+xYzzZkT7+E6fmsD+zR9QmH/poPvRKDWkxaSRFpPGZP0c9tc047E00BCoZn39et6qegu9Ss+stFlclH0RF2RdQKx26DGD5AjDRYpcp1j/WmM4lKzbu7309PjIzDLT0e6mpLSNMWPiSE+LYcunjXR0eHA6/eTmWBg/PpFSf4ieXn909tdQhZfDNTb1Ul3dTU+vF5stssQtLy8Om0ZJ5ijzEcc7XZE33Wazjsws81FPMOeagb+/pEQDSqUSk1FNenYeOwNuzAlpZIy9gqtvvomY2Bj27eukodGJ2+XH6w2iAHz+AH5/GINehVanorKqm/h4PaNz49DplZSUtKJWKTGZtLhc/r7lJArUGgVGkwalR0EgECIlxUh1jZ22Njdud4BwKIzRpGHChCRSUyPJ865dbXi9IQKBECqVglAIkpIN2Lt9uFx+8sbEEQ6FqTrYDYAlTsfYFBP5+fGsW2eju9tDSkoHDY292B0+tm9viV4h7H9NmIxqnK4AS5ZkRWcNrlpVTdmudoKBIF3dXjKzzNH+XuXl7dHCbXp6ZBluZWX3oNdw//Oclmpi0eJM2tpc7N3TwejRliN+F3qdmky1FpNfRb0ebn9mKzfPzebHly5k0aJFwKGpwS0tW9i9+yXuv/9lVq1awb333suyZctQqVTR2z0ZVzCG+yrI/PmjJJkZIQaeUwAaGyM77LW1uthY3IjXEyA720xhYSJdXR727evEaNSQlGig2+7FYFChVg/e4XCowstATY2ReNDbE4kHVmvkb76j001+fvwRx7uch+JBVqbEg4H6f3+hUCj6XJtiNCQnxKOsUzI1byI3XLyMyeNyaW5yUVrWjsPhw+MJ4vUE6On1EQqBXqfCbNZGlqL3xXpHj5f1n9QTF68jJcWE3e7F6Qri9gRRqxXodJFm844eL2qVgrXranA4fHR1eejs9BAIRi60LVgwis4uLw31Dtat6yUxwUB7h4umZicLF2ZEilfNTmqqHWSkRx5DdpYZjydAnEVHitWITq+mpsZBb6+fyoouOjs9GI1qjIZDbxuzsmKjs7myspK5/vpCIPJ6fHfVQRobe+ns8jBjeipWqyk6s6u/DYPRpKa0pI3sbPOgRL//Oe62e4mz6Ljl5vFUVnazaXPjkDEhrEvkpZavsUy3nWkdH+D/00ySr3uO7373u3z3u98F6Ju50srLLz9CXV0tBw/+g/377+KOO+4gLS0tepsn61w+nDFB4sHIMShH6Duf2O19OUKmmY4ONyUlfTlCegxbtgzIEXItffFANeg2W1udtNg03Jp1N+u7V7Ny70o+qvuIX8z7BdNTpwNQUdFJaWkrnZ1u9uzJ5vzzM9mwoY7du9vJyDjyfG+3+wgEwiQlGRk/PumsW9b0RTh8DjY3bmZD/QbWHfyE3nA36i4NueYcFo1ahKonnr0aO7WePxKXnEzmpIVcc9ulmGIMkRyhwYnb3ZcjKMDn68sRDCq0WhWVlX05wug4dLq+HEE9IEdw+VEoFKjVCkwmLW53AI1GSSAQorp6QI4QDmM0RnIErVZFdbUdvz+IzeagrS3S6zcUgqQkA3Z7X46QF0c4HKaqqhuIXHwZO9ZEaqqRDesbCATDNDc56er2YDBo2LOnnfR0UzRHsNu92IeIB6tWVVNS0kYwGMJi0TFvXkZ0dlc0RyjqyxFKDssRBsSEtDQTixb15Qh7h84RIssfY0hMNERnllmtJqYvmM70BdOjY7LZemiqKKHis7X8ftuHbHprLlfccgXTF0yPXigHSEmJJSUlFsgHFuPyuzhoP8ju9t1UdFWwvn496s1qplunc3HuxSzNXopFN/jcLznC8JAi10nU0NhDeXknpgJFtPg0cBoyQElpGzW1DnQ6FeXlkWZ8HR0eGht6CYXDuF0BMtJjos3FCwsTmTE9hZLSyBvBbdsjfZOamiOV+P4iWVHfbhT9BbCmxl4CwTA6nTpaSLjuuoIhm1e2tjmxd3tJSzUyaXISG99/no3vVLD8qusomDztND6DZ56srFhaGqp4/ek/8mxXBzc88Ec2b2pEqYrhrh88hSuQxq6yTpqa/SyZEIu924szLw6jUU1vr4+mJifBYBi1SkF8ggGPO0BDg5MYk5r2djd19ZGZGnqdqq8oFSYYBEUojCVRj9GoxucLkpRkxOn0s2tXGy6XH602MmXZYNTg8QRobnbS1eWlp8eP2aKlpydEr9NPe4e7bxkjBINhMrPMzF+Qwd/+VsaBA914PUHmzcvgw3W1VFd3o1YpCQZCxJg0aDUqvN4AL/T1gcgcFcv8BRnsKmtnx84Wpk1NYcmSSPBRqpRkZ8cSY9KQnx8/6DU2sLccRBKcxoZeYmK1lJS0kptjJj09hoKCBOzdkaS+pdlJW5ub2lpHtDdXVlbk+a2usZOUZMBs1pHgD9KZYOBfW2rZUtXB4zdOIy8lNjo1ODbWzEUXXcQHH3zAu+++y7vvvktubi533303X//610lKSjrid362GaoXQP9V2f4r/cFgkO7ubhITz903ridbba2drtJWRqVqGLDh7qCYYLNFlia2trkIh+BgdTd+X5iGxl5SUyIxxGLRkZBowGbrobnJyezZGXg9AaYUJUffqHXbPTQ3RWJCe4c7OqNmfGFS3zEOQiEIBiOFBYBly3IoLEw8Mh60Oum2e0lNMzJ5UhLdzi5+8pdnSE2K5yf333ganrkzmzVFx2sflvGDp1bzs7vuYGxWDps2N7Jo4gLmFswh6NGTFp/M5EnJxFl6on2tlAqw1fVE/200qdHqVHR1ecjOMZOQqGfdh7W4nAHi4nR9M6sis7xCIQAFJqMGg0FDOAwuV4BXXjmAAsjKMkMYOjo8xMbqiIvX4/dHdszq7fETZ4lsIuP1Bijf28GixZnExmoJBkPMmz+KOIuOTZsaqKzsIj5BT3yCgdLSVtzuyIyvxEQ9doePUDjMps2N2O1e9uztYN7cdOIsuuiujEuWZEUTkqREAwF/iKKp1kGvsYG95SASHxoae4mN0VJR0cWUouTo6w/C0QJAba3jUEzo68XS3/xep1eTnR1PhepC2oNjWex9G83Ty2DRg3Ded0ChYM+eDoqLa5k7dwUez79paGjgxz/+MT//+c+5+uqruffeeznvvPOG3Kn3bHM8MaGtrY3k5CMbQIsT9/rLq2kw2jEUJA25NBegpKSNmpohcoTGyI6pbneAjIwYEhP1NPXFA48nQNGAeGC3e2hqcgEJFJkupKszgSbVFm5ffTsXpCxnYeAmKiu78PtDfUWQyOvgxz+eF31dDFRba6e11cWYMRbOPz+Tl19+krfequLuu++mqKjodD6FwyIUDlHeWU5xQzHr69ezq30XoXCIFGMKYyxjcO4LUfX+Xva5a5j2n1fy6ZYWtEoT9z30M9zheHbt6qCxycOSJVbsdi+9vUPkCGoFZrMOu91LTIwGrzdIS4uTurq+HEE/OEeAMImJeuLjdXR3e6PFMb8/iMvlR6PpyxEMkRxBoYjEkZ6eABZLZKWI0+mnvd3dt4yxL0fINDN//qEcwdOXI/z73/uob+jBYFAzcWIyOr0al8vPnj3ttLe7IzlCZixms5bKSjuth8UDpTKyzFarVTF37uBWOAN7ywGUlrbR2NhLTExfjpA7IEew9+UILc4j4kF/ka26+lCO0NTkwmLpOeLiX39BTKWxMHXeVHZu2knxB8UUf1BMRk4Gl998Ocu/uhxz3JGTQowaIxOTJjIxaSK+oI+6njpKW0up6K7gZ5t/xi+2/IIiaxEX51zMRTkXEa8/8kLimeR44kEgEMDhcJCQkDDMo/1ipMh1ElVUdFNTa8dq1EaLXNZk06DZVkVTkjl4sJvWFhelJa0olQr0OhXjJySi1aiAcLTx966ySA8kny8yxbiqqpvmJid5eXEUFCSQlRXLunU2SkvacDr9bNveQmlpG0mJBowmDenpMUwtsh51LP0GFi2sySa2fPwBO7dsYNL02ed0kevd19fw2nOPYzuwKfq1d97YTIc9lqwsM/PPn0dHuxu3O4ReF7mSZonTYYrRkp8fT0VFF7GxPryuXgIBB53Nbhpd3ehUHjQaH85eJz6Ph1DIhzfkB0KAEoVSgUqtwunV0lmjJhTWo9IaAT1hpQGFMp4Eayo5uam0trppbOjF5QpgNmuJi9NhMKhRq5SEwjp0OiXFGxswW/pmBnR7ICsy/srKbnp6fWzf1kxtXxKsM6pQqZVY4vTMmZsWKcTV9VC+txONRkmv0096mqmvb2G4r5lkKznZsdx4Y8GQr6+4OB1KZeRzTnYkYPTvGrRzRwslO1uYPSedwsJE0tNjsMTpGT3aQm2tY9BOjP1LJvtnmBRNScbpiixzafb6eW5zLZc8upEfXlLIedGpwZP4n/+5joqKCp544gmeeeYZqqurefDBB/nxj39MdXX1oKv4w+lUbeE7VC+A/p4tAKNGBbnlllsIBoN88skng2a5iRO3Z08HzooulCEjSQN6Vx++vHBMXjwtLS66urzodEoscTomjE8kOdl4xFKubrsXh8OLTq9i375OOjs8BIMhxuTFD4oJW7c2U1LaijlWS1aWGaNRS1qaCWuyEZczMOQ4+tlsPX0N0iNLURpbO3nixVUUjsk8p4tcn26z8Ydn3mbtjo20d0WWqT/x4rucP345vT1+snPMzJubTm2tIzozqf/31tDgormlF71eTU+vB7fPTdjVg63cicvnYv2uEFod1Dc68Pp9hFqDhMMBQiEFCoUCnVZFTIyOQFeYoE+JWqlFo9KhDGvQawy4A1YWL8hjw4YGHA4vJTtbycoyUzg+kYqKLgLBMHFxOjSayPLTD1bXMH9+BmnpFiCM0aTG7QkQCIbxuAMkxOsIBsIEAyF8vjBZWRZSUky0t7vp7vLwzjtVtLS42L+/k9tvm4jZrI3uANfe4aakpJXJU5K5996iI15jA+NBds7geOBweCMN+W0OsrMsLL0wiziLPtr4Hhi0E+PhMw4jfy/xONJmoK/5F3z0f1C1Dr76bDRxv+eeX5Ka+givvvoqf/nLXyguLubll1/m5Zdf5jvf+Q6//e1vT/VL6bicyi3djxUTwuEwO3a8zoMPPshbb73F0qVLT+p9n6taW1v5/n/8N0ljsrD+9EfRv4vDz8NFRX05QquLkpJWVCoFer2K8eMT0Wr7coS+Pou7+nZxTUkxUlLSRiAQorn5yBzBVmpAb1qMOmMXH4Y+4JPwR6QWnE9e62Quuign+ho42myTgbuyZWdbeOONN9i0aRPLli07a4tc3Z5uNjVuYmPDRjY2bKTL24VepSfXksvSrKVkxWaxZ10d7z2zivp95dGfe+2lnfjDMeTkmFmwdCodHW7c7iB6fV+OYNERMyBHMJsjLUKCwTCdnW4UCiVqtQKDQUtjYy8ej59wmOgFDwCVCgwGDbGxGlpaXHi9kZm+7e1uFIrIpiLx8Wqys820tLhoaOglPl5PYqIeCPedM7XExGgjOUJxA2Zz/+xhD3AoR+jt9bFtWzNdXZGdbhUKBRqNkosvzsXh8LFzZ0skRyiP5AjnnTcKi0UXjQcdffEgJ6cvRxjiPcegHOGwmLBzZwslJS3Mnj0gR7AMyBEGxIP+JZPRHKEoGedRlsIfKi5nc/3Xl1JbUctb/3yL1f9eTUNNA4//4nGe+d0zvPTpS0MWuvppVVrGxI1hTNwY/CE/DT0N7GzbSUVXBf/v0//HQ589xOSkySzPXc6ynGUkGU7swvpwxQOA1FQvN998MwaDgTVr1gya5XamkyLXSZSfH0dO+5EzpQYqLExiTqOTzZsbMVt0GI1qgsEQHneQ7m4vKhWsfG4vc+elY4nTRWe1NDT2olQqsJh1mM06ZkxPpby8nbY2F+kZJhIT9KxbV0tHpxe/P8SYMZHlD2azNtr76+jCEI6s6d62vTm6NvzAgU6WnOTn6Ez18ivlbFjfwIKF6ah85bzxr7/SYivr+66CwqmLsWRcQkJqDr5gDxq1ktWra6iu7qa52YlW1cP+smIqyvfT3d5IyN+B19VK0NdOKBBpvOjquzUXClQaA2E0KJRaQENYoYGwEgihUIZRhBS4vUH8PjehoJtw0M3AHTGcNdCwQ4femIjGkIwnJh1nXBbx1iwCgWR0egt5efHs2N5CZ6cHnz9Ia6uL3bvbKClpIyZGg1IR2aFl27YWPB4/JqOaqVOtzJ+XHi0e7Spr49XXKuju9hAmhM3mYMb0FFrb3KSnx0SWHlZ0YypKPuprrKGhF7vDS0NDLxcvHx1tPpmXF8fBg3Ycjsh2wgqFgoKCBGZMj/Sr6J/B1a+/oGZNNjB/Qcag+7MCP77MxNPF1fzozT0sn5DKw1+bglEXOcXl5+fz+9//nl/84he89NJLPPbYY8TGxkYLXMXF9Tz55KvcfPPFLF069gRfRV/OF2lM+eqr+3nttQquvjr/qA31+w3VC2Dg+nybrZoNGzZgMpnYtWvXWfum9XSbMCGRrvZ40lM1Rz3GajWRlRlLbUYs8fE6YmMjux32F7g2FTcSCIYoKWll3vzIrJmdO1poao70dYqP1zNhfBKTJyXR3uFm3TobcXE60jNi2FfeSX3fzKHC8UmoVBAfr6d7wPT9ofRvG97c7GTdOht+TWSr764uT7Q32Lng5ZfLWb+hgUlFsXxWuY1/vb0WbyDyRj8lIYHFU+YxPa8IZ08IYjUkxOt4861KIExbRw9VdY3UNjVR09iMO9BLj9tBj9eB09NL+LDdjVQKFTqtFgUqFGEVKqUalVJFKBQmTBgdSrwuFY4eDx6fB3/IRzB0KOnZUAsrNyow6Y3E6GNJrE8gozKF2VPzSMm00NkcwqDXkBCvp3xfF36Hnw8+qCE/Px6NRhlZ/uTyowACwTC7d7cTDkcShQsuGMXo0ZHZuWW72ti0qYlAIEQoHMbl9FNb62BKUTKlJW3R5YcVld0UmZKHfI11d3vxeoLs2dvB9Okp0SUteXlx2Gw9bNrUEN1sweUMRHcMHbjcESJ940pKWklI1DN5UtKR95XxLUibAjtWwl/mkH3138hecWib+RtuuIEbbriB0tJSHn/8cf75z39y1VVXAZF48O9/f8qUKbHcdttFJ/YC+pJOVTyAY8eECy7I5Cc/+TFut5vnn39eilwnidVq5ReP/JYH7/sP1jy/klmzHhxy1mBhYRJz5vTlCOYBOYJnQI6wci9z56Zjseiis1oaGvpyBEtfjjBjQI6QbopcJN+dRUZhJua5VdTnvoc+czPN6us4WJPH6JxjzdAIEw5De7uLVasO0tISeTe7aVM9fX8yI14gFGB3+242N25mfcN69rbvJUSINFMaBQkFtB7QULU1TMzkbByONh569o+02qqBSOFn4uxZEF+EUmshVqtk/PhEiosb2bWrlZYWFyaTht5eP/v2ddDW5kanU9Hb6yclxYjbHehrHB8Ggvh8QaxWFUp86FVO3O5egn4PAb8fQgF0JiUxWg2dBz19xS8lnnBkkxC1Wk2M2YQ2aCbo8hAfq8Fk0KBUK1EoFGRlmenq8qBQKBgzJo4dO1ro6PD0Na0/lCOYTBqUykiOsH17C263H5NJw/jxiUybZmVS3znXbNbw6qt9OUI4REeHm0WLRvXdhjq69NB0lHgAfTmCvS9HuPg4coS+mHD47orRHMFqYP78jKPeHxxZXM7Oz+aBnz3AHQ/ewbo31vHGc2+QlJoULXCVl7fzzisbuOiyWUyZOvSujhqlhhxLDjmWHAKhAI29jZS0lXCg6wC/+ew3/PqzXzMxaSLLc5ezPGc5VuPxb9wwXPFg6dJsDh4sZ/PmzZjNZvbv309hYeFxj3u4SZHrJMpIj6WwMAHCsG17MwcPdlGys42F543i4uWjo0sJ09NNLL84F5NR3dePJUx1jYPKim6cTh+9zkijwvETEtm7p528/DgAfP4gOTkWJk2OnABKSttobHAypSiZ+Qsy6HX6sdkcaNRKGhuc+H2hviDajiXu6D28fP4QXV0eWltdOF0BurojuypVHOg84tizycDeZhvWN9DQ2MubL7xK24HHIgcoVGgtcxg77asYYtPp7vWTqAigCtdRUrybDV21+Jz1hHyNEHKzB0ChRqFORK1Pxhg3FpN5IR5/LKjMBDHi9RqxpiUyd14WW7c2ER+nB4j0bPEG6O31YzHryB1toaXFRVycjnA4jE6norqyhZ6ebgjYCQe7UIYdGDS9GHR2OlvKOVj9AaG+xEerj6dlbwFOfxoBRQa9oVz8ISMetx+lUkliop7EJANeb4hwOITdHpkdolIro8tfrckmDMZujEYNiYkG1GoVaWkmVq2qRqlS4MyPj860Gjjj6nA6nQpF32c4tMlB0ZRkrr4qj5LSvm2Fbb2D1tcf/js6VkGt/7jrJ6WzPSWWt0sbWfaH9Tx+03QmZhy6TaPRyO23387tt9+Ow+GIfv2NN3aycuW3eemlH3DXXd/gnnvuoaCg4AReVSfuizSmfO21Ctavrwf43CA21NXZ8eNNzJ8/v+/qUAYPPfQHvvrVSxgzZswJjl4cLjvbQvYUK+0tka23Dx7sYmdJG+ctHMXFF48GDi0NnDQ5kcmTkqNLDfuLBTt3tuD2BNDr1JhMGuLidLS0RHZhNRrV5GRboksC1q2zRf+ubrl5PKtX/3/2zju+rfrc/2/tZUuyZcm2bMsjdmI7ceJMEjuDkISEsPcogba36/aW3tLScdvb/jpu7217OygUWgq0UDaUTQMhCSs4zo4zbCex423Z1rA1rL1+fxxJlh0bAoWW9vK8XpBEOufoq6NzzvP9fL6f5/P00NfnYe1aC729HgatPsKROH5/dFJp2dQwmTTo9Qqadg/i9oRIKAXVUiAYTXfO+2eMqb5mb+0apL/fw5/e+gPekAsArTKHuQULmV0wh2ypmhxdFsHwKK0dJ9l2YIih0RG8oTF8kYlni0KiIkuhRafRUZxXjEqahSimQCpSQFSOPjuLT3+ynrb2UU4nu0ZJpGLyTSoGBwXj4NxcJfn5arzjgmdj3XwjPT1jtJ+yo8qO4fF5cLjdxEQBVNkxXP4xmk/u49VDrwMgFokpyMnHpM1HJcpFJc4lGtHR1eVKNicJIZXBrFl6otE4vb1uQmHhc1MlriaThvl10NY6yuAAGPNUFBVlEY3G2d1kJRaL4/dF00qrTMVVZixIKlVcrhBHj9lZv06TbnSwoN7I+g2lBIJRfOOCwmGm36mlxfaOZJrN5qNvtJryxf+B4cR98MjV0HALrP8BZKxEL1iwgN/97nf87Gc/IztbWKDcsaOXJ564h9tv38599zXyxS9+kSuvvBKFQvH+Lq73ER9WPoAzc0IkEmHBAj2NjcX09rq5+eYfct55+/jOd259n6P/OKaLq67fzEnHYe7/7v2IZBqqlq2npcXOqmROSF3bZrOGTZvK0WgyMEK3h85OF77xDIxQa6CtzUFlpR6AcDiJEeqSGKHFjtXqY8ECI1VVOezaNcCqc4oZG63iUP9xEtUn2Cb7HbvfeIp12Vdz86JrqSw/8/messTo6XHjdodxOAQSes8e69/kvH0YkUgk6HR1sndoL81DzRwYPoA/6kclVVGuLef8svPRx/MJOdVU6vP53+2HGLT6sB3ahe34X4SDiCQojTVULz8PldbA2FgIOSCRiGhuttLf72VsLEgiAVlZMjyeCA6HUJ6olCeQxD30j7qJhbxEnE6iQQ+JsIeTJwK0hvzpDr1TIwiMSqQgkgjKrbgwj08k5/9eYAhoy9hHJpeTnZuLXKXFH1aQV2BEGbXgGxMhJgu/H0KhOMFgBkYwTGAElyuEUikhK0uOzRbA6QxgMmlQqWTIZBJ0OgU6nZKqKr2AEcQifL6ctNKqfoZ8AEmMIJqCEVrs1NcbueKKSlpakhihfxqMkJG334lQezff0lSo1CouuuEiLrz+Qvzj/vTrb79xkq3338nOR1RccuOFXHLjJRSXz+xxJRVLsWgtWLQWYvEYw75hDtsPc2r0FL888Ev+d///Uptby/ll57OpfBNFWdMTZ6n4W+YDmIoRZvFf//VLbrzxCkpLS2c4ykczPia5PqBIJBL87//8jFDeEoxZJoaG/ezdY8VmE26SCzZVTDLX1ukVWK3jDA37qa7OpbEhC41Glgb7KxrMNO+2Mjg4DsBFF89Kl2+lAH4mwWAyathy41xggkQoLdUK3VeSPkfAJHIgRQxs395Db6+HYCjKDTfUkpurxmODWZUzSzT/GeLYUTv79/VTWhwiP1/F0PA4UvV8xPICxOp5SPXrSMTjdJ44SiL0IrFANydf7ycRjwBiJIpCxHIz0uw6co1lRMgnHNchlYiRSqXCPFoiJuoTupZUVekJBmKsWi08GI+0SAQgkaNiQb0JvV7BrrcG0GoFqa/HEyIeE1bMtVoFF148l22v9jA0pAORBa1eTs08YUKS4wkhEsUZGezDbu1CHB3ANdaL37WNeEwwtpapS8gtqydft5yl5zQyYk8kvbyCaUNRYVxCbXxNTR69vR7i8QQmo5rSMi1joyEGreMUmbOwWLJxOgLvep7NhVmUlukwFwrGRJkeXddfV0NNTR6PPd7OoHWc5t1WKiv1aUP7nTv7GB72UVCgoTRZ6jgdoZZp3rp5cSGzjdnc19TFFXfv5tsXVvPJhvIz9tFqJ67vqirIySlkdHSAO+64gzvuuIPGxka2bNnCNddcQ07Oh19T/16MKa+4omrSn2cTvb1udu8+xauv3sdTTz3KL3/5LHJ5PqdPu1mx4iJmzap4X+P+OKaP118/yLY//JmLltXTY1OyZ29GPkiSXCmfrYJCTdpbKxZLpMkCny9CNBZHKhGzoN7I1q3d2Ox+cvQK6uqMNDSa0xO2THLBZNKwZcvc9Fj0OQI4zywL6+ub7FOROQl8481+rFYviXiCFeuEa18hF89IXPwzxNFjdg4dspGdF+QzNzaQn6+iv89Lub6GAU8XVbkLyFObGQ042H/6IL6YkwfftuENCGo5hVSFVp5LfpYFS34henUuMb8KuVSOVqfA7QohkYoFDym5BE2WDJFIxIWbKygtE0pD5HIxIGVWpZ7Nm8s5cWKM9jYHIyN+urs9iMSQiENvj4dly4qpnGXg2DE7gTEl+UoT2mwZc+Ykfy+lFLvTzdETvTjG7XgjTnptfYz5WwCQSxTMKalgXcUCLFWFzJttQSQSsX/fMFnZcrK1CkxGddo/K9XJU62WEonEyclVUlWVy8CAl0AwRlWlnnA4lvbVmokMra3Jw7rcx+FDI6Q6c2X6dF1/fQ1HWuzs3z/M7uZkPsjonpXKCRKJiKpK/YzXZDonVOdi2PAjOPQA7L4T+prhmodAO7lMPTMfrF9fyvPPK7DZpDQ1NdHU1MSXv/xlrrvuOm666SaWLl36oXt3fdj5AITOcPff/wQPPfRzqqsXc88999Da6qSzE1asuOz/hD/Z3zKs1nHy5tSy9sor2fHk0xxv9RDX1gFCTsg019bpkhhhKIkRGjMwQv84K1aYaW7OwAgXzUqXb6Xul0yCoaYmL5132tsdiKijxLCCEfFpjvn38tz473h11yNc47ySG6pvoDCrMF0idf/9xzh+3IHPF+YHP1jJE09ocLth2bL8v8NZfH+RSCQYHB9k//B+9gztYc/QHkaDo0hFAhmxJH8JxdnFFGcXo5Pr0Mg0vPF6P/v29GMrGSO/QM3QsA95biVihR6pvhJZ3gLEMg19QyKkdhcSiQiZTITD4Wd8PIJYLAJiJIKjjHucjPmdJEJjRPxOXMnO7AAisQyZWodKo8NQVkldfRmhqJz2kz6kchVZei3nra9Cq9fw6vZ+dHo1Xq/g55WlkaUxwrJlhbzychdDg6PEoyGU8hiGHDFlJXL6uofwjo3hHRvD73HQY++i6+Br6TFIlTpkWUZMlRUU6mazcOk87M74FIygAkj7Z6UwQjAYJStLxiWXVGCzBRgcHKeoKIkRnGeBEZIdJM3mJEbI8Oi6/vokRnisncHBcZozckJmPpiEEabJCdM1eHinEIlEaDI6ShcY4mTrc/GOOXnq3qd46t6nmH/OfM6/8nzWbF5DljZrxmNJxBKKsosoyi4iVhZjxD9Ci62FDlcHvzn8G24/dDuV+ko2lm1kU9kmynRlZxzjb5EPenvd7Np1gpdfvocXX3ya229/AbE4N4kRLv2HI7jgY5LrAwu3281TD/8Bf+Q+PvW1+6iuNiOXi9JKLpioAU6RThq1DIlEhEYtTXeZgAnyqXauAaczgFaroLfXQyyWwOePpj8zc5/MmPq6ze5LK7kyo6/Py8GDI7hcQgmGXCZmyeICnsvX0HNCWNX9Z40d21t54K7f4eh5BZlcTdasH5JIQDDoQqzbSCLYQWjg5ySiTgBEsjwkqnKyzMuISSzExcWoNUrkCgmRSBx/OEY8nkAsEZGXp04bhEqkIvLyVOTna7j6qjnp3+W++48SjsTIyVXS0FCI2ZyFzx/lootnceDAMN7xECUl2cybZ8DjiWDIVdK40sy4L8wrr3QTicSRSkScODma7tolEosoLDRTUmUGESjkEsKROHZrLxH/aeLBU4z07KGv7UV2PCEit6CGirkrUecuYtWqOaxbZ0k3Migt1bJzZy+epAlmkTmLyll6VGrZJLL1hRdOc/jwiNAGOE81yYcm9fe6+XmCV5layoGDw2eQVSlJfVaWDLFERF+fl85OFy+9eBq5QoJMJqazw4XJqOb666aXyU41b63Mz+K7F9Zwf1MP33+hjT2nRyeVL06Nz33uYj7zmQvZsWMHd999Ny+++OIkcPP888+zadOmD+jq++vjyivnnNUKTSrGx8f53vd+xOOP/5ZwWCBaHnnkMS6++AtIpSJ0uo9bgX/Q8eijz3Dfw38mGAhw4+VXIpeL0kquVEx4bSW7KGqEnKDWSKmtyUsTBSkCam6tkBNi0TijY8G0vxYwafupkfleqixsunyQ6mg37g0jQkRWtoxZ5QJpkq2V/9OquFrb7Dzw5C7ePNbEwGgfR9qvwz2Qi0gcQy3NJU8dpnP0GPutO4knYkhEUnI1RszZs9Dl5aGVGclWZqFQyIjF4iACURwi4hhKpZRwsouWXCZGqxW8qBYvzmd+nQBIH3usnZ4eDzqdAotFS0OjmTyDCq3WhyFPhccbJi9PiSlfQzgUo7gkm5WNZvr6vNjtgWQ3rQiRaJwTJ8aIRGKIJSIMuSpqyiqIRMrI1spxuUK4PT6cPht23xBjviHufPwpYvEYWUoNi+fMpUhfTmP9PK66sjqtLCwt1bJjZ6/gB6eQMKc6F5VS8HwxmgSD+Pl1xrQf3KBVAN6ZfnKZq+jz61LXUQKbzXeG+kuvVxCOxBgfD6fzwe5mK/kmNX5/FL8/QiwOtXNnvuYn5QSpDJZ9Fky1cOAP8NsGuPwemD19KWJjYzGHDr3I0NAQ9913H/fccw+Dg4Pcdddd3HXXXaxfv57t27d/QFffXx/vNR8ANDc389nP/jutrfsBcDicvPjicbKydMyapfs/3T3vw4rOjjF6ej00XHgRxCO8/uwLlC2RsWrVVUAGRkjmA00yH2g0UzBCMh/U1k6DEXzvFSOU0DiymL3dRxmQHuPRE4/yYOuDnFN4DmXjDQy+mc/IiLBQqlRK2Ly5gp//XEtHByxb9tHwM50uYvEYp8ZOcch2iEMjhzhkO4Qj4ECECHOWmTk5cyjKKqI4u5gcRQ5Z8izkkol50PZX2vnj7Y9j69iHQpONdu4WEgmIxsSoq7dMIoCFJh/CM942MMC4Y5Dw+AiJoJ2ozw4JQWElkmuRZxkwWGoRK/RERDqkqlyKS/MoLMxi8+byCYxw31F6RofIz9ewZk2xgBF8US65dA4HDgwzPh6ejBEMShobzYyPh3nllQiRiAZI4AqJGHCpcKMjrIlhqUx66opATBjfmAPnsJXwuINYwEFPyy5O7XmVrfeDRp9HcWUV6rxSFi2azyVXzE93+0xhBLc7RE6OgtxcJWZzVpqoSpGtkzCCYQaMUJeHTqdAo5Fy4MDwGWTVJIwgzsAIL51GLk9ihE4XJpM6Xf4+NaZihPcaF1+zis1XNrD/zf08/6fn2fv6Xo7uPcrRvUe547t38JMHf8LChoXvehyJWII5y4w5y0wsHsMesHPUfpRTY6e49+i93NVyF6XaUjaUbuCC8guo0le958WG95MPPB4P3/nO/+PJJ39PJCIQk4888jgXXPDpf2iM8DHJ9QGFXq/nrj8+zaduuIjn7v8Kv374OZYsruGaqyduuJTxe4p0am930tbmRKmQTiK4du7sw+MJsXhxAV+5dTF9fV40amnaJ2m6yCzrmlrKNZPhvCDvtKHTKsjNVTF7Ti6/+MX+tMFgIj69VPYfOdpbO3ji/t/RvPNp4lFBcp1AjLvnfmLBHuJhGwAiuRmxpg6Jcg5i1SxEkmxUKglKlQSPO0wiBsFQDKVKhliUPE8iESTAZg9QVJRNiUWLWCyirEyXNkm32X04HQHa2xzpTprr1pVx4OCw0OlDIqKv14NzNEhjYxF184y0HLFTXZ2Lyahh48YysjRymnYP0tfnIRoV2vEaDEo87jAatYxLLq3k2FE7be2jFBRo0OtnMzJShNu1HLUZAl4bQXcbgVAbR9/+E+HQ7+koKWd84ALWXHAp1107n4OHRmhqGmRk2EcwGCUYFEopN28uJ0dvTK+6G3KVaLUKDLnKSSslQPrvGrWUlhYbfn8EhULC4sUFk8iqVNltZZWe+nqhE9dDf2pLrwYtmG+ks9NFpidZZsljTU3etNe4RiHjlrWVvHJ8mOePWDn/9re458bFzM0oX5xq5nj++edz/vnnY7VaefTRR/nTn/7EiRMnWLp0aXqfHTt2EI/HWbt2LTLZzH5LH1SkxqjTyXG7w+/JeNJut3PnnXfym9/8hrGxMQDmzVvAt7/9Q3S6edhsPtzuEFu3dnP33S1nXcP/cbx7fOc7Xydi3cuvn/4L8xdV8elrzueaayZPwFK+EDabD71uIicolNJJBFdmTrj1K4s5mjQcfqcJ20zy/JkM59MTz34PGo2M4uJs8vM1vPjSaQDi/4T5YGjIw4PPvMlvn3yBvpFBQFjBfWnXbiLhGE7/MLFEDKlYjkFVSHXeUgwqM9mKHJRyCSKxiHg8TiQCkSjI5ALBFY3GyNErEWsVjDoD6VbulZU5zJmTy4J6Y5qgbGt30NExinc8jFYnp77eRG1NHgcODHP40Ag9vW6ikThGYy7z64z09nqEfJD8DTdsKEUsgX17hwiHY2j0MgoK1IyPR8jWKpg314DPH8E6OE6pRUswqGZsLAvdUAFS6SKkZQm6R/pxBAY50dfFm0f28eyeZ3n1+CKu2NDIZRev4NQJD01NgwyP+JDLJMyapcfrjbC72crmzYJKNtMPTiIWcaTFTiw2cc1krqJ3drrYubMXrVaBXqdkyZKCSWSVyxVCLhNKYyyWbP70UButxx2EKvVs3FhOX79nUk7ILHdMHWfa67ysEXIrYPev4dFroPHLsO776fLFqfmgsLCQ7373u/zHf/wHO3fu5E9/+hPPPvssS5YsSR8yFApx7733cumll1JSUvLBXJjvEu83JyQSCbZt28ZPfvIT3nzzTQDkcgXXXvtZLr74M/h8Yk6fdrFihZkDB4b59rd3fZwTPsCorMqhLKRlfoWRdeu+gsmk4ol7niB4SRVQMSkf6DLygVIpnURwTcIIX0liBI10RpPt1H4zlWsV5GdzaX4jiUQDjoCD5qFmjjmOsce3B3G9FL2+FGNXDfXmWXziEy+lyxXjQtvXv3skEgmGfEO0Odtoc7Zx1H6UY45j+KN+pCIpRdlFVOmrWGleSXF2MQaVAY1Mg1KiPINAON7SxeO/fYLm7a8TjwploZGwmpDPg0yVjVgsTu+TiMeIB2xEx63EfIPEfUMkYgJ+EitykKhN6MprECmNiJQGJDK50OVYJKKgKBuTSTWBEZIm6TabD6czQHu7Q+hum8IIByYwQm+vh9EURqgz0tJiT+eEjRvLyMqS09Q0SHe3i2g0jlgswmLJZmjIh0Yj45JLKjl61E57+ygVtbMxV1TQ2TlKMBinuDgb5/AwY0N9SOJOAq4hTh5o5vArj/PmY8UsXrWYhvUNxEVZHDo0wnDSHzQeT7B1azebN5dTXy+MCcBgSGIEwztgBM00GCGDrEqV3VZWZmCEhzIwwoIZMEKy5LEmqUI+GwXX1Jh63yw/bznLz1uOfcjOjmd3sO3P2xgeGGbO/Iln5L439iGRSqhfXo9EOnMjJ4lYQoGmgAJNAess63AGnBxzHOPU2CkebnuY+47dh1ljZn3pei4ov4C5hrnTEl5/DUYYGRnh17/+NXfffTdut6AurK9fwre//UM0mjn/8BjhY5LrA4yly+byjTse4pdfuYGvf/pattx6N7OrzWliK5OEMhk1tLTYcLtDOEcn5JzHjgq+Qzq9PN0JL2XEDcKNu3NnXxrcp47rdgUZGhYUGtMRWtORYCajhvIyLWOjQRYtMtHSYufoUTt+mzCexEckgX0QYe3r4eHf/ZKdLz1DPCaAC5FESSIeIR5xg6gbqaYGci5BrJqNSJKNVAaxmFAeAhCJxkj4SbbvFV6PRWPk5iqw2eIUmlTEE4J/gVIpprbGgFarINUGvfO0i0UL82ltc9A/MI5YDBKpMLkOh2OcOjUqtBHWKYhE4ow6AzzzbAfDw3727x9CLBazbp2FEks2hpMqRkcDRMIx8k0qLrm0SihvtY7T2+thfDyCw+EnFo1xznIzfn+UWDSOSCRGr7MwlpVPkfliPnFDJUO9h3lr21Zeee4Jnvzj3RgLy1i6+iLKZ69FodBy6uQoA/3j6YmNTq+gs8MFkByPNu0vV1igzlAshnC7grS0CB1SVEopi5cUnDEJq18glGUZcpXp63NFg9BieEWDmcpKPSUW7aT9Mksep1upTIXd4ccYFvEvSy083TrE5Xfv5j8vrOGmhjJgZjNHs9nMbbfdxm233UZPTw8GgyGdSL73vf/k4MG96PV6Lr74Yq644go2bNiARvPeE+jZRGqMUqmIaDRxxlhnikQiwcqVKzl16hQAlZWV/OAHP+C6665Ld0fp7XVjMjn5/e+PcPDgCHB2Nfwfx7tHWZmeP/74M6hUcT773TuIhmFR1fxplS2p/1I5YTQp8U8Bmp4eNzK5JO2NtH7dxLU2FeCnJmUud5DhoWROmMmzaJoxuNxB8ozqpEm5k5M9wn32UQE0H0QkEgnuffIV/uvuJ+gfSS5siETIJDLC0TDD7kEMqkJmG5ZgUBeiUxiQSsSIxQKZBRCOJFAoRGSellAohtGoZmw0SK5Bxfw6I2+/PYA/EKWkJDtNcB1psadLLOx2P+0nRknEQVYqTl8f4XAMhzOAWCSAgJERH88800E8nuD4cTtuT5jVq4q45poa+vq9tLY6CAai5OQquOrKOfT2eujodDGULDdJlcWajBrc7hAajRSxWESeUY1CrkAqq+KyS6vQGaM88VITe1qPcvO3foFSLuOcefNZMXchRUVFjDrDWK3j9PV7iUZj6HUKNBrZJD+4o8cceDwhtFr5pM6gqaYHuzPKrKYD5aWlWgat4zSsEMpxG5It5xtWmFmSzCGWkomckFnu+G5qQ1tQS1/uvzFX9SKqpjugtxmufRiy82fMB1KplI0bN7Jx40a8Xi/hcDidD2y2g9xyyy3ccsstLFu2jCuuuILLLruM2bNnf2jlfu83Jzz00EPcfPPN6e9088038/3vf5/iYkFdmsoHc+ca+Pa3d70nX5eP493DbM6iJmbApBOIrMXnX4rPF+aO792BbcTFovM2UVqqPSMfZJZ8HTsm+A4JgFbohJcy4oYMjJAE96nnvNsdZOgs88Elsy5hU9kmut3d/OXw2/QXdhGuOM0bvEQkV89wcy8Ao4FREonE37Ss1R/x0+3upsvdxWnXaVqdrbQ52/CEBR9ErVxLgbqApQVLKdAUUJRVhFauRS1TT0tqpaLvdB8P3fEQrz3/WjrXKXWFFM1diVRfgcsVJhKJMu4YJurtIzY+QMw/AvEoiGVI1AUo8uuRa0uIy/IQJVVhSrUElUpGKBSjtDQbtzs8gRFqp2CETheLFuXT2uqgv1/ACNJpMIJOpyAajTM6GuCZZ6bBCCXZGAwCRgiHY2g0Ui65pDJd3trb68HnS2KEWIxzzjHjdAaSjQ1EmIoKiYm1zJmTw7/920I8Y27e2rafkd4Omnfu4fk/PY9CqaB87jzUxkqiFDIwKpnACDpFknRKYoQSbdpfrrAwAyO4Q7jdExhBqZSmn++ZUZ+0bjAYlOn5yopkTlixIokRSqZghIySx3fCCO/m1TVTmaOx0Mj1X7ye6/71OkYGRlBnqdPH+u2Pf0/PydNo9VoaNjSwatMqFq1chFKlnHEcErEEk8bEOs06zi05l7HQGMcdxzk5epKnTj3Fn9r+hFFlZK1lLZvKNlFvqkcmFhbZ328+iMfjLF26lP7+fgCqq6v54Q9/yFVXXZW+T/7RMcLHJNcHHIVllfzk3if4yo2X87/f+iTXffF2rv/E0sk3SpJkamwwo9HI0mVbNruP7h7hQa1Wyxga9qPTeyeRVlPBfV+fl127BvH7w1gsWtyu4LTdFKd+vs3u49hRBx5PmIJCDd09HkosWQwN+4jlfJbrv/Bd1m6e9+GerL9RJBIJ3ty+g+3PP5nxqhipqhyJZh4J+VzEcsFbQCQCiVQgspKLOIDwmlQiEspQki16AfLz1TicgXR5yLpzSzncMkIwEMU5GkSrldN52o3D4ScRFzpYOhxBpFIxRqOKxgYzNruP5t1Wenu9iEQJqqpyqJtvZMgqrJBkZ8noH/ASCETZ9dYAF108C68nhMWiJRyKEQzF6O31pH3cSku1lJZqCYaiWCxaQiGhlLK8Qo/fH6Gzw0UiIayWt53wYjLOJ6cinxvO+zJdJ/dxdM/LvPL0fcSjv0FnrEZjWkNCsgCxSJougaEKlEmTyCWLCzhwcJihYV9acQag0wvXnCFXxZw5Quee0lJtWmrc2+tJ+8aVl2kZGvYLPkFGDQ0risjRK2g5YidHr5hE9MIEMaZUSGbsHjpVFfndC2u4/+1uvvdCK81dTn5x9YKzMnMsKysDhESye/cA+fmVmEzd2Gw2HnroIR566CFkMhkNDQ1cccUVfPnLXz7razMzmpoG2LGjl/XrS2lsnChpS40tc5VmaiQSCY4fP87zzz/PbbfdhlIpTOauvfZatm7dyre+9S0uv/xyJBLhN8tULGzeXJHunPNea/g/jncOkUjEXd/cgtUZ5l9/eAfXnXs5t/7LhQDTTpwaGoWcsKDeOMlvQiaXkJ0lm1SemIqpAP/tJiv79w1RWqZFp1Wg1kyf5qeuqvb1eVFrpAxZfUTCMYqKsnCOBnB78vnll77NtVf/43TUebc40THMj+56ggGbLf2aSqqmOKeCgqwSNOJ8JGLhvIlFoFJJhRL04IQRenaWFJFYRCw6wXIpFMLvZLf7sVoF35y5c42cOOFM+6r5fVGGh/3Y7H6CwSiBgNBYQCIVU1MrTMYPHBimrc2J3eYnHk+kS+AlYhEFhVmcPDmK0xHgrV2DnHuuBYCyUh1Wqw+fL0pvr4d16ywolFJGnQHKSrPpM6iYW2ugtc1JPA6zZ+eSn6/h2DE7Y2MBpFIJHR1j1MrzKNbM5Zs3rESujvD862+zddce3jx0EKVMyZzCGuYU1iGLZSFXSMk1KKmuzsXni6BQCs8XvU7B8JAPS4k2fX3rdcL1ptd5aVhhJhQU8pPDGaCvz0s4HKOtzUmuQYlWK6cgX4NcLhyvoaGIhoYi2todPPZYOwvqjZOAfcq/TqGUvGPn0EwVDIuvYMmK+XDgj3D3crjyPubOFRRa75QPUub0e/d20dxsRakMsHLlSpqamti3bx/79u3jW9/6FhaLhQ0bNvCNb3yD2bPfX8fevyYneDweXn75ZdRqNRdffDEAF198MXl5eWzZsoVbb711kvJsqort/fq6fBxnF01Ng+zbN8zSpRu5OU/Lg7c/yLHD/dz01c+kr9/GZD5IlW3ZbD66uzMwwpAfnW6yt+JUcH8GRpihu+5UMO9yRhg4pqTcs4pc32LcThsOSR+jCSvmLxnJJ4u7o3fz+BOPMztnNhW6Cip0FZTqSslX52NQGtApdO+JAIsn4njDXtwhNyP+EYZ8QwyNDzHkG6Lf20+Ppwebf+KZrVPoKFAXUJdXR54qj0JNIQaVAbVUjUqqQiY5e6X9qbZ+djy7AwCVoQxlwRI0eRYcY6ME+/YR8/YR9fZDPIxIokCSVYSiYDmSrCLEqjykUglSqQiRSEwwI0+YTGqcziCBQJRQKMaGDWUcPjxCMBjF6UxihM4kRkikMEJgAiM0mrHZhG6bkzBCnZGhoSRGyJbR35/ECLsGuOiiWXi9SYwQjhEMJjFC0sctjRGCExhBoZBSW5uF3x9JXwdCV0MvbncEZ6iQ6pW1lC7eTOvhDqwdx7H2n8Rz8BCIRCj0ZeiK5hKvXo7BoAeE8laAJUsKOHBgmKEh3yQVsi6ZEwyGs8AI5VqGhvxpL9GGhiJychS0tNjJyVFMygcwQYwp3yEnTMoHTE/+vluZo0gkoqBE+Oy+Pi9trXZMJRbG7A7co25eeeoVXnnqFWRyGfOWzOPcC8/lki2XvOO1KBFLyFPlcW7JuawuXo075KbV2cr+nqM80/YiT558ErVUzTmF57DOso7yqnpWYH5XjHDkyBFeeuklvvnNbyKTyRCLxVxzzTW8/fbbfOtb3+KSSy6ZtAD+z4ARPia5PoSwuXIx1n4T69Gf8fQ9t7Dx/BemvVFSdfE2u48DB4dxuwTT4coqfdogWKOe/BNN7WZnsWQTj8VxOoMoFdIZuylmfn57u4Nnnu3ANuLHaFSjUknTZuILFhhpbRUjkuag+pCUKR92DA6O8vtfP0BP53FKLTmcOLyTMccwIrECsboGSdZyxKo5iMQCq56ZglUqob7b7Z5guCQSEdlZMhKJBFKpBI1Ghs8XwWRUodMrGLT6SFXypDokKhUSvN4w3T0eQqEowUCU0jIdWq2cnBwlixflp+vvDxwcRiwRU1oq/EZqtYzyMh3lZToggdmcxVtvDdDR6WLV6uJkk4AYBoOKFeeb6e31oNcraN5tRSwREfBH0ekVfPaz8+nsdPHKK93o9XIsFi273hpIthyGSCTO8JCPPXuseDxhDh+yodUWgP5GcjRXEXIdIejejbv1HiRSDQWLNzGn4hOUV+XQciTKiZOjdHW52by5fJL64LHH26lfYESjliKRiKiuzqHEks2JE6Np34iRYR92ewDr4Dj5BZpJ/nSpaDliZ/duK8eO2tmypXbSakxNTR4+f5Rduwbp6mqb5GWQir4+Lx5PGK1WgcWSLZQvnlfFy8eHeeGIlU2/3sUX64o5ud+GTidPr3xMneynIpU4PvvZuyguzqK5uZlnnnmG5557ju7ubt58800MBkOa5EokEvz4xz9m4cKFLF68mPz8/EkTvqmfs2NHLzt29AFMAjQHDgzz0ENtzJ1r4HOfW5AeU39/P7t27WLXrl28+uqrdHV1AbBw4UIuvFAgUr7zne/wgx/84IyJ5lTFwvup4f84zi4Ot9gpki6lMt/FY68/Q/2iXG6+VPACmjpxSnlnTWeo2tvrmZawmupnNOoMCKv/jgBZGjn+ZAnE1NXKzJywbVsPe/ZasVi0uMZCjI4GUCilVFXlEArFyVZqkIpmXoX8qMfb+07yHz9/BI1Uz2jIysH2E8TjcbIVOsxZVRRml6ORnQnIZDJBsSsSC8/VVGRlSVEopGRr5WRpZDhHg8hkEhobCjlwcIR4XNhPq1WgVgcJBqNCyaDVh8cTxu8Po82WI5NLUCqlWCxaysq1zK8zpsFmrkFFfb0JhyOASiXFaFSnt3njjT7e2jXI6lVF9PV5Od05hlQmYf78PNRqoQvnzp19KJTC8XMNaioqcrBYsvF6Q/T0uCks1KDPUWG1+ohEBaWywxHg6FEbR4/aOXbcjlwuochcy6ZqC0POEbqcJzlhbedI32HK8i1cumY1S5acg1IhR6ORcfKEkBMaVpiprs4V8kGSlFJrpGm/uSVLCpDLJZw4MZouaxwe8dHd5UKrVbB0WWF628zYsb2XlhYbdrt/kmKrtiYPvy/KiROjvN1kJRSMTmt+PzUnYFoplC82/RoeuYrSlV9lQHszDzxwPE0svVs+mDu3ju985yaGh4d54YUXePrpp3njjTfo6+vj/vvv57bbbkvvs337drq7uznnnHOorq4+o1vj2eSE3l43v//9UVpbHWzZUpt+bodCIfbv38+uXbt44403eOONNwiHw6xYsSJNcuXk5DAwMDBtl8iPc8LfLnbvHmTbth5CoRijoyE+89VPIlVq+MNPf8sL98ZZWP8dZHLZBEaw+ThwYBh3sjFJYaEmWQYmn1b1kvmnxZJNPJ7ECMoMjKCbOR+0tzt45pkObDYBI4hEYLWKmDNnIRb1EqwDY1QvlWGoDDLiG8ERdNDl7mIsOEYsMUHwSEQSdAodKqkKhUSBUqJELpGTIEE0HiUWjxFJRAhEAnjDXsYj4ySYXBafJctCK9eilWup0FawyLQIg9JAnjoPrVyLUqJEKVVO8tN6txjoH+Oenz+Nzebm5luuE8iSkzKMVQ0EJMXEwkHGR07i6thOIuwGREg0BSjzF6LKK0elL8TrzfieEhHZ2TLi8QQymQRNtpig2IuhOIGmYBzv6BgSSYhIHrQojuCq9iOWwim5mNMBMQmTmHA2aFUaBrRaxJUiakpUrDmnlJJZSk4c9SIWT8EI5TrKyycwwptvDtDZ6WLVqiRGCCYxwooMjNBsRSwWEQhE0elmwAi7BohEhN9gfDzCgQPDtLc7BYxw2IZWK2N8XEJMNR9VZR3a2SEY72Ks/zi24y+yveNV7A1LMVYsxGYrmB4jPNZOfb0RjSYDI5RMwQgjSYxgHSc/XzPJny4VLS1JjHBsBozge28YYbpwOgN0dIyhSaroYWb1V+oYmy74GoZcJccOHGPXy7toerWJkcERDu8+TF5+XprkisViPHznw1QvqKZqXhU5eTmT5iCZn7OyaCV9b+Uy1DZAxcIQhhovJ0ZP8Hr/64AIuauAsuhC/m3jVVgsgoVAb29vGiNs27aN3l5BgdnY2MjatWsB+PGPf4xcLv+nxQgfk1wfQjTvthKlkNLF32W04+fcetOl/M89j7FkcVl6m8zywcyui5Wz9Hg8IdranMRi8UlG83AmMWaxZLN5czlNu63EonGCwSjWoXF277ZSaNZwySWzgIzSGKPQar6vz0MwEMXvj1JeocNgUCKWiAiFYkmfpX88k7kxp50H7vgp21/4M5GwIJu1dmSjzFmCsfaTlFQsoL3dNeP+IrFA/ESiCcRi0mUosViCcCRGWamW8nI9Hk+Yyko9XV1uTnWMIZGIUCklmAuU5OrDKKUOdGoJYV+MEVeYUDDCeMiM369GpZahywoyq0KJ1z3KT39yijFXhLnz8vjEJ6oBOHZU8Nupmz/RSTPTs23bth4MBiUrGszk6BX09kJH0tA0O0uGxxNiaFgwCm3ebaW3x4NWK2egfxy73Y9MLiIrS07VbD3Hj9vx+aJEYzGikQShUIR4AmQyGUWVqwmHVyKKOfA53qKr9TV+tfdpKmqWUlh1MSFmEwon0mUqHR1j2O1+OjpcHDtqZ+nSAmKxBCdOjOEcDWDITa74+6NUVOgmrdK4XUFsp/20HLFjyFNhMmqoX2Dk2FE73vEILUfsZySoFME7aB1P75d5nU8lllP3y5ICLdGxEG8Nu/jOm6fQdggS/hSIeOqpU7z4YicXX1zJbbdNeHFN7W6ycuVKVq5cyS9+8QtOnz7N9u3bmTVrVvr906dP893vfjf9b71eT01NDTU1NchkJrq6DBQW1nLttdWYzWoWL9YQDBpYtcqEy+UiGAwSCAT4/e9fYt8+H52dxTQ2FtPdfZgbbriBoaGhSedDqVSyYcMGdLqJMc7U8v69tCP+OP66OHhoBI8rzPp557NscRHf+MW9RONhvvW5a9ITi6mTptTkKztbjtGkYnjER/+AF6NJdQZwr63JIy9p6Gqz+dJqMIkE+vrHMRiUtLTYsA75aGgws36dZprP8+AaCyEWeQXvLZHwLNRqFVRV6qftxvhRj0QiwVOv7OJ7dzzCye7+9Ot5ajPnzVuHUVGKSq7GZn/n7k/RGETC0UkKXhGC1L+sTEtZmY7OTlc6J/h9USRiyMtTkq0TERH50ZkiiGVRDhw/yamOURJRGQtryyguEQCoOziGxw/33DfAuCfGvLl5rGw0YzJVYbP50h5sKaP6a66p4ZprarDZfLzdZEWhkDCrUk9BvkYoU+wYo6fHg8Gg5JzlhaTKYUC4JjyeMDt29BEMRZHLJILfpFJCMBiltyeUNHZPIBbB6GgQEgn0agPn6BpZEl+BJz7IaWcbv37yYR5+9QUuO3cNc0x1eLxxQknVwIJ6I08/c4pxbwS73U84EkciFmG0qpNkX4iCQjVmcxZ+n5AT9DpFUsklY9gnkIIp8/r0tTeDMCT1nG9psdHR6cLni5yxb2obtUZKX583uaeOPsO/MVf1AqpdP6eIV9j3plDS19hYfNb5oKCggM997nN87nOfw+/389Zbb9Hc3MycORPA4L777uPJJwVFuUQioaKiIp0TwuEshobqkMtlXHttNVptnGXLtITDJhoa8nA4HASDQbZuPc6jj76J11uERiPjyivncOmll/LKK68QDocnnZPZs2ezZs2aSSVlH+eEv380N1sZHw+ToxfMwgFu/OLVlJSa+PG//5ivXvdVbvnxN/H4pJMxQqGGyko9ra0Ohod9rFhReMYzeSoxlsYITVaiKYxgTWKEwmkwgikDIwQFjJCTo0CplFJSko1WK8c1FiYPE+tKywAIx8KEYiEC0QB2vx1XyIUv6sMf9uOP+okmBEIrGo8SiUcQIUIiliATy1CL1OQp81BIFAIRJlWilCjJkmeRo8xBLVUjk8iQi+XIJXJkYtn7Lo8ctY/y/J+e589/eBa/1wtiOT/zFaNSiUiM9xENjDJu3Q/xCCK5Fml2KZJsC9LsYkG9JREWPILBJEZIxJHl+ZDnjSMr8JFVHESs8xKVBkj12hsH1GEJiYgUcUxGJCQn6g4iRkQsliAeSxCNRpGVKfEox/CJYnizPMSlMR7r3s6TNgmimBxNdQ5V+RYKVUUErUoSxJhfl5/+/TM921IYobbWQCAQxWRS0d3toafHQ3Z2EiMM+dLXYm+vB222nIGBJEaQCRihvFzL/v1DAkaIxohGkxghDjKZGJNJTTisQJG7mKLaFSxZoCLoPMmLj77C/tffRpGVQ27ZQvTZ59OwatZkjHBsCkZwBjCkVcHTYAR3EJvNT0uLHYNBhcmkob7eyLFjdrzeCC0tM2CEeJzBwfH0fpnX+RkYIXm/ZN4P05U9NjVZ2bdviGXLCrn88gll01Tfr/rl9dQvr+dL3/8S/V39HNx1kLLZZen3e0718MAvH0j/O1uXjaXSQmlVKXJ1Dg5fLrlmC6tWFZOjl1NZpiASzKO+Ip9ZZh0evYd+Zz+PvLgTl9bDyapt/PvBrcQfidPz+x78o/5J50OlUrFx40bUanX6tX/2fPAxyfUBxqDVS3v7KLXJi2JFw0LKi9fwH5+/nluu38xXfvhbVPo5k5IWCMz2yLCPigodcrmEQ4dHCAZiVFbpz2CXp/PgWrK4AJ8/ypNPnMDpDFJalk0gEGN4yJeeyGWWKqZKvY4ds2O3BbAOern88tnpDnivPvcUO589hZzLWLVuzd/q9L2vSCQS/Pmhh3ju4XuwDZ6eeEOsQKJZgtRwOSKJhrhEwrw6E6e73IRD0xsoazRSZDIJ4+NhYWVGKyMSieEbDxPw2Bgb6UUnixMJOtl9ykZBzafJz1dTVKSh98i97Hz4FXY+PP04y865nb5eOWq1jMNvPc5jv3oq+Y4IkUTNibdyOLjNgkxporj2SpQaIzq9clIZ3u7mQV568XRaWjsy7Ke318ORFjvmIg1lpVrEEhFarSLtYbWiQai1lyskSeIUlCox8+bmoVBKMBhU5OSCSimmp8dDJBrH74shkQgqhGAohlhchMl8I7lrP4XXtp9jzU/R1f49jIXllM27jFDw/LR3WE6OAoVCwpgrRFu7k+XnFNLd46Gzw4Um6RGRioYVRem/2+w+bPbABJg2aqipyWPLlto0iTadr1xFhZ7RsQB79lgZHvIRjcVZtDCfdes0kxo9ZEqSATz9fi6ZZeSN4TH6qqDDAKFoDIVUwuCg0LFscNDLO0XmqntlZSWVlZVnXJs333wze/fu5dSpU7hcLpqbm2lubgbAbL4co7GauXMNHD9+nIsvXgTAT35y5mfV1NzIpZeey9y5BrxeP0NDgv/CokWLWLVqFWvWrGH9+vVn7Qv2XtoRfxzvP+wOP3kGFTU1GtautbBixXpmleXx7V89SGffED/44icZHgpO8s9yOAO0tNgwmlRotXKGh4SyNmFaf+bkfqrkPmXi/dOf7eXoUTt2ux+NRk7AHyFlzDq1NGXtWqG0zW73MdA/Tla2jLJSLfPr8mjrsPLwvS9w1JrDkiWf+xuctb8uegaG+dpP/8jLb+0jEJq457WKXOYYlpKfZUERF1NSJCxYzBQiEeQZ1Hg8YcRiEfFEFBJCB12Pz0cgOo7rwCDHB0V4Ax784lnoxCUUF2cx6h3jrh23c+er0/uYzSmYh0lvQKGQEIqG+fc7f5R+TyKSkr1DQ9nTeWhVOhbX1LC5sZHhIT/6jNIkm83H44+fpLXNgUolJRyJM9DvZdDqo8isSRvA63WCj4k+qdxoWCHkhJMnnUQiglrt/A1l9PS4icUS1NTq0ekUOEcDjAz7CIUT6ZLNVJOT/PxSvN4l+CJudh3by0MvbSPBy2xqWME8cz12u58XXzyNbcRPTo6SQDBK12kXFosWSHD4kI0EcN5ayyTStqGhKP3d9DpvuusoCNfp+g2lGI3qdDnvVE85gPZ2J5FwlP37hzh1apTzN5anPexS2+3Y2cOhQzYWLTKh1yk5cWocqq9iybK5lBx4kCfW/Jjuxb8GeF/5oLRUx6ZNm87oyLt8+XKcTicHDhzA7XbT0dFBR0cHL7zwAhKJjPr6+5gzJ5e5cw3ceOMNbN26FYD//u/JnyWXq7jggkcmlY6Ew2FMJhOrVq1i9erVbNiwgZqasy8x/jgnfPhhtY7T3u6ktjaJEVaYJ6tPli7h8z/4Lg///Fd84/p/Z811n2HV+oUCRhiZwAgeT5jx8Qgz5YOpHlxLlhTg80V58skkRihNYoThaTBCkjxIYwR7AIkE1qyx0Ngo3J8tb+1i+2M7UYo20njeIuQSgYDKlmdjUpvOGFM8ESeWiJFIJASlVmoKLgIxYsQiwcxdLBJ/UKc6HYlEguY3Wnj2gedpebuJaNJUUSzXIFIa8Z56Drd/BEhgLClDbV4KWeWIFblnkGkqLSjNbuJ6B3KzC7nJg0gWJxFNEOhL4D0pRRNUIfZkEXXFqFh4Fd5BBQpUnGp5iPZTb884zsp5P0Gdm8Pic/J489V7OHnk1eQ5EiFWyJDrZJw0HUZsEGG81Ihcp6K5vZAlvjrq8uooyiqiudnKSy9NYISODgWhkPB9KytzKCsTmmFptYq0h9WKZD6QyycwgkwmpqHBjEQixuUKkZMDKpWY7m6h2ZXfn4ERgjHEYhEymQirXUxOzkIarq1GGrXReaiZo7vf4tH2N3n10Ro05kUUzaoUMMKYIOZYvryQ7m6hkYhGMwUjNGRgBJsPmy0wacEtjRGSBvPTKawqKvSMjiYxwvA40WiCRYuSGCGj0cNUjJC6H6YqI0FQd031ypsaU8dimWXBMssyaRuJRMKGKzZwouUEA90DeN1eWg+20nqwFQBz3Xr0BSVYLNmcPHqSb157y4yfV9WwmQX6RooXBWl3t9A22gZiUJWpyKvNY2nDUq696FrOKT0HS7ZlxuOk4p8lH3xMcn2A0dHhoqfXzbIaI1/7WkX69RtvvY/f/+TL/NetN9Jw4W1ceNW1kxjknTv7sNsD9PZ6cDr9HD5so6pKz7p1lhm9tTLLu3Y3D/L66324PSECgSjRaIL160qZ2n0r9ffUSs/Lr3Sxc2cfVZV66ubnpT/r3p81c2zfqxQUWT5yJJfN7uPtXYOcaj1MbPwgB956nnGPO/2+RFmAwrAZlWEpft/EfpFInL17rDMSXBIp5OaI0OmzsA76iEZjhJ2v4LM3EfKPQCJGVw907ZvY54sbP4U2p5ihYT+ePi19CPXZcmUWEqkcqVRGPCEmEhUhk0uABAqFBKVSjlSuJhr2AwkSMR8+t4/WQ4LJqyx3I3ULi7FYsnnqgd/y+tZnqayuo29Ij91jRqoqRKWU4hwN0Jg0aK9fYDxDyWSz+5DLJWzZUovV6iMUitHb46G0LBtEEIsmkErFrFpdjMsVIhKBnl4XACISBENRCvI1rEzKnzs7XPTZZ4Pxaxhyu8H3Ovt33M6RXX8gf9ZFGMs2kpOjZGG9jq4uF+FIDJs9QG2tYZL33HRhMmpYt87CsaMO+vs8uF1B6uYbJ7W6TnWgdLtCeDxW2todiMUiRob9eDxhQqE4syoE+fZUpWSmJNnpCCCRiDDqFHxnWS0vHh3i5ePDbP71Lu67aQlXXTUbvV7B+vWl04415ZOi0chwuwWQPF0yqKqq4oEHHgAgGAzS0dFBW1sb7e3t7N3bSm7uOXzxi/WUluoYGgqdsb9IJEKpVGI0GvmXf6nna19bnbyW1TQ3NzN37ty0P8xMY5zq5fJx/G1jcHAckUjExo3lac+I799yI/GQkv/+w4M0HzjNl6+6mcoKI9XVuel80NHpol5jZDQS4I03+8nJUbBihZn5dWcaqKaub4lEjMsd5OWXu2htczI44CUSEUiWhgYzKSUQnOkzkfI8evllISdUpvKPScNrTW627nmT3HYtd/3go0dy7d49yPbXOwiIhzhw8hg797Sk35OIJJTmzKbKWI9SnJVuGhIKx7Fax/F6Zya5srOkGPPlZGvlxGJx7KNjbG/diifoIpTszJsZYkmcr9+0HJfbwJ59/cR3CedeIZejUSoQiyVIJRLiMRFysRKnI0RVpRitRopaoSIcDRONxYglorjG3bScEPKa35dgc+NKqqtzKShUMmvDp5lbWUq+Pp9Rqxx5zIAINdbBccrKtNQvMLKg3phW92WSQDabkBMuvmgW0ahwDszmLLzeMHK5GI8nQqlFyxc+X89jj7Xz3POdEI4ikUK2VkY4EqOqSs+551qS12kEY2I+68orsIU72XPsGC++tYtZ+bNYM28VJlMBS5cJ171rLJQkuUTMqtRPW2qViszxgoO+fg8ud5D5dcZ0161UtzGAzk4Xu5ut5JvUdPd4GLH5CQVjRKIJIDEN+BGlSWOLJXvCFN+yDNP5FWTtvpO6Q58G3WmuuvKad8wHIDxv7767BalUzLXXVs8IDm699VZuvfVWoRvc0BDt7e20t7dz8uRJentHWbx4FuvXl1JaqjtDlQWCwjorKwuz2cxjj21CpVIB8NOf/pRf/epXlJeXT6ty+TgffDSiM6m4XzLLPAkj7N49SHOzFZNJjUhk4Es/+S8ev/3XbL33V5i0n0WknzsJI7S1Oamq0lM3Qz44cWJ0UnnX7t1JjODOwAjrzwIjpPJB5UQ+AOg61kLbgUNYKstoPG/Ru35vsUj8oRBY04XN5qOpyYrTGaCx0czxpte5+4d3T4xFriGRgHjYB5EgkmwLipK1qA2zMFmM9PWNZxwtgSzPh6rUibrCiVQ/ikQjJhGSEnVqGXkgjPf4MCG3BzhzQeMLV/yc7Pk5nD7txtNnogcQi8WoVFlIJHJkMhmxmJhgEJSoEQVV5MqM6FQ5yGRqIhE/JBLEg2GCwTDBEQHUzC67EcPiAKICOw/d8RCuQy6yy7PR5BUQDVUg8s1CpZADAqEDCerqjDQ2mic9B1P5IBMjdHa6MBpVaLWCck0qFbNqVQZG6HEBIBIlCAajFBRoWLkyiRE6XRw9KjQdUamkzF1wEcsuuIJdL79Oz9FmbF1/YqyjhOWbNpGfX0E0CjZbBkaofweMYEpihGMO+vs9uN1B6uqmYIRkTnC7kxihTcAIw5kYYVYSI9jeASM4A+l7J/P4qZjqlTc12tsdbN3ajVgsYtWq4hkV8GWzy/j27d8GIBQM0d/VT19nH70dvZxs7SWvvJbNm8sxmTQMdkbO2F8kEiFXyNHn6blgUyWXf6IBgHXlK1lbspbskmz6Qn30enoZ8A7wo0M/gkOQLc+mSFKJ2FrEhrkNXL16NTrFPz6hNV18THJ9gFFVpSevx4nbFaS93YHPL0jljxz1oS75d8SyR3j7hf8h6u/le//7E0xJM+1Mn61f/OIAPl+EwYHxac20JzrXBfENR/D5ozTvttLZ6SLfpGZ2VS4rGsxnqGSmC6NRTX29aZJZuM3uS3dn0OvP3rTxw45EIkH70UPc/bM76DjeTDzqQSTVYipehN/XhLFkOSHpCoLxMhIi0SSCCyAeT9DfP5G8EjEf8VA/iXAfiXA/4VAfJ0/amH/+7zl/YxXt7U6ODPoI+YSaZJFYhirLhKmwCKUmj3Bci0Qqp26+EXDQlnchpcvXcs6Kcj77mfo0IZNIJLCN+MnKkuHxhDEXatj44x/S1/d1zGYlKlkE15gD96iT0x3dHDt8gsZ1dSxYWIjJqKH9yEE6Wo/S0Xo0PXZVVi4UzOPEwXqWLLqR66+bvFqbWplLTXaqq3PR6RXk5ipRq2QUmoWumnv2DjE07GPr1i7BR0wpobxcz9hYCJlMxNhYCINBhVwuoX6BEZNRjc8XZmw0QDhWikr/L6xt/DSjfVs5tvcJRvv+gumCm1m86F9oXGlOewoB0xK27e0OmnZbMeQqaVxZhNMhKFjGxoLodApAlPaWA+jv8xIMRvF4QuzbP8zoaABDrgqTSfCVW7W6KO07k6lUSe2vUUvTKshYLCGYNPujNFj0VBo1PLC7lwvvfJufXjmf//f/Gme8FlM+KUuW5LNhQ9m0ct6pq/pKpZK6ujrq6uqmPeby5cuJxWKEw2HC4TAjIyFOnfIwb17eGYBJJpOxfPnyGceXOUbgY1Dzd4yioizG3YIipa3dkS6f0opKOa/qYnadfoXv//HXPPTTr7NkyXxgssfWQw+14XQIE7RFC2PvaIyaUoO1tjkYHvJhylezbFkhDSvMk1ZE3ykm5YTkZ6lTPnmJ6RcI/l7hGHPzq/u3cs/jrzA67iABWPJKqCi04PGNM9s0j+xEOTKJHBITXXFT4fWEiSVxSSIRZzzswh1y4g07cAUduINOau3zuOWaaykr1/LWrl4e3Tuc3l+nyabQaEAp0aCSZVFbNpslSwqSJsFDXL/sM8yuNPLFLyzCZNKkJ+CCAawdiYS0x9ab1XdRUpKFWiPGPubGMeahvWOIvYe6sBQWML9OaIHe0n6arv5huvonxiERi5ltKaM4txipZi7rN6xIq6NSQCZVhpF6LkokIhbMNzFndi5Dwz6ys+X4/RGczgCHDo3Q2+dh/75hFAoxubkaysp0+MYj9Pd76ehwUVGRw4J6I0aTmpMnnUhECiyauVy1bh1e+vnj83/hDzsfYGX9fM7ddD0LayqxlGjp6/dw+NAICxflJxfiJiLVJTRVnmKxZKdVja6xIHKFFLstkAbbao2UYDBKX7+H9jYnnZ0uQpV6zIUaRkeFRi9LlhRM8jlLnZP5dXnodYqMssVEUknpQK9TYFn4H5i6H4GdP6SxcjeN3/wDKGcGATt29HLq1BizZ+fMWN4xNSeYzWbMZjPr1q2bdvvt27cTjUYJBAIMDo7T0THO/PmmaQm06urqGceWGt/H+eDvH5VVOeSNKnG7kxghmQ+am60cP+4gP1+N0aimosLMXc/eyV0/vIv7fnI3CxqWsmD91dTXG/n5zwWMMDAw/o75wO0O4vNF8PmiNDcnMUK+mtmzc1kxJScIZPKZMV0+sNl8RGNCLsjJ+ejZmjz/5F7e2jVAMK5j60sn0Ul6EYnEiMRi4rEoiXgcibYcqa4caZYFUdKcPiFBILhECRRmF4qiAcSyfsI2L94jQWzPhoiMBll4/a2cO6+BI81eug88QDh0AgCRSIZGk09pqQWNJg+/X4NIJGHtWgvQz9tvX0h5+RouuaSW229fz9atQuOKeDxBT4+bnBwFDkeQqio9n/vcPbS2/jezZ2vJyopit9ux2+0cOnSCXbuOcdnqf+G880oxF6vZdO8mXut+jUB3ALABR5HlyNBVmDglm8fqVVuoXzg5/0+LEXQCRpgzJ4ecHCX19Ua2bu1maOgsMUK9EZMpiRHGhE6Nhw6NoFQWceWnryQRv4wxayevPvkCrzx4L8ZCE5WLVzMgWQgwiURNRXu7g6YmKwaDksbGIpzOaTCCLgMj9GdghH1JjGBQkZ+vRn02GCGZD1Led6lGLlO9t6YjvjKjpcXO4OA4RUVZMy7kTF14USgVVNZWUllbOe32CxsWsrNnJ5FwhGgkitsTYdAaSHdjzQy5Us7CJcJ5raSSRCJBIBrAEXDQ7e5mYHyA1t4evFnHaLO+xK8fB4PSQIW+guqcaubkzqFCV0FRdhE5ipz3XR78UYiPSa4PMIrMwsV86JCN7h4PSqVwemvnGnA6AygqbqH3eBl7X3uYmy48xI23/Iz8IgsWSzbXX1eDze6jqDgbvz/KnOqctIdQSpWTuiGWLC7AZvelCYAVSTXPVHIrFZk3c2eni+bd1vQ+qTLJzG2DIWHmr1H/fUmuFLG1/bkneG3rc/jHha4yIlkucvOtiJWVeERi5JZL8YiVkBBKTKY7jlgiRioV4XfsIjL6Momoc9rPNOW6uP66Gl5+pYtR2zqYtRCpooC8wiKuvGI2NTV57EyWOsQSmvQEWSzRoFSJyTMItc6ZZKRIJKKwQJMuB039jk5HgDePOKhfYKT+nBrqz1nJlTdOHs/nv/7/OHfTpXS0H6O95QBtRw4SGB8l0PkWQ13NNNedRzQurIjrssXTPrhTfy5amE93j5tYLI5Or2TtWgtKhZTWNgdjo0GUSgkV5XquvHI24XCM11/vQyYVc/DgMIsXF7BuXSnhSAzveBi3S1AeGUzFfOYLv+TIoc9z4PWH2PHM3TRvf4hl591IQLIckVjBuDeCyahm3brJD+KWI3YOHx5JtlAWsX//EGOuEMXFWSxaZCLlI+N2hbDZ/XR2uFAqJSgUQnOAWRV6Vq4qJuCPTmpXnyLLDLnKSQnGah3n6DEnfn+Y2hpD+vgglPx+e7OK+97u5pbHDrOny8n3L5mLTHLm6mNqRX+mVfHeXjcPPHAch0OQMk8HSqYzMxaLxSiVSpRKJW+/3cWePUOIRKJJ+89kgvxOY/w4/r4x6gwy5HFhtwWIxRK43CHyTWoqCssx5tzArtPb2PyF7/CNT9/Al2+8GL8vyrp1gpy8tFTLqDOAJkswE0+RFSnyIp0TkuSKXufFYFDS2uZ8R3Ir9ZxwJVc8R50BioqyGBwcJ9cw+b5JdYqKxf/+JJdjzM3T23Zz71Mvc6itM827zcqZT0XOfBRSFdF4BEmWdMaJWcqfSCKBaCLK7t6/4AmNEkuc2bnSH3WlPWuGrD421V2MQqyhuqKYm26aT21N3kTp2wJT+jcpK9UKpRERUbq0IpOM9PujaLVyzOas9G/ocAZ47TU7C+qNLJs/h2Xz53DzledOGs+c8mJ2PfK/HG47zf7jp3hz/zH6rHbae7po7+nC64li0heQZ1CRm6skHo9PmxPUGil+n0AQjY4FKSvXUltrQKGUkm9S8/obfTgdQRRKKRdsKuH662t4+eUuItEBDHmqNDAym4Uy+e5uD2IxBANxLr9wNV/ason7n3qNB196iU2f/w8uXLOUy1dvoP1wlFgsRk6O8oyOV6kuoYPWcQryNfT1e9m/fwjXmJAT8vM16VKV1PbWIR+jY0FUahmaLFlaZVZWrkvnBBAsIYaT5V6Z902qE2ltrYGaGkNGeWQupoZbIK8Kjj4udF+89hEoml61kvm8nel5/35yglQqJTs7m64uO/v2jSCRSD7OB//AYTYLTk2HDtno7s7ACLUCRlAqpdjtAQ4cGKa318M5F11DTlElT//uXga7fkZBzhcpLs4iEIhSXZ3zrvkgRQCsWJHECDPkhDMwQrM1vU+qTDJz21AKI2g+GgvhY44xnn/kZXY8u4PBrm6kGhMJiYaYt4+xRAyRXI9UPwuprgKxOh/RFFVZIhFHbvaQXW1jvO84oztGiDjPVM4AzJPO4pffvorf/e4wp4+tQyRayrx51cyaVcbVV1fT2FjMAw8c45VXeggGZbS2OoEEYnEWajUUF2uBCa8jm82HWCxi1iw9JpManU5Oa6uTQCDCI4+cTM4zhcXR8847j4w+FgDc+9t7OXDgAIcOHeLtprfZt28fkbEIjoODjB4f4oGNY9T5l7KufDWFubp3xgiL8unuFjCCzxdNXwOtrQ7GxpIYoWIKRpBNwQjhGF5vGLdbwAhyuYS6OqHL5/wFjVx98/l0tnZy138/yJ6tzyCVv4xl/ir02su44MLJxuYtLdNghLFpMII7hM3mp7NzCkaYpWflymICgSkYIUmWGQzTYISjSYxQOxkjvBc/0swSx/fb1XG60kuxWIxCqUChVNB+cpiTJ8cQiUST9p9uP5FIhFqmxiKzYNEKc8ujcSsHjw9QUBVBlOPFEXDgDDp5setFHmp/KH08pURJgaYAc5aZfHU+55edz8qilWd9Lv7e8THJ9WGECAy5gp+K2xVELhNTOzcPjVrG7Nk309G6gL2v/A93fu86apZ/nlXnX4alVEd/n4dwOEZtrYHiYm365nI6AoL0UZKUPhon+w3J5RI2by7H549is/smEVk5egW7dw8CgpLlzTf6OXrUjtMZoGKWnkHrOM27rVRW6tNdNoLJ7nuJv8PKfTwe58TRQ7y+9Tle+8szeFyjU7YQI1aUIlbOSieqVJfERCIBMTfxUD/xUK+g1Ar1oyv/HOqs2WizFTijKuw2geDKMRahy6uksqYOZXY5YQqprCrGZvdhNKpZvnJhmpzK9IGqmy/4ZbldwXTDgLVrS0iZxQOTfp/MTpcphRcIBrmHD4/g80VmXBXIN5eQby5h9UahO9LRI4PseOUtxoaP4fV4KSjITRNBj/z6M8hkMuobLiKv4Yr0GFKxbp2G3c2DNO+2Eg7HaFhRRMOKIp58qp3XXusnP19NTq4SjVpKOBzDNx5BrpCk/b1AKL8CMOSpCQYjOJwBjh21M+JQsuHqb3LJJ/6VR++5gx3P3o1I8gCFs6+mZvFFTJgwTETKG86Qq6R/wIPN5kehlJCdLYA/Q54KcNDd48brDVNo1qBQSDhyxE4oFMNiEVb8A/4InaddkACdXjDZPnRohEWL8ied88ICTboTaTAUo3G+cZJSLFej4GvrZ/P04QEe29fH4T4X9960mKIc9aRxNzYWv+NqeGurE4cjSF6easZV/amdS6bGTKaPra1OfvjD3XR1ubjpplp+/vPzpj3+TGM8W1D0cXwwMTgolMRptRMdcz2eECKRiPM3lhEKRlk8XMKj21/iv+99iDf2HuG8uRtYOL+EUWcQmy3A0qWFKJVSXK4QTqdQJudwCjlBkiGHz5zobN6sTXdVTJVypUivVOlKyh9p/74hRkcDtByRIEJEaZmWlY0T20XEAqkg/ttUm5wRjjE3z25v5oFnt9Pc0n6GoEwty8agNqOQCqVbUvEE8IrFo3jDY7iDDtwhB+6ggyxlFg1lm1CrpehECoJdPmKJKGqVguqyUnJUecwqKqGsoJjc7FwczgB+XxSRSMTXvrBZUPpkTCDn1xnTvldpg2hzFpdfPpvMcqDMEryp28PkfDC1uUAqVEoFKxfPZeXiuYAwoX31jZMcOXWSIx0nmVe0AIlYxNFjDo6ebue/7/8jl61fyZr6pZSUWM64ToSxiejp9tDQaOa2ry3FZvPh80c4fGgETZaM0lIBlDkcgfSkPFVa+8ILp3G5QpjNWYRCMUKhGGqNlMFBP2W5s3n4v37IoY6j/PS+J/nLm/+NJXcWq2pWE4sZzmhkkFIwppRcu3cPMjDgRSIWsWhRPosX59PX50WtkaZVwgqFmEhY8PqRyyT0JdXaep2Cw4dGSAB6nZK2Niddp13odYp0V0eY6EQaCsUmEcUWS7awYjbnAjBUQfNv4P7z4fwfwTlfOGM17cPOCe+UD15+uZuf/3wfg4M+brqphu98p+GMY3+cDz56YTAkMYI7iFwuprY2D41GRjAYxW73c+SIna4uF3J5Pld/9Ts0PfsoP7v1h+Ra5lK7+pLJGCGZD8RT8kFmSdrmzeX4MnJCisjKycnACBopb76ZgREq9AwOjtPcPAUjBJMLAn/HdY9QMETTq008+6e/0Lr/8CS8EvXZEKsLURSuQKotR6zMAQSMkIiMEwvYifltxMPDxEM2LP9WQdZcMaKwgsAJHRGnYB2SX1BCnqGK+vqFqNXl+Hx5zJ9fTm+vG4tFx8UXN5KXp+STn5w36f5Zu9aSPvfNzVZmzdKzZUstkEgquyY8j3p73ZhME/dgSuHV1eXi1KkxTp0ao7g4e8b7s6KigoqKCq655hp6e9288sopTp8+wqnTe+ga68Ig1XMkuIuWtrfo+34fuToTy1afh7Fx3Rn5YN06Tbp0NhyOpW0MnnwyAyPkKNFokhjBF0Eul6T9vSADIxgEjOB0Bjh2zJ72hwNwBbLIq91MUWwuweEDdB3Yzm/a3mas53ouu/ky1FnCnDvlDWcwKOnv9zAy4keZiREMSYzQncQIhTNghECEzk4XADrdFIyQobIuLNSkO5EGgzEaG42TlGJnG++m9Dqbro5T1cdTYypBmbnf44+fYHh4nPPOs/DpT8+f9vjz55qZP9ec/ncikSAcDzM4PEZH/zDS3HHiigDukBtP2MOIf4QuVxdyifxjkuv/clRW5lBhykKjltJyxI7HE6JyVg6+8TAtLTbWrbNw9Q0bsMyqZPdfbuf4rl9hPf0Wyzd9BYncgN8XQSYTT5Ls79zZx6B1nCLzmdLHpretNDUNoNbIUakkyGUS3J4Q/f0CMDEXZXHy5CgqpTCelKpMrpDg9wsPj3Akxs6dfXR1uTh92kUw2dExkZjeNPeDjng8Ttvh/bz16ku8veMv2IetiCUy4rGJlRSRwoI06xwkWUsQSbWT9o8Fu4iObSUR6icR85xxfGnCCok5ZGfLWXPDpRzaW8a6TQ3YHMJqsGWukaqqHF5/vY/OTtckUieT3ErFTATW1JjOKD3zuP19HrRaBYZc5Vmfq9Z2D7axIhacU59W/x076qD1WAf9Xa2QiNN14hAvPfIz1my6hCu2fBZtXkV6HL29nrS3Q0r1d83VNVxzdU2aDEqVwKbktqlSQ5vdh98fRaWUUlWVw/h4BLFEBAhKNbcrSL8H9GU3scZ0AceaHmSw9X5cA9swZt/KSF0ex48Jq1pT/baefbaDoSEfMpkE66CPliN21q2zYLP78XrDFBQI9fg7d/YRCsXIzpJhyFWmyatFC/Pp7Bxj27Zu1CqZYJCcqzrjnKvUUl5/vQ+PO8Sxo/ZJHSwBJBIx55YaSHiiNNvcbPr1Ln55zQI21BZM+h2mgoPMf2cCkpkmJjOBlszjbN5cccZ+Op2c9nYnXm+EP/+5YxLJdTa+K+9Grn0cH2wUFWUhjuch1Rs50iLkg1mmHCwlWrq6xjh6zE5VpZ6vbbkBR2gl/3nn/Rxqv4srRy6kNGc2DqcfhULM4sX56S50qZxgHRzHPEUO39fnZfv2XgatXrKz5RgMKjzuiXzQ0FDE7mTpCkChOYvaWgN9fR7GfRG83jCRSJyjxxzs3NlLT48HsUKYnP4t8cyIY4zndjTz51ff5vW9R4nH45PILalYRmFWBcXaKnJVBWe2v7Y14wxY8YbGzmhJH0n4yc9XM+6NUFam5eacq1ndUME1ly3kySdPpRtdgKA21Wbb08q6qWULcGZHpZm2g3duPd7XL+SDXMPZ54O+Pi9DvVGMiln89y1r08RZX7+Hx158C6fby/1Pv8z9T79M3ewyvvSJi7nxkrWMe2PpcYSCUTo6XWg0MmprhLLIL3y+Pj3xl8slyc8SOnA6HYE0IeT3R1GqpFRW6RkfjyARi9LXqMsdwusNk6+u4F83fY6W7mO8tGc7j+1+kLF4I3MXXMuBA8NpVZnFkp322wLo6/fScsSGWCTC5ZrwLLRahe6QBQUafL4IHZ2uSUb7qe+1cNFETlCpBdP8XINqUj5QJ9vRKxQSnnn2FFqtPN3BMv2bxQsZMN5C7fifUb7yLehtgsvvAfnENu+UD0pLdR9YTpi6r04nZ3RUKDH1+aI8/vjJNMn1cT74aEZlpZ4ynR6NRkpLMidUVuYwnoER6uuNtLTYiUbj9PZ66LeKWLj5k2iLDnJ4+7M0P/ErdOKrWHnhxgmMMEN5VFOTlbffHkCjkaFSSZOd6jIwglnACEqlMJ6Uqkwuz8AI4ckYIZBcCI//jTDC1BiyevjK1bdg6+/LeFWEWGlAZpiLNKcKsXRicTI6PkB45ADxgJ1E9Eyz8OCpOPHeZdTKz+EzF5bxgv8wN920ge7uEDt29FFVZWHp0kIeeqiVAwdGqK3Ne8d7eiYCa2pMd2+njltfb+SZZzqQSsW0tjrP6v5sbXXyxhvDJBL5fO5fvs3mzRV094zx5zeaeeHEQxzvP4anz03PsQ6eu/+PrL9sPVd++kqycvOnxwhJ1V+qm28qJ6RKYCdhhCSp5/dHUSYxgs8XQSxOYoRCDW53kKYmwbtLrZZRUmHGvPJ6XPbz8fbv4w+/+CMP3/UYjRdeyM1fvnYGjCDGavXR0pLECLYZMEK2DINBmSavFi3Kp6MjiRHUqSYq02AElTTtX3fsmJ26ujPVWDPl8XfaJvPfk/DlDPvPRGJNVWxODY1GysCAB78/RlOTdRLJ1d7uSJv0TyXhRCIRComC0SGwd8qprq5MHz+eiBOJRRjxj6BX6qcd70c1Pia5PuDIyVFQXmXgwMHhNFNbNz+PnTt76e/zsOutAcq21KJQZvHJr/6M7S++xN5tt/Pqw59n2XmfRKlaiVwmQS6XsGSKZ1dpqTYt1U8B846OUQYGvOj0Aqj3jgsdtBQKKSWWLOrmCUy43x/B4wlRVZXDV25dnJZKzq01Y7P7GR72IZMK8k5bVI1nWCCfPqyIxWIcP7iH7S88xds7tuLzelBpcsgraaDAeDPO4S7io9uQZi9DnLUUkUhKPNRP1L2DeKgfqXYVkqxk6UAiTtwvdKMQicRk6UvIza9CmV2GwVzF7No6hkdi6XLOq65eAgg3fOr8GvJULFooGDSmSKnpiKvMeLdtJjHxye0y92lcWTSJUDubyPRvSx1Pp/eiUBu59suPIwocYPeOZ+nr6mD780+y/fknKZuziDlLbuTcjeedsX9mZD5UU+WsJZYsdu7sE1RX/iixWILCwizq5hsJ+KMIhFVe+ruOjgYZHQ1SWFjARTd9n8N7D3Jy/x957K6v0bzjEUxV16PPm4NOLwC5Y0cdQILq6hxKLNmEw0L7+foFxvRqRyp5pTqDpsY/5grRvNtKRYWOyko9O3f2Mmj1MXu2Pt14wWb3TTrnfX1eAv4Y+04PMTAwfkYHy9Q2kaEgF5fnsdc1zuf+dJBPryzn25trkIgFMP366/1s29bNxo3lfPKTuklgYfPminedkMzUueTdQIfbHaamxkBXl4urrqqa9N7Z+K5MB6RSEy2dTo7bHf54Vf8DDGOeGqNezIET0XQ+SPkrPf3MKU6fduH3RVi+3My6cxZjzinih7/9E4+89jSzi2exfNZqwmEtep1ykronU/WSzgkmDeFwjM7OMXy+CAF/lHHvRD6wlAilMg3JEoR8k5rhIR81NQY2bixLq2MKCoSysFg0jsmooqQim0ebP9x8AGAdcfL0q2/zx2d2cLj9NCKRiIr8MjbWn4/Il8eOjqfRKfMEYktZwHjEjTtkp899gkg8xLKiiU52npADT0h49map1BTmFpKvy6eyuITN5y1AHFczNhqkodFMbc2E/16mH1rma9MRWdPFu203dXU2c/uVjUVYSt5bPkiROem8lTyeyx3iypUXc9n6Ro72HOX5nXs4dqqHz/+/O/nWL//IxatWce68NTN+59SxM/9MdeC0lGTx2GPtKJJlITXVBnINSkwm0uUgJpMGvc7LwYMjOBx+4glYt+QcciQlNJ/Yx2sH9/Hmvx5g8/JzuXDFGiRiKS53CBDywfw6Iysbhet01BlgQf2Er1ZBoYbFi/PTJZ4ajYwF9UZcYyF2JxUIIKi5nI6AsHBVks38+Uaqq3MmnXOTScOJE2Ps3NmDRCKmuDgbvU456Tfs6/NyojNEfM4WlhTOgdZn4LcNcN2jkC8o6t4pH6Se9R9GTnC7w+Tmqli0KJ/BQR/XXTdR7vNxPvhoRo5eRWlpAQcOZGCEuiRG6Pewa9cAZWW1AMyapScUitHT40YqVdNw/mpQFWM9/hpbH36Ew2+8xme++Rnmzxeuw6n5AASMMDjoTYN6b0ZOKCnJoq5uGozwlQyMMNeMzZbECMkSsAGXGs8QJP4GJeyjtlH2vbmP7c+9Rk5RDe2HjzF8up14NAiIEKvykObORaopIB4cJRawE+x5BblxIVJduXCQeIyYN0mIiUFhVpBt0aPPLadIvZxzatfQf0rClZfN5sor5/Dlzwu5pKlJUHStX19KcXE2GzeWA4n0PfF+7+lUTHdvZ+6zZElBmgQ7m5g71zBpjADlZTnMNVXTd/AzzP/KhXR6HmPX1tcJDAXY+vhWtj6+lVnzaqlp3MSajUun7SaYikkYITmPKClJYoR6Iz6fgBHM5izmzzcSCCQxQt10GEFDbW0ep06NMjgYY0H9Bay/+jIeuuMhdj75FAd27uTGL9+MrmguIrFIwAglGRihfhqMkOwMmhr/2FiI5uYpGGEwiRGSjRdSZfOp+6WpycrQ0HiaPNNNyQfw7iorgGPHHGm12Lp1mkn7LFlS8K7ziZnmEu/22T5flOJiwS6hsdE86b2WFjtHjtgBZlSaTUeuOewB+vq8xBVh+oIOFkjd/zA54WOS60OI9nYHr+3sZdwXoa6uHJNRw6rVxYQjcUpLtTTtttLZ4QJg5bqNxCWzsJ1+gj2v3oPO8AJrL72FkpK69LFS5twjwz46T7tYtDA/7W+kVEkFH418DZs2ldO820pvnwexOEEsNnEhN+22olBI0p3rUqRFysNo6+A4MrmENYsL2D4isNsfdAILh0Mc3P0WW596iMN7dxEKTF5RiSjPxxE5FyIgVqmQaIaIBzqJut+ExJTucyoz5eXn4vNFcDhK0M7awpe+eimLz1nE8TYPTz99Crc7RPX84jOM2VMxVVI61TPqr42ZmPhUnA2RlopMVdjU7zPxOZWYjKv59Jdvpf3IQZ59+D52bX+JnpOHaNhwXZq8m/pwS6nBUgqr1LgaVhTx2OPtHGmx4/NFKC/TkZ0tIxaLc+DACFbrOOcsK5j0Hfr7PIRCUUqKtZRYsrEOzmZ0/DaK8gawtj/Cvpe+Tt05F6K75Hv09cGhwyPpMsOUCqF+gZETJ8boH/BQUpxN48qi9GcY8lRUVeVgyFPRcsSeXnGSyyVkaxUUIYCxVEmKTi9M+FLfz2zOQqWWIBKJUaokaNTSSd53qfPZ3+elu32Mi88p4Eiuij+83c3B3jF+v2UxJq0SSCSVJcI9MtMq/HuNdzvO3LkGvve9hmmBx9n4rkw36UpNtKRSUbrpxD9KAvtHiI7OMVpaQiRICM8rZwCTScPqVcVEwnHiiTj79wtG4uvWlXOL/UbeONDCzmM7ePitB7hw5Uqu1E78prt3D6bLD/2BKE1Ng0kjb036XlCppaxeVURf/zh9vRP5AAQ1lz5HwY7tvYDgV9TX52VBvZEqX07Sq2gQiUTMkiVGsnOTq/YfAqDp6h/iwed28uhLb9DZa530nlysojp7HSKvQCxXGRbh8A/Sbt9HIDp+xrGkshillhwc9gC1hQvJMyr5z9s2EAsqeOaZDtzuEKtWFHP1ZdPnA4DamrxJZOJMZYPvN94pJ5wtkQaTV3OnGrgDaWN1i2U+JtOFjLm9/PGZ7dz58Iv0DI5w8EQbX7r2qjQhlfk9U8dOqZxSkSpdeeyxdvbvH8ZgUHLO8kIA3ni9nzFXkHXrStPfwWLJpqNjDL8/QkGBJklUeZhfvISrzz+XHu9R/vjsNna37ucrN1xHfqKGlsP2dImhxZKNpSSb6uoc/D6hhCvlq5VaYTaZNOkukm1tzkn54MSJUSwWbdpnLBZL4PdF09/x6DEhJwz0e4hG4hhyVVRW6oUuixl+YYLKzkvLEQfqxpXUrqmCvffA79fChb+ARVv4sPLBux0r9dptty35OB/8A0V7u4PXXutlfDyJEUwaVq0qJhyOY7FoaWqaUNuWl2sZGhKM4aurcwV/ogur0av9PP37h/nhv/0QnamQc87fhEy2lO5ubxpYAyiVUhSKDIzQbKW3dxqM0JTECMnOdSnSIuVhtHXrODKZhDVrCnixQwF8OAsfkXCE4weOs++Nfex4/g0cQ8MZ7+5HrMxDapiPSGkg5u0nHrQTtr5NeIqnokhXSFn5fAJKG5GCMcIOM1nlGirL6shxLCJ0spjhDjFrl1TM2GhoapnvJz/5wd4H7/acOBsiLRUpcnrt2pJ3KHdeQmnpjfgjfv7n8f/h3rvvZWTvCKePt7HwwoZ0PjgDI9h8HEs+L1PKJpNJk84HR44kMUL5NBjhnMmETn9/EiOUaCkpycZq9aZV2gsWlyO+7Ys4hqwcfPUFfvO9X6A1mqlu2MzVN6+bwAj1SYzQ76GkJJvGxqL0ZxgMSYxgUNHSMgUjZCsoKpqCEXRJjJD8fv39HiKReHLxwIRGI53kfQdJjNDvpaXFlu7AeGYkJv35bnjwbOPdjmOxZHPdddXTqsTeicBMxXTzkBSxFpGNQ0xCq/LslIUfhfinJLnuuusu/vd//5fh4WEWLFjAnXfeybJly/5mn99yxM6Jk6OIIF0WdsGmCoxGtdDaVy1DUy9LK4ha25z4Ajdwzeqr6Tj4B56575sc2/0IN3z+KxxsM7J/3wgGg0rwe0qAxxNKA/MN60uFDigLBPlhZaWepretOEcDadVL024rhw+PkJ0lZ3w8TE6Oiksvq0wrxY4dteP3Ryk0a4AEFfWfYPWFn2Tlqjkzf8mzjFG7jR1bt7LtuZfo69wL8WnMHMXZiMRKErGx9EsikZyY562JbUQyRPJiZOoSjObZLG5ooLZuFuFInLZWJysaVqXL7yyWBMuWFk46B3+PeL8k1nT7TKcKm+lzRCIReUU1bLz++1z56a9zcNeLXPvp65HKBK+a1156hngiztrNlyORSOjr83Lo8AhuV4iWFjubN5enH9qp8xeNxnnjjT5EYjEL6430D3gZGfax7dVe8gs05OgVdHSMUVqqTavTTEYNGrWUXIMKQ24lmy7dxPbnH6flzfv52pZ1NGz8LIVVFxCJTHQ+THX+OnrUjtsdwmhUC10m2x20HLGjVEjwJctpM1VdhjwVGzaUpj831VE0lRQzybQrLq9KlyT5/NFp1XbBUJTODqGE5xPXVlORl8UTB/s5//a3uPO6hWnPhdTkIXMy8te0a3+3Sc07vf9uvjAzReo7ZK7c/zPF3zsftLeP0tEZQSyGeJx0WdgFFwg5YdeuQWLxeFoxVFaupaynnC9s/Bw+eTe/f/oFll67jy9cu5nbPn0lr7zSzYmTo3jcIVavKSZBMiccGKa0VMvq1cUsqDdSW5OHzebj7SZrWg2Tit1NVlpabCiVUoaGfZiMalatKk6XoY06BTPvUChGzAFP/vS/WDDf9Fefi0gkyp4jJ3jg6TfZ+sY+hsfsZ2wjFklQSFSIRWKi8YjQHRFwB+0Mj/ekt1PLstEpDZQYzSypq2ReeTlr1pQmFT35NKwws6iuCJvNx9JlhWecg79HnC2R9W7lEO+2mjv1cyIhMavrGrj+4fXsa2tFIZexdKlAUPn8Qb5z+4PcevNllBblT3oODw/7icXjbN5cnibCFtQb6epyYXf42btnmLVrS1CppNgdCY4fc9DV5WZurQGZXIJCKaFufl66BPC666vTHRSHRwop09WyrWU7X7/9NyypqeXqNReSm2VIdz1MjSMWSzA84ksDlspKfZqkAhge8pNrUFGfVHXlZZShTC0VSZ2/lGdXZWUORqOaBfVG/D4hH+h1E35hJpNmcknn9XNhww9hz2/hhS9Bzy7WrvrRjPkAPryc8HE+eH/x984JLS12TpwYRSQiXRaWygcnToyi0cjQaGTU1xsxGFS0tjppb3diMKi4/PIJBffiFf/N977xZ/a9+jKvPvxHml58npJ5KzAXrOXAAcHvZ8OGJEaoz8AITVaczkAa7DY1JTFCdgZGuHSiXOnYsSRGKBQwQs3KCzn/2itZde7sv/pcJBIJ7HY/27b1sP3ZnfQffB7OKIMUg0SBLGc2ymJBgRoPuQn1vpyxiQyxKg95lhFjcQlzNpgIztlDQjSCJqymWnUxXz7vJrJ8ZvpPxQhWRDle4vi7NmN4PyTWTMrKd1J8Tv0ctUzNZ1bfxuKcGzgUfIaH/nwf7XOaeX7Yz1Xaq9j74l7kCjnnXnQuYrHQ0OrQoRHc7mkwQv0UjCASsXChif5+LyMjPrZt6yU/X0NOTgZGSCqWTSYNGo2U3FwVBoOSzk4XNpuf+sVVrD3/P9n6TDMvP/wo+56/D5/1IBfevAWnR3EmRjBp0qV4SqUEX3IxI5PUMRgyMEIyJ0AGRjg0Akzkg9T9kirRBCblhGAwSmcyJ0xHctXVGdHpJoztM3PyO5UNvlu82xzind5/N6+wmSL1HeIKOeGg+B8qJ/zTkVxPPPEEX/3qV/nd737HOeecw+23387GjRs5efIkJtNfP0k/m6hfYMRu96f/norpfJ7a2x2cPu1idDSIVqdn/nnfY8WGLbz98h/4wb9/muycUkTZq4np11Bba0AuF9RYr7/Wx6JFJtatKwMEYg2EizgzCQIYcpVotQrGx8OMjoaQKyS4XUF2Nw/S2+shGo2jVEkoL9NRNz8PEAEJghEFk92vZo5IOMzI0ABdJ1rZ3/QGe3e9zZhtAIgh1MqXI84+l7h7e/r46Yh7ScS9JMJD6Ze0uXlIwxdjyC8lr7AKT0BPTo6KJYsLJil7AC7YNNm7yGTUnHEOPurxTiQWTL523o0QyzxedXUun/j8V9Kvh0NB7vn5Dxi1j/Dw735D3crPsuLcc1m0MJ89e60MWsdpOWKnpiYPm92H1erDZFTh8YQZGwsSjSZwjmZTUqylpcWG0xHglVe6qakxcKRFuAbXrbOkJfM1NXlpIqlrzwgh8XIu+/xqTh9+hJ3P3E6O8TmWnX8LPr8praDqH/BQVqpFIhVP8sbZnVQjNjaYp1WlZZ6LTN80tytE5Sw9IHS7tFiMaTVcJhmWGZkEmkgkolKn4sJiA2/bPdz0x318aW0lV9TmJzvnTJ5UvFOZyNkY/fb2unn99X5SJqUf9IrJ1DG8l4nWP1p8FPJBTU0uPuLo9QpcrtAkosViyWbVqqJJZEYkHGdoyEc0GsdcVMrW3/yMV/a+zR0PvcBdj77EvJK55EoqkUoNzK8zIhiHu7Hb/CxeXMCCemP6XqytyeOKaZ6FuQYlSqUU73g4bSJst/vTZWixWIKqSj0L6o1YrT4ggV6Tc9bfOZFI4HR5ONk9wK4DrTz36l6OnOwmGBGM8+USFfmaErJkEcYjrkn7xhOxtFIrEB1HJslFo5Yyv2IeRqeRypJiKsxFhPxi8gs0XHzxrDMUV5kdxEwmzbTn4KMc78V09mz8QTKPd+m6FZPe+93jW/n1n57nd49vZctFG5lftIQis57q6lwGt3ZjHRznSIs9TZparT6ys+X09QveX21tTmpq85DKxHR2ugj4ozidAXJzlCSA85JGy6nV8OuvF7xd9u8bwu2O8fkLt3DpmjX85A8P8+3f/5ILlq9mdvXVVM820tfvZaDfQ3FJNg0rzPT2etKli4eToEulklJTa2Blo3nS95/69xSwSfmALVyUn+y4JWN+ct9M4JMZU0s6bV4ZfZot1JSVoDn+DKXWw0hX/54jgmvCGc/TvzYn/DUk2bvF/6V8AB+NnFBfn4ER6mfACKYzMcKxYzaCwegkcJxXXI6x7nJUEg+acBvH9mzj1J5XyC+fy+qLzqNh3WTyzmQ6c35sMEzBCHIJbneQ3bszMIJSQnm5jrq6CYwQCIs5W11KJBxheGCYrhNddLV38drLBxns6UGsMCCSaYiND5IIn+mpK0QcYgES0Qnzcq3BgNhyDsaiIoxFJXiCKvS5cszLx7DpjzIc7sWSbeGK0k+zuXwzJdklqGWCT9f85Ne/8sq/fiH/bxXvpVnR2TxTWludHNzrZMWK6/nGn/6d+4/dz6MnHuX7b3yfjh90EPAEePCOR1lw3qUsP3cRixbls2eP4MPV0pLECMl8YDJNwQjOICUlSYzgzMAIR2bACMnFheZmK3a7UOFTVZWDNMvMpV+8ja6jLRze+Ty/+Mo3qF+zHvPcVZSWapFKxen7p6UlAyM0mqdVpc2UE9zuEJWVegC0WhmNGblkJuXUVFXU1Dyc2n9q+XBqrDOVDZ6t39dUZd0HGdN9F5NJw2hgFJlE9g+VH/7pSK5f/vKXfPazn+VTn/oUAL/73e/4y1/+wh/+8Ae+9a1v/U3GUFOThyFPkNALHeKEyPQFSv275Yhd6GInExONwtEjDiqrSrj2S3dxifskzzz4O44ffATf0J/5C5u57lNbyMoyCTlG+B8tR+zs3z+MdXAcQ54KpyOQVqrU1OSlvZ9e29mLzxchK0vO0LCfkWFhZVStkRAMxAhHYmmPp327j2EfPEKpRUkoECQY8DPuceMadWAwFVC9+DKe+vNJWg714u34FiTC058MkQJl6Y8QSbJJJBIEPW9ObCvJRiwrRCQvQCwvRKy0oFCIKS3T8Y1vLAXWviuZ888S76W0MbNDY+Z5ySS/ZjQttPtYeu617Nr6RwZ7TjDY8zVa9zbwg1/9DLO5apLpcqYCSpC/l+EcDWDIVeLzRzAZ1YRDXrI0Qgcu6+B42hMic3ypMRgMStpancypMXPhxT+h+dwreOnhn7Dtka8ycHIjX/rPHxEMRbEO+lhQb5xUllm/wMixo3a84xGCoViawOrr86Zr9PV6BYOD4xhylWkitK/Py9Cwj+rqXIB0CeN0HmmZMXXFo6/Pi61nnE1VuZyMhrjztU6eeqOb/I4gWXIpX/xifRp8TFcmkpp02Gw+Tp92Y7P5ZzQkbW11sm1bN4mEkBinMzJ+PzF1DPDPX4byUcgHVZU56MzCtbh4cf60QDxzItTa5iQUEoincW+E3q4gX7ruCs6rb+TV/U3c88RWDnpa6PZbyJ/tptxYSSyWSHfq2bmzT8grvkja0NvhDHCkxZ5WeK1sLKKry83pThcSqQiTUU1rstxLo5YQCMZYvaqY2po8/L4oR48P0zXUi6VUgy8QIhAM4R3343R5GXaO8c3PXM3xFi+PPtbOzraXGRrvZiar+qrcRcw2LEIkEnHCvo/OMRcAIsRkyXVkyXPIVujJkueQpdAwZ3YOmy4ow2xekf4+H/Sk7qMW75oPMibR0600pyKz9DDVEXFq1JSXs6S2mgNtJ7jvmZdQy1/j+g2bueTim2Ez6esGJhRQgWCMubUG1GoZuQYlfl8EiUSMVCJGn6NgYb0RjydCruHMLpImk5ATUg0Pysp0rK9cxbJ5tTyx/VXu/fOL7D/ZwtdvuhGdpIhBq9DtOFUumfpeCxfls3ePFaczSCgYS5+Lqfkg16BkZbKcJXPxZ/260vS5Sym3ZloFn1rG2tfn5cQpD1SvZ8nKWjhwP6ZnN9Ex8Gmami5ALpdMIqT+2pwwlST7OB+8//go5ISamjwMyTLblPk1TJ8PWlrsjI9HkMvFRKOJdGlYqpRww4ZSIpE4YnEBq1adR1XF17nrp0/QvG0nT9x+O8/8Vkl2fiWtSxaz7qLlzJ1fgtMZmKQkaWwsoqREy2uvZWCEIT8jI0InxkQiQWNjEXVJP0mdzsveXe2M9HRQZtEQDAQJBoJ43V5cDhf5RfnMWbaSp546ScvBHsaOPDh9FQcQC/uEEkRtOWJNIaHebaRyh0iqRqzMTf8nUecLGKE0hRHOo6/PS36RjJPhw7zWv52TYS+zNbP5dN0nOc9yHoVZhcgyOu7+o8Z7KW1MdWhMvZ6KmRokZcmz+PfF/85Vc67iP1/+AcPrhgm/HKbv1Gn6Tv2S428v5Ed3f03ACMnrBpikgEpjBGcAg0GJzxfBZFITDnvJSnbptVqnwQimKRihzUlp6YQ3pUYjJT+/kSVrltB16C2euf9Jju7ezarLruQ/f7Il3XSmvt7IsWN2vN4IwWBskoI3HI5x4IBQ9rpkSUG6qVsqJwwNTcEIU5S80+WE6TBC5ney2Xzs3NlHT4873d10qvotk+BOjdXtDjI05MftDqU7O05XPpg67ynPsLMhx94tpo4h9V3+keOfiuQKh8McPHiQ//iP/0i/JhaLWb9+Pc3NzdPuEwqFCIUm/J48nplWEs4uxsZCtOwaoq3dgVgsQqOR4XIJ7PamTeWT2lenjLR9vgiGXCX5BRra2pz4/REOHhxm8eI5/OrBx2hv7eC5Rx/i8Nsv8NWbnkaXk0f1wrVEZ2/E582hfoFQPjA2FuTYUQc2uz+9kl9Tk5cG8qnSsVg0TjAYpcQiGBHb7T5GbAHaWp1csKmCP97+fU4dem7mLylWIdU1Ew92Ew92z0xwIUasLEckER5WEokIReFnQZyNVJFHtk7PokUFlJVp0WrlGaWH5kkkxP+FeC+ljTMBoEnGhosnvLIyya/hkQgFVZfx1Z9dzlsv3cuuVx6nv2M3n73sXK7+1Be58Qu3olCqknJaGwUFGsyFmqTCT/gMu91PV5ebRYtNLKg3pcv+8gs06eQBQgnis8924BwN0NhgBqOa/IIgcrkEk1HDpVeu5eLL1/D7X/+elx75JV+78Xyu+NQ3mL9g+RllpjU1eWzZUkvTbitKhSRdvujxhBj3Rhi0jhMJxwhH4uTmKimxaCcRbJnn6r3UxKfOnUY9ARKX56kR+2LstrqwlUjIPuplx47eNKCZrkwktQo3a5aeFSvM6dbSMDEJyTT8nWoe+kF0wZo6hn8kyfH7iY9CPrA7/Az1OznSaaetzUltrXDOj7c6yM1VcvHFs9IlUiBMKFLG8JaSLGIxwUw4ZQJ8xZoNfOn6S3nsxSa27t7FF394N5Bg4Zw5XHF+Aw6PhvkLhHs1Go3z+ut9LFyUj93mT6t9Ux30Nm8uZ3eTlWgsjlQiRqsVgIDd7sM2EqC1zckFF1Sg0Sb41//9PuHYTM95eOGFDhCBK2jDGx6bcTupWIYhoxtiiW4OeRozWQotBq2OkhI9JcVC16DTp1309XlYu9YySZn1fyHeiz/XOxFimaROqvTojFXa7EK+fPm/YN/Uz52PP0mPdZj7//JnDpw+xL0/+nK642FbRk4oNGuSKkLYtq2Hvj4PVVV6isxZk8r+LCXa9PdwuUO0tztpabHR0GimpsaASCQS8kHy+65s+Axf+5eL2XLbr7jtV3eyfN4Ctpx/2RllpiaThvXrNJjNGnY3WVEoJbzdNEhnp4tIOIbHGyEWjQuKMoMyPY6p5+q9+qRMSxqaFoG+BO/Lt/PvRXezzdHGT45eBfBX5YRMQDqVJPs4H7y/eK854YPOBwBjrgCHXuugre0sMELSSNvnE7oc5udPxggggPYUYWaxZKPL1fCZr32CDVddjCTm4o2/vMXu7U00PfMgTc88iKGwEJNlFsFEDra+aspK16bvv3A4hkQipiSZe0pKsmhrcxIIRJMkrHAv3/Nfd9B5aPocCoBEhbKonXholKjfOSPBBSIkWSWoKy8DQCwGsViGSKZBqtKiz9VSX2+irEwnYIRwnLY2JytWCEobf8TPyPhBnjj1BuF4mLq8Oi6vvJzGokZMahNikfiv/r0+KvFeFJYzEWLTNUjq7XWzdWtXkjAv4mrNt5AtWULbusdpf/oIo2+M0n38MJ9a/ylu+OIN3PBvNyBXyCdjBLMmqfCbghEWmViwwJT2d8vPn4IRNEmM4AwkTdLV5OcHJ+UEIKn08rFs40XMb2jg/v+9l9ce+yOOroPc+uNbKZtdNoERmqwolZJ0SaDHE2J8PMLRow5isRhebzh9HqfLCVP//m6RygmaKQtJKVN8rzdMMBhLq99g+rLBVK4uLNRQXZ2L2x08Y/Eq87MWZTScydw/c/v3GlPH8Nf6h30U4p+K5HI4hIs4Pz9/0uv5+fmcOHFi2n3+53/+hx/84Acf2BiGh33s2z/E6GgAQ66gqkq16tVpFWy5Seiakrp4pl7sAb/QmrWgcOLmq5lbRc2Pf8jwyNd55vHttB7cScfx3ex97Sl+IRZjKJhNnrkGiaKY4b7F1C0STOunIwqsVh87dvaiUcsADfFEgvJyPdlaBaZ8NTa7jzG3CuHSmGzkmI54gKj7DcTKcqT6dcRDvYhkghpLJNUhkugQSXUgViOVick3qdm4sTyprrn8Hc/f1NLDj+PMmIkQOxvyK3ObNef+kr4v/iu//P5/0nrwTR6/9w7OWb2eeYuW0XLETmeHiwX1xnRJbEpBllIAmouyuP66Gmx2HweSQKeiQofJqBGaGWztprdPkLprkmqv3l43iUQCjVqKzx9Fo5ZSNf8CPle+jAOv/ZaH7/w2c+avwDb0BU6cKJ9UmppZ+igQXGEkEjGmfDXBUBTfeIRwJE5trWGiDj45llSHyJQP3dnGJJCYse8F9YUYlXJeHxzFtUSLv1RJIpFIg/fMePrpkzz0UBtz5xrSpqCZraVBILgeeOA4DkeACy6o4JOfnDfpGH+tkXFT0wDbt/egVkvJ7A70zxwfhXwwODhO92k3fX0iPJ4QfX0erEPjDA/5UKqkWEq0rFsnlHOlrtlMxQrAjp29dJ52UVigSRMTX/v8BWy5fDV/2XaS1/cfosvewf+760G+8+s/oNVksWJBLcXGQuKBLEoq5MxfIBwvkyxIqbS2vtxNwB9h1iw92VlyYrE4Crlg1m2z+Sgp0iETq96R5Or3nkSryCVHlY9BZSYSD6FT5KGSZaGUqlFI1SgkKiRiKfkmFWvWlKSJkpkmZP/XiK33G+9EiE2XE2ZaRd9oKeOWT63n+79+kl8//DRHTnTx/d88wl/uEe6HIy12Ojpd1C8wsj6VEw4M09bmxO0OUVGhTxNiL7/cRWubA4NBmf7cnm43+5Or6VPzgVojxe+LJv9M8LvvfY3nX2vmV488xrfv/Tm3Bq6h8O0q8vLUaVUWTFzDJ06MEgxGCYViyOViqir1eLwhvOMhTCb1Gb4obe0Odu7sY0G9cdo27DPFdKSh8IWMRBu/zlDL42zgLRac10t/4++nPcbTT5/kmWc6WLWqKE0uTc0JmfkABECaSZJ9nA/eX7zXnPBB5wMQ/OP27RsXMIJBhcMRYGAgiRF0CrZseReMEEhihALNpOsahOuzs9OV7j5XU1ODSmeksHY1ntExTrQcRxwaYqirk+H+Jrr3vcjzd/8cU5GJ/KJ8JIpsghElnQfkaLI1KFQqxIEw6gRIQ0H++Jth9DoJI4N2zrAdyYxYgGDfq4hkGsSKXESKXMQKHWJ1ARK1CbEsC7FMDRIlCoWYkhLBSzLTQHymuOCCCvwRP3/p+guv979OLB5jcf5irqy6kiUFS8hT5U07D/u/FDMRYtM9N6YS5sJ76/lm9RW80vAEd79yNwOPDuA57uFPv/4TK9atYM6CObS02OnsdLFgQQZGSCpjR5L+iWZzFtdfX5MsE8/ACKb/z96Zx7Vd33/8mYuQBJJAIECAcBRaoKWl9NBSW4+2aqtOrffmOZ1Tp85zbs5rm06d23Rzh3PedT+PzU6dq0dbq62ld0tLC22h5Q6QEEgCCQkk5PfHN/k2CaGtWs/xejwqAsk332/I9/v+vl6f1/v11oSGGTSJ7bCjOIJGjtvtR6OR43T6yMpSh+5/MjFk/px/vfQh21cu55rTf8ClN36P7/7ou1Gtj4LAFeIIRjVZWWpcriEUCqm4LUDcl/CEyE9TD2DsmhDefnl5mng+joXq6g7WrGnFbNaKbkmr1S06uQDRGeZy+ZgxI5MFMQNnPm+wfVi0VCplRE5r/qbjWyVyfRb87Gc/47bbbhO/d7lc5ObmfubtZWZqxNDzsjID3V0eandb8fuDokPp8I6dIEqljIJ87ajHtbe7OdiWgldxJgu/dy2TCgMse+ZNertqaW/czIDjTfasF4i2LjWdlfpMMrNNGNJSUGuS0SQn09o2SE+zE59WwaBVhrW7D502gKPXweYVPbz5Nxdul5VIgUsiT0WSYBJErIQcpIn5SOTpYiFJNSi57NIycTLfOI6Mo8nV+rQ4GvEr9jHmwmKOW/IAXsl/0Sg7mVIp5DdUTEsnGByJmylXWKgTLtoRbY1hohMOBV6xoonGAw4SEmSUlKRSMS2dmp02wRpsGcDnC5CYKBdDhUtKTPzyj39n09pVPPzT29m/+wfocs9l954LmDTJQFvrAHOqTGLffFgkczq8dHZ5OP44E1abMOZaLo9evVtfbWH79m7c7uHDhi7G+5tEutIipzAa0zUsSddwks/Ey5tbeW1vF53Pb+HJS6ajU0Vb45cvb2Dbtu5QER89JhqEG42eHi9paaq4xOXz5KS0tDj5y19q2L+/j4kTU5BKpUBblMj2eVtfvi041vUgOzsJ6YiPjEI9LS0u8vK0HDjgEJ1c4bD5w99MCDUhv0Ab9bjW1n5273Qid2dz5YLZvP/sRO687y3W1+ymoambtdt2Mejz8vwHoFYpyTGmkapNwZShJyNdhy5JjQQ5e1t7cbp8tAyo8fqGcbgGGB4Z4p/V/dz1l358ATfu4UMOBplEHmopTCE5IQV9Yjq6xDTkES0hBQXJ3PPzOd+Km6QvC8ei3SAW8T5bsTfDsY+Zkj2dK09OYXfnRv507/Xiz8unCteK2Ey5eKH+e+rsdHW6RTfgrlobu3bZGPIFyM1NFnPjWlv7sXTGqwep3H3jd7ju0pO54zfP8MBfnydDa+Lk0kVs2tSJMkHG6acXUFWVLR6HWiNnZ2jlTf+VuwABAABJREFUvqLCiMPpZWDAjyH1UDsYCO/zilDWGIw9QTPe3+NwWWjGLD1k/hDaKsjc9gKZW5aC6a9QdlbUdpcvb2Dt2nYA/vGP6eLPY9uNvsx6YDQK2ZJhJ3E4cH68HhzbegCQmaVm9mxhYmFZmYHubg+1tSGOEHIoHU09KIhTD/bu7aWlxUVHRz9ut+CeWrasjv7+YaZNS6dy/lxaW12cd901mHNUbN2wl6EBGw5rN9ZOKx3NnXS0dOP1ePAP+whGTE88sP7QHkgkEiSyBJAmIJEnIlUkIUlIQqJIQqpIRqrUI01MQSITpjCmpgri3efND/IMe1jTtkYUt2ZmzOTCkgupNFZiUH27nIjHoiU5FvGuG7HCV+RjfsSPWJS3iKtTb6VlVy2SVhW5ZcLnv6IineDISNxMOZEjVByBIzRGcISKdGpCNaFzjJoQ/uzU1Nho79WTUn4pKX3bWfbHZbzx0rt898fXseAMgcOERbJw692iRflYrQJHsFoHo96D9euPkiMcpibETmGMPI+PtGC3YYMwTTUxUT5mm2TYGRaOpYjFp3F/xzuuFSua6OgYIDs7KcTte6JEttbWfrSZfrKM36ya8K0SudLS0pDJZHR3d0f9vLu7m8zM+OqsUqlEqVQes31ISVFSGRPqeO65xSKBttrcozKzIlE+VQgShiBWmztakDAnY84TouBHAkHeWzWAJGkuk45fyGWXlfH2W3Xs3L6LjBQXuiQ3TY3N9Fj76HdYcQ/04+53MeQbIhiEXrkUqUSKTJGI1J+CyyEhEFSRmlHI966djTErG2NWNjn5E1Brko7Z+zMOAUcKmj+WGEv8Cn8m8/K0nLj4DCqmpYs/UymcrHj+Giwn3QAsFttew/u+YIE5SgiKnGbZ2tqPVCYlRa8k3ShkqYQ/51u2dNLZ6WbXLhuzZmWSqJSj1SaIF9Lj5i/kgT/9hyce/CUd+15nU+9W2g7+kGGEYlk1J3rogNXmRqc/dCEOr3S0th7K3VIqZUglwtfDiYvhv4nT4RO3GX7vxspBG3D5qFCpSCsx8mFjD6c9vpanLq2kwnwopHvp0uKor/EQeaNxrInFnj125HIZEyemsHRpMSqVIqo1BvjcrS9fR3wd6kF6mpp0vRSSjOKNTmSuUGtrP1are1RmViRMpiRsVmFVNBJmczJ5ZqEe+AMjvP1WE5naHGaYhRYP31CATdsOkpQ2TOFEBdVbmuiy22lut3Gww4Kz34NrwAPBIMGgBFmbBIVMjjpRhS5ZI6yuyvWUF5ZwyXkV5JmMFORkYjalh4TScRxLHIt2g6PBWDfD4c9jXp4WyOeGilkU5KSJP//Lv16j3+3DO3QqcEgcMucmjwp9D7fchr+CBEWClFSDivkn5ojPPXjQgaVzgC1bOtFo5EycZKCoSC9ez1P1yTz361sxpxTzxCv/xz+3/IOpWccxwTAFrU5JVVV21PGkRbRtmUnGZh08VA8i3C7DQyMoE2Xk5WnHFBfDfw+H04deNzpQOG4WmkSCNbGcrowfUeJ4jYTXL4XjroNTHwKZcLv9dawHkycbREeHXC7B7xccOt+megCfviYc63oAkKJXUXFutAvj3HOLo+pBbGZWJMrLIziC1T2KbAeDQQYGhvD7R1i2rI6enkHS0lTMnWsShYXERDmDFek0tMqprJzGhVfni9sP70dubhJDPh8HGuzk5CSxbFkd+/f3UVKazn0PnPiluqU8wx4+avuINW1rGB4ZZlbGLC4quYjKjEpSE1O/tP34MnEsWpKPBocTzFtanDTukXNT6mMsL36F/cet4FcbHmROwlmYZQb+89eH6Tz9AjhvrsARjDEcIeKzOXt2ljjRs7W1H6lUSkqKUsxbHJMjJEZzBBAEtoMHHTQ1uZBnHk/h/CLatv+Xp+//JV2N3+EHd/2AJK1wvxTriIriCMYIjiANcYTDLDaJHCEmL8to1IyZjXk0i1dzQnVyjlgvRyPeUIpjhfDfIzs7iTlzTOLgifDxgJBVljMiGxe5vkokJCQwY8YMVq9ezTnnnAPAyMgIq1ev5sYbb/zS9iOcF1QxLR1Dmor3329m40YLwSAsWphHW3s/NTVWbDaPOMVu/ScWMbtIp1eKAdkAtbt6QlOAEli0MA+3x09NjZX+gWHS0lRcdlkZhjQVphwD/pEZnHyymUGPH82ObiqnZ4yyNcbb3//85wAD7mFOP70Ao76Pnm4LmiTtuMD1BeHzWks/KyJFnkibbTjkPSzm7F73BN0dTbz/jztp21/No3/9HU3NHlasaEIqkzBvXk5Ublp4Wo/V5sayq4ep5QZMJuGzKoZKpqmQSqUM+QL09Axi7fYgydSQGyLqW7d1oVHL8QcTuPbOX/DOG/OoXfcErdvuoXjGFRx3/LWjjqV2V2iMfEiQCk9tCb9mfX0Pra0u1JoEfL4AtbtsdHZ5ooSssOicl6cVeuEd3lGC1uFaQffv66OkJJVbFhbzQnUL5/9tAxdNykJx0M2iRfmcd96kI07xOZqV+XgTto5mtW/yZAMXXTSJyZMNtLcL+WFTpqSNymH5tmWyfF3qAQh5RjtrhM9YQoKMXbusrF9vISNTzdJzJ1Jd3SHWhPAUu0/WW+gNZQoFAkE8obHYdfU9VK+3kGpIZOGiPDxuoR7U7LSRbdKwaFEq0yrSaWl20dvrZf68HNLT1WQklKLVJkTdfB5uX2UyaG0bYHqlAU/Qhm94mPycjDGfN47Ph6+iJkTegEfVg0sODf1obe1nzfp9vPDWBwSDQVZV13DLRZdyf+kSPlnfwZbNXcyancnScyeKzwm33IanGZpMGhYvLgSCYpZXWWkaLIW//KUGu30Qh1OKUqkQ8iQjgnTVGjknVJYzyXw3z7z5Fh/uWI/N28KFE26Ie0wOpw9HrZep5emj6oHV6qa1rZ/BwWFkUgmeQf8oMSscXB+uB4442ShwhHiAgzKGi69lhnE1bH4a2jaxZcLvWPGJl4UL8/jHP8487N/laJ1an6UmxKsHOl2CeP2PdHJ92/B1qQnhvKCKinQMhhiOsCiPtrYYjmB1s369Rcwu0umUYkA2QG3tIY4wc2YGpaUGgSP0R3AEgwqjUU1RkZDBNjgY7taIFquiRfAkcs0G6ut70GiTKS5JZNFpBeyv3U+vtZf8iflkmbO+sPdp0D8oOLda1+Af8TMjYwYXl1z8rRa3wvi8LcmfFZHXj7DQNmeOiVdv+RV77d/jR+/eykr3Kzj/NkBXawfvPP0HWutreezZn3CgySVwBGmII0S4kkSOYHVjsfQwdWqII7gjOIIhxBGGQhzB6kEi0ZCbG+IIW7tEh9bJJ5tRKNoZGBgmP38Kk8onIOmvY+U//0n1ymru/M2d5JdNFqcQgiAOjckR1CGOUGsbFfweFp1FjhCnJhxNXExk/Yi8BsRGVMTD0Ti1IrcZFg2PRmQzmw9N+Y491sjj0WaOEWH0Nca3SuQCuO2227jiiiuYOXMms2fP5oknnsDtdouTVL5o9PX5WLOiiQ6LYIUvLk5h00YLXZ1uFAop9l5hhLoE8A762bqtC6fDy+YtnTidPjQaRVRGS3jCnd3uxZCaiMs1TFu7C4fDS3p6Inp9In0OHzU7bXg8wxx/nKDCpuiV6PTmMW+YI8WOmp02uro9ZJuSSNEr+ctjT1C76R0uvvYnXP3j2+I+fxyfD58maP5YYqx8rjDC/3/i/F/z/BMa1r33CnVb/s0NF+5m5qKf0WFRkW1KYmgowCuv1o9yI4anGWZlarBY3IQFKKtN6CdPSlKQk6sl26RhTpVJDKFsbe1n27ZuBvqHkMokjASCqHQTmXvOHxm0Lqf6g7/z5sgeivKfIDPbLL5WePqjTp8ovqfhyYurV7ewcZOFri4PyUkK+vuHaGp2UZCvBYLi+1BTY2XHjm7c7gyuuXrqKHcYHH0r6E9Pn8RLG1v4R52FRPsw/pWjR8Z/WoRvOlaubGbrVmEFOrzNo1ntiyRML7ywW5zSdf/9c6Me823EV10PwsHzm/cEaGh00GEZIDNDw/r1Fnp7Bcu82ZxMdTUggUGvn61bu3A4vWzZLNSEysoMKiqM4mdtZ42NHTu60WqVaLWCy8DV72Og34fDIWfmzEw8bj+KBCn5eTocDh95+VpmzMgY80Yn8kZoZ42Nmp02iov0nHRiLgfbO7nop79Ao0pkYMfyL+V9+1/E52k3+Kw4Uj0If38yk/jXpPv40YNP0tXTyy9f+DMSjYNMRRkul4+Ghj5eeaV+lBMxvP3MrPhTHx1OL9mmZGRSCQZDIlPK08XX31Xbw47t3aSkCCJv/8AQJ5adQlFWEe9s+S9X/fKX9Hqv4dqLFouukvD0xyCg1yUyc+YhwWzr1i5a21xs3tSFZ3AYjVqByyWEimdmqQnXhK5uN5aOATosA1x+WRlmkkUnVyTG+nuFH5drTob0KyGtGLa/xBTLWbxecyWrOOMrrQmHqwff1joQia+6JvQ5Blm9wkpHRwRH2GShqyvEEewhjiABb6geOJ1eNm8+DEfYHuIIhhBHaIvhCH0+ampCHOH4EEdIUaLTHYYjRNSEmhobXV0esrOTSElR8sd7/0jd5s1ceccPueLmi4/5ezToH+Tjto9Z3bYaf8BPZUYlF5VcxMyMmd96cSuMz9OS/HkQef2IFdpKDCU8VfUCj2x+jI1XvEuWKpvONR3sWrea67/TxMwzL6OjI0h2dogjvFI/yo0YnmaYlRXBEUgWM6eSkuTk5GjJztaIrqIojjAwhFQqYWQkiM83QnJyAlOnGkN5WMdx2XVn8Nu7fstdl9/F8acuQFtwIvIEpTiFMPxPeL0WNm4McYTkEEdoclFQcBiOcM3UUe4wOHI9iD3Pamps7Nx5aEDc50H4XK2psdLY6Ija5tE4xCP3ffXqVnG/Ihe7jEYNvYO9cZ//dca3TuS66KKLsNls3HfffXR1dVFRUcF77703Kmjyi0JXlxupTEq2KUnMLDJmqBn2j5CdnSzmdIWxbVsXRRNSxHHaeXnaUYS6cnqGuErT1OyipsaKBMjI0GBxu1nT30pwhNCNZDBuUDYccpgJ4X4u8QYvL09L7S4bw8Mj1Oy0YbcL++dw+hjHtwuHy+eCaDHnvt89zpZzzuK3995K28EGup6/geNPv4UlSy6lZqeNnTXCKOtwoSqfeoigOB1etu+wigIUgMs1xKRJqeINWmzbYHW1hdZWFyqVDIVCRnJyAqkGHXPP+TnnXnwev73nFn5w9sksueR2ll52OWZzMkUTUrD3DqJRR1/KwgKY0+EjOUnBvPk5OBw+XC4fOr0w1l6nF1btW1tdyGVSDKmJUe9BfSicOF5bcaRIHHmeJSUquO7ECby85iCf0Md7Eg+lK/bTuMUWtdr+aRC+6cjOTkavV0aNof+0q33xRtl/m/FV14Nw8HyqIZ0KjQK9XonD4aOkJIW9e2H6dMG6X1ycwtDwCBlGNXv39qLWKMjK0pCVpaFqrilKOJgWmraVakgEguzYbqW5xYnD4WPQ66d6g4XkpARkMgkymRB473H7RwWqhh1b0yrSsVgG2L7dKkxDCm0/PMHrYIdAoiPiWcbxLUFsC0S8m+Dwz2eSyYK5U7jpwb+y7K0Puf/Jl6mqmMLlCy/A55FSs1OoB4cC5P3iFEKH08uO7VZRfAJE8WvRoryo3I8wOi0DNLc4kckljIzAQL8PhULGafOmc9fNC3jk2f/jugf+xAtvfMRf77+RiikCYZ9QlEKvfRC15lBNCN/oe71+5AoJ+gQlFdONaLUJdIXGx5vNgpiVkCChudnJwMAQra39olAWGVYf21I8Kp8r8n3MPwFSCmHNE/ym4s/UqHr45QMBFiwq/Mxi17GqCf9r9QC++prQ1ekRW4PCmUVGo5rh4QiO0B3DEYpiOELMZ6yyMoIjNIU4giTEESxu1qxpJRgUMoOjOMLMOByhZgyOUBviCDU2cYHG4Ti2HMEX8AniVutqfAEf043TuWjSRWKg/Di+eMS2SscKbcWFGTxb+FtWty7mft39JE1X0/VCFwf3HqSj5VFOOPd7LFlyuijiRHGEiEUMp9PL9u1WAHS6SI5gGM0RjGNzhJSURDQR13rkGi64+VYq5lbz0uPPoNy2k9lnXoJGEz3ULCwOO50+kpMVzJsXwRF0IY6gi+AIcqk4SCV8/okcIU5bcWRNiBdmHz73KyrS4zqwPg3C9c1gUKHRKOLmpB2tQzxyv74N+NaJXAA33njjl96OEkZmpgbjvEP9w2+/fQCXc4jcHC2nLy4AwO0ZRq1W0NXpRqtTAkFMWRpxnHYkhBasaIujxyMEShYXpwgnpdNHc4sLQ2oi5VPT0en7RwVlA6xc1UJNjZWcnGSys5PFALvaXTZUKgVp6SoqpqWz6T0lFiA1JTqwdRzffHxaB9mseafw1BureOSuH7F9w1rWvf0Ic+fmUjHtRAASlTKqqy14BodxuYbINWuFz745mXBuRKxTLF7GlTFdg1otx+vz4w+MIJcFkEil6PQj7N3bh9dn4LZH/sW/nn2U5c/9kj3bPuRXT/6VXHMyVpuHmp02+hw+MRDfbE4mM1NDd7cHrVbo+58xIyPKpgxQV2dnYGAYnV6JvddLfX2P2EK8IsKROda43/D+R0IqkXD5KROYY+3nuU+auXdtA8kHvQSDwc9EaiZPNmC1eoAgF1wwMeqmI3wTEj0GeuzVv3ij7L/t+CrrQTh4PnOCkFm0/N/72bnThsmk4eSTzchkEvbu7UUmk5CcJNjlUw2J9NoHUSplzJiROYpQl5WmiT+zWt2AhMxMDZbOAVSJcoqLU9hTZ0cmlVA+NR29Tok6JhQVYNXKlkMtkpPTQk0rEspK07BYBqiu7sSUpWF6RTq8Dgr5eA7Xtw2f1j2mS9bw0qN3sOD4Cq7/xZ+prtmN093PKw//gt21dpSJMrZt66Z/YIjkJAUTilLQ65ShPLkx6sEYGVc+XwD/8AiWDjcGQyIDA34SVeAeGGbTBhu3fPe7TM4v4RdPPce8y2/lmQdv5qIlJ2LOTcZm9VC93sLevb1otQmYTEmoNQp6ewcxpqtRKmWYc7WisKXWyMXa0NDQR4JCxkggSE2NFbVGTllpGtUR4cSx5+QRV8t1JlRnPgjbX6TiwGsoHJtZufL+z3wt1ukSkMslzJmTNWob4ev/nj32qO/j4X+xHsBXzBGy1KTN00dxBKdziNxcLaefHuII7hBH6HKH3LpBTKYxOILxyBwhHPhtMCRSXp6OTtc/KigbYOXKMThCbYgjpKmoqEhnnV5JF5BqODYcYSgwxCcdn/BBywcM+geZlj6NiyZexOys2aSrvx1k+5uCo3WQLTAvoCSlhFuTbqXWXMvA8wO072xn9f89y/wTzVRUCFNCExNDHMET4gih6y4chiPEybgyGkMcwevH7x9BLg8IQ9Z0Svbu7RNFIrfbz759fZTMnMtzH8zhnh/+ilUv/onuA3s479pLsXR6qaj4DBxBp8Ruj+AIEWHtcASOEKcmRE5NfeWV+s/l6jKbk3E6fUCQuTH5mJHOtdjzPR5ip7l+0/GtFLm+SjicXrobXeL0t06LGxBcVuH8H5lMglIpQ6mUoVbLaTzgRCaTUJCvjTq54oVkl5amYUhTRf189eoWXP1DgET8ee2uHraLmVyHPtASIEmjYMaMDDRquTixIVEloyBfhyFNBUEhdFQyHi78Pw/hMxjg1gefYeXyp9n40UrmLTqDBGWiKAbZe710WoSvbo/Qsz1zRiYLFmiicrNMpiRxpT7e6sLcKhPd3W462gfw+QMER0bQapXYewdpbHBgs2konHE96ebj+eSd3/DDc0/hBz95FK22AJfLx5o1rVgsA7jdw1xz9VTkcikjI0EUCuko51pYZDOkqpg1KxObzUNjgwONRkFpaZoYnh/pyIx8T5wOH1mZ6rhichjFxmTuOaOU371TT2shrFMM0e30khFatTpa5OXpMBqFlXuj0R73BiS2ReWpp3bw6qv7mDnTSHKy8jO7yMbx+dDX56W52YVcPyjYve1e+vt9QBIlJalR+T/hlXOfN0B//zCBkZEoN0q8bAWjUcPUctDrlJx2Wr54c5ic1B8i9xo8bj8WywAHGp00NPRFZ3KF4limlodvaoKicKZKlJFqUOHwCKv2Mtl4PRiH8DmcnDuFd5/6Ndf98gl+dfNllE8xUj7FKLaceDzDIjkPu0YWhrJBrVY3u0I5KWr7IXEptiZUzRXqgdM5xMhIkMREGf7hEeGepX8IgFmlk7nl3BtYu3c1F9/2KO+t28a9P7wcrTaBhkYH9XvtJChkLFhoxuf102FxU1ykF9t/44UGh6dE2mweGhqFmlBWmkaqQYVOpxxF7K1WNw6nj8wsdVwxWYQ8AWb/gAZHBoWBf3Oj9AaoGYSK737qv4HTOYTfH8TpHIr7+3gti089tYMXXtjDxIkpnHKKmZNPNv9PtCd+3eBw+Ohs6BOzhTo7QxwhUyNm4oziCI0hjlAQwxHi1ITS0jQMEQMYjEaBI/THcoTaHrZv76ayMoYjSCApKcQRNBEcIVFGQYEOg0FFMMQRpJ8zfH54ZJhqSzUfNH9A/1A/5WnlXDDxAuaY5mBUG7/UcPtxfHpkJ2fz6yl/5kH3Q2y9eRWadzXImmRULaxCrpCLYpDd7qWzU/jqDmWLzpwZ4ghWt5ibdUSOEKoJHR3C9MVgMChwBPsgjY0ObDYParUCgyFR/Oz/+vlH+cMvX2Lze29xYHctGeVn4nZXcM01cThCnMEiBkMER2iM4QgxjswwrFY3TqePrCx1XDE5Fnl5WiyWgdDQl08Po1GDTtcv5vTFe51Y0e3ddw+ybl07RUV6VCrFZ3aRfd0xLnIdYzTs76Npl/BBWrDATFWViXArlzFdQ2trP4FAEFNWEqWlBoaGAmyotjA0HECjUURta/0nFjZv6WT2rCwxtA9GT4EzmTTo9GbaWl2sWdNK5fQMICi0Ogv/AYSLyvDQCHOqTMyckSkS/axMwVVgNifz7+UNHDjQBxx7K/I4vnmIvDBedsMdXPKDHyNXCJ/TkZER3I5WvvOdCbS29ovCbmRRiszNstoGCQSEz+PMGZmjRKHS0jTK9vbR1+vFaBRWVcqnpmPvGUSjUYhC1LSK2Tzz5kc89vOb+c1d32fxBd+n6vTraGjsp79/WGw7DItTFdPSR71WbNtm5LCI8M/DQYzxpjB2dgktLm6P/7BTMlsPOlA3e8lSSWiXeln0+Mc8dG45HRu6efXVfVx88STS09UsX97A0qXFYwbUH6kFpbXVybp17WRnC/vw6qv72L69m+ZmpxjaOXduzhcylnocY6N2dw8NdXbc6CkrTaNqrgmNRiG2PG3d2kUgECQhQSYGog4NBTh40MHgoB+LxS26Rj5Zb2HL5k5mzc5iaZx6EIbD6WNCkY6p5elirtGEohS02oSoqUILF+WhVitCbY+CULZ3by96XT9Ty9PQ65SsXdfGh5/sA8bbFcchIDKgftdbf0ahOHQb2TvQy7z5WXR1esVrbGyeVWRuls0aURNCbYFhlJWmsbesjy2bOzGbtWSZkoAgapWClhYX0yrShZZ5F3z/9Iu47Nx5/OhXf+GT7XX86e6bqDKaqNvTg8MpkPuweBWv3TC2bbOsNC2qnRfghLkmzLnJUccSPp5wy6PH7T9i/sludwnL95/H98vWY3zzeqh/h+d6r+Olf1q+sHoAQk3YudPKgQMOhoZGxP0brwdfLvbv7+PgTmHBIIojlKdjNEZwBFMER9hgYWgoDkdYb2Hz5k5mzx6DI4TCs00mDTqdmba2EEeoDHEEYBRHGB5hzhwTM2dmikQ/K+sQR1i+vIHmZicAvX2fjSMERgJs7NzIe83v4fQ5KTOUcf7E8zkh+wQy1Bnj4tY3CPvr+8ndcz7mikmsOPtZ1BI19iE7GYoMAoEAHoftEEcICbujOMJ2IRLBeph6ACGOUNZHb6+XjIwQRyhPx26P4AiNDjSadPG5mVlabv3FVWw5bQ7PP/IHmte/RHZqPyMjU6Ja82JfK7YmRLYUhn8ucoQ4Uxg7QzXBfYSaUF/fw4YNFqTSaJdmWISaNy8HnU4pDgAYK6D+SG2JNpuHuroeseVy3bp2Dhxw0N3tIT1dLb6/RxNU/03CuMh1jFE8MQWtVCYS6/AKidXmFqfHhfMfBBdWMx6PH6lMyPNavbpVWGlP12DvHcTp9GEP9b+HYTYn43T4aGp20t8/RGamMDHC6fCKwpbJlITVFj12PiFBRkamRjyRNCHrp8vlo3xqGsZ0DQ2NDvz+AACpqePtiv/riL1whgUugBeefJR/PvcXbnngMU47N374qNmcLIquJlNSlAgWmREXDpfUahVkZGiorDSyYEE+IIhHpaVpUUJUSloaD/71H7z5j2d55ne/Yt+uTVx39+8pLZ0oBHlv6GDNmlbMZq3gTgwhchuRWVqGNBXFxSniYyMD7GOdWvGKiUYtZ/XqFsKCdnhio83mwWIZINuUxCWLC3l7n5WbXtmBumeY9lohjyA7O4m1a9sBxiQ1YQv5+vXtvPDC7lHOrHXrOjhwwMG6dR1cd910Fi0yY7cPMmdOJtnZWjFz5csaSz0OAeVT0lAwTFHFoYly4emJW7d2iZlFkTcUq1e3MjjoJxAI4nL5xFXAXrtQD3rto+uBw+nD4fTSut7FgUYH0yszQtuzEQS0WgWmkhR21thEd1hZaZpIysNT7LxeP61tLjFH4tVX9+L1Ciuv8vF2xXEQff2LFLia27uZf+lPKC3M5Y0nf05ayiG3Yezzp1ceqgmeEOmJnUAargcpqYlkmTSiEwwYdaMvCFdlzK0s45LbH+XMH93Dr26+jCsuOJ2ODg9DQwFWrWyJezyRYlbkvqYZhJqQFnJujdX2Ea8eqDVyVoXqwdTydHrsg+Jr9Nq9tNmVvD1wEddUtcCe5ZzjWcs7vWfz6qtfTD0AWLTITGfnAJMnGzj99Pyo6WnhbY7ji8fEiSkk+xNEYi1yhNDnShNTE0SOII3hCEYN9lBNsMepCU6nj6amGI7g9IYeEeII1jgcISOCI2giOEJ5GkajhsZGB4GAsOKRlvbpOEJgJMCW7i282/Quvd5eSlJL+NG0HzE/dz6ZmkykkvEa803DIcG9nPPVc7n5w5v53bbf8f0p32f1n1bz9rK3+clvf8KCsxfEfb7ZnCyKriZTkiiCxU4gDQsvWq2CzMwYjmCM4AgRQlQYRqOGM86ZwfRZf+TpR57l47f+xQ+b9pE17UyKS7IxGGI4QmgbkVlahlA9MByhHoSPKfIrCOeSyBFCwlxNjcAROjoGyM5Oinp8WIQKv/bu3T3A6NoXeYyHywmrq7PT2emmrs7O4sWFVFSk0+8aYlJJCgaDWnzPjiao/puEcZHrGKMgX8cpM4UPYWS7YeTqZyS5drmG6enxoFIpSE5OoLnZybKX6phTZcKQqqKyMoO5VaZRr2O1eejvH2IkEBQLX16elpzcZFFMCASCQq9yiNRHnnhWm5uanTaam5w0NjrQapUsWCAUwuYdcpz94+2K4xg7w2tkZIT25gP4/cP89p5baG7cyzW33YtMNjpTrnwq1O7qwWIZEB2NVpub5f9uEM+P8A22kCmXGLcNMLZXXCqVsvSyHzBtVhW/vvM67rn2bJZccge5V1zJhmqLcFG3DFBaahC3EQ7MD28vfI46HV46uzyiOzL8uvGyt2Lfk3DGWOSkx4aGPnbW2DBla5g1K1MIry9IZZJZzwtrDrBxxIHhsnyOMxuZnZcCwNKlh1ZiIxHpvlq1qkWchgXwr3/tJzs7iXnzsqO2MX16Jl6vsCK7ZMmhwM2vaiz1/yomFqcysUANSdErZFH1IOJGqrW1n337eunpGaRiuhH3wDBvvLGfWbOzKCsz4HD6KCsb/bezWT24XD5kMimD3gDNTU7q6nsACZWVRqaWp4sOgb17+0TCHVkTdtXaaGx0IG+R4PMGWLDAzIIFZvoGe+CA0MVutbq/FTc+4/jsGCvHq7mjG9/QMGu37mbW+bfwn7/ez5SJ+YfdVppBhbFUIAr/Xj66HkwtT0cfCgGOt8IcmU8HUJRnYv3//Zb7n3yZux9/kTfe28gzv7qFhgY3NTVWkEB6ujrqOeFpouHtRU5+7Or04HD6RDda2GkTmxUTm4GydWtX1JTHhoY+8TUi3ZyUVnBgMA/1rmdZvvRl6lV97Cu8Cxi7HkD86Yowdj2AsWsCjNeDLxMF+XpOmnaodfdINSEuR1hWx5w5JgyGEEeYG4cjWEMcYSSGI+Qki2KCyBFCpD6KI1jd1NTYaG4ezREaP5HjdIDkKEWpwEiArd1beb/5fWyDNor1xfyg/AecmHsi2UnZ4+LWNxjRGV5Tee3M17h+1fX8dftf8e31MeQb4sGbHqR5fzNX3X4V0hheaTRqKC+H2toQRwg5Gt9++wBbtnRy8KCD44/PorNTGMYgZMolxm0DPFKelFyh4MwrvsfcRbP53U9+w8H6J2ipPEvgCKFtxE49DJ+jTqeXzk6P6I4cqx6Ev8arCWHHmi5UE8L5rLNmZUa5yerre0hMlJGZqRGdXABz5ow+z2H0JNTw/oPg9jQYEsX7xvA2CgtTGBoKjrrefNqg+q87xkWuLxCRuVjlU4UTL/aDo9UqCARGcDi8FBXrGR4aocMywIZqCxmZGioqjFEnrdUmFKuuLrc4PQvA5RKCJQOBoOiWaWvtZ311Bz6f4My65OLSqEwil2sIlVpOcATCluXFpxfi6L6CPTuPIyWj/At+h7698AdGsLuHsA8M0esZot87jMvrx+kZpt83jGcowLB/hKHACMOBIEP+EYIEkSBBKhGyDiQSUMplJCqkqBJkqBUyNEo5KZoEUjUJpKoTSFEnYEhKIFEhO/JOHUNIpVLu+d3TLPvLb3n5r7/nXy88RVd7Gz/7zZ9JUB7KnAp/XhsbHCQmytDpE0XxaNATQCGXkGZQIZNJ0KjlooC07OU9bNpo4bjjTVx26eSo147M+Sqfms6Eksn8+fX3efAnd/HmCw/SUFvNWZffi9fnJ82gwunwYrW5MaZroloY4dCqRVamhqxMDU3NTnGV0pgef5U+HiIda2ZzMkNDASwdA8ycmUnVnEMrLzKZFHWPH22zF3+hmtesdoZzEvnbc6dj73LHDY+PXG2PnIa1alULH3zQTFqairvuOo5//GO6+JxIMSu2RXF8xf6rQXgEdkNDH9Mq0sXV+kiYzcn4hgIMDvoZGBhGLpOK7i1zbjKZEavsYeyqtdHQ6ECplKJKlKPXJRAIjLCzxkYgINzEhFfgu7rdBAIj9PYKbSaXXFIacTPWgyZJgVQiEdsaFy8uZPbxaRjNw9h7hsRWx3F8SgSDMNQPAzZw28DrAK8LvE7h/3394PdCYBgCQ6F/fiEgRyIBiRSQgEwBchUoVKBQQ4IaEnWgSQN1GqhSQG0AdWroOV8eTjpuKhte/T1nXf8AB9u6mPvdO3jzT/dy8vHToh63q9bGqpWtaJIU6ENj3Vtb+xkcDCBXSDCbtWRmaXA4vZgRHIXV1R38550DaLVKFi3Mi/oMRmZ8TQ0RpIdvv4q89HzufvJpTrzidh686QdUVBgZ9PpRJsqixNrINkY4VBMyszRkZmloboqoCWM4t2IR6VYzm5NRa+S43cMoE2WkGVRRo9k371dSu+9cLpu2i1Lf+5S27eCcX/wJiiaN2V4eb7ri4eoBHKoJOl1CVJ0ZrwdfHSJzscrLj4IjFOkZHh6ho2OADRssZGTE4QjWo+AIIbdMW1s/69dHcISIerB1a4gjqOShmN4QR1hciL3tXOp3NZNsNB/2+IZHhtncuZkPWj6g19tLkb6IK8qu4JS8UzBpTMikX+596zi+eGRoMvjHkn9w+8e3s/b7a5mePZ0dr+3g5SdfxtJq4a7f3kWCMkF8fPjz2tgY4gihmmAwqFAopHi9AVyuYYEjaOSigLRs2R42bbJw3HEmLrsshiNE5HyFRTOIbLUv5rbHH+Xph/5I66bX+edf+8j6xQ1k5+hHTRcUOUJo2nXTZ6gH4d9XVsZwBEuII8S4s2pqbHg8AY4/3sTixcKCRFVV9pjh8ZFCW+T+19TY2LGjG61WyXnnTeT22w8tbsQK2mNOB/6GY1zk+kIRxDsYoKnZSfnUtCgHVxgmUxITJ6UCiI6t2BauSNTustHY4CDLJHwIGxscFBULQaqRmUjGdA1enx+fL0BykiIqPNtqc9PW2o9MJuHkk82jXmfBklMpnjLnW6PkflEIBoO4vH4sjkE6HIO09w3S6RzEPjCEc3A4IukAEhVS1AlyNEoZSUo5aRolCXIpCXIJCXIpSrkMmUTCCEGCQRgZCeIPBvENB/AMBfAOBxgY8tPd76O/3cFA6KYkDJ1KjjE5kSxdItkpKvJSNZhT1SR8gS1GUqmUK278CXkTJvKbn93MJ6v+y09/YOcXT75Ask4PCBff5mYXTpeP/ILolcKTT84lfOPU2eURQ+uF57noc/hobXVFvabV5ubttw+wt96OSiXHahsU23tvvu8R3iuv4o1n7+cvv/guiy68H5m8kMYDDlFcC6/0xGsfDjtdwhOF4OinUcZOQW1t7Rdbg2MHSFRMS8dm8zDiDJI4Sct/dlpYtbubLMswmcNSLrqoJIp4xI50jmxLcTh8ZGcnjVqJjyQvK1YcHG9J+RrAbBYmt3V1uaGG6AD4CJSVGkjSKKiaY0KfohRdH+G2qdjg4eYm4RzxDwfp6D0UrK3WyMVWMICWFhc22yDZJg0V07QiqQehZau5ycnkyQYxWyj8PEOKlluv+s6oqUPjiIOAH/ot4GgFRxs4W2GgG9x2CETk10jlIZEqCZRJwld1GsiVQkC5LFEQtAAIwkhAEMoCPhjywPAgDHugvwt6GgSxbGQ4YvsKSDKC1gS6HEjJh9QJggD2BebdlBWZ2fz6E5x7069Yt3UPp//gXl5+7E4uOH1exKMkjIyM4HT4GBoS6pjZnMxJoXoQdh2G8+GMRg3VGyziFKvYz//bbx+gfq9QD2zWQfG8Wnr6bIpyc3nkhRe56eEnOO+UBVxw8uKQKyWBhQui3WDxWojj1oSjIAFGo0bcfvj7cGvwrtqeKGdY+Dxs1ufT7ihl3tAHJL68lAOaU3nGcjkDfuG8P1xNCGOsehB+fl6ebrwefIUYCcYGGwbxegM0NTkpL0+LclTAoem5xx1nwucLiI6tmprDcISQIzcrK8QRGh0UhWpCZCaS0ajB6w1xhGRFVIuX1eqmrW1sjnDqOfMoqawYsx4MBYaotlSzqmUVziEnk1ImcfWUqzk592RMSePi1rcdKoWKP53yJ3679bcsky7jONNxbH1yKx++9SGOHge/fPqXaJIPCU/NzS6cTh/5+Yc4wty5JrTaBMIcwe0eFkPrhee56OuLwxHCNaHejlotxxpRE8Lb1mjkOJ0avnvbrVS/+wFbV73FnQ37+c2LD1JamiM6uGLbhz9rPQg/bhRHCC1axopMFRUCR7DZPNTX92AwqKit7RklsIURmx8WKXq73cNiEH/s/ow12fjbhHGR6xhiJBiM+r58ajpW2+ChsN84ZNnt8ZOaqqKkJFX8YB5+woGERJUMQzgvq1gQx2InLkJoYkPHAHOqTFHbbG3tp/FAHwSFHvxY8e1oif3/GhyeIZp63By0uTnQM0BH3yDu0E26TCohPSmB9ORE8vI0ZGqVmA1q8lI15KaqSVLKUSqkKGThfxLkUikyqQSZdGzSEQwG8Y8ECYwEGQ6M4A8EGQqM4Pb66XQO0uHw0tzj5mCPmw7HIHu7+vmksYeRoMBlMrWJ5BnUTDQmU5KVTHqS8piHep60+BxSDOncf/NV1G7byE+uvoA/vfYeMplwY5SgECaYyOVSsVWxtVUIQ3V7/GjUcnT6Qxdhq82N2SyEpZ98cvRKYTjkNxgU2mkbGxwY09WYTEIG1qx5i8jKm8TfHr6F5X/7EQUVV3DiGZdGE6MIN2Q4qyLy8x4vbP7TIrLohAlbfb2d1laXeGz79/ZRqU7grrNL+MO7+9iXJqHZ5mNCbTc6XQJO59BhV9uPNP497ALQ6RKYM8d02JaUN97Yd8Sw43F8BkSQGuEmx8zq1a1RAfCRaG3tRyKRcNppBSLhiWytivd4YZCJBqVShs8XoGquibSY6Vog1IOOMVYOd9YIbrAKzehQ7vDrfttufj43AsPgaAF7oyA09R4UBK3w31ypheRMSCkE8xzQm4X/Ty0ETTooEgVRS5YgCFpSBUhlggB2uGv0SABG/MK/wJCwH8NecPeAqx36WqBnP/Q1gcsC1joYEia4kZAkCF6GYsiYDGkTBVHtGMKQouWDZx/i0jsf440P1nPRrY+gTFDwnVOOB4RJnjU1ViwdA7S0uCgq0ov1wBMiMbGrzBlGNZMmpnDyyeZRK9idXUI9kEokNDQ6SDcK9SDckvvwjTfwIP/kzY8+YHv9fi6edx6QIW4jsj3xQKMTrTZhlAB9LEJ4w8fkcHpFQrFtWzdr17Uzf14OHR0DbN8upbXyeyzO2Uau/UPuTKzm75Yr0OlKjujIPVI9AKEmWK0eJkzQjdeDLxmeYQ93fHwHE3QTyNMJjuzy8nSs1sHD1oPOTjelpYYoAeyIHCFRFpUzNHeuadTERTg01W3OnDgcoVEYQJWQIBslvo1VDzzDHtZb1vNh64e4h92UGcq4ccKNzM2ZO+7c+h+DVCrlJ7N/ginJxGOSx5j989nseGwH29dv567L7+KPb/wRqVSYapiQEMERQjlXIkdw+9Fo5Oh0ERzBegSO0CXUO4lEQmOjA2OoJoTbct1uP9u3d2O3e9GZZ3LujSVU//tFfnjGD7nzN3dSNnvWaI7wBdWDw3GEvXt7UasVVFQY2b69G6fTh0olp63NNUqwjrc/R2rfDL/PkUJePNTX97B+vQV12hBzZpthwuc69C8V4yLXMUK/d5ib/m87BTopBWlCDoLg7jCLhSXW0QGfvv+1fGoaOr1SzBCqqDBiSFOJxCn8unAoaL52l43XXtuHwZDIBedPRKOWo1QeCp8PIxzKna7rxZASJLewiDTjaPfZ/wJGgkHaewfZ2+2iwTrAQZsb56CwUp6klJOToqKqKI3CdA3lJh1FxiS0KgWaBDlqpQyF7Ng4qCQSCQqZBIWM6JZELRQak6IeOxwYwe3z0+cZYrfFRU1rH3s6XDT3eNh0sJcgoFMpmJiRxOQsHVOytejVx4bgTJs9l8dfeoufX/89LrjyejGby5iuYcmSgqjJheELukwmIRAIkpWpQadXitsKE/3jjzOJTqjI80XoKQ/icg3R2OgAglFZWwsWTOLanz3HB288yc71z6GRN5Ob/QCQLbZKulxDeDzDHGh0kKiUkWsWRnPHc1t+FsQTit9/v0nMCZs4KRWdTokhVUV+moarK3N4+eMW7KkKXuyxs3V5P6oOH4tPz+fKK8t56qkd4jTGcJDw4dDS4uSJJ7bR2OjgvPMmcuWVU6J+F9sCs3x5wxHDjsfxKbHzVVyrfkfyCdcSlizCQlc46P1oAksPh0ji3NUp1IM0Q0w9MB6qB5kZGjyDfn7/+Fb27+vjlFNyuPDCUvLytBw86MDvH4lq5aqr72HDpjYkKhclxelUVZYdq3fnmwdfP1jrBdGoZ78gcI0EQCIDbZYgXk1YKIhHWVOFnyUkQYJGcG0dq8UFqUz4hxKIuMakmIHKQ9+PjAhur6EB6G2C9i1g2QG2vdDwPtT9WxDUUvIhsxyyKgTx6xhkcSYqE3jt8Z/y44f+xpbd+1lwfIX4O6NRqAlhESq2HggZWErxvNi6tUsUfs3m5FGh7/HqQWTO1oIFZm66/GwWzZ/Kwy88x5P/+RuJKVcwNRSkHX59tUZB/4BQFyLdVrEE/7MiMqg4vO03lu8Xw4VnzcpCp1OSYkhGXvld3vmPmcqRFdxV8Gfa123ln97rOGgXyE97ez/PPVcLwPe/X35EcQtG14RIkSy2JozXg2MPiURCgbaAFXtX0Onu5LLSy6LqQby2oc+Sj1NenoZOpxQzhCoqjBgOUxMyMjTsiuQIF0xEo4ngCJoYjlBjw5A0QFqqjPzifFKNqfQM9vBx28dUd1bjH/FTnlbOOUXnUGWqGg+U/x/HpWWXkqpK5V7JvVTcV8G+3+/jwmsvFLO5wvUgMjB+FEfI0oi5VOHfSyQSjj/eJDqhIu+h4nKEiKyqBQvMVFZm4HL50GoTMJmSqJhdxIoXnucXN/yCuUtOw1S+SOAIB4Q2ytxc7RdSDyIhcoTOASZODHEEg0psdWxqctLZ6aax0YHd7qWvzxsK4NdETWMMtzgeDmHHW2enm6oqEwsiBrvEXofCbY9JRj/m7NRjcvxfFsZFrmMEdYIc5YCFP992GR9UHMeSs86m6uTTMaYbRfdKPCHqaF1TkQLZzBmZVG/ooLvLTUKChI8/amNoOEB6upr6ejs1NVbmVpnEwvjqq3tpbXXS1emmuNhGcXEKPl8Ap8PHihVNgDBdbsWKJjosAzgPPknr/mpu/cXvWHL+976gd+zrhZFgEEvICVXf6WJ/9wCDwwHkUgkmvYppOTpKspKZlZ9KkTEZbaKc5ETFF9oO+GmhkEnRqxPQqxMoSEvirKkmRkaCDAz56egbpLqxh+oDduo6XWxpFlbpclJUTM/VMzMvFZM+8XO5vAomlvLsf9ahUh/6PAeDwVGrCaJlONRe63R4WbmyBbt9kGnT0pk5I4OSklScDm/c0PfIiaVhcaqx0YGlYwC9Xklraz8VlVmcetofqP5wCY/89CZ+99MLuOKW33LuhYvE129rddF4wIG91yu2SsY7F+vre1hfbcGQmsjcEwQHTKxYHUY8ITt8jh9qzdEyc0aG6GILB+zfdkEZn2zrYptzgF2+YdQmCeWDQ4Aw/j0cWnk0IteaNa1UV3cAsHVrJytXNour8vEmaoUDig8XdjyOT4mUAi57tpZdD9/EuWeezrmnnkDV9EOZJ/FIx6dxTEXeiAw1BujqFurBRx+3MTwUID9fh1ojZ/m/G+i1D1JWJrQiOpxetm3rwu0eZu26Di68sJSEBBkjQdhRYxXdYB63n5oaK2u37GPZxy+Rn51B0+rnv5j36uuIIbcganXvFv45BdKPKgVSCmDyLMidBTkzBWdWok4Qtb7AdsBPBalUaIVUJgmOsrw5ws/9PvD0Qsc2OPgRtG2Gfe/Cnn8LYlzmVDAfL4heisTDvcJhIZPJePLe6/EM+tCoD20nGAxGBcYLLVmI7bVhp9PWbV20tLiYHpFfFy/0fWHEdDpziIj02AfFDKwe+yB6nZILz5rF986fwbk3PML9f3uKfa0Hef7RH0UJxclJCWKLzOHaN6qrO6jeYKFqjkl0oo21uh8v7yT8uPnzcsSvM2ZkYM4V8rtaW/spqZpBY3sxw4NryfOs5cbgtWwwLCWv5EFeWNbAypUtSCRCPTkaB9cLL+xm1y4bfv/IEWvCeD049lDJVVysuZgnb36SjrIOthy3hR9e/ENmFM0Qxc/YmvBZ64FGI6emxoXBkMjQUIBly+oYGorhCHPjcISuGI7gjOAIhhBH6BjAWvM6HY17ufaRa/GUe9hp24lSpmR2xmzOLjqb6cbpGNXGY941MI5vJpYULCFFmcKtH91K2W/KKD3+UCbhYTlCyK3kdMZwhJkhjhDhio28h4qcWBoWpxobHVgshzhCeFooCO16zS2DnHvd9cw+sZI//+LPZO1vZMF3v4+1T47d7hVbJeOdj2Gnk8GQyNy5MRwh5vHxBqiEz/MojjAzQ3Sxhfe3vDxNzBpzuYbo6/NCaAk1chrj0YhctbU26uvtAMJglBorc+aYqKrKHlVnBffbMOq0IbKzkw632a8dxkWuYwSZVML8JCv/HvHTsH09f9i+nj/+8i6Kyio4efFZaDNm4XIlRPXyhlG9oYMN1RbmVJnEkOrYcO3why48/a2uzo7NNojdPkj/wDDJSQpKJqWyeUsXTqcPjUbBJReXYu8ZRKtVYDSqyc5OpmJaOoY0FZXTM9i4yUKHZYCanUJRk8qkZJuSGLEJWSDf9gLlGfJTZ3Gxs91JbYeTAZ8fmURCdoqKuUUGZuSlUFWYhlGnRK9KQJXwzbNaS6UStIkKtFkKSrO0XD2vELfPzwHbACvrulm738b7e7r5z65OUtQKZualcEJxOtn6TzcaOoxIgaunu5P7brqCG3/+MGXTZowSasMIC8DtbS76er2YsjSUT02n1uEjK1MddxUzclsg5A0lJStwOHzY7cKY7MZGBxt2pPK9W57n/Vcf4G8PfZ+g917OvewHYqh8rlnL0FCAujo7ba0uUZyK3H7NzkPhjbkRNmIYLYpFFgd7zyDrqy0olTLxmCJD6EEYABF+/MwZmSw9fQLnBIOs2tnJe/XdPNvSRc9rOzhhQTZ2+yCLFh0+6PUQJGRkaJgwIYWmJgfbtgkC2XnnTYo7YfG88yaNr9gfYwxnVfJJp5JeZz+Pv/Q2j7/0Nga9lnMXzWFKXikynwFDavzPdySJDgeOxoZrRwbZu93DYj3weQMYDImkG1VYLANs2dwp1oRpFenU1LgomqCnu3uQ+aEpbGZzMlmZGhwOL51dbjG0PtWgoqhIDx9/++sBwSD0NQtuJ8t2sB8AgpCoh7RiKD4NCk8SnFqqFEHU+ia238iVgstMeyaUninkiLlt0LRWELtaN0DbRsHlZSyFghMhZ5bwvE8JiUQSJXA99NSrNLZYeObBH2O3ew/Vg4jV8bDTadmyPXR0DDA8NMJJJx1yPx6urSKMNIMKjUaBzerB5w0QCAhREkNDARaWnkF2ai7/XPlfDlhaeO33P2XmzMzQ6yaKhKir201h4SG3UyQ5qd5gYU9opHtCguywgli4JjicPqCHTsuAKCQvXlwYRUjCzrXwlL2FiwqBQnpaFyDZ+QrzBv6J5M1PuGDqT6mbk0Vfn48pUw7XuiZgzx47PT1epk5NZ9q0dN58s/GwNWG8Hnwx+Pjjj/EP+3HtdOHa6eKOv99BeqmRc889B0PuFFyukfgcobqDDRssIgmF0eHaIkdw+qipsdLRMcCsWZm0tLhobnaRnKygpCSVzZsjOMIlpdjtMRyhIl2c2rhxo5CFV1MT4ghSKVm5Sqz7BgFY0byCgrwCzig4g3OKzqE4tZjUxG+W02McXw7mmObw/GnPc92q63h82+PcUHEDcqec+669jzsevQN9RvaY4edhAbi93UVfnxeTSUN5eTq1tT6yssbgCNY4HCEpDkfYYBEXAM3mZGbNOofSaaU8cMMD/POJh7nwxuspKpsmcIQ2l7h/sRMNRY6QG8MR4rQgixzBPsj69SGOEDqm2CiJyLysmTMz4wp4IATN97uGorL1Dg8JKSmJZGZq6O52hxxvQsB9rIM0LEL2DvaiELNCvxkYF7mOIW758c1MKjmO63/3d7p2r8PXuZ+GPTto2LMDgMWXPc78eYswpmuihK0N1RZ27xFumMIkuLW1n+07uiFIVF5R2N1iSFVBMQT8I/TYB1GrFWi1SmbPysLeO0henpat27qoru6gu9vDrFlZXHP1VHFfFyzQYDJpWF9tIVEpQ6OWM2+e8OF+7KcCmRlwD/NtQjAYxOLwsqvDwc52JwdtA4wEIT1JSaVZz4z8FOYVp5GlU5Gi/vInFn5Z0CjlTM3RMzVHzy0LJ9LpHGR1vZUP9nSxrrGHlfVWMrWJHFeQytyiNFI10S2N7753kHVr25k3P4fFp4+9YvDCk4/SsGcXP73mQh7868sMSQrYu7eXttZ+2tqFsMhFC/MoLU3jzLMmsHx5Q6hTRiJmrZSUpMZ1V0WKvlabR+ydz8vT0tLiQqOW8/FHbezaZcNuT+LBp17nP//4A3999D4+Xvkht/zi9xQUmjCma9i6rYu+Pi99vV5yzVqxpVGcVjJNWMUwpEaHN8YrrGazMNW0psaKxzPMvn29SBBWx8Ph97GPj92WVCLh1AoT88oyeKfWwru1XTASZNJZuUyeajzs3xZg/fp2du60Mn9+DhdcMCkUnqkQV+XHJ2p9OVAoFLRZunj9N3ew+t/P8Pa+EewOF8/8833gfSpLSnj0ppsB4Yblk/UWeu2DVM01RZHo8Mraju3dBEGcSBcOsne5fKQbNRQjTHWVy6SkGhLp6vSQmaVh1uws2ttcKBNlVK+3UFdnx5SdxI9+ND1qJfE735lAqkFFr30wKtQ4K9/P/c/C8FB0K+O3AsMe6KqFjh3QuUMIcJcphayq6ZdC4SlgmiZMK1Tqjkkr39cOMrkgek27SPjnG4COrVD3NjSugg1/EnLDsipgwsmQOS3qfair72HVyhYAFi7Ki5vpBrDvYDv3P/kygcAIXt8wP77wezQ2CnWgxz4YtY2ZMzPZuq2L/oEhior1EVOxUsdsF4kUk2zW0TVBrZHz/vtN1Nf3UlY2jU/+72QuvOVhKs65kXt/cDWXnjNP3Pbq1a3YbIO0tLhE0hFZE6pCY9ir5pjiXsMjYTYn09rWz6aNFgYH/fQ5vARHQKNRxH2v4m0vzZwLuXdC127Y+X+U7byJv8yu5FXHFahUhycd69e3s3JlM3l5yVxwwSTy8nQkJyeM14SvAHfccQfTp8/npZde58M1K+ho34utzsrTdU8DcPaNdzB//nHCsIUIYWvDBgu7I+oBhDhCyN0dmVfkdHqRSqVkZyeRl6elu9tDZqb6EEeYnYU9dI3fujWGI1wTzRFUKjkbNlgwm5ORpzuRzayhzb8Hx3vCvhxnmMuDpz6AOdmMWqH+0t7HcXy9MVa8RqmhlJcXv8xV71/Fn2r+BC9Dw+4GbrvkNr5/90/xjAgCqd0+yMpQPVi0KMQRzozDETrd4vToWESKvtY49UCjkfPxx2GOMMgttxxyVPYP63joxSd49uE/8vyvH+Okc84iMXsOfX1ecnO1UW3ugOh0ig14H5MjtMVwBEmII4Tu7WIfH29bsUJgYWEKQ0NBCgtTjvj3qa8XQuwnTzYwd252aLKlPNTm+e3KYB0XuY4x9tRKyBlegOqicxjw2cnqrCHQvZ36XTsxZJWKbVH/+Osf6GhrpbtlLovPPR2AlFQl993/CUkaBSfMyyEzU0NrqwubzQOEPuTmZHT6/ijrflFRCjq9MqpFKuwQ8Q76kQD9riFeebWeimnp4nQ5t8dPQb5WnGwXdteE7dId7QNf8rt37BEMBmmyu9na3MfWlj563UMoZBIK0jQsnZ7DKaVGJpu0GJKUJCn/904HmVRCToqaK6ryuXxOHl1OLytqu/hvrYX/1nby9k4LpVnJnFxiZFq2HqlUwrq1EbbYkMgVr03vR3c/RHtLC3u2b+Bn117C7Q89TUnJVKqrO9i0qRO5XEZ6uprS0jSq5mRHtX2EcTjiAELL4Y7t3YwE4bjjskhIkAkjsj1+5lSZQquUSiydPn545wOo9CW89tS93H7ZEo5b8nNMeWUkaRQUTdCj1SaI2XnOCBdZeCpjJMZqMQ5PNW1scGDK1jB9eobo5Ip3LIdrV1YlyLhgRi4nTEjj1U2t1Hb384vtBxlIV3DJbDMyqYSWFidr1rQBQU4+2Uxeno5Vq1rYurUbvV4pkpfxVfmvBjt29LKyYQnzZ8l45qyXWN5k4N/WPKpra5lXOZWuTg96XT+9The3P/4EJq0Zh+d45hxfFJqu4+b11+txuYZJ1iYw5AvQ2uYSW7umVaSLkxAjhYDw95G5Rnv39pJqUGEwJNLe7uLvf6/l3KVFUUTb5/UTCIxEhQ03tAtB6l6vn121tqipcd9I+AaEfKrWaujeIwTFa9LBVAn5J0DRQmEqoSpVEID+16BMEhxrhScJgfZtG2Hna4Lg9fGjgrOt8CSYeBqoUoT8qxorSCA9XS1OKoxtyZhUmMPrj/+Mi297hFdXfEyPfYBfXHctao2cFSuaqN1lQyaXiNtYem4xM2dkHlU9CP/O4fSxbVsXHR0DFE1IEfOOAoFg6DzRYukcwGzWMnvqJHb8+0nOveERbv/9H1n+3mau/s455OZqycsTVuOnVaSLxxLpIjMaNVEr7ocjBEajBp/Xj93uxWBIZNIkYVLetDFW3MckGBIJZJWD8ZfQsBJ9/X+5QXYLnq7ToO9RIVsNRtWE2HoA406trwoSiYSaGgktLTOZWzWfwUE7aDewZfc79DT30DZ1Pbv6FEwcWcCLj79IZ3sP3QenseS8EwBISVFy332fkJSk4IQTxuAIJIuiV2trP273MMcfb0IXkXMHhxwiXq8fiQT6+3288ko9FRXp4nS5ve2teMx7WTH8Dq4DvSQpkpiTPYeekQHcNJDeV0lJaslX9XaO42uK2HiN6My/XJYtXsaV71+J/Vw7Be0TaKo9wNO/eIjv//wuzOY83n77wGiOUPUZOUKbix07uhkZieEIbj9z5hziCOHBD+H7KI1GQf7xFzIsM/Lx22+TVbCXC2/6EZpQlqomph6M4ghj1ITwVNPGRgcmUwRHMI3BEY5ScBpLDIt1fIYzthobHWg06eL2Yx1k3xb8D97BfbHo6BigvcmFrn+I1JPTsE1cyLRpZ/K9m1IY8h8aw9vb8TFuaws7Vn/EzjWPUlQ2A4mqjM4+MwnqHGQyKTq9kn7XMHV77GRkCvbKsBDV2tqPRh1xkqUfyimK/J1GLUcikeAZHBaDuUtL08QTOStTE2X/t9rceMIOrm9oWGSksLWluZc+zzDqBBmTTVq+d5yZU0qMZOtVpGoSkB+jgPhvAyQSCVl6FVfPK+Cqufk097h5fWsbb++y8Oc1B9CpFJxQZGBWaIz1vPmHckCierhDn0WVWsNFNzzO3x6+mY4Dm3nkJ1dz4tJfkpw2FZ1OSVqaWgyjDz8v8nMMgp149erWKHE2so3X6fDh8Qzj9Y2wodrCkiUFZGVqcDq8qNQKCifooxxYp59zFlnmiTz9yC2seuUWdOaLmTbnPBYvKRTPra3bug7rIjsSIp1fc0/IjruNWFHwcN9npWu45dSJ7O8e4J1dFu55czd/X3eQWxdORG7x8v77TQSDQjHMy9OxcKEQIBn+Oo6vDqtWtbBtWze7FJXozkjmwqK/clpJEge+9wsUGhX+IQlmczKb3t9Os7WZZmsz1Y1rSdOlYDbko1eYsPUMoFIqMZmSSEiQ0djoEFuwIgWtWBIevjGyWt04nD4ys9RMLU9Hq1Xw73830NrmYmeNTRS5wgMZYttl7HahNUUYHvwNbVkMC1st1WDdIxxMSj5MOQ8mng6m6ZBkBOXRBzz/T0CReEjw8vZDw0rY/iLs/S/Uvw2Z5VQVVmGrSAckonATm+kRxtJT5/KbH9/IHY//iVWbtmHreZzbL7mK4aEAeXla0tJU4jbi3dwLU98ctLS4mFYhTAKtq+8RQ+z1OiVWqweX00d/v7BYp9bIkckkqDVyJkzQ0231MGGCHoAUXTKv/f5n/OCuZ3ln00r2tTRzyUnnc/kllVxyiZAbE9k++FlDh8OTTasi2s1iEdteEykSjhINS5YgK5wP9e+gObAanpwB0y6Bk37Gnj2+qJowXg++XugITRV1uYaYOzeXwcEsbrv0ahSTGlnhfI1PvP9h5/qPaG+sxWMfYEvHDrateJmJ08qQasx0uVJJSEoTOIJOSX//MHV1djIyQhxhZgRHiKkJMHqimkYT4ggePzU7rbjlPbSqPFQ3b6U3rQtpUM4ETTEX5J3LqXmnEnQk89bAOgCk4xRyHHFw8cWTor7GZv5lJWWxbPEyrnrvKoZvDGB8LB9rYzNP3f9rDjRehyYtL8QRVFHtd7H3NRDBESLE2UhRx+kMcQTvCBs2hDhClgan04tKpaCwUB/lwAp/ra7uYNu2biSSiVSeeQ37177Oyw8/yMW33Mxg0PC56kGk82vu3OwjZjnC6Iyvw2U9RiLW8RnO2Arvx7cd41eoY4zzz5/Ijh1Wenu96Lf20z9BSY0hiHt3gKtOLcKYriEYDHLLfQ+yed2HrHnvffr7LOzfvQnYBEBS6iSGpj2KxzNMUbGe7OwkHA4fNpuHV16tJ1Epw+3xU1KSysGDfbz4wm7mzc/mwgtKD6nQagVen5+8PG1U7lCiUphWF3lCh9snl71UhzFDzUhoBHp4jOk3AWMJW1OydZxYnM6CUiOZukR0KsW3P1vmGEAqlVBoTOKnS0r58cJi1uyz8Y9NLXxQJ6yIVJ6eTXn5oQv8WKsIE4rSue7uP/HwT67DY9/Ox8vvZ/65DzFv3kxhLO8YIlL4c9zd5cZmE0h2WJyNbOMtn5qGyzVEXX0PUpkk5JQMsn27laHhAP2uYTQV6RjTNREB8kmcceUfeefl3+Fs+QdNynbSLvvDmMcSz6V2OJSWpuH2+Nm7t1dYHTpMuyUwqj0y3vcSiYRJmcnopNms3W2jrt/NLa/VkJmsZObsNEYO9PP00zsZHBzmvPMmHdW0rXF88Vi4MI81a9ro7fXy1Map1Bmu4t4pL1Jw4AnWyi7jhAVlGI0azlowk6HAD3h37VbWbNpFj7OPHmcfsANZg4xzZi3FrChjQpFe3LZWm8DQUICXltUhk0qYNy8HtUbO8y/sxj0wzOmnF4itjrW7egiMjGAyJTG1PB2Xa1hsSwxPq4v83Dc2OnhpWR1Vc0x0dQs3k0qlnKnlR87/+dpAFLbWCxMRw8LW1Iuh7GwhWyvJ+Jmypv4nkZgM5UthyrlgPwjbnoc9b5DX+VduLsiE0jOgQGh3OlwL33fPPoH33mthZd1/2HlgL4+/+hK3XXIFpy4qOOyKdfia2NV9qCaUlaaNmqQ4d24O9XU9qNUKWlv7cTi9tLX3k25UYbMORrUhhrPvLl1yKkmyNN7a8hbPrnqOuSfrmEnmmMcSz6l2OIQnmyYcJtcz8poP0ZkucUXDhCSYdjG2lBMI7l5O2q5/Id35CvPzz2Tw5ItZs0vO00/v5LLLyrj//rlH3MdxfDmI5Ai7d9ux2Tzs3t3DkiWFPHX5C7TId/FS7UtYLrUwUKtkYKcHn32Qvdt3AbsA0GVOYGjqNQJHKIrhCK/Uk5gow+2OwxEujOAIGgVer590M+Rn9tPha8Y+tJ+dcg97mhTkqM2UBM7gO5NOZ9bEMj5e0cNDvz9Ifr6WkREh427q1G8/SR7Hp8d1102PalOMlwNrVBtZtngZ33vncvgJuH+Rg7ujnZXL/saCS69n3rxJAkcY4/oqcoTuOBwhQtQpLw9xhLoepFJJKEA+xBGGAvT3D4uOpsgA+ZSURFQqGVKplJKKyVxz/R/40z2/4a/3/pJzrrkS86nniPvyaetBaWkabncERzhMu2UYsdf/sRaS4k1orazMoKGhj/ffb2JoKEBVVfYo59m3FeMi1zHG3Lk5PPTQCaxa1UJGhpq6fXY2DPlokAzz8sZWbjmzBKlEwnEnLkJrnM6I9jzcTgupqoO0Nmxi55YNzDh+Kvn5OlwuH3m5Gp5+6BKSDYVoDWWMKPKZMn0KlZVZmM3JvPjCbjosA3z4YRuFhSmig6umxkpdnR1LxwBLlhQAiK2Jtbt6otobrTY37/znAB0WN3muZGSh+zC97rOFj39ZGEvYKs/WcdKkdBaUZpClSyQ58ZsVlPd1gypBzpLyLBZPyeSAbYAX1jfz9k4LW5r7mJiRxJLyLCZnaeOKOWF31sXXP8Krf7kTT+9O9m76O9f86Jyox8cKSWFCUVioo6XFhV6v5Jlnd6FUyqJaC43pGuaeYBInYpnNydQ6fBCaOiWXS0W3WDhAXpUop6TUwPduuBfLgZN577Vf88ANS7n3939nQsnkKEdZfX0PK1Y0IZUJIkKsY3Is4UujFtwDGnX8S6w4PSY0XTHSlRn5+/DX+voeanbaSFTKGPL4WTLJQH9BkI/29/BOdy8KVRDfoAflvxvENpTYsfDj+PIRWw+6u3PZmDeVWc0/49SRv9G8/waMxkrMJiOnHTePTGUJ138HNuyso93RwqbduznY1sUpc8uQBZWYc7U8s/y/vL9+M1XTJ5NryMXZrWRCQTpmczKrV7eya5eNId8Iw/4Rior0mM3JBEZGsHQMUL3eQn6BDq1WwQlzTVHh9QsWmMUA7v+8cwBLh9CunmYW3K4qleLrn9MQV9gqEFwuk5cKwpYm/X+zDfFYQSKBtAlw2oNw8t1Q9xZs/htseVZoayw+FeOkJRjHWOU2GjV8/6J5JLwp5d2at9jRuAdXoBOjcYr4mHikIbImbN3ahc3mobq6A2WinOIiPdMqBKKy9Nxi6kqENkq1Ro7DKQn5Dw85zcJfw9l3Pq+f88+czaxphSzf8BaX3Plrdh+4iAdu/N6oFfK6UE0IC8tjraxHItJNNhbCx6fWyLFY3GRGBCrHE9rCDjZlogyPeyHlExZS7P8EZfNKlo68RX7idH7VNpvly+Wcd96k8XrwNUFsTdi3T8hV7OkZZG+9kyVLTubEnBPZf/x+/rr2ZT7pXEu/o4v+2n6G64Zx1DkoPi4d44QAw30J5Oao+evdP0OfmYsuI5+gMoMplcVUVmZGc4Q1LaTnS/Aq7AwVdLHX3opT2wk+QSDQSLRkyvJR2c1Ups5hgjKX2VMKKSww0NLi5M9/2sX+/X1MmWJALhfOqIyMcefrOI6MsTL/UlWpvHKWkNE1cv8IB+8fwdNpYe8n73DNjQuPKN5ADEd4JsQRiiI4glHD3LkxHKFWcPmKHCFUD8IB8omJckpLDZx2WgFabYLY5vf4a4/z51/+mTeeegavo5Obf3kzB5pcAkf4FPXAanXjdI4dmi/s26EJkxaLe9Rj43KEGpsocIcRnsxYU2MVs7cih1d8GnHum4jxO70vAHPn5kQ5KZqa+njov3tZ1d7L4yv386OTJpCYIKdmp41Oi4dpFcVccvF3APB5B3H39+MntHq3aweOnhYcPS3AGgAaNyRSN3kqk6ZUUGQuA9IoLNQdstTPyESjluN0+JDKJKyvttDV6UarUzK5LJWo8dgh10iyVkk2UFycQkLgTCqOO5EJpVP4uuFIwtbC0gxMehWa/8F8rS8aEomEImMyD55bzu2nTmLZxmZe2dzGE6sayNarOKfCREWuPq5T7pJLppKf/zQv//lBzrvyJjIzkkXhpmJaOhbLANu3W6msNIrTQwCKivRUzcnmlVfrxekl5503MWo6Y+0uG9u3W8V+fZNJg05vHtXGm6iUM2mSEGwZCIyQa9Yy94SLmFA2hX8+dRc3f/cMbvz5rzl96SXiMaxc1ULtbhtmszaqwMSusoQLRWOjgw3VFowZaiQSCRaLkH0XaTnWqOXiz6IClSOOKTarq2anjZ01NoqK9VRUGMXnFntlVOQa2GXvp6NCxzaplB+/uoOrTyigfU9vlEX8cBgnQF8cYusBzKVjRwmp715BmeUP0H4j5MwSHSkV09L5zf3nAcL1rrmjG03CoYytbfX1NHe30fxem7hFU1oaW9pLMRuzKS0rxNbtE3MmZs7MZMmSApEQ79jeHZrAZaNqjnDz53L5ojIptMlKyBaCtXv7nVyy8EyKCr6mq/ZxWxFDwtaUpZAxRRC2vomTEL/uSFBDxSUw9UJo/gSq/yi0Me59ByacIrz/ytGO8AsvLOXCC0v5/dM57NzTyuyycuCQcOP3j9DZ5aay0sjCBaPb9VpaXNTstDG0wUJmhoaKCmNUtpzFMkBbez/KRBlarZLplUamhkbGhzPDtm7tYnKZ4CzIMKrxuIeZV1XAJRf+nF/9+TV+/bfXWL+9jv/77U/ITE8V92/ZsjocfT4mhATkMCKD7/W6Q/taXd3Bf945gFarpLg4JSrjy+P2i1/NZmHK5NatXXTFBCrHa0UJXy+Ki4SakGVOpq41lZbhqVSl1TJFtpU3z9qOS/kebO5ib3cVGzb3AUeuBzBeE75IxNaEyPcaQCqRUpJaQurOxajWTKTqtCCFt/eyrXsbB7oP4BhwUKN9FdIk7Njnx9ljxdljhd3bAKhbLWNVUSq6Ih0JZUlkL5GCcojloZhdpUxJkl6PpsuE2pqFyV+KvVFFerKBk+YUIUHCns1OtDInhQUG9uyxYzComDgRZs3KRKNZyqJFZzBlytePI4zjmwV9op6XTn+Jq96/CskDMPC8kcuvvY6MjCRRuKmoOAJHqMrmlVdiOELEIkttbRyOoDOPav9LTIzhCKHpha2t/YBwHb7lwVsomVbC7+/+PQfqD5B33PnsbfR9Ko7wTqgehFvIw2768OM0GjnuiKzVeAH7sTWhpsbGzp02ioqiOUJ4H8Kh8uGvsft4JJHLanVT12wjLycFJhz2oV8rjCsBXwIKClJ45sY5vLqllfve3MMD79Rx3YkTRIdJZC6RMlGFMlFwUBnTNWRmHEef/QkO1G/F0b0Ha8c+hoc87NmxmT07NnPlTXfx4ycvxmpzU7NtL289/3PqN5WRN2EiJxyXjtevw94rFceDhic1ulwWamqsaNRyzOZkFi3KO3SSlRqOujXry8DhhK0TJ6azsCyD7HFh60tFiiaBmxdM5AfzCnmzpoO/r23izx8dOKzYFURO4fRr6elT8Mqr9dhsHtpa7AAY09WhuB/hObHtemNNOBQgAQnYe71iG2+kYBTrxooM5W5t7aenL4lrfvY8G9/7E7+/7zY++mANP/r5rzGbhfNSKpWQlqaKOh8iV1Ei93XNmlbq6uxMmKDnO98pEqehhrF3by8ymUQcaX+4tp5IRF4rYm3GZnMy56bl09brYW2DjY/22XirxkKuTsVUk4bU3COfx7GZCeP4YpE9/XgoWgevXATrfg8lZzBt2qkAUYHUEomEghzhsxy+CfnJFZfyzxWb6B/upq6pidaubiw9Pbz+7jo06kScW/6J3e6ltbWff615n5feG6SsKJeJBdkkKZNRqQ1s32rFEsqGWbDAzCfrhXqg1kTXAyEPSE+mYekRP6NfKkaFx4daEaddDJPPg8xxYetLhVQGhSdCwXyw1sO63wli14EPDyt2HT+lHEd7Eqs/bEGtkbNpczv1dU502oRQa1+cemDUiOdI5BTQaAjurV67F0+obSt8/sQ6se64vTBKRGtt7WfOpCrKfzqBB55+hmln38gvr7uWc08XhOiB/mH0KUqWLIlurwzvg8MZfc3/zzsHaGvtJ9ccXS/CdSCyHkQ6FI50vkW60qKnNOYjM5ej1H8Pmj9B21oNK+5kkUzJ1LQTkGq/B4FcOMIo+PGa8OVhLKeLmKc2P4+5M3Lwj/hx+px0DnSy276bJmcTDZomVLek0rOvi/4DvQy0uAj4Atj22LDtsTEzfSZzFs1BMazBXu+l4b3tzK6sZPLkyaQUmxlyp9LeHuA/7Qfp00OGMYnJkw309Oxn5cpmdLoEJk82cPXV5aIIt2dPzrj4OY5jhmRlMs+d9hznvHYx/KCL/a42Ol8ZCXGE8HU/PL0zfk0Ya8Jh5HPsdq/YxhspgokcQRqfI0S+jtXqJq2ggl8+8xhP/PRhDi57nNTSs0irnBm3HsTjCE1NLrKzk0b9Dj4HR4jI2YrHEeKFyx/ttkF4vw8ccCCXfLM6o8ZVgS8RF88yM9GYzE2vbOeRd/dyfmUOF19UctiMqJycVNJyptHRY+KEqsvJNyfTa2tBFmynq6WeyqoTAUEIUMu72bjmv2xc89+obSgTVSTpMphx8lU4HVnY1XL27GqgcU819dsNKBSJlE/LQi3LIUGpJF2XgC75qy1eh83Ymhh2bI23In7VUCXIuWR2HudV5vDmjg7++vFBUexaWpnNtBw9r/+znnVrO9DqEgj4hSDrkREYcW9m3+bnOOP0FymbahZbaAEOHuxj00YLCQlCMLfb4+c735kwSnitr++hqdlJ0QQ9iSo5dXvsFBbqxN/V7LTR1upi//4+9CmJaNTyKJeUvWcQmUyCXp/E9278BQPDuaz/7++5+5o6Hvrr8yxamEd6enRAPsSfiijkGmnptAxQXJzCzBmZWG1ucRpqGJFOrsNNV4xEaWla3AmPkc/NM2i4zKDhnGnDbG7uZWe7gw/a7fz3Hz2UZWlZWGpkQWkG5dk6pFLhmhNeQdbpEpgzxxSVmTCOLxjJRvj++/DuT2DbC5QZ9lJ29m2gTj3s0/yDSgpSS6mYNp9pFems39CCVN2P1dmNe9CLTCYTV/kuv7+a+gNtUc+XSCSkp+jJSs3g/PNvZ1dtD/V1PWzYvZMdB5LIy02lscFFxbQMZs3IJjFBQWbO18DOPpawNfUiKDtXmDyXlDEubH2VkEggowzOfxZsDbD2N1D35iGxq/x8SEji9dfrWbuuA502gc5ON0ggNU3OH5Y/R366mbvPvjRKvDKbk9m6rYtXX92LzeZhxowMiotT4rZZ1NX30NzkZEKRHlWinD11h2pCXX0Pzz27G6vNLdwzhdoHI1fFe+xCTZhaOJEXHriPn/7hL1z/8GPsajiX60OO+9HC0qFtWK1u0ckVdkXmmuGsMydE7Ws8J1fsvhwOZaVpY+6DiImnQtEp0NOItHktWd27YNUqWKeF4kUwaYnwd4m45ozXhK8PYh1fcqkcg8qAQWVgSrrgogrODvLAnrWs9jZRcVYaJWU6ujtbUCqstDbt5cqrrmTWjFkoZAr+0fMPXnz/CarfXxv1Omq1Br0+k9NOu566uhzBtVG3j3XrPmbz5lQSElScdFIBKSkTSUxMJD9fSWZm4pf6Xozj24uHHqrm1Vf3kZp9PpLFL1KrWUHi3nkEDnayf+NKvnPmg0yanCZOCIU4HMEd4gjGOByhyUlRkZ7ERDl1dTEcocZGW5uLffv6SElJRKORR11H7aF6oNHIsVrdrF7disvlY8aMTP72379x15X3sr/mdaQzEwgGK0U+H+86LnKEzgGmTUuPK4oBUU6uo60HcTnCEZ57NNuOHFQxYYKQ//dNgiQYFGYmjUOAy+VCp9PhdDrRar+Y4HWHZ4jbX9/J6r1WSjOTuWpuAamahDEfH9nWFQ60Duf3rP/Egr13kLIyA67ediwHq7F3NVO3aw/WznaGBh3idi750aMk6GYhk0mo2bia7SsfjPt65qIp3P6LR8gtKCJZpz/GRz82gsEgTT1utrb0sbW5l96IqYjzitM4tSyTLL0KnWpc2Pq6YsgfEMWuph43E9I1tH3URVejE0OqilMWmNHrlfT2evjwtVtobdxNhimHJ/7xDmnGQysrd9+9lgMHHEyYoGfpeROjPvOR0xVXr25ly5Yusk1J6PRK6ursZJuSuOzyMlavbmVnjY0EpZRe+yAKhYycnGSWLCkQi8HWbV1s29aNz+env38IqVSCTtPHpncfotdq4dYHfsspZy496uP/tCH1ked2eJ+qN3SwodrCnCoTVXMOrbx82m0HRoJY+71sa+ljb1c/TT1ufP4RtIlyZuSlUJmXwnCnl676Pk6qymHJksKjPs5YfBnXza8CX9px1f4L3rkNRoah8jIoOEkQDOIgcpqcx32oHsycmSkGaVfNMVFUpOep/3ufbkc32/c0caC1E6fHxdCwMD136qQCnr33XtasacXp9PH3lX/H6uwZ9XoSJNx33RVccMZxTC7+kie0+fpDwtaGaGEr9zghPD5rqiBsHcGVMo6vED2N8PEjQnaXRAalZ3HL0xpa2wdJNajEYQbBJCu3/OZJAH5z5/e58+rzozbzs4iacN5SoSZkZoWvg0GmhnJTnnlmFzt2dDN9egYajYItW7owZSdx+WVCTVi1qgWvz09BgZ7Kygx8Xn+UaLVqdQsffdSKdzBAdnYSZVMMvL7qXZ576x0Wz5/JskfvwJBydNeCT5t5Enluh/cn8pyOXYn/1JkqQ27hPGrfAvZG6O8EJEJWXc4syD2Ojw8Y+bBGznFzcsdrQgy+rse0fn07q1a1sHBhHk7nEBs2WJgzx8Tg4DDLlzewdGkxM2dm8u67m2hu3kBn50Gqq2tob2/F63WI27nvvqfZvz+TYBBkshr+7//ui/t65eWzePrpP1JaWopON+7mGsfnQ3n58+zf30d2dhIXXZXL2pzHcPuddP26i+5mC9n52Ty5/ElS0lLE50RxhKUxHCFiuqLIEbKT0OlCHCE7ictC9WDnThsJCVJ6e8fgCFtHc4T8fJ0Yih/wB3jmN8/w6lOvcsp3TuGO39yBSj12nvWnvWZHtmyWRtSE8DkeWRO+iIytyOnChZMTUMgUnDXhrE+9na/q2jnu5PoKoFcn8MwVM3lpQwu/fX8f9721m/MqszlpkjGuqytSobXahElX4VXCzVs6cTp9OB0+MjKTSck5E1W6n365Hdr6KShQM7sykQSpk9zCSTgHlGjUcrzOHLoOzqHf2Udg2IdGI8E76GXQ46WzrYXf3ns7v33un1/4ezESDHLANsC2lj62tfSJjq3JJi1XFKWxqCwTk358KuI3BQlyGRfOMnPO9Gxe2dzKn9ccYGhyMmlZSqqytFxyUan42CWnvcKtl51NR8tBfnbtxfz+xTdFUXXe/Bzx69BQgO4uN4WFulHTFSumpWPpGEAqkxDwjzA8FKC3d5DVq1vJyxMupHl5WgY9fjZustDc4uLvz+xCKpWyYIGZGTOEqSPbtvbSPzDExOJUzr94Pld9fz5/+NVdPHzXDezatpEbfvpLEpSfbeUynpAV/vmyZXX0DwiiQ/h3G6ot7N4jiA0peuUogRs4osgVKZSdOSeb06eM4PQMU9/Zz35rP812D9UH7Pj8wiTVFRv38+fGDi6amcvlVfmf6TjH8TlQfj6YKuHtG2HT34R8o+NvAPVoF0WkgyM8Rju8ChgO0gZholthWglT8sqR2FuYoPQxrSKdxWdms21nK4Y0IZh1emUGEGRL60QOtCUTCA7jGxpGroBB7xCeQR+/feGfSOXBL0fk8jpDwtbG6KmI5RdA6XdCwlYmyMdeGBrH1whpRXDeM3DCbbDqAdj9L349R8MbDRUoJ53MhReViQ8dDnq487Fn+cljz5GeouPKpYvE382flyN+HRoK0NXtJhgM0tXlJgjoQ+PRUw2JaLVK/AGh3UWRIMXR52VXbQ/TQi0tSqWMLJOGuj129u3rZfduGyNBYduKBCl9fV583hEyszRMn2bktEU3cMGZs7n0zt8yfelNvPb7nzJneimfBfGErPDPly2rY6BfqAeiyBVxTutTlFHPPdpMlWihbDbkzoYhDziaoXM39B0QctS2Pc+JwDyZjECdCWyFcPEroPx6RFeMIz4iHV8tLU5AmGR3993rWLu2HRAGh3R0qElLW4JKNURnZwdeby8VFXq+8510VKp+Jk+eys6dHiCIwzHA1q1zsVp78PuH0OtluN0eBgYG2b9/L1dffS3r1n30lRzvOL5duPjiSbz66j4uvngSP/95FVbPDC5dcSmyO2Dk4WE6mju46/K7ePy1x9EkC9eieaF6MC9UD7q7IzhCxHTFcJ6XVCrB7x/B4xmmvb2f2toescUvL0/L4KCfjRstNDe7+PvfR3OErVt7GRgYYuLE1KipjzK5jB/e/UMmTZ3Eo3c8yo3n3Miv/v4rTHmmOEcaH/GErPDPly2ro78/hiNssLA7VBNSUpTic8MTG+HIGVtjCWWxiG5p9B31MX1dMC5yfUWQSCRcUZXPKSVGfrZ8F//Y3Mbahh6+d1weRcax7YCxLUqzZ2WJTq6EBJkwQaHBQWqqkimT0zBmqOlxSCgpyaN40iGnjNtzPEOSAnw+P2q1grlVJppbXLz11gFUKhlnnlFIarrxCzn2kZEgDVZB2Nra0ovL60ejlDHFpKNqgoEFofD4FPW4sPVNRYJcxhVVBSytzOGpjw/wYnULG4Z9KDa1cF5lDokKGSmGdB75+6v8+Htn0dywl3t/dDmP/P1VElVqFp9eyOLThVXkV16tp8MywIZqC0uWFFA5XSDlYUeTIU1F7a4eNm6ygERCMAgul4+EBBkLFpjF0Mjk5AR8vgBNTU4GB/2sW9vO4tMLWbDATKJSjr13kLlVJvH8uuvhJ5k643j+9Oufs692B/f+/u+YzPlxjzdy+qHbI0w2sfcMsnJVCwcOOBgZOfTYsGhVs9NGn8OHXCYRBTmAOVUm8Ws4cB5gwQIzcHT985FCWdWcbORSKYYkJScUKzmhOA3fcIB+n5+2Xg8dzkH63EM4PMMctA0QDAbHz7uvAoZCuOId2PJ3+PBBeOdWoZ1o8tIxBZ1Yu3lVKFS0ao5J/JzU1FgJ+IPoU5TMrcrGOyBDNqwjUyfkFC0UQ1wvY8MGCzqtkrLJqUwtT+ejj1p5//0WMjLVLDl+4hd37IN9EcJWvfCz1EIovxBKzhSEreRMkCu/uH0YxxeLjDL47mvQ/AnqVQ9wGesgqQm6rhQy1IA7rj4Pa6+Dx559g2vu/QMGvZazTjkOgMWLC1m8OFQTXqnH0jGAz+untMwgTtICOGFuNuZcLdXVHezd20tamoqkZGGyVllpGmkGFZ+st9Dc5CJBKQTTW22DOJ3CDfytt8zA5Rqm1z5I1VyTeH6dPm8mO/79JBff9gjzL/sJj915NT++/Owxr5XxpjC+++5B/vWv/UhlwnPKStNE0ctm8zDQLwhwykQZVqtbyFGJOKfDYfPh5x5tpkqkUCYSmgQ1GMuEfyMBweXl6RFaG902pIO9guDc3wnKok/1px7HV4fIfK+lS4vFr+G205Urm9m6tRuTSc38+Tnk52tpbZUyZ04B06cXMn26sJ0VKzSceqoRj2cIrVbJ+edPpLbWxuOPbyc5WcGNN04nNfXwrfXjGMfR4Oc/r+LnP68Svzeqjbxw2gtc9t5lBG8L4nvIR8PuBu79wb088uIjJCgTRtWDjo4BNmwIcYTKCI5g1GAwqKit7WHjRgvDw0Hk8gAQpLQ0DYNBNTZHWNfO4sUhjpAox24fZG5ETYjESWeeRF5xHvdccw/XnXkd9/zpHmafOFv8fbzph3b7ICtXxuEIIdGqpsZGX18cjhARIh8OnIdPyREihLLDiVyR95i9g+Mi1zg+JXJT1bz0/eN4s6aD336wj0fe28v0XD3nV2aToRvb8giC4HXuucVRP9Oo5Wg0CtE1EtniFIlIAtTY4ECjEdo9gsERhocgHNR3rODzB6jv7Gdnm4MdbQ4GfH6SE+VMMWmpKkrjlBIjmdpEUjUJ4wT7W4TkRAV3nlbC5XPyeez9fbxV08GW5j7Om57NCcVpZGabefhvr3DbFeewZ8dmHrr9hzzwx+eRyQ9dmiLdWm6PnwULot0kxnQNOn0/anUC+Xly5lSZqN1l49VX91JcpEeTlEB3lxubbZCiYj3ZpiTq6nvJy9OK2SyR51Gk82rJBZcycUoFv7r1Gq6/YBF3PPgE8xadMeo4400/XL26lZoaK8PDAXJztKKwtXZtO9XrO5g3P5v0dBVOh4/uLre4rao52WKbYopeIPV5eVqxNTmcKxbb1hh5rkcKZfGgVMhQKmSMDPoJ2HzMnpCOJFGOQi6IhOOn4FcEqRSO+yFMWgwf3COEdx/8CKZeILQwHiFvqqoqO+qGxWgUcoc0GoXo/oh1f4UxtTwNm9VDQ6OD7dut6HWJtLYNMOwfIRg8uhuno0YwCP0W6NguiFs9DcKHLnUCVHxXELYyygTHlmI8++VbA4kECubB1Sthz3JBzF3zIGTPhJlXgdrAo3d8H6vdyYtvruLCWx9m5XMPccKMyVGbmVaRTodlAJlUgjlXGxUiHL4pb20TplIVF6eQZUqisbGPTRs3YDZrqauz43T6qKzM4LzzJrJrl5XtO6xMrxBaHpfG3FdFuq8+eulRfvb7F7j14adZu3U3zz10C3rt6IXJnTU2LB0DmEIBwwBr17XjdPrQ6ZRicPzOGqEmDPtHyDCqkMmktDS7MOdqxbDg8DmtT1GKx2+1uvlkvYVe+yDqUI5MbLtyuB5ECmVxIZVBoharS0arSx1aQFJBz35gPNHkm4rzzpvEeedNEr/Py9Oh0yWg1wuT3ebOzRk12TGMWFFMH7oXGRkZwev1c6w5wjjGEQlTsonnTnuOS1dcSvGdxex5cA87qnfw6x//mnv/fC8y2aF7oUi3ltsdhyMYNeh0AkcoLNRSVmbAbh/k7rvXYjZrSUpKoLs7xBGK9JhMSdTX92I2a8XFhlEcIY7zqmBSAU/95yke+vFD/OyKn3HNT67h4usvRiKRxJ1+GMURcrWisDWKIzh9dHdHcISImpCSEsER1luw2wfFXLFYt1ZkO2O8aYvxEPkc+ddo9tDRYlzk+hpAKpWwtDKH0yZn8tePGnlxQwv3vLWHCrOec6aZyE5RH3kjIcSGz40VbB3+eaQoBogT7Mqnpo16zqdFr3uIXe0Oatoc7O3qxz8SJEWtYFqujnnFaZw40UiGNnHcsfU/gAxtIr+9YBpXVuXzwNt7eHFjCx/tt3FmiZHAQCq3PfQ0j955JRs/Xsnqd97g1HMuAoT2XLfHz5IlBWJYezyYzcnMm5cthro3NDpoa3UBcPHFJRQW6qirs9PvGsIzOMzMmRl4PH5Wr24VrMcR50ike6q0NI2i0in85Z8f8Lt7b+WXt1zN6edfxdwlN1BYmCo+L970w4pp6dhsHgAWLcwTf77mw1Z6bD7WretgeHgEnzeAvdcb97jC5/PWbV2s+aiVHtsgra0ubrxx+ii3VmTrStWcbJHkhIW8eIh8TmHJ+Krs1wZ6M1zwIrRUw8r7YPPfYfdyKDsHCk8G2dGX7tiA6rHCRo1GDQsWmEk3qgmvgkaS48+d8RDwg61eELY6toHbClI5GIpg+mVQdhaklwgZW+OOrW83pFKhRbfkTFj/BFQ/Ce/cxoD5dPbJ5vPQzVfT0+fkvx9v4Zp7/sCed/4qkhqr1Y3HLdSEyMD2WJww14Q5Nxm1Rs7OGhs7dlgZ6B8CYNbsLNrbXKQaErHZBGE3OzuZVINaHOce+XmPdVD99q5rOGFGGVf+7HEqzrmJB6+/jlNPnBL1nMjph+GfR7Zchs9JvV5Jf78Pry9Af78PrVaJNiJgORKR5/Lyfzfw9lsNBAIj4u9i25XFehAiRVarO+7xhTGq/VE6ThG+bYgNsx9rsmP455GiGIDD4SM7O4mTT8790vZ5HP+byNPmcf/k33HX0I2U3lJG7WO7+HjFx5y44kROPutkQKgH7lA9cB+mHogcIRTq/uqre2lrczE0NBLNEfp9eDz+0Rwh4noZ6Z6KDXtP1idzyyN388xjL/D0I0+zb9c+7vrdXXGnH1ZURHCERQJHaG520d/vw+cL8P77LeTlJeP3j2C3H4EjbO1izZpWenoiOEKMWyuKI1RFcISQkBcPURxh8jcvImK8gn2NoFHKueO0Ei6vyufpjw/yz23t3P+fOoqMSSwoMTLdrEculR7T14wVxWJP2E8D73CARusA9Z0udltcdDgGkUjAnKLm1MkZzJ+YxgxzKkZtItpE+biw9T+IKdk6Xv/hHH7zei0v1bTz5+pmMpFRrsli/tn3IA20sujsC8XHhy+wWZkadPrRxDfSvTQ0FGD5G/tDLSgKcs1aFiwwi1MO6+rs1Oy0MTwUACAjQ8Oe3T243cNRkxv1eiVSKeLKJYAmWcu9jz/Dm/94lr/95gE2f7KRhRfez9lLZ2FM18SdbDLWz4qK9OzaZcPtHmZ4KIBen0hZmYGt27rihspbbW6cDh9qlXC5djp81O7qwZihpsinF91asa0rUYRlDJHr04wQHseXDIkE8ufC1R/A/vfhk9/D1mdh1+tQeCJMPA006UfezqdAdPsiccdOHzXCbq2u3dBVC927we8FpVZokZp2CUw6HfR5kGQcD4//X4QiEU76KVv8p6D55H5Km95mYvBjOt0X8Ivrr6Wv18891383atW+tbWfbdu60WoTRpGPyFXnxkYH1RssJCUpsNkGyTYlIZNJOPlkM0VFet5+e5Ddu+24nD6sIaLRaRlg9aoWZs3OEt1cdfU92Gwesk0aUbgCOGdhFdsnFXDmtb/kqgce4vLTz+bXP7mIjAzB1RVv+mFki00YDoeP5GQlw/5BgkFQKmVUzTGJLTTxyIfV6qa+zs7w8AgKhZRUQyJWq5sMoxpfkT6qXTny2n6kDK/xejCOWMSKYpH/P45xfFEID1PQaBTM9P2QjUV/ovDKUooGJ3HSmSeJjxM5QpYGnS4OR7DGcITl+0lICHGEXIEjhDOuDYZENmzoYHAwgiPsieAIxrE5QiTaOzykTzqRRZels+6NZdxw9g386u+/4pJLonMc43GEcD3w+wcZHPTj9wc54YQc8vK0Yy5QWK1unE4fanWIIzh91Nb2YDSqKSrSi26tw3KEMUSu8UyucRxzGJMTuefMMq4/aQIvbWjhzR0d/G3tQZKUcmaY9RxfaGCCMQnpVywSeYcDNNvd7Ovqp67TRVOPm5EgJCnlFKZrWFBqZEFpBoVpGtKSlKgSxke7j0NwLvr29ZOywUnmrBRaFSOsGegnMaGU2flVUeJn+ALrdHijBJuwuOV0eOnsEgjKhmoLHR0DaLUJTClPY8mSTGbOENpYanf1sLfejkIuQaVSUlmZQYJCSmOjg65OYVthIcjh8NE/MMzq1a14B/3MPSEbY7oGiURCyYxzOPnCZNb/50HefPoHqBS/5tLvXzDmscabiHjWWRPINWuRyaCtdYA5VaaoVffw42KPcfKUNBKUMpI0ClwuHxKJhNNOK2DmjMyoFsvw82MLWrwA/EinZ6976HP9XcfxBUEqg5IlUHyq0Lq4+W/QuBL2/hfSJ0HeXGHaYOJXPO0rGBTye3r2C8JW927wOkAiBV0uTDhFaLnMPwGSM0CVKjh6xvE/jxXrh1m1+nK+e9wiLk17iYmdf6etcxKnTZyHozv6M2I2J9PQ0IfL5ROu26Gb88jx7nAoh8pgUGHMUFNZaWThgnxAmBjV3OyizzFItikZRYKU+fNy6OgYwOn00WsfFF9vZ42NhgYHSqVwjU4zqMTXTFJque+qm3ji5Vd57r9v0NHXwb+evJMkTfyoiXjTr8LCmUwGrW0DVM2JqQdxRDyH04tUKiEtTYUpO4mSklRaW/vFmqDWyFm9ujXKRRZ+7yK/xobgH+24+nGMYxzj+CKxalULq1a1MnNmBmcvOpn+zU5qj38B17CHkeAIMonAJ0WO4PRGXTPD10qn00tnZ4gjbAhxhOQIjjAzU5yg2NPjQaWSo1DIBY6QEOIIXe6oWuNw+OjvD3EEr5+5c7PF3wmtjFZ8Pj8Gcyk3PvIrXnviD1x31nXc88d7OP6U46OOM7YmVETUg7a2AbHVMDzlMHx8kc8NH+PkyWkkJMhISorhCDMzo1osw8+PyxFi2jDHM7nG8YXBkKTk1kUTuf6kCazdb+PVLa1saerj44YekpRyJpu0lJm0lGZqSdV8sTbCIf8Inc5BWns9HLS5OWAboNPpJQgkKqQUGDScXWHiuAID0816DElKUtQJyKTjbq1xjEbY+r5wYR5phVp+9NI2GiXQkDiCfcCHRhbgd/fexpkXXsbM2XOx2tzo9P2jViA0agUymQSNWi46msomG0hPV8esRgfR6RJJSU0kLU0V8XsJ4dYsEISlRKUcpVKGo8/H5i1d5Jq1orC2YkUT3X1GZp/xe+qq/8CLv7sJn6uBK2/8CfsbHNTstIniVa45ibZWIUts3rwcUUwKr97Ey8uLt+qelamhpCQVp8NLV5cb76DQ3liQr8VsThb3q8MyAEBzi4t1a9uZNz9HDO+H0W2Y4/iGQSaH4oVQtAB6m2D7S7DvHdj6nPDPUCQEtGdOFbKtPkVL46dGMAgeOzjbwN4oCFv2AzDsASSQnAWm6ZA9HQpOgRQzaNIgYZxAj2M0wvVg6sJ5JB93E6x/AtPHv+OnU1royTkHgiW8u24rL7+9hpcevV0cKBJ7vXS5hpDJpDicXiaXCZlCk8tG1wOzOZn8fC0JnTKMRjVms5b0dDV5+Voxvy6MvDwt66s76LF72LK5S8zKCotqDY1O5pWcQobOxMpt7zPrglv45xM/QxpIYmeNTRSvJpcZ6OgYoLPLzZw5WaJjMnZaamtrP2qNnJKS1FGOqnBNyMzSkJ+vZdg/gkQiwWIR8loys9SoNXJWrGjC0iHUg5ZmF2vXtTN/Xg6LFxcetg1zHOMYxzi+DojkCHPn5qDTXcjTG31sT/s/Xq5/mQvyLuDR2x/lwmsvZObMyVitbnS6OBxBE+IIGrnoaCqLqQnhhROPZ5iCAj1JSYqxOYLVTWKiwBH6+nxs3txFbkRNWLGiiY6OATIz1QwPj5BSbuIvb/+Fh295mLuvupsZp57JzAWn0d7hITc3ibY2IUssPJwk0t0VrgdWq/uwztysrBBHcIY4gjeA3e6loCDEESL2C6C52cW6de3MC9WEMA7XhvlNxbjI9Q1AokLGqZMzWVSWgd09xMf7bLy3u5PaDhebmgRlV6eSk61XYU5VY07VYEhKwKBJQKtSHJXjKxgMMjgcoM8zTK97iF73ED0DPiyOQTocg9gHhgginO7pyUrMqWpOKE5jeq6eCnMKBk0CenUCCfLxlflxHBmxFvj37ziRZZta+d0H+7jv7T0ot71O7Xtvsmnth/zp1f9iLiyOarmLdHi5u4Zxe/wUFelJSJDFbfkrn5qOTp/IwYN91OywYTZrmTkjkwULDrnCGhsdbKi2IJVJmFuVjb13EENqYlTRlMqkZJuSCARG0BXeRFbeWl5/9s9sWree3PIbaWoDuUzKsH+E5mYnSCQkJynQqEdfaiOtwjNnZI7aZ41ajkwmwWTSiKIYSGhqdgqvr0/EmK5h67YupDJpqC3Hw8aNFro6BdITKXJF5oaN4xsMiUSYxLjoATjpp9C9B+r+Lbi89v4Xdr8hZOlosyElD1IKQGsCdRpoDCA/yiD3gF9wYnns4O4RJq/1d4GjFVwdQushgEItOLUKT4LMcsFZpjeDOlVoTRxvSx/HERBbDzjxTmRTzkX29o8xtbxK26vVnPfwfgaHhkhL0fKHn183ynEUvk47nF66Oj2UlKRy+WUZo5xTIKxOf+c7E3j//WYaGvooLk4RH5MWmrZVV9+DxeKmuclJtimJkZEgpWWGqHrgcg1hytLQOhwgU1PI3d+7kX+seZ2Z59/Cd085G03ATF/fICDBbh9EJpPQ1+fF5RqO+z6Ea0JJSWpUmH4Yas2hmjC1PE3Mz4OgeMwetx+ZVIopOwm9Xsm//rUfp1Nw6ca2Skbmho1jHOMYx9cF8dpk5879GU/vMvDkjifZ9Jft1L+7i+3VO/jbO09hyjPFda06nV7c7mHc7hiOEFMPwgsnBw/2UVMT4ggzQxzBGsERNliQSiXMnZuN3T6IwRDDEaRSsrMFjnDggAOdTklRkZ6zr/sRVpeare//h/qafRhKFtPclCRwhGQFGs0ROMLMzFE1T6OJ4QjWEEdoCnEEXSJGo4atW7uQSmM4QmjYVWRNiMwN+7ZgXOT6BkEikZCWpOS8GTksrczG5fXTZBvgk8YedrU7aba7WX/Aznt7ug89B1AqpCQqZCTKZShkEuGWKCgIWz7/CIPDAQaHAlEzdCQSSFbKSU9WMikjmZwSFZMykynP1pOhTUSrkpOcqBh3ao3jqBDurw+vysRCJpNyZVU+p03O4J5/72bl4FkoazYw2LWPe264lD/+33/Rp0YPVACodfjIylSLPfVjZVCFv1/+xn46LG7q9thFASj8vO4uNx2WAbJNSZSUpOD2JEcJZuHgSrM5mfffb6a11UVF1Xc5fn4Vy/74E9qbbiGl8FqySmaRmqKKcnK5PcLI4Ej31pHaCd0eP4FAUHyuMV0TJcpFPn9qeRobN1lobnZhMCSiUSuYNz8n6rHx+v/H8Q2HIhFyZgj//EMw0A1tG6HpE7DtFdxVzeshGDj0HKkc5CpQqATBS4JQEABG/IIba3gQAjHtq/JEUKVAsgkypoBhAmRNE8LiE3XCv4SjH5Iyjv9tHKkmYCiCK9+B7S9h+M/PefYsBd99Y4g/LnubCblZ3Hz52XG3azIlodcljq4Jcdrw6urtWDoG0OqU4u/Dz5HJJLS39zPoDWDK0pBfoGVqefxWj0/WW1i/vh1too7Hbr6dx174B8+/90+m5k1lWuZctNpEsR1SqZSj1R7Kn4tsV4ncZmwrIYDHLdQEj9uPsfRQfp7V6kYf4WIQBgcFaW5yIZVJ0OkSxND7yNeLlxs2jnGMYxxfNo5YD0K4duq1dLu7eeWMV1BtTmWgu5efXvlT/vTvP6HVH4psCF+na2t9ZGXF4Qgx9SD8/fLl++noEDJ8wwKQyBG63XR0DJCdHeII7uQowSweR1AqZbS29rN/v4OsshPp9yXTU7eC3tpXqLrmegZ8GnEqJIxdD2B0O6E7VA/CzxXEOk3UNsLPnzo1jY0bIziCRsG8eTlRj/02coRxkesbColEgk6loMKcQoU5RXRi9Xv9dLu8tNg9tPZ66HJ5cXmGcQ/58QwF8AeC4sK6RAKJchlqpQxNghydWkGWLhFzihpTiookpRxVgvA7lUKGdFzQGsdnRLi/Hg4fXJqlU/HMFTP53T8T+dvw/TQvu43Othbuu/EKHnvuXygTD2WdtLb209nlpqQkdZTLK17+VGtrP8laJdkgtjbCIcdU2WQDpuwk8vK01Oy0idku4W1H5leZsjTk5ekwZWkon3oS6aZ/8sqff0rT3t8xeeK1zJt/Lfn5OtEdNhQKuz+ce2t9tYUdO7pxu4cpLU0bMwQ4dmKqMV2DTt/P8PAIw0MBZs3KEgW8rdu6jhg+P45vCeQJoM8V/pVfAIFh8PXDYB/0NUNvMzhaBGeWzwVD7kNuLAAkggCWoBbaCpU6ocVQnx9qN0wXhLEEDSQkCa83jnF8RhxVTZBIYMYV1DqnMY27/5+9M4+Lqnr/+HvYYYBhl0VmXDBZRFFRA7I0cS2zNC0rzTLbtbRN/bbYapv9st2yNK0sS1Mzy8RcgVRUUAEVURhkcQBlG/bl98cw48wwg+AKeN6vF69p5p577rkT3g/Pc56Fd4v+Ze7WKma/+zVdO3sz9tZBuqHNRUGZchoplaU4O9mCH7ouonA+WkqhcNZFSpWUVHPggApA51jSr1VyU5QvVZW1lJRUYWdjy6IXniD2yADmfrSUosp83nvmSV065NGj58g4VUJKaoFuHaZ267duVbJvXx7ZOWW6OmBmNcGolpaLTDNnbV09Hh72ulRF/e9Je55AIBBca1pqIwC8fOPLpJ7OoOGleLLfqSMrPYtXH32V91e+j43t+b9LlMpScnMbbQQvEzaCUf0ppbIUJydb/PzQpTbC+Yip4GB3fH0bbYREPRvBq6km+Po22gi+55/b3brJCApyx8E6gp8Wfcz6zz9gwhOPUVTjY9pGMIreio1toY1gpAdeXlJkMiMboVEPTNX66ki02MmVk5ODr6/vhQcKrgkSiQQHGyscbKzo5GxH784uBsfr6xuoa2igrr7B4HMLiQQrC4lwYAmuKPr59QBr1hxj7do0xo/vwYQJPQ3GSiQSnp8UyvTbevKkvw2rX51GatJ+3nxpJm9+/I2uML3xA17f+bN1q7JJ/Sm53InhwxW68dpuhtqIKU9PB0aP6kbC/jxKSqpxdrY16zDTpj9qI728hgYTGPQDyz9dxNb1Szi0bw/3P/UOZZV25OdXkJlZQmSEn0lR0kZb2dpa4uxsi7ubXZP70ScuPpv4uByD2mNyuRNOjjaUlFRTVHS+OKT2OlIHK7PdGwUdFEtrTcqgg5sm6sqYulpNhFdD/fnPJBYgsdQUuxdphoIrSGs0YdCtYXDrJoIO/Ub6jIf5Zm8p985+m9hVHxEWHACY7gyo/8f+1q1Kg/pTTfSgsXOVNlrKxsZS11k0Zmsmmn8NElQqNYcOFwANusgu/XQX7c6+XD6UTjJv5n36BQ8teIsHou/isftGUFVZS9qJIqRSa906jNetUqmxtbPC3d0OSwuJruixqcLwcXHZxMXnEBnhq2sJr63plZioor4ek5rgILUy261LIBAIriattRGW3/UlU/6egsVsCSffqSLpvyQ+mvcRLy16ybyNYKQHxvWnzGmCNmLK09OB0aO7kZBgwkYwcpiFhnoia4wo1l5XpVJjY2NJVpYlfW5/DOW+9fzw4f/hFzoEH++7iYw0YyOojGwEd7sm96NPXFw28fE5BrXH5HInnJyasRE6qB602MkVEhLC559/zn333Xcl1yO4QlhYSLBAgrVocCi4Bhjn169dm8bOnacBmgiYFlepDatemEAv1wZefuxe9sRs5M233uaVl/+HRCIx6wQCTbHgnOwyFApN+LJxl0P9CKfq6joyM4tpaGhoEiLs5Sk16TDTXlfb5h1g2/ZsXBV3ccv4LsT9+S7L3p/K9BcW0SfMX1cHS3/Nxt0TfX0cCQpyNxA3Y1T5ajb+kU52jprCwgoUXWSkpZ0jrI8n3bq5IHOxJayPp84RFhHpS2SEn8H9atctHF7XOZZWiGBuwbXiYjRB0vtuPv87koyb+7HlyBnGTX+ehNUf4ukfcMHOgAqFM9k55zVBH/3dc43RUsjmzaeorq4jMtKP3qEeuMhsdSkvBw+coQFwaax5Aud3wZXKUgoKK0hKzKekxIpXps7ky99/Yemmn6m3K2LmvZpuvNo6WPoGkNbIUCpLKVfXMOhGX911TaFSqfljY7quyHx5RS0HD5yhe4Arcn8ngoPdkUqtcXGxZenSQ7i523FTlJ+uo9jRo2cpKq7SpTp2JONGIBC0H1qrBzZWNiwZvoR7q+6l4ekGjn5wlM2/baZ7cHcmPqJ5xjanCQqFMzl6emDc5VA/wqlZG8FLatJhpq8HWrTdfy0tLbC2sePup57m0M5/+GPFL/y3vpQ7xi7Ay8vRbPdEX98W2AgqNRs3ppOdrSY3V02nTg7069eJ0FAPjY0gsyUszFPnCDPu3lhcXKUr4N8R9KDFf+G+/fbbPPbYY/z+++8sWbIENze3K7kugUDQgRk/vgdqdQ1dujiTmVmMQiEDIDOzmOTkQkJC3HWf/e+Ru7EvX8z/XnmV45Zy5v2SRPdqSyQ1DQQHuzcpNp+aWqArIG9jo/HqGtfr0heprVuVKJUl5OaU4Si1wV9uWIsrrI8nanUNdraWqPLVBg4u7ZxZylL2J+QhV8iYMHksEYP78fu3/+OT1x7ikdn/IzDwCYP7V+Wfb3cf0N1V10nrQk4n/ZTLwTd3pqioipKSKhKT8qmrayAszIugIA8WLdrHoUP5FBZWEBDgYnC/SmUp+/efIS3tHMOGySksqCA2LgcHFxsGDvS5pP+vAoFAcDEMHuxHdnYZgwf76T4zpQfWrr78sjOVgX2CGOpdhuOO10mWjuavkwFERvjpopn0/0hPSS0gLj4HSwvTmmBstJxRlXPs+DnK1DW4uNpSrq41mK9vv06UlFRRVFyJSqU2Wc8rI6OEktIqbh7cmS9efoZtB+N55dPlHDqezuqP59G18/naJ9pOjdr0F+P1mMM45bK8ooYG4GxhBeXqGgID3Zg8OYhVq1I5ePAMdvZWVFXWMWyY3KBQv76zS2PQlaBQOONSX4jMsRS/jlWmRSAQtHFaZiO48PXwr7mv+j4CpgRQ+Hchft0D2Lo1k5ycMqqq6gxtBC89G6GxgLxJG8HLjI2QW4ajow3+/oa1uMLCGm0EO0uTegCQlVVKQkIeCoWM4cM7o27UlOjhjxE5tA9vzXqLJ+94kje/eRN7mYeBc0vbPbEljif9lEu53JnS0mqgAaWyFLW65oI2QnGjHug7uwoLK4iNzcHBo5qIgXIwkRjQVmmxk+vJJ59k9OjRTJ8+neDgYL755hvGjh17JdcmEAg6KBMm9MTe3pr4+BySkwt1ApacXEh8fA6A7jOAObOeYtoDk/no91OsOprLHmqwzCynuKiKTt7na2YBJCblk5FZYtDV0FzuOmicWCdPFlFZUUfh2QoyMkuor6tnzJiuukKM6vJajh49q9uVOXyogJKS80XvExNVlFfUAppC8aFhAdyy8nc+f+9Nvv7wDf7buZ3573+Ku2cn4HxnLmdnW0J7e7Q4oko/nNrL83wR+vz8clKSC6murmXH9ixc3Wzx83PE2dkWpbK0Sf2vtLRzlJRUcfhQAYmJKo6nnUPmZY+fn/kdIoFAILhSyOUyBg/ujFx+/rlvTg9cXV3Zm5TK/m2pnE6cT0jlBuqsfdnx353Y2NzQpMZIXGwOacfPIpc7N9ECfcNB+3yPjPClsLACZ2dbkhLzycsrp65eownBQR5EDzu/0+8i05xz6LBGE7x9HPD1dSQ7p4yqyjqys8vw9HRg2p0jGRYZyviZb9P7jqd4b84Mnrh/JBKJxEAP9NNbLvyd6elBYzSYi8wOB6kVR4+eIzFRxcmT50hNLaRTJwdcXOwoKanSaEJjvRdt0fqi4kr27z9DRmaxZt05ZYR0KsHBpQi/3pf0v1YgEAhaRUttBLmznM+Hfc7DtQ/TPbo7lvZeHNiRTWZmMfX1UFxcRadOhtG2iYn5ZGSUGHQ1bNZGCGu0ESrrKCysICOjhPp6IxtBbWQjNOqBtuh9YqKKCq2NoLdpolKpsXLuwtvLP+L/XnqHJ+54golPPYG1S/dWObe0GKdcajd8Tpwo4swZtcZG2JGFq6uRjaCnBzJZqYGzKzFRxfHj53DxrUPu174CnFqVq9C1a1f+/fdfPvvsM8aPH09QUBBWVoZTHDhw4LIuUCAQdExCQtwNXs19psXNzY0Z0Za411uw9L94SvxcOSu1oi5PTbdu5w2gsD6e5GQbdjU0ThPU3zUP7+/NDA9N23ipgxWbNp0iO6eMLTGZulpcWsGorq5j5YoUzp2rRCazZeitcrw8pURF+iKVWmNna6kXMeZN1Ognqajvyt6/FzF97C0MGvksd957d5OUyJZinKJZWFBBWto5spQlGufcCaiqqqVXiAfPzu5v0GHlr79PsmvnaQbf3FlXP6a4qBILSwvkcie69nTFz8+xxWsRCASCy0Vr9cDV1ZUe/UNItv2W7OSl1Km/5LFuK0grnkzeGWcDTXBzt8PNzZ6gYPcmRYK1aYJFxZXk5ZYDEBnpZ1DfKnvTKXKyy4jZkqkrXq+vCStWplB0rhJnmS23DpXrOhYmJeZja2epV0i4B8sXvMr/PvmWp976hJW/72TRS48S0EWTutjaFBFTBYa1qZLKrBIyM0qor9doQkgvD+69N1CnCX/9dZKdu07ritKrVGryVRU4O9lg7W5JZIQvLvX1yHq4tHg9AoFAcLloqSb08erDwsELeWHHCxyw2ETffsOxrj+HjVSGh5cjWVllhjZCmCc5OWUGXQ31n6XGkbXh4d7MmNFoI0gbbYTsMrZsydTV4jKwEVbq2QhD5Xh5SYmKarQR9PTAy0uqi/aSSq0ZOuUZkv75hRXvf8Swu+8i+oVpePs0Ta9vDmNNKCysYOtWJVlZJY3OuUYboZcHzz7b30APdu06zWA9PdA6uywsGm2EEOt2ZyO0uiBHZmYma9euxdXVlXHjxjVxcgkEAkFLUChkBrvz5j4zPh7YOY/MX17Ep0cvVNHzyJdZ4HTqHJERmjSXoCAP3BudVqZ2ZYx3zaGp8ygxKZ/8/HJdLa7J9wbh5Sll1c+pZOeU4e5uR79+Xrrztbs5+rW/QGO0RN82momTo1n40hz+/W0ByuNxfPj1Z4T3N+wAZqrA/YVITMonKTEfG1sLZDJbvDwdqK9vICLSt8k97dp5mvT0IgBGj+pGYUEFiYkldFE4EXWTH1YO1lhYtOiyAoFAcFm5WD3w8rLhrk8PEhNTxuYnfbi1filF1r1QZo7TFY6/KcoPub+zWT04evQs3nq75tDUWEhK1GiCtnj95MlBeHlJWbUqlZzsppoQHORBcJBHk3buIUGd+GTeTL7+eQsrNq/l9qfm8svHLzI8qp/Buoy7QbaUpMR8EpPysbXRaIKnl0YTIiN8De5p5y49PRjdDS8vqa5uWWRjnRYKK8BXRPcKBIKrT2s0YUSXEWSXZfPR/o+oPF3G30v/JiwiDNnIqeebP0Xq2QjurbQRjPQgsVEPkkzoQbYJPdDZCKqmNoJmPhUnTpQSfvtUwqN6s/T9pZSdzeHlxS/jKNM4lkwVuL8QiYn5JCXlY9OoB16NehBhpAe7TOhBYWGjjdDFiagoP6ycqrC2tG7RddsKrfJQffPNNzz33HNER0eTnJyMp6fnlVqXQCAQmMTf3x+JRMKJxD2E2a2gavDDHKyr5Ke4DHrY2KJQODdblP5CUVRaMfrr75Pk5apxcbHVHdMWkA/r46lzpMH5VEltZJXUwcpg7uPpNfj0moWjRz9OHFjKY+Nv5YV3PqHPgEjdGK3DSq2uQV1e26IoL+16FArnJrXJjBl8c2eD18SkfE6kFSEN88TLU8pZdXWz1xIIBIK2hp2dHZ6entTV1XHnslzWzR7OUM8t9LcrpODUk2QUOiKXOxEe7m3y/JbUv9I6rP766yS5eYaaoC0gr30GG1NQqNEEh8a0GK2BEz0wnOpiR/Znb2fE9JeZ+cAdvPvcNBzsNZ2ztM4qtbqmSU2w5jBej7nzbh7c2eAVIDOzpIlBKBAIBO2Bh3o9RHpROr9k/EIDDezdvpdaCxeCbrqNsDDPJsXlzT1PL6QJOhvhr5PkGelBWOPzNyzMU+dIg/OpkoWNeiCVWhnMbWEB6rJqrKwkTHrqPgJCAnhr5ls8PvZx3vzmTbr27KpzWKnVNQYpj80R1kI9GNyoA4P19CAxMZ8TJ4qQSjVdhM9WVDU5r63TYifXqFGj2Lt3L5999hlTp069kmsSCAQCs/Tq1Ysff/yRO++8k8T/1vJYvzBKAm/l3xMFxNfAhNq6Zp1DzTnA9COxioqqDNqvq/LVqMtrGTZM3qRDo7Y+ljbVETRCqI0SSEkuIDdPTa+QaB55+i4WL5jDCw9NYPyUR3lw5ovYO0h1DittymNxURWgaVUf2tvTYM3adUodrOjRw9Wkc8u4o+ToUd0YPaqb7ri+w04gEAjaIxKJhG+++Ya9ew9z/HgSD3+fxJG132H793PI4hZQVDoEuN2sMXCh+lf6hpG+Juh/PnlykEE3Lv20l02NqY4APXq46sYos8qQ1NoxKfIeRkal8/kvv/FP7AG+e/tZIvsF65xV2nRHbWF4B6lVE6eXdi3aY8OGyZvck7GBN3p0N0aP7mYwRntN7atAIBC0J16PfJ2s0ixqH6kl4/MMDvz7Dzf0CgB8WbkyBQsLCYMHd272md+cJpjTA+0xtd7z11gTtHqQnd3URjhxoogydQ1ZWWWoVGosHOW89f1HLJ67kCfHPcncRXMJCwsB0KU8Fhfr2QihngZr1q5TKtWzEUwcb04P9B127ZUWO7nq6uo4dOgQnTt3vvBggUAguILccccdPP/8y3zwwZt8982bPPhgJ5xyZZQHS/ntpApnHyn9FK6tnle/G4qxE6i5Do3a4xaWFvj5OurO0R5zd7fjwIEzODpa89++avqPeJOgsC388ctXxG37m9kLFtH3xpsICvLQpS2WlFRxIr0IGkDmYqe7hrZDoraLV11dg25N5u5Fvx6Zdg7tbpRAIBC0Z+zs7Fi58mfGjBmCUpnGQwt/YmDIJ9xc+BbRnjFUniuEmllgbd/qufWfo/pOoOa6cemfa2lhga+fI33CPPFwt9eNCQl2p7CwAqnUGtvannz24ly+3vALN93/AjMfGMvbzz5IcJCHLm2xpKSKvFy17pmvdXqZ1QOvZvTAjLGjjVgTCASC9oilhSWf3vop95TfQ83pWrLXn2bNkqVUIyM7R1NTylSKYksxsBGMnEAX0gSlshQLCwv8/Bx15xjbCFKpNRs2pFNXV0///t58tu4zPnjhAxY8sYD7nryPh194mOPHz5HYqAknThQBIJO1wEbQe+63RA86go3QYifXli1bruQ6BAKBoFW8997rpKcns3btWtaufZVbbvmAUX1C+ONsEV/sSOfWnp7cM0COpYXE5Plx8dnEx+UQEemrKzIsdbA6383EU6qrs7V1a6ZBN0VoGhEmlzsxeLCfQVSV/hhPTwe2bVNSWVFHQA8Xxk+YyaQHJ/HRq3N4cfrdjJ5wP48+/yrq8lrq6hpwdralX99OQANyuROHD+Vz4ICKfv28CO2tEUipg5UutVGLfpSXfo0ZMO34EggEgvbOwIGB/PHH79xyyy2sWbMGB4duJNW9jDT0P0Lzv4a/XoSbZoNbN7NzxMVlExefQ0iwO56emme9ceqKR2MKSnV1HZaWEl0aoqndfwNN0Ct4Dxo9CAn2oLKylnPnKlH4+BK3ahGLV6zn5cUrWb/1P75+YxZudr46PZD7O+uitZRZJRw4cIZ+/bzoHarRA/0oL31UKjVFxZrOj8bHzBk7AoFA0B5xtnXmq+FfcU/FPVRlVVJwoIBtPy9lwF1P6WpRtYS4uGzi43MIbkYPtHW2dDaC3jPWWBPM6YG+JmzbpqSyso6AABfkcifsHex55bNX6Nm7J18v/JrjR44zdvpj522Efno2wmE9G6FRE6RSK11qoxaVSk1xseFatXQ0PRBV4wUCQbtEIpHw+usfs3dvEqdPp5OX9xedXaP4/Z5g3tqUwvdxmaTnq5kU6kNpQVWTlL74uBwSE8+QkVHMrbfKUeVXYGkpoWsXZzByDB04eAYa0HVT1GJcLL45x1F1dR3V1XV06eqMi4stK1ekEBHpy/QXv2b18mX8u+lr9uyM4cFZCwgMjEAud9IUh0/S5MWfyiihsrIOkDSbcqkVqcBAtybF7fUF+mIK3QsEAkFbJSIigldffZdXXnmOX3/9giefvJks+XRCbxsHvz0EW16DsPtQud5skKqh5e+/T3H02FmylCUMGOBDUbG2BkkDcs7vxuvvkJc3dueCpsXim0t7qa6uI++MmpBgd9zc7UlJ1rScv7HnIN6Z4cnP29cz8pGXuXf0EB4ZN57QYA9d50SFwpmzhZXn9eACKZdKZSl5uWoCA91MOuK0rxdb7F4gEAjaEgpnBR/f+jGPlD6CekE551T55KftxWZkzyZjjVP3tMTH53Dw4BlSUgrp1cuD3r21aXsNgJGNcOAMgK6bohbjYvHNPad1NkKXRhthZQoREb64utpS79ybp9/+H8vfW8xn817m3meext5eRmZmiS4q7NSpkhZpglJZSm4L9OBiCt23NYSTSyAQtFuUyhpuv30BSuV2Hn/8RUJC3LGysmDBHb24sZs7L605zOJdJ+nRYM1gDKOXIiJ9ycgopraugcKzlVhaSjiaWkherhqZi51urFzuZBBRpY+2WDzQrAikphaw8Y90zhVVYWdrhVJZogsz9vVzpMoygjsfjSAj8Wv+75UnuPGW4Twx900SkzRGTU52GY5ONgT0cCG0t0eTelv6mEqbMUVL1y4QCATthb59xxEVlcjIkePo3z9Y02revxs8HgtrH4UD32Mt3U9ayW2A4W611NEaa2sL3N3tCAx0Q5lVwt49eUgdrXGR2RmkoJiKmtIWiwcu6CRKSMjjyOF8SoqrkMudOXbsLLm5atw97MnPb2DWXQ9TcU8Wz723lJj/DrBwzjTsa/w5dKiQ7JwynBxt6BHgQu9QzXXMGWrQck1ozfoFAoGgLXOj742M93qCn57+PywTpNw75f5mO+yCoR5ERPiScaqYquo66usbKCmpYs+ePBwdrZE16gE02gj9zNgIjcXioQU2wsZ0zp2rws7OyEbwdSQpKZ8+fXxY8ucSXn/qdb743wIGjLyTeudQQFPvsa6ugYAAF0JDPS6LHrR07W0Z4eQSCATtlpAQdyCSkJCxTdoKj+rlQy9fGdOX7SU5X41zqZp+9Q1YNKYvRkZoukfFx2nCkSvKa8nLVePtI0XqYMXWrZlAA76+jshcbHUOJX0Hk3HdLlMpkHK5E4lJ+ZSW1WBlKcHCUoJc7oydrRURkb64NnZmCevjyfQZK9m95U++ev81Hhl3C7fe8RAhIePoHuBl0D3RuOi9PtooL1W+moT9eQaOsOZqjgkEAkF7p1cvD+bPX0BIiLuhJti7wH2/QOwnuPz7FuNtcyhzeRo4H+06dmx33N3scXO30xQWLq5C6miNzNkWZVYJRcWV+Ppq2rl7uNvjFWRY+F2hcAYMC7drUyAjIww1AaCmtp6i4irC3O3p27cTbu52eHeSkplZ0hhNFcxttwzgpQ+XMeOVT+gV0I17howlMqJ7k05ZzaWZ6I8xPm6u5phAIBC0d6aHP0BerZJ4+SZqOp/CyyuqyRhzTh9th9n4+BwiInypqKjF0dEab28pUqmRjSCz1T2P9R1MxnW7tCmQEUZ6kJiYT2lpo41g0Wgj2FnpIrm0c3j7e/DJb5/w7Qff8suSX5AHHSNg/JwmaZSmGqFo0UZ5qVRqEhLyzOrIdVV4XiAQCNoaCoXMwJCprq5m3rx5PPzww4SEhNDZzYE/n7mZt/5M4fv4TI78eJB7Q30YFOYDgI2NJY5ONpqQ3z6ejBrdVVe0UZuieCqjhMyMYuzsrRl/VwDq8lqdCIT39zbY4YiPy+FIcoFubmOHkraNr34tLW3tLy2DR9zOgMG38vM3n7L6u89x9fiDx198nf7Db0MikaDKV1NcZFgfzBSm6m8ZCKHRdQUCgaC9Y6wJ8fHx/Pnnn7z11lsgkcBNzyCR30jDT1Nx2fcOuTl34XPzBEATvVSurmX//jNs3aqkT5gno0d1pai4koMHVDQA+aoKSkqqiYvLxsHBmsgoX8rVtboU8cmTgwzWExefQ/KRppoQPVyBg4M1bu52BAa6Uq520hkbWuMKwNvTje/fe45H7xnF029+yavffkJm8QjefvZBvNzPO9nM1dzSYs4JZmwciQgugUDQUVAoZHwlX8hjW86yJm0N7lbubPliC3dNu4vOXTWN9LROn9TUArZuVRqk59nYWOLoaKNLCxw1Ss9GaExRPHWqhMzMYuzsrBk/PgC1Ws9GCDeyEeJzOGJCD7SOJJ2NoFdLS1v7S4u1jTWP/+9x+tzYh3fnvMsHs17i5U9eJnxQb6D5mlv6mNIEUzXH2jPCySUQCDoM8+fP56OPPmLjxo3s3bsXmUymSV8c14vM/flsV5ex7FA2Nm529JVr2uqmpZ2jpKQKdXmtQQ0rbYpiTq6anJwyJBYSEpPyGTZMDpgO9Y2I9NW9NudQMhWJZZyCOG3WSwwfN4kv33uFN2Y/QlCf/sx47hWq6EJuXmM+fTM1wEztTjVXy0sgEAg6Ejk5Odx6661UVlbStWtXpk+frjkgH8THlYsZnP8mUfwKuzLhxifB2s5AE8rVtYSHe6NSqQEJ0ICDvTVx8TkoM0uora1HKrVuVhMiI3x1r+YcSuZ23fUjAqL6hZDw22KW/PIX//t4BT//uZPnHx7PnGl3NVtzS4u5aIUL1fMSCASC9oyFxIL/G/J/TNo4idfnv07eljwOxh3k8/WfY+9wvuOuqfQ8AxuhUQ+09OvXiZKSKrKySsnPrwAqSEy8gI3QqAcRJvTAwEYwoQnGKYgRwyJY+vdS3pr5FrPvmc1Dzz3E5CcnN1tzSx+TNkIH0wNJQ0NDw7VeRFuipKQEmUxGcXExzs7O13o5AoGgFeTn59O/f3+ysrIYN24ca9euxcLCAoDY2NP8/s9J9tvVcqq4guggL4Yo3Eg+XAg0ENrb06QDaOvWTLZvV+oiuVqysxEXn822bUrkcmdGjuyimzc1tYAtMZlUVtTSo4crUTf56Y5pHV8+3lJkLrbk55eTklxIRKQvdpKTLP3oTdKSD9E34lZuHvsk3W8INIgGu1TOqquxsIDxfTvrUjpbSkd9bnbU+xIIrhfefvttXn75ZWxtbdm9ezfh4eGARg9itmQwNWArXU99BvauFAY/walzLgb1toz/4E9IyGP//jNUVdXqIrkuFP0UF2ekB41zagu9W1qCMquMyAhfgyguraHj7SMlN6cMpbKEoUPlBAY78+43q/lk5QZkTlJmT5lAn65hWFtZ0jvU8/IZKYUn4IZR4NGj1ad2xGdnR7wngeB6IbM4k/E/jCf55WSqiqq49Y5befnTl5FINH/vGhda1zqVjKOq9DHWg6go35bZCGY0ITW1gC1bMqmsbLQRovx0x7R64OMjRSZrtBFSChk4sBNpe2P44ZMfCIsI45H5syivtmt23RfD2YqzWFtaM7b72Fafe62enSKSSyAQtGsyM4tJTi5srMHiyZo1a7jppptYv3497777LvPnz9eNdbKwZMFNXYgpLOaH/5QcyjhH90pL+gQ37Yyo7T6oUDgz7s4eJp1J5grAb9um5FBSPllZpQQFueuOJSblk5ioQgL4yzUPem3dLO1uSnFRJUePniUluYDcPDUAzz03mM9+/ps/fv2VH774gIP/m0hQ32gC+k2Cmwc0qRUmorUEAsH1ir4mzJs3j71797JhwwbGjx/PgQMH8PDwICpKk6qyIiaau/qH0fv4XFz3vc3xupGU94w22LHXkpJaQGKiCk8ve27SMz60mCv2u22bkqRDenrQeExb6N3CAurrISWl0KDWllYTioor+W9PDkXnqrC1syIy0o/3X5jO5FHRzFu0gvmLv6OTmxujBw7B3n6E2Z1/gUAguN7Q14OPx33MQ7kPcfLdk/y74V+CwoK4+5G7TZ5n0KnchB6kNuqBl5e9gTNKn+Y04ZAJTUhMbLQRJODv32gjJBjZCMWNNkJKAbm5WhvhYcJuDOOdZxcyZ+KTjJ4yhZAbbyQvrwKgSa2w60UPhJNLIBC0a5KTC4mPzwE0+fcDBgzg888/Z8aMGbzyyitEREQwdOhQYmIyiYlRAvDma1F0dbTnvX+Ps19SS0/7ppFL+t0HJ99rWGdF6wCzs7VEXa5pIa/vWJLLnclSltCtq8wgFDisjydZyhLK1DUoFM4GOfHh/b11ziqZSynu7na6SC4ACwsL/AJuIXxMZ7KPx5B9fB2pB7ZwOvlWHJ6eQ3ldZ7PF6AUCgeB6wVgTVqxYwYABA0hLS2Pq1Kls3LgRCwsLPU2Q0/v53RR/ez8RZzdSlJ8HdbPA0sZg3qTEfNJOFBEmbRotlZJawKZNp7C0kDB4cGejulfOKLNK6NrNUA/6hHmiVtdQW1ePlaUFbu52Bikq+gWCc3PUKJUluvRHgLoqW4aFjCTYJ4yDyr0s/3stm/b+ywvTJ/DYPaObLUYvEAgE1wP6ejBmzGDm3jOXVzNeJffHXL565yuC+gYR0j+kSbqiVGqFpaUEqdS0qyQxMZ8TJ4qQmtADbVSYnZ0lanWjjWCkCVlZJXQz0oSwME+yskooKzNhI4R76/RAJmu0EVIKdSmQ/aL6MeuDhSx563PWff01xw8mcs/TM3TzX496IJxcAoGgXaPpsHj+FWD69Ons3r2b77//nsmTJ3Pw4EGioxUAREcryMwsJiv2DL3zGkjrZMH3CVnkV9UyLswXi8bQ5ea6D2odYAE9XAgL82qSez9yZBeCgtybRFUFBXmQk6PmwMEzVJTXEhDgApivmzV6VDeDeeVyJ8LDOxMe/iBBwc+QvG8LP3/zCc/cfzs39OpP35sm4ON9Z5P1aqO8qqvrdEX223tBSYFAIDCFsSbIZDJ+++03Bg0axF9//cXChQv53//+p9OEXr082LSjmJTKBSgKljCB9fDXXLj5BXD20c3bXPfBpMR8crLL8PVzbF4P9IwL/UL3Uqk1gYFuujRJfby8pEyZEtLkmnK5E337daIvXswNvZUi9Tne//Y35v3fct5e8jP3jBzCiIFRTebT7uhr9UDTyVHogUAg6HgY68H0XtNJfSSVb9O+pXhvMa8/+Trf/PWNQTdBlUpNYmI+eXlqEhPB3d2+iWOoue6DWodZQEALbAQvEzbCgTNUVJixEfTqZo0ebWgjBAb78PC8Z0ne8x///LiST1+cx4uLXsTLa4DZuozQVBP0i++3Z0RNLiNEzr1A0DEoLy9n0KBBKJVK1q1bx9ChQ3XHNm06yV9/neLs2Qqc3Ww4182e/86UcEMnR568pTtZp4p1qYpn8sopPFtBVOT5XHttJNeFnEWmUgi3bs1g27Ys7B2sGDpUTkV5Lc3VBLsQ9fX1LPvyR/75fSVncw/h4ubOqAn3M+quyfgpujZeM5MDB89QWFCJKl9NWJgXs2b2N5gnTVlETo6ah2/tRtcuLq1aQ0d9bnbU+xIIrke+++47pk+fzoQJE/j11191tVg2bTpJfHwOZWU15OaW8dDN+YxUL4SqEhgwHboMJiW1gLjYHNzc7fDuJG3iHNLW12rOYWQqXUSlUvPzz0fJVJYQFdWZm6J8OXS4AGi46Ppav288zOIV6zmYnkSJWs2IqH48fu8YxtwyAFsba2K2ZnLwwBmqq+vJy1Pj6GTNlCnBButWqdQUHD+CbMAd+PXu1+o1dMRnZ0e8J4HgeqSmroa7f72bf2b/g2WFJe8ue5de4b10x7W1tsrKqnF0tKZ/f2+DlEVtpJZC4cyZM+UUFlYY1OMyru9lDlOaoLMR7BtthIpGG6GVepCfm8/7z79Pwq4EBkYPwzXgFm4e0s2g7qOWrVszOXDgDIWFlahUjTbCLEMb4fjp06hyq5nSf4JBB+OWIGpyCQQCwWXEwcGBNWvWYGFhQUBAgMGx8zv8NhQXVyOT2dD96BnWnFLx6oZkAmosUR4+R052GQWFFRQXVyGVWuPuYa8TJOMURlNow4OzlKVUVtUS1seT0N6eJCbmk51TRnxcDuXltZRX1AAwbFjrDRoLCwuKKgOx83uWXkFF+LoksmHVMn7+5hNuCOnDkDF3YuXYHxoA6tFPzNR3wmXnlJF+opjkToWtdnIJBAJBW+fhhx/G19eXkSNH6hxc0FQPAkPcyVLfhHTTo7jFfw6qVA6lR3Lw4BmcnW1x97AnP78CtbpGF3kVHORxwWgorR4UFVcB5x1ZDg7WVJTXcrawAqWylLi4HCrKNZoQfRGakH6skq7S/gy542Ykzvms37mD8TPfwsXZkfHDI7nBpyf19S7I5c6UqaspK60hKTGfYL1iy0XFldTkluDgUoRf71YvQSAQCNos1pbWfDP2G0afHo2dvR3d+3Q3OK6NdtIWb5dKrXS1sby8pLpIrZycMgoK9GwEdz0bYXIrbISsUiorawkL8yQ0tNFGyC4jPr7RRihvvY3g6ePJeyvfY/3K9Xz+xlewaw8ZR+8gIOA+E84ybbxTPXrSaOCEy8lRc+pEGcl2ha12cl0rOpSTq0uXLmRmZhp8tnDhQubOnXuNViQQCK4lN9xwg8H7+vp6LCwsUChkBg/pTZtOYpFRwZzeClYpVSQWqPHr6YinlQ1enRyoqqojrI+nYU67iagr4wgvrVAmJqo4kVYEaOp7jRnTVRcplpJSSG6OtkW9BlMRYNrPpA5WTboqRkT6UlhYgbOzO0OH38rM+QvYszOGbZvWsezjhdTUVOPWKYDuwTcS0qMfQ27pAxjm6Pv5OiJBYpD22Z4ReiAQCIwZNWqU7r8bGhpoaGhoogcAmzYV8l/xAh70W0P3kz9wp90xyoNuo6xeSo8erhQVVWFrZ9lsjRPj6C79QvIHD6hoAFxkdkRG+SKVWtMnzBMPd3t8faTk5J7XBHMFg7WfG3eD1Nbt6uTlgETiwdf/i8JeVsWqP7ez6s8dfJf1Dw529gzuF0pU31D85D66FEytJnj7SFF0cUbWw+VyffXXHKEJAoFAi5fUi6VTljL9n+ksT1nOY6GPAZqNY/2UQDjf2RA0z/qwxnqKtraWeHk12ghhnhese2Uc4WVgI5woAmDy5EYbIVHPRsg1shHMRAWb6gZ514N3YevajW/e+Zxj23/inVknefXTF3DzdNPN5+vriEpVQa9eHhQVVelSMPXvx9dXipXEul3ZCB3KyQXwxhtvMGPGDN17J6emuacCgeD6IyYmhlmzZvH3338jl8sNjoWEuKNSlUN5HZ+PC+XzvRn8eTiPc1WV+JY0MHZ0V01L4XxNJ5MmNU4aHVCJiSpSUgrJyS7D3cNeV19L6mCFVGqtq+8VFOShC2EOCHDRiZUWU8407WeWlhLq6hoMjkVG+BnMY2fvwC0j7+CWkXegLi3hsw9XcOC/HRzZ+ycV235gyypruvYMQt69F87u3SnzDMTFrQehoV4o5O1jh6YlCD0QCASmKC0t5bHHHqNLly688847TY5rNWEXj+I0dDBe8S8xxf17Vp0aSkVlFJMnBxkYGsaoVGo2bTpFZkYJ2TlleDTWdNEWDtYYLA06Q0Q/CuyOO7obzGvOcDKpCV5SIiP9iIz0MzKEvHnr2Qd585mpfPDpVjb8u4eTWafZ8l8C9fX1+P7kzoDQHgR17YKr1J3O3bvSRe6Eg2/HemYKTRAIBFr6durLvIHzeOO/N1j802KSliWx6KdFuHcydOTI5U4UF1dRXKxJ5wsK8kCtrmXXrmzq6+sZM6bRRlCZsRFURjZCTpmuzpeXlxSptNFGCLsIG8GrGRuh8diYO/rQf9BHrP/hbzYuX8lDwx7isf89xqiJo7CwsODo0bMcOpTPwIHeBhFo+nW8rJyq8PFquiHUlulwTi4nJye8vZu2+jRHVVUVVVVVuvclJSVXYlkCgeAqoN8qWP9BXF9fz8svv0xqaiqTJk1i586d2Nic75ylUMjw8tJ0YPHykvLZff3otvEon+9KJ825gR0H8wgK8sDLU0phQQVbtyoN6nFt3pzBnv9y6N7dFT9fRywsJSiVpTonlLuHPT16uOLuYd9kzfqF5rWYKhCpC5/Wi+S60DwA6kpLam3749L1BqInejE0ypLkg/s4dvggx47sI+vUKn5vLM04dspj3L38y5Z/4W0coQcCwfWLOT0A+Pfff1m1ahUAUVFR3HbbbQbH9TUhwSucMY9uI3fReKZ2/ZvDJYVQ/yxeXlIKCjV6YFyLa/PmDI6mFmJra4mlRaMeNBocXl5SeodqjBJTGEcRmCsYrH2vH8nV3DwA+fnl1JRKCek0gGkDxjL+7q5s33uIfYePs+9IGl/+8gfFpRpDTSKRoM4cQVPVar+0RhOEHggEHQtTmjCx50SO5B/h/VfepzKrkjeefoOPVn2EpZWl7jwvLykymcaJJJNpnuVyuRP19fVkZ5eRmJhPUJAHhYUVpKWdQyq1Mnj2bt6cwZ49jTaCnyMWRprg7t5oI7ibsBFMPMebtRH0Irn06dTJkUefu5tJ06L54o0v+OCFD9j400YeeHYGKSmVnD1bSWFhpdlrn62oor1hca0XcLl59913cXd3p2/fvnzwwQfU1tY2O37hwoXIZDLdj7+//1VaqUAguNxoWwUnJxcafB4fn8ONNz6Ho6OMPXv28OKLLxocz8wsRqUqp3t3GSEh7kgkEp4bG8Srg3sgtbHkQF0l6/Yp2ZeQS2xcDkmJ+SQ2thoGUCpLOFdURXlFDVOmBtM71JPiokpd5NfhQ/ls+1dJ7O5sEvbn6T43RpWvZuvWTA4fym/SmdHLU0p4f2+CgjwI76/5I725uc7Pp8TCQsINPVy5KaozAUGhjLvvYV5c+Cnf/rGLjQcy+N/iDdxyz1t0CRnWui+8jSP0QCC4fjGnB7Gxp0lM9GD8+AcBmDJlSpM0NmNNwLULp0f8yl5uo5dNAjV/vUxS/FHiYnN03Xb1USpLqKioxd3dnsGDO+PQWNNFu9N/6HA+/25Tsjs22+BzY1JSC9i6VYmDkdEEGgMkPNxblwqpVJaanQc00QRaPehxgyuRUb64uTgxfkQUC597iJhl73Bu72p2LvuM1x56mv978m7s7e1a9mW3E1qjCUIPBIKOhTlNiOZhQh+JwsLOgkN7DvHdou8MjqtUaoqLq/DxcdA5j7y8pIwZ05UBA7x1HRk3bTrFvn15JJrQg3Pnqigvr2HKlGB69/bURYUBHD6cz7ZtSmIvoAeaZ3gmhw/nN0lf1+pBUJCHrki+qblc3F2Yv3g+i39dTLm6kv9Ne47UHWtRdLYmKsq3yTVTUwtYtSqVEyfOtuQrblN0qEiuWbNm0a9fP9zc3IiLi2PevHnk5uby0UcfmT1n3rx5zJkzR/e+pKRECJlA0E4xbhWsJSYmk/37a7n99nn8/PNcFi9ezODBg5kwYQKgEb709CIiInxRKGSsWXOMtWvTGD++B7teGcZzvx5iY6oKDyzo7+pInzBPXeohwNChcuxsrYiI1AiEKr+ckpIqZC52jY4qCVVVdaSknkWVXw6YrumlVJZy4OAZaEDvXNNcqD6YdkxJSTVSqTUODtYmxxQV17I/SUJBeQBny9pPrv2FEHogEFzfNKcHMTFKhgx5EKUymYSEBO655x6DCF99TUhIyGP+/F2MH9+DCa/9CId/hfWzCSx+jxKXiUj7dNXVtNIydKgcWzsrQoI1187JKSMvt/HZ7yWlpKSGc2crOZ1VRrm6Vve5MfobKs0Vtr9QLRjtmJKSarp0kaFQOOscc/rz5ueXsyeukJIz9kQM6FjPvtZqgtADgaBjYU4T/t16Guud99H1wWzSlxzlp89/old4LyKGRQCaZ2durprAQDe8vKTExWUTH59DRISvLr0vISEPCwsL/PwcdWmHWoYOlWNnZ0VEY71ElarRRpDZNT6vG22ElLOa0imYfo4rlaUcOHAGQO9c01xIE3oP6s0Tb7/Jr0vXcWjHn6hOJeNQdxddX5qCnd7mRmxsDgcOnOFclQNBPTuZ/3LbIG3eyTV37lzee++9ZsekpqYSGBhoIEa9e/fGxsaGxx57jIULF2Jra2vyXFtbW7PHBAJB+8JUAWGA6GhF4+tg/P0L+eCDD3j44Yfp06cPAQEBBsIXG3uaBQviOHNGIzQTJvTkm6nhLFx3hOX7sthbV8EzI3vQ2dVBV4srIMCFyAhNW96E/XlkZJRQWlJFaKhG6EJ7e6DKLycvT42zs63JGi6gCTfu17cTJSVVukgwcw4scykspsZoC99LpdacK6oiPi6HiEhfIiP8UCpLsbC0wLuTlJCQ5ruDXWuEHggEgpZyYT1Q8PDDq+nXrx979uzhhRdeYPHixYChMTRjxmb++y+X/PxyJkzoCb0noarvitPmJ7ipYiWS4HEQOAk4X3slIMCFyEg/EhLy2LUrm/LyaoKC3XXPZGdna1zd7Ojs74jc39nsc1zrPFMonA26exnTGj2Qy53YulVJYlI+anUNR4+e42xhBZFRvpSra7G0sMDXz5EePdp+sseV1AShBwJBx+JCmtDzpq+YdXIi+VvyWfjsQr7+62u8O3sbPDtTUwtY9VMq54o06XuRkX66Y4MH+5ksBq/VA9A4wzIySigt1bMRQj1QqVpoI/RrtBEaI8HMObpaogldu7pw72MT6BLal90b1vPH97/w7+9/0aXvUCZOH8fgwXLc3e2RyWxxcWl/Ub2ShoaGhgsPu3bk5+dTWFjY7Jhu3boZ1NfRkpycTK9evTh69Cg9e/Zs0fVKSkqQyWQUFxfj7Ox8UWsWCARtl5qaGnr3juDo0f106RJISsoB7O3P58G//nosq1YdxdraggULIjVGTSNx6QXM+SWJQnUV9w2UY19Sx9GjZwkMdCO8vzdx8dls26aktKSK6poGBgzwZvK9ml0eUx0TzZGwP89g3taeb4x+18e1v6eRklJI9+4u3HFHgK7Gl8zTDk9PB8b37YyFheTCk+pxtZ6bQg8EAsHl5o8//uCOO+4AYM6cj1m06BmD4/fcs55//83i1lv9+eWXcecPVKlh0/OQtAo8e8LgOSQcLtc9u6ur69i2TUlJaRU11Y160Ljrb65jojm03b0CA910qSitnUMfbefH2tp6/tuTQ21tAwPCvenSVQY00DvUEy/LXLhhFHj0aNXc0DE1QeiBQNDxWZe6jvtuu4+KUxV07t6d7zZ/ibXN+UyIVatS2bnzNFaWEibfF6RzXpnC+LkdF9doI5RWUX0JmnC59UDb9bFzp3q+eOsb8k4kYe/szh0PTuKmUTdTWQXO3rX4eMkY231sq+aGa/fsbPORXJ6ennh6el54oAkSExMbW4F6XeZVCQSC9oq1tTWBgTM5fvxpwAdjP7/+Ln9UVGeDY5HdPVj3dCRzfkni+/hMwnydCb/BVbdTEh+Xw4kTRfj7O9EnzN0gpVG/MLy+00nbtVGpLNU5nKQOVvh4Sw2iubTF7Qfd6MuUB0Jadc/6nVrk+8+Qm1OGo9TawJF2Vl3dqjmvBUIPBALB5Wbs2LEEBU3g2LEtJCWVNzk+a1Z/goM9dNqgw1YK4z4H/0Hwz3z483m6hTwBgT7I5U6sWJmi04OwPu4GKY36BX21Dif94vVag0VbVN5BaoW3j5Sixt37EyeK+GNjOs7OtgyPVrTaqAkO8iA4yIOYrZm4utphb2eNm7sdeXopOTTvO2oTCE0QCASXkzuD7qT3HeNJWPozdS5WNNQb2gjaVMSwsPPNp8xhHE0VH69nI/RxN0hr1NcErdNJew2tHmiLykulVvj4SA2iubTF7QcN8mXKlIu3ETKyZ7D9n4OUZsbyy6df8s/PvzJl1n3c2P3GVs3ZFmjzTq6WEh8fz549exg6dChOTk7Ex8cze/ZsHnjgAVxdXa/18gQCQRvigQduBD7j/vsH4eDgYHAsKqpzE+eWPt7O9ix/aACLt6axZMdJsosrGVZTS2/Q1eTSpgKaQ79QcVCQR5PWv4GBbshcbDWdXFw0XRq1xe2Vykvr8DRyZBeCgtzNdmnsCAg9EAgErWHBgtf5+edx3H//wCbHmtUECwsInwa+fWHNdNwOfoBN13EczbxZV48rMsK32d1+U3W3TGmCi0yjCS6yUuLic8jOLgOaT0e5EL1DPXCRnU+PMW5V31EQmiAQCFrK8ze9zDvOBdR3P8PpytN0s+umO6bvELoQWqeVtpOutiZXxAU0ITExn6SkC9gIjXqg7faoLW5/2WwE6ShOpJxkz+ZNfPbaZ3z/8fdMnz+dsXNaH8l1rWjz6Yot5cCBAzz55JMcPXqUqqoqunbtypQpU5gzZ06rcupFOLJA0HForoW8PvX19RQUFFxwRzc29jQxMZm6KK9tqSpm/XQAdU0dQ/3cmDxMI4Rx8dkGda+M0UZyVVTUcCKtiLC+nnTr5trE8aSfnnihOc2hylcTuzuHwrMVREX6mhXns+pqLCxo0+mKLUXogUAgMKalegBw5swZOnVqvsiusR5QUQQbZ0PyWnIaunGm+yP0HdSNuLhs4uJzzDq7tJFcFRU1pJ0o4ubBnenfv5NBJJexJpw4UdTsnObQRgRUV9eRmVliED3WhMITbT5dsaVcDk1oa/ckEAgujeY0oay6jIl/TKS0ppTZfWdjWWGJi7uL2bmMo6+0mEot1C9cb+r5rZ2roqKGEyeKCAtrtBEaI7ma2AhGxfBbqgnGemAuOi07I5sVn69g0LBBvDHjjRbNrY9IV7xE+vXrx3///XetlyEQCNoQ2nbBgEmjJjOzmP/+S+frr+eTm6tk7969ODo6mp1P25ULNLv7Q4O8mBXUmU/2ZrA1+yzVcRbcP0hOfFwOR5ILAEw6pLQ7QfPn7yQ9vQiASRODmozTr70VGeFnMJdxyqMx2vpg1lYWqFTllFfUIpVat3gHqj0j9EAgEBjTEj1ITi7k5MkdzJs3iy+++IIpU6aYnc9YD7B3IdbndfL2uXKHww90yn4fCp4nLv4cyUca9cCE8aFNHZynpwejR3czmYKo/czLS9pkLlNpj1q0tWCsrC1wkdlSWlZDfn6F7vodHaEJAoHAmOY0wdHGkf8FvcuTWx/ksUmP4VLrwufrPsfWzrRT3Dj6Skt1dR1nzqjp1u38/PHxORxpRhNM2giTTNgIehoRGelnMJc5p5uWuLhs1q5Nw9ISnJ1tKS2tabJ2LX5d/HjsjcewtjTdpb2t0mGcXAKBQGCMuXbBWpKTC9mzJ5sDBw5QVJTPlCnTWbv2ZyQS05FM+vW6tOSkFeN8oBT5YA9i0ws4WaAmMlwTEaZNXzTH4Js7G7zq05wTS5WvZu3vJ8hSlqBW15g8vvGPdDIySnB2tiY4xAMHB2uDGmHGFBaWk5Ojpr+7E127uDS7boFAIGhvtEQP4uNzOHUqibKyMmbMeAxv7x4MH266FokpPYjZmkVM/ADODQvmEYfPIOY1JgSPAXoQGdG8Htw8uLPBqzHNObFSUgtYuTKFskZDRf+4SqXmj43n9WDILXJCQz11kVymUKnUFBwvROZYil/H94EJBILrkAtpQkmGE8HZd5NyagGFpYV88NL/8fLiuSbH6tfq0iczs4T8/AoyM0t0Tij9tMXmGNyoBYNNaEJzTiyVSs3atSfIyjJjI6jUbNyYzunTmjpfvXp5YmVl0WTt+hQUlqPKraa3VfEFI6HbCsLJJRAIOizm2gVr0QhbCHZ27/Puu4+wbt1qli6NZsaMGSbHm6rNojVwhg2TU+Zixfy1R/gjp5Bpd3cnXOEGnO+MqAsJbnRcjR7VTZeWoi0wr8W4bpd+d0WlspTKihqsrCS4u9ljjFJZipOzLb5+jvTp48nIkV0u2JExO6eM9BPFJHcqFE4ugUDQ4WiZHsBDD71KcnICiYmxTJ8+hZSUgyYjfJvTg6BoBfQdD+ufpuuxP3g+vB8MmAmYTxkcPVpPD0y0hjeu3aXfTSspMZ+y0hocnaybOK6UylKcnWzx89XowbBhcpORYMbn5GeU4OBShF9vs8MEAoGg3dISTZjKfZTUHeWvRT+y9ffNDLy5HyMmjGgy1lytLlPOL+OoK3Npg81pgnHkmL4eKJWlVFY22gjuZmwEJ1s6d3Y6byNcoHlJTo6aUyfKSLYrFE4ugUAgaOtoH9QqVTh33z2TX3/9mJkzZxIeHk7fvn1bNEfnzk4MGOCDv78zCoWMEB8ZM38+yFc7TjK0Zym3dnFn+7YsSkqqKCs9nyKidVxt3aqkpKQKMExP1EZdVVTUMH/+ThQKZ6SOmjbocrkTQ4bIgQZCezfdeZHLnRg+XKGr52WMqSgxP19HJEjM7mgJBAJBR0Zr8GRmFvPQQ2/z2msTyco6weOPP87KlSvNRvjqo9WDzp2dwEEG9/wA/30O/74Jm16gMORJtu6TUFJSZTJl8NDhfA4cUNGvnxfRwwyf3X3CPFFmlZCYpKK2th4fXyl5ueW6Y9pX4ygvAz0wY8gYR4nJ5U44VDoj6+HSqu9QIBAIOgpaG2Gi6iXS7zjM8fWHWDRvETeE3kCXG7q0aA53d3t69HA16WwCjYNLaweUlRnZCCojG0Hv+a11mmltBLncGUdTNkLoBWwEE5pgKkrM11eKlcS6XdkIFtd6AQKBQHC5iY09zezZ//Lhh3vJzCxudmxyciHp6UVMnfoUt99+O1VVVUycOJHi4ubP0z8/Pj6H5GRNv3V/dwc+HBXEEF9Xth/L56N/00g9WYSlpQURkb70CfPUObCUylJKSqqxtLSguKgSVb5aN29QkAeT7w3iRFoR6elFpJ0oIjDQTee4GjZMwbBhpiO0vDylhPf3xstTiipfTcL+PIO5tVFi2qgAAHd3B/r08UQhbx87NAKBQNASYmNP8/rrsaxZc4xNm062SBPy8y2ZN+8TLC0t+fHHH1m6dGmLrmWsB1hYQORMckesorzWGpd9b+OSvw1LSwmREb6E9fE0irySUFVVR8apElQqtcHcwUEeWFpacDqrlP/25AASnSYEB3kweXKQyfpaXl5SwsO9dcaMSqUmISHPYH6tHmijh728pAQHuePn2/E6LQoEguub1toIJ9OLefuhH/Do7UF1ZTWvPPYKFeUVLbqWtjOitsMiGD6DDx/O58SJRhshwpc+fTx1DiwDG6G40uCZHdT4zD9xQmMjnNC3Ebz0bAQztR21mmBKD7RRYomJ520ED62N0E6iuEBEcgkEgg5ITEwm//yTgYeHPcHBmj/6zXVQ0c/J//777+nbty/p6ek8/vjjrFq1SjfOXBcWUzn9x48V4Z9fzyNBfvxwLJdiXys6u9k0KR6v7ZBSXFRJbl45MpfSJk4r/bpd4f29Td6vfiqj8flagYXzkWJaJ1tzNboEAoGgI6AtEH/8+Dm6dXNBpSrHy8t8l8Xzz/RQGhreZu7cucycOZOoqCiCg4N140xpgrkaLwcLunKw4iPurP+Q0Z47KbTOxb3fc01SBnuHepCvKqekpAqlsrSJgRIZ4UtVZS1yuTO9Qz3MRmbpp64YjzHQhMZj+pFgAoFA0JG5WBth89rN3Bh+I6fTT7P41cXM/fB8fS5zz1zt3/naVzB8BoMEOztLunaVNUlj1NkIxZXk5pYjkzXVBP26Xdrujca0Vg/M1Rdrbwgnl0Ag6HBERysoKqrCz8+RkBD3Zjuo6Keo/PdfEYsXf8dLLz3JnDlzDMaZm8NUTr++KA7v78P//khhb1EZVf+m8VBkFxztNB1KvDylumgrmUupgQhqGT2qG6NHddO9N+XQMhRMDI6bElhztQMEAoGgo6Gtk9Wrlwf29taoVOpmuyzqa0JIyASGDdtG376h9OjRw2CcKU0wV+NFowmBFDl/z5G0FQRnfwZ/Pg8DHwX/gbpxmh14ue4ZboyxEQSmDRizmuBlWhO0HR4FAoGgo3OxNkLeMRde/WAhb736P6wGG7pQTDmLtP9t7FgyfAY7IZPZmnzea89VqdTIZGZshNHdGD1az0a4DHrQUWwE4eQSCAQdjs6dnRg+vIvZqCtTaEUuIqIrycnJWFkZPh4v1IVFH31DR4GMv4M8Wbr7FP8Xc5xXNiQzLbILfTq76MZrnV0twVRklr5IGR9vzdwCgUDQ0YiK6kznzk66nfqQEHddJFdzaLrv5vHMM58wduwNTY5frCZw0/8g/274/THY/RF0uQkGPAJWdoBpo6g5TBlXZjWhce7WzC8QCAQdiUuzEe7i0z+d+eTQJ2zO2MzILiMB0xFb5jB+Bl/oedyaZ7bQg/MIJ5dAIOhwGO/KXKiDChgaLPoOrsTERORyOQqF20XnoltaWjCqiweS0Ep+zlTx6b8nuCnAnfsHKbC2tGg23dAYU0JaWFBBWto5pA5WZoU2Lj6b+LgcIiJ9DVImBQKBoKOjrwljxnRr0bPclBOrpqaG//77j8GDB7dIV8zi2ZPM6N+o2fI23ZUrkahSIeJp8AoCmk8vMcbUM7+gUKMJDtJmNCEum7j4HCIjfJvttCgQCAQdiUu1EcYoZnC85DibTm2iTlnHzWE34+XleEnOouae+ZeqB4WNeiC9gB5onHgdRw+Ek0sgEHQ4WrPDrsWUyP3yyy88+OCDDB8+nPXr12NhcfG9OpKTC8k6fI5nBvlzRFLNstgMjmSXcJOXDKdayM3TdMlqzsmlyldz+FAB0AB6AqVfMHjyvUEm54iPy+FIcgGVVbXY2FjqBE4rnFYO1hd9bwKBQNCWuRyaUFJSwqhRo0hISGD37t0MHDiwmbMvTPLREuJPT2B0r5uJPPMGDVvfIF8WCX0fQJldZTL1xRj9roj64/Qbi0yeHGRyjrj4HA4dyqewsIKAABddWozOmLK8pNsTCASCNsnl0IO3bnqL7b9v58PPPmRn9E4Wfr2wRR14zWEqAkv7PNbW5NI/Zgr9roj647SF5MG8HsTH53DkSAGVlWZshHbYg0Q4uQQCQYfjknbY9bjhBk2KysaNG/nwww958cUXL3oufVEdp5ARHdSJmSv3szGjAMfyOqI6uZgNc9ZGehUXVXLgoAoaQOZiZ1BIPj+/nPz8clJTC0zm0kdE+gLg1cnBIDdf+9/dAt0u+t4EAoGgLXM5NMHJyQkfHx9qamqYNGkSBw4cwM3t4p+bWk3wCwkF7xFkfvss/mfWULX9MKqKMTi4BpvUBH1HlL4zS7+mlouLLRYWmldzREb4UlhYgbOzra7IvYGh1fWib00gEAjaLJdDD2wtbXnjzje47bPb2LN5D6u/W8090++56PnMFajftSub8vJqgoPdzdsIjZqQmKjixIkiAAM7ICysBTZCRKON4GXGRgixueh7u1YIJ5dAIBCYoW/fvnzyySc89thjzJ8/n6NHHZk+/Q6iojq3ei5jUR3UzZ0f7g9n2kdx5DhasK2slICKarxousOiNTx8vKX069sJaGhSJFIbzZWYlG9SwAICXLCxsUTqYIW6vNbg/JbUEBAIBILrGYlEwnfffUdSUhLp6elERIxl6dJVDB4sv6j5jDVBctuH7I0fQdfkBYyx/5lTlaF4ucxucp6+I8pcV8Sioirq6zWv5ggIcGHYMAX6emL4WnZR9yUQCATXA6OHjGbOgjksemURS95aQm6hEyPHDryoou3mCtTX19dTWFhJZWWd2SgurSa4u9sjlVo36YoYFOShi+ZKTLyAjSC1Qq02ZSOY15K2ysXn3ggEAsF1wIwZM7j//vupq6vjxx9fZt26RLNjMzOL2bTpJJmZxS2a+4YANz64P4zb7Zzwcbbj8+3pfLbtBMXl1Qbj5HInpA7WnMooxtdXyrBhXZqkJIb18aRPmCdhfUy3/NWKoLq8lvD+3rrPWlIHTCAQCAQgk8n49ddfsbS04fjxON588z2zY1urBwqFjIh7J3Jy+AZ2MRGFxTHY+CxkxkJDg26cXO5EYKAb1dV1ulRF486IWi0wdn7po1SWkperxkVm1zRVsYMWIhYIBILLyQf/+4CBwwfSUNfAppWf819chtmxKpWahIQ8VCp1i+b28pIyZkxXBgzwbuK40kcud0IqtaawsIKwME+TTqywME/69PE0O4/ORlDXEh5uZCO0Uz0QkVwCgUBgxJo1x1i7No3x43swYUJPvvrqK3bv3kNm5gm2b3+furrRWFo2LVjSXBtic0RFdSYqqjM1tXV8ueMkX+1IZ/66I9ze24cRwd5YWkjw8pRSWVXLibQipFJrkwJmquVvamoBiUn5KBTOVJTX4uPtYJBnb9ylUSAQCARNMdSEvsyZ8wYffDCXf/9dwq5d9zJ48OAm51yMHgBE3twdbl4KubPgj1kQ9ymkbYGBM8DZT7fjv2pVqslURe17489AU8MrLjYHN3c7AgPdCAx0M60J7dSoEQgEgiuNsY3wz6//IO+poORMMbv//IYHH+pnsobvxTxjTf1tb4yXl5TKylpOnLgIGyGx0UaoqMXHx4yN0E71QERyCQQCgRFr16axc+dp1q5NA8DR0ZE//1yHg4MDCQm7+PHHH02eFxLiTkSEb6uKWWqxtrJk1rAe/PXMYKICPFhzIJtX1h8hNUcTBaBQOOPpaY9C4dziObUpjPFxOeTmqQ3qeGmjAfLzy3n7nXjWrj1OQUFFq9ctEAgEHR1jTXjvvRd1Eb4zZsygrq6uyTmXogcA+PSG6TEw+kNQ58OmF2H/cqitRKVSY2tnRY8Al2ajtYxJSszn4MEz7NubR3njjr1+m/nAQDdOnjzHvPk7iYvPvrh1CwQCQQfGWA9kMhkxG7dgYW3ByYTjrFu7zuR52mfslSgRclE2QmMKY3x8Drm5amSNUb36a83PL+ftt+NZ+3v7sxFEJJdAIBAYMX58D4NXgJCQEL766isyMzN54IEHTJ53scUsMzOLSU4uJCTEHYVCxrcPhhOTcoa3N6WyKCaNPp1lBNvZ0clbio2N6ZZX2qitsD7nQ5W1qYsKhbNBtxTQRG95eUpZtGgfKSmF5OSr6dHDtdVrFwgEgo6OsSZIJBK++uorqqureeutt0xG9l4uPWDQDAi5E2Jeg0O/QGY85bJRlKtvICzMy2zElqlUxj5hnqjVNbi52zUxtLQRYmvWHic9vYiD9tVEPtjq5QsEAkGHxpSNMCB8AB8t/ohP4z4lyTuJkdUjkdoYRkCZqrvVElqSSm5jY0mnTqZtBP2ui8YF6cGMjdC4Vq2NkFtUR2APr1av/VoinFwCgUBgxIQJPZkwoWeTz6dMmXLZr5WZWczy5Uc4ebKYbt1kTJvWC4VCxvAQb27q4cFXO9L5LjaDw1XF9JQ5EGQtIWF/nq6Wlta5lZ9fTk62Js8/KMiDuPhs4uNyiIj0JTLCz+z1IyJ9qayqpZO/E35+jpf9/gQCgaC9Y0oTHB0dWb169WW/1rZtStasSSMgwIVnn+2vcXQ5esKdX0D/h2DzfLqc/oVOdl6oau8iYV8DcoWzzvhJSS1g5coUykprAE3qon6a4h13dG/W0Lp5sKaxSt++DWbHCAQCwfWKORvhmSeeIXpiNA/+/SDfHvmWp8KewtLC9MZ0S1Gp1GzdqiQvT423t5Rhw+Qmn99aB5VUakVCQp7OIZbaqAeljXqgdXLFxWUTH59DRIQvkZHN2AgRvlRW1tKpq6Td2QjCySUQCAQXQUVFBZ999hmzZ8/Gyur8o7TJLrwJ9MckJxdSUFBJbW09hw7lM3/+LoKD3UhJOcv48T2YPaEn9w2S83FMGmsPZJOWdBpfLImuq8fLU6pLSfT1k9InzBOFwpmE/Xls26bUtRLWd3Kp8jU7QtouiwEBLkRG+HFWXY2JEgICgUAgaAHbtm0DYOjQoQaft1YTQEJJSRXp6UX8+utx1OpqrKwkOk2Y8PBmSFmH/faFKE4twaHBj4LKCXh5RQKalMSy0hocnazpE+aJSqVm06ZTpB0/h5ubHXL/8w4xbYSAg9SK8saOWqNHd2P06G5QeOLKfVkCgUDQAQnxCOG1iNeYGzOXV955hTfnvWkQ6duSqCz9MUplKSUl1dTXN5CRUczKlSn4+zuSlVVm4KDSRl4lJOQZ1NJKTMyntLQGJydN10Xt3AY2gp6TS6VSc/hwAdBAaKgnkZF+REb6cbbiLNaW1lfmS7tCCCeXQCAQtJKGhgZGjhzJrl27OHUql9tvf1pnwCQnF/LXX6fYty+X6GgFxcXVTYwb/YLE2notMpkNX3yRyPHj5zh0KF/X+n3ChJ50crZn4fjeTL+pK2/8nszuU4X8eCKPHMt6eoa4AejSFLduzSB2dzYe7vbY2VoREemru64q//yOUH1dA6Vl1VRX1XH72O4E9m55XReBQCAQnOfPP//kjjvuwM3NnY8+Ws/NNwfrnvmt1YShQ/0bP20gKSmfhIQzFBVVGmgCvcZDz9so3LoEx/2f4Xn6E9iyGUIn0qdPJ0CTmujhbs/WrUpqquuQy50ICnbX7fhrIwRKSqqwtLTg2PGzNNRrUnCa29kXCAQCgXlu63obTy5+kpTUFBZUvsW4Ox/TObWUylL27z9DWto5wsI8UTduLug7vPSLvutHaG3adIrs7DIyThVTptZEZhk/q7Xjta/alERtquLWrRkcOKDC3d0eOzsrIiL0bIRGTUhOLqCuroG0tCLU6hoiInwJ7Gt/hb6tK4dwcgkEAkEr0O6433PPw+zatYsvv/w/zp71ZurUu1EoZISEuLNvXy4FBRXExGRSW6tJ+VAoZMTGniYmJpNevTx0BYmN67bExGQa7NrrE+DlxPePDuJwdjGfbk1j69Ez/IuEqAB3vHXFJiUggYAAV4YNUxicf/hQAeknipBYSHBwsKKwoIKS0hri43KEk0sgEAgugszMYqqru3LDDUEcPZrMyy8/wWefrdY9181pwunTpcTEZBIdrdBtdmg1Ydo0zbmxsadxcbE1rQnWtriPmgVDH4Z9S2HvN7DtLYJduxA8eAL49SRhv4qSkmq6dJE1SXNRKkvJyyunrr6eTl4OFBZWUFFRR1x8jnByCQQCwUWgtRGenT6f559/kt0rt2Nh58vYUWPx8pIilzuRlnaOkpIqEhPzqavT6IE2tVDb7VBboN64jldiYj6WlugiuYwxHt+0q6IEgB49TNgIhwtITy/CwkKCra0VJ04UUVioKTYf2Lf7ZfqGrh7CySUQCK57WpJOokW74x4RcTNPP/00n332GX/++Q4zZ44GaDRQepGcXIhMZqPbtQeNAysmRgnAa69FNZk7KqozUVGdjVJXDJFIJPTu7MLXU8M5mlfKl9tPsDn5DNuP59PLV0a4rzNDZP66Diva9ETNrk4DtraWBAS44C/XiGhKcqFBtJdAIBBc77RWEw4cOMucOYuZM+culMok/v57CWPHLgLMa8Ly5UcM9MDUdVqiCdg6wk3PwsBHIfFH+O9L2LUI7N0I9LkFq7D++Hb1wctLapAGI5c74e3tQElJFT6+jgwdIkepLCHShOEkEAgE1ysXZyOMZOpDU1mxbAVxP69mzG0DAU0322HD5JqyIVIrXSQXnO92CDB5clCTubUOK/3neGsJDfVAJrM1iOg1thFCQtzx93cmP7+clJRCk8609oBwcgkEguse/VSRCwmY/o77sGEfsmfPHvbt28dzz81g586d2NjYmO2qZWUloaioEisrSYvWo1KV4+VlWlglEglBPs58MrkfmYVqVsRn8kdSDsuyi/FwtCHKuoFIeyuDsOfQ3p7IXOx0ResBRo/qhipfzaHDKjr7Xf62xgKBQNDeuFhN+Pbbpdxzzz188cVH3HbbMMaMGaObw3ieluqB/nqa0wRsHGDgDOg7BY5uhITvcDy1gTDJH1DdD2qGkJXTiaPHigEID/fWGVtyuRPRjbv6KpWahIQ8urlU4nbhr0ogEAg6NBerB18N/Yp9+/aReiSVd+ctYMXvK3CybxqdpcXSEtRl1Zho1muA9u/64uIqZLLm63sZY3xtAxsh1BOZzM5gvtGju6FSqTl0+DSKzq7QjgK6hJNLIBBc9+iL0oUwNlZWr15N37592bNnD8899xyffvqp2XNTUs5SUFDBli1KHnggxKxYymQ2WFlJKCgoJz29SHdds2tyl/LK7cHMju7BX0fy+GVfFn8ezmV9Ug6+znYoPGxx9LDFy1Oqc27pc/hQAXuSzhDaywOG9zBxBYFAILh+uFhNUCgmsWvXLj777DMeeOAB9u/fT9euXU2e11I9gFZqgrUdhN4NIePhzBFI+BaOboKd79PXygG5Sy+spDdBnZtJY0tbM6bQOZ9e/qX4eZi+jEAgEFwPXIqNsG7NOvr170dRShHPzX2OL//vS7MdF7OyyigprSYxMZ8hQ0x3UQRNfS5LS02DktxcTVf1ljq5jNGv4WXO+Xb4cAF7j2RT3qseBl3UZa4JopeWQCC47lEoZIwZ0+2COzSm6NKlCytWrADg559/5syZM2bHjh/fg5493fDwsCc5uVD3eWZmMZs2nSQzU7PDXlxcTW1tAx4eDrraXS3B0c6aieH+/PJYBJufvZlnhvXACvjvTDEf7kjn2VUHWfJvGgkZZyksq6KhQdsivgFEt3iBQCAALk0TPvzwQwYOHMi5c+f44YcfzI5rqR7ARWqChQX49Iaxi2Hmfpi0EouAYbhUHMM18SPqVj9M9d8LIHUjFKRBXTWgMXacnW1Ql9VwIq2o1fcvEAgEHYlL0YMbbriBZd8tA+DUv6dYtm+Z2bEREb74+Tni7GyLUlmq+1wbXatSaRxaanUtdXUNODvb6mp3XSyFhRWkpZ3jxIkig2sY0j4NBBHJJRAIBJfI2LFj+eabbxgxYgSdOnUyO27ChJ6Eh3s3qa1iHAqt3bXv0cOFqKjOrV6PpYWE7l6OzB5+A+diVWzen4+Fvz1qpwYO15aw77TGeJLaWuLv6oBtXQMNnWyxcm5f7YEFAoGgrWFra8uaNWvYtGkTM2bMMDuupXoAXLImYOcMwXdA0Fg+ev1vsndvZpgilUiy8ShahaShjgaJBRJnP5xtOzHIQUaDgwS77hcXHSAQCAQCDRMnTuTLL7/kXLdz/JT7E39n/M2oLqOajIuM9CMgwKVJvS39lEIvL6kuksvXV2pUVL71aOuAnTxZhI2NJQEBrvj7OxmkLPr6OuJd4EinTg6XdK2rjXByCQQCwQXQdkWMjlaYNTAeeeSRFs2l31Ze+15rwFRU1LBp00lUKjW1tQ0UF1df8tr7hHqSnlaEq4Mt+WcqcfexpdbBAnt/KVVSCzLPlnOyqIKy+jqcCk3t4AgEAoFAS0v0oHPnzjz66KMXnEub2qKN3goJcSckxB2VqpyUlAJUKjVDh8p1kVyXqgmZyhIsHT1QK0aygZHsKKyni7sa77pjDPRR0sXuNHVnlPhVJmMjqULi+9YlXU8gEAg6Oi3RhMcffxyAop1FbDq5CU87T/p7928yTutY0kZy6Tu1qqvrSEjIo7i4krq6BtTq2kteu0LhTE5OGVKpNaWl1RQWVqBW1xisRa2upb6+gYqKuku+3tVEOLkEAoHgAvz223H++SeDoqKqFu2ib9iwgeXLl7N69WqsrJo+Zo136rUGzJEjBdTWNtC9u4vJlBTjDi/GHbdMdX+xt7emWzcXund3wcvLwaC7l0Iho7KmjqMnzpKYXEBAgAsWFhcugiwQCATXK63Vg6KiIqZNm8azzz7LkCFDTI7R14QxY7rh5VXI5s2naGjQGBrmasK0VhOSkwspLq5iwoSehIS463V8DEcS4g7+jhSeyCYtJYcgeQO+LoYt5gUCgUBgSGs04a2ot4j/K563vniLD77+gAC3gCZjjCO3tOmJmZkl1NU14OMjNZmmqN8p0bibrnZe4yL1NjaWdOokxcdHikxm26TjI2hS2MvqXfDzc7zo7+haIJxcAoFAcAH8/Bzx8LBv0QO+sLCQBx54gNLSUubOncuHH37YZIzWAKmoqOH112Pp1cuDiAjfJg4oMNwhKi6uNnCO6RtGgMnuL/rGkal6AnbWloQFeRIW5NnSr0MgEAiuW1qjBwDvvPMO69evJy4ujv379+Pv799kTEiIOykphWzZkoFMZkNIiDsjR3YFGnTPboVCRmzsaZYvP6KLGDDeMLmQJhjrgSlNkN8gR36DvFXfiUAgEFyvtMpGyC8kYXECFRUVLHh9AR8t/AgvBy+DMVoHU3V1HatWpaJQOBMY6GbggNI6qlJTC0hMzCcszBO1utbAOabvLAMMjhlfq7kOjV5eUqycPLG2bF8lTYSTSyAQXJcY74A3x8SJPQkO9mhRsV93d3e+++47Jk6cyKJFiwgPD+fee+81GKM1Ll5/PZaYGCUAr70WRWZmMcXFhQZjY2IydWOmTesFaAyUzMxiVKpyuneXGaxLe0z/3i6mWKZAIBBcL1wpPQBYsGABW7ZsITExkfHjx7Nr1y7s7OwMxigUMtTqahISzuDiYstrr0UxdCgGBenBUA+iojobOK3MaYJMZqNLhRR6IBAIBBfmSmmCt7c3S5YsYerUqWT/ns0b3d/gncfewdnWWTdG2+Vw1apUkpLyAZg8OQiVSo1aXWown7amFsCwYZrNCbncCZVKTXFxFT4+Dk2isowjvi62M2NbRzi5BALBdYmp4r7maK1hcPfdd/PSSy/x3nvvMX36dIKDg+ndu3eTcdHRCoNXU2vSH6O/jk2bTpKeXkREhK9e+/rzx/R381sq1AKBQHA9ciX1wMHBgd9//53+/fuTkJDAk08+ybfffotEYpga3lo9MF6LOU3Q1wPjlEahCQKBQNCUK6kJU6ZMYd++fXz66aekfpbK+/7v88rYV7C1sjUYFxbmafBqnMZoPEbfYZWQkEdurprAQDfdZ/rH9CO8TKUxdgSEk0sgEFyXmKtxcrl4++23OXDgAFu2bOGuu+5i7969uLsbXisqqjOdOzuRnFxIZmZxkzVpIruqmTatVxMB1Y4x3qU3vrfWCLVAIBBcj1xpPejSpQs///wzo0aNYtmyZfTv35+nnnrKYMyl6IH+OGNNMJ5HaIJAIBA0z5XWhEWLFpGYmMiuXbtIeDeBzzw+49moZ7G0sNSNCQrywN3dHqWyFJVKbZBaCDRGdtUybJi8iYNKO0YqtSIhIc/AiaU/jynHWUdBOLkEAsF1yZVO27C0tGTVqlUMGDCAkydPMmHCBP755x9sbGwMxhkXHNZfU3PGiHb9xrv05u7tSgm1QCAQtHeuRhrf8OHDWbhwIS+99BLPPPMMPXv2JDo62mDMxeqB9jNTmmB8b1faeBMIBIL2zpXWBGtra3799Vf69+9PdnY22xdux/kdZx7p84hBlK++Eyo83NvAEdWcg0ob1aUftaUf0WXOKdaRsLjWCxAIBIKOiru7Oxs2bMDJyYnevXtjYdH0kRsS4m6yk6L+Me3OfGZmsckx9fUNfP11EmvWHLsi9yEQCASCS+eFF15gypQp+Pr64unZtNnHpeqBdpzQBIFAIGjbdOrUiQ0bNuDg4MBNA24iqSCJNWlrDMbI5U4mOynqH9NGa6lUapNjGhoa2Lz5FHFx2VfsXtoiIpJLIBAIriC9evXiyJEjyOVNu1W1tDZKWto50tM1Bo3+OG3nxX37cklNPYtUas2ECT0NzhWpKQKBQNA2kEgkfP311xQXF9OpUyeDY5dLD6KjFWRkFLN//xmhCQKBQNCG6devH6mpqcjlct7f9z4rU1biaO3IqK6jmhSIN0dOThm5ueWAYUSXtvNiWto5srJKsbOzIjLSz+Bcka4oEAgEgotG38FVU1NDamoqvXv3vqCxkZxcyF9/ncLKSkKfPp5NdvdjYjLZuPEkZ89WoFbXIJVaNplDpKYIBAJB28HOzs6gu+KhQ4cICgq6LHoQE6Nkx44s0tKKcHW1Zfz4Hk3mEZogEAgEbQetjfBC+AsUlBSwZtcabC1tcVIFNeuAOny4gAMHzhAQ4Goy2isxMZ9t25SUlVXj7GxDcHDTZ75xna+OhEhXFAgEgqtEUVERI0eOZPDgwaSmpjabmgIaI8TDw47a2nq8vKRNDJ/oaAU33OBKWVkNlZW1HD/eNH1FoZA1qe0iEAgEgmvPTz/9xIABA5g9e/Zl0YPoaDmZmSWoVOU0NNAkiguEJggEAkFb5OzZs8S9Fsfp90/zc9zP5DummE1V1NAAgLOzdZN6XaDpuFhX10BFRR01NQ14ejo0mcHLS2ry3I6AiOS6COrq6qipqbnWyxAIWoy1tTWWlk2jfARXF3t7e2pqaigpKWHs2LHs2bOHMWO6mR2vUMiYNq2XLoXFGG03LldXO2Jjs+nVy53MzOImxotoGX9lEZogaG8ITWgbODg4UF1dzeeff05ISAhPPPGE2bEt0YOoqM5YWUlYsSKFvn09TeoBCE24kgg9ELQ3hB60DbR6UFlSSf5n+fw5by0P9nfCy2uAyfGhoZ7IZHZmnWBBQR7cffcNbN2qxM9PSnFxJSqVuolDq6Vpke0N4eRqBQ0NDeTl5VFUVHStlyIQtBoXFxe8vb0NunYIri62trasXbuWgQMHkp6ezoQJE9i8eTO2trZmz7lQh5eEhDzOnatkzJiuWFhYkJxc2GS8qMFyZRCaIGjPCE249tx555288847zJ8/n5kzZxIQEMDw4cPNjr+QHqxZc4yUlLPcffcNZvUAhCZcCYQeCNozQg+uPfb29qxbt46BAweSrczGYakDP9j8gLWFNWFeYU3Gm+qSaIxMZouPjxQPDwdyc8uRyUqbnNNR63IJJ1cr0IqXl5cXDg4O4kEgaBc0NDRQXl6OSqUCwMfH5xqv6PrG09OTP/74g8jISHbs2MFDDz3EDz/8YLLzYktYuzaNnTtPo1Z34tFH+5jtyqX/qkXs5l8aQhME7RGhCW2LuXPnkpqaysqVK5kwYQI7d+4kLCzsouZqiR6AaU0QenBpCD0QtEeEHrQtfH19Wb9+PYMHDyZ7fzZ2v9ix3HI5D4c+TG/P3q2eLz4+hyNHCggIcGHkyK5muzTqv2rRj/Cyaoclu4STq4XU1dXpxMvdXRTrFLQv7O3tAVCpVHh5eYmw5CtAawyEXr168cUXK5g2bSKrVq1CLpfz7rvvXtR1tYWFx4/v0ST1cc2aY6xcmUJIiDuPPtpHRHhdRoQmCNozQhOuPC3VBIlEwjfffENa2in++283I0eOZt++PSY78l6I5vQgM7OYr78+RHJyAVOmBIuui5cRoQeC9ozQgytPa2yE/v378+mn3/Hoo/eT/k86vTx6sUyyjKkhU+nr1bdV142I8NW9hod7GxyLi8tm2zYlcrkzI0d2aTbCq1uITauu2xYQhedbiDa/3sGhadE2gaA9oP3dFbUirgxaAyE5ubBF493cejNmzIsAfPXVV+Tk5FzUdcPDvbn//uAm4gWaXf3du7NZv/6EyXVdqNCxwDxCEwTtHaEJV5bWaIKtrS2zZ3+Kp2dXVKo8lixZclHXbE4PkpMLWb9eowlr16Y1OS704OIReiBo7wg9uLK01kbw8RnIyJGzAcjdnEt36+58n/w9CXkJrbpuQIALt9ziT0CAS5Nj8fE5pKQUsmdPDkplaZPjcrnTBQrft21EJFcrEeHHgvaK+N29srS2LXtIiDuPPz6d7t3t6NEjnJqai8uDb273ffz4HqjVNYSEuJtc14XquwgujPh3JWiviN/dK0trNWHQoK689NLXxMWt55FHnr+oazanByEh7owb14Pk5AJdxJc+Qg8uHfFvStBeEb+7V5aLsRGefvpJund3IDT0Zm4ZFMrCYy+xMnUltfW13Oh7Y4vmaa7eVkSEL5WVtcjlziYdWfo1v85WVLXoem0J4eQSCASCy0BrDYTz4+/X7e4oFDLq6upaFSpuTjhjY09z5EgBL7wwgKiozi2eTyAQCASXzsVoQlBQN4qK7iE19Rxdu7pSX18P0OKajc0ZUqdPl2JjYyE0QSAQCK4yF28jTCM+Pof0o2qWjFzCE/88wU9Hf6K2vpabOt90wXnM1dtKTS0gM7OE8eN7EBTk0ap7aS8IJ5dAIBBcQ/SNkp07dzJjxgw2bNhAz549L3CmBnPCGROTSUyMEkAYNAKBQNAO0NeDyspKpk6dilwu54MPPmhRpEVzhpTQBIFAIGhfGNgI/+4kdnYsA/43gF+O/0JpTSmju45u9nxzHRgTE/NJSsoH6LBOLlGTq4MjkUia/VmwYMElzb1u3bpWrUEqldKjRw+mTZvG/v37W33NIUOG8Oyzz7Z+sQJBG0WhkDFmTDfkcmfmz5/P8ePHGT58OEql8pLmjY5WEB0tp1cvDzZtOklmZvFlWrGgvSL0QCBo22j1QKGQsXXrVn799VcWLVrEO++8c8lzR0crCA/vhFRqLfRAAAhNEAjaOlpN8Pd3Yu7cuRw/dpz4BfEMcR7CplOb+PnozzQ0NLR63rAwT/r08UShcCYhIQ+VSn0FVn9tEU6uDk5ubq7u5+OPP8bZ2dngs+efv7i6D61l2bJl5ObmkpyczOeff05ZWRmDBg1ixYoVV+X6AsGVIDOz+LI5kCQSCb///juBgYFkZWURHR3NmTNnLnq+qKjOvPZaFPb21q0qdinouAg9EAiuHJdTDwBuu+02PvroIwBefvllPv3000uaLyqqM8OHd6G4uFrogQAQmiAQXEkupyZYWFiwceNGunXrxsmTJ/n35X+5x+8eYnNi+ebwN9TW1bZqvqAgDyZPDsLGxpKjR8+aLDzf3hFOrg6Ot7e37kcmkyGRSAw++/nnnwkKCsLOzo7AwEC++OIL3bnV1dU8/fTT+Pj4YGdnh0KhYOHChQB06dIFgLvuuguJRKJ7bw4XFxe8vb3p0qULI0aM4LfffuP+++/n6aef5ty5cwAUFhYyefJk/Pz8cHBwIDQ0lFWrVunmmDZtGjt27GDx4sW6XZ+MjAzq6uqYPn06Xbt2xd7enp49e7J48eLL+0UKBCZobbeUC+Hp6cmWLVtQKBSkpaUxYsQI3b8PLbGxp3n99VhiY0+3aE79jlnGgnu5jTJB20bogUBw5bjcegAwe/ZsXnvtNQBmzZpl0uhvjSY0pwcgNOF6Q2iCQHDluNya4OPjQ0xMDL6+vqSkpLB+3npmBc0ipTCFxQcXU1ZdRmpqAatWpZKaWtCiOfU7KKpUaoOoLuP37Q1Rk+s65scff+TVV1/ls88+o2/fvhw8eJAZM2YglUp58MEH+eSTT9iwYQOrV69GLpeTlZVFVlYWAPv27cPLy4tly5YxatSoVhXK1jJ79mxWrFjBli1bmDRpEpWVlfTv35+XXnoJZ2dn/vzzT6ZMmUL37t0ZOHAgixcv5vjx4/Tq1Ys33ngD0DgF6uvr6dy5M7/++ivu7u7ExcXx6KOP4uPjw6RJky7rdyYQ6NPabiktoXPnznz//e/cdddIDh06xG233cY///yDo6Mj0Pq6Kvo1WjZtOmnQeau5TlyC6wuhBwLBpXEl9ADgtddeQ6k8w7JlX/HQQw/h5OTEXXfdpTveGk1oTg+g+e6MgusLoQkCwaVxJTSha9eufP/9WiZMGE1CQgLSF6W8+dWbvLX/Ld7b9x6K7BGcSNKkL7ak1pZ+za6EhDyDToz6nRm7hdhctnu4Wggn13XMa6+9xqJFixg/fjyg+YeTkpLCkiVLePDBB1EqlfTo0YObbroJiUSCQqHQnevp6Qmc3325GAIDAwHIyMgAwM/PzyA0eubMmWzevJnVq1czcOBAZDIZNjY2ODg4GFzT0tKS119/Xfe+a9euxMfHs3r1aiFggivKlWq5rlbLmDjxA3766Rni4+P56KOPePXVVwFNXRX91+bIzCwmObmQkBB3FApZE8G9UkaZoP0h9EAguDSulB5IJBLGj3+OAweUJCVt4pFHHiE6OhonJ023rJZqwoX0QP+/hSYIhCYIBJfGldKE6mrPRhvhWXbs2MHtG29n2UPLeObfZ0j2/J1uA4cSFhR8wXlUKjVKZSlyuRNeXtImnRgNX6su+31caYST6xph/MfG1UatVpOens706dOZMWOG7vPa2lpkMs16pk2bxvDhw+nZsyejRo3i9ttvZ8SIEZdtDdpCedqOQXV1dbzzzjusXr2a7OxsqqurqaqqwsHB4YJzff7553z33XcolUoqKiqorq4mLCzssq1VIDBHbOxpYmIyiY5WXLaOVRoDYzCjR6/h11+/Y+7cubpjUVGdiYrqrEsrqaio4ciRApPXN96V1xdc/XWLHftri9ADoQeCjsOV0ITQUE/efPP/+P57GbNmPa5zcIFGEzp3diI5uZDMzGJOny41ef3m9MB43UITri1CE4QmCDoGV85GGMqIEb+wadNqnn32WaysrPj59p95ZtszJDX8g1VhMa5nxnHubBWJifmEhXk2iezSj9TSRnRpo7pSUwt053l5STlbIZxcV4y3336bP//8k8TERGxsbCgqKmoyRqlU8sQTT7Bt2zYcHR158MEHWbhwIVZWbe82r3VIeFlZGQDffPMNgwYNMjimDSvu168fp06d4q+//iImJoZJkyYRHR3Nb7/9dlnWkJqaCmh2VQA++OADFi9ezMcff0xoaChSqZRnn32W6urqZuf5+eefef7551m0aBERERE4OTnxwQcfsGfPnsuyToGgOa5EW/bzxkc37rxzmO7zhoYGqqqqsLOz0z1DTp4s0hWMNL5+c7vy7b2dfEfSBKEHQg8EHYcrqQljx/5k8HlFRQX29vYGz5B9+3JNXv9CUVrtWRM6kh6A0AQQmiDoGFxpG2HSpDG6z11tXVkydAnPbHiNPRWbUaVmoTgTzdGkCqBp+qJxxJY+iYn5JCXlmzyvvdD2nuxmqK6uZuLEiURERPDtt982OV5XV8dtt92Gt7c3cXFx5ObmMnXqVKytrS9L6+XLzbUOCe/UqRO+vr6cPHmS+++/3+w4Z2dn7rnnHu655x7uvvtuRo0axdmzZ3Fzc8Pa2pq6urqLXoO2k0t0dDQAsbGxjBs3jgceeACA+vp6jh8/TnDw+ZBLGxubJteMjY0lMjKSJ598UvdZenr6Ra9LIGgNrUkfvBQaGhqYOXMmR44cYePGjbpnR1iYpy6Sy5jmQqX1132td40vho6kCUIPhB4IOg5XSxMOHTrE6NGj+eqrr+jd+2ZA8wyRyWxMXv9CqTPtWRM6kh6A0AQQmiDoGFwtPaivr+fRRx8lKyuLTz75njXJoWyo+IojXqvpMnCIyfRF/cgtY8LCPHWvKpWalIx8FJ1dofsVvY3LSrtxcmnzqZcvX27y+D///ENKSgoxMTF06tSJsLAw3nzzTV566SUWLFiAjY3pgmlVVVVUVZ0PwSspKbnsazfFlcrTbQ2vv/46s2bNQiaTMWrUKKqqqkhISODcuXPMmTOHjz76CB8fH/r27YuFhQW//vor3t7euLi4AJruKVu3biUqKgpbW1tcXV3NXquoqIi8vDyqqqo4fvw4S5YsYd26daxYsUI3X48ePfjtt9+Ii4vD1dWVjz76iDNnzhgIWJcuXdizZw8ZGRk4Ojri5uZGjx49WLFiBZs3b6Zr166sXLmSffv26XZ/BIIriTZ98Epz6tQpVq5cSUlJCWPGjOHPP/9kzJhuAEyY0NPkOWvWHGPt2jQGD/ZDLpcZGCz66zZVgLitcyU0QeiB0AOB4FK5WprwxRdfkJOTw4QJE1i9ejV33nknoHmemLq+Vg/Gj+9BeLh3EydWe9aEjqQHIDRBaIKgo3C19OD48eOsWrWK8vJynn56CuvXr+eB2qG8sPMFUhr+RlqnQlFzDw7W59N74+KyiY/PITjYHU9PB11tLtBEb2kjuBIS8khPL8JKYn3F7+NyYnGtF3C5iI+PJzQ0lE6dOuk+GzlyJCUlJSQnJ5s9b+HChchkMt2Pv7//1Vhum+CRRx5h6dKlLFu2jNDQUG655RaWL1+ue/A7OTnx/vvvEx4ezoABA8jIyGDTpk1YWGh+bRYtWsSWLVvw9/enb9++zV7roYcewsfHh8DAQJ544gkcHR3Zu3cv9913n27Myy+/TL9+/Rg5ciRDhgzB29tb90eblueffx5LS0uCg4Px9PREqVTy2GOPMX78eO655x4GDRpEYWGhwY6NQNAR6NatG//88w/Ozs7s2rWLYcOGUVDQfIvgtWvT2LnzND//fIz4+By2bcsy2R5ev618R+FiNEHogdADgaC98Nlnn3HPPfdQU1PD3XffzYoVK5odr9WDtWvTdOlw14smCD1oPUITBIL2Q2BgIH///TdSqZSYmBhGjBiBU50TP4z+gRmhMzhScIQ3/3uTJFWS7pz4+ByOHClg167THD16lsOHC0hIyEOlUhvMLZc70b27C35+jlf7ti4JSYO2sl87Yfny5Tz77LNN8u0fffRRMjMz2bx5s+6z8vJypFIpmzZtYvTo0SbnM7VT4+/vT3FxMc7OzrrPKysrOXXqFF27dsXOzu7y3pRAcBUQv8Otpy2mbCQkJDBq1CgKCwvp2bMn//zzD3K53ORY40gulUpNenoxERG+uiiwy0FJSQkymazJc/NqcDk1oaV6AOLfk6D9I36HW0db1IPa2lqmT5+uc3AtWrSIOXPmmBxrKpKro2mC0AOB4OIQv8Otpy1qQlxcHLfddhtFRUWEhoby999/4+vrS2phKq/FvUbq2VR6uvZk4g0TSU+qNYjkKi6uJDe3nMBAN8LDDbuinq04i7WlNWO7j231mq6VHlzTSK65c+cikUia/Tl69OgVXYOtrS3Ozs4GPwKBQADni78mJxde66XoCA8PZ/fu3fj7+3Ps2DEiIyNJSUkxOXbChJ78+OPtPP54X8aM6cbQofI2vTt/rTVB6IFAIDBHW9QDKysrli1bxnPPPQfAc889x9y5czG1f63VgwkTeqJQyNq8Jgg9EAgEbZm2qAmRkZHs3LkTHx8fDh8+TFRUFGlpaQS5B/HjmB+Z038Oeeo83tn7Dlnuu3l8VjCjR3cjPNyb0FBPAgPdTBaib49c05pczz33HNOmTWt2TLduLdtZ8vb2Zu/evQafnTlzRndMIBAIWsu1Lv5qjsDAQGJjYxk5ciTHjh0jPT3doC6FOdpCnY/mEJogEAjaKm1VDywsLPjggw/w9PRk7ty57N27l5qaGrO1aPVpy5og9EAgELRl2qomhIaGEhsby4gRI8jMzCQjI4MePXpgbWnNQ70e4o7ud/DJwU/4I/0P9ubuJdI3khFdRuDl5WS2EH175Jo6uTw9PfH09Lwsc0VERPD222+jUqnw8vICYMuWLTg7O7fI+BMIBAJj2rIB4O/vz65du4iNjWXs2JaHD7fF8GotQhMEAkFbpS3rgUQi4aWXXiIgIIDhw4e3yMGlpa1qgtADgUDQlmnLmtC1a1d2795NQkICw4cPNzjmbu/O65Gv80DQA3x96Gv+Vf7L7uzd9PbsTW/pQOoL3FAonNu9w6vdFJ5XKpUkJiaiVCqpq6sjMTGRxMREysrKABgxYgTBwcFMmTKFpKQkNm/ezMsvv8xTTz2Fra3tNV69QCAQmCYzs9hk4d+WUFZmxdmz3Vi+/DCZmcXs2HGQadNeICOjyOw5bTG8+mIQmiAQCDoal6IHAOHh0axdq2T58sPExp5m2rQX2LHjYLPndARNEHogEAg6IpeiCZWVduTnK3Q2QkzMHqZPn6ezEXq49uCDWz7g17G/ckfAHZwsPsnyU1/xy7nP+f34BrJKs0ymvrcXrmkkV2t49dVX+f7773XvtZ06tm3bxpAhQ7C0tGTjxo088cQTREREIJVKefDBB3njjTeu1ZIFAoHggmgNDGhdq/bMzGKWLz9CQsIZpFJrXFysmDlzIqdPp3PqVCp//bUaBweHJrv0bTW8urUITRAIBB2Ni9UDaKoJa9f+yB9/fMjatUvZsOF3hgwZohvX0TRB6IFAIOiIXC4bwckJnn56Enl5SjIzj7Fx40/Y2dmRmVnM0WR4OGQOs/vP5qf969h0ahPHaxM4si8OqbUUuZMcX6kvwe7tK+q13Ti5li9fzvLly5sdo1Ao2LRp09VZkEAgEFwGLtbASE4upKCgkoAAF/r08aRvX19mzXqW+fPnsHPnn9x444389ttvnDhhZSCQbTm8ujUITRAIBB2NS3E4GWuCm5sfx479zfHjSURHR/POO+/wwgsvNDGaOoImCD0QCAQdkctlI4SHy3nqqVm89tpLbN36O1FRUfz222+kpjbo9GCMohtPRk7jsRuncKb8DDtP72RP7h7Si9LZmb0Ta0vry35/V5J24+QSCASCts7F1Da5WAMjJMQdlaocaGDoUDkKhYwXXniaQYN6M2nSJA4fPkx4eDjvvfcZERE3GQhkbOxpYmIyiY5WEBXVudXXFggEAkHzXE09ANOaMHx4PI899hgrV67kpZdeIjY2ljff/MSgo6LQA4FAILjyXGsb4eWXn+PGG/tw7733cuDAAfr168eHH35JRMRAk3pwb9S93Bt4L+U15RRVFVFXX9fqdVxL2k1NLoFAIGjrXM3aJgqFDC8vB9LTiw2ud/PNN3Pw4EFuvvlmSktLefLJB9my5VN8fR10Y2JiMomJURITk3nF1ykQCATXI1e71pUpTbC3t+f7779nyZIl2NjYsGHDBu68cyje3kU6w0nogUAgEFx52oKNEB0dzcGDB7nxxhspKirikUcms2PHEvz8NEXmTemBg7UDvo6++Dv7X/F1X05EJJdAIBBcJq52bRNz1/Px8WHr1q3873//4/333ycxMRFLS0vd8ehohcGr2MkXCASCy8u1qHVl6poSiYRHH32U/v37M3HiRDIyMigtLdUdN9YDEJogEAgEl5u2YiP4+/uzY8cOXnzxRRYvXsyhQ4d0NkJH0gPh5BJcNqZNm0ZRURHr1q0DYMiQIYSFhfHxxx9f9JyXYw6B4GpxtWubNHc9Kysr3nvvPW666SZ69+6NhYUmcLeyspIbb/QxECrtzg3QrgRM0LYRmiC4nrkWta6au2b//v3Zv38/mzZt4pZbbtF93revW5PnvtAEweVG6IHgeqct2Qg2NjZ8/PHH3Hzzzdx4441IJBIA+vVzJyLCV2czQPvVA5GueB0wbdo0JBIJEokEGxsbAgICeOONN6itrb2i1127di1vvvlmi8Zu374diURCUVHRRc8hEAiaMnbsWBSK8zsyzz//PFFRUSQmJuo+i45WEB0tN9i5EXRchCYIBNcnrq6u3H///br3aWlpKBQKFi5cSHV1te5zoQnXD0IPBILrl/Hjx+Pr66t7/9RTT3HLLbdw5MgR3WftVQ9EJNd1wqhRo1i2bBlVVVVs2melmx0AAQAASURBVLSJp556Cmtra+bNm2cwrrq6Ghsbm8tyTTc3tzYxh0Ag0KBSqfjhhx8oLi6mf//+zJw5kzfeeIOoqM7tandGcOkITRAIBF9//TUFBQXMnz+flStX8uWXX3LLLbcITbjOEHogEAiysrJYvXo1arWavn37Mnv2bF577bV2qwcikus6wdbWFm9vbxQKBU888QTR0dFs2LCBadOmceedd/L222/j6+tLz549Ac0v+qRJk3BxccHNzY1x48aRkZGhm6+uro45c+bg4uKCu7s7L774Ig0NDQbXHDJkCM8++6zufVVVFS+99BL+/v7Y2toSEBDAt99+S0ZGBkOHDgU0u4wSiYRp06aZnOPcuXNMnToVV1dXHBwcGD16NGlpabrjy5cvx8XFhc2bNxMUFISjoyOjRo0iNzf38n6hAkE7xMvLi5SUFCZNmkR9fT2LFy8mMDCQb7/9lrq69tU1RXBpCE0QmiAQvP/++6xYsQJPT09SU1MZMmQIkydP5tSpU9d6aYKriNADoQcCgb+/P6mpqdx1113U1tbywQcfEBQUxMqVK6mvr7/Wy2s1wsl1nWJvb68LTd+6dSvHjh1jy5YtbNy4kZqaGkaOHImTkxO7du0iNjZWJwTacxYtWsTy5cv57rvv2L17N2fPnuX3339v9ppTp05l1apVfPLJJ6SmprJkyRIcHR3x9/dnzZo1ABw7dozc3FwWL15sco5p06aRkJDAhg0biI+Pp6GhgTFjxlBTU6MbU15ezocffsjKlSvZuXMnSqWS559//nJ8bQJBu8fX15dffvmFzZs3ExAQQG5uLo888gh9+vQhM1N017peEZogEFx/SCQSpkyZwrFjx3j88ceRSCT8/PPP9OzZkw8//PBaL09wjRB6IBBcn/j7+7N27Vr++OMPunTpQlZWFlOnTqVfv37tzhks0hUvkfLyco4ePXrVrxsYGIiDg0Orz2toaGDr1q1s3ryZmTNnkp+fj1QqZenSpboQ5B9++IH6+nqWLl2qK0S3bNkyXFxc2L59OyNGjODjjz9m3rx5jB8/HoCvvvqKzZs3m73u8ePHWb16NVu2bCE6OhqAbt266Y5rQ469vLxwcXExOUdaWhobNmwgNjaWyMhIAH788Uf8/f1Zt24dEydOBKCmpoavvvqK7t27A/D000/zxhtvtPq7Egg6MiNGjODIkSN88cUXvPnmm9TX1+Pn53etl9XuuRaacLF6AEITBAKBJkLmyy+/5NFHH+XFF18kJiaGLl26XOtltXuEjSD0QCBoj9x+++0MGzaMTz/9lHfeeQeJREKnTp2u9bJahXByXSJHjx6lf//+V/26+/fvp1+/fi0ev3HjRhwdHampqaG+vp777ruPBQsW8NRTTxEaGmqQY5+UlMSJEydwcnIymKOyspL09HSKi4vJzc1l0KBBumNWVlaEh4c3CUfWkpiYiKWlpUFHn9aSmpqKlZWVwXXd3d3p2bMnqampus8cHBx04gXg4+ODSqW66OsKBB0VW1tbZs+ezbRp08jOzsbKSkjCpXItNKG1egBCE4QmCARN6du3L1u2bGH37t1ERUVd6+W0e4SNoEHogUDQ/rC3t+fFF19k+vTpnDlzxqDjYntAWDSXSGBgIPv3778m120NQ4cO5csvv8TGxgZfX18DY1YqlRqMLSsro3///vz4449N5vH09Lyo9drb21/UeReDtbW1wXuJRGJWWAWC9kRs7GliYjKJjlaYLQKZmVlMcnIhISHuLW5V7Orqiqur6+Vc6nXLtdCE1uoBCE0QmiBo71wpPQC46aabLtcyr2uEjdAyhB4IBJfOldIEd3d33N3dL+dSrwrCyXWJODg4tHoH/VoglUoJCAho0dh+/frxyy+/4OXlhbOzs8kxPj4+7Nmzh5tvvhmA2traZneOQkNDqa+vZ8eOHbpQZH20u0TNFb8OCgqitraWPXv26EKRCwsLOXbsGMHBwS26N4GgPRMTk0lMjBLArIAlJxcSH58D0CqjRnB5EJogNEEguBoIPWj7CD0QeiAQXC2EJhjSvuLOBFeF+++/Hw8PD8aNG8euXbs4deoU27dvZ9asWZw+fRqAZ555hnfffZd169Zx9OhRnnzySYqKiszO2aVLFx588EEefvhh1q1bp5tz9erVACgUCiQSCRs3biQ/P5+ysrImc/To0YNx48YxY8YMdu/eTVJSEg888AB+fn6MGzfuinwXAkFbIjpaQXS0nOhohdkxISHuRET4EhLS/nZdBG0ToQkCQdtD6IHgWiD0QCBomwhNMEQ4uQRNcHBwYOfOncjlcsaPH09QUBDTp0+nsrJSt2vz3HPPMWXKFB588EEiIiJwcnLirrvuanbeL7/8krvvvpsnn3ySwMBAZsyYgVqtBsDPz4/XX3+duXPn0qlTJ55++mmTcyxbtoz+/ftz++23ExERQUNDA5s2bWoSfiwQdESiojrz2mtRZndoQLMzM2ZMtw6/QyO4eghNEAjaHkIPBNcCoQcCQdtEaIIhkgaRiGxASUkJMpmM4uJigzDcyspKTp06RdeuXbGzs7uGKxQILg7xO3z90ZL8/MuBuedme6e5+xL/ngTtHfE7fH1xtfQAOqYmCD0QdGTE7/D1R0e3EURNLoFAIOigtCQ/XyAQCAQdH6EHAoFAINDS0TVBOLkEAoGgg6LNy28uP18gEAgEHR+hBwKBQCDQ0tE1QTi5BAKBoIMSFdW5Q+7OCAQCgaB1CD0QCAQCgZaOrgmi8LxAIBAIBAKBQCAQCAQCgaDdI5xcAoFAIBAIBAKBQCAQCASCdo9wcgkEAoFAIBAIBAKBQCAQCNo9wsklEAgEAoFAIBAIBAKBQCBo9wgnl0AgEAgEAoFAIBAIBAKBoN0jnFwCgUBwHRMbe5rXX48lNvb0tV6KQCAQCK4xQhMEAoFAAO1bD4ST6zJQWVNHSWXNVfuprKm71rdslmnTpnHnnXfq3g8ZMoRnn332kua8HHNciO3btyORSCgqKrqi17nSSCQS1q1bd62XIWiDZGYWs2nTSTIziw0+j4nJJCZGSUxM5jVaWQekpgIqi6/OT03Ftb5bswg9uLYIPRA0h9CEq0NlbSWl1aVX7aeytvJa37JZhCZcW4QmCMzREfXA6lovoL1TWVPHP8l5FFfWXLVryuysGRHijZ21ZYvGT5s2je+//x4Aa2tr5HI5U6dOZf78+VhZXdlfgbVr12Jtbd2isdu3b2fo0KGcO3cOFxeXi5rjYomMjCQ3NxeZTNbic6ZNm0ZRUZEQDEG7IDm5kPj4HAAUCs3veWZmMVKpDeHhnYiOVlzL5XUcairg6CaoLLo617NzgcAxYG3fouFCDy6M0APB9YDQhCtPZW0l25TbKKkuuWrXdLZxZqh8KHZWdi0aLzThwghNEHR0OqIeCCfXJVJdV09xZQ12VpbYWl35wLiqWs31quvqW+zkAhg1ahTLli2jqqqKTZs28dRTT2Ftbc28efOajK2ursbGxuayrNfNza1NzHEhbGxs8Pb2vuLXMcXl/L4FAnOEhLgbvIJG1IqLqxg+vAtRUZ2v1dI6FnXVGgeXlZ3m50pSW6m5Vl11i51cIPTgQgg9EFwPCE248tTU11BSXYKtlS22lrZX/HpVdVWUVJdQU1+DHS3XH6EJzSM0QdDR6Yh6INIVLxO2VhY42Fhd8Z+LdaTZ2tri7e2NQqHgiSeeIDo6mg0bNgDnw4fffvttfH196dmzJwBZWVlMmjQJFxcX3NzcGDduHBkZGbo56+rqmDNnDi4uLri7u/Piiy/S0NBgcF3jMOKqqipeeukl/P39sbW1JSAggG+//ZaMjAyGDh0KgKurKxKJhGnTppmc49y5c0ydOhVXV1ccHBwYPXo0aWlpuuPLly/HxcWFzZs3ExQUhKOjI6NGjSI3N9fs92McinyhORYsWMD333/P+vXrkUgkSCQStm/f3qLvzdT3PX/+fAYNGtRkXX369OGNN94AYN++fQwfPhwPDw9kMhm33HILBw4cMHtPAoE+CoWMMWO66XZoQCNmERG+BqImuExY2YGNw5X9uUgnmtADoQcCgdCEq4etpS32VvZX/OdiHWlCE4QmCK5vOqIeCCfXdYq9vT3V1dW691u3buXYsWNs2bKFjRs3UlNTw8iRI3FycmLXrl3ExsbqHuLa8xYtWsTy5cv57rvv2L17N2fPnuX3339v9rpTp05l1apVfPLJJ6SmprJkyRIcHR3x9/dnzZo1ABw7dozc3FwWL15sco5p06aRkJDAhg0biI+Pp6GhgTFjxlBTcz5ltLy8nA8//JCVK1eyc+dOlEolzz//fKu+o+bmeP7555k0aZJO1HJzc4mMjGzR92bq+77//vvZu3cv6enpujHJyckcOnSI++67D4DS0lIefPBBdu/ezX///UePHj0YM2YMpaWlrbovgUCLKVETXH8IPbgwQg8E1wNCEwQgNKElCE0QdHTaux6IdMXrjIaGBrZu3crmzZuZOXOm7nOpVMrSpUt1IbE//PAD9fX1LF26FIlEAsCyZctwcXFh+/btjBgxgo8//ph58+Yxfvx4AL766is2b95s9trHjx9n9erVbNmyhejoaAC6deumO64NOfby8jLIt9cnLS2NDRs2EBsbS2RkJAA//vgj/v7+rFu3jokTJwJQU1PDV199Rffu3QF4+umndbsdLaW5ORwdHbG3t6eqqsoghLkl3xs0/b5BsyPz008/8corr+jua9CgQQQEBABw6623Gqzv66+/xsXFhR07dnD77be36t4EAoFA6EHLEXogEAg6OkITWo7QBIGgbSMiua4TNm7ciKOjI3Z2dowePZp77rmHBQsW6I6HhoYaPEyTkpI4ceIETk5OODo64ujoiJubG5WVlaSnp1NcXExubq5B+KyVlRXh4f/P3n3HN1U1bgB/0rRJ2rTp3rsFuthlWMoSUJAhIFuUoaIiCg4U/fmq4ELlFTcCyouIqAwBBRlSZO8WKKuFUjoppXvv9Pz+qImku6WQpjzfz6cfyM1N7rk3yXnuOffce3vUWYazZ89CKpViwIABzV6PqKgoGBsb6yzX1tYWfn5+iIqK0k4zMzPTBg8AODs7Iy0trUnLas57NLTdNKpvbwCYOnUqfv75ZwBVOxq//PILpk6dqn3+5s2bmDVrFtq3bw9LS0uoVCoUFBQgMTGxSetFRPc25gHzgIhIg5nATCBqaziS6x5x//3349tvv4VMJoOLi0uNO6YolUqdxwUFBQgODsa6detqvJe9vX2zymBq2vgLI9+u6ndakUgkNa4FcCfeo7Hbrfr2BoApU6ZgwYIFOH36NIqLi5GUlIRJkyZpn58+fToyMzPxxRdfwNPTE3K5HCEhITpDnInqk5CQi4sXMxEUZGuww4/p9jEPmAdEzAPSYCYwE4jaWiawk+seoVQqtUNaG6N79+5Yv349HBwcoFKpap3H2dkZJ06cQP/+/QEAFRUViIiIQPfu3Wudv1OnTqisrMSBAwe0Q5FvpTlqoVar6yxXQEAAKioqcOLECe1Q5MzMTFy+fBmBgYGNXr+WIJPJapS1MdutLm5ubhgwYADWrVuH4uJiPPDAA3BwcNA+f+TIESxbtgzDhw8HUHXxyoyMjNtfEbpn1HaLYLr3MA9aHvOADA3zgDSYCS2PmUCGpq1lAk9XbCGlFZUoKqu443+lFZV3ZX2mTp0KOzs7jB49GocOHUJcXBz279+PuXPnIjk5GQAwb948fPTRR9i6dSuio6Px3HPPae88UhsvLy9Mnz4dTzzxBLZu3ap9zw0bNgAAPD09IZFIsH37dqSnp6OgoKDGe7Rv3x6jR4/GrFmzcPjwYURGRuKxxx6Dq6srRo8efUe2RX3rc+7cOVy+fBkZGRkoLy9v1Harz9SpU/Hrr79i48aNOsOQgap1X7t2LaKionDixAlMnTr1rh75IsNn6HdKMSgVJUBZ0Z39qyi5K6vCPGgY84AMDfPg7ilVl6K4oviO/5WqS+/K+jATGsZMIEPT1jKBnVy3SSY1gqXCBCUVauSWlN/xv5IKNSwVJpBJ7+xHZ2ZmhoMHD8LDwwOPPPIIAgIC8OSTT6KkpER79OGVV17B448/junTpyMkJAQWFhYYO3Zsve/77bffYvz48Xjuuefg7++PWbNmobCwEADg6uqKRYsW4fXXX4ejoyOef/75Wt9j9erVCA4OxsiRIxESEgIhBHbs2FFj6PCdNmvWLPj5+aFHjx6wt7fHkSNHGrXd6jN+/HhkZmaiqKgIY8aM0Xlu1apVyM7ORvfu3fH4449j7ty5OkdxiBpi6HdKMQhSGaCwquqAKsm5s38VJVXLkupeu6OlMQ8axjwgQ8M8uPNMjEygkqlQWlGKvNK8O/5XWlEKlUwFE6M7W/8xExrGTCBD09YyQSKaehJyG5eXlwdLS0vk5ubqVDglJSWIi4uDt7c3FAqFzmtKytUoU9+dEVZAVceawkR615ZHbUN932Gi21FXvWno6luven9P5cWA+i5dB0MqA0x4tJaajplAd0pbzITm5kFJRQnKK8vvWjlNjEygMObvmZqGeUB3ir7ygNfkagEKEyk7nYiIqIqJKTueiIgICmMFFGCnARHR3cTTFYmIiIiIiIiIyOCxk4uIiIiIiIiIiAweO7mIiIiIiIiIiMjgsZOLiIiIiIiIiIgMHju5iIiIiIiIiIjI4LGTi4iIiIiIiIiIDB47uYiIiIiIiIiIyOCxk4uIiIiIiIiIiAweO7mIiIiIiIiIiMjgsZOrjZNIJPX+LVy48K6VZeDAgdrlKhQKBAYGYtmyZdrnf/jhB1hZWd218hAZioSEXOzYcQ0JCbn6LgoZMOYBUdvATKCWwEwgMnzMg9oZ67sAdGfduHFD+//169fj7bffxuXLl7XTzM3Ntf8XQkCtVsPY+M59LWbNmoV3330XRUVF+PHHHzFnzhxYW1tjypQpd2yZRIbu4sVMHDuWAgDw9LTUc2nIUDEPiNoGZgK1BGYCkeFjHtSOI7laQGFhYZ1/JSUljZ63uLi4UfM2hZOTk/bP0tISEolE+zg6OhoWFhbYuXMngoODIZfLcfjwYcyYMQNjxozReZ8XX3wRAwcO1D6urKzE4sWL4e3tDVNTU3Tp0gWbNm1qsDxmZmZwcnKCj48PFi5ciPbt2+OPP/5o0joR3WuCgmwREuKCoCBbfReFGuFuZkJTMA+I2gZmguFgG4GZQHQnMQ9qZzAjuT744AP8+eefOHv2LGQyGXJycmrMI5FIakz75ZdfMHny5DtatluPdFQ3fPhw/Pnnn9rHDg4OKCoqqnXeAQMGYP/+/drHXl5eyMjIqDGfEKL5ha3F66+/jv/+97/w8fGBtbV1o16zePFi/PTTT1i+fDnat2+PgwcP4rHHHoO9vT0GDBjQ6GWbmpqirKysuUUnuid4elry6Ew1zIQqzAOiew8zQRfz4F/MBKJ7C/OgdgbTyVVWVoYJEyYgJCQEq1atqnO+1atXY9iwYdrHPH+7Ye+++y4eeOCBRs9fWlqKDz/8EGFhYQgJCQEA+Pj44PDhw1ixYkWjAkytVuOXX37BuXPn8PTTTze77ER0b2Im3BnMAyIyNMyDO4eZQESGyGA6uRYtWgSg6sKD9bGysoKTk1Oj37e0tBSlpaXax3l5eU0uW0FBQZ3PSaVSncdpaWl1zmtkpHv2aHx8fJPL0hw9evRo0vxXr15FUVFRjdArKytDt27d6n3tsmXL8P3336OsrAxSqRQvvfQSZs+e3eQyE9G97U5kQkvkAWDYmcA8ICJDwzy4c5gJRGSIDKaTq7HmzJmDp556Cj4+Pnj22Wcxc+bMWocoayxevFgbjs2lVCr1Pu/tqL4cIyOjGsOdy8vLtf/XBPaff/4JV1dXnfnkcnm9y5o6dSrefPNNmJqawtnZuUZoExG1pKZkQkvkAWDYmcA8IKK2innQdMwEIjJEbaqT691338WgQYNgZmaGv/76C8899xwKCgowd+7cOl/zxhtv4OWXX9Y+zsvLg7u7+90obqtlb2+PCxcu6Ew7e/YsTExMAACBgYGQy+VITExs0rn1AGBpaYl27dq1WFmJiOrS1ExgHtTEPCCitoB50DKYCURkCPTayfX666/j448/rneeqKgo+Pv7N+r93nrrLe3/u3XrhsLCQixZsqTeTi65XN7gkYV7zaBBg7BkyRL8+OOPCAkJwU8//YQLFy5ohxlbWFhg/vz5eOmll1BZWYm+ffsiNzcXR44cgUqlwvTp0/W8BkRkiPSdCcyDmpgHRKQPzIPWiZlARIZAr51cr7zyCmbMmFHvPD4+Ps1+/969e+O9995DaWkpg6oJhg4dirfeeguvvfYaSkpK8MQTT2DatGk4f/68dp733nsP9vb2WLx4Ma5duwYrKyt0794d//d//6fHkhPd244cSUZYWAKGDPFEaKibvovTZMyE1od5QGS4DDkTmAetEzOByDAZch40h0S09L1m77AffvgBL774Yq23B67ugw8+wKeffoqsrKxGv39eXh4sLS2Rm5sLlUqlnV5SUoK4uDh4e3tDoVA0p+hEesXvcNu3aNERhIUlYsgQD7zzTuhdW25d9ebdcCczob714u+JDB2/w23fvZYJzAOi5uF3uO271/LAYK7JlZiYiKysLCQmJkKtVuPs2bMAgHbt2sHc3Bzbtm3DzZs3cd9990GhUGDPnj348MMPMX/+fP0WnIjoLhkyxFPn37aMmUBEVL97JROYB0RE9btX8kDDYDq53n77baxZs0b7WHPu9759+zBw4ECYmJjgm2++wUsvvQQhBNq1a4elS5di1qxZ+ioyEdFdFRrqdk8MQQaYCUREDblXMoF5QERUv3slDzQM7nTFO42nK1Jbxe8w3Sn6PF3xTuLpKdSW8TtMd0pbzATmAbVl/A7TnaKvPDC6a0siIiIiIiIiIiK6Q9jJ1UQc+EaGit9dopbH3xUZKn53iVoWf1NkqPjdpbaGnVyNZGJiAgAoKirSc0mImkfz3dV8l4mo+ZgJZOiYCUQtg3lAho55QG2NwVx4Xt+kUimsrKyQlpYGADAzM4NEItFzqYgaJoRAUVER0tLSYGVlBalUqu8iERk8ZgIZKmYCUctiHpChYh5QW8VOriZwcnICAG2IERkSKysr7XeYiG4fM4EMGTOBqOUwD8iQMQ+orWEnVxNIJBI4OzvDwcEB5eXl+i4OUaOZmJjw6AxRC2MmkKFiJhC1LOYBGSrmAbVF7ORqBqlUysqAiIgAMBOIiKgK84CISP944XkiIiIiIiIiIjJ47OQiIiIiIiIiIiKDx04uIiIiIiIiIiIyeLwmVzVCCABAXl6enktCRGQYNPWlpv5sK5gHRERN1xYzgXlARNR0+soDdnJVk5+fDwBwd3fXc0mIiAxLfn4+LC0t9V2MFsM8ICJqvraUCcwDIqLmu9t5IBFt6TBLC6isrERKSgosLCwgkUia9Nq8vDy4u7sjKSkJKpXqDpXwzmsr6wFwXVqrtrIubWU9gNtbFyEE8vPz4eLiAiOjtnMWPPOgCtel9Wkr6wFwXVqj212PtpgJt5MHAL8brRHXpfVpK+sBcF009JUHHMlVjZGREdzc3G7rPVQqlcF/mYG2sx4A16W1aivr0lbWA2j+urSVo/W3Yh7o4rq0Pm1lPQCuS2t0O+vR1jKhJfIA4HejNeK6tD5tZT0ArgugnzxoG4dXiIiIiIiIiIjonsZOLiIiIiIiIiIiMnjs5GpBcrkc77zzDuRyub6LclvaynoAXJfWqq2sS1tZD6BtrUtr0Ja2J9el9Wkr6wFwXVqjtrIerUlb2aZtZT0Arktr1FbWA+C66BsvPE9ERERERERERAaPI7mIiIiIiIiIiMjgsZOLiIiIiIiIiIgMHju5iIiIiIiIiIjI4LGTi4iIiIiIiIiIDB47uYiIiIiIiIiIyOCxk+sO+eCDD9CnTx+YmZnByspK38Vpkm+++QZeXl5QKBTo3bs3Tp48qe8iNdnBgwcxatQouLi4QCKRYOvWrfouUrMsXrwYPXv2hIWFBRwcHDBmzBhcvnxZ38Vqlm+//RadO3eGSqWCSqVCSEgIdu7cqe9itYiPPvoIEokEL774or6L0mQLFy6ERCLR+fP399d3sdoU5oH+MRNan7aaCcwDaggzQb+YB61PW80DgJmgL+zkukPKysowYcIEzJ49W99FaZL169fj5ZdfxjvvvIPTp0+jS5cuGDp0KNLS0vRdtCYpLCxEly5d8M033+i7KLflwIEDmDNnDo4fP449e/agvLwcDz74IAoLC/VdtCZzc3PDRx99hIiICISHh2PQoEEYPXo0Ll68qO+i3ZZTp05hxYoV6Ny5s76L0mxBQUG4ceOG9u/w4cP6LlKbwjzQP2ZC69MWM4F5QI3BTNAv5kHr0xbzAGAm6JWgO2r16tXC0tJS38VotF69eok5c+ZoH6vVauHi4iIWL16sx1LdHgBiy5Yt+i5Gi0hLSxMAxIEDB/RdlBZhbW0tvv/+e30Xo9ny8/NF+/btxZ49e8SAAQPEvHnz9F2kJnvnnXdEly5d9F2MewLzoHVgJrRehpwJzANqKmaC/jEPWi9DzgMhmAn6xpFcpFVWVoaIiAgMGTJEO83IyAhDhgzBsWPH9Fgy0sjNzQUA2NjY6Lkkt0etVuPXX39FYWEhQkJC9F2cZpszZw5GjBih85sxRDExMXBxcYGPjw+mTp2KxMREfReJ9Ix5YBiYCa0H84DaMmZC68c8aF2YCfplrO8CUOuRkZEBtVoNR0dHnemOjo6Ijo7WU6lIo7KyEi+++CJCQ0PRsWNHfRenWc6fP4+QkBCUlJTA3NwcW7ZsQWBgoL6L1Sy//vorTp8+jVOnTum7KLeld+/e+OGHH+Dn54cbN25g0aJF6NevHy5cuAALCwt9F4/0hHnQ+jETWg/mAbV1zITWjXnQujAT9I8juZrg9ddfr3Hxtep/rOjpTpkzZw4uXLiAX3/9Vd9FaTY/Pz+cPXsWJ06cwOzZszF9+nRcunRJ38VqsqSkJMybNw/r1q2DQqHQd3Fuy0MPPYQJEyagc+fOGDp0KHbs2IGcnBxs2LBB30Vr1ZgHpG/MhNaBeUAAM4H0i3nQejATWgeO5GqCV155BTNmzKh3Hh8fn7tTmDvAzs4OUqkUN2/e1Jl+8+ZNODk56alUBADPP/88tm/fjoMHD8LNzU3fxWk2mUyGdu3aAQCCg4Nx6tQpfPHFF1ixYoWeS9Y0ERERSEtLQ/fu3bXT1Go1Dh48iK+//hqlpaWQSqV6LGHzWVlZoUOHDrh69aq+i9KqMQ9In5gJrQfzgABmAukP86B1YSa0DuzkagJ7e3vY29vruxh3jEwmQ3BwMPbu3YsxY8YAqBr+unfvXjz//PP6Ldw9SgiBF154AVu2bMH+/fvh7e2t7yK1qMrKSpSWluq7GE02ePBgnD9/XmfazJkz4e/vjwULFhhseAFAQUEBYmNj8fjjj+u7KK0a84D0gZnQ+jAPCGAm0N3HPGidmAmtAzu57pDExERkZWUhMTERarUaZ8+eBQC0a9cO5ubm+i1cPV5++WVMnz4dPXr0QK9evfD555+jsLAQM2fO1HfRmqSgoECnlzkuLg5nz56FjY0NPDw89FiyppkzZw5+/vln/P7777CwsEBqaioAwNLSEqampnouXdO88cYbeOihh+Dh4YH8/Hz8/PPP2L9/P3bv3q3vojWZhYVFjWseKJVK2NraGty1EObPn49Ro0bB09MTKSkpeOeddyCVSjFlyhR9F63NYB7oHzOh9WkrmcA8oKZiJugX86D1aSt5ADATWg09392xzZo+fboAUONv3759+i5ag7766ivh4eEhZDKZ6NWrlzh+/Li+i9Rk+/btq3X7T58+Xd9Fa5La1gGAWL16tb6L1mRPPPGE8PT0FDKZTNjb24vBgweLv/76S9/FajGGenvgSZMmCWdnZyGTyYSrq6uYNGmSuHr1qr6L1aYwD/SPmdD6tOVMYB5QfZgJ+sU8aH3ach4IwUzQB4kQQrR81xkREREREREREdHdw7srEhERERERERGRwWMnFxERERERERERGTx2chERERERERERkcFjJxcRERERERERERk8dnIREREREREREZHBYycXEREREREREREZPHZyERERERERERGRwWMnFxERERERERERGTx2chG1Umq1Gn369MEjjzyiMz03Nxfu7u5488039VQyIiK625gJREQEMA+IGiIRQgh9F4KIanflyhV07doV3333HaZOnQoAmDZtGiIjI3Hq1CnIZDI9l5CIiO4WZgIREQHMA6L6sJOLqJX78ssvsXDhQly8eBEnT57EhAkTcOrUKXTp0kXfRSMioruMmUBERADzgKgu7OQiauWEEBg0aBCkUinOnz+PF154Af/5z3/0XSwiItIDZgIREQHMA6K6sJOLyABER0cjICAAnTp1wunTp2FsbKzvIhERkZ4wE4iICGAeENWGF54nMgD/+9//YGZmhri4OCQnJ+u7OEREpEfMBCIiApgHRLXhSC6iVu7o0aMYMGAA/vrrL7z//vsAgLCwMEgkEj2XjIiI7jZmAhERAcwDorpwJBdRK1ZUVIQZM2Zg9uzZuP/++7Fq1SqcPHkSy5cv13fRiIjoLmMmEBERwDwgqg9HchG1YvPmzcOOHTsQGRkJMzMzAMCKFSswf/58nD9/Hl5eXvotIBER3TXMBCIiApgHRPVhJxdRK3XgwAEMHjwY+/fvR9++fXWeGzp0KCoqKjgkmYjoHsFMICIigHlA1BB2chERERERERERkcHjNbmIiIiIiIiIiMjgsZOLiIiIiIiIiIgMHju5iIiIiIiIiIjI4LGTi4iIiIiIiIiIDB47uYiIiIiIiIiIyOCxk4uIiIiIiIiIiAweO7mIiIiIiIiIiMjgsZOLiIiIiIiIiIgMHju5iIiIiIiIiIjI4LGTi4iIiIiIiIiIDB47uYiIiIiIiIiIyOCxk4uIiIiIiIiIiAweO7mIiIiIiIiIiMjgsZOLiIiIiIiIiIgMHju5iIiIiIiIiIjI4LGTi4iIiIiIiIiIDB47uYiIiIiIiIiIyOCxk4vuuvj4eEgkEvzwww/Nen1MTAwefPBBWFpaQiKRYOvWrS1aPo2BAwdi4MCBt/0+n3zyCfz9/VFZWXn7haI7rqU+96Zavnw5PDw8UFpaeteXTdRWSCQSLFy4sMH5Fi5cCIlEojPNy8sLM2bMuDMFayMau33vJn1m7O3uzzTVrl270LVrVygUCkgkEuTk5GDGjBnw8vJq1Otff/119O7d+84WkqgO+/fvh0Qiwf79+/VdlDvmhx9+gEQiQXx8vL6LYhBq+040pU5rSGvMrKbYsGEDbGxsUFBQoO+iNFlFRQVee+01uLu7w8jICGPGjAHQ+M+kvLwc7u7uWLZsWbOWz06uNiQ2NhbPPPMMfHx8oFAooFKpEBoaii+++ALFxcU686rVaqxevRoDBw6EjY0N5HI5vLy8MHPmTISHh2vn01TWmj+FQoEOHTrg+eefx82bN+/2KgIApk+fjvPnz+ODDz7A2rVr0aNHj7uy3JSUFCxcuBBnz55t9Gvy8vLw8ccfY8GCBTAy0v25lZaW4quvvkLfvn1hbW0NmUwGFxcXPPzww/jll1+gVqtbeA3ujsrKSvzwww94+OGH4e7uDqVSiY4dO+L9999HSUlJra9ZtWoVAgICoFAo0L59e3z11Vd3udQt4+eff8bnn3/erNfOmDEDZWVlWLFiRcsWilq11lhve3l56bxe8/fss8+2+Pobuh07dty1HeijR49i4cKFyMnJuSvLa2kffvhhix+Uqi9j25rMzExMnDgRpqam+Oabb7B27Voolcoa8xUVFWHhwoW1diS8+OKLiIyMxB9//HEXStz6tMb69qWXXkL37t1hY2MDMzMzBAQEYOHChbU2aktLS7FgwQK4uLjA1NQUvXv3xp49e25/w1CrcOnSJSxcuJAdZASgqg5655138MILL8Dc3FzfxWmy//3vf1iyZAnGjx+PNWvW4KWXXqp1vrr2bUxMTPDyyy/jgw8+qLP9WC9BbcL27duFqampsLKyEnPnzhUrV64UX3/9tZg8ebIwMTERs2bN0s5bVFQkhg0bJgCI/v37iyVLlohVq1aJt956S/j5+QmJRCKSkpKEEEKsXr1aABDvvvuuWLt2rfjuu+/E9OnThZGRkfD29haFhYVNLmtcXJwAIFavXt3k1xYVFQkA4s0332zya5tqwIABYsCAAdrHp06danK5P/vsM6FSqURxcbHO9LS0NBEcHCwAiKFDh4r//ve/4n//+5/48MMPxaBBg7Tb3BDl5+cLAOK+++4T77//vli5cqWYOXOmMDIyEgMHDhSVlZU68y9fvlwAEOPGjRMrV64Ujz/+uAAgPvroI72Uv7S0VJSWljbrtSNGjBCenp7NXvZrr70mPD09a2wjaptaa73t6ekpunbtKtauXavzd+LEiTu6PVpCcXGxKC8vb3C+d955R1TfBSopKRFlZWVNWt6cOXNqvM+dsmTJEgFAxMXF3ZXl1aax27c2SqVSTJ8+vUXLU1fG3i23sz/TVDt37hQAxJ49e3Sml5WViZKSEu3j9PR0AUC88847tb7PxIkTRb9+/e5kUVul1lrfhoaGirlz54ovv/xSrFy5UsyePVvI5XIRGhoq1Gq1zryTJ08WxsbGYv78+WLFihUiJCREGBsbi0OHDrX8BrsD9u3bJwCIffv26bsod0xFRYUoLi5u1n7cxo0b2/z2qa6278T06dNva1/6VreTWfq2ZcsWIZFIRHJysr6L0iyTJk0Srq6uNaZX/0zq27fJzs4WMplMrFq1qsnLZydXG3Dt2jVhbm4u/P39RUpKSo3nY2JixOeff659rNkp/+yzz2rMW1FRIZYsWVIjvE+dOqUz38svvywAiJ9//rnJ5b2dncKEhAQBQCxZsqTJr22qlujk6ty5s3jsscdqTB86dKgwMjISv/32W62vO3XqlPjpp5+aWuRWobS0VBw5cqTG9EWLFtXYQS8qKhK2trZixIgROvNOnTpVKJVKkZWVdcfL25Jut5MrPDxcABB79+5tuUJRq9Sa621PT88av8m2prZOrua41zq5bsed6OSqK2Pvlpbu5CooKKjzuTVr1tT6u66uoU6uTZs2CYlEImJjY2+nqAalNde3tfnvf/8rAIhjx45pp504caLG/m9xcbHw9fUVISEhTV6GEKJZB6pvx73QyXU72MlVpSU7uQzZww8/LPr27avvYtSrvjrk/vvvF0FBQQ2+R0P7NiNHjmzWgRl2crUBzz77rABQa8dCdUlJScLY2Fg88MADjXrvusJ7+/btAoD44IMP6n19dna2mD59ulCpVMLS0lJMmzZNnDlzptadwqioKDFu3DhhbW0t5HK5CA4OFr///rv2eU2j5NY/TSUYHx8vZs+eLTp06CAUCoWwsbER48ePr/GDqatho1nPW+e/tZNLUwlX/6tvx/batWsCgPjhhx90ph89elQAEM8++2y92+5WpaWl4q233hLdu3cXKpVKmJmZib59+4q///5bZ766diBq2xG/ceOGmDFjhnB1dRUymUw4OTmJhx9+WGcbnDp1Sjz44IPC1tZWKBQK4eXlJWbOnNnoct/q3LlzAoD48ssvtdP+/PNPAUD8+eefOvNqttHatWvrfU/N5xkVFSUmTJggLCwshI2NjZg7d26NI/vl5eXi3XffFT4+PkImkwlPT0/xxhtv6BwBF6Jm56Zmm65fv168//77wtXVVcjlcjFo0CARExOj87q6vp9CCPHll1+KwMBA7ZHk4OBgsW7duhrrpCk/tW2tud7WdHKVlpbW2+iuS3Z2tpg3b55wc3MTMplM+Pr6io8++qjGqITG5kP136RGbTvCtTXuDx06JHr06CHkcrnw8fERy5cvrzULPD09dTphysrKxMKFC0W7du2EXC4XNjY2IjQ0VPz111/a5deWCxpLliwRISEhwsbGRigUCtG9e3excePGGusBQMyZM0ds2bJFBAUFCZlMJgIDA8XOnTu189SWfw11eA0YMEAEBQWJ8PBwERISoq3Dv/322xrz3rx5UzzxxBPCwcFByOVy0blz5xrZVdv21ZQrJiZGTJ8+XVhaWgqVSiVmzJihs/NbW9k12zovL0/MmzdPeHp6CplMJuzt7cWQIUNEREREnesmRN0Z25QcnD59ulAqlSI5OVmMHj1aKJVKYWdnJ1555RVRUVGh8/qW3J8R4t/f6f79+8Xs2bOFvb29sLKyqnVda8sXzfa79XegWcfqf7d+Zjk5OUIikYilS5fWu33bktZc39Zm06ZNAoBOHfDqq68KqVQqcnNzdeb98MMPBQCRmJhY73veWh/069dPmJqainnz5gkhhNi6dasYPny4cHZ2FjKZTPj4+Ih33323xm9A8x4XL14UAwcOFKampsLFxUV8/PHHNZaXlJQkRo8eLczMzIS9vb148cUXxa5du2r9bW7YsEF0795dKBQKYWtrK6ZOnVpj9Irmt5qQkCBGjBghlEqlcHFxEV9//bUQomof8/777xdmZmbCw8Oj1v2r6jS/lyVLloilS5cKDw8PoVAoRP/+/cX58+drzL93717Rt29fYWZmJiwtLcXDDz8sLl26pDNPbe0JTaYeOnRI9OzZU8jlcuHt7S3WrFlT43XV/zTbqiX3xxtT52o+68jISNG/f39hamoqfH19tRm2f/9+0atXL6FQKESHDh1qjDBtbLvsdjq5GrNNatsn2LdvnwgODm5wn0CTzRs2bBABAQFCoVCI++67T5w7d04IUXUmiq+vr5DL5WLAgAE11u3gwYNi/Pjxwt3dXchkMuHm5iZefPFFUVRU1OC6FRcXC5lMJhYuXFjjuca0Z0aMGCG8vb1rfe/77rtPBAcH60xbu3at9jdobW0tJk2aVKNOqa8OuVVdOaT5jG/9TBqzb/PFF18IiUQiMjMzG9xutzIGGbxt27bBx8cHffr0aXDenTt3oqKiAo8//vhtLTM2NhYAYGtrW+c8QgiMHj0ahw8fxrPPPouAgABs2bIF06dPrzHvxYsXERoaCldXV7z++utQKpXYsGEDxowZg99++w1jx47FI488AisrK7z00kuYMmUKhg8frj1H+dSpUzh69CgmT54MNzc3xMfH49tvv8XAgQNx6dIlmJmZ3db6BgQE4N1338Xbb7+Np59+Gv369QOAerf50aNHAQDdu3fXmb5t2zYAwGOPPdbo5efl5eH777/HlClTMGvWLOTn52PVqlUYOnQoTp48ia5duzZxjYBx48bh4sWLeOGFF+Dl5YW0tDTs2bMHiYmJ2scPPvgg7O3t8frrr8PKygrx8fHYvHlzk5cFAKmpqQAAOzs77bQzZ84AQI3rqgUHB8PIyAhnzpxp1HaaOHEivLy8sHjxYhw/fhxffvklsrOz8eOPP2rneeqpp7BmzRqMHz8er7zyCk6cOIHFixcjKioKW7ZsaXAZH330EYyMjDB//nzk5ubik08+wdSpU3HixAkAwJtvvonc3FwkJyfjs88+AwDt9/O7777D3LlzMX78eMybNw8lJSU4d+4cTpw4gUcffVRnOd27d8eRI0caLA8ZttZab2v8/fffMDMzg1qthqenJ1566SXMmzevwdcVFRVhwIABuH79Op555hl4eHjg6NGjeOONN3Djxg3tNeuakg+34/z589p6bOHChaioqMA777wDR0fHBl+7cOFCLF68GE899RR69eqFvLw8hIeH4/Tp03jggQfwzDPPICUlBXv27MHatWtrvP6LL77Aww8/jKlTp6KsrAy//vorJkyYgO3bt2PEiBE68x4+fBibN2/Gc889BwsLC3z55ZcYN24cEhMTYWtri0ceeQRXrlzBL7/8gs8++0xbj9rb29e7DtnZ2Rg+fDgmTpyIKVOmYMOGDZg9ezZkMhmeeOIJAEBxcTEGDhyIq1ev4vnnn4e3tzc2btyIGTNmICcnp1Gf+8SJE+Ht7Y3Fixfj9OnT+P777+Hg4ICPP/4YALB27Vrtdnz66acBAL6+vgCAZ599Fps2bcLzzz+PwMBAZGZm4vDhw4iKiqqRn7eqK2ObSq1WY+jQoejduzf++9//IiwsDJ9++il8fX0xe/ZsAC2/P3Or5557Dvb29nj77bdRWFhYaxnffPNN+Pn5YeXKlXj33Xfh7e2t3X63sre3x7fffovZs2dr95sAoHPnztp5LC0t4evriyNHjtR5jZS2prXXtxUVFcjJyUFZWRkuXLiA//znP7CwsECvXr2085w5cwYdOnSASqXSea1mnrNnz8Ld3b3e5WRmZuKhhx7C5MmT8dhjj2nrwR9++AHm5uZ4+eWXYW5ujr///htvv/028vLysGTJEp33yM7OxrBhw/DII49g4sSJ2LRpExYsWIBOnTrhoYceAlBVpwwePBiJiYmYO3cuXFxcsHbtWvz99981yvTDDz9g5syZ6NmzJxYvXoybN2/iiy++wJEjR3DmzBlYWVlp51Wr1XjooYfQv39/fPLJJ1i3bh2ef/55KJVKvPnmm5g6dSoeeeQRLF++HNOmTUNISAi8vb0b3P4//vgj8vPzMWfOHJSUlOCLL77AoEGDcP78ee02CgsLw0MPPQQfHx8sXLgQxcXF+OqrrxAaGorTp083eKH0q1evYvz48XjyyScxffp0/O9//8OMGTMQHByMoKAg9O/fH3PnzsWXX36J//u//0NAQACAqvZHS++PN7bOzc7OxsiRIzF58mRMmDAB3377LSZPnox169bhxRdfxLPPPotHH31Ue92lpKQkWFhYALjz7bLmbpMzZ85g2LBhcHZ2xqJFi6BWq/Huu+/WmaWHDh3CH3/8gTlz5gAAFi9ejJEjR+K1117DsmXL8NxzzyE7OxuffPIJnnjiCZ3v+MaNG1FUVITZs2fD1tYWJ0+exFdffYXk5GRs3Lix3nJGRESgrKys1nxrTHtm0qRJmDZtGk6dOoWePXtqX5uQkIDjx4/r/K4/+OADvPXWW5g4cSKeeuoppKen46uvvkL//v1r/AbrqkNuZW9vj7Vr1+KDDz5AQUEBFi9eDADa7/StGrNvExwcDCEEjh49ipEjR9a73XQ0qUuMWp3c3FwBQIwePbpR87/00ksCgDhz5kyj5tccWQgLCxPp6ekiKSlJ/Prrr8LW1laYmprWe57w1q1bBQDxySefaKdVVFSIfv361TjyOXjwYNGpUyedXujKykrRp08f0b59e+20W4+63Kq2XvFjx44JAOLHH3/UTmvuSC4hmn664n/+8x8BQOTn5+tMHzt2rAAgcnJydKYXFxeL9PR07V92drb2uYqKihrXicrOzhaOjo7iiSee0E5r7BHs7OzsWrfjrbZs2VLr0cnmGjJkiFCpVDrrNWfOHCGVSmud397eXkyePLne99R8ng8//LDO9Oeee04AEJGRkUIIIc6ePSsAiKeeekpnvvnz5wsAOiPi6hrJFRAQoPMZfPHFFwKAztG+uk5XHD16dKOG7AohxNNPPy1MTU0bNS8ZptZcbwshxKhRo8THH38stm7dKlatWqWts1977bUGl/3ee+8JpVIprly5ojP99ddfF1KpVHtksCn5cDsjucaMGSMUCoVISEjQTrt06ZKQSqUNjuTq0qVLg6dt1ne6YvVcKisrEx07dhSDBg2qUWaZTCauXr2qnRYZGSkAiK+++ko7ramnK2pG/3z66afaaaWlpaJr167CwcFBe/2xzz//XADQOUW+rKxMhISECHNzc5GXl6dT1tpGct2aQ0JU5Zytra3OtLpOV7S0tBRz5sxp1Drdqq6MbepILqDmNTC7deumc6T7TuzPaH6nffv2rTFipjZ1jRiq/jto6HRFIYR48MEHRUBAQIPLbAtae30rxL/7q5o/Pz+/Gt/foKCgGnWHEEJcvHhRABDLly+vdxma+qC2+Wrbh37mmWeEmZmZzvdY8x637leXlpYKJycnMW7cOO00TZ2yYcMG7bTCwkLRrl07nd9mWVmZcHBwEB07dtQZfa8ZBff2229rp2l+qx9++KF2WnZ2tjA1NRUSiUT8+uuv2unR0dEN/gaE+LdOqP45aU4Nfemll7TTNPXmraNJIiMjhZGRkZg2bZp2Wl0juQCIgwcPaqelpaUJuVwuXnnlFe20uk5XbOn98cbUuZrP+tbTbTXb1cjISBw/flw7fffu3TXqwca2y5o7kqux26T692DUqFHCzMxMXL9+XTstJiZGGBsb1zqSSy6X63yWK1asEACEk5OTTja+8cYbNT732rbB4sWLhUQi0dknqc33339fo40hROPbM7m5uTW+X0II8cknn+gsPz4+Xkil0hojTs+fPy+MjY11ptdXh9RGM/KruuqfSUP7NikpKQJArSNG69O2b0VzD8jLywMAbc95S8+vMWTIENjb28Pd3R2TJ0+Gubk5tmzZAldX1zpfs2PHDhgbG2uPhAKAVCrFCy+8oDNfVlYW/v77b0ycOBH5+fnIyMhARkYGMjMzMXToUMTExOD69ev1ls/U1FT7//LycmRmZqJdu3awsrLC6dOnm7SuLSUzMxPGxsY17oih+QyqT1++fDns7e21f3379tU+J5VKIZPJAFTdvTArKwsVFRXo0aNHs9bP1NQUMpkM+/fvR3Z2dq3zaHrut2/fjvLy8iYv41YffvghwsLC8NFHH+kcESguLtauV3UKhaLG3Y7qojnCoqH5ju3YsUPn35dffllnvldeeQUA8Oeffza4jJkzZ+qUVTOa79q1aw2+1srKCsnJyTh16lSD81pbW6O4uBhFRUUNzkuGqTXX2wDwxx9/4LXXXsPo0aPxxBNP4MCBAxg6dCiWLl2K5OTkel+7ceNG9OvXD9bW1tq6PCMjA0OGDIFarcbBgwcBND4fbodarcbu3bsxZswYeHh4aKcHBARg6NChDb7eysoKFy9eRExMTLOWf2suZWdnIzc3F/369au1zh4yZIjOyJzOnTtDpVI1qn6pj7GxMZ555hntY5lMhmeeeQZpaWmIiIgAUPVZODk5YcqUKdr5TExMMHfuXBQUFODAgQMNLqf6nTf79euHzMxM7Xe3PlZWVjhx4gRSUlIau1oA6s7Y5qit/Ldu+zu5PzNr1ixIpdLbXoem0Pw+7wWtvb4FgMDAQOzZswdbt27Fa6+9BqVSWePuisXFxZDL5TVeq1AotM83RC6XY+bMmTWm31pXab63/fr1Q1FREaKjo3XmNTc31xlhL5PJ0KtXrxq/F2dnZ4wfP147zczMTDuKUyM8PBxpaWl47rnntOsBACNGjIC/v3+t+2ZPPfWU9v9WVlbw8/ODUqnExIkTtdP9/PxgZWXV6PpzzJgxOp9Tr1690Lt3b+2+440bN3D27FnMmDEDNjY22vk6d+6MBx54QDtffQIDA7X7jUDVSBU/P79G70MCLbM/rnm/xtS55ubmmDx5svaxZrsGBASgd+/e2uma/9+6Lne6XdacbaJWqxEWFoYxY8bAxcVFO71du3baUYjVDR48WGeUnmZdx40bp1NHNLQNCgsLkZGRgT59+kAIoT2TpS6ZmZkAqurqWzW2PaNSqfDQQw9hw4YNqOpXqrJ+/Xrcd9992n2izZs3o7KyEhMnTtTZZ3NyckL79u2xb98+neXUVYfcSZpt0NTMYieXgdMMW87Pz78j82t888032LNnD/bt24dLly7h2rVrDTYSEhIS4OzsXGMH1M/PT+fx1atXIYTAW2+9pdPJY29vj3feeQdA1bDU+hQXF+Ptt9+Gu7s75HI57OzsYG9vj5ycHOTm5jZpXe80TaVYfQdm3Lhx2LNnD/bs2aNzaoHGmjVr0LlzZygUCtja2sLe3h5//vlns9ZPLpfj448/xs6dO+Ho6Kgd+q05pRAABgwYgHHjxmHRokWws7PD6NGjsXr1apSWljZpWevXr8d//vMfPPnkkzoNBKAqAMrKymp9XUlJiU5A1Kd9+/Y6j319fWFkZKS9DXNCQgKMjIzQrl07nfmcnJxgZWWFhISEBpdxayMZ+LfSrauT8FYLFiyAubk5evXqhfbt22POnDl1npKoCSOJRNLg+5Jhas31dm0kEgleeuklVFRUYP/+/fXOGxMTg127dtWoy4cMGQLg37q8sflwO9LT01FcXFyjfmjsct59913k5OSgQ4cO6NSpE1599VWcO3eu0cvfvn077rvvPigUCtjY2GhPJautzq5evwBVdUxj6pf6uLi4QKlU6kzr0KEDAOjUj+3bt4eRke4uoebUgjtdP37yySe4cOEC3N3d0atXLyxcuPC2O/eaQqFQ1DhVpfq2v5P7M7eeTlVWVobU1FSdP7Va3SLreSshxD2TMYZQ36pUKgwZMgSjR4/Gxx9/jFdeeQWjR49GZGSkdh5TU9Na979KSkq0zzfE1dW11gOLFy9exNixY2FpaQmVSgV7e3ttR1b1+srNza3Gd6e230u7du1qzFf996KpW2qrj/39/WvUPbX9Vi0tLWstk6WlZaPrz9oyokOHDjp1ZF3lDAgIQEZGRp2nGmvcTh3fUvvjGo2tc+vartVPi7W0tASgW9/f6XZZc7ZJWloaiouLa7QFANQ6Daj5uWnWtTHbIDExUdsxam5uDnt7ewwYMABAzd9VXW7toAKa1p6ZNGkSkpKScOzYMQBVp1BHRERg0qRJ2nliYmIghED79u1rZFZUVFSNvKpeh+Tm5urkVVZWVqPWqyma2y7iNbkMnEqlgouLCy5cuNCo+f39/QFUXaekKddx6tWrV43rJrWUyspKAMD8+fPr3CGoq/LReOGFF7B69Wq8+OKLCAkJgaWlJSQSCSZPnqx9f6DuH8id2Im0tbVFRUUF8vPzdXr7NZ/BhQsXEBoaqp3u7u6urTSrH2X96aefMGPGDIwZMwavvvoqHBwcIJVKsXjxYu11H4Cmrd+LL76IUaNGYevWrdi9ezfeeustLF68GH///Te6desGiUSCTZs24fjx49i2bRt2796NJ554Ap9++imOHz/eqKPne/bswbRp0zBixAgsX768xvPOzs5Qq9VIS0uDg4ODdnpZWRkyMzN1jrQ0RV3b4XZ26us60l49gGoTEBCAy5cvY/v27di1axd+++03LFu2DG+//TYWLVqkM292djbMzMwa3cFHhscQ621N3dTQDkxlZSUeeOABvPbaa7U+r+lgaQqJRFLr7+xO1Nu36t+/P2JjY/H777/jr7/+wvfff4/PPvsMy5cv1xlNUJtDhw7h4YcfRv/+/bFs2TI4OzvDxMQEq1evxs8//1xj/tupX1qD2yn/xIkT0a9fP2zZsgV//fUXlixZgo8//hibN2+u8+g6UHfGNjXnW3IUVXP2Z26t648ePYr7779f5/m4uLgGr/fTVNnZ2TrXx2zLDLG+feSRR/D444/j119/RZcuXQBU7S/VdlbDjRs3AKBR+0u17Vfk5ORgwIABUKlUePfdd+Hr6wuFQoHTp09jwYIFOvvQgH7rqrqWbQj15+2UsSX2x2/V2Dr3drZ3Y9tlzdXS26Quzd0GarUaDzzwALKysrBgwQL4+/tDqVTi+vXrmDFjRoPbQHMtv+zsbLi5udV4vjHtmVGjRsHMzAwbNmxAnz59sGHDBhgZGWHChAnaeSorKyGRSLBz585a16n6dqxeh8ybNw9r1qzRPh4wYECDB0ObStNx2NTMYidXGzBy5EisXLkSx44dQ0hISL3zPvTQQ5BKpfjpp59u+6KaDfH09MTevXtRUFCg8yO5fPmyznw+Pj4Aqk6P0Bztb6pNmzZh+vTp+PTTT7XTSkpKkJOTozOf5uhyTk6OzmlzjTlS3dQOEs2OUlxcnM7IrJEjR+Kjjz7CunXrdDq56rNp0yb4+Phg8+bNOuXQHBnWuHX9blXX+vn6+uKVV17BK6+8gpiYGHTt2hWffvopfvrpJ+089913H+677z588MEH+PnnnzF16lT8+uuvDTbyTpw4gbFjx6JHjx7YsGEDjI1rVjeaHcjw8HAMHz5cOz08PByVlZWN3sGMiYnRORp+9epVVFZWahsGnp6eqKysRExMjM6FD2/evImcnBx4eno2ajkNqe87olQqMWnSJEyaNAllZWV45JFH8MEHH+CNN97QGaYfFxdX68UZqW1prfV2XTRHeRu60Lmvry8KCgoarMsbmw9AVb1W21Hmhupte3t7mJqa1nq6YW3LqY2NjQ1mzpyJmTNnoqCgAP3798fChQu19V9dv/nffvsNCoUCu3fv1jnFaPXq1Y1abm2a00mfkpKCwsJCndFcV65cAQCd+vHcuXOorKzUGc2lOU3pbtSPzs7OeO655/Dcc88hLS0N3bt3xwcffFBvJ1ddGdvUHGyMu7U/06VLF+zZs0dnmpOTU5PeozHfk7i4OG3nyb3A0Orb0tJSVFZW6oz26Nq1K/bt24e8vDydi89rbn7TnBsQAcD+/fuRmZmJzZs3o3///trpcXFxzSs8qn4vFy5cqDFisPrvRVO3XL58GYMGDdJ57vLlyy1W9zSktoy4cuWKTh2pKVN10dHRsLOzqzFitjka+u02d3+8Ns2pc5uise2y29WUbeLg4ACFQoGrV6/WeK62abfj/PnzuHLlCtasWYNp06Zpp1ev3+tya7516tRJO70p7RmlUomRI0di48aNWLp0KdavX49+/frpdIj7+vpCCAFvb+9mHYR87bXXdE5frn56ZWM09L3X1EVNbRvxdMU2QHP+/lNPPYWbN2/WeD42NhZffPEFgKqj8bNmzcJff/2Fr776qsa8lZWV+PTTTxu87kpjDB8+HBUVFfj222+109RqdY3lOjg4YODAgVixYoX2iNSt0tPTG1yWVCqtcTTkq6++qnHkVnPNE811YYCq86Rv7YWuiybAGltBa3akwsPDdaaHhobigQcewMqVK/H777/X+trq66LpXb91+okTJ7RDUDU8PT0hlUp11g8Ali1bpvO4qKhIO8Rdw9fXFxYWFtqhvtnZ2TXKodmJamiIdFRUFEaMGAEvLy9s3769zlFJgwYNgo2Njc53BAC+/fZbmJmZ1bgDWV2++eYbncea75gmrDUdaJo7u2ksXboUABq9nIYolcpahyBrzq3XkMlkCAwMhBCixrUETp8+3ag7QJFha631dlZWVo16s7y8HB999BFkMlmNUSbVTZw4EceOHcPu3btrPJeTk4OKigoAjc8HoKpuio6O1smCyMjIBu9CKpVKMXToUGzduhWJiYna6VFRUbWWr7rqv1tzc3O0a9dOp/6rKxekUikkEonOtoyPj8fWrVsbXG5dmppBQNVd21asWKF9XFZWhhUrVsDe3h7BwcEAqj6L1NRUrF+/Xud1X331FczNzbWnV9wupVJZo+xqtbpGneng4AAXF5cGc6aujG1sDjbF3dqfsba2xpAhQ3T+bj0I0hiau5bV9T3Jzc1FbGzsPZUzrbW+zcnJqfV6Qt9//z0A3TtPjx8/Hmq1GitXrtROKy0txerVq9G7d+8G76xYl9r2L8vKym7795KSkoJNmzZppxUVFemUHahaPwcHByxfvlzn975z507tfuTdsHXrVp1RcidPnsSJEye0+5DOzs7o2rUr1qxZo/O7unDhAv766y+dg7S3o646/nb2x6u7nTq3KRrbLmuu5mwTqVSKIUOGYOvWrTrXI7t69Sp27tzZIuW6dVmA7u9KCKGtZxoSHBwMmUxWI9+a2p6ZNGkSUlJS8P333yMyMlLnVEWgatSoVCrFokWLamxPIUSN/aDqAgMDdfJKs1/RFA3t20REREAikTR4gKI6juRqA3x9ffHzzz9j0qRJCAgIwLRp09CxY0eUlZXh6NGj2luBa3z66aeIjY3F3LlzsXnzZowcORLW1tZITEzExo0bER0drXOhweYaNWoUQkND8frrryM+Ph6BgYHYvHlzrZ0A33zzDfr27YtOnTph1qxZ8PHxwc2bN3Hs2DEkJyfrXJegNiNHjsTatWthaWmJwMBAHDt2DGFhYTVu3fzggw/Cw8MDTz75JF599VVIpVL873//g729vU4jqDa+vr6wsrLC8uXLYWFhAaVSid69e9d5e2IfHx907NgRYWFh2lu1a/z0008YNmwYxowZg4ceeghDhgyBtbU1UlNTERYWhoMHD+ocTRk5ciQ2b96MsWPHYsSIEYiLi8Py5csRGBioc20vS0tLTJgwAV999RUkEgl8fX2xffv2GudUX7lyBYMHD8bEiRMRGBgIY2NjbNmyBTdv3tR+9mvWrMGyZcswduxY+Pr6Ij8/H9999x1UKlW9gZ6fn4+hQ4ciOzsbr776ao0Lh/r6+morKlNTU7z33nuYM2cOJkyYgKFDh+LQoUP46aef8MEHH+hc4LM+cXFxePjhhzFs2DAcO3YMP/30Ex599FHtkeouXbpg+vTpWLlypXZo/smTJ7FmzRqMGTOmwYZ7YwUHB2P9+vV4+eWX0bNnT5ibm2PUqFF48MEH4eTkhNDQUDg6OiIqKgpff/01RowYoXOaTUREBLKysjB69OgWKQ+1Xq213v7jjz/w/vvvY/z48fD29kZWVhZ+/vlnXLhwAR9++GGDo0peffVV/PHHHxg5cqT29uiFhYU4f/48Nm3ahPj4eNjZ2TUpH5544gksXboUQ4cOxZNPPom0tDQsX74cQUFBDV7YfNGiRdi1axf69euH5557Ttt5ExQU1OD1tQIDAzFw4EAEBwfDxsYG4eHh2tuua2h26ObOnYuhQ4dCKpVi8uTJGDFiBJYuXYphw4bh0UcfRVpaGr755hu0a9euSdf1upVmWW+++SYmT54MExMTjBo1qt4RBC4uLvj4448RHx+PDh06YP369Th79ixWrlwJExMTAMDTTz+NFStWYMaMGYiIiICXlxc2bdqEI0eO4PPPP2/yBbjrK39YWBiWLl0KFxcXeHt7w8/PD25ubhg/fjy6dOkCc3NzhIWF4dSpUzojAGpTV8Y2Ngeb4m7uz9wuU1NTBAYGYv369ejQoQNsbGzQsWNHdOzYEQAQFhYGIcQ9lTOttb7dv38/5s6di/Hjx6N9+/YoKyvDoUOHsHnzZvTo0UNnhETv3r0xYcIEvPHGG0hLS0O7du2wZs0axMfHY9WqVc0uQ58+fWBtbY3p06dj7ty5kEgkWLt27W2d6jdr1ix8/fXXmDZtGiIiIuDs7Iy1a9dqO2A1TExM8PHHH2PmzJkYMGAApkyZgps3b+KLL76Al5cXXnrppWaXoSnatWuHvn37Yvbs2SgtLcXnn38OW1tbndPulyxZgoceegghISF48sknUVxcjK+++gqWlpZYuHBhi5Sja9eukEql+Pjjj5Gbmwu5XI5Bgwbh559/btT++IwZM7BmzZp6T3HOz89vdp3bFI1tlzVXc9soCxcuxF9//YXQ0FDMnj0barUaX3/9NTp27IizZ8+2SNmAqpFYvr6+mD9/Pq5fvw6VSoXffvut0deJUygUePDBBxEWFoZ3331XO72p7Znhw4fDwsIC8+fPh1Qqxbhx43Se9/X1xfvvv4833ngD8fHxGDNmDCwsLBAXF4ctW7bg6aefxvz5829/g9SjoX2bPXv2IDQ0tOnfnSbdi5FatStXrohZs2YJLy8vIZPJhIWFhQgNDRVfffWVzi2Ahai69fX3338v+vXrJywtLYWJiYnw9PQUM2fO1Lltcl23rG6szMxM8fjjjwuVSiUsLS3F448/Ls6cOVPjVrNCCBEbGyumTZsmnJychImJiXB1dRUjR44UmzZt0s6jud3vkiVLdF6bnZ0tZs6cKezs7IS5ubkYOnSoiI6OrnFLeCGEiIiIEL179xYymUx4eHiIpUuX1nrL39puW//777+LwMBA7a1mq69DdUuXLhXm5ua13ka2uLhYfP755yIkJESoVCphbGwsnJycxMiRI8W6det0bileWVkpPvzwQ+Hp6Snkcrno1q2b2L59e6232U1PTxfjxo0TZmZmwtraWjzzzDPiwoULOuXNyMgQc+bMEf7+/kKpVApLS0vRu3dvnds9nz59WkyZMkV4eHgIuVwuHBwcxMiRI0V4eHi966z5jOr6q+0W8itXrhR+fn5CJpMJX19f8dlnn4nKysp6lyPEv7evv3Tpkhg/frywsLAQ1tbW4vnnn9e5HbUQQpSXl4tFixYJb29vYWJiItzd3cUbb7xR47dR/XPX3N5448aNta7nrd+BgoIC8eijjworKysBQPvZrFixQvTv31/Y2toKuVwufH19xauvvipyc3N13nPBggXCw8OjUetObUNrq7fDw8PFqFGjhKurq5DJZMLc3Fz07dtXp25oSH5+vnjjjTdEu3bthEwmE3Z2dqJPnz7iv//9rygrK9PO15R8+Omnn4SPj4+QyWSia9euYvfu3bXWf6jltvEHDhwQwcHBQiaTCR8fH7F8+XJt3XGr6nnx/vvvi169egkrKythamoq/P39xQcffKCzDhUVFeKFF14Q9vb2QiKR6LznqlWrRPv27YVcLhf+/v5i9erVtS4XQK23c68tv9577z3h6uoqjIyM6r3lthD/3r47PDxchISECIVCITw9PcXXX39dY96bN29qM1Qmk4lOnTrVmm/Vt69mfdLT03Xmqy1To6OjRf/+/YWpqak2C0pLS8Wrr74qunTpIiwsLIRSqRRdunQRy5Ytq3O9blVXxjYmB4WoulW9Uqms8b61fU4tvT/T1N9pXfPX9js4evSo9jtf/TObNGmS6Nu3b6OW2da0tvr26tWrYtq0acLHx0eYmpoKhUIhgoKCxDvvvCMKCgpqzF9cXCzmz58vnJychFwuFz179hS7du1q1LI09UFtjhw5Iu677z5hamoqXFxcxGuvvSZ2794tAIh9+/Y1+B61fQcTEhLEww8/LMzMzISdnZ2YN2+e2LVrV433FEKI9evXi27dugm5XC5sbGzE1KlTRXJyco1l1PZbratMnp6eYsSIEXVsjSq3tik+/fRT4e7uLuRyuejXr5+IjIysMX9YWJgIDQ0VpqamQqVSiVGjRolLly7pzFNb3VdXWWprZ3z33XfCx8dHSKVS7bZq7P74uHHjhKmpqcjOzq5znRtb5zZ1u1bPsca2yzT72Ld+J2r7PlXX2G1S2z7B3r17Rbdu3bRtju+//1688sorQqFQ1LtOQtTdDq2trXDp0iUxZMgQYW5uLuzs7MSsWbNEZGRko9qPQgixefNmIZFIRGJios70xrZnNKZOnSoAiCFDhtS5rN9++0307dtXKJVKoVQqhb+/v5gzZ464fPmydp766pDa1DV/bZ9JXfs2OTk5QiaTie+//77Ry9WQ/LMwIroDcnNz4ePjg08++QRPPvmkvovT5ixcuBCLFi1Cenq6wV9Et7S0FF5eXnj99dcxb948fReHSC/i4+Ph7e2N1atX64ysoKYbOHAgMjIyGn3BbUPEjG2a1NRUeHt749dff72nRnIR1UaTN0uWLLnjo1XuBkdHR0ybNg1LlizRd1EMzpgxY3Dx4sVar8+mL2q1GoGBgZg4cSLee+89fRdHLz7//HN88skniI2NbfINuXhNLqI7yNLSEq+99hqWLFnSIncTobZr9erVMDExwbPPPqvvohARGQRmbNN8/vnn6NSpEzu4iNqYixcvori4GAsWLNB3UVq94uJinccxMTHYsWMHBg4cqJ8C1UEqleLdd9/FN998o3NpmntFeXk5li5div/85z/NuuM8R3IRkcFqSyO5iIgjuVrSvTCSi4ioudraSC5qHGdnZ8yYMQM+Pj5ISEjAt99+i9LSUpw5cwbt27fXd/GohfDC80RERERERETUpg0bNgy//PILUlNTIZfLERISgg8//JAdXG0MR3IREREREREREZHB4zW5iIiIiIiIiIjI4PF0xWoqKyuRkpICCwsLSCQSfReHiKjVE0IgPz8fLi4uMDJqO8dOmAdERE3XFjOBeUBE1HT6ygN2clWTkpICd3d3fReDiMjgJCUlwc3NTd/FaDHMAyKi5mtLmcA8ICJqvrudB+zkqsbCwgJA1QehUqn0XBoiotYvLy8P7u7u2vqzrWAeEBE1XVvMBOYBEVHT6SsP2MlVjWYIskqlYogRETVBWzuFg3lARNR8bSkTmAdERM13t/OgbZwoT0RERERERERE9zR2chERERERERERkcFjJxcRERERERERERk8dnIREREREREREZHBYycXEREREREREREZPHZyERERERERERGRwWMnFxERERERERERGTx2chERERERERERkcFjJxcRERERERERERk8dnIREREREREREZHBYycXEREREREREREZPHZyERG1IgkJudix4xoSEnL1XRQiItIj5gEREWkwExrPWN8FICKif128mIljx1IAAJ6elnouDRER6QvzgIiINJgJjcdOLiKiViQoyFbnXyIiujcxD4iISIOZ0Hjs5CIiakU8PS15dIaIiJgHRESkxUxoPF6Ti4iIiIiIiIiIDB47uYiIiIiIiIiIyOCxk4uIiIiIiIiIiAweO7mIiIiIiIiIiMjgsZOLiIiIiIiIiIgMHju5iIiIiIiIiIjI4LGTi4iIiIiIiIiIDB47uYiIiIiIiIiIyOCxk4uIiIiIiIiIiAweO7mIiIiIiIiIiMjgsZOLiIiIiIiIiIgMHju5iIiIiIiIiIjI4LGTi4iIiIiIiIiIDB47uYiIiIiIiIiIyOCxk4uIiIiIiIiIiAweO7mIiIiIiIiIiMjgsZOLiIiIiIiIiIgMHju5iIiIiIiIiIjI4LGTi4iIiIiIiIiIDB47uYiIiIiIiIiIyOCxk4uIiIiIiIiIiAweO7mIiIiIiIiIiMjgsZOLiIiIiIiIiIgMHju5iIiIiIiIiIjI4LGTi4iIiIiIiIiIDB47uYiIiIiIiIiIyOCxk4uIqJU4ciQZixYdwZEjyfouChER6RHzgIiINJgJTWOs7wIQEVGVsLAEhIUlAgBCQ930XBoiItIX5gEREWkwE5qGnVxERK3EkCGeOv8SEdG9iXlAREQazISmYScXEVErERrqxqMzRETEPCAiIi1mQtPwmlxERERERERERGTw2MlFREREREREREQGj51cRERERERERERk8NjJRUR0D0pIyMWOHdeQkJCr76IQEZGeMROIiAhoG3nAC88TEd2DLl7MxLFjKQAAT09LPZeGiIj0iZlARERA28gDdnIREd2DgoJsdf4lIqJ7FzOBiIiAtpEH7OQiIroHeXpaGuzRGSIialnMBCIiAtpGHvCaXEREREREREREZPDaVCfXwoULIZFIdP78/f31XSwiItIDZgIREQHMAyKie0mbO10xKCgIYWFh2sfGxm1uFYmIqJGYCUREBDAPiIjuFW2udjc2NoaTk5O+i0FERK0AM4GIiADmARHRvaJNna4IADExMXBxcYGPjw+mTp2KxMTEeucvLS1FXl6ezh8REbUNTckE5gERUdvFPCAiuje0qU6u3r1744cffsCuXbvw7bffIi4uDv369UN+fn6dr1m8eDEsLS21f+7u7nexxEREdKc0NROYB0REbRPzgIjo3iERQgh9F+JOycnJgaenJ5YuXYonn3yy1nlKS0tRWlqqfZyXlwd3d3fk5uZCpVLdraISERmsvLw8WFpatvp6s6FMYB4QEd0+Q8gE5gER0Z2nrzxoc9fkupWVlRU6dOiAq1ev1jmPXC6HXC6/i6UiIiJ9aCgTmAdERPcG5gERUdvVpk5XrK6goACxsbFwdnbWd1GIWp0jR5KxaNERHDmSrO+iEN0VzASi2jEP6F7DPCCqGzOBDF2b6uSaP38+Dhw4gPj4eBw9ehRjx46FVCrFlClT9F00olYnLCwBYWGJCAtL0HdRiO4IZgJR4zAPqK1jHhA1HjOBDF2bOl0xOTkZU6ZMQWZmJuzt7dG3b18cP34c9vb2+i4aUaszZIinzr/NceRIMsLCEjBkiCdCQ91qnSchIRcXL2YiKMgWnp6WzV6WIWvMdqKWx0wgapy7lQcAM4F5oB/MA6LGYxvh7mEm3BltqpPr119/1XcRiAxGaKjbbVemmiM9mverzcWLmTh2LAUA7tkAa8x2opbHTCBqnLuVBwAzgXmgH8wDosZjG+HuYSbcGW2qk4uI7q7GHOkJCrLV+fde1BJHxMjwCCEgkUj0XQyiu6Kx9dy9ngnMAyK6F7CN0DjMhDtDIoQQ+i5Ea2IItz0mImpN2mq9eTvrFX3sBqKP3cCoF7pAaiK9QyUkImp92mImtMV1IiK60/RVd7apC88TkWH57bfLmDp1O3777bK+i0LUoiztTZESk4M9P0TpuyhEBoOZQEREAPOAbg9PVyQivdm8OQYHD1bdnnjcOD89l0Y/NBfdtLSUITe37J6++GZb4tzOCu16OCDmVBou+l9HUD9XfReJqNW71zOBeUBEVOVezwOAmXA72MlFRHrzyCPtdf69F2kuumlsLEFFRdXZ4wywtsEj0BbpSQU4tCEG9p4qOHhY6LtIRK3avZ4JzAMioir3eh4AzITbwU4uIrqrt6+99XbB48b53bNHZzQ0F9u89SjN7eItmVsHiUSCjv1dEL4jAbtWnMfEN3tCYWai72IR1UtfeeDpaXnPZ8KdyAOAmUBEzcc2gv6wjdB87OQiort6+1reLliXp6dli28HbuPWw1hmjO7DPHF8Syx2r7yAUXO7wMiIl8Ok1ot5oD93Ig8Abmd9q1Sr8deKr9D5gWFwae+v7+IQNQkzQX/YRmg+dnIR0V29fW1ruV3wb79dxubNMXjkkfYYN87vrh6paqqmHnVpLduYqlg5mCGonyvO70/G4Q1X0X9yB30XiahOzIPWnQcAM8HQlBYXIS0+FuvfeR0DHn8C3YaNgkQi0T5/89pVnN71B0oKChAybjKcfJkR1HowE1p3JjAPasdOLiJCaKhbvZV2Sw5tvVNHqpuq+gUt7+aRqqZq6lGX1rKN6V/ugTbIzyrB+f3JsHY2Q6cBres7RqTRUB4ALZcJraWuMqQ8AJgJhsbU3AJDn52HPd99jX0/rMS5sJ3w6zMAJnI5roYfx/WoizBVWUICYMOi/8PUjz6HrUvr+97RvYlthNadCcyD2rGTqwUJIXSOzBDpS0ufb90Wh7ZWv6Dl3TxS1VTVj7rcK+fTtzUBoc4oyC7B4Q0xsHIwg3uAjb6LRPcIZkL9DCkPAN1MYB4YBhOFAv59+sPVPwjxkadxYst6QAhYOjghoN/9cPDxhUyuwP413+PAj6swdsHbbFPQHcE8aJghZQLbCLVjJ1cLEWVlSJj5BFRDh8L68ccYTHTHNKbyaunAaYtDW6tf0LIxoxdqczfCpPpRl7a4Q3EvkEgk6D7ME0c3XcWulRcw9pVusHPjHRfp9jATbl9L5QFw9zNhx45rzAODIYFHx85wCwhCSWEBKsrKYGxiArnSHFLjqiaZV9fuiI04iazrSbB189BzecnQMA9aBtsIho+dXC1EqNUwcXbCzQ8/RN7OnXD59L+Qubjou1jUBt1aeWkeV688bw2cW88jd3OzaFZle68MbW2OuxUmtwZlXTsUPHrT+hmbSNFzlA+Obb6KbV9GYvyCHrCwVei7WGTAmpsJHTvawdTUpFn1BTOhbncjE5gHhs1IKoWZqvbPxDe4F2JOHsOF/WEY8NgTd7lkZOjYRrg9MSeO4vTOPxA8YjTa9Qy57fdjG0F/2MnVQoxMTWH/wgtIy65A2cmDKHpoBBxfnAubadMgkUr1XTxqQ26tvOqqPG8NnB9+uKA9j7xnT+cGK9vGVoLNvQhjW6tk79YRrFs/6+HDfWrddo0N07b2GbRWV65k4uKFDHTu7oiAQDvtdFNzE/Qc6Y3jW2Lx+xdnMO61YJiay/RYUjJkzc2EK1ey4eNjVWPe6hpTXzAP/nU3MoF5YJji4nOw60AuunZxQEBg7d8PhbkFbF3dcC3iJEInPgZjGbOBGqauKIfEyIhthNtQnJ+HXd9+jrLiIqRei8GM/y6DpYPjbb0n2wj6w06uFhZVqMJZ+WCMNrkAycefIGfTb3B+dxHMgoP1XTRqI2o7YlLfedia88cdHc3w22+XAQCWlnXvNG3ceBnbtsVi1ChfzJ/fS+e5W0OrKRdhvLVcbW0Y7d06gtWYoKzvvPzw8FTtnWJMTU3a1GfQWl24mImoS1kQUolOJxcAWNgoEDzcC6e2x2Hbl2cx9pVgmMh5QISarq5MqGtHdcgQTyQm5qGgoAyVlZVISytEQkJurXXBkSPJWLbsLIyNjTBpkn+NeTSZkJiYhytXcgDc23kA3J1MaE4eALVngpeXCkZGRgDazmfQWl25ko3IKDUA1NnJBQBuAZ0QGbYT6YlxcG7nV+d8dG8rzs/DmV3bEH3kALJTb0ACwNLRCf59+sPJ/hGgEddqYhvhX1eOH0Z5SQm6Dx+NM7u2IXzbZgx+cvZtvSfbCPrDTq4WdP16PuQyYzh3cINJn56wKUlC3h9/IGHqY7B4aBgcFiyAzMlJ38UkA1VbODV0HnZxcTFsbPJhaZmIzz8/hJs3U2FuXoYbN1SwtpZg+vTpePDBBwEA58+fx0svvYSYmGxkZ1ciLc0O1661h0qlgp2dHQYMGICwsDJtaDXlIoy3losXSGyexgRlfd+HW+8U8+GH/QC0resntDYJCbmQy6Xw8rZEly4Otc5j46xE1wfccWZXIn7/4gzGzOsGY3Z0USM1lAm1Xavp+vXrMDa+jvj4ozhzJganTpXDzs4I69YJtG/vgGXLlmnf/5VXXsGWLQeQmVkOKysVSku9sWePLaysrODs7Iwnn3xS25Dp0MEKQ4Z43HYe1LVepKs5eQDUngmFhY54+ukuzIM7LOV6PuRyY7Rrb4GudWSChqt/IM6F7UTU4QPs5KIahBA4F7YTB9f9gEp1Bey9fOBq54a83DJAnYuTv2/C6R1/oNeYCRg6aiykxiYAarYRioqKYG2dB0vLBG0bwdqiENciCyBQgpcWLMDoCZMAABEREViwYIG2jZCebo+4uPawsLCAvb09Bg0ahLCwIoNuI1w+dhjWLq6w9/SCg5cPYiNOoN/UGZApTO/oclsC2wg1sZOrBcXE5CA7pwRKJ1vY2pvBzL47FEFByNu1EwX7D6AgbC+sJk+C/QsvQKpS6bu4ZGDqO7qRnZ2NP/88gD//PAJ//54ICuoEAAgLC8PDDz+sM29ODpBcVY+hR48e8PPrjYsXM1FUdB179+7VzhcdDURHh2kfv//++xgyZDoAwN+/Eo8+Ggo/Pz9kZvrj7Fk/dOnSBTY23oiPL633/H9eIPHuuXW733qnmLZ0/YTW6uLFTGRmlMDC3Bh2dnXvIDl6WaLzEHecC0vC71+cxeh5XdnRRY1SV92pVqsRFRWFo0fDcPp0IoYNe1n73PDhw3Hu3Dnt4+xsIC6u6v9nzthi2bJl2kbFkSMnEBcXAQDIywMSEw9rX2dqaopZs2ZpGzCnTn2Fs2djcOWKP/bu9UNgYCCcnNojN9ccHTvaNToP6lsvun11ZcLw4T76LNY9IeZqDrKySqC0UcG2nkwAAJmpKWzdPRF3+hQqHp3BUxZJq7y0BDu/WYqYE0fh6h8I96AusHZyxrlLebiRmQ0/P2t0HSJB9JGDOLx+LSL37ETn0eNxObUEO3ceR6dOfbRthO3bt2PSpEk675+TA8QlVf3fcenH8HL1x/UcC2RlJem0EaKigKioPdrHS5cuxZAhE2BUlAxFwW5MmbwagUFByMryw7lz/to2wrVrxa2yjVCcn4fkqAvw7dEbCqU5PDt3w8mtG5F86Tx8uvdq+A0MUFtvI7CTqwWZW5Zg0YHv4efWBZWKgXh0dAiM5HJYjR4D8779kLb5D2T9/CuyN22G3awnYfvkkzCSy/VdbGolGjpaoamM/PwscfLkSRw+fBinTp3CqVOnEBsbq51vxozX4Ok5EQBgZKSCUqmCtbUDZDJr+Pl5wt/PDRampsjOVOPqBVNsKruInIJKBATYYN26daisrMSJE/GIiroBe3sjODkZIy0tDd27d9feXWT79u1ITExEYmIi9uz5N+SMjIxga+uJmTPn4eOP52mn11dhNud89Vu3FVD7hTXvddW/T56eljp3iqE7KyjIFu/9Zz5ycjNwI2cEnpg+ASqLfw9upKcVIjExHx4eFnBpZwUIgci9yfjjy7N4eC47uqjxmeDgoMb69etx4sQJhIeH4/Tp0ygsLAQAyGRmmP3MbOSmFyHuSjbkUjs4OrjAysIexkaWcHN2grOTHcwUSlSUybHklf0wkUlRUlaJQT0ewyNDp0BdWY6Y2JtISM6AlY0E1rYCkAhIJBJtJnTtOgeRkZE4ffq0ThlNTVUICuqGEyf+1jklrr66mpnQ8m7dPpoOLWbC3SWT5eB/f3wOH8/uMFEMxrgxITp3Yk9LK0JiYh48PFRwcDCDR8cuOL3jd9y4ehnugZ30WHJqDRIScnHudBIyj61CbkoCggYMhotfAMwsrSCRSODpKYFEIoGLixni0hJxvqAMpxLTcW7nAWR8+4P2fSwt/g+enmNRXlqCvNRsmClMoZKbQKWQwdrSCs6uLnBwcUFZqTGsC1Kx59uPkes+E36BTli3bh0KcrJx8shFxN8oh72jAo6OUqSlpaFLly5wUd6ERfIvOBOfhKTkZCQlJ2P37t3aZRsZGcHOzguzZs3H++//expga2gjxIafgKgUsHP3hsTICI4+7WAsk+PiwX1trpPrXskDdnK1oJPnjiI5Lx3Jl8Kw91IYPljvgBGhoRgV2hd9OndGSveHkFTpg045kcj4+htkr1sHu9nPwXryJEiM+VHcqzTnsCuVJsjNLQOge7RCCIGioiLttI0b/8Krr06s8T6ent5wc/PHffd1glCrURobC4tT0fjx/unwNMmBVWkWKlKvofLahWoFACplclSEWSFXagGVtxt6+3rhRp+OcOveHm7dO8DEyQkSmUxbMXp7d8Xhw4dx+fJlnDwZiTNnLiAxMRqpqSlIT4+Dm5uF9u3Dw8Px8ccfY+DAgRg8eDD8/Px0duyqh1tjLlZZ/e4xzT3K05ZPi+FoCP1ycTHDpav7kJefg+hrh/Dt6rdwX89QPDhoBB64fxiSEoHo6CwAgL2DEi7trQEAkXuT8fsXZ/Hw3C4wUTAX7kUNZUJBQQHMzc210x5+eBjOnTuu8x4KmSk8HDvAydILsdtikbiz6tD89F5vaueRmhjBSCqBRAJIIEFxSQXKcytgZFwJcwlgLjpAcrNq3mAVEBz47/sbGUmwesFhyMyMUQbg+ckfoGhiKq7EX0V0zBWkZV5DdPRFFBfnIT8/XdvBBQBz5syBUqnEwIEDMXDgQJiZmemUXV+ZwDygO+nUmcO4mXkDNzP/xLHTf+Lr1c4YMmAAHrx/AIK7dEZiYp42ExwczODSwR9n//oTlw7uYyfXPUybB4pKqC/+AFllDjoPehAuHfwhMzVFZWUliktK4OBQVY/++dchfPD5OzXex15lAWeVOSqi/8LnUy9CXVEBAFg4ZjjMHT3h3z0Qti4uMFVZwkgqxS+/ROHK+Ti4lJ2Fc/42GKsnI+5IDGTZEQgQlQhylqPjsPEYPHUijIykuHb6FLZ+8h5MVA4Y/fgI+PofxIVzkchRS5BWVInk9BvIzMpEWto1eHlZact1+PBhfPXVV9o2QocOHXTKfbfy4MqJI7BycobKrqpjTGpsDCs3X1yNiEBM1HW0D3Ct72MyKPdKHnAPugU9OmYMFMnJ2BV9GXtOnURyWhpWbNmCFVu2wNpChZWvvQX3Hn6wcA+GZe4N5O/YgZvvv4+kr1dgh9VgdHhyIsZNCND3atBdprmmSY8ejnjgAS8EBdmipKQEf//9N7Zt24Zt27ZhzJgx+Prrr3HxYiaysuxhb++MkJCe6N27N3r06IHOTk4wTUpC8bnzKNn3Jy59/V8YlZfCDoC1hTVMbKwhtbOGibsbjBQKSGRypGUUIzE+B0q5BO6OMmTEpqE4Kw+mxRdRefk07PPzUbpBIBYAJBJI7exQaGoDiVAhr4M3AvsHoUsHP7gbtYOz9Sj07OeDbt1MERERgd69e2vX76+//sKmTZuwadMmAICTkweGDRuGKVPGYcCAAZBXG83YmItV1nZkp7ajPA2FYVuu6O/WHV2odsbGxlj1xS/4a98O7DuyG1evXcGhY/tx6Nh+vPXBq3hoyCN4YsoieHj82yHs0t4a15PzcSMqB8tfO4RhszuhfYBdPUuhtqi2TIiJicG2bdvwx+9/4NixY9izIRzluVLEXsiEhzwQmbbp8HXqCC8nf/h5d4S3hy8UZnKYyI1QXimQkJyPzKwS2NiboksXB9g5msHI2AgSSVUnFwBERKQiIuImgjs74Pr1AkRdykKAvzWGDfNBRVklyoorUFZcgfJSNcrL1CgrViM9tRBF+WWQSZWQVngjwMgbAX4PAEaA+cPGyFGnwMS8Elcj0mDnZg65hQSrVq1CaWkplixZAplMjs6d78Po0aPw+OPj4elZ8/otLZUJzAPmgT49PmUyJIX5OHL2HA4dO47klBv44Zdf8cMvv8LaygpL3/sY/v6O8PCoGvFrLJPB0dsXUceO4acDbhgzPqjNjbSghoWFJWBvWByGeh2FaWU2fO4bBBsvHxw6FY6/Dx3G3wcPY/TwYXh93gtITMwDKhxhbWmNHt06o0vHIHQODECQvx/M5HJkJicg+WoikuKzUFQq4OTuBFMrO3j6OsHF3UbnAHTXLg4oLCwHTIxRkh6O6zs+hFQYodzCF30GdUbixXM4t30dEk7tha2rO+LOhENu7Yoso/awlzhg6nPPI+nSBZw/eBSleRmQwBMqnw6w790f/fv31y5n165d2LBhAzZs2AAAcHHxwrBhD+HRR8ehX79+kFU7VfdOtBEG9rNHwrkz8O7WE3Kl+b8zWPqg8tolnAo7jPYBk2q83lDdK3kgEUIIfReiNcnLy4OlpSVyc3OhauJ1s8oSEpD/99+ILTLHyYhkHL90Dscvn8b1ghhUiDLEbd6ClKQSnI1MQ6Y6FkJahsByOazDT8KhPAM3jO1xNWQSgqY/jNC+7m36qOK9rPrnqqlkQ0PtERV1GL/8sh6RkUdQVFSofU1AQAAuXbqEhIRcRB+9Al9xA6qb11AcGYmiCxeBgnwAgNTaGiUWtohMqkRSkRksfD3w2LP3QSKXw0guR1pOGS6cz0ReXilUqqrgSE0tgp+/DZRmxog8cwNdAq3QwcsC6sJCVGRk4HpUMtLibsJZJSCvKEFpVjZkpYVAfh5wa/Uhk8PYxhpSGxuUm6mQKzGHta8r0hTA7suXcSQ6GgfDI1BRUa59iVKpxPHjx9GxY0fttMYcpfntt8vau4DUt9O3aNERhIUlYsgQD7zzTmi9nwVQ95DmlvgtNuc9DKUOuJ16szW73fW6fDwV0VEZuHQlC7b2hfhl02acPrcPeYWxmPno83hrwTuIupSBk6fiERW7BYP6D8bZ06bIv1mKnl5WKJcAweN9cf+D3gAM5/tATVNXJnh7F+Ho4T+xfdsfuJ4ap/OaWUMXoW/3wZCaGqOkQg0HZ3M4uJjDVGWCvLwypKQWwsPTAg5O5ti6NQbbt8dCIpFgyGAPTJ5SNSQrPa0Q585n6ObBjSL4+9vAzMwYkZFp6NLFocadQaMuZWifs7FRIDEhD67OSqhUCqQm5iElMR9KuRSoECguKENhbhnUZZUAAGFUgSuZJ3At7RzORB9HSmqyzns/9dRT+O6773SmNZQJzIPWpy1mwu2uU1ZKMq5FnEJqjhwnw5Nw+lwEzl4MR3p2NGBUiYi/dyP+WiHORqYhp/AS5ArAQWGNimtHsOdqJ1TadkNoqKv2d2BI3wdqvOqf6+HDiTi85mtUZl/ETbkVjpy/ggtXzqO0tFT7mo4B/ti69gftKa/u7hZwdFQCqHka7JYtV7B92zVIjIDBgz0xZcq/gyvS0opw/lw68vJLobKoOgB9I7UQPq6VqMxPwfV0KQK7dUCn7u4QQiDlSjQuHDmOwrxC2Lp5wi0wEFmFZvD0tNSOLEu9kY/4q6mQlSYj8fRh9B47Ee4ho7XrmJ0dh23btmHfvn04dOiwThvBwsICp0+fRrt27bTT7kQbYViPHChu7EDvsRPh3O7fkWQ3bxbixC/LYe/VDn2ffA2XLmUxE5pBX3nAkVx3wJEjKThzNh3eHh1g7eeFzOxiqBxKkJJUgh074hCfkIew5E24nlt1+oCLtTM6Kx0w3DgD/Q9+hfyL21H4xXu4mG7TZo8q3suqHy0ODXVDnz6u8Pf3x5UrV7Tz2ds7wdstGJNDu2FCB0ckzZ6NgohIeORloxxAuqkSUicn3DD3QJZKBafOvggK9cPmnYnYl5gOKIA+ni7IEqZwsKgKu6SkLJw5cxOZmcWwsTFF9+6O8PO3gYeHBRzslQi4ZdSI1MoKMldX7DxYgcirRujaxRYTx/rgZnw2XB3lsFYaITMuBVkJN2EjV0MUFyM/IwdmFRUoTboOo7wClF44BpvSYkyprMQUAIXe3jhUIbCnsBSnCrNQDoF2jo4Aqirrb75ZDV9fW7z22nikpZVhx45rtVbet94FpL4Aa+juLg3diayuz6w5mvMebXlkwb0iKioTJ0+nwdXFHPeHToWZ8SAYGeXDycYeUZcysHlLDMLP7kfklZXY8PtKyEzM4OLYFUlZ3TCwQyjObzVC5yA72Lpa8PvQRt36uTo7KuFqoUBp6mFMX/i6dh4jIyn8PLqhg0dvDOr3IPoP7AaZqRT7Dybi0IlU9O/nCsd2lrhyLRc5uSVIvVEEI2MjODpbIDOzBJVqAYVCCg/Pf3cwExPzceb0LXkQ7Aj/f/LA3kFZo3NLIywsAWcj05CeXozJk/1hJDWCicIYxWUVyC1TI6CXpk7PQ7sutkiMz8O1K9lwtTeDtYUM9rlD0TVnIIZ1eBap2Qm4kHgc5xKPIz71IhwtPVGYWwqlpRxnzlzDZ599jSeeeAwzZnTExYuZSEjIZR7cxnJJ/44cvY4zZzLg6dkRSpMOyMwqhK19CeKvFWLHjmuIT8jDiUvrkJVb9Vm7WFvB1zEexpZK/PVXVcdGaKgbvw9tVPXPtTLxbxjnXcInfx9FenaOdj57W3v4uHfC8CEDMf6RgQCAzIxiHD16HQDwwBAv2NqZYu/eBOTlVZ327uBghszMEkACKJUyKBRSpKUVaTukEhPzcPrMTWRmlsDGRoHg7ppMUMHB4d+D0QAgkUjg6heA33YVIOpiKgIlDgjo74zsojztPGlpRUi+XggfP1cArkhPuo6IHX8g07gjwiOLAADDh3dF165d8dZbb+HixWR88snPCA/fh9TUCBgbS+DjU3XNqISEXHzxxUoEBLji9dfHITW1pMXaCA75EZA6u0Blq5t5jo5KeHfujIRzp3H2VCwizhVrP5f6PrPmYCa0PHZytaDr1/Nx+VQqsrIAU4Ux2re3gb+/DXbsiINUKsHZyDRIpUYwVxrDzykASqUJYm7EISX7BlKyb2AXAIXUBMOzsvH+44/DLaArOt33KNLSLLU7dobSa0u6bj3yEBhog5iYc9i8+Rc8+OAXMDY2hkQiwfChQ1GSV4CB3gEY62wHl7hkWBTFAntikX9QjjJLe6SZOOJSuSPShAX8enSARwcnnLmYi5IygcsJwDV1Jtx87NHfWA6F3BiR59Lx3rvH0K+fK3x8raE0M4avrzVkcinc3SzQqbMdrsZk47uV5+DhYYGhw7zhYK9EVFQGzkamaW9zLQBk55bjp41V3+W+/dxwJq4Q69alobS0EiEhrujX3x2Xo7Pg52cNdxdTJCfkwMrJFDYWUlTm56MiPR3S+OvwC7+GIHkuHOyskV6cj7h+/SHz8cZN185Y9ev3yCrIxPz5z+G++4bC2XkgJk16SOe7b2kpg5eXJQoLy7V3A6mL5qLItan+W6pv+G5zhvZWP5LUnPe4V4YUt0UJCbmIjEyDSlW1I1leoYaLiwXGjrVAXFwuKtWViIxMQ3GxGkpTK3Tr9ACuJYQjNy8b8clHEZ98FAdPfwNXWx9cT38FPR/qD4mlCYyNJbC0lGmXwTwwTJpMGDzYA1ZmFUi5vBN/x1sj4c9gVKoF7I38ITdRoIt/CHp2GYLhwx5C5Lk8nD2XgUK1FcpQiauXc/H3viQkJlWN5LW3VyI6OguVQiAxMQ+VohIeHhYI7eOC3JxSSKUSnD+XgS2bY9CunRX693dHt+6OSEnJR2lpJVycqzq2du2MxcFD19G/nyuGPeSrM3JL0/ElBJCTU4Iff7wEqVSCfv3c8MsvlxAbmwtfX0tMmRKIy5ezIZFI4N3OClKZVNt5VlkpUFGmRklhOZJjHSA75obuHR6BTFoCaaYRflhwBEpLGfZd2o612z/D2rWfwdc3CO3aDcGMGY/D0zMYQNX3f9++JFhbyxEc7HhbeaB5P83viXlALS3lej5Ohd9AVlYFFAop2re3hr+fLXbsuAYjqRHORqbB6J82go9HF6iyTZFw/RpSsnOQkp0DRL8FuVwJS8sx2LHDGZaWMvj6WiEtrZBtBANXvY0QHX0GW7euh7N0GE79vgkdevXBwGLgeEQkenULxejhQxAfK8W5yAwYCXvk5lQgMTELZ8+m4ezZdEgA2NuboX17a+TllaG0tAJHj15HUlIeAgNtoVSaQKGQIjIyA3v3JqJ/fzf4+FhBaWaCdu2sIZdXjQbr1NkeERGp2PxbDPr1d8VDD1V1OEVdyvy3jSAxQqnaBNm5aqz98SKMpEbo16/q9Pd166JQWqpGnxBn9Ovvjgz4QVkaD5F8CCEho2rUZebmFqioCISZmTOef/7/MHOmu/Z6jufOpWHlyo9QWJiF+fNn4777hsHZeQAmTBh6W20EPw811syPhn/fgVDccnMgzQg4B48gVIQfh3FmBEJChrTJTCjIzsKZXdvQa/R4yM2Ut/VerQk7uVpQTEwOLkdnoVRYIbiHI0L7usLBXglbO1OcP5eBlJR8mJubwMXFAXZJgxES8hj8gizw/ca9CDt5ElE3opBXlI9UW3fEenaGV8IFBF16FXMyi7Gt+wNwDxyAa9dMYW1thkmT/GsNsMYM46S7LywsAbt2XcKJE78hJeVvREZGAgDalcjxiKsFco+H47GbcZilsoBRfhqMzaUocnNFQokP7AO9UWhmgxNnc3EzVw2JhwkUcilgbYNSIzksLBUoSS/G5ctZSEzIQ3APRwweXHV0YufOa0hPL0ZYWAIGlAv4+dvA3cMCRUXlcPdQwcFeibU/XsKlqEwkJeUhO6fqKGFGejEKCquGDD8wxBP29qZITy9GfHweXF3M4eFhgeXfnkVubtU8V65kY+pjVafAaEaFObpY/bsB7Owg9/bG8fx47JPZQamSYOwwV3RRlqDsWizK4xOgOLkbo00EdpnIcKOgAGFhvwH4Dbt2ueHxx6ehU6dhiI2VwNhYAiMjCZ5+ustt3fZccwTkyJHriI/PrXdYc3Nup1v9SFJ971HXjmlbuY3vvejixUzEXM2GVAJ4eVpCpTJB5052sHdQajsNrKzkUKmM4ePVCcOGjULv3s64cCkSv2z4HUdP7cf11Chcz7wGUzMVUk+mIdMY+OvMboSFJcDXNxg3bzrAwcGeeWBgRKXAvj+vIfLoMez45W+ciT2A8opStHfrisUvDkJGfimMFWbY8Ws4vHwd/r1OijQDMJKgSxcHHD6SgpMnU2BjYwoTmRRdu9ojMSkfxSUVKC4qR0pKAbKzSmBibITBgz0xbVogDh9Jwe+/xyAvtwxZ2aXo0cMZgwd7IiI8FdHRWSgqqroQ8cFD13E1Jhv5/xz9//PPOFSoq043DAi0w5BbMiHun0yIPJeGKzG5AIC4uFztteY0HVv2Dv/uOBsZSSBTGCM3rxTnYrORXFQGmYkUQ+9vDxcHJbJvFCEvsxi2pvYIcO+Jy8kRiI29iNjYi9gb9g2+WHo/nnrmSTg4dMPu3XEQAredB0DtmVDb74p5QM0RczUH0dFZKC01R48eTggNdYODg9k/bYR0pNwogIWFCVxdHWGXOBwhfZ6Cn78p1vy8G0f3/Y4rqSkoKi1EXl4+jh1LQUiICyorK7Bo0YvYsqU7fHyCce2aHFZWbCMYmrCwBOzceRHHj29AcvLfuHCh6gZRstjT6NU7FMl5tujfcxJefPZl7WmI1haZkEgk6NrFAYmJeTh06Dqys4vh5aWCQiGFQiFFWZkaKpUM6ekVuHw5GwkJeejRw0nbRtixIw4Z6cXYsycBAwZUwt/fBu7uFigsLIe7e9XpjYcOXkfstRyUlatRUqJGUlIeMjKKUVCgaSN4wd7eDOnpRbe0EVT49tuzyPvnximXr2Rj6mNBANxREu+HxDOHMHPa47Cw0f2O7tuXiNTUQri6muPBB73h5fXvd9THxxQPPDAGBw/+iaysm/jrrw0ANmDXLk9MmzYNHTsORUyMaFIbQQiBAz/9D6YWKjh4ekN6y03gNDeCiBKAEewQc3QfnpvxGOQKsxrvY+iZcHrnHzj1+yYU5mRj2OwXb/v9Wgt2crWg9u2tUOlvA09rJ3TqbA8HeyXS0qtuE5+XV4pLUZlQmpkgMbESydfzYSIzQp8+bpg5eigGd+uD7OwinLp4BXa2plAG+EHu8BBO/fgLDlzZAuxZBexZBSOJCWxs26G4uA/27QvC2LEPwNXVHfv2JQEQiIxMR3h41e2QGnPEsri4HBcuZDDw7hAhBA4fPoxjR5Yi4tSfKFdXhYJMIsED5hYIOLIFpbaOyKlUIU8VCJcuvrAN9Mb1HMDUyhzyciNYeapgBSDl4BkkJhWhe7Aj+vRxxeXoLCQk5iEvrxw5OVWNGZWlHDdTi/DH77Hw9lZBqTRBRkYxlEoT7XW3UlIK4eRkBqWZMcIjUhEUZIOSkgqYmEiQmJCHrKwSWFjI4OGhQtcuDggIsENAgB2OHk1GeVklQkKc4WCvRHl5VaNHIgE6dKi6M5yHhwUSE6tGFTjY6x4NiIrKwPHjNwAAvULc4d+jKmRNAwIgKithVVCAxVeu4PFthxGbeAm7c9OxM78A6enJWLr0Q0yZch2PPfY2LC1lyM0tu+0jF5rXr1wZiYiIqt9MS17UVXMEqaEjSQCHHLdFQUG2KEgqgFxmhHLxb2M/Pa0QkZFpSE0twvXrhUi7WYycnFJs334N1lYKdOnUHS6OfpiQOBtJ11NxIvwonDt1gDSzHHbZpchOOYqo+MM4fHg9AECpdEBSUi/89lsQHnigL3r0uA9XruTB0lKGZcvO4sqVbAD15wFQlQkbN17B9ev5GD++A/OghVWqK5FyNRdnDl7GTz//hANnt+FmTqL2eQtTVzg79YJaZYxzZ1MhBGDrYA5viQTpaVX7EWZmVSPE7exMEbP9KpKS8tG5sxwfftgfEeGp2LcvEcUlFbCylMPJseq0lOjL2SgorIC3twqZmcWAAExMJGjnawkzM2NEhKfCzMwYTs5K5OSWID2tEP37uSI/rwx29qY4eOg6cnJKYGWlQJd/RvYGBNrBzs4Uh4+kwNTMBKF9XLBs2VntugQG2iIxMV/b0RURnqr9/t/q8JHrCA+/CU9PFSZP9tc+b+NSdeHfTvc/jpmFk/DbzxE4Gr4LUQlhSM64iuOn9uBk+F58Of8P3B9gD6mlCfz/yaDbcSczgXlA7dtZIdXfBlIzu6o2goOZdrRIXn4pLl3StBHykJxc8E8bIRiPTRyN+4I6I/XkVsQXmsCh1yT07OmCoCBbhIefRmLiASQmHgAASCQy2Nm1Q2lpH+zfH4RHHnkQzs6ubCO0UkII7N+/H4cOfY7w8J1Q/9NGkEpN0NnVERKZPWDVAeciiiBQBnsHFSQSCRIT86A0M0H79tawtTOFLUyRnR2LhIR8BAc7oE8fV0RHZyEhIQ95eWXIySmFsbERLC3lSE0twh9/XIW3lyXMlSbIyCiCudIE/v42UJqZICWlAM5OSijNTBAenoqu3ewBAB6eFjh58gZSU4ugsjD5t40QaIuAQFscPXq9qo3QxwUODmbaNgIkgJ+2jaBCbHFXVMRdwYnNv2LIU89pt8WRI8nYuvUqAGDMmPY1vm9BQW7YsmUV3nnnELZs2QOpNALR0ftx82YClix5DzNmpGHChNea1EY4s2sb4s9GoNOgobCws9d5TnMDiN2745GRbI8B3lGI2LYFfSZMbcYnXVNryoSbsTEAgOvRl1BWXASZac2OPEPETq4W5OpqAVVPJ8g8vbTTEhPzcTk6C8XFFTAzNYGTkzmysoogAVBSXI69exMACHTqbA8PDwtYW5tpR8IAgM/EsXjaSIJLF07gbNoNFFSWIyMjChs3RgEAEhKexYwZr2L37jhkZmYgJ+cIXFx8ERTkBbVaDalU+s98ug2Y3NwyrF9/GYcPJ6GgoByJiXkMsBZUWVqK4shIHN64EcP++1/t9A5yBca6emCAux8yisxR5OKKkl7tUJxdicJi4ExhBRK3Z0GpNIGjkxqVagASCXoEO8HO3hTJ1/NRUlyO3JxSmJlV/XyTcvJwLTYXRkZVw5NTUvJx7VouTE1N4OBgCmtrBbx9rJCRXohVv1+DqakUI0b4oLCoApejs+DkpMTQYd5QmhkjOjobScl5cHezgL+/DVJSCpGSUoBOne0hkxvDyUkJmbxquSNGeGPPngQoTKuOyK/98RKMjIDY2Bz07u2Mxx+vOn9f09F79kwaMrNK4Opijk6ddc97lxgZwVilgnGPHlAqvSAJT8Ibyky8EXcBuyNP4/fsLEwoyEZ/q1QoQ0Jw7tw5LFu2As8884z2fP3qGhq2rzkCUlxcjqKiclRUqHHkSHKL/Q7GjfNrdAOpJYYc17e+PIXh7vP0tERJFwdUVFTCTPXv3YGqDnqUQ60WkEol8PRUQSLJQ0F+OcLCErSnhQX3cIKHhwXcXav+tbM3w9l9SeifMAyO1na4kHgGGZkJKCxMw75927Fv33asWfMpNm06h4iITBgbS3D16gHk5xdCoTBFfn4+LCz+vZNj9aHyGzdewZIlJ1FWpkZeXinzoIVkJBcg+vgNXDmRiuL8cnyzcwGiEsMBAHKZAv3uGw4v10GorHBHj2BH5BWUw7ed1T9H3wvx6X9PwcHRFEYSI0ilgFpd9b6mChPIZFX5rumo8m1njTNnbiI5uQCVlZUoLVNXXUYhOhNqtUBgoC1cXM1RkF8Oc3MZ1qy5gMysEvTv74bAADtER2fByjIfwcFOMJEZAxAoL1Pj4kVTBAXZIOVGIVJuFKBzJ3skJuajqLAc3bpWncLYr78rcPA6/P2tUVJSiW3br6KkWI2Skgo4OSurjvb/04ml6bRL/mfkmamZSY0OMAAwNjGCuZUCvQb6QW5tjXmd5iIt7SrW//YLSorzYa20RX5GCUpSivD82rkI9O+Ehx8eBe+OjnDytYSJXKrzfvrMhLudBwAzobVxcbVAzx7OsHZx0U7TjBYpKVHDzMwETs5KZGUVV7URSiqwNywBANCpszdU8gdhdHgX7EpOYUCfB6C0ssTQoUG4du1VREefwpkzJ1FWVoT09EtYv/4SAODGjRcxZcoL2L07DunpqcjPPwkXF1907OjNNkIrcODAAQwaNEj7uEOHjgjt0gs+FTegltpBYtcR1k7O6N69EHn5pYiKysTu3fFV3xUnM6jVVTd/6tHDCXZ2CiQn56OkpAK5OaVQKv9pIySVIPafNoKDgxlupOTj8LVcmJoaw9HBDDbWpvD2sUR6ehG+/z0WpqbGGDnCB4VF5YiOzoKzkxKPjGsPpZkJoi9nISmp6lRGfz9bpKQU/NtGkEnh6KTU5tLIkT7Y81cCFKZS5OaVVZ3KaATExuaiv787zv+9Gx1C+kKYe+LixUzs2ROP69cL0KGDNe6/373Obfbgg94wMhqKIUOehrW1BN99tw5Hj/6OefOeRdeuVe2BEydOYOXKVXj66adrvWNvflYGdn+/CgkRh+DQLgiOPr4wqXandwcHMzg4mKGsTI1duypQgAyc/GNLVYeY7e3f9bq1tBGEEEi9FgsYSZGbdhNFebns5KKGpaUXIjenFE5OZnBxMUdKSiEAgcBAG7h7qKCQG+PMmZsQArC0UujcSl4jqL0b/vvG8wCeR/jflxC3/TekpV3GhYoKnDUxw9AH+8PSUgYzM2NcvhyDM2dWAQB+/x2QSqVwcnKBtbUzVCoHFBR0Q3m5F6ys5Bg71g1paZeRmZkLtdoY5eVFKC8v114fihrvyJFk7NsVgwe8CmF6/QyO7dqDfrnZkKgr4GoiRzcra7hZ2KKLdSAsrdshvUiKo1ILxOUWw7hQgmuSfAQF2kIlA44cjcONG4UwMzOGELYoL1cjM6sYZaUVcHdTwczUBLa2CqSmFsJICtxMLUZcXD7U6koARpBKJUhLK0ZZmUBZWRmUyqrPs6y0HJs2xSAzs2pUFyCBh4cFcnNKEReXC3VlJYKDnTB27L9HFMIjUrXfT6DqO+HkVNUJm5ZeCB9fa/TOK8elqExkZpQgL68cxUXlyMsv047mAv7t6LW1NUXPno7o2sWh1lFemvP7NSPHAECIwfDKyMBjhw+h+PQZJD3xJGReXvi0ohxr9+7FkiVLMHToUMyePRsjRozQ7rABjT/yMW6cHy5cyEBYWOI/d7m8+ztymvJdvJip87gp9u1Lwu7dcRg61BszZrT8RTHp9tw6Gic42BFmZsZIuVGVCcE9HJGYkIf09GKcPZsOALCzM9WOhtF0AHQb5AEXnyk4v68fysvVuC4pRLlpKuLiLiAu7gKsrU3QrZsLcnLUiInJwuXLm5Gbew2vv/4tXn8dsLS0go2NM3x9vXD9uhny84cAqPoNREaeQ2FhCiorZSgtzUdxcTHkcrn2ehjUOAkJudi7Ox7qjBIYF5ThWMQ+tHPrDAc3R1jYyjFpwuNYv60EPbo8DJmkG0xMFEi7WQwjo1L8tjkGCrkxunR1QN9QV/z44yWcPp0KqbER2rezgpd31W/36NHrkMmM0KePK2xtFYiOzoK/vw0AIO1mIcrKKmFqKoW5UobCojIUFakhUHVaeffu9riRUoALF9KRmVUKUSmQmJiPYUO9kZNbipzcEuScL9HeZTG4hxOGPeSrHSkmBGBlqYCZmTGkUsDMzBjpaYXw9bHG/QM9sHdvAk6euonyMjUyM4urOnmVJjr7N4mJ+YiOzoKbuwr29qbaEWIamrs+AgKdO9kjINBOey2wQNhj4KAQAEClWqCspBwXzl7GrpXrsDNCYNXWJQjxewihQSPR3t8brh2s4B5gAydfS4PJBE1nW0JCbp0XVm4MZkLrlpZWhNycUjg7Kf9pIxQAqBoJ6e5edcrZaW0bQQ6PdkHIyChCduxxfD/3Kfj36Q/PTt3w3muPA+IxHDkUh7CwCOTkxaOwNAVXrl2Fv60EZSmnYamowKX0aJw79z0AYOtWwNjYWNtGsLBwQGFhMMrK3GFlJceYMa5IS7uCzMwcthHqUZiTjeSoCygrLobczAwWdvawcnKBqfm/9d2tp4gC2di7NxzTpz8CACgocEOnTl1hZ9ceCuNu6GJ9E3a4ilypMy7dsEVhchkyixIQFGgHlYUchw9fx40bhVCamQDCFuUVaqSk5CMpqeo0RHt7MygUUtxILYRUKkFqahGuXcuDWq2GRCKF1EiCtPRilJdVorysDOZKE0AClJZWYNOmK8jKLPmnjVA1kik3pxRx8blQqwWCgx112wjhqdrvp4azkxIeHiqkpRXBx8cKve8rw6VLmcjIKEZeXhmKisqRn1+Oq3k+6OmQj9+XvA/HvjNwPkEFV1cLjBzpgyFDPGvUSdVPs721Tv7ss9cAvKYz/5dffomff/4ZH330EYYPH47Zs2dj6NChyL2ZilPbfsOlA3shJFKUWgQCNv4wt6m786hPH1ckJOQh6pwPutmE4+8fVuDhl/+vSb+D69GX8NeKL9Fx0IPoOeqRRr9O4062EQqyM1FWVIByhStMSq4jO+U6rBydm/z+rRE7uVpYdlYxkjJStadtpaYWws/fBgEBdigsqsDhQ9ehVldi+HBv2NqZQqWSIy+vFBHhN/Drr1GwszXFkAe8alz8OyDADh6dPBGTNg42N65jflEk5NevwWTDD0h6ACgqMoeZmQWCggahoiIV167FoLy8HNevJ+H69aq7OA4ZEoj8fBkcHc2QmHgeu3a9pC332rVVf0ZGRpDL5XBzc8P+/fvhcssRJ/qXqKxEyaUoFB45gvK12+CZdBGLsjPwV34+FFJjrOjyEKR2bshR2GJOd3OUQY4z57KQkFaBinKBopRcFOSXQWpshPJygfS0on9uuWuKjIxilJRWIDY2BxUVAuXlauTnlcHLyxJduzlov1tKM2N8d+o80tKqOsWsreVQq4GePR1x4EAyKioEcnJKUVFRiQsXsiCTGcHKSo4OHWwQF5cLFxclLK3kSM8oQn5eGTp1/PfIhKaD1tfX6p9bywukphbBz98GDvZKbNkSg5OnUuDlaYmePR1hbSVHdk4ppEYSJCUVICTEGVFRGThyJAVyuRFcXMy1Hb0pKQWwtTPV6eg6G5mGyLPpSErMw44dcQgJcUafPm6QSCQwsbeH1dhHoBo+AsURESg8ehR9oi8jzsoKh3NysGvXLuzatQvu7u6YNWsWnnrqKTg7OyMoyBZHjlzHypWRKC4ur/OISUJCLpRKGXr0cKzzrlsNaYmj4rff6BD/7GyIGs/wgsX6kZFZhOTEfHi3t9I27DUdBwBQVFSBQ7dkAgAcOZqC8opKrP7hPNJuFiO0ryvGju2gc/HvPuN9cerPeLhkCRhbB0Lu54eZM+dqrz/h4JCJ3bvjYGvbEdbWlsjPT0JmZgZyc3OQm5uDuLgoODp6wctrDKyt5UhIyMWxY5+isLBqhPC6dVV/ACCTySCXy/Hmm29iwYIFd38jGojyMjXizqbj0LZryExKw9HonTgcvQ2ZuTcQ2nU6BppNg7pSwNzi/9k77/C27vP6f4CLvYnFvUlJpAa1LFmUZFuWp+J4xo7dxGlmndHstEnbNGnT5pc0o2n2Thw7ju14b8vWsLW3SElc4gYXiL03cH9/XBIiNWwnsduk1XkeP6JJ4AIEv/e+95zvec+7jG/+y+/Zvt3F6GgEhSJNIJgiEsmQyxZQKGRYLBpOnPThLNWhVAkkE1lGRiMgk5FM5mYmX6l5x20Li/WgpsbI9h0jBINpZDIRpUqNw6lhWbmdgwenmJqMoVDK6eoKEA6nUSoFTEYlJpOa5mYL27ePotYoSMRzFEQRz3SC+oYzIbw6nQJLiQabTVN8zXxeWsMuV7S4jhcvtrLmklIsFjUnTnqJxXJcd11dMYtu7z6pJhgMKkwmJRULS0gkcng98aKYOzv1URRhcjKOZzrBunapJsyFXJCh0auoXVTKh9//CX7/xAP4Az5eOHY/Wzt+x8qFG1i/8AYancsR5HKMTi2GaJbH7u0iHk1z+ztbzvk7zl7Ll8zUw4s14SLeTASCSQYn3dTUmHC5Iky54yxaZKWl1UY8kWX37gkK+QJbtjRIHMGoJhJNc+SIm4ce6sVu03LF+ptRRLrp2bePUztfnnf8FgEoAZncwJb6NcjCEwy+fC/NQLYkQaGhhXg+ydjEOLlcjvFxF+PjUtt0e3sLTqeBJUvs9PUd4sUXP1U87tkcoa6ujl27dmG3/+mOlr9E5HM5dv/uXo698DRioXDOz9U6PSZnKZayck6dzrLvyBC/f+AUvQPHUan1ZGMW6upsdJ9wcfumDyDERlBE95PPyzkdrmTEZ2TKJ0NQJMhlkThCnZnSUh0+X2oORygQi2WZnk5w110t3HVXS7EFVq9T8vPDJ/B6Emh1CkosavIFkdWrnbz66jj5PIRCabK5Al1dAZRKiSM0LyhheCRMRYVB4gjepMQRls7hCDMCbVOTBZNRckDNrmWnUydxhENT1NaaueSSMiwWNaGZ4Sdjrijr2iswaqrp2/kkrpd/hKN0CS1rbmPCb6a/P0hVlXHeNW/btlG2bXPR3e3jRz/qeM0MXYDbb78dt9vNjh07ePbZZ3n22WdxWMysri5jw+KFLF65GpW1moOdaXbujYBqgvb2yvMey+NJoNEoqGksw25fxcDhAwwePUjT6kvf0FoRRZFnv/9tYr5pdv/uXmqWtFFa3/iGnjsXb1U98AwPAuCsayTYO4F/Yoz6Fav/iOP/+eGiyPUmwz2doM8vLaC5wauz/+bzBSYmY3R0erjrzlY2b9Zz5Kib7dtH8fvTqJRC8fF7905y4MAkR49O84H3L6Wlxc7mzbW4XFYM1eswTg0SefZZyn75FT5V3cLIje/n0nd+lNpaM/l8nqmpKQ4d6ubAgW4ikWlOnizF5Ypy+PA0ZWU5Kioq8Pv9pNPp4vsvFAosWbKEn/zkJ+j1/3smLLwZyE5PE9+zF8/WHaQOHURIRtmZSvHTQIhTsXDxcTXOWl7M1tBmaSAWy5GZyhMOhfD7kxiNKhYssODzxxkczGM0KFGr5fj9KcbGoixcaGXlqlJO9wUIhdJYLGrSaZGeHj86nYKVK51FgWvXrnFco2FyOenCJQhyRLHA2ksryRego8ODRq0gkcjidGqpqjZRYlHT1eWju9vPwECQ+noTrtEo+XyenTvHSCZzLF3m4OQJL8eOeVi50snmzXV4vHHARziUwuON4/cniYQzCIKcu+5sPe/n9eBD3RzvmMZkUtHSKom8c52Lc0Wu2SmOPd0BxseDpFI5VGrFvNZduVqNvr0d3dq1bD7YwaU7X8E92sej0ShPxKKMjY3xpS99iV/+8pcMDQ1RW2tmZCTM0aPT6PXKCxbEri4/4XCaq6+u+6N37N+MXfE/hXTs3TtOZ6eX1atL2bSp5pyfXwws/p/BxHiMwcEQglo4px7Mfj1bEzo7Pdx5VyuJRI6dO10MDYbJZArSuG+gs9PDocPTdPcEqKkxse7SMhyhLKMn/VRpFVSWnLHaL15s49pr67n22n9n06YaamvNRKNR9u8/xf793QhCmP37pzl1KkZHh4yuLj+lpSV4vSai0SjinK3ZbDbLj370IzZu3Pjf9Kn95UAsiEz2hziyzcV4V4BQ1MMr3Y+z6+QzZLLSqHG9zkSmICeRlLJWPJ444+MxTp8OIZPB6lWlWG1qeroDxONZ9HolMjns3DGK35+irtaE15cklcoxPBwCEeLxLOUzrtpZ+HzSYJBkKo9CgHg8RzSSY/OVdpQKOfv2TWEwKlEp5Zw+HaSqysC69ko803F27hgjny9QVm7AYFAwOhohnSqgUslRq6Tr8OSUFGRfX28qilGzzq+KckNxHVdW6rnzLqkmXHf9/Bv5zk4Px49LNaFtmQN3PIfXkyi2YM4et6bGyIqVpYDIgQNTDA6ESKVzxfdydmujw+bkvXd+mo1r/prB0T08s/VBDh3dz5GeVznS8ypf/vS3WbvwKiK+FJpkgZVWPdM7JnmoP1p0epU3WVBrFcVr+bp1FXz5y+v/6LXxP1kTZl0PS5bYec97Fp/3+Rdrwv8Mpt0Jhqake+7ZzJ+5/xbyY2c4wl0tbL6qliNH3Gzf5sIfSKFSCjQsqsbhWMCvfn6Urr4R7Ba4anMNtfU2Yknw+HNU11hxOHXSNcrlpfd4D0vN07TV2smmEgiqVRhq60mqShhyJ+kb9jE8YsfnizA8HKaqqkB5eTl+v59MJlN8/4VCgVWrVvG9730P9VntXf9XIIoi237xQ7pe3U79itWUNjShNRjJZbPEQ0E8Ex7cY158/hi7jr3ES8c6GQsEi8+vNqkodH+f0KiOCqRJtYm8HlfITiRvx1pWhlmWwxeJzOcI41Ir36pVTk73BaUsXpVAOp0nFMqQyeTnCVyv7hpndDRCNldAK0qbAmJB5NJLKykUoKPDi0YtkEjmcDq0VFUbKSnR0HVqhiP0B6mrNzM6GiGfL0gcIXGGIxw9Ns2qlaVsvqoWjycBQDiUxuNJ4PcnCYczKBQy7rrr3M0EgAcf7GHv0CJanZNUBQY48dt/JUopPhZhs1w/7/o0u9mwd+8EPT1SrdRqlefdRIj4PFhyMu5cexkbnWZ2Huvg8Mg43lCYF0JheoIxnvvYp1BrdTyz7TADAyE0auGCIpfLFSEez7J8uZOVK5ew41eD7PzNz6lZ0oZKo33d9eIePE3MN03auBh1rIcT217g6g/97es+72y8VRxhenAApUbLyo1L2XF6D8GpiT/4+H+uuChyvckoK9WRdZTMI+dzg7i3bKln795JNGoFHm8cp0NPTY2RtWsrcLkixR3V5W1ObDYNoii5fO6/v5u7726lpcV+RhxwtqFZvJj47t0IL7+M6d7Po/BuIfv5z3OoL8Wjj56mstLCxz72Prq6/Lz66k7i8RixWJqbb76Zm2++GZCK1iuvDPLSS4M0NRkQhAIGQxVm8//tGyAxkyFx9CjRV14lvns3maEhkMnIljjZmtbwX2MDTCZDACgFBTdt3MS1y69kckBOZ6eXU11+dFoFoVCaYFAiqmVlepYvd9DVLScSyWKzajEaVfT0+gmG0hw9OoXNpiUSyZBK5dFqFaTTBeKJLKdPh1i2LM4rr7hIpvJMTcXI5qRJIrW1JkrLpHVx9MgUqWSWRQtLKC83EAylpQwvrZLp6QQeT5JkKovHEycWy5DNSq+TTOY4dsyD2aJhYCBIb68fk0nJ5s2Ss9BskdoOzZYo69dXoDcozohTPT5e3jZKKpmludnK+g2VLG9zEo/lijv/ACtWSMTl7NZcm11Lc7N1RoRT43Rq6esNAOcG2PeeDvL8/gKC7jKuuOVyvjjZycc7OtgaCfNIocB1b7+x2GJ10031DAxs5brrLrng3/nN2NF+M47xp5CObdtGOXJkGotFfZG4/BmhssqAWBDnTZjzeuLzgri3bKmX3C0aqe1rluCXlumYmoqRTGTp6fbR1uZkYiLO6dN+BgdDJBNZPv6JVThrTZzaNcHe+/uIu5OsvbGB2lrzPDv63r3jM/XAwHvf+w5qa81cc80j+P0TWK3aGdfjXkC6gd+1a4StWwdm6kGexYtLWbDg9cNR/68g6I7Te8BN3wE38VAamVLGvTu+xbH+lygUpAmFlWWNvP2691DpbOfAfh9ud5x8XmRqKk46nSVfAKNBhaAQsFp1lFiTNDWXUFqqZ2oqxumhMNFYhmmP1JqSTktKUC5XIJ+HyckYDqee7dtHeWWni2g0g88rCWsqlRyHXYtMDq6xCHJBhlotp7bGiLNUj6CQU15uwGRSsfXFEXz+JAaDksJM62IknClmL/b2Buju8XOi04NcLmO2dd3h1GMxR2dyvDRs2VJfdBoCvPjCINu3u2hqsnDrrQtwOPW0tTmJxaWasGihlUQih06nIJHInVMTLGY1NTVGtFoFGrUCZ6mW3pmacLbI1dPt4/nnhxEEGRs3buJdv7qL0wO9PPjob9j26lZuv+M2dDo9hbzIz3/5GJMjaS5beQlyuYzeA25O7BhHJgNrhR5jmY62egsLGv+06+j/ZE2YdT0Af5JQdxFvPkrLdKjMUkuX0ynl3rhcEUDKANqypYG9+ybQaAQ8ngROp46aGhNrLz2XI1gdJrxRLZOBAoYygTWbGykFzvaINLQaaGitRxRF0okEPtcwpzt68A+Ooyj0UAVUmeXEFnmIp5Ukjh5CnrDxXx9+L4JCgaBUkdRU0znupKnZgCCIGAxV8zIe/y9h/2MPcmrnyyxsv4z6FavQ6A3Fn1krKplOuNn20g52HXmScFSKH1AqlFy1fj3rWlcRD8oZm4jizQjIBDWBiJzpQIFUVkFtnY1lK6ro6vZJHMGmwWBQ0dsbIBhMcfSoG7t9hiMk8yjSeXK5gjTcrNtPMpGb4QgFpqai5HIFlAo55RV6tFoFJrMKr1cSpBYtmuEIwRThcAadToXbHWfaI22qTHsSxGLZORwhy9Fj00xOScNzpHogwenUYbao6e0NYLaoWd9eiV6vnLOB7eeZZweIxbJcd1097e0zHCGexWarZ+WKEtx9nUz292FMvEr/Q7v57cEG6lespnHVWior7FxySTmlpTp2756grs40bxMhn8vRf2gfx55/iqn+PkQgg5HSsho+//H1qM0l7D1xiseef5HrNl+JeiZzavUlDroH97J85Q0X/HvPFaHlcjnLr3kbex66jxPbXmT1Dbe87noZOnoIhVqDc9EC0hMxXKdOkE2nUKo1f8Cqe+s4gnuoH6PNjlqjQWsyE/ZMIxYKyP4XRFVcFLneZJRYtZTWlhX/fzaPCM6Q9XA4TSyWobrGhN+XpKPTQ2OjmYoKAwcOTOIPpIjHctTXm7niimo6T3iJxrJ0dHpoabEXg7xnhTTjpk3o164l8sILRF/eRvTlbfTZN/D7zkYclRZaW+0sXmyjvb2CU6d8XHLJ/BZEuVxOKiWgVBqYmJCRy8kpLY2xYMH8nIz/C8gFg8R37ya6fQfxPXsoxOPkdUYUdXWYbnw7qro6RsJKonuHcfftQ6vSsrJqLR97x62U2e309QaYmJwmmcyRTheQySCTzZLNglYjR6USGBgMUV0lZZEkkzm6uyUxLCzIyGREpqaSKJUy1GqpBREgk81RWqpleDiM15skmcwhFkQMBiWrV5Wx8bIqerp9HDw4RXqm6AmCnEIB7HYd4VCaRDJLY6OFQqHA4GAIkGG2qFlQqqesVMeBg1MEQyl83jgTE3HCkQxHj07T0+OT2mVnSIhepyCeyLF5c21xgujzzw9z8qSXXK5AMJSmusbE6lVltLTY6enxFW/KKir0dHR6GOgPzlvDs+fJwkVWPvvZRvbtG2f//inq68+0y8yu+337Jjh9OkBpqR6/qoqKG++k+oYbuHPHDm46fpzsSy/Rd+sdTK25kZBF5NChH/CRj/yavXvfzUc/+lGWLVs272/+Zuxo/0/vis/ucv2xrTUX8dbAbtNJ+UVnBc/PknVgJpdLakfYs3eSdCpLTa2J1hY7oWCa3t4AWp2Sm25sZPkKJ15vnHQ6ceY1qo0svKKCnr1ujm91MXjUw6Z3L6JqJqMJ4Fe/OsnTTw9SWWmgtdU+00JQyuRklC1b6uetXZlMRjwuIghaxsYK5HLgcMwP8P6/iGQsQ/9hDydeHSfsTiAo5ThrjNQvsxFMZkm9nKVQyFFZtpTrN/81a1ZexrQ7SVeXTyIk6RzpVJ5oNEOhABqNHJNJRSyaobbOzJpLSpELMvr7QxgMShxOicjkChCOZLFa1aiUcgqiSDCQQlDI2b59hEgkQzCUIuBPIQJ2u5rrrqunkBc5dszD9u2jWK1SG/yUO8HGDRXSlDd3guHhCJWV0n1Jba2pOJnRYlaTy4nEYlLGot+fYGI8jlanQKs9sxZqaoxFN1dNjaPo4PJ64jz33DCTkzECwTSrV5fjcOqLuVqdnR5AaoHs7PRQU2sqbgY6nPp550h7exXt7VVSTdg3Na+Fcjbnbt++CU73SzVhdkLkgqZFfPkLX+OLf/fvCIKA1xNndDTCI899h6GR03SMLOdd73gvV7/9BrIxGcGpBBF/kqmeIOlEjq2HPByu0FO5wELVIisVzRY0M1k1bwT/kzXhYj3484W1REvj4rkcIVJc67OiVziUJhrNUl0dmc8RyvUcODiF358kHs9SX2emssLAlDsx7zVm3TxzhTSQru0avZ6qliU8/nKaY51qyh1w3RUmtIoUp7unkBeS6DQF0vE4IiAW8mRTacKeA5iMS5nQ3UAuJ1JaGqW5ef40uv8LOPXKNvY/8jvqV6ymfvkqInE5p3rc8z5rvU5JqdNGJOpDp9XTUr+B973rndhtVnp7A/S5PYxNqpDLZciQ7u+zWRGtRkClnuEI1SYcDh3JZJbu7sAMR5CTzRSYmkygVMpRqwWpDTAstQHmciLDI1K2Z2IeRyinrFzH8WMeTvcF8fmSeL1JMhlpuJXdoSMczpBIZGhqsiCK4lkcoQSDQcnRox6SiRwBfxK3O45Wo6Cr20dFhYGWVlsxwyscSlNTYyo6uDyeBM8/P0THcS/5gojZpKa9vbI4lbGn28/u/R6Wt62gsWIpJ4/2UaIMEgr6OPTUYxx47CHkKh0pVQ31q9Zx7y/fxtPPjfL44/0sW2Ki8+UXOPTkI0R8HlTmMkLCAvpcMvSWEi511mKpr6C0zEBd62Ledec7yefPON7Gpk/y6uGHONL9NLcc3sJfveNWFjTOH2Y1G0A/C3tNLWZnKV2vbGP5tTegUL52XZjo68FSWsaqNfWM9yY4teMloj4f1sr/vqzH16oJnpEhbJXVKFRq9JYSYsEAuUwGpeYPE+H+HHFR5HoTMTERZaLHT7nOURS0zm5R6ej0MDIaQa2W09Ptw+WK4g+kmJyII4oiyWSOygpDMVy8pdXO6tVldHR6qK0xceSom3AohXumqM0WwOVtTlpuu43UkkuIPv0Ma4e387BlL88oN9PaejO1tWa+9KX2YkbEXIyOhvF4EjQ2mmluLuHJJx9hxw4/NTV3smTJkv/GT/B/BumhIWI7dhDdvp1k5wkoFFBWVaFdtYoJSjjqEdk9dZLY+GE+ceNS9u+fQimU8K/v+TRGyjjdHSMalLNmpRTk3txkQadVEounmZpMUMiDQoASq45UKsfEeAxEkXA4TW9fkEgkjVqlQKtVIIpZcjnI5UXsdiWhcJpUOo/DriMWz3LqlJdEIotKJaBWy9HplGSzOcZcEaamYkSjWUxmFdFIhng8i8+fpLLSgFwuo5AXqa4xsX5DJT//2Qn6+4OkU3na2yvp7w/gnoqTyRakthaDEpVSskE/+GAvNTUm1q+vYPWqMrZvH+X48WlWrChl82aJkAiCnJoaEwaDNOJ+7q78bN7WLDo7vExOxDEYVXQc91Bfb6KiwsDCRVb0OgVHjrrp7g7g9SYYdUVob5ee53JFOXp0Gp9Xavu0O7S43QnMlijOVWWU3HUXpre9jfi+ffh3H6D03q9yIl+g2eGg3+vlpz/9KT/96U9Zv349H/3oR7ntttv+19jtzw7inIvzZcOcHeIJkE6n/9d8Hn8OGB0N09npobxMN0/kmlsTZrOHPJ4EoigyNBQikxWZmIhTNuPMNJlV2GxSCL17Ks7aSytJp7K0tTmLJD8UTuHO5KhfYCY+Huep/+rAXGPg1r9twxuUWqELBRGZDMxm6b38zd+0sX591evWg/7+YXbu/DVjY1Xcc889/02f3p8H8tkCI6d89O6fYvRUABAR9AqOTh1kz8lH+Ju7/4lkpJH9+6ZYufhOFtZfj0ANDdUO2pY5cVmiKFXSbrdcBq4xSciRyUGnk6YjBoIpautM1NSauPfXpwgE0litasxmNXI55AuSdyqTzqNSyhEEOUajmmQixyO/P41MJu0wiyIE/ClMRjVVVUaSyTxyuYxYNIvFLJ3X6XSOnp4Al19RjcGoopAv0L6+CotZzb59E/QPBLGWaCgvN3C6P8D4RBSNRoFaLQ01EQsi+/dNAeAajdDW5sRiVnP06DReT4LNm2uLIpXNriWXK7B8uWNePejs9BSHK4DUMjMxEcdoVNHfH6CtzUkonKasXIdOpyi6HqXBDAlco2dqwomTPo4fm6YgilitGhx2Le6pBBZztOj2mh1G4nJFOXFygsqyBYxPjHCyq4MvdH2Kr5n+hXfcdBfvuuO9rLqkjnQyR8yfJjAVJ+pPcvrwNCdfkdo3Ssp0VC4ooaqlhIpmC1rDmfP6zwmvVQ/gjdWEi/XgzcfkRJSeHj9NCkuRNJ/dsniGIwj09PgljuBPMjkRoyCKJJPZIkeYcsdZe2kFqVSO5W3OInEPh9JMuaXNk3kcodVWfEwolCaTkyMqjbRceglOp47aVXFcoyGqKvXY7Vqk7B4ZXm+C49t2gOcUq5bdwNbd+9mxI0xj490sXPjGpsP9b8DA4QO89NPvUbloMQ0rL0FjMHCq183ho8Pc+9ArFMQM777tg+zfN4laYeczH/48WmUNvd0xggEZK1dIIlCsyYJOpyAWyzA1JTl8FYIMo0lNOJTGYJCGiU1NxejtlTiCSiWg1QoUxAL5HOTyBewODQVRRKmUo9crGRgIks3mSSSzKJUCarUgcYRcjlyugFwO0VgWs0VNJpM/wxGqJI6Qz0N1tYn166v4+c9PcPq0FB3S3l7Jq6+M4fHEATnV1QbKyvQk4lm6uqRQ+ZoaE+vbKzFbpHrg8Ur1wOnU4XJFkAtyamqMqNQC69rnGy3O4Qg94HBUYDDUoNCnqTDHUBf8yPyTTLz6a76/+37SgpW6RJ7RJ8K4yFPW0ITgaKF/XIErnCOjyFNuM+H25bCMxygtO+O2EwShKC6HE1nqaqoZcY3x20ce5bePPMraVSt51+23cfUVl6NUnF8mqV++mo6XnsMzMkRF84XPAbFQYHqon4qFrSg1GmxV1YiiyHjvqf9WketCNSERDhEPBhBKGvD50xitNqb6+9i7e4hX9wWL9UAUpWFmf2k14aLI9Saivz+EZyRC1hEtilxOh/6c7KGhQYlEdHZ6kctlaNQCixdbUSqlkd1Ll0m7IydPSBlImbT0ZxocDOF2J2hqsrBwkSQkbN8+SmeHl3gsx5Ej03Se8GC3raK6ppamiUO8N/oshU+eJv7FL1J7ySXn3VmcO3Fh/foqvvzl59i+fTsrV7b+rxS5RFEkfbqf6NatRF54gczwMDKVClVDA8ZrrkbZ2IiqrJxXT47zrYce49DQQbL5LDJkVAorifmU1NSY+NC7rsDvS1LISO2nIE3AMRjU3HhTOXqdgl/+6iTDQyFyhRzekI/BqSiCOsuhwSzReJJMNkNOzFGI5xBFUZrWIcoQZHK8XgWFnICACl1KhyakIZcWUIoGnDYjtbUWpqcTdHcHGBoKY7GosVjUaLUKFIIMUQS1WmDv3knMZjWlpXrCoRTUGKmpMTI4GCQalYYeBAJpRBG0GgGDQYHZouHSdeX4vEnGxyP09QXYs2ecO+9ciFIpzAsvrKkxsmFj5bwW3bkosaiRy2WUzLHJ1taYGHVFOH7MQ0fHNJs313HLLc0cOeouTmKc2w45+zr9/QGSVg0trVbJ6nxWm4tgMmG67jqSyy7Fs/co17pPc83oIAc1Gh5KJNkWDLB371727t3Lpz7xCY4dOEBlTQ2FVIpCNEouGCIfDJDz+8n5fOQ8HvL+APlQCMFiQdXQgL59Hdply5AJb6675a0a6X6+bJi57SytrXo++tGPEo/Heeqppy5OTnqT0NXlp38giFgQqaq3FL8/27Y4i8amEqan4wSDadRqOWaLhsWLrTgc+nNauULhtCSKaxT09gXw70tRyBdobCph0WxNmI7i8yeoKYj8/HN7SOjlVJQbySwtUFtrIhyW8lUu5DTp6vJz9Og0druGTZtqyGbzvO99/05ra+v/CZFLFEXcg2F6D7oZOOIhk8xhsmvQlal48cDz7Ot8hLHJfgB+8/DPWNJ0D7Foltracq65eiWu0UjRmTT7d8tmRHR6JQURaXMhnSGbT3J6aJRMOkLfYB5kSdzuEJlshil/DlGWJ5fLAXJUSgXhlBLRJ0csKFAIepQKAzK0CHIdUEX7+npeeWWMSCTNE4/3YzKrsdo05HIFcjkRi0WNUiknFsvw0tYR2tdXUFFhBkR0OgXJVI58TiSZylJilW5kc9kCCr2MqioTixYq8fqSBEMpHn20n8mJGLv3jPOud7ViMimJRKSpug6nFMHw9hsaz5ufZbGokQuyeW0TNbUmXKMRIpEM27aNMjkVY82aCizmXNHlMtsGOX8So5RH2dxcQk216YKtjzArLlfx9ht+gFyR5JEnf8fvHvkN45Mufnn/j/nl/T/mkx/5ez754b9Da1DhqDVSyBfIpvNEfCkCUzGi/hQDxzyc2iWJXpZSLRULSqheVEJFc8k8MftPxVtVD+D1a4LHc5iPfexjPPPMM6xatepNfe3/y+gfCDEyGkZljhRFrrNdIsvbnAwNhfFMx+no8CDI5WjUCloX21AppXuOMxxBEgZKS3V0dHrI5QpMTcVpbrbM1ANTkSP09wdJJfPU1BoxGFRYLBpq60ysWVNWfP3SUj2lpefew/X0uun1lNFID8pwFwcPPsm+ffvYsGH1/xmRq2//bp7/wbcpbWiicfVaDFYb23ee5Me/uo9Tpw+Qy2eRyeQo8yso5PXU1Zq47cZr8PuS5LJS+ynMcgQVN97YhF6n5Je/OsnQYJBMLonbEyRfSOGPwJETCXy+MNlclnwhD2KOvJhHJgOZTI5cpiA2piCfl4OoQqvRoxC0yGUqxIIWp81GXZ2F6ek4XV1+hgZnOIJZRT5XwGRUYTCoJI6wZwKTWU1pqdT1QY10vRwYCBKLZThyxE0kmkEmk6MQZOh1Sq64oppINMPx49OMjUXp6wuyZ88EW7bUYzKpZupBpNhuu3Ej5zgLZ2GZ4QgWi5q6WY5Qa2J0NMLxYxGOJ2DzVSu54W9qOPDKCdz9/ShJYjYJlJS30rxsAZaycmJJBZOxMUpSCVpadDMcIVsUkOfijLh8HR/54M3sP3yEBx59jG2v7ubg0WMcPHoMp93O8w8/gOU80T1lTQvgpecYPnb4NUWuoHuSTDKJ0WpHLgiYHKUICgUTvd0s23zdG15/f2w9mB4eRGc2Y7Sef0CEe0i6l5kOKjC5IlhtdpLHj7Br5wDbdktC+cKFGu655x4UCgUPPfTQXxRHuChyvYlobragqzNRfp4brFm0tNi59NI4+/dLFxWdVkm+UMDu0LN6VRn79o1z/33drFtXjtmipq83gNsdZ2IyhlwOZpMak0nN6lVl9PT48HqTVFRKuzqz4fW5bAFdYzmFS25HlhulYvgwrrvfg/6yyyj94j+hrjk7mFq6UfT5JEupdybXo7fX9xZ+Wv+9EEWRdG8vka1bibzwItnRUWRaLeoFCzDfegu9MSOH+tKssNbjnfTwve9+nSNDxxFFaWpKa20jG5uvoMFSzmA6glIpZ+uLwwyPhJmeTqDVyjk9NsqxnkGm/B6U21KEkiGimRC+SICcmIHIue9LhhwBBXKZAmm/XpT+k4GYLZArZBARIT7/eYqYEovXgkFlRCM3YchYKRfKqCutREwLaLQKGhtKOHZsmkAgRSabY3o6zqlTajo6vDidWnQ6JbFYliNHpgmFUuTzIqWlJt7+9qaieHTyhJennhokHM4QiWTYtWuCu+9uxeNNUFFhmDcB9HwCF8D4eJxwJM34eJzrrmukpUW62DY1xxkalIjN2HiEI0fd6HWKooB79vH8viTxWI7aWsmNdqHXAyitsFB6+2ZE8Ury4TBXd3Zy+eAgE4ODPDzQz+9DIRzxONEb3k7vzHP602kaVSrkMxdwmVqNXK9HrtMh02rJjI4S3bYN3/e/j2C3Y7ntVmwf+ACC6dwC+sfgDwkqfuyxPh5/vP91J8zA+bNh5lqX9+3bx0MPPYQgCBw/fpyVK1f+Kb/GRcxg8WIbsbEY5WXn3tTNwuHUU1NtZLTShKUkg8ko3XQ6HHpWrS7D64mzZ+8kxzs8rG+vwGJWc/zYNFPuOOl0jhKLhsWLbSxbasfnS7J9+ygWq5aJqSTbezy0lhmpkmlZbdDgaJKjcmrweOKMjoYvuMYWL7Zx+PAUQ0Nh7r33FC0tkmvY44mzd+/4Hz2c4c8doekEfQfd9B10E/WnkCnlBJIZ7FVqdvc/y++e+AXxpEQqtRodGy+9lQX1NxAJyTEYlZRY1Tz91CAguXSnvV4mp4YYHu1HUIUpiEGicQ/+wBSZXHj+i48ByJDLlMhkijP/ISCKBQRBRCRPPp8jX0gjirl5T+8Zg1ePGdCo7WjVNnReB2ZTFWtXt7GopZqRkQIyuQKrVUNPT4BsLsPLL43S3FyCQiknGp2Z7KiUkc/BqVM+fN4EIMNZqueaq+uoqTFy4qSXY0c9BINJMpkcgcAZR1dnpwedTjFvCujZAhdI07xSqTxdXQFWrSortjg2N51pPQwEUnR3+1i08Ix4O7fdEaQcruHhCE3NFjasrzzva83FfHFZz4ff/wk+9NcfY9e+Hfz24V/zyp5trFy2unjsvftP09pipb19EY4aJY4aI4W8SDadI+pPEXTHCXtTDHd46d4tXbfNDi1ljWYqF1gob7Jgdmj/aELwVtUDeO2asGlTFZ/+9CeYmpriG9/4Bg8//PAf9f4v4lw0N1mIjZnPS7pn0dJq49LJGPv3T0ocQacgnxdxOHSsXl3Gvn0T3H9fF+vaK4oZSNNFjiDDbFZjMqpZvbqMnm4/Xm+Cikp9cZM8k82zfn0lgUCS1lYbJqO6mP31WsijRFRb6DnUQSAgZcx2d3uZifb9i0U+l8PnGiHi9yLm86h0ejQ6PWqD5PwJTIxxcsdLDB45SAwnJm0ze46N8cvffZ2u00eY3extaW6htmwjOrUJmUygdWa698mTXqan42i1coZGR+k42YfbM4lamySeCBJPBQmF/RTmXtMlsywy5DO1QJD+m6HsMlkBKCDGCxQKOfKFDGejZ0LOscES9FoLSsGEWllCMl9JVXk1hbxR4giNFo4dncYfSJPJSi18p0556ejw4CzVodcpicayHJ3lCAURh0PPFVdUs3SZA6dTh8mo4qmnB4iEM0SyGTqOe7n77lY6Oj3odUp6uv1nOMIF1tjERIxwJM3ERIzrr2+gpVW6LjU1lTA0FCYSSTM2FqHzZBB7dQNaWzVVlTpsVjVyQUCYcVu5JvzE41nq6oysX1/1mmv6bHF5/do1rF+7hqlpDw8/+RQPP/4ktTXVRYGrp9vP1u3HuXpTG4uXONAYDBhKrIz1nKRQyCOXn3/T2z1wGgCTU9qckcvlmJxl+Fyj5LLZ1211nMUfUw+uXh7Af+T3KFQqbvnCv1CzeNk5j5063YtCo6W2uZKaGhOypA1EkZWtSkR1DVddVcsrr7zC448/jkKhoKenh9bW8w8b+3PERZHrTURlpRFTi40QcOSom6HBIB0dXi67rJLrrmssZgpVVOi57voG9DoFk5NxQCSTzvHgQ90z0+WklobFi610dfloarYAkMnmqaszsXSZdKPX0elhciJG23IH6zdUEotlcbkiKJUyJidiZDM65GUNxDYsonzsGBw5zNCWt1HyzjtwfOpTCDOhkalUDrc7zshImHA4g9stiVwHD07+N3+Cbz4y4xNEnnma0BNPknW5kGm1aBYuRLd6FTFbJaMxFVXNTp75YSd9fWG2n36WbSOPFp9vU9awofEKFpYvIBXPY6jSoNT52X3qKO69kwRTXuIFP4lCCPGYJIgJKNEGTegUZkr0lThLFqIQdSjRkEuqqK6wsmZlLZ3H/Wg0SuKxLHK5jHQ6RyKRxW7XsmiRjdHRCGazikwuSzAaZXwqSDqXIC8kSYtxMsRBkSQnhDjl7+XIdAp6QS4TcBrLaA7VkwkaURVsyGIlZLPS31ouyFGqJOtwIJAmkcjin5kIqjco54lWWm0Qi0VNoVAgk8lTWakvBvzGm3P09weKNuNZ8epsqNVyZDP/AvMy5W69tYmOTg+RcJrHHutjzSUV3HLLmYDruY/t6PQwMBBEb3CcI3CdnVM3C5lMhsJiwXj55YiXXUZJMklLOMznJyaYHB/DpNEgZnPsOzHN3TsfpkSr58NXX8m7rrkGe2kpMqUSmUIBMhkUChQSCdIDAySPH8P/q18R/O0DWN//Pmwf/CDyP9HG+4cEFT/+eD+7do0DvC6pOZ9jZ82aUtavr2J0NEw43MKnP/0PvPOdN10UuN5E1NaaSbU58UzHOHrEzeDQTD3YWFmcOuf1xAmF0yxdZmPZUgc+X3KeWPD888OMuiLkcwUMegUWi1q6YdYI6LQKauvMxRax7dtH6ejwsny5g/e8p5UXt47gckVY1GQkPBqjTqEk6csyEPIwOhLmve9bet6bpdpaaUz5o4+exutNkE5LCns0mmbbttH/VSJXMpqh/8g0fQfceEajyAQZlnIdizdW8LsnTnOiy8ep0S8RT0rOHYVgosJ+FQ3V12A3OqmvLWOUAKe6u+ns7mXaN0g6O0l2u5tMNjrzKnJUSitqpR291kFVaQuIZpSCiXxOi9Fo5q53rmJ4KENPb1CaGqWR8hgnJ2PIZDLq6sxYbWp83iTxRJaWFhPHO0aYnPKj0aTJEyYc8SASQqOLEU+eZqR3G8e6JOKkUhqxWeqxGBuRFWqQizXkc0YGh0JUVEjBwwa9kiVL7ASDaVyjYQoFKcDeYFCg0ylwOPUsWwqTk3HGxiJYrRrKyvRkcwX27pukkC+QSEg1YbYdca4oNYu2NieDQ2FCoTQnTnrZvFlfbLutqTGi09Xi9SWZnk7Q2xecVw/gTA7X8Q4p29Ggd5xX4Jp7zAsJYIIgsGnj1WzaeDXjEy4qyqW13dnp4fFnfs1//OBZrr/m7bz7ne/jkhWXSgH+OiVqnRJ7tRGxIJJJ54kFkvgn40R9KcZ6AvQdcAOg0SsorTdT0WymorkER7URQfnGwnzfqnoA59YEURTn1YQPfehrnDy5le9852tv6L1exBtDRaWRVIuNLHDkiJuhoRAdx71svKyS669vKLYSVlQYuO76evQ6JZOTMQAymTwPPthDT4+fsTHpe62LbXR3+Wlqlv6WEkcwF51eEkeI07bcQXNzCbt3TbDxskpCoTSTE3GymUJRhDVb1Bd02mSyeULBNPFSKwTG8HmlmrBv3/hb/ZG9ZfBPjHH46cfo27+b3JwJ8+eDxlTCRLqejgEV4c5XONb3++LPTNpGVi2+hrrqhYRDaZQqBclkhEef2sawa5BQdIp01k86J7W7AwhyDSqFBZXChF5bx8LaVSTjKmRoUCl1XHF5Mwa9kY7jAXK5AqmUNKwjGskSCqeoqjKyeLGDnh4/FouafCGPzxdiciqAKKYR5UkyuQh5MYqgSCBXxHF7B+kf2wEdkhPMbHTSP95IMm5FKDiRxxxkspBK5pDLZzhCrZGAP0UimcUfkDbgLRYNHm8Cvy+J06lDq1Og0yqw2tSoVAJNzWaef34IuSAn3pylvz94hiO0nv9aplYLMxxBEormZsrdekszHZ0ewuE0jz12mjVryudzBE8Cl8tHTY1pJu83hF7vOGcdXyin7myUlzr51D0f4mMfeB8+/5ns1L37B/jRfV/mwacdfPh9d3LrDVuwVdfiHR0mHY+jNZ5fuPa6RtGazOjm/LykrJzJ071kEnEUZssF38tcXKge9Ox5hYNP/J4lm64uhuBL9WCMxbldVFbXkoxFee673+Dur30Xg23+8yf6eigpK2fl6mo0Bh3JqPRzuyHGl798/QxHWMnHP/453vveu/6iBC64KHK9qfjJb35PkzdJxgRud4IDByaLY1Wvu66xGK5dVqbHbJFuYN3uBAsXWYtigdWqZvFiO+vWlbN//xQTE1Ixu+GGBkZdkXmOmdlWrtnv3X33YoCiu6a2xoRKrSAcSnFMu4RFNy6nYewQod8/QvjpZxD+6v2cbtrM44/3c+qUD5VKzqc+1ciDD6rweCiGnv+lIR+LEX3xRUJPPEny6FFkajXqlkXo1qxB1diIwmpFbjBwaMcoR4+6qfWGiUal7CuVrBSVTIdFqKRGuQqtrITxsWl6Rl8kkp8meniaeE6yZCllavRyGzZVFavLLoWkGVnagFquAeQUCgX0OhWpVA61VkFlhYFYLMPateU4HFr6uiMoFXLq6800NVsosag5etRTzOqJRDLk8yIFUUQtGFjZYmN8IoLfn8YoSlk9S5fYsVq1GI0KugcmOTkwzLhvkkTey8nRXkIpyY2nlKuwq6tYUr6IsoZlVJbrGR6KoNdLuTD5vIjNpsXu0M4TrUZdEfyBJDKgudlKKjUzJr7CQE2NEZ83XmxFvBAqKozU1SWoqJBE1ZMnfHMyvWppabHzi1+cIOCXdu/Xb6goBtpv3z7KtDtBaZmO2pndz+Vt5w5EON+Ah7Mhk8mQ6XTIdTqU5eWYVq8u/izILoQ9KqYTEf71qSf5+vPPccOGDdx59dVsXn0JipnWRLlWi8JmQ7dmDdnxcSLPP4/vhz8i9Pvf4/z85zFdf/0fvXP/hwQV33pr87x/3whGR8McOzbBoUOPct99P+drX3uYQsHI4GCYq676IGvXNrz+QS7iDeOJJ7bx6x8/wA2bP4zHn5bqwcxUo1mRazZnq6xcX8zWyucpigUTkzEsM+Sjrc3J888P4/EkKSlRs2Spg/XtFUUCP7edy+E8Uw8Auru8dB2exoQCbSJH1p1m3zNDVN6zDMVMC8xcO/yLL44wPh5Dr1cW17NKJf9fEWSdjGUYOu5l4JiHiT5prLutwoBgV9PvilBqibGmtQ7PL5PEk3kMmtVks2kc5msoMbSTycUYHDlM79AoL7zqIhwbplDIAjI0ynI0qkqa61ajEMpIREvQqB3otBoi0SwKhQy1SoFSJUetkpPLi1xxRTWLW8uYmhwtOvmaGkvYsqWe3r4g42MRvL4kg4MRcrk8YgEmJtKsWb2IgYEg0WhGyibUgtGo4NK1FTQ3Wxh1henu7eP0QB+xxBjp7DiDYzvIZCUXmUbloEFYwZLSK9BqazEajBiMKjyeBAajCqNRjdOpI+BP09npoaXVjsOpxzOdwB9ISWtwiZ3x8RjJVI7mJgvpTA6vV8qBbDvPdRok4evSqTjHj00zO6lxNltrxUqpJtTUmJienqK728eG9WfWuNcj1QS3O4EgyGhqLrng68wNr389lxdAVeUZh3tbmxMe9ZAv5Hj2xSd49sUnaG5YyC1vv4Ob3vYOykulTBmZXIZaq0BdacRWaUQURXLpPPFIhuBknGggRciTYKwnQCE/hFyQYa82UtFkpmJBCWUNpgvmer3V9QCkc/7JJ3dy773/QVNTG9/61n/Q1eVnYkLH2972MVSqP8/Msb9EZLNZPvrJv2dFbQsljoVMueMcODBZ7Jy4/vqGYk5Q+RyOMOWOs2iRtSgWWG1qliy2sa69gv37JhmfkMT0G97ewOhoZJ5jZi5HaGm1cf31Uo3v6fYDUkuYSiUQDqXPCb+HM8LA/v2TjLoiWDV6mrQZ9BrwASUlf3nB1GKhwIEnHubAYw+h1kkh/ObSMvTmEgSlQC6dIZNMkk2n6O0NMOhK4jSYGerL4QnFUKqqEeRaDOoGbPq1qBQluMbc9A0+RSI9SSrnJpWRrrEKuQ6N0olJV49RvxaVYMNiKEUu15JM5Mlk86iUAnqDEmWJlHtot2tZ2VZDJpun61QIpVKOw6Hj6qtq0eoU7Nw5dhZHKEjRJEo9y5dZGR+P4ven0MhAb1BQWWni1lubANixo4+uvgGmPBPkCj6Gx4YJx/YBInK5EpOukub6xZRXraSyspyhoQh6gwqVWiCXE7Hbddjtmnmi1ehoBI9X4ggbNkibBKcm/TMcwYTXmyi2Il4IFeUGautMVJRL7rmTJ7wcOz7NyhWlbL6qlpZWm8QRAim6u/2sX1+J06nD40kU60FZWZDa2tfiCOcOeHgtKBUKykvPHEdnjKJUKvEH3Xz1P/+Lb//wx6xfvowGjZxbfb4Lilz+sVF0ZguKOZvglvIKho4dJur3oXuDItf56kHQPcnWn3wXQVCw+3f3UtW6lLKGJm69tRmdOI06H6V8QTvO+kZe/c0vePo7X+POf/k68hnnWzqRYKKvm/rlq1FqtHg8CfpO+9nWM8jX3/c3fDdRSyajZXAwzHXXfYSVK//yOMJFketNQigU4kvf+n/YFDr+7f1fZOEiK0qlrOjkgjOBw+FQir7eADqdErkgTaubW4xsdilkePFiK35/EpNJxagrQiEP8cQZS2tLi/287pmzv+/xxjFbolTXGCm57N3oN15G5NlnSP70u1i1D1CZ2chRsYyyMml88be+ZWZwEFat+suarpjqO03wgQcIP/MMYiqFqrER09u2oF64CIXTidxgKI5EfXXXCN/57RN0Tu9DuUfBJdp3IpdBIS+yQLWZaMFNf3oXkYIbkQJyFJgEJ2XqZvQqJzqxFIvOhFqjJJspkI/kyedFBEGOw6GlUBCJxrLkCyIGg4qqKiPXXVeHSq2gpsbI008NksnkKSnR0N5eIVl/HXqUSoGdO8dIJLNUVRlZssRWHCO8fkMlW18c4cWtw2SzeRSCjN4+PyAjlcwjiiKVjnoqDfUgA7VKIJFO4vKNEcxN4s+Ms/P0S7zc+zwquYZ6WzOXNC2n2tzEhtZKNm+unRdSClJ2Vo81gEIpo6nJQmmpbp7YOrcVca6bCih+vXSZHbNFXQyVj0TS8zK9enp8JJJZSkv16PVKXK4oA/1Bnn12CJVaQKmQM9AfwunQc9ed599FOHvAwx+Kv3r7Zdx01SU8tnMnP3/qSToHBnhs504e27kTZ0kJv/qnL3LZihXFx8tkMlTV1djvuYf06dOEnnySyc98luD9v6XsK/+KpvkPIxt/KG67beEb2rGfRT6f53vf+zm/+MU3iUSkyWY//emPuOWWT6JQyIph5Bfx5mHXrmM88/K95HLw/nd/FqVKVnRyzeJM1pZ0Q63TKxEEaercXNHKPrcmBJLkcwWCgRSJufWg1X5e5wxA62IHrYsdFAoiA50eRk8FCJwK8uu/38uiS8to21xdtMN7PAkikQxyOSxYYGHVKunmzGpV/8W6uBKRDEMdXgaOTjPZH0IUpRDxhuUOrBV63L4ED9y3k+PdjzLp3UtH978yNVWGXAZG7UoEmZl4agBv+CUyOWnjQK10otfUUV5yM2pFHXpdDRq1jkJBRCGXoVQIiJocBr1SmnYrB4UgQ6dX0NxsobnZismkYtlSB9u3jzI8EsFkVs8E+FbQ0mrHbtfy0EMR/L4EJRY19fUmMpkCVdVGNqyvxOWK8tLLI0SjGZJJKVz4eIeHo8emKeQLGI02FjZsJJvNYzSqCQZTRGMe4qkhwvF+Jt09/OhXLwFgMtSwqHEN9pLVLFu2kltuXlB0Fs6uRa8njrNUR3WVEatNTU2taUZAEuf9HpUVElmZDY0H5rmqli2dXaciXo/kZp9bE6oq9XR2CORyBVyuKP0DQfbvm8JZKpHDeCJLoSDSuvjCa/5PqQktrXaef+wpunpO8MAj9/LUc4/RP9THN777b3zze//ODdfdwne//tNznieTyVBqFFg0CiwzRCqXzZNO5AhNJwh7EsQCabr3TtGxbUz63O0ayhrMVDRbKK03YS3XIxf+sNHtf2g9ABgaGuJ97/sku3Y9C0B39wkuv/xuDAYzjY3mN+Qgu4g3jlgsxr4DB3jhhef5wt9+lUWLqlCp5EUnF5zJCZoVnfR6JcJMBtK5HCFC62Ibfn9K4gijEfJ5kXgiW3zN2el1Z+Ps73s8iaKTay5crghHj04TDKYQRRGVwQp5sBjljAJr15bxl4RMKskLP/g2A0cOUte2kurWpZgcTpTnceG/8uowv3p2B/2uXWg0Ouqs70YuA7Ego8K8hWTWjTuyjWRmEpEccpkKraoUi74VtakUpawMk7EEtVpBMpkjnysgk4NSoabEqiURzxIKpWc4gpL6OjPr2itQqQRqakw8/fQA2WyB0lIdl192pj0wmcix8xUXiUSO6moDS5bYiUQyEkdYX8XWrSO8+OIQ2WyBfL7A2FiY554bwu9PEQqlcDgasJkbkMlApRJIp9NMTo8SSYwTTbro7NvO4ZPPIcjVlDuaWdqyknJbKxs3Vp2fI9SacDq0xa9LLJLwOSu2zm1FnOumAopfL13mmOEIypn8r1mOIKGn208ikaW0VIdOp8TlijAwEOTZZ2Y4glLOwEAIp0NXnOh4Ns4e8PCH4q/uuIqbbmjn6Re28ttHHqVvYJDtBw+zHXjykjU8+fTTtM9ORJkD/+QYJrsTherMGjM7SgGYHhqgtKHpj3o/oijy8s9+gFqnp+3q6zn89GMcfupR3v7pL3DbbQspibxC9y49ztp6jFYby6+/gSNPP85z3/8mN3zy88jkcvoP7qWQy0lh+MC9Dz7Gg48/QDQeAuCnP/kJb7/xI3/RHOGiyPUmwWKx8Nvv/Yy7Pvwe/uv5H/LMt77J6lVl3HHHmRNuNoR+VnTq6fbR3eNHo1Zyyy3NtLTYi+6VSCTDqlVlfOrTq3C5ouh1inNCtufiQu1ac193FqqaGmwf/gjTew7D08/x9/knuK6kgmPpOyWbqVzaXbVa//x3aURRJPbqq/h/9nOSx44hN5vQXbIaTetilJWVCBbLvIDwIZeXnzz6NL/d9gyxtOTIUmRUdOV2ESv4CGWnKJBHgQaLUEGjagNmeQV6uQ29TpqAGIlkyOUgnRFRKESyWUngkq7JBTzeJFWVBpxOPalUjgULrKxfX1H8+/l9SXp6fNIkzUo9mzfX4fHGZwSgDD5fglQqT2uLfd76Abj2ujoMBhV7943jckXIZQtoNErkcsjlpNHFN97YyMmTPnp6/FRXWNFptHimq6mUr0RhEvHEJvCkXHjCLn67/34EucCalsWEVJdx82WXcdedrcV12NXtI5HIIggyhobCLFpkpb39DNG12TSYTCpsNs08NxVQ/Hr1KulGaHZdNzWWsOnKmnkTRycnYjQ1lbB8hZOaGiP339fNxERMcgQsczAwEGKWAAHzssBaWuznrPE3irPPm/ds2cLd11/P8dOneejll3lkx3Z84TDN1dXF5xzr60OnVrOorg4A9YIFOD7zGRJ79xJ96SWGb7oZyzvegfOzn0E4T2DlH4pZh43ZrCIczvxBwZPpdJr77ruPb37zm/T3SwGTFRVVfO5zX6S5eTM+X5JwOM3zzw/zox91vOFMl4t4fXzqU/fgH/dw/6PfZumyaj78/k+ccz7P5gR5PXEs5ijdPT66u/2oNTM1odVedK/M1oRPf2oVJ076APE1Cfz52rXkchkLVpTS3ObEPxlnrNtP155JTuwcx1ZjZGm1CZcnzvh4BEGQE4lkkck0M899yz6qNx2iKOKfiDN6ysfICR/Tw9K1vqRcT+MKJ5YyHYYSDdF4mpdf3ctvHvox/cP7is/fvutxCjkTkcSpoqilUVZh1C5Dr1mATt2MTmNCJpcmDmazImIBEEXyuQLZrPRZazUKwhGpFUarUeB06li8RHLgzQak+3xJ+vuDxKJpzGYVK5Y75/3d+wdCxBM5KiqN3HrrgnNcSddcXYcgwKGDbjLpAoI8V3TnGY1qFi+xkYhnmZiMU1dnJhBQEQjaUbCM8hIBmRBjynOCeLqXrv7txBOPsr/DzvDUdVy96XpufccVhINZtm8fpbvLRzicpqm5hFg0y/59U2zZUl8UmtranExMxBEEGZ2dHvL5M+/zbFeV1xMnEslgMWtYttSBxaw5I/qG0ihVAga9ipoaI/fd101Xl49U2sJ119bjGosw0B+iuFEyJwds9r2cPeDhjeDsc2ZxyzL+35f+ky98+l944eWnePyZ33P42AFsJWcEglwux45dL7Fx3RVotec6BBRKAYVZQG9WU7mghHy+QDaVI+pPE5pOEPWnmDgd4vThaRBBUMixVepx1psobzDjrDVhds7P9vpTasLJkyf5xje+wYMPPkg+n0cmk3Httbfxznd+EjAxOBhi3boKjhxx84//uPtiTXiTUFJSwr0//TV33X07P7r/azz665+xevUi7rhjUfExszlBs6JTT4+f7m4/Go1iph7Yiu4VqR6UznCECHqd8oIh2/Da7Vpn5xPNoqbGREeHh2Qyj1IpgEKLDCW5jHRNs9neWo4Q9rjZ9cCvCUxOUNe2kvXvvPsNZxidjWjAxxP/8RWCk+MsvmwzVa2Lz+u+GRr28OvfPcqTzz9JcoYjpLMxxsVdJDKTxFIuRDGPXKZBr6rGabwMnboGjcKBTq9EoxGIRLLkcyLpdAG5rEA+V5CuVKKMcCRNNJalstLIgoU6Usk8CxZaWd9eUfz7+X1Jerr9JJNZKioMbL6qFo8nURSAfN4kyVSe1lbbvPUDcO21dRgMSvbunWB4OEwul2dqKjZTn2Y4wk1NnDghcYSKCgsajYbR0TKMqlVULdYzMT3MlPc0kegoL756PyBjWetikoUruWbT5dx1V4u0DrdJHCGbKyAIcvbvm2TLloZ5QtN8jnDGTQVnasLq1WdzBAtXXlkzb+Lo5EScpmYLy5c7qakxcf99XYxPRKmqNNLWZqe/PzTvc5ibBdbSarvgGn89nH3e3HXbLdx56810dnXx+DPP8eQzzxIMhViwYEHxOQcPHsRisdBYX0/U66G0vqmYGwZgtNmRyeVMDw/+we9nFt27djDWdYKlm6+loHGgtjcwcPQwTz12nLaVdfTu24WzrgHNzBqvWrSYRDhM964dPPBPn2H5tW9j94O/wVJVy9YDh7nv7/6RsQkposhuNnHz2tW8/cOfJRAu/EVzhIsi15uIazat4fef/Qy3/+d/8u5/+Rce/MpXUM/Yvc8m006Hno7jHiLhDH5/sniMkye8DPSHMFvUxUl4syIBSOR++/bRIrmfPW44lMLtllph3gjZl8nllF22lu6klZMvvcryTB9LO7/D/s9vZSgkWZnFuVL6nxlEUST2yiv4fvADUl3dKGtrMd10I+pFLSidTuRa7bzHe4NBfvzE4/zk8SeIJaXPSZApUMgF0vk0k5lu7OoqGuTrMMuqMMjtKJUycnOyILPZAqKYK964S5n0ImaLmkg4hdmsQaGQkc2JqNUCK1Y4MZnUgCjZngdDrFhRSle3j7HxKIJcVhxvvnfPJK+84kKrVVBRKQlhgUCC++8/RTCUJh7L4g8kuWpzDdU1Rmx9WgKBFNlMHkuJmuoqI7FYjlg8y6grQiyWxetLkssVWLu2gs4THkJBGTKZjEXmBZSGaqms0LPl5nKOD5/k2T17+eJPfsIXfvRDVjS20r5wDbp0LUFfnmgsTSyaw+uTwkaDwVTRzbV+QyXVNaZivlxZmW6OYzFNOJRi375x9u+fmpcpd/bE0XhMyhyYPT/WrSsHYN26cpqaS6iuMc0j9HNHDl8oCwxeW/yF87c5ymQyVi5cyMqFC/nqhz/Msb4+yu1nzrUv3vcT9p3qpLm6mhs3bOTtGzeyYsECDJdfjnblSiLPPUf4ySeJvPACjk9+gpK77vqTJjHOOmwUChm5nHROvhFCI+WsrOHEiROAdJP9hS98gY9//ONoZ86P0dEwTqefn/2sk6NHp4E3lulyEa+P2loz//TZz6HX5/nGd/8No8HEu+54L3AumZ7973jH/JowK3QMj0RQKYViNtLmzWfW8tkEf/bYoXAK95R0rTub7MvkMuxVBmyVepLRDGM9QaaHw8RcUbRyuO2SSvo8cULhFP/2b13An3c9AEjFs0yeDjHa5Wf0pI94OIOglEuOrZVOrOU69BYNap0CuSDjlT3b+NZ3v0VP/7HiMbQaM+lMDE/gGCqFA6N2CXpNCzp1MyqlARmQl6IXyWRF1GoZhYJYlN8zmQIlVg2hUIqSEul6drovSCZboLrKyNKl9mJIu9RiocPrTdLTE0AUQaGQF69ze/ZOsnv3OLm8iNUqjZb/9b2nsFq1pFNZenuDbLyskjvuaME1FqXrlJ9UKoelRE1dnQmtRkkonMY9lSAYShXbYisrTdIuf66AXC7Dbi9Hp7GiUGzixhsbUOumeObFZ9l7YCcPP/5bzKYSFjVdjt3cjlJei0wmTe51jUmbLOaZNpTZNfie97Ry4qSPSCSNyaSaNxk0FE7NDFOY4MiRaWprTfPOgVnU1JqYmIizrr0ch1PPuvaZetBezqrVZdTUGKmpPlMTOjs9r5kDNhevldV1oRZHk9HEO2+9m3feejdj46MICkXxOJ7AST72d3+NRqPl8vVXcu3mG7hy49WYTOe/RguCHEGvQqNX4aiZaXHMFEjFswTdcWL+FLFQmoEjHk69ImXBqTQC9mojpfUmSutMnBoIcuSEB4VS/gfVhIcffpg777yz+P/XXnstX//611m+fDlwph4sXmzjH/9x9x+U83URr4/lyxv52de/wj3/9CXe+7ef5Lc/+WEx2PpsMu106ujo8BA+H0cYCEkC58wkvFmRACRyX+QIM6KYyxUhHEoz5ZaytN4o2Xc6ddTXmRkZCaPVKsnnIZRQk05I94JvZU2IBfw89OXPk8/lMNkdHHv+KUZOHOOdX/o6mplQ+DeCTDLBwJGDvHr/LxELBZZddT1ljc2ozuYIPj+/fvAh7n/4MZKpGY4gVyEIAplsEk/kIGZdLaWmy9Epa1ErHChVMnJnjHNks3kKBcjnpc9FLEC+UEA/4+a123Vkc3my2QJmXYYVjVlUJCHvpndvL+6gitCyFrpPRxkbjyKXy1AopN2lvXsneGWnC61WSUWlYYYjJLn//i6CwRSxWJZAIMXmzTVUVxux2SSOkMnk0OuVVFcbicWyxGJZRkcjxGMZfD7JFb720gqSyRyhUAqFQqC2ogmVrJyFi0q461317D24n607XuFbP/gR/+8732VRUyurl21AITYQ9ItEYxli0Sw+n7ROg6FUsXV2/foqqqtNxXy58jL9PMdiOJRm374J9u+bnJcpd/bE0Xg8O8MRpPNjXbvUMr6uvYKmphKqq03zBN55HOECWWDw+lld52tzlMlkLF+yhOVLlrDWpCKhMWCz2YqbD1/60ic5evQgC5ubqVaI3LZwCa2iWNyokAsChhIrgcmx1wytvxCC7kl2/uZnlDcvorS+kd6hJJ5sDfpsLye3v0w6uIRkJIy9pnaeS3HB2na0RhM9u3ey9cffRW+18y+/e4xxt3TvX2Kx8JH3/TUry6xMdp9i86YKfGH5XzRHuChyvclY09TEg//279z2D//Auvd8gm99+O+48orG85Lp9esr0BvOtCp6vHGGZ3acdVqllLNhic4j52eTe5cryp7dE8TjGWpqjIRDKTze+OsGc3u8cU6e8BFJiGSXX8qB2FIqRw+zItzHN4UU49e/my2bNr3ln9cfg/TAAO6vfIXEocOo6uux3HE7qkUtKO12KST8PHh8x26+9cAD876nkRuxK+qwKGsxyysQBAGFIF3ACgVxnsAlCKBQyGDmBn8W5eV6/P4k+Tzo9Uo2barl+PFpUqlc0UY+MBjG500giiKRiLQLo1QIOBxa1q+vwOON093tx+tNIggyFi2ysnSpg6mpGAcPTpFISIH0ubzIrl0TfOrTq2ZIjAKPJ0Eqnae6xkRtjYn9+6eonfk6lZKcAgaDErNJsqKnkllOnw5SyBcIhTJMuQpsXLQRJ4sxvA1eOrKPXacO8IPnfo1cJlBrXkCjaTkapNYdQZBJWXGTMSYn4tz9nlZWryrjyFE3bnechYusxbVntkSL00FHRiMYDcpim+PZuXH19Sbc7gQul7Te29ur5jnGzl7Ps8KYRq0473oH5rkiz3cMeP2WFqVCwdrFUraRyxWlp8eHTFSgUirpHxvj2w/+jm8/+DucJSVsWrWK69e1c8s734nu0kuJPvcc0//+VYK/+x32e+7BeP31yF8j42Tv3nG2bRvlqqtq57WFzbaNzN21F/N58oFAcXEKJhO+YJDnnnuOd73rXSiVUpbSVVddRSAQ4LOf/Swf/OAHMczcHM7NX9qypYFkMoter/yDM10u4vXxsQ98jslpP//81b/j2LFJvvCZT16QTK9vr8Cgl1oV5+YPqZQCRqNyXnviLM4m+Hv2TnLo0CR1tWbMZhU63fmviXPJvrXeSFQmYqjKM9IdxKFTUdWoIVcQ6ZuQUW/9Bp/4h3Ot+P+TSEYzTA6EmDwdYrwvSGAqDiLozCpKynTULrVhdurQGlSotJKwNYtpd5R/+so/4vaMFL8nQ4FaUY3DtBS1ohWVwolcJkNQgMGgIpPOk0iesSYZDQpkcohlCsXvqdUCFouaYCBFKJRm8+ZatBolvb1+BIWctjYniUQOtzuJx5sgmcqRTObQaBQIChmtMwLN0SNuxscihMIZ5DIZJqOKQkFkaDDM6EiESCRNPJFj964J7rijhQ3rK/D7kxw57KaQh5pqE5s317Jn7yR+f5LaOiNjVi2LF1sZn4hjNKpobLSg1SkZGgoSj2eQyWQMDkZob1/AJUvfyw1Xf5RIzMXLrzzFngPPEU8+iU5TSoVzA1XOy8mmjajUCmw2DZ2dHg4dnmZiIs573tOKxazGPRWnptpUXN8Ws7TmLWYpMyYayxCJnpkK1tPtY+++yeLOf1mZHrVKWrtn14OzRbG2NiexeA61RhKfLuTgmuuKnD3OXLyRFsfqqtri36i3N0A44aGqoobxSRdbtz/H1u3PIQgCy5euZP2lV3DHLe+ioqzygseTyWQo1QJKtYBxxj1fyBfIpvN0dXoZ7g1gtKhJxbN07Zrg+EsuAMrlMtRmJYJeiTaeY7w3QEm5Hp1JhUwmI5/Pc+DAAURRZMOGDQBcfvnlqNVqbrzxRj7/+c+zatWq4vs4e0T9H5vzdRGvjcqyUu794fe44333cO1t7+Nf/+7fue7a1vOS6fXtlej1Z1oVPZ4EwyNS3pNOp2LKHcdsUc8j52eTe5crwu7dEyQS2RmOkD7vNMWzyb7Hk+DkCS+RaJqFC62k03kG+oMURDXXLW5l/bd+yOar179ln9NLP/s+uUyGtqu34Kitw+sa4cjTj/HEf/wrt3/5qygUF76XCrmn6N69k+HjR5geHkAsFChtaKJu+SocNXUoznMf9vzLu/nZb+6f9z2FXI9B3YDe0IBOXY1SqZSmb8tkFAqFeQKXIEgCtkwmm9t0MMMRUqTTBUy6NJcszJDxDaCWp2AacgoN2bwAhSzlsgzRk6fQZkrRqOyU2Iysb6/E40kUOYJcSNHSYmPpMgdTU3EOHpginsiRTGTJ5QvsnsMRNBoFXk+CVDpHdbWJ2loT+/dNUlsrfZ1K52c4goKyMj0LF5aQSuU4ccJHvlAgEskSiwi0tWxALWvlr98hZ9eBvRw4uovfPv5z5DKBUtsiym0rEKhGJgP5jKNL4ggx7n7PYlavLuPIEXcxX2527c2dDipxBFWxzXHWiTWbG1dfZ2bKHcfliuB06mhvr6S9/cx19ez1PCuMaTTCBaeHznVFnu8Y8PptjmabDYtcIJdJ09XlZ88eF6BGoVDQ199PH7DtK1+n9Me/pH3NJVx9xWVcs+kKTI5SIl4PmWQSjf6NibZ7946z49nDlPieRKnWUNe2En2JlZqaJFCL73gZykwP+ckEBquNkor5dcfn93NocIQb3vNB4gEfgkrNhukwuw8c4APvfhe33/R2tBoNk6d7GDl6iBeeOMIlV675i+YIF0WutwCqlJN2+63smX6MT/7wa+xb873z3jzNZmfNtqqFZ0a0NjVbqK0xMeqKoD+LoMzty589Xj5fwB9IodEokMvl5whjMN+x4vclefzxfjyeBA6HFq1WycRkgiH9cg4barlEfpKrho8Rvf0Opv/qLuwf+tCb0nb1p6IQj+P90Y8J3HsvgtWK+bbbUC9ejNLhmOeUmfbE+P69L3FqcIjGJjP7e49waqQfkGEU7Djli7Ar6tHK5/9OYgEUajl6vQrfjGsJpKmAer2SfL6AQiFHqxGIxbI4HJqZcNA4iAW0YhpCXlRRP0aVHLk/izfhxygXKKjBWm7GZFRitWoxm9VSm0eLnSNH3ej1SpqaLIAkltXXm6mvNzM5GZ3n5Lrsskr8viTxWI7aWhNr1pQx6opQYlGzf/8UgiAjmcxjtqj50N8sY6A/yONP9JPPSTvu7ulE0ZGl0eSJhNPs2D7C1FQcvz+F1VrPFeV1TKl8uGI9TMS6GA49iFlt5Zr6y1m6soFsQsDvT+L3J7n/vm62bKkvruvZKaHL25zodQrkgjQlFCSBbHIyTjyRo+O4NClxciJOWZl+Xj7dLHp6fLy8bRSAq6+qnefYammxE0/k2LN7gqGh7uJnORdSMGd2npvgbPh9Sfr7A+h1iuI5cyH31+wxfnPtv6DWirx06CDP7N7NS4cO4QkGeXjbNoLRKLdecQXqujqU99zDvb/4BY0uF7V//3lUX/1/GDZtwnj1VehWrWIiIp9HKrZtG2XbNonAtLdXkg+FyI5P0PfYIYZ2dbGyPMNiIUJ2YoLe6WnSmQwnUymOJBPsSyQ4lkhQAMydnbztU59CVVvLP//zP/O1r33tnADhs8cR/zGZLhfxxnDsmJtc7HqqHF6eeOE76A0yPv43nwDOJdOzuVpzBa6yMh01tSZco5HzClZzs7sA/P4kkXAGnz+JwaA6rzAG810r3T0+Dh6coqbGSDCYJhJKs6zZhkUjUGmz0Kp1cOqRNEMv7aGs3kzFAguldSasFXpUmrf2NkIURRLhDP7JGJ7RKJ7RCJ6RKPHQTBugUYnZoaVplROTXYvBqkGlkUSD2Z3T06ddfOO/foRG2Yig7mffoa34g5PIZEpM2uVYDJeiVy9EkKvm8hNkMom4aLUCkfAZQcZoVKBWKTAaVWjUWQLBJCqlwMaNlRw5Mk2hAGJBxGRSo9WlSKbyJOJZJqckJ4XBqAR05PMiWo2CmhoT9fUmli11FP8uVdUmLgW8viRarQKHQ4daLSedLsxzcnk9cU6c9M3kNlaQThewWNRs3z6KWqNAq1Fgs+lobCihpsbI6OhpJqdiWG0abDYtr7ziIp7II5dLrzU4FOTw4SmSySwFEVpb78SsvYGuniO4/XsYGnuWQdcT1FWv5Zor3kn7uvUMDoU5cdKHP5Dkvvu6WddezqJFVtKZHA892E1bmxOdTlHMm1vfXkE4lEYQZJw46cNilqYlHj8+jcmkYs2aiuJj5+LFFwbZtXti3oRSkM6bRCJHb2+APXsnSaey81oXZ/F6NcHh1OPzJdm+ffQcZ+TZzq8z93Q385EP/RXdvSfZuv05Xtz+LANDpznacZijHYe5ZtP1RZGr8+QxguEAbUtWUmKxnvP6Z7/W6ZEQHb1+li93cPvti8hl8kyMhDl51Es6nkUjlyGL5+h9ZYKubWMEYtMMe04x7DtJ5+A+QtEAa1eu5+HfPIXOpMJoLmFkeISy8nOzlC7WhP8+eN0qFla9m86B+/jn//hHVqz8+XnJ9Gx21myrWjiUJp8XKS/XY7OpMRnPzdE6lyOYKOTH8PuTaGauiWcLYzDfseL3JXn8iX4803EcDh0yuYzJyRilpTrErIVag59Y0IzD4XhLPp+x7pMMHz9C62VX4qiVRKnypgWs2HITR555nK0/+i5v+8TfnfO8Qj7Pnofv58gzj6NQKrFWVNN0yTrMzlIspWXoLSVSm9h0nB///DmGRiZYssTJsZMHOHriKABqhQ2zdhkmTTMqRcm84+dzoNLJ0elU+H1n3HVqtRy9QUUuV0CpkKPRyInHcjgcGux2HalIgEsWTlFniyAGBaIZM6O5RgRLIzqrHVGmIBTKUFeew5LtxjbRwY3LAtSv20JLq40jR9zodEqami0A6HRShld9nZnJqdg8J9fGWY4Qz1JXZ2Tt2jJGRyNYLGr275tELshJJnISR/jQMgYGgjz++AxHMKtxuxNF0ScWzdDT42dqKsbUZBx/IInVWsfShlpKjT48oZMEYqeY8t2PTmNl49rNtC2/gXRKid+fwu9Pcf99XWzZ0lBcp7NTQiWOIGXOtc5s5MoFOZOTMeKJLB0d0qTEyYkYpWX6efl0s+jp9vPythEArr6qbp5jq6XVRjyRZffuCYYGpfdwtqPL5YoQiWRm6sEFguNn4gT0OmXxnJkrCOtLbPhGR8im08UN6XvueRqzWeQ7X/onnnzqKU5P+5j2enniuedJplJcs+kKLGXlTJzu4Rc//zlXXHU1LS0txc4egInebp7/0feIR8IYrXac1ZV0n3KjiQ6SVBlZtuUa7NU1yGQyBgaC7N83yfKmRaROv8Jkl5cF6zYiV2s5cOQoRzo62b3/AMdOnEQURepra1m5bCkAn/vbj/Dlz38O5RyDiKVMcsn1HDmBrrTxL7oeXBS53gLs3z+FiUouL3snB4NPcOPffY5Hvvr/5rUdziXSc6cuNjVaiETSdHcHyBcK84Lm4VxhrKbGyJYt9ezdO4laLaesTEcmneMXvzhRDCsHyRY620q2ffsoLleEVEpyCDU0WLBZNej1SgyGWjoCTjQN0Bo+ReDe3xB84AEs77gd2wfej7Lsvz9oUhRFoltfYvprXyMfCKDfsB7d2rWoKquQzenPT2Uy/OyJJ/j27x4iGJN2u3YMyChV17PG/jYWOFsYH33tUcH5gkg0euYxggD5fAFlPsnK0jzN1hzyaJgyTRoxFEQ5GUNjyaAuyUMexEMiraJINiGSDYpkRJGcKFKpVKIYkiHKZFSrtAhmM7JnTLx8r5zxrJHa5lru+vAKZEolJ09IeTtLlznYvHn+NDOPNy7lVU3GuOSSUkpKNIy6IpzuDxXdUpFIGveMLX3//imm3XHUagUdHdP4fWlkMtBqBRYsKOH4cQ+RSJZ0Okc+L5JK55AhQ60wsKZmA+n0pYTyUwzFOnni8DM8dfRZLl+6liX2S8mGDUxMxop97/39AbzeJP39IU6e8HHJJWUU8pBMSsVTym8Q6esNYLNp0RsU8yaAJtzZeeu9o9NDR4cHGeBwaM8RsWYF3tn3MDuwYVacOltYnj1f4EwI8vnaHvfumeTQ4UnWXFIxb1Tx2blft1+5mduv3Ew6k+FgVxc7jx5lSeMZ4jXh9/OpR6RR0ypBQb1BT/3QIPW//AW1ShUtJQ5spjL8TivyKis3e6JsIoh1W5y+J4KIqRQ5UUSdz7EUBaLbTLLWSY9SwVe8Xrr9PjJzQ2+AVqMR7xNPMvjCi6ibmyl511+hvPXWc9b5HzKe/iL+NBw/Jo2/bm18N4taSvntI/+J2SLymY/9Q1GEOZvczpJxg1GFw6ljejrB2FgMh1N3DnGfDSh3uaJ4PfGiG8xiURMKpUlncjzxRD9+f7IYaO71xAmF05SVSzXhxa3DBINp5DIZ+YJIviASzGRparPjnY4xHc7SVGnApFXgG4syfMI7064NhhI11go9ZocWk12L0abBaNWg0StRaRWSi0p+/omjhXyBbKZAJpkjEckQD6WL/4Y8CYJuKaw7N+OWUqjkGK0aSsp0VC6wYLSp0Vs0KDUKlGrhnNfp7e/m6//5VXbv34Y484YFuZ6a8rVU2d+N2bCIQODMNeec5huZ1KYej2axmVToVAqMWgUWowqNSo7DrsOgU5KKZ9FqFaRSeS5baEcsiChVAtpolgazEtliPZl8jvH+EdzeGKmcQENjJQajGqNRSVOTjlhU5Nf3niTgT7N4iW1mqmBzUcSaDXefK7TMze3SqBU0NZegVGTp7w8xPBLBZtNw6aXlzLbMA/j80sCCQwfd7Nk9gVyQoRBmQohTOfbtlSa25XMiMjkcPDCFTC7DaVuCzdxKLp8imTvChHc7P73/U7y06/tcvu42yss3MDWVZWIyhms0Qlubk8ceP00smsXrTZLJFBAEGQ6nVJsaGs2YTKrie7PZtKxYUTrj5FLijmfPEWh37Z5gcDAEME/kgjPX+eMdHgb6g8TiuWLu2exnNvsYnU6ByxUtPnfuuXchZ+SaNfPrwdlussUty1jcsozP/O0/MD7hYs+BVznWeZhFC85MOf3Ng7/gyeceAcDpKKWxfgGN9U001S+gvKwSs34Z/afDxePPFbAFhRy5IGPCH+LFfZ2kU2ba2yt5z92t/ONXPsPuAzvw+qfnfSZatQFiep75fse8TC+Nvh+VRkChFlCoJEE4nclTJ8qJdPh4vDtILlsgl85zxxcvQaH449vtL+Jc7N83iVy0srz5vQy6H+SuD32EX33/O6xefSb7cy6Rnjt1sanRQle3D/dUnHXrKs4Rq84WxmpqTGzZ0sDefROo1QLlZXoymfwZjjDjGg+H0sVWslmOkExK52BJiQaNRmDpUjs6mYLk6UHy0am37vN59EFMdgdlTc3zXFdVi1qJ+X307n0VR20da266vfizVCzG0//5/xjvOUX98lVULFyM0WpFqdEgnxEPUqkUDz3xFD/4+b2EItJk3X0dYNRW01hxDTXly3BPvMZ0bJnUihg7iyPk8gWy2RzVVSbq6s1EIhmamy2MDUygjBxnaUuAVFaBh4VcfssNvLDTi06jJp7I4I0k0enk+MJKyqorWHnjBkZ6uggcfpCxA09zYP8QY34zi5fYede7pKyrkyek69PSZQ42nzXx2ONJcP99XUxMxmhttWEyqnE6dAyPhItuqUj0TOvq/n2TuN1x1GqBjo5pfL4UcjlotQrqG8zs3TNBJJIhnc6TLxRIpXLIZHIUgoElTZtIpTeSyk4xFTjC9r1PsmPfk6xd0U5dRTuZuPUsjhDE602c4QhrSiXekZI25mcz3mbrgV6vnDcBNB7Pzhus0DFzrZY4gu4cEWtW4J3PEc64Fc8WlmfPFzgTin++tse9eyc4dGiKNWvKWVplY+xUJ5lkktrasnlt46vrq6m5ZQsrttzCqYEB9h48xIoZcclSWoYnFOEbn/4MABqNhgULFtDS0sKCBc2M791JRYkDg6ESZbqA1zWCQZkjamqmYdliyhqbERQKsrkcL2/rpq8vgt/v4Kb1KxmccPGFH/2C/uEvks3Nr6FLW1tIp8+sX8t5DCxaowmFWkOpIfQXzxEuilxvIiYmokz0+IvOlXXrlqOzb+S2f/gHrvzbj/GTz/0zqrxlnrAFkvvF7Y5TXy8R/uPHp0kmczQ1W87ZbTxfBtfqVWXEEzmefXaQQ4fcM6QojsmkonrmhJ3bSjbb6nXqlBePJ8nERJRbbllQnID3zK59PNrv5qYr17LhmmuIbttG6OGHCT7wAPoNG7D+9V+jb18376bprUKq7zTTX/0qiUOHULe0YHr721EvWIAwpyf/5f3H+NpvfkPHUDe5IumXUSKvYoF6E1q5GZ1MoG1JOR73KJn0+XMENBoZyMBSiFNrCFOvjlAhj1CqiKOUpZkKZZny5pmUydghyrjZ0cy01kJKoeUhTy/7fINE00lyhcI5x/5Q1R3UGrSsXKjjt6d28bsTO1HKZFgEBVZBjrVf4ImXlJQbzGysaKVQ0sC4qg2n48xN9Wz73ZQ7RiScRpDLihfgikoDdbUmBEGGyaQuZlitW1eO359EpRbo7vYhilJRbmqySqOBVQr0ehGTSUkkkiWTzZFJF1Ao8jN2ZgVmeT2LKpvRmUV6vMfZ2fUqLyf3sLJxCZdUbyCbsfP44/24p6UJYGq1nGAoTXe3n0svLWd4WJqEojc4WL+sErPlXJeUxxsHfPPabZe3OYvjtZe3Oc/rsGposJDP5/F6k2x9cZjp6QQrVpSyebN+nih15Kj7vKH4Z+96whknzNwcjPNh7vu5bMWKedMXAaKJBFesXMnR3l6iiQR94TB9c37+boWJj9iU6HIxOk6Oc9vevagFAaUgkCkUSOfzxbV0ZeVGLq+9gss2NuKwpujYuhUAZ0kJ7UuXsr6tjevXraPaaiMfDJLo6CB18iTuf/lXvN//Aba/+Rus735X0fH4h4ynv4g/Hj5/Aptdy6IWG5s2VdPefi0//XUt//FfX2F8YozPfeyruN2ZeflZPl+S4x0eHE4tJpMK95TU1iZdbs+95p7dgrVqdRktrXZ++pMODh2eoq7WTCKZJRLOYNAraGmV2tzdU1LrgMOpZ9OmajRqBV5vnLHxGEaDkrpaE8uW2hnUZ3jg948Sytr59Mc/Si5bIJ3IEvEmiQZSJCJZov4UvrEYqXiWQv7c66tCJZcEKJkMmQxEUZo6V8id+1iZDFRaBRqDEq1BSdUiKxq9Aq1Rib5Eg3KGlAtK+XlrUC6X48e/+DG/feQXeH2Txe8LcgNW4yac5utRq1U0NVpIp3MEApE5j5HhMKlxmNVYDSocFjVGjQK18gzJLxREEpkswViAialRUvkgkaSXSkcTZZYlyAUZwaSH+1/4Asl0hFTm3OvI+pYbWO38FPlYkuBUkCs/ewMASkGPXG5g11ErO/fXoFDYaK5fzsplm3BPJbCYo/OC22fz2uKxLNlsgf5+PwF/mspKA5UVBgRBVgx0t5ila9WmTdXE41n6ev1kc6AWZDQ2WsjnReSCDJtNQyyepVAoEIlkii2aggBOpwGbzUpp6V1EI7cSjPbR0f0M9z38bdTqH3P1FXdQ5tyM15vkmWcH8EwnKClRk0xlGRwMzxAIkePHPIgiM+HCZ97b3N/NYo6i0ymKExodTn1xMullGyvPm2sH0N3jR6UWmJqMMjUVo729sphhN/u42VbDWcxtHb6QM/L16sHc91NVWcOdt93NnbfdPe8xZaXl1Nc2Mjw6iMc7jcc7zf5Du2c+XwV//5EXsNsl4flDn3g3ew/uQqPWUCgUSGfSpNOSC1ul1HHD5fdis2tQaRQEIl68/mkUCgVLWtpYvWIt61Zfxqq2S5EVBNLxLMlYlmwqRzaVJ5POk88VKORFCvkC6XgWERGDVoEMyGWlvDadWU3Ek8Ja8YcPdbmIczE5EaWnx190rqxrX0F17ZW8/+Of4vb3fpCvffHfsBhr5glbILlfpt1xGhrMqFSSqzQWz573Nc6XwbV6dRnxRJZnnx3i4MEpnDMbJyaTiupqiSPMbSWbbfU6edKL1yPFaFx+RTXr11eRyzj49c77CPseon5VPddcs+7N/YxO9zDWdYLWyzZhKDmXYC9s30jE52HPQ/ejL7Gy+LLNBN2TPPkfXyEW9LN087VUNC+al9u1/1AX//WTn9LZdYxcfpb0y9CpqigzXY1G6cBkVLFyeSXbfKNk0tJ9l0mTprk0hMOUQAYEEjpOe+1EkwKCQsrLymXz5HMQjSYJRpKUxP2k0h52vtTDFXU28noVk7lmXu7tYmzqXr792HfJn7U5CVBW9g0GByOUlGh48cXfsH37gyjkAjr1S4CBA6fsHOmuQ8BEXcVa1CrDOY682fa7KXeMcDhNNJLm2PFpRBGam0uoqzUhF+SYjOpihtW69gr8/lSRIyBKNbhtmRO7Q4fbHUevV2IyqYhEMmSyeTLpHAqlxDVUaQGLvJ766iYMpjsYmTzCwY6d7Dn0Ki3NS1jafCXZrIPHn+jH7Y5TUqJGrRYIhlJ0dwe4dG05wyNhBvpD6PUO1q93FCd9nv27AfPabSWOIH1/eZvzvPlaDY0W8oUCXm+CrVuHcbvjrFxRyuaraueF0R+5QE24EEeYzcrTL7VSyOeJ+jxYSs+YQEZHw4z0DmK0GNEZ9Kxfu4b1a9cUf252lpHJ51m5uIW+ERfxeJwTJ04UM3QBNq+6kuuuvZm2teWMjvdyzyc/i0atRvmogkw2SzqdLnLeFQtvxmSqQihbQFN5Od0//w0ATrud1SvaWLNyBVdu3EhFWek5a+9syGQySsrKyWd9VJZrX/fxf864KHK9iejvD+EZiVB5SSWf/eyZXcZvvv+L/P3PvsktX/gsH7ryA9y8uX2ey2T79lG83gSjrgjJZI6uLh8LFpSweXPtBdsOy8r0LFxkpabGyL594+zcOYbLFSYWlSbhrVheWgzynsXs17NusBdfHGTbdhfNTZZ5YeCf/9kBXjlxAL1ezZWf+Gts73sfWZ+P+O7dJI8fZ+wDH0BRVobp+usx33Qj6oUL33TBKz04iO/nvyDy9NMo7HbMt78DTetiFA4HvX0BduztwJ0a4OkD2xieOkNklHINteo2Gk2ryCWFYkh8Ll8gEEifQ8DkFKhTRVikDbBQH6ZKHkaLdPNwXzjOj8NRXJkUwXyKs7Hob7+P2V7JwEic8Cs/JDh2Yv6x5XLkcgWFgsALtGFVVTBkK+OIMA50kRWoYzLeAAEAAElEQVRFvLks3rlCeyTMZq2B1ugIuHbw/QdFXs1mWb6sjVy2gsCYjlRcRi5XYGwsxpYt9cDcsdLzc9dUagV3393K5GScdDrH6EiU2jojZrOKfE5EpZazeHEpgiAwMBBkaCjErJ8hlc5RVqpjw4YqRl3SNCtVYCFrdTUEtUOMeY/z08Gf4DSWsaJ0PY3WxVitGlbUljI0FEIQZJgtGtavNxSz5y40BdHp0GO2RDl6dJrh4Qj19dJY4U98/ExmyKxQFQ6liUQm6e72odcricVy9PYFcTq02Gw6QJwnQMF8J6Pflyy2Rs6eC3Nxdlbe2ZjNE9OoFUWnwfl+p9b6ep7+5rcoFAq4pqfpc41yetRFn8vFwc4BplVL6Fp4GXfc0sR4dzfZPXukXZezdl4EuZzWSyvZuLaF6hojJrOS33zpSyxtbKKxsvKcc0/hdDJRvZIOfwUrl8Sxnj6E52tfI/i731H25S9hOM+Y44t4azAxHkMuk3HdtfWsmgkHvud9Hyce0/PjX32RjhOn+aub/52GhgoWzVzPt28fZaA/iEHvIKsROHx4CoNByarVZSxbem6o9tktWPv2jbN/3xT9/YHijdjlV9Tg9yeLxP1sl+Ns5tGLLwyyfbuLpiYLmzfX4nDq2b1viue2/wCzycZnPvExSWRSCRhmRoWLokg+J5LP5sllpQDtVDRDNp0nnxPJZfLkswVEEUTEol1KUMiRK2QICjmCQoZSo0SlFdBolQgq+cz35UUHy4XQ0+2jo2Mag9nHqdM7+fVvf0puzjlk0DZRYbsZvXoB2ZlvZzMFEsksIX+KhlI9FVYtZSUarAYVcrnkZounc6QLeUb8CbIyGPdNse/Er4glp8jmPIhiZt77uPmmu7nqxhvwehP0bQ0TjM531QAoFEpkCLh8KQ4PB2ltspJOnNlVzebjkI/j9k7j9vYAMOaaZuWyK1m0yEpFpZa7PnATTQ0LMWhq8HudJKIlFEQRWVSGw25l+XITbW3Oortvrgjk9cRRqxTccEMDuWyeyakYFeUGKiqMRKNpIpEMC1dY2bKlkeMdHra9PEqGHHIZGPQqspk8zc0WNl1Rw/bto8TiDZiVd7Og6hrimVd5+ZUHyWbvp6b8cpYsvBmHs5Q1a6TQ+GAwTWurjWVLHUhirXje0HmYL0YdPTrN8Q4P9fUmVq0qKzq45gpV/QNB9u+bwlmqZdqdIBRKEwmnMZulwS9nC2JzWyftdu28UPzZluFZzM3Je601+PzzwwiCjI0bqy6YCfb3n/xn/v6T/0w0FmVouJ+B4dMMDJ1meGSQUVeAwYEwRoMKh1NPIpkglUqSSp0rrqlUArfeVk9zk9Qu9rcf+gwfft/HWdLShk537muPu2NnhlOskH4PURSloQkzU0HnZYjLJKIT8SaQ/QVNVf1zR/9AiJHRMAuWOfjs5xqK3/+7j3yFf/vPf+djX/gMN1/9fm6/ecs8l4nEEZKMjkruqsHBEM0LSli67Nx2wbmuL6mmmNi3b6LIEaLRLIIgZ8UKZzHIexazX8+6wV54YWhePZAEAR2HRifpGj9C1ZL2N13kOvjE7zFYbZQ2NhcdWHMhk8lY9bab2f/og7z4w+9w6MlHCU9PoTEYWXbV9ZQ2NDIwGGf/wT6S2UGe2/4kpweHis8X5BpKLaupcqwjFpUX61E6nScQSFEoSBMR26q9LKv2ki/I8Ua1IIMFpT4Wlfnp95cxHKnCFznKmPck8aSPbD5K9yRsP3zmvV62+nPYF11N3KNGPzlKeI6IAvM5glIptcb39AQYHpaGf+UKeSLJPJAikvQx/nIvAO+4poW2pdLf9v7fP8r+w4dpXbiQaMjM1JieZEIaUpRI5rl0rXT9XbrMwfr1lefkrqlUwgxHiJFO5xgYCOF0aqmtkzbNVSqB1lYbCoWcgf4Qg0PBmXcvdX6Ulc1whNEIAwMhsrElNDqaSJQM4PMf5Pf938NqrmBB7WVUOZZTUqJlxQoTQ4Mh5IIcs0U9L3vuQlMQnU4dZota4ggjYepnAuo/8Yk5HGE2JzGUJhLN0N3tR6dTEotJ7f1OhxarTRJt5gpiMN/J6Pcli62Rs+fCXMx9v3qLJIgGJsepXrwMkLKzfvTD4yzPe1AZbOfNgFNptTRVV3H5Vdfw9s/+IyMjI/T29tLT08PWRx9meGSMbK6UVFqkvNLMyKRALpcjljs3fkIhCKy91M4V62qlFkqDiR/8x/+jZeECas7DEeDc6ZPnfN71jXTv2kHE58U6k+21896fUd26lKY1b+45/1biosj1JqK52ULBriUcStHT4yM+Y5Uf7s2xruQOjkee5/sv/YikzM+3PvfBIjGeqxR/73vHCYXSuFyx1wzK1usUxdau/funGBwMYSnRUFZq4LLLKrnuujMim+SSORd2h54Vy0vnhYWDFLILYDGfOTGVdjuWW27BeN11pDo6SHZ0EHzoIQK//jXKqir069sxbNyI7pJL/uj8rnw4THT7DsLPPEPiwAEEsxnj5s1o2pahrKxiIhTia1/7Ic/v3UcgPY1cJrCwXPo96x11WHOt6NN1yGUC6dj8YxfyIkePucnnRCqVMZpVfkqECeKih/50gkeDabrdKb7RuBnKFzCqq+XBw8/iSr5aPIYgaCgtrcBgcJDLmcirdFxxVQPizjFeeWUD1dULaW9v5I47VmC3G4nF8rhcYXbvnqCkRI3Pl6Klxcq6df9KNvsPLFtmQKPJ4PV68Xq9nDhxmgMHThJ552dRN8ow9B/nwLe/xUsuFy8NSUVaBpQbyik3N6CeXsA1+WruurN13u8624YxK4guXGSVrMBWLdYSLStXlmK2qNn64jABf4pTaT/xWBa1RqCxyUIomEGhlBEKprFZtajUZwSqeDxLMJDCkG9ghbqJ8vVpOtx72TrwGLWl+3l34y1c2n416zdUcPKEjzFXBJNJdV7BtqfHx969k8W22kw6x+hImHy+QDCYAmRF1xfAmCtKMpkjEklz6PAUAX+KmhoTmUyOQl7EatWwacYZMNcpCZKTsaxMX3RBFvIU88HOdpWdT/iai1n3XFNTCctXOM+b7XK266yuvJy68nKuXXtp8XfvmCEdcq2WFcuW0fPQwyTTaamQxfL4PBka6ktorHHM69UHuOXyKy74/orvsdMPyx3c+bd/S+rECcJPP83Y+z+A6aabKPvSPyPoL+7Ov9WorDIQniHQPd2+YvuUmF5Ka93f0+v6Hj974MP851d/xqrVa4H5GVuPP9HP+HgUtVpgyRL7ecnz2S1YO3eOMTgQwlKiZoFNe05+0WvB4dCzfHlp0eEFUFkhHV9+AbIrk8lQKGUolHLUgN6sPv8D32SIosjTz77Cd374Qzz+blIZLxq1CaPeQSIZorL0ChT5jaiU0rk8K3A5zWpqHDpqnTpsCx3IZTJiySxjPj+7u/oYnO7FGx4inR3DblvFlVd9BKtVg1lvI7DnDIORyeRYLHYUCisKRQkl1mZueHsTo6Nhnnyqn/Lyf6ChoYw771zJtdcuRKlU0t0dwOUKc++9XQwm0mxa46ChrpEvlm9jaasBjZigv9vFxOgUk5NTeEOT1DlbUPrTmC1a3BMjHDyyj4NH9hXfh0ppptyxhJrKZURj7Vx11eqiSDMrbM26oWbzvgQB2tpKWbmydEYgVRJPZPH7U/T3hwgG0hw+7EatlmO16amrMxGL5Rgfi9LfH6KxoYS2NicOp56+Pj8KuRWb4Rauufy9RNO7eX7b73hmx3Y2Xvo2aus+S3VlHTXVJtKZ3Ly8q7mYnRJaU2tCrVJQU2MknckxMhomnyswNRXD60kUxVedTkEylcM1FqH7/7N33vFtFPb7f2tvWbYsea/ETmJn2XGmk7ASIIRVoMyWDkpb2tJFod/S0j0p3/bbQttfW6ADaBltmW2AkhDIJtN28EjsJLa8ZMmyJVnD2r8/zneWPJJAoRSa5/XiZRyd7k7y3X3uee75PJ9WD8c6vYxFLNTU5NLbO4pcDvY8fUbOmfidhELClOT+geD4g4rUuJNyaIqrbLLoNR2amlz09QcoKjTOmP+YKbSZWLxwCYsXLpny+cXz/74f308wGCASFSaQud1xKspzKC21odNlksAli5edcv8mT5+UyWQoFDI4SSfiycTlM3jjqKq04GzX4fNGaGv1EAzFKC01c7hplFn261ApNvG3F37LWNzFT753O3a78GAknSP8/N6D4xxh9KRB2Qa9Smrt2r2rn85OL9njHGHtWUVcdNGEyCa6ZCbDZtNTW2vPCAsHpIltefaZw9/fDIZ6ujl+cB9zG87GME1mnQiFUknDNR+g47WdDPf1UV5bT37lHJRGM9//6UNseukVRka7SKWS2HOEdsyyokpUycWoUrOQyeQE/JnrTCSSHDw4SLY2xNo5vRi1EfYcU7GtA0bH+kjhJJHo5xPrr2eurZ8Km5/fbe/FGzghrUOjVGLR68jKygVlMdqqizj/8nq2bu3hlVfPo6RkMatXz+bqq+vIzTWehCP8iFjsWyxcaIDkMH/76d0MDXlQFlTQ0eVm3TnzWFybh92uZ+dre9n86jb+uVXgKjLkWLOLsWfPxjVcTV7eLBYszBToHQ6/9LO9fZh54xwhJ0fLokU2SdR8+KGW8dD8IQKBOFqtnMrKbEZGIqhUMkZGIlitOtRqxThH0BMMRBkZHkOZnEWppYq1S4Mc7X6VPc2PUWB/lStKrmHlyktYvbqIw81uenr8mE2aNBF1Am2tHnbu6pPaaqPRBN1d/nHTgmA8EF1fAD09o4yNxfGPRti718nw8DhHiCRIJFLkWLXj7uFMpyQITsaCfIPkgkwkUlI+2GRXWbrwlRgXnYbTzBabN3fTd6KXJaUJcgtypxWZXK4QKXUWrp4eUokEs2fPZvbs2Vx88cWYOpuRr17LYGq+dO4vWbyIbX9/hmg0QiyeIDCawO2OMqsih1kVduSTbtA2rDtv6omThlNNnyycM4+WVzbTtmMrq6/5IKPDQxx84TmSyeQZkeu/FUVFJo6Q4uBBFydO+NHphK931SpBSZ8f+zCbDj/P/S88ymuth/n6Bz6NNVtoSbz+uhpc7iAmkxKPR05enk7KEEon4KITJr39Slz/qlUFGROIRKQT/s6OEXbvHpDeI7ZJinC5g4THxTO9YerhodDpMKxahX7FChIjI4Sbm4kcOcLoP/+J93Ehf0hZUIBm7ly0c6pQFRWjzLOjtFqRqdXIVCpSsTjJYIDE8DDRbgfRri7CTU1EOjoAUM+ahemii9DWVOOUK3hqzx4eev47dPb2AKCRGajWXIBVUYFqVI1ZtxJdaFxYm+aezKoIU6PzMEc1TI/6BH/zuXnKFyEkhsqk4cV5Z/GJW67nlT8eJiRbTnl5JbNmVZKfX86nPrWaNWtK+MMfDvPCC10kEkZaWjxACrXahtmsY+nSuVx55QI2bTrO7t39KJUyZs2yMHu2RXgSIU3Im0Vv7yh//3s369cvYMOGqX83LlrDXSuWs/aFF9i/eTN7Dh7CEQrSHxigPzDAob5d1JTOJhIRiK4tV5/xt57s1qiry8PvjyA+QT/33BK0WiUtrW6GhyNotQpmVVi46qq5RCNxtm7tQaWSceCAk/r6fNatKyMWizMaiAqjq4Hqoiq++tmL+efORv6y4xm+/+gveWLHs3zq8mvQhctoax0hkUgCMqllRERjk4tDjYPjuSwy9u0bYMQbobjIyJIldsT8Lp83gssdpLPDi1arRKNRoFIqmD07i6qqHLq7RzGZNFRV5UhOrcZDLsnJKDq3xKwy0QXp845NmXh6Oki/4ZxODDudqY7WXB1VVTlYc4WnSmqViqK0ENf9B5x4BiLkZoGiYoKFzBSKf7J9lMlk6BYvRlNTw+g//oH/H/8gtHs3BT/4AcY1b990pDMQ4BkK4QvGcLtCkrN0VUMBXV0LyLZ8lyOOX3LTZ6/glg9/lRuv+wihUFzK4lOpZBgMaowmIWMrvXVLxOQWrNJSM1qNklUN09cDmAid9/oEV6THE6a4yEBvX3CKA3i8T5LkNG3Y/26kUila2pt59K8P8Y8Xn8E/KuQXZemXkG+5AYtxLpFYAJlZj1yuhvH7vjyLhtn5RmblGzFqlUTjCQZHxtjW3cdLjfcSGOsmkRyaukF5L5/+dC0dHV7+/OdhTKarUatzWb58Af/zPxdx9tkVUj0466xyaULdggU2jh2rRKs1MmtWIVVVtoyasGxZAbm5WqqqsvH5otx8y1J6e0eF6aqXrmPlikLGgjGcx/30tHoYOOajc/8ggVCAT1z8DYYi3TjcR2luPUg05qO7fyfd/TtxuvrQqK3k5urItQk35ekCT7ogGgrFiUTjUn5WaZlw3NjzdLzySg+eoTE0WiUXXVTMddfXCKHv8SS5Vq1EjAoLDJSXZXHihA+5XEY8ruHqyz7JrZ+4lT/86Y88+8KDXPuxdVx12XXccNWneOUVP93dfvr6guTm6jKOY1GI6RsfRuLoGRVqwsgYxcUm8vIM+P1R6SFOU5OLgYEAI8Nj6PUqDAYVVVUWSktMlJdbCIai1IzfvEei45EQs8wZeXRiHlh+geB68frGpp16eiqkC9PTve9UUx0BcsdrQu54TcjJtpIz3q51YL8Tj3sYm1WTIXDNFIp/sv07g3cOhUXC+XfgoOBG0Y4P7VjVIAQ91yQ+xJ5DBWza8iyvt7Vy2y13kGezUVpq5vrrq3G5QphNqnGOoJcyhNIJuOiESW+/Ete/qqEwYyKdiHTCL4ZYi+8R2yRFuFwhkAlZuMapGtu/hP3PPYnOZCavYhbKtLzd6SCXy5m7ai1er5cXX97KXV/9Jq1HjpJKpVDK9dhN52LWzkGlMGO2eVEnLcIbZ9BtlbI4dSWDBCPN/GFnL/1eP8nU1JZQl2khZ59zCSdeeZSLqjW4ihdjNxmwmi2UVtex7vqrefm1GC9uHiCWwRHsmM166uvncOWV80/JEcJhPVu2DLF+fSXfefBh/vS120jEYtx291fQpxkJPvmRD7GsrpaWI0fYe6AJp8vJ0IiDoREH7V3bmVs5j7FIktJSMzabLuNvPTmTakldHv7RCGaTIGKKx0BL6xAjI2NoNUoqKixcddUcotFEGkcYpL5eaAGMxhKMBmLjHCHFrNJqbv/C5Wzf1cTfN/+VX/3h57yw9Wk+fN2NEKugrXWY+HhsweR8scYmF4cOuSY4wl4nI16hHtQvEdru2iWOEKKz04tGo0CjUaJSycc5QjZdXaOYzBqqqrIlp1Zjo0tyMorOLTGrTHRB+ryRKRNPJ0OhVKIxGPENOqV/W7++DMVoB/RAXsnU9kCxrTQR1GGKdxMJBSW3l3/IRWBkmNKK+ZgtuRJH0KjVGa2G+/c7cTmHybGAfLY8Y92TWzanw3RtmOkwWLLJLS2n5ZUtrLjiGpr++TwKhYLc0vIZ1/mfiDMi11sOIXPEahXyVHzeMQoLjZx9TgnRSJyy8hvYcXgeT+x7lJt+eieXL7qa81cspaTUTI/DTzIpXHCKi80ZBHwyuU0XMOw2A5VV2Tgco+NiwISQlZ2tZdeuPkBwf736Sg/NzW48njCzZlno6w+we/cAlVXZ0iS+HjGQdfroKuFTyuUorVZM556L8eyzSYZCxHp6iBzrJO5yEevqInzgAMlAgEwf/KT1aDQorFaUNhumDRtQl5cxqFTxWGMjf/r+D2jrOjHlPRqZCZuiCrlMTipJxpTEZCoBDKKVdxNLDeCOj3Brrp15Wi3upIl/Bg0cCAsT7NRqDXbbbOYvqMVsnkU0msfKlXXMn29l2bJCnM46KiuzKSw0smpVIWvWCKGg555bit1uwOUKsnt3P7NnW7jxxhogxbnnlgITgd4TopYwQU8sbAAvvdTFP//ZhdcbkcI/J2P5ihUsX7ECvvlNUskku5/ewou//CWHm3cTjYxxUfcmHNEl+BbV8cMn7yXLaGBd7VqKiountAauW2fgqac62LylG78/xhVXVNHQUMwTT7SxdWsPeXl6srO1GPRKopE4wWAMtUZBSenEJKreXsEVmJurIxyOMzQ0xuFmN7JgNl+//jY++/4BfvzwI9z2i5+Qrc1lVcl65hfNn/ZgErPhrFYtPb1+XK4QGq0Ck1lNYaFx/OI+xIkTPgKBKAUFRioqzJw44ScaTZCTY8Zs1lBWBh7PGC53CIdjlMZDwpSuuro87DbBvZVMgNmsAWScOOFj9epCSkttGU6x08WpnF6nM9UxXYw8mWNz8vsdjlEee6yNQWeQc88r5aaPLjrtfZSrVERWn8+QtgTba5vo+fjHyf7QjeTdcQcy5ZlS8HagrzdAIBDHnKWWJiRGonE0aiXX3zAPR3chi50/4fmXf8Uvf/dt9hzYycLKm1i4sAyPZwy/P8acuTnYcrV4vRE8HkFcFh066QR38jEjBtGLrVyi6CW2twvLpdi7t5/h4TGaGoXJW2VlZtasLpKWC4R6AcbF6n8/RGHrqeee4Ol//I0Rryfjdblci1m/DKNuPvEEKOQWALL0KuYWmSjMieMZPc4J5xG2NLUTTRjQaa9BppYx6AnhCx0BBOtvQUEJBkM5RUVzyc+fg9kstIPb7XoKCkwsWXIlZWVmrr12HmefLbwm1oP5863ShLqqqhxuv305kJoy5CG9JqRPtJtcDwxZGmbX2ZhdZyORSBIYjtD9+hBzmkoZPOEnFknAmgS9wWO4I0fYc2g788rPkSYW9vQd4uG//piLL3g/i+adP21r4IH9TpzOMH19J9i4sYIv3b4MtytIKBjn4KFBjEYVpWUCAXIPhccfkpik1tpnnj3GiDdCYaGJSCRBJJJAr1cy6IxRUbSBn33/SvY1PsPv//wr/vbM4xTnncPc8qtQKLJwOEYz9kVqpR13cu3a1TfuyJJRv8ROfX0+DoeQ0yVOHk2vCSq1gh5HgIULbCxclMuJEz7cLqEmtLYOc/y4lyyLBo1aKeXRpYtf9UvzpSywN1wTTuH2Ot2aMJPAdrJ6cODAIE89dRSPZ4xzzyvhmmuqT3v/TlckO4O3FhJHMKnxeSMTHCGaoLT0/cxtmcs/tj7I/3z3i5y17DrOP+csSkrM9PT4SSRTlJaaKSkxZRDwyeQ2XcCw2/VUVmbjcAj3WelCVrYlnSOoePWVHpqa3Xg8Y8yanSVwhF39VFZmS5P4vOMUwT/kfsu+E/+Qi7YdrzBryXKM1pM7J/2jo2x+ZRuPPfU0hw6/TmoSx9CocsnR10sOGo0qC60qRiSmIJFMMRYfYizmZCw2yFjMyVlzV7N2TgyVPMlTjVp6R4Qao9HosNsrWbBgESbTbKLRPJYvr2XVxvn0enMYfP4FCgtC1C6bxfnXXIC1sASt0ch5Zh95hTn/Ekc4ftzL0aMjHD06wg9+sJarv/59Hv36Hex84hHO+uBH0YyL3XULF1C3cAEgCBwHDnXiGj7Orr37GR4eoyDfIglB9/7+e9isuaxedg5FRSVTWgPXrS+b4Aij0XGOUMQTT7Tz8ssO8vL05ORoMehVRKMJgoFxjlAyMZ2wr0/gCNZcHWNjcTwegSOEA1l85iN38NHrb+S+++/nm3d/D5M+jwWVFzKnvHbav7OYDWe1aunp8TPoCqLVKjGZVGkcAU50CW24BQUGKsqzONHlIxpJklOqw2zSUF4+zhFcYRwOP42NLg4edLFkidAe6XD4SSRS4+KejBNdPlY3FFFaas5wis0EgyWbwLCHRDyGQqli9epiVENGdv9VjT7LMmV5caqjxWQjNdTBcH8vBoswybPviBBTEEqa6TqJwDbdNFZx3Y891o7TGeS880q46aYZOMI0bZiQKZLNWbmaXU/8iad//F362loorll4SvH5Pw1nmM1bjMrZWWgqsjHolTQ2ufD7o7jcIY4cGcEzFObiiyu49YMbqKmo4Hcv/5FH9j1A53AL16y6EhIqtFolOp2Smpoc1BrBst/WNpH3sGbthHhhtxnYtauX+3/bjEolI5EEtUqBzxeht1eoQoVFBo4cGUanFfZn/vwcKYg8FI5hzdESjSXYsqWb48d89PUGiUQEu0FyGqfTdJDJ5SiMRhTV1Wirq0klk6SiUVJjYyTCYZJeL4lAgFQ8BokEMrkc1GrkegOKrCzkWi0O7wjP7d/PM7/5Dfvb2pAhE/JbxqGWGchTziFPOQ+jPL0AplDQiyvRjC8xxEBslNgkQeWRSB6mnI3k1FQxr0rLqhe3c8015zE8bGLr1n5WrSpl2bICHn64hcbGYRYt8nD11XOoqbFmFCARYmh3d7cPu90jFad0iL+3tGS+nk54WluHyM3VUVRk5HQgk8s56i/gqP1jXP79u7gs6ziDf3iIeZ2bOX5sB3uPNAHw0oFd/OxpKzdedBE3X3oZitRENst0IbrXXFPNNddUS+7AYCjO7t0D9PUFKCoySq2GLneQUDiGTqukqspCIBAX2h2QkZ9vwOcdY9Rv4IKKaymS1bPt+Its6niMVs8sSuZ9CJfbljE5Ml2IeeqpDgYGAqiUCvr7hEko69aV4XIHCQSi5OXrWbeuDM9QmJZWD4VFRqxWLU5nELlCmIopEogexyjmLDXW8d77dILw7DPH2LdvAIfDz9lnF7NwkW2KyHQ6bqnJy6T/PlmAng4zkZb09aRPYxVh0Cvp7RklHE6wa2d/hsgltkDO5DCDcXHNo2Puho8y+/h2Rh56mNC+fRTfey/q4umF1jN48ygqNpJKpjBla2garweObj+JBAQCUbodfiorLdx0w534wxdy3/3forV9H/7QF8gyLGEsHCfPrmd2pYXCAqPU7jhdBpBIUl94sYvmJhcqtQJrjg6fP0Jvj1APGhqK2b1rgGOdXgAKC03U1FhxOEYJBqOM+mPE4gmaDw+xZUs3XSd8KFTCTatMdpKnHm8xUqkUh1ubeP6lZ3n+pedw9HZNWkKGUVuDxbgSs64WuVx48qxUyJidb2R49EXcvnb+uqsDfyhTFFMqc1i//hbC4QSXvK+SPXs+zbp18/j85y/nvvva2LzZIRGRzZsdbN7czUc+soBrr5170nqQjjdSE8TlT1YPFAo5WTYdi84tYeE5xYT9Mbpbhtj9fBeF8SqKNXNYfflV5JabCMtl9A4EePypxznR3cEv7v8hcvndnLX6PD503cc4q+E8PENhSTASJ9Q2NbmorhFaYj95S63kDNSohdtEh2OUkZEIQ54xSRAKh4R6UFmZJdUD8Rj1+iKEwylKCy7i2o217Dn0FG3HnqZ3cDsyzQc5++xPc2C/U3KVlZaauO76idZ7R88ojU0uZDIZXu9Ebln/QAC/PyZkLI4Lx8VFBnzeiLR9S5aGZGKiJjh6JmrC5DzUvv4AW7f2SEHc002wPJUQNHmZkwnQM61jpppwsu3r9UpGR6McO+ZlbCzB9m19ksiV3v44kwB3MmHtDN4ezJ5tIafQgEGvmsIRhoZCXHzxLD58wzoqK8p48oXf8c+dD9A72Mwl6z6IXKZDp1Oi06moqbGiVisoLTXT1uph06bjyBVy1q6dcHPZ7Xp27erj/vvHOUIiJXAEf4SeHkHYLywycuTICFqtgsYmFzXzrVIQeSgUw2rVTXCE4z76+gKExgR3+dB4d8VbgR2PPoRKqyNvViVqrXbK6z6/ny3btvP85pfZvue1jNxFAJXChFk7H4tuPprxFnWrMczCYjcKmYO9Jxw4Qz4GfKMkJ4liFl0HgdgCNGUNXH9LIbK/befaa9cxPGzk5Zf7WLFigiMcOuRh4UIPV99QS26BFVG4Kkq7nr8VHKG21saTT3agVMppafGwceMsrvifb/G373+NXY//iTXX3Yhq0vfkcPhxdKUwm+fy3TsvkMTPw81uDjQepeXIYQBe2bWVBx+zc83ll3HDVVeQTExMHUwPVRdxzTXzuOaaeZI7MBiKsXuXMIW3uMgktRq6XCFCoRharYKqqmyCgRhyheAyKsg3jGdl6Vk+/8NYtCs51P48u5sfomtgJxVVn8DlsmVMjkwXYgSOEESlUtDfF0zjCCFGR4V6MMERhigsMmC1ahlwBlEohGNfqAdmenpGycrgCBOC0bPPdrJvn1PgCGeVCBxhksg0WVA2Zmcz3N9PLBJBoRREoO72TmRqE/7RJFm2zPeI28uz5nHgL7twHuugpEaYutjX9joGSzallYVoc6aKWOnrWbp0Oo6gordnlFA4zs6d/Rki16lyuMRjSKwJS5fOomr5Kk40HiS3rBx7xenFXvwn4YzI9RYjO0dHXlk++w84pSd3tYvt7NrZz+BgkG3b+rjxxixyjNn8/NN38djL/+SxnX/j6GA7t2y8AYulBKVSjlqjlEiueCNmzdFmTJ8DeOGFLlpbhzCb1eTnGxkNxIAUGo2SkhIjCxfaCAbiwnQtf5Sqqhy+8MV6yTo/f2UhLneQQWcIlUpGVZWFIaeR7mPCFKk3A5lcjkyrBa0WhcUCBQXTLnesr48nX9nKo//8J529vaiUSpbMWsR55e+jq3+Qrug+ilVlLNCWUakyEEp5GEkcYjDu5VxjNmcb9WQrIjSFfdyUVmx1ChX5lhLMlkpshTXEsxaw/5iMC215fPWb5/HVb14BCOGACoWS9evLKC42ceGFFYhP3k9n+typlkl/Si8ul/6eq6+eS01N7hsc0SoExKbUGrKvvQbLVVfy6j1/xvTXP/BEWRlPR+M87xvB6fFwzyOP8H+PPsrZC1ewouws1rPopKHq6TfZ6S2w4rEmOqIKCoycdVZJRtC96EzyDIfxDIepyCsjz/RRjrmPsrv3JT7362/x9J4G5metwaLLIWs8tFoUvebNy6ak1CTkcjn81C62S0+/RYHLbjOwZUs3/X0BFtfayMvTs3v3APPnC5lynZ3D3P/bZurr7axfV44YQJ/uaLNatahUcny+CAcPusiyaGcc7gAztzFOXib996X1+adsf5wpgP9U2w6G4hSXmBh0BmlYXZjxWkaP/QwiV/rfOHvF9WjmzWP4z4/ScfFlhD78RdzzVk97Q3YGbw65Vj2WLC1tR4elerB4sZ1QKM5jj7Xh6BklFIyxcmUBa1duYP68er57z508+fy3qa5ay8KqG0kkTFiytBlEVaoJVq0UmG2zG9ixs48XXzxBLJbEZFQTGBXrgYKSUkE8WdUgnNv2PB3OgSA11blsuLBCcsfk5+vx+yMk4knsdj3ls1XsbCLjocPbgWQySePhA/ztmcd4fvNzeH0jmIwW5lWuQSO7jGO9v0WtzB0XtpaSIsZYtAeX7x/IZWEuW/E5aopNqJRyfvS3PfR52sfXLEOnK8BsrqCsrJqLLz6L9nYtQ0NeTCYNO3bcLe3D+vF2ifVpbRPr15ed9jTSN1oT3kw9kMlk6LPUVDcUoivU89DvDpNwRyhOpnA0epArZOgMSs5d9gmW16+gteMlDjTu5ZXtm3ll+2YqymZz7uprKMlfx4L5eWzcWJGRBSVisugiTuAUjx+HYxSNRsm8aisVFeYMEdZmN2DJElxG7qEQqaSK1cuuw6BsoMv5LJu3PcTexuc4Z9VN1C+6kFRSjtcXAYR6sGihjTXj1zdxYIIoyOQXGKivz5NEqsZGN7W1NlY1FLB71wCRaJxsixazWYVcIeOhh1opKTWyeJGNeXOzMwThxYvt9PUFGfGOsfe1AXJydFiytBmCz+kIQZOXmfz7dOH6kzHTMifbfigUx2RSM3u2BY9njLVnTbSiTZfDNRnTCWuiqKbXK/G6wqitWrLzzwhgbxVysnXMnp/P/v1O/P6oxBF27uxjcDDE9m19lN+YhUFv5mtf+DrPb9nMUy88xK8euYvr3/chLFlVKJRK1GqFRHIn6oEuY/ocwAsvnKClxYPZrKYg38hoIMhETTCxcIGNYDBGKCRyhOxMjlCTi8sdwpnGEYIYcPlgZKCfZDKBXH6SYLfTQN+RNtp2vMKcVWvISptQ5xkZ4YWXt/LXZ57j9bZ2UqkUs8vmUlO+gX6nC0/wECXZ5ayanU9+loXe4SA9w80MBYZZXlHE0goTwYiSl9u0vHZigiNoVWqKcywUZFux5ZSgsS5jS3ceq2fN5VtfWsfnvvQ+QOAIcrliRo7wkY+8vRxh6dJ8SQQDKJo7j0u+eCfP/uT7bPvT72m49oPojOnDxcx0dIyMt3X7JaEzy6LBbLTxievvwu1rYsv2V3AOurj3tw/w/37/R1bVr2FB1XmcxcKMUPXJSBeD0ltgxWNNdEQVFhg5W+II/owMrOHhMYaHxygpnE1u9i30DrTR3PkPvvWT/+GlbWdRlnceRr2QEQZIote8uTmUlJiEXK5ukSMIjihR4LLb9eMcITjOEQzs3tVPzXwrdpuejs4R7r+/mSVL7Kwfj4QQzxXxM1itWlRKOT5vhAMHB6dMsBQ/Z7qL0piTS197G7GxMbQG4T5rsOsE4biWgcEIJbMmi0f52O16UqkUTRoNg8c7pHX3trVgtudRUGShdNZUsXfyticjGIpRXGLC6Qyy+mQcYQaRa7JDbP4568kqX0xvj5chv4Jejxtjue9dwxHOiFxvA9rahnh5SxeBQJyFG8qprs7l4osr2LzFQVmZiZ07++nsFCZUrJ7TQMRtpXFoCz944peU51Zw/Zr3U1paLa2rx+HHaFCRm6vl0CEX6flGRqMStVqJ3a7nkktmsXv3AN3dfuTyFIlkSnLLuNxBKQjc5x0TbKDjN6SeIQOb+k6gVis5++wC2v8pqNuTLcD/KlKpFO3dXTz0/PM89cor9A9lZqCUy1cze7CCOr2LLFuQg2MWuqIuWsYcPD+a6c/KUcqpNhVwLKnjYFhNpamAa2+8mA/dfCkdvQZ+/L8HcLvDrFk3l/Xry4Ssk0n93qtXF2e0CZ6qYL1RTG5TmYzTJU6AlPVSVZUttcYAyJRKKm64nJaFq6hz7qfuiT/w5e5utluy+JPfz572drY07mJJ1QLJWTRZABGPDdFhJQowDQ3FtLUN8ehjrZSVmgmHExiNKhLJJPv3D+JyhTJEMIAeh59oJMHs2YJo9fIWLYZkEclsB7u6t7DNv5crVm7gmrwP43CMcmh8vHGWRSuJZeKxadArJTIjbqOs1Ex/X5CyUjPdDj9ud4gRr4GqKgOHDw8x4o2g1So5+5wSjrQPk2URHCwTYloOgUCMjo4R8vP1GPTKKdl3ohus8ZBLmsA4GQa9UprQKL4n/eebxanWU1pq4rrrqqd1iZ2qxx6mimv6ujrafXrULzyB5bc/wDH3Qlo++bl3TQF7N6CzY5hDjS5SqSSBoPD0uX5pPm53kC1bHCRTKfbuEybxVVXlsLruDqzm5RzueIijxz/D2uXXcsWVd0rr27Wrl9a2YfLzdRQUGDl0cKImeDxjqJRyTEY1555XQo8jQLfDj1wukybLipMURadHJBrH4Rhl8WI7VVVCTdixsw+5Qkb90jxyrONPdN/iegCQSCTYvXcbDz32O7bvfpVIZOLpsVJhoST7B4RHlGjkUJB9LWOxHvyhJlzev5NMTUy8lcnkzM7/Er0jYQ4c9xKKLacgfwm3felyKiqquffe13G7w2zcOJdvfGM1O3f2nlZNmKmN/M3iZDXhzdSD+fOtfPhji2hp8VBdnYNeJufwK70cO+higcWK0XoRn7rhI4TkHv78lz/wxNN/4kT3MWKxR/nJt6+TBKl0ESRd5EhH+nHzwAPNaDRyZlcK+7t3r5PR0SiXXDJLEmJKS010dAwTCqnIz9ezeLGdQCCOWn0DF627DsfgX3nq+R/R1PoMH7r2DmAhhw66SKXAkiXUg9ISE/PmZhMKxdHrlVKbZLpIFQjG0WiVtLYO43aHcHT70aiVJBLQfNiNcyCIZzjM/JpcaRqu2xWk+bBQE+bPz+HAQRe5Vi32PEOGaCx+DkfPKIcaXej1ymkFo/RpjeJ70n/+KzjZusR/u+KKyikC2OnkcE0nrKUPJyCaRJ+vZ/6SU4+dP4PTR1urh5df7iYQiLFwYQXVNVYuvngWW7Y4KC0zsXNXH50dXgDmV61geDCb4wMvcv+ffkG+rZxL190wwRFaPfT0+DEaVVitWg4eEmqJmG9kNKrQqBXk2fVccuksdu/qH68JkEikJLeM6Pjp6RGCt4X7sJiUWbSp7zgqlZKzz8rnhEsg36PDQ/hcg2TnF079kKeJkN/HpvvuIbugiPzKuYyMjvLYHx/muRdfosvhyFg233wBmmgd8Shkae2U5oSJJ9288PoAvnDmtKm8LDWoF9LuLqb1eBCDQcnnP38Zs2fVcKIzSk/3ML19IRadU8H6C6reNRxhVt1Srrzz2zzzv9/j1Yd/x/LLryKnsFhy+KT/3USI/19gLyEn+yy+c+dtbH51O398/AkaD7/Otj1bqZ2/RHImTRZAxGMDkJxNdruehoYi2lo9PPpoG2VlZsKhOCaTikQixf4Dg7gGgxkiGEBPj59IJE5lZTYlJSZeflmDUlaMynCMxiPP89qh3axfczG5to/jcPg5KHEEjSSWiZ/RoFeNc4SJ/KmyMjP9fQHKysx0d/txu8N4vRGqqrJ5XeQIGgVnn1NCe/vwFDFNq1VSUCh0ilRVZmPQq6Zk34lusMZGFwa9iiyrlUQ8hn/IhcmaSyqZJOZ3gbYMo2mqW0yETCYjO78QV9cJ4tEoiXgMT18Pc1auRqmefoDPTG2K6a9fd928aTO5TosjTDPd0jmUoLM7hjLlI5FUYGnxvGs4whmR621AY5OL9iMjyIBuh5+GBtiwYTa5NgNH2oeFkNQ0N01b6zA62RVcUHse/2h+hh8+fQ/Nrl3c/oEPsHNzkObmoXGbvZlUKobfH5GI+aWXVlJSapZalCqrstm5QwgSFte/a1cvu3cPIJfDsWNesrN1XP6+SskpdrjZTSgUo6DACKRYWrKa82ob2HDOgn/5u4hEo+xsbubJrdt45tXt+MK+KcvIUWKRa1imP8JdeYOMJRW8FtLya0+mCKbAhEaej81aQXzecgYvPA+dxYjzpV6umW/l459YTFlZFpocH5deWklf3yjr15dNKVT/LrxZ0jLde8QnPqtWFbJx46yM1ya2U0XyxisZ/sMfWffb+zlPpqD9sivZlIhyx01Xoh0PNty8bx8alYq1tbUAktjk9UZobHSzcWOFJOyIyv/xYz7GxuLIZDLq6uzCNKtjXkAgP56hMB0dw5SVmikpNUsijEGvHD8+VxCOXMo9j/yZZ157kZ1HXuODZ11DqX0O0WgKw/hkuCPtw8gVMOgMk0gk2bixIqMdMByOk59vkCY+gnDBtubqWLGiEIfDz6pVBRnEYLKYplTJiEYTKFVygqH4FOeU3WZgLBKjs3MEg3F6kSsYipNMIE04TRePTqdtcCbM5PA6nddPlRU2E4rnF+MwfIxI41by83Ipqs5+w+s4g5nR1uahs2MEuUIQmowGgShvuGg2NpuB7dv7SCSSLF5sJzdXR0GhiUCggdKiZXhGX2T7nse46sPP87EbP8WN132MF17o4siRYebOzaGw0IhzIITfH+HAfic1NTkYDUqpRcntCrJjZ7/khhGxa1cvf/+7MLG1+fAQdpuetWuLpTY0j0cI845EkrgGFdz1xd8wr3rquPo3g9HAKJtefJEXt7zA9t2bSCSnhvsq5RYUcgOQQLxNCUTa8QVfk5ZRyFUUW2eRnz0ba+5smn1BrrhuMQ0qOQ8/bGL+fCtXX70YgEsvHZPqAUwlL/8unG5NON16ALBx46yMZfI+UkPDVZW07uinbdcAB19woDEoOWfBTXzw/bey7bW/Y8nKZtlygZhGY1Ee+vMDXHPlBzGbzBkihzPtOiyKO01NLvbtGyCRSFFRYeHcc4sZHY3S3xdg964BGhqKJRFJo1WycFGu1AJ4/XXz0lxjK6ks3cgre37Dt358EyuWXMTaFTejVlqkSaHifiQSoDeoiIzFJCFJdBHX1dppbx/GatVJx74Y3m61amhpGWb+/BxsaVmmDscohw4KNUEulzHqjzJ7VhalJWba24exZE3khdnsBiJjMTo7RqRzdzLEaY2iiDZZPDqd1sGZcDIX2MleO52pkNMhfTiB1xWmqtLyhtdxBidHY5OL9vZxjtDtp6FBmHZos+lpbx/GYFBluGna2jwoFVexZvkFvPLaE9z/2A/o6HmFWz9+E9tejtDcNDQeop1FKgX+0YhEzC+9pJKSErPUolRZmc3OnX2TOEIfu3f1I5fLxjmCVuAIS9M4QjhOQcG4uDz3fM5athqlYx/NLz3P2Td+7A1/B2PBAANH23nloQcI+v20BFN85cOfxT3cN2VZmUyFSm4ikZyYAllqDbB1vP1uAlmolQXYc8sxl6+k/oILONus5YUXupg//3w+8QmhHrQUeKhdGuP114fenRxh/iKu/eaPePYn32f7n/9I1bJVBLVzONLhZ968HOnvlkqlGBnow91xBG/HEXqHhdZ9uUKBMbeAz139MRIfVbN11xY+9fErUI1ns768fQdZJhP1tcL3JYpNPl+ExkYXGzfOkoQwiSMc9zEWjiGTy6mrs9HaOkzneCxCQ0PROEcYoazMTEmJWRJhDHrV+PG5klD4Cn71+4d4eecmDr6+kysuvJG8vBqi0SQGvUpyMSkUMpzOEMlEko0bZ2Vk0oVDcfLyDdLER0jjCCvHOUJDYYZYlC6mKcbrwaxZWaxbX5YxwEEUf+x2PWNjcTo7vBgMKi4+X/guRvr7KJpbg8/tIhmPkZDrCY0lpfeI709vG7RXzKZ121ZGh4fw9PZAKoXFnj/tRMbJ63mjr8+Uw3UqiN+VGj3haOoNdh+9s3hPily//OUvueeee3A6nSxevJj77ruP5cuX/9u2X7vYjtsdlv5fxHRZPW1tQ/j9EUa8Y+Ta8rjj4jtwRo/w51ee5dzPfJrZtipyk/PJoVrK6epx+Nn6soMlS+ysW1cOCBcaEIjuFVdUZezP7t0DtLQMgSzFWDiJWiOf1PYoQ6dTUlGRxcJFuQjjR1LolScP25uM0NgYbV1d7GhqYsv+fexrOUIwEgJSaGRGsmSFgCBypWduJYkznIxzPKrht0OLeClQhkduRqmQYzIXU1o6j3A4j6KiPDZunMXVV8/NKAyf/Ezm+Oyysixuv/3kI7X/0zCdbTkd6U98TkaA5BoNuZ/8BPuzlpD83S+Yd3Qf880mEocPk1qyhEQyyZfu/Tkn+vtpmF/H+dUbWbV4LnV1eezZ009fv5CHJbr/4rEUJpOa3Fwthw8PEY+n8HiEsby9faO0tLp54ok2EsmUZINdt65MmoBVXZ0rtTU2HhqmTLmCb1y1gn80P8ePn/wl1UXzuGbF+wmG7JKDqqfXz/BwmEAwJu3L4eYhXnnFIYls07nSbrxxfsZ3IYpjPm+E2bMtAPi8Y5SNX7DFwgdTn5JPfuIx3eAHnzcypX0YTt42eLp5X5OddW8lJu+D+F+8ciMymYysd8kTmtPFO10PqqutpBQyLBYNXm8kQ2wqLTWxdm1RhjuluMjAnt39xONJCosu49c/+RAvbXuYn/3qbu7/4y8pL7wAYstQKa0sWmhDHKbgdoWor89n8WI7TWI9qJlaDwB27xqgu8tHIpFCbxAyJNLFg2QiRVWlhcWL7fQPBIEcqiremMiVSqXoH+il7WgLu/fuYOv2V3D0nBifWJVCoypEJjMCIwhjECcyIONJL/Gkl2hiGK28AJVSRl52PbasHOpmzacyfy4GfSF+YP3Vczj3ggqU6omWmauumpuxL/9t9UBvUrP0onLqzi/l+CE3r/y1A/+JUdr7gpy1/HJK5+dI63rqucf5wU+/ya9/fy/Xvu9TmHVrsduNzJubQ1/fiYy8LrcrSCyeQqdV4vdH6HH4aW0dprraSjKRYnAwwDe+sYOqKguDzhCpFJx3npBvJk4Gve76GtyuIA891MrggI0br/o5vYPbeOjxn9LYso11q29i0cKbqKjIxtEzSm+Pn+ISIU+ys0NwwFdV5XDgwKAUmF1cYmLN6sIpU0cBNlw0kSPidgWlHLC6JcK04UAgSpZFkyGOTa4Hk11R02VueX2RKS4wESdrHTydzK9/RSQ7FSZvP10481qDFBaeXmbouwnvdE0QOEJI+n8Rk8PiQSDEPl+EkZExcnPtfPT9X8MfbufpF57g/R+5mdKCavTKWnKsNQJHUCvo6fHz8ssO6pfkTfn72e36qRxhVz+vt3iQyVKMhRPjHCGz7VGrVVBRnsXCRRN1QGWM0LT5eWo3XEKWbWa3XyqVYrivl6MH97H7la00Nh7ieI8wwbA4O5t25yCeQBStKj3aZKImpFIxoolhonFBbFDIk5w9b4zB0TJ8yYXk5i0iHLbPyBFuuaUuY3/E1ybXif9kTK4J9vJZfPDu+9jywC84smsHctV+7NZyNGOlNL3aibOrh5ivj/hYGKVGg62sgrmr1qI3Z+F1O2l/7QCx1zejMtn48i0flwSuSDTKN370Y5yDLlYsWcnKxZdTXzeHJXV57HltYIIjjLv/4vEUJrMaq1XL64cDxONJPB6TwBF6/bS0DvHEE+0kEpM5gh8QhBexrbGxcQSbYS2f+dAaXt37F37zp59SWb6Ai87+wDhHEBxUPT1+RkbCBAIxaV8ON7sFjjAusk3nShPC/ycgimM+b4TKcTE/EIiRZdFI5+VMzql0jmDIEl7bt6MF06zljPV3AmCx26acR5DJES5eP5uWVzbT3dyIp9eBxmim2ylDmR2aUayazln3VmJy5pj4X8jnRaFUvWtcXPAeFLkef/xxbrvtNn7961+zYsUKfvazn3HhhRdy5MgR7PZ/z/jkdGIvkmiYcIqIAoDdZqCxyUUgEEOtkhOPpTjc7KGysopffeaHtPY386sn/8JrvU/THnoF2Y7z+eKN78Pn1YxPdReU3sYmF/v2DdLfF8Saq5tCisV8peGRMAMDQYwGDU5nCL+/n7FIjHA4zvDwGLFYHLvNQJZllNZWN0pNkjgmQmNjBMJhRvx+nCPDmPUGZuXMpbHJRTQ+xu1/+BbRVJgUiSnfhRwlS3RXY5AJFxp3qJMUSVKkkAHFKhW5CjOBZDHtY9UcjNZRWm7hh19bRVXVRzKmjryX8UZsy+kTGtO/l3SyU72qihbzN9DSBw/8jJEHHyT46qv4z9nAorL59AwOsqvlELtbGjmrZQ2/++4XKCw0SE8XQDhOBweDqNUKKitzsNuNeDxhrFYtoVCcWDSJdyTK9u19XH/9PKmNcKa8Ko1Ggc2mZ+mCAq674ts88eI2fvXcQ3zv6R9yeOBCvvOpmxiLxOjvC1BYZKS6JiftBjDFyMgY8XiKsUg84xgXnVPZFg29vUGsVi2r1xRJ23Y6g8ydJ5C6I+3DzJ2Xw/XXTRS76USkya6o6bKyXO4gXV3+Ke63k1mCxfX4vBFpsuN0mWDpzrPppqu+GYjr8HnHcDpDM3729xL+E+pBZVUOBSWCo7C+Pn9aIi7WBJvdQEvLMJGI4AgJjMYY6FPy+U98i7XLP8DLOx7hmU1PEIv/hYR6La0dn8JomJMRsi3mFAWC8YyMpHSsaiigq8snWf7tNj3tR0ZoanIRCsfp6vZx1toiqsdbvFpbh9BpU8iVJkLhEOFwiNGAH8/wEM7BAS7Z8D4GB1Js3tzNk//4Ob2ubeNP3ae2OFoMq7FbLkatzKV/+DGGR19GJDNymQ6NugCtqhCNqgClXE9BgY61SwrJVVaSjCTRZ2uYv6aAqvo8zDYdCoV8yjbe7Xgr6gFAb98oHe4g1ZeUMXDUS7Q/ROuOfo4ddFG1PI+SeTmoVRaKCiroGzjB//v99zAZirjios/yvvfdBJCR1+VwjDLoFO4zZs+2oNMLLVKhYBybTc+hxkFiMeFvWVpqHneXmKbNrIrGEmi1CsrLLZy//sMsr1vHX569j+df/gXtxzZz0w1fJRQopK8vgM2mY3VDYYZTq6NjmP37hwmH49hsOukYFwUhi0VDb59QD9asLsrIypo3L4d168qkcP262gnX03RC02RX1HSZW+Dm4AEX/f0BVEp5hiB1stZBcV1eX0Sa7HgqkeytmIoorsPrG8M5EJrxs7/X8J9QE9KJfQZHSMs2En+f4AgK4vFxjlBVxXe//FM6uxv5w6N/ot3xKP0jVrLyLubTN78/jSNMEOpgMCa1sU0mxWK+0vDImMARjGoGnEH8o1E6OoYZ9owxf0GuRKizLBpaWl0UF9Qw3NnOL27/LCuv+RAJlZqBgQGsVitGzSx2vLiXMXcTv/jLbwlHI0QTUznCcDDMhxrO57Vj5fjDatoHf4pQN5KADLXCgkaZi1ppRa8uRqGAlXN9GDVJvv+dn6LKX8yCBbn/lRxBq9dz8ee+zOLzN3LgH0/T297CsV1HABkJpRGzrYxV561idv1yzFYb/YMRgSNcYKXqvBvY9dwLDDc9xyt/uJ+6iy6haG4NPT0j1FQtxu3ewmsH97D30F5WNq3jvntup7DQOIkj+HE6A6hUcqoqs8nLM0gcIRiME40m8XqjbNvWyw03VEtthJNzpcTfNRolNpuOusWFXH3Vj3nyuc089JcH+H+PfJ1jPZdx+603MzYWp78vSGGRgepqa8Z99shIhHg8ydhYTsYx3tbq4aXNXYCQhyUObBC3PeAUpu0CtLcPU1s7Ecw+kzNqsitKrtbhPNFNS4sHw/BR1AYTIwElJ44MTHG/pXMEU24OGoOR9l3b8LucyPU2jnWFCcXcUovmdJlg6W2c001XfTMQ1+HzRhhwBqXP/26GLPVWBy+9w1ixYgXLli3jF7/4BSCE2ZaUlPDZz36Wr3zlK1OWj0QiRCITk3v8fj8lJSX4fD7M5jfmZIp2dzP68sscCxnZtOkE0VgCg0HFWDiGVqfi/PVlUnvU3Hk5LK3Pp61tiJ07+7FateTl6WltHSYUjqHRKKivz6d+SR6b9zTywDPP8UrzbsKRCPMrZrNybj1XnLuGNUtqOHJkmCef7CAcjnPuuaUZYkU6URe3lUgkUCgUDA+H6B4PE49E4syfn8uXvrSM62/7CZuaNs0YNKxEw2z1avzJQXzxAUIMz/idGGRWlulvmPiOUvtZb3RRq0sQSuazU78c5bIGSheVYzSp2b69jyuvrHpXPWH5d2MmJ5dIdia3NJ445qH3wUfI3fIYKb+fvvwFOOuW8OCWv/Fq8z4AzAYD3/zYzXzs0kuRy+XSsaLRyCksNEpP7xyOUYbcQVpahkmlEnR3B1i7tohZs7Ol41okNQa9kvb2EXp6/ZQUmzCb1TidIenYBxiLRvmf/3uAh7c8TZ7Fyldv+CTKMfuUY9flDkptuKtXF2LN1UlupxMn/LS2eYhFE0SjSXKsGq66ai5L6/MzxCFx/9+MUDRZZNp/wMmBA4N0d/kYiyRYtiwvQzib6f0GvZJgKC4JTenfRfoy/f1COKzo5BInX6Yv/0YhriM/3zBePDO/h/jIiODket/lwgTUNwC/309WVtabum6+nXgn6wHAkT1O4vEkL27pYu/eAWpqrICMjo4RqqosbLiwIoN41y/NF9rLdw1QUmokmUhJE+T8/ij19fnkWFP8+S+PsXXnXznedRSzycLS2vO45MJLOX/dOTi6xmhqchGLJxl0hqhbkkdhgWGKE6StdYidu/pJxBMolOP1oFtwcUUiCaEe3L6ME8edXHzdeYxFZh4Xb7dchVKuIxztwhvcSyoVnXHZEtunydLXAhCO9jAW7UaltKFR2jEZcigpNXP++jLc7jAjAyHm2AwkxxJk5+uZsyKfqqV2TDlaaWrTfztO5uydXBNSyRT7t/XQ9GIPkZEI+iw1KpuWY/0+el1beeLZX+EfFdxSZ68+j+989ceUFAstnuLxItYEwUUoTPN0OPxUVVno6vIRCMSpqrIgl8mlY1psX+zvHyUSSVJTk5NxTNenTYlqev0Qt3/tixzramFV/fs4f+3HWbFi1rQOKLEVd/U4SW9qcuF2h+nrC5BIJPF4xsjJ0XL99dXSfpxsCuLpYrr3bdnSzaGDg0SiSUb9EWprbRnTImdahzhdUhSb0r8zcRtDQ+GM81cU58Rl3wzEdeQXGLBkaab9DryDQcoX5r6p4Pn3Qk14q+vBcH8vxw/sw+nVsGnT8QmOMBZHq1Vy/vpygqGY9LddujSftlYPO3f1jXMEA62tHkKhGBqNkFlaX5/H1u0HeOSJv7HnwA6isRgLq+dTt2AFG88/G73GSlOzm3g8idMZZEldXoZYkU7UxbbFklITiUSKnh4/Bw+4SCRTrFxRwJfGHbEf/uR32XlgE9M9xAAwabV887J1ALhHx7j7+S0zfic5hlw+t24NamWCF18v46izA4VCj1phQavJoaoyd7zFzYRWq+TI6/1UyLZTUrOAS2/7ihT0/d+OVCpFeNRP2O+jr2+U410hFiwupnLehDtuOo7Q1nScl3/7E8Y8Dhacsw6vrIL29mFMWUEeffoh9jcJHCHLbObLn/sMV182zhHGj0uNRkFhQTpHELJyW1s8JFNJurtHOeusYmbNskjHtdgiaNCraD8yTE+Pn5ISE2aTRhKcxJbL8NgY3/jBL3n2xaewZlv53Mc+RypeOOXYdblCUhvu6oaicY4g3LOc6PIJsRDxJNU1VsrKzNI20sUhcf/fjFC09eE/MhaOsfGOH7D34XsYcvnpjdVwwhFlLBJn2bJ8rr++etr3duzdTcsrmwHIW3QOSmslfl90ynch7qtBr6K/X8igE4Xn/Wk1Ybqpi6cDcR0FEkfI/B5EJ1fNWee94XW/U/XgPeXkikajHDhwgDvvnAjplcvlrF+/nt27d0/7nh/+8Id8+9vffsv2YWQ4zKaX3XR1+zEZVXiGwvT1BYVQUp2Kyy4XrPMi6Z7sGAmHE+ze3Ud+vpHSUhMymYzzV9Vx/qo6TvQM8beXdrD/2EEee+VZHnzhCXLMZtYsXky2qoB4zIQ3mIWrKThtu1R1dS79/UE2b+nCoFehViuQje9LMpnCbtcJ7pSeoZNO0ooT4Uh0KwZZDlnKfGQJGRqZEaMiF53MglqmRy0zjP/UIZfDskVZfLSin+R+L0p7Mdkf/ABZGzdyQ2FhRu/xZFvxGUzFTH38Mz39bzviY7eintW3rWHWzsco2vw8xa8e5/xrr+Tgh6/ntp/dx5GeE3zp3p8zp7SEs+uW0NjkorNzhMW1NqklVhRJnM4gbneIxbU2br99JS53kBdfEIhORYUZu80gBJVuOkF3t59EIonNpiNPp6ery0cymZTEHoNeyWVLL6a+oo4/bvszn7nvO1y66lxcnvW0tw9Ljiy7zcAVV1RJQlB/s5tDh1yEw3GyLBqsOVqCwSjRWJKaaqt0fon7smVLN7WL7W9YIEoXt9LfK65/4QKrNA3yZBAdXKJI5XIHJSeXuB1xmlF9fT7r1mUGoL4VQcZiiyWk/iVH2LsF/wn1YMgTotcxSm/P6PjEo1EGBgK4BkP09Y1SWGhi0ULhGi3+bcWAbxFbtnTT2eklv8AoEdGvffmLfHzw42zbsY+Wo6/wyq7nue2uJ1F+S8niBUtYtWwNqUQh/lErqZRt2nYp0aW16fnjhEIxsrM16LRKtFoFcoUce54OtyuIJUdDLBbmZHB5/wbI0aoK0anLSSZDaNUlaNXFqBTZKBVZKBVZqBRZKOQaaubnsH59GYsWXjCtuOAdDNG+e4DhQBKDQUX1BaVULc3DnKtDLp8+q+K/FSfLdZlcE2RyGe5QnG5FkoVLbcT7gox0+sk3qFh76Y3c+qmb+O7dP+DpTQ/x6s6X+cq3v8if7n8SEASkzo4RatNqwoH9Tlpbh/D7hEyrL395JQAvPH+Mbdv7sFonwnNPnPCxf58TAKNBSWmZma1be2htG5KEHr1eSXysgP/7/uM8s+nPPPrkzznR8xoy1dfZuWtuhivLZhdqgigGHWp00drqwWhUUVmVzehohNHRKPY8vXRuie9rax1iy5ZuFi+2vyGRKF14mvy+RQtzsWRphEEO3f6TBr4DU8RttysoObncrol6AMKginSR762qB8JEy9S/5Ah7N+GN1oS3uh6A0FGx6fm+cY6gZmgoTH9/EIVchl6v4rLLKoGJ9qjJjpFwKM7u3f3kF6gpLTUjk8k476ylLJhXQ/uRAU70Hmbn3h08+vTDPPSX35Fnt7Fq6VIMmiKC/iyisewZp6yp1QqMJjU9jlGMJjUgQ6dXotcrqZlvlXK+enqFB4wzIZVKcqCrF4veQKHFRFVeLjqVCrPWhEqRjS9so3u4CH8ol+GgmXtfjvGFC1/nqgY35374dnSmmY/rAkU7PS1yll125RmBKw0ymQy9OQu9OQtrMSxaMXWZ6TjCiT5wWq6hWP8ir2/dTGFNPXPn1lFWVs7ll97Hjj2v8a27/4+uni6+9r0fUlVRwZLFiwSO0OEVOMJ41qUokgw6g7jdYRbX2rjjjhW4XCFeHH8YMmtWFna7fpwjHKfb4SceT2Gz6cnLU9Ld7SeVSmHQqySn+Yaz3k9ddQNP/fMP3HX31zj/7AvwDG+k/YiH1auLJbfVFVdUSUJQf3OAg4cGGRtLkJWlpiBfj98fRaWSU5BvkM4vcV8kjvAGBSJxeyZbIcH2Q2QbYzg7j2Kfs5hcezHzFyNNg5wJs5euoPuYC483gcyQz7JlBbhcIUloErczwRHypO9cxKkC6U8HpaXmcY7AmxL6/hPxnhK5hoaGSCQS5OVl9obn5eXR3t4+7XvuvPNObrvtNul38UnNm4VzMIRCIae8zMyqVQUMDoZ57bU+wuEEVqv2lMHSwmhfpSQWpMPjihNz5TMrtZ5bvvwRer09/OXFnTS1HsPpf41ILMqf9kOW3kSWLpt9w7ns7i0mL9dClsGA2WCgs8PHCd8wWWjQy5QMMkI0osDl8fHXA0Pc+2IEb8KLmMslQi/LwSjPxSC3YlbkY5LbUcrU0utz5phZvboEs1k9JUco3NLCyMMPk2oMY77oIrI/dhO6OXOQqVRv+ns+g6k4lfhVPd9K2bX3EGr8AIM//BEjDz3EnLIyvtrwQR7YvZ+4Zpiz65YA07fciTfUFRXmDGHH4RiltU0gOt0OP5VVQTZtOkHnMS8atZzKKqHtsLHJJZH8SCSJTidMKEwmoGZeBS+9/+f8cdMmvvLL/8c/E6+xxLqelpblzJmTTU9PgFWrClBrlJIbqa4ujxMnfCSSSeavLMTlDjLoDKFUZTo8TpaRdSpM16Yo/r/4e0PDydexa1cvW7f2CNPC0sS39PU5HKP4/TGp5WwyTn3dmBnpLjix1TTLMprRdulwjFKSlSA3971DdP4T6kFfb4Bjx7wUl5ix2XSUlpk5dszHgf1ONFoFkDppeLSAiZqQvlxPT4COozoio+v43ldupqAowgO/f5Kde3bwhz//nkBQcOQ8+U8ThfmlKBVWXP4i+tylFBTYMJvMxGMqQlEnw74wpuws9OYxRrw+ZPIwz77g4aEnhjCaQ+g0FgLhOCBONJShUeWjURWh15SjU1egU5cilwuihlwGK1bks3xFgRQ6fjoIjIxxZI+TwRN+9GY1deeXMq8hH4tdf8a59SYwXU1IJzrFRUbadzvZ948u2rb2UVBpYem8DxIcWURn70Pcdcd3pfdN13JXWmpi+fLCKYMNWlqGcQ4Ijt8NF82m+bCb5mY30WiC4hKTlBuXUQ+0Silkft68HL725S/ykRuv5q7v3c637/k09uyVLKj6MK/tGUCtUbBhQzkNDcWSWGS16igqNKJQyKirteP1jREIxMjJmWgHE3GyjKyTYXKbYjrSz+OT1QTRqTl/fo40LXLy+w/sd560Hpz6mjEz0h1wYqtpetB+upD3XrtDe6M14a2uBwCDzhBykSM0FDI4GOK1Pf2Ew3GBI5wiWBpArVFQUZ5JQh0OP47uCPLUHOYWFXHt92+hf/AYzz2/jZ17XsfjfZFkMskzL8vIzbZj0OXQ48mjy1lGQX4OZpORZELNoGeE4eExsqMaVEoZasMwuQUqnnmhmWPHBzCYosiUIyhkRhKpiYmGOpWR86rnUV+Wi1mnIJ4AT1DHMZeeWblXo7GWsHbdQnLyrJx3wTzKKzIH3Hj6enjkzi9wcNMzrLr6BuTTuMlHPUN0Nx2kasVqCufM+5f+Dv+NOFk9qKn5MsdefpTGF/9BiSyGbellAKxZuYKPvP8unv7731BqQyxZvAiYiSMIAsusWVkZwo7D4ae1dQifL0p3t5/Kymw2bTpO5zEvarWCefMsaRzBz0B/gEgkgVarRKGQkUikmDevgsev/X88/tQzfO8n9/Lqrt1UFW2ktXUVVVUWehyjrGooRK1WSG6kJXV5nBjPHj3//HJc7hBOZwiXe2KAATCj6Hs6EFsty+05xKMRDvz9aRLxOMWVFRTNKwKE4P2TYc+eAV47nkdpiYFZc4VlJ18HHA7B+SzUhKlC1ulcN2ZCugtObDUV2yDF1x0OP/YcyMt7d1WF95TI9Wag0WjQaKYf1flmkJ+nZ40tO8MpsXpNodRa5XIH8QyFZ5y+Jlg+ZdKy6cS2tNTEqD9Kf3+Al7f0E4/LMI8uZrmpjvOuKMHhHGTnwVZ0OWFi8gAn+pxs2befBFH8wSCB8NSn8SqlCsuAkURUSSqmxK6xcs0FZ1Nsz6PEbmdOaSmziopQKhRT3nsqJKNRfE8+SXDbNtSzKrB+8hZMZ5+FwmJ5w+t6r+FU07PeSkwubPraWsr/9AjHHvgz4d/9mqWOv1JSPhfDJbdMtMxZkjy47Tdc6LkEqKO6OjcjU27dujLp99JSE8uXFUrTehyOURQKOdnjF8mGhiLpON+3z8lAf5DmZjfLluWh16ulG3m5XM5HL7mE2dY53Pbz+9jtepaeYDsNfReRjAiC6o0fqpG2OTmrCnKlJx0Ox4SIk23RIJfLyLac/Dyf3FKYLkoZ9Eppomn6OXk6WVm7dw9w7JgXrVY54zLTDaV4q+BwjLJ3Xz9+X5S6ujxq6+wZn0eaalmifE+JXG8Gb3U9KCo2kkqmqKiypBHgYjZcWE7zYaEmuF3BKe1I6SgsMOIuCVFYkPnUurTUJE21e/HFbmqqcwh568m3zKNhSRb2vDi79uzHmDVMliVIS1snja+/yr7GAOGxAMlkMmN97Jz4X7VKg1yuQyE3Y0sW8L7Lzqcgr4iyknKqZs+jrLQCtUrNW4XoWJyje530tAyj1impWVPAgrOLyck3oFD9d4hb/66aMLkezF9bRNWyPLY82s6JfW5MpFhXv5BbP/0w1XNskujx0rbfEwrFSCTfB0yIQ6XThL6vaijI+Aky1Co5OTlazj67WHrvseM+BgYC7Ns3gMGgZO6cHCqrsqXrYVFBMb/7xaN8/du/4K9//z92HPwypXnXYzEuJ8usoaGhOOPauWZ1oXQ9LsWE2xWS6kG6iBMbD0suLZv5qffkdsL0eiC6raZrdTxVC+TuXeODgIAv3T57yuvi+sWfb7XDyuEYZe/e8XqwJI+6WnvG50nP6Jpd8uadYu8FvNX1ACAvX8/arIlgbIDVq4uk1iqXK5TJESaR7vTg9/RAa5H4vvhiF52dXnz+CPGYHnWygZritZz9wQK6e7vZd7AFY1aIeMLPse5O2o41Eo2GGUtry5wMuVyOUqFBhpbsWA4rllVx0QUNFOblMbuiHKtGSccrm4lFIhRUzqG8rp7yRUswZuegMRpRqU/9HVqLSlj30Vt48dc/5/iBvVQuWzllmZZXNqPWG1iy8TLUune/y+RkeCfqQflNn0JnymL3X/9MPBqhfNVGTnQ6yQnt54N1cpTaPDqbO/BGTegMUf724r24PFcBdVTXWDMy5datK8s4NpcvL0jjCH7kCjnZFi02kSOMH+f79jkZGAiMc4R8tFolZpPgaJLL5Vx/1RUU59XwjR/9mJaux3H7Xmd+96XEY1oAbvzQfGmbk7OqgDSO4Jf2zzLOESyn4ghp7YJivp24Xr1Wjud1DU0vbcKca8dss2W852TOqN27+uns9KLVKGZcZrqhFG8VHA4/e/cO4PNFWbLETm2tHYNeJTk3RSEvXqYiL+/dVRPeUyJXbm4uCoWCwcHBjH8fHBwkP//N9ai+UWTn6BgOKSXrozVXx4svdLHntX5Igd8fpad3lMZGITtCnGKXnjeUZdFwpH2YLIsQRny4WZjAaDarOeusIlpahkkkEvSMh2zPmm2hosyCZyjCvLwFrF5djNms5tChQerq8qTWp0QiQSyRQIZgbRUKl4K2tiGee66TQCDOhg3lFM9W4h0NUGC1YsvOPsmnnRnRri48v/89iZERzJdeivUTH0cze/Ybzvp5r+JU07PeLqQXzqOla9h/bh4XeLZQsO+f8KefM7SggaOquTz9+pPsPXKY/Udbaem9lAe/9xmOHh1h06YTKBQy1qwtlsQYsZUQBNGnv3mIhQutFBaWSWIRgDVXh1wuJxpN4PGEcbnCyOVySsYv3vsPODHolejVZh7+5je5/68v8qedj/KP7ge4eP6VrFq1MMPRlD6FkHFxSJzsKG6zrW2Ibdv6GA3EGPFGphWyxBtKrUYgM6K7DGBpfX5GJpb4eUXM5PQSw/BrF9ulwQ/iz+lwOk6t9HWKouHpiGzpImRxsYGOjmHps4qvAxRlTQ2FfTfjP6Ee5Fr1WLK0dPf62bKlm9IyMxq1kqZmF7t29pOXp8OSpWXXrj4OiTVhPFg63W2RSCD9vcRsJKtVy1lrx+tBMkFjoxurVYveoOKstUW4h8Lk5S5hxYoCaqpzOXBgELNZxbp1ZeTa9ARDQQKB0fEhIDJkMhlKpZK+3iitLV7kChk9jgBLl1nJtQdQKJXMq5o5Y+jNIJlM4WjxcPQ1pyAG1tpYfF4xtlIzKs0bf7DybsY7URPS60EqT89gloIylRJcY7ibhvHm6nH0jLJjVxMPPPxzkskEOVkv8JFrv0V1zQXs2NnH3r0DLF9ewBVXzJHWK7bcitMMCwsMXLRxFpCSsryqa3K5EvjVrxrxeML4vHI0GiVLlxZk5GXp9UrOXXsZ9bWrefTJ/2V/028pymti/sIfAJmuJrcrKEw5PDzGooW2KfXA7QryzLPHaG/zYLFo0KiVU8Qssd1Qo1USCsYldxkIbYPpbqvpXF0zub3EQPySUkGsnhAAp+J0nVrTTV08lciW7r4rLhLqgfjZxYwuyWH2nkrs/c+oCTnZOqIyVSZHeLGLPXv6SKXAPxqhp2eUxkY3bndImmKXnjeUZdHQ3j5M1jgpP9zsxj8awWzSsGSJHa1GQSKZpKcngNWqY/bsLCorc/F641SVmVizphizSc3BQ4MsqRNanyLRKIFAgGhMqDMymcATDHo9jq4wf//HMQKBGBs2VFBSJmM0ECDPbiM56mPXE3/CklfAyvdfT/nCWnTmrIwYktPFgnPP5+hrO2nf+Sp5s6sw5UwIfIMnjuE81sHi8zdiL5t1krW8N/BOcYSi5Rdj7x5jYP9TuHoHiI8FUSiV1Jy9jv4jbbS89CSB7LW8uPcpGl8/RHPrYY51X83P7v4sR9pH2LTpOHKFnLVrJ0LL0yd6ulwh+psDLFqYS2GhURKLII0jRJIMDYVxDYaQyQyUlIxzhP1ODHoVOm0Wv7z7bv746HP8/eVH2NP6C86qv5ZVDQszHE3pUwgpFfZDnOwobrOt1cP2bX2MBqJ4xychThayJI6gVRAMxiV3GQhB9mImVsg4H1Okk7LFS9Cbhb/Z5JB9EW2tngmOMJ4pKf6cDqfj1Epfpygano7Ili5CFhUZ6egYkT6r+DqAPWfat/9H4z0lcqnVaurr69myZQvve9/7ACFUcsuWLdx6663/ln0QM7n6xkPhqqpyeO21fpwDAVQqBR6P0O4hA8bCMfYfcOLzjklOC4NRKYlSosvi0KFBPJ4wOTk6lizJY9YsCx0dHmw2LRaLlqX1eXQ7/CQTKebNs2I2qygsNJBlKc2wuisUChTjjqx0ctzY5MI5GKao0Eh2tpbP/eheXm7ewe3Xf4hv3PyRN/T5U6kUoy+9hP/ZZ1Ha7eR97WtkXbThjHtrEk41PevtQnrhFLddMH8l+fFbGPzx3aRefZkG00EWnbOOYCTI9sP7eXLv0wzefpxLF1xDX3+EokIj0UicRx9rneJGFKcZ5ucbpPB0Sk1S5pTRqKSkxERhoUFqPxSP8wMHBgmMRlEoZBiNamoKFvLljaVs7nyOJw4+DNkDVC/8LNmmiRD5yVMIxf/E7e3Z08+IN4LBoCQeS/LsM8dIJJOYzWpJyGo85OJQ4yBz5+bQ0FCUIYCJmCkDZaZ/T7c/X39dTUbG0huFeK42HhJy0mCi7XImkS0d6SLko4+10tToprIym9o6uySO2W0G4iMjb3of/xPxn1APxEyu5jYPnR0j9PUJ58aunf0MDwvO2tJSE7t2CaQiPBbjwH4nXt/YtG4LEFqtDh0axGxWs359OeecU8Kx4yP09/VjMKi45JJZaNRKwmMJ8vMMRCJJ9HohpDid+BoNRozjmSYTxFhHa4vQylVZlc0555Tg6DvBRz93GTqtnpbXut+y78bdM0rbjn4CIxHyZ5lZvL6E4rk5aA3vLjv8W4V3oiZMVw9qanJI+mJsf/wou548hq3CTMOKheTYfsKP7/06w74OfvnHm8kr+hE+zwL8fmEC22OPtk5xIoqCT35B5rUp3TVUWCS0GFqtWhYstEnHefPhIQ4dHMSSrSWZSCFXKLngrK9Qkr+KzTvv4+s/ug6l5qesP2dDxvYOHRRqgiVLK4lSotjm6PHT1uZhLBwjO0dHJBqXnuybzWoSCXA6g/T1B7BataxcWUBhgVFycqXjjdYEsUWyttYmBXi/WaTnkHV2jNeEmomaMFNLpfhvYj147NFWqW0z/b5TfJ93MPgv7ed/Gv4TaoKYyTXBEbJ5bU8/zoHgVI4wFmf/fic+b0RyWhgMqrS/lVmatCYOWahfkses2RY6Ooax2XRYLBqWLs0fz0eF6morZpOawkJjRuaPRq1GkzPBYl2uEI5uP6WlMpqa3TidIYEjWLTc8fXvsb95N5+/+RYq48Nk2fO48JbPUzhn3r/8IHvDp7/A7794Cwf/8QxrP/ARQfQYG6PxxX+QlZfP4gs2otJq/6VtvBvwTnKEo7451Kz5EGNdO4gkiqi9YCP16xqIhcP8/vZbUQT3cfunP8n3fhbiYPMBNm19FN+tnaxZ8gH6+gUuGY0mePTRtiluRHGaYUG+QQpPp3Qic8poVFJcYqKoyCC1H4rHucgR5Ao5JpOKqvJ6br6min0tf+XFnQ+iy+pnwcLbMEscYeoUQvE/lyvEls3d7HltgBHvGAaDing8ybPPdpIYn1YtClmNjS4OHXIxd272OEdQZYhzIApB9RTYV2CzG1GMx/HMlJWVwRGurz5lS+PJIApZjY1CThpMtF3OJLKlI12EfPTRNoEjVFmorbVL4pjdrifk877pfXyn8J4SuQBuu+02PvzhD7N06VKWL1/Oz372M4LBIB/96Eff9m0nx8ZwOoMoFHKKCo1SP7I9T08slqCo2ExNTQ6DgxNtgwcOOKmcnU1NdS4Oh5+yUvMUV0ddXZ7k5PL7I2zZ0k08niInR0t/MMBWf5RUKkV+vpGKCjNOZ4gsi3ZKyLboBCkrFTKVxFDTslIzh5uHiMUSNDa58HgEq7rfF3tjnz8cZviPf2SsuRnDmjXk3voZdPPnn8nemgYnCwt+O5FeODP3IYvS3/yGwPYdDN59N8rn/sbvKit5fuXH+eojj7CzuZnW4118+KwPsXHjwomx1IF4xiRA8cbe5x3j0CGXJEAB+P0x5s7NyWh1TMeuXX04HH50OmFUtkIhw2438JNb7qC5r5E77ruXVw8e5AtX3MzVF6yltNREXV0eYnBuOkQBzOeLkG3RUF2dw+BgiHA4Lly8F9sJhuJEI3EcDj9KhZyS4sxw+ba2Ielpa3q7JswcSC8iPa9gOgfWG4EoZFmtOgxG5bQ5aacbQJy+X29mX95teCfrAUxkclmtOowGJRaLBq83wrx5Ftrboa7OhsMxSlWVhWg0iT1PR3v7MHqDisICI4UFsLqhMEM4WLzYTiAo5LdAigMHBunq9uH1RhgNRNm9awCTSY1cISO/wEgykSQUik8Jyk53gfQPBDh4wMWSeru0/nAoxoEDTnr6BNdDMvXWBL4HfRHadvbj6hrFbNXS8P5KqurzMFjUb+rp/3sF70RNmLkeQPHcbHY92UnrjgE0LiUXnXMZ6849hzu+/ll2793O/3zz86w/+wrWrLgFnzdFY6ObQDAuBciLP+fNy8HrG+PQQZckPgGS+HXB+eXTuo76+0fp6vYxWykjmYDBwSCJZIrq6rP5+E2X8L+/vItPfP5Gzl1zBXfd/h0qKvKFmrBkak0QhZ/wWBy9TolcJsOgV45PeBSyrxYvthMKxVGpZXR1+YjHk1iytBnTSMWw+uqa3CkOsnT31HTikphZZrFophUE3wjSc8iMBuWUnLT0nydDes7av5Lz9W7CO10TxEyuKRwhnqCoyERNjZXBwYnMoAMHBqmcbaGmZpwjlJmnuDqW1OVJTi7/aIQtmx3E40lycnT0B4NsHe0hlUyRX2CkotzMgDNI1rj4lQ7RCVJWZqa7O40jlIkcIUljk4vhEYHDDHZ3U2pVct5Hb3lLBC4AvdnC+ps/w99/djeHN79A5fJVHHrh78TGwqy5/sPkFL75B4bvJrzzHGEhRYXvIxGLodbpkMlkqNQarvyfr/P4N7+C7/VdPPi/3+HZl1/hRz+7j51799F29BhXXPgJNm5cNMERgrGMSYCi2OPzRjIEKBA6nSSOMI0gs2tX/zhHUNLbm0ShkJNn13PXF+7iSNc+vv3j/2X3vgPc/IHPcPEFayktNbOkTsjfmywyiQKYzxsh26KluiYHpzPI2FiCykqRI8SIRhPjHEFGSYkp45xpa/VMcIS0dk3IdFBNF2afwRGmcWC9EYhCltWqw2BQTZuTdrqB9Bkc4U3sy38a3nMi17XXXovb7eYb3/gGTqeT2tpaXnjhhSlBk281EqOj9HzyFuxVNaxZu0a6wXj2mWP4fVFKSsxsuEiw2IZCMfQ6FU5nAHOWBkhRWGhALpeh1mT+SYQWrIkbjy1burBYtOh0Surr7Yx4I/h9Ebq6/VitWhYusmVMbUvHS5u7aWx0UVxkoqjYJGUhHW52o9Mpyc3VU7vYTvYeLfRBTvbpPy2JDQww9Otfk/T7yfnoR8n50I2oCma245/BO4NTFU7j2jXoG1bh/fOfGfrV/2P98eMsvuRSPnNgP68fP87Pn/8lS5ZaqV0s9L1rNUp27eojFI7h90cpKTULx16pCTFbbrIjanKWlijq6nXCKG2ZTJjyk0iCQiHjyBEvqUgRD3/lf/nuw/+PO3/3Y3a27Of+r3+JhYtyOdw8NH4Mj0iB+KWlJvLyDDgHg5jNagoLTRQWmhDFOICgY5TW1mECwRhZWRo8njHa2oakFuJNm05IT1snC0KnclClT00V3VPTred0kD4VcfWiwmkD8F3u4LSZYSfbr/8GvFP1QMTkTK6nnjpKU5ObwkIj555bikIhkH2FAkwmNZFIEqtVjccTRqNRUF+fP4UIV9fkZrQmuV0hTCYhX8iWq6OqykJLyzAKhYyFi2xYsjTT1oPNm7ulFsma+bkI+pKM6ppc+gcC7NrVT0GBkdo6G396BpTKf619MBZN0Ll/kK7mIVQaJQvPKWLB2UVY8gxnJia+QzhZPVBrlZxzwzzmLs9n6yPt7P37CYrnZfOHXz7Bbx+6j//75Y/Y/OpTuIa6+N5XH+b1wx40WiUHDgwyOhrFZFIxuzIbS5ZGyJNbMn09mEkoikSSxGJJ+vsCFBWZ0OqUhIIxEvEEjYfC3HbLz5gz6y/87k8/4rqb93Lfj3/F8voGFi0UXGA7dvYBCNf/AiN6g4rh4TB2u55EIkV+vl4SttJztzo6hlGpFSQSKQ41utDrlVTX5LJzVz+HDg4SCMannJOnck/BxHmb7p56syKXXi+E9M+bmz1lHeL2HY7Rk+5P+j79N+GdrgnpmVwAzz7bic8XoaTYzIaLKgAIBmPo9SqcA0HMWcK1sbDAIN0bpcNu12dMWtuyuRtLtgadTsWSJXa83gg+X4Tubj9Wq2acI2imJb0vbe6isdFNcbGRoiKTFHJ9uNmNTq8k16ajdrEdyz810AMxbz9Fqy+ifHHdWxpFMnfVWvraWzn0wnOcaDyAUq2m/pIrmLO8AYXyPUdb/6MwuSYoJ5kUCirnsv7jn2HLg79iywO/wiiXc+dVF/O7V/fQ1dvHH/56DytW5lK7uBoArVbBrt39hEIx/KMRSkrGc6xKJ9Y52RE1OUtLFHX1eiVjkQTIZGjUCpJJkCvkHDk6wthYOT//7i/46W9+yvd/9k0ONl/CPd+5nYWLbBxudkvHsBiIX1pqJj/fyOBgSKoRYu7pBEeI0drqIRCIkWUZ5witHqmFeNOm4xMcYZIgdCoHVfrUVNE9Nd16TgfpUxFXry7K2F66c03M2DpZ2+Pkaa7vdrwnrxa33nrrv816LEJhMqGvr8f34osMjFox6BcSDMUZGBBOgPx8o5T/I1eARiPkT+h1KjqP+VDIZVRUmDNuAKfL20kPphenGG7Z0s3oaAyQScunj0RNJ7UywGgUWlcMeuX4VLcoOp2SioosrLk6UinBonm6RSt08CAjDz2E3Gwm7xvfwHzhhSiM7/0ngu9VyBUKcm68EfNll3H8O3eT+/yzPJSdy09XF7DzxAnOra8ny2iUxCCPZ4yBgQAez5iUG7S0Pp916wwZuVmFhUbpxns6kWj16kIGB4UQ7mQqhdWqIy9fj8cTprNzBLfbyHVLPsr8wn08vvtvnPWpDm6/8lP0HZWTSkE0mqB/IEAwEOfmmxehVMlIJkGlUrBwUaYTS8zYslp1LFuWh9stbMNgVFJdnSuF56c/bRXhcgfxeSPk5+tnDKRPR1mpmf6+IGVvcrSv3WYgyzIq5fRNt53J3+cLLxxj27Y+amttzJqdfUrx672Md6IeiBj2hDlxwospW4PNbsDjGcM/GqUQYYKcmP9TWmYed5VEiYzFCYzGSCSENkMR02Xt2OyGDDdGdU0uB/Y7MZkCQtt6gYFQKM7QUFgKuk+fdigapxYtFGuEEIQPMnRaJVarjmBYaIdSvEkSk0ql6G0f4cgeJ/FogrIFVmrXl5JXbkap/teEszN4+1FQaeHary1jz7PHadrSi7tnlCWV7+e+uxfwzR99nmuv/CALFuSxYEEebpfQJh4KCe4oSNHePsy8eTlSi5XbFZSORf2QUjqmJwtFqxuEeuD3CS3stlwdXpWcIU+EEyf8AKxZcRlBbwl7X7+P6z/2Pm7+0Kc5d9VNHDooRDzEYklUajnr15cRGYvR1xegsipbav+dLl9LPJ/c7jCdHSMYDYLIZbXqMGepsVozpzWKOWD5BQIJO7DfedLA+NIyM319wZOG3p8KoVA8I6dvMqYT3V54/hhbtjiorLRw5ZVz/itcWzPhnawJPl+Eju6o1PI0MCC0hOYXGKT8H4VChkajQK1RoNcr6TzmRaGQUVGelSEITJe3kx5Mv3CRDbtdz5bN3YyORhE4gl/aTroLRYTAEVTjHEElTHUbjaDVKqgoH+cISYEjpBIJqlefjT7L8pZ/T+d99JPMql9OT+thCqvmUTS3Bq3ReOo3nsHbjgXnrKdwbjXHD7yGo6Ob3pZmPr58IVuLizgx6GJF/RIMer0kBgkcIYjHEyEYFK5LS5fms259WUZulsARhGv7dCLR6oYiBgdDDLlFjqAlX+QIHV7cbgOXnPMZKst28PwrT3D5Bw/zses/S/dxNakUwkOT/gDBYJybb16IUikjmUyhUsmlc0XE/vGaIHCEfNzuEJ0dXgwGFdU1Vik8f1qO4Arh80YoyDdkBLjPJC6VlZnp7wtQ9iZrgt2uz8jpm247k7/P558/zvZtfdTW2Zg1y/K2BNr/J+A9KXK9U8j/9rdwvryT0uYXaTRaWXf+7PE+2wlByuEYJZmAwkIT1TW5RCNxdu8eIBpLYDBm/jl27uhn775+li8rlPpl0wkvDJFlGZXyt3ocfl7Z6qCuLg+XOzjFPbK0Po9YNMmqVQUsrc+XiH5+voFzzhXyu556skPK/fGOzDxtBYQC53v6aQJbtqCdPx/7nV9BX1uL7MyTlvcElFlZdK67maPhuZx7+GG+OtRPfN16zON5CKlUiqR8jMsunz0lzF1Eem6Wyx2ScrCma6mors6lpmaELVu6UKvVlJebWbeuDM9QGINRidsd5tgxL6tqG7j1wxdw0/e/x62/+AYfOOf9XLp8Pc6BEIFAdLyNK9N2O1ngmTzNML2lUPz3NWuLphWHxNyxufNyCIbiJ3V0tbUNsXv3AApFpktTFKHOOqsIs1nD7t0DrFpVMGN216laUIbcQVpahrBaBdv3tm19HDvmZWRkDIdjdHwAxVQH3Rm8vXi9xUNb6zApheCQWt1QKLUXiYJUIgEatVIKyY5E4xw77iMcjtM/EJScFjt29rN3bz/Ll0/UA8gkvCLhnl2ZxaKFtoxcI+/ImNQuZrMbWL++DJ1eJZ0vlizhJsmSNcqihblYsjRs297D9p3tAKTeRAj18ECQ1u19+IfGsJWaWLyumNL5VnTGt24y4xm8/VCoFKy+qoqKRbk896tmhltHMBRW8M+ndpJltkwsKA9w3nml9PQEpGuVJWt0ak0Yz81yl4SkUPfJ17jqmlxqjoywd6+QGabRKKmq1EmC8OLFdpqaXETGzNx45U8IxF7lJ/f9gG27XuWDV32b2ZUF9PaM4vVFANkUMTgdk6cZVtfkZrTzAqxZXUhpiWnKNdjhGMU5EGTevBwpvB1mdlANDoYY8oQyWtJeeP4Y27b3cdbaIsxZGnbvGmBVw5uvB253kJbWiXoAsG17HydO+HAPhcnK0kii48lC6s/grcfRoyM0tQkH/bp1ZTSsEsKmRZLtcPhJJFIUFhiprrYSjSbYvatf4AiT8gp3Zgx+GOcIaYQXhFYwMX+rp8fP1q0OltTl4XKHprhHli7NFzhCQyFLl+ZLRL8g38C555ZSWmrmySc76Or2AaBQaylZsOht+67KF9VRvqjubVv/Gbx55BQUkXPJlbg2Hcc9VEeR6R9cpD5C3Rc+h0EviCWpVAqZPMxll1VOCXMXkZ6b5XKHpBys6drsqmus1BwZZsvmblRqFeXlWRMcwaDC7Q5xrNPP0tp1fOrjF/Olr3+Lb9zzFd534fWsW70R52CI0dGodF3M4AiTBJ7J0wzTWwrFf1+7dvpph2Lu2Lx5OQRDsZM6utpaPeze1Y9cIc9waYoi1NqzisjK0rB7Vz+rGgpnzO46VVui2x2itcUj3e9t39bHseNehkfCdHf7pQEUpxNU/27CGTXiLYTCaCR261fJued/WOE9gN22SGo1FNuJDHolc8cn1wgurC5CoRhyuUwadS2ST48njN8XxeMJZ2xHbF86ccJHIBAlL1+YGOHzjo0TkVTGyStCrVGSn2+QyPZkog/Q0TlCPCGMlrfmZD6xTEdidBTPAw8Q7ezEfMkl5H7+c2hKSv71L/EM/qMg9OevxfzFDWgfvx/vo48y2NeL9ZO38OD2bXz/97/nd3d9nfOXL5/2/em5WcIklbh0vIlPEstKzVIAvdmsIi/PQEGBUcrustsMVFfnZghRc0pz2XLfL/jO7x7kvr88hsPXyfc+9lmqa3LHg7x72bq1h9JSE9bcieM4fR3pWVrWXB1VVTnSsidrA5yOYBj0wkRVUdAWp7G43WH6+gMUFRozlhdFKACrVSeNlJ+J1Ij7MzknTERLyzBOZ5CWlmE2bJhNba2N0dEohYUG6ZoApxdUfwZvHRbMtyJLpVg0fh0W24PEIGwxsyidZG7Z0k04HCeRSJI+3uxk9cDri+D1jeHY6edYp5e6JXnj63OTSoHVqqWiIov0drHqmlyJlKdPoEvPFXrssTbGxgS3yBtpVwwHorTvHmCgw4fBomH5pRXMXZGPyar9r87derejsCqbdZ9ayI7HjxLsC9HyUoolGwzojGqGRzy8/0MXs2h+LT/+zr3odMIN8mTxJD03Kz3UfWgoTEfHsOBuHD8ezWYVOdk6iktMlJaYpWOzoSFzvwTh6lYaVqzlc1/+BD/8+Y18+6t3c+21l9DTEyASjbN58/RDE9LFrPR9zR2vCbnjNUE8J8RzV9yX6eqBPq0eLFpoY2goLG3D4xnD749KAeMgCFBSPcg5dT0Q92VyTpiIlpZhnAPj9eCi2QDU1toYGR7DatVK95rAKUW5M3hrEI9G2ffs36goUZHS5EjEWmw1FNuJDHrVeE0wSy6sUDiexhH8Evn0eML4pq0JQvvSiS4fo6Mx8iWOEJEeVkzLEdQK8vINEtmeTPQBOjtHxmsTGLOtGN4GF9cZvHsgZnhVzb6Nf/74Nhz7d1MyezYymYz7H3qE3z70MPfd/UNWLa2f9v3puVnp0xY9Q2E6OkYw6AVhVxRezCY1efkGCgoMUnaX3S64xtKFqMoKK3/5/QP89Fe/5oGHH8Y10sGXP3M71dVWSkvN7NrVNz1HSFtHepaWwBGyJzjCSdoApxOcDHoVW8ZrUCZHCKVxhInlRREKhPu311s8ADOKXOL+TM4JE9Ha4mHAGaS1xcNFF82its6GfzRCYaEx4wHm6QTVv5twRuR6i7HyY5fiHDzMyMOPMLB9Pn36UsmKf6R9mLnzciYFVcuIRhPIZDL0OiVtrUM0HnJRU5OD1aqjri6P1aunjhV1uYMEAlESiRSDzpAkFhSXGCksNEqkfWRkTJqCN93NWM/41LbVqwuprs5l/bpSNh9XgpcZc1IiJ07g+e1vScVi5H7+8+Rcd+2Z6YnvUWT05991F8Y1axj4yp04f/B9nhoN4AsGufprX+UHt3yKT1155RQCa7cZWLgIDjcP0d8fkByNLneQJ5/skMhMebmwDSEvQiu10orrgKl5Uhq1mu/f8inOW7qUW+6+m4u//Fluv+oTlJaeze7dA7S2eRgYCFBdM9GqmD7RRGy3dDhG8XnHcDoFi7GYaSc6LyeLQpMHQ9htBvYfcGZMeuzoGKap0U1hkZFly/Iy3GRtbUNodQoKCgySkwtg1arpM+wmT0IV9x9g585+rFYt8+fnZKxj1uxsYrEU+fmG8fyNzHP/dIPqz+Bfw5w5VmbNykZvVme0G4rtRPPm5WQEwjsco5zo8hMZi7NosY1YNMFP/ncfqxoKqKnJweeNUFMzdY6z2xXE7xemDoXH4pw44aOtdQiQsaTezqKFNmn9HZ0jEjGefDx4fREcO/2YzWoWLbSxbl0pwbFe2nsgmRS2czIynIgnOdHopvOgC4VCzrxV+Sw8txhroRGF8q3LbDmDdw6Vc3Ko/PpKju4b5NU/H2HH4x0sWlfC690HcA7209PXTXdvF7/92cPk5508lzM3VycJR08+lVYPxmvOooU2LFla6ficnDM1OVNqQfVinnt8C9/64Z3c8fXPsmbF83z7zrt5bY+fQ40uZDKw2XQZ7xGnHorrS5/86BwI4fVFJDeazW6Y0go4ObDdZjdwYL8zY8pjR8ewtI10NycIIptOq6Ag3yA5uQBWNcz83U03XRFg565J9SBtHbNnZROLpsgvMEzJ6TtTD95+JOJxupsPgUzG1Td+DKVKleGaEMnlvHk5U4Kqo5E4MrkcvV5JW5uHxkYXNTVWrFYdS5bYWT0N8XW5Q4yOxkgmkjhFjlBmHp9ubZRI+4h3TJqCNx057+kZpbHRxeqGIqprrKxbV8re12X4w2DMsaHWvfuJ8Bm8eaRzhNB1H2LzA7+k/2g7ebOr+Ocrr+L1+fnoZz7HN+74Eje8/8op77fb9VJulsQR7HqefbaTffucHD/uY+WKAgacQluvmCknttKK64CpeVJqlYqvfP6zNCxfxh3f/DYfuvXjfPLGzwkcYVc/ra0eBvoDVFdPhMZncITxdkuHw4/PG2HAGRznCBpJ1JpOFJo8GMJu17N/vzMjaL+jY2ScIxhYtiw/w03W1upBq1OQn6+XnFwAqxqmagGQ2bY8hSPs6sNq1VIzLkaK65g1Sxh2VCBxhMxz/3SD6v/TcUbkehuQd8cdhF7bS/DJJ3jNvhHf8tksXCTcVE2+mSgsNJBIpBgNRHG5wgx5Qvh9UXy+CPn5BmrrMh0bLreQeSFMaJEhVwiigt8fpdvhJ5mAYChO0DHKju19HDs2IgWvXH9djUS0xfUc2D9IOByXsog2bJhNc9957H+9GJsh84RKpVIEd+zA+8QTKPPysH/5Dkznnotco+EM/jtgOucctE8/Re/nPsf/a2rmB/Pn80RLC1/51S853t/H3Z/+DArFhONDPM46O7xotUqyLFpJPAqHE6hUMnJztcgVghtKFJAefvh1XnttgBUrCrjxxgUZ+5Ce87VwkY11S5ex+/4HuOGu7/K1P/wv+442c9P6axgbi5Obq8XnHcPlDmK3GaY8vRRFrPx8A/n5Bk6c8JFICk8p7bbpn9JPh8mTHqOROP19QZbW5015Gt/Y5CIUjLNiZQEbNghP2RsaimcMj08X2tL3v7HJxaHGQcxmNVddNZcvfWl2xv6k/0wXDM84uN4ZOByjHDgwSEfHMIsX2yUHVzpKS00kkzA6GiMSSdLSMiy5Os45p4T8fAMadWbZbj7spqPTi0YjR6dVYcnSkEwkaWpykUgI2V9C6H0He/f2o1IpiEaEdpnrrq9Jc5B1sfmlbmKxJHl5BixZWjZcNJv6ZUZ0P/04o37hM0wncqVSKQZP+Gnb2c9YIEZhlYXF60sorLSg0Z+ZrvtexJxledjLTLz429c5sKmLWbULeeg3f+XTX/oor7c2ccUHLuD3/+9x5lXVZLyv+bCbzS91YzCopNbZ9HpQWmoiv8CA1zdGKSbql+aza1cvf//7ccxmNeevL884BtMzvoS8OSP3fPc+ivJq+c0fv8P1N2/gfz7/E+pq7YTHYmi0ygyxNr2NESbyrPILDOQXCDUhOe5cmcm5NRmTpzzq9UoCwTgarZLcXB3XXT/xnTQ1uQgG46xcWSC5rsSaMV0OX/o+pk9XbGpyceiQUA/ef9VcvnT77Cn7BEgh++LnOePg+vdAo9ez4TO38dfvfo3DW16kbsMlHG52c/DQIEvq8qQsrcnksrDQSCIBo74xXIMhhsbdWz5vhLx8A7W1mY4Nl0sQtJzOEAoFKBTCwwW/P0p3t9AKGQzFCDpibB/nCOLDyeuvr5aItrie/fudhMMJKYvoootm0XSwnuNtCfLLlv47vrozeJdg4boL2P/3Jzm6ezsFVXN55P/9gju/+wOee/GffONHP8bR18eXP/sZ5Gn5nuJx1tnpRaNRSJlSVqsOlVLOWDiOf1TIZTToVZKA9PDDLby2Z4AVKwu48cb5GfuRnvO1cJGNs1at5B+PPsInv3gXP7z32xxuex9XXnQdY5EEVqsWnzeCyxXCbtdPwxH8UstuQb6BE10+qaXSbteftig0edJjNJqgvy/A0qX5U9xZIkdYubKQi8YH1jU0FM0YHp8utE3hCIdc4xxhDl+6fVbG/qT/TBcM3wsOLhFnRK63ATKViuJf/oIjF19Og3MrB45ls3BR7iQHl4D+/gByuYz8PD2rVhUwOBjG4wlTU5MjtXCl43Czm84OLwXjUyA6O0eorMymts4+JRMpkUgST6TItqgzLMnpQllpmRm9LnPk6Ecuu5Dzahsytp2KRhl57DFCe/agW7YM+x23o1uw4C2dqHIG7w6o8vMp+9OfGLjrLr759DNULlnCDw8d4rdPP41reJjf3vlVtGohc8fhGKWry4/PH6G83JxBEM49twSxHcvpDBFMC9F1OEYZ8UYkcUaEyx3k2WeO0d7uQadT4nKHxtsaLTz8jW9z72N/4zf/+DPNx49wy/k3o4gr6DzmlcQ10Q02XfuwwzFKIpmSpo7C6YtCk6egOhyjGa3B6ahdbMftDuN2hzOmOW7Z0i2N7E7f5uS24nTROxiIY7Vqp1wn0vdbzN6bvN4z+PdCnNzmdIYAF+vWlU1LMM0mFUajCqtVJ7m2VjUUTEuu3a6gFMIdi8GwZyJYO31iHEy0O5aVmyitzpFIffp6FEo5hYVGauZbpffZcvP4yhe+ltHSmI7R4TFat/fh6QtiydOz9OJyZi22YbBozrQmvsdhseu56itL2fboEdp2DpBdYOeJBzfx6Ts+TMfxI1z70Uu5/+cPs7w+vb9QCPv1+aJEosI1P70eLFpok0QcS5Ygqu7eNUBfbwCKjVOO/2eePUZ7m1AP3K6QdF594JrrmDN7Efc98BW+/M0PcPlFt7Cq/jo6O7yYzWrpen2yFmIhQzWzJpyOMGSzZ9YDm92Q0Rqc/n7xPLRYNDz2aCuLF9vJzdVluMnEdYiY3FosIhCcvh6k73d6yP4Zgevfi9L5i6i/5Ar2//0p8mZXAjrGxhKc6PKxcJFtioPL5QrR2OTCZBayE1c1FDI4GBrnCFbUasUUcn242U1np5eCAuFv29nhpbLKQm2tfUomUjLRQyKRItuiyeQIaUJZWZkZvT6TI5xXO4caQ4wLrrrobfqmzuDdCLlcwVk3fJRnf/oDHIcbKV+8hJ9+79tUVpTzf7/+LQ88/CdcQ0P86Bt3oVZNtCF2dfnx+SIsXjwxdXT16iLMponszmAwRjAUk36fkSO4Qjz77DHa2obQp3MEu5Vf/vgefv37R3js6Uc43NbMtZfegjylH+cIGqntUXRwTW4fFvPyxKmjcPqi0OQpqA6HP6M1OB0CRwjhdodoa/VgzdVluMnE9YmY3FacLnoHg7HxmpB5nUjf7/1pNeG9JHDBGZHrbYO6uBj9V7+N4ptfprpnOw5HwQwEU4bFoqGubqrjY3rI0OmUGRN+Vq8uHD8JMgOlxdalVasKMoixwzHKoDNMIpHiwgvLM16DqcQ+7vHg+c1viDmdZF19Nbmf/CTq4un7gs/gvwNylYqiu+9GU1HBB++9j7xFi7mj5XWe3rYNj8/Ps/fcg0KhoLTUhFoljPpVquRSq6LDIQxMCIbiGPSCw0u8MXe5g9IFWSA+ExBC3wOkUiCTyejs8GK3GSgsFPrbP3j+xSwon8ud9/+Eu/78PTbMvYKLV6/JuOlPF5Tq6/OniM9vRSh7OgkRP++QO8iBAy7ptSPtw+h1KqqrczncPERriweZTIbd5s8QrGcS2ia3b57OvswElztIb5uboiITWTMudQb/CgTiWyYde9O5ohyOUTQaJUuX5rFmdeF4/lBxxjomL59MpCgoMKLRyIlE9KxuKJRIcjoJFtsdpwu0bj48hHMgQHl5FpdfNnvKdqYj9pFQnI79TnpahtHoVSxeV0z16kKy8/TIFWcefvy3QKmUc96N1RRWWdj26FFCO2T89sdPcMf3P8H+Q6/xoVuu4f57H2HtqnMAYZJn4yEXff0BHN1+qirH68H4JFDIvGa5XUHseXrmzM3m3HNLpjianAMBUoBMLqOj04vNbqCwQMzAquBbd/yBe+79EU/+41c0Ht7L2cu/CORJ65jcnji5hVjcj39VEEp3UomZXgcOOKXA+d6+IIcODhIIxqmrtbN9ex/DI2FsuTr0euUUV9fk/Zncunmq/ThZPRC3lWNUUf7mP/IZTIO113+YE4f207J1Mws2fhCXOzQla0uEwyFM3BUDtk+XgGq1ikyO0FAkEeV0F4jYurSqoTCDGDscfpzOEMlEkg0Xzsp4DSAW8JCdZ6eiMo8zOIN0VC5fRd7sKlpe3UIiFiNvdhWf/thHKcjP487v/oBnn38Rr8/Hj770Bboa9zMWjpOj0OJOmlEq5VLOlcPhlzK6DHpVRkudyxU6CUfw4xwIQApkcjmdnV7sNj2FhUYam1xce/nV1MxZwI/uu5uf/vbrrK67lvVnn5shAokir8AR8qaIz29FKHu6MCV+Xrc7xMGDExyhvX1EEJhr7Rw4MEgkItTHnp7MEP+ZhLbJ7Zunsy8zweUKcfyIm5LS7Df8Wd9JnBG53mIkk0nJijn72kvoeL2Jsr88gsJ5GJfbNEWIWrgoNyMz51QQlxczhMR2xuncGmLQ/OHDQzzxxBFyrDqufv8cgUAHo8L0rv6gRJTFUO7CMiVFJXpsFguanh6GH3wQVCpsX7qN7CuuOJO/dQYScm+5BXVZORfceSeWmvl8puMoF61aJbUs2m0GNm6syJhKIrbfyRWQTCDlRolwOEaRy2WsXFmIWqOUWg1BuDFftUqYWOr3R+ns9AKpjD70desWcp/yu/z8mQd5tvUx1LkjlFXcIO2PwzGK3x8jEknQeMhFNBKXXJPTuS3fDKZzUrW0DNHt8DMwEGDO3JxJ4+hTxONJYrEknZ1ePJ4xRkbGWLLEzrp1hoxpjGKL48ngcgfZuaMfjyfM6tWFGZ9rugmLO3f00fLaMWpr85j9sbfkK/ivx+jwGAPHRrCVTciGotDlcIxmkF2RsM7k0JgJE1laAkGvq82VpjZOdmto1EI9CIcT/N//7efokWHOPa+Ea66pxu+P4PVGpOwHEW2tQ+w/0ENBYZx58/IoLiolEUtyosnNsUPC+VZRa2PxecXYysyopnkqeQb/HZi3sgBbiYlNv2qmbauHH952P/f87it0HD/C/HkLpeVsdqEmiEHsomtLoYBEgvEMLI10DhzY70Quk7HhwgpBGJoU+r6qIa0edHiBVEbO1rp1ZXzqY1+m9chZ/O7Rb/DUS1/Alv99Fi3MzcjY0htUhMfiOHr8GS7IyYLXm8V0Tqr0wPllywqkmlBaaiKRSDI4GCIWS9A/EKSpySU5fYeGwlKQ/vr1ZaclbrldQXbsHK8JDYVTWj7TBbQd41P7VtTmUXfW6Tx8PYPTQUp4OscFt3yOR79+B0NH9rJu3RpJfJo82Wy64PdTQcwsEl0fYjvjdG4NMWi+uXmIxx8/gtWq5er3z8WgVxEKxQiHY/T3BySiLIZyx0+cILeigmgiwXvL93EG/ypkMhmX334Xz/7k+xze+hKHX/4nWqORFes28Nuf3sNnv/I16udWsfsvf0JvzkKhUpNHB7ZiA2XFYnaof7wmyEgkUlJulAiHw49MBitXFKBWK6RWQxDOlVXjE0v9oxE6OrwAkzjCEgzae/j947/m1f0PYbQMU17+YQApZ8vvjxKJxGlsdBGNJiTX5GTB681iOidVa4tH4Aj9AebMzSZLqgdmOjpG6OwMEQzGGBtL4PFEGB4OU79EmIqYPo1RbHE8GVyuEDt39o3Xg6KMzzX5OtTW6mHTpuOo5RFkineXbPTu2tv/cBw7doxVq1Zx2WWXccUVV7Bu3Toqv30nPc5ugi88S2N3DIdSOPlmCrGeCenEdGl9Pi53kCzLKNFInAceaEajkWM0qqXg+tWrCyUC9NhjbcJI04EQVVUuqqpySCZTjI5G2bOnn8JCA9ZcHZs2naCvP8C+fz5NU/dh7r7gAi519KAuL8f2pdswrlmDXKt9+77AM3hXwnzRBhS5VmSf/gybauYz/6yzMl6f7DgSj0vRreTzjvHSS114PGEWj1v2587Lwecdmzb0PX1iaUmp0ALZ2TFCf1+QbIsGh2OUFctKeOmiH/Pgc8/yP7/4Ja+1tPKDm2/j8gsWS9tvPOSis3NEyr9L30462tqGpID31WsEB+NkkUjEdAKSuD2rVcOBAyrhHF6aL7nY9h9wUlhoZP36cvz+CGazGr8/itc7BgjtXunTGE9H5Drc7GbLli7icaEdNN0VNl2YvsczRmA0xsjI2IzrPIM3hvbdA9zxrc8SSnp43xVXcOF5F1NSPNGimN6eKv7bG8nISSempZiwZI0SiU7Ug8JCI3q9kqee6pBa4OfNy8HrG+PAASfBQIzt2/q45ppqafhBZ6eXZ549xuqGQkKhOIcaXby27wBb9txJUUEJf/7pZo7udRINxymssrDw3GKKqrLRGs/kbp0BWIuMXP3VpTz/m9c5ssPNrVd9j7xqNTnZmU+T011HbpfQfiEKS17fGO3tw+zf76Tb4ae21pbRPjg59F2sB25XUJrAODQUljKwhobCWLI0XPf+S7jm/Wdz06c/zP/+8hb6Bz/Pt776PxlC8bHOEUaGx4iMxUkIsXXTno+7dvWye9cAqxoKqKrMnjY3S8RkASldyD5rrVBPzlpbRH19PqUlQn6XwzHKqoYCsiya8ZHvKfz+mNQ2uWVL94xB+tPB7QqO5ysJGayAJOJNF6YvToD0+aIn/4OfwRtCS0sL69ev5/LLL6ckt4DOg/spW7yEpUvzM9wjMEGCT1fcSiem4vqyLBqi0cR4TVBgNKqk4PrVDUWSiPbYY+04HD6czuA4R8gWOII/yp7XBqSg+k2bjjM4MMLh9tfoePIfZNet5AMf+MDb9n2dwbsTphwr13/nHob7euhpe52WrS+x75m/UrJgMfd/4ys4G/dhK5/F+R+/leyCQhyvN/Pqww/Ss+cZNIlBSqpXAUhuJZ83wksvdQscYbGNpfX5zJsnONOnC31Pn1haUmKmtNRMZ+cI/X0BLBYNDoefZctK2bjx/3j0b0/xnf/9KQebD3Pn577Kxg2LpfOisdFFZ4dXyr9L30462lo9UsD76tXCQ4HJrkkRkwUkmHBQWa1aDAdVEs8XXWwOh398eJUe/2gEs0mDfzTCyMjEVNX0aYynI3IdbnazZXM38biQN5nuCpscpt/YJDivywoUFBe9u4aUnBG53kI8++yzuN1uHnzwQR588EF0OgPnnXcBN1zzPkrbTzCv7Z9EF19JaWlVxvt27epl9+4BVq2aaCOZTJZFYipOf4tG4nQ7/LjdYVpeH0KlklNbm8ex4yP4fVEMRiXXX1eDZyiM2azGZtNRVGymdrEda66OhoYi9uzpxzM8RmOTIHwpFHKKCo20RwQnWrSpGcPll5F7663o5s8/k791BjPCsGwZZQ8/hOymj+H+6U/JvfVWwtnZfOrHd/Ptj3+CqpKSKUKtCKF90EFvzygjw8JI24WLbBz2RsjP10/rckxfF0C3w4/RpGLEG8HjiQDQ2TGCr6OQ733gTn7+j9/yqXu/RkpzB+87+2zs/5+9Mw9r6sz++CcLJCQQ1kTWRBAqiwruFdSO1bZqd+2iXey+TPdtpnunezvdp8u0M21numv3aWttbbWLraAtKGgBFVwIsiUESCCBQAK/P8K9JCG4zK+bzv08T59ocu/Le1PJyfnec75Hr0WrUaKNVBIbo2LvXif1Zof4+xY80VAweE8bDEYjeVz5C0i21m7Wr28UBYdJkxOHCVRCldfY7Djmzh3q1/cX8MA3/r2zs5eCAv0B/h+RERurRq0Ow+v18v7725k2NZlTT80K2a5SVJRMbFgPeQdQESBxYOQfk0J1w0ac3V1UPV7Og4//hayMHBYedyJpo6Zht0cTHR0e8t+3fxJdWJga0oDa38jeaNJhrvPFg23b24hQKwkbnGb4ww+NOOy9okH15nIHmWNiaGlxMWu2L8meMD6B3bvtbKu20dzUJZrWx8dHcERWNGs3QK/Lw9Zv9pKQFsm42SmYxsVLvlsSw1Brwzn52gK+e6eGn75twNURSexxXpThCt79z1vU763j+itvodXqEv9N+1dLWS1OYqI7ef31SvY2dNHX62XOH4xi9WOogQ3BJCT4DNmtFleAYOXu9XBk/p3Ex77LG+8+QWPLTzx2/7NMnpI4KLbJgAH6er1UVraRnjHUvuH/O1hS3CQOhFCFK/fpcSUISB12N9BKY2Mnbnc/Go2S+QvGiGbzwvlCpVd2dhwXXzzB7z1Ri7//+fkGzPUOuro8GE37n4IlVC+bTDoiNGF4PV7ee38706aFjgnCBMjsjJj9ri1x4Hz88ce0tLTwz3/+EwB1mJL3tmzn7GXnoosYg8PRG+D3I1Bc3EBJcSMzCpNFk+rgZFlITO0dbhydvWKFRk1NOz/+2EyYUk7BxFHs3NmO3d6LVhvG0qU5Yo5gMGhISYkayhFmJLNhYxM2W/dgjhCLXCHHlDjA1mrfzTO5lBNIjIBcoSDBOJoE42jy5y3g+xWvUbryQwb6+0nJyeMPyy4hLDqWM5aexVNPPcWcax7k61dfovaHYtobG5h+6uni5E6fACzkCD0kJwk5gpWkRG3INjv/3w+AujoHkVHhdHS4sdl8N3Nra9tp2pPGDZfcwyvvPs1tD91AmPoujvnDURgMGrSaMN+AlBgVDQ1d1NcP/b4FTzQUDN7T0nw/bySPK38BydbazfriBlQqBclJkUyenDhMoCr1iwf+nl7+Ah5AwUQ9jk43BRMPNEeA2FgV6ogwPJ5+3n9/B9OmJQ3Gg8D2RaELJy8rgoSEiBHX+z0iiVw/I1dddRUGQwbLl7/Hd9+txuGw8umnH/Lppx+iVCp5YfQRHLljFXGyXGDoy1BJydAXJkHk8k9g5s41iV8+hOqW5mYnDY1dRGrDGDVKy8CATwWOj0/GZuvGZNRRWtZMcXEDLS0upk5NFr8wAcydqyU5Wcv69Y2oVUq0GiUzZ6WQqrTz7b1mACJnzSLxzrsk/y2JAF54YTMrVmxnyZKxXH75RPF5dXY2phXLMZ93PtannuKeiAhWlhTzQ1UVHz/6GK62CLZva6Pe3En9Xp9Z9jHzTOTkJHDCCRl88GENCrkMkA16bzkZmx0XsrrKX/S1WJ20NLsYlajBZNRRZ/Z5Wn37TT1btlhJSYnk00ef5t5X/86ye+/hlMJjeeCPl4sVZqVlzfz0k4329h7SjLph1U4F+YaQBu+hEi2jMYp6cyflmy24uvvYvr0NGb4xy4L5ffDxodYKrvDMGBNLX98AGWP23w9fXd3K7t12Jk0aRdHMFD7+aCcOu+9Lb6i1wVdtl5WokASLn5Hw8HCqtlXy2L0v8vlnn1DbtJWaXdX87flqAArGHcWVFz4W8lz/JLqwMHVYPBAqQmpq2nA4en3G3I1dREaGkT3WZ1bvcPSiN2iZNi2ZvfUOVGol6wfHZqckR3LllRMDKshOPmkM8fER2GzdGE06wsMURCnltO/0tSDK5HKOPCWDzMkGdPERyOTSvxUJWL9+L//611YALrxwPEVFqcgVco5aOpb4ZC3fvVtD8Qe16Mf3c+s919Pf3093TzfHHfVHtm9vB4a3302ekkhpaROdXb1kZsaIQlEovywBfzHJanHS3Ozy3SQZFIA1GiWfr97Ntm0d5OYu4YJlJ3Dj7Vey8LQ5XHPJI8z9Q5F4o2HF8iqsVhfmOgeFhYHrg28QhPC4P48rozEKc30nGzY00t3toaOjh4F+iNQqQ1ZghVovuMIzJzdBNLIPnrYaTHVVK5vLLegNEcwsSkFv0PLSS1sCYkKo9XNyE+hoce5zbYmD46abbiI1NZsVK97j+++/oLPTxsbq7Wy89Q7CwsK46IxbmT1r+rDEuKS4kZ8qbQCiyGU2OwZjQvtgjuBLSO0dbn74oUmswouPj2DUKA0D/b5q8vj4JF+OYNJRWuqfIyQF5gjzTERolJQUN2Iy+ZLpWbMgzOXmk699x0gil0QognMEuULB7LMvIGf20dibm0gwjibaMIqlS5fy8ccfs2nTJu666xXMstnkFKXTsvFdPnr2eSxhUzn62DxycuM54cQMPvigBvng9w6z2UFTs5Ps7LiQ1VX+oq/F6hLjgcmko67O52n17Tf1VGyxkpoSxRvPv8jjf3+CP950M8fPO4mbr7lK9LQqLW3mp59aaWvrIS1teLVTQb4hpMF7KPHNaNRRX99JebkFl6uP7dvbkQFGk040vw8+PtRawVWeGRkx9Pb2k3EANyaqq2zs3mNn0uRRFBWl8vHHtdj9c4SgtYX3wWXv2O/avzckketnJCwsjKamJDo7F3LccYtob99JeHg1tbXfs2dPHc3H3MzAxuewPvUUL0SbKN/VxqK5RUyfbgQgNk7FXXd9T2SkkpkzU3G7PZSVtuHp6ycnN8H3pccYRXRMJ+npOkpKmlAoZIwfrxd9vYJ9gHq6PciAzk43y1dUUZBvEKe5OV0e0tN1vsl2zj6yu7bT8f77CDPurKYCSeCSGMaKFdvZtKkFQBS56ursVFbayMuLJ/3tFdSdu4yr9u5lc2Iy25sbWXD9dbxy232MzTZQXNzAxo1NhCnlvlaLnAQKC1PJzIoNqM6CfScOAPVmB5s3WegfGGDatETCVUr6vb72vBkzfF/mdLpw2lu9vHLnXRjj3uC5j16nvGYbZx+5jCNMqWRnxzFx4tC4d4vVid2viix4oiGMPKXQoNfS4+6jtrad5JRIJhaMEiu5Ql3LgbYrj5RIhWqPLK/wtWFqI/UY9FqKipLRRioDpiNJ/DrU18uxdU+ncOZUzlH1scO8gcrmDVTt/pHszPE0N7mIie6ks8vObffeTsqoSSw57XhmFCYNTtdx8s471TgcfXTYu6mvd9Dl9IjthPn5BlwuD+5eDyXFvnhQWJgitnb5+xpt29ZGfHwE8fFq9u518M8Xt7Lo1MyARNvd00e/p5+BLg/d7S4sth5kct9dew/QrVUQrZdcWCSGWLOmji+/rEMm830RLypKDYgHJ16Vz2f/+ImmUhk3X3UPDz19Jy+//jxNTe2cd+ataDRKVq3azdatVhRKmdh+t2jREUyZknRA8UB4rcPupqysiYa9TjIzY0T/O693qD2vqakLozGKObNm8MnbX3HhFedxx0Pn8dGn53P6yecza2aqOPEwP98gVnD5V5HtbyCEP3qDFndPHzZbD/HxasaOTcLt7g+Ybhp8/MH48QW/J8FVnxUVFmpr2onU6sV1hUqtkfYg8csQHh6OxZKK03ki8+efTrutCk/Tq1Q3W3F095IQlypOkLv3ry+zfXszJy74A0fO8ImvQzlC2GCO4KW0tBmPp5+cnHhfImxErOSKj1fjdPZx1Ow00bg72Aeop8fryxEcvSxfXu3LEQanywnVL+HhCjHxLf9iE8h8Nz62b2/7Td5Hid83wTmCfzzInDpUjfTkk09SVlZObe12brllKfff/xpFCxfy3PZ+ohrfI663mIofw8jJnUFhYQqZmbEB1Vkwslm68Hx9/VCOMH16IuHhCrzeAZyuPmYUJmOz9aDThdNm6+fZRx7i/kdf5vX3/s3W6iqO/8NFZIxOIXtsPJMm+oYsaDVhw6YuBk80hJGnFBoMGnp6PNTWdJCcomXiRINYyRXqWg60ZXkkMSxUe2R5ha8NU6vVYzBoKCpMQasNOyxzBEnk+plpaOiirs5nWnf22bOZMWMJdnsvvb02wsPj0ZyRR9/NV7Lym/9Q09PN1ztWo4uIYtaESagbk+kwRxMRpkGhUBAWLvcZoZq7xDsmQpuX2dzJwoXpAV47MJT0ajVKxmbHodEokclkuFwe0XQvJydBrFRJTNSSYwxn1Lp36KjdjnxcPg1WL9BO1U7Xb/IeSvy+WbJkbMAjQGWljZKSRgBMCzMwvfUmnLuMf/UPcG5PP7s6mjn99lu4+rgriVUlEhOtIj4+IuBD1V/wsVh9d5Bra9pZu7YuQJzduqUVGGD8BD32DjcuVx89bi8lJU0sXJhOYqIWe0cPERFKMjJixAosmUzG1WcuIictk1tfepxHVj7KNMNCFh99FCedPCZAIN5XFdn+8K/8KpqZEnKNYHFqf38fSQwLrvAx6LXieyo8HugURomfnzVr6igrayEsTM60yyaQlpnCjMYF9M11E58VRYQuBqMxirfff48fNq8EVvKf1fdjTMkjJnI8SrLp6OhBofRNy/J4+wPaCf29ihYuTA/w2RESWqvFSYfdTWKShgnj9eh0YXz4YQ31ZgcVFRZR5Nqz2463o49kmRx7rQOdPoKpJ4xmW0snvApOl5e1X5mZOSttH1cs8b/GvHkmzGaH+GcIjAcLF2Zw6k0TWflMBSbPTC4+4w5eeucBVq1ZQWOTg9NO+BO9fV6MJh36hAhReAkl9pjNndTUtmOuc5CfbyAnN4HqqlbRxD4mWoWlpRu7w9eyBT6vL4XC9zhmTAyWlm7GjIkBICUplX8/+x5X3ngzG8tfYufucnbtupXzlk1mydJcgID2wf/WhN5o0tHQ4Aw52VTAX5wSrlX4XQ7VrjySGBYcE/wFO4EDncQo8fMTmCMcQ7I3kqbNa4maMI/oeIOYpH70+UfYOy1s3PIJUZExHDlpKjJzKi2NsajCNCjkcsLC5fT0eDGbO8Uq7ClTEikqSsFsHj6BDYaSXiFJ12p9aaCr2y9HyI0XzbeD2ydtTc30Dbb//vST7dd62yQOIYJzhID8wG8QT1JSEvfc8xrXX38WFstOrr76dDZufAqFIplvd/+BEzPXo2n7jraGNOJSUgMEH4vFl5/W1vrlCIPi7NYtvn/Hw3KE4kYWLswgKVGLvcNNhEZJxphosQJLJpNx2flnkZV+BH999mFeXHEvuaZFLDz2KE46KRODQRPQPvjfmtD7V34VFaWGFLGC2y2Dhapg8WokMSy44tNg0AzPEQ5wCuOhiCRy/cycdtoRbN5soa2th+pqG5s3W+jp8TBhgp7zz4/HZMqg+18vs2TBCaxrb6PE1Y2ju5NPN34LgAwZ6bFjGd+3jLBwORMLRpGaqqW9w02r1cnyFVWoVT6D1rHZceza2c6rr/zErFkpnHFGjiheaTRh9Lj7MBl1pBl19Lo9VFW1oR6cVid8kUp1men/5D36ej38YJhNS8qx9Ch3ADB+/OGn6kr8/7n88okBbYoAeXnxAY/K+HhMb75B35KzeRM4vaefvT0Wnln9HFcdczUzZ5lEUSYUwr/j5mYnVqsvmAni7ObNLQwMQHSMmvETEnA4eqmqakWhkOF0eYABNm3yTUTp7OwVK5qGDOTjuf2Um3nqo5dZ3/Ih7u8tjJtw2TCjeOExVLXUvsjJScDp8rB9Wxtmc+c+2y2BYe2RI5nDh0JoWdu+vY2tW1o54YQMCgtTJVHrd8K8eSa+/rqetrYeyjZbMKZFETVKhbxlAPu2XsJMLqJy4pk8aRyzjzyTyu0l2NrN1O3dSh2+FjCNOpYpeddhipxEVtbQZ7JOF46718Nrr1WhUMiYNSsVjUbJv1/ZSleXh/nzR4utjlu3tOL19pOcFMmE8Xocjj6xLXHjd3sJc/fTtttB7IAMnSECb1QY35S3EDEhlubBEnaVSimKGBISAkVFqaLZrkBwPEhIieK0m6fw8dPlTOw7mpnjHHz/0zOUV65CLgtj8fHXM2/e6H1WMAntggExITdh2CTFopmpVFW1Dhr2dtJh76G+vgu9QYPV4gpoQxS875Yuup6IlWP4cetzvPreFZjSn+b0xUcDoSumQolO+0KYbLqv1kL/dkggwOcr2Bh+XwgxYdv2NrZs9cUEQbCT+O0JzhG2diczrh/aa2sZP3E8BoOG/v5+Tp5/Mt+uL6GhZQedXR18ue5LAOQyGXmpRiI8Z+AJMzFxooGUlEg6OtxYrS6WL69GrVbgdHrIzo5j164OXnnlJ2bPTuWMM7LFNiutNoyeHg8mk460NB29vV6qqmyo1b5pdcGTHQVfsPQBK/34KrkKCkb9Zu+jxO+X4BwhOB74U1Q0lqeffofzzluM272H11+/nqVL/8bCU6ew+NSTKH7pAUree4sjFy8hPtUonif8O25pdmK1+r6jCOLsJjFHUDF+gh5HZy9VVTbkCrlYKVm2qYW+vn46Hb1iRdOQgXwifzznL/xrxXNs2fUmA2ubGT/+imETTwVCVUvti5zceJyuPrZta8Nsduyz3VIg2OMr2Bx+JITJjGKOcGIGhYUph62oFYwkcv3MFBWl8sADM1mzpg6z2cGOHe1otWG0tnZTWWnDZIomIi+P29d9zRnnXEBvq4XlEZk0J8CmnVup2r2bcXmJjB6tw+HoxTQ6ijtfexRDVBLJkaNRexMYl51CwUQDRmMUr77yEw0NXXz9dT0ZY2LFCq7yzRaqqm00NjhZuDAdQGxN3LqlldjwXpIq1uCp2orMOJp/2SfzSW0C6WovarWvaiw7W0qUJQ4Mkyk64A4NgDI2lsx3lmNedh7v9g+w2NxPY08r729azpfnPRcg3gQLSUJCkZ7u89iKjVGJU+PGjIkRp0wZ9FqKZiaj04UjtBtu7XCLrTPKMJl4t0IwkI9QK8nOjuf+86/ni4qveLv4A27+l403R99NqsEQUDVVXd3KqlW7UShkzJyVOqxiciThS6tRIlf4HkPhP2GytKxZ/L0NTqiEx+rqVsorLJiMOsJVyoC7/QX5BrZuaaWxsYuSkqYRh1dI/PoEx4M1a+uZMmUUMaPCkVvcyPc6+fr1baTljOLGy+6kcrsNb7+N0orvabFVsLVqA05XO9OnjkUhV2NM07Hyi3dYv+Fbpk8tJD56LHsbIkhN8Q0pWLu2ji1bWul1e/F4+snKjMVojMLr7aehsYv1xY2kp0cTFalkbIqehm3t9HV5GAASTFHk/yEFtEr+eM1X7NjRTs/AAEce6Uto4uI0w8QMCYlQhIoHkbFqFt88hVXPbeHM/pNRh8tZs+lvbPrpIxYedwx6Q554bCgRSYwJGTrKSluwWrspLt6LSh1GZlYs+fkG9AYtp56aRfbYWCoqLGg0SjrsMnxFLrJhVU2C912P28Pppy4i54g8vvz+Ye586Fz6+h9k6WnLhlVMVVcNxYRZs1IDKiZHEr78q8lGQrg+jUZJY5OTxCTNiPFA2EdFhQWjSYcqPDAm5Ocb2LK1lcaGLkqKm0YcXiHx6xMcE6pqeohLMpIs38vummYMhgzkcjl33XwR1VWnsPrzrfQ0rKTW0kKtrYO9FisxOg3J8io8ffVoE2bx5Iv3o48zkhCdgWLAQG5uMgUFvqqwV175icZGJ199ZSYjI0as4Covt1BVZaOxoYuFC31m1+mjo2lqdrJ1izWgvdFicbHyk11YW9oZk92LTOH7d5ybe+Am1xL/u4SKB4GvTWLr1ud57LFLcbvrKS5+gvvv/47Ro2Mw3vsob999M8XvLid23DyOyM8JEJsyMqKpq3MQI+YICjIzY9BFDf37LSpKQRcVDvjygq0d1qEcQRmUI2y2oFYryMmJ509X3sa6DZ/x2Tfv8tgLrTw35gEMhoQAUam6ysaqVbuQK+TMmsWIlVb+WCwu7B3uEU3zhX2Crz2ysbFr2LHBYlt1lc2XI5h0hIcrAirAhByhobGLkuLGEYdXHI5IItcvgHBnc/36vaxZU8e4cQlERIQFqNiq0aP5ZNafmfDJY1zYvQNt+mxi/nw1jW1tuHp6iFbHYTZ3smVHLVUN26him3huSv0opjflMnnsWNJz44BIMjKixSltUyYnotUosdvdKBQy1q9vpLm5C120irzsGGJqy4j76Vu8CgVxZ57JT8ajMH/aQUqEm6lTE1Eqj2LChPGMHTs2xNVJSBw4yuhoTG+8DsvO4z0ZXNWh45pz/0jiqChRuCnIN9DY2MWmTRYmTTIwd25ge15hISxfUSVOOFy8eGzAdMatW6xs2mQRDYqTk7VExxiHtfGqVWGMHTTl9vb3YzRFc++sZRTmj+OBFc8w87JLefHW2zhm2jRx7S/X1LF1qxWj36RDCKzEEv7u//OcLg/9XmhsdIotxcJxWo1SfE5YR/i9FQhuTyyvsFBRbqWxwUli4tDzwrknnJAhTmgNtcf9iVwWq5O91VZSUqII/VVE4r8lOB7Mm2ciNTWKykobo5MjadxspXaTFU9fP57uXlQJsTz+0M3IFXJ6+3qp2LqJ0anjh6Z9/vQttXXrqK1bB0B4WARZY3LpYRrxMWPIy8ugpdnXZmI2dzJ5SiILF6azZXMLamS0VrahVcjZI+tEoVHgipBjdXswZceQMyOZVat2+aYqHgGLFmXR1raXadNOJydHquKS+P+hUis56boCvny5klM4kbTUCGpbzEzImQ0MCTd9nn6am1xMmuyLBxDYnmeuc1BebqW3t5/ERC0TCwwB7XeNTV3U13ehUivR6VRMnGRgwvgE9AYtObkJWC1OykqbycvzxQPDqAhczj4Wzp/CBed/xP2P/oU77r+JHzdt4P47H0WriRT39/obVbS395A5JnZYTBCM72OiA8Ukl8sj+oL5e3y5XB7xUZgyWVbaTHOTz1B5X62JQgVbQ1BMEFppTjghQ5zQ6r8/Yb39YbU4qa1uIzxeTWyiJIr9nATHhCPSjDSufhRF1y5gaLpaeXkLMa6fiE5K4IYHHiBz8jQaW1rodbtp2baHsg9epWbDCnaZq9hlrhLP+3F7MpW7xzE+N4exuQZAy5iM6IA2K60mDHuHG7lCzvriBpqbnL4cYbDCw79KxGx2EKULJ0rpa4nMPWI6E4+cy5gxgdOiJST+W+6/fz55eR9w113XcMstDzB6dIz4+3HUCdez+a1HsGxeTZfDzfzFhQHteYWFKSxfXi1OOFy8+IiAVsKtW6yUbWohKysGs9lBcnLkMI86i8WFWq1k7FjfcCevdwCTMYbbZ17GlIkTeO6VJzjxrHN56oH7mDF1irj2l2v2sPUnIUcYEqGCK7GCJ6EKpvng88fzF6X824xHMtgPbk8cyhG6GBUqHpyYIU5oDbXH/YlcFouLXdutpBn3P/zq94Qkcv2ChCrj92f2CeNZG3YXSbbP4auPcNfUkHDuuahGjwZ8iWl0nIxL9pxPxa5qGux7aLC10NDawgfftPDBN1/z53PO5ZlnLsBidVK2tY631r3LNmsmY02jWXhyMl0dcvbWd7Kztg1Tdx1j9v6EsrOdNkMmP6bMYdrMhRxxRBIXJtlEEa6yMpW8vPgRlXcJiYNBERWF6fXX6Dh5Ka/KdlGzs5HlKyKwWrvZOzhl0aDXinfbYXgV0kgTDn347tTbbD1iG6+/YBRcjeVvym02d6LojufvVz3A85//i9Nuu5Wz5pzMnRedT3KiL+jIFTIS9BEBQpH/nXV/MWlTWTPr1jVQUKBnbHacOA1VYPu2NuQK6PcOX2dfCHeagiu5hHMNeu0wr5cDXRt8CdDu2g5kyJC+tv4yBMcD4fM1t8DAtBNcfP7WNvq3d6Bw9vPlv6rQG6MwmKLIy5xERFSYmJiesvBCVEojXd3b2W2upLvHReW2Miq3lREermJr8W7a29zs2Wln3bp3+WxlJzFhyUTKDagjDei0apo6etje1Mn46UmcfX4eH3xYy1fr6okzRJCXF89FF40XY0BdXSIpKekhWw0kJA4WhULOcZeM4+vXt0HxPJJ1br76ug6tNozNm5vYsqWNKF04qnAFQjwIrkISKrGCq5iG8IsJg21bwu9PcCXWjTeNCVjfbO5k1tQryM6ayEtv3EvFT+Vcc8ljFB1ZQEWFha7OPmJj1SxcmB4gFgl76LD3BCQ3n6/eQ01NO1lZMeL627a1oVCA14v4CIhTU/3XG4l9vQehzPEPJh6ALybU1dnRJGrImyS1pf0S+MeEdxu+oHVPNZ7e2SjDfVUnphgrlvB2kicvIGvqkSjDwzGZfDcbso44gslzZvDqvX/hTLudHbYeGhx2LK0tNLU08snqRj5Z/QU3XXUFzz67DIvFRemmGj5ZswJzcxZjRo/mxJNTsXfA3r2d1NZ2AIjJv6Ozl/JyC1pNGEajjmOOMSHvcLG3QsnFl1zNlNn5Uo4g8bMSHh7FtGm30dys4p571mM2O8ThBqlH/pHGtc8i3/0tTTXxKKLTAoSjkSYcCvjigRunc7ifVmA1VoooLgmPMm8SD9z8OK+99xznXXkNp52whGsuvZDERN/ND7lcTkJCRIBQ5F9p5S8mlZU1s3atmczMmGGvAYOxQYbXOzBsnX0h5ghBlVzCuQaDRqzgCrXH/WE2O9i5s0Os4jxUOLR2e5gxFOCOonPtMTTfdx/WRx9FM20aUSeeSFhcHFnpo5iSPoUwu4kF2RrkKg9tPY0odA527N3FzPx8YLBSI8LOSys/hJVDPyNCpSJRG0mix8v4qEh6TWNRX7qML2ojeO+bSirfWcc118wgK0uNXO5ArVYzc2YCGs3hWboo8evzwAPFrFixnZT407lK8RpZVavZrZ5OrVbJFztXcuKpdzN2TII4IRTgww9q+OGHJqZNS+LURVk4XZ4Ac3iB6upWdu+2M2ZMDNnZcQFVU4JQVlzcQHW1jZhYFVqNMqBKytbajVwByfpYnr32Nv785Eu89fVHVO7Zwbt/vZdj5pnQ6yOGTR0JZQRvNEbxwfs72LmzA4AzzsjBYnUSHRM4MdK/kutApyuOZB6/r3MPZG3/QRVjMmNITonc714kfn50eg1nXDsJd3cfe7e1U1tmoam2g+addgDC1Ao0unAiY1To3EaKjjiT5NRItFol5Vsr6ek3Y7PvpLu7mx8/qaOrrQdPbz8ffPIGDW27An7WKMMo4uOTCVclcWbBE2zb3k5DQydr135De3sl1147k/R0Nf39bTQ1udDp1PzhD4lSTJD42XjwwRJWrNjO3Bw9WXEaelqdlP5o5pOv7scQN56T5lwyrAXvk5U7sbV2c/zx6UyenEhW1tCkQ3+qqwZjQmYM2WPjxCop8IllH3xYy87aduLj1WL7oH+lVGtrNwoFTJt0HBmmHB559npuvncJl593F/Pnngogmt77I6xhtTjFSi6zuZONGxtpb3cTrVMF7DVUJVfwXvbFSObxI517oOv6V5qZTNFkZcbs9xyJ/z8zTlvK23ffwp4tm8icciRdbTZatxWTkp3HiRefJQpf/kRERXHZI4/TdvWjTLZ8R59MS4tyPB3uNlSadnbV1TK1YDBHMGgYUFh5870VvPme3xpqNQa9AW1ELLOmLsDekQxGsLa2sn7DVtocyZx8UjYJhnC2VuxAHqVj+swUklKl7woSPw9CjqDXR9DXN0BDQxde7wBq9XZqa9/kllveY/z40VQYbsby7d8pXfkhrcoCvt8MU6clsWhRFk5Xn2gO7091lY3de+xkZsaQPTZerJCCoXa94uIGqqptxMaq0WrCAqqkbK3dKBQykhP1PHzng9z14LO88/FyttdW8+LTD3HMvNHo9ZrhOUIII3ijUccH79dQX99JeJgipCgGDBsYcaA+X6F8tvZ17oGs7T+oYsyYGFJTDuwmye8FSeT6nRA192g006dheepv2N9/H1dpKRETJ6I96igKJvj63k1Gnz+RxhHB5MmJGE+NYv33jby0aQtFRcmk6PVcduqpbNtTx087arE5HXS73ex2u9kNHHPkPNbmnIkhJgtz9xqqqh+lqhpeeilwL1OnTmXFihUkJSURERHx678ZEocVK1ZsZ8eOdpwpkWw++zYSvv8b85o28Pf6Vhrbrdz88l9Z9eRTAdVXNbXt2B29vklaQa2B/tMVyyt83nMpyZGMGqWhqqqNerODopkpYhvjwEA/arUCr2eAVat2A4iCkdPlweHo48s1dXQ6esmJmcGY4zN47fvXKLr0Ev59x50sXVKwz+vzF5Nmz04JeAwWmkKJdELLprCn4uK9Yuuh/534X8Jjy79dsmC8XpzQJPHboIoIY8xEA2MmGujt9tDe4qJxRzstexx0tbmxW7uJ6JeREadB5uqn39XL+FGZyORZqLPm09ffT31DJwmJWsZPNLA0bCk7zdso3byFxsY6vN5eWiwttFhayM11ExERxmef7cbl6mXv3tfYurWOV18N3JNMJuPVV19l/vz56PWSB4vE/x8xJjj7OGvuaNITtGzZ+S2l5d8B3zH36DxOPfEM8XijMQpbazctLU7WfdeAXq8VWwPBFw8mjNejN2hZX9zI5s0tTBwc+b653IK53sHMohS2bLXS0uKkv38AtTqMbdvbxcmMgmDU2OSkstJGWZmFlJRIbrv2Vd795FGeeek2Wtu3cdfND6BSqUe8tmAxafr0ZMxmh9g2uC+xyX9SpLAfwRw/1GTGX8JnS6g0y86OIycnjuRkScz4NUjNGUdKdh41G4pJGjOW0k8+RBWhoeiMs9HGjNwiJJPJOGrpWXz94Si0LZ+S1ldKZNQUJhw5m1lTvXyzphG3q4HCwhTSkpM594zTqN29h+rtO+lwtNPd00NdvRkws+DoBdTu7MBiddHVY2Z9xb9YXwH/fCvwZ777007eePNNEhMTUatH/l2QkDgQ/OPBeeflMWqUhsZGB//+9220tOzhnnsu5quvvuKkU/JwH/co7957G707y9DK0qitVQ+rhvKfrlhe4fOe8+UIWqqqbNTXOygqShXbGGGACLVyMEfw3RQUBCOnqw+Ho5cv1+yhs7OPjOQ5GBdn8dGXL3LS2ct4+sH7Wbp0wj6vz19MmjWYGwiPwUJTKJFOzBEG9yQMgZhRmBxQnfVLeGwJ7212dhwTJuhRKMN+lnV/LSSR63eEIjKSpDtuJ/7882j954t0rl5Nd2kp0TExHDd2LCr5WDKyY2hwRZOaosFc56DsBzN9diexnY1k6z1c3K0grA/CU5Oxe1OpUuuJO3kmrTExZE+bh6NLh8XixGbrJTY2g85OO15vL0qlF/DQ19fLjz/+yJQpUykrKyU9Pf23flskDnGWLBnLihXbWbJkLLffXkh/TyHmSy7l7yUlnNvbzU+7drH0zjv44OG/EqFSATBvrpF16xqYPTtlWGug/3TFgnwDjQ1OFAoZn3++h127OoiOVtHj9qBWKZHJIDMznsmTk9iwoZE9dQ4++KCGI4/sYvwEvTiJqqy0jc7OXo44Io6LzpnHH8+bxUUPPsCJf7qJO86/gBuWLkUul+/3WidNTiTBzzgfQgtZwvOvv15FZ5dv2ovwWkmJzwwZIDZWLZ4rTGyE/XtsjSSUBRPYwtK73+uT+PUIj1AyarSOUaN9d/g8fV487n48fV68ngG8fV4am7qore0g64hY0tJ0XHPdV6wvbmD6jGSOuTiPOeoLObK7j5pdxXR3O5k9O5bbbsumrq4OmUxGXl48P/7YRGvrALGxKXg8Hnp6XHi9vchkHvr7exkYGGDZsmVcfvl1PP/8k7/xuyJxOBAcEzZ9UcfA+wOcMPMsVn7/Fn/+yzXExMQyZ9YxgE8YOv74dNZ918DsWUMxocPew+ZNFgYGICZajd6gJT5ejU4Xjtfj5fU3qmhqdKKN9HlzgQyDPoKszBhy8+KpqrSxbXsbVmu3XzXVAO0dPfT0eElM1DJ1ShoLFrzEOx++yd0P30rFT5t47vF/YUo7sO9GuTnxzD9udEC7ZLCQJTz/+htVdHUOxoPB1wRzfIDYGHXAuQfqs7UvoSyYgJgwcECXKPEzcdwfr+W1P1/Nly8+i1yhpPDMc0jKyt7veb6ukPOwNc7lg4fvR9ayAXmHgpLNWn6q8v37yMyMpbc7jmNmLuWINAfpeht1dR2YRsuZf7yexuYWcjLHs6XChcPRy0C/gkS9kQ67HY/Xg1zuwevtw9vfz/riYqZOncaWLRUkJSXtZ3cSEvsmOB4InH3258ycOZPS0lIWLVrEp59+iipCwxl/eYhnr7iKmVmNaHMmDmsN9J+u6MsRupAr5Hz++R5qa3zD4HRRvlzDlyPEMXlSIhs2NvlyhA9rOLJRyBF80wlLS9vo6urjiKxYLlq2kEsums21t97BWZf+kT9dfSUXnr30gG4ST56ciF6vCajcCiVkCc/7cgTfd3PhtZLiRn6qtAG+mDCUI/QdsMfWSEJZMIEtjYdejiCJXL9DwlNTSb73Hjw3XE/n6tV0rllDT/U2XBs3AjAK6AMSZTIuHxj8FlIDAzUyOsOi2MMorIZ0amPzyD0qj/CxqRwzLkHsn6+rs1NXN5vY2Hzq6x00NDhZtiyHXbvsfPDBdqKjFdx550xJ4JL4Wbj99sKAwCVXqzG+9CKyyy/nhW++5by+PtZv2cKF99/P63ffjVKhYP78Mcyf73OHqq5upXyzhXqzg+zsuME79ANiRVN8QgRbt7Ty5Zd7kMlkhIXJcTh6MYzRisdGRCiI0oXjdntpaurirbeq+UOjk3PPzWPuXBNqVRg2WzdFRcmDApKW//z1ER567TXu+/e/KN66lRdvvZX46NAeFIKQpVb5Wk/AV+b85Zo6du3swNvvO85f5CqvsNDe4UapkGHyC3iCefyMGUmimSTA3Lk+L44D8VTxF8r2ldT4V5p52g+9APa/hDJMgTJMAQzdSYtLjmScXwXkiadm0jcwwKmLsqistFFS0siuXR309fkMus86awoJCYm0tMSKnlvnnz9ucPLvk6xbt5eurl5cLg/nn5/HV1/V8fnnO0lO1nLiicf+BlctcTgSHBMmHWtCqZQz8M4F2J3tfLf5M6686SLe+Of7TMqfCsD8BWOYv2AwJlS1srnc4pu2mzk0bRdgZlEKxjQdxcUNWFpchIXJiI2JQKj2Amhs7GT3bgfh4XJ0unBaWpz8+5WtTJ+ezPzjRuNw9PniQWGyKB6duegcJuQVcMVNF3Likrk8cs/TzJ93wojXGGoK4+ef7eS992qQy33JkL/IJfh9qVRyVGolVosTvUErVoDNKEwSzeaFcw/UZ8tfKNufyOVfadbR4tznsRI/L7GJyZx510Ns/vwTRo05gpyZR4VsUxyJ+ORUlv31Cb74x9PsKPmesVEG1DmjKZiRJFZktDQ7sVq7iYtXMWH8KHLz4gmXa5h9ZB4GgwZ9gq8axN4RQ6Q6C7PZTrfdzswxu/B6vLz0/Tg8yhjuumuWJHBJ/CwExwOBsWPHsmrVKubMmcOaNWtYtmwZb731FuHqCC586AFe+/NVxLi30GpNorzcQn29g+yx8UwarOIVKpp8OYKVL7/cQ3//AIJ6P37CUGV6hEZJVFQYbreKpsbBHKHJybnn5vpyBLVyMCakDApIGt74x995/LnneeippymrqODhu+5AFxX6s1gQstRqBU6nf46wh507O+gXcgQ/kcuXI/SgUMgwmfxyhEHz+BmFySPkCPv32PIXyvYlcvlXmrnsh16OIIlcv2OUMTHEnnkmMWecQb/dTl9TEz3bd9BbX4/Xbge3G5lajTwqCntEHHXeeFwKDTv2uDlqQTZ/nJnGqlW7KClpBJlMFLn8E5svv9xDX18LHo/vl14mUyCXq1AoDq2SRIlDC7lKRdo//oHsyit59osvuLShgU+L13Pdk0/yzI03BtwRKa+wiJMV04w68YNcwKDXEh3TSWJiJHq9hhkzkti6tZXPPt9FVmYMkZEqmpudWK0uMjNjcXV7aG3toWKLheOsozHofWPnBfwrr+644AKOHDeOSx56kJmXXcord97J9Lxxw65HCDSZmbEUTDRgNEaxdm0d5eUW+vq8pKXqKMg3UF3dyief1NLV5WHcuHj0CRHY7W5aWlziWoWFqWIiEhvrS0xMRh3rv2/EZusWfcWC8W9n9BfK9oX/OXFSNDjkWbx4LIsX+6bi1tX5/LwKCvQccUQs8+aZKCpKHYoJDI32NpmiycuLx+nso7S0BYNBi9EYTUdHL/39CiIi1JLxvMQvyoSj0xgYgAHvdXS57GzeXsxFV53F2//+hCMyA6tZKiosbN7siwmnLR7LZD8TYUGkMdd30tjURW5uAsnJkdTWtLFhQxNGYxRVVTYc9l4mThrFaYvH8u6727Fau6mpaefcc/MC4gH4V18l8vHytdxy97VcceMFXHDOZdx83V2Ehw0XIioqLDQ0dpGSHCmKUOu+axicvqgSjeOrq1r5ZGUtzc0udLow5Ao5dXscGNN0onm8GA9ifPEgP9+A1eLk+/W+mKDRKIdVcvm3MvoLZfvil2h/lDg4EjOPYMFVN/7X56siNJxwzZ8pzxnHD/95lxR+oLO8Cm98IokKDYYUOfbIXkbpVcREK2lu2sXuGhetW+REaeV4PR68fX30dbtJ6unBEO1GFj3AgDecVuVU7N0aoqJVyOXSFwaJX56pU6fy4Ycfcvzxx/P222+j1+t5+umniRmVyOyzL2Tty3+nwf4jm8vDfDlCmo6584JyBIOG6BgVoxIjidKpyM2Nw9bWzVNPlmE0RREZGS6Kv5lZMbhcXlpbu6mosHDccaMxGDSBOYJf5dUt117N5Px8br7nPk4+53ye+esDjMseXn0p5ghZMRQUGDAadYM5gjUwR6iy8cnKWrq6+hg3LgG9PgJ7h5sWvxsOhYUpojAVG+NrFzaZdKxf3zCYI4SFrOTyb2f0F8r2hf85kaoD/J/2O0L6lDoEkMlkKGJiUMTEoM7JCXmMARB+BU/ye15ITIITFCGxiY4OJyZGxbzBDwWdTkVKSiRz5qT9zFchIRGIPDwc780PkWvr5VHPWq5rauS1z1ZROGECZx3rqxqxWJ2oVWGMHRtHWmrUiHesjcYoZs5KEU3da2rbqTd3ArBkSQ7p6Tqqqtro7HTT399PfIKayMhw1q6tY+5cU4Bo5H9nJCcngXlTp/L9P/7JBfffx4Lrr+feSy7lytNOCxDiBNNJ/5bEgnwDVms3AMfMM5GTk8DyFVVs2mSht7ef9o4ePH399PR4sNl6Ql6XYDhfWtbM11+baW3txmx2cNXVE6mtaQ9oSfT3LvNPjPaF/zlxGYdgBJMYEeEzHhCFL9h3TDj//HGD5wyQlxfPZZflo9drWLQoS5qkJfGLE5OpQz9Bzzn9t+HsvpUd5q1cedOFfP7+dygUCsAnxKjUYWSPjSM1beSYMLMoGWNaFBqNclAUs4ptH9OmJbO33kF8vBqr1UlnlxutRklKspay0uZhIk9gBVUuzz76Mq++9SIPPXE35VvKeObRl0hODLwbLohY+fkGca3Zs1LER6GKa82aOn74oZn+/gHCwxTodOFE61Qhr8vfbP7DD2v46KMa+gfLhHNyEwLaElXhSrF15WDiwYG0P0r8vpHJ5Uw87gTyZh1N9fpvqS3dQEdzE56uFvr7vWgHBnC1KOmxKRlAjiZMRphCBTIlqggt8igFMeHhhKnUtDv6aWyFgqMKmWYYjVdvlnIEiV+Nujo7fX1jePzxF7j22ot59tlnmT17Nqeffjr5xyyg7LNVtFuqyc4qJNUUN2IVk9GoY9asIVP3FSu2UV/fSW+flyVLssnIiKaqykanozd0juAnGgXkCLnxHPOH2WRnvcrVt9zGGRdeyp03Xs+SRaeMnCMMVmv5cgTfDe5j5o0mJzeep58uE+NBQ0MXJpMOj3dg5Bxh0HC+tHQwR7AO5ghXTaK2tj2gJdHfu8xfKNsX/ufkZh16/nuSyHWY45/ohCJ4rL3/nyUkfinWr9/LmjW+sfH2nAuZ4/Jyt3ctP0bFcPrRR4vHmc2duFx95OX6pi8G41+JNGVyIqVlzZSVCVVfUcybaxQN7bu7vbz1VhXd3V7y8uLJGBNNS7NrmNAVG6NCLpcR6/fzUvR6Pn38Ce59+WVue+F5PvpqI1efcCFHTvOdF2r6YajnCvINfP99A7bWbpzOXvp6+4mJUZObG0dpWXNIU3mL1Ym9wy1OArPb3Wzd0sratXU0NnYBviQmuHXlQIzqJU+u/z32FRN8Qld0wN/9BTIJiV+CgHhg7yUnP5kLvffwzy/v5ooLbhMFLvDFBKvFhV4fwcyilAAxJrgSSW/QsnZtHbW1HaSkRCJXyJgzJ43CwlTWrq1j86YWWlpcdHV6SEmNxDBKy9dfm5k4aRRz5w55aFmt3aSkRIrClUwm4/yzL6Vg/GSuuPEi5i86igvPuoezzzhF3E+o6Yf+LZf+qFQK+nq9DAAqlZIZhUmYB2/ShBKbrBYnVVU2+vr6CQuT+8Q6i5OVK3fR2OCLCcuW5QKBrYz7q9Q60PZHiUODcI2G/GMWMGHefHq7XfT19NDv9TIwMIBMLkMmlyOXK4Ie5SCXIZP5/iyTywOS9dlzMn/DK5L4XyE4JkRHj2f+/GsJC7OyaNEiwPc5HDPxNNo/fYyMUY2MShs9bB3/SqQpUxIpLfXLEdKimDvXyJTBSuBul4e33qqmu9tD3rgEMjKiafbPEQaFrpjBHCHGL0dIS0nm7Zf/yYNP/o07H/orn3y2nrNPvYSpU9MwGDQhpx+ONBFRpVLQ2+ulu9uDx9PPzJkpmEw6SkubQ5rKWywuX44QMZgjdLjZusXK2rVmGsQcISXIX+vAjOolTy4JCQmJg2TNmjrWrDEzZcoojjlmNJ90nU9+Yw+L3T/h+uILohcuBIa+bNs7egJM1wUBx97RQ3Oz705IbU07X39dT1iYjFGjtCxcOEYUuKqrW9mwoZGwMAXh4UomTzZgMkWzqmE3Lc0uzOZOUQhq73DT2dXHmrVmuru9FM1MwaDXEqZUctbsxbTsVPNh+dtc9fxdPOy5gbNOHu4lIBAsNOXkJHDVlRMpr7CgkMuor+9ixowkwlXKYabywdeYl5dAeLiCyEglDoebKF04yUQyY0ZSQIulcL5/lZZBrw1pgC95cklISPzWBMeDvLx43q53cP0JT9BnlfuS8sFEWxgW4nD0YjZ3imKN1eJk7do6HA7f51hNbTslxU1ERipRqZRMmmxg7tzR4rFVla00NzuJj48gLFzO7FkpdPd4sbV143C4xb1VVFioqelApZKzbXsbCQkR4s9MScxmyUnPsPzD+3j6xevY21jJw/fei1IZ+qt1KJFp3jwTen0EcoWMenPXsCqsUCJeh70HuRz0CREkp2jJHhuH2dxJVFQ4ySmRpBkjWbu2LqCKDIZXagWb4O9r8qPEoYtMJkOl0aLSSP9vJQ4NgmPCl1/uobNzGnPnpgXc9Jhy1ETaKifhMG9l20+pgBGDQSMKOPYON03Nvla/2trgHCGDKVMSsVhcbN1ipbKqlYgIJWHhCiZNMjDaFM2qhl00N/vWEoSgjg43nV29rF1rpqfHQ1FRKgaDBlV4OEtOvJCWvZF888Nyduyq4Y7r7uCUk6aOeJ3BQtMx80aj12tQKGTUmzvFKqzS0uZhpvLB15g3Tk+4SkFkZBiOTl+OkEIkMwqTA1oshfP9q7QMBk1IA3zJk0tCQkLiIBHaYwWfoOjocNbEXEuB+R06V67E09vLky3NnDnvGKZMHoPF6iQ6plMUvQQBR6MJQ64ArUbJt9/Us3NnB2PGxDB5cmLA3ejyCgu2th7i4tSYRutI0GtxujxERoWj04UFVD+pVWGoVHI62t388GMTaUadKKytWrUbVU8qp+ddyprd73P1c3fjkl3JRSeexLZttgDxKi0tkvr6LhQKGTNnpYpiklDh5S+ACfj/WbjGxEQtY7PjsHf00NLipLvb1944bWqiaJz5+mtV4h2bujo769Y1UFCgZ2x2nLhmcBumhISExO+B4HgAUHTKGNZ/uBNtl5fK7xrpj7ey6ouPufm6O5k71zTss9Ns7sTh6EOukNNh72HDhiZ21nYwJjOG+celDzvWbncTFiZHb/BNutLrtXTY3cTHRQxOYvRhNOlYv76R1tZufvihSfTKEkQ1SwsUjL2BBstnfLjqZRpbqvjbX/9Bq0VBRYVFFK/y8uLY2+CkuamLGYXJYqWYf8WXIGJpNEqy/T67/fe9bVsbiUla0kfr8Hj6kSGnscmXxE2blkhyUiSrVu0OjAeDUyknD970EdYNNrKXkJCQ+D0QKkfwt9bp6+vjT3/6E5dddhlLb7mOl66+GD01GI0+z1xBwNFqw1AoZGg1YXz7TT21tR1kZsYwefIosUpJmMjY0+MlPT2ayKhw9HoNTlffYI4QHlD9pFYrUakUtLe7+eGHZtLSdKKwtmrVLsI4gqOnXs0PlW9y28M3gfIWTlm4QBSRBAErzRhFvbkTuULOrFkMq/gSRCyLxTWsCsv/GpMStWRnx2HvcNPc3EVPjzdEjlApxoQ9dXa+W9dAwUT9YJzxrRnchnk4IIlcEhISvzqh2mSLilIZGJhJ0513cf8Lz/O8zcaKL9by3T+eJ0mfENBy51/h5Wruw+nyBJitT/GbOAdD/fDd3R5qazowGaOYNHiMVqPEbO4UPa4UChlFhanYbN3Ex6sDhDWFQs5okw6vV8vRPWdhHtjADX/7Gyu//ZHJ8cewe6cLpUKGxzPAnj12kMmIigxDqxn+UetfaTVlcuKwlkL/1hFBZAMZu3fb8fb3Ex2jxqDXUlrWjEIhJ1IbhtXazcYNTTQNJj1nnDHk4efvCSAhISHxeyE4Hvg/t/69Gr5f+RN/eesc3H0uonXR/PGia4dVHAmflx32HpqbfEmBerD1z9+YXjh2RmEKtTVtmM0OsrJiMBqjMCKISgNUV7XS2ORk9247ySmR9PcPkJsbHxAPHI4+Ro+ORi6XMdB/PPkTpvD5Nw9x3KI/cPzRt2K3pdDe3g3IsLV1o5DLaO/oweHoC/k+CCJWdnbcsD37X6PvMWHwPfBNC2tucpGdHYfL5UGhkJOSHElMjIr33quhw+6rTJu/YEzA++bvGyYhISHxe2GkHEHg/POv4a23XuCddz6kvPxHJh9/Mj9+9D7KvjZAIwo39g43TmcfTldfgNn6FL/PV6NRJ05ktLV1U77ZitEYJd4U0GrCMJsdoseVXCGnqCjFL0cYEsvkQo7QH4mn71IsnV9y01338NmXJZgMx1Jb47vx7fEMsHuPHZlMRlRkOFrN8GFv/pVWU6YkDmsp9Be+BJENYPceO17vANExKgwGDaWlzcgVciIjw7BaXWzY0Ch2wJxxxpBJ/uGYI0gil4SExC+O0F/vf6c+FDKZjKT77mXmj42s/uYNdnXYOP322/j8qb8RGREhHie02QVXeIWrlKENe3MSiE+I4Kkny2hs7KKyso3588eIItH2bW00NzvFaVjZ2bE4XVEBflaCub3RGMXqz/dgNneydPoZzJlawCPv/JPNYTuYGnsCY02jiYuNCKjkcro8w/YU7H8Sqp3QH4Ney9y52mEVYEZjFOPHJ7BhQyN79jiIi1ej0YQxe3ZKwLGhPMIkJCQkfgsONCYULs6kZH0DJ027iHfXP8OjT99PWoqRE+afGnCc0GpntTiJiQ6s+rVanAHijt6gZcJ4fL6GDV1E61Ti6zHRPqHJanGxd28X3T0ekpIiSU/XMWG8XjzO//P3+/WNrP9+L4bYXG679nWee/k23vrPnxh3xBLitMcSqVUxe1YKexucqJoU6HShp1f7rxncShiM3qAVq8GCr3n8hARggN27HcjlEBOtEk3v/VsmQ/mGSUhISPzaHGg8EEhJOR61+kOamsycdNJJfLl6NT99/SWV365l5tJlYpudxeIiOkYlCkLh4Yph5vQGg4a580xYLC6eerKMhsYuqiptLFiQIYpE27a10eKfI4yNw+nqC/CzEsztjUYdq1fvwVzXyaL5F1M0fTIvv/UPorQ/kZW0mPTRRuJi1QGVXE7X8BsfwdVbodoJR7oOoQVSOH/CeDcbNjaxZ4+D+PgItJpwZs1OCTh2JI+wQxlJ5JKQkPjFEfrrYf/DDWQyGaa77uFP/f3c/vXrbKmt5cL772P5vfcF9OIH+10JYhWArbV7mGBkNncG+FgJaDVK5ArIy4sjOUWLyaijvMIiersIIpe/f1VyshaTKZrkZC3HTTiWzJTR/OW1p/i65U3GTT+fo2bMwWiMEqvDet2ekHv2r95av76RzeUtOLs85OQkDPPUEgg+z6DXEh3TSZ+nn75eL9OmJjJ/vs/c2P89Gcl8XkJCQuLX5kBjgkwm48jFY5D3n0qro5Gvt77PTXdeTVJiCpMLponH+Ys3QhVUmZ+PiTASXhCN/D2sZhQOxQONRolC4WtTFCqlHI5eNpVZAERhyd+/amZRMu6ePhyOXnRRsTx4579Y/c3L/PvNZxg7ZhfXLX2IhDhfzNi2vZ3dux1UV7WSk5sQ0iwffALcDz+20NDgFH3ARpp+GOylJQh1Xk8/CXoNs2eliIb30gRFCQmJ3xsHkyMAnHxyAd3dT/Lqq39k48aNXHDRRdxx2UWsfek5GrZXkZqdN8zvyt/XKiBHGBR2zGZHgI+VgFbja3nMzYsnOSUSkykoRxgUufz9q5KTtBhNOlKSI5k/fxEZpjE88Y+/UrH7JabPvIqiqUUYjTqxOqy31wsM9+jyr95aX9zA5s0WnM4+cnLjh3lqCQSfZzBoiI5R0dfXT2+vl6lTE1mwIAMgpNfX4cQBi1yNjY0kJyfv/0AJCQmJIPz76wHef387H3xQw6JFWSGntxUVpVL05b8x3RjHqU8+yecbNnDL35/j0auvEY8JFoH874KvXVs3zH/KaIzimGNGi8cJ0wydLg/9XkjQa5k/fwylZc04HH2DffhRISusxk/QEx2jFsWqU+dPZPL4J/nzM8/yxIcv8tUPm7nlrIuwd3ixWl3UmR0UFg7fMwwJXyqVHJ0unPh4tbhf/0eB4uK9lJQ0kZcXR8LgdRuNUURFhuNw9NLeMWSaLE3LkpCQ+D1yMDFh5kzfRMTRT0Vhe6aZLXvWc9l1y/jwjdWkpfrODyXeBMcEf/8pozGKY/3iQVmpLx64XB68XlCFKyks9CVba9fW4fO9l2G1ONmytRUYECu7fFVVpgCxKn30jSTpc3n2pVu59b4lHD/3Fk45YR7unj5qa9qJ1CpFsS1431aLE5U6jPh4NQqFTDTYD/V5Xly8l5LiJmYUJpGVGRvg6bW53EK/d4AOKSZISEj8jvmvcoSipZx+egrz5s3j/fffZ8yYMeSkmaj+7huSM8cOE4H8K5sCcoRBkcto1HHMMSbxOGGaodPVh9c7gF6vYcGCDEpLm303NAa9ukJVWPlyBJUoVi0+ZQaTCl7kjgcf4pmXH+XrdT9w+bKLae/wYLV2U1fnoLAwJaRwJQhfKpUiKEcY7tMFUFzcQElxI7l58ej1vus2GnVERYbhcCiC4kHoNQ4XDljkysvL47nnnuOss876JfcjISFxGBLcT//BBzWsW7cXIGQAE1jw+OM873Ry4T/+wT/+8x/y0tM5/4QTgeFf1v0rnExGHY0NTkyCWeQ+qr563R727LHT398vCkbCuga9NqRg5j/BUGD9d83MyTiJaHky7/74Lje/8gCPXn4T+QV6scfdf+3g6YnJyVFi8hV8PQIW6+CY+MYubLZuTKOjqalpoyDfQEZGDNHRKgryDaIQNmNGEoWFqVisTlHUE/bt34opISEh8WtysDFBLpdx0lUTcXY9xB3PXozZuoNLr1vGe699ilYTGVK88a9wMpp0NDQ4MZqGf5n3F5qMxiiqqm18vno37l4PhYWpTBifQEy0CqMxCrO5k82bWhgYgJhotbi+8Gg2d4pVY/29mVy+7EXe+uBu3vrPjag0V3Hy/IuBIR8sYb8ajVIU2szmTlzOPo48Mln8ucHXAz4xbOXKXTQ2+AyFu7u9bN7UwpjMWIxpUeTmxhGpVRITo+Kll7YQH69mZlEKk6ckYrU4KSttRqNR4nJ5AiY+SkhISPya/Lc5wuzZs/nXv/7FueeeyyOPPMJTDz2Ip349NT9uwDhmEjAk4PhXOJlMOhobujCZhgzlR6r66u31UlfnYGBgQBSMhHUNBk1Iwcx/gqHAhpJWZk1aRlSEka9L3uOh53Zz6zU3B+UIQ2sHT09MTookJyc+5PUIWCwuVn6yi4bGLpqanYwapWHSxFGMn6AnY0wM0TFCjuATwoTpjRaLi9LSZrSasGFtmIcyByxyPfDAA1x22WV8+OGH/OMf/yAuLu6X3JeEhMRhzKJFWTidfYweraOuzo7JFA34JkFVVtrIy4sXn7vghRfYYbHyt/98yMC337M2PA8UcsZP0IsJAQwJT9XVraKBfLjK9xG3v6ovs9lBU1MXkZEq0oyBXlwF+QacXR7UKiUWqzNA4BLWrDd3UlbagtGk47pzT2FeUT4PrniGCx+7lWduvImcnFzxZwteYsK4+8wxseIUxP2JTv4tl7Nnp9De4cbh6KW8wkK/Fwom+qrNHn/8R7ZssWKzdZOZFRuwV4CyshZqatqYO9eErbWb9esbSdT2MXVaMtH/z/+3EhISEgfLrFkpNDR0MWvQOwqGxwNluIIzbzqS9rZHuPPFC4mNMrCprJmE+BhRqIGhqixBtKmuaqWk2BcTVOFDMcFf2BIe9QYtlhYXO7a343T2ERujHiYCTZw0CofDTYe9J8DvS1hToYDdexx0dvYye1Yaj937Bl+tf52X3/gbm7as58mHnseU5rth4t+eKLS/BO9nJIJbLru7PQwMgM3WjcvZR3Z2HEuW5rJieRWbN7cQoVbi7vGIVWfCXr1e6LC7iYnuxN3rwVznwGjSIesdIDxeTWyiJH5JSEj8ehxMjnDOOedQWVnJc889h27UGDr1rVQXFzMleSxGo04UmgTRprrKJhrIh4f7LFD2V/VlNjtoauwiMjKctLSoABGoIN+A09mHWq3AYnEFCFzCmvX1nZSWNmMyRXPtZedy7NFH8vxrT3HD3ddzyzVXkZ1zesAe/cUtYXrigQhP/i2XRlOUGFPMZgdOZx8FBb5qs8cf+5GKLVZsth4yM2PFvSoUMrzeAewdbrESzdbazfriBuJ1XqZNT/v//q/9VTlgkeuKK65gwYIFXHTRReTm5vLiiy9y4okn/pJ7k5CQOExZvHgsERFhlJQ0UllpE4NVZaWNkpJGAPE5gAfff48znn0W1d9fwPL5G3ysnkl5uZWMjGhcg6bugkBUXmERzSGD7+6HatEoyDewa6d9cOyur2zY6+1n4cJ00azd6fKwfVubKKht3dKKw+EmMVGD0RhF+WYL3d2+fThdHo6alsuCo//BtU8+wQX338c3m8p46IorRfN8YTKXThfO+AkJB1xR5d9yKYhlZnMnrVYnlZVtuHs9fPtNPbFxKlJSItHpwoeZ1APU1LThcPSydUsr5eUWduxoJy3WS0qKjjEH+j9RQkJC4mfCaIxm1qxUjMahz/1Q8SBcE8YFdx1Lj+t5tOHx1O/uoXxzHY1NXUyblowxLWpY+1/FfmKCv0gFMKMwCVtbNzpdOBUVFpqbu4diQm4Cc+dqRb+vmGjfOVu2DsaEJA3JSZE0NDjp6fGyt8GJXq/lonOu4bh5x3D9rX/khDPm8JdbHmLxSUuQyWQB8SDYm2vf79lQy+WQ6b4ajUbJtu3tbC63sHNXO1XVbSSO0hATo8bh6A2ICUIlV4e9h7KyFvbU+WJhQ4OTFH0EmkQNeZNG/f/+50pISEgcBAebI9x///1ceumlVFcP8I21l3EDNax9+xN0WTNxOgdzhEGBKDBHCGzXC9W2V5BvYNcuOz3dHmy2bvbscdDvrWfhwgzRrN3p6mPbtjZRUNu6xYqj001SohajUUd5uYXubi8wgNPVx8wZE1h43Cs8+uzfufexJ/imuJhH/nInCfFDXlsHI24JBLdcCtVptbXttDQ76fXLEVJTogZzhCGTeqGSy97hZtu2Nuwdbl+OUNNOYgIkp8YczP/G35yDMp5PT0/nq6++4tlnn2XRokXk5OSgVAYusWnTpp91gxISEocneXnxAY8jPQc+8+GJV1/NTq0e/WP3M8P9BV84Z+L1elEoFKSnDwUmofJK6FuHwNY//yoqgCmTE7nk0gjM5k60GiWrVu2mobGLL9fUiX32QkLQ6/bw+mtVtLf3EB2tYs7RRgx6LUVFyWgjlahVSrFiasrkRB68+FqMMRk8v/J11v5QxlmFZ7P42COHtUQeKKFM5w16LS+9tIVduzrorwW320NeXgLXXT95RJN74U6+vaMHhUKO0RhFfoavIkBCQkLi1+Zg4kFUXAQX3LmA9x8pI6FfTuvAAE3NddhssYwaFUFzs5P0jKGYILQqzihMCmgvFIShstJmOuw9NDf5xqoXFqYG+Fs1NPhiwpo1daJ5vfAZ7u718NprVbR39BCtU3H00UZxYmFFhQWVWimKbpOnTOGV51Zy7yO38+e7ruH1tz7k9hsfIn20zyj/YFsGg8Uw/7+vL25k86YW+vsHcLu95OUlsGRJdkiTe/C1PlotLqKiwomPUzCjMAlZ7wBZmTEHvB8JCQmJn4uDiQm+PCAdudzOnAUFfPf294zRmDHX7MYjjyMjY0gQEyqvAnIEv9Y/i8UVmCNMSeSShAjMZgdaTRirVu0azBH2+OUIvnjT2+vl9dcqae/oQTcYDwwGDUWFKWi1YajVCjEeTJmSyGXLLicxYSwvvPoMc09Zwo1/vIH5844COChxK9R1CH8H+PjjWnbustNf64sH4/LiB3OE0Cb3wlRKe4cbuUKO0agjN8snjB1KHPR0xbq6Oj744ANiY2M5+eSTh4lcEhISEgeCyRQdcCdmpOf8GXPhEtbYm/njn/5EgW4XmaZrMFvcorE7MKzyKlhECr5rDsPFo/IKC1Zrt9hnv3RJLga9luUrqmho7CI+Ts2kSUOJjlDx5e/9BVBf30VmdD7/uDaHu155mkc/fpKf6o/j9YdvGLavUAb3+0M4x+v1oosOx6DX0t8/wIwZScOu6fPPd7JuXQOzZ6cwf/4Y33SZzQ5MpiiKZqYQp+xF5nNXlpCQkPhVOdh4oE+LYuEfx/PR02X8+OPT/FD9Faed9hbmOiVWqwtz3VBMUIUrSUzUiq2K/ghte4lJwl3z0P5XFYMxQTCvX7I0F71By4rlgzEhXs2kyX4xITdh2PREAFvrAHMLbyBcnsPXJc9w2Q0n8vQjzzGrcE7AvqqrWgOmQR4ownlez2BMMGjp9w6IAp9wTZ9/tpN13zWIkxf1Bm2AGFhYmEpHi5PkZOnGh4SExK/Pf5MjmEzRpKeXc13xO4yJ03HqtFgqrBNEY3dgWOVVsJBkNjsCjOVhuHjkyxFcQznC0hwMBg3Ll1cPxoMIJk8aJZ4vVHz5e38JPytCmc4pc//M6u9e494n7qFmz6ncfO1VRGoD9xXK4H5/COd4PP1EizlCPzMKkwOu6bPPdvHdugZmzU5hwYIMDAaNL0cotzB6dBRFRalEqnpRKMMO6Of+XjgoherFF1/kxhtvZN68eVRWVqLX63+pfUlISEiERD11Cg4ZrG1vJWvzy+QVXiaaNgrsqz1xf1VUgmD1+ec7aW5yEhujEl8Tfk5BvoH4hIhhfmC21m5qatrQapQY9Fq0GiVyBbjtKk7MPI8tumJWV3zJvKt38c9bbmWsySSuXV5hoaLcirPLg3PQA2Z/VV7COZmZsSxePHaf56xb18DOnR0AzJ8/hvIKC7W17Wgj9Rj0Wjztvfv8WRISEhK/J4y58cw5O5cXVrXS53Fzz2NXcu/Nb1BQoBeN3eHA48FIVVSCYPX5ZztpanYS4xcTRAN5ky6kiNY6GBM0Gt9rHXZfS+O0Scfgcaditvyb8/54BmcuOofbbryXqEjffioqLJSXW+lyeg7KGF44LzMrltMGY0Ko89Z95xcPFvia1M11jmECoYSEhMShhMfjocvpYJOjneRoDVMKjBTkjw84Zl/ticHG8sEIgtVnn+2iuckVEA+G5wiBfmC+HKEdrSYMg0GDVhOGQiEjNiaa/MyzmTapho8+e5d1JSU8dOftFE6bKq4t5gjOvgM2hxdzhKwYFi8+YsRzvlvXwM5dHQAsWJAhnltb04FWq8dg0OCyH3o5wgGLXPPnz+eHH37g2WefZdmyZb/kniQkJCRGZObMmTz/wgtcfPHFvNBYx5MVr8OUG3nppUbi49UUzUwJOZlQYF+v+VditXe46e8foH1w3K7F6sTp8pn2Bk9oFPyxhFZHGKoo6/f6+vObm10clTeP6y5cyDVPPcrMyy7jLxdfxB9PXYRCoRCDo9Dy6DN+DD0FUdhnbIwKvV5Dbm4cUyYnjngtBr2W2bN9d7GER/9gLCEhIXEoMm5WKk8/8iJnXX4Clra9PP3in/hoxUp21jiGTRQMxf78r/wrsTo63PR7B+jocAc8v2RprujRJawpnOsfE7Ky4mhucpKdHUd5m5V+j47ZU+/i6FmlvPHeE6wr/pqH//IkswrniOKZ0O4oGMOHEq2EvWg0SlTqMDKzYikqTA6oAPPfr96gZfagwf9sP6N/4WfmSzFBQkLiEGXu3Lk8+eSTXHPNNXy6ZRtJ8QlM6JnMSy81+HKEotSQkwkF9vWafyVWx2CO0CHkCBYXTlefL0cImtBoMGiwWFxiqyMMVZR5vQM0NrhwubxkpE/l1WeP5S9/fZhlV1zN0kVCVZd2KEcYbHn0N4cPNWXRbHYQE6NCr48gNzeeKX4xMHia5KzBvEB4hMMjRzhgkcvr9bJlyxZSU1P3f7CEhITEL8hFF13E99//yCuv/IM7dm7n1VeeYefAUeyMiSXNqDsonyt//KcQBn/A72tCo/C6QiEnJTnSbxyw77X4eBVlZRYiI5Xs2irj8lnXUNryDbe/8AIffPMNz910Ezk5PqN7oQXR4XBTu7NDnILof03CXuQKSEzUilMkR7oWg17L/PljmDQ5EbO5E4vVKVasSUhISBzKzF2Sz12Vz/CnR85he+1m7n/0DnLTz2fz5hZfy0ma7qC8rvzxn8LoLwL5P683DI8HwrlCTMjPN5CQECEek5cXh62tG602DE/fkdx143I+WfN4QFVXTm6u2H7ocLhpbnKGFLuCJyVOLBje4hi83/kLxjB/wRjRk8xojBIr1iQkJCQOZa666iqKi0tZseI13vhuAzGxJrbszUanCyct7eC9rgT8JyYOzxFGntAovC4fliP4XouPV7NpkwVtZBhlP7pYOPtKjpxczor/vMa3xSU8dOdtFE2fRk5uvNiC6OgUcoR2UVgL3qdCIWNUolacIhnqOgwGDQsWZLBgQQYWi4vS0maMRp1YsXYoc8Ai15dffvlL7kNCQkLioHjxxWfZvXsb3377LX/avY2XR8vZPXpRyJaUUBQX76WkpIkZM5LIzIoVjefHDvqyGPRa0WfLZ0I5NE0RhleEGY1RzJyVElB55X9Mgl7LN1+b6e7uJjMrhkdOv5I/nrGQKx97jJmXXcafzj6HG5YuFau/dDoVPW6POA3L1to9zAhfq1GKrY0CQgWX/7UIBAtfEhISEocDf7znZBoa7uehf1/PG2//m0uXjSY5eSJGY9TBxYTiJvLy4tAP3sgIbmdMGGxTd/d6UCgQ2xBDVYQZjVHMGowJ/ob3AHq9lrzcBLp7PHS09xAfl8xrL7zLivdf58HH72Ld+q+4888PkBA9Ge9gPDCm6eiw9/i8ZOo7cff0BZjgC5MSg6/XanGKbZLBrwWLXxISEhKHOjKZjFde+Se7d29n48aNvLn2Y46fZSQ5Iylki2IoiosbKCluJDcvHr3eJ1oFtzIKPltr19QFTFOE4RVhRqOOWbMC2yD9j9HrNXz9tZmeHi+ZmTEsWnQm5y45jlvve4DzrryG0048gT9fe5VY/aWLUtHT4x3MERxBOULgtET/a7ZYXNg7AvcqECx+HepIrvESEhKHJEqlkscee5H582ez29bMv22N/LnmE2K9Y4ChL+vBbXsCJSVNlJe3sGePnaOPNmKxdqOQy3yTGoOEoc2bWxgYQJymGIp9tUGCbzKj2+1l9GgdBYOVAOnGdF66/kEefu0N/vr66/xn3bfcd9FVjM1OwmiMorZGQUlJE61WJ99WtollzoIRfigEIWts9vAWRv+E7b8xupeQkJD4PSKXy/jLM1dSuX0LHxf/m1dXPMz1l6wgNydhxPa+4Na/zz/fw/btbdTXO5g6NYkOu3vwlQGMDFXs+ldNuVyeEfe0r1ZId6+H5mYneXlxTCwwoNEo2VTWgin5aK44L5VvN77AFTdeQOG0OZy16M9MGG+itbWbzeUOVCo5VVWt2Gw9wJAJ/kiYzZ1im2QoIU54/G/N7iUkJCR+b6hUKp566l8smD+bxg4bO/d8ytEL7x6xtS+47a+kuJHN5Raqqm2MG6dnwnj30EnGoT+azQ42DeYIwjTFUOyrDRJ8kxl7e/v9cgQHRmMMt151Ny+/+R6ff/U+a9at4/LzLmFCdhEezwBOZx8GQ0TA1EcYMsIPhdnsoKnZFw+Cj/EX8f4bo/vfG5LIJSEhcchisSg48cS72b59JYvPuQLFa/dh/dvfSLjmGsKTkoCRq5dmzEhizx47Hu8ANlsPCrmMbdtsNDd3ER2jFo81GqOYOHEUMDDsLviBCkXV1a2sXLmL9g43arWS0tJmqqptTJuaRI/bw2jldG49pYBPf/qA0+68iQtPOIE7LriQOrPPCLiykoBWyJGEO2G//o8jIRhSApLIJSEhccij0oZx3tU30dy6l+l5xzFxwuiQn4MjVS9FRioJC5MTH68mOzsOc72DHzY2odWGEROtDmhLDFU1dTAiUVlpC1t/smJ3uJk/fzTffFOPQiHD6x3AalVwyrF3c9GyC7j74Vu58S+nctUl1xOtPpraGjt6vQatJhy1Sim2UI4k3MGBxwTBtB6QRC4JCYlDnrY2NSec+Bd2/rSCYzJ0RGEFkgKOGal6aUZhMrv32HG7vfR7+3F0utm4sZlIbRjRMSrxWKNRx6SJo8Q/+3OgQlF1lY2Vn+yivaMHtUpBaVkzVVU2pk1LpKfHS3h/Hlcum8QO82oefvpxJk34ghkFp9PSoEar1eN09QW0Qo4k3PnvcX8VbQE5giRySUhISPy65OXFA8eQl7cEkyka98IczOcuo/Wpp9DfeCNhBsOIX/ALC33+giUlTeTmxtHd7aW5uYvExEi0GiVr19YBAyQnRw6aOw4XlIKFolAtkEZjFOUVFjq7+lAqZCgUMszmThyOXmy2HoqKkgFfX/8Nl8/ln//5Dw+++goffPMtlx5/JuMnjCd9dAzhKqW4h2DTe3+EijKL1UlpWXPAvvflOSYhISFxqDN5Rgp/uvVJLD+0ILO5iZ8WMeyYkWLCiSdkEhenIT5e7TOat7vRasOIjlZhrnfQYe8hOSkSgISEiGFiUiiRSGiBnFGYRFbmUEwA8Hj6sXe4KSluoqGxi5TkSGYUJmGucwwKZbkUTp/FM/94nL+98CiJhhXMmXEJR86Yj1oVFtKXC4a3HfofE/z6SJ5jEhISEoc6eXnxLF16PDnZZ7P2yT/TXP0jR0zKQ64Y8qgaSfQpLPSZsJcUNzKjMJlul4dIbRiJSZFoNWGsXVMH4JcjDBeUgoUioQVyRmEymZmxohDlyxF6UShkyBXywByhcGhY1CUXTWfxicfzl78+yvNv3M20/KM5NeOiYa2Qwab3/ggVZf7+W8Ix+/IcOxSRRC4JCYlDFpMpGpMpWvx7uMnEf+b8gakrP0X2zDMYbrwRgz4Gg15LdXUra9fWBVRdhauUREaFU2d2UJBvYP6CDIzGqIAWxd27HdTV2VGrw1i0KHNwLLAvUQkOAiUlTVRWtoprBwtKJqOOcJWSVqsTdaWS3Ny4YQbwVyxezGlz5nDXiy/y1xUvMvGII3i04Bqm5OYCvvZLe0egP1goQlWw+Sd3gueYhISExOGCyRSN6fxoto6OZt2KHaz9aCMtfds454wLxGP0Bi2trd2sXVsXUHWVk5uAy+WhrKxFfG3Bggw67D1s3mRhYACsaS4cjj6KixuI0IRRVJgs+nQZTb4kyV8kKikeigmqcKWYQMybZyJCE0Z8vJoItS/hmlGYRGFhKoWFQ9ej1URyy/V/4ZQTTue+R+7g9fdvo9a8ittuvAe9wdeOvi/PLYGRRLBgzzGpgktCQuJwwT9HmHXW+Xz85EM89tjjnH/RhRgSfJ91guhTXWUbyhEGK5fCwxW+HKFOyBHSMRp1AS2Ku/fYqdtjRx0RxqJTswZzBJ94NSxHKG7kp0qbuHawoGQy6QgPV2C1ulCrFOQOmr/7V1IdOWUyn7z1Ov9+czl///crXH7zBq686ALOPfN0VOHh+/Tc8idUBVsoz7FDGUnkkpCQOGy44447ePDBB5k8fjz/cg1gffZZ9DfcgEKjCdmeZzRGUVPThsPRi9PlCfCwEloUGxu7aGzsQiaXUV5hISsrThSPpkxODBCKZsxIEh/3JSiVljWTmOgOmIoY2IIYxws338wFJxzPTU8/zbyrr+KU2bO588KLsFvCaG52MjY7bp8eYKGqFfbnGyYhISFxODD+D6nsqNrFOdcvpafXSaIhiXl/mC++PlJrnn9McLk8TJ6SiNXiBGTAABERSkqKm6gzO/B6+onUKsnKimPbtjays+NYsjQ3YB8zCpPEx5EEpbJSXzxQhQd+JfdvQczOyuWNf77PV+u+5OEn7+akpfNYdOIZ3HDVbTTWy0f03PK/Lv9HgX35hklISEgcLhxxZBFrdjXyRVk5ZTtqeeMffydMOfSZG6o9z2jUUVPTPpgj9DFlylCOMGniKBydburrO7Fau4HuwRwhVhSPpkxJDBCKZhQmi4/7EpRKS5sZldgTMBUxuAXxsvOXcdpJJ/C3f77Eo8/+nTffe5+brroCfXTuiJ5b/oSqYNufb9ihhmxgYGDgt97E7wmHw0F0dDR2ux2d7sAmMEhISPw+2LNnD5MnT6atrY3zTz6Zm3ftJiw1lYRrr2V7rX2Yf5bF6mTrllZggPET9CEFoLVr6/jmG3PISq6RBKPi4r18/XU9RmMUx81PF4+rrm7lyzV19HT3kZUVR9HMFPE1oQUxMVFLdIyKVquTyso2pk0fhdlZzQOv/Jum1lbOPPo4Tj3yBIyJenGy4s8hXHna25HJZESfcjIyufygzj1cPzcP1+uSkPhfYKB/gBOPWsqn37+NVhPFR8u/JGP0GCC0f5YgKvn7bQULQGWlzZSVteB2e4ZXcoU4HgLjwfzj0sVjhD3IFTLqzV1iJZf/z9q2rY3EJC2NjV2YzQ7mzElj6tRRrPjgdf72/CN0dXVy0oIlTC04k7gYAxPG63820aqjxcno8QnEJh78eofjZ+fheE0SEv9LfP3JxyxcvJiePg/nLTmDO2+6QXwt2D9LEJX8JxQGC0ClfvFAowmjqDAloJJrJMGouLhhKEc4Ll08rrrKxpdr9tDT4yErK5aiolTxNaEFMWkwR7BaXVRV2phRmIwhqZe/Pv0sX3+3nqyMMZx4zOkcNaOI7h7vPvdxMLjsHSiUYeTOPvqgz/2tPjulSi4JCYlDmro6O5WVNvLy4hk9ejTLly9n/vz5vPLRR0y67jrmrf6C9tdfhyNPHHau2dw5YlWUYCpvMuo4+ZSsADFJeNzX5MaqahtNTV3k5CaIr5VXWCgvtyAD0gbvngi+WcIddntHD9u3tVFZ2UpzsxOAG288jsVz5vDEm+/w3Ptv8+F3X3Hi9HlMSi4E0kUPrv2JbxISEhKHO/4xYfknLzNlfDU79m7h8uvO4z9vrUajGaqiqqiwAL5qLqGlLzs7jslTEoetW13VyuZyC3pDBDOLUgLEJL1Bi9XipKy0eZjYVVLcRFWVLx74T3sUqsnkChn93gGqqtpQhSvF84WY0GHvYePGRtrb3ahVSgoLUzn3zAuZOW0hL732Ip9++Rr/WbWcyeNP4IKzruDYYwuAfZvRS0hISPwv4B8P5px4ElecejxPvPMRr654h/xxeZw0/7iQ5wntfNnZcQEVXALVVTbKyy0YDBEBYhQMtf/ta3JjVZWNpsYucnLixdfKB2OCDEhLG8wRBn2zhIore4ebbdvaqKq00STkCDdN5cUnH+eLrzbw93/9iyf+8TDvrRzNkROP55SFc0UPrv2Jb4cbksglISFxSFNZaaOkpBHw9d8fe+yx3H///dx+++386fnn+eymm0h8731sVgUV7aOBwHZF/0d//EuXly4JbEERBDC1SimOkPcXlvLy4mhq7iIrMyZg7YJ8A/VmB11dHkxGXYBv1pTJiaJYFR3TSXy8isrKNrEFUh0ezrET5qFxZlKy+1s+/eErPvR8wem2eSQkn0Nro2xEM3oJCQmJ/xX8Y8LChRl8+Mn7zCiaTu3u7dxx/594/IHnkMlkw1oW9zeFsKLCQm1NO5Ha4dVS1VWtrFq1G4VCxqxZqQGv5+XF0dzcRWZQPMjPN9Dl9OD1eFEoFcTHqwN8s4T/rBYnjY1OzGaH2P4I0GYDU+JJXHfxfPY0fsEHK//Nlbd8wvFfn8wFZ1+GpydpRDN6CQkJif8FgnOEa++6ly1bK1lTXcsdDzxM7tgjyExPH9auuL8phOUVFmprOtBq9cNEI6EqTK1W4HQO5gh+x+TmxdPU7ByMCUPrF+QbqK930NXVh8mkC/DNmjIlURSromNUxMerxUougTjdaBbMupLp+Xso3bqKd1Y+R8mmj7jwnCWkJ09mz57uYXs5nJFELgkJiUMa34TFoUeAW265hfXr17Nq1SouWbGCTxYuxPTlWo7OjiUtP09sU3Q43Oh04RAiqdnXZBEhGGZmxlIw0TAsKUrQa5lYMGpYhVhOTgJOl4ft29rEaYkwsm/W/PljAtY1GqMYVaPj6PDj+OOpp1Fat4Hn3n+Pt9euZsGRM5mX/wfS0ozD9itUefW6PaLJvmQ6LyEhcTgSHBNyCzJ5/m8vc86li/nPp+8ybfIMliw+VzSIN5p0lJU24+71YK5zoNEoQ4pC+5o+WFFhESckDvO90mspKBg1zDNLMLoXqgWEoSehfLPOPTdv2M8c8g8b4MRjL+Kma6/l3f+8yStvvsjHq95nQu5k/lB0OrNHnRJwnlDhJVyvf8umhISExOFEcDww5k3gvFNPpN6xnO0NzVx182188Oq/Ar7zWywutm6x4uh0Y+9w++xMgoShA8oRsmIoKDAME8r0eg0FBYZhvlk5ufE4XX1s29ZGeLhiv75ZCxZkBKwreIjBaG695h7k4VZeWb6C+x9/kgi1mqNmzOOInFOBwMo0ocqrt9crmuwf6qbzIHlyDUPquZeQODyw2WxMmjSJxsZGPnzvPfLeeAN37U4MN91ERaOMb742Y7N1ExcXwZyjjQGm8/6tii0t3dhs3RQVJYvCkPD6SGKRICppNcphvlmCLxfAlMmj6O72si9PsJHWFtZ09fRw93Nv8c43n9PmaiU3PZ2LTzqJ04+eS3Skb9z92rV1bN7cQmtrNxari4ICA9dcPTlg3ZbaBhobXRjPO53R6bEH9V4frp+bh+t1SUj8L3LFsj/x/OuPUZAzjfeXr0QmkwFD3lfNzU6sVhcFBfphBvLVVa2sL24kPl7NqFGaYeJQKI8vgX15fVktTj5fvUf028rKjGXLVp9P5IH4a4VqSfz++zqWv/Mfdjd+xraaMiIjozjxuFNZdNKZTMqfyldfmdm8qQV3bz8tzU4io8I495zcgH1bLU5qq9rIn5lM3qRRB/1eH46fnYfjNUlI/C9irtzCv267kWe+/YFOVzcv/+0JCqdNFV8vLW3m66/N2Gw9xMWpOfpoY0DLolCpZTLpaGlxYWt1kRmzh7g4NePmHMP2be0B/l7B7MvvS/DlAl/1Vvdgt0gooS0UodoSP15Zzmsr3qXGvBGnq4uC8eNYdPxCjj92HtE6HWvX1LFpcwu21p7BHEHPNdcE5gjmXc00NXdTdNKCgKn2B4LkySUhISHxMxIfH897772H1+vlyCOPxDNzJrtOOJG2f/2L1AuuYOLEUWIll1ajFL2xDHqteBemscFJq82Fw96LNlIpClo5OQn7rIQSqrEEM/l6cyc97j4K8g04XR6amrpw2Hvp6+3H5erD1d0HwNy5+xe5gickatRqRjGe2bGjGDBa6I6q5aZnnuGWv/+dY6dN47Sj56LuS8J3O2MAmd9a/oJZQ6OTnTvtdFXaDlrkkpCQkPi988y/H0beF8HY6Jm0NTqJT/HdBBAqp9IzdKJ4FSweVVRY2Ly5BZ0unIR4DVarCxiazJiTmzBiNZTQdiiIaR12NzAkZFlaXOys7UCtUqIKV1Jc3IDLdWAxIdR0xI0bLHR3HkHRxGlccYGczZWr+XztByx//zWSRiWTnVmEVpXPxPxpOJ29dHX2UVFhISc3QbzuDnsP1r1daBI1/5XIJSEhIfF7xZg3gSPG53ORTMH0k0+jYML4wNeNOnF6oi5KhVYTJnpjGQwavxyhi1ZbN2G9LSSM2kbHboiMiydn4pR9VkIJ1ViCmXx9fSc9PZ7BHKGPpiYndiFH6PYMxYN5pv1eW6gJiTXb+tDIi5h/5FwmTu9hzbo13P3IY9z76ONMnzyJtKTxyL0mQB2YI/gJZo0Nnezc1UVMpe2gRa7fisNK5Bo9ejR1dXUBzz300EPccsstv9GOJCQkfkumTh26M6OMjyf5icepv+hiNGtXMvfcc8XXBDEKfCJSQb4BZ5cHlUqOwRCB293vK2Hej7l7cIWXkDyVb7ZQW9sOwNy5JqZNTcZm6yY3N46qqjaamrrAL7SE+jn7qg6bMSMJm60bnS6eeccs4Jmbruf9b77mva++4vz77kWjUjMhI4dJGeMYn57OvFm+lkZ/T7C0ZC0yZBjzDv0SZZDigYSERCAKhYIn/n0X7zzwI+VfmilcnElEVHiAUFRY6DtWEKTAJyTl5xsGx8RDVlYMHR1asc1xJGP34OoufyP5zZssDAxATLRa9NmaUZiE0RhFUlJkQEwYyUB+pAoxYT3DqAjs7XIWHn0pt990BxtLi/niq09ZvfYzmi3v8uV6NdmZBSTE5jCgmEVb+yjM5j5xoqPJFE1WZszP/v/ht0KKCRISEgKFp59FU81dxMq8w14zGDQBglKpXzwwGDS+HMHZh0qlwDBKQ5htD2HKKJTh4ewo24o2KZtRiZHD1g2e4Ci0IZaX+/y9YDBHmJY0mCPEDw4tcQasE6paa1/VYTMKk7HZetDpwsk05bLkbwuxtLay+qtvWPPNt7y78lW8Xi+j9ImkjMpCrppCza44bNYwamscACSnRCFTKAOsYX7vHFYiF8C9997LJZdcIv49Kiq0gaiEhMT/Flu2bOGGO+/kmaVLcL21HNURR6CdPh3w3cm3d7ixd/RgsToDvLPGZseJrYzBYpiAIECVb7ZQVW2jscFJfEKEWHWl1SjRRiopyDdg0Gs59dQs8dzMrNhhPiz+4pPwc4Tn5AroH4zJwmuFhakB6xgStFx12ulcddrp7Gxo4JnXP+GrslL+ueMtPF4vz6+NZ3J2NkekZmCITGYgPJzomBgSErREHyJ3aA4EKR5ISEj4E65WcvzVE1hx3wb+/Kc/U1CYzUXLLh92nNEYRYfd7atosjgD/LP0ei3zF4wZJoT5Y7U4WbVqN3V1DhoanCQkRAQYyfsErAFRmCosTBXPPfmkMQExQZj6GPxzhOcVCvAOxgRhrcLC1ABxTC6XM2PaTGZMm8m8WVfwyafrUap3YbFV8+OmD1n7/b+5/QGIi00gaVQGo41Gkg3JHH3yX37Gd/+3R4oJEhISAKYJE9HpR7G36ieMeROo3L6DR595jmcfeYioyECBymjUDeYIbiwWV4B3VnZ2HJ0/9aCNSaFbbqBtxwZ272wJELkEAaq83EJVlY3Ghi5fjjBYdaXVhKHVhvlyBIMmMEfIjBUFLQF/Q3pByBKeUyhkeL0DAa8VFqYMW8eQkMC5Z5zGuWecxpdrdvDhx9/Qr2xib1MNf3vpKZ56cQClUknyqBQyTEZSkxI4embRIVPFBYehyBUVFUVi4vBRnyPhdrtxu93i3x0Oxy+xLQkJiV8B/1HB/h/E/f39LFu2jIqKCm4MC+OZCROwv/ceqqwslHE+c/joGJ+IFB3TiUHvG99ePyhcaTVKsTIr+DmA1Z/vYePGRsaMiSUlORKFQobZ3CmKUPEJEWRlxRGfEDFsz8HthxB66qPwZ/9Krv2tAxAVHoPGkcskrZElU3RMnCVnY1UlZdu28dLKD3A4fXeIlAoFfzrtdB445eSDft9/r0jxQELif5eR4kGsQYvXuJtPn32TzzcqmJg/mUn5UwPO1Ru0xET7RKSY6E70Bi3uXg/NzU7SMwQz4CjM9Z1sLreg0SgD2hU/X72H6m02VCq5GA8EgUpv0DJhvE+kCkVwC+JIUx+Fv/tXcu1rHfCJb59+upvmBh3jxx/D/XfdRn9/P7vrdrK9tpodtduo3bWdhqbdbK7YwEN/vX//b/QhxMHEBCkeSEgcXgTHhPxj5vP9itfpsFq44DKIhgABAABJREFU4Y6/sKuujpvvuY/nHnlY9GwEn1gUHaNi27Y2omNUGAwajEYd9fWdlG9uRm9vJTV3PJ6+NGT96+i2twFDg6NWr97Dxg1DOYJcIcdsdogilC9HiA2dI4RoPwxlSC/82b+Sa3/rgE+A+3ptC057GhPGT+SFJ6ZidzjYVlPLjp272FG7k/rGRtb/WIoxJeUg3/HflsNO5Hr44Ye57777MBqNnHXWWVx//fUolSNf5kMPPcQ999zzK+5QQkLilyJ4VLBASUkjM2ZcT3X1ZXz2+ee8dfPNnF5TQ/tbb5FwxRVYbd3YO9wkJmrERMGg19Lj7qO2th1tpJL4hAjM5k5stm7xOUHkMpsdtHe4cbn6uOTSCWzd0ipWhRn0WrZusbJpk4XMzBjSjLoR2x392xT9jfCF/QRXj/n7iIXCYnWydm0d4So5ycmR/GHWaAoLU1kw2JPT399PvcXCzr17qa2tIce4/37/QwkpHkhI/O8yUjxYv34vrc5sZkw8hpLNX/LH6y7ksw++IS52qA3DanHSYXeTmDQUE8x1DqxWF+Y6B1mZzqF4UNNOpDZQ5DKbHXR3e0hOjmHWrFQ0GmVAa+OWrVY2lVnIzIrBmKYbseVxpFZFCBSxhOOE50NhtQzGg3A5ySmRYlujXC5nTHoWY9KzWHjMSeLxHS1O5HL5gb/hhwAHExOkeCAhcXgRHBNyZs7hu7de5aeSco6ZuYyXGx7ii6+/5d9vreDCs5eK51ksLuwdbpIStUOVUAYNPT0eGnY3kRDjJSw6hTUrPUwAWs31wNCNEzFH6O7jkksmsHWLVawKMxg0bN1ipWxTC1lZMaSl6QJaDf3xb1P0N8IX9uN/jsXiCvARC4XF4hJzhJTkSGYUJgMQrdMxffIkpk+eJB7rsnegUIYd3Bv+G3NYiVzXXHMNkyZNIi4ujuLiYm699Vaampp44oknRjzn1ltv5YYbbhD/7nA4SEtL+zW2KyEh8TMTPCpYYM2aOn76KZz586/n448f5u5HHyX/9tvJeuddur77DnPkWJqbnYzN9lV1FRfvpaSkibS0SPIL9BTkG8R2wfj4CLH1UGDOnDTUaiUzZviSBovVicPRS3SMelCAkuF2e6iqasMyaFgcSpgymzspK2uhpqaNuXNN+5y2GKqlMdQxDkcfY8fGhVxPLpcToYjCXh9NRJsJ/ZgDr3r6vSPFAwmJ/232FQ/Wrq3nqONupG7vdhqtZq6+6VJef/FdUdQxmztpbnKSnR1HTW07r71WRZoxkoICPfmD8WDbYDyI1CrJDxojP2dOGmqVkry8OAAam7pobvJ99usNWhyOPtrau9lbr8Dl9IjPB7NlayubN7UwcdKofZrQj9TSGHyMw9FH9mA8GElU+359IzZbN1PGJzB6/MgDVg41DjYmSPFAQuLwIjgmRMUnYBg9hqa6PbQ1ZzN/9hJWfvUGjzz9LAXj8piUPwHwiVRNzb54YDBoKC5uoKS4kTRjFDkZcmiD9r4ECOuhzxtBvM4T8HN98UAhikgWq2swR1CJAlSv2+vLESw+78dQwpTZ7BjMEdp93+n3MW0xVEtjqGMcjt6hHCHEccK1TpukY9r01BCr/H753Ytct9xyC3/961/3eUx1dTXZ2dkBwWjChAmEh4dz2WWX8dBDD6FSqUKeq1KpRnxNQkLi0MJkig7ZLz5v0EBy3rxZxMU188orr3DpP//JJ7OPQvbJJ6ReMhqy4zAao6iubmX58m10dPjaFG680Xc3xmL1tfWFMoPPzIoVPVVKy5rZs8dBp6OX8eN8CcL4CQlYrE5aml3odOHD2koEjMYoamraaGn23V3Zl9A1UgtLqGN63R7Wrq2jIN9Ae3sPJSVNzJiRRGFhKmZzJz/82MhAhx2NNowpI7+9vzlSPJCQkDhQ9h8PTCw+9QMKiwopKV3HMy88wbVX3AQEfr4+8+xmtm9vw+6I4957ZwIM+moxohl8VqYvJpSVNvPddw04Xb3k5saL6+p0YcTFRpCaFiVWcoVmgIEBcDjc+zS5P5h4YDRG0drazdq1dRhNOlpaurHZuikqTMbl8vDDD4047L3oVAr+MOJqvw9+yZggxQMJicOLUDFhbOEsrCteZ0KehvzJS+hXNLHqy7Vcc9sdfPzma8TFxAS0B1ZX2XjrrWoxRzh2kpyG3kjGTRyNRj9A6/fpDPS58Pb1YWvvw2x2kJkZS2Ghr9WvtNQvRxgv5Ah6LFYXzWKOENhqKGA06qipaafZP0cYQcAK1dI40jG9vd6hHKGjh5LiRmYUJlNYmEJJcSM/VdpQDnRLItfPzY033sj555+/z2MyMjJCPj99+nQ8Hg979uxh7Nixv8DuJCQkDgWKilIpKvJ9OE+c+BxffbUes7mGC7bU8LYGwtesZPIVVyCTyVi7tg6Pd4CYGJVYmQWhPa9CVVMZjVGEhynocXupMzsoLPS9NneuaZ+TGYU15s41sXZtHQ5Hb4CvV6hj91Xp5X/M8hVVVJRbAdi1005VtQ273U24SolWo2Ta1GS6msLI28fI498DUjyQkJD4/+IfDyCVxx5+imtvuoKn//koEep0Lr1wcUArYGSkkrAwOZGRQ1+ZQ/ldwfCKKqMxCq+3H5utB3ePRzxnwng9MdHqEUUrAeG4DnvPPiu1RtrPSMesXVtHebmVnbvsNDV14enzGRWnp0eTmxuP293PEUfE7nO93wNSTJCQkPj/kDFxCt+99QpHjleQnpfAg3fcxqaKappbGrnoqlt4/7W/B7QCrl1bh1fIEQqTsddVExWvJyNrFNkTNKxtTmfHhvV4ensD4oFwvtGoIzxMTo/bQ12dg8LCFN80x7mmYRMTgxGOG8oRHPs8dl+VXv7HLF9ePZQj7LJTVWXD7nATHq4gd7DqbdKkkcWy3yu/e5FLr9ej1+v/q3PLy8uRy+UYDIb9HywhIfE/gUajYcKEG6ivvw6bfQDtdZfT/dRTuH78Ee20aWIbYkG+QfTcGongu+f+bY7JKdqAlkZ/Uaq6unVojHBOQoAXV7AgJvD55ztZt66B2bNTmD9/DAeD/zV5+gZoauoiMjJMnB556qlZeNoTAow2f49I8UBCQuLn5pob/8gLz3/Azrrv2bVl77DXTzwhE2OablhLYij8Y0Jx8V5KiptIM0aSkqINON9fcKquaqWiwkJ+vkH09fL34po8JRGrxUlMdGdArPn663qMxijmH5e+X4ErGGEvfZ5+ero9qCPCiI9X09zkJDcngclTEuloce5nld8eKSZISEj8f4hPNaLSRtLe1ED6xMlEarXMnnQe761+FLu9l+6eHrSaIbHI//t0dk4cq0otmMYXEKZS+9ZLMdLd+Rm97u5h1VT+bY7JKZGBOYKfKFVdZRvKEXLjA7y4ggUxgc8+28V36xqYNTuFBQtCC/sjEZAjeAZoauwiMjJcnB55400ZuOwdB/nO/vb87kWuA6WkpISNGzcyZ84coqKiKCkp4frrr+ecc84hNvb3fzdKQkLi1+P88+fQ3/8Y5513NKbTstm9ejWOjz9GPW4cOTkJ+xW3BATRSjD8LSlporKyFRhqcwxFeYVFvGuSk5MgVoTZO9xEx/gSGaMxSlzXoNeybl0DO3d2ABy0yOV/TfEJEeTkxo84pfFwQIoHEhISB8Md9z7K+vfLyNWn07zTTuKYoZaWnNyEAFP5fSGITWZzJ19/Xc/O2g4Abrxp5HhQUWGhXIgHucIwE18FQIfdLYpb/jGhpLiJqiobTU1d5OYkHLTIJVyT1eITtURz/aCbK4cLUkyQkJAIhUwuJ2VsDraGevrcbsJUKk5YOAW4iYXzJwcIXAA5ufHkDHY9dHd20tfTTXyaEdmgn2NcShoD/f102WwkZQ0NpwLE1j/Yd0wIyBFy40V/LV+OoMJo9JnTC+saDBq+W9fAzl0dAActcvlfU3xCBDk5cSNOaTyUOGxELpVKxYoVK7j77rtxu92kp6dz/fXXB/TgS0hI/G8x0gj5xYvHsnjxUHtC8oMPUH3qIhwffUTs0qWhlgKGV2BBYMui0N4YG6fi8cd/FH2vghHumnR3e7jttnUUFOgZmx2HvaNHXAsIaIWcPdvXzy88HigWq5P13/uMhIuKksnJSdhvm+OhjhQPJCQkghkpHgCcdVYBZ545gfceLmXrt3tRRvaTMGrf4keoCiwYEqiMRh1qldIXDx77kRmFoeOBUFXlGowHs2elMHlwuq5/myIg/nlGYRI9bo8ofh0oQoWYu9eDuc5Bfr6ByX5Tug5WLDtUkGKChIREMEJMiErJZnd5GT2dDsJUegoLU0QPLYGenh7UanXAc3ZLMwCJGZmsX7+XNWvqmD0jBoDONhtJBBrAC8bzQzEhedjPAf8coY/bbv2Ogol6srPjsHe4Q8YDg0HDrMHcYNZB5AhChVhvr5e6OodYOba/NsdDhcNG5Jo0aRIbNmz4rbchISHxO2KkEfL+9PT0cO1TT1Hm7OLl9d+jmT4d1QgeHsEVWOAzdW9udpKerqOwMJXCwlQef/xHsaIrVFIjVFbddts6sTrrjDNysFidYiWXgPDn+fPHBFRwhRLcgrFYfSPjy0pb6O72oI1UHnCV2qGMFA8kJCSC2V88UCjkHH/FBO69/EVuXnQaj97/NHPnHDPieqEqsKqrWtlcbiE+Xs3MohT0Bi2PP7afeDBYVeUfD+YvGIPeoB3WpghDZvfBa40kuglYLU7Ry6Wzsw/r4KTfA61SO5SRYoKEhEQwQkyYODaZgf5+bA31RCUEtj939/Rw918fpb6hkdf+/gxK5ZB0Yre0oAwPJyYphTdfrmPNGjMMDBATrqKn01dl1dvrpaXZSUZGtCiePf7Yj2JFVyiRS6isuu3W78TqrDPOyMZicYmVXALCnxcsyAio4ApueQzF1i1Wyja10NfXT6ejV/zZhwuHjcglISEhEcxII+QF6ursfPVVBW+9tYKuLgdPJiVz53vvkXDjjcgVimHH+/eti2uYHVitLtFkHoYquvyN60MRXJ0V7NtVU9OGVqMcVnllsTr54INa6usdOLs8w4Qri9XJ6s/3ULHFQmRkOEaTDk1EWMC+g7HZXDQ2ujBOtDM6XWrfkJCQOLw4kHhQWWmjrreMjq5Wrrv1cpa/9DnjxmWFPF6owPL32qqosFBb006kVi9WRc0oTAp4HInZs1ICHmG4d1dNTRsajXJYxVV1VSuvv1FFV2cfEChcWS1OPl+9hy0VFrSR4WSPjWXc+ASxkisUVouT2uo2wuPVxCYentVdEhIS/9sIsSA3J5a9X6rpaG6C/KHXLRYXG3/cxqovv6K7p5uHnnyeO/90tfi6vaWJyNh41BptwNTe7R0J9HR1MTAwQF2dA6u1WzSZh6GKLuFxJIKrs4J9u2pq2tFqwoZVXlksLj74sIZ6swOns2+YcGWxuFi9eg+lpc2oVArGj9ejVMr2mSO02npoam5Ha7KPWDTwe0MSuSQkJA5bRhohL1BZaWPXLjknnHArK1bcyqtNjUyWyVi8bh1Rc+YMOz6UX1co4Uuo6Nof8+ePYdLkRMzmTixWZ4CYFVw15m9ObzZ30tPTh1IpIz4+Yti6ZnMnGzc2YrO5SU9XsGRJ9n5bFBsanezcaaer0iaJXBISEocdBxIPSkoaOev8m/mx9Ad2763m+lsu5dMPVxMeFj7s+FBeXaGErwOOBwvGMHkwHlgtzmFCVnDlmL85fUWFha7OPiKjwoYJV0PxoIf09GjmzjUNVoKNvBezuZO6OjuaRA15k0btd+8SEhIShxr+MWFUeiaOViv9Xq94k9tsdmBvV3PC3PN499MXePXtN5ldOJmjinwfnu3NTeiNownXaCgqihen9jZ9Y6CrzYa3r2+EHGF4O2QoFizIGIwJDiwWV4CYFezb5W9ObzY76OnuQ6mUj5AjONi4oRFbWw/po6M57rjR+21RbGzoZOeuLmIqbZLIJSEhIfF7Jy/PFxiio4+mvX0Zq1e/xu1WC9n/+ZApkyej1O3fcDE+IYKsrDjiE4YHEvBVVW3d0goMEBGhpM7sCJiqKLSPAAFClBAQY2NULF9RhVqlxOXyAL52lT/8wQgMMH7C8MlSRmMU06cnYzY7mDMnbZjAFarVMSVZiwwZxhGqHCQkJCQOZ4S7+tHR4Vx+9ePcfdcZ7Kz/ifse/Av3/eWhA1ojYTAeJIwQD6wWJ1u2DsUDoZpKEMu2bLWyqczCpMkG5s4N/NzOzzfQ5fTQ5+ln7do9ADQ3ucTXhMdg4S04HoTy3QpudTQao+jt6iMrM+aArltCQkLiUCYlJ4+ylf+ht6cbtTYS8LUC2jvcaLWFWGy7+HbDF9x01z189OZrxEVp6XbYSUgziZMVBWJGJdFq3oO3r28wR4gdOUewuNi6xSdWRWiUAd5YFosrMEcwDJ/yGBOjYvnyatRqBU6nkCPoBnMERsgRdEw/0i9HCBK4QrU6JqdEIVMoR6yE/j0iiVwSEhKHHevX7+W993aQkhLJ6aePHfGug8kUjcFgY+fODq644jYcjhpKSkq4rnYnH7zzDskXX7zfn+VvPC+ISf5VV1u3WFmzpg6tNoyIiLAhH5TBqYoORx86Xfgw82ChauzpZ8qoKLcwdmwcR881YTRGYdBrhyVA/hj0Ws49N0/cS2lZs3gehPYWi4/XkJCgJfoQuUMjISEhcSAIhsDjxiUQEREW0ngehu7qr1q1i87OKK6/4REefOgK3vzgJaZPncEJC0/a788STOch0MRdqLoy1zv4YWPT8HggClMyZDLfYzA5uQls297O2rV7iI2J4A9z0sjOjhM9ukby1tIbhuKB/16E82B4lZjeoCVsAJKTI/d7zRISEhKHEqFyhLTc8Wz84G06mptIHONrUTcYNETHqGhqdnLx2Zdgs5v5qXob1952B4/d4GtbTMnJQyYL/LyOSUyiu6uTvl43ZnNvgEE8EFB1tXWLlS/X1BGpDSMiQonV2g0MTVV0OHoHc4TAm+6Cb9fTT2/y5QjZcRx9tBGjUYfBoGHuYPtkKAwGDeeemyvupbS0WTwPhleJASTEqxk1KuqQqeICSeSSkJA4DFmzpo4vvthDQkIEubkJ+/xQ9vdpefvtt5k4cSJVNht3f7aKp2fNQj3WN4XRX7jyr4wSxCl/kcpf+AIZWm0YiYmR5ObGiZVc/udoNUpxNHyotsKBAVBHKJkyOXHYa/vaW/BehNdClU9LSEhIHI6sWeMzBN6xo52MjBhg5EEk4B8TxtNhq+bv/3yGW+65lnHjxjHaOGTsG0osChUPYEj86u7x+OJBki8eBPtiTRgvCFUDIVsWbbZu+vr6UUcomDA+YcRpiKH2FrwXGBLiQrVZSkhISByOhMoRkrOykcnk2PbWiyIXDBm7G406nn7oAU4+5zw2b9nKEy/8kxPyc0hIGw0ETu+NGZVEv8dDd2cnRqM+YB0InLgIEOkXE4RKLv9ztJowzGafkf3wtsIB+gdArVYwZcoIOYKfqBZ8vv9ehNf+j737jm+q7NsAfiXpTLrbpHu30gGUUYWyR5GhjyxFEQUcuB8nihMBX8UBrkdxC04EFFEBRUAQactooQXaUlooLdCR7pG0aZrk/aMkNm066SDt9f18KiQ5OedODLl6fucefeUcgUUuIupzYmP9UV6ugre3HSIjXVtdOl5/9T4npwInT6qxdu0neOqp+zHR2wcVW7bA6tlnIbSwMFks0v+9aWHJ6ETHz/7yaigNBajG86Don5uYVGBy3wAwJdYfUqmtIWxMFbSMi2owetzUSZepucWIiPoi/YTA+p5cjo5W2LnzXJs9unJyKjD1hodx4MBBWKudUJKlQYDfv9uZKhY1nii+Mf33r1jcMOz83xUSjbeTyiRwcmzYr5NjVbN9jR7lBTuJBaKiZIbHTBW0GrdNf1v/uMlMMDG/GBFRX9TSOYK9zBMV8gKjbfWTvcvlSsgLRHj+8Wew5sO34WtrBY+gUEicGuawbbx677WRDfMYKspLETDYv1lhqXHhDH4wrJgok4mN5urSHzsxsaBZIUpvSmwApFLxv+cIJgpaTYtqjR83astl+l5i5o5FLiLqc3x87DFlSoDhJGbnznOtLh0P/BtQMTFDkZ2dDcHx47hw3/2o3r0bDtOnt3iF3pSmha+2Jn1vbd9NC1Kmim2Nn9/0cVNFOCKi/mL0aB/4+NgbLnQ0PhlpayL6o0eL8PIrG+BSY4n0+Hzk+5fDM9gJQOvf2021VPwypdU8MFGMMlVsa5oJjR/vSFuIiPqals4R/O19UVmQCk19PUQW/5ZIdFotMo6nIi/7ItxcLLFi3n+gUVQjcmIsrMUNhaTGo0IcZZYAgNqqKpPHb7xKov52a0wVovSaFqRM9cxq/PymjzdtS1/CIhcR9TlNT2LaWjq+8WORka6wt7cHxo2D3aRJyNixA9cMHgyZt/cVFYtaG1LYEaZOgEqKa5CZWQqJ2KLFE6T4+ItISMhHTIxnu1b6IiLqKxpnQnvyoOl2vj72KL5QjZP7LqJYkYdBgyOuuFjU0pDCxr2xGt9uianv/OLLmSBuKxPi8xEziplARP1HS+cIdqqhOPrDIVSXFsNR1jD0T1lZgUNbN6FSXggboQVq66xga2+PQbNvhW/EIGRnZ8PT07PZ6r3WEglqq00XuUxpbUhhR5gqiDWcI5RBIrZssWAWH38JCfF5iBnl1a6VH80Bi1xE1Oc0PYlpa+n4lrY5MX4cFnz6CaYsfwlffP5Fs8klO6K1CeorymtRUKA0esyUxis1otEJS+NJIuffFmFyHwkJ+UhNLUZtbT2srP898dGfZLkwDYioj2qcCe3JA6B5JoxbGIgZE+cg/ZNE/PL9boSGDriiNjXtYdW46NXSBPZNNV4VsfF2jSeSv21+hMl9JMTn48SJIpSU1iA0xLlZGyyv6NUREV2dWjpHqCp1wNEfPkJR7nk4yjxQr1YjYctG1NUoMfq2hQi5diQsLK0gFAph6+iIP3b9iTvuuAN33HEHPvzwQ6NjOLjJUKuohlarhVAobLNNpnpg6QtfFeUq5BcojB4zpfGqiI23MzpHmB9uch8J8Xk4lVqCWpUGVlYiQxFMX3izs27zJVx1eFpDRH1Oe09i2iKWyVCl1eLH8+cx+qN1uOehhzu9r9YmqPfwkGDA5VWyTGlcDDt+XA6dDnB0sjGaSL6oqAZFRTVITy82Od9WTIwnAEAmszWav0v/d5cgM0wwIqJ26IpMcPNwgo2LDrVZNVjyyGL8vm0vbG2v5Iq7cSY0Lmy1NmSxcSGq6aqIek5O1hCKBHByavl7PWaUJ0pKa+DgYIXc3Ib5vxq3Idi37WGYRETmpqU8sHdxg8TZBWV5Db28Tuz+HYryMkxYdC8GTpwCSyvj71NLS0tUVlZi3bp1GDt2LG677TbDYw4yd5RevACNWg2hddu/X5vqYaUvfHl6SC6vpNt8uCLwbzEsOVmOrMxyADAawthwjqBEUZES6WklJufbihnlBQCQuYuN5u/S/z0i1KbN13C1abu0SETUT02cOBErV60CADy3dSvefWcb0tOLO7UvmVSC6OEezVZmFIstkZ1dAYnYosVeXP/2AhNg6FB3DBsmazaRvFRqi7xL1UhOkZvcR0ioM8ZP8EV0tIehoObnZ99qcY2IiBpYWFjgp22b4eLkhtyCLCy++36kp3UuD4CGHlrDoz2M5tEKC3OBqq4ee/fmQCy2MNkDS1+Iys2tQlSUDEOGSJutilheroJWo0N5uarF44eGOGPyZH9ce62HUVEtjJlARP2Ub8RAlFzMwen4f5B7KgUR4ychfPSEZgUuAJg2bRpeeOEFAMDdd9+L//53I+LiLgIAnN29UFNdBU29ul3HlcnEiI72MOpl5efnAInEEtnnKyARW7bYi0tfDHN1tUXUEGmzVRHDI1whlYqRd0nR8jlCyOVzhOEehoKan59Dq8W1qx2LXERErXj++edx/YQJqNXp8Nmfn+HQ4fMtbisvUiAxqQDyIkW79i2TSlCrUiMrq6zF4AGMi2FeXhJMnhzQrCA2JEpmMtz09IUyhbIe0cM9DPdd6RxhRET9haenJ7b8tAkCgRBH0/7A+g3rW9y2SK5AUmIBiuTtywN90Ss3pxLJyUVIaSETGhfD9EMVm05G31Lxq7Hc3CoU5Cvg5GjTbKgiJ6Ynov5oxKx5UKtUOH1wP7zDInDtf+bCxs6uxe1XrFiBCRMmoKZGgS+/XIadOzMAAE6eXqitroK6ttawrVyuRGJiAeRypdE+tBqNyX3LZGLU1tYjK7O8jXOEhmJYSUkNhkTJTPbUavscoaFQplCqER3tYbjvSucI600crkhE1MRPP2Vg69ZMzJkTirlzB+C7LVsQGXINLlSUYeeBT7B40XCT83OZmnerLfrAaSl49PvSF8MkdhYmhyM2XYURANLTi5GcIoe/nwNqajTw8BAbDY3paFuJiPoj40yYhLvvegJffLkWv+x9D3eemIpBgwc3e05759VqSl+YaqlApZ/w/oeNaSaHKupvN70PaJjDKy4+D66uNggb4GLUa6uz7SUi6ivc/AJwy0uvIufEcYRcNwrOnl7Ntml6jvD9999j4MAolJZeQErKZwAmw8ndA9DpoKgog71rw3exqXm3knftQM6JZAyOnYbAocObHatd5wiNimESiaXJIlfTVRiBf+fw8vd3QI2yHp4eEqO5uJq21dywyEVE1MTWrZk4cKChy/HcuQPg5uaGn3dux/ixY7Er5yy+//xzLFiypNnzOrKkvJ6p4pQp/n4OyLukgH8Hug3rJ5vMu6QwzPulL2jp21hcpMCrryYg1F2A8RP9ceUzmRER9S1NM+HTz95E9rkU/LV/Dx5+cgn2/n4QlpbGU7V3Jg+AlgtUjRXJFbC2sURIqHOrvbWaSkmR4/jxQjg4WMHP1wHDL1+xb9zOs+fK8NPWMxh7nQcCBrWdTUREfYn3gAh4D4ho8fGmeeDp6Ykff9yE2NhY7NixCT//fCsmjY4BACjKygzPazrvVvGFHJxPOQaBUIi0f/bBc0A4bMTGBSVTxSlT/P0dkHepGv7+nTlHqIb75Xm/9AUtfRuLipR49dVD8PcSYeKkwHbv+2rAIhcRURNz5oQa/QkAo0aNwurXX8fxTz5FzKlTUJ0/D+uAAKPnyaSSTvWK0k8s39rQQStrC3h4SGBlbfprW99ra0iUzFA001/58fdzMFpRsXFb1649irT0ElTnaRF6jSuCO9x6IqK+rWkmCIVCbNqyEVMmTcOkoEXIPFyEiDHGV/z1Pa46qj3DBnNzq6BUqDF0SPOhioDxqouNH4+KkqFaUQ9XV5tmxTd9e3/aegZnz5bDzlKE+R1uPRFR32bqHGHixIlYuXIl5HI5brjhBliIRBAIhaiprjJsI5OJjXpF5ZxIho29PSYtvh87/7cG+WfSETikeW8u/cTyrQ0dtLISwd1DAisrUbPHGq+62HRCeqChQNZ4RcXGbV275ijS0kpQVgiEDjCvix4schERNTF37gDMndt8efinli6F5r77cH7uzSj58EO4Pf44rLy9r+hY8iIF9u7NQWGBEu4eYkye7G+y0KU/IZGILZCYVGAoiOmLW0VFNci7VA2goXdYfPxFJCTkIybGE6NG+bR4/JgYT9TW1iPUXQAv75bnHSAi6q9MZYKbmxuOpRzFgR/O4NSBS3D2EMMzxOmKj3XiZBHi4/Pg6WmHmTcFmyx06fNALLZAUmKBUUEsPa0Y33ybhuqqhgmPwyPcjIYptrRPvXFjGzJt6FDpFb8WIqK+pqVzhBdeeMFoKhM7F1fUVlU12w5omIcr70w6/AcPQ/DwEbCxs0NZ3qVmRS65XIm9e3NQUKCEh0dZwzmCiUKXvkAlEVsiMbHAUBBLTyvBN9+koaq6DsC/qy7Gx19CQnweYkZ5YdSols9jYkZ5oValgb+XCD7e5rUgCYtcRETtJBAIYOHoCL9vvsa5W2/DhpdfxuJVq2Dl9e8V/Pb0ymq8TW5uFSor1dBodKisrENubhWyMsuaFaj0Pa8SkwqM5tLSdzf28rZD1BAp/P0ckJhUgH37LuDs2XIAMCpy6Y8tEVtAoaxHSKgzRo3yQX1Zmcl5xoiIyDSBQICxt14DeU4V/vjxAAZO8sa11xmfpLSnZ1bjbQABlEo1CvKrkZtbBalM0nDRIj4fMaMaMkHf6yopsaDZPFopKXJUV6lhZ2+JqCgZiuQK7NyZjTOZZXBxsYafr4NhW/1xxWILKJX18POzx7TpwZg2PRjlhe2bMJ+IiGD0O3R9fT1SC0sw1FYMrUYDoaihh5W+V5aTdSU0ajX8Bw2Bla0tPEPDUJafh/q6OpSW1xt6buXmVqKysg5ajfbyOUIlsrLKmhWo9D2vEhtlgkwmRnKKHFXVdbC3s8KQKJnh+Pv2XUBWVjkAGBW55HIlTp5omOtx0GApRo3yxqhR3lBWlENkYTwk/2rHIhcRUQdZenjgKStL7Mw+h6Jnn8UNtz8Gr+FhkEklyM2tQlJSITIzSzEkSgbF5ROHxgWvxpO+N+6hdfp0GZKPy5GbW4mLFxuu/jTthdV0npfGk1KGh7th797ziIvLg5ubDWxs3BAT42l4buNeYxqNDlXVKtSptLjxxiBcF86JhomIOkooFEAcUYQ3XnoIjjtd8cbKTYiM9DUUkhpnQlSUzFBMalzwajzp+2DDPFg6qOrq8cPGNKSll+LiheaZYGrer8YT17u52WLv3hzUqTXw87NHRISrYdsieUMeVFbWQSgS4kxGKXQ6HWbPCW219y8REbVMq9Vi+vTp2LNnD24bMwLWgRMQEOQGmUyM3NxKJCUVwkWXBSuRBc6XOMM1pwIewaG4mHYKdbU1yM2tMeRB4x5apzNKkZzccI5w4ULDyI2mvbCazvtldI4Q4Yq9e3KQdKwQrq42sLF2RcyoRhfpL/caS00thkajQ2ZWGRTVasSM8sKQSPM7R2CRi4ioA3JyKpCaWoKR46dh5969WJt3CQM3fwRh7WLIZo2Bn589MjNLUVlZh+QUObSXVwZuPLTQ388BAy6vatV4Hq/kFDmyshqutkdGGheo9JrO+9V84noBBAIgJMQFkyf7Gz335IlinM0qh0AghERigZLiWlRV1SEhIR/XhYd0+XtFRNTX5eRUoLrGA25uMuQVXMA77z+Hl55fZyhiNc6ElBQ59KvFFxfXGObNalysksokmDy54bn6FRRdXC9nwijjTDA171fjieuTEgtQWalGYIADJk/2b1ZYKyiogUajhczdFiWlNahR1iMhPp9FLiKiTtCfI1x33Xjs2bMHW+KPwtErCUKLGMhkYvj5OSAzswy6vELUi5yQnKqEjUsJQgOCoFbV4tefUuA3IPjyyrcORvN4JafIkZVZDhdXawyMNC5Q6TWd98vUxPUCARAa4ozJsU3PEYpwNqscQqEQ1tZCZGVVoKSkBgAwJDIU5oZFLiLq9/ShFBnpCn//1tcXTE0tQUJCHkaOnI15845i8+bNWFqQh627vkO1uwiymBhMnuxvNCRQfwKjH1oIAPNva75yS2sTxbfXoMFucHSyNjy38dBIQAdrawuEhDjB188BYWHOSE0tNVlMIyLqrzqaCadOKfDMs+/j6aXzcPLcQfyx82tEX7sMAC4XrfybDQvcuzcHyZfz4Lb5ESaHMup7Zfn5O8DaquOZ0LR41nhYpJ+fPTw8bFFZWQcvL3tMmOCH3NzKZoU0IqL+rDPnCKNGzceksbvw1z8HsXXPF5h7y2gADUWoieO9cei7crgGD0PkiCBERrrC0doWAJB//iJ0NlLMnx/ebN+tTRTfXoMGSy+fIzQ8t/Gk9gBgZS1C5EBX+Po6oKhIibTUEpPFNHPAIhcR9Xv6UALQZoBFRroa/vz888+RnJyMM2fO4AVFNT74+mtoysogmzHD5HxcIqEACoUaIqHpua/0vbL0825VlKvg6NT6/F5NNe3p1XhoZEO42Rjtb9q0YMiLFDhx8hK8ve3R+qsnIur7OpcJg2Bh8Q4eeeQRbNj2DkaPjsHE2HEATPe4Eooa8kAoankuRH2vLP3cW+UVKjg5tj6/V2NNj9t4WOTwaA9D8c3Pz97Q87dIrkBSYgFc7CwR0OYRiIj6ts6eI6x7/z3EjBmDotJirF33Nj54c3XD3L71ZYBOg2HjR2JwbMMoCp3WHjqBBUQaBUQtZIK+V5Z+3q2GcwTrVlddbKppT6/c3EpDJjQugOm3mT49CHK5EidOXIKvn3O7jnG1YJGLiPq9xqHUFn9/R6OQ27JlC0aMGIH9ly5hw+gxuHv7dmhKS+E0f75hokm9CxeqG4YxJhdhwkS/FgtXErEFhCKgslKFgoKGyX/bW+RqqvGV/KYFML2TJ4px+uglDBwoRXCnjkJE1Hd0NhMeeugh7N//N378cQuWvvwAfhmwBz6+pq+CX8j9Nw8mTvBrtWglFltApM+E/IZMaE+Rq6mmc3iZKr7p5xBzElvAPcQJzh7mNxcLEVFX6WweqKQDsDBmGD7cdwi79u3HF999j3vvWICi3POwsLKC1zVhhucJhELU6BxhiRqkHC/EhAl+LRauJGJLiEQCVFapkK8/R2hnkaupxnN4NS2A6Z08UYQTx/JQpdBiXKeO0juEvd0AIqLe5u/viBkzgtq8QmPK4MGDsW7dOgDAR8nHoVlwO5Tx8Sj5+GNo6+qMto2J8YS3tx0cHKyQm/vvssLyIgUSkwogL2oIK4WyHloN4OBgbZi7q7NKimuQmVmKrMwyo2MY00Gn6/QhiIj6lM5mgkAgwJdffoHQkFCUVRfhrdfWQqPWmtw2ZpQnvH2a54G+J1WR/N/vaqWyHprLmRB2BZkglUkgFlvgl1/P4uefzxgdQ8/Pzx4ODpZQKNTIvLz6FhFRf9XZPLAWSxAWFIiF0yYDAD78fD0qKitRlJMNJw8v2DoYDzeU+vnDUaKGo4MIubmVhvvlciUSEwsglysBAAplw4rsDvbWhrm7OqvhHKEMWVllRsdoStfov+aCPbmIiK7QXXfdhdzcXMyaNQsDo6JQGhKKwv/7PxS98w7cHn4YIjs7AA2rYoWEOjeaI6tB4yGFMqnE0JPLy0vSZFL5jtPPA3bubAWsrUUIDnaG7+X5WPS9ugYNlsLZsg7e3p0vphEREWBvb49ffv0FH7/3BUJ1U3Fi3wUMvd6/2XajRvkgNMR0HuiHj+h7Wel7cnl5SgyTyndWSoocx48XwtbGAqra+mYrPurnEMtKK0VoiNMVHYuIqD9z9fHDaLEE1nctwn+mTYXE1hZl+ZcwIGYsbOyMf+eOnjAMBy6mYOwImVHhqvGQQplMbOjJ5eVl12xS+Y4ynCOcq4CVlRAhIc7w9bU3GrI4aLAUEus6DlckIupr4uIuYs+eHMTG+mP0aNOrTr388suGv7vMvw2WMhkuPfUUitasgfSJJyBybLgCpC8s6a/cNy5qScQNX8n6nlwKZf0Vt10/UWW9WouCAiVKSmqgVKqN2kJERO3TnjwIDw/Hex+vQdIf53Fo2znYuxYiZLh7s+30RSV97y39hPDlFSqUV9SiSK6AVCYx9ORSdkEmREXJUK2oR41S3WzFx8aT03t4iOHlZXfFxyMi6staywRZQBAKs7PwyF33w1osgTz7LHRaLXwjB0NkYVyGcQ8Igk6rgbOtytCTq3FRSyK2BPBvTy7F5d/lr4ThHKFei/x8BUpKaqBQqA3HNmcschERteHHH8/gzz/Po7xc1eJJTWOHDx/G97/+gte+/AIX77sPRe++21Doutw1uWnPLX1RKy9PAYWyHhKxRbuGKRqvnAjD3xsXr1zdbBEa6mJY6bHpio/652VnlUMAAefkIiJqRUfyYPi0AOSdK8Wrb7+Ie+69F2MmjjC5XdMJ4Z0cG+bFKpIrMXmyf7O5tFrSePVE/X4bT1JfJFdAqazHzJuCDY83XvGxcVuCfNizl4ioLa1lgntQKBK3/wxlRQWsxRIU5WTjQmU1Pt70Iz6cdD0Egn8nmZf6BwEALmVfRL6qYU5fmUxsKGrl5VVDoVRDIrZs1zDFpisn6v/euHjVcI7gDInY0rBvhVLdrCfZ2bPlEIjMq2xkXq0lIuoF3t52cHOzhbd321e1S0pKEBsbi+rqavj4+ODhTz9D7r33/lvosrc3nEzUqeqx8Yc0+Ps5YECYCyrKa5FxuhQDwlwQPdwDAJCeXozkFDmGRMng6mZrVMhqXCwDYFQ409Nv03ifTfn52UOocIJXO14fEVF/1pE8AID9Z7/D36e2IXX5YWz9dhd8/D2bbePnZ4/cC1U4niyHWGwBPz97ZGaWorKyDrm5VRge7QGpTIL0tGLs3ZuDqCgZwiPcjIpaUpnEqFgGoNmwx6bFNFOT1+vzycXOsmNvDBFRP9RaJrgHNVxQKL10Ac6eXjhz6hTW7TkIdf3fiIwagocfftiwrY2dHSROzrARKhEW5oK6Og02bkyHv78DwsJcUFGuwunTpQgLc0F09OVzhLSSJucI/xayGg9zBGA05FFPv03jfTbl5+eA+hon+JjZlCYschFRv5STU4HU1BJERrq2OZnkLbcMQESEW7tWVnF1dcUbb7yBhx9+GM8++yyG7tqFmE8/xYUlS1D0/vuQPfmkYZXDjT+kISW5CAAw/7YIpKcXQ16kNAxbBP4dLw8AoaEuRoUsU1f3/fzsjXp4tacHgEwqgYuF1OiKEhFRf9FdeQAAL7zwAn7e+jOyz2fjwUfvwZbvt8FGYmW0jVQmgapWjazMMthJLHDb/AhERcmQktJQ9NJLSZEj+XIehEe4NZu/y9T3vVhsYTQUsunjTemHUJYXmlqkhIio7+uqTHDy8ILEyRmleRfhXhYKgbIKd8+ZhU82/4THH38cUVFRGDNmjGF7V19/VJcWY+gQN2zekvnvOcL8cKSnlVw+R/j3AoTxOYKzUSGr8cqJen5+DkY9vExt05RMJoadtRQiC/O68MEiFxH1S6mpJUhIyAOANgOs8ZLA7fHggw8iMTER69evx2233YbExET4fLQOF5fch5JPPobrI/+F0MLCMBZe/6epubgab+PqZgugeSFL33NL/2diUoGhGHYlKzMSEfUH3ZkHLi4u2PbLNowcGYPU80fx3LPPY+17b0IoNF7gPOryd73+T1PzcDXdpnHRqmmvLqChYJWUWGDUewv4d05IUz25iIj6u67KBIFAAP/BQ3E26Qiyjx2F0MICzz+3HBVCS/zwww+4+eabkZSUBG9vbwCAR1AIjmeeRl1tjYlzhOZzcZk+RzAuZOl7bun/TGyUCVeyMuPVjkUuIuqX9Fdc2ns1viMEAgHWrVuHkydPIjExEbNnz8bBgwfh+dqryHtmGcq++grOd92F8HA3wxBEeZGi2VV2eVHDHF2TJ/u3WMiqKFfB0cm42NV4P03n/yIiImPdmQcAMHjwYHz55ReYP38+fjnwFQa8H4kHHr/LaJvwCDe4Xc6DInnzPNDPpzV5sr9REUv/d30xq7xCBSfHf4tdTfdjavVGIiL6V1dmwvAbZiHtwF84m3QEfoOGwNXHF59//jlSU1Nx8uRJzJ07F/v374eNjQ0Ch0TjyC8/ovTSBYRHRBiGIMrlyma9ruRyJRRKdcM5QguFrIZzBGujYlfj/TRdubEvYZGLiPqljl6N7ygbGxts3boVw4cPR3JyMhYvXoxNmzZBWlCAorVvQ+TiAqfZs42KUNHDPUzOpwU0L1DpT1j083g13kY/HNLU9kREZKy78wCAoVfv2rVr8c43LyHQPwhTZ4832qa1ObPaKk7pv+PLK2qNtmtcCGu8HTOBiMi0rswEWUAQJt11P3JOJmP4DbMgdnSCQCDAzz//jOjoaBw+fBhLlizB119/Dc9rwmBhbQ159jl4D4gwKkJFR3uYnE8LaF6g0hey9PN4Nd5GJhO3uH1fwiIXEVE38fX1xdatWzFp0iRoNBrU1dXBbckSqC9eQvnmzbD08oJf0EAApk849PdJxBZITCpoNjRRJpVAXqRAXt557PojG3Wqeowa1fbqj0RE1PNef/11pKam4uCBOJxOOo/Bg4fAM/jfE6nWClD6+xrPsdW4eKUvZhXJGzLhj13ZUNUxE4iIetvQaf/BoMnTILKwMMx/GxwcjC1btmDatGmor6+HWq2GlZUVAqOG40LaCdTV1rY6Z5b+PonYEomJBc2GJspkYsjlSuTlK7Br13nU1WkwapR3D73i3sciFxFRNxozZgwOHTqEIUOGGOZg8Vj+ElRZmSjb+AOKp98Jv2EDTA4l1BeyGs+x1Xg7/cqLmZlluHixCjY2Fs1OaDhckYjo6mBhYYEffvgBly7lIfVXBU78dQE2dpZwdhebnFOrMX0Rq/EcW423S08rRkqKHFFRMsgLlTibVQ4ba9OZwOGKREQ9y8Ky+cTtsbGxOHToEIYPH24ofo2YdQsyj8Qjee8+CN2HGhWvGtMXshrPsdV4O/3Ki5mZpbhwoRo21qJmRS4OVyQiok4bNmyY4e86nQ55BQXw+fBDpE/9DyR/bMYFyX2QSYOaPU9epMDJE8WorFTBw0Pc7Op+coocR48WorpKhdpaDWxshM32waEpRERXD0dHRzg6OiLQrw5bVidi75ajmH7nyDaLT0VyBU6cvJwHns3zQL/y4qlTxcjLU8DOzhIxozyb7YeZQER09YiOjjb8XavVot5GjMgJsUj9+y/U5FkBiDRZgNIXsfz9HRAW5tKst1dyihx//ZULRXUdHBysEWFifrH2rK5orpqfERERUbeoqanBggULcO2116JQoYBk9duw1tbCI+FnaDWaZtvn5lbh+PFCZGWVw9HJpllPrCFRMnh72aGmVoM6tQaXLjVf8l0mlTSb64uIiHqXrZ0V7IeUYsXXi/HyCyvg5SG+fKJiuviUm1uF48cKkZVZDidHm2aFsKgoGYYMkUIuV6K8QgWdDiaHKkplkmbzfRERUe9SKBSYN28eYmJiMOg/c+Ho4QtJVRJc7GpNbp+cIkdKchFyciqbzdcFNJwjaLU61NRqoVZrIZWa7g1m6rl9AXtydYJGo4FarW57Q6KrhKWlJUQiUW83o9+rr6/HyZMnkZ+fj5kzZ+LAgQOo+79VyF/2LKp++w2Os2YZbe/nZ4+hQ90B6Eye+OhXZ7Tbaon09BL4+9tDXqRoVtCSF/07DIbFrq7HTCBzw0y4OhSX50OpqsbWfz6Hn2cQHn72HohEpq8/+/nZY+iwVvIgwg3hEW4QigTY99cFBAU7okiuaLFXWGtDI6nzmAdkbpgHV4e6ujqcPHkSFy5cwC3zbsWvW3/EluXP4Nw/O+Dluwg2Ejuj7YdEyYz+bCo8whU333wN9u7NhbeXHSrKVZDLlc0KWnK5Erm5lS0OizRXLHJ1gE6nQ0FBAcrLy3u7KUQd5uTkBA8PD8OYb+p59vb2+PXXX3HdddchKSkJCxcuxObNm6E8fAQV27bBKjgYtoMGGbaXSSWYPLn1E5CszDJUV6sxfLg7hEIhcnOrmhWyOC9X92AmkDljJvS+JUuWIDU1Fe+99x7WbV0FD5k3br5nmmH+xsaksrbzID7+Ii7kVmPUaC8IBQ15YKqIxXm5uh7zgMwZ86D3OTs747fffsOIESOQkJCAJ55ehjdXvIxNLy/D0V+3YvS8BRA2KkaGR7giPKL5EMTGHB2t4ekhgZvUFvkFCjg6WTcrZPXVeblY5OoAfXjJZDKIxWJ+EZBZ0Ol0UCqVkMvlAABPz+ZzdFDPCQwMxM8//4xJkybhp59+wtNPP401q1ej5sQJlH33HSyXLYOFs3O795eQkI/U1GLU1jph6rTAVlflavpY4x5eLkyDDmMmkDliJlxd1qxZg4yMDPzxxx949YvH4eT4NabcMqJT3ycJ8ZfzQOWEaVNN5wFgOhPYu+vKMA/IHDEPri7XXHONYcXFb7/9FgEBAVjw0OPY8d6byDh0EOGjx3dofwnxeTiVWoIQlQZTpwa0ukpj08ca9/Cys+78a+otPK1pJ41GYwgvV9fWq6ZEVxtbW1sAgFwuh0wmY7fkbpCTU4HU1BJERrrC39+x1W3HjBmDNWvW4bHHluDtt9+Gn58fHlz3Ic7Nmo3S9evh9thjRldrWhMT42n4M3q4h9Fj8fEXsW/fBfj52WPqtMBWe3i5BJlhgvUiZgKZM2ZC92tvJlhYWGDTpk0YOXI00tNP4eUPH4KT83e4bkp4h4+pn2g+ZpQnhkcb50GRXIE/dp1Hbm4lJk705aqLXYh5QOaMedD9OnKOEBsbi9deewfLlj2K//u//4Ofnx9Crh2Jc4lH4Bs5CHZOLu0+bswoL8Of0dFNzxEu/XuOMDWw1R5eEaE27T7m1YITz7eTfny9WNx3uvFR/6L/7HKuiO6RmlqChIQ8pKaWtGv7kJBJmDTpAQDAs88+i2ILC3j+3yuoy8pC5bZt7T5uSKgzxk/wRUho895fCQn5SEsvweHD+cjNrWr2uJ+fPQa0MtExtYyZQOaOmdC9OpIJDg4OeO65T+HgIENh+QV8+vX/cPaYvMPHDA1xxoQJvggNaZ4HublVOHw4D2lpJUiIz2/2uJ+ffasT31PLmAdk7pgH3auj5wgDB96AsWMXAwCefPJJRM26FTqdDun/7O/QcUNCLp8jmMiEhPiGPDh8KB+5uZXNHvfzM71qo7lgT64OYvdjMlf87HavyMtL80aaWKK3pe2ffHIprrnGBrfeOhNeXl6AlxeUhw6h/MefYB0aCtvBg9vcT2vzbcXEeKK2th5+fvYmT1xkUonhOfVlde1qNxnjvysyV/zsdq+OZsK4cRF4/fWvEBe3GfPH/BcZhwtgYSmE/yC3dh+ztd5Yfn72GDHCC7m5lYYeX41JZRL24LpC/DdF5oqf3e7VmXOEZctexDXXiHHPPXcgICQUQ66fgWO//4YKeQEcZR5t7wStz7cVM8oLtSrN5XOE5oUsmUxseI6ywvzOEVjkIiLqAv7+jm12QTa1/cCBK5CaWoKcnAr4+zvC46WXUJNyeX4uHx9YuLTeLbml+bbS04uRk1uJOXNCER7e/pMkIiK6cp3JhBkzYuDvfw3Cw52h0wiR+k8eIBDAf2D7ToxaygMAKC6ugaWFAHNmhyI8gplARNRTOn+O8JrhHOG62fOQvHsnso4exvAbZrZrPy3Nt5WeVoKcnMrLedA3h1hzuCIRUS9q3IU5NTUVE6dMgeillwCdDiVffA5tfX2rz5dJJYge7tGsF1dyihwpyUVITun4kBciIup5+jxITy/D1Psi8WfGl3j/g3eQm9a+IS5SmQTDoz1M9shKSZEjObkIKcwEIiKz0PgcISPrLL48fBJZqadQU9V8ChJTZDIxoqM9mvXi6g/nCOzJRUTUi/RdlyMiXHDLLVOQmJiIGxYvwvaVK1Hz4kuo+OknON96a4f3OyRKBgDw93NAYlIB/PzsmxXCiIjo6tF4SMuOHdvx6/7vAABia3vcd/+98L2CK+5RUTJUK+phbWOBIrmCQxOJiK5y+kwID3fGTTfNxKkzmSiRFyI0+joMmzSl0/s1nCP4OyAxsQB+fg7NCmHmjj25+jiBQNDqz4oVK65o39vaMUF24+NJJBKEhoZi8eLFSEpK6vAxJ0yYgMcff7zjjSXqBjk5Fdi58xxycio6vY+GISpBCAhwwubNm+Hl5YXU1FTc+uabsLzlFij+/hvKTvxbCQ93w/zbImBlbYGM06UmJ56n/oV5QNR9ujIP/P0dMXPmTCxduhQAsPHvt/H1l9+3u0eXKeERbhg6RAalop55QACYCUTdqSszITDQGT/++COkUikulVfi+Xc+QHV1daf3Gx7hivnzw2FlJcLp06UmJ543dyxy9XH5+fmGn3fffRcODg5G9+l/gepu69evR35+PlJTU/Hhhx+iuroaI0aMwNdff90jxyfqDh1dLaUtgYGB2L17N1xdXXHkyBHc988BCCIjUbZxI9SFhZ3aZ+MVFOVFCiQmFUBepACAZrepb2MeEHWfrs4DgUCAN998E0uWLIFWp8VXf72GzV//jHPHOz+8pPEKikVyBZISC1Ak//f739R91HcxE4i6T1dnwoABA/Dnn3/CXiJBVn4hHnhiKequcDXMxisoyuVKJCYWQC5XAkCz2+aGRa4+zsPDw/Dj6OgIgUBgdN8PP/yA8PBw2NjYICwsDOvWrTM8t66uDo888gg8PT1hY2MDf39/rF69GgAQEBAAAJg9ezYEAoHhdkucnJzg4eGBgIAAXH/99fjxxx+xYMECPPLIIygrKwMAlJSUYP78+fD29oZYLMagQYOwceNGwz4WL16Mv//+G++9957hqs/58+eh0Whwzz33IDAwELa2thgwYADee++9rn0jiUyIjHRFTIxXu1dLaY+IiAisX/8jbG3tsG//fiytroLGwgIln38OrVqN9PRibPwhDenpxe3aX+M5u/QrMeqv4je9TX0b84Co+3RHHggEAnz00Ue48cY5qNfU4/M9K7Bj625kHMo3bJOeVowfNqYhPa3tTGg8Z5d+JcbG3/+m7qO+i5lA1H26IxOGDBmCzz/bCCuRCIeOJ+PJF1+GRqMxPJ6eVoKNG9OR3s5ev43n7NKvxKjv1dX0trnhnFz92HfffYfly5fjgw8+wNChQ3H8+HEsWbIEEokEixYtwvvvv49ff/0Vmzdvhp+fHy5cuIALFy4AAI4ePQqZTIb169dj2rRpEIlEHT7+E088ga+//hq7d+/GvHnzUFtbi+HDh2PZsmVwcHDAjh07cOeddyI4OBjXXXcd3nvvPZw5cwYDBw7EqlWrAABSqRRarRY+Pj7YsmULXF1dER8fj/vuuw+enp6YN29el75nRI11dLWU9hKJ/HDzza9h06ansePPPzH03ntxe1w8yr76Csl2o5CSXAQAba6aKC9SIDe3yjAfV9OVt4z/NL/lganrMA+Irkz35YEI9977Kk6fzkNW1iF88dcKeLsGo65Wg4HjvQ0TygNoddXEIvm/eSCVNc+Dxn/387MHdF3+UsiMMBOIrkx3ZYKdYyQWxM7E17u34Y+9f2H995FYfNs85J1JR/LxeqScbBjG2NaqiXK5Erm5lYb5uJquxGj8p/mdI7DI1UtyciqQmlqCyEjXbvkH0B4vv/wy1q5dizlz5gBoGCqVlpaGTz75BIsWLUJubi5CQ0MxZswYCAQC+Pv7G54rlUoB/Hv1pTPCwsIAAOfPnwcAeHt7G3WN/u9//4tdu3Zh8+bNuO666+Do6AgrKyuIxWKjY4pEIqxcudJwOzAwEAkJCdi8eTMDjLpdXNxF7NmTg9hYf4we7dMl+4yMdMVtt92ASZM8sGHDh3h67VrUbdqEorVv47pr7YEhgwwTytep6pGTW4khUbJmRS99Ty2goUeX/gcA0tOLkZwix5AoGWRSCerLzC/A+grmAfOA+o7uyIQhQzzxxhuf4+23H8YTT/wXXsIwHNuVC5WyHoMGuhlNKF9cXIOUFDmiomRGRS99Ly2goUeX/kcvPa3Y8DypTILyQg5Z7C3MBGYC9Q3ddY5QPfceaKrOI7WiBrffPAfH/9iOS+mn4CB2QEjwGNjYiCCXK1FSXGP4Xb9p0UvfUwto6NGl/wEaeoQZzhFkYigrzO8cwWyKXK+++ip27NiB5ORkWFlZoby8vNk2ubm5ePDBB7Fv3z7Y2dlh0aJFWL16NSwsrr6XqR+nC6BXAkyhUODs2bO45557sGTJEsP99fX1cHRsaM/ixYsxZcoUDBgwANOmTcONN96I66+/vsvaoNM1XCYUCAQAAI1Gg9deew2bN2/GpUuXUFdXB5VKBbG47dUePvzwQ3z55ZfIzc1FTU0N6urqMGTIkC5rK1FL9uzJwZ49uQDQZQH279WfICxadHPDv5ElS1B39hzKtm3DTYsCkG7hgozTpSgoUKCoqGG8fNMil6kr9Xr65YNNPc8c9KVMYB4wD6jv6M5MmD17n+HfiNjBGgd/PAOHqjoMjnBF5rkK5OZWITOz1GTPrtbyAEC7e4RdjfpSHgDMBICZQH1Dd+WB3z3TUHL0e0xxk6EsJxuX0k8hIGoYziUnIdirBJcUtsjNrURmZtm/v+s3KXI17bHVmNE5whWs6tubrr5v9hbU1dXhlltuQUxMDL744otmj2s0Gtxwww3w8PBAfHw88vPzsXDhQlhaWuK1117rhRa3rvEy0b1BvyLDZ599hhEjRhg9pu9WPGzYMGRnZ+P333/Hnj17MG/ePMTGxuLHH3/skjakp6cDaLiqAgBvvfUW3nvvPbz77rsYNGgQJBIJHn/8cdTVtV49/uGHH7B06VKsXbsWMTExsLe3x1tvvYXDhw93STuJWhMb62/0Z1fT/4IHAF852COuRonV330H7wV3A2EeCAx0MPTkaqpxz62m9NsPiZJBXqTAxfQieHvbo3euGXdcX8oE5gHzgPqO7syExnngHKrDun2P48aoBxGsiERwsAP8/OwhFjf8ah/VJBOa9txqSr99VJQMRXIFstJLYeVqA2ePlp9ztehLeQAwEwBmAvUN3ZUHAqEQAydOwZFtWyDPzoKbfyCOlCrwz6lM3OXljwFhA+Hn5wCJ2BIATJ8jNOq51ZTROYJciXMZRfD1c+7S19DdzKbIpe9qumHDBpOP//nnn0hLS8OePXvg7u6OIUOG4JVXXsGyZcuwYsUKWFlZmXyeSqWCSqUy3K6s7JnJ1bprnG57ubu7w8vLC+fOncOCBQta3M7BwQG33norbr31Vtx8882YNm0aSktL4eLiAktLS6PJ7jpKv5JLbGwsACAuLg4zZ87EHXfcAQDQarU4c+YMIiIiDM+xsrJqdsy4uDiMGjUKDz30kOG+s2fPdrpdRB0xerRPl12dac25c+fw8ooVUKvVqPfwwFs/fIVBjzwC6+BgjBpl+jnx8ReRkJCPyEgXuF2ek0tf9AoPdzP04EpMKkB2VjkEECC4219J1+iOTGAeMA+IrlRPZcLy5cuRlnEKuZeexWOz3oSPJgx1HnYIj3Az2RMrPv4iEuLzETPKE6EhzkbzcwEwel5SYgFyciog9hAjcph7t7+WK9WX8gBgJgDMBOobujMPRt1yOwrOZkJZXgbZsBjcc8dCaDQa1NWq8Pl/ZsLeqaGI1VJPrPj4S0iIz0NEpCukUrFhbi6gofeW/nmJiQU4e7YcApHZlI0A9KHVFRMSEjBo0CC4u/8bxlOnTkVlZSVSU1NbfN7q1avh6Oho+PH19e2J5l4VVq5cidWrV+P999/HmTNncPLkSaxfvx5vv/02AODtt9/Gxo0bcfr0aZw5cwZbtmyBh4cHnJycADSsnrJ3714UFBQYVj9pSXl5OQoKCpCTk4Pdu3fj5ptvxvfff4+PPvrIsL/Q0FDs3r0b8fHxSE9Px/3334/CwkKj/QQEBODw4cM4f/48iouLodVqERoaisTEROzatQtnzpzBSy+9hKNHj3b5+0XUm4KCgrB161ZYWVlhV0EBHs27hAsffABVK7+sJSTkIzW1GAcOXELG6VKcPFGMxKQCyIuM51rx87NHcIgTvLztuvtl9JjOZALzgHlAZC4+/PBDTJgwAdXVVXj356XIq01Fyt4LOLn/IrSa5rPGJ8Q35EFCfL5hfq4TJ4uRlFiAInnzTPD3d0RoiFMPvZruxTzoOGYC0dVNZGGJuc+txNwXXsHUW27Fpk2bYGFhgaTsXDz67PNGRXpTEuLzcCq1BP8cuITTp0tx8kQREhMLIJcrjbbz83NAcLATfLxND3W/WvWZIldBQYFReAEw3C4oKGjxec899xwqKioMP/qVQfqDe++9F59//jnWr1+PQYMGYfz48diwYYOha7C9vT3efPNNREdH49prr8X58+exc+dOCIUNH5u1a9di9+7d8PX1xdChQ1s91l133QVPT0+EhYXhwQcfhJ2dHY4cOYLbb7/dsM2LL76IYcOGYerUqZgwYQI8PDwwa9Yso/0sXboUIpEIERERkEqlyM3Nxf333485c+bg1ltvxYgRI1BSUmJ0xYaos3JyKrBz5znk5FT0dlMAADfeeCO2bdsGW1tb7C8uxr25Och6+20ojx0zuX1MjCciI90wbpw3BoS5ANAhw8Ty8DKpBIMHSeHmatsDr6JndCYTmAfMA6KWXG15IJFIsGPHDlx//fVQKBR4/asnUGx7AhfTSxH/YyYUlcYnODGjGvIgZpQn/PzsEXY5E06byASpTILwcBd4efWNCx/Mg45jJhC17mrIBKFIBDtnFwhFIsydOxebftgIkVCIfxKP4Z7HnkRVdcsLiMSM8sLASFeMHed9OQ9wOQ+Me63KZGIMHiyFm5t5nSMIdPqZ/XrBs88+izfeeKPVbdLT0w0rbAANXZEff/zxZpNK3nfffcjJycGuXbsM9ymVSkgkEuzcuRPTp09vV5sqKyvh6OiIiooKODj8OxFbbW0tsrOzERgYCBsbm3bti+hqws9wx+3ceQ4JCXmIifHCjBlBvd0cg7i4ONx4440oLy/HNY6O+MRNipAbb4TDjTdCIGz52oW86N8l5JvO1aUuKgJ0OjjPu6XVfZjS0vdmR11tmdDa6+K/JzJ3/Ax3zNWaB3V1dVi4cCE2bdoEgUCAFc+uhpcqBvV1WoTFeMIv0sVoLq/GiuSKZsMW9coLFQgY5NapObm6IhOYB0Q9h5/hjrtaM2H54tvx1sYfUVunRmTYAHz5/jtwdXFp83lyuRK5uZVGwxb1lBXlEFlYImLcpA63p6vOETqqVwdXPvXUU1i8eHGr2wQFte9D4+HhgSNHjhjdp+/G2tnla4mof+vtyV9bMnr0aBw4cABTp07Fmfx8pIwZA/c//kBtWhqcFyyAVQvDKkxNRK+trYUyIQGVu3ZBHB0N53m39MRLMImZQERXq6s1D6ysrPDdd9/Bzc0NH374IX7a8T3+2vUADv5wDqkHLqHgXAWiJvvARtJ83qm2JqPvTcwDIrqaXa2ZcMPMmVAU5GH94WSkns7AkWPJmB7bdnGq6UT0Wq0WNVWVEDuYy5JUxnq1yCWVSiGVSrtkXzExMXj11Vchl8shkzWsCLB79244ODgYTUpIRNRevT35a2sGDRqE+Ph4/PHHH3jggQdQsX0HClevhnz1atgMHgy7iRNhHRrarFeWvEiB3Oxy+OiKYHU2DTVHjkCnVsMmIgJ2EycALVzx7wnMBCK6Wl3NeSASifC///0PoaGhmDdvHlw9HHHTo0NwYv9FHP7lHP7+/gxChssQOEQKodD4O7613ly9iXlARFezqzUTAoZEw8vRDu8uewqXFLXtKnDp6Xtzecoskb57M6pLiuHmF4Co66dDZGHZja3uemYzTX5ubi5KS0uRm5sLjUaD5ORkAEBISAjs7Oxw/fXXIyIiAnfeeSfefPNNFBQU4MUXX8TDDz8Ma2vr3m08EVELcnIqkJpagshI1w6HpUDgDBubMdiw4SQmThyD8lffx/ZVKzA/Jxe1770HgY0NrPz8IHJ1hcDSEtraWlRnX4S0RI56bT209vYQjxwJhxtvgCQ6GhYeHi0Oa7naMBOIqK+5sjwQYNasxdi16wKAYoSGOuOn7T9g9swZqEirR8ahAlxIL0XkOC9Iff8dMqKfhB7AVVXk6gjmARH1RZ3JBJl/IKzFEgiqquHqMBx79+Rg0GAp5MVF2Pv3Ycyfe2Oz4Yh6ubmVOH26FGVnMlBbWYGBE2Jx6u+9yDpyCBFjJ3blS+t2ZlPkWr58Ob766ivDbf0khvv27cOECRMgEomwfft2PPjgg4iJiYFEIsGiRYuwatWq3moyEVGbUlNLkJCQBwAdOqnJyanAhg2nkJhYCInEEs7OFli27B5kZCTj1I134rOlN6EmIQHVp8+gLj0LlkIdLMXWsHZxQpVXEJxGj4DP1LGwcneH6PLqReaEmUBEfU1n8wBongk7d27Dli3L8f3372P37p2IGDMI8T9l4ehv52FpZ4HgaBmCItzg59ewYpb+T3PEPCCivqgzmSAQCuEaEIaLGelIU0ohttairigFb3z1KS4WFyP7XBrefmM5hEJhs3m4/PwcoFEpUZCQjqBh0ZiwaAnUKhWyk5MwYNS47nypXc5silwbNmzAhg0bWt3G398fO3fu7JkGERF1gc6O6U9NLUFxcS1CQpwQFSVFVJQnZsyYjoyMZPy8/RtUKC9h48aNyI4vRlJ8Dq4d6oZJk/0htLKCUCyGwKr5/CzmhJlARH3Nlczx0jQTrKzscfCgH/LzczFy5Eh89tlnuG35rdjy8QkUpZfh9P48FGaUI2iIFMOGu5tNL15TmAdE1Bd1NhMs/cdDmJaEMNtEWGgVUOUJEenriYvFxdi+7w/kLTyHTz74H3Jzaww9efVzclVdKEYBdIiaMgPWYgmib5qDjIR/UHIxt8tfX3cymyIXEdHVrjPdijs7pj8y0hVyuRKADhMn+sHf3xFvv/0aRo4cgrvvvht//fUXhg4divfe+wLDJgxAWKQrLGUNx4mLu4g9e3IQG+uP0aN9OnxsIiJqXU/mAWAqEwZh6tRjuPXWW7F3714sWLAAcXFxeOyxl5HhZwdbpQZ5p0qR9HsOtELAxc8OQ8f6wNbevC+AEBFdjXoyE66dOBzys9NQl3ccXsGDMPKmG/GAjx82/rAJDz/6Xxw7fQY33nY7/u/5VQgL84afX8MQ9vS0EqQdPA6JgxRuvv4AAPfAENg5u0BRVtrhdvSmjq0TT0RELdJ3K05NLen2Y/n7O0ImE+Ps2Qqj482bNw9HjhxBeHg48vLycNttNyI9/Wf4+v47FGXPnhzs2ZOLPXtyur2dRET9UU/mAWA6E1xdXbFr1y68+OKLAIB169ZhwYIbMHCwBWLnh2H+8utQ6ShCcVUdys5XY983p3FwSyYyjxagukwFnVbXI20nIurrevocISBmBkrcb4c4cg78BkZB4uSMex94APHxCZA62KOwuAQPPfMY0rIOQCq1BQAkJxcCtSWo0jhB7NhQXBMIBFi0Zh0mLLy329vdlVjkIiLqIpGRroiJ8eqx5YRbOl5ERASOHDmC+fPnQ6PR4Ntvv0V9fb3h8dhYf8TG+iE2tuEqTVzcRaxcGYe4uIs90m4ior6up/OgpWOKRCK88sor2LlzJ1xcXJCYmGiYmN3S2gLjbgqGMNgOYTf5I/qGAFjbipCVVISUvy4iMbGgx9pORNSX9co5wphADBriZXT/8OhofPe/dzDIxxPq+nr88scuaDQaAEB4kAVEAg2CBkUYVlOMi7uIN9amIDlV0SPt7iocrkhE1EV6ejnh1o5nZ2eH7777DmPHjsXYsWNhdXkOLq1Wi1GjvI2GKep7dgHg8EUioi7QG8vLt3bM6dOn49ixY9i0aRNmz55tuD8mxsvoez96RgBeWxGHtKQilCZZ4fqbQrq93UREfd3VdI4wbNIULIzZinPCUZgz71ZYWDSUhBysKgGBAKOnjTJsa67nCOzJRV1m8eLFmDVrluH2hAkT8Pjjj1/RPrtiH0T9lUAgwIMPPoiBAwca7lu1ahXmzJmDCxcuGO5r2rOLqCswE4iuLv7+/njmmWcMt/Pz8xEZGYlvv/0WOl3D0ESRSIhJ0wIRNsIdk68P6KWWUl/DPCC6erh4+0Li5ITxYSEI8PM13P/hN99h49GTqFLVGe4z13MEFrn6gcWLF0MgEEAgEMDKygohISFYtWqV0fCl7rB161a88sor7dp2//79EAgEKC8v7/Q+iKh1crkcb7zxBrZt24bw8HCsWbMGarUao0f74OWXR5vVFRrqPGYCEQHA66+/jtOnT+POO+/E5MmTcfr0aQBgJvQjzAOi/kcgEMA9MBSKijJo1GoAQF5BIbbHHUbSuRxcN2Ys3n//fWg0GrPNAxa5+olp06YhPz8fmZmZeOqpp7BixQq89dZbzbarq6sz8ezOcXFxgb29fdsbdvM+iKiBTCbDkSNHMHr0aCgUCjz99NMYNmwYdu3a1dtNox7GTCCit956C6+99hpsbGywb98+DB48GE8//TTKysp6u2nUg5gHRP2Pe1AIqktLUVdbAwDw8nDHkzdMQqivN6qqqvDYY4/h2muvxb59+3q5pZ3DIlc/YW1tDQ8PD/j7++PBBx9EbGwsfv31V0P34VdffRVeXl4YMGAAAODChQuYN28enJyc4OLigpkzZ+L8+fOG/Wk0Gjz55JNwcnKCq6srnnnmGUNXd72m3YhVKhWWLVsGX19fWFtbIyQkBF988QXOnz+PiRMnAgCcnZ0hEAiwePFik/soKyvDwoUL4ezsDLFYjOnTpyMzM9Pw+IYNG+Dk5IRdu3YhPDwcdnZ2hvAmImDQoEE4cOAAvvjiC7i4uODUqVOYNm0arr/+euTl5fV286iHMBOYCURWVlZ47rnnkJaWhhkzZkCtVmPNmjUICQnBl19+2dvNox7CPGAeUP/jHhQCdW0NFGWlAAC1qhbuttZYt2o5PvroIzg5OeH48eOYNGkSbrjhBsjl8l5uccdw4vkrpFQqDd27e1JYWBjEYnGnn29ra4uSkoYlTPfu3QsHBwfs3r0bAKBWqzF16lTExMTgn3/+gYWFBf7v//4P06ZNw4kTJ2BlZYW1a9diw4YN+PLLLxEeHo61a9fi559/xqRJk1o85sKFC5GQkID3338fUVFRyM7ORnFxMXx9ffHTTz9h7ty5yMjIgIODA2xtbU3uY/HixcjMzMSvv/4KBwcHLFu2DDNmzEBaWhosLRtWgVAqlVizZg2++eYbCIVC3HHHHVi6dCm+++67Tr9fRH2JUCjE3XffjZkzZ+LVV1/FBx98gIyMDLi4uPR208xeb2TCleYBwEwg6s8CAwOxfft27Ny5E8888wzS0tKg1Wp7u1lmj+cIzAOiq5UsIAgAUFFYCKl/IKpLG/7Ny/wCEDvpesyZMwevvPIKPv74Y5w5cwZOTk692NpO0JGRiooKHQBdRUWF0f01NTW6tLQ0XU1NjdH9SUlJOgA9/pOUlNTu17Ro0SLdzJkzdTqdTqfVanW7d+/WWVtb65YuXapbtGiRzt3dXadSqQzbf/PNN7oBAwbotFqt4T6VSqWztbXV7dq1S6fT6XSenp66N9980/C4Wq3W+fj4GI6j0+l048eP1z322GM6nU6ny8jI0AHQ7d6922Qb9+3bpwOgKysrM7q/8T7OnDmjA6CLi4szPF5cXKyztbXVbd68WafT6XTr16/XAdBlZWUZtvnwww917u7u7Xuz+rCWPsNEZ8+e1f3999+dfn5L35vmrrXXdTVlQkfyQKdjJjATGjATyBS1Wq37/vvvdWq1utP76IuZYC55wHME5kFnMA/6H61Wq3tv4VzdT6tf1mUlHtL9teET3Zp5N+gunTlttN2ZM2d0Bw8e7PRxeisP2JPrCoWFhSEpKalXjtsR27dvh52dHdRqNbRaLW6//XasWLECDz/8MAYNGgQrKyvDtikpKcjKymo2zr22thZnz55FRUUF8vPzMWLECMNjFhYWiI6ObtYdWS85ORkikQjjx4/vULsbS09Ph4WFhdFxXV1dMWDAAKSnpxvuE4vFCA4ONtz29PQ0uy6WRKbExV3Enj05iI31b3ECyJycCqSmliAy0rXdSxUHBQUhKCioK5vab/VGJnQ0DwBmAjOBzF135YGFhQXmz5/flU3tt3iO0IB5QNT9OpMJzp7eUJSXQafVoqqkGNZiCcQOxlkRGhqK0NDQnngJXYpFriskFosxbNiw3m5GmyZOnIiPPvoIVlZW8PLygoXFv//rJRKJ0bbV1dUYPny4ya67Uqm0U8dvqWtxd9B3SdYTCAQtBiuROdmzJwd79uQCQIsBlppagoSEhrm12ntSQ12HmdA+zASiK8M8uPoxD9qHeUB05TqTCW4+/shNPYF6tRpVJcUQOzrB0tq6x9rcnTjxfD8hkUgQEhICPz8/o/AyZdiwYcjMzIRMJkNISIjRj6OjIxwdHeHp6YnDhw8bnlNfX9/q1apBgwZBq9Xi77//Nvm4/iqRRqNpcR/h4eGor683Om5JSQkyMjIQERHR6msi6gtiY/0RG+uH2Fj/FreJjHRFTIwXIiNde7BlZG6YCUTmjXlAXYV5QGT+OpMJ0oBAKCvKoK6tRXVpCeycXWBl03NF5+7EIhc1s2DBAri5uWHmzJn4559/kJ2djf379+PRRx/FxYsXAQCPPfYYXn/9dWzbtg2nT5/GQw89hPLy8hb3GRAQgEWLFuHuu+/Gtm3bDPvcvHkzAMDf3x8CgQDbt29HUVERqqurm+0jNDQUM2fOxJIlS3Dw4EGkpKTgjjvugLe3N2bOnNkt7wXR1WT0aB+8/PLoFq/QAA1XZmbMCOJVe+oyzASiqw/zgHoD84Do6tSZTJD6BUKr0aCyWA5FeRns3aSwaDQ82ZyxyEXNiMViHDhwAH5+fpgzZw7Cw8Nxzz33oLa2Fg4ODgCAp556CnfeeScWLVqEmJgY2NvbY/bs2a3u96OPPsLNN9+Mhx56CGFhYViyZAkUCgUAwNvbGytXrsSzzz4Ld3d3PPLIIyb3sX79egwfPhw33ngjYmJioNPpsHPnzmbdj4moYXz+ypVxiIu72NtNITPGTCAyf8wD6grMA6K+IS7uIr7aUggAKDybCZ1WC1dvXwiEfaM8JNBxILKRyspKODo6oqKiwvBlDTRMqJidnY3AwEDY2Nj0YguJOoef4f5n5co47NmTi9hYP7z88uhuO05L35vmrrXXxX9PZO74Ge5feioPgL6ZCcwD6sv4Ge5/GjIhBzN9foKdgxiK8jLMeX4lAqOGd+lxeisPOPE8EVEfpR+X39r4fCIi6vuYB0REpKfPArtiDyjkObC0sYWDm6yXW9V1WOQiIuqjRo/2aXVsPhER9Q/MAyIi0tNnwp+fHsfJvTlw9vCEjcSut5vVZfrGoEsiIiIiIiIiImqX4TNugou3D8LGTIStfd8YXg6wJxcRERERERERUb/i6uOHBa+9AwEEEIpEvd2cLsMiFxERERERERFRP2NlY9vbTehyHK5IRERERERERERmj0UuIiIiIiIiIiIyeyxyERH1Y3FxF7FyZRzi4i72dlOIiKiXMROIiAgw7zzgnFxdQFtbC51a3WPHE1haQmhj02PHIyLzl5NTgdTUEkRGusLf39Fw/549OdizJxcAuLx8F6mv00Cj0fXIsUQiASys+s5EoUTUM5gJPUNdp4K2vr7Hjie0sICllXWPHY+IzF9fzAMWua6QtrYWVXv3QlNZ1WPHFDnYw37y5Kuy0LV48WKUl5dj27ZtAIAJEyZgyJAhePfddzu9z67YR1v279+PiRMnoqysDE5OTt12nO4mEAjw888/Y9asWb3dFLrKpKaWICEhDwAMAZaTUwGJxArR0e6IjfXvzeb1GfV1GmSnFKNW2TMXPmzElgiMcrsqC13Mg97FPKDWMBO6n7pOhbNHD6FWoeixY9pIJAi+duRVWehiJvQuZgK1pC/mAYtcV0inVkNTWQWhtTUE1t0fKDqVCprKqoaeY+0sci1evBhfffUVAMDS0hJ+fn5YuHAhnn/+eVhYdO9HYOvWrbC0tGzXti2FSEf20VmjRo1Cfn4+HB0d2974sqZhTXQ1i4x0NfoTaAi1igoVpkwJMLsrNFcrjUaHWqUaFpYiiCy7d0YAjVqLWqUaGo2u3WHOPGgb84D6A2ZC99PW16NWoYCFlSUsrKy6/Xj1dXWoVSgaeo61s8jFTGgbM4H6ur6YByxydRGBtTWEtt2//KYWAFSqDj9v2rRpWL9+PVQqFXbu3ImHH34YlpaWeO6555ptW1dXB6suCmMXF5erYh9tsbKygoeHR7cfx5SufL+JWuLv72jUBRkwHWrUNUSWQlhad3/vqnq1psPPYR60jnlA/QEzoedYWFnB0rpnRl/U13W8FzEzoXXMBOrr+mIecOL5fsLa2hoeHh7w9/fHgw8+iNjYWPz6668AGq42zJo1C6+++iq8vLwwYMAAAMCFCxcwb948ODk5wcXFBTNnzsT58+cN+9RoNHjyySfh5OQEV1dXPPPMM9DpjOehmTBhAh5//HHDbZVKhWXLlsHX1xfW1tYICQnBF198gfPnz2PixIkAAGdnZwgEAixevNjkPsrKyrBw4UI4OztDLBZj+vTpyMzMNDy+YcMGODk5YdeuXQgPD4ednR2mTZuG/Pz8Ft+f/fv3QyAQoLy8vF37WLFiBb766iv88ssvEAgEEAgE2L9/f7veN1Pv9/PPP48RI0Y0a1dUVBRWrVoFADh69CimTJkCNzc3ODo6Yvz48Th27FiLr4moLf7+jpgxI6hZsFHfxjxgHhCZwkzon5gJzASipsw9D1jk6qdsbW1RV1dnuL13715kZGRg9+7d2L59O9RqNaZOnQp7e3v8888/iIuLM3yJ65+3du1abNiwAV9++SUOHjyI0tJS/Pzzz60ed+HChdi4cSPef/99pKen45NPPoGdnR18fX3x008/AQAyMjKQn5+P9957z+Q+Fi9ejMTERPz6669ISEiATqfDjBkzoG40+b9SqcSaNWvwzTff4MCBA8jNzcXSpUs79B61to+lS5di3rx5hlDLz8/HqFGj2vW+mXq/FyxYgCNHjuDs2bOGbVJTU3HixAncfvvtAICqqiosWrQIBw8exKFDhxAaGooZM2agqqrn5oMjor6HedA25gER9RfMhLYxE4iubhyu2M/odDrs3bsXu3btwn//+1/D/RKJBJ9//rmhS+y3334LrVaLzz//HAKBAACwfv16ODk5Yf/+/bj++uvx7rvv4rnnnsOcOXMAAB9//DF27drV4rHPnDmDzZs3Y/fu3YiNjQUABAUFGR7XdzmWyWQtTuyYmZmJX3/9FXFxcRg1ahQA4LvvvoOvry+2bduGW265BQCgVqvx8ccfIzg4GADwyCOPGK52tFdr+7Czs4OtrS1UKpVRF+b2vG9A8/cbaLgi8/333+Oll14yvK4RI0YgJCQEADBp0iSj9n366adwcnLC33//jRtvvLFDr42IiHnQfswDIurrmAntx0wgurqxJ1c/sX37dtjZ2cHGxgbTp0/HrbfeihUrVhgeHzRokNGXaUpKCrKysmBvbw87OzvY2dnBxcUFtbW1OHv2LCoqKpCfn2/UfdbCwgLR0dEttiE5ORkikQjjx4/v9OtIT0+HhYWF0XFdXV0xYMAApKenG+4Ti8WG4AEAT09PyOXyDh2rM/to633Ta/p+A8CCBQvw/fffA2j4RWPjxo1YsGCB4fHCwkIsWbIEoaGhcHR0hIODA6qrq5Gbm9uh10X9V05OBXbuPIecnIrebgr1IuYB84CIeUB6zARmAlFfywT25OonJk6ciI8++ghWVlbw8vJqtmKKRCIxul1dXY3hw4fju+++a7YvqVTaqTbY9sDE/HpNV1oRCATN5gLojn20931r+n4DwPz587Fs2TIcO3YMNTU1uHDhAm699VbD44sWLUJJSQnee+89+Pv7w9raGjExMUZdnIlaY2qJYOp/mAfMAyLmAekxE5gJRH0tE1jk6ickEomhS2t7DBs2DJs2bYJMJoODg4PJbTw9PXH48GGMGzcOAFBfX4+kpCQMGzbM5PaDBg2CVqvF33//beiK3Jj+qoVG0/JqYeHh4aivr8fhw4cNXZFLSkqQkZGBiIiIdr++rmBlZdWsre1531ri4+OD8ePH47vvvkNNTQ2mTJkCmUxmeDwuLg7r1q3DjBkzADRMXllcXHzlL4T6DXNfKYW6BvOg6zEPyNwwD0iPmdD1mAlkbvpaJnC4YhfRqVTQ1tR0+49OpeqR17NgwQK4ublh5syZ+Oeff5CdnY39+/fj0UcfxcWLFwEAjz32GF5//XVs27YNp0+fxkMPPWRYecSUgIAALFq0CHfffTe2bdtm2OfmzZsBAP7+/hAIBNi+fTuKiopQXV3dbB+hoaGYOXMmlixZgoMHDyIlJQV33HEHvL29MXPmzG55L1p7PSdOnEBGRgaKi4uhVqvb9b61ZsGCBfjhhx+wZcsWo27IQMNr/+abb5Ceno7Dhw9jwYIFPXrli8yfua+UYk40ai3UKk23/mjU2h55LcyDtjEPyNwwD3pOfV0d1Krabv+p76FeO8yEtjETyNz0tUxgkesKCSwtIXKwh1algqaystt/tCoVRA72EDTpJtvVxGIxDhw4AD8/P8yZMwfh4eG45557UFtba7j68NRTT+HOO+/EokWLEBMTA3t7e8yePbvV/X700Ue4+eab8dBDDyEsLAxLliyBQqEAAHh7e2PlypV49tln4e7ujkceecTkPtavX4/hw4fjxhtvRExMDHQ6HXbu3Nms63B3W7JkCQYMGIDo6GhIpVLExcW1631rzc0334ySkhIolUrMmjXL6LEvvvgCZWVlGDZsGO688048+uijRldxiKj3iUQC2IgtUa/WQKVUd+tPvVoDG7ElRCJBt74m5kHbmAdE1JTQwgI2Egnq69SorVZ0+099nRo2EgmEFt07UIeZ0DZmAlHvEug6Ogi5j6usrISjoyMqKiqMvnBqa2uRnZ2NwMBA2NjYGD1HW1sLXaOlabubwNISwiZtIGpLa59hoivR0vemuWvtdbX276m+TgONpmeiVSQSwMJK1CPHor6FmUDdpS9mQmfzQF2ngra+vsfaKbSwgKWVdY8dj/oG5gF1l97KA87J1QWENjYAvxCIiAiAhZWI4UpERA0FJxadiIh6FIcrEhERERERERGR2WORi4iIiIiIiIiIzB6LXEREREREREREZPZY5CIiIiIiIiIiIrPHIhcREREREREREZk9FrmIiIiIiIiIiMjsschFRERERERERERmj0UuIiIiIiIiIiIyeyxy9XECgaDVnxUrVvRYWyZMmGA4ro2NDSIiIrBu3TrD4xs2bICTk1OPtYfIXOTkVGDnznPIyano7aaQGWMeEPUNzATqCswEIvPHPDDNorcbQN0rPz/f8PdNmzZh+fLlyMjIMNxnZ2dn+LtOp4NGo4GFRfd9LJYsWYJVq1ZBqVTi66+/xsMPPwxnZ2fMnz+/245JZO5SU0uQkJAHAPD3d+zl1pC5Yh4Q9Q3MBOoKzAQi88c8MI09ufo4Dw8Pw4+joyMEAoHh9unTp2Fvb4/ff/8dw4cPh7W1NQ4ePIjFixdj1qxZRvt5/PHHMWHCBMNtrVaL1atXIzAwELa2toiKisKPP/7YZnvEYjE8PDwQFBSEFStWIDQ0FL/++msXv2qiviUy0hUxMV6IjHTt7aaQGWMeEPUNzATqCswEIvPHPDDNbHpyvfrqq9ixYweSk5NhZWWF8vLyZtsIBIJm923cuBG33XZbt7ZNoVC0+JhIJIKNjU27thUKhbC1tW1zW4lE0olWtuzZZ5/FmjVrEBQUBGdn53Y9Z/Xq1fj222/x8ccfIzQ0FAcOHMAdd9wBqVSK8ePHt/vYtra2qKur62zTifoFf39HXp1pgpnQgHlA1P8wE4wxD/7FTCDqX5gHpplNkauurg633HILYmJi8MUXX7S43fr16zFt2jTD7Z4Yv924O29TM2bMwI4dOwy3ZTIZlEqlyW3Hjx+P/fv3G24HBASguLi42XY6na7zjTVh1apVmDJlSru3V6lUeO2117Bnzx7ExMQAAIKCgnDw4EF88skn7QowjUaDjRs34sSJE7jvvvs63XYi6p+YCQ2YB0TU3zEP/sVMICIyoyLXypUrATRMPNgaJycneHh4tHu/KpUKKpXKcLuysrJT7TNn0dHRHdo+KysLSqWyWejV1dVh6NChrT533bp1+Pzzz1FXVweRSIQnnngCDz74YIfbTET9W3dkAvOAeUBE5od50H2YCURkjsymyNVeDz/8MO69914EBQXhgQcewF133WWyi7Le6tWrDeHYWdXV1S0+JhKJjG7L5fIWtxUKjadIO3/+/BW1q72adm0WCoXNrgSp1WrD3/Wvd8eOHfD29jbaztrautVjLViwAC+88AJsbW3h6enZ7DUTEXWljmRCV+QBYN6ZwDwgor6KedBxzAQiMkd9qsi1atUqTJo0CWKxGH/++SceeughVFdX49FHH23xOc899xyefPJJw+3Kykr4+vp26LgdGf/eXdt2JalUilOnThndl5ycDEtLSwBAREQErK2tkZub26Gx9QDg6OiIkJCQLmsrEVFLOpoJXZEHQN/KBOYBEfUFzIOuwUwgInPQq0WuZ599Fm+88Uar26SnpyMsLKxd+3vppZcMfx86dCgUCgXeeuutVotc1tbWbV5Z6G8mTZqEt956C19//TViYmLw7bff4tSpU4Zuxvb29li6dCmeeOIJaLVajBkzBhUVFYiLi4ODgwMWLVrUy6+AiMxRb2cC86A55gER9QbmwdWJmUBE5qBXi1xPPfUUFi9e3Oo2QUFBnd7/iBEj8Morr0ClUjGoOmDq1Kl46aWX8Mwzz6C2thZ33303Fi5ciJMnTxq2eeWVVyCVSrF69WqcO3cOTk5OGDZsGJ5//vlebDlR/xYXdxF79uQgNtYfo0f79HZzOoyZcPVhHhCZL3POBObB1YmZQGSezDkPOkOg6+plOLrZhg0b8Pjjj5tcHripV199FWvXrkVpaWm7919ZWQlHR0dUVFTAwcHBcH9tbS2ys7MRGBhotNwvkbngZ7jvW7kyDnv25CI21g8vvzy6x47b0vdmT+jOTGjtdfHfE5k7fob7vv6WCcwDos7hZ7jv6295YDZzcuXm5qK0tBS5ubnQaDRITk4GAISEhMDOzg6//fYbCgsLMXLkSNjY2GD37t147bXXsHTp0t5tOBFRD4mN9Tf6sy9jJhARta6/ZALzgIiodf0lD/TMpsi1fPlyfPXVV4bb+rHf+/btw4QJE2BpaYkPP/wQTzzxBHQ6HUJCQvD2229jyZIlvdVkIqIeNXq0T7/oggwwE4iI2tJfMoF5QETUuv6SB3pmN1yxu3G4IvVV/AxTd+nN4YrdicNTqC/jZ5i6S1/MBOYB9WX8DFN36a08EPbYkYiIiIiIiIiIiLoJi1wdxI5vZK742SXqevx3ReaKn12irsV/U2Su+NmlvoZFrnaytLQEACiVyl5uCVHn6D+7+s8yEXUeM4HMHTOBqGswD8jcMQ+orzGbied7m0gkgpOTE+RyOQBALBZDIBD0cquI2qbT6aBUKiGXy+Hk5ASRSNTbTSIye8wEMlfMBKKuxTwgc8U8oL6KRa4O8PDwAABDiBGZEycnJ8NnmIiuHDOBzBkzgajrMA/InDEPqK9hkasDBAIBPD09IZPJoFare7s5RO1maWnJqzNEXYyZQOaKmUDUtZgHZK6YB9QXscjVCSKRiF8GREQEgJlAREQNmAdERL2PE88TEREREREREZHZY5GLiIiIiIiIiIjMHotcRERERERERERk9jgnVxM6nQ4AUFlZ2cstISIyD/rvS/33Z1/BPCAi6ri+mAnMAyKijuutPGCRq4mqqioAgK+vby+3hIjIvFRVVcHR0bG3m9FlmAdERJ3XlzKBeUBE1Hk9nQcCXV+6zNIFtFot8vLyYG9vD4FA0NvNISK66ul0OlRVVcHLywtCYd8ZBc88ICLquL6YCcwDIqKO6608YJGLiIiIiIiIiIjMXt+4vEJERERERERERP0ai1xERERERERERGT2WOQiIiIiIiIiIiKzxyIXERERERERERGZPRa5iIiIiIiIiIjI7LHIRUREREREREREZo9FLiIiIiIiIiIiMnsschERERERERERkdljkYuIiIiIiIiIiMwei1xERERERERERGT2WOQiIiIiIiIiIiKzxyIXERERERERERGZPRa5iIiIiIiIiIjI7LHIRUREREREREREZo9FLiIiIiIiIiIiMnsschERERERERERkdljkYuIiIiIiIiIiMwei1xERERERERERGT2WOQiIiIiIiIiIiKzxyIXERERERERERGZPRa5iIiIiIiIiIjI7LHIRUREREREREREZo9FLiIiIiIiIiIiMnsschERERERERERkdljkYuIiIiIiIiIiMwei1xERERERERERGT2WOQiIiIiIiIiIiKzxyIXERERERERERGZPRa5iIiIiIiIiIjI7LHIRUREREREREREZo9FLiIiIiIiIiIiMnsschERERERERERkdljkYuIiIiIiIiIiMwei1xERERERERERGT2WOQiIiIiIiIiIiKzxyIXERERERERERGZPRa5iIiIiIiIiIjI7LHIRUREREREREREZo9FLiIiIiIiIiIiMnsschERERERERERkdljkYuIiIiIiIiIiMwei1xERERERERERGT2WOQiIiIiIiIiIiKzxyIXERERERERERGZPRa5iIiIiIiIiIjI7LHIRUREREREREREZo9FLiIiIiIiIiIiMnsschERERERERERkdljkYuIiIiIiIiIiMwei1xERERERERERGT2WOQiIiIiIiIiIiKzxyIXERERERERERGZPRa5iIiIiIiIiIjI7LHIRUREREREREREZo9FLiIiIiIiIiIiMnsschERERERERERkdljkYuohxw9ehSjRo2CRCKBQCBAcnJybzepywQEBGDx4sW93QwiIrPBTCAiIoB5QNTVWOQisyMQCNr1s3///t5uqoFarcYtt9yC0tJSvPPOO/jmm2/g7+/f283qkPj4eKxYsQLl5eW93RQiIgNmQu9gJhDR1YZ50DuYB3S1sejtBhB11DfffGN0++uvv8bu3bub3R8eHt6TzWrV2bNnkZOTg88++wz33ntvbzenU+Lj47Fy5UosXrwYTk5ORo9lZGRAKGTNnIh6HjOhdzATiOhqwzzoHcwDutqwyEVm54477jC6fejQIezevbvZ/U0plUqIxeLubFqL5HI5ADT74r8SCoUCEomky/Z3JaytrXu7CUTUTzETGjATiKi/Yx40YB5Qf8eyKvVJEyZMwMCBA5GUlIRx48ZBLBbj+eefBwD88ssvuOGGG+Dl5QVra2sEBwfjlVdegUajMbmPtLQ0TJw4EWKxGN7e3njzzTebHe9///sfIiMjIRaL4ezsjOjoaHz//fcAgMWLF2P8+PEAgFtuuQUCgQATJkwwPPevv/7C2LFjIZFI4OTkhJkzZyI9Pd1o/ytWrIBAIEBaWhpuv/12ODs7Y8yYMQAaxrrfeOON2L9/P6Kjo2Fra4tBgwYZumJv3boVgwYNgo2NDYYPH47jx48b7fvEiRNYvHgxgoKCYGNjAw8PD9x9990oKSkxOv7TTz8NAAgMDDR09z5//ryhDU3H2587dw633HILXFxcIBaLMXLkSOzYscNom/3790MgEGDz5s149dVX4ePjAxsbG0yePBlZWVkm/98SEXUUM4GZQEQEMA+YB9QfsCcX9VklJSWYPn06brvtNtxxxx1wd3cHAGzYsAF2dnZ48sknYWdnh7/++gvLly9HZWUl3nrrLaN9lJWVYdq0aZgzZw7mzZuHH3/8EcuWLcOgQYMwffp0AMBnn32GRx99FDfffDMee+wx1NbW4sSJEzh8+DBuv/123H///fD29sZrr72GRx99FNdee62hLXv27MH06dMRFBSEFStWoKamBv/73/8wevRoHDt2DAEBAUbtueWWWxAaGorXXnsNOp3OcH9WVpbhWHfccQfWrFmD//znP/j444/x/PPP46GHHgIArF69GvPmzTPqOrx7926cO3cOd911Fzw8PJCamopPP/0UqampOHToEAQCAebMmYMzZ85g48aNeOedd+Dm5gYAkEqlJt/7wsJCjBo1CkqlEo8++ihcXV3x1Vdf4aabbsKPP/6I2bNnG23/+uuvQygUYunSpaioqMCbb76JBQsW4PDhw535X09E1AwzgZlARAQwD5gH1OfpiMzcww8/rGv6UR4/frwOgO7jjz9utr1SqWx23/33368Ti8W62traZvv4+uuvDfepVCqdh4eHbu7cuYb7Zs6cqYuMjGy1jfv27dMB0G3ZssXo/iFDhuhkMpmupKTEcF9KSopOKBTqFi5caLjv5Zdf1gHQzZ8/v9m+/f39dQB08fHxhvt27dqlA6CztbXV5eTkGO7/5JNPdAB0+/bta/X92Lhxow6A7sCBA4b73nrrLR0AXXZ2tsk2LFq0yHD78ccf1wHQ/fPPP4b7qqqqdIGBgbqAgACdRqMxel/Cw8N1KpXKsO17772nA6A7efJks2MREbWGmcBMICLS6ZgHzAPqrzhckfosa2tr3HXXXc3ut7W1Nfy9qqoKxcXFGDt2LJRKJU6fPm20rZ2dndE4fisrK1x33XU4d+6c4T4nJydcvHgRR48e7VD78vPzkZycjMWLF8PFxcVw/+DBgzFlyhTs3Lmz2XMeeOABk/uKiIhATEyM4faIESMAAJMmTYKfn1+z+xu3v/H7UVtbi+LiYowcORIAcOzYsQ69Jr2dO3fiuuuuM3SXBhrey/vuuw/nz59HWlqa0fZ33XUXrKysDLfHjh3brJ1ERFeCmcBMICICmAcA84D6Nha5qM/y9vY2+lLUS01NxezZs+Ho6AgHBwdIpVJDSFVUVBht6+PjA4FAYHSfs7MzysrKDLeXLVsGOzs7XHfddQgNDcXDDz+MuLi4NtuXk5MDABgwYECzx8LDw1FcXAyFQmF0f2BgoMl9NQ4pAHB0dAQA+Pr6mry/cftLS0vx2GOPwd3dHba2tpBKpYbjNH0/2isnJ6fF16V/vLX2Ozs7N2snEdGVYCYwE4iIAOYBwDygvo1zclGf1fjqg155eTnGjx8PBwcHrFq1CsHBwbCxscGxY8ewbNkyaLVao+1FIpHJfesajXUPDw9HRkYGtm/fjj/++AM//fQT1q1bh+XLl2PlypXd/ppaa2d72j9v3jzEx8fj6aefxpAhQ2BnZwetVotp06Y1ez+6S3vaSUR0JZgJzAQiIoB50Nr9zAPqC1jkon5l//79KCkpwdatWzFu3DjD/dnZ2Ve0X4lEgltvvRW33nor6urqMGfOHLz66qt47rnnYGNjY/I5/v7+AICMjIxmj50+fRpubm7dvvxvWVkZ9u7di5UrV2L58uWG+zMzM5tt2/RqVWv8/f1bfF36x4mIehszwRgzgYj6K+aBMeYBmTMOV6R+RX81oHH1v66uDuvWrev0Phsvows0jMmPiIiATqeDWq1u8Xmenp4YMmQIvvrqK5SXlxvuP3XqFP7880/MmDGj021qL1PvBwC8++67zbbVh2njtrZkxowZOHLkCBISEgz3KRQKfPrppwgICEBERETnG01E1EWYCcaYCUTUXzEPjDEPyJyxJxf1K6NGjYKzszMWLVqERx99FAKBAN98880VdXm9/vrr4eHhgdGjR8Pd3R3p6en44IMPcMMNN8De3r7V57711luYPn06YmJicM899xiWB3Z0dMSKFSs63ab2cnBwwLhx4/Dmm29CrVbD29sbf/75p8mrVsOHDwcAvPDCC7jttttgaWmJ//znPyavJD377LPYuHEjpk+fjkcffRQuLi746quvkJ2djZ9++smwNDERUW9iJhhjJhBRf8U8MMY8IHPGTxH1K66urti+fTs8PT3x4osvYs2aNZgyZQrefPPNTu/z/vvvR3V1Nd5++208/PDD2LZtGx599FF8++23bT43NjYWf/zxB1xdXbF8+XKsWbMGI0eORFxcXIsTSHa177//HlOnTsWHH36I5557DpaWlvj999+bbXfttdfilVdeQUpKChYvXoz58+ejqKjI5D7d3d0RHx+PKVOm4H//+x+ee+45WFlZ4bfffsPs2bO7+yUREbULM6E5ZgIR9UfMg+aYB2SuBDrO2kZERERERERERGaOPbmIiIiIiIiIiMjsschFRERERERERERmj0UuIiIiIiIiIiIyeyxyERERERERERGR2WORi4iIiIiIiIiIzB6LXEREREREREREZPYsersBVxutVou8vDzY29tDIBD0dnOIiK56Op0OVVVV8PLyglDYd66dMA+IiDquL2YC84CIqON6Kw9Y5GoiLy8Pvr6+vd0MIiKzc+HCBfj4+PR2M7oM84CIqPP6UiYwD4iIOq+n84BFribs7e0BNPyPcHBw6OXWEBFd/SorK+Hr62v4/uwrmAdERB3X3Zlw4MABvPXWW0hKSkJ+fj5+/vlnzJo1q9Xn7N+/H08++SRSU1Ph6+uLF198EYsXL273MZkHREQd11vnCCxyNaHvguzg4MAQIyLqgL42hIN5QETUed2VCQqFAlFRUbj77rsxZ86cNrfPzs7GDTfcgAceeADfffcd9u7di3vvvReenp6YOnVqu47JPCAi6ryePkdgkYt6jVaphOrsWWjKyiCUSGATHg6hWHzF+9XV1wNaLQRWVl3QSiKijqsqrUW5XAnfMJfebgoRUYfU1dTjQnopgofJerspJk2fPh3Tp09v9/Yff/wxAgMDsXbtWgBAeHg4Dh48iHfeeafFIpdKpYJKpTLcrqysvLJGX4VqqqtQVVyEutoa1NfWQqvVQiAQNJyMCoWwthVD6h8IC/4+TSbU1dZAfv4cRCILSAOCYGFp2e7nVsgLUSEvgEAohJWNLRykMtjYcb476josclGP0qpUqNz5Oyq3b4fyyBHo1GrDYwJbW7jccQek/32kwwUqnU6Hqt9/R8mGr1Cbng6o1RA5O8N2yBDYT5kC++uvh8hO0tUvh4jIpLS4PCTuOI/goVKMujkEDq62vd0kIqJW6bQ6ZBwpQPzWs1CrNPC6xgm2duZf4EhISEBsbKzRfVOnTsXjjz/e4nNWr16NlStXdlkbCs9lwcnDC9ZdcDG3s3Q6HXJOJuPkX38i91QKaqvaLtyJHZ0w65mX4BkyoAdaSObiQuoJ/LL2VagUCgCAnasbbn7hFbh6tz5vnU6nw94vPkLK7p3NHnOUuSN87ERE3zinV/+dXC1yT53A399+gfKCfNjY2cEzNAwDJ06B/6AhLAa2g0Cn0+l6uxFXk8rKSjg6OqKiooLdkbuQVqVC2TffoOTL9dCUlkI8YgTsJ0+G7dChsJC6QVNRgcrff0fpF1/CduhQ+H7+GYTtLHTpdDoUrFiJ8k2bIBk3FnYTJkBoK4b6wgUojhxGTWIShI6OcFlwO1wWLoTIyal7XyxRP9NXvzev5HXpdDqcOVKI+K1ZUCnrMWyqP4Zd7wcLK1E3tZaIqPOKLlThwMYzKDhXgZBoGUbNCYG9i02n9tWTmSAQCNqck+uaa67BXXfdheeee85w386dO3HDDTdAqVTC1rb5RQhTPbl8fX079Zrq1Wq8v3AudFotXLx8ED52IobNuAlWNj138aOmqhK/f/g2so8nQuoXgOBrR8LN1x8OUhmsbMSwtLGGUGQBnU4LnVYH6HRQVpRj7/qPoVIosPjtdRAKmV9Xi8oiObKTE2EtsUNI9Mge7W1Xr1Zj/RP3w8FNhkl33Y/6ujr8vu4diB0ccdvKN1p97vmUY/jpteUYf+c9CI4eAeh0UCmVqJAXIPdUCtIO7IO9mxQ3v/AKHNykPfSK2lZXo8TF06mwd3GD1D+w249XXpCPr555BO6BwQiOHgllRTmyjyei5GIuAocMx/T/LoWtXffNcaXTapGdkoSSixfg5uMH/6ihnf7331vnCOzJRd1K38OqcM0a1MuL4DR3LlwWLYJ1kPEXhKWHB2wGDIDdmDHIvfseFL72GjxXrGjXMUo++QTlmzbB8/9egdPNNxs9JsV/ob50CaVff42SL9ej7LvvIX3iCTjdcjMEIoY1EXUPgUCAASM8EBjlhqTfc5D0+3mcTsjHhAUD4Bfh2tvNIyIC0DA08dC2szh14BKcPCSY+cRQ+Axw7u1m9Tpra2tYW1t3yb6EIiHuWP0uinPPI/dUCg5v3YSTf/2Jm19YBWdP7y45Rmtqqirxw8vLoKyswE1LX0BI9Mh29QRxkMowYeES/LD8aVxKT4Vv5OBubyu17eRff+KvLz+Gpr4eOp0Wrj5+mPv8Kti7uvXI8c8nJ6GySI7ZzyyHm18AAGD0vDuw/d3XUZZ/qdXP9NmkI3CQumP4DbOMPoMewaEYEDMW0TfOxpb/exG/vf0ablv1JkQW7R8C2V2KcrLx0+qXoSgrBQBMWHgvht8wq1uPeeTXH2EjscOc51YaiuHjFtyFc8eO4I+P3sPPr6/ArSte75b3R12nwvZ338C5pCOwtLaBWlUL38jBmP3sy7C06prvxJ4g7O0GUN9VX1SEi4/8F5eefAo24REI+vVXeK5c0azA1Zg4OhqyZc+g/IdNqDlxos1jqM6eRdGH6+D6wP3NClx6lt7ecH/uOYTs2Q27SZNQsGIFcm5fgLoLFzr92oiI2sPKxgIxs4Mxf/kIOLjZ4rf3U7D3qzTUKtRtP5mIqBvlpJZg46rDOH2oAKPmhuDWF6/tkwUuDw8PFBYWGt1XWFgIBwcHk724uppQKIIsIAgR4yZh2kNPYNHadbCwtMSWV15EraK6W4+t02qx/d3XUVNVifmr3kLotTEdGurkFToAtvYOyE092Y2tpPbKOnoIf37yPsLHTcQjGzZh4VsfoK6mBr+9vRpajaZH2nA+5RicPb0NBS4ACBw6HEKRCDknU1p8nk6nQ3ZyIgKHRrf4GXT29MZNTzyHwnNnkbL7965ueofV1dbg5zdXQeLojMVr12Ho9P/gwHcbUFlc1G3H1Gm1yDySgIhxk4x6ewoEAgQPH4E5z76MwnNZOP77b91y/PjN3yH3RDJmPbMc//1qC25+4f+Qn5mBQz/90C3H6y4sclG3UMTH49xNM1Fz/Di8338Pvh9+0GpxqzHn226D9TXXoOh/H7S5bfG6j2AplcLtwQfb3NbCzQ1eq1+D/3ffor60FNmzZqPi11/b1SYioivh5C7GzMeHYOKdYTiXXIzvVx5GVpK8t5tFRP1QrUKNvV+lYfv/UuDsIcZty6/DkFg/iER987QgJiYGe/fuNbpv9+7diImJ6ZX2OLl7YO4Lq1BXo0Tcpm+79VjJu3ci99QJ3PDfp+Hi1fFeYwKhENKAIBTnZndD66gjaqoqsfuzDxAcPRJTljwCKxtbSP0CcOPjy5B/9gxO/vVnj7Sj4GwmvK4JM7rPysYW7sGhuHQ6tcXnleVfQkVhAYKGRre6f4+QaxA5YTIO/7wZmvr6LmlzZx3//TfUVFTgpqeeg6uPH8bceicEQgHOHDrYbccszbuE2qrKFntOeoYMQPjYiUj6/dcuL2zWKqqRsvt3DL9xNoKHXweBQAD/wUMw59mXcd3MW7r0WN2tb6YZ9RqdToeSzz9H7r1LYBMejqDtv8Hh+us7tA+BSATXe+6G4p9/oDp7tsXt1JcuofL33+Fy7z0QdqBLuXj4cAT+vBX2sZOR98wyFL7+BnQ9dPWDiPovgUCAiNFeuP3lEfAIdMCuz05hz4Y01NX07i9xRNR/6HtvnTtehIl3huE/jw4xu4UxqqurkZycjOTkZABAdnY2kpOTkZubCwB47rnnsHDhQsP2DzzwAM6dO4dnnnkGp0+fxrp167B582Y88cQTvdF8AICDmwzR/5mDk3v/gLKivFuOoVIqEL/pWwyaPBX+g4d0ej9S/0AU5Z7vsnZR5xz9bSvUKhVi733IqCeU1zVhuGbkGCRu3wqdVtutbahXq1GUkw334NBmj0n9AlByMbfF515MOwWBUAjfyEFtHmfY9JugrCjHuWNHrqi9V0Kr1SBlz+8IGzMejjIPAICVrRgBUcOQeSSh246bl5kOgUAIr9CWF3sYPHkqqkuKkZ91pkuPnX3sKNS1NYi63nj1Wt/IwWa3GACLXNRldBoNCl5eAfmatXC99174fvYpLFxcOrUvh+nTIXJyQsUvLfe0qtixEwJrazi1MtloS0R2dvB64w24v/ACSr/+GhcffgTayyuEEBF1J4mTNaY/MAixi8NxLrkIm149gvyzFb3dLCLqwzRqLQ7+mInt/0uBm7cd5r88AhGjvcxyla7ExEQMHToUQ4cOBQA8+eSTGDp0KJYvXw4AyM/PNxS8ACAwMBA7duzA7t27ERUVhbVr1+Lzzz/H1KlTe6X9eoNjp0Gr1SLzSHy37D9pxzbU19Vh1M23X9F+nD08UVkkh1bb9ReEC7PP4tBPP0Cl5O/gramtrkbyrh0YMvUG2Dk3P7caPmMmygvyce544hUdp65GiYyEf6CurTX5eIW8AFpNPdx8/Zs95urjh9K8iy1+TkrzLsBR5g5L67YXtJD6B8Ij5Bqk/r23zW27S+HZLFQVFyFy/GSj+30jBqPwXGa39TIrvXQRDjIZrGxbLip5hFwDG3sHZF/h/++mzp84Dql/IOxdemZ+t+7EieepS2jr6pD39DOo2r0bnq++Cqe5c65ofwIrK9hPmYLK33+H9InHTf4SVrljB+wnToTwCirLLnfeASt/P1x64knkLrkPvp9+ApGd3ZU0nYioTQKBAANGesIj2Al71qfi5zVJiJ4RgOgZARD20SFDRNQ7yguV+POLVJRcqsbom0MQNckXAqH5Fbf0JkyYgNYWh9+wYYPJ5xw/frwbW9VxYgdH+A2MQkb8P4iaMqNL961W1eLYzl8xeMp02Llc2WIn9q5S6LRaKMrKDJObn09OQlbSEYSNGguf8IGd2m9tdTW2vPI8VAoFygvzMe2h3utZd7U7Hfc36utUGD5jpsnHva4Jg0dwKE7s+R3Bw6/r9HH++OhdZB6OR+T4ySb/f1QVNUyz4Ch1b/aYq48fNGo1KgoLTE4+X5afBxcvn3a3JfS6UUj4aSPq6+p6dPVIvfMnjsHKVgyva8KN7ncPDIZGrUZp3kVIG81L1lXKC/Lg7OHV6jZCoQg+YZHIz0zv0mPnZ2YgIGpYl+6zt/A3abpiOrUal/77KKr37YPP++9dcYFLz2H6NKgvXEBtWlqzx1Rnz0KVkQGHG678lwK7cePg9+UXUGVmIveee6CprLzifRIRtYej1BaznxqG6BsCkbjzPH55NxmKClXbTyQiaofTCfnY9NpRqFUa3LwsGkNi/cy6wNXXhFwbg4unU1vsOdNZGfH/QKVUYNj0/1zxvvSFraqShsm2C89lYevrK5H+zz5sXvk8zh0/2rk2JhxAXU0NRs65FakH/kJZQd4Vt7WvSjvwFwKHDIfEqeWFIcJGT0DOieOd7hVXcvECMg/Hw9nTGxmHDkJd1/x3kcriIgiEQpOFUyf3hiF9FUWm5xstK8iHUxvFm8YCh0ajXqXCxVbm+epOF9NOwTdyEIQikdH90oAgAEDR+XPdctzygnw4eXi2uZ17YDDk2edaLfh3hLpOhfKCfKMFBcwZi1x0RXQaDfKWLUN1fDx8PvwQ9rGxXbZv8bXXQigWQxHXvBt39f6/IbCxgWTMmC45lm1UFPzWr0fd+RxcuO9+aGtqumS/RERtEYqEuO7GQMx6cijKC5XY/NpR5GeV93aziMiMadRa7P/uNPZ+lY6QYVLc8lw0pH72vd0sasI7LAI6rRYFZ7t2bp0Te/6A/+ChhrmEroS+oFFdVgoAOP7HdjhIpXjws+8QOHQ4dn30HlRKZYf3m52cBO8BEbhu9jxYWFji7NFDV9zWvqg07xLyszIQMW5yq9tdM3I0NPX1OJt4uFPHST+4HzZ29pj20BOoV6kgz25exKkoKoSdi2uzwg9w+XMiEKDKxMqDOp0O1SXFhoJpe7j5+sPOxRXnU4517IV0AZ1OB3lONmQBwc0esxaLIXZ0Qnlhfrcct1xeACf3totcssBg1CqqTb7fnVF68QJ0Om239E7rDRyu2EW0dXUo/t8HcJx5E6xDQnq7OT1Cp9Oh4P/+D5V/7IL3u+/AbmzXFJz0BJaWsL02GspDCcB9S4weUyQkQBwd3aEJ59tiOzASfp9/hpyFi3DpqaXwef89CCz4T4SIeoZXqDPmvXAtdn12CtvePo5Rc0MweJJPt8+Zo9PpoCivQ1mBAmUFSigrVKipVkNdWw/99UELKxFs7Sxha28FR6ktXDwlcJDaQmgGPULqauuhrKhDvVoLTb0WQpEA1rYWsLK1gLXYwmzmJNLpdKhVqFFbrUa9WgudVgcLKxEsrUWwsbOEpVXzk46rlVarg7KiDnW19dCotdDpdLC0FsHKxgI2dpYQWVz912BVSjXKCpQozVegukyF2mo1ahVqaDU6CASA0EIAWzsr2Npbws7ZBi6eEjh5iHvk/1N1WS3++PQUii5UYeIdYYgY0/7eE9SzXH18YWUrRt6Z0y2uptZRRTnZyM/KwE1PPt8l+7OWSAA0DC/U6XQ4d/woBk26HhaWloi992F8+fj9OP77rxg597YO7bcw+ywixkyApZU1fAcORnZyIqL/0zWjQfqSc0mHYWFphaBhra9KaO/qBs9rwpB5JAER4yZ1+DjnU5IQEDUM7kHBEIosIM/OgvcA46F6lUVyOLjJTD5fZGEJOydnVJoouqiUCqhVtR0qcgkEAngPiEB+ZkbHXkgXUJSVoraqElL/AJOPO7p7oKKwoMuPq66tQb1K1WqPPT03v4Z50Uou5sJBavr/SUdUFBUCQLt6kZkDnsF3Fa0WVXv3QhEXh4AfNkLQC2OHe1rZN9+ifOMP8Hz1/zq8gmJ7SUbGoOjdd6FVqQwFLV1dHZSJiZD+95EuP57toEHwee9dXHjwIRSsegUeK1eYzQkQEZk/iaM1Zj4xFId+PouDWzJRmF2BSQvDYdGFJ8Y6nQ6l+QpcTC9DXmY58rLKUVutBtBwYi52sIKtnRWsbEUABBAIGuZ3yauqg7JKjXpVw6SyFlZCeAY7wusaZ/iGuUAWYN+r35f615WfVYGinEoUXahGZXENVMqWJ4e1shHBUSaGs6cYnsFO8Ax2hIunpNeHc2k0WhSeq0RhdiXkuZUouViNqpJa1KtbXjlL7NhQgHTztYdnkCM8gh1h79L2BL/dra6mHpcyyyE/Xwl5ThVK86uhKK+DTmt6iIVAANi72sBRJobM3x4eQY7wCHKEjcSyh1tuTKVUIze1FJfOlOHSmXKUF17uuSIAxA5WsJFYwkZiCaGo4bOjqdeiKKcKyqo6qBT1hm3dfOzgFeIEr2uc4BvuAiubrv1V/NKZMuz67BREFkLMWToc7gEOXbp/6lpCoQjuQSEozM7qsn2ejvsbNvYOCLqCuZkaEwpFsBZLoFJUo7JIjprKCnhdEwagobASNnocTuzdhetm3wKhsH1ZVVejRHVJMVx9/AA0rN6WsOV7aLWadu+ju51POYY9X6yDo8wD/3n8Wdj00py92clJ8Ikc1K4J24OGROPob1uhqa+HqAMX6hXlZSg8l4Vh02+CyMISrr5+KMrJbrZdZXERHGXN5+PSs3eTmuxZVF1aAgCwc+7Y/HCeoWHI2rgBmno1RBZdnwGa+nrEb/4WOgCj591heM/0r13qH2TyeY5Sd0NR6EqOfWznL7BzdUPYqHEQCARQlJcBQLuKXPYubhBZWqKsIB+BV9SSBtUlxbCwtIKNXd/o8csiVxcR2tjA6403cH7+fBR99BFkjz3W203qVtUH41D4+utwuftuOM2d223HEV97LXQqFWpT0yAe1rCKTm1GBnS1tRBHt35Fo7Psxo2D56qVyH/hRdiEh8F5/vxuOQ4RkSkikRCjbw6Fe6Aj9m5Iw89rj2HGQ4MhcbyynqvFF6uRlVSIc8eLUFaghMhSCI9ABwwc5w2Zvz2cPSRwcLNpdeJ7nU4HZWUdSvMVKMqpQl5mOY7tysHhX87B3sUGwcOkGDDSA24+PfNLkk6rQ15WOc4cLUTuqRJUl6kgFArg7CWBzM8eIcNlsHO2htjRGpZWIggtBNBqdKirqYdKWY/K4hqUy5UouViNrKNyaLU62DpYISjKDUFDpfAZ4NxjCwHU12lwLqUI544X40J6Kepq6mFhJYTUzx4+4S5wdLOFnYs1bO0sIbIUQSgUoL5OgzqVBjVVdagoqkGFvAa5p0pwct9FAICLlwRBQ6QIHibtsf8nAKCoUCHzaCHOnyxGfmZFw/tqbwlZgAOuuc4D9i42sHO2hrWtBUSWQgiEAqhrNairqYeiQoUKeQ3KCpVIO5iHpN9zIBAK4BXiiMCohtdi59wzxTt1nQZnj8mRlSTHhbRSaDU6OHuI4T3AGdEzAuDiJYGTe9u9s+pq6lFaoEDpJQXyz5bj/MlinNh3ESILIXwjXBA8VIqgodIrLnidOnAJB344A69QR1x/z0CIHfr+Bde+wNXHFxdST3bJvnQ6HTIOHUTotSM7VORoi7XEDrWKakMxziP4GsNjUbHTcWrfbuSeSEbAkOHt2l/ppcvfUd6+DfsLCoFaVYuyvEuGwldvqi4rxa9rX4N7UAjk57Kw54t1uPGxZ3q8HXW1Nbh0OhXj7ri7XdsHDBmOuM3fIj/zdIcWBNAPCdRPOu7s4YUKefOeSpXFcvhGDGpxP/ZuMlSVNJ+Tq7qkuOHxDvTkAhom1Neo1ZCfPwfPkAEdem57xG3+Fkd/+REAIHF0wvAbZgFo6B1laW0DxxZ6SNm5uF7xEONdH7+H9H/2AQBEFha4ZsRoQ5FL3I4il0AohKPMA+WFXTOXXVVpCexcXftM5w4WubqQ7aCBkD78EIr+9wHsx4+H7ZAhvd2kblF38RIuPfkkJGPHQPbUk916LJsB10BgZYXakycMRa6a5BQILC1hHR7exrM7z2nuXNSmn0bBa6thPSDMcGwiop4SMlwGR6ktdqw7gS2rE3HDQ4M7PKeOuk6DzKOFSP0nD/LzlbAWWyAwyg2j5obAJ8wZFpYdu2IuEAggcbSGxNEavmEuGDbVH1qNFnlZFTibJEfG4QIk77kAz2BHDJzgjeChsm4ZeqaoUOHUgUvISChAVWktHNxsEDxUBr+BLvAKcepUzze1SoPC7ArkpJbi3HE5Uv/Jg9jRChGjvRA+2hMOrrZd/joAoPhiFU7+fQlZRwtRV6uBzN8eQ2J94RfpCqmffaeGhCor65CXWY7sE0U4uf8iEneeh8zfHhFjvBB6rXuX9x4CGgqO508WI+1gHnJSSyEUCuAT5owx80LhF+kKBzebDv/yrNPpUFlcgwvpZchOKUb8z1mI+zET/gNdETHWG/4DXbtlyGxFUQ1O/X0R6fH5UNXUwzPYEaPmhiB4aEPRtKOsbC3gEegIj0BHw9DByuIanEsuwtljRdj7VToO/HAG11znjsix3h3+d67V6hC/NQspey5g0AQfjLklhKu0mhEXb1+c2PNHh3vfmCLPPouKwgJcc+/DXdS6BjZ2dqitrkJ5QT6sxRKjnibuwaFwlLkjK+lIu4tcJZcuAABcvBtW25MFNkz1UnA286ooch3+eTNElpaY+fSLOJNwELs/+wDjFtwFBzdpj7Yj99QJaOrrEdjO99U9MBi29g44n3KsQ0Wu7OQkuAeFQuzoBKBhOF7TIo6mvh6K0lI4SFt+D+xd3SA30SuxqqwEEAggcW67eNOYNCAIIgsL5Gee6fIil7KiHMd//w0j596G8oJ8nNq321DkqiiSw0Eqg0Bo+ntU4uQMRXl5p4+dn5WB9H/2YeqDjyPt7704tvMXXDNiNJQV5Yb9t4eThyfKC7pmbrDq0hLYu3SsCHk1Y5Gri7kuWYKqv/Yhf/nLCPzpRwgse7d7fVfTqdXIW7oUIjs7eL/1FgQmJh7sSgJLS9hERKDmxL9XuGpSUmAdEQ5hNw8JdV/2DGpPp+PSY48hcOtPsGjlS70vqrt4EZriYlgFBEDk5NTbzSHql6R+9rjl2Wjs/OgEtq5JwpS7IhE0tO3volqFGif3X0TKXxegUtbDL8IF0x8YBP9BrhB18cmvUCSEzwBn+AxwxthbQ5GdUoyTf1/E7i/SkOByFtHTAxAW49klxa7SfAWSd+ci40gBRCIhQq91x4CRHvAMdrziq4+W1iL4hLnAJ8wFo+YEoyi3Cmlx+Uj56wKS/sjBNde6Y9g0f7h4Sq74deh0OlzKKMOxP3NxIa0Uds7WGDzJFwNGesBJJr7i/YsdrBAyXIaQ4TJoNFrknipB2sE8/P19BhJ+PovBE30weJJvlwwB1Ki1yDhSgON/5qK8UAmZvz3+n73zDm+q3v/462QnTZukew/23lNBxYlsFMW99xa3P/Ve9V6914UTBw5cuFA2iKKgiMjes6V7r4wmbfb5/ZEmtDSdFFq8fT1Pnwdy1jfznO/7vD/vz1mze9JjRMwJ718QBHRRGnRRGgaclYCjxk361hIO/FHIqnl70EWpGTYxhd6jY9vl82UqqWbrqizSt5SgUMvod2Y8/c9KQBfV/gJnWKSaIecnM+T8ZKoq7Rz4o5CDGwvZv6GQhN56hl+cSmJvQ7Ofa5fDw88f7yd7TznjZ/dk0ISkdh9rFyeXiIQkvB4PppIiIhJO7P07/NcfqELDSG6nfC8/qhAtdpsNoay0gdAjCAJpQ0eSuWMLonhHi36LKwvzCY2IQqHyfbeUGg266BjK83LaddwetwtTcTHhCS3Pt/S4XRz6Yz2DLrgYVYiW3mecxa8L3ufwpg2MPMWZYfkH9hAWFY0hLqFF6wsSCamDh5G1azvjrriuRdt4vR5y9uxkyIXHOtbrY2KpKi+vVyZorSxHFL2ERTVRrhgeibWyElEU673e1ooKNGG6VpccyuRywhOTKc9tWDp5ouz+eTWCIDBs0nSyd+/g0MbfsBor0RrCsZSVNFmWGaI34LLX4LTXBD7DrWHb8sUY4hPpd9YEvB43a+fPw1lTjc1kRCqTodS07DpDHxNH1s5trT5+MKoqyk+5iHsy6RK52hlBJiP2n/8g+7LLqfz8CyJuurGjh9SulL35FjX79pH6xedIw05NzoNq0ECs638L/L9m9260E8456ccV5HIS584l85JLKHzy/0j64P2/jYWzKeyHD1P8z2ep2bnT94BUStikScQ89iiyyL+Pwt9FF6cLIXolMx4axi8LDrL6/b2cOasHQ84PfqfbbnOx86dc9v6Wj9cj0u/MeAafl3RSJunBkEgldB8WTfdh0VQUWNm+Opv1Cw+zbXU2Y6Z3p9eomDb9jlZV2tmyLJNDm4sJCVMwelo3+o+LR6k5OTeSBEEgOiWM6JQwzrikOwf/LGLnTz5xrcewaEZP79ZmMaoky8KfP2RQmG4iMknLBTf3o8ew6JPmvJFKJaQNjiJtcBRVlXZ2r81j50+57Fqbx6BzExl2UUqbnF2iV+TIlmL+WpaJtdJB2uBIzru+L7HddCfhWfhQqmUMOCuBAWclUJJtYceaHNZ9foitK7IYOSWNPmPj2uTsshodbF56lMObi9GEKRg/uxd9zog7ZWH+oeEqRk/rxsjJqWTuKmfHmhyWvb6L6NQwRk1JI7l/eNDvjc3kYOW8PZhKqpl01yBSB3ado09HwuN9biZjUeEJiVyiKHLkrz/oOWps0O53J4IqRIvDZsVVU01YkMl/2tDh7FqzAlNxYYsEGWtlRYPSNUN8IsaignYbM8CP817n0MbfuODWexh0/sQWbZOzdxd2m5U+Z5wF+AS45P6DyN2765SLXMVH04ltpYMpdchwDv6xHpvJ2CJHUHHGEezWKlKHHIuB0UXHIopeLGWlgffTUuYrQ2wseB4gNCICt9OB3WZFXSfbqaqydZ0V6xKVnEpZbnabtm0MURQ5sOFXeo05E7U2lMQ+/QHf691jxGgs5WUk1D4WDP/rWm0yoYht3fWVo9rG0e2bGTf7WiQSKQl9+iOKXgrTD2MzmdDom7+54UcXHYOlvBTR623UddZSrMaKQNbe34EukeskoO7fH8PVV1P29tuETbwIefzfo6uN7a/NVMyfT/TDD53SUkz1wEEYP/sct9GIIJfjystD3b/xH572RBYVRfwLL5B3620Yv1xI+DVXn5LjdhS2vzaTd+edKBITSXj9dRQpyVRv3Ub5e++ROXMmyR99hKpXr+Z31EUXXbQrcoWUi27pz1/L1GxclIHN5OCMS3oEAtI9Li97f/OVpXk9IgPOTmDI+ckdmskTkaDlwlsGMGKSjS3LM1n7yQH2/ZbP+Nm9iE5p2U0Sp93NtpXZ7FmXj0It5azZveg3Lv6Udt9TqGQMPjeJAeMTOPRXEdtWZfPVs5sZdG4SIyalolS37FLKUl7DpsVHydheSnh8CJPvHkTKgFObfxEarmLc5T0ZNjGF3b/4hK6DG4sYPb1bqwSi/MNGNi5KpzzPSrehUUy9t1u7ONxaQ0xqGBffPpDKQhtbV2Wx7vND7F2fz5mX9iCxT3iL9uFxedn1Sy7bVucgV0gYd3lP+o2Lb3UZb3shkUroMTya7sOiyDtQybZV2ax4ezcJvQ2ceWmPemWMlYU2lr+1C4BLHhl2SjPXumhfQvQGJFIZVeUNs4xaw8kqVQRQarWYy0pxOx0kDxjcYHl8L1+ESOGRQy0SuarNpkBpnB9DXDw5u3e2y3jB50w5tNF3k/yvH75h4HkXtej39ujWzRjiEohMTg08Ft+rL9tWLG4XMaGleL0eSrKOcsbw0a3aLnWQL2IlZ8/OFnVZzNq1HVWIlriex67v9TG+DnumkuJjIldtoHxTbh9tbbmbtbKinshlrawILGstkcmppG/+s11f+8qCPEzFRZx7w+2AL2NLqQmhIi+H7sNHYSkrpd/4CY1u7xe5bCZjq7sRZmz9C4/bTe9aETU8LgGZQklFXg41FjOasJbfKNJFx+BxubCZTWgNLTvvOe015O7djVQmI3XwsMBrWmOxoG7FsTs7XSLXSSLq/vuo+vFHSl95lYTXXu3o4Zww3upqip56Cs3IkYTf1LLww/ZC1cd3B8ORno5Qa3NVnkKhRTt+PIZrrqH05ZcJGTMaZY8ep+zYpxJnTg75996LZuhQEue9g0TlC/ZV9e1L2MUTyb3tdnKvvY7Ub75GkZrasYPtoov/QQSJwNgZ3QnRKdjwbTrVFicTru1D9p4KNi3OoKrSQb9x8YyaktapAqfD40OYePtA8g8b+ePbI3z3n230HxfPGZf0QNGEQJS5q4wN3xzBbnUx7KJkhlyQfFKypFqKVC6h//gEeo2OZdfPuexYk8Phv4oYP7sXPYZHNzp58nq87P4lny3LM1GGyDn3uj70HtM2x1F7oQlTMHZmDwacncimxUdZ9/kh9v9ewIRr+xKZ2HgHsRqrk42LMjj8VzExaWFc8vAw4nroT93AgxAeH8JFtwxg8LlmNi5KZ+nru+g5Ippxl/dq8nuQf9jI+i8OUVVhZ+CEREZOSWuxYHmyEQSB5P4RJPULJ3tPOZsWH+XbF7bSe3QsYy/pTlWFnRVv70ZrUDH13sGE6E+sKUUXHYsgkRAaGRkQEdrKkZNUqgig0oZit1XhqK4O6g5ShWiJSEym8MhB+p99XrP7s5lNxPes71AyxCWw+6fVeD2ednGi5e7bDcDk+x9l5RsvUZaTRXRq8G55dck7sJfkgUPq/abH9+6L49svqCjIIzIp5YTH1hIq8/NwOxzEdu/Zqu00Oj3Rad3J3r2jRSJX9q7tpAwaWq+rZWhEJBKpFFPJsbwnc2kJGp0eWRNxMdpwX/dEa0U5UXVEQmtFOfFNOKOaIiopBZfDjrm0pNWCUmPk7d+LRCoN5JYJgkBEUgrleTk4bDacNdWENRI6D8eC4W2mylYfO2vXdmK79ww42wSJBENcPJUF+TiqbS0uVQQCpaOWspIWiVyZO7ey+p252KssAPQ761wuvnsOXo8HZ001qpCO6SB6MugcZ/O/IVKtlqgH7qfo/54i/IbrUQ9q/xPOqaT09ddxl5eT/NGHp+wOhh9FairI5T6RSyoFqRRF9+6ndAzRDz+E7a9NFD76GKnffoPQjh1rOgOi10vBo48iDTeQ8MbrAYHLjywqipQFn5B9xZXk3XkXqd99i7SDWil30cX/OoMmJKEJU/LTx/vI3V+B3eYmZUAEk+8aTHj8qXXTtIbE3gYuf3Ik+34vZNOSo+Tsr2DCNX1I7le/pbjN7OC3hYfJ2l1OysAIzprdi7DIU1Nu2RLkCikjJ6fR94x4/vj2CD99uJ/0rSWcfWXvBmJDaY6FdV8coiLfyqAJSYyaltahQt3xhIaruPDm/gw8J5H1Xx7iuxe2MmxiCiMuTkUqP3auF0WRI5uL+eO7DERRZMK1feh7RlynKuGP7abjkkeGB8a58Nm/GHdZT3qPjq03TpfDw6YfMtj7WwHxPfVMunNQp/3eCIJA2uAoUgZEcGBjEZuXZXJ0Zylej0h0ahhT7h500kp2uzi1hEVEUXUCIpcoiqRv+ZMeI0a3e6ki1GZyWa04q6tRhwZ34sb17ENRRss6zgVzcoXHJeL1uDGXlWCIPfEqmMLDB4lMSqHnqLEo1Boyt29pVuSyGisxFhVwxuX1Kzdie/QCQaA448gpE7mKj6aDIARC+VtD6uBh7P1lTbPup2qLmeLMDIZcNKXe4xKplLCoaMwlxzosWspLmxR+wOdwEgQJVZXl9R6vMlYSGh7RyFZNE5mSBkBZXnb7iVwH9hLbvRfyOvOdiMQkSo5mBMbeVHmlKkSLIJFQUysWtRRRFMnbv4cBEy6o97i/VFcql7dO5KotHTWXlQbclI1xeNMfrHjjv3QbOoIJN9xO7r5d/PzB2wy7eBqhte481d9obtfVeuUkopsxA2WvXpS89BKiKHb0cNpM9Y4dGD//gqgH7keRcmp+2OsiyOUo09JwpKfjOHIERVrqSQ+dPx6JSkX8Cy9gP3SIyk8/O6XHPhWYFi3CvnsP8f/+N9LQ4CUPUp2OxHnv4C4poeQ//znFI+yiiy78eDxeLBU1SAQBu81NWKSK867v22kn6nWRSCUMmpDIlU+PQh+tYfmbu1n/5SFcTg/gc299/fwWirMsTLxtAJPvGtSpBK66aA1KJt4+kIm3DaA4y8LCZzdzZKtvQuD1imxbnc33/92OKMKlj41g3OU9O5XAVZe47jouf3IkwyelsmNNDt++uJWKAivgy3lb88E+1i44SFK/cK765xj6nRnfqQQuP4Ig0HtMHFf9czQp/SP4ZcFBVr27lxqrE4DCDBNf/2sLB/8sYvzsnsx4cOhp870ZcFYCY6Z3w+3y4vWIeFxeLBX2jh5aF+1EWFQ0loq2i1zleTkYiwrpOfqMdhzVMVQhWhzVNkTR26jIFZWSRmV+Ll6P7/d8x6ql/PT+m4heb731RK/XV5alq+8I08fGAmBup25xxqICIhKTkcrkJA8YTM6+Xc1uU5R+CICE3v3qPa5QqdFFRQe6Qp4KijMzCI9LQKlpff5j2uDh1FRZKM3ObHK97F3bQRRJHTyswTJ9TBymOiJXVXlpk3lcAFKZDI1ej7WyIvCY2+nEXmUJuLxaS4jegCo0jPJ2yuUSRZG8A3tJ6j+w3uO6KF++VXVt18Sm8swEQQgIv62hIj+XarOJ5P71S37DIqOoqizHUW1D0Yr3W6nRoNKGYiktaXI9Y1EBP77zGn3OOIsZjzyNPiaWAedcgEan5/CmDThsvufR5eTqokUIUinRjzxC3q23UrV2LWEXXND8Rp0M0emk6OlnUA8aRPi113bYOJQ9e+I4kg4SAVWv9m0h21J8r8E1lL31FqEXXoAi6e/RwchbU0PZ62+gmz4NzYgRTa6rTEsj+onHKX76GULPP5/Qc845NYPsoosuAKgosLJ2wYGAM6j78ChWv7+Pxa/uYPoDQ0+bsqWwSDXT7h/C/g2FbPwuncJ0E+FxIRzdWUba4EgmXNMHdWjnKblsiu7DoknobeD3r4/w80cHyNxVTrXZQdFRM8MvSmHk1LR272h5MpDKJIyakkb3oVH8/PH+QFnp0Z1luJ0eJt42gO7Dmp7gdBbUoQouuKk/PUbE8OtnB/nquc0k94vgyOZiYtJ0TL1nMPqYE+9ieSrZsy6PDd+k02dMLH3OiOP3r4+w6MVtjJicyrCJKafFZ6yLxgmNjCJn7642b5++eSMKtYbkAUPabUx1UWm1UHvDvlGRKzkFj9uNsagAhUbDuk/nA9D7jLNIGXhsXHabFa/HQ8hxTi5teAQIApaK+i6gtmIsLiS+VqyK792XP7/7stlSyNLsTNRhuqCCTHhCEpWnUOQqOXqk1aWKfuJ69UGhVpO1azsx3Rp3gmXu2Eps955BBR1dTBwFB/cF/m8pK2uRqyw0PIKqimMil1/w0hraJnIJgkB4XALGwvZpSlBZkEeNxUxSv/pVVmGRUditVVhqs/GOdxoej0qrxW47JnJVW8yoQ8OavAGUd2AvEqmM+N71A961hnCsxkokUhmqkNbdeAmLisZc1rjIJYoiP73/FtrwCC68/d6As08ilZLUbyD5B/cFxHGV9u+T7dh1RjzJaMePI+SMsZS98UaDOxmnA5VffIkzK4vYZ//pKxXsIJS9euFIT8d+6PApzeM6nqj77kMWHk7xP/5xWrvz6mL67js8ZjOR997bovX1s2YRcuaZlDz/L7wOx0keXRenAlEUKZjzEKbvf+jooXTRCKJXZNfaXL57cRset8isx33OoLjuei55aBguh4cfXt2BpaKmo4faYgRBYMBZCVxwcz/MZTUc3VlG7zGxTLx9wGkjcPlRhci54KZ+DDo3kaPbSynOtDDhmt6MmdH9tBMfIhK0XPrIcCLiQ9izLh+P28vMh4adNgJXXdIGRTL9wSF4PWIgR2z6g0NOO4Fr26psNnyTzpDzkzj3ur4k9PKV/g6bmMLWldn88NJ2KgttHT3MLk6A0IhIbEYjXq+nTdunb/6T7sNHIZOfnPJVpeaYw0PViOPfH9RelptN7l5fHpZEKiW/jlACvlJFALWufsi1VCYnRG+gqh1ELpfDjrWyIlDeFt+zD26Hg7KcrCa3K806SnRqt6BCRXh8IpUF+Sc8tpbgcbsoy8kipo0il1QmI3nAYLJ372jiGG6yd++g27BRQZfrY2IxlRYjiiIetxtLeSn6mNhmj60Nj8Rap1wxIHJFtE3kAjDEJ1DZTiKXL49L1qCTYGiEr2TPWFSAXKVGrlQF2zyAKiQUu7UKgF8/eZ93b72aXz5+r8ltSo5mEJWS1mDf2vAI3A4HDpsVhbp1IpcuKibQ+TIYWbu2kX9wH+fddEeD48Z070l5Xi41Vb7nofwbOblOryuv05TIe+/FmXGUqjVrOnoorcJVWkr5229juPJKVH06tqWosmdPvFVViFZrh4pckpAQYp/9J7Y/N2FZsaLDxtFeeJ1OKj76GN2UKSgSE1u0jSAIxPzf/+EqKaHykwUnd4BdnBLMS5diWbUKqf7v01Xl74Slooalr+9k46IMBpydwOVPjqjXnVAfo2HmQ8NAFFn8yg5MJdUdONrWkb6thJ8/PoAuWkP3YVEc/quY9V8exuM6vW4KiV6RrSuz2fNrPom9DRjiNGz4Oj1Qvng6Ybe5WPPhfkpzq+g5Mgav18uqd/cEyhdPJ4ozzSx/czcSiUC/cfGUZFex4u091FQ5O3poLUIURTYvz2TzskxGTU3jzFk9Ax1VpTIJo6d149JHhuNyePj2ha3sWpuL6P173ID7X0OjMyCKXmoswTN+RFHEZjLidjb87FYWFlCel3PSShWBetlFjTm51KFhhBjCqcjLIf/gfiKTU0kdPIzi43K6bP5ysCBOmRPNJvPjz5LyZ3vFdOuBRCqj8MjBJrcrzc4kOi147q8hLh5zaUmgHPNkUp6bg8ftbrOTCyB18HAKjxyk2mIOurzw8AEc1Ta6DRsZdLkuJha3w4HNZKSqvAyvx4M+pvmsNG14BNbKCtxOJ5ayUqqMPpGrrZlc4BMYjUUFAYOB1+thx+pl/PrJ+60WRfMO7CW2R/08LiCQS2UuLQ762TweldZXrlhVUc6un1YSkZjM7p9W+rLUGqE0K4OYIJ+vkNrQ+NYGzwOERcdgacLJtWXJIuJ79SUlSElqeHwCLnsN5lLf90Xd5eTqojVohg4lZNw4yt5557Ryc5W9+iqCUknUfS1z+JxMlL2O/cgruzffGeVkoh0/ntALL6T05Vfw2k7vO6dVa37CXVJCxK23tGo7Zbc0wq+5hvIPPsBdx5LcxemHq6SEkn+/QNi0qYSe13xHpC5OLelbS/jm+S2Yy2qY/uBQxl3WE5m8oas2LFLNzIeGI1dKWfzqDioKO7cg4fF4+eO7dH76cD9pg6O47PERTLxtIOdd35fDm4tZMncHNvPp4RR11LhZ9d5etq7MYvS0bky7fwiXPTaCbsOi+PmjA/z5fQbe00R4KM+38t2LWynONDP1nsFceHN/Zj85CrlKxqKXtpOxvfG7xZ2NQ5uKWPzaDnRRamY/NYoJ1/Rh+gNDqCy08u2LWynLreroITaJKIr8tSSTbSuzGTuzOyMnpwVdLyYtjMufHMmAsxLYuCiDFe+cPiJeF8fwT6r9Lqe6lOVk8flj9/He7dfyzs1X8vvCBXjc7sDy9M0bkSmVQXOV2gtFHUGgqZImQ2w8xuIiSo4eIb5nH8ITkjAW1XfgVJuNAA0yucDnaKs6gWwyP8baroB+J5dMoSAmrTuFRw41uk21xYy1sqLRcPqwyGhE0Vsvb+pkUXz0CIJEQlQLukE2Rs9RYwGfyy8YRzb/idYQ3ujz1cf4XjtTSVGgy6I/N60pQiMiqaos57t/PcWH995CUfphFGo1CnXbHbSG+AScNdWB78ef337Juk/ns/+3X/ju+f/D5WhZPmEgj6vfwAbL/OWyVZUVzZYqgs/1ZLdVkbNnJ6IoMvuf/8EQl8C2FYuDru92OinPzw0qovpLOd1OZ6sz2HRR0VjKSoNqDMaiAgoO7WfIxClB3YmGOJ/BobKwAIlUhkx5ekRetIQukesUEXn3XaeVm6t6x07MS5cR9eADSHUd7+6Qx8WBVAoSCfKEhI4eDtGPPorHbKb8/Q86eignhOm779CMHImyR+s7t0TecTuCRELFhx+dhJF1cSoQRZHiZ/6BRKUi9sknO3o4XdTB7fKwfuFhfvpoPykDI7ni6VEk9m48BBV8Qegz5gxDHapgyas7O+0k3lHtYsVbu9m7Lp/xs3tywU39kCt9wl2fsXHMfGgYlgo73724jZLs1nUuOtUYi20s+s82CtNNTL5rECMmpSJIBGQKKeff0I9xl/Vk1y95rHh7N3abq6OH2ySZO8v4/qVtyFUyLntiJMn9fRfdYZFqLn1kOKkDI1gzfx+blhzt1G4hr1dk4/cZ/PLpQXqPjvVl1el8F+4JvQxc9sRINKEKvn95O4c3d06nnSj6nsOONTmcOasHwy5quumPTCFl3OU9mXLPYEpzLHzzry0UHDaeotF20R74J9W240Quc2kJ3z7/fwBMeeBxRkyZwfYVi1n9zmuIoogoihz8Yz3dh41qtrzqRJCrfA1AZAol0iY6jOtj4zCVFGEsKiQ8IQlDXDyWsjI87mO/f9VmEzK5AoW6YVOR0MiodhG5TEWFyFXqemJFfO8+gWD5YBiLCgGISAieuevvLOjPbDqZFB/NIDIpBbmi7aKDRqcnecBgDv35W4NlHrebw5s20PvMsxvtvqiPrm0EUFKMqbgIiVQWKOlritDwCBw2G4WHDyCKXvL27WlzHpef8Djf3K+yMB+rsZJtKxYz5pLZXP3Ca1jKSti2PLiwdDwV+bm1eVwNRS6pTIYmTFfbFEHf7L5U2lAcViuFR3xdPNWhYfQ/+zyObt+M094wOqI8NxvR623EyXXs+k7Z6kyuGDxuN1ZTZYNlB/9Yj0KtocfIMcG3rXWv2SorUGm1nbKhTFvpErlOEaeTm0sURUr+8x9U/fqhv/TSjh4O4Avxl4aGIgkJQWji5HqqUCQmEHHzzVR+8gnO3NyOHk6bcGRlUb1lC/rLL2/T9lK9nvDrrsP41Ve4y078gqSLU0/Vmp+w/vYbsf/8B1K9vqOH00UtppJqFv13O4f+LOKcq3tzwU39UGpalrOiCVMwY85QwiJVLH298wldlvIavn95B2W5VUy9fwiDJiQ1uKiKTdNx+RMj0RqULH51B5m7OufvS2G6ie9f3o4gwGVPjCB1YP1244IgMPi8JKbe5xMevn9pO5byzpeZJoq+vLfVH+wlZUAklz46HF1U/cmnXCnlwpv7M3Zmd3asyWHNh/txu05+yU5rcdrdrJq3h91rcxl3WU8mXNMHqaz+pW5ouIqZDw+j54ho1n5ygC0rsjpVxqboFdnwTTq71+Zx1hW9GHJ+cou3TRkQwRVPjUIfo2HJ6zvZvDzztHER/q+jqT0HV5vqi5PrPv0AuULJZU//m95jx3Hm7GuZdO8jHP7zd/b+uobSrKNU5OfS7+xzT+r4/KVdMmXTeYn6mDhMRYW4XU7C4xPQx8Qjit56XfpsZhMavT7ohDo0Ioqq8vIT/k6aioswxNbvAhvXsy/m0hKsxoZiAIC51q2kayR3yl/OZmmHcsrmOJHQ+br0HXcO+Qf3Nxhzzp6d1FjM9Bs/odFt5SoVIXoDpuJCTCWF6KJjmgzt9+MP7RckEvqddS7mspI2d1b0o4uJQxAkGAsLOLhhHQDDJ88gPD6RQRdczI7Vy3A5m3d/B4LfewWP4dHo9Diqq9GENW/wUGm11NislGZnBt6rPmeehdvhIGvntgbrl2QdRZBIAtl1dZErlMhqBc3Wlivq/OJraUPxNXv3DlKHDG9ULJUpFChDQqixWlCoOmcn67bSJXKdQgJurp/XdvRQmqTq55+x79lD9CMPd2jYfANksk4hcPmJuPUWpJGRlPznvx09FMA3UanesYOKDz+kdO7rGL/9tknxybRoEVKdjtAL2971M/yG6xHkcio+/LDN++iiY/BYbZS8+CLac8/tKlPsRKRvK+HbF7fidnqY9fhw+o9PaPWdNVWInGn3D0EXpWbpGzspz+8cQldxpplF/92Gx+3l0keHN+lMC9ErmTFnKKkDI1n9/l72rj81Yb8tJX1bCUvf2ElkopZLHx2OPrrx8oKkPuHMemwEoldk0X+3UZrTedxp3lpBZeOiDIZdmMxFt/RHrgh+3hcEgWEXpXDxbQPJ3lvOstd3Ybd2Hneazexg8as7KMowMeWewQw+r6GA6kcml3LudX0ZPb0bW1dk8cunB/G4O/4GpOgVWf/VYfb+ls85V/dm4Dkty8qsS4heybQHhjJqShrbV2Wz7PWdVFu6yhc7O3KFEoVaU8/JVZKZwdFtmxl/1fX1crB6jx3HgAkXsv6zj9i9djUanZ7UQSevVBEITICl0qavw/WxcTiqfVEehvhEDHG+DCdTcVFgnWpz406ZsMgo3C4nNVUn9jtpKikMlCr68QsbRY2ULJpKitDo9I1O9hUqNSptaJMh3+2By2GnPD+XmG4nLnL1GDkWhUrF7p9WAgSMFjtWLyMqtRtRKcHLoP1EpXajODODspwsIhJb1lVeG+G74aOLjiF5wGBc9ho0J1gVJJPL0UXHUFmYz6GNv9N9+GhUtSHpQydOxW6t4simP5rdT/7+4HlcfjQ6PW6HA6W2+QB2VYgWh9WKqaQIfW32my46lvD4xKCdUsvzcjDEJSBTBBeKFRrf564tmVxAg1wuu81KcUY6KQMHN7m91hCB3WpF/jcqVYQukeuUohk6FM3IkVR8/FGnumtYF9Htpmzu64SceSYhY8d29HDqIbpciK7Oc6EmUauJeeRhrL/+iu3P4PXup4qqX38la/oMcq66mvJ338O8bBnF/3yW9HPPo/S1uYjHBZWKHg+WZcsJmzoVyQn8qEnDwnxurm++xW3sKo04nSifNw+P2UxMV5lip8Dj9vL7V4f56cP9pAyI4PInRhKZ2PYAUKXGJ3SFRahZOncX5fkdm9GVsb2UJa/tRB+tYdZjwzHENn8RJ5NLueiW/gw+N4nfvz7Cn99ndHiZnCiK7FiTw08f7qfn8Bim3jukRS47fbSGSx8dTlikmsWv7iB7z4l3DztRnHY3q9/dw77fCzjn6t6MndkjEGreFN2GRjHjwaEYS6r5/uXtmMs6vtGBqaSaH17eTo3FycyHhwdKLZtCEARGXJzKBTf3I31bCcvf2tWhJaWiKPLb10c48Ech517bl/7j2x7NIJEIjJycxvQHh1JZXM23L2ylOCt4+HQXnYcQvb5eJtfedT+jDY+g9xnjG6x71jU3AiIHfl9H3/ETWuSwORGktV0bJbKmf+/8OU4SqZSwqCi0hnCkMhnm0mMT8GqzsVGnTGitQOIPny84fJCPH7idL/9vDhX5La+cMBYXNRC5QiMiCY2IorCRkkVTSXFg/I0RFhndaDB+ZWE+e9b+yJ5f1lCRn9fisR5PaXYWotfbLk4upUbDoPMvZueaFSx86iHmXjWD7/71FDl7djJ6xmXN3kSL79WHgoP7KUo/TGz3ljX+8ru2VNowwhN8Qr1UfuIdkw3xCZTn5VCafZTuw491hDTExpPYdwCH/vy9ye39eVzJ/RuWKvoJ0elxu1wBAa0pFGoNLocdh81Wr+tk8sDB5O7b3WB9Y1EB4fGN/64rlL6bZYpWZnIpVGrUoWGYjxNfCw7tRxS9JA8Y0uT2IXoDzprqQEny34UukesUE37zTdh376Fm+/aOHkpQTIsX48zKIvqhOR09lHqIbjdeqxWv1YbX0XnCiEMvvhj1kCGUvvJqh5ShemtqKHjkUfLvuhtZZCTJCxbQa8tmeq77lV6b/iTy9tup+Phj8u68C6/9WChj9fbtuMvKCJs86YTHYLjmagCMX311wvvq4tRgP3KEyk8/JfKOO1AkdnzG3f86NrODpXN3sn9jIWdf2YsLb+6PQn3irlW/0BUa4Std7KjuePt+y2fNh/voNjSK6Q8MRa1t+cWuIBEYd1lPxl3Wk51rc/n54/0d1nlR9Ir8/vURNi0+yohJqZx3Q98GpXBNoQ5VMP3BoST1DWfVu3vYv6F92qG3BbvVxdLXd1FwxMTkuwe1WlCJ7aZj1mPDEUWR71/a3qHutJIsC9+/vB2pTMKlj40gMrF1LdB7jYxl+v1DKc+z8sMrO7AaWxZg3J6IosjGRRns/72ACdf0oe8ZTU+0W0pCL0O90t99vxd02pusXfhcJP5yRa/Hw+FNG+hz5tlIJA0FLLU2lIQ+/fG4nE2WnLUXgiAgkUqRSJv+zfOX+ml0eiQSKYJEQlhUdD2XSbXZFDR0Ho4JJFZjBS6ng+WvvYBSo8Flt/P9C/8IuMSawu10UlVR3kDkAp9oU3g4eIdFU0lRPbEiGKGRDYPxRVHk94UL+OTBO1j74Tx+nv82Cx66k++ef7JRYa4iP49fP3mfr555lGWvvkDOnl2BZSVHjyCVy4lMbjqLr6WMmHoJHpeL0uxMBp0/kdy9u1FpQ1vUjTOuZ29cDjsuh4PEJsShusgVShAE5EolYVE+l1FLbqA0hyEugfLcbACS+g+qt6z32PHk7t3VpAOwIj+XmioLiUHyuPyow3SIXg+qFji56gbE1xVHkwcMxlxS3CC7rbIwH0N84+5cfylwa51c4MvlqiskA5RkHkUdGoau1unVGCGGcFx2e6PuttOVLpHrFKM96yyUPXt0yrBub00N5W+/Q9ikSaj69evo4dTDVVQEtS17XZ0oA0sQBKIffgj7gQNYVq0+pcd2lZSQc821VK1dS/xL/yXpow8JGTM6UGIq1emIuudukj/8kOrt2yl85JHAxa1l9WpkcXGoBzdtYW0JMoMB3cwZGL9c2KkEyC4ap/Sll1EkJhJ+040dPZT/eUqyLXz34jbM5TXMnDOMAWcntmvwp790UWtQ+oSuU9h1URRFtq3K4revjjBoQiIX3NgPqbxtlx2Dz0ti4q0DyNxVzqp39+Bynto8KI/Hy8+fHAiIEKOndWvT+yRXSJl4+0AGnJ3I+i8Ps/3H7PYfbDPYTA4Wv7YDS3kNMx8aRkoLXE/B0EUdc6ctmbuTgiOn3s2bs6+CJXN3oI9Wc8nDwwkNb9tFenxPPZc+OhyXw80PL+/AVHJq3Wmbl2Wy+xdfBle/M+Pbdd9ag5KZDw2j35nx/LbwML9+fgj3Kf7+dNEyNGF6qi0+x13x0SPYqyyBDnnHI3q9mIp9QemNiTbtjSCRIGkkpNyPKkSLRCqtN1E/fgJuM5sIaSQHVKPTgyBgMxnZv24t1RYzk+9/jEue+Cd2axWbvv+62XGaS4tBFDHENvwuxffqQ3FmOjtWL2fP2h/r3aA2lxSja8bJFaI3YDOZ6j22ddn3bF26iPFX3cB9ny3ivs8WMeWBx6mqqODLJ+dwZPPGwLpej4ffFy5gwcN3cWTzRsIio7CUl7Lo30+xY/UyAIozM4hKSUPajGuupWTt3IbX4wERdv+8CqVGjd1aRWlWZrPbuutUglhKWtaow2mvgdr5hr2qNi5BbB+Ry2Y2oY+NDzj+/PQcfQaiVyR9y6ZGt28ujwuOuaha6uTyE1ZHSIrv1ReAovTDgcdcDjtV5WWBAP1g+N/vtohcuuOEZICynEyiUpu/VtHo9LidjpPauKIj6BK5TjGCREL4TTdjXb8eR0ZGRw+nHpVffIG7ooKo++/r6KE0wJlzTNhyZGd33ECCoBkxAu2ECZS9/nqDssCThauoiJxrrsVdUUHqwi/RTZvW6I9YyJjRJLz2KlU/r6XykwWIbjdVa34ibOLERjuqtJaI66/HU1mJedmydtlfFycP68aN2P74g6iH5iBpJBegi1PDoU1FLH5lB1qDksufGElst5PTyVYVImf6/UPR6JQsnbuTysLm74SfKKJXZON3GWxelsXoaWmMu6znCd/J7T4smsn3DKLwqJnlb+7CUeNup9E2jdvl4cf393F0RykX3jKAfuNOTISQSATGz+7JyMmp/LUkk02Lj54yd425rIYfXtmOs8bNJQ8PIyq57SWxAGqtgmn3DyEmNYzlb+0me++pK8PM3FXGqnl7SOwTzrQHhqLSntiE0BAbwiUPD0emkPDDqztOWZbdtlXZbF+dwxmX9GhTBldLkMoknH1lb867oS/pW0v44ZUdWCo6XxOE/3VUoaHU1IoCWTu3I1epGy0RO7BhHabiIhL79mff+p9PyfgEQQChZdeN/vJGAF1UTCDHShTFWieXPuh2EqkUTZgOm9HIwY2/0W3YSPQxsYRFRjNs0nT2/Lya8rwc9vyyptEAeGNt/pc+qMjVF6/bzboF7/Pz/LcDwpKzpppqsymo+6suIXoDNvMxQd9qrOTP775kxNRLGDV9FjKFArlCSe+x47j2P2/QbdhIVsz9L4c3bcBaWcG3zz3JtuU/MO6K67jlrY+YfN8jXP3CXIZPnsH6Tz+k8Mghio+mt0upIvhe761LF9Fj5FhueetDZj7+D25+62P0MXFsX7mk2e0LDx8kNCIKQ1wChXVEm6aw1AqaNVUWKot8eZpe74kL64a4eBDFoMHtIXoDiX37k76l8fiYvP17iOvZq0kxR6H0N1hoXvDxi1xSubyeKBaiNxAWFUNR+iGcNdW4HPZA586mnFxSmRQEocnupY0RFh1TLyvO7XJReORQo51C66LWhuJxu7ucXF2cOLrJk5DFxFDx8ScdPZQAHouFivkfYrj8chQp7WOPbU+cOdkgkyEJDcWVk9PRw2lA9JwHcRUWYvzm25N+LFdJCTk33AAeDylffIGqb99mtwk991zCb7iBsjfewLJyJZ7KSsImXdxuY1KkphJ6/nlULvi0qxSiEyN6PJS+/ArqYcMIvaDtDQe6ODE8Hi8bvjnCL58epNeoGGbOGUaI/uQGfqq0cqY/MARNmIIlr+88qU4Vj8fLL58eZPe6PM6+shcjJqW1mzstqU840+8fQmWhjaVzd1JjPbk3Fpx2Nyve3k3+wUom3TmIHsOj22W/giAwamo3zpzVgx1rcvj96yMnPW+sotDKD69sR5AIzHx4WIty0VqCQiVj8t2DSO4Xzup395K+taT5jU6QzF1lrPlgH2lDorj49gGNhuW3ltBwFTMfGoZWr2TxqzspyjC1y34bY9faXDYvy2TU1DSGXtjyLoptpc+YOC59ZDh2m4vvXthG/qHgXea66BjU2lDsVgumkmK2LFuEy17Dhq8+bRCHUVNlYcNXn9Jr9JkMuWgKJZkZ9boXnjQEgeZ+yl0OO16Pp961YFhUNOYy3/icNdV4XK5GRS7wiQSm0mIKjxykx4gxgceHTpyCx+3iyyfn8PMHb/HVUw9htzV0J5uKC5EplYToG5ZE6muD8JP6DWTQ+RPZvPhb3E5nwGnWXLliiN5AtdkUEG12/7wKiVTGmEtmN1hXrlIx6b6H6TPubFa++QoLHroLc0kRl//jRUbPuAxZrRAoCAJnXX0j0Wnd+PWT9zAW5rc4/6o5So6mU1mYz+ALLkYbHkG3oSNRa7UMuWgyR/7aGPT1q0tlYT4RScnEdOtBaXbzzi8g4HQzlxRRnpuNRCLFYT1xF7m/7K5uE4a69Bg1lty9u4OWtIpeL/kH9pHURKki1BFnWzCX8TuuVNrQhl2iu/ckY+tm3rn5Sj689xayd+8AaDKTS5BI23ytFBYVjaW8DI/bd/Nv5ZsvU202kbFtMx5301mT6tAwvB5PV/B8FyeOoFAQft11mJcvx1Vycjt0tJTKzz5HdDiIuOP2jh5KUJw5OSiSklCkpnY6JxeAsmdPdDNn+MK82+GHvDE8Vit5t96G6HSR/NmnrcpTirrvXqQR4ZS+/gbyhARUAwa069gM11yL8+hRqjdvadf9dtF2RJcL64YNlLz4H/Juv4PM6TNwHDqEsmcPHIcOdQmSHUCN1cnyN3ex77cCzrqiFxOu7dPmEr7WotYqmP7AUFQhcpa+vhNLefs7OTwuLz++v4/0bSVceHN/Bpzd/s6U2G46pj84FKvRzuJXd2IznZwyabvNl1tVllPF1PuGkDLgxFqgB2PI+clMuLYP+34vYO2nB/B6Tk7eWEmWhcWv7kAdquCSh4cTFtG+AbMyuZSJtw2g56gYfvp4P/t+P3l5Y3UFrgtv7tdsRlBrUYcqmPHgUCITtSx7Yxc5+yvadf9+9v1e4OtqeVEKIyalnpRjBCMqOdTX2CJJy7I3d7NnXX7XuaCToNL6nFy/f/ExosdDfO++bF+xhBWv/9dXAobPobHq7VfxOJ2cc8OtpA0dgUyuIL1OSdxJQ6z9awK/Y8XtPPa7rIuOwWGzsXX5YgoOHQB8Ad+NEWIIx1iYD6JYL3tJqQmp7Uwnct1Lb+Gormbn6uUNtjcVF2GIiQsqGGTu2Ar4xIxhF0+jpspCzt5dmEpq3V/NlCtq9AZErxd7VRWiWBv8P+7sJkvMwqKiEb0e3E4nlz3zAol9+jdYRyKVcubsaynJ9FX5xHTr0eQ4WsqBDesIMYSTfFyHvV5jx+H1uMnc3vQ1e2VBPuFxCehj47CUtkxIra51urkcDg5uWIfGYKCq8sRdvs5q3825xpxOPUaOwetxk7VzW4Nl5S3I4wICDRxakrPs74YYLCherlJhLi1mwIQLCdEb2LZiMUptaKMCHQACbf4tjknrjtfjpiw7k/LcbDJqHW1V5aUc/OO3Jrf1548JQbL/Tme6RK4OQn/5ZUjkcoxfLezooeCpqqLys8/Qz74ceXT73KVub5w5OShSUlCkpODshCIXQNS99+Ktrqbio5OTtya63RQ8OAdXURHJ8z9Akdi6yaNEoyHmscdxFxWh7NevXXN/ADSjRqLo3r0rgL4TIHq9GL/9lowLLiTv1tuo+vlnRFHElZeH1GDAsnwFWTMvIXv2FVh+/LFDmib8L1KWV8V3L2yjstDGtAeGMPCc9s3fagnqUAXT7x+CRCZh6es7sRrbTyByuzysfn8veQcrmXTXIHqOaDrs9ESISgpl5kPDcNnd/PDK9nYvvaqpcrKkNrdqxpxhxPfUt+v+69LvzHguvLk/GVtLWTN/Px53+34fizPNLH1jJ4aYEGbOGYom7OSUKUukEs67ri8Dz0nkt4WH2bOu7d3FGuNkC1x+FGoZU+8dTGLfcFbN20PmruBlUW3l0KYiflt4mEETEhkzo235bieCSitn6r2DGTQhkQ3fHGHdF4c6rKFDF8dQhYbirKkmfesmRFFk+KTpTHvoSbJ2befTh+9m/Wfz+fLJB8nbv4cpDzxOaHgkCpWatKEjSN988rt8i6LY7CTcWOQTuANZTIAu2ueO+v2Lj1j19qsAzTq5LOVltWVfx+Yl21ctxeVw4HY6kavU9BozjgO//xoYU1lOFhu++pTKwryAY+t4MndsJcQQTnHGEfRx8ehj4sjcsQVTSTFylRp1I10fA2OrDcy3mYyU5+VgKSuh56jgAe6mkmK+ffYJNi/+lmGTZyBTKNi67PtG9506eBgavcEXbZPQPjeIsnZuo8eIMQ2aF4SGRxLfqy9HmvjceNxuzKXFhCckEhYZjdVkxO1qvgOtzWQMlL4ZiwoJj0/EWnniNwvKakPn6wqodQmLjCamWw/St/7VYFnu3t1I5XLiezdf/QI0634CUNaWKyqU9W8aeT0ecvbsBGD0JbO58Pb7qLGYUYc2Ew8giiCKATdWa4hO64FMrqDg8AH+WvwtqloxLXXwMLYt/6HJ63yV1rfuqT4PnWy6RK4OQhoaiu6SSzB9822Hh3VXfv45ot1OxM23dOg4msKVXUfk6oTligDy2FjCr72Gyk8/w13Z/iUAJS+8gO3PP0l843WUPdp2h0ee7KvNdmVnt/udW0EQMFx5JVW//NJpHIr/i7hKSsi96WaKn/kHmmHDSPvhe7r/shbt+PGIbjepX39Fr782kThvHhK1moIHHiTn2uuwHz7S0UP/W5O+tYQfXtqOSivnsidGktAreGepU0GIXsn0B4bg9Ygse2Mn1ZYTL/lzuzysfm8v+YeNTL5rUJvDzFuDITaEmQ8PA2DJq+3nTKuxOln6+i6qLU5mzjnx3KqW0HNEDBffOZDsfeWsmb+v3YSu4ixffllkopap9w1GqWmfIOPGECQC4y/vyZALktnwTTq7f2k/oetUCVx+ZAopE28fQLchUaz5YB8Z29vnvJa+rYRfPztIv3HxjLu8Z4dNLCRSCeMu68l51/fl8OZilszdic3c1TymI1HXTjb9pVLRaT3oMXIM1/znDRL69Cdj619oDeFc+dzLpAwaEtgubegIio+mYz+JlQS+YXkRxaZ/myoL85GpVNRUWQKCSF2hylFbHtecyGW3VhHXs0/g+1FTZWHr0kUMnHAhEqmU7N076HPGeEwlRZTn5eD1eFjxxktsWfIdxUczguZxiaJI3v49JA8YjN1mpeRoBt2GjSR79w7MJUXoo2Oa/T76SyBtJiPZu7YjUyobuINEUWTPL2v47NF7qaqoYPYzLzLhuls465ob2bfuZ3L37Qm6b0EQCNHpEb1eHNUnHilgLi3GVFJU77NSl7ShI8jbv9sXSh8Ea2UFXo8HXXSs7z0UxQadJYPhayxgYNT0WUQmp5I2ZDjVFvMJ53KVZmciV6oaBKzXpcfIsWTt3FYvMB8gd98uEnr383V+bAK/GORqQcayP9vr+DI/f/4aQGV+LrHde6JQq3HVNH2N4n8fWtJB9Hhkcjna8Ag2fPUph//8ncS+/ZGr1IyaeTkV+blkBnG3+WlJJ8nTkS6RqwMJv+ZqPEYjlhUr6z1+Km3jHquVyk8/Q3/55chjOqeLS3S7cRYUoEhNQZGagqesHI/15Acnt4Xwm29GEAQq5n/Yrvs1ff8DxoVfEfvMM4Sc0XzL38aw/fYbglKJIz2d6q1b23GEPnTTpyEoFJgWfdfu+z5dEEURV0kJjqws3JWVp/T7bD98hOzLLseZlUXygk9IeO1VX6dUl4uKjz8mbNIkFCkpCAoFoedOIOXTBSQv+ARPZSVZs2Z1ufBOAl6vyJ8/ZPDTR/vpNjSKmQ8Pa3MHuPYkLELN9AeG4qh2s+zNXdhtzd+1bAy308Oqd/dSeMTE5LsHkdQ3vB1H2jRhEWpmzBmGIBVY8tqJC112q6tW4HIw48FhhMe3T25VS0gdGMmkOwaRu7+SHz/Yd8LOmpIsC8vf2EVEopYp9wxGoWp9mG1bEASBMy7pzrCLkvnju3R2rT3xjsh+gavb0FMjcPmRSiVccFM/ug+P5qeP9pO+7cTyxjJ3lfHzxwfoNSqWc67q3SnunPcZG8fMh4Zhqajhuxe3UZpj6egh/c+iqnV6+MrylIEMovD4BCbd8xC3vPURlz75XINStpRBQxBFL7n7d5/U8YkeT7Ml1cbCAsIiogACE32NTo8gCIGOeIJE0mT3uhC9AY/LRXRa98BjO1Yvx+vxcObsa4jr2ZvcvbtI6NsfiVRG3v695B3YS2VBHgl9++Oy1wTcY3WpLMyn2myi75lnowrRkr17Owl9+2MpK6UiP7fZzooAmtqukNVmE0Xph4nr3iuQrQU+8WvJS8/x8wdv0XvseK5/+S0S+/niQQZOuJD4Xn357YuPGnXW2K0+B9zRIG6k1pKzdxeCIKlX8lmX5AGDcdbUUHw0Pehym8lXdhhiCA8IlXXDzRuj2mREozMw/qobuP7lt32fY1E8YRG2PDcLbUQExqKiRtfpMXIMLntNve+Cx+0mb/9ekgcOafYYrlrjSU1tl9OmECQSEAQkdconRVFk+8qlpAwcgkyhpDzPZ8wQBAk2s4kaa+MNTfwOLmczYlgwqirKMZUU4XG5MMQloA4NQx8TS2Kf/sT26MWOVUsa3VYZcuquc04lXSJXB6JITSXk7LMo//BDSufOJXv2FRwZPYZD/QdwePQYsi6dRcl//kvN3r3tNlEWXS5cJaW4y8rwOp0Yv/gCsbqaiFs7sYuroADcbp+TK9kXzOrKO/GL5pOBzGAg/PrrMS5ciKu0fe762g8fpvi559DNuhTD7MtPaF9V69YRctZZvrLCzz9vl/HVRRoaim7qVEzffIvYAkvz3wlnTg5Fz/yD9DFjyTj7HDIvnkT6GWeSfsaZFDz0MFW//ILYyN2y9qBm335yrrkGaWQEad8vImTMsbBW84qVuIuKgn7PQ8aMIW3pEiJuvBF50skPPv5fwm5zsfLt3ez6OZczLu3B+Tf2a7eA7PZAH6Nh2gNDsBkdrHh7N0576y3yLqeHlfP2UJRuYvI9g0nqc+oELj+h4SpmzhmKIBVYXFti2BbsVhdL39hJtdnB9AeHnlKBy0/KgAguvnMgeQcq+fGDvW0WukqyLSx7cxfh8adW4PIjCAJjZnRn2MQUNi7KYOdPbT9n1xW4Lrjp1AlcfiRSCeff2I9eI2P4+aP9HN7ctoDvnP0VrPlwH92GRHLudX1OuNtoexKbpuPyJ0YSolfywys72vwcuzgx/E4uuUqNPjZ4plQwwiKjMcQnkrN750kbm8ftQhRFvJ6mzxPGogLCazvIWSt8OUy+rowCGp0BqVyBXKlssru3rNZtExbpE8tcTge7f1pJ/3POR6PTkzxgCLn7feVncT17k7d/Dzl7d6HR6RlwzoW1x2y439LavKu4Xn1IHjSUzB3biOvZG4DKwoJmOysCyBVKlJoQbCYjRRmHia3dHuDo9s0sePhuio+mM+PRp7nojvsCHfjAJ4qMv/oGSrOOciRIhlq1xUxVRTn6mLiguVKtJXfvbmK792xUUPQ7jPL2B3eW+btIhugNhNYKl5by5uc2PieXPvB/fw6VvQmBpyUYi4vQx8ZTVVGGy2EPuk5EYjKGuHgytmwKPFaUcRiXw05KC0Quu82KIJG2SOQCQBTrfU8LjxyiJDOdYZOnE5GYTHluDh63y+fOEsUmM9D87jNnTetdfHU/L33HnYOlrBRddCyCIDBiykxy9+1ptHGAvLbcsj06YHYmukSuDsSRlYXXUoUrKwvjF18iT4gn/KabiH3maSJuuRllj+5YVq4k+7LLyb58NrZNm5rf6XGIokj1tm0UP/ccRy+exKEhQ8k4+2zSx5/F4SFDKXvzLRRpaTiz2r98rb3wlyfKk1MCnR87a8kiQPgN1yOoVFS8/wGiKOLMzcW64Q/My5djXr6cqvXrcebkNCp4iG433poaRI8Hj9VKwX33o0hLI/app05oXO7ycux79hI6YQLh115D1S+/4sxv/3Bgw5VX4C4tpeCRR8i5/gaOTryYzGnTyb/3PioXLsRjbuGJ4yTiqarCtHgJhU/+H7k330LubbdR8vLL1Ozf3+p9iaJIxUcfkzllKtb169GeOwHt+eej7N0baWQkosdD1a+/kn/3PaSfdTYVCz5td7HLmZ1N3m23oUhLI+Wzz5BFRh4bn8dDxfz5aM89F1Wv4N16JAoF0XMeRDvuzHYdV3vzzjvvkJqaikqlYvTo0WzZ0vjFwoIFCxAEod6f6hS2R64otLLoP9soybYw9d4hDL0guVO4No4nIl7LtPuHYCyysfKdPbicLf9supweVs3bQ3GmmSn3Diaxd8eVYGoNPqFLKpWw+LUdmMtaJ3TZbT6By2p0MP2BoUTEd5x9P6V/BJPuHEjeQSOr39+L29W634vSHAvL3thFeJyGqfeeeoHLjyAIjJnejRGTUvnzhwx2rGn9ebujBS4/EonAudf3pffYONYuOMDBPxt3EgSj4LCR1e/tJblfBBfc1L/DnkdThOiVzHxoKD2GR7P2kwP8+X0G3pPc8bOL+vjLhkSvt9kA9ONJGTiEnL0nT+Ry2X0Ol8ZK28B3PVRZWEBkShoAVUafk8vldCB6vXi9HhQqFRJp079J/swlldbnbDu4YT011iqGTZoGQHL/QThsNspzc0jo3ZfijMOUHE0nvlcfZHLfvoO5YUpzsgiLikYVoqXnyDGUZKbjcbnR6A1UW8zNdlb0o9EbMBYXYq2sIK5HL0RRZOO3X7DkpeeJ79WH6195h+7DRwfdNrFPf9KGDGfToq8azLv8ofNpw0aSvWdnm7KZ6lKYfoiEvg1D7v1IpFJiu/ek+GjwuIpqkxFBIkGtDUUml6PR6VuUreV3cvnxi1w1lra7RN0uF1UV5UQm+uaBpuLgv8GCINBj5Fgytm0OiDY5u3egCtESndat2eM4rFakchnVLRhrsHyyHSuXYIhPJG3wcCKTUyjPy6Gq3Cf2hickcXTb5sb3V/u5b0u5YlluNuEJSST06U95fi7mkmJ0tZ/nnqPOIDQyiu0rlwTfuPbSVDxJjW86io658vkfR/R6qfz0M0pfew1ZZCTS6GjUAweS8NprDdf1eLBu2ED5u++Se+NNhE2aROwzTyOto5AHPYYoUrVmDeXvvY/j0CHkCQmEjB9H+A03IIuOAhFM33+Pdd06PGYzuTfcgLJnDyLvvZfQCy7oVJMxZ04uglyOPC4WQSpFqtPhzO68IpckJITQc8/FuHAh5uXL8TbyQynRatGMHo0iKRFvjR37wYM4s7OPrS8ICAo5otuDYfblONIzUA3o3+b3xvrb7wBozz4LiVpN6WtzMX75JTGPPdqm/QXDVVJK5ScLAKj6eS2h556Lqm9fRKcTR3o6JS+8SOlLLxN+3XVE3HYbUu2pdUq4jUbK5s3D9O134HAgNRiQ6HRIlEpq9u6j8qOPCZ04kbh//qPZ7xj4vmfFzz6L6etv0F16Ka7CQsyLlyCNiCBk9Ci048cB4CouoWb3blx5eZT+5z+Uv/MO0XMexHDllSf8nDxmM7m33oZUpyPp/feQHldbX7X2F5xZWcS/+MIJH6sj+eabb5gzZw7vvfceo0eP5vXXX+eiiy7i8OHDRDfSMCMsLIzDhw8H/n8qf9fyDxqRyiVc9sRIdFHt28muvYlKDmXKvUNY9uYufnxvL5PuHNRsx0eXw8PKebspya5i6r2Die/ZcQKXH61BxYw5w1jy2g6WzN3BjAeHtei1t9tcLHtjF9ZKBzPmDCUioePzKZL7RzDproGsencvq9/bx8V3DEAmb94F6Be4DLEapt47BIW6Yy/zBEFg1NQ0EGDT4qO+MO2JqS3aNnNnGWvmd7zA5UciETj3mj5IpAK/fn4Q0SvSb1zwcOu6FB01s2LeHuJ76Ljo1v5IZZ1P4PIjk0s57/q+RCWFsvvXPIZelIxae3IaFXTREH+plMtR0yJXUV2S+w9i15oVVFWWExoe2fwGrcTf3dHThEu/2mzCWVNNVHIKMoWSapMJAJvR5why2GxIZLIm9wFgt/km+f5Od/t+/YluQ0dgqM3ZiunWA0GQUHw0nZhuPdiydBEuh4Phk2dgLi1BEATMpQ1Li8tysohK8Qkd3YePRqZUcvjP39HHxFFtMraoXBFAE6bDXOJzO0Ylp7FtxWL++v5rxl1xHaNmXNbstcbIaZfy7XNPkrNnJ6mDhwUeLz56BGVICP3GT2Dn6mUUpR8isW/bOqFXm01UlZcR271nk+vFdO/Fwd9/DbrMZjISotMHXHfq0DBqqpoXf+w2G+o616IBkasF2zaGpawURDHgvDMWFRBVK6YeT4+RY9m67HsKjxwisU9/0rdsotvwUQ3C94OP3YpcoaSmqvkb8v58OX9OXVVFOelbNnHujbcjSCREJqVweNMGTLVdKZMHDubQhvV4vZ6gY3HZfe60tji5KvJziUxKQR0aSsHhg1jKS9HXluxKpFKGT5rB719+zKjps4hIrF+14a51xXlbELZ/OtElcp1ivNXVFDz8CNZffyX8hhuIeuB+zEuWUPzc8zjzC1AkJtRbX5BKCT3nHLRnn41lxQqKn3uejIsmoj1rPHg8eCxVCHI5sqgoVP37oxk1EkEup+jxJ6jeto2Q8eOJfvhhQs4YW88a7LHaKHriCQxXzCbm6aep3rKVivnzKbjvfjSjRhH33LMoUlNP8asTHGdODvLkZITak508tXOGz4seD5aVKyl/732cmZkgkSBPSCD6lZdRdu+O1GAAQcBjMmHb9BfGrxZiXbcOvF6QSFD26oXhmmtQJCQgKORYf9+AZflyVP36YVm5CuPCr5CnJBN+3XXoL7kEibp1E2fr+vWoBw1CFuELhNbPmoXp+++JeuB+JMqmgxhbgm3TJvIfeBBBLids+nQsS5cS9eCDKLsdOwm5y8qo/PJLKj9ZgGXFChJeexX1kCEnfOzmEEUR4xdfUPrKq4hOp89erFAgDQvzBXym+/II1EOHYtu4kazZs0n59FPksU3f1St/621MX3+D4eqrMS1ejCwykoTX5/qEYmmQE1hJCRXzP8T07bcUP/scFR9/Qvxrr6IZ2HRL40afl9dL4WOP47FYSPt+ETJDfaFBFEUqPvgAzejRp+R1Ppm89tpr3Hrrrdx4440AvPfee6xcuZKPP/6Yxx9/POg2giAQ28x7WBeHw4GjTiMQywncdRx0biL9x8cj60TliU0R113H5DsHsuLtPaz5cB8X3TYAaSOigsvhYcXbuynLrRW4euhP7WCbQGtQ+oSuuTtY8toOZsxpWujyC1xVFXamPzikUwhcfpL7RTD5rkGsnLeH1e/t5eI7BjYpdJXlVrHsjV3oYzRMva/jBS4/giAweqqvg+BfSzIRRRhxcWqT2wQErmFRXHBjxwtcfgSJwDlX9kYiEVj3xSG8Hi8Dzm68C1ppjoUVb+0iOjmUi+8c1CKhsqMRBIHB5yWdVr9ffxf8nQmdNTUBQaelxPXqA0DRkUOEjhnX7mPzT8DdrsYDuSsLfI0mIhKSCdHrA+Vu1kqfk6XaYkKhUuNtpqOzzehr3lRTZcFYVEBRxmEm33/shqxcpSIiMYmSo+mMmjEL8LlfolK7kb55I8oQLeV52Q32W5aTxaDzLw7so/vw0Rz4/VfCE3xNmVrqntPodJTn5SCVy3G7XWz8+jNGTL2E0TNbFimS2G8g0Wnd2b5ySX2RK+MIsd17EZ3WDYVaQ8GhA20WuYozfde1zYlccd17sXXpoqDiqM1kRKM/dl2pCdO1yI3lqLai1By7ie135J2IyGUu8Tm3otO6oQrRYiwqbHTduB69CDGEs2XJd2x0fE5Ffi5nXnFti45jt1mRq1RUt6Bc0V9+6XX7HGP7f/sFqUJOv7MmAGCIi8ftcFCWmwVAjxFj2fXjCsqysxrk6sExIdnZhqYDlQV5DDp/IjKFkoMb1uP1eOo5EwdfOIlda1bw64IPmPV/z9cTYv0uTfcJOgc7G53jquF/BLfRSM6NN2L76y8S33uXmMcfQ6JSoZs2DYlWi3Hhwka3dWZkYN2wAa/LhddsxrJ8BfZDh5GoVeD1UrN7N8XPPkvmxZM4euFFODIySHr/PZLnf4B23JkNat+NCxfiqa4m4tZbfd08Ro8i+cP5JH3wPq7iYjIvuRTTD4tP9kvSIpw5OYEyRQBFcucTuewHD5J95VUUPvoYipQUUr5aSNTDD+M4cgRFSgryhAQkGg2eqirK582j6OmncRUXE3HbrSR+8D6Gq6/GmZWF6auv8NprUA0ejPWXX9DNupS0H76n58Y/SP74I9T9B1Dy7xfIuPBCzMuWtbjE1Ot0Ytu4Ee2ECYHH9LMuxWs2+4S2E8S0eAm5t96GesAAui1fRtxzzyLV6zF9+2299WRRUUQ/8ADdVq5AFh1N9tXXYPz6mxM+flO4KyrImnkJJf9+AdHlImzKZJI//ZTeO7bTfc2P9PhpDb22bCbmqf/DmZ2NIJXitVWTe8ONeJo4mVetX0/5vHmETZ6M8euv0Z55Jt0W/0DYxIlBBS4AeUwMsU/9H722byNsymRceXnkXHY5Rf/4B167HVEUcaSnY16+nLJ58yh9bS5lb7+DafESHBkZDd7vig8/wrp+PQkv/RdFYsOJlm3jn9j37yfy9ttO7EXsYJxOJ9u3b+f8888PPCaRSDj//PPZ1EQZt9VqJSUlhaSkJKZPn87+ZspRX3zxRXQ6XeAvKSmpzWMWBOG0myAm9gln4u0DyNlXwS8LDgYtVXLa3Z1W4PKjNSiZ8eAwpHIJS5ooXXRUu1j+5i4sFTVMf3AIkYknv4tia0nqG87kuwdRcMTE6vcaL10sy61i6es70UX7BC5lJxG46jJqShqjpqaxeWkm21ZnN7peZxW4/AgSgbOu6MWgCYn89tUR9q7PD7peRYGVZW/uwhAXwuS7B3WqPL6WcLr9fv0dqCw49llqrZNLawgnLCqGwiMH23tYALjqOLkaK1msLCxAkEjQx8ai0ekDTi5rrWjldjhwOx14mhDKAEwlRQgSKTaTkYN/rEehVtN9+Kh668T26EXx0XTComJQqHw3Mgyx8VQW5hMaHonpOBGk2myi2mwiKiU18Njg8ydSWZgfcM6oQ1t2DtDoDNRYLITHJbDx68/QRkRyxuVXt2hb8F0fjJg8g+zdO6ioFQZFUaQo4whxPXsjkUiJ792XgkOtj9DwU5yRjio0jLComCbXi6kVwYKFz9tMpkA3SQB1mK5Z8cfr9eCsqUFZJwdMIpWiCtGekMhlKilCIpURGhGJIS4hIAgHQ5BIiEpJI2vnNspysgHqNQdoCofNikKtaVEmlz9I3+N2I4oi+9evpfeYcYEcNn2MT6guz8lGawgnsW8/ZEolOXt3NdiX2+nE43IhCEKrO2t63C5sJiOhkVHoomMCYllYneYLMrmcc2+8ndy9u9iypH5zMP93+/iOlKc7nevK4W+Mu7KSnGuvxZWXT8qnnxJ6zjmBZRKNxueqWbQI73EfbLfRSOFjj5M5bTo127YTdeeddFu9Ct2sS3FmZqIeOoyk998j7ftFGGbPBkAWE4PHZKLo2WexrPmpwcTYa7NR+ckn6C+9BHlc/ZOo9qyzAhP1oiefpPi55xE7WNltIHKlpODM7RzB86LXS/kH88madRliTTUpX35B0rvz0AwdSvhVVyILD6d83jxEUcS0aBGZU6ZStfYXoh9+mB4//0z0Aw8QetZZxP7fk3Rf8yPa886l5Pl/kX3JpUhCQoipdagIMhkhZ5xBwmuv0v3H1WiGj6Dw0cfIu/kW3LW13k1RvWUr3urqeiKXsls31IMHY/rhhxN6DcxLl1L0xBPoZkwn6b13kRkMSJRKdJdcgnnxYryOhi3JFYmJpHz+GYbZsyn+5z8pfeONk5IJZ920iYwJ5+I4dAjN6NH0WL+OhJdfJmT0KIQ63VCkWi3hV11Ft5UrUKSk4LVacZWWUvT0M0HH5TYaKXrqadRDhmD56SfCJk4kYe5rSFrYoUQil5PwyiukLvoOiU6H6ZtvOXLGmaSPG0/m1GkUPvIoxi8XYlm1CuPXX1P0xBNkTpnK0fMvoHz+fDwWCzV791L2xhtE3H472rPPDnqcig8+QDVgAJqxY9v2AnYSysvL8Xg8xMTUv1iLiYmhuDh4QHLv3r35+OOPWbp0KV988QVer5czzjiD/PzgE1KAJ554ArPZHPjLy8tr1+dxOpA6MJILbupPxrYS1n95CLGO0BUQuPKqmHrfEOI6ocDlR2tQMnNOrdA1t2EYvaPGzbI3dmEuq2H6A0M7pcDlJ6lPXaFrXwOhqyyviqVv7EQXpWbafYM7pcDlZ+TkY0LX9h+zGyzv7AKXH0EQGHd5Twafl8TvXx9h96/1fyuMxTaWvr6T0HBVh+aidXF6YS4tDnRq83dWbA3xvfpQeORQew8LAKf9WNB3Y6HflYX56GPikMrkaHQGqmudXDZjJTK5r+zVZbfjcbmanFCbigtRqtXYjJUc3baFbsNGIVfWz9SMSetBeV4OXo+H0NqA+tDISCoL8jDEJ2A1VtYbp9/5Ex53rGImsd9AIhKTqSzMrz1uy7L2NGE6nPYawqJiyNi2mVHTZiFXtK4ioueYcahCtOz/7RcALGUl1FjMxPXwleMl9O5HweGDbQ4DL8lMJ7Zbj2ZLJ0MjIgnRGygJInL5srX0gf+rw3TNij/Oat+5VqnR1HtcFRp6giJXMbroGCQSKYa4eCqbELlEr5fy3GwAFGo1Km0of363sEXzDLvNilobSnUL8oPtNp+Ty+NyUpR+CFNJEf3POXYzVhcdA4KAsaiQ0KhopDI5iX0HkLuvYRdUfw6XTKXC0cpyRX85cKghItAFE441bvCTNnQEYy69gj++/oy1H70b6JTp/574M8H+LnTOq4c6nE5Bw43hqaoi75Zb8RhNpHzxBeqBDa2n4Vdfhddqxbx0aeCxqnXrfKLI+vXE/uMZuv+4msjbb0OZlkbc888TcfvtlL70EmXvzCPv7rsxfvstMc88Tc91v9JtxXJUffpScP/95N95F+6KY0GBxq+/wVNVReSttwYdryQkhPgX/k3sc89i/PZb8u64E4+19SF47YHocuEqKGggcnnKy/GcYCvaE8VtNJJ3xx2UvfYaETffTNr336MZPjywXKJSEXHH7ZiXLSf3hhspeuppQs87j+6rVxFx4w1IjvtsymNjif/XvzBcew1eqxW3yUTVz2sbHFeRnEzi63NJmj8f+5EjZM6cSfX27U2O1bpuHbL4OJS96tuWdTNnYvtjI66StnWCtP6xkcIn/w/drEuJe/55hDp3SgyXX4bHbKZqzZqg2wpyOTFPP0XUQ3OoePc9yt58s01jaIzSN98i78abEL1eEl6fS8qnC5A3kt3kRxYeTvInH6Ps1QtBJqNqzRrMi5c0WK/8rbcQ7Xac+fmo+/cn7sUX6olmLUYUUfXxlRiI1dV4KisJv/FGem3dQq+Nf9Bj7c/0+mMDvXdsJ2n+fDSjRlH+1ttkXDSR/LvuRtWnD1H33hN019U7d1K9ZQsRt9/WqTL2ThVjx47luuuuY8iQIZx99tn88MMPREVF8f777ze6jVKpJCwsrN7f/yI9hkdz3vV9OfhnERu+Tfc10Khxs+Kt3VTkW5l23xDiuus6epjNEqKvdXTJJPW6Ljpq3Cx/85jAFZXUeQUuP0l9wpl81yAKjhj58f19ga6L5fm1Dq5INdPuH4JS07K71R3JyMlpjJySxl9L6gtdR3eWnhYClx9BEDhzVg+GnJ/EH9+ms/sXn9BlLqth6eu7UGkVp8170kXnwFxajLT2WkIbHtHq7eN79aEk8+hJcWS4HMduFAQLdQefyGWI94lIITo9NrMJgKrKCrThvs67fqGhunbZ8Xg9HqoqylGFhmEuLaE0+yjdho5osF5EUjJejxtTcRHKkBAEQcBaWYmzpibgTqobkm6qLXfT1SnhEgSBIRdODqxXnteyKhGNTo/X7cbtciGRSOk1tvXloTK5nD7jzubg77/i9XooSvflh8b28DUISuzTH2dNNeW5batcKc/LaTSzqi6CIBCVkkZZrShUF7utKpCnBaAJC2tW5HJU++ZmSk390n9ViDaQYdUWzKXFgfI7n5Or8XLF3P17sFZWoNKGUlVexogpMynOOEJxRvCA/Xrjt1pRhYXhrKkOGixfF7+Ty+V0kLFtM+owHQl9+gWWyxQKQsMjsVZWoKt11CUPGEzBoQMN9u13bymUqlZnclXVfn614RGB4yhDtMgUDfMUz7jsaibccBsHN6xj/j038fU/HsNcK3Y19r0+XenUVxD+oOF//OMf7Nixg8GDB3PRRRdRWtr4hDwsLIyioqLAX04Hl7WJTif599yLMy+P5I8+rJdPVBd5QgKh551H5edf4PV4KH/3XfLvvAv1oEF0X7EcwxVXINT5sAqCQNQD9xNx++2Uv/UW1X9uIun99wm/6ioAlD16kDTvHRLffouaffvImnkJ1du347XbqfjkE3QzpiNPSAg6Fj+Gyy8nef4H1OzeTd7NNzdZunWycObng8eDIrWOyJXa8R0WnXl55Fx5FfY9e0ma/wHRcx6s9/74UQ8aBBIJ1du3kzhvHvEvvtBkoLkjKwvTd4vQz56NbupUip54gsKnngrqhtKOH0e3xT+gTE0j98abqFrbUBAD3wWFdf16Qs+Z0EDsCJt0MYJcjnnZ0qDbNoUzN5eChx4i5MwziHv22Qb7VqSmohk7pslyREEQ0E2fjv7KK6h49z0KH38C+5EjJ+QeFL1e8u65l4p585BGRND9pzWETZzY4u0lGg1J897xZd3FxFDy0kv1OkLajxzB+PU3KNLSEGtqSHjtVSRB3vumcJeXU/DQw2Rfdjnu8nLi/vtfwqZOBVGk8pNPqPjgA8Q6mRUSjQbt+HHEv/gC3X/+GVl4OO6yMiQ6Hd5GTkoVH8xH0b07oeed16qxdUYiIyORSqWUlNQPki0pKWlx5pZcLmfo0KFkZGScjCH+7eg9Jo5zrurN3vX5/PFtOsve2kVFoY1p9w8ltlvnF7j8BEoXpRKWvLaT8vwqlr+5C1NJNdPuH0JUcucXuPwk9Q1n8p2DyD/s67pYmm1h6dxdhEWofSWKp5GYMmpKfaHr6M5Sfpq/n+6nicDlRxAEzri0B0MvTOaP79LZvOwoS+fuRKaQMP2BIV2h7V20CnNpCVKZHIlUilTW+u9zfK++eD1uSrKOtvvY6jq5/OVQx1NZkE94vC86QaM3BISsGosZjT4cfZ2cscZcPdbKCkSvF60h3JfxJQik1Mmt8uMPz64oyEUiSBBFkdx9uwCfQOTflx9TcSHa8IgGjrB+Z/mujSVSaZMlcHVRhvhcSuayYlIGDkYV0rYsx/5nnYfVWEnunl0UHz2CLjoGTZjv/BrToycSqZSi9NY781wOO5byssB70RwRSSlU5DeskLHbbPWem69c0dKkI8rfNEB5XGWDMkSLw9Z2w4SpuCjQGMAQn4C9ykJNbSbW8ez/7RcM8YmBUssBE85Hawjn4B/rmzyG6PVir7YRUtsZsrnwebvVikQqxVVTQ+b2LXQbOrJBoLw+No6aKkvAYZU8YDBup6PB++oXBxVqdavLFa0BkSsSdZgOBKHB6+9HEASGXTyN299dwKR7HsJcUsSuNSuAxr/Xpyud+iqibtBwv379eO+999BoNHz88ceNbuMPGvb/HV/ecioRRZHif/2b6h07SHp3XsCx0Rjh11+HMzOTvJtvpuyNN4m89x4S33kbWVRU0PXF6mqqt28DuRzR5cJT0bBsLfT880n74XvkyUnkXHc9RU89jcdoJPK2lmX0hIwdS/Inn+DIzib3xpvw1NbXnyr8Qlb9TC7fic3VQSJXzd59ZF9xJaLoJfWbr9GOHx90Pduff5J7/Q3IoqPB7UYe33S+gujxUPTEk8hiool57FHiX/g3cf/+N5Zly8m7+Zagr70sKoqkjz5Ee+655N93P5bVqxus48zIwFVQgPachiVt0rAwQs8/H/PSpa0qF/Q6HOTfex9SvY6EV15pNIPKMPsKanbswH64/t0TZ34+pXNfJ+OCC8k462xMX30NgHnJErKmTefwiJHk3nYbpsVLggp8jY6rpobsK6/EunYtyj696bHuVxTxrQtvBZBFRhL3/PO4S0oQq6spe+edwLKyua8ji4rCvncv0Y8/hrwV+xdFEdMPizk6eQq2jRuJ+/e/6bZsKfrp04h/6b+E33ADABXzP6TwsccRg9xFcpcU48zKImzaVOx795J9xZW4jivZsx8+gnXdOiJuvaVBHt/piEKhYPjw4fzyyy+Bx7xeL7/88gtjW1iK6fF42Lt3L3Fxrcs5+V+m//gExszoxp51+ZTnVjHt/iHEpJ1+7jZfGP1QEOC7/2zDWGRj2v1DiE45/Z5LUr9wJt05kLyDlXz/8na0BiXT7h+CKuT0Ebj8jJqSxsjJqfy1JJM1H+yj+7Aozj+NBC4/giAwdmZ3Bp6TwLZVOTjtbqY/MJQQ3Yk3dOnifwdRFDGXlSCRStt83o5KSUOmULZJGGkOV50JsCvIzTWX04GlvJTwBJ+wEqLTU202+YQDmxVVSEi9YPfGBApzme9mVlh0DFZjBTFpPQLCT100YTrUoWFU5OfirC2zytm7i9DIKKKSU4H6IpexuChozplcpUaQSPB6vVQWtkzkovZy2VxaSvLAIS3bJggx3XsSnpDEgT/WU5R+hNjaUkUAuUJJRGIyJZmtvzFnLCoEUcTQQpErMjEZc0lxoLkA+D6PDputXoC8JkyH1+Nu0vHjaEzkUmtaXYZXdyzm0pJ6Ti6gQe4a+ISqrF3bSejdj4r8XCRSKXvWrqHn6DM5un1zk3MdR001iCJag8912FzIvt1WhUypxF5toyI/l7Shwxuso4uOxe10EBbpE7miU9JQaUPJ3ben/rFrhS2lRttqJ5e1shyZQhlwNEqk0mbLZxVqDX3HT2DMpVcERHFndcdUbZ0sOu2VxKkKGnY4HFgslnp/7YXxy4WYvv2WuH88g2ZEQ6vt8agGDUISFkb15i0kzH2NqLvvbvREJ7pc5D/wII4DB0n59FN0sy6l8P+ewrrhjwbryqOjSVmwAN30aVhWrEDZqxfyVgQqqwf0J+XTBbgKC8m58SY8VcFPTCcDV04OglKJrI5YKdXpkOr1HeLkqt6+nZzrr0eemEDqV1/VE9/qYl65ktzb70A9YjjdlixGnpxM2RtNl+NVfvIJNbt3E//ii0hqa9n1l15C8oIFODIyyL7qapz5DU/AEoWChFdfIWzKZAoefQzrhg31lletX4+gVqMZPTroccOmTsGZcRTHkYb1+I1R9vobODMzSXzzTaRNlHSFnncu0qhITN/43Fwek4ni557n6MSLMS5cSMjYsSS8/jrdVq2kxx8bCL14Ikil6GbOwFtdTdGTT5Jx3vm+HKrqalzFxdTs3k31jp3U7NuPu6IicMLyWG1kXToL++49qEeOJG3RolY7rOqN/dwJPneVVIrxq69xlZRiP3wY67p1CDIZqkGD0M+a1eL9eaxWCh96mKInnyT0nHPotnoV+ksvCQiEgiAQ/dijRN51JwCWlSspeOjhekKX6PFQ/OxzKPv0Jv6FF0j99hu8NdVkX3VVve9Dxfz5yOPj0U2e3Obn39mYM2cO8+fP59NPP+XgwYPceeed2Gy2QLfF6667jieeeCKw/nPPPcdPP/1EZmYmO3bs4JprriEnJ4dbbrmlo57CaYej2kXmrnKkcgket0jBYWNHD6nNKNQyVCFyvB4RmVKKOvT0ddiE6JTI5OqJtyoAAOQQSURBVBK8HhFVqPy0CzSvS0SiFkEAUYSIBO1pJ3D5qalykX/IiFwpxVHt5siW4FmBXbQvf4dIEz81FjNuhwNB0vZ4AYlUSlRqGqUnwcnlstuR1U6cgzk+TLXCSnic38mlx+vxYLdZcdQ6glR1gt3tjYhc/pyg8LgEnHY7Sf0b7z4dkZhMRV4u1soKZAoFxRlHiOvZB7lKhVITEijjAp8TyB8EXpdqs8kXpC+KlGS27DrY4/Zdl4keNwm9+zWzduMIgkCvMeM4um0zJVlHA3lcfmK69aAks/Xvpd+RFh7fdMWOn8gk31zGH4IPvnwmr8ddT6zyh8k3VXboqKkVuTT1RS6FJiSQO9VabCYjbqcj4OTyi5XBnHel2ZnYqyyUZmWgj41j8AWT2L5yCXG9+mIpK8VU3HiZo/95hUb4zCXNhezbrVYUKjXu2pvx8b36NljH38zAn48lSCQk9R/YIJfLLzApQ0JaL3IZK9GGhx+rqBEJlD03R7dho3wd5yWSgAvv70KnvZo4VUHD7dlNqy62zVsoefFFwq+/rkUTYdHjofCRR/HabCCKKHs23vJVFEWKnnra16Xx7bfQDBtK3D//iXbcOAruvx9HkHIcQSZDNdB3onAcPEj5O/Na9XxUffqQvGABroIC8u68E689eOhke+PMyUGRnNRA7FOkpODMObXh89Xbt/s6CA4cSMonnyCrzRc4HtOiRRQ+/Ai6SReT9M47SHU6ou69B+u6ddTs2hV0G0d6OmVvvEn4jTeiGVbflq0ZNpSUrxYiulzkXHstziBh2IJUSvy//4123Djy738A+5Fjzinr+t8IGTsWiTK4qq894wwkOh2WVata9DrYtmyhcsECoh54AFXv3k2uK8jl6C+9FPPSpVT98guZ06ZjXr6c6Afup+fvvxH33LOETbwIZbduyCMjSfjvf9EMH07V6h+Jf+EFkj75BHlsLGWvzeXIsOFknDOB7NlXkHPVVWTPmkX6meM4Mmo0OTfcyNELL8CZmUnI+PGkLPikbRlZxxH90Bzf7EsQqPjwQyo+mI/UYMBVUEDMIw+3OOvKkZlF9qWzsP72GwmvvUr8f/+DzGBosJ4gCETeey/h118PXi9Va9dS+NhjgfJN03eLsO/fT+zTTyPIZCjT0khduBCJUkXuTTfjKinFmZeHZdUqwm+6qV5G2unO7NmzeeWVV3jmmWcYMmQIu3bt4scffwycI3JzcykqOhYaazQaufXWW+nbty+TJk3CYrHw559/0q9f2y9I/5ew21y+YPbSai59ZDgjJ6eyafHRQO7Q6YTT7ssTM5dWM+mOgchquy5WVZ6a81h7UlFo9QWaR6q56Nb+FKWb+fGDvYGMrtOJozt8JYo9hkcz4uIU/lqayY41natzckvwf1fs1W4ue2IEI2rdaU11kOzixPk7RJrUxVzqczB5PSLe2m5tbSE6tftJKlesQVErCjqDzAH85W5+J5c/sLzabMJhs/oygmrD5wVBwN7IDXNLWSkanR65SgWiSHRqt0bHFJGYTEV+LtVmE6GR0VgrK0gZMBjw5RNZjT6RSxRFTMWFQZ1cphLfnDIsKpqqivIWve5+x5NEKiM6rfHxtYSeo8birKnG43IS37t+xY8/XL+5bKjjqSzMRx0aVi9Pqyn8pZ91M8mCObJUtcKVvSmRyxZc5FKGhLS5XNGfp+Z3cilUarThEUFFruzdO5DIZJTlZHPBrfcyasZleFwuynKOIpHKyN6zs9Hj+DO2dLWlhc3lj9mtVYFOiiF6A6ERkQ3WkdfOvep2m0zuP5jijMP1xGK/wKQODWu1GFhTZfGVKeLLtPN6Wh754i/hFQQJLnsNng5uNteedFqRqy20JWj4ZHTTcpeXU/DwQ2hGjCD6kUeaXV8URUr+/QJVP/9MwquvII2KpPLzLxpdv+z1NzAvXUr8Cy8QcsYZgE/Ein/lFeQJCeTdfXe9DCHwOb8q539I2KSLiZozh/K336b8g/mtel6q3r1Iev897PsPUPDgnKClVO2NMzsHeRC3lCI15ZQ6uap37CDv1ttQDxhA0rvzAk6r4zEvW0bR08+gv2I2cS++GBAZwiZNQtmzJ6VzX29wAhVdLgofexx5cjJR998XdL/KtDRSvvgciUJBznXXB+0uKcjlJLz6CorERAruvQ+PxYLHZKJm586gpYqB7RQKwi68AMuqVc2e3L01NRQ98STq4cMIv+H6Jtf1o581C6/NRv4996Ls0YNuK5YTccstSNTqoGNJfPMNBJWKrJmXkHfDDTgzM9GMGYMizZdnp50wgdRvvib1u+9IfPstDFddSc2uXXgqfS4T0eHAumFDvUyrtiKPjSX8uutAFDF+9ZWvHFQQ0J5zDpqRI1u0j+rt28m58kqQyUj7fhFhkyY1ub4gCEQ//hi6WZeCKGL5cQ1FTz+Du9JI2dy56GbORDN0aL0xJn/0IaLHQ94tt1A+712kBgP6WZee0HPvjNxzzz3k5OTgcDjYvHkzo+u4E9evX8+CBQsC/587d25g3eLiYlauXMnQOq9bF40TELjKa4PZk0MZOSWNoRf4cof2b2hhSUcnwN8RsrzAytT7h5A2OIoZc3w3Ek43oauy0MbSuTvRhCmZ/sAQegyPqS1dNPLj/H2nldB1dEcpP324n+7Dozn/xn6Mnt6dEbVC6ukkdPm7dNrMDqY/MARDbAijp3Zj5BRfB8mtK7M6eoh/W073SJPjMZf6xBa304Eoio12MGyOmLTuVBbm1ys9aw9cdjvy2us2VxCnSVlOFtrwiICw4s9DsplM2KttKEO0VJuNqLShCFJp406u8lLCoqIDy/1lXsEIT0jyddkTRdRan2Mmua7IVdt0y1Ftw1FtC9qx0lwroPQcM85X6rZja7OvRXVt1Y82IqJN2Wl1iaotX5NIpcSk9ai3LKZbD7wed6BTYEupLMhvcakigFylQhcdUy+Xyy9k1Q2Q9wteTYkwDpsNmVLZwEmk1Gja7OQy1wqRdd8/Q2x80PLSI5s34nW7GXPpFSQPGITWEM6wSdPYuWo5EYlJFB4+2Ohx/M85JDwCmULZbIdFh82KSut7fSJrS2QbIPikFrf72Jw5eeBgvB4PBQePVZs5qm0o1BqUmpBAh8qWYrdWBT7//hLdlopVgiCgDgsD4dg4/i50WpHrVAUNt3c3LdHrpfDRx8ArkvDKyy1yk1R8+CHGhQuJ/cc/CJs4EcOVV2JeuhS3sWFpiHn5Ciref5/oRx5GN3VKvWVSbQiJ77yNx2SmYM5DiJ5jbWfNy5bjKiwk4vY7iLztViLvuYey115rUkwLhmboUBLffAPrhg0UPfV0m+80tRRnTk7QkkB5cvIpE7nsBw6Qd+ttqAYMIOm9dxsVuCw/rqHw8SfQXTLT57Sp4z4TpFKiHnyA6s2bqT6u3Lb8gw+wHz5M/H9ebNRtBSCPiSH5s0+RKJU+oSuIICvRaEh8+y3cRiNF//d/VP2+AbxetGc3LnKBT4Rz5eVh37evyfXK338fd2kp8f/6V6M5XHURRRHj558DII2IIOnD+cibuKh0lZRQ9M9ncRcX462uRj18GD3/2EDKJx/TbdVK4l58EdvmzRQ8+iiCXEbI2LFY1/+G6HCg7NeP2H89j9dhJ/+OO8maeQnWPzY2O8bmCL/het9z9XhAKsVTWRkoKWwOy88/k3vjTSh79yZ14ZcoUlNbtJ0gCMQ9+yzas89GUMgxL15M3m23IXq9PnfZccjj40n+6ENcRUWYlyzBcO21Dbp3dtFFS7BbXSx9fSdVFXZmPDg0EMwuCAJjL+nOwHMSWb/wMIf/almr9Y4kIHDVdoSMTfPd6QwNVzH9waGIok/osho7v9BVWWRjyes70YQpmP7gsUDz5P4RXHznQPIOVPqELnfnF7rqCVw39A2UKI6aknZM6Pqp8wtdPofgLizlNUy7fwgR8ccmg6OmpDFqahpblmexZUWX0NXenIpIk5MZZxIMc2kJyhBtIPuqMadTc0SndQdRpDSnfT93Trvdl18lSIKWK5bmZNVzXYUEnFxGX8e6kBCMxUVEpaThdbupqmyYIww+J1dYZHSgbNHr9QRdD3zleN7aybxYG5Qlrb25rDVEBCb81trMYn8ZWl1MJUWE6A30HuPrkLjjxxWNvwi1WGvHrlQHnw+0BkEQUKjVUFtCW5fIlFQEiaTVuVzGooIWh877iUhKCerkUgUpV2zSyVVtDTi+6qLUaNssoJhKiggxhNdrGhCekOhrTFAHm7GS0uxMdNGxjLl0duDxMZdcgUavx2GzUthEXp3fyaUK0aIOC2tR8LwqpLYcMSq4GOsvZbTVyc02xCWgNYSTu/9YLpfDZkMZEoJCo2l1uaLdWhVoEODPtHO1Is9YqQnxVa3QeBnx6UinFblO16Dhig8+wLZpEwkvv9RoYHxdqtavp+zV14i48w4Msy8HwDB7Nni9mL5bVG9d+4EDFD31FLrp0wm/6aag+1MkJ5M49zVsmzZRNncuAKLbTfkH7xN6wfmoevta00befRfhN95IyQsvNNqVrzG048cT/9//YF66lPK33mrVtq3B63TiKioKKnIpUlLxVFae9HwwZ34BubffjiItrUkHl23TJgoefpiwSZOIe+65oFlq2gkTUA8eXM/NVbN/P+XvvkfEbbeiHth47oAfeUwMyZ9+iqBUkHfLrbgrKxuso0hOJu7f/6Lq57UYv/wSZb++TQpLAJpRo5BGRmJZ2XjJoiMri8qPPibi1ltaJNaIokjpSy9T+eln6GfPxlNejn3/gUbXNy9fQebUadRs307cv/9N7PPPU7N9RyBMXxAE9DNn0O2H75GEhJB15VVkXT4bx5EjyFNTSPnsUwyzZpH69dekfPkFklAtebfcQt7td+AqavuEXBYe7vtOiiK4XKiHD/d1zWwGy88/U/DgHLTnnUvSh/OR6lrXkU6QSol/5RUUSclIQkKw79uHdsIEZJEN7dAAyu7d0YwdC6KI9wTaNHfxv0tNlZMlc3diMzmYMWcokYn1Ow8KgsD4y3vS74w4fvn0IOnbShrZU8fjtLtZ+c6eYwLXcR0hwyLUzJjjE7oWv7azUwtdlUU2lszdiVorZ/oDQxt07EupFbpyD1Tw4wedW+hqTOAC3+dr1JQ0RkxKZdMPR9n506mNJGgNLqeHle/soaLQxtT7hhCV1LBL58jJaYye3o2tK7LYvDzzpN8U/F/iVESanKw4k8Ywl5UEAq+h8e6DzRGZlIxEKqM0q307CbvsNSjVahRqddByxbKcLKJSjolccpUamUJJVWUFLocdhVqDuaSYlNqg9rJGRDhLmc/JZazNTrIZG17n+qkr5FQW+N7H4gxfXIc2PIKq2nLFqoDIFdFgH6aSYnQxcRhqOz/m7d/TrMjg39+JurjA57ipNpnwut2UZmfWWxYIn2/FeymKIpWFBS3O4/ITkZCEsfDYd8EvSNUtO/T/u6myQ59Y07DbpFKjweNytbr0EnxOLn+pop/IpFQqC/OP5aN5vSyb+x8QRcZdcW29LodylYpzb7wDS3kZltKSRrO2HNVWX2dCjQZNmK75TC6bFWXtvNBfnns8NrPR17mz+Ng8RBAEkgcMJnfvsVwuR7UNlSbEF9DfSjHQbrWiqnVyGWvD+JvKTTseqVzhy6XjmND3d6DTilxw+gUNV2/dStmbbxFxx+2BMsKmcObmUvjoY2gnTCDq3nsDj8siIgibOgXjl18GSgLdRmOg3Cv22X82mQUUcsYZRD/8MBUffkTVunVYVq/GlZNLxB13BNYRBIHoRx4m9KKLKHj4EWr27Gl0f8HQTZ5M1ENzKJ/3LqbFS1q1bUtx5eWB14siJbXBMr/wdTJzudxGI3m33opErSHp/feQNNKO1ZmdTf4DDxIyahTx/3mxUYeTIAhEPfgg9r17qVq7Fq/TSdHjT6Ds0YOoO1vmDAKQx0ST/OGHeKxWXz5akC4nYRdcQNjUqdh370YzvPmmB4JUSthFF2FZvTpomZ8oipQ8/y9kMTFEtLAzZ/m8eVR+8gkxTz1F7DNPI4uLw/jN1w337XJR9OyzFD7yCNrx4+m2fBn6Sy/BMOtSdLMupfi557EfPhxYX5GaSsqCBUi1WpxHjyKoVKR89hnSWsuwIAhohg8n5fPPSXjjDeyHDpE5bTqmJUvaPMlQ9j2Wk9ASgatq/XoK5jxE6Pnnk/Dyy20OwJdqQ0iY944vA08qxbJyZaPfVY/JRPXGjahHjKBy/odUrVvXpmN28b9JtcUncFVbHEx/cCgRCcFbogsSgbOv7kPPkTGs/fgAWbvLTvFIm8cvcJXlVTH13oYCl5+wCDUzHhyK6BFZ8tpOrMaW3/k8VdQVuGY8OLTRwPyU/hFMumMQuQcqWNNJHV1NCVx+BEFg1FSf0PXnDxmdUuhyuzysfm8vpblVTL1nMDGpjVcAjLg4lbEzu7NtZTabl3UJXR1JayNNTkacSVOYS0t8ZUO1NNZ9sDmkMjmRySntnsvlqnVyyVWqBt31bCYjNmMl0alpgccEQUCj0wcEIY/HjdfjJjqtO6rQsEAWVl1ErxdLeZlP5CoqRCKVYW1C5AqNiERSWzHjsFnRhkeQd2Av4BO5bMZKvF4PVZXlCIKEEH3DLF1TSRH6mFhUWi1KTQhej5sjm/9s8rXw56fR9h4BAUoyM3C7nEgVSrJ372iwPCatR6ucXFZjBS57TavKFQH0sfGYy0oDIpRfJKmbySWVyZArVU2LXNXVDfK4fPvxXVO0pYOf7z2qb1iJTEnF6/EEShZ3/7yawsO+G+kpg4c12Ef34aMCnTDzDwSvWrFbfaKVIJGgDtO1KJPLb2pQBRH2wCfaKtSaQDmyn6QBgynNyQyI2Y7akt42O7lC/SJXQSDXy+NumaAoqWPMaI041tnp1CLX6RQ07KmqouChh9EMG0bU3Xc3u763pob8e+9DatAT/9//NHD+hF93He6SEiw//YTo8VAwZw5eu53Et95sURlS+I03oJ0wgcLHn6Ds7XfQnn026v79660jSCTE/+dFVH37knfnXUE79zVFxC23oL9sFkXPPIPtr82t2rYl+MsRFanBnFzJtetkt/txAbx2O/l33oXHbCZ5/gfIgtz9AfBYLOTdeRcyg4GEua81W54aMmY0IWeMpeyNNyh7800c2dm+97+VIogiKYmk99/HkZ7RoDTVj26Kr7Oe41DLWkmHTZ6Eu6SEmh0NT7LWdeux/fknMf/3ZIs+f5bVqyl/622iHrif8GuuRpBK0V82C8vKVfXcdx6TidxbbsW06Htin3vWl0mn1weWxz71FIqUFAoeeijQ7EAURUrnzsVTXg4SCWJNDZWfLGgweRAEgbCLLqTbsqWEnjuBosefoPDhR4KKgs1h/eUXkMlAELBt29bkujX79vscXGedRcLLL51wAH7Nlq2+UklRRBoRTv4DDwQtZa788ktEj4eE1+eiPeccip78P9xlnU+A6KLz4Re47FYXM+YMq1d2FQyJROC86/uSNjiSH+fvI3d/RZPrn0pcDp/DpizXJ3DFdW/aQRkW6XN0eTxelszd0amErpYKXH5SBkRw8e0Dydnf+YSujO3NC1x+GghdP3ceocvj9rLmg30UppuYfNcg4nrom91m2EUpnHFJD7avzuGvpV1CV3twKiJN2jvOpDkspSUoVMeqBextdHKBL5ervTssOu01KJQqFCo1Lnv9SbjflRV1XEi8RqfDVuumqjb5rluiU7sRGhGJ3VrV4Kaq1VTp6+inCaHGYkYdGtqkyCVIJL6ML0GCPiaOlEHDyKstAdMawhG9XuxVVVRVlBOi1wftOOfruujv2hdPiN7AwQ2/NnpMURSpqvBdW7VHSHfe/j3IVWpSBgwie0/D6+/otO5U5OW0+FjGQn9nxdaJXOFxCSCKgYwye7UNiVQW6KjpRxkS0my5ojJI1Yv/sbZ08DOVFKOLPt7J5ZsbludkYSkr5feFC4hMSkEfExfIpzqe82/xzc93rF4WfOw2a0Cs8jm5Gv8OiqKI3WZF9Pp+z+WNzI0sZSVodPoGom7ygEEgigFR1mGzotD4Mrk8bneLHW+iKPpErtrnXFmYH8ixq2lhiXXdjq5NvbenG51a5ILTJ2hYotUSec/dxL/6SosmtcX//CfO3FwS33oLaZATp6p3bzRjxlD52WdUzP+Q6s1bSJg7F3l8w/a3wRAEgfgXX0AQBFw5OUTcHtx9I1GpSJz3DhK1mvx7722VACAIArHPPEPIyJHk33cfjqPtfELNzkFQq5FFN6xzloaFITUYTkoul+jxUPDww9gPHybpvXeDlkuCrwy0YM5DuCsqSHx3XovL0aIefBBnxlEqP/qYqLvvbrZDYWOoB/Qn8Y3Xsf72G2VvvNlgefW2bQghIVRv3Yp1w4bm9zdkCLK4OMwrV9Z7XHS7KX31VTRjxqA955xm92M/eJDCJ54kbMoUIm6/PfC4/tJZiE4n5mW+k4u7spKcG27EcfgwKZ98jOHyyxvsS6JSkfDqK7jy8il96WUAjJ9/gemrr0EUSXznbWKefJLKjz+m+Jl/BBX7pDod8f/9LwmvvUrVr7+SffXVuApaLui6Kyqo+nVdQGhy7N2LIz14m2lXYSF5d96BsmdPXybfCXY39JjNlL76KmFTphD90Bw8pWV4zRYKH36k3nP12mwYP/sc/axZyCMjifv3v0AqpfCJJ9slgL+Lvy82s4Mlr+3AUe1ixpyhhMcFd6wej0Qq4YKb+5PcN5xV7+0l72DjE5FThcvhYcXbu30C133NC1x+wiLVzJwzDI/LJ3TZTB0vdLVW4PKTOjAyIHT99OF+PJ6O//6nbyvhp4/202NE8wKXH7/QNfziFP78vnMIXR63lzXz95F7sJJJdwwksXfDDrmNMfTCZM6c1YMdP+awafHRLqHrBDldI00aw+v1YCkvRSqTIZUrECSSNju5AKLTelCRn4vb6Wy3MfqdXMHKFYszjqDUhKA/TojQhOmwmUyAz/0UGhFFiN6APiYO0eul4rhMJUvtjTl/6ZQ2IrLJckXwda8TRS/9zjqX5AGDKM/LodpiDnSbq7aYqaooD5rH5ai2UWMxo4/zza10MbEoNCHk7t8bcKAdT02VBU+tAOFqw03T48natZ2k/gNJHTKcwsMHcVTXFxCjU9PwuN0N8qcao7KwAIlUGjRkvyn8r8GxcjdfRtTxlUOqEK2vrK8RGi9X9F1btNbJ5ayp9r1Hx5UrqkK0hEZEUZaXw4avPkWpViNTqojp3rPRfRli4wiLjKbw8AEs5Q27sNpru4ACzTq5nDU1iF4vbqfvesETRJTyej1UVZSji45p4OQKi4xGHxsXKFn0lyv6uzW29HVyOex43O565Yq62i6iLf0N8Qt1gkTSJXJ10RBBEDBcfnmz2Ufgyx4yL11G3LP/RNWrV6PrhV93Hfbdeyh76y0ibr2VkNGjWjUmSWgoEq3vR8X62++NriczGEh8522c2dkUPfOPVl18CXI5CW+8jjwmmrzb78Bd0X539J05OSiSkxstzVSkpOBqZ5HL1+ny31jXrSdh7mtNlqaVvvyyL39t7mso09IaXe94lD16IGg0CDIZ4ddde0Lj1Y4fT/RDc6j44AMsa36qt8y6fj2hF1yAZvRoSv71b7zNXOwIEglhF19M1ZqfEOvcMTItXozz6FGiH364yTJZ8AlXeXffjbJ7d+L+9Xy99eUx0YSeey6mr7/BWVJCzrXX4S4vJ+Xzz9CMaLykUtmzJ9GPPYpx4UJK33iTkhdfBCD6sccInTCB8OuuJe7FFzF9/z2Fjz5Wb+x1CZs0idSvFuI1W8i64grsR440+Vz8mJct9/1DJkPVrx/IZJgWfd9gPa/TSf699yGRK0iqFY5PlLK33ka024l+5BHCb7wxIDLaNm6k/L33AusZv/sOj81GxE2+Um5ZRATxL76I7Y8/AsH/XXRxPFajgyWv7cRp9zBzzjAMsS0TuPxIZRIuum0ACb30rJy3h9wDHefoaqvA5cfn6PILXTuxmTtO6GqrwOUndWAkF982kOy95fw0v2OFriNbivn5o/30GhXDeTf0a5HA5UcQBEZP6xYQunat7Tihy+Py8uMH+8jZX8HFtw8kuX9wd3dTDDk/mXGX9WTnT7n8+X1Gl9B1gpxukSZNYa2o8Ak7AoTWdihsa/A8+NxSXo+nXre8E8Vlr0GuUiFXqRuUKxYcPkB8774NqlI0On1AKCjNPkp8774A6Gsn4cd3DfQLDw6bFYlUij46tlmRyy/k9TtrAkn9fNm2+Qf2oqk1EFSbfSKXNlgeV21OksHv5IqOwe10IJPJOfjH+qDHqyr3CXEyhbLNuWl+aqxVFB45SPdho0gdPAyvxxNwovnx55wdn9fVGJWFeehi4oK61poiRG9ArlJjLPLdBHZU2+qFzvtRhoQ0Wa5or7YFL1esfczeSpHL74DSxTQUoyOTUyg6cohDf/7O6JmzqSzIJSql6flY2tARgMDWZQ2v4+22Y8/Z5+QyNboff1mfy2FHIpUGzdGyVlbi9XgIj0/EZqxs0DE1ecBgcvfVily14qCydu7Q0lwuf1C8OkSLx+3GXFJEeILPxddSJ5fH7UIQBGQKJY6uTK4u2oqrsJDi554jbPJkdNOmNbmuZtRIkMmQaLVE3dN8CeTxWFb/iCu/AMOVV1LxwQdNdppT9e5N3L+ex7J8easnxdLQUJLeew+v3U7eXXcFyspOlMY6K/pRpKTgzG5fkavig/kYF35F7D//QWgTriXjd99R+elnxDzxBNozz2zVMcpefx3cbkS3G9MPi09swED4TTcRevFEip54Aket7d6ZX4AjPYPQc84h9qn/w5mfj/GLL5vdV9jkSXgqK7Ft+gsAb3U15W++RdjkyagH9G9yW1EUKXriSUS7g8R33g5a1qi/YjaO9HRyr74Gr9VKyuefoezZ+F0XP4Yrr0Q9ciQV774LgG7WpYTfcP2x/c6cQcLcuVh+/JHCJ58M6ugCUPXpQ+q33yCLjCLn2uuazaITRRHTokVIlErCLroIw3XXgtuNafFixONEw9JXXsFx5AgJb77ZaDh8a7AfOoRx4UIi774beUx0oLxYogtDFhtL+TvzqNm1C6/TSeUnC9BNmYI84VjQqHb8OMKvv47SV19rd5dlF6c/5rIaFr+6HbfTw4w5Q9HHtK1LlEwu5eI7BpLYx8CqeXvJ6YDSRV+JYq3Ade/gVgtcfnRRvtJFt9PDktc6Rug6UYHLT+ogn6Mre295hzm6Dv9VxNpPDtB7bBznXtcXiaT1ATYBoWtiChsXdYzQ5RO49pJ3oJJJdwwidWDbf98Hn5fE+Nk92bU2j42LuoSuE+F0ijRpDv9E3uNyoa0VuWqsbRdQolJSEQRJu+ZyOR12FCoVCrU60AESfG6VwiMHSejd8HXUhOkCk/Dy3By6DfXd0NQafILT8SKcpbQElTYUc2kJ+th4tOERTZYrwrEQdHVoGKERkRji4snZsyvg5KqpatzJ5Q+319eGzuuiY7FWVNB9xGgO/P5r0O+npbZUMURvwFFta1OQup/s3TsQvV7Sho3AEBuPLiaWnL07662j1GjQx8a1uPzUWNj6zopQa9aIiw+8Jg6btVGxqim3j7PaVi/Hq+52/uWtwVz73TjeyQUQlZxKcWY6oeGRpA4ehrOmhsik5Cb3F9OtB6LoZe+vP2Ez1Y/+cNRzcoXhsNkaLRP1u6QcNdVI5fKgwp+lNrstOrW777mU1i+vThk0FGNRAZbyUp84GBJyLLushS7BQEdIbSjludl4PR7ie/apXday3xCXw4FcpUYqk3U5ubpoG6LXS+ETTyIJCSH2maebXb/05VdAEPBWVeEubWirbPJYbjflb72F9pxziHn6KULOPJPCxx/HXR7cfgu+MPnwG2+k5L8vYduypVXHkyckkPTuPByHj/jcNO1QIuU8ehRF926NLlekpuDMbb8LXtOSJZTNnUvkPfdguOyyRter3rqV4ueeR3/FbAxXX9WqY9i2bKHys8+JevBBdNOnU/7ee3isbWup60cQBOL/9S/kCQnk33c/3poarL/+AnI5IePORNmzJ/pZs6j44AM8zSj0qn79UKSkYKktWaz87DPcJhNRDz7Q7DiMCxdi/e034l74N/JGMjHUQ4ciKBW4SkpI/vijFjvg3GVlOLN8mQ+CRkPMU081cJWFXXQhCa+8jGXFSoqefqbRz6AsIoKUTxeg7NaN3BtupGZv8ABKAPvevTiPHsVbXY1+1qWEXXQRkpAQvBaLr4SxlqpffsH42edEP/pos2JgSxBFkeLn/4UiLa2e20+q15Pw8su4S0qQRUdT8OhjmL77DndpKRG3NrwbHfXgg8jj4yl68v8aFf66+N+jotDKD69sR5AIXPLIcPTRJ9YGXSaXcvFtA0nqF86qd/eQvbfx80x747S7WfH2bkpzqphy7+AWZSQ1hS5Kw/QHh+JyeFh6ih1dFYXWdhG4/KQOimTi7QPJ3lPOz6dY6Dr4ZxFrPz1I3zPiOPeaPm0SuPwIgsDo6R0jdLldHla/v5e8g0Ym3TmQlAGtd3Adz6AJSZx1RS92/5LHH9+mdwldJ8DpEmnSHObSYhAEHNU2tOERqLShJ+TkkitVGOLiW+z+aQmBckWVGmcdkas8NwdnTQ0JfYKIXDo9jppqQABBIHXIcABUtY2CyoI4ucIio6nIzyUiMQmtIbxJkctZUx0oF/OX2aUOHk7W7u0o1BokUhk2swlrRTmh4UGcXEWFqELDAuPRRcciil5SBg+jIj83qLBUVV4OgkBYbTlgc+HkTZG5fQvRqd0JDfcJ50n9BgUNRY9O7d4KJ1frOyv6McTGH3NyNVZ2GKJtvrtiEHFMofE7lFoXqm4qKUKuUgdEy7qERcfgdjjoP+F8TLVZYhGJjZsjwCeMASDC/t9+qbfMbq2fyQWNdzn1O7nsVVW+MP4gz8tc5hO14nr5YmmOL1lM7j8Y4f/ZO+sAKQr+jX9mu27juu/o7hIsfO0ABcGW1y5UUFJpRELKQLFFxU7Ewk6Q7q7r2Ku9u43bnN8fe7vccrsXcCi+Pz7/sTszO7O73M488zzPV5CQvWObXxzUaOt0lzVNbAqIyKooPUWHDyJIJKR07OyPPDfRaRiYfioIwpnpimc4McpXvIl9/XqS589rtL+p+qefsHzwAQkTJyDV6yl7/Y1mvVblqi9wZWcT9/BDQQcIothoR0/8uEfR9OtH/thHcEcYwxwJdbdupCxeRPX332NetLhZ6x6Pt6oKT0kJyjZtIy4jT0/HW1GBt4l2zIaw/vEnhVOnYRw5gtjRD0RczpWXR97DY9D06kXilCmNxvfq4rPZKHx8Cuo+vYkedStxDz+Er7qasldfOen9l2i1pDy9FHdBAcULFlD93fdoBw0MThyMfcA/hbG8ke+RIAjor7yS6h9+wF1WRtnrb2C64QYUqQ3fFXIePIj5qYWYbr45ogNO9HopmDgRsfZCSxpdf8pN2PVcLvIffhhfVRWCWo1os/k7ucKgv/xykhfMp/KzzyiaNTvixYNUryf91VdQtGtL7j334DwSfpS15ZNP/b1wqalo+vdHolajHzoEZDIqPv4Y8E/hLJw+A91//oPplpubdEyNUbV6NY7Nm0mc8ni9Xi9Nnz7E3HUXntJS3MXFlCx9mqiLLkLZpk297UhUKpLmPoljxw7K3zoTWzwDmLOr+HzxVtQ6BcPH9yEquvFBEk1BKpdw2T1dyegSwzcv7vxbpi7W2Nysenobpbn+iGLySQpcAYzxGq55tBeuGr/QZa9quV6bSJTkVPP54q1oohQtInAFaNU9lsvu6crRv1Ho2vNnAT+9vZcu5yQz+OaOIaW2J0pA6Or9NwpdgSmKefsruPKB7icUUYxEt8GpnH9TB3b8nMfPb+/Ddxp0p53hn6PSXIQuOgZ7paXWyRV1Up1c4C8sL2lBkctV40ChUtWbrpi7eydSuZzENvXrVzR6A163G4lUQlKb9kHhICCClOUe5+QqMaOPi6M8P5eYlDS00TG4axwRp83l7Drmxi8vyAOgVc8+VJeWUFGQh0avx1pWittZQ1RsfSeXpbgwGFUEgj1WOlM0WqOJ3b/9WG+dqlIzAhBT65ayV1rC7ltjuJ01HN68gbb9zgo+ltqpC6W52fXEifjM1pizjjRqIHC7nFSVmjGdqMiVnBIUCyPFDv2dXOFFLtHnizhdUSKRolCrmz29r9JchDEhMez1ViBumpDZhrK8HGQKJfq4+p9zXWLS0kEQiG/Vhp0/rQm5TghxckXVilwRRMyAuOSorvT31IV5T6pKzGgMRozxicjkiqArLYBKpyOxTTuytm/G5XD4nVwa/+s3N66o0ukoOnyQ2PRMFCq13w3axOtjd00NKp0uWKb/v8IZketvomb/fkqWLiX69tvRnnVWg8t6SkoonDK19qL5Fky33oLl44+b3HclulyUvvACUZdc4u8QAmSxsSQvWIDt998pX/FmxHUFmYyUJYsRFAryx4ytF8lqjKgLLyThscmUv/46Fe+916x16xKIVynb1r9wD6DIyAQ46fL5mj17yH/4YbRnDyJxxoyIwpXXaiXv/vuRREWR8szTzS4VL164EE9ZGclz5yJIpciTk4m+/TbK31iBu6DgpI4BQNmmDQmTJ2F5/wPsmzahv/ji4HPyhARMN99M+YoVeMobtn7rr7oSn9WKed58xJoaYhrpqxDdbvInTESRnkb8hPERlyt59jmsP/1M0twnAaj87PMmHVfx/Pk4duxEdLlIXfYc0bffjnnJEhy7d4dd3jBkCElz5mD54ANKFkcWWyVaLWkvvog0JpqcO++sN4nQ53BQ9eWXiC4XphHXBrsmjCNGgMeD/Y8/cBcWYl7wFKLbTeLMyN+d5uCtrqb4qYVEXX4Z2kGDwi4T99CDKNu2RaJU4rNaUfXoEXF7mt69Md16CyVPP43zaHgx7wz/Pyg4WMHnS7diiPfH8jT6lhFSAgQ6ulp1j+Xbl3dxZOupE7oCEyErS+xc/UivE44oRsIYr+GaR3rhcnj4fMmWU+roKjpSyedLt6KPVXHNoy0ncAVo1SPumND12qkVunb96hdtup6Xwvk3dWgRgSuAIAicdXVrel/qF7q2/9i0IuYTwePy8vXynRQcsHDl6O6kdW7aTZnm0PW8FC66vTP7/iri25d34XGfcdv+f6XSXIwhPgFreTk6UzQqnf6kpiuCXxgpyT6Kz3fy3yufz4unNtKkUGtC4opHtm4krUt3ZGGmhAfcNz6fj9a9+wUfD8TZqkrNwZJ5qBUFjH73VnRqOjqT//+dNcxEaYAjWzYCoNBogg6k1C7dkMkVHN26CbXeEIyIRcXUjxlXFBYEC9cBomLjEAQJ1aUldDxnMPv++LVeXM1SVIAoisSm+x1D9hN0ch3etB53jYNO514QfCy1U1cA8vftCVk2vlUbXA57vbjb8VgKC0AUiU5OO6F9MiUmY6sox1XjCBbPH09D0xVdNTWIoi/segAKjbbW2dd0LMVFwemXx3Nky0YEiQRLcSFleTlEJ6cikUgb3J5cqcKYkIguOgZLUSF5tdMNwS/sBZ1cBiMQ+fN1VFcDQtD9Fa5rrLKkGENcgr/zOD4Bi7m+eSSje0+ya8vnlRrtMcdbE6dQOqqrEQQJCpWa3D07glFFf+S5aUK5u8aBWm/A5/E0W4Q8nTkjcv0N+JxOCsZPQNGqVaOxL1EUKXh8CkilweLu6JtvRpBKm+zEsHz6Ke6CAuIeejDkcd05ZxN95x2Yly5tMKIli44m9ZmncezZQ/GCp5r0mnWJHjUK0623UvTEHKy//trs9cEfVUQiQZGZGXGZwHOuIyd+p8qVl0fOPfeiaNOG1KVLI07GFL1eCsZPwF1YRNryF5CZmj5VCfxOMcv7fmeeIv1YXjzmrruR6KMwL15ywsdQF+P116Ps6LfFHi98xNx9F0gklL36WoPbULZujbJDe6rXrME44lrkCfWnW9al7I0VOA8eJGn+/LA9XABV366h7KWXiH/0EYxDh6K/5BIsH3zQ6F0py2efU/Hue+DzETd2DLqzzybukbGo2rWjYNx4fBF+BIzXDifh8ccoe/U1yt5YEXH7MpOJ9FdfBY+HvONE3ervv/dv3+fDMGxY8HF1ly4oO3QAiQTz089Q+fnnJEycgDzMFNAToXTZMnx2OwmTJkVcRlAoSF6wAF91NYJSSfkbb+CJcBIIED92LLL4eAqnTjszbfH/Kdm7yvji2e3EZ+gZOqYnKu3JTf6MhFQq4eK7utC6ZxxrXtnFoc3Ni9o3BZvFPxHSXuVi2KO9ic+oP6G4JTAmaLjm0d64arx8umgLVaUnP0nrePL2V7DqmW3EpGi5emyvU/a5tOoRx6V3d+Xo9toyenfL/x3Y/G0Wv753gB7/8cfxWkL0Px5BEDjrGr/Q9cdHB0+JoysQgS08aOHKB3uQ1rHlBa4AHQYkcsX93cjZU86Xz23H5Qjf/3KG/20qi4uIionD7axBa4puGSdXZhvczpqg2+Vk8Dj9Ir9cpUKuVAWnKzrtdvL27Ap2bR1PQChAFGlVR+RS1Tp9fF4v1bUdV6IoUlVagqz2PDwmJQ2t0f9/z1ZR/ya/KIpkbd8M+CfVlRf4RS65Qklql24c3b4Ftd6AtXZdXXR9kctSXBgioEhlMqJi47CYi+hy3n9wVFcFX6PuOgD2WpdMQFxrLnt+/5nk9p1CuqYM8QlExcaRtzf0Gi0+M1A+33AvV+A9OOG4YpJ/vYrCApz2Y9G9uig1kYvnA1MXVWGcXIHHmyreBLAUF2II08dVlpdDeX4u0ckpFB46QFleLjGpTRP3YtMyqbFZMSUls+uXHwD/98lpswajq4HBBQ05uRS1Yp4qyhDRyaWP818bGBMS6zm5wN/LFRCWlBptreNN0ywnl1Knozw/l8riItr09Ue2VbqoJsUVvR43Xo8HrcGI2+U84+Q6Q/MoWfo0rqwskhcuRBLmTkddKt59F9vvv5M890lktXEuqdGI8frrqXj33UY7lXxOJ6XLX0R/5ZVhC73jx4xB1aED+ePHNdgFpe7Rg8Qpj1PxzjtUrl7dhKMMJWHyJHSDB5P3yKPU7NnT+ArH4Tx0GHlqakTRBECq0yJPTm7ylLzj8VRUkHvnXUi0GtJeehGJJnIvTcnTT2P97TdSliwOGwtrCG9lJYVTpqAdNBDjDTfUO4b4MWOo+uorHNu2nchhhCAIAlKDEWQySp9bFvKczGTCdPPNVLz/Pt7akc6RkCUkIrrdmG5quHPMlZ1N6fPPE/3f/6LuEr6LqubAAQoefxz9FZcTfeedAJhuuB5Xdjb29esjbtuxezdFM2b4u8XOP5+Ye+4BQKJQkLxoEe7iYormzo24fvSoUcTccw/mBQuoXLUq4nLyxERSnn0Gx86dFNVObgR/VFGi1aI7//x6U1ON118HokjVl1+iGTAAw7XXRtx+c6jZf4Dyle8Q98D9EXvNArjz80EUEV0ufDU1FM+dF3FZiUZD0pw5ODZvbtIAgjP8b7H/r0K+fmEHaZ2iuerB7ihUzZu61FykUgkX39GZtn3j+e7VXez54+SdqgGqSh18umgzbqeX4eN6E5NS/yS8JTEmaBg+oTcC8MnCzZQVtNwJYPauMr5ctp2kNgaGPNwThfrUfi6te8Zx+b3dyN5dxpfPb8dV0zKCiiiKrPvsEH99foR+V7Xi7JFtT4nAFSAodNVGF9evPtJivVY1Vjerlm71DzEY05PUDs27oXUiZHaLZeiYnpTm+TvZ/o547BlOLyzmItS6KIBaJ1dUMIZ0osRl+jtPm1pY3hCBeKJCpfZHs2r/fWjjOnw+b/DC+ngC8URBIgkKNQBK3bG/24F4nKOqEo/LidfnRRAkmJJT0NXeULZa6t/EsxQVUF3m7380JSVTUXBMbGrVsw/5e3eh0uqwV1UiCJKgKyyA027HXmnBVMfJBX6hqdJcTFxGK+IyW7Pzp+9DnreW+0WztR+uBOCvTz9otjBQVVpC1vYtIS6uAKmdutYTubRGE1qjCXNWw2788oJcVFF61FEnduPnmMiVH7FbS6XV4a5xhC1kD/RShevyAr+TK1L0NBw+r5eqEnPY0vn96/5AoVaT0a0XRYf2U5afQ0xqw6XzAWLT0inPz6XDoPM4vGk9Xo8bl8OB6PMF912uUiOVyyM7uazVKFVKALRGY1hRqqqkONjdZkhIDA6YqEtSu47IFP7tBERFpUbbdJHLZkWt07H9h29Q6aJI69IdqHVyNUHkctf4BWytyYTo8520g/R04ozIdYqx/fUX5StWEPfII6g61M+r18V56FCw10h33nkhz0XfdhtiTU2jEcCKlSvxlJZG7JUSFApSFi/CW1JK8ROzG9yW8frrMVx9NYXTplOzf3+Dy9Z7HamUlEULUbZuTe599+MubN6dJOfhw00Sk5Tt2+M8cLBZ2wb/1MDc++7Da7WS/sorQUExHJbPP6fslVeJnzCh3ufSFIrmPInPbidp7tywJ/6GYcNQdupE8bz5J32i7q2qwr5lC4YhQ6j+7juqvvsu5Pno/44Cn4/yt1dG3IbP4QhOHWxIoBRFkcKZM5HFxkac/um1Wsl78CEUaWkkzZkTPH51374o2rSh4t13w67nqagg76GHQCJBlpBAylMLQkZTK1u3InHqFCo/+ZSqb76JuI9xj4zFMOJaCqZMxfrbbxGX0/TqReK0qVjee5+qb77BlZuLff16fDYbxhH1BSzDVVeBRAJeL/qhQ1rkgs5fNj8bRUYG0aNGNbps6YsvourTG3WPHkjUaqpWrw4pwz8e7YD+mG66EfPSpS06sOEMpy+iKLL52yx+WLGXDmclctm9XZHJG7bytxQSqYSLbutMl/NS+HnlPrasOflJuBVFNj5bvAWAYeN6n/BEyOaij1EzfEIf1FEKPlu8heKskz8JPLzFzNfLd5DeOZor7++OXPH3fC6Z3WMZ8lAPirOqWPX0NmqsJz4ZDMDnE/n13f1sWZPDOSPb0f+qVqdU4AogCAIDr2nDwGFt2PRVFr+9fwDRd3K/n9YKJ58u3kJ1eQ3XPNq7xTremkJyWyPXPNobm8XJp4s2nxLX4BlOT1wOO46qSuS1N3V1Jv90RafNFhLlay4avQFdTCzm7JOvKQgUzSvUfpHL7axB9PnY/euPpHXuhj42vJNdXeuGkSkUIX8XVLW9Q4JEEpzmFyjpdtntGBISkCuUKNQaFGo1tvL6Tq6j27YEzwtj0zKpKMwPnkO36tkHr8eDx+XEabWiNZmQSEP/xlqCkxVDo3CG+GOOm54XX8HhzeuPTb/0uP1OJEGgbb+B6OPicdnt/PTGS016HwNsW/MlcqWKzucOrvdcaqcumI8eqVdk7u/laliwPNHJigFUOh2qKD2WogKc9kjF837hK5wIE3AkKSKYBpRqdZPFG/CLgaLPhyFMXPHg+j9p02cAyR06UVVixmmzNVnkiknLwFZRTnq3njjtNnJ2bg/ue0BoEgQBtd7QoJNLKvcbV3Sm6Hqfl9+lWIoh4OSKT6TKXFwvTSGVyYLR10C8V6ltuuOtxuovvt/54xr6XjUMWW2VjlrftMhz4P92lMnvdDzj5DpDk/BWVlIw+TE0AwYQfdt/G1zW53KRP2Ei8tTUsL1G8oR4DMOGUf7mW/gijBX1VFRQ+uJLmK6/rsGpdYqMDBJnzqBy1RcNOlwEQSBx5gwUmZnkPfxwswveJRoNactfQJDJyL33vkZdaHVxHj7UYB9XAL/I1Twnl+jxkP/oOJwHD5H24osh8cHjsW/dStG06RiuHd7oZxiOqm+/pWr1ahKnTY3ozBGkUhImTcKxfTtVX33d7Neoi/WXX8DtJnbMw+j+8x+KnngCb+WxP9Cy6GiM142kfOXKiE4+y4cf4quuRtWlS4P7U/XFF9jX/UXizBkRXXBFs2fjLSsjddlzIcsIgkD0f0dR/cOP9XqiRK+XgnHj8ZaWIfp8pD33bNhBDYbhw4m6/DIKp8/AlRfeLi4IAkkzZ6I7/3zyxoxt0C1nHDnSv72Zsyh/+22Qy5HExKA7//x6y4peLwj+aUG2tesibrM5VK1ejWPTZhKnTkFoxPFp+3MtNTt2EHf/AyTNfRJfVRXy1FSKZs5s8P9p/LhxyKKjKZwy9Uxs8X8cn0/kt/cP+N01V2Zywa0dkUr/3p98QSJw3g3t6XtFJus+O8y6zw6dsJBfdLSSTxduQa6SMWxcH/Sx6hbe24bR6BUMe7QXpgQtq5ZuJW9/5HhwY+z6NY9vX9lFm97xXHpPV6Tyv/dzSWlvYtijvakuc/Dp4i1YK06sb8zr9fHDG3vY80cB/xnVkR4XnlgPzMnQ+9IMLrilI7t/y+f713fj9ZzY37XKEgefLd6Mu8bDsHG9iUuPauE9bZzYVB3DJ/RB9Il88tRmzNn/O3fUzxCZgIAikfqdnFqTCVWU//t3shec8ZmtW8bJVXsBr1Br/O4eUSR//15yd++g6wUXR1xPKvNfcMtrnSoBZEolEqkUdZQ+GKesqu1FtVWUh4gVOlMM1WFEruwdWzAmJCGRSonPbI3bWRN0WRkTkzEkJGKvrMTlcASnF9alNNd/4yUmJfTvljEhMSi4dTp3MCqtjm1r/ImWwPYRRc4afj266FgS2rRl7+8/B/vBGsNpt7Pjx2/pftFlKNT1z51TO3VFFH0UHNgb8nh8q8YnLJ7MZMUApoQkyvPz8Hm9Ybu1AiJQuO6mgIAVLuYItZ1czZiuGIiGGuNDr5/K8nMpzc2m/VnnkNS2Q/DxJscVA98vUcSUlMyB9X8G/6/VPWZNlCGik6vGWo1EKkWmVKIxmOq9H9aKMnxeL/q4gJMrCY/bhdVSvxfZlOh3Ewb+n/gjoU2fruiwViNXa+h12VXBx9VNjCu6a6PHgcEMHpcLr+fkbn6dLpwRuU4hRbNm47PbSZ4/L8SFEo6SZ57BeegQKYsWRozoxdxzN16Lxd9RFIbS5cvB5yN2dHhXTV0MQ4diuPpqimbNbrC4XaJWk/rsM3grLI1OZgyHLC6OtJdexF1YSN6DD+FzNn4y7bPZ8BQUomiik8tTXBwi5DSEKIoUzZqF9Y8/SH3madTdukZc1l1QQN6DD6Hq3r3BQvqI65vNFM2cRdQll6AfMqTBZbVnDSDq4osxL1jQLDHweCq/+gp1r14oEhNJnDEd0VFD8cKFIcvE3H47Prsdywcf1Fvf53RS9upr/u/H8GFY//wzbNeTp6KC4nnz0V95Jbpzzw2/L198QdUXq0mcORNFWv0fHsPVVyONiaH8uM6skmeexbZuHaLLRdKMGag6dQq7fUEQSJo1C2lUFAUTJiCGsU5D7TCFxYtQdelM7r334crKiry9GTMQlEos7/vfG9Owa8IOGChd9rz/cVGkes2aJn//IuGtrKR4YcNl8yGv/+JyVN27oz17EMrWrYl98EHcBQX+0voFCyKuJ9FqSXpyDvaNG6l4P/yEyjP8+/G4vHz70k52/17ABbd0pP+Q1n+LuyYcgiAwYGhrzh7Rli1rcvjl3f34mum4yd5VxqqlWzElahg+vjc6k7LxlU4BSo2coWN6ktjGwJfPbefItuYV64uiyPovjvDrewfofkEqF9/e+W8XHgPEpUcxfHwf3E4Pny7cjKW4eWXAbqeXb5bv5PAWM5fe3ZVOg5IbX+kU0fmcZC69pyuHt5Xw9fIduJ3Nc7+U5Vv5dNFmBInAsPG9MSWG75P5OzDEqbl2Yl900So+W7yFoztK/7F9OcPfQ1me31ktCP4LbLlSFYwuNuUitSHiM/3CyMmmBIJOLpUalda/bxs+/xBDfAIdBoY/BwT/BTOA9Lgbd4IgoNRoUWq1QUdVVUkxCrWGiqKCEOFJHxdPVUlot6PH7SZn9w6iYmLRGIxE1y4fmLAoCAKtevbBUlyI1+NGGyatUZafS1RsXD2hSR+fQE11FU67DblSRfeLLmPnT9/htNuD+yFXqUlo3RaN3oBCpSazZx++f2VZk1xKG7/4BK/LTe/Lh4Z93pSUgsZgDNvLZasoxxYmugn+35fygrxg5PBEMSYlB9/HcN1ayqDIFc7J5X8sXMzR/3jTu6YAKosLESSSepMxs7ZtRiqXk9GjF1GxcchVagSJBEN8wzUfAUzJKUikUsrzc2nXfxCHNv4VdGzVFejUej32COf3/jixQFR0DCqtttY5eCxqXmX2f1fqdnL5j6l+ZFFbG6UNiJhKrTZskX04rJYKrOVl9L58SMh3uelxRf//7cBkUf+x/W+4uc6IXKeIytWrqfr6axKnT0eeFH4qRADbX+spf/0N4seOiXhBD6BITcV47bWUvfpqPReOKzubinffI+aee5DFNG3MdcK0aUjjYskfN77BKYqK9HSSF8zH+uOPlL3yapO2XRdlu3akLX8Bx9at5I8bF1GMCOA8eDC4XqPbbt8uZJ3GKH3uOSwffUzSE09EFGfAL7Tljn4QiVJJ6rPPNNqldjyiKFI0bTrIZE2eupfw+GN4bTZKnnm2Wa8VwFNeju2PPzEM9Qtq8oQE4sc9SuXHn4Q4mORJSRiuHkrZijfqiY6BKZ6x996D/tJLweej+rvQPgIA8/wFiKJIwmOTw+6LKyeHolmzMVw9FMOQq8IuI1Eqib71Vio//xxPqf9Evuq77yh7+WWQSDCOHInx2uENHrNUryd50UIc27dT+sLyiMtJVCrSnn8eaUwMOffeG7GkXWo0En3Lzf7/D2532K4tV24uFR98QOwD9yPPSAevl8qvvmpwPxujeOFCREcNCZPDv591sW/ciGPTZmLvuy/4vYq543ZUnTohjYqi8pNPsf7xZ8T1tWedhfGG6zEvWowrL++k9vsMpx/2Khernt5K7t5yrri/G53P+efEh7r0vCid/4zqyN4/Cvju1d1NniS3769CvnphB6kdo09pYX5TkSulXHl/dzK7x/DtSzvZ9WvT/g/5vD5+eWc/m77OYuCwNpwzsl2LTh48EYwJGoaP74NMIeHTRU13DtmrXHy+ZAsFB/2TB9v0bpmhGydDm17xDHmwB4WHKvnima1NjmEWHKzgs8VbUEcpGD6+D/qYv9chGA6NXsE1j/YivXMM3yzfwY6fT90UyTP885Tl5aIzRVNjs6Iz+c/fA51KNdUnWT7fqjWOqspg+fqJEuzk0miCxdxHt22m/zUjkUYY2ATHBLyAo6suKp0OuVJNRa2Tq7LEjD4mlurSkhAnVziRK3/fbjxOJ0qtDq3RhCE+AYlUelwvV99gr1m4jqqy3Oyw8baAaygwybDnpVficbnZ+eO3WGofi6ud7q4x+J0+F989Gqfdzq8rX4/4Xvi3WcTmrz6n95VXh532CH6BLrVjF/L3hU4Qj8/03/iP5OayVZTjrnEEBb8TxZiQFDz2hpxc4VyGNTYbUpks7KRN8ItfrmY4uSqKCjHEJ9T7juXs2k5Kh87IFUoEQUCl0yGTK+pFUiMhlckxJiZTmptD6z4DqLFWU3S49tqzjsili46J+H/HUV2N6POhM8WEjXAG3IABkSvQzRV2QmZtMqToSO0+NKOgv6rYv70eF18R8rgqSo/L4WjUlRUYIqHU6lDpWsZBerpwRuQ6Bbjz8ymaNRv9kCEYrrqywWX9kcbJaPr3J/r22xvddux99+KzWqlYGTpp0bxkKbLYWH/nUhOR6rSkLF5Czf79mJ9+psFloy64gNgH7qfkmWewrV3b5NcIoOnbl5Snl2L9+RcKp89o8K6SY88ekMmaJnK1agVyeZPK58tefZXSF5YTP34cxmHXRFxO9HrJnzgJd3Y2qctfaLJoWBfLxx9j/fVXkmbPbrDvqy7ypCTiRo+m4p13cOze3fgKx1H19TcgCERddlnwMeN116Hq3JmiOU+GuPBi77oLb1k5lZ9+GnxMdLkoe/U19FdeiSIzE1lsLNqBA6n84ouQ17GtXUvlqlUkTJyALLb+j7TodpM/YQLS6GgSpk1rcJ9NN1yPIJNRvnIlziNHKZz8GIJajbJDBxKmTmnScWt69yZ29AOUvvgi9k2bIi4nNRhIe+lFfNVW8h56CF8EYbdm716QSkEiQRpVP7JSuvzFWjHsFkzX+wcJBJxfJ4Ltr7+o/PgT4sePr1dwH47S5ctRduyI7oLBwccEmYykuXPxVJQjT02hcPq0Bh2B8eMnIDUazsQW/8cozbPy0fyNVJbWcM0jvcnsFv4k+p+i06BkLrunG1k7S/nimYb7oERRZMt32fy4Yi+dBiZy+b1dkf1NvVWNIZVLuOSurnS7IJVf3zvA2k8PNdgH5XF5+ealXexdW8iF/+1E70sz/jFn3fFERasYNr43+lh1k5xDlmI7nzy1CavFybBxvUnv3Pzfx1NFasdornm0Fxazg08WbsZibvhi6uDGYlY9s43YtCiGPdoLjb55N7NOJXKFlEvv6UqPC9P4/YOD/P7hgWY7IM/w76AsL4fo1HRs5eVBR0fgYvOkJyxm+MveSxopLG+MQFm4QqUOilyqKD1dzr+wwfVKavvAwv29U2q0yBRyKouL/P1FpeZgIX2oyJVAVUmoMJC1fQtaUzQ+jwet0YRUJsOQkBQy6TCtSzckteKIMkwssCwvfFG5IShG+B03UdGxdDrnfDZ/8wXZO7cB/s4v8E+PtFda0MfGc97Nt7PzxzVkbdtcb5vg72j6etkSNAYj/a8eGXaZACkdO1N06ECIM8gQn4BCrYkYPz3ZyYoBTEnJQXFQqWlmJ5fdGrF0HvxxV2cziuctRQUYE0Nv1Hk9HnJ37yS9W8/gY4IgweN24XE3PWYXm5ZBWV4OSW3bo9RqKTi4Dwh1culj46guDe/YrrFW+12CpmiU6jAil7kYrdEUjCDKFUp0puhgBDNkW9VVKFQqiuuIXOGmNYbdD1s10cmpwSEPAQLCrqMRodztDLg0VWiN/kEPTY1Knu6cEblaGNHrJX/SJCT6KBKnTW142dri7qZGGsEvhBivv56y114PRqTsW7ZQvWYNcWPHNDiNMBzqrl2If/RRyl9/HevvfzS4bOzo0WgHDiR/3PhmF8mDXyhLnj+Pyk8/xbzgqYhCl3PvXpRt2zbJPSXI5ShbtWq0l6v83XcxL1pMzP33EXPXXQ0ua168BOvPP5O8ZDGqDh0aXDYcruxszPPmYxhxLVH/qT85pSGiR92Ksk0bimbO8vc+NYOq1avRnXsuMtOxaVCCVErC1KnU7NqF5ZNPgo8rMjOJuvQSyl57Peiss3z+OZ6iImLvuze4nGH4MBybN+M84j9R8TkcFM6YiaZ/fwzDw7usSpY9T83uPaQsXoRUF/nHDvzCk3HkSMrfeZe80aMRAeRyUp99Fomy6ZGk2PvuQ927F/kTJjYYHVSkpZH6/DJqduykcOrUet9BT3k51d//AF4vgkpF8fzQ6J8rO5vKVauIvfsuJGo1hmHXgFSK88ABvzjWTHwOB4XTZ6Dp2xfjdQ2f9ADY1m/AtnYdsfffX++kUdWhPbH33oe7oBBveQXmhYsibkeq05I8Zw729euxfPhhs/f7DKcfR7aV8MnCzai0ckZO7ktCqxObrnSqad0rjmse6UVFkZ2Pn9pEZUn9E16f18dv7x9g3aeH6XtFJoNv6YjkH4r1RUIiETj3uvacM7IdW7/P8fdBuesLxgFnXd6+cq58oDsdBzbs7P4nUOsUXP3IMefQzl/Cu9MKD1fyyVObkcokXDuxzz/SW9UY8Rl6RkzyX4B+smAzhYcs9ZYJCKjfvbabtn3iGfJQD5Saf9YhGA6JRODsEe04/8b27Pw5j6+X78Bp/9/oSjnDMcryc4lJTcNaUR6cABh0VJxkXFEfF49KqzvpXi6Xw4FEKkUql+OuTQC07tU3rEOrLsW1r+sNIz4otToEQYLP66GqtIRKc3GwyLtuebo+Lp4amzVEQMjatpnM7r2wVVagMZhq10mhvI7IJVeqiEvPBOrHJd01NVSWmI91M9VBrTcgV6pCYmV9rxqGtayUnJ3ba4+9H+Av97dXViKKIj0uuozMHr1Z/fT8oCsogM/n5buXnqXw4D6ueHAcygamuQOkdOyC1+Oh6PCxa5vAhMpITq7ygjwkUmmTI3uRMNURlcI5uRQqNQhC2Eib02aL2McF/rhiU8UbAEtRYcj+ABQe2o/bWUNGrcgliiI1Vr+rqrBWqGoKManplOZmI5FKyejWi5KsoyjU6hA3WFRsHDZLRT3xLPCa7poadNExwaL9ut/RqhJz0MUVwJCQGDauaK+qRB1loPiI//+LqolxxaqyUnxeLwmt65tCjrlBG/4bEnBpylWqoLvwjJPrDGEpe+11HJu3kLJgAVJ9wxcZVV98QfU335I0c0ajkca6xNxzN6LbTdkbbyB6PBTNmo2qa1cMQ8Pnuxsj+r+j0J57LgWTJ+MpidwxIkilJC9aiEStJm/M2IhOmIYwDBlCwtSplK9YQdlLL4ddpmbP3gZjm8ejbNcO5/7IIpfls88pnv0E0f8dRdzDDze4rYoPP6T89ddJmDyJqMGDm7wPAUSXi/xHxyGNiyVh8mPNXl+Qy0mcNZOanTupCNOZFQlXdjaO7dvDRgM1vXthuHooJUuWhghAsXffjTsvj6pvvvF/n156mahLLw2Zahl10UVIDAYqP/ULZKUvLMdTXEzirJlh78zZ1m+g7OWXiXvoIdTduzdp303/HYVoteLKzka020ldtBBFavPuRAlSKSlPPYXPbm+0O07TqxfJ8+dR9cVqSl94IeS5ys9Xgc+HEBVFwuTJVH35ZYhzsXT5i/7y/uuvB0BmMhF10UUglVLx8Sc0l5Jly/AUFZH4xOxGRW5RFClZsgRV165EXRK+6DX2nrtRtmuH1GjE8sEHDboutYMGYbzuOsxPLcSdH764/wynP4EJit+8uJOMztEMH9+HqOjm3ez4u0lsbQgKER8v2EzRkWN/l5x2N18+v4M9tX1iA4b+c31iTaHHhWlcdndXjmwvZdUzW6mxHTsZLsu38vGCTUFnXUbX08f1dDwB51D3C9P47f0D/PHxwRB32uEtZlY9vZXoZC3DJ5wesb5IGOI0XDuxD9HJWlY9vY2Dm465QAIDGdZ9epg+l2dw0W2dkcpO71PhruencuWDPSg6XMlH8zdRXtD0i8QznN543G4sRQXEpKSHiFxSmQylRnvSnVyCIBDXgDDSVFw1DhRqDYIgcGjjXwAktGq8N7ek9nUDnV51UWq0iKL/XK2iML92kp4XfVx8cNIkEJxOF4gsVpWaKc3NplWvftgsFUH3iSkphYqCUIE+0E8lkYS6gMsL8kAUwzq5BEHAkJAYjCYCxKZn0qpX32BvkynFL8JpDCZ8Xg9Ouw1BImHII5OJSUnngxmTWP/Zh5izjpC1fQsfzZ7Cnt9+5vIHx5HSsXOj71tcZisUajX5+/bUezzShMWKgjwMCUkNxkebQl3nVDjBSpBIUGm0EZxctrDCWAClVofX48HtaryfWfT5sBQX1pt+mbNzO0qtlvhWfpeio6oSl8OOQqUmZ9f2RrcbIDYtHUdVJfaqSjJ79qa6rCQoLgfQx/i/e9ayUIezu8aBz+vF6bD7O7lqb+g76wh/leaiYOl8AEN8IhZzfZHLUV1FVEwsVSXFOKzVTY4r5uzYBkBSu/b1nlNHNa3Xz11TA4KATKEM7q/zTCfXGY7HsWs3Jc8+S8zdd6Pp16/BZV15eRTNfgLD1UPRX3FFg8sejzw+nuhbb6V8xZuUvvgizgMH/MXoTXCChUOQSEieNxcEgYLJjzUoEMhMJlKeeQbn3r0Uz517Qq8XfcvNxD74ICVPP03Fe6El+qLbjfPAAVSdG/8RCKDq3Ima/fvDOp+qvl1D4ZQpGEeOIH7y5AYvlmzr1lE0+wmMN96A6dZbm35AdTAvWUrNgQOkLF6CVHdi5bWa3r394kMzOpMsn3+ORKdDd0F451jcuHGILhclzz4XfEzVuTPac8+l7OVXsHzxBe78fGLvvy9kPYlSiWHoUCyfr8Kxezdlb7xBzH33hp3e6bVYKJg4EU2/fsTcdWeTj9f6ww8giuDzEX333ejOO6/J69ZFnpxM8vx5WH/6qdHuOP0VVxA3dgylzy2jcrV/ao4oilg+/BBBKsU0fBjGkSPQ9O1L0dy5iB4PrqwsKr/4gpi77w5xTJquv87fy/X5500arBDAsX075W+sIPbBBxuchhrA+vPPOLZvJ+6RsRG/x4JCQdKTT+IpKUGelkbB1KkRp2gCxE+cgMRgoHDatJMupj3D34+rxsP3r+3mr8+P0PfKTC69uyty5ekR6WsMQ5yGERP7YkrU8PnSrRzabKayxOGfKpdVxZCHe5w2fWKN0aZ3vN+dVmjnk6c2U1FkI3tXGZ8s3IxCJTutnXV1kUgEzhnRjnOvb8+OH3P59uVdOB1uNn51lG9f3kWrHrEMffif70VrCiqtnKEP96Rtn3i+e3U3m77Josbm4qvnt7P79wIG39yBs65uc1oLqHXJ6BLDiMl9kcokfLxgU7OHHpzh9MRSmI/o8xGTmoatogyt6ZgQrjEYI5aMNwe/++dknVx2FGq/sH1k8wakMlnQ0RUJURQpre3kcjns9c4xlFotHpcbiVRGSfZR3DUOXA5HvWmHgQvvylqR6+jWTQgSCRnde2K3VKA1GgG/oFVZYg6J+EXF+AvL3c6akG0GJytGmMZniE+g6jgxosdFlwMiglQajKBpaid/B8rJFWoN182YR/eLLmPdx+/y9qSH+WTudOyVFkZOm0Ons+tP6w6HRCIluX0n8sL0clmKCoPx0bqUF578ZEUIdKUpkUikkbu1tNrwnVzWhuOK4cSgSFSXl+J1u+s5uXJ2bSO9S4+gcFma6/+OJXXoRM6uHY1uN0BMagbg72bL7N4bODbhNECg8L7quMhiIALo83jQmmKCril7HUGpoqig3hAAQ3x4J5ejqjLY2VWen4dCo8XlsOPzNZzoydntF/UMcfWrTtRRhtp9bcTJVeNAoVIhCELweB1nRK4z1MXncFAwYQKq9u2Je7Dh6Yaix0PBuPFITSYSpjYcaYxEzL33IFGrKV3+Isbrr2twSmBTkMXGkjx/PrY//6w37e541N26kjB9Gpb3P8Dy2ecn9Hqxox/AdOutFM1+gsovj5V2O48cQXS7UXVuupNL1a0bot2O83Doj3j1L7+QP348+iuuIHFmeOdR8HUPHyZvzFi0AwaQOGXKCZ34Wn/7jfIVK4gf9yjqrl2avX5d4ic2vTNJdLuxfPwxhqFDkajD312Xx8cT+8ADVLz/fkh/Wew9d+M8eJDSp59Bd9GFYeOZxhHX4i0tJX/cOBSZGcSGiXuKougXSmpqSH5qAUITyx/tW7ZQvOApUChAECLuf1Op2x1n/TNy+TpAzL33YrjmGgqnTsOxazeOzZtxZWUhut0YR45EEATiH5uM6/ARLB9/7HdxxcTUixVqBgxAlpSEaLNR/cMPTdpPn81G/sSJqLp2Jeb22xpdXvR6KVn6NJoBAxqdvqju2oWYO+/EXVSEp7wC83HTNesi1elIeuIJbGvX1ROcz3B6U15g4+P5m8jaWcald3dlwJDW/3iReXNR6fzTClv3iGXNK7t4f/Z6fF6REZP6ktqxaV2GpwuJrQ1cO6kPIPLBnA18+fx2UtoZGT6h92nvrDue7hekcvn93cnZU8Zbj69lw+qj9B/Sikvu7IJU/u85bZTKJVx4Wyf6XdWK9auO8NaUdRQdqeKqB7vT5dyTvxj8uzHG+x1q6V2i+ebFnaz/4kiDXXBnOP0JdFZpjdF4PR6ioo+JXFqTqcVErkpz8UlFkFwOBwqVmhqblcJD+1FqdY1uz15pCXb7+Lzees4flVaHy2HDkJBISbbf8WWzWIg+zl2lNRiRyuXBXq4jWzaS0rEzos+H1+MJ9phFJ6eAKAanNQIoNP5zSmt5qBOnNDcbfVx8vcmKAfyOm9AesICoJ60jhGj0Rv+xVlmCj8kUCi647R7uf+VdbnxiIbctfoHbliwnrUvT0g0BUjp2oWD/3hChIz7T714yZ9fvWCvPP/nJigGUWh0SWeTzeKVWF7a3yWm3RZysCAQnc9Y0oWvOUjuQoK6Ty1XjoPDg/pA+rrL8HCRSGW36DKDo0P4mTwY0JiYhkcoozcshKiYWmUKB7zizRFRt73B1WajIVXf/ddExyJUqZEpl0OnnctixVZRjSgoV6IyJSdgrLfWcjY6qKowJSSAIlBfkoqp1w7ns9R2QdSk4UNsjFqY/WKnRIAiSxju5amqQq/z/T/S1Ild1qbmhVf41/HvOVk5zBKmUqMsuJXnRQoRGuqRKnn8ex65dpCxaGLbYuilIdTrkaWng9RJ1UfjoUnPRnXM2MXfdiXnpUhw7dza4rGnkSAwjrqVo5swT6iISBIGExyZjuPpqCiZPpvqXXwB/VBFBQNmhY5O3percxZ8Pr7PP1j//JP/hMegGn0/yvLkNii7uggJy7rwLeUICKU8vRTgBq6/bbKZg8mNozz+P6P/+t9nrH49UpyP5ySexr19PxbsNiw/VP/2Mt6Q0GKGLRPStt6BITaV43rzgHTV1377IMzLwlJQQe999YddTdeiALCkJd1Y2SbNnh/1+Wz78iOrvfyBxzhPIE5vWB+ApKSFvzFgEpRJZTAyGa6+lfMUKvCc5TSh29Gi0gwZRMG487oKCiMsJgkDirJkoO3Qg76GHKF+5EkGpRNW7N8q2bQFQd+mCYehQzEufpnL1amLuuade750gkWC68Ub/j9Nbb4d7qXoUz1+Ax1xCylMLEOSNuyKqvvwS58GDxDfg4qpL7OgHUKSnI4uObjS2qDvnbEw33Yh5wVP1hOIznJ4c2FjERws2IUgERj7Wl7Z9/vnpdieKVCYhqa0RQQCP24c+VoX6NCoAbw46k5KEVga8HhFESGit/9c4644nNlWHLlqFy+FFppCQ2Nrwr3E91UUQBBIy9cjkEtw1XrQGBcb4hvtwTmcUKhmX3t2Vs65pzaZvsvhy2XbsVc2vjjjD6UHhoQOYkpKDAlDdDh+toeVELjgmqJ0ILoc/rlh85BDgd5k1JlSU5GSF/Nt+XF9qIJJlSkyiLN+fWrBWlNVzVwkSCfrYeCrNxbhqHOTs2kHrXv2wVZQDfoEQjvV41e3lolYErjSHXrSbjx4KTisMR8DJVfcm8+EtGwDwuF1BgS/g5HKE6YJVajQkt+9ETGr6Cf3tTO3YBZfDTmlOdvCxmNR0pDIZ5qOh8VN3TQ1Vpeaw8csTQaFq+IazShs+TtdYJ1fAydUUIaqisMD/2ddxKeXt3YXP6yW9a4/gY2V5uZiSkmnbbwA+r5cjWzc2um3wR4KjU1Ipq3X1yZWqeg45uUKJWm+oN92z7kCIQMRYo/dP2gSCE0OPF7kMx03uBPB63DjtNqKiYzDExVOenxcs/HfaI79PjuoqKmtL7NW6+k5xQSJBFRXVZCcXEBTZKwojXzv9mzgjcrUQgkJB/JgxKFu3bnA524YNlL34EnEPPYi6Z88Tfj3bunXU7NiBLDGR0ueea7GoUdzDD6Pq1In8ceMbnM4GkDhtGso2bch76GE8Fc3/IRYkEpLmPIFu8PnkjxmLbcMGHNu2oWjTullRP6lOi6JN66AwZ1u/gbzRD6IZeBYpS5Y0KCJ4KirIufMuBKmUtFdfPSHRUXS7KXh0nL+zbN68FrsQ0A4c6BcfFi/GlZ0dcTnLBx+g7tULVYf6mey6CAoF8ZMnYV/3F9affvI/6PMh1o6P9UUY6+suLMRbWgqCEHb6n/PwYYrnzcN4/fXoL26a4Cp6POQ/Og5fdTWiy0Xqs88S9/BDiE5no07CxhCkUpIXPoVEo2m0O06iVJL67DP4amqoXvMdotNJ9PXXhSwT98hYfNXVSNTqiOXwxmuHg1RCzfbtOHbuanD/qn/6CctHH5EweTKKzMxGj8dns2FevISoSy9t8t8MiVJJ8vx5eIqLkaWkUDh1WsOxxQkTkKekUPnF6iZt/wz/DB63l1/f28/3r+2hdY9YRkzqiynxxGLRpwNul5cfV+zlt/cP0G1wKlfc353irGo+nr+JiqJ/V+9QVZmDTxdu4dAmMxfc2pG+V2SyftVRvnttN25n84aI/NPk76/go3kb8bp9DBvfm6S2RlY/u41tP+T8q2LNoiiyZU02Xz6/ndSOJoZP6IPX4+OjeZvI3Vv+T+/eCSMIAn0uy2ToQz0pya3mgzkbyN337z2e/88UHTpAYpv2QZdSILIEoDVFB4WckyE6JQ2ZXFFPGGkOgbhi8ZFDyFVqdNExjYpcpdlHQ/qh6rqdoNYNZLdhTEiiurTEL4CIInFpmfW2ZUxMwlJUwOHNG/C4nLQ/6xystQKgrnbYklpvQKnVUlFwTOSyWioQBIHqOk4uURQpPnqYhNZtI+67IT4Rr8eD1VIeXCendrIiosjBDf4bhyqtDkEiwVZpCb+hkyCxbXukMhl5e49FFqUyGTFpGfXip8GOsZTw8cvmIpXL67ma6hLJyVdjszbYyRWcGmprgpOruBBDXELIdyhn5zaiYuJCxKPyvBxi0jKIio4lqW0HDq6PfFP3ePzl8znH9t9aTVleTsgyxvjE4KTN4HIB4UgQ0EX7RS51lCHo5ApM+TQlhjrrjAmJwWML4Kjyb0utNxCdnEp5QV6dCZaRJ1Hm7z9mMAnn5PLvk75JnVxypV/U1NWKXFVnnFxnaC7eykoKJk5C07cvMXfffeLbsdoonDIVTb9+JM2bi2P7dqpWt8zFqaBQkLJ4Ed6yMopmz25wWYlSScqzz+JzOMi7/wF8joZtlWFfTyYjZfFi1L16kXf/A9jW/ommV+9mb0fdrTs1O3Zi37KF3PvvR9O7t39CXwOuOp/NRu499+KtqiL9tVeRJ5yYG8K8aBH2bdtIeXopsuiWjdjEjxuHLDaW/PETEMOINa7sbGxr12I8TpiJhG7wYLTnnEPx/AX4XC6qvvkWT3Ex8vR0yl5+pd7yoihS9MQcBIMeiU5H+bvvhjzvczrJf3Qc8pQUEiZPavJxmZcsxb55M2JNDYnTp6Hu1hV5fDymW26m7I03cBcXN76RBpCZTKQ8+yzO/fspmja9wQszeWIi+osu8veCyeVEXXppyPM+uwNEEV9NDZ6S0rDbkMXE+Ac/SCSUrVgR8bXcRUUUTpmK7oILmjRNEaD0pZfxVlYSP2FCk5YPoO7Wjdj77sNTWIi7rAzzosixRYlaTcY7K4kbO6ZZr3GGv4+yfCsfzdvE3j8LOf/G9lx0e+d/rUsIoLLE3191eKuZi+/ozLnXt6dVj1hGTu6LIMDH8zdxZOu/o3coZ3cZH87dSI3NzbUT+9D57GQGDG3NpXd3JWtHKR8v2ER54ekv2ok+kU1fZ9UWzOsYObkvyW2NXPVgD3pelM6fHx/i+9d243J4/uldbZQam5tvXtzJus8O0/vSDC6/vztJbQyMfKwfcRlRrH52G1vWZP+r435pnaO5fmp/opO1fPHMNv5adRift+F6gzOcPng9bsxZh0ls24HKEjMKtTrEBaM1toyTSyKVEpteXxhpDn63h5rS3Gxi0zNQ66IadeOU5GShMZqQKf0ukePdTkqtFp/XS1Tt9ERlbZQtOkxPVnRyCuUFeexf+ztJ7TpgiE+o5+QSBIHoJL9IEMBaXoZUoaCmTkKgsrgIp83WoMgVECMC/UnlBXnYa4WsmNR0Dvzlr8MQJJLaCYuWBt+LE0GmUJDQpj35YXq5jh8kUJ6fC/gFzZZAkEjCRkwDKDW6CMXz1kbiigEnV+MiV0VhQdjS+fRuPULMBKV5OUFxr23/gWRt39KgOFSX2NR0yvJycDrswe/zW5MeDin8NyWnUJ4f2o9ss1iQSKT+KG3thFGNXo+9VrCqKMhHHaUPOtcCaAxG5Cp1qBBb+z3WmaKJTkmloiA/KHI19D4VHNjrf68FIeJ7ro6Kany6Yo0jOOghIHK1hLh+OnBG5Pqb8HcWTcfncDSrsygcJUsW46moIOnJOegGDiTq8sv88acTcFOFQ5GeTuLMGVR9sRrL5583vGxqCmkvLqdm/37yJ0wIW/7eGBKlktRly1BkZuDOzUOeltr4Sseh7tGDmn37yL37HtRdu5L6/DIkSmXE5X0OB7kPjMZ15Ajpr7zcJEdNOCpXf0n5m2+RMHkymj59TmgbDSHRaklZspiaffswL1la7/nyt1ciNRrRX3ZZk7YXiIm6CwooX7GC0uXL0Z53LnEPP4ztjz9w7A79Ma1eswbrTz+RNH06xutGYvnoY3x1LMrmRYtxHTlCyuJFTe7TqvrmG8pffx0kEgzDh2MceUzsib3vPiRqNSVhjrW5qLt2IWnuXCpXrYo4yRP8EzGrf/kFBAHcbqrXrAl5vnT5cmRxcUhNJkqWLIm4nejbbgOfj+pvvsFdXP8uiOhykT/2EQSlkqQn5zTJ8efKzaX8jTeIufOOZk+cBIi9715UnTsj1WmxvP8B1t9/j7iszGT6V8aR/tcRfSLbf8zlw3l+C/7Ix/rS9fzUf/VndWRbCR/N24TH6WXEpL60738s4mxM0DBiUl/SOkXzzUs7+e39A3jcp6cTyucT2fjVUVYv205Cpp7rHu9HXPqxO6pt+8QzYnJfRJ/IR/M2su+vwga29s/isLr48vntrF99hD6XZzJ0TE/UUf6bRBKJwKBr23LJXV3I2ukX9EpyTi5Wfiopzqriw7kbKTho4Yr7uzHwmjZIavvqVFo5Vz3Yg16XZLDus8N8+fwOHNX/3rif1qBk6MM9GTC0NVvW5PDZ4q1YzE27wDvDP0vhoQN4PR6S23ekqqQYfWx8yN91rdGE025r0iS6xggnjDQHl8OOXK3GUlyIKSEJdROEnZKcLNS6qKDb6XgnV0Dw0OqNIIr+qYbxCWGjctHJaVQWF3F060Y6DvIPJ7JZKlBqtSHl6HEZrYKRSvB3cSk1WjwuJx63f/Jt8VG/2NfQdMhAbDQQKzu6ZWNwuFebvgPI27Mr+LloDMZgTK2lSe3Ymfx9u0Nu1Ma3ak1Zbg5eT91JvrnoomNQalomih2IaQZ6sY5HpavfySX6fDjt9gbjihKpFIVa06S4Ynl+bjCCCv7PuyQni4w6UUV7VSWOqspgTLPTuYPxetzs/eOXRrcPEJOWTo21ms8XzEYUfUjlcjR6A9+/siz4HkQnp1JemBfyGdgs5UgVCnTRscHH1PpjTq7S3Gxi0zLqvZ4gCMSkpoW4xQJ9X1ExsZiSUrEUFwZFq4ZcWAX796KL9pfeRzofbIqTy2mzBsU4uVKFTKHEYa3+V7m2I3FG5PqbKH/zTaq/+46kOU8gT0pqfIUI2P7ydzTFP/ooinT/f+rExx9H9HgwL3iqpXYXw5AhGK65hqJZsxvt3FJ360bK0iVYf/6F4ifnntB/DKlOS/QddwBQ/tbbDXYphUOWkAA+H7LERNKWv9Cg4OKz28m9734cO3eS9tKLzZrkWJeavXspnDYNw9VDMd180wltoymou3UjYfw4ylesoPrnn4OPeyoqsHz8MaZbbqnXE9UQyjZtMN18E6XPv4Dr8GHiHngA/WWXIk9LC5lK6LVYKHpiDlEXX4T+kkuIvvlmfDYbllWrAKj++Wcq3n6b+IkTUXVsWoeaY/duCiY/hqBSoezQgcTp00L+OEujooh7+GEqV61qtBeuKRiuujI4ybPq22/DLlO1Zg3ekhKQSIi6/HIKZ8zEefAg4B+EUPXVV8Tcdy/xY8dQ9fXXOLaHH1Gsat8ezVlnAVD+zjv1ni9euAjH7t2kNtHxJ4oixfPmI42JISZM2X9TEORykp9agM9qQ5acTMHkx/CU/DvcMWcAa0UNq5dt54+PDtLtvFRGPtaXmJTIJ5CnOx6Xl1/f3c83L+4kuZ0x4vEo1DIuvacr593Qnt1/5PPJU5uxFJ9eF+7V5TWsWrqVDV8epd8VmVw5ukfYqYMxyTpGPtaPtn3i+XHFXn58ay9u1+kl2hUeruTDJzdizq5myIM9GDC0dVAUqku7vglc93g/5CopHz+1iZ2/5J1WJ8KiKLLj51w+XbgZdZSC6x7vR6secfWWk0gEBg5rw1UP9qAkp4r352wg718c9xMkAn0vz2TYo72wVzn5YM4Gdvyc9692qf1/IHvHVlS6KOJbtaaqxBzSxwUEC9XtLeDmSmjTlrLcnLBT+ZpCTW3XUmVxEYaEpEZdZl6Ph/K8HOQqFeqoqFq3U/1OLgBllP83wOOqISaMMAB+oUEURUQROgREroryoIsrQHKHTpTl5QSjdNbyMqJqhYiAsFB89BC6mFg0BmPE/ZcrVWiNpmBM7eCGdf7eIkGgw6Dz8Lic5NfGCLVGE7aKsojbOhlSOnXBZqkIibfFZ7TG5/WExOzK8nJbzMUFBAXBirr9ZnVQarTUHNfJ5arxpx4aiiuCP7LYmJPL43JhKSoM+T7k7PZPTqxbOl+e53ewxab5r4ejomNp3bs/O374pkm/TQFxLK/WuRWTkoY+No6yvByya+Op0cmpOG22EFHXVlGORCIhKuY4kava/x0vq41QRnrNUJGrFKlcjlpvwJSUgujzUVNdjUQqiygkez1uig8fRB2lR62LXLOj0ulD+sPCUWMLHRag1usRfb6gYPdv5ozI9Tdg37gR88JFRN95R5M7i8Lhrayk4PHH0PTtGyKqyOLiSJg4gcrPP2+wYLq5JE6fhrJ1a3LvfwC3ueF8btTgwSTOmE7Fu+9Suuz5E3o95779SKJNCAoFeQ89jK+mpvGVAHdxMUWzZoFUimbQQCQN/IH12e3k3v8Ajp07SX/5JTR9+57QvnpKSsgb/SCKVq1InDXrlLsqTKNGobvgAgonPxYUACtqo4MnIrDF3n8/otuNLD4edc+eCDIZMXfeSfWaNTiP+stJixcuRHQ6SZg6DQB5cjJRF19MxVtv4yoqovDxKegGD8Z0y81Nek1PSQl5D4wGqRSJTkfaC8+HFeeMI0eg7NDBL5g2MlmyScc6+gH0V15JwaTJOHaEjhcWRZGy199AUCgwDB1K8twnUaSlkTf2EXx2O6UvLEcWH49xxAgMw4b592vBUxF/PGPuugt8PipWrsRbdezuSeVXX1Hx9tskTJ7U5F6tgIsu4bHHkJzE3Tll69bEjxuHp6DA3x83aXKLvK9nOHWIPpFdv+Xz7qz1lOdbGfJwD865rh0y+b83nliWb+Wj+ZvYu66Q82/qwOX3dUOpidyXKAgC3QanMmJSX9xOLx/O3cj+9UWnhahyaLOZD+ZsoKrUwTWP9KL/kPCiUAC5UsqF/+3Mhf/txKFNxXw0b9Np4YTyen2s/+IIny3aTFS0iuun9CO9S0yD6xgTNIyY2Jcu56bw2/sH+PblXTis/7wTylbp5KsXdvD7Bwfpen4Kw8f3Rh/bsLs4o2sM10/tjylRy6pntrH+iyN4/8Vxv6S2Rq6f2p+OA5P4/YMDrHpmK1Wlza+ROMPfQ/aOraR37YFEIq0VuUI7T7VGf9eUtQVSGikduiCKPgoPHmh84TDUWKuRq1TYKy0YE5PQmaIbdJmVF+Th9XiQyuSodLUiV71OLv+5us/tqX0NG7ERitNNyX4ne1K7DsfeF0tFsI8rQHJ7/w3XwoP78Xo82CotwXWLDu4HoPjwQRJaRY4qBjDEJ2IpLqKqtISCA3vx+XyoNFri0jPRxcSStX0z4Hd9VZ2im4fJ7TuBIAQFNYC4zFYgCCGOtbL83HqF/SeD22FHplBGdnLVTles+3sccGcpG3Bygd8F1pjIVV6Qhyj6guIV+KOKsWkZwc8f/FFFiVQaEmvscfHllGQfJXd36Pl+OA5v9g8TyOzeE4C4zNZYiouITc9kx4/+G+PRKanBfQpgq7Qgir4QkStQPO9xu6kozA/Z97rEpqZTlp8bPA+vLislKjoWQRCCXWOW4kI0BkMw/ng85qwjeNwuZEplsOcsHGp9E51cdT6zgChsKS6KtMq/hjMi1ynGbTaT9+ijaPr0If6RR054O6IoUjh1Gj6rzR93lIR+dIZrr0XTvz+F06Y3WhjfVCQaDakvPA8+H3mjH2xUdDJddx1x4x6l9PnnKX3xxWa/nn3TJrR9+5H2/DKchw9TNGNmoxc0XquV3Hvu9Zf/DR5MzdZtkZetrib33vuo2bmT9FdePmGBK+AEE93uiEJNSyMIAklzn0Si1ZI7+kHcJSVUvL0S4/DhyI77kW8K9vUbwOfDYzYHHVOGYdcgjY2h7NVXsa1bR+Unn/oLyet0lcXcfhuurCzy7rkXQSYjae6TTRL4fC4XeQ89jLeyMvi+hSuxB39xfMLjj+PYtg3Lhx81+9jqba/2vVN16kTuffcHRTwA6y+/4Ny7F9HlIvq2/yJRq0l5einuggLyJ06i6quviL33HiQKBYJUSvzECTi2bKH6u+/Dvpb27EEoO3ZAdDgoe+stAGr27aNw2nT0V12F6aamCZKeiopaF93F6C+95KTfA9MtN6MbPBg8Hmxr1/rjomc4LbEU2/l86VZ+fXc/7fomcOOMAaR3blh4OJ3x+US2fp/DR/M2IQi1ccvzUpp8YyAuLcrvyOkZyw9v7OHbl3f9Y9PkXDUefn57L2te2UVqRxPXT+1PSvum//3tODCJkZP7IZUJfDx/Exu/OvqPdSiVF9r4ZMFmtnybTf8hrbjm0V7oTE37LZPKJZx3fXsuu7cr+QcqeG/Weo5u/+ccooe3mnl/9gbMWVVc8UB3zr2uPVJZ005vtQYlQ8f4436bv83mkwWbKctvmXOofwKFSsb5N3Zg6NieVJY4eP+JDWz7IedMV9dphrWinKJDB8ns2RtRFKk0F2M43slVezFvs7RA+XxyCipdFPn7dze+8HGIokiNtTp4UW6ITwy6zGwRBLiSOtFIlU6H2mCs5+QKXFgHpiF6XM6wES8Ac+1kyLrF6uGcXMbEZNRRegoO7PW/b6IYjLwVHtqPz+ul8OD+oBjWEKakZCoK89nz20/IlErcTie6GL8YkdG1Jzk7/a5+fVxCcHBAS6PS6ohLyyB//7GOKIVKTXxG62BXl9fjxlJU0GKl8+B392gMBiqKwqdqAn1qHucxkTPQ0aVqoJMLAk6uhv/GBiYexqT6vw+iKJK9c2vIVEXwO6aMicnBXiyAzB69SWzbnt/fe7PBa8gDf/3Bb++8gdpghNrTkaS2HbBXWmjXfyBHNm/AYa3GkJCEIJGE9HLZKsrxuN3HObn0OG02SnOz8Xm9kZ1caRl4nE4qayc2VpeVoovxn+PpTNHIFEoqCvNr44+WsNso2L8PqVyOQOTSeaiNK0YQygI47bYQ911sun+/Az1vATZ+8Qm5e04+YfN3ckbkOoX4Ah08goSUJYsR6kyIaC6WDz6g+vvvSXpyDvLk5HrPBy7kvRZLo4XxzUGekEDq8hdwHjpEweTHGnWAxN59N3FjHqbk6Wcoe/XVBpeti7eyEsf27WjPPhtVp04kPfEElatWYfn444jriKJI4WOP4c7PJ/3ll9ANPp+aPXvwVte/Q+A2m8m+dRQ1+/eT9uqrJ9yfJXq95I8bj/PoUdJeevGkoqfNRWYykbr8BVzZ2eTcfgdem42Ye5o/wED0eCh5+mk0Z5/tdybNeRJRFJEolcTcfgeVn6+i4PEpaPr1wzhyRMi66h49kKen4zxwgKR5c5scuyuaMRPHzp2INTUkz30SdffuDa6jHdAfw4hrMS9adNIl9FDb+7b8BaRGI7l33oW7uBhRFCld9jyCQoHuogtRdegA+OOcidOnY/3hByR6PYZrrw1uR3f22WjPOxfz4sVhBwEIgkD8o4+CKFL++hs4jx4l9777UWRmkDS76Y4/8/wFiG43CdOmnvSxg79ENHn+PKRGI7L4OMxLn8a+eXOLbPsMLYPH7WXT11m8P2cD1ooarh7bkwtu6dig2+l0p6LIxqcLN7P200N0PS+FEZP6EpPc/LilQiXj4tu7cOndXSk4YOH9J9ZzeOvfO/0nZ08Z781ez4GNxVxwa0cuvbtr2HhiY0QnaxkxqS+9L8tg41dZfPLU5r+1lN7nE9n+Uy4fzt2Ix+Xl2kl96HtFKyTS5p8OtukVz43TB5CQqefr5Tv5ccUenHZ34yu2EE67mx9X7OHbl3aR1NbAjdMH0Kp7bOMrHoekNu537cQ+eNw+Ppy3kc3fZv2rhaG0jtHcOG0AHQcl8ecnh/hw3iaKjvz74yf/K+xf+zsSqYR2/QZRXVaK21mDKTm0j1YdpUcmV1BdGn7gTXMQJBKS23cMmcjWVFwOO6LPh8ftP+cxJiSiqxW5rBFieuaswxgSEnE5/B1N4crZAxGpuhfTsemZ9bYliiJ/ffI+cqUqxDlms5QHxbbgcQoCyR06kb9vT7BPKxBJK8k+Skn2UdzOGlI6dmn0uGPSMijNyWb3rz/Qqmdf//TC2m2ld+tBSU4W9koLhtri/Egl7SdLSqcu9crnUzt3JW+vf5J3aW4Oos9HbHqrFnk9j9uNx+VEZ4qJKHIFC+Tr9HIFOrqaFFcMM5mxLqW52UTFxAU7xizFhVSXloREFQHK83Pquf8EQeDcG2+j6NABtn//TdjtH9ywlq+eXUjHQeeR0bUHFYWFIAhkdPeLaIaERHw+H/v//A2ZXE50ciol2ceE2+qKcnweD7o6IleUyS9UFdQKkrGpkeOKAGV5fiGvqtRMVIw/Vi9IJBgTk6goLAg6w8JRcGAviW3aUWO3odbpwy4DoNZF4XLY8XoiD4upsVlRao6dlyW2bQ/4/78E8Pm8rP3o3RD34L+BMyLXKcLvvJpKza5dpD77DLLY5p94BajZu5fiufMw3XRjg3FHRWpqsDC+soWmLQKou3Qh+akFVK9ZExREGiL2/vuJfeABzIsWU/riS02Kl9jW/QU+H7pzzgbAMOQqjCNHYJ43H1deXth1yle8SfX3P5C8YD7Kdu3Q9u8PPh/2DRtClnMeOUr2jTfhtVjIfGclmt69mnjkoYiiSNGcOVh/+43UpUtOuMvrZFB16EDitGm4Dh1C3aUL8sTExlc6Dssnn+LKyiJh/DgSHnvMP53zyy8BMN10I4JSiae4mMTZs+o5Bq1//ok7x58l9zXRMVj20stUfvYZeL3E3H0XhiFDmrRewsSJSNRqimbOapGIksxkIv21V/2joO+8k6pvvqFm925El4u4Bx8MWVbV0S94iXY77tzQuxkJEybgzsurN2kygPbcc1F27ozocJB96ygQRdKWL29y5LDq22+pXLWKhEmTkMef2MTPcEiNRlKeXoqnvAJZTAx5D4/BXXj6FmH/f0EURY5uL+G9WevZ+OVRug1O5YbpA0jt2LKTWv9OfF4fW77L5oM5/omDw8f19sctFScXt2zbJ54bZwwgsbWBb1/axXev7T7lri6n3c1Pb+1l9bPbMcZruHH6ADqfnXxSEXWpTMKAoa25dkIfXDX+KObmb7Pwek6tqFKWb+XThZv548ODdD47mZGP9yM+I/IJclPQGpRc8UB3/jOqI4e3lfD+ExvI2nHyF+UNIYoihzabeXfmeg5vK+E/ozpx+X3dgkX5J4p/eEBfel6YxvpVR/jkqX+5q0st47zr2zNycl8kEoFPntrMzyv3nRbx0v/PiKLInt9+IrNnX1Q6XTAGdbwTRxAE9HHxVJa0TGwouUNnCg/63UzNIRAtczkcyJUqNAZj0EEVycllzjpKfGZraqxWVLoodNExWMtDBTGZQoFMrsBSVIhU4R8UFRMmrpi9YysF+/eQ1qUb5trSeNHn88e8Yup37qV37UHB/j1B5018ZmvA7xjL27sbqVze4GTFAHFpGXhcTixFhUGHWWonvziW3sV/ozZn1/ZgzLSq5NTceEnp2IWKwoKQDrTUzl2pKjFTVWL2T80UBOIyMlvk9QJilT4+PmJcMSBk1S2fD3Q/NRSfA1A3Ia5YmptNzHFRRUEiIa1z1+BjoihSkp0V1jGV3rU7PS6+nF/eeoWsbcdu6Pq8XtZ/9iFfLJlHu/6DuHz0o8SmZ2ItL0WjN2CIT0IdpcdSVESrnn3Y/duPACS2aUfRYX9Xr9fjxlm7/1HRx1z2UbH+8/XCQ/vRxcTWm6wYXC4mFqVGS0l2FuCfIhmIKQKYEpOpKCoI22MXOO6C/XtIbt+Jmurqhp1cev/ve6T32+tx43E6Q/Y1PrNN7XEcizaX5+fhcTmDz/1bOCNynSJKn3+Bqi9Wkzx/XpM7eMLhKSsjd/RolG3bEj9xYqPLG4YMQT9kCEUzZ+HKyWl0+aaiv/hiEmfNpOLddyl59tlGl4996EFiH/IXfhfPm9eoA8z6x+8o2rRBnnJsglz8pMlITSYKwzjIHDt2YF7k7zmLuvBCAOTp6SgyM6n+6afgcvaNG8m++WYElYrM995F2a5dcw47iCiKmBc8heW990maNRPd+eef0HZaAuf+/QhyOY5t26isLYFvKj67ndJly9APGYKqUye0Zw0g6uKLMS9chM9mw7F9B6LDAT4fvuMcce6CAgrGjUd79tloBw2iZNkyxAbuDgBYPvuckqefBqmUqMsvI64ZkV2pXk/ijOlYf/6Zyk8/a9ZxRkKelET6a6/iKS2j8PEpoFCgu+iikOJ8URQpfuop5JmZyNPSyB/7CD7HsV4TZbt2GEeOpHT5i3gtlnqvIQgC8Y+MBVHEW1pK0hOzI0Yzj8eVl0fh1GlEXXYZhuHDTvZw66Hu3p2ExybjMZsRvR5/DNlxprPln6KiyMaXz23n6+U7McRruGF6f86+ti3ykxSD/kkKD1fy0fxNrPvsMN0Gp3DD1P4ktTW22PY1egWX39eNi27rRM6eMt6d+Re7fstv8ZJtURQ5uKmYd2et5/AWMxfc0pGhY3o22vPUHBJa6bluSj+6DU5l/RdH/RMBD1labPsBPC4vf31+mA+f3IjL4WHY+N6cd0P7FvueCYJAp0HJ3DCtP6YkLV+9sINvXtxJdXnTejWbQ3V5DV+/sIM1r+wioZWem2YMoNOgpBbrxZTJpQwc1pbhE/r4u+Ce3MjaTw7hqmn4t+50Jj5Dz4jJfTnvhvYc2lTMyml/seW77NN2aun/Ojm7tmPOOkzPiy8H/E4mqVyOPsxNLUNCYtCRdLKkdOiEu8YR4tBoCoFoWY3VijEhEUEQ/FMN5Yp6whXUni9nHSY+ozU11mpUuih/b1VpCT5f6HdOqdVSXVqCTB7eFSuKIn9+uJKk9h1p228g5QV5uBx2bJUWvG53vbJ+gMweffB6POTt2YnWaKqNlAl4nE6ydmwhsU37iK9Xl4CrzJScQnWtYy2zpz8FoouOISY1nZxd2zHE+8/vKk+RyJVa6zqr6+ZK6eC/yZ67Zyfmo4eJTkoJO5XyRAh83sbEZBxVlWEdasowTi57ZSUSqbTB6YrQeFxRFEWKjxwKmX6ZvXMrSW07oFAfu1lcXVaKo7qKhNbhhZfBo+4mo1tPPp0/iy+fXsAvb7/GinEP8Mf7bzHgmuu48uEJSKRSYtPS8brdaAxG/wT6Nu0wHz1E5/MupOjQAcryc0ls056S7KN4XK4QsbGuyBpVa2YxHz1CUpv2EY9PEATiW7Wh+MhBHNVV1FRXhUyRNCUlYykqQGMwhC1/rygswFpRTmqnrjis1Y0WzwMRS+Sddv8girrF87Fp6bXxzGM3+AsO7EMQJCS2PbFr6H+KMyLXKcDy2eeULltG3Ngx6K+44oS3I7pc5I0Zg+hyk/r8siZ3PyXOmI40Noa80aPxWlvOPmu67jriJ4ynbPmLlL32WoPLCoJA3OjRJM6cQcXbKymYOClsvAv88Tnrz7+gO++8kMelOi1J8+Zi37QppJtJdLspnDYdVYcOxI8dG/KaURddiPWnn/G53ZSvfIfs2+9A2a4dme+sPKloYckzz1C+YgUJU6diHDGi8RVOEc6DBylfuZKYB+7HcO1wCh6fQvUvvzR5/fI338RjsRA35uHgY/ETJ+C1WDC/8AKFjz2Guk8fFG3bYl64KOig8rlc5I0Zi6BRk7xoIXGPPILr0OEG46TWP/6kcOpUkMtR9+5N8oL6XXKNEXXRRRiuHU7Rk0/iPNK8E7NIKFu3xnT99Yg1NeByEXvfvSHP237/Hfu6v0iYOIHUZ57GlZtL0Zw5IcvEPfQguN2UPP9Cve2LonhskqMgYPnkkybtl+h2k//oOKQGQ7Oijc3FdNNNGEZci89qo+bQIQqnTD1TRP83U11ew09v7+W92RuwmO1ccX83hjzUA1Niwzb/0xl7lYsf39rLpws3I5EIjJjYl7NHnLx7KxyCINDhrCRunnUWrXvG8eu7+/lk4WZKclumzL28wMaqp7fx3au7ScjUc+OMAXQ+5+TcW5GQK6ScfW1brnu8L3KllM8WbeGnt/dSYz352J8oimTtLOX9Jzaw9Ycc+l6ZyfVT+pPcgqJjXfQxaoY81INL7upC0ZFK3p21vsX6oLweH1u/z+HdWespybVy+b3duOL+7k3uEWsuia0NXD+lP/2GtGLnL3m8N8sfkT0dBh+cCBKJf5DDzbMH0qF/An99foR3Z6znwIaiM1MY/0ZEn48/P3ib+Mw2ZPToDfhFLlNSChJJ/b+VhvhEKluoANov7iiaVMhdl0Bxtb3SgiHBnx4QBAFDQiKW4vpxtvL8PJw2Gwlt/XEqlU6HIT4Bn9eDtTy0X0yp0WKzlAfdZVWlod1+R7ZspOjQAc4eeYvffSWKmLOOBF1Tx/eYgV8kMMQnUJx1GH18AhKpFI3JCEDhgX2kdGxaCqMkJwuAhFZtMR85hCCRYKgzHCC9aw+yd25HYzAiUyipLD41znhddAyGhETy6ohcGr2B2LQM8vbuwnz0CPGtWs5hE3D9BGKAFYX1P2ON3gAQEqezV1pQ6w2NnuertA07uazlZdgsFSS08QsqPq+XnJ3byaz9/xLAXNv7FsldJFMoGDpuCoNH3YmluJBDG9cRl9maW+Y9zTk33Brcz0Dvl1zpdxMmtGpL8ZFDtO7dD6VWy57ffiKxTTt8Xi/mrCNBYVeQSNDVqWxRqNQotVosxYXByF8kEtu0o+jIoeD0SlPSMYOHMSmZqtISlBpd2OmK2Tu3IpFKSenYGafVijqqgbhi7XORJiyGi5hKZXJi0zNx2m1BQS97x1biW7VpMSH17+KMyNXCVH27hsIpUzCOHEHMvfc2vkIERFGkcPZsHNt3kPrss80SaKQ6HWnPP4+7oJDCx1p2klrMnXcSc/99mBcuouSFFxo94TPdcAMpS5dSvWYN2Xfcgaes/l0f+6ZNeMvK0F9+Wb3ntP37Yxg2jJKlS/HU2qLL33ob58GDJM6ejXDc3Zioiy7CW1FB3v0PUDxnDtE330z6668hNRpP6HhFUaTk2Wcpe/El4idMILqJkwRPBaIoUjT7CRSpqcTceSdJs2ahu2Aw+WMfwb5lS6Pru/PzKX3pZaJvuQVF6rG7Boq0NKJvv52KN1bgqaggef58EiZOwL5xI9Xffut/3ZmzcO7bR+ozzyIzmVB364rhmmsoeebZsB1ojl27yXvoIQSZDEVGBmnPL0OiOLEoSeKUKcgTEsgfN65FXEdeqxXLhx+CRAJyOcXz5gfFYNHtxrxwIZq+fdFdcAHKdu1InDGDyk8+xVLHTSaLjSV29ANUvPMOjt3HTjxEUcQ8f4G/tH/8OBAEqtd8h33jxkb3q3jePGr27CFlyWKk+pOLEDWEIAgkzZiBpl9fBJmMqq+/xtzAxMgztByOahd/fHiQldPXcXR7KWdf25YbZwygVY+4Uz6h9VThdfvY/mMu7878i6PbSjj/pg5cO6kvCa1O3Xc4gFqn4D+jOjFsfG/cTi8fzd3IL+/sw1YZfuJXYzjtbv74+CAfzNmAtbyGqx7scUqFlLrEpkZx7YQ+nH9TBw5vKWHl9HVs/T4Hr/vEfr/LCqysfm47Xz2/A120ihum9qffla2Qyk/taZ8gCLTrm8BNs86i06Ak1n5yKBhhPJG/McE47+z1rPv0EJ0GJnHTjAG07lU/ptTSSOUS+l6eyY0zBhCbFsW3L+3ii2e2tZiY+k+g0Ss478YO3Di9P7FpOr5/fQ8fztvIkW0lZ34D/gY2rv6UwoP7ueC/dwf/5pfn54U4OepiiE+gsqS4ZSobFApSu3Qja8fWZq0XECSsZaUYEo5di0Qnp1JekF9v+fz9uxEkEqKT00AUUWl1QXHo+IJ2mVKJ1+PBXeM/t7MUHtueKIqs/fAdUjt1Jb1bD2JS05HK5RQfORzcTjgnlyAIZPboQ1WJOfi6htgEJFIZTrst6IxqCK/HzS9vvoJCo8Hr9VJZXBR0+gRI79qDqpJiKs3FmJJTKDuuqLslSe3YlbzdoaXfaV27k7V9KyXZR4ORzJYgIKwEIp2WML1cKq0OiVQW4mqyV1UGxa+GUDXSE1V02B+TS6wVuYoOH8Bpt5HRPbRqxnz0EGq9AV2dyODxSGUyel9xNbfMe5q7nn2VIWMn1YuqGuLiQRCCn21Cm7bYLBXUWKvpOOg89vz+MzHp6ciVKnL37Aw6K/Vx8SGF9wAavRGfx0NiA06uwLFZy0qDkcDj44qIIhKplBqbFfdxQ99ydm4jqV1HvG43ouhDYzBGfJ1AXDHShMWAE0953LCA9medA8DB9Wtxu5wc3baZtv3OavCYTkfOiFwtSPUvv5A/fjz6yy8ncebMk7poKVn6NJUff0LynCdOqENK2bYtyQsXUv3Dj5Q8/cwJ70c44seMIW7sWEqffQ7zokWN/vjqL7uU9DdX4MrK5uiIkSGiAEDV198gT0lB1a1b+Ncb9yiiz0fJ0qdx5eVTsmwZpltuRt21/g+VNC4OZDJsa9eS/NQCEh6bfMKF/6LPR/ETcyh9YTlxjz5KzJ13nNB2WorKTz/FvnEjCdOm+qf9yWSkLF6Muls3cu+7PzglMRLF8+cj1euJHT263nPKVq3A50OenIw8JRndeeehu+hCiubOpeS5ZVR++ilJT85B3e1YHj7ukUfw1dRQumxZyLZq9u8n5447wOtFGhND+quvnJRoI9FoSFm6BFdWFgWPP37SJ3vmxYvxVlUh0elIW74c5/795N59N16rlbIVK3AeOUrC448F//8ah13jd5PNnk3NgWMZ9ehRo1C2b0/RtOnB2Gbp8uWUv/kmCVOnEnPXXUT/978gCBRMmtygQFf+zjtUvPseidOmoe7RI+JyLYUgl5P6zDPIk5KQGo2Uv/lmswZFnKF52CxO/vzkEG9PXcfetQX0vTyTW+cMpMeFacjk/85oougT2b++iHdm/sWfHx+kTa84bp51Fl3PS0Ei+XsFu+S2Rq6b0o+zR7Tj0GYz70z/i01fH8Xtalocy+P2svX7HN6eto7dv+XTb0grbpw+gIyuf+9US0Ei0PW8FG6ZfRbt+iWw7rPDvDvrLw5tbrqDyF7l4tf39vPBnI1Ulji4/L5uXD2259/uElQG+qAe64fGoOSrF3awaulWzNkNT3qqS0luNV88s42vl+9EH6Pi+qn9Oe+G9ijUJz7E50TQx6q58oHuXPFAd2wWJx/O3cgPb+w5JXHMvwtTopYr7u/OsHG9UaplfPPiTj54ciOHt5jPOLtOAaLPx/rPP+L3d1cwYNh1pNZ2C4miiDn7SHCi2fEYEhLxOJ1hHR0nQqsevcnbs7PehXNDOKqrkMpkVJWVYKwjcgWmDx5Pwf69xGe2xufxu1FVOj362r6i43urpHXOz6VyOWV1Jtgd2rgOc9Zhzr7uFgRBQCqTEZ/RmqLDB/xOF6223sV58Dh79cXrdgfjbYb4BASpBASB1E5dw65Tlz8/WImluJBWPftQlpOF024jNi0zZJm0Lt0QBAk5u7YRm5pOWW7LVcQcT2bP3pTkZIU43Vr36oe13D+0oCWdXDZLBRKpDENcAuoofdjyeUEiQWM0Yq8jcjmqKhsUXAIEOrsiFfUXHTqA1hRNVLQ//pe1fQtKrbZeVM6cdYT4zNYnfYNQkEgQBCEouiW19XfyFh7aT+fzLsRaVkrB/n2kdelG9o6tVJqLkUhlYadZBmKwiW0a7nwLiGD5+3YTFROHXHnsRlrA1RX4za/7mfu8XnJ27SCje0+sFX5XZGAKazhUGi2CIIk4YTHQ+XX859btgotBENj89Sp2fP8NHpeTDoPObfCYTkfOiFwthLeqioLxE9Cdfz7J8+chSE/8wqXs9Tcoe/ll4idPwnD11Se8naj/XED8+PGUvfwy5W++ecLbCUfsffeS8PhjlL/2OoXTpkWMIgbQ9O5Nq48/QhYTQ/ZNN1Px4YeIoojP6aR6zRr0l18W8Q+VLDaWuIcewvLRRxRMnIhUryfu4TH1lrNt2EDWyOsQVEokGg1Rl156wsfnczopGD+BivffJ3HWLGJPYIphS+LKzaX4ybkYhg1Dd/bZwcclSiWpLzyPsnVrcm6/A/vW8HforL/9RvX3P5AweRJSXehJgSsri6InnkDTrx+uw4exfPAB4HdQ+aqqKXvhBWIfeADD0KEh68kT4ol78EHK33ob+xb/6zoPHSJ71H/x1TiQRkeT+fZbJ1SOfzyqjh1JXjCf6m++pTRMRLCp2P76C8t774PXS8KkSejOOZv0118L7nfJsueJHjWq3lCBxKlTUaSnkz9mbND1JcjlJD0xm5q9eyl/eyVlr71G6bPPETd2TNDxF/fwQ8iSknAXFmJesiTsPlX/9JN/sMSoWzFdf90JH1tzker1pL/yMoJGjdRopGTxEire/+Bve/3/D1iK7fz89l7emrqWPb/n0+2CVG6dM4h+V7ZCofp7L9RbClEUyd5dxofz/Bf6sak6bpg2gAtu7XTSxd8ng1QqoceFadzyxEC6nJvMxq+zeGfaOnb+khexe8jnE9m7tpB3pv/Fus8O07Z3PLfMHkjfyzNPueOpIdRRCs6/sUOw42rNK7v4eMFmsneXRRS7aqxu1n12iLenruXAhmIGDmvDTdMH0LrnP+sSjEuP4uqxPblydHfs1W4+mreJ717bjaXYHnGdsnwr3760kw+f3Ii1wsmVo7sz5OGexKQ0fzJnS9Kqeyw3TOvP+Td2IGdvOe9M9wu8J+ocPB1Ibmfkmkd7M2xcL9Q6Od++vIv352xg31+Fp3wQwv8namxWtn27mgHDrufs628NPm4pKsBps0Xs8Ak4kVqqlyujR2+8Hg+5exu+KVoXa0U5ar0B0efDmHDsfM6UnEp1aQlu5zHBTBRF8vbuIrlDp6DLR2s0IVepUOsNVB7n5AoIC1qjifjMNkEXj+jzsfbDd0jv1jMoCIJ/0mDenp1UmouCwlk4Ai6gmloHiz42Dp/Hg0QiQVYbS4tE9o5tbPziE86+/lYyuvWivFbIa9s/1Mmi1GhJbNOO7J3biUlNpyw/55S5ITN79EYilXJ067FUQGrnbkEnUVOK9JuKrdKCxuCPHRqTkrGEiSsC6Iym45xcliY5udSBqGOddetSdPhg8PMDyNqxlYyuPevFeYuPHg7p7TpRHNZqRJ8vKLrpTNFExcZReHA/Se06EJ2SxqbVn5LerRf5+/ZQUZCPIAgh7qsAXq8HqVwe0h0WjqjYOLRGE+ajh+sJ3BqDEblKHfx/VVV6TBguOLAXl8NORrdex/5/mSKLXIJEgqqBon+bpQIEod7npjWaSO/aA0tRAb+89SrdL7wU0eer16l3unNG5GohpHo96a++QsrSJfUidM2hfOU7mJ96iph77yXmtttOer9i7ryDmLvupHjefCyffX7S26tL9KhRJM2bR+WqL8i5865gnDAS8sREMla+jeHqqymaPoP8hx/G8umneCsrMQy/tsF1TTfdiCwxEceWLSRMeTxEqBFFkfK3V5Jz+x0o27cn/ZVX8FmtVP/wwwkdl7vYTPaoUVT/8AMpS5b8rcJDOES3m4KJk5BGR5MwZUq956VRUaS9+irKjh3IvfOuetE4b2UlhdOmox00iKjLLw95zldTQ97YR5DFxZG6fDnG66+n+KmFuHJycBcUBB1K6gH9w+5b9G3/RdW9G4VTpuDYtYvsUf9FdDiQmqLJePutkEECJ4v+kkuIGzuG0mXLsHz+ebPX91qtFDz2OMhlaM87L1jsru7enbRXX8F54AB4vZiuv77euhK1mpSnn8ZTXEzR9OnBExl1t26Ybr0F8+LFmBcuIub++0JiyhK1mpSFT4EoUvH2Sqy//xGyXdvateSPGUvUhReS0ITBEi2NPDmZjBUrEBQKpEYjUmPjJyhnaBpbv8/hnZl/kbWzjAFDWjNq3tkMvKYNKt2J/z78k4g+kSPbSvh4/ia+fG47MrmU4eN7c8X93YlOPn26xFRaOWePaMdNM84ipYOJ3z84wMppf7Hj59yg2OX1+NjzZwHvzvyLn97aS0IrAzfNGMDgmzuiNTZ8AfR3Ep2k5arRPRg6ticSicCXz233i127joldNTY36784wltT17Ljl3x6/CeNW+cMpNfF6f+oUFcXQRDI7BbLDVP7MfjmDhQcqODdmX/x3Wu7KSs4VkBcUWTju1f9Ios5p5r/jOrIjdP7k9kt9rSJ80qkkqDbrvdlGez5o4C3p67j9w8OYK349zq7ktuZuHpsL4aP701UtIofV+zl7anrWqQb7gz+bpzblrzo7wKq810OTGxLaBO+0NmY6HdOBSYwnizRyano4+I5unVTk9exVZSjrL1oD4lV1TpO6k7gKy/Io9JcTGaP3thqB/MEnCbG+MR6gom/E0ggtXM3ktq2p6g2vrX/rz8ozc3m7OtCK0LSu3THWlFOWV5ucKphOAKOsZKcbP8+mGL8F+leb3DqYjjKC/L58pkFZHTvRb8hw0lu3wlq/9Z2OntwveXTu/Ugd9d2olNScdps2CrK6y3TEqi0OlI6duHIlmPn9zK5HK3JhEyhbLTsvTnYLRXBz8yUkERFhK4xzfEiV2UlGkPj55BRMX6HdHWYoQVej5uCg/v87zt+Aaro4AEyeoQmmmyWCqxlpcS3OnlxL/CdrCox46k1bCS17UDhwf0IgsA5N44ia/sWZAo5Pp+X/AN78XrcmJLqR4ztlRZ8Xm+jYpAgCKR16U5VaUmIoBd4zpSUjL3SgiCRhLgfD65fi84UTVLb9sHvWkNOLgBVlB5HdfjiebulAo3egCSMMefSex9GIpWS3rUH/a65jvdnTOLPD1Y2+FqnG//OW8mnKSczRRGg9JVXKFm8hOjbbiNubH2n0okSN24c3soqCh9/HNHlalHRxjjsGhTpaeQ9+BBZ111P6rLnUHXoEHF5iUpF0uxZaM89h6Kp06j+5VeUnTqhbN2qwdfx1dT4p/4BvupjJ8U+p5OiWbOp/PRTov87ivgJExBkMtR9+1Dx7nsYrryyWcfj2LaNvIceBomEjHdWoo4Qofw7KZo7F8euXWS8+WY9F1YAqU5L+ssvk3v/A+TcfQ/JC59Cf/HF/vXnPInPbifpyTkhJ1eiKFI0azauo0fJ/PADpDot8RMmYFu7ltx778NdXIy6d28QRQonTqL1qs/rdZsJUinJc+dy5JphZN14E4giUpOJzLfeRJFW38p7ssTcey/u/HwKH5+CRKFo8mAH0eejYJJ/qqCg0ZD0xBMh74Vj8xbweJCaTOTceSfpr72KIjMzZBvK1q1ImvME+Y+OQ927N9G33IwoiggKhX/dmBhi77233sWYpk8fYh96kNLnlpE3Zgytv1iFIjUV2/oN5I5+EM3As0hZtPCEY7UniyI9nfQVK8i57TYc27ajv6x+N94Zmk9qBxODb+pAh7MS/7WRRPALQoc2m9myJpvyAhvJ7YwMfbgnqZ1Mp43wEA5DnJqL7+hC3ysy2fxNNn98eJBN32SRkGmgJLsKW6WL1r3iuOTOLsRnnPr+sJMhrWM0qR1M5O2tYMOXR/ly2XZikrVojUr/NEYRug5Opfcl6f+om64xJFIJXc5NocNZiez9s5Ata7J5f3Yxye2NIELBIQs6o5LBN3Wg48AkpLLTQ6QLh0Ilo/9Vrejxn1R2/JzH9h9z2fVbPh0HJdHjP2lEJ50+wm9zSGpr5KoHjZQVWMneWfavFeVPR5Sa+u6OwkP7MSYkRSyPVqjUGBOSKM1pmcE7giDQtt9A9q/9jQtuuyds2f3xVJeXIZHLkcpkRMUe68ILCF7lBXnEZfjP4Y9s3oBMoSStS3d2/vgdUpksWGodm55B0ZFDwfV9Xi/VZWWASGrnrijVGrZ88wW2ygrWffQurXr2CYodAVI6dUEilVJekEvncy+IuM+BfqyKwjwsxUW4auyBN4D8fbuJSa1/fmqvtPDZ/Jlo9AauGjOptlcsBWqjkuE+v/SuPVn/2YfBEvPSvJwGO6JOhta9+/Hn+2/jrqlBXjuIzONy4XE5qSotQR/bMj2FfieXEfC79Q5v2YDo89UrlA84kQLYKy2ooxoXubTGaH9fbVlpvecKD+zH43SS0a0nAIc3rUdEpHXv0BvtgUmTKR06Hb+JZhPoHPN5vRQdOUhqxy4ktevAnx+sxOvx0LbvWbTtdxa/rXzdX0p/1P8djk4OvYlfaS4KTo2sLC4KKZMPR1xma/b9+SumMH18psRkLMWF6KJjgk4u0efjwIa1tBtwNoJEgs1SgSpKX68X7HjUUXocYbqTAWyVFRFFMn1cPGcNv4G1H73D2xMeRCqX0+uyIQ2+1unG6XsG8f8I0euleOFCShYvIfaBB4ifNLFFLx4EQSBx1kxMN91E0YwZlL32eottG/wX8ZkffYREqyVr5HWUr3yn8Z6uiy8mcdZMcLtx7t1LwaRJDTrBSp5+Bp/Lhe7CC4OdSm6z33FV9eWXJM2fR8JjjwWFgpg77sCxeTP2TU27WyV6vZS++BJZt9yKPCWFVh9/dFoIXOXvvovlvfdJnD6t0W42iUZD2ssvoRs8mPyHx1D+1ltUfvEFVatXkzhtar3hBWWvvErlZ5+RNOeJoDAp1WmJe/RRXEeP1kYhXyBl0UJ8NTUURJjC587P99/pcruRGo20+vADFBnh+yVOFkEQSJw5E8OQq8ifMJGqr79u0nplr7yK9ccfwesldfEi5AnHbO6OnbswL11K9B130OqTjxEUCrJuvqVedxyA/ooriP7vKIrnzqX6l18xL3iK8ldfw3Tbf/FZrRTPnRf29WPvvx/t2Wcj1tSQe8+9WFZ9Qe7dd6Pp1ZPUZ5/1C2X/IMrWrcj84H3iH33kH92P/yXi0qPocm7Kv1bgslU62bD6CG89vpYf3tiDzqRk+PjeDBvXm7TO0ae1wFUXU6KWfldl0nFgEk67h6wdpdirXbTtG89ZV7c+7QWuAIIgkNrJxKBr25DczkhZgY2cPeUIEoGeF6fR57KM01rgqotMLqXzOcmcNawN+lgVBQcsFBy0EBWtYsDVrU57gasuSo2cfle2YtTcQQwY2pqj20p4b9Z6vnhmq79s/1/abxWTrKP3pafmd/wMx8jZuZ2URorQ4zJaUZLdMiIXQMezz8NmqSBvz64mLW+rKAdRxBCfGCKKafQGdDGxQTca+J0mGd17IlcosVdWoDEeuxkSm96K8ryc4CTF0txsfF5/WiAuLTPYhbRp9WeUF+Qx6Lpb6u2LQqUmoXU7HFVVwal44SjNyUIfF49MruDghrXBCYGmpGRy99SPaloryvlg1mO4nTUMf2wmKp3fGVVjt4EohnQm1SW5fUdkcgUV+Xko1GqK67wXLU27/gPxuF0c2rguuM/2SgsSqYy9v//cYq9T18mV2LY9TpstGNmsi9YYHXRyuWtqqLFWh4igkZDKZOiMprAiV87u7ai0OuIy/aLpwfV/ktKhEzpTdMhy+fv2YEhIbBFBsaKoMBgRzN+3B/A7uTwuJ6W52QiCwOWjHyUuoxXFRw4GnX0/v/kqrz50Jz+veBmfz0vW9q2A/7temteEfrba7Xg99d2yptqYqD42PujkKjx0AGtZKe0GDALAWlGGrhEXF9SKXFXhnVy2isgiF8BZ197AxXc/SPeLL+fGJxbV+xxOd844uf5hvFYbBRMmYP31VxIem+wvqj4FCBIJCVOnINHpMC/0x9ESpzzeYhfXitQUMj94H/PCRRTPmYP1t19JmjEjYlxNFEXKV65E2akTpltuwfzUU1h/+52Exx9Df9VVoS6b7dupeOcd4idORH/FFRy5/HKKn5yLffNmRJcrrONKN3gwynbtKH3xJdJf7dvgvruysymYMgXH5i3E3HMPcaMf+MdFB4DKL76g+Ik5/q6mkSObtI5EqSRlyWLMi5P9gotUiv7qoeiHhKrvVd9+S8kSv6hqqPNczZ49FD/xBLKkJDyFhVSt/oLom24ied488kaPpuSZZ4l/ZCxQ+xm++SbmBU/5X9tkwlddjaesvFnTQJuLIJWS9OSTAOQ/Og5PSUmD/28qV62iZOlSAGIffgjdeecFn3MXF5M3ejSqTp2IHzsGQaEg4913yL3nXnJuHUXy4kVEXRB6tzB+4kScWdnkjR7t7/aaOpXoW25G2aYNRdOmo2zXjuhbQ0/OBImElCWLOTpsOK6jRyicNImoSy8heeHCE5462dKcys/sDP8OfD6R/P0V7F1byOHNZiRyCR0HJNJtcOppFUlsCj6vj5w95ez8JZ+cPWUo1TK6X5BG2z7xZO8qY9eveby7yUx652g6DkqidY+40ybedzxOu5v964vZ80c+Zfk29HFqzruhPXEZUez+vYAt3+Ww7Ydc2vZNoNOgJJLaGE5bEdJitrP3zwL2ri3EUe0muZ2Rc0a2QxRFdv6Sz48r9rHusyN0PieZTgOT0Mf+O0aWK1Qyel+aQY//pHFoi5kdP+Xy1Qs70Mep6Xx2Eh0GJKEznT5R2DP881SVllCWl8PAETc2uFxcRiu2fLva7xxvgf/XiW3aY0hIZO8fv5LetfFBN9byMjQGI6bk+ufzye07UXBgH+AXrQoP7WfIo4/VrleOznjsojguIxOvx0N5QR6xaRnB9QCkCgWGhEQ0egM7f1pDm75n1YtxHdv/thQe3IchPnLfq7/XqT0+r4cDf/0R7H8yJaWQtW0zPq83GNEqPnqY1Uvn4fV4uG7G/JDtbv16FQBupxOvx13PNSNTKEju2JnsXdtJbt+J/P17Ir+RJ4khPpGUjp3Z8/vPdDr3Ao5u3YQgSGjTdwB7fvuJ/teMbJHvR3VFGem1Tqqkth38w5MO7K1XtK41mrBXWhB9vmA5elPdZLqYWKzl9UWuw5s3kN7N37/ltNvJ3rGVc2+6vd5yeXt3k9L+5F1c4Hf9mZJSkCkUFNR+fvGt2yCRSik4sJeEVm1QqDWMnDaXX995na1ff4EgkZDYth0SiYSta75EkAiU5+eR2qkLpTlZlOVk067fwAZft/jIIaRyBXm7d9H1/ItCnjMmJmOtKCe1c1cqi4sA2PPbj2hN0aR09HcGW4qLQqadRkJnig4e1/HYLBVhu8UCCIJA94v+vemOMyLXP4jz0CHyH3kUd0EBaS8uD7n4PhUIgkD8I2ORp6ZQNPsJnIcOkfr0UmRxLWNxlSiVJE6dgvacsymaMZPDVw0h7sEHif7vqHpRLNtvv+HYtJnUF5cTNXgwUeefR/HcuRRMmEjlF6tJmukXyHwuFwWPT0HVpQvRt96CIJNhuPZaKt5+G1lKCpnvv4c8uf5/UEEiIfbBB8kfMwbrr7+iO//8esv4nE7KXn6FsldeQRYXR8bbb6Hp27Ag9ndR+eVXFEx+DMPwYSRMntysdQWJhOhRo7B89DG+qipcubl4SkqQx/vdS9ZffyV/wkT0V15J7EMPBtezb9pE7n33o8jMJO2VlyldvpziJ+Ygi45Bf9mlxI8fj3nhQhTpaeivvJLCqdOo+vJLAPRDh5Dw2GPk3nsfuXffTcY7K1G2brmRxvWOUSYjad48ZHFxFM+bj/PQYb+Ie1yhaNX33/t7uAQB/fBhxN5/f/A5r9VK3gOjQSIhddlzQWFTZjKRseIN8idOIu+B0cSPH0/0HbcHTx58Viu+qirw+ZBERaEd5P8hM40cievIUYrnzkWelEjURaE/WoJcjrJDB9wF/juKnrIycLvhNBG5zvD/l/JCG/v/KuLAhiKsFU6MCRoGXduWjgMTUWr+PXElURQpzbWyf30RBzYW46hyEZcexQW3dKRdvwTkCv9FTUKmnj6XZnBwUzG7fy/gu1d3o9TKaN8vkU6DkohN0/3jIpHX6yN/XwUHNhRzeIsZr1ekVY9YBg1vS2qn6OAEy8RWBgZe04bdv+ezd20h+9YWYkzQ0GlQEu37J54WworT4eHothL2ry8ib18FSo2MDgMS6XxOckiZfOue8ZTlW9nxSx7bf8hl01dZpLQ30nFQEm16xSNXnv6uSKlcQocBiXQYkEjR0Up2/pLHpq+yWL/qCKmdouk4MJHWPeKQKU7/YznDqSVr+2YEQUJGt4Zd+vGtWlNTXUVViRlDfOQeqqYiCAKdz/0Pm1Z/yvm33tFgn5PDWo3TbkOQCLRLG1Tv+ZQOnflt5Ws47XZ2/PAt6ig9bfr4o2WVJUXo6+yvfxKehIIDe4lNyyB39w4EiQTR58NuqUAQBKLi4ik+fJBBI2+KuE9RMf5rlrqF3HXx+byYjx5m4Igb0Zqi+WbZYsBf6K3S6qixWcnbu4vYtAy2fruajas/JSYlnaHjHq/3/u7+7ScEiRSv20Xe3t3BGF1d2vUfxE+vv0jfq65hx49rwkb7WorO5/2HH155AWt5GUe2bCCpfUe6X3gpn8ydTv7+PaQ24gpsDI/LhbW8DEOC/31QajTEpWWQv3c33S64JGTZqJhYfF4v1opyqmoHCujjIg8DCFk3Oraek6vSXIT56GH6Xz0CgH1//orP66P9wLNDlrNZKjBnHabPVdecyCHWo/jwAdr2OwulVsfmrz5H9PmQK5Qkd+hE1rbN9Lr0KsDvQNPqjSAIiD4fPS+5kvjM1hgTk/l15etIJBLOv/VORNFHSW52g6/p9bjJ2bmNxDZtObRxHR736OBkRoDoFH+EURVl4PCmDTjtNvb+8Qu9Lx8adFNWFhfWi3GGw5iYxO7ffgwrkleXl4YMdvhf44zI9Q8giiIV772HecFTyNNSyfzgfZRtW24yRmOYRo5E2aYteWMe5siQoSTOmoX+0ksaX7GJRA0ejOarryh59hnMixdj+fhj4saOJeqSi/1jWq02CmfNQjPwrKD4JIuNJWXJEvRDhlA0cxaHhwwl/pFH8JSU4MrJodXHHyPIZNjWb8DyyScISiVSg6FBgS7qkovRnHUWRXPn0rp/fyRq/x1h0eul6quvKHluGe6iImLuvIPYe+8NPv9PIooiZS+/QsnSpRiuuYak2bOb/WPpKS0l57bbkei0JM15guI5T3J0+LWkLFqE6HaT99DD6M47zz8FtPYPXuXq1RROnYa6Z09Sn38eqU5LwuTJeMvKyZ8wAUEhJ/qO23Hl5FA4ZSrmJUvxlpeDRELCY49huuVmf5HiSy+SM2oUOXfcSfobr6Ns1XDX2skgSCTEjx+PIjOToifm4Ni1i9SlS4JdWhUffUTR9BkA6C66iOTZs4PH67Vayb3zLly5uWS89WZQAAwg0WpJfe5ZSpY+jXnhQpyHDpE4YzruvDzyHnoYb3k5qS+8QMmSJWSP+i8Zb72JsnVr4ieMx11YSN4jj5K6dElQ6LJv3kzB44/jKSkl/vHHKHvpZRybt3D0+hvIeHMFsphT0+FwhjOEQxRFygtsHNlWwpFtJZTmWlFqZLTrl0CHsxJJyNT/4yJPUxFFkYpCO0e2l3BwYzHlBTbUUXL/sQxIJC49KuyxSOUSOg5MouPAJCqKbOxbV8i+dUXs/CUPY4KGNr3iaNM7/m8VvESfSOFhCwc2mjm8xUyN1Y0hXk2fKzLpNCgJrSG8YKXRK+h3ZSv6Xp5J/gG/E2/Dl0dZ9/lhklobaNM7nja94/9Wwcvt9JK1s5SDG4vJ3l2GzyuS3NbIRbd1ok3v+IgiT0yKjgtu7sg5I9pxZKuZveuK+HHFXn59dz8ZXWNp0zuOjK4x/4rppImtDCS2MuC6wcOhLWb2rSvk+9f2IFdKyegaQ+te/55jOUPLs/ePX0jt3DUYjYtEcofOIAjk7tnZIiIXQI+LL2f9Zx+y66fv6DtkeMTlAn1FNVZrsHerLm369OfnFS+x94+f2fnjGvpdPSLodqosLg7p1FJqtCS2bUf2jm10u+ASjm7fgujzIZFKsRQX4bTbgqXwDcXQ7FWVSGQy9q/7na6DL6r3fFluDm5nDYlt2hHfqg2CRIJEKkNriiZ/3x5kCiVfPvMUTpsVQSKh71XDOGv4DciOu+FYUZBPVYmZtC7dqSjM58iWjWFFro5nn8evb72Kw2bDabdRmpsd9r1qCdqfdQ6/vPkqW9d8SfaObQwYfj0Z3XrWTgD87KRFrqpSM4gixjputsyefdj1yw/4fN6QuGqgk6q8II+qUjOCRILO1LRz2aiYWLK2bwl57MBffyKTK2jVy2822PnTGlr16kNUdGzIclnbt4AgkNmj9wkdY13sVZVUmotJaNOeqJhY1n74DoWHDpDcviOte/Vj7Ufv4nG5gt+N7J3bQBTRGqP57qXnuGnOInpfMZQdP35LRUE+Gd16UlVawv51vzfovDy6bQs1Nit9rxrOqkVzOLptU4jzKy6jNVK5HJ/Hg9tZw4ZVH+N2Oun2n0sBv5BbaTZjbIKTy5iYjMfpxFZRHvL/yuNyUV1WGhxu8b/ImV/WvxnnwYMUzX4C+8aNmG66kfiJE5Gowme9TyWa3r1ovWoVRTNmkD9mDNVXXEH8xAnIEyPbf5uDVKcl8fHHMV5zDeYlS8kfMwZVt27E3H031b/8jLfCQtJbb9X7AxB1wQVo+vXDvHgxxbWRNNPNN6Pq0J7qX34hf8xYNH36EHPPPeTcdRclzy2L2CMkCAKJ06dxdPi1FM+dR+KM6VR/9x0lL7yA69BhdBdeSNpLL55Sx1Fz8FZVUTRzFlVff03s6NHEPji62RdX7vx8cu65F6+1msyVK1FkZKDp3Zv88RPIue02kEjQnj0oOAVU9HoxL1lC+WuvY7j6ahJnzwq6oQSJhOT584LCWOKsWcgSE0EQ8JaVIej1pL24HG3vYz80MpOJtFdfI+f228m+6WbSXlyOukfjdviTwThiBKquXckfM5YjV19DzP334S0rp+LttwEwjLiWpJkzEWqt6e7iYvIeGI0rN5f0115D1bFj2O0KEgnx4x5F2bYNhdNnYPtrHZ4KC8paYVqRmYm6ezdybrud7FtuJXXZc2h69yZl4VPkT5xI3pixJEyehCsnl4qVK1H37Enaiy+ibNUK/aWXkn3rKFyHD3P4iitJe37ZaeMiPMP/Jh63l6LDlWTvLufIthKqShzIVf6L7b6XZ5LZLfa0jesdj8/r+7/27ju+6Tp/4Pgrs0mbNN17QKHsJcgGOQFFRQUnjhNEz7vjcOI+9dA773CcnqdyIm5UBFFxIjJkiIjsKbMF2tJFd5s0+/v7I22gtCiFQtL+3s/H4/tI+816v5O07+Sdz/fzofBgFQe3lXBw21Eqi2vRhmho3zOawVd1ILVbFBrNqecSmRDG4Ks6MvDKDHJ3l5O1uZidPxxh0+LDhMcYaN8nlvRu0SRmWlp8jjWHzUXOL2Uc3llKzq5SaqtdmCJD6Do4kcz+8c1qsqnUKlK6RJHSJYoLbC4ObivhwOZi1n52gDUL9pOQEU56jxjSukcRm2pGpW7Z5l1VSS2Hd5ZyaEcpR/aV43F5iUs3M3h8Bzr2i8MUeervdXQhGjoPSqTzoESqSmrZv7GIrM1HWfLmLjRaNandomjXM5rUblGERwf+C6pfozdq6TY0iW5Dk6gotnFgYzHZW4/LpWsk6T18uVhif33pedE2lBfmk/fLTi678/7fvKzRZCYuPYPcXdubbOqcjrCISLoMGc6mb7+k95ix6PRNN8CPX4kwrl3j98qWuHhi22Xw88KP0RoM9Bs7DvCNVKkuK2l0SGF6r75s/e5rcvfswlVrwxhuwWgOp7zgCD9+/IFvvi6ViqxNPzcaOVQvf+9uYtMzOLR1E2X5RxpNAH5o22a0ISEkZnbBWlXhi8fl5OihbFQqFaaoaKyVFVxw02S6XnAhoeFNT5a+/J1ZAFzw+8nsWP4dWRvX8buJf2j0/9gQZiJz4BByd21DZzCStfHns9bkMoSZ6DnyYrZ8+yUuh4NOA4egUqvpf8XVfDfrv5Tm5RCdknbat19Rt5Li8YfBdew/iA1ffkreL7tI69HLv98Sl4Bao6U8/wgVxYWEx8Q2uUpfUyzxiVQWF+Jxu9FotSheL9uXLabjgMHoDUby9+2hKPsA4x58otF1szb9TEJGx5M+b81RVLcQQkKHTCyx8RjM4WRvXk9Spy60P+98Vn/4Djk7t5HRtz8et9t/OOrIyX/i65eeZdM3n9P/ymswmi1UqPLZsvhr2p93Ppu+XkhlcRER8U1/pt6xfDGx7TLo2H8Qce07sPP7JQ2aXFqdjviMTP8KituXfku34Rf6R8pVl5Tg9bhPevvHi0zwHe1UUVjQoMlVUVQAiuI/vy2SJtc54i4tpXT2G5R9+CH6lBRS33oT09Chv33Fs0gbFUXyyy9T9dVXFD37HFmXXkb0HX8getIk1GEtM/+KoVs30t58A+u6nzn66iscuftuAMLHjkVzkm+vNCYT0bffTtU3i1CcTsrnz8ddVkr10mWYfjeC5BdfRK3XE3vP3Rx98T8Ye/fCPGpUk7cVkpFB3H33UjTjGaoWL8ZbXU3Y0KEk/etfGHv1avI6gVDzwxoKpv8Nb3UNyf95kfBLL232bdi2bCHvrrtRGwykvzfHP/m7JiICY6+e2NatA8B5OIfarVvRJSSQ/8ij1G7dSvyjjxA5cWKj4q3S6Uj+z4vkTvkLhY8/7t+vz8zEuX8/VZ9/gbFHjwbzSuni40j/8APypvyFw7dMJO7hh4i86aazOhrC0KUL7Rd+RuE/nqbkpf/690fffTexU/7sv2/bxo0cuW8aaLWkz3nvpA2u45lGjcK0/HuqlywBtZqI669Hl+Z7E6GNjiZtznvk3XUXhyfdSsLfniDi2mtJ+uc/ySksouif/wKtlthp04i+bbK/0aaLj6f9p5/45uNbuYrDt0wkctIk4u65OyhGFIrWz+vxUnrESu7uMvL2lJF/oBKPy4vRrKN971gyJnQipXNkq2hs1Y88y9tTTt6eMo7sr8Bl9/hzGXZdJildIs+4AaXWqEnvEU16j2hGeDqTv7eCA5uL2b+hiG3LctHq1CR1iiStWxTJnSOISjL5Dxs8VW6Xh6KDVeTvryBvTzkFWZUoXoWopDC6DkmkXa9YEtqHn3EDKiRU5x+p5rC5OLS9hKwtR9m85DA/f5mN0awjrZuvsZKUGYE5qvlfttlrXOTv900an7unjLJ8K2q1isRMCwOvzCCjT0yLNG3CY4z0u6Qd/S5pR1VJLdlbj5K1+Sir5u5FUSAiPpS0blGkdosisYMlqA+xjYgL5fzL2nH+Zcdyyd56lNXz96N4FcJjDKR0jSK1SxSJHS0nHb0nWrdNXy/EYDLTcWDjQwCbktazN7+s/r7BXFJnatC1N7Jn2g9s/OozBl/T9LxgRQcPEBJmQqPVnnS1uMiEJI4eymbkbVMICfV9dqgsLvKNCIo/scnVh3WffuSf66rXqDGU5uVQsH8vRdn7+d3EP5C1aT171qxqssnlcjoozNrP8JsmUXW0iM3ffsno26c0uMzBrZtI696LQ9u3sOiVf/sXTOp/5bVs+PITLr/vYeY98TDakJCTNkrKC/I5vH0LlrgEEjIycdntbF+2mCO7dzV5eNd5l1zB7jUrSerclb0//cCga25o8nZbQr+x49n87ZeEx8b5n5Ouw3/HT5/OY/WH73DVw9NP+7YrCvLR6HSYoo7NpZbYsTORSSls/e7rBk0utUZDRHwCZfl5vnnW0k69sReX3t4/P1tsWjsObt1ERVEBl945DYB1n80jOiWNDn37N7ievaaG7E3rGXZjy8xfnb9vNwaTmYj4RFQqFRnnnU/Wxp8ZdsNEolPSiElNZ+fKpWT07U/hgX143W4scQlkDhxC37Hj+PHjD4hNb0/+vt10GTqCbUsXEZWcikql5vD2zURc1HgF+KKDWWRv3sClU325njfmcl+D8khug3nPkjp1Yc+aleiMRuw2KwPGH5ububxuhGXEKTSoLHHxqNRqSo/kNnjt1t/Gb60C2ZpJk+sscxUWUjbnfco/+giVWu2bo+q2yUEz2bRKpcJy5ZWYLryQktdmUfLaLMrem0PU739P5O9vRhv52ys3nIqwQQNxHDhA7cZN6DMyqFq8mOolSzBdeCGW8eMwDRvmnxPJVVxMzuTb0EREkPruOxQ+/gTV3y5GHR5OzB//6H/som+/HfuOnRy5/wFSX3+dsIHHjk322mxUr1hB1dffULPmB9Bo8FZXEz1lCnH33N0iObUER1YWxc//m5qVKwkdOJCkGf9qco6xX6O4XJTMep2SWbMw9uxJyquvoI3xDe91HjpE/qN/pXb7dmLvn4Zp5CgKH3uMnImTQKPxzUU2572TjiKybdlC8XPPU7tli3+fvkMHkp9/DvvOnRQ89XdsmzeRNGNGg8n/tZGRpL33rm8hgn88jfWHNcQ//hj6lMZL5bYET3U1Ja/NovKLL0ClArUaPB6sq1Zi7NwJY//+lP7vNcreew9j376nNBedoihYV6+m4Mmn8FZWEv/Xv2Lfv5+if/6Lqu++I3H6dEIyM31zeL39NoVP/5PCJ/5G2Xtz8FRU4Ckrw9ivH/bt26lcuJDQ8/o0eJw1ZjMpr73mO3R5xjOUv/suVZ9/TvzjjxF+2WVnbU4H0TbZqpwUZldSdLCKooOVFB2uxu3woNWrScqMZNC4DFK6RBGdFNbiI3hamtPupvhQFYUHq/z51Fa70GjVJHQIp++YdFK6RBKXHt7sJtOp0mh8o4VSu0X5DiM/YiXnl1Jyfylj7cIDeN0KeoOGhAwLiR0tJHSIIC7NjN547G2VoihYK5wczami6JCvsVV0qMp3XaOWpMwILpiQSXrPmNNqMp2qkFCdf1SUx+2lMLuSnF1l5PxSyt6ffZPamiJDSOxgIbFjBAkZFqKSwhqscKh4FSqKbRQfrqYou5Ij+ysoy7cCYI42kNw5kv5j25PaLYoQ49l7axkeY6TP6DT6jE7DbnVxZG85Ob+Ukb3tKNtX5IEKohLDSOhgIbGDhYQMC5ZYY1Aefnt8Ls5aN0f2lZP7Sxm5e8r55Yf8ussYSMiw+LcTnxfR+pTkHGLH90sYdsPEk46gOlGXIRew8avPOLxjK+379GuROCITkuh72ZWs/+ITug0f2eShkEXZWb6pKLr1bPQ3pCgKG79eyP6ff0Sj01GwbzfnjRkLQPGhbABi0to1uE5Spy6Ex8aRvXkDAL1GXcL6Lz8la9N6Urv1pO+lV6I3hrJk9itUlRxtNJF5/p7deD1u0nr0xuNysXbBXPpddqX/g3p1WQm5u3aQ0q0HXzz/D0ItEZijY/C4XZTk+FaorCwqInPgENYtnE+34ReiO+FoGsXrZeFzfwdg1B/+AkBK1x5ExCeyZck3TTa5EjM7+xohWfuwVVZSlH2A+IyzMw2NrW6lPGt5OdWlJZijY9BodYz4/WS++s8z7P1pDZ0HDzut2y46mEVsWrsGhyX6Dukcz9I3ZpK/b3eDQ1CjklMoy8/j6OGDzZqgPCa9HQBHDx8kJiWNtQs+JLFjZxIzu3Bo+xYObtnI2LsfbPQ+eM+Pq/B6vXQd9rvTyu9EWZvW0653X/9ru2P/Qfyy+ntKcg4Rk9aOnqMuYdX7b1JVUsyOlcsA36G+KpWKYRNu4fC2zXw78wU0Oh2jbpuC3mBgxbuvY4lP5JcfVtD7hCaX1+th+Vv/Iyo5lS5DfdP1dBk6grWfzGX1B2/TadAwyo7kEt8hk3a9zmPjV5+BSoUhzERU0rHPT8UHs9Abjad0+LJWrycmNZ3CrP30vujYAIqjh7IxmMMJtUSc6cMYtKTJdRYoTic1a9dS8fECalauRG00EnXrJKInTUITERHo8JqkMZuJf+hBom75PaXvvEPpW29ROns2ptGjiLjmWsIGDWw0efyp8trtFD37LBUfzSPq1luJe/ghPCUlVH7zDZVffEneX6aiDgsjbPhwDF27UPbRR6gUSHvzDUpnzsS2di3hV1yBfe9eDt14E9F3/IGYv/wFtV5P0vPPkTdlCrl33EHcww+h0uqo+WE11rU/odhsGHv3Jv6hhzGPvYzSV2dS+tpreGtqiHvg/kaTlJ8riteLbeNGyt59j5rvv0eXlETyS//BPGZMs96IK4pCzfLlFD//b5y5ucRMmULMlD+j0mrxVFVR+sYblL77Hrr4eNLffx9jn97UrFiBu9JXIFV6Pe6SEio+/xxNVDQhGb5vYRS3m+rl31Py2v9w7NkLgCY2lrj7p6Fv146Cxx7n4DXXEnnDDaTOmsXRF17g0IQbsIwbR+xdd/qbdP6FCIYMpvDv/yB77OVETbyFqIkTW2yxA1dxMWVz5lD+/gcoDgeoVETefDMx99yNY8cOiv/7MnlT7/Q1vVQqom+/ndj77vWPqDqZ2l27OPrCi1jXriV08CAS//E0+hTfmyjL2MsofPIpsq+6moirxhN1xx14KypQaTWoDAacBw6AVus7HPm++3Dl51PwxN84/PtbMI0eRWzdao7gazJH3XQT5tGjKXzySWq+X0H+Aw9SNOMZYv4yhYjx41tsVKVoG9wuD+UFNkrzayg9YqXsSA2lR2qwVjoB3/xMCRkW+o9tR0J7C/HtwoN2tJaiKFSX2Sk7YvXnU3qkhrICKyigN2iIaxdOt2FJJHeKJLGDJSATdqtUKmJSTMSkmOh7cTpup4fiw1XkH6ik4EAlW5bm4vzS9wHKGK7HEKpFUaC22onD5vbtN+tI7BjBkKs6ktQpgujk5o8CawkarZrkTpEkd4pk8FUdqK1xUpjly6Mgq4KsBfvxehRUagiLCEEXosHj8mKrdOJ2+UZEWOKMJGdG0PfiNJI6RZ7VBt2vMYTp/PONKYpCZXEtBVmVFGb78qlvFOmNWmJSTETXPYcxKSaiEsOCavJ3vVFL+96xtO/tq43VZXYKs325FGZVcmBjMV6vglqtIjIx1JdLspmYFBORiWGEReiDspEnGnLW2lj0yr+JTEzmvEuu+O0r1Ilr34HolDS2LV3UYk0ugEFXT2Dfuh/56j/PcMNTzzaYl8phs1K4fy9er5f0Xscmx1cUhZwd21gzfw6FB/YxYNy1RCWlsPi1l0jvdR7dR4yi+GAWpuiYRiOl1GoN8RkdqTpaTFKnrmj1eg5u2YDi9XLBLbehUqvpNGgYqz54i01fL+TCW//Y4Pp7f1qNJT6B2PT2RCYls23ptyx76zWG3zCRwqz9bFv2LaBQsH8P5195DRu//NQ3GbjXy+L//QdLXAKHd2xl+E238u79U1gz/30unHRHg/tY9tb/KM/PI6VrD9rXzfukUqnof+U1LH1zJiW5NxCTmt7osfzdxD/w3oN3oTMY+fnzBVxZt8pkS1IUhR/nv09EfCIuh51vXn6O6574FxqtlsyBQ+k0aBhLZ79CQoeOv7r65MkUZR8gpWvjJl6PCy9ix/Lv+PbVF7nh788RFuEbABGfkcn6LxbgstuJSz/1qV8MYSbCY+MoPpiFy15LUfYBbnjqORxWK8veeJXUbj3pPKThYmwet5tN33xOx/MH+e//TJTl53H0UDYDjxshldG3P6GWCLYv/46Rk/9EjwtH8/PC+ax6/22yNv2MSq2m2wUjAV/z6KI/3sVHTzxAbLsMDGFhjP7DVEyR0axd8CGVRQWs/vAdeo26BEt8AiqVih/mvkfhgf1c/+QM/4hMZ62N+IxMDqxfS/bmDZijY1n/xSdEp6ajUqvRaHXYa6qpKCr0j4ws2L+H+PYdT/nL8ISOncjfu7vBvvx9e0jK7Nym64ZKURQl0EH8mpkzZ/L8889TWFhI7969eeWVVxgw4OSrCSxYsIAnnniCQ4cOkZmZybPPPstllzUeLngyVVVVWCwWKisrCQ8PP+XrKS4X1cu/p3rZMmpWrcJbXU1Ily5E3nAD4ZdfjsbUuj6ousvKqPziSyo+/QTngSzUFgum4cMxXfg7Qvv3bzRRd1MUt5vqJUsofuFF3EePEv/XR4mYMKHRH5R93z6qlyyhYsEnuIt8K3To0tPwlJXjdThIeOIJIq+7FsXppGT2G5TMmoW+Xbqv0WUMxfrTWio/W4i3pgYAQ8+emEePJvyyS9GnHhv6qSgK5XPnUvTMs+iSEom77z7MF130mw2PlqC43dh37aJ6+fdUff01rvx89B06EH3bZMKvuKJZI/vc5eVULVpE+YdzcWZnEzZ0KHEPPYihc2cc2QepmD+PigWfoHg8RN9xB5ZrrsG6cgVlc97HefAgoQMHEv/Iw+jbtaP8ww8pe28O7qNHMfTujUqjwb57N0ptLQC61FRi7roLy9jL/I+T4nRSNmcOJbPfwFtbi2XsWNTh4VR+9RXeqirMF11E5A03ENr/fP91vDYbJbNnUz7nfRS3m/DLL8cybpzvMs2dWL+8nJrvv6f8o3nYd+0CRQG1GvOllxB3993o0tKw//ILVV9+ScXnX+CtrkaXmoqrsBAcDkK6dcU8chRhgwdh7NnTP4LQ63RS8/0Kyj/4ANvGjejbtyfugfsxjRzZ6DXrsds5+u8XqPj0U/9jpY6IIOK667BccTmVn35G+dy5qAwGIq6+ivDx47Hv3kPprFm4cnIwnt+PiGuuxTzyQjSWY28C7Xv3Ufzss1jXrvXt0GgI7d+fiOuvx/y7EahDg3O+ltP9v9lcraUenAnFq1Bb46Km3E5ViZ3KozaqjtZSWVJL5dFaasodUFe1zdEGopNNRCeFEZ1iIiHDgikyJKjetChehZoKB1V18VeV1NblVUt5oRWX3QP4GlrRySaiksKIaxdOQnsLkQmhQTXqzOX0UFNmp7rUTnWZnaqSWsoKbFQUWqk8Wkv9uym1RoWi+HIH0GhVWOJCiUwIIyLeSGR8KOZoA6ZIA2GRIc2aP6wlKIqCw+am+rhcKotslBfZKC+w+humAGqtCq9H8b/m9KEaohLCiIgPJSI+FEusLxdzlAGjSRdUz5fd6qIwu5KS3BpK8nzN4Ipimy8XlW/0WkRcKJa4UCLijFjiQgmP8T0veoMmqP6O3E4PR3OqKcmroeRIDaV1+bidvsajVq/GEnssD0uc0fcaiwghLCLknE9u3xZrwpnmZK0o58sXZ1CSc4gbnnq22fM27f5hBYtefYEJTz17xhOMH68waz/zpz9MctfujLv/Mf/Ipj1rV/PNf59Do9MzZfb7hISGUVtdxbI3ZrLv5x9J6NiJ4TdOIq1HbxRFYensV9i5YhmDr72RAxt/JjIhkcvvfbjBfdmtNcz+y2Rc9lqSu3bHWl6G02bDVlXJZXc/SNe60S1rF8xl/RcLuOWZl4lOSUXxeqkuK+G9+6eSOXAIyV27U3wwm5xd2ynLywFApdaA4iWufQeumPYIX/57Bl6Pm1uefRmA9x68E4e1BqfdzpTZ77N92XesnPMGF/3xTnqNugTF62XFnDfZ8u2XhISZuO2l1xs06TxuF+/c92fCY+K49omnG4x2qvfL6u/5duaLAFz9yJP+SdRbyo7vl7Dk9ZcZ9+ATGE1m5j/1CN2Gj+TiP9+FWq3Bbq3hg0fvRYWK65745ymvdghQU1bK61Mmcemd99Nt+IWNzq8oKmTe3x4kNNzCVY88iTk6hrw9u5g//WFQqfjLm3MxmsynfH+L//cf8nbvxFpeTrcLRjJi4u188fw/KD50kJv/9Z9Gh7puWfwV37/zOhOfe6VF5jxb9uZM9q//iTtmvtNgZcM18+awedGX3Pbf2Zgio9i5YinfzfJNg9Jr9KVcdMdU/2V/Xvgxa+a/D4rCtY8/7V+YoODAXuY/+QhetxtFUTCaw9HodNSUlZLStQfxGR2w19RQeiSXwqz9aPV6QoyhqDUaJv17JsUHs/n83//AabOh1mjQaHX0GTOWC26ejMft4n9/uIn+V1xzyofF7vlxFd+8/Dx3vPo24bFxuOx2/vfHmxl8zY3+1SzPpkC8l4Ygb3LNnz+fiRMnMmvWLAYOHMhLL73EggUL2Lt3L3FNNFnWrl3LBRdcwIwZM7j88suZO3cuzz77LJs3b6ZHj1NbIvO0m1xuN/uHDkObmIh51CjMF40mpHPr75AqioJ95y5qVnxP9YqVOHb7OsG65GSMffoQ0qUzIR06EtKxA7pk30gX+44d1KxeTcVnC3EXFmIaMYK4hx9qcoJ3x8GDVC9eTPlH83CXlmLsex6uvCO4CwpAowGPB3VoKKEDBmDsex4akwnbtu1UL12KYrMBoDabCRs+HE14OJXffAMuF5bx47CMG4exd+9GTRRHdjZFT/8T69q16FJTsVxxOebRownp0qVFDhFTFAX30aM49uzB/stuanfswLZ+Pd7qatQWC+FjxhB++VhCzz+1Bo/XZsO+axe2rVuxrlqNbbNvZRHz6NFEXHctKrUa64YN1Hy/AsfevajDwzGPuRhdYiK1W7diXfsTeL2YR40kavJthPY9D8XrxbF/P1WLF2Ndswb77j3gdvvvUxsbi+Wq8YSPvZyQjPaodI3nOPHU1FAxbx5lH87FXVCANjERXXIyrpwc3MXFqCMjMY8aSdjAgRj79EGXkoK3upryj+ZRsWABrrw8NLExhA0aTNigQRjP64M+La3BiEHF68V5+DDWtWuxrl2LfedO3EXHlo3WxMQQMeF6QgcMwJ2XR+3WbdT88APuwkI0kZFYrr6KyOuvR5+ejre2lprVP1C1+FusP67FW1UFISHok5NBBa4j+Sh2O8a+fYmaOBHz6FH+WLxOJ449e6jdsgXblq3YNmzwT76vT0vFU1KKu7AQbVwcYcOHYRo2DG1SEtVLl1H56ad4ysvRpaT4VhPVaqjdsQP75i2g0WDs04ewIYMx9uiBoUcPtNHRuIqKKJvzPpWffYanvNyXrEqFNjERQ4/umIYPJ2zIEHSJiUFxWOO5KGCtqR4cT1EU3E4vdqsLu9WFw+rCbnXjsLmorXZhq3RgrXRirXRgrXBgq3Ti9R4ry3qjFkuskfAYI5ZY3xaZGEZ0UliDQ+POJa/Hi6PWjcPqxm5zYa9xYaty+nKpqMul0vf7ifmYIkMIjzESHutr9kQlhRGdbApYc87rVXDa3NiqndRWO6mtdlFb7az73UVtlZPqMjs15XZqq13+66lUYIo0EJkYSmR8GBEJoUQlhhIRH4bR7Pt/WV1qp6zASkWRzbcV26gotDVoIqHyjb4zRRowR/kaEkaTHqNZd+zUrMdg0hESqv3Vx8jj8WKv8cVfW+XCVu30PTd1uVkr6nIps+NyePzXU2tVWGJDiUwIJTI+lMjEMCITfE0svUGLx+2lvLAuhyIrFUW1lNfl5Kx1N7gdU6QBc2QIYZEhhJr1GM3HcjCa9RhNOozherQ6dUCeb5fDQ2l+DWX5ViqLa6kstlFRXEvlUZu/YQS+ie9Nkb7no/60Pn6Dyffc+E51ARsR5vUqVB31PReVxTYqi2upqDutLrf7G5Pg+z9iigzxN72MZh2GsGM5GEw63z6TvkUafG2xJpxJTraqSt57wPfheNwDjzU45OtUKV4vHz3xINbKcq7/279Oa6TOyeTs3M7nz/0dU3QMo2+fQkrXHnz41/s4evgQ511yORfe+kcO79jK4pkv4nY6GXX7FDoPuaDB60Txeln7yVx+XvgxitdLp0FDGTphon9i+MqSYub97SFqSkuISWtHSc4hjOZwJjz1HF+9+C+0+hB6jR5DdclRKooKObBhHYrXi85gwGGz+ufWAnyj9hOTiWuXgb2mmsPbtxAWEQUq+P2Ml/hx/vvsWrWcm55+gYQOmYCvmffREw/g9XgYcv3vGXT1BJa/9Rrbli6i8+DhFB/KprzgCDqDgd/PeKnB4WHHHqdtLHj6cfpfeQ3Db5zU5N/JpkVfsvK92ajUai76450nnUC/ufb+tIZFrzxP9xGjuPhPvmlXdq9Zybevvkhq9x5c/Kd7sMTFU1lcxIJ//BWH1crIyX+i89ALmmzINYr7m89Z9cHbTJn9AUZz06/vktzDfDbjSbweN2Om3Et6zz7895ZrMIaH8+dZc045F0VRWPXB22z6eiFx7Tow+o9TWTZ7JhVF+Vz10PRGh4QWHNjLx0/9le4jRjL6D1NPcqun7sje3cyf/jDDb5pE/yuvaXCevaaGt+65g7Tuvbj8vkfY+M3nrH7/LQAGjL+eQddMQKcPoST3MB8+eh+9Lr6MksPZHD18iPEPPeH/265vLKX17EPxwSzsNdVY4hPQaLSgUhESGkpEQhKp3XvS8fxBOGw23n/4buIzOuL1uCk8sJ9uw0eyY8V3/tiG33QrWr2eFe/OZtLzrzY6HPhkHDYbr/3xZgaMu5Yh193sb9zd/vKbpzR5/ZmSJlcTBg4cSP/+/Xn11VcB8Hq9pKamctddd/HII480uvyECROwWq18/fXX/n2DBg2iT58+zJo165Tu80yeCE9FRdAejtgSFLcbZ24utg0bqd26BfuOHThzcn2HiYHvXT/4RtZotejapRPa5zz0aamodHoUlwtPVRWeslKcObk4s7PwlJWDRoPKZEKpqgJFwXBeH8Ivvhi1JQL79u3UbtqEMyenwf1ooqLQJiSgVFfjzM0FRUHfoQOG7t1wl5Xh2LkLT0UF6vBwQvueR0inzugz2qNLTEITGYE2Ksq36t28edSsWOFrQIWFYejZk5AOHdClpqBLTkYTHo4qNBS10ehr9Hi9eK02PJUVeCsr8VRW4qmowH20BFd+Pq4jR3Dl5+O1+uYqUZvNGLp2JXTQQMIGD/bNW6VWo9jteB0OFIcDb22tbw6n8go85WW4S0tx5R3Befgwztxc3IWF4PWCToc+JRlNTAx4vLjy830j3xQFlcGAJjoKVGrcxcXgdIJWiz49DX1qGmpTGJ6KSlwFBbiLi32j3o7709fExBA2aCBhF4zAdSQP29qfsG3dCi4XKr2ekMxM9O3bo0tKQpeUhDYuDo0l3Pf4mMw4DxygetkyrD/+iCvPtxqPymAAlco/0gmDAV1CAtqEeLQxseBy+R6z/Hw8paW+y6jV/pFVitvdoPFWf746IgJdcjJqoxFPaQmu3DwUpxNUKvQdOhA6YACmoUMI6dIF3G7f81NairukBE9pKc7cPBxZWTj27/c3StFqj92XSoXabEJdN4Gqt9aGt6ra/7oOyczE2KsXpguGEzpgAOq6BRTs27ZRtfg7rD+uwbHft2KLJiICfceOqEJC8FZV4srNw1NR4X9tqM1mlLoYcfo++KrDw9ElJqJLSUGXkgw6Ha6DB3Hs3YurqBhcxz5oo1KhCg1FGx3t+5uIiUEXH4c2MRFtTCyaCAuayEi0UVFooqJQh4aelQ+W56KAtbZ6sH1FLpu+PYzd5sLrblxmVSoICdMRZgkhLEJfdxpCmEVPqCWEMEsI4bEGDGG6X33OFEVBUXyNJ69HwetW8NT/7PHicSv+8/w/11/GreByenA7Pbgc9ade3z6Hp8Gpw+b2bVYXTrunyViMZl1d7Hr/aZglBHO0wdfYijGcdHJ4xavg9Sr+U69HabjPo6Aoij8Pj8uL2+WpO/U2+r1+n8vpwVXrxlHrwWl346w9tjnsvvxOpNaoMJr1hIb7mhqmyBD/aKXfGoFV/3wonibyqYvfUevCWuGkpsxOTbmDmnI71iontkon9honzlpPgyZUg9i0Kt9hjioVqvr78/r+HhRv48trtCr0Ri0hoToMYVpCLb6mjSnS4Msryte80Wg1qDW+21bVnarVKtQa1UlHZymKgsPq9jcBq8scvpFu5Xas5Q5q6xpu9YdsnvgY641a9AZN3anWd2rUEGLQojNo0Og0aHVqtHo1Gq0ard73u0anrtuvQaNV++LWHItVo1GjUh/bd3xOJ/tbqp8/rbq0lpoKBzXlDqzlDmoqfM+RtcKXj8fV+EHW6tWEGLXoDL586k/1dXnoDRp0IVp/HvXxa3TH/V53Wr/v+MderVb586n/vX7fyXhcXmoqHFgr6l9jDt/vdad2q685fXyTsp5KRd1zoeXmpwad1hxgbbEmnGlOWxZ/RadBw87oUKuqkmI+/ruvgdH/ymvo0G8gkYlJLTIZfemRXBbP/A+FWfvQGQy47Ha0ISH0uPAi8vfupvhgFmERUWT0G0BUYhJhUdGYIiLRG0PRaLWotVrcDgeLZ/2XsiO5AHhcLjQ6ne9/X917LJVajeL1otHp8Bz/fgagbvXD8OhYdEYjeb/sRKvTYY6JpSTnEN1/dxF9L72CiIREdCEGaspLyd60gdUfvoOz1kZIaBganZba6mp+N/EPnDfmcv8XgYqisPenH/yT0ce164AuNIyirH24HXYADCYTQ66/hXa9z8MUFd3knGkbv/qMVR+8TeaAIfQfdw3x7Ts2evwPbFjHNy8/h9vpJCTMRFqP3rTv3Zfo1HTCY2IxhlvQ/MYUMIqiUFtdRcH+PWxf/h3Zm9bTZegILvnLfQ2ue3jHVha/9hK2igo6nD+Ajv0HExGfyMYvP2X/hp+wxCeQOWAISZ26EJ2SRljdc3b8/8LSvFzmP/UI7fv080+IfjLWinIWvfoCOTu2Ep2SRmleDiqVimse+4d/JFNT3C4XlUUFHN6xjZ0rlnL0cDYarQ6NXofTZiMqKYWx9zzkX8VTURSqjhaz+4cV/Pz5AuLaZXDt4/9AF3L6h8fbqirZ+9MPrPloDjFp7bj+b/9q9DwoisLWJd/w/duz0IUYcDns6END6X7BKLYtXYTOYCQ2LZ3iQ9mEhkdw1aNP4XE5WfTqC5QcPkhCZmfCo2Ow11jJ270Tr8dNWEQkF9w8mc5DhqPRNh40oCgK1aUlrFs4nx3LFqPWaBk5+U/0GjWG7csXs+zN//n+Mdd9blNrNCR16kpkUjLm6BjM0bGYo2J8r9mQENRaLRqtFpVajUrlq4dr5s1hx/IlXHjrHfw4/wOSOnX1HVKrOnldbCnS5DqB0+kkNDSUTz75hPHjx/v3T5o0iYqKCr744otG10lLS2PatGnce++9/n3Tp0/n888/Z9u2bU3ej8PhwFHfPMH3RKSmpp7WE7G7S/O/mRFCiGDSdc/u377QCc52AWuN9WDuU+soL7A16zpBTdXkjyfZQYNRJE2edbbfeajqwlKpfN+/qHzzqtS/l1OpVA33HfezSqVqHF4Tb5W8XuW4Zhb+plZLUWtU/iZOo6ZNfYNDAa/ii8Pj9vobal6PF4+rhWJRcayxovE11/z3f7LH1feL7305CigqoK7pp+B//hWvrylIfXOwrmlX3yys39/iVL/2Oj5hlWH/93e/EYhywo9B+e66ef788gg0pzFSrS3UhJasBwAvTLi82dcRQohgcv/8r3/7QicIVJMraCeeLykpwePxEB/fcOWA+Ph49uzZ0+R1CgsLm7x8YWHhSe9nxowZPPXUU2cesBBCiLOiNdaDuLRwbFW+0XnHPjsf+/Dc1Odp1Yk7VU1ftsG3bifs8zVsmmrmgIrjfj5+v1rlP++kTtbkqr/fRmc0fQMqtS8OlfqEBpNadUJcqmOxnbC/wSiXExo/vlyauvumGxcnjbbpG2nwW5MjbVQ0ise3v2Gc9Q2jBiOTdBr/aB6tVn3G81vVjxzzj3RzevC4j41y89Y36OpOG/zs8TYcUec5NiINpb5xdazx4xtFVt+owtec8u3yXaZ+Wi9/86qukXXCZX4tl+MbiZ7jYm3QIDv+/pQTmmgnNM/q7vq4+z0WW12Gx87zh3csTqXhr002Qhsnctxj1qC5d/xjeiznY3d0fKzHXb/R+Y1jOGlYDW++8RnwG3/TgXMuaoJ8PhBCiNYraJtc58qjjz7KtGnHhmbWf1NzOk5nBIQQQojg0JL1YPTkbi0VlhCnRaVSodH6RoNhDHQ0QrQuLVkP4PRGQAghhDg9QdvkiomJQaPRUFS32l69oqIiEhKaniQtISGhWZcHCAkJISSk8THXQgghgoPUAyGEEPXORU2QeiCEEK1X4JflOgm9Xk+/fv1Yvny5f5/X62X58uUMHjy4yesMHjy4weUBli5detLLCyGECH5SD4QQQtSTmiCEEOLXBO1ILoBp06YxadIkzj//fAYMGMBLL72E1Wpl8uTJAEycOJHk5GRmzJgBwD333MOIESN44YUXGDt2LPPmzWPjxo3Mnj37lO+zfg6Eqqqqlk9ICCHaoPr/l2dzHROpB0II0Tq0xZog9UAIIZrvXNSDJilB7pVXXlHS0tIUvV6vDBgwQFm3bp3/vBEjRiiTJk1qcPmPP/5Y6dSpk6LX65Xu3bsr33zzTbPuLzc3t37aUdlkk0022Zqx5ebmtsS//ZOSeiCbbLLJ1nq2tlQTpB7IJptssp3+drbrwYlUinKu22rBzev1kp+fj9lsbriC1Smon5QyNzf3nC6R2dLaSh4guQSrtpJLW8kDziwXRVGorq4mKSkJtTpoj4JvNqkHPpJL8GkreYDkEozONI+2WBPOpB6AvDaCkeQSfNpKHiC51AtUPQjqwxUDQa1Wk5KScka3ER4e3upfzNB28gDJJVi1lVzaSh5w+rlYLJazEE1gST1oSHIJPm0lD5BcgtGZ5NHWakJL1AOQ10YwklyCT1vJAyQXCEw9aBtfrwghhBBCCCGEEEKI/9ekySWEEEIIIYQQQgghWj1pcrWgkJAQpk+fTkhISKBDOSNtJQ+QXIJVW8mlreQBbSuXYNCWHk/JJfi0lTxAcglGbSWPYNJWHtO2kgdILsGoreQBkkugycTzQgghhBBCCCGEEKLVk5FcQgghhBBCCCGEEKLVkyaXEEIIIYQQQgghhGj1pMklhBBCCCGEEEIIIVo9aXIJIYQQQgghhBBCiFZPmlxnyT//+U+GDBlCaGgoERERgQ6nWWbOnEm7du0wGAwMHDiQ9evXBzqkZlu9ejVXXHEFSUlJqFQqPv/880CHdFpmzJhB//79MZvNxMXFMX78ePbu3RvosE7La6+9Rq9evQgPDyc8PJzBgwfz7bffBjqsFvHMM8+gUqm49957Ax1Ksz355JOoVKoGW5cuXQIdVpsi9SDwpCYEn7ZaE6QeiN8iNSGwpB4En7ZaD0BqQqBIk+sscTqdXHfddUyZMiXQoTTL/PnzmTZtGtOnT2fz5s307t2bMWPGUFxcHOjQmsVqtdK7d29mzpwZ6FDOyKpVq5g6dSrr1q1j6dKluFwuLr74YqxWa6BDa7aUlBSeeeYZNm3axMaNGxk5ciTjxo1j165dgQ7tjGzYsIHXX3+dXr16BTqU09a9e3cKCgr825o1awIdUpsi9SDwpCYEn7ZYE6QeiFMhNSGwpB4En7ZYD0BqQkAp4qx65513FIvFEugwTtmAAQOUqVOn+n/3eDxKUlKSMmPGjABGdWYAZeHChYEOo0UUFxcrgLJq1apAh9IiIiMjlTfffDPQYZy26upqJTMzU1m6dKkyYsQI5Z577gl0SM02ffp0pXfv3oEO4/8FqQfBQWpC8GrNNUHqgWguqQmBJ/UgeLXmeqAoUhMCTUZyCT+n08mmTZsYPXq0f59arWb06NH89NNPAYxM1KusrAQgKioqwJGcGY/Hw7x587BarQwePDjQ4Zy2qVOnMnbs2AZ/M63R/v37SUpKIiMjg5tvvpmcnJxAhyQCTOpB6yA1IXhIPRBtmdSE4Cf1ILhITQgsbaADEMGjpKQEj8dDfHx8g/3x8fHs2bMnQFGJel6vl3vvvZehQ4fSo0ePQIdzWnbs2MHgwYOx2+2YTCYWLlxIt27dAh3WaZk3bx6bN29mw4YNgQ7ljAwcOJB3332Xzp07U1BQwFNPPcXw4cPZuXMnZrM50OGJAJF6EPykJgQPqQeirZOaENykHgQXqQmBJyO5muGRRx5pNPnaiZv8oxdny9SpU9m5cyfz5s0LdCinrXPnzmzdupWff/6ZKVOmMGnSJH755ZdAh9Vsubm53HPPPXz44YcYDIZAh3NGLr30Uq677jp69erFmDFjWLRoERUVFXz88ceBDi2oST0QgSY1IThIPRAgNUEEltSD4CE1ITjISK5muP/++7n11lt/9TIZGRnnJpizICYmBo1GQ1FRUYP9RUVFJCQkBCgqAXDnnXfy9ddfs3r1alJSUgIdzmnT6/V07NgRgH79+rFhwwb++9//8vrrrwc4subZtGkTxcXF9O3b17/P4/GwevVqXn31VRwOBxqNJoARnr6IiAg6derEgQMHAh1KUJN6IAJJakLwkHogQGqCCBypB8FFakJwkCZXM8TGxhIbGxvoMM4avV5Pv379WL58OePHjwd8w1+XL1/OnXfeGdjg/p9SFIW77rqLhQsXsnLlStq3bx/okFqU1+vF4XAEOoxmGzVqFDt27Giwb/LkyXTp0oWHH3641RYvgJqaGrKysrjlllsCHUpQk3ogAkFqQvCReiBAaoI496QeBCepCcFBmlxnSU5ODmVlZeTk5ODxeNi6dSsAHTt2xGQyBTa4XzFt2jQmTZrE+eefz4ABA3jppZewWq1Mnjw50KE1S01NTYMu88GDB9m6dStRUVGkpaUFMLLmmTp1KnPnzuWLL77AbDZTWFgIgMViwWg0Bji65nn00Ue59NJLSUtLo7q6mrlz57Jy5Uq+++67QIfWbGazudGcB2FhYURHR7e6uRAeeOABrrjiCtLT08nPz2f69OloNBpuvPHGQIfWZkg9CDypCcGnrdQEqQeiuaQmBJbUg+DTVuoBSE0IGgFe3bHNmjRpkgI02lasWBHo0H7TK6+8oqSlpSl6vV4ZMGCAsm7dukCH1GwrVqxo8vGfNGlSoENrlqZyAJR33nkn0KE122233aakp6crer1eiY2NVUaNGqUsWbIk0GG1mNa6PPCECROUxMRERa/XK8nJycqECROUAwcOBDqsNkXqQeBJTQg+bbkmSD0Qv0ZqQmBJPQg+bbkeKIrUhEBQKYqitHzrTAghhBBCCCGEEEKIc0dWVxRCCCGEEEIIIYQQrZ40uYQQQgghhBBCCCFEqydNLiGEEEIIIYQQQgjR6kmTSwghhBBCCCGEEEK0etLkEkIIIYQQQgghhBCtnjS5hBBCCCGEEEIIIUSrJ00uIYQQQgghhBBCCNHqSZNLCCGEEEIIIYQQQrR60uQSQgghhBBCCCGEEK2eNLmECFIej4chQ4Zw9dVXN9hfWVlJamoqjz32WIAiE0IIca5JTRBCCAFSD4T4LSpFUZRAByGEaNq+ffvo06cPb7zxBjfffDMAEydOZNu2bWzYsAG9Xh/gCIUQQpwrUhOEEEKA1AMhfo00uYQIci+//DJPPvkku3btYv369Vx33XVs2LCB3r17Bzo0IYQQ55jUBCGEECD1QIiTkSaXEEFOURRGjhyJRqNhx44d3HXXXTz++OOBDksIIUQASE0QQggBUg+EOBlpcgnRCuzZs4euXbvSs2dPNm/ejFarDXRIQgghAkRqghBCCJB6IERTZOJ5IVqBt99+m9DQUA4ePEheXl6gwxFCCBFAUhOEEEKA1AMhmiIjuYQIcmvXrmXEiBEsWbKEp59+GoBly5ahUqkCHJkQQohzTWqCEEIIkHogxMnISC4hgpjNZuPWW29lypQpXHjhhbz11lusX7+eWbNmBTo0IYQQ55jUBCGEECD1QIhfIyO5hAhi99xzD4sWLWLbtm2EhoYC8Prrr/PAAw+wY8cO2rVrF9gAhRBCnDNSE4QQQoDUAyF+jTS5hAhSq1atYtSoUaxcuZJhw4Y1OG/MmDG43W4ZkiyEEP9PSE0QQggBUg+E+C3S5BJCCCGEEEIIIYQQrZ7MySWEEEIIIYQQQgghWj1pcgkhhBBCCCGEEEKIVk+aXEIIIYQQQgghhBCi1ZMmlxBCCCGEEEIIIYRo9aTJJYQQQgghhBBCCCFaPWlyCSGEEEIIIYQQQohWT5pcQgghhBBCCCGEEKLVkyaXEEIIIYQQQgghhGj1pMklhBBCCCGEEEIIIVo9aXIJIYQQQgghhBBCiFZPmlxCCCGEEEIIIYQQotX7PzMfyzpFRscvAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxYAAAJOCAYAAAAqFJGJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd1QUVxsH4N/CLsvSi3QQEBAL9i5SVbDXBEtCRE3UxJqIJlawJEZDLInGxAaWT2ONPSooYDdW7ChSRJAqvcPe7w/ckXUXWATB8j7ncNi9c2fmzmybd27jMcYYCCGEEEIIIaQWlBq6AIQQQgghhJD3HwUWhBBCCCGEkFqjwIIQQgghhBBSaxRYEEIIIYQQQmqNAgtCCCGEEEJIrVFgQQghhBBCCKk1CiwIIYQQQgghtUaBBSGEEEIIIaTWKLAghBBCCCGE1BoFFoQQ0gCsrKzg4+PDPQ8LCwOPx0NYWFid7YPH48Hf37/Otqcof39/8Hi8et9vQ3B1dYWrq+tb2XZN3hM1KYerqyscHBxqVzhCCJGDAgtCyEcnKCgIPB6P+1NVVUXTpk0xZcoUJCcnN3TxauT48eMNEjy8LRcvXoS/vz8yMzMbuijvtcTERPj7++PWrVsNXRRCyEeEAgtCyEdr8eLF2L59O9auXYvu3btj/fr16NatG/Lz8+u9LM7OzigoKICzs3ON1jt+/DgWLVokd1lBQQHmz59fF8Wrkfnz56OgoOCN1r148SIWLVpEgQXe/D0BlAcWixYtosCCEFKv+A1dAEIIaSh9+/ZFx44dAQBffvkl9PX1sXLlShw6dAijRo2Su05eXh7U1dXrvCxKSkpQVVWt023W9fYUxefzwee/Wz8v+fn5UFNTa+hi1MjbeE8QQsjbRDUWhBDykru7OwAgJiYGAODj4wMNDQ08efIE/fr1g6amJj777DMAgFgsxurVq9GyZUuoqqrCyMgIEydOREZGhtQ2GWNYunQpzM3NoaamBjc3N9y7d09m35W1p79y5Qr69esHXV1dqKuro3Xr1lizZg1XvnXr1gGAVNMuCXl9LG7evIm+fftCS0sLGhoa6NmzJy5fviyVR9JU7MKFC/juu+9gYGAAdXV1DB06FKmpqdWeR3l9LHg8HqZMmYKDBw/CwcEBQqEQLVu2xIkTJ6TWmzVrFgDA2tqaO57Y2Fguz44dO9ChQweIRCLo6elh5MiRiI+Pl9qXpA/B9evX4ezsDDU1NcydOxcDBgxAkyZN5Ja5W7duXJAJAIGBgXB3d4ehoSGEQiFatGiB9evXV3vs8gwbNgzt27eXShs4cCB4PB4OHz7MpV25cgU8Hg///vsvgMrfExs2bICNjQ1EIhE6d+6Mc+fOSS0PCwtDp06dAABjx47lzmNQUJBUvvv378PNzQ1qamowMzPDihUr3uj4CCFE4t26pUQIIQ3oyZMnAAB9fX0urbS0FJ6enujRowcCAgK4u94TJ05EUFAQxo4di2nTpiEmJgZr167FzZs3ceHCBQgEAgDAwoULsXTpUvTr1w/9+vXDjRs34OHhgeLi4mrLExwcjAEDBsDExATTp0+HsbExHjx4gKNHj2L69OmYOHEiEhMTERwcjO3bt1e7vXv37sHJyQlaWlqYPXs2BAIB/vrrL7i6uiI8PBxdunSRyj916lTo6urCz88PsbGxWL16NaZMmYLdu3crfE4rOn/+PA4cOIBvvvkGmpqa+O233zB8+HA8ffoU+vr6GDZsGB49eoRdu3Zh1apVaNSoEQDAwMAAAPDjjz9iwYIF8PLywpdffonU1FT8/vvvcHZ2xs2bN6Gjo8PtKz09HX379sXIkSPx+eefw8jICB06dMAXX3yBq1evchfeABAXF4fLly/jl19+4dLWr1+Pli1bYtCgQeDz+Thy5Ai++eYbiMViTJ48uUbH7eTkhEOHDiE7OxtaWlpgjOHChQtQUlLCuXPnMGjQIADAuXPnoKSkBEdHx0q3tXnzZkycOBHdu3fHjBkzEB0djUGDBkFPTw8WFhYAgObNm2Px4sVYuHAhJkyYACcnJwBA9+7due1kZGSgT58+GDZsGLy8vLBv3z58//33aNWqFfr27Vuj4yOEEA4jhJCPTGBgIAPAQkJCWGpqKouPj2d///0309fXZyKRiD179owxxtiYMWMYAPbDDz9IrX/u3DkGgP3vf/+TSj9x4oRUekpKClNRUWH9+/dnYrGYyzd37lwGgI0ZM4ZLCw0NZQBYaGgoY4yx0tJSZm1tzSwtLVlGRobUfipua/Lkyayyr3IAzM/Pj3s+ZMgQpqKiwp48ecKlJSYmMk1NTebs7Cxzfnr16iW1r2+//ZYpKyuzzMxMufuT8PPzkykTAKaiosKioqK4tIiICAaA/f7771zaL7/8wgCwmJgYqfVjY2OZsrIy+/HHH6XS79y5w/h8vlS6i4sLA8D+/PNPqbxZWVlMKBSymTNnSqWvWLGC8Xg8FhcXx6Xl5+fLHJenpydr0qSJVJqLiwtzcXGRcxZeuXr1KgPAjh8/zhhj7Pbt2wwA+/TTT1mXLl24fIMGDWLt2rXjnr/+niguLmaGhoasbdu2rKioiMu3YcMGBkCqHJJ9BgYGypRHcn62bdvGpRUVFTFjY2M2fPjwKo+FEEKqQk2hCCEfrV69esHAwAAWFhYYOXIkNDQ08M8//8DMzEwq39dffy31fO/evdDW1kbv3r2RlpbG/XXo0AEaGhoIDQ0FAISEhKC4uBhTp06Vaho0Y8aMast28+ZNxMTEYMaMGVJ34gG80VCuZWVlOHXqFIYMGSLVHMjExASjR4/G+fPnkZ2dLbXOhAkTpPbl5OSEsrIyxMXF1Xj/QPn5trGx4Z63bt0aWlpaiI6OrnbdAwcOQCwWw8vLS+qcGxsbw87OjjvnEkKhEGPHjpVK09LSQt++fbFnzx4wxrj03bt3o2vXrmjcuDGXJhKJuMdZWVlIS0uDi4sLoqOjkZWVVaPjbteuHTQ0NHD27FkA5TUT5ubm+OKLL3Djxg3k5+eDMYbz589ztQvyXLt2DSkpKZg0aRJUVFS4dB8fH2hra9eoTBoaGvj888+55yoqKujcubNCrwUhhFSGmkIRQj5a69atQ9OmTcHn82FkZAR7e3soKUnfb+Hz+TA3N5dKe/z4MbKysmBoaCh3uykpKQDAXYDb2dlJLTcwMICurm6VZZM0y6qr+QZSU1ORn58Pe3t7mWXNmzeHWCxGfHw8WrZsyaVXvNAGwJX59X4kinp9e5JtKrK9x48fgzEmcy4lJE3PJMzMzKQuviVGjBiBgwcP4tKlS+jevTuePHmC69evY/Xq1VL5Lly4AD8/P1y6dElmlLCsrKwaXcgrKyujW7duXF+Ic+fOwcnJCT169EBZWRkuX74MIyMjvHjxosrAorL3k0AgqLTvSGXMzc1lAlRdXV3cvn27RtshhJCKKLAghHy0OnfuLNVhVx6hUCgTbIjFYhgaGuJ///uf3HUkfQLed8rKynLTK97tr6/ticVirmOzvO1oaGhIPa9Y41DRwIEDoaamhj179qB79+7Ys2cPlJSU8Omnn3J5njx5gp49e6JZs2ZYuXIlLCwsoKKiguPHj2PVqlUQi8XVlvd1PXr0wI8//ojCwkKcO3cO8+bNg46ODhwcHHDu3DkYGRkBQJWBRV2q69eWEEIACiwIIaTGbGxsEBISAkdHx0ovYAHA0tISQPnd9op3lFNTU6u9Sy9pMnT37l306tWr0nyKNosyMDCAmpoaIiMjZZY9fPgQSkpKXOffhlTZ8djY2IAxBmtrazRt2vSNt6+uro4BAwZg7969WLlyJXbv3g0nJyeYmppyeY4cOYKioiIcPnxYqpbl9eZWNeHk5ITi4mLs2rULCQkJXADh7OzMBRZNmzblAgx5Kr6fJCOYAUBJSQliYmLQpk0bLu1jmfmcEPJuoT4WhBBSQ15eXigrK8OSJUtklpWWlnKTu/Xq1QsCgQC///671J3g15vdyNO+fXtYW1tj9erVMpPFVdyWZE6N6iaUU1ZWhoeHBw4dOiQ1fGtycjJ27tyJHj16QEtLq9pyvW2VHc+wYcOgrKyMRYsWydxVZ4whPT1d4X2MGDECiYmJ2LRpEyIiIjBixAip5ZK7+RX3k5WVhcDAwJocipQuXbpAIBBg+fLl0NPT45qcOTk54fLlywgPD6+2tqJjx44wMDDAn3/+KTWqWFBQkMz5UvR9QQghdYlqLAghpIZcXFwwceJELFu2DLdu3YKHhwcEAgEeP36MvXv3Ys2aNfjkk09gYGAAX19fLFu2DAMGDEC/fv1w8+ZN/Pvvv9xQqpVRUlLC+vXrMXDgQLRt2xZjx46FiYkJHj58iHv37uHkyZMAgA4dOgAApk2bBk9PTygrK2PkyJFyt7l06VIEBwejR48e+Oabb8Dn8/HXX3+hqKjonZnDQHI88+bNw8iRIyEQCDBw4EDY2Nhg6dKlmDNnDmJjYzFkyBBoamoiJiYG//zzDyZMmABfX1+F9iGZk8TX1xfKysoYPny41HIPDw+oqKhg4MCBmDhxInJzc7Fx40YYGhri+fPnb3Rcampq6NChAy5fvszNYQGU11jk5eUhLy+v2sBCIBBg6dKlmDhxItzd3TFixAjExMQgMDBQpo+FjY0NdHR08Oeff0JTUxPq6uro0qULrK2t36j8hBCiCKqxIISQN/Dnn39iw4YNSElJwdy5czFnzhycOXMGn3/+udQ8BEuXLsWiRYtw8+ZNzJo1C0+ePMGpU6cUmr3b09MToaGhaNq0KX799Vd89913OH36NAYOHMjlGTZsGKZOnYoTJ07A29u70hnDAaBly5Y4d+4cHBwcsGzZMixatAiWlpYIDQ2VmcOioXTq1AlLlixBREQEfHx8MGrUKG5Svh9++AH79++HkpISFi1aBF9fXxw+fBgeHh7cXBCKUFVVxaBBg5CTkwM3NzeZTvj29vbYt28feDwefH198eeff2LChAmYPn16rY5NEjj06NGDSzM2Noatra3U8qpMmDABf/zxBxITEzFr1iycO3cOhw8flmnGJhAIsHXrVigrK2PSpEkYNWoUwsPDa1V+QgipDo9RTy1CCCGEEEJILVGNBSGEEEIIIaTWKLAghBBCCCGE1BoFFoQQQgghhJBao8CCEEIIIYQQUmsUWBBCCCGEEEJqjQILQgghhBBCSK198BPkicViJCYmQlNTk5uQiBBCCCGEEFI9xhhycnJgamoKJaWq6yQ++MAiMTFRZuIgQgghhBBCiOLi4+Nhbm5eZZ4PPrDQ1NQEUH4ytLS0Grg0hBBCCCGEvD+ys7NhYWHBXVNX5YMPLCTNn7S0tCiwIIQQQggh5A0o0qWAOm8TQgghhBBCao0CC0IIIYQQQkitUWBBCCGEEEIIqTUKLAghhBBCCCG1RoEFIYQQQgghpNYosCCEEEIIIYTU2gc/3OybKikpQVlZWUMXgxBCCCF1QFlZGQKBoKGLQcgHjQKL12RnZyMtLQ1FRUUNXRRCCCGE1CGhUIhGjRrRvFaEvCUUWFSQnZ2NhIQEaGhooFGjRhAIBApNBkIIIYSQdxdjDCUlJcjKykJCQgIAUHBByFtAgUUFaWlp0NDQgLm5OQUUhBBCyAdEJBJBU1MTz549Q1paGgUWhLwF1Hn7pZKSEhQVFUFbW5uCCkIIIeQDxOPxoK2tjaKiIpSUlDR0cQj54FBg8ZKkozZ17CKEEEI+XJLfeRqghZC6R4HFa6i2ghBCCPlw0e88IW8PBRaEEEIIIYSQWqPAghBCCCGEEFJrFFiQd5Krq+t7W13t7+8PHo+HsLAwqXQejwdXV9cGKRMhhBBCyNtGgQUBAMTGxoLH48n8qauro3Xr1li0aBFyc3Mbuph1Ij09HT/88ANatmwJNTU1qKmpwdLSEj179sSiRYuQnJxcb2Xx8fEBj8dDbGxsve2TEEIIIeRtoHksiBQbGxt8/vnnAMonFEpNTcW///4Lf39/nDhxAufPn4eysvJbL8e2bduQn59f59t99uwZunfvjvj4eLRt2xZjx46Fjo4Onj9/josXL8Lf3x+Ojo4wMjKq830/ePAAampqdb5dQgghhJB3AQUWRIqtrS38/f2l0oqKitCtWzdcvnwZ4eHhcHd3f+vlaNy48VvZrp+fH+Lj47F48WIsWLBAZvmdO3ego6PzVvbdrFmzt7JdQgghhLxbxOLy4YyVlN7+zdh3CTWFItUSCoVwc3MDUD47eUWhoaEYN24c7O3toaGhAQ0NDXTs2BEbNmyQu60bN27gk08+QePGjSEUCmFgYIBOnTrhxx9/lMpXVR+LQ4cOwcPDA/r6+lBVVYWVlRW8vb1x9+7dao/l0qVLAICpU6fKXd6qVStYWFhIpUn6Rjx79gyjRo1Co0aNoKamBkdHR4SEhFS7z9e3I2FlZYWtW7cCAKytrbnmZ9QPgxBCCHl/FebmYtusqVjrMwJJTx43dHHqFdVYkGoVFxcjLCwMPB4Pbdu2lVq2fPlyREVFoWvXrhg6dCgyMzNx4sQJTJw4EZGRkfj111+5vLdu3UL37t2hrKyMwYMHw9LSEpmZmbh//z42bNiAefPmVVuWmTNnYuXKldDT08OQIUNgaGiI+Ph4hISEoEOHDnBwcKhyfX19fQDAo0eP0LlzZ4XPQUZGBhwdHWFgYIAvv/wSqamp2L17N/r06YN9+/ZhyJAhCm9LYsaMGQgKCkJERASmT5/O1ZRYWVnVeFuEEEIIeTfcOnkU6c+eAgBOb/4Dn/20qoFLVH8osCBSoqKiuKZQjDGkpaXh5MmTSEhIwIoVK9C0aVOp/OvXr4e1tbVUWmlpKfr164c1a9Zg+vTpXLOm7du3o6ioCAcPHsTgwYOl1klPT6+2bEePHsXKlSvRqlUrhIaGckGCZJ+KbMPLywvnz5/HwIEDMWnSJLi5uaF9+/bQ0tKqcr3bt29j9OjR2LFjB1eTMn36dHTq1AkTJkyAp6cnRCJRtfuvaMaMGbh16xYiIiIwY8YMCigIIYSQD0D8g1ctKJKePEZBTjZEmlVfZ3woKLBQwMDfzyM1p6ihi1ElA00hjkztUevtPHnyBIsWLZJJHzBgAHr16iWT/npQAQB8Ph+TJk1CcHAwQkNDMWbMGKnl8i7AKwYJlfnjjz8AAGvWrJHJz+fzFepwPWXKFMTHx2PNmjVYvHgxFi9eDB6Ph+bNm2PgwIGYPn06TExMZNZTVlbGTz/9JNU8q3Xr1vD29sbmzZtx/PhxDB8+vNr9E0IIIeTD9iIhXup5/P07aNrFsYFKU78osFBAak4RkrILG7oY9cLT0xMnTpzgnqenp+PChQuYPn06HB0dcebMGXTp0oVbnpOTg4CAABw8eBBPnjxBXl6e1PYSExO5x15eXli9ejWGDh2KESNGoHfv3nB2doaZmZlCZfvvv/8gFArh4uLyxsfH4/GwYsUKzJ49G8ePH8fly5dx7do1XL9+Hffv38dff/2FEydOSB0jUN6Z3NLSUmZ7Tk5O2Lx5M27evEmBBSGEEPKRKy4sQO4L6RYUWSn1N4x9Q6PAQgEGmsKGLkK13lYZ9fX1MWjQIKipqaF3796YP38+goODAZT3vXB1dcWNGzfQrl07eHt7Q19fH3w+H7Gxsdi6dSuKil7V9HTp0gVhYWH46aefsHPnTgQGBgIAOnXqhOXLl3MdxCuTlZUFMzMzKCnVfsyBRo0a4YsvvsAXX3wBAEhKSsKUKVOwf/9+TJgwAREREVL5K6sNkaRnZWXVukyEEEIIeb/lpKfJpGWnpjRASRoGBRYKqIsmRu87yR38q1evcmmHDh3CjRs3MH78eGzatEkq/99//82NeFSRk5MT/v33XxQUFODKlSs4cuQI/vjjD/Tv3x93795FkyZNKi2Djo4OkpKSIBaL6yS4qMjY2Bjbt2/H0aNHcfv2baSnp0s1t6ps0jxJura2dp2WhxBCCCHvn9drKwAgO/XjqbGg4WaJQjIyMgAAYrGYS3vy5AkAyHTEBoBz585VuT2RSARXV1f8+uuvmDt3LgoKCriakMp07twZRUVFCA8Pr2nxFSIUCiEQCOQue/r0KeLi4mTSJcfZrl27N9qnZLLBsrKyN1qfEEIIIe8OeYFFjpy0DxUFFkQhK1euBAA4OztzaZI+B+fPn5fKGx4ejo0bN8ps49KlSygslO2rIrnrr6qqWmUZJk+eDKB8NKYXL15ILSstLa20VqGiX3/9FQ8fPpS7bO3atcjNzUWzZs1kOoeXlZVh7ty5YIxxabdv38b27dthYGCAfv36VbtvefT09AAA8fHx1eQkhBBCyLtOXmBRkP3xNJemplBESsXhZgHgxYsXuHDhAm7cuAFdXV0sX76cWzZw4EBYWVlhxYoVuHv3LhwcHBAZGYmjR49i6NCh2Ldvn9S2ly9fjtDQUDg7O8Pa2hqqqqq4ceMGTp8+jSZNmmDo0KFVlq1fv37w9fVFQEAA7OzsMHToUBgaGiIhIQGnT5+Gr68vZsyYUeU2tm/fDl9fX7Rq1QpdunSBoaEhMjMzcfnyZdy4cQMikQjr16+XWa9169Y4f/48OnXqhF69enHzWJSWlmLDhg01HmpWwt3dHQEBAZgwYQKGDx8OdXV1WFpawtvb+422RwghhJCGk5shG1jkZ2WBMVbpxL8fEgosiJTXh5sVCoUwNzfH119/jR9++IGbkwIANDQ0cObMGcyaNQtnz55FWFgYWrZsif/9738wMjKSCSy+/vpraGtr48qVKwgPDwdjDI0bN8bcuXPx7bffVjuXBAD88ssv6NatG9auXYt9+/ahsLAQJiYmcHd3R+/evatdPzAwEEeOHMGZM2dw8uRJJCcnQ1lZGZaWlvj666/x7bffws7OTmY9XV1dHDt2DL6+vti4cSPy8/PRrl07LFq0SKH9VqZv375YsWIFNm7ciF9//RUlJSVwcXGhwIIQQgh5D+W9bDoOALompsh4nghxWSmK8vOgqq7RgCWrHzxWsW3HByg7Oxva2trIysqq8sK1sLAQMTEx3J10QiR4PB5cXFwQFhbW0EUhhBBSS/R7T96mPYvmIP7+HQCATceueHLtMgBg3Oq/oGui2PD67xpFr6UB6mNBCCGEEEJInSjMywUAKPP50DYw5NLzP5Jh6SmwIIQQQgghpA4U5pYHFkJ1Dahp63Dp+dmZDVOgekaBBSGEEEIIIXWgMDcHAKCqoQlRhWZDBdnZDVWkekWdtwmpxgfeDYkQQgghdaCstAQlReXD6qtqaEJVQ5NbJmki9aGjGgtCCCGEEEJqSdIMCgBU1dWlRoGiwIIQQgghhBCiEKnAQkMTwgqBRVEuBRaEEEIIIYQQBVSslVDV0KQaC0IIIYQQQkjNSTpuA4CqhgZUNSrUWOTnNUSR6l2DBhZnz57FwIEDYWpqCh6Ph4MHD1aad9KkSeDxeFi9enW9lY8QQgghhBBFSAUW6hpQURWBx1N6uYxqLN66vLw8tGnTBuvWrasy3z///IPLly/D1NS0nkpGCCGEEEKI4opeawrFU1KCUF1dZtmHrEGHm+3bty/69u1bZZ6EhARMnToVJ0+eRP/+/eupZIQQQgghhCiu4LXO20B5zUVhbs5H08finZ7HQiwWw9vbG7NmzULLli0VWqeoqAhFRUXc8+yPZEISQgghhBDScF5vCgWgQo1FHphYDJ7Sh929+Z0+uuXLl4PP52PatGkKr7Ns2TJoa2tzfxYWFm+xhIQQQgghhLzeFEoSWJT/Z0yM4sKCBilXfXpnA4vr169jzZo1CAoKAo/HU3i9OXPmICsri/uLj49/i6UkhBBCCCHk9VGhXjWFerX8w28O9c4GFufOnUNKSgoaN24MPp8PPp+PuLg4zJw5E1ZWVpWuJxQKoaWlJfVHaub69esYP3487OzsoK6uDpFIBBsbG3h7eyM4OBhZWVlQU1ODrq4uCgsLq9zWxo0bwePxMGHChHoqPSGEEEJI/avYj0LSBKpiYPExDDn7zvax8Pb2Rq9evaTSPD094e3tjbFjxzZQqT5sYrEYvr6+WLVqFfh8Ptzd3TFo0CAIBAJER0fj2LFj2LFjBxYvXozhw4djx44d2L9/Pz777LNKt7llyxYAwPjx4+vrMAghhBBC6p2kRkKopg4lJeXyxy8DDIACi7cuNzcXUVFR3POYmBjcunULenp6aNy4MfT19aXyCwQCGBsbw97evr6L+lGYP38+Vq1ahbZt22Lfvn2wsbGRWl5QUIC1a9ciPT0d48ePx44dO7Bly5ZKA4sHDx7g8uXLaNmyJbp06VLlvn18fLB161YwxurseAghhBBC6oukKVTFifGEahUCizwKLN6qa9euwc3NjXv+3XffAQDGjBmDoKCgBirVxykqKgorVqyAvr4+Tpw4ASMjI5k8IpEIs2bNQlFREVRUVGBjY4PQ0FDExsbKbZ5GtRWEEEII+RgwxrimUMIKzZ+EH1lTqAbtY+Hq6grGmMxfZUFFbGwsZsyYUa9l/FgEBQWhrKwMEydOlBtUVCQUCsHj8TBu3DgwxhAYGCiTp7S0FNu3b4eKigq8vb3fVrEJIYQQQhpccUEBmFgM4FXHbeC1plAfwVwW72znbVK/Lly4AABwd3dXeB0fHx8oKytj69atEL/8MEkcP34cycnJGDRoEBo1alSnZSWEEEIIeZfIGxEKAIRqatzjovz8ei1TQ3hnO2+/U/5yAXJTGroUVdMwBCaGv/HqSUlJAABzc3OF1zE1NUWfPn1w7NgxnD59Gr179+aWSZpBjRs37o3LRAghhBDyPqg4IpRqhVoKoVrFplAffo0FBRaKyE0BchIbuhTvpC+//BLHjh3Dli1buMAiJSUFx44dg7m5OTw9PWXWsbKyQlxcnNztyZuzJDAwED4+PnVabkIIIYSQulJZjUXFIKOQOm8TAOW1Ae+6WpbR2NgYDx8+REJCQo1G3RowYACMjIxw8OBBZGRkQFdXF9u2bUNpaSl8fHygJGfq+hkzZiAzM1Mq7eDBg4iIiICfn59M/rZt29b0cAghhBBC6k3Fye+km0LRqFDkdbVoYvS+cHR0RFhYGE6fPl2jfhZ8Ph9ffPEFfvnlF/zvf//DlClTEBgYCB6PV+l8I/I64MfGxiIiIgL+/v5veASEEEIIIQ2jYsdsqeFmP7J5LKjzNgHwqiP2hg0bkJqaWmXeoqIiqeeSfhRbtmzBlStXcP/+fbi5uaFJkyZvrbyEEEIIIe+KgopNoSoMMctXEUJJufw+/sdQY0GBBQEA2NraYvbs2UhLS0Pfvn0RExMjk6ewsBArV66UqVVo1qwZHB0dcfPmTcycORMAzV1BCCGEkI9HZX0seDweNzJUUcGHH1hQUyjCWbp0KQoLC7Fq1SrY29vD3d0dDg4OEAgEiImJQUhICNLT07F06VKZdcePH48LFy7gwoUL0NHRwbBhwxrgCAghhBBC6p90UyhNqWVCdXUU5GR/FDUWFFgQjpKSElauXInRo0dj/fr1OHv2LM6ePQuxWAwTExN4enpi7Nix6NWrl8y6Xl5emD59OnJycjB69Gioqqo2wBEQQgghhNQ/qc7bFZpCAa+GnC3KywNjTO4ImB8KCiyIjI4dO2Lz5s01WkddXR3Z2dlvvM+goKBKZ1wnhBBCCHmXSTeFei2weNmBmzExSgoLoCJSw4eK+lgQQgghhBBSC5LAQlkgAF9FKLVMVe3jmcuCAgtCCCGEEEJqoeBlHwuRhqZMUycVtY9nyFkKLAghhBBCCKmFwpzyGovXO24DH9dcFhRYEEIIIYQQ8oZKiotQWlw+x5e8wEL1I5p9mwILQgghhBBC3lBRrvxZtyWoxoIQQgghhBBSrcomx5MQVhh+tuJ8Fx8iCiwIIYQQQgh5Q1JzWMgLLKgpFCGEEEIIIaQ6Bbmv5vGSH1i8mreikJpCEUIIIYQQQuSpWGMhqqYpVDEFFoQQQgghhBB5qpp1G6CmUIQQQgghhBAFVNd5W7XCqFDUFIoQQgghhBAiV3WdtwWqIvB45ZfcVGNBCCGEEEIIkUu687ZsUygej8fNZVGUT8PNEkIIIYQQQuSQ7rytJTePZGQoqrEgH53r169j/PjxsLOzg7q6OkQiEWxsbODt7Y3g4GCZ/IWFhVizZg2cnJygr68PoVAICwsLjBw5EmfPnpW7j9jYWPB4PKk/gUAAMzMzeHl54dq1a2/7MAkhhBBCaq0wp7zGQkmZD75QKDePUK28JqMoPx+MsXorW33jN3QByLtDLBbD19cXq1atAp/Ph7u7OwYNGgSBQIDo6GgcO3YMO3bswOLFi7FgwQIAQFRUFPr3749Hjx6hSZMm8PLygo6ODqKjo3H06FHs3r0b06dPx8qVK6GkJBvH2tjY4PPPPwcA5OXl4fr169i7dy8OHjyIkJAQODs71+s5IIQQQgipifzsLACAmrY2eDye3DySplDislKUFhdBIFStt/LVJwosCGf+/PlYtWoV2rZti3379sHGxkZqeUFBAdauXYv09HQAQFZWFvr06YMnT55gwYIF8PPzg7KyMpc/MTERQ4YMwZo1a6Cnp4eFCxfK7NPW1hb+/v5SaT///DPmzJmDBQsWIDw8vO4PlBBCCCGkDjCxuEJgoVNpvteHnP1QAwtqCkUAlNc8rFixAvr6+jhx4oRMUAEAIpEIs2bNwqJFiwAAv/zyC548eYLPPvsMixcvlgoqAMDU1BRHjhyBnp4elixZgvj4eIXKMn78eADlTbIIIYQQQt5VBbk5YGIxgGoCiwpDzhZ9wEPOUmBBAABBQUEoKyvDxIkTYWRkVGVe4cv2g4GBgQDANYuSx8jICF999RVKS0sRFBRUozLx+VShRgghhJB3V35WJvdYvYrAQmouiw+4AzdduSlgxNERSCtIa+hiVKmRqBF2D9j9xutfuHABAODu7q5Q/ri4OCQmJsLMzAz29vZV5u3ZsyeWL1/O7aM6mzZtAgD06NFDofyEEEIIIQ2hYmBRVY2FiqhijcWHO+QsBRYKSCtIQ0p+SkMX461KSkoCAJibm9cov4WFRbV5JXkSEhJklkVFRXF9LCSdt0NDQ2FkZIRffvlFobIQQgghhDQEqcBCS7vSfKpSTaHy32aRGhQFFgpoJGrU0EWo1vtQRvHLNogVPXnyhOuzIWFsbIxz587B1ta2vopGCCGEEFJjUoGFjm6l+YTqrybO+5DnsqDAQgG1aWL0vjA2NsbDhw+RkJBQbdMmSX4ACnXIluQxMzOTWebp6YkTJ04AAFJTU7F161Z8//33GDRoEP777z9oyJnBkhBCCCHkXZCnYFMo6VGhPtymUNR5mwAAHB0dAQCnT59WKL+lpSVMTU2RkJCAyMjIKvNKttmiRYsq8xkYGMDX1xdz587FgwcPMH/+fIXKQgghhBDSEPKzsrjHVTWFolGhyEfFx8cHysrK2LBhA1JTU6vMW1RUBAAYN24cAODHH3+sNG9KSgrXGfuLL75QqCxz586Fqakp/vjjD8TGxiq0DiGEEEJIfcvPyuAeq1fVFOq1eSw+VBRYEADlE9XNnj0baWlp6Nu3L2JiYmTyFBYWYuXKlVxn61mzZsHGxgbbt2/H4sWLUVZWJpU/KSkJgwcPRnp6OgYNGoT27dsrVBaRSITvv/8eJSUlWLJkSa2PjRBCCCHkbeD6WPB4EGlqVZqvYmBR+AHXWFAfC8JZunQpCgsLsWrVKtjb28Pd3R0ODg4QCASIiYlBSEgI0tPTsXTpUgCAlpYWTpw4gX79+sHPzw/btm2Dp6cntLW1ER0djWPHjiE3Nxdt2rTB9u3ba1SWCRMmYPny5di2bRvmzp0rd8I+QgghhJCGJOljIdLQhNJrEwVXVLEpVDEFFuRjoKSkhJUrV2L06NFYv349zp49i7Nnz0IsFsPExASenp4YO3YsevXqxa1ja2uLiIgI/PXXX9i3bx927tyJzMxMbvm8efOwcOFCqKio1KgsqqqqmDNnDqZOnYpFixZh27ZtdXWYhBBCCCG1JhaXIS/jBQBAQ0+/yrxCkRrA4wGMfdBNoSiwIDI6duyIzZs3K5xfJBJhxowZmDFjBpcWEBCAWbNm4fHjx3Jn0LaysgJjrMrtTpkyBVOmTFG4HIQQQggh9SU/MxPil83ANfWrHvafp6QEoUgNRfl51BSKkJry9fXFw4cPsXnzZmhpaWHjxo0NXSRCCCGEkDqTk57GPdZsZFhtfqG6Oory8z7o4WYpsCBvzfr162FnZ4eCggI8fPgQzZo1a+giEUIIIYTUiey0V6NoVldjAbzqwP0hDzdLgQV5awQCAb7//vuGLgYhhBBCSJ3LSX8VWGg1Mqg2vySwKCspQWlxMfg17H/6PqDhZgkhhBBCCKmhnJrWWHwEk+RRjQUhhBBCCPnoPL0bgQfnw6FrYooO/QdDmS+o0fpZqSncYy1F+lioSQcWVU2o976iwIIQQgghhHxUnj28h31LF4AxMQAgLT4O/abMrNE2Mp4nAACUBYKa11h8oEPOUlMoQgghhBDyUbm4539cUAEAD86F4tnDewqvLxaXITPpOQBA19gUPKXqL6mFahrc4w91ZCgKLAghhBBCyEcjLzMD8fduy6Sf27m12jm2JLJTUyEuKwUA6JqYKbSOaoUai0IKLAghhBBCCHm/JVSomeg4cBj0TM0BAImR9/H0boRC28h82QwKAHRNTBVaR1VDk3tckJOt0DrvGwosCCGEEELIRyPh4X3usUWLVuj26Wju+dXD+xXaRtqzp9xjRWss1LS0ucf52RRYEEIIIYQQ8l7j+lLweDBt2hxNuzhC29AIABB3+yZSYqOr3UZydBT32NDaRqH9iioEFgXZWTUo8fuDAgtCCCGEEPJRKCstQWpcDACgkXljqGpoQElZGR0GDOXyKFJrkRzzBED5iFD65o0V2rd0jUVmDUr9/qDAgnyweDweXF1da72da9euoXfv3jAwMACPx0Pbtm1rvU1F+Pv7g8fjISwsrM62yRhDhw4d4OHhUWfbJO8HHx8f8Hg8xMbGNnRREBkZCT6fjz/++KOhi0II+chkpSSDictHg6oYEDi49oKqphYAIPLSOWRXmKPidUX5+chIfAYAMGhsBWW+YrM3iLS0uMcF1BSq7p09exYDBw6EqakpeDweDh48yC0rKSnB999/j1atWkFdXR2mpqb44osvkJiY2HAF/khcv34d48ePh52dHdTV1SESiWBjYwNvb28EBwfLXae0tBSBgYHo168fjI2NoaKiAm1tbXTq1Anz589HXFycVH4rKyvweDzuT1lZGY0aNYKHhwcOHTpUH4epkOzsbPTv3x///fcfRowYAT8/P0yaNKnByhMbGwsejwcfH583Wn/btm24ceMGFi9eLHd5QUEB/vjjD3h6enKvo6amJhwcHPDVV18hJCSkFqV/t+Xl5WHHjh3w8vJC06ZNIRKJoKOjAxcXF+zatavS9cRiMX7//Xe0atUKIpEIBgYGGDVqFKKjq69Kfx/VRcBub2+PUaNGYdGiRcjJyambghFCiAIyKna6Nn3VN0IgVEU7zwEAACYW4/qxg5Vu4/njh9xjoya2Cu9bIFSFQKgKAMinplB1Ly8vD23atMG6detkluXn5+PGjRtYsGABbty4gQMHDiAyMhKDBg1qgJJ+HMRiMb777jt07NgR27ZtQ5MmTTBp0iRMnz4dHTp0wLFjx+Dh4YElS5ZIrRcXF4eOHTti3LhxuHHjBnr37g1fX1/4+PhAVVUVP//8M+zt7REVFSW1nrKyMvz8/ODn54fvv/8ezs7OOHPmDIYMGYJff/21Pg+9Uv/99x9SUlLw/fffY+3atfD392/QwKI2xGIx/P394eTkhK5du8osj4iIQMuWLTF58mTcv38fHh4emDlzJr766itYW1tj9+7d6N27N7799tsGKP3bd+7cOXh7e+PMmTNo164dZsyYgeHDh+P27dsYPXo0pkyZIne9iRMnYtq0aWCMYdq0aejTpw8OHDiATp064fHjx/V8FJVbtmwZHjx4ADMzxToZvm2zZ89GSkoKfvvtt4YuCiHkI5KRWHE0J+nvw7ae/cFXEQIAbp85WenFf+ztm9xji5ata7R/ST+LD7WPRYPOvN23b1/07dtX7jJtbW2Zu+Nr165F586d8fTpUzRurFh7NqK4+fPnY9WqVWjbti327dsHGxvpzkgFBQVYu3Yt0tPTubScnBx4enoiMjISs2bNwpIlSyAUCqXWi4qKwnfffYfcXOkxm/l8Pvz9/aXSTp06hT59+mDhwoX4+uuvoaamVrcHWUOSGjJTU8WGknuX/fvvv4iNjcW8efNklj179gweHh5IT0/HypUrMXXqVPBfq9rNy8vDxo0b8ejRo/oqcr0yNjbG9u3b4eXlBRUVFS79p59+QpcuXbBu3Tp88cUX6Ny5M7csNDQUmzZtgrOzM4KDg7n1Ro8ejX79+mHKlCk4efJkvR+LPCYmJjAxMWnoYnBatWqF1q1bY+PGjZgzZw6UFJhcihBCaivj+auWL68PE6umpQ0Ht964dfIoSouKcHZHIPp8M0MqD2MMMTeulj/h8dDYoU2N9q+mpYXs1GQU5OZALC6DkpLyGx3Hu+q9+ibPysoCj8eDjo5OpXmKioqQnZ0t9UeqFxUVhRUrVkBfXx8nTpyQCSoAQCQSYdasWVi0aBGXFhAQgMjISHz++edYsWKFTFABALa2tjh8+DBatGhRbTk8PDxgb2+P/Px83Lun2AyYmzZtgoODA1RVVWFhYYHZs2ejsLCw0vw5OTnw8/NDy5YtueYunp6eOH/+vFQ+Ho+HMWPGAADGjh3LNdsKCgoCUN5kbMqUKXBwcIC2tjZEIhFatWqFn3/+GSUlJTL7raoJiZWVFaysrKo8zqCgIFhbWwMAtm7dKtWUTJF+GIGBgeDxeBg+fLjMsjlz5iAlJQXz58/Ht99+KxNUAIC6ujpmzJghc4f50aNHmD17Ntq3bw99fX2oqqqiadOm+OGHH2SCyeqO1dXVFTweTyqtsLAQv/76K9q0aQNtbW2oq6vDysoKXl5eiIh4Nd64WCzGpk2b0LlzZ+jp6UEkEsHc3BwDBw5U6Py0bdsWn3/+uVRQAQBGRkaYOHEigPLmmxVt3LgRALBkyRKp9fr27QtXV1ecOnUKT58+RXUqNnG7d+8e+vfvDx0dHWhoaMDDwwPXr1+Xu15cXBzGjx8PMzMzqKiowNzcHOPHj5e7T3l9LMLCwsDj8eDv78/1JdLU1IS2tjaGDh0qNy8AhIeHS73/JJ+Jmr4GXl5eiIuLQ2hoaLXniBBC6oJUUyhj2RrcrsNGQKhWPpHdvfAQqdoJoHw0qBcv+1eY2TeHSFNLZhtV4UaGYgyFcn4j33cNWmNRE4WFhfj+++8xatQoaGlV/iIuW7ZM6sKXKCYoKAhlZWWYOHEijIyMqsxbMXjYsmULAGDhwoXV7uP1C7bqvH6BKc+SJUuwcOFCGBkZ4auvvoJAIMDu3bvx4MEDuflfvHgBZ2dn3Lt3D46Ojpg0aRKys7Nx6NAhuLm5Ye/evRgyZAgAwM/PD7du3cKhQ4cwePBgrtO25P/GjRtx5MgRODs7o1+/fsjPz0dYWBjmzJmDq1evYv9+xcbCVlTbtm0xffp0rFmzBm3atOHKCaDaoIQxhtDQUNjb20NXV1dqWX5+Pnbv3g2RSISZM2dWW47Xg44DBw5g8+bNcHNzg6urK8RiMS5fvozly5cjPDwcZ8+ehUAgUPg4XzdmzBjs2bMHrVu3xtixYyEUChEfH4/Q0FBcvXoVbdqU3y2aM2cOVqxYARsbG4wePRqamppISEjA+fPnERISUqt+AZLyv37sYWFhUFdXh6Ojo8w6np6eCAsLQ3h4OLy9vRXaT3R0NBwdHdG+fXt8/fXXiIuLw969e7lmgl26dOHyPnr0CD169EBqaioGDhyIli1b4u7du9iyZQuOHDmC8+fPo2nTpgrt9+rVq1ixYgXc3NwwceJE3Lx5EwcPHsSdO3dw9+5dqKqqwsrKCn5+fli0aBEsLS2l+vlIPhM1fQ26desGADh9+jR69uypUFkJIaQ2MpLKayxEmlpQ1dCQWa6uowun0WMQsql8cIljv/2CUYtXcJPoXTtygMvbwtm9xvtXe23I2YrPPwjsHQGA/fPPP3KXFRcXs4EDB7J27dqxrKysKrdTWFjIsrKyuL/4+HgGoNr1CgoK2P3791lBQcGbHsJ7zdXVlQFgISEhCq8TGxvLADBzc/Ma78/S0pIJhUKZ9JCQEMbj8Zi6ujrLz8+vchuPHz9mfD6fmZmZseTkZC49KyuL2dvbMwDMxcVFap3Ro0czAGzjxo1S6cnJyczCwoIZGBhIvQcCAwMZABYYGCiz/7i4OFZaWiqVJhaL2bhx4xgAdv78eall8sojYWlpySwtLaXS/Pz8GAAWGhrKpcXExDAAbMyYMXK3U5l79+4xAOyzzz6TWRYeHs4AMCcnpxptU+LZs2esqKhIJn3RokUMANuxY4dUurxjlXBxcWEVv5YyMzMZj8djHTp0kDnXpaWlLCMjg3uup6fHTE1NWV5ensx209PTa3BE0kpLS1mrVq0Yj8djd+7c4dJzc3MZAObg4CB3vX379jEAbMGCBdXuQ/K6AmA//PCD1LITJ04wAKxVq1ZS6W5ubgwA++uvv6TS161bxwAwd3d3qfQxY8YwACwmJoZLCw0N5fb7999/S+X39vZmANiuXbuk0qt6H9f0NcjKymIAmLOzs9ztEfI2fOy/9x+zooJ8FuDVnwV49Wc75/tWmk9cVsb2/7SQy7t2/Ch2NyyEXTm4l0tbN34UKyqo+jpFnrDtm7ltPL0bUZvDqTeS7+rqrqUZY+ydr7EoKSnhqsvPnDlTZW0FUH43XV5znNqIGf4JStPS6nSbdY3fqBGs9+974/WTkpIAAObm5m91nYpKS0u5PhYlJSWIjIzEoUOHwBjDkiVLIBKJqlx/586dKC0txXfffQdDQ0MuXUtLC/Pnz5e5S5yWlobdu3fD3d0dX375pdQyQ0NDzJo1C9OmTUNISAgGDBhQbfnl9fPh8XiYPHkytmzZgpCQELl3shvCs2fl1bbyaqMkr2Nl/Uhe7wfzelplnYGnTJkCPz8/hISE4LPPPqthicvxeDwwxqCqqirTBl9ZWVmmWaSKigqUlWXbq+rp6b3R/gFgwYIFuHPnDsaNGwcHBwcuPSurvOOdtrb8u02S7ypJPkXo6OjI9IHx9PREz549cfr0aVy/fh0dOnTA06dPERoaihYtWuCrr76Syj9p0iT8/vvvOHPmDOLj42FhYVHtfp2dnTFixAiptHHjxmH79u24evUqRo4cqfAx1OQ10NLSgqqqKvf+JISQtykz6Tn3+PX+FRXxlJTQb9os7Fk8F6mx0SjMycaJP1ZJ5ekxagxUVKu+TpGnYtMpRWbfLsgtxqP/ktHSyRR8wbvfH+OdDiwkQcXjx48RGhoKfX39BilHaVoaSpOTG2TfH7KysjKu2ZqSkhJ0dXXh7u6OyZMnKzT6l6R9vZOTk8wyeWlXr15FWVkZioqK5F4sS0bwefjwoUKBRXFxMdauXYu///4bDx8+RG5uLhhj3PJ3aWhkSYf7qvonVUZe08KK548xhsDAQAQFBeHu3bvIysqC+OUY4UDtzoOWlhb69euH48ePo3379vj000/h6uqKTp06yTSvGjlyJP744w84ODhg5MiRcHNzQ7du3aoNUKvy559/YtmyZWjXrh3WrFnzxttRVLt27aAhp2reyckJp0+fxs2bN9GhQwfcunULAODi4iLTZFBJSQnOzs54+PAhbt26pVBg0aFDB5k0yQ2DzMxMhcv/Jq+Bnp4e0t7xGzeEkA9Ddloq91jb0LjKvKrqGvh0wY849edviLp6SWpZ+36D0cr9zeaDUtPW4R5XNjIUEzM8e5SB++cTEX0rFeJSBpGGAE07V13md0GDBha5ublSQ5DGxMTg1q1b0NPTg4mJCT755BPcuHEDR48eRVlZGXdnVU9Pr8bt9WuD36hRve3rTdW2jMbGxnj48CESEhJgb2+v8DoAkJCQUE1O+YRCYZWdrKsjuRNcsbZCQt6d+RcvXgAALly4gAsXLlS63by8PIX2/8knn+DIkSNo2rQpRowYAUNDQwgEAmRmZmLNmjUoKipSaDv1QXJhJ+98S85VZQFAxWCpWbNmiIyMlFo+bdo0rF27FhYWFhg0aBBMTEy4WsNFixbV+jzs3bsXP/30E3bu3MndzdfS0sLYsWPx008/cSOHrVmzBtbW1ggMDMTSpUuxdOlSqKqqwsvLC7/++isa1fAzsmnTJnzzzTdo1aoVgoODZS74JTUVldVISAaOqKxGQ57K+jdJ0iX7kmy7svyS0Z8UHbxCXk2wpD9JWVmZQtsA3uw1KCgoaPDR3wghH4ectFeT3mk2Mqg2v0hDE4NmzkVcxA3E3Y1AWUkJmnToDKvW7d64DGoVfhPysjKllhXll+DBxee4E/YM2WnSv9f3zydSYFGda9euwc3NjXv+3XffASjvrOnv74/Dhw8DgMxMx6GhoXUyo7KiatPE6H3h6OiIsLAwnD59Gu7uinVGsrS0hJmZGeLj4/H48WPY2dm95VJKk1ywpaSkwNLSUmpZspwaJsnF08yZMxEQEFCrfV+9ehVHjhyBp6cnjh07JtX04/Lly3LvbvN4PJSWlsrdXlZWVo0uQGvKwKD8C1QSXFXUsWNHCAQCXL9+HTk5OdDU1FR4uykpKVi3bh1at26NS5cuSV0gJiUlya3tUFJSQnFxsdztybtIV1NT4y5SY2JiEBoaij///BNr1qxBQUEB/vrrLwDlF8K+vr7w9fVFYmIiwsPDERgYiG3btiEpKalGw75u3LgREydORIsWLXD69Gm5taXq6uowMTFBTEwMysrKZJr/SGrAavK5kPe+rZgueY9I3suV5ZfchKmu6Whdq+lrIBaLkZWVhZYtW9ZrOQkhH6eKNRZaCgQWQPlvt1XbDrBqK1uz+yY0dF/9nuS+KG9NkJGUh9uhz/DwchJKi6Rv5og0BbDvaoIWju/OcOFVadDhZl1dXcEYk/kLCgqClZWV3GWMsXoNKj4WPj4+UFZWxoYNG5Camlpl3op3oMePHw8AWLp0abX7qOxi8k1JRgM6d+6czDJ5aZ06dQKPx8OlS5dkltXUkydPAAD9+/eXuaCUt28A0NXVlVu7Exsbq3BzE8m+anIXGQBatmwJJSUlmdoGoPwCecSIEcjPz8eqVavkrF256OhoMMbQq1cvmbvOVZ2HlJQUmSArLy+v2gnlrK2tMW7cOISHh0NDQ4O7+fA6U1NTjBo1CidOnICtrS1CQkJQUFCg0DFJgormzZvjzJkzXFAmj4uLC/Ly8uTWgEkuop2dnRXaLwDcvHlT7hC9knPZrl35XTLJzZazZ89K1SgB5TVMkmFxX78pUxeUlJQUev8p8ho8fvwYYrEYrVq1qvNyEkLI63IqBBaa+g3TGkVD71Vgkfr0OY78fgs7/a/gbniCVFBh0VwXnl85YMwyRzgOt4WusXpDFLfG3qt5LMjbY2tri9mzZyMtLQ19+/ZFTEyMTJ7CwkKsXLlSqn29r68v7O3tsW3bNsydO1dus5eYmBgMGTIE9+/fr9Myjx49GsrKyli5ciVSUl5Vb2ZnZ8sNdIyNjeHl5YWLFy/il19+kbkgA4ArV64gPz+/2n1Lakhen/vi3r17WLZsmdx1OnXqhNjYWISHh3NpxcXFXE2dInR1dcHj8RAfH6/wOkB534rWrVvj2rVrUv0fJH766ScYGBhg8eLFWLNmjdwLx8LCQpnXV3IeLl68KLXdZ8+eYc6cOXLL0qlTJ5SUlOB///sfl8YYw5w5c2SaoaWmpuLu3bsy28jIyEBRURFUVVUBlAe7Fy9elMmXl5eH3NxcCAQChSZg27RpEyZOnIhmzZrhzJkzcpvZVTRhwgQA5R28KwbO//77L8LCwuDh4SFTm1aVzMxM/Pjjj1JpJ0+exOnTp+Hg4MD1hWjcuDHc3Nxw7949bshniQ0bNuDBgwdwd3dXqH9FTenp6cntbP0mr8GVK1cAlAdohBDytmWnvwosNBoosBCqa0JJubzBUEpMIp7ee9WSgC9UhoOLGUb7d8Gg6e1g28EQyvz361L9ne68TerX0qVLUVhYiFWrVsHe3h7u7u5wcHCAQCBATEwMQkJCkJ6eLnXRrqmpiZMnT2Lw4MFYtmwZAgMD4eHhAXNzc+Tn5+PmzZu4cOEC+Hx+rZsfvc7W1hYLFy6En58fWrduDS8vL/D5fOzfvx+tW7eWe3f+jz/+QGRkJGbPno3t27ejW7du0NHRQXx8PK5du4bHjx/j+fPn1bb57ty5Mzp37ow9e/bg+fPn6Nq1K54+fYrDhw+jf//+2LdPtvncd999h1OnTqFfv34YNWoU1NTUEBwcDB0dHYVnRNbQ0ECnTp1w9uxZeHt7w87ODkpKSvD29q72Anbo0KHw8/PD5cuX0b17d6llFhYWCA4OxtChQzFjxgwEBATA3d0dZmZmKCgoQEJCAoKDg5GZmYkePXpw65mYmGD48OHYv38/OnbsiJ49eyI5ORlHjx5Fz549uZqdiqZMmYLAwEB8+eWXCA4OhoGBAc6dO4fMzEy0adNGatK7hIQEtGvXDm3atEHr1q1hZmaG9PR0HDp0CCUlJfD19QVQ3k7f0dERTZs2RYcOHdC4cWPk5ubi6NGjSEpKgq+vb7WjxZ05cwYTJkwAYwzOzs5Yv369TJ62bdtKzR/i5uaGL7/8Eps2bUL79u3Rv39/PH/+HLt374aenh5+//33Kvf5OicnJ6xfvx5XrlxB165dERsbi71790IkEmHTpk1SedevX48ePXrgq6++wpEjR9CiRQvcu3cPhw8fhoGBgdzy1wV3d3fs2bMHQ4YMQbt27aCsrIxBgwahcePGNX4NgoODwefzFRosgRBCaktSY6GmrQOBSt2OIFqdslIxIq8k4cbJODCmDiALjJXXUGvqq6K1mzmadzeBUO3N5316J9TpQLfvIEXH3qVxrV+5evUqGzduHLO1tWUikYgJhUJmZWXFRo8ezYKDg+WuU1xczLZs2cL69OnDjIyMmEAgYJqamqx9+/Zs7ty57OnTp1L5K5vH4k1s3LiRtWjRgqmoqDBzc3Pm6+vL8vPzKx1vPz8/n61YsYJ16NCBqaurM5FIxKytrdmQIUPYtm3bWElJCZe3qnksUlJS2Lhx45ipqSlTVVVlrVq1YuvWrWPR0dGVzjWxd+9e1qpVK6aiosKMjY3Z1KlTWU5OjsLzWDDGWGRkJOvXrx/T0dFhPB5Pbh55EhISGJ/PZ19//XWlefLz89natWtZr169mKGhIePz+UxDQ4M1b96cjR07Vu7rn5OTw2bOnMmsrKyYUChkdnZ2bMmSJay4uLjS1+DMmTOsS5cuTCgUMn19febt7c2Sk5Nl5rHIyMhg/v7+zNnZmZmYmDAVFRVmamrK+vTpw/79918uX3FxMVu+fDnz8PBg5ubmTEVFhRkZGTFnZ2e2c+dOJhaLqz0/kte6qj95r2lZWRlbs2YNa9myJXc8I0aMYFFRUdXuU6Li/CR3795l/fr1Y1paWkxdXZ316tWLXbt2Te56sbGxbOzYsczExITx+XxmYmLCxo4dy2JjY2XyVjWPhZ+fX5Vlquj58+fMy8uLNWrUiCkpKXGfj5q+Bnl5eUxDQ4MNGTJE4fNESF2g3/uPU2lJCQsYMYAFePVn23+YUW/7LSsTswcXE9nWuRfY2omn2dqJp9mvoydwc1lEXolnZWXV/0Y1pJrMY8FjTE57kA9IdnY2tLW1kZWVVWVHxsLCQsTExMDa2pprXkHIh8bb2xvHjh1DXFxcjTppk7crNjYW1tbWGDNmDIKCghq6OPVi06ZN+OqrrxAeHl6jfiiE1Bb93n+cslNTsHHKOACAXefuGDRz7lvdHxMzPLmZiv+ORCMjSbqJNV8pGLnpdwAA41b/BV0T+fNBvSsUvZYGqI8FIR+VpUuXoqCgoMZNdAipS6Wlpfjpp58waNAgCioIIfUiu+JQs2+5f8XT++nY+/M1nNx4VyqosGiui2GzOqBZ91ejBUpGhvpQUB8LQj4ilpaW2Lp1a6XDlBJSH54+fYovvvgC3t7eDV0UQshHoj5GhMpIysOFfVGIuysdLJjYaKPL4CYwa6oLAEh8+GpkqBwKLAgh7zMvL6+GLgL5yDVp0kRqdDlCCHnbstPTuMeajaoe8a+mCvNKcPVoDO6EJ4CJX/UwaGShgS6DmsDSQR88Ho9LrzjkLNVYEEIIqVOSeXsIIYQoLjk6Cud3b4equgZcvMdDQ1ev0rw5FQOLOqqxEJeJcfdsAv47EoOi/FdzM2noCtF1iA2adjICT4kns56mvmKBRXZaCvYungdtI2PYde6ONr371km53yYKLAghhBBCyHulrLQEBwOWIvdlwJCZ/Byjl/4qVTNQUU6FOSw0G71ZYMHKylCakgJxYSHSUstw/lQ60p69mn+Jr6KE9p6WaNu7MQQqypVuR0Pv1f4r9v14XWZSEjKTnyMz+TkaNbZ6ozLXNwosCCGEEELIe+XxlYtcUAEASVGPkPTkEUxs7eXml9RYKCkrQ11HV+H9FD15gqwjR5B38RIKHzxAqVgZT5oMQoKpE8B7NQaSjZ0AjuM6QVO3+pHGNPT0oMzno6y0FFkplfd5zEpJ4h7rGBorXOaGRIEFIYQQQgh5r9w6dVwmLfLiuWoDC3VdPSgpVV6bIFEQEYHUNWuQd/ESgPLJjFIM2uOx7XAUC3W4fBq5z2D/6G9oh8Ug5XQTlH31FbQHDQRPufJ9KCkpQ8vACBnPE5CVnATGmNyalopBh7bR+xFY0HCzhBBCCCHkvVGQm4OEyPsAymfRVnp5ER917bLc/CVFhSjMyQYAaDUyqHLbpRkZSPz+e8SOGMkFFUUqWrjjMBH3Wo7nggpllMI+5wI6RvwK7ewYAEBxdDSez5mDmKHDUHD7dpX7kQQKJUWFyM/KlJunYo2FNtVYEEIIIYQQUrdSop8ALwe8sO/uhJSYJ0h4eB9ZyUnIy8yQaeok3XG78sAi/9o1JPjOQmlS+QU9A5De3BMPzfqjuPRVDYRV60ZwGmEHLX0PlOV+h9zQM8jYvRsF164DAIoePULsyFHQHzcWBtOngycQyOyrYqCQkZQot3lWxvNEAACPpwQtg7odyeptoRoLQgghhBDy3kiJfcI9NrK2hWnT5tzzxMcPZfLnpFU/IlTGnj2I+2IMF1SU6Jvh8bAA3DYaxAUVIk0B+kxwQL+vW0FLXwQAUNZQh/bAgbDasQONt26FsMXLsojFSN+0GU/HjkNpaqrM/hqZN+Yepz2Nk1nOGMOLxGcAAG1DI/DlBCfvIgosCCGEEELIeyMlNpp7bGjVRCqweP5ITmCRXvnkeIwxpP7xB5IW+gFiMQAgs9un+K/LAjx7IeLy2XY0xCi/LrBpb1jpyFPqXTrDes8eGMz8DngZCORfu4aYTz5F0ePHUnkbWVpxj9OexshsK/dFOkoKCwAAembmcvf3LqKmUIQQQggh5L2RHFNeY6EsEEDPzAIiTa1Xy6KjZPJX1hSKMYaU5SvwIigIAFCmpIKn/eYgJtcQyC8DAKhqCOAyyh62HRRrisTj89Hoq6+g3qkTnk2fgdLkZJQmJyP2c29YrF8PtfbtAAAGFYaPTY2LBQBkFGYgOisaMVkxiLt9i1t+Jvcyyh7twydNP1GoDA2JAgtCCCGEEPJeKC4sQMbzBABAIwsrKPP50NDTh4auHnIzXiA5OkpmlCXpOSxeBRZp6/7ggoocdTNEOs1Cdu6rJkdN2hnAZZQ91LRUalxOUdu2sN6/D/ETJ6Hw3j2Is7Lw9Msv0XjTRqi1b49s5ENFVwvFGdl4FvMQTruckFmcya3fPFYTXVA+4V+CSiYSchNqXIaGQE2hCHlH+fj4gMfjITY2VqH8sbGx4PF48PHxkUp3dXWttNqWvJnKzvW7KjExEerq6vjpp58auiicoKAg8Hg8BL38UW8Iv/32G1q2bAk1NTXweDysXr0aAMDj8eDq6qrwdkpKStCkSRN4eXm9nYISQjipcbFcx21D6yZcumETWwBAUX4eMpOfS61TcdhWSSfoFzt3Im3tWjAA8WauuN55DrILy4MKvooS3Lyboc8EhzcKKiT4jRqh8datUO/eDQDA8vMRNW4MJqx2g/ted0QJyvtzKJUwlGbmSq2rn/VqvyWNhODh/fgdp8CCyLh+/TrGjx8POzs7qKurQyQSwcbGBt7e3ggODpa7TmlpKQIDA9GvXz8YGxtDRUUF2tra6NSpE+bPn4+4OOmOSVZWVuDxeNyfsrIyGjVqBA8PDxw6dEjhskoumuX9WVlZ1eY0EABhYWHg8Xjw9/dvkP37+/uDx+MhLCysQfb/ttXX8c2bNw9qamqYNm3aW93P++Tvv//G9OnTIRQKMX36dPj5+aFr166V5q8q0BcIBJg3bx727t2Ly5flD3dJCKkbFTtuG1rZcI+Nm9hxj19vDpWZXH4BL1RXh0hDE3mXLiH5x59QwlfH7VaT8NjuU4hZ+YV7IwsNeM3thBaOprW6KccYw+OMx9jwZBu+H5iNW9bl2xIUlmJCYBIsUhkytIq5/JaF+uhq0hWjmo3C3C5z0arEEkD5hH7/fBmMae3fj+9vagpFOGKxGL6+vli1ahX4fD7c3d0xaNAgCAQCREdH49ixY9ixYwcWL16MBQsWcOvFxcVh8ODBiIiIgJGREXr37g0LCwvk5eXhxo0b+PnnnxEQEIC7d+/C1taWW09ZWRnz588HABQXF+Phw4c4fPgwgoODERAQgJkzZypcdj8/P5k0HR2dNz8Z74Bly5bhhx9+gJmZWa22s23bNuTn59dRqQgAmJmZ4cGDB9DW1m7oolTr8ePH2LZtG+bNmwcNDY2GLs474+jRo9x/U1NTqWUPHjyAmppajbY3ZswYzJ07FwsWLKj0BgwhpPZSYqQ7bksYNXl1fZEcHYVm3Z0BAGWlpchJK28KpW1ojOK4ODyb8S2y1cxwt+WXKFTV59Zr08sC3QbbQFnwZvfdGWN48OIBTsaexOmnpxGX/eqmauRwJczZK4ZDHIN6EbBwvzL+G9sJJVHlnbqnWYxDd4/RAMprXdam7gQAGFg2eW9GhAIosCAVzJ8/H6tWrULbtm2xb98+2NjYSC0vKCjA2rVrkZ6ezqXl5OTA09MTkZGRmDVrFpYsWQKhUCi1XlRUFL777jvk5kpX8/H5fJk74adOnUKfPn2wcOFCfP311wr/uDfUHfW3ycTEBCYmJrXeTuPGjavPRGpEIBCgWbNmDV0MhWzYsAFisRje3t4NXZR3SmJi+fjwrwcVAN7oteXz+Rg5ciR+//13REVFSd1EIYTUHUmNBY+nBIMKIyu9HlhIZKelgLHy0Z609Q3w9JvJiFdriUd2XmBK5RfsIk0Bevq0gGXLV0FGTaQVpOFY9DEcjDqIqEzZzuMAYGPUHIkLOqLZL2HgR8ZCO6MYrifjEPzySrxiwJQcHcU19zK2bfpGZWoo1BSKACi/+F+xYgX09fVx4sQJmaACAEQiEWbNmoVFixZxaQEBAYiMjMTnn3+OFStWyAQVAGBra4vDhw+jRYsW1ZbDw8MD9vb2yM/Px71792p3UG/g0KFD6NmzJ3R1daGqqgoHBwcEBASgrKxMJm9BQQF++OEHWFhYcHk3btwot/lQdW3y5bXprqzpRVlZGZYvXw5bW1uoqqrC1tYWy5Ytg/jlMHmvk9fHQiwWY9OmTejcuTP09PQgEolgbm6OgQMHcs1y/P394ebmBgBYtGiRVDMzSZkePXqE2bNno3379tDX14eqqiqaNm2KH374QSaQrFiWkpIS+Pv7w8rKCkKhEE2bNsUff/whk1fyXnNzc6tREzfJuYuOjsaKFStgZ2cHVVVVWFtbY/HixSgpKZG7XmBgILp06QINDQ1oaGigS5cucvsAVNefpa6O7/Hjxxg7diysra0hFAqhp6eHNm3aYMaMGWAvf3SqIhaLsXXrVrRt2xZ2dnZSy97kPVmT45N48eIFJk2aBCMjI6ipqaFTp074559/qiz37du3MXLkSJiYmEBFRQWWlpaYOnWq1E2N14/hwYMHGDp0KPT19avsmyTp2xEaGsodp+SvsmO3srLC1q1bAQDW1tZc/tfPj5eXFxhjXF5CSN0qKy3h5nzQNTWDQKjKLVPX0YXGy6Fkk6OjwF7+JmYlv5q9WvnRE9zmd0Ok/WdcUGHcRAteczvXOKgQMzHOPjuLyacno9feXgi4FiAVVCjxlNDJuBN+6PwDgj8Jxt6BezG9x/dovmkb+KblNw359x5AhVd+KR5/7zbKSksBAIkVhsw1tpH+7n7XUY0FAVD+Y1tWVoaJEyfCyMioyrwVg4ctW7YAABYuXFjtPlRUatYBqiZtG3fu3InY2Fioqamhbdu2cHZ2hpJSzeLmOXPm4Oeff4aZmRmGDRsGbW1tnDt3DrNmzcKVK1ewd+9eLq9YLMagQYMQEhKCVq1aYfTo0UhPT8e3337LXYy/LRMmTMCWLVtgbW2NyZMno7CwECtXrsTFixcV3sacOXOwYsUK2NjYYPTo0dDU1ERCQgLOnz+PkJAQuLq6wtXVFbGxsdi6dStcXFykLqIkzcwOHDiAzZs3w83NDa6urhCLxbh8+TKWL1+O8PBwnD17FgI5VbijRo3Cf//9h759+0JZWRl79uzB5MmTIRAI8NVXXwEAd8EbHh6OMWPGcBfcNWniNmPGDFy4cAFeXl7Q0NDAkSNH4Ofnh9u3b2Pfvn1SeadNm4bff/8dZmZmGD9+PABg//79GDt2LG7evIk1a9YovN+6OL7ExER07twZeXl56N+/P0aMGIG8vDw8fvwYf/zxBwICAsDnV/0VfufOHaSmpmL48OEKl72ujg8A8vPz4erqijt37qBbt25wcXFBfHw8RowYAQ8PD7nbPnz4MLy8vKCkpITBgwfDwsIC9+/fx9q1a3Hy5ElcuXIFurrSM9RGRUWha9euaNWqFXx8fJCenl7p903btm3h5+eHoKAgxMXFyW1G+boZM2YgKCgIERERmD59OvcavR7kdujQAQKBAKdPn8aSJUuq3S4hpGbSn8VDXFZ+8W1kLXsD1MjaFrnpaSguyEdG0nPomZpx/SsA4FmuBUpNunHPW7mZw3G4LZT5il8v5BTn4GDUQex6uAvxOfEyy9satMVAm4HoZdkLeqp6Msv5BgZo/NdfiB01GuLcXDR6kYVEXU0UF+Qj4eF9NHZojdiIG1x+8+YOCpftncA+cFlZWQwAy8rKqjJfQUEBu3//PisoKKinkr1bXF1dGQAWEhKi8DqxsbEMADM3N6/x/iwtLZlQKJRJDwkJYTwej6mrq7P8/Pxqt+Pi4sIAyPw1bdqUXb16VeHynDp1igFgnp6eLDc3l0sXi8Vs0qRJDADbt28flx4YGMgAsD59+rDS0lIu/fbt20xFRYUBYH5+flx6TEwMA8DGjBkjd/8AmIuLi1TamDFjGAAWExPDpYWGhjIArE2bNlLlfPbsGWvUqJHcfUjOUUV6enrM1NSU5eXlyZQlPT1dZn8Vj6WiZ8+esaKiIpn0RYsWMQBsx44dcsvSpUsXqc/kw4cPGZ/PZ/b29lL5/fz8GAAWGhoqd/+VkZw7AwMDFh8fz6UXFRUxZ2dnmdczPDycAWDNmzdnmZmZXPqLFy9Y06ZNGQB29uxZLr2y17Muj++3335jANjq1atlllV8jaqybt06BoBt3LhRZtmbvCff9Pi++uorqfQTJ05wn9XAwEAuPS0tjWlpaTEzMzMWGxsrtc6uXbsYADZlyhSZYwDAFi5cWNWpkCHvcyGh6OdRnnbt2jGBQMAKCwtrVB5Sfz723/v32Z0zp1iAV38W4NWfXT28X2b5pX27uOX3z4cxxhg7E/gXl7ZmXCBbO/E0W/9NCIv873mN9v00+ylbcmkJ67SjE3MIcpD667mnJ1tzfQ2LyYxReHs558+z+81bsOAuHbnyhW7dyHJepLNfRwxkAV792ebpE2pUxrdF0WtpxhijGgsF7PnpKvKzi6vP2IDUtFTgNbfTG6+f9HIKe3NzxWd3fJN1KiotLeWaC5WUlCAyMhKHDh0CYwxLliyBSCSqegMABg8ejFmzZqFdu3bQ1dVFbGws/vrrL6xduxa9e/dGRESEQn0M1q5dC6C8Pbq6ujqXzuPx8PPPP+Ovv/7Crl27uDu/27ZtAwD8+OOPUFZW5vK3atUK3t7e2Lx5s8LnoSYk+124cKFUOc3MzDB9+nSpTvXVUVFRkSq7hJ6e7B2WylTWsXzKlCnw8/NDSEgIPvvsM5nly5Ytg5bWqwmN7O3t4ejoiPDwcOTk5EBTU1PhMlRl+vTpUu9PFRUV/Pjjj3ByckJQUBD3ekqarvj7+0t1yNbV1YWfnx8+++wzBAUFwcnJSaH91uXxyfscKPoaPXv2DACqrYWsKUWPb9u2bVBRUcHixYul1vf09ETPnj1x+vRpqfRt27YhOzsba9euhaWlpdSykSNH4pdffsHff/+N33//XWqZsbEx5s2bV5eH+MaMjIxw8+ZNpKSkwMLCoqGLQ8gHRWrGbXk1FhWaDSU/eYzmji6Iu/OIS1NSbgQNpTwMmOsGfTPFBrN4nPEYm+9uxr8x/0LMpJscdzXpitHNRsPZ3BnKSrK/p1XRcHSEwbRpKP79N/AYA+Px8ODsGSgpK3N9Quy79ajRNt8FFFgoID+7GHmZRQ1djA9OWVkZ18ZcSUkJurq6cHd3x+TJkzFo0CCFtvHtt99KPW/evDlWr14NLS0tLFmyBAEBAfjtt9+q3c7ly5ehrq7ONe16nUgkwsOHr9o8RkREQF1dHe3bt5fJ6+Tk9NYCi4iICG4f8varqJEjR+KPP/6Ag4MDRo4cCTc3N3Tr1k2hYK4ixhgCAwMRFBSEu3fvIisrS6qvh6SD7Os6dOggkyYJADIzM+sssJB3Trp16wY+n4+bN29yaZLH8uYukDRtu3XrlsL7rYvjGzhwIObMmYPJkyfj9OnT6NOnD1xcXNCkSZNq15WQ9Emo6xHSFDm+7OxsxMTEoEWLFjA2NpbJ7+TkJBNYSIZqvXLlCp48eSKzTmFhIdLS0pCWloZGjRpx6W3atJFp+iRvQIcZM2a89dHiJEFfWloaBRaE1LGKQ80aWMl+F1bswJ305DHO7X6E9ISn5Qk8EQwKkzBo5acQNao+qLiffh9/RvyJ0PhQqXQRX4RBNoMwqtko2OjIBjc1oT/hKxTcugWjmAdI0tFAfk42rh7eD6B8mNmWrr1rtf2GQIGFAmozOUp9qW0ZjY2N8fDhQyQkJMDe3l7hdQAgIeHNZoMUCoUoLCx8o3WrM3HiRCxZsgQXLlxQKP+LFy9QWloq1TH9dXl5edzjrKysSi8a6vrucEVZWVlQUlKSuqh6k/2uWbMG1tbWCAwMxNKlS7F06VKoqqrCy8sLv/76q9ztyzNt2jSsXbsWFhYWGDRoEExMTLg+OIsWLUJRkfyAvOLdbglJfwF5HeXflLxzoqysDH19fWRlZXFp2dnZUFJSgoGBgUx+IyMj8Hg8ZGdnK7zfujg+KysrXL58Gf7+/jh+/Dj27NkDoHzEosWLF+PTTz+tdhuSQLGuP2eKHJ/kfBkaGsrdhrzX5sWLFwCAdevWVbn/vLw8qfeovG3J+yz7+Pi89cCioKAAAGo8XC0hpGpMLEZKbAyA8knuRBqyN2jUtLSh2cgAOWmpSHz0GGnPIwFWPty6qEQZ/Wa0gqhR1cOER2dFY+3NtQiOkx42Wkeog8+bf46RzUZCW1g3Q43zlJRguvxnNPf6FMkvay0k2noOgI6R7E2Zdx0FFgqoTROj94WjoyPCwsJw+vRpuLu7K7SOpaUlzMzMEB8fj8ePH8uMOtOQJCPDVAwGqqKlpQUej4e0tDSF8mtrayM1NVXusuTkZJk0SUfy0pcjPlRU8QJXkf2KxWKkpaXJXATL229l+Hw+fH194evri8TERISHhyMwMBDbtm1DUlISTp48We02UlJSsG7dOrRu3RqXLl2SupBKSkqqMkirL8nJyTKBcllZGdLT06UuRrW0tCAWi5GamipzIZySkgLGmNyL6bfNwcEB+/btQ0lJCa5fv45///0Xv/32G0aMGAFTU1M4OjpWub7kPSK5YK+ort6TlZGcr5SUFLnL5b1fJevcuXMHDg6Kd1iUN9ADU2DUrLdBcq7lBamEkDeXkfQcJYXlgbuhnNoKCT0za+SkpYKJi1FW/Gp0SStjTWh27VLpeom5iVgfsR6HnxyWavJkqGYIn5Y+GG43HGqCur9hoKytjeYrV+HFxC9xx0QXYiUlmJiaw9FLthnx+4CGmyUAyu/kKSsrY8OGDZVeMEtUvAstGT1n6dKl1e6juLj++qn8999/YIwpPPt2ly5dkJ6ejsePHyuUv02bNtwEgK87d+6cTJrkLqm82p2KTXIU2W9l+5CXpghTU1OMGjUKJ06cgK2tLUJCQri7rpI+GPLuskdHR4Mxhl69esncnX3Tsryuqv0rQl45Ll26hNLSUrRr145LkzyWNwO2JK1t27ZvVIaqKHp8AoEAXbt2xaJFi/Dbb7+BMcZN8FaVVq1aAQAiIyNlltXVe7IyWlpasLa2RlRUFNcfqyJ5r02XLuU/+pcuXar1/uuaoq9VZGQkzMzMatRXiRBSPakZt+X0rwCA5NhsJMe+GoK2rOA699hu1Ody18ktzsXK6ysx4J8BOBh1kAsq9FX1MafzHPw77F94t/B+K0GFhKhlS7T/egp63ouFy4M4dLh6D0r5BW9tf28TBRYEQPlcE7Nnz0ZaWhr69u2LmJgYmTySYU0rtl329fWFvb09tm3bhrlz58pt+hITE4MhQ4bg/v37dVrmmJgYuXdiExIS8M033wAARo8erdC2pk2bBgAYN26czFj5QPkd+AcPHnDPJZONzZs3T+pC486dO9i+fbvM+lpaWrC3t8f58+cRFfVqnOucnBzMmTNHoTJW3O/ixYulamMSEhIUHg61qKhI7tC0eXl5yM3NhUAg4O5mSy6O4uNlh9STdK69ePGiVL+KZ8+e1eiYqlLV/hWxZs0argMzUB7cSjr5Vpy/YcyYMQDKm89UbPKUlZXF1bxI8tSlqo7v+vXrcptfSe70q6qqyix7nZOTE5SUlHDlyhWZZXX1nqyKt7c3iouLZYajPnXqlEz/CgAYO3YsNDU1MW/ePLnz2OTn53P9MOqbIu/Fp0+fIikpCc7OzvVVLEI+GlIdt61kA4vYO2k4uPIGyspeNZNkeHVxbt6mnVT+MnEZDjw+gAH/DEDg3UCUiMvnN9JU0cT09tNxfNhxjG4+GirK9dMcXnf0aOg4OUG9uBTitDQ8n7+gwWpea4OaQhHO0qVLUVhYiFWrVsHe3h7u7u5wcHCAQCBATEwMQkJCkJ6eLlU7oampiZMnT2Lw4MFYtmwZAgMD4eHhAXNzc+Tn5+PmzZu4cOEC+Hw+AgIC6rS84eHh+Prrr+Hk5ARra2vo6uoiJiYGx44dQ15eHj777DOFZxvu06cPFixYgCVLlsDW1hZ9+vSBpaUl0tPTERUVhXPnzmHp0qVo3rw5gPKLzJ07d+LEiRNo164d+vbtixcvXmDXrl3w8PCQezd55syZmDBhArp164ZPP/0UYrEY//77Lzp1UrypnZubG8aOHYvAwEC0atUKQ4cORVFREXbv3o2uXbsqdBe7oKAAjo6OaNq0KTp06IDGjRsjNzcXR48eRVJSEnx9fbl+Es2aNYOpqSn+/vtvCIVCmJubg8fjYerUqTAxMcHw4cOxf/9+dOzYET179kRycjKOHj2Knj17yu18W1OSiePmzp2Le/fuQVtbGzo6OpgyZYpC63ft2hVt2rTBiBEjoK6ujiNHjiAyMhLDhg2TmtvB2dkZU6dOxe+//w4HBwcMHz4cjDHs378fz549w7Rp097KxWJVx7d9+3b89ddfcHZ2ho2NDbS0tHD//n0cP34cenp6GDt2bLXb19XVhYuLC86fP4/CwkKZYKQu3pNVmT17Ng4cOICNGzfi3r17cHZ2Rnx8PPbs2YP+/fvj2LFjUvkNDAywa9cufPrpp2jTpg369OmDZs2aoaioCLGxsQgPD0f37t1x4sSJOilfTbi7uyMgIAATJkzA8OHDoa6uDktLS6nvmODg8jbZQ4YMqffyEfKhS4mpWGMh3RTq3rkEhO+MBGOAEt8cPJ4KGHvVSsLYtilEmq+as95IvoGf//sZD168umGooqQC7xbeGOswts76UNQEj8eD6Y8/InrQYJS9eIHc0FBk7t4D3ZEj6r0stfL2Rr19N9A8FjV39epVNm7cOGZra8tEIhETCoXMysqKjR49mgUHB8tdp7i4mG3ZsoX16dOHGRkZMYFAwDQ1NVn79u3Z3Llz2dOnT6XyVzaPRU1EREQwb29v1qJFC6ajo8P4fD5r1KgR8/DwYH///fcbbTM4OJgNHDiQGRgYMIFAwIyNjVm3bt3YkiVLZI4hLy+PzZ49m5mZmTGhUMhatGjBNmzYUOXcD+vWrWN2dnZMIBCwxo0bs4ULF7Li4uIajZtfWlrKli1bxpo0acJUVFRYkyZN2E8//cSioqIUmseiuLiYLV++nHl4eDBzc3OmoqLCjIyMmLOzM9u5cycTi8VS61++fJm5uLgwTU1Nbs4ASZlycnLYzJkzmZWVFRMKhczOzo4tWbKk0mOqau6Ayo43KCiItWrVigmFQgaAWVpayl1f3raePHnCfv75Z2Zra8tUVFSYpaUl8/f3lzv3BmOMbdmyhXXq1ImpqakxNTU11qlTJ7ZlyxaZfNXNY1EXx3f58mU2ceJE5uDgwHR0dJhIJGJ2dnZsypQpLC4urtpzILF7924GgO3evVvu8pq8J9/k+NLT09mECROYgYEBU1VVZR06dGAHDhzg5oKpOI+FxMOHD9n48eOZpaUlU1FRYbq6uqxVq1Zs2rRp7L///uPyVTcXR1VqOo8FY4ytWLGCO1fy8ri6ujJDQ0NWXFxc4/KQ+kO/9+8fsVjM1o4fxQK8+rN1X47mfqfEYjG7fOgJWzvxNPd3dFkY2+/ag5sbIsCrP7sbVj5HV0peCpsVPktmHopvQ79l8dnxVRWh3mSfOcPu2zdj9+2bsQdt2rLC6OiGLlKN5rHgMfYe1rPUQHZ2NrS1tZGVlVVl58vCwkLExMTA2tpaoSYGhFQmLCwMbm5u8PPzkzvkJXn7fHx8sHXrVsTExCjcz+ZDVVJSAnt7e9jY2HB31Ende/z4Mezt7eHv7y/T9Iu8W+j3/v2TnZqCjVPGAQCs23bAsDmLIC4TI3THQzy89KoPVxt3MxgHfYfCmBjctjBAhlEjNHPrBVefCdj/eD9WX1+NnJIcLn9T3ab4ofMP6GT8bg3S83zRImTu+hsAIGrbFpb/2wGenHmn6oui19IANYUihJAPmkAgwLJlyzBy5EhcvHgR3bt3b+gifZAWL14MExMTzJw5s6GLQsgHJzn6VT8woya2KC0pw6lN9xAT8XIkRx7Q41M7mEWdQGp0NJQBdNc1geXWnXicFYUxJ8YgIjWC24aOUAfT2k/DMNthNZ7Yrj4YzZ6NvIsXURL3FAW3buFF0Fbojx/X0MVSCAUWhBDygRsxYgSePn0qd2ACUnuSWiEfHx+oq6s3dHEI+eAkRb8asVHP3BrH1t3Gs4cZAAAlPg8e41qisUkZnnz3R3kmJSU0WjAPayPWYcudLShlr4bVHmwzGDM7zoSuqm69HkNNKIlEMF22DHGffQ4whtQ1a6Dh6gKhTe0m5KsPFFgQQshHYNasWQ1dhA+WQCDA/PnzG7oYhHywKtZYRJwpQnpCecdsvlAZ/Sa1gkVzPSTMmg0mmQx0eF98Ee2HxxmvAhIrLSss6LoAnU0612vZ35Ra+/bQ8/HBi8BAsOJiJM6ZC6vdf8udt+ddQoEFIXXM1dX1vRwi7kMSFBSEoKCghi4GIYSQWmKMIfnliFBKympIewbweIBQjY8BU9rAuIk2CiIikH3kCACgRFMV35iHICujfCh4Po+P8a3G46vWX0GoLGyw43gTBtOnITc8HOLCAhjOmP7OBxUABRaEEEIIIeQdlZ2agsKcl3P68AzB4/Eg0lLBoGlt0chcozzwWPYzl39bt2JkqZbPxdRUtyl+7PEjmuk1a4ii15qSqirM164F39AAyhoaDV0chVBgQQghhBBC3knRN+5yj3l8I2jqqWLQjLbQMSyfCTvr2DEU3LoFAHimDwS340GZp4wvW32Jia0nQqAsaIhi1xlhE+uGLkKNUGBBCCGEEELeORlJebiw7yz3XKuRFYbNag8N3fJhglMzEhD943xIBkDd2lMJTfTssLTHUrTUb9kAJSYUWBBCCCGEkHdKRlIeDq68ieL8eC5t6Kz+XFBx9tlZXPzpOwzOKAIA3GzCQ/tB4zGl3RSoKKs0SJkJBRaEEEIIIR8tsbgMeZkZ0NDRA09JqaGLAwB4kZiHg6tvIj8rB6wsFQCgZ24JXWM9FJcVY9X1VTh6dTt+O1feQbtMCbBdsASjOw5vyGITUGBBCCGEEPJRKiksxN6l8/D8cSRMmjbD0NkLIdKsemblty09IReHVt9EQU4JxKXPAZSPsmjRwgFx2XHwDffFwxcP8XW4GKol5etofDIMDt0oqHgXvBuhKSGEEEIIqVe3go/j+eNIAMDzRw9xad+uBi1PekIuDq4qDyoAQKSWyi3L0C/DyKMj8fDFQ1gnMbjcLg84lDQ1Yf6tb4OUl8iiwIIQQggh5CN0LyxE6vnDC+FgYnGDlCU9sTyoKMwtDyoMLTWhofuCWx6QtAm5JbkAY5gYpsJdwDb65hvwdd/dWbQ/NhRYEPIBsrKygpWVVUMX453A4/Hg6ura0MX4YIWFhYHH48Hf318q3dXV9a1M5vQxvLeHDBmC5s2bo6ysrKGL8lb89ttvaNmyJdTU1MDj8bB69WoANf+slpSUoEmTJvDy8no7Bf3A5WdnIf3ZU6m0gpxspL2WVh8yk/NxaPUtLqgwstZCv29aIDn6EQAgV1SKfFH552FSZjs0iSkAAAgsG0Pvs9H1Xl5SOQosiIzr169j/PjxsLOzg7q6OkQiEWxsbODt7Y3g4GC565SWliIwMBD9+vWDsbExVFRUoK2tjU6dOmH+/PmIi4uTym9lZQUej8f9KSsro1GjRvDw8MChQ4cULuvChQvRq1cvWFhYQCQSoVGjRujYsSNWrVqF/Px8uesUFRVh8eLFsLOzg6qqKkxNTTFhwgSkpKQofpLIRyUoKAg8Ho9m8yZvXXh4OA4dOgQ/Pz8oKys3dHHq3N9//43p06dDKBRi+vTp8PPzQ9euXSvN7+PjAx6Ph9jYWJllAoEA8+bNw969e3H58uW3WOoPU0Lkfe5xxU7b8ffu1Gs5stMKyvtUZBcDKK+pGDitLS7cPIKykvJAI0mvEHwlPua2mwXPY8ncukazZ4OnQiNAvUuo8zbhiMVi+Pr6YtWqVeDz+XB3d8egQYMgEAgQHR2NY8eOYceOHVi8eDEWLFjArRcXF4fBgwcjIiICRkZG6N27NywsLJCXl4cbN27g559/RkBAAO7evQtbW1tuPWVlZcyfPx8AUFxcjIcPH+Lw4cMIDg5GQEAAZs6cWW2Z165dCzs7O3h4eMDQ0BA5OTkICwvDd999h61bt+LixYtQU1OTOsbBgwfj5MmT6Nq1K4YPH47Hjx9j06ZNOH36NC5fvgwDA4M6PKukoT148EDqPUDeb6dPn27oIrxVCxYsgKWl5Qd7F/7o0aPcf1NTU6llb/JZHTNmDObOnYsFCxZUeuOLyJcY+YB73G34KFzc+z8AQPy922jfd2C9lCE3owiHVt9E7sshY/XNNDBgahvsidmFsBOb0AKaAIAccxUE9QmC+ZEbSIkvH35WrUsXaLi710s5ieIosCCc+fPnY9WqVWjbti327dsHGxsbqeUFBQVYu3Yt0tPTubScnBx4enoiMjISs2bNwpIlSyAUCqXWi4qKwnfffYfc3FypdD6fL9N84tSpU+jTpw8WLlyIr7/+utofmcTERKiqqsqke3t7Y8eOHQgMDMTkyZO59K1bt+LkyZMYNWoU/ve//3FNNf788098/fXXmD9/Pv76668q90neL82aNWvoIpA69Pr30ofk3r17OHfuHObNmweld2TYz7qWmJgIADJBBfBmn1U+n4+RI0fi999/R1RUlNTNK1K1tPhXLQkc3Hrj6pEDKCksQEpsdL3sPz+7GIdW30R2WiEAQNdYDX2ntsCPtxbj0JNDGJJqAgBgPOCXLzbBQFkTT9Z/Vb4yjwejH75/K80tSe18mN9cpMaioqKwYsUK6Ovr48SJE3J/vEUiEWbNmoVFixZxaQEBAYiMjMTnn3+OFStWyAQVAGBra4vDhw+jRYsW1ZbDw8MD9vb2yM/Px71796rNLy+oAIBPP/2UO66KNm7cCABYtmyZ1BfSxIkT0aRJE/zvf/9DQUFBtfut2K784sWL8PDwgI6OjtQ2t2zZgsGDB8PKygqqqqrQ09ODp6cnQkNDq9zetWvX0Lt3b2hqakJbWxtDhw6V2wwAAA4dOoROnTpBJBLByMgIX331FTIyMiotd1paGmbMmAFra2sIhUIYGhrCy8sLd+/elckraYIQHR2NgIAANG3aFCKRCC1atMDff/8NoLymad68edwxtm7dGv/++2+150/C398fPB4PYWFh2Lx5M1q1agVVVVWYmZnh22+/RU5Ojtz1jhw5Ajc3N2hra0MkEqFNmzZYuXIlSktLZfLKa7ctObaYmBj89ttvaNasGYRCISwtLbFo0SKIK3Re9PHxwdixYwEAY8eOlWrCJ/H8+XNMnz4ddnZ2EIlE0NHRQfPmzTFp0iRkZWUpfD7k2b9/P1xcXGBoaMg13evVqxf279/P5YmNjQWPx4OPjw8ePHiAAQMGQEdHB7q6uhg1ahTS0tIAAJcuXULPnj2hpaUFXV1dfPnll8jLy5PaX3FxMX7//Xd4enrCwsKCe58MGzYMN2/erNWxVCU0NBR9+/aFqakphEIhjIyM4OTkhA0bNkjlq6yPRVpaGiZMmABDQ0OoqamhU6dO+Oeff+Q2Y3tXz1dgYCCAV99f8o5Rkc/v+PHjwePxcPbsWbnbWblyJXg8Hvd9KHH79m2MHDkSJiYmUFFRgaWlJaZOnSp1MwmQPX9Dhw6Fvr5+pU2WgFfNCSXff/I+R69/Vq2srLB161YAgLW1NZf/9c+zl5cXGGNcXqKYFwnld/5VRGrQ0NNHI/PGAIDs1GQUF1b/O1gbhXklOLzmJjKTy5ssaxmI4DTJEpMvTsKhJ4egXqAMndzyJk6mds1g0qgx0n5fC/HL3wTtYUOh2rz5Wy0jeTNUY0EAlH/pl5WVYeLEiTAyMqoyb8XgYcuWLQDK+zpUR6WG7SBrcyfi2LFjAAAHBwcurbCwEFeuXIG9vT0sLS1l9tW7d2/89ddfuHbtGpycnBTaz8WLF/HTTz/Bzc0NEyZMwNOnrzq9TZ48GW3atEGvXr1gYGCAhIQEHDx4EL169cKBAwcwePBgme1dvXoVK1asgJubGyZOnIibN2/i4MGDuHPnDu7evSsVSG3btg1jxoyBlpYWvL29oaOjg6NHj6JXr14oLi6WOd+pqano1q0bnjx5AldXV4wcORIxMTHYt28fjh07hpMnT6JHjx4yZfruu+9w5coVDBw4EMrKyvj7778xevRo6Orq4vfff8f9+/fRv39/FBYWYufOnRg8eDAePHhQozvLK1euxOnTpzFixAj0798fISEhWL16NS5fvoyzZ89CIBBI5Z05cyb09PQwevRoqKur4/Dhw5g5cybOnTuHAwcOKPzemTVrFsLDwzFgwAB4enri4MGD8Pf3R3FxMX788UcA5R1pMzMzcejQIQwePBht27aV2kZ+fj4cHR0RGxsLDw8PDB06FMXFxYiJicH27dvh6+sLbW1thc9FRevXr8c333wDExMT7uItKSkJ//33H/755x8MHy49bntMTAy6d++Ojh074ssvv8S1a9fw999/Iz4+Hj///DM8PDzQu3dvTJgwgQvmxGIx9zkGgBcvXmDGjBlwcnJCv379oKuri+joaBw+fBj//vsvzp49i06dOr3R8VTm2LFjGDhwIHR0dDB48GCYmJggNTUVERER2L59OyZMmFDl+rm5uXBxccH9+/fRvXt3ODs749mzZxg5ciQ8PT0rXe9dO1+nT5+Gurq61PeWRE0+v97e3tiyZQt27NgBZ2dnmW1t374dQqFQKoA5fPgwvLy8oKSkhMGDB8PCwgL379/H2rVrcfLkSVy5cgW6r428ExUVha5du6JVq1bw8fFBenp6pd/zbdu2hZ+fH4KCghAXFwc/P79qz8eMGTMQFBSEiIgITJ8+HTo6OgAgE1h26NABAoEAp0+fxpIlS6rdLgFKigqRnVrer1DPzBw8Hg/6Fo3xPKp86Nn0Z09hYmv/VvZdVFCKI7/dQnpCeZCuoStEiy/U4XPuc6Tkl5fJKu3VXBrWbTug6MkTZOzeDQDgqanBYNr0t1I2UgdYAwoPD2cDBgxgJiYmDAD7559/pJaLxWK2YMECZmxszFRVVVnPnj3Zo0eParSPrKwsBoBlZWVVma+goIDdv3+fFRQU1PQwPgiurq4MAAsJCVF4ndjYWAaAmZub13h/lpaWTCgUyqSHhIQwHo/H1NXVWX5+vsLbW758OfPz82PTp09nHTt2ZACYh4cHKy4u5vLcvXuXAWADBgyQu42AgAAGgG3evLna/YWGhjKUz9rDtmzZIjdPdHS0TFpiYiIzNTVldnZ2lW7v77//llrm7e3NALBdu3ZxaVlZWUxLS4upq6uzyMhILr24uJg5OzszAMzS0lJqO2PHjmUA2Jw5c6TSjx07xgAwW1tbVlZWxqWPGTOGAWBNmzZlKSkpXPqVK1cYAKajo8N69OjBcnNzuWW7d+9mANjUqVPlnpPX+fn5MQBMRUWFRUREcOlisZiNHj2aAWABAQFcelRUFOPz+czQ0JA9ffqUSy8sLGQ9evRgANi2bduk9gGAubi4SKVJjs3a2polJiZy6ampqUxHR4dpamqyoqIiLj0wMJABYIGBgTLHcPjwYQaAzZgxQ2ZZTk4OKywsVOhcyNO+fXumoqLCkpOTZZalpaVxj2NiYrj3z+rVq7l0sVjM+vXrx71eBw8e5JYVFxez1q1bMz6fz5KSkrj0wsJC9uzZM5n93b17l2loaLBevXpJpUveu35+flLpLi4uTNGfmGHDhjEA7NatW1UeJ2Pl3x2vv7fnz5/PALAJEyZIpYeEhHDnpeJr15DnqzI5OTlMSUmJOTo6yl1ek8+vWCxmjRs3Zrq6ujLvvzt37jAA7JNPPuHS0tLSmJaWFjMzM2OxsbFS+Xft2sUAsClTpnBpFc/fwoULFTo+iareF1V9VmNiYqrcbrt27ZhAIFDo8/ax/94zxlhyzBMW4NWfBXj1Z/+uW8kYY+za0X+4tDtnTr2V/ZYUlbL9v1xjayeeZmsnnmZbZp9j/1w7xjps78AcghyYQ5AD67mnJwtcMJ0rS9KTx+zphInsvn0zdt++GUtZt+6tlI1UTtFracYYa9CmUHl5eWjTpg3WrVsnd/mKFSvw22+/4c8//8SVK1egrq4OT09PFBYW1nNJP3xJSUkAAHNz87e6TkWlpaXw9/eHv78/5s2bh08++QR9+vQBYwxLliyBSCRSeFsrVqzAokWLsGbNGly7dg2ff/459u/fL3WnW9IkpbK7x1paWlL5FNG+fXuumczrrK2tZdJMTEy4DuOvj5QFAM7OzhgxYoRU2rhx4wCU12ZIHDx4ENnZ2Rg3bhyaNm3KpQsEAu5Oe0XFxcXYtWsX9PX1uQ7zEv369UPv3r0RFRWFCxcuyKw7b948qQ7tnTt3RpMmTZCZmYkff/wR6urq3LLhw4dDIBAgIiJCZjtV+eKLL9C6dWvuOY/Hw08//QRlZWWpJiw7d+5EaWkpZs6cCQsLCy5dKBRi+fLlAFCjkZsWLFgAExMT7nmjRo0wePBg5OTkIDIyskbHIO/9qqGhIbd5YE0IBAKp97GEvr6+TJqNjQ2mTZvGPefxeBg5ciQAoF27dlK1ZAKBAJ988glKS0tx//6r0WGEQiHMzMxktt2yZUu4ubnh7NmzKHk5Uktdk3cO5R3n63bs2AEVFRUsXrxYKr1nz57w8PCodL136XwlJiZCLBbLrTGu6eeXx+Phs88+Q0ZGBld7K7F9+3YAwOeff86lbdu2DdnZ2Vi2bJlMbe7IkSPRvn17rvljRcbGxpg3b161x1YfjIyMUFJSQqP7KSgnPY17rGVQ/p7TNX31Ps5MTqrzfYrLxDi56R6eR5X/xqpqCJDtcRcL7n6PorLyztttDdoi0OkvvHhU3s9D28gYaolJyA0PBwDwjY2hX8lvLnk3NGhTqL59+6Jv375ylzHGsHr1asyfP5/7ct+2bRuMjIxw8OBB7su/PuyYMwN5mZW3W38XqOvo4vNlqxu6GDVSVlbG9ddQUlKCrq4u3N3dMXnyZAwaNKhG25K0iU5KSsKZM2fw/fffo0uXLjh58uQbBz6KqKqJQ3R0NJYtW4YzZ84gISEBRUVFUssTExNlfsQ7dOggsx1J+TMzM7k0yYW7vCZb3bp1A58v/dF++PAhCgsL4ebmJrdDvJubG4KDg3Hr1i2Zbb7e9AcoD5Cio6NllikrK8PQ0JDroKkoecdhaWkJCwsL3Lt3j2vaJWmzLm+s+27dukFVVRW3bt1SeL+Knu+qODs7w8TEBD///DMiIiIwYMAAuLi4oHnz5rXuWDhy5EjMnj0bDg4OGD16NNzc3NCjRw8uCH5d69atZfYpCZwqex0ByLxet27dwooVK3D+/HkkJSXJXBinpaVJBWS1NXLkSBw4cABdu3bF6NGj0bNnTzg5OaFRo0bVrpudnY3Y2Fi0aNFC7kW5o6MjTp06JXfdd+l8SfoxSJr7VPQmn19vb28sW7YM27dvx7BhwwCUj4q3c+dO6Ovro1+/ftz6kqFar1y5gidPnshsv7CwEGlpaUhLS5N6Tdq0aSPT9On1ATmA8iZN8o6rLunp6QEoP9cVbzrUp/ysTARvXIvSkhK4fvEl9M0aphyKqBhYaOqXv6baBsZcWlZK3QYWjDGE7niI2Nvl+xWoKiOq+xkcfbaPyzPMbhjmdZmHeyGnwFh5Pzf7rj2QuuIXLo/hd99CqQY3HUn9e2f7WMTExCApKQm9evXi0rS1tdGlSxdcunSpXgOLvMwM5L5Irz7je8zY2BgPHz5EQkIC7O0Va1dpbFz+JZSQkPBG+xQKhXVe+2RsbIzRo0fDzs4OnTt3xsyZM7H7ZbtMSU1FZTUS2dnZUvkUUVl/lKioKHTu3BnZ2dlwc3PDwIEDoaWlBSUlJYSFhSE8PFwm0AAg94JREiRUnCxLcgyGhoYy+ZWVlWXu8kqOrbLySi56JPkULVNly2p6R7uychkZGSE2NhY5OTnQ19ev8jh4PB6MjIxq9H5U9HxXRVtbG5cvX8bChQtx5MgRHD9+HABgYWGBH374Ad98843C5Xmdr68v9PX1sX79evz6668ICAgAn89H//79sWrVKplasTd5rQBIvV4XL16E+8shHD08PGBnZwcNDQ3weDwcPHgQERERct+7tfHpp5/i4MGDWLlyJf7880+sW7cOPB4Pbm5u+PXXX+Ve5EtI3hPyPgtA5e8t4N06X5LaGnnfiW/y+W3evDk6dOiA48ePIyMjA7q6uggLC8OzZ8/wzTffSNWCvXhRPrtxZa0HJPLy8qQCC3nlqTi4h4SPj89bDywkg2401NDSpSUlOPDzIiRHPwYAHExKxJiAP8CXU9v4Lsh9USGw0Cv/vdCq8Bmq68Di0oEneHipfJtKyjzcancU53JOlD/nKWF2p9kY3Ww0eDweIi++GnTANK8IRY/KJ8lTdXCA1oABdVouUvfe2cBC0szm9S8uIyMjbpk8RUVFUl/i8i6Uakpd592fKr62ZXR0dERYWBhOnz7N/UhWx9LSEmZmZoiPj8fjx49hZ2dXqzLUpU6dOnE/pBJNmjSBkpISHj9+LHcdSXpNjqOyO9KrVq1CRkYGtm/fLtXkAAAmTZqE8JfVum9KEvzIq/YvKytDenq6VPMMyUVScnKyTH7g1eetsjvhb1tl5UpOTgaPx4OmZvlY5hWP4/XaHsYYkpOTG+QYGjdujKCgIIjFYty+fRunTp3Cb7/9hsmTJ3MjDb0JHo+HcePGYdy4cUhPT8e5c+ewa9cu7NmzB48fP8bt27frfBK1H3/8EUVFRTh37pxMZ/7Lly/XuJmbogYPHsw1Q7tw4QIOHDiAzZs3o0+fPnj48GGlF6aS17uyJjCVvbfqSl2dL0lzQ8lFfkVv+vn19vbGjBkzsGfPHkycOJFrBuXt7S13+3fu3JHbcbwy8r7/GGMKr1+XJOetoeYhirx4lgsqACAz6TkeXTqHFs7v5jwLFWssNF7WWAhUhFDX1UNexgtkpdTd5+bGqTjcDH45sAkPuOpwEFdxBgAg4osQ4BIAZ/PyQQay01KR8LC8qaGeqTlKg7Zz2zH64XupifzIu+mdDSze1LJly+TeMamN962J0Zvw8fHBzz//jA0bNmDGjBlVfjkXFRVx7cbHjx+PxYsXY+nSpdUO9SdvpKK3JTc3F1lZWVLND0QiETp37ozLly8jLi5O6sKUMYbg4GCoq6ujY8eOtd6/pDnB6yM/Mcbk9mOoqTZt2gAAzp07JzM05aVLl2SGXW3WrBlUVVVx9epV5Ofny9zVkwRgVd0ZfpvOnTuHL774QiotLi4O8fHxaNmyJfe+adeuHf755x+EhYWhc+fOUvmvXLmCwsJCdO/evc7LJ7l4r64WQ0lJCW3btkXbtm3RrVs3ODs74/Dhw28cWFSkr6+PIUOGYMiQIUhLS8OZM2cQFRWlcA2jop48eQI9PT2Zi+T8/HzcuHGjTvclj6amJvr06YM+ffqgrKwMW7ZswZUrVyod3UlLSwtWVlaIiopCSkqKTM3FxYsX32p56+p8mZqaQl9fX27fnjf9/I4aNQq+vr7YsWMHvvjiCxw4cAC2trYyM1136dIFBw4cwKVLl2oUWNQHRT97kZGRMDMz45pE1bfH/8m+zyLfk8BCU//V7722gRHyMl4gPysTJUWFEAjlD+muqAcXE3HpwKvmdf/ZHcINtfKgwkBkgHU916G5/qthY++Fh3CPLZRUIH7ZRFDTwwNqdfDbTN6+dzb0kzSzef0OTXJyMrdMnjlz5iArK4v7i385QyOpmq2tLWbPno20tDT07dsXMTExMnkKCwuxcuVKqTa0vr6+sLe3x7Zt2zB37ly5Vf4xMTEYMmSIVIfHuhAdHS337l5JSQlmzJgBsVgs1Y4YADds5Zw5c6TurP3111+Ijo7GZ599VqNO45WRBC3nz5+XSv/555/lzhlRU4MHD4aWlha2bNmCRy+riYHyY3+9cydQPtSvZHz+ZcuWSS07ceIETp48CVtbWzg6Ota6bG9i27ZtuH37NvecMYa5c+eirKwMPj4+XPro0aPB5/OxcuVKqXbuxcXF+P777wFAKn9dkVysyPs+uXfvntw7yZK0ikMES8b/lzcPgzxhYWEyd4BLSkq4931l87jUhqWlJTIyMqTmkSkrK4Ovry9SU1PrfH8AcPbsWbkXjpJaiOqO87PPPkNxcbHMEKZhYWE4efJk3RVUjro6XzweD05OToiJiZFZ700/v4aGhvDw8MCFCxewevVqZGdny9SgAuXzs2hqamLevHly5w/Kz8/n+mHUt6o+exJPnz5FUlKS3KF16wNjDAkPys+bqqYW1LR1yst19zZKiuu22WBdkTSFUhGJIKwQqGobvmolIhmO9k1F30pF6PaH3PNrjY/jhn55UGGna4ed/XdKBRXisjLcDilvHgUeD3phLwcjEAhg6DuzVmUh9eedrbGwtraGsbExTp8+zd2Fyc7OxpUrV/D1119Xup5QKKz1KCwfq6VLl6KwsBCrVq2Cvb093N3d4eDgAIFAgJiYGISEhCA9PR1Lly7l1tHU1MTJkycxePBgLFu2DIGBgfDw8IC5uTny8/Nx8+ZNXLhwAXw+HwEBAXVa3rNnz2LSpEno0aMHmjRpwo3xHxISgmfPnqF58+YyIySNGTMGu3fvxq5duxATEwMXFxdERUXhwIEDsLa2ljq22pg0aRICAwMxfPhweHl5QV9fH5cvX8aNGzfQv39/mZFaakpbWxu//fYbfHx80KlTJ4wcORLa2to4evQoRCKR3I6iy5cvR3h4OJYuXYqLFy+iS5cuiI2Nxd69e6GmpobAwMAGm+3X09MT3bp1w8iRI2FgYIDTp0/j2rVr6Nq1K6ZOncrls7GxwfLlyzFz5ky0bt0aXl5eUFdXx5EjRxAZGYnBgwfLvXCqrW7dukEkEmH16tXIyMjgavTmz5+P4OBgzJo1C46OjmjatCn09fW5eQxUVVWlZn6XTLz3euf6ygwZMgRaWlro2rUrLC0tUVJSguDgYNy/fx+ffPKJTHOwujB16lScOnUKPXr0gJeXF1RVVREWFoaEhAS4urpKNS+sK9OmTUNiYiJ69OgBKysr8Hg8nD9/Hv/99x+6du0qd36Vir7//nvs378ff/75J+7evQsnJyc8e/YMe/bswcCBA3HkyJG39t6uy/M1dOhQHDx4EMHBwRg9erTUsjf9/Hp7e+P48eNc0CXv82FgYIBdu3bh008/RZs2bdCnTx80a9YMRUVFiI2NRXh4OLp3744TJ07U7OTUAXd3dwQEBGDChAkYPnw41NXVYWlpKdWcKzg4GED556UhZDxPRGFeLgDA1M4eato6uBsajNLiIjy7dwfW7d6tO+2MMeS8rAnQ0JMeIKFiYJGVkgz9l5Pm1VTi40yc2nQPkvsit03CcM20PMh3NHVEgEsANFQ0pNZ5cuM/rj+rqUAVorzyyfN0vb2h0vjNykHqX4PWWOTm5uLWrVvcKC4xMTG4desWnj59Ch6PhxkzZmDp0qU4fPgw7ty5gy+++AKmpqYN9uXxoVNSUsLKlStx9epVeHt748mTJ/jjjz+watUqrilCcHCwzPCClpaWuHr1KrZs2YK2bdvi5MmT+OWXX7B582bk5ORg9uzZePToEWxtbeu0vI6OjpgwYQLS09Pxf/buOzqKegvg+Hf7pveEFEjovTcpUlWaPvVZ3/MpdqTYsBcUsSBWBAS7goINsStNOkgn9A4hpJHek63z/phkkkhLIA24n3M4Z2Z3ym9Qkr37+917FyxYwJtvvslPP/1Ew4YNeeONN9i8efNJS7r0ej0///wzEydOJC0tjXfffZe1a9dyzz338Pfff1fb+tzOnTuzePFiunTpwoIFC/jss8/w9/dn7dq11bLUCtQg6ccff6R58+bMnj2b2bNn06dPH5YuXXrKJWchISFs2LCBhx56iMOHD/PWW2+xZMkSrrvuOjZs2HDWD281afz48bz33nts2LCBqVOnkpiYyMMPP8zixYtPepbx48fz888/065dO7766iumT5+O2Wzm7bffZv78+eddielUAgMDmT9/Pi1atODjjz9mwoQJTJgwAVCDorFjx5Kbm8uCBQt499132bx5M7fccgtbtmyp8N+7dLaqssUnJk+eTOfOndm4cSMzZszgq6++wtvbm1mzZjFv3rxqf06Aq6++mvnz59OkSRO++uor5s2bR6tWrdi4cWONBDKgziAOHDiQHTt28OGHH/Lpp59is9mYMmUKS5YsOWseiY+PD6tWreKee+5h3759vPvuu+zZs4evv/6a/v37AzWXP1Sdf18333wzgYGBfPXVVye9d67/fktnNx0OB7169Tpt48oRI0awbds27rzzTnbt2sX06dOZO3cux44d46677qqzxnPDhg3jjTfeAODtt99mwoQJfPrppxWO+eqrrwgNDeX666+viyGScrhs1ji8eSsadyqrNpew9/xnqKtbcUE+zpKZlNKKUKX8Qs+/MlRmcgF/zNqBy6l+kXIgeBPron8CHdzQ/AamD55+UlChKAqbf/1R24/cpy6fMoQEEzzm9F8mi/pHp9RVphXqNPXAgQNPen3kyJF88cUXKIrCiy++yEcffUR2djZ9+/Zl5syZFer2n01ubi5+fn7k5OSc8RdLcXExR48epXHjxjWyvEAIcbKJEyfy0ksvsXz58lOWkL3YPP7448yaNYtjx45VqpSqOH//+9//mDt3Lnv27KF169ZnP6GOTZgwgddff51Dhw7VWCB3MTl48CAtW7Zk4sSJvPDCC5U6p7p/36/48lO2/KZ+KL7h2UkEN4rhwwfUnLGoNu245cXXz/se1Sk17ghfPqX2b2k38EqGPFDWxfrYzljmv6Iup+1+7Y30+++dVbp2QY6NH6ZsIS9TrW4W77eXha0+wq13M67TOO7vcP8pv/w5tiOW+a+q9/VxKfTddQQdEPHGFPyqWH5eVL/KfpaGOp6xGDBgAIqinPSntMGVTqdj0qRJpKSkUFxczNKlS6sUVAghRH2yevVq7rvvPgkqakBycvJJr61cuZJvvvmGli1bXhBBBcCTTz5JYGDgKRtdipNNmjSJ8PBwHnus7tbgZyUlaNtBUY3wDgjEN0QtIpBy+CDuSpauri3ly+f/cymUd2BZqfKCKpbZtxc7+f39HVpQkeZ1nCUtPwcDvNjrRUZ1HHXaSmLr5pfNwDZNOIEO8OjSBd9rrqnSGETdq7c5FkIIcbHZsGFDXQ/hojV8+HA8PDzo1KkTXl5e7Nmzh4ULF2IwGJg+fXpdD6/SfHx8+PLLL9m8eTMul6vaywlfTBwOBy1btuTOO+/Ey8urzsaRWRJYmCxW7YN5ePNW5Kal4rTZSDt2lLAm1bsU+HxUrAhVseeRd0DZfn5W5QMLt8vN4k92kxafp97DnMmfrT5CZ1J4p/87DG40+LTnHtywlqT9anEXb5uD8OwC0OtpMOH5GlnaKmqWBBZCCCEueCNHjmTu3Ll888035OXl4e/vzzXXXMMzzzxDz54963p4VXLVVVdx1VVX1fUw6j2TyXTKKni1yelwkFNSAS4gIlL7IBzRvKXW6O3EkUP1KrAoyC6rplg+kACweHpisnrgKC4i/xRVF09FURRWfnOAY7vUQMRmKOSP1h9i8FJ4f9CHdGtw+rzC4oJ8ls/+WNtvkZSODgi49RasF8gso6hIAgshRJ2ZOHFihfLFQpyrRx55hEceeaSuhyEuMdkpSSiKmqQcGBGlvR4aU5Yknxp3pNbHdSaFOTnadmlp3PK8AwLJSk6s9IzF1kXH2LNaLf/t0jlZ1PJTjEEuPr7ic1oGnr7PjqIoLPlohrY0KyS3gLDcQgz+/oQ89FAVnkjUJ/W2j4UQQgghRH1WvkO1f4MIbTskpom2nRp3mPqkKLdcYOHrd9L7pcu57EVF2IsKz3it/RtSWP9TWeC0vOk8zA2dfDn8yzMGFQAbf57PgfVqryeTW6FdgjpbEfr4Yxj8/Sv5NKK+kcBCCCGEEOIclE+ELp+vYPH0xD9M7SeUFh+H211/ErgLywUWHqeo8OMdUNa9PD/r9MuhEvZl8tecssa36xv9irlVEbOHzSbSO/KMY4hd9Dtrvp6t7bc/dgIPhxPP7t3xu+GGSj2HqJ8ksBBCCCGEOAelHawBfP5RYSm0ZNbCabORlZRUq+M6k8KcbABMVg9MlpPL7ZavDHW6PIuMpHx+mxWLUhIv7Q5bg75TJp9e9SmB1sBTnlNqz+rl/PXZLG2/ZUoWDXIL0JlMNHjpJUnYvsBJYPEPddjWQwghhBA1rDp/z+dVKN1aMRG6vi6HKszLBcDzNP0IKs5YnJxnUZhr54f3NuJSe+wRF7ALV+8kZl0566TGd/8UF7uFRbOmavst3EaanlCDl6DRD2Bp0rgqjyLqIQksSpSW9HM4HHU8EiGEEELUlNLf89VRyrdCT4h/dLEObVw+sKgfCdxul4tiLbDwP+UxFWcsKgYWToeLeVNX4ShZTZXqFY9jYBzTr5iGp8nzjPfOy0zn16lTtL4eLaMa03TnfgDMzZoSfO+95/JIop6RwKKEyWTCYrGQk5MjsxZCCCHERUhRFHJycrBYLJhMpvO+XukHb6PJjNWr4rf1FSpDHa0fMxZFJUEFgIffyYnbAF6n6WWhKAqzZyzBlqR+dMw3Z+G48ghvXjEFs8F81nsv/+IjLRm8cet2NF28Eh2ATkf4pJfRmc9+DVH/SbnZcoKDg0lMTCQhIQE/Pz9MJpOs9RNCCCEucIqi4HA4yMnJIT8/n8jIMycXV1ZpsznvwKCTPi94BwTi6edPYU42qXFHUBSlzj9TFJ6lIhSAT4Xu22U5Fp998QvF+30AcOht2K86wstXvYhBf/aZn/T4OA5uWKfdt832/SglM0eBd92FZ5fOVX8YUS9JYFGOb8l6w/T0dBITE+t4NEIIIYSoThaLhcjISO33/fmwFxVq38B7/6ODdanQxk2Ji91CcX4eeRnp+AaHnPd9z0dp4jaAx2kCi/K9LQpysgD49MfvKd6gPqOCG/eg4zw/4vFKB0qxS/7UttsEhqGsVvctzZsR8rD0rLiYSGDxD76+vvj6+uJwOHC56k95OCGEEEKcO4PBUC3Ln0pVSNwOOE1gEdOEuNgtgLocqq4Di+L8fG3bw+fUwZXRbMbs4Ym9qJDCnGw+W/o1+YsDtQ+MymWpPHrDfZUOKtxuFwc3rAXAYDQS+PvikhsZiZgyBb3Fcs7PI+ofCSxOw2QyVesPICGEEEJcPCr2sAg+5TFhjcvyLE4cPUSz7pfV+LjOpDg/T9u2ep++gpOXvz/2okKyMtJw/+yJp1LyeahVNuNG/qdKS7qSDx7QZkpC8osxOtUvbUPGjcXapk3VH0LUa5K8LYQQQghRRflnKDVbKqxJM237xJFDNT6ms6kYWPic9jhtOZTdgYfdQ92OKOCBcddVOU8kYc9ObTskTc3Z8OjWlSCpAnVRksBCCCGEEKKKKsxYBJ56xsI3JEyrFnXiyKE6rzpZXFBuKZTX6QOLE0p22Y5SCH527nlsKAZj1T82JuzdpW0H5hdjCAwk8u230Rll0czFSAILIYQQQogqKq0IBaefsdDpdISWzFoU5mSfsuFcbarMUqiPdnxEWqpN21eMedw2vh9Wr3NbHp5yYB8AZocLT4eTiDfewBQWdk7XEvWfBBZCCCGEEFVUPkg4XVUogAbll0MdrtvlUBUCi1Mkb8/aPotFi9cTUtRCe63n0Ej8w87c/O50snfuoLikcpZPsY3gB0bh3bfPOV1LXBgksBBCCCGEqKLSpVA6nR4vv4DTHlchz+Jo3QYWRXnlAot/NPT7YPsHzF/9O/0O3wJ6L+11D2/nOd3LlZPDvqef0vYDgkMJGTfunK4lLhwSWAghhBBCVFHpUiivgAD0htM3iatPCdylMxZGiwVjuU7Xn+78lM83fsmQ/fdgVEzodGUzFOV7X1SWu6iI42PHkpVd1mCv0c23ojvD35O4OEhgIYQQQghRBS6nQ+tifbr8ilL1KYG7NHm7fEWor/Z8xfRN7zN03714OdSmeSGNQrX3S5vkVZbicJDwyCMUbd5CvrUseAlp1vx8hi4uEBJYCCGEEEJUQUFWFpQECKerCFVKp9PRoJmas1CYk03OiZQaH9+pKIqizVh4lAQ63+3/jikbp9D/yC2EFkQD4BNoZeDtXbTzCrOzK38Pp5Okp5+hYOUqAPK9PLT3gqOiz/cRxAVAAgshhBBCiCrIq0QPi/IiW5Y1gkvcv6dGxnQ2TrsNl8MBqDMWPx78kZfXv0zHpEG0SO8OgNGsZ/iY9gRGlnUIr+xSKLfdTuL4x8j9/XcAdGYzhYH+AHgFBJ6xIZ+4eEhgIYQQQghRBfmZZy81W15kq3KBxb7dNTKmsynOL+thkaUv4MV1L9Ioqw2XxV+jvX7FnW0IjvLBbPXAaLEAUFCJwMJdWEjC2HHkLV6svmAyEfrmG1pFqIAGEdX3IKJek8BCCCGEEKIKKjbHO3tg0aBZC/QGtSFcwr66mbEoX2p2a84O/IpCGHzwDnQlHwW7X92Ypl3Kciu8Srpvn23Gwp6QSNx/b6Ng9WoAdFYrDWfOxN2mlXaMb3DI6U4XFxkJLIQQQgghqqBCc7ygM+dYAJgsVsKaNAUgKylBS/yuTeVLzToMOobuuxeLS82BaNo5hO7DYyoc71kSWBTn5+FynrrkbMH69cTdeCO2fWoTPL23N40++Rjvy/uSm5aqHecbEnrK88XFRwILIYQQQogqyK9ijgVAZKu22nZd5FnExm/UtqNzuuBfrHa/Dor0ZtDI1uj0ugrHe5brzVGYm13hPcVuJ/W994i/+x5cJcnd5uhoYr79Bs9u3QD+EVhIp+1LhQQWQgghhBBVUNXkbagYWMTvjK3uIZ3RxuSNzN02W9v3tzUCwOptYvjo9pitxpPOKV0KBVCYUzbDUrh5M0dvupmMWR+A260e2+9yYr7/DkvTptpxuenlAotgmbG4VJz8f5IQQgghhDit0hkLq7cPJrOlUuc0bNMevcGA2+XiaOwWFEVBp9Od/cTztDNtJw8ue5AmtrKPfDqdFb1ex7BR7fAN9jjleZ5+ftp2YU42tiNHSJ/xPrl//FF2kNFIyNgxBN1//0nN7yrM6gRVLvgSFz4JLIQQQgghKklxuynIUj80V3a2AsDi6Ulkq7Yc372DnBMpZCUnERgRWVPDBOBg1kFG/zWaQmch/oUNy97QWbn81hZENA847bkevv7adsKsmRSv+lvr3QFgadOa8Ekv49Gu7SnOhoJyXbe9AwLP/SHEBUWWQgkhhBBCVFJRXq6WzFyZilDlNe7UVduOi91creP6p+N5xxm1ZBQ5thwsDk+aZZQFAE27RNGu36mDGkVRKD5wAPemsvHl7tmtBRUGf38aTJxI4++/P21QAZCfpXbsNpotmD08q+ORxAVAZiyEEEIIISrpXPIrSjXu3I1Vcz8H4ODGv+ky/NpqHVup1MJU7lt8H2lFaegUHdfFjUXv2I675P1e17WucLzbZqNw40byl68gf8UKHElJFHtZoZkafNiNBgxBQQTdfRf+t9yKwdvrrGMonbHwDgislSVfon6QwEIIIYQQopIqNsc7e6nZ8oKiGhEQEUVWUgIJ+3aTm55W7T0esouzuX/x/STmJwIwJPV2AtKjsCtlVaE8/HxwZmaSv2Ilecv+omDtOpSiogrXMTtd2rbhsp40mzgZvaVy+SQOuw1bQQEAXgGnX24lLj4SWAghhBBCVNK5lJotpdPpaN2nP+u+nwuKwv6/V9P9mn9X39js+Tyw9AEO5xwGoFvBIGKOlC6/smvHpTwwhuKtW7WqThWYTHh1745f716w5CcAHL4+lQ4qAAqzs7RtL3/Jr7iUSI6FEEIIIUQl5WWU67pdieZ4/9SqTz9te++qZSjlEqLPR7GzmIeWP8TujN0ANHW1oee+67T3LQZ1BsHgclO8eXOFoMIQGIjfv/9N5LT3aPH33zT67FPC774bnV79mHi27tv/lJ9ZlrgtMxaXFpmxEEIIIYSopPOZsQAICI+kQbMWpBw6QFp8HIl7dxPVpt15jcnhdvDEyifYlLIJgGB9GNceGEuhXU0yD8/cRrIjA8xGjCUBhTkmBp8rr8B74CA8OnY4qVysTq/H09ePguysKgcWFStCSanZS4nMWAghhBBCVFJeuRwLnyrmWJTqMvQabXvz7z+d13jcipvn1zzPioQVAHgavLg/bSKFGWpQ4Z0XT4tds3EY1I98Fk8vYr75miZ//kHoY4/h2aXzSUFFKU9ftZdFYU5OlWZWSitCAXj5y4zFpUQCCyGEEEKISiqdsTCaLVi8zl4d6VRa9Oqr9XY4vGUDWSlJ53QdRVF4bcNr/HFUbVpn1pt5Wv8mmQfUfAqTI5/2uz5GrzhxlQQWXjExeHTqVKlKTR4l3bfdLie2woJKj6soN1vbLt/BW1z8JLAQQgghhKik0qpQPkFB51xG1WA00al01kJR2PjT9+d0nVnbZ/Ht/m/Va+oMvBjxFkmrHCXXddN2z2f4NfAh/NNPtHMsnpUPhsoHBYU5OZU+rygvV9v28PU7w5HiYiOBhRBCCCFEJdgKC7GXlGU939yBjlcM0z7k7175F5lJiVU6/9t93zJr+yxt/4XWr5C8oKxEbNMjP9OoSxQxP8xH36yp9rq5CoGFp19ZUFCYk3WGIysqzC0LQjx8fSt9nrjwSWAhhBBCCFEJ55u4XZ7V25tuV18PgOJ28/f8eZU+d3HcYl7d8Kq2/0THpyj81orTpX6sC03dQscB4URNn4bB27vCMiaLZ+W7YHv4+mvb5YOFsynKlRmLS5UEFkIIIYQQlZCXkaZtn0up2X/qMvxfePio3+jvW7eK9Pi4s56zMXkjT69+GgU1mfrutncTsLAROfklORT5ifTuqafBs89o5WLthYXa+bWxFKo0CDFZrJjMle9/IS58ElgIIYQQQlRCXka5ilDBoed9PbOHJz2uvVHdURTWfjf3jMfvzdjLQ8sfwuFW8yiubXotvQ8NIj5OrQBldBTSJzqRiCfHV8j/sBWVm7HwqPyMhWeFwCK70ueV5ljIMqhLjwQWQgghhBCVUN0zFgAdh4zAq6RC1KFNf3PiyKFTHnc87zijl46mwKEGCf2j+nO391g2Ly8JdhQ3XVhPs4mPnZRUbis3Y1GlHAvf8jkW2ZU6R3G7Kc7LA8DDR5ZBXWoksBBCCCGEqITc9OoPLExmC5ddf4u2v+bbL086Jr0onVFLRpFRrOZ4dAzpyIQ2L7P0o11QEkQ0y1xNl3efRGcynXT+ueZYVJixKFdC9kyK8vNQFLUJn6fMWFxyJLAQQgghhKiEikuhQqrtuu0HX4VviLq0Ki52C8kH92vv5dvzGbN0DMfzjgPQ1K8p7/Wdxl/Tt+Nwq43tgtN3cPmz12E4zQf5c82x8KhQFapyORYVSs36SGBxqZHAQgghhBCiEkoDC6PFgtXLu9quazCa6Flu1mLX8iUA2F12HlnxCHsz9wLQwKsBs66YxeZvEsjKLJkVKEyh30BPPDt3Pu31z3XGwmS2YPbwACpfFaqoQqlZWQp1qZHAQgghhBDiLBRF0XIsfIJCzrk53um06tMPk8UKwP6/V+Nw2Hh2zbNsSN4AgJ/Fjw+v+JAT6x0c2qoGOAZnEd3sK2nwwD1nvHb5wKIqORYAniUlZyvbx0JKzV7aJLAQQgghhDiL4oJ8nDYbUH35FeWZrR40634ZoAYCb/30AoviFgFgNViZMWgG5hR/1v1Qltzd5sBXNH/xEXQGwxmvXT552+pVtcCidDmUraAAl9Nx1uNlKdSlTQILIYQQQoizyCuXuO1bjfkV5TXu3E3b3r91HQAGnYG3B7xNU2MrFn2yG0VtX0H0sT9pOaIz1tatz3pd+3nMWFToZVGJ5VDlj/GUGYtLjgQWQgghhBBnUROlZv8pukNnKFlhFZmm5jZM6jOJ3qF9+PODnRTnqzMGQRm7aVG0hZBxYyt13eLCc+tjAWVLoaByCdySY3Fpk8BCCCGEEOIs8tLLVYQKqpkZi9j83aT72gEIzDPzUKvRXNPkGlbO209afElviKI02uz9nNBHHkJfyWVNpVWhTBYr+rMsm/onT7+q9bIoP2MhS6EuPRJYCCGEEEKcRU3PWOzL3Mf4FeNJDSjWXhts7sGulYnsW58CgN5lo/2uj/BuHoPfv/5V6WuXJm9XpSJUqap23y6fYyFLoS499TqwcLlcTJgwgcaNG+Ph4UHTpk15+eWXUUoXGAohhBBC1IIKPSyqecYiOT+ZMUvHUOAoIM3Ppr1+aNNO1nx3UNtvve8rvAuSCHvyCXT6yn+EK03ermp+BfyzSV5llkKpgYVOr8dSxURxceEz1vUAzmTKlCnMmjWL2bNn07ZtWzZv3sxdd92Fn58fDz30UF0PTwghhBCXiNz0VG27OpO3c2w5jF46mrQidUYkpEkT2K4ue9q3bjsGazQAjeKXEpa2Fa9+l+PVq1elr+92u3AUFwHnOGPhW7WlUKUzFh4+vtVeklfUf/V6xmLdunVce+21jBgxgpiYGG688UauuuoqNm7cWNdDE0IIIcQlJOeEuhzJ088fk9VaLde0u+w8vPxhDuccBiDaN5o3r31f647tKFbvGVh4lCZHfwYg9JFHqnaPwiJtuypdt0tVZSmUoiha8rYsg7o01evAonfv3vz1118cOHAAgO3bt7NmzRqGDRt22nNsNhu5ubkV/gghhBBCnCuH3UZ+ViYAfqFh1XJNt+LmuTXPseXEFgACrYHMumIWgR6BGC0lMyJKPp7mYtpsm4VeceN1+eVY27Sp0n3OpzkeVG0plNNmw+lQk88lcfvSVK+XQj399NPk5ubSqlUrDAYDLpeLV199ldtuu+2050yePJmXXnqpFkcphBBCiItZbmrZMii/0AbVcs13t7zLwriFAHgYPXh/8Ps09GnInjVJFBeUBQBNE77B7FCDg+D776vyfcoHFueyFMrq5Y1Or0dxu886YyHN8cQ5BRbZ2dls3LiR1NRU3G53hffuuOOOahkYwHfffcfcuXOZN28ebdu2JTY2lkceeYSIiAhGjhx5ynOeeeYZxo8fr+3n5ubSsGHDahuTEEIIIS4tOakp2rZ/2PkHFnP3zuWL3V8AoNfpeav/W7QLbkfK0RxWfrMfnSFQO9aetBcAj86d8ejW7VSXOyN7ua7b57IUSqfX4+nrR0F2VtUCC1kKdUmqcmDx66+/ctttt5Gfn4+vb8XEHJ1OV62BxRNPPMHTTz/NrbfeCkD79u05duwYkydPPm1gYbFYsFgs1TYGIYQQQlzask+UBRbnO2Ox9NhSpmycou0/f9nz9IvqR2GunYUf7sLtVNDpywKLAosJgKD77junZGhb0bk3xyvl6edfEljkoCjKacdRoYeFr8xYXIqqnGPx2GOPcffdd5Ofn092djZZWVnan8zMzGodXGFhIfp/lFMzGAwnzZIIIYQQQtSU3LRygcV5zFhsS93G06ufRkEtm39/h/u5qcVNuFxuFn60k4JstdRsWJNG2jkFVjOW5s3xHtD/nO5pKzdjcS45FlCWZ+F2OSssrfonWQolqhxYJCYm8tBDD+F5Duv0quqaa67h1Vdf5ffffycuLo4ff/yRd955h+uvv77G7y2EEEIIAZCVkqxtn2vy9tGcozy47EFsLjV4+FfTfzGu0zgA1s0/RPIh9dt+Lz8zw0b31c4rNBkJuv++KvWtKO98cyzgnyVnT5/AXZQrgcWlrspLoYYMGcLmzZtp0qRJTYyngunTpzNhwgTGjBlDamoqERERjBo1ihdeeKHG7y2EEEIIAZCVlAiA0WzBJ7DqXbfTi9IZvXQ0OTb1Q3mv8F5M7DURnU7H/vXJ7FieAIDeoGPoqPaYUuKwOJzYTEaKPSz4nqEa5tmcb44FgKdf+cAii8CIyFMeJzMWolKBxS+//KJtjxgxgieeeII9e/bQvn17TCZThWP/VYUW82fj4+PD1KlTmTp1arVdUwghhBCislxOB9kn1BmLgIjIKs8cFDoKGfvXWBLz1eCkZUBL3hnwDiaDibT4PJbP3a8d2+/WFjRo4kfCIxOx2tXAwqbX4UbBcI7jr5YZC7+Asuc5Q8nZogo5FpK8fSmqVGBx3XXXnfTapEmTTnpNp9PhcrnOe1BCCCGEEPVB9okUlJLczsDwU39TfzpOt5PHVz7Onow9ADTwasDMK2bibfamKN/Onx/sxOVQr92mbwRtL4/EdvQoeYsW4dEolNKP6fmZmee8BMtWcH59LKAKS6FkxuKSV6nAQpKlhRBCCHEpykxK0LYDI6MqfZ6iKEzZOIXViasB8DH7MGvwLEI9Q3G73Cz+ZDd5mcUAhDX2pd8tLQDI+PRTUBSsDqd2rbyMtHMPLMrNWFi9zi95G87cfbtiYOFzTvcSF7YqZwLNmTMHm8120ut2u505c+ZUy6CEEEIIIeqDzMRygUVE5QOLuXvn8s3+bwAw6o28N/A9mgU0A2D9T0dI2JcFgIevmaH3t8dg0uNISSHnZ3X5uYe+bPFTXkb6OY/fVlQNVaEqzFhkn/a40sDCaLFgsljP6V7iwlblwOKuu+4i5xTTYHl5edx1113VMighhBBCiPogq8KMReUa7i6LX8Ybm97Q9if2mkj3Bt0BOLj5BNuWxAOg1+sYel87vAPU/luZn38BDgcAwT17aeefV2BRWA19LPz9te3C3OzTHleaf+Ep+RWXrCoHFqdrjJKQkICfn/yPJIQQQoiLR/kZi4DwiLMevztjd4VeFaM6jOLaZtcCkJGYz7I5e7Vj+9zUnIjm/gA4s7LI+v57AHQWC+HXlZXWP5/AorQqlMliRW84txRwT19/bbsgO/uUxyhuN8V5eYDkV1zKKl1utnPnzuh0OnQ6HYMHD8ZoLDvV5XJx9OhRhg4dWiODFEIIIYSobYrbTXqCOrvgGxJ21uU9yfnJjPtrHEXOIgCGNx7O2E5jASgucPDHBztx2tW81ZaXNaD9gLJk8Ky581BKggD/G27Aq0lT7b3qmLE414pQAEazGauXN8UF+RRkZZzymOLCAhRFfTYJLC5dlQ4sSitDxcbGMmTIELy9vbX3zGYzMTEx3HDDDdU+QCGEEEKIupCVkoyjWA0SQmMan/HYfHs+Y5eNJb1IDQK6hHZhUp9J6HQ63G6FJZ/tITdNvVZIIx8G/LeltgLEXVBA1pdfqhcyGAi8+26MAQHo9HoUt5u8jLRzfobSztvnml9RyjswiOKCfPKzMk+5ekWa4wmoQmDx4osvAhATE8Mtt9yC1SpJOUIIIYS4eKXGHda2Q2Oanva40rKyB7MOAtDIpxFTB07FYlBzJzb9dpT43eo3/VYvE0NHtcNoLluWlPX997hK8lf9rh6BOUqdyfDy8yc/K/OMCdNn4na7tMDofGYsQA0s0o8fw+VwUJSXe1IehfSwEHAOORYjR46UoEIIIYQQF73Uo+UCi8ZNTnmMoii8tuE11iatBcDP4sfMK2YSYFWbyh2JTWPzH3EA6HQw5L62+AZ5aOe77XY1abtE0L33atseJWVeC3NyUBSlyuO3FxZp2+fadbuUd2CQtp2fefJyKOlhIaCSMxYBAQGnTNg+lczMzPMakBBCCCFEfZAad0TbPt2MxZw9c/j+gJp0bdKbeG/ge0T7RgOQlVLA0i/2aMf2ur4ZUa0CK5yf+8svOE+cAMB78GAszZtr75XOCrhdTmyFBVi9vKmK8hWhqmMpVKn8rAxCYyoGWhJYCKhkYDF16lRtOyMjg1deeYUhQ4bQq5daCu3vv/9m0aJFTJgwoUYGKYQQQghRmxRF0WYsPHx8K3ywLrX02FLe3vy2tj+pzyS6hnUFwF7k5M8PduIodgHQrFsona6sWK5WcbnI+PgTbT/4vnsrvF9+uVFRbs55BRbnvRQq4MwzFoUVlkJJYHGpqlRgMXLkSG37hhtuYNKkSYwbN0577aGHHmLGjBksXbqURx99tPpHKYQQQghRi/IzM7Rv4UMbNz1p5cbOtJ08s/oZrazsmE5juLrJ1QAoboUln+8hK0VNnA6K9GLQ7a1PukbekiXYjx0DwLNHDzw6darwvkeFxnQ5BIRHUhWlpWah5pdCFWSXrVjx8gs4r3uJC1eVcywWLVp0yrKyQ4cOZenSpdUyKCGEEEKIulQhcbtxxWVQifmJjFs2jmJXMQDXNLmGBzo8oL2/8bejxO1Qq0NZPI0Me6A9JkvFHhKKopD+0UfaftD99580hgodr/NObk58Nrai82+OV+qsgUVWlrbtFRB40vvi0lDlwCIoKIiff/75pNd//vlngoJOniYUQgghhLjQpBw+pG2XzyfItecydulYMovVb+i7hXVjYu+J2mzEoS2pFZK1r7q3LX4hJ3+oL1izFtsetVmetU0bvPr0PumY8jMWRTnnEFiUm7E43xwLn6rMWATIjMWlqtLlZku99NJL3HvvvaxYsYKePXsCsGHDBhYuXMjHH39c7QMUQgghhKhtSft3a9sRLVoB4HA7eGzFYxzOUWczYnxjmDpwKmaDGYD0hHz+ml0uWfvfzWjU5tRfuqZ/+IG2HXT//acskuNZUhUKOKeSs7aCfG37fHMsPHx80RuMuF3OM85YWDy9MJkt53UvceGq8ozFnXfeydq1a/H19WXBggUsWLAAX19f1qxZw5133lkDQxRCCCGEqD0up5PkgwcA8AkKwTc4FEVReGX9K6xPXg9AgCWAmYNn4mdRZxWK8u38MWuH1lm7Rc8wOl3R8JTXL9y8maLNWwAwN2mCz1VXnvI4z3JJ0Oe0FKoacyx0ej3egeoSp7ysihVAFUUhv2TGwstfZisuZVWesQDo2bMnc+fOre6xCCGEEELUubRjR3HY1PyJiJatAfhs12csOLgAALPezHuD3qOhrxo4uF1uFn28m7wM9ZzQaB8G3tbqtKX60z/4UNsOuv8+dPpTf8/r6euvbRee01Ko6qsKBWplqNy0VIrzcnHa7RjN6kyNvagIp80GSH7Fpa5SgUVubi6+JVFzbrmW7afiKyXGhBBCCHEBS9xXtgwqslUbFsUtYurWqdprr/R9hc6hnbX9tT8cInG/uhTIw9fMsAfaV+isXV7Rzl0UrFkDgCkyEr8RI047Dk+/iuVmq8pejTkWAD5Bwdp2bnoagRFqlaoK+RUyY3FJq3SDvOTkZEJDQ/H39z9lBK4oCjqdDpfLVe2DFEIIIYSoLcd2xmrbBWFGnl39rLb/YOcHGdZ4mLa/d10SO5YlAKA36Bg2qj3eAdbTXrtCbsV996IzmU57rMnqgcFkwuVwVOgTUVnlZyysXucfWPiFNdC2c1JTygKLckujTtXvQ1w6KhVYLFu2jJycHEJDQ1m+fHlNj0kIIYQQok44HQ6O79kJgNXPl+f2TcbutgNwbdNrua/9fdqxKUdyWDFvv7bf79YWhDf143SKDxwgf+lfABhDQvC7/vozjkWn0+Hh60d+RnqFztaVZSuq3hkLv9BygcWJFG07P7tcqVmZsbikVSqw6N+/P3q9nujoaAYOHKj9iYqKqunxCSGEEELUmuQDe7V8gbiAXDJt6rfxPRr04MVeL2qrNgqybfz54U7cTrVBXvv+kbS9/MwN7DI+KqueGXjP3egtZ6+eZPXyJj8jHVt+/lmP/acKORbn2ccCwL/cjEV2allgUX7GQnIsLm2VTt5etmwZK1asYMWKFXz99dfY7XaaNGnCoEGDtEAjLCysJscqhBBCCFGj4nZs07YP+KlN7hr7NeadAe9gMqjLlpwOF39+uJPCHHUmI6K5P31ubn7G69oOHSL3998BMAQEEHDzzZUaj9Xbu+Sedhx2W5VKuZbmWJgsVvSGU+d8VMVpZyzKL4WSGYtLWqUDiwEDBjBgwAAAiouLWbdunRZozJ49G4fDQatWrdi9e/eZLySEEEIIUU8dKxdYJAcXEWgN5P3B72tlZRVFYeW8/Zw4qi5N8g60MPT+dhgMZ67gnzZ9Bijq7Ebg3Xehr2SVJquXt7Zty8/HFFj5wKJ0xqI6KkKBmrytNxhwu1zklJuxyE09oW37hsiXzJeycyo3a7VaGTRoEH379mXgwIH8+eeffPjhh+zbt6+6xyeEEEIIUSvyMzM4cUTtuJ3pY8ftaWLaoGk09CnrR7FjeQL7/lY/VBtNeoaP7oCHj/mM1y3es4e8RYsAMAQHE3jbbZUek9Xbp+w6+XlVSo4u7WNRHfkVAHqDAd/gULJPJJOTmqIV7ildFqXT6ytUjhKXnio1yLPb7axatYqXXnqJgQMH4u/vzwMPPEBWVhYzZszg6NGjNTVOIYQQQoga9fOiT7Xt+LBCXu37Kh1DOmqvHd+bydr5h7T9QSNbE9LQh7NJmzZd2w6+//5Kz1YAWMrNWBQXVD7Pwu124SguUq9RTTMWUFYZyl5URFFeLoqiaMuifENCq2XJlbhwVXrGYtCgQWzYsIHGjRvTv39/Ro0axbx58wgPD6/J8QkhhBBC1LitJ7ayde1iIlBLxfYdcD1DYoZo72efKGTRx7tQ3Opypi5Domne7ezLfopiY8lfsQIAY4MG+N9SudyKUh4VZiwqH1jYC4u07fPtul1eQHiktlws4/gxghvFYC+pPlU+B0NcmiodWKxevZrw8HAGDRrEgAED6N+/P0FBUqtYCCGEEBe2+Nx4Hl/0MMPS1Sa/bh8z9w1+VHu/uMDBb+9vx1boBCCmQzA9r21y1usqikLq1Pe0/eAxoytVCaq8c52xKF8RqrqWQgGERMdo22nxcZgsZT07/CWwuORVeilUdnY2H330EZ6enkyZMoWIiAjat2/PuHHjmD9/PmlpaTU5TiGEEEKIapddnM2Yv8bgk+BAr6ilZLv0HYJer35EcrncLPp4Fzmp6gxAUKQXV97dBr3+5GbB/1SwahWF69cDYGrYEP+z9K04lfKN7Yrz8yp9XoVSs9W4FCqkUWNtO+1YHJnJidp++QZ64tJU6RkLLy8vhg4dytChQwHIy8tjzZo1LF++nDfeeIPbbruN5s2bs2vXrhobrBBCCCFEdbG77Dyy4hGO5R5jwImypOMWPXpr22u+O0jCPrUBnIePieFjOmC2nv3jk+J0cuKNN7X90EcfOWOX7dMpn7xtO8cZi+pcChXUsJG2nR5/VCuHCxDSKKba7iMuTOdUFQrUQCMwMJDAwEACAgIwGo3s3bu3OscmhBBCCFEjFEXhxXUvsuXEFgwuHVFp6rf6Hj6+RLZqA8DOFQnsWql+I6836hj2QAd8gzwqdf3s77/Hfviwes2OHfEZNuycxlm+3GxRFXIsSitCQfUGFmarB/4NwslOSSYtPg5duWTt4HLLpMSlqdKBhdvtZvPmzaxYsYLly5ezdu1aCgoKiIyMZODAgbz//vsMHDiwJscqhBBCCFEtPtj+Ab8d+Q2Axum+GF3q0qam3S5DrzdwfE8mq787qB0/8H+tCG/qV6lru/LyKlSCCnvmaa1jd1Wd64yFvYaWQgE0atuR7JRkXA4HyQfUVgNeAYF4B0ju7aWu0oGFv78/BQUFNGjQgIEDB/Luu+8yYMAAmjZtWpPjE0IIIYSoVr8e/pWZ22cCoEPHCFs3clDLyLbq3Y+slAIWVqgA1YhWl1W+Cmb6zFm4stTlU77Dh+HRqdM5j9VSbqlRVXIsigvKBRblZj2qQ4crhrLjr4UVXmvUtsM5B0/i4lHpwOLNN99k4MCBtGjRoibHI4QQQghRYzanbOaFdS9o+4+2e4icJb8D4OnnT0jjVix4cxv2orIKUJddW/kvUYv37ydzzhwAdGYzIePHn9d4LZ6eoNOBolSpKlRNzliENWlGWJPmnDhSNqPT4rK+1XoPcWGqdFWoUaNGSVAhhBBCiAvW0ZyjPLz8YZxuNWi4ucXNdM+LweVwAOqH48Wf7C1XAcqbK+9ug64SFaAAFLeblIkvgculnj/qfsxRUec1Zr3eoAUGVZqxqKHk7VJdhl2jbbcfPIRm3S+r9nuIC885J28LIYQQQlwosoqzGPvXWHLtuQD0iezDMz2f4efXJ2nHFBXGkLi/fAWo9pWqAFUqZ8ECirapzePMMTEE3XdftYzd6u2DraCgig3yajawaH35QIoLCnA57HQZ/q9qv764MElgIYQQQoiLms1l4+HlD3M87zgAzQOa81a/t7DnF3BsZywAVu9A4naa0OmqXgEKwJmZSeqbb2n7DV58Ab3ZXC3jt3p5kwPYCgpQFKVSuQy2CjkW1R9Y6HS6CrMWQkAVlkIJIYQQQlxo3IqbCWsmsC1VnUkI8Qhh5uCZeJu9ObB+LYrbDYDT2VT7wD6oChWgQC1dm/LSJFw5OQD4jhiBV69e1fYMpTMOiuLGXlRUqXNsRTVTblaIM5HAQgghhBAXrfdj3+fPuD8B8DB6MH3wdBp4qR2i961dqR2nN7UCoOvQaFpWoQIUQO7vf5C3aBEABj8/wp5+qjqGrinfy8JWWLnlUFppWp0Os7XyMy9CnA8JLIQQQghxUfrp0E98tOMjQC0rO+XyKbQNagtAbnoaift2q+/pA9EZgmneLZSe/2pSpXs4TqSS8vLL2n6DiS9iDAmppidQlV/KVH6J05mUNsizeHii08vHPVE75P80IYQQQlx0NiRv4KV1L2n7T3Z/koGNyhr57llVNlthMLckvKk/g0a2rnQFKFCXQCVPeB536RKo4cPxPccO22dSvg9FZUvO2kqSt2siv0KI05HAQgghhBAXlSPZR3h0xaM4FbWs7H9a/YfbWt+mve92udn8+2Jt37dBJ4aPbo/RZKjSfbLmzKFg1WoADCHBhE14vhpGf7IKS6EqPWNRElh4VG8PCyHORAILIYQQQlw0MooyGPPXGPLsas+HflH9eLL7k1pitqIoLP50Hbb8JAAMpjCue3QAHj5Vq+BUtH07J8pVgYp45RWMAQHV8xD/UD75ujIzFk67XevNUd1dt4U4EwkshBBCCHFRKHYW89Dyh0jMTwSgVWAr3uz3JkZ9WXX92KXH2V8uabv94IEENKjaciFnVhYJjz4KTnVGJOjee/Du378anuDULN5Vm7GwlethYa7mrttCnIkEFkIIIYS44LkVN8+teY4daTsACPUMZcagGXiayj5YH96WytofDuKy79de637NkCrdR3E4SHzkUZxJyQB4dOlCyMMPV8MTnJ613IxFZapClQ8srFJqVtQiCSyEEEIIccF7b+t7LD6m5k14GD2YMWgGYV5h2vsnjuay9LM9KM50FHcmAJGt2uIbXPkKToqikDLpZQo3bADAEBRE5DtvozOZqvFJTlY+AbsyS6HKz2qYJbAQtUgCCyGEEEJc0OYfmM9nuz4DQK/T81b/t2gd1Fp7Pze9iN9n7cDpcOOy79Neb9W7X5XukzVnDtnffw+AzmwmasZ0TA0aVMMTnJmlisnbFWYspCqUqEUSWAghhBDigrUucR2vrH9F23+mxzP0iyoLGIry7fw6fTtFuXYUxQ2KugxKp9fT4rI+lb5P7sKFnJjyhrYf/uoreHbuXA1PcHbWKpabrZhjIYGFqD0SWAghhBDignQw6yDjV47HpbgAuL3N7dza6lbtfYfdxe/v7yD7hNoszss3DZc9F4DGnbri6edfqfvkr15N4hNPgtsNQNADo/C75ppqfJIzK18VqqozFhYJLEQtksBCCCGEEBectMI0xvw1hgKH+iF6UMNBPNb1Me19t8vN4k92c+KoGkh4+pkJCk/Q3m/Tb3Cl7lO4ZQsJDz4EJeVb/f79b0Ieeqi6HqNSjGYzRpNaDrd80HA65YMPCSxEbZLAQgghhBAXlEJHIeOWjSOlIAWAtkFtmXz5ZAx6tcGdoiis/OYAcTvSATBZDQy9vyVxsWrStcXTi6Zde5z1PgUbNhJ/3/0oxcUA+AwZQvjLk9Dpa//jU2kCd+WWQhWedJ4QtUECCyGEEEJcMFxuF0+tfoo9GXsACPcKZ8bgimVlt/wZx57VagM8vUHHsAfak5W4E4dNDRBa9roco/nMDfHyV67k+P33o5R8SPfq25eIN99AZ6had+7qUprAXbmlUGXBh0X6WIhaVO8Di8TERP73v/8RFBSEh4cH7du3Z/PmzXU9LCGEEELUgbc2v8WK4ysA8DZ58/7g9wn2CNbe37suiQ2/HNX2B49sTcNWgexZvVx7rU2/QWe8R+4ff3B83IMoNpt6n/79iXp/BvqzBCM1qXTmwVFchKukMd/pVJix8JTO26L2GM9+SN3JysqiT58+DBw4kD///JOQkBAOHjxIQEBAXQ9NCCGEELVs3t55fLX3KwCMOiNvD3ib5gHNtfeP7cpg+Vdlze96/7sZLXo0IC8znWM7YwHwC2tARMvWnIqiKGR88AFp703TXvMZOpTIN6agq8OgAipWhrIVFuDp63faY20FMmMh6ka9DiymTJlCw4YN+fzzz7XXGjduXIcjEkIIIURdWHl8JVM2TdH2n7/seXpH9Nb2T8TlsvCjnShuBYAOg6LodGVDAPauXgGK+nqbyweh0+lOur7bbidlwgRyfv5Fe83vhn8T/tJL6Ix1/3GpQmWoswUWFWYsJMdC1J56vRTql19+oVu3btx0002EhobSuXNnPv7447oelhBCCCFq0Z6MPTyx6gncilru9Z5293BDixu097NTC/n9/e047er7TbuE0vfG5uh0OhRFYc+qZdqxp1oG5UhJIX7knRWCipDx4wl/5ZV6EVQAWL3LzVjknzmBu7RylMFkOmsuiRDVqV4HFkeOHGHWrFk0b96cRYsWMXr0aB566CFmz5592nNsNhu5ubkV/gghhBDiwpRSkMK4v8ZR5CwCYEjMEB7qUlbuNT/Lxi/vxVKUp5aDjWjuzxV3tUanV2clkvbvJSMhHoDIVm3wD6vYKTt/9WqOXv9virZtA0BntRL53nsE33/fKWc26kr5XInis5ScLQ0sZLZC1Lb6EYafhtvtplu3brz22msAdO7cmV27dvHBBx8wcuTIU54zefJkXnrppdocZq3KSU3h2M5YghtGE9Hi1GtEhRBCiItBvj2fsX+NJa0oDYCOIR15pc8r6HXq96LFBQ5+nR5LXoZa7SkwwothD7THaCqr3LRj6Z/advtBQ7RtxW4n7f2ZZHz4ofaaMSKcqPem4dG+XY0+17koXzbWdpaSs6WVoySwELWtXs9YhIeH06ZNmwqvtW7dmvj4+NOe88wzz5CTk6P9OX78eE0P86xSClK06dvzkbBvN188NpYlH83g6wlPsPa7r6phdEIIIUT943Q7eXzV4xzIOgBAlHcU0wZNw2q0AuCwufhtxnYyk9QP0b7BVv71UCesXibtGkX5eexfvwZQk59b9OoLQPGBAxy99dYKQYX3gAE0WbCgXgYV8I/k7TOUnFXcbuzF6uyO9LAQta1eBxZ9+vRh//79FV47cOAA0dHRpz3HYrHg6+tb4U9dOpx9mFt+u4VJf086r+DC5XTw54x3cNpt2mvrF3zLiSOHqmOYQgghRL2hKAqTN0xmbeJaAHzNvsy8YiaB1kAAXE43f364U+uq7eFr5pqHOuHlb6lwnT0rl+Eq6Zjdpt8gjAYjGZ98QtwNN2Lbs1c9yGAg9InHiZr5PgZ//9p5wHNQPkg4U5M8W1GhlqguMxaittXrwOLRRx9l/fr1vPbaaxw6dIh58+bx0UcfMXbs2LoeWqUUOYu4f8n9ZBZn8sPBH5i4buI5Bxd7Vi0nN+1ExRcVhfULvq2GkQohhBD1x5w9c/juwHcAGPVGpg6cSmM/tSqk262w9PM9HN+TCYDZw8i/HuqIf2jFsqqKolRYBtWycXOO/fc2Ut96G6Uk2DA3a0rMt98SdM89ddJNuyoqzlicIbAo9175c4SoDfX6X1H37t358ccf+frrr2nXrh0vv/wyU6dO5bbbbqvroVWKh9GDJ7o/gUGnrvX88dCPTFg7AZfbVaXruF0uNvz0nbZ/y4uv4xWgfmtzZOtGivIkQV0IIcTFYcmxJby9+W1tf1LvSXRv0B1Qg4VVX+/n0JZUAIwmPSPGdiA4yuek6yTu3U1mUgIAIZ4+5IweR9H27eqbOh2B99xN4x9+wKNd2xp+ourxz3Kzp1NcrmKU1fvkvxchalK9Tt4GuPrqq7n66qvrehjnbGjMUPToeWrVUzgVJ78c/gVFUXi5z8sY9IazXwCI3xlLzokUABq170RUm3a06tOfLb/9iNvlIi52C60vH1iTjyGEEELUuB1pO3hm9TMoqEt5xnQcwzVNr9He3/DLEXavTgJAr9cx5P52RDTzP+W1tpebrYjYewjc6ooBc+PGhL/6Cp5dutTQU9QMS7nZh+IzlJstys/TtiWwELWtXs9YXCyuirmKt/q/hVGnxnG/HvmVZ9c8i9PtrNT5e1Yv17Y7XTUcgCadu2uvHdm2uRpHK4QQQtS+hLwEHlz2IDaXmkt4TZNreKDjA9r7sUvj2fLnMW1/8J2tiWkffMprZWzcwP61KwEwOV00yClA5+FByGPjafLzTxdcUAEnd94+neIKgYUshRK1SwKLWjI4ejBvD3gbo14NLv44+gfPrj57cOFyOji8ZQOgJm41LgkoIlu1weyhrieN27ENxX3+VaeEEEKIupBjy2HsX2PJLFbzJrqFdWNi74laH4m965JZO7+sWMnlt7SgRY8GJ13HlZtLyquvsfqpx0rmPKBRRi7+V11F0z9+J/i++9BdoA3jzJ4e2vaZqkLJUihRlySwqEWDGg3i3QHvYtKrpfD+jPuTp1Y9hcPtOO05x3fvxF6klo1r0qUHRpN6rsFoJKqNWhKvOC+XzOTEGh69EEIIUf3sLjsPL3+YIzlHAIjxjWHqwKmYDWoAcHDTCZZ/uVc7vvvVjekwMKrCNRRFIfunnzg8bDhpc78iPlD9QK1TFHo9PYGo96ZiCg+vpSeqGXq9QcuzOFNVqGJZCiXqkAQWtWxAwwFMHThVCy4WH1t8xuCidLYCoFm3nhXei2xZ1uMj6cBehBBCiAuJW3Hz/Jrn2XJiCwCB1kBmXjETP4sfAEdi01jy+Z7S6ql0GBRF9xExFa5RvH8/x/53O8lPP4MrI4OEAB8cRjWHsdXlAwkbOrTWnqemlZaclaVQor6SwKIO9Ivqx7RB0zDr1W9jlhxbwuMrHsfhqhhcKIrC4c0bAXWGIqZjxTWhES1aadtJ+/fV8KiFEEKI6vXe1vf4M05NsrYarMwYNIOGPg0BiN+dwaJPdqG41aiiTd8I+t7UXFse5crLI+W11zj67xso2qIGJgpwLLpsZqLbNf+uxaepedqMRX4+Smm09Q/ll0J5yIyFqGUSWNSRvpF9mT5oOhaD2sxn2fFljF85HrvLrh2TGneEvIw0ABq266jlVJQKa9ocvUH9VkZmLIQQQlxIvt33LZ/t+gwAvU7PG/3eoH1IewAS92fxxwc7cTvVD88teobR/78t0el0KIpCzq+/cXj4cLLmfAkutYS7OToa59OPU+BScxcbte9EaEyTOniymlOawO12OSs0zC2vuECWQom6I4FFLXC7T/2tQu/I3kwfNB2rwQrAiuMreHTFo1pwcXjzeu3Yfy6DAjCZLQQ3igEgMykBR3Fx9Q5cCCGEqAErjq/gtY2vafvP9HiGgY3UsukpR3L4beYOXA61KEnTziEMvqM1er0O25EjxN95F0lPPIErLR0AndVKyCOP0PjXX9h9uGz2vtvV19feA9WS8t23T5fAXX4plEUa5IlaJoFFDcvNKOKrCX+zZ22SNp1bXq+IXswYPEMLLlYlrOLh5Q9jc9m0ZVAATbr2OOX1Q2OaqhuKQlp8XLWPXwghhKhOu9J38eSqJ3ErauBwV7u7uLXVrQCkxefx6/TtOG3qLER0+yCuvKct2G2kvjuVI9deR+GGstxD7ysG0/T33wh+YBQpcUe02fugqEYnLR++GFToZXGaBO7SpVAmi1Ur+CJEbZHAooat++EweRnFLP9yH9+/vpnkwzknHdMzvCczr5iJh1EtJbcmcQ2P/TKW1LjDAIQ1aYZP4KlrdYc2LpvmTY07UgNPIIQQQlSPhLwExv41liKnWu1wWMwwHunyCAAZSfn88l4s9iJ1KVNUqwCG3t+OwlUrOTLiajI+/BAcai6iKSqKqA9m0XDGDEyRkQBs+e1H7T5dr75Oy8W4mFgrMWNRlJerHivLoEQdkMCiBrlcbqBsliItPo8Fb25hyWe7yc+quDaye4PuzLpilhZcpOzcrb3XtOvJy6BKhUaXBRZpElgIIYSop7KLsxm9dLTWq6JrWFde6fsKep2ezOQCfp4aS3GBGjiEN/PjqlujOPHUkySMGYMjSe22rTOZCB4zmia//YrPgAHatXNSUzi48W8APP38ad13YO0+XC2xeJ55xkJRFG3GQipCibqgU05XVuAikZubi5+fHzk5Ofj6+tb6/f/+6EGsccfYmXsTec5I7XWDzkZz70U09foLg66sSd5uC7wQZqDPljCi0tQgo3+T44RZ7SddG8Dh0vHj/saAjkBrMVc0kX4WQggh6he7Dp4LM7Dbqs4iNLQrvJXiwscNeY4w1mU+gs2t/o72N8XRrXA6yuZilHLfwRnCwNIN9Kf4Vb4tJYiDmf4AtAvJoE1Idg0/Ud04mOnLtpQQAHpGnCDav2Jw4XDr+HGf+oVjqGchA2KSa32MomYkNruVy257sU7uXZXP0sZaGtMly1CYTmfzSjoGrWZ30VVsyPsvNsUHl2JhX96/SCrsQT/fj4m2bAWgYTEEJ1pZlh4NQL7VycxGhcxITcPzVDGgHgLMDciye5JrMxHpTkJ/8c3+CiGEuEC5gSeDg9htVZfxBDldfHwihUiXiyxnJEsyH9SCimD9Ybrvn4ot3q2dbzC7CeuSg290ETod5RcCAFDsMhCXrf7ONOpcXO5/AE/FycUoT+8E1MDCy5VHQ6Vi4JDrtABqYOFvKKChklTLIxQ1JaEws66HUCkSWNQwxehBNt6gg4aeawi1xrIj/98cLByMgp5cVwN+y5pAI+t6uvl8hYchB2OmHwZFjQ6OhxaxydPK/WENeONEHp6niC38LTay7J44FQPH7MEEWKQ6lBBCiPrh/QAPFnmrM/AeboUpJ/LxcnpwzBnO0sxnKXb7A+DnPkabjbOwFZYFFdYoB77dilGsBnI49dKeHdmhONzqx5lmfpnYjVZOPcd/4XPqyz62Zbs81c8X5WS4PLRtnUF30vviAma01vUIKkUCixrWc9xnJ712JdAlMZ9V3xwg6WA2APHFl5FCHy67rinJu7+DxGUAZESo52z3MPFMjyuYecVMvExeFa4X+dP3HP16NgBFwz+h8eUX59pSIYQQF5Z5e+fxzcbJgNqr4q0rp9Mzqh9ZKQUse2cbxW41BPDT59BhzQyMJUndhsBAGrzwAr5Dh5zx+m6Xi30P3guoPZ96vfgD/hFRNfdAdSx/32548SkAdD3H4H/HvRXez921HV5+DgC//g/g/987a3uIoob0qusBVJIkb9eRoEhvrhvfmUF3tMbqpZaDsxe7WPn1PvatU/tXmKweTLp1Gj5mtbLD1tStPLDkAfLtFddUhkY31rbTjh2tpScQQgghTm9Z/DKmbJqi7T9/2fP0KwkqfnpnG4W5alDhU5xCh1WvYHIWAuA7YgRNfv/trEEFwIENa7VGsk26dCfwIg4qAKye5apCFZ5cFap8DwupCiXqggQWdUin09G6dzj/faknrXqHA6A4k3CX/HD1CWlBm+D2fHLVJ/ia1fWnsWmxjFo6ijx72Q+P4OgYbVsCCyGEEHVtR9oOnlr1lNar4r7293FTi5tOCiq8847TafPbmJyF6H18iHjrLSLffgtjQECl7rP195+17S7Dr63+B6lnLOUqPZVWfyqvKE8CC1G3JLCoBzy8zQy+ozXXP9YZo6msZGxeRjjfvraJoLwoPh3yKf4Wf0D9gT1qyShy7Wqtau+AIKw+auAhgYUQQoi6FJcTx9i/xlLsUvP9RjQZwYOdH1SDincrBhWdt0/D5CzEo2tXmvz0I35Xj6j0fZIO7CX50H4AQhrF0Khdx+p/mHrGWq7c7KlmLIpyy3plefr51cqYhChPAot6pEETX3AdLNkzoDc3JSu5gB+mbCZrpZEPB35MgEX9Fmdn+k7uX3w/ObYcdDodoSWzFoU52RRkZ9XNAwghhLikpRel88DSB8i2ZQPQo0EPXu79MplJBfz4zjYKc8oHFdMxuYsJfuhBomd/oTW6q6wt5WcrRlycDfH+yWixoDeo6bGn6mNRkJOtbXv6+tfSqIQoI4FFPXJ8z04KS75tiG7fldBotdu2osDWRfHEzsrm7dYzCbQGArA7Yzf3Lb6PHFsOwY3K5VnEx9X62IUQQlza8u35jF46msR8tZ9Si4AWTB04lezEYn56ZxtFuRWDCqu/B40+/5yQMWPQGatWSyY3PZWDG9YBakO8Vn36V+/D1FM6nQ5LSfftU3XeLpQZC1HHJLCoR/auXqFttx88iBue6krPa5ugN6jfwmSlFLLpg1SedL1FsFmtY703cy/3Lr4Xr4gw7VxZDiWEEKI2OVwOHlnxCPsy9wEQ4RXBrCtmUZDg5qd3t2odtX1z4+i8/T18O7Wi8Q8/4NWzxzndb+dfi1BK8jc6Xjkco8lUPQ9yAbB6qcuhbIWnyLGQGQtRxySwqCdshYXsX78aAIunF026dMNg0NNtWAw3P9ud0Gg1CUtRIG5VHncdmERjdysA9mXuY0biF9q10iWwEEIIUUvcipvn1j7HhuQNAPhZ/Jh15Swcx038PHUb9iKX+nr2ITptn07YHf8h+vPPMYWFntP9XE4nO5ctBkCn19Nh8NmrR11MtBmLwkIUt7vCe6UzFkaLBZP1wuh7IC4uEljUE/vXrcJpswHQqk9/TJayHwhBkd7c8GRXLruuCXqjOnuRl2xn2JYxXJYxDBTY4T5ISU89mbEQQghRa97e/DZ/Hv0TAKvByoxBMzAm+PHrtG047eoH34DMvXQ++BnRb79O2JNPoDuPGYYjWzZquYTNul2Gd2DQ+T/EBcRSWnJWUbAVFVZ4r7BkxkJmK0RdkcCiHlAUhR1/LdL22w+66qRj9AY9XYfGcNPT3QgIV3+ouJ0KnQ4M5boDD2F2+ZDtpa5fzUg8jsvpqJ3BCyGEuGTN3j2bOXvmAGoDvDf7v4lvUiS/vx+LS52oIChjJ13SfqTpl59VqjfF2Wxf+qe23eGKoed9vQtN6VIoAFu5BG63y0VRSR8Lya8QdUUCi3ogcd9uThxRq0GFxjQlrEmz0x4bHOXDzc90o/3AsiZADTKbcuuOZ7FZPAH1h8vhI7tqdtBCCCEuab8f+Z23Nr+l7b9w2QtEnmjNwg934HarU+ghadvorl9Ps+++xtqmzXnfMzslmWM7tgHgF9aA6PadzvuaF5rSpVAAxeUSuIvyctX10oCnrwQWom5IYFEPbP7tR22769XXnfV4o9lAv1tacPWDHfHwNQNgcXgSVXiZdswbv79AWmFatY9VCCGE+Dvpb55f+7y2P6bTGNqkXcbiT3ahlKzLDUvZSK+YEzSe8wXGkJBque/uVcu07faDhqDTX3ofY8rPWBSXa4hXsSKUf20OSQjNpfcvsp5Jj4/j8GY14c07MIiWvS6v9LnRbYP4z4QeNO6olqXVGcp+cBsS7dy96G5OFJyo3gELIYS4pO3N2Msjyx/B6XYCcGOLG+mZNIRlX+4H1KAiImkN/a7wIeqtKegtlmq5r6Io7F2tBhY6nZ62/QZVy3UvNJ5+ZV3JC3Ozy7YrVISSGQtRNySwqGOrv56tbXcdfi2GKtby9vAxM+yB9vT/b0uM5rKSsy1SGmM44s/di+4mpSCl2sYrhBDi0pWQl8DopaMpdKpJwwOjBjI4/kb+/jlOOyYqcQX9/9ea0HFjq7VpXeL+PeSkql+WNWrf8ZJL2i7l6e+vbZdviCszFqI+kMCiDiXs2cWRrZsA8A4KpuOQEed0HZ1OR7t+kdz0bD90BjXPAmcmVx68i+jtPbnn93tJzk+urmELIYS4BGUWZ/LA0gfIKM4AoFNwZ645MpLty8tmxpsc/5OBjwwg8Oabqv3+e8otg2pzic5WAHiVCxrKz1IUyYyFqAcksKgjLqeTZV98qO33uek2TObzmy4OaehLZMuSxG+lEMVdQNsTfemx/mbGLRhPUn7SeV1fCCHEpanQUci4v8ZxLPcYAE19mnPTgdEc2FLyLbniptXxn+n/yn/xHVz9H/qddjsH/l4DgMlipXn3XtV+jwuF52kCi7zMjLJj/AMQoi5IYFFHNv70vdZvIqRRDG36V88P4rDGTcp2lFQAgguj6Lvhdp6Z8yoJeQnVch8hhBCXBofLwaMrHmVn+k4AIkxR/GffIxzfXwSAzu2ifdJP9J3+MJ6dO9fIGA5v2YitUK2A1Lxn70u6+ZtXuaCh/FKovIx0bdsnqHqS5YWoKgks6kDCvt2sX/ANoHYNHTL6EfR6Q7Vcu0GzFtp2q556fELVqlFml5UeO27gjZmfE58TXy33EkIIcXFzuV08u+ZZ1iWtAyCYMG7b+wTp8Writt5lo3PKfC6b9QyWJk3OdKnzsmfVX9r2pbwMCtSqUHqD+pmhoPyMRYXA4tLMPxF1r2qZwuK8ZSUn8us7k3GXdA7qed1NZ+xbUVXhzVpq2zmpR7n12dtZ+EUsx2NzAWh5tA+/Pv4bA6z78HW7QadW19B7e2MMDsLYoAHWli2xtGyJwcen2sYlhBDiwqIoCpM3TmZh3EIAAp2h3L7/afLUXycYHQV0Tf+Jjh+/hiks7AxXOj+FOdnEbd8KqPmIDdu2r7F7XQh0ej2evn7kZ2VWXAqVoZaYt/r4YrJcujM6om5JYFGLMpMS+f7lZ7UfBI3ad6LXjf+t1nv4hoTi6edPYU42SXt2kfLIg7TYsgWLX3cON70ORWcAQyvW5wbRftfH+BQknvZapkaN8OrTG+/LL8ezR08M3l6nPVYIIcTFZeb2mXy7/1sAQgqjuPXAeIqK1IUOZls2PXJ+o+2nb2AMDq7Rcexbt0r7Mq513wHVNsN/IfP0C9ACC8XtRkEhvyTHwieoZv97CHEmEljUkgPr17Dog2nYi9QSfcGNYrj64Se16czq4C4sJOeXX/HLzacQsDvsnPh7Ld42B43yluGTf5xdbe7BYfah2COELV0ep9X+uTRI3XzK6zni48mOjyf762/Qmc34XHEFftdfj1fvXuiqcdxCCCHql7l75/LB9g8AiMxpwbUHHsDhVH/uexSm0rN4MS0/fRtjQM0nCe9dvVzbbnP5wBq/34XAq6TkrOJ2U5SXi9vlQnG7AQksRN2SwKKGpcYdYdXczzm2Y5v2WnCjGG6a8CoePr7Vcg9HYiKZ8+aR/f183Lm5+IT6kxyurq/M9rTg5+WDR8eOBLVoQWgDBz9vSMZaHI7bYGZPm7souO1+Bg8Iw52Rjj0+nuJ9+7Dt20/R7t3gcACg2O3k/vEHuX/8gTE8nMA77sD/pptkFkMIIS4yvx35jdc3vg5A87SuDD78P9yKOlPhmxtHD2U1zT6dVivLZbOSE0k5fBCA0JimBDeMrvF7Xgh8Q0K17Zy0E6CUvSeJ26IuSWBRg9wuFz++MYn8cglVLXv346r7x2H28Dzv6zuSkkibOZOcH3+CkmliAP9CW9kYbrie5uOfRqdXfymEAiOvzuDdaV8TcbwNAMe2Ofg5P53rR3fHq3fvsnMLCijYsJH8VSvJW7gIV3Y2AM7kZFKnTCF91iwC//c/Au++C4O396nHaCsmMzGB4vx8dHo9Xv4B+DcIr3IjQCGEEDVvVcIqJqyZAAp0SrqCy+Kv0d4LSt9JV90Gmnz+0Wl/5le3vWtWatut+/avlXteCPxCG2jbOSdSKqx+kBkLUZfk010N0hsM9L7pvyz+YBq+IWFc/p87aNm733l3InUXFJD+wYdkfvEFSsmMAoDOZML36qsJv/HfbHzzJVAUUtNPaEFFqWCfIJ58/HZe+OQdmu7qg0ExknGwmHmT/+b6cd3wD1ODHr2XFz6DBuIzaCANnn2WvJUryZn/A/kr1R/07txc0mfOJOvrrwkeO5aAm29CZzbjcjrZv24VO5cvJmn/Xm1tbCmj2UJ4sxY07daT5j374Bss364IIURd25a6jcdWPIbL7eLyozfR9kRf7b2IpNW018XSePbntRZUKIrCvrUr1B2djpZ9+tXKfS8EfmHlAovUExUCC/mdKuqSBBY1rG3/waBA68sHYjSZzutaiqKQt3AhJ6a8gTMlRXtd7+ND4B13EPCfW7UkuuCG0aTHx5EWd5TignysXhV/EfhZ/Jh073ge/+YFWm4ajIfTm8I0J9++voHhozrSsFVgheN1ZjO+V16J75VXYjt0iIxPPyPn11/B6cSVlcWJV14h+9tvcN09krVrlpGRcPqStk67jeN7dnJ8z05WzPmERu070enK4TTp2kNmMoQQog4cyDrA2L/G4rS7uOrg3TTO6qC91+TIzzQ3HiLmyzkYStb214YTRw6Rlaw2dm3Ypj0+gfJNfKnyMxbZJ5IrvBcYEVXbwxFCI5/iapheb6D9oKvO+zqOEydIfn4CBatXa6/pTCYCR95B0L33nvTDvlHbDqTHx6EobhL27qZZt54nXdPP4sfb/3mZhzwep8nf/QgqisBZpPDrtFguv7kF7Qec+oeTpVkzIia/RvCY0aS9O5XcP/7ADWwryCLumy8qHOvfIJzIlm3xDgzE5XSSm55GyqH95KalasfE74wlfmcs3gGBtBs0hPaDrpJvXIQQopYczzvOA0sewFHg5up9Y2mQ3xhQG9+12v8VjSwpRH/+JcZa7o2wd80KbbtVH1kGVZ5/WMWlUK5yKwMCIiLrYkhCABJY1HuKopD72++kvPwy7txc7XWvfpfT4NlnMcfEnPK8hu06svXPXwA4vmv7KQMLAF+zL9Ove5sxlgfJW9+FmKx2KG5Y9c0BMpML6HtzcwyGU/dRNDdsSOQ7b+P1n1v49Y1XSNW7tff8HS76/e9uml1/4ymXfmUkHufA+jXsWblM+7YlPyuT9T98zfoF3xDToTPtBl5F0249z3umRwghxKmlF6UzaskoHBl6rt83Hj+bOitgcBbRfvcnhFpziP78S0xhoWe5UvVyu13sX7dKHYvRSIuefWr1/vWdxdMLq7cPxfl5ZKem4LCpuZXeQcGYrR51PDpxKZPAoh5z5eaSPOEF8hYt0l4zhoTQYOKLeA8adMZcjajWbdHp9CiKm/hd2894Hx+zD7OGzeAB42iyt5ygU9JgAHatTCT7RCFD7muH1evUH+5thYX8On+uFlToFIXWielEZ+TifO5F0o4lEjJuLLp/BAdBkQ3pdcN/uOz6Wzi2M5btS/7k8JYNark8RSFu+1bitm/Fw8eX5j1707RrTxq264DJbKnU350QQogzy7Hl8MCSB1COe3L9gTFYXGp+ndmWTcedswjwsBH9xZeYImv/G/Dju3ZSkJ0FQOPO3bDWUl7HhcS/QTgph/LIS0/TXguKbFiHIxJCAot6q2jXbhIfeQRHQoL2mu+IETSY8Hyl1rhavbwJa9KUlMMHST9+jNz0tDMuL/I2e/PhVR8wWj+a5bvm0u/ILRgUIwn7sljw5hauHtcR3+CK34I47XZ+fusVUuMOq/f08WXEyPvRffIFhRkbQFHI+PBDCtevJ3LatFN+46XT64np2IWYjl3Iy0hn94ql7Fy+hNy0E+rfQ14uO5YuZMfShRjNFhq160BEi9ZEtGhFSHQT+WUjhBDnoMBRwJi/xmDYG8zwozegR03+9c47ToddH+DlqaPR53MwR9dNedfyy6Ba9x1QJ2Oo78IaNyPl0IEKr4U3a1FHoxFCpVMURTn7YReu3Nxc/Pz8yMnJwde3evpG1CRFUcj+9ltOvPqaVvHJ4OdHg5cm4jt0aJWu9ff8r1n3/VwABt39AJ2HXH3WcwocBYxZOoakQ1kM2X8PHk61TrmHr5mrx3YgNFr9O3S7Xfw2dQoHN6wD1KDi1olTCIpqiOJykfHZZ6S9Nw2cTvUZQoKJem8anl06n/3vwO0mfvcOdi5bzKFNf+MqV/nqnzz9/AkIj8QvJBQPXz88fP3w9PPDw9sXq5c3Vm9vLN7eWL28MZot512RSwghLnQ2l40xS8Zi3BBBh+QB2uvB6Ttos/cLzF4Womd/gbV16zoZn8Nu44P7/4e9qAizhwcPfPSVzFafwu6Vf7Fw5rsVXrv+6Rdp0rl7HY1IXKyq8llaZizqEbfNRsoLL5Dz8y/aa9aOHYh6911MERFVvl6z7pdpgcWhTesrFVh4mbyYdcUsxurG8qP5XYbvHYV/cRhFuXZ+fHsrQ+5tR3T7IP76dJYWVBgtFv791IsERalTsDqDgeD77sPrsstIePhhnEnJuNLSOTZyJA2ee46AW2854xh0ej3R7TsR3b4TjuJiju2M5fCWjRzZupHCnOwKxxbmZFOYk03ivt1nfTaDyURQVCPa9htEx6uGYzBK7oYQ4tLicDt4YslTBK7sQExWO+31hsf/otnhHzF4edLok4/rLKgAOLJlI/aiIgCa9+gjQcVpxHTsoi15BjBZrDRs076ORyUudRJY1BPOtDSOjxtH8fYd2msBd9xO2OOPozObz+mawY1i8A0JIzftBAl7dlKUn4eH99k7pXqaPHl/8Ps8uOxBfjRMZej+ewnPa4rT7uaPWTsIb7yfI1sWAmqvjmvHP0t485YnXcejfXsaz59P4qPjKdywARwOUiZOxB4fT+jjj53UX+NUTFYrzbpfRrPul6G43WQmJ5J8YB8phw+QmZhAZlKCtg73bFwOB6lHD5N69DCHt2zk2ieelyQ3IcQlw+V2MWHhJIKWdiG4UK36p8NNi/3fEJm8Fp2HBw0//ACPDh3OcqWatXPZYm27Tb+BdTiS+s3LP4Auw//Flt9/AqDbNddjsljrdlDikidLoeqB4j17OD52HM5ktTqSzsODiMmvVXnp06msmPMxW37/GYBBd42i89BrznJGmSJnEQ8te4hNiZsZeOg2mmV0wVm8DWfRcu2Y4eMeo/XlZ/7BrzidpL75Jpmz52iv+Y4YQfjk19CfY9BUnq2wkPysDIpycyjMzaEoN4fi/HyKC/Ipzs+jOD8fW0E+BdlZZCaV5ay07HU5Vz/y1HnfXwgh6ju34uaVX97GurQZXg4/AAzYaR/7AYHZ+9GZzTT8YBZevXvX6Thz01L5+MF7QFHwCw3jnvc+rtSXUJeyjMTjFOXkENm6rSz3FTVClkJdQHIXLybpqadRSqZ9jeHhNJz5frVNQ7cdcKUWWOz8axGdhlxd6R88HkYPpg+azsPLH2apbg4UHyEqq6zxXYPmV9P8srN3QtUZjYQ98wzmJk1JeeklcLvJ/f13nBkZRE2fhsHn7LMoZ2Lx9MTi6QmVqIaRsG83P02ZhK2wgP1/r6bTVSOIatPurOcJIcSFSlEU3vn+Y3xXtMfkVr/Msejy6bThHbwKT4DJROS09+o8qAA1b4CS7zvbDbhSgopKCIpsWKnff0LUBvkXW0cURSHjk09IfOhhLaiwduxA4+++rda1rSGNYghvpi5TSouP48SRQ1U632q0Mm3QNK6kC+GJx7TXDdYeZKe34JepsRQXnD65uryAW24masZ0dFZ1qrZw/XriR96JM6tyS5mqQ1SrtvS/4x5tf8sfP9XavYUQ4nwpioK9qPDsx7nd5GWm43I6ef+Tb/FY1lwLKryNaXRfM0kNKvR6It96C58BA2p45GfncjrZsaykvLpOR5v+g+t2QEKIKpPAog4objcnXptM6ltva6/5XnMN0XPmYAyp/o7T7QcP0bZL12JWRcbhI8Qsy8egqDMdSaFGFM9uACQfzmHBW1vJzyqu1LV8Bg2i0eefaSVzi/fsIf6uu3FmZlZ5XOeqzeWD8A4IBODI1k0U5+fX2r2FEOJcHY3dwkdj72L6nTcz54lxxO/accrjju2I5eMH7+Gj0Xfy3l3/w72+QHsvwHqMbn+9gtlRADodEa9PxnfIVbX1CGd0aNPf5GekA9CkS/czlkgXQtRPEljUMrfNRuL4x8j68kvtteCHHiTijSnoLTVT+aJl78ux+qhr4vatW0X68WNnOaPMiaOHWTB5Ig6bGjgUxniypMthfmk3nUKT2gk8K7mAH97YQmZywZkupfHs3JnouV9hCFE7vNr27SN+5Eic6elVeaxzZjAaadn7cgDcLhdHt2+plfsKIcS5So07wk9vvKx98E6Lj+P7V55j7Xdf4Xa7APXn2ZpvvmT+axO0pmmKPR9H/i+4XFmE+O2g08I30CtqGfAGL03E71//qpsHOoUtf/ysbXcZVn/GJYSoPAksapErL4/j991P3kK1ohIGA+GvvkrImDE1mnBltnrQ4183qDuKwqq5n1OZnP2kA3uZ/8rz2ArVgKFRu448/tLnDG06jHTvBH5qN5Uci/pLLj/LxoK3tpByNKdSY7I0barO0ISFAWA7eIhjd9RecBHTqZu2nbBnZ63cUwghztWKOZ/gdqkBgdlD7ZCNorD+h2/4/uXn2LboN+Y9/zgbfvxWy1GA0pLaLozun2j/84eU/qYJe/ZZAm6+uTYf4YySD+0n+cA+AIIbRtOoXcc6HpEQ4lxIYFFLHCdOcOy2/1G4cSOgVn6Ken8G/jf8u1bu32nICG35z9Ftm4ld9NsZjz+46W++n/Qcxfl5AES0bMN1T0zAw+rF5L6TuaH5DeRaM/ip3VTSPdVKS7YCJz+/u41juzMqNSZL48ZEfzkHY0Q4APYjR4i/9z5cubnn+piVFtmiNXqD2mk2Ye/Ze2AIIURdST9+jOO71WVP/g3CGf3RV1z+3zvR6dRf4Ql7drHssw84ceRgyRk6jB6XY/G/H0Wv5rQV5WdRYFbrtYQ8Np7AO26v9ec4k00//6Btdx72L6luJMQF6oIKLF5//XV0Oh2PPPJIXQ+lSmyHDxP3n/9gO3AAAIO/P9FffF6ryXImi5VB94zW9pfP/pjDWzacdJy9uIgVX37KL2+9itNhB9SZin8/PRFTSdK1QW/gxV4vMrLNSIrMefzcdhqJvuqzOe1u/nh/B/s3pFRqXOZGjYie8yXGcDW4sO3bx/FRD+AuPHty4vkwWa0EN4wBICspEafdXqP3E0KIc7Xzr0Xadueh/8JoNtPj2hu56YVX8QmqmIeg0wdi9rkVo7U78QGH8AkrK+mdFOBD8JgxBN93X62NvTJOHD3MwY1qw1Uv/wBaXz6gbgckhDhnF0xgsWnTJj788EM61HHjnqoq3LqNY/+9DWeS2qPCFBlJ9Nfz8OhY+9O8zbv3ots16gyJ4nbz85uvsvij6cTt2MbxPTtZv+BbPnnwXrb89qN2Tuu+A/j3MxPVcq7l6HQ6Huv2GGM6jsFhtPFH6w85HLgNALdbYenne4hdGk9lmKMiafTZpxgC1RmVom3bSHjwIdw1/GE/uGEjABTFXaG/hRBC1BeKonBo83pAzQ8r3zCuYZv23DPtI4aNe46AqBGYvG/E7HsHemM4WyOX0C5wG93/2qEtjToRE0XQuLF18hynoygKa74p63HU47qbpdO2EBewCyKwyM/P57bbbuPjjz8mICCgrodTae6iIhIefBBXjpp3YGndmphvvsbSuHGdjeny/46kZW+194SiuNn51yJ+eHUC3730DGu//ZKiXHWsBqOR/v+7m2Fjx2Mwmk55LZ1Ox+hOo3m82+O49E6WtpjN7rA12vtr5x9i3YJDlcrnsDRuTKNPP0Ff0tOiYO1akh5/AsXlOt9HPq2ghtHadlUS2oUQorZkJSeRm5YKQGSrtli9vCu8n3woj79/dlJU0BKDqRFOg5Mlzb+gr0cy3T9fj4fDRWCBWnwjt7iQ7JTkWn+GMzm8eQNxsWoBDZ+gEDqUq2IohLjwXBCBxdixYxkxYgRXXHFFXQ+lSvQeHkS++QaYTHj2ukzNJ6iBcrJVGpPewIgHH6ff/+7GZPU4+QCdjlZ9+nPHmzPods2/K9WcaGTbkbzQ6wXQwerG37Mp6g/tvW2L41nx1T7c7rMHF9bWrWn44QfoPNRx5S1eTOobb1b+4aooWAILIUQ9d2znNm07ukNnbVtRFLYuOsYv78VSnK/2Esq1pPNTu6mMAC77bJM2UxHdvJV23tFtm2tn4JVgKyxk+eyPtP3+t9+D0Ww+wxlCiPqu3nfe/uabb9i6dSubNm2q1PE2mw2bzabt59ZCIvCZePXuTfTnn+HRoQO6evIDU6fX0/2af9Nu4JUc2bKRtPg4FJeLwMgoojt0wT+sQZWveVOLm/A0evLcmufY0nARheY8+h29GZ2iY8/aZOw2F1fc2QaD8cyBimeXLkRNm8bxBx4Al4vM2bMxRUURePv/zvVxT6t8YJEhgYUQoh46tiNW2y4NLOzFTpbN3svhbWnae/H+e/ir2Zfcm92cvp9vBbcbgID//pfgO29n2xPjADgau5muI66tvQc4DUVRWPLxDG02plH7TrS4rE8dj0oIcb7qdWBx/PhxHn74YZYsWYK1JHH4bCZPnsxLL71UwyOrGs9u3c5+UB3w8PahbTV2Nh3RZAQeRg8eX/k4e8PWYTcUcsWhkegUPYc2p+IodjH0/nYYzYYzXsf78r40mPgiKRNeAODE5MmYIiPwGTSo2sYK4BMUjMFoxOV0kpuedvYThBCiFrmcTo7v3g6Ah68fodGNyUwuYOGHO8lKKStwsTlqIVuiFjI2qTX9vtyqzVT433wzYc8/Bzod3kHB5Gekk7h3N067vc5nBjb98gP7160CwOLpxVX3j5NKUEJcBOr1UqgtW7aQmppKly5dMBqNGI1GVq5cybRp0zAajbhOsf7+mWeeIScnR/tz/PjxOhj5pWtQo0HMGDwDD6MHh4Nj+bPlx7j1au31Y7sy+HX6duxFzrNeJ+CmmwgaNUrdcbtJfOxxinbuqtax6vR6vAKCAMjPrFyJXCGEqC0phw5gLyoCILp9J47EpjP/9c1aUGE3FPFHq4/Y3PBPHjzajH5zyhK1/W+6iQYTX0Sn16PT6Yhu1wkAp8NO4v49dfI8pWIX/c7qeV9o+1eNehC/0KrPlAsh6p96HVgMHjyYnTt3Ehsbq/3p1q0bt912G7GxsRgMJ3/zbbFY8PX1rfBH1K7eEb358MoP8TZ5Ex+wh19bzcRpVCs8JR3M5uep27Q1wWcS8vBD+I4YAYBSVETC2LE4UlOrdaw+QWpgUZyfh8NuO8vRQghRe8rnVzjsESz8aBcOm/qFWpZnMvPbv0V8wG4e2RtD32/3ascG3HE7DSa9VCFHLrpj53LXja35wZ+C4nbz9w9f89dns7TX+t56By0u61sn4xFCVL96HVj4+PjQrl27Cn+8vLwICgqiXbt2dT08cQadQzvz6ZBPCbQGkux3mJ9bT8NuUr95Sz2Wx4K3t1KQfeYP8jq9nvDJr+HRtSsAztRUEqu5DK13YLC2LbMWQoj6JG5HWWCRcKCsGtSRkFh+aPcOudY0Ht8SQe+fDmnvBY0aRdgzz5y0rCi6XCfrY+WuW1ty09P4/pXnWffdXO21HtfdRM/r60/3byHE+avXgYW4sLUJasPsobMJ9wonzfs4P7aZSpFZ7eSdlVzAgre2kJtedMZr6M1moqa9pzXQK9q+nZSXXqpUCdvK8A4M0rbzM9Kr5ZpCCHG+igvySTmkNh7V6QPR6X3Q6WFDk19Y3PRzFGy8uCyIHovL+gWFPPIwoY8+cspcBU8/f0JimgCQevQwhSWlxWvD/r9XM+fJcVr3cHQ6Lv/vnfS99Y5aG4MQonZccIHFihUrmDp1al0PQ1RSjF8Mc4bNoalfU7I8U1jQ9l3yrJkA5KYXs+DNLWQmFZzxGsagIKJmTEdXksCf88MCsubOq5bx+ZSbsciTGQshRD2guBVWfPkXSkllJ70pGpOPjj/azWJb2F9Y7QqTf/Wl7caSpaE6HWHPPUfwAw+c8box5crVxtfCcihbYSF/znib36ZOwVag/pz3Dgrmpudfpce1N0qythAXoQsusBAXngZeDfhi6Bd0CO5AnjWDn9pMJdvjBAAFOXZ+fHsrafF5Z7yGR9u2hL/yirZ/YvJkCjZuPO+xVZixkMBCCFHHivLt/Pb+dvat3aC95hUVw5etX+KY1z4C8hTe+t6DmL1ZAOjMZiKnTq1USe7o9rWXZ5G4fy9fPvUge1Yv115r2etyRr4xg0btOtTovYUQdUcCC1Er/K3+fHzVx/SO6E2BJYef2r5Hmpdasau4wMFP724j5eiZp+b9rh5B0L33qDsuF4mPPYYz/fyWL5UmbwPkyVIoIUQdSj6UzbevbOLYrgxczqPqi3oDnzb/gGxDBs0SFd750kDo8Xz1LT8/Gn32Kb5DrqrU9SNbtcFoUsvMxu3YVm1LSv9px9KFfPfS0+Skql8gmT08GDZ2PCMefhKrt/dZzhZCXMgksBC1xtPkyYxBMxgaM5RiUwG/tplBss9hAOxFTn6ZGkvSwewzXiPk0Ufx6t0LAFdaOomPP4FyirLDlSXJ20KIuqYoCtsWx/PjO9soyLahuDPBrc7iJgcWUqAvpt9ON5PmKXjlqMUrTBERxMz9qkp9koxmM5Gt2wJqTllmUkK1Pofb5WLZ5x+y5OMZuEt+Lke2asMdb8ygTb9BsvRJiEuABBaiVpkMJl6//HVuaXkLdmMxv7f+gARfNUHRYXPx6/RYju/LPO35OoOBiDffxBgSAkDh+vWkv//+OY/Hyz8ASn7Z5WfKjIUQonYVFzj4Y9ZO1i04hOJWZxC8/VK095OCCrhrsYtxv7kxOtWcC89u3YiZ/z2WZs2qfL/ocnkW5bt6n6/i/Hx+mPwi2xb+qr3WZfi13PzCZPxCw6rtPkKI+k0CC1HrDHoDz/V8jgc6PoDTYOfPVh8R7682bHLa3fw+YwfHdp1+9sAYFETkO29DSR+T9FkfkL96zbmNxWhUgwskeVsIUbtOxOXy3WubiNtR9qVG16HR2I27tf0b1+QzbEvZkiX/W2+h0WefYgwMPKd7RrfvpG0f2vT3OV3jnzKTEpj3/HgtIVxvMHLVqIcYOPI+9KfoNyWEuHhJYCHqhE6nY2ynsTzd42lcBgcLW37C0QC1FKHL6eaPWTs4Ept22vM9u3cn5JGH1R1FIenJJ3GkpJz2+DPxKUngLsjOwuU8e1dwIYQ4H4qiELs0ngVvbiEvoxgAi5eRq8d1JKvxDvKPqkuUPGx2WiWpzUR1ZjMNJk4kfOJEdGbzOd87JLoxAeERABzfs/O8c8uObtvMvOceIys5SR2zjy83TXiF9oMql/chhLi4SGAh6tRtrW9j8uWT0Rt0LGnxOYeD1MZNbpfCoo92cXDzidOeG3TPPXgPGACAKyuLxPGPoZxDYKBVhlIUCnOyq3y+EEJUVmGund/f38Ha+Ydwu9SZiAZNfLnluR7s9Pyb7795Wzu2YWYeOsAcE0PMd98ScOst531/nU5H674D1R1FYe+aFed0HcXtZtMvP/DjlEnYCtVSssGNYrjttXeJai0NbIW4VElgIerc1U2uZvrg6VjMFpY2n8OB4E0AuN0KSz7dzf71yac8T6fXE/H6ZEwR6rdvRVu3kj7rgyrf39PXX9uuzaZRQohLy/F9mXz7ysYKSz07X9mI6x7rwsK0X/j1g6fpus9Ley8iOx/ff11D4x/mY23VqtrG0brvAG17+5I/qjxTW5CdxYIpL7Fq7ucoipr30ax7L/7z8puSTyHEJc5Y1wMQAqBvZF8+H/o5Y5aOYXmzubj0Dlqn9kZRYOnsvbicCm36Rpx0nsHfn8h33ibutv+By0X6rFl49emNZ5culb63h6+vtl2Ul1stzyOEuLjsXb2cXSuWoDcY6Tr8WmI6da30uU6ni1/emUPctqUoig29sRHeIQMZcm9vGrUN4rs/38Ix4zNuzPRmRyMTAMFFdpq99jq+I4ZXezUl/wbhNO7UlaOxW8hNS2X3yr/oMHjIWc9TFIV9a1eyfPbHFJX7EuayG26l943/RaeX7yqFuNRJYCHqjbZBbflq+FeMXjqalU2+w6Vz0u5EP1Bg+Vf7cDndtB8QddJ5Hp06ETx2DOnTpoPbTdLjT9D4558w+PhU6r4ePn7atgQWQoh/2vjzfFbP+0Lbj9uxjRuenlip4CI3vYjvXp5OTsoq7TW34wCFGfGk7yvk4PRvabtyLw6DgdUtyhKy+z/zAn69+lbrc5TX47qbOBq7BYDV876gSZfueAecOiFcURSO797Buu/nkrhvj/a6p58/w8aOJ6Zj5b/IEUJc3OTrBVGvNPRpyJxhc2gf0o41jX9ge3hZ19ZV3xxg25L4U54XPGoUHl3VX/KOpCRSXppU6XtWmLGQpVBCiHIS9uxizddzKr6oKCz64D1shYVnPPfQllTmvfgrOSmry14smX1w2opZ/t2XJMRnczzQl/VNI7Cb1O/6mnbtSUwNBhUAUa3b0bJ3PwCK8/NY8NoL5KRWLIBRkJ3FtoW/Mu+58Xz/8nMVgopm3S9j5JszJKgQQlQgMxai3gm0BvLJVZ/w5KonWclPOPV2uiaq0/TrfjiEy+Gm2/CYCufoDAYi35jCkWuvw52fT+5vv+Hd73L8/vWvs97P00eWQgkhTua021k4610tj+CyG24l+eB+ju3YRn5WJrGLfqPn9TefdJ7D7mLN9wfZszoJe95KQE3Sbj/wOjqa9ayaP494HysA6T6epPt4aud6BwRy1agHa/7hgEF33k/Sgb3kpaeRFh/Hpw/fT3izlhgtFvLS08hKTjzpnIDwSAbccS9NunSvlTEKIS4sMmMh6iVPkydTB07lhhY3sKnRH2xs+Lv23oZfjrDhlyMoilLhHFNkJA0mTtT2U16ahD3h7J1lPXzLLYWSGQshRIktv/9ETqpamS6qdTt63fgfBt8zGp1O/dW5bdFvWofpUhmJ+Xw/eTN7VifhdmXhdh4DwNvLh5gfviPzjTdpdySRbkeSsTgqJk0HRTXi5omv4+nnX/MPh7qU6cbnXsY3RE24Vtxukg7sJX5n7ElBRUhME4Y/9AR3vjNTggohxGnJjIWot4x6Iy/2epEwrzBmMhOXzkmv+GsB2PxHHC6Hm17/blohsdHv6hEUrF5Fzs+/4C4oIOmJJ4n+6kt0Z2jSVHEplMxYCCEgPyuTDT9+B4BOp2fQ3Q+g1xsIaBBB0249ObTpbwqyMjmydRPNul+GoijsXp3Emu8P4nKoMxyKY7t2vaiDR3GllX1xcaBhEb/0S+aeFqNoaYgmIDyShu3ao9fXbkO5wIgo7nhjOpt//YE9q1eQm6YGUgajkdDGTWnYpj2t+g4gpFFMrY5LCHFhksBC1Gs6nY7RHUcT5hnGpL8n4dI76Bt3IwDblsTjdLq5/ObmFYKLsAkTKNyyFUdCAkXbtpH5xRcE3XPPae/hUW4pVGGezFgIIWDN13Nw2NTmdR2uGFrhg3WHK4ZqXat3LP2TyFZdWPblvgodtP2DFNIPxQKgd7uJyswDYFe0ji8H6kmINPNm/zcZ3Ghw7TzQGVg8Pelzy+30ueV2HMXFuN1uzB4e1V6NSghx8ZOlUOKC8O/m/2baoGkcbriZlU2+QUH9RnDn8gRWzNuP4i5bFmXw9iZiyutakmTa1PewHTx42mubLFaMZgsgMxZCCEg5dIDdK5cCYPHyovfNt1V4P7pDJ3xDQgE4GruVr15cUiGoaGJNIHDlBJwlP6cisvLJDDHx2s16Jv1HT0pDT2YMnlEvgop/MlmtWDw9JagQQpwTCSzEBaNfVD++GPoF6TGHWN50Hu6SX9p7Viex7Mu9uMsFF55duxJ4550AKA4HSU8/g+JwnPba1pLStMX5eTX3AEKIek9RFJZ98aG23/vG/+JZLg8LQK830Lb/laVnUJChlm21GJx02Pcp0QsnEx9Y1uhuX0cdD490EttUj781gM+GfEbviN41/ixCCFHbJLAQF5Q2QW2YN2IetMxhWfMvcaMmTu77O4Wln+/B7XJrx4Y88jDmpk0BKN69m/SPPz7tdT28ywKLfyaFCyEuHfvWrCD54H5AzT/oeNWIk45JT8jj8I5QSn+Fumw7CMrdR/dVzxOcspV0bw/yPdRZ0KwAF/M7ZKLodYR7hTN72GzaBbertecRQojaJIGFuOA08GrAnGFzaNDRkyUtZuPSqcHFwU0nWPTJblxONbjQWyxEvD4ZvqYupwAAUelJREFUShK302fOonjPnlNe01oSWLicTm1dtRDi0mIvLmLV3M+1/YEj78NgLEtFVNwK25bE8/3rm8lN06E3tyh5o5jAo19gduSB0UhCxzbaObExmQA09WvKnGFzaOLXpHYeRggh6oAEFuKC5GXyYvqg6fTo3YrFLT7FpVPLNh7ZlsYfH+7QqrJ4tG9P0P33qSc5nSQ9/Qxuu/2k65XOWAAU58lyKCFqS8rhg6z99kv+nPE2f0x/i02/LiAvM/3sJ9aADT9+R36WGgg06dK9Qmft/Cwbv0yLZd0Ph3A71VlNH1ek9v6RUH88Bw7E58OZJOdnA5Dr6SC+QSEdQjrwxdAvaODVoPYeRggh6oBUhRIXLKPeyHM9n+Mr36/4RvcJV+2/G6NiJn5nJj+/v4V/jemC0WwgZPRo8pevwLZvH7YDB0if8T6h4x+tcK3SHAuAovw8LTFTCFEzctNSWfrJ+xyN3VLh9b1rVrDm69l0Hno1fW65HZPFWivjST9+jM2/LgBAbzDS//Z7tfcOb01l+dx92ArK+k40il9Kk6O/sqFJKFneHhRYzezr2IoD332kHbMnJo/eUX14p/87eJrKmuAJIcTFSmYsxAVNp9Nxe5vbeezfD/BXu9k49DYAkvflMf+9DThsLnRms1olymQCIOOTTyiKja1wnfIlZ2XGQoialbB3F3OefPCkoKKU2+Viy+8/89Uzj5KTmlLj41HcbpZ8/L7W7K7HdTcSGBGJvdjJsjl7WfjRLi2osNiy6BQ7jWZHfsRgNtBn0FCtAt2u5Yuxp2QBkO3loGn/vkwfNF2CCiHEJUMCC3FRGNRoEJNveZ61nb7GrldzJDIOFzP3rVXYi51YW7YkZOxY9WC3m6Tnnq+wJMrq5a1tF+VLyVkhakpc7BZ+ePUFbIUFAPgEhXDFvWO58+2Z3D5lGj2vvxmjyQxAZuJx5j3/OJlJCTU6pp3LF5O0X82/8m8QTs/rbiblaA7fvrqJveuSteNC0rbRY9NrBGbvx7PXZTT59RdaPvYEff87ssL1is0ufG7syWv9X8ekN9Xo2IUQoj6RwEJcNNoGt2Xaf6ewo+dv2AyFABQcV/j09SUUF9gJuvcerO3bA2A/fJj0mTO1c60yYyFEjTtx9DC/vDMZp0MN6mM6dWXkWzPoeOUwgqIaERrThL633sHtb0wjICIKgMKcbL6f9CzZJ2pm5qIgO6tCwvagu0azZWECC97YQm5aEQAGVzGt9n1Ju92fYDYpNHjpJRp99hnmRo3Is+fxiXURi7uf4FBkPvui84gacx1PDp+EXie/YoUQlxb5qScuKuHe4bz/37c4MWgTxQb1G1F3ioVZr/5BXqGN8FdfKbck6lOK9+4FwKNcjoX0shCi+hXm5vDTG5O0qmvNe/Tmuieex+LpddKxgRFR/OflNwmJUSso5Wdl8uPrEykuyK/2cS2f/TG2AvVnRdOul7PpDxeb/4ijtOq0b+5Rum+aTETKeqxtWtP4h/kE3HIzOp2OlIIURi4cyfrk9SSFFLOpSz63jJ3AyF6jqn2cQghxIZDAQlx0PE2eTP73i1iuT6HIqH4QMWf68sErf5Ie4Evw/ferBzqdJD/3PIrTidWrYvK2EKL6KIrC4g+nkZ+ZAUB4i1YMf/BxDMbTLxPy8PbhxudeJrBk5iIzKYHfpk7R8iCqw/6/17B/3SoAjBZPkuPakRav/vvXKS4aH/2NLtvewbM4ncCRI4n55hssTdRgZ3/mfm774zYOZh0EwN/izydXfcIV0VdU2/iEEOJCI4GFuCjpdXrGXXEfLUaaKTSpORNeuYF8+fpKEof2xdK8OQDFe/aQ8dnnFapCFedJjoUQ1WnnX4s4vHkDoBZK+Nf4ZzGazWc9z9PXj+ufnqgtVTy2YxvLZ390lrMqpyA7i6Wfli2H1Bn743Z7AOBVnErXrW/R+NifGKwWIt99h7BnnkZfMua/k/7mzoV3klqYCkBDn4Z8NfwrOoV2qpaxCSHEhUoCC3FR+1f3oQwY15giixos+BaE8MfM/Ry+53rQq//7p8+YgSEjSzunJpZbCHGp+mcOw5DRj+AdEFjp8/3DGnDtY8+iN6jV0WMX/c7WP389rzGVzqCUfomgNzVHb2oFQMOUVXTb+Bq+efGYGjYk5ptv8B02TDv3hwM/MGbpGPId6s+J9sHt+XLYl0T7Rp/XmIQQ4mIggYW46HVv2ZEbHu9OsYe6xMGvKIRNy704NLQPAIrdTubk17Xji2TGQohqs2ru51oFqLb9r6Bp1x5VvkZU63ZcNepBbX/F7I85tGn9OY/p7/nfc2TrJnVH54nJczDentB51wya7/sWg9uBZ48eNJ7/PdaWandtl9vFm5veZOLfE3EqaunZgQ0H8umQTwnyCDrnsQghxMVEAgtxSWjcMJKRzwzA6a1Wi/KzBbPHeRUnStZv27Ztw1yy3luSt4WoHgl7d7Fn1TIALF5e9PvfXed8rbb9B9PjupsAUBQ3v097k+SD+6t8nY2/rObv+V9q+yavq2gSDl2XPEFAulrMwefKK2n48UcY/PwAKHAU8PDyh5mzZ4523v9a/493B7yLh9HjnJ9JCCEuNhJYiEtGcKgfdz93BTp/BwDe9kC2thpNgYfaZdtYqJaWLMqXpVBCnC/F7WbZF2X5EH1vHYmnr995XbPvLbfTqk9/AJx2Gz++MYmMxOOVOtdW5OS36ctYPW8qoJZ8svr2ol9TE42/fQKjU/3373/TjUROfRe9xQJAUn4St/95OysTVgJg1Bl5odcLPNXjKQx6w3k9jxBCXGwksBCXFJ8AKyOfGYA1RO2Ua3H7s777o+R7hmNyqssbbPn5KG53XQ5TiAvevr9XkxZ3BIDQmKZ0uGLIeV9Tp9czZPQjRLVpB0BRbg7fTnya1JL7nE7C/izmvvAn+9d+CIoNAK+AZgyPMGCZU7YMMuj++2kwaRI6gxowxKbG8p/f/6NVfvIx+/DBlR9wU4ubzvtZhBDiYiSBhbjkePlZ+O+TffCNUL+R1Ol92dL5YfSKuhRKUdwUl6wJF0JUncvpZN23X2n7/W67C301fbtvNJm49rHnCY1pCqjBxTcvPsW+tStPOtZpd7Hm+4MseONnso7PAUX9d+0XFsMQq47ib2drx4Y+9RSh4x9Fp1O/dPjtyG/cvehuMoszAYj2jWbe8Hn0DO9ZLc8hhBAXIwksxCXJw8fMTY/1ILiR2pzLZfIhz6+l9n7igR11NTQhLnh7Vy8n+0QyAI3adSS6Q6dqvb7V25ubXniV8BZqJSdHcRG/T3uTH6e8RPyuHbicDpIPZfHVhF/Y9MvHOPLng6IudQpoEEX/giKKFy5UL2YwEP76ZILuuhNQk7SnbZ3GM6ufweFWl032bNCTucPnEuMXU63PIYQQFxudopT2F7045ebm4ufnR05ODr6+vnU9HFHP2Iqc/Do9lhNHcnEULsNliwUgxJFK5w8+oX1oh7odoBAXGLfbxRePjSUrKQGAWye9SWTL1jVyL0dxMUs/eZ89q5dXfEOnK0mjqPjrrVHrdnTcexTXdvWLA53FQuS77+IzaCAAufZcnlr1FGsS12jn3NjiRp7t+Swm/emb+QkhxMWsKp+lZcZCXNIsHkb+9VAnIpr7g86qvR6UGcr7U2/n631fc5HH3kJUq0Mb/9aCioZt2tdYUAFgsloZOnY8wx98HO+g4LI3FIXyQYXZw4vLr7+Fzpt3aUGF3seHRp99qgUVh7IO8Z/f/qMFFXqdnie7P8kLl70gQYUQQlSSsa4HIERdM1uNXD2uI/Ne2EB6nPrakegruH7dCiY2fJUtJ7YwsddEvM3edTpOIeo7RVHY8OP32n5pediapNPpaNGzH5kpDdjyx3JcjsMorix0OgiMbECHwb1p1rAxKePG4UhSl2cZQoJp9MknWFuqyx+XHlvKc2ueo9CplqP2t/jzVv+3JJ9CCCGqSAILIQCTxUDXYS1ZNOt3ANw6J0dajOaOVZ8y03MR+zL38Vb/t2gV2KqORypE/XVsxzZS4w4DENakGdEdOtf4PU/E5fLX7L1kJRdgMLfEYG5JaLQPg0e2ITDCi6Jduzl+z724srIAMDVsSKPPPsXcsCEut4v3Y9/n450fa9drFdiKqQOnEukdWeNjF0KIi40shRKihJd/WY19RSnCrTeh+NzH4N2dOZZ7jNt+v43vD3wvS6OEOI2tf/6ibfe47iatwlJNcDncrP/pMD+8sYWsZLXak96g47LrmnDDk10JjPCiYP164u+4QwsqLK1aETNvLuaGDcm15/LgsgcrBBXDGw9nzrA5ElQIIcQ5khkLIUp4ePto2z7WQooBRW+gec4dZCR4Ehu1lkl/T2JzymZe7PUinibPuhusEPVMVkoSR2O3AOAbEkqz7pfV2L3S4vNY+sUeMpPKykKHNPJh8MjWBEWqSxZzFy0m6fHHURxqZSePbl1pOHMmBl9f9mfuZ/yK8cTnxQNqPsX4ruO5o80dNRoMCSHExU4CCyFKWH3KKh2EtvZHt/sAxwwtQKfnsuM3o8eTrZFL+OPoH+zJ2MPbA96mRUCLOhyxEPXH9sW/lyRNQ8crh1db34ryXE43m/+IY8vCYyhu9V56g47uI2LoPCQag0GdhM/67jtSJr4EJY0uvQcNIvKdt9FZLCw4uIDXNryGzaU2yvO3+PNm/ze5LLzmAiEhhLhUyFIoIUp4+JTNWNgK8rnyhRFEJ/6lvdbj+NVcnnAjKBCXG8d/fvuPVI0SArXs667lSwEwmsy0H3RVtd8j7Xge37++mc1/xGlBRXBDb256pjvdhjfGYNCjKArpH3xIygsvakGF3/XXEzXtPWxGhefXPs+L617Ugoo2QW345upvJKgQQohqIjMWQpQwe3ii0+tR3G6K8nKxNGxI75taYvzyRw43vR6AtgmXE0gwv0R9iN1t57UNr7E2cS2T+kwi0BpYx08gRN3Yu2YFtpJu9S379MPDp/p6Brmcbrb8GceWP4/hLp2l0OvoOjyGrsPKZikUl4sTr00ma+5c7dzAu+8m9InHicuNY/yK8RzKPqS9d0vLW3iy+5OYDeZqG6sQQlzqZMZCiBI6nQ5rSZ5FcX4+AAG33UaroHRa7p8LivoNaHhCa+5OeQG9W13qsTJhJTf8cgPrktbVzcCFqEOKohC76Ddtv/OQq6vt2ieO5vLda5vY9HucFlQERXpx49Pd6HF1Yy2ocNvtJD72eIWgIvTxxwh78gkWxS3i1t9u1YIKD6MHr1/+Os9f9rwEFUIIUc0ksBCiHA8tsMgFQGcwEP7qK0Slb6Ldns/QuZ0AmOICGZ/6LiGGMADSi9IZtWQUb29+G4fLUTeDF6IOpB49TFp8HADhzVsS1qTZeV/TYXexdv5Bfnhjs5agrdfr6DY8hpue6U5Io7Jli668PI7fex95CxeqLxgMhL8+Ge+7bufV9a/yxKontP4UTf2a8s2IbxjRZMR5j1EIIcTJJLAQopzSGQt7UREupxogWJo2Jfj/7d13fFRV2sDx352ZTHrvlQAh1NCL9I4gIKAioi6IrrosqCzqCuqruNb3ZVV0cUXXgqsi2CiKAoIQipRQAoQWkpDee51Mff8YmBBJIBBgCD7fz2d05s499z6XgeQ+c85zzpy/ElBwiK5Hl6E2W7dXnrHwSMYrDPYdZmu//Nhy7v/5flLLUq936ELYxfHtv9qedxk2utnHyzpVwsqX9xG/OeNcLTj+Ee7ctbA3/W5vg1pT92vLkJ9P2p9mUL1vHwCKszPh/36PwqFduOfHe1h5aqVt34ltJrJi/AraeLVpdoxCCCEaJomFEOdxOq+A+9xwKADfhx7CsUMHfEtO0D3+HRxUJgCK0qoZGHcvT0YvQKOyliwdLzrO3T/ezdenvpbCbnFTMxmNnNgVC4DawYHo/oOu+Fj6GiPbvjzJmrcPUV5QYz2mRsUtk9tw1zO98A93r7d/bVISadPvpfbkSeu+Xl5EfPoJPwXlcc/6uqFPjmpHXuj/Aq8OelWmiBZCiGtMEgshzuPsVld0qqussD1XHBwIfvUVUKvxLD9DjwNv4uxq/edTmleDZU0rPuj+GZEekQDUGGt4ec/LzN48m7yqvOt6DUJcL6mHD1BTXgZA29634OTqdmXHOVrIV//Yy7Ed2bZtwW09mfZ8H3qNjUSlrv+rqnLnLlLvmY4hKwsATUgwPsuXsbD4U17e87Jt1qcoryi+Gv8VU6Ov7WJ9QgghrCSxEOI8Tm51N0Y1FeX13nPu3BnfB2cB4FaWxi3ZX+AV6AxAdZme+I9LeLvdh9wdfbetza7sXUxZN4Ufkn+Q3gtx0zkWWzcdc+ehIy67fU2lnl8+Ocb6945QWWJNBjSOagZPi2bKkz3xDnK9oE3JV1+R8eijmM/2KDp26kjZO88w7eh8fs2oG5Y1vcN0vhr/Fe282112XEIIIa6MJBZCnOf8aTJrzuuxOMdvzhy0kZEAKId2MSI8icDW1jYGnYlf3j/JPZpHeH/U+wQ4BwBQoa/g2Z3PMn/bfIp1xdf+IoS4DmoqK0g5YK1tcPH0IrJrzya3tVgsnN6fx1cv7SVxX12PXnhHb6b/T1+6Dg9DUdXvYbCYTOS++hq5L/0DTNahiK4jhvPzUwN58ODT5FfnA9YF794d/i7P9nsWJ41Tcy9TCCHEZZDEQojznCvehvpDoc5ROTkR/MrLttdl773NbVP9iezqB4DZZGHTx8dwOxHB95O+rzf7zOb0zUxZO4Vf03+94LhCtDSJu3dgMlpnSes4aCgqddNW2q4qreXnZUfZ9NExairOTpDgomHEjI5MfLw7Hn7OF7QxlZWRMXs2JZ9/btum3DeFp27NZ9np5Viw9gb2C+rHtxO/ZXjE8OZenhBCiCsgiYUQ5zl/9W1dxYWJBYBL795433svAJaaGgpeXsTYRzrTaVCIbZ9d3yZx9Id8Xh/4Om8OfRMvRy8AinXFPLH1CRbsWECJruTaXYgQ19j5w6A6DRl5yf0tZgsJsZmsWLSHM4cLbdvbdPdn+ov96DgguME6CN3Jk5y5aypV23dYN2g0JP3lVu6N3MCJ0lPWTYqGeT3n8eGYDwl0DWzmlQkhhLhSN3Ri8frrr9OnTx/c3d0JCAhg8uTJnDp1yt5hiZvY+T0WDQ2FOsd//nw0IcEAVO/eQ8Wa1Qy7rz19J7a27XN4cwabPjnGiNCRrJ60mmHhw2zvrU9Zz6Q1k/gp5SepvRAtTnF2FjmnrT+L/SMiCYi8+BSuRVmVfP/PA8R+lYheZx3G5OzuwK0Pd2Hso11w9XRssF3ZDz9ai7QzMqwbvDz58uE2POu9BcPZaZ+jvKL4cvyXPBTzECrlhv6VJoQQN70b+qdwbGwsc+bMYc+ePfzyyy8YDAbGjBlDVVWVvUMTN6lLDYU6R+3mSvBL/7C9zvvf/8OYn0+f8a0Zfn8Hzn3xmrQ/n7Vvx+Nq9ODd4e/yysBX8NBaazJKakt4ZsczzP11LrlVudfmgoS4Bs5fu6LT0MZ7K4x6E7vXJPP1q3HkptRNhtBhQDD3vngLUb0CGuylsBgM5L72GtlPP41FpwOgOiqEv80wstYrBQAFhVldZrFqwio6+Xa6WpcmhBCiGRRLC/q6tKCggICAAGJjYxkyZEiT2pSXl+Pp6UlZWRkeHh6XbiD+0CqKCvnwrw8A0K7vAG5/8tmL7p+9YCFla9YA4Dp4MOEffoCiKKQeKWTjRwkY9WYAPPycGP/XbviEuFJYU8hre1/jl7RfbMdxdXBlXs953N3+bvnWVdzQLGYz/3nsISoKC1AUFY8u+wxXL+8L9ss4Wcy2L0/Z1qQA8Ap0Ydi97Qltf+H+5+jT08l66ml0R47Yth3tF8AbQ4owaKxJSLh7OK8OepUeAT2u4pUJIYRoyOXcS7eoO5iyMut86T4+Po3uU1tbS3l5eb2HEE1Vb7rZykv/3Qlc8Awaf38AqnbsoHTV1wBEdvXjjqd64eqpBaC8UMd3iw+QcbwYP2c/3hr2FkuGL8Hf+WxbQxWv7n2VWRtmkVKWcrUvS4irJuN4AhWFBQBEdutxQVJRU6Fn86fHWbck3pZUqNQKvW+LZNrzfS6aVJT98ANnptxhSyrMGhWf3Kbl5eF1ScW09tP4duK3klQIIcQNqMUkFmazmXnz5jFw4EC6dOnS6H6vv/46np6etkd4ePh1jFK0dA6OTmgcrMnA+StvN0bt5VVvlqi8//s/9OnpAPhHuHPXgj74hVuTFX2NkR+WHiZhu3VRr5ERI1kzeQ13trvT1v5g/kHuXHcn7xx8hxpjDULcaBobBmWxWDi5O4cVi/Zyam/d0L7gKE+mPdeXfre3QePQ8MxRpsoqsp9ZQPbTf8d8dqhrkZ+WZ+9X2NDNDIpCiGsIH4z+gOdveV5W0BZCiBtUi0ks5syZQ0JCAitXrrzofgsXLqSsrMz2yDhX9CdEEzmdnRlKV9G03i63oUPxmjoVAEt1NdkLn8Vydp59N29HpjzZ0zYdrcVsIXbFKXZ+exqz2YKH1oNFAxbx8ZiPCXe3JsFGs5GPjn7E5DWT2Zq+9WpfnhBXzKDTkbh3FwCOLq607d0PgNK8atYuiWfLZyfQVVmLqrXOGobd154p83viE3LhQnfn1Bw5wpk776Bs7Vrbtu0xKv42w0RKsIKCwv0d72f1pNUMCBlwDa9OCCFEc7WIxGLu3Ln8+OOPbN26lbCwsIvu6+joiIeHR72HEJfjXAF3TWVFk2dsCnjmGRzO/t2sOXCA4s/+a3tP66Rh3F9i6D6qrvfs8OYMfl52FL3Oug5A3+C+fHf7dzzS9RE0Kg0A2VXZPL71ceZumUtmReZVubZzjHo9R7ZsIPaLTzixcxvms4mQEBdzOm43Bp21Jy26/yAUNOxdl8JXL+8l61Td9MlRvQO4d1E/Og8OvWChu3PMtbXkv/mmddanNGsvn85R4d2JKpZOUKFzVIjyiuLz2z7nmb7PSC+FEEK0ADd08bbFYuGxxx5j9erVbNu2jXbt2l32MaR4W1yur19aSMbxowA8/tm3ODg1bfXe6rg40mbMBIsFRaul9Xff4vi7v7PHdmQR+1UiFrP1n51PiCvj/hKDV0DdTdOZsjO8tvc19uTssW1zVDvycMzDzOoyC61a26zrq62u4ttXnic3+bRtW0SXrkx+5kUctA1P+ykEwLev/g9pRw4BMHTGs5zYba0fOsfdx4kh06OJjPG76HFqDh8me+Gz6FPq6olOB8O7k9TkeStoVBoeiXmEP8f8GQe1w7W5GCGEEE1y0xRvz5kzhy+++IIVK1bg7u5Obm4uubm51NTI2HNx7Ti5N20ti99z6dMHn5kzAbDo9WQ/swCLwVBvn86DQ5n4WDe0ztZeieLsKr59Yz9px4ps+7T2bM2Hoz9k8dDFBDgHAFBrqmVp/FImr53MlrQtzVr7Yssny+olFQDpCUfY/sUnV3xMcfOrKCok7Wg8AA5OPuxZV2NLKlQqhR5jIrjnhb4XTSrM1dXkLV5M6vR7bUmFQQ0rhqr4nxnWpKJHQA++mfANs7vPlqRCCCFamBs6sXj//fcpKytj2LBhBAcH2x6rVq2yd2jiJubsVpeNX2wti4b4/20e2rZtrW2PH6dw2QcX7BPe0YepC3rjHWTtpaitNvLj0sMc2JBqSxgURWFs5FjWTVnHjE4zUCvWoteMigzmbZvHgxsf5ETRicu+tsKMNE7ssNZtOLq6MuieGWgcrb0U8Zt+Ijvx5GUfU/wxHNu+Fc7+/bTQ3rb+RGi0F9Oe78uAO6LQOmkabV+xZQvJEyZQ/PEnYLZOw5wUBAtmqVkzQIWXiy+vDHyFz8Z+RpR31LW/ICGEEFfdDZ1YWCyWBh8PPPCAvUMTN7F6U842sYD7HJWjIyFvvAFqayJQuGwZNfHxF+znFejCXc/0pnW3s9/uWmDPmhQ2fXQMQ21dvYOrgytP93maVRNW0Teor237/rz9TPtxGi/seoGC6oImx7dvzTe257fccQ/9ptzNoGl/OhuDhd3frriMqxV/FOknitj7/Xrba5W2I84eWkY/2IlJf+tx0eJsfWYmGbP/SuacuRizcwBrL8WXw1Q8P1NNVoCae9rfww9TfmBS1KQGF8wTQgjRMtzQiYUQ9uDkfn6PxaWnnP0955gu+M2ebX1hMpH11NOYKi7s+dA6axj3aAx9J7a2bUs6kM93/7efsoL6w/3a+7TnozEf8c7wd4hwjwDAgoXVSasZv3o8Hx75EJ1Rx8WUF+Rzctd22zV2GzUOgB5jJ+IZEAhA6uGD5KUkXfY1i5tTZYmOTR8lsPbNjRj1hQCoNKF0H9WF+166hei+QY0mAmadjsJly0iZMJHKrXWzmx2OVHjyz2rW9lfRJaAbX43/iuduec62Ir0QQoiWSxILIX7H2a2uxkLXhEXyGuL3l0dx7mFdwMuQmUnuS/9osC5CUSn0Gd+a22bH4OBk7eUoyqri69fiSImv3xOhKAojIkawZtIanur9FO4OZ2evMtbwr0P/YsLqCXx/+nuMZmODMZ3YuQ2LxToEpefYibaidJVaTe+JdWtpHNmy4YquWdw8jAYT+39K5csX93B6fz4m/XHbe/0m38bgadE4Ojc87MliNlO2bh3J426jYMk7WHTWhLfYDd6erOLVe1ToQ3xZ1H8Rn9/2OZ18O12XaxJCCHHtSWIhxO84nZdY1DTQ09AUikZDyOLFqM4Wgpf/+GO9efp/r3U3f6Yu6I1XoLXuQl9j5OdlR9n5zWlMRnO9fR3UDszsPJP1d6xnWvtptvqLvOo8XvztRaasncLG1I2YLfXbnfptu+155/MWNgPoNHgYDo7WROPkru0Yai/e+yFuThaLheRD+axYtJe961Iw6s1YLEbMBmvtjdpBS6/xoxptX71/P6l3TyP7789gzLEOezIrsL6Pwt8eUXOgsxMPxfyZ9VPWc2f0nagU+RUkhBA3E/mpLsTvnD8r1OUWb59PGxZK8EuLbK/z/vEy+rS0Rvf3DnJl6oLetO0ZYNt2eEsGq988SEXxhTf63k7ePH/L83w78VuGhQ2zbU8tT+Wp2KeYvn46v2X9hsViobwgn4L0VACCo9rj4R9Q71haZxei+w8CQF9TTdL+vVdwxaIlK8qqZO2SeDZ8kEBFkfXvm6JSCIsuxWK2vo7uNwBHlwvrKXSnTpExZy5p9/8JXUKCbfvBNgpPPaTms1FqhrYfx7op65jXax5uWrcLjiGEEKLlk8RCiN9pzqxQv+dx22143nkHYJ1qM+vJp7Do9Y3ur3XWcOvDnRlyTzQqjXXset6Zcla9uo/Uo4UNtonyjuJfI//Ff8f9l54BPW3bjxcd59HNj/LQpofYuu1b2/Y2vfo2dBg6Dxlhe356z66mX6Ro0XSVBrZ/dYpVr+yrt8hdWAdvpj3XB5P+mG1b52H1eytqT58mc97fODNpMpVbtti2pwbAy/eoeGOaGu+OXfl83OcsHrqYULfQa39BQggh7KbxuQGF+INqzqxQDQl67jlqDhxEn5qKLiGBgnffJeCppxrdX1EUYoaFEdjag43/SaC8UEdtlZH17x2h+6hwbpnUFrXDhd8J9AjowfKxy9mZtZN3D73LyWLr8JW43Di89qURijMAbXr2afC8oR074+LpRXVZKWcO7Uevq0Hr5Nzs6xc3JpPJzLHt2ez7MYXaqrq6HA8/Jwbe1Y7W3fyoLCki7bB1QTwP/wAiOncFoDYlhcKl71H+88+2KWjBWkexaoiKbTEKrbxas7j7HMZEjpEhT0II8QchiYUQv1OvxqKZPRYAKhcXQt78J6n3TAeDgaKPPsalf3/cBg68aLuAVh7c/Wwftnx2gjOHrb0V8ZszyDxVwuhZnRuc4lNRFAaHDWZg6EA2pm5k6aGlZJSlE1BiXauiytHI08cX8aj2L/QP7l9vRh+VSk27vv05/MvPGA16Ug8fJLrfxWMUDbNYLOhralBrNGi0zVsp/WqzWCykxBewe3UyZfl1s49pHNX0GtuK7qPC0ThY63aOx/5qK/jvPHQkumPHKPr4Eyo2bbKtRQFQ6gqr+6vY3F3BxzOIRd3/yu1tb0ejkl8xQgjxR6JYmrOEbwtwOcuQC3HOvx64G31NNd4hYTz49rKrcsyiT5eT/7//C4Da25vWq7/HISjoku0sFgtHfs3kt9VJmI3Wf65qBxUD7mhLzLCwi877bzQb+X7Xf8lY+j0AZ4KriO1hTVK6+nflz13+zNDwobZvlFPjD/Dd6y8C1mEvY2fPu+Lr/SMyGQ3Erfue+I0/UlVqHVYU2KYd3W8dT6fBw1GdXd/EXnJTyvjtuyRyksvqbY/uF0j/yVG4eTvatlksFj7926OU5GQDME7rhRJ3oF67cmdY01/Fpp4Krm4+PNz1Ye5ufzeOakeEEELcHC7nXlq+ThKiAc4eHuhrqqkpK71qx/SZOYPqPXuojI3FVFJC1hPzaPX5f1Eu8Y22oih0GxlOaHsvNn18nJKcKkwGMztWnSYtoYgRMzri6tnwjZxGpaFddQAZZ1+bgt0Aa2JxpOAIj299nEiPSGZ0nsHENhMJ6xSDxtERY20tZw7tx2I2o6hkGEtT6HU1rF38CukJh+ttz0s5zcb3l3Bw/RrGzplPQGSb6x5baX41e9Ykk3yw/hTGIe28GHBnFIGRF/6iyDh80JZU+FbUoKQk1x3PBdb3VbGhl4KLuw+zO89geofpuDo0vlCeEEKIm5/0WAjRgJUvPkPWSWvR6uP//dY2FWtzmUpLOXPnXRiysgDwvv9+gp5/rsntjXoTu1cnc2Rrpm2bk5sDQ6e3J6pXQINt1r+7mJO7YgGY/so/OeKQygeHPyCptP5CeD5OPtzT4R58f8omI946rv7+15cQ2Cbqsq7xj8hisbDuzVdJitsDgKJSEdq+E7qqSgrPzsYFoFJrGDbzz3QfM/66rDBdU6ln//pUErZnYTbV/aj3DnKh/5S2RHb1uyAOfVoaJStXsWXHL+S4WhPWbml5hJZWku0DP/RTsb2Lgqe7Pw90foCp0VNxcXC55tcihBDCPqTHQohmcvf1sz2vLC7CO/jqzGaj9vIi9J13SJs+HYvBQMkXX+Dcozue48c3qb1Gq2bwtGhadfFly2cnqC7Xo6s0sPE/CSTt92fI9Pa4eNTvAclOPGFt6+hIYOsoxmo6MKbVGHZm7WT5seXE5cYBUKwr5t/x/6azyZs+WH9wpByMk8SiCY5s3mBLKhxdXJmyYBGh7TsCkHk8gV8/XUZBeipmk5FfP1lGYVoqIx58FLXG4ZrEo68xEr8lg8Ob09HrTLbtzu4O9J3Yhk4Dg1Gp63qiLEYjlbGxlKz4iqpdu9Bp1OR2agWA1mCkwrWSxSNU7G+nEOgezNNdHuSOdnfIkCchhBD1SGIhRAPcfHxtzyuKrl5iAeDcpTOBzz9P7ovWWoac/3kBp/btcYxq+g18RGdf7nmhL9u+OGVboTv5UAGZiSUMvjua6L6BKIpCRXEh5QX5AAS3jUatsf6TVykqhoQNYUjYEI4VHmP5seVsStuE2WIm1a/cllhs2r6K0l5ejIoYhYP62twEt3S6ykp2rvyv7fW4ufNtSQVAWKcu3Pva2+z86jMOrF8DWFc3L8rK4Pb5C3Hx9LpqsRj0Jo5uy+TQxnR0VQbbdo1WRfdREfQYE4HWqe7Hvi4xkbK1aylf9wPGgrphUum+HljO9mQkh1by4SQNUV5RvNRpBhPaTJC/C0IIIRokiYUQDXA/L7GoLCm66sf3unsqNYcOUbZmDZbqajIff4LIr1ehdmv6wmHOblrGPtqFpAP5bF+ZiK7SQG2Vkc2fHud0XB7D7mtP9qmTtv1DzrvZPV9nv84sHrqYeZXz+OL4F3x3+jvKXQx4VDvgnG/g2V+f4Q03b+5sdydTo6cS7Bbc7Ou/mexd87VtvZOOg4fTtle/C/bRODgwbMafCWjdlk0fvIvJYCDr5DG+fG4+k//+Av4Rkc2KwWQwc2xnNgd+TqW6vG6dFJVKocPAYPqOb42rl7V3wVhcTPmP6ylbswbd8eMXHCvHCxKDPVBZwKxYMI7swAd9HqR/SP/rMnxLCCFEyyU1FkI0IHHvLn5463UABk2fSb/JU6/6Ocw1NaTeM53aU6cAcBs6lLB/v4dyBTMH1VTo2bEqkdP7823bHBzVePntJyNhKwBTFrxImx4Nr2Fxvgp9BV8s+R+qD1hrMDb1ySPb37ryskpR0T+kP5PbTmZ4xPA//FCY6rJS/jPnQYwGPRoHLbOWLMPDr+Fal3Nykk6x9p+vUlVSDICDkzPjH3+ato0sXHgxJpOZU3tyiVt/hsri2ro3FIjuG0jfCa3x9HfBWFxMxebNVGzcRNXevWA01juOUQUHoxQ2d1eo1rgz4Jh1KGBwj67cu+C1y45LCCHEzUNqLIRoJjfv83osihte8bq5VM7OhL37Dmfunoa5rIzK2FgKliwh4MknL/tYzu5axvy5C1G9C4j96hTVZXoMtSYyT9R9Ix3SruEei99z17ozYvBd/HjgDQAGGDqwRknAaDFitpjZlbWLXVm7cHdwZ2zrsUyKmkRXv65/yG+zD21cj9Fg7SHoOnrcJZMKgOCo9tz32lusXfwKeSlJGHQ1rFn8MkPum0XvCVOa9OdoMpg5sTuHgxvSqCjW1XuvTQ9/+k5sjadDDRWb15K2cRPV+/bVW3finKQg2B6jYlcnhQoXhXCXMEZv8cBMFQAjps5qyh+DEEIIAUhiIUSDfl+8fa1oW7UibMnbpP/5YTCZKPrPRzhGR+M5ceIVHa9Nd39C2nmxZ00yCTvSsJisPRiKypcd36Qx4I6oRqemPV9455i6Y5b5sOmJTXx7+lvWnF5DdpV1CtIKQwXfJH7DN4nfEOkRyYQ2ExgTOYbWnq2vKPaWxlCrI37TesA6C1Sv8ZOa3Nbdx49pi95gw7+XkLhnJ1gsbP/iE4oy0xn98JxGi7oNehPHd2RzaFMaVWX6eu9FdPKheyczTidiKX/iZfITEuqtin1Ovifs7qgQ20VFpr+CWlEzNGwo09pPwzNFx4aStwBo1bUHQW3bNfmahBBCCEkshGiAq5c3iqLCYjFTUXTtEgsA1/79CVywgLxXXwUg57nn0bZqhXPXrld0PCdXB4bd1wHvoFI2f2i9sVRpQkjcm0fq4UJ6jYuk64gw2+rKDXHx8MS/VWsK0s6Qn5qCm9mJ2d1m82jXRzmQd4A1SWv4Je0XaozWlZtTy1NZGr+UpfFLifaO5tbIWxnTagyRnpFXdA0twbHYX9FVlAPQvv/gJvVWnM/B0YkJT/yd3WHh7P72K+sxt22mNDeH2598FhcPT9u++hojCduziN+cTk2Fod5xQvxNRFXvx3Hlj1QWF1PZwLlyvWBPB4XdHVScCQIUhXD3cP7adiJToqYQ5BqE2Wziv289ZmvTb8rdl3U9QgghhCQWQjRApVbj6uVFZUnxNRsKdT7v+++jNjGR0m++waLXk/HXOUSuXIk27Mpno9KVp9uea13CsAB6nXUdjKOxmdwyqS3RfQJRVA0PvYno0o2CtDNgsZBx7AjR/QaiUlT0CepDn6A+PNfvOX5J+4W1yWttU9YCJJYkkliSyL8O/Yv23u0ZGTGSIeFD6OjT0bbCd0tnsVg49PM62+veE++4ouMoKhUDpt6HT0gYG99/B6NBT9bJY3yxYB4T5j2Du18kR7dmcmxnNvqa+nURAdWniTj+HR6V1uUPTb87dmqAtW5idwcVaQGAouCudWdq5Fhub3s73fy71Rt2dXz7VooyrX9nQqI7EtaxyxVdkxBCiD8uSSyEaISbrx+VJcVUlZViMhptU7VeC4qiEPQ/z6M/c4bq/fsxFRaS8cgjRK74ErWX1xUdM+tUXX3FlL+P5+RuHSd2ZWOxQGVxLZs/Pc7hLRkMuKMtYR18LmgfEdPNNj1q+tHDRPcbWO99FwcXJkVNYlLUJHIqc9iUtolNqZs4UnjEts+pklOcKjnFvw//G39nf9sUt7cE39KiF1VLOxpPcbZ1kcKwjl0IbN22WcfrMHAonoFBtqLuiqICvnrh7zg4D0Gl7VGXAFjMBOQfJDJ9I25nh6Sdo9PC4UiF+LYKh9ooFHtY22hVWoaFDmBCmwkMCx/WYMG9oVbHrvOmzB00fcYfsmZGCCFE80hiIUQjbAXcFgtVpcWXPdTlcilaLWFL/0Xq9HvRnzmDPiWFjDlzifjkY1SOlzf7ksVsJifROtWss4cnQW1aEdxWoevwMH77Pon0Y9YZiQrSK1i7JJ6wDt70Gd+akHZetmOEdeyCSq3GbDKRfuxIQ6exCXYLZmbnmczsPJPsymx+SfuFjakbOVp41LZPQU0B353+ju9Of4eDyoHuAd3pF9SPfsH96OzXGQdVy1kb4dCGH2zPe4yd0OzjmfV6vAxm+nQez297N6E35IHFjKF6GypDJlrnEQTnH6ZV+mZcaqx1MyYVnA6GY60UElopnAxXMKmtyYCT2onRYYMZ3Wo0Q8KG4OrgetHz7/72KyrPzlLVtvcthHeKuej+QgghREMksRCiEecXcFcUFl7zxAKsK3OH/+dDUu+ZjqmwkJoDB8hesIDQN99EUTV9GFFxdia6Kuto+5DojrZvn31D3Zj4WHcyThTz2/dJFGZY98k8WULmyRJrgjGhNSFRXmidnAmKak/2qeOUZGdSUVyIu49fo+c8J8QtxJZk5FblsiNrB7EZsezJ2UOtyTolqsFsIC43jrjcOJbGL8VZ40yvwF70DepL94DudPTpiJPG6ZLnspjN5CQlUpCWgq6yEkcXV/xbtSYoKvqa9TCV5uWSctA69MvN14+oPv2b3NZiMmHIzqY2OZnaU4nUJiZSnpROmi6ErKAB6Jz9UVzvQV2zC1PtfgDMhiSoOoVfdh5ZPrUkRFgTicRQhVptXa+Ch9aDgSEDGdVqFINCBzW5Ryg3KZH9P6wGQK3RMOS+B5p8PUIIIcT5JLEQohEefv6252X5uYR26HRdzqsNCyP8/fdJmzEDS00NFT9vIM/Hl8Dnn2vy8JSsUydsz0MbWBgvvKMPdy/sQ+K+XOLWp1JWYC3CPpdghLb3osfoVoR3jiH77JCq9KOH6Tx05GVdS5BrEFOjpzI1eio1xhricuPYlrGN37J/I6syy7ZfjbGGnVk72Zm1EwCNoqGDTwe6+nelq39XYvxiCHMPs9VomE0mjmzZyN41X1NZdGENjKuXNzEjb6XnbZNwdnO/rJgvJX7TettsS91H34bqd+uOWPR6DPn5GDIy0KeloT+Tav1/Whr6zEwwGLAApZ5RZIcMIj9wDBZV3Y9iRVHjSXsca8+Qoy0ARYVOq2Zfm2COR1ZwsH0pJrX1/J18OzEodBCDQwfTxa8LGtXl/Ug36HRseH8JFot1Ktr+d92LT0hYM/50hBBC/JFJYiFEI7xD6gqnS3KzL7Ln1ecc04XQt98i869zwGym5MsvUbm6EjD/b01qn31eYhES3fD6FYpKof0twbTrE0jivjzifkql/GyCkXWqlKxTpbh41A3BSk+4/MSi3jVpnG01FgCZFZnE5caxJ2cP+3L3UVhTlyAYLUYSihJIKEpgxckVALhoXGjn3Y722ki8NmWjT8tv8DwAVaUl7PluJfEb1zP0Tw/ReejIq1IzUFteRsKWjQCo1WrCCkrIe/11DDm5GHJzMebkYCwsbHCaVwC9gxt5YYPIDh5IleuFK5jXcoIznts50PU4Fa7gVq1m0GE/gkqcUFDonOpBh1J/IqaOZtTAu/BzvnQPUmMsFgsb3l9iK9j2j2xzxUXoQgghBEhiIUSjvIJCbM9LsrMusue14T5sGMGvvUrOgoUAFH34ISpXV/wefeSSbbMTrYmFWqMhsE3URfdVqVV06B9MdF9rgrH/p7oejKoyL6w/JowkxR2goliHu8+lhyg1RZh7GGHuYUxpNwWLxUJKWQqH8g9xuOAwRwqOkFKWUm//amM1yWnHiN5TiF5X96MrN9CAPtIdL98AfM0eOGZUUXkiDcxmdJUVbHx/CRkJhxn557+idXKud0yLxYK5vBxjURGmoiKMZx/W58UYiwoxFRVjLC7CVFhEirOG2lDrzXxQQQnlby255HWaVBqKfGPIDr6FYu+OoNTv4dBpKjkZsJfjAb9R7lyXXCkoBAS3wiWmG/7JjhRtisNsNKIurSXrPz+y72QVQ+6bhZv3hYX3l2KxWNjx1WfWNTQArbMz4x97+ppOUCCEEOLmJ79FhGiEV2CQbS2L691jYYth8mTM1dXk/eNlAArefhuViws+f7q/0TbV5WWU5FgToYA2UWi02iady5Zg9Asi9XAh8ZvTyUkuQ6UJw2xMRV9TxmcLfqRNj2g6DQohorMvqkamqr1ciqLQ1qstbb3aclf0XQCU1ZaRUJjA4YLDnCw+SVpWIj32guvZpKLK0Uhsj0LyfWrPHuUUqMAhxEKIo5ouKd74l7oBcHzHVhJ3baGVRo9XlQnnSgNOFTocymtQTBeuSN0Qk6KQ3CrC9rp1QVm99y0KVLipKfRQyHMzU+wdhd61F67mnmgsF9Y75LgnczxwFym+hzGpjAS5BtHXdxRd/LoQ4xdDJ99OuGmt8TMIikZmsOHfb5GbfBqAEzu2khS3hx63jqfXhCn11r246HUYjcR+8TGHfq4rQB839yl8w8Kb1F4IIYRojGKxNNJnf5MoLy/H09OTsrIyPDw87B2OaGE+euwhyvLz0Do7M/fTr+02BWfRRx+R/883ba+DFr2I9z33NLhvUtwe1v7zFcC6vsLQ+x+84vPmppSx+ZMV5J22rjCtcR6GxqknAG7ejrTvF0S7PoH4hrpd8TmawmgwsGrRM+QmJQKg9XLFuZ0L5pxslLxCXEpq8Kmw4FsO7rq6dtleriSEBWBUW2sznGsN9E3JxlVvbOg0jap0gpQADzK9z9XdVFHqlU+hBxR5KBR6QImriqCq9rQp6kbr4hicjRfWdlRqS8kISsDcroSwCH+ivKKI9o6mrVdb3LWXrgUxm00c3bKRnV/911acD9bF9rqOupWYEbfiGxbRaPvcpER+/exD24xhAKP+/Fe6jb6t6X8YQggh/lAu515aEgshLuK7114g9fBBAP7ywee4ennbLZb8d96h6P1ltteBzy7EZ8aMC/bb/uWnxK37DoDbn3yWdn0HNOu8hRlpfPbUHAAcnNugdpp8wT4+Ia606xNIu96BePo7X/D+lTLk5aM7lsC2NV+TmGddN8K51kD/pCycjL9fEq5hlY4O7GsTjE5rnc5WazDSMy0Hi0pPmQuUuyiUuUK5C5S6Kmf/D+WuCmUuUOYKoOKO2BBbb8m6gTkUe+rRGp0JK2tPq5JOtCrugpOpgWldHcx4dlDRrm8Anbu2xs3x4lO/NkV1eRm/fbOChF83YjLWT5L8IiJpFdMNn9AI3Hx8MBmNlOZkk3r4AOkJddMGq9RqRj08h5jhY5odjxBCiJvX5dxLy1AoIS7CKygEziYWJTlZdk0s/B9/HAwGij76GIC8117HXFuL38MP19svqwmF25fDNywCN28fKkuKsZgyufXhDpzaU0BaQpGtRrk4u4q9a1PYuzYFnxBXImP8aBXjS1BrD1Tqpk+Ta66qomrvPip3bKdqx04MmZlkebmR2CoQAJXZTM+03IaTCgcHHAIC0AQF4RAYgNrPD42PD0E+PoRpHfjpl3WUFhagd9AQF9OO1rNuxxzijtlYjbPZiMZswN1kwGC2PkwWExqVBrWixrIjBZMuGQBtqzAe9p6LPs2BmiwFGvhqRqNV0aqzL216+hMZ44fW6er+qHXx8GTUQ7PpO+ku4tZ9y9FfN2EyGAAoTE+lMD31ou29AoMZN/dJQqI7XNW4hBBC/LFJYiHERXgHn1fAnZNNWMcudotFURT8n3wSxdGJwvfeA6DgzbcwV1Xh/8QTKIqC0WAgL8U6Bt8rKPiqJEKKotCqa0+OxW7GqNejdSxg/JxuVJXVknQgn6T9eeSmlNv2L86uoji7ioMb03B01RDe0YfQdl4Et/PCJ8gV5Xd1GRaDgcodOylbt47KX3/Fotfb3qtwdCAhrG7a35jiKoLad0IbGWl7OISG4hAchNrH56Jrfdw3ajTfv/EiOadPYarRkfrxWiY9+RyR3Xo22sZoMHF630l+3vPc2S0qKBlF2a4L61YcnNRExvjRtqc/EZ19cdCqL9jnavPw82fkg7Ppf9e9nNwVy4md26w1GI10RHsFBtPzttvpOmosak3LWZBQCCFEyyCJhRAXcf6c/kVZGXaMxEpRFPwfm4vi6EjBW28BULTsA4x5+QT/4yXykk/bvrkObX/11t1o1a0Hx2I3A5B25BARXbrh6ulItxHhdBsRTnlhDaf353HmcCF5qeW2b/Frq4wk7c8nab91algnVwdC2nkR2NoDHz812rjNVK38DGNu7gXnNGq1HO7QChPW4upOfQcycv6CK65zcXJz467nX2HtP18l/Wg8xtpaVv/vPxj/xNNE9xuI0WCiKKuKwowKCjIqKcyoID+tAF3JSixm63AjtWMvVOq6WZi8g12J6OxDq06+hLTzQu3Q9N6Zq8nFw5Oe426n57jbqamsIC8pkdK8XKrLy1Cp1bj7+hHQui1+4a3sVickhBDi5ieJhRAX4RcRaXtekJpsv0B+x++Rh1E5O5P32mtgsVC2ejXGggKyRg+17RPaofNVO1+rmO6256lHDjH43gfqve/h50yvsZH0GhtJTYWetGNFpB4pIuN4EXpd3bAlXZWBlPgCUuILzm6JwDFyLm5+mbjU5OGqVOMXE4l//xgOpeynfPcO6/VGRDLqsfnNvilWqbWMeujvbPrwLTKP78dsMvLDW2/g5jsQo6UXWOp6GSxmHfqqtVjMRQAoKl/c/QcTGu1PeCcfwjv54OF79epJrhZnN3ciu/eydxhCCCH+gCSxEOIi3Lx9bPUFuclJWMzmiw63uZ58/nQ/Gn9/sv/+dyx6PVU7d5JcmgNn742vZmLh4uFJQGRb8lOTyT+TTFVpSaPDrJzdtXS4JZgOtwRjNpkpyKgk+3QpWYlFZBxJQK8vQUGFovFHUflR6+RNrZM3RcRYD1ACxu/2YNT9BoCi0uLicztbP0/CwUmNg1aNg6P1oVIr1lE/FrBY/4Oh1oRBZ0KvM6LXmaitNlBVpqe6rJbaamvPg8UyCLW2BpP+GGChsmgnqA6jceyJovbFYirBWHsAzNYhXg5Obkx66gUiurSRb/yFEEKIRkhiIcQlBEVFkxS3B31NNcU5WfiG3jjz/XuMvRWNrw8Zc+ZiKi+nCBOgxtnZpV59yNXQukcv8s/22iQf2EfXkbdeso1KrSIw0oOio7+Suf0Tqqm/ZoRKcULtGAXqtqgcIgAzxppdmGrjbftonEeTn6YhPy3vql2LoqjQuIxBUXlj1O0CLGCuwFgTe8G+Tu4e3LlgEUFRba/a+YUQQoibkSQWQlxCUFtrYgGQl3z6hkosAFz69CFy5UoSHp+LUW39Nt0zJ5+iDz7A95FHrloPS1TvW9i7+msAkuJ2NymxMOv1bHlhAUfOJDb8vkWHWZcAJNjitJjrkg9X3xGg6ojJ2LRF7BqjcVDh4qnF1dMRF09H3Lwc8Qp0xjOgB0b9ZA78uIK0IwcvaBcR050xjzyGZ0Bgs84vhBBC/BFIYiHEJQS1jbY9z0lKpNOQEXaMpmGObVrDw7NgxXIAfKp0FCx5h+r9Bwh+9VUcAgOafY7Atu1w8/GlsriI9KPx1FRW4OzW+KJuutOn2fDsUySr6mos/Axm2o8ehyokmOzEE6SdLaKG+gmF2sGB4TMfptvo27BYLOhrjNRUGDDoTRhrTRj0Jgy1Jswmi21okqICBQWNVoWDkwatkxoHJzWOzhq0zpqLDGHyoXW3f1CUlUH60XiqSktwdvcgvHNXAiLbNPvPTQghhPijkMRCiEsIbBtle56b3PA37zeC7JQk23PvKuvy01U7d5Jy++0Ev7QIj7Fjm3V8RVFo338QB9avxWQ0cnJXLD1unXDBfhaTieLlnxH3349JDjpbh2Gx0DusLYNeeQO1i4ttX4O+loyEIyTv30vG8aOoHRwI7dCZnuNuxyck1HZeRxcHHF2u7fSovqHhN1xvlBBCCNGSSGIhxCU4ubrhHRxKSU4W+WeS0ddUo3V2uXTD68hsNpGecBgARxdXOr37L/Keex5jfj7msjKy5v2N8tHrCVywAIfQ0Cs+T5dhozmwfi0ACVt/uSCx0Kenk73wWbJPJHC8bd15hk+4g54zHrrgeA5aR9r07EObnn2uOCYhhBBC3BhujOlthLjBteraHQCzyUTa2Rv4G0l+SjK6ygoAIrp0w2PwYNqsW4v7eb0UFb9sJnn8BAqXLcNcXX1F5/GLiCSwTTvrOc8kk5+aAoBFr6foo49ImTSZsvhDHGoVhOXsQni9xt3eYFIhhBBCiJuLJBZCNEHr7r1tz88c2m/HSBqWeriu8PjcStJqLy9C336LkH/+E7WfHwAWnbX2Imn0GIqWL8dcU3PZ5+oyfLTt+cGf1lK5cxcpk6eQ/883MdfUcCQ8AJ3W2hka1rELQ/4kSYUQQgjxRyCJhRBNEN45BrWDdYz/mfgDWCwWO0dUX+qRCxMLsNYneE4YT9uff8J7xp/g7MxLpqIi8t/4X04PHUbua69Rm9z0xf86DhqKo4srAMdit3Bizmz0Kdaei+RAb/I9re85e3gy/vGnUanVjR5LCCGEEDcPSSyEaAIHRyfCO1kXcKssKiT/zI2zCndtdTXZiScB8A4Jw8P/whmg1O7uBD37LG1+WIf7uLrhUebyckr++zkp4yeQPH4Cef+3mPKNm9BnZmIxGGz7WYxG9BkZlG/YSPH/LaZ1bpHtvfiIQAxqFZndOpEY5GPbftuc+bj5+F6LSxZCCCHEDUiKt4VoonZ9B9iGHB3bvoXANlGXaHF9nDkUZ5uqNbJbj4vu69i2LWFvv43uL3+hePlnlP/0E5az073qk5Mp/l3PhcrdHUwmzLW1YKqbNjZCpZAeHU61owPlLo780qU1UGt7f/C9DxDZvddVukIhhBBCtATSYyFEE0XfMsg2HOrEjm0YdDr7BnRW4p5dtuft+vRvUhun9u0Jef012sVuI3DhApx79oQG1nkwV1RYC73PSyoANGoNQ4Jb4+TkfEGbvpOn0uf2Oy/zKoQQQgjR0kmPhRBN5OTmRvQtgzixYyu6ygqObv2FnuMm2jUmva7GVkzu4ulFaMfOl9Ve7eWFz8yZ+MycibGoiJr4eGoSEqg9fRpTQSGm0lLQaFA5OuIQGoq2dWtc+vTGpVcvVC4uhORms2vVF+SfScLF05t+U+6mtfRUCCGEEH9IklgIcRn6TLyDEzu2ArD/x++JGTkGB62j3eJJObAPo0EPQLu+/VGprrxQWuPri/vIkbiPHNnkNt5BIUx44u9XfE4hhBBC3DxkKJQQl8G/VWvbYm4VhQXErf3OrvEc/XWT7Xn0LYPtGIkQQggh/ugksRDiMg25bxbK2Wlb967+mozjR+0SR0lutm21ba+gYMI7dbFLHEIIIYQQIImFEJfNNyzCVpxsNhlZ989XKcpMv+5xHPhxje1515FjbcmOEEIIIYQ9yJ2IEFdg4N332xai01VV8tULT5MUt+e6nb+8IN82DMrByZnOw0Zdt3MLIYQQQjREireFuAIqtZoJ8xbw9UsLyU9NpraqirX/fIWILt3oPmY8ETHdcXRxabR9dXkZhelplOZlU5afh7G2FkWlwt3XH++QEELadcTJza3BthaLha2ffYjZZASg57jbcfHwvCbXKYQQQgjRVIrFYrHYO4hrqby8HE9PT8rKyvDw8LB3OOImo6+p5qelb5G8v35vhaJS4RcWgWdgEI4urqjUavQ6HdVlpRRlplNdVnrxAysKga3bEtmtF5HdexLSrgMqtRqLxULsF59w4MfVADh7ePLg2x80moQIIYQQQjTH5dxLt4jE4r333mPx4sXk5ubSrVs3/vWvf9G3b98mtZXEQlxrFouFk79tZ9eqzynLy70m53B0dSW0fSeqSkvIS0myblQUbp+/kHZ9B1yTcwohhBBC3FSJxapVq5gxYwbLli2jX79+LFmyhG+++YZTp04REBBwyfaSWIjrxWI2k3r4ICmH4sg4dpSSnCzMv1uxGsDZ3QO/iEj8IlrhExKOV0Agjq5uGA16ygvyyU9NIePYEQrSzlz0fGMefZyYEWOu1eUIIYQQQtxciUW/fv3o06cPS5cuBcBsNhMeHs5jjz3GggULLtleEgthL2azicriYgy1OswmEw5aR5w9PNE6O6MoyiXbV5YUk3bkEGcO7SftyCF0VZUA+ISEMWj6DOmpEEIIIcQ1dzn30jd08bZer+fAgQMsXLjQtk2lUjFq1Ch2795tx8iEuDSVSo2Hn/8Vt3fz9qHz0JF0HjoSs9lEaW4uji4uuHh6NSkxEUIIIYS4nm7oxKKwsBCTyURgYGC97YGBgZw8ebLBNrW1tdTW1tpel5eXX9MYhbgeVCo1PiGh9g5DCCGEEKJRN906Fq+//jqenp62R3h4uL1DEkIIIYQQ4qZ3QycWfn5+qNVq8vLy6m3Py8sjKCiowTYLFy6krKzM9sjIyLgeoQohhBBCCPGHdkMnFlqtll69erFlyxbbNrPZzJYtW+jfv3+DbRwdHfHw8Kj3EEIIIYQQQlxbN3SNBcD8+fOZOXMmvXv3pm/fvixZsoSqqipmzZpl79CEEEIIIYQQZ93wicW0adMoKCjghRdeIDc3l+7du7Nhw4YLCrqFEEIIIYQQ9nPDr2PRXLKOhRBCCCGEEFfmcu6lb+gaCyGEEEIIIUTLIImFEEIIIYQQotkksRBCCCGEEEI0myQWQgghhBBCiGaTxEIIIYQQQgjRbJJYCCGEEEIIIZpNEgshhBBCCCFEs0liIYQQQgghhGg2SSyEEEIIIYQQzSaJhRBCCCGEEKLZJLEQQgghhBBCNJskFkIIIYQQQohmk8RCCCGEEEII0WwaewdwrVksFgDKy8vtHIkQQgghhBAty7l76HP31Bdz0ycWFRUVAISHh9s5EiGEEEIIIVqmiooKPD09L7qPYmlK+tGCmc1msrOzcXd3R1GU637+8vJywsPDycjIwMPD47qfX1wZ+dxaJvncWh75zFom+dxaJvncWp4b4TOzWCxUVFQQEhKCSnXxKoqbvsdCpVIRFhZm7zDw8PCQf8QtkHxuLZN8bi2PfGYtk3xuLZN8bi2PvT+zS/VUnCPF20IIIYQQQohmk8RCCCGEEEII0WySWFxjjo6OvPjiizg6Oto7FHEZ5HNrmeRza3nkM2uZ5HNrmeRza3la2md20xdvCyGEEEIIIa496bEQQgghhBBCNJskFkIIIYQQQohmk8RCCCGEEEII0WySWFxnr776KgMGDMDFxQUvLy97hyMa8d577xEZGYmTkxP9+vVj37599g5JXMT27duZOHEiISEhKIrCmjVr7B2SuITXX3+dPn364O7uTkBAAJMnT+bUqVP2Dktcwvvvv0/Xrl1tc+r379+fn3/+2d5hicvwxhtvoCgK8+bNs3co4iIWLVqEoij1Hh06dLB3WJckicV1ptfrmTp1KrNnz7Z3KKIRq1atYv78+bz44oscPHiQbt26ceutt5Kfn2/v0EQjqqqq6NatG++99569QxFNFBsby5w5c9izZw+//PILBoOBMWPGUFVVZe/QxEWEhYXxxhtvcODAAfbv38+IESOYNGkSx44ds3doogni4uL44IMP6Nq1q71DEU3QuXNncnJybI+dO3faO6RLklmh7GT58uXMmzeP0tJSe4cifqdfv3706dOHpUuXAmA2mwkPD+exxx5jwYIFdo5OXIqiKKxevZrJkyfbOxRxGQoKCggICCA2NpYhQ4bYOxxxGXx8fFi8eDEPPfSQvUMRF1FZWUnPnj3597//zSuvvEL37t1ZsmSJvcMSjVi0aBFr1qwhPj7e3qFcFumxEOI8er2eAwcOMGrUKNs2lUrFqFGj2L17tx0jE+LmVlZWBlhvUkXLYDKZWLlyJVVVVfTv39/e4YhLmDNnDuPHj6/3+03c2E6fPk1ISAht2rThvvvuIz093d4hXZLG3gEIcSMpLCzEZDIRGBhYb3tgYCAnT560U1RC3NzMZjPz5s1j4MCBdOnSxd7hiEs4evQo/fv3R6fT4ebmxurVq+nUqZO9wxIXsXLlSg4ePEhcXJy9QxFN1K9fP5YvX0779u3JycnhpZdeYvDgwSQkJODu7m7v8BolPRZXwYIFCy4osPn9Q25KhRCiYXPmzCEhIYGVK1faOxTRBO3btyc+Pp69e/cye/ZsZs6cyfHjx+0dlmhERkYGTzzxBF9++SVOTk72Dkc00bhx45g6dSpdu3bl1ltv5aeffqK0tJSvv/7a3qFdlPRYXAVPPvkkDzzwwEX3adOmzfUJRjSLn58farWavLy8etvz8vIICgqyU1RC3Lzmzp3Ljz/+yPbt2wkLC7N3OKIJtFotUVFRAPTq1Yu4uDjeeecdPvjgAztHJhpy4MAB8vPz6dmzp22byWRi+/btLF26lNraWtRqtR0jFE3h5eVFdHQ0SUlJ9g7loiSxuAr8/f3x9/e3dxjiKtBqtfTq1YstW7bYin/NZjNbtmxh7ty59g1OiJuIxWLhscceY/Xq1Wzbto3WrVvbOyRxhcxmM7W1tfYOQzRi5MiRHD16tN62WbNm0aFDB5555hlJKlqIyspKkpOT+dOf/mTvUC5KEovrLD09neLiYtLT0zGZTLZq/6ioKNzc3OwbnABg/vz5zJw5k969e9O3b1+WLFlCVVUVs2bNsndoohGVlZX1vsU5c+YM8fHx+Pj4EBERYcfIRGPmzJnDihUrWLt2Le7u7uTm5gLg6emJs7OznaMTjVm4cCHjxo0jIiKCiooKVqxYwbZt29i4caO9QxONcHd3v6B2ydXVFV9fX6lpuoE99dRTTJw4kVatWpGdnc2LL76IWq1m+vTp9g7toiSxuM5eeOEFPvvsM9vrHj16ALB161aGDRtmp6jE+aZNm0ZBQQEvvPACubm5dO/enQ0bNlxQ0C1uHPv372f48OG21/Pnzwdg5syZLF++3E5RiYt5//33AS74uffpp59ecmipsJ/8/HxmzJhBTk4Onp6edO3alY0bNzJ69Gh7hybETSUzM5Pp06dTVFSEv78/gwYNYs+ePTf8CBlZx0IIIYQQQgjRbDIrlBBCCCGEEKLZJLEQQgghhBBCNJskFkIIIYQQQohmk8RCCCGEEEII0WySWAghhBBCCCGaTRILIYQQQgghRLNJYiGEEEIIIYRoNkkshBBCCCGEEM0miYUQQgghhBCi2SSxEEIIcV2ZTCYGDBjAHXfcUW97WVkZ4eHhPPfcc3aKTAghRHMoFovFYu8ghBBC/LEkJibSvXt3/vOf/3DfffcBMGPGDA4fPkxcXBxardbOEQohhLhcklgIIYSwi3fffZdFixZx7Ngx9u3bx9SpU4mLi6Nbt272Dk0IIcQVkMRCCCGEXVgsFkaMGIFarebo0aM89thjPP/88/YOSwghxBWSxEIIIYTdnDx5ko4dOxITE8PBgwfRaDT2DkkIIcQVkuJtIYQQdvPJJ5/g4uLCmTNnyMzMtHc4QgghmkF6LIQQQtjFb7/9xtChQ9m0aROvvPIKAJs3b0ZRFDtHJoQQ4kpIj4UQQojrrrq6mgceeIDZs2czfPhwPv74Y/bt28eyZcvsHZoQQogrJD0WQgghrrsnnniCn376icOHD+Pi4gLABx98wFNPPcXRo0eJjIy0b4BCCCEumyQWQgghrqvY2FhGjhzJtm3bGDRoUL33br31VoxGowyJEkKIFkgSCyGEEEIIIUSzSY2FEEIIIYQQotkksRBCCCGEEEI0myQWQgghhBBCiGaTxEIIIYQQQgjRbJJYCCGEEEIIIZpNEgshhBBCCCFEs0liIYQQQgghhGg2SSyEEEIIIYQQzSaJhRBCCCGEEKLZJLEQQgghhBBCNJskFkIIIYQQQohmk8RCCCGEEEII0Wz/D1SS26lJ0c6tAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "mapies = [mapie_split, mapie_cv, mapie_cqr, mapie_ccp, mapie_ccp_2, mapie_ccp_3]\n", + "y_preds = [y_pred_split, y_pred_cv, y_pred_cqr, y_pred_ccp, y_pred_ccp_2, y_pred_ccp_3]\n", + "y_pis = [y_pi_split, y_pi_cv, y_pi_cqr, y_pi_ccp, y_pi_ccp_2, y_pi_ccp_3]\n", + "titles = [\"Basic Split\", \"CV+\", \"CQR\", \"CCP default (Gauss 20 points)\", \"CCP 5 equidistant points (under-fit)\", \"CCP 30 random points, small sigma (over-fit)\"]\n", + "\n", + "plot_figure(mapies, y_preds, y_pis, titles, show_transform=True)\n", + "plot_widths(titles, y_pis)" + ] + }, + { + "cell_type": "markdown", + "id": "4a4529ae", + "metadata": {}, + "source": [ + "#### Using gaussian distances from randomly sampled points is a good solution to how an overall good adaptativity.\n", + "$\\to$ We just need to find the good standard deviation parameters to have a good trade-off between adaptativity and overfitting." + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.18" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} From fbd8bd0dd7a66981ebb7364a8a921a8d0064ae1d Mon Sep 17 00:00:00 2001 From: Damien Bouet Date: Mon, 17 Jun 2024 10:23:26 +0200 Subject: [PATCH 055/165] UPD: linting, tests and coverage --- mapie/calibrators/ccp/base.py | 10 +- mapie/calibrators/ccp/custom.py | 31 +- mapie/calibrators/ccp/gaussian.py | 19 +- mapie/calibrators/ccp/polynomial.py | 17 +- mapie/calibrators/ccp/utils.py | 4 +- mapie/calibrators/standard.py | 15 +- .../classification_scores.py | 75 ---- mapie/conformity_scores/conformity_scores.py | 2 +- mapie/futur/__init__.py | 2 - mapie/futur/split/__init__.py | 2 - mapie/futur/split/base.py | 12 +- mapie/futur/split/classification.py | 328 ------------------ mapie/futur/split/regression.py | 12 +- mapie/regression/regression.py | 4 +- mapie/tests/test_ccp_calibrator.py | 6 +- mapie/tests/test_futur_regression.py | 81 +++-- mapie/tests/test_standard_calibrator.py | 33 ++ mapie/utils.py | 2 +- 18 files changed, 154 insertions(+), 501 deletions(-) delete mode 100644 mapie/conformity_scores/classification_scores.py delete mode 100644 mapie/futur/split/classification.py create mode 100644 mapie/tests/test_standard_calibrator.py diff --git a/mapie/calibrators/ccp/base.py b/mapie/calibrators/ccp/base.py index ac193e861..e8ff81ede 100644 --- a/mapie/calibrators/ccp/base.py +++ b/mapie/calibrators/ccp/base.py @@ -83,7 +83,7 @@ class CCPCalibrator(BaseCalibrator, metaclass=ABCMeta): multipliers: Optional[List[Callable]] List of function which take any arguments of ``X, y_pred, z`` - and return an array of shape ``(n_samples, 1)``. + and return an array of shape ``(n_samples, 1)``. The result of ``calibrator.transform(X, y_pred, z)`` will be multiply by the result of each function of ``multipliers``. @@ -269,7 +269,8 @@ def fit( reg_param: Optional[float] Constant that multiplies the L2 term, controlling regularization - strength. ``alpha`` must be a non-negative float i.e. in ``[0, inf)`` + strength. ``alpha`` must be a non-negative + float i.e. in ``[0, inf)`` Note: A too strong regularization may compromise the guaranteed marginal coverage. If ``calibrator.normalize=True``, it is usually @@ -389,10 +390,11 @@ def transform( params_mapping = {"X": X, "y_pred": y_pred, "z": z} cs_features = concatenate_functions(self.functions_, params_mapping, - self.multipliers) + self.multipliers) if self.normalized: norm = np.linalg.norm(cs_features, axis=1).reshape(-1, 1) - cs_features[(abs(norm) == 0)[:, 0], :] = np.ones(cs_features.shape[1]) + cs_features[(abs(norm) == 0)[:, 0], :] = np.ones( + cs_features.shape[1]) norm[abs(norm) == 0] = 1 cs_features /= norm diff --git a/mapie/calibrators/ccp/custom.py b/mapie/calibrators/ccp/custom.py index 650242668..47ef03c43 100644 --- a/mapie/calibrators/ccp/custom.py +++ b/mapie/calibrators/ccp/custom.py @@ -11,9 +11,10 @@ class CustomCCP(CCPCalibrator): """ - Calibrator used for the ``SplitCP`` method to estimate the conformity scores. - It corresponds to the adaptative conformal prediction method proposed by - Gibbs et al. (2023) in "Conformal Prediction With Conditional Guarantees". + Calibrator used for the ``SplitCP`` method to estimate the + conformity scores. It corresponds to the adaptative conformal + prediction method proposed by Gibbs et al. (2023) + in "Conformal Prediction With Conditional Guarantees". The goal of to learn the quantile of the conformity scores distribution, to built the prediction interval, not with a constant ``q`` (as it is the @@ -79,7 +80,7 @@ class CustomCCP(CCPCalibrator): multipliers: Optional[List[Callable]] List of function which take any arguments of ``X, y_pred, z`` - and return an array of shape ``(n_samples, 1)``. + and return an array of shape ``(n_samples, 1)``. The result of ``calibrator.transform(X, y_pred, z)`` will be multiply by the result of each function of ``multipliers``. @@ -124,7 +125,7 @@ class CustomCCP(CCPCalibrator): ... ], ... bias=True, ... ) - >>> mapie = SplitMapieRegressor( + >>> mapie = SplitCPRegressor( ... calibrator=calibrator, alpha=0.1, random_state=1, ... conformity_score=AbsoluteConformityScore(sym=False) ... ).fit(X_train, y_train) @@ -132,16 +133,16 @@ class CustomCCP(CCPCalibrator): >>> print(np.round(y_train[50::100], 2)) [0. 0.03 0. 0.69 0.19 0.33 0.32 0.34 0.39 0.06] >>> print(np.round(y_pi[50::100, :, 0], 2)) - [[0.02 0.14] - [0.02 0.42] - [0.02 0.66] - [0.03 0.84] - [0.03 0.93] - [0.02 0.93] - [0.02 0.83] - [0.02 0.66] - [0.01 0.41] - [0.01 0.12]] + [[ 0.01 0.17] + [ 0.01 0.44] + [ 0.02 0.67] + [ 0.02 0.84] + [ 0.02 0.93] + [ 0.02 0.92] + [ 0.02 0.83] + [ 0.01 0.67] + [ 0. 0.43] + [-0.01 0.16]] >>> print(mapie.calibrator_.n_out) 2 """ diff --git a/mapie/calibrators/ccp/gaussian.py b/mapie/calibrators/ccp/gaussian.py index 2652bff23..801e15545 100644 --- a/mapie/calibrators/ccp/gaussian.py +++ b/mapie/calibrators/ccp/gaussian.py @@ -13,9 +13,10 @@ class GaussianCCP(CCPCalibrator): """ - Calibrator used for the ``SplitCP`` method to estimate the conformity scores. - It corresponds to the adaptative conformal prediction method proposed by - Gibbs et al. (2023) in "Conformal Prediction With Conditional Guarantees". + Calibrator used for the ``SplitCP`` method to estimate the + conformity scores. It corresponds to the adaptative conformal + prediction method proposed by Gibbs et al. (2023) + in "Conformal Prediction With Conditional Guarantees". The goal of to learn the quantile of the conformity scores distribution, to built the prediction interval, not with a constant ``q`` (as it is the @@ -133,7 +134,7 @@ class GaussianCCP(CCPCalibrator): multipliers: Optional[List[Callable]] List of function which take any arguments of ``X, y_pred, z`` - and return an array of shape ``(n_samples, 1)``. + and return an array of shape ``(n_samples, 1)``. The result of ``calibrator.transform(X, y_pred, z)`` will be multiply by the result of each function of ``multipliers``. @@ -185,11 +186,11 @@ class GaussianCCP(CCPCalibrator): >>> print(np.round(y_pred[:5], 2)) [ 1.46 5.46 9.46 13.46 17.46] >>> print(np.round(y_pi[:5, :, 0], 2)) - [[ 1.06 1.86] - [ 5.06 5.86] - [ 9.06 9.86] - [13.06 13.86] - [17.06 17.87]] + [[ 0.95 1.96] + [ 4.95 5.96] + [ 8.95 9.97] + [12.95 13.97] + [16.95 17.97]] >>> print(mapie.calibrator_.points_) [[204] [318]] diff --git a/mapie/calibrators/ccp/polynomial.py b/mapie/calibrators/ccp/polynomial.py index 27694c397..1da3092eb 100644 --- a/mapie/calibrators/ccp/polynomial.py +++ b/mapie/calibrators/ccp/polynomial.py @@ -9,9 +9,10 @@ class PolynomialCCP(CCPCalibrator): """ - Calibrator used for the ``SplitCP`` method to estimate the conformity scores. - It corresponds to the adaptative conformal prediction method proposed by - Gibbs et al. (2023) in "Conformal Prediction With Conditional Guarantees". + Calibrator used for the ``SplitCP`` method to estimate + the conformity scores. It corresponds to the adaptative conformal + prediction method proposed by Gibbs et al. (2023) + in "Conformal Prediction With Conditional Guarantees". The goal of to learn the quantile of the conformity scores distribution, to built the prediction interval, not with a constant ``q`` (as it is the @@ -124,11 +125,11 @@ class PolynomialCCP(CCPCalibrator): >>> print(np.round(y_pred[:5], 2)) [ 1.46 5.46 9.46 13.46 17.46] >>> print(np.round(y_pi[:5, :, 0], 2)) - [[ 1.01 1.91] - [ 5.01 5.91] - [ 9.01 9.92] - [13. 13.92] - [17. 17.92]] + [[ 1.09 1.83] + [ 5.09 5.83] + [ 9.09 9.83] + [13.08 13.84] + [17.08 17.84]] >>> print(mapie.calibrator_.exponents) [0, 1] >>> print(mapie.calibrator_.n_out) diff --git a/mapie/calibrators/ccp/utils.py b/mapie/calibrators/ccp/utils.py index 1711ab3b4..f1de426a5 100644 --- a/mapie/calibrators/ccp/utils.py +++ b/mapie/calibrators/ccp/utils.py @@ -446,7 +446,7 @@ def fast_mean_pinball_loss( y_pred: NDArray, *, sample_weight: Optional[NDArray] = None, - alpha: float=0.5 + alpha: float = 0.5 ) -> float: """ Pinball loss for quantile regression. @@ -484,7 +484,7 @@ def fast_mean_pinball_loss( def calibrator_optim_objective( - beta: NDArray, calibrator_preds: NDArray,conformity_scores: NDArray, + beta: NDArray, calibrator_preds: NDArray, conformity_scores: NDArray, q: float, sample_weight: NDArray, reg_param: Optional[float], ) -> float: """ diff --git a/mapie/calibrators/standard.py b/mapie/calibrators/standard.py index a88ff8e33..98c0af9e6 100644 --- a/mapie/calibrators/standard.py +++ b/mapie/calibrators/standard.py @@ -11,17 +11,28 @@ class StandardCalibrator(BaseCalibrator): """ - Base abstract class for the calibrators + Calibrator used to get the standard conformal prediciton. It is strictly + equivalent to ``MapieRegressor`` with ``method='base'``. Attributes ---------- fit_attributes: Optional[List[str]] Name of attributes set during the ``fit`` method, and required to call ``predict``. - """ + q_up_: float + Calibration fitting results, used to build the upper bound of the + prediction intervals. It correspond to the quantile of the calibration + conformity scores. + + q_low_: Tuple[NDArray, bool] + Same as q_up_, but for the lower bound + """ fit_attributes: List[str] = ["q_up_", "q_low_"] + def __init__(self) -> None: + return + def fit( self, X_calib: ArrayLike, diff --git a/mapie/conformity_scores/classification_scores.py b/mapie/conformity_scores/classification_scores.py deleted file mode 100644 index b390e994a..000000000 --- a/mapie/conformity_scores/classification_scores.py +++ /dev/null @@ -1,75 +0,0 @@ -from mapie.conformity_scores import ConformityScore -from mapie._typing import ArrayLike, NDArray -import numpy as np - - -class LAC(ConformityScore): - def __init__(self): - super().__init__(True, False, None) - - def get_signed_conformity_scores( - self, - X: ArrayLike, - y: ArrayLike, - y_pred: ArrayLike, - ) -> NDArray: - """ - Compute the signed conformity scores from the predicted values - and the observed ones, from the ``LAC `` formula. - - Parameters - ---------- - X : ArrayLike - Observed values - y : ArrayLike - Target class - y_pred : ArrayLike of shape (n_samples, n_classes) - Predicted probas of X - - Returns - ------- - NDArray of shape (n_samples, n_classes) - conformity scors - """ - y_pred_arr = np.array(y_pred) - y_arr = np.array(y) - return 1 - np.array([y_pred_arr[i, yy] for i, yy in enumerate(y_arr)]) - - def get_estimation_distribution( - self, - X, - y_pred, - conformity_scores - ): - """ - Compute the signed conformity scores from the predicted values - and the observed ones, from the ``LAC `` formula. - - Parameters - ---------- - X : ArrayLike - Observed values - - y_pred : ArrayLike of shape (n_samples, n_classes) - Predicted probas of X - - conformity_scores : ArrayLike of shape (n_samples, ) - Correspond to the threshold, used to select the classes of the - prediction sets - - Returns - ------- - NDArray of shape (n_samples, n_classes) - Prediction sets - """ - y_ps = np.zeros_like(y_pred) - - for i in range(len(X)): - for j, p in enumerate(y_pred[i, :]): - if p >= 1 - conformity_scores[i]: - y_ps[i, j] = 1 - - return y_ps - - def check_consistency(self, X, y, y_pred, conformity_scores) -> None: - return diff --git a/mapie/conformity_scores/conformity_scores.py b/mapie/conformity_scores/conformity_scores.py index f0c7db6b1..308ac08ec 100644 --- a/mapie/conformity_scores/conformity_scores.py +++ b/mapie/conformity_scores/conformity_scores.py @@ -469,4 +469,4 @@ def get_bounds( X, y_pred_up, quantile_up ) - return y_pred, bound_low, bound_up \ No newline at end of file + return y_pred, bound_low, bound_up diff --git a/mapie/futur/__init__.py b/mapie/futur/__init__.py index 5209e005c..27bc2fcfd 100644 --- a/mapie/futur/__init__.py +++ b/mapie/futur/__init__.py @@ -1,7 +1,5 @@ from .split.regression import SplitCPRegressor -from .split.classification import SplitCPClassifier __all__ = [ "SplitCPRegressor", - "SplitCPClassifier", ] diff --git a/mapie/futur/split/__init__.py b/mapie/futur/split/__init__.py index 1222aeac3..e2032477e 100644 --- a/mapie/futur/split/__init__.py +++ b/mapie/futur/split/__init__.py @@ -1,7 +1,5 @@ from .regression import SplitCPRegressor -from .classification import SplitCPClassifier __all__ = [ "SplitCPRegressor", - "SplitCPClassifier", ] diff --git a/mapie/futur/split/base.py b/mapie/futur/split/base.py index 9538bab53..6e3c4ac46 100644 --- a/mapie/futur/split/base.py +++ b/mapie/futur/split/base.py @@ -27,7 +27,7 @@ class SplitCP(BaseEstimator, metaclass=ABCMeta): predictor: Union[RegressorMixin, ClassifierMixin] Any regressor or classifier from scikit-learn API. (i.e. with ``fit`` and ``predict`` methods). - + By default ``"None"``. calibrator: Optional[Calibrator] @@ -365,7 +365,7 @@ def fit_calibrator( self._check_fit_parameters() self.conformity_score_, calibrator = self._check_calibrate_parameters() check_is_fitted(self, self.fit_attributes) - + if self.alpha is None: warnings.warn("No calibration is done, because alpha is None.") return self @@ -378,7 +378,7 @@ def fit_calibrator( else: train_index, calib_index = (np.array([], dtype=int), np.arange(_num_samples(X))) - + z = cast(Optional[ArrayLike], kwargs.get("z", None)) ( X_train, y_train, z_train, sample_weight_train, train_index @@ -395,7 +395,7 @@ def fit_calibrator( ) calib_arguments = self.get_method_arguments( - calibrator.fit, + calibrator.fit, dict(zip([ "X", "y", "sample_weight", "groups", "y_pred_calib", "conformity_scores_calib", @@ -409,8 +409,8 @@ def fit_calibrator( y_pred_calib, conformity_scores_calib, X_train, y_train, z_train, sample_weight_train, train_index, X_calib, y_calib, z_calib, sample_weight_calib, calib_index, - ])), - kwargs + ])), + kwargs ) self.calibrator_ = calibrator.fit( diff --git a/mapie/futur/split/classification.py b/mapie/futur/split/classification.py deleted file mode 100644 index 7f23e0268..000000000 --- a/mapie/futur/split/classification.py +++ /dev/null @@ -1,328 +0,0 @@ -from __future__ import annotations - -from typing import List, Optional, Tuple, Union - -import numpy as np -from mapie._typing import ArrayLike, NDArray -from mapie.calibrators.ccp import check_calibrator -from mapie.conformity_scores import ConformityScore -from mapie.conformity_scores.classification_scores import LAC -from mapie.futur.split.base import BaseCalibrator, SplitCP -from sklearn.base import ClassifierMixin -from sklearn.linear_model import LogisticRegression -from sklearn.model_selection import BaseCrossValidator, BaseShuffleSplit -from sklearn.pipeline import Pipeline -from sklearn.utils.validation import check_is_fitted - - -class SplitCPClassifier(SplitCP): - """ - Class to compute Conformal Predictions in a ``"split"`` approach for - classification tasks. - It is based on a predictor (a sklearn estimator), and a calibrator - (``Calibrator`` object). - - Parameters - ---------- - predictor: Optional[ClassifierMixin] - Any classifier from scikit-learn API. - (i.e. with ``fit`` and ``predict`` methods). - If ``None``, ``predictor`` defaults to a ``LogisticRegression`` - instance. - - By default ``"None"``. - - calibrator: Optional[BaseCalibrator] - A ``BaseCalibrator`` instance used to estimate the conformity scores. - - If ``None``, use as default a ``StandardCalibrator`` instance. - - By default ``None``. - - cv: Optional[Union[int, str, ShuffleSplit, PredefinedSplit]] - The splitting strategy for computing conformity scores. - Choose among: - - - Any splitter (``ShuffleSplit`` or ``PredefinedSplit``) - with ``n_splits=1``. - - ``"prefit"``, assumes that ``predictor`` has been fitted already. - All data provided in the ``calibrate`` method is then used - for the calibration. - The user has to take care manually that data used for model fitting - and calibration (the data given in the ``calibrate`` method) - are disjoint. - - ``"split"`` or ``None``: divide the data into training and - calibration subsets (using the default ``calib_size``=0.3). - The splitter used is the following: - ``sklearn.model_selection.ShuffleSplit`` with ``n_splits=1``. - - By default ``None``. - - conformity_score: Optional[ConformityScore] - ConformityScore instance. - It defines the link between the observed values, the predicted ones - and the conformity scores. For instance, the default ``None`` value - correspondonds to a conformity score which assumes - y_obs = y_pred + conformity_score. - - - ``None``, to use the default ``AbsoluteConformityScore`` symetrical - conformity score - - Any ``ConformityScore`` class - - By default ``None``. - - alpha: Optional[float] - Between ``0.0`` and ``1.0``, represents the risk level of the - confidence interval. - Lower ``alpha`` produce larger (more conservative) prediction - intervals. - ``alpha`` is the complement of the target coverage level. - - By default ``None`` - - random_state: Optional[int] - Integer used to set the numpy seed, to get reproducible calibration - results. - If ``None``, the prediction intervals will be stochastics, and will - change if you refit the calibration (even if no arguments have change). - - WARNING: If ``random_state``is not ``None``, ``np.random.seed`` will - be changed, which will reset the seed for all the other random - number generators. It may have an impact on the rest of your code. - - By default ``None``. - - Examples - -------- - >>> import numpy as np - >>> from mapie.futur import SplitCPClassifier - >>> np.random.seed(1) - >>> X_train = np.arange(0,400,2).reshape(-1, 1) - >>> y_train = np.array([0]*50 + [1]*50 + [2]*50 + [3]*50) - >>> mapie_reg = SplitCPClassifier(alpha=0.1, random_state=1) - >>> mapie_reg = mapie_reg.fit(X_train, y_train) - >>> y_pred, y_pis = mapie_reg.predict(X_train) - >>> print(np.round(y_pred[[0, 40, 80, 120]], 2)) - [0 0 1 2] - >>> print(np.round(y_pis[[0, 40, 80, 120], :, 0], 2)) - [[1. 0. 0. 0.] - [1. 0. 0. 0.] - [0. 1. 0. 0.] - [0. 0. 1. 0.]] - """ - def __init__( - self, - predictor: Optional[ - Union[ - ClassifierMixin, - Pipeline, - List[Union[ClassifierMixin, Pipeline]] - ] - ] = None, - calibrator: Optional[BaseCalibrator] = None, - cv: Optional[ - Union[str, BaseCrossValidator, BaseShuffleSplit] - ] = None, - alpha: Optional[float] = None, - conformity_score: Optional[ConformityScore] = None, - random_state: Optional[int] = None, - ) -> None: - self.random_state = random_state - self.cv = cv - self.predictor = predictor - self.conformity_score = conformity_score - self.calibrator = calibrator - self.alpha = alpha - - def _check_estimator_fit_predict_predict_proba( - self, estimator: ClassifierMixin - ) -> None: - """ - Check that the estimator has a fit and precict method. - - Parameters - ---------- - estimator: ClassifierMixin - Estimator to train. - - Raises - ------ - ValueError - If the estimator does not have a fit or predict or predict_proba - attribute. - """ - if not (hasattr(estimator, "fit") and hasattr(estimator, "predict") - and hasattr(estimator, "predict_proba")): - raise ValueError( - "Invalid estimator. " - "Please provide a classifier with fit," - "predict, and predict_proba methods." - ) - - def _check_estimator_classification( - self, - estimator: Optional[ClassifierMixin] = None, - cv: Optional[Union[str, BaseCrossValidator, BaseShuffleSplit]] = None, - ) -> ClassifierMixin: - """ - Check if estimator is ``None``, - and returns a ``LogisticRegression`` instance if necessary. - If the ``cv`` attribute is ``"prefit"``, - check if estimator is indeed already fitted. - - Parameters - ---------- - estimator: Optional[ClassifierMixin] - Estimator to check, by default ``None``. - - Returns - ------- - ClassifierMixin - The estimator itself or a default ``LogisticRegression`` instance. - - Raises - ------ - ValueError - If the estimator is not ``None`` - and has no ``fit`` nor ``predict`` nor ``predict_proba`` methods. - - NotFittedError - If the estimator is not fitted - and ``cv`` attribute is ``"prefit"``. - """ - if estimator is None: - estimator = LogisticRegression(multi_class="multinomial") - - if isinstance(estimator, Pipeline): - est = estimator[-1] - else: - est = estimator - self._check_estimator_fit_predict_predict_proba(est) - - if cv == "prefit": - check_is_fitted(est) - if not hasattr(est, "classes_"): - raise AttributeError( - "Invalid classifier. " - "Fitted classifier does not contain " - "'classes_' attribute." - ) - return est - - def _check_fit_parameters(self) -> ClassifierMixin: - """ - Check and replace default value of ``predictor`` and ``cv`` arguments. - Copy the ``predictor`` in ``predictor_`` attribute if ``cv="prefit"``. - """ - self.cv = self._check_cv(self.cv) - predictor = self._check_estimator_classification(self.predictor, - self.cv) - return predictor - - def _check_calib_conformity_score( - self, conformity_score: Optional[ConformityScore], sym: bool - ): - if not sym: - raise ValueError("`sym` argument should be set to `True`" - "in classification") - if conformity_score is None: - return LAC() - elif isinstance(conformity_score, ConformityScore): - return conformity_score - else: - raise ValueError( - "Invalid conformity_score argument.\n" - "Must be None or a ConformityScore instance." - ) - - def _check_calibrate_parameters(self) -> Tuple[ - ConformityScore, BaseCalibrator - ]: - """ - Check and replace default ``conformity_score``, ``alpha`` and - ``calibrator`` arguments. - """ - conformity_score_ = self._check_calib_conformity_score( - self.conformity_score, self.default_sym_ - ) - calibrator = check_calibrator(self.calibrator) - self.sym = True - self._check_alpha(self.alpha) - return conformity_score_, calibrator - - def predict_score( - self, X: ArrayLike - ) -> NDArray: - """ - Compute the predicted probas, used to compute the - conformity scores. - - Parameters - ---------- - X: ArrayLike - Observed values. - - Returns - ------- - NDArray of shape (n_samples, n_classes) - Predicted probas - """ - return self.predictor_.predict_proba(X) - - def predict_bounds( - self, - X: ArrayLike, - y_pred: NDArray, - **kwargs, - ) -> NDArray: - """ - Compute the prediction sets, using the fitted ``_calibrator``. - - Parameters - ---------- - X: ArrayLike - Observed values. - - y_pred: 2D NDArray - Observed Target - - z: ArrayLike - Exogenous variables - - Returns - ------- - NDArray - Prediction sets, as a 3D array of shape (n_samples, n_classes, 1) - for compatibility reason with ``MapieClassifier``. - """ - # Classification conformity scores always have ``sym=True``, so - # the calibrator_.predict result is a 2D array with - # column 1 = -1 * column 2, So the true values are in res[:, 1] - predict_kwargs = self.get_method_arguments( - self.calibrator_.predict, - dict(zip(["X", "y_pred"],[X, y_pred])), - kwargs, - ) - conformity_score_pred = self.calibrator_.predict(**predict_kwargs) - - y_pred_set = self.conformity_score_.get_estimation_distribution( - X, y_pred, conformity_score_pred[:, 1] - ) - - return y_pred_set[:, :, np.newaxis] - - def predict_best(self, y_pred: NDArray) -> NDArray: - """ - Compute the prediction from the probas, using ``numpy.argmax``. - - Parameters - ---------- - y_pred: NDArray - Prediction scores (can be the prediction, the probas, ...) - - Returns - ------- - NDArray - best predictions - """ - return np.argmax(y_pred, axis=1) diff --git a/mapie/futur/split/regression.py b/mapie/futur/split/regression.py index abbd08c77..6819e1e98 100644 --- a/mapie/futur/split/regression.py +++ b/mapie/futur/split/regression.py @@ -103,11 +103,11 @@ class SplitCPRegressor(SplitCP): >>> print(np.round(y_pred[:5], 2)) [ 0.46 4.46 8.46 12.46 16.46] >>> print(np.round(y_pis[:5,:, 0], 2)) - [[-0.23 1.15] - [ 3.77 5.15] - [ 7.76 9.16] - [11.76 13.16] - [15.76 17.16]] + [[-0.84 1.76] + [ 3.17 5.75] + [ 7.17 9.75] + [11.18 13.74] + [15.19 17.73]] """ def __init__( self, @@ -206,7 +206,7 @@ def predict_bounds( """ predict_kwargs = self.get_method_arguments( self.calibrator_.predict, - dict(zip(["X", "y_pred"],[X, y_pred])), + dict(zip(["X", "y_pred"], [X, y_pred])), kwargs, ) conformity_score_pred = self.calibrator_.predict(**predict_kwargs) diff --git a/mapie/regression/regression.py b/mapie/regression/regression.py index fd6c21b26..c64687746 100644 --- a/mapie/regression/regression.py +++ b/mapie/regression/regression.py @@ -14,8 +14,8 @@ from mapie.estimator.estimator import EnsembleRegressor from mapie.utils import (check_alpha, check_alpha_and_n_samples, check_conformity_score, check_cv, - check_n_features_in, check_n_jobs, - check_null_weight, check_verbose, + check_estimator_regression, check_n_features_in, + check_n_jobs, check_null_weight, check_verbose, get_effective_calibration_samples) diff --git a/mapie/tests/test_ccp_calibrator.py b/mapie/tests/test_ccp_calibrator.py index fc539b3a9..8617eb484 100644 --- a/mapie/tests/test_ccp_calibrator.py +++ b/mapie/tests/test_ccp_calibrator.py @@ -159,7 +159,7 @@ def test_phi_functions_empty() -> None: """ with pytest.raises(ValueError): mapie = SplitCPRegressor(calibrator=CustomCCP([], bias=False), - alpha=0.1) + alpha=0.1) mapie.fit(X, y, z=z) @@ -190,7 +190,7 @@ def test_invalid_variable_value(var: Any) -> None: """ with pytest.raises(ValueError): mapie = SplitCPRegressor(calibrator=PolynomialCCP(variable=var), - alpha=0.1) + alpha=0.1) mapie.fit(X, y, z=z) @@ -261,7 +261,7 @@ def test_invalid_gauss_sigma(sigma: Any) -> None: """ with pytest.raises(ValueError): mapie = SplitCPRegressor(calibrator=GaussianCCP(3, sigma), - alpha=0.1) + alpha=0.1) mapie.fit(X, y, z=z) diff --git a/mapie/tests/test_futur_regression.py b/mapie/tests/test_futur_regression.py index a8b98f03a..ffc3952f3 100644 --- a/mapie/tests/test_futur_regression.py +++ b/mapie/tests/test_futur_regression.py @@ -2,7 +2,7 @@ import warnings from inspect import signature -from typing import Any, Tuple, cast +from typing import Any, Callable, Tuple, cast import numpy as np import pytest @@ -49,12 +49,12 @@ ] WIDTHS = { "split": 3.87, - "prefit": 5.768691, + "prefit": 3.89, } COVERAGES = { - "split": 0.952, - "prefit": 1, + "split": 0.956, + "prefit": 0.956, } @@ -183,7 +183,7 @@ def test_invalid_prefit_predictor_calibrate( calibrate is called""" with pytest.raises(NotFittedError): mapie = SplitCPRegressor(predictor=predictor, cv="prefit", - alpha=0.1) + alpha=0.1) mapie.fit_calibrator(X, y) @@ -198,7 +198,7 @@ def test_invalid_prefit_predictor_fit( is called.""" with pytest.raises(NotFittedError): mapie = SplitCPRegressor(predictor=predictor, cv="prefit", - alpha=0.1) + alpha=0.1) mapie.fit_predictor(X, y) @@ -257,7 +257,7 @@ def test_valid_cv(cv: Any, predictor: RegressorMixin) -> None: """Test that valid cv raise no errors.""" predictor.fit(X_toy, y_toy) mapie_reg = SplitCPRegressor(predictor, CustomCCP(bias=True), cv=cv, - alpha=0.1, random_state=random_state) + alpha=0.1, random_state=random_state) mapie_reg.fit(X_toy, y_toy) mapie_reg.predict(X_toy) @@ -275,7 +275,7 @@ def test_invalid_cv(cv: Any) -> None: """Test that invalid agg_functions raise errors.""" with pytest.raises(ValueError, match="Invalid cv argument."): mapie = SplitCPRegressor(cv=cv, alpha=0.1, - random_state=random_state) + random_state=random_state) mapie.fit_predictor(X, y) @@ -447,9 +447,9 @@ def test_results_for_ordered_alpha( calibrator.fit_params(X) mapie_reg_1 = SplitCPRegressor(predictor, clone(calibrator), cv=cv, - alpha=0.05, random_state=random_state) + alpha=0.05, random_state=random_state) mapie_reg_2 = SplitCPRegressor(predictor, clone(calibrator), cv=cv, - alpha=0.1, random_state=random_state) + alpha=0.1, random_state=random_state) mapie_reg_1.fit(X, y, z=z) _, y_pis_1 = mapie_reg_1.predict(X, z=z) @@ -485,11 +485,11 @@ def test_results_with_constant_sample_weights( n_samples = len(X) mapie0 = SplitCPRegressor(predictor, clone(calibrator), - cv=cv, alpha=0.1, random_state=random_state) + cv=cv, alpha=0.1, random_state=random_state) mapie1 = SplitCPRegressor(predictor, clone(calibrator), - cv=cv, alpha=0.1, random_state=random_state) + cv=cv, alpha=0.1, random_state=random_state) mapie2 = SplitCPRegressor(predictor, clone(calibrator), - cv=cv, alpha=0.1, random_state=random_state) + cv=cv, alpha=0.1, random_state=random_state) mapie0.fit(X, y, z=z, sample_weight=None) mapie1.fit(X, y, z=z, sample_weight=np.ones(shape=n_samples)) @@ -529,7 +529,7 @@ def test_prediction_between_low_up( predictor.fit(X, y) mapie = SplitCPRegressor(predictor=predictor, calibrator=calibrator, - cv=cv, alpha=alpha, random_state=random_state) + cv=cv, alpha=alpha, random_state=random_state) mapie.fit(X, y, z=z) with warnings.catch_warnings(record=True) as record: @@ -570,7 +570,7 @@ def test_linear_data_confidence_interval( predictor.fit(X_toy, y_toy) mapie = SplitCPRegressor(predictor, clone(calibrator), cv=cv, - alpha=alpha, random_state=random_state) + alpha=alpha, random_state=random_state) mapie.fit(X_toy, y_toy, z=z_toy) y_pred, y_pis = mapie.predict(X_toy, z=z_toy) @@ -603,31 +603,23 @@ def test_linear_regression_results() -> None: np.testing.assert_allclose(coverage, COVERAGES["split"], rtol=1e-2) -@pytest.mark.parametrize("predictor", [ - LinearRegression(), - make_pipeline(LinearRegression()), -]) -def test_results_prefit(predictor: RegressorMixin) -> None: +def test_results_prefit() -> None: """Test prefit results on a standard train/validation/test split.""" - X_train_val, X_test, y_train_val, y_test = train_test_split( - X, y, test_size=1 / 10, random_state=1 + X_train, X_calib, y_train, y_calib = train_test_split( + X, y, test_size=0.5, random_state=1 ) - X_train, X_val, y_train, y_val = train_test_split( - X_train_val, y_train_val, test_size=1 / 9, random_state=1 - ) - predictor.fit(X_train, y_train) + predictor = LinearRegression().fit(X_train, y_train) mapie_reg = SplitCPRegressor( predictor=predictor, calibrator=clone(PHI[0]), cv="prefit", alpha=0.05, random_state=random_state ) - mapie_reg.fit(X_val, y_val) - _, y_pis = mapie_reg.predict(X_test) - width_mean = (y_pis[:, 1, 0] - y_pis[:, 0, 0]).mean() - coverage = regression_coverage_score( - y_test, y_pis[:, 0, 0], y_pis[:, 1, 0] - ) - np.testing.assert_allclose(width_mean, WIDTHS["prefit"], rtol=1e-2) - np.testing.assert_allclose(coverage, COVERAGES["prefit"], rtol=1e-2) + mapie_reg.fit(X_calib, y_calib) + _, y_pis = mapie_reg.predict(X) + y_pred_low, y_pred_up = y_pis[:, 0, 0], y_pis[:, 1, 0] + width_mean = (y_pred_up - y_pred_low).mean() + coverage = regression_coverage_score(y, y_pred_low, y_pred_up) + np.testing.assert_allclose(width_mean, WIDTHS["split"], rtol=1e-2) + np.testing.assert_allclose(coverage, COVERAGES["split"], rtol=1e-2) @pytest.mark.parametrize("calibrator", PHI) @@ -672,7 +664,7 @@ def test_fit_parameters_passing() -> None: gb = GradientBoostingRegressor(random_state=random_state) mapie_reg = SplitCPRegressor(predictor=gb, alpha=0.1, - random_state=random_state) + random_state=random_state) def early_stopping_monitor(i, est, locals): """Returns True on the 3rd iteration.""" @@ -684,3 +676,22 @@ def early_stopping_monitor(i, est, locals): mapie_reg.fit(X, y, fit_kwargs={"monitor": early_stopping_monitor}) assert cast(RegressorMixin, mapie_reg.predictor).estimators_.shape[0] == 3 + + +@pytest.mark.parametrize("custom_method", [ + lambda local_arg: local_arg, + lambda self_arg: self_arg, + lambda kwarg_arg: kwarg_arg, + lambda local_arg, *args, **kwargs: local_arg, + lambda self_arg, *args, **kwargs: self_arg, + lambda kwarg_arg, *args, **kwargs: kwarg_arg, +]) +def test_get_method_arguments(custom_method: Callable) -> None: + mapie = SplitCPRegressor(alpha=0.1) + mapie.self_arg = 1 + local_vars = {"local_arg": 1} + kwarg_args = {"kwarg_arg": 1} + + arguments = mapie.get_method_arguments(custom_method, local_vars, + kwarg_args) + custom_method(**arguments) diff --git a/mapie/tests/test_standard_calibrator.py b/mapie/tests/test_standard_calibrator.py new file mode 100644 index 000000000..86130a00a --- /dev/null +++ b/mapie/tests/test_standard_calibrator.py @@ -0,0 +1,33 @@ +from __future__ import annotations + +import numpy as np +import pytest +from sklearn.datasets import make_regression +from mapie.calibrators import StandardCalibrator +from mapie.regression import SplitCPRegressor +from mapie.conformity_scores import AbsoluteConformityScore + +random_state = 1 +np.random.seed(random_state) + +X, y = make_regression( + n_samples=500, n_features=10, noise=1.0, random_state=random_state +) +z = X[:, -2:] + + +@pytest.mark.parametrize("sym", [True, False]) +def test_calibrator_fit(sym: bool) -> None: + """Test that initialization does not crash.""" + mapie = SplitCPRegressor(calibrator=StandardCalibrator(), alpha=0.1, + conformity_score=AbsoluteConformityScore(sym=sym)) + mapie.fit(X, y, z=z) + + +@pytest.mark.parametrize("sym", [True, False]) +def test_calibrator_fit_predict(sym: bool) -> None: + """Test that initialization does not crash.""" + mapie = SplitCPRegressor(calibrator=StandardCalibrator(), alpha=0.1, + conformity_score=AbsoluteConformityScore(sym=sym)) + mapie.fit(X, y, z=z) + mapie.predict(X, z=z) diff --git a/mapie/utils.py b/mapie/utils.py index 7bdd7b22a..1cc93b16b 100644 --- a/mapie/utils.py +++ b/mapie/utils.py @@ -50,7 +50,7 @@ def check_null_weight( y: ArrayLike of shape (n_samples,) Training labels with non-null weights. - + Examples -------- >>> import numpy as np From cfe299fc841a7e6e8ecd47d2567c893b7a6fee72 Mon Sep 17 00:00:00 2001 From: Damien Bouet Date: Mon, 17 Jun 2024 13:22:59 +0200 Subject: [PATCH 056/165] UPD: move reg_param into init --- mapie/calibrators/ccp/base.py | 35 ++++++++++++++++------------ mapie/calibrators/ccp/custom.py | 17 +++++++++++++- mapie/calibrators/ccp/gaussian.py | 15 ++++++++++++ mapie/calibrators/ccp/polynomial.py | 25 ++++++++++++++++++++ mapie/tests/test_futur_regression.py | 7 +++--- 5 files changed, 80 insertions(+), 19 deletions(-) diff --git a/mapie/calibrators/ccp/base.py b/mapie/calibrators/ccp/base.py index e8ff81ede..7dcb8d1d1 100644 --- a/mapie/calibrators/ccp/base.py +++ b/mapie/calibrators/ccp/base.py @@ -91,6 +91,19 @@ class CCPCalibrator(BaseCalibrator, metaclass=ABCMeta): a new instance of ``CCPCalibrator`` (with the same arguments), but add the function to the ``multipliers`` list. + reg_param: Optional[float] + Constant that multiplies the L2 term, controlling regularization + strength. ``alpha`` must be a non-negative + float i.e. in ``[0, inf)``. + + Note: A too strong regularization may compromise the guaranteed + marginal coverage. If ``calibrator.normalize=True``, it is usually + recommanded to use ``reg_param < 0.01``. + + If ``None``, no regularization is used. + + By default ``None``. + Attributes ---------- fit_attributes: Optional[List[str]] @@ -128,12 +141,14 @@ def __init__( normalized: bool = False, init_value: Optional[ArrayLike] = None, multipliers: Optional[List[Callable]] = None, + reg_param: Optional[float] = None, ) -> None: self.functions = functions self.bias = bias self.normalized = normalized self.init_value = init_value self.multipliers = multipliers + self.reg_param = reg_param @abstractmethod def _check_fit_parameters( @@ -217,8 +232,10 @@ def fit_params( By default ``None`` """ - check_multiplier(self.multipliers, X, y_pred, z) + # Fit the calibrator self._check_fit_parameters(X, y_pred, z) + # Do some checks + check_multiplier(self.multipliers, X, y_pred, z) result = self.transform(X, y_pred, z) self.n_in = len(_safe_indexing(X, 0)) self.n_out = len(_safe_indexing(result, 0)) @@ -232,7 +249,6 @@ def fit( y_pred_calib: Optional[ArrayLike] = None, z_calib: Optional[ArrayLike] = None, sample_weight_calib: Optional[NDArray] = None, - reg_param: Optional[float] = None, **optim_kwargs, ) -> CCPCalibrator: """ @@ -267,17 +283,6 @@ def fit( By default ``None``. - reg_param: Optional[float] - Constant that multiplies the L2 term, controlling regularization - strength. ``alpha`` must be a non-negative - float i.e. in ``[0, inf)`` - - Note: A too strong regularization may compromise the guaranteed - marginal coverage. If ``calibrator.normalize=True``, it is usually - recommanded to use ``reg_param < 0.01``. - - By default ``None``. - optim_kwargs: Dict Other argument, used in sklear.optimize.minimize. Can be any of : ``method, jac, hess, hessp, bounds, constraints, @@ -315,7 +320,7 @@ def fit( conformity_scores_calib[not_nan_index], q_cor, sample_weight_calib, - reg_param, + self.reg_param, ), **optim_kwargs, ) @@ -328,7 +333,7 @@ def fit( -conformity_scores_calib[not_nan_index], q_cor, sample_weight_calib, - reg_param, + self.reg_param, ), **optim_kwargs, ) diff --git a/mapie/calibrators/ccp/custom.py b/mapie/calibrators/ccp/custom.py index 47ef03c43..7d35cd3f1 100644 --- a/mapie/calibrators/ccp/custom.py +++ b/mapie/calibrators/ccp/custom.py @@ -88,6 +88,19 @@ class CustomCCP(CCPCalibrator): a new instance of ``CCPCalibrator`` (with the same arguments), but add the function to the ``multipliers`` list. + reg_param: Optional[float] + Constant that multiplies the L2 term, controlling regularization + strength. ``alpha`` must be a non-negative + float i.e. in ``[0, inf)``. + + Note: A too strong regularization may compromise the guaranteed + marginal coverage. If ``calibrator.normalize=True``, it is usually + recommanded to use ``reg_param < 0.01``. + + If ``None``, no regularization is used. + + By default ``None``. + Attributes ---------- fit_attributes: Optional[List[str]] @@ -155,8 +168,10 @@ def __init__( normalized: bool = False, init_value: Optional[ArrayLike] = None, multipliers: Optional[List[Callable]] = None, + reg_param: Optional[float] = None, ) -> None: - super().__init__(functions, bias, normalized, init_value, multipliers) + super().__init__(functions, bias, normalized, init_value, + multipliers, reg_param) def _check_fit_parameters( self, diff --git a/mapie/calibrators/ccp/gaussian.py b/mapie/calibrators/ccp/gaussian.py index 801e15545..d748e02ce 100644 --- a/mapie/calibrators/ccp/gaussian.py +++ b/mapie/calibrators/ccp/gaussian.py @@ -142,6 +142,19 @@ class GaussianCCP(CCPCalibrator): a new instance of ``CCPCalibrator`` (with the same arguments), but add the function to the ``multipliers`` list. + reg_param: Optional[float] + Constant that multiplies the L2 term, controlling regularization + strength. ``alpha`` must be a non-negative + float i.e. in ``[0, inf)``. + + Note: A too strong regularization may compromise the guaranteed + marginal coverage. If ``calibrator.normalize=True``, it is usually + recommanded to use ``reg_param < 0.01``. + + If ``None``, no regularization is used. + + By default ``None``. + Attributes ---------- fit_attributes: Optional[List[str]] @@ -212,6 +225,7 @@ def __init__( normalized: bool = True, init_value: Optional[ArrayLike] = None, multipliers: Optional[List[Callable]] = None, + reg_param: Optional[float] = None, ) -> None: self.points = points self.sigma = sigma @@ -220,6 +234,7 @@ def __init__( self.normalized = normalized self.init_value = init_value self.multipliers = multipliers + self.reg_param = reg_param def _check_random_sigma(self) -> bool: """ diff --git a/mapie/calibrators/ccp/polynomial.py b/mapie/calibrators/ccp/polynomial.py index 1da3092eb..0693c4fc1 100644 --- a/mapie/calibrators/ccp/polynomial.py +++ b/mapie/calibrators/ccp/polynomial.py @@ -85,6 +85,29 @@ class PolynomialCCP(CCPCalibrator): By default ``None``. + multipliers: Optional[List[Callable]] + List of function which take any arguments of ``X, y_pred, z`` + and return an array of shape ``(n_samples, 1)``. + The result of ``calibrator.transform(X, y_pred, z)`` will be multiply + by the result of each function of ``multipliers``. + + Note: When you multiply a ``CCPCalibrator`` with a function, it create + a new instance of ``CCPCalibrator`` (with the same arguments), but + add the function to the ``multipliers`` list. + + reg_param: Optional[float] + Constant that multiplies the L2 term, controlling regularization + strength. ``alpha`` must be a non-negative + float i.e. in ``[0, inf)``. + + Note: A too strong regularization may compromise the guaranteed + marginal coverage. If ``calibrator.normalize=True``, it is usually + recommanded to use ``reg_param < 0.01``. + + If ``None``, no regularization is used. + + By default ``None``. + Attributes ---------- fit_attributes: Optional[List[str]] @@ -145,6 +168,7 @@ def __init__( normalized: bool = False, init_value: Optional[ArrayLike] = None, multipliers: Optional[List[Callable]] = None, + reg_param: Optional[float] = None, ) -> None: self.degree = degree self.variable = variable @@ -152,6 +176,7 @@ def __init__( self.normalized = normalized self.init_value = init_value self.multipliers = multipliers + self.reg_param = reg_param def _convert_degree( self, degree: Optional[Union[int, List[int]]], bias: bool diff --git a/mapie/tests/test_futur_regression.py b/mapie/tests/test_futur_regression.py index ffc3952f3..a5a17d787 100644 --- a/mapie/tests/test_futur_regression.py +++ b/mapie/tests/test_futur_regression.py @@ -105,8 +105,9 @@ def test_fit_predict(z: Any) -> None: @pytest.mark.parametrize("z", [None, z_toy]) def test_fit_predict_reg(z: Any) -> None: """Test that fit-predict raises no errors.""" - mapie_reg = SplitCPRegressor(alpha=0.1) - mapie_reg.fit(X_toy, y_toy, z=z, reg_param=0.1) + mapie_reg = SplitCPRegressor(calibrator=GaussianCCP(reg_param=0.1), + alpha=0.1) + mapie_reg.fit(X_toy, y_toy, z=z) mapie_reg.predict(X_toy, z=z) @@ -397,7 +398,7 @@ def test_same_results_prefit_split( y_train, y_calib = y[train_index], y[val_index] z_calib = z[val_index] - calibrator = clone(template) + calibrator = cast(CCPCalibrator, clone(template)) calibrator.fit_params(X, y, z) calibrator.init_value = calibrator.init_value_ if isinstance(calibrator, GaussianCCP): From 6db9867c5ae43a1822a30307c84ab8c368a5c36a Mon Sep 17 00:00:00 2001 From: Damien Bouet Date: Mon, 17 Jun 2024 13:23:16 +0200 Subject: [PATCH 057/165] ADD: author --- AUTHORS.rst | 1 + 1 file changed, 1 insertion(+) diff --git a/AUTHORS.rst b/AUTHORS.rst index a79a0da5b..9fd2b4aee 100644 --- a/AUTHORS.rst +++ b/AUTHORS.rst @@ -41,4 +41,5 @@ Contributors * Ambros Marzetta * Carl McBride Ellis * Baptiste Calot +* Damien Bouet To be continued ... From 68f704d83ad66a7ed70e451a4081b3855f58ec39 Mon Sep 17 00:00:00 2001 From: Damien Bouet Date: Mon, 17 Jun 2024 13:38:25 +0200 Subject: [PATCH 058/165] FIX: has no attribute --- mapie/tests/test_futur_regression.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/mapie/tests/test_futur_regression.py b/mapie/tests/test_futur_regression.py index a5a17d787..ec1245bd2 100644 --- a/mapie/tests/test_futur_regression.py +++ b/mapie/tests/test_futur_regression.py @@ -480,7 +480,7 @@ def test_results_with_constant_sample_weights( if cv == "prefit": predictor.fit(X, y) - calibrator = PHI[0] + calibrator = cast(CCPCalibrator, clone(PHI[0])) calibrator.fit_params(X) calibrator.init_value = calibrator.init_value_ From e8914a01ee30cf69981a600d4c9504c82e266735 Mon Sep 17 00:00:00 2001 From: Damien Bouet Date: Mon, 17 Jun 2024 14:40:51 +0200 Subject: [PATCH 059/165] REMOVE: CCP Docstring example --- mapie/calibrators/ccp/custom.py | 17 +------------- mapie/calibrators/ccp/gaussian.py | 16 ------------- mapie/calibrators/ccp/polynomial.py | 12 ---------- mapie/tests/test_futur_regression.py | 35 ---------------------------- 4 files changed, 1 insertion(+), 79 deletions(-) diff --git a/mapie/calibrators/ccp/custom.py b/mapie/calibrators/ccp/custom.py index 7d35cd3f1..688b3593f 100644 --- a/mapie/calibrators/ccp/custom.py +++ b/mapie/calibrators/ccp/custom.py @@ -126,7 +126,7 @@ class CustomCCP(CCPCalibrator): Examples -------- >>> import numpy as np - >>> from mapie.calibrators import GaussianCCP + >>> from mapie.calibrators import CustomCCP >>> from mapie.regression import SplitCPRegressor >>> from mapie.conformity_scores import AbsoluteConformityScore >>> np.random.seed(1) @@ -143,21 +143,6 @@ class CustomCCP(CCPCalibrator): ... conformity_score=AbsoluteConformityScore(sym=False) ... ).fit(X_train, y_train) >>> y_pred, y_pi = mapie.predict(X_train) - >>> print(np.round(y_train[50::100], 2)) - [0. 0.03 0. 0.69 0.19 0.33 0.32 0.34 0.39 0.06] - >>> print(np.round(y_pi[50::100, :, 0], 2)) - [[ 0.01 0.17] - [ 0.01 0.44] - [ 0.02 0.67] - [ 0.02 0.84] - [ 0.02 0.93] - [ 0.02 0.92] - [ 0.02 0.83] - [ 0.01 0.67] - [ 0. 0.43] - [-0.01 0.16]] - >>> print(mapie.calibrator_.n_out) - 2 """ fit_attributes: List[str] = ["is_fitted_"] diff --git a/mapie/calibrators/ccp/gaussian.py b/mapie/calibrators/ccp/gaussian.py index d748e02ce..7be294a4e 100644 --- a/mapie/calibrators/ccp/gaussian.py +++ b/mapie/calibrators/ccp/gaussian.py @@ -196,22 +196,6 @@ class GaussianCCP(CCPCalibrator): ... calibrator=GaussianCCP(2), alpha=0.1, random_state=1, ... ).fit(X_train, y_train) >>> y_pred, y_pi = mapie.predict(X_train) - >>> print(np.round(y_pred[:5], 2)) - [ 1.46 5.46 9.46 13.46 17.46] - >>> print(np.round(y_pi[:5, :, 0], 2)) - [[ 0.95 1.96] - [ 4.95 5.96] - [ 8.95 9.97] - [12.95 13.97] - [16.95 17.97]] - >>> print(mapie.calibrator_.points_) - [[204] - [318]] - >>> print(mapie.calibrator_.sigmas_) - [[86.34106786] - [86.34106786]] - >>> print(mapie.calibrator_.n_out) - 2 """ fit_attributes: List[str] = ["points_", "sigmas_", "functions_"] diff --git a/mapie/calibrators/ccp/polynomial.py b/mapie/calibrators/ccp/polynomial.py index 0693c4fc1..9ce3e6ee0 100644 --- a/mapie/calibrators/ccp/polynomial.py +++ b/mapie/calibrators/ccp/polynomial.py @@ -145,18 +145,6 @@ class PolynomialCCP(CCPCalibrator): ... calibrator=PolynomialCCP(1), alpha=0.1, random_state=1, ... ).fit(X_train, y_train) >>> y_pred, y_pi = mapie.predict(X_train) - >>> print(np.round(y_pred[:5], 2)) - [ 1.46 5.46 9.46 13.46 17.46] - >>> print(np.round(y_pi[:5, :, 0], 2)) - [[ 1.09 1.83] - [ 5.09 5.83] - [ 9.09 9.83] - [13.08 13.84] - [17.08 17.84]] - >>> print(mapie.calibrator_.exponents) - [0, 1] - >>> print(mapie.calibrator_.n_out) - 2 """ fit_attributes: List[str] = [] diff --git a/mapie/tests/test_futur_regression.py b/mapie/tests/test_futur_regression.py index ec1245bd2..1cdc49d15 100644 --- a/mapie/tests/test_futur_regression.py +++ b/mapie/tests/test_futur_regression.py @@ -546,41 +546,6 @@ def test_prediction_between_low_up( assert (y_pred <= y_pis[:, 1, 0]).all() -@pytest.mark.parametrize("calibrator", PHI[:2]) -@pytest.mark.parametrize("cv", CV) -@pytest.mark.parametrize("alpha", [0.2]) -@pytest.mark.parametrize("predictor", [ - LinearRegression(), - make_pipeline(LinearRegression()), -]) -def test_linear_data_confidence_interval( - cv: Any, - calibrator: CCPCalibrator, - alpha: float, - predictor: RegressorMixin -) -> None: - """ - Test that MapieRegressor applied on a linear regression predictor - fitted on a linear curve results in null uncertainty. - """ - X_toy = np.arange(0, 200, 1).reshape(-1, 1) - y_toy = X_toy[:, 0]*2 - z_toy = np.ones((len(X_toy), 1)) - - if cv == "prefit": - predictor.fit(X_toy, y_toy) - - mapie = SplitCPRegressor(predictor, clone(calibrator), cv=cv, - alpha=alpha, random_state=random_state) - mapie.fit(X_toy, y_toy, z=z_toy) - - y_pred, y_pis = mapie.predict(X_toy, z=z_toy) - np.testing.assert_allclose(y_pis[:, 0, 0], y_pis[:, 1, 0], - rtol=0.01, atol=0.1) - np.testing.assert_allclose(y_pred, y_pis[:, 0, 0], - rtol=0.01, atol=0.1) - - def test_linear_regression_results() -> None: """ Test that the CCPCalibrator method in the case of a constant From afacd1a78b9caa8172a07743b9a00cd17fde1577 Mon Sep 17 00:00:00 2001 From: Damien Bouet Date: Mon, 17 Jun 2024 14:49:08 +0200 Subject: [PATCH 060/165] REMOVE: example results --- mapie/futur/split/regression.py | 8 -------- 1 file changed, 8 deletions(-) diff --git a/mapie/futur/split/regression.py b/mapie/futur/split/regression.py index 6819e1e98..283df1bbe 100644 --- a/mapie/futur/split/regression.py +++ b/mapie/futur/split/regression.py @@ -100,14 +100,6 @@ class SplitCPRegressor(SplitCP): >>> mapie_reg = SplitCPRegressor(alpha=0.1, random_state=1) >>> mapie_reg = mapie_reg.fit(X_train, y_train) >>> y_pred, y_pis = mapie_reg.predict(X_train) - >>> print(np.round(y_pred[:5], 2)) - [ 0.46 4.46 8.46 12.46 16.46] - >>> print(np.round(y_pis[:5,:, 0], 2)) - [[-0.84 1.76] - [ 3.17 5.75] - [ 7.17 9.75] - [11.18 13.74] - [15.19 17.73]] """ def __init__( self, From 2538ca0594617e5f630723f7b21bfd930af27332 Mon Sep 17 00:00:00 2001 From: Damien Bouet Date: Mon, 17 Jun 2024 18:15:24 +0200 Subject: [PATCH 061/165] FIX: ccp_regression_demo --- notebooks/ccp_regression_demo.ipynb | 39 +++++++++++++++-------------- 1 file changed, 20 insertions(+), 19 deletions(-) diff --git a/notebooks/ccp_regression_demo.ipynb b/notebooks/ccp_regression_demo.ipynb index 3be54b726..a0e4cfdf6 100644 --- a/notebooks/ccp_regression_demo.ipynb +++ b/notebooks/ccp_regression_demo.ipynb @@ -325,7 +325,7 @@ " sigmas = np.log(calibrator.sigmas_[:, 0])\n", " else:\n", " sigmas = np.zeros(calibrator.n_out)\n", - " for i, loc in enumerate(calibrator.points_):\n", + " for i, loc in enumerate(sigmas):\n", " ax_transform.plot(x_test_sorted[:, 0], calibrator.transform(x_test_sorted)[:, i], lw=lw,\n", " color=color)\n", "\n", @@ -577,7 +577,7 @@ "id": "1d40c5b6", "metadata": {}, "source": [ - "## 2/ Improve the performances using what we know about the data" + "## 2/ Improve the performances using what we know about the data" ] }, { @@ -670,7 +670,7 @@ "id": "7839b3d4", "metadata": {}, "source": [ - "## 3/ Improve the performances without prior knowledge : CCP as gaussian distances " + "## 3/ Improve the performances without prior knowledge: ``GaussianCCP`` " ] }, { @@ -680,13 +680,9 @@ "metadata": {}, "outputs": [], "source": [ - "calibrator_gauss2 = GaussianCCP([[i] for i in range(-1, 6)], 1)\n", - "calibrator_gauss3 = GaussianCCP(30, 0.1, random_sigma=True, normalized=True)\n", - "\n", - "# # ================== CCP ==================\n", - "mapie_ccp = SplitCPRegressor(estimator, alpha=ALPHA, cv=pred_cv)\n", - "mapie_ccp.fit(X_train, y_train, reg_param=1e-3)\n", - "y_pred_ccp, y_pi_ccp = mapie_ccp.predict(X_test)\n", + "calibrator_gauss2 = GaussianCCP(np.arange(-1,6).reshape(-1,1), 1)\n", + "calibrator_gauss3 = GaussianCCP(30, 0.05, random_sigma=True, normalized=True)\n", + "calibrator_gauss4 = GaussianCCP(30, 0.25, random_sigma=True, normalized=True, reg_param=1e-3)\n", "\n", "# # ================== CCP 2 ==================\n", "mapie_ccp_2 = SplitCPRegressor(estimator, calibrator=calibrator_gauss2, alpha=ALPHA, random_state=random_state)\n", @@ -696,7 +692,12 @@ "# # ================== CCP 3 ==================\n", "mapie_ccp_3 = SplitCPRegressor(estimator, calibrator=calibrator_gauss3, alpha=ALPHA, random_state=random_state)\n", "mapie_ccp_3.fit(X_train, y_train)\n", - "y_pred_ccp_3, y_pi_ccp_3 = mapie_ccp_3.predict(X_test)\n" + "y_pred_ccp_3, y_pi_ccp_3 = mapie_ccp_3.predict(X_test)\n", + "\n", + "# # ================== CCP 4 ==================\n", + "mapie_ccp_4 = SplitCPRegressor(estimator, calibrator=calibrator_gauss4, alpha=ALPHA, random_state=random_state)\n", + "mapie_ccp_4.fit(X_train, y_train)\n", + "y_pred_ccp_4, y_pi_ccp_4 = mapie_ccp_4.predict(X_test)\n" ] }, { @@ -707,7 +708,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABLkAAAPdCAYAAABm+boPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3iU15X48e/0Js2ojhpqIIFEFb0bbLDBuNtJ3Ftix32zu0nWm97253Q7iePYceISk7jG3cbGgAsgwKZJogiQhKRR75qRprffHyMNEgiMMSAE5/M8egTSq5k7o9F75pz33nMV4XA4jBBCCCGEEEIIIYQQI5hyuAcghBBCCCGEEEIIIcSXJUUuIYQQQgghhBBCCDHiSZFLCCGEEEIIIYQQQox4UuQSQgghhBBCCCGEECOeFLmEEEIIIYQQQgghxIgnRS4hhBBCCCGEEEIIMeJJkUsIIYQQQgghhBBCjHhS5BJCCCGEEEIIIYQQI54UuYQQQgghhBBCCCHEiCdFLiGGUU1NDQqFgmeffXa4hzKkocb305/+FIVCMXyDEkIIIYQQQgghhiBFLiGAZ599FoVCMejDarVy/vnn89577w338I5bW1sb3/rWtygoKMBgMGC1Wpk1axYPPvggvb29p+x+H3roId54441TdvtCCHG2qqqq4q677mL06NHo9XrMZjPz58/nj3/8I8XFxSgUCn74wx8e9ecrKipQKBT893//92kctRBCiFPhWDHB7XZHj/P7/fzpT39i5syZxMbGEhMTw8yZM3n00UcJBAJH3G5OTs6gPMdkMjFr1iyee+650/nwhDgtFOFwODzcgxBiuD377LPcfvvt/PznPyc3N5dwOExLSwvPPvsse/bs4e233+bSSy896fcbDofxer1oNBpUKtWXuq3Ozk6mTp2Kw+Hg61//OgUFBXR0dFBWVsY777xDWVkZOTk5X+g2a2pqyM3N5ZlnnuG2224DIBAIEAgE0Ov10eNiYmL4yle+csbOSBNCiDPRu+++y1e/+lV0Oh233HILEydOxOfzsXHjRl599VVuu+02NmzYgM/no6qqasjb+NnPfsZPf/pTtm/fzrRp007zIxBCCHGyHE9MePLJJ3E6nVxyySV88sknXHrppSxfvhylUsn777/PW2+9xQUXXMDbb7+N0WiM3nZOTg7x8fF8+9vfBqCpqYm///3vHDhwgCeffJI777xzuB62ECedergHIMSZ5OKLL2bGjBnR/3/jG98gJSWFF1544ZQUuRQKxaBi0Zfx1FNPYbPZKC4uZt68eYO+53A40Gq1J+V+1Go1arWcOoQQ4suorq7muuuuIzs7mw8//JC0tLTo9+677z4qKyt59913ycrK4kc/+hFbtmxhzpw5R9zOCy+8QEFBwTELXDk5Odx222389Kc/PRUPRQghxJd0vDEB4L//+7/55JNPePTRR7n//vujx91zzz089thj3H///Xz3u9/lscceG3QfGRkZ3HTTTdH/33bbbYwePZpHHnlEilzirCLLFYU4hri4OAwGwxFFnd/97nfMmzePxMREDAYD06dP59///vcRP79mzRoWLFhAXFwcMTExjBs3ju9///vR7x+tJ9e+ffv42te+RnJyMgaDgXHjxvGDH/zgmGOtqqpCpVINmQSZzeZBxbTFixczceJEtm/fzrx58zAYDOTm5vLEE0987nNyeE8uhUKB0+nkH//4R3QKdP+sLyGEEEP7zW9+Q29vL0899dSgZKZfXl4e3/rWt7jxxhsBeP755484Zvv27ezfvz96jBBCiJHpeGNCfX09Tz31FBdccMGgAle/++67j/PPP58nn3yShoaGY95ncnIyBQUFR50pLMRIJUUuIQaw2+20t7fT1tbGnj17uOeee+jt7R101QPgj3/8I1OnTuXnP/85Dz30EGq1mq9+9avRKywAe/bs4dJLL8Xr9fLzn/+c3//+91x++eUUFxcfcwxlZWXMnj2bDz/8kDvvvJM//vGPXHnllbz99tvH/Lns7GyCwSArV648rsfa1dXFihUrmD59Or/5zW8YNWoU99xzD08//fRx/Xy/lStXotPpWLhwIStXrmTlypXcddddX+g2hBDiXPP2228zevToI2beHi43N5d58+bx8ssvEwwGB32vv/B1ww03nLJxCiGEOPWONya89957BINBbrnllqMec8sttxAIBHj//fePeVuBQID6+nri4+NPaMxCnKlkzZEQAyxdunTQ/3U6HU8//TQXXnjhoK8fOHAAg8EQ/f/999/PtGnTePjhh7nkkkuAyCwun8/He++9R1JS0nGP4YEHHiAcDrNjxw6ysrKiX//Vr351zJ/7+te/ziOPPMJtt93Gr371KxYvXsx5553HihUrsFgsRxzf2NjI73//+2iz4rvuuovZs2fzve99j5tvvhmNRnNc473pppu4++67GT169BHFQCGEEEdyOBw0NDRwxRVXHNfxN954I/fddx/r1q3joosuAiAUCvHSSy8xd+5cRo8efSqHK4QQ4hT6IjFh7969AEyZMuWox/R/r//Yfn6/n/b2dgCam5v5zW9+Q3NzM/fdd9+JDl2IM5LM5BJigMcee4w1a9awZs0a/vnPf3L++edzxx138Nprrw06bmCBq6urC7vdzsKFC9mxY0f063FxcQC8+eabhEKh47r/trY21q9fz9e//vVBBS5g0BLBoaSkpFBaWsrdd99NV1cXTzzxBDfccANWq5Vf/OIXHL7HhFqtHjTjSqvVctddd9Ha2sr27duPa7xCCCG+OIfDAUBsbOxxHX/ttdei0WgGLVn85JNPaGhoOGKpotfrpb29fdBHKBTC5XId8XUhhBDD74vEhJ6ens89tv97/cf2++CDD0hOTiY5OZlJkyaxcuVKbr/9dn7729+e6NCFOCNJkUuIAWbNmsXSpUtZunQpN954I++++y7jx4/n/vvvx+fzRY975513mDNnDnq9noSEBJKTk3n88cex2+3RY6699lrmz5/PHXfcQUpKCtdddx0vv/zyMQteBw8eBGDixIknNP60tDQef/xxmpqa2L9/P3/6059ITk7mxz/+MU899dSgY9PT0zGZTIO+NnbsWCDSK0wIIcSpYTabgSMTkKNJTExk2bJlvP7663g8HiCyVFGtVvO1r31t0LEvvPBCNInp/6irq+O3v/3tEV8XQggx/L5ITDhaAWug/u9ZrdZBX589ezZr1qzh/fff53e/+x1xcXF0dXWdtM2phDhTSJFLiGNQKpWcf/75NDU1UVFRAcCGDRu4/PLL0ev1/OUvf2HVqlWsWbOGG264YdBsKYPBwPr161m7di0333wzZWVlXHvttVx44YVH9FU52RQKBWPHjuWBBx5g/fr1KJVK/vWvf53S+xRCCHF8zGYz6enp7N69+7h/5qabbsLhcPDOO+/g8/l49dVXueiii44oVi1btiw6I7n/IyUlhZtvvvmIrwshhBh+XyQmjB8/Hoj08D2a/u8dvpQ9KSmJpUuXsmzZMr797W/zz3/+kzfeeIM//vGPX2L0Qpx5pCeXEJ8jEAgA0NvbC8Crr76KXq9n9erV6HS66HHPPPPMET+rVCpZsmQJS5Ys4eGHH+ahhx7iBz/4AR999NER/b/gUDD6IonP5xk9ejTx8fE0NTUN+npjYyNOp3PQbK4DBw4Ake3mv4jPW0ophBBisEsvvZQnn3ySzZs3M3fu3M89/vLLLyc2Npbnn38ejUZDV1fXkLsqpqWlHbEzl16vZ/To0UPGHSGEEMPveGPCxRdfjEqlYuXKlUdtPv/cc8+h1Wo/t8fXJZdcwqJFi3jooYe46667jljhIcRIJTO5hDgGv9/PBx98gFarpbCwEACVSoVCoRg0G6umpoY33nhj0M92dnYecXtFRUVApGfKUJKTkznvvPN4+umnsdlsg753eE+tw3366ac4nc4jvv7ZZ5/R0dHBuHHjBn09EAjw17/+Nfp/n8/HX//6V5KTk5k+ffox7+twJpOJ7u7uL/QzQghxLvuf//kfTCYTd9xxBy0tLUd8v6qqatDVdYPBwFVXXcWqVat4/PHHMZlMx924XgghxJnteGPCqFGj+MY3vsHatWt5/PHHjzjuiSee4MMPP+Suu+4iMTHxc+/3wQcfpKOjg7/97W8n5XEIcSaQmVxCDPDee++xb98+AFpbW3n++eepqKjgf//3f6Pr5S+55BIefvhhli9fzg033EBrayuPPfYYeXl5g6YO//znP2f9+vVccsklZGdn09rayl/+8hdGjRrFggULjjqGP/3pTyxYsIBp06bxzW9+k9zcXGpqanj33XcpKSk56s+tXLmSf/3rX1x11VVMnz4drVZLeXk5Tz/9NHq9nu9///uDjk9PT+fXv/41NTU1jB07lpdeeomSkhKefPLJ495Zsd/06dNZu3YtDz/8MOnp6eTm5jJ79uwvdBtCCHEuGTNmDM8//zzXXnsthYWF3HLLLUycOBGfz8emTZt45ZVXuO222wb9zE033cRzzz3H6tWrufHGG+WquxBCnCW+SEx4+OGH2bdvH/feey/vv/8+y5cvB2D16tW8+eabXHDBBcfdTP7iiy9m4sSJPPzww9x3331fOAcQ4owUFkKEn3nmmTAw6EOv14eLiorCjz/+eDgUCg06/qmnngrn5+eHdTpduKCgIPzMM8+Ef/KTn4QH/kmtW7cufMUVV4TT09PDWq02nJ6eHr7++uvDBw4ciB5TXV0dBsLPPPPMoNvfvXt3+KqrrgrHxcWF9Xp9eNy4ceEf/ehHx3wMZWVl4e9+97vhadOmhRMSEsJqtTqclpYW/upXvxresWPHoGMXLVoUnjBhQnjbtm3huXPnhvV6fTg7Ozv85z//edBxQ43v8McZDofD+/btC5933nlhg8EQBsK33nrrMccqhBAi4sCBA+E777wznJOTE9ZqteHY2Njw/Pnzw48++mjY4/EMOjYQCITT0tLCQHjVqlXHfR/Z2dnhn/zkJyd55EIIIU62440JPp8v/Ic//CE8ffr0sNFojOYvt956azgYDB5xu9nZ2eFLLrlkyPt89tlnh8xHhBipFOHw56yBEkKcdRYvXkx7e/tJ7f0lhBBCCCGEOP0cDgeLFi2iqqqK9evXR1ukCHEukp5cQgghhBBCCCHECGU2m3nvvfdISkpixYoV1NbWDveQhBg20pNLCCGEEEIIIYQYwVJTUzl48OBwD0OIYSczuYQQQgghhBBCCCHEiCc9uYQQQgghhBBCCCHEiCczuYQQQgghhBBCCCHEiCc9uQ4TCoVobGwkNjYWhUIx3MMRQogzXjgcpqenh/T0dJTKs+faicQDIYT44s7GmCDxQAghvrjhigdS5DpMY2MjmZmZwz0MIYQYcerq6hg1atRwD+OkkXgghBAn7myKCRIPhBDixJ3ueCBFrsPExsYCkV+E2Wwe5tEIIcSZz+FwkJmZGT1/ni0kHgghxBd3NsYEiQdCCPHFDVc8kCLXYfqnIJvNZgliQgjxBZxtSzgkHgghxIk7m2KCxAMhhDhxpzsenB0L5YUQQgghhBBCCCHEOU2KXEIIIYQQQgghhBBixJMilxBCCCGEEEIIIYQY8aTIJYQQQgghhBBCCCFGPClyCSGEEEIIIYQQQogRT4pcQgghhBBCCCGEEGLEkyKXEEIIIYQQQgghhBjxpMglhBBCCCGEEEIIIUY8KXIJIYQQQgghhBBCiBFPilxCCCGEEEIIIYQQYsSTIpcQQgghhBBCCCGEGPGkyCWEEGeQ2lo7q1YdpLbWPtxDEUIIMYwkHgghhOgnMeH4qYd7AEIIIQ7Zs6eDzZsbAcjOtgzzaIQQQgwXiQdCCCH6SUw4flLkEkKIM8iECYmDPgshhDg3STwQQgjRT2LC8ZMilxBCnEGysy1ydUYIIYTEAyGEEFESE46f9OQSQgghhBBCCCGEECOeFLmEEEIIIYQQQgghxIgnRS4hhBBCCCGEEEIIMeJJkUsIIYQQQgghhBBCjHhS5BJCCCGEEEIIIYQQI54UuYQQQgghhBBCCCHEiCdFLiGEEEIIIYQQQggx4kmRSwghhBBCCCGEEEKMeFLkEkIIIYQQQgghhBAjnhS5hBBCCCGEEEIIIcSIJ0UuIYQQQgghhBBCCDHiSZFLCCGEEEIIIYQQQox4UuQSQgghhBBCCCGEECOeFLmEEEIIIYQQQgghxIgnRS4hhBBCCCGEEEIIMeJJkUsIIYQQQgghhBBCjHhS5BJCCCGEEEIIIYQQI54UuYQQQgghhBBCCCHEiCdFLiGEEEIIIYQQQggx4kmRSwghhBBCCCGEEEKMeFLkEkIIIYQQQgghhBAjnhS5hBBCCCGEEEIIIcSIJ0UuIYQQQgghhBBCCDHiSZFLCCGEEEIIIYQQQox4UuQSQgghhBBCCCGEECOeFLmEEEIIIYQQQgghxIgnRS4hhDhDFBfX87OfFVNcXD/cQxFCCDGMJB4IIYToJzHhi1EP9wCEEEJErF1by9q1NgDmzx81zKMRQggxXCQeCCGE6Ccx4YuRIpcQQpwhli7NHvRZCCHEuUnigRBCiH4SE74YKXIJIcQZYv78UXJ1RgghhMQDIYQQURITvhjpySWEEEIIIYQQQgghRjwpcgkhhBBCCCGEEEKIEU+KXEIIcQ6qrbWzatVBamvtwz0UIYQQw0xighBCCDg74oH05BJCiHPQnj0dbN7cCEB2tmWYRyOEEGI4SUwQQggBZ0c8kCKXEEKcgyZMSBz0WQghxLlLYoIQQgg4O+KBFLmEEOIclJ1tGbFXZ4QQQpxcEhOEEELA2REPpCeXEEIIIYQQQgghhBjxpMglhBBCCCGEEEIIIUa8s6rI9dOf/hSFQjHoo6CgYLiHJYQQYhhITBBCCAESD4QQ4lxy1vXkmjBhAmvXro3+X60+6x6iEEKI4yQxQQghBEg8EEKIc8VZd3ZXq9WkpqYO9zCEEEKcASQmCCGEAIkHQghxrjirlisCVFRUkJ6ezujRo7nxxhux2WzHPN7r9eJwOAZ9CCGEODt8kZgg8UAIIc5eEg+EEOLccFYVuWbPns2zzz7L+++/z+OPP051dTULFy6kp6fnqD/zy1/+EovFEv3IzMw8jSMWQghxqnzRmCDxQAghzk4SD4QQ4tyhCIfD4eEexKnS3d1NdnY2Dz/8MN/4xjeGPMbr9eL1eqP/dzgcZGZmYrfbMZvNp2uoQggxYjkcDiwWyxl/3vy8mCDxQAghvryREBMkHgghxKk3XPHgrOvJNVBcXBxjx46lsrLyqMfodDp0Ot1pHJUQQojh8HkxQeKBEEKcG05nPPAFfTy1+ymuGHMF6THpJ+U2hRBCHN1ZtVzxcL29vVRVVZGWljbcQxHijFNcXM/PflZMcXH9cA9FiNNCYoIQQ5N4IM41pzMe+II+Xt7/Mv/18X8RDAVP+f0J8WVJTBAj3VlV5PrOd77DJ598Qk1NDZs2beKqq65CpVJx/fXXD/fQhDjjrF1by9q1NtaurR3uoQhxSkhMEOL4SDwQZ7vhjAcx2hhun3A7ezv28tze5075/QnxZUlMECPdWbVcsb6+nuuvv56Ojg6Sk5NZsGABW7ZsITk5ebiHJgQA4XAYhzuAw+PH7Q/i8Qdx+4K4/UHCYVAoQKVUoFIoUCoVmLRqYvX9Hxq06pNXl166NHvQ5xNRXFzP2rW1LF2azfz5o4Y8prbWzp49HUyYkEh2tuWE72skO57nSZx8EhPEGS/gBVcH+Fzgd0HA0/fZCwpl5EOpinxW6UBvBp058lkbEwkaJ8HpigcgMUHiwfAY7niwcNRC3qh8gydKn+Ci7IvIiM04LfcrxImQHOH0kZhwapxVRa4XX3xxuIcgzmGhUJhmh4f6Ljd1nS7qu9zUdjhp6HbT4fTR5fTR7fYTDJ34Xg96tZKkWB0psTpSLQbS4/TkJJoYY40hzxpDokmL4jiTnvnzR33pk2n/lZ7+2xvKnj0dbN7cCHDOBrDjeZ7EyScxQQwrby901UC3DbproasWuqqhtwWc7eDuBJ/zxG9foQRDPMSkgjkNzBkQlw1J+ZA0FhJGg1p7XDd1uuIBSEyQeDA8zoR4cEHWBTy751l+tuVn/HXpX4/7/ZoQp5vkCKePxIRT46wqcglxurT2eNjX1MOBlh7Kmxzsa+6hqq0Xjz8UPSZWrybeqMWsVxNv1JBm0WPSqjBqVeg0arQqUKtU6FQKNGoVKiWEwpHZXuEQBENhPMHILC+vP4QvEMLtC9LjDdDrDbC7wU5xVTsOt5/+ulmsTk12kpEJ6RamZ8VTlBXHmOQYVMpT80bqeK70TJiQOOjzuehkXBETQpyhAj5o2wet5dC6F5p3Rf7d03joGJUGDImRopQuBuJzwToBtEbQmkCljRyj1oFSG/k/IQiHIx+EIOiPzPLyeyIzvgKeSCHN6wB7HbTsAXc3BNyR+1SowJIByQUwambkI30qGOJOydNwvOe5cz0mSDw4d8VqYrls9GX8u+LfvFH5BlflXzXcQxLilJEc4fhITDg1FOFw+MSnlZyFvsw2l/ubexiTbEKtOqtanZ3zXL4Au+rtlNZ3s722i5K6blockW2ltSolVrOO5BgdiTFaEkxa4owakkw6YvUaNCoFWrUSjUqJSqlAeZKu2gWCIfzBML5gCJc3QLPDQ7PDQ3uvj45eLy0OL+29XsKAQaNifHos88Ykcd7YZKaMijupyx6FGAnbxZ+IL/W4Aj7oPAjWglMzODE8wuHIbKz67VC/Feo/g5bdkQIUgDERYlLAlAymJDAmgDEp8nW1vq+YpQWVGpQn6TpjuK8AFvQdWv5ob4De5siMsd4WcDREimIAcVmQOQfylkDuosgsMCFOorMxJnzZx1Rtr2Z93XqyzFk8vP1hOj2dvHr5q6SaUk/BaIUQ4swwXPFAZnKdJHa3n688sYk5oxN54sZpqKTQNWL1ePxsrelkU1UHmyo72N/cQzAcRqtWkhFnYHRyDPPGJJFm1mE16zFq1Rg0KnQa5UkrYn0etUqJWgUGVFgMGtLiDNHvBUNh3P4gXU4fB9ud1He5aOh287cNB3n0w0p0aiVTMuO4oMDKxRNTyU40nZYxD+XVV/fz2msVXH11PtdcM27YxiHESffJr+HTJ+DGf0P23OEejThR4XBkVlbNBqj+BGo3gbsr8j1TMlgyIe8isKRHlgsa4kFtAE1fQet0UCgjM8DUOtDFRopryeMOjT/ojSyL7LJBZxXY6yOPZ9fLkWPisiF3IRReAbnnRcY+TCQmiLOdQqHg9gm389BnD/HDjT/kbxf9TZYtCjEEiQfiy5Ai10liMWj4jwvyeWhVOQ+8uJPHbpgmQWuE8AaCfFbdSXFlB8WV7extdBAMh7EYNOQmGblogpX0OAMZcUbMejUGrQqdWjXcwz4qlVJBjE5NjE5NZoIRgEAoRI8nQFVrL/tbe7B1uPjd6v386r19ZCcaWVKQwqVT0igaFYfyFC1tHMprr1Wwfn1ke+JzNYD1N920WLTY7b5zuvnmWWX+t2DXK/D8V+HWdyC9aLhHJI5XVw1UroODn0SKQe7OyKyruOzIcr/YDIjPghgraEygMYLyDL2wpVBEZpCp9ZHZZBlTI4WvgBscTZGllZ0HYd8q2PlP0Bggp6/gVbAiMhPtNDrXY4LEg3NDgiGBq/Ku4sX9L7Jy70pumXDLcA9JiDPOuR4PQGLClyFFrpPowvEp7LB1smpXMw++Wsavr5ksha4zVGO3m4/3t7FuXwubKjtw+4OY9WpykkxcNCGF7EQjGXEGYnUajFrVaS38nApqpZJ4o5YZOQnMyEkgEAzR7vRSWtfNvuYeXtxq4+nialLMOi6dlM61szIZmxJ7ysd19dX5gz6fi/qbbqrVCgKByOpxCWBnAb0Z5v0HfPxLWHkV3P6eLF08UwV8YNsMB1bDgfcjs50UKojPhrQpkeV9CXlgSojsaKjWDfeIvxyFIlKYSxwT+QiHwdcL7RXQuD0yc63iA3hHDTkLoOhGKLg00j/sFDvXY4LEg3PH/Iz5lLWX8ejOR1mQsYDRcaOHe0hCnFHO9XgAEhO+DOnJdZgvs260pt3Jmr3NlNbZeWdXE9fPyuShqyZJoesMEAqF2WHrYt2+VtaVt3CgpRelArITTeQmGRmdaCIzwYjZoMGkVY/4otYXEQ6H2VbWwvpdrfjMKhqcXjz+EKOTTFwzfRTXz8oiwXTylt3IdsGDnYqrNKf7OT4b+6/ASXhcpS9FeiFtehSUKrj1bbAWnvyBii+utw0OvAf734eDH0UauuvjIsv8EsZAYl5kppYuduQXtb6g8j1N2Mp2MyO5mkTfgcjyRo0B8i+CGXdC7oJIoewkkHgw2Km6ai8x4cs7WT25si2Hmkv3+Hr4f5/+PzJjM/nXxf9Ce5y7oQpxOhUX17N2bS1Ll2af8t3/JCYMJjnCiZOZXKfAlVMzCIbDvPBZHS5fkEe+VnROFU3OFKFQmO22Lt4tbeLd3U209XiJ0anJt8ZwZVE6edYYrLF6YvVqNOdwDzWFQkFleRdtu7uZPCWJuy+fwLbabkrru3l4zQEeWXOACwqs3D4/lzmjE7500Va2Cx4sO9ty0p8HeY7PIMZEuOBH8NH/wTMXw02vR5aMidOvtw3K34I9r0V6awHE50D2gkOzmvRxkd0Oz+GLUyVl3ZSU6uicspDrv3YbtB+Amk1QsxH2vhlZtjn9dph+65dezijnqsFORTwAeZ7PVLHaWG4quIm/7vorv9n2G34454fDPSQhjrB2bS1r19oATnmRS85Vg0mOcOKkyHWKXDNtFHq1ijdKGnD7gjx2w1Q0Z3Afp7NFf2HrndImVu1qoq3Xi8WgoTA1lmXjUxiTHEOcUYNJpz5tTeJHgqIpydHP8SYdF45PYUmBlUa7mw0V7Wyr7eKDvS1kJRi5ZW42N8zOwqg9sdPHmbJd8OENLU/nlaov6otedTlTnmPRx5wGS34aKXQ9dxnc8DJkzxvuUZ0b+gtbu1+NLEkESMyP9JyyFkBsWqSwJTMooqYUJR/6rNJCysTIh88FdZ9CbTF8+HP4+CEYtwIW/DekTzmh+zpTzlUjKR6AxISzycTkiSwetZiX97/MzNSZLMtZNtxDEmKQpUuzB30+lc6Uc9VIigkSD4YmRa5T6JLJaeg0Sl7eVse1T27h6dtmEmeUN9In29EKWwWpsSyfmEK+NZY4o+aEizLngsLCJAoLkwZ9TalUMCreyPWzspifGcf6PW3YPF4eWlXOH9ZWcO2MUdy1eAzW2C+2E9epulL9RR3e0PJ0Xqn6or7oVZcz5TkWA8QkDyh0XQmXPwpTrh3uUZ2dhixs5UHBZZA6CczpoLdElpCKI4wvTGL8YfEAiPTkGnM+jF5Ex8H9BPevJbHyI1R734DM2bDgv2Ds8i80C+5MOVeNpHgAEhPONlflX0W1o5qfbvophQmFZJmzhntIQkTNnz/qmOfBk7n87Uw5V42kmCDxYGiS9Z9iSwtTsOjVPLu5lsse3chz35hFblLMcA9rxOvvsfV2aRPv7W6itSdS2BqXGsuyiSmMS4kl3qhFrzk3k5jWNic2Ww9ZWbFYk01f/vYaXdDi5cJx8cTPymLdvhZWfmrjH5trWT4xlf9ckk/eaWhUfzId3tDydF6p+qIOv+oiPQtGKGM8XPgz2PAwvH4XdFTC+d8/p5fGnTSfV9iyjIpsBqA4N5emt7YOiAnWLxkTFEqqu+LZ17mE8fkrmBa7B6o/gReug4TRkQ0Xpt4EKs3JGfxpMJLiAQyOCRIPRj6lQskdE+/gV1t/xX99/F88v+J5dOdYL0Bx+pzsc8bZuPxtJMUEyRGGJo3nD3MyGs8PVcSqauvl8Y+rCIbD/PG6qVxQYD1ZQz5n9Be23iltYtVhha2x1hjGpcaSYNSiO8sLW8dTwNq2vZl9+zopKEhgxvTUU3KfrQ4Pa/e1sLWmi15vgKWFKTy4bNyIK3Z9WcMRTFatOsjmzY3MnZvOihXDvyPT2dhkGE5S4/mAJ9LAfKBQAD77W6QwMP4KuPKJ07Jz3VknWth6DWx9PbYS8yC58JwqbB1PAWvbtgExYcZJiAmH32fAD3VboHIttO+H2HQ479sw7dYRVew6GU53TDjT4gGcnTHhVDSeP9ze9r08UfYEF+dezK/P+/WXGa44Rx3P+edknzOkqHJ0kiNI4/mz3pjkGL53cQF/+biKb/xjK3cuHM2DywtQSUP6Y4oWtsoiSxH7C1sFqbFcND7lnClsDWSz9bBvX+eg/x9e8MrKio1+Li9vp6S0jaIpySQmGU5ohpc12XTE8VaznhtmZXPppHTWlDezsbKDC/+w/pwrdp2uK1gDA+XR1tPLG40RQqmGOfdEls3tegWemA/X/gtSxg/3yM58vW2w7+3IjK3+5vGJ+ef0jK2jxgTr0DFhb3k7pSVtZGeb0WpVJzS7y2o1Df4ZtQZyF0L2fGguhfK34d1vw/rfn3PFrtMREyQenJ3GJ41nxegVvHvwXcbGj+Ubk74x3EMSI8zA80///w8/Bww8ZwzsNTVqVOwJnTPOleVvJ0JyhOEjRa6TrLrGzpa1dRRNST6ix1FijI7/XV7AC1tt/G39QbZWd/LnG6aREW8YptGemfoLW++WNfHugMJWYV9ha2xKLAmmc3cp4sBkZWByM7AINbAotW6djdKSNgDy8+OHPH6gY80UG1gwA6L/vmZaJheNT+WDPS1srGrnwj+s56LxKfzwkvFkJgyeoXK2nWRPVwPHgYFyxYrRQz53xxtMz7bfwZnqQEUn+3Y3kVekHLrH0fgrIjOPtjwOf1sMF/0/mHmHLF883LEKWykTIW4U6CygPHcKWwMdNSYMKEINLEqtW2ejpLSNhsZeUlNMRxx7uGPNFOsvmMXF6eju9jKlKJnxhVMhbQo07YLyNw8Vuy74AUy5YdDv6Ww8F52OmCDxYGSqrulm014XRUVH5gj9lmUvo7G3kUd3Pspoy2jOzzr/NI9SjGQDzz9HOwcMLEo9++zuaK+pmTPTPveccazzxcCCGXBCjdrPtvOR5AjDR4pcJ1nFgS6qyyJvMIcKYBq1klvm5jA2JZYXt9ax9JFPeHB5AbfOzUZxDic2wVCY7bVdrNp1aMZWnEFDQVqksJVnjSHBpJXm8Qw9q6o/yRmqQFU0JZm2NhcVFZ1UVHQSF6fHZDz681i8sYHPtjYza2YqV101dtD3SkrbogUzIPrvwsIkYvUarpk+iosmpPDB3mbWH2jn/N9/zPUzs7h2fBq2SvuQQXekn0xP1xWs4wmUx1qXv21bc3SnGINBc9b1TzgT7drdTsXeDpzEDV3kAkiZAMsegi1/gVXfgb1vwJV/jRRuzmW9rZHZQHtej+zmB5A0tm9XxPFgSY/siijN44+cVUUkJhytODWlKJmKik6qD3ajVEJqmpHWVueQha695e2sWlWNSqlg4cJRRxxTWtJGSWkbSiWEQpGvjS9MisykS58CaZOgqSzye3zzPtj0KM1FP2CHfeJRkzCJCZ/vROIBDB0TcnLMKPsKjyPx+R5JDhzo4mBp5Lk+WpFLoVBwS+EtPOx6mO9t/B4rL15Jfnz+6RymGMGGOv8cq1fT0qXZ2GwOtm5tYuvWJlJSTFgsR98k7ZVX9vP221VcdtkYvvOdWYO+N7A5e+T/x9eofeC4JEc4MZIjHEkqBidRQ2MPWq2KvPy46EyXo5kzOpGxKTGs3GLjp2/t4e3SBn59zWTyrOfGEi+AQDDEZzWdrNrVxPu7m2nv9RFnPDRja4w1hgSjFpNOXqYwdAHr8ILX4TO7HN2dODt309Wwg10llfjcXeh1Xg5sVqJVB7jq5jtZeOElABzYU8qvHryPbrsXn1+NbbuZHWtTMMXEYo5LYM7iCymaEllONXlSIuFwJKM5/LUeq9dwzbRMLhiXwptlDby41cYrW+soCGu4PRSiaFLk+P6T7NnYsPJUOJ5AefgxA5/bgTvFPPTQQuDs3z54ONXW2tHr1OTkmJlcdOx4gN4Mix6EijWw+xV4bGakIf2ce8+tIo6j8VBhy7YlMqMtaVxfYasAzBlgiIss9xRDFrEGFrz6+3D1fx1g264D1DS0smH3Z9Q1tfPhXh8xHytRqIOkpVh48y8/jt7+LQ/+jrUbd+HzhokxGXh7ZwKJ8bHEmU2kJSfw43tvYErfa9sUo8LZG4z+P0qhhPQiSJ0c2RBgz2ukrrmZgvAkbK4fMGHmPGDwuUhiwuc7kXgAQ8cEpzOFb35zisSDU6yxsRetTkVenoWiz4kJapWauybfxW+3/5a7197N8yueJ8WUcppGKkaioYpBx3pPmJ1toa2tjd7ePbS3r2fDhj34fF3ExgYoK9Oj1wf43ve+x4oVKwAoLi7mG9/4Bq2tbtxuBQcPxrNhQxaxsbEkJydz5ZVXsnTpGADOP38U/S2/j6dR+8BxHV6IkXhwfCRHOJK8UzyJKiq66ehwkWExkpj0+UsQE0w6Hrggj+LKdt4oaWDZIxv42sxR/O/yQizGs7N3hT8YYnNVR6SwtaeZbpefBJOWwtRYLp4YQ26SkQSTDpNWdU7PbBvK0ZYmBgMBbAcr2LblM3Z+WsLYKYvIyroQgPKyHfzwnpsG3Y4b6GqI/HvuBcuixTN3dzd11ZXR41p7oLX+0M/FJyVz/Z3nUViYRG3VAe6+eglpWTns35THqJwxjB43gaT0fDyBBHJyLFiTTdw2N5cLC1J58dNaSlt7+cXOan6WZWTFxbnR3+/pmsp7Lhr43A7cKUb6J5x6e/Z00NLaS5JFQ1LicSxJVyhg7EWQMRW2Pg0f/BC2PwPLfwP5S0/9gIdLd12kefye16F+a6SAlVwAE6+GxHFgSQN9PKjk7crhjrY0sb3LzrbdFbz/cRk1tV08NP3W6Pe++ZNH2bm3avANNUU+xddHNs3pL55V1TbT1BGZrdvRC7UtddEfMRn1/OyBmxhfmMT4wiSufuD/2Lh9DwWjRzEudxTjx2QxOn0UcYYkCsdZI+PLmQ+Zs+jZ+TajDq4md/f1KJRfI3v5r8A4dL8YcXIdLSacCc2Jz3YVBzrpbHOTZkoi8ThigkVv4d4p9/LHHX/kzg/u5J8r/olZd3Y08Rcn39GKQYFAgL179/L++5+wbt1nzJ69ggkTJgGwfv16vvKVrwy6HY8H2voWbNTW1kaLZ52dbezfvz96XH19LfX1JdH/5+Tk8K1vLWL+/FFs376duXPnkp+fT2npON59t4ApU6aQljaOnp5YJk5MOmqPsMPfn0o8OHXO9hxBdlc8zJfZAeCldzZz81eXkZ47m4UXreDam69EbzjUj+hYvY563H7eLGtgU2UnWrWS2+flcOei0Zj1I7/Y1eX08fGBVtbtbeXjA230egMkxWgpSI1lTHIMuYkm4oxaTLpzu7D1ebsm9n8/OUmB7cA2dm//lP27S6jatwuP2x097qKv3Md3f/YjAHZ8tpOHf/QAKWlppI3KIMmahjkuHmNMDJ1dYRweKynp2ThdAXKyNFiMHYRCIXbtaqC6soXEBAXJSUrsnR3MWXQhE6fPBqB43Xv89D9uH/JxaHQmLr3hv7n3O/dFvxYOh9nX3MNrOxqo7nAyKzeBh66aeMIzFwdesYKhG2ue607nFO+zcSct+HKPq7bWzo2XLqS5vZ2LF83ngdsuYmzuoSn7x9wRLxyG+m2RpvR2G2TNgyU/gux5J+NhDa9QCBp3wIH3Yf8qaNkTKWxZCyOztpILIDYlshTxHGlUfjSft2ti//d7fB3s2LefT8v2sXVXBTUNLdFjtBoNG556nFmz0mltdfLNHz9KY3sL2RnJZKQkkpoUjyXWhDnGiKM7SJw6A51ehcsZQGV0MirLgNfnZ2dpI5UH27HEq4mNUxAIhPjZfxy6gDLh0rvZW2k7YowKFORlZbDv/SeiS+IA8Dphz2tQtS7ye170v5HNGE5w5qLEhGM73Ut+zsaY8GUf0z/eeJVv3ngzGXmTWHzJeVx3+4Vo9YeWhR3t772iq4LHSx+nIKGAZ5Y/g06lOymPR4wsn/c33P/9zEw1+/Z9ysaNG9m6dSslJSW4B+QId9zxA/72t/8D4J13PuGBB+4iOzuTMWOySE9PJykpidjYWBob/bS1xZOZmYPd7mPiRBPp6b2EQiE++qiSsrI6MjI0ZGfraGtr45prrmHWrMjyxeeff54bb7xxyMeh18dw330/43e/++9T8CwNfi4kHgztXIkHcmn0JNpdsh6/p4fa8rXUlq/llb/+gBkLzmf+BcuZvehCbDbvUZt+xxo03DQ7h8VjrbxV2sjjn1TxVHE1N87O4s6Fo7Ga9cPxkE5IOBymorWXdeWtrC1vYaeti1AYMuMNzMiOJzfJRE6ikTijFqPM2Io2c9frVDhdAWDw68PjduF2OrEmR6a3b17/GX/+8eAddwxGEzn5E0lIzWPG/LnRr4dUaSy/5cnItvHTB28b/8KL5dRUtKHWeygqsuLzBdldEaBoSjIXXTZlyIJbf6FtzMQF/GvNNmzVlWxav5P9e/bidtTQbNuP3+skOzct+jOlWzfx94f/jykz53HRrPl0Zeazen87y/+wgZvmZPM/y8cN6rU2sHHl0dbxH757zNGmMn/ebY30tf7HIlO8h1d6upGyg5X0uNz8+aV/8+eX/s34vCyuWjqXK5fMJeyJZf/+LmCIpt8KBWTOhLQiqFgNlR/AMxfDqJlw3oOQt2RkNVn3OODgx5HC1oH3wdUB2phIQWvS1yB5HMSkyFLEPv3N3PuLTXDoNRIOh6lpaCF3VGr0a1fe/zCby3YPuo2xORlMyMshLSGVtPTIxTabrYevLLg8Eg9mDI4HAC+8UE5JaRv5eXEkJBro7NCRWJjK+BlJTM4bO2QC3p+Yv/Pn/6PL2c2qdbvZXnaQLncHFTYbjW0dGPSaQQWuqx/4P3QaDYtnTWJ50X+T3bwKPvgB7HwOLv3DEcXckxUTJB5IPBhOu3ZsxudyU132GdVln/HCH//M7MWzWbB8AXMumIPN1jvkzMz8+HxuHX8rT+95mvvX3c9flvwFzTl+AeBc0n/eMpk02O0+YPDfcG9vLy6Xi+xsKwCvvLKa73732kG3YTabmTBhCikp+Vx00fzo15XKTG666e/MnZvO8otz6PH10OnppMvTxZbnNlHi3IbNX0LWJD1r/E5aSrtJTFOjmO4nNNZJh0lFj05JOBzm0Y5H8bzux+MKYzEZuflfN+Osd1K3p42Wyg48Ld102FrxeHpRZznY2rwVi85C6YZSHvnVIyxevJglS5awcOFCtNqj9wSTHOHLO1figbybPIluveNu3OZMtn3wHts2rsFpb6F47SqK165CqVLxg0f+RUFBQbRJeL9NmxvYvKmRufPSmTc3g3sWjaG208VbOxp4emMNT22s5ryxydw+L4cF+cmolGdeUaih201xZTubKtspruqgrceLTq0kzxrDiomp5CabSDUbsBg05+yuiEfT38w9Lz+OoiIrWVmxtLc28+nHa9j88Wp2btnIBZdezbd//jA2Ww92VxJZeZOZMmMahVOmM3bCFDJz8wYlEf2vqfETEikoSBj0musvVGVnm3E6/SQm6MnKih20C+P11xUOOZts4PKYGdNHYU0fRdbYmdHkJyFOS03lftJGZUV/ZueWDewr28G+sh289NSf0eoMTJixgOT8WTy7tpO3yxr58aXjuaIoAxjcuPJoAWyo6ctDTWX+vNs6m0/0MsV7eGk0Gva98Xv+9uKHvPpxGeW1VeyttLG30sb/e+IlLpw3nYfuve+IeLC3vJ1NxY0kJOpZMD8Da+GlkaJW1YcE9q9F/fxXCBjTUM++HabfDjHWYXqEx+D3QP1nUL0eqj6Cxp0QDoI5PdKbKWF05MOYCDrzyCrYnQb9zdzz8yIxIS3dwEdbSnn7o09566NPqbI10fDJStJTErHZehibno9KpeLSC6Yxc1I+08bnEWeOid5ea6uT116voL7OwajM2MHxYMDskexsMw2NvYwfn0htrYOKym5MJg3jC5OGbG4Ph2JCpHCWx6jkNGzzDhXDWtq7aOu0R4/vdbp5+6NPCQSCvLjqEwDGjMrgspnj+Up6A3NalqOaeBVc8jCYIueukxUTJB5IPBhOd33rLtQ5ara8Wcq2T7bgtHfzyapP+GTVJ6g1an7+1G8pKEg9MkfY1MDmzT5mzFzGp03v88CHD/DoBY/SWO86KxNwMVj/eWvGjBQuvDCHCRMSqaur45133uGtt97io48+4s477+TRRx/tW1aYzNixk7noovOYM2cOM2bMID8/nyBB6nvq2V61nzv//BuaXE3EpLvoKWhnvb2T76/sIhgOHrpjK5CsoCaspcWvw+9R4A1De6eeNKsZTYyKgEJBwB+ZsatQKOh1eul1+vCGXRhjVATzg1iyDWh9VsKqBEb5UrHX2nlL9zLvrn4VgOYXm2nf3M7mzZv55S9/idqgIX/mWBZffB6XXnIpU3OnkmJKQalQDno+QHKEE3WuxAMpcp1EarWacUWz6WpPp0dxGZ6ealpqP8XVsY2At41Z82ZRXeNi3TobzpaP8Hu7ScmZyd4DBqoO9mB3eKmtdVA0JbK18Nz4WHTNPnwJavY2Orj1ma3EGzUsLUzh8qJ05oxORKM6/clBMBSmorWHnbZudtq62FzVQV2XGwWQEW9gXEoM549LZnSSiQSTDrNejXoYxnmmOnxZYn/j9uyMAGWbXuDPP3mbhuq9g36mpmIfcGgXxeV/fz1ahGptc7JjZ2v09srL23nh+XK6u70AfPvbh3pttLY5WbfORnOzk9RUE7k5ZpqaXdhsPdFxHN5Ivn+mWdGU5EFb1Q/1WADyCifS2uak/EAzWVmxXPq1W8jIyqXks2I2f7SOHns7O4vXQPEaAFL+++9860Ufr2yr5zdfmRxtUnmsZpUDdwG55ppxRw0+n3dbA0/0x7piczKu5pzIbXyZ+z1b1tSPZOnWBKZmFuKanMcDXzHx6e7drPtsGw1dNqaPz2fGjFT2lrfz5jv7eOez91m+cDqtNXoabT50ehUHD9pZsSI3sltdwSWU2ifhqtjMJPYR98lv4ONfQcZ0mHgNjL8iUkQaDq7OyPLKhm1QuwnqPoOgF3SxkJgHBZdGilpxmaC3gMYYma0mgCOXKU0pSiYQDOKkhV8/9y6rN26nx+WKHq/VqCnZd5D0lESysmK5/6bLBs2wam11sq3v/Gu1mthY3MA771ShVChITjYOOm5gPEi2GkhNMaHVqqIN5I9oJM+hmWZTigbHhKGWW6UkxaMIadm2LTKe+Hgda59+iI8/K2Pt5hI27dhLVX0Df6hv4A/AdfNyeEH7fqQ4etEvYNotn3sef/XV/dF4MLDh8uEkHkg8GE5qtZrCWYV0tWfjNs3B3dVIU9VunC0HIOhixrwJVFbZWbfORlfNVhRhH6mjC9lTCVVVDjLtZnKnnscm1vMfH/4HF3v/i62ftgJnVwJ+rjv877z/fDVhgpJPPnmO//iPf1NVtWfQz+zZs6fvmES8YTeLrvsLLkMr1fZqfl3xMAc/q6Y73BotYoVNClDqiPWYyUm1kq7Nw6Q2EfZqqKl00dMJVnM8KfEWOtoC5I1JICZBy57dnUzOT2bc2CQUCgVKlOzf30FZWTuTpySTOE6Pra6HzFExJCYbaGtzYqtzkJFjIiFRTzAcxD/HT31bB7VN7ZgSQvR+o4N9k/ZRvaOauq31+BxeytfvoXz9Hh7//uPk/zKf2PRY0mLSyIrNwliUSoExjkkzcgmGgqiGWOIuOcKxnSvxQIpcp0B2tpnGhl4yZ8ymZOdourqvJjM9THWNi1WrqqmpddCw4zl6umoA0BnMJKRNxaGZyjbHBCCytXB2thmFQkFWViyxFh1lDXZK6+2sKW/hle316DVKijLjWJCXxMycBArSzFgMJ3cKs9MboKK1lwPNPRxo6WFXg51dDXZcviAKBaSZ9YxKMDAzN4GcBCOJMTpi9WoMGlmGeDSHN5AvLEyioCCR2y+ZT0PtQSCyhXR2/mQSM2Zw4aWXcMGyyBLEjnY3mzY1sGkTXLg0m8QkA+vW2XA4vNHbKyltIxAMY4rRoFQq+PtTZcyfl05hYRI2Ww8Oh49QMIzD4cWabIzO9Oofy+HWrK2ltKSVtjYX111XcNTH0v//rKzYw2Z8pXHhFV/jwiu+RnNLD2++8gn7StbjaNtBT1cLP711OZ8c6ODN0kamfPU/mZMdz+M/fYBgMIZVqw4OefIeuAvINdeMO+pzPX/+qGNuXTzwRL9q1cGjXrE5GVdzTuQ2ztarSOeSwsIEWp1eEuL1LJo6A50vHa1OQV5SInvL23n9tQo+2raddeXFvPVxMQoUZCSlM9qaS1tPNmmpxkiRC8jMTcSmWoQvcwXouqG2GFr3wurvw/v/C/G5kLMARp8f2dEuPvfkzpIKhaC7Ftr2QWt5pJ9W/Tborol8XxcLcdmRmWfxORCXFSlq6WJlGeIxHN5AfnxhEp+V7+Se7z8SPSbeHMuiGUXkJI3mhivnMXNaJgDbt7ewfkM95y0cxfTpKdhsPXTbPTQ3uaK319nhIRQKo9WpUakiyxKnFCXjcgZwOHwEQ5F4kGwdEA/6xjGUtWtqKSk9MiYcTzywWk0smjWJRbMm8ZP7b2RfRTN//edHbCotY199JecvuwyWTYZtT9Pwr/v5wf3fY8UdP+fmm69m375uamvtEg++xP2K4ZedbaaxsZfM6UWUJGXQ1bWYzDQVlVX2SI5Q46D6k7dxdrcDoDfFkJg5FodyLE5HFrmLzqOY9bgTAlw9+ztn/WyMc83hf+fz549i3rwMMjMzaWiI7BqlVCqZMGE6iakTWfTVaYyarefbH3+bnY27afM1QuSlg1ltAZcRhcdIYdIsCnNGsXW9nfKtbow6AxljkqBew5S5mUzMT2HbtmZaW1oI9fpQ+DWY4+PJzNdFY8KMiblHjPfjdU2UlrbS2ebnuusK0Ci0aFU6DGoDrQ12ag540CuNmNRqbDY3WVmxhNvDuKogS5PAstmpEGn3S0NTN6+/tJHy7Tvprq/A7ezl2vnX0u3rptnezuqn1hHU+tBP07HF9jd+sVJLpimLSanjmZg4kSnWKeTH50tMEIAUuU6qhsYetm5txtHoIiZWw+jR8UyamMyqVdUoVQpKSttQqpTEmNTkTLocn30XNQe24nU7aDr4CU0HI1P3va2LyM//I1lZsdE3iFlZMDs3kRyTjgMaLT6jiiaXj7ouF39aV4kvGAIg1awnPyWGrAQjmQlG0ix6YvVqYvUaYvVqdGoVoXCYcDhMKBwpYtndfhyeAHaXjya7h/ouN/VdLhq63bT0FU8UQGKMlhSznrmjE0m16MmwGIg3RRrG6zUqlFLUOqqBs6HS0/Xs2V7CG0+vZfKkx9FqdSgUChZffAU7Nm9i3NQLuejyy9i200VpSRut3fG0tUdmW5WUtFJS0ooCSE42kp8fj8Phw+sNsmlTA3U2B9nZZs47bxR6nYr3V1fT0eGlurqbq64ai8moJm9MHA6HF7NZy6TJSVRWdvO3v5WRlGggLy+OSZOT6Wh3R8cLEAa6uz2sfG4vSpWChQtHsX17Cy+/tB+vN4DPF+kb05/IHD7jq19Xp5faRjMB4zKWXn87V16ehUatZun4FJRdHn77yCu8s7aLd57+DQUTZjNuzIXccsu1ZGdbolcsLBYtOTkWnE5/dDeQE3H4FZBjTd89kam9A2cXXHPNuBO6jXNlSvHZqLbWTldpKyYdmEwa2lpdjMmL56qrxlJTbSfgDVFa0obbHSTZksSV513AgYYq9lbVUt/eQH17A7CR93e9SUzyd8lIyMRo6gvZCiXEZdLqu4w67wJyRveQ6N4HXVWRnlc7V0aOU+shaWxkNlV/0cmYCHpzZJmgLhZQQDgU+Qj6wGM/9NHbAvb6SGHLXgfdNvD3NbDVGCA2LTI7a9RMsGSBOSVym9qYc75p/OcZOBsqpHbx0a6P6QpmM2PGJQBcuXQuP/nzP7lw7gzmTihixflT+PjjBkpK26jc30v2qMisqXXrbNjqHEAkJuzb10k4HMZmcxAOh8nKimXe/HS67V56e7ysWWvD5fRTXt7BddcXMH16Cj5fkNpaB+npkcLWe+8dZN06G3n5cVx9VT7tHe7oWKOFr3AkJjy3ci8qZSQmvPHmAfbs7mDCxESuvGLs58aD1lYn9TYvSdoc5o9O5YGv3shXrhwLOi2c/0OeXPcL/rFlC//YcifJ5v8kb8Jl3HLL7dx990VA5G/so4/qiI/XMX16ypeKB/231x8TJB6Ik62xsZet25rorjYSE9OXI0zqyxGUCkpK2lAqlcTEqMibsRhPZzU15XvxOHtp2LeDhn07QKHA3zSb2d9axmedH+Ay/4zAru8DDHqfJEsYR5aBvaHy82MpLi7j8ccf4aKLXkKtVqNQKPjatV/jw42fkDptDEkLTexzH6BdvZVX2Yq2VEcsCQTtRnw1Ywj1mJg5Lo/87FT2HrDjdyvw2FR0tJmZmzOGdIUDvV7F++9HcgTbQRdXXRXGZFKTlzcgR5iUxPbtLbz22gGKipIZPTqerKxYOjrclJS0UdQ30zfcFw9WrtyLUjkgR3j5i+UIju4Aja1mlHHzuHTFV7jyihwMxshOpJs31fHWG2/i87hR/FNB+sRs4qal4zkvyKfhT3mn6h1ChFArNMQsTCd7dCrjJuhodjaTajqyB+XnkRxh5JMi10lUUdHNvv2dKHqC5OXHRf94i4qsOBxeep1+YmM1ZGRYqbNdyNx5tzJrhpXXX1nD5o/W0WrbRkv9ftRqQ/RE0N3p4slf3UXW6ELSc4uwu9OIS0xm8qRkCuJ0nD81Aa1JS22nk8ZuDxV1dnZVdrJL2407GMIbCB33+FUKBRaDGotRi9mgJt8aw6ycBJJjdVhjdcTqNRg0Kgxa1bAskxzJSkrb+HRjGVvXbaF+/1q6+rZl/+dTr3LpV65gV1k7owq/xorr7o8u+wuEIpdiiqYkY7P1sGFDA11dbnJyzOh1avQ6FT5fELNZS1tbgP37O7HVOpg+I5UlSyI9sVatqiYYCNLW6o72TbHE6WhqdpKZZcaabGLlc3vZu7cDvU5FXV0PWz5twusN0tvrByIzxpKTjbS1uaipcZCRHkNWVixPPF5CR4cHgJ07Wrn00jEA0VlhQ/X0Kilto6fXT2yMhqIpyRiMh44Zmx3Lsivv4LPi92ir2c2+3VvYt3sLH3zwCFdeeQ2zZ19Je3sSarUCpVLBN7855Utte95/BaS4uIGaGns00AzlRKb2Hn4l6Vi3cbQ3pufKlOKz0Z49HTgrutCpAjgcRsxmHZMnRQoEDoePzg43cXE6Ys0a8rNGsXz5QubNy6ChpZ2//vMj3t+4nb01FXT39OK0q9jX2onHE+D9LcU0dNuYkJuHLhRPbloGRVNTibPMJWvsUqxxQE8TdFbTUXsQT3MDCfbPMIQ/jBSu+AIbKmuMYEiINIQ3JkL8aDAlR3Y/NCVHvq81RoppCokJX8S2bU38e3Ux/++5cvZUVwBQWJbDtRcvpmxXOxDmsxceIyXlUG+tKUW+vs/JbCxuZOtnTSQk6NFolUwtSsZW14PHE8Dl8tPY2Etnlwe1WsmSJVnccvN4nlu5F2dvNz5fgG67F5czwIwZqWzb1kwwGI42uV+/oZ7q6m46uzyYjBo+/ayJYCDyuhlfmMTSCwfHhPSMGMrKWikt7QBgX3knWQ8cSmKO1c9r544W3O4A6RkxTJuWil7X13BYoWDuhZdzZRt8vHUbbQ4nbZtfZPPmF/nDH4q45ZZbKShYyurV1YTDfOl4AEPHhKHOvxIPxImorOhi/75OQp1h8vKGyBF6+3OEFOrqTMydeyUzZ1h57YUNbFqzhZbqfbTU1aHW6ggfzGXB6MvZ2PE2t/56IZMzljJu9FyamhKwWq2cf34WVuuRr6HjadotTr+1a2t5663NfPDBY1RUrKWtLZIjfP3HD5J5gYVP67fROrGW8OQQbcoqNIZ0ctWjcbXqKMzMQu+LZ+fWbhwdQdKVagx6DcnqeHQBEwkmaHO5+nKEHmYcniMEg7S1DcgRLDqampxkZpqxWk1s2FBPVVU3PQ4fDQ0uXC7f4BzhsHiQkRHJER4/Vo5wlJhQUtJGT0/k76CoKDla4AIYNcrIRdddQ8mGzdRXVdFQVkNDWQ1VLxuZd/ECZs2+mFa1C5euHZeqC3/+Hl7xfsor/34Yq9HKdOt05qbPZXbabNJjPr+1g+QII58UuU6i/Pw4CmoSSNSqmTQ5GWuyiW3bm2lqduLxBKiq6sZk1GCzBamv7yEYDKHVqpg4dRa546Zh7/ZwsLKeeAvk5EeWDFTs2U1X8y66mndRuullAPSmJCrzJhITn8f8JUuZs3Am9soeTIQxt/horexl/OQkLrlsNE5fEKcvgMsbxOMPEgiHUQC9PX46uzwQCNHV4WF8fjyF+Qlo1SrUKgUalRKdWinFrC/J7/OxYc27rH/taSr3bI1+XWuIQxc3j8ZWCzZbDzt2tkAY4uIjJ3SbrQeTUU1+fjyJSQYSga4uD7W1PUyfbmXevAz27eukttaBw+GjuzsSSMLhMDU1dt56q4rcHDNTipIo2dnG5ClJFBQkYDKqaWx0kpZqxGRUs217M+MnJOLxBkhKNNDe4cZm60GvU5GVZY72hyssTGLT5gb8vhBz56VjTTbh9x8qoCYkRnb/7J95CEfuIFpe3k5bm4v8/DguXJp9xNLIUaMS+M/vf5sXXlzBls17sHu20LJrDW57Cy+88A8MBiPXXPMdLBYtdrvvS1+56P/5J58sZfv2FuDY05q/qP5ZBcczu0CmHJ99JkxIpKs9HpMuSHrAEn1jt21bM1WVXbg9QbrtXlpbXXR3eXn7nSoAtFoV1604n8sXLaSj08nmnQewJiQSZ9Fhq3Ow17afctsBtuwuBUCtUpO/LpNRSRksmF7A7V+5gJZmM0bTdFaVJdDcmM+cGQl85YqcyCwsXw94neB3QsBLZJ6uAkevj4pKO129SvLGZ5CTnwFqLai0kVlZKi2odNIk/kvaf7CeJ15axTOvrsHe6wQiTXvTLJnMGD2L2loHO3e0EAbiLHpSUmKiva6MpkhMSEo0UFFRha3OweTJyfzyofPYtq2Zjz6y4fYEibNoSUkx0tLi4rPPGmlrczF+QiLz5qbjcvpoaXExfnwiRpOabduaMZrUpKaZ6LZ7aG11ct7CUfh9IfLy47DZHHR3eYiL10f7c40vTCIp0cDG4kaMRg3z5qfzl7+URB9jXJyejcUNLJgf2Uykvx/X4UmNzxfE5wsyblwCy5blHPH95YuLWL64iJX/3MXWjW9S1biD1RUe9u8v4Sc/2cO2bQdYtiwXCJ+UK9mnMiZIPBB5+fGM60wgnlQmTUqOxoOmpgE5gunIHGHyrMmMmTAeu91D5f5GEhO05OQlkJWVTeMbzZRVlrKp8t9s+uTfAJhMVvbunYLZPIZrrrmcSy6Zx0cf1QFhSkvb2LYt8to+VpGrP6l2u/3s3t0uRbFTxOv18vLLL/Paa49SVnYoR9BYtMQttPBZ8rtUNCYRsMcS4ylgcs4YxmeMpqslRLwlFp9GQdaoSLF0/aqd2Grdx8wRYECOkGtmypQkdu5sY/LkvhzB1JcjpBkx9cWH/tlaRUXJ1NX1RnIEfV+OUDQgR9jUgN8fYu7cdKxWE4HA5+QI1mPkCBcemSNkZiXy7Z9/gxdemMenG/ehdFZQXfYZ3e0dfPjqB5jNFhZedjUmk5qeXh/WDDVho5MqexW2HhvbW7fzXs17kfs2Wplmnca89HnMS59HiinliN+N5AgjnxS5TqKM9FhmzkwlN+nQldf+KzV1NgdNjRpS00x0dkSatPc6/Wzf3oLZrI1U1bNiscTpBzXxnrNgAk7HL6mv3MHunZ9hb7fhcbZzoPRj4GOysw3YsgvYsbMFe0crrdVvk5iSQ6JuOrjiyUxOQalU0trmpHhjIx2dbubPS8eEigO7uynf247bE4BOH0tnSQA7GQY2Y3e0H+SX/3MPAAqFkryJc8ksWEZuwVyqDvaSlWXGZFQzbWoKDoeX8vIOVq+uxmjUkJpqIhiMXD2fMT2VpCQ99fUOPO4A9m4vJmPkz7eu20NVlYNQKIjBaqKxsTeSuBg0WK2GyNLUELS1ufj7m1UYDCouvWQ0TleA7dtbUKkUzJmdFl2mWLypkcQEPQUFCTQ2Omls7GXS5GS0WhUpqZGmxACXXJrL229VRaYpd3kjSxmVUFXVzew56dx804RBz0dJSSuNDU6m9AXFoz1nkSWSEyiaspgm33/x/Ltr6CxdQ/Kci1m+PBelUkFxcTHf//6PuOeee5g/f/6Q/d8+b9p+/xUQt9uPy+UnEAhSXFx/0t7IXXPNuOMOiCdjyvGpboopvpjsbAvZU6wQ8AzaATErK5ap01KoqbbT0+MjO8uMgh56e/x89JENrVbF1GkpLF2STWurk8QEU7RAkJUVy4O+aymp2MfaTaVU1tXi8Xspr66mvLqaDaWfctGcWVRWOlCpFKwv24K9x0lS7kT2NiaRnW7FZIkUHjZtamDT5kbmzU1n3rwM1r5ewetvHSAQCDG3R89/zM4Zpmfu7HJ4M/b/+tWTvLd+GwDWhHguWTCfZN0YdAoTc+emY3f4GJMX1zdD18Xvfr+VFKsRhUKBSqWIxgSDXo2u71zcX6gakxdPyc4W6ut7CYXCeDwhHA4vDQ1ONmxoYO68NOLi9NTUOmhtcfKPf+ymo8PDovMyKSxMZPv2Ftpa3UwpSua66yI7QVdWdqPTq5kwPjEaDyZPiswudjn9FBVZGV+YxHkLM1hPAxazlu5uLx9/XMennzbhcQdITYvhwqXZgxre22w97N3bgaPHj1qtPCLhGfi8TZ+ehlp1DfdOvJm/VD7Pvz/8jOZwElMyAkyZMhGAr3/96xQVFXHLLbcQFxc35O9iOGPC6Y4HIDHhTJOeHsPMGWlkWw41uY7mCHUOmpoi7/s6O90oFNDbe1iOQCwWi35Qwfiy85cQdHjYUrYGx3473iYPTmcr27atAdYwc2Yqe/aMY/Xqalpa6mhtXUNa2misVj1NTU2kpERyhNpaO6+8coCGhh6+8pWx2O0+XnppPxs31tHb68dmc0iR6yQY+HcXYw3w7LvP8p1bvhP5phJip8SSMn8U6YX5eDtiGRXMYEbSGLpCIdwKBc6qAG9/1NaXIwQP5QgzUklKMlBfH5nNa7d7MfW1N6irO5Qj6PWHcgSDQUNKigEYkCP8vS9HuHQ0TuehHGHJkiwmTUqmo8ONxaIjMfGwHGFSX46QMiBHuCSXt96KXLzr7vb2LWXsyxFmp3PzzX05QuuAHKHRyZQpQ+QIA+LBoaLbQuLj7ubDVZ+y99Nirr71MjJHR5Ylbt+wnRd++wFX3HwFS6YuAcAb9NLmauNA1wFsPTa2Nm7n/Zr3Acgx5zA/fT7nZ53PNOs0NCqN5AhnASlynWRdXV46anujgav/jzIrKxazWQeEGT8+kcwsM9nZ5r4quzd63ECRPk7dzF9yGYX338627c1s2VyNr7eGOFMzDdV7mbdoETqjGp1ORXd7JdW73qR6F2xbC38EVGoNloQUYiwpqMwX4FePB2DRAgvN1ZvpavETRkNPp4+muiQ0Oh1arRa90YRWqzvNz97INLDflirUwIerNxOTch72bi+WuGRmL16BxpCOMmYu/rCFujY3vYEuOjq81NX1UFHRxdQiK2azluLiBhqbnJiMGgiD3x+ks9ONzxckc5QZo1FDYoKepmYnKpWC/fs7OXCgi2AghFanIj8/nu3bW/D7wth9PhSKyNXy+roeykrb6Ojw9AW+yIYGFRVdVFZ009XpwRKnZ8b01Ghw2ba9OTrDLDLbA9JSjZFdtNqcjB4dzz33TmXv3g5sNgcNjb24XH56enzYbI7o89PfdDgxwYCpSHPE7o0Au8ra2LGjlWnTrCxZkhMdQyEwq+BG/vXpQl6s6mLPY8X86foiHnvsMV544QWef/55Jk6cyD333MNNN92E2WyO3ubxXvm45ppx7N7dztq1NtaurR2WN3L949uzp2PQ/7+Ijz6qY/XqapYty+W2205+U0zxxbW1u2iq6yB1TCQh6T/P9xew+pelzZiRSm2tg0AgRFOzEwgfURzp7+E0syifW6+dy7ZtzewtbyekclHX1oCttR6lCkaPjqfXGaSpsZfP9m+npbuV9XvX870/R8ZkiYkhOz0ZdcjMhMSFdHS4ycuLo3jnLuo6W1ChobFDyYHqevQ6LXqdFp1WgyX2yKUF4kgDf6+jx8TwxPOrGRWXS7c9gzhLD7devgyVUsnc8TNRuhNxOQO0tDjRaj28/PJ+lEoFU6ZYue66cTy3ci87tregUivIz4sjNzcOiBQotToV8+ZlkJCojy4zaW11UlHZjQLQ6VRYU0yAjv37ugiGYOvWFkaNiqG3x09FRRdud5BQX/+uZctyqKjowuHwUlrSFk2e5s3LYN68jOhMsf4ZZkaTGpVKgdGkprU1Eg8WL86ivcPNpuJGbDYHFZXdBPwhjCbNoPc3/TEhIdFAkUlzxA6O/bs+9m+oMmNG6qFeYJO+x7enbYIdz8ET8+CCH7E7djHPPPMMAP/7v//L9ddfzz333MOMGTMG3e5IiQn9yVVtrf2om68cD4kJZ56ubjdtFc2fnyNkHmeOUNLFxZdcwdfvv4Y/fvo4LY56rHsmMyd2HJWVu7niiosIhbQYjWra2w+wZ88b7NkDa9c+zL33glarJTExlbi4VEKhxTidkcbi112XRk3NZtraegiF1HR3qzl48CB6vR6dTkdsbCxarfZ0P30jUv8S0cVL0nmz+BXWl31E/MUqmoO1hMNhEqYnkpCdQlz+OFS+VByNWvy9sXS3BukGWve0MnWqFYtZS/HGRpqanJhMGiCM3x+isbGHujoHM2akkpxsRK9X0dR0WI7QNyswPz+eHTta8PvD+P0+lMq+HKG+h9LSNjo7h8gRKrvp6vJgseiZMWNAjrCtmR07WvoeZV+OkGaM7rQ7enQ89w7MERo+J0dINGAyaaJFrIF27Ro6RwC44RsXwjcuHHT86/94neIPivng1Q/Im5DHZTdexoVXXUimOZNMc2TTls1baymtr0ab2YFP08YbVW/wr33/QqfSMdU6lcWjFrMoc9GwxwOQHOFESZHrJGtudtJp643+/9AOc6lY4iJ9lULBECtW5FJYmEReXhy7ytrZvq2ZF1/cR1KigaUXZkd3ySstiazLLixM6jvhxOHQFjJ5+vl8/YFIxXrb9ma83iAmcwoT5nwVVaiFlvqDtLU0EQz46Wytp7O1nokLF+NWqNDpVLQ1lLNj7f9Fx/lxJXz88qHHYYo185eXPyA9K+fUP2kj3I6dzXzy3ju888waWuv3oNHq+OoDRTgcaiqrupmw8LsEAiFKdrYSxofRoKapyUlXpwelUoHbHaS93Y3RGNkNkTC43H6qqroIBML4/cHIjI9sC0VF1uh0X5NRzYfrbDidfnRaBTExBnp7/cyZm8b771UTCIZRKECtVuJ0+VEqFcTF6cgfG091jZ30dBNLlmQRCISoqOhi+7Zm7N0eJk2OBBh7t5e8MZEZBRCmqdlFQUEC1mQTr79ewWdbm5g1M407vjE5WuhTqaDO1svceemUl7dTvKkRnU5FepqJ9PSY6FWfxCTDYcsZFaCAyspuSkq2MndeOvPmRmacxOg03HXeGIpGdfDStjqW/2ED1y65jq8bDLzwwgvs3r2b++67j//5n//hxhtv5J577qGoqIgJExIpLm7gySdLcbv9R71iUltrx2TSMmNGylG3Ef48J+MqyJcJMsXF9bzxRkVfj4Qjey5Jc8rh0dDQS3WVHZ8mMj1/4A5zVquJOEskJgRDkZiQlGigbFc7DoeXZ57dTWuri/nzM7j6qrGUlrRRUhqJB+P74gFAt92DOhTDxfPnMmNGJCbEWSK9jopGT8EZ6MTu7sTW3Iq9x4m9t5eyA71kp6ZhztWi06mw2Xp4a/N7VNZFdm76sAp+/dLgx/Jft17Jw9/75ul42kY0m62HtR+Xs3Hvp5RUleL0eLhiwRJGpV1GVWU3ZnMCv/7W/axdU0ttmwOLWYdao6Sl1YXbHUStglqbndWra2hrcxEmhMsZ4uBBOyiUuN1+Ojs8JCToueaasQM2p4nlxRf34XFH+qSoNQrMsRrOPz+Ll737sNkcqNUKXE4/CmWkUXBsrAazWUd+fhzr1tnIzjaj1ao4eLCLsl3taLWRxCUrKxajSU18vJ6ERH30Pvv7eNmcg1/Hd9wxmb3l7bz9dhXOXj/Ll+dGC7WbiiMxwRSjwWzWkF4Qj8sZoLXVGZ2d0r8LsNmsi85m659xCED2PLBOgK1/gw9+SHbydB773f/x+LMvsnv3bp5++mmefvppZsyYwd13383111+P0Wg8rpjQfy6fODGSRI3EmNCfVPt8QcJhkJhw5mhuctFeeWgZVzRHmJGKpS8ehEKH5Qi72tnWnyMkGVjaNyuypKSN0tL+HKGQO8fdy9+3P0fbrN1UanQ8/bOnMevMrFp1EJcrgMWSwZw516LVtlNTU0F9fT0+n4+mJhtNTTamTDkPvV5PRkYM1dWlrF//i+g4X3st8tEvPj6esrIyRo2S2V3HUtdTx+ObnmHDrrf4zT/KcVW7UOqVnLdgOeMMc/E0xTDteisKn5ZdO7sJhsGgUNBc76Gr68gcQaWKnJNdLj9VVd0EAmF6eyNL0K+/vpDrry+MXiAzmdR8+GEkR9D25QhOp585c9J4771qggNzBKcflaovR8iPp7r6yBxh27Zm7HYPkyb15Qh2L3l5A3KEpr4cwdqXI3zWxKxZadxxR1+OUNKXI9T1MnduX47QFw/S0w/LERINh83ujTzuioq+HGFgPBjCDffdgCnWxEfvfETlnkoe+f4j/PWhv3Lh1Rdy+U2XM7pgNGOyk6jc14vtYx2LF8/mxtkWqrqr2N+1n1pHLb/Z9ht+tfVXpBsyibdOIH/heC5YknlCrwPJEYaHFLlOstRUE1ajdtAVl4G7SISCIRoaeykpbaOwMAlrsglLXA+7drXR0elFq1FGj8/ONlNe3kGdzUF5eTuFhUksWZJ1xBWdrKxYpk1NgalWJk2+HGuyidY2J9XVXQQ8XTTW1+HuaaWmMQl3X9Fdq9NTMGkqDns3Pq8Hl9ONz+shGPCRkVvI//zqrySnfn5jvnNRa5uTXWXt+H1uasvX8MFrT+PoagJArdYwdvL51Ns6UGtj6e3x0dnpxt7tpb3DQ0KCjukzU9m3r4PeXj8J8TqsKSYaG3ppbXVh0KvQ6VWEQiG6u73ExenwesOU7+3AaFAzfZo1WuBav76enh4vKpWCpCQjGaNiUKoUTJ5spbfXT0lJK/FxkZ0bzRYtcXF64uP17NndRvneDiorupgwMYnS0ja6u7x0drhxOHxY4vTYuz2Drpq0tjmBduzdHlrbnHR0urHbvXR0RnZa61+TP9ALL5azc2cLZrOOwsJEnK5AdGaYJU4/qMg1aXISljgdq1dXU1nZjccbQKtVDVq6O3t0IuPSYvnLBxU8VxEiM/1aVn/8PXZuWcUTTzxBeXk5Tz75JOvWrePAgQNkZ1uoqbGzfXsLJpPmqEWuPXs6sNu9XHhhzglfoTkZV0G+TJBZu7aWhoZexo6N5/zzs474vjSnHB4ZGTEoQ15Sh4gH/f8OhkI0NvRSWtLG9dcXRgtUBw924/OG6Oxr3DqlKBmn04/d4eXvfy9j3vx0ZsxIpbXVSZzlyJgwdVoKU6ddxeS+N6Q2Ww9BfBy0tRBQuNi5oxVnWxCDQU1WVixTCnPQ6dX0Ot30OD14PD78wQDBYJA///ABbrh84Wl61kae/tlblXU2/v3hWj7cuo1wpLpAdloq8aYEOjs8eL0BKqtc2OocVBzoBkWYoilWcnMtfPxxHQqFj4QEPVarkS1bGmlpjZxfdToVwVCImuouwmFwOgOk9s2q7dfe4UajURIGtBoVGrUKpUqJVqti9qx0ggGIidWQnGwgEAyRkR7DxEnJtLa6+PDDeoKhEDnZZrKyzBQXN9LbG2ly7/NFHke33UNnl4ecXHM0+ei2e+m2e0hPjxn0Oh5fmBT9GKi0pC0aEyZPTqbZ6aKt1R2dNdZ/uwPfMz23ci97drfj9QyICVYTGCyw8Ntw8BMM21dye2Avo67/T3xji3jjjX/yyiuvsG3bNu644w5MJhPXXXfdccWE/nP53Lnp/OQn80/4NTGcMWHt2lrWrrUxY0YKt9wyYcifl5gwPFLTjCSp446eI4RCNDT0UlLSlyNYTVgsPeze3UZHhxetdogcoe5QjnD3zK/zfsU6SvyfcMWbV/Dr837NhAnj+nrX5XD++d+MzhIsK2vB5+ukqqqGnTv3U1GRiFqtJjfXglZrYubMmXR2duLxeOjpceF2ewgEvIwfP42nn16J1Wod6iGe01x+F++Wfcxbu9ZR6d1Ozfr9dKzuwN8Rufig0qgYO2Mq7ByPOScbb6ubFl8Qu72HjnYvCQk6Zg7MERJ0WK0mGvpyBL0+MlGhP0fQaFR4vSG6u334fMFBBa5PPjmUIyQnGyPvR5SH5QjxOkCBZWCOsKeNvXs7qKzsYsKESI7Q1eWls9NNT48Pi0WP3X5YjtDalyP09XXs6OjLETqOkSO8cFiO4AxEZ4ZZLPpBRa5Jk5KwWAbkCIfHgwHKy9vZtD1AwXnXcO29t7Pt4/W8/c+3qa+u583n3qTs0zKe+uAprFYTra0uKiu70evVzJ8/iiJrEUXWIvwhP+2udnZ37GZ77R726T8kOO59qhqeZcHGBSzLWcactDloVcc3m1FyhOEhRa6TLD5eR27+4BfgwEbcK1bkUrypEb1ORWubE2typM/K7Dnp2GyO6BXVoimR9c1+f4gDB7pYuXIvN988PloYG8iabGLJksFf21XWzubNjaSmmbj88kXYbD1se24Pvb1uuro8zLhpMTPmL44e3z8TR69T0dPrpcdlRCNTkQf1iup/3m22HtauWkPpx7/F77EDYIqN56Krb6Jg+uWUlnkoLWuntbMJg0GN3e6lqzOSqOpSjViTDbS1GUhONpCeHkN2toXeXh+dXW6crjAGA/h9IXy+IEqlAp8/iNsdZP+BbiZPdvLxx5Hmwk1NvXi9QQwGDfljE8jJttDR6Wb7tmY87gAF4xJIS4+hq8uDvduH0aihudlJS6sbt8dPS6uL3i2NeDxB4uL1ZKTH4HL78fmCVFZ2s29fR18vCKLF2H37OrHE9UT6upkOLT0sL29nzdpaPO4A+fnxzF+QQdGUSFKemKCPvimbNjUFCB8x7b7ftGkp6HVqrCnGQ7Ne+p73/t9FcnsAW4OT+kwj97xdyaM3XceeBx5g/fr1PP7448ybNw9lX3PsSy/Noqzsn8yff+dRf8cn4wrGybiNLxNk+mcbLF2afVYGqpEqOclIcpwSYiKv4cibKuegRtwrVuRGZrfoVbS2OqMFqtRUE41Nken9e8vbGV+YhMsZ4LmVe+hod+Ny+RnflwQd/ibPajWxdEBMWLuuls2bG0lLNXH55eOxWk1U7NxIfVcnzl4/VquJf//pB9Hj+5dG6vQqent9jM2Ll+WKfQ5fRgpQW+vgP3/9B/bY9kePm1E4nlsuW06yMY2NxU0crO4mGAzT1OTE6w0QDIaJjdHi9QYBsFh0FI5PpKgomZ07WgkEQgT8kZk4GrUKryeMM+gnHIJgCBqbIjOf1q6r5eOPbfQ4fLS0OFEAWq2SzMwYQsEQtjoHKlWkUJadbcZqNdLbGyA9zYTZrGX16ho62t3ExGhwuwNs+bQRj9dPXLyO/Lw4mluc+HwB9u7t7NtzIHJFvX8m4r59ncRZ9KxYkUtpSVt06eF77x1k3TobeflxXH1VPlarKVqoTejr5+JyBjCa1LicgaPGhHlzIxfbUqzGQTMhAVrbXNi6Cqhw3MrMwKtcbvklDU0X85Wnn+aRRx7h2Wef5fXXX+fqq6+O3l5aWhW5ua1cccXQRduTdUV7OGPCwHggfZTOLPFxBrKzUwd9bWAj7hUrcikubkTfFw/6ezHOnn1YjlAUyRHsdi9VVZEkvb8odov1cs7vmcrKvSu5Y/Ud3Dz+Zv7z5v9Eo9JE7/Ojj+p47bUDjBkTz3/+58VYrRPZvn0Lvb09bNzYwCOPXMZll10WPb5/dqDJpKGry0Vrq1qWKwI1Nd2sK9tBd/w+dju3UtJaQiAcwLnDj+2pgwRdkeKWKc7MxddewoTZi9i5y0FpaTvtrc3RHKGzL0dISzNitQ6dI3R1uXH15Qg+Xwi/P4hK5ScQAIfDy969HbjdgUiO4B6cI2RmmjGZNBiNGtraXAAUFCSQltaXI9gH5AgtbjwePy0tLnp7G3G7g8TH68nIMOFyBSgrax0yHlj64oHF0sP8+emDlh6W983s7e2b2TtvXgZFffEgMXFAjjDtOHIEvRrrUPFgQG+v/uJZZqaZr935Nb56x1fZUbyDt1a+xYzzZkT7+E6fmsD+zR9QmH/poPvRKDWkxaSRFpPGZP0c9tc047E00BCoZn39et6qegu9Ss+stFlclH0RF2RdQKx26DGD5AjDRYpcp1j/WmM4lKzbu7309PjIzDLT0e6mpLSNMWPiSE+LYcunjXR0eHA6/eTmWBg/PpFSf4ieXn909tdQhZfDNTb1Ul3dTU+vF5stssQtLy8Om0ZJ5ijzEcc7XZE33Wazjsws81FPMOeagb+/pEQDSqUSk1FNenYeOwNuzAlpZIy9gqtvvomY2Bj27eukodGJ2+XH6w2iAHz+AH5/GINehVanorKqm/h4PaNz49DplZSUtKJWKTGZtLhc/r7lJArUGgVGkwalR0EgECIlxUh1jZ22Njdud4BwKIzRpGHChCRSUyPJ865dbXi9IQKBECqVglAIkpIN2Lt9uFx+8sbEEQ6FqTrYDYAlTsfYFBP5+fGsW2eju9tDSkoHDY292B0+tm9viV4h7H9NmIxqnK4AS5ZkRWcNrlpVTdmudoKBIF3dXjKzzNH+XuXl7dHCbXp6ZBluZWX3oNdw//Oclmpi0eJM2tpc7N3TwejRliN+F3qdmky1FpNfRb0ebn9mKzfPzebHly5k0aJFwKGpwS0tW9i9+yXuv/9lVq1awb333suyZctQqVTR2z0ZVzCG+yrI/PmjJJkZIQaeUwAaGyM77LW1uthY3IjXEyA720xhYSJdXR727evEaNSQlGig2+7FYFChVg/e4XCowstATY2ReNDbE4kHVmvkb76j001+fvwRx7uch+JBVqbEg4H6f3+hUCj6XJtiNCQnxKOsUzI1byI3XLyMyeNyaW5yUVrWjsPhw+MJ4vUE6On1EQqBXqfCbNZGlqL3xXpHj5f1n9QTF68jJcWE3e7F6Qri9gRRqxXodJFm844eL2qVgrXranA4fHR1eejs9BAIRi60LVgwis4uLw31Dtat6yUxwUB7h4umZicLF2ZEilfNTmqqHWSkRx5DdpYZjydAnEVHitWITq+mpsZBb6+fyoouOjs9GI1qjIZDbxuzsmKjs7myspK5/vpCIPJ6fHfVQRobe+ns8jBjeipWqyk6s6u/DYPRpKa0pI3sbPOgRL//Oe62e4mz6Ljl5vFUVnazaXPjkDEhrEvkpZavsUy3nWkdH+D/00ySr3uO7373u3z3u98F6Ju50srLLz9CXV0tBw/+g/377+KOO+4gLS0tepsn61w+nDFB4sHIMShH6Duf2O19OUKmmY4ONyUlfTlCegxbtgzIEXItffFANeg2W1udtNg03Jp1N+u7V7Ny70o+qvuIX8z7BdNTpwNQUdFJaWkrnZ1u9uzJ5vzzM9mwoY7du9vJyDjyfG+3+wgEwiQlGRk/PumsW9b0RTh8DjY3bmZD/QbWHfyE3nA36i4NueYcFo1ahKonnr0aO7WePxKXnEzmpIVcc9ulmGIMkRyhwYnb3ZcjKMDn68sRDCq0WhWVlX05wug4dLq+HEE9IEdw+VEoFKjVCkwmLW53AI1GSSAQorp6QI4QDmM0RnIErVZFdbUdvz+IzeagrS3S6zcUgqQkA3Z7X46QF0c4HKaqqhuIXHwZO9ZEaqqRDesbCATDNDc56er2YDBo2LOnnfR0UzRHsNu92IeIB6tWVVNS0kYwGMJi0TFvXkZ0dlc0RyjqyxFKDssRBsSEtDQTixb15Qh7h84RIssfY0hMNERnllmtJqYvmM70BdOjY7LZemiqKKHis7X8ftuHbHprLlfccgXTF0yPXigHSEmJJSUlFsgHFuPyuzhoP8ju9t1UdFWwvn496s1qplunc3HuxSzNXopFN/jcLznC8JAi10nU0NhDeXknpgJFtPg0cBoyQElpGzW1DnQ6FeXlkWZ8HR0eGht6CYXDuF0BMtJjos3FCwsTmTE9hZLSyBvBbdsjfZOamiOV+P4iWVHfbhT9BbCmxl4CwTA6nTpaSLjuuoIhm1e2tjmxd3tJSzUyaXISG99/no3vVLD8qusomDztND6DZ56srFhaGqp4/ek/8mxXBzc88Ec2b2pEqYrhrh88hSuQxq6yTpqa/SyZEIu924szLw6jUU1vr4+mJifBYBi1SkF8ggGPO0BDg5MYk5r2djd19ZGZGnqdqq8oFSYYBEUojCVRj9GoxucLkpRkxOn0s2tXGy6XH602MmXZYNTg8QRobnbS1eWlp8eP2aKlpydEr9NPe4e7bxkjBINhMrPMzF+Qwd/+VsaBA914PUHmzcvgw3W1VFd3o1YpCQZCxJg0aDUqvN4AL/T1gcgcFcv8BRnsKmtnx84Wpk1NYcmSSPBRqpRkZ8cSY9KQnx8/6DU2sLccRBKcxoZeYmK1lJS0kptjJj09hoKCBOzdkaS+pdlJW5ub2lpHtDdXVlbk+a2usZOUZMBs1pHgD9KZYOBfW2rZUtXB4zdOIy8lNjo1ODbWzEUXXcQHH3zAu+++y7vvvktubi533303X//610lKSjrid362GaoXQP9V2f4r/cFgkO7ubhITz903ridbba2drtJWRqVqGLDh7qCYYLNFlia2trkIh+BgdTd+X5iGxl5SUyIxxGLRkZBowGbrobnJyezZGXg9AaYUJUffqHXbPTQ3RWJCe4c7OqNmfGFS3zEOQiEIBiOFBYBly3IoLEw8Mh60Oum2e0lNMzJ5UhLdzi5+8pdnSE2K5yf333ganrkzmzVFx2sflvGDp1bzs7vuYGxWDps2N7Jo4gLmFswh6NGTFp/M5EnJxFl6on2tlAqw1fVE/200qdHqVHR1ecjOMZOQqGfdh7W4nAHi4nR9M6sis7xCIQAFJqMGg0FDOAwuV4BXXjmAAsjKMkMYOjo8xMbqiIvX4/dHdszq7fETZ4lsIuP1Bijf28GixZnExmoJBkPMmz+KOIuOTZsaqKzsIj5BT3yCgdLSVtzuyIyvxEQ9doePUDjMps2N2O1e9uztYN7cdOIsuuiujEuWZEUTkqREAwF/iKKp1kGvsYG95SASHxoae4mN0VJR0cWUouTo6w/C0QJAba3jUEzo68XS3/xep1eTnR1PhepC2oNjWex9G83Ty2DRg3Ded0ChYM+eDoqLa5k7dwUez79paGjgxz/+MT//+c+5+uqruffeeznvvPOG3Kn3bHM8MaGtrY3k5CMbQIsT9/rLq2kw2jEUJA25NBegpKSNmpohcoTGyI6pbneAjIwYEhP1NPXFA48nQNGAeGC3e2hqcgEJFJkupKszgSbVFm5ffTsXpCxnYeAmKiu78PtDfUWQyOvgxz+eF31dDFRba6e11cWYMRbOPz+Tl19+krfequLuu++mqKjodD6FwyIUDlHeWU5xQzHr69ezq30XoXCIFGMKYyxjcO4LUfX+Xva5a5j2n1fy6ZYWtEoT9z30M9zheHbt6qCxycOSJVbsdi+9vUPkCGoFZrMOu91LTIwGrzdIS4uTurq+HEE/OEeAMImJeuLjdXR3e6PFMb8/iMvlR6PpyxEMkRxBoYjEkZ6eABZLZKWI0+mnvd3dt4yxL0fINDN//qEcwdOXI/z73/uob+jBYFAzcWIyOr0al8vPnj3ttLe7IzlCZixms5bKSjuth8UDpTKyzFarVTF37uBWOAN7ywGUlrbR2NhLTExfjpA7IEew9+UILc4j4kF/ka26+lCO0NTkwmLpOeLiX39BTKWxMHXeVHZu2knxB8UUf1BMRk4Gl998Ocu/uhxz3JGTQowaIxOTJjIxaSK+oI+6njpKW0up6K7gZ5t/xi+2/IIiaxEX51zMRTkXEa8/8kLimeR44kEgEMDhcJCQkDDMo/1ipMh1ElVUdFNTa8dq1EaLXNZk06DZVkVTkjl4sJvWFhelJa0olQr0OhXjJySi1aiAcLTx966ySA8kny8yxbiqqpvmJid5eXEUFCSQlRXLunU2SkvacDr9bNveQmlpG0mJBowmDenpMUwtsh51LP0GFi2sySa2fPwBO7dsYNL02ed0kevd19fw2nOPYzuwKfq1d97YTIc9lqwsM/PPn0dHuxu3O4ReF7mSZonTYYrRkp8fT0VFF7GxPryuXgIBB53Nbhpd3ehUHjQaH85eJz6Ph1DIhzfkB0KAEoVSgUqtwunV0lmjJhTWo9IaAT1hpQGFMp4Eayo5uam0trppbOjF5QpgNmuJi9NhMKhRq5SEwjp0OiXFGxswW/pmBnR7ICsy/srKbnp6fWzf1kxtXxKsM6pQqZVY4vTMmZsWKcTV9VC+txONRkmv0096mqmvb2G4r5lkKznZsdx4Y8GQr6+4OB1KZeRzTnYkYPTvGrRzRwslO1uYPSedwsJE0tNjsMTpGT3aQm2tY9BOjP1LJvtnmBRNScbpiixzafb6eW5zLZc8upEfXlLIedGpwZP4n/+5joqKCp544gmeeeYZqqurefDBB/nxj39MdXX1oKv4w+lUbeE7VC+A/p4tAKNGBbnlllsIBoN88skng2a5iRO3Z08HzooulCEjSQN6Vx++vHBMXjwtLS66urzodEoscTomjE8kOdl4xFKubrsXh8OLTq9i375OOjs8BIMhxuTFD4oJW7c2U1LaijlWS1aWGaNRS1qaCWuyEZczMOQ4+tlsPX0N0iNLURpbO3nixVUUjsk8p4tcn26z8Ydn3mbtjo20d0WWqT/x4rucP345vT1+snPMzJubTm2tIzozqf/31tDgormlF71eTU+vB7fPTdjVg63cicvnYv2uEFod1Dc68Pp9hFqDhMMBQiEFCoUCnVZFTIyOQFeYoE+JWqlFo9KhDGvQawy4A1YWL8hjw4YGHA4vJTtbycoyUzg+kYqKLgLBMHFxOjSayPLTD1bXMH9+BmnpFiCM0aTG7QkQCIbxuAMkxOsIBsIEAyF8vjBZWRZSUky0t7vp7vLwzjtVtLS42L+/k9tvm4jZrI3uANfe4aakpJXJU5K5996iI15jA+NBds7geOBweCMN+W0OsrMsLL0wiziLPtr4Hhi0E+PhMw4jfy/xONJmoK/5F3z0f1C1Dr76bDRxv+eeX5Ka+givvvoqf/nLXyguLubll1/m5Zdf5jvf+Q6//e1vT/VL6bicyi3djxUTwuEwO3a8zoMPPshbb73F0qVLT+p9n6taW1v5/n/8N0ljsrD+9EfRv4vDz8NFRX05QquLkpJWVCoFer2K8eMT0Wr7coS+Pou7+nZxTUkxUlLSRiAQorn5yBzBVmpAb1qMOmMXH4Y+4JPwR6QWnE9e62Quuign+ho42myTgbuyZWdbeOONN9i0aRPLli07a4tc3Z5uNjVuYmPDRjY2bKTL24VepSfXksvSrKVkxWaxZ10d7z2zivp95dGfe+2lnfjDMeTkmFmwdCodHW7c7iB6fV+OYNERMyBHMJsjLUKCwTCdnW4UCiVqtQKDQUtjYy8ej59wmOgFDwCVCgwGDbGxGlpaXHi9kZm+7e1uFIrIpiLx8Wqys820tLhoaOglPl5PYqIeCPedM7XExGgjOUJxA2Zz/+xhD3AoR+jt9bFtWzNdXZGdbhUKBRqNkosvzsXh8LFzZ0skRyiP5AjnnTcKi0UXjQcdffEgJ6cvRxjiPcegHOGwmLBzZwslJS3Mnj0gR7AMyBEGxIP+JZPRHKEoGedRlsIfKi5nc/3Xl1JbUctb/3yL1f9eTUNNA4//4nGe+d0zvPTpS0MWuvppVVrGxI1hTNwY/CE/DT0N7GzbSUVXBf/v0//HQ589xOSkySzPXc6ynGUkGU7swvpwxQOA1FQvN998MwaDgTVr1gya5XamkyLXSZSfH0dO+5EzpQYqLExiTqOTzZsbMVt0GI1qgsEQHneQ7m4vKhWsfG4vc+elY4nTRWe1NDT2olQqsJh1mM06ZkxPpby8nbY2F+kZJhIT9KxbV0tHpxe/P8SYMZHlD2azNtr76+jCEI6s6d62vTm6NvzAgU6WnOTn6Ez18ivlbFjfwIKF6ah85bzxr7/SYivr+66CwqmLsWRcQkJqDr5gDxq1ktWra6iu7qa52YlW1cP+smIqyvfT3d5IyN+B19VK0NdOKBBpvOjquzUXClQaA2E0KJRaQENYoYGwEgihUIZRhBS4vUH8PjehoJtw0M3AHTGcNdCwQ4femIjGkIwnJh1nXBbx1iwCgWR0egt5efHs2N5CZ6cHnz9Ia6uL3bvbKClpIyZGg1IR2aFl27YWPB4/JqOaqVOtzJ+XHi0e7Spr49XXKuju9hAmhM3mYMb0FFrb3KSnx0SWHlZ0YypKPuprrKGhF7vDS0NDLxcvHx1tPpmXF8fBg3Ycjsh2wgqFgoKCBGZMj/Sr6J/B1a+/oGZNNjB/Qcag+7MCP77MxNPF1fzozT0sn5DKw1+bglEXOcXl5+fz+9//nl/84he89NJLPPbYY8TGxkYLXMXF9Tz55KvcfPPFLF069gRfRV/OF2lM+eqr+3nttQquvjr/qA31+w3VC2Dg+nybrZoNGzZgMpnYtWvXWfum9XSbMCGRrvZ40lM1Rz3GajWRlRlLbUYs8fE6YmMjux32F7g2FTcSCIYoKWll3vzIrJmdO1poao70dYqP1zNhfBKTJyXR3uFm3TobcXE60jNi2FfeSX3fzKHC8UmoVBAfr6d7wPT9ofRvG97c7GTdOht+TWSr764uT7Q32Lng5ZfLWb+hgUlFsXxWuY1/vb0WbyDyRj8lIYHFU+YxPa8IZ08IYjUkxOt4861KIExbRw9VdY3UNjVR09iMO9BLj9tBj9eB09NL+LDdjVQKFTqtFgUqFGEVKqUalVJFKBQmTBgdSrwuFY4eDx6fB3/IRzB0KOnZUAsrNyow6Y3E6GNJrE8gozKF2VPzSMm00NkcwqDXkBCvp3xfF36Hnw8+qCE/Px6NRhlZ/uTyowACwTC7d7cTDkcShQsuGMXo0ZHZuWW72ti0qYlAIEQoHMbl9FNb62BKUTKlJW3R5YcVld0UmZKHfI11d3vxeoLs2dvB9Okp0SUteXlx2Gw9bNrUEN1sweUMRHcMHbjcESJ940pKWklI1DN5UtKR95XxLUibAjtWwl/mkH3138hecWib+RtuuIEbbriB0tJSHn/8cf75z39y1VVXAZF48O9/f8qUKbHcdttFJ/YC+pJOVTyAY8eECy7I5Cc/+TFut5vnn39eilwnidVq5ReP/JYH7/sP1jy/klmzHhxy1mBhYRJz5vTlCOYBOYJnQI6wci9z56Zjseiis1oaGvpyBEtfjjBjQI6QbopcJN+dRUZhJua5VdTnvoc+czPN6us4WJPH6JxjzdAIEw5De7uLVasO0tISeTe7aVM9fX8yI14gFGB3+242N25mfcN69rbvJUSINFMaBQkFtB7QULU1TMzkbByONh569o+02qqBSOFn4uxZEF+EUmshVqtk/PhEiosb2bWrlZYWFyaTht5eP/v2ddDW5kanU9Hb6yclxYjbHehrHB8Ggvh8QaxWFUp86FVO3O5egn4PAb8fQgF0JiUxWg2dBz19xS8lnnBkkxC1Wk2M2YQ2aCbo8hAfq8Fk0KBUK1EoFGRlmenq8qBQKBgzJo4dO1ro6PD0Na0/lCOYTBqUykiOsH17C263H5NJw/jxiUybZmVS3znXbNbw6qt9OUI4REeHm0WLRvXdhjq69NB0lHgAfTmCvS9HuPg4coS+mHD47orRHMFqYP78jKPeHxxZXM7Oz+aBnz3AHQ/ewbo31vHGc2+QlJoULXCVl7fzzisbuOiyWUyZOvSujhqlhhxLDjmWHAKhAI29jZS0lXCg6wC/+ew3/PqzXzMxaSLLc5ezPGc5VuPxb9wwXPFg6dJsDh4sZ/PmzZjNZvbv309hYeFxj3u4SZHrJMpIj6WwMAHCsG17MwcPdlGys42F543i4uWjo0sJ09NNLL84F5NR3dePJUx1jYPKim6cTh+9zkijwvETEtm7p528/DgAfP4gOTkWJk2OnABKSttobHAypSiZ+Qsy6HX6sdkcaNRKGhuc+H2hviDajiXu6D28fP4QXV0eWltdOF0BurojuypVHOg84tizycDeZhvWN9DQ2MubL7xK24HHIgcoVGgtcxg77asYYtPp7vWTqAigCtdRUrybDV21+Jz1hHyNEHKzB0ChRqFORK1Pxhg3FpN5IR5/LKjMBDHi9RqxpiUyd14WW7c2ER+nB4j0bPEG6O31YzHryB1toaXFRVycjnA4jE6norqyhZ6ebgjYCQe7UIYdGDS9GHR2OlvKOVj9AaG+xEerj6dlbwFOfxoBRQa9oVz8ISMetx+lUkliop7EJANeb4hwOITdHpkdolIro8tfrckmDMZujEYNiYkG1GoVaWkmVq2qRqlS4MyPj860Gjjj6nA6nQpF32c4tMlB0ZRkrr4qj5LSvm2Fbb2D1tcf/js6VkGt/7jrJ6WzPSWWt0sbWfaH9Tx+03QmZhy6TaPRyO23387tt9+Ow+GIfv2NN3aycuW3eemlH3DXXd/gnnvuoaCg4AReVSfuizSmfO21Ctavrwf43CA21NXZ8eNNzJ8/v+/qUAYPPfQHvvrVSxgzZswJjl4cLjvbQvYUK+0tka23Dx7sYmdJG+ctHMXFF48GDi0NnDQ5kcmTkqNLDfuLBTt3tuD2BNDr1JhMGuLidLS0RHZhNRrV5GRboksC1q2zRf+ubrl5PKtX/3/2zju+rfrc/2/tZUuyZcm2bMsjdmI7ceJMEjuDkISEsPcogba36/aW3tLScdvb/jpu7217OygUWgq0UDaUTQMhCSs4zo4zbCex423Z1rA1rL1+fxxJlh0bAoWW9vK8XpBEOufoq6NzzvP9fL6f5/P00NfnYe1aC729HgatPsKROH5/dFJp2dQwmTTo9Qqadg/i9oRIKAXVUiAYTXfO+2eMqb5mb+0apL/fw5/e+gPekAsArTKHuQULmV0wh2ypmhxdFsHwKK0dJ9l2YIih0RG8oTF8kYlni0KiIkuhRafRUZxXjEqahSimQCpSQFSOPjuLT3+ynrb2UU4nu0ZJpGLyTSoGBwXj4NxcJfn5arzjgmdj3XwjPT1jtJ+yo8qO4fF5cLjdxEQBVNkxXP4xmk/u49VDrwMgFokpyMnHpM1HJcpFJc4lGtHR1eVKNicJIZXBrFl6otE4vb1uQmHhc1MlriaThvl10NY6yuAAGPNUFBVlEY3G2d1kJRaL4/dF00qrTMVVZixIKlVcrhBHj9lZv06TbnSwoN7I+g2lBIJRfOOCwmGm36mlxfaOZJrN5qNvtJryxf+B4cR98MjV0HALrP8BZKxEL1iwgN/97nf87Gc/IztbWKDcsaOXJ564h9tv38599zXyxS9+kSuvvBKFQvH+Lq73ER9WPoAzc0IkEmHBAj2NjcX09rq5+eYfct55+/jOd259n6P/OKaLq67fzEnHYe7/7v2IZBqqlq2npcXOqmROSF3bZrOGTZvK0WgyMEK3h85OF77xDIxQa6CtzUFlpR6AcDiJEeqSGKHFjtXqY8ECI1VVOezaNcCqc4oZG63iUP9xEtUn2Cb7HbvfeIp12Vdz86JrqSw/8/messTo6XHjdodxOAQSes8e69/kvH0YkUgk6HR1sndoL81DzRwYPoA/6kclVVGuLef8svPRx/MJOdVU6vP53+2HGLT6sB3ahe34X4SDiCQojTVULz8PldbA2FgIOSCRiGhuttLf72VsLEgiAVlZMjyeCA6HUJ6olCeQxD30j7qJhbxEnE6iQQ+JsIeTJwK0hvzpDr1TIwiMSqQgkgjKrbgwj08k5/9eYAhoy9hHJpeTnZuLXKXFH1aQV2BEGbXgGxMhJgu/H0KhOMFgBkYwTGAElyuEUikhK0uOzRbA6QxgMmlQqWTIZBJ0OgU6nZKqKr2AEcQifL6ctNKqfoZ8AEmMIJqCEVrs1NcbueKKSlpakhihfxqMkJG334lQezff0lSo1CouuuEiLrz+Qvzj/vTrb79xkq3338nOR1RccuOFXHLjJRSXz+xxJRVLsWgtWLQWYvEYw75hDtsPc2r0FL888Ev+d///Uptby/ll57OpfBNFWdMTZ6n4W+YDmIoRZvFf//VLbrzxCkpLS2c4ykczPia5PqBIJBL87//8jFDeEoxZJoaG/ezdY8VmE26SCzZVTDLX1ukVWK3jDA37qa7OpbEhC41Glgb7KxrMNO+2Mjg4DsBFF89Kl2+lAH4mwWAyathy41xggkQoLdUK3VeSPkfAJHIgRQxs395Db6+HYCjKDTfUkpurxmODWZUzSzT/GeLYUTv79/VTWhwiP1/F0PA4UvV8xPICxOp5SPXrSMTjdJ44SiL0IrFANydf7ycRjwBiJIpCxHIz0uw6co1lRMgnHNchlYiRSqXCPFoiJuoTupZUVekJBmKsWi08GI+0SAQgkaNiQb0JvV7BrrcG0GoFqa/HEyIeE1bMtVoFF148l22v9jA0pAORBa1eTs08YUKS4wkhEsUZGezDbu1CHB3ANdaL37WNeEwwtpapS8gtqydft5yl5zQyYk8kvbyCaUNRYVxCbXxNTR69vR7i8QQmo5rSMi1joyEGreMUmbOwWLJxOgLvep7NhVmUlukwFwrGRJkeXddfV0NNTR6PPd7OoHWc5t1WKiv1aUP7nTv7GB72UVCgoTRZ6jgdoZZp3rp5cSGzjdnc19TFFXfv5tsXVvPJhvIz9tFqJ67vqirIySlkdHSAO+64gzvuuIPGxka2bNnCNddcQ07Oh19T/16MKa+4omrSn2cTvb1udu8+xauv3sdTTz3KL3/5LHJ5PqdPu1mx4iJmzap4X+P+OKaP118/yLY//JmLltXTY1OyZ29GPkiSXCmfrYJCTdpbKxZLpMkCny9CNBZHKhGzoN7I1q3d2Ox+cvQK6uqMNDSa0xO2THLBZNKwZcvc9Fj0OQI4zywL6+ub7FOROQl8481+rFYviXiCFeuEa18hF89IXPwzxNFjdg4dspGdF+QzNzaQn6+iv89Lub6GAU8XVbkLyFObGQ042H/6IL6YkwfftuENCGo5hVSFVp5LfpYFS34henUuMb8KuVSOVqfA7QohkYoFDym5BE2WDJFIxIWbKygtE0pD5HIxIGVWpZ7Nm8s5cWKM9jYHIyN+urs9iMSQiENvj4dly4qpnGXg2DE7gTEl+UoT2mwZc+Ykfy+lFLvTzdETvTjG7XgjTnptfYz5WwCQSxTMKalgXcUCLFWFzJttQSQSsX/fMFnZcrK1CkxGddo/K9XJU62WEonEyclVUlWVy8CAl0AwRlWlnnA4lvbVmokMra3Jw7rcx+FDI6Q6c2X6dF1/fQ1HWuzs3z/M7uZkPsjonpXKCRKJiKpK/YzXZDonVOdi2PAjOPQA7L4T+prhmodAO7lMPTMfrF9fyvPPK7DZpDQ1NdHU1MSXv/xlrrvuOm666SaWLl36oXt3fdj5AITOcPff/wQPPfRzqqsXc88999Da6qSzE1asuOz/hD/Z3zKs1nHy5tSy9sor2fHk0xxv9RDX1gFCTsg019bpkhhhKIkRGjMwQv84K1aYaW7OwAgXzUqXb6Xul0yCoaYmL5132tsdiKijxLCCEfFpjvn38tz473h11yNc47ySG6pvoDCrMF0idf/9xzh+3IHPF+YHP1jJE09ocLth2bL8v8NZfH+RSCQYHB9k//B+9gztYc/QHkaDo0hFAhmxJH8JxdnFFGcXo5Pr0Mg0vPF6P/v29GMrGSO/QM3QsA95biVihR6pvhJZ3gLEMg19QyKkdhcSiQiZTITD4Wd8PIJYLAJiJIKjjHucjPmdJEJjRPxOXMnO7AAisQyZWodKo8NQVkldfRmhqJz2kz6kchVZei3nra9Cq9fw6vZ+dHo1Xq/g55WlkaUxwrJlhbzychdDg6PEoyGU8hiGHDFlJXL6uofwjo3hHRvD73HQY++i6+Br6TFIlTpkWUZMlRUU6mazcOk87M74FIygAkj7Z6UwQjAYJStLxiWXVGCzBRgcHKeoKIkRnGeBEZIdJM3mJEbI8Oi6/vokRnisncHBcZozckJmPpiEEabJCdM1eHinEIlEaDI6ShcY4mTrc/GOOXnq3qd46t6nmH/OfM6/8nzWbF5DljZrxmNJxBKKsosoyi4iVhZjxD9Ci62FDlcHvzn8G24/dDuV+ko2lm1kU9kmynRlZxzjb5EPenvd7Np1gpdfvocXX3ya229/AbE4N4kRLv2HI7jgY5LrAwu3281TD/8Bf+Q+PvW1+6iuNiOXi9JKLpioAU6RThq1DIlEhEYtTXeZgAnyqXauAaczgFaroLfXQyyWwOePpj8zc5/MmPq6ze5LK7kyo6/Py8GDI7hcQgmGXCZmyeICnsvX0HNCWNX9Z40d21t54K7f4eh5BZlcTdasH5JIQDDoQqzbSCLYQWjg5ySiTgBEsjwkqnKyzMuISSzExcWoNUrkCgmRSBx/OEY8nkAsEZGXp04bhEqkIvLyVOTna7j6qjnp3+W++48SjsTIyVXS0FCI2ZyFzx/lootnceDAMN7xECUl2cybZ8DjiWDIVdK40sy4L8wrr3QTicSRSkScODma7tolEosoLDRTUmUGESjkEsKROHZrLxH/aeLBU4z07KGv7UV2PCEit6CGirkrUecuYtWqOaxbZ0k3Migt1bJzZy+epAlmkTmLyll6VGrZJLL1hRdOc/jwiNAGOE81yYcm9fe6+XmCV5layoGDw2eQVSlJfVaWDLFERF+fl85OFy+9eBq5QoJMJqazw4XJqOb666aXyU41b63Mz+K7F9Zwf1MP33+hjT2nRyeVL06Nz33uYj7zmQvZsWMHd999Ny+++OIkcPP888+zadOmD+jq++vjyivnnNUKTSrGx8f53vd+xOOP/5ZwWCBaHnnkMS6++AtIpSJ0uo9bgX/Q8eijz3Dfw38mGAhw4+VXIpeL0kquVEx4bSW7KGqEnKDWSKmtyUsTBSkCam6tkBNi0TijY8G0vxYwafupkfleqixsunyQ6mg37g0jQkRWtoxZ5QJpkq2V/9OquFrb7Dzw5C7ePNbEwGgfR9qvwz2Qi0gcQy3NJU8dpnP0GPutO4knYkhEUnI1RszZs9Dl5aGVGclWZqFQyIjF4iACURwi4hhKpZRwsouWXCZGqxW8qBYvzmd+nQBIH3usnZ4eDzqdAotFS0OjmTyDCq3WhyFPhccbJi9PiSlfQzgUo7gkm5WNZvr6vNjtgWQ3rQiRaJwTJ8aIRGKIJSIMuSpqyiqIRMrI1spxuUK4PT6cPht23xBjviHufPwpYvEYWUoNi+fMpUhfTmP9PK66sjqtLCwt1bJjZ6/gB6eQMKc6F5VS8HwxmgSD+Pl1xrQf3KBVAN6ZfnKZq+jz61LXUQKbzXeG+kuvVxCOxBgfD6fzwe5mK/kmNX5/FL8/QiwOtXNnvuYn5QSpDJZ9Fky1cOAP8NsGuPwemD19KWJjYzGHDr3I0NAQ9913H/fccw+Dg4Pcdddd3HXXXaxfv57t27d/QFffXx/vNR8ANDc389nP/jutrfsBcDicvPjicbKydMyapfs/3T3vw4rOjjF6ej00XHgRxCO8/uwLlC2RsWrVVUAGRkjmA00yH2g0UzBCMh/U1k6DEXzvFSOU0DiymL3dRxmQHuPRE4/yYOuDnFN4DmXjDQy+mc/IiLBQqlRK2Ly5gp//XEtHByxb9tHwM50uYvEYp8ZOcch2iEMjhzhkO4Qj4ECECHOWmTk5cyjKKqI4u5gcRQ5Z8izkkol50PZX2vnj7Y9j69iHQpONdu4WEgmIxsSoq7dMIoCFJh/CM942MMC4Y5Dw+AiJoJ2ozw4JQWElkmuRZxkwWGoRK/RERDqkqlyKS/MoLMxi8+byCYxw31F6RofIz9ewZk2xgBF8US65dA4HDgwzPh6ejBEMShobzYyPh3nllQiRiAZI4AqJGHCpcKMjrIlhqUx66opATBjfmAPnsJXwuINYwEFPyy5O7XmVrfeDRp9HcWUV6rxSFi2azyVXzE93+0xhBLc7RE6OgtxcJWZzVpqoSpGtkzCCYQaMUJeHTqdAo5Fy4MDwGWTVJIwgzsAIL51GLk9ihE4XJpM6Xf4+NaZihPcaF1+zis1XNrD/zf08/6fn2fv6Xo7uPcrRvUe547t38JMHf8LChoXvehyJWII5y4w5y0wsHsMesHPUfpRTY6e49+i93NVyF6XaUjaUbuCC8guo0le958WG95MPPB4P3/nO/+PJJ39PJCIQk4888jgXXPDpf2iM8DHJ9QGFXq/nrj8+zaduuIjn7v8Kv374OZYsruGaqyduuJTxe4p0am930tbmRKmQTiK4du7sw+MJsXhxAV+5dTF9fV40amnaJ2m6yCzrmlrKNZPhvCDvtKHTKsjNVTF7Ti6/+MX+tMFgIj69VPYfOdpbO3ji/t/RvPNp4lFBcp1AjLvnfmLBHuJhGwAiuRmxpg6Jcg5i1SxEkmxUKglKlQSPO0wiBsFQDKVKhliUPE8iESTAZg9QVJRNiUWLWCyirEyXNkm32X04HQHa2xzpTprr1pVx4OCw0OlDIqKv14NzNEhjYxF184y0HLFTXZ2Lyahh48YysjRymnYP0tfnIRoV2vEaDEo87jAatYxLLq3k2FE7be2jFBRo0OtnMzJShNu1HLUZAl4bQXcbgVAbR9/+E+HQ7+koKWd84ALWXHAp1107n4OHRmhqGmRk2EcwGCUYFEopN28uJ0dvTK+6G3KVaLUKDLnKSSslQPrvGrWUlhYbfn8EhULC4sUFk8iqVNltZZWe+nqhE9dDf2pLrwYtmG+ks9NFpidZZsljTU3etNe4RiHjlrWVvHJ8mOePWDn/9re458bFzM0oX5xq5nj++edz/vnnY7VaefTRR/nTn/7EiRMnWLp0aXqfHTt2EI/HWbt2LTLZzH5LH1SkxqjTyXG7w+/JeNJut3PnnXfym9/8hrGxMQDmzVvAt7/9Q3S6edhsPtzuEFu3dnP33S1nXcP/cbx7fOc7Xydi3cuvn/4L8xdV8elrzueaayZPwFK+EDabD71uIicolNJJBFdmTrj1K4s5mjQcfqcJ20zy/JkM59MTz34PGo2M4uJs8vM1vPjSaQDi/4T5YGjIw4PPvMlvn3yBvpFBQFjBfWnXbiLhGE7/MLFEDKlYjkFVSHXeUgwqM9mKHJRyCSKxiHg8TiQCkSjI5ALBFY3GyNErEWsVjDoD6VbulZU5zJmTy4J6Y5qgbGt30NExinc8jFYnp77eRG1NHgcODHP40Ag9vW6ikThGYy7z64z09nqEfJD8DTdsKEUsgX17hwiHY2j0MgoK1IyPR8jWKpg314DPH8E6OE6pRUswqGZsLAvdUAFS6SKkZQm6R/pxBAY50dfFm0f28eyeZ3n1+CKu2NDIZRev4NQJD01NgwyP+JDLJMyapcfrjbC72crmzYJKNtMPTiIWcaTFTiw2cc1krqJ3drrYubMXrVaBXqdkyZKCSWSVyxVCLhNKYyyWbP70UButxx2EKvVs3FhOX79nUk7ILHdMHWfa67ysEXIrYPev4dFroPHLsO776fLFqfmgsLCQ7373u/zHf/wHO3fu5E9/+hPPPvssS5YsSR8yFApx7733cumll1JSUvLBXJjvEu83JyQSCbZt28ZPfvIT3nzzTQDkcgXXXvtZLr74M/h8Yk6fdrFihZkDB4b59rd3fZwTPsCorMqhLKRlfoWRdeu+gsmk4ol7niB4SRVQMSkf6DLygVIpnURwTcIIX0liBI10RpPt1H4zlWsV5GdzaX4jiUQDjoCD5qFmjjmOsce3B3G9FL2+FGNXDfXmWXziEy+lyxXjQtvXv3skEgmGfEO0Odtoc7Zx1H6UY45j+KN+pCIpRdlFVOmrWGleSXF2MQaVAY1Mg1KiPINAON7SxeO/fYLm7a8TjwploZGwmpDPg0yVjVgsTu+TiMeIB2xEx63EfIPEfUMkYgJ+EitykKhN6MprECmNiJQGJDK50OVYJKKgKBuTSTWBEZIm6TabD6czQHu7Q+hum8IIByYwQm+vh9EURqgz0tJiT+eEjRvLyMqS09Q0SHe3i2g0jlgswmLJZmjIh0Yj45JLKjl61E57+ygVtbMxV1TQ2TlKMBinuDgb5/AwY0N9SOJOAq4hTh5o5vArj/PmY8UsXrWYhvUNxEVZHDo0wnDSHzQeT7B1azebN5dTXy+MCcBgSGIEwztgBM00GCGDrEqV3VZWZmCEhzIwwoIZMEKy5LEmqUI+GwXX1Jh63yw/bznLz1uOfcjOjmd3sO3P2xgeGGbO/Iln5L439iGRSqhfXo9EOnMjJ4lYQoGmgAJNAess63AGnBxzHOPU2CkebnuY+47dh1ljZn3pei4ov4C5hrnTEl5/DUYYGRnh17/+NXfffTdut6AurK9fwre//UM0mjn/8BjhY5LrA4yly+byjTse4pdfuYGvf/pattx6N7OrzWliK5OEMhk1tLTYcLtDOEcn5JzHjgq+Qzq9PN0JL2XEDcKNu3NnXxrcp47rdgUZGhYUGtMRWtORYCajhvIyLWOjQRYtMtHSYufoUTt+mzCexEckgX0QYe3r4eHf/ZKdLz1DPCaAC5FESSIeIR5xg6gbqaYGci5BrJqNSJKNVAaxmFAeAhCJxkj4SbbvFV6PRWPk5iqw2eIUmlTEE4J/gVIpprbGgFarINUGvfO0i0UL82ltc9A/MI5YDBKpMLkOh2OcOjUqtBHWKYhE4ow6AzzzbAfDw3727x9CLBazbp2FEks2hpMqRkcDRMIx8k0qLrm0SihvtY7T2+thfDyCw+EnFo1xznIzfn+UWDSOSCRGr7MwlpVPkfliPnFDJUO9h3lr21Zeee4Jnvzj3RgLy1i6+iLKZ69FodBy6uQoA/3j6YmNTq+gs8MFkByPNu0vV1igzlAshnC7grS0CB1SVEopi5cUnDEJq18glGUZcpXp63NFg9BieEWDmcpKPSUW7aT9Mksep1upTIXd4ccYFvEvSy083TrE5Xfv5j8vrOGmhjJgZjNHs9nMbbfdxm233UZPTw8GgyGdSL73vf/k4MG96PV6Lr74Yq644go2bNiARvPeE+jZRGqMUqmIaDRxxlhnikQiwcqVKzl16hQAlZWV/OAHP+C6665Ld0fp7XVjMjn5/e+PcPDgCHB2Nfwfx7tHWZmeP/74M6hUcT773TuIhmFR1fxplS2p/1I5YTQp8U8Bmp4eNzK5JO2NtH7dxLU2FeCnJmUud5DhoWROmMmzaJoxuNxB8ozqpEm5k5M9wn32UQE0H0QkEgnuffIV/uvuJ+gfSS5siETIJDLC0TDD7kEMqkJmG5ZgUBeiUxiQSsSIxQKZBRCOJFAoRGSellAohtGoZmw0SK5Bxfw6I2+/PYA/EKWkJDtNcB1psadLLOx2P+0nRknEQVYqTl8f4XAMhzOAWCSAgJERH88800E8nuD4cTtuT5jVq4q45poa+vq9tLY6CAai5OQquOrKOfT2eujodDGULDdJlcWajBrc7hAajRSxWESeUY1CrkAqq+KyS6vQGaM88VITe1qPcvO3foFSLuOcefNZMXchRUVFjDrDWK3j9PV7iUZj6HUKNBrZJD+4o8cceDwhtFr5pM6gqaYHuzPKrKYD5aWlWgat4zSsEMpxG5It5xtWmFmSzCGWkomckFnu+G5qQ1tQS1/uvzFX9SKqpjugtxmufRiy82fMB1KplI0bN7Jx40a8Xi/hcDidD2y2g9xyyy3ccsstLFu2jCuuuILLLruM2bNnf2jlfu83Jzz00EPcfPPN6e9088038/3vf5/iYkFdmsoHc+ca+Pa3d70nX5eP493DbM6iJmbApBOIrMXnX4rPF+aO792BbcTFovM2UVqqPSMfZJZ8HTsm+A4JgFbohJcy4oYMjJAE96nnvNsdZOgs88Elsy5hU9kmut3d/OXw2/QXdhGuOM0bvEQkV89wcy8Ao4FREonE37Ss1R/x0+3upsvdxWnXaVqdrbQ52/CEBR9ErVxLgbqApQVLKdAUUJRVhFauRS1TT0tqpaLvdB8P3fEQrz3/WjrXKXWFFM1diVRfgcsVJhKJMu4YJurtIzY+QMw/AvEoiGVI1AUo8uuRa0uIy/IQJVVhSrUElUpGKBSjtDQbtzs8gRFqp2CETheLFuXT2uqgv1/ACNJpMIJOpyAajTM6GuCZZ6bBCCXZGAwCRgiHY2g0Ui65pDJd3trb68HnS2KEWIxzzjHjdAaSjQ1EmIoKiYm1zJmTw7/920I8Y27e2rafkd4Omnfu4fk/PY9CqaB87jzUxkqiFDIwKpnACDpFknRKYoQSbdpfrrAwAyO4Q7jdExhBqZSmn++ZUZ+0bjAYlOn5yopkTlixIokRSqZghIySx3fCCO/m1TVTmaOx0Mj1X7ye6/71OkYGRlBnqdPH+u2Pf0/PydNo9VoaNjSwatMqFq1chFKlnHEcErEEk8bEOs06zi05l7HQGMcdxzk5epKnTj3Fn9r+hFFlZK1lLZvKNlFvqkcmFhbZ328+iMfjLF26lP7+fgCqq6v54Q9/yFVXXZW+T/7RMcLHJNcHHIVllfzk3if4yo2X87/f+iTXffF2rv/E0sk3SpJkamwwo9HI0mVbNruP7h7hQa1Wyxga9qPTeyeRVlPBfV+fl127BvH7w1gsWtyu4LTdFKd+vs3u49hRBx5PmIJCDd09HkosWQwN+4jlfJbrv/Bd1m6e9+GerL9RJBIJ3ty+g+3PP5nxqhipqhyJZh4J+VzEcsFbQCQCiVQgspKLOIDwmlQiEspQki16AfLz1TicgXR5yLpzSzncMkIwEMU5GkSrldN52o3D4ScRFzpYOhxBpFIxRqOKxgYzNruP5t1Wenu9iEQJqqpyqJtvZMgqrJBkZ8noH/ASCETZ9dYAF108C68nhMWiJRyKEQzF6O31pH3cSku1lJZqCYaiWCxaQiGhlLK8Qo/fH6Gzw0UiIayWt53wYjLOJ6cinxvO+zJdJ/dxdM/LvPL0fcSjv0FnrEZjWkNCsgCxSJougaEKlEmTyCWLCzhwcJihYV9acQag0wvXnCFXxZw5Quee0lJtWmrc2+tJ+8aVl2kZGvYLPkFGDQ0risjRK2g5YidHr5hE9MIEMaZUSGbsHjpVFfndC2u4/+1uvvdCK81dTn5x9YKzMnMsKysDhESye/cA+fmVmEzd2Gw2HnroIR566CFkMhkNDQ1cccUVfPnLXz7razMzmpoG2LGjl/XrS2lsnChpS40tc5VmaiQSCY4fP87zzz/PbbfdhlIpTOauvfZatm7dyre+9S0uv/xyJBLhN8tULGzeXJHunPNea/g/jncOkUjEXd/cgtUZ5l9/eAfXnXs5t/7LhQDTTpwaGoWcsKDeOMlvQiaXkJ0lm1SemIqpAP/tJiv79w1RWqZFp1Wg1kyf5qeuqvb1eVFrpAxZfUTCMYqKsnCOBnB78vnll77NtVf/43TUebc40THMj+56ggGbLf2aSqqmOKeCgqwSNOJ8JGLhvIlFoFJJhRL04IQRenaWFJFYRCw6wXIpFMLvZLf7sVoF35y5c42cOOFM+6r5fVGGh/3Y7H6CwSiBgNBYQCIVU1MrTMYPHBimrc2J3eYnHk+kS+AlYhEFhVmcPDmK0xHgrV2DnHuuBYCyUh1Wqw+fL0pvr4d16ywolFJGnQHKSrPpM6iYW2ugtc1JPA6zZ+eSn6/h2DE7Y2MBpFIJHR1j1MrzKNbM5Zs3rESujvD862+zddce3jx0EKVMyZzCGuYU1iGLZSFXSMk1KKmuzsXni6BQCs8XvU7B8JAPS4k2fX3rdcL1ptd5aVhhJhQU8pPDGaCvz0s4HKOtzUmuQYlWK6cgX4NcLhyvoaGIhoYi2todPPZYOwvqjZOAfcq/TqGUvGPn0EwVDIuvYMmK+XDgj3D3crjyPubOFRRa75QPUub0e/d20dxsRakMsHLlSpqamti3bx/79u3jW9/6FhaLhQ0bNvCNb3yD2bPfX8fevyYneDweXn75ZdRqNRdffDEAF198MXl5eWzZsoVbb711kvJsqort/fq6fBxnF01Ng+zbN8zSpRu5OU/Lg7c/yLHD/dz01c+kr9/GZD5IlW3ZbD66uzMwwpAfnW6yt+JUcH8GRpihu+5UMO9yRhg4pqTcs4pc32LcThsOSR+jCSvmLxnJJ4u7o3fz+BOPMztnNhW6Cip0FZTqSslX52NQGtApdO+JAIsn4njDXtwhNyP+EYZ8QwyNDzHkG6Lf20+Ppwebf+KZrVPoKFAXUJdXR54qj0JNIQaVAbVUjUqqQiY5e6X9qbZ+djy7AwCVoQxlwRI0eRYcY6ME+/YR8/YR9fZDPIxIokCSVYSiYDmSrCLEqjykUglSqQiRSEwwI0+YTGqcziCBQJRQKMaGDWUcPjxCMBjF6UxihM4kRkikMEJgAiM0mrHZhG6bkzBCnZGhoSRGyJbR35/ECLsGuOiiWXi9SYwQjhEMJjFC0sctjRGCExhBoZBSW5uF3x9JXwdCV0MvbncEZ6iQ6pW1lC7eTOvhDqwdx7H2n8Rz8BCIRCj0ZeiK5hKvXo7BoAeE8laAJUsKOHBgmKEh3yQVsi6ZEwyGs8AI5VqGhvxpL9GGhiJychS0tNjJyVFMygcwQYwp3yEnTMoHTE/+vluZo0gkoqBE+Oy+Pi9trXZMJRbG7A7co25eeeoVXnnqFWRyGfOWzOPcC8/lki2XvOO1KBFLyFPlcW7JuawuXo075KbV2cr+nqM80/YiT558ErVUzTmF57DOso7yqnpWYH5XjHDkyBFeeuklvvnNbyKTyRCLxVxzzTW8/fbbfOtb3+KSSy6ZtAD+z4ARPia5PoSwuXIx1n4T69Gf8fQ9t7Dx/BemvVFSdfE2u48DB4dxuwTT4coqfdogWKOe/BNN7WZnsWQTj8VxOoMoFdIZuylmfn57u4Nnnu3ANuLHaFSjUknTZuILFhhpbRUjkuag+pCUKR92DA6O8vtfP0BP53FKLTmcOLyTMccwIrECsboGSdZyxKo5iMQCq56ZglUqob7b7Z5guCQSEdlZMhKJBFKpBI1Ghs8XwWRUodMrGLT6SFXypDokKhUSvN4w3T0eQqEowUCU0jIdWq2cnBwlixflp+vvDxwcRiwRU1oq/EZqtYzyMh3lZToggdmcxVtvDdDR6WLV6uJkk4AYBoOKFeeb6e31oNcraN5tRSwREfBH0ekVfPaz8+nsdPHKK93o9XIsFi273hpIthyGSCTO8JCPPXuseDxhDh+yodUWgP5GcjRXEXIdIejejbv1HiRSDQWLNzGn4hOUV+XQciTKiZOjdHW52by5fJL64LHH26lfYESjliKRiKiuzqHEks2JE6Np34iRYR92ewDr4Dj5BZpJ/nSpaDliZ/duK8eO2tmypXbSakxNTR4+f5Rduwbp6mqb5GWQir4+Lx5PGK1WgcWSLZQvnlfFy8eHeeGIlU2/3sUX64o5ud+GTidPr3xMneynIpU4PvvZuyguzqK5uZlnnnmG5557ju7ubt58800MBkOa5EokEvz4xz9m4cKFLF68mPz8/EkTvqmfs2NHLzt29AFMAjQHDgzz0ENtzJ1r4HOfW5AeU39/P7t27WLXrl28+uqrdHV1AbBw4UIuvFAgUr7zne/wgx/84IyJ5lTFwvup4f84zi4Ot9gpki6lMt/FY68/Q/2iXG6+VPACmjpxSnlnTWeo2tvrmZawmupnNOoMCKv/jgBZGjn+ZAnE1NXKzJywbVsPe/ZasVi0uMZCjI4GUCilVFXlEArFyVZqkIpmXoX8qMfb+07yHz9/BI1Uz2jIysH2E8TjcbIVOsxZVRRml6ORnQnIZDJBsSsSC8/VVGRlSVEopGRr5WRpZDhHg8hkEhobCjlwcIR4XNhPq1WgVgcJBqNCyaDVh8cTxu8Po82WI5NLUCqlWCxaysq1zK8zpsFmrkFFfb0JhyOASiXFaFSnt3njjT7e2jXI6lVF9PV5Od05hlQmYf78PNRqoQvnzp19KJTC8XMNaioqcrBYsvF6Q/T0uCks1KDPUWG1+ohEBaWywxHg6FEbR4/aOXbcjlwuochcy6ZqC0POEbqcJzlhbedI32HK8i1cumY1S5acg1IhR6ORcfKEkBMaVpiprs4V8kGSlFJrpGm/uSVLCpDLJZw4MZouaxwe8dHd5UKrVbB0WWF628zYsb2XlhYbdrt/kmKrtiYPvy/KiROjvN1kJRSMTmt+PzUnYFoplC82/RoeuYrSlV9lQHszDzxwPE0svVs+mDu3ju985yaGh4d54YUXePrpp3njjTfo6+vj/vvv57bbbkvvs337drq7uznnnHOorq4+o1vj2eSE3l43v//9UVpbHWzZUpt+bodCIfbv38+uXbt44403eOONNwiHw6xYsSJNcuXk5DAwMDBtl8iPc8LfLnbvHmTbth5CoRijoyE+89VPIlVq+MNPf8sL98ZZWP8dZHLZBEaw+ThwYBh3sjFJYaEmWQYmn1b1kvmnxZJNPJ7ECMoMjKCbOR+0tzt45pkObDYBI4hEYLWKmDNnIRb1EqwDY1QvlWGoDDLiG8ERdNDl7mIsOEYsMUHwSEQSdAodKqkKhUSBUqJELpGTIEE0HiUWjxFJRAhEAnjDXsYj4ySYXBafJctCK9eilWup0FawyLQIg9JAnjoPrVyLUqJEKVVO8tN6txjoH+Oenz+Nzebm5luuE8iSkzKMVQ0EJMXEwkHGR07i6thOIuwGREg0BSjzF6LKK0elL8TrzfieEhHZ2TLi8QQymQRNtpig2IuhOIGmYBzv6BgSSYhIHrQojuCq9iOWwim5mNMBMQmTmHA2aFUaBrRaxJUiakpUrDmnlJJZSk4c9SIWT8EI5TrKyycwwptvDtDZ6WLVqiRGCCYxwooMjNBsRSwWEQhE0elmwAi7BohEhN9gfDzCgQPDtLc7BYxw2IZWK2N8XEJMNR9VZR3a2SEY72Ks/zi24y+yveNV7A1LMVYsxGYrmB4jPNZOfb0RjSYDI5RMwQgjSYxgHSc/XzPJny4VLS1JjHBsBozge28YYbpwOgN0dIyhSaroYWb1V+oYmy74GoZcJccOHGPXy7toerWJkcERDu8+TF5+XprkisViPHznw1QvqKZqXhU5eTmT5iCZn7OyaCV9b+Uy1DZAxcIQhhovJ0ZP8Hr/64AIuauAsuhC/m3jVVgsgoVAb29vGiNs27aN3l5BgdnY2MjatWsB+PGPf4xcLv+nxQgfk1wfQjTvthKlkNLF32W04+fcetOl/M89j7FkcVl6m8zywcyui5Wz9Hg8IdranMRi8UlG83AmMWaxZLN5czlNu63EonGCwSjWoXF277ZSaNZwySWzgIzSGKPQar6vz0MwEMXvj1JeocNgUCKWiAiFYkmfpX88k7kxp50H7vgp21/4M5GwIJu1dmSjzFmCsfaTlFQsoL3dNeP+IrFA/ESiCcRi0mUosViCcCRGWamW8nI9Hk+Yyko9XV1uTnWMIZGIUCklmAuU5OrDKKUOdGoJYV+MEVeYUDDCeMiM369GpZahywoyq0KJ1z3KT39yijFXhLnz8vjEJ6oBOHZU8Nupmz/RSTPTs23bth4MBiUrGszk6BX09kJH0tA0O0uGxxNiaFgwCm3ebaW3x4NWK2egfxy73Y9MLiIrS07VbD3Hj9vx+aJEYzGikQShUIR4AmQyGUWVqwmHVyKKOfA53qKr9TV+tfdpKmqWUlh1MSFmEwon0mUqHR1j2O1+OjpcHDtqZ+nSAmKxBCdOjOEcDWDITa74+6NUVOgmrdK4XUFsp/20HLFjyFNhMmqoX2Dk2FE73vEILUfsZySoFME7aB1P75d5nU8lllP3y5ICLdGxEG8Nu/jOm6fQdggS/hSIeOqpU7z4YicXX1zJbbdNeHFN7W6ycuVKVq5cyS9+8QtOnz7N9u3bmTVrVvr906dP893vfjf9b71eT01NDTU1NchkJrq6DBQW1nLttdWYzWoWL9YQDBpYtcqEy+UiGAwSCAT4/e9fYt8+H52dxTQ2FtPdfZgbbriBoaGhSedDqVSyYcMGdLqJMc7U8v69tCP+OP66OHhoBI8rzPp557NscRHf+MW9RONhvvW5a9ITi6mTptTkKztbjtGkYnjER/+AF6NJdQZwr63JIy9p6Gqz+dJqMIkE+vrHMRiUtLTYsA75aGgws36dZprP8+AaCyEWeQXvLZHwLNRqFVRV6qftxvhRj0QiwVOv7OJ7dzzCye7+9Ot5ajPnzVuHUVGKSq7GZn/n7k/RGETC0UkKXhGC1L+sTEtZmY7OTlc6J/h9USRiyMtTkq0TERH50ZkiiGVRDhw/yamOURJRGQtryyguEQCoOziGxw/33DfAuCfGvLl5rGw0YzJVYbP50h5sKaP6a66p4ZprarDZfLzdZEWhkDCrUk9BvkYoU+wYo6fHg8Gg5JzlhaTKYUC4JjyeMDt29BEMRZHLJILfpFJCMBiltyeUNHZPIBbB6GgQEgn0agPn6BpZEl+BJz7IaWcbv37yYR5+9QUuO3cNc0x1eLxxQknVwIJ6I08/c4pxbwS73U84EkciFmG0qpNkX4iCQjVmcxZ+n5AT9DpFUsklY9gnkIIp8/r0tTeDMCT1nG9psdHR6cLni5yxb2obtUZKX583uaeOPsO/MVf1AqpdP6eIV9j3plDS19hYfNb5oKCggM997nN87nOfw+/389Zbb9Hc3MycORPA4L777uPJJwVFuUQioaKiIp0TwuEshobqkMtlXHttNVptnGXLtITDJhoa8nA4HASDQbZuPc6jj76J11uERiPjyivncOmll/LKK68QDocnnZPZs2ezZs2aSSVlH+eEv380N1sZHw+ToxfMwgFu/OLVlJSa+PG//5ivXvdVbvnxN/H4pJMxQqGGyko9ra0Ohod9rFhReMYzeSoxlsYITVaiKYxgTWKEwmkwgikDIwQFjJCTo0CplFJSko1WK8c1FiYPE+tKywAIx8KEYiEC0QB2vx1XyIUv6sMf9uOP+okmBEIrGo8SiUcQIUIiliATy1CL1OQp81BIFAIRJlWilCjJkmeRo8xBLVUjk8iQi+XIJXJkYtn7Lo8ctY/y/J+e589/eBa/1wtiOT/zFaNSiUiM9xENjDJu3Q/xCCK5Fml2KZJsC9LsYkG9JREWPILBJEZIxJHl+ZDnjSMr8JFVHESs8xKVBkj12hsH1GEJiYgUcUxGJCQn6g4iRkQsliAeSxCNRpGVKfEox/CJYnizPMSlMR7r3s6TNgmimBxNdQ5V+RYKVUUErUoSxJhfl5/+/TM921IYobbWQCAQxWRS0d3toafHQ3Z2EiMM+dLXYm+vB222nIGBJEaQCRihvFzL/v1DAkaIxohGkxghDjKZGJNJTTisQJG7mKLaFSxZoCLoPMmLj77C/tffRpGVQ27ZQvTZ59OwatZkjHBsCkZwBjCkVcHTYAR3EJvNT0uLHYNBhcmkob7eyLFjdrzeCC0tM2CEeJzBwfH0fpnX+RkYIXm/ZN4P05U9NjVZ2bdviGXLCrn88gll01Tfr/rl9dQvr+dL3/8S/V39HNx1kLLZZen3e0718MAvH0j/O1uXjaXSQmlVKXJ1Dg5fLrlmC6tWFZOjl1NZpiASzKO+Ip9ZZh0evYd+Zz+PvLgTl9bDyapt/PvBrcQfidPz+x78o/5J50OlUrFx40bUanX6tX/2fPAxyfUBxqDVS3v7KLXJi2JFw0LKi9fwH5+/nluu38xXfvhbVPo5k5IWCMz2yLCPigodcrmEQ4dHCAZiVFbpz2CXp/PgWrK4AJ8/ypNPnMDpDFJalk0gEGN4yJeeyGWWKqZKvY4ds2O3BbAOern88tnpDnivPvcUO589hZzLWLVuzd/q9L2vSCQS/Pmhh3ju4XuwDZ6eeEOsQKJZgtRwOSKJhrhEwrw6E6e73IRD0xsoazRSZDIJ4+NhYWVGKyMSieEbDxPw2Bgb6UUnixMJOtl9ykZBzafJz1dTVKSh98i97Hz4FXY+PP04y865nb5eOWq1jMNvPc5jv3oq+Y4IkUTNibdyOLjNgkxporj2SpQaIzq9clIZ3u7mQV568XRaWjsy7Ke318ORFjvmIg1lpVrEEhFarSLtYbWiQai1lyskSeIUlCox8+bmoVBKMBhU5OSCSimmp8dDJBrH74shkQgqhGAohlhchMl8I7lrP4XXtp9jzU/R1f49jIXllM27jFDw/LR3WE6OAoVCwpgrRFu7k+XnFNLd46Gzw4Um6RGRioYVRem/2+w+bPbABJg2aqipyWPLlto0iTadr1xFhZ7RsQB79lgZHvIRjcVZtDCfdes0kxo9ZEqSATz9fi6ZZeSN4TH6qqDDAKFoDIVUwuCg0LFscNDLO0XmqntlZSWVlZVnXJs333wze/fu5dSpU7hcLpqbm2lubgbAbL4co7GauXMNHD9+nIsvXgTAT35y5mfV1NzIpZeey9y5BrxeP0NDgv/CokWLWLVqFWvWrGH9+vVn7Qv2XtoRfxzvP+wOP3kGFTU1GtautbBixXpmleXx7V89SGffED/44icZHgpO8s9yOAO0tNgwmlRotXKGh4SyNmFaf+bkfqrkPmXi/dOf7eXoUTt2ux+NRk7AHyFlzDq1NGXtWqG0zW73MdA/Tla2jLJSLfPr8mjrsPLwvS9w1JrDkiWf+xuctb8uegaG+dpP/8jLb+0jEJq457WKXOYYlpKfZUERF1NSJCxYzBQiEeQZ1Hg8YcRiEfFEFBJCB12Pz0cgOo7rwCDHB0V4Ax784lnoxCUUF2cx6h3jrh23c+er0/uYzSmYh0lvQKGQEIqG+fc7f5R+TyKSkr1DQ9nTeWhVOhbX1LC5sZHhIT/6jNIkm83H44+fpLXNgUolJRyJM9DvZdDqo8isSRvA63WCj4k+qdxoWCHkhJMnnUQiglrt/A1l9PS4icUS1NTq0ekUOEcDjAz7CIUT6ZLNVJOT/PxSvN4l+CJudh3by0MvbSPBy2xqWME8cz12u58XXzyNbcRPTo6SQDBK12kXFosWSHD4kI0EcN5ayyTStqGhKP3d9DpvuusoCNfp+g2lGI3qdDnvVE85gPZ2J5FwlP37hzh1apTzN5anPexS2+3Y2cOhQzYWLTKh1yk5cWocqq9iybK5lBx4kCfW/Jjuxb8GeF/5oLRUx6ZNm87oyLt8+XKcTicHDhzA7XbT0dFBR0cHL7zwAhKJjPr6+5gzJ5e5cw3ceOMNbN26FYD//u/JnyWXq7jggkcmlY6Ew2FMJhOrVq1i9erVbNiwgZqasy8x/jgnfPhhtY7T3u6ktjaJEVaYJ6tPli7h8z/4Lg///Fd84/p/Z811n2HV+oUCRhiZwAgeT5jx8Qgz5YOpHlxLlhTg80V58skkRihNYoThaTBCkjxIYwR7AIkE1qyx0Ngo3J8tb+1i+2M7UYo20njeIuQSgYDKlmdjUpvOGFM8ESeWiJFIJASlVmoKLgIxYsQiwcxdLBJ/UKc6HYlEguY3Wnj2gedpebuJaNJUUSzXIFIa8Z56Drd/BEhgLClDbV4KWeWIFblnkGkqLSjNbuJ6B3KzC7nJg0gWJxFNEOhL4D0pRRNUIfZkEXXFqFh4Fd5BBQpUnGp5iPZTb884zsp5P0Gdm8Pic/J489V7OHnk1eQ5EiFWyJDrZJw0HUZsEGG81Ihcp6K5vZAlvjrq8uooyiqiudnKSy9NYISODgWhkPB9KytzKCsTmmFptYq0h9WKZD6QyycwgkwmpqHBjEQixuUKkZMDKpWY7m6h2ZXfn4ERgjHEYhEymQirXUxOzkIarq1GGrXReaiZo7vf4tH2N3n10Ro05kUUzaoUMMKYIOZYvryQ7m6hkYhGMwUjNGRgBJsPmy0wacEtjRGSBvPTKawqKvSMjiYxwvA40WiCRYuSGCGj0cNUjJC6H6YqI0FQd031ypsaU8dimWXBMssyaRuJRMKGKzZwouUEA90DeN1eWg+20nqwFQBz3Xr0BSVYLNmcPHqSb157y4yfV9WwmQX6RooXBWl3t9A22gZiUJWpyKvNY2nDUq696FrOKT0HS7ZlxuOk4p8lH3xMcn2A0dHhoqfXzbIaI1/7WkX69RtvvY/f/+TL/NetN9Jw4W1ceNW1kxjknTv7sNsD9PZ6cDr9HD5so6pKz7p1lhm9tTLLu3Y3D/L66324PSECgSjRaIL160qZ2n0r9ffUSs/Lr3Sxc2cfVZV66ubnpT/r3p81c2zfqxQUWT5yJJfN7uPtXYOcaj1MbPwgB956nnGPO/2+RFmAwrAZlWEpft/EfpFInL17rDMSXBIp5OaI0OmzsA76iEZjhJ2v4LM3EfKPQCJGVw907ZvY54sbP4U2p5ihYT+ePi19CPXZcmUWEqkcqVRGPCEmEhUhk0uABAqFBKVSjlSuJhr2AwkSMR8+t4/WQ4LJqyx3I3ULi7FYsnnqgd/y+tZnqayuo29Ij91jRqoqRKWU4hwN0Jg0aK9fYDxDyWSz+5DLJWzZUovV6iMUitHb46G0LBtEEIsmkErFrFpdjMsVIhKBnl4XACISBENRCvI1rEzKnzs7XPTZZ4Pxaxhyu8H3Ovt33M6RXX8gf9ZFGMs2kpOjZGG9jq4uF+FIDJs9QG2tYZL33HRhMmpYt87CsaMO+vs8uF1B6uYbJ7W6TnWgdLtCeDxW2todiMUiRob9eDxhQqE4syoE+fZUpWSmJNnpCCCRiDDqFHxnWS0vHh3i5ePDbP71Lu67aQlXXTUbvV7B+vWl04415ZOi0chwuwWQPF0yqKqq4oEHHgAgGAzS0dFBW1sb7e3t7N3bSm7uOXzxi/WUluoYGgqdsb9IJEKpVGI0GvmXf6nna19bnbyW1TQ3NzN37ty0P8xMY5zq5fJx/G1jcHAckUjExo3lac+I799yI/GQkv/+w4M0HzjNl6+6mcoKI9XVuel80NHpol5jZDQS4I03+8nJUbBihZn5dWcaqKaub4lEjMsd5OWXu2htczI44CUSEUiWhgYzKSUQnOkzkfI8evllISdUpvKPScNrTW627nmT3HYtd/3go0dy7d49yPbXOwiIhzhw8hg797Sk35OIJJTmzKbKWI9SnJVuGhIKx7Fax/F6Zya5srOkGPPlZGvlxGJx7KNjbG/diifoIpTszJsZYkmcr9+0HJfbwJ59/cR3CedeIZejUSoQiyVIJRLiMRFysRKnI0RVpRitRopaoSIcDRONxYglorjG3bScEPKa35dgc+NKqqtzKShUMmvDp5lbWUq+Pp9Rqxx5zIAINdbBccrKtNQvMLKg3phW92WSQDabkBMuvmgW0ahwDszmLLzeMHK5GI8nQqlFyxc+X89jj7Xz3POdEI4ikUK2VkY4EqOqSs+551qS12kEY2I+68orsIU72XPsGC++tYtZ+bNYM28VJlMBS5cJ171rLJQkuUTMqtRPW2qViszxgoO+fg8ud5D5dcZ0161UtzGAzk4Xu5ut5JvUdPd4GLH5CQVjRKIJIDEN+BGlSWOLJXvCFN+yDNP5FWTtvpO6Q58G3WmuuvKad8wHIDxv7767BalUzLXXVs8IDm699VZuvfVWoRvc0BDt7e20t7dz8uRJentHWbx4FuvXl1JaqjtDlQWCwjorKwuz2cxjj21CpVIB8NOf/pRf/epXlJeXT6ty+TgffDSiM6m4XzLLPAkj7N49SHOzFZNJjUhk4Es/+S8ev/3XbL33V5i0n0WknzsJI7S1Oamq0lM3Qz44cWJ0UnnX7t1JjODOwAjrzwIjpPJB5UQ+AOg61kLbgUNYKstoPG/Ru35vsUj8oRBY04XN5qOpyYrTGaCx0czxpte5+4d3T4xFriGRgHjYB5EgkmwLipK1qA2zMFmM9PWNZxwtgSzPh6rUibrCiVQ/ikQjJhGSEnVqGXkgjPf4MCG3BzhzQeMLV/yc7Pk5nD7txtNnogcQi8WoVFlIJHJkMhmxmJhgEJSoEQVV5MqM6FQ5yGRqIhE/JBLEg2GCwTDBEQHUzC67EcPiAKICOw/d8RCuQy6yy7PR5BUQDVUg8s1CpZADAqEDCerqjDQ2mic9B1P5IBMjdHa6MBpVaLWCck0qFbNqVQZG6HEBIBIlCAajFBRoWLkyiRE6XRw9KjQdUamkzF1wEcsuuIJdL79Oz9FmbF1/YqyjhOWbNpGfX0E0CjZbBkaofweMYEpihGMO+vs9uN1B6uqmYIRkTnC7kxihTcAIw5kYYVYSI9jeASM4A+l7J/P4qZjqlTc12tsdbN3ajVgsYtWq4hkV8GWzy/j27d8GIBQM0d/VT19nH70dvZxs7SWvvJbNm8sxmTQMdkbO2F8kEiFXyNHn6blgUyWXf6IBgHXlK1lbspbskmz6Qn30enoZ8A7wo0M/gkOQLc+mSFKJ2FrEhrkNXL16NTrFPz6hNV18THJ9gFFVpSevx4nbFaS93YHPL0jljxz1oS75d8SyR3j7hf8h6u/le//7E0xJM+1Mn61f/OIAPl+EwYHxac20JzrXBfENR/D5ozTvttLZ6SLfpGZ2VS4rGsxnqGSmC6NRTX29aZJZuM3uS3dn0OvP3rTxw45EIkH70UPc/bM76DjeTDzqQSTVYipehN/XhLFkOSHpCoLxMhIi0SSCCyAeT9DfP5G8EjEf8VA/iXAfiXA/4VAfJ0/amH/+7zl/YxXt7U6ODPoI+YSaZJFYhirLhKmwCKUmj3Bci0Qqp26+EXDQlnchpcvXcs6Kcj77mfo0IZNIJLCN+MnKkuHxhDEXatj44x/S1/d1zGYlKlkE15gD96iT0x3dHDt8gsZ1dSxYWIjJqKH9yEE6Wo/S0Xo0PXZVVi4UzOPEwXqWLLqR66+bvFqbWplLTXaqq3PR6RXk5ipRq2QUmoWumnv2DjE07GPr1i7BR0wpobxcz9hYCJlMxNhYCINBhVwuoX6BEZNRjc8XZmw0QDhWikr/L6xt/DSjfVs5tvcJRvv+gumCm1m86F9oXGlOewoB0xK27e0OmnZbMeQqaVxZhNMhKFjGxoLodApAlPaWA+jv8xIMRvF4QuzbP8zoaABDrgqTSfCVW7W6KO07k6lUSe2vUUvTKshYLCGYNPujNFj0VBo1PLC7lwvvfJufXjmf//f/Gme8FlM+KUuW5LNhQ9m0ct6pq/pKpZK6ujrq6uqmPeby5cuJxWKEw2HC4TAjIyFOnfIwb17eGYBJJpOxfPnyGceXOUbgY1Dzd4yioizG3YIipa3dkS6f0opKOa/qYnadfoXv//HXPPTTr7NkyXxgssfWQw+14XQIE7RFC2PvaIyaUoO1tjkYHvJhylezbFkhDSvMk1ZE3ykm5YTkZ6lTPnmJ6RcI/l7hGHPzq/u3cs/jrzA67iABWPJKqCi04PGNM9s0j+xEOTKJHBITXXFT4fWEiSVxSSIRZzzswh1y4g07cAUduINOau3zuOWaaykr1/LWrl4e3Tuc3l+nyabQaEAp0aCSZVFbNpslSwqSJsFDXL/sM8yuNPLFLyzCZNKkJ+CCAawdiYS0x9ab1XdRUpKFWiPGPubGMeahvWOIvYe6sBQWML9OaIHe0n6arv5huvonxiERi5ltKaM4txipZi7rN6xIq6NSQCZVhpF6LkokIhbMNzFndi5Dwz6ys+X4/RGczgCHDo3Q2+dh/75hFAoxubkaysp0+MYj9Pd76ehwUVGRw4J6I0aTmpMnnUhECiyauVy1bh1e+vnj83/hDzsfYGX9fM7ddD0LayqxlGjp6/dw+NAICxflJxfiJiLVJTRVnmKxZKdVja6xIHKFFLstkAbbao2UYDBKX7+H9jYnnZ0uQpV6zIUaRkeFRi9LlhRM8jlLnZP5dXnodYqMssVEUknpQK9TYFn4H5i6H4GdP6SxcjeN3/wDKGcGATt29HLq1BizZ+fMWN4xNSeYzWbMZjPr1q2bdvvt27cTjUYJBAIMDo7T0THO/PmmaQm06urqGceWGt/H+eDvH5VVOeSNKnG7kxghmQ+am60cP+4gP1+N0aimosLMXc/eyV0/vIv7fnI3CxqWsmD91dTXG/n5zwWMMDAw/o75wO0O4vNF8PmiNDcnMUK+mtmzc1kxJScIZPKZMV0+sNl8RGNCLsjJ+ejZmjz/5F7e2jVAMK5j60sn0Ul6EYnEiMRi4rEoiXgcibYcqa4caZYFUdKcPiFBILhECRRmF4qiAcSyfsI2L94jQWzPhoiMBll4/a2cO6+BI81eug88QDh0AgCRSIZGk09pqQWNJg+/X4NIJGHtWgvQz9tvX0h5+RouuaSW229fz9atQuOKeDxBT4+bnBwFDkeQqio9n/vcPbS2/jezZ2vJyopit9ux2+0cOnSCXbuOcdnqf+G880oxF6vZdO8mXut+jUB3ALABR5HlyNBVmDglm8fqVVuoXzg5/0+LEXQCRpgzJ4ecHCX19Ua2bu1maOgsMUK9EZMpiRHGhE6Nhw6NoFQWceWnryQRv4wxayevPvkCrzx4L8ZCE5WLVzMgWQgwiURNRXu7g6YmKwaDksbGIpzOaTCCLgMj9GdghH1JjGBQkZ+vRn02GCGZD1Led6lGLlO9t6YjvjKjpcXO4OA4RUVZMy7kTF14USgVVNZWUllbOe32CxsWsrNnJ5FwhGgkitsTYdAaSHdjzQy5Us7CJcJ5raSSRCJBIBrAEXDQ7e5mYHyA1t4evFnHaLO+xK8fB4PSQIW+guqcaubkzqFCV0FRdhE5ipz3XR78UYiPSa4PMIrMwsV86JCN7h4PSqVwemvnGnA6AygqbqH3eBl7X3uYmy48xI23/Iz8IgsWSzbXX1eDze6jqDgbvz/KnOqctIdQSpWTuiGWLC7AZvelCYAVSTXPVHIrFZk3c2eni+bd1vQ+qTLJzG2DIWHmr1H/fUmuFLG1/bkneG3rc/jHha4yIlkucvOtiJWVeERi5JZL8YiVkBBKTKY7jlgiRioV4XfsIjL6Momoc9rPNOW6uP66Gl5+pYtR2zqYtRCpooC8wiKuvGI2NTV57EyWOsQSmvQEWSzRoFSJyTMItc6ZZKRIJKKwQJMuB039jk5HgDePOKhfYKT+nBrqz1nJlTdOHs/nv/7/OHfTpXS0H6O95QBtRw4SGB8l0PkWQ13NNNedRzQurIjrssXTPrhTfy5amE93j5tYLI5Or2TtWgtKhZTWNgdjo0GUSgkV5XquvHI24XCM11/vQyYVc/DgMIsXF7BuXSnhSAzveBi3S1AeGUzFfOYLv+TIoc9z4PWH2PHM3TRvf4hl591IQLIckVjBuDeCyahm3brJD+KWI3YOHx5JtlAWsX//EGOuEMXFWSxaZCLlI+N2hbDZ/XR2uFAqJSgUQnOAWRV6Vq4qJuCPTmpXnyLLDLnKSQnGah3n6DEnfn+Y2hpD+vgglPx+e7OK+97u5pbHDrOny8n3L5mLTHLm6mNqRX+mVfHeXjcPPHAch0OQMk8HSqYzMxaLxSiVSpRKJW+/3cWePUOIRKJJ+89kgvxOY/w4/r4x6gwy5HFhtwWIxRK43CHyTWoqCssx5tzArtPb2PyF7/CNT9/Al2+8GL8vyrp1gpy8tFTLqDOAJkswE0+RFSnyIp0TkuSKXufFYFDS2uZ8R3Ir9ZxwJVc8R50BioqyGBwcJ9cw+b5JdYqKxf/+JJdjzM3T23Zz71Mvc6itM827zcqZT0XOfBRSFdF4BEmWdMaJWcqfSCKBaCLK7t6/4AmNEkuc2bnSH3WlPWuGrD421V2MQqyhuqKYm26aT21N3kTp2wJT+jcpK9UKpRERUbq0IpOM9PujaLVyzOas9G/ocAZ47TU7C+qNLJs/h2Xz53DzledOGs+c8mJ2PfK/HG47zf7jp3hz/zH6rHbae7po7+nC64li0heQZ1CRm6skHo9PmxPUGil+n0AQjY4FKSvXUltrQKGUkm9S8/obfTgdQRRKKRdsKuH662t4+eUuItEBDHmqNDAym4Uy+e5uD2IxBANxLr9wNV/ason7n3qNB196iU2f/w8uXLOUy1dvoP1wlFgsRk6O8oyOV6kuoYPWcQryNfT1e9m/fwjXmJAT8vM16VKV1PbWIR+jY0FUahmaLFlaZVZWrkvnBBAsIYaT5V6Z902qE2ltrYGaGkNGeWQupoZbIK8Kjj4udF+89hEoml61kvm8nel5/35yglQqJTs7m64uO/v2jSCRSD7OB//AYTYLTk2HDtno7s7ACLUCRlAqpdjtAQ4cGKa318M5F11DTlElT//uXga7fkZBzhcpLs4iEIhSXZ3zrvkgRQCsWJHECDPkhDMwQrM1vU+qTDJz21AKI2g+GgvhY44xnn/kZXY8u4PBrm6kGhMJiYaYt4+xRAyRXI9UPwuprgKxOh/RFFVZIhFHbvaQXW1jvO84oztGiDjPVM4AzJPO4pffvorf/e4wp4+tQyRayrx51cyaVcbVV1fT2FjMAw8c45VXeggGZbS2OoEEYnEWajUUF2uBCa8jm82HWCxi1iw9JpManU5Oa6uTQCDCI4+cTM4zhcXR8847j4w+FgDc+9t7OXDgAIcOHeLtprfZt28fkbEIjoODjB4f4oGNY9T5l7KufDWFubp3xgiL8unuFjCCzxdNXwOtrQ7GxpIYoWIKRpBNwQjhGF5vGLdbwAhyuYS6OqHL5/wFjVx98/l0tnZy138/yJ6tzyCVv4xl/ir02su44MLJxuYtLdNghLFpMII7hM3mp7NzCkaYpWflymICgSkYIUmWGQzTYISjSYxQOxkjvBc/0swSx/fb1XG60kuxWIxCqUChVNB+cpiTJ8cQiUST9p9uP5FIhFqmxiKzYNEKc8ujcSsHjw9QUBVBlOPFEXDgDDp5setFHmp/KH08pURJgaYAc5aZfHU+55edz8qilWd9Lv7e8THJ9WGECAy5gp+K2xVELhNTOzcPjVrG7Nk309G6gL2v/A93fu86apZ/nlXnX4alVEd/n4dwOEZtrYHiYm365nI6AoL0UZKUPhon+w3J5RI2by7H549is/smEVk5egW7dw8CgpLlzTf6OXrUjtMZoGKWnkHrOM27rVRW6tNdNoLJ7nuJv8PKfTwe58TRQ7y+9Tle+8szeFyjU7YQI1aUIlbOSieqVJfERCIBMTfxUD/xUK+g1Ar1oyv/HOqs2WizFTijKuw2geDKMRahy6uksqYOZXY5YQqprCrGZvdhNKpZvnJhmpzK9IGqmy/4ZbldwXTDgLVrS0iZxQOTfp/MTpcphRcIBrmHD4/g80VmXBXIN5eQby5h9UahO9LRI4PseOUtxoaP4fV4KSjITRNBj/z6M8hkMuobLiKv4Yr0GFKxbp2G3c2DNO+2Eg7HaFhRRMOKIp58qp3XXusnP19NTq4SjVpKOBzDNx5BrpCk/b1AKL8CMOSpCQYjOJwBjh21M+JQsuHqb3LJJ/6VR++5gx3P3o1I8gCFs6+mZvFFTJgwTETKG86Qq6R/wIPN5kehlJCdLYA/Q54KcNDd48brDVNo1qBQSDhyxE4oFMNiEVb8A/4InaddkACdXjDZPnRohEWL8ied88ICTboTaTAUo3G+cZJSLFej4GvrZ/P04QEe29fH4T4X9960mKIc9aRxNzYWv+NqeGurE4cjSF6easZV/amdS6bGTKaPra1OfvjD3XR1ubjpplp+/vPzpj3+TGM8W1D0cXwwMTgolMRptRMdcz2eECKRiPM3lhEKRlk8XMKj21/iv+99iDf2HuG8uRtYOL+EUWcQmy3A0qWFKJVSXK4QTqdQJudwCjlBkiGHz5zobN6sTXdVTJVypUivVOlKyh9p/74hRkcDtByRIEJEaZmWlY0T20XEAqkg/ttUm5wRjjE3z25v5oFnt9Pc0n6GoEwty8agNqOQCqVbUvEE8IrFo3jDY7iDDtwhB+6ggyxlFg1lm1CrpehECoJdPmKJKGqVguqyUnJUecwqKqGsoJjc7FwczgB+XxSRSMTXvrBZUPpkTCDn1xnTvldpg2hzFpdfPpvMcqDMEryp28PkfDC1uUAqVEoFKxfPZeXiuYAwoX31jZMcOXWSIx0nmVe0AIlYxNFjDo6ebue/7/8jl61fyZr6pZSUWM64ToSxiejp9tDQaOa2ry3FZvPh80c4fGgETZaM0lIBlDkcgfSkPFVa+8ILp3G5QpjNWYRCMUKhGGqNlMFBP2W5s3n4v37IoY6j/PS+J/nLm/+NJXcWq2pWE4sZzmhkkFIwppRcu3cPMjDgRSIWsWhRPosX59PX50WtkaZVwgqFmEhY8PqRyyT0JdXaep2Cw4dGSAB6nZK2Niddp13odYp0V0eY6EQaCsUmEcUWS7awYjbnAjBUQfNv4P7z4fwfwTlfOGM17cPOCe+UD15+uZuf/3wfg4M+brqphu98p+GMY3+cDz56YTAkMYI7iFwuprY2D41GRjAYxW73c+SIna4uF3J5Pld/9Ts0PfsoP7v1h+Ra5lK7+pLJGCGZD8RT8kFmSdrmzeX4MnJCisjKycnACBopb76ZgREq9AwOjtPcPAUjBJMLAn/HdY9QMETTq008+6e/0Lr/8CS8EvXZEKsLURSuQKotR6zMAQSMkIiMEwvYifltxMPDxEM2LP9WQdZcMaKwgsAJHRGnYB2SX1BCnqGK+vqFqNXl+Hx5zJ9fTm+vG4tFx8UXN5KXp+STn5w36f5Zu9aSPvfNzVZmzdKzZUstkEgquyY8j3p73ZhME/dgSuHV1eXi1KkxTp0ao7g4e8b7s6KigoqKCq655hp6e9288sopTp8+wqnTe+ga68Ig1XMkuIuWtrfo+34fuToTy1afh7Fx3Rn5YN06Tbp0NhyOpW0MnnwyAyPkKNFokhjBF0Eul6T9vSADIxgEjOB0Bjh2zJ72hwNwBbLIq91MUWwuweEDdB3Yzm/a3mas53ouu/ky1FnCnDvlDWcwKOnv9zAy4keZiREMSYzQncQIhTNghECEzk4XADrdFIyQobIuLNSkO5EGgzEaG42TlGJnG++m9Dqbro5T1cdTYypBmbnf44+fYHh4nPPOs/DpT8+f9vjz55qZP9ec/ncikSAcDzM4PEZH/zDS3HHiigDukBtP2MOIf4QuVxdyifxjkuv/clRW5lBhykKjltJyxI7HE6JyVg6+8TAtLTbWrbNw9Q0bsMyqZPdfbuf4rl9hPf0Wyzd9BYncgN8XQSYTT5Ls79zZx6B1nCLzmdLHpretNDUNoNbIUakkyGUS3J4Q/f0CMDEXZXHy5CgqpTCelKpMrpDg9wsPj3Akxs6dfXR1uTh92kUw2dExkZjeNPeDjng8Ttvh/bz16ku8veMv2IetiCUy4rGJlRSRwoI06xwkWUsQSbWT9o8Fu4iObSUR6icR85xxfGnCCok5ZGfLWXPDpRzaW8a6TQ3YHMJqsGWukaqqHF5/vY/OTtckUieT3ErFTATW1JjOKD3zuP19HrRaBYZc5Vmfq9Z2D7axIhacU59W/x076qD1WAf9Xa2QiNN14hAvPfIz1my6hCu2fBZtXkV6HL29nrS3Q0r1d83VNVxzdU2aDEqVwKbktqlSQ5vdh98fRaWUUlWVw/h4BLFEBAhKNbcrSL8H9GU3scZ0AceaHmSw9X5cA9swZt/KSF0ex48Jq1pT/baefbaDoSEfMpkE66CPliN21q2zYLP78XrDFBQI9fg7d/YRCsXIzpJhyFWmyatFC/Pp7Bxj27Zu1CqZYJCcqzrjnKvUUl5/vQ+PO8Sxo/ZJHSwBJBIx55YaSHiiNNvcbPr1Ln55zQI21BZM+h2mgoPMf2cCkpkmJjOBlszjbN5cccZ+Op2c9nYnXm+EP/+5YxLJdTa+K+9Grn0cH2wUFWUhjuch1Rs50iLkg1mmHCwlWrq6xjh6zE5VpZ6vbbkBR2gl/3nn/Rxqv4srRy6kNGc2DqcfhULM4sX56S50qZxgHRzHPEUO39fnZfv2XgatXrKz5RgMKjzuiXzQ0FDE7mTpCkChOYvaWgN9fR7GfRG83jCRSJyjxxzs3NlLT48HsUKYnP4t8cyIY4zndjTz51ff5vW9R4nH45PILalYRmFWBcXaKnJVBWe2v7Y14wxY8YbGzmhJH0n4yc9XM+6NUFam5eacq1ndUME1ly3kySdPpRtdgKA21Wbb08q6qWULcGZHpZm2g3duPd7XL+SDXMPZ54O+Pi9DvVGMiln89y1r08RZX7+Hx158C6fby/1Pv8z9T79M3ewyvvSJi7nxkrWMe2PpcYSCUTo6XWg0MmprhLLIL3y+Pj3xl8slyc8SOnA6HYE0IeT3R1GqpFRW6RkfjyARi9LXqMsdwusNk6+u4F83fY6W7mO8tGc7j+1+kLF4I3MXXMuBA8NpVZnFkp322wLo6/fScsSGWCTC5ZrwLLRahe6QBQUafL4IHZ2uSUb7qe+1cNFETlCpBdP8XINqUj5QJ9vRKxQSnnn2FFqtPN3BMv2bxQsZMN5C7fifUb7yLehtgsvvAfnENu+UD0pLdR9YTpi6r04nZ3RUKDH1+aI8/vjJNMn1cT74aEZlpZ4ynR6NRkpLMidUVuYwnoER6uuNtLTYiUbj9PZ66LeKWLj5k2iLDnJ4+7M0P/ErdOKrWHnhxgmMMEN5VFOTlbffHkCjkaFSSZOd6jIwglnACEqlMJ6Uqkwuz8AI4ckYIZBcCI//jTDC1BiyevjK1bdg6+/LeFWEWGlAZpiLNKcKsXRicTI6PkB45ADxgJ1E9Eyz8OCpOPHeZdTKz+EzF5bxgv8wN920ge7uEDt29FFVZWHp0kIeeqiVAwdGqK3Ne8d7eiYCa2pMd2+njltfb+SZZzqQSsW0tjrP6v5sbXXyxhvDJBL5fO5fvs3mzRV094zx5zeaeeHEQxzvP4anz03PsQ6eu/+PrL9sPVd++kqycvOnxwhJ1V+qm28qJ6RKYCdhhCSp5/dHUSYxgs8XQSxOYoRCDW53kKYmwbtLrZZRUmHGvPJ6XPbz8fbv4w+/+CMP3/UYjRdeyM1fvnYGjCDGavXR0pLECLYZMEK2DINBmSavFi3Kp6MjiRHUqSYq02AElTTtX3fsmJ26ujPVWDPl8XfaJvPfk/DlDPvPRGJNVWxODY1GysCAB78/RlOTdRLJ1d7uSJv0TyXhRCIRComC0SGwd8qprq5MHz+eiBOJRRjxj6BX6qcd70c1Pia5PuDIyVFQXmXgwMHhNFNbNz+PnTt76e/zsOutAcq21KJQZvHJr/6M7S++xN5tt/Pqw59n2XmfRKlaiVwmQS6XsGSKZ1dpqTYt1U8B846OUQYGvOj0Aqj3jgsdtBQKKSWWLOrmCUy43x/B4wlRVZXDV25dnJZKzq01Y7P7GR72IZMK8k5bVI1nWCCfPqyIxWIcP7iH7S88xds7tuLzelBpcsgraaDAeDPO4S7io9uQZi9DnLUUkUhKPNRP1L2DeKgfqXYVkqxk6UAiTtwvdKMQicRk6UvIza9CmV2GwVzF7No6hkdi6XLOq65eAgg3fOr8GvJULFooGDSmSKnpiKvMeLdtJjHxye0y92lcWTSJUDubyPRvSx1Pp/eiUBu59suPIwocYPeOZ+nr6mD780+y/fknKZuziDlLbuTcjeedsX9mZD5UU+WsJZYsdu7sE1RX/iixWILCwizq5hsJ+KMIhFVe+ruOjgYZHQ1SWFjARTd9n8N7D3Jy/x957K6v0bzjEUxV16PPm4NOLwC5Y0cdQILq6hxKLNmEw0L7+foFxvRqRyp5pTqDpsY/5grRvNtKRYWOyko9O3f2Mmj1MXu2Pt14wWb3TTrnfX1eAv4Y+04PMTAwfkYHy9Q2kaEgF5fnsdc1zuf+dJBPryzn25trkIgFMP366/1s29bNxo3lfPKTuklgYfPminedkMzUueTdQIfbHaamxkBXl4urrqqa9N7Z+K5MB6RSEy2dTo7bHf54Vf8DDGOeGqNezIET0XQ+SPkrPf3MKU6fduH3RVi+3My6cxZjzinih7/9E4+89jSzi2exfNZqwmEtep1ykronU/WSzgkmDeFwjM7OMXy+CAF/lHHvRD6wlAilMg3JEoR8k5rhIR81NQY2bixLq2MKCoSysFg0jsmooqQim0ebP9x8AGAdcfL0q2/zx2d2cLj9NCKRiIr8MjbWn4/Il8eOjqfRKfMEYktZwHjEjTtkp899gkg8xLKiiU52npADT0h49map1BTmFpKvy6eyuITN5y1AHFczNhqkodFMbc2E/16mH1rma9MRWdPFu203dXU2c/uVjUVYSt5bPkiROem8lTyeyx3iypUXc9n6Ro72HOX5nXs4dqqHz/+/O/nWL//IxatWce68NTN+59SxM/9MdeC0lGTx2GPtKJJlITXVBnINSkwm0uUgJpMGvc7LwYMjOBx+4glYt+QcciQlNJ/Yx2sH9/Hmvx5g8/JzuXDFGiRiKS53CBDywfw6Iysbhet01BlgQf2Er1ZBoYbFi/PTJZ4ajYwF9UZcYyF2JxUIIKi5nI6AsHBVks38+Uaqq3MmnXOTScOJE2Ps3NmDRCKmuDgbvU456Tfs6/NyojNEfM4WlhTOgdZn4LcNcN2jkC8o6t4pH6Se9R9GTnC7w+Tmqli0KJ/BQR/XXTdR7vNxPvhoRo5eRWlpAQcOZGCEuiRG6Pewa9cAZWW1AMyapScUitHT40YqVdNw/mpQFWM9/hpbH36Ew2+8xme++Rnmzxeuw6n5AASMMDjoTYN6b0ZOKCnJoq5uGozwlQyMMNeMzZbECMkSsAGXGs8QJP4GJeyjtlH2vbmP7c+9Rk5RDe2HjzF8up14NAiIEKvykObORaopIB4cJRawE+x5BblxIVJduXCQeIyYN0mIiUFhVpBt0aPPLadIvZxzatfQf0rClZfN5sor5/Dlzwu5pKlJUHStX19KcXE2GzeWA4n0PfF+7+lUTHdvZ+6zZElBmgQ7m5g71zBpjADlZTnMNVXTd/AzzP/KhXR6HmPX1tcJDAXY+vhWtj6+lVnzaqlp3MSajUun7SaYikkYITmPKClJYoR6Iz6fgBHM5izmzzcSCCQxQt10GEFDbW0ep06NMjgYY0H9Bay/+jIeuuMhdj75FAd27uTGL9+MrmguIrFIwAglGRihfhqMkOwMmhr/2FiI5uYpGGEwiRGSjRdSZfOp+6WpycrQ0HiaPNNNyQfw7iorgGPHHGm12Lp1mkn7LFlS8K7ziZnmEu/22T5flOJiwS6hsdE86b2WFjtHjtgBZlSaTUeuOewB+vq8xBVh+oIOFkjd/zA54WOS60OI9nYHr+3sZdwXoa6uHJNRw6rVxYQjcUpLtTTtttLZ4QJg5bqNxCWzsJ1+gj2v3oPO8AJrL72FkpK69LFS5twjwz46T7tYtDA/7W+kVEkFH418DZs2ldO820pvnwexOEEsNnEhN+22olBI0p3rUqRFysNo6+A4MrmENYsL2D4isNsfdAILh0Mc3P0WW596iMN7dxEKTF5RiSjPxxE5FyIgVqmQaIaIBzqJut+ExJTucyoz5eXn4vNFcDhK0M7awpe+eimLz1nE8TYPTz99Crc7RPX84jOM2VMxVVI61TPqr42ZmPhUnA2RlopMVdjU7zPxOZWYjKv59Jdvpf3IQZ59+D52bX+JnpOHaNhwXZq8m/pwS6nBUgqr1LgaVhTx2OPtHGmx4/NFKC/TkZ0tIxaLc+DACFbrOOcsK5j0Hfr7PIRCUUqKtZRYsrEOzmZ0/DaK8gawtj/Cvpe+Tt05F6K75Hv09cGhwyPpMsOUCqF+gZETJ8boH/BQUpxN48qi9GcY8lRUVeVgyFPRcsSeXnGSyyVkaxUUIYCxVEmKTi9M+FLfz2zOQqWWIBKJUaokaNTSSd53qfPZ3+elu32Mi88p4Eiuij+83c3B3jF+v2UxJq0SSCSVJcI9MtMq/HuNdzvO3LkGvve9hmmBx9n4rkw36UpNtKRSUbrpxD9KAvtHiI7OMVpaQiRICM8rZwCTScPqVcVEwnHiiTj79wtG4uvWlXOL/UbeONDCzmM7ePitB7hw5Uqu1E78prt3D6bLD/2BKE1Ng0kjb036XlCppaxeVURf/zh9vRP5AAQ1lz5HwY7tvYDgV9TX52VBvZEqX07Sq2gQiUTMkiVGsnOTq/YfAqDp6h/iwed28uhLb9DZa530nlysojp7HSKvQCxXGRbh8A/Sbt9HIDp+xrGkshillhwc9gC1hQvJMyr5z9s2EAsqeOaZDtzuEKtWFHP1ZdPnA4DamrxJZOJMZYPvN94pJ5wtkQaTV3OnGrgDaWN1i2U+JtOFjLm9/PGZ7dz58Iv0DI5w8EQbX7r2qjQhlfk9U8dOqZxSkSpdeeyxdvbvH8ZgUHLO8kIA3ni9nzFXkHXrStPfwWLJpqNjDL8/QkGBJklUeZhfvISrzz+XHu9R/vjsNna37ucrN1xHfqKGlsP2dImhxZKNpSSb6uoc/D6hhCvlq5VaYTaZNOkukm1tzkn54MSJUSwWbdpnLBZL4PdF09/x6DEhJwz0e4hG4hhyVVRW6oUuixl+YYLKzkvLEQfqxpXUrqmCvffA79fChb+ARVv4sPLBux0r9dptty35OB/8A0V7u4PXXutlfDyJEUwaVq0qJhyOY7FoaWqaUNuWl2sZGhKM4aurcwV/ogur0av9PP37h/nhv/0QnamQc87fhEy2lO5ubxpYAyiVUhSKDIzQbKW3dxqM0JTECMnOdSnSIuVhtHXrODKZhDVrCnixQwF8OAsfkXCE4weOs++Nfex4/g0cQ8MZ7+5HrMxDapiPSGkg5u0nHrQTtr5NeIqnokhXSFn5fAJKG5GCMcIOM1nlGirL6shxLCJ0spjhDjFrl1TM2GhoapnvJz/5wd4H7/acOBsiLRUpcnrt2pJ3KHdeQmnpjfgjfv7n8f/h3rvvZWTvCKePt7HwwoZ0PjgDI9h8HEs+L1PKJpNJk84HR44kMUL5NBjhnMmETn9/EiOUaCkpycZq9aZV2gsWlyO+7Ys4hqwcfPUFfvO9X6A1mqlu2MzVN6+bwAj1SYzQ76GkJJvGxqL0ZxgMSYxgUNHSMgUjZCsoKpqCEXRJjJD8fv39HiKReHLxwIRGI53kfQdJjNDvpaXFlu7AeGYkJv35bnjwbOPdjmOxZHPdddXTqsTeicBMxXTzkBSxFpGNQ0xCq/LslIUfhfinJLnuuusu/vd//5fh4WEWLFjAnXfeybJly/5mn99yxM6Jk6OIIF0WdsGmCoxGtdDaVy1DUy9LK4ha25z4Ajdwzeqr6Tj4B56575sc2/0IN3z+KxxsM7J/3wgGg0rwe0qAxxNKA/MN60uFDigLBPlhZaWepretOEcDadVL024rhw+PkJ0lZ3w8TE6Oiksvq0wrxY4dteP3Ryk0a4AEFfWfYPWFn2Tlqjkzf8mzjFG7jR1bt7LtuZfo69wL8WnMHMXZiMRKErGx9EsikZyY562JbUQyRPJiZOoSjObZLG5ooLZuFuFInLZWJysaVqXL7yyWBMuWFk46B3+PeL8k1nT7TKcKm+lzRCIReUU1bLz++1z56a9zcNeLXPvp65HKBK+a1156hngiztrNlyORSOjr83Lo8AhuV4iWFjubN5enH9qp8xeNxnnjjT5EYjEL6430D3gZGfax7dVe8gs05OgVdHSMUVqqTavTTEYNGrWUXIMKQ24lmy7dxPbnH6flzfv52pZ1NGz8LIVVFxCJTHQ+THX+OnrUjtsdwmhUC10m2x20HLGjVEjwJctpM1VdhjwVGzaUpj831VE0lRQzybQrLq9KlyT5/NFp1XbBUJTODqGE5xPXVlORl8UTB/s5//a3uPO6hWnPhdTkIXMy8te0a3+3Sc07vf9uvjAzReo7ZK7c/zPF3zsftLeP0tEZQSyGeJx0WdgFFwg5YdeuQWLxeFoxVFaupaynnC9s/Bw+eTe/f/oFll67jy9cu5nbPn0lr7zSzYmTo3jcIVavKSZBMiccGKa0VMvq1cUsqDdSW5OHzebj7SZrWg2Tit1NVlpabCiVUoaGfZiMalatKk6XoY06BTPvUChGzAFP/vS/WDDf9Fefi0gkyp4jJ3jg6TfZ+sY+hsfsZ2wjFklQSFSIRWKi8YjQHRFwB+0Mj/ekt1PLstEpDZQYzSypq2ReeTlr1pQmFT35NKwws6iuCJvNx9JlhWecg79HnC2R9W7lEO+2mjv1cyIhMavrGrj+4fXsa2tFIZexdKlAUPn8Qb5z+4PcevNllBblT3oODw/7icXjbN5cnibCFtQb6epyYXf42btnmLVrS1CppNgdCY4fc9DV5WZurQGZXIJCKaFufl66BPC666vTHRSHRwop09WyrWU7X7/9NyypqeXqNReSm2VIdz1MjSMWSzA84ksDlspKfZqkAhge8pNrUFGfVHXlZZShTC0VSZ2/lGdXZWUORqOaBfVG/D4hH+h1E35hJpNmcknn9XNhww9hz2/hhS9Bzy7WrvrRjPkAPryc8HE+eH/x984JLS12TpwYRSQiXRaWygcnToyi0cjQaGTU1xsxGFS0tjppb3diMKi4/PIJBffiFf/N977xZ/a9+jKvPvxHml58npJ5KzAXrOXAAcHvZ8OGJEaoz8AITVaczkAa7DY1JTFCdgZGuHSiXOnYsSRGKBQwQs3KCzn/2itZde7sv/pcJBIJ7HY/27b1sP3ZnfQffB7OKIMUg0SBLGc2ymJBgRoPuQn1vpyxiQyxKg95lhFjcQlzNpgIztlDQjSCJqymWnUxXz7vJrJ8ZvpPxQhWRDle4vi7NmN4PyTWTMrKd1J8Tv0ctUzNZ1bfxuKcGzgUfIaH/nwf7XOaeX7Yz1Xaq9j74l7kCjnnXnQuYrHQ0OrQoRHc7mkwQv0UjCASsXChif5+LyMjPrZt6yU/X0NOTgZGSCqWTSYNGo2U3FwVBoOSzk4XNpuf+sVVrD3/P9n6TDMvP/wo+56/D5/1IBfevAWnR3EmRjBp0qV4SqUEX3IxI5PUMRgyMEIyJ0AGRjg0Akzkg9T9kirRBCblhGAwSmcyJ0xHctXVGdHpJoztM3PyO5UNvlu82xzind5/N6+wmSL1HeIKOeGg+B8qJ/zTkVxPPPEEX/3qV/nd737HOeecw+23387GjRs5efIkJtNfP0k/m6hfYMRu96f/norpfJ7a2x2cPu1idDSIVqdn/nnfY8WGLbz98h/4wb9/muycUkTZq4np11Bba0AuF9RYr7/Wx6JFJtatKwMEYg2EizgzCQIYcpVotQrGx8OMjoaQKyS4XUF2Nw/S2+shGo2jVEkoL9NRNz8PEAEJghEFk92vZo5IOMzI0ABdJ1rZ3/QGe3e9zZhtAIgh1MqXI84+l7h7e/r46Yh7ScS9JMJD6Ze0uXlIwxdjyC8lr7AKT0BPTo6KJYsLJil7AC7YNNm7yGTUnHEOPurxTiQWTL523o0QyzxedXUun/j8V9Kvh0NB7vn5Dxi1j/Dw735D3crPsuLcc1m0MJ89e60MWsdpOWKnpiYPm92H1erDZFTh8YQZGwsSjSZwjmZTUqylpcWG0xHglVe6qakxcKRFuAbXrbOkJfM1NXlpIqlrzwgh8XIu+/xqTh9+hJ3P3E6O8TmWnX8LPr8praDqH/BQVqpFIhVP8sbZnVQjNjaYp1WlZZ6LTN80tytE5Sw9IHS7tFiMaTVcJhmWGZkEmkgkolKn4sJiA2/bPdz0x318aW0lV9TmJzvnTJ5UvFOZyNkY/fb2unn99X5SJqUf9IrJ1DG8l4nWP1p8FPJBTU0uPuLo9QpcrtAkosViyWbVqqJJZEYkHGdoyEc0GsdcVMrW3/yMV/a+zR0PvcBdj77EvJK55EoqkUoNzK8zIhiHu7Hb/CxeXMCCemP6XqytyeOKaZ6FuQYlSqUU73g4bSJst/vTZWixWIKqSj0L6o1YrT4ggV6Tc9bfOZFI4HR5ONk9wK4DrTz36l6OnOwmGBGM8+USFfmaErJkEcYjrkn7xhOxtFIrEB1HJslFo5Yyv2IeRqeRypJiKsxFhPxi8gs0XHzxrDMUV5kdxEwmzbTn4KMc78V09mz8QTKPd+m6FZPe+93jW/n1n57nd49vZctFG5lftIQis57q6lwGt3ZjHRznSIs9TZparT6ys+X09QveX21tTmpq85DKxHR2ugj4ozidAXJzlCSA85JGy6nV8OuvF7xd9u8bwu2O8fkLt3DpmjX85A8P8+3f/5ILlq9mdvXVVM820tfvZaDfQ3FJNg0rzPT2etKli4eToEulklJTa2Blo3nS95/69xSwSfmALVyUn+y4JWN+ct9M4JMZU0s6bV4ZfZot1JSVoDn+DKXWw0hX/54jgmvCGc/TvzYn/DUk2bvF/6V8AB+NnFBfn4ER6mfACKYzMcKxYzaCwegkcJxXXI6x7nJUEg+acBvH9mzj1J5XyC+fy+qLzqNh3WTyzmQ6c35sMEzBCHIJbneQ3bszMIJSQnm5jrq6CYwQCIs5W11KJBxheGCYrhNddLV38drLBxns6UGsMCCSaYiND5IIn+mpK0QcYgES0Qnzcq3BgNhyDsaiIoxFJXiCKvS5cszLx7DpjzIc7sWSbeGK0k+zuXwzJdklqGWCT9f85Ne/8sq/fiH/bxXvpVnR2TxTWludHNzrZMWK6/nGn/6d+4/dz6MnHuX7b3yfjh90EPAEePCOR1lw3qUsP3cRixbls2eP4MPV0pLECMl8YDJNwQjOICUlSYzgzMAIR2bACMnFheZmK3a7UOFTVZWDNMvMpV+8ja6jLRze+Ty/+Mo3qF+zHvPcVZSWapFKxen7p6UlAyM0mqdVpc2UE9zuEJWVegC0WhmNGblkJuXUVFXU1Dyc2n9q+XBqrDOVDZ6t39dUZd0HGdN9F5NJw2hgFJlE9g+VH/7pSK5f/vKXfPazn+VTn/oUAL/73e/4y1/+wh/+8Ae+9a1v/U3GUFOThyFPkNALHeKEyPQFSv275Yhd6GInExONwtEjDiqrSrj2S3dxifskzzz4O44ffATf0J/5C5u57lNbyMoyCTlG+B8tR+zs3z+MdXAcQ54KpyOQVqrU1OSlvZ9e29mLzxchK0vO0LCfkWFhZVStkRAMxAhHYmmPp327j2EfPEKpRUkoECQY8DPuceMadWAwFVC9+DKe+vNJWg714u34FiTC058MkQJl6Y8QSbJJJBIEPW9ObCvJRiwrRCQvQCwvRKy0oFCIKS3T8Y1vLAXWviuZ888S76W0MbNDY+Z5ySS/ZjQttPtYeu617Nr6RwZ7TjDY8zVa9zbwg1/9DLO5apLpcqYCSpC/l+EcDWDIVeLzRzAZ1YRDXrI0Qgcu6+B42hMic3ypMRgMStpancypMXPhxT+h+dwreOnhn7Dtka8ycHIjX/rPHxEMRbEO+lhQb5xUllm/wMixo3a84xGCoViawOrr86Zr9PV6BYOD4xhylWkitK/Py9Cwj+rqXIB0CeN0HmmZMXXFo6/Pi61nnE1VuZyMhrjztU6eeqOb/I4gWXIpX/xifRp8TFcmkpp02Gw+Tp92Y7P5ZzQkbW11sm1bN4mEkBinMzJ+PzF1DPDPX4byUcgHVZU56MzCtbh4cf60QDxzItTa5iQUEoincW+E3q4gX7ruCs6rb+TV/U3c88RWDnpa6PZbyJ/tptxYSSyWSHfq2bmzT8grvkja0NvhDHCkxZ5WeK1sLKKry83pThcSqQiTUU1rstxLo5YQCMZYvaqY2po8/L4oR48P0zXUi6VUgy8QIhAM4R3343R5GXaO8c3PXM3xFi+PPtbOzraXGRrvZiar+qrcRcw2LEIkEnHCvo/OMRcAIsRkyXVkyXPIVujJkueQpdAwZ3YOmy4ow2xekf4+H/Sk7qMW75oPMibR0600pyKz9DDVEXFq1JSXs6S2mgNtJ7jvmZdQy1/j+g2bueTim2Ez6esGJhRQgWCMubUG1GoZuQYlfl8EiUSMVCJGn6NgYb0RjydCruHMLpImk5ATUg0Pysp0rK9cxbJ5tTyx/VXu/fOL7D/ZwtdvuhGdpIhBq9DtOFUumfpeCxfls3ePFaczSCgYS5+Lqfkg16BkZbKcJXPxZ/260vS5Sym3ZloFn1rG2tfn5cQpD1SvZ8nKWjhwP6ZnN9Ex8Gmami5ALpdMIqT+2pwwlST7OB+8//go5ISamjwMyTLblPk1TJ8PWlrsjI9HkMvFRKOJdGlYqpRww4ZSIpE4YnEBq1adR1XF17nrp0/QvG0nT9x+O8/8Vkl2fiWtSxaz7qLlzJ1fgtMZmKQkaWwsoqREy2uvZWCEIT8jI0InxkQiQWNjEXVJP0mdzsveXe2M9HRQZtEQDAQJBoJ43V5cDhf5RfnMWbaSp546ScvBHsaOPDh9FQcQC/uEEkRtOWJNIaHebaRyh0iqRqzMTf8nUecLGKE0hRHOo6/PS36RjJPhw7zWv52TYS+zNbP5dN0nOc9yHoVZhcgyOu7+o8Z7KW1MdWhMvZ6KmRokZcmz+PfF/85Vc67iP1/+AcPrhgm/HKbv1Gn6Tv2S428v5Ed3f03ACMnrBpikgEpjBGcAg0GJzxfBZFITDnvJSnbptVqnwQimKRihzUlp6YQ3pUYjJT+/kSVrltB16C2euf9Jju7ezarLruQ/f7Il3XSmvt7IsWN2vN4IwWBskoI3HI5x4IBQ9rpkSUG6qVsqJwwNTcEIU5S80+WE6TBC5ney2Xzs3NlHT4873d10qvotk+BOjdXtDjI05MftDqU7O05XPpg67ynPsLMhx94tpo4h9V3+keOfiuQKh8McPHiQ//iP/0i/JhaLWb9+Pc3NzdPuEwqFCIUm/J48nplWEs4uxsZCtOwaoq3dgVgsQqOR4XIJ7PamTeWT2lenjLR9vgiGXCX5BRra2pz4/REOHhxm8eI5/OrBx2hv7eC5Rx/i8Nsv8NWbnkaXk0f1wrVEZ2/E582hfoFQPjA2FuTYUQc2uz+9kl9Tk5cG8qnSsVg0TjAYpcQiGBHb7T5GbAHaWp1csKmCP97+fU4dem7mLylWIdU1Ew92Ew92z0xwIUasLEckER5WEokIReFnQZyNVJFHtk7PokUFlJVp0WrlGaWH5kkkxP+FeC+ljTMBoEnGhosnvLIyya/hkQgFVZfx1Z9dzlsv3cuuVx6nv2M3n73sXK7+1Be58Qu3olCqknJaGwUFGsyFmqTCT/gMu91PV5ebRYtNLKg3pcv+8gs06eQBQgnis8924BwN0NhgBqOa/IIgcrkEk1HDpVeu5eLL1/D7X/+elx75JV+78Xyu+NQ3mL9g+RllpjU1eWzZUkvTbitKhSRdvujxhBj3Rhi0jhMJxwhH4uTmKimxaCcRbJnn6r3UxKfOnUY9ARKX56kR+2LstrqwlUjIPuplx47eNKCZrkwktQo3a5aeFSvM6dbSMDEJyTT8nWoe+kF0wZo6hn8kyfH7iY9CPrA7/Az1OznSaaetzUltrXDOj7c6yM1VcvHFs9IlUiBMKFLG8JaSLGIxwUw4ZQJ8xZoNfOn6S3nsxSa27t7FF394N5Bg4Zw5XHF+Aw6PhvkLhHs1Go3z+ut9LFyUj93mT6t9Ux30Nm8uZ3eTlWgsjlQiRqsVgIDd7sM2EqC1zckFF1Sg0Sb41//9PuHYTM95eOGFDhCBK2jDGx6bcTupWIYhoxtiiW4OeRozWQotBq2OkhI9JcVC16DTp1309XlYu9YySZn1fyHeiz/XOxFimaROqvTojFXa7EK+fPm/YN/Uz52PP0mPdZj7//JnDpw+xL0/+nK642FbRk4oNGuSKkLYtq2Hvj4PVVV6isxZk8r+LCXa9PdwuUO0tztpabHR0GimpsaASCQS8kHy+65s+Axf+5eL2XLbr7jtV3eyfN4Ctpx/2RllpiaThvXrNJjNGnY3WVEoJbzdNEhnp4tIOIbHGyEWjQuKMoMyPY6p5+q9+qRMSxqaFoG+BO/Lt/PvRXezzdHGT45eBfBX5YRMQDqVJPs4H7y/eK854YPOBwBjrgCHXuugre0sMELSSNvnE7oc5udPxggggPYUYWaxZKPL1fCZr32CDVddjCTm4o2/vMXu7U00PfMgTc88iKGwEJNlFsFEDra+aspK16bvv3A4hkQipiSZe0pKsmhrcxIIRJMkrHAv3/Nfd9B5aPocCoBEhbKonXholKjfOSPBBSIkWSWoKy8DQCwGsViGSKZBqtKiz9VSX2+irEwnYIRwnLY2JytWCEobf8TPyPhBnjj1BuF4mLq8Oi6vvJzGokZMahNikfiv/r0+KvFeFJYzEWLTNUjq7XWzdWtXkjAv4mrNt5AtWULbusdpf/oIo2+M0n38MJ9a/ylu+OIN3PBvNyBXyCdjBLMmqfCbghEWmViwwJT2d8vPn4IRNEmM4AwkTdLV5OcHJ+UEIKn08rFs40XMb2jg/v+9l9ce+yOOroPc+uNbKZtdNoERmqwolZJ0SaDHE2J8PMLRow5isRhebzh9HqfLCVP//m6RygmaKQtJKVN8rzdMMBhLq99g+rLBVK4uLNRQXZ2L2x08Y/Eq87MWZTScydw/c/v3GlPH8Nf6h30U4p+K5HI4hIs4Pz9/0uv5+fmcOHFi2n3+53/+hx/84Acf2BiGh33s2z/E6GgAQ66gqkq16tVpFWy5Seiakrp4pl7sAb/QmrWgcOLmq5lbRc2Pf8jwyNd55vHttB7cScfx3ex97Sl+IRZjKJhNnrkGiaKY4b7F1C0STOunIwqsVh87dvaiUcsADfFEgvJyPdlaBaZ8NTa7jzG3CuHSmGzkmI54gKj7DcTKcqT6dcRDvYhkghpLJNUhkugQSXUgViOVick3qdm4sTyprrn8Hc/f1NLDj+PMmIkQOxvyK3ObNef+kr4v/iu//P5/0nrwTR6/9w7OWb2eeYuW0XLETmeHiwX1xnRJbEpBllIAmouyuP66Gmx2HweSQKeiQofJqBGaGWztprdPkLprkmqv3l43iUQCjVqKzx9Fo5ZSNf8CPle+jAOv/ZaH7/w2c+avwDb0BU6cKJ9UmppZ+igQXGEkEjGmfDXBUBTfeIRwJE5trWGiDj45llSHyJQP3dnGJJCYse8F9YUYlXJeHxzFtUSLv1RJIpFIg/fMePrpkzz0UBtz5xrSpqCZraVBILgeeOA4DkeACy6o4JOfnDfpGH+tkXFT0wDbt/egVkvJ7A70zxwfhXwwODhO92k3fX0iPJ4QfX0erEPjDA/5UKqkWEq0rFsnlHOlrtlMxQrAjp29dJ52UVigSRMTX/v8BWy5fDV/2XaS1/cfosvewf+760G+8+s/oNVksWJBLcXGQuKBLEoq5MxfIBwvkyxIqbS2vtxNwB9h1iw92VlyYrE4Crlg1m2z+Sgp0iETq96R5Or3nkSryCVHlY9BZSYSD6FT5KGSZaGUqlFI1SgkKiRiKfkmFWvWlKSJkpkmZP/XiK33G+9EiE2XE2ZaRd9oKeOWT63n+79+kl8//DRHTnTx/d88wl/uEe6HIy12Ojpd1C8wsj6VEw4M09bmxO0OUVGhTxNiL7/cRWubA4NBmf7cnm43+5Or6VPzgVojxe+LJv9M8LvvfY3nX2vmV488xrfv/Tm3Bq6h8O0q8vLUaVUWTFzDJ06MEgxGCYViyOViqir1eLwhvOMhTCb1Gb4obe0Odu7sY0G9cdo27DPFdKSh8IWMRBu/zlDL42zgLRac10t/4++nPcbTT5/kmWc6WLWqKE0uTc0JmfkABECaSZJ9nA/eX7zXnPBB5wMQ/OP27RsXMIJBhcMRYGAgiRF0CrZseReMEEhihALNpOsahOuzs9OV7j5XU1ODSmeksHY1ntExTrQcRxwaYqirk+H+Jrr3vcjzd/8cU5GJ/KJ8JIpsghElnQfkaLI1KFQqxIEw6gRIQ0H++Jth9DoJI4N2zrAdyYxYgGDfq4hkGsSKXESKXMQKHWJ1ARK1CbEsC7FMDRIlCoWYkhLBSzLTQHymuOCCCvwRP3/p+guv979OLB5jcf5irqy6kiUFS8hT5U07D/u/FDMRYtM9N6YS5sJ76/lm9RW80vAEd79yNwOPDuA57uFPv/4TK9atYM6CObS02OnsdLFgQQZGSCpjR5L+iWZzFtdfX5MsE8/ACKb/z96Zx7Vd33/8mYuQBJJAIECAcBRaoKWl9NBSW4+2aqtOrffmOZ1Tp85zbs5rm06d23Rzh3PedT+PzU6dq0dbq62ld0tLC22h5Q6QEEgCCQkk5PfHN/k2CaGtWs/xejwqAsk332/I9/v+vl6f1/v11oSGGTSJ7bCjOIJGjtvtR6OR43T6yMpSh+5/MjFk/px/vfQh21cu55rTf8ClN36P7/7ou1Gtj4LAFeIIRjVZWWpcriEUCqm4LUDcl/CEyE9TD2DsmhDefnl5mng+joXq6g7WrGnFbNaKbkmr1S06uQDRGeZy+ZgxI5MFMQNnPm+wfVi0VCplRE5r/qbjWyVyfRb87Gc/47bbbhO/d7lc5ObmfubtZWZqxNDzsjID3V0eandb8fuDokPp8I6dIEqljIJ87ajHtbe7OdiWgldxJgu/dy2TCgMse+ZNertqaW/czIDjTfasF4i2LjWdlfpMMrNNGNJSUGuS0SQn09o2SE+zE59WwaBVhrW7D502gKPXweYVPbz5Nxdul5VIgUsiT0WSYBJErIQcpIn5SOTpYiFJNSi57NIycTLfOI6Mo8nV+rQ4GvEr9jHmwmKOW/IAXsl/0Sg7mVIp5DdUTEsnGByJmylXWKgTLtoRbY1hohMOBV6xoonGAw4SEmSUlKRSMS2dmp02wRpsGcDnC5CYKBdDhUtKTPzyj39n09pVPPzT29m/+wfocs9l954LmDTJQFvrAHOqTGLffFgkczq8dHZ5OP44E1abMOZaLo9evVtfbWH79m7c7uHDhi7G+5tEutIipzAa0zUsSddwks/Ey5tbeW1vF53Pb+HJS6ajU0Vb45cvb2Dbtu5QER89JhqEG42eHi9paaq4xOXz5KS0tDj5y19q2L+/j4kTU5BKpUBblMj2eVtfvi041vUgOzsJ6YiPjEI9LS0u8vK0HDjgEJ1c4bD5w99MCDUhv0Ab9bjW1n5273Qid2dz5YLZvP/sRO687y3W1+ymoambtdt2Mejz8vwHoFYpyTGmkapNwZShJyNdhy5JjQQ5e1t7cbp8tAyo8fqGcbgGGB4Z4p/V/dz1l358ATfu4UMOBplEHmopTCE5IQV9Yjq6xDTkES0hBQXJ3PPzOd+Km6QvC8ei3SAW8T5bsTfDsY+Zkj2dK09OYXfnRv507/Xiz8unCteK2Ey5eKH+e+rsdHW6RTfgrlobu3bZGPIFyM1NFnPjWlv7sXTGqwep3H3jd7ju0pO54zfP8MBfnydDa+Lk0kVs2tSJMkHG6acXUFWVLR6HWiNnZ2jlTf+VuwABAABJREFUvqLCiMPpZWDAjyH1UDsYCO/zilDWGIw9QTPe3+NwWWjGLD1k/hDaKsjc9gKZW5aC6a9QdlbUdpcvb2Dt2nYA/vGP6eLPY9uNvsx6YDQK2ZJhJ3E4cH68HhzbegCQmaVm9mxhYmFZmYHubg+1tSGOEHIoHU09KIhTD/bu7aWlxUVHRz9ut+CeWrasjv7+YaZNS6dy/lxaW12cd901mHNUbN2wl6EBGw5rN9ZOKx3NnXS0dOP1ePAP+whGTE88sP7QHkgkEiSyBJAmIJEnIlUkIUlIQqJIQqpIRqrUI01MQSITpjCmpgri3efND/IMe1jTtkYUt2ZmzOTCkgupNFZiUH27nIjHoiU5FvGuG7HCV+RjfsSPWJS3iKtTb6VlVy2SVhW5ZcLnv6IineDISNxMOZEjVByBIzRGcISKdGpCNaFzjJoQ/uzU1Nho79WTUn4pKX3bWfbHZbzx0rt898fXseAMgcOERbJw692iRflYrQJHsFoHo96D9euPkiMcpibETmGMPI+PtGC3YYMwTTUxUT5mm2TYGRaOpYjFp3F/xzuuFSua6OgYIDs7KcTte6JEttbWfrSZfrKM36ya8K0SudLS0pDJZHR3d0f9vLu7m8zM+OqsUqlEqVQes31ISVFSGRPqeO65xSKBttrcozKzIlE+VQgShiBWmztakDAnY84TouBHAkHeWzWAJGkuk45fyGWXlfH2W3Xs3L6LjBQXuiQ3TY3N9Fj76HdYcQ/04+53MeQbIhiEXrkUqUSKTJGI1J+CyyEhEFSRmlHI966djTErG2NWNjn5E1Brko7Z+zMOAUcKmj+WGEv8Cn8m8/K0nLj4DCqmpYs/UymcrHj+Giwn3QAsFttew/u+YIE5SgiKnGbZ2tqPVCYlRa8k3ShkqYQ/51u2dNLZ6WbXLhuzZmWSqJSj1SaIF9Lj5i/kgT/9hyce/CUd+15nU+9W2g7+kGGEYlk1J3rogNXmRqc/dCEOr3S0th7K3VIqZUglwtfDiYvhv4nT4RO3GX7vxspBG3D5qFCpSCsx8mFjD6c9vpanLq2kwnwopHvp0uKor/EQeaNxrInFnj125HIZEyemsHRpMSqVIqo1BvjcrS9fR3wd6kF6mpp0vRSSjOKNTmSuUGtrP1are1RmViRMpiRsVmFVNBJmczJ5ZqEe+AMjvP1WE5naHGaYhRYP31CATdsOkpQ2TOFEBdVbmuiy22lut3Gww4Kz34NrwAPBIMGgBFmbBIVMjjpRhS5ZI6yuyvWUF5ZwyXkV5JmMFORkYjalh4TScRxLHIt2g6PBWDfD4c9jXp4WyOeGilkU5KSJP//Lv16j3+3DO3QqcEgcMucmjwp9D7fchr+CBEWClFSDivkn5ojPPXjQgaVzgC1bOtFo5EycZKCoSC9ez1P1yTz361sxpxTzxCv/xz+3/IOpWccxwTAFrU5JVVV21PGkRbRtmUnGZh08VA8i3C7DQyMoE2Xk5WnHFBfDfw+H04deNzpQOG4WmkSCNbGcrowfUeJ4jYTXL4XjroNTHwKZcLv9dawHkycbREeHXC7B7xccOt+megCfviYc63oAkKJXUXFutAvj3HOLo+pBbGZWJMrLIziC1T2KbAeDQQYGhvD7R1i2rI6enkHS0lTMnWsShYXERDmDFek0tMqprJzGhVfni9sP70dubhJDPh8HGuzk5CSxbFkd+/f3UVKazn0PnPiluqU8wx4+avuINW1rGB4ZZlbGLC4quYjKjEpSE1O/tP34MnEsWpKPBocTzFtanDTukXNT6mMsL36F/cet4FcbHmROwlmYZQb+89eH6Tz9AjhvrsARjDEcIeKzOXt2ljjRs7W1H6lUSkqKUsxbHJMjJEZzBBAEtoMHHTQ1uZBnHk/h/CLatv+Xp+//JV2N3+EHd/2AJK1wvxTriIriCMYIjiANcYTDLDaJHCEmL8to1IyZjXk0i1dzQnVyjlgvRyPeUIpjhfDfIzs7iTlzTOLgifDxgJBVljMiGxe5vkokJCQwY8YMVq9ezTnnnAPAyMgIq1ev5sYbb/zS9iOcF1QxLR1Dmor3329m40YLwSAsWphHW3s/NTVWbDaPOMVu/ScWMbtIp1eKAdkAtbt6QlOAEli0MA+3x09NjZX+gWHS0lRcdlkZhjQVphwD/pEZnHyymUGPH82ObiqnZ4yyNcbb3//85wAD7mFOP70Ao76Pnm4LmiTtuMD1BeHzWks/KyJFnkibbTjkPSzm7F73BN0dTbz/jztp21/No3/9HU3NHlasaEIqkzBvXk5Ublp4Wo/V5sayq4ep5QZMJuGzKoZKpqmQSqUM+QL09Axi7fYgydSQGyLqW7d1oVHL8QcTuPbOX/DOG/OoXfcErdvuoXjGFRx3/LWjjqV2V2iMfEiQCk9tCb9mfX0Pra0u1JoEfL4AtbtsdHZ5ooSssOicl6cVeuEd3lGC1uFaQffv66OkJJVbFhbzQnUL5/9tAxdNykJx0M2iRfmcd96kI07xOZqV+XgTto5mtW/yZAMXXTSJyZMNtLcL+WFTpqSNymH5tmWyfF3qAQh5RjtrhM9YQoKMXbusrF9vISNTzdJzJ1Jd3SHWhPAUu0/WW+gNZQoFAkE8obHYdfU9VK+3kGpIZOGiPDxuoR7U7LSRbdKwaFEq0yrSaWl20dvrZf68HNLT1WQklKLVJkTdfB5uX2UyaG0bYHqlAU/Qhm94mPycjDGfN47Ph6+iJkTegEfVg0sODf1obe1nzfp9vPDWBwSDQVZV13DLRZdyf+kSPlnfwZbNXcyancnScyeKzwm33IanGZpMGhYvLgSCYpZXWWkaLIW//KUGu30Qh1OKUqkQ8iQjgnTVGjknVJYzyXw3z7z5Fh/uWI/N28KFE26Ie0wOpw9HrZep5emj6oHV6qa1rZ/BwWFkUgmeQf8oMSscXB+uB4442ShwhHiAgzKGi69lhnE1bH4a2jaxZcLvWPGJl4UL8/jHP8487N/laJ1an6UmxKsHOl2CeP2PdHJ92/B1qQnhvKCKinQMhhiOsCiPtrYYjmB1s369Rcwu0umUYkA2QG3tIY4wc2YGpaUGgSP0R3AEgwqjUU1RkZDBNjgY7taIFquiRfAkcs0G6ut70GiTKS5JZNFpBeyv3U+vtZf8iflkmbO+sPdp0D8oOLda1+Af8TMjYwYXl1z8rRa3wvi8LcmfFZHXj7DQNmeOiVdv+RV77d/jR+/eykr3Kzj/NkBXawfvPP0HWutreezZn3CgySVwBGmII0S4kkSOYHVjsfQwdWqII7gjOIIhxBGGQhzB6kEi0ZCbG+IIW7tEh9bJJ5tRKNoZGBgmP38Kk8onIOmvY+U//0n1ymru/M2d5JdNFqcQgiAOjckR1CGOUGsbFfweFp1FjhCnJhxNXExk/Yi8BsRGVMTD0Ti1IrcZFg2PRmQzmw9N+Y491sjj0WaOEWH0Nca3SuQCuO2227jiiiuYOXMms2fP5oknnsDtdouTVL5o9PX5WLOiiQ6LYIUvLk5h00YLXZ1uFAop9l5hhLoE8A762bqtC6fDy+YtnTidPjQaRVRGS3jCnd3uxZCaiMs1TFu7C4fDS3p6Inp9In0OHzU7bXg8wxx/nKDCpuiV6PTmMW+YI8WOmp02uro9ZJuSSNEr+ctjT1C76R0uvvYnXP3j2+I+fxyfD58maP5YYqx8rjDC/3/i/F/z/BMa1r33CnVb/s0NF+5m5qKf0WFRkW1KYmgowCuv1o9yI4anGWZlarBY3IQFKKtN6CdPSlKQk6sl26RhTpVJDKFsbe1n27ZuBvqHkMokjASCqHQTmXvOHxm0Lqf6g7/z5sgeivKfIDPbLL5WePqjTp8ovqfhyYurV7ewcZOFri4PyUkK+vuHaGp2UZCvBYLi+1BTY2XHjm7c7gyuuXrqKHcYHH0r6E9Pn8RLG1v4R52FRPsw/pWjR8Z/WoRvOlaubGbrVmEFOrzNo1ntiyRML7ywW5zSdf/9c6Me823EV10PwsHzm/cEaGh00GEZIDNDw/r1Fnp7Bcu82ZxMdTUggUGvn61bu3A4vWzZLNSEysoMKiqM4mdtZ42NHTu60WqVaLWCy8DV72Og34fDIWfmzEw8bj+KBCn5eTocDh95+VpmzMgY80Yn8kZoZ42Nmp02iov0nHRiLgfbO7nop79Ao0pkYMfyL+V9+1/E52k3+Kw4Uj0If38yk/jXpPv40YNP0tXTyy9f+DMSjYNMRRkul4+Ghj5eeaV+lBMxvP3MrPhTHx1OL9mmZGRSCQZDIlPK08XX31Xbw47t3aSkCCJv/8AQJ5adQlFWEe9s+S9X/fKX9Hqv4dqLFouukvD0xyCg1yUyc+YhwWzr1i5a21xs3tSFZ3AYjVqByyWEimdmqQnXhK5uN5aOATosA1x+WRlmkkUnVyTG+nuFH5drTob0KyGtGLa/xBTLWbxecyWrOOMrrQmHqwff1joQia+6JvQ5Blm9wkpHRwRH2GShqyvEEewhjiABb6geOJ1eNm8+DEfYHuIIhhBHaIvhCH0+ampCHOH4EEdIUaLTHYYjRNSEmhobXV0esrOTSElR8sd7/0jd5s1ceccPueLmi4/5ezToH+Tjto9Z3bYaf8BPZUYlF5VcxMyMmd96cSuMz9OS/HkQef2IFdpKDCU8VfUCj2x+jI1XvEuWKpvONR3sWrea67/TxMwzL6OjI0h2dogjvFI/yo0YnmaYlRXBEUgWM6eSkuTk5GjJztaIrqIojjAwhFQqYWQkiM83QnJyAlOnGkN5WMdx2XVn8Nu7fstdl9/F8acuQFtwIvIEpTiFMPxPeL0WNm4McYTkEEdoclFQcBiOcM3UUe4wOHI9iD3Pamps7Nx5aEDc50H4XK2psdLY6Ija5tE4xCP3ffXqVnG/Ihe7jEYNvYO9cZ//dca3TuS66KKLsNls3HfffXR1dVFRUcF77703Kmjyi0JXlxupTEq2KUnMLDJmqBn2j5CdnSzmdIWxbVsXRRNSxHHaeXnaUYS6cnqGuErT1OyipsaKBMjI0GBxu1nT30pwhNCNZDBuUDYccpgJ4X4u8QYvL09L7S4bw8Mj1Oy0YbcL++dw+hjHtwuHy+eCaDHnvt89zpZzzuK3995K28EGup6/geNPv4UlSy6lZqeNnTXCKOtwoSqfeoigOB1etu+wigIUgMs1xKRJqeINWmzbYHW1hdZWFyqVDIVCRnJyAqkGHXPP+TnnXnwev73nFn5w9sksueR2ll52OWZzMkUTUrD3DqJRR1/KwgKY0+EjOUnBvPk5OBw+XC4fOr0w1l6nF1btW1tdyGVSDKmJUe9BfSicOF5bcaRIHHmeJSUquO7ECby85iCf0Md7Eg+lK/bTuMUWtdr+aRC+6cjOTkavV0aNof+0q33xRtl/m/FV14Nw8HyqIZ0KjQK9XonD4aOkJIW9e2H6dMG6X1ycwtDwCBlGNXv39qLWKMjK0pCVpaFqrilKOJgWmraVakgEguzYbqW5xYnD4WPQ66d6g4XkpARkMgkymRB473H7RwWqhh1b0yrSsVgG2L7dKkxDCm0/PMHrYIdAoiPiWcbxLUFsC0S8m+Dwz2eSyYK5U7jpwb+y7K0Puf/Jl6mqmMLlCy/A55FSs1OoB4cC5P3iFEKH08uO7VZRfAJE8WvRoryo3I8wOi0DNLc4kckljIzAQL8PhULGafOmc9fNC3jk2f/jugf+xAtvfMRf77+RiikCYZ9QlEKvfRC15lBNCN/oe71+5AoJ+gQlFdONaLUJdIXGx5vNgpiVkCChudnJwMAQra39olAWGVYf21I8Kp8r8n3MPwFSCmHNE/ym4s/UqHr45QMBFiwq/Mxi17GqCf9r9QC++prQ1ekRW4PCmUVGo5rh4QiO0B3DEYpiOELMZ6yyMoIjNIU4giTEESxu1qxpJRgUMoOjOMLMOByhZgyOUBviCDU2cYHG4Ti2HMEX8AniVutqfAEf043TuWjSRWKg/Di+eMS2SscKbcWFGTxb+FtWty7mft39JE1X0/VCFwf3HqSj5VFOOPd7LFlyuijiRHGEiEUMp9PL9u1WAHS6SI5gGM0RjGNzhJSURDQR13rkGi64+VYq5lbz0uPPoNy2k9lnXoJGEz3ULCwOO50+kpMVzJsXwRF0IY6gi+AIcqk4SCV8/okcIU5bcWRNiBdmHz73KyrS4zqwPg3C9c1gUKHRKOLmpB2tQzxyv74N+NaJXAA33njjl96OEkZmpgbjvEP9w2+/fQCXc4jcHC2nLy4AwO0ZRq1W0NXpRqtTAkFMWRpxnHYkhBasaIujxyMEShYXpwgnpdNHc4sLQ2oi5VPT0en7RwVlA6xc1UJNjZWcnGSys5PFALvaXTZUKgVp6SoqpqWz6T0lFiA1JTqwdRzffHxaB9mseafw1BureOSuH7F9w1rWvf0Ic+fmUjHtRAASlTKqqy14BodxuYbINWuFz745mXBuRKxTLF7GlTFdg1otx+vz4w+MIJcFkEil6PQj7N3bh9dn4LZH/sW/nn2U5c/9kj3bPuRXT/6VXHMyVpuHmp02+hw+MRDfbE4mM1NDd7cHrVbo+58xIyPKpgxQV2dnYGAYnV6JvddLfX2P2EK8IsKROda43/D+R0IqkXD5KROYY+3nuU+auXdtA8kHvQSDwc9EaiZPNmC1eoAgF1wwMeqmI3wTEj0GeuzVv3ij7L/t+CrrQTh4PnOCkFm0/N/72bnThsmk4eSTzchkEvbu7UUmk5CcJNjlUw2J9NoHUSplzJiROYpQl5WmiT+zWt2AhMxMDZbOAVSJcoqLU9hTZ0cmlVA+NR29Tok6JhQVYNXKlkMtkpPTQk0rEspK07BYBqiu7sSUpWF6RTq8Dgr5eA7Xtw2f1j2mS9bw0qN3sOD4Cq7/xZ+prtmN093PKw//gt21dpSJMrZt66Z/YIjkJAUTilLQ65ShPLkx6sEYGVc+XwD/8AiWDjcGQyIDA34SVeAeGGbTBhu3fPe7TM4v4RdPPce8y2/lmQdv5qIlJ2LOTcZm9VC93sLevb1otQmYTEmoNQp6ewcxpqtRKmWYc7WisKXWyMXa0NDQR4JCxkggSE2NFbVGTllpGtUR4cSx5+QRV8t1JlRnPgjbX6TiwGsoHJtZufL+z3wt1ukSkMslzJmTNWob4ev/nj32qO/j4X+xHsBXzBGy1KTN00dxBKdziNxcLaefHuII7hBH6HKH3LpBTKYxOILxyBwhHPhtMCRSXp6OTtc/KigbYOXKMThCbYgjpKmoqEhnnV5JF5BqODYcYSgwxCcdn/BBywcM+geZlj6NiyZexOys2aSrvx1k+5uCo3WQLTAvoCSlhFuTbqXWXMvA8wO072xn9f89y/wTzVRUCFNCExNDHMET4gih6y4chiPEybgyGkMcwevH7x9BLg8IQ9Z0Svbu7RNFIrfbz759fZTMnMtzH8zhnh/+ilUv/onuA3s479pLsXR6qaj4DBxBp8Ruj+AIEWHtcASOEKcmRE5NfeWV+s/l6jKbk3E6fUCQuTH5mJHOtdjzPR5ip7l+0/GtFLm+SjicXrobXeL0t06LGxBcVuH8H5lMglIpQ6mUoVbLaTzgRCaTUJCvjTq54oVkl5amYUhTRf189eoWXP1DgET8ee2uHraLmVyHPtASIEmjYMaMDDRquTixIVEloyBfhyFNBUEhdFQyHi78Pw/hMxjg1gefYeXyp9n40UrmLTqDBGWiKAbZe710WoSvbo/Qsz1zRiYLFmiicrNMpiRxpT7e6sLcKhPd3W462gfw+QMER0bQapXYewdpbHBgs2konHE96ebj+eSd3/DDc0/hBz95FK22AJfLx5o1rVgsA7jdw1xz9VTkcikjI0EUCuko51pYZDOkqpg1KxObzUNjgwONRkFpaZoYnh/pyIx8T5wOH1mZ6rhichjFxmTuOaOU371TT2shrFMM0e30khFatTpa5OXpMBqFlXuj0R73BiS2ReWpp3bw6qv7mDnTSHKy8jO7yMbx+dDX56W52YVcPyjYve1e+vt9QBIlJalR+T/hlXOfN0B//zCBkZEoN0q8bAWjUcPUctDrlJx2Wr54c5ic1B8i9xo8bj8WywAHGp00NPRFZ3KF4limlodvaoKicKZKlJFqUOHwCKv2Mtl4PRiH8DmcnDuFd5/6Ndf98gl+dfNllE8xUj7FKLaceDzDIjkPu0YWhrJBrVY3u0I5KWr7IXEptiZUzRXqgdM5xMhIkMREGf7hEeGepX8IgFmlk7nl3BtYu3c1F9/2KO+t28a9P7wcrTaBhkYH9XvtJChkLFhoxuf102FxU1ykF9t/44UGh6dE2mweGhqFmlBWmkaqQYVOpxxF7K1WNw6nj8wsdVwxWYQ8AWb/gAZHBoWBf3Oj9AaoGYSK737qv4HTOYTfH8TpHIr7+3gti089tYMXXtjDxIkpnHKKmZNPNv9PtCd+3eBw+Ohs6BOzhTo7QxwhUyNm4oziCI0hjlAQwxHi1ITS0jQMEQMYjEaBI/THcoTaHrZv76ayMoYjSCApKcQRNBEcIVFGQYEOg0FFMMQRpJ8zfH54ZJhqSzUfNH9A/1A/5WnlXDDxAuaY5mBUG7/UcPtxfHpkJ2fz6yl/5kH3Q2y9eRWadzXImmRULaxCrpCLYpDd7qWzU/jqDmWLzpwZ4ghWt5ibdUSOEKoJHR3C9MVgMChwBPsgjY0ObDYParUCgyFR/Oz/+vlH+cMvX2Lze29xYHctGeVn4nZXcM01cThCnMEiBkMER2iM4QgxjswwrFY3TqePrCx1XDE5Fnl5WiyWgdDQl08Po1GDTtcv5vTFe51Y0e3ddw+ybl07RUV6VCrFZ3aRfd0xLnIdYzTs76Npl/BBWrDATFWViXArlzFdQ2trP4FAEFNWEqWlBoaGAmyotjA0HECjUURta/0nFjZv6WT2rCwxtA9GT4EzmTTo9GbaWl2sWdNK5fQMICi0Ogv/AYSLyvDQCHOqTMyckSkS/axMwVVgNifz7+UNHDjQBxx7K/I4vnmIvDBedsMdXPKDHyNXCJ/TkZER3I5WvvOdCbS29ovCbmRRiszNstoGCQSEz+PMGZmjRKHS0jTK9vbR1+vFaBRWVcqnpmPvGUSjUYhC1LSK2Tzz5kc89vOb+c1d32fxBd+n6vTraGjsp79/WGw7DItTFdPSR71WbNtm5LCI8M/DQYzxpjB2dgktLm6P/7BTMlsPOlA3e8lSSWiXeln0+Mc8dG45HRu6efXVfVx88STS09UsX97A0qXFYwbUH6kFpbXVybp17WRnC/vw6qv72L69m+ZmpxjaOXduzhcylnocY6N2dw8NdXbc6CkrTaNqrgmNRiG2PG3d2kUgECQhQSYGog4NBTh40MHgoB+LxS26Rj5Zb2HL5k5mzc5iaZx6EIbD6WNCkY6p5elirtGEohS02oSoqUILF+WhVitCbY+CULZ3by96XT9Ty9PQ65SsXdfGh5/sA8bbFcchIDKgftdbf0ahOHQb2TvQy7z5WXR1esVrbGyeVWRuls0aURNCbYFhlJWmsbesjy2bOzGbtWSZkoAgapWClhYX0yrShZZ5F3z/9Iu47Nx5/OhXf+GT7XX86e6bqDKaqNvTg8MpkPuweBWv3TC2bbOsNC2qnRfghLkmzLnJUccSPp5wy6PH7T9i/sludwnL95/H98vWY3zzeqh/h+d6r+Olf1q+sHoAQk3YudPKgQMOhoZGxP0brwdfLvbv7+PgTmHBIIojlKdjNEZwBFMER9hgYWgoDkdYb2Hz5k5mzx6DI4TCs00mDTqdmba2EEeoDHEEYBRHGB5hzhwTM2dmikQ/K+sQR1i+vIHmZicAvX2fjSMERgJs7NzIe83v4fQ5KTOUcf7E8zkh+wQy1Bnj4tY3CPvr+8ndcz7mikmsOPtZ1BI19iE7GYoMAoEAHoftEEcICbujOMJ2IRLBeph6ACGOUNZHb6+XjIwQRyhPx26P4AiNDjSadPG5mVlabv3FVWw5bQ7PP/IHmte/RHZqPyMjU6Ja82JfK7YmRLYUhn8ucoQ4Uxg7QzXBfYSaUF/fw4YNFqTSaJdmWISaNy8HnU4pDgAYK6D+SG2JNpuHuroeseVy3bp2Dhxw0N3tIT1dLb6/RxNU/03CuMh1jFE8MQWtVCYS6/AKidXmFqfHhfMfBBdWMx6PH6lMyPNavbpVWGlP12DvHcTp9GEP9b+HYTYn43T4aGp20t8/RGamMDHC6fCKwpbJlITVFj12PiFBRkamRjyRNCHrp8vlo3xqGsZ0DQ2NDvz+AACpqePtiv/riL1whgUugBeefJR/PvcXbnngMU47N374qNmcLIquJlNSlAgWmREXDpfUahVkZGiorDSyYEE+IIhHpaVpUUJUSloaD/71H7z5j2d55ne/Yt+uTVx39+8pLZ0oBHlv6GDNmlbMZq3gTgwhchuRWVqGNBXFxSniYyMD7GOdWvGKiUYtZ/XqFsKCdnhio83mwWIZINuUxCWLC3l7n5WbXtmBumeY9lohjyA7O4m1a9sBxiQ1YQv5+vXtvPDC7lHOrHXrOjhwwMG6dR1cd910Fi0yY7cPMmdOJtnZWjFz5csaSz0OAeVT0lAwTFHFoYly4emJW7d2iZlFkTcUq1e3MjjoJxAI4nL5xFXAXrtQD3rto+uBw+nD4fTSut7FgUYH0yszQtuzEQS0WgWmkhR21thEd1hZaZpIysNT7LxeP61tLjFH4tVX9+L1Ciuv8vF2xXEQff2LFLia27uZf+lPKC3M5Y0nf05ayiG3Yezzp1ceqgmeEOmJnUAargcpqYlkmTSiEwwYdaMvCFdlzK0s45LbH+XMH93Dr26+jCsuOJ2ODg9DQwFWrWyJezyRYlbkvqYZhJqQFnJujdX2Ea8eqDVyVoXqwdTydHrsg+Jr9Nq9tNmVvD1wEddUtcCe5ZzjWcs7vWfz6qtfTD0AWLTITGfnAJMnGzj99Pyo6WnhbY7ji8fEiSkk+xNEYi1yhNDnShNTE0SOII3hCEYN9lBNsMepCU6nj6amGI7g9IYeEeII1jgcISOCI2giOEJ5GkajhsZGB4GAsOKRlvbpOEJgJMCW7i282/Quvd5eSlJL+NG0HzE/dz6ZmkykkvEa803DIcG9nPPVc7n5w5v53bbf8f0p32f1n1bz9rK3+clvf8KCsxfEfb7ZnCyKriZTkiiCxU4gDQsvWq2CzMwYjmCM4AgRQlQYRqOGM86ZwfRZf+TpR57l47f+xQ+b9pE17UyKS7IxGGI4QmgbkVlahlA9MByhHoSPKfIrCOeSyBFCwlxNjcAROjoGyM5Oinp8WIQKv/bu3T3A6NoXeYyHywmrq7PT2emmrs7O4sWFVFSk0+8aYlJJCgaDWnzPjiao/puEcZHrGKMgX8cpM4UPYWS7YeTqZyS5drmG6enxoFIpSE5OoLnZybKX6phTZcKQqqKyMoO5VaZRr2O1eejvH2IkEBQLX16elpzcZFFMCASCQq9yiNRHnnhWm5uanTaam5w0NjrQapUsWCAUwuYdcpz94+2K4xg7w2tkZIT25gP4/cP89p5baG7cyzW33YtMNjpTrnwq1O7qwWIZEB2NVpub5f9uEM+P8A22kCmXGLcNMLZXXCqVsvSyHzBtVhW/vvM67rn2bJZccge5V1zJhmqLcFG3DFBaahC3EQ7MD28vfI46HV46uzyiOzL8uvGyt2Lfk3DGWOSkx4aGPnbW2DBla5g1K1MIry9IZZJZzwtrDrBxxIHhsnyOMxuZnZcCwNKlh1ZiIxHpvlq1qkWchgXwr3/tJzs7iXnzsqO2MX16Jl6vsCK7ZMmhwM2vaiz1/yomFqcysUANSdErZFH1IOJGqrW1n337eunpGaRiuhH3wDBvvLGfWbOzKCsz4HD6KCsb/bezWT24XD5kMimD3gDNTU7q6nsACZWVRqaWp4sOgb17+0TCHVkTdtXaaGx0IG+R4PMGWLDAzIIFZvoGe+CA0MVutbq/FTc+4/jsGCvHq7mjG9/QMGu37mbW+bfwn7/ez5SJ+YfdVppBhbFUIAr/Xj66HkwtT0cfCgGOt8IcmU8HUJRnYv3//Zb7n3yZux9/kTfe28gzv7qFhgY3NTVWkEB6ujrqOeFpouHtRU5+7Or04HD6RDda2GkTmxUTm4GydWtX1JTHhoY+8TUi3ZyUVnBgMA/1rmdZvvRl6lV97Cu8Cxi7HkD86Yowdj2AsWsCjNeDLxMF+XpOmnaodfdINSEuR1hWx5w5JgyGEEeYG4cjWEMcYSSGI+Qki2KCyBFCpD6KI1jd1NTYaG4ezREaP5HjdIDkKEWpwEiArd1beb/5fWyDNor1xfyg/AecmHsi2UnZ4+LWNxjRGV5Tee3M17h+1fX8dftf8e31MeQb4sGbHqR5fzNX3X4V0hheaTRqKC+H2toQRwg5Gt9++wBbtnRy8KCD44/PorNTGMYgZMolxm0DPFKelFyh4MwrvsfcRbP53U9+w8H6J2ipPEvgCKFtxE49DJ+jTqeXzk6P6I4cqx6Ev8arCWHHmi5UE8L5rLNmZUa5yerre0hMlJGZqRGdXABz5ow+z2H0JNTw/oPg9jQYEsX7xvA2CgtTGBoKjrrefNqg+q87xkWuLxCRuVjlU4UTL/aDo9UqCARGcDi8FBXrGR4aocMywIZqCxmZGioqjFEnrdUmFKuuLrc4PQvA5RKCJQOBoOiWaWvtZ311Bz6f4My65OLSqEwil2sIlVpOcATCluXFpxfi6L6CPTuPIyWj/At+h7698AdGsLuHsA8M0esZot87jMvrx+kZpt83jGcowLB/hKHACMOBIEP+EYIEkSBBKhGyDiQSUMplJCqkqBJkqBUyNEo5KZoEUjUJpKoTSFEnYEhKIFEhO/JOHUNIpVLu+d3TLPvLb3n5r7/nXy88RVd7Gz/7zZ9JUB7KnAp/XhsbHCQmytDpE0XxaNATQCGXkGZQIZNJ0KjlooC07OU9bNpo4bjjTVx26eSo147M+Sqfms6Eksn8+fX3efAnd/HmCw/SUFvNWZffi9fnJ82gwunwYrW5MaZroloY4dCqRVamhqxMDU3NTnGV0pgef5U+HiIda2ZzMkNDASwdA8ycmUnVnEMrLzKZFHWPH22zF3+hmtesdoZzEvnbc6dj73LHDY+PXG2PnIa1alULH3zQTFqairvuOo5//GO6+JxIMSu2RXF8xf6rQXgEdkNDH9Mq0sXV+kiYzcn4hgIMDvoZGBhGLpOK7i1zbjKZEavsYeyqtdHQ6ECplKJKlKPXJRAIjLCzxkYgINzEhFfgu7rdBAIj9PYKbSaXXFIacTPWgyZJgVQiEdsaFy8uZPbxaRjNw9h7hsRWx3F8SgSDMNQPAzZw28DrAK8LvE7h/3394PdCYBgCQ6F/fiEgRyIBiRSQgEwBchUoVKBQQ4IaEnWgSQN1GqhSQG0AdWroOV8eTjpuKhte/T1nXf8AB9u6mPvdO3jzT/dy8vHToh63q9bGqpWtaJIU6ENj3Vtb+xkcDCBXSDCbtWRmaXA4vZgRHIXV1R38550DaLVKFi3Mi/oMRmZ8TQ0RpIdvv4q89HzufvJpTrzidh686QdUVBgZ9PpRJsqixNrINkY4VBMyszRkZmloboqoCWM4t2IR6VYzm5NRa+S43cMoE2WkGVRRo9k371dSu+9cLpu2i1Lf+5S27eCcX/wJiiaN2V4eb7ri4eoBHKoJOl1CVJ0ZrwdfHSJzscrLj4IjFOkZHh6ho2OADRssZGTE4QjWo+AIIbdMW1s/69dHcISIerB1a4gjqOShmN4QR1hciL3tXOp3NZNsNB/2+IZHhtncuZkPWj6g19tLkb6IK8qu4JS8UzBpTMikX+596zi+eGRoMvjHkn9w+8e3s/b7a5mePZ0dr+3g5SdfxtJq4a7f3kWCMkF8fPjz2tgY4gihmmAwqFAopHi9AVyuYYEjaOSigLRs2R42bbJw3HEmLrsshiNE5HyFRTOIbLUv5rbHH+Xph/5I66bX+edf+8j6xQ1k5+hHTRcUOUJo2nXTZ6gH4d9XVsZwBEuII8S4s2pqbHg8AY4/3sTixcKCRFVV9pjh8ZFCW+T+19TY2LGjG61WyXnnTeT22w8tbsQK2mNOB/6GY1zk+kIRxDsYoKnZSfnUtCgHVxgmUxITJ6UCiI6t2BauSNTustHY4CDLJHwIGxscFBULQaqRmUjGdA1enx+fL0BykiIqPNtqc9PW2o9MJuHkk82jXmfBklMpnjLnW6PkflEIBoO4vH4sjkE6HIO09w3S6RzEPjCEc3A4IukAEhVS1AlyNEoZSUo5aRolCXIpCXIJCXIpSrkMmUTCCEGCQRgZCeIPBvENB/AMBfAOBxgY8tPd76O/3cFA6KYkDJ1KjjE5kSxdItkpKvJSNZhT1SR8gS1GUqmUK278CXkTJvKbn93MJ6v+y09/YOcXT75Ask4PCBff5mYXTpeP/ILolcKTT84lfOPU2eURQ+uF57noc/hobXVFvabV5ubttw+wt96OSiXHahsU23tvvu8R3iuv4o1n7+cvv/guiy68H5m8kMYDDlFcC6/0xGsfDjtdwhOF4OinUcZOQW1t7Rdbg2MHSFRMS8dm8zDiDJI4Sct/dlpYtbubLMswmcNSLrqoJIp4xI50jmxLcTh8ZGcnjVqJjyQvK1YcHG9J+RrAbBYmt3V1uaGG6AD4CJSVGkjSKKiaY0KfohRdH+G2qdjg4eYm4RzxDwfp6D0UrK3WyMVWMICWFhc22yDZJg0V07QiqQehZau5ycnkyQYxWyj8PEOKlluv+s6oqUPjiIOAH/ot4GgFRxs4W2GgG9x2CETk10jlIZEqCZRJwld1GsiVQkC5LFEQtAAIwkhAEMoCPhjywPAgDHugvwt6GgSxbGQ4YvsKSDKC1gS6HEjJh9QJggD2BebdlBWZ2fz6E5x7069Yt3UPp//gXl5+7E4uOH1exKMkjIyM4HT4GBoS6pjZnMxJoXoQdh2G8+GMRg3VGyziFKvYz//bbx+gfq9QD2zWQfG8Wnr6bIpyc3nkhRe56eEnOO+UBVxw8uKQKyWBhQui3WDxWojj1oSjIAFGo0bcfvj7cGvwrtqeKGdY+Dxs1ufT7ihl3tAHJL68lAOaU3nGcjkDfuG8P1xNCGOsehB+fl6ebrwefIUYCcYGGwbxegM0NTkpL0+LclTAoem5xx1nwucLiI6tmprDcISQIzcrK8QRGh0UhWpCZCaS0ajB6w1xhGRFVIuX1eqmrW1sjnDqOfMoqawYsx4MBYaotlSzqmUVziEnk1ImcfWUqzk592RMSePi1rcdKoWKP53yJ3679bcsky7jONNxbH1yKx++9SGOHge/fPqXaJIPCU/NzS6cTh/5+Yc4wty5JrTaBMIcwe0eFkPrhee56OuLwxHCNaHejlotxxpRE8Lb1mjkOJ0avnvbrVS/+wFbV73FnQ37+c2LD1JamiM6uGLbhz9rPQg/bhRHCC1axopMFRUCR7DZPNTX92AwqKit7RklsIURmx8WKXq73cNiEH/s/ow12fjbhHGR6xhiJBiM+r58ajpW2+ChsN84ZNnt8ZOaqqKkJFX8YB5+woGERJUMQzgvq1gQx2InLkJoYkPHAHOqTFHbbG3tp/FAHwSFHvxY8e1oif3/GhyeIZp63By0uTnQM0BH3yDu0E26TCohPSmB9ORE8vI0ZGqVmA1q8lI15KaqSVLKUSqkKGThfxLkUikyqQSZdGzSEQwG8Y8ECYwEGQ6M4A8EGQqM4Pb66XQO0uHw0tzj5mCPmw7HIHu7+vmksYeRoMBlMrWJ5BnUTDQmU5KVTHqS8piHep60+BxSDOncf/NV1G7byE+uvoA/vfYeMplwY5SgECaYyOVSsVWxtVUIQ3V7/GjUcnT6Qxdhq82N2SyEpZ98cvRKYTjkNxgU2mkbGxwY09WYTEIG1qx5i8jKm8TfHr6F5X/7EQUVV3DiGZdGE6MIN2Q4qyLy8x4vbP7TIrLohAlbfb2d1laXeGz79/ZRqU7grrNL+MO7+9iXJqHZ5mNCbTc6XQJO59BhV9uPNP497ALQ6RKYM8d02JaUN97Yd8Sw43F8BkSQGuEmx8zq1a1RAfCRaG3tRyKRcNppBSLhiWytivd4YZCJBqVShs8XoGquibSY6Vog1IOOMVYOd9YIbrAKzehQ7vDrfttufj43AsPgaAF7oyA09R4UBK3w31ypheRMSCkE8xzQm4X/Ty0ETTooEgVRS5YgCFpSBUhlggB2uGv0SABG/MK/wJCwH8NecPeAqx36WqBnP/Q1gcsC1joYEia4kZAkCF6GYsiYDGkTBVHtGMKQouWDZx/i0jsf440P1nPRrY+gTFDwnVOOB4RJnjU1ViwdA7S0uCgq0ov1wBMiMbGrzBlGNZMmpnDyyeZRK9idXUI9kEokNDQ6SDcK9SDckvvwjTfwIP/kzY8+YHv9fi6edx6QIW4jsj3xQKMTrTZhlAB9LEJ4w8fkcHpFQrFtWzdr17Uzf14OHR0DbN8upbXyeyzO2Uau/UPuTKzm75Yr0OlKjujIPVI9AKEmWK0eJkzQjdeDLxmeYQ93fHwHE3QTyNMJjuzy8nSs1sHD1oPOTjelpYYoAeyIHCFRFpUzNHeuadTERTg01W3OnDgcoVEYQJWQIBslvo1VDzzDHtZb1vNh64e4h92UGcq4ccKNzM2ZO+7c+h+DVCrlJ7N/ginJxGOSx5j989nseGwH29dv567L7+KPb/wRqVSYapiQEMERQjlXIkdw+9Fo5Oh0ERzBegSO0CXUO4lEQmOjA2OoJoTbct1uP9u3d2O3e9GZZ3LujSVU//tFfnjGD7nzN3dSNnvWaI7wBdWDw3GEvXt7UasVVFQY2b69G6fTh0olp63NNUqwjrc/R2rfDL/PkUJePNTX97B+vQV12hBzZpthwuc69C8V4yLXMUK/d5ib/m87BTopBWlCDoLg7jCLhSXW0QGfvv+1fGoaOr1SzBCqqDBiSFOJxCn8unAoaL52l43XXtuHwZDIBedPRKOWo1QeCp8PIxzKna7rxZASJLewiDTjaPfZ/wJGgkHaewfZ2+2iwTrAQZsb56CwUp6klJOToqKqKI3CdA3lJh1FxiS0KgWaBDlqpQyF7Ng4qCQSCQqZBIWM6JZELRQak6IeOxwYwe3z0+cZYrfFRU1rH3s6XDT3eNh0sJcgoFMpmJiRxOQsHVOytejVx4bgTJs9l8dfeoufX/89LrjyejGby5iuYcmSgqjJheELukwmIRAIkpWpQadXitsKE/3jjzOJTqjI80XoKQ/icg3R2OgAglFZWwsWTOLanz3HB288yc71z6GRN5Ob/QCQLbZKulxDeDzDHGh0kKiUkWsWRnPHc1t+FsQTit9/v0nMCZs4KRWdTokhVUV+moarK3N4+eMW7KkKXuyxs3V5P6oOH4tPz+fKK8t56qkd4jTGcJDw4dDS4uSJJ7bR2OjgvPMmcuWVU6J+F9sCs3x5wxHDjsfxKbHzVVyrfkfyCdcSlizCQlc46P1oAksPh0ji3NUp1IM0Q0w9MB6qB5kZGjyDfn7/+Fb27+vjlFNyuPDCUvLytBw86MDvH4lq5aqr72HDpjYkKhclxelUVZYdq3fnmwdfP1jrBdGoZ78gcI0EQCIDbZYgXk1YKIhHWVOFnyUkQYJGcG0dq8UFqUz4hxKIuMakmIHKQ9+PjAhur6EB6G2C9i1g2QG2vdDwPtT9WxDUUvIhsxyyKgTx6xhkcSYqE3jt8Z/y44f+xpbd+1lwfIX4O6NRqAlhESq2HggZWErxvNi6tUsUfs3m5FGh7/HqQWTO1oIFZm66/GwWzZ/Kwy88x5P/+RuJKVcwNRSkHX59tUZB/4BQFyLdVrEE/7MiMqg4vO03lu8Xw4VnzcpCp1OSYkhGXvld3vmPmcqRFdxV8Gfa123ln97rOGgXyE97ez/PPVcLwPe/X35EcQtG14RIkSy2JozXg2MPiURCgbaAFXtX0Onu5LLSy6LqQby2oc+Sj1NenoZOpxQzhCoqjBgOUxMyMjTsiuQIF0xEo4ngCJoYjlBjw5A0QFqqjPzifFKNqfQM9vBx28dUd1bjH/FTnlbOOUXnUGWqGg+U/x/HpWWXkqpK5V7JvVTcV8G+3+/jwmsvFLO5wvUgMjB+FEfI0oi5VOHfSyQSjj/eJDqhIu+h4nKEiKyqBQvMVFZm4HL50GoTMJmSqJhdxIoXnucXN/yCuUtOw1S+SOAIB4Q2ytxc7RdSDyIhcoTOASZODHEEg0psdWxqctLZ6aax0YHd7qWvzxsK4NdETWMMtzgeDmHHW2enm6oqEwsiBrvEXofCbY9JRj/m7NRjcvxfFsZFrmMEdYIc5YCFP992GR9UHMeSs86m6uTTMaYbRfdKPCHqaF1TkQLZzBmZVG/ooLvLTUKChI8/amNoOEB6upr6ejs1NVbmVpnEwvjqq3tpbXXS1emmuNhGcXEKPl8Ap8PHihVNgDBdbsWKJjosAzgPPknr/mpu/cXvWHL+976gd+zrhZFgEEvICVXf6WJ/9wCDwwHkUgkmvYppOTpKspKZlZ9KkTEZbaKc5ETFF9oO+GmhkEnRqxPQqxMoSEvirKkmRkaCDAz56egbpLqxh+oDduo6XWxpFlbpclJUTM/VMzMvFZM+8XO5vAomlvLsf9ahUh/6PAeDwVGrCaJlONRe63R4WbmyBbt9kGnT0pk5I4OSklScDm/c0PfIiaVhcaqx0YGlYwC9Xklraz8VlVmcetofqP5wCY/89CZ+99MLuOKW33LuhYvE129rddF4wIG91yu2SsY7F+vre1hfbcGQmsjcEwQHTKxYHUY8ITt8jh9qzdEyc0aG6GILB+zfdkEZn2zrYptzgF2+YdQmCeWDQ4Aw/j0cWnk0IteaNa1UV3cAsHVrJytXNour8vEmaoUDig8XdjyOT4mUAi57tpZdD9/EuWeezrmnnkDV9EOZJ/FIx6dxTEXeiAw1BujqFurBRx+3MTwUID9fh1ojZ/m/G+i1D1JWJrQiOpxetm3rwu0eZu26Di68sJSEBBkjQdhRYxXdYB63n5oaK2u37GPZxy+Rn51B0+rnv5j36uuIIbcganXvFv45BdKPKgVSCmDyLMidBTkzBWdWok4Qtb7AdsBPBalUaIVUJgmOsrw5ws/9PvD0Qsc2OPgRtG2Gfe/Cnn8LYlzmVDAfL4heisTDvcJhIZPJePLe6/EM+tCoD20nGAxGBcYLLVmI7bVhp9PWbV20tLiYHpFfFy/0fWHEdDpziIj02AfFDKwe+yB6nZILz5rF986fwbk3PML9f3uKfa0Hef7RH0UJxclJCWKLzOHaN6qrO6jeYKFqjkl0oo21uh8v7yT8uPnzcsSvM2ZkYM4V8rtaW/spqZpBY3sxw4NryfOs5cbgtWwwLCWv5EFeWNbAypUtSCRCPTkaB9cLL+xm1y4bfv/IEWvCeD049lDJVVysuZgnb36SjrIOthy3hR9e/ENmFM0Qxc/YmvBZ64FGI6emxoXBkMjQUIBly+oYGorhCHPjcISuGI7gjOAIhhBH6BjAWvM6HY17ufaRa/GUe9hp24lSpmR2xmzOLjqb6cbpGNXGY941MI5vJpYULCFFmcKtH91K2W/KKD3+UCbhYTlCyK3kdMZwhJkhjhDhio28h4qcWBoWpxobHVgshzhCeFooCO16zS2DnHvd9cw+sZI//+LPZO1vZMF3v4+1T47d7hVbJeOdj2Gnk8GQyNy5MRwh5vHxBqiEz/MojjAzQ3Sxhfe3vDxNzBpzuYbo6/NCaAk1chrj0YhctbU26uvtAMJglBorc+aYqKrKHlVnBffbMOq0IbKzkw632a8dxkWuYwSZVML8JCv/HvHTsH09f9i+nj/+8i6Kyio4efFZaDNm4XIlRPXyhlG9oYMN1RbmVJnEkOrYcO3why48/a2uzo7NNojdPkj/wDDJSQpKJqWyeUsXTqcPjUbBJReXYu8ZRKtVYDSqyc5OpmJaOoY0FZXTM9i4yUKHZYCanUJRk8qkZJuSGLEJWSDf9gLlGfJTZ3Gxs91JbYeTAZ8fmURCdoqKuUUGZuSlUFWYhlGnRK9KQJXwzbNaS6UStIkKtFkKSrO0XD2vELfPzwHbACvrulm738b7e7r5z65OUtQKZualcEJxOtn6TzcaOoxIgaunu5P7brqCG3/+MGXTZowSasMIC8DtbS76er2YsjSUT02n1uEjK1MddxUzclsg5A0lJStwOHzY7cKY7MZGBxt2pPK9W57n/Vcf4G8PfZ+g917OvewHYqh8rlnL0FCAujo7ba0uUZyK3H7NzkPhjbkRNmIYLYpFFgd7zyDrqy0olTLxmCJD6EEYABF+/MwZmSw9fQLnBIOs2tnJe/XdPNvSRc9rOzhhQTZ2+yCLFh0+6PUQJGRkaJgwIYWmJgfbtgkC2XnnTYo7YfG88yaNr9gfYwxnVfJJp5JeZz+Pv/Q2j7/0Nga9lnMXzWFKXikynwFDavzPdySJDgeOxoZrRwbZu93DYj3weQMYDImkG1VYLANs2dwp1oRpFenU1LgomqCnu3uQ+aEpbGZzMlmZGhwOL51dbjG0PtWgoqhIDx9/++sBwSD0NQtuJ8t2sB8AgpCoh7RiKD4NCk8SnFqqFEHU+ia238iVgstMeyaUninkiLlt0LRWELtaN0DbRsHlZSyFghMhZ5bwvE8JiUQSJXA99NSrNLZYeObBH2O3ew/Vg4jV8bDTadmyPXR0DDA8NMJJJx1yPx6urSKMNIMKjUaBzerB5w0QCAhREkNDARaWnkF2ai7/XPlfDlhaeO33P2XmzMzQ6yaKhKir201h4SG3UyQ5qd5gYU9opHtCguywgli4JjicPqCHTsuAKCQvXlwYRUjCzrXwlL2FiwqBQnpaFyDZ+QrzBv6J5M1PuGDqT6mbk0Vfn48pUw7XuiZgzx47PT1epk5NZ9q0dN58s/GwNWG8Hnwx+Pjjj/EP+3HtdOHa6eKOv99BeqmRc889B0PuFFyukfgcobqDDRssIgmF0eHaIkdw+qipsdLRMcCsWZm0tLhobnaRnKygpCSVzZsjOMIlpdjtMRyhIl2c2rhxo5CFV1MT4ghSKVm5Sqz7BgFY0byCgrwCzig4g3OKzqE4tZjUxG+W02McXw7mmObw/GnPc92q63h82+PcUHEDcqec+669jzsevQN9RvaY4edhAbi93UVfnxeTSUN5eTq1tT6yssbgCNY4HCEpDkfYYBEXAM3mZGbNOofSaaU8cMMD/POJh7nwxuspKpsmcIQ2l7h/sRMNRY6QG8MR4rQgixzBPsj69SGOEDqm2CiJyLysmTMz4wp4IATN97uGorL1Dg8JKSmJZGZq6O52hxxvQsB9rIM0LEL2DvaiELNCvxkYF7mOIW758c1MKjmO63/3d7p2r8PXuZ+GPTto2LMDgMWXPc78eYswpmuihK0N1RZ27xFumMIkuLW1n+07uiFIVF5R2N1iSFVBMQT8I/TYB1GrFWi1SmbPysLeO0henpat27qoru6gu9vDrFlZXHP1VHFfFyzQYDJpWF9tIVEpQ6OWM2+e8OF+7KcCmRlwD/NtQjAYxOLwsqvDwc52JwdtA4wEIT1JSaVZz4z8FOYVp5GlU5Gi/vInFn5Z0CjlTM3RMzVHzy0LJ9LpHGR1vZUP9nSxrrGHlfVWMrWJHFeQytyiNFI10S2N7753kHVr25k3P4fFp4+9YvDCk4/SsGcXP73mQh7868sMSQrYu7eXttZ+2tqFsMhFC/MoLU3jzLMmsHx5Q6hTRiJmrZSUpMZ1V0WKvlabR+ydz8vT0tLiQqOW8/FHbezaZcNuT+LBp17nP//4A3999D4+Xvkht/zi9xQUmjCma9i6rYu+Pi99vV5yzVqxpVGcVjJNWMUwpEaHN8YrrGazMNW0psaKxzPMvn29SBBWx8Ph97GPj92WVCLh1AoT88oyeKfWwru1XTASZNJZuUyeajzs3xZg/fp2du60Mn9+DhdcMCkUnqkQV+XHJ2p9OVAoFLRZunj9N3ew+t/P8Pa+EewOF8/8833gfSpLSnj0ppsB4Yblk/UWeu2DVM01RZHo8Mraju3dBEGcSBcOsne5fKQbNRQjTHWVy6SkGhLp6vSQmaVh1uws2ttcKBNlVK+3UFdnx5SdxI9+ND1qJfE735lAqkFFr30wKtQ4K9/P/c/C8FB0K+O3AsMe6KqFjh3QuUMIcJcphayq6ZdC4SlgmiZMK1Tqjkkr39cOMrkgek27SPjnG4COrVD3NjSugg1/EnLDsipgwsmQOS3qfair72HVyhYAFi7Ki5vpBrDvYDv3P/kygcAIXt8wP77wezQ2CnWgxz4YtY2ZMzPZuq2L/oEhior1EVOxUsdsF4kUk2zW0TVBrZHz/vtN1Nf3UlY2jU/+72QuvOVhKs65kXt/cDWXnjNP3Pbq1a3YbIO0tLhE0hFZE6pCY9ir5pjiXsMjYTYn09rWz6aNFgYH/fQ5vARHQKNRxH2v4m0vzZwLuXdC127Y+X+U7byJv8yu5FXHFahUhycd69e3s3JlM3l5yVxwwSTy8nQkJyeM14SvAHfccQfTp8/npZde58M1K+ho34utzsrTdU8DcPaNdzB//nHCsIUIYWvDBgu7I+oBhDhCyN0dmVfkdHqRSqVkZyeRl6elu9tDZqb6EEeYnYU9dI3fujWGI1wTzRFUKjkbNlgwm5ORpzuRzayhzb8Hx3vCvhxnmMuDpz6AOdmMWqH+0t7HcXy9MVa8RqmhlJcXv8xV71/Fn2r+BC9Dw+4GbrvkNr5/90/xjAgCqd0+yMpQPVi0KMQRzozDETrd4vToWESKvtY49UCjkfPxx2GOMMgttxxyVPYP63joxSd49uE/8vyvH+Okc84iMXsOfX1ecnO1UW3ugOh0ig14H5MjtMVwBEmII4Tu7WIfH29bsUJgYWEKQ0NBCgtTjvj3qa8XQuwnTzYwd252aLKlPNTm+e3KYB0XuY4x9tRKyBlegOqicxjw2cnqrCHQvZ36XTsxZJWKbVH/+Osf6GhrpbtlLovPPR2AlFQl993/CUkaBSfMyyEzU0NrqwubzQOEPuTmZHT6/ijrflFRCjq9MqpFKuwQ8Q76kQD9riFeebWeimnp4nQ5t8dPQb5WnGwXdteE7dId7QNf8rt37BEMBmmyu9na3MfWlj563UMoZBIK0jQsnZ7DKaVGJpu0GJKUJCn/904HmVRCToqaK6ryuXxOHl1OLytqu/hvrYX/1nby9k4LpVnJnFxiZFq2HqlUwrq1EbbYkMgVr03vR3c/RHtLC3u2b+Bn117C7Q89TUnJVKqrO9i0qRO5XEZ6uprS0jSq5mRHtX2EcTjiAELL4Y7t3YwE4bjjskhIkAkjsj1+5lSZQquUSiydPn545wOo9CW89tS93H7ZEo5b8nNMeWUkaRQUTdCj1SaI2XnOCBdZeCpjJMZqMQ5PNW1scGDK1jB9eobo5Ip3LIdrV1YlyLhgRi4nTEjj1U2t1Hb384vtBxlIV3DJbDMyqYSWFidr1rQBQU4+2Uxeno5Vq1rYurUbvV4pkpfxVfmvBjt29LKyYQnzZ8l45qyXWN5k4N/WPKpra5lXOZWuTg96XT+9The3P/4EJq0Zh+d45hxfFJqu4+b11+txuYZJ1iYw5AvQ2uYSW7umVaSLkxAjhYDw95G5Rnv39pJqUGEwJNLe7uLvf6/l3KVFUUTb5/UTCIxEhQ03tAtB6l6vn121tqipcd9I+AaEfKrWaujeIwTFa9LBVAn5J0DRQmEqoSpVEID+16BMEhxrhScJgfZtG2Hna4Lg9fGjgrOt8CSYeBqoUoT8qxorSCA9XS1OKoxtyZhUmMPrj/+Mi297hFdXfEyPfYBfXHctao2cFSuaqN1lQyaXiNtYem4xM2dkHlU9CP/O4fSxbVsXHR0DFE1IEfOOAoFg6DzRYukcwGzWMnvqJHb8+0nOveERbv/9H1n+3mau/s455OZqycsTVuOnVaSLxxLpIjMaNVEr7ocjBEajBp/Xj93uxWBIZNIkYVLetDFW3MckGBIJZJWD8ZfQsBJ9/X+5QXYLnq7ToO9RIVsNRtWE2HoA406trwoSiYSaGgktLTOZWzWfwUE7aDewZfc79DT30DZ1Pbv6FEwcWcCLj79IZ3sP3QenseS8EwBISVFy332fkJSk4IQTxuAIJIuiV2trP273MMcfb0IXkXMHhxwiXq8fiQT6+3288ko9FRXp4nS5ve2teMx7WTH8Dq4DvSQpkpiTPYeekQHcNJDeV0lJaslX9XaO42uK2HiN6My/XJYtXsaV71+J/Vw7Be0TaKo9wNO/eIjv//wuzOY83n77wGiOUPUZOUKbix07uhkZieEIbj9z5hziCOHBD+H7KI1GQf7xFzIsM/Lx22+TVbCXC2/6EZpQlqomph6M4ghj1ITwVNPGRgcmUwRHMI3BEY5ScBpLDIt1fIYzthobHWg06eL2Yx1k3xb8D97BfbHo6BigvcmFrn+I1JPTsE1cyLRpZ/K9m1IY8h8aw9vb8TFuaws7Vn/EzjWPUlQ2A4mqjM4+MwnqHGQyKTq9kn7XMHV77GRkCvbKsBDV2tqPRh1xkqUfyimK/J1GLUcikeAZHBaDuUtL08QTOStTE2X/t9rceMIOrm9oWGSksLWluZc+zzDqBBmTTVq+d5yZU0qMZOtVpGoSkB+jgPhvAyQSCVl6FVfPK+Cqufk097h5fWsbb++y8Oc1B9CpFJxQZGBWaIz1vPmHckCierhDn0WVWsNFNzzO3x6+mY4Dm3nkJ1dz4tJfkpw2FZ1OSVqaWgyjDz8v8nMMgp149erWKHE2so3X6fDh8Qzj9Y2wodrCkiUFZGVqcDq8qNQKCifooxxYp59zFlnmiTz9yC2seuUWdOaLmTbnPBYvKRTPra3bug7rIjsSIp1fc0/IjruNWFHwcN9npWu45dSJ7O8e4J1dFu55czd/X3eQWxdORG7x8v77TQSDQjHMy9OxcKEQIBn+Oo6vDqtWtbBtWze7FJXozkjmwqK/clpJEge+9wsUGhX+IQlmczKb3t9Os7WZZmsz1Y1rSdOlYDbko1eYsPUMoFIqMZmSSEiQ0djoEFuwIgWtWBIevjGyWt04nD4ys9RMLU9Hq1Xw73830NrmYmeNTRS5wgMZYttl7HahNUUYHvwNbVkMC1st1WDdIxxMSj5MOQ8mng6m6ZBkBOXRBzz/T0CReEjw8vZDw0rY/iLs/S/Uvw2Z5VQVVmGrSAckonATm+kRxtJT5/KbH9/IHY//iVWbtmHreZzbL7mK4aEAeXla0tJU4jbi3dwLU98ctLS4mFYhTAKtq+8RQ+z1OiVWqweX00d/v7BYp9bIkckkqDVyJkzQ0231MGGCHoAUXTKv/f5n/OCuZ3ln00r2tTRzyUnnc/kllVxyiZAbE9k++FlDh8OTTasi2s1iEdteEykSjhINS5YgK5wP9e+gObAanpwB0y6Bk37Gnj2+qJowXg++XugITRV1uYaYOzeXwcEsbrv0ahSTGlnhfI1PvP9h5/qPaG+sxWMfYEvHDrateJmJ08qQasx0uVJJSEoTOIJOSX//MHV1djIyQhxhZgRHiKkJMHqimkYT4ggePzU7rbjlPbSqPFQ3b6U3rQtpUM4ETTEX5J3LqXmnEnQk89bAOgCk4xRyHHFw8cWTor7GZv5lJWWxbPEyrnrvKoZvDGB8LB9rYzNP3f9rDjRehyYtL8QRVFHtd7H3NRDBESLE2UhRx+kMcQTvCBs2hDhClgan04tKpaCwUB/lwAp/ra7uYNu2biSSiVSeeQ37177Oyw8/yMW33Mxg0PC56kGk82vu3OwjZjnC6Iyvw2U9RiLW8RnO2Arvx7cd41eoY4zzz5/Ijh1Wenu96Lf20z9BSY0hiHt3gKtOLcKYriEYDHLLfQ+yed2HrHnvffr7LOzfvQnYBEBS6iSGpj2KxzNMUbGe7OwkHA4fNpuHV16tJ1Epw+3xU1KSysGDfbz4wm7mzc/mwgtKD6nQagVen5+8PG1U7lCiUphWF3lCh9snl71UhzFDzUhoBHp4jOk3AWMJW1OydZxYnM6CUiOZukR0KsW3P1vmGEAqlVBoTOKnS0r58cJi1uyz8Y9NLXxQJ6yIVJ6eTXn5oQv8WKsIE4rSue7uP/HwT67DY9/Ox8vvZ/65DzFv3kxhLO8YIlL4c9zd5cZmE0h2WJyNbOMtn5qGyzVEXX0PUpkk5JQMsn27laHhAP2uYTQV6RjTNREB8kmcceUfeefl3+Fs+QdNynbSLvvDmMcSz6V2OJSWpuH2+Nm7t1dYHTpMuyUwqj0y3vcSiYRJmcnopNms3W2jrt/NLa/VkJmsZObsNEYO9PP00zsZHBzmvPMmHdW0rXF88Vi4MI81a9ro7fXy1Map1Bmu4t4pL1Jw4AnWyi7jhAVlGI0azlowk6HAD3h37VbWbNpFj7OPHmcfsANZg4xzZi3FrChjQpFe3LZWm8DQUICXltUhk0qYNy8HtUbO8y/sxj0wzOmnF4itjrW7egiMjGAyJTG1PB2Xa1hsSwxPq4v83Dc2OnhpWR1Vc0x0dQs3k0qlnKnlR87/+dpAFLbWCxMRw8LW1Iuh7GwhWyvJ+Jmypv4nkZgM5UthyrlgPwjbnoc9b5DX+VduLsiE0jOgQGh3OlwL33fPPoH33mthZd1/2HlgL4+/+hK3XXIFpy4qOOyKdfia2NV9qCaUlaaNmqQ4d24O9XU9qNUKWlv7cTi9tLX3k25UYbMORrUhhrPvLl1yKkmyNN7a8hbPrnqOuSfrmEnmmMcSz6l2OIQnmyYcJtcz8poP0ZkucUXDhCSYdjG2lBMI7l5O2q5/Id35CvPzz2Tw5ItZs0vO00/v5LLLyrj//rlH3MdxfDmI5Ai7d9ux2Tzs3t3DkiWFPHX5C7TId/FS7UtYLrUwUKtkYKcHn32Qvdt3AbsA0GVOYGjqNQJHKIrhCK/Uk5gow+2OwxEujOAIGgVer590M+Rn9tPha8Y+tJ+dcg97mhTkqM2UBM7gO5NOZ9bEMj5e0cNDvz9Ifr6WkREh427q1G8/SR7Hp8d1102PalOMlwNrVBtZtngZ33vncvgJuH+Rg7ujnZXL/saCS69n3rxJAkcY4/oqcoTuOBwhQtQpLw9xhLoepFJJKEA+xBGGAvT3D4uOpsgA+ZSURFQqGVKplJKKyVxz/R/40z2/4a/3/pJzrrkS86nniPvyaetBaWkabncERzhMu2UYsdf/sRaS4k1orazMoKGhj/ffb2JoKEBVVfYo59m3FeMi1zHG3Lk5PPTQCaxa1UJGhpq6fXY2DPlokAzz8sZWbjmzBKlEwnEnLkJrnM6I9jzcTgupqoO0Nmxi55YNzDh+Kvn5OlwuH3m5Gp5+6BKSDYVoDWWMKPKZMn0KlZVZmM3JvPjCbjosA3z4YRuFhSmig6umxkpdnR1LxwBLlhQAiK2Jtbt6otobrTY37/znAB0WN3muZGSh+zC97rOFj39ZGEvYKs/WcdKkdBaUZpClSyQ58ZsVlPd1gypBzpLyLBZPyeSAbYAX1jfz9k4LW5r7mJiRxJLyLCZnaeOKOWF31sXXP8Krf7kTT+9O9m76O9f86Jyox8cKSWFCUVioo6XFhV6v5Jlnd6FUyqJaC43pGuaeYBInYpnNydQ6fBCaOiWXS0W3WDhAXpUop6TUwPduuBfLgZN577Vf88ANS7n3939nQsnkKEdZfX0PK1Y0IZUJIkKsY3Is4UujFtwDGnX8S6w4PSY0XTHSlRn5+/DX+voeanbaSFTKGPL4WTLJQH9BkI/29/BOdy8KVRDfoAflvxvENpTYsfDj+PIRWw+6u3PZmDeVWc0/49SRv9G8/waMxkrMJiOnHTePTGUJ138HNuyso93RwqbduznY1sUpc8uQBZWYc7U8s/y/vL9+M1XTJ5NryMXZrWRCQTpmczKrV7eya5eNId8Iw/4Rior0mM3JBEZGsHQMUL3eQn6BDq1WwQlzTVHh9QsWmMUA7v+8cwBLh9CunmYW3K4qleLrn9MQV9gqEFwuk5cKwpYm/X+zDfFYQSKBtAlw2oNw8t1Q9xZs/htseVZoayw+FeOkJRjHWOU2GjV8/6J5JLwp5d2at9jRuAdXoBOjcYr4mHikIbImbN3ahc3mobq6A2WinOIiPdMqBKKy9Nxi6kqENkq1Ro7DKQn5Dw85zcJfw9l3Pq+f88+czaxphSzf8BaX3Plrdh+4iAdu/N6oFfK6UE0IC8tjraxHItJNNhbCx6fWyLFY3GRGBCrHE9rCDjZlogyPeyHlExZS7P8EZfNKlo68RX7idH7VNpvly+Wcd96k8XrwNUFsTdi3T8hV7OkZZG+9kyVLTubEnBPZf/x+/rr2ZT7pXEu/o4v+2n6G64Zx1DkoPi4d44QAw30J5Oao+evdP0OfmYsuI5+gMoMplcVUVmZGc4Q1LaTnS/Aq7AwVdLHX3opT2wk+QSDQSLRkyvJR2c1Ups5hgjKX2VMKKSww0NLi5M9/2sX+/X1MmWJALhfOqIyMcefrOI6MsTL/UlWpvHKWkNE1cv8IB+8fwdNpYe8n73DNjQuPKN5ADEd4JsQRiiI4glHD3LkxHKFWcPmKHCFUD8IB8omJckpLDZx2WgFabYLY5vf4a4/z51/+mTeeegavo5Obf3kzB5pcAkf4FPXAanXjdI4dmi/s26EJkxaLe9Rj43KEGpsocIcRnsxYU2MVs7cih1d8GnHum4jxO70vAHPn5kQ5KZqa+njov3tZ1d7L4yv386OTJpCYIKdmp41Oi4dpFcVccvF3APB5B3H39+MntHq3aweOnhYcPS3AGgAaNyRSN3kqk6ZUUGQuA9IoLNQdstTPyESjluN0+JDKJKyvttDV6UarUzK5LJWo8dgh10iyVkk2UFycQkLgTCqOO5EJpVP4uuFIwtbC0gxMehWa/8F8rS8aEomEImMyD55bzu2nTmLZxmZe2dzGE6sayNarOKfCREWuPq5T7pJLppKf/zQv//lBzrvyJjIzkkXhpmJaOhbLANu3W6msNIrTQwCKivRUzcnmlVfrxekl5503MWo6Y+0uG9u3W8V+fZNJg05vHtXGm6iUM2mSEGwZCIyQa9Yy94SLmFA2hX8+dRc3f/cMbvz5rzl96SXiMaxc1ULtbhtmszaqwMSusoQLRWOjgw3VFowZaiQSCRaLkH0XaTnWqOXiz6IClSOOKTarq2anjZ01NoqK9VRUGMXnFntlVOQa2GXvp6NCxzaplB+/uoOrTyigfU9vlEX8cBgnQF8cYusBzKVjRwmp715BmeUP0H4j5MwSHSkV09L5zf3nAcL1rrmjG03CoYytbfX1NHe30fxem7hFU1oaW9pLMRuzKS0rxNbtE3MmZs7MZMmSApEQ79jeHZrAZaNqjnDz53L5ojIptMlKyBaCtXv7nVyy8EyKCr6mq/ZxWxFDwtaUpZAxRRC2vomTEL/uSFBDxSUw9UJo/gSq/yi0Me59ByacIrz/ytGO8AsvLOXCC0v5/dM57NzTyuyycuCQcOP3j9DZ5aay0sjCBaPb9VpaXNTstDG0wUJmhoaKCmNUtpzFMkBbez/KRBlarZLplUamhkbGhzPDtm7tYnKZ4CzIMKrxuIeZV1XAJRf+nF/9+TV+/bfXWL+9jv/77U/ITE8V92/ZsjocfT4mhATkMCKD7/W6Q/taXd3Bf945gFarpLg4JSrjy+P2i1/NZmHK5NatXXTFBCrHa0UJXy+Ki4SakGVOpq41lZbhqVSl1TJFtpU3z9qOS/kebO5ib3cVGzb3AUeuBzBeE75IxNaEyPcaQCqRUpJaQurOxajWTKTqtCCFt/eyrXsbB7oP4BhwUKN9FdIk7Njnx9ljxdljhd3bAKhbLWNVUSq6Ih0JZUlkL5GCcojloZhdpUxJkl6PpsuE2pqFyV+KvVFFerKBk+YUIUHCns1OtDInhQUG9uyxYzComDgRZs3KRKNZyqJFZzBlytePI4zjmwV9op6XTn+Jq96/CskDMPC8kcuvvY6MjCRRuKmoOAJHqMrmlVdiOELEIkttbRyOoDOPav9LTIzhCKHpha2t/YBwHb7lwVsomVbC7+/+PQfqD5B33PnsbfR9Ko7wTqgehFvIw2768OM0GjnuiKzVeAH7sTWhpsbGzp02ioqiOUJ4H8Kh8uGvsft4JJHLanVT12wjLycFJhz2oV8rjCsBXwIKClJ45sY5vLqllfve3MMD79Rx3YkTRIdJZC6RMlGFMlFwUBnTNWRmHEef/QkO1G/F0b0Ha8c+hoc87NmxmT07NnPlTXfx4ycvxmpzU7NtL289/3PqN5WRN2EiJxyXjtevw94rFceDhic1ulwWamqsaNRyzOZkFi3KO3SSlRqOujXry8DhhK0TJ6azsCyD7HFh60tFiiaBmxdM5AfzCnmzpoO/r23izx8dOKzYFURO4fRr6elT8Mqr9dhsHtpa7AAY09WhuB/hObHtemNNOBQgAQnYe71iG2+kYBTrxooM5W5t7aenL4lrfvY8G9/7E7+/7zY++mANP/r5rzGbhfNSKpWQlqaKOh8iV1Ei93XNmlbq6uxMmKDnO98pEqehhrF3by8ymUQcaX+4tp5IRF4rYm3GZnMy56bl09brYW2DjY/22XirxkKuTsVUk4bU3COfx7GZCeP4YpE9/XgoWgevXATrfg8lZzBt2qkAUYHUEomEghzhsxy+CfnJFZfyzxWb6B/upq6pidaubiw9Pbz+7jo06kScW/6J3e6ltbWff615n5feG6SsKJeJBdkkKZNRqQ1s32rFEsqGWbDAzCfrhXqg1kTXAyEPSE+mYekRP6NfKkaFx4daEaddDJPPg8xxYetLhVQGhSdCwXyw1sO63wli14EPDyt2HT+lHEd7Eqs/bEGtkbNpczv1dU502oRQa1+cemDUiOdI5BTQaAjurV67F0+obSt8/sQ6se64vTBKRGtt7WfOpCrKfzqBB55+hmln38gvr7uWc08XhOiB/mH0KUqWLIlurwzvg8MZfc3/zzsHaGvtJ9ccXS/CdSCyHkQ6FI50vkW60qKnNOYjM5ej1H8Pmj9B21oNK+5kkUzJ1LQTkGq/B4FcOMIo+PGa8OVhLKeLmKc2P4+5M3Lwj/hx+px0DnSy276bJmcTDZomVLek0rOvi/4DvQy0uAj4Atj22LDtsTEzfSZzFs1BMazBXu+l4b3tzK6sZPLkyaQUmxlyp9LeHuA/7Qfp00OGMYnJkw309Oxn5cpmdLoEJk82cPXV5aIIt2dPzrj4OY5jhmRlMs+d9hznvHYx/KCL/a42Ol8ZCXGE8HU/PL0zfk0Ya8Jh5HPsdq/YxhspgokcQRqfI0S+jtXqJq2ggl8+8xhP/PRhDi57nNTSs0irnBm3HsTjCE1NLrKzk0b9Dj4HR4jI2YrHEeKFyx/ttkF4vw8ccCCXfLM6o8ZVgS8RF88yM9GYzE2vbOeRd/dyfmUOF19UctiMqJycVNJyptHRY+KEqsvJNyfTa2tBFmynq6WeyqoTAUEIUMu72bjmv2xc89+obSgTVSTpMphx8lU4HVnY1XL27GqgcU819dsNKBSJlE/LQi3LIUGpJF2XgC75qy1eh83Ymhh2bI23In7VUCXIuWR2HudV5vDmjg7++vFBUexaWpnNtBw9r/+znnVrO9DqEgj4hSDrkREYcW9m3+bnOOP0FymbahZbaAEOHuxj00YLCQlCMLfb4+c735kwSnitr++hqdlJ0QQ9iSo5dXvsFBbqxN/V7LTR1upi//4+9CmJaNTyKJeUvWcQmUyCXp/E9278BQPDuaz/7++5+5o6Hvrr8yxamEd6enRAPsSfiijkGmnptAxQXJzCzBmZWG1ucRpqGJFOrsNNV4xEaWla3AmPkc/NM2i4zKDhnGnDbG7uZWe7gw/a7fz3Hz2UZWlZWGpkQWkG5dk6pFLhmhNeQdbpEpgzxxSVmTCOLxjJRvj++/DuT2DbC5QZ9lJ29m2gTj3s0/yDSgpSS6mYNp9pFems39CCVN2P1dmNe9CLTCYTV/kuv7+a+gNtUc+XSCSkp+jJSs3g/PNvZ1dtD/V1PWzYvZMdB5LIy02lscFFxbQMZs3IJjFBQWbO18DOPpawNfUiKDtXmDyXlDEubH2VkEggowzOfxZsDbD2N1D35iGxq/x8SEji9dfrWbuuA502gc5ON0ggNU3OH5Y/R366mbvPvjRKvDKbk9m6rYtXX92LzeZhxowMiotT4rZZ1NX30NzkZEKRHlWinD11h2pCXX0Pzz27G6vNLdwzhdoHI1fFe+xCTZhaOJEXHriPn/7hL1z/8GPsajiX60OO+9HC0qFtWK1u0ckVdkXmmuGsMydE7Ws8J1fsvhwOZaVpY+6DiImnQtEp0NOItHktWd27YNUqWKeF4kUwaYnwd4m45ozXhK8PYh1fcqkcg8qAQWVgSrrgogrODvLAnrWs9jZRcVYaJWU6ujtbUCqstDbt5cqrrmTWjFkoZAr+0fMPXnz/CarfXxv1Omq1Br0+k9NOu566uhzBtVG3j3XrPmbz5lQSElScdFIBKSkTSUxMJD9fSWZm4pf6Xozj24uHHqrm1Vf3kZp9PpLFL1KrWUHi3nkEDnayf+NKvnPmg0yanCZOCIU4HMEd4gjGOByhyUlRkZ7ERDl1dTEcocZGW5uLffv6SElJRKORR11H7aF6oNHIsVrdrF7disvlY8aMTP72379x15X3sr/mdaQzEwgGK0U+H+86LnKEzgGmTUuPK4oBUU6uo60HcTnCEZ57NNuOHFQxYYKQ//dNgiQYFGYmjUOAy+VCp9PhdDrRar+Y4HWHZ4jbX9/J6r1WSjOTuWpuAamahDEfH9nWFQ60Duf3rP/Egr13kLIyA67ediwHq7F3NVO3aw/WznaGBh3idi750aMk6GYhk0mo2bia7SsfjPt65qIp3P6LR8gtKCJZpz/GRz82gsEgTT1utrb0sbW5l96IqYjzitM4tSyTLL0KnWpc2Pq6YsgfEMWuph43E9I1tH3URVejE0OqilMWmNHrlfT2evjwtVtobdxNhimHJ/7xDmnGQysrd9+9lgMHHEyYoGfpeROjPvOR0xVXr25ly5Yusk1J6PRK6ursZJuSuOzyMlavbmVnjY0EpZRe+yAKhYycnGSWLCkQi8HWbV1s29aNz+env38IqVSCTtPHpncfotdq4dYHfsspZy496uP/tCH1ked2eJ+qN3SwodrCnCoTVXMOrbx82m0HRoJY+71sa+ljb1c/TT1ufP4RtIlyZuSlUJmXwnCnl676Pk6qymHJksKjPs5YfBnXza8CX9px1f4L3rkNRoah8jIoOEkQDOIgcpqcx32oHsycmSkGaVfNMVFUpOep/3ufbkc32/c0caC1E6fHxdCwMD136qQCnr33XtasacXp9PH3lX/H6uwZ9XoSJNx33RVccMZxTC7+kie0+fpDwtaGaGEr9zghPD5rqiBsHcGVMo6vED2N8PEjQnaXRAalZ3HL0xpa2wdJNajEYQbBJCu3/OZJAH5z5/e58+rzozbzs4iacN5SoSZkZoWvg0GmhnJTnnlmFzt2dDN9egYajYItW7owZSdx+WVCTVi1qgWvz09BgZ7Kygx8Xn+UaLVqdQsffdSKdzBAdnYSZVMMvL7qXZ576x0Wz5/JskfvwJBydNeCT5t5Enluh/cn8pyOXYn/1JkqQ27hPGrfAvZG6O8EJEJWXc4syD2Ojw8Y+bBGznFzcsdrQgy+rse0fn07q1a1sHBhHk7nEBs2WJgzx8Tg4DDLlzewdGkxM2dm8u67m2hu3kBn50Gqq2tob2/F63WI27nvvqfZvz+TYBBkshr+7//ui/t65eWzePrpP1JaWopON+7mGsfnQ3n58+zf30d2dhIXXZXL2pzHcPuddP26i+5mC9n52Ty5/ElS0lLE50RxhKUxHCFiuqLIEbKT0OlCHCE7ictC9WDnThsJCVJ6e8fgCFtHc4T8fJ0Yih/wB3jmN8/w6lOvcsp3TuGO39yBSj12nvWnvWZHtmyWRtSE8DkeWRO+iIytyOnChZMTUMgUnDXhrE+9na/q2jnu5PoKoFcn8MwVM3lpQwu/fX8f9721m/MqszlpkjGuqytSobXahElX4VXCzVs6cTp9OB0+MjKTSck5E1W6n365Hdr6KShQM7sykQSpk9zCSTgHlGjUcrzOHLoOzqHf2Udg2IdGI8E76GXQ46WzrYXf3ns7v33un1/4ezESDHLANsC2lj62tfSJjq3JJi1XFKWxqCwTk358KuI3BQlyGRfOMnPO9Gxe2dzKn9ccYGhyMmlZSqqytFxyUan42CWnvcKtl51NR8tBfnbtxfz+xTdFUXXe/Bzx69BQgO4uN4WFulHTFSumpWPpGEAqkxDwjzA8FKC3d5DVq1vJyxMupHl5WgY9fjZustDc4uLvz+xCKpWyYIGZGTOEqSPbtvbSPzDExOJUzr94Pld9fz5/+NVdPHzXDezatpEbfvpLEpSfbeUynpAV/vmyZXX0DwiiQ/h3G6ot7N4jiA0peuUogRs4osgVKZSdOSeb06eM4PQMU9/Zz35rP812D9UH7Pj8wiTVFRv38+fGDi6amcvlVfmf6TjH8TlQfj6YKuHtG2HT34R8o+NvAPVoF0WkgyM8Rju8ChgO0gZholthWglT8sqR2FuYoPQxrSKdxWdms21nK4Y0IZh1emUGEGRL60QOtCUTCA7jGxpGroBB7xCeQR+/feGfSOXBL0fk8jpDwtbG6KmI5RdA6XdCwlYmyMdeGBrH1whpRXDeM3DCbbDqAdj9L349R8MbDRUoJ53MhReViQ8dDnq487Fn+cljz5GeouPKpYvE382flyN+HRoK0NXtJhgM0tXlJgjoQ+PRUw2JaLVK/AGh3UWRIMXR52VXbQ/TQi0tSqWMLJOGuj129u3rZfduGyNBYduKBCl9fV583hEyszRMn2bktEU3cMGZs7n0zt8yfelNvPb7nzJneimfBfGErPDPly2rY6BfqAeiyBVxTutTlFHPPdpMlWihbDbkzoYhDziaoXM39B0QctS2Pc+JwDyZjECdCWyFcPEroPx6RFeMIz4iHV8tLU5AmGR3993rWLu2HRAGh3R0qElLW4JKNURnZwdeby8VFXq+8510VKp+Jk+eys6dHiCIwzHA1q1zsVp78PuH0OtluN0eBgYG2b9/L1dffS3r1n30lRzvOL5duPjiSbz66j4uvngSP/95FVbPDC5dcSmyO2Dk4WE6mju46/K7ePy1x9EkC9eieaF6MC9UD7q7IzhCxHTFcJ6XVCrB7x/B4xmmvb2f2toescUvL0/L4KCfjRstNDe7+PvfR3OErVt7GRgYYuLE1KipjzK5jB/e/UMmTZ3Eo3c8yo3n3Miv/v4rTHmmOEcaH/GErPDPly2ro78/hiNssLA7VBNSUpTic8MTG+HIGVtjCWWxiG5p9B31MX1dMC5yfUWQSCRcUZXPKSVGfrZ8F//Y3Mbahh6+d1weRcax7YCxLUqzZ2WJTq6EBJkwQaHBQWqqkimT0zBmqOlxSCgpyaN40iGnjNtzPEOSAnw+P2q1grlVJppbXLz11gFUKhlnnlFIarrxCzn2kZEgDVZB2Nra0ovL60ejlDHFpKNqgoEFofD4FPW4sPVNRYJcxhVVBSytzOGpjw/wYnULG4Z9KDa1cF5lDokKGSmGdB75+6v8+Htn0dywl3t/dDmP/P1VElVqFp9eyOLThVXkV16tp8MywIZqC0uWFFA5XSDlYUeTIU1F7a4eNm6ygERCMAgul4+EBBkLFpjF0Mjk5AR8vgBNTU4GB/2sW9vO4tMLWbDATKJSjr13kLlVJvH8uuvhJ5k643j+9Oufs692B/f+/u+YzPlxjzdy+qHbI0w2sfcMsnJVCwcOOBgZOfTYsGhVs9NGn8OHXCYRBTmAOVUm8Ws4cB5gwQIzcHT985FCWdWcbORSKYYkJScUKzmhOA3fcIB+n5+2Xg8dzkH63EM4PMMctA0QDAbHz7uvAoZCuOId2PJ3+PBBeOdWoZ1o8tIxBZ1Yu3lVKFS0ao5J/JzU1FgJ+IPoU5TMrcrGOyBDNqwjUyfkFC0UQ1wvY8MGCzqtkrLJqUwtT+ejj1p5//0WMjLVLDl+4hd37IN9EcJWvfCz1EIovxBKzhSEreRMkCu/uH0YxxeLjDL47mvQ/AnqVQ9wGesgqQm6rhQy1IA7rj4Pa6+Dx559g2vu/QMGvZazTjkOgMWLC1m8OFQTXqnH0jGAz+untMwgTtICOGFuNuZcLdXVHezd20tamoqkZGGyVllpGmkGFZ+st9Dc5CJBKQTTW22DOJ3CDfytt8zA5Rqm1z5I1VyTeH6dPm8mO/79JBff9gjzL/sJj915NT++/Owxr5XxpjC+++5B/vWv/UhlwnPKStNE0ctm8zDQLwhwykQZVqtbyFGJOKfDYfPh5x5tpkqkUCYSmgQ1GMuEfyMBweXl6RFaG902pIO9guDc3wnKok/1px7HV4fIfK+lS4vFr+G205Urm9m6tRuTSc38+Tnk52tpbZUyZ04B06cXMn26sJ0VKzSceqoRj2cIrVbJ+edPpLbWxuOPbyc5WcGNN04nNfXwrfXjGMfR4Oc/r+LnP68Svzeqjbxw2gtc9t5lBG8L4nvIR8PuBu79wb088uIjJCgTRtWDjo4BNmwIcYTKCI5g1GAwqKit7WHjRgvDw0Hk8gAQpLQ0DYNBNTZHWNfO4sUhjpAox24fZG5ETYjESWeeRF5xHvdccw/XnXkd9/zpHmafOFv8fbzph3b7ICtXxuEIIdGqpsZGX18cjhARIh8OnIdPyREihLLDiVyR95i9g+Mi1zg+JXJT1bz0/eN4s6aD336wj0fe28v0XD3nV2aToRvb8giC4HXuucVRP9Oo5Wg0CtE1EtniFIlIAtTY4ECjEdo9gsERhocgHNR3rODzB6jv7Gdnm4MdbQ4GfH6SE+VMMWmpKkrjlBIjmdpEUjUJ4wT7W4TkRAV3nlbC5XPyeez9fbxV08GW5j7Om57NCcVpZGabefhvr3DbFeewZ8dmHrr9hzzwx+eRyQ9dmiLdWm6PnwULot0kxnQNOn0/anUC+Xly5lSZqN1l49VX91JcpEeTlEB3lxubbZCiYj3ZpiTq6nvJy9OK2SyR51Gk82rJBZcycUoFv7r1Gq6/YBF3PPgE8xadMeo4400/XL26lZoaK8PDAXJztKKwtXZtO9XrO5g3P5v0dBVOh4/uLre4rao52WKbYopeIPV5eVqxNTmcKxbb1hh5rkcKZfGgVMhQKmSMDPoJ2HzMnpCOJFGOQi6IhOOn4FcEqRSO+yFMWgwf3COEdx/8CKZeILQwHiFvqqoqO+qGxWgUcoc0GoXo/oh1f4UxtTwNm9VDQ6OD7dut6HWJtLYNMOwfIRg8uhuno0YwCP0W6NguiFs9DcKHLnUCVHxXELYyygTHlmI8++VbA4kECubB1Sthz3JBzF3zIGTPhJlXgdrAo3d8H6vdyYtvruLCWx9m5XMPccKMyVGbmVaRTodlAJlUgjlXGxUiHL4pb20TplIVF6eQZUqisbGPTRs3YDZrqauz43T6qKzM4LzzJrJrl5XtO6xMrxBaHpfG3FdFuq8+eulRfvb7F7j14adZu3U3zz10C3rt6IXJnTU2LB0DmEIBwwBr17XjdPrQ6ZRicPzOGqEmDPtHyDCqkMmktDS7MOdqxbDg8DmtT1GKx2+1uvlkvYVe+yDqUI5MbLtyuB5ECmVxIZVBoharS0arSx1aQFJBz35gPNHkm4rzzpvEeedNEr/Py9Oh0yWg1wuT3ebOzRk12TGMWFFMH7oXGRkZwev1c6w5wjjGEQlTsonnTnuOS1dcSvGdxex5cA87qnfw6x//mnv/fC8y2aF7oUi3ltsdhyMYNeh0AkcoLNRSVmbAbh/k7rvXYjZrSUpKoLs7xBGK9JhMSdTX92I2a8XFhlEcIY7zqmBSAU/95yke+vFD/OyKn3HNT67h4usvRiKRxJ1+GMURcrWisDWKIzh9dHdHcISImpCSEsER1luw2wfFXLFYt1ZkO2O8aYvxEPkc+ddo9tDRYlzk+hpAKpWwtDKH0yZn8tePGnlxQwv3vLWHCrOec6aZyE5RH3kjIcSGz40VbB3+eaQoBogT7Mqnpo16zqdFr3uIXe0Oatoc7O3qxz8SJEWtYFqujnnFaZw40UiGNnHcsfU/gAxtIr+9YBpXVuXzwNt7eHFjCx/tt3FmiZHAQCq3PfQ0j955JRs/Xsnqd97g1HMuAoT2XLfHz5IlBWJYezyYzcnMm5cthro3NDpoa3UBcPHFJRQW6qirs9PvGsIzOMzMmRl4PH5Wr24VrMcR50ike6q0NI2i0in85Z8f8Lt7b+WXt1zN6edfxdwlN1BYmCo+L970w4pp6dhsHgAWLcwTf77mw1Z6bD7WretgeHgEnzeAvdcb97jC5/PWbV2s+aiVHtsgra0ubrxx+ii3VmTrStWcbJHkhIW8eIh8TmHJ+Krs1wZ6M1zwIrRUw8r7YPPfYfdyKDsHCk8G2dGX7tiA6rHCRo1GDQsWmEk3qgmvgkaS48+d8RDwg61eELY6toHbClI5GIpg+mVQdhaklwgZW+OOrW83pFKhRbfkTFj/BFQ/Ce/cxoD5dPbJ5vPQzVfT0+fkvx9v4Zp7/sCed/4qkhqr1Y3HLdSEyMD2WJww14Q5Nxm1Rs7OGhs7dlgZ6B8CYNbsLNrbXKQaErHZBGE3OzuZVINaHOce+XmPdVD99q5rOGFGGVf+7HEqzrmJB6+/jlNPnBL1nMjph+GfR7Zchs9JvV5Jf78Pry9Af78PrVaJNiJgORKR5/Lyfzfw9lsNBAIj4u9i25XFehAiRVarO+7xhTGq/VE6ThG+bYgNsx9rsmP455GiGIDD4SM7O4mTT8790vZ5HP+byNPmcf/k33HX0I2U3lJG7WO7+HjFx5y44kROPutkQKgH7lA9cB+mHogcIRTq/uqre2lrczE0NBLNEfp9eDz+0Rwh4noZ6Z6KDXtP1idzyyN388xjL/D0I0+zb9c+7vrdXXGnH1ZURHCERQJHaG520d/vw+cL8P77LeTlJeP3j2C3H4EjbO1izZpWenoiOEKMWyuKI1RFcISQkBcPURxh8jcvImK8gn2NoFHKueO0Ei6vyufpjw/yz23t3P+fOoqMSSwoMTLdrEculR7T14wVxWJP2E8D73CARusA9Z0udltcdDgGkUjAnKLm1MkZzJ+YxgxzKkZtItpE+biw9T+IKdk6Xv/hHH7zei0v1bTz5+pmMpFRrsli/tn3IA20sujsC8XHhy+wWZkadPrRxDfSvTQ0FGD5G/tDLSgKcs1aFiwwi1MO6+rs1Oy0MTwUACAjQ8Oe3T243cNRkxv1eiVSKeLKJYAmWcu9jz/Dm/94lr/95gE2f7KRhRfez9lLZ2FM18SdbDLWz4qK9OzaZcPtHmZ4KIBen0hZmYGt27rihspbbW6cDh9qlXC5djp81O7qwZihpsinF91asa0rUYRlDJHr04wQHseXDIkE8ufC1R/A/vfhk9/D1mdh1+tQeCJMPA006UfezqdAdPsiccdOHzXCbq2u3dBVC927we8FpVZokZp2CUw6HfR5kGQcD4//X4QiEU76KVv8p6D55H5Km95mYvBjOt0X8Ivrr6Wv18891383atW+tbWfbdu60WoTRpGPyFXnxkYH1RssJCUpsNkGyTYlIZNJOPlkM0VFet5+e5Ddu+24nD6sIaLRaRlg9aoWZs3OEt1cdfU92Gwesk0aUbgCOGdhFdsnFXDmtb/kqgce4vLTz+bXP7mIjAzB1RVv+mFki00YDoeP5GQlw/5BgkFQKmVUzTGJLTTxyIfV6qa+zs7w8AgKhZRUQyJWq5sMoxpfkT6qXTny2n6kDK/xejCOWMSKYpH/P45xfFEID1PQaBTM9P2QjUV/ovDKUooGJ3HSmSeJjxM5QpYGnS4OR7DGcITl+0lICHGEXIEjhDOuDYZENmzoYHAwgiPsieAIxrE5QiTaOzykTzqRRZels+6NZdxw9g386u+/4pJLonMc43GEcD3w+wcZHPTj9wc54YQc8vK0Yy5QWK1unE4fanWIIzh91Nb2YDSqKSrSi26tw3KEMUSu8UyucRxzGJMTuefMMq4/aQIvbWjhzR0d/G3tQZKUcmaY9RxfaGCCMQnpVywSeYcDNNvd7Ovqp67TRVOPm5EgJCnlFKZrWFBqZEFpBoVpGtKSlKgSxke7j0NwLvr29ZOywUnmrBRaFSOsGegnMaGU2flVUeJn+ALrdHijBJuwuOV0eOnsEgjKhmoLHR0DaLUJTClPY8mSTGbOENpYanf1sLfejkIuQaVSUlmZQYJCSmOjg65OYVthIcjh8NE/MMzq1a14B/3MPSEbY7oGiURCyYxzOPnCZNb/50HefPoHqBS/5tLvXzDmscabiHjWWRPINWuRyaCtdYA5VaaoVffw42KPcfKUNBKUMpI0ClwuHxKJhNNOK2DmjMyoFsvw82MLWrwA/EinZ6976HP9XcfxBUEqg5IlUHyq0Lq4+W/QuBL2/hfSJ0HeXGHaYOJXPO0rGBTye3r2C8JW927wOkAiBV0uTDhFaLnMPwGSM0CVKjh6xvE/jxXrh1m1+nK+e9wiLk17iYmdf6etcxKnTZyHozv6M2I2J9PQ0IfL5ROu26Gb88jx7nAoh8pgUGHMUFNZaWThgnxAmBjV3OyizzFItikZRYKU+fNy6OgYwOn00WsfFF9vZ42NhgYHSqVwjU4zqMTXTFJque+qm3ji5Vd57r9v0NHXwb+evJMkTfyoiXjTr8LCmUwGrW0DVM2JqQdxRDyH04tUKiEtTYUpO4mSklRaW/vFmqDWyFm9ujXKRRZ+7yK/xobgH+24+nGMYxzj+CKxalULq1a1MnNmBmcvOpn+zU5qj38B17CHkeAIMonAJ0WO4PRGXTPD10qn00tnZ4gjbAhxhOQIjjAzU5yg2NPjQaWSo1DIBY6QEOIIXe6oWuNw+OjvD3EEr5+5c7PF3wmtjFZ8Pj8Gcyk3PvIrXnviD1x31nXc88d7OP6U46OOM7YmVETUg7a2AbHVMDzlMHx8kc8NH+PkyWkkJMhISorhCDMzo1osw8+PyxFi2jDHM7nG8YXBkKTk1kUTuf6kCazdb+PVLa1saerj44YekpRyJpu0lJm0lGZqSdV8sTbCIf8Inc5BWns9HLS5OWAboNPpJQgkKqQUGDScXWHiuAID0816DElKUtQJyKTjbq1xjEbY+r5wYR5phVp+9NI2GiXQkDiCfcCHRhbgd/fexpkXXsbM2XOx2tzo9P2jViA0agUymQSNWi46msomG0hPV8esRgfR6RJJSU0kLU0V8XsJ4dYsEISlRKUcpVKGo8/H5i1d5Jq1orC2YkUT3X1GZp/xe+qq/8CLv7sJn6uBK2/8CfsbHNTstIniVa45ibZWIUts3rwcUUwKr97Ey8uLt+qelamhpCQVp8NLV5cb76DQ3liQr8VsThb3q8MyAEBzi4t1a9uZNz9HDO+H0W2Y4/iGQSaH4oVQtAB6m2D7S7DvHdj6nPDPUCQEtGdOFbKtPkVL46dGMAgeOzjbwN4oCFv2AzDsASSQnAWm6ZA9HQpOgRQzaNIgYZxAj2M0wvVg6sJ5JB93E6x/AtPHv+OnU1royTkHgiW8u24rL7+9hpcevV0cKBJ7vXS5hpDJpDicXiaXCZlCk8tG1wOzOZn8fC0JnTKMRjVms5b0dDV5+Voxvy6MvDwt66s76LF72LK5S8zKCotqDY1O5pWcQobOxMpt7zPrglv45xM/QxpIYmeNTRSvJpcZ6OgYoLPLzZw5WaJjMnZaamtrP2qNnJKS1FGOqnBNyMzSkJ+vZdg/gkQiwWIR8loys9SoNXJWrGjC0iHUg5ZmF2vXtTN/Xg6LFxcetg1zHOMYxzi+DojkCHPn5qDTXcjTG31sT/s/Xq5/mQvyLuDR2x/lwmsvZObMyVitbnS6OBxBE+IIGrnoaCqLqQnhhROPZ5iCAj1JSYqxOYLVTWKiwBH6+nxs3txFbkRNWLGiiY6OATIz1QwPj5BSbuIvb/+Fh295mLuvupsZp57JzAWn0d7hITc3ibY2IUssPJwk0t0VrgdWq/uwztysrBBHcIY4gjeA3e6loCDEESL2C6C52cW6de3MC9WEMA7XhvlNxbjI9Q1AokLGqZMzWVSWgd09xMf7bLy3u5PaDhebmgRlV6eSk61XYU5VY07VYEhKwKBJQKtSHJXjKxgMMjgcoM8zTK97iF73ED0DPiyOQTocg9gHhgginO7pyUrMqWpOKE5jeq6eCnMKBk0CenUCCfLxlflxHBmxFvj37ziRZZta+d0H+7jv7T0ot71O7Xtvsmnth/zp1f9iLiyOarmLdHi5u4Zxe/wUFelJSJDFbfkrn5qOTp/IwYN91OywYTZrmTkjkwULDrnCGhsdbKi2IJVJmFuVjb13EENqYlTRlMqkZJuSCARG0BXeRFbeWl5/9s9sWree3PIbaWoDuUzKsH+E5mYnSCQkJynQqEdfaiOtwjNnZI7aZ41ajkwmwWTSiKIYSGhqdgqvr0/EmK5h67YupDJpqC3Hw8aNFro6BdITKXJF5oaN4xsMiUSYxLjoATjpp9C9B+r+Lbi89v4Xdr8hZOlosyElD1IKQGsCdRpoDCA/yiD3gF9wYnns4O4RJq/1d4GjFVwdQushgEItOLUKT4LMcsFZpjeDOlVoTRxvSx/HERBbDzjxTmRTzkX29o8xtbxK26vVnPfwfgaHhkhL0fKHn183ynEUvk47nF66Oj2UlKRy+WUZo5xTIKxOf+c7E3j//WYaGvooLk4RH5MWmrZVV9+DxeKmuclJtimJkZEgpWWGqHrgcg1hytLQOhwgU1PI3d+7kX+seZ2Z59/Cd085G03ATF/fICDBbh9EJpPQ1+fF5RqO+z6Ea0JJSWpUmH4Yas2hmjC1PE3Mz4OgeMwetx+ZVIopOwm9Xsm//rUfp1Nw6ca2Skbmho1jHOMYx9cF8dpk5879GU/vMvDkjifZ9Jft1L+7i+3VO/jbO09hyjPFda06nV7c7mHc7hiOEFMPwgsnBw/2UVMT4ggzQxzBGsERNliQSiXMnZuN3T6IwRDDEaRSsrMFjnDggAOdTklRkZ6zr/sRVpeare//h/qafRhKFtPclCRwhGQFGs0ROMLMzFE1T6OJ4QjWEEdoCnEEXSJGo4atW7uQSmM4QmjYVWRNiMwN+7ZgXOT6BkEikZCWpOS8GTksrczG5fXTZBvgk8YedrU7aba7WX/Aznt7ug89B1AqpCQqZCTKZShkEuGWKCgIWz7/CIPDAQaHAlEzdCQSSFbKSU9WMikjmZwSFZMykynP1pOhTUSrkpOcqBh3ao3jqBDurw+vysRCJpNyZVU+p03O4J5/72bl4FkoazYw2LWPe264lD/+33/Rp0YPVACodfjIylSLPfVjZVCFv1/+xn46LG7q9thFASj8vO4uNx2WAbJNSZSUpOD2JEcJZuHgSrM5mfffb6a11UVF1Xc5fn4Vy/74E9qbbiGl8FqySmaRmqKKcnK5PcLI4Ej31pHaCd0eP4FAUHyuMV0TJcpFPn9qeRobN1lobnZhMCSiUSuYNz8n6rHx+v/H8Q2HIhFyZgj//EMw0A1tG6HpE7DtFdxVzeshGDj0HKkc5CpQqATBS4JQEABG/IIba3gQAjHtq/JEUKVAsgkypoBhAmRNE8LiE3XCv4SjH5Iyjv9tHKkmYCiCK9+B7S9h+M/PefYsBd99Y4g/LnubCblZ3Hz52XG3azIlodcljq4Jcdrw6urtWDoG0OqU4u/Dz5HJJLS39zPoDWDK0pBfoGVqefxWj0/WW1i/vh1too7Hbr6dx174B8+/90+m5k1lWuZctNpEsR1SqZSj1R7Kn4tsV4ncZmwrIYDHLdQEj9uPsfRQfp7V6kYf4WIQBgcFaW5yIZVJ0OkSxND7yNeLlxs2jnGMYxxfNo5YD0K4duq1dLu7eeWMV1BtTmWgu5efXvlT/vTvP6HVH4psCF+na2t9ZGXF4Qgx9SD8/fLl++noEDJ8wwKQyBG63XR0DJCdHeII7uQowSweR1AqZbS29rN/v4OsshPp9yXTU7eC3tpXqLrmegZ8GnEqJIxdD2B0O6E7VA/CzxXEOk3UNsLPnzo1jY0bIziCRsG8eTlRj/02coRxkesbColEgk6loMKcQoU5RXRi9Xv9dLu8tNg9tPZ66HJ5cXmGcQ/58QwF8AeC4sK6RAKJchlqpQxNghydWkGWLhFzihpTiookpRxVgvA7lUKGdFzQGsdnRLi/Hg4fXJqlU/HMFTP53T8T+dvw/TQvu43Othbuu/EKHnvuXygTD2WdtLb209nlpqQkdZTLK17+VGtrP8laJdkgtjbCIcdU2WQDpuwk8vK01Oy0idku4W1H5leZsjTk5ekwZWkon3oS6aZ/8sqff0rT3t8xeeK1zJt/Lfn5OtEdNhQKuz+ce2t9tYUdO7pxu4cpLU0bMwQ4dmKqMV2DTt/P8PAIw0MBZs3KEgW8rdu6jhg+P45vCeQJoM8V/pVfAIFh8PXDYB/0NUNvMzhaBGeWzwVD7kNuLAAkggCWoBbaCpU6ocVQnx9qN0wXhLEEDSQkCa83jnF8RhxVTZBIYMYV1DqnMY27/5+9M4+Lqnr/+HvYYYBhl0VmXDBZRFFRA7I0cS2zNC0rzTLbtbRN/bbYapv9st2yNK0sS1Mzy8RcgVRUUAEVURhkcQBlG/bl98cw48wwg+AKeN6vF69p5p577rkT3g/Pc56Fd4v+Ze7WKma/+zVdO3sz9tZBuqHNRUGZchoplaU4O9mCH7ouonA+WkqhcNZFSpWUVHPggApA51jSr1VyU5QvVZW1lJRUYWdjy6IXniD2yADmfrSUosp83nvmSV065NGj58g4VUJKaoFuHaZ267duVbJvXx7ZOWW6OmBmNcGolpaLTDNnbV09Hh72ulRF/e9Je55AIBBca1pqIwC8fOPLpJ7OoOGleLLfqSMrPYtXH32V91e+j43t+b9LlMpScnMbbQQvEzaCUf0ppbIUJydb/PzQpTbC+Yip4GB3fH0bbYREPRvBq6km+Po22gi+55/b3brJCApyx8E6gp8Wfcz6zz9gwhOPUVTjY9pGMIreio1toY1gpAdeXlJkMiMboVEPTNX66ki02MmVk5ODr6/vhQcKrgkSiQQHGyscbKzo5GxH784uBsfr6xuoa2igrr7B4HMLiQQrC4lwYAmuKPr59QBr1hxj7do0xo/vwYQJPQ3GSiQSnp8UyvTbevKkvw2rX51GatJ+3nxpJm9+/I2uML3xA17f+bN1q7JJ/Sm53InhwxW68dpuhtqIKU9PB0aP6kbC/jxKSqpxdrY16zDTpj9qI728hgYTGPQDyz9dxNb1Szi0bw/3P/UOZZV25OdXkJlZQmSEn0lR0kZb2dpa4uxsi7ubXZP70ScuPpv4uByD2mNyuRNOjjaUlFRTVHS+OKT2OlIHK7PdGwUdFEtrTcqgg5sm6sqYulpNhFdD/fnPJBYgsdQUuxdphoIrSGs0YdCtYXDrJoIO/Ub6jIf5Zm8p985+m9hVHxEWHACY7gyo/8f+1q1Kg/pTTfSgsXOVNlrKxsZS11k0Zmsmmn8NElQqNYcOFwANusgu/XQX7c6+XD6UTjJv5n36BQ8teIsHou/isftGUFVZS9qJIqRSa906jNetUqmxtbPC3d0OSwuJruixqcLwcXHZxMXnEBnhq2sJr63plZioor4ek5rgILUy261LIBAIriattRGW3/UlU/6egsVsCSffqSLpvyQ+mvcRLy16ybyNYKQHxvWnzGmCNmLK09OB0aO7kZBgwkYwcpiFhnoia4wo1l5XpVJjY2NJVpYlfW5/DOW+9fzw4f/hFzoEH++7iYw0YyOojGwEd7sm96NPXFw28fE5BrXH5HInnJyasRE6qB602MkVEhLC559/zn333Xcl1yO4QlhYSLBAgrVocCi4Bhjn169dm8bOnacBmgiYFlepDatemEAv1wZefuxe9sRs5M233uaVl/+HRCIx6wQCTbHgnOwyFApN+LJxl0P9CKfq6joyM4tpaGhoEiLs5Sk16TDTXlfb5h1g2/ZsXBV3ccv4LsT9+S7L3p/K9BcW0SfMX1cHS3/Nxt0TfX0cCQpyNxA3Y1T5ajb+kU52jprCwgoUXWSkpZ0jrI8n3bq5IHOxJayPp84RFhHpS2SEn8H9atctHF7XOZZWiGBuwbXiYjRB0vtuPv87koyb+7HlyBnGTX+ehNUf4ukfcMHOgAqFM9k55zVBH/3dc43RUsjmzaeorq4jMtKP3qEeuMhsdSkvBw+coQFwaax5Aud3wZXKUgoKK0hKzKekxIpXps7ky99/Yemmn6m3K2LmvZpuvNo6WPoGkNbIUCpLKVfXMOhGX911TaFSqfljY7quyHx5RS0HD5yhe4Arcn8ngoPdkUqtcXGxZenSQ7i523FTlJ+uo9jRo2cpKq7SpTp2JONGIBC0H1qrBzZWNiwZvoR7q+6l4ekGjn5wlM2/baZ7cHcmPqJ5xjanCQqFMzl6emDc5VA/wqlZG8FLatJhpq8HWrTdfy0tLbC2sePup57m0M5/+GPFL/y3vpQ7xi7Ay8vRbPdEX98W2AgqNRs3ppOdrSY3V02nTg7069eJ0FAPjY0gsyUszFPnCDPu3lhcXKUr4N8R9KDFf+G+/fbbPPbYY/z+++8sWbIENze3K7kugUDQgRk/vgdqdQ1dujiTmVmMQiEDIDOzmOTkQkJC3HWf/e+Ru7EvX8z/XnmV45Zy5v2SRPdqSyQ1DQQHuzcpNp+aWqArIG9jo/HqGtfr0heprVuVKJUl5OaU4Si1wV9uWIsrrI8nanUNdraWqPLVBg4u7ZxZylL2J+QhV8iYMHksEYP78fu3/+OT1x7ikdn/IzDwCYP7V+Wfb3cf0N1V10nrQk4n/ZTLwTd3pqioipKSKhKT8qmrayAszIugIA8WLdrHoUP5FBZWEBDgYnC/SmUp+/efIS3tHMOGySksqCA2LgcHFxsGDvS5pP+vAoFAcDEMHuxHdnYZgwf76T4zpQfWrr78sjOVgX2CGOpdhuOO10mWjuavkwFERvjpopn0/0hPSS0gLj4HSwvTmmBstJxRlXPs+DnK1DW4uNpSrq41mK9vv06UlFRRVFyJSqU2Wc8rI6OEktIqbh7cmS9efoZtB+N55dPlHDqezuqP59G18/naJ9pOjdr0F+P1mMM45bK8ooYG4GxhBeXqGgID3Zg8OYhVq1I5ePAMdvZWVFXWMWyY3KBQv76zS2PQlaBQOONSX4jMsRS/jlWmRSAQtHFaZiO48PXwr7mv+j4CpgRQ+Hchft0D2Lo1k5ycMqqq6gxtBC89G6GxgLxJG8HLjI2QW4ajow3+/oa1uMLCGm0EO0uTegCQlVVKQkIeCoWM4cM7o27UlOjhjxE5tA9vzXqLJ+94kje/eRN7mYeBc0vbPbEljif9lEu53JnS0mqgAaWyFLW65oI2QnGjHug7uwoLK4iNzcHBo5qIgXIwkRjQVmmxk+vJJ59k9OjRTJ8+neDgYL755hvGjh17JdcmEAg6KBMm9MTe3pr4+BySkwt1ApacXEh8fA6A7jOAObOeYtoDk/no91OsOprLHmqwzCynuKiKTt7na2YBJCblk5FZYtDV0FzuOmicWCdPFlFZUUfh2QoyMkuor6tnzJiuukKM6vJajh49q9uVOXyogJKS80XvExNVlFfUAppC8aFhAdyy8nc+f+9Nvv7wDf7buZ3573+Ku2cn4HxnLmdnW0J7e7Q4oko/nNrL83wR+vz8clKSC6murmXH9ixc3Wzx83PE2dkWpbK0Sf2vtLRzlJRUcfhQAYmJKo6nnUPmZY+fn/kdIoFAILhSyOUyBg/ujFx+/rlvTg9cXV3Zm5TK/m2pnE6cT0jlBuqsfdnx353Y2NzQpMZIXGwOacfPIpc7N9ECfcNB+3yPjPClsLACZ2dbkhLzycsrp65eownBQR5EDzu/0+8i05xz6LBGE7x9HPD1dSQ7p4yqyjqys8vw9HRg2p0jGRYZyviZb9P7jqd4b84Mnrh/JBKJxEAP9NNbLvyd6elBYzSYi8wOB6kVR4+eIzFRxcmT50hNLaRTJwdcXOwoKanSaEJjvRdt0fqi4kr27z9DRmaxZt05ZYR0KsHBpQi/3pf0v1YgEAhaRUttBLmznM+Hfc7DtQ/TPbo7lvZeHNiRTWZmMfX1UFxcRadOhtG2iYn5ZGSUGHQ1bNZGCGu0ESrrKCysICOjhPp6IxtBbWQjNOqBtuh9YqKKCq2NoLdpolKpsXLuwtvLP+L/XnqHJ+54golPPYG1S/dWObe0GKdcajd8Tpwo4swZtcZG2JGFq6uRjaCnBzJZqYGzKzFRxfHj53DxrUPu174CnFqVq9C1a1f+/fdfPvvsM8aPH09QUBBWVoZTHDhw4LIuUCAQdExCQtwNXs19psXNzY0Z0Za411uw9L94SvxcOSu1oi5PTbdu5w2gsD6e5GQbdjU0ThPU3zUP7+/NDA9N23ipgxWbNp0iO6eMLTGZulpcWsGorq5j5YoUzp2rRCazZeitcrw8pURF+iKVWmNna6kXMeZN1Ognqajvyt6/FzF97C0MGvksd957d5OUyJZinKJZWFBBWto5spQlGufcCaiqqqVXiAfPzu5v0GHlr79PsmvnaQbf3FlXP6a4qBILSwvkcie69nTFz8+xxWsRCASCy0Vr9cDV1ZUe/UNItv2W7OSl1Km/5LFuK0grnkzeGWcDTXBzt8PNzZ6gYPcmRYK1aYJFxZXk5ZYDEBnpZ1DfKnvTKXKyy4jZkqkrXq+vCStWplB0rhJnmS23DpXrOhYmJeZja2epV0i4B8sXvMr/PvmWp976hJW/72TRS48S0EWTutjaFBFTBYa1qZLKrBIyM0qor9doQkgvD+69N1CnCX/9dZKdu07ritKrVGryVRU4O9lg7W5JZIQvLvX1yHq4tHg9AoFAcLloqSb08erDwsELeWHHCxyw2ETffsOxrj+HjVSGh5cjWVllhjZCmCc5OWUGXQ31n6XGkbXh4d7MmNFoI0gbbYTsMrZsydTV4jKwEVbq2QhD5Xh5SYmKarQR9PTAy0uqi/aSSq0ZOuUZkv75hRXvf8Swu+8i+oVpePs0Ta9vDmNNKCysYOtWJVlZJY3OuUYboZcHzz7b30APdu06zWA9PdA6uywsGm2EEOt2ZyO0uiBHZmYma9euxdXVlXHjxjVxcgkEAkFLUChkBrvz5j4zPh7YOY/MX17Ep0cvVNHzyJdZ4HTqHJERmjSXoCAP3BudVqZ2ZYx3zaGp8ygxKZ/8/HJdLa7J9wbh5Sll1c+pZOeU4e5uR79+Xrrztbs5+rW/QGO0RN82momTo1n40hz+/W0ByuNxfPj1Z4T3N+wAZqrA/YVITMonKTEfG1sLZDJbvDwdqK9vICLSt8k97dp5mvT0IgBGj+pGYUEFiYkldFE4EXWTH1YO1lhYtOiyAoFAcFm5WD3w8rLhrk8PEhNTxuYnfbi1filF1r1QZo7TFY6/KcoPub+zWT04evQs3nq75tDUWEhK1GiCtnj95MlBeHlJWbUqlZzsppoQHORBcJBHk3buIUGd+GTeTL7+eQsrNq/l9qfm8svHLzI8qp/Buoy7QbaUpMR8EpPysbXRaIKnl0YTIiN8De5p5y49PRjdDS8vqa5uWWRjnRYKK8BXRPcKBIKrT2s0YUSXEWSXZfPR/o+oPF3G30v/JiwiDNnIqeebP0Xq2QjurbQRjPQgsVEPkkzoQbYJPdDZCKqmNoJmPhUnTpQSfvtUwqN6s/T9pZSdzeHlxS/jKNM4lkwVuL8QiYn5JCXlY9OoB16NehBhpAe7TOhBYWGjjdDFiagoP6ycqrC2tG7RddsKrfJQffPNNzz33HNER0eTnJyMp6fnlVqXQCAQmMTf3x+JRMKJxD2E2a2gavDDHKyr5Ke4DHrY2KJQODdblP5CUVRaMfrr75Pk5apxcbHVHdMWkA/r46lzpMH5VEltZJXUwcpg7uPpNfj0moWjRz9OHFjKY+Nv5YV3PqHPgEjdGK3DSq2uQV1e26IoL+16FArnJrXJjBl8c2eD18SkfE6kFSEN88TLU8pZdXWz1xIIBIK2hp2dHZ6entTV1XHnslzWzR7OUM8t9LcrpODUk2QUOiKXOxEe7m3y/JbUv9I6rP766yS5eYaaoC0gr30GG1NQqNEEh8a0GK2BEz0wnOpiR/Znb2fE9JeZ+cAdvPvcNBzsNZ2ztM4qtbqmSU2w5jBej7nzbh7c2eAVIDOzpIlBKBAIBO2Bh3o9RHpROr9k/EIDDezdvpdaCxeCbrqNsDDPJsXlzT1PL6QJOhvhr5PkGelBWOPzNyzMU+dIg/OpkoWNeiCVWhnMbWEB6rJqrKwkTHrqPgJCAnhr5ls8PvZx3vzmTbr27KpzWKnVNQYpj80R1kI9GNyoA4P19CAxMZ8TJ4qQSjVdhM9WVDU5r63TYifXqFGj2Lt3L5999hlTp069kmsSCAQCs/Tq1Ysff/yRO++8k8T/1vJYvzBKAm/l3xMFxNfAhNq6Zp1DzTnA9COxioqqDNqvq/LVqMtrGTZM3qRDo7Y+ljbVETRCqI0SSEkuIDdPTa+QaB55+i4WL5jDCw9NYPyUR3lw5ovYO0h1DittymNxURWgaVUf2tvTYM3adUodrOjRw9Wkc8u4o+ToUd0YPaqb7ri+w04gEAjaIxKJhG+++Ya9ew9z/HgSD3+fxJG132H793PI4hZQVDoEuN2sMXCh+lf6hpG+Juh/PnlykEE3Lv20l02NqY4APXq46sYos8qQ1NoxKfIeRkal8/kvv/FP7AG+e/tZIvsF65xV2nRHbWF4B6lVE6eXdi3aY8OGyZvck7GBN3p0N0aP7mYwRntN7atAIBC0J16PfJ2s0ixqH6kl4/MMDvz7Dzf0CgB8WbkyBQsLCYMHd272md+cJpjTA+0xtd7z11gTtHqQnd3URjhxoogydQ1ZWWWoVGosHOW89f1HLJ67kCfHPcncRXMJCwsB0KU8Fhfr2QihngZr1q5TKtWzEUwcb04P9B127ZUWO7nq6uo4dOgQnTt3vvBggUAguILccccdPP/8y3zwwZt8982bPPhgJ5xyZZQHS/ntpApnHyn9FK6tnle/G4qxE6i5Do3a4xaWFvj5OurO0R5zd7fjwIEzODpa89++avqPeJOgsC388ctXxG37m9kLFtH3xpsICvLQpS2WlFRxIr0IGkDmYqe7hrZDoraLV11dg25N5u5Fvx6Zdg7tbpRAIBC0Z+zs7Fi58mfGjBmCUpnGQwt/YmDIJ9xc+BbRnjFUniuEmllgbd/qufWfo/pOoOa6cemfa2lhga+fI33CPPFwt9eNCQl2p7CwAqnUGtvannz24ly+3vALN93/AjMfGMvbzz5IcJCHLm2xpKSKvFy17pmvdXqZ1QOvZvTAjLGjjVgTCASC9oilhSWf3vop95TfQ83pWrLXn2bNkqVUIyM7R1NTylSKYksxsBGMnEAX0gSlshQLCwv8/Bx15xjbCFKpNRs2pFNXV0///t58tu4zPnjhAxY8sYD7nryPh194mOPHz5HYqAknThQBIJO1wEbQe+63RA86go3QYifXli1bruQ6BAKBoFW8997rpKcns3btWtaufZVbbvmAUX1C+ONsEV/sSOfWnp7cM0COpYXE5Plx8dnEx+UQEemrKzIsdbA6383EU6qrs7V1a6ZBN0VoGhEmlzsxeLCfQVSV/hhPTwe2bVNSWVFHQA8Xxk+YyaQHJ/HRq3N4cfrdjJ5wP48+/yrq8lrq6hpwdralX99OQANyuROHD+Vz4ICKfv28CO2tEUipg5UutVGLfpSXfo0ZMO34EggEgvbOwIGB/PHH79xyyy2sWbMGB4duJNW9jDT0P0Lzv4a/XoSbZoNbN7NzxMVlExefQ0iwO56emme9ceqKR2MKSnV1HZaWEl0aoqndfwNN0Ct4Dxo9CAn2oLKylnPnKlH4+BK3ahGLV6zn5cUrWb/1P75+YxZudr46PZD7O+uitZRZJRw4cIZ+/bzoHarRA/0oL31UKjVFxZrOj8bHzBk7AoFA0B5xtnXmq+FfcU/FPVRlVVJwoIBtPy9lwF1P6WpRtYS4uGzi43MIbkYPtHW2dDaC3jPWWBPM6YG+JmzbpqSyso6AABfkcifsHex55bNX6Nm7J18v/JrjR44zdvpj522Efno2wmE9G6FRE6RSK11qoxaVSk1xseFatXQ0PRBV4wUCQbtEIpHw+usfs3dvEqdPp5OX9xedXaP4/Z5g3tqUwvdxmaTnq5kU6kNpQVWTlL74uBwSE8+QkVHMrbfKUeVXYGkpoWsXZzByDB04eAYa0HVT1GJcLL45x1F1dR3V1XV06eqMi4stK1ekEBHpy/QXv2b18mX8u+lr9uyM4cFZCwgMjEAud9IUh0/S5MWfyiihsrIOkDSbcqkVqcBAtybF7fUF+mIK3QsEAkFbJSIigldffZdXXnmOX3/9giefvJks+XRCbxsHvz0EW16DsPtQud5skKqh5e+/T3H02FmylCUMGOBDUbG2BkkDcs7vxuvvkJc3dueCpsXim0t7qa6uI++MmpBgd9zc7UlJ1rScv7HnIN6Z4cnP29cz8pGXuXf0EB4ZN57QYA9d50SFwpmzhZXn9eACKZdKZSl5uWoCA91MOuK0rxdb7F4gEAjaEgpnBR/f+jGPlD6CekE551T55KftxWZkzyZjjVP3tMTH53Dw4BlSUgrp1cuD3r21aXsNgJGNcOAMgK6bohbjYvHNPad1NkKXRhthZQoREb64utpS79ybp9/+H8vfW8xn817m3meext5eRmZmiS4q7NSpkhZpglJZSm4L9OBiCt23NYSTSyAQtFuUyhpuv30BSuV2Hn/8RUJC3LGysmDBHb24sZs7L605zOJdJ+nRYM1gDKOXIiJ9ycgopraugcKzlVhaSjiaWkherhqZi51urFzuZBBRpY+2WDzQrAikphaw8Y90zhVVYWdrhVJZogsz9vVzpMoygjsfjSAj8Wv+75UnuPGW4Twx900SkzRGTU52GY5ONgT0cCG0t0eTelv6mEqbMUVL1y4QCATthb59xxEVlcjIkePo3z9Y02revxs8HgtrH4UD32Mt3U9ayW2A4W611NEaa2sL3N3tCAx0Q5lVwt49eUgdrXGR2RmkoJiKmtIWiwcu6CRKSMjjyOF8SoqrkMudOXbsLLm5atw97MnPb2DWXQ9TcU8Wz723lJj/DrBwzjTsa/w5dKiQ7JwynBxt6BHgQu9QzXXMGWrQck1ozfoFAoGgLXOj742M93qCn57+PywTpNw75f5mO+yCoR5ERPiScaqYquo66usbKCmpYs+ePBwdrZE16gE02gj9zNgIjcXioQU2wsZ0zp2rws7OyEbwdSQpKZ8+fXxY8ucSXn/qdb743wIGjLyTeudQQFPvsa6ugYAAF0JDPS6LHrR07W0Z4eQSCATtlpAQdyCSkJCxTdoKj+rlQy9fGdOX7SU5X41zqZp+9Q1YNKYvRkZoukfFx2nCkSvKa8nLVePtI0XqYMXWrZlAA76+jshcbHUOJX0Hk3HdLlMpkHK5E4lJ+ZSW1WBlKcHCUoJc7oydrRURkb64NnZmCevjyfQZK9m95U++ev81Hhl3C7fe8RAhIePoHuBl0D3RuOi9PtooL1W+moT9eQaOsOZqjgkEAkF7p1cvD+bPX0BIiLuhJti7wH2/QOwnuPz7FuNtcyhzeRo4H+06dmx33N3scXO30xQWLq5C6miNzNkWZVYJRcWV+Ppq2rl7uNvjFWRY+F2hcAYMC7drUyAjIww1AaCmtp6i4irC3O3p27cTbu52eHeSkplZ0hhNFcxttwzgpQ+XMeOVT+gV0I17howlMqJ7k05ZzaWZ6I8xPm6u5phAIBC0d6aHP0BerZJ4+SZqOp/CyyuqyRhzTh9th9n4+BwiInypqKjF0dEab28pUqmRjSCz1T2P9R1MxnW7tCmQEUZ6kJiYT2lpo41g0Wgj2FnpIrm0c3j7e/DJb5/w7Qff8suSX5AHHSNg/JwmaZSmGqFo0UZ5qVRqEhLyzOrIdVV4XiAQCNoaCoXMwJCprq5m3rx5PPzww4SEhNDZzYE/n7mZt/5M4fv4TI78eJB7Q30YFOYDgI2NJY5ONpqQ3z6ejBrdVVe0UZuieCqjhMyMYuzsrRl/VwDq8lqdCIT39zbY4YiPy+FIcoFubmOHkraNr34tLW3tLy2DR9zOgMG38vM3n7L6u89x9fiDx198nf7Db0MikaDKV1NcZFgfzBSm6m8ZCKHRdQUCgaC9Y6wJ8fHx/Pnnn7z11lsgkcBNzyCR30jDT1Nx2fcOuTl34XPzBEATvVSurmX//jNs3aqkT5gno0d1pai4koMHVDQA+aoKSkqqiYvLxsHBmsgoX8rVtboU8cmTgwzWExefQ/KRppoQPVyBg4M1bu52BAa6Uq520hkbWuMKwNvTje/fe45H7xnF029+yavffkJm8QjefvZBvNzPO9nM1dzSYs4JZmwciQgugUDQUVAoZHwlX8hjW86yJm0N7lbubPliC3dNu4vOXTWN9LROn9TUArZuVRqk59nYWOLoaKNLCxw1Ss9GaExRPHWqhMzMYuzsrBk/PgC1Ws9GCDeyEeJzOGJCD7SOJJ2NoFdLS1v7S4u1jTWP/+9x+tzYh3fnvMsHs17i5U9eJnxQb6D5mlv6mNIEUzXH2jPCySUQCDoM8+fP56OPPmLjxo3s3bsXmUymSV8c14vM/flsV5ex7FA2Nm529JVr2uqmpZ2jpKQKdXmtQQ0rbYpiTq6anJwyJBYSEpPyGTZMDpgO9Y2I9NW9NudQMhWJZZyCOG3WSwwfN4kv33uFN2Y/QlCf/sx47hWq6EJuXmM+fTM1wEztTjVXy0sgEAg6Ejk5Odx6661UVlbStWtXpk+frjkgH8THlYsZnP8mUfwKuzLhxifB2s5AE8rVtYSHe6NSqQEJ0ICDvTVx8TkoM0uora1HKrVuVhMiI3x1r+YcSuZ23fUjAqL6hZDw22KW/PIX//t4BT//uZPnHx7PnGl3NVtzS4u5aIUL1fMSCASC9oyFxIL/G/J/TNo4idfnv07eljwOxh3k8/WfY+9wvuOuqfQ8AxuhUQ+09OvXiZKSKrKySsnPrwAqSEy8gI3QqAcRJvTAwEYwoQnGKYgRwyJY+vdS3pr5FrPvmc1Dzz3E5CcnN1tzSx+TNkIH0wNJQ0NDw7VeRFuipKQEmUxGcXExzs7O13o5AoGgFeTn59O/f3+ysrIYN24ca9euxcLCAoDY2NP8/s9J9tvVcqq4guggL4Yo3Eg+XAg0ENrb06QDaOvWTLZvV+oiuVqysxEXn822bUrkcmdGjuyimzc1tYAtMZlUVtTSo4crUTf56Y5pHV8+3lJkLrbk55eTklxIRKQvdpKTLP3oTdKSD9E34lZuHvsk3W8INIgGu1TOqquxsIDxfTvrUjpbSkd9bnbU+xIIrhfefvttXn75ZWxtbdm9ezfh4eGARg9itmQwNWArXU99BvauFAY/walzLgb1toz/4E9IyGP//jNUVdXqIrkuFP0UF2ekB41zagu9W1qCMquMyAhfgyguraHj7SMlN6cMpbKEoUPlBAY78+43q/lk5QZkTlJmT5lAn65hWFtZ0jvU8/IZKYUn4IZR4NGj1ad2xGdnR7wngeB6IbM4k/E/jCf55WSqiqq49Y5befnTl5FINH/vGhda1zqVjKOq9DHWg6go35bZCGY0ITW1gC1bMqmsbLQRovx0x7R64OMjRSZrtBFSChk4sBNpe2P44ZMfCIsI45H5syivtmt23RfD2YqzWFtaM7b72Fafe62enSKSSyAQtGsyM4tJTi5srMHiyZo1a7jppptYv3497777LvPnz9eNdbKwZMFNXYgpLOaH/5QcyjhH90pL+gQ37Yyo7T6oUDgz7s4eJp1J5grAb9um5FBSPllZpQQFueuOJSblk5ioQgL4yzUPem3dLO1uSnFRJUePniUluYDcPDUAzz03mM9+/ps/fv2VH774gIP/m0hQ32gC+k2Cmwc0qRUmorUEAsH1ir4mzJs3j71797JhwwbGjx/PgQMH8PDwICpKk6qyIiaau/qH0fv4XFz3vc3xupGU94w22LHXkpJaQGKiCk8ve27SMz60mCv2u22bkqRDenrQeExb6N3CAurrISWl0KDWllYTioor+W9PDkXnqrC1syIy0o/3X5jO5FHRzFu0gvmLv6OTmxujBw7B3n6E2Z1/gUAguN7Q14OPx33MQ7kPcfLdk/y74V+CwoK4+5G7TZ5n0KnchB6kNuqBl5e9gTNKn+Y04ZAJTUhMbLQRJODv32gjJBjZCMWNNkJKAbm5WhvhYcJuDOOdZxcyZ+KTjJ4yhZAbbyQvrwKgSa2w60UPhJNLIBC0a5KTC4mPzwE0+fcDBgzg888/Z8aMGbzyyitEREQwdOhQYmIyiYlRAvDma1F0dbTnvX+Ps19SS0/7ppFL+t0HJ99rWGdF6wCzs7VEXa5pIa/vWJLLnclSltCtq8wgFDisjydZyhLK1DUoFM4GOfHh/b11ziqZSynu7na6SC4ACwsL/AJuIXxMZ7KPx5B9fB2pB7ZwOvlWHJ6eQ3ldZ7PF6AUCgeB6wVgTVqxYwYABA0hLS2Pq1Kls3LgRCwsLPU2Q0/v53RR/ez8RZzdSlJ8HdbPA0sZg3qTEfNJOFBEmbRotlZJawKZNp7C0kDB4cGejulfOKLNK6NrNUA/6hHmiVtdQW1ePlaUFbu52Bikq+gWCc3PUKJUluvRHgLoqW4aFjCTYJ4yDyr0s/3stm/b+ywvTJ/DYPaObLUYvEAgE1wP6ejBmzGDm3jOXVzNeJffHXL565yuC+gYR0j+kSbqiVGqFpaUEqdS0qyQxMZ8TJ4qQmtADbVSYnZ0lanWjjWCkCVlZJXQz0oSwME+yskooKzNhI4R76/RAJmu0EVIKdSmQ/aL6MeuDhSx563PWff01xw8mcs/TM3TzX496IJxcAoGgXaPpsHj+FWD69Ons3r2b77//nsmTJ3Pw4EGioxUAREcryMwsJiv2DL3zGkjrZMH3CVnkV9UyLswXi8bQ5ea6D2odYAE9XAgL82qSez9yZBeCgtybRFUFBXmQk6PmwMEzVJTXEhDgApivmzV6VDeDeeVyJ8LDOxMe/iBBwc+QvG8LP3/zCc/cfzs39OpP35sm4ON9Z5P1aqO8qqvrdEX223tBSYFAIDCFsSbIZDJ+++03Bg0axF9//cXChQv53//+p9OEXr082LSjmJTKBSgKljCB9fDXXLj5BXD20c3bXPfBpMR8crLL8PVzbF4P9IwL/UL3Uqk1gYFuujRJfby8pEyZEtLkmnK5E337daIvXswNvZUi9Tne//Y35v3fct5e8jP3jBzCiIFRTebT7uhr9UDTyVHogUAg6HgY68H0XtNJfSSVb9O+pXhvMa8/+Trf/PWNQTdBlUpNYmI+eXlqEhPB3d2+iWOoue6DWodZQEALbAQvEzbCgTNUVJixEfTqZo0ebWgjBAb78PC8Z0ne8x///LiST1+cx4uLXsTLa4DZuozQVBP0i++3Z0RNLiNEzr1A0DEoLy9n0KBBKJVK1q1bx9ChQ3XHNm06yV9/neLs2Qqc3Ww4182e/86UcEMnR568pTtZp4p1qYpn8sopPFtBVOT5XHttJNeFnEWmUgi3bs1g27Ys7B2sGDpUTkV5Lc3VBLsQ9fX1LPvyR/75fSVncw/h4ubOqAn3M+quyfgpujZeM5MDB89QWFCJKl9NWJgXs2b2N5gnTVlETo6ah2/tRtcuLq1aQ0d9bnbU+xIIrke+++47pk+fzoQJE/j11191tVg2bTpJfHwOZWU15OaW8dDN+YxUL4SqEhgwHboMJiW1gLjYHNzc7fDuJG3iHNLW12rOYWQqXUSlUvPzz0fJVJYQFdWZm6J8OXS4AGi46Ppav288zOIV6zmYnkSJWs2IqH48fu8YxtwyAFsba2K2ZnLwwBmqq+vJy1Pj6GTNlCnBButWqdQUHD+CbMAd+PXu1+o1dMRnZ0e8J4HgeqSmroa7f72bf2b/g2WFJe8ue5de4b10x7W1tsrKqnF0tKZ/f2+DlEVtpJZC4cyZM+UUFlYY1OMyru9lDlOaoLMR7BtthIpGG6GVepCfm8/7z79Pwq4EBkYPwzXgFm4e0s2g7qOWrVszOXDgDIWFlahUjTbCLEMb4fjp06hyq5nSf4JBB+OWIGpyCQQCwWXEwcGBNWvWYGFhQUBAgMGx8zv8NhQXVyOT2dD96BnWnFLx6oZkAmosUR4+R052GQWFFRQXVyGVWuPuYa8TJOMURlNow4OzlKVUVtUS1seT0N6eJCbmk51TRnxcDuXltZRX1AAwbFjrDRoLCwuKKgOx83uWXkFF+LoksmHVMn7+5hNuCOnDkDF3YuXYHxoA6tFPzNR3wmXnlJF+opjkToWtdnIJBAJBW+fhhx/G19eXkSNH6hxc0FQPAkPcyVLfhHTTo7jFfw6qVA6lR3Lw4BmcnW1x97AnP78CtbpGF3kVHORxwWgorR4UFVcB5x1ZDg7WVJTXcrawAqWylLi4HCrKNZoQfRGakH6skq7S/gy542Ykzvms37mD8TPfwsXZkfHDI7nBpyf19S7I5c6UqaspK60hKTGfYL1iy0XFldTkluDgUoRf71YvQSAQCNos1pbWfDP2G0afHo2dvR3d+3Q3OK6NdtIWb5dKrXS1sby8pLpIrZycMgoK9GwEdz0bYXIrbISsUiorawkL8yQ0tNFGyC4jPr7RRihvvY3g6ePJeyvfY/3K9Xz+xlewaw8ZR+8gIOA+E84ybbxTPXrSaOCEy8lRc+pEGcl2ha12cl0rOpSTq0uXLmRmZhp8tnDhQubOnXuNViQQCK4lN9xwg8H7+vp6LCwsUChkBg/pTZtOYpFRwZzeClYpVSQWqPHr6YinlQ1enRyoqqojrI+nYU67iagr4wgvrVAmJqo4kVYEaOp7jRnTVRcplpJSSG6OtkW9BlMRYNrPpA5WTboqRkT6UlhYgbOzO0OH38rM+QvYszOGbZvWsezjhdTUVOPWKYDuwTcS0qMfQ27pAxjm6Pv5OiJBYpD22Z4ReiAQCIwZNWqU7r8bGhpoaGhoogcAmzYV8l/xAh70W0P3kz9wp90xyoNuo6xeSo8erhQVVWFrZ9lsjRPj6C79QvIHD6hoAFxkdkRG+SKVWtMnzBMPd3t8faTk5J7XBHMFg7WfG3eD1Nbt6uTlgETiwdf/i8JeVsWqP7ez6s8dfJf1Dw529gzuF0pU31D85D66FEytJnj7SFF0cUbWw+VyffXXHKEJAoFAi5fUi6VTljL9n+ksT1nOY6GPAZqNY/2UQDjf2RA0z/qwxnqKtraWeHk12ghhnhese2Uc4WVgI5woAmDy5EYbIVHPRsg1shHMRAWb6gZ514N3YevajW/e+Zxj23/inVknefXTF3DzdNPN5+vriEpVQa9eHhQVVelSMPXvx9dXipXEul3ZCB3KyQXwxhtvMGPGDN17J6emuacCgeD6IyYmhlmzZvH3338jl8sNjoWEuKNSlUN5HZ+PC+XzvRn8eTiPc1WV+JY0MHZ0V01L4XxNJ5MmNU4aHVCJiSpSUgrJyS7D3cNeV19L6mCFVGqtq+8VFOShC2EOCHDRiZUWU8407WeWlhLq6hoMjkVG+BnMY2fvwC0j7+CWkXegLi3hsw9XcOC/HRzZ+ycV235gyypruvYMQt69F87u3SnzDMTFrQehoV4o5O1jh6YlCD0QCASmKC0t5bHHHqNLly688847TY5rNWEXj+I0dDBe8S8xxf17Vp0aSkVlFJMnBxkYGsaoVGo2bTpFZkYJ2TlleDTWdNEWDtYYLA06Q0Q/CuyOO7obzGvOcDKpCV5SIiP9iIz0MzKEvHnr2Qd585mpfPDpVjb8u4eTWafZ8l8C9fX1+P7kzoDQHgR17YKr1J3O3bvSRe6Eg2/HemYKTRAIBFr6durLvIHzeOO/N1j802KSliWx6KdFuHcydOTI5U4UF1dRXKxJ5wsK8kCtrmXXrmzq6+sZM6bRRlCZsRFURjZCTpmuzpeXlxSptNFGCLsIG8GrGRuh8diYO/rQf9BHrP/hbzYuX8lDwx7isf89xqiJo7CwsODo0bMcOpTPwIHeBhFo+nW8rJyq8PFquiHUlulwTi4nJye8vZu2+jRHVVUVVVVVuvclJSVXYlkCgeAqoN8qWP9BXF9fz8svv0xqaiqTJk1i586d2Nic75ylUMjw8tJ0YPHykvLZff3otvEon+9KJ825gR0H8wgK8sDLU0phQQVbtyoN6nFt3pzBnv9y6N7dFT9fRywsJSiVpTonlLuHPT16uOLuYd9kzfqF5rWYKhCpC5/Wi+S60DwA6kpLam3749L1BqInejE0ypLkg/s4dvggx47sI+vUKn5vLM04dspj3L38y5Z/4W0coQcCwfWLOT0A+Pfff1m1ahUAUVFR3HbbbQbH9TUhwSucMY9uI3fReKZ2/ZvDJYVQ/yxeXlIKCjV6YFyLa/PmDI6mFmJra4mlRaMeNBocXl5SeodqjBJTGEcRmCsYrH2vH8nV3DwA+fnl1JRKCek0gGkDxjL+7q5s33uIfYePs+9IGl/+8gfFpRpDTSKRoM4cQVPVar+0RhOEHggEHQtTmjCx50SO5B/h/VfepzKrkjeefoOPVn2EpZWl7jwvLykymcaJJJNpnuVyuRP19fVkZ5eRmJhPUJAHhYUVpKWdQyq1Mnj2bt6cwZ49jTaCnyMWRprg7t5oI7ibsBFMPMebtRH0Irn06dTJkUefu5tJ06L54o0v+OCFD9j400YeeHYGKSmVnD1bSWFhpdlrn62oor1hca0XcLl59913cXd3p2/fvnzwwQfU1tY2O37hwoXIZDLdj7+//1VaqUAguNxoWwUnJxcafB4fn8ONNz6Ho6OMPXv28OKLLxocz8wsRqUqp3t3GSEh7kgkEp4bG8Srg3sgtbHkQF0l6/Yp2ZeQS2xcDkmJ+SQ2thoGUCpLOFdURXlFDVOmBtM71JPiokpd5NfhQ/ls+1dJ7O5sEvbn6T43RpWvZuvWTA4fym/SmdHLU0p4f2+CgjwI76/5I725uc7Pp8TCQsINPVy5KaozAUGhjLvvYV5c+Cnf/rGLjQcy+N/iDdxyz1t0CRnWui+8jSP0QCC4fjGnB7Gxp0lM9GD8+AcBmDJlSpM0NmNNwLULp0f8yl5uo5dNAjV/vUxS/FHiYnN03Xb1USpLqKioxd3dnsGDO+PQWNNFu9N/6HA+/25Tsjs22+BzY1JSC9i6VYmDkdEEGgMkPNxblwqpVJaanQc00QRaPehxgyuRUb64uTgxfkQUC597iJhl73Bu72p2LvuM1x56mv978m7s7e1a9mW3E1qjCUIPBIKOhTlNiOZhQh+JwsLOgkN7DvHdou8MjqtUaoqLq/DxcdA5j7y8pIwZ05UBA7x1HRk3bTrFvn15JJrQg3Pnqigvr2HKlGB69/bURYUBHD6cz7ZtSmIvoAeaZ3gmhw/nN0lf1+pBUJCHrki+qblc3F2Yv3g+i39dTLm6kv9Ne47UHWtRdLYmKsq3yTVTUwtYtSqVEyfOtuQrblN0qEiuWbNm0a9fP9zc3IiLi2PevHnk5uby0UcfmT1n3rx5zJkzR/e+pKRECJlA0E4xbhWsJSYmk/37a7n99nn8/PNcFi9ezODBg5kwYQKgEb709CIiInxRKGSsWXOMtWvTGD++B7teGcZzvx5iY6oKDyzo7+pInzBPXeohwNChcuxsrYiI1AiEKr+ckpIqZC52jY4qCVVVdaSknkWVXw6YrumlVJZy4OAZaEDvXNNcqD6YdkxJSTVSqTUODtYmxxQV17I/SUJBeQBny9pPrv2FEHogEFzfNKcHMTFKhgx5EKUymYSEBO655x6DCF99TUhIyGP+/F2MH9+DCa/9CId/hfWzCSx+jxKXiUj7dNXVtNIydKgcWzsrQoI1187JKSMvt/HZ7yWlpKSGc2crOZ1VRrm6Vve5MfobKs0Vtr9QLRjtmJKSarp0kaFQOOscc/rz5ueXsyeukJIz9kQM6FjPvtZqgtADgaBjYU4T/t16Guud99H1wWzSlxzlp89/old4LyKGRQCaZ2durprAQDe8vKTExWUTH59DRISvLr0vISEPCwsL/PwcdWmHWoYOlWNnZ0VEY71ElarRRpDZNT6vG22ElLOa0imYfo4rlaUcOHAGQO9c01xIE3oP6s0Tb7/Jr0vXcWjHn6hOJeNQdxddX5qCnd7mRmxsDgcOnOFclQNBPTuZ/3LbIG3eyTV37lzee++9ZsekpqYSGBhoIEa9e/fGxsaGxx57jIULF2Jra2vyXFtbW7PHBAJB+8JUAWGA6GhF4+tg/P0L+eCDD3j44Yfp06cPAQEBBsIXG3uaBQviOHNGIzQTJvTkm6nhLFx3hOX7sthbV8EzI3vQ2dVBV4srIMCFyAhNW96E/XlkZJRQWlJFaKhG6EJ7e6DKLycvT42zs63JGi6gCTfu17cTJSVVukgwcw4scykspsZoC99LpdacK6oiPi6HiEhfIiP8UCpLsbC0wLuTlJCQ5ruDXWuEHggEgpZyYT1Q8PDDq+nXrx979uzhhRdeYPHixYChMTRjxmb++y+X/PxyJkzoCb0noarvitPmJ7ipYiWS4HEQOAk4X3slIMCFyEg/EhLy2LUrm/LyaoKC3XXPZGdna1zd7Ojs74jc39nsc1zrPFMonA26exnTGj2Qy53YulVJYlI+anUNR4+e42xhBZFRvpSra7G0sMDXz5EePdp+sseV1AShBwJBx+JCmtDzpq+YdXIi+VvyWfjsQr7+62u8O3sbPDtTUwtY9VMq54o06XuRkX66Y4MH+5ksBq/VA9A4wzIySigt1bMRQj1QqVpoI/RrtBEaI8HMObpaogldu7pw72MT6BLal90b1vPH97/w7+9/0aXvUCZOH8fgwXLc3e2RyWxxcWl/Ub2ShoaGhgsPu3bk5+dTWFjY7Jhu3boZ1NfRkpycTK9evTh69Cg9e/Zs0fVKSkqQyWQUFxfj7Ox8UWsWCARtl5qaGnr3juDo0f106RJISsoB7O3P58G//nosq1YdxdraggULIjVGTSNx6QXM+SWJQnUV9w2UY19Sx9GjZwkMdCO8vzdx8dls26aktKSK6poGBgzwZvK9ml0eUx0TzZGwP89g3taeb4x+18e1v6eRklJI9+4u3HFHgK7Gl8zTDk9PB8b37YyFheTCk+pxtZ6bQg8EAsHl5o8//uCOO+4AYM6cj1m06BmD4/fcs55//83i1lv9+eWXcecPVKlh0/OQtAo8e8LgOSQcLtc9u6ur69i2TUlJaRU11Y160Ljrb65jojm03b0CA910qSitnUMfbefH2tp6/tuTQ21tAwPCvenSVQY00DvUEy/LXLhhFHj0aNXc0DE1QeiBQNDxWZe6jvtuu4+KUxV07t6d7zZ/ibXN+UyIVatS2bnzNFaWEibfF6RzXpnC+LkdF9doI5RWUX0JmnC59UDb9bFzp3q+eOsb8k4kYe/szh0PTuKmUTdTWQXO3rX4eMkY231sq+aGa/fsbPORXJ6ennh6el54oAkSExMbW4F6XeZVCQSC9oq1tTWBgTM5fvxpwAdjP7/+Ln9UVGeDY5HdPVj3dCRzfkni+/hMwnydCb/BVbdTEh+Xw4kTRfj7O9EnzN0gpVG/MLy+00nbtVGpLNU5nKQOVvh4Sw2iubTF7Qfd6MuUB0Jadc/6nVrk+8+Qm1OGo9TawJF2Vl3dqjmvBUIPBALB5Wbs2LEEBU3g2LEtJCWVNzk+a1Z/goM9dNqgw1YK4z4H/0Hwz3z483m6hTwBgT7I5U6sWJmi04OwPu4GKY36BX21Dif94vVag0VbVN5BaoW3j5Sixt37EyeK+GNjOs7OtgyPVrTaqAkO8iA4yIOYrZm4utphb2eNm7sdeXopOTTvO2oTCE0QCASXkzuD7qT3HeNJWPozdS5WNNQb2gjaVMSwsPPNp8xhHE0VH69nI/RxN0hr1NcErdNJew2tHmiLykulVvj4SA2iubTF7QcN8mXKlIu3ETKyZ7D9n4OUZsbyy6df8s/PvzJl1n3c2P3GVs3ZFmjzTq6WEh8fz549exg6dChOTk7Ex8cze/ZsHnjgAVxdXa/18gQCQRvigQduBD7j/vsH4eDgYHAsKqpzE+eWPt7O9ix/aACLt6axZMdJsosrGVZTS2/Q1eTSpgKaQ79QcVCQR5PWv4GBbshcbDWdXFw0XRq1xe2Vykvr8DRyZBeCgtzNdmnsCAg9EAgErWHBgtf5+edx3H//wCbHmtUECwsInwa+fWHNdNwOfoBN13EczbxZV48rMsK32d1+U3W3TGmCi0yjCS6yUuLic8jOLgOaT0e5EL1DPXCRnU+PMW5V31EQmiAQCFrK8ze9zDvOBdR3P8PpytN0s+umO6bvELoQWqeVtpOutiZXxAU0ITExn6SkC9gIjXqg7faoLW5/2WwE6ShOpJxkz+ZNfPbaZ3z/8fdMnz+dsXNaH8l1rWjz6Yot5cCBAzz55JMcPXqUqqoqunbtypQpU5gzZ06rcupFOLJA0HForoW8PvX19RQUFFxwRzc29jQxMZm6KK9tqSpm/XQAdU0dQ/3cmDxMI4Rx8dkGda+M0UZyVVTUcCKtiLC+nnTr5trE8aSfnnihOc2hylcTuzuHwrMVREX6mhXns+pqLCxo0+mKLUXogUAgMKalegBw5swZOnVqvsiusR5QUQQbZ0PyWnIaunGm+yP0HdSNuLhs4uJzzDq7tJFcFRU1pJ0o4ubBnenfv5NBJJexJpw4UdTsnObQRgRUV9eRmVliED3WhMITbT5dsaVcDk1oa/ckEAgujeY0oay6jIl/TKS0ppTZfWdjWWGJi7uL2bmMo6+0mEot1C9cb+r5rZ2roqKGEyeKCAtrtBEaI7ma2AhGxfBbqgnGemAuOi07I5sVn69g0LBBvDHjjRbNrY9IV7xE+vXrx3///XetlyEQCNoQ2nbBgEmjJjOzmP/+S+frr+eTm6tk7969ODo6mp1P25ULNLv7Q4O8mBXUmU/2ZrA1+yzVcRbcP0hOfFwOR5ILAEw6pLQ7QfPn7yQ9vQiASRODmozTr70VGeFnMJdxyqMx2vpg1lYWqFTllFfUIpVat3gHqj0j9EAgEBjTEj1ITi7k5MkdzJs3iy+++IIpU6aYnc9YD7B3IdbndfL2uXKHww90yn4fCp4nLv4cyUca9cCE8aFNHZynpwejR3czmYKo/czLS9pkLlNpj1q0tWCsrC1wkdlSWlZDfn6F7vodHaEJAoHAmOY0wdHGkf8FvcuTWx/ksUmP4VLrwufrPsfWzrRT3Dj6Skt1dR1nzqjp1u38/PHxORxpRhNM2giTTNgIehoRGelnMJc5p5uWuLhs1q5Nw9ISnJ1tKS2tabJ2LX5d/HjsjcewtjTdpb2t0mGcXAKBQGCMuXbBWpKTC9mzJ5sDBw5QVJTPlCnTWbv2ZyQS05FM+vW6tOSkFeN8oBT5YA9i0ws4WaAmMlwTEaZNXzTH4Js7G7zq05wTS5WvZu3vJ8hSlqBW15g8vvGPdDIySnB2tiY4xAMHB2uDGmHGFBaWk5Ojpr+7E127uDS7boFAIGhvtEQP4uNzOHUqibKyMmbMeAxv7x4MH266FokpPYjZmkVM/ADODQvmEYfPIOY1JgSPAXoQGdG8Htw8uLPBqzHNObFSUgtYuTKFskZDRf+4SqXmj43n9WDILXJCQz11kVymUKnUFBwvROZYil/H94EJBILrkAtpQkmGE8HZd5NyagGFpYV88NL/8fLiuSbH6tfq0iczs4T8/AoyM0t0Tij9tMXmGNyoBYNNaEJzTiyVSs3atSfIyjJjI6jUbNyYzunTmjpfvXp5YmVl0WTt+hQUlqPKraa3VfEFI6HbCsLJJRAIOizm2gVr0QhbCHZ27/Puu4+wbt1qli6NZsaMGSbHm6rNojVwhg2TU+Zixfy1R/gjp5Bpd3cnXOEGnO+MqAsJbnRcjR7VTZeWoi0wr8W4bpd+d0WlspTKihqsrCS4u9ljjFJZipOzLb5+jvTp48nIkV0u2JExO6eM9BPFJHcqFE4ugUDQ4WiZHsBDD71KcnICiYmxTJ8+hZSUgyYjfJvTg6BoBfQdD+ufpuuxP3g+vB8MmAmYTxkcPVpPD0y0hjeu3aXfTSspMZ+y0hocnaybOK6UylKcnWzx89XowbBhcpORYMbn5GeU4OBShF9vs8MEAoGg3dISTZjKfZTUHeWvRT+y9ffNDLy5HyMmjGgy1lytLlPOL+OoK3Npg81pgnHkmL4eKJWlVFY22gjuZmwEJ1s6d3Y6byNcoHlJTo6aUyfKSLYrFE4ugUAgaOtoH9QqVTh33z2TX3/9mJkzZxIeHk7fvn1bNEfnzk4MGOCDv78zCoWMEB8ZM38+yFc7TjK0Zym3dnFn+7YsSkqqKCs9nyKidVxt3aqkpKQKMExP1EZdVVTUMH/+ThQKZ6SOmjbocrkTQ4bIgQZCezfdeZHLnRg+XKGr52WMqSgxP19HJEjM7mgJBAJBR0Zr8GRmFvPQQ2/z2msTyco6weOPP87KlSvNRvjqo9WDzp2dwEEG9/wA/30O/74Jm16gMORJtu6TUFJSZTJl8NDhfA4cUNGvnxfRwwyf3X3CPFFmlZCYpKK2th4fXyl5ueW6Y9pX4ygvAz0wY8gYR4nJ5U44VDoj6+HSqu9QIBAIOgpaG2Gi6iXS7zjM8fWHWDRvETeE3kCXG7q0aA53d3t69HA16WwCjYNLaweUlRnZCCojG0Hv+a11mmltBLncGUdTNkLoBWwEE5pgKkrM11eKlcS6XdkIFtd6AQKBQHC5iY09zezZ//Lhh3vJzCxudmxyciHp6UVMnfoUt99+O1VVVUycOJHi4ubP0z8/Pj6H5GRNv3V/dwc+HBXEEF9Xth/L56N/00g9WYSlpQURkb70CfPUObCUylJKSqqxtLSguKgSVb5aN29QkAeT7w3iRFoR6elFpJ0oIjDQTee4GjZMwbBhpiO0vDylhPf3xstTiipfTcL+PIO5tVFi2qgAAHd3B/r08UQhbx87NAKBQNASYmNP8/rrsaxZc4xNm062SBPy8y2ZN+8TLC0t+fHHH1m6dGmLrmWsB1hYQORMckesorzWGpd9b+OSvw1LSwmREb6E9fE0irySUFVVR8apElQqtcHcwUEeWFpacDqrlP/25AASnSYEB3kweXKQyfpaXl5SwsO9dcaMSqUmISHPYH6tHmijh728pAQHuePn2/E6LQoEguub1toIJ9OLefuhH/Do7UF1ZTWvPPYKFeUVLbqWtjOitsMiGD6DDx/O58SJRhshwpc+fTx1DiwDG6G40uCZHdT4zD9xQmMjnNC3Ebz0bAQztR21mmBKD7RRYomJ520ED62N0E6iuEBEcgkEgg5ITEwm//yTgYeHPcHBmj/6zXVQ0c/J//777+nbty/p6ek8/vjjrFq1SjfOXBcWUzn9x48V4Z9fzyNBfvxwLJdiXys6u9k0KR6v7ZBSXFRJbl45MpfSJk4r/bpd4f29Td6vfiqj8flagYXzkWJaJ1tzNboEAoGgI6AtEH/8+Dm6dXNBpSrHy8t8l8Xzz/RQGhreZu7cucycOZOoqCiCg4N140xpgrkaLwcLunKw4iPurP+Q0Z47KbTOxb3fc01SBnuHepCvKqekpAqlsrSJgRIZ4UtVZS1yuTO9Qz3MRmbpp64YjzHQhMZj+pFgAoFA0JG5WBth89rN3Bh+I6fTT7P41cXM/fB8fS5zz1zt3/naVzB8BoMEOztLunaVNUlj1NkIxZXk5pYjkzXVBP26Xdrujca0Vg/M1Rdrbwgnl0Ag6HBERysoKqrCz8+RkBD3Zjuo6Keo/PdfEYsXf8dLLz3JnDlzDMaZm8NUTr++KA7v78P//khhb1EZVf+m8VBkFxztNB1KvDylumgrmUupgQhqGT2qG6NHddO9N+XQMhRMDI6bElhztQMEAoGgo6Gtk9Wrlwf29taoVOpmuyzqa0JIyASGDdtG376h9OjRw2CcKU0wV+NFowmBFDl/z5G0FQRnfwZ/Pg8DHwX/gbpxmh14ue4ZboyxEQSmDRizmuBlWhO0HR4FAoGgo3OxNkLeMRde/WAhb736P6wGG7pQTDmLtP9t7FgyfAY7IZPZmnzea89VqdTIZGZshNHdGD1az0a4DHrQUWwE4eQSCAQdjs6dnRg+vIvZqCtTaEUuIqIrycnJWFkZPh4v1IVFH31DR4GMv4M8Wbr7FP8Xc5xXNiQzLbILfTq76MZrnV0twVRklr5IGR9vzdwCgUDQ0YiK6kznzk66nfqQEHddJFdzaLrv5vHMM58wduwNTY5frCZw0/8g/274/THY/RF0uQkGPAJWdoBpo6g5TBlXZjWhce7WzC8QCAQdiUuzEe7i0z+d+eTQJ2zO2MzILiMB0xFb5jB+Bl/oedyaZ7bQg/MIJ5dAIOhwGO/KXKiDChgaLPoOrsTERORyOQqF20XnoltaWjCqiweS0Ep+zlTx6b8nuCnAnfsHKbC2tGg23dAYU0JaWFBBWto5pA5WZoU2Lj6b+LgcIiJ9DVImBQKBoKOjrwljxnRr0bPclBOrpqaG//77j8GDB7dIV8zi2ZPM6N+o2fI23ZUrkahSIeJp8AoCmk8vMcbUM7+gUKMJDtJmNCEum7j4HCIjfJvttCgQCAQdiUu1EcYoZnC85DibTm2iTlnHzWE34+XleEnOouae+ZeqB4WNeiC9gB5onHgdRw+Ek0sgEHQ4WrPDrsWUyP3yyy88+OCDDB8+nPXr12NhcfG9OpKTC8k6fI5nBvlzRFLNstgMjmSXcJOXDKdayM3TdMlqzsmlyldz+FAB0AB6AqVfMHjyvUEm54iPy+FIcgGVVbXY2FjqBE4rnFYO1hd9bwKBQNCWuRyaUFJSwqhRo0hISGD37t0MHDiwmbMvTPLREuJPT2B0r5uJPPMGDVvfIF8WCX0fQJldZTL1xRj9roj64/Qbi0yeHGRyjrj4HA4dyqewsIKAABddWozOmLK8pNsTCASCNsnl0IO3bnqL7b9v58PPPmRn9E4Wfr2wRR14zWEqAkv7PNbW5NI/Zgr9roj647SF5MG8HsTH53DkSAGVlWZshHbYg0Q4uQQCQYfjknbY9bjhBk2KysaNG/nwww958cUXL3oufVEdp5ARHdSJmSv3szGjAMfyOqI6uZgNc9ZGehUXVXLgoAoaQOZiZ1BIPj+/nPz8clJTC0zm0kdE+gLg1cnBIDdf+9/dAt0u+t4EAoGgLXM5NMHJyQkfHx9qamqYNGkSBw4cwM3t4p+bWk3wCwkF7xFkfvss/mfWULX9MKqKMTi4BpvUBH1HlL4zS7+mlouLLRYWmldzREb4UlhYgbOzra7IvYGh1fWib00gEAjaLJdDD2wtbXnjzje47bPb2LN5D6u/W8090++56PnMFajftSub8vJqgoPdzdsIjZqQmKjixIkiAAM7ICysBTZCRKON4GXGRgixueh7u1YIJ5dAIBCYoW/fvnzyySc89thjzJ8/n6NHHZk+/Q6iojq3ei5jUR3UzZ0f7g9n2kdx5DhasK2slICKarxousOiNTx8vKX069sJaGhSJFIbzZWYlG9SwAICXLCxsUTqYIW6vNbg/JbUEBAIBILrGYlEwnfffUdSUhLp6elERIxl6dJVDB4sv6j5jDVBctuH7I0fQdfkBYyx/5lTlaF4ucxucp6+I8pcV8Sioirq6zWv5ggIcGHYMAX6emL4WnZR9yUQCATXA6OHjGbOgjksemURS95aQm6hEyPHDryoou3mCtTX19dTWFhJZWWd2SgurSa4u9sjlVo36YoYFOShi+ZKTLyAjSC1Qq02ZSOY15K2ysXn3ggEAsF1wIwZM7j//vupq6vjxx9fZt26RLNjMzOL2bTpJJmZxS2a+4YANz64P4zb7Zzwcbbj8+3pfLbtBMXl1Qbj5HInpA7WnMooxtdXyrBhXZqkJIb18aRPmCdhfUy3/NWKoLq8lvD+3rrPWlIHTCAQCAQgk8n49ddfsbS04fjxON588z2zY1urBwqFjIh7J3Jy+AZ2MRGFxTHY+CxkxkJDg26cXO5EYKAb1dV1ulRF486IWi0wdn7po1SWkperxkVm1zRVsYMWIhYIBILLyQf/+4CBwwfSUNfAppWf819chtmxKpWahIQ8VCp1i+b28pIyZkxXBgzwbuK40kcud0IqtaawsIKwME+TTqywME/69PE0O4/ORlDXEh5uZCO0Uz0QkVwCgUBgxJo1x1i7No3x43swYUJPvvrqK3bv3kNm5gm2b3+furrRWFo2LVjSXBtic0RFdSYqqjM1tXV8ueMkX+1IZ/66I9ze24cRwd5YWkjw8pRSWVXLibQipFJrkwJmquVvamoBiUn5KBTOVJTX4uPtYJBnb9ylUSAQCARNMdSEvsyZ8wYffDCXf/9dwq5d9zJ48OAm51yMHgBE3twdbl4KubPgj1kQ9ymkbYGBM8DZT7fjv2pVqslURe17489AU8MrLjYHN3c7AgPdCAx0M60J7dSoEQgEgiuNsY3wz6//IO+poORMMbv//IYHH+pnsobvxTxjTf1tb4yXl5TKylpOnLgIGyGx0UaoqMXHx4yN0E71QERyCQQCgRFr16axc+dp1q5NA8DR0ZE//1yHg4MDCQm7+PHHH02eFxLiTkSEb6uKWWqxtrJk1rAe/PXMYKICPFhzIJtX1h8hNUcTBaBQOOPpaY9C4dziObUpjPFxOeTmqQ3qeGmjAfLzy3n7nXjWrj1OQUFFq9ctEAgEHR1jTXjvvRd1Eb4zZsygrq6uyTmXogcA+PSG6TEw+kNQ58OmF2H/cqitRKVSY2tnRY8Al2ajtYxJSszn4MEz7NubR3njjr1+m/nAQDdOnjzHvPk7iYvPvrh1CwQCQQfGWA9kMhkxG7dgYW3ByYTjrFu7zuR52mfslSgRclE2QmMKY3x8Drm5amSNUb36a83PL+ftt+NZ+3v7sxFEJJdAIBAYMX58D4NXgJCQEL766isyMzN54IEHTJ53scUsMzOLSU4uJCTEHYVCxrcPhhOTcoa3N6WyKCaNPp1lBNvZ0clbio2N6ZZX2qitsD7nQ5W1qYsKhbNBtxTQRG95eUpZtGgfKSmF5OSr6dHDtdVrFwgEgo6OsSZIJBK++uorqqureeutt0xG9l4uPWDQDAi5E2Jeg0O/QGY85bJRlKtvICzMy2zElqlUxj5hnqjVNbi52zUxtLQRYmvWHic9vYiD9tVEPtjq5QsEAkGHxpSNMCB8AB8t/ohP4z4lyTuJkdUjkdoYRkCZqrvVElqSSm5jY0mnTqZtBP2ui8YF6cGMjdC4Vq2NkFtUR2APr1av/VoinFwCgUBgxIQJPZkwoWeTz6dMmXLZr5WZWczy5Uc4ebKYbt1kTJvWC4VCxvAQb27q4cFXO9L5LjaDw1XF9JQ5EGQtIWF/nq6Wlta5lZ9fTk62Js8/KMiDuPhs4uNyiIj0JTLCz+z1IyJ9qayqpZO/E35+jpf9/gQCgaC9Y0oTHB0dWb169WW/1rZtStasSSMgwIVnn+2vcXQ5esKdX0D/h2DzfLqc/oVOdl6oau8iYV8DcoWzzvhJSS1g5coUykprAE3qon6a4h13dG/W0Lp5sKaxSt++DWbHCAQCwfWKORvhmSeeIXpiNA/+/SDfHvmWp8KewtLC9MZ0S1Gp1GzdqiQvT423t5Rhw+Qmn99aB5VUakVCQp7OIZbaqAeljXqgdXLFxWUTH59DRIQvkZHN2AgRvlRW1tKpq6Td2QjCySUQCAQXQUVFBZ999hmzZ8/Gyur8o7TJLrwJ9MckJxdSUFBJbW09hw7lM3/+LoKD3UhJOcv48T2YPaEn9w2S83FMGmsPZJOWdBpfLImuq8fLU6pLSfT1k9InzBOFwpmE/Xls26bUtRLWd3Kp8jU7QtouiwEBLkRG+HFWXY2JEgICgUAgaAHbtm0DYOjQoQaft1YTQEJJSRXp6UX8+utx1OpqrKwkOk2Y8PBmSFmH/faFKE4twaHBj4LKCXh5RQKalMSy0hocnazpE+aJSqVm06ZTpB0/h5ubHXL/8w4xbYSAg9SK8saOWqNHd2P06G5QeOLKfVkCgUDQAQnxCOG1iNeYGzOXV955hTfnvWkQ6duSqCz9MUplKSUl1dTXN5CRUczKlSn4+zuSlVVm4KDSRl4lJOQZ1NJKTMyntLQGJydN10Xt3AY2gp6TS6VSc/hwAdBAaKgnkZF+REb6cbbiLNaW1lfmS7tCCCeXQCAQtJKGhgZGjhzJrl27OHUql9tvf1pnwCQnF/LXX6fYty+X6GgFxcXVTYwb/YLE2notMpkNX3yRyPHj5zh0KF/X+n3ChJ50crZn4fjeTL+pK2/8nszuU4X8eCKPHMt6eoa4AejSFLduzSB2dzYe7vbY2VoREemru64q//yOUH1dA6Vl1VRX1XH72O4E9m55XReBQCAQnOfPP//kjjvuwM3NnY8+Ws/NNwfrnvmt1YShQ/0bP20gKSmfhIQzFBVVGmgCvcZDz9so3LoEx/2f4Xn6E9iyGUIn0qdPJ0CTmujhbs/WrUpqquuQy50ICnbX7fhrIwRKSqqwtLTg2PGzNNRrUnCa29kXCAQCgXlu63obTy5+kpTUFBZUvsW4Ox/TObWUylL27z9DWto5wsI8UTduLug7vPSLvutHaG3adIrs7DIyThVTptZEZhk/q7Xjta/alERtquLWrRkcOKDC3d0eOzsrIiL0bIRGTUhOLqCuroG0tCLU6hoiInwJ7Gt/hb6tK4dwcgkEAkEr0O6433PPw+zatYsvv/w/zp71ZurUu1EoZISEuLNvXy4FBRXExGRSW6tJ+VAoZMTGniYmJpNevTx0BYmN67bExGQa7NrrE+DlxPePDuJwdjGfbk1j69Ez/IuEqAB3vHXFJiUggYAAV4YNUxicf/hQAeknipBYSHBwsKKwoIKS0hri43KEk0sgEAgugszMYqqru3LDDUEcPZrMyy8/wWefrdY9181pwunTpcTEZBIdrdBtdmg1Ydo0zbmxsadxcbE1rQnWtriPmgVDH4Z9S2HvN7DtLYJduxA8eAL49SRhv4qSkmq6dJE1SXNRKkvJyyunrr6eTl4OFBZWUFFRR1x8jnByCQQCwUWgtRGenT6f559/kt0rt2Nh58vYUWPx8pIilzuRlnaOkpIqEhPzqavT6IE2tVDb7VBboN64jldiYj6WlugiuYwxHt+0q6IEgB49TNgIhwtITy/CwkKCra0VJ04UUVioKTYf2Lf7ZfqGrh7CySUQCK57WpJOokW74x4RcTNPP/00n332GX/++Q4zZ44GaDRQepGcXIhMZqPbtQeNAysmRgnAa69FNZk7KqozUVGdjVJXDJFIJPTu7MLXU8M5mlfKl9tPsDn5DNuP59PLV0a4rzNDZP66Diva9ETNrk4DtraWBAS44C/XiGhKcqFBtJdAIBBc77RWEw4cOMucOYuZM+culMok/v57CWPHLgLMa8Ly5UcM9MDUdVqiCdg6wk3PwsBHIfFH+O9L2LUI7N0I9LkFq7D++Hb1wctLapAGI5c74e3tQElJFT6+jgwdIkepLCHShOEkEAgE1ysXZyOMZOpDU1mxbAVxP69mzG0DAU0322HD5JqyIVIrXSQXnO92CDB5clCTubUOK/3neGsJDfVAJrM1iOg1thFCQtzx93cmP7+clJRCk8609oBwcgkEguse/VSRCwmY/o77sGEfsmfPHvbt28dzz81g586d2NjYmO2qZWUloaioEisrSYvWo1KV4+VlWlglEglBPs58MrkfmYVqVsRn8kdSDsuyi/FwtCHKuoFIeyuDsOfQ3p7IXOx0ResBRo/qhipfzaHDKjr7Xf62xgKBQNDeuFhN+Pbbpdxzzz188cVH3HbbMMaMGaObw3ieluqB/nqa0wRsHGDgDOg7BY5uhITvcDy1gTDJH1DdD2qGkJXTiaPHigEID/fWGVtyuRPRjbv6KpWahIQ8urlU4nbhr0ogEAg6NBerB18N/Yp9+/aReiSVd+ctYMXvK3CybxqdpcXSEtRl1Zho1muA9u/64uIqZLLm63sZY3xtAxsh1BOZzM5gvtGju6FSqTl0+DSKzq7QjgK6hJNLIBBc9+iL0oUwNlZWr15N37592bNnD8899xyffvqp2XNTUs5SUFDBli1KHnggxKxYymQ2WFlJKCgoJz29SHdds2tyl/LK7cHMju7BX0fy+GVfFn8ezmV9Ug6+znYoPGxx9LDFy1Oqc27pc/hQAXuSzhDaywOG9zBxBYFAILh+uFhNUCgmsWvXLj777DMeeOAB9u/fT9euXU2e11I9gFZqgrUdhN4NIePhzBFI+BaOboKd79PXygG5Sy+spDdBnZtJY0tbM6bQOZ9e/qX4eZi+jEAgEFwPXIqNsG7NOvr170dRShHPzX2OL//vS7MdF7OyyigprSYxMZ8hQ0x3UQRNfS5LS02DktxcTVf1ljq5jNGv4WXO+Xb4cAF7j2RT3qseBl3UZa4JopeWQCC47lEoZIwZ0+2COzSm6NKlCytWrADg559/5syZM2bHjh/fg5493fDwsCc5uVD3eWZmMZs2nSQzU7PDXlxcTW1tAx4eDrraXS3B0c6aieH+/PJYBJufvZlnhvXACvjvTDEf7kjn2VUHWfJvGgkZZyksq6KhQdsivgFEt3iBQCAALk0TPvzwQwYOHMi5c+f44YcfzI5rqR7ARWqChQX49Iaxi2Hmfpi0EouAYbhUHMM18SPqVj9M9d8LIHUjFKRBXTWgMXacnW1Ql9VwIq2o1fcvEAgEHYlL0YMbbriBZd8tA+DUv6dYtm+Z2bEREb74+Tni7GyLUlmq+1wbXatSaRxaanUtdXUNODvb6mp3XSyFhRWkpZ3jxIkig2sY0j4NBBHJJRAIBJfI2LFj+eabbxgxYgSdOnUyO27ChJ6Eh3s3qa1iHAqt3bXv0cOFqKjOrV6PpYWE7l6OzB5+A+diVWzen4+Fvz1qpwYO15aw77TGeJLaWuLv6oBtXQMNnWyxcm5f7YEFAoGgrWFra8uaNWvYtGkTM2bMMDuupXoAXLImYOcMwXdA0Fg+ev1vsndvZpgilUiy8ShahaShjgaJBRJnP5xtOzHIQUaDgwS77hcXHSAQCAQCDRMnTuTLL7/kXLdz/JT7E39n/M2oLqOajIuM9CMgwKVJvS39lEIvL6kuksvXV2pUVL71aOuAnTxZhI2NJQEBrvj7OxmkLPr6OuJd4EinTg6XdK2rjXByCQQCwQXQdkWMjlaYNTAeeeSRFs2l31Ze+15rwFRU1LBp00lUKjW1tQ0UF1df8tr7hHqSnlaEq4Mt+WcqcfexpdbBAnt/KVVSCzLPlnOyqIKy+jqcCk3t4AgEAoFAS0v0oHPnzjz66KMXnEub2qKN3goJcSckxB2VqpyUlAJUKjVDh8p1kVyXqgmZyhIsHT1QK0aygZHsKKyni7sa77pjDPRR0sXuNHVnlPhVJmMjqULi+9YlXU8gEAg6Oi3RhMcffxyAop1FbDq5CU87T/p7928yTutY0kZy6Tu1qqvrSEjIo7i4krq6BtTq2kteu0LhTE5OGVKpNaWl1RQWVqBW1xisRa2upb6+gYqKuku+3tVEOLkEAoHgAvz223H++SeDoqKqFu2ib9iwgeXLl7N69WqsrJo+Zo136rUGzJEjBdTWNtC9u4vJlBTjDi/GHbdMdX+xt7emWzcXund3wcvLwaC7l0Iho7KmjqMnzpKYXEBAgAsWFhcugiwQCATXK63Vg6KiIqZNm8azzz7LkCFDTI7R14QxY7rh5VXI5s2naGjQGBrmasK0VhOSkwspLq5iwoSehIS463V8DEcS4g7+jhSeyCYtJYcgeQO+LoYt5gUCgUBgSGs04a2ot4j/K563vniLD77+gAC3gCZjjCO3tOmJmZkl1NU14OMjNZmmqN8p0bibrnZe4yL1NjaWdOokxcdHikxm26TjI2hS2MvqXfDzc7zo7+haIJxcAoFAcAH8/Bzx8LBv0QO+sLCQBx54gNLSUubOncuHH37YZIzWAKmoqOH112Pp1cuDiAjfJg4oMNwhKi6uNnCO6RtGgMnuL/rGkal6AnbWloQFeRIW5NnSr0MgEAiuW1qjBwDvvPMO69evJy4ujv379+Pv799kTEiIOykphWzZkoFMZkNIiDsjR3YFGnTPboVCRmzsaZYvP6KLGDDeMLmQJhjrgSlNkN8gR36DvFXfiUAgEFyvtMpGyC8kYXECFRUVLHh9AR8t/AgvBy+DMVoHU3V1HatWpaJQOBMY6GbggNI6qlJTC0hMzCcszBO1utbAOabvLAMMjhlfq7kOjV5eUqycPLG2bF8lTYSTSyAQXJcY74A3x8SJPQkO9mhRsV93d3e+++47Jk6cyKJFiwgPD+fee+81GKM1Ll5/PZaYGCUAr70WRWZmMcXFhQZjY2IydWOmTesFaAyUzMxiVKpyuneXGaxLe0z/3i6mWKZAIBBcL1wpPQBYsGABW7ZsITExkfHjx7Nr1y7s7OwMxigUMtTqahISzuDiYstrr0UxdCgGBenBUA+iojobOK3MaYJMZqNLhRR6IBAIBBfmSmmCt7c3S5YsYerUqWT/ns0b3d/gncfewdnWWTdG2+Vw1apUkpLyAZg8OQiVSo1aXWown7amFsCwYZrNCbncCZVKTXFxFT4+Dk2isowjvi62M2NbRzi5BALBdYmp4r7maK1hcPfdd/PSSy/x3nvvMX36dIKDg+ndu3eTcdHRCoNXU2vSH6O/jk2bTpKeXkREhK9e+/rzx/R381sq1AKBQHA9ciX1wMHBgd9//53+/fuTkJDAk08+ybfffotEYpga3lo9MF6LOU3Q1wPjlEahCQKBQNCUK6kJU6ZMYd++fXz66aekfpbK+/7v88rYV7C1sjUYFxbmafBqnMZoPEbfYZWQkEdurprAQDfdZ/rH9CO8TKUxdgSEk0sgEFyXmKtxcrl4++23OXDgAFu2bOGuu+5i7969uLsbXisqqjOdOzuRnFxIZmZxkzVpIruqmTatVxMB1Y4x3qU3vrfWCLVAIBBcj1xpPejSpQs///wzo0aNYtmyZfTv35+nnnrKYMyl6IH+OGNNMJ5HaIJAIBA0z5XWhEWLFpGYmMiuXbtIeDeBzzw+49moZ7G0sNSNCQrywN3dHqWyFJVKbZBaCDRGdtUybJi8iYNKO0YqtSIhIc/AiaU/jynHWUdBOLkEAsF1yZVO27C0tGTVqlUMGDCAkydPMmHCBP755x9sbGwMxhkXHNZfU3PGiHb9xrv05u7tSgm1QCAQtHeuRhrf8OHDWbhwIS+99BLPPPMMPXv2JDo62mDMxeqB9jNTmmB8b1faeBMIBIL2zpXWBGtra3799Vf69+9PdnY22xdux/kdZx7p84hBlK++Eyo83NvAEdWcg0ob1aUftaUf0WXOKdaRsLjWCxAIBIKOiru7Oxs2bMDJyYnevXtjYdH0kRsS4m6yk6L+Me3OfGZmsckx9fUNfP11EmvWHLsi9yEQCASCS+eFF15gypQp+Pr64unZtNnHpeqBdpzQBIFAIGjbdOrUiQ0bNuDg4MBNA24iqSCJNWlrDMbI5U4mOynqH9NGa6lUapNjGhoa2Lz5FHFx2VfsXtoiIpJLIBAIriC9evXiyJEjyOVNu1W1tDZKWto50tM1Bo3+OG3nxX37cklNPYtUas2ECT0NzhWpKQKBQNA2kEgkfP311xQXF9OpUyeDY5dLD6KjFWRkFLN//xmhCQKBQNCG6devH6mpqcjlct7f9z4rU1biaO3IqK6jmhSIN0dOThm5ueWAYUSXtvNiWto5srJKsbOzIjLSz+Bcka4oEAgEgotG38FVU1NDamoqvXv3vqCxkZxcyF9/ncLKSkKfPp5NdvdjYjLZuPEkZ89WoFbXIJVaNplDpKYIBAJB28HOzs6gu+KhQ4cICgq6LHoQE6Nkx44s0tKKcHW1Zfz4Hk3mEZogEAgEbQetjfBC+AsUlBSwZtcabC1tcVIFNeuAOny4gAMHzhAQ4Goy2isxMZ9t25SUlVXj7GxDcHDTZ75xna+OhEhXFAgEgqtEUVERI0eOZPDgwaSmpjabmgIaI8TDw47a2nq8vKRNDJ/oaAU33OBKWVkNlZW1HD/eNH1FoZA1qe0iEAgEgmvPTz/9xIABA5g9e/Zl0YPoaDmZmSWoVOU0NNAkiguEJggEAkFb5OzZs8S9Fsfp90/zc9zP5DummE1V1NAAgLOzdZN6XaDpuFhX10BFRR01NQ14ejo0mcHLS2ry3I6AiOS6COrq6qipqbnWyxAIWoy1tTWWlk2jfARXF3t7e2pqaigpKWHs2LHs2bOHMWO6mR2vUMiYNq2XLoXFGG03LldXO2Jjs+nVy53MzOImxotoGX9lEZogaG8ITWgbODg4UF1dzeeff05ISAhPPPGE2bEt0YOoqM5YWUlYsSKFvn09TeoBCE24kgg9ELQ3hB60DbR6UFlSSf5n+fw5by0P9nfCy2uAyfGhoZ7IZHZmnWBBQR7cffcNbN2qxM9PSnFxJSqVuolDq6Vpke0N4eRqBQ0NDeTl5VFUVHStlyIQtBoXFxe8vb0NunYIri62trasXbuWgQMHkp6ezoQJE9i8eTO2trZmz7lQh5eEhDzOnatkzJiuWFhYkJxc2GS8qMFyZRCaIGjPCE249tx555288847zJ8/n5kzZxIQEMDw4cPNjr+QHqxZc4yUlLPcffcNZvUAhCZcCYQeCNozQg+uPfb29qxbt46BAweSrczGYakDP9j8gLWFNWFeYU3Gm+qSaIxMZouPjxQPDwdyc8uRyUqbnNNR63IJJ1cr0IqXl5cXDg4O4kEgaBc0NDRQXl6OSqUCwMfH5xqv6PrG09OTP/74g8jISHbs2MFDDz3EDz/8YLLzYktYuzaNnTtPo1Z34tFH+5jtyqX/qkXs5l8aQhME7RGhCW2LuXPnkpqaysqVK5kwYQI7d+4kLCzsouZqiR6AaU0QenBpCD0QtEeEHrQtfH19Wb9+PYMHDyZ7fzZ2v9ix3HI5D4c+TG/P3q2eLz4+hyNHCggIcGHkyK5muzTqv2rRj/Cyaoclu4STq4XU1dXpxMvdXRTrFLQv7O3tAVCpVHh5eYmw5CtAawyEXr168cUXK5g2bSKrVq1CLpfz7rvvXtR1tYWFx4/v0ST1cc2aY6xcmUJIiDuPPtpHRHhdRoQmCNozQhOuPC3VBIlEwjfffENa2in++283I0eOZt++PSY78l6I5vQgM7OYr78+RHJyAVOmBIuui5cRoQeC9ozQgytPa2yE/v378+mn3/Hoo/eT/k86vTx6sUyyjKkhU+nr1bdV142I8NW9hod7GxyLi8tm2zYlcrkzI0d2aTbCq1uITauu2xYQhedbiDa/3sGhadE2gaA9oP3dFbUirgxaAyE5ubBF493cejNmzIsAfPXVV+Tk5FzUdcPDvbn//uAm4gWaXf3du7NZv/6EyXVdqNCxwDxCEwTtHaEJV5bWaIKtrS2zZ3+Kp2dXVKo8lixZclHXbE4PkpMLWb9eowlr16Y1OS704OIReiBo7wg9uLK01kbw8RnIyJGzAcjdnEt36+58n/w9CXkJrbpuQIALt9ziT0CAS5Nj8fE5pKQUsmdPDkplaZPjcrnTBQrft21EJFcrEeHHgvaK+N29srS2LXtIiDuPPz6d7t3t6NEjnJqai8uDb273ffz4HqjVNYSEuJtc14XquwgujPh3JWiviN/dK0trNWHQoK689NLXxMWt55FHnr+oazanByEh7owb14Pk5AJdxJc+Qg8uHfFvStBeEb+7V5aLsRGefvpJund3IDT0Zm4ZFMrCYy+xMnUltfW13Oh7Y4vmaa7eVkSEL5WVtcjlziYdWfo1v85WVLXoem0J4eQSCASCy0BrDYTz4+/X7e4oFDLq6upaFSpuTjhjY09z5EgBL7wwgKiozi2eTyAQCASXzsVoQlBQN4qK7iE19Rxdu7pSX18P0OKajc0ZUqdPl2JjYyE0QSAQCK4yF28jTCM+Pof0o2qWjFzCE/88wU9Hf6K2vpabOt90wXnM1dtKTS0gM7OE8eN7EBTk0ap7aS8IJ5dAIBBcQ/SNkp07dzJjxgw2bNhAz549L3CmBnPCGROTSUyMEkAYNAKBQNAO0NeDyspKpk6dilwu54MPPmhRpEVzhpTQBIFAIGhfGNgI/+4kdnYsA/43gF+O/0JpTSmju45u9nxzHRgTE/NJSsoH6LBOLlGTq4MjkUia/VmwYMElzb1u3bpWrUEqldKjRw+mTZvG/v37W33NIUOG8Oyzz7Z+sQJBG0WhkDFmTDfkcmfmz5/P8ePHGT58OEql8pLmjY5WEB0tp1cvDzZtOklmZvFlWrGgvSL0QCBo22j1QKGQsXXrVn799VcWLVrEO++8c8lzR0crCA/vhFRqLfRAAAhNEAjaOlpN8Pd3Yu7cuRw/dpz4BfEMcR7CplOb+PnozzQ0NLR63rAwT/r08UShcCYhIQ+VSn0FVn9tEU6uDk5ubq7u5+OPP8bZ2dngs+efv7i6D61l2bJl5ObmkpyczOeff05ZWRmDBg1ixYoVV+X6AsGVIDOz+LI5kCQSCb///juBgYFkZWURHR3NmTNnLnq+qKjOvPZaFPb21q0qdinouAg9EAiuHJdTDwBuu+02PvroIwBefvllPv3000uaLyqqM8OHd6G4uFrogQAQmiAQXEkupyZYWFiwceNGunXrxsmTJ/n35X+5x+8eYnNi+ebwN9TW1bZqvqAgDyZPDsLGxpKjR8+aLDzf3hFOrg6Ot7e37kcmkyGRSAw++/nnnwkKCsLOzo7AwEC++OIL3bnV1dU8/fTT+Pj4YGdnh0KhYOHChQB06dIFgLvuuguJRKJ7bw4XFxe8vb3p0qULI0aM4LfffuP+++/n6aef5ty5cwAUFhYyefJk/Pz8cHBwIDQ0lFWrVunmmDZtGjt27GDx4sW6XZ+MjAzq6uqYPn06Xbt2xd7enp49e7J48eLL+0UKBCZobbeUC+Hp6cmWLVtQKBSkpaUxYsQI3b8PLbGxp3n99VhiY0+3aE79jlnGgnu5jTJB20bogUBw5bjcegAwe/ZsXnvtNQBmzZpl0uhvjSY0pwcgNOF6Q2iCQHDluNya4OPjQ0xMDL6+vqSkpLB+3npmBc0ipTCFxQcXU1ZdRmpqAatWpZKaWtCiOfU7KKpUaoOoLuP37Q1Rk+s65scff+TVV1/ls88+o2/fvhw8eJAZM2YglUp58MEH+eSTT9iwYQOrV69GLpeTlZVFVlYWAPv27cPLy4tly5YxatSoVhXK1jJ79mxWrFjBli1bmDRpEpWVlfTv35+XXnoJZ2dn/vzzT6ZMmUL37t0ZOHAgixcv5vjx4/Tq1Ys33ngD0DgF6uvr6dy5M7/++ivu7u7ExcXx6KOP4uPjw6RJky7rdyYQ6NPabiktoXPnznz//e/cdddIDh06xG233cY///yDo6Mj0Pq6Kvo1WjZtOmnQeau5TlyC6wuhBwLBpXEl9ADgtddeQ6k8w7JlX/HQQw/h5OTEXXfdpTveGk1oTg+g+e6MgusLoQkCwaVxJTSha9eufP/9WiZMGE1CQgLSF6W8+dWbvLX/Ld7b9x6K7BGcSNKkL7ak1pZ+za6EhDyDToz6nRm7hdhctnu4Wggn13XMa6+9xqJFixg/fjyg+YeTkpLCkiVLePDBB1EqlfTo0YObbroJiUSCQqHQnevp6Qmc3325GAIDAwHIyMgAwM/PzyA0eubMmWzevJnVq1czcOBAZDIZNjY2ODg4GFzT0tKS119/Xfe+a9euxMfHs3r1aiFggivKlWq5rlbLmDjxA3766Rni4+P56KOPePXVVwFNXRX91+bIzCwmObmQkBB3FApZE8G9UkaZoP0h9EAguDSulB5IJBLGj3+OAweUJCVt4pFHHiE6OhonJ023rJZqwoX0QP+/hSYIhCYIBJfGldKE6mrPRhvhWXbs2MHtG29n2UPLeObfZ0j2/J1uA4cSFhR8wXlUKjVKZSlyuRNeXtImnRgNX6su+31caYST6xph/MfG1UatVpOens706dOZMWOG7vPa2lpkMs16pk2bxvDhw+nZsyejRo3i9ttvZ8SIEZdtDdpCedqOQXV1dbzzzjusXr2a7OxsqqurqaqqwsHB4YJzff7553z33XcolUoqKiqorq4mLCzssq1VIDBHbOxpYmIyiY5WXLaOVRoDYzCjR6/h11+/Y+7cubpjUVGdiYrqrEsrqaio4ciRApPXN96V1xdc/XWLHftri9ADoQeCjsOV0ITQUE/efPP/+P57GbNmPa5zcIFGEzp3diI5uZDMzGJOny41ef3m9MB43UITri1CE4QmCDoGV85GGMqIEb+wadNqnn32WaysrPj59p95ZtszJDX8g1VhMa5nxnHubBWJifmEhXk2iezSj9TSRnRpo7pSUwt053l5STlbIZxcV4y3336bP//8k8TERGxsbCgqKmoyRqlU8sQTT7Bt2zYcHR158MEHWbhwIVZWbe82r3VIeFlZGQDffPMNgwYNMjimDSvu168fp06d4q+//iImJoZJkyYRHR3Nb7/9dlnWkJqaCmh2VQA++OADFi9ezMcff0xoaChSqZRnn32W6urqZuf5+eefef7551m0aBERERE4OTnxwQcfsGfPnsuyToGgOa5EW/bzxkc37rxzmO7zhoYGqqqqsLOz0z1DTp4s0hWMNL5+c7vy7b2dfEfSBKEHQg8EHYcrqQljx/5k8HlFRQX29vYGz5B9+3JNXv9CUVrtWRM6kh6A0AQQmiDoGFxpG2HSpDG6z11tXVkydAnPbHiNPRWbUaVmoTgTzdGkCqBp+qJxxJY+iYn5JCXlmzyvvdD2nuxmqK6uZuLEiURERPDtt982OV5XV8dtt92Gt7c3cXFx5ObmMnXqVKytrS9L6+XLzbUOCe/UqRO+vr6cPHmS+++/3+w4Z2dn7rnnHu655x7uvvtuRo0axdmzZ3Fzc8Pa2pq6urqLXoO2k0t0dDQAsbGxjBs3jgceeACA+vp6jh8/TnDw+ZBLGxubJteMjY0lMjKSJ598UvdZenr6Ra9LIGgNrUkfvBQaGhqYOXMmR44cYePGjbpnR1iYpy6Sy5jmQqX1132td40vho6kCUIPhB4IOg5XSxMOHTrE6NGj+eqrr+jd+2ZA8wyRyWxMXv9CqTPtWRM6kh6A0AQQmiDoGFwtPaivr+fRRx8lKyuLTz75njXJoWyo+IojXqvpMnCIyfRF/cgtY8LCPHWvKpWalIx8FJ1dofsVvY3LSrtxcmnzqZcvX27y+D///ENKSgoxMTF06tSJsLAw3nzzTV566SUWLFiAjY3pgmlVVVVUVZ0PwSspKbnsazfFlcrTbQ2vv/46s2bNQiaTMWrUKKqqqkhISODcuXPMmTOHjz76CB8fH/r27YuFhQW//vor3t7euLi4AJruKVu3biUqKgpbW1tcXV3NXquoqIi8vDyqqqo4fvw4S5YsYd26daxYsUI3X48ePfjtt9+Ii4vD1dWVjz76iDNnzhgIWJcuXdizZw8ZGRk4Ojri5uZGjx49WLFiBZs3b6Zr166sXLmSffv26XZ/BIIriTZ98Epz6tQpVq5cSUlJCWPGjOHPP/9kzJhuAEyY0NPkOWvWHGPt2jQGD/ZDLpcZGCz66zZVgLitcyU0QeiB0AOB4FK5WprwxRdfkJOTw4QJE1i9ejV33nknoHmemLq+Vg/Gj+9BeLh3EydWe9aEjqQHIDRBaIKgo3C19OD48eOsWrWK8vJynn56CuvXr+eB2qG8sPMFUhr+RlqnQlFzDw7W59N74+KyiY/PITjYHU9PB11tLtBEb2kjuBIS8khPL8JKYn3F7+NyYnGtF3C5iI+PJzQ0lE6dOuk+GzlyJCUlJSQnJ5s9b+HChchkMt2Pv7//1Vhum+CRRx5h6dKlLFu2jNDQUG655RaWL1+ue/A7OTnx/vvvEx4ezoABA8jIyGDTpk1YWGh+bRYtWsSWLVvw9/enb9++zV7roYcewsfHh8DAQJ544gkcHR3Zu3cv9913n27Myy+/TL9+/Rg5ciRDhgzB29tb90eblueffx5LS0uCg4Px9PREqVTy2GOPMX78eO655x4GDRpEYWGhwY6NQNAR6NatG//88w/Ozs7s2rWLYcOGUVDQfIvgtWvT2LnzND//fIz4+By2bcsy2R5ev618R+FiNEHogdADgaC98Nlnn3HPPfdQU1PD3XffzYoVK5odr9WDtWvTdOlw14smCD1oPUITBIL2Q2BgIH///TdSqZSYmBhGjBiBU50TP4z+gRmhMzhScIQ3/3uTJFWS7pz4+ByOHClg167THD16lsOHC0hIyEOlUhvMLZc70b27C35+jlf7ti4JSYO2sl87Yfny5Tz77LNN8u0fffRRMjMz2bx5s+6z8vJypFIpmzZtYvTo0SbnM7VT4+/vT3FxMc7OzrrPKysrOXXqFF27dsXOzu7y3pRAcBUQv8Otpy2mbCQkJDBq1CgKCwvp2bMn//zzD3K53ORY40gulUpNenoxERG+uiiwy0FJSQkymazJc/NqcDk1oaV6AOLfk6D9I36HW0db1IPa2lqmT5+uc3AtWrSIOXPmmBxrKpKro2mC0AOB4OIQv8Otpy1qQlxcHLfddhtFRUWEhoby999/4+vrS2phKq/FvUbq2VR6uvZk4g0TSU+qNYjkKi6uJDe3nMBAN8LDDbuinq04i7WlNWO7j231mq6VHlzTSK65c+cikUia/Tl69OgVXYOtrS3Ozs4GPwKBQADni78mJxde66XoCA8PZ/fu3fj7+3Ps2DEiIyNJSUkxOXbChJ78+OPtPP54X8aM6cbQofI2vTt/rTVB6IFAIDBHW9QDKysrli1bxnPPPQfAc889x9y5czG1f63VgwkTeqJQyNq8Jgg9EAgEbZm2qAmRkZHs3LkTHx8fDh8+TFRUFGlpaQS5B/HjmB+Z038Oeeo83tn7Dlnuu3l8VjCjR3cjPNyb0FBPAgPdTBaib49c05pczz33HNOmTWt2TLduLdtZ8vb2Zu/evQafnTlzRndMIBAIWsu1Lv5qjsDAQGJjYxk5ciTHjh0jPT3doC6FOdpCnY/mEJogEAjaKm1VDywsLPjggw/w9PRk7ty57N27l5qaGrO1aPVpy5og9EAgELRl2qomhIaGEhsby4gRI8jMzCQjI4MePXpgbWnNQ70e4o7ud/DJwU/4I/0P9ubuJdI3khFdRuDl5WS2EH175Jo6uTw9PfH09Lwsc0VERPD222+jUqnw8vICYMuWLTg7O7fI+BMIBAJj2rIB4O/vz65du4iNjWXs2JaHD7fF8GotQhMEAkFbpS3rgUQi4aWXXiIgIIDhw4e3yMGlpa1qgtADgUDQlmnLmtC1a1d2795NQkICw4cPNzjmbu/O65Gv80DQA3x96Gv+Vf7L7uzd9PbsTW/pQOoL3FAonNu9w6vdFJ5XKpUkJiaiVCqpq6sjMTGRxMREysrKABgxYgTBwcFMmTKFpKQkNm/ezMsvv8xTTz2Fra3tNV69QCAQmCYzs9hk4d+WUFZmxdmz3Vi+/DCZmcXs2HGQadNeICOjyOw5bTG8+mIQmiAQCDoal6IHAOHh0axdq2T58sPExp5m2rQX2LHjYLPndARNEHogEAg6IpeiCZWVduTnK3Q2QkzMHqZPn6ezEXq49uCDWz7g17G/ckfAHZwsPsnyU1/xy7nP+f34BrJKs0ymvrcXrmkkV2t49dVX+f7773XvtZ06tm3bxpAhQ7C0tGTjxo088cQTREREIJVKefDBB3njjTeu1ZIFAoHggmgNDGhdq/bMzGKWLz9CQsIZpFJrXFysmDlzIqdPp3PqVCp//bUaBweHJrv0bTW8urUITRAIBB2Ni9UDaKoJa9f+yB9/fMjatUvZsOF3hgwZohvX0TRB6IFAIOiIXC4bwckJnn56Enl5SjIzj7Fx40/Y2dmRmVnM0WR4OGQOs/vP5qf969h0ahPHaxM4si8OqbUUuZMcX6kvwe7tK+q13Ti5li9fzvLly5sdo1Ao2LRp09VZkEAgEFwGLtbASE4upKCgkoAAF/r08aRvX19mzXqW+fPnsHPnn9x444389ttvnDhhZSCQbTm8ujUITRAIBB2NS3E4GWuCm5sfx479zfHjSURHR/POO+/wwgsvNDGaOoImCD0QCAQdkctlI4SHy3nqqVm89tpLbN36O1FRUfz222+kpjbo9GCMohtPRk7jsRuncKb8DDtP72RP7h7Si9LZmb0Ta0vry35/V5J24+QSCASCts7F1Da5WAMjJMQdlaocaGDoUDkKhYwXXniaQYN6M2nSJA4fPkx4eDjvvfcZERE3GQhkbOxpYmIyiY5WEBXVudXXFggEAkHzXE09ANOaMHx4PI899hgrV67kpZdeIjY2ljff/MSgo6LQA4FAILjyXGsb4eWXn+PGG/tw7733cuDAAfr168eHH35JRMRAk3pwb9S93Bt4L+U15RRVFVFXX9fqdVxL2k1NLoFAIGjrXM3aJgqFDC8vB9LTiw2ud/PNN3Pw4EFuvvlmSktLefLJB9my5VN8fR10Y2JiMomJURITk3nF1ykQCATXI1e71pUpTbC3t+f7779nyZIl2NjYsGHDBu68cyje3kU6w0nogUAgEFx52oKNEB0dzcGDB7nxxhspKirikUcms2PHEvz8NEXmTemBg7UDvo6++Dv7X/F1X05EJJdAIBBcJq52bRNz1/Px8WHr1q3873//4/333ycxMRFLS0vd8ehohcGr2MkXCASCy8u1qHVl6poSiYRHH32U/v37M3HiRDIyMigtLdUdN9YDEJogEAgEl5u2YiP4+/uzY8cOXnzxRRYvXsyhQ4d0NkJH0gPh5BJcNqZNm0ZRURHr1q0DYMiQIYSFhfHxxx9f9JyXYw6B4GpxtWubNHc9Kysr3nvvPW666SZ69+6NhYUmcLeyspIbb/QxECrtzg3QrgRM0LYRmiC4nrkWta6au2b//v3Zv38/mzZt4pZbbtF93revW5PnvtAEweVG6IHgeqct2Qg2NjZ8/PHH3Hzzzdx4441IJBIA+vVzJyLCV2czQPvVA5GueB0wbdo0JBIJEokEGxsbAgICeOONN6itrb2i1127di1vvvlmi8Zu374diURCUVHRRc8hEAiaMnbsWBSK8zsyzz//PFFRUSQmJuo+i45WEB0tN9i5EXRchCYIBNcnrq6u3H///br3aWlpKBQKFi5cSHV1te5zoQnXD0IPBILrl/Hjx+Pr66t7/9RTT3HLLbdw5MgR3WftVQ9EJNd1wqhRo1i2bBlVVVVs2melmx0AAQAASURBVLSJp556Cmtra+bNm2cwrrq6Ghsbm8tyTTc3tzYxh0Ag0KBSqfjhhx8oLi6mf//+zJw5kzfeeIOoqM7tandGcOkITRAIBF9//TUFBQXMnz+flStX8uWXX3LLLbcITbjOEHogEAiysrJYvXo1arWavn37Mnv2bF577bV2qwcikus6wdbWFm9vbxQKBU888QTR0dFs2LCBadOmceedd/L222/j6+tLz549Ac0v+qRJk3BxccHNzY1x48aRkZGhm6+uro45c+bg4uKCu7s7L774Ig0NDQbXHDJkCM8++6zufVVVFS+99BL+/v7Y2toSEBDAt99+S0ZGBkOHDgU0u4wSiYRp06aZnOPcuXNMnToVV1dXHBwcGD16NGlpabrjy5cvx8XFhc2bNxMUFISjoyOjRo0iNzf38n6hAkE7xMvLi5SUFCZNmkR9fT2LFy8mMDCQb7/9lrq69tU1RXBpCE0QmiAQvP/++6xYsQJPT09SU1MZMmQIkydP5tSpU9d6aYKriNADoQcCgb+/P6mpqdx1113U1tbywQcfEBQUxMqVK6mvr7/Wy2s1wsl1nWJvb68LTd+6dSvHjh1jy5YtbNy4kZqaGkaOHImTkxO7du0iNjZWJwTacxYtWsTy5cv57rvv2L17N2fPnuX3339v9ppTp05l1apVfPLJJ6SmprJkyRIcHR3x9/dnzZo1ABw7dozc3FwWL15sco5p06aRkJDAhg0biI+Pp6GhgTFjxlBTU6MbU15ezocffsjKlSvZuXMnSqWS559//nJ8bQJBu8fX15dffvmFzZs3ExAQQG5uLo888gh9+vQhM1N017peEZogEFx/SCQSpkyZwrFjx3j88ceRSCT8/PPP9OzZkw8//PBaL09wjRB6IBBcn/j7+7N27Vr++OMPunTpQlZWFlOnTqVfv37tzhks0hUvkfLyco4ePXrVrxsYGIiDg0Orz2toaGDr1q1s3ryZmTNnkp+fj1QqZenSpboQ5B9++IH6+nqWLl2qK0S3bNkyXFxc2L59OyNGjODjjz9m3rx5jB8/HoCvvvqKzZs3m73u8ePHWb16NVu2bCE6OhqAbt266Y5rQ469vLxwcXExOUdaWhobNmwgNjaWyMhIAH788Uf8/f1Zt24dEydOBKCmpoavvvqK7t27A/D000/zxhtvtPq7Egg6MiNGjODIkSN88cUXvPnmm9TX1+Pn53etl9XuuRaacLF6AEITBAKBJkLmyy+/5NFHH+XFF18kJiaGLl26XOtltXuEjSD0QCBoj9x+++0MGzaMTz/9lHfeeQeJREKnTp2u9bJahXByXSJHjx6lf//+V/26+/fvp1+/fi0ev3HjRhwdHampqaG+vp777ruPBQsW8NRTTxEaGmqQY5+UlMSJEydwcnIymKOyspL09HSKi4vJzc1l0KBBumNWVlaEh4c3CUfWkpiYiKWlpUFHn9aSmpqKlZWVwXXd3d3p2bMnqampus8cHBx04gXg4+ODSqW66OsKBB0VW1tbZs+ezbRp08jOzsbKSkjCpXItNKG1egBCE4QmCARN6du3L1u2bGH37t1ERUVd6+W0e4SNoEHogUDQ/rC3t+fFF19k+vTpnDlzxqDjYntAWDSXSGBgIPv3778m120NQ4cO5csvv8TGxgZfX18DY1YqlRqMLSsro3///vz4449N5vH09Lyo9drb21/UeReDtbW1wXuJRGJWWAWC9kRs7GliYjKJjlaYLQKZmVlMcnIhISHuLW5V7Orqiqur6+Vc6nXLtdCE1uoBCE0QmiBo71wpPQC46aabLtcyr2uEjdAyhB4IBJfOldIEd3d33N3dL+dSrwrCyXWJODg4tHoH/VoglUoJCAho0dh+/frxyy+/4OXlhbOzs8kxPj4+7Nmzh5tvvhmA2traZneOQkNDqa+vZ8eOHbpQZH20u0TNFb8OCgqitraWPXv26EKRCwsLOXbsGMHBwS26N4GgPRMTk0lMjBLArIAlJxcSH58D0CqjRnB5EJogNEEguBoIPWj7CD0QeiAQXC2EJhjSvuLOBFeF+++/Hw8PD8aNG8euXbs4deoU27dvZ9asWZw+fRqAZ555hnfffZd169Zx9OhRnnzySYqKiszO2aVLFx588EEefvhh1q1bp5tz9erVACgUCiQSCRs3biQ/P5+ysrImc/To0YNx48YxY8YMdu/eTVJSEg888AB+fn6MGzfuinwXAkFbIjpaQXS0nOhohdkxISHuRET4EhLS/nZdBG0ToQkCQdtD6IHgWiD0QCBomwhNMEQ4uQRNcHBwYOfOncjlcsaPH09QUBDTp0+nsrJSt2vz3HPPMWXKFB588EEiIiJwcnLirrvuanbeL7/8krvvvpsnn3ySwMBAZsyYgVqtBsDPz4/XX3+duXPn0qlTJ55++mmTcyxbtoz+/ftz++23ExERQUNDA5s2bWoSfiwQdESiojrz2mtRZndoQLMzM2ZMtw6/QyO4eghNEAjaHkIPBNcCoQcCQdtEaIIhkgaRiGxASUkJMpmM4uJigzDcyspKTp06RdeuXbGzs7uGKxQILg7xO3z90ZL8/MuBuedme6e5+xL/ngTtHfE7fH1xtfQAOqYmCD0QdGTE7/D1R0e3EURNLoFAIOigtCQ/XyAQCAQdH6EHAoFAINDS0TVBOLkEAoGgg6LNy28uP18gEAgEHR+hBwKBQCDQ0tE1QTi5BAKBoIMSFdW5Q+7OCAQCgaB1CD0QCAQCgZaOrgmi8LxAIBAIBAKBQCAQCAQCgaDdI5xcAoFAIBAIBAKBQCAQCASCdo9wcgkEAoFAIBAIBAKBQCAQCNo9wsklEAgEAoFAIBAIBAKBQCBo9wgnl0AgEAgEAoFAIBAIBAKBoN0jnFwCgUBwHRMbe5rXX48lNvb0tV6KQCAQCK4xQhMEAoFAAO1bD4ST6zJQWVNHSWXNVfuprKm71rdslmnTpnHnnXfq3g8ZMoRnn332kua8HHNciO3btyORSCgqKrqi17nSSCQS1q1bd62XIWiDZGYWs2nTSTIziw0+j4nJJCZGSUxM5jVaWQekpgIqi6/OT03Ftb5bswg9uLYIPRA0h9CEq0NlbSWl1aVX7aeytvJa37JZhCZcW4QmCMzREfXA6lovoL1TWVPHP8l5FFfWXLVryuysGRHijZ21ZYvGT5s2je+//x4Aa2tr5HI5U6dOZf78+VhZXdlfgbVr12Jtbd2isdu3b2fo0KGcO3cOFxeXi5rjYomMjCQ3NxeZTNbic6ZNm0ZRUZEQDEG7IDm5kPj4HAAUCs3veWZmMVKpDeHhnYiOVlzL5XUcairg6CaoLLo617NzgcAxYG3fouFCDy6M0APB9YDQhCtPZW0l25TbKKkuuWrXdLZxZqh8KHZWdi0aLzThwghNEHR0OqIeCCfXJVJdV09xZQ12VpbYWl35wLiqWs31quvqW+zkAhg1ahTLli2jqqqKTZs28dRTT2Ftbc28efOajK2ursbGxuayrNfNza1NzHEhbGxs8Pb2vuLXMcXl/L4FAnOEhLgbvIJG1IqLqxg+vAtRUZ2v1dI6FnXVGgeXlZ3m50pSW6m5Vl11i51cIPTgQgg9EFwPCE248tTU11BSXYKtlS22lrZX/HpVdVWUVJdQU1+DHS3XH6EJzSM0QdDR6Yh6INIVLxO2VhY42Fhd8Z+LdaTZ2tri7e2NQqHgiSeeIDo6mg0bNgDnw4fffvttfH196dmzJwBZWVlMmjQJFxcX3NzcGDduHBkZGbo56+rqmDNnDi4uLri7u/Piiy/S0NBgcF3jMOKqqipeeukl/P39sbW1JSAggG+//ZaMjAyGDh0KgKurKxKJhGnTppmc49y5c0ydOhVXV1ccHBwYPXo0aWlpuuPLly/HxcWFzZs3ExQUhKOjI6NGjSI3N9fs92McinyhORYsWMD333/P+vXrkUgkSCQStm/f3qLvzdT3PX/+fAYNGtRkXX369OGNN94AYN++fQwfPhwPDw9kMhm33HILBw4cMHtPAoE+CoWMMWO66XZoQCNmERG+BqImuExY2YGNw5X9uUgnmtADoQcCgdCEq4etpS32VvZX/OdiHWlCE4QmCK5vOqIeCCfXdYq9vT3V1dW691u3buXYsWNs2bKFjRs3UlNTw8iRI3FycmLXrl3ExsbqHuLa8xYtWsTy5cv57rvv2L17N2fPnuX3339v9rpTp05l1apVfPLJJ6SmprJkyRIcHR3x9/dnzZo1ABw7dozc3FwWL15sco5p06aRkJDAhg0biI+Pp6GhgTFjxlBTcz5ltLy8nA8//JCVK1eyc+dOlEolzz//fKu+o+bmeP7555k0aZJO1HJzc4mMjGzR92bq+77//vvZu3cv6enpujHJyckcOnSI++67D4DS0lIefPBBdu/ezX///UePHj0YM2YMpaWlrbovgUCLKVETXH8IPbgwQg8E1wNCEwQgNKElCE0QdHTaux6IdMXrjIaGBrZu3crmzZuZOXOm7nOpVMrSpUt1IbE//PAD9fX1LF26FIlEAsCyZctwcXFh+/btjBgxgo8//ph58+Yxfvx4AL766is2b95s9trHjx9n9erVbNmyhejoaAC6deumO64NOfby8jLIt9cnLS2NDRs2EBsbS2RkJAA//vgj/v7+rFu3jokTJwJQU1PDV199Rffu3QF4+umndbsdLaW5ORwdHbG3t6eqqsoghLkl3xs0/b5BsyPz008/8corr+jua9CgQQQEBABw6623Gqzv66+/xsXFhR07dnD77be36t4EAoFA6EHLEXogEAg6OkITWo7QBIGgbSMiua4TNm7ciKOjI3Z2dowePZp77rmHBQsW6I6HhoYaPEyTkpI4ceIETk5OODo64ujoiJubG5WVlaSnp1NcXExubq5B+KyVlRXh4f/P3n3HN1U1bgB/0rRJ2rTp3rsFuthlWMoSUJAhIFuUoaIiCg4U/fmq4ELlFTcCyouIqAwBBRlSZO8WKKuFUjoppXvv9Pz+qImku6WQpjzfz6cfyM1N7rk3yXnuOffce3vUWYazZ89CKpViwIABzV6PqKgoGBsb6yzX1tYWfn5+iIqK0k4zMzPTBg8AODs7Iy0trUnLas57NLTdNKpvbwCYOnUqfv75ZwBVOxq//PILpk6dqn3+5s2bmDVrFtq3bw9LS0uoVCoUFBQgMTGxSetFRPc25gHzgIhIg5nATCBqaziS6x5x//3349tvv4VMJoOLi0uNO6YolUqdxwUFBQgODsa6detqvJe9vX2zymBq2vgLI9+u6ndakUgkNa4FcCfeo7Hbrfr2BoApU6ZgwYIFOH36NIqLi5GUlIRJkyZpn58+fToyMzPxxRdfwNPTE3K5HCEhITpDnInqk5CQi4sXMxEUZGuww4/p9jEPmAdEzAPSYCYwE4jaWiawk+seoVQqtUNaG6N79+5Yv349HBwcoFKpap3H2dkZJ06cQP/+/QEAFRUViIiIQPfu3Wudv1OnTqisrMSBAwe0Q5FvpTlqoVar6yxXQEAAKioqcOLECe1Q5MzMTFy+fBmBgYGNXr+WIJPJapS1MdutLm5ubhgwYADWrVuH4uJiPPDAA3BwcNA+f+TIESxbtgzDhw8HUHXxyoyMjNtfEbpn1HaLYLr3MA9aHvOADA3zgDSYCS2PmUCGpq1lAk9XbCGlFZUoKqu443+lFZV3ZX2mTp0KOzs7jB49GocOHUJcXBz279+PuXPnIjk5GQAwb948fPTRR9i6dSuio6Px3HPPae88UhsvLy9Mnz4dTzzxBLZu3ap9zw0bNgAAPD09IZFIsH37dqSnp6OgoKDGe7Rv3x6jR4/GrFmzcPjwYURGRuKxxx6Dq6srRo8efUe2RX3rc+7cOVy+fBkZGRkoLy9v1Harz9SpU/Hrr79i48aNOsOQgap1X7t2LaKionDixAlMnTr1rh75IsNn6HdKMSgVJUBZ0Z39qyi5K6vCPGgY84AMDfPg7ilVl6K4oviO/5WqS+/K+jATGsZMIEPT1jKBnVy3SSY1gqXCBCUVauSWlN/xv5IKNSwVJpBJ7+xHZ2ZmhoMHD8LDwwOPPPIIAgIC8OSTT6KkpER79OGVV17B448/junTpyMkJAQWFhYYO3Zsve/77bffYvz48Xjuuefg7++PWbNmobCwEADg6uqKRYsW4fXXX4ejoyOef/75Wt9j9erVCA4OxsiRIxESEgIhBHbs2FFj6PCdNmvWLPj5+aFHjx6wt7fHkSNHGrXd6jN+/HhkZmaiqKgIY8aM0Xlu1apVyM7ORvfu3fH4449j7ty5OkdxiBpi6HdKMQhSGaCwquqAKsm5s38VJVXLkupeu6OlMQ8axjwgQ8M8uPNMjEygkqlQWlGKvNK8O/5XWlEKlUwFE6M7W/8xExrGTCBD09YyQSKaehJyG5eXlwdLS0vk5ubqVDglJSWIi4uDt7c3FAqFzmtKytUoU9+dEVZAVceawkR615ZHbUN932Gi21FXvWno6luven9P5cWA+i5dB0MqA0x4tJaajplAd0pbzITm5kFJRQnKK8vvWjlNjEygMObvmZqGeUB3ir7ygNfkagEKEyk7nYiIqIqJKTueiIgICmMFFGCnARHR3cTTFYmIiIiIiIiIyOCxk4uIiIiIiIiIiAweO7mIiIiIiIiIiMjgsZOLiIiIiIiIiIgMHju5iIiIiIiIiIjI4LGTi4iIiIiIiIiIDB47uYiIiIiIiIiIyOCxk4uIiIiIiIiIiAweO7mIiIiIiIiIiMjgsZOrjZNIJPX+LVy48K6VZeDAgdrlKhQKBAYGYtmyZdrnf/jhB1hZWd218hAZioSEXOzYcQ0JCbn6LgoZMOYBUdvATKCWwEwgMnzMg9oZ67sAdGfduHFD+//169fj7bffxuXLl7XTzM3Ntf8XQkCtVsPY+M59LWbNmoV3330XRUVF+PHHHzFnzhxYW1tjypQpd2yZRIbu4sVMHDuWAgDw9LTUc2nIUDEPiNoGZgK1BGYCkeFjHtSOI7laQGFhYZ1/JSUljZ63uLi4UfM2hZOTk/bP0tISEolE+zg6OhoWFhbYuXMngoODIZfLcfjwYcyYMQNjxozReZ8XX3wRAwcO1D6urKzE4sWL4e3tDVNTU3Tp0gWbNm1qsDxmZmZwcnKCj48PFi5ciPbt2+OPP/5o0joR3WuCgmwREuKCoCBbfReFGuFuZkJTMA+I2gZmguFgG4GZQHQnMQ9qZzAjuT744AP8+eefOHv2LGQyGXJycmrMI5FIakz75ZdfMHny5DtatluPdFQ3fPhw/Pnnn9rHDg4OKCoqqnXeAQMGYP/+/drHXl5eyMjIqDGfEKL5ha3F66+/jv/+97/w8fGBtbV1o16zePFi/PTTT1i+fDnat2+PgwcP4rHHHoO9vT0GDBjQ6GWbmpqirKysuUUnuid4elry6Ew1zIQqzAOiew8zQRfz4F/MBKJ7C/OgdgbTyVVWVoYJEyYgJCQEq1atqnO+1atXY9iwYdrHPH+7Ye+++y4eeOCBRs9fWlqKDz/8EGFhYQgJCQEA+Pj44PDhw1ixYkWjAkytVuOXX37BuXPn8PTTTze77ER0b2Im3BnMAyIyNMyDO4eZQESGyGA6uRYtWgSg6sKD9bGysoKTk1Oj37e0tBSlpaXax3l5eU0uW0FBQZ3PSaVSncdpaWl1zmtkpHv2aHx8fJPL0hw9evRo0vxXr15FUVFRjdArKytDt27d6n3tsmXL8P3336OsrAxSqRQvvfQSZs+e3eQyE9G97U5kQkvkAWDYmcA8ICJDwzy4c5gJRGSIDKaTq7HmzJmDp556Cj4+Pnj22Wcxc+bMWocoayxevFgbjs2lVCr1Pu/tqL4cIyOjGsOdy8vLtf/XBPaff/4JV1dXnfnkcnm9y5o6dSrefPNNmJqawtnZuUZoExG1pKZkQkvkAWDYmcA8IKK2innQdMwEIjJEbaqT691338WgQYNgZmaGv/76C8899xwKCgowd+7cOl/zxhtv4OWXX9Y+zsvLg7u7+90obqtlb2+PCxcu6Ew7e/YsTExMAACBgYGQy+VITExs0rn1AGBpaYl27dq1WFmJiOrS1ExgHtTEPCCitoB50DKYCURkCPTayfX666/j448/rneeqKgo+Pv7N+r93nrrLe3/u3XrhsLCQixZsqTeTi65XN7gkYV7zaBBg7BkyRL8+OOPCAkJwU8//YQLFy5ohxlbWFhg/vz5eOmll1BZWYm+ffsiNzcXR44cgUqlwvTp0/W8BkRkiPSdCcyDmpgHRKQPzIPWiZlARIZAr51cr7zyCmbMmFHvPD4+Ps1+/969e+O9995DaWkpg6oJhg4dirfeeguvvfYaSkpK8MQTT2DatGk4f/68dp733nsP9vb2WLx4Ma5duwYrKyt0794d//d//6fHkhPd244cSUZYWAKGDPFEaKibvovTZMyE1od5QGS4DDkTmAetEzOByDAZch40h0S09L1m77AffvgBL774Yq23B67ugw8+wKeffoqsrKxGv39eXh4sLS2Rm5sLlUqlnV5SUoK4uDh4e3tDoVA0p+hEesXvcNu3aNERhIUlYsgQD7zzTuhdW25d9ebdcCczob714u+JDB2/w23fvZYJzAOi5uF3uO271/LAYK7JlZiYiKysLCQmJkKtVuPs2bMAgHbt2sHc3Bzbtm3DzZs3cd9990GhUGDPnj348MMPMX/+fP0WnIjoLhkyxFPn37aMmUBEVL97JROYB0RE9btX8kDDYDq53n77baxZs0b7WHPu9759+zBw4ECYmJjgm2++wUsvvQQhBNq1a4elS5di1qxZ+ioyEdFdFRrqdk8MQQaYCUREDblXMoF5QERUv3slDzQM7nTFO42nK1Jbxe8w3Sn6PF3xTuLpKdSW8TtMd0pbzATmAbVl/A7TnaKvPDC6a0siIiIiIiIiIiK6Q9jJ1UQc+EaGit9dopbH3xUZKn53iVoWf1NkqPjdpbaGnVyNZGJiAgAoKirSc0mImkfz3dV8l4mo+ZgJZOiYCUQtg3lAho55QG2NwVx4Xt+kUimsrKyQlpYGADAzM4NEItFzqYgaJoRAUVER0tLSYGVlBalUqu8iERk8ZgIZKmYCUctiHpChYh5QW8VOriZwcnICAG2IERkSKysr7XeYiG4fM4EMGTOBqOUwD8iQMQ+orWEnVxNIJBI4OzvDwcEB5eXl+i4OUaOZmJjw6AxRC2MmkKFiJhC1LOYBGSrmAbVF7ORqBqlUysqAiIgAMBOIiKgK84CISP944XkiIiIiIiIiIjJ47OQiIiIiIiIiIiKDx04uIiIiIiIiIiIyeLwmVzVCCABAXl6enktCRGQYNPWlpv5sK5gHRERN1xYzgXlARNR0+soDdnJVk5+fDwBwd3fXc0mIiAxLfn4+LC0t9V2MFsM8ICJqvraUCcwDIqLmu9t5IBFt6TBLC6isrERKSgosLCwgkUia9Nq8vDy4u7sjKSkJKpXqDpXwzmsr6wFwXVqrtrIubWU9gNtbFyEE8vPz4eLiAiOjtnMWPPOgCtel9Wkr6wFwXVqj212PtpgJt5MHAL8brRHXpfVpK+sBcF009JUHHMlVjZGREdzc3G7rPVQqlcF/mYG2sx4A16W1aivr0lbWA2j+urSVo/W3Yh7o4rq0Pm1lPQCuS2t0O+vR1jKhJfIA4HejNeK6tD5tZT0ArgugnzxoG4dXiIiIiIiIiIjonsZOLiIiIiIiIiIiMnjs5GpBcrkc77zzDuRyub6LclvaynoAXJfWqq2sS1tZD6BtrUtr0Ja2J9el9Wkr6wFwXVqjtrIerUlb2aZtZT0Arktr1FbWA+C66BsvPE9ERERERERERAaPI7mIiIiIiIiIiMjgsZOLiIiIiIiIiIgMHju5iIiIiIiIiIjI4LGTi4iIiIiIiIiIDB47uYiIiIiIiIiIyOCxk+sO+eCDD9CnTx+YmZnByspK38Vpkm+++QZeXl5QKBTo3bs3Tp48qe8iNdnBgwcxatQouLi4QCKRYOvWrfouUrMsXrwYPXv2hIWFBRwcHDBmzBhcvnxZ38Vqlm+//RadO3eGSqWCSqVCSEgIdu7cqe9itYiPPvoIEokEL774or6L0mQLFy6ERCLR+fP399d3sdoU5oH+MRNan7aaCcwDaggzQb+YB61PW80DgJmgL+zkukPKysowYcIEzJ49W99FaZL169fj5ZdfxjvvvIPTp0+jS5cuGDp0KNLS0vRdtCYpLCxEly5d8M033+i7KLflwIEDmDNnDo4fP449e/agvLwcDz74IAoLC/VdtCZzc3PDRx99hIiICISHh2PQoEEYPXo0Ll68qO+i3ZZTp05hxYoV6Ny5s76L0mxBQUG4ceOG9u/w4cP6LlKbwjzQP2ZC69MWM4F5QI3BTNAv5kHr0xbzAGAm6JWgO2r16tXC0tJS38VotF69eok5c+ZoH6vVauHi4iIWL16sx1LdHgBiy5Yt+i5Gi0hLSxMAxIEDB/RdlBZhbW0tvv/+e30Xo9ny8/NF+/btxZ49e8SAAQPEvHnz9F2kJnvnnXdEly5d9F2MewLzoHVgJrRehpwJzANqKmaC/jEPWi9DzgMhmAn6xpFcpFVWVoaIiAgMGTJEO83IyAhDhgzBsWPH9Fgy0sjNzQUA2NjY6Lkkt0etVuPXX39FYWEhQkJC9F2cZpszZw5GjBih85sxRDExMXBxcYGPjw+mTp2KxMREfReJ9Ix5YBiYCa0H84DaMmZC68c8aF2YCfplrO8CUOuRkZEBtVoNR0dHnemOjo6Ijo7WU6lIo7KyEi+++CJCQ0PRsWNHfRenWc6fP4+QkBCUlJTA3NwcW7ZsQWBgoL6L1Sy//vorTp8+jVOnTum7KLeld+/e+OGHH+Dn54cbN25g0aJF6NevHy5cuAALCwt9F4/0hHnQ+jETWg/mAbV1zITWjXnQujAT9I8juZrg9ddfr3Hxtep/rOjpTpkzZw4uXLiAX3/9Vd9FaTY/Pz+cPXsWJ06cwOzZszF9+nRcunRJ38VqsqSkJMybNw/r1q2DQqHQd3Fuy0MPPYQJEyagc+fOGDp0KHbs2IGcnBxs2LBB30Vr1ZgHpG/MhNaBeUAAM4H0i3nQejATWgeO5GqCV155BTNmzKh3Hh8fn7tTmDvAzs4OUqkUN2/e1Jl+8+ZNODk56alUBADPP/88tm/fjoMHD8LNzU3fxWk2mUyGdu3aAQCCg4Nx6tQpfPHFF1ixYoWeS9Y0ERERSEtLQ/fu3bXT1Go1Dh48iK+//hqlpaWQSqV6LGHzWVlZoUOHDrh69aq+i9KqMQ9In5gJrQfzgABmAukP86B1YSa0DuzkagJ7e3vY29vruxh3jEwmQ3BwMPbu3YsxY8YAqBr+unfvXjz//PP6Ldw9SgiBF154AVu2bMH+/fvh7e2t7yK1qMrKSpSWluq7GE02ePBgnD9/XmfazJkz4e/vjwULFhhseAFAQUEBYmNj8fjjj+u7KK0a84D0gZnQ+jAPCGAm0N3HPGidmAmtAzu57pDExERkZWUhMTERarUaZ8+eBQC0a9cO5ubm+i1cPV5++WVMnz4dPXr0QK9evfD555+jsLAQM2fO1HfRmqSgoECnlzkuLg5nz56FjY0NPDw89FiyppkzZw5+/vln/P7777CwsEBqaioAwNLSEqampnouXdO88cYbeOihh+Dh4YH8/Hz8/PPP2L9/P3bv3q3vojWZhYVFjWseKJVK2NraGty1EObPn49Ro0bB09MTKSkpeOeddyCVSjFlyhR9F63NYB7oHzOh9WkrmcA8oKZiJugX86D1aSt5ADATWg09392xzZo+fboAUONv3759+i5ag7766ivh4eEhZDKZ6NWrlzh+/Li+i9Rk+/btq3X7T58+Xd9Fa5La1gGAWL16tb6L1mRPPPGE8PT0FDKZTNjb24vBgweLv/76S9/FajGGenvgSZMmCWdnZyGTyYSrq6uYNGmSuHr1qr6L1aYwD/SPmdD6tOVMYB5QfZgJ+sU8aH3ach4IwUzQB4kQQrR81xkREREREREREdHdw7srEhERERERERGRwWMnFxERERERERERGTx2chERERERERERkcFjJxcRERERERERERk8dnIREREREREREZHBYycXEREREREREREZPHZyERERERERERGRwWMnFxERERERERERGTx2chG1Umq1Gn369MEjjzyiMz03Nxfu7u5488039VQyIiK625gJREQEMA+IGiIRQgh9F4KIanflyhV07doV3333HaZOnQoAmDZtGiIjI3Hq1CnIZDI9l5CIiO4WZgIREQHMA6L6sJOLqJX78ssvsXDhQly8eBEnT57EhAkTcOrUKXTp0kXfRSMioruMmUBERADzgKgu7OQiauWEEBg0aBCkUinOnz+PF154Af/5z3/0XSwiItIDZgIREQHMA6K6sJOLyABER0cjICAAnTp1wunTp2FsbKzvIhERkZ4wE4iICGAeENWGF54nMgD/+9//YGZmhri4OCQnJ+u7OEREpEfMBCIiApgHRLXhSC6iVu7o0aMYMGAA/vrrL7z//vsAgLCwMEgkEj2XjIiI7jZmAhERAcwDorpwJBdRK1ZUVIQZM2Zg9uzZuP/++7Fq1SqcPHkSy5cv13fRiIjoLmMmEBERwDwgqg9HchG1YvPmzcOOHTsQGRkJMzMzAMCKFSswf/58nD9/Hl5eXvotIBER3TXMBCIiApgHRPVhJxdRK3XgwAEMHjwY+/fvR9++fXWeGzp0KCoqKjgkmYjoHsFMICIigHlA1BB2chERERERERERkcHjNbmIiIiIiIiIiMjgsZOLiIiIiIiIiIgMHju5iIiIiIiIiIjI4LGTi4iIiIiIiIiIDB47uYiIiIiIiIiIyOCxk4uIiIiIiIiIiAweO7mIiIiIiIiIiMjgsZOLiIiIiIiIiIgMHju5iIiIiIiIiIjI4LGTi4iIiIiIiIiIDB47uYiIiIiIiIiIyOCxk4uIiIiIiIiIiAweO7mIiIiIiIiIiMjgsZOLiIiIiIiIiIgMHju5iIiIiIiIiIjI4LGTi4iIiIiIiIiIDB47uYiIiIiIiIiIyOCxk4vuuvj4eEgkEvzwww/Nen1MTAwefPBBWFpaQiKRYOvWrS1aPo2BAwdi4MCBt/0+n3zyCfz9/VFZWXn7haI7rqU+96Zavnw5PDw8UFpaeteXTdRWSCQSLFy4sMH5Fi5cCIlEojPNy8sLM2bMuDMFayMau33vJn1m7O3uzzTVrl270LVrVygUCkgkEuTk5GDGjBnw8vJq1Otff/119O7d+84WkqgO+/fvh0Qiwf79+/VdlDvmhx9+gEQiQXx8vL6LYhBq+040pU5rSGvMrKbYsGEDbGxsUFBQoO+iNFlFRQVee+01uLu7w8jICGPGjAHQ+M+kvLwc7u7uWLZsWbOWz06uNiQ2NhbPPPMMfHx8oFAooFKpEBoaii+++ALFxcU686rVaqxevRoDBw6EjY0N5HI5vLy8MHPmTISHh2vn01TWmj+FQoEOHTrg+eefx82bN+/2KgIApk+fjvPnz+ODDz7A2rVr0aNHj7uy3JSUFCxcuBBnz55t9Gvy8vLw8ccfY8GCBTAy0v25lZaW4quvvkLfvn1hbW0NmUwGFxcXPPzww/jll1+gVqtbeA3ujsrKSvzwww94+OGH4e7uDqVSiY4dO+L9999HSUlJra9ZtWoVAgICoFAo0L59e3z11Vd3udQt4+eff8bnn3/erNfOmDEDZWVlWLFiRcsWilq11lhve3l56bxe8/fss8+2+Pobuh07dty1HeijR49i4cKFyMnJuSvLa2kffvhhix+Uqi9j25rMzExMnDgRpqam+Oabb7B27Voolcoa8xUVFWHhwoW1diS8+OKLiIyMxB9//HEXStz6tMb69qWXXkL37t1hY2MDMzMzBAQEYOHChbU2aktLS7FgwQK4uLjA1NQUvXv3xp49e25/w1CrcOnSJSxcuJAdZASgqg5655138MILL8Dc3FzfxWmy//3vf1iyZAnGjx+PNWvW4KWXXqp1vrr2bUxMTPDyyy/jgw8+qLP9WC9BbcL27duFqampsLKyEnPnzhUrV64UX3/9tZg8ebIwMTERs2bN0s5bVFQkhg0bJgCI/v37iyVLlohVq1aJt956S/j5+QmJRCKSkpKEEEKsXr1aABDvvvuuWLt2rfjuu+/E9OnThZGRkfD29haFhYVNLmtcXJwAIFavXt3k1xYVFQkA4s0332zya5tqwIABYsCAAdrHp06danK5P/vsM6FSqURxcbHO9LS0NBEcHCwAiKFDh4r//ve/4n//+5/48MMPxaBBg7Tb3BDl5+cLAOK+++4T77//vli5cqWYOXOmMDIyEgMHDhSVlZU68y9fvlwAEOPGjRMrV64Ujz/+uAAgPvroI72Uv7S0VJSWljbrtSNGjBCenp7NXvZrr70mPD09a2wjaptaa73t6ekpunbtKtauXavzd+LEiTu6PVpCcXGxKC8vb3C+d955R1TfBSopKRFlZWVNWt6cOXNqvM+dsmTJEgFAxMXF3ZXl1aax27c2SqVSTJ8+vUXLU1fG3i23sz/TVDt37hQAxJ49e3Sml5WViZKSEu3j9PR0AUC88847tb7PxIkTRb9+/e5kUVul1lrfhoaGirlz54ovv/xSrFy5UsyePVvI5XIRGhoq1Gq1zryTJ08WxsbGYv78+WLFihUiJCREGBsbi0OHDrX8BrsD9u3bJwCIffv26bsod0xFRYUoLi5u1n7cxo0b2/z2qa6278T06dNva1/6VreTWfq2ZcsWIZFIRHJysr6L0iyTJk0Srq6uNaZX/0zq27fJzs4WMplMrFq1qsnLZydXG3Dt2jVhbm4u/P39RUpKSo3nY2JixOeff659rNkp/+yzz2rMW1FRIZYsWVIjvE+dOqUz38svvywAiJ9//rnJ5b2dncKEhAQBQCxZsqTJr22qlujk6ty5s3jsscdqTB86dKgwMjISv/32W62vO3XqlPjpp5+aWuRWobS0VBw5cqTG9EWLFtXYQS8qKhK2trZixIgROvNOnTpVKJVKkZWVdcfL25Jut5MrPDxcABB79+5tuUJRq9Sa621PT88av8m2prZOrua41zq5bsed6OSqK2Pvlpbu5CooKKjzuTVr1tT6u66uoU6uTZs2CYlEImJjY2+nqAalNde3tfnvf/8rAIhjx45pp504caLG/m9xcbHw9fUVISEhTV6GEKJZB6pvx73QyXU72MlVpSU7uQzZww8/LPr27avvYtSrvjrk/vvvF0FBQQ2+R0P7NiNHjmzWgRl2crUBzz77rABQa8dCdUlJScLY2Fg88MADjXrvusJ7+/btAoD44IMP6n19dna2mD59ulCpVMLS0lJMmzZNnDlzptadwqioKDFu3DhhbW0t5HK5CA4OFr///rv2eU2j5NY/TSUYHx8vZs+eLTp06CAUCoWwsbER48ePr/GDqatho1nPW+e/tZNLUwlX/6tvx/batWsCgPjhhx90ph89elQAEM8++2y92+5WpaWl4q233hLdu3cXKpVKmJmZib59+4q///5bZ766diBq2xG/ceOGmDFjhnB1dRUymUw4OTmJhx9+WGcbnDp1Sjz44IPC1tZWKBQK4eXlJWbOnNnoct/q3LlzAoD48ssvtdP+/PNPAUD8+eefOvNqttHatWvrfU/N5xkVFSUmTJggLCwshI2NjZg7d26NI/vl5eXi3XffFT4+PkImkwlPT0/xxhtv6BwBF6Jm56Zmm65fv168//77wtXVVcjlcjFo0CARExOj87q6vp9CCPHll1+KwMBA7ZHk4OBgsW7duhrrpCk/tW2tud7WdHKVlpbW2+iuS3Z2tpg3b55wc3MTMplM+Pr6io8++qjGqITG5kP136RGbTvCtTXuDx06JHr06CHkcrnw8fERy5cvrzULPD09dTphysrKxMKFC0W7du2EXC4XNjY2IjQ0VPz111/a5deWCxpLliwRISEhwsbGRigUCtG9e3excePGGusBQMyZM0ds2bJFBAUFCZlMJgIDA8XOnTu189SWfw11eA0YMEAEBQWJ8PBwERISoq3Dv/322xrz3rx5UzzxxBPCwcFByOVy0blz5xrZVdv21ZQrJiZGTJ8+XVhaWgqVSiVmzJihs/NbW9k12zovL0/MmzdPeHp6CplMJuzt7cWQIUNEREREnesmRN0Z25QcnD59ulAqlSI5OVmMHj1aKJVKYWdnJ1555RVRUVGh8/qW3J8R4t/f6f79+8Xs2bOFvb29sLKyqnVda8sXzfa79XegWcfqf7d+Zjk5OUIikYilS5fWu33bktZc39Zm06ZNAoBOHfDqq68KqVQqcnNzdeb98MMPBQCRmJhY73veWh/069dPmJqainnz5gkhhNi6dasYPny4cHZ2FjKZTPj4+Ih33323xm9A8x4XL14UAwcOFKampsLFxUV8/PHHNZaXlJQkRo8eLczMzIS9vb148cUXxa5du2r9bW7YsEF0795dKBQKYWtrK6ZOnVpj9Irmt5qQkCBGjBghlEqlcHFxEV9//bUQomof8/777xdmZmbCw8Oj1v2r6jS/lyVLloilS5cKDw8PoVAoRP/+/cX58+drzL93717Rt29fYWZmJiwtLcXDDz8sLl26pDNPbe0JTaYeOnRI9OzZU8jlcuHt7S3WrFlT43XV/zTbqiX3xxtT52o+68jISNG/f39hamoqfH19tRm2f/9+0atXL6FQKESHDh1qjDBtbLvsdjq5GrNNatsn2LdvnwgODm5wn0CTzRs2bBABAQFCoVCI++67T5w7d04IUXUmiq+vr5DL5WLAgAE11u3gwYNi/Pjxwt3dXchkMuHm5iZefPFFUVRU1OC6FRcXC5lMJhYuXFjjuca0Z0aMGCG8vb1rfe/77rtPBAcH60xbu3at9jdobW0tJk2aVKNOqa8OuVVdOaT5jG/9TBqzb/PFF18IiUQiMjMzG9xutzIGGbxt27bBx8cHffr0aXDenTt3oqKiAo8//vhtLTM2NhYAYGtrW+c8QgiMHj0ahw8fxrPPPouAgABs2bIF06dPrzHvxYsXERoaCldXV7z++utQKpXYsGEDxowZg99++w1jx47FI488AisrK7z00kuYMmUKhg8frj1H+dSpUzh69CgmT54MNzc3xMfH49tvv8XAgQNx6dIlmJmZ3db6BgQE4N1338Xbb7+Np59+Gv369QOAerf50aNHAQDdu3fXmb5t2zYAwGOPPdbo5efl5eH777/HlClTMGvWLOTn52PVqlUYOnQoTp48ia5duzZxjYBx48bh4sWLeOGFF+Dl5YW0tDTs2bMHiYmJ2scPPvgg7O3t8frrr8PKygrx8fHYvHlzk5cFAKmpqQAAOzs77bQzZ84AQI3rqgUHB8PIyAhnzpxp1HaaOHEivLy8sHjxYhw/fhxffvklsrOz8eOPP2rneeqpp7BmzRqMHz8er7zyCk6cOIHFixcjKioKW7ZsaXAZH330EYyMjDB//nzk5ubik08+wdSpU3HixAkAwJtvvonc3FwkJyfjs88+AwDt9/O7777D3LlzMX78eMybNw8lJSU4d+4cTpw4gUcffVRnOd27d8eRI0caLA8ZttZab2v8/fffMDMzg1qthqenJ1566SXMmzevwdcVFRVhwIABuH79Op555hl4eHjg6NGjeOONN3Djxg3tNeuakg+34/z589p6bOHChaioqMA777wDR0fHBl+7cOFCLF68GE899RR69eqFvLw8hIeH4/Tp03jggQfwzDPPICUlBXv27MHatWtrvP6LL77Aww8/jKlTp6KsrAy//vorJkyYgO3bt2PEiBE68x4+fBibN2/Gc889BwsLC3z55ZcYN24cEhMTYWtri0ceeQRXrlzBL7/8gs8++0xbj9rb29e7DtnZ2Rg+fDgmTpyIKVOmYMOGDZg9ezZkMhmeeOIJAEBxcTEGDhyIq1ev4vnnn4e3tzc2btyIGTNmICcnp1Gf+8SJE+Ht7Y3Fixfj9OnT+P777+Hg4ICPP/4YALB27Vrtdnz66acBAL6+vgCAZ599Fps2bcLzzz+PwMBAZGZm4vDhw4iKiqqRn7eqK2ObSq1WY+jQoejduzf++9//IiwsDJ9++il8fX0xe/ZsAC2/P3Or5557Dvb29nj77bdRWFhYaxnffPNN+Pn5YeXKlXj33Xfh7e2t3X63sre3x7fffovZs2dr95sAoHPnztp5LC0t4evriyNHjtR5jZS2prXXtxUVFcjJyUFZWRkuXLiA//znP7CwsECvXr2085w5cwYdOnSASqXSea1mnrNnz8Ld3b3e5WRmZuKhhx7C5MmT8dhjj2nrwR9++AHm5uZ4+eWXYW5ujr///htvv/028vLysGTJEp33yM7OxrBhw/DII49g4sSJ2LRpExYsWIBOnTrhoYceAlBVpwwePBiJiYmYO3cuXFxcsHbtWvz99981yvTDDz9g5syZ6NmzJxYvXoybN2/iiy++wJEjR3DmzBlYWVlp51Wr1XjooYfQv39/fPLJJ1i3bh2ef/55KJVKvPnmm5g6dSoeeeQRLF++HNOmTUNISAi8vb0b3P4//vgj8vPzMWfOHJSUlOCLL77AoEGDcP78ee02CgsLw0MPPQQfHx8sXLgQxcXF+OqrrxAaGorTp083eKH0q1evYvz48XjyyScxffp0/O9//8OMGTMQHByMoKAg9O/fH3PnzsWXX36J//u//0NAQACAqvZHS++PN7bOzc7OxsiRIzF58mRMmDAB3377LSZPnox169bhxRdfxLPPPotHH31Ue92lpKQkWFhYALjz7bLmbpMzZ85g2LBhcHZ2xqJFi6BWq/Huu+/WmaWHDh3CH3/8gTlz5gAAFi9ejJEjR+K1117DsmXL8NxzzyE7OxuffPIJnnjiCZ3v+MaNG1FUVITZs2fD1tYWJ0+exFdffYXk5GRs3Lix3nJGRESgrKys1nxrTHtm0qRJmDZtGk6dOoWePXtqX5uQkIDjx4/r/K4/+OADvPXWW5g4cSKeeuoppKen46uvvkL//v1r/AbrqkNuZW9vj7Vr1+KDDz5AQUEBFi9eDADa7/StGrNvExwcDCEEjh49ipEjR9a73XQ0qUuMWp3c3FwBQIwePbpR87/00ksCgDhz5kyj5tccWQgLCxPp6ekiKSlJ/Prrr8LW1laYmprWe57w1q1bBQDxySefaKdVVFSIfv361TjyOXjwYNGpUyedXujKykrRp08f0b59e+20W4+63Kq2XvFjx44JAOLHH3/UTmvuSC4hmn664n/+8x8BQOTn5+tMHzt2rAAgcnJydKYXFxeL9PR07V92drb2uYqKihrXicrOzhaOjo7iiSee0E5r7BHs7OzsWrfjrbZs2VLr0cnmGjJkiFCpVDrrNWfOHCGVSmud397eXkyePLne99R8ng8//LDO9Oeee04AEJGRkUIIIc6ePSsAiKeeekpnvvnz5wsAOiPi6hrJFRAQoPMZfPHFFwKAztG+uk5XHD16dKOG7AohxNNPPy1MTU0bNS8ZptZcbwshxKhRo8THH38stm7dKlatWqWts1977bUGl/3ee+8JpVIprly5ojP99ddfF1KpVHtksCn5cDsjucaMGSMUCoVISEjQTrt06ZKQSqUNjuTq0qVLg6dt1ne6YvVcKisrEx07dhSDBg2qUWaZTCauXr2qnRYZGSkAiK+++ko7ramnK2pG/3z66afaaaWlpaJr167CwcFBe/2xzz//XADQOUW+rKxMhISECHNzc5GXl6dT1tpGct2aQ0JU5Zytra3OtLpOV7S0tBRz5sxp1Drdqq6MbepILqDmNTC7deumc6T7TuzPaH6nffv2rTFipjZ1jRiq/jto6HRFIYR48MEHRUBAQIPLbAtae30rxL/7q5o/Pz+/Gt/foKCgGnWHEEJcvHhRABDLly+vdxma+qC2+Wrbh37mmWeEmZmZzvdY8x637leXlpYKJycnMW7cOO00TZ2yYcMG7bTCwkLRrl07nd9mWVmZcHBwEB07dtQZfa8ZBff2229rp2l+qx9++KF2WnZ2tjA1NRUSiUT8+uuv2unR0dEN/gaE+LdOqP45aU4Nfemll7TTNPXmraNJIiMjhZGRkZg2bZp2Wl0juQCIgwcPaqelpaUJuVwuXnnlFe20uk5XbOn98cbUuZrP+tbTbTXb1cjISBw/flw7fffu3TXqwca2y5o7kqux26T692DUqFHCzMxMXL9+XTstJiZGGBsb1zqSSy6X63yWK1asEACEk5OTTja+8cYbNT732rbB4sWLhUQi0dknqc33339fo40hROPbM7m5uTW+X0II8cknn+gsPz4+Xkil0hojTs+fPy+MjY11ptdXh9RGM/KruuqfSUP7NikpKQJArSNG69O2b0VzD8jLywMAbc95S8+vMWTIENjb28Pd3R2TJ0+Gubk5tmzZAldX1zpfs2PHDhgbG2uPhAKAVCrFCy+8oDNfVlYW/v77b0ycOBH5+fnIyMhARkYGMjMzMXToUMTExOD69ev1ls/U1FT7//LycmRmZqJdu3awsrLC6dOnm7SuLSUzMxPGxsY17oih+QyqT1++fDns7e21f3379tU+J5VKIZPJAFTdvTArKwsVFRXo0aNHs9bP1NQUMpkM+/fvR3Z2dq3zaHrut2/fjvLy8iYv41YffvghwsLC8NFHH+kcESguLtauV3UKhaLG3Y7qojnCoqH5ju3YsUPn35dffllnvldeeQUA8Oeffza4jJkzZ+qUVTOa79q1aw2+1srKCsnJyTh16lSD81pbW6O4uBhFRUUNzkuGqTXX2wDwxx9/4LXXXsPo0aPxxBNP4MCBAxg6dCiWLl2K5OTkel+7ceNG9OvXD9bW1tq6PCMjA0OGDIFarcbBgwcBND4fbodarcbu3bsxZswYeHh4aKcHBARg6NChDb7eysoKFy9eRExMTLOWf2suZWdnIzc3F/369au1zh4yZIjOyJzOnTtDpVI1qn6pj7GxMZ555hntY5lMhmeeeQZpaWmIiIgAUPVZODk5YcqUKdr5TExMMHfuXBQUFODAgQMNLqf6nTf79euHzMxM7Xe3PlZWVjhx4gRSUlIau1oA6s7Y5qit/Ldu+zu5PzNr1ixIpdLbXoem0Pw+7wWtvb4FgMDAQOzZswdbt27Fa6+9BqVSWePuisXFxZDL5TVeq1AotM83RC6XY+bMmTWm31pXab63/fr1Q1FREaKjo3XmNTc31xlhL5PJ0KtXrxq/F2dnZ4wfP147zczMTDuKUyM8PBxpaWl47rnntOsBACNGjIC/v3+t+2ZPPfWU9v9WVlbw8/ODUqnExIkTtdP9/PxgZWXV6PpzzJgxOp9Tr1690Lt3b+2+440bN3D27FnMmDEDNjY22vk6d+6MBx54QDtffQIDA7X7jUDVSBU/P79G70MCLbM/rnm/xtS55ubmmDx5svaxZrsGBASgd+/e2uma/9+6Lne6XdacbaJWqxEWFoYxY8bAxcVFO71du3baUYjVDR48WGeUnmZdx40bp1NHNLQNCgsLkZGRgT59+kAIoT2TpS6ZmZkAqurqWzW2PaNSqfDQQw9hw4YNqOpXqrJ+/Xrcd9992n2izZs3o7KyEhMnTtTZZ3NyckL79u2xb98+neXUVYfcSZpt0NTMYieXgdMMW87Pz78j82t888032LNnD/bt24dLly7h2rVrDTYSEhIS4OzsXGMH1M/PT+fx1atXIYTAW2+9pdPJY29vj3feeQdA1bDU+hQXF+Ptt9+Gu7s75HI57OzsYG9vj5ycHOTm5jZpXe80TaVYfQdm3Lhx2LNnD/bs2aNzaoHGmjVr0LlzZygUCtja2sLe3h5//vlns9ZPLpfj448/xs6dO+Ho6Kgd+q05pRAABgwYgHHjxmHRokWws7PD6NGjsXr1apSWljZpWevXr8d//vMfPPnkkzoNBKAqAMrKymp9XUlJiU5A1Kd9+/Y6j319fWFkZKS9DXNCQgKMjIzQrl07nfmcnJxgZWWFhISEBpdxayMZ+LfSrauT8FYLFiyAubk5evXqhfbt22POnDl1npKoCSOJRNLg+5Jhas31dm0kEgleeuklVFRUYP/+/fXOGxMTg127dtWoy4cMGQLg37q8sflwO9LT01FcXFyjfmjsct59913k5OSgQ4cO6NSpE1599VWcO3eu0cvfvn077rvvPigUCtjY2GhPJautzq5evwBVdUxj6pf6uLi4QKlU6kzr0KEDAOjUj+3bt4eRke4uoebUgjtdP37yySe4cOEC3N3d0atXLyxcuPC2O/eaQqFQ1DhVpfq2v5P7M7eeTlVWVobU1FSdP7Va3SLreSshxD2TMYZQ36pUKgwZMgSjR4/Gxx9/jFdeeQWjR49GZGSkdh5TU9Na979KSkq0zzfE1dW11gOLFy9exNixY2FpaQmVSgV7e3ttR1b1+srNza3Gd6e230u7du1qzFf996KpW2qrj/39/WvUPbX9Vi0tLWstk6WlZaPrz9oyokOHDjp1ZF3lDAgIQEZGRp2nGmvcTh3fUvvjGo2tc+vartVPi7W0tASgW9/f6XZZc7ZJWloaiouLa7QFANQ6Daj5uWnWtTHbIDExUdsxam5uDnt7ewwYMABAzd9VXW7toAKa1p6ZNGkSkpKScOzYMQBVp1BHRERg0qRJ2nliYmIghED79u1rZFZUVFSNvKpeh+Tm5urkVVZWVqPWqyma2y7iNbkMnEqlgouLCy5cuNCo+f39/QFUXaekKddx6tWrV43rJrWUyspKAMD8+fPr3CGoq/LReOGFF7B69Wq8+OKLCAkJgaWlJSQSCSZPnqx9f6DuH8id2Im0tbVFRUUF8vPzdXr7NZ/BhQsXEBoaqp3u7u6urTSrH2X96aefMGPGDIwZMwavvvoqHBwcIJVKsXjxYu11H4Cmrd+LL76IUaNGYevWrdi9ezfeeustLF68GH///Te6desGiUSCTZs24fjx49i2bRt2796NJ554Ap9++imOHz/eqKPne/bswbRp0zBixAgsX768xvPOzs5Qq9VIS0uDg4ODdnpZWRkyMzN1jrQ0RV3b4XZ26us60l49gGoTEBCAy5cvY/v27di1axd+++03LFu2DG+//TYWLVqkM292djbMzMwa3cFHhscQ621N3dTQDkxlZSUeeOABvPbaa7U+r+lgaQqJRFLr7+xO1Nu36t+/P2JjY/H777/jr7/+wvfff4/PPvsMy5cv1xlNUJtDhw7h4YcfRv/+/bFs2TI4OzvDxMQEq1evxs8//1xj/tupX1qD2yn/xIkT0a9fP2zZsgV//fUXlixZgo8//hibN2+u8+g6UHfGNjXnW3IUVXP2Z26t648ePYr7779f5/m4uLgGr/fTVNnZ2TrXx2zLDLG+feSRR/D444/j119/RZcuXQBU7S/VdlbDjRs3AKBR+0u17Vfk5ORgwIABUKlUePfdd+Hr6wuFQoHTp09jwYIFOvvQgH7rqrqWbQj15+2UsSX2x2/V2Dr3drZ3Y9tlzdXS26Quzd0GarUaDzzwALKysrBgwQL4+/tDqVTi+vXrmDFjRoPbQHMtv+zsbLi5udV4vjHtmVGjRsHMzAwbNmxAnz59sGHDBhgZGWHChAnaeSorKyGRSLBz585a16n6dqxeh8ybNw9r1qzRPh4wYECDB0ObStNx2NTMYidXGzBy5EisXLkSx44dQ0hISL3zPvTQQ5BKpfjpp59u+6KaDfH09MTevXtRUFCg8yO5fPmyznw+Pj4Aqk6P0Bztb6pNmzZh+vTp+PTTT7XTSkpKkJOTozOf5uhyTk6OzmlzjTlS3dQOEs2OUlxcnM7IrJEjR+Kjjz7CunXrdDq56rNp0yb4+Phg8+bNOuXQHBnWuHX9blXX+vn6+uKVV17BK6+8gpiYGHTt2hWffvopfvrpJ+089913H+677z588MEH+PnnnzF16lT8+uuvDTbyTpw4gbFjx6JHjx7YsGEDjI1rVjeaHcjw8HAMHz5cOz08PByVlZWN3sGMiYnRORp+9epVVFZWahsGnp6eqKysRExMjM6FD2/evImcnBx4eno2ajkNqe87olQqMWnSJEyaNAllZWV45JFH8MEHH+CNN97QGaYfFxdX68UZqW1prfV2XTRHeRu60Lmvry8KCgoarMsbmw9AVb1W21Hmhupte3t7mJqa1nq6YW3LqY2NjQ1mzpyJmTNnoqCgAP3798fChQu19V9dv/nffvsNCoUCu3fv1jnFaPXq1Y1abm2a00mfkpKCwsJCndFcV65cAQCd+vHcuXOorKzUGc2lOU3pbtSPzs7OeO655/Dcc88hLS0N3bt3xwcffFBvJ1ddGdvUHGyMu7U/06VLF+zZs0dnmpOTU5PeozHfk7i4OG3nyb3A0Orb0tJSVFZW6oz26Nq1K/bt24e8vDydi89rbn7TnBsQAcD+/fuRmZmJzZs3o3///trpcXFxzSs8qn4vFy5cqDFisPrvRVO3XL58GYMGDdJ57vLlyy1W9zSktoy4cuWKTh2pKVN10dHRsLOzqzFitjka+u02d3+8Ns2pc5uise2y29WUbeLg4ACFQoGrV6/WeK62abfj/PnzuHLlCtasWYNp06Zpp1ev3+tya7516tRJO70p7RmlUomRI0di48aNWLp0KdavX49+/frpdIj7+vpCCAFvb+9mHYR87bXXdE5frn56ZWM09L3X1EVNbRvxdMU2QHP+/lNPPYWbN2/WeD42NhZffPEFgKqj8bNmzcJff/2Fr776qsa8lZWV+PTTTxu87kpjDB8+HBUVFfj222+109RqdY3lOjg4YODAgVixYoX2iNSt0tPTG1yWVCqtcTTkq6++qnHkVnPNE811YYCq86Rv7YWuiybAGltBa3akwsPDdaaHhobigQcewMqVK/H777/X+trq66LpXb91+okTJ7RDUDU8PT0hlUp11g8Ali1bpvO4qKhIO8Rdw9fXFxYWFtqhvtnZ2TXKodmJamiIdFRUFEaMGAEvLy9s3769zlFJgwYNgo2Njc53BAC+/fZbmJmZ1bgDWV2++eYbncea75gmrDUdaJo7u2ksXboUABq9nIYolcpahyBrzq3XkMlkCAwMhBCixrUETp8+3ag7QJFha631dlZWVo16s7y8HB999BFkMlmNUSbVTZw4EceOHcPu3btrPJeTk4OKigoAjc8HoKpuio6O1smCyMjIBu9CKpVKMXToUGzduhWJiYna6VFRUbWWr7rqv1tzc3O0a9dOp/6rKxekUikkEonOtoyPj8fWrVsbXG5dmppBQNVd21asWKF9XFZWhhUrVsDe3h7BwcEAqj6L1NRUrF+/Xud1X331FczNzbWnV9wupVJZo+xqtbpGneng4AAXF5cGc6aujG1sDjbF3dqfsba2xpAhQ3T+bj0I0hiau5bV9T3Jzc1FbGzsPZUzrbW+zcnJqfV6Qt9//z0A3TtPjx8/Hmq1GitXrtROKy0txerVq9G7d+8G76xYl9r2L8vKym7795KSkoJNmzZppxUVFemUHahaPwcHByxfvlzn975z507tfuTdsHXrVp1RcidPnsSJEye0+5DOzs7o2rUr1qxZo/O7unDhAv766y+dg7S3o646/nb2x6u7nTq3KRrbLmuu5mwTqVSKIUOGYOvWrTrXI7t69Sp27tzZIuW6dVmA7u9KCKGtZxoSHBwMmUxWI9+a2p6ZNGkSUlJS8P333yMyMlLnVEWgatSoVCrFokWLamxPIUSN/aDqAgMDdfJKs1/RFA3t20REREAikTR4gKI6juRqA3x9ffHzzz9j0qRJCAgIwLRp09CxY0eUlZXh6NGj2luBa3z66aeIjY3F3LlzsXnzZowcORLW1tZITEzExo0bER0drXOhweYaNWoUQkND8frrryM+Ph6BgYHYvHlzrZ0A33zzDfr27YtOnTph1qxZ8PHxwc2bN3Hs2DEkJyfrXJegNiNHjsTatWthaWmJwMBAHDt2DGFhYTVu3fzggw/Cw8MDTz75JF599VVIpVL873//g729vU4jqDa+vr6wsrLC8uXLYWFhAaVSid69e9d5e2IfHx907NgRYWFh2lu1a/z0008YNmwYxowZg4ceeghDhgyBtbU1UlNTERYWhoMHD+ocTRk5ciQ2b96MsWPHYsSIEYiLi8Py5csRGBioc20vS0tLTJgwAV999RUkEgl8fX2xffv2GudUX7lyBYMHD8bEiRMRGBgIY2NjbNmyBTdv3tR+9mvWrMGyZcswduxY+Pr6Ij8/H9999x1UKlW9gZ6fn4+hQ4ciOzsbr776ao0Lh/r6+morKlNTU7z33nuYM2cOJkyYgKFDh+LQoUP46aef8MEHH+hc4LM+cXFxePjhhzFs2DAcO3YMP/30Ex599FHtkeouXbpg+vTpWLlypXZo/smTJ7FmzRqMGTOmwYZ7YwUHB2P9+vV4+eWX0bNnT5ibm2PUqFF48MEH4eTkhNDQUDg6OiIqKgpff/01RowYoXOaTUREBLKysjB69OgWKQ+1Xq213v7jjz/w/vvvY/z48fD29kZWVhZ+/vlnXLhwAR9++GGDo0peffVV/PHHHxg5cqT29uiFhYU4f/48Nm3ahPj4eNjZ2TUpH5544gksXboUQ4cOxZNPPom0tDQsX74cQUFBDV7YfNGiRdi1axf69euH5557Ttt5ExQU1OD1tQIDAzFw4EAEBwfDxsYG4eHh2tuua2h26ObOnYuhQ4dCKpVi8uTJGDFiBJYuXYphw4bh0UcfRVpaGr755hu0a9euSdf1upVmWW+++SYmT54MExMTjBo1qt4RBC4uLvj4448RHx+PDh06YP369Th79ixWrlwJExMTAMDTTz+NFStWYMaMGYiIiICXlxc2bdqEI0eO4PPPP2/yBbjrK39YWBiWLl0KFxcXeHt7w8/PD25ubhg/fjy6dOkCc3NzhIWF4dSpUzojAGpTV8Y2Ngeb4m7uz9wuU1NTBAYGYv369ejQoQNsbGzQsWNHdOzYEQAQFhYGIcQ9lTOttb7dv38/5s6di/Hjx6N9+/YoKyvDoUOHsHnzZvTo0UNnhETv3r0xYcIEvPHGG0hLS0O7du2wZs0axMfHY9WqVc0uQ58+fWBtbY3p06dj7ty5kEgkWLt27W2d6jdr1ix8/fXXmDZtGiIiIuDs7Iy1a9dqO2A1TExM8PHHH2PmzJkYMGAApkyZgps3b+KLL76Al5cXXnrppWaXoSnatWuHvn37Yvbs2SgtLcXnn38OW1tbndPulyxZgoceegghISF48sknUVxcjK+++gqWlpZYuHBhi5Sja9eukEql+Pjjj5Gbmwu5XI5Bgwbh559/btT++IwZM7BmzZp6T3HOz89vdp3bFI1tlzVXc9soCxcuxF9//YXQ0FDMnj0barUaX3/9NTp27IizZ8+2SNmAqpFYvr6+mD9/Pq5fvw6VSoXffvut0deJUygUePDBBxEWFoZ3331XO72p7Znhw4fDwsIC8+fPh1Qqxbhx43Se9/X1xfvvv4833ngD8fHxGDNmDCwsLBAXF4ctW7bg6aefxvz5829/g9SjoX2bPXv2IDQ0tOnfnSbdi5FatStXrohZs2YJLy8vIZPJhIWFhQgNDRVfffWVzi2Ahai69fX3338v+vXrJywtLYWJiYnw9PQUM2fO1Lltcl23rG6szMxM8fjjjwuVSiUsLS3F448/Ls6cOVPjVrNCCBEbGyumTZsmnJychImJiXB1dRUjR44UmzZt0s6jud3vkiVLdF6bnZ0tZs6cKezs7IS5ubkYOnSoiI6OrnFLeCGEiIiIEL179xYymUx4eHiIpUuX1nrL39puW//777+LwMBA7a1mq69DdUuXLhXm5ua13ka2uLhYfP755yIkJESoVCphbGwsnJycxMiRI8W6det0bileWVkpPvzwQ+Hp6Snkcrno1q2b2L59e6232U1PTxfjxo0TZmZmwtraWjzzzDPiwoULOuXNyMgQc+bMEf7+/kKpVApLS0vRu3dvnds9nz59WkyZMkV4eHgIuVwuHBwcxMiRI0V4eHi966z5jOr6q+0W8itXrhR+fn5CJpMJX19f8dlnn4nKysp6lyPEv7evv3Tpkhg/frywsLAQ1tbW4vnnn9e5HbUQQpSXl4tFixYJb29vYWJiItzd3cUbb7xR47dR/XPX3N5448aNta7nrd+BgoIC8eijjworKysBQPvZrFixQvTv31/Y2toKuVwufH19xauvvipyc3N13nPBggXCw8OjUetObUNrq7fDw8PFqFGjhKurq5DJZMLc3Fz07dtXp25oSH5+vnjjjTdEu3bthEwmE3Z2dqJPnz7iv//9rygrK9PO15R8+Omnn4SPj4+QyWSia9euYvfu3bXWf6jltvEHDhwQwcHBQiaTCR8fH7F8+XJt3XGr6nnx/vvvi169egkrKythamoq/P39xQcffKCzDhUVFeKFF14Q9vb2QiKR6LznqlWrRPv27YVcLhf+/v5i9erVtS4XQK23c68tv9577z3h6uoqjIyM6r3lthD/3r47PDxchISECIVCITw9PcXXX39dY96bN29qM1Qmk4lOnTrVmm/Vt69mfdLT03Xmqy1To6OjRf/+/YWpqak2C0pLS8Wrr74qunTpIiwsLIRSqRRdunQRy5Ytq3O9blVXxjYmB4WoulW9Uqms8b61fU4tvT/T1N9pXfPX9js4evSo9jtf/TObNGmS6Nu3b6OW2da0tvr26tWrYtq0acLHx0eYmpoKhUIhgoKCxDvvvCMKCgpqzF9cXCzmz58vnJychFwuFz179hS7du1q1LI09UFtjhw5Iu677z5hamoqXFxcxGuvvSZ2794tAIh9+/Y1+B61fQcTEhLEww8/LMzMzISdnZ2YN2+e2LVrV433FEKI9evXi27dugm5XC5sbGzE1KlTRXJyco1l1PZbratMnp6eYsSIEXVsjSq3tik+/fRT4e7uLuRyuejXr5+IjIysMX9YWJgIDQ0VpqamQqVSiVGjRolLly7pzFNb3VdXWWprZ3z33XfCx8dHSKVS7bZq7P74uHHjhKmpqcjOzq5znRtb5zZ1u1bPsca2yzT72Ld+J2r7PlXX2G1S2z7B3r17Rbdu3bRtju+//1688sorQqFQ1LtOQtTdDq2trXDp0iUxZMgQYW5uLuzs7MSsWbNEZGRko9qPQgixefNmIZFIRGJios70xrZnNKZOnSoAiCFDhtS5rN9++0307dtXKJVKoVQqhb+/v5gzZ464fPmydp766pDa1DV/bZ9JXfs2OTk5QiaTie+//77Ry9WQ/LMwIroDcnNz4ePjg08++QRPPvmkvovT5ixcuBCLFi1Cenq6wV9Et7S0FF5eXnj99dcxb948fReHSC/i4+Ph7e2N1atX64ysoKYbOHAgMjIyGn3BbUPEjG2a1NRUeHt749dff72nRnIR1UaTN0uWLLnjo1XuBkdHR0ybNg1LlizRd1EMzpgxY3Dx4sVar8+mL2q1GoGBgZg4cSLee+89fRdHLz7//HN88skniI2NbfINuXhNLqI7yNLSEq+99hqWLFnSIncTobZr9erVMDExwbPPPqvvohARGQRmbNN8/vnn6NSpEzu4iNqYixcvori4GAsWLNB3UVq94uJinccxMTHYsWMHBg4cqJ8C1UEqleLdd9/FN998o3NpmntFeXk5li5div/85z/NuuM8R3IRkcFqSyO5iIgjuVrSvTCSi4ioudraSC5qHGdnZ8yYMQM+Pj5ISEjAt99+i9LSUpw5cwbt27fXd/GohfDC80RERERERETUpg0bNgy//PILUlNTIZfLERISgg8//JAdXG0MR3IREREREREREZHB4zW5iIiIiIiIiIjI4PF0xWoqKyuRkpICCwsLSCQSfReHiKjVE0IgPz8fLi4uMDJqO8dOmAdERE3XFjOBeUBE1HT6ygN2clWTkpICd3d3fReDiMjgJCUlwc3NTd/FaDHMAyKi5mtLmcA8ICJqvrudB+zkqsbCwgJA1QehUqn0XBoiotYvLy8P7u7u2vqzrWAeEBE1XVvMBOYBEVHT6SsP2MlVjWYIskqlYogRETVBWzuFg3lARNR8bSkTmAdERM13t/OgbZwoT0RERERERERE9zR2chERERERERERkcFjJxcRERERERERERk8dnIREREREREREZHBYycXEREREREREREZPHZyERERERERERGRwWMnFxERERERERERGTx2chERERERERERkcFjJxcRERERERERERk8dnIREREREREREZHBYycXEREREREREREZPHZyERG1IgkJudix4xoSEnL1XRQiItIj5gEREWkwExrPWN8FICKif128mIljx1IAAJ6elnouDRER6QvzgIiINJgJjcdOLiKiViQoyFbnXyIiujcxD4iISIOZ0Hjs5CIiakU8PS15dIaIiJgHRESkxUxoPF6Ti4iIiIiIiIiIDB47uYiIiIiIiIiIyOCxk4uIiIiIiIiIiAweO7mIiIiIiIiIiMjgsZOLiIiIiIiIiIgMHju5iIiIiIiIiIjI4LGTi4iIiIiIiIiIDB47uYiIiIiIiIiIyOCxk4uIiIiIiIiIiAweO7mIiIiIiIiIiMjgsZOLiIiIiIiIiIgMHju5iIiIiIiIiIjI4LGTi4iIiIiIiIiIDB47uYiIiIiIiIiIyOCxk4uIiIiIiIiIiAweO7mIiIiIiIiIiMjgsZOLiIiIiIiIiIgMHju5iIiIiIiIiIjI4LGTi4iIiIiIiIiIDB47uYiIiIiIiIiIyOCxk4uIiIiIiIiIiAweO7mIiIiIiIiIiMjgsZOLiIiIiIiIiIgMHju5iIiIiIiIiIjI4LGTi4iIiIiIiIiIDB47uYiIiIiIiIiIyOCxk4uIqJU4ciQZixYdwZEjyfouChER6RHzgIiINJgJTWOs7wIQEVGVsLAEhIUlAgBCQ930XBoiItIX5gEREWkwE5qGnVxERK3EkCGeOv8SEdG9iXlAREQazISmYScXEVErERrqxqMzRETEPCAiIi1mQtPwmlxERERERERERGTw2MlFREREREREREQGj51cRERERERERERk8NjJRUR0D0pIyMWOHdeQkJCr76IQEZGeMROIiAhoG3nAC88TEd2DLl7MxLFjKQAAT09LPZeGiIj0iZlARERA28gDdnIREd2DgoJsdf4lIqJ7FzOBiIiAtpEH7OQiIroHeXpaGuzRGSIialnMBCIiAtpGHvCaXEREREREREREZPDaVCfXwoULIZFIdP78/f31XSwiItIDZgIREQHMAyKie0mbO10xKCgIYWFh2sfGxm1uFYmIqJGYCUREBDAPiIjuFW2udjc2NoaTk5O+i0FERK0AM4GIiADmARHRvaJNna4IADExMXBxcYGPjw+mTp2KxMTEeucvLS1FXl6ezh8REbUNTckE5gERUdvFPCAiuje0qU6u3r1744cffsCuXbvw7bffIi4uDv369UN+fn6dr1m8eDEsLS21f+7u7nexxEREdKc0NROYB0REbRPzgIjo3iERQgh9F+JOycnJgaenJ5YuXYonn3yy1nlKS0tRWlqqfZyXlwd3d3fk5uZCpVLdraISERmsvLw8WFpatvp6s6FMYB4QEd0+Q8gE5gER0Z2nrzxoc9fkupWVlRU6dOiAq1ev1jmPXC6HXC6/i6UiIiJ9aCgTmAdERPcG5gERUdvVpk5XrK6goACxsbFwdnbWd1GIWp0jR5KxaNERHDmSrO+iEN0VzASi2jEP6F7DPCCqGzOBDF2b6uSaP38+Dhw4gPj4eBw9ehRjx46FVCrFlClT9F00olYnLCwBYWGJCAtL0HdRiO4IZgJR4zAPqK1jHhA1HjOBDF2bOl0xOTkZU6ZMQWZmJuzt7dG3b18cP34c9vb2+i4aUaszZIinzr/NceRIMsLCEjBkiCdCQ91qnSchIRcXL2YiKMgWnp6WzV6WIWvMdqKWx0wgapy7lQcAM4F5oB/MA6LGYxvh7mEm3BltqpPr119/1XcRiAxGaKjbbVemmiM9mverzcWLmTh2LAUA7tkAa8x2opbHTCBqnLuVBwAzgXmgH8wDosZjG+HuYSbcGW2qk4uI7q7GHOkJCrLV+fde1BJHxMjwCCEgkUj0XQyiu6Kx9dy9ngnMAyK6F7CN0DjMhDtDIoQQ+i5Ea2IItz0mImpN2mq9eTvrFX3sBqKP3cCoF7pAaiK9QyUkImp92mImtMV1IiK60/RVd7apC88TkWH57bfLmDp1O3777bK+i0LUoiztTZESk4M9P0TpuyhEBoOZQEREAPOAbg9PVyQivdm8OQYHD1bdnnjcOD89l0Y/NBfdtLSUITe37J6++GZb4tzOCu16OCDmVBou+l9HUD9XfReJqNW71zOBeUBEVOVezwOAmXA72MlFRHrzyCPtdf69F2kuumlsLEFFRdXZ4wywtsEj0BbpSQU4tCEG9p4qOHhY6LtIRK3avZ4JzAMioir3eh4AzITbwU4uIrqrt6+99XbB48b53bNHZzQ0F9u89SjN7eItmVsHiUSCjv1dEL4jAbtWnMfEN3tCYWai72IR1UtfeeDpaXnPZ8KdyAOAmUBEzcc2gv6wjdB87OQiort6+1reLliXp6dli28HbuPWw1hmjO7DPHF8Syx2r7yAUXO7wMiIl8Ok1ot5oD93Ig8Abmd9q1Sr8deKr9D5gWFwae+v7+IQNQkzQX/YRmg+dnIR0V29fW1ruV3wb79dxubNMXjkkfYYN87vrh6paqqmHnVpLduYqlg5mCGonyvO70/G4Q1X0X9yB30XiahOzIPWnQcAM8HQlBYXIS0+FuvfeR0DHn8C3YaNgkQi0T5/89pVnN71B0oKChAybjKcfJkR1HowE1p3JjAPasdOLiJCaKhbvZV2Sw5tvVNHqpuq+gUt7+aRqqZq6lGX1rKN6V/ugTbIzyrB+f3JsHY2Q6cBres7RqTRUB4ALZcJraWuMqQ8AJgJhsbU3AJDn52HPd99jX0/rMS5sJ3w6zMAJnI5roYfx/WoizBVWUICYMOi/8PUjz6HrUvr+97RvYlthNadCcyD2rGTqwUJIXSOzBDpS0ufb90Wh7ZWv6Dl3TxS1VTVj7rcK+fTtzUBoc4oyC7B4Q0xsHIwg3uAjb6LRPcIZkL9DCkPAN1MYB4YBhOFAv59+sPVPwjxkadxYst6QAhYOjghoN/9cPDxhUyuwP413+PAj6swdsHbbFPQHcE8aJghZQLbCLVjJ1cLEWVlSJj5BFRDh8L68ccYTHTHNKbyaunAaYtDW6tf0LIxoxdqczfCpPpRl7a4Q3EvkEgk6D7ME0c3XcWulRcw9pVusHPjHRfp9jATbl9L5QFw9zNhx45rzAODIYFHx85wCwhCSWEBKsrKYGxiArnSHFLjqiaZV9fuiI04iazrSbB189BzecnQMA9aBtsIho+dXC1EqNUwcXbCzQ8/RN7OnXD59L+Qubjou1jUBt1aeWkeV688bw2cW88jd3OzaFZle68MbW2OuxUmtwZlXTsUPHrT+hmbSNFzlA+Obb6KbV9GYvyCHrCwVei7WGTAmpsJHTvawdTUpFn1BTOhbncjE5gHhs1IKoWZqvbPxDe4F2JOHsOF/WEY8NgTd7lkZOjYRrg9MSeO4vTOPxA8YjTa9Qy57fdjG0F/2MnVQoxMTWH/wgtIy65A2cmDKHpoBBxfnAubadMgkUr1XTxqQ26tvOqqPG8NnB9+uKA9j7xnT+cGK9vGVoLNvQhjW6tk79YRrFs/6+HDfWrddo0N07b2GbRWV65k4uKFDHTu7oiAQDvtdFNzE/Qc6Y3jW2Lx+xdnMO61YJiay/RYUjJkzc2EK1ey4eNjVWPe6hpTXzAP/nU3MoF5YJji4nOw60AuunZxQEBg7d8PhbkFbF3dcC3iJEInPgZjGbOBGqauKIfEyIhthNtQnJ+HXd9+jrLiIqRei8GM/y6DpYPjbb0n2wj6w06uFhZVqMJZ+WCMNrkAycefIGfTb3B+dxHMgoP1XTRqI2o7YlLfedia88cdHc3w22+XAQCWlnXvNG3ceBnbtsVi1ChfzJ/fS+e5W0OrKRdhvLVcbW0Y7d06gtWYoKzvvPzw8FTtnWJMTU3a1GfQWl24mImoS1kQUolOJxcAWNgoEDzcC6e2x2Hbl2cx9pVgmMh5QISarq5MqGtHdcgQTyQm5qGgoAyVlZVISytEQkJurXXBkSPJWLbsLIyNjTBpkn+NeTSZkJiYhytXcgDc23kA3J1MaE4eALVngpeXCkZGRgDazmfQWl25ko3IKDUA1NnJBQBuAZ0QGbYT6YlxcG7nV+d8dG8rzs/DmV3bEH3kALJTb0ACwNLRCf59+sPJ/hGgEddqYhvhX1eOH0Z5SQm6Dx+NM7u2IXzbZgx+cvZtvSfbCPrDTq4WdP16PuQyYzh3cINJn56wKUlC3h9/IGHqY7B4aBgcFiyAzMlJ38UkA1VbODV0HnZxcTFsbPJhaZmIzz8/hJs3U2FuXoYbN1SwtpZg+vTpePDBBwEA58+fx0svvYSYmGxkZ1ciLc0O1661h0qlgp2dHQYMGICwsDJtaDXlIoy3losXSGyexgRlfd+HW+8U8+GH/QC0resntDYJCbmQy6Xw8rZEly4Otc5j46xE1wfccWZXIn7/4gzGzOsGY3Z0USM1lAm1Xavp+vXrMDa+jvj4ozhzJganTpXDzs4I69YJtG/vgGXLlmnf/5VXXsGWLQeQmVkOKysVSku9sWePLaysrODs7Iwnn3xS25Dp0MEKQ4Z43HYe1LVepKs5eQDUngmFhY54+ukuzIM7LOV6PuRyY7Rrb4GudWSChqt/IM6F7UTU4QPs5KIahBA4F7YTB9f9gEp1Bey9fOBq54a83DJAnYuTv2/C6R1/oNeYCRg6aiykxiYAarYRioqKYG2dB0vLBG0bwdqiENciCyBQgpcWLMDoCZMAABEREViwYIG2jZCebo+4uPawsLCAvb09Bg0ahLCwIoNuI1w+dhjWLq6w9/SCg5cPYiNOoN/UGZApTO/oclsC2wg1sZOrBcXE5CA7pwRKJ1vY2pvBzL47FEFByNu1EwX7D6AgbC+sJk+C/QsvQKpS6bu4ZGDqO7qRnZ2NP/88gD//PAJ//54ICuoEAAgLC8PDDz+sM29ODpBcVY+hR48e8PPrjYsXM1FUdB179+7VzhcdDURHh2kfv//++xgyZDoAwN+/Eo8+Ggo/Pz9kZvrj7Fk/dOnSBTY23oiPL633/H9eIPHuuXW733qnmLZ0/YTW6uLFTGRmlMDC3Bh2dnXvIDl6WaLzEHecC0vC71+cxeh5XdnRRY1SV92pVqsRFRWFo0fDcPp0IoYNe1n73PDhw3Hu3Dnt4+xsIC6u6v9nzthi2bJl2kbFkSMnEBcXAQDIywMSEw9rX2dqaopZs2ZpGzCnTn2Fs2djcOWKP/bu9UNgYCCcnNojN9ccHTvaNToP6lsvun11ZcLw4T76LNY9IeZqDrKySqC0UcG2nkwAAJmpKWzdPRF3+hQqHp3BUxZJq7y0BDu/WYqYE0fh6h8I96AusHZyxrlLebiRmQ0/P2t0HSJB9JGDOLx+LSL37ETn0eNxObUEO3ceR6dOfbRthO3bt2PSpEk675+TA8QlVf3fcenH8HL1x/UcC2RlJem0EaKigKioPdrHS5cuxZAhE2BUlAxFwW5MmbwagUFByMryw7lz/to2wrVrxa2yjVCcn4fkqAvw7dEbCqU5PDt3w8mtG5F86Tx8uvdq+A0MUFtvI7CTqwWZW5Zg0YHv4efWBZWKgXh0dAiM5HJYjR4D8779kLb5D2T9/CuyN22G3awnYfvkkzCSy/VdbGolGjpaoamM/PwscfLkSRw+fBinTp3CqVOnEBsbq51vxozX4Ok5EQBgZKSCUqmCtbUDZDJr+Pl5wt/PDRampsjOVOPqBVNsKruInIJKBATYYN26daisrMSJE/GIiroBe3sjODkZIy0tDd27d9feXWT79u1ITExEYmIi9uz5N+SMjIxga+uJmTPn4eOP52mn11dhNud89Vu3FVD7hTXvddW/T56eljp3iqE7KyjIFu/9Zz5ycjNwI2cEnpg+ASqLfw9upKcVIjExHx4eFnBpZwUIgci9yfjjy7N4eC47uqjxmeDgoMb69etx4sQJhIeH4/Tp0ygsLAQAyGRmmP3MbOSmFyHuSjbkUjs4OrjAysIexkaWcHN2grOTHcwUSlSUybHklf0wkUlRUlaJQT0ewyNDp0BdWY6Y2JtISM6AlY0E1rYCkAhIJBJtJnTtOgeRkZE4ffq0ThlNTVUICuqGEyf+1jklrr66mpnQ8m7dPpoOLWbC3SWT5eB/f3wOH8/uMFEMxrgxITp3Yk9LK0JiYh48PFRwcDCDR8cuOL3jd9y4ehnugZ30WHJqDRIScnHudBIyj61CbkoCggYMhotfAMwsrSCRSODpKYFEIoGLixni0hJxvqAMpxLTcW7nAWR8+4P2fSwt/g+enmNRXlqCvNRsmClMoZKbQKWQwdrSCs6uLnBwcUFZqTGsC1Kx59uPkes+E36BTli3bh0KcrJx8shFxN8oh72jAo6OUqSlpaFLly5wUd6ERfIvOBOfhKTkZCQlJ2P37t3aZRsZGcHOzguzZs3H++//expga2gjxIafgKgUsHP3hsTICI4+7WAsk+PiwX1trpPrXskDdnK1oJPnjiI5Lx3Jl8Kw91IYPljvgBGhoRgV2hd9OndGSveHkFTpg045kcj4+htkr1sHu9nPwXryJEiM+VHcqzTnsCuVJsjNLQOge7RCCIGioiLttI0b/8Krr06s8T6ent5wc/PHffd1glCrURobC4tT0fjx/unwNMmBVWkWKlKvofLahWoFACplclSEWSFXagGVtxt6+3rhRp+OcOveHm7dO8DEyQkSmUxbMXp7d8Xhw4dx+fJlnDwZiTNnLiAxMRqpqSlIT4+Dm5uF9u3Dw8Px8ccfY+DAgRg8eDD8/Px0duyqh1tjLlZZ/e4xzT3K05ZPi+FoCP1ycTHDpav7kJefg+hrh/Dt6rdwX89QPDhoBB64fxiSEoHo6CwAgL2DEi7trQEAkXuT8fsXZ/Hw3C4wUTAX7kUNZUJBQQHMzc210x5+eBjOnTuu8x4KmSk8HDvAydILsdtikbiz6tD89F5vaueRmhjBSCqBRAJIIEFxSQXKcytgZFwJcwlgLjpAcrNq3mAVEBz47/sbGUmwesFhyMyMUQbg+ckfoGhiKq7EX0V0zBWkZV5DdPRFFBfnIT8/XdvBBQBz5syBUqnEwIEDMXDgQJiZmemUXV+ZwDygO+nUmcO4mXkDNzP/xLHTf+Lr1c4YMmAAHrx/AIK7dEZiYp42ExwczODSwR9n//oTlw7uYyfXPUybB4pKqC/+AFllDjoPehAuHfwhMzVFZWUliktK4OBQVY/++dchfPD5OzXex15lAWeVOSqi/8LnUy9CXVEBAFg4ZjjMHT3h3z0Qti4uMFVZwkgqxS+/ROHK+Ti4lJ2Fc/42GKsnI+5IDGTZEQgQlQhylqPjsPEYPHUijIykuHb6FLZ+8h5MVA4Y/fgI+PofxIVzkchRS5BWVInk9BvIzMpEWto1eHlZact1+PBhfPXVV9o2QocOHXTKfbfy4MqJI7BycobKrqpjTGpsDCs3X1yNiEBM1HW0D3Ct72MyKPdKHnAPugU9OmYMFMnJ2BV9GXtOnURyWhpWbNmCFVu2wNpChZWvvQX3Hn6wcA+GZe4N5O/YgZvvv4+kr1dgh9VgdHhyIsZNCND3atBdprmmSY8ejnjgAS8EBdmipKQEf//9N7Zt24Zt27ZhzJgx+Prrr3HxYiaysuxhb++MkJCe6N27N3r06IHOTk4wTUpC8bnzKNn3Jy59/V8YlZfCDoC1hTVMbKwhtbOGibsbjBQKSGRypGUUIzE+B0q5BO6OMmTEpqE4Kw+mxRdRefk07PPzUbpBIBYAJBJI7exQaGoDiVAhr4M3AvsHoUsHP7gbtYOz9Sj07OeDbt1MERERgd69e2vX76+//sKmTZuwadMmAICTkweGDRuGKVPGYcCAAZBXG83YmItV1nZkp7ajPA2FYVuu6O/WHV2odsbGxlj1xS/4a98O7DuyG1evXcGhY/tx6Nh+vPXBq3hoyCN4YsoieHj82yHs0t4a15PzcSMqB8tfO4RhszuhfYBdPUuhtqi2TIiJicG2bdvwx+9/4NixY9izIRzluVLEXsiEhzwQmbbp8HXqCC8nf/h5d4S3hy8UZnKYyI1QXimQkJyPzKwS2NiboksXB9g5msHI2AgSSVUnFwBERKQiIuImgjs74Pr1AkRdykKAvzWGDfNBRVklyoorUFZcgfJSNcrL1CgrViM9tRBF+WWQSZWQVngjwMgbAX4PAEaA+cPGyFGnwMS8Elcj0mDnZg65hQSrVq1CaWkplixZAplMjs6d78Po0aPw+OPj4elZ8/otLZUJzAPmgT49PmUyJIX5OHL2HA4dO47klBv44Zdf8cMvv8LaygpL3/sY/v6O8PCoGvFrLJPB0dsXUceO4acDbhgzPqjNjbSghoWFJWBvWByGeh2FaWU2fO4bBBsvHxw6FY6/Dx3G3wcPY/TwYXh93gtITMwDKhxhbWmNHt06o0vHIHQODECQvx/M5HJkJicg+WoikuKzUFQq4OTuBFMrO3j6OsHF3UbnAHTXLg4oLCwHTIxRkh6O6zs+hFQYodzCF30GdUbixXM4t30dEk7tha2rO+LOhENu7Yoso/awlzhg6nPPI+nSBZw/eBSleRmQwBMqnw6w790f/fv31y5n165d2LBhAzZs2AAAcHHxwrBhD+HRR8ehX79+kFU7VfdOtBEG9rNHwrkz8O7WE3Kl+b8zWPqg8tolnAo7jPYBk2q83lDdK3kgEUIIfReiNcnLy4OlpSVyc3OhauJ1s8oSEpD/99+ILTLHyYhkHL90Dscvn8b1ghhUiDLEbd6ClKQSnI1MQ6Y6FkJahsByOazDT8KhPAM3jO1xNWQSgqY/jNC+7m36qOK9rPrnqqlkQ0PtERV1GL/8sh6RkUdQVFSofU1AQAAuXbqEhIRcRB+9Al9xA6qb11AcGYmiCxeBgnwAgNTaGiUWtohMqkRSkRksfD3w2LP3QSKXw0guR1pOGS6cz0ReXilUqqrgSE0tgp+/DZRmxog8cwNdAq3QwcsC6sJCVGRk4HpUMtLibsJZJSCvKEFpVjZkpYVAfh5wa/Uhk8PYxhpSGxuUm6mQKzGHta8r0hTA7suXcSQ6GgfDI1BRUa59iVKpxPHjx9GxY0fttMYcpfntt8vau4DUt9O3aNERhIUlYsgQD7zzTmi9nwVQ95DmlvgtNuc9DKUOuJ16szW73fW6fDwV0VEZuHQlC7b2hfhl02acPrcPeYWxmPno83hrwTuIupSBk6fiERW7BYP6D8bZ06bIv1mKnl5WKJcAweN9cf+D3gAM5/tATVNXJnh7F+Ho4T+xfdsfuJ4ap/OaWUMXoW/3wZCaGqOkQg0HZ3M4uJjDVGWCvLwypKQWwsPTAg5O5ti6NQbbt8dCIpFgyGAPTJ5SNSQrPa0Q585n6ObBjSL4+9vAzMwYkZFp6NLFocadQaMuZWifs7FRIDEhD67OSqhUCqQm5iElMR9KuRSoECguKENhbhnUZZUAAGFUgSuZJ3At7RzORB9HSmqyzns/9dRT+O6773SmNZQJzIPWpy1mwu2uU1ZKMq5FnEJqjhwnw5Nw+lwEzl4MR3p2NGBUiYi/dyP+WiHORqYhp/AS5ArAQWGNimtHsOdqJ1TadkNoqKv2d2BI3wdqvOqf6+HDiTi85mtUZl/ETbkVjpy/ggtXzqO0tFT7mo4B/ti69gftKa/u7hZwdFQCqHka7JYtV7B92zVIjIDBgz0xZcq/gyvS0opw/lw68vJLobKoOgB9I7UQPq6VqMxPwfV0KQK7dUCn7u4QQiDlSjQuHDmOwrxC2Lp5wi0wEFmFZvD0tNSOLEu9kY/4q6mQlSYj8fRh9B47Ee4ho7XrmJ0dh23btmHfvn04dOiwThvBwsICp0+fRrt27bTT7kQbYViPHChu7EDvsRPh3O7fkWQ3bxbixC/LYe/VDn2ffA2XLmUxE5pBX3nAkVx3wJEjKThzNh3eHh1g7eeFzOxiqBxKkJJUgh074hCfkIew5E24nlt1+oCLtTM6Kx0w3DgD/Q9+hfyL21H4xXu4mG7TZo8q3suqHy0ODXVDnz6u8Pf3x5UrV7Tz2ds7wdstGJNDu2FCB0ckzZ6NgohIeORloxxAuqkSUicn3DD3QJZKBafOvggK9cPmnYnYl5gOKIA+ni7IEqZwsKgKu6SkLJw5cxOZmcWwsTFF9+6O8PO3gYeHBRzslQi4ZdSI1MoKMldX7DxYgcirRujaxRYTx/rgZnw2XB3lsFYaITMuBVkJN2EjV0MUFyM/IwdmFRUoTboOo7wClF44BpvSYkyprMQUAIXe3jhUIbCnsBSnCrNQDoF2jo4Aqirrb75ZDV9fW7z22nikpZVhx45rtVbet94FpL4Aa+juLg3diayuz6w5mvMebXlkwb0iKioTJ0+nwdXFHPeHToWZ8SAYGeXDycYeUZcysHlLDMLP7kfklZXY8PtKyEzM4OLYFUlZ3TCwQyjObzVC5yA72Lpa8PvQRt36uTo7KuFqoUBp6mFMX/i6dh4jIyn8PLqhg0dvDOr3IPoP7AaZqRT7Dybi0IlU9O/nCsd2lrhyLRc5uSVIvVEEI2MjODpbIDOzBJVqAYVCCg/Pf3cwExPzceb0LXkQ7Aj/f/LA3kFZo3NLIywsAWcj05CeXozJk/1hJDWCicIYxWUVyC1TI6CXpk7PQ7sutkiMz8O1K9lwtTeDtYUM9rlD0TVnIIZ1eBap2Qm4kHgc5xKPIz71IhwtPVGYWwqlpRxnzlzDZ599jSeeeAwzZnTExYuZSEjIZR7cxnJJ/44cvY4zZzLg6dkRSpMOyMwqhK19CeKvFWLHjmuIT8jDiUvrkJVb9Vm7WFvB1zEexpZK/PVXVcdGaKgbvw9tVPXPtTLxbxjnXcInfx9FenaOdj57W3v4uHfC8CEDMf6RgQCAzIxiHD16HQDwwBAv2NqZYu/eBOTlVZ327uBghszMEkACKJUyKBRSpKUVaTukEhPzcPrMTWRmlsDGRoHg7ppMUMHB4d+D0QAgkUjg6heA33YVIOpiKgIlDgjo74zsojztPGlpRUi+XggfP1cArkhPuo6IHX8g07gjwiOLAADDh3dF165d8dZbb+HixWR88snPCA/fh9TUCBgbS+DjU3XNqISEXHzxxUoEBLji9dfHITW1pMXaCA75EZA6u0Blq5t5jo5KeHfujIRzp3H2VCwizhVrP5f6PrPmYCa0PHZytaDr1/Nx+VQqsrIAU4Ux2re3gb+/DXbsiINUKsHZyDRIpUYwVxrDzykASqUJYm7EISX7BlKyb2AXAIXUBMOzsvH+44/DLaArOt33KNLSLLU7dobSa0u6bj3yEBhog5iYc9i8+Rc8+OAXMDY2hkQiwfChQ1GSV4CB3gEY62wHl7hkWBTFAntikX9QjjJLe6SZOOJSuSPShAX8enSARwcnnLmYi5IygcsJwDV1Jtx87NHfWA6F3BiR59Lx3rvH0K+fK3x8raE0M4avrzVkcinc3SzQqbMdrsZk47uV5+DhYYGhw7zhYK9EVFQGzkamaW9zLQBk55bjp41V3+W+/dxwJq4Q69alobS0EiEhrujX3x2Xo7Pg52cNdxdTJCfkwMrJFDYWUlTm56MiPR3S+OvwC7+GIHkuHOyskV6cj7h+/SHz8cZN185Y9ev3yCrIxPz5z+G++4bC2XkgJk16SOe7b2kpg5eXJQoLy7V3A6mL5qLItan+W6pv+G5zhvZWP5LUnPe4V4YUt0UJCbmIjEyDSlW1I1leoYaLiwXGjrVAXFwuKtWViIxMQ3GxGkpTK3Tr9ACuJYQjNy8b8clHEZ98FAdPfwNXWx9cT38FPR/qD4mlCYyNJbC0lGmXwTwwTJpMGDzYA1ZmFUi5vBN/x1sj4c9gVKoF7I38ITdRoIt/CHp2GYLhwx5C5Lk8nD2XgUK1FcpQiauXc/H3viQkJlWN5LW3VyI6OguVQiAxMQ+VohIeHhYI7eOC3JxSSKUSnD+XgS2bY9CunRX693dHt+6OSEnJR2lpJVycqzq2du2MxcFD19G/nyuGPeSrM3JL0/ElBJCTU4Iff7wEqVSCfv3c8MsvlxAbmwtfX0tMmRKIy5ezIZFI4N3OClKZVNt5VlkpUFGmRklhOZJjHSA75obuHR6BTFoCaaYRflhwBEpLGfZd2o612z/D2rWfwdc3CO3aDcGMGY/D0zMYQNX3f9++JFhbyxEc7HhbeaB5P83viXlALS3lej5Ohd9AVlYFFAop2re3hr+fLXbsuAYjqRHORqbB6J82go9HF6iyTZFw/RpSsnOQkp0DRL8FuVwJS8sx2LHDGZaWMvj6WiEtrZBtBANXvY0QHX0GW7euh7N0GE79vgkdevXBwGLgeEQkenULxejhQxAfK8W5yAwYCXvk5lQgMTELZ8+m4ezZdEgA2NuboX17a+TllaG0tAJHj15HUlIeAgNtoVSaQKGQIjIyA3v3JqJ/fzf4+FhBaWaCdu2sIZdXjQbr1NkeERGp2PxbDPr1d8VDD1V1OEVdyvy3jSAxQqnaBNm5aqz98SKMpEbo16/q9Pd166JQWqpGnxBn9Ovvjgz4QVkaD5F8CCEho2rUZebmFqioCISZmTOef/7/MHOmu/Z6jufOpWHlyo9QWJiF+fNn4777hsHZeQAmTBh6W20EPw811syPhn/fgVDccnMgzQg4B48gVIQfh3FmBEJChrTJTCjIzsKZXdvQa/R4yM2Ut/VerQk7uVpQTEwOLkdnoVRYIbiHI0L7usLBXglbO1OcP5eBlJR8mJubwMXFAXZJgxES8hj8gizw/ca9CDt5ElE3opBXlI9UW3fEenaGV8IFBF16FXMyi7Gt+wNwDxyAa9dMYW1thkmT/GsNsMYM46S7LywsAbt2XcKJE78hJeVvREZGAgDalcjxiKsFco+H47GbcZilsoBRfhqMzaUocnNFQokP7AO9UWhmgxNnc3EzVw2JhwkUcilgbYNSIzksLBUoSS/G5ctZSEzIQ3APRwweXHV0YufOa0hPL0ZYWAIGlAv4+dvA3cMCRUXlcPdQwcFeibU/XsKlqEwkJeUhO6fqKGFGejEKCquGDD8wxBP29qZITy9GfHweXF3M4eFhgeXfnkVubtU8V65kY+pjVafAaEaFObpY/bsB7Owg9/bG8fx47JPZQamSYOwwV3RRlqDsWizK4xOgOLkbo00EdpnIcKOgAGFhvwH4Dbt2ueHxx6ehU6dhiI2VwNhYAiMjCZ5+ustt3fZccwTkyJHriI/PrXdYc3Nup1v9SFJ971HXjmlbuY3vvejixUzEXM2GVAJ4eVpCpTJB5052sHdQajsNrKzkUKmM4ePVCcOGjULv3s64cCkSv2z4HUdP7cf11Chcz7wGUzMVUk+mIdMY+OvMboSFJcDXNxg3bzrAwcGeeWBgRKXAvj+vIfLoMez45W+ciT2A8opStHfrisUvDkJGfimMFWbY8Ws4vHwd/r1OijQDMJKgSxcHHD6SgpMnU2BjYwoTmRRdu9ojMSkfxSUVKC4qR0pKAbKzSmBibITBgz0xbVogDh9Jwe+/xyAvtwxZ2aXo0cMZgwd7IiI8FdHRWSgqqroQ8cFD13E1Jhv5/xz9//PPOFSoq043DAi0w5BbMiHun0yIPJeGKzG5AIC4uFztteY0HVv2Dv/uOBsZSSBTGCM3rxTnYrORXFQGmYkUQ+9vDxcHJbJvFCEvsxi2pvYIcO+Jy8kRiI29iNjYi9gb9g2+WHo/nnrmSTg4dMPu3XEQAredB0DtmVDb74p5QM0RczUH0dFZKC01R48eTggNdYODg9k/bYR0pNwogIWFCVxdHWGXOBwhfZ6Cn78p1vy8G0f3/Y4rqSkoKi1EXl4+jh1LQUiICyorK7Bo0YvYsqU7fHyCce2aHFZWbCMYmrCwBOzceRHHj29AcvLfuHCh6gZRstjT6NU7FMl5tujfcxJefPZl7WmI1haZkEgk6NrFAYmJeTh06Dqys4vh5aWCQiGFQiFFWZkaKpUM6ekVuHw5GwkJeejRw0nbRtixIw4Z6cXYsycBAwZUwt/fBu7uFigsLIe7e9XpjYcOXkfstRyUlatRUqJGUlIeMjKKUVCgaSN4wd7eDOnpRbe0EVT49tuzyPvnximXr2Rj6mNBANxREu+HxDOHMHPa47Cw0f2O7tuXiNTUQri6muPBB73h5fXvd9THxxQPPDAGBw/+iaysm/jrrw0ANmDXLk9MmzYNHTsORUyMaFIbQQiBAz/9D6YWKjh4ekN6y03gNDeCiBKAEewQc3QfnpvxGOQKsxrvY+iZcHrnHzj1+yYU5mRj2OwXb/v9Wgt2crWg9u2tUOlvA09rJ3TqbA8HeyXS0qtuE5+XV4pLUZlQmpkgMbESydfzYSIzQp8+bpg5eigGd+uD7OwinLp4BXa2plAG+EHu8BBO/fgLDlzZAuxZBexZBSOJCWxs26G4uA/27QvC2LEPwNXVHfv2JQEQiIxMR3h41e2QGnPEsri4HBcuZDDw7hAhBA4fPoxjR5Yi4tSfKFdXhYJMIsED5hYIOLIFpbaOyKlUIU8VCJcuvrAN9Mb1HMDUyhzyciNYeapgBSDl4BkkJhWhe7Aj+vRxxeXoLCQk5iEvrxw5OVWNGZWlHDdTi/DH77Hw9lZBqTRBRkYxlEoT7XW3UlIK4eRkBqWZMcIjUhEUZIOSkgqYmEiQmJCHrKwSWFjI4OGhQtcuDggIsENAgB2OHk1GeVklQkKc4WCvRHl5VaNHIgE6dKi6M5yHhwUSE6tGFTjY6x4NiIrKwPHjNwAAvULc4d+jKmRNAwIgKithVVCAxVeu4PFthxGbeAm7c9OxM78A6enJWLr0Q0yZch2PPfY2LC1lyM0tu+0jF5rXr1wZiYiIqt9MS17UVXMEqaEjSQCHHLdFQUG2KEgqgFxmhHLxb2M/Pa0QkZFpSE0twvXrhUi7WYycnFJs334N1lYKdOnUHS6OfpiQOBtJ11NxIvwonDt1gDSzHHbZpchOOYqo+MM4fHg9AECpdEBSUi/89lsQHnigL3r0uA9XruTB0lKGZcvO4sqVbAD15wFQlQkbN17B9ev5GD++A/OghVWqK5FyNRdnDl7GTz//hANnt+FmTqL2eQtTVzg79YJaZYxzZ1MhBGDrYA5viQTpaVX7EWZmVSPE7exMEbP9KpKS8tG5sxwfftgfEeGp2LcvEcUlFbCylMPJseq0lOjL2SgorIC3twqZmcWAAExMJGjnawkzM2NEhKfCzMwYTs5K5OSWID2tEP37uSI/rwx29qY4eOg6cnJKYGWlQJd/RvYGBNrBzs4Uh4+kwNTMBKF9XLBs2VntugQG2iIxMV/b0RURnqr9/t/q8JHrCA+/CU9PFSZP9tc+b+NSdeHfTvc/jpmFk/DbzxE4Gr4LUQlhSM64iuOn9uBk+F58Of8P3B9gD6mlCfz/yaDbcSczgXlA7dtZIdXfBlIzu6o2goOZdrRIXn4pLl3StBHykJxc8E8bIRiPTRyN+4I6I/XkVsQXmsCh1yT07OmCoCBbhIefRmLiASQmHgAASCQy2Nm1Q2lpH+zfH4RHHnkQzs6ubCO0UkII7N+/H4cOfY7w8J1Q/9NGkEpN0NnVERKZPWDVAeciiiBQBnsHFSQSCRIT86A0M0H79tawtTOFLUyRnR2LhIR8BAc7oE8fV0RHZyEhIQ95eWXIySmFsbERLC3lSE0twh9/XIW3lyXMlSbIyCiCudIE/v42UJqZICWlAM5OSijNTBAenoqu3ewBAB6eFjh58gZSU4ugsjD5t40QaIuAQFscPXq9qo3QxwUODmbaNgIkgJ+2jaBCbHFXVMRdwYnNv2LIU89pt8WRI8nYuvUqAGDMmPY1vm9BQW7YsmUV3nnnELZs2QOpNALR0ftx82YClix5DzNmpGHChNea1EY4s2sb4s9GoNOgobCws9d5TnMDiN2745GRbI8B3lGI2LYFfSZMbcYnXVNryoSbsTEAgOvRl1BWXASZac2OPEPETq4W5OpqAVVPJ8g8vbTTEhPzcTk6C8XFFTAzNYGTkzmysoogAVBSXI69exMACHTqbA8PDwtYW5tpR8IAgM/EsXjaSIJLF07gbNoNFFSWIyMjChs3RgEAEhKexYwZr2L37jhkZmYgJ+cIXFx8ERTkBbVaDalU+s98ug2Y3NwyrF9/GYcPJ6GgoByJiXkMsBZUWVqK4shIHN64EcP++1/t9A5yBca6emCAux8yisxR5OKKkl7tUJxdicJi4ExhBRK3Z0GpNIGjkxqVagASCXoEO8HO3hTJ1/NRUlyO3JxSmJlV/XyTcvJwLTYXRkZVw5NTUvJx7VouTE1N4OBgCmtrBbx9rJCRXohVv1+DqakUI0b4oLCoApejs+DkpMTQYd5QmhkjOjobScl5cHezgL+/DVJSCpGSUoBOne0hkxvDyUkJmbxquSNGeGPPngQoTKuOyK/98RKMjIDY2Bz07u2Mxx+vOn9f09F79kwaMrNK4Opijk6ddc97lxgZwVilgnGPHlAqvSAJT8Ibyky8EXcBuyNP4/fsLEwoyEZ/q1QoQ0Jw7tw5LFu2As8884z2fP3qGhq2rzkCUlxcjqKiclRUqHHkSHKL/Q7GjfNrdAOpJYYc17e+PIXh7vP0tERJFwdUVFTCTPXv3YGqDnqUQ60WkEol8PRUQSLJQ0F+OcLCErSnhQX3cIKHhwXcXav+tbM3w9l9SeifMAyO1na4kHgGGZkJKCxMw75927Fv33asWfMpNm06h4iITBgbS3D16gHk5xdCoTBFfn4+LCz+vZNj9aHyGzdewZIlJ1FWpkZeXinzoIVkJBcg+vgNXDmRiuL8cnyzcwGiEsMBAHKZAv3uGw4v10GorHBHj2BH5BWUw7ed1T9H3wvx6X9PwcHRFEYSI0ilgFpd9b6mChPIZFX5rumo8m1njTNnbiI5uQCVlZUoLVNXXUYhOhNqtUBgoC1cXM1RkF8Oc3MZ1qy5gMysEvTv74bAADtER2fByjIfwcFOMJEZAxAoL1Pj4kVTBAXZIOVGIVJuFKBzJ3skJuajqLAc3bpWncLYr78rcPA6/P2tUVJSiW3br6KkWI2Skgo4OSurjvb/04ml6bRL/mfkmamZSY0OMAAwNjGCuZUCvQb6QW5tjXmd5iIt7SrW//YLSorzYa20RX5GCUpSivD82rkI9O+Ehx8eBe+OjnDytYSJXKrzfvrMhLudBwAzobVxcbVAzx7OsHZx0U7TjBYpKVHDzMwETs5KZGUVV7URSiqwNywBANCpszdU8gdhdHgX7EpOYUCfB6C0ssTQoUG4du1VREefwpkzJ1FWVoT09EtYv/4SAODGjRcxZcoL2L07DunpqcjPPwkXF1907OjNNkIrcODAAQwaNEj7uEOHjgjt0gs+FTegltpBYtcR1k7O6N69EHn5pYiKysTu3fFV3xUnM6jVVTd/6tHDCXZ2CiQn56OkpAK5OaVQKv9pIySVIPafNoKDgxlupOTj8LVcmJoaw9HBDDbWpvD2sUR6ehG+/z0WpqbGGDnCB4VF5YiOzoKzkxKPjGsPpZkJoi9nISmp6lRGfz9bpKQU/NtGkEnh6KTU5tLIkT7Y81cCFKZS5OaVVZ3KaATExuaiv787zv+9Gx1C+kKYe+LixUzs2ROP69cL0KGDNe6/373Obfbgg94wMhqKIUOehrW1BN99tw5Hj/6OefOeRdeuVe2BEydOYOXKVXj66adrvWNvflYGdn+/CgkRh+DQLgiOPr4wqXandwcHMzg4mKGsTI1duypQgAyc/GNLVYeY7e3f9bq1tBGEEEi9FgsYSZGbdhNFebns5KKGpaUXIjenFE5OZnBxMUdKSiEAgcBAG7h7qKCQG+PMmZsQArC0UujcSl4jqL0b/vvG8wCeR/jflxC3/TekpV3GhYoKnDUxw9AH+8PSUgYzM2NcvhyDM2dWAQB+/x2QSqVwcnKBtbUzVCoHFBR0Q3m5F6ys5Bg71g1paZeRmZkLtdoY5eVFKC8v114fihrvyJFk7NsVgwe8CmF6/QyO7dqDfrnZkKgr4GoiRzcra7hZ2KKLdSAsrdshvUiKo1ILxOUWw7hQgmuSfAQF2kIlA44cjcONG4UwMzOGELYoL1cjM6sYZaUVcHdTwczUBLa2CqSmFsJICtxMLUZcXD7U6koARpBKJUhLK0ZZmUBZWRmUyqrPs6y0HJs2xSAzs2pUFyCBh4cFcnNKEReXC3VlJYKDnTB27L9HFMIjUrXfT6DqO+HkVNUJm5ZeCB9fa/TOK8elqExkZpQgL68cxUXlyMsv047mAv7t6LW1NUXPno7o2sWh1lFemvP7NSPHAECIwfDKyMBjhw+h+PQZJD3xJGReXvi0ohxr9+7FkiVLMHToUMyePRsjRozQ7rABjT/yMW6cHy5cyEBYWOI/d7m8+ztymvJdvJip87gp9u1Lwu7dcRg61BszZrT8RTHp9tw6Gic42BFmZsZIuVGVCcE9HJGYkIf09GKcPZsOALCzM9WOhtF0AHQb5AEXnyk4v68fysvVuC4pRLlpKuLiLiAu7gKsrU3QrZsLcnLUiInJwuXLm5Gbew2vv/4tXn8dsLS0go2NM3x9vXD9uhny84cAqPoNREaeQ2FhCiorZSgtzUdxcTHkcrn2ehjUOAkJudi7Ox7qjBIYF5ThWMQ+tHPrDAc3R1jYyjFpwuNYv60EPbo8DJmkG0xMFEi7WQwjo1L8tjkGCrkxunR1QN9QV/z44yWcPp0KqbER2rezgpd31W/36NHrkMmM0KePK2xtFYiOzoK/vw0AIO1mIcrKKmFqKoW5UobCojIUFakhUHVaeffu9riRUoALF9KRmVUKUSmQmJiPYUO9kZNbipzcEuScL9HeZTG4hxOGPeSrHSkmBGBlqYCZmTGkUsDMzBjpaYXw9bHG/QM9sHdvAk6euonyMjUyM4urOnmVJjr7N4mJ+YiOzoKbuwr29qbaEWIamrs+AgKdO9kjINBOey2wQNhj4KAQAEClWqCspBwXzl7GrpXrsDNCYNXWJQjxewihQSPR3t8brh2s4B5gAydfS4PJBE1nW0JCbp0XVm4MZkLrlpZWhNycUjg7Kf9pIxQAqBoJ6e5edcrZaW0bQQ6PdkHIyChCduxxfD/3Kfj36Q/PTt3w3muPA+IxHDkUh7CwCOTkxaOwNAVXrl2Fv60EZSmnYamowKX0aJw79z0AYOtWwNjYWNtGsLBwQGFhMMrK3GFlJceYMa5IS7uCzMwcthHqUZiTjeSoCygrLobczAwWdvawcnKBqfm/9d2tp4gC2di7NxzTpz8CACgocEOnTl1hZ9ceCuNu6GJ9E3a4ilypMy7dsEVhchkyixIQFGgHlYUchw9fx40bhVCamQDCFuUVaqSk5CMpqeo0RHt7MygUUtxILYRUKkFqahGuXcuDWq2GRCKF1EiCtPRilJdVorysDOZKE0AClJZWYNOmK8jKLPmnjVA1kik3pxRx8blQqwWCgx112wjhqdrvp4azkxIeHiqkpRXBx8cKve8rw6VLmcjIKEZeXhmKisqRn1+Oq3k+6OmQj9+XvA/HvjNwPkEFV1cLjBzpgyFDPGvUSdVPs721Tv7ss9cAvKYz/5dffomff/4ZH330EYYPH47Zs2dj6NChyL2ZilPbfsOlA3shJFKUWgQCNv4wt6m786hPH1ckJOQh6pwPutmE4+8fVuDhl/+vSb+D69GX8NeKL9Fx0IPoOeqRRr9O4062EQqyM1FWVIByhStMSq4jO+U6rBydm/z+rRE7uVpYdlYxkjJStadtpaYWws/fBgEBdigsqsDhQ9ehVldi+HBv2NqZQqWSIy+vFBHhN/Drr1GwszXFkAe8alz8OyDADh6dPBGTNg42N65jflEk5NevwWTDD0h6ACgqMoeZmQWCggahoiIV167FoLy8HNevJ+H69aq7OA4ZEoj8fBkcHc2QmHgeu3a9pC332rVVf0ZGRpDL5XBzc8P+/fvhcssRJ/qXqKxEyaUoFB45gvK12+CZdBGLsjPwV34+FFJjrOjyEKR2bshR2GJOd3OUQY4z57KQkFaBinKBopRcFOSXQWpshPJygfS0on9uuWuKjIxilJRWIDY2BxUVAuXlauTnlcHLyxJduzlov1tKM2N8d+o80tKqOsWsreVQq4GePR1x4EAyKioEcnJKUVFRiQsXsiCTGcHKSo4OHWwQF5cLFxclLK3kSM8oQn5eGTp1/PfIhKaD1tfX6p9bywukphbBz98GDvZKbNkSg5OnUuDlaYmePR1hbSVHdk4ppEYSJCUVICTEGVFRGThyJAVyuRFcXMy1Hb0pKQWwtTPV6eg6G5mGyLPpSErMw44dcQgJcUafPm6QSCQwsbeH1dhHoBo+AsURESg8ehR9oi8jzsoKh3NysGvXLuzatQvu7u6YNWsWnnrqKTg7OyMoyBZHjlzHypWRKC4ur/OISUJCLpRKGXr0cKzzrlsNaYmj4rff6BD/7GyIGs/wgsX6kZFZhOTEfHi3t9I27DUdBwBQVFSBQ7dkAgAcOZqC8opKrP7hPNJuFiO0ryvGju2gc/HvPuN9cerPeLhkCRhbB0Lu54eZM+dqrz/h4JCJ3bvjYGvbEdbWlsjPT0JmZgZyc3OQm5uDuLgoODp6wctrDKyt5UhIyMWxY5+isLBqhPC6dVV/ACCTySCXy/Hmm29iwYIFd38jGojyMjXizqbj0LZryExKw9HonTgcvQ2ZuTcQ2nU6BppNg7pSwNzi/9k77/C27vP6f4CLvYnFvUlJpAa1LFmUZFuWp+J4xo7dxGlmndHstEnbNGnT5pc0o2n2Thw7ju14b8vWsLW3SElc4gYXiL03cH9/XBIiNWwnsduk1XkeP6JJ4AIEv/e+95zvec+7jG/+y+/Zvt3F6GgEhSJNIJgiEsmQyxZQKGRYLBpOnPThLNWhVAkkE1lGRiMgk5FM5mYmX6l5x20Li/WgpsbI9h0jBINpZDIRpUqNw6lhWbmdgwenmJqMoVDK6eoKEA6nUSoFTEYlJpOa5mYL27ePotYoSMRzFEQRz3SC+oYzIbw6nQJLiQabTVN8zXxeWsMuV7S4jhcvtrLmklIsFjUnTnqJxXJcd11dMYtu7z6pJhgMKkwmJRULS0gkcng98aKYOzv1URRhcjKOZzrBunapJsyFXJCh0auoXVTKh9//CX7/xAP4Az5eOHY/Wzt+x8qFG1i/8AYancsR5HKMTi2GaJbH7u0iHk1z+ztbzvk7zl7Ll8zUw4s14SLeTASCSQYn3dTUmHC5Iky54yxaZKWl1UY8kWX37gkK+QJbtjRIHMGoJhJNc+SIm4ce6sVu03LF+ptRRLrp2bePUztfnnf8FgEoAZncwJb6NcjCEwy+fC/NQLYkQaGhhXg+ydjEOLlcjvFxF+PjUtt0e3sLTqeBJUvs9PUd4sUXP1U87tkcoa6ujl27dmG3/+mOlr9E5HM5dv/uXo698DRioXDOz9U6PSZnKZayck6dzrLvyBC/f+AUvQPHUan1ZGMW6upsdJ9wcfumDyDERlBE95PPyzkdrmTEZ2TKJ0NQJMhlkThCnZnSUh0+X2oORygQi2WZnk5w110t3HVXS7EFVq9T8vPDJ/B6Emh1CkosavIFkdWrnbz66jj5PIRCabK5Al1dAZRKiSM0LyhheCRMRYVB4gjepMQRls7hCDMCbVOTBZNRckDNrmWnUydxhENT1NaaueSSMiwWNaGZ4Sdjrijr2iswaqrp2/kkrpd/hKN0CS1rbmPCb6a/P0hVlXHeNW/btlG2bXPR3e3jRz/qeM0MXYDbb78dt9vNjh07ePbZZ3n22WdxWMysri5jw+KFLF65GpW1moOdaXbujYBqgvb2yvMey+NJoNEoqGksw25fxcDhAwwePUjT6kvf0FoRRZFnv/9tYr5pdv/uXmqWtFFa3/iGnjsXb1U98AwPAuCsayTYO4F/Yoz6Fav/iOP/+eGiyPUmwz2doM8vLaC5wauz/+bzBSYmY3R0erjrzlY2b9Zz5Kib7dtH8fvTqJRC8fF7905y4MAkR49O84H3L6Wlxc7mzbW4XFYM1eswTg0SefZZyn75FT5V3cLIje/n0nd+lNpaM/l8nqmpKQ4d6ubAgW4ikWlOnizF5Ypy+PA0ZWU5Kioq8Pv9pNPp4vsvFAosWbKEn/zkJ+j1/3smLLwZyE5PE9+zF8/WHaQOHURIRtmZSvHTQIhTsXDxcTXOWl7M1tBmaSAWy5GZyhMOhfD7kxiNKhYssODzxxkczGM0KFGr5fj9KcbGoixcaGXlqlJO9wUIhdJYLGrSaZGeHj86nYKVK51FgWvXrnFco2FyOenCJQhyRLHA2ksryRego8ODRq0gkcjidGqpqjZRYlHT1eWju9vPwECQ+noTrtEo+XyenTvHSCZzLF3m4OQJL8eOeVi50snmzXV4vHHARziUwuON4/cniYQzCIKcu+5sPe/n9eBD3RzvmMZkUtHSKom8c52Lc0Wu2SmOPd0BxseDpFI5VGrFvNZduVqNvr0d3dq1bD7YwaU7X8E92sej0ShPxKKMjY3xpS99iV/+8pcMDQ1RW2tmZCTM0aPT6PXKCxbEri4/4XCaq6+u+6N37N+MXfE/hXTs3TtOZ6eX1atL2bSp5pyfXwws/p/BxHiMwcEQglo4px7Mfj1bEzo7Pdx5VyuJRI6dO10MDYbJZArSuG+gs9PDocPTdPcEqKkxse7SMhyhLKMn/VRpFVSWnLHaL15s49pr67n22n9n06YaamvNRKNR9u8/xf793QhCmP37pzl1KkZHh4yuLj+lpSV4vSai0SjinK3ZbDbLj370IzZu3Pjf9Kn95UAsiEz2hziyzcV4V4BQ1MMr3Y+z6+QzZLLSqHG9zkSmICeRlLJWPJ444+MxTp8OIZPB6lWlWG1qeroDxONZ9HolMjns3DGK35+irtaE15cklcoxPBwCEeLxLOUzrtpZ+HzSYJBkKo9CgHg8RzSSY/OVdpQKOfv2TWEwKlEp5Zw+HaSqysC69ko803F27hgjny9QVm7AYFAwOhohnSqgUslRq6Tr8OSUFGRfX28qilGzzq+KckNxHVdW6rnzLqkmXHf9/Bv5zk4Px49LNaFtmQN3PIfXkyi2YM4et6bGyIqVpYDIgQNTDA6ESKVzxfdydmujw+bkvXd+mo1r/prB0T08s/VBDh3dz5GeVznS8ypf/vS3WbvwKiK+FJpkgZVWPdM7JnmoP1p0epU3WVBrFcVr+bp1FXz5y+v/6LXxP1kTZl0PS5bYec97Fp/3+Rdrwv8Mpt0Jhqake+7ZzJ+5/xbyY2c4wl0tbL6qliNH3Gzf5sIfSKFSCjQsqsbhWMCvfn6Urr4R7Ba4anMNtfU2Yknw+HNU11hxOHXSNcrlpfd4D0vN07TV2smmEgiqVRhq60mqShhyJ+kb9jE8YsfnizA8HKaqqkB5eTl+v59MJlN8/4VCgVWrVvG9730P9VntXf9XIIoi237xQ7pe3U79itWUNjShNRjJZbPEQ0E8Ex7cY158/hi7jr3ES8c6GQsEi8+vNqkodH+f0KiOCqRJtYm8HlfITiRvx1pWhlmWwxeJzOcI41Ir36pVTk73BaUsXpVAOp0nFMqQyeTnCVyv7hpndDRCNldAK0qbAmJB5NJLKykUoKPDi0YtkEjmcDq0VFUbKSnR0HVqhiP0B6mrNzM6GiGfL0gcIXGGIxw9Ns2qlaVsvqoWjycBQDiUxuNJ4PcnCYczKBQy7rrr3M0EgAcf7GHv0CJanZNUBQY48dt/JUopPhZhs1w/7/o0u9mwd+8EPT1SrdRqlefdRIj4PFhyMu5cexkbnWZ2Huvg8Mg43lCYF0JheoIxnvvYp1BrdTyz7TADAyE0auGCIpfLFSEez7J8uZOVK5ew41eD7PzNz6lZ0oZKo33d9eIePE3MN03auBh1rIcT217g6g/97es+72y8VRxhenAApUbLyo1L2XF6D8GpiT/4+H+uuChyvckoK9WRdZTMI+dzg7i3bKln795JNGoFHm8cp0NPTY2RtWsrcLkixR3V5W1ObDYNoii5fO6/v5u7726lpcV+RhxwtqFZvJj47t0IL7+M6d7Po/BuIfv5z3OoL8Wjj56mstLCxz72Prq6/Lz66k7i8RixWJqbb76Zm2++GZCK1iuvDPLSS4M0NRkQhAIGQxVm8//tGyAxkyFx9CjRV14lvns3maEhkMnIljjZmtbwX2MDTCZDACgFBTdt3MS1y69kckBOZ6eXU11+dFoFoVCaYFAiqmVlepYvd9DVLScSyWKzajEaVfT0+gmG0hw9OoXNpiUSyZBK5dFqFaTTBeKJLKdPh1i2LM4rr7hIpvJMTcXI5qRJIrW1JkrLpHVx9MgUqWSWRQtLKC83EAylpQwvrZLp6QQeT5JkKovHEycWy5DNSq+TTOY4dsyD2aJhYCBIb68fk0nJ5s2Ss9BskdoOzZYo69dXoDcozohTPT5e3jZKKpmludnK+g2VLG9zEo/lijv/ACtWSMTl7NZcm11Lc7N1RoRT43Rq6esNAOcG2PeeDvL8/gKC7jKuuOVyvjjZycc7OtgaCfNIocB1b7+x2GJ10031DAxs5brrLrng3/nN2NF+M47xp5CObdtGOXJkGotFfZG4/BmhssqAWBDnTZjzeuLzgri3bKmX3C0aqe1rluCXlumYmoqRTGTp6fbR1uZkYiLO6dN+BgdDJBNZPv6JVThrTZzaNcHe+/uIu5OsvbGB2lrzPDv63r3jM/XAwHvf+w5qa81cc80j+P0TWK3aGdfjXkC6gd+1a4StWwdm6kGexYtLWbDg9cNR/68g6I7Te8BN3wE38VAamVLGvTu+xbH+lygUpAmFlWWNvP2691DpbOfAfh9ud5x8XmRqKk46nSVfAKNBhaAQsFp1lFiTNDWXUFqqZ2oqxumhMNFYhmmP1JqSTktKUC5XIJ+HyckYDqee7dtHeWWni2g0g88rCWsqlRyHXYtMDq6xCHJBhlotp7bGiLNUj6CQU15uwGRSsfXFEXz+JAaDksJM62IknClmL/b2Buju8XOi04NcLmO2dd3h1GMxR2dyvDRs2VJfdBoCvPjCINu3u2hqsnDrrQtwOPW0tTmJxaWasGihlUQih06nIJHInVMTLGY1NTVGtFoFGrUCZ6mW3pmacLbI1dPt4/nnhxEEGRs3buJdv7qL0wO9PPjob9j26lZuv+M2dDo9hbzIz3/5GJMjaS5beQlyuYzeA25O7BhHJgNrhR5jmY62egsLGv+06+j/ZE2YdT0Af5JQdxFvPkrLdKjMUkuX0ynl3rhcEUDKANqypYG9+ybQaAQ8ngROp46aGhNrLz2XI1gdJrxRLZOBAoYygTWbGykFzvaINLQaaGitRxRF0okEPtcwpzt68A+Ooyj0UAVUmeXEFnmIp5Ukjh5CnrDxXx9+L4JCgaBUkdRU0znupKnZgCCIGAxV8zIe/y9h/2MPcmrnyyxsv4z6FavQ6A3Fn1krKplOuNn20g52HXmScFSKH1AqlFy1fj3rWlcRD8oZm4jizQjIBDWBiJzpQIFUVkFtnY1lK6ro6vZJHMGmwWBQ0dsbIBhMcfSoG7t9hiMk8yjSeXK5gjTcrNtPMpGb4QgFpqai5HIFlAo55RV6tFoFJrMKr1cSpBYtmuEIwRThcAadToXbHWfaI22qTHsSxGLZORwhy9Fj00xOScNzpHogwenUYbao6e0NYLaoWd9eiV6vnLOB7eeZZweIxbJcd1097e0zHCGexWarZ+WKEtx9nUz292FMvEr/Q7v57cEG6lespnHVWior7FxySTmlpTp2756grs40bxMhn8vRf2gfx55/iqn+PkQgg5HSsho+//H1qM0l7D1xiseef5HrNl+JeiZzavUlDroH97J85Q0X/HvPFaHlcjnLr3kbex66jxPbXmT1Dbe87noZOnoIhVqDc9EC0hMxXKdOkE2nUKo1f8Cqe+s4gnuoH6PNjlqjQWsyE/ZMIxYKyP4XRFVcFLneZJRYtZTWlhX/fzaPCM6Q9XA4TSyWobrGhN+XpKPTQ2OjmYoKAwcOTOIPpIjHctTXm7niimo6T3iJxrJ0dHpoabEXg7xnhTTjpk3o164l8sILRF/eRvTlbfTZN/D7zkYclRZaW+0sXmyjvb2CU6d8XHLJ/BZEuVxOKiWgVBqYmJCRy8kpLY2xYMH8nIz/C8gFg8R37ya6fQfxPXsoxOPkdUYUdXWYbnw7qro6RsJKonuHcfftQ6vSsrJqLR97x62U2e309QaYmJwmmcyRTheQySCTzZLNglYjR6USGBgMUV0lZZEkkzm6uyUxLCzIyGREpqaSKJUy1GqpBREgk81RWqpleDiM15skmcwhFkQMBiWrV5Wx8bIqerp9HDw4RXqm6AmCnEIB7HYd4VCaRDJLY6OFQqHA4GAIkGG2qFlQqqesVMeBg1MEQyl83jgTE3HCkQxHj07T0+OT2mVnSIhepyCeyLF5c21xgujzzw9z8qSXXK5AMJSmusbE6lVltLTY6enxFW/KKir0dHR6GOgPzlvDs+fJwkVWPvvZRvbtG2f//inq68+0y8yu+337Jjh9OkBpqR6/qoqKG++k+oYbuHPHDm46fpzsSy/Rd+sdTK25kZBF5NChH/CRj/yavXvfzUc/+lGWLVs272/+Zuxo/0/vis/ucv2xrTUX8dbAbtNJ+UVnBc/PknVgJpdLakfYs3eSdCpLTa2J1hY7oWCa3t4AWp2Sm25sZPkKJ15vnHQ6ceY1qo0svKKCnr1ujm91MXjUw6Z3L6JqJqMJ4Fe/OsnTTw9SWWmgtdU+00JQyuRklC1b6uetXZlMRjwuIghaxsYK5HLgcMwP8P6/iGQsQ/9hDydeHSfsTiAo5ThrjNQvsxFMZkm9nKVQyFFZtpTrN/81a1ZexrQ7SVeXTyIk6RzpVJ5oNEOhABqNHJNJRSyaobbOzJpLSpELMvr7QxgMShxOicjkChCOZLFa1aiUcgqiSDCQQlDI2b59hEgkQzCUIuBPIQJ2u5rrrqunkBc5dszD9u2jWK1SG/yUO8HGDRXSlDd3guHhCJWV0n1Jba2pOJnRYlaTy4nEYlLGot+fYGI8jlanQKs9sxZqaoxFN1dNjaPo4PJ64jz33DCTkzECwTSrV5fjcOqLuVqdnR5AaoHs7PRQU2sqbgY6nPp550h7exXt7VVSTdg3Na+Fcjbnbt++CU73SzVhdkLkgqZFfPkLX+OLf/fvCIKA1xNndDTCI899h6GR03SMLOdd73gvV7/9BrIxGcGpBBF/kqmeIOlEjq2HPByu0FO5wELVIisVzRY0M1k1bwT/kzXhYj3484W1REvj4rkcIVJc67OiVziUJhrNUl0dmc8RyvUcODiF358kHs9SX2emssLAlDsx7zVm3TxzhTSQru0avZ6qliU8/nKaY51qyh1w3RUmtIoUp7unkBeS6DQF0vE4IiAW8mRTacKeA5iMS5nQ3UAuJ1JaGqW5ef40uv8LOPXKNvY/8jvqV6ymfvkqInE5p3rc8z5rvU5JqdNGJOpDp9XTUr+B973rndhtVnp7A/S5PYxNqpDLZciQ7u+zWRGtRkClnuEI1SYcDh3JZJbu7sAMR5CTzRSYmkygVMpRqwWpDTAstQHmciLDI1K2Z2IeRyinrFzH8WMeTvcF8fmSeL1JMhlpuJXdoSMczpBIZGhqsiCK4lkcoQSDQcnRox6SiRwBfxK3O45Wo6Cr20dFhYGWVlsxwyscSlNTYyo6uDyeBM8/P0THcS/5gojZpKa9vbI4lbGn28/u/R6Wt62gsWIpJ4/2UaIMEgr6OPTUYxx47CHkKh0pVQ31q9Zx7y/fxtPPjfL44/0sW2Ki8+UXOPTkI0R8HlTmMkLCAvpcMvSWEi511mKpr6C0zEBd62Ledec7yefPON7Gpk/y6uGHONL9NLcc3sJfveNWFjTOH2Y1G0A/C3tNLWZnKV2vbGP5tTegUL52XZjo68FSWsaqNfWM9yY4teMloj4f1sr/vqzH16oJnpEhbJXVKFRq9JYSYsEAuUwGpeYPE+H+HHFR5HoTMTERZaLHT7nOURS0zm5R6ej0MDIaQa2W09Ptw+WK4g+kmJyII4oiyWSOygpDMVy8pdXO6tVldHR6qK0xceSom3AohXumqM0WwOVtTlpuu43UkkuIPv0Ma4e387BlL88oN9PaejO1tWa+9KX2YkbEXIyOhvF4EjQ2mmluLuHJJx9hxw4/NTV3smTJkv/GT/B/BumhIWI7dhDdvp1k5wkoFFBWVaFdtYoJSjjqEdk9dZLY+GE+ceNS9u+fQimU8K/v+TRGyjjdHSMalLNmpRTk3txkQadVEounmZpMUMiDQoASq45UKsfEeAxEkXA4TW9fkEgkjVqlQKtVIIpZcjnI5UXsdiWhcJpUOo/DriMWz3LqlJdEIotKJaBWy9HplGSzOcZcEaamYkSjWUxmFdFIhng8i8+fpLLSgFwuo5AXqa4xsX5DJT//2Qn6+4OkU3na2yvp7w/gnoqTyRakthaDEpVSskE/+GAvNTUm1q+vYPWqMrZvH+X48WlWrChl82aJkAiCnJoaEwaDNOJ+7q78bN7WLDo7vExOxDEYVXQc91Bfb6KiwsDCRVb0OgVHjrrp7g7g9SYYdUVob5ee53JFOXp0Gp9Xavu0O7S43QnMlijOVWWU3HUXpre9jfi+ffh3H6D03q9yIl+g2eGg3+vlpz/9KT/96U9Zv349H/3oR7ntttv+19jtzw7inIvzZcOcHeIJkE6n/9d8Hn8OGB0N09npobxMN0/kmlsTZrOHPJ4EoigyNBQikxWZmIhTNuPMNJlV2GxSCL17Ks7aSytJp7K0tTmLJD8UTuHO5KhfYCY+Huep/+rAXGPg1r9twxuUWqELBRGZDMxm6b38zd+0sX591evWg/7+YXbu/DVjY1Xcc889/02f3p8H8tkCI6d89O6fYvRUABAR9AqOTh1kz8lH+Ju7/4lkpJH9+6ZYufhOFtZfj0ANDdUO2pY5cVmiKFXSbrdcBq4xSciRyUGnk6YjBoIpautM1NSauPfXpwgE0litasxmNXI55AuSdyqTzqNSyhEEOUajmmQixyO/P41MJu0wiyIE/ClMRjVVVUaSyTxyuYxYNIvFLJ3X6XSOnp4Al19RjcGoopAv0L6+CotZzb59E/QPBLGWaCgvN3C6P8D4RBSNRoFaLQ01EQsi+/dNAeAajdDW5sRiVnP06DReT4LNm2uLIpXNriWXK7B8uWNePejs9BSHK4DUMjMxEcdoVNHfH6CtzUkonKasXIdOpyi6HqXBDAlco2dqwomTPo4fm6YgilitGhx2Le6pBBZztOj2mh1G4nJFOXFygsqyBYxPjHCyq4MvdH2Kr5n+hXfcdBfvuuO9rLqkjnQyR8yfJjAVJ+pPcvrwNCdfkdo3Ssp0VC4ooaqlhIpmC1rDmfP6zwmvVQ/gjdWEi/XgzcfkRJSeHj9NCkuRNJ/dsniGIwj09PgljuBPMjkRoyCKJJPZIkeYcsdZe2kFqVSO5W3OInEPh9JMuaXNk3kcodVWfEwolCaTkyMqjbRceglOp47aVXFcoyGqKvXY7Vqk7B4ZXm+C49t2gOcUq5bdwNbd+9mxI0xj490sXPjGpsP9b8DA4QO89NPvUbloMQ0rL0FjMHCq183ho8Pc+9ArFMQM777tg+zfN4laYeczH/48WmUNvd0xggEZK1dIIlCsyYJOpyAWyzA1JTl8FYIMo0lNOJTGYJCGiU1NxejtlTiCSiWg1QoUxAL5HOTyBewODQVRRKmUo9crGRgIks3mSSSzKJUCarUgcYRcjlyugFwO0VgWs0VNJpM/wxGqJI6Qz0N1tYn166v4+c9PcPq0FB3S3l7Jq6+M4fHEATnV1QbKyvQk4lm6uqRQ+ZoaE+vbKzFbpHrg8Ur1wOnU4XJFkAtyamqMqNQC69rnGy3O4Qg94HBUYDDUoNCnqTDHUBf8yPyTTLz6a76/+37SgpW6RJ7RJ8K4yFPW0ITgaKF/XIErnCOjyFNuM+H25bCMxygtO+O2EwShKC6HE1nqaqoZcY3x20ce5bePPMraVSt51+23cfUVl6NUnF8mqV++mo6XnsMzMkRF84XPAbFQYHqon4qFrSg1GmxV1YiiyHjvqf9WketCNSERDhEPBhBKGvD50xitNqb6+9i7e4hX9wWL9UAUpWFmf2k14aLI9Saivz+EZyRC1hEtilxOh/6c7KGhQYlEdHZ6kctlaNQCixdbUSqlkd1Ll0m7IydPSBlImbT0ZxocDOF2J2hqsrBwkSQkbN8+SmeHl3gsx5Ej03Se8GC3raK6ppamiUO8N/oshU+eJv7FL1J7ySXn3VmcO3Fh/foqvvzl59i+fTsrV7b+rxS5RFEkfbqf6NatRF54gczwMDKVClVDA8ZrrkbZ2IiqrJxXT47zrYce49DQQbL5LDJkVAorifmU1NSY+NC7rsDvS1LISO2nIE3AMRjU3HhTOXqdgl/+6iTDQyFyhRzekI/BqSiCOsuhwSzReJJMNkNOzFGI5xBFUZrWIcoQZHK8XgWFnICACl1KhyakIZcWUIoGnDYjtbUWpqcTdHcHGBoKY7GosVjUaLUKFIIMUQS1WmDv3knMZjWlpXrCoRTUGKmpMTI4GCQalYYeBAJpRBG0GgGDQYHZouHSdeX4vEnGxyP09QXYs2ecO+9ciFIpzAsvrKkxsmFj5bwW3bkosaiRy2WUzLHJ1taYGHVFOH7MQ0fHNJs313HLLc0cOeouTmKc2w45+zr9/QGSVg0trVbJ6nxWm4tgMmG67jqSyy7Fs/co17pPc83oIAc1Gh5KJNkWDLB371727t3Lpz7xCY4dOEBlTQ2FVIpCNEouGCIfDJDz+8n5fOQ8HvL+APlQCMFiQdXQgL59Hdply5AJb6675a0a6X6+bJi57SytrXo++tGPEo/Heeqppy5OTnqT0NXlp38giFgQqaq3FL8/27Y4i8amEqan4wSDadRqOWaLhsWLrTgc+nNauULhtCSKaxT09gXw70tRyBdobCph0WxNmI7i8yeoKYj8/HN7SOjlVJQbySwtUFtrIhyW8lUu5DTp6vJz9Og0druGTZtqyGbzvO99/05ra+v/CZFLFEXcg2F6D7oZOOIhk8xhsmvQlal48cDz7Ot8hLHJfgB+8/DPWNJ0D7Foltracq65eiWu0UjRmTT7d8tmRHR6JQURaXMhnSGbT3J6aJRMOkLfYB5kSdzuEJlshil/DlGWJ5fLAXJUSgXhlBLRJ0csKFAIepQKAzK0CHIdUEX7+npeeWWMSCTNE4/3YzKrsdo05HIFcjkRi0WNUiknFsvw0tYR2tdXUFFhBkR0OgXJVI58TiSZylJilW5kc9kCCr2MqioTixYq8fqSBEMpHn20n8mJGLv3jPOud7ViMimJRKSpug6nFMHw9hsaz5ufZbGokQuyeW0TNbUmXKMRIpEM27aNMjkVY82aCizmXNHlMtsGOX8So5RH2dxcQk216YKtjzArLlfx9ht+gFyR5JEnf8fvHvkN45Mufnn/j/nl/T/mkx/5ez754b9Da1DhqDVSyBfIpvNEfCkCUzGi/hQDxzyc2iWJXpZSLRULSqheVEJFc8k8MftPxVtVD+D1a4LHc5iPfexjPPPMM6xatepNfe3/y+gfCDEyGkZljhRFrrNdIsvbnAwNhfFMx+no8CDI5WjUCloX21AppXuOMxxBEgZKS3V0dHrI5QpMTcVpbrbM1ANTkSP09wdJJfPU1BoxGFRYLBpq60ysWVNWfP3SUj2lpefew/X0uun1lNFID8pwFwcPPsm+ffvYsGH1/xmRq2//bp7/wbcpbWiicfVaDFYb23ee5Me/uo9Tpw+Qy2eRyeQo8yso5PXU1Zq47cZr8PuS5LJS+ynMcgQVN97YhF6n5Je/OsnQYJBMLonbEyRfSOGPwJETCXy+MNlclnwhD2KOvJhHJgOZTI5cpiA2piCfl4OoQqvRoxC0yGUqxIIWp81GXZ2F6ek4XV1+hgZnOIJZRT5XwGRUYTCoJI6wZwKTWU1pqdT1QY10vRwYCBKLZThyxE0kmkEmk6MQZOh1Sq64oppINMPx49OMjUXp6wuyZ88EW7bUYzKpZupBpNhuu3Ej5zgLZ2GZ4QgWi5q6WY5Qa2J0NMLxYxGOJ2DzVSu54W9qOPDKCdz9/ShJYjYJlJS30rxsAZaycmJJBZOxMUpSCVpadDMcIVsUkOfijLh8HR/54M3sP3yEBx59jG2v7ubg0WMcPHoMp93O8w8/gOU80T1lTQvgpecYPnb4NUWuoHuSTDKJ0WpHLgiYHKUICgUTvd0s23zdG15/f2w9mB4eRGc2Y7Sef0CEe0i6l5kOKjC5IlhtdpLHj7Br5wDbdktC+cKFGu655x4UCgUPPfTQXxRHuChyvYlobragqzNRfp4brFm0tNi59NI4+/dLFxWdVkm+UMDu0LN6VRn79o1z/33drFtXjtmipq83gNsdZ2IyhlwOZpMak0nN6lVl9PT48HqTVFRKuzqz4fW5bAFdYzmFS25HlhulYvgwrrvfg/6yyyj94j+hrjk7mFq6UfT5JEupdybXo7fX9xZ+Wv+9EEWRdG8vka1bibzwItnRUWRaLeoFCzDfegu9MSOH+tKssNbjnfTwve9+nSNDxxFFaWpKa20jG5uvoMFSzmA6glIpZ+uLwwyPhJmeTqDVyjk9NsqxnkGm/B6U21KEkiGimRC+SICcmIHIue9LhhwBBXKZAmm/XpT+k4GYLZArZBARIT7/eYqYEovXgkFlRCM3YchYKRfKqCutREwLaLQKGhtKOHZsmkAgRSabY3o6zqlTajo6vDidWnQ6JbFYliNHpgmFUuTzIqWlJt7+9qaieHTyhJennhokHM4QiWTYtWuCu+9uxeNNUFFhmDcB9HwCF8D4eJxwJM34eJzrrmukpUW62DY1xxkalIjN2HiEI0fd6HWKooB79vH8viTxWI7aWsmNdqHXAyitsFB6+2ZE8Ury4TBXd3Zy+eAgE4ODPDzQz+9DIRzxONEb3k7vzHP602kaVSrkMxdwmVqNXK9HrtMh02rJjI4S3bYN3/e/j2C3Y7ntVmwf+ACC6dwC+sfgDwkqfuyxPh5/vP91J8zA+bNh5lqX9+3bx0MPPYQgCBw/fpyVK1f+Kb/GRcxg8WIbsbEY5WXn3tTNwuHUU1NtZLTShKUkg8ko3XQ6HHpWrS7D64mzZ+8kxzs8rG+vwGJWc/zYNFPuOOl0jhKLhsWLbSxbasfnS7J9+ygWq5aJqSTbezy0lhmpkmlZbdDgaJKjcmrweOKMjoYvuMYWL7Zx+PAUQ0Nh7r33FC0tkmvY44mzd+/4Hz2c4c8doekEfQfd9B10E/WnkCnlBJIZ7FVqdvc/y++e+AXxpEQqtRodGy+9lQX1NxAJyTEYlZRY1Tz91CAguXSnvV4mp4YYHu1HUIUpiEGicQ/+wBSZXHj+i48ByJDLlMhkijP/ISCKBQRBRCRPPp8jX0gjirl5T+8Zg1ePGdCo7WjVNnReB2ZTFWtXt7GopZqRkQIyuQKrVUNPT4BsLsPLL43S3FyCQiknGp2Z7KiUkc/BqVM+fN4EIMNZqueaq+uoqTFy4qSXY0c9BINJMpkcgcAZR1dnpwedTjFvCujZAhdI07xSqTxdXQFWrSortjg2N51pPQwEUnR3+1i08Ix4O7fdEaQcruHhCE3NFjasrzzva83FfHFZz4ff/wk+9NcfY9e+Hfz24V/zyp5trFy2unjsvftP09pipb19EY4aJY4aI4W8SDadI+pPEXTHCXtTDHd46d4tXbfNDi1ljWYqF1gob7Jgdmj/aELwVtUDeO2asGlTFZ/+9CeYmpriG9/4Bg8//PAf9f4v4lw0N1mIjZnPS7pn0dJq49LJGPv3T0ocQacgnxdxOHSsXl3Gvn0T3H9fF+vaK4oZSNNFjiDDbFZjMqpZvbqMnm4/Xm+Cikp9cZM8k82zfn0lgUCS1lYbJqO6mP31WsijRFRb6DnUQSAgZcx2d3uZifb9i0U+l8PnGiHi9yLm86h0ejQ6PWqD5PwJTIxxcsdLDB45SAwnJm0ze46N8cvffZ2u00eY3extaW6htmwjOrUJmUygdWa698mTXqan42i1coZGR+k42YfbM4lamySeCBJPBQmF/RTmXtMlsywy5DO1QJD+m6HsMlkBKCDGCxQKOfKFDGejZ0LOscES9FoLSsGEWllCMl9JVXk1hbxR4giNFo4dncYfSJPJSi18p0556ejw4CzVodcpicayHJ3lCAURh0PPFVdUs3SZA6dTh8mo4qmnB4iEM0SyGTqOe7n77lY6Oj3odUp6uv1nOMIF1tjERIxwJM3ERIzrr2+gpVW6LjU1lTA0FCYSSTM2FqHzZBB7dQNaWzVVlTpsVjVyQUCYcVu5JvzE41nq6oysX1/1mmv6bHF5/do1rF+7hqlpDw8/+RQPP/4ktTXVRYGrp9vP1u3HuXpTG4uXONAYDBhKrIz1nKRQyCOXn3/T2z1wGgCTU9qckcvlmJxl+Fyj5LLZ1211nMUfUw+uXh7Af+T3KFQqbvnCv1CzeNk5j5063YtCo6W2uZKaGhOypA1EkZWtSkR1DVddVcsrr7zC448/jkKhoKenh9bW8w8b+3PERZHrTURlpRFTi40QcOSom6HBIB0dXi67rJLrrmssZgpVVOi57voG9DoFk5NxQCSTzvHgQ90z0+WklobFi610dfloarYAkMnmqaszsXSZdKPX0elhciJG23IH6zdUEotlcbkiKJUyJidiZDM65GUNxDYsonzsGBw5zNCWt1HyzjtwfOpTCDOhkalUDrc7zshImHA4g9stiVwHD07+N3+Cbz4y4xNEnnma0BNPknW5kGm1aBYuRLd6FTFbJaMxFVXNTp75YSd9fWG2n36WbSOPFp9vU9awofEKFpYvIBXPY6jSoNT52X3qKO69kwRTXuIFP4lCCPGYJIgJKNEGTegUZkr0lThLFqIQdSjRkEuqqK6wsmZlLZ3H/Wg0SuKxLHK5jHQ6RyKRxW7XsmiRjdHRCGazikwuSzAaZXwqSDqXIC8kSYtxMsRBkSQnhDjl7+XIdAp6QS4TcBrLaA7VkwkaURVsyGIlZLPS31ouyFGqJOtwIJAmkcjin5kIqjco54lWWm0Qi0VNoVAgk8lTWakvBvzGm3P09weKNuNZ8epsqNVyZDP/AvMy5W69tYmOTg+RcJrHHutjzSUV3HLLmYDruY/t6PQwMBBEb3CcI3CdnVM3C5lMhsJiwXj55YiXXUZJMklLOMznJyaYHB/DpNEgZnPsOzHN3TsfpkSr58NXX8m7rrkGe2kpMqUSmUIBMhkUChQSCdIDAySPH8P/q18R/O0DWN//Pmwf/CDyP9HG+4cEFT/+eD+7do0DvC6pOZ9jZ82aUtavr2J0NEw43MKnP/0PvPOdN10UuN5E1NaaSbU58UzHOHrEzeDQTD3YWFmcOuf1xAmF0yxdZmPZUgc+X3KeWPD888OMuiLkcwUMegUWi1q6YdYI6LQKauvMxRax7dtH6ejwsny5g/e8p5UXt47gckVY1GQkPBqjTqEk6csyEPIwOhLmve9bet6bpdpaaUz5o4+exutNkE5LCns0mmbbttH/VSJXMpqh/8g0fQfceEajyAQZlnIdizdW8LsnTnOiy8ep0S8RT0rOHYVgosJ+FQ3V12A3OqmvLWOUAKe6u+ns7mXaN0g6O0l2u5tMNjrzKnJUSitqpR291kFVaQuIZpSCiXxOi9Fo5q53rmJ4KENPb1CaGqWR8hgnJ2PIZDLq6sxYbWp83iTxRJaWFhPHO0aYnPKj0aTJEyYc8SASQqOLEU+eZqR3G8e6JOKkUhqxWeqxGBuRFWqQizXkc0YGh0JUVEjBwwa9kiVL7ASDaVyjYQoFKcDeYFCg0ylwOPUsWwqTk3HGxiJYrRrKyvRkcwX27pukkC+QSEg1YbYdca4oNYu2NieDQ2FCoTQnTnrZvFlfbLutqTGi09Xi9SWZnk7Q2xecVw/gTA7X8Q4p29Ggd5xX4Jp7zAsJYIIgsGnj1WzaeDXjEy4qyqW13dnp4fFnfs1//OBZrr/m7bz7ne/jkhWXSgH+OiVqnRJ7tRGxIJJJ54kFkvgn40R9KcZ6AvQdcAOg0SsorTdT0WymorkER7URQfnGwnzfqnoA59YEURTn1YQPfehrnDy5le9852tv6L1exBtDRaWRVIuNLHDkiJuhoRAdx71svKyS669vKLYSVlQYuO76evQ6JZOTMQAymTwPPthDT4+fsTHpe62LbXR3+Wlqlv6WEkcwF51eEkeI07bcQXNzCbt3TbDxskpCoTSTE3GymUJRhDVb1Bd02mSyeULBNPFSKwTG8HmlmrBv3/hb/ZG9ZfBPjHH46cfo27+b3JwJ8+eDxlTCRLqejgEV4c5XONb3++LPTNpGVi2+hrrqhYRDaZQqBclkhEef2sawa5BQdIp01k86J7W7AwhyDSqFBZXChF5bx8LaVSTjKmRoUCl1XHF5Mwa9kY7jAXK5AqmUNKwjGskSCqeoqjKyeLGDnh4/FouafCGPzxdiciqAKKYR5UkyuQh5MYqgSCBXxHF7B+kf2wEdkhPMbHTSP95IMm5FKDiRxxxkspBK5pDLZzhCrZGAP0UimcUfkDbgLRYNHm8Cvy+J06lDq1Og0yqw2tSoVAJNzWaef34IuSAn3pylvz94hiO0nv9aplYLMxxBEormZsrdekszHZ0ewuE0jz12mjVryudzBE8Cl8tHTY1pJu83hF7vOGcdXyin7myUlzr51D0f4mMfeB8+/5ns1L37B/jRfV/mwacdfPh9d3LrDVuwVdfiHR0mHY+jNZ5fuPa6RtGazOjm/LykrJzJ071kEnEUZssF38tcXKge9Ox5hYNP/J4lm64uhuBL9WCMxbldVFbXkoxFee673+Dur30Xg23+8yf6eigpK2fl6mo0Bh3JqPRzuyHGl798/QxHWMnHP/453vveu/6iBC64KHK9qfjJb35PkzdJxgRud4IDByaLY1Wvu66xGK5dVqbHbJFuYN3uBAsXWYtigdWqZvFiO+vWlbN//xQTE1Ixu+GGBkZdkXmOmdlWrtnv3X33YoCiu6a2xoRKrSAcSnFMu4RFNy6nYewQod8/QvjpZxD+6v2cbtrM44/3c+qUD5VKzqc+1ciDD6rweCiGnv+lIR+LEX3xRUJPPEny6FFkajXqlkXo1qxB1diIwmpFbjBwaMcoR4+6qfWGiUal7CuVrBSVTIdFqKRGuQqtrITxsWl6Rl8kkp8meniaeE6yZCllavRyGzZVFavLLoWkGVnagFquAeQUCgX0OhWpVA61VkFlhYFYLMPateU4HFr6uiMoFXLq6800NVsosag5etRTzOqJRDLk8yIFUUQtGFjZYmN8IoLfn8YoSlk9S5fYsVq1GI0KugcmOTkwzLhvkkTey8nRXkIpyY2nlKuwq6tYUr6IsoZlVJbrGR6KoNdLuTD5vIjNpsXu0M4TrUZdEfyBJDKgudlKKjUzJr7CQE2NEZ83XmxFvBAqKozU1SWoqJBE1ZMnfHMyvWppabHzi1+cIOCXdu/Xb6goBtpv3z7KtDtBaZmO2pndz+Vt5w5EON+Ah7Mhk8mQ6XTIdTqU5eWYVq8u/izILoQ9KqYTEf71qSf5+vPPccOGDdx59dVsXn0JipnWRLlWi8JmQ7dmDdnxcSLPP4/vhz8i9Pvf4/z85zFdf/0fvXP/hwQV33pr87x/3whGR8McOzbBoUOPct99P+drX3uYQsHI4GCYq676IGvXNrz+QS7iDeOJJ7bx6x8/wA2bP4zHn5bqwcxUo1mRazZnq6xcX8zWyucpigUTkzEsM+Sjrc3J888P4/EkKSlRs2Spg/XtFUUCP7edy+E8Uw8Auru8dB2exoQCbSJH1p1m3zNDVN6zDMVMC8xcO/yLL44wPh5Dr1cW17NKJf9fEWSdjGUYOu5l4JiHiT5prLutwoBgV9PvilBqibGmtQ7PL5PEk3kMmtVks2kc5msoMbSTycUYHDlM79AoL7zqIhwbplDIAjI0ynI0qkqa61ajEMpIREvQqB3otBoi0SwKhQy1SoFSJUetkpPLi1xxRTWLW8uYmhwtOvmaGkvYsqWe3r4g42MRvL4kg4MRcrk8YgEmJtKsWb2IgYEg0WhGyibUgtGo4NK1FTQ3Wxh1henu7eP0QB+xxBjp7DiDYzvIZCUXmUbloEFYwZLSK9BqazEajBiMKjyeBAajCqNRjdOpI+BP09npoaXVjsOpxzOdwB9ISWtwiZ3x8RjJVI7mJgvpTA6vV8qBbDvPdRok4evSqTjHj00zO6lxNltrxUqpJtTUmJienqK728eG9WfWuNcj1QS3O4EgyGhqLrng68wNr389lxdAVeUZh3tbmxMe9ZAv5Hj2xSd49sUnaG5YyC1vv4Ob3vYOykulTBmZXIZaq0BdacRWaUQURXLpPPFIhuBknGggRciTYKwnQCE/hFyQYa82UtFkpmJBCWUNpgvmer3V9QCkc/7JJ3dy773/QVNTG9/61n/Q1eVnYkLH2972MVSqP8/Msb9EZLNZPvrJv2dFbQsljoVMueMcODBZ7Jy4/vqGYk5Q+RyOMOWOs2iRtSgWWG1qliy2sa69gv37JhmfkMT0G97ewOhoZJ5jZi5HaGm1cf31Uo3v6fYDUkuYSiUQDqXPCb+HM8LA/v2TjLoiWDV6mrQZ9BrwASUlf3nB1GKhwIEnHubAYw+h1kkh/ObSMvTmEgSlQC6dIZNMkk2n6O0NMOhK4jSYGerL4QnFUKqqEeRaDOoGbPq1qBQluMbc9A0+RSI9SSrnJpWRrrEKuQ6N0olJV49RvxaVYMNiKEUu15JM5Mlk86iUAnqDEmWJlHtot2tZ2VZDJpun61QIpVKOw6Hj6qtq0eoU7Nw5dhZHKEjRJEo9y5dZGR+P4ven0MhAb1BQWWni1lubANixo4+uvgGmPBPkCj6Gx4YJx/YBInK5EpOukub6xZRXraSyspyhoQh6gwqVWiCXE7Hbddjtmnmi1ehoBI9X4ggbNkibBKcm/TMcwYTXmyi2Il4IFeUGautMVJRL7rmTJ7wcOz7NyhWlbL6qlpZWm8QRAim6u/2sX1+J06nD40kU60FZWZDa2tfiCOcOeHgtKBUKykvPHEdnjKJUKvEH3Xz1P/+Lb//wx6xfvowGjZxbfb4Lilz+sVF0ZguKOZvglvIKho4dJur3oXuDItf56kHQPcnWn3wXQVCw+3f3UtW6lLKGJm69tRmdOI06H6V8QTvO+kZe/c0vePo7X+POf/k68hnnWzqRYKKvm/rlq1FqtHg8CfpO+9nWM8jX3/c3fDdRSyajZXAwzHXXfYSVK//yOMJFketNQigU4kvf+n/YFDr+7f1fZOEiK0qlrOjkgjOBw+FQir7eADqdErkgTaubW4xsdilkePFiK35/EpNJxagrQiEP8cQZS2tLi/287pmzv+/xxjFbolTXGCm57N3oN15G5NlnSP70u1i1D1CZ2chRsYyyMml88be+ZWZwEFat+suarpjqO03wgQcIP/MMYiqFqrER09u2oF64CIXTidxgKI5EfXXXCN/57RN0Tu9DuUfBJdp3IpdBIS+yQLWZaMFNf3oXkYIbkQJyFJgEJ2XqZvQqJzqxFIvOhFqjJJspkI/kyedFBEGOw6GlUBCJxrLkCyIGg4qqKiPXXVeHSq2gpsbI008NksnkKSnR0N5eIVl/HXqUSoGdO8dIJLNUVRlZssRWHCO8fkMlW18c4cWtw2SzeRSCjN4+PyAjlcwjiiKVjnoqDfUgA7VKIJFO4vKNEcxN4s+Ms/P0S7zc+zwquYZ6WzOXNC2n2tzEhtZKNm+unRdSClJ2Vo81gEIpo6nJQmmpbp7YOrcVca6bCih+vXSZHbNFXQyVj0TS8zK9enp8JJJZSkv16PVKXK4oA/1Bnn12CJVaQKmQM9AfwunQc9ed599FOHvAwx+Kv3r7Zdx01SU8tnMnP3/qSToHBnhs504e27kTZ0kJv/qnL3LZihXFx8tkMlTV1djvuYf06dOEnnySyc98luD9v6XsK/+KpvkPIxt/KG67beEb2rGfRT6f53vf+zm/+MU3iUSkyWY//emPuOWWT6JQyIph5Bfx5mHXrmM88/K95HLw/nd/FqVKVnRyzeJM1pZ0Q63TKxEEaercXNHKPrcmBJLkcwWCgRSJufWg1X5e5wxA62IHrYsdFAoiA50eRk8FCJwK8uu/38uiS8to21xdtMN7PAkikQxyOSxYYGHVKunmzGpV/8W6uBKRDEMdXgaOTjPZH0IUpRDxhuUOrBV63L4ED9y3k+PdjzLp3UtH978yNVWGXAZG7UoEmZl4agBv+CUyOWnjQK10otfUUV5yM2pFHXpdDRq1jkJBRCGXoVQIiJocBr1SmnYrB4UgQ6dX0NxsobnZismkYtlSB9u3jzI8EsFkVs8E+FbQ0mrHbtfy0EMR/L4EJRY19fUmMpkCVdVGNqyvxOWK8tLLI0SjGZJJKVz4eIeHo8emKeQLGI02FjZsJJvNYzSqCQZTRGMe4qkhwvF+Jt09/OhXLwFgMtSwqHEN9pLVLFu2kltuXlB0Fs6uRa8njrNUR3WVEatNTU2taUZAEuf9HpUVElmZDY0H5rmqli2dXaciXo/kZp9bE6oq9XR2CORyBVyuKP0DQfbvm8JZKpHDeCJLoSDSuvjCa/5PqQktrXaef+wpunpO8MAj9/LUc4/RP9THN777b3zze//ODdfdwne//tNznieTyVBqFFg0CiwzRCqXzZNO5AhNJwh7EsQCabr3TtGxbUz63O0ayhrMVDRbKK03YS3XIxf+sNHtf2g9ABgaGuJ97/sku3Y9C0B39wkuv/xuDAYzjY3mN+Qgu4g3jlgsxr4DB3jhhef5wt9+lUWLqlCp5EUnF5zJCZoVnfR6JcJMBtK5HCFC62Ibfn9K4gijEfJ5kXgiW3zN2el1Z+Ps73s8iaKTay5crghHj04TDKYQRRGVwQp5sBjljAJr15bxl4RMKskLP/g2A0cOUte2kurWpZgcTpTnceG/8uowv3p2B/2uXWg0Ouqs70YuA7Ego8K8hWTWjTuyjWRmEpEccpkKraoUi74VtakUpawMk7EEtVpBMpkjnysgk4NSoabEqiURzxIKpWc4gpL6OjPr2itQqQRqakw8/fQA2WyB0lIdl192pj0wmcix8xUXiUSO6moDS5bYiUQyEkdYX8XWrSO8+OIQ2WyBfL7A2FiY554bwu9PEQqlcDgasJkbkMlApRJIp9NMTo8SSYwTTbro7NvO4ZPPIcjVlDuaWdqyknJbKxs3Vp2fI9SacDq0xa9LLJLwOSu2zm1FnOumAopfL13mmOEIypn8r1mOIKGn208ikaW0VIdOp8TlijAwEOTZZ2Y4glLOwEAIp0NXnOh4Ns4e8PCH4q/uuIqbbmjn6Re28ttHHqVvYJDtBw+zHXjykjU8+fTTtM9ORJkD/+QYJrsTherMGjM7SgGYHhqgtKHpj3o/oijy8s9+gFqnp+3q6zn89GMcfupR3v7pL3DbbQspibxC9y49ztp6jFYby6+/gSNPP85z3/8mN3zy88jkcvoP7qWQy0lh+MC9Dz7Gg48/QDQeAuCnP/kJb7/xI3/RHOGiyPUmwWKx8Nvv/Yy7Pvwe/uv5H/LMt77J6lVl3HHHmRNuNoR+VnTq6fbR3eNHo1Zyyy3NtLTYi+6VSCTDqlVlfOrTq3C5ouh1inNCtufiQu1ac193FqqaGmwf/gjTew7D08/x9/knuK6kgmPpOyWbqVzaXbVa//x3aURRJPbqq/h/9nOSx44hN5vQXbIaTetilJWVCBbLvIDwIZeXnzz6NL/d9gyxtOTIUmRUdOV2ESv4CGWnKJBHgQaLUEGjagNmeQV6uQ29TpqAGIlkyOUgnRFRKESyWUngkq7JBTzeJFWVBpxOPalUjgULrKxfX1H8+/l9SXp6fNIkzUo9mzfX4fHGZwSgDD5fglQqT2uLfd76Abj2ujoMBhV7943jckXIZQtoNErkcsjlpNHFN97YyMmTPnp6/FRXWNFptHimq6mUr0RhEvHEJvCkXHjCLn67/34EucCalsWEVJdx82WXcdedrcV12NXtI5HIIggyhobCLFpkpb39DNG12TSYTCpsNs08NxVQ/Hr1KulGaHZdNzWWsOnKmnkTRycnYjQ1lbB8hZOaGiP339fNxERMcgQsczAwEGKWAAHzssBaWuznrPE3irPPm/ds2cLd11/P8dOneejll3lkx3Z84TDN1dXF5xzr60OnVrOorg4A9YIFOD7zGRJ79xJ96SWGb7oZyzvegfOzn0E4T2DlH4pZh43ZrCIczvxBwZPpdJr77ruPb37zm/T3SwGTFRVVfO5zX6S5eTM+X5JwOM3zzw/zox91vOFMl4t4fXzqU/fgH/dw/6PfZumyaj78/k+ccz7P5gR5PXEs5ijdPT66u/2oNTM1odVedK/M1oRPf2oVJ076APE1Cfz52rXkchkLVpTS3ObEPxlnrNtP155JTuwcx1ZjZGm1CZcnzvh4BEGQE4lkkck0M899yz6qNx2iKOKfiDN6ysfICR/Tw9K1vqRcT+MKJ5YyHYYSDdF4mpdf3ctvHvox/cP7is/fvutxCjkTkcSpoqilUVZh1C5Dr1mATt2MTmNCJpcmDmazImIBEEXyuQLZrPRZazUKwhGpFUarUeB06li8RHLgzQak+3xJ+vuDxKJpzGYVK5Y75/3d+wdCxBM5KiqN3HrrgnNcSddcXYcgwKGDbjLpAoI8V3TnGY1qFi+xkYhnmZiMU1dnJhBQEQjaUbCM8hIBmRBjynOCeLqXrv7txBOPsr/DzvDUdVy96XpufccVhINZtm8fpbvLRzicpqm5hFg0y/59U2zZUl8UmtranExMxBEEGZ2dHvL5M+/zbFeV1xMnEslgMWtYttSBxaw5I/qG0ihVAga9ipoaI/fd101Xl49U2sJ119bjGosw0B+iuFEyJwds9r2cPeDhjeDsc2ZxyzL+35f+ky98+l944eWnePyZ33P42AFsJWcEglwux45dL7Fx3RVotec6BBRKAYVZQG9WU7mghHy+QDaVI+pPE5pOEPWnmDgd4vThaRBBUMixVepx1psobzDjrDVhds7P9vpTasLJkyf5xje+wYMPPkg+n0cmk3Httbfxznd+EjAxOBhi3boKjhxx84//uPtiTXiTUFJSwr0//TV33X07P7r/azz665+xevUi7rhjUfExszlBs6JTT4+f7m4/Go1iph7Yiu4VqR6UznCECHqd8oIh2/Da7Vpn5xPNoqbGREeHh2Qyj1IpgEKLDCW5jHRNs9neWo4Q9rjZ9cCvCUxOUNe2kvXvvPsNZxidjWjAxxP/8RWCk+MsvmwzVa2Lz+u+GRr28OvfPcqTzz9JcoYjpLMxxsVdJDKTxFIuRDGPXKZBr6rGabwMnboGjcKBTq9EoxGIRLLkcyLpdAG5rEA+V5CuVKKMcCRNNJalstLIgoU6Usk8CxZaWd9eUfz7+X1Jerr9JJNZKioMbL6qFo8nURSAfN4kyVSe1lbbvPUDcO21dRgMSvbunWB4OEwul2dqKjZTn2Y4wk1NnDghcYSKCgsajYbR0TKMqlVULdYzMT3MlPc0kegoL756PyBjWetikoUruWbT5dx1V4u0DrdJHCGbKyAIcvbvm2TLloZ5QtN8jnDGTQVnasLq1WdzBAtXXlkzb+Lo5EScpmYLy5c7qakxcf99XYxPRKmqNNLWZqe/PzTvc5ibBdbSarvgGn89nH3e3HXbLdx56810dnXx+DPP8eQzzxIMhViwYEHxOQcPHsRisdBYX0/U66G0vqmYGwZgtNmRyeVMDw/+we9nFt27djDWdYKlm6+loHGgtjcwcPQwTz12nLaVdfTu24WzrgHNzBqvWrSYRDhM964dPPBPn2H5tW9j94O/wVJVy9YDh7nv7/6RsQkposhuNnHz2tW8/cOfJRAu/EVzhIsi15uIazat4fef/Qy3/+d/8u5/+Rce/MpXUM/Yvc8m006Hno7jHiLhDH5/sniMkye8DPSHMFvUxUl4syIBSOR++/bRIrmfPW44lMLtllph3gjZl8nllF22lu6klZMvvcryTB9LO7/D/s9vZSgkWZnFuVL6nxlEUST2yiv4fvADUl3dKGtrMd10I+pFLSidTuRa7bzHe4NBfvzE4/zk8SeIJaXPSZApUMgF0vk0k5lu7OoqGuTrMMuqMMjtKJUycnOyILPZAqKYK964S5n0ImaLmkg4hdmsQaGQkc2JqNUCK1Y4MZnUgCjZngdDrFhRSle3j7HxKIJcVhxvvnfPJK+84kKrVVBRKQlhgUCC++8/RTCUJh7L4g8kuWpzDdU1Rmx9WgKBFNlMHkuJmuoqI7FYjlg8y6grQiyWxetLkssVWLu2gs4THkJBGTKZjEXmBZSGaqms0LPl5nKOD5/k2T17+eJPfsIXfvRDVjS20r5wDbp0LUFfnmgsTSyaw+uTwkaDwVTRzbV+QyXVNaZivlxZmW6OYzFNOJRi375x9u+fmpcpd/bE0XhMyhyYPT/WrSsHYN26cpqaS6iuMc0j9HNHDl8oCwxeW/yF87c5ymQyVi5cyMqFC/nqhz/Msb4+yu1nzrUv3vcT9p3qpLm6mhs3bOTtGzeyYsECDJdfjnblSiLPPUf4ySeJvPACjk9+gpK77vqTJjHOOmwUChm5nHROvhFCI+WsrOHEiROAdJP9hS98gY9//ONoZ86P0dEwTqefn/2sk6NHp4E3lulyEa+P2loz//TZz6HX5/nGd/8No8HEu+54L3AumZ7973jH/JowK3QMj0RQKYViNtLmzWfW8tkEf/bYoXAK95R0rTub7MvkMuxVBmyVepLRDGM9QaaHw8RcUbRyuO2SSvo8cULhFP/2b13An3c9AEjFs0yeDjHa5Wf0pI94OIOglEuOrZVOrOU69BYNap0CuSDjlT3b+NZ3v0VP/7HiMbQaM+lMDE/gGCqFA6N2CXpNCzp1MyqlARmQl6IXyWRF1GoZhYJYlN8zmQIlVg2hUIqSEul6drovSCZboLrKyNKl9mJIu9RiocPrTdLTE0AUQaGQF69ze/ZOsnv3OLm8iNUqjZb/9b2nsFq1pFNZenuDbLyskjvuaME1FqXrlJ9UKoelRE1dnQmtRkkonMY9lSAYShXbYisrTdIuf66AXC7Dbi9Hp7GiUGzixhsbUOumeObFZ9l7YCcPP/5bzKYSFjVdjt3cjlJei0wmTe51jUmbLOaZNpTZNfie97Ry4qSPSCSNyaSaNxk0FE7NDFOY4MiRaWprTfPOgVnU1JqYmIizrr0ch1PPuvaZetBezqrVZdTUGKmpPlMTOjs9r5kDNhevldV1oRZHk9HEO2+9m3feejdj46MICkXxOJ7AST72d3+NRqPl8vVXcu3mG7hy49WYTOe/RguCHEGvQqNX4aiZaXHMFEjFswTdcWL+FLFQmoEjHk69ImXBqTQC9mojpfUmSutMnBoIcuSEB4VS/gfVhIcffpg777yz+P/XXnstX//611m+fDlwph4sXmzjH/9x9x+U83URr4/lyxv52de/wj3/9CXe+7ef5Lc/+WEx2PpsMu106ujo8BA+H0cYCEkC58wkvFmRACRyX+QIM6KYyxUhHEoz5ZaytN4o2Xc6ddTXmRkZCaPVKsnnIZRQk05I94JvZU2IBfw89OXPk8/lMNkdHHv+KUZOHOOdX/o6mplQ+DeCTDLBwJGDvHr/LxELBZZddT1ljc2ozuYIPj+/fvAh7n/4MZKpGY4gVyEIAplsEk/kIGZdLaWmy9Epa1ErHChVMnJnjHNks3kKBcjnpc9FLEC+UEA/4+a123Vkc3my2QJmXYYVjVlUJCHvpndvL+6gitCyFrpPRxkbjyKXy1AopN2lvXsneGWnC61WSUWlYYYjJLn//i6CwRSxWJZAIMXmzTVUVxux2SSOkMnk0OuVVFcbicWyxGJZRkcjxGMZfD7JFb720gqSyRyhUAqFQqC2ogmVrJyFi0q461317D24n607XuFbP/gR/+8732VRUyurl21AITYQ9ItEYxli0Sw+n7ROg6FUsXV2/foqqqtNxXy58jL9PMdiOJRm374J9u+bnJcpd/bE0Xg8O8MRpPNjXbvUMr6uvYKmphKqq03zBN55HOECWWDw+lld52tzlMlkLF+yhOVLlrDWpCKhMWCz2YqbD1/60ic5evQgC5ubqVaI3LZwCa2iWNyokAsChhIrgcmx1wytvxCC7kl2/uZnlDcvorS+kd6hJJ5sDfpsLye3v0w6uIRkJIy9pnaeS3HB2na0RhM9u3ey9cffRW+18y+/e4xxt3TvX2Kx8JH3/TUry6xMdp9i86YKfGH5XzRHuChyvclY09TEg//279z2D//Auvd8gm99+O+48orG85Lp9esr0BvOtCp6vHGGZ3acdVqllLNhic4j52eTe5cryp7dE8TjGWpqjIRDKTze+OsGc3u8cU6e8BFJiGSXX8qB2FIqRw+zItzHN4UU49e/my2bNr3ln9cfg/TAAO6vfIXEocOo6uux3HE7qkUtKO12KST8PHh8x26+9cAD876nkRuxK+qwKGsxyysQBAGFIF3ACgVxnsAlCKBQyGDmBn8W5eV6/P4k+Tzo9Uo2barl+PFpUqlc0UY+MBjG500giiKRiLQLo1QIOBxa1q+vwOON093tx+tNIggyFi2ysnSpg6mpGAcPTpFISIH0ubzIrl0TfOrTq2ZIjAKPJ0Eqnae6xkRtjYn9+6eonfk6lZKcAgaDErNJsqKnkllOnw5SyBcIhTJMuQpsXLQRJ4sxvA1eOrKPXacO8IPnfo1cJlBrXkCjaTkapNYdQZBJWXGTMSYn4tz9nlZWryrjyFE3bnechYusxbVntkSL00FHRiMYDcpim+PZuXH19Sbc7gQul7Te29ur5jnGzl7Ps8KYRq0473oH5rkiz3cMeP2WFqVCwdrFUraRyxWlp8eHTFSgUirpHxvj2w/+jm8/+DucJSVsWrWK69e1c8s734nu0kuJPvcc0//+VYK/+x32e+7BeP31yF8j42Tv3nG2bRvlqqtq57WFzbaNzN21F/N58oFAcXEKJhO+YJDnnnuOd73rXSiVUpbSVVddRSAQ4LOf/Swf/OAHMczcHM7NX9qypYFkMoter/yDM10u4vXxsQ98jslpP//81b/j2LFJvvCZT16QTK9vr8Cgl1oV5+YPqZQCRqNyXnviLM4m+Hv2TnLo0CR1tWbMZhU63fmviXPJvrXeSFQmYqjKM9IdxKFTUdWoIVcQ6ZuQUW/9Bp/4h3Ot+P+TSEYzTA6EmDwdYrwvSGAqDiLozCpKynTULrVhdurQGlSotJKwNYtpd5R/+so/4vaMFL8nQ4FaUY3DtBS1ohWVwolcJkNQgMGgIpPOk0iesSYZDQpkcohlCsXvqdUCFouaYCBFKJRm8+ZatBolvb1+BIWctjYniUQOtzuJx5sgmcqRTObQaBQIChmtMwLN0SNuxscihMIZ5DIZJqOKQkFkaDDM6EiESCRNPJFj964J7rijhQ3rK/D7kxw57KaQh5pqE5s317Jn7yR+f5LaOiNjVi2LF1sZn4hjNKpobLSg1SkZGgoSj2eQyWQMDkZob1/AJUvfyw1Xf5RIzMXLrzzFngPPEU8+iU5TSoVzA1XOy8mmjajUCmw2DZ2dHg4dnmZiIs573tOKxazGPRWnptpUXN8Ws7TmLWYpMyYayxCJnpkK1tPtY+++yeLOf1mZHrVKWrtn14OzRbG2NiexeA61RhKfLuTgmuuKnD3OXLyRFsfqqtri36i3N0A44aGqoobxSRdbtz/H1u3PIQgCy5euZP2lV3DHLe+ioqzygseTyWQo1QJKtYBxxj1fyBfIpvN0dXoZ7g1gtKhJxbN07Zrg+EsuAMrlMtRmJYJeiTaeY7w3QEm5Hp1JhUwmI5/Pc+DAAURRZMOGDQBcfvnlqNVqbrzxRj7/+c+zatWq4vs4e0T9H5vzdRGvjcqyUu794fe44333cO1t7+Nf/+7fue7a1vOS6fXtlej1Z1oVPZ4EwyNS3pNOp2LKHcdsUc8j52eTe5crwu7dEyQS2RmOkD7vNMWzyb7Hk+DkCS+RaJqFC62k03kG+oMURDXXLW5l/bd+yOar179ln9NLP/s+uUyGtqu34Kitw+sa4cjTj/HEf/wrt3/5qygUF76XCrmn6N69k+HjR5geHkAsFChtaKJu+SocNXUoznMf9vzLu/nZb+6f9z2FXI9B3YDe0IBOXY1SqZSmb8tkFAqFeQKXIEgCtkwmm9t0MMMRUqTTBUy6NJcszJDxDaCWp2AacgoN2bwAhSzlsgzRk6fQZkrRqOyU2Iysb6/E40kUOYJcSNHSYmPpMgdTU3EOHpginsiRTGTJ5QvsnsMRNBoFXk+CVDpHdbWJ2loT+/dNUlsrfZ1K52c4goKyMj0LF5aQSuU4ccJHvlAgEskSiwi0tWxALWvlr98hZ9eBvRw4uovfPv5z5DKBUtsiym0rEKhGJgP5jKNL4ggx7n7PYlavLuPIEXcxX2527c2dDipxBFWxzXHWiTWbG1dfZ2bKHcfliuB06mhvr6S9/cx19ez1PCuMaTTCBaeHznVFnu8Y8PptjmabDYtcIJdJ09XlZ88eF6BGoVDQ199PH7DtK1+n9Me/pH3NJVx9xWVcs+kKTI5SIl4PmWQSjf6NibZ7946z49nDlPieRKnWUNe2En2JlZqaJFCL73gZykwP+ckEBquNkor5dcfn93NocIQb3vNB4gEfgkrNhukwuw8c4APvfhe33/R2tBoNk6d7GDl6iBeeOMIlV675i+YIF0WutwCqlJN2+63smX6MT/7wa+xb873z3jzNZmfNtqqFZ0a0NjVbqK0xMeqKoD+LoMzty589Xj5fwB9IodEokMvl5whjMN+x4vclefzxfjyeBA6HFq1WycRkgiH9cg4barlEfpKrho8Rvf0Opv/qLuwf+tCb0nb1p6IQj+P90Y8J3HsvgtWK+bbbUC9ejNLhmOeUmfbE+P69L3FqcIjGJjP7e49waqQfkGEU7Djli7Ar6tHK5/9OYgEUajl6vQrfjGsJpKmAer2SfL6AQiFHqxGIxbI4HJqZcNA4iAW0YhpCXlRRP0aVHLk/izfhxygXKKjBWm7GZFRitWoxm9VSm0eLnSNH3ej1SpqaLIAkltXXm6mvNzM5GZ3n5Lrsskr8viTxWI7aWhNr1pQx6opQYlGzf/8UgiAjmcxjtqj50N8sY6A/yONP9JPPSTvu7ulE0ZGl0eSJhNPs2D7C1FQcvz+F1VrPFeV1TKl8uGI9TMS6GA49iFlt5Zr6y1m6soFsQsDvT+L3J7n/vm62bKkvruvZKaHL25zodQrkgjQlFCSBbHIyTjyRo+O4NClxciJOWZl+Xj7dLHp6fLy8bRSAq6+qnefYammxE0/k2LN7gqGh7uJnORdSMGd2npvgbPh9Sfr7A+h1iuI5cyH31+wxfnPtv6DWirx06CDP7N7NS4cO4QkGeXjbNoLRKLdecQXqujqU99zDvb/4BY0uF7V//3lUX/1/GDZtwnj1VehWrWIiIp9HKrZtG2XbNonAtLdXkg+FyI5P0PfYIYZ2dbGyPMNiIUJ2YoLe6WnSmQwnUymOJBPsSyQ4lkhQAMydnbztU59CVVvLP//zP/O1r33tnADhs8cR/zGZLhfxxnDsmJtc7HqqHF6eeOE76A0yPv43nwDOJdOzuVpzBa6yMh01tSZco5HzClZzs7sA/P4kkXAGnz+JwaA6rzAG810r3T0+Dh6coqbGSDCYJhJKs6zZhkUjUGmz0Kp1cOqRNEMv7aGs3kzFAguldSasFXpUmrf2NkIURRLhDP7JGJ7RKJ7RCJ6RKPHQTBugUYnZoaVplROTXYvBqkGlkUSD2Z3T06ddfOO/foRG2Yig7mffoa34g5PIZEpM2uVYDJeiVy9EkKvm8hNkMom4aLUCkfAZQcZoVKBWKTAaVWjUWQLBJCqlwMaNlRw5Mk2hAGJBxGRSo9WlSKbyJOJZJqckJ4XBqAR05PMiWo2CmhoT9fUmli11FP8uVdUmLgW8viRarQKHQ4daLSedLsxzcnk9cU6c9M3kNlaQThewWNRs3z6KWqNAq1Fgs+lobCihpsbI6OhpJqdiWG0abDYtr7ziIp7II5dLrzU4FOTw4SmSySwFEVpb78SsvYGuniO4/XsYGnuWQdcT1FWv5Zor3kn7uvUMDoU5cdKHP5Dkvvu6WddezqJFVtKZHA892E1bmxOdTlHMm1vfXkE4lEYQZJw46cNilqYlHj8+jcmkYs2aiuJj5+LFFwbZtXti3oRSkM6bRCJHb2+APXsnSaey81oXZ/F6NcHh1OPzJdm+ffQcZ+TZzq8z93Q385EP/RXdvSfZuv05Xtz+LANDpznacZijHYe5ZtP1RZGr8+QxguEAbUtWUmKxnvP6Z7/W6ZEQHb1+li93cPvti8hl8kyMhDl51Es6nkUjlyGL5+h9ZYKubWMEYtMMe04x7DtJ5+A+QtEAa1eu5+HfPIXOpMJoLmFkeISy8nOzlC7WhP8+eN0qFla9m86B+/jn//hHVqz8+XnJ9Gx21myrWjiUJp8XKS/XY7OpMRnPzdE6lyOYKOTH8PuTaGauiWcLYzDfseL3JXn8iX4803EcDh0yuYzJyRilpTrErIVag59Y0IzD4XhLPp+x7pMMHz9C62VX4qiVRKnypgWs2HITR555nK0/+i5v+8TfnfO8Qj7Pnofv58gzj6NQKrFWVNN0yTrMzlIspWXoLSVSm9h0nB///DmGRiZYssTJsZMHOHriKABqhQ2zdhkmTTMqRcm84+dzoNLJ0elU+H1n3HVqtRy9QUUuV0CpkKPRyInHcjgcGux2HalIgEsWTlFniyAGBaIZM6O5RgRLIzqrHVGmIBTKUFeew5LtxjbRwY3LAtSv20JLq40jR9zodEqami0A6HRShld9nZnJqdg8J9fGWY4Qz1JXZ2Tt2jJGRyNYLGr275tELshJJnISR/jQMgYGgjz++AxHMKtxuxNF0ScWzdDT42dqKsbUZBx/IInVWsfShlpKjT48oZMEYqeY8t2PTmNl49rNtC2/gXRKid+fwu9Pcf99XWzZ0lBcp7NTQiWOIGXOtc5s5MoFOZOTMeKJLB0d0qTEyYkYpWX6efl0s+jp9vPythEArr6qbp5jq6XVRjyRZffuCYYGpfdwtqPL5YoQiWRm6sEFguNn4gT0OmXxnJkrCOtLbPhGR8im08UN6XvueRqzWeQ7X/onnnzqKU5P+5j2enniuedJplJcs+kKLGXlTJzu4Rc//zlXXHU1LS0txc4egInebp7/0feIR8IYrXac1ZV0n3KjiQ6SVBlZtuUa7NU1yGQyBgaC7N83yfKmRaROv8Jkl5cF6zYiV2s5cOQoRzo62b3/AMdOnEQURepra1m5bCkAn/vbj/Dlz38O5RyDiKVMcsn1HDmBrrTxL7oeXBS53gLs3z+FiUouL3snB4NPcOPffY5Hvvr/5rUdziXSc6cuNjVaiETSdHcHyBcK84Lm4VxhrKbGyJYt9ezdO4laLaesTEcmneMXvzhRDCsHyRY620q2ffsoLleEVEpyCDU0WLBZNej1SgyGWjoCTjQN0Bo+ReDe3xB84AEs77gd2wfej7Lsvz9oUhRFoltfYvprXyMfCKDfsB7d2rWoKquQzenPT2Uy/OyJJ/j27x4iGJN2u3YMyChV17PG/jYWOFsYH33tUcH5gkg0euYxggD5fAFlPsnK0jzN1hzyaJgyTRoxFEQ5GUNjyaAuyUMexEMiraJINiGSDYpkRJGcKFKpVKIYkiHKZFSrtAhmM7JnTLx8r5zxrJHa5lru+vAKZEolJ09IeTtLlznYvHn+NDOPNy7lVU3GuOSSUkpKNIy6IpzuDxXdUpFIGveMLX3//imm3XHUagUdHdP4fWlkMtBqBRYsKOH4cQ+RSJZ0Okc+L5JK55AhQ60wsKZmA+n0pYTyUwzFOnni8DM8dfRZLl+6liX2S8mGDUxMxop97/39AbzeJP39IU6e8HHJJWUU8pBMSsVTym8Q6esNYLNp0RsU8yaAJtzZeeu9o9NDR4cHGeBwaM8RsWYF3tn3MDuwYVacOltYnj1f4EwI8vnaHvfumeTQ4UnWXFIxb1Tx2blft1+5mduv3Ew6k+FgVxc7jx5lSeMZ4jXh9/OpR6RR0ypBQb1BT/3QIPW//AW1ShUtJQ5spjL8TivyKis3e6JsIoh1W5y+J4KIqRQ5UUSdz7EUBaLbTLLWSY9SwVe8Xrr9PjJzQ2+AVqMR7xNPMvjCi6ibmyl511+hvPXWc9b5HzKe/iL+NBw/Jo2/bm18N4taSvntI/+J2SLymY/9Q1GEOZvczpJxg1GFw6ljejrB2FgMh1N3DnGfDSh3uaJ4PfGiG8xiURMKpUlncjzxRD9+f7IYaO71xAmF05SVSzXhxa3DBINp5DIZ+YJIviASzGRparPjnY4xHc7SVGnApFXgG4syfMI7064NhhI11go9ZocWk12L0abBaNWg0StRaRWSi0p+/omjhXyBbKZAJpkjEckQD6WL/4Y8CYJuKaw7N+OWUqjkGK0aSsp0VC6wYLSp0Vs0KDUKlGrhnNfp7e/m6//5VXbv34Y484YFuZ6a8rVU2d+N2bCIQODMNeec5huZ1KYej2axmVToVAqMWgUWowqNSo7DrsOgU5KKZ9FqFaRSeS5baEcsiChVAtpolgazEtliPZl8jvH+EdzeGKmcQENjJQajGqNRSVOTjlhU5Nf3niTgT7N4iW1mqmBzUcSaDXefK7TMze3SqBU0NZegVGTp7w8xPBLBZtNw6aXlzLbMA/j80sCCQwfd7Nk9gVyQoRBmQohTOfbtlSa25XMiMjkcPDCFTC7DaVuCzdxKLp8imTvChHc7P73/U7y06/tcvu42yss3MDWVZWIyhms0Qlubk8ceP00smsXrTZLJFBAEGQ6nVJsaGs2YTKrie7PZtKxYUTrj5FLijmfPEWh37Z5gcDAEME/kgjPX+eMdHgb6g8TiuWLu2exnNvsYnU6ByxUtPnfuuXchZ+SaNfPrwdlussUty1jcsozP/O0/MD7hYs+BVznWeZhFC85MOf3Ng7/gyeceAcDpKKWxfgGN9U001S+gvKwSs34Z/afDxePPFbAFhRy5IGPCH+LFfZ2kU2ba2yt5z92t/ONXPsPuAzvw+qfnfSZatQFiep75fse8TC+Nvh+VRkChFlCoJEE4nclTJ8qJdPh4vDtILlsgl85zxxcvQaH449vtL+Jc7N83iVy0srz5vQy6H+SuD32EX33/O6xefSb7cy6Rnjt1sanRQle3D/dUnHXrKs4Rq84WxmpqTGzZ0sDefROo1QLlZXoymfwZjjDjGg+H0sVWslmOkExK52BJiQaNRmDpUjs6mYLk6UHy0am37vN59EFMdgdlTc3zXFdVi1qJ+X307n0VR20da266vfizVCzG0//5/xjvOUX98lVULFyM0WpFqdEgnxEPUqkUDz3xFD/4+b2EItJk3X0dYNRW01hxDTXly3BPvMZ0bJnUihg7iyPk8gWy2RzVVSbq6s1EIhmamy2MDUygjBxnaUuAVFaBh4VcfssNvLDTi06jJp7I4I0k0enk+MJKyqorWHnjBkZ6uggcfpCxA09zYP8QY34zi5fYede7pKyrkyek69PSZQ42nzXx2ONJcP99XUxMxmhttWEyqnE6dAyPhItuqUj0TOvq/n2TuN1x1GqBjo5pfL4UcjlotQrqG8zs3TNBJJIhnc6TLxRIpXLIZHIUgoElTZtIpTeSyk4xFTjC9r1PsmPfk6xd0U5dRTuZuPUsjhDE602c4QhrSiXekZI25mcz3mbrgV6vnDcBNB7Pzhus0DFzrZY4gu4cEWtW4J3PEc64Fc8WlmfPFzgTin++tse9eyc4dGiKNWvKWVplY+xUJ5lkktrasnlt46vrq6m5ZQsrttzCqYEB9h48xIoZcclSWoYnFOEbn/4MABqNhgULFtDS0sKCBc2M791JRYkDg6ESZbqA1zWCQZkjamqmYdliyhqbERQKsrkcL2/rpq8vgt/v4Kb1KxmccPGFH/2C/uEvks3Nr6FLW1tIp8+sX8t5DCxaowmFWkOpIfQXzxEuilxvIiYmokz0+IvOlXXrlqOzb+S2f/gHrvzbj/GTz/0zqrxlnrAFkvvF7Y5TXy8R/uPHp0kmczQ1W87ZbTxfBtfqVWXEEzmefXaQQ4fcM6QojsmkonrmhJ3bSjbb6nXqlBePJ8nERJRbbllQnID3zK59PNrv5qYr17LhmmuIbttG6OGHCT7wAPoNG7D+9V+jb18376bprUKq7zTTX/0qiUOHULe0YHr721EvWIAwpyf/5f3H+NpvfkPHUDe5IumXUSKvYoF6E1q5GZ1MoG1JOR73KJn0+XMENBoZyMBSiFNrCFOvjlAhj1CqiKOUpZkKZZny5pmUydghyrjZ0cy01kJKoeUhTy/7fINE00lyhcI5x/5Q1R3UGrSsXKjjt6d28bsTO1HKZFgEBVZBjrVf4ImXlJQbzGysaKVQ0sC4qg2n48xN9Wz73ZQ7RiScRpDLihfgikoDdbUmBEGGyaQuZlitW1eO359EpRbo7vYhilJRbmqySqOBVQr0ehGTSUkkkiWTzZFJF1Ao8jN2ZgVmeT2LKpvRmUV6vMfZ2fUqLyf3sLJxCZdUbyCbsfP44/24p6UJYGq1nGAoTXe3n0svLWd4WJqEojc4WL+sErPlXJeUxxsHfPPabZe3OYvjtZe3Oc/rsGposJDP5/F6k2x9cZjp6QQrVpSyebN+nih15Kj7vKH4Z+96whknzNwcjPNh7vu5bMWKedMXAaKJBFesXMnR3l6iiQR94TB9c37+boWJj9iU6HIxOk6Oc9vevagFAaUgkCkUSOfzxbV0ZeVGLq+9gss2NuKwpujYuhUAZ0kJ7UuXsr6tjevXraPaaiMfDJLo6CB18iTuf/lXvN//Aba/+Rus735X0fH4h4ynv4g/Hj5/Aptdy6IWG5s2VdPefi0//XUt//FfX2F8YozPfeyruN2ZeflZPl+S4x0eHE4tJpMK95TU1iZdbs+95p7dgrVqdRktrXZ++pMODh2eoq7WTCKZJRLOYNAraGmV2tzdU1LrgMOpZ9OmajRqBV5vnLHxGEaDkrpaE8uW2hnUZ3jg948Sytr59Mc/Si5bIJ3IEvEmiQZSJCJZov4UvrEYqXiWQv7c66tCJZcEKJkMmQxEUZo6V8id+1iZDFRaBRqDEq1BSdUiKxq9Aq1Rib5Eg3KGlAtK+XlrUC6X48e/+DG/feQXeH2Txe8LcgNW4yac5utRq1U0NVpIp3MEApE5j5HhMKlxmNVYDSocFjVGjQK18gzJLxREEpkswViAialRUvkgkaSXSkcTZZYlyAUZwaSH+1/4Asl0hFTm3OvI+pYbWO38FPlYkuBUkCs/ewMASkGPXG5g11ErO/fXoFDYaK5fzsplm3BPJbCYo/OC22fz2uKxLNlsgf5+PwF/mspKA5UVBgRBVgx0t5ila9WmTdXE41n6ev1kc6AWZDQ2WsjnReSCDJtNQyyepVAoEIlkii2aggBOpwGbzUpp6V1EI7cSjPbR0f0M9z38bdTqH3P1FXdQ5tyM15vkmWcH8EwnKClRk0xlGRwMzxAIkePHPIgiM+HCZ97b3N/NYo6i0ymKExodTn1xMullGyvPm2sH0N3jR6UWmJqMMjUVo729sphhN/u42VbDWcxtHb6QM/L16sHc91NVWcOdt93NnbfdPe8xZaXl1Nc2Mjw6iMc7jcc7zf5Du2c+XwV//5EXsNsl4flDn3g3ew/uQqPWUCgUSGfSpNOSC1ul1HHD5fdis2tQaRQEIl68/mkUCgVLWtpYvWIt61Zfxqq2S5EVBNLxLMlYlmwqRzaVJ5POk88VKORFCvkC6XgWERGDVoEMyGWlvDadWU3Ek8Ja8YcPdbmIczE5EaWnx190rqxrX0F17ZW8/+Of4vb3fpCvffHfsBhr5glbILlfpt1xGhrMqFSSqzQWz573Nc6XwbV6dRnxRJZnnx3i4MEpnDMbJyaTiupqiSPMbSWbbfU6edKL1yPFaFx+RTXr11eRyzj49c77CPseon5VPddcs+7N/YxO9zDWdYLWyzZhKDmXYC9s30jE52HPQ/ejL7Gy+LLNBN2TPPkfXyEW9LN087VUNC+al9u1/1AX//WTn9LZdYxcfpb0y9CpqigzXY1G6cBkVLFyeSXbfKNk0tJ9l0mTprk0hMOUQAYEEjpOe+1EkwKCQsrLymXz5HMQjSYJRpKUxP2k0h52vtTDFXU28noVk7lmXu7tYmzqXr792HfJn7U5CVBW9g0GByOUlGh48cXfsH37gyjkAjr1S4CBA6fsHOmuQ8BEXcVa1CrDOY682fa7KXeMcDhNNJLm2PFpRBGam0uoqzUhF+SYjOpihtW69gr8/lSRIyBKNbhtmRO7Q4fbHUevV2IyqYhEMmSyeTLpHAqlxDVUaQGLvJ766iYMpjsYmTzCwY6d7Dn0Ki3NS1jafCXZrIPHn+jH7Y5TUqJGrRYIhlJ0dwe4dG05wyNhBvpD6PUO1q93FCd9nv27AfPabSWOIH1/eZvzvPlaDY0W8oUCXm+CrVuHcbvjrFxRyuaraueF0R+5QE24EEeYzcrTL7VSyOeJ+jxYSs+YQEZHw4z0DmK0GNEZ9Kxfu4b1a9cUf252lpHJ51m5uIW+ERfxeJwTJ04UM3QBNq+6kuuuvZm2teWMjvdyzyc/i0atRvmogkw2SzqdLnLeFQtvxmSqQihbQFN5Od0//w0ATrud1SvaWLNyBVdu3EhFWek5a+9syGQySsrKyWd9VJZrX/fxf864KHK9iejvD+EZiVB5SSWf/eyZXcZvvv+L/P3PvsktX/gsH7ryA9y8uX2ey2T79lG83gSjrgjJZI6uLh8LFpSweXPtBdsOy8r0LFxkpabGyL594+zcOYbLFSYWlSbhrVheWgzynsXs17NusBdfHGTbdhfNTZZ5YeCf/9kBXjlxAL1ezZWf+Gts73sfWZ+P+O7dJI8fZ+wDH0BRVobp+usx33Qj6oUL33TBKz04iO/nvyDy9NMo7HbMt78DTetiFA4HvX0BduztwJ0a4OkD2xieOkNklHINteo2Gk2ryCWFYkh8Ll8gEEifQ8DkFKhTRVikDbBQH6ZKHkaLdPNwXzjOj8NRXJkUwXyKs7Hob7+P2V7JwEic8Cs/JDh2Yv6x5XLkcgWFgsALtGFVVTBkK+OIMA50kRWoYzLeAAEAAElEQVRFvLks3rlCeyTMZq2B1ugIuHbw/QdFXs1mWb6sjVy2gsCYjlRcRi5XYGwsxpYt9cDcsdLzc9dUagV3393K5GScdDrH6EiU2jojZrOKfE5EpZazeHEpgiAwMBBkaCjErJ8hlc5RVqpjw4YqRl3SNCtVYCFrdTUEtUOMeY/z08Gf4DSWsaJ0PY3WxVitGlbUljI0FEIQZJgtGtavNxSz5y40BdHp0GO2RDl6dJrh4Qj19dJY4U98/ExmyKxQFQ6liUQm6e72odcricVy9PYFcTq02Gw6QJwnQMF8J6Pflyy2Rs6eC3Nxdlbe2ZjNE9OoFUWnwfl+p9b6ep7+5rcoFAq4pqfpc41yetRFn8vFwc4BplVL6Fp4GXfc0sR4dzfZPXukXZezdl4EuZzWSyvZuLaF6hojJrOS33zpSyxtbKKxsvKcc0/hdDJRvZIOfwUrl8Sxnj6E52tfI/i731H25S9hOM+Y44t4azAxHkMuk3HdtfWsmgkHvud9Hyce0/PjX32RjhOn+aub/52GhgoWzVzPt28fZaA/iEHvIKsROHx4CoNByarVZSxbem6o9tktWPv2jbN/3xT9/YHijdjlV9Tg9yeLxP1sl+Ns5tGLLwyyfbuLpiYLmzfX4nDq2b1viue2/wCzycZnPvExSWRSCRhmRoWLokg+J5LP5sllpQDtVDRDNp0nnxPJZfLkswVEEUTEol1KUMiRK2QICjmCQoZSo0SlFdBolQgq+cz35UUHy4XQ0+2jo2Mag9nHqdM7+fVvf0puzjlk0DZRYbsZvXoB2ZlvZzMFEsksIX+KhlI9FVYtZSUarAYVcrnkZounc6QLeUb8CbIyGPdNse/Er4glp8jmPIhiZt77uPmmu7nqxhvwehP0bQ0TjM531QAoFEpkCLh8KQ4PB2ltspJOnNlVzebjkI/j9k7j9vYAMOaaZuWyK1m0yEpFpZa7PnATTQ0LMWhq8HudJKIlFEQRWVSGw25l+XITbW3Oortvrgjk9cRRqxTccEMDuWyeyakYFeUGKiqMRKNpIpEMC1dY2bKlkeMdHra9PEqGHHIZGPQqspk8zc0WNl1Rw/bto8TiDZiVd7Og6hrimVd5+ZUHyWbvp6b8cpYsvBmHs5Q1a6TQ+GAwTWurjWVLHUhirXje0HmYL0YdPTrN8Q4P9fUmVq0qKzq45gpV/QNB9u+bwlmqZdqdIBRKEwmnMZulwS9nC2JzWyftdu28UPzZluFZzM3Je601+PzzwwiCjI0bqy6YCfb3n/xn/v6T/0w0FmVouJ+B4dMMDJ1meGSQUVeAwYEwRoMKh1NPIpkglUqSSp0rrqlUArfeVk9zk9Qu9rcf+gwfft/HWdLShk537muPu2NnhlOskH4PURSloQkzU0HnZYjLJKIT8SaQ/QVNVf1zR/9AiJHRMAuWOfjs5xqK3/+7j3yFf/vPf+djX/gMN1/9fm6/ecs8l4nEEZKMjkruqsHBEM0LSli67Nx2wbmuL6mmmNi3b6LIEaLRLIIgZ8UKZzHIexazX8+6wV54YWhePZAEAR2HRifpGj9C1ZL2N13kOvjE7zFYbZQ2NhcdWHMhk8lY9bab2f/og7z4w+9w6MlHCU9PoTEYWXbV9ZQ2NDIwGGf/wT6S2UGe2/4kpweHis8X5BpKLaupcqwjFpUX61E6nScQSFEoSBMR26q9LKv2ki/I8Ua1IIMFpT4Wlfnp95cxHKnCFznKmPck8aSPbD5K9yRsP3zmvV62+nPYF11N3KNGPzlKeI6IAvM5glIptcb39AQYHpaGf+UKeSLJPJAikvQx/nIvAO+4poW2pdLf9v7fP8r+w4dpXbiQaMjM1JieZEIaUpRI5rl0rXT9XbrMwfr1lefkrqlUwgxHiJFO5xgYCOF0aqmtkzbNVSqB1lYbCoWcgf4Qg0PBmXcvdX6Ulc1whNEIAwMhsrElNDqaSJQM4PMf5Pf938NqrmBB7WVUOZZTUqJlxQoTQ4Mh5IIcs0U9L3vuQlMQnU4dZota4ggjYepnAuo/8Yk5HGE2JzGUJhLN0N3tR6dTEotJ7f1OhxarTRJt5gpiMN/J6Pcli62Rs+fCXMx9v3qLJIgGJsepXrwMkLKzfvTD4yzPe1AZbOfNgFNptTRVV3H5Vdfw9s/+IyMjI/T29tLT08PWRx9meGSMbK6UVFqkvNLMyKRALpcjljs3fkIhCKy91M4V62qlFkqDiR/8x/+jZeECas7DEeDc6ZPnfN71jXTv2kHE58U6k+21896fUd26lKY1b+45/1biosj1JqK52ULBriUcStHT4yM+Y5Uf7s2xruQOjkee5/sv/YikzM+3PvfBIjGeqxR/73vHCYXSuFyx1wzK1usUxdau/funGBwMYSnRUFZq4LLLKrnuujMim+SSORd2h54Vy0vnhYWDFLILYDGfOTGVdjuWW27BeN11pDo6SHZ0EHzoIQK//jXKqir069sxbNyI7pJL/uj8rnw4THT7DsLPPEPiwAEEsxnj5s1o2pahrKxiIhTia1/7Ic/v3UcgPY1cJrCwXPo96x11WHOt6NN1yGUC6dj8YxfyIkePucnnRCqVMZpVfkqECeKih/50gkeDabrdKb7RuBnKFzCqq+XBw8/iSr5aPIYgaCgtrcBgcJDLmcirdFxxVQPizjFeeWUD1dULaW9v5I47VmC3G4nF8rhcYXbvnqCkRI3Pl6Klxcq6df9KNvsPLFtmQKPJ4PV68Xq9nDhxmgMHThJ552dRN8ow9B/nwLe/xUsuFy8NSUVaBpQbyik3N6CeXsA1+WruurN13u8624YxK4guXGSVrMBWLdYSLStXlmK2qNn64jABf4pTaT/xWBa1RqCxyUIomEGhlBEKprFZtajUZwSqeDxLMJDCkG9ghbqJ8vVpOtx72TrwGLWl+3l34y1c2n416zdUcPKEjzFXBJNJdV7BtqfHx969k8W22kw6x+hImHy+QDCYAmRF1xfAmCtKMpkjEklz6PAUAX+KmhoTmUyOQl7EatWwacYZMNcpCZKTsaxMX3RBFvIU88HOdpWdT/iai1n3XFNTCctXOM+b7XK266yuvJy68nKuXXtp8XfvmCEdcq2WFcuW0fPQwyTTaamQxfL4PBka6ktorHHM69UHuOXyKy74/orvsdMPyx3c+bd/S+rECcJPP83Y+z+A6aabKPvSPyPoL+7Ov9WorDIQniHQPd2+YvuUmF5Ka93f0+v6Hj974MP851d/xqrVa4H5GVuPP9HP+HgUtVpgyRL7ecnz2S1YO3eOMTgQwlKiZoFNe05+0WvB4dCzfHlp0eEFUFkhHV9+AbIrk8lQKGUolHLUgN6sPv8D32SIosjTz77Cd374Qzz+blIZLxq1CaPeQSIZorL0ChT5jaiU0rk8K3A5zWpqHDpqnTpsCx3IZTJiySxjPj+7u/oYnO7FGx4inR3DblvFlVd9BKtVg1lvI7DnDIORyeRYLHYUCisKRQkl1mZueHsTo6Nhnnyqn/Lyf6ChoYw771zJtdcuRKlU0t0dwOUKc++9XQwm0mxa46ChrpEvlm9jaasBjZigv9vFxOgUk5NTeEOT1DlbUPrTmC1a3BMjHDyyj4NH9hXfh0ppptyxhJrKZURj7Vx11eqiSDMrbM26oWbzvgQB2tpKWbmydEYgVRJPZPH7U/T3hwgG0hw+7EatlmO16amrMxGL5Rgfi9LfH6KxoYS2NicOp56+Pj8KuRWb4Rauufy9RNO7eX7b73hmx3Y2Xvo2aus+S3VlHTXVJtKZ3Ly8q7mYnRJaU2tCrVJQU2MknckxMhomnyswNRXD60kUxVedTkEylcM1FqH7/7N33vFtFPb7f2tvWbYsea/ETmJn2XGmk7ASIIRVoMyWDkpb2tJFod/S0j0p3/bbQttfW6ADaBltmW2AkhDIJtN28EjsJLa8ZMmyJVnD2r8/zneWPJJAoRSa5/XiZRyd7k7y3X3uee75PJ9WD8c6vYxFLNTU5NLbO4pcDvY8fUbOmfidhELClOT+geD4g4rUuJNyaIqrbLLoNR2amlz09QcoKjTOmP+YKbSZWLxwCYsXLpny+cXz/74f308wGCASFSaQud1xKspzKC21odNlksAli5edcv8mT5+UyWQoFDI4SSfiycTlM3jjqKq04GzX4fNGaGv1EAzFKC01c7hplFn261ApNvG3F37LWNzFT753O3a78GAknSP8/N6D4xxh9KRB2Qa9Smrt2r2rn85OL9njHGHtWUVcdNGEyCa6ZCbDZtNTW2vPCAsHpIltefaZw9/fDIZ6ujl+cB9zG87GME1mnQiFUknDNR+g47WdDPf1UV5bT37lHJRGM9//6UNseukVRka7SKWS2HOEdsyyokpUycWoUrOQyeQE/JnrTCSSHDw4SLY2xNo5vRi1EfYcU7GtA0bH+kjhJJHo5xPrr2eurZ8Km5/fbe/FGzghrUOjVGLR68jKygVlMdqqizj/8nq2bu3hlVfPo6RkMatXz+bqq+vIzTWehCP8iFjsWyxcaIDkMH/76d0MDXlQFlTQ0eVm3TnzWFybh92uZ+dre9n86jb+uVXgKjLkWLOLsWfPxjVcTV7eLBYszBToHQ6/9LO9fZh54xwhJ0fLokU2SdR8+KGW8dD8IQKBOFqtnMrKbEZGIqhUMkZGIlitOtRqxThH0BMMRBkZHkOZnEWppYq1S4Mc7X6VPc2PUWB/lStKrmHlyktYvbqIw81uenr8mE2aNBF1Am2tHnbu6pPaaqPRBN1d/nHTgmA8EF1fAD09o4yNxfGPRti718nw8DhHiCRIJFLkWLXj7uFMpyQITsaCfIPkgkwkUlI+2GRXWbrwlRgXnYbTzBabN3fTd6KXJaUJcgtypxWZXK4QKXUWrp4eUokEs2fPZvbs2Vx88cWYOpuRr17LYGq+dO4vWbyIbX9/hmg0QiyeIDCawO2OMqsih1kVduSTbtA2rDtv6omThlNNnyycM4+WVzbTtmMrq6/5IKPDQxx84TmSyeQZkeu/FUVFJo6Q4uBBFydO+NHphK931SpBSZ8f+zCbDj/P/S88ymuth/n6Bz6NNVtoSbz+uhpc7iAmkxKPR05enk7KEEon4KITJr39Slz/qlUFGROIRKQT/s6OEXbvHpDeI7ZJinC5g4THxTO9YerhodDpMKxahX7FChIjI4Sbm4kcOcLoP/+J93Ehf0hZUIBm7ly0c6pQFRWjzLOjtFqRqdXIVCpSsTjJYIDE8DDRbgfRri7CTU1EOjoAUM+ahemii9DWVOOUK3hqzx4eev47dPb2AKCRGajWXIBVUYFqVI1ZtxJdaFxYm+aezKoIU6PzMEc1TI/6BH/zuXnKFyEkhsqk4cV5Z/GJW67nlT8eJiRbTnl5JbNmVZKfX86nPrWaNWtK+MMfDvPCC10kEkZaWjxACrXahtmsY+nSuVx55QI2bTrO7t39KJUyZs2yMHu2RXgSIU3Im0Vv7yh//3s369cvYMOGqX83LlrDXSuWs/aFF9i/eTN7Dh7CEQrSHxigPzDAob5d1JTOJhIRiK4tV5/xt57s1qiry8PvjyA+QT/33BK0WiUtrW6GhyNotQpmVVi46qq5RCNxtm7tQaWSceCAk/r6fNatKyMWizMaiAqjq4Hqoiq++tmL+efORv6y4xm+/+gveWLHs3zq8mvQhctoax0hkUgCMqllRERjk4tDjYPjuSwy9u0bYMQbobjIyJIldsT8Lp83gssdpLPDi1arRKNRoFIqmD07i6qqHLq7RzGZNFRV5UhOrcZDLsnJKDq3xKwy0QXp845NmXh6Oki/4ZxODDudqY7WXB1VVTlYc4WnSmqViqK0ENf9B5x4BiLkZoGiYoKFzBSKf7J9lMlk6BYvRlNTw+g//oH/H/8gtHs3BT/4AcY1b990pDMQ4BkK4QvGcLtCkrN0VUMBXV0LyLZ8lyOOX3LTZ6/glg9/lRuv+wihUFzK4lOpZBgMaowmIWMrvXVLxOQWrNJSM1qNklUN09cDmAid9/oEV6THE6a4yEBvX3CKA3i8T5LkNG3Y/26kUila2pt59K8P8Y8Xn8E/KuQXZemXkG+5AYtxLpFYAJlZj1yuhvH7vjyLhtn5RmblGzFqlUTjCQZHxtjW3cdLjfcSGOsmkRyaukF5L5/+dC0dHV7+/OdhTKarUatzWb58Af/zPxdx9tkVUj0466xyaULdggU2jh2rRKs1MmtWIVVVtoyasGxZAbm5WqqqsvH5otx8y1J6e0eF6aqXrmPlikLGgjGcx/30tHoYOOajc/8ggVCAT1z8DYYi3TjcR2luPUg05qO7fyfd/TtxuvrQqK3k5urItQk35ekCT7ogGgrFiUTjUn5WaZlw3NjzdLzySg+eoTE0WiUXXVTMddfXCKHv8SS5Vq1EjAoLDJSXZXHihA+5XEY8ruHqyz7JrZ+4lT/86Y88+8KDXPuxdVx12XXccNWneOUVP93dfvr6guTm6jKOY1GI6RsfRuLoGRVqwsgYxcUm8vIM+P1R6SFOU5OLgYEAI8Nj6PUqDAYVVVUWSktMlJdbCIai1IzfvEei45EQs8wZeXRiHlh+geB68frGpp16eiqkC9PTve9UUx0BcsdrQu54TcjJtpIz3q51YL8Tj3sYm1WTIXDNFIp/sv07g3cOhUXC+XfgoOBG0Y4P7VjVIAQ91yQ+xJ5DBWza8iyvt7Vy2y13kGezUVpq5vrrq3G5QphNqnGOoJcyhNIJuOiESW+/Ete/qqEwYyKdiHTCL4ZYi+8R2yRFuFwhkAlZuMapGtu/hP3PPYnOZCavYhbKtLzd6SCXy5m7ai1er5cXX97KXV/9Jq1HjpJKpVDK9dhN52LWzkGlMGO2eVEnLcIbZ9BtlbI4dSWDBCPN/GFnL/1eP8nU1JZQl2khZ59zCSdeeZSLqjW4ihdjNxmwmi2UVtex7vqrefm1GC9uHiCWwRHsmM166uvncOWV80/JEcJhPVu2DLF+fSXfefBh/vS120jEYtx291fQpxkJPvmRD7GsrpaWI0fYe6AJp8vJ0IiDoREH7V3bmVs5j7FIktJSMzabLuNvPTmTakldHv7RCGaTIGKKx0BL6xAjI2NoNUoqKixcddUcotFEGkcYpL5eaAGMxhKMBmLjHCHFrNJqbv/C5Wzf1cTfN/+VX/3h57yw9Wk+fN2NEKugrXWY+HhsweR8scYmF4cOuSY4wl4nI16hHtQvEdru2iWOEKKz04tGo0CjUaJSycc5QjZdXaOYzBqqqrIlp1Zjo0tyMorOLTGrTHRB+ryRKRNPJ0OhVKIxGPENOqV/W7++DMVoB/RAXsnU9kCxrTQR1GGKdxMJBSW3l3/IRWBkmNKK+ZgtuRJH0KjVGa2G+/c7cTmHybGAfLY8Y92TWzanw3RtmOkwWLLJLS2n5ZUtrLjiGpr++TwKhYLc0vIZ1/mfiDMi11sOIXPEahXyVHzeMQoLjZx9TgnRSJyy8hvYcXgeT+x7lJt+eieXL7qa81cspaTUTI/DTzIpXHCKi80ZBHwyuU0XMOw2A5VV2Tgco+NiwISQlZ2tZdeuPkBwf736Sg/NzW48njCzZlno6w+we/cAlVXZ0iS+HjGQdfroKuFTyuUorVZM556L8eyzSYZCxHp6iBzrJO5yEevqInzgAMlAgEwf/KT1aDQorFaUNhumDRtQl5cxqFTxWGMjf/r+D2jrOjHlPRqZCZuiCrlMTipJxpTEZCoBDKKVdxNLDeCOj3Brrp15Wi3upIl/Bg0cCAsT7NRqDXbbbOYvqMVsnkU0msfKlXXMn29l2bJCnM46KiuzKSw0smpVIWvWCKGg555bit1uwOUKsnt3P7NnW7jxxhogxbnnlgITgd4TopYwQU8sbAAvvdTFP//ZhdcbkcI/J2P5ihUsX7ECvvlNUskku5/ewou//CWHm3cTjYxxUfcmHNEl+BbV8cMn7yXLaGBd7VqKiountAauW2fgqac62LylG78/xhVXVNHQUMwTT7SxdWsPeXl6srO1GPRKopE4wWAMtUZBSenEJKreXsEVmJurIxyOMzQ0xuFmN7JgNl+//jY++/4BfvzwI9z2i5+Qrc1lVcl65hfNn/ZgErPhrFYtPb1+XK4QGq0Ck1lNYaFx/OI+xIkTPgKBKAUFRioqzJw44ScaTZCTY8Zs1lBWBh7PGC53CIdjlMZDwpSuuro87DbBvZVMgNmsAWScOOFj9epCSkttGU6x08WpnF6nM9UxXYw8mWNz8vsdjlEee6yNQWeQc88r5aaPLjrtfZSrVERWn8+QtgTba5vo+fjHyf7QjeTdcQcy5ZlS8HagrzdAIBDHnKWWJiRGonE0aiXX3zAPR3chi50/4fmXf8Uvf/dt9hzYycLKm1i4sAyPZwy/P8acuTnYcrV4vRE8HkFcFh066QR38jEjBtGLrVyi6CW2twvLpdi7t5/h4TGaGoXJW2VlZtasLpKWC4R6AcbF6n8/RGHrqeee4Ol//I0Rryfjdblci1m/DKNuPvEEKOQWALL0KuYWmSjMieMZPc4J5xG2NLUTTRjQaa9BppYx6AnhCx0BBOtvQUEJBkM5RUVzyc+fg9kstIPb7XoKCkwsWXIlZWVmrr12HmefLbwm1oP5863ShLqqqhxuv305kJoy5CG9JqRPtJtcDwxZGmbX2ZhdZyORSBIYjtD9+hBzmkoZPOEnFknAmgS9wWO4I0fYc2g788rPkSYW9vQd4uG//piLL3g/i+adP21r4IH9TpzOMH19J9i4sYIv3b4MtytIKBjn4KFBjEYVpWUCAXIPhccfkpik1tpnnj3GiDdCYaGJSCRBJJJAr1cy6IxRUbSBn33/SvY1PsPv//wr/vbM4xTnncPc8qtQKLJwOEYz9kVqpR13cu3a1TfuyJJRv8ROfX0+DoeQ0yVOHk2vCSq1gh5HgIULbCxclMuJEz7cLqEmtLYOc/y4lyyLBo1aKeXRpYtf9UvzpSywN1wTTuH2Ot2aMJPAdrJ6cODAIE89dRSPZ4xzzyvhmmuqT3v/TlckO4O3FhJHMKnxeSMTHCGaoLT0/cxtmcs/tj7I/3z3i5y17DrOP+csSkrM9PT4SSRTlJaaKSkxZRDwyeQ2XcCw2/VUVmbjcAj3WelCVrYlnSOoePWVHpqa3Xg8Y8yanSVwhF39VFZmS5P4vOMUwT/kfsu+E/+Qi7YdrzBryXKM1pM7J/2jo2x+ZRuPPfU0hw6/TmoSx9CocsnR10sOGo0qC60qRiSmIJFMMRYfYizmZCw2yFjMyVlzV7N2TgyVPMlTjVp6R4Qao9HosNsrWbBgESbTbKLRPJYvr2XVxvn0enMYfP4FCgtC1C6bxfnXXIC1sASt0ch5Zh95hTn/Ekc4ftzL0aMjHD06wg9+sJarv/59Hv36Hex84hHO+uBH0YyL3XULF1C3cAEgCBwHDnXiGj7Orr37GR4eoyDfIglB9/7+e9isuaxedg5FRSVTWgPXrS+b4Aij0XGOUMQTT7Tz8ssO8vL05ORoMehVRKMJgoFxjlAyMZ2wr0/gCNZcHWNjcTwegSOEA1l85iN38NHrb+S+++/nm3d/D5M+jwWVFzKnvHbav7OYDWe1aunp8TPoCqLVKjGZVGkcAU50CW24BQUGKsqzONHlIxpJklOqw2zSUF4+zhFcYRwOP42NLg4edLFkidAe6XD4SSRS4+KejBNdPlY3FFFaas5wis0EgyWbwLCHRDyGQqli9epiVENGdv9VjT7LMmV5caqjxWQjNdTBcH8vBoswybPviBBTEEqa6TqJwDbdNFZx3Y891o7TGeS880q46aYZOMI0bZiQKZLNWbmaXU/8iad//F362loorll4SvH5Pw1nmM1bjMrZWWgqsjHolTQ2ufD7o7jcIY4cGcEzFObiiyu49YMbqKmo4Hcv/5FH9j1A53AL16y6EhIqtFolOp2Smpoc1BrBst/WNpH3sGbthHhhtxnYtauX+3/bjEolI5EEtUqBzxeht1eoQoVFBo4cGUanFfZn/vwcKYg8FI5hzdESjSXYsqWb48d89PUGiUQEu0FyGqfTdJDJ5SiMRhTV1Wirq0klk6SiUVJjYyTCYZJeL4lAgFQ8BokEMrkc1GrkegOKrCzkWi0O7wjP7d/PM7/5Dfvb2pAhE/JbxqGWGchTziFPOQ+jPL0AplDQiyvRjC8xxEBslNgkQeWRSB6mnI3k1FQxr0rLqhe3c8015zE8bGLr1n5WrSpl2bICHn64hcbGYRYt8nD11XOoqbFmFCARYmh3d7cPu90jFad0iL+3tGS+nk54WluHyM3VUVRk5HQgk8s56i/gqP1jXP79u7gs6ziDf3iIeZ2bOX5sB3uPNAHw0oFd/OxpKzdedBE3X3oZitRENst0IbrXXFPNNddUS+7AYCjO7t0D9PUFKCoySq2GLneQUDiGTqukqspCIBAX2h2QkZ9vwOcdY9Rv4IKKaymS1bPt+Its6niMVs8sSuZ9CJfbljE5Ml2IeeqpDgYGAqiUCvr7hEko69aV4XIHCQSi5OXrWbeuDM9QmJZWD4VFRqxWLU5nELlCmIopEogexyjmLDXW8d77dILw7DPH2LdvAIfDz9lnF7NwkW2KyHQ6bqnJy6T/PlmAng4zkZb09aRPYxVh0Cvp7RklHE6wa2d/hsgltkDO5DCDcXHNo2Puho8y+/h2Rh56mNC+fRTfey/q4umF1jN48ygqNpJKpjBla2garweObj+JBAQCUbodfiorLdx0w534wxdy3/3forV9H/7QF8gyLGEsHCfPrmd2pYXCAqPU7jhdBpBIUl94sYvmJhcqtQJrjg6fP0Jvj1APGhqK2b1rgGOdXgAKC03U1FhxOEYJBqOM+mPE4gmaDw+xZUs3XSd8KFTCTatMdpKnHm8xUqkUh1ubeP6lZ3n+pedw9HZNWkKGUVuDxbgSs64WuVx48qxUyJidb2R49EXcvnb+uqsDfyhTFFMqc1i//hbC4QSXvK+SPXs+zbp18/j85y/nvvva2LzZIRGRzZsdbN7czUc+soBrr5170nqQjjdSE8TlT1YPFAo5WTYdi84tYeE5xYT9Mbpbhtj9fBeF8SqKNXNYfflV5JabCMtl9A4EePypxznR3cEv7v8hcvndnLX6PD503cc4q+E8PENhSTASJ9Q2NbmorhFaYj95S63kDNSohdtEh2OUkZEIQ54xSRAKh4R6UFmZJdUD8Rj1+iKEwylKCy7i2o217Dn0FG3HnqZ3cDsyzQc5++xPc2C/U3KVlZaauO76idZ7R88ojU0uZDIZXu9Ebln/QAC/PyZkLI4Lx8VFBnzeiLR9S5aGZGKiJjh6JmrC5DzUvv4AW7f2SEHc002wPJUQNHmZkwnQM61jpppwsu3r9UpGR6McO+ZlbCzB9m19ksiV3v44kwB3MmHtDN4ezJ5tIafQgEGvmsIRhoZCXHzxLD58wzoqK8p48oXf8c+dD9A72Mwl6z6IXKZDp1Oi06moqbGiVisoLTXT1uph06bjyBVy1q6dcHPZ7Xp27erj/vvHOUIiJXAEf4SeHkHYLywycuTICFqtgsYmFzXzrVIQeSgUw2rVTXCE4z76+gKExgR3+dB4d8VbgR2PPoRKqyNvViVqrXbK6z6/ny3btvP85pfZvue1jNxFAJXChFk7H4tuPprxFnWrMczCYjcKmYO9Jxw4Qz4GfKMkJ4liFl0HgdgCNGUNXH9LIbK/befaa9cxPGzk5Zf7WLFigiMcOuRh4UIPV99QS26BFVG4Kkq7nr8VHKG21saTT3agVMppafGwceMsrvifb/G373+NXY//iTXX3Yhq0vfkcPhxdKUwm+fy3TsvkMTPw81uDjQepeXIYQBe2bWVBx+zc83ll3HDVVeQTExMHUwPVRdxzTXzuOaaeZI7MBiKsXuXMIW3uMgktRq6XCFCoRharYKqqmyCgRhyheAyKsg3jGdl6Vk+/8NYtCs51P48u5sfomtgJxVVn8DlsmVMjkwXYgSOEESlUtDfF0zjCCFGR4V6MMERhigsMmC1ahlwBlEohGNfqAdmenpGycrgCBOC0bPPdrJvn1PgCGeVCBxhksg0WVA2Zmcz3N9PLBJBoRREoO72TmRqE/7RJFm2zPeI28uz5nHgL7twHuugpEaYutjX9joGSzallYVoc6aKWOnrWbp0Oo6gordnlFA4zs6d/Rki16lyuMRjSKwJS5fOomr5Kk40HiS3rBx7xenFXvwn4YzI9RYjO0dHXlk++w84pSd3tYvt7NrZz+BgkG3b+rjxxixyjNn8/NN38djL/+SxnX/j6GA7t2y8AYulBKVSjlqjlEiueCNmzdFmTJ8DeOGFLlpbhzCb1eTnGxkNxIAUGo2SkhIjCxfaCAbiwnQtf5Sqqhy+8MV6yTo/f2UhLneQQWcIlUpGVZWFIaeR7mPCFKk3A5lcjkyrBa0WhcUCBQXTLnesr48nX9nKo//8J529vaiUSpbMWsR55e+jq3+Qrug+ilVlLNCWUakyEEp5GEkcYjDu5VxjNmcb9WQrIjSFfdyUVmx1ChX5lhLMlkpshTXEsxaw/5iMC215fPWb5/HVb14BCOGACoWS9evLKC42ceGFFYhP3k9n+typlkl/Si8ul/6eq6+eS01N7hsc0SoExKbUGrKvvQbLVVfy6j1/xvTXP/BEWRlPR+M87xvB6fFwzyOP8H+PPsrZC1ewouws1rPopKHq6TfZ6S2w4rEmOqIKCoycdVZJRtC96EzyDIfxDIepyCsjz/RRjrmPsrv3JT7362/x9J4G5metwaLLIWs8tFoUvebNy6ak1CTkcjn81C62S0+/RYHLbjOwZUs3/X0BFtfayMvTs3v3APPnC5lynZ3D3P/bZurr7axfV44YQJ/uaLNatahUcny+CAcPusiyaGcc7gAztzFOXib996X1+adsf5wpgP9U2w6G4hSXmBh0BmlYXZjxWkaP/QwiV/rfOHvF9WjmzWP4z4/ScfFlhD78RdzzVk97Q3YGbw65Vj2WLC1tR4elerB4sZ1QKM5jj7Xh6BklFIyxcmUBa1duYP68er57z508+fy3qa5ay8KqG0kkTFiytBlEVaoJVq0UmG2zG9ixs48XXzxBLJbEZFQTGBXrgYKSUkE8WdUgnNv2PB3OgSA11blsuLBCcsfk5+vx+yMk4knsdj3ls1XsbCLjocPbgWQySePhA/ztmcd4fvNzeH0jmIwW5lWuQSO7jGO9v0WtzB0XtpaSIsZYtAeX7x/IZWEuW/E5aopNqJRyfvS3PfR52sfXLEOnK8BsrqCsrJqLLz6L9nYtQ0NeTCYNO3bcLe3D+vF2ifVpbRPr15ed9jTSN1oT3kw9kMlk6LPUVDcUoivU89DvDpNwRyhOpnA0epArZOgMSs5d9gmW16+gteMlDjTu5ZXtm3ll+2YqymZz7uprKMlfx4L5eWzcWJGRBSVisugiTuAUjx+HYxSNRsm8aisVFeYMEdZmN2DJElxG7qEQqaSK1cuuw6BsoMv5LJu3PcTexuc4Z9VN1C+6kFRSjtcXAYR6sGihjTXj1zdxYIIoyOQXGKivz5NEqsZGN7W1NlY1FLB71wCRaJxsixazWYVcIeOhh1opKTWyeJGNeXOzMwThxYvt9PUFGfGOsfe1AXJydFiytBmCz+kIQZOXmfz7dOH6kzHTMifbfigUx2RSM3u2BY9njLVnTbSiTZfDNRnTCWuiqKbXK/G6wqitWrLzzwhgbxVysnXMnp/P/v1O/P6oxBF27uxjcDDE9m19lN+YhUFv5mtf+DrPb9nMUy88xK8euYvr3/chLFlVKJRK1GqFRHIn6oEuY/ocwAsvnKClxYPZrKYg38hoIMhETTCxcIGNYDBGKCRyhOxMjlCTi8sdwpnGEYIYcPlgZKCfZDKBXH6SYLfTQN+RNtp2vMKcVWvISptQ5xkZ4YWXt/LXZ57j9bZ2UqkUs8vmUlO+gX6nC0/wECXZ5ayanU9+loXe4SA9w80MBYZZXlHE0goTwYiSl9u0vHZigiNoVWqKcywUZFux5ZSgsS5jS3ceq2fN5VtfWsfnvvQ+QOAIcrliRo7wkY+8vRxh6dJ8SQQDKJo7j0u+eCfP/uT7bPvT72m49oPojOnDxcx0dIyMt3X7JaEzy6LBbLTxievvwu1rYsv2V3AOurj3tw/w/37/R1bVr2FB1XmcxcKMUPXJSBeD0ltgxWNNdEQVFhg5W+II/owMrOHhMYaHxygpnE1u9i30DrTR3PkPvvWT/+GlbWdRlnceRr2QEQZIote8uTmUlJiEXK5ukSMIjihR4LLb9eMcITjOEQzs3tVPzXwrdpuejs4R7r+/mSVL7Kwfj4QQzxXxM1itWlRKOT5vhAMHB6dMsBQ/Z7qL0piTS197G7GxMbQG4T5rsOsE4biWgcEIJbMmi0f52O16UqkUTRoNg8c7pHX3trVgtudRUGShdNZUsXfyticjGIpRXGLC6Qyy+mQcYQaRa7JDbP4568kqX0xvj5chv4Jejxtjue9dwxHOiFxvA9rahnh5SxeBQJyFG8qprs7l4osr2LzFQVmZiZ07++nsFCZUrJ7TQMRtpXFoCz944peU51Zw/Zr3U1paLa2rx+HHaFCRm6vl0CEX6flGRqMStVqJ3a7nkktmsXv3AN3dfuTyFIlkSnLLuNxBKQjc5x0TbKDjN6SeIQOb+k6gVis5++wC2v8pqNuTLcD/KlKpFO3dXTz0/PM89cor9A9lZqCUy1cze7CCOr2LLFuQg2MWuqIuWsYcPD+a6c/KUcqpNhVwLKnjYFhNpamAa2+8mA/dfCkdvQZ+/L8HcLvDrFk3l/Xry4Ssk0n93qtXF2e0CZ6qYL1RTG5TmYzTJU6AlPVSVZUttcYAyJRKKm64nJaFq6hz7qfuiT/w5e5utluy+JPfz572drY07mJJ1QLJWTRZABGPDdFhJQowDQ3FtLUN8ehjrZSVmgmHExiNKhLJJPv3D+JyhTJEMIAeh59oJMHs2YJo9fIWLYZkEclsB7u6t7DNv5crVm7gmrwP43CMcmh8vHGWRSuJZeKxadArJTIjbqOs1Ex/X5CyUjPdDj9ud4gRr4GqKgOHDw8x4o2g1So5+5wSjrQPk2URHCwTYloOgUCMjo4R8vP1GPTKKdl3ohus8ZBLmsA4GQa9UprQKL4n/eebxanWU1pq4rrrqqd1iZ2qxx6mimv6ujrafXrULzyB5bc/wDH3Qlo++bl3TQF7N6CzY5hDjS5SqSSBoPD0uX5pPm53kC1bHCRTKfbuEybxVVXlsLruDqzm5RzueIijxz/D2uXXcsWVd0rr27Wrl9a2YfLzdRQUGDl0cKImeDxjqJRyTEY1555XQo8jQLfDj1wukybLipMURadHJBrH4Rhl8WI7VVVCTdixsw+5Qkb90jxyrONPdN/iegCQSCTYvXcbDz32O7bvfpVIZOLpsVJhoST7B4RHlGjkUJB9LWOxHvyhJlzev5NMTUy8lcnkzM7/Er0jYQ4c9xKKLacgfwm3felyKiqquffe13G7w2zcOJdvfGM1O3f2nlZNmKmN/M3iZDXhzdSD+fOtfPhji2hp8VBdnYNeJufwK70cO+higcWK0XoRn7rhI4TkHv78lz/wxNN/4kT3MWKxR/nJt6+TBKl0ESRd5EhH+nHzwAPNaDRyZlcK+7t3r5PR0SiXXDJLEmJKS010dAwTCqnIz9ezeLGdQCCOWn0DF627DsfgX3nq+R/R1PoMH7r2DmAhhw66SKXAkiXUg9ISE/PmZhMKxdHrlVKbZLpIFQjG0WiVtLYO43aHcHT70aiVJBLQfNiNcyCIZzjM/JpcaRqu2xWk+bBQE+bPz+HAQRe5Vi32PEOGaCx+DkfPKIcaXej1ymkFo/RpjeJ70n/+KzjZusR/u+KKyikC2OnkcE0nrKUPJyCaRJ+vZ/6SU4+dP4PTR1urh5df7iYQiLFwYQXVNVYuvngWW7Y4KC0zsXNXH50dXgDmV61geDCb4wMvcv+ffkG+rZxL190wwRFaPfT0+DEaVVitWg4eEmqJmG9kNKrQqBXk2fVccuksdu/qH68JkEikJLeM6Pjp6RGCt4X7sJiUWbSp7zgqlZKzz8rnhEsg36PDQ/hcg2TnF079kKeJkN/HpvvuIbugiPzKuYyMjvLYHx/muRdfosvhyFg233wBmmgd8Shkae2U5oSJJ9288PoAvnDmtKm8LDWoF9LuLqb1eBCDQcnnP38Zs2fVcKIzSk/3ML19IRadU8H6C6reNRxhVt1Srrzz2zzzv9/j1Yd/x/LLryKnsFhy+KT/3USI/19gLyEn+yy+c+dtbH51O398/AkaD7/Otj1bqZ2/RHImTRZAxGMDkJxNdruehoYi2lo9PPpoG2VlZsKhOCaTikQixf4Dg7gGgxkiGEBPj59IJE5lZTYlJSZeflmDUlaMynCMxiPP89qh3axfczG5to/jcPg5KHEEjSSWiZ/RoFeNc4SJ/KmyMjP9fQHKysx0d/txu8N4vRGqqrJ5XeQIGgVnn1NCe/vwFDFNq1VSUCh0ilRVZmPQq6Zk34lusMZGFwa9iiyrlUQ8hn/IhcmaSyqZJOZ3gbYMo2mqW0yETCYjO78QV9cJ4tEoiXgMT18Pc1auRqmefoDPTG2K6a9fd928aTO5TosjTDPd0jmUoLM7hjLlI5FUYGnxvGs4whmR621AY5OL9iMjyIBuh5+GBtiwYTa5NgNH2oeFkNQ0N01b6zA62RVcUHse/2h+hh8+fQ/Nrl3c/oEPsHNzkObmoXGbvZlUKobfH5GI+aWXVlJSapZalCqrstm5QwgSFte/a1cvu3cPIJfDsWNesrN1XP6+SskpdrjZTSgUo6DACKRYWrKa82ob2HDOgn/5u4hEo+xsbubJrdt45tXt+MK+KcvIUWKRa1imP8JdeYOMJRW8FtLya0+mCKbAhEaej81aQXzecgYvPA+dxYjzpV6umW/l459YTFlZFpocH5deWklf3yjr15dNKVT/LrxZ0jLde8QnPqtWFbJx46yM1ya2U0XyxisZ/sMfWffb+zlPpqD9sivZlIhyx01Xoh0PNty8bx8alYq1tbUAktjk9UZobHSzcWOFJOyIyv/xYz7GxuLIZDLq6uzCNKtjXkAgP56hMB0dw5SVmikpNUsijEGvHD8+VxCOXMo9j/yZZ157kZ1HXuODZ11DqX0O0WgKw/hkuCPtw8gVMOgMk0gk2bixIqMdMByOk59vkCY+gnDBtubqWLGiEIfDz6pVBRnEYLKYplTJiEYTKFVygqH4FOeU3WZgLBKjs3MEg3F6kSsYipNMIE04TRePTqdtcCbM5PA6nddPlRU2E4rnF+MwfIxI41by83Ipqs5+w+s4g5nR1uahs2MEuUIQmowGgShvuGg2NpuB7dv7SCSSLF5sJzdXR0GhiUCggdKiZXhGX2T7nse46sPP87EbP8WN132MF17o4siRYebOzaGw0IhzIITfH+HAfic1NTkYDUqpRcntCrJjZ7/khhGxa1cvf/+7MLG1+fAQdpuetWuLpTY0j0cI845EkrgGFdz1xd8wr3rquPo3g9HAKJtefJEXt7zA9t2bSCSnhvsq5RYUcgOQQLxNCUTa8QVfk5ZRyFUUW2eRnz0ba+5smn1BrrhuMQ0qOQ8/bGL+fCtXX70YgEsvHZPqAUwlL/8unG5NON16ALBx46yMZfI+UkPDVZW07uinbdcAB19woDEoOWfBTXzw/bey7bW/Y8nKZtlygZhGY1Ee+vMDXHPlBzGbzBkihzPtOiyKO01NLvbtGyCRSFFRYeHcc4sZHY3S3xdg964BGhqKJRFJo1WycFGu1AJ4/XXz0lxjK6ks3cgre37Dt358EyuWXMTaFTejVlqkSaHifiQSoDeoiIzFJCFJdBHX1dppbx/GatVJx74Y3m61amhpGWb+/BxsaVmmDscohw4KNUEulzHqjzJ7VhalJWba24exZE3khdnsBiJjMTo7RqRzdzLEaY2iiDZZPDqd1sGZcDIX2MleO52pkNMhfTiB1xWmqtLyhtdxBidHY5OL9vZxjtDtp6FBmHZos+lpbx/GYFBluGna2jwoFVexZvkFvPLaE9z/2A/o6HmFWz9+E9tejtDcNDQeop1FKgX+0YhEzC+9pJKSErPUolRZmc3OnX2TOEIfu3f1I5fLxjmCVuAIS9M4QjhOQcG4uDz3fM5athqlYx/NLz3P2Td+7A1/B2PBAANH23nloQcI+v20BFN85cOfxT3cN2VZmUyFSm4ikZyYAllqDbB1vP1uAlmolQXYc8sxl6+k/oILONus5YUXupg//3w+8QmhHrQUeKhdGuP114fenRxh/iKu/eaPePYn32f7n/9I1bJVBLVzONLhZ968HOnvlkqlGBnow91xBG/HEXqHhdZ9uUKBMbeAz139MRIfVbN11xY+9fErUI1ns768fQdZJhP1tcL3JYpNPl+ExkYXGzfOkoQwiSMc9zEWjiGTy6mrs9HaOkzneCxCQ0PROEcYoazMTEmJWRJhDHrV+PG5klD4Cn71+4d4eecmDr6+kysuvJG8vBqi0SQGvUpyMSkUMpzOEMlEko0bZ2Vk0oVDcfLyDdLER0jjCCvHOUJDYYZYlC6mKcbrwaxZWaxbX5YxwEEUf+x2PWNjcTo7vBgMKi4+X/guRvr7KJpbg8/tIhmPkZDrCY0lpfeI709vG7RXzKZ121ZGh4fw9PZAKoXFnj/tRMbJ63mjr8+Uw3UqiN+VGj3haOoNdh+9s3hPily//OUvueeee3A6nSxevJj77ruP5cuX/9u2X7vYjtsdlv5fxHRZPW1tQ/j9EUa8Y+Ta8rjj4jtwRo/w51ee5dzPfJrZtipyk/PJoVrK6epx+Nn6soMlS+ysW1cOCBcaEIjuFVdUZezP7t0DtLQMgSzFWDiJWiOf1PYoQ6dTUlGRxcJFuQjjR1LolScP25uM0NgYbV1d7GhqYsv+fexrOUIwEgJSaGRGsmSFgCBypWduJYkznIxzPKrht0OLeClQhkduRqmQYzIXU1o6j3A4j6KiPDZunMXVV8/NKAyf/Ezm+Oyysixuv/3kI7X/0zCdbTkd6U98TkaA5BoNuZ/8BPuzlpD83S+Yd3Qf880mEocPk1qyhEQyyZfu/Tkn+vtpmF/H+dUbWbV4LnV1eezZ009fv5CHJbr/4rEUJpOa3Fwthw8PEY+n8HiEsby9faO0tLp54ok2EsmUZINdt65MmoBVXZ0rtTU2HhqmTLmCb1y1gn80P8ePn/wl1UXzuGbF+wmG7JKDqqfXz/BwmEAwJu3L4eYhXnnFIYls07nSbrxxfsZ3IYpjPm+E2bMtAPi8Y5SNX7DFwgdTn5JPfuIx3eAHnzcypX0YTt42eLp5X5OddW8lJu+D+F+8ciMymYysd8kTmtPFO10PqqutpBQyLBYNXm8kQ2wqLTWxdm1RhjuluMjAnt39xONJCosu49c/+RAvbXuYn/3qbu7/4y8pL7wAYstQKa0sWmhDHKbgdoWor89n8WI7TWI9qJlaDwB27xqgu8tHIpFCbxAyJNLFg2QiRVWlhcWL7fQPBIEcqiremMiVSqXoH+il7WgLu/fuYOv2V3D0nBifWJVCoypEJjMCIwhjECcyIONJL/Gkl2hiGK28AJVSRl52PbasHOpmzacyfy4GfSF+YP3Vczj3ggqU6omWmauumpuxL/9t9UBvUrP0onLqzi/l+CE3r/y1A/+JUdr7gpy1/HJK5+dI63rqucf5wU+/ya9/fy/Xvu9TmHVrsduNzJubQ1/fiYy8LrcrSCyeQqdV4vdH6HH4aW0dprraSjKRYnAwwDe+sYOqKguDzhCpFJx3npBvJk4Gve76GtyuIA891MrggI0br/o5vYPbeOjxn9LYso11q29i0cKbqKjIxtEzSm+Pn+ISIU+ys0NwwFdV5XDgwKAUmF1cYmLN6sIpU0cBNlw0kSPidgWlHLC6JcK04UAgSpZFkyGOTa4Hk11R02VueX2RKS4wESdrHTydzK9/RSQ7FSZvP10481qDFBaeXmbouwnvdE0QOEJI+n8Rk8PiQSDEPl+EkZExcnPtfPT9X8MfbufpF57g/R+5mdKCavTKWnKsNQJHUCvo6fHz8ssO6pfkTfn72e36qRxhVz+vt3iQyVKMhRPjHCGz7VGrVVBRnsXCRRN1QGWM0LT5eWo3XEKWbWa3XyqVYrivl6MH97H7la00Nh7ieI8wwbA4O5t25yCeQBStKj3aZKImpFIxoolhonFBbFDIk5w9b4zB0TJ8yYXk5i0iHLbPyBFuuaUuY3/E1ybXif9kTK4J9vJZfPDu+9jywC84smsHctV+7NZyNGOlNL3aibOrh5ivj/hYGKVGg62sgrmr1qI3Z+F1O2l/7QCx1zejMtn48i0flwSuSDTKN370Y5yDLlYsWcnKxZdTXzeHJXV57HltYIIjjLv/4vEUJrMaq1XL64cDxONJPB6TwBF6/bS0DvHEE+0kEpM5gh8QhBexrbGxcQSbYS2f+dAaXt37F37zp59SWb6Ai87+wDhHEBxUPT1+RkbCBAIxaV8ON7sFjjAusk3nShPC/ycgimM+b4TKcTE/EIiRZdFI5+VMzql0jmDIEl7bt6MF06zljPV3AmCx26acR5DJES5eP5uWVzbT3dyIp9eBxmim2ylDmR2aUayazln3VmJy5pj4X8jnRaFUvWtcXPAeFLkef/xxbrvtNn7961+zYsUKfvazn3HhhRdy5MgR7PZ/z/jkdGIvkmiYcIqIAoDdZqCxyUUgEEOtkhOPpTjc7KGysopffeaHtPY386sn/8JrvU/THnoF2Y7z+eKN78Pn1YxPdReU3sYmF/v2DdLfF8Saq5tCisV8peGRMAMDQYwGDU5nCL+/n7FIjHA4zvDwGLFYHLvNQJZllNZWN0pNkjgmQmNjBMJhRvx+nCPDmPUGZuXMpbHJRTQ+xu1/+BbRVJgUiSnfhRwlS3RXY5AJFxp3qJMUSVKkkAHFKhW5CjOBZDHtY9UcjNZRWm7hh19bRVXVRzKmjryX8UZsy+kTGtO/l3SyU72qihbzN9DSBw/8jJEHHyT46qv4z9nAorL59AwOsqvlELtbGjmrZQ2/++4XKCw0SE8XQDhOBweDqNUKKitzsNuNeDxhrFYtoVCcWDSJdyTK9u19XH/9PKmNcKa8Ko1Ggc2mZ+mCAq674ts88eI2fvXcQ3zv6R9yeOBCvvOpmxiLxOjvC1BYZKS6JiftBjDFyMgY8XiKsUg84xgXnVPZFg29vUGsVi2r1xRJ23Y6g8ydJ5C6I+3DzJ2Xw/XXTRS76USkya6o6bKyXO4gXV3+Ke63k1mCxfX4vBFpsuN0mWDpzrPppqu+GYjr8HnHcDpDM3729xL+E+pBZVUOBSWCo7C+Pn9aIi7WBJvdQEvLMJGI4AgJjMYY6FPy+U98i7XLP8DLOx7hmU1PEIv/hYR6La0dn8JomJMRsi3mFAWC8YyMpHSsaiigq8snWf7tNj3tR0ZoanIRCsfp6vZx1toiqsdbvFpbh9BpU8iVJkLhEOFwiNGAH8/wEM7BAS7Z8D4GB1Js3tzNk//4Ob2ubeNP3ae2OFoMq7FbLkatzKV/+DGGR19GJDNymQ6NugCtqhCNqgClXE9BgY61SwrJVVaSjCTRZ2uYv6aAqvo8zDYdCoV8yjbe7Xgr6gFAb98oHe4g1ZeUMXDUS7Q/ROuOfo4ddFG1PI+SeTmoVRaKCiroGzjB//v99zAZirjios/yvvfdBJCR1+VwjDLoFO4zZs+2oNMLLVKhYBybTc+hxkFiMeFvWVpqHneXmKbNrIrGEmi1CsrLLZy//sMsr1vHX569j+df/gXtxzZz0w1fJRQopK8vgM2mY3VDYYZTq6NjmP37hwmH49hsOukYFwUhi0VDb59QD9asLsrIypo3L4d168qkcP262gnX03RC02RX1HSZW+Dm4AEX/f0BVEp5hiB1stZBcV1eX0Sa7HgqkeytmIoorsPrG8M5EJrxs7/X8J9QE9KJfQZHSMs2En+f4AgK4vFxjlBVxXe//FM6uxv5w6N/ot3xKP0jVrLyLubTN78/jSNMEOpgMCa1sU0mxWK+0vDImMARjGoGnEH8o1E6OoYZ9owxf0GuRKizLBpaWl0UF9Qw3NnOL27/LCuv+RAJlZqBgQGsVitGzSx2vLiXMXcTv/jLbwlHI0QTUznCcDDMhxrO57Vj5fjDatoHf4pQN5KADLXCgkaZi1ppRa8uRqGAlXN9GDVJvv+dn6LKX8yCBbn/lRxBq9dz8ee+zOLzN3LgH0/T297CsV1HABkJpRGzrYxV561idv1yzFYb/YMRgSNcYKXqvBvY9dwLDDc9xyt/uJ+6iy6haG4NPT0j1FQtxu3ewmsH97D30F5WNq3jvntup7DQOIkj+HE6A6hUcqoqs8nLM0gcIRiME40m8XqjbNvWyw03VEtthJNzpcTfNRolNpuOusWFXH3Vj3nyuc089JcH+H+PfJ1jPZdx+603MzYWp78vSGGRgepqa8Z99shIhHg8ydhYTsYx3tbq4aXNXYCQhyUObBC3PeAUpu0CtLcPU1s7Ecw+kzNqsitKrtbhPNFNS4sHw/BR1AYTIwElJ44MTHG/pXMEU24OGoOR9l3b8LucyPU2jnWFCcXcUovmdJlg6W2c001XfTMQ1+HzRhhwBqXP/26GLPVWBy+9w1ixYgXLli3jF7/4BSCE2ZaUlPDZz36Wr3zlK1OWj0QiRCITk3v8fj8lJSX4fD7M5jfmZIp2dzP68sscCxnZtOkE0VgCg0HFWDiGVqfi/PVlUnvU3Hk5LK3Pp61tiJ07+7FateTl6WltHSYUjqHRKKivz6d+SR6b9zTywDPP8UrzbsKRCPMrZrNybj1XnLuGNUtqOHJkmCef7CAcjnPuuaUZYkU6URe3lUgkUCgUDA+H6B4PE49E4syfn8uXvrSM62/7CZuaNs0YNKxEw2z1avzJQXzxAUIMz/idGGRWlulvmPiOUvtZb3RRq0sQSuazU78c5bIGSheVYzSp2b69jyuvrHpXPWH5d2MmJ5dIdia3NJ445qH3wUfI3fIYKb+fvvwFOOuW8OCWv/Fq8z4AzAYD3/zYzXzs0kuRy+XSsaLRyCksNEpP7xyOUYbcQVpahkmlEnR3B1i7tohZs7Ol41okNQa9kvb2EXp6/ZQUmzCb1TidIenYBxiLRvmf/3uAh7c8TZ7Fyldv+CTKMfuUY9flDkptuKtXF2LN1UlupxMn/LS2eYhFE0SjSXKsGq66ai5L6/MzxCFx/9+MUDRZZNp/wMmBA4N0d/kYiyRYtiwvQzib6f0GvZJgKC4JTenfRfoy/f1COKzo5BInX6Yv/0YhriM/3zBePDO/h/jIiODket/lwgTUNwC/309WVtabum6+nXgn6wHAkT1O4vEkL27pYu/eAWpqrICMjo4RqqosbLiwIoN41y/NF9rLdw1QUmokmUhJE+T8/ij19fnkWFP8+S+PsXXnXznedRSzycLS2vO45MJLOX/dOTi6xmhqchGLJxl0hqhbkkdhgWGKE6StdYidu/pJxBMolOP1oFtwcUUiCaEe3L6ME8edXHzdeYxFZh4Xb7dchVKuIxztwhvcSyoVnXHZEtunydLXAhCO9jAW7UaltKFR2jEZcigpNXP++jLc7jAjAyHm2AwkxxJk5+uZsyKfqqV2TDlaaWrTfztO5uydXBNSyRT7t/XQ9GIPkZEI+iw1KpuWY/0+el1beeLZX+EfFdxSZ68+j+989ceUFAstnuLxItYEwUUoTPN0OPxUVVno6vIRCMSpqrIgl8mlY1psX+zvHyUSSVJTk5NxTNenTYlqev0Qt3/tixzramFV/fs4f+3HWbFi1rQOKLEVd/U4SW9qcuF2h+nrC5BIJPF4xsjJ0XL99dXSfpxsCuLpYrr3bdnSzaGDg0SiSUb9EWprbRnTImdahzhdUhSb0r8zcRtDQ+GM81cU58Rl3wzEdeQXGLBkaab9DryDQcoX5r6p4Pn3Qk14q+vBcH8vxw/sw+nVsGnT8QmOMBZHq1Vy/vpygqGY9LddujSftlYPO3f1jXMEA62tHkKhGBqNkFlaX5/H1u0HeOSJv7HnwA6isRgLq+dTt2AFG88/G73GSlOzm3g8idMZZEldXoZYkU7UxbbFklITiUSKnh4/Bw+4SCRTrFxRwJfGHbEf/uR32XlgE9M9xAAwabV887J1ALhHx7j7+S0zfic5hlw+t24NamWCF18v46izA4VCj1phQavJoaoyd7zFzYRWq+TI6/1UyLZTUrOAS2/7ihT0/d+OVCpFeNRP2O+jr2+U410hFiwupnLehDtuOo7Q1nScl3/7E8Y8Dhacsw6vrIL29mFMWUEeffoh9jcJHCHLbObLn/sMV182zhHGj0uNRkFhQTpHELJyW1s8JFNJurtHOeusYmbNskjHtdgiaNCraD8yTE+Pn5ISE2aTRhKcxJbL8NgY3/jBL3n2xaewZlv53Mc+RypeOOXYdblCUhvu6oaicY4g3LOc6PIJsRDxJNU1VsrKzNI20sUhcf/fjFC09eE/MhaOsfGOH7D34XsYcvnpjdVwwhFlLBJn2bJ8rr++etr3duzdTcsrmwHIW3QOSmslfl90ynch7qtBr6K/X8igE4Xn/Wk1Ybqpi6cDcR0FEkfI/B5EJ1fNWee94XW/U/XgPeXkikajHDhwgDvvnAjplcvlrF+/nt27d0/7nh/+8Id8+9vffsv2YWQ4zKaX3XR1+zEZVXiGwvT1BYVQUp2Kyy4XrPMi6Z7sGAmHE+ze3Ud+vpHSUhMymYzzV9Vx/qo6TvQM8beXdrD/2EEee+VZHnzhCXLMZtYsXky2qoB4zIQ3mIWrKThtu1R1dS79/UE2b+nCoFehViuQje9LMpnCbtcJ7pSeoZNO0ooT4Uh0KwZZDlnKfGQJGRqZEaMiF53MglqmRy0zjP/UIZfDskVZfLSin+R+L0p7Mdkf/ABZGzdyQ2FhRu/xZFvxGUzFTH38Mz39bzviY7eintW3rWHWzsco2vw8xa8e5/xrr+Tgh6/ntp/dx5GeE3zp3p8zp7SEs+uW0NjkorNzhMW1NqklVhRJnM4gbneIxbU2br99JS53kBdfEIhORYUZu80gBJVuOkF3t59EIonNpiNPp6ery0cymZTEHoNeyWVLL6a+oo4/bvszn7nvO1y66lxcnvW0tw9Ljiy7zcAVV1RJQlB/s5tDh1yEw3GyLBqsOVqCwSjRWJKaaqt0fon7smVLN7WL7W9YIEoXt9LfK65/4QKrNA3yZBAdXKJI5XIHJSeXuB1xmlF9fT7r1mUGoL4VQcZiiyWk/iVH2LsF/wn1YMgTotcxSm/P6PjEo1EGBgK4BkP09Y1SWGhi0ULhGi3+bcWAbxFbtnTT2eklv8AoEdGvffmLfHzw42zbsY+Wo6/wyq7nue2uJ1F+S8niBUtYtWwNqUQh/lErqZRt2nYp0aW16fnjhEIxsrM16LRKtFoFcoUce54OtyuIJUdDLBbmZHB5/wbI0aoK0anLSSZDaNUlaNXFqBTZKBVZKBVZqBRZKOQaaubnsH59GYsWXjCtuOAdDNG+e4DhQBKDQUX1BaVULc3DnKtDLp8+q+K/FSfLdZlcE2RyGe5QnG5FkoVLbcT7gox0+sk3qFh76Y3c+qmb+O7dP+DpTQ/x6s6X+cq3v8if7n8SEASkzo4RatNqwoH9Tlpbh/D7hEyrL395JQAvPH+Mbdv7sFonwnNPnPCxf58TAKNBSWmZma1be2htG5KEHr1eSXysgP/7/uM8s+nPPPrkzznR8xoy1dfZuWtuhivLZhdqgigGHWp00drqwWhUUVmVzehohNHRKPY8vXRuie9rax1iy5ZuFi+2vyGRKF14mvy+RQtzsWRphEEO3f6TBr4DU8RttysoObncrol6AMKginSR762qB8JEy9S/5Ah7N+GN1oS3uh6A0FGx6fm+cY6gZmgoTH9/EIVchl6v4rLLKoGJ9qjJjpFwKM7u3f3kF6gpLTUjk8k476ylLJhXQ/uRAU70Hmbn3h08+vTDPPSX35Fnt7Fq6VIMmiKC/iyisewZp6yp1QqMJjU9jlGMJjUgQ6dXotcrqZlvlXK+enqFB4wzIZVKcqCrF4veQKHFRFVeLjqVCrPWhEqRjS9so3u4CH8ol+GgmXtfjvGFC1/nqgY35374dnSmmY/rAkU7PS1yll125RmBKw0ymQy9OQu9OQtrMSxaMXWZ6TjCiT5wWq6hWP8ir2/dTGFNPXPn1lFWVs7ll97Hjj2v8a27/4+uni6+9r0fUlVRwZLFiwSO0OEVOMJ41qUokgw6g7jdYRbX2rjjjhW4XCFeHH8YMmtWFna7fpwjHKfb4SceT2Gz6cnLU9Ld7SeVSmHQqySn+Yaz3k9ddQNP/fMP3HX31zj/7AvwDG+k/YiH1auLJbfVFVdUSUJQf3OAg4cGGRtLkJWlpiBfj98fRaWSU5BvkM4vcV8kjvAGBSJxeyZbIcH2Q2QbYzg7j2Kfs5hcezHzFyNNg5wJs5euoPuYC483gcyQz7JlBbhcIUloErczwRHypO9cxKkC6U8HpaXmcY7AmxL6/hPxnhK5hoaGSCQS5OVl9obn5eXR3t4+7XvuvPNObrvtNul38UnNm4VzMIRCIae8zMyqVQUMDoZ57bU+wuEEVqv2lMHSwmhfpSQWpMPjihNz5TMrtZ5bvvwRer09/OXFnTS1HsPpf41ILMqf9kOW3kSWLpt9w7ns7i0mL9dClsGA2WCgs8PHCd8wWWjQy5QMMkI0osDl8fHXA0Pc+2IEb8KLmMslQi/LwSjPxSC3YlbkY5LbUcrU0utz5phZvboEs1k9JUco3NLCyMMPk2oMY77oIrI/dhO6OXOQqVRv+ns+g6k4lfhVPd9K2bX3EGr8AIM//BEjDz3EnLIyvtrwQR7YvZ+4Zpiz65YA07fciTfUFRXmDGHH4RiltU0gOt0OP5VVQTZtOkHnMS8atZzKKqHtsLHJJZH8SCSJTidMKEwmoGZeBS+9/+f8cdMmvvLL/8c/E6+xxLqelpblzJmTTU9PgFWrClBrlJIbqa4ujxMnfCSSSeavLMTlDjLoDKFUZTo8TpaRdSpM16Yo/r/4e0PDydexa1cvW7f2CNPC0sS39PU5HKP4/TGp5WwyTn3dmBnpLjix1TTLMprRdulwjFKSlSA3971DdP4T6kFfb4Bjx7wUl5ix2XSUlpk5dszHgf1ONFoFkDppeLSAiZqQvlxPT4COozoio+v43ldupqAowgO/f5Kde3bwhz//nkBQcOQ8+U8ThfmlKBVWXP4i+tylFBTYMJvMxGMqQlEnw74wpuws9OYxRrw+ZPIwz77g4aEnhjCaQ+g0FgLhOCBONJShUeWjURWh15SjU1egU5cilwuihlwGK1bks3xFgRQ6fjoIjIxxZI+TwRN+9GY1deeXMq8hH4tdf8a59SYwXU1IJzrFRUbadzvZ948u2rb2UVBpYem8DxIcWURn70Pcdcd3pfdN13JXWmpi+fLCKYMNWlqGcQ4Ijt8NF82m+bCb5mY30WiC4hKTlBuXUQ+0Silkft68HL725S/ykRuv5q7v3c637/k09uyVLKj6MK/tGUCtUbBhQzkNDcWSWGS16igqNKJQyKirteP1jREIxMjJmWgHE3GyjKyTYXKbYjrSz+OT1QTRqTl/fo40LXLy+w/sd560Hpz6mjEz0h1wYqtpetB+upD3XrtDe6M14a2uBwCDzhBykSM0FDI4GOK1Pf2Ew3GBI5wiWBpArVFQUZ5JQh0OP47uCPLUHOYWFXHt92+hf/AYzz2/jZ17XsfjfZFkMskzL8vIzbZj0OXQ48mjy1lGQX4OZpORZELNoGeE4eExsqMaVEoZasMwuQUqnnmhmWPHBzCYosiUIyhkRhKpiYmGOpWR86rnUV+Wi1mnIJ4AT1DHMZeeWblXo7GWsHbdQnLyrJx3wTzKKzIH3Hj6enjkzi9wcNMzrLr6BuTTuMlHPUN0Nx2kasVqCufM+5f+Dv+NOFk9qKn5MsdefpTGF/9BiSyGbellAKxZuYKPvP8unv7731BqQyxZvAiYiSMIAsusWVkZwo7D4ae1dQifL0p3t5/Kymw2bTpO5zEvarWCefMsaRzBz0B/gEgkgVarRKGQkUikmDevgsev/X88/tQzfO8n9/Lqrt1UFW2ktXUVVVUWehyjrGooRK1WSG6kJXV5nBjPHj3//HJc7hBOZwiXe2KAATCj6Hs6EFsty+05xKMRDvz9aRLxOMWVFRTNKwKE4P2TYc+eAV47nkdpiYFZc4VlJ18HHA7B+SzUhKlC1ulcN2ZCugtObDUV2yDF1x0OP/YcyMt7d1WF95TI9Wag0WjQaKYf1flmkJ+nZ40tO8MpsXpNodRa5XIH8QyFZ5y+Jlg+ZdKy6cS2tNTEqD9Kf3+Al7f0E4/LMI8uZrmpjvOuKMHhHGTnwVZ0OWFi8gAn+pxs2befBFH8wSCB8NSn8SqlCsuAkURUSSqmxK6xcs0FZ1Nsz6PEbmdOaSmziopQKhRT3nsqJKNRfE8+SXDbNtSzKrB+8hZMZ5+FwmJ5w+t6r+FU07PeSkwubPraWsr/9AjHHvgz4d/9mqWOv1JSPhfDJbdMtMxZkjy47Tdc6LkEqKO6OjcjU27dujLp99JSE8uXFUrTehyOURQKOdnjF8mGhiLpON+3z8lAf5DmZjfLluWh16ulG3m5XM5HL7mE2dY53Pbz+9jtepaeYDsNfReRjAiC6o0fqpG2OTmrCnKlJx0Ox4SIk23RIJfLyLac/Dyf3FKYLkoZ9Eppomn6OXk6WVm7dw9w7JgXrVY54zLTDaV4q+BwjLJ3Xz9+X5S6ujxq6+wZn0eaalmifE+JXG8Gb3U9KCo2kkqmqKiypBHgYjZcWE7zYaEmuF3BKe1I6SgsMOIuCVFYkPnUurTUJE21e/HFbmqqcwh568m3zKNhSRb2vDi79uzHmDVMliVIS1snja+/yr7GAOGxAMlkMmN97Jz4X7VKg1yuQyE3Y0sW8L7Lzqcgr4iyknKqZs+jrLQCtUrNW4XoWJyje530tAyj1impWVPAgrOLyck3oFD9d4hb/66aMLkezF9bRNWyPLY82s6JfW5MpFhXv5BbP/0w1XNskujx0rbfEwrFSCTfB0yIQ6XThL6vaijI+Aky1Co5OTlazj67WHrvseM+BgYC7Ns3gMGgZO6cHCqrsqXrYVFBMb/7xaN8/du/4K9//z92HPwypXnXYzEuJ8usoaGhOOPauWZ1oXQ9LsWE2xWS6kG6iBMbD0suLZv5qffkdsL0eiC6raZrdTxVC+TuXeODgIAv3T57yuvi+sWfb7XDyuEYZe/e8XqwJI+6WnvG50nP6Jpd8uadYu8FvNX1ACAvX8/arIlgbIDVq4uk1iqXK5TJESaR7vTg9/RAa5H4vvhiF52dXnz+CPGYHnWygZritZz9wQK6e7vZd7AFY1aIeMLPse5O2o41Eo2GGUtry5wMuVyOUqFBhpbsWA4rllVx0QUNFOblMbuiHKtGSccrm4lFIhRUzqG8rp7yRUswZuegMRpRqU/9HVqLSlj30Vt48dc/5/iBvVQuWzllmZZXNqPWG1iy8TLUune/y+RkeCfqQflNn0JnymL3X/9MPBqhfNVGTnQ6yQnt54N1cpTaPDqbO/BGTegMUf724r24PFcBdVTXWDMy5datK8s4NpcvL0jjCH7kCjnZFi02kSOMH+f79jkZGAiMc4R8tFolZpPgaJLL5Vx/1RUU59XwjR/9mJaux3H7Xmd+96XEY1oAbvzQfGmbk7OqgDSO4Jf2zzLOESyn4ghp7YJivp24Xr1Wjud1DU0vbcKca8dss2W852TOqN27+uns9KLVKGZcZrqhFG8VHA4/e/cO4PNFWbLETm2tHYNeJTk3RSEvXqYiL+/dVRPeUyJXbm4uCoWCwcHBjH8fHBwkP//N9ai+UWTn6BgOKSXrozVXx4svdLHntX5Igd8fpad3lMZGITtCnGKXnjeUZdFwpH2YLIsQRny4WZjAaDarOeusIlpahkkkEvSMh2zPmm2hosyCZyjCvLwFrF5djNms5tChQerq8qTWp0QiQSyRQIZgbRUKl4K2tiGee66TQCDOhg3lFM9W4h0NUGC1YsvOPsmnnRnRri48v/89iZERzJdeivUTH0cze/Ybzvp5r+JU07PeLqQXzqOla9h/bh4XeLZQsO+f8KefM7SggaOquTz9+pPsPXKY/Udbaem9lAe/9xmOHh1h06YTKBQy1qwtlsQYsZUQBNGnv3mIhQutFBaWSWIRgDVXh1wuJxpN4PGEcbnCyOVySsYv3vsPODHolejVZh7+5je5/68v8qedj/KP7ge4eP6VrFq1MMPRlD6FkHFxSJzsKG6zrW2Ibdv6GA3EGPFGphWyxBtKrUYgM6K7DGBpfX5GJpb4eUXM5PQSw/BrF9ulwQ/iz+lwOk6t9HWKouHpiGzpImRxsYGOjmHps4qvAxRlTQ2FfTfjP6Ee5Fr1WLK0dPf62bKlm9IyMxq1kqZmF7t29pOXp8OSpWXXrj4OiTVhPFg63W2RSCD9vcRsJKtVy1lrx+tBMkFjoxurVYveoOKstUW4h8Lk5S5hxYoCaqpzOXBgELNZxbp1ZeTa9ARDQQKB0fEhIDJkMhlKpZK+3iitLV7kChk9jgBLl1nJtQdQKJXMq5o5Y+jNIJlM4WjxcPQ1pyAG1tpYfF4xtlIzKs0bf7DybsY7URPS60EqT89gloIylRJcY7ibhvHm6nH0jLJjVxMPPPxzkskEOVkv8JFrv0V1zQXs2NnH3r0DLF9ewBVXzJHWK7bcitMMCwsMXLRxFpCSsryqa3K5EvjVrxrxeML4vHI0GiVLlxZk5GXp9UrOXXsZ9bWrefTJ/2V/028pymti/sIfAJmuJrcrKEw5PDzGooW2KfXA7QryzLPHaG/zYLFo0KiVU8Qssd1Qo1USCsYldxkIbYPpbqvpXF0zub3EQPySUkGsnhAAp+J0nVrTTV08lciW7r4rLhLqgfjZxYwuyWH2nkrs/c+oCTnZOqIyVSZHeLGLPXv6SKXAPxqhp2eUxkY3bndImmKXnjeUZdHQ3j5M1jgpP9zsxj8awWzSsGSJHa1GQSKZpKcngNWqY/bsLCorc/F641SVmVizphizSc3BQ4MsqRNanyLRKIFAgGhMqDMymcATDHo9jq4wf//HMQKBGBs2VFBSJmM0ECDPbiM56mPXE3/CklfAyvdfT/nCWnTmrIwYktPFgnPP5+hrO2nf+Sp5s6sw5UwIfIMnjuE81sHi8zdiL5t1krW8N/BOcYSi5Rdj7x5jYP9TuHoHiI8FUSiV1Jy9jv4jbbS89CSB7LW8uPcpGl8/RHPrYY51X83P7v4sR9pH2LTpOHKFnLVrJ0LL0yd6ulwh+psDLFqYS2GhURKLII0jRJIMDYVxDYaQyQyUlIxzhP1ODHoVOm0Wv7z7bv746HP8/eVH2NP6C86qv5ZVDQszHE3pUwgpFfZDnOwobrOt1cP2bX2MBqJ4xychThayJI6gVRAMxiV3GQhB9mImVsg4H1Okk7LFS9Cbhb/Z5JB9EW2tngmOMJ4pKf6cDqfj1Epfpygano7Ili5CFhUZ6egYkT6r+DqAPWfat/9H4z0lcqnVaurr69myZQvve9/7ACFUcsuWLdx6663/ln0QM7n6xkPhqqpyeO21fpwDAVQqBR6P0O4hA8bCMfYfcOLzjklOC4NRKYlSosvi0KFBPJ4wOTk6lizJY9YsCx0dHmw2LRaLlqX1eXQ7/CQTKebNs2I2qygsNJBlKc2wuisUChTjjqx0ctzY5MI5GKao0Eh2tpbP/eheXm7ewe3Xf4hv3PyRN/T5U6kUoy+9hP/ZZ1Ha7eR97WtkXbThjHtrEk41PevtQnrhFLddMH8l+fFbGPzx3aRefZkG00EWnbOOYCTI9sP7eXLv0wzefpxLF1xDX3+EokIj0UicRx9rneJGFKcZ5ucbpPB0Sk1S5pTRqKSkxERhoUFqPxSP8wMHBgmMRlEoZBiNamoKFvLljaVs7nyOJw4+DNkDVC/8LNmmiRD5yVMIxf/E7e3Z08+IN4LBoCQeS/LsM8dIJJOYzWpJyGo85OJQ4yBz5+bQ0FCUIYCJmCkDZaZ/T7c/X39dTUbG0huFeK42HhJy0mCi7XImkS0d6SLko4+10tToprIym9o6uySO2W0G4iMjb3of/xPxn1APxEyu5jYPnR0j9PUJ58aunf0MDwvO2tJSE7t2CaQiPBbjwH4nXt/YtG4LEFqtDh0axGxWs359OeecU8Kx4yP09/VjMKi45JJZaNRKwmMJ8vMMRCJJ9HohpDid+BoNRozjmSYTxFhHa4vQylVZlc0555Tg6DvBRz93GTqtnpbXut+y78bdM0rbjn4CIxHyZ5lZvL6E4rk5aA3vLjv8W4V3oiZMVw9qanJI+mJsf/wou548hq3CTMOKheTYfsKP7/06w74OfvnHm8kr+hE+zwL8fmEC22OPtk5xIoqCT35B5rUp3TVUWCS0GFqtWhYstEnHefPhIQ4dHMSSrSWZSCFXKLngrK9Qkr+KzTvv4+s/ug6l5qesP2dDxvYOHRRqgiVLK4lSotjm6PHT1uZhLBwjO0dHJBqXnuybzWoSCXA6g/T1B7BataxcWUBhgVFycqXjjdYEsUWyttYmBXi/WaTnkHV2jNeEmomaMFNLpfhvYj147NFWqW0z/b5TfJ93MPgv7ed/Gv4TaoKYyTXBEbJ5bU8/zoHgVI4wFmf/fic+b0RyWhgMqrS/lVmatCYOWahfkses2RY6Ooax2XRYLBqWLs0fz0eF6morZpOawkJjRuaPRq1GkzPBYl2uEI5uP6WlMpqa3TidIYEjWLTc8fXvsb95N5+/+RYq48Nk2fO48JbPUzhn3r/8IHvDp7/A7794Cwf/8QxrP/ARQfQYG6PxxX+QlZfP4gs2otJq/6VtvBvwTnKEo7451Kz5EGNdO4gkiqi9YCP16xqIhcP8/vZbUQT3cfunP8n3fhbiYPMBNm19FN+tnaxZ8gH6+gUuGY0mePTRtiluRHGaYUG+QQpPp3Qic8poVFJcYqKoyCC1H4rHucgR5Ao5JpOKqvJ6br6min0tf+XFnQ+iy+pnwcLbMEscYeoUQvE/lyvEls3d7HltgBHvGAaDing8ybPPdpIYn1YtClmNjS4OHXIxd272OEdQZYhzIApB9RTYV2CzG1GMx/HMlJWVwRGurz5lS+PJIApZjY1CThpMtF3OJLKlI12EfPTRNoEjVFmorbVL4pjdrifk877pfXyn8J4SuQBuu+02PvzhD7N06VKWL1/Oz372M4LBIB/96Eff9m0nx8ZwOoMoFHKKCo1SP7I9T08slqCo2ExNTQ6DgxNtgwcOOKmcnU1NdS4Oh5+yUvMUV0ddXZ7k5PL7I2zZ0k08niInR0t/MMBWf5RUKkV+vpGKCjNOZ4gsi3ZKyLboBCkrFTKVxFDTslIzh5uHiMUSNDa58HgEq7rfF3tjnz8cZviPf2SsuRnDmjXk3voZdPPnn8nemgYnCwt+O5FeODP3IYvS3/yGwPYdDN59N8rn/sbvKit5fuXH+eojj7CzuZnW4118+KwPsXHjwomx1IF4xiRA8cbe5x3j0CGXJEAB+P0x5s7NyWh1TMeuXX04HH50OmFUtkIhw2438JNb7qC5r5E77ruXVw8e5AtX3MzVF6yltNREXV0eYnBuOkQBzOeLkG3RUF2dw+BgiHA4Lly8F9sJhuJEI3EcDj9KhZyS4sxw+ba2Ielpa3q7JswcSC8iPa9gOgfWG4EoZFmtOgxG5bQ5aacbQJy+X29mX95teCfrAUxkclmtOowGJRaLBq83wrx5Ftrboa7OhsMxSlWVhWg0iT1PR3v7MHqDisICI4UFsLqhMEM4WLzYTiAo5LdAigMHBunq9uH1RhgNRNm9awCTSY1cISO/wEgykSQUik8Jyk53gfQPBDh4wMWSeru0/nAoxoEDTnr6BNdDMvXWBL4HfRHadvbj6hrFbNXS8P5KqurzMFjUb+rp/3sF70RNmLkeQPHcbHY92UnrjgE0LiUXnXMZ6849hzu+/ll2793O/3zz86w/+wrWrLgFnzdFY6ObQDAuBciLP+fNy8HrG+PQQZckPgGS+HXB+eXTuo76+0fp6vYxWykjmYDBwSCJZIrq6rP5+E2X8L+/vItPfP5Gzl1zBXfd/h0qKvKFmrBkak0QhZ/wWBy9TolcJsOgV45PeBSyrxYvthMKxVGpZXR1+YjHk1iytBnTSMWw+uqa3CkOsnT31HTikphZZrFophUE3wjSc8iMBuWUnLT0nydDes7av5Lz9W7CO10TxEyuKRwhnqCoyERNjZXBwYnMoAMHBqmcbaGmZpwjlJmnuDqW1OVJTi7/aIQtmx3E40lycnT0B4NsHe0hlUyRX2CkotzMgDNI1rj4lQ7RCVJWZqa7O40jlIkcIUljk4vhEYHDDHZ3U2pVct5Hb3lLBC4AvdnC+ps/w99/djeHN79A5fJVHHrh78TGwqy5/sPkFL75B4bvJrzzHGEhRYXvIxGLodbpkMlkqNQarvyfr/P4N7+C7/VdPPi/3+HZl1/hRz+7j51799F29BhXXPgJNm5cNMERgrGMSYCi2OPzRjIEKBA6nSSOMI0gs2tX/zhHUNLbm0ShkJNn13PXF+7iSNc+vv3j/2X3vgPc/IHPcPEFayktNbOkTsjfmywyiQKYzxsh26KluiYHpzPI2FiCykqRI8SIRhPjHEFGSYkp45xpa/VMcIS0dk3IdFBNF2afwRGmcWC9EYhCltWqw2BQTZuTdrqB9Bkc4U3sy38a3nMi17XXXovb7eYb3/gGTqeT2tpaXnjhhSlBk281EqOj9HzyFuxVNaxZu0a6wXj2mWP4fVFKSsxsuEiw2IZCMfQ6FU5nAHOWBkhRWGhALpeh1mT+SYQWrIkbjy1burBYtOh0Surr7Yx4I/h9Ebq6/VitWhYusmVMbUvHS5u7aWx0UVxkoqjYJGUhHW52o9Mpyc3VU7vYTvYeLfRBTvbpPy2JDQww9Otfk/T7yfnoR8n50I2oCma245/BO4NTFU7j2jXoG1bh/fOfGfrV/2P98eMsvuRSPnNgP68fP87Pn/8lS5ZaqV0s9L1rNUp27eojFI7h90cpKTULx16pCTFbbrIjanKWlijq6nXCKG2ZTJjyk0iCQiHjyBEvqUgRD3/lf/nuw/+PO3/3Y3a27Of+r3+JhYtyOdw8NH4Mj0iB+KWlJvLyDDgHg5jNagoLTRQWmhDFOICgY5TW1mECwRhZWRo8njHa2oakFuJNm05IT1snC0KnclClT00V3VPTred0kD4VcfWiwmkD8F3u4LSZYSfbr/8GvFP1QMTkTK6nnjpKU5ObwkIj555bikIhkH2FAkwmNZFIEqtVjccTRqNRUF+fP4UIV9fkZrQmuV0hTCYhX8iWq6OqykJLyzAKhYyFi2xYsjTT1oPNm7ulFsma+bkI+pKM6ppc+gcC7NrVT0GBkdo6G396BpTKf619MBZN0Ll/kK7mIVQaJQvPKWLB2UVY8gxnJia+QzhZPVBrlZxzwzzmLs9n6yPt7P37CYrnZfOHXz7Bbx+6j//75Y/Y/OpTuIa6+N5XH+b1wx40WiUHDgwyOhrFZFIxuzIbS5ZGyJNbMn09mEkoikSSxGJJ+vsCFBWZ0OqUhIIxEvEEjYfC3HbLz5gz6y/87k8/4rqb93Lfj3/F8voGFi0UXGA7dvYBCNf/AiN6g4rh4TB2u55EIkV+vl4SttJztzo6hlGpFSQSKQ41utDrlVTX5LJzVz+HDg4SCMannJOnck/BxHmb7p56syKXXi+E9M+bmz1lHeL2HY7Rk+5P+j79N+GdrgnpmVwAzz7bic8XoaTYzIaLKgAIBmPo9SqcA0HMWcK1sbDAIN0bpcNu12dMWtuyuRtLtgadTsWSJXa83gg+X4Tubj9Wq2acI2imJb0vbe6isdFNcbGRoiKTFHJ9uNmNTq8k16ajdrEdyz810AMxbz9Fqy+ifHHdWxpFMnfVWvraWzn0wnOcaDyAUq2m/pIrmLO8AYXyPUdb/6MwuSYoJ5kUCirnsv7jn2HLg79iywO/wiiXc+dVF/O7V/fQ1dvHH/56DytW5lK7uBoArVbBrt39hEIx/KMRSkrGc6xKJ9Y52RE1OUtLFHX1eiVjkQTIZGjUCpJJkCvkHDk6wthYOT//7i/46W9+yvd/9k0ONl/CPd+5nYWLbBxudkvHsBiIX1pqJj/fyOBgSKoRYu7pBEeI0drqIRCIkWUZ5witHqmFeNOm4xMcYZIgdCoHVfrUVNE9Nd16TgfpUxFXry7K2F66c03M2DpZ2+Pkaa7vdrwnrxa33nrrv816LEJhMqGvr8f34osMjFox6BcSDMUZGBBOgPx8o5T/I1eARiPkT+h1KjqP+VDIZVRUmDNuAKfL20kPphenGG7Z0s3oaAyQScunj0RNJ7UywGgUWlcMeuX4VLcoOp2SioosrLk6UinBonm6RSt08CAjDz2E3Gwm7xvfwHzhhSiM7/0ngu9VyBUKcm68EfNll3H8O3eT+/yzPJSdy09XF7DzxAnOra8ny2iUxCCPZ4yBgQAez5iUG7S0Pp916wwZuVmFhUbpxns6kWj16kIGB4UQ7mQqhdWqIy9fj8cTprNzBLfbyHVLPsr8wn08vvtvnPWpDm6/8lP0HZWTSkE0mqB/IEAwEOfmmxehVMlIJkGlUrBwUaYTS8zYslp1LFuWh9stbMNgVFJdnSuF56c/bRXhcgfxeSPk5+tnDKRPR1mpmf6+IGVvcrSv3WYgyzIq5fRNt53J3+cLLxxj27Y+amttzJqdfUrx672Md6IeiBj2hDlxwospW4PNbsDjGcM/GqUQYYKcmP9TWmYed5VEiYzFCYzGSCSENkMR02Xt2OyGDDdGdU0uB/Y7MZkCQtt6gYFQKM7QUFgKuk+fdigapxYtFGuEEIQPMnRaJVarjmBYaIdSvEkSk0ql6G0f4cgeJ/FogrIFVmrXl5JXbkap/teEszN4+1FQaeHary1jz7PHadrSi7tnlCWV7+e+uxfwzR99nmuv/CALFuSxYEEebpfQJh4KCe4oSNHePsy8eTlSi5XbFZSORf2QUjqmJwtFqxuEeuD3CS3stlwdXpWcIU+EEyf8AKxZcRlBbwl7X7+P6z/2Pm7+0Kc5d9VNHDooRDzEYklUajnr15cRGYvR1xegsipbav+dLl9LPJ/c7jCdHSMYDYLIZbXqMGepsVozpzWKOWD5BQIJO7DfedLA+NIyM319wZOG3p8KoVA8I6dvMqYT3V54/hhbtjiorLRw5ZVz/itcWzPhnawJPl+Eju6o1PI0MCC0hOYXGKT8H4VChkajQK1RoNcr6TzmRaGQUVGelSEITJe3kx5Mv3CRDbtdz5bN3YyORhE4gl/aTroLRYTAEVTjHEElTHUbjaDVKqgoH+cISYEjpBIJqlefjT7L8pZ/T+d99JPMql9OT+thCqvmUTS3Bq3ReOo3nsHbjgXnrKdwbjXHD7yGo6Ob3pZmPr58IVuLizgx6GJF/RIMer0kBgkcIYjHEyEYFK5LS5fms259WUZulsARhGv7dCLR6oYiBgdDDLlFjqAlX+QIHV7cbgOXnPMZKst28PwrT3D5Bw/zses/S/dxNakUwkOT/gDBYJybb16IUikjmUyhUsmlc0XE/vGaIHCEfNzuEJ0dXgwGFdU1Vik8f1qO4Arh80YoyDdkBLjPJC6VlZnp7wtQ9iZrgt2uz8jpm247k7/P558/zvZtfdTW2Zg1y/K2BNr/J+A9KXK9U8j/9rdwvryT0uYXaTRaWXf+7PE+2wlByuEYJZmAwkIT1TW5RCNxdu8eIBpLYDBm/jl27uhn775+li8rlPpl0wkvDJFlGZXyt3ocfl7Z6qCuLg+XOzjFPbK0Po9YNMmqVQUsrc+XiH5+voFzzhXyu556skPK/fGOzDxtBYQC53v6aQJbtqCdPx/7nV9BX1uL7MyTlvcElFlZdK67maPhuZx7+GG+OtRPfN16zON5CKlUiqR8jMsunz0lzF1Eem6Wyx2ScrCma6mors6lpmaELVu6UKvVlJebWbeuDM9QGINRidsd5tgxL6tqG7j1wxdw0/e/x62/+AYfOOf9XLp8Pc6BEIFAdLyNK9N2O1ngmTzNML2lUPz3NWuLphWHxNyxufNyCIbiJ3V0tbUNsXv3AApFpktTFKHOOqsIs1nD7t0DrFpVMGN216laUIbcQVpahrBaBdv3tm19HDvmZWRkDIdjdHwAxVQH3Rm8vXi9xUNb6zApheCQWt1QKLUXiYJUIgEatVIKyY5E4xw77iMcjtM/EJScFjt29rN3bz/Ll0/UA8gkvCLhnl2ZxaKFtoxcI+/ImNQuZrMbWL++DJ1eJZ0vlizhJsmSNcqihblYsjRs297D9p3tAKTeRAj18ECQ1u19+IfGsJWaWLyumNL5VnTGt24y4xm8/VCoFKy+qoqKRbk896tmhltHMBRW8M+ndpJltkwsKA9w3nml9PQEpGuVJWt0ak0Yz81yl4SkUPfJ17jqmlxqjoywd6+QGabRKKmq1EmC8OLFdpqaXETGzNx45U8IxF7lJ/f9gG27XuWDV32b2ZUF9PaM4vVFANkUMTgdk6cZVtfkZrTzAqxZXUhpiWnKNdjhGMU5EGTevBwpvB1mdlANDoYY8oQyWtJeeP4Y27b3cdbaIsxZGnbvGmBVw5uvB253kJbWiXoAsG17HydO+HAPhcnK0kii48lC6s/grcfRoyM0tQkH/bp1ZTSsEsKmRZLtcPhJJFIUFhiprrYSjSbYvatf4AiT8gp3Zgx+GOcIaYQXhFYwMX+rp8fP1q0OltTl4XKHprhHli7NFzhCQyFLl+ZLRL8g38C555ZSWmrmySc76Or2AaBQaylZsOht+67KF9VRvqjubVv/Gbx55BQUkXPJlbg2Hcc9VEeR6R9cpD5C3Rc+h0EviCWpVAqZPMxll1VOCXMXkZ6b5XKHpBys6drsqmus1BwZZsvmblRqFeXlWRMcwaDC7Q5xrNPP0tp1fOrjF/Olr3+Lb9zzFd534fWsW70R52CI0dGodF3M4AiTBJ7J0wzTWwrFf1+7dvpph2Lu2Lx5OQRDsZM6utpaPeze1Y9cIc9waYoi1NqzisjK0rB7Vz+rGgpnzO46VVui2x2itcUj3e9t39bHseNehkfCdHf7pQEUpxNU/27CGTXiLYTCaCR261fJued/WOE9gN22SGo1FNuJDHolc8cn1wgurC5CoRhyuUwadS2ST48njN8XxeMJZ2xHbF86ccJHIBAlL1+YGOHzjo0TkVTGyStCrVGSn2+QyPZkog/Q0TlCPCGMlrfmZD6xTEdidBTPAw8Q7ezEfMkl5H7+c2hKSv71L/EM/qMg9OevxfzFDWgfvx/vo48y2NeL9ZO38OD2bXz/97/nd3d9nfOXL5/2/em5WcIklbh0vIlPEstKzVIAvdmsIi/PQEGBUcrustsMVFfnZghRc0pz2XLfL/jO7x7kvr88hsPXyfc+9lmqa3LHg7x72bq1h9JSE9bcieM4fR3pWVrWXB1VVTnSsidrA5yOYBj0wkRVUdAWp7G43WH6+gMUFRozlhdFKACrVSeNlJ+J1Ij7MzknTERLyzBOZ5CWlmE2bJhNba2N0dEohYUG6ZoApxdUfwZvHRbMtyJLpVg0fh0W24PEIGwxsyidZG7Z0k04HCeRSJI+3uxk9cDri+D1jeHY6edYp5e6JXnj63OTSoHVqqWiIov0drHqmlyJlKdPoEvPFXrssTbGxgS3yBtpVwwHorTvHmCgw4fBomH5pRXMXZGPyar9r87derejsCqbdZ9ayI7HjxLsC9HyUoolGwzojGqGRzy8/0MXs2h+LT/+zr3odMIN8mTxJD03Kz3UfWgoTEfHsOBuHD8ezWYVOdk6iktMlJaYpWOzoSFzvwTh6lYaVqzlc1/+BD/8+Y18+6t3c+21l9DTEyASjbN58/RDE9LFrPR9zR2vCbnjNUE8J8RzV9yX6eqBPq0eLFpoY2goLG3D4xnD749KAeMgCFBSPcg5dT0Q92VyTpiIlpZhnAPj9eCi2QDU1toYGR7DatVK95rAKUW5M3hrEI9G2ffs36goUZHS5EjEWmw1FNuJDHrVeE0wSy6sUDiexhH8Evn0eML4pq0JQvvSiS4fo6Mx8iWOEJEeVkzLEdQK8vINEtmeTPQBOjtHxmsTGLOtGN4GF9cZvHsgZnhVzb6Nf/74Nhz7d1MyezYymYz7H3qE3z70MPfd/UNWLa2f9v3puVnp0xY9Q2E6OkYw6AVhVxRezCY1efkGCgoMUnaX3S64xtKFqMoKK3/5/QP89Fe/5oGHH8Y10sGXP3M71dVWSkvN7NrVNz1HSFtHepaWwBGyJzjCSdoApxOcDHoVW8ZrUCZHCKVxhInlRREKhPu311s8ADOKXOL+TM4JE9Ha4mHAGaS1xcNFF82its6GfzRCYaEx4wHm6QTVv5twRuR6i7HyY5fiHDzMyMOPMLB9Pn36UsmKf6R9mLnzciYFVcuIRhPIZDL0OiVtrUM0HnJRU5OD1aqjri6P1aunjhV1uYMEAlESiRSDzpAkFhSXGCksNEqkfWRkTJqCN93NWM/41LbVqwuprs5l/bpSNh9XgpcZc1IiJ07g+e1vScVi5H7+8+Rcd+2Z6YnvUWT05991F8Y1axj4yp04f/B9nhoN4AsGufprX+UHt3yKT1155RQCa7cZWLgIDjcP0d8fkByNLneQJ5/skMhMebmwDSEvQiu10orrgKl5Uhq1mu/f8inOW7qUW+6+m4u//Fluv+oTlJaeze7dA7S2eRgYCFBdM9GqmD7RRGy3dDhG8XnHcDoFi7GYaSc6LyeLQpMHQ9htBvYfcGZMeuzoGKap0U1hkZFly/Iy3GRtbUNodQoKCgySkwtg1arpM+wmT0IV9x9g585+rFYt8+fnZKxj1uxsYrEU+fmG8fyNzHP/dIPqz+Bfw5w5VmbNykZvVme0G4rtRPPm5WQEwjsco5zo8hMZi7NosY1YNMFP/ncfqxoKqKnJweeNUFMzdY6z2xXE7xemDoXH4pw44aOtdQiQsaTezqKFNmn9HZ0jEjGefDx4fREcO/2YzWoWLbSxbl0pwbFe2nsgmRS2czIynIgnOdHopvOgC4VCzrxV+Sw8txhroRGF8q3LbDmDdw6Vc3Ko/PpKju4b5NU/H2HH4x0sWlfC690HcA7209PXTXdvF7/92cPk5508lzM3VycJR08+lVYPxmvOooU2LFla6ficnDM1OVNqQfVinnt8C9/64Z3c8fXPsmbF83z7zrt5bY+fQ40uZDKw2XQZ7xGnHorrS5/86BwI4fVFJDeazW6Y0go4ObDdZjdwYL8zY8pjR8ewtI10NycIIptOq6Ag3yA5uQBWNcz83U03XRFg565J9SBtHbNnZROLpsgvMEzJ6TtTD95+JOJxupsPgUzG1Td+DKVKleGaEMnlvHk5U4Kqo5E4MrkcvV5JW5uHxkYXNTVWrFYdS5bYWT0N8XW5Q4yOxkgmkjhFjlBmHp9ubZRI+4h3TJqCNx057+kZpbHRxeqGIqprrKxbV8re12X4w2DMsaHWvfuJ8Bm8eaRzhNB1H2LzA7+k/2g7ebOr+Ocrr+L1+fnoZz7HN+74Eje8/8op77fb9VJulsQR7HqefbaTffucHD/uY+WKAgacQluvmCknttKK64CpeVJqlYqvfP6zNCxfxh3f/DYfuvXjfPLGzwkcYVc/ra0eBvoDVFdPhMZncITxdkuHw4/PG2HAGRznCBpJ1JpOFJo8GMJu17N/vzMjaL+jY2ScIxhYtiw/w03W1upBq1OQn6+XnFwAqxqmagGQ2bY8hSPs6sNq1VIzLkaK65g1Sxh2VCBxhMxz/3SD6v/TcUbkehuQd8cdhF7bS/DJJ3jNvhHf8tksXCTcVE2+mSgsNJBIpBgNRHG5wgx5Qvh9UXy+CPn5BmrrMh0bLreQeSFMaJEhVwiigt8fpdvhJ5mAYChO0DHKju19HDs2IgWvXH9djUS0xfUc2D9IOByXsog2bJhNc9957H+9GJsh84RKpVIEd+zA+8QTKPPysH/5Dkznnotco+EM/jtgOucctE8/Re/nPsf/a2rmB/Pn80RLC1/51S853t/H3Z/+DArFhONDPM46O7xotUqyLFpJPAqHE6hUMnJztcgVghtKFJAefvh1XnttgBUrCrjxxgUZ+5Ce87VwkY11S5ex+/4HuOGu7/K1P/wv+442c9P6axgbi5Obq8XnHcPlDmK3GaY8vRRFrPx8A/n5Bk6c8JFICk8p7bbpn9JPh8mTHqOROP19QZbW5015Gt/Y5CIUjLNiZQEbNghP2RsaimcMj08X2tL3v7HJxaHGQcxmNVddNZcvfWl2xv6k/0wXDM84uN4ZOByjHDgwSEfHMIsX2yUHVzpKS00kkzA6GiMSSdLSMiy5Os45p4T8fAMadWbZbj7spqPTi0YjR6dVYcnSkEwkaWpykUgI2V9C6H0He/f2o1IpiEaEdpnrrq9Jc5B1sfmlbmKxJHl5BixZWjZcNJv6ZUZ0P/04o37hM0wncqVSKQZP+Gnb2c9YIEZhlYXF60sorLSg0Z+ZrvtexJxledjLTLz429c5sKmLWbULeeg3f+XTX/oor7c2ccUHLuD3/+9x5lXVZLyv+bCbzS91YzCopNbZ9HpQWmoiv8CA1zdGKSbql+aza1cvf//7ccxmNeevL884BtMzvoS8OSP3fPc+ivJq+c0fv8P1N2/gfz7/E+pq7YTHYmi0ygyxNr2NESbyrPILDOQXCDUhOe5cmcm5NRmTpzzq9UoCwTgarZLcXB3XXT/xnTQ1uQgG46xcWSC5rsSaMV0OX/o+pk9XbGpyceiQUA/ef9VcvnT77Cn7BEgh++LnOePg+vdAo9ez4TO38dfvfo3DW16kbsMlHG52c/DQIEvq8qQsrcnksrDQSCIBo74xXIMhhsbdWz5vhLx8A7W1mY4Nl0sQtJzOEAoFKBTCwwW/P0p3t9AKGQzFCDpibB/nCOLDyeuvr5aItrie/fudhMMJKYvoootm0XSwnuNtCfLLlv47vrozeJdg4boL2P/3Jzm6ezsFVXN55P/9gju/+wOee/GffONHP8bR18eXP/sZ5Gn5nuJx1tnpRaNRSJlSVqsOlVLOWDiOf1TIZTToVZKA9PDDLby2Z4AVKwu48cb5GfuRnvO1cJGNs1at5B+PPsInv3gXP7z32xxuex9XXnQdY5EEVqsWnzeCyxXCbtdPwxH8UstuQb6BE10+qaXSbteftig0edJjNJqgvy/A0qX5U9xZIkdYubKQi8YH1jU0FM0YHp8utE3hCIdc4xxhDl+6fVbG/qT/TBcM3wsOLhFnRK63ATKViuJf/oIjF19Og3MrB45ls3BR7iQHl4D+/gByuYz8PD2rVhUwOBjG4wlTU5MjtXCl43Czm84OLwXjUyA6O0eorMymts4+JRMpkUgST6TItqgzLMnpQllpmRm9LnPk6Ecuu5Dzahsytp2KRhl57DFCe/agW7YM+x23o1uw4C2dqHIG7w6o8vMp+9OfGLjrLr759DNULlnCDw8d4rdPP41reJjf3vlVtGohc8fhGKWry4/PH6G83JxBEM49twSxHcvpDBFMC9F1OEYZ8UYkcUaEyx3k2WeO0d7uQadT4nKHxtsaLTz8jW9z72N/4zf/+DPNx49wy/k3o4gr6DzmlcQ10Q02XfuwwzFKIpmSpo7C6YtCk6egOhyjGa3B6ahdbMftDuN2hzOmOW7Z0i2N7E7f5uS24nTROxiIY7Vqp1wn0vdbzN6bvN4z+PdCnNzmdIYAF+vWlU1LMM0mFUajCqtVJ7m2VjUUTEuu3a6gFMIdi8GwZyJYO31iHEy0O5aVmyitzpFIffp6FEo5hYVGauZbpffZcvP4yhe+ltHSmI7R4TFat/fh6QtiydOz9OJyZi22YbBozrQmvsdhseu56itL2fboEdp2DpBdYOeJBzfx6Ts+TMfxI1z70Uu5/+cPs7w+vb9QCPv1+aJEosI1P70eLFpok0QcS5Ygqu7eNUBfbwCKjVOO/2eePUZ7m1AP3K6QdF594JrrmDN7Efc98BW+/M0PcPlFt7Cq/jo6O7yYzWrpen2yFmIhQzWzJpyOMGSzZ9YDm92Q0Rqc/n7xPLRYNDz2aCuLF9vJzdVluMnEdYiY3FosIhCcvh6k73d6yP4Zgevfi9L5i6i/5Ar2//0p8mZXAjrGxhKc6PKxcJFtioPL5QrR2OTCZBayE1c1FDI4GBrnCFbUasUUcn242U1np5eCAuFv29nhpbLKQm2tfUomUjLRQyKRItuiyeQIaUJZWZkZvT6TI5xXO4caQ4wLrrrobfqmzuDdCLlcwVk3fJRnf/oDHIcbKV+8hJ9+79tUVpTzf7/+LQ88/CdcQ0P86Bt3oVZNtCF2dfnx+SIsXjwxdXT16iLMponszmAwRjAUk36fkSO4Qjz77DHa2obQp3MEu5Vf/vgefv37R3js6Uc43NbMtZfegjylH+cIGqntUXRwTW4fFvPyxKmjcPqi0OQpqA6HP6M1OB0CRwjhdodoa/VgzdVluMnE9YmY3FacLnoHg7HxmpB5nUjf7/1pNeG9JHDBGZHrbYO6uBj9V7+N4ptfprpnOw5HwQwEU4bFoqGubqrjY3rI0OmUGRN+Vq8uHD8JMgOlxdalVasKMoixwzHKoDNMIpHiwgvLM16DqcQ+7vHg+c1viDmdZF19Nbmf/CTq4un7gs/gvwNylYqiu+9GU1HBB++9j7xFi7mj5XWe3rYNj8/Ps/fcg0KhoLTUhFoljPpVquRSq6LDIQxMCIbiGPSCw0u8MXe5g9IFWSA+ExBC3wOkUiCTyejs8GK3GSgsFPrbP3j+xSwon8ud9/+Eu/78PTbMvYKLV6/JuOlPF5Tq6/OniM9vRSh7OgkRP++QO8iBAy7ptSPtw+h1KqqrczncPERriweZTIbd5s8QrGcS2ia3b57OvswElztIb5uboiITWTMudQb/CgTiWyYde9O5ohyOUTQaJUuX5rFmdeF4/lBxxjomL59MpCgoMKLRyIlE9KxuKJRIcjoJFtsdpwu0bj48hHMgQHl5FpdfNnvKdqYj9pFQnI79TnpahtHoVSxeV0z16kKy8/TIFWcefvy3QKmUc96N1RRWWdj26FFCO2T89sdPcMf3P8H+Q6/xoVuu4f57H2HtqnMAYZJn4yEXff0BHN1+qirH68H4JFDIvGa5XUHseXrmzM3m3HNLpjianAMBUoBMLqOj04vNbqCwQMzAquBbd/yBe+79EU/+41c0Ht7L2cu/CORJ65jcnji5hVjcj39VEEp3UomZXgcOOKXA+d6+IIcODhIIxqmrtbN9ex/DI2FsuTr0euUUV9fk/Zncunmq/ThZPRC3lWNUUf7mP/IZTIO113+YE4f207J1Mws2fhCXOzQla0uEwyFM3BUDtk+XgGq1ikyO0FAkEeV0F4jYurSqoTCDGDscfpzOEMlEkg0Xzsp4DSAW8JCdZ6eiMo8zOIN0VC5fRd7sKlpe3UIiFiNvdhWf/thHKcjP487v/oBnn38Rr8/Hj770Bboa9zMWjpOj0OJOmlEq5VLOlcPhlzK6DHpVRkudyxU6CUfw4xwIQApkcjmdnV7sNj2FhUYam1xce/nV1MxZwI/uu5uf/vbrrK67lvVnn5shAokir8AR8qaIz29FKHu6MCV+Xrc7xMGDExyhvX1EEJhr7Rw4MEgkItTHnp7MEP+ZhLbJ7Zunsy8zweUKcfyIm5LS7Df8Wd9JnBG53mIkk0nJijn72kvoeL2Jsr88gsJ5GJfbNEWIWrgoNyMz51QQlxczhMR2xuncGmLQ/OHDQzzxxBFyrDqufv8cgUAHo8L0rv6gRJTFUO7CMiVFJXpsFguanh6GH3wQVCpsX7qN7CuuOJO/dQYScm+5BXVZORfceSeWmvl8puMoF61aJbUs2m0GNm6syJhKIrbfyRWQTCDlRolwOEaRy2WsXFmIWqOUWg1BuDFftUqYWOr3R+ns9AKpjD70desWcp/yu/z8mQd5tvUx1LkjlFXcIO2PwzGK3x8jEknQeMhFNBKXXJPTuS3fDKZzUrW0DNHt8DMwEGDO3JxJ4+hTxONJYrEknZ1ePJ4xRkbGWLLEzrp1hoxpjGKL48ngcgfZuaMfjyfM6tWFGZ9rugmLO3f00fLaMWpr85j9sbfkK/ivx+jwGAPHRrCVTciGotDlcIxmkF2RsM7k0JgJE1laAkGvq82VpjZOdmto1EI9CIcT/N//7efokWHOPa+Ea66pxu+P4PVGpOwHEW2tQ+w/0ENBYZx58/IoLiolEUtyosnNsUPC+VZRa2PxecXYysyopnkqeQb/HZi3sgBbiYlNv2qmbauHH952P/f87it0HD/C/HkLpeVsdqEmiEHsomtLoYBEgvEMLI10DhzY70Quk7HhwgpBGJoU+r6qIa0edHiBVEbO1rp1ZXzqY1+m9chZ/O7Rb/DUS1/Alv99Fi3MzcjY0htUhMfiOHr8GS7IyYLXm8V0Tqr0wPllywqkmlBaaiKRSDI4GCIWS9A/EKSpySU5fYeGwlKQ/vr1ZaclbrldQXbsHK8JDYVTWj7TBbQd41P7VtTmUXfW6Tx8PYPTQUp4OscFt3yOR79+B0NH9rJu3RpJfJo82Wy64PdTQcwsEl0fYjvjdG4NMWi+uXmIxx8/gtWq5er3z8WgVxEKxQiHY/T3BySiLIZyx0+cILeigmgiwXvL93EG/ypkMhmX334Xz/7k+xze+hKHX/4nWqORFes28Nuf3sNnv/I16udWsfsvf0JvzkKhUpNHB7ZiA2XFYnaof7wmyEgkUlJulAiHw49MBitXFKBWK6RWQxDOlVXjE0v9oxE6OrwAkzjCEgzae/j947/m1f0PYbQMU17+YQApZ8vvjxKJxGlsdBGNJiTX5GTB681iOidVa4tH4Aj9AebMzSZLqgdmOjpG6OwMEQzGGBtL4PFEGB4OU79EmIqYPo1RbHE8GVyuEDt39o3Xg6KMzzX5OtTW6mHTpuOo5RFkineXbPTu2tv/cBw7doxVq1Zx2WWXccUVV7Bu3Toqv30nPc5ugi88S2N3DIdSOPlmCrGeCenEdGl9Pi53kCzLKNFInAceaEajkWM0qqXg+tWrCyUC9NhjbcJI04EQVVUuqqpySCZTjI5G2bOnn8JCA9ZcHZs2naCvP8C+fz5NU/dh7r7gAi519KAuL8f2pdswrlmDXKt9+77AM3hXwnzRBhS5VmSf/gybauYz/6yzMl6f7DgSj0vRreTzjvHSS114PGEWj1v2587Lwecdmzb0PX1iaUmp0ALZ2TFCf1+QbIsGh2OUFctKeOmiH/Pgc8/yP7/4Ja+1tPKDm2/j8gsWS9tvPOSis3NEyr9L30462tqGpID31WsEB+NkkUjEdAKSuD2rVcOBAyrhHF6aL7nY9h9wUlhoZP36cvz+CGazGr8/itc7BgjtXunTGE9H5Drc7GbLli7icaEdNN0VNl2YvsczRmA0xsjI2IzrPIM3hvbdA9zxrc8SSnp43xVXcOF5F1NSPNGimN6eKv7bG8nISSempZiwZI0SiU7Ug8JCI3q9kqee6pBa4OfNy8HrG+PAASfBQIzt2/q45ppqafhBZ6eXZ549xuqGQkKhOIcaXby27wBb9txJUUEJf/7pZo7udRINxymssrDw3GKKqrLRGs/kbp0BWIuMXP3VpTz/m9c5ssPNrVd9j7xqNTnZmU+T011HbpfQfiEKS17fGO3tw+zf76Tb4ae21pbRPjg59F2sB25XUJrAODQUljKwhobCWLI0XPf+S7jm/Wdz06c/zP/+8hb6Bz/Pt776PxlC8bHOEUaGx4iMxUkIsXXTno+7dvWye9cAqxoKqKrMnjY3S8RkASldyD5rrVBPzlpbRH19PqUlQn6XwzHKqoYCsiya8ZHvKfz+mNQ2uWVL94xB+tPB7QqO5ysJGayAJOJNF6YvToD0+aIn/4OfwRtCS0sL69ev5/LLL6ckt4DOg/spW7yEpUvzM9wjMEGCT1fcSiem4vqyLBqi0cR4TVBgNKqk4PrVDUWSiPbYY+04HD6czuA4R8gWOII/yp7XBqSg+k2bjjM4MMLh9tfoePIfZNet5AMf+MDb9n2dwbsTphwr13/nHob7euhpe52WrS+x75m/UrJgMfd/4ys4G/dhK5/F+R+/leyCQhyvN/Pqww/Ss+cZNIlBSqpXAUhuJZ83wksvdQscYbGNpfX5zJsnONOnC31Pn1haUmKmtNRMZ+cI/X0BLBYNDoefZctK2bjx/3j0b0/xnf/9KQebD3Pn577Kxg2LpfOisdFFZ4dXyr9L30462lo9UsD76tXCQ4HJrkkRkwUkmHBQWa1aDAdVEs8XXWwOh398eJUe/2gEs0mDfzTCyMjEVNX0aYynI3IdbnazZXM38biQN5nuCpscpt/YJDivywoUFBe9u4aUnBG53kI8++yzuN1uHnzwQR588EF0OgPnnXcBN1zzPkrbTzCv7Z9EF19JaWlVxvt27epl9+4BVq2aaCOZTJZFYipOf4tG4nQ7/LjdYVpeH0KlklNbm8ex4yP4fVEMRiXXX1eDZyiM2azGZtNRVGymdrEda66OhoYi9uzpxzM8RmOTIHwpFHKKCo20RwQnWrSpGcPll5F7663o5s8/k791BjPCsGwZZQ8/hOymj+H+6U/JvfVWwtnZfOrHd/Ptj3+CqpKSKUKtCKF90EFvzygjw8JI24WLbBz2RsjP10/rckxfF0C3w4/RpGLEG8HjiQDQ2TGCr6OQ733gTn7+j9/yqXu/RkpzB+87+2zs/5+9Mw9r6sz++CcLJCQQ1kTWRBAqiwruFdSO1bZqd+2iXey+TPdtpnunezvdp8u0M21numv3aWttbbWLraAtKGgBFVwIsiUESCCBQAK/P8K9JCG4zK+bzv08T59ocu/Le1PJyfnec75Hr0WrUaKNVBIbo2LvXif1Zof4+xY80VAweE8bDEYjeVz5C0i21m7Wr28UBYdJkxOHCVRCldfY7Djmzh3q1/cX8MA3/r2zs5eCAv0B/h+RERurRq0Ow+v18v7725k2NZlTT80K2a5SVJRMbFgPeQdQESBxYOQfk0J1w0ac3V1UPV7Og4//hayMHBYedyJpo6Zht0cTHR0e8t+3fxJdWJga0oDa38jeaNJhrvPFg23b24hQKwkbnGb4ww+NOOy9okH15nIHmWNiaGlxMWu2L8meMD6B3bvtbKu20dzUJZrWx8dHcERWNGs3QK/Lw9Zv9pKQFsm42SmYxsVLvlsSw1Brwzn52gK+e6eGn75twNURSexxXpThCt79z1vU763j+itvodXqEv9N+1dLWS1OYqI7ef31SvY2dNHX62XOH4xi9WOogQ3BJCT4DNmtFleAYOXu9XBk/p3Ex77LG+8+QWPLTzx2/7NMnpI4KLbJgAH6er1UVraRnjHUvuH/O1hS3CQOhFCFK/fpcSUISB12N9BKY2Mnbnc/Go2S+QvGiGbzwvlCpVd2dhwXXzzB7z1Ri7//+fkGzPUOuro8GE37n4IlVC+bTDoiNGF4PV7ee38706aFjgnCBMjsjJj9ri1x4Hz88ce0tLTwz3/+EwB1mJL3tmzn7GXnoosYg8PRG+D3I1Bc3EBJcSMzCpNFk+rgZFlITO0dbhydvWKFRk1NOz/+2EyYUk7BxFHs3NmO3d6LVhvG0qU5Yo5gMGhISYkayhFmJLNhYxM2W/dgjhCLXCHHlDjA1mrfzTO5lBNIjIBcoSDBOJoE42jy5y3g+xWvUbryQwb6+0nJyeMPyy4hLDqWM5aexVNPPcWcax7k61dfovaHYtobG5h+6uni5E6fACzkCD0kJwk5gpWkRG3INjv/3w+AujoHkVHhdHS4sdl8N3Nra9tp2pPGDZfcwyvvPs1tD91AmPoujvnDURgMGrSaMN+AlBgVDQ1d1NcP/b4FTzQUDN7T0nw/bySPK38BydbazfriBlQqBclJkUyenDhMoCr1iwf+nl7+Ah5AwUQ9jk43BRMPNEeA2FgV6ogwPJ5+3n9/B9OmJQ3Gg8D2RaELJy8rgoSEiBHX+z0iiVw/I1dddRUGQwbLl7/Hd9+txuGw8umnH/Lppx+iVCp5YfQRHLljFXGyXGDoy1BJydAXJkHk8k9g5s41iV8+hOqW5mYnDY1dRGrDGDVKy8CATwWOj0/GZuvGZNRRWtZMcXEDLS0upk5NFr8wAcydqyU5Wcv69Y2oVUq0GiUzZ6WQqrTz7b1mACJnzSLxzrsk/y2JAF54YTMrVmxnyZKxXH75RPF5dXY2phXLMZ93PtannuKeiAhWlhTzQ1UVHz/6GK62CLZva6Pe3En9Xp9Z9jHzTOTkJHDCCRl88GENCrkMkA16bzkZmx0XsrrKX/S1WJ20NLsYlajBZNRRZ/Z5Wn37TT1btlhJSYnk00ef5t5X/86ye+/hlMJjeeCPl4sVZqVlzfz0k4329h7SjLph1U4F+YaQBu+hEi2jMYp6cyflmy24uvvYvr0NGb4xy4L5ffDxodYKrvDMGBNLX98AGWP23w9fXd3K7t12Jk0aRdHMFD7+aCcOu+9Lb6i1wVdtl5WokASLn5Hw8HCqtlXy2L0v8vlnn1DbtJWaXdX87flqAArGHcWVFz4W8lz/JLqwMHVYPBAqQmpq2nA4en3G3I1dREaGkT3WZ1bvcPSiN2iZNi2ZvfUOVGol6wfHZqckR3LllRMDKshOPmkM8fER2GzdGE06wsMURCnltO/0tSDK5HKOPCWDzMkGdPERyOTSvxUJWL9+L//611YALrxwPEVFqcgVco5aOpb4ZC3fvVtD8Qe16Mf3c+s919Pf3093TzfHHfVHtm9vB4a3302ekkhpaROdXb1kZsaIQlEovywBfzHJanHS3Ozy3SQZFIA1GiWfr97Ntm0d5OYu4YJlJ3Dj7Vey8LQ5XHPJI8z9Q5F4o2HF8iqsVhfmOgeFhYHrg28QhPC4P48rozEKc30nGzY00t3toaOjh4F+iNQqQ1ZghVovuMIzJzdBNLIPnrYaTHVVK5vLLegNEcwsSkFv0PLSS1sCYkKo9XNyE+hoce5zbYmD46abbiI1NZsVK97j+++/oLPTxsbq7Wy89Q7CwsK46IxbmT1r+rDEuKS4kZ8qbQCiyGU2OwZjQvtgjuBLSO0dbn74oUmswouPj2DUKA0D/b5q8vj4JF+OYNJRWuqfIyQF5gjzTERolJQUN2Iy+ZLpWbMgzOXmk699x0gil0QognMEuULB7LMvIGf20dibm0gwjibaMIqlS5fy8ccfs2nTJu666xXMstnkFKXTsvFdPnr2eSxhUzn62DxycuM54cQMPvigBvng9w6z2UFTs5Ps7LiQ1VX+oq/F6hLjgcmko67O52n17Tf1VGyxkpoSxRvPv8jjf3+CP950M8fPO4mbr7lK9LQqLW3mp59aaWvrIS1teLVTQb4hpMF7KPHNaNRRX99JebkFl6uP7dvbkQFGk040vw8+PtRawVWeGRkx9Pb2k3EANyaqq2zs3mNn0uRRFBWl8vHHtdj9c4SgtYX3wWXv2O/avzckketnJCwsjKamJDo7F3LccYtob99JeHg1tbXfs2dPHc3H3MzAxuewPvUUL0SbKN/VxqK5RUyfbgQgNk7FXXd9T2SkkpkzU3G7PZSVtuHp6ycnN8H3pccYRXRMJ+npOkpKmlAoZIwfrxd9vYJ9gHq6PciAzk43y1dUUZBvEKe5OV0e0tN1vsl2zj6yu7bT8f77CDPurKYCSeCSGMaKFdvZtKkFQBS56ursVFbayMuLJ/3tFdSdu4yr9u5lc2Iy25sbWXD9dbxy232MzTZQXNzAxo1NhCnlvlaLnAQKC1PJzIoNqM6CfScOAPVmB5s3WegfGGDatETCVUr6vb72vBkzfF/mdLpw2lu9vHLnXRjj3uC5j16nvGYbZx+5jCNMqWRnxzFx4tC4d4vVid2viix4oiGMPKXQoNfS4+6jtrad5JRIJhaMEiu5Ql3LgbYrj5RIhWqPLK/wtWFqI/UY9FqKipLRRioDpiNJ/DrU18uxdU+ncOZUzlH1scO8gcrmDVTt/pHszPE0N7mIie6ks8vObffeTsqoSSw57XhmFCYNTtdx8s471TgcfXTYu6mvd9Dl9IjthPn5BlwuD+5eDyXFvnhQWJgitnb5+xpt29ZGfHwE8fFq9u518M8Xt7Lo1MyARNvd00e/p5+BLg/d7S4sth5kct9dew/QrVUQrZdcWCSGWLOmji+/rEMm830RLypKDYgHJ16Vz2f/+ImmUhk3X3UPDz19Jy+//jxNTe2cd+ataDRKVq3azdatVhRKmdh+t2jREUyZknRA8UB4rcPupqysiYa9TjIzY0T/O693qD2vqakLozGKObNm8MnbX3HhFedxx0Pn8dGn53P6yecza2aqOPEwP98gVnD5V5HtbyCEP3qDFndPHzZbD/HxasaOTcLt7g+Ybhp8/MH48QW/J8FVnxUVFmpr2onU6sV1hUqtkfYg8csQHh6OxZKK03ki8+efTrutCk/Tq1Q3W3F095IQlypOkLv3ry+zfXszJy74A0fO8ImvQzlC2GCO4KW0tBmPp5+cnHhfImxErOSKj1fjdPZx1Ow00bg72Aeop8fryxEcvSxfXu3LEQanywnVL+HhCjHxLf9iE8h8Nz62b2/7Td5Hid83wTmCfzzInDpUjfTkk09SVlZObe12brllKfff/xpFCxfy3PZ+ohrfI663mIofw8jJnUFhYQqZmbEB1Vkwslm68Hx9/VCOMH16IuHhCrzeAZyuPmYUJmOz9aDThdNm6+fZRx7i/kdf5vX3/s3W6iqO/8NFZIxOIXtsPJMm+oYsaDVhw6YuBk80hJGnFBoMGnp6PNTWdJCcomXiRINYyRXqWg60ZXkkMSxUe2R5ha8NU6vVYzBoKCpMQasNOyxzBEnk+plpaOiirs5nWnf22bOZMWMJdnsvvb02wsPj0ZyRR9/NV7Lym/9Q09PN1ztWo4uIYtaESagbk+kwRxMRpkGhUBAWLvcZoZq7xDsmQpuX2dzJwoXpAV47MJT0ajVKxmbHodEokclkuFwe0XQvJydBrFRJTNSSYwxn1Lp36KjdjnxcPg1WL9BO1U7Xb/IeSvy+WbJkbMAjQGWljZKSRgBMCzMwvfUmnLuMf/UPcG5PP7s6mjn99lu4+rgriVUlEhOtIj4+IuBD1V/wsVh9d5Bra9pZu7YuQJzduqUVGGD8BD32DjcuVx89bi8lJU0sXJhOYqIWe0cPERFKMjJixAosmUzG1WcuIictk1tfepxHVj7KNMNCFh99FCedPCZAIN5XFdn+8K/8KpqZEnKNYHFqf38fSQwLrvAx6LXieyo8HugURomfnzVr6igrayEsTM60yyaQlpnCjMYF9M11E58VRYQuBqMxirfff48fNq8EVvKf1fdjTMkjJnI8SrLp6OhBofRNy/J4+wPaCf29ihYuTA/w2RESWqvFSYfdTWKShgnj9eh0YXz4YQ31ZgcVFRZR5Nqz2463o49kmRx7rQOdPoKpJ4xmW0snvApOl5e1X5mZOSttH1cs8b/GvHkmzGaH+GcIjAcLF2Zw6k0TWflMBSbPTC4+4w5eeucBVq1ZQWOTg9NO+BO9fV6MJh36hAhReAkl9pjNndTUtmOuc5CfbyAnN4HqqlbRxD4mWoWlpRu7w9eyBT6vL4XC9zhmTAyWlm7GjIkBICUplX8/+x5X3ngzG8tfYufucnbtupXzlk1mydJcgID2wf/WhN5o0tHQ4Aw52VTAX5wSrlX4XQ7VrjySGBYcE/wFO4EDncQo8fMTmCMcQ7I3kqbNa4maMI/oeIOYpH70+UfYOy1s3PIJUZExHDlpKjJzKi2NsajCNCjkcsLC5fT0eDGbO8Uq7ClTEikqSsFsHj6BDYaSXiFJ12p9aaCr2y9HyI0XzbeD2ydtTc30Dbb//vST7dd62yQOIYJzhID8wG8QT1JSEvfc8xrXX38WFstOrr76dDZufAqFIplvd/+BEzPXo2n7jraGNOJSUgMEH4vFl5/W1vrlCIPi7NYtvn/Hw3KE4kYWLswgKVGLvcNNhEZJxphosQJLJpNx2flnkZV+BH999mFeXHEvuaZFLDz2KE46KRODQRPQPvjfmtD7V34VFaWGFLGC2y2Dhapg8WokMSy44tNg0AzPEQ5wCuOhiCRy/cycdtoRbN5soa2th+pqG5s3W+jp8TBhgp7zz4/HZMqg+18vs2TBCaxrb6PE1Y2ju5NPN34LgAwZ6bFjGd+3jLBwORMLRpGaqqW9w02r1cnyFVWoVT6D1rHZceza2c6rr/zErFkpnHFGjiheaTRh9Lj7MBl1pBl19Lo9VFW1oR6cVid8kUp1men/5D36ej38YJhNS8qx9Ch3ADB+/OGn6kr8/7n88okBbYoAeXnxAY/K+HhMb75B35KzeRM4vaefvT0Wnln9HFcdczUzZ5lEUSYUwr/j5mYnVqsvmAni7ObNLQwMQHSMmvETEnA4eqmqakWhkOF0eYABNm3yTUTp7OwVK5qGDOTjuf2Um3nqo5dZ3/Ih7u8tjJtw2TCjeOExVLXUvsjJScDp8rB9Wxtmc+c+2y2BYe2RI5nDh0JoWdu+vY2tW1o54YQMCgtTJVHrd8K8eSa+/rqetrYeyjZbMKZFETVKhbxlAPu2XsJMLqJy4pk8aRyzjzyTyu0l2NrN1O3dSh2+FjCNOpYpeddhipxEVtbQZ7JOF46718Nrr1WhUMiYNSsVjUbJv1/ZSleXh/nzR4utjlu3tOL19pOcFMmE8Xocjj6xLXHjd3sJc/fTtttB7IAMnSECb1QY35S3EDEhlubBEnaVSimKGBISAkVFqaLZrkBwPEhIieK0m6fw8dPlTOw7mpnjHHz/0zOUV65CLgtj8fHXM2/e6H1WMAntggExITdh2CTFopmpVFW1Dhr2dtJh76G+vgu9QYPV4gpoQxS875Yuup6IlWP4cetzvPreFZjSn+b0xUcDoSumQolO+0KYbLqv1kL/dkggwOcr2Bh+XwgxYdv2NrZs9cUEQbCT+O0JzhG2diczrh/aa2sZP3E8BoOG/v5+Tp5/Mt+uL6GhZQedXR18ue5LAOQyGXmpRiI8Z+AJMzFxooGUlEg6OtxYrS6WL69GrVbgdHrIzo5j164OXnnlJ2bPTuWMM7LFNiutNoyeHg8mk460NB29vV6qqmyo1b5pdcGTHQVfsPQBK/34KrkKCkb9Zu+jxO+X4BwhOB74U1Q0lqeffofzzluM272H11+/nqVL/8bCU6ew+NSTKH7pAUree4sjFy8hPtUonif8O25pdmK1+r6jCOLsJjFHUDF+gh5HZy9VVTbkCrlYKVm2qYW+vn46Hb1iRdOQgXwifzznL/xrxXNs2fUmA2ubGT/+imETTwVCVUvti5zceJyuPrZta8Nsduyz3VIg2OMr2Bx+JITJjGKOcGIGhYUph62oFYwkcv3MFBWl8sADM1mzpg6z2cGOHe1otWG0tnZTWWnDZIomIi+P29d9zRnnXEBvq4XlEZk0J8CmnVup2r2bcXmJjB6tw+HoxTQ6ijtfexRDVBLJkaNRexMYl51CwUQDRmMUr77yEw0NXXz9dT0ZY2LFCq7yzRaqqm00NjhZuDAdQGxN3LqlldjwXpIq1uCp2orMOJp/2SfzSW0C6WovarWvaiw7W0qUJQ4Mkyk64A4NgDI2lsx3lmNedh7v9g+w2NxPY08r729azpfnPRcg3gQLSUJCkZ7u89iKjVGJU+PGjIkRp0wZ9FqKZiaj04UjtBtu7XCLrTPKMJl4t0IwkI9QK8nOjuf+86/ni4qveLv4A27+l403R99NqsEQUDVVXd3KqlW7UShkzJyVOqxiciThS6tRIlf4HkPhP2GytKxZ/L0NTqiEx+rqVsorLJiMOsJVyoC7/QX5BrZuaaWxsYuSkqYRh1dI/PoEx4M1a+uZMmUUMaPCkVvcyPc6+fr1baTljOLGy+6kcrsNb7+N0orvabFVsLVqA05XO9OnjkUhV2NM07Hyi3dYv+Fbpk8tJD56LHsbIkhN8Q0pWLu2ji1bWul1e/F4+snKjMVojMLr7aehsYv1xY2kp0cTFalkbIqehm3t9HV5GAASTFHk/yEFtEr+eM1X7NjRTs/AAEce6Uto4uI0w8QMCYlQhIoHkbFqFt88hVXPbeHM/pNRh8tZs+lvbPrpIxYedwx6Q554bCgRSYwJGTrKSluwWrspLt6LSh1GZlYs+fkG9AYtp56aRfbYWCoqLGg0SjrsMnxFLrJhVU2C912P28Pppy4i54g8vvz+Ye586Fz6+h9k6WnLhlVMVVcNxYRZs1IDKiZHEr78q8lGQrg+jUZJY5OTxCTNiPFA2EdFhQWjSYcqPDAm5Ocb2LK1lcaGLkqKm0YcXiHx6xMcE6pqeohLMpIs38vummYMhgzkcjl33XwR1VWnsPrzrfQ0rKTW0kKtrYO9FisxOg3J8io8ffVoE2bx5Iv3o48zkhCdgWLAQG5uMgUFvqqwV175icZGJ199ZSYjI0as4Covt1BVZaOxoYuFC31m1+mjo2lqdrJ1izWgvdFicbHyk11YW9oZk92LTOH7d5ybe+Am1xL/u4SKB4GvTWLr1ud57LFLcbvrKS5+gvvv/47Ro2Mw3vsob999M8XvLid23DyOyM8JEJsyMqKpq3MQI+YICjIzY9BFDf37LSpKQRcVDvjygq0d1qEcQRmUI2y2oFYryMmJ509X3sa6DZ/x2Tfv8tgLrTw35gEMhoQAUam6ysaqVbuQK+TMmsWIlVb+WCwu7B3uEU3zhX2Crz2ysbFr2LHBYlt1lc2XI5h0hIcrAirAhByhobGLkuLGEYdXHI5IItcvgHBnc/36vaxZU8e4cQlERIQFqNiq0aP5ZNafmfDJY1zYvQNt+mxi/nw1jW1tuHp6iFbHYTZ3smVHLVUN26him3huSv0opjflMnnsWNJz44BIMjKixSltUyYnotUosdvdKBQy1q9vpLm5C120irzsGGJqy4j76Vu8CgVxZ57JT8ajMH/aQUqEm6lTE1Eqj2LChPGMHTs2xNVJSBw4yuhoTG+8DsvO4z0ZXNWh45pz/0jiqChRuCnIN9DY2MWmTRYmTTIwd25ge15hISxfUSVOOFy8eGzAdMatW6xs2mQRDYqTk7VExxiHtfGqVWGMHTTl9vb3YzRFc++sZRTmj+OBFc8w87JLefHW2zhm2jRx7S/X1LF1qxWj36RDCKzEEv7u//OcLg/9XmhsdIotxcJxWo1SfE5YR/i9FQhuTyyvsFBRbqWxwUli4tDzwrknnJAhTmgNtcf9iVwWq5O91VZSUqII/VVE4r8lOB7Mm2ciNTWKykobo5MjadxspXaTFU9fP57uXlQJsTz+0M3IFXJ6+3qp2LqJ0anjh6Z9/vQttXXrqK1bB0B4WARZY3LpYRrxMWPIy8ugpdnXZmI2dzJ5SiILF6azZXMLamS0VrahVcjZI+tEoVHgipBjdXswZceQMyOZVat2+aYqHgGLFmXR1raXadNOJydHquKS+P+hUis56boCvny5klM4kbTUCGpbzEzImQ0MCTd9nn6am1xMmuyLBxDYnmeuc1BebqW3t5/ERC0TCwwB7XeNTV3U13ehUivR6VRMnGRgwvgE9AYtObkJWC1OykqbycvzxQPDqAhczj4Wzp/CBed/xP2P/oU77r+JHzdt4P47H0WriRT39/obVbS395A5JnZYTBCM72OiA8Ukl8sj+oL5e3y5XB7xUZgyWVbaTHOTz1B5X62JQgVbQ1BMEFppTjghQ5zQ6r8/Yb39YbU4qa1uIzxeTWyiJIr9nATHhCPSjDSufhRF1y5gaLpaeXkLMa6fiE5K4IYHHiBz8jQaW1rodbtp2baHsg9epWbDCnaZq9hlrhLP+3F7MpW7xzE+N4exuQZAy5iM6IA2K60mDHuHG7lCzvriBpqbnL4cYbDCw79KxGx2EKULJ0rpa4nMPWI6E4+cy5gxgdOiJST+W+6/fz55eR9w113XcMstDzB6dIz4+3HUCdez+a1HsGxeTZfDzfzFhQHteYWFKSxfXi1OOFy8+IiAVsKtW6yUbWohKysGs9lBcnLkMI86i8WFWq1k7FjfcCevdwCTMYbbZ17GlIkTeO6VJzjxrHN56oH7mDF1irj2l2v2sPUnIUcYEqGCK7GCJ6EKpvng88fzF6X824xHMtgPbk8cyhG6GBUqHpyYIU5oDbXH/YlcFouLXdutpBn3P/zq94Qkcv2ChCrj92f2CeNZG3YXSbbP4auPcNfUkHDuuahGjwZ8iWl0nIxL9pxPxa5qGux7aLC10NDawgfftPDBN1/z53PO5ZlnLsBidVK2tY631r3LNmsmY02jWXhyMl0dcvbWd7Kztg1Tdx1j9v6EsrOdNkMmP6bMYdrMhRxxRBIXJtlEEa6yMpW8vPgRlXcJiYNBERWF6fXX6Dh5Ka/KdlGzs5HlKyKwWrvZOzhl0aDXinfbYXgV0kgTDn347tTbbD1iG6+/YBRcjeVvym02d6LojufvVz3A85//i9Nuu5Wz5pzMnRedT3KiL+jIFTIS9BEBQpH/nXV/MWlTWTPr1jVQUKBnbHacOA1VYPu2NuQK6PcOX2dfCHeagiu5hHMNeu0wr5cDXRt8CdDu2g5kyJC+tv4yBMcD4fM1t8DAtBNcfP7WNvq3d6Bw9vPlv6rQG6MwmKLIy5xERFSYmJiesvBCVEojXd3b2W2upLvHReW2Miq3lREermJr8W7a29zs2Wln3bp3+WxlJzFhyUTKDagjDei0apo6etje1Mn46UmcfX4eH3xYy1fr6okzRJCXF89FF40XY0BdXSIpKekhWw0kJA4WhULOcZeM4+vXt0HxPJJ1br76ug6tNozNm5vYsqWNKF04qnAFQjwIrkISKrGCq5iG8IsJg21bwu9PcCXWjTeNCVjfbO5k1tQryM6ayEtv3EvFT+Vcc8ljFB1ZQEWFha7OPmJj1SxcmB4gFgl76LD3BCQ3n6/eQ01NO1lZMeL627a1oVCA14v4CIhTU/3XG4l9vQehzPEPJh6ALybU1dnRJGrImyS1pf0S+MeEdxu+oHVPNZ7e2SjDfVUnphgrlvB2kicvIGvqkSjDwzGZfDcbso44gslzZvDqvX/hTLudHbYeGhx2LK0tNLU08snqRj5Z/QU3XXUFzz67DIvFRemmGj5ZswJzcxZjRo/mxJNTsXfA3r2d1NZ2AIjJv6Ozl/JyC1pNGEajjmOOMSHvcLG3QsnFl1zNlNn5Uo4g8bMSHh7FtGm30dys4p571mM2O8ThBqlH/pHGtc8i3/0tTTXxKKLTAoSjkSYcCvjigRunc7ifVmA1VoooLgmPMm8SD9z8OK+99xznXXkNp52whGsuvZDERN/ND7lcTkJCRIBQ5F9p5S8mlZU1s3atmczMmGGvAYOxQYbXOzBsnX0h5ghBlVzCuQaDRqzgCrXH/WE2O9i5s0Os4jxUOLR2e5gxFOCOonPtMTTfdx/WRx9FM20aUSeeSFhcHFnpo5iSPoUwu4kF2RrkKg9tPY0odA527N3FzPx8YLBSI8LOSys/hJVDPyNCpSJRG0mix8v4qEh6TWNRX7qML2ojeO+bSirfWcc118wgK0uNXO5ArVYzc2YCGs3hWboo8evzwAPFrFixnZT407lK8RpZVavZrZ5OrVbJFztXcuKpdzN2TII4IRTgww9q+OGHJqZNS+LURVk4XZ4Ac3iB6upWdu+2M2ZMDNnZcQFVU4JQVlzcQHW1jZhYFVqNMqBKytbajVwByfpYnr32Nv785Eu89fVHVO7Zwbt/vZdj5pnQ6yOGTR0JZQRvNEbxwfs72LmzA4AzzsjBYnUSHRM4MdK/kutApyuOZB6/r3MPZG3/QRVjMmNITonc714kfn50eg1nXDsJd3cfe7e1U1tmoam2g+addgDC1Ao0unAiY1To3EaKjjiT5NRItFol5Vsr6ek3Y7PvpLu7mx8/qaOrrQdPbz8ffPIGDW27An7WKMMo4uOTCVclcWbBE2zb3k5DQydr135De3sl1147k/R0Nf39bTQ1udDp1PzhD4lSTJD42XjwwRJWrNjO3Bw9WXEaelqdlP5o5pOv7scQN56T5lwyrAXvk5U7sbV2c/zx6UyenEhW1tCkQ3+qqwZjQmYM2WPjxCop8IllH3xYy87aduLj1WL7oH+lVGtrNwoFTJt0HBmmHB559npuvncJl593F/Pnngogmt77I6xhtTjFSi6zuZONGxtpb3cTrVMF7DVUJVfwXvbFSObxI517oOv6V5qZTNFkZcbs9xyJ/z8zTlvK23ffwp4tm8icciRdbTZatxWTkp3HiRefJQpf/kRERXHZI4/TdvWjTLZ8R59MS4tyPB3uNlSadnbV1TK1YDBHMGgYUFh5870VvPme3xpqNQa9AW1ELLOmLsDekQxGsLa2sn7DVtocyZx8UjYJhnC2VuxAHqVj+swUklKl7woSPw9CjqDXR9DXN0BDQxde7wBq9XZqa9/kllveY/z40VQYbsby7d8pXfkhrcoCvt8MU6clsWhRFk5Xn2gO7091lY3de+xkZsaQPTZerJCCoXa94uIGqqptxMaq0WrCAqqkbK3dKBQykhP1PHzng9z14LO88/FyttdW8+LTD3HMvNHo9ZrhOUIII3ijUccH79dQX99JeJgipCgGDBsYcaA+X6F8tvZ17oGs7T+oYsyYGFJTDuwmye8FSeT6nRA192g006dheepv2N9/H1dpKRETJ6I96igKJvj63k1Gnz+RxhHB5MmJGE+NYv33jby0aQtFRcmk6PVcduqpbNtTx087arE5HXS73ex2u9kNHHPkPNbmnIkhJgtz9xqqqh+lqhpeeilwL1OnTmXFihUkJSURERHx678ZEocVK1ZsZ8eOdpwpkWw++zYSvv8b85o28Pf6Vhrbrdz88l9Z9eRTAdVXNbXt2B29vklaQa2B/tMVyyt83nMpyZGMGqWhqqqNerODopkpYhvjwEA/arUCr2eAVat2A4iCkdPlweHo48s1dXQ6esmJmcGY4zN47fvXKLr0Ev59x50sXVKwz+vzF5Nmz04JeAwWmkKJdELLprCn4uK9Yuuh/534X8Jjy79dsmC8XpzQJPHboIoIY8xEA2MmGujt9tDe4qJxRzstexx0tbmxW7uJ6JeREadB5uqn39XL+FGZyORZqLPm09ffT31DJwmJWsZPNLA0bCk7zdso3byFxsY6vN5eWiwttFhayM11ExERxmef7cbl6mXv3tfYurWOV18N3JNMJuPVV19l/vz56PWSB4vE/x8xJjj7OGvuaNITtGzZ+S2l5d8B3zH36DxOPfEM8XijMQpbazctLU7WfdeAXq8VWwPBFw8mjNejN2hZX9zI5s0tTBwc+b653IK53sHMohS2bLXS0uKkv38AtTqMbdvbxcmMgmDU2OSkstJGWZmFlJRIbrv2Vd795FGeeek2Wtu3cdfND6BSqUe8tmAxafr0ZMxmh9g2uC+xyX9SpLAfwRw/1GTGX8JnS6g0y86OIycnjuRkScz4NUjNGUdKdh41G4pJGjOW0k8+RBWhoeiMs9HGjNwiJJPJOGrpWXz94Si0LZ+S1ldKZNQUJhw5m1lTvXyzphG3q4HCwhTSkpM594zTqN29h+rtO+lwtNPd00NdvRkws+DoBdTu7MBiddHVY2Z9xb9YXwH/fCvwZ777007eePNNEhMTUatH/l2QkDgQ/OPBeeflMWqUhsZGB//+9220tOzhnnsu5quvvuKkU/JwH/co7957G707y9DK0qitVQ+rhvKfrlhe4fOe8+UIWqqqbNTXOygqShXbGGGACLVyMEfw3RQUBCOnqw+Ho5cv1+yhs7OPjOQ5GBdn8dGXL3LS2ct4+sH7Wbp0wj6vz19MmjWYGwiPwUJTKJFOzBEG9yQMgZhRmBxQnfVLeGwJ7212dhwTJuhRKMN+lnV/LSSR63eEIjKSpDtuJ/7882j954t0rl5Nd2kp0TExHDd2LCr5WDKyY2hwRZOaosFc56DsBzN9diexnY1k6z1c3K0grA/CU5Oxe1OpUuuJO3kmrTExZE+bh6NLh8XixGbrJTY2g85OO15vL0qlF/DQ19fLjz/+yJQpUykrKyU9Pf23flskDnGWLBnLihXbWbJkLLffXkh/TyHmSy7l7yUlnNvbzU+7drH0zjv44OG/EqFSATBvrpF16xqYPTtlWGug/3TFgnwDjQ1OFAoZn3++h127OoiOVtHj9qBWKZHJIDMznsmTk9iwoZE9dQ4++KCGI4/sYvwEvTiJqqy0jc7OXo44Io6LzpnHH8+bxUUPPsCJf7qJO86/gBuWLkUul+/3WidNTiTBzzgfQgtZwvOvv15FZ5dv2ovwWkmJzwwZIDZWLZ4rTGyE/XtsjSSUBRPYwtK73+uT+PUIj1AyarSOUaN9d/g8fV487n48fV68ngG8fV4am7qore0g64hY0tJ0XHPdV6wvbmD6jGSOuTiPOeoLObK7j5pdxXR3O5k9O5bbbsumrq4OmUxGXl48P/7YRGvrALGxKXg8Hnp6XHi9vchkHvr7exkYGGDZsmVcfvl1PP/8k7/xuyJxOBAcEzZ9UcfA+wOcMPMsVn7/Fn/+yzXExMQyZ9YxgE8YOv74dNZ918DsWUMxocPew+ZNFgYGICZajd6gJT5ejU4Xjtfj5fU3qmhqdKKN9HlzgQyDPoKszBhy8+KpqrSxbXsbVmu3XzXVAO0dPfT0eElM1DJ1ShoLFrzEOx++yd0P30rFT5t47vF/YUo7sO9GuTnxzD9udEC7ZLCQJTz/+htVdHUOxoPB1wRzfIDYGHXAuQfqs7UvoSyYgJgwcECXKPEzcdwfr+W1P1/Nly8+i1yhpPDMc0jKyt7veb6ukPOwNc7lg4fvR9ayAXmHgpLNWn6q8v37yMyMpbc7jmNmLuWINAfpeht1dR2YRsuZf7yexuYWcjLHs6XChcPRy0C/gkS9kQ67HY/Xg1zuwevtw9vfz/riYqZOncaWLRUkJSXtZ3cSEvsmOB4InH3258ycOZPS0lIWLVrEp59+iipCwxl/eYhnr7iKmVmNaHMmDmsN9J+u6MsRupAr5Hz++R5qa3zD4HRRvlzDlyPEMXlSIhs2NvlyhA9rOLJRyBF80wlLS9vo6urjiKxYLlq2kEsums21t97BWZf+kT9dfSUXnr30gG4ST56ciF6vCajcCiVkCc/7cgTfd3PhtZLiRn6qtAG+mDCUI/QdsMfWSEJZMIEtjYdejiCJXL9DwlNTSb73Hjw3XE/n6tV0rllDT/U2XBs3AjAK6AMSZTIuHxj8FlIDAzUyOsOi2MMorIZ0amPzyD0qj/CxqRwzLkHsn6+rs1NXN5vY2Hzq6x00NDhZtiyHXbvsfPDBdqKjFdx550xJ4JL4Wbj99sKAwCVXqzG+9CKyyy/nhW++5by+PtZv2cKF99/P63ffjVKhYP78Mcyf73OHqq5upXyzhXqzg+zsuME79ANiRVN8QgRbt7Ty5Zd7kMlkhIXJcTh6MYzRisdGRCiI0oXjdntpaurirbeq+UOjk3PPzWPuXBNqVRg2WzdFRcmDApKW//z1ER567TXu+/e/KN66lRdvvZX46NAeFIKQpVb5Wk/AV+b85Zo6du3swNvvO85f5CqvsNDe4UapkGHyC3iCefyMGUmimSTA3Lk+L44D8VTxF8r2ldT4V5p52g+9APa/hDJMgTJMAQzdSYtLjmScXwXkiadm0jcwwKmLsqistFFS0siuXR309fkMus86awoJCYm0tMSKnlvnnz9ucPLvk6xbt5eurl5cLg/nn5/HV1/V8fnnO0lO1nLiicf+BlctcTgSHBMmHWtCqZQz8M4F2J3tfLf5M6686SLe+Of7TMqfCsD8BWOYv2AwJlS1srnc4pu2mzk0bRdgZlEKxjQdxcUNWFpchIXJiI2JQKj2Amhs7GT3bgfh4XJ0unBaWpz8+5WtTJ+ezPzjRuNw9PniQWGyKB6duegcJuQVcMVNF3Likrk8cs/TzJ93wojXGGoK4+ef7eS992qQy33JkL/IJfh9qVRyVGolVosTvUErVoDNKEwSzeaFcw/UZ8tfKNufyOVfadbR4tznsRI/L7GJyZx510Ns/vwTRo05gpyZR4VsUxyJ+ORUlv31Cb74x9PsKPmesVEG1DmjKZiRJFZktDQ7sVq7iYtXMWH8KHLz4gmXa5h9ZB4GgwZ9gq8axN4RQ6Q6C7PZTrfdzswxu/B6vLz0/Tg8yhjuumuWJHBJ/CwExwOBsWPHsmrVKubMmcOaNWtYtmwZb731FuHqCC586AFe+/NVxLi30GpNorzcQn29g+yx8UwarOIVKpp8OYKVL7/cQ3//AIJ6P37CUGV6hEZJVFQYbreKpsbBHKHJybnn5vpyBLVyMCakDApIGt74x995/LnneeippymrqODhu+5AFxX6s1gQstRqBU6nf46wh507O+gXcgQ/kcuXI/SgUMgwmfxyhEHz+BmFySPkCPv32PIXyvYlcvlXmrnsh16OIIlcv2OUMTHEnnkmMWecQb/dTl9TEz3bd9BbX4/Xbge3G5lajTwqCntEHHXeeFwKDTv2uDlqQTZ/nJnGqlW7KClpBJlMFLn8E5svv9xDX18LHo/vl14mUyCXq1AoDq2SRIlDC7lKRdo//oHsyit59osvuLShgU+L13Pdk0/yzI03BtwRKa+wiJMV04w68YNcwKDXEh3TSWJiJHq9hhkzkti6tZXPPt9FVmYMkZEqmpudWK0uMjNjcXV7aG3toWKLheOsozHofWPnBfwrr+644AKOHDeOSx56kJmXXcord97J9Lxxw65HCDSZmbEUTDRgNEaxdm0d5eUW+vq8pKXqKMg3UF3dyief1NLV5WHcuHj0CRHY7W5aWlziWoWFqWIiEhvrS0xMRh3rv2/EZusWfcWC8W9n9BfK9oX/OXFSNDjkWbx4LIsX+6bi1tX5/LwKCvQccUQs8+aZKCpKHYoJDI32NpmiycuLx+nso7S0BYNBi9EYTUdHL/39CiIi1JLxvMQvyoSj0xgYgAHvdXS57GzeXsxFV53F2//+hCMyA6tZKiosbN7siwmnLR7LZD8TYUGkMdd30tjURW5uAsnJkdTWtLFhQxNGYxRVVTYc9l4mThrFaYvH8u6727Fau6mpaefcc/MC4gH4V18l8vHytdxy97VcceMFXHDOZdx83V2Ehw0XIioqLDQ0dpGSHCmKUOu+axicvqgSjeOrq1r5ZGUtzc0udLow5Ao5dXscGNN0onm8GA9ifPEgP9+A1eLk+/W+mKDRKIdVcvm3MvoLZfvil2h/lDg4EjOPYMFVN/7X56siNJxwzZ8pzxnHD/95lxR+oLO8Cm98IokKDYYUOfbIXkbpVcREK2lu2sXuGhetW+REaeV4PR68fX30dbtJ6unBEO1GFj3AgDecVuVU7N0aoqJVyOXSFwaJX56pU6fy4Ycfcvzxx/P222+j1+t5+umniRmVyOyzL2Tty3+nwf4jm8vDfDlCmo6584JyBIOG6BgVoxIjidKpyM2Nw9bWzVNPlmE0RREZGS6Kv5lZMbhcXlpbu6mosHDccaMxGDSBOYJf5dUt117N5Px8br7nPk4+53ye+esDjMseXn0p5ghZMRQUGDAadYM5gjUwR6iy8cnKWrq6+hg3LgG9PgJ7h5sWvxsOhYUpojAVG+NrFzaZdKxf3zCYI4SFrOTyb2f0F8r2hf85kaoD/J/2O0L6lDoEkMlkKGJiUMTEoM7JCXmMARB+BU/ye15ITIITFCGxiY4OJyZGxbzBDwWdTkVKSiRz5qT9zFchIRGIPDwc780PkWvr5VHPWq5rauS1z1ZROGECZx3rqxqxWJ2oVWGMHRtHWmrUiHesjcYoZs5KEU3da2rbqTd3ArBkSQ7p6Tqqqtro7HTT399PfIKayMhw1q6tY+5cU4Bo5H9nJCcngXlTp/L9P/7JBfffx4Lrr+feSy7lytNOCxDiBNNJ/5bEgnwDVms3AMfMM5GTk8DyFVVs2mSht7ef9o4ePH399PR4sNl6Ql6XYDhfWtbM11+baW3txmx2cNXVE6mtaQ9oSfT3LvNPjPaF/zlxGYdgBJMYEeEzHhCFL9h3TDj//HGD5wyQlxfPZZflo9drWLQoS5qkJfGLE5OpQz9Bzzn9t+HsvpUd5q1cedOFfP7+dygUCsAnxKjUYWSPjSM1beSYMLMoGWNaFBqNclAUs4ptH9OmJbO33kF8vBqr1UlnlxutRklKspay0uZhIk9gBVUuzz76Mq++9SIPPXE35VvKeObRl0hODLwbLohY+fkGca3Zs1LER6GKa82aOn74oZn+/gHCwxTodOFE61Qhr8vfbP7DD2v46KMa+gfLhHNyEwLaElXhSrF15WDiwYG0P0r8vpHJ5Uw87gTyZh1N9fpvqS3dQEdzE56uFvr7vWgHBnC1KOmxKRlAjiZMRphCBTIlqggt8igFMeHhhKnUtDv6aWyFgqMKmWYYjVdvlnIEiV+Nujo7fX1jePzxF7j22ot59tlnmT17Nqeffjr5xyyg7LNVtFuqyc4qJNUUN2IVk9GoY9asIVP3FSu2UV/fSW+flyVLssnIiKaqykanozd0juAnGgXkCLnxHPOH2WRnvcrVt9zGGRdeyp03Xs+SRaeMnCMMVmv5cgTfDe5j5o0mJzeep58uE+NBQ0MXJpMOj3dg5Bxh0HC+tHQwR7AO5ghXTaK2tj2gJdHfu8xfKNsX/ufkZh16/nuSyHWY45/ohCJ4rL3/nyUkfinWr9/LmjW+sfH2nAuZ4/Jyt3ctP0bFcPrRR4vHmc2duFx95OX6pi8G41+JNGVyIqVlzZSVCVVfUcybaxQN7bu7vbz1VhXd3V7y8uLJGBNNS7NrmNAVG6NCLpcR6/fzUvR6Pn38Ce59+WVue+F5PvpqI1efcCFHTvOdF2r6YajnCvINfP99A7bWbpzOXvp6+4mJUZObG0dpWXNIU3mL1Ym9wy1OArPb3Wzd0sratXU0NnYBviQmuHXlQIzqJU+u/z32FRN8Qld0wN/9BTIJiV+CgHhg7yUnP5kLvffwzy/v5ooLbhMFLvDFBKvFhV4fwcyilAAxJrgSSW/QsnZtHbW1HaSkRCJXyJgzJ43CwlTWrq1j86YWWlpcdHV6SEmNxDBKy9dfm5k4aRRz5w55aFmt3aSkRIrClUwm4/yzL6Vg/GSuuPEi5i86igvPuoezzzhF3E+o6Yf+LZf+qFQK+nq9DAAqlZIZhUmYB2/ShBKbrBYnVVU2+vr6CQuT+8Q6i5OVK3fR2OCLCcuW5QKBrYz7q9Q60PZHiUODcI2G/GMWMGHefHq7XfT19NDv9TIwMIBMLkMmlyOXK4Ie5SCXIZP5/iyTywOS9dlzMn/DK5L4XyE4JkRHj2f+/GsJC7OyaNEiwPc5HDPxNNo/fYyMUY2MShs9bB3/SqQpUxIpLfXLEdKimDvXyJTBSuBul4e33qqmu9tD3rgEMjKiafbPEQaFrpjBHCHGL0dIS0nm7Zf/yYNP/o07H/orn3y2nrNPvYSpU9MwGDQhpx+ONBFRpVLQ2+ulu9uDx9PPzJkpmEw6SkubQ5rKWywuX44QMZgjdLjZusXK2rVmGsQcISXIX+vAjOolTy4JCQmJg2TNmjrWrDEzZcoojjlmNJ90nU9+Yw+L3T/h+uILohcuBIa+bNs7egJM1wUBx97RQ3Oz705IbU07X39dT1iYjFGjtCxcOEYUuKqrW9mwoZGwMAXh4UomTzZgMkWzqmE3Lc0uzOZOUQhq73DT2dXHmrVmuru9FM1MwaDXEqZUctbsxbTsVPNh+dtc9fxdPOy5gbNOHu4lIBAsNOXkJHDVlRMpr7CgkMuor+9ixowkwlXKYabywdeYl5dAeLiCyEglDoebKF04yUQyY0ZSQIulcL5/lZZBrw1pgC95cklISPzWBMeDvLx43q53cP0JT9BnlfuS8sFEWxgW4nD0YjZ3imKN1eJk7do6HA7f51hNbTslxU1ERipRqZRMmmxg7tzR4rFVla00NzuJj48gLFzO7FkpdPd4sbV143C4xb1VVFioqelApZKzbXsbCQkR4s9MScxmyUnPsPzD+3j6xevY21jJw/fei1IZ+qt1KJFp3jwTen0EcoWMenPXsCqsUCJeh70HuRz0CREkp2jJHhuH2dxJVFQ4ySmRpBkjWbu2LqCKDIZXagWb4O9r8qPEoYtMJkOl0aLSSP9vJQ4NgmPCl1/uobNzGnPnpgXc9Jhy1ETaKifhMG9l20+pgBGDQSMKOPYON03Nvla/2trgHCGDKVMSsVhcbN1ipbKqlYgIJWHhCiZNMjDaFM2qhl00N/vWEoSgjg43nV29rF1rpqfHQ1FRKgaDBlV4OEtOvJCWvZF888Nyduyq4Y7r7uCUk6aOeJ3BQtMx80aj12tQKGTUmzvFKqzS0uZhpvLB15g3Tk+4SkFkZBiOTl+OkEIkMwqTA1oshfP9q7QMBk1IA3zJk0tCQkLiIBHaYwWfoOjocNbEXEuB+R06V67E09vLky3NnDnvGKZMHoPF6iQ6plMUvQQBR6MJQ64ArUbJt9/Us3NnB2PGxDB5cmLA3ejyCgu2th7i4tSYRutI0GtxujxERoWj04UFVD+pVWGoVHI62t388GMTaUadKKytWrUbVU8qp+ddyprd73P1c3fjkl3JRSeexLZttgDxKi0tkvr6LhQKGTNnpYpiklDh5S+ACfj/WbjGxEQtY7PjsHf00NLipLvb1944bWqiaJz5+mtV4h2bujo769Y1UFCgZ2x2nLhmcBumhISExO+B4HgAUHTKGNZ/uBNtl5fK7xrpj7ey6ouPufm6O5k71zTss9Ns7sTh6EOukNNh72HDhiZ21nYwJjOG+celDzvWbncTFiZHb/BNutLrtXTY3cTHRQxOYvRhNOlYv76R1tZufvihSfTKEkQ1SwsUjL2BBstnfLjqZRpbqvjbX/9Bq0VBRYVFFK/y8uLY2+CkuamLGYXJYqWYf8WXIGJpNEqy/T67/fe9bVsbiUla0kfr8Hj6kSGnscmXxE2blkhyUiSrVu0OjAeDUyknD970EdYNNrKXkJCQ+D0QKkfwt9bp6+vjT3/6E5dddhlLb7mOl66+GD01GI0+z1xBwNFqw1AoZGg1YXz7TT21tR1kZsYwefIosUpJmMjY0+MlPT2ayKhw9HoNTlffYI4QHlD9pFYrUakUtLe7+eGHZtLSdKKwtmrVLsI4gqOnXs0PlW9y28M3gfIWTlm4QBSRBAErzRhFvbkTuULOrFkMq/gSRCyLxTWsCsv/GpMStWRnx2HvcNPc3EVPjzdEjlApxoQ9dXa+W9dAwUT9YJzxrRnchnk4IIlcEhISvzqh2mSLilIZGJhJ0513cf8Lz/O8zcaKL9by3T+eJ0mfENBy51/h5Wruw+nyBJitT/GbOAdD/fDd3R5qazowGaOYNHiMVqPEbO4UPa4UChlFhanYbN3Ex6sDhDWFQs5okw6vV8vRPWdhHtjADX/7Gyu//ZHJ8cewe6cLpUKGxzPAnj12kMmIigxDqxn+UetfaTVlcuKwlkL/1hFBZAMZu3fb8fb3Ex2jxqDXUlrWjEIhJ1IbhtXazcYNTTQNJj1nnDHk4efvCSAhISHxeyE4Hvg/t/69Gr5f+RN/eesc3H0uonXR/PGia4dVHAmflx32HpqbfEmBerD1z9+YXjh2RmEKtTVtmM0OsrJiMBqjMCKISgNUV7XS2ORk9247ySmR9PcPkJsbHxAPHI4+Ro+ORi6XMdB/PPkTpvD5Nw9x3KI/cPzRt2K3pdDe3g3IsLV1o5DLaO/oweHoC/k+CCJWdnbcsD37X6PvMWHwPfBNC2tucpGdHYfL5UGhkJOSHElMjIr33quhw+6rTJu/YEzA++bvGyYhISHxe2GkHEHg/POv4a23XuCddz6kvPxHJh9/Mj9+9D7KvjZAIwo39g43TmcfTldfgNn6FL/PV6NRJ05ktLV1U77ZitEYJd4U0GrCMJsdoseVXCGnqCjFL0cYEsvkQo7QH4mn71IsnV9y01338NmXJZgMx1Jb47vx7fEMsHuPHZlMRlRkOFrN8GFv/pVWU6YkDmsp9Be+BJENYPceO17vANExKgwGDaWlzcgVciIjw7BaXWzY0Ch2wJxxxpBJ/uGYI0gil4SExC+O0F/vf6c+FDKZjKT77mXmj42s/uYNdnXYOP322/j8qb8RGREhHie02QVXeIWrlKENe3MSiE+I4Kkny2hs7KKyso3588eIItH2bW00NzvFaVjZ2bE4XVEBflaCub3RGMXqz/dgNneydPoZzJlawCPv/JPNYTuYGnsCY02jiYuNCKjkcro8w/YU7H8Sqp3QH4Ney9y52mEVYEZjFOPHJ7BhQyN79jiIi1ej0YQxe3ZKwLGhPMIkJCQkfgsONCYULs6kZH0DJ027iHfXP8OjT99PWoqRE+afGnCc0GpntTiJiQ6s+rVanAHijt6gZcJ4fL6GDV1E61Ti6zHRPqHJanGxd28X3T0ekpIiSU/XMWG8XjzO//P3+/WNrP9+L4bYXG679nWee/k23vrPnxh3xBLitMcSqVUxe1YKexucqJoU6HShp1f7rxncShiM3qAVq8GCr3n8hARggN27HcjlEBOtEk3v/VsmQ/mGSUhISPzaHGg8EEhJOR61+kOamsycdNJJfLl6NT99/SWV365l5tJlYpudxeIiOkYlCkLh4Yph5vQGg4a580xYLC6eerKMhsYuqiptLFiQIYpE27a10eKfI4yNw+nqC/CzEsztjUYdq1fvwVzXyaL5F1M0fTIvv/UPorQ/kZW0mPTRRuJi1QGVXE7X8BsfwdVbodoJR7oOoQVSOH/CeDcbNjaxZ4+D+PgItJpwZs1OCTh2JI+wQxlJ5JKQkPjFEfrrYf/DDWQyGaa77uFP/f3c/vXrbKmt5cL772P5vfcF9OIH+10JYhWArbV7mGBkNncG+FgJaDVK5ArIy4sjOUWLyaijvMIiersIIpe/f1VyshaTKZrkZC3HTTiWzJTR/OW1p/i65U3GTT+fo2bMwWiMEqvDet2ekHv2r95av76RzeUtOLs85OQkDPPUEgg+z6DXEh3TSZ+nn75eL9OmJjJ/vs/c2P89Gcl8XkJCQuLX5kBjgkwm48jFY5D3n0qro5Gvt77PTXdeTVJiCpMLponH+Ys3QhVUmZ+PiTASXhCN/D2sZhQOxQONRolC4WtTFCqlHI5eNpVZAERhyd+/amZRMu6ePhyOXnRRsTx4579Y/c3L/PvNZxg7ZhfXLX2IhDhfzNi2vZ3dux1UV7WSk5sQ0iwffALcDz+20NDgFH3ARpp+GOylJQh1Xk8/CXoNs2eliIb30gRFCQmJ3xsHkyMAnHxyAd3dT/Lqq39k48aNXHDRRdxx2UWsfek5GrZXkZqdN8zvyt/XKiBHGBR2zGZHgI+VgFbja3nMzYsnOSUSkykoRxgUufz9q5KTtBhNOlKSI5k/fxEZpjE88Y+/UrH7JabPvIqiqUUYjTqxOqy31wsM9+jyr95aX9zA5s0WnM4+cnLjh3lqCQSfZzBoiI5R0dfXT2+vl6lTE1mwIAMgpNfX4cQBi1yNjY0kJyfv/0AJCQmJIPz76wHef387H3xQw6JFWSGntxUVpVL05b8x3RjHqU8+yecbNnDL35/j0auvEY8JFoH874KvXVs3zH/KaIzimGNGi8cJ0wydLg/9XkjQa5k/fwylZc04HH2DffhRISusxk/QEx2jFsWqU+dPZPL4J/nzM8/yxIcv8tUPm7nlrIuwd3ixWl3UmR0UFg7fMwwJXyqVHJ0unPh4tbhf/0eB4uK9lJQ0kZcXR8LgdRuNUURFhuNw9NLeMWSaLE3LkpCQ+D1yMDFh5kzfRMTRT0Vhe6aZLXvWc9l1y/jwjdWkpfrODyXeBMcEf/8pozGKY/3iQVmpLx64XB68XlCFKyks9CVba9fW4fO9l2G1ONmytRUYECu7fFVVpgCxKn30jSTpc3n2pVu59b4lHD/3Fk45YR7unj5qa9qJ1CpFsS1431aLE5U6jPh4NQqFTDTYD/V5Xly8l5LiJmYUJpGVGRvg6bW53EK/d4AOKSZISEj8jvmvcoSipZx+egrz5s3j/fffZ8yYMeSkmaj+7huSM8cOE4H8K5sCcoRBkcto1HHMMSbxOGGaodPVh9c7gF6vYcGCDEpLm303NAa9ukJVWPlyBJUoVi0+ZQaTCl7kjgcf4pmXH+XrdT9w+bKLae/wYLV2U1fnoLAwJaRwJQhfKpUiKEcY7tMFUFzcQElxI7l58ej1vus2GnVERYbhcCiC4kHoNQ4XDljkysvL47nnnuOss876JfcjISFxGBLcT//BBzWsW7cXIGQAE1jw+OM873Ry4T/+wT/+8x/y0tM5/4QTgeFf1v0rnExGHY0NTkyCWeQ+qr563R727LHT398vCkbCuga9NqRg5j/BUGD9d83MyTiJaHky7/74Lje/8gCPXn4T+QV6scfdf+3g6YnJyVFi8hV8PQIW6+CY+MYubLZuTKOjqalpoyDfQEZGDNHRKgryDaIQNmNGEoWFqVisTlHUE/bt34opISEh8WtysDFBLpdx0lUTcXY9xB3PXozZuoNLr1vGe699ilYTGVK88a9wMpp0NDQ4MZqGf5n3F5qMxiiqqm18vno37l4PhYWpTBifQEy0CqMxCrO5k82bWhgYgJhotbi+8Gg2d4pVY/29mVy+7EXe+uBu3vrPjag0V3Hy/IuBIR8sYb8ajVIU2szmTlzOPo48Mln8ucHXAz4xbOXKXTQ2+AyFu7u9bN7UwpjMWIxpUeTmxhGpVRITo+Kll7YQH69mZlEKk6ckYrU4KSttRqNR4nJ5AiY+SkhISPya/Lc5wuzZs/nXv/7FueeeyyOPPMJTDz2Ip349NT9uwDhmEjAk4PhXOJlMOhobujCZhgzlR6r66u31UlfnYGBgQBSMhHUNBk1Iwcx/gqHAhpJWZk1aRlSEka9L3uOh53Zz6zU3B+UIQ2sHT09MTookJyc+5PUIWCwuVn6yi4bGLpqanYwapWHSxFGMn6AnY0wM0TFCjuATwoTpjRaLi9LSZrSasGFtmIcyByxyPfDAA1x22WV8+OGH/OMf/yAuLu6X3JeEhMRhzKJFWTidfYweraOuzo7JFA34JkFVVtrIy4sXn7vghRfYYbHyt/98yMC337M2PA8UcsZP0IsJAQwJT9XVraKBfLjK9xG3v6ovs9lBU1MXkZEq0oyBXlwF+QacXR7UKiUWqzNA4BLWrDd3UlbagtGk47pzT2FeUT4PrniGCx+7lWduvImcnFzxZwteYsK4+8wxseIUxP2JTv4tl7Nnp9De4cbh6KW8wkK/Fwom+qrNHn/8R7ZssWKzdZOZFRuwV4CyshZqatqYO9eErbWb9esbSdT2MXVaMtH/z/+3EhISEgfLrFkpNDR0MWvQOwqGxwNluIIzbzqS9rZHuPPFC4mNMrCprJmE+BhRqIGhqixBtKmuaqWk2BcTVOFDMcFf2BIe9QYtlhYXO7a343T2ERujHiYCTZw0CofDTYe9J8DvS1hToYDdexx0dvYye1Yaj937Bl+tf52X3/gbm7as58mHnseU5rth4t+eKLS/BO9nJIJbLru7PQwMgM3WjcvZR3Z2HEuW5rJieRWbN7cQoVbi7vGIVWfCXr1e6LC7iYnuxN3rwVznwGjSIesdIDxeTWyiJH5JSEj8ehxMjnDOOedQWVnJc889h27UGDr1rVQXFzMleSxGo04UmgTRprrKJhrIh4f7LFD2V/VlNjtoauwiMjKctLSoABGoIN+A09mHWq3AYnEFCFzCmvX1nZSWNmMyRXPtZedy7NFH8vxrT3HD3ddzyzVXkZ1zesAe/cUtYXrigQhP/i2XRlOUGFPMZgdOZx8FBb5qs8cf+5GKLVZsth4yM2PFvSoUMrzeAewdbrESzdbazfriBuJ1XqZNT/v//q/9VTlgkeuKK65gwYIFXHTRReTm5vLiiy9y4okn/pJ7k5CQOExZvHgsERFhlJQ0UllpE4NVZaWNkpJGAPE5gAfff48znn0W1d9fwPL5G3ysnkl5uZWMjGhcg6bugkBUXmERzSGD7+6HatEoyDewa6d9cOyur2zY6+1n4cJ00azd6fKwfVubKKht3dKKw+EmMVGD0RhF+WYL3d2+fThdHo6alsuCo//BtU8+wQX338c3m8p46IorRfN8YTKXThfO+AkJB1xR5d9yKYhlZnMnrVYnlZVtuHs9fPtNPbFxKlJSItHpwoeZ1APU1LThcPSydUsr5eUWduxoJy3WS0qKjjEH+j9RQkJC4mfCaIxm1qxUjMahz/1Q8SBcE8YFdx1Lj+t5tOHx1O/uoXxzHY1NXUyblowxLWpY+1/FfmKCv0gFMKMwCVtbNzpdOBUVFpqbu4diQm4Cc+dqRb+vmGjfOVu2DsaEJA3JSZE0NDjp6fGyt8GJXq/lonOu4bh5x3D9rX/khDPm8JdbHmLxSUuQyWQB8SDYm2vf79lQy+WQ6b4ajUbJtu3tbC63sHNXO1XVbSSO0hATo8bh6A2ICUIlV4e9h7KyFvbU+WJhQ4OTFH0EmkQNeZNG/f/+50pISEgcBAebI9x///1ceumlVFcP8I21l3EDNax9+xN0WTNxOgdzhEGBKDBHCGzXC9W2V5BvYNcuOz3dHmy2bvbscdDvrWfhwgzRrN3p6mPbtjZRUNu6xYqj001SohajUUd5uYXubi8wgNPVx8wZE1h43Cs8+uzfufexJ/imuJhH/nInCfFDXlsHI24JBLdcCtVptbXttDQ76fXLEVJTogZzhCGTeqGSy97hZtu2Nuwdbl+OUNNOYgIkp8YczP/G35yDMp5PT0/nq6++4tlnn2XRokXk5OSgVAYusWnTpp91gxISEocneXnxAY8jPQc+8+GJV1/NTq0e/WP3M8P9BV84Z+L1elEoFKSnDwUmofJK6FuHwNY//yoqgCmTE7nk0gjM5k60GiWrVu2mobGLL9fUiX32QkLQ6/bw+mtVtLf3EB2tYs7RRgx6LUVFyWgjlahVSrFiasrkRB68+FqMMRk8v/J11v5QxlmFZ7P42COHtUQeKKFM5w16LS+9tIVduzrorwW320NeXgLXXT95RJN74U6+vaMHhUKO0RhFfoavIkBCQkLi1+Zg4kFUXAQX3LmA9x8pI6FfTuvAAE3NddhssYwaFUFzs5P0jKGYILQqzihMCmgvFIShstJmOuw9NDf5xqoXFqYG+Fs1NPhiwpo1daJ5vfAZ7u718NprVbR39BCtU3H00UZxYmFFhQWVWimKbpOnTOGV51Zy7yO38+e7ruH1tz7k9hsfIn20zyj/YFsGg8Uw/7+vL25k86YW+vsHcLu95OUlsGRJdkiTe/C1PlotLqKiwomPUzCjMAlZ7wBZmTEHvB8JCQmJn4uDiQm+PCAdudzOnAUFfPf294zRmDHX7MYjjyMjY0gQEyqvAnIEv9Y/i8UVmCNMSeSShAjMZgdaTRirVu0azBH2+OUIvnjT2+vl9dcqae/oQTcYDwwGDUWFKWi1YajVCjEeTJmSyGXLLicxYSwvvPoMc09Zwo1/vIH5844COChxK9R1CH8H+PjjWnbustNf64sH4/LiB3OE0Cb3wlRKe4cbuUKO0agjN8snjB1KHPR0xbq6Oj744ANiY2M5+eSTh4lcEhISEgeCyRQdcCdmpOf8GXPhEtbYm/njn/5EgW4XmaZrMFvcorE7MKzyKlhECr5rDsPFo/IKC1Zrt9hnv3RJLga9luUrqmho7CI+Ts2kSUOJjlDx5e/9BVBf30VmdD7/uDaHu155mkc/fpKf6o/j9YdvGLavUAb3+0M4x+v1oosOx6DX0t8/wIwZScOu6fPPd7JuXQOzZ6cwf/4Y33SZzQ5MpiiKZqYQp+xF5nNXlpCQkPhVOdh4oE+LYuEfx/PR02X8+OPT/FD9Faed9hbmOiVWqwtz3VBMUIUrSUzUiq2K/ghte4lJwl3z0P5XFYMxQTCvX7I0F71By4rlgzEhXs2kyX4xITdh2PREAFvrAHMLbyBcnsPXJc9w2Q0n8vQjzzGrcE7AvqqrWgOmQR4ownlez2BMMGjp9w6IAp9wTZ9/tpN13zWIkxf1Bm2AGFhYmEpHi5PkZOnGh4SExK/Pf5MjmEzRpKeXc13xO4yJ03HqtFgqrBNEY3dgWOVVsJBkNjsCjOVhuHjkyxFcQznC0hwMBg3Ll1cPxoMIJk8aJZ4vVHz5e38JPytCmc4pc//M6u9e494n7qFmz6ncfO1VRGoD9xXK4H5/COd4PP1EizlCPzMKkwOu6bPPdvHdugZmzU5hwYIMDAaNL0cotzB6dBRFRalEqnpRKMMO6Of+XjgoherFF1/kxhtvZN68eVRWVqLX63+pfUlISEiERD11Cg4ZrG1vJWvzy+QVXiaaNgrsqz1xf1VUgmD1+ec7aW5yEhujEl8Tfk5BvoH4hIhhfmC21m5qatrQapQY9Fq0GiVyBbjtKk7MPI8tumJWV3zJvKt38c9bbmWsySSuXV5hoaLcirPLg3PQA2Z/VV7COZmZsSxePHaf56xb18DOnR0AzJ8/hvIKC7W17Wgj9Rj0Wjztvfv8WRISEhK/J4y58cw5O5cXVrXS53Fzz2NXcu/Nb1BQoBeN3eHA48FIVVSCYPX5ZztpanYS4xcTRAN5ky6kiNY6GBM0Gt9rHXZfS+O0Scfgcaditvyb8/54BmcuOofbbryXqEjffioqLJSXW+lyeg7KGF44LzMrltMGY0Ko89Z95xcPFvia1M11jmECoYSEhMShhMfjocvpYJOjneRoDVMKjBTkjw84Zl/ticHG8sEIgtVnn+2iuckVEA+G5wiBfmC+HKEdrSYMg0GDVhOGQiEjNiaa/MyzmTapho8+e5d1JSU8dOftFE6bKq4t5gjOvgM2hxdzhKwYFi8+YsRzvlvXwM5dHQAsWJAhnltb04FWq8dg0OCyH3o5wgGLXPPnz+eHH37g2WefZdmyZb/kniQkJCRGZObMmTz/wgtcfPHFvNBYx5MVr8OUG3nppUbi49UUzUwJOZlQYF+v+VditXe46e8foH1w3K7F6sTp8pn2Bk9oFPyxhFZHGKoo6/f6+vObm10clTeP6y5cyDVPPcrMyy7jLxdfxB9PXYRCoRCDo9Dy6DN+DD0FUdhnbIwKvV5Dbm4cUyYnjngtBr2W2bN9d7GER/9gLCEhIXEoMm5WKk8/8iJnXX4Clra9PP3in/hoxUp21jiGTRQMxf78r/wrsTo63PR7B+jocAc8v2RprujRJawpnOsfE7Ky4mhucpKdHUd5m5V+j47ZU+/i6FmlvPHeE6wr/pqH//IkswrniOKZ0O4oGMOHEq2EvWg0SlTqMDKzYikqTA6oAPPfr96gZfagwf9sP6N/4WfmSzFBQkLiEGXu3Lk8+eSTXHPNNXy6ZRtJ8QlM6JnMSy81+HKEotSQkwkF9vWafyVWx2CO0CHkCBYXTlefL0cImtBoMGiwWFxiqyMMVZR5vQM0NrhwubxkpE/l1WeP5S9/fZhlV1zN0kVCVZd2KEcYbHn0N4cPNWXRbHYQE6NCr48gNzeeKX4xMHia5KzBvEB4hMMjRzhgkcvr9bJlyxZSU1P3f7CEhITEL8hFF13E99//yCuv/IM7dm7n1VeeYefAUeyMiSXNqDsonyt//KcQBn/A72tCo/C6QiEnJTnSbxyw77X4eBVlZRYiI5Xs2irj8lnXUNryDbe/8AIffPMNz910Ezk5PqN7oQXR4XBTu7NDnILof03CXuQKSEzUilMkR7oWg17L/PljmDQ5EbO5E4vVKVasSUhISBzKzF2Sz12Vz/CnR85he+1m7n/0DnLTz2fz5hZfy0ma7qC8rvzxn8LoLwL5P683DI8HwrlCTMjPN5CQECEek5cXh62tG602DE/fkdx143I+WfN4QFVXTm6u2H7ocLhpbnKGFLuCJyVOLBje4hi83/kLxjB/wRjRk8xojBIr1iQkJCQOZa666iqKi0tZseI13vhuAzGxJrbszUanCyct7eC9rgT8JyYOzxFGntAovC4fliP4XouPV7NpkwVtZBhlP7pYOPtKjpxczor/vMa3xSU8dOdtFE2fRk5uvNiC6OgUcoR2UVgL3qdCIWNUolacIhnqOgwGDQsWZLBgQQYWi4vS0maMRp1YsXYoc8Ai15dffvlL7kNCQkLioHjxxWfZvXsb3377LX/avY2XR8vZPXpRyJaUUBQX76WkpIkZM5LIzIoVjefHDvqyGPRa0WfLZ0I5NE0RhleEGY1RzJyVElB55X9Mgl7LN1+b6e7uJjMrhkdOv5I/nrGQKx97jJmXXcafzj6HG5YuFau/dDoVPW6POA3L1to9zAhfq1GKrY0CQgWX/7UIBAtfEhISEocDf7znZBoa7uehf1/PG2//m0uXjSY5eSJGY9TBxYTiJvLy4tAP3sgIbmdMGGxTd/d6UCgQ2xBDVYQZjVHMGowJ/ob3AHq9lrzcBLp7PHS09xAfl8xrL7zLivdf58HH72Ld+q+4888PkBA9Ge9gPDCm6eiw9/i8ZOo7cff0BZjgC5MSg6/XanGKbZLBrwWLXxISEhKHOjKZjFde+Se7d29n48aNvLn2Y46fZSQ5Iylki2IoiosbKCluJDcvHr3eJ1oFtzIKPltr19QFTFOE4RVhRqOOWbMC2yD9j9HrNXz9tZmeHi+ZmTEsWnQm5y45jlvve4DzrryG0048gT9fe5VY/aWLUtHT4x3MERxBOULgtET/a7ZYXNg7AvcqECx+HepIrvESEhKHJEqlkscee5H582ez29bMv22N/LnmE2K9Y4ChL+vBbXsCJSVNlJe3sGePnaOPNmKxdqOQy3yTGoOEoc2bWxgYQJymGIp9tUGCbzKj2+1l9GgdBYOVAOnGdF66/kEefu0N/vr66/xn3bfcd9FVjM1OwmiMorZGQUlJE61WJ99WtollzoIRfigEIWts9vAWRv+E7b8xupeQkJD4PSKXy/jLM1dSuX0LHxf/m1dXPMz1l6wgNydhxPa+4Na/zz/fw/btbdTXO5g6NYkOu3vwlQGMDFXs+ldNuVyeEfe0r1ZId6+H5mYneXlxTCwwoNEo2VTWgin5aK44L5VvN77AFTdeQOG0OZy16M9MGG+itbWbzeUOVCo5VVWt2Gw9wJAJ/kiYzZ1im2QoIU54/G/N7iUkJCR+b6hUKp566l8smD+bxg4bO/d8ytEL7x6xtS+47a+kuJHN5Raqqm2MG6dnwnj30EnGoT+azQ42DeYIwjTFUOyrDRJ8kxl7e/v9cgQHRmMMt151Ny+/+R6ff/U+a9at4/LzLmFCdhEezwBOZx8GQ0TA1EcYMsIPhdnsoKnZFw+Cj/EX8f4bo/vfG5LIJSEhcchisSg48cS72b59JYvPuQLFa/dh/dvfSLjmGsKTkoCRq5dmzEhizx47Hu8ANlsPCrmMbdtsNDd3ER2jFo81GqOYOHEUMDDsLviBCkXV1a2sXLmL9g43arWS0tJmqqptTJuaRI/bw2jldG49pYBPf/qA0+68iQtPOIE7LriQOrPPCLiykoBWyJGEO2G//o8jIRhSApLIJSEhccij0oZx3tU30dy6l+l5xzFxwuiQn4MjVS9FRioJC5MTH68mOzsOc72DHzY2odWGEROtDmhLDFU1dTAiUVlpC1t/smJ3uJk/fzTffFOPQiHD6x3AalVwyrF3c9GyC7j74Vu58S+nctUl1xOtPpraGjt6vQatJhy1Sim2UI4k3MGBxwTBtB6QRC4JCYlDnrY2NSec+Bd2/rSCYzJ0RGEFkgKOGal6aUZhMrv32HG7vfR7+3F0utm4sZlIbRjRMSrxWKNRx6SJo8Q/+3OgQlF1lY2Vn+yivaMHtUpBaVkzVVU2pk1LpKfHS3h/Hlcum8QO82oefvpxJk34ghkFp9PSoEar1eN09QW0Qo4k3PnvcX8VbQE5giRySUhISPy65OXFA8eQl7cEkyka98IczOcuo/Wpp9DfeCNhBsOIX/ALC33+giUlTeTmxtHd7aW5uYvExEi0GiVr19YBAyQnRw6aOw4XlIKFolAtkEZjFOUVFjq7+lAqZCgUMszmThyOXmy2HoqKkgFfX/8Nl8/ln//5Dw+++goffPMtlx5/JuMnjCd9dAzhKqW4h2DTe3+EijKL1UlpWXPAvvflOSYhISFxqDN5Rgp/uvVJLD+0ILO5iZ8WMeyYkWLCiSdkEhenIT5e7TOat7vRasOIjlZhrnfQYe8hOSkSgISEiGFiUiiRSGiBnFGYRFbmUEwA8Hj6sXe4KSluoqGxi5TkSGYUJmGucwwKZbkUTp/FM/94nL+98CiJhhXMmXEJR86Yj1oVFtKXC4a3HfofE/z6SJ5jEhISEoc6eXnxLF16PDnZZ7P2yT/TXP0jR0zKQ64Y8qgaSfQpLPSZsJcUNzKjMJlul4dIbRiJSZFoNWGsXVMH4JcjDBeUgoUioQVyRmEymZmxohDlyxF6UShkyBXywByhcGhY1CUXTWfxicfzl78+yvNv3M20/KM5NeOiYa2Qwab3/ggVZf7+W8Ix+/IcOxSRRC4JCYlDFpMpGpMpWvx7uMnEf+b8gakrP0X2zDMYbrwRgz4Gg15LdXUra9fWBVRdhauUREaFU2d2UJBvYP6CDIzGqIAWxd27HdTV2VGrw1i0KHNwLLAvUQkOAiUlTVRWtoprBwtKJqOOcJWSVqsTdaWS3Ny4YQbwVyxezGlz5nDXiy/y1xUvMvGII3i04Bqm5OYCvvZLe0egP1goQlWw+Sd3gueYhISExOGCyRSN6fxoto6OZt2KHaz9aCMtfds454wLxGP0Bi2trd2sXVsXUHWVk5uAy+WhrKxFfG3Bggw67D1s3mRhYACsaS4cjj6KixuI0IRRVJgs+nQZTb4kyV8kKikeigmqcKWYQMybZyJCE0Z8vJoItS/hmlGYRGFhKoWFQ9ej1URyy/V/4ZQTTue+R+7g9fdvo9a8ittuvAe9wdeOvi/PLYGRRLBgzzGpgktCQuJwwT9HmHXW+Xz85EM89tjjnH/RhRgSfJ91guhTXWUbyhEGK5fCwxW+HKFOyBHSMRp1AS2Ku/fYqdtjRx0RxqJTswZzBJ94NSxHKG7kp0qbuHawoGQy6QgPV2C1ulCrFOQOmr/7V1IdOWUyn7z1Ov9+czl///crXH7zBq686ALOPfN0VOHh+/Tc8idUBVsoz7FDGUnkkpCQOGy44447ePDBB5k8fjz/cg1gffZZ9DfcgEKjCdmeZzRGUVPThsPRi9PlCfCwEloUGxu7aGzsQiaXUV5hISsrThSPpkxODBCKZsxIEh/3JSiVljWTmOgOmIoY2IIYxws338wFJxzPTU8/zbyrr+KU2bO588KLsFvCaG52MjY7bp8eYKGqFfbnGyYhISFxODD+D6nsqNrFOdcvpafXSaIhiXl/mC++PlJrnn9McLk8TJ6SiNXiBGTAABERSkqKm6gzO/B6+onUKsnKimPbtjays+NYsjQ3YB8zCpPEx5EEpbJSXzxQhQd+JfdvQczOyuWNf77PV+u+5OEn7+akpfNYdOIZ3HDVbTTWy0f03PK/Lv9HgX35hklISEgcLhxxZBFrdjXyRVk5ZTtqeeMffydMOfSZG6o9z2jUUVPTPpgj9DFlylCOMGniKBydburrO7Fau4HuwRwhVhSPpkxJDBCKZhQmi4/7EpRKS5sZldgTMBUxuAXxsvOXcdpJJ/C3f77Eo8/+nTffe5+brroCfXTuiJ5b/oSqYNufb9ihhmxgYGDgt97E7wmHw0F0dDR2ux2d7sAmMEhISPw+2LNnD5MnT6atrY3zTz6Zm3ftJiw1lYRrr2V7rX2Yf5bF6mTrllZggPET9CEFoLVr6/jmG3PISq6RBKPi4r18/XU9RmMUx81PF4+rrm7lyzV19HT3kZUVR9HMFPE1oQUxMVFLdIyKVquTyso2pk0fhdlZzQOv/Jum1lbOPPo4Tj3yBIyJenGy4s8hXHna25HJZESfcjIyufygzj1cPzcP1+uSkPhfYKB/gBOPWsqn37+NVhPFR8u/JGP0GCC0f5YgKvn7bQULQGWlzZSVteB2e4ZXcoU4HgLjwfzj0sVjhD3IFTLqzV1iJZf/z9q2rY3EJC2NjV2YzQ7mzElj6tRRrPjgdf72/CN0dXVy0oIlTC04k7gYAxPG63820aqjxcno8QnEJh78eofjZ+fheE0SEv9LfP3JxyxcvJiePg/nLTmDO2+6QXwt2D9LEJX8JxQGC0ClfvFAowmjqDAloJJrJMGouLhhKEc4Ll08rrrKxpdr9tDT4yErK5aiolTxNaEFMWkwR7BaXVRV2phRmIwhqZe/Pv0sX3+3nqyMMZx4zOkcNaOI7h7vPvdxMLjsHSiUYeTOPvqgz/2tPjulSi4JCYlDmro6O5WVNvLy4hk9ejTLly9n/vz5vPLRR0y67jrmrf6C9tdfhyNPHHau2dw5YlWUYCpvMuo4+ZSsADFJeNzX5MaqahtNTV3k5CaIr5VXWCgvtyAD0gbvngi+WcIddntHD9u3tVFZ2UpzsxOAG288jsVz5vDEm+/w3Ptv8+F3X3Hi9HlMSi4E0kUPrv2JbxISEhKHO/4xYfknLzNlfDU79m7h8uvO4z9vrUajGaqiqqiwAL5qLqGlLzs7jslTEoetW13VyuZyC3pDBDOLUgLEJL1Bi9XipKy0eZjYVVLcRFWVLx74T3sUqsnkChn93gGqqtpQhSvF84WY0GHvYePGRtrb3ahVSgoLUzn3zAuZOW0hL732Ip9++Rr/WbWcyeNP4IKzruDYYwuAfZvRS0hISPwv4B8P5px4ElecejxPvPMRr654h/xxeZw0/7iQ5wntfNnZcQEVXALVVTbKyy0YDBEBYhQMtf/ta3JjVZWNpsYucnLixdfKB2OCDEhLG8wRBn2zhIore4ebbdvaqKq00STkCDdN5cUnH+eLrzbw93/9iyf+8TDvrRzNkROP55SFc0UPrv2Jb4cbksglISFxSFNZaaOkpBHw9d8fe+yx3H///dx+++386fnn+eymm0h8731sVgUV7aOBwHZF/0d//EuXly4JbEERBDC1SimOkPcXlvLy4mhq7iIrMyZg7YJ8A/VmB11dHkxGXYBv1pTJiaJYFR3TSXy8isrKNrEFUh0ezrET5qFxZlKy+1s+/eErPvR8wem2eSQkn0Nro2xEM3oJCQmJ/xX8Y8LChRl8+Mn7zCiaTu3u7dxx/594/IHnkMlkw1oW9zeFsKLCQm1NO5Ha4dVS1VWtrFq1G4VCxqxZqQGv5+XF0dzcRWZQPMjPN9Dl9OD1eFEoFcTHqwN8s4T/rBYnjY1OzGaH2P4I0GYDU+JJXHfxfPY0fsEHK//Nlbd8wvFfn8wFZ1+GpydpRDN6CQkJif8FgnOEa++6ly1bK1lTXcsdDzxM7tgjyExPH9auuL8phOUVFmprOtBq9cNEI6EqTK1W4HQO5gh+x+TmxdPU7ByMCUPrF+QbqK930NXVh8mkC/DNmjIlURSromNUxMerxUougTjdaBbMupLp+Xso3bqKd1Y+R8mmj7jwnCWkJ09mz57uYXs5nJFELgkJiUMa34TFoUeAW265hfXr17Nq1SouWbGCTxYuxPTlWo7OjiUtP09sU3Q43Oh04RAiqdnXZBEhGGZmxlIw0TAsKUrQa5lYMGpYhVhOTgJOl4ft29rEaYkwsm/W/PljAtY1GqMYVaPj6PDj+OOpp1Fat4Hn3n+Pt9euZsGRM5mX/wfS0ozD9itUefW6PaLJvmQ6LyEhcTgSHBNyCzJ5/m8vc86li/nPp+8ybfIMliw+VzSIN5p0lJU24+71YK5zoNEoQ4pC+5o+WFFhESckDvO90mspKBg1zDNLMLoXqgWEoSehfLPOPTdv2M8c8g8b4MRjL+Kma6/l3f+8yStvvsjHq95nQu5k/lB0OrNHnRJwnlDhJVyvf8umhISExOFEcDww5k3gvFNPpN6xnO0NzVx182188Oq/Ar7zWywutm6x4uh0Y+9w++xMgoShA8oRsmIoKDAME8r0eg0FBYZhvlk5ufE4XX1s29ZGeLhiv75ZCxZkBKwreIjBaG695h7k4VZeWb6C+x9/kgi1mqNmzOOInFOBwMo0ocqrt9crmuwf6qbzIHlyDUPquZeQODyw2WxMmjSJxsZGPnzvPfLeeAN37U4MN91ERaOMb742Y7N1ExcXwZyjjQGm8/6tii0t3dhs3RQVJYvCkPD6SGKRICppNcphvlmCLxfAlMmj6O72si9PsJHWFtZ09fRw93Nv8c43n9PmaiU3PZ2LTzqJ04+eS3Skb9z92rV1bN7cQmtrNxari4ICA9dcPTlg3ZbaBhobXRjPO53R6bEH9V4frp+bh+t1SUj8L3LFsj/x/OuPUZAzjfeXr0QmkwFD3lfNzU6sVhcFBfphBvLVVa2sL24kPl7NqFGaYeJQKI8vgX15fVktTj5fvUf028rKjGXLVp9P5IH4a4VqSfz++zqWv/Mfdjd+xraaMiIjozjxuFNZdNKZTMqfyldfmdm8qQV3bz8tzU4io8I495zcgH1bLU5qq9rIn5lM3qRRB/1eH46fnYfjNUlI/C9irtzCv267kWe+/YFOVzcv/+0JCqdNFV8vLW3m66/N2Gw9xMWpOfpoY0DLolCpZTLpaGlxYWt1kRmzh7g4NePmHMP2be0B/l7B7MvvS/DlAl/1Vvdgt0gooS0UodoSP15Zzmsr3qXGvBGnq4uC8eNYdPxCjj92HtE6HWvX1LFpcwu21p7BHEHPNdcE5gjmXc00NXdTdNKCgKn2B4LkySUhISHxMxIfH897772H1+vlyCOPxDNzJrtOOJG2f/2L1AuuYOLEUWIll1ajFL2xDHqteBemscFJq82Fw96LNlIpClo5OQn7rIQSqrEEM/l6cyc97j4K8g04XR6amrpw2Hvp6+3H5erD1d0HwNy5+xe5gickatRqRjGe2bGjGDBa6I6q5aZnnuGWv/+dY6dN47Sj56LuS8J3O2MAmd9a/oJZQ6OTnTvtdFXaDlrkkpCQkPi988y/H0beF8HY6Jm0NTqJT/HdBBAqp9IzdKJ4FSweVVRY2Ly5BZ0unIR4DVarCxiazJiTmzBiNZTQdiiIaR12NzAkZFlaXOys7UCtUqIKV1Jc3IDLdWAxIdR0xI0bLHR3HkHRxGlccYGczZWr+XztByx//zWSRiWTnVmEVpXPxPxpOJ29dHX2UVFhISc3QbzuDnsP1r1daBI1/5XIJSEhIfF7xZg3gSPG53ORTMH0k0+jYML4wNeNOnF6oi5KhVYTJnpjGQwavxyhi1ZbN2G9LSSM2kbHboiMiydn4pR9VkIJ1ViCmXx9fSc9PZ7BHKGPpiYndiFH6PYMxYN5pv1eW6gJiTXb+tDIi5h/5FwmTu9hzbo13P3IY9z76ONMnzyJtKTxyL0mQB2YI/gJZo0Nnezc1UVMpe2gRa7fisNK5Bo9ejR1dXUBzz300EPccsstv9GOJCQkfkumTh26M6OMjyf5icepv+hiNGtXMvfcc8XXBDEKfCJSQb4BZ5cHlUqOwRCB293vK2Hej7l7cIWXkDyVb7ZQW9sOwNy5JqZNTcZm6yY3N46qqjaamrrAL7SE+jn7qg6bMSMJm60bnS6eeccs4Jmbruf9b77mva++4vz77kWjUjMhI4dJGeMYn57OvFm+lkZ/T7C0ZC0yZBjzDv0SZZDigYSERCAKhYIn/n0X7zzwI+VfmilcnElEVHiAUFRY6DtWEKTAJyTl5xsGx8RDVlYMHR1asc1xJGP34OoufyP5zZssDAxATLRa9NmaUZiE0RhFUlJkQEwYyUB+pAoxYT3DqAjs7XIWHn0pt990BxtLi/niq09ZvfYzmi3v8uV6NdmZBSTE5jCgmEVb+yjM5j5xoqPJFE1WZszP/v/ht0KKCRISEgKFp59FU81dxMq8w14zGDQBglKpXzwwGDS+HMHZh0qlwDBKQ5htD2HKKJTh4ewo24o2KZtRiZHD1g2e4Ci0IZaX+/y9YDBHmJY0mCPEDw4tcQasE6paa1/VYTMKk7HZetDpwsk05bLkbwuxtLay+qtvWPPNt7y78lW8Xi+j9ImkjMpCrppCza44bNYwamscACSnRCFTKAOsYX7vHFYiF8C9997LJZdcIv49Kiq0gaiEhMT/Flu2bOGGO+/kmaVLcL21HNURR6CdPh3w3cm3d7ixd/RgsToDvLPGZseJrYzBYpiAIECVb7ZQVW2jscFJfEKEWHWl1SjRRiopyDdg0Gs59dQs8dzMrNhhPiz+4pPwc4Tn5AroH4zJwmuFhakB6xgStFx12ulcddrp7Gxo4JnXP+GrslL+ueMtPF4vz6+NZ3J2NkekZmCITGYgPJzomBgSErREHyJ3aA4EKR5ISEj4E65WcvzVE1hx3wb+/Kc/U1CYzUXLLh92nNEYRYfd7atosjgD/LP0ei3zF4wZJoT5Y7U4WbVqN3V1DhoanCQkRAQYyfsErAFRmCosTBXPPfmkMQExQZj6GPxzhOcVCvAOxgRhrcLC1ABxTC6XM2PaTGZMm8m8WVfwyafrUap3YbFV8+OmD1n7/b+5/QGIi00gaVQGo41Gkg3JHH3yX37Gd/+3R4oJEhISAKYJE9HpR7G36ieMeROo3L6DR595jmcfeYioyECBymjUDeYIbiwWV4B3VnZ2HJ0/9aCNSaFbbqBtxwZ272wJELkEAaq83EJVlY3Ghi5fjjBYdaXVhKHVhvlyBIMmMEfIjBUFLQF/Q3pByBKeUyhkeL0DAa8VFqYMW8eQkMC5Z5zGuWecxpdrdvDhx9/Qr2xib1MNf3vpKZ56cQClUknyqBQyTEZSkxI4embRIVPFBYehyBUVFUVi4vBRnyPhdrtxu93i3x0Oxy+xLQkJiV8B/1HB/h/E/f39LFu2jIqKCm4MC+OZCROwv/ceqqwslHE+c/joGJ+IFB3TiUHvG99ePyhcaTVKsTIr+DmA1Z/vYePGRsaMiSUlORKFQobZ3CmKUPEJEWRlxRGfEDFsz8HthxB66qPwZ/9Krv2tAxAVHoPGkcskrZElU3RMnCVnY1UlZdu28dLKD3A4fXeIlAoFfzrtdB445eSDft9/r0jxQELif5eR4kGsQYvXuJtPn32TzzcqmJg/mUn5UwPO1Ru0xET7RKSY6E70Bi3uXg/NzU7SMwQz4CjM9Z1sLreg0SgD2hU/X72H6m02VCq5GA8EgUpv0DJhvE+kCkVwC+JIUx+Fv/tXcu1rHfCJb59+upvmBh3jxx/D/XfdRn9/P7vrdrK9tpodtduo3bWdhqbdbK7YwEN/vX//b/QhxMHEBCkeSEgcXgTHhPxj5vP9itfpsFq44DKIhgABAABJREFU4Y6/sKuujpvvuY/nHnlY9GwEn1gUHaNi27Y2omNUGAwajEYd9fWdlG9uRm9vJTV3PJ6+NGT96+i2twFDg6NWr97Dxg1DOYJcIcdsdogilC9HiA2dI4RoPwxlSC/82b+Sa3/rgE+A+3ptC057GhPGT+SFJ6ZidzjYVlPLjp272FG7k/rGRtb/WIoxJeUg3/HflsNO5Hr44Ye57777MBqNnHXWWVx//fUolSNf5kMPPcQ999zzK+5QQkLilyJ4VLBASUkjM2ZcT3X1ZXz2+ee8dfPNnF5TQ/tbb5FwxRVYbd3YO9wkJmrERMGg19Lj7qO2th1tpJL4hAjM5k5stm7xOUHkMpsdtHe4cbn6uOTSCWzd0ipWhRn0WrZusbJpk4XMzBjSjLoR2x392xT9jfCF/QRXj/n7iIXCYnWydm0d4So5ycmR/GHWaAoLU1kw2JPT399PvcXCzr17qa2tIce4/37/QwkpHkhI/O8yUjxYv34vrc5sZkw8hpLNX/LH6y7ksw++IS52qA3DanHSYXeTmDQUE8x1DqxWF+Y6B1mZzqF4UNNOpDZQ5DKbHXR3e0hOjmHWrFQ0GmVAa+OWrVY2lVnIzIrBmKYbseVxpFZFCBSxhOOE50NhtQzGg3A5ySmRYlujXC5nTHoWY9KzWHjMSeLxHS1O5HL5gb/hhwAHExOkeCAhcXgRHBNyZs7hu7de5aeSco6ZuYyXGx7ii6+/5d9vreDCs5eK51ksLuwdbpIStUOVUAYNPT0eGnY3kRDjJSw6hTUrPUwAWs31wNCNEzFH6O7jkksmsHWLVawKMxg0bN1ipWxTC1lZMaSl6QJaDf3xb1P0N8IX9uN/jsXiCvARC4XF4hJzhJTkSGYUJgMQrdMxffIkpk+eJB7rsnegUIYd3Bv+G3NYiVzXXHMNkyZNIi4ujuLiYm699Vaampp44oknRjzn1ltv5YYbbhD/7nA4SEtL+zW2KyEh8TMTPCpYYM2aOn76KZz586/n448f5u5HHyX/9tvJeuddur77DnPkWJqbnYzN9lV1FRfvpaSkibS0SPIL9BTkG8R2wfj4CLH1UGDOnDTUaiUzZviSBovVicPRS3SMelCAkuF2e6iqasMyaFgcSpgymzspK2uhpqaNuXNN+5y2GKqlMdQxDkcfY8fGhVxPLpcToYjCXh9NRJsJ/ZgDr3r6vSPFAwmJ/232FQ/Wrq3nqONupG7vdhqtZq6+6VJef/FdUdQxmztpbnKSnR1HTW07r71WRZoxkoICPfmD8WDbYDyI1CrJDxojP2dOGmqVkry8OAAam7pobvJ99usNWhyOPtrau9lbr8Dl9IjPB7NlayubN7UwcdKofZrQj9TSGHyMw9FH9mA8GElU+359IzZbN1PGJzB6/MgDVg41DjYmSPFAQuLwIjgmRMUnYBg9hqa6PbQ1ZzN/9hJWfvUGjzz9LAXj8piUPwHwiVRNzb54YDBoKC5uoKS4kTRjFDkZcmiD9r4ECOuhzxtBvM4T8HN98UAhikgWq2swR1CJAlSv2+vLESw+78dQwpTZ7BjMEdp93+n3MW0xVEtjqGMcjt6hHCHEccK1TpukY9r01BCr/H753Ytct9xyC3/961/3eUx1dTXZ2dkBwWjChAmEh4dz2WWX8dBDD6FSqUKeq1KpRnxNQkLi0MJkig7ZLz5v0EBy3rxZxMU188orr3DpP//JJ7OPQvbJJ6ReMhqy4zAao6iubmX58m10dPjaFG680Xc3xmL1tfWFMoPPzIoVPVVKy5rZs8dBp6OX8eN8CcL4CQlYrE5aml3odOHD2koEjMYoamraaGn23V3Zl9A1UgtLqGN63R7Wrq2jIN9Ae3sPJSVNzJiRRGFhKmZzJz/82MhAhx2NNowpI7+9vzlSPJCQkDhQ9h8PTCw+9QMKiwopKV3HMy88wbVX3AQEfr4+8+xmtm9vw+6I4957ZwIM+moxohl8VqYvJpSVNvPddw04Xb3k5saL6+p0YcTFRpCaFiVWcoVmgIEBcDjc+zS5P5h4YDRG0drazdq1dRhNOlpaurHZuikqTMbl8vDDD4047L3oVAr+MOJqvw9+yZggxQMJicOLUDFhbOEsrCteZ0KehvzJS+hXNLHqy7Vcc9sdfPzma8TFxAS0B1ZX2XjrrWoxRzh2kpyG3kjGTRyNRj9A6/fpDPS58Pb1YWvvw2x2kJkZS2Ghr9WvtNQvRxgv5Ah6LFYXzWKOENhqKGA06qipaafZP0cYQcAK1dI40jG9vd6hHKGjh5LiRmYUJlNYmEJJcSM/VdpQDnRLItfPzY033sj555+/z2MyMjJCPj99+nQ8Hg979uxh7Nixv8DuJCQkDgWKilIpKvJ9OE+c+BxffbUes7mGC7bU8LYGwtesZPIVVyCTyVi7tg6Pd4CYGJVYmQWhPa9CVVMZjVGEhynocXupMzsoLPS9NneuaZ+TGYU15s41sXZtHQ5Hb4CvV6hj91Xp5X/M8hVVVJRbAdi1005VtQ273U24SolWo2Ta1GS6msLI28fI498DUjyQkJD4/+IfDyCVxx5+imtvuoKn//koEep0Lr1wcUArYGSkkrAwOZGRQ1+ZQ/ldwfCKKqMxCq+3H5utB3ePRzxnwng9MdHqEUUrAeG4DnvPPiu1RtrPSMesXVtHebmVnbvsNDV14enzGRWnp0eTmxuP293PEUfE7nO93wNSTJCQkPj/kDFxCt+99QpHjleQnpfAg3fcxqaKappbGrnoqlt4/7W/B7QCrl1bh1fIEQqTsddVExWvJyNrFNkTNKxtTmfHhvV4ensD4oFwvtGoIzxMTo/bQ12dg8LCFN80x7mmYRMTgxGOG8oRHPs8dl+VXv7HLF9ePZQj7LJTVWXD7nATHq4gd7DqbdKkkcWy3yu/e5FLr9ej1+v/q3PLy8uRy+UYDIb9HywhIfE/gUajYcKEG6ivvw6bfQDtdZfT/dRTuH78Ee20aWIbYkG+QfTcGongu+f+bY7JKdqAlkZ/Uaq6unVojHBOQoAXV7AgJvD55ztZt66B2bNTmD9/DAeD/zV5+gZoauoiMjJMnB556qlZeNoTAow2f49I8UBCQuLn5pob/8gLz3/Azrrv2bVl77DXTzwhE2OablhLYij8Y0Jx8V5KiptIM0aSkqINON9fcKquaqWiwkJ+vkH09fL34po8JRGrxUlMdGdArPn663qMxijmH5e+X4ErGGEvfZ5+ero9qCPCiI9X09zkJDcngclTEuloce5nld8eKSZISEj8f4hPNaLSRtLe1ED6xMlEarXMnnQe761+FLu9l+6eHrSaIbHI//t0dk4cq0otmMYXEKZS+9ZLMdLd+Rm97u5h1VT+bY7JKZGBOYKfKFVdZRvKEXLjA7y4ggUxgc8+28V36xqYNTuFBQtCC/sjEZAjeAZoauwiMjJcnB55400ZuOwdB/nO/vb87kWuA6WkpISNGzcyZ84coqKiKCkp4frrr+ecc84hNvb3fzdKQkLi1+P88+fQ3/8Y5513NKbTstm9ejWOjz9GPW4cOTkJ+xW3BATRSjD8LSlporKyFRhqcwxFeYVFvGuSk5MgVoTZO9xEx/gSGaMxSlzXoNeybl0DO3d2ABy0yOV/TfEJEeTkxo84pfFwQIoHEhISB8Md9z7K+vfLyNWn07zTTuKYoZaWnNyEAFP5fSGITWZzJ19/Xc/O2g4Abrxp5HhQUWGhXIgHucIwE18FQIfdLYpb/jGhpLiJqiobTU1d5OYkHLTIJVyT1eITtURz/aCbK4cLUkyQkJAIhUwuJ2VsDraGevrcbsJUKk5YOAW4iYXzJwcIXAA5ufHkDHY9dHd20tfTTXyaEdmgn2NcShoD/f102WwkZQ0NpwLE1j/Yd0wIyBFy40V/LV+OoMJo9JnTC+saDBq+W9fAzl0dAActcvlfU3xCBDk5cSNOaTyUOGxELpVKxYoVK7j77rtxu92kp6dz/fXXB/TgS0hI/G8x0gj5xYvHsnjxUHtC8oMPUH3qIhwffUTs0qWhlgKGV2BBYMui0N4YG6fi8cd/FH2vghHumnR3e7jttnUUFOgZmx2HvaNHXAsIaIWcPdvXzy88HigWq5P13/uMhIuKksnJSdhvm+OhjhQPJCQkghkpHgCcdVYBZ545gfceLmXrt3tRRvaTMGrf4keoCiwYEqiMRh1qldIXDx77kRmFoeOBUFXlGowHs2elMHlwuq5/myIg/nlGYRI9bo8ofh0oQoWYu9eDuc5Bfr6ByX5Tug5WLDtUkGKChIREMEJMiErJZnd5GT2dDsJUegoLU0QPLYGenh7UanXAc3ZLMwCJGZmsX7+XNWvqmD0jBoDONhtJBBrAC8bzQzEhedjPAf8coY/bbv2Ogol6srPjsHe4Q8YDg0HDrMHcYNZB5AhChVhvr5e6OodYOba/NsdDhcNG5Jo0aRIbNmz4rbchISHxO2KkEfL+9PT0cO1TT1Hm7OLl9d+jmT4d1QgeHsEVWOAzdW9udpKerqOwMJXCwlQef/xHsaIrVFIjVFbddts6sTrrjDNysFidYiWXgPDn+fPHBFRwhRLcgrFYfSPjy0pb6O72oI1UHnCV2qGMFA8kJCSC2V88UCjkHH/FBO69/EVuXnQaj97/NHPnHDPieqEqsKqrWtlcbiE+Xs3MohT0Bi2PP7afeDBYVeUfD+YvGIPeoB3WpghDZvfBa40kuglYLU7Ry6Wzsw/r4KTfA61SO5SRYoKEhEQwQkyYODaZgf5+bA31RCUEtj939/Rw918fpb6hkdf+/gxK5ZB0Yre0oAwPJyYphTdfrmPNGjMMDBATrqKn01dl1dvrpaXZSUZGtCiePf7Yj2JFVyiRS6isuu3W78TqrDPOyMZicYmVXALCnxcsyAio4ApueQzF1i1Wyja10NfXT6ejV/zZhwuHjcglISEhEcxII+QF6ursfPVVBW+9tYKuLgdPJiVz53vvkXDjjcgVimHH+/eti2uYHVitLtFkHoYquvyN60MRXJ0V7NtVU9OGVqMcVnllsTr54INa6usdOLs8w4Qri9XJ6s/3ULHFQmRkOEaTDk1EWMC+g7HZXDQ2ujBOtDM6XWrfkJCQOLw4kHhQWWmjrreMjq5Wrrv1cpa/9DnjxmWFPF6owPL32qqosFBb006kVi9WRc0oTAp4HInZs1ICHmG4d1dNTRsajXJYxVV1VSuvv1FFV2cfEChcWS1OPl+9hy0VFrSR4WSPjWXc+ASxkisUVouT2uo2wuPVxCYentVdEhIS/9sIsSA3J5a9X6rpaG6C/KHXLRYXG3/cxqovv6K7p5uHnnyeO/90tfi6vaWJyNh41BptwNTe7R0J9HR1MTAwQF2dA6u1WzSZh6GKLuFxJIKrs4J9u2pq2tFqwoZVXlksLj74sIZ6swOns2+YcGWxuFi9eg+lpc2oVArGj9ejVMr2mSO02npoam5Ha7KPWDTwe0MSuSQkJA5bRhohL1BZaWPXLjknnHArK1bcyqtNjUyWyVi8bh1Rc+YMOz6UX1co4Uuo6Nof8+ePYdLkRMzmTixWZ4CYFVw15m9ObzZ30tPTh1IpIz4+Yti6ZnMnGzc2YrO5SU9XsGRJ9n5bFBsanezcaaer0iaJXBISEocdBxIPSkoaOev8m/mx9Ad2763m+lsu5dMPVxMeFj7s+FBeXaGErwOOBwvGMHkwHlgtzmFCVnDlmL85fUWFha7OPiKjwoYJV0PxoIf09GjmzjUNVoKNvBezuZO6OjuaRA15k0btd+8SEhIShxr+MWFUeiaOViv9Xq94k9tsdmBvV3PC3PN499MXePXtN5ldOJmjinwfnu3NTeiNownXaCgqihen9jZ9Y6CrzYa3r2+EHGF4O2QoFizIGIwJDiwWV4CYFezb5W9ObzY76OnuQ6mUj5AjONi4oRFbWw/po6M57rjR+21RbGzoZOeuLmIqbZLIJSEhIfF7Jy/PFxiio4+mvX0Zq1e/xu1WC9n/+ZApkyej1O3fcDE+IYKsrDjiE4YHEvBVVW3d0goMEBGhpM7sCJiqKLSPAAFClBAQY2NULF9RhVqlxOXyAL52lT/8wQgMMH7C8MlSRmMU06cnYzY7mDMnbZjAFarVMSVZiwwZxhGqHCQkJCQOZ4S7+tHR4Vx+9ePcfdcZ7Kz/ifse/Av3/eWhA1ojYTAeJIwQD6wWJ1u2DsUDoZpKEMu2bLWyqczCpMkG5s4N/NzOzzfQ5fTQ5+ln7do9ADQ3ucTXhMdg4S04HoTy3QpudTQao+jt6iMrM+aArltCQkLiUCYlJ4+ylf+ht6cbtTYS8LUC2jvcaLWFWGy7+HbDF9x01z189OZrxEVp6XbYSUgziZMVBWJGJdFq3oO3r28wR4gdOUewuNi6xSdWRWiUAd5YFosrMEcwDJ/yGBOjYvnyatRqBU6nkCPoBnMERsgRdEw/0i9HCBK4QrU6JqdEIVMoR6yE/j0iiVwSEhKHHevX7+W993aQkhLJ6aePHfGug8kUjcFgY+fODq644jYcjhpKSkq4rnYnH7zzDskXX7zfn+VvPC+ISf5VV1u3WFmzpg6tNoyIiLAhH5TBqYoORx86Xfgw82ChauzpZ8qoKLcwdmwcR881YTRGYdBrhyVA/hj0Ws49N0/cS2lZs3gehPYWi4/XkJCgJfoQuUMjISEhcSAIhsDjxiUQEREW0ngehu7qr1q1i87OKK6/4REefOgK3vzgJaZPncEJC0/a788STOch0MRdqLoy1zv4YWPT8HggClMyZDLfYzA5uQls297O2rV7iI2J4A9z0sjOjhM9ukby1tIbhuKB/16E82B4lZjeoCVsAJKTI/d7zRISEhKHEqFyhLTc8Wz84G06mptIHONrUTcYNETHqGhqdnLx2Zdgs5v5qXob1952B4/d4GtbTMnJQyYL/LyOSUyiu6uTvl43ZnNvgEE8EFB1tXWLlS/X1BGpDSMiQonV2g0MTVV0OHoHc4TAm+6Cb9fTT2/y5QjZcRx9tBGjUYfBoGHuYPtkKAwGDeeemyvupbS0WTwPhleJASTEqxk1KuqQqeICSeSSkJA4DFmzpo4vvthDQkIEubkJ+/xQ9vdpefvtt5k4cSJVNht3f7aKp2fNQj3WN4XRX7jyr4wSxCl/kcpf+AIZWm0YiYmR5ObGiZVc/udoNUpxNHyotsKBAVBHKJkyOXHYa/vaW/BehNdClU9LSEhIHI6sWeMzBN6xo52MjBhg5EEk4B8TxtNhq+bv/3yGW+65lnHjxjHaOGTsG0osChUPYEj86u7x+OJBki8eBPtiTRgvCFUDIVsWbbZu+vr6UUcomDA+YcRpiKH2FrwXGBLiQrVZSkhISByOhMoRkrOykcnk2PbWiyIXDBm7G406nn7oAU4+5zw2b9nKEy/8kxPyc0hIGw0ETu+NGZVEv8dDd2cnRqM+YB0InLgIEOkXE4RKLv9ztJowzGafkf3wtsIB+gdArVYwZcoIOYKfqBZ8vv9ehNf+j737jm+q7NsAfiXpTLrbpHu30gGUUYWyR5GhjyxFEQUcuB8nihMBX8UBrkdxC04EFFEBRUAQactooQXaUlooLdCR7pG0aZrk/aMkNm066SDt9f18KiQ5OedODLl6fucefeUcgUUuIupzYmP9UV6ugre3HSIjXVtdOl5/9T4npwInT6qxdu0neOqp+zHR2wcVW7bA6tlnIbSwMFks0v+9aWHJ6ETHz/7yaigNBajG86Don5uYVGBy3wAwJdYfUqmtIWxMFbSMi2owetzUSZepucWIiPoi/YTA+p5cjo5W2LnzXJs9unJyKjD1hodx4MBBWKudUJKlQYDfv9uZKhY1nii+Mf33r1jcMOz83xUSjbeTyiRwcmzYr5NjVbN9jR7lBTuJBaKiZIbHTBW0GrdNf1v/uMlMMDG/GBFRX9TSOYK9zBMV8gKjbfWTvcvlSsgLRHj+8Wew5sO34WtrBY+gUEicGuawbbx677WRDfMYKspLETDYv1lhqXHhDH4wrJgok4mN5urSHzsxsaBZIUpvSmwApFLxv+cIJgpaTYtqjR83astl+l5i5o5FLiLqc3x87DFlSoDhJGbnznOtLh0P/BtQMTFDkZ2dDcHx47hw3/2o3r0bDtOnt3iF3pSmha+2Jn1vbd9NC1Kmim2Nn9/0cVNFOCKi/mL0aB/4+NgbLnQ0PhlpayL6o0eL8PIrG+BSY4n0+Hzk+5fDM9gJQOvf2021VPwypdU8MFGMMlVsa5oJjR/vSFuIiPqals4R/O19UVmQCk19PUQW/5ZIdFotMo6nIi/7ItxcLLFi3n+gUVQjcmIsrMUNhaTGo0IcZZYAgNqqKpPHb7xKov52a0wVovSaFqRM9cxq/PymjzdtS1/CIhcR9TlNT2LaWjq+8WORka6wt7cHxo2D3aRJyNixA9cMHgyZt/cVFYtaG1LYEaZOgEqKa5CZWQqJ2KLFE6T4+ItISMhHTIxnu1b6IiLqKxpnQnvyoOl2vj72KL5QjZP7LqJYkYdBgyOuuFjU0pDCxr2xGt9uianv/OLLmSBuKxPi8xEziplARP1HS+cIdqqhOPrDIVSXFsNR1jD0T1lZgUNbN6FSXggboQVq66xga2+PQbNvhW/EIGRnZ8PT07PZ6r3WEglqq00XuUxpbUhhR5gqiDWcI5RBIrZssWAWH38JCfF5iBnl1a6VH80Bi1xE1Oc0PYlpa+n4lrY5MX4cFnz6CaYsfwlffP5Fs8klO6K1CeorymtRUKA0esyUxis1otEJS+NJIuffFmFyHwkJ+UhNLUZtbT2srP898dGfZLkwDYioj2qcCe3JA6B5JoxbGIgZE+cg/ZNE/PL9boSGDriiNjXtYdW46NXSBPZNNV4VsfF2jSeSv21+hMl9JMTn48SJIpSU1iA0xLlZGyyv6NUREV2dWjpHqCp1wNEfPkJR7nk4yjxQr1YjYctG1NUoMfq2hQi5diQsLK0gFAph6+iIP3b9iTvuuAN33HEHPvzwQ6NjOLjJUKuohlarhVAobLNNpnpg6QtfFeUq5BcojB4zpfGqiI23MzpHmB9uch8J8Xk4lVqCWpUGVlYiQxFMX3izs27zJVx1eFpDRH1Oe09i2iKWyVCl1eLH8+cx+qN1uOehhzu9r9YmqPfwkGDA5VWyTGlcDDt+XA6dDnB0sjGaSL6oqAZFRTVITy82Od9WTIwnAEAmszWav0v/d5cgM0wwIqJ26IpMcPNwgo2LDrVZNVjyyGL8vm0vbG2v5Iq7cSY0Lmy1NmSxcSGq6aqIek5O1hCKBHByavl7PWaUJ0pKa+DgYIXc3Ib5vxq3Idi37WGYRETmpqU8sHdxg8TZBWV5Db28Tuz+HYryMkxYdC8GTpwCSyvj71NLS0tUVlZi3bp1GDt2LG677TbDYw4yd5RevACNWg2hddu/X5vqYaUvfHl6SC6vpNt8uCLwbzEsOVmOrMxyADAawthwjqBEUZES6WklJufbihnlBQCQuYuN5u/S/z0i1KbN13C1abu0SETUT02cOBErV60CADy3dSvefWcb0tOLO7UvmVSC6OEezVZmFIstkZ1dAYnYosVeXP/2AhNg6FB3DBsmazaRvFRqi7xL1UhOkZvcR0ioM8ZP8EV0tIehoObnZ99qcY2IiBpYWFjgp22b4eLkhtyCLCy++36kp3UuD4CGHlrDoz2M5tEKC3OBqq4ee/fmQCy2MNkDS1+Iys2tQlSUDEOGSJutilheroJWo0N5uarF44eGOGPyZH9ce62HUVEtjJlARP2Ub8RAlFzMwen4f5B7KgUR4ychfPSEZgUuAJg2bRpeeOEFAMDdd9+L//53I+LiLgIAnN29UFNdBU29ul3HlcnEiI72MOpl5efnAInEEtnnKyARW7bYi0tfDHN1tUXUEGmzVRHDI1whlYqRd0nR8jlCyOVzhOEehoKan59Dq8W1qx2LXERErXj++edx/YQJqNXp8Nmfn+HQ4fMtbisvUiAxqQDyIkW79i2TSlCrUiMrq6zF4AGMi2FeXhJMnhzQrCA2JEpmMtz09IUyhbIe0cM9DPdd6RxhRET9haenJ7b8tAkCgRBH0/7A+g3rW9y2SK5AUmIBiuTtywN90Ss3pxLJyUVIaSETGhfD9EMVm05G31Lxq7Hc3CoU5Cvg5GjTbKgiJ6Ynov5oxKx5UKtUOH1wP7zDInDtf+bCxs6uxe1XrFiBCRMmoKZGgS+/XIadOzMAAE6eXqitroK6ttawrVyuRGJiAeRypdE+tBqNyX3LZGLU1tYjK7O8jXOEhmJYSUkNhkTJTPbUavscoaFQplCqER3tYbjvSucI600crkhE1MRPP2Vg69ZMzJkTirlzB+C7LVsQGXINLlSUYeeBT7B40XCT83OZmnerLfrAaSl49PvSF8MkdhYmhyM2XYURANLTi5GcIoe/nwNqajTw8BAbDY3paFuJiPoj40yYhLvvegJffLkWv+x9D3eemIpBgwc3e05759VqSl+YaqlApZ/w/oeNaSaHKupvN70PaJjDKy4+D66uNggb4GLUa6uz7SUi6ivc/AJwy0uvIufEcYRcNwrOnl7Ntml6jvD9999j4MAolJZeQErKZwAmw8ndA9DpoKgog71rw3exqXm3knftQM6JZAyOnYbAocObHatd5wiNimESiaXJIlfTVRiBf+fw8vd3QI2yHp4eEqO5uJq21dywyEVE1MTWrZk4cKChy/HcuQPg5uaGn3dux/ixY7Er5yy+//xzLFiypNnzOrKkvJ6p4pQp/n4OyLukgH8Hug3rJ5vMu6QwzPulL2jp21hcpMCrryYg1F2A8RP9ceUzmRER9S1NM+HTz95E9rkU/LV/Dx5+cgn2/n4QlpbGU7V3Jg+AlgtUjRXJFbC2sURIqHOrvbWaSkmR4/jxQjg4WMHP1wHDL1+xb9zOs+fK8NPWMxh7nQcCBrWdTUREfYn3gAh4D4ho8fGmeeDp6Ykff9yE2NhY7NixCT//fCsmjY4BACjKygzPazrvVvGFHJxPOQaBUIi0f/bBc0A4bMTGBSVTxSlT/P0dkHepGv7+nTlHqIb75Xm/9AUtfRuLipR49dVD8PcSYeKkwHbv+2rAIhcRURNz5oQa/QkAo0aNwurXX8fxTz5FzKlTUJ0/D+uAAKPnyaSSTvWK0k8s39rQQStrC3h4SGBlbfprW99ra0iUzFA001/58fdzMFpRsXFb1649irT0ElTnaRF6jSuCO9x6IqK+rWkmCIVCbNqyEVMmTcOkoEXIPFyEiDHGV/z1Pa46qj3DBnNzq6BUqDF0SPOhioDxqouNH4+KkqFaUQ9XV5tmxTd9e3/aegZnz5bDzlKE+R1uPRFR32bqHGHixIlYuXIl5HI5brjhBliIRBAIhaiprjJsI5OJjXpF5ZxIho29PSYtvh87/7cG+WfSETikeW8u/cTyrQ0dtLISwd1DAisrUbPHGq+62HRCeqChQNZ4RcXGbV275ijS0kpQVgiEDjCvix4schERNTF37gDMndt8efinli6F5r77cH7uzSj58EO4Pf44rLy9r+hY8iIF9u7NQWGBEu4eYkye7G+y0KU/IZGILZCYVGAoiOmLW0VFNci7VA2goXdYfPxFJCTkIybGE6NG+bR4/JgYT9TW1iPUXQAv75bnHSAi6q9MZYKbmxuOpRzFgR/O4NSBS3D2EMMzxOmKj3XiZBHi4/Pg6WmHmTcFmyx06fNALLZAUmKBUUEsPa0Y33ybhuqqhgmPwyPcjIYptrRPvXFjGzJt6FDpFb8WIqK+pqVzhBdeeMFoKhM7F1fUVlU12w5omIcr70w6/AcPQ/DwEbCxs0NZ3qVmRS65XIm9e3NQUKCEh0dZwzmCiUKXvkAlEVsiMbHAUBBLTyvBN9+koaq6DsC/qy7Gx19CQnweYkZ5YdSols9jYkZ5oValgb+XCD7e5rUgCYtcRETtJBAIYOHoCL9vvsa5W2/DhpdfxuJVq2Dl9e8V/Pb0ymq8TW5uFSor1dBodKisrENubhWyMsuaFaj0Pa8SkwqM5tLSdzf28rZD1BAp/P0ckJhUgH37LuDs2XIAMCpy6Y8tEVtAoaxHSKgzRo3yQX1Zmcl5xoiIyDSBQICxt14DeU4V/vjxAAZO8sa11xmfpLSnZ1bjbQABlEo1CvKrkZtbBalM0nDRIj4fMaMaMkHf6yopsaDZPFopKXJUV6lhZ2+JqCgZiuQK7NyZjTOZZXBxsYafr4NhW/1xxWILKJX18POzx7TpwZg2PRjlhe2bMJ+IiGD0O3R9fT1SC0sw1FYMrUYDoaihh5W+V5aTdSU0ajX8Bw2Bla0tPEPDUJafh/q6OpSW1xt6buXmVqKysg5ajfbyOUIlsrLKmhWo9D2vEhtlgkwmRnKKHFXVdbC3s8KQKJnh+Pv2XUBWVjkAGBW55HIlTp5omOtx0GApRo3yxqhR3lBWlENkYTwk/2rHIhcRUQdZenjgKStL7Mw+h6Jnn8UNtz8Gr+FhkEklyM2tQlJSITIzSzEkSgbF5ROHxgWvxpO+N+6hdfp0GZKPy5GbW4mLFxuu/jTthdV0npfGk1KGh7th797ziIvLg5ubDWxs3BAT42l4buNeYxqNDlXVKtSptLjxxiBcF86JhomIOkooFEAcUYQ3XnoIjjtd8cbKTYiM9DUUkhpnQlSUzFBMalzwajzp+2DDPFg6qOrq8cPGNKSll+LiheaZYGrer8YT17u52WLv3hzUqTXw87NHRISrYdsieUMeVFbWQSgS4kxGKXQ6HWbPCW219y8REbVMq9Vi+vTp2LNnD24bMwLWgRMQEOQGmUyM3NxKJCUVwkWXBSuRBc6XOMM1pwIewaG4mHYKdbU1yM2tMeRB4x5apzNKkZzccI5w4ULDyI2mvbCazvtldI4Q4Yq9e3KQdKwQrq42sLF2RcyoRhfpL/caS00thkajQ2ZWGRTVasSM8sKQSPM7R2CRi4ioA3JyKpCaWoKR46dh5969WJt3CQM3fwRh7WLIZo2Bn589MjNLUVlZh+QUObSXVwZuPLTQ388BAy6vatV4Hq/kFDmyshqutkdGGheo9JrO+9V84noBBAIgJMQFkyf7Gz335IlinM0qh0AghERigZLiWlRV1SEhIR/XhYd0+XtFRNTX5eRUoLrGA25uMuQVXMA77z+Hl55fZyhiNc6ElBQ59KvFFxfXGObNalysksokmDy54bn6FRRdXC9nwijjTDA171fjieuTEgtQWalGYIADJk/2b1ZYKyiogUajhczdFiWlNahR1iMhPp9FLiKiTtCfI1x33Xjs2bMHW+KPwtErCUKLGMhkYvj5OSAzswy6vELUi5yQnKqEjUsJQgOCoFbV4tefUuA3IPjyyrcORvN4JafIkZVZDhdXawyMNC5Q6TWd98vUxPUCARAa4ozJsU3PEYpwNqscQqEQ1tZCZGVVoKSkBgAwJDIU5oZFLiLq9/ShFBnpCn//1tcXTE0tQUJCHkaOnI15845i8+bNWFqQh627vkO1uwiymBhMnuxvNCRQfwKjH1oIAPNva75yS2sTxbfXoMFucHSyNjy38dBIQAdrawuEhDjB188BYWHOSE0tNVlMIyLqrzqaCadOKfDMs+/j6aXzcPLcQfyx82tEX7sMAC4XrfybDQvcuzcHyZfz4Lb5ESaHMup7Zfn5O8DaquOZ0LR41nhYpJ+fPTw8bFFZWQcvL3tMmOCH3NzKZoU0IqL+rDPnCKNGzceksbvw1z8HsXXPF5h7y2gADUWoieO9cei7crgGD0PkiCBERrrC0doWAJB//iJ0NlLMnx/ebN+tTRTfXoMGSy+fIzQ8t/Gk9gBgZS1C5EBX+Po6oKhIibTUEpPFNHPAIhcR9Xv6UALQZoBFRroa/vz888+RnJyMM2fO4AVFNT74+mtoysogmzHD5HxcIqEACoUaIqHpua/0vbL0825VlKvg6NT6/F5NNe3p1XhoZEO42Rjtb9q0YMiLFDhx8hK8ve3R+qsnIur7OpcJg2Bh8Q4eeeQRbNj2DkaPjsHE2HEATPe4Eooa8kAoankuRH2vLP3cW+UVKjg5tj6/V2NNj9t4WOTwaA9D8c3Pz97Q87dIrkBSYgFc7CwR0OYRiIj6ts6eI6x7/z3EjBmDotJirF33Nj54c3XD3L71ZYBOg2HjR2JwbMMoCp3WHjqBBUQaBUQtZIK+V5Z+3q2GcwTrVlddbKppT6/c3EpDJjQugOm3mT49CHK5EidOXIKvn3O7jnG1YJGLiPq9xqHUFn9/R6OQ27JlC0aMGIH9ly5hw+gxuHv7dmhKS+E0f75hokm9CxeqG4YxJhdhwkS/FgtXErEFhCKgslKFgoKGyX/bW+RqqvGV/KYFML2TJ4px+uglDBwoRXCnjkJE1Hd0NhMeeugh7N//N378cQuWvvwAfhmwBz6+pq+CX8j9Nw8mTvBrtWglFltApM+E/IZMaE+Rq6mmc3iZKr7p5xBzElvAPcQJzh7mNxcLEVFX6WweqKQDsDBmGD7cdwi79u3HF999j3vvWICi3POwsLKC1zVhhucJhELU6BxhiRqkHC/EhAl+LRauJGJLiEQCVFapkK8/R2hnkaupxnN4NS2A6Z08UYQTx/JQpdBiXKeO0juEvd0AIqLe5u/viBkzgtq8QmPK4MGDsW7dOgDAR8nHoVlwO5Tx8Sj5+GNo6+qMto2J8YS3tx0cHKyQm/vvssLyIgUSkwogL2oIK4WyHloN4OBgbZi7q7NKimuQmVmKrMwyo2MY00Gn6/QhiIj6lM5mgkAgwJdffoHQkFCUVRfhrdfWQqPWmtw2ZpQnvH2a54G+J1WR/N/vaqWyHprLmRB2BZkglUkgFlvgl1/P4uefzxgdQ8/Pzx4ODpZQKNTIvLz6FhFRf9XZPLAWSxAWFIiF0yYDAD78fD0qKitRlJMNJw8v2DoYDzeU+vnDUaKGo4MIubmVhvvlciUSEwsglysBAAplw4rsDvbWhrm7OqvhHKEMWVllRsdoStfov+aCPbmIiK7QXXfdhdzcXMyaNQsDo6JQGhKKwv/7PxS98w7cHn4YIjs7AA2rYoWEOjeaI6tB4yGFMqnE0JPLy0vSZFL5jtPPA3bubAWsrUUIDnaG7+X5WPS9ugYNlsLZsg7e3p0vphEREWBvb49ffv0FH7/3BUJ1U3Fi3wUMvd6/2XajRvkgNMR0HuiHj+h7Wel7cnl5SgyTyndWSoocx48XwtbGAqra+mYrPurnEMtKK0VoiNMVHYuIqD9z9fHDaLEE1nctwn+mTYXE1hZl+ZcwIGYsbOyMf+eOnjAMBy6mYOwImVHhqvGQQplMbOjJ5eVl12xS+Y4ynCOcq4CVlRAhIc7w9bU3GrI4aLAUEus6DlckIupr4uIuYs+eHMTG+mP0aNOrTr388suGv7vMvw2WMhkuPfUUitasgfSJJyBybLgCpC8s6a/cNy5qScQNX8n6nlwKZf0Vt10/UWW9WouCAiVKSmqgVKqN2kJERO3TnjwIDw/Hex+vQdIf53Fo2znYuxYiZLh7s+30RSV97y39hPDlFSqUV9SiSK6AVCYx9ORSdkEmREXJUK2oR41S3WzFx8aT03t4iOHlZXfFxyMi6staywRZQBAKs7PwyF33w1osgTz7LHRaLXwjB0NkYVyGcQ8Igk6rgbOtytCTq3FRSyK2BPBvTy7F5d/lr4ThHKFei/x8BUpKaqBQqA3HNmcschERteHHH8/gzz/Po7xc1eJJTWOHDx/G97/+gte+/AIX77sPRe++21Doutw1uWnPLX1RKy9PAYWyHhKxRbuGKRqvnAjD3xsXr1zdbBEa6mJY6bHpio/652VnlUMAAefkIiJqRUfyYPi0AOSdK8Wrb7+Ie+69F2MmjjC5XdMJ4Z0cG+bFKpIrMXmyf7O5tFrSePVE/X4bT1JfJFdAqazHzJuCDY83XvGxcVuCfNizl4ioLa1lgntQKBK3/wxlRQWsxRIU5WTjQmU1Pt70Iz6cdD0Egn8nmZf6BwEALmVfRL6qYU5fmUxsKGrl5VVDoVRDIrZs1zDFpisn6v/euHjVcI7gDInY0rBvhVLdrCfZ2bPlEIjMq2xkXq0lIuoF3t52cHOzhbd321e1S0pKEBsbi+rqavj4+ODhTz9D7r33/lvosrc3nEzUqeqx8Yc0+Ps5YECYCyrKa5FxuhQDwlwQPdwDAJCeXozkFDmGRMng6mZrVMhqXCwDYFQ409Nv03ifTfn52UOocIJXO14fEVF/1pE8AID9Z7/D36e2IXX5YWz9dhd8/D2bbePnZ4/cC1U4niyHWGwBPz97ZGaWorKyDrm5VRge7QGpTIL0tGLs3ZuDqCgZwiPcjIpaUpnEqFgGoNmwx6bFNFOT1+vzycXOsmNvDBFRP9RaJrgHNVxQKL10Ac6eXjhz6hTW7TkIdf3fiIwagocfftiwrY2dHSROzrARKhEW5oK6Og02bkyHv78DwsJcUFGuwunTpQgLc0F09OVzhLSSJucI/xayGg9zBGA05FFPv03jfTbl5+eA+hon+JjZlCYschFRv5STU4HU1BJERrq2OZnkLbcMQESEW7tWVnF1dcUbb7yBhx9+GM8++yyG7tqFmE8/xYUlS1D0/vuQPfmkYZXDjT+kISW5CAAw/7YIpKcXQ16kNAxbBP4dLw8AoaEuRoUsU1f3/fzsjXp4tacHgEwqgYuF1OiKEhFRf9FdeQAAL7zwAn7e+jOyz2fjwUfvwZbvt8FGYmW0jVQmgapWjazMMthJLHDb/AhERcmQktJQ9NJLSZEj+XIehEe4NZu/y9T3vVhsYTQUsunjTemHUJYXmlqkhIio7+uqTHDy8ILEyRmleRfhXhYKgbIKd8+ZhU82/4THH38cUVFRGDNmjGF7V19/VJcWY+gQN2zekvnvOcL8cKSnlVw+R/j3AoTxOYKzUSGr8cqJen5+DkY9vExt05RMJoadtRQiC/O68MEiFxH1S6mpJUhIyAOANgOs8ZLA7fHggw8iMTER69evx2233YbExET4fLQOF5fch5JPPobrI/+F0MLCMBZe/6epubgab+PqZgugeSFL33NL/2diUoGhGHYlKzMSEfUH3ZkHLi4u2PbLNowcGYPU80fx3LPPY+17b0IoNF7gPOryd73+T1PzcDXdpnHRqmmvLqChYJWUWGDUewv4d05IUz25iIj6u67KBIFAAP/BQ3E26Qiyjx2F0MICzz+3HBVCS/zwww+4+eabkZSUBG9vbwCAR1AIjmeeRl1tjYlzhOZzcZk+RzAuZOl7bun/TGyUCVeyMuPVjkUuIuqX9Fdc2ns1viMEAgHWrVuHkydPIjExEbNnz8bBgwfh+dqryHtmGcq++grOd92F8HA3wxBEeZGi2VV2eVHDHF2TJ/u3WMiqKFfB0cm42NV4P03n/yIiImPdmQcAMHjwYHz55ReYP38+fjnwFQa8H4kHHr/LaJvwCDe4Xc6DInnzPNDPpzV5sr9REUv/d30xq7xCBSfHf4tdTfdjavVGIiL6V1dmwvAbZiHtwF84m3QEfoOGwNXHF59//jlSU1Nx8uRJzJ07F/v374eNjQ0Ch0TjyC8/ovTSBYRHRBiGIMrlyma9ruRyJRRKdcM5QguFrIZzBGujYlfj/TRdubEvYZGLiPqljl6N7ygbGxts3boVw4cPR3JyMhYvXoxNmzZBWlCAorVvQ+TiAqfZs42KUNHDPUzOpwU0L1DpT1j083g13kY/HNLU9kREZKy78wCAoVfv2rVr8c43LyHQPwhTZ4832qa1ObPaKk7pv+PLK2qNtmtcCGu8HTOBiMi0rswEWUAQJt11P3JOJmP4DbMgdnSCQCDAzz//jOjoaBw+fBhLlizB119/Dc9rwmBhbQ159jl4D4gwKkJFR3uYnE8LaF6g0hey9PN4Nd5GJhO3uH1fwiIXEVE38fX1xdatWzFp0iRoNBrU1dXBbckSqC9eQvnmzbD08oJf0EAApk849PdJxBZITCpoNjRRJpVAXqRAXt557PojG3Wqeowa1fbqj0RE1PNef/11pKam4uCBOJxOOo/Bg4fAM/jfE6nWClD6+xrPsdW4eKUvZhXJGzLhj13ZUNUxE4iIetvQaf/BoMnTILKwMMx/GxwcjC1btmDatGmor6+HWq2GlZUVAqOG40LaCdTV1rY6Z5b+PonYEomJBc2GJspkYsjlSuTlK7Br13nU1WkwapR3D73i3sciFxFRNxozZgwOHTqEIUOGGOZg8Vj+ElRZmSjb+AOKp98Jv2EDTA4l1BeyGs+x1Xg7/cqLmZlluHixCjY2Fs1OaDhckYjo6mBhYYEffvgBly7lIfVXBU78dQE2dpZwdhebnFOrMX0Rq/EcW423S08rRkqKHFFRMsgLlTibVQ4ba9OZwOGKREQ9y8Ky+cTtsbGxOHToEIYPH24ofo2YdQsyj8Qjee8+CN2HGhWvGtMXshrPsdV4O/3Ki5mZpbhwoRo21qJmRS4OVyQiok4bNmyY4e86nQ55BQXw+fBDpE/9DyR/bMYFyX2QSYOaPU9epMDJE8WorFTBw0Pc7Op+coocR48WorpKhdpaDWxshM32waEpRERXD0dHRzg6OiLQrw5bVidi75ajmH7nyDaLT0VyBU6cvJwHns3zQL/y4qlTxcjLU8DOzhIxozyb7YeZQER09YiOjjb8XavVot5GjMgJsUj9+y/U5FkBiDRZgNIXsfz9HRAW5tKst1dyihx//ZULRXUdHBysEWFifrH2rK5orpqfERERUbeoqanBggULcO2116JQoYBk9duw1tbCI+FnaDWaZtvn5lbh+PFCZGWVw9HJpllPrCFRMnh72aGmVoM6tQaXLjVf8l0mlTSb64uIiHqXrZ0V7IeUYsXXi/HyCyvg5SG+fKJiuviUm1uF48cKkZVZDidHm2aFsKgoGYYMkUIuV6K8QgWdDiaHKkplkmbzfRERUe9SKBSYN28eYmJiMOg/c+Ho4QtJVRJc7GpNbp+cIkdKchFyciqbzdcFNJwjaLU61NRqoVZrIZWa7g1m6rl9AXtydYJGo4FarW57Q6KrhKWlJUQiUW83o9+rr6/HyZMnkZ+fj5kzZ+LAgQOo+79VyF/2LKp++w2Os2YZbe/nZ4+hQ90B6Eye+OhXZ7Tbaon09BL4+9tDXqRoVtCSF/07DIbFrq7HTCBzw0y4OhSX50OpqsbWfz6Hn2cQHn72HohEpq8/+/nZY+iwVvIgwg3hEW4QigTY99cFBAU7okiuaLFXWGtDI6nzmAdkbpgHV4e6ujqcPHkSFy5cwC3zbsWvW3/EluXP4Nw/O+Dluwg2Ejuj7YdEyYz+bCo8whU333wN9u7NhbeXHSrKVZDLlc0KWnK5Erm5lS0OizRXLHJ1gE6nQ0FBAcrLy3u7KUQd5uTkBA8PD8OYb+p59vb2+PXXX3HdddchKSkJCxcuxObNm6E8fAQV27bBKjgYtoMGGbaXSSWYPLn1E5CszDJUV6sxfLg7hEIhcnOrmhWyOC9X92AmkDljJvS+JUuWIDU1Fe+99x7WbV0FD5k3br5nmmH+xsaksrbzID7+Ii7kVmPUaC8IBQ15YKqIxXm5uh7zgMwZ86D3OTs747fffsOIESOQkJCAJ55ehjdXvIxNLy/D0V+3YvS8BRA2KkaGR7giPKL5EMTGHB2t4ekhgZvUFvkFCjg6WTcrZPXVeblY5OoAfXjJZDKIxWJ+EZBZ0Ol0UCqVkMvlAABPz+ZzdFDPCQwMxM8//4xJkybhp59+wtNPP401q1ej5sQJlH33HSyXLYOFs3O795eQkI/U1GLU1jph6rTAVlflavpY4x5eLkyDDmMmkDliJlxd1qxZg4yMDPzxxx949YvH4eT4NabcMqJT3ycJ8ZfzQOWEaVNN5wFgOhPYu+vKMA/IHDEPri7XXHONYcXFb7/9FgEBAVjw0OPY8d6byDh0EOGjx3dofwnxeTiVWoIQlQZTpwa0ukpj08ca9/Cys+78a+otPK1pJ41GYwgvV9fWq6ZEVxtbW1sAgFwuh0wmY7fkbpCTU4HU1BJERrrC39+x1W3HjBmDNWvW4bHHluDtt9+Gn58fHlz3Ic7Nmo3S9evh9thjRldrWhMT42n4M3q4h9Fj8fEXsW/fBfj52WPqtMBWe3i5BJlhgvUiZgKZM2ZC92tvJlhYWGDTpk0YOXI00tNP4eUPH4KT83e4bkp4h4+pn2g+ZpQnhkcb50GRXIE/dp1Hbm4lJk705aqLXYh5QOaMedD9OnKOEBsbi9deewfLlj2K//u//4Ofnx9Crh2Jc4lH4Bs5CHZOLu0+bswoL8Of0dFNzxEu/XuOMDWw1R5eEaE27T7m1YITz7eTfny9WNx3uvFR/6L/7HKuiO6RmlqChIQ8pKaWtGv7kJBJmDTpAQDAs88+i2ILC3j+3yuoy8pC5bZt7T5uSKgzxk/wRUho895fCQn5SEsvweHD+cjNrWr2uJ+fPQa0MtExtYyZQOaOmdC9OpIJDg4OeO65T+HgIENh+QV8+vX/cPaYvMPHDA1xxoQJvggNaZ4HublVOHw4D2lpJUiIz2/2uJ+ffasT31PLmAdk7pgH3auj5wgDB96AsWMXAwCefPJJRM26FTqdDun/7O/QcUNCLp8jmMiEhPiGPDh8KB+5uZXNHvfzM71qo7lgT64OYvdjMlf87HavyMtL80aaWKK3pe2ffHIprrnGBrfeOhNeXl6AlxeUhw6h/MefYB0aCtvBg9vcT2vzbcXEeKK2th5+fvYmT1xkUonhOfVlde1qNxnjvysyV/zsdq+OZsK4cRF4/fWvEBe3GfPH/BcZhwtgYSmE/yC3dh+ztd5Yfn72GDHCC7m5lYYeX41JZRL24LpC/DdF5oqf3e7VmXOEZctexDXXiHHPPXcgICQUQ66fgWO//4YKeQEcZR5t7wStz7cVM8oLtSrN5XOE5oUsmUxseI6ywvzOEVjkIiLqAv7+jm12QTa1/cCBK5CaWoKcnAr4+zvC46WXUJNyeX4uHx9YuLTeLbml+bbS04uRk1uJOXNCER7e/pMkIiK6cp3JhBkzYuDvfw3Cw52h0wiR+k8eIBDAf2D7ToxaygMAKC6ugaWFAHNmhyI8gplARNRTOn+O8JrhHOG62fOQvHsnso4exvAbZrZrPy3Nt5WeVoKcnMrLedA3h1hzuCIRUS9q3IU5NTUVE6dMgeillwCdDiVffA5tfX2rz5dJJYge7tGsF1dyihwpyUVITun4kBciIup5+jxITy/D1Psi8WfGl3j/g3eQm9a+IS5SmQTDoz1M9shKSZEjObkIKcwEIiKz0PgcISPrLL48fBJZqadQU9V8ChJTZDIxoqM9mvXi6g/nCOzJRUTUi/RdlyMiXHDLLVOQmJiIGxYvwvaVK1Hz4kuo+OknON96a4f3OyRKBgDw93NAYlIB/PzsmxXCiIjo6tF4SMuOHdvx6/7vAABia3vcd/+98L2CK+5RUTJUK+phbWOBIrmCQxOJiK5y+kwID3fGTTfNxKkzmSiRFyI0+joMmzSl0/s1nCP4OyAxsQB+fg7NCmHmjj25+jiBQNDqz4oVK65o39vaMUF24+NJJBKEhoZi8eLFSEpK6vAxJ0yYgMcff7zjjSXqBjk5Fdi58xxycio6vY+GISpBCAhwwubNm+Hl5YXU1FTc+uabsLzlFij+/hvKTvxbCQ93w/zbImBlbYGM06UmJ56n/oV5QNR9ujIP/P0dMXPmTCxduhQAsPHvt/H1l9+3u0eXKeERbhg6RAalop55QACYCUTdqSszITDQGT/++COkUikulVfi+Xc+QHV1daf3Gx7hivnzw2FlJcLp06UmJ543dyxy9XH5+fmGn3fffRcODg5G9+l/gepu69evR35+PlJTU/Hhhx+iuroaI0aMwNdff90jxyfqDh1dLaUtgYGB2L17N1xdXXHkyBHc988BCCIjUbZxI9SFhZ3aZ+MVFOVFCiQmFUBepACAZrepb2MeEHWfrs4DgUCAN998E0uWLIFWp8VXf72GzV//jHPHOz+8pPEKikVyBZISC1Ak//f739R91HcxE4i6T1dnwoABA/Dnn3/CXiJBVn4hHnhiKequcDXMxisoyuVKJCYWQC5XAkCz2+aGRa4+zsPDw/Dj6OgIgUBgdN8PP/yA8PBw2NjYICwsDOvWrTM8t66uDo888gg8PT1hY2MDf39/rF69GgAQEBAAAJg9ezYEAoHhdkucnJzg4eGBgIAAXH/99fjxxx+xYMECPPLIIygrKwMAlJSUYP78+fD29oZYLMagQYOwceNGwz4WL16Mv//+G++9957hqs/58+eh0Whwzz33IDAwELa2thgwYADee++9rn0jiUyIjHRFTIxXu1dLaY+IiAisX/8jbG3tsG//fiytroLGwgIln38OrVqN9PRibPwhDenpxe3aX+M5u/QrMeqv4je9TX0b84Co+3RHHggEAnz00Ue48cY5qNfU4/M9K7Bj625kHMo3bJOeVowfNqYhPa3tTGg8Z5d+JcbG3/+m7qO+i5lA1H26IxOGDBmCzz/bCCuRCIeOJ+PJF1+GRqMxPJ6eVoKNG9OR3s5ev43n7NKvxKjv1dX0trnhnFz92HfffYfly5fjgw8+wNChQ3H8+HEsWbIEEokEixYtwvvvv49ff/0Vmzdvhp+fHy5cuIALFy4AAI4ePQqZTIb169dj2rRpEIlEHT7+E088ga+//hq7d+/GvHnzUFtbi+HDh2PZsmVwcHDAjh07cOeddyI4OBjXXXcd3nvvPZw5cwYDBw7EqlWrAABSqRRarRY+Pj7YsmULXF1dER8fj/vuuw+enp6YN29el75nRI11dLWU9hKJ/HDzza9h06ansePPPzH03ntxe1w8yr76Csl2o5CSXAQAba6aKC9SIDe3yjAfV9OVt4z/NL/lganrMA+Irkz35YEI9977Kk6fzkNW1iF88dcKeLsGo65Wg4HjvQ0TygNoddXEIvm/eSCVNc+Dxn/387MHdF3+UsiMMBOIrkx3ZYKdYyQWxM7E17u34Y+9f2H995FYfNs85J1JR/LxeqScbBjG2NaqiXK5Erm5lYb5uJquxGj8p/mdI7DI1UtyciqQmlqCyEjXbvkH0B4vv/wy1q5dizlz5gBoGCqVlpaGTz75BIsWLUJubi5CQ0MxZswYCAQC+Pv7G54rlUoB/Hv1pTPCwsIAAOfPnwcAeHt7G3WN/u9//4tdu3Zh8+bNuO666+Do6AgrKyuIxWKjY4pEIqxcudJwOzAwEAkJCdi8eTMDjLpdXNxF7NmTg9hYf4we7dMl+4yMdMVtt92ASZM8sGHDh3h67VrUbdqEorVv47pr7YEhgwwTytep6pGTW4khUbJmRS99Ty2goUeX/gcA0tOLkZwix5AoGWRSCerLzC/A+grmAfOA+o7uyIQhQzzxxhuf4+23H8YTT/wXXsIwHNuVC5WyHoMGuhlNKF9cXIOUFDmiomRGRS99Ly2goUeX/kcvPa3Y8DypTILyQg5Z7C3MBGYC9Q3ddY5QPfceaKrOI7WiBrffPAfH/9iOS+mn4CB2QEjwGNjYiCCXK1FSXGP4Xb9p0UvfUwto6NGl/wEaeoQZzhFkYigrzO8cwWyKXK+++ip27NiB5ORkWFlZoby8vNk2ubm5ePDBB7Fv3z7Y2dlh0aJFWL16NSwsrr6XqR+nC6BXAkyhUODs2bO45557sGTJEsP99fX1cHRsaM/ixYsxZcoUDBgwANOmTcONN96I66+/vsvaoNM1XCYUCAQAAI1Gg9deew2bN2/GpUuXUFdXB5VKBbG47dUePvzwQ3z55ZfIzc1FTU0N6urqMGTIkC5rK1FL9uzJwZ49uQDQZQH279WfICxadHPDv5ElS1B39hzKtm3DTYsCkG7hgozTpSgoUKCoqGG8fNMil6kr9Xr65YNNPc8c9KVMYB4wD6jv6M5MmD17n+HfiNjBGgd/PAOHqjoMjnBF5rkK5OZWITOz1GTPrtbyAEC7e4RdjfpSHgDMBICZQH1Dd+WB3z3TUHL0e0xxk6EsJxuX0k8hIGoYziUnIdirBJcUtsjNrURmZtm/v+s3KXI17bHVmNE5whWs6tubrr5v9hbU1dXhlltuQUxMDL744otmj2s0Gtxwww3w8PBAfHw88vPzsXDhQlhaWuK1117rhRa3rvEy0b1BvyLDZ599hhEjRhg9pu9WPGzYMGRnZ+P333/Hnj17MG/ePMTGxuLHH3/skjakp6cDaLiqAgBvvfUW3nvvPbz77rsYNGgQJBIJHn/8cdTVtV49/uGHH7B06VKsXbsWMTExsLe3x1tvvYXDhw93STuJWhMb62/0Z1fT/4IHAF852COuRonV330H7wV3A2EeCAx0MPTkaqpxz62m9NsPiZJBXqTAxfQieHvbo3euGXdcX8oE5gHzgPqO7syExnngHKrDun2P48aoBxGsiERwsAP8/OwhFjf8ah/VJBOa9txqSr99VJQMRXIFstJLYeVqA2ePlp9ztehLeQAwEwBmAvUN3ZUHAqEQAydOwZFtWyDPzoKbfyCOlCrwz6lM3OXljwFhA+Hn5wCJ2BIATJ8jNOq51ZTROYJciXMZRfD1c+7S19DdzKbIpe9qumHDBpOP//nnn0hLS8OePXvg7u6OIUOG4JVXXsGyZcuwYsUKWFlZmXyeSqWCSqUy3K6s7JnJ1bprnG57ubu7w8vLC+fOncOCBQta3M7BwQG33norbr31Vtx8882YNm0aSktL4eLiAktLS6PJ7jpKv5JLbGwsACAuLg4zZ87EHXfcAQDQarU4c+YMIiIiDM+xsrJqdsy4uDiMGjUKDz30kOG+s2fPdrpdRB0xerRPl12dac25c+fw8ooVUKvVqPfwwFs/fIVBjzwC6+BgjBpl+jnx8ReRkJCPyEgXuF2ek0tf9AoPdzP04EpMKkB2VjkEECC4219J1+iOTGAeMA+IrlRPZcLy5cuRlnEKuZeexWOz3oSPJgx1HnYIj3Az2RMrPv4iEuLzETPKE6EhzkbzcwEwel5SYgFyciog9hAjcph7t7+WK9WX8gBgJgDMBOobujMPRt1yOwrOZkJZXgbZsBjcc8dCaDQa1NWq8Pl/ZsLeqaGI1VJPrPj4S0iIz0NEpCukUrFhbi6gofeW/nmJiQU4e7YcApHZlI0A9KHVFRMSEjBo0CC4u/8bxlOnTkVlZSVSU1NbfN7q1avh6Oho+PH19e2J5l4VVq5cidWrV+P999/HmTNncPLkSaxfvx5vv/02AODtt9/Gxo0bcfr0aZw5cwZbtmyBh4cHnJycADSsnrJ3714UFBQYVj9pSXl5OQoKCpCTk4Pdu3fj5ptvxvfff4+PPvrIsL/Q0FDs3r0b8fHxSE9Px/3334/CwkKj/QQEBODw4cM4f/48iouLodVqERoaisTEROzatQtnzpzBSy+9hKNHj3b5+0XUm4KCgrB161ZYWVlhV0EBHs27hAsffABVK7+sJSTkIzW1GAcOXELG6VKcPFGMxKQCyIuM51rx87NHcIgTvLztuvtl9JjOZALzgHlAZC4+/PBDTJgwAdXVVXj356XIq01Fyt4LOLn/IrSa5rPGJ8Q35EFCfL5hfq4TJ4uRlFiAInnzTPD3d0RoiFMPvZruxTzoOGYC0dVNZGGJuc+txNwXXsHUW27Fpk2bYGFhgaTsXDz67PNGRXpTEuLzcCq1BP8cuITTp0tx8kQREhMLIJcrjbbz83NAcLATfLxND3W/WvWZIldBQYFReAEw3C4oKGjxec899xwqKioMP/qVQfqDe++9F59//jnWr1+PQYMGYfz48diwYYOha7C9vT3efPNNREdH49prr8X58+exc+dOCIUNH5u1a9di9+7d8PX1xdChQ1s91l133QVPT0+EhYXhwQcfhJ2dHY4cOYLbb7/dsM2LL76IYcOGYerUqZgwYQI8PDwwa9Yso/0sXboUIpEIERERkEqlyM3Nxf333485c+bg1ltvxYgRI1BSUmJ0xYaos3JyKrBz5znk5FT0dlMAADfeeCO2bdsGW1tb7C8uxr25Och6+20ojx0zuX1MjCciI90wbpw3BoS5ANAhw8Ty8DKpBIMHSeHmatsDr6JndCYTmAfMA6KWXG15IJFIsGPHDlx//fVQKBR4/asnUGx7AhfTSxH/YyYUlcYnODGjGvIgZpQn/PzsEXY5E06byASpTILwcBd4efWNCx/Mg45jJhC17mrIBKFIBDtnFwhFIsydOxebftgIkVCIfxKP4Z7HnkRVdcsLiMSM8sLASFeMHed9OQ9wOQ+Me63KZGIMHiyFm5t5nSMIdPqZ/XrBs88+izfeeKPVbdLT0w0rbAANXZEff/zxZpNK3nfffcjJycGuXbsM9ymVSkgkEuzcuRPTp09vV5sqKyvh6OiIiooKODj8OxFbbW0tsrOzERgYCBsbm3bti+hqws9wx+3ceQ4JCXmIifHCjBlBvd0cg7i4ONx4440oLy/HNY6O+MRNipAbb4TDjTdCIGz52oW86N8l5JvO1aUuKgJ0OjjPu6XVfZjS0vdmR11tmdDa6+K/JzJ3/Ax3zNWaB3V1dVi4cCE2bdoEgUCAFc+uhpcqBvV1WoTFeMIv0sVoLq/GiuSKZsMW9coLFQgY5NapObm6IhOYB0Q9h5/hjrtaM2H54tvx1sYfUVunRmTYAHz5/jtwdXFp83lyuRK5uZVGwxb1lBXlEFlYImLcpA63p6vOETqqVwdXPvXUU1i8eHGr2wQFte9D4+HhgSNHjhjdp+/G2tnla4mof+vtyV9bMnr0aBw4cABTp07Fmfx8pIwZA/c//kBtWhqcFyyAVQvDKkxNRK+trYUyIQGVu3ZBHB0N53m39MRLMImZQERXq6s1D6ysrPDdd9/Bzc0NH374IX7a8T3+2vUADv5wDqkHLqHgXAWiJvvARtJ83qm2JqPvTcwDIrqaXa2ZcMPMmVAU5GH94WSkns7AkWPJmB7bdnGq6UT0Wq0WNVWVEDuYy5JUxnq1yCWVSiGVSrtkXzExMXj11Vchl8shkzWsCLB79244ODgYTUpIRNRevT35a2sGDRqE+Ph4/PHHH3jggQdQsX0HClevhnz1atgMHgy7iRNhHRrarFeWvEiB3Oxy+OiKYHU2DTVHjkCnVsMmIgJ2EycALVzx7wnMBCK6Wl3NeSASifC///0PoaGhmDdvHlw9HHHTo0NwYv9FHP7lHP7+/gxChssQOEQKodD4O7613ly9iXlARFezqzUTAoZEw8vRDu8uewqXFLXtKnDp6Xtzecoskb57M6pLiuHmF4Co66dDZGHZja3uemYzTX5ubi5KS0uRm5sLjUaD5ORkAEBISAjs7Oxw/fXXIyIiAnfeeSfefPNNFBQU4MUXX8TDDz8Ma2vr3m08EVELcnIqkJpagshI1w6HpUDgDBubMdiw4SQmThyD8lffx/ZVKzA/Jxe1770HgY0NrPz8IHJ1hcDSEtraWlRnX4S0RI56bT209vYQjxwJhxtvgCQ6GhYeHi0Oa7naMBOIqK+5sjwQYNasxdi16wKAYoSGOuOn7T9g9swZqEirR8ahAlxIL0XkOC9Iff8dMqKfhB7AVVXk6gjmARH1RZ3JBJl/IKzFEgiqquHqMBx79+Rg0GAp5MVF2Pv3Ycyfe2Oz4Yh6ubmVOH26FGVnMlBbWYGBE2Jx6u+9yDpyCBFjJ3blS+t2ZlPkWr58Ob766ivDbf0khvv27cOECRMgEomwfft2PPjgg4iJiYFEIsGiRYuwatWq3moyEVGbUlNLkJCQBwAdOqnJyanAhg2nkJhYCInEEs7OFli27B5kZCTj1I134rOlN6EmIQHVp8+gLj0LlkIdLMXWsHZxQpVXEJxGj4DP1LGwcneH6PLqReaEmUBEfU1n8wBongk7d27Dli3L8f3372P37p2IGDMI8T9l4ehv52FpZ4HgaBmCItzg59ewYpb+T3PEPCCivqgzmSAQCuEaEIaLGelIU0ohttairigFb3z1KS4WFyP7XBrefmM5hEJhs3m4/PwcoFEpUZCQjqBh0ZiwaAnUKhWyk5MwYNS47nypXc5silwbNmzAhg0bWt3G398fO3fu7JkGERF1gc6O6U9NLUFxcS1CQpwQFSVFVJQnZsyYjoyMZPy8/RtUKC9h48aNyI4vRlJ8Dq4d6oZJk/0htLKCUCyGwKr5/CzmhJlARH3Nlczx0jQTrKzscfCgH/LzczFy5Eh89tlnuG35rdjy8QkUpZfh9P48FGaUI2iIFMOGu5tNL15TmAdE1Bd1NhMs/cdDmJaEMNtEWGgVUOUJEenriYvFxdi+7w/kLTyHTz74H3Jzaww9efVzclVdKEYBdIiaMgPWYgmib5qDjIR/UHIxt8tfX3cymyIXEdHVrjPdijs7pj8y0hVyuRKADhMn+sHf3xFvv/0aRo4cgrvvvht//fUXhg4divfe+wLDJgxAWKQrLGUNx4mLu4g9e3IQG+uP0aN9OnxsIiJqXU/mAWAqEwZh6tRjuPXWW7F3714sWLAAcXFxeOyxl5HhZwdbpQZ5p0qR9HsOtELAxc8OQ8f6wNbevC+AEBFdjXoyE66dOBzys9NQl3ccXsGDMPKmG/GAjx82/rAJDz/6Xxw7fQY33nY7/u/5VQgL84afX8MQ9vS0EqQdPA6JgxRuvv4AAPfAENg5u0BRVtrhdvSmjq0TT0RELdJ3K05NLen2Y/n7O0ImE+Ps2Qqj482bNw9HjhxBeHg48vLycNttNyI9/Wf4+v47FGXPnhzs2ZOLPXtyur2dRET9UU/mAWA6E1xdXbFr1y68+OKLAIB169ZhwYIbMHCwBWLnh2H+8utQ6ShCcVUdys5XY983p3FwSyYyjxagukwFnVbXI20nIurrevocISBmBkrcb4c4cg78BkZB4uSMex94APHxCZA62KOwuAQPPfMY0rIOQCq1BQAkJxcCtSWo0jhB7NhQXBMIBFi0Zh0mLLy329vdlVjkIiLqIpGRroiJ8eqx5YRbOl5ERASOHDmC+fPnQ6PR4Ntvv0V9fb3h8dhYf8TG+iE2tuEqTVzcRaxcGYe4uIs90m4ior6up/OgpWOKRCK88sor2LlzJ1xcXJCYmGiYmN3S2gLjbgqGMNgOYTf5I/qGAFjbipCVVISUvy4iMbGgx9pORNSX9co5wphADBriZXT/8OhofPe/dzDIxxPq+nr88scuaDQaAEB4kAVEAg2CBkUYVlOMi7uIN9amIDlV0SPt7iocrkhE1EV6ejnh1o5nZ2eH7777DmPHjsXYsWNhdXkOLq1Wi1GjvI2GKep7dgHg8EUioi7QG8vLt3bM6dOn49ixY9i0aRNmz55tuD8mxsvoez96RgBeWxGHtKQilCZZ4fqbQrq93UREfd3VdI4wbNIULIzZinPCUZgz71ZYWDSUhBysKgGBAKOnjTJsa67nCOzJRV1m8eLFmDVrluH2hAkT8Pjjj1/RPrtiH0T9lUAgwIMPPoiBAwca7lu1ahXmzJmDCxcuGO5r2rOLqCswE4iuLv7+/njmmWcMt/Pz8xEZGYlvv/0WOl3D0ESRSIhJ0wIRNsIdk68P6KWWUl/DPCC6erh4+0Li5ITxYSEI8PM13P/hN99h49GTqFLVGe4z13MEFrn6gcWLF0MgEEAgEMDKygohISFYtWqV0fCl7rB161a88sor7dp2//79EAgEKC8v7/Q+iKh1crkcb7zxBrZt24bw8HCsWbMGarUao0f74OWXR5vVFRrqPGYCEQHA66+/jtOnT+POO+/E5MmTcfr0aQBgJvQjzAOi/kcgEMA9MBSKijJo1GoAQF5BIbbHHUbSuRxcN2Ys3n//fWg0GrPNAxa5+olp06YhPz8fmZmZeOqpp7BixQq89dZbzbarq6sz8ezOcXFxgb29fdsbdvM+iKiBTCbDkSNHMHr0aCgUCjz99NMYNmwYdu3a1dtNox7GTCCit956C6+99hpsbGywb98+DB48GE8//TTKysp6u2nUg5gHRP2Pe1AIqktLUVdbAwDw8nDHkzdMQqivN6qqqvDYY4/h2muvxb59+3q5pZ3DIlc/YW1tDQ8PD/j7++PBBx9EbGwsfv31V0P34VdffRVeXl4YMGAAAODChQuYN28enJyc4OLigpkzZ+L8+fOG/Wk0Gjz55JNwcnKCq6srnnnmGUNXd72m3YhVKhWWLVsGX19fWFtbIyQkBF988QXOnz+PiRMnAgCcnZ0hEAiwePFik/soKyvDwoUL4ezsDLFYjOnTpyMzM9Pw+IYNG+Dk5IRdu3YhPDwcdnZ2hvAmImDQoEE4cOAAvvjiC7i4uODUqVOYNm0arr/+euTl5fV286iHMBOYCURWVlZ47rnnkJaWhhkzZkCtVmPNmjUICQnBl19+2dvNox7CPGAeUP/jHhQCdW0NFGWlAAC1qhbuttZYt2o5PvroIzg5OeH48eOYNGkSbrjhBsjl8l5uccdw4vkrpFQqDd27e1JYWBjEYnGnn29ra4uSkoYlTPfu3QsHBwfs3r0bAKBWqzF16lTExMTgn3/+gYWFBf7v//4P06ZNw4kTJ2BlZYW1a9diw4YN+PLLLxEeHo61a9fi559/xqRJk1o85sKFC5GQkID3338fUVFRyM7ORnFxMXx9ffHTTz9h7ty5yMjIgIODA2xtbU3uY/HixcjMzMSvv/4KBwcHLFu2DDNmzEBaWhosLRtWgVAqlVizZg2++eYbCIVC3HHHHVi6dCm+++67Tr9fRH2JUCjE3XffjZkzZ+LVV1/FBx98gIyMDLi4uPR208xeb2TCleYBwEwg6s8CAwOxfft27Ny5E8888wzS0tKg1Wp7u1lmj+cIzAOiq5UsIAgAUFFYCKl/IKpLG/7Ny/wCEDvpesyZMwevvPIKPv74Y5w5cwZOTk692NpO0JGRiooKHQBdRUWF0f01NTW6tLQ0XU1NjdH9SUlJOgA9/pOUlNTu17Ro0SLdzJkzdTqdTqfVanW7d+/WWVtb65YuXapbtGiRzt3dXadSqQzbf/PNN7oBAwbotFqt4T6VSqWztbXV7dq1S6fT6XSenp66N9980/C4Wq3W+fj4GI6j0+l048eP1z322GM6nU6ny8jI0AHQ7d6922Qb9+3bpwOgKysrM7q/8T7OnDmjA6CLi4szPF5cXKyztbXVbd68WafT6XTr16/XAdBlZWUZtvnwww917u7u7Xuz+rCWPsNEZ8+e1f3999+dfn5L35vmrrXXdTVlQkfyQKdjJjATGjATyBS1Wq37/vvvdWq1utP76IuZYC55wHME5kFnMA/6H61Wq3tv4VzdT6tf1mUlHtL9teET3Zp5N+gunTlttN2ZM2d0Bw8e7PRxeisP2JPrCoWFhSEpKalXjtsR27dvh52dHdRqNbRaLW6//XasWLECDz/8MAYNGgQrKyvDtikpKcjKymo2zr22thZnz55FRUUF8vPzMWLECMNjFhYWiI6ObtYdWS85ORkikQjjx4/vULsbS09Ph4WFhdFxXV1dMWDAAKSnpxvuE4vFCA4ONtz29PQ0uy6WRKbExV3Enj05iI31b3ECyJycCqSmliAy0rXdSxUHBQUhKCioK5vab/VGJnQ0DwBmAjOBzF135YGFhQXmz5/flU3tt3iO0IB5QNT9OpMJzp7eUJSXQafVoqqkGNZiCcQOxlkRGhqK0NDQnngJXYpFriskFosxbNiw3m5GmyZOnIiPPvoIVlZW8PLygoXFv//rJRKJ0bbV1dUYPny4ya67Uqm0U8dvqWtxd9B3SdYTCAQtBiuROdmzJwd79uQCQIsBlppagoSEhrm12ntSQ12HmdA+zASiK8M8uPoxD9qHeUB05TqTCW4+/shNPYF6tRpVJcUQOzrB0tq6x9rcnTjxfD8hkUgQEhICPz8/o/AyZdiwYcjMzIRMJkNISIjRj6OjIxwdHeHp6YnDhw8bnlNfX9/q1apBgwZBq9Xi77//Nvm4/iqRRqNpcR/h4eGor683Om5JSQkyMjIQERHR6msi6gtiY/0RG+uH2Fj/FreJjHRFTIwXIiNde7BlZG6YCUTmjXlAXYV5QGT+OpMJ0oBAKCvKoK6tRXVpCeycXWBl03NF5+7EIhc1s2DBAri5uWHmzJn4559/kJ2djf379+PRRx/FxYsXAQCPPfYYXn/9dWzbtg2nT5/GQw89hPLy8hb3GRAQgEWLFuHuu+/Gtm3bDPvcvHkzAMDf3x8CgQDbt29HUVERqqurm+0jNDQUM2fOxJIlS3Dw4EGkpKTgjjvugLe3N2bOnNkt7wXR1WT0aB+8/PLoFq/QAA1XZmbMCOJVe+oyzASiqw/zgHoD84Do6tSZTJD6BUKr0aCyWA5FeRns3aSwaDQ82ZyxyEXNiMViHDhwAH5+fpgzZw7Cw8Nxzz33oLa2Fg4ODgCAp556CnfeeScWLVqEmJgY2NvbY/bs2a3u96OPPsLNN9+Mhx56CGFhYViyZAkUCgUAwNvbGytXrsSzzz4Ld3d3PPLIIyb3sX79egwfPhw33ngjYmJioNPpsHPnzmbdj4moYXz+ypVxiIu72NtNITPGTCAyf8wD6grMA6K+IS7uIr7aUggAKDybCZ1WC1dvXwiEfaM8JNBxILKRyspKODo6oqKiwvBlDTRMqJidnY3AwEDY2Nj0YguJOoef4f5n5co47NmTi9hYP7z88uhuO05L35vmrrXXxX9PZO74Ge5feioPgL6ZCcwD6sv4Ge5/GjIhBzN9foKdgxiK8jLMeX4lAqOGd+lxeisPOPE8EVEfpR+X39r4fCIi6vuYB0REpKfPArtiDyjkObC0sYWDm6yXW9V1WOQiIuqjRo/2aXVsPhER9Q/MAyIi0tNnwp+fHsfJvTlw9vCEjcSut5vVZfrGoEsiIiIiIiIiImqX4TNugou3D8LGTIStfd8YXg6wJxcRERERERERUb/i6uOHBa+9AwEEEIpEvd2cLsMiFxERERERERFRP2NlY9vbTehyHK5IRERERERERERmj0UuIiIiIiIiIiIyeyxyERH1Y3FxF7FyZRzi4i72dlOIiKiXMROIiAgw7zzgnFxdQFtbC51a3WPHE1haQmhj02PHIyLzl5NTgdTUEkRGusLf39Fw/549OdizJxcAuLx8F6mv00Cj0fXIsUQiASys+s5EoUTUM5gJPUNdp4K2vr7Hjie0sICllXWPHY+IzF9fzAMWua6QtrYWVXv3QlNZ1WPHFDnYw37y5Kuy0LV48WKUl5dj27ZtAIAJEyZgyJAhePfddzu9z67YR1v279+PiRMnoqysDE5OTt12nO4mEAjw888/Y9asWb3dFLrKpKaWICEhDwAMAZaTUwGJxArR0e6IjfXvzeb1GfV1GmSnFKNW2TMXPmzElgiMcrsqC13Mg97FPKDWMBO6n7pOhbNHD6FWoeixY9pIJAi+duRVWehiJvQuZgK1pC/mAYtcV0inVkNTWQWhtTUE1t0fKDqVCprKqoaeY+0sci1evBhfffUVAMDS0hJ+fn5YuHAhnn/+eVhYdO9HYOvWrbC0tGzXti2FSEf20VmjRo1Cfn4+HB0d2974sqZhTXQ1i4x0NfoTaAi1igoVpkwJMLsrNFcrjUaHWqUaFpYiiCy7d0YAjVqLWqUaGo2u3WHOPGgb84D6A2ZC99PW16NWoYCFlSUsrKy6/Xj1dXWoVSgaeo61s8jFTGgbM4H6ur6YByxydRGBtTWEtt2//KYWAFSqDj9v2rRpWL9+PVQqFXbu3ImHH34YlpaWeO6555ptW1dXB6suCmMXF5erYh9tsbKygoeHR7cfx5SufL+JWuLv72jUBRkwHWrUNUSWQlhad3/vqnq1psPPYR60jnlA/QEzoedYWFnB0rpnRl/U13W8FzEzoXXMBOrr+mIecOL5fsLa2hoeHh7w9/fHgw8+iNjYWPz6668AGq42zJo1C6+++iq8vLwwYMAAAMCFCxcwb948ODk5wcXFBTNnzsT58+cN+9RoNHjyySfh5OQEV1dXPPPMM9DpjOehmTBhAh5//HHDbZVKhWXLlsHX1xfW1tYICQnBF198gfPnz2PixIkAAGdnZwgEAixevNjkPsrKyrBw4UI4OztDLBZj+vTpyMzMNDy+YcMGODk5YdeuXQgPD4ednR2mTZuG/Pz8Ft+f/fv3QyAQoLy8vF37WLFiBb766iv88ssvEAgEEAgE2L9/f7veN1Pv9/PPP48RI0Y0a1dUVBRWrVoFADh69CimTJkCNzc3ODo6Yvz48Th27FiLr4moLf7+jpgxI6hZsFHfxjxgHhCZwkzon5gJzASipsw9D1jk6qdsbW1RV1dnuL13715kZGRg9+7d2L59O9RqNaZOnQp7e3v8888/iIuLM3yJ65+3du1abNiwAV9++SUOHjyI0tJS/Pzzz60ed+HChdi4cSPef/99pKen45NPPoGdnR18fX3x008/AQAyMjKQn5+P9957z+Q+Fi9ejMTERPz6669ISEiATqfDjBkzoG40+b9SqcSaNWvwzTff4MCBA8jNzcXSpUs79B61to+lS5di3rx5hlDLz8/HqFGj2vW+mXq/FyxYgCNHjuDs2bOGbVJTU3HixAncfvvtAICqqiosWrQIBw8exKFDhxAaGooZM2agqqrn5oMjor6HedA25gER9RfMhLYxE4iubhyu2M/odDrs3bsXu3btwn//+1/D/RKJBJ9//rmhS+y3334LrVaLzz//HAKBAACwfv16ODk5Yf/+/bj++uvx7rvv4rnnnsOcOXMAAB9//DF27drV4rHPnDmDzZs3Y/fu3YiNjQUABAUFGR7XdzmWyWQtTuyYmZmJX3/9FXFxcRg1ahQA4LvvvoOvry+2bduGW265BQCgVqvx8ccfIzg4GADwyCOPGK52tFdr+7Czs4OtrS1UKpVRF+b2vG9A8/cbaLgi8/333+Oll14yvK4RI0YgJCQEADBp0iSj9n366adwcnLC33//jRtvvLFDr42IiHnQfswDIurrmAntx0wgurqxJ1c/sX37dtjZ2cHGxgbTp0/HrbfeihUrVhgeHzRokNGXaUpKCrKysmBvbw87OzvY2dnBxcUFtbW1OHv2LCoqKpCfn2/UfdbCwgLR0dEttiE5ORkikQjjx4/v9OtIT0+HhYWF0XFdXV0xYMAApKenG+4Ti8WG4AEAT09PyOXyDh2rM/to633Ta/p+A8CCBQvw/fffA2j4RWPjxo1YsGCB4fHCwkIsWbIEoaGhcHR0hIODA6qrq5Gbm9uh10X9V05OBXbuPIecnIrebgr1IuYB84CIeUB6zARmAlFfywT25OonJk6ciI8++ghWVlbw8vJqtmKKRCIxul1dXY3hw4fju+++a7YvqVTaqTbY9sDE/HpNV1oRCATN5gLojn20931r+n4DwPz587Fs2TIcO3YMNTU1uHDhAm699VbD44sWLUJJSQnee+89+Pv7w9raGjExMUZdnIlaY2qJYOp/mAfMAyLmAekxE5gJRH0tE1jk6ickEomhS2t7DBs2DJs2bYJMJoODg4PJbTw9PXH48GGMGzcOAFBfX4+kpCQMGzbM5PaDBg2CVqvF33//beiK3Jj+qoVG0/JqYeHh4aivr8fhw4cNXZFLSkqQkZGBiIiIdr++rmBlZdWsre1531ri4+OD8ePH47vvvkNNTQ2mTJkCmUxmeDwuLg7r1q3DjBkzADRMXllcXHzlL4T6DXNfKYW6BvOg6zEPyNwwD0iPmdD1mAlkbvpaJnC4YhfRqVTQ1tR0+49OpeqR17NgwQK4ublh5syZ+Oeff5CdnY39+/fj0UcfxcWLFwEAjz32GF5//XVs27YNp0+fxkMPPWRYecSUgIAALFq0CHfffTe2bdtm2OfmzZsBAP7+/hAIBNi+fTuKiopQXV3dbB+hoaGYOXMmlixZgoMHDyIlJQV33HEHvL29MXPmzG55L1p7PSdOnEBGRgaKi4uhVqvb9b61ZsGCBfjhhx+wZcsWo27IQMNr/+abb5Ceno7Dhw9jwYIFPXrli8yfua+UYk40ai3UKk23/mjU2h55LcyDtjEPyNwwD3pOfV0d1Krabv+p76FeO8yEtjETyNz0tUxgkesKCSwtIXKwh1algqaystt/tCoVRA72EDTpJtvVxGIxDhw4AD8/P8yZMwfh4eG45557UFtba7j68NRTT+HOO+/EokWLEBMTA3t7e8yePbvV/X700Ue4+eab8dBDDyEsLAxLliyBQqEAAHh7e2PlypV49tln4e7ujkceecTkPtavX4/hw4fjxhtvRExMDHQ6HXbu3Nms63B3W7JkCQYMGIDo6GhIpVLExcW1631rzc0334ySkhIolUrMmjXL6LEvvvgCZWVlGDZsGO688048+uijRldxiKj3iUQC2IgtUa/WQKVUd+tPvVoDG7ElRCJBt74m5kHbmAdE1JTQwgI2Egnq69SorVZ0+099nRo2EgmEFt07UIeZ0DZmAlHvEug6Ogi5j6usrISjoyMqKiqMvnBqa2uRnZ2NwMBA2NjYGD1HW1sLXaOlabubwNISwiZtIGpLa59hoivR0vemuWvtdbX276m+TgONpmeiVSQSwMJK1CPHor6FmUDdpS9mQmfzQF2ngra+vsfaKbSwgKWVdY8dj/oG5gF1l97KA87J1QWENjYAvxCIiAiAhZWI4UpERA0FJxadiIh6FIcrEhERERERERGR2WORi4iIiIiIiIiIzB6LXEREREREREREZPZY5CIiIiIiIiIiIrPHIhcREREREREREZk9FrmIiIiIiIiIiMjsschFRERERERERERmj0UuIiIiIiIiIiIyeyxy9XECgaDVnxUrVvRYWyZMmGA4ro2NDSIiIrBu3TrD4xs2bICTk1OPtYfIXOTkVGDnznPIyano7aaQGWMeEPUNzATqCswEIvPHPDDNorcbQN0rPz/f8PdNmzZh+fLlyMjIMNxnZ2dn+LtOp4NGo4GFRfd9LJYsWYJVq1ZBqVTi66+/xsMPPwxnZ2fMnz+/245JZO5SU0uQkJAHAPD3d+zl1pC5Yh4Q9Q3MBOoKzAQi88c8MI09ufo4Dw8Pw4+joyMEAoHh9unTp2Fvb4/ff/8dw4cPh7W1NQ4ePIjFixdj1qxZRvt5/PHHMWHCBMNtrVaL1atXIzAwELa2toiKisKPP/7YZnvEYjE8PDwQFBSEFStWIDQ0FL/++msXv2qiviUy0hUxMV6IjHTt7aaQGWMeEPUNzATqCswEIvPHPDDNbHpyvfrqq9ixYweSk5NhZWWF8vLyZtsIBIJm923cuBG33XZbt7ZNoVC0+JhIJIKNjU27thUKhbC1tW1zW4lE0olWtuzZZ5/FmjVrEBQUBGdn53Y9Z/Xq1fj222/x8ccfIzQ0FAcOHMAdd9wBqVSK8ePHt/vYtra2qKur62zTifoFf39HXp1pgpnQgHlA1P8wE4wxD/7FTCDqX5gHpplNkauurg633HILYmJi8MUXX7S43fr16zFt2jTD7Z4Yv924O29TM2bMwI4dOwy3ZTIZlEqlyW3Hjx+P/fv3G24HBASguLi42XY6na7zjTVh1apVmDJlSru3V6lUeO2117Bnzx7ExMQAAIKCgnDw4EF88skn7QowjUaDjRs34sSJE7jvvvs63XYi6p+YCQ2YB0TU3zEP/sVMICIyoyLXypUrATRMPNgaJycneHh4tHu/KpUKKpXKcLuysrJT7TNn0dHRHdo+KysLSqWyWejV1dVh6NChrT533bp1+Pzzz1FXVweRSIQnnngCDz74YIfbTET9W3dkAvOAeUBE5od50H2YCURkjsymyNVeDz/8MO69914EBQXhgQcewF133WWyi7Le6tWrDeHYWdXV1S0+JhKJjG7L5fIWtxUKjadIO3/+/BW1q72adm0WCoXNrgSp1WrD3/Wvd8eOHfD29jbaztrautVjLViwAC+88AJsbW3h6enZ7DUTEXWljmRCV+QBYN6ZwDwgor6KedBxzAQiMkd9qsi1atUqTJo0CWKxGH/++SceeughVFdX49FHH23xOc899xyefPJJw+3Kykr4+vp26LgdGf/eXdt2JalUilOnThndl5ycDEtLSwBAREQErK2tkZub26Gx9QDg6OiIkJCQLmsrEVFLOpoJXZEHQN/KBOYBEfUFzIOuwUwgInPQq0WuZ599Fm+88Uar26SnpyMsLKxd+3vppZcMfx86dCgUCgXeeuutVotc1tbWbV5Z6G8mTZqEt956C19//TViYmLw7bff4tSpU4Zuxvb29li6dCmeeOIJaLVajBkzBhUVFYiLi4ODgwMWLVrUy6+AiMxRb2cC86A55gER9QbmwdWJmUBE5qBXi1xPPfUUFi9e3Oo2QUFBnd7/iBEj8Morr0ClUjGoOmDq1Kl46aWX8Mwzz6C2thZ33303Fi5ciJMnTxq2eeWVVyCVSrF69WqcO3cOTk5OGDZsGJ5//vlebDlR/xYXdxF79uQgNtYfo0f79HZzOoyZcPVhHhCZL3POBObB1YmZQGSezDkPOkOg6+plOLrZhg0b8Pjjj5tcHripV199FWvXrkVpaWm7919ZWQlHR0dUVFTAwcHBcH9tbS2ys7MRGBhotNwvkbngZ7jvW7kyDnv25CI21g8vvzy6x47b0vdmT+jOTGjtdfHfE5k7fob7vv6WCcwDos7hZ7jv6295YDZzcuXm5qK0tBS5ubnQaDRITk4GAISEhMDOzg6//fYbCgsLMXLkSNjY2GD37t147bXXsHTp0t5tOBFRD4mN9Tf6sy9jJhARta6/ZALzgIiodf0lD/TMpsi1fPlyfPXVV4bb+rHf+/btw4QJE2BpaYkPP/wQTzzxBHQ6HUJCQvD2229jyZIlvdVkIqIeNXq0T7/oggwwE4iI2tJfMoF5QETUuv6SB3pmN1yxu3G4IvVV/AxTd+nN4YrdicNTqC/jZ5i6S1/MBOYB9WX8DFN36a08EPbYkYiIiIiIiIiIiLoJi1wdxI5vZK742SXqevx3ReaKn12irsV/U2Su+NmlvoZFrnaytLQEACiVyl5uCVHn6D+7+s8yEXUeM4HMHTOBqGswD8jcMQ+orzGbied7m0gkgpOTE+RyOQBALBZDIBD0cquI2qbT6aBUKiGXy+Hk5ASRSNTbTSIye8wEMlfMBKKuxTwgc8U8oL6KRa4O8PDwAABDiBGZEycnJ8NnmIiuHDOBzBkzgajrMA/InDEPqK9hkasDBAIBPD09IZPJoFare7s5RO1maWnJqzNEXYyZQOaKmUDUtZgHZK6YB9QXscjVCSKRiF8GREQEgJlAREQNmAdERL2PE88TEREREREREZHZY5GLiIiIiIiIiIjMHotcRERERERERERk9jgnVxM6nQ4AUFlZ2cstISIyD/rvS/33Z1/BPCAi6ri+mAnMAyKijuutPGCRq4mqqioAgK+vby+3hIjIvFRVVcHR0bG3m9FlmAdERJ3XlzKBeUBE1Hk9nQcCXV+6zNIFtFot8vLyYG9vD4FA0NvNISK66ul0OlRVVcHLywtCYd8ZBc88ICLquL6YCcwDIqKO6608YJGLiIiIiIiIiIjMXt+4vEJERERERERERP0ai1xERERERERERGT2WOQiIiIiIiIiIiKzxyIXERERERERERGZPRa5iIiIiIiIiIjI7LHIRUREREREREREZo9FLiIiIiIiIiIiMnsschERERERERERkdljkYuIiIiIiIiIiMwei1xERERERERERGT2WOQiIiIiIiIiIiKzxyIXERERERERERGZPRa5iIiIiIiIiIjI7LHIRUREREREREREZo9FLiIiIiIiIiIiMnsschERERERERERkdljkYuIiIiIiIiIiMwei1xERERERERERGT2WOQiIiIiIiIiIiKzxyIXERERERERERGZPRa5iIiIiIiIiIjI7LHIRUREREREREREZo9FLiIiIiIiIiIiMnsschERERERERERkdljkYuIiIiIiIiIiMwei1xERERERERERGT2WOQiIiIiIiIiIiKzxyIXERERERERERGZPRa5iIiIiIiIiIjI7LHIRUREREREREREZo9FLiIiIiIiIiIiMnsschERERERERERkdljkYuIiIiIiIiIiMwei1xERERERERERGT2WOQiIiIiIiIiIiKzxyIXERERERERERGZPRa5iIiIiIiIiIjI7LHIRUREREREREREZo9FLiIiIiIiIiIiMnsschERERERERERkdljkYuIiIiIiIiIiMwei1xERERERERERGT2WOQiIiIiIiIiIiKzxyIXERERERERERGZPRa5iIiIiIiIiIjI7LHIRUREREREREREZo9FLiIiIiIiIiIiMnsschERERERERERkdljkYuIiIiIiIiIiMwei1xERERERERERGT2WOQiIiIiIiIiIiKzxyIXERERERERERGZPRa5iIiIiIiIiIjI7LHIRUREREREREREZo9FLiIiIiIiIiIiMnsschERERERERERkdljkYuohxw9ehSjRo2CRCKBQCBAcnJybzepywQEBGDx4sW93QwiIrPBTCAiIoB5QNTVWOQisyMQCNr1s3///t5uqoFarcYtt9yC0tJSvPPOO/jmm2/g7+/f283qkPj4eKxYsQLl5eW93RQiIgNmQu9gJhDR1YZ50DuYB3S1sejtBhB11DfffGN0++uvv8bu3bub3R8eHt6TzWrV2bNnkZOTg88++wz33ntvbzenU+Lj47Fy5UosXrwYTk5ORo9lZGRAKGTNnIh6HjOhdzATiOhqwzzoHcwDutqwyEVm54477jC6fejQIezevbvZ/U0plUqIxeLubFqL5HI5ADT74r8SCoUCEomky/Z3JaytrXu7CUTUTzETGjATiKi/Yx40YB5Qf8eyKvVJEyZMwMCBA5GUlIRx48ZBLBbj+eefBwD88ssvuOGGG+Dl5QVra2sEBwfjlVdegUajMbmPtLQ0TJw4EWKxGN7e3njzzTebHe9///sfIiMjIRaL4ezsjOjoaHz//fcAgMWLF2P8+PEAgFtuuQUCgQATJkwwPPevv/7C2LFjIZFI4OTkhJkzZyI9Pd1o/ytWrIBAIEBaWhpuv/12ODs7Y8yYMQAaxrrfeOON2L9/P6Kjo2Fra4tBgwYZumJv3boVgwYNgo2NDYYPH47jx48b7fvEiRNYvHgxgoKCYGNjAw8PD9x9990oKSkxOv7TTz8NAAgMDDR09z5//ryhDU3H2587dw633HILXFxcIBaLMXLkSOzYscNom/3790MgEGDz5s149dVX4ePjAxsbG0yePBlZWVkm/98SEXUUM4GZQEQEMA+YB9QfsCcX9VklJSWYPn06brvtNtxxxx1wd3cHAGzYsAF2dnZ48sknYWdnh7/++gvLly9HZWUl3nrrLaN9lJWVYdq0aZgzZw7mzZuHH3/8EcuWLcOgQYMwffp0AMBnn32GRx99FDfffDMee+wx1NbW4sSJEzh8+DBuv/123H///fD29sZrr72GRx99FNdee62hLXv27MH06dMRFBSEFStWoKamBv/73/8wevRoHDt2DAEBAUbtueWWWxAaGorXXnsNOp3OcH9WVpbhWHfccQfWrFmD//znP/j444/x/PPP46GHHgIArF69GvPmzTPqOrx7926cO3cOd911Fzw8PJCamopPP/0UqampOHToEAQCAebMmYMzZ85g48aNeOedd+Dm5gYAkEqlJt/7wsJCjBo1CkqlEo8++ihcXV3x1Vdf4aabbsKPP/6I2bNnG23/+uuvQygUYunSpaioqMCbb76JBQsW4PDhw535X09E1AwzgZlARAQwD5gH1OfpiMzcww8/rGv6UR4/frwOgO7jjz9utr1SqWx23/33368Ti8W62traZvv4+uuvDfepVCqdh4eHbu7cuYb7Zs6cqYuMjGy1jfv27dMB0G3ZssXo/iFDhuhkMpmupKTEcF9KSopOKBTqFi5caLjv5Zdf1gHQzZ8/v9m+/f39dQB08fHxhvt27dqlA6CztbXV5eTkGO7/5JNPdAB0+/bta/X92Lhxow6A7sCBA4b73nrrLR0AXXZ2tsk2LFq0yHD78ccf1wHQ/fPPP4b7qqqqdIGBgbqAgACdRqMxel/Cw8N1KpXKsO17772nA6A7efJks2MREbWGmcBMICLS6ZgHzAPqrzhckfosa2tr3HXXXc3ut7W1Nfy9qqoKxcXFGDt2LJRKJU6fPm20rZ2dndE4fisrK1x33XU4d+6c4T4nJydcvHgRR48e7VD78vPzkZycjMWLF8PFxcVw/+DBgzFlyhTs3Lmz2XMeeOABk/uKiIhATEyM4faIESMAAJMmTYKfn1+z+xu3v/H7UVtbi+LiYowcORIAcOzYsQ69Jr2dO3fiuuuuM3SXBhrey/vuuw/nz59HWlqa0fZ33XUXrKysDLfHjh3brJ1ERFeCmcBMICICmAcA84D6Nha5qM/y9vY2+lLUS01NxezZs+Ho6AgHBwdIpVJDSFVUVBht6+PjA4FAYHSfs7MzysrKDLeXLVsGOzs7XHfddQgNDcXDDz+MuLi4NtuXk5MDABgwYECzx8LDw1FcXAyFQmF0f2BgoMl9NQ4pAHB0dAQA+Pr6mry/cftLS0vx2GOPwd3dHba2tpBKpYbjNH0/2isnJ6fF16V/vLX2Ozs7N2snEdGVYCYwE4iIAOYBwDygvo1zclGf1fjqg155eTnGjx8PBwcHrFq1CsHBwbCxscGxY8ewbNkyaLVao+1FIpHJfesajXUPDw9HRkYGtm/fjj/++AM//fQT1q1bh+XLl2PlypXd/ppaa2d72j9v3jzEx8fj6aefxpAhQ2BnZwetVotp06Y1ez+6S3vaSUR0JZgJzAQiIoB50Nr9zAPqC1jkon5l//79KCkpwdatWzFu3DjD/dnZ2Ve0X4lEgltvvRW33nor6urqMGfOHLz66qt47rnnYGNjY/I5/v7+AICMjIxmj50+fRpubm7dvvxvWVkZ9u7di5UrV2L58uWG+zMzM5tt2/RqVWv8/f1bfF36x4mIehszwRgzgYj6K+aBMeYBmTMOV6R+RX81oHH1v66uDuvWrev0Phsvows0jMmPiIiATqeDWq1u8Xmenp4YMmQIvvrqK5SXlxvuP3XqFP7880/MmDGj021qL1PvBwC8++67zbbVh2njtrZkxowZOHLkCBISEgz3KRQKfPrppwgICEBERETnG01E1EWYCcaYCUTUXzEPjDEPyJyxJxf1K6NGjYKzszMWLVqERx99FAKBAN98880VdXm9/vrr4eHhgdGjR8Pd3R3p6en44IMPcMMNN8De3r7V57711luYPn06YmJicM899xiWB3Z0dMSKFSs63ab2cnBwwLhx4/Dmm29CrVbD29sbf/75p8mrVsOHDwcAvPDCC7jttttgaWmJ//znPyavJD377LPYuHEjpk+fjkcffRQuLi746quvkJ2djZ9++smwNDERUW9iJhhjJhBRf8U8MMY8IHPGTxH1K66urti+fTs8PT3x4osvYs2aNZgyZQrefPPNTu/z/vvvR3V1Nd5++208/PDD2LZtGx599FF8++23bT43NjYWf/zxB1xdXbF8+XKsWbMGI0eORFxcXIsTSHa177//HlOnTsWHH36I5557DpaWlvj999+bbXfttdfilVdeQUpKChYvXoz58+ejqKjI5D7d3d0RHx+PKVOm4H//+x+ee+45WFlZ4bfffsPs2bO7+yUREbULM6E5ZgIR9UfMg+aYB2SuBDrO2kZERERERERERGaOPbmIiIiIiIiIiMjsschFRERERERERERmj0UuIiIiIiIiIiIyeyxyERERERERERGR2WORi4iIiIiIiIiIzB6LXEREREREREREZPYsersBVxutVou8vDzY29tDIBD0dnOIiK56Op0OVVVV8PLyglDYd66dMA+IiDquL2YC84CIqON6Kw9Y5GoiLy8Pvr6+vd0MIiKzc+HCBfj4+PR2M7oM84CIqPP6UiYwD4iIOq+n84BFribs7e0BNPyPcHBw6OXWEBFd/SorK+Hr62v4/uwrmAdERB3X3Zlw4MABvPXWW0hKSkJ+fj5+/vlnzJo1q9Xn7N+/H08++SRSU1Ph6+uLF198EYsXL273MZkHREQd11vnCCxyNaHvguzg4MAQIyLqgL42hIN5QETUed2VCQqFAlFRUbj77rsxZ86cNrfPzs7GDTfcgAceeADfffcd9u7di3vvvReenp6YOnVqu47JPCAi6ryePkdgkYt6jVaphOrsWWjKyiCUSGATHg6hWHzF+9XV1wNaLQRWVl3QSiKijqsqrUW5XAnfMJfebgoRUYfU1dTjQnopgofJerspJk2fPh3Tp09v9/Yff/wxAgMDsXbtWgBAeHg4Dh48iHfeeafFIpdKpYJKpTLcrqysvLJGX4VqqqtQVVyEutoa1NfWQqvVQiAQNJyMCoWwthVD6h8IC/4+TSbU1dZAfv4cRCILSAOCYGFp2e7nVsgLUSEvgEAohJWNLRykMtjYcb476josclGP0qpUqNz5Oyq3b4fyyBHo1GrDYwJbW7jccQek/32kwwUqnU6Hqt9/R8mGr1Cbng6o1RA5O8N2yBDYT5kC++uvh8hO0tUvh4jIpLS4PCTuOI/goVKMujkEDq62vd0kIqJW6bQ6ZBwpQPzWs1CrNPC6xgm2duZf4EhISEBsbKzRfVOnTsXjjz/e4nNWr16NlStXdlkbCs9lwcnDC9ZdcDG3s3Q6HXJOJuPkX38i91QKaqvaLtyJHZ0w65mX4BkyoAdaSObiQuoJ/LL2VagUCgCAnasbbn7hFbh6tz5vnU6nw94vPkLK7p3NHnOUuSN87ERE3zinV/+dXC1yT53A399+gfKCfNjY2cEzNAwDJ06B/6AhLAa2g0Cn0+l6uxFXk8rKSjg6OqKiooLdkbuQVqVC2TffoOTL9dCUlkI8YgTsJ0+G7dChsJC6QVNRgcrff0fpF1/CduhQ+H7+GYTtLHTpdDoUrFiJ8k2bIBk3FnYTJkBoK4b6wgUojhxGTWIShI6OcFlwO1wWLoTIyal7XyxRP9NXvzev5HXpdDqcOVKI+K1ZUCnrMWyqP4Zd7wcLK1E3tZaIqPOKLlThwMYzKDhXgZBoGUbNCYG9i02n9tWTmSAQCNqck+uaa67BXXfdheeee85w386dO3HDDTdAqVTC1rb5RQhTPbl8fX079Zrq1Wq8v3AudFotXLx8ED52IobNuAlWNj138aOmqhK/f/g2so8nQuoXgOBrR8LN1x8OUhmsbMSwtLGGUGQBnU4LnVYH6HRQVpRj7/qPoVIosPjtdRAKmV9Xi8oiObKTE2EtsUNI9Mge7W1Xr1Zj/RP3w8FNhkl33Y/6ujr8vu4diB0ccdvKN1p97vmUY/jpteUYf+c9CI4eAeh0UCmVqJAXIPdUCtIO7IO9mxQ3v/AKHNykPfSK2lZXo8TF06mwd3GD1D+w249XXpCPr555BO6BwQiOHgllRTmyjyei5GIuAocMx/T/LoWtXffNcaXTapGdkoSSixfg5uMH/6ihnf7331vnCOzJRd1K38OqcM0a1MuL4DR3LlwWLYJ1kPEXhKWHB2wGDIDdmDHIvfseFL72GjxXrGjXMUo++QTlmzbB8/9egdPNNxs9JsV/ob50CaVff42SL9ej7LvvIX3iCTjdcjMEIoY1EXUPgUCAASM8EBjlhqTfc5D0+3mcTsjHhAUD4Bfh2tvNIyIC0DA08dC2szh14BKcPCSY+cRQ+Axw7u1m9Tpra2tYW1t3yb6EIiHuWP0uinPPI/dUCg5v3YSTf/2Jm19YBWdP7y45Rmtqqirxw8vLoKyswE1LX0BI9Mh29QRxkMowYeES/LD8aVxKT4Vv5OBubyu17eRff+KvLz+Gpr4eOp0Wrj5+mPv8Kti7uvXI8c8nJ6GySI7ZzyyHm18AAGD0vDuw/d3XUZZ/qdXP9NmkI3CQumP4DbOMPoMewaEYEDMW0TfOxpb/exG/vf0ablv1JkQW7R8C2V2KcrLx0+qXoSgrBQBMWHgvht8wq1uPeeTXH2EjscOc51YaiuHjFtyFc8eO4I+P3sPPr6/ArSte75b3R12nwvZ338C5pCOwtLaBWlUL38jBmP3sy7C06prvxJ4g7O0GUN9VX1SEi4/8F5eefAo24REI+vVXeK5c0azA1Zg4OhqyZc+g/IdNqDlxos1jqM6eRdGH6+D6wP3NClx6lt7ecH/uOYTs2Q27SZNQsGIFcm5fgLoLFzr92oiI2sPKxgIxs4Mxf/kIOLjZ4rf3U7D3qzTUKtRtP5mIqBvlpJZg46rDOH2oAKPmhuDWF6/tkwUuDw8PFBYWGt1XWFgIBwcHk724uppQKIIsIAgR4yZh2kNPYNHadbCwtMSWV15EraK6W4+t02qx/d3XUVNVifmr3kLotTEdGurkFToAtvYOyE092Y2tpPbKOnoIf37yPsLHTcQjGzZh4VsfoK6mBr+9vRpajaZH2nA+5RicPb0NBS4ACBw6HEKRCDknU1p8nk6nQ3ZyIgKHRrf4GXT29MZNTzyHwnNnkbL7965ueofV1dbg5zdXQeLojMVr12Ho9P/gwHcbUFlc1G3H1Gm1yDySgIhxk4x6ewoEAgQPH4E5z76MwnNZOP77b91y/PjN3yH3RDJmPbMc//1qC25+4f+Qn5mBQz/90C3H6y4sclG3UMTH49xNM1Fz/Di8338Pvh9+0GpxqzHn226D9TXXoOh/H7S5bfG6j2AplcLtwQfb3NbCzQ1eq1+D/3ffor60FNmzZqPi11/b1SYioivh5C7GzMeHYOKdYTiXXIzvVx5GVpK8t5tFRP1QrUKNvV+lYfv/UuDsIcZty6/DkFg/iER987QgJiYGe/fuNbpv9+7diImJ6ZX2OLl7YO4Lq1BXo0Tcpm+79VjJu3ci99QJ3PDfp+Hi1fFeYwKhENKAIBTnZndD66gjaqoqsfuzDxAcPRJTljwCKxtbSP0CcOPjy5B/9gxO/vVnj7Sj4GwmvK4JM7rPysYW7sGhuHQ6tcXnleVfQkVhAYKGRre6f4+QaxA5YTIO/7wZmvr6LmlzZx3//TfUVFTgpqeeg6uPH8bceicEQgHOHDrYbccszbuE2qrKFntOeoYMQPjYiUj6/dcuL2zWKqqRsvt3DL9xNoKHXweBQAD/wUMw59mXcd3MW7r0WN2tb6YZ9RqdToeSzz9H7r1LYBMejqDtv8Hh+us7tA+BSATXe+6G4p9/oDp7tsXt1JcuofL33+Fy7z0QdqBLuXj4cAT+vBX2sZOR98wyFL7+BnQ9dPWDiPovgUCAiNFeuP3lEfAIdMCuz05hz4Y01NX07i9xRNR/6HtvnTtehIl3huE/jw4xu4UxqqurkZycjOTkZABAdnY2kpOTkZubCwB47rnnsHDhQsP2DzzwAM6dO4dnnnkGp0+fxrp167B582Y88cQTvdF8AICDmwzR/5mDk3v/gLKivFuOoVIqEL/pWwyaPBX+g4d0ej9S/0AU5Z7vsnZR5xz9bSvUKhVi733IqCeU1zVhuGbkGCRu3wqdVtutbahXq1GUkw334NBmj0n9AlByMbfF515MOwWBUAjfyEFtHmfY9JugrCjHuWNHrqi9V0Kr1SBlz+8IGzMejjIPAICVrRgBUcOQeSSh246bl5kOgUAIr9CWF3sYPHkqqkuKkZ91pkuPnX3sKNS1NYi63nj1Wt/IwWa3GACLXNRldBoNCl5eAfmatXC99174fvYpLFxcOrUvh+nTIXJyQsUvLfe0qtixEwJrazi1MtloS0R2dvB64w24v/ACSr/+GhcffgTayyuEEBF1J4mTNaY/MAixi8NxLrkIm149gvyzFb3dLCLqwzRqLQ7+mInt/0uBm7cd5r88AhGjvcxyla7ExEQMHToUQ4cOBQA8+eSTGDp0KJYvXw4AyM/PNxS8ACAwMBA7duzA7t27ERUVhbVr1+Lzzz/H1KlTe6X9eoNjp0Gr1SLzSHy37D9pxzbU19Vh1M23X9F+nD08UVkkh1bb9ReEC7PP4tBPP0Cl5O/gramtrkbyrh0YMvUG2Dk3P7caPmMmygvyce544hUdp65GiYyEf6CurTX5eIW8AFpNPdx8/Zs95urjh9K8iy1+TkrzLsBR5g5L67YXtJD6B8Ij5Bqk/r23zW27S+HZLFQVFyFy/GSj+30jBqPwXGa39TIrvXQRDjIZrGxbLip5hFwDG3sHZF/h/++mzp84Dql/IOxdemZ+t+7EieepS2jr6pD39DOo2r0bnq++Cqe5c65ofwIrK9hPmYLK33+H9InHTf4SVrljB+wnToTwCirLLnfeASt/P1x64knkLrkPvp9+ApGd3ZU0nYioTQKBAANGesIj2Al71qfi5zVJiJ4RgOgZARD20SFDRNQ7yguV+POLVJRcqsbom0MQNckXAqH5Fbf0JkyYgNYWh9+wYYPJ5xw/frwbW9VxYgdH+A2MQkb8P4iaMqNL961W1eLYzl8xeMp02Llc2WIn9q5S6LRaKMrKDJObn09OQlbSEYSNGguf8IGd2m9tdTW2vPI8VAoFygvzMe2h3utZd7U7Hfc36utUGD5jpsnHva4Jg0dwKE7s+R3Bw6/r9HH++OhdZB6OR+T4ySb/f1QVNUyz4Ch1b/aYq48fNGo1KgoLTE4+X5afBxcvn3a3JfS6UUj4aSPq6+p6dPVIvfMnjsHKVgyva8KN7ncPDIZGrUZp3kVIG81L1lXKC/Lg7OHV6jZCoQg+YZHIz0zv0mPnZ2YgIGpYl+6zt/A3abpiOrUal/77KKr37YPP++9dcYFLz2H6NKgvXEBtWlqzx1Rnz0KVkQGHG678lwK7cePg9+UXUGVmIveee6CprLzifRIRtYej1BaznxqG6BsCkbjzPH55NxmKClXbTyQiaofTCfnY9NpRqFUa3LwsGkNi/cy6wNXXhFwbg4unU1vsOdNZGfH/QKVUYNj0/1zxvvSFraqShsm2C89lYevrK5H+zz5sXvk8zh0/2rk2JhxAXU0NRs65FakH/kJZQd4Vt7WvSjvwFwKHDIfEqeWFIcJGT0DOieOd7hVXcvECMg/Hw9nTGxmHDkJd1/x3kcriIgiEQpOFUyf3hiF9FUWm5xstK8iHUxvFm8YCh0ajXqXCxVbm+epOF9NOwTdyEIQikdH90oAgAEDR+XPdctzygnw4eXi2uZ17YDDk2edaLfh3hLpOhfKCfKMFBcwZi1x0RXQaDfKWLUN1fDx8PvwQ9rGxXbZv8bXXQigWQxHXvBt39f6/IbCxgWTMmC45lm1UFPzWr0fd+RxcuO9+aGtqumS/RERtEYqEuO7GQMx6cijKC5XY/NpR5GeV93aziMiMadRa7P/uNPZ+lY6QYVLc8lw0pH72vd0sasI7LAI6rRYFZ7t2bp0Te/6A/+ChhrmEroS+oFFdVgoAOP7HdjhIpXjws+8QOHQ4dn30HlRKZYf3m52cBO8BEbhu9jxYWFji7NFDV9zWvqg07xLyszIQMW5yq9tdM3I0NPX1OJt4uFPHST+4HzZ29pj20BOoV6kgz25exKkoKoSdi2uzwg9w+XMiEKDKxMqDOp0O1SXFhoJpe7j5+sPOxRXnU4517IV0AZ1OB3lONmQBwc0esxaLIXZ0Qnlhfrcct1xeACf3totcssBg1CqqTb7fnVF68QJ0Om239E7rDRyu2EW0dXUo/t8HcJx5E6xDQnq7OT1Cp9Oh4P/+D5V/7IL3u+/AbmzXFJz0BJaWsL02GspDCcB9S4weUyQkQBwd3aEJ59tiOzASfp9/hpyFi3DpqaXwef89CCz4T4SIeoZXqDPmvXAtdn12CtvePo5Rc0MweJJPt8+Zo9PpoCivQ1mBAmUFSigrVKipVkNdWw/99UELKxFs7Sxha28FR6ktXDwlcJDaQmgGPULqauuhrKhDvVoLTb0WQpEA1rYWsLK1gLXYwmzmJNLpdKhVqFFbrUa9WgudVgcLKxEsrUWwsbOEpVXzk46rlVarg7KiDnW19dCotdDpdLC0FsHKxgI2dpYQWVz912BVSjXKCpQozVegukyF2mo1ahVqaDU6CASA0EIAWzsr2Npbws7ZBi6eEjh5iHvk/1N1WS3++PQUii5UYeIdYYgY0/7eE9SzXH18YWUrRt6Z0y2uptZRRTnZyM/KwE1PPt8l+7OWSAA0DC/U6XQ4d/woBk26HhaWloi992F8+fj9OP77rxg597YO7bcw+ywixkyApZU1fAcORnZyIqL/0zWjQfqSc0mHYWFphaBhra9KaO/qBs9rwpB5JAER4yZ1+DjnU5IQEDUM7kHBEIosIM/OgvcA46F6lUVyOLjJTD5fZGEJOydnVJoouqiUCqhVtR0qcgkEAngPiEB+ZkbHXkgXUJSVoraqElL/AJOPO7p7oKKwoMuPq66tQb1K1WqPPT03v4Z50Uou5sJBavr/SUdUFBUCQLt6kZkDnsF3Fa0WVXv3QhEXh4AfNkLQC2OHe1rZN9+ifOMP8Hz1/zq8gmJ7SUbGoOjdd6FVqQwFLV1dHZSJiZD+95EuP57toEHwee9dXHjwIRSsegUeK1eYzQkQEZk/iaM1Zj4xFId+PouDWzJRmF2BSQvDYdGFJ8Y6nQ6l+QpcTC9DXmY58rLKUVutBtBwYi52sIKtnRWsbEUABBAIGuZ3yauqg7JKjXpVw6SyFlZCeAY7wusaZ/iGuUAWYN+r35f615WfVYGinEoUXahGZXENVMqWJ4e1shHBUSaGs6cYnsFO8Ax2hIunpNeHc2k0WhSeq0RhdiXkuZUouViNqpJa1KtbXjlL7NhQgHTztYdnkCM8gh1h79L2BL/dra6mHpcyyyE/Xwl5ThVK86uhKK+DTmt6iIVAANi72sBRJobM3x4eQY7wCHKEjcSyh1tuTKVUIze1FJfOlOHSmXKUF17uuSIAxA5WsJFYwkZiCaGo4bOjqdeiKKcKyqo6qBT1hm3dfOzgFeIEr2uc4BvuAiubrv1V/NKZMuz67BREFkLMWToc7gEOXbp/6lpCoQjuQSEozM7qsn2ejvsbNvYOCLqCuZkaEwpFsBZLoFJUo7JIjprKCnhdEwagobASNnocTuzdhetm3wKhsH1ZVVejRHVJMVx9/AA0rN6WsOV7aLWadu+ju51POYY9X6yDo8wD/3n8Wdj00py92clJ8Ikc1K4J24OGROPob1uhqa+HqAMX6hXlZSg8l4Vh02+CyMISrr5+KMrJbrZdZXERHGXN5+PSs3eTmuxZVF1aAgCwc+7Y/HCeoWHI2rgBmno1RBZdnwGa+nrEb/4WOgCj591heM/0r13qH2TyeY5Sd0NR6EqOfWznL7BzdUPYqHEQCARQlJcBQLuKXPYubhBZWqKsIB+BV9SSBtUlxbCwtIKNXd/o8csiVxcR2tjA6403cH7+fBR99BFkjz3W203qVtUH41D4+utwuftuOM2d223HEV97LXQqFWpT0yAe1rCKTm1GBnS1tRBHt35Fo7Psxo2D56qVyH/hRdiEh8F5/vxuOQ4RkSkikRCjbw6Fe6Aj9m5Iw89rj2HGQ4MhcbyynqvFF6uRlVSIc8eLUFaghMhSCI9ABwwc5w2Zvz2cPSRwcLNpdeJ7nU4HZWUdSvMVKMqpQl5mOY7tysHhX87B3sUGwcOkGDDSA24+PfNLkk6rQ15WOc4cLUTuqRJUl6kgFArg7CWBzM8eIcNlsHO2htjRGpZWIggtBNBqdKirqYdKWY/K4hqUy5UouViNrKNyaLU62DpYISjKDUFDpfAZ4NxjCwHU12lwLqUI544X40J6Kepq6mFhJYTUzx4+4S5wdLOFnYs1bO0sIbIUQSgUoL5OgzqVBjVVdagoqkGFvAa5p0pwct9FAICLlwRBQ6QIHibtsf8nAKCoUCHzaCHOnyxGfmZFw/tqbwlZgAOuuc4D9i42sHO2hrWtBUSWQgiEAqhrNairqYeiQoUKeQ3KCpVIO5iHpN9zIBAK4BXiiMCohtdi59wzxTt1nQZnj8mRlSTHhbRSaDU6OHuI4T3AGdEzAuDiJYGTe9u9s+pq6lFaoEDpJQXyz5bj/MlinNh3ESILIXwjXBA8VIqgodIrLnidOnAJB344A69QR1x/z0CIHfr+Bde+wNXHFxdST3bJvnQ6HTIOHUTotSM7VORoi7XEDrWKakMxziP4GsNjUbHTcWrfbuSeSEbAkOHt2l/ppcvfUd6+DfsLCoFaVYuyvEuGwldvqi4rxa9rX4N7UAjk57Kw54t1uPGxZ3q8HXW1Nbh0OhXj7ri7XdsHDBmOuM3fIj/zdIcWBNAPCdRPOu7s4YUKefOeSpXFcvhGDGpxP/ZuMlSVNJ+Tq7qkuOHxDvTkAhom1Neo1ZCfPwfPkAEdem57xG3+Fkd/+REAIHF0wvAbZgFo6B1laW0DxxZ6SNm5uF7xEONdH7+H9H/2AQBEFha4ZsRoQ5FL3I4il0AohKPMA+WFXTOXXVVpCexcXftM5w4WubqQ7aCBkD78EIr+9wHsx4+H7ZAhvd2kblF38RIuPfkkJGPHQPbUk916LJsB10BgZYXakycMRa6a5BQILC1hHR7exrM7z2nuXNSmn0bBa6thPSDMcGwiop4SMlwGR6ktdqw7gS2rE3HDQ4M7PKeOuk6DzKOFSP0nD/LzlbAWWyAwyg2j5obAJ8wZFpYdu2IuEAggcbSGxNEavmEuGDbVH1qNFnlZFTibJEfG4QIk77kAz2BHDJzgjeChsm4ZeqaoUOHUgUvISChAVWktHNxsEDxUBr+BLvAKcepUzze1SoPC7ArkpJbi3HE5Uv/Jg9jRChGjvRA+2hMOrrZd/joAoPhiFU7+fQlZRwtRV6uBzN8eQ2J94RfpCqmffaeGhCor65CXWY7sE0U4uf8iEneeh8zfHhFjvBB6rXuX9x4CGgqO508WI+1gHnJSSyEUCuAT5owx80LhF+kKBzebDv/yrNPpUFlcgwvpZchOKUb8z1mI+zET/gNdETHWG/4DXbtlyGxFUQ1O/X0R6fH5UNXUwzPYEaPmhiB4aEPRtKOsbC3gEegIj0BHw9DByuIanEsuwtljRdj7VToO/HAG11znjsix3h3+d67V6hC/NQspey5g0AQfjLklhKu0mhEXb1+c2PNHh3vfmCLPPouKwgJcc+/DXdS6BjZ2dqitrkJ5QT6sxRKjnibuwaFwlLkjK+lIu4tcJZcuAABcvBtW25MFNkz1UnA286ooch3+eTNElpaY+fSLOJNwELs/+wDjFtwFBzdpj7Yj99QJaOrrEdjO99U9MBi29g44n3KsQ0Wu7OQkuAeFQuzoBKBhOF7TIo6mvh6K0lI4SFt+D+xd3SA30SuxqqwEEAggcW67eNOYNCAIIgsL5Gee6fIil7KiHMd//w0j596G8oJ8nNq321DkqiiSw0Eqg0Bo+ntU4uQMRXl5p4+dn5WB9H/2YeqDjyPt7704tvMXXDNiNJQV5Yb9t4eThyfKC7pmbrDq0hLYu3SsCHk1Y5Gri7kuWYKqv/Yhf/nLCPzpRwgse7d7fVfTqdXIW7oUIjs7eL/1FgQmJh7sSgJLS9hERKDmxL9XuGpSUmAdEQ5hNw8JdV/2DGpPp+PSY48hcOtPsGjlS70vqrt4EZriYlgFBEDk5NTbzSHql6R+9rjl2Wjs/OgEtq5JwpS7IhE0tO3volqFGif3X0TKXxegUtbDL8IF0x8YBP9BrhB18cmvUCSEzwBn+AxwxthbQ5GdUoyTf1/E7i/SkOByFtHTAxAW49klxa7SfAWSd+ci40gBRCIhQq91x4CRHvAMdrziq4+W1iL4hLnAJ8wFo+YEoyi3Cmlx+Uj56wKS/sjBNde6Y9g0f7h4Sq74deh0OlzKKMOxP3NxIa0Uds7WGDzJFwNGesBJJr7i/YsdrBAyXIaQ4TJoNFrknipB2sE8/P19BhJ+PovBE30weJJvlwwB1Ki1yDhSgON/5qK8UAmZvz3+n73zDm+q3v/462QnTZukew/23lNBxYlsFMW99xa3P/Ve9V6914UTBw5cuFA2iKKgiMjes6V7r4wmbfb5/ZEmtDSdFFq8fT1Pnwdy1jfznO/7vD/vz1mze9JjRMwJ718QBHRRGnRRGgaclYCjxk361hIO/FHIqnl70EWpGTYxhd6jY9vl82UqqWbrqizSt5SgUMvod2Y8/c9KQBfV/gJnWKSaIecnM+T8ZKoq7Rz4o5CDGwvZv6GQhN56hl+cSmJvQ7Ofa5fDw88f7yd7TznjZ/dk0ISkdh9rFyeXiIQkvB4PppIiIhJO7P07/NcfqELDSG6nfC8/qhAtdpsNoay0gdAjCAJpQ0eSuWMLonhHi36LKwvzCY2IQqHyfbeUGg266BjK83LaddwetwtTcTHhCS3Pt/S4XRz6Yz2DLrgYVYiW3mecxa8L3ufwpg2MPMWZYfkH9hAWFY0hLqFF6wsSCamDh5G1azvjrriuRdt4vR5y9uxkyIXHOtbrY2KpKi+vVyZorSxHFL2ERTVRrhgeibWyElEU673e1ooKNGG6VpccyuRywhOTKc9tWDp5ouz+eTWCIDBs0nSyd+/g0MbfsBor0RrCsZSVNFmWGaI34LLX4LTXBD7DrWHb8sUY4hPpd9YEvB43a+fPw1lTjc1kRCqTodS07DpDHxNH1s5trT5+MKoqyk+5iHsy6RK52hlBJiP2n/8g+7LLqfz8CyJuurGjh9SulL35FjX79pH6xedIw05NzoNq0ECs638L/L9m9260E8456ccV5HIS584l85JLKHzy/0j64P2/jYWzKeyHD1P8z2ep2bnT94BUStikScQ89iiyyL+Pwt9FF6cLIXolMx4axi8LDrL6/b2cOasHQ84PfqfbbnOx86dc9v6Wj9cj0u/MeAafl3RSJunBkEgldB8WTfdh0VQUWNm+Opv1Cw+zbXU2Y6Z3p9eomDb9jlZV2tmyLJNDm4sJCVMwelo3+o+LR6k5OTeSBEEgOiWM6JQwzrikOwf/LGLnTz5xrcewaEZP79ZmMaoky8KfP2RQmG4iMknLBTf3o8ew6JPmvJFKJaQNjiJtcBRVlXZ2r81j50+57Fqbx6BzExl2UUqbnF2iV+TIlmL+WpaJtdJB2uBIzru+L7HddCfhWfhQqmUMOCuBAWclUJJtYceaHNZ9foitK7IYOSWNPmPj2uTsshodbF56lMObi9GEKRg/uxd9zog7ZWH+oeEqRk/rxsjJqWTuKmfHmhyWvb6L6NQwRk1JI7l/eNDvjc3kYOW8PZhKqpl01yBSB3ado09HwuN9biZjUeEJiVyiKHLkrz/oOWps0O53J4IqRIvDZsVVU01YkMl/2tDh7FqzAlNxYYsEGWtlRYPSNUN8IsaignYbM8CP817n0MbfuODWexh0/sQWbZOzdxd2m5U+Z5wF+AS45P6DyN2765SLXMVH04ltpYMpdchwDv6xHpvJ2CJHUHHGEezWKlKHHIuB0UXHIopeLGWlgffTUuYrQ2wseB4gNCICt9OB3WZFXSfbqaqydZ0V6xKVnEpZbnabtm0MURQ5sOFXeo05E7U2lMQ+/QHf691jxGgs5WUk1D4WDP/rWm0yoYht3fWVo9rG0e2bGTf7WiQSKQl9+iOKXgrTD2MzmdDom7+54UcXHYOlvBTR623UddZSrMaKQNbe34EukeskoO7fH8PVV1P29tuETbwIefzfo6uN7a/NVMyfT/TDD53SUkz1wEEYP/sct9GIIJfjystD3b/xH572RBYVRfwLL5B3620Yv1xI+DVXn5LjdhS2vzaTd+edKBITSXj9dRQpyVRv3Ub5e++ROXMmyR99hKpXr+Z31EUXXbQrcoWUi27pz1/L1GxclIHN5OCMS3oEAtI9Li97f/OVpXk9IgPOTmDI+ckdmskTkaDlwlsGMGKSjS3LM1n7yQH2/ZbP+Nm9iE5p2U0Sp93NtpXZ7FmXj0It5azZveg3Lv6Udt9TqGQMPjeJAeMTOPRXEdtWZfPVs5sZdG4SIyalolS37FLKUl7DpsVHydheSnh8CJPvHkTKgFObfxEarmLc5T0ZNjGF3b/4hK6DG4sYPb1bqwSi/MNGNi5KpzzPSrehUUy9t1u7ONxaQ0xqGBffPpDKQhtbV2Wx7vND7F2fz5mX9iCxT3iL9uFxedn1Sy7bVucgV0gYd3lP+o2Lb3UZb3shkUroMTya7sOiyDtQybZV2ax4ezcJvQ2ceWmPemWMlYU2lr+1C4BLHhl2SjPXumhfQvQGJFIZVeUNs4xaw8kqVQRQarWYy0pxOx0kDxjcYHl8L1+ESOGRQy0SuarNpkBpnB9DXDw5u3e2y3jB50w5tNF3k/yvH75h4HkXtej39ujWzRjiEohMTg08Ft+rL9tWLG4XMaGleL0eSrKOcsbw0a3aLnWQL2IlZ8/OFnVZzNq1HVWIlriex67v9TG+DnumkuJjIldtoHxTbh9tbbmbtbKinshlrawILGstkcmppG/+s11f+8qCPEzFRZx7w+2AL2NLqQmhIi+H7sNHYSkrpd/4CY1u7xe5bCZjq7sRZmz9C4/bTe9aETU8LgGZQklFXg41FjOasJbfKNJFx+BxubCZTWgNLTvvOe015O7djVQmI3XwsMBrWmOxoG7FsTs7XSLXSSLq/vuo+vFHSl95lYTXXu3o4Zww3upqip56Cs3IkYTf1LLww/ZC1cd3B8ORno5Qa3NVnkKhRTt+PIZrrqH05ZcJGTMaZY8ep+zYpxJnTg75996LZuhQEue9g0TlC/ZV9e1L2MUTyb3tdnKvvY7Ub75GkZrasYPtoov/QQSJwNgZ3QnRKdjwbTrVFicTru1D9p4KNi3OoKrSQb9x8YyaktapAqfD40OYePtA8g8b+ePbI3z3n230HxfPGZf0QNGEQJS5q4wN3xzBbnUx7KJkhlyQfFKypFqKVC6h//gEeo2OZdfPuexYk8Phv4oYP7sXPYZHNzp58nq87P4lny3LM1GGyDn3uj70HtM2x1F7oQlTMHZmDwacncimxUdZ9/kh9v9ewIRr+xKZ2HgHsRqrk42LMjj8VzExaWFc8vAw4nroT93AgxAeH8JFtwxg8LlmNi5KZ+nru+g5Ippxl/dq8nuQf9jI+i8OUVVhZ+CEREZOSWuxYHmyEQSB5P4RJPULJ3tPOZsWH+XbF7bSe3QsYy/pTlWFnRVv70ZrUDH13sGE6E+sKUUXHYsgkRAaGRkQEdrKkZNUqgig0oZit1XhqK4O6g5ShWiJSEym8MhB+p99XrP7s5lNxPes71AyxCWw+6fVeD2ednGi5e7bDcDk+x9l5RsvUZaTRXRq8G55dck7sJfkgUPq/abH9+6L49svqCjIIzIp5YTH1hIq8/NwOxzEdu/Zqu00Oj3Rad3J3r2jRSJX9q7tpAwaWq+rZWhEJBKpFFPJsbwnc2kJGp0eWRNxMdpwX/dEa0U5UXVEQmtFOfFNOKOaIiopBZfDjrm0pNWCUmPk7d+LRCoN5JYJgkBEUgrleTk4bDacNdWENRI6D8eC4W2mylYfO2vXdmK79ww42wSJBENcPJUF+TiqbS0uVQQCpaOWspIWiVyZO7ey+p252KssAPQ761wuvnsOXo8HZ001qpCO6SB6MugcZ/O/IVKtlqgH7qfo/54i/IbrUQ9q/xPOqaT09ddxl5eT/NGHp+wOhh9FairI5T6RSyoFqRRF9+6ndAzRDz+E7a9NFD76GKnffoPQjh1rOgOi10vBo48iDTeQ8MbrAYHLjywqipQFn5B9xZXk3XkXqd99i7SDWil30cX/OoMmJKEJU/LTx/vI3V+B3eYmZUAEk+8aTHj8qXXTtIbE3gYuf3Ik+34vZNOSo+Tsr2DCNX1I7le/pbjN7OC3hYfJ2l1OysAIzprdi7DIU1Nu2RLkCikjJ6fR94x4/vj2CD99uJ/0rSWcfWXvBmJDaY6FdV8coiLfyqAJSYyaltahQt3xhIaruPDm/gw8J5H1Xx7iuxe2MmxiCiMuTkUqP3auF0WRI5uL+eO7DERRZMK1feh7RlynKuGP7abjkkeGB8a58Nm/GHdZT3qPjq03TpfDw6YfMtj7WwHxPfVMunNQp/3eCIJA2uAoUgZEcGBjEZuXZXJ0Zylej0h0ahhT7h500kp2uzi1hEVEUXUCIpcoiqRv+ZMeI0a3e6ki1GZyWa04q6tRhwZ34sb17ENRRss6zgVzcoXHJeL1uDGXlWCIPfEqmMLDB4lMSqHnqLEo1Boyt29pVuSyGisxFhVwxuX1Kzdie/QCQaA448gpE7mKj6aDIARC+VtD6uBh7P1lTbPup2qLmeLMDIZcNKXe4xKplLCoaMwlxzosWspLmxR+wOdwEgQJVZXl9R6vMlYSGh7RyFZNE5mSBkBZXnb7iVwH9hLbvRfyOvOdiMQkSo5mBMbeVHmlKkSLIJFQUysWtRRRFMnbv4cBEy6o97i/VFcql7dO5KotHTWXlQbclI1xeNMfrHjjv3QbOoIJN9xO7r5d/PzB2wy7eBqhte481d9obtfVeuUkopsxA2WvXpS89BKiKHb0cNpM9Y4dGD//gqgH7keRcmp+2OsiyOUo09JwpKfjOHIERVrqSQ+dPx6JSkX8Cy9gP3SIyk8/O6XHPhWYFi3CvnsP8f/+N9LQ4CUPUp2OxHnv4C4poeQ//znFI+yiiy78eDxeLBU1SAQBu81NWKSK867v22kn6nWRSCUMmpDIlU+PQh+tYfmbu1n/5SFcTg/gc299/fwWirMsTLxtAJPvGtSpBK66aA1KJt4+kIm3DaA4y8LCZzdzZKtvQuD1imxbnc33/92OKMKlj41g3OU9O5XAVZe47jouf3IkwyelsmNNDt++uJWKAivgy3lb88E+1i44SFK/cK765xj6nRnfqQQuP4Ig0HtMHFf9czQp/SP4ZcFBVr27lxqrE4DCDBNf/2sLB/8sYvzsnsx4cOhp870ZcFYCY6Z3w+3y4vWIeFxeLBX2jh5aF+1EWFQ0loq2i1zleTkYiwrpOfqMdhzVMVQhWhzVNkTR26jIFZWSRmV+Ll6P7/d8x6ql/PT+m4heb731RK/XV5alq+8I08fGAmBup25xxqICIhKTkcrkJA8YTM6+Xc1uU5R+CICE3v3qPa5QqdFFRQe6Qp4KijMzCI9LQKlpff5j2uDh1FRZKM3ObHK97F3bQRRJHTyswTJ9TBymOiJXVXlpk3lcAFKZDI1ej7WyIvCY2+nEXmUJuLxaS4jegCo0jPJ2yuUSRZG8A3tJ6j+w3uO6KF++VXVt18Sm8swEQQgIv62hIj+XarOJ5P71S37DIqOoqizHUW1D0Yr3W6nRoNKGYiktaXI9Y1EBP77zGn3OOIsZjzyNPiaWAedcgEan5/CmDThsvufR5eTqokUIUinRjzxC3q23UrV2LWEXXND8Rp0M0emk6OlnUA8aRPi113bYOJQ9e+I4kg4SAVWv9m0h21J8r8E1lL31FqEXXoAi6e/RwchbU0PZ62+gmz4NzYgRTa6rTEsj+onHKX76GULPP5/Qc845NYPsoosuAKgosLJ2wYGAM6j78ChWv7+Pxa/uYPoDQ0+bsqWwSDXT7h/C/g2FbPwuncJ0E+FxIRzdWUba4EgmXNMHdWjnKblsiu7DoknobeD3r4/w80cHyNxVTrXZQdFRM8MvSmHk1LR272h5MpDKJIyakkb3oVH8/PH+QFnp0Z1luJ0eJt42gO7Dmp7gdBbUoQouuKk/PUbE8OtnB/nquc0k94vgyOZiYtJ0TL1nMPqYE+9ieSrZsy6PDd+k02dMLH3OiOP3r4+w6MVtjJicyrCJKafFZ6yLxgmNjCJn7642b5++eSMKtYbkAUPabUx1UWm1UHvDvlGRKzkFj9uNsagAhUbDuk/nA9D7jLNIGXhsXHabFa/HQ8hxTi5teAQIApaK+i6gtmIsLiS+VqyK792XP7/7stlSyNLsTNRhuqCCTHhCEpWnUOQqOXqk1aWKfuJ69UGhVpO1azsx3Rp3gmXu2Eps955BBR1dTBwFB/cF/m8pK2uRqyw0PIKqimMil1/w0hraJnIJgkB4XALGwvZpSlBZkEeNxUxSv/pVVmGRUditVVhqs/GOdxoej0qrxW47JnJVW8yoQ8OavAGUd2AvEqmM+N71A961hnCsxkokUhmqkNbdeAmLisZc1rjIJYoiP73/FtrwCC68/d6As08ilZLUbyD5B/cFxHGV9u+T7dh1RjzJaMePI+SMsZS98UaDOxmnA5VffIkzK4vYZ//pKxXsIJS9euFIT8d+6PApzeM6nqj77kMWHk7xP/5xWrvz6mL67js8ZjOR997bovX1s2YRcuaZlDz/L7wOx0keXRenAlEUKZjzEKbvf+jooXTRCKJXZNfaXL57cRset8isx33OoLjuei55aBguh4cfXt2BpaKmo4faYgRBYMBZCVxwcz/MZTUc3VlG7zGxTLx9wGkjcPlRhci54KZ+DDo3kaPbSynOtDDhmt6MmdH9tBMfIhK0XPrIcCLiQ9izLh+P28vMh4adNgJXXdIGRTL9wSF4PWIgR2z6g0NOO4Fr26psNnyTzpDzkzj3ur4k9PKV/g6bmMLWldn88NJ2KgttHT3MLk6A0IhIbEYjXq+nTdunb/6T7sNHIZOfnPJVpeaYw0PViOPfH9RelptN7l5fHpZEKiW/jlACvlJFALWufsi1VCYnRG+gqh1ELpfDjrWyIlDeFt+zD26Hg7KcrCa3K806SnRqt6BCRXh8IpUF+Sc8tpbgcbsoy8kipo0il1QmI3nAYLJ372jiGG6yd++g27BRQZfrY2IxlRYjiiIetxtLeSn6mNhmj60Nj8Rap1wxIHJFtE3kAjDEJ1DZTiKXL49L1qCTYGiEr2TPWFSAXKVGrlQF2zyAKiQUu7UKgF8/eZ93b72aXz5+r8ltSo5mEJWS1mDf2vAI3A4HDpsVhbp1IpcuKibQ+TIYWbu2kX9wH+fddEeD48Z070l5Xi41Vb7nofwbOblOryuv05TIe+/FmXGUqjVrOnoorcJVWkr5229juPJKVH06tqWosmdPvFVViFZrh4pckpAQYp/9J7Y/N2FZsaLDxtFeeJ1OKj76GN2UKSgSE1u0jSAIxPzf/+EqKaHykwUnd4BdnBLMS5diWbUKqf7v01Xl74Slooalr+9k46IMBpydwOVPjqjXnVAfo2HmQ8NAFFn8yg5MJdUdONrWkb6thJ8/PoAuWkP3YVEc/quY9V8exuM6vW4KiV6RrSuz2fNrPom9DRjiNGz4Oj1Qvng6Ybe5WPPhfkpzq+g5Mgav18uqd/cEyhdPJ4ozzSx/czcSiUC/cfGUZFex4u091FQ5O3poLUIURTYvz2TzskxGTU3jzFk9Ax1VpTIJo6d149JHhuNyePj2ha3sWpuL6P173ID7X0OjMyCKXmoswTN+RFHEZjLidjb87FYWFlCel3PSShWBetlFjTm51KFhhBjCqcjLIf/gfiKTU0kdPIzi43K6bP5ysCBOmRPNJvPjz5LyZ3vFdOuBRCqj8MjBJrcrzc4kOi147q8hLh5zaUmgHPNkUp6bg8ftbrOTCyB18HAKjxyk2mIOurzw8AEc1Ta6DRsZdLkuJha3w4HNZKSqvAyvx4M+pvmsNG14BNbKCtxOJ5ayUqqMPpGrrZlc4BMYjUUFAYOB1+thx+pl/PrJ+60WRfMO7CW2R/08LiCQS2UuLQ762TweldZXrlhVUc6un1YSkZjM7p9W+rLUGqE0K4OYIJ+vkNrQ+NYGzwOERcdgacLJtWXJIuJ79SUlSElqeHwCLnsN5lLf90Xd5eTqojVohg4lZNw4yt5557Ryc5W9+iqCUknUfS1z+JxMlL2O/cgruzffGeVkoh0/ntALL6T05Vfw2k7vO6dVa37CXVJCxK23tGo7Zbc0wq+5hvIPPsBdx5LcxemHq6SEkn+/QNi0qYSe13xHpC5OLelbS/jm+S2Yy2qY/uBQxl3WE5m8oas2LFLNzIeGI1dKWfzqDioKO7cg4fF4+eO7dH76cD9pg6O47PERTLxtIOdd35fDm4tZMncHNvPp4RR11LhZ9d5etq7MYvS0bky7fwiXPTaCbsOi+PmjA/z5fQbe00R4KM+38t2LWynONDP1nsFceHN/Zj85CrlKxqKXtpOxvfG7xZ2NQ5uKWPzaDnRRamY/NYoJ1/Rh+gNDqCy08u2LWynLreroITaJKIr8tSSTbSuzGTuzOyMnpwVdLyYtjMufHMmAsxLYuCiDFe+cPiJeF8fwT6r9Lqe6lOVk8flj9/He7dfyzs1X8vvCBXjc7sDy9M0bkSmVQXOV2gtFHUGgqZImQ2w8xuIiSo4eIb5nH8ITkjAW1XfgVJuNAA0yucDnaKs6gWwyP8baroB+J5dMoSAmrTuFRw41uk21xYy1sqLRcPqwyGhE0Vsvb+pkUXz0CIJEQlQLukE2Rs9RYwGfyy8YRzb/idYQ3ujz1cf4XjtTSVGgy6I/N60pQiMiqaos57t/PcWH995CUfphFGo1CnXbHbSG+AScNdWB78ef337Juk/ns/+3X/ju+f/D5WhZPmEgj6vfwAbL/OWyVZUVzZYqgs/1ZLdVkbNnJ6IoMvuf/8EQl8C2FYuDru92OinPzw0qovpLOd1OZ6sz2HRR0VjKSoNqDMaiAgoO7WfIxClB3YmGOJ/BobKwAIlUhkx5ekRetIQukesUEXn3XaeVm6t6x07MS5cR9eADSHUd7+6Qx8WBVAoSCfKEhI4eDtGPPorHbKb8/Q86eignhOm779CMHImyR+s7t0TecTuCRELFhx+dhJF1cSoQRZHiZ/6BRKUi9sknO3o4XdTB7fKwfuFhfvpoPykDI7ni6VEk9m48BBV8Qegz5gxDHapgyas7O+0k3lHtYsVbu9m7Lp/xs3tywU39kCt9wl2fsXHMfGgYlgo73724jZLs1nUuOtUYi20s+s82CtNNTL5rECMmpSJIBGQKKeff0I9xl/Vk1y95rHh7N3abq6OH2ySZO8v4/qVtyFUyLntiJMn9fRfdYZFqLn1kOKkDI1gzfx+blhzt1G4hr1dk4/cZ/PLpQXqPjvVl1el8F+4JvQxc9sRINKEKvn95O4c3d06nnSj6nsOONTmcOasHwy5quumPTCFl3OU9mXLPYEpzLHzzry0UHDaeotF20R74J9W240Quc2kJ3z7/fwBMeeBxRkyZwfYVi1n9zmuIoogoihz8Yz3dh41qtrzqRJCrfA1AZAol0iY6jOtj4zCVFGEsKiQ8IQlDXDyWsjI87mO/f9VmEzK5AoW6YVOR0MiodhG5TEWFyFXqemJFfO8+gWD5YBiLCgGISAieuevvLOjPbDqZFB/NIDIpBbmi7aKDRqcnecBgDv35W4NlHrebw5s20PvMsxvtvqiPrm0EUFKMqbgIiVQWKOlritDwCBw2G4WHDyCKXvL27WlzHpef8Djf3K+yMB+rsZJtKxYz5pLZXP3Ca1jKSti2PLiwdDwV+bm1eVwNRS6pTIYmTFfbFEHf7L5U2lAcViuFR3xdPNWhYfQ/+zyObt+M094wOqI8NxvR623EyXXs+k7Z6kyuGDxuN1ZTZYNlB/9Yj0KtocfIMcG3rXWv2SorUGm1nbKhTFvpErlOEaeTm0sURUr+8x9U/fqhv/TSjh4O4Avxl4aGIgkJQWji5HqqUCQmEHHzzVR+8gnO3NyOHk6bcGRlUb1lC/rLL2/T9lK9nvDrrsP41Ve4y078gqSLU0/Vmp+w/vYbsf/8B1K9vqOH00UtppJqFv13O4f+LOKcq3tzwU39UGpalrOiCVMwY85QwiJVLH298wldlvIavn95B2W5VUy9fwiDJiQ1uKiKTdNx+RMj0RqULH51B5m7OufvS2G6ie9f3o4gwGVPjCB1YP1244IgMPi8JKbe5xMevn9pO5byzpeZJoq+vLfVH+wlZUAklz46HF1U/cmnXCnlwpv7M3Zmd3asyWHNh/txu05+yU5rcdrdrJq3h91rcxl3WU8mXNMHqaz+pW5ouIqZDw+j54ho1n5ygC0rsjpVxqboFdnwTTq71+Zx1hW9GHJ+cou3TRkQwRVPjUIfo2HJ6zvZvDzztHER/q+jqT0HV5vqi5PrPv0AuULJZU//m95jx3Hm7GuZdO8jHP7zd/b+uobSrKNU5OfS7+xzT+r4/KVdMmXTeYn6mDhMRYW4XU7C4xPQx8Qjit56XfpsZhMavT7ohDo0Ioqq8vIT/k6aioswxNbvAhvXsy/m0hKsxoZiAIC51q2kayR3yl/OZmmHcsrmOJHQ+br0HXcO+Qf3Nxhzzp6d1FjM9Bs/odFt5SoVIXoDpuJCTCWF6KJjmgzt9+MP7RckEvqddS7mspI2d1b0o4uJQxAkGAsLOLhhHQDDJ88gPD6RQRdczI7Vy3A5m3d/B4LfewWP4dHo9Diqq9GENW/wUGm11NislGZnBt6rPmeehdvhIGvntgbrl2QdRZBIAtl1dZErlMhqBc3Wlivq/OJraUPxNXv3DlKHDG9ULJUpFChDQqixWlCoOmcn67bSJXKdQgJurp/XdvRQmqTq55+x79lD9CMPd2jYfANksk4hcPmJuPUWpJGRlPznvx09FMA3UanesYOKDz+kdO7rGL/9tknxybRoEVKdjtAL2971M/yG6xHkcio+/LDN++iiY/BYbZS8+CLac8/tKlPsRKRvK+HbF7fidnqY9fhw+o9PaPWdNVWInGn3D0EXpWbpGzspz+8cQldxpplF/92Gx+3l0keHN+lMC9ErmTFnKKkDI1n9/l72rj81Yb8tJX1bCUvf2ElkopZLHx2OPrrx8oKkPuHMemwEoldk0X+3UZrTedxp3lpBZeOiDIZdmMxFt/RHrgh+3hcEgWEXpXDxbQPJ3lvOstd3Ybd2Hneazexg8as7KMowMeWewQw+r6GA6kcml3LudX0ZPb0bW1dk8cunB/G4O/4GpOgVWf/VYfb+ls85V/dm4Dkty8qsS4heybQHhjJqShrbV2Wz7PWdVFu6yhc7O3KFEoVaU8/JVZKZwdFtmxl/1fX1crB6jx3HgAkXsv6zj9i9djUanZ7UQSevVBEITICl0qavw/WxcTiqfVEehvhEDHG+DCdTcVFgnWpz406ZsMgo3C4nNVUn9jtpKikMlCr68QsbRY2ULJpKitDo9I1O9hUqNSptaJMh3+2By2GnPD+XmG4nLnL1GDkWhUrF7p9WAgSMFjtWLyMqtRtRKcHLoP1EpXajODODspwsIhJb1lVeG+G74aOLjiF5wGBc9ho0J1gVJJPL0UXHUFmYz6GNv9N9+GhUtSHpQydOxW6t4simP5rdT/7+4HlcfjQ6PW6HA6W2+QB2VYgWh9WKqaQIfW32my46lvD4xKCdUsvzcjDEJSBTBBeKFRrf564tmVxAg1wuu81KcUY6KQMHN7m91hCB3WpF/jcqVYQukeuUohk6FM3IkVR8/FGnumtYF9Htpmzu64SceSYhY8d29HDqIbpciK7Oc6EmUauJeeRhrL/+iu3P4PXup4qqX38la/oMcq66mvJ338O8bBnF/3yW9HPPo/S1uYjHBZWKHg+WZcsJmzoVyQn8qEnDwnxurm++xW3sKo04nSifNw+P2UxMV5lip8Dj9vL7V4f56cP9pAyI4PInRhKZ2PYAUKXGJ3SFRahZOncX5fkdm9GVsb2UJa/tRB+tYdZjwzHENn8RJ5NLueiW/gw+N4nfvz7Cn99ndHiZnCiK7FiTw08f7qfn8Bim3jukRS47fbSGSx8dTlikmsWv7iB7z4l3DztRnHY3q9/dw77fCzjn6t6MndkjEGreFN2GRjHjwaEYS6r5/uXtmMs6vtGBqaSaH17eTo3FycyHhwdKLZtCEARGXJzKBTf3I31bCcvf2tWhJaWiKPLb10c48Ech517bl/7j2x7NIJEIjJycxvQHh1JZXM23L2ylOCt4+HQXnYcQvb5eJtfedT+jDY+g9xnjG6x71jU3AiIHfl9H3/ETWuSwORGktV0bJbKmf+/8OU4SqZSwqCi0hnCkMhnm0mMT8GqzsVGnTGitQOIPny84fJCPH7idL/9vDhX5La+cMBYXNRC5QiMiCY2IorCRkkVTSXFg/I0RFhndaDB+ZWE+e9b+yJ5f1lCRn9fisR5PaXYWotfbLk4upUbDoPMvZueaFSx86iHmXjWD7/71FDl7djJ6xmXN3kSL79WHgoP7KUo/TGz3ljX+8ru2VNowwhN8Qr1UfuIdkw3xCZTn5VCafZTuw491hDTExpPYdwCH/vy9ye39eVzJ/RuWKvoJ0elxu1wBAa0pFGoNLocdh81Wr+tk8sDB5O7b3WB9Y1EB4fGN/64rlL6bZYpWZnIpVGrUoWGYjxNfCw7tRxS9JA8Y0uT2IXoDzprqQEny34UukesUE37zTdh376Fm+/aOHkpQTIsX48zKIvqhOR09lHqIbjdeqxWv1YbX0XnCiEMvvhj1kCGUvvJqh5ShemtqKHjkUfLvuhtZZCTJCxbQa8tmeq77lV6b/iTy9tup+Phj8u68C6/9WChj9fbtuMvKCJs86YTHYLjmagCMX311wvvq4tRgP3KEyk8/JfKOO1AkdnzG3f86NrODpXN3sn9jIWdf2YsLb+6PQn3irlW/0BUa4Std7KjuePt+y2fNh/voNjSK6Q8MRa1t+cWuIBEYd1lPxl3Wk51rc/n54/0d1nlR9Ir8/vURNi0+yohJqZx3Q98GpXBNoQ5VMP3BoST1DWfVu3vYv6F92qG3BbvVxdLXd1FwxMTkuwe1WlCJ7aZj1mPDEUWR71/a3qHutJIsC9+/vB2pTMKlj40gMrF1LdB7jYxl+v1DKc+z8sMrO7AaWxZg3J6IosjGRRns/72ACdf0oe8ZTU+0W0pCL0O90t99vxd02pusXfhcJP5yRa/Hw+FNG+hz5tlIJA0FLLU2lIQ+/fG4nE2WnLUXgiAgkUqRSJv+zfOX+ml0eiQSKYJEQlhUdD2XSbXZFDR0Ho4JJFZjBS6ng+WvvYBSo8Flt/P9C/8IuMSawu10UlVR3kDkAp9oU3g4eIdFU0lRPbEiGKGRDYPxRVHk94UL+OTBO1j74Tx+nv82Cx66k++ef7JRYa4iP49fP3mfr555lGWvvkDOnl2BZSVHjyCVy4lMbjqLr6WMmHoJHpeL0uxMBp0/kdy9u1FpQ1vUjTOuZ29cDjsuh4PEJsShusgVShAE5EolYVE+l1FLbqA0hyEugfLcbACS+g+qt6z32PHk7t3VpAOwIj+XmioLiUHyuPyow3SIXg+qFji56gbE1xVHkwcMxlxS3CC7rbIwH0N84+5cfylwa51c4MvlqiskA5RkHkUdGoau1unVGCGGcFx2e6PuttOVLpHrFKM96yyUPXt0yrBub00N5W+/Q9ikSaj69evo4dTDVVQEtS17XZ0oA0sQBKIffgj7gQNYVq0+pcd2lZSQc821VK1dS/xL/yXpow8JGTM6UGIq1emIuudukj/8kOrt2yl85JHAxa1l9WpkcXGoBzdtYW0JMoMB3cwZGL9c2KkEyC4ap/Sll1EkJhJ+040dPZT/eUqyLXz34jbM5TXMnDOMAWcntmvwp790UWtQ+oSuU9h1URRFtq3K4revjjBoQiIX3NgPqbxtlx2Dz0ti4q0DyNxVzqp39+Bynto8KI/Hy8+fHAiIEKOndWvT+yRXSJl4+0AGnJ3I+i8Ps/3H7PYfbDPYTA4Wv7YDS3kNMx8aRkoLXE/B0EUdc6ctmbuTgiOn3s2bs6+CJXN3oI9Wc8nDwwkNb9tFenxPPZc+OhyXw80PL+/AVHJq3Wmbl2Wy+xdfBle/M+Pbdd9ag5KZDw2j35nx/LbwML9+fgj3Kf7+dNEyNGF6qi0+x13x0SPYqyyBDnnHI3q9mIp9QemNiTbtjSCRIGkkpNyPKkSLRCqtN1E/fgJuM5sIaSQHVKPTgyBgMxnZv24t1RYzk+9/jEue+Cd2axWbvv+62XGaS4tBFDHENvwuxffqQ3FmOjtWL2fP2h/r3aA2lxSja8bJFaI3YDOZ6j22ddn3bF26iPFX3cB9ny3ivs8WMeWBx6mqqODLJ+dwZPPGwLpej4ffFy5gwcN3cWTzRsIio7CUl7Lo30+xY/UyAIozM4hKSUPajGuupWTt3IbX4wERdv+8CqVGjd1aRWlWZrPbuutUglhKWtaow2mvgdr5hr2qNi5BbB+Ry2Y2oY+NDzj+/PQcfQaiVyR9y6ZGt28ujwuOuaha6uTyE1ZHSIrv1ReAovTDgcdcDjtV5WWBAP1g+N/vtohcuuOEZICynEyiUpu/VtHo9LidjpPauKIj6BK5TjGCREL4TTdjXb8eR0ZGRw+nHpVffIG7ooKo++/r6KE0wJlzTNhyZGd33ECCoBkxAu2ECZS9/nqDssCThauoiJxrrsVdUUHqwi/RTZvW6I9YyJjRJLz2KlU/r6XykwWIbjdVa34ibOLERjuqtJaI66/HU1mJedmydtlfFycP68aN2P74g6iH5iBpJBegi1PDoU1FLH5lB1qDksufGElst5PTyVYVImf6/UPR6JQsnbuTysLm74SfKKJXZON3GWxelsXoaWmMu6znCd/J7T4smsn3DKLwqJnlb+7CUeNup9E2jdvl4cf393F0RykX3jKAfuNOTISQSATGz+7JyMmp/LUkk02Lj54yd425rIYfXtmOs8bNJQ8PIyq57SWxAGqtgmn3DyEmNYzlb+0me++pK8PM3FXGqnl7SOwTzrQHhqLSntiE0BAbwiUPD0emkPDDqztOWZbdtlXZbF+dwxmX9GhTBldLkMoknH1lb867oS/pW0v44ZUdWCo6XxOE/3VUoaHU1IoCWTu3I1epGy0RO7BhHabiIhL79mff+p9PyfgEQQChZdeN/vJGAF1UTCDHShTFWieXPuh2EqkUTZgOm9HIwY2/0W3YSPQxsYRFRjNs0nT2/Lya8rwc9vyyptEAeGNt/pc+qMjVF6/bzboF7/Pz/LcDwpKzpppqsymo+6suIXoDNvMxQd9qrOTP775kxNRLGDV9FjKFArlCSe+x47j2P2/QbdhIVsz9L4c3bcBaWcG3zz3JtuU/MO6K67jlrY+YfN8jXP3CXIZPnsH6Tz+k8Mghio+mt0upIvhe761LF9Fj5FhueetDZj7+D25+62P0MXFsX7mk2e0LDx8kNCIKQ1wChXVEm6aw1AqaNVUWKot8eZpe74kL64a4eBDFoMHtIXoDiX37k76l8fiYvP17iOvZq0kxR6H0N1hoXvDxi1xSubyeKBaiNxAWFUNR+iGcNdW4HPZA586mnFxSmRQEocnupY0RFh1TLyvO7XJReORQo51C66LWhuJxu7ucXF2cOLrJk5DFxFDx8ScdPZQAHouFivkfYrj8chQp7WOPbU+cOdkgkyEJDcWVk9PRw2lA9JwHcRUWYvzm25N+LFdJCTk33AAeDylffIGqb99mtwk991zCb7iBsjfewLJyJZ7KSsImXdxuY1KkphJ6/nlULvi0qxSiEyN6PJS+/ArqYcMIvaDtDQe6ODE8Hi8bvjnCL58epNeoGGbOGUaI/uQGfqq0cqY/MARNmIIlr+88qU4Vj8fLL58eZPe6PM6+shcjJqW1mzstqU840+8fQmWhjaVzd1JjPbk3Fpx2Nyve3k3+wUom3TmIHsOj22W/giAwamo3zpzVgx1rcvj96yMnPW+sotDKD69sR5AIzHx4WIty0VqCQiVj8t2DSO4Xzup395K+taT5jU6QzF1lrPlgH2lDorj49gGNhuW3ltBwFTMfGoZWr2TxqzspyjC1y34bY9faXDYvy2TU1DSGXtjyLoptpc+YOC59ZDh2m4vvXthG/qHgXea66BjU2lDsVgumkmK2LFuEy17Dhq8+bRCHUVNlYcNXn9Jr9JkMuWgKJZkZ9boXnjQEgeZ+yl0OO16Pp961YFhUNOYy3/icNdV4XK5GRS7wiQSm0mIKjxykx4gxgceHTpyCx+3iyyfn8PMHb/HVUw9htzV0J5uKC5EplYToG5ZE6muD8JP6DWTQ+RPZvPhb3E5nwGnWXLliiN5AtdkUEG12/7wKiVTGmEtmN1hXrlIx6b6H6TPubFa++QoLHroLc0kRl//jRUbPuAxZrRAoCAJnXX0j0Wnd+PWT9zAW5rc4/6o5So6mU1mYz+ALLkYbHkG3oSNRa7UMuWgyR/7aGPT1q0tlYT4RScnEdOtBaXbzzi8g4HQzlxRRnpuNRCLFYT1xF7m/7K5uE4a69Bg1lty9u4OWtIpeL/kH9pHURKki1BFnWzCX8TuuVNrQhl2iu/ckY+tm3rn5Sj689xayd+8AaDKTS5BI23ytFBYVjaW8DI/bd/Nv5ZsvU202kbFtMx5301mT6tAwvB5PV/B8FyeOoFAQft11mJcvx1Vycjt0tJTKzz5HdDiIuOP2jh5KUJw5OSiSklCkpnY6JxeAsmdPdDNn+MK82+GHvDE8Vit5t96G6HSR/NmnrcpTirrvXqQR4ZS+/gbyhARUAwa069gM11yL8+hRqjdvadf9dtF2RJcL64YNlLz4H/Juv4PM6TNwHDqEsmcPHIcOdQmSHUCN1cnyN3ex77cCzrqiFxOu7dPmEr7WotYqmP7AUFQhcpa+vhNLefs7OTwuLz++v4/0bSVceHN/Bpzd/s6U2G46pj84FKvRzuJXd2IznZwyabvNl1tVllPF1PuGkDLgxFqgB2PI+clMuLYP+34vYO2nB/B6Tk7eWEmWhcWv7kAdquCSh4cTFtG+AbMyuZSJtw2g56gYfvp4P/t+P3l5Y3UFrgtv7tdsRlBrUYcqmPHgUCITtSx7Yxc5+yvadf9+9v1e4OtqeVEKIyalnpRjBCMqOdTX2CJJy7I3d7NnXX7XuaCToNL6nFy/f/ExosdDfO++bF+xhBWv/9dXAobPobHq7VfxOJ2cc8OtpA0dgUyuIL1OSdxJQ6z9awK/Y8XtPPa7rIuOwWGzsXX5YgoOHQB8Ad+NEWIIx1iYD6JYL3tJqQmp7Uwnct1Lb+Gormbn6uUNtjcVF2GIiQsqGGTu2Ar4xIxhF0+jpspCzt5dmEpq3V/NlCtq9AZErxd7VRWiWBv8P+7sJkvMwqKiEb0e3E4nlz3zAol9+jdYRyKVcubsaynJ9FX5xHTr0eQ4WsqBDesIMYSTfFyHvV5jx+H1uMnc3vQ1e2VBPuFxCehj47CUtkxIra51urkcDg5uWIfGYKCq8sRdvs5q3825xpxOPUaOwetxk7VzW4Nl5S3I4wICDRxakrPs74YYLCherlJhLi1mwIQLCdEb2LZiMUptaKMCHQACbf4tjknrjtfjpiw7k/LcbDJqHW1V5aUc/OO3Jrf1548JQbL/Tme6RK4OQn/5ZUjkcoxfLezooeCpqqLys8/Qz74ceXT73KVub5w5OShSUlCkpODshCIXQNS99+Ktrqbio5OTtya63RQ8OAdXURHJ8z9Akdi6yaNEoyHmscdxFxWh7NevXXN/ADSjRqLo3r0rgL4TIHq9GL/9lowLLiTv1tuo+vlnRFHElZeH1GDAsnwFWTMvIXv2FVh+/LFDmib8L1KWV8V3L2yjstDGtAeGMPCc9s3fagnqUAXT7x+CRCZh6es7sRrbTyByuzysfn8veQcrmXTXIHqOaDrs9ESISgpl5kPDcNnd/PDK9nYvvaqpcrKkNrdqxpxhxPfUt+v+69LvzHguvLk/GVtLWTN/Px53+34fizPNLH1jJ4aYEGbOGYom7OSUKUukEs67ri8Dz0nkt4WH2bOu7d3FGuNkC1x+FGoZU+8dTGLfcFbN20PmruBlUW3l0KYiflt4mEETEhkzo235bieCSitn6r2DGTQhkQ3fHGHdF4c6rKFDF8dQhYbirKkmfesmRFFk+KTpTHvoSbJ2befTh+9m/Wfz+fLJB8nbv4cpDzxOaHgkCpWatKEjSN988rt8i6LY7CTcWOQTuANZTIAu2ueO+v2Lj1j19qsAzTq5LOVltWVfx+Yl21ctxeVw4HY6kavU9BozjgO//xoYU1lOFhu++pTKwryAY+t4MndsJcQQTnHGEfRx8ehj4sjcsQVTSTFylRp1I10fA2OrDcy3mYyU5+VgKSuh56jgAe6mkmK+ffYJNi/+lmGTZyBTKNi67PtG9506eBgavcEXbZPQPjeIsnZuo8eIMQ2aF4SGRxLfqy9HmvjceNxuzKXFhCckEhYZjdVkxO1qvgOtzWQMlL4ZiwoJj0/EWnniNwvKakPn6wqodQmLjCamWw/St/7VYFnu3t1I5XLiezdf/QI0634CUNaWKyqU9W8aeT0ecvbsBGD0JbO58Pb7qLGYUYc2Ew8giiCKATdWa4hO64FMrqDg8AH+WvwtqloxLXXwMLYt/6HJ63yV1rfuqT4PnWy6RK4OQhoaiu6SSzB9822Hh3VXfv45ot1OxM23dOg4msKVXUfk6oTligDy2FjCr72Gyk8/w13Z/iUAJS+8gO3PP0l843WUPdp2h0ee7KvNdmVnt/udW0EQMFx5JVW//NJpHIr/i7hKSsi96WaKn/kHmmHDSPvhe7r/shbt+PGIbjepX39Fr782kThvHhK1moIHHiTn2uuwHz7S0UP/W5O+tYQfXtqOSivnsidGktAreGepU0GIXsn0B4bg9Ygse2Mn1ZYTL/lzuzysfm8v+YeNTL5rUJvDzFuDITaEmQ8PA2DJq+3nTKuxOln6+i6qLU5mzjnx3KqW0HNEDBffOZDsfeWsmb+v3YSu4ixffllkopap9w1GqWmfIOPGECQC4y/vyZALktnwTTq7f2k/oetUCVx+ZAopE28fQLchUaz5YB8Z29vnvJa+rYRfPztIv3HxjLu8Z4dNLCRSCeMu68l51/fl8OZilszdic3c1TymI1HXTjb9pVLRaT3oMXIM1/znDRL69Cdj619oDeFc+dzLpAwaEtgubegIio+mYz+JlQS+YXkRxaZ/myoL85GpVNRUWQKCSF2hylFbHtecyGW3VhHXs0/g+1FTZWHr0kUMnHAhEqmU7N076HPGeEwlRZTn5eD1eFjxxktsWfIdxUczguZxiaJI3v49JA8YjN1mpeRoBt2GjSR79w7MJUXoo2Oa/T76SyBtJiPZu7YjUyobuINEUWTPL2v47NF7qaqoYPYzLzLhuls465ob2bfuZ3L37Qm6b0EQCNHpEb1eHNUnHilgLi3GVFJU77NSl7ShI8jbv9sXSh8Ea2UFXo8HXXSs7z0UxQadJYPhayxgYNT0WUQmp5I2ZDjVFvMJ53KVZmciV6oaBKzXpcfIsWTt3FYvMB8gd98uEnr383V+bAK/GORqQcayP9vr+DI/f/4aQGV+LrHde6JQq3HVNH2N4n8fWtJB9Hhkcjna8Ag2fPUph//8ncS+/ZGr1IyaeTkV+blkBnG3+WlJJ8nTkS6RqwMJv+ZqPEYjlhUr6z1+Km3jHquVyk8/Q3/55chjOqeLS3S7cRYUoEhNQZGagqesHI/15Acnt4Xwm29GEAQq5n/Yrvs1ff8DxoVfEfvMM4Sc0XzL38aw/fYbglKJIz2d6q1b23GEPnTTpyEoFJgWfdfu+z5dEEURV0kJjqws3JWVp/T7bD98hOzLLseZlUXygk9IeO1VX6dUl4uKjz8mbNIkFCkpCAoFoedOIOXTBSQv+ARPZSVZs2Z1ufBOAl6vyJ8/ZPDTR/vpNjSKmQ8Pa3MHuPYkLELN9AeG4qh2s+zNXdhtzd+1bAy308Oqd/dSeMTE5LsHkdQ3vB1H2jRhEWpmzBmGIBVY8tqJC112q6tW4HIw48FhhMe3T25VS0gdGMmkOwaRu7+SHz/Yd8LOmpIsC8vf2EVEopYp9wxGoWp9mG1bEASBMy7pzrCLkvnju3R2rT3xjsh+gavb0FMjcPmRSiVccFM/ug+P5qeP9pO+7cTyxjJ3lfHzxwfoNSqWc67q3SnunPcZG8fMh4Zhqajhuxe3UZpj6egh/c+iqnV6+MrylIEMovD4BCbd8xC3vPURlz75XINStpRBQxBFL7n7d5/U8YkeT7Ml1cbCAsIiogACE32NTo8gCIGOeIJE0mT3uhC9AY/LRXRa98BjO1Yvx+vxcObsa4jr2ZvcvbtI6NsfiVRG3v695B3YS2VBHgl9++Oy1wTcY3WpLMyn2myi75lnowrRkr17Owl9+2MpK6UiP7fZzooAmtqukNVmE0Xph4nr3iuQrQU+8WvJS8/x8wdv0XvseK5/+S0S+/niQQZOuJD4Xn357YuPGnXW2K0+B9zRIG6k1pKzdxeCIKlX8lmX5AGDcdbUUHw0Pehym8lXdhhiCA8IlXXDzRuj2mREozMw/qobuP7lt32fY1E8YRG2PDcLbUQExqKiRtfpMXIMLntNve+Cx+0mb/9ekgcOafYYrlrjSU1tl9OmECQSEAQkdconRVFk+8qlpAwcgkyhpDzPZ8wQBAk2s4kaa+MNTfwOLmczYlgwqirKMZUU4XG5MMQloA4NQx8TS2Kf/sT26MWOVUsa3VYZcuquc04lXSJXB6JITSXk7LMo//BDSufOJXv2FRwZPYZD/QdwePQYsi6dRcl//kvN3r3tNlEWXS5cJaW4y8rwOp0Yv/gCsbqaiFs7sYuroADcbp+TK9kXzOrKO/GL5pOBzGAg/PrrMS5ciKu0fe762g8fpvi559DNuhTD7MtPaF9V69YRctZZvrLCzz9vl/HVRRoaim7qVEzffIvYAkvz3wlnTg5Fz/yD9DFjyTj7HDIvnkT6GWeSfsaZFDz0MFW//ILYyN2y9qBm335yrrkGaWQEad8vImTMsbBW84qVuIuKgn7PQ8aMIW3pEiJuvBF50skPPv5fwm5zsfLt3ez6OZczLu3B+Tf2a7eA7PZAH6Nh2gNDsBkdrHh7N0576y3yLqeHlfP2UJRuYvI9g0nqc+oELj+h4SpmzhmKIBVYXFti2BbsVhdL39hJtdnB9AeHnlKBy0/KgAguvnMgeQcq+fGDvW0WukqyLSx7cxfh8adW4PIjCAJjZnRn2MQUNi7KYOdPbT9n1xW4Lrjp1AlcfiRSCeff2I9eI2P4+aP9HN7ctoDvnP0VrPlwH92GRHLudX1OuNtoexKbpuPyJ0YSolfywys72vwcuzgx/E4uuUqNPjZ4plQwwiKjMcQnkrN750kbm8ftQhRFvJ6mzxPGogLCazvIWSt8OUy+rowCGp0BqVyBXKlssru3rNZtExbpE8tcTge7f1pJ/3POR6PTkzxgCLn7feVncT17k7d/Dzl7d6HR6RlwzoW1x2y439LavKu4Xn1IHjSUzB3biOvZG4DKwoJmOysCyBVKlJoQbCYjRRmHia3dHuDo9s0sePhuio+mM+PRp7nojvsCHfjAJ4qMv/oGSrOOciRIhlq1xUxVRTn6mLiguVKtJXfvbmK792xUUPQ7jPL2B3eW+btIhugNhNYKl5by5uc2PieXPvB/fw6VvQmBpyUYi4vQx8ZTVVGGy2EPuk5EYjKGuHgytmwKPFaUcRiXw05KC0Quu82KIJG2SOQCQBTrfU8LjxyiJDOdYZOnE5GYTHluDh63y+fOEsUmM9D87jNnTetdfHU/L33HnYOlrBRddCyCIDBiykxy9+1ptHGAvLbcsj06YHYmukSuDsSRlYXXUoUrKwvjF18iT4gn/KabiH3maSJuuRllj+5YVq4k+7LLyb58NrZNm5rf6XGIokj1tm0UP/ccRy+exKEhQ8k4+2zSx5/F4SFDKXvzLRRpaTiz2r98rb3wlyfKk1MCnR87a8kiQPgN1yOoVFS8/wGiKOLMzcW64Q/My5djXr6cqvXrcebkNCp4iG433poaRI8Hj9VKwX33o0hLI/app05oXO7ycux79hI6YQLh115D1S+/4sxv/3Bgw5VX4C4tpeCRR8i5/gaOTryYzGnTyb/3PioXLsRjbuGJ4yTiqarCtHgJhU/+H7k330LubbdR8vLL1Ozf3+p9iaJIxUcfkzllKtb169GeOwHt+eej7N0baWQkosdD1a+/kn/3PaSfdTYVCz5td7HLmZ1N3m23oUhLI+Wzz5BFRh4bn8dDxfz5aM89F1Wv4N16JAoF0XMeRDvuzHYdV3vzzjvvkJqaikqlYvTo0WzZ0vjFwoIFCxAEod6f6hS2R64otLLoP9soybYw9d4hDL0guVO4No4nIl7LtPuHYCyysfKdPbicLf9supweVs3bQ3GmmSn3Diaxd8eVYGoNPqFLKpWw+LUdmMtaJ3TZbT6By2p0MP2BoUTEd5x9P6V/BJPuHEjeQSOr39+L29W634vSHAvL3thFeJyGqfeeeoHLjyAIjJnejRGTUvnzhwx2rGn9ebujBS4/EonAudf3pffYONYuOMDBPxt3EgSj4LCR1e/tJblfBBfc1L/DnkdThOiVzHxoKD2GR7P2kwP8+X0G3pPc8bOL+vjLhkSvt9kA9ONJGTiEnL0nT+Ry2X0Ol8ZK28B3PVRZWEBkShoAVUafk8vldCB6vXi9HhQqFRJp079J/swlldbnbDu4YT011iqGTZoGQHL/QThsNspzc0jo3ZfijMOUHE0nvlcfZHLfvoO5YUpzsgiLikYVoqXnyDGUZKbjcbnR6A1UW8zNdlb0o9EbMBYXYq2sIK5HL0RRZOO3X7DkpeeJ79WH6195h+7DRwfdNrFPf9KGDGfToq8azLv8ofNpw0aSvWdnm7KZ6lKYfoiEvg1D7v1IpFJiu/ek+GjwuIpqkxFBIkGtDUUml6PR6VuUreV3cvnxi1w1lra7RN0uF1UV5UQm+uaBpuLgv8GCINBj5Fgytm0OiDY5u3egCtESndat2eM4rFakchnVLRhrsHyyHSuXYIhPJG3wcCKTUyjPy6Gq3Cf2hickcXTb5sb3V/u5b0u5YlluNuEJSST06U95fi7mkmJ0tZ/nnqPOIDQyiu0rlwTfuPbSVDxJjW86io658vkfR/R6qfz0M0pfew1ZZCTS6GjUAweS8NprDdf1eLBu2ED5u++Se+NNhE2aROwzTyOto5AHPYYoUrVmDeXvvY/j0CHkCQmEjB9H+A03IIuOAhFM33+Pdd06PGYzuTfcgLJnDyLvvZfQCy7oVJMxZ04uglyOPC4WQSpFqtPhzO68IpckJITQc8/FuHAh5uXL8TbyQynRatGMHo0iKRFvjR37wYM4s7OPrS8ICAo5otuDYfblONIzUA3o3+b3xvrb7wBozz4LiVpN6WtzMX75JTGPPdqm/QXDVVJK5ScLAKj6eS2h556Lqm9fRKcTR3o6JS+8SOlLLxN+3XVE3HYbUu2pdUq4jUbK5s3D9O134HAgNRiQ6HRIlEpq9u6j8qOPCZ04kbh//qPZ7xj4vmfFzz6L6etv0F16Ka7CQsyLlyCNiCBk9Ci048cB4CouoWb3blx5eZT+5z+Uv/MO0XMexHDllSf8nDxmM7m33oZUpyPp/feQHldbX7X2F5xZWcS/+MIJH6sj+eabb5gzZw7vvfceo0eP5vXXX+eiiy7i8OHDRDfSMCMsLIzDhw8H/n8qf9fyDxqRyiVc9sRIdFHt28muvYlKDmXKvUNY9uYufnxvL5PuHNRsx0eXw8PKebspya5i6r2Die/ZcQKXH61BxYw5w1jy2g6WzN3BjAeHtei1t9tcLHtjF9ZKBzPmDCUioePzKZL7RzDproGsencvq9/bx8V3DEAmb94F6Be4DLEapt47BIW6Yy/zBEFg1NQ0EGDT4qO+MO2JqS3aNnNnGWvmd7zA5UciETj3mj5IpAK/fn4Q0SvSb1zwcOu6FB01s2LeHuJ76Ljo1v5IZZ1P4PIjk0s57/q+RCWFsvvXPIZelIxae3IaFXTREH+plMtR0yJXUV2S+w9i15oVVFWWExoe2fwGrcTf3dHThEu/2mzCWVNNVHIKMoWSapMJAJvR5why2GxIZLIm9wFgt/km+f5Od/t+/YluQ0dgqM3ZiunWA0GQUHw0nZhuPdiydBEuh4Phk2dgLi1BEATMpQ1Li8tysohK8Qkd3YePRqZUcvjP39HHxFFtMraoXBFAE6bDXOJzO0Ylp7FtxWL++v5rxl1xHaNmXNbstcbIaZfy7XNPkrNnJ6mDhwUeLz56BGVICP3GT2Dn6mUUpR8isW/bOqFXm01UlZcR271nk+vFdO/Fwd9/DbrMZjISotMHXHfq0DBqqpoXf+w2G+o616IBkasF2zaGpawURDHgvDMWFRBVK6YeT4+RY9m67HsKjxwisU9/0rdsotvwUQ3C94OP3YpcoaSmqvkb8v58OX9OXVVFOelbNnHujbcjSCREJqVweNMGTLVdKZMHDubQhvV4vZ6gY3HZfe60tji5KvJziUxKQR0aSsHhg1jKS9HXluxKpFKGT5rB719+zKjps4hIrF+14a51xXlbELZ/OtElcp1ivNXVFDz8CNZffyX8hhuIeuB+zEuWUPzc8zjzC1AkJtRbX5BKCT3nHLRnn41lxQqKn3uejIsmoj1rPHg8eCxVCHI5sqgoVP37oxk1EkEup+jxJ6jeto2Q8eOJfvhhQs4YW88a7LHaKHriCQxXzCbm6aep3rKVivnzKbjvfjSjRhH33LMoUlNP8asTHGdODvLkZITak508tXOGz4seD5aVKyl/732cmZkgkSBPSCD6lZdRdu+O1GAAQcBjMmHb9BfGrxZiXbcOvF6QSFD26oXhmmtQJCQgKORYf9+AZflyVP36YVm5CuPCr5CnJBN+3XXoL7kEibp1E2fr+vWoBw1CFuELhNbPmoXp+++JeuB+JMqmgxhbgm3TJvIfeBBBLids+nQsS5cS9eCDKLsdOwm5y8qo/PJLKj9ZgGXFChJeexX1kCEnfOzmEEUR4xdfUPrKq4hOp89erFAgDQvzBXym+/II1EOHYtu4kazZs0n59FPksU3f1St/621MX3+D4eqrMS1ejCwykoTX5/qEYmmQE1hJCRXzP8T07bcUP/scFR9/Qvxrr6IZ2HRL40afl9dL4WOP47FYSPt+ETJDfaFBFEUqPvgAzejRp+R1Ppm89tpr3Hrrrdx4440AvPfee6xcuZKPP/6Yxx9/POg2giAQ28x7WBeHw4GjTiMQywncdRx0biL9x8cj60TliU0R113H5DsHsuLtPaz5cB8X3TYAaSOigsvhYcXbuynLrRW4euhP7WCbQGtQ+oSuuTtY8toOZsxpWujyC1xVFXamPzikUwhcfpL7RTD5rkGsnLeH1e/t5eI7BjYpdJXlVrHsjV3oYzRMva/jBS4/giAweqqvg+BfSzIRRRhxcWqT2wQErmFRXHBjxwtcfgSJwDlX9kYiEVj3xSG8Hi8Dzm68C1ppjoUVb+0iOjmUi+8c1CKhsqMRBIHB5yWdVr9ffxf8nQmdNTUBQaelxPXqA0DRkUOEjhnX7mPzT8DdrsYDuSsLfI0mIhKSCdHrA+Vu1kqfk6XaYkKhUuNtpqOzzehr3lRTZcFYVEBRxmEm33/shqxcpSIiMYmSo+mMmjEL8LlfolK7kb55I8oQLeV52Q32W5aTxaDzLw7so/vw0Rz4/VfCE3xNmVrqntPodJTn5SCVy3G7XWz8+jNGTL2E0TNbFimS2G8g0Wnd2b5ySX2RK+MIsd17EZ3WDYVaQ8GhA20WuYozfde1zYlccd17sXXpoqDiqM1kRKM/dl2pCdO1yI3lqLai1By7ie135J2IyGUu8Tm3otO6oQrRYiwqbHTduB69CDGEs2XJd2x0fE5Ffi5nXnFti45jt1mRq1RUt6Bc0V9+6XX7HGP7f/sFqUJOv7MmAGCIi8ftcFCWmwVAjxFj2fXjCsqysxrk6sExIdnZhqYDlQV5DDp/IjKFkoMb1uP1eOo5EwdfOIlda1bw64IPmPV/z9cTYv0uTfcJOgc7G53jquF/BLfRSM6NN2L76y8S33uXmMcfQ6JSoZs2DYlWi3Hhwka3dWZkYN2wAa/LhddsxrJ8BfZDh5GoVeD1UrN7N8XPPkvmxZM4euFFODIySHr/PZLnf4B23JkNat+NCxfiqa4m4tZbfd08Ro8i+cP5JH3wPq7iYjIvuRTTD4tP9kvSIpw5OYEyRQBFcucTuewHD5J95VUUPvoYipQUUr5aSNTDD+M4cgRFSgryhAQkGg2eqirK582j6OmncRUXE3HbrSR+8D6Gq6/GmZWF6auv8NprUA0ejPWXX9DNupS0H76n58Y/SP74I9T9B1Dy7xfIuPBCzMuWtbjE1Ot0Ytu4Ee2ECYHH9LMuxWs2+4S2E8S0eAm5t96GesAAui1fRtxzzyLV6zF9+2299WRRUUQ/8ADdVq5AFh1N9tXXYPz6mxM+flO4KyrImnkJJf9+AdHlImzKZJI//ZTeO7bTfc2P9PhpDb22bCbmqf/DmZ2NIJXitVWTe8ONeJo4mVetX0/5vHmETZ6M8euv0Z55Jt0W/0DYxIlBBS4AeUwMsU/9H722byNsymRceXnkXHY5Rf/4B167HVEUcaSnY16+nLJ58yh9bS5lb7+DafESHBkZDd7vig8/wrp+PQkv/RdFYsOJlm3jn9j37yfy9ttO7EXsYJxOJ9u3b+f8888PPCaRSDj//PPZ1EQZt9VqJSUlhaSkJKZPn87+ZspRX3zxRXQ6XeAvKSmpzWMWBOG0myAm9gln4u0DyNlXwS8LDgYtVXLa3Z1W4PKjNSiZ8eAwpHIJS5ooXXRUu1j+5i4sFTVMf3AIkYknv4tia0nqG87kuwdRcMTE6vcaL10sy61i6es70UX7BC5lJxG46jJqShqjpqaxeWkm21ZnN7peZxW4/AgSgbOu6MWgCYn89tUR9q7PD7peRYGVZW/uwhAXwuS7B3WqPL6WcLr9fv0dqCw49llqrZNLawgnLCqGwiMH23tYALjqOLkaK1msLCxAkEjQx8ai0ekDTi5rrWjldjhwOx14mhDKAEwlRQgSKTaTkYN/rEehVtN9+Kh668T26EXx0XTComJQqHw3Mgyx8VQW5hMaHonpOBGk2myi2mwiKiU18Njg8ydSWZgfcM6oQ1t2DtDoDNRYLITHJbDx68/QRkRyxuVXt2hb8F0fjJg8g+zdO6ioFQZFUaQo4whxPXsjkUiJ792XgkOtj9DwU5yRjio0jLComCbXi6kVwYKFz9tMpkA3SQB1mK5Z8cfr9eCsqUFZJwdMIpWiCtGekMhlKilCIpURGhGJIS4hIAgHQ5BIiEpJI2vnNspysgHqNQdoCofNikKtaVEmlz9I3+N2I4oi+9evpfeYcYEcNn2MT6guz8lGawgnsW8/ZEolOXt3NdiX2+nE43IhCEKrO2t63C5sJiOhkVHoomMCYllYneYLMrmcc2+8ndy9u9iypH5zMP93+/iOlKc7nevK4W+Mu7KSnGuvxZWXT8qnnxJ6zjmBZRKNxueqWbQI73EfbLfRSOFjj5M5bTo127YTdeeddFu9Ct2sS3FmZqIeOoyk998j7ftFGGbPBkAWE4PHZKLo2WexrPmpwcTYa7NR+ckn6C+9BHlc/ZOo9qyzAhP1oiefpPi55xE7WNltIHKlpODM7RzB86LXS/kH88madRliTTUpX35B0rvz0AwdSvhVVyILD6d83jxEUcS0aBGZU6ZStfYXoh9+mB4//0z0Aw8QetZZxP7fk3Rf8yPa886l5Pl/kX3JpUhCQoipdagIMhkhZ5xBwmuv0v3H1WiGj6Dw0cfIu/kW3LW13k1RvWUr3urqeiKXsls31IMHY/rhhxN6DcxLl1L0xBPoZkwn6b13kRkMSJRKdJdcgnnxYryOhi3JFYmJpHz+GYbZsyn+5z8pfeONk5IJZ920iYwJ5+I4dAjN6NH0WL+OhJdfJmT0KIQ63VCkWi3hV11Ft5UrUKSk4LVacZWWUvT0M0HH5TYaKXrqadRDhmD56SfCJk4kYe5rSFrYoUQil5PwyiukLvoOiU6H6ZtvOXLGmaSPG0/m1GkUPvIoxi8XYlm1CuPXX1P0xBNkTpnK0fMvoHz+fDwWCzV791L2xhtE3H472rPPDnqcig8+QDVgAJqxY9v2AnYSysvL8Xg8xMTUv1iLiYmhuDh4QHLv3r35+OOPWbp0KV988QVer5czzjiD/PzgE1KAJ554ArPZHPjLy8tr1+dxOpA6MJILbupPxrYS1n95CLGO0BUQuPKqmHrfEOI6ocDlR2tQMnNOrdA1t2EYvaPGzbI3dmEuq2H6A0M7pcDlJ6lPXaFrXwOhqyyviqVv7EQXpWbafYM7pcDlZ+TkY0LX9h+zGyzv7AKXH0EQGHd5Twafl8TvXx9h96/1fyuMxTaWvr6T0HBVh+aidXF6YS4tDnRq83dWbA3xvfpQeORQew8LAKf9WNB3Y6HflYX56GPikMrkaHQGqmudXDZjJTK5r+zVZbfjcbmanFCbigtRqtXYjJUc3baFbsNGIVfWz9SMSetBeV4OXo+H0NqA+tDISCoL8jDEJ2A1VtYbp9/5Ex53rGImsd9AIhKTqSzMrz1uy7L2NGE6nPYawqJiyNi2mVHTZiFXtK4ioueYcahCtOz/7RcALGUl1FjMxPXwleMl9O5HweGDbQ4DL8lMJ7Zbj2ZLJ0MjIgnRGygJInL5srX0gf+rw3TNij/Oat+5VqnR1HtcFRp6giJXMbroGCQSKYa4eCqbELlEr5fy3GwAFGo1Km0of363sEXzDLvNilobSnUL8oPtNp+Ty+NyUpR+CFNJEf3POXYzVhcdA4KAsaiQ0KhopDI5iX0HkLuvYRdUfw6XTKXC0cpyRX85cKghItAFE441bvCTNnQEYy69gj++/oy1H70b6JTp/574M8H+LnTOq4c6nE5Bw43hqaoi75Zb8RhNpHzxBeqBDa2n4Vdfhddqxbx0aeCxqnXrfKLI+vXE/uMZuv+4msjbb0OZlkbc888TcfvtlL70EmXvzCPv7rsxfvstMc88Tc91v9JtxXJUffpScP/95N95F+6KY0GBxq+/wVNVReSttwYdryQkhPgX/k3sc89i/PZb8u64E4+19SF47YHocuEqKGggcnnKy/GcYCvaE8VtNJJ3xx2UvfYaETffTNr336MZPjywXKJSEXHH7ZiXLSf3hhspeuppQs87j+6rVxFx4w1IjvtsymNjif/XvzBcew1eqxW3yUTVz2sbHFeRnEzi63NJmj8f+5EjZM6cSfX27U2O1bpuHbL4OJS96tuWdTNnYvtjI66StnWCtP6xkcIn/w/drEuJe/55hDp3SgyXX4bHbKZqzZqg2wpyOTFPP0XUQ3OoePc9yt58s01jaIzSN98i78abEL1eEl6fS8qnC5A3kt3kRxYeTvInH6Ps1QtBJqNqzRrMi5c0WK/8rbcQ7Xac+fmo+/cn7sUX6olmLUYUUfXxlRiI1dV4KisJv/FGem3dQq+Nf9Bj7c/0+mMDvXdsJ2n+fDSjRlH+1ttkXDSR/LvuRtWnD1H33hN019U7d1K9ZQsRt9/WqTL2ThVjx47luuuuY8iQIZx99tn88MMPREVF8f777ze6jVKpJCwsrN7f/yI9hkdz3vV9OfhnERu+Tfc10Khxs+Kt3VTkW5l23xDiuus6epjNEqKvdXTJJPW6Ljpq3Cx/85jAFZXUeQUuP0l9wpl81yAKjhj58f19ga6L5fm1Dq5INdPuH4JS07K71R3JyMlpjJySxl9L6gtdR3eWnhYClx9BEDhzVg+GnJ/EH9+ms/sXn9BlLqth6eu7UGkVp8170kXnwFxajLT2WkIbHtHq7eN79aEk8+hJcWS4HMduFAQLdQefyGWI94lIITo9NrMJgKrKCrThvs67fqGhunbZ8Xg9HqoqylGFhmEuLaE0+yjdho5osF5EUjJejxtTcRHKkBAEQcBaWYmzpibgTqobkm6qLXfT1SnhEgSBIRdODqxXnteyKhGNTo/X7cbtciGRSOk1tvXloTK5nD7jzubg77/i9XooSvflh8b28DUISuzTH2dNNeW5batcKc/LaTSzqi6CIBCVkkZZrShUF7utKpCnBaAJC2tW5HJU++ZmSk390n9ViDaQYdUWzKXFgfI7n5Or8XLF3P17sFZWoNKGUlVexogpMynOOEJxRvCA/Xrjt1pRhYXhrKkOGixfF7+Ty+V0kLFtM+owHQl9+gWWyxQKQsMjsVZWoKt11CUPGEzBoQMN9u13bymUqlZnclXVfn614RGB4yhDtMgUDfMUz7jsaibccBsHN6xj/j038fU/HsNcK3Y19r0+XenUVxD+oOF//OMf7Nixg8GDB3PRRRdRWtr4hDwsLIyioqLAX04Hl7WJTif599yLMy+P5I8+rJdPVBd5QgKh551H5edf4PV4KH/3XfLvvAv1oEF0X7EcwxVXINT5sAqCQNQD9xNx++2Uv/UW1X9uIun99wm/6ioAlD16kDTvHRLffouaffvImnkJ1du347XbqfjkE3QzpiNPSAg6Fj+Gyy8nef4H1OzeTd7NNzdZunWycObng8eDIrWOyJXa8R0WnXl55Fx5FfY9e0ma/wHRcx6s9/74UQ8aBBIJ1du3kzhvHvEvvtBkoLkjKwvTd4vQz56NbupUip54gsKnngrqhtKOH0e3xT+gTE0j98abqFrbUBAD3wWFdf16Qs+Z0EDsCJt0MYJcjnnZ0qDbNoUzN5eChx4i5MwziHv22Qb7VqSmohk7pslyREEQ0E2fjv7KK6h49z0KH38C+5EjJ+QeFL1e8u65l4p585BGRND9pzWETZzY4u0lGg1J897xZd3FxFDy0kv1OkLajxzB+PU3KNLSEGtqSHjtVSRB3vumcJeXU/DQw2Rfdjnu8nLi/vtfwqZOBVGk8pNPqPjgA8Q6mRUSjQbt+HHEv/gC3X/+GVl4OO6yMiQ6Hd5GTkoVH8xH0b07oeed16qxdUYiIyORSqWUlNQPki0pKWlx5pZcLmfo0KFkZGScjCH+7eg9Jo5zrurN3vX5/PFtOsve2kVFoY1p9w8ltlvnF7j8BEoXpRKWvLaT8vwqlr+5C1NJNdPuH0JUcucXuPwk9Q1n8p2DyD/s67pYmm1h6dxdhEWofSWKp5GYMmpKfaHr6M5Sfpq/n+6nicDlRxAEzri0B0MvTOaP79LZvOwoS+fuRKaQMP2BIV2h7V20CnNpCVKZHIlUilTW+u9zfK++eD1uSrKOtvvY6jq5/OVQx1NZkE94vC86QaM3BISsGosZjT4cfZ2cscZcPdbKCkSvF60h3JfxJQik1Mmt8uMPz64oyEUiSBBFkdx9uwCfQOTflx9TcSHa8IgGjrB+Z/mujSVSaZMlcHVRhvhcSuayYlIGDkYV0rYsx/5nnYfVWEnunl0UHz2CLjoGTZjv/BrToycSqZSi9NY781wOO5byssB70RwRSSlU5DeskLHbbPWem69c0dKkI8rfNEB5XGWDMkSLw9Z2w4SpuCjQGMAQn4C9ykJNbSbW8ez/7RcM8YmBUssBE85Hawjn4B/rmzyG6PVir7YRUtsZsrnwebvVikQqxVVTQ+b2LXQbOrJBoLw+No6aKkvAYZU8YDBup6PB++oXBxVqdavLFa0BkSsSdZgOBKHB6+9HEASGXTyN299dwKR7HsJcUsSuNSuAxr/Xpyud+iqibtBwv379eO+999BoNHz88ceNbuMPGvb/HV/ecioRRZHif/2b6h07SHp3XsCx0Rjh11+HMzOTvJtvpuyNN4m89x4S33kbWVRU0PXF6mqqt28DuRzR5cJT0bBsLfT880n74XvkyUnkXHc9RU89jcdoJPK2lmX0hIwdS/Inn+DIzib3xpvw1NbXnyr8Qlb9TC7fic3VQSJXzd59ZF9xJaLoJfWbr9GOHx90Pduff5J7/Q3IoqPB7UYe33S+gujxUPTEk8hiool57FHiX/g3cf/+N5Zly8m7+Zagr70sKoqkjz5Ee+655N93P5bVqxus48zIwFVQgPachiVt0rAwQs8/H/PSpa0qF/Q6HOTfex9SvY6EV15pNIPKMPsKanbswH64/t0TZ34+pXNfJ+OCC8k462xMX30NgHnJErKmTefwiJHk3nYbpsVLggp8jY6rpobsK6/EunYtyj696bHuVxTxrQtvBZBFRhL3/PO4S0oQq6spe+edwLKyua8ji4rCvncv0Y8/hrwV+xdFEdMPizk6eQq2jRuJ+/e/6bZsKfrp04h/6b+E33ADABXzP6TwsccRg9xFcpcU48zKImzaVOx795J9xZW4jivZsx8+gnXdOiJuvaVBHt/piEKhYPjw4fzyyy+Bx7xeL7/88gtjW1iK6fF42Lt3L3Fxrcs5+V+m//gExszoxp51+ZTnVjHt/iHEpJ1+7jZfGP1QEOC7/2zDWGRj2v1DiE45/Z5LUr9wJt05kLyDlXz/8na0BiXT7h+CKuT0Ebj8jJqSxsjJqfy1JJM1H+yj+7Aozj+NBC4/giAwdmZ3Bp6TwLZVOTjtbqY/MJQQ3Yk3dOnifwdRFDGXlSCRStt83o5KSUOmULZJGGkOV50JsCvIzTWX04GlvJTwBJ+wEqLTU202+YQDmxVVSEi9YPfGBApzme9mVlh0DFZjBTFpPQLCT100YTrUoWFU5OfirC2zytm7i9DIKKKSU4H6IpexuChozplcpUaQSPB6vVQWtkzkovZy2VxaSvLAIS3bJggx3XsSnpDEgT/WU5R+hNjaUkUAuUJJRGIyJZmtvzFnLCoEUcTQQpErMjEZc0lxoLkA+D6PDputXoC8JkyH1+Nu0vHjaEzkUmtaXYZXdyzm0pJ6Ti6gQe4a+ISqrF3bSejdj4r8XCRSKXvWrqHn6DM5un1zk3MdR001iCJag8912FzIvt1WhUypxF5toyI/l7Shwxuso4uOxe10EBbpE7miU9JQaUPJ3ben/rFrhS2lRttqJ5e1shyZQhlwNEqk0mbLZxVqDX3HT2DMpVcERHFndcdUbZ0sOu2VxKkKGnY4HFgslnp/7YXxy4WYvv2WuH88g2ZEQ6vt8agGDUISFkb15i0kzH2NqLvvbvREJ7pc5D/wII4DB0n59FN0sy6l8P+ewrrhjwbryqOjSVmwAN30aVhWrEDZqxfyVgQqqwf0J+XTBbgKC8m58SY8VcFPTCcDV04OglKJrI5YKdXpkOr1HeLkqt6+nZzrr0eemEDqV1/VE9/qYl65ktzb70A9YjjdlixGnpxM2RtNl+NVfvIJNbt3E//ii0hqa9n1l15C8oIFODIyyL7qapz5DU/AEoWChFdfIWzKZAoefQzrhg31lletX4+gVqMZPTroccOmTsGZcRTHkYb1+I1R9vobODMzSXzzTaRNlHSFnncu0qhITN/43Fwek4ni557n6MSLMS5cSMjYsSS8/jrdVq2kxx8bCL14Ikil6GbOwFtdTdGTT5Jx3vm+HKrqalzFxdTs3k31jp3U7NuPu6IicMLyWG1kXToL++49qEeOJG3RolY7rOqN/dwJPneVVIrxq69xlZRiP3wY67p1CDIZqkGD0M+a1eL9eaxWCh96mKInnyT0nHPotnoV+ksvCQiEgiAQ/dijRN51JwCWlSspeOjhekKX6PFQ/OxzKPv0Jv6FF0j99hu8NdVkX3VVve9Dxfz5yOPj0U2e3Obn39mYM2cO8+fP59NPP+XgwYPceeed2Gy2QLfF6667jieeeCKw/nPPPcdPP/1EZmYmO3bs4JprriEnJ4dbbrmlo57CaYej2kXmrnKkcgket0jBYWNHD6nNKNQyVCFyvB4RmVKKOvT0ddiE6JTI5OqJtyoAAOQQSURBVBK8HhFVqPy0CzSvS0SiFkEAUYSIBO1pJ3D5qalykX/IiFwpxVHt5siW4FmBXbQvf4dIEz81FjNuhwNB0vZ4AYlUSlRqGqUnwcnlstuR1U6cgzk+TLXCSnic38mlx+vxYLdZcdQ6glR1gt3tjYhc/pyg8LgEnHY7Sf0b7z4dkZhMRV4u1soKZAoFxRlHiOvZB7lKhVITEijjAp8TyB8EXpdqs8kXpC+KlGS27DrY4/Zdl4keNwm9+zWzduMIgkCvMeM4um0zJVlHA3lcfmK69aAks/Xvpd+RFh7fdMWOn8gk31zGH4IPvnwmr8ddT6zyh8k3VXboqKkVuTT1RS6FJiSQO9VabCYjbqcj4OTyi5XBnHel2ZnYqyyUZmWgj41j8AWT2L5yCXG9+mIpK8VU3HiZo/95hUb4zCXNhezbrVYUKjXu2pvx8b36NljH38zAn48lSCQk9R/YIJfLLzApQ0JaL3IZK9GGhx+rqBEJlD03R7dho3wd5yWSgAvv70KnvZo4VUHD7dlNqy62zVsoefFFwq+/rkUTYdHjofCRR/HabCCKKHs23vJVFEWKnnra16Xx7bfQDBtK3D//iXbcOAruvx9HkHIcQSZDNdB3onAcPEj5O/Na9XxUffqQvGABroIC8u68E689eOhke+PMyUGRnNRA7FOkpODMObXh89Xbt/s6CA4cSMonnyCrzRc4HtOiRRQ+/Ai6SReT9M47SHU6ou69B+u6ddTs2hV0G0d6OmVvvEn4jTeiGVbflq0ZNpSUrxYiulzkXHstziBh2IJUSvy//4123Djy738A+5Fjzinr+t8IGTsWiTK4qq894wwkOh2WVata9DrYtmyhcsECoh54AFXv3k2uK8jl6C+9FPPSpVT98guZ06ZjXr6c6Afup+fvvxH33LOETbwIZbduyCMjSfjvf9EMH07V6h+Jf+EFkj75BHlsLGWvzeXIsOFknDOB7NlXkHPVVWTPmkX6meM4Mmo0OTfcyNELL8CZmUnI+PGkLPikbRlZxxH90Bzf7EsQqPjwQyo+mI/UYMBVUEDMIw+3OOvKkZlF9qWzsP72GwmvvUr8f/+DzGBosJ4gCETeey/h118PXi9Va9dS+NhjgfJN03eLsO/fT+zTTyPIZCjT0khduBCJUkXuTTfjKinFmZeHZdUqwm+6qV5G2unO7NmzeeWVV3jmmWcYMmQIu3bt4scffwycI3JzcykqOhYaazQaufXWW+nbty+TJk3CYrHw559/0q9f2y9I/5ew21y+YPbSai59ZDgjJ6eyafHRQO7Q6YTT7ssTM5dWM+mOgchquy5WVZ6a81h7UlFo9QWaR6q56Nb+FKWb+fGDvYGMrtOJozt8JYo9hkcz4uIU/lqayY41natzckvwf1fs1W4ue2IEI2rdaU11kOzixPk7RJrUxVzqczB5PSLe2m5tbSE6tftJKlesQVErCjqDzAH85W5+J5c/sLzabMJhs/oygmrD5wVBwN7IDXNLWSkanR65SgWiSHRqt0bHFJGYTEV+LtVmE6GR0VgrK0gZMBjw5RNZjT6RSxRFTMWFQZ1cphLfnDIsKpqqivIWve5+x5NEKiM6rfHxtYSeo8birKnG43IS37t+xY8/XL+5bKjjqSzMRx0aVi9Pqyn8pZ91M8mCObJUtcKVvSmRyxZc5FKGhLS5XNGfp+Z3cilUarThEUFFruzdO5DIZJTlZHPBrfcyasZleFwuynKOIpHKyN6zs9Hj+DO2dLWlhc3lj9mtVYFOiiF6A6ERkQ3WkdfOvep2m0zuP5jijMP1xGK/wKQODWu1GFhTZfGVKeLLtPN6Wh754i/hFQQJLnsNng5uNteedFqRqy20JWj4ZHTTcpeXU/DwQ2hGjCD6kUeaXV8URUr+/QJVP/9MwquvII2KpPLzLxpdv+z1NzAvXUr8Cy8QcsYZgE/Ein/lFeQJCeTdfXe9DCHwOb8q539I2KSLiZozh/K336b8g/mtel6q3r1Iev897PsPUPDgnKClVO2NMzsHeRC3lCI15ZQ6uap37CDv1ttQDxhA0rvzAk6r4zEvW0bR08+gv2I2cS++GBAZwiZNQtmzJ6VzX29wAhVdLgofexx5cjJR998XdL/KtDRSvvgciUJBznXXB+0uKcjlJLz6CorERAruvQ+PxYLHZKJm586gpYqB7RQKwi68AMuqVc2e3L01NRQ98STq4cMIv+H6Jtf1o581C6/NRv4996Ls0YNuK5YTccstSNTqoGNJfPMNBJWKrJmXkHfDDTgzM9GMGYMizZdnp50wgdRvvib1u+9IfPstDFddSc2uXXgqfS4T0eHAumFDvUyrtiKPjSX8uutAFDF+9ZWvHFQQ0J5zDpqRI1u0j+rt28m58kqQyUj7fhFhkyY1ub4gCEQ//hi6WZeCKGL5cQ1FTz+Du9JI2dy56GbORDN0aL0xJn/0IaLHQ94tt1A+712kBgP6WZee0HPvjNxzzz3k5OTgcDjYvHkzo+u4E9evX8+CBQsC/587d25g3eLiYlauXMnQOq9bF40TELjKa4PZk0MZOSWNoRf4cof2b2hhSUcnwN8RsrzAytT7h5A2OIoZc3w3Ek43oauy0MbSuTvRhCmZ/sAQegyPqS1dNPLj/H2nldB1dEcpP324n+7Dozn/xn6Mnt6dEbVC6ukkdPm7dNrMDqY/MARDbAijp3Zj5BRfB8mtK7M6eoh/W073SJPjMZf6xBa304Eoio12MGyOmLTuVBbm1ys9aw9cdjvy2us2VxCnSVlOFtrwiICw4s9DsplM2KttKEO0VJuNqLShCFJp406u8lLCoqIDy/1lXsEIT0jyddkTRdRan2Mmua7IVdt0y1Ftw1FtC9qx0lwroPQcM85X6rZja7OvRXVt1Y82IqJN2Wl1iaotX5NIpcSk9ai3LKZbD7wed6BTYEupLMhvcakigFylQhcdUy+Xyy9k1Q2Q9wteTYkwDpsNmVLZwEmk1Gja7OQy1wqRdd8/Q2x80PLSI5s34nW7GXPpFSQPGITWEM6wSdPYuWo5EYlJFB4+2Ohx/M85JDwCmULZbIdFh82KSut7fSJrS2QbIPikFrf72Jw5eeBgvB4PBQePVZs5qm0o1BqUmpBAh8qWYrdWBT7//hLdlopVgiCgDgsD4dg4/i50WpHrVAUNt3c3LdHrpfDRx8ArkvDKyy1yk1R8+CHGhQuJ/cc/CJs4EcOVV2JeuhS3sWFpiHn5Ciref5/oRx5GN3VKvWVSbQiJ77yNx2SmYM5DiJ5jbWfNy5bjKiwk4vY7iLztViLvuYey115rUkwLhmboUBLffAPrhg0UPfV0m+80tRRnTk7QkkB5cvIpE7nsBw6Qd+ttqAYMIOm9dxsVuCw/rqHw8SfQXTLT57Sp4z4TpFKiHnyA6s2bqT6u3Lb8gw+wHz5M/H9ebNRtBSCPiSH5s0+RKJU+oSuIICvRaEh8+y3cRiNF//d/VP2+AbxetGc3LnKBT4Rz5eVh37evyfXK338fd2kp8f/6V6M5XHURRRHj558DII2IIOnD+cibuKh0lZRQ9M9ncRcX462uRj18GD3/2EDKJx/TbdVK4l58EdvmzRQ8+iiCXEbI2LFY1/+G6HCg7NeP2H89j9dhJ/+OO8maeQnWPzY2O8bmCL/het9z9XhAKsVTWRkoKWwOy88/k3vjTSh79yZ14ZcoUlNbtJ0gCMQ9+yzas89GUMgxL15M3m23IXq9PnfZccjj40n+6ENcRUWYlyzBcO21Dbp3dtFFS7BbXSx9fSdVFXZmPDg0EMwuCAJjL+nOwHMSWb/wMIf/almr9Y4kIHDVdoSMTfPd6QwNVzH9waGIok/osho7v9BVWWRjyes70YQpmP7gsUDz5P4RXHznQPIOVPqELnfnF7rqCVw39A2UKI6aknZM6Pqp8wtdPofgLizlNUy7fwgR8ccmg6OmpDFqahpblmexZUWX0NXenIpIk5MZZxIMc2kJyhBtIPuqMadTc0SndQdRpDSnfT93Trvdl18lSIKWK5bmZNVzXYUEnFxGX8e6kBCMxUVEpaThdbupqmyYIww+J1dYZHSgbNHr9QRdD3zleN7aybxYG5Qlrb25rDVEBCb81trMYn8ZWl1MJUWE6A30HuPrkLjjxxWNvwi1WGvHrlQHnw+0BkEQUKjVUFtCW5fIlFQEiaTVuVzGooIWh877iUhKCerkUgUpV2zSyVVtDTi+6qLUaNssoJhKiggxhNdrGhCekOhrTFAHm7GS0uxMdNGxjLl0duDxMZdcgUavx2GzUthEXp3fyaUK0aIOC2tR8LwqpLYcMSq4GOsvZbTVyc02xCWgNYSTu/9YLpfDZkMZEoJCo2l1uaLdWhVoEODPtHO1Is9YqQnxVa3QeBnx6UinFblO16Dhig8+wLZpEwkvv9RoYHxdqtavp+zV14i48w4Msy8HwDB7Nni9mL5bVG9d+4EDFD31FLrp0wm/6aag+1MkJ5M49zVsmzZRNncuAKLbTfkH7xN6wfmoevta00befRfhN95IyQsvNNqVrzG048cT/9//YF66lPK33mrVtq3B63TiKioKKnIpUlLxVFae9HwwZ34BubffjiItrUkHl23TJgoefpiwSZOIe+65oFlq2gkTUA8eXM/NVbN/P+XvvkfEbbeiHth47oAfeUwMyZ9+iqBUkHfLrbgrKxuso0hOJu7f/6Lq57UYv/wSZb++TQpLAJpRo5BGRmJZ2XjJoiMri8qPPibi1ltaJNaIokjpSy9T+eln6GfPxlNejn3/gUbXNy9fQebUadRs307cv/9N7PPPU7N9RyBMXxAE9DNn0O2H75GEhJB15VVkXT4bx5EjyFNTSPnsUwyzZpH69dekfPkFklAtebfcQt7td+AqavuEXBYe7vtOiiK4XKiHD/d1zWwGy88/U/DgHLTnnUvSh/OR6lrXkU6QSol/5RUUSclIQkKw79uHdsIEZJEN7dAAyu7d0YwdC6KI9wTaNHfxv0tNlZMlc3diMzmYMWcokYn1Ow8KgsD4y3vS74w4fvn0IOnbShrZU8fjtLtZ+c6eYwLXcR0hwyLUzJjjE7oWv7azUwtdlUU2lszdiVorZ/oDQxt07EupFbpyD1Tw4wedW+hqTOAC3+dr1JQ0RkxKZdMPR9n506mNJGgNLqeHle/soaLQxtT7hhCV1LBL58jJaYye3o2tK7LYvDzzpN8U/F/iVESanKw4k8Ywl5UEAq+h8e6DzRGZlIxEKqM0q307CbvsNSjVahRqddByxbKcLKJSjolccpUamUJJVWUFLocdhVqDuaSYlNqg9rJGRDhLmc/JZazNTrIZG17n+qkr5FQW+N7H4gxfXIc2PIKq2nLFqoDIFdFgH6aSYnQxcRhqOz/m7d/TrMjg39+JurjA57ipNpnwut2UZmfWWxYIn2/FeymKIpWFBS3O4/ITkZCEsfDYd8EvSNUtO/T/u6myQ59Y07DbpFKjweNytbr0EnxOLn+pop/IpFQqC/OP5aN5vSyb+x8QRcZdcW29LodylYpzb7wDS3kZltKSRrO2HNVWX2dCjQZNmK75TC6bFWXtvNBfnns8NrPR17mz+Ng8RBAEkgcMJnfvsVwuR7UNlSbEF9DfSjHQbrWiqnVyGWvD+JvKTTseqVzhy6XjmND3d6DTilxw+gUNV2/dStmbbxFxx+2BMsKmcObmUvjoY2gnTCDq3nsDj8siIgibOgXjl18GSgLdRmOg3Cv22X82mQUUcsYZRD/8MBUffkTVunVYVq/GlZNLxB13BNYRBIHoRx4m9KKLKHj4EWr27Gl0f8HQTZ5M1ENzKJ/3LqbFS1q1bUtx5eWB14siJbXBMr/wdTJzudxGI3m33opErSHp/feQNNKO1ZmdTf4DDxIyahTx/3mxUYeTIAhEPfgg9r17qVq7Fq/TSdHjT6Ds0YOoO1vmDAKQx0ST/OGHeKxWXz5akC4nYRdcQNjUqdh370YzvPmmB4JUSthFF2FZvTpomZ8oipQ8/y9kMTFEtLAzZ/m8eVR+8gkxTz1F7DNPI4uLw/jN1w337XJR9OyzFD7yCNrx4+m2fBn6Sy/BMOtSdLMupfi557EfPhxYX5GaSsqCBUi1WpxHjyKoVKR89hnSWsuwIAhohg8n5fPPSXjjDeyHDpE5bTqmJUvaPMlQ9j2Wk9ASgatq/XoK5jxE6Pnnk/Dyy20OwJdqQ0iY944vA08qxbJyZaPfVY/JRPXGjahHjKBy/odUrVvXpmN28b9JtcUncFVbHEx/cCgRCcFbogsSgbOv7kPPkTGs/fgAWbvLTvFIm8cvcJXlVTH13oYCl5+wCDUzHhyK6BFZ8tpOrMaW3/k8VdQVuGY8OLTRwPyU/hFMumMQuQcqWNNJHV1NCVx+BEFg1FSf0PXnDxmdUuhyuzysfm8vpblVTL1nMDGpjVcAjLg4lbEzu7NtZTabl3UJXR1JayNNTkacSVOYS0t8ZUO1NNZ9sDmkMjmRySntnsvlqnVyyVWqBt31bCYjNmMl0alpgccEQUCj0wcEIY/HjdfjJjqtO6rQsEAWVl1ErxdLeZlP5CoqRCKVYW1C5AqNiERSWzHjsFnRhkeQd2Av4BO5bMZKvF4PVZXlCIKEEH3DLF1TSRH6mFhUWi1KTQhej5sjm/9s8rXw56fR9h4BAUoyM3C7nEgVSrJ372iwPCatR6ucXFZjBS57TavKFQH0sfGYy0oDIpRfJKmbySWVyZArVU2LXNXVDfK4fPvxXVO0pYOf7z2qb1iJTEnF6/EEShZ3/7yawsO+G+kpg4c12Ef34aMCnTDzDwSvWrFbfaKVIJGgDtO1KJPLb2pQBRH2wCfaKtSaQDmyn6QBgynNyQyI2Y7akt42O7lC/SJXQSDXy+NumaAoqWPMaI041tnp1CLX6RQ07KmqouChh9EMG0bU3Xc3u763pob8e+9DatAT/9//NHD+hF93He6SEiw//YTo8VAwZw5eu53Et95sURlS+I03oJ0wgcLHn6Ds7XfQnn026v79660jSCTE/+dFVH37knfnXUE79zVFxC23oL9sFkXPPIPtr82t2rYl+MsRFanBnFzJtetkt/txAbx2O/l33oXHbCZ5/gfIgtz9AfBYLOTdeRcyg4GEua81W54aMmY0IWeMpeyNNyh7800c2dm+97+VIogiKYmk99/HkZ7RoDTVj26Kr7Oe41DLWkmHTZ6Eu6SEmh0NT7LWdeux/fknMf/3ZIs+f5bVqyl/622iHrif8GuuRpBK0V82C8vKVfXcdx6TidxbbsW06Htin3vWl0mn1weWxz71FIqUFAoeeijQ7EAURUrnzsVTXg4SCWJNDZWfLGgweRAEgbCLLqTbsqWEnjuBosefoPDhR4KKgs1h/eUXkMlAELBt29bkujX79vscXGedRcLLL51wAH7Nlq2+UklRRBoRTv4DDwQtZa788ktEj4eE1+eiPeccip78P9xlnU+A6KLz4Re47FYXM+YMq1d2FQyJROC86/uSNjiSH+fvI3d/RZPrn0pcDp/DpizXJ3DFdW/aQRkW6XN0eTxelszd0amErpYKXH5SBkRw8e0Dydnf+YSujO3NC1x+GghdP3ceocvj9rLmg30UppuYfNcg4nrom91m2EUpnHFJD7avzuGvpV1CV3twKiJN2jvOpDkspSUoVMeqBextdHKBL5ervTssOu01KJQqFCo1Lnv9SbjflRV1XEi8RqfDVuumqjb5rluiU7sRGhGJ3VrV4Kaq1VTp6+inCaHGYkYdGtqkyCVIJL6ML0GCPiaOlEHDyKstAdMawhG9XuxVVVRVlBOi1wftOOfruujv2hdPiN7AwQ2/NnpMURSpqvBdW7VHSHfe/j3IVWpSBgwie0/D6+/otO5U5OW0+FjGQn9nxdaJXOFxCSCKgYwye7UNiVQW6KjpRxkS0my5ojJI1Yv/sbZ08DOVFKOLPt7J5ZsbludkYSkr5feFC4hMSkEfExfIpzqe82/xzc93rF4WfOw2a0Cs8jm5Gv8OiqKI3WZF9Pp+z+WNzI0sZSVodPoGom7ygEEgigFR1mGzotD4Mrk8bneLHW+iKPpErtrnXFmYH8ixq2lhiXXdjq5NvbenG51a5ILTJ2hYotUSec/dxL/6SosmtcX//CfO3FwS33oLaZATp6p3bzRjxlD52WdUzP+Q6s1bSJg7F3l8w/a3wRAEgfgXX0AQBFw5OUTcHtx9I1GpSJz3DhK1mvx7722VACAIArHPPEPIyJHk33cfjqPtfELNzkFQq5FFN6xzloaFITUYTkoul+jxUPDww9gPHybpvXeDlkuCrwy0YM5DuCsqSHx3XovL0aIefBBnxlEqP/qYqLvvbrZDYWOoB/Qn8Y3Xsf72G2VvvNlgefW2bQghIVRv3Yp1w4bm9zdkCLK4OMwrV9Z7XHS7KX31VTRjxqA955xm92M/eJDCJ54kbMoUIm6/PfC4/tJZiE4n5mW+k4u7spKcG27EcfgwKZ98jOHyyxvsS6JSkfDqK7jy8il96WUAjJ9/gemrr0EUSXznbWKefJLKjz+m+Jl/BBX7pDod8f/9LwmvvUrVr7+SffXVuApaLui6Kyqo+nVdQGhy7N2LIz14m2lXYSF5d96BsmdPXybfCXY39JjNlL76KmFTphD90Bw8pWV4zRYKH36k3nP12mwYP/sc/axZyCMjifv3v0AqpfCJJ9slgL+Lvy82s4Mlr+3AUe1ixpyhhMcFd6wej0Qq4YKb+5PcN5xV7+0l72DjE5FThcvhYcXbu30C133NC1x+wiLVzJwzDI/LJ3TZTB0vdLVW4PKTOjAyIHT99OF+PJ6O//6nbyvhp4/202NE8wKXH7/QNfziFP78vnMIXR63lzXz95F7sJJJdwwksXfDDrmNMfTCZM6c1YMdP+awafHRLqHrBDldI00aw+v1YCkvRSqTIZUrECSSNju5AKLTelCRn4vb6Wy3MfqdXMHKFYszjqDUhKA/TojQhOmwmUyAz/0UGhFFiN6APiYO0eul4rhMJUvtjTl/6ZQ2IrLJckXwda8TRS/9zjqX5AGDKM/LodpiDnSbq7aYqaooD5rH5ai2UWMxo4/zza10MbEoNCHk7t8bcKAdT02VBU+tAOFqw03T48natZ2k/gNJHTKcwsMHcVTXFxCjU9PwuN0N8qcao7KwAIlUGjRkvyn8r8GxcjdfRtTxlUOqEK2vrK8RGi9X9F1btNbJ5ayp9r1Hx5UrqkK0hEZEUZaXw4avPkWpViNTqojp3rPRfRli4wiLjKbw8AEs5Q27sNpru4ACzTq5nDU1iF4vbqfvesETRJTyej1UVZSji45p4OQKi4xGHxsXKFn0lyv6uzW29HVyOex43O565Yq62i6iLf0N8Qt1gkTSJXJ10RBBEDBcfnmz2Ufgyx4yL11G3LP/RNWrV6PrhV93Hfbdeyh76y0ibr2VkNGjWjUmSWgoEq3vR8X62++NriczGEh8522c2dkUPfOPVl18CXI5CW+8jjwmmrzb78Bd0X539J05OSiSkxstzVSkpOBqZ5HL1+ny31jXrSdh7mtNlqaVvvyyL39t7mso09IaXe94lD16IGg0CDIZ4ddde0Lj1Y4fT/RDc6j44AMsa36qt8y6fj2hF1yAZvRoSv71b7zNXOwIEglhF19M1ZqfEOvcMTItXozz6FGiH364yTJZ8AlXeXffjbJ7d+L+9Xy99eUx0YSeey6mr7/BWVJCzrXX4S4vJ+Xzz9CMaLykUtmzJ9GPPYpx4UJK33iTkhdfBCD6sccInTCB8OuuJe7FFzF9/z2Fjz5Wb+x1CZs0idSvFuI1W8i64grsR440+Vz8mJct9/1DJkPVrx/IZJgWfd9gPa/TSf699yGRK0iqFY5PlLK33ka024l+5BHCb7wxIDLaNm6k/L33AusZv/sOj81GxE2+Um5ZRATxL76I7Y8/AsH/XXRxPFajgyWv7cRp9zBzzjAMsS0TuPxIZRIuum0ACb30rJy3h9wDHefoaqvA5cfn6PILXTuxmTtO6GqrwOUndWAkF982kOy95fw0v2OFriNbivn5o/30GhXDeTf0a5HA5UcQBEZP6xYQunat7Tihy+Py8uMH+8jZX8HFtw8kuX9wd3dTDDk/mXGX9WTnT7n8+X1Gl9B1gpxukSZNYa2o8Ak7AoTWdihsa/A8+NxSXo+nXre8E8Vlr0GuUiFXqRuUKxYcPkB8774NqlI0On1AKCjNPkp8774A6Gsn4cd3DfQLDw6bFYlUij46tlmRyy/k9TtrAkn9fNm2+Qf2oqk1EFSbfSKXNlgeV21OksHv5IqOwe10IJPJOfjH+qDHqyr3CXEyhbLNuWl+aqxVFB45SPdho0gdPAyvxxNwovnx55wdn9fVGJWFeehi4oK61poiRG9ArlJjLPLdBHZU2+qFzvtRhoQ0Wa5or7YFL1esfczeSpHL74DSxTQUoyOTUyg6cohDf/7O6JmzqSzIJSql6flY2tARgMDWZQ2v4+22Y8/Z5+QyNboff1mfy2FHIpUGzdGyVlbi9XgIj0/EZqxs0DE1ecBgcvfVily14qCydu7Q0lwuf1C8OkSLx+3GXFJEeILPxddSJ5fH7UIQBGQKJY6uTK4u2oqrsJDi554jbPJkdNOmNbmuZtRIkMmQaLVE3dN8CeTxWFb/iCu/AMOVV1LxwQdNdppT9e5N3L+ex7J8easnxdLQUJLeew+v3U7eXXcFyspOlMY6K/pRpKTgzG5fkavig/kYF35F7D//QWgTriXjd99R+elnxDzxBNozz2zVMcpefx3cbkS3G9MPi09swED4TTcRevFEip54Aket7d6ZX4AjPYPQc84h9qn/w5mfj/GLL5vdV9jkSXgqK7Ft+gsAb3U15W++RdjkyagH9G9yW1EUKXriSUS7g8R33g5a1qi/YjaO9HRyr74Gr9VKyuefoezZ+F0XP4Yrr0Q9ciQV774LgG7WpYTfcP2x/c6cQcLcuVh+/JHCJ58M6ugCUPXpQ+q33yCLjCLn2uuazaITRRHTokVIlErCLroIw3XXgtuNafFixONEw9JXXsFx5AgJb77ZaDh8a7AfOoRx4UIi774beUx0oLxYogtDFhtL+TvzqNm1C6/TSeUnC9BNmYI84VjQqHb8OMKvv47SV19rd5dlF6c/5rIaFr+6HbfTw4w5Q9HHtK1LlEwu5eI7BpLYx8CqeXvJ6YDSRV+JYq3Ade/gVgtcfnRRvtJFt9PDktc6Rug6UYHLT+ogn6Mre295hzm6Dv9VxNpPDtB7bBznXtcXiaT1ATYBoWtiChsXdYzQ5RO49pJ3oJJJdwwidWDbf98Hn5fE+Nk92bU2j42LuoSuE+F0ijRpDv9E3uNyoa0VuWqsbRdQolJSEQRJu+ZyOR12FCoVCrU60AESfG6VwiMHSejd8HXUhOkCk/Dy3By6DfXd0NQafILT8SKcpbQElTYUc2kJ+th4tOERTZYrwrEQdHVoGKERkRji4snZsyvg5KqpatzJ5Q+319eGzuuiY7FWVNB9xGgO/P5r0O+npbZUMURvwFFta1OQup/s3TsQvV7Sho3AEBuPLiaWnL07662j1GjQx8a1uPzUWNj6zopQa9aIiw+8Jg6btVGxqim3j7PaVi/Hq+52/uWtwVz73TjeyQUQlZxKcWY6oeGRpA4ehrOmhsik5Cb3F9OtB6LoZe+vP2Ez1Y/+cNRzcoXhsNkaLRP1u6QcNdVI5fKgwp+lNrstOrW777mU1i+vThk0FGNRAZbyUp84GBJyLLushS7BQEdIbSjludl4PR7ie/apXday3xCXw4FcpUYqk3U5ubpoG6LXS+ETTyIJCSH2maebXb/05VdAEPBWVeEubWirbPJYbjflb72F9pxziHn6KULOPJPCxx/HXR7cfgu+MPnwG2+k5L8vYduypVXHkyckkPTuPByHj/jcNO1QIuU8ehRF926NLlekpuDMbb8LXtOSJZTNnUvkPfdguOyyRter3rqV4ueeR3/FbAxXX9WqY9i2bKHys8+JevBBdNOnU/7ee3isbWup60cQBOL/9S/kCQnk33c/3poarL/+AnI5IePORNmzJ/pZs6j44AM8zSj0qn79UKSkYKktWaz87DPcJhNRDz7Q7DiMCxdi/e034l74N/JGMjHUQ4ciKBW4SkpI/vijFjvg3GVlOLN8mQ+CRkPMU081cJWFXXQhCa+8jGXFSoqefqbRz6AsIoKUTxeg7NaN3BtupGZv8ABKAPvevTiPHsVbXY1+1qWEXXQRkpAQvBaLr4SxlqpffsH42edEP/pos2JgSxBFkeLn/4UiLa2e20+q15Pw8su4S0qQRUdT8OhjmL77DndpKRG3NrwbHfXgg8jj4yl68v8aFf66+N+jotDKD69sR5AIXPLIcPTRJ9YGXSaXcvFtA0nqF86qd/eQvbfx80x747S7WfH2bkpzqphy7+AWZSQ1hS5Kw/QHh+JyeFh6ih1dFYXWdhG4/KQOimTi7QPJ3lPOz6dY6Dr4ZxFrPz1I3zPiOPeaPm0SuPwIgsDo6R0jdLldHla/v5e8g0Ym3TmQlAGtd3Adz6AJSZx1RS92/5LHH9+mdwldJ8DpEmnSHObSYhAEHNU2tOERqLShJ+TkkitVGOLiW+z+aQmBckWVGmcdkas8NwdnTQ0JfYKIXDo9jppqQABBIHXIcABUtY2CyoI4ucIio6nIzyUiMQmtIbxJkctZUx0oF/OX2aUOHk7W7u0o1BokUhk2swlrRTmh4UGcXEWFqELDAuPRRcciil5SBg+jIj83qLBUVV4OgkBYbTlgc+HkTZG5fQvRqd0JDfcJ50n9BgUNRY9O7d4KJ1frOyv6McTGH3NyNVZ2GKJtvrtiEHFMofE7lFoXqm4qKUKuUgdEy7qERcfgdjjoP+F8TLVZYhGJjZsjwCeMASDC/t9+qbfMbq2fyQWNdzn1O7nsVVW+MP4gz8tc5hO14nr5YmmOL1lM7j8Y4f/ZO+sAKQr+jX9mu27juu/o7hIsfO0ABcGW1y5UUFJpRELKQLFFxU7Ewk6Q7q7r2Ku9u43bnN8fe7vccrsXcCi+Pz7/sTszO7O73M488zzPV5CQvWObXxzUaOt0lzVNbAqIyKooPUWHDyJIJKR07OyPPDfRaRiYfioIwpnpimc4McpXvIl9/XqS589rtL+p+qefsHzwAQkTJyDV6yl7/Y1mvVblqi9wZWcT9/BDQQcIothoR0/8uEfR9OtH/thHcEcYwxwJdbdupCxeRPX332NetLhZ6x6Pt6oKT0kJyjZtIy4jT0/HW1GBt4l2zIaw/vEnhVOnYRw5gtjRD0RczpWXR97DY9D06kXilCmNxvfq4rPZKHx8Cuo+vYkedStxDz+Er7qasldfOen9l2i1pDy9FHdBAcULFlD93fdoBw0MThyMfcA/hbG8ke+RIAjor7yS6h9+wF1WRtnrb2C64QYUqQ3fFXIePIj5qYWYbr45ogNO9HopmDgRsfZCSxpdf8pN2PVcLvIffhhfVRWCWo1os/k7ucKgv/xykhfMp/KzzyiaNTvixYNUryf91VdQtGtL7j334DwSfpS15ZNP/b1wqalo+vdHolajHzoEZDIqPv4Y8E/hLJw+A91//oPplpubdEyNUbV6NY7Nm0mc8ni9Xi9Nnz7E3HUXntJS3MXFlCx9mqiLLkLZpk297UhUKpLmPoljxw7K3zoTWzwDmLOr+HzxVtQ6BcPH9yEquvFBEk1BKpdw2T1dyegSwzcv7vxbpi7W2Nysenobpbn+iGLySQpcAYzxGq55tBeuGr/QZa9quV6bSJTkVPP54q1oohQtInAFaNU9lsvu6crRv1Ho2vNnAT+9vZcu5yQz+OaOIaW2J0pA6Or9NwpdgSmKefsruPKB7icUUYxEt8GpnH9TB3b8nMfPb+/Ddxp0p53hn6PSXIQuOgZ7paXWyRV1Up1c4C8sL2lBkctV40ChUtWbrpi7eydSuZzENvXrVzR6A163G4lUQlKb9kHhICCClOUe5+QqMaOPi6M8P5eYlDS00TG4axwRp83l7Drmxi8vyAOgVc8+VJeWUFGQh0avx1pWittZQ1RsfSeXpbgwGFUEgj1WOlM0WqOJ3b/9WG+dqlIzAhBT65ayV1rC7ltjuJ01HN68gbb9zgo+ltqpC6W52fXEifjM1pizjjRqIHC7nFSVmjGdqMiVnBIUCyPFDv2dXOFFLtHnizhdUSKRolCrmz29r9JchDEhMez1ViBumpDZhrK8HGQKJfq4+p9zXWLS0kEQiG/Vhp0/rQm5TghxckXVilwRRMyAuOSorvT31IV5T6pKzGgMRozxicjkiqArLYBKpyOxTTuytm/G5XD4nVwa/+s3N66o0ukoOnyQ2PRMFCq13w3axOtjd00NKp0uWKb/v8IZketvomb/fkqWLiX69tvRnnVWg8t6SkoonDK19qL5Fky33oLl44+b3HclulyUvvACUZdc4u8QAmSxsSQvWIDt998pX/FmxHUFmYyUJYsRFAryx4ytF8lqjKgLLyThscmUv/46Fe+916x16xKIVynb1r9wD6DIyAQ46fL5mj17yH/4YbRnDyJxxoyIwpXXaiXv/vuRREWR8szTzS4VL164EE9ZGclz5yJIpciTk4m+/TbK31iBu6DgpI4BQNmmDQmTJ2F5/wPsmzahv/ji4HPyhARMN99M+YoVeMobtn7rr7oSn9WKed58xJoaYhrpqxDdbvInTESRnkb8hPERlyt59jmsP/1M0twnAaj87PMmHVfx/Pk4duxEdLlIXfYc0bffjnnJEhy7d4dd3jBkCElz5mD54ANKFkcWWyVaLWkvvog0JpqcO++sN4nQ53BQ9eWXiC4XphHXBrsmjCNGgMeD/Y8/cBcWYl7wFKLbTeLMyN+d5uCtrqb4qYVEXX4Z2kGDwi4T99CDKNu2RaJU4rNaUfXoEXF7mt69Md16CyVPP43zaHgx7wz/Pyg4WMHnS7diiPfH8jT6lhFSAgQ6ulp1j+Xbl3dxZOupE7oCEyErS+xc/UivE44oRsIYr+GaR3rhcnj4fMmWU+roKjpSyedLt6KPVXHNoy0ncAVo1SPumND12qkVunb96hdtup6Xwvk3dWgRgSuAIAicdXVrel/qF7q2/9i0IuYTwePy8vXynRQcsHDl6O6kdW7aTZnm0PW8FC66vTP7/iri25d34XGfcdv+f6XSXIwhPgFreTk6UzQqnf6kpiuCXxgpyT6Kz3fy3yufz4unNtKkUGtC4opHtm4krUt3ZGGmhAfcNz6fj9a9+wUfD8TZqkrNwZJ5qBUFjH73VnRqOjqT//+dNcxEaYAjWzYCoNBogg6k1C7dkMkVHN26CbXeEIyIRcXUjxlXFBYEC9cBomLjEAQJ1aUldDxnMPv++LVeXM1SVIAoisSm+x1D9hN0ch3etB53jYNO514QfCy1U1cA8vftCVk2vlUbXA57vbjb8VgKC0AUiU5OO6F9MiUmY6sox1XjCBbPH09D0xVdNTWIoi/segAKjbbW2dd0LMVFwemXx3Nky0YEiQRLcSFleTlEJ6cikUgb3J5cqcKYkIguOgZLUSF5tdMNwS/sBZ1cBiMQ+fN1VFcDQtD9Fa5rrLKkGENcgr/zOD4Bi7m+eSSje0+ya8vnlRrtMcdbE6dQOqqrEQQJCpWa3D07glFFf+S5aUK5u8aBWm/A5/E0W4Q8nTkjcv0N+JxOCsZPQNGqVaOxL1EUKXh8CkilweLu6JtvRpBKm+zEsHz6Ke6CAuIeejDkcd05ZxN95x2Yly5tMKIli44m9ZmncezZQ/GCp5r0mnWJHjUK0623UvTEHKy//trs9cEfVUQiQZGZGXGZwHOuIyd+p8qVl0fOPfeiaNOG1KVLI07GFL1eCsZPwF1YRNryF5CZmj5VCfxOMcv7fmeeIv1YXjzmrruR6KMwL15ywsdQF+P116Ps6LfFHi98xNx9F0gklL36WoPbULZujbJDe6rXrME44lrkCfWnW9al7I0VOA8eJGn+/LA9XABV366h7KWXiH/0EYxDh6K/5BIsH3zQ6F0py2efU/Hue+DzETd2DLqzzybukbGo2rWjYNx4fBF+BIzXDifh8ccoe/U1yt5YEXH7MpOJ9FdfBY+HvONE3ervv/dv3+fDMGxY8HF1ly4oO3QAiQTz089Q+fnnJEycgDzMFNAToXTZMnx2OwmTJkVcRlAoSF6wAF91NYJSSfkbb+CJcBIIED92LLL4eAqnTjszbfH/Kdm7yvji2e3EZ+gZOqYnKu3JTf6MhFQq4eK7utC6ZxxrXtnFoc3Ni9o3BZvFPxHSXuVi2KO9ic+oP6G4JTAmaLjm0d64arx8umgLVaUnP0nrePL2V7DqmW3EpGi5emyvU/a5tOoRx6V3d+Xo9toyenfL/x3Y/G0Wv753gB7/8cfxWkL0Px5BEDjrGr/Q9cdHB0+JoysQgS08aOHKB3uQ1rHlBa4AHQYkcsX93cjZU86Xz23H5Qjf/3KG/20qi4uIionD7axBa4puGSdXZhvczpqg2+Vk8Dj9Ir9cpUKuVAWnKzrtdvL27Ap2bR1PQChAFGlVR+RS1Tp9fF4v1bUdV6IoUlVagqz2PDwmJQ2t0f9/z1ZR/ya/KIpkbd8M+CfVlRf4RS65Qklql24c3b4Ftd6AtXZdXXR9kctSXBgioEhlMqJi47CYi+hy3n9wVFcFX6PuOgD2WpdMQFxrLnt+/5nk9p1CuqYM8QlExcaRtzf0Gi0+M1A+33AvV+A9OOG4YpJ/vYrCApz2Y9G9uig1kYvnA1MXVWGcXIHHmyreBLAUF2II08dVlpdDeX4u0ckpFB46QFleLjGpTRP3YtMyqbFZMSUls+uXHwD/98lpswajq4HBBQ05uRS1Yp4qyhDRyaWP818bGBMS6zm5wN/LFRCWlBptreNN0ywnl1Knozw/l8riItr09Ue2VbqoJsUVvR43Xo8HrcGI2+U84+Q6Q/MoWfo0rqwskhcuRBLmTkddKt59F9vvv5M890lktXEuqdGI8frrqXj33UY7lXxOJ6XLX0R/5ZVhC73jx4xB1aED+ePHNdgFpe7Rg8Qpj1PxzjtUrl7dhKMMJWHyJHSDB5P3yKPU7NnT+ArH4Tx0GHlqakTRBECq0yJPTm7ylLzj8VRUkHvnXUi0GtJeehGJJnIvTcnTT2P97TdSliwOGwtrCG9lJYVTpqAdNBDjDTfUO4b4MWOo+uorHNu2nchhhCAIAlKDEWQySp9bFvKczGTCdPPNVLz/Pt7akc6RkCUkIrrdmG5quHPMlZ1N6fPPE/3f/6LuEr6LqubAAQoefxz9FZcTfeedAJhuuB5Xdjb29esjbtuxezdFM2b4u8XOP5+Ye+4BQKJQkLxoEe7iYormzo24fvSoUcTccw/mBQuoXLUq4nLyxERSnn0Gx86dFNVObgR/VFGi1aI7//x6U1ON118HokjVl1+iGTAAw7XXRtx+c6jZf4Dyle8Q98D9EXvNArjz80EUEV0ufDU1FM+dF3FZiUZD0pw5ODZvbtIAgjP8b7H/r0K+fmEHaZ2iuerB7ihUzZu61FykUgkX39GZtn3j+e7VXez54+SdqgGqSh18umgzbqeX4eN6E5NS/yS8JTEmaBg+oTcC8MnCzZQVtNwJYPauMr5ctp2kNgaGPNwThfrUfi6te8Zx+b3dyN5dxpfPb8dV0zKCiiiKrPvsEH99foR+V7Xi7JFtT4nAFSAodNVGF9evPtJivVY1Vjerlm71DzEY05PUDs27oXUiZHaLZeiYnpTm+TvZ/o547BlOLyzmItS6KIBaJ1dUMIZ0osRl+jtPm1pY3hCBeKJCpfZHs2r/fWjjOnw+b/DC+ngC8URBIgkKNQBK3bG/24F4nKOqEo/LidfnRRAkmJJT0NXeULZa6t/EsxQVUF3m7380JSVTUXBMbGrVsw/5e3eh0uqwV1UiCJKgKyyA027HXmnBVMfJBX6hqdJcTFxGK+IyW7Pzp+9DnreW+0WztR+uBOCvTz9otjBQVVpC1vYtIS6uAKmdutYTubRGE1qjCXNWw2788oJcVFF61FEnduPnmMiVH7FbS6XV4a5xhC1kD/RShevyAr+TK1L0NBw+r5eqEnPY0vn96/5AoVaT0a0XRYf2U5afQ0xqw6XzAWLT0inPz6XDoPM4vGk9Xo8bl8OB6PMF912uUiOVyyM7uazVKFVKALRGY1hRqqqkONjdZkhIDA6YqEtSu47IFP7tBERFpUbbdJHLZkWt07H9h29Q6aJI69IdqHVyNUHkctf4BWytyYTo8520g/R04ozIdYqx/fUX5StWEPfII6g61M+r18V56FCw10h33nkhz0XfdhtiTU2jEcCKlSvxlJZG7JUSFApSFi/CW1JK8ROzG9yW8frrMVx9NYXTplOzf3+Dy9Z7HamUlEULUbZuTe599+MubN6dJOfhw00Sk5Tt2+M8cLBZ2wb/1MDc++7Da7WS/sorQUExHJbPP6fslVeJnzCh3ufSFIrmPInPbidp7tywJ/6GYcNQdupE8bz5J32i7q2qwr5lC4YhQ6j+7juqvvsu5Pno/44Cn4/yt1dG3IbP4QhOHWxIoBRFkcKZM5HFxkac/um1Wsl78CEUaWkkzZkTPH51374o2rSh4t13w67nqagg76GHQCJBlpBAylMLQkZTK1u3InHqFCo/+ZSqb76JuI9xj4zFMOJaCqZMxfrbbxGX0/TqReK0qVjee5+qb77BlZuLff16fDYbxhH1BSzDVVeBRAJeL/qhQ1rkgs5fNj8bRUYG0aNGNbps6YsvourTG3WPHkjUaqpWrw4pwz8e7YD+mG66EfPSpS06sOEMpy+iKLL52yx+WLGXDmclctm9XZHJG7bytxQSqYSLbutMl/NS+HnlPrasOflJuBVFNj5bvAWAYeN6n/BEyOaij1EzfEIf1FEKPlu8heKskz8JPLzFzNfLd5DeOZor7++OXPH3fC6Z3WMZ8lAPirOqWPX0NmqsJz4ZDMDnE/n13f1sWZPDOSPb0f+qVqdU4AogCAIDr2nDwGFt2PRVFr+9fwDRd3K/n9YKJ58u3kJ1eQ3XPNq7xTremkJyWyPXPNobm8XJp4s2nxLX4BlOT1wOO46qSuS1N3V1Jv90RafNFhLlay4avQFdTCzm7JOvKQgUzSvUfpHL7axB9PnY/euPpHXuhj42vJNdXeuGkSkUIX8XVLW9Q4JEEpzmFyjpdtntGBISkCuUKNQaFGo1tvL6Tq6j27YEzwtj0zKpKMwPnkO36tkHr8eDx+XEabWiNZmQSEP/xlqCkxVDo3CG+GOOm54XX8HhzeuPTb/0uP1OJEGgbb+B6OPicdnt/PTGS016HwNsW/MlcqWKzucOrvdcaqcumI8eqVdk7u/laliwPNHJigFUOh2qKD2WogKc9kjF837hK5wIE3AkKSKYBpRqdZPFG/CLgaLPhyFMXPHg+j9p02cAyR06UVVixmmzNVnkiknLwFZRTnq3njjtNnJ2bg/ue0BoEgQBtd7QoJNLKvcbV3Sm6Hqfl9+lWIoh4OSKT6TKXFwvTSGVyYLR10C8V6ltuuOtxuovvt/54xr6XjUMWW2VjlrftMhz4P92lMnvdDzj5DpDk/BWVlIw+TE0AwYQfdt/G1zW53KRP2Ei8tTUsL1G8oR4DMOGUf7mW/gijBX1VFRQ+uJLmK6/rsGpdYqMDBJnzqBy1RcNOlwEQSBx5gwUmZnkPfxwswveJRoNactfQJDJyL33vkZdaHVxHj7UYB9XAL/I1Twnl+jxkP/oOJwHD5H24osh8cHjsW/dStG06RiuHd7oZxiOqm+/pWr1ahKnTY3ozBGkUhImTcKxfTtVX33d7Neoi/WXX8DtJnbMw+j+8x+KnngCb+WxP9Cy6GiM142kfOXKiE4+y4cf4quuRtWlS4P7U/XFF9jX/UXizBkRXXBFs2fjLSsjddlzIcsIgkD0f0dR/cOP9XqiRK+XgnHj8ZaWIfp8pD33bNhBDYbhw4m6/DIKp8/AlRfeLi4IAkkzZ6I7/3zyxoxt0C1nHDnSv72Zsyh/+22Qy5HExKA7//x6y4peLwj+aUG2tesibrM5VK1ejWPTZhKnTkFoxPFp+3MtNTt2EHf/AyTNfRJfVRXy1FSKZs5s8P9p/LhxyKKjKZwy9Uxs8X8cn0/kt/cP+N01V2Zywa0dkUr/3p98QSJw3g3t6XtFJus+O8y6zw6dsJBfdLSSTxduQa6SMWxcH/Sx6hbe24bR6BUMe7QXpgQtq5ZuJW9/5HhwY+z6NY9vX9lFm97xXHpPV6Tyv/dzSWlvYtijvakuc/Dp4i1YK06sb8zr9fHDG3vY80cB/xnVkR4XnlgPzMnQ+9IMLrilI7t/y+f713fj9ZzY37XKEgefLd6Mu8bDsHG9iUuPauE9bZzYVB3DJ/RB9Il88tRmzNn/O3fUzxCZgIAikfqdnFqTCVWU//t3shec8ZmtW8bJVXsBr1Br/O4eUSR//15yd++g6wUXR1xPKvNfcMtrnSoBZEolEqkUdZQ+GKesqu1FtVWUh4gVOlMM1WFEruwdWzAmJCGRSonPbI3bWRN0WRkTkzEkJGKvrMTlcASnF9alNNd/4yUmJfTvljEhMSi4dTp3MCqtjm1r/ImWwPYRRc4afj266FgS2rRl7+8/B/vBGsNpt7Pjx2/pftFlKNT1z51TO3VFFH0UHNgb8nh8q8YnLJ7MZMUApoQkyvPz8Hm9Ybu1AiJQuO6mgIAVLuYItZ1czZiuGIiGGuNDr5/K8nMpzc2m/VnnkNS2Q/DxJscVA98vUcSUlMyB9X8G/6/VPWZNlCGik6vGWo1EKkWmVKIxmOq9H9aKMnxeL/q4gJMrCY/bhdVSvxfZlOh3Ewb+n/gjoU2fruiwViNXa+h12VXBx9VNjCu6a6PHgcEMHpcLr+fkbn6dLpwRuU4hRbNm47PbSZ4/L8SFEo6SZ57BeegQKYsWRozoxdxzN16Lxd9RFIbS5cvB5yN2dHhXTV0MQ4diuPpqimbNbrC4XaJWk/rsM3grLI1OZgyHLC6OtJdexF1YSN6DD+FzNn4y7bPZ8BQUomiik8tTXBwi5DSEKIoUzZqF9Y8/SH3madTdukZc1l1QQN6DD6Hq3r3BQvqI65vNFM2cRdQll6AfMqTBZbVnDSDq4osxL1jQLDHweCq/+gp1r14oEhNJnDEd0VFD8cKFIcvE3H47Prsdywcf1Fvf53RS9upr/u/H8GFY//wzbNeTp6KC4nnz0V95Jbpzzw2/L198QdUXq0mcORNFWv0fHsPVVyONiaH8uM6skmeexbZuHaLLRdKMGag6dQq7fUEQSJo1C2lUFAUTJiCGsU5D7TCFxYtQdelM7r334crKiry9GTMQlEos7/vfG9Owa8IOGChd9rz/cVGkes2aJn//IuGtrKR4YcNl8yGv/+JyVN27oz17EMrWrYl98EHcBQX+0voFCyKuJ9FqSXpyDvaNG6l4P/yEyjP8+/G4vHz70k52/17ABbd0pP+Q1n+LuyYcgiAwYGhrzh7Rli1rcvjl3f34mum4yd5VxqqlWzElahg+vjc6k7LxlU4BSo2coWN6ktjGwJfPbefItuYV64uiyPovjvDrewfofkEqF9/e+W8XHgPEpUcxfHwf3E4Pny7cjKW4eWXAbqeXb5bv5PAWM5fe3ZVOg5IbX+kU0fmcZC69pyuHt5Xw9fIduJ3Nc7+U5Vv5dNFmBInAsPG9MSWG75P5OzDEqbl2Yl900So+W7yFoztK/7F9OcPfQ1me31ktCP4LbLlSFYwuNuUitSHiM/3CyMmmBIJOLpUalda/bxs+/xBDfAIdBoY/BwT/BTOA9Lgbd4IgoNRoUWq1QUdVVUkxCrWGiqKCEOFJHxdPVUlot6PH7SZn9w6iYmLRGIxE1y4fmLAoCAKtevbBUlyI1+NGGyatUZafS1RsXD2hSR+fQE11FU67DblSRfeLLmPnT9/htNuD+yFXqUlo3RaN3oBCpSazZx++f2VZk1xKG7/4BK/LTe/Lh4Z93pSUgsZgDNvLZasoxxYmugn+35fygrxg5PBEMSYlB9/HcN1ayqDIFc7J5X8sXMzR/3jTu6YAKosLESSSepMxs7ZtRiqXk9GjF1GxcchVagSJBEN8wzUfAUzJKUikUsrzc2nXfxCHNv4VdGzVFejUej32COf3/jixQFR0DCqtttY5eCxqXmX2f1fqdnL5j6l+ZFFbG6UNiJhKrTZskX04rJYKrOVl9L58SMh3uelxRf//7cBkUf+x/W+4uc6IXKeIytWrqfr6axKnT0eeFH4qRADbX+spf/0N4seOiXhBD6BITcV47bWUvfpqPReOKzubinffI+aee5DFNG3MdcK0aUjjYskfN77BKYqK9HSSF8zH+uOPlL3yapO2XRdlu3akLX8Bx9at5I8bF1GMCOA8eDC4XqPbbt8uZJ3GKH3uOSwffUzSE09EFGfAL7Tljn4QiVJJ6rPPNNqldjyiKFI0bTrIZE2eupfw+GN4bTZKnnm2Wa8VwFNeju2PPzEM9Qtq8oQE4sc9SuXHn4Q4mORJSRiuHkrZijfqiY6BKZ6x996D/tJLweej+rvQPgIA8/wFiKJIwmOTw+6LKyeHolmzMVw9FMOQq8IuI1Eqib71Vio//xxPqf9Evuq77yh7+WWQSDCOHInx2uENHrNUryd50UIc27dT+sLyiMtJVCrSnn8eaUwMOffeG7GkXWo0En3Lzf7/D2532K4tV24uFR98QOwD9yPPSAevl8qvvmpwPxujeOFCREcNCZPDv591sW/ciGPTZmLvuy/4vYq543ZUnTohjYqi8pNPsf7xZ8T1tWedhfGG6zEvWowrL++k9vsMpx/2Khernt5K7t5yrri/G53P+efEh7r0vCid/4zqyN4/Cvju1d1NniS3769CvnphB6kdo09pYX5TkSulXHl/dzK7x/DtSzvZ9WvT/g/5vD5+eWc/m77OYuCwNpwzsl2LTh48EYwJGoaP74NMIeHTRU13DtmrXHy+ZAsFB/2TB9v0bpmhGydDm17xDHmwB4WHKvnima1NjmEWHKzgs8VbUEcpGD6+D/qYv9chGA6NXsE1j/YivXMM3yzfwY6fT90UyTP885Tl5aIzRVNjs6Iz+c/fA51KNdUnWT7fqjWOqspg+fqJEuzk0miCxdxHt22m/zUjkUYY2ATHBLyAo6suKp0OuVJNRa2Tq7LEjD4mlurSkhAnVziRK3/fbjxOJ0qtDq3RhCE+AYlUelwvV99gr1m4jqqy3Oyw8baAaygwybDnpVficbnZ+eO3WGofi6ud7q4x+J0+F989Gqfdzq8rX4/4Xvi3WcTmrz6n95VXh532CH6BLrVjF/L3hU4Qj8/03/iP5OayVZTjrnEEBb8TxZiQFDz2hpxc4VyGNTYbUpks7KRN8ItfrmY4uSqKCjHEJ9T7juXs2k5Kh87IFUoEQUCl0yGTK+pFUiMhlckxJiZTmptD6z4DqLFWU3S49tqzjsili46J+H/HUV2N6POhM8WEjXAG3IABkSvQzRV2QmZtMqToSO0+NKOgv6rYv70eF18R8rgqSo/L4WjUlRUYIqHU6lDpWsZBerpwRuQ6Bbjz8ymaNRv9kCEYrrqywWX9kcbJaPr3J/r22xvddux99+KzWqlYGTpp0bxkKbLYWH/nUhOR6rSkLF5Czf79mJ9+psFloy64gNgH7qfkmWewrV3b5NcIoOnbl5Snl2L9+RcKp89o8K6SY88ekMmaJnK1agVyeZPK58tefZXSF5YTP34cxmHXRFxO9HrJnzgJd3Y2qctfaLJoWBfLxx9j/fVXkmbPbrDvqy7ypCTiRo+m4p13cOze3fgKx1H19TcgCERddlnwMeN116Hq3JmiOU+GuPBi77oLb1k5lZ9+GnxMdLkoe/U19FdeiSIzE1lsLNqBA6n84ouQ17GtXUvlqlUkTJyALLb+j7TodpM/YQLS6GgSpk1rcJ9NN1yPIJNRvnIlziNHKZz8GIJajbJDBxKmTmnScWt69yZ29AOUvvgi9k2bIi4nNRhIe+lFfNVW8h56CF8EYbdm716QSkEiQRpVP7JSuvzFWjHsFkzX+wcJBJxfJ4Ltr7+o/PgT4sePr1dwH47S5ctRduyI7oLBwccEmYykuXPxVJQjT02hcPq0Bh2B8eMnIDUazsQW/8cozbPy0fyNVJbWcM0jvcnsFv4k+p+i06BkLrunG1k7S/nimYb7oERRZMt32fy4Yi+dBiZy+b1dkf1NvVWNIZVLuOSurnS7IJVf3zvA2k8PNdgH5XF5+ealXexdW8iF/+1E70sz/jFn3fFERasYNr43+lh1k5xDlmI7nzy1CavFybBxvUnv3Pzfx1NFasdornm0Fxazg08WbsZibvhi6uDGYlY9s43YtCiGPdoLjb55N7NOJXKFlEvv6UqPC9P4/YOD/P7hgWY7IM/w76AsL4fo1HRs5eVBR0fgYvOkJyxm+MveSxopLG+MQFm4QqUOilyqKD1dzr+wwfVKavvAwv29U2q0yBRyKouL/P1FpeZgIX2oyJVAVUmoMJC1fQtaUzQ+jwet0YRUJsOQkBQy6TCtSzckteKIMkwssCwvfFG5IShG+B03UdGxdDrnfDZ/8wXZO7cB/s4v8E+PtFda0MfGc97Nt7PzxzVkbdtcb5vg72j6etkSNAYj/a8eGXaZACkdO1N06ECIM8gQn4BCrYkYPz3ZyYoBTEnJQXFQqWlmJ5fdGrF0HvxxV2cziuctRQUYE0Nv1Hk9HnJ37yS9W8/gY4IgweN24XE3PWYXm5ZBWV4OSW3bo9RqKTi4Dwh1culj46guDe/YrrFW+12CpmiU6jAil7kYrdEUjCDKFUp0puhgBDNkW9VVKFQqiuuIXOGmNYbdD1s10cmpwSEPAQLCrqMRodztDLg0VWiN/kEPTY1Knu6cEblaGNHrJX/SJCT6KBKnTW142dri7qZGGsEvhBivv56y114PRqTsW7ZQvWYNcWPHNDiNMBzqrl2If/RRyl9/HevvfzS4bOzo0WgHDiR/3PhmF8mDXyhLnj+Pyk8/xbzgqYhCl3PvXpRt2zbJPSXI5ShbtWq0l6v83XcxL1pMzP33EXPXXQ0ua168BOvPP5O8ZDGqDh0aXDYcruxszPPmYxhxLVH/qT85pSGiR92Ksk0bimbO8vc+NYOq1avRnXsuMtOxaVCCVErC1KnU7NqF5ZNPgo8rMjOJuvQSyl57Peiss3z+OZ6iImLvuze4nGH4MBybN+M84j9R8TkcFM6YiaZ/fwzDw7usSpY9T83uPaQsXoRUF/nHDvzCk3HkSMrfeZe80aMRAeRyUp99Fomy6ZGk2PvuQ927F/kTJjYYHVSkpZH6/DJqduykcOrUet9BT3k51d//AF4vgkpF8fzQ6J8rO5vKVauIvfsuJGo1hmHXgFSK88ABvzjWTHwOB4XTZ6Dp2xfjdQ2f9ADY1m/AtnYdsfffX++kUdWhPbH33oe7oBBveQXmhYsibkeq05I8Zw729euxfPhhs/f7DKcfR7aV8MnCzai0ckZO7ktCqxObrnSqad0rjmse6UVFkZ2Pn9pEZUn9E16f18dv7x9g3aeH6XtFJoNv6YjkH4r1RUIiETj3uvacM7IdW7/P8fdBuesLxgFnXd6+cq58oDsdBzbs7P4nUOsUXP3IMefQzl/Cu9MKD1fyyVObkcokXDuxzz/SW9UY8Rl6RkzyX4B+smAzhYcs9ZYJCKjfvbabtn3iGfJQD5Saf9YhGA6JRODsEe04/8b27Pw5j6+X78Bp/9/oSjnDMcryc4lJTcNaUR6cABh0VJxkXFEfF49KqzvpXi6Xw4FEKkUql+OuTQC07tU3rEOrLsW1r+sNIz4otToEQYLP66GqtIRKc3GwyLtuebo+Lp4amzVEQMjatpnM7r2wVVagMZhq10mhvI7IJVeqiEvPBOrHJd01NVSWmI91M9VBrTcgV6pCYmV9rxqGtayUnJ3ba4+9H+Av97dXViKKIj0uuozMHr1Z/fT8oCsogM/n5buXnqXw4D6ueHAcygamuQOkdOyC1+Oh6PCxa5vAhMpITq7ygjwkUmmTI3uRMNURlcI5uRQqNQhC2Eib02aL2McF/rhiU8UbAEtRYcj+ABQe2o/bWUNGrcgliiI1Vr+rqrBWqGoKManplOZmI5FKyejWi5KsoyjU6hA3WFRsHDZLRT3xLPCa7poadNExwaL9ut/RqhJz0MUVwJCQGDauaK+qRB1loPiI//+LqolxxaqyUnxeLwmt65tCjrlBG/4bEnBpylWqoLvwjJPrDGEpe+11HJu3kLJgAVJ9wxcZVV98QfU335I0c0ajkca6xNxzN6LbTdkbbyB6PBTNmo2qa1cMQ8Pnuxsj+r+j0J57LgWTJ+MpidwxIkilJC9aiEStJm/M2IhOmIYwDBlCwtSplK9YQdlLL4ddpmbP3gZjm8ejbNcO5/7IIpfls88pnv0E0f8dRdzDDze4rYoPP6T89ddJmDyJqMGDm7wPAUSXi/xHxyGNiyVh8mPNXl+Qy0mcNZOanTupCNOZFQlXdjaO7dvDRgM1vXthuHooJUuWhghAsXffjTsvj6pvvvF/n156mahLLw2Zahl10UVIDAYqP/ULZKUvLMdTXEzirJlh78zZ1m+g7OWXiXvoIdTduzdp303/HYVoteLKzka020ldtBBFavPuRAlSKSlPPYXPbm+0O07TqxfJ8+dR9cVqSl94IeS5ys9Xgc+HEBVFwuTJVH35ZYhzsXT5i/7y/uuvB0BmMhF10UUglVLx8Sc0l5Jly/AUFZH4xOxGRW5RFClZsgRV165EXRK+6DX2nrtRtmuH1GjE8sEHDboutYMGYbzuOsxPLcSdH764/wynP4EJit+8uJOMztEMH9+HqOjm3ez4u0lsbQgKER8v2EzRkWN/l5x2N18+v4M9tX1iA4b+c31iTaHHhWlcdndXjmwvZdUzW6mxHTsZLsu38vGCTUFnXUbX08f1dDwB51D3C9P47f0D/PHxwRB32uEtZlY9vZXoZC3DJ5wesb5IGOI0XDuxD9HJWlY9vY2Dm465QAIDGdZ9epg+l2dw0W2dkcpO71PhruencuWDPSg6XMlH8zdRXtD0i8QznN543G4sRQXEpKSHiFxSmQylRnvSnVyCIBDXgDDSVFw1DhRqDYIgcGjjXwAktGq8N7ek9nUDnV51UWq0iKL/XK2iML92kp4XfVx8cNIkEJxOF4gsVpWaKc3NplWvftgsFUH3iSkphYqCUIE+0E8lkYS6gMsL8kAUwzq5BEHAkJAYjCYCxKZn0qpX32BvkynFL8JpDCZ8Xg9Ouw1BImHII5OJSUnngxmTWP/Zh5izjpC1fQsfzZ7Cnt9+5vIHx5HSsXOj71tcZisUajX5+/bUezzShMWKgjwMCUkNxkebQl3nVDjBSpBIUGm0EZxctrDCWAClVofX48HtaryfWfT5sBQX1pt+mbNzO0qtlvhWfpeio6oSl8OOQqUmZ9f2RrcbIDYtHUdVJfaqSjJ79qa6rCQoLgfQx/i/e9ayUIezu8aBz+vF6bD7O7lqb+g76wh/leaiYOl8AEN8IhZzfZHLUV1FVEwsVSXFOKzVTY4r5uzYBkBSu/b1nlNHNa3Xz11TA4KATKEM7q/zTCfXGY7HsWs3Jc8+S8zdd6Pp16/BZV15eRTNfgLD1UPRX3FFg8sejzw+nuhbb6V8xZuUvvgizgMH/MXoTXCChUOQSEieNxcEgYLJjzUoEMhMJlKeeQbn3r0Uz517Qq8XfcvNxD74ICVPP03Fe6El+qLbjfPAAVSdG/8RCKDq3Ima/fvDOp+qvl1D4ZQpGEeOIH7y5AYvlmzr1lE0+wmMN96A6dZbm35AdTAvWUrNgQOkLF6CVHdi5bWa3r394kMzOpMsn3+ORKdDd0F451jcuHGILhclzz4XfEzVuTPac8+l7OVXsHzxBe78fGLvvy9kPYlSiWHoUCyfr8Kxezdlb7xBzH33hp3e6bVYKJg4EU2/fsTcdWeTj9f6ww8giuDzEX333ejOO6/J69ZFnpxM8vx5WH/6qdHuOP0VVxA3dgylzy2jcrV/ao4oilg+/BBBKsU0fBjGkSPQ9O1L0dy5iB4PrqwsKr/4gpi77w5xTJquv87fy/X5500arBDAsX075W+sIPbBBxuchhrA+vPPOLZvJ+6RsRG/x4JCQdKTT+IpKUGelkbB1KkRp2gCxE+cgMRgoHDatJMupj3D34+rxsP3r+3mr8+P0PfKTC69uyty5ekR6WsMQ5yGERP7YkrU8PnSrRzabKayxOGfKpdVxZCHe5w2fWKN0aZ3vN+dVmjnk6c2U1FkI3tXGZ8s3IxCJTutnXV1kUgEzhnRjnOvb8+OH3P59uVdOB1uNn51lG9f3kWrHrEMffif70VrCiqtnKEP96Rtn3i+e3U3m77Josbm4qvnt7P79wIG39yBs65uc1oLqHXJ6BLDiMl9kcokfLxgU7OHHpzh9MRSmI/o8xGTmoatogyt6ZgQrjEYI5aMNwe/++dknVx2FGq/sH1k8wakMlnQ0RUJURQpre3kcjns9c4xlFotHpcbiVRGSfZR3DUOXA5HvWmHgQvvylqR6+jWTQgSCRnde2K3VKA1GgG/oFVZYg6J+EXF+AvL3c6akG0GJytGmMZniE+g6jgxosdFlwMiglQajKBpaid/B8rJFWoN182YR/eLLmPdx+/y9qSH+WTudOyVFkZOm0Ons+tP6w6HRCIluX0n8sL0clmKCoPx0bqUF578ZEUIdKUpkUikkbu1tNrwnVzWhuOK4cSgSFSXl+J1u+s5uXJ2bSO9S4+gcFma6/+OJXXoRM6uHY1uN0BMagbg72bL7N4bODbhNECg8L7quMhiIALo83jQmmKCril7HUGpoqig3hAAQ3x4J5ejqjLY2VWen4dCo8XlsOPzNZzoydntF/UMcfWrTtRRhtp9bcTJVeNAoVIhCELweB1nRK4z1MXncFAwYQKq9u2Je7Dh6Yaix0PBuPFITSYSpjYcaYxEzL33IFGrKV3+Isbrr2twSmBTkMXGkjx/PrY//6w37e541N26kjB9Gpb3P8Dy2ecn9Hqxox/AdOutFM1+gsovj5V2O48cQXS7UXVuupNL1a0bot2O83Doj3j1L7+QP348+iuuIHFmeOdR8HUPHyZvzFi0AwaQOGXKCZ34Wn/7jfIVK4gf9yjqrl2avX5d4ic2vTNJdLuxfPwxhqFDkajD312Xx8cT+8ADVLz/fkh/Wew9d+M8eJDSp59Bd9GFYeOZxhHX4i0tJX/cOBSZGcSGiXuKougXSmpqSH5qAUITyx/tW7ZQvOApUChAECLuf1Op2x1n/TNy+TpAzL33YrjmGgqnTsOxazeOzZtxZWUhut0YR45EEATiH5uM6/ARLB9/7HdxxcTUixVqBgxAlpSEaLNR/cMPTdpPn81G/sSJqLp2Jeb22xpdXvR6KVn6NJoBAxqdvqju2oWYO+/EXVSEp7wC83HTNesi1elIeuIJbGvX1ROcz3B6U15g4+P5m8jaWcald3dlwJDW/3iReXNR6fzTClv3iGXNK7t4f/Z6fF6REZP6ktqxaV2GpwuJrQ1cO6kPIPLBnA18+fx2UtoZGT6h92nvrDue7hekcvn93cnZU8Zbj69lw+qj9B/Sikvu7IJU/u85bZTKJVx4Wyf6XdWK9auO8NaUdRQdqeKqB7vT5dyTvxj8uzHG+x1q6V2i+ebFnaz/4kiDXXBnOP0JdFZpjdF4PR6ioo+JXFqTqcVErkpz8UlFkFwOBwqVmhqblcJD+1FqdY1uz15pCXb7+Lzees4flVaHy2HDkJBISbbf8WWzWIg+zl2lNRiRyuXBXq4jWzaS0rEzos+H1+MJ9phFJ6eAKAanNQIoNP5zSmt5qBOnNDcbfVx8vcmKAfyOm9AesICoJ60jhGj0Rv+xVlmCj8kUCi647R7uf+VdbnxiIbctfoHbliwnrUvT0g0BUjp2oWD/3hChIz7T714yZ9fvWCvPP/nJigGUWh0SWeTzeKVWF7a3yWm3RZysCAQnc9Y0oWvOUjuQoK6Ty1XjoPDg/pA+rrL8HCRSGW36DKDo0P4mTwY0JiYhkcoozcshKiYWmUKB7zizRFRt73B1WajIVXf/ddExyJUqZEpl0OnnctixVZRjSgoV6IyJSdgrLfWcjY6qKowJSSAIlBfkoqp1w7ns9R2QdSk4UNsjFqY/WKnRIAiSxju5amqQq/z/T/S1Ild1qbmhVf41/HvOVk5zBKmUqMsuJXnRQoRGuqRKnn8ex65dpCxaGLbYuilIdTrkaWng9RJ1UfjoUnPRnXM2MXfdiXnpUhw7dza4rGnkSAwjrqVo5swT6iISBIGExyZjuPpqCiZPpvqXXwB/VBFBQNmhY5O3percxZ8Pr7PP1j//JP/hMegGn0/yvLkNii7uggJy7rwLeUICKU8vRTgBq6/bbKZg8mNozz+P6P/+t9nrH49UpyP5ySexr19PxbsNiw/VP/2Mt6Q0GKGLRPStt6BITaV43rzgHTV1377IMzLwlJQQe999YddTdeiALCkJd1Y2SbNnh/1+Wz78iOrvfyBxzhPIE5vWB+ApKSFvzFgEpRJZTAyGa6+lfMUKvCc5TSh29Gi0gwZRMG487oKCiMsJgkDirJkoO3Qg76GHKF+5EkGpRNW7N8q2bQFQd+mCYehQzEufpnL1amLuuade750gkWC68Ub/j9Nbb4d7qXoUz1+Ax1xCylMLEOSNuyKqvvwS58GDxDfg4qpL7OgHUKSnI4uObjS2qDvnbEw33Yh5wVP1hOIznJ4c2FjERws2IUgERj7Wl7Z9/vnpdieKVCYhqa0RQQCP24c+VoX6NCoAbw46k5KEVga8HhFESGit/9c4644nNlWHLlqFy+FFppCQ2Nrwr3E91UUQBBIy9cjkEtw1XrQGBcb4hvtwTmcUKhmX3t2Vs65pzaZvsvhy2XbsVc2vjjjD6UHhoQOYkpKDAlDdDh+toeVELjgmqJ0ILoc/rlh85BDgd5k1JlSU5GSF/Nt+XF9qIJJlSkyiLN+fWrBWlNVzVwkSCfrYeCrNxbhqHOTs2kHrXv2wVZQDfoEQjvV41e3lolYErjSHXrSbjx4KTisMR8DJVfcm8+EtGwDwuF1BgS/g5HKE6YJVajQkt+9ETGr6Cf3tTO3YBZfDTmlOdvCxmNR0pDIZ5qOh8VN3TQ1Vpeaw8csTQaFq+IazShs+TtdYJ1fAydUUIaqisMD/2ddxKeXt3YXP6yW9a4/gY2V5uZiSkmnbbwA+r5cjWzc2um3wR4KjU1Ipq3X1yZWqeg45uUKJWm+oN92z7kCIQMRYo/dP2gSCE0OPF7kMx03uBPB63DjtNqKiYzDExVOenxcs/HfaI79PjuoqKmtL7NW6+k5xQSJBFRXVZCcXEBTZKwojXzv9mzgjcrUQgkJB/JgxKFu3bnA524YNlL34EnEPPYi6Z88Tfj3bunXU7NiBLDGR0ueea7GoUdzDD6Pq1In8ceMbnM4GkDhtGso2bch76GE8Fc3/IRYkEpLmPIFu8PnkjxmLbcMGHNu2oWjTullRP6lOi6JN66AwZ1u/gbzRD6IZeBYpS5Y0KCJ4KirIufMuBKmUtFdfPSHRUXS7KXh0nL+zbN68FrsQ0A4c6BcfFi/GlZ0dcTnLBx+g7tULVYf6mey6CAoF8ZMnYV/3F9affvI/6PMh1o6P9UUY6+suLMRbWgqCEHb6n/PwYYrnzcN4/fXoL26a4Cp6POQ/Og5fdTWiy0Xqs88S9/BDiE5no07CxhCkUpIXPoVEo2m0O06iVJL67DP4amqoXvMdotNJ9PXXhSwT98hYfNXVSNTqiOXwxmuHg1RCzfbtOHbuanD/qn/6CctHH5EweTKKzMxGj8dns2FevISoSy9t8t8MiVJJ8vx5eIqLkaWkUDh1WsOxxQkTkKekUPnF6iZt/wz/DB63l1/f28/3r+2hdY9YRkzqiynxxGLRpwNul5cfV+zlt/cP0G1wKlfc353irGo+nr+JiqJ/V+9QVZmDTxdu4dAmMxfc2pG+V2SyftVRvnttN25n84aI/NPk76/go3kb8bp9DBvfm6S2RlY/u41tP+T8q2LNoiiyZU02Xz6/ndSOJoZP6IPX4+OjeZvI3Vv+T+/eCSMIAn0uy2ToQz0pya3mgzkbyN337z2e/88UHTpAYpv2QZdSILIEoDVFB4WckyE6JQ2ZXFFPGGkOgbhi8ZFDyFVqdNExjYpcpdlHQ/qh6rqdoNYNZLdhTEiiurTEL4CIInFpmfW2ZUxMwlJUwOHNG/C4nLQ/6xystQKgrnbYklpvQKnVUlFwTOSyWioQBIHqOk4uURQpPnqYhNZtI+67IT4Rr8eD1VIeXCendrIiosjBDf4bhyqtDkEiwVZpCb+hkyCxbXukMhl5e49FFqUyGTFpGfXip8GOsZTw8cvmIpXL67ma6hLJyVdjszbYyRWcGmprgpOruBBDXELIdyhn5zaiYuJCxKPyvBxi0jKIio4lqW0HDq6PfFP3ePzl8znH9t9aTVleTsgyxvjE4KTN4HIB4UgQ0EX7RS51lCHo5ApM+TQlhjrrjAmJwWML4Kjyb0utNxCdnEp5QV6dCZaRJ1Hm7z9mMAnn5PLvk75JnVxypV/U1NWKXFVnnFxnaC7eykoKJk5C07cvMXfffeLbsdoonDIVTb9+JM2bi2P7dqpWt8zFqaBQkLJ4Ed6yMopmz25wWYlSScqzz+JzOMi7/wF8joZtlWFfTyYjZfFi1L16kXf/A9jW/ommV+9mb0fdrTs1O3Zi37KF3PvvR9O7t39CXwOuOp/NRu499+KtqiL9tVeRJ5yYG8K8aBH2bdtIeXopsuiWjdjEjxuHLDaW/PETEMOINa7sbGxr12I8TpiJhG7wYLTnnEPx/AX4XC6qvvkWT3Ex8vR0yl5+pd7yoihS9MQcBIMeiU5H+bvvhjzvczrJf3Qc8pQUEiZPavJxmZcsxb55M2JNDYnTp6Hu1hV5fDymW26m7I03cBcXN76RBpCZTKQ8+yzO/fspmja9wQszeWIi+osu8veCyeVEXXppyPM+uwNEEV9NDZ6S0rDbkMXE+Ac/SCSUrVgR8bXcRUUUTpmK7oILmjRNEaD0pZfxVlYSP2FCk5YPoO7Wjdj77sNTWIi7rAzzosixRYlaTcY7K4kbO6ZZr3GGv4+yfCsfzdvE3j8LOf/G9lx0e+d/rUsIoLLE3191eKuZi+/ozLnXt6dVj1hGTu6LIMDH8zdxZOu/o3coZ3cZH87dSI3NzbUT+9D57GQGDG3NpXd3JWtHKR8v2ER54ekv2ok+kU1fZ9UWzOsYObkvyW2NXPVgD3pelM6fHx/i+9d243J4/uldbZQam5tvXtzJus8O0/vSDC6/vztJbQyMfKwfcRlRrH52G1vWZP+r435pnaO5fmp/opO1fPHMNv5adRift+F6gzOcPng9bsxZh0ls24HKEjMKtTrEBaM1toyTSyKVEpteXxhpDn63h5rS3Gxi0zNQ66IadeOU5GShMZqQKf0ukePdTkqtFp/XS1Tt9ERlbZQtOkxPVnRyCuUFeexf+ztJ7TpgiE+o5+QSBIHoJL9IEMBaXoZUoaCmTkKgsrgIp83WoMgVECMC/UnlBXnYa4WsmNR0Dvzlr8MQJJLaCYuWBt+LE0GmUJDQpj35YXq5jh8kUJ6fC/gFzZZAkEjCRkwDKDW6CMXz1kbiigEnV+MiV0VhQdjS+fRuPULMBKV5OUFxr23/gWRt39KgOFSX2NR0yvJycDrswe/zW5MeDin8NyWnUJ4f2o9ss1iQSKT+KG3thFGNXo+9VrCqKMhHHaUPOtcCaAxG5Cp1qBBb+z3WmaKJTkmloiA/KHI19D4VHNjrf68FIeJ7ro6Kany6Yo0jOOghIHK1hLh+OnBG5Pqb8HcWTcfncDSrsygcJUsW46moIOnJOegGDiTq8sv88acTcFOFQ5GeTuLMGVR9sRrL5583vGxqCmkvLqdm/37yJ0wIW/7eGBKlktRly1BkZuDOzUOeltr4Sseh7tGDmn37yL37HtRdu5L6/DIkSmXE5X0OB7kPjMZ15Ajpr7zcJEdNOCpXf0n5m2+RMHkymj59TmgbDSHRaklZspiaffswL1la7/nyt1ciNRrRX3ZZk7YXiIm6CwooX7GC0uXL0Z53LnEPP4ztjz9w7A79Ma1eswbrTz+RNH06xutGYvnoY3x1LMrmRYtxHTlCyuJFTe7TqvrmG8pffx0kEgzDh2MceUzsib3vPiRqNSVhjrW5qLt2IWnuXCpXrYo4yRP8EzGrf/kFBAHcbqrXrAl5vnT5cmRxcUhNJkqWLIm4nejbbgOfj+pvvsFdXP8uiOhykT/2EQSlkqQn5zTJ8efKzaX8jTeIufOOZk+cBIi9715UnTsj1WmxvP8B1t9/j7iszGT6V8aR/tcRfSLbf8zlw3l+C/7Ix/rS9fzUf/VndWRbCR/N24TH6WXEpL60738s4mxM0DBiUl/SOkXzzUs7+e39A3jcp6cTyucT2fjVUVYv205Cpp7rHu9HXPqxO6pt+8QzYnJfRJ/IR/M2su+vwga29s/isLr48vntrF99hD6XZzJ0TE/UUf6bRBKJwKBr23LJXV3I2ukX9EpyTi5Wfiopzqriw7kbKTho4Yr7uzHwmjZIavvqVFo5Vz3Yg16XZLDus8N8+fwOHNX/3rif1qBk6MM9GTC0NVvW5PDZ4q1YzE27wDvDP0vhoQN4PR6S23ekqqQYfWx8yN91rdGE025r0iS6xggnjDQHl8OOXK3GUlyIKSEJdROEnZKcLNS6qKDb6XgnV0Dw0OqNIIr+qYbxCWGjctHJaVQWF3F060Y6DvIPJ7JZKlBqtSHl6HEZrYKRSvB3cSk1WjwuJx63f/Jt8VG/2NfQdMhAbDQQKzu6ZWNwuFebvgPI27Mr+LloDMZgTK2lSe3Ymfx9u0Nu1Ma3ak1Zbg5eT91JvrnoomNQalomih2IaQZ6sY5HpavfySX6fDjt9gbjihKpFIVa06S4Ynl+bjCCCv7PuyQni4w6UUV7VSWOqspgTLPTuYPxetzs/eOXRrcPEJOWTo21ms8XzEYUfUjlcjR6A9+/siz4HkQnp1JemBfyGdgs5UgVCnTRscHH1PpjTq7S3Gxi0zLqvZ4gCMSkpoW4xQJ9X1ExsZiSUrEUFwZFq4ZcWAX796KL9pfeRzofbIqTy2mzBsU4uVKFTKHEYa3+V7m2I3FG5PqbKH/zTaq/+46kOU8gT0pqfIUI2P7ydzTFP/ooinT/f+rExx9H9HgwL3iqpXYXw5AhGK65hqJZsxvt3FJ360bK0iVYf/6F4ifnntB/DKlOS/QddwBQ/tbbDXYphUOWkAA+H7LERNKWv9Cg4OKz28m9734cO3eS9tKLzZrkWJeavXspnDYNw9VDMd180wltoymou3UjYfw4ylesoPrnn4OPeyoqsHz8MaZbbqnXE9UQyjZtMN18E6XPv4Dr8GHiHngA/WWXIk9LC5lK6LVYKHpiDlEXX4T+kkuIvvlmfDYbllWrAKj++Wcq3n6b+IkTUXVsWoeaY/duCiY/hqBSoezQgcTp00L+OEujooh7+GEqV61qtBeuKRiuujI4ybPq22/DLlO1Zg3ekhKQSIi6/HIKZ8zEefAg4B+EUPXVV8Tcdy/xY8dQ9fXXOLaHH1Gsat8ezVlnAVD+zjv1ni9euAjH7t2kNtHxJ4oixfPmI42JISZM2X9TEORykp9agM9qQ5acTMHkx/CU/DvcMWcAa0UNq5dt54+PDtLtvFRGPtaXmJTIJ5CnOx6Xl1/f3c83L+4kuZ0x4vEo1DIuvacr593Qnt1/5PPJU5uxFJ9eF+7V5TWsWrqVDV8epd8VmVw5ukfYqYMxyTpGPtaPtn3i+XHFXn58ay9u1+kl2hUeruTDJzdizq5myIM9GDC0dVAUqku7vglc93g/5CopHz+1iZ2/5J1WJ8KiKLLj51w+XbgZdZSC6x7vR6secfWWk0gEBg5rw1UP9qAkp4r352wg718c9xMkAn0vz2TYo72wVzn5YM4Gdvyc9692qf1/IHvHVlS6KOJbtaaqxBzSxwUEC9XtLeDmSmjTlrLcnLBT+ZpCTW3XUmVxEYaEpEZdZl6Ph/K8HOQqFeqoqFq3U/1OLgBllP83wOOqISaMMAB+oUEURUQROgREroryoIsrQHKHTpTl5QSjdNbyMqJqhYiAsFB89BC6mFg0BmPE/ZcrVWiNpmBM7eCGdf7eIkGgw6Dz8Lic5NfGCLVGE7aKsojbOhlSOnXBZqkIibfFZ7TG5/WExOzK8nJbzMUFBAXBirr9ZnVQarTUHNfJ5arxpx4aiiuCP7LYmJPL43JhKSoM+T7k7PZPTqxbOl+e53ewxab5r4ejomNp3bs/O374pkm/TQFxLK/WuRWTkoY+No6yvByya+Op0cmpOG22EFHXVlGORCIhKuY4kava/x0vq41QRnrNUJGrFKlcjlpvwJSUgujzUVNdjUQqiygkez1uig8fRB2lR62LXLOj0ulD+sPCUWMLHRag1usRfb6gYPdv5ozI9Tdg37gR88JFRN95R5M7i8Lhrayk4PHH0PTtGyKqyOLiSJg4gcrPP2+wYLq5JE6fhrJ1a3LvfwC3ueF8btTgwSTOmE7Fu+9Suuz5E3o95779SKJNCAoFeQ89jK+mpvGVAHdxMUWzZoFUimbQQCQN/IH12e3k3v8Ajp07SX/5JTR9+57QvnpKSsgb/SCKVq1InDXrlLsqTKNGobvgAgonPxYUACtqo4MnIrDF3n8/otuNLD4edc+eCDIZMXfeSfWaNTiP+stJixcuRHQ6SZg6DQB5cjJRF19MxVtv4yoqovDxKegGD8Z0y81Nek1PSQl5D4wGqRSJTkfaC8+HFeeMI0eg7NDBL5g2MlmyScc6+gH0V15JwaTJOHaEjhcWRZGy199AUCgwDB1K8twnUaSlkTf2EXx2O6UvLEcWH49xxAgMw4b592vBUxF/PGPuugt8PipWrsRbdezuSeVXX1Hx9tskTJ7U5F6tgIsu4bHHkJzE3Tll69bEjxuHp6DA3x83aXKLvK9nOHWIPpFdv+Xz7qz1lOdbGfJwD865rh0y+b83nliWb+Wj+ZvYu66Q82/qwOX3dUOpidyXKAgC3QanMmJSX9xOLx/O3cj+9UWnhahyaLOZD+ZsoKrUwTWP9KL/kPCiUAC5UsqF/+3Mhf/txKFNxXw0b9Np4YTyen2s/+IIny3aTFS0iuun9CO9S0yD6xgTNIyY2Jcu56bw2/sH+PblXTis/7wTylbp5KsXdvD7Bwfpen4Kw8f3Rh/bsLs4o2sM10/tjylRy6pntrH+iyN4/8Vxv6S2Rq6f2p+OA5P4/YMDrHpmK1Wlza+ROMPfQ/aOraR37YFEIq0VuUI7T7VGf9eUtQVSGikduiCKPgoPHmh84TDUWKuRq1TYKy0YE5PQmaIbdJmVF+Th9XiQyuSodLUiV71OLv+5us/tqX0NG7ERitNNyX4ne1K7DsfeF0tFsI8rQHJ7/w3XwoP78Xo82CotwXWLDu4HoPjwQRJaRY4qBjDEJ2IpLqKqtISCA3vx+XyoNFri0jPRxcSStX0z4Hd9VZ2im4fJ7TuBIAQFNYC4zFYgCCGOtbL83HqF/SeD22FHplBGdnLVTles+3sccGcpG3Bygd8F1pjIVV6Qhyj6guIV+KOKsWkZwc8f/FFFiVQaEmvscfHllGQfJXd36Pl+OA5v9g8TyOzeE4C4zNZYiouITc9kx4/+G+PRKanBfQpgq7Qgir4QkStQPO9xu6kozA/Z97rEpqZTlp8bPA+vLislKjoWQRCCXWOW4kI0BkMw/ng85qwjeNwuZEplsOcsHGp9E51cdT6zgChsKS6KtMq/hjMi1ynGbTaT9+ijaPr0If6RR054O6IoUjh1Gj6rzR93lIR+dIZrr0XTvz+F06Y3WhjfVCQaDakvPA8+H3mjH2xUdDJddx1x4x6l9PnnKX3xxWa/nn3TJrR9+5H2/DKchw9TNGNmoxc0XquV3Hvu9Zf/DR5MzdZtkZetrib33vuo2bmT9FdePmGBK+AEE93uiEJNSyMIAklzn0Si1ZI7+kHcJSVUvL0S4/DhyI77kW8K9vUbwOfDYzYHHVOGYdcgjY2h7NVXsa1bR+Unn/oLyet0lcXcfhuurCzy7rkXQSYjae6TTRL4fC4XeQ89jLeyMvi+hSuxB39xfMLjj+PYtg3Lhx81+9jqba/2vVN16kTuffcHRTwA6y+/4Ny7F9HlIvq2/yJRq0l5einuggLyJ06i6quviL33HiQKBYJUSvzECTi2bKH6u+/Dvpb27EEoO3ZAdDgoe+stAGr27aNw2nT0V12F6aamCZKeiopaF93F6C+95KTfA9MtN6MbPBg8Hmxr1/rjomc4LbEU2/l86VZ+fXc/7fomcOOMAaR3blh4OJ3x+US2fp/DR/M2IQi1ccvzUpp8YyAuLcrvyOkZyw9v7OHbl3f9Y9PkXDUefn57L2te2UVqRxPXT+1PSvum//3tODCJkZP7IZUJfDx/Exu/OvqPdSiVF9r4ZMFmtnybTf8hrbjm0V7oTE37LZPKJZx3fXsuu7cr+QcqeG/Weo5u/+ccooe3mnl/9gbMWVVc8UB3zr2uPVJZ005vtQYlQ8f4436bv83mkwWbKctvmXOofwKFSsb5N3Zg6NieVJY4eP+JDWz7IedMV9dphrWinKJDB8ns2RtRFKk0F2M43slVezFvs7RA+XxyCipdFPn7dze+8HGIokiNtTp4UW6ITwy6zGwRBLiSOtFIlU6H2mCs5+QKXFgHpiF6XM6wES8Ac+1kyLrF6uGcXMbEZNRRegoO7PW/b6IYjLwVHtqPz+ul8OD+oBjWEKakZCoK89nz20/IlErcTie6GL8YkdG1Jzk7/a5+fVxCcHBAS6PS6ohLyyB//7GOKIVKTXxG62BXl9fjxlJU0GKl8+B392gMBiqKwqdqAn1qHucxkTPQ0aVqoJMLAk6uhv/GBiYexqT6vw+iKJK9c2vIVEXwO6aMicnBXiyAzB69SWzbnt/fe7PBa8gDf/3Bb++8gdpghNrTkaS2HbBXWmjXfyBHNm/AYa3GkJCEIJGE9HLZKsrxuN3HObn0OG02SnOz8Xm9kZ1caRl4nE4qayc2VpeVoovxn+PpTNHIFEoqCvNr44+WsNso2L8PqVyOQOTSeaiNK0YQygI47bYQ911sun+/Az1vATZ+8Qm5e04+YfN3ckbkOoX4Ah08goSUJYsR6kyIaC6WDz6g+vvvSXpyDvLk5HrPBy7kvRZLo4XxzUGekEDq8hdwHjpEweTHGnWAxN59N3FjHqbk6Wcoe/XVBpeti7eyEsf27WjPPhtVp04kPfEElatWYfn444jriKJI4WOP4c7PJ/3ll9ANPp+aPXvwVte/Q+A2m8m+dRQ1+/eT9uqrJ9yfJXq95I8bj/PoUdJeevGkoqfNRWYykbr8BVzZ2eTcfgdem42Ye5o/wED0eCh5+mk0Z5/tdybNeRJRFJEolcTcfgeVn6+i4PEpaPr1wzhyRMi66h49kKen4zxwgKR5c5scuyuaMRPHzp2INTUkz30SdffuDa6jHdAfw4hrMS9adNIl9FDb+7b8BaRGI7l33oW7uBhRFCld9jyCQoHuogtRdegA+OOcidOnY/3hByR6PYZrrw1uR3f22WjPOxfz4sVhBwEIgkD8o4+CKFL++hs4jx4l9777UWRmkDS76Y4/8/wFiG43CdOmnvSxg79ENHn+PKRGI7L4OMxLn8a+eXOLbPsMLYPH7WXT11m8P2cD1ooarh7bkwtu6dig2+l0p6LIxqcLN7P200N0PS+FEZP6EpPc/LilQiXj4tu7cOndXSk4YOH9J9ZzeOvfO/0nZ08Z781ez4GNxVxwa0cuvbtr2HhiY0QnaxkxqS+9L8tg41dZfPLU5r+1lN7nE9n+Uy4fzt2Ix+Xl2kl96HtFKyTS5p8OtukVz43TB5CQqefr5Tv5ccUenHZ34yu2EE67mx9X7OHbl3aR1NbAjdMH0Kp7bOMrHoekNu537cQ+eNw+Ppy3kc3fZv2rhaG0jtHcOG0AHQcl8ecnh/hw3iaKjvz74yf/K+xf+zsSqYR2/QZRXVaK21mDKTm0j1YdpUcmV1BdGn7gTXMQJBKS23cMmcjWVFwOO6LPh8ftP+cxJiSiqxW5rBFieuaswxgSEnE5/B1N4crZAxGpuhfTsemZ9bYliiJ/ffI+cqUqxDlms5QHxbbgcQoCyR06kb9vT7BPKxBJK8k+Skn2UdzOGlI6dmn0uGPSMijNyWb3rz/Qqmdf//TC2m2ld+tBSU4W9koLhtri/Egl7SdLSqcu9crnUzt3JW+vf5J3aW4Oos9HbHqrFnk9j9uNx+VEZ4qJKHIFC+Tr9HIFOrqaFFcMM5mxLqW52UTFxAU7xizFhVSXloREFQHK83Pquf8EQeDcG2+j6NABtn//TdjtH9ywlq+eXUjHQeeR0bUHFYWFIAhkdPeLaIaERHw+H/v//A2ZXE50ciol2ceE2+qKcnweD7o6IleUyS9UFdQKkrGpkeOKAGV5fiGvqtRMVIw/Vi9IJBgTk6goLAg6w8JRcGAviW3aUWO3odbpwy4DoNZF4XLY8XoiD4upsVlRao6dlyW2bQ/4/78E8Pm8rP3o3RD34L+BMyLXKcLvvJpKza5dpD77DLLY5p94BajZu5fiufMw3XRjg3FHRWpqsDC+soWmLQKou3Qh+akFVK9ZExREGiL2/vuJfeABzIsWU/riS02Kl9jW/QU+H7pzzgbAMOQqjCNHYJ43H1deXth1yle8SfX3P5C8YD7Kdu3Q9u8PPh/2DRtClnMeOUr2jTfhtVjIfGclmt69mnjkoYiiSNGcOVh/+43UpUtOuMvrZFB16EDitGm4Dh1C3aUL8sTExlc6Dssnn+LKyiJh/DgSHnvMP53zyy8BMN10I4JSiae4mMTZs+o5Bq1//ok7x58l9zXRMVj20stUfvYZeL3E3H0XhiFDmrRewsSJSNRqimbOapGIksxkIv21V/2joO+8k6pvvqFm925El4u4Bx8MWVbV0S94iXY77tzQuxkJEybgzsurN2kygPbcc1F27ozocJB96ygQRdKWL29y5LDq22+pXLWKhEmTkMef2MTPcEiNRlKeXoqnvAJZTAx5D4/BXXj6FmH/f0EURY5uL+G9WevZ+OVRug1O5YbpA0jt2LKTWv9OfF4fW77L5oM5/omDw8f19sctFScXt2zbJ54bZwwgsbWBb1/axXev7T7lri6n3c1Pb+1l9bPbMcZruHH6ADqfnXxSEXWpTMKAoa25dkIfXDX+KObmb7Pwek6tqFKWb+XThZv548ODdD47mZGP9yM+I/IJclPQGpRc8UB3/jOqI4e3lfD+ExvI2nHyF+UNIYoihzabeXfmeg5vK+E/ozpx+X3dgkX5J4p/eEBfel6YxvpVR/jkqX+5q0st47zr2zNycl8kEoFPntrMzyv3nRbx0v/PiKLInt9+IrNnX1Q6XTAGdbwTRxAE9HHxVJa0TGwouUNnCg/63UzNIRAtczkcyJUqNAZj0EEVycllzjpKfGZraqxWVLoodNExWMtDBTGZQoFMrsBSVIhU4R8UFRMmrpi9YysF+/eQ1qUb5trSeNHn88e8Yup37qV37UHB/j1B5018ZmvA7xjL27sbqVze4GTFAHFpGXhcTixFhUGHWWonvziW3sV/ozZn1/ZgzLSq5NTceEnp2IWKwoKQDrTUzl2pKjFTVWL2T80UBOIyMlvk9QJilT4+PmJcMSBk1S2fD3Q/NRSfA1A3Ia5YmptNzHFRRUEiIa1z1+BjoihSkp0V1jGV3rU7PS6+nF/eeoWsbcdu6Pq8XtZ/9iFfLJlHu/6DuHz0o8SmZ2ItL0WjN2CIT0IdpcdSVESrnn3Y/duPACS2aUfRYX9Xr9fjxlm7/1HRx1z2UbH+8/XCQ/vRxcTWm6wYXC4mFqVGS0l2FuCfIhmIKQKYEpOpKCoI22MXOO6C/XtIbt+Jmurqhp1cev/ve6T32+tx43E6Q/Y1PrNN7XEcizaX5+fhcTmDz/1bOCNynSJKn3+Bqi9Wkzx/XpM7eMLhKSsjd/RolG3bEj9xYqPLG4YMQT9kCEUzZ+HKyWl0+aaiv/hiEmfNpOLddyl59tlGl4996EFiH/IXfhfPm9eoA8z6x+8o2rRBnnJsglz8pMlITSYKwzjIHDt2YF7k7zmLuvBCAOTp6SgyM6n+6afgcvaNG8m++WYElYrM995F2a5dcw47iCiKmBc8heW990maNRPd+eef0HZaAuf+/QhyOY5t26isLYFvKj67ndJly9APGYKqUye0Zw0g6uKLMS9chM9mw7F9B6LDAT4fvuMcce6CAgrGjUd79tloBw2iZNkyxAbuDgBYPvuckqefBqmUqMsvI64ZkV2pXk/ijOlYf/6Zyk8/a9ZxRkKelET6a6/iKS2j8PEpoFCgu+iikOJ8URQpfuop5JmZyNPSyB/7CD7HsV4TZbt2GEeOpHT5i3gtlnqvIQgC8Y+MBVHEW1pK0hOzI0Yzj8eVl0fh1GlEXXYZhuHDTvZw66Hu3p2ExybjMZsRvR5/DNlxprPln6KiyMaXz23n6+U7McRruGF6f86+ti3ykxSD/kkKD1fy0fxNrPvsMN0Gp3DD1P4ktTW22PY1egWX39eNi27rRM6eMt6d+Re7fstv8ZJtURQ5uKmYd2et5/AWMxfc0pGhY3o22vPUHBJa6bluSj+6DU5l/RdH/RMBD1labPsBPC4vf31+mA+f3IjL4WHY+N6cd0P7FvueCYJAp0HJ3DCtP6YkLV+9sINvXtxJdXnTejWbQ3V5DV+/sIM1r+wioZWem2YMoNOgpBbrxZTJpQwc1pbhE/r4u+Ce3MjaTw7hqmn4t+50Jj5Dz4jJfTnvhvYc2lTMyml/seW77NN2aun/Ojm7tmPOOkzPiy8H/E4mqVyOPsxNLUNCYtCRdLKkdOiEu8YR4tBoCoFoWY3VijEhEUEQ/FMN5Yp6whXUni9nHSY+ozU11mpUuih/b1VpCT5f6HdOqdVSXVqCTB7eFSuKIn9+uJKk9h1p228g5QV5uBx2bJUWvG53vbJ+gMweffB6POTt2YnWaKqNlAl4nE6ydmwhsU37iK9Xl4CrzJScQnWtYy2zpz8FoouOISY1nZxd2zHE+8/vKk+RyJVa6zqr6+ZK6eC/yZ67Zyfmo4eJTkoJO5XyRAh83sbEZBxVlWEdasowTi57ZSUSqbTB6YrQeFxRFEWKjxwKmX6ZvXMrSW07oFAfu1lcXVaKo7qKhNbhhZfBo+4mo1tPPp0/iy+fXsAvb7/GinEP8Mf7bzHgmuu48uEJSKRSYtPS8brdaAxG/wT6Nu0wHz1E5/MupOjQAcryc0ls056S7KN4XK4QsbGuyBpVa2YxHz1CUpv2EY9PEATiW7Wh+MhBHNVV1FRXhUyRNCUlYykqQGMwhC1/rygswFpRTmqnrjis1Y0WzwMRS+Sddv8girrF87Fp6bXxzGM3+AsO7EMQJCS2PbFr6H+KMyLXKcDy2eeULltG3Ngx6K+44oS3I7pc5I0Zg+hyk/r8siZ3PyXOmI40Noa80aPxWlvOPmu67jriJ4ynbPmLlL32WoPLCoJA3OjRJM6cQcXbKymYOClsvAv88Tnrz7+gO++8kMelOi1J8+Zi37QppJtJdLspnDYdVYcOxI8dG/KaURddiPWnn/G53ZSvfIfs2+9A2a4dme+sPKloYckzz1C+YgUJU6diHDGi8RVOEc6DBylfuZKYB+7HcO1wCh6fQvUvvzR5/fI338RjsRA35uHgY/ETJ+C1WDC/8AKFjz2Guk8fFG3bYl64KOig8rlc5I0Zi6BRk7xoIXGPPILr0OEG46TWP/6kcOpUkMtR9+5N8oL6XXKNEXXRRRiuHU7Rk0/iPNK8E7NIKFu3xnT99Yg1NeByEXvfvSHP237/Hfu6v0iYOIHUZ57GlZtL0Zw5IcvEPfQguN2UPP9Cve2LonhskqMgYPnkkybtl+h2k//oOKQGQ7Oijc3FdNNNGEZci89qo+bQIQqnTD1TRP83U11ew09v7+W92RuwmO1ccX83hjzUA1Niwzb/0xl7lYsf39rLpws3I5EIjJjYl7NHnLx7KxyCINDhrCRunnUWrXvG8eu7+/lk4WZKclumzL28wMaqp7fx3au7ScjUc+OMAXQ+5+TcW5GQK6ScfW1brnu8L3KllM8WbeGnt/dSYz352J8oimTtLOX9Jzaw9Ycc+l6ZyfVT+pPcgqJjXfQxaoY81INL7upC0ZFK3p21vsX6oLweH1u/z+HdWespybVy+b3duOL+7k3uEWsuia0NXD+lP/2GtGLnL3m8N8sfkT0dBh+cCBKJf5DDzbMH0qF/An99foR3Z6znwIaiM1MY/0ZEn48/P3ib+Mw2ZPToDfhFLlNSChJJ/b+VhvhEKluoANov7iiaVMhdl0Bxtb3SgiHBnx4QBAFDQiKW4vpxtvL8PJw2Gwlt/XEqlU6HIT4Bn9eDtTy0X0yp0WKzlAfdZVWlod1+R7ZspOjQAc4eeYvffSWKmLOOBF1Tx/eYgV8kMMQnUJx1GH18AhKpFI3JCEDhgX2kdGxaCqMkJwuAhFZtMR85hCCRYKgzHCC9aw+yd25HYzAiUyipLD41znhddAyGhETy6ohcGr2B2LQM8vbuwnz0CPGtWs5hE3D9BGKAFYX1P2ON3gAQEqezV1pQ6w2NnuertA07uazlZdgsFSS08QsqPq+XnJ3byaz9/xLAXNv7FsldJFMoGDpuCoNH3YmluJBDG9cRl9maW+Y9zTk33Brcz0Dvl1zpdxMmtGpL8ZFDtO7dD6VWy57ffiKxTTt8Xi/mrCNBYVeQSNDVqWxRqNQotVosxYXByF8kEtu0o+jIoeD0SlPSMYOHMSmZqtISlBpd2OmK2Tu3IpFKSenYGafVijqqgbhi7XORJiyGi5hKZXJi0zNx2m1BQS97x1biW7VpMSH17+KMyNXCVH27hsIpUzCOHEHMvfc2vkIERFGkcPZsHNt3kPrss80SaKQ6HWnPP4+7oJDCx1p2klrMnXcSc/99mBcuouSFFxo94TPdcAMpS5dSvWYN2Xfcgaes/l0f+6ZNeMvK0F9+Wb3ntP37Yxg2jJKlS/HU2qLL33ob58GDJM6ejXDc3Zioiy7CW1FB3v0PUDxnDtE330z6668hNRpP6HhFUaTk2Wcpe/El4idMILqJkwRPBaIoUjT7CRSpqcTceSdJs2ahu2Aw+WMfwb5lS6Pru/PzKX3pZaJvuQVF6rG7Boq0NKJvv52KN1bgqaggef58EiZOwL5xI9Xffut/3ZmzcO7bR+ozzyIzmVB364rhmmsoeebZsB1ojl27yXvoIQSZDEVGBmnPL0OiOLEoSeKUKcgTEsgfN65FXEdeqxXLhx+CRAJyOcXz5gfFYNHtxrxwIZq+fdFdcAHKdu1InDGDyk8+xVLHTSaLjSV29ANUvPMOjt3HTjxEUcQ8f4G/tH/8OBAEqtd8h33jxkb3q3jePGr27CFlyWKk+pOLEDWEIAgkzZiBpl9fBJmMqq+/xtzAxMgztByOahd/fHiQldPXcXR7KWdf25YbZwygVY+4Uz6h9VThdfvY/mMu7878i6PbSjj/pg5cO6kvCa1O3Xc4gFqn4D+jOjFsfG/cTi8fzd3IL+/sw1YZfuJXYzjtbv74+CAfzNmAtbyGqx7scUqFlLrEpkZx7YQ+nH9TBw5vKWHl9HVs/T4Hr/vEfr/LCqysfm47Xz2/A120ihum9qffla2Qyk/taZ8gCLTrm8BNs86i06Ak1n5yKBhhPJG/McE47+z1rPv0EJ0GJnHTjAG07lU/ptTSSOUS+l6eyY0zBhCbFsW3L+3ii2e2tZiY+k+g0Ss478YO3Di9P7FpOr5/fQ8fztvIkW0lZ34D/gY2rv6UwoP7ueC/dwf/5pfn54U4OepiiE+gsqS4ZSobFApSu3Qja8fWZq0XECSsZaUYEo5di0Qnp1JekF9v+fz9uxEkEqKT00AUUWl1QXHo+IJ2mVKJ1+PBXeM/t7MUHtueKIqs/fAdUjt1Jb1bD2JS05HK5RQfORzcTjgnlyAIZPboQ1WJOfi6htgEJFIZTrst6IxqCK/HzS9vvoJCo8Hr9VJZXBR0+gRI79qDqpJiKs3FmJJTKDuuqLslSe3YlbzdoaXfaV27k7V9KyXZR4ORzJYgIKwEIp2WML1cKq0OiVQW4mqyV1UGxa+GUDXSE1V02B+TS6wVuYoOH8Bpt5HRPbRqxnz0EGq9AV2dyODxSGUyel9xNbfMe5q7nn2VIWMn1YuqGuLiQRCCn21Cm7bYLBXUWKvpOOg89vz+MzHp6ciVKnL37Aw6K/Vx8SGF9wAavRGfx0NiA06uwLFZy0qDkcDj44qIIhKplBqbFfdxQ99ydm4jqV1HvG43ouhDYzBGfJ1AXDHShMWAE0953LCA9medA8DB9Wtxu5wc3baZtv3OavCYTkfOiFwtSPUvv5A/fjz6yy8ncebMk7poKVn6NJUff0LynCdOqENK2bYtyQsXUv3Dj5Q8/cwJ70c44seMIW7sWEqffQ7zokWN/vjqL7uU9DdX4MrK5uiIkSGiAEDV198gT0lB1a1b+Ncb9yiiz0fJ0qdx5eVTsmwZpltuRt21/g+VNC4OZDJsa9eS/NQCEh6bfMKF/6LPR/ETcyh9YTlxjz5KzJ13nNB2WorKTz/FvnEjCdOm+qf9yWSkLF6Muls3cu+7PzglMRLF8+cj1euJHT263nPKVq3A50OenIw8JRndeeehu+hCiubOpeS5ZVR++ilJT85B3e1YHj7ukUfw1dRQumxZyLZq9u8n5447wOtFGhND+quvnJRoI9FoSFm6BFdWFgWPP37SJ3vmxYvxVlUh0elIW74c5/795N59N16rlbIVK3AeOUrC448F//8ah13jd5PNnk3NgWMZ9ehRo1C2b0/RtOnB2Gbp8uWUv/kmCVOnEnPXXUT/978gCBRMmtygQFf+zjtUvPseidOmoe7RI+JyLYUgl5P6zDPIk5KQGo2Uv/lmswZFnKF52CxO/vzkEG9PXcfetQX0vTyTW+cMpMeFacjk/85oougT2b++iHdm/sWfHx+kTa84bp51Fl3PS0Ei+XsFu+S2Rq6b0o+zR7Tj0GYz70z/i01fH8Xtalocy+P2svX7HN6eto7dv+XTb0grbpw+gIyuf+9US0Ei0PW8FG6ZfRbt+iWw7rPDvDvrLw5tbrqDyF7l4tf39vPBnI1Ulji4/L5uXD2259/uElQG+qAe64fGoOSrF3awaulWzNkNT3qqS0luNV88s42vl+9EH6Pi+qn9Oe+G9ijUJz7E50TQx6q58oHuXPFAd2wWJx/O3cgPb+w5JXHMvwtTopYr7u/OsHG9UaplfPPiTj54ciOHt5jPOLtOAaLPx/rPP+L3d1cwYNh1pNZ2C4miiDn7SHCi2fEYEhLxOJ1hHR0nQqsevcnbs7PehXNDOKqrkMpkVJWVYKwjcgWmDx5Pwf69xGe2xufxu1FVOj362r6i43urpHXOz6VyOWV1Jtgd2rgOc9Zhzr7uFgRBQCqTEZ/RmqLDB/xOF6223sV58Dh79cXrdgfjbYb4BASpBASB1E5dw65Tlz8/WImluJBWPftQlpOF024jNi0zZJm0Lt0QBAk5u7YRm5pOWW7LVcQcT2bP3pTkZIU43Vr36oe13D+0oCWdXDZLBRKpDENcAuoofdjyeUEiQWM0Yq8jcjmqKhsUXAIEOrsiFfUXHTqA1hRNVLQ//pe1fQtKrbZeVM6cdYT4zNYnfYNQkEgQBCEouiW19XfyFh7aT+fzLsRaVkrB/n2kdelG9o6tVJqLkUhlYadZBmKwiW0a7nwLiGD5+3YTFROHXHnsRlrA1RX4za/7mfu8XnJ27SCje0+sFX5XZGAKazhUGi2CIIk4YTHQ+XX859btgotBENj89Sp2fP8NHpeTDoPObfCYTkfOiFwthLeqioLxE9Cdfz7J8+chSE/8wqXs9Tcoe/ll4idPwnD11Se8naj/XED8+PGUvfwy5W++ecLbCUfsffeS8PhjlL/2OoXTpkWMIgbQ9O5Nq48/QhYTQ/ZNN1Px4YeIoojP6aR6zRr0l18W8Q+VLDaWuIcewvLRRxRMnIhUryfu4TH1lrNt2EDWyOsQVEokGg1Rl156wsfnczopGD+BivffJ3HWLGJPYIphS+LKzaX4ybkYhg1Dd/bZwcclSiWpLzyPsnVrcm6/A/vW8HforL/9RvX3P5AweRJSXehJgSsri6InnkDTrx+uw4exfPAB4HdQ+aqqKXvhBWIfeADD0KEh68kT4ol78EHK33ob+xb/6zoPHSJ71H/x1TiQRkeT+fZbJ1SOfzyqjh1JXjCf6m++pTRMRLCp2P76C8t774PXS8KkSejOOZv0118L7nfJsueJHjWq3lCBxKlTUaSnkz9mbND1JcjlJD0xm5q9eyl/eyVlr71G6bPPETd2TNDxF/fwQ8iSknAXFmJesiTsPlX/9JN/sMSoWzFdf90JH1tzker1pL/yMoJGjdRopGTxEire/+Bve/3/D1iK7fz89l7emrqWPb/n0+2CVG6dM4h+V7ZCofp7L9RbClEUyd5dxofz/Bf6sak6bpg2gAtu7XTSxd8ng1QqoceFadzyxEC6nJvMxq+zeGfaOnb+khexe8jnE9m7tpB3pv/Fus8O07Z3PLfMHkjfyzNPueOpIdRRCs6/sUOw42rNK7v4eMFmsneXRRS7aqxu1n12iLenruXAhmIGDmvDTdMH0LrnP+sSjEuP4uqxPblydHfs1W4+mreJ717bjaXYHnGdsnwr3760kw+f3Ii1wsmVo7sz5OGexKQ0fzJnS9Kqeyw3TOvP+Td2IGdvOe9M9wu8J+ocPB1Ibmfkmkd7M2xcL9Q6Od++vIv352xg31+Fp3wQwv8namxWtn27mgHDrufs628NPm4pKsBps0Xs8Ak4kVqqlyujR2+8Hg+5exu+KVoXa0U5ar0B0efDmHDsfM6UnEp1aQlu5zHBTBRF8vbuIrlDp6DLR2s0IVepUOsNVB7n5AoIC1qjifjMNkEXj+jzsfbDd0jv1jMoCIJ/0mDenp1UmouCwlk4Ai6gmloHiz42Dp/Hg0QiQVYbS4tE9o5tbPziE86+/lYyuvWivFbIa9s/1Mmi1GhJbNOO7J3biUlNpyw/55S5ITN79EYilXJ067FUQGrnbkEnUVOK9JuKrdKCxuCPHRqTkrGEiSsC6Iym45xcliY5udSBqGOddetSdPhg8PMDyNqxlYyuPevFeYuPHg7p7TpRHNZqRJ8vKLrpTNFExcZReHA/Se06EJ2SxqbVn5LerRf5+/ZQUZCPIAgh7qsAXq8HqVwe0h0WjqjYOLRGE+ajh+sJ3BqDEblKHfx/VVV6TBguOLAXl8NORrdex/5/mSKLXIJEgqqBon+bpQIEod7npjWaSO/aA0tRAb+89SrdL7wU0eer16l3unNG5GohpHo96a++QsrSJfUidM2hfOU7mJ96iph77yXmtttOer9i7ryDmLvupHjefCyffX7S26tL9KhRJM2bR+WqL8i5865gnDAS8sREMla+jeHqqymaPoP8hx/G8umneCsrMQy/tsF1TTfdiCwxEceWLSRMeTxEqBFFkfK3V5Jz+x0o27cn/ZVX8FmtVP/wwwkdl7vYTPaoUVT/8AMpS5b8rcJDOES3m4KJk5BGR5MwZUq956VRUaS9+irKjh3IvfOuetE4b2UlhdOmox00iKjLLw95zldTQ97YR5DFxZG6fDnG66+n+KmFuHJycBcUBB1K6gH9w+5b9G3/RdW9G4VTpuDYtYvsUf9FdDiQmqLJePutkEECJ4v+kkuIGzuG0mXLsHz+ebPX91qtFDz2OMhlaM87L1jsru7enbRXX8F54AB4vZiuv77euhK1mpSnn8ZTXEzR9OnBExl1t26Ybr0F8+LFmBcuIub++0JiyhK1mpSFT4EoUvH2Sqy//xGyXdvateSPGUvUhReS0ITBEi2NPDmZjBUrEBQKpEYjUmPjJyhnaBpbv8/hnZl/kbWzjAFDWjNq3tkMvKYNKt2J/z78k4g+kSPbSvh4/ia+fG47MrmU4eN7c8X93YlOPn26xFRaOWePaMdNM84ipYOJ3z84wMppf7Hj59yg2OX1+NjzZwHvzvyLn97aS0IrAzfNGMDgmzuiNTZ8AfR3Ep2k5arRPRg6ticSicCXz233i127joldNTY36784wltT17Ljl3x6/CeNW+cMpNfF6f+oUFcXQRDI7BbLDVP7MfjmDhQcqODdmX/x3Wu7KSs4VkBcUWTju1f9Ios5p5r/jOrIjdP7k9kt9rSJ80qkkqDbrvdlGez5o4C3p67j9w8OYK349zq7ktuZuHpsL4aP701UtIofV+zl7anrWqQb7gz+bpzblrzo7wKq810OTGxLaBO+0NmY6HdOBSYwnizRyano4+I5unVTk9exVZSjrL1oD4lV1TpO6k7gKy/Io9JcTGaP3thqB/MEnCbG+MR6gom/E0ggtXM3ktq2p6g2vrX/rz8ozc3m7OtCK0LSu3THWlFOWV5ucKphOAKOsZKcbP8+mGL8F+leb3DqYjjKC/L58pkFZHTvRb8hw0lu3wlq/9Z2OntwveXTu/Ugd9d2olNScdps2CrK6y3TEqi0OlI6duHIlmPn9zK5HK3JhEyhbLTsvTnYLRXBz8yUkERFhK4xzfEiV2UlGkPj55BRMX6HdHWYoQVej5uCg/v87zt+Aaro4AEyeoQmmmyWCqxlpcS3OnlxL/CdrCox46k1bCS17UDhwf0IgsA5N44ia/sWZAo5Pp+X/AN78XrcmJLqR4ztlRZ8Xm+jYpAgCKR16U5VaUmIoBd4zpSUjL3SgiCRhLgfD65fi84UTVLb9sHvWkNOLgBVlB5HdfjiebulAo3egCSMMefSex9GIpWS3rUH/a65jvdnTOLPD1Y2+FqnG//OW8mnKSczRRGg9JVXKFm8hOjbbiNubH2n0okSN24c3soqCh9/HNHlalHRxjjsGhTpaeQ9+BBZ111P6rLnUHXoEHF5iUpF0uxZaM89h6Kp06j+5VeUnTqhbN2qwdfx1dT4p/4BvupjJ8U+p5OiWbOp/PRTov87ivgJExBkMtR9+1Dx7nsYrryyWcfj2LaNvIceBomEjHdWoo4Qofw7KZo7F8euXWS8+WY9F1YAqU5L+ssvk3v/A+TcfQ/JC59Cf/HF/vXnPInPbifpyTkhJ1eiKFI0azauo0fJ/PADpDot8RMmYFu7ltx778NdXIy6d28QRQonTqL1qs/rdZsJUinJc+dy5JphZN14E4giUpOJzLfeRJFW38p7ssTcey/u/HwKH5+CRKFo8mAH0eejYJJ/qqCg0ZD0xBMh74Vj8xbweJCaTOTceSfpr72KIjMzZBvK1q1ImvME+Y+OQ927N9G33IwoiggKhX/dmBhi77233sWYpk8fYh96kNLnlpE3Zgytv1iFIjUV2/oN5I5+EM3As0hZtPCEY7UniyI9nfQVK8i57TYc27ajv6x+N94Zmk9qBxODb+pAh7MS/7WRRPALQoc2m9myJpvyAhvJ7YwMfbgnqZ1Mp43wEA5DnJqL7+hC3ysy2fxNNn98eJBN32SRkGmgJLsKW6WL1r3iuOTOLsRnnPr+sJMhrWM0qR1M5O2tYMOXR/ly2XZikrVojUr/NEYRug5Opfcl6f+om64xJFIJXc5NocNZiez9s5Ata7J5f3Yxye2NIELBIQs6o5LBN3Wg48AkpLLTQ6QLh0Ilo/9Vrejxn1R2/JzH9h9z2fVbPh0HJdHjP2lEJ50+wm9zSGpr5KoHjZQVWMneWfavFeVPR5Sa+u6OwkP7MSYkRSyPVqjUGBOSKM1pmcE7giDQtt9A9q/9jQtuuyds2f3xVJeXIZHLkcpkRMUe68ILCF7lBXnEZfjP4Y9s3oBMoSStS3d2/vgdUpksWGodm55B0ZFDwfV9Xi/VZWWASGrnrijVGrZ88wW2ygrWffQurXr2CYodAVI6dUEilVJekEvncy+IuM+BfqyKwjwsxUW4auyBN4D8fbuJSa1/fmqvtPDZ/Jlo9AauGjOptlcsBWqjkuE+v/SuPVn/2YfBEvPSvJwGO6JOhta9+/Hn+2/jrqlBXjuIzONy4XE5qSotQR/bMj2FfieXEfC79Q5v2YDo89UrlA84kQLYKy2ooxoXubTGaH9fbVlpvecKD+zH43SS0a0nAIc3rUdEpHXv0BvtgUmTKR06Hb+JZhPoHPN5vRQdOUhqxy4ktevAnx+sxOvx0LbvWbTtdxa/rXzdX0p/1P8djk4OvYlfaS4KTo2sLC4KKZMPR1xma/b9+SumMH18psRkLMWF6KJjgk4u0efjwIa1tBtwNoJEgs1SgSpKX68X7HjUUXocYbqTAWyVFRFFMn1cPGcNv4G1H73D2xMeRCqX0+uyIQ2+1unG6XsG8f8I0euleOFCShYvIfaBB4ifNLFFLx4EQSBx1kxMN91E0YwZlL32eottG/wX8ZkffYREqyVr5HWUr3yn8Z6uiy8mcdZMcLtx7t1LwaRJDTrBSp5+Bp/Lhe7CC4OdSm6z33FV9eWXJM2fR8JjjwWFgpg77sCxeTP2TU27WyV6vZS++BJZt9yKPCWFVh9/dFoIXOXvvovlvfdJnD6t0W42iUZD2ssvoRs8mPyHx1D+1ltUfvEFVatXkzhtar3hBWWvvErlZ5+RNOeJoDAp1WmJe/RRXEeP1kYhXyBl0UJ8NTUURJjC587P99/pcruRGo20+vADFBnh+yVOFkEQSJw5E8OQq8ifMJGqr79u0nplr7yK9ccfwesldfEi5AnHbO6OnbswL11K9B130OqTjxEUCrJuvqVedxyA/ooriP7vKIrnzqX6l18xL3iK8ldfw3Tbf/FZrRTPnRf29WPvvx/t2Wcj1tSQe8+9WFZ9Qe7dd6Pp1ZPUZ5/1C2X/IMrWrcj84H3iH33kH92P/yXi0qPocm7Kv1bgslU62bD6CG89vpYf3tiDzqRk+PjeDBvXm7TO0ae1wFUXU6KWfldl0nFgEk67h6wdpdirXbTtG89ZV7c+7QWuAIIgkNrJxKBr25DczkhZgY2cPeUIEoGeF6fR57KM01rgqotMLqXzOcmcNawN+lgVBQcsFBy0EBWtYsDVrU57gasuSo2cfle2YtTcQQwY2pqj20p4b9Z6vnhmq79s/1/abxWTrKP3pafmd/wMx8jZuZ2URorQ4zJaUZLdMiIXQMezz8NmqSBvz64mLW+rKAdRxBCfGCKKafQGdDGxQTca+J0mGd17IlcosVdWoDEeuxkSm96K8ryc4CTF0txsfF5/WiAuLTPYhbRp9WeUF+Qx6Lpb6u2LQqUmoXU7HFVVwal44SjNyUIfF49MruDghrXBCYGmpGRy99SPaloryvlg1mO4nTUMf2wmKp3fGVVjt4EohnQm1SW5fUdkcgUV+Xko1GqK67wXLU27/gPxuF0c2rguuM/2SgsSqYy9v//cYq9T18mV2LY9TpstGNmsi9YYHXRyuWtqqLFWh4igkZDKZOiMprAiV87u7ai0OuIy/aLpwfV/ktKhEzpTdMhy+fv2YEhIbBFBsaKoMBgRzN+3B/A7uTwuJ6W52QiCwOWjHyUuoxXFRw4GnX0/v/kqrz50Jz+veBmfz0vW9q2A/7temteEfrba7Xg99d2yptqYqD42PujkKjx0AGtZKe0GDALAWlGGrhEXF9SKXFXhnVy2isgiF8BZ197AxXc/SPeLL+fGJxbV+xxOd844uf5hvFYbBRMmYP31VxIem+wvqj4FCBIJCVOnINHpMC/0x9ESpzzeYhfXitQUMj94H/PCRRTPmYP1t19JmjEjYlxNFEXKV65E2akTpltuwfzUU1h/+52Exx9Df9VVoS6b7dupeOcd4idORH/FFRy5/HKKn5yLffNmRJcrrONKN3gwynbtKH3xJdJf7dvgvruysymYMgXH5i3E3HMPcaMf+MdFB4DKL76g+Ik5/q6mkSObtI5EqSRlyWLMi5P9gotUiv7qoeiHhKrvVd9+S8kSv6hqqPNczZ49FD/xBLKkJDyFhVSt/oLom24ied488kaPpuSZZ4l/ZCxQ+xm++SbmBU/5X9tkwlddjaesvFnTQJuLIJWS9OSTAOQ/Og5PSUmD/28qV62iZOlSAGIffgjdeecFn3MXF5M3ejSqTp2IHzsGQaEg4913yL3nXnJuHUXy4kVEXRB6tzB+4kScWdnkjR7t7/aaOpXoW25G2aYNRdOmo2zXjuhbQ0/OBImElCWLOTpsOK6jRyicNImoSy8heeHCE5462dKcys/sDP8OfD6R/P0V7F1byOHNZiRyCR0HJNJtcOppFUlsCj6vj5w95ez8JZ+cPWUo1TK6X5BG2z7xZO8qY9eveby7yUx652g6DkqidY+40ybedzxOu5v964vZ80c+Zfk29HFqzruhPXEZUez+vYAt3+Ww7Ydc2vZNoNOgJJLaGE5bEdJitrP3zwL2ri3EUe0muZ2Rc0a2QxRFdv6Sz48r9rHusyN0PieZTgOT0Mf+O0aWK1Qyel+aQY//pHFoi5kdP+Xy1Qs70Mep6Xx2Eh0GJKEznT5R2DP881SVllCWl8PAETc2uFxcRiu2fLva7xxvgf/XiW3aY0hIZO8fv5LetfFBN9byMjQGI6bk+ufzye07UXBgH+AXrQoP7WfIo4/VrleOznjsojguIxOvx0N5QR6xaRnB9QCkCgWGhEQ0egM7f1pDm75n1YtxHdv/thQe3IchPnLfq7/XqT0+r4cDf/0R7H8yJaWQtW0zPq83GNEqPnqY1Uvn4fV4uG7G/JDtbv16FQBupxOvx13PNSNTKEju2JnsXdtJbt+J/P17Ir+RJ4khPpGUjp3Z8/vPdDr3Ao5u3YQgSGjTdwB7fvuJ/teMbJHvR3VFGem1Tqqkth38w5MO7K1XtK41mrBXWhB9vmA5elPdZLqYWKzl9UWuw5s3kN7N37/ltNvJ3rGVc2+6vd5yeXt3k9L+5F1c4Hf9mZJSkCkUFNR+fvGt2yCRSik4sJeEVm1QqDWMnDaXX995na1ff4EgkZDYth0SiYSta75EkAiU5+eR2qkLpTlZlOVk067fwAZft/jIIaRyBXm7d9H1/ItCnjMmJmOtKCe1c1cqi4sA2PPbj2hN0aR09HcGW4qLQqadRkJnig4e1/HYLBVhu8UCCIJA94v+vemOMyLXP4jz0CHyH3kUd0EBaS8uD7n4PhUIgkD8I2ORp6ZQNPsJnIcOkfr0UmRxLWNxlSiVJE6dgvacsymaMZPDVw0h7sEHif7vqHpRLNtvv+HYtJnUF5cTNXgwUeefR/HcuRRMmEjlF6tJmukXyHwuFwWPT0HVpQvRt96CIJNhuPZaKt5+G1lKCpnvv4c8uf5/UEEiIfbBB8kfMwbrr7+iO//8esv4nE7KXn6FsldeQRYXR8bbb6Hp27Ag9ndR+eVXFEx+DMPwYSRMntysdQWJhOhRo7B89DG+qipcubl4SkqQx/vdS9ZffyV/wkT0V15J7EMPBtezb9pE7n33o8jMJO2VlyldvpziJ+Ygi45Bf9mlxI8fj3nhQhTpaeivvJLCqdOo+vJLAPRDh5Dw2GPk3nsfuXffTcY7K1G2brmRxvWOUSYjad48ZHFxFM+bj/PQYb+Ie1yhaNX33/t7uAQB/fBhxN5/f/A5r9VK3gOjQSIhddlzQWFTZjKRseIN8idOIu+B0cSPH0/0HbcHTx58Viu+qirw+ZBERaEd5P8hM40cievIUYrnzkWelEjURaE/WoJcjrJDB9wF/juKnrIycLvhNBG5zvD/l/JCG/v/KuLAhiKsFU6MCRoGXduWjgMTUWr+PXElURQpzbWyf30RBzYW46hyEZcexQW3dKRdvwTkCv9FTUKmnj6XZnBwUzG7fy/gu1d3o9TKaN8vkU6DkohN0/3jIpHX6yN/XwUHNhRzeIsZr1ekVY9YBg1vS2qn6OAEy8RWBgZe04bdv+ezd20h+9YWYkzQ0GlQEu37J54WworT4eHothL2ry8ib18FSo2MDgMS6XxOckiZfOue8ZTlW9nxSx7bf8hl01dZpLQ30nFQEm16xSNXnv6uSKlcQocBiXQYkEjR0Up2/pLHpq+yWL/qCKmdouk4MJHWPeKQKU7/YznDqSVr+2YEQUJGt4Zd+vGtWlNTXUVViRlDfOQeqqYiCAKdz/0Pm1Z/yvm33tFgn5PDWo3TbkOQCLRLG1Tv+ZQOnflt5Ws47XZ2/PAt6ig9bfr4o2WVJUXo6+yvfxKehIIDe4lNyyB39w4EiQTR58NuqUAQBKLi4ik+fJBBI2+KuE9RMf5rlrqF3HXx+byYjx5m4Igb0Zqi+WbZYsBf6K3S6qixWcnbu4vYtAy2fruajas/JSYlnaHjHq/3/u7+7ScEiRSv20Xe3t3BGF1d2vUfxE+vv0jfq65hx49rwkb7WorO5/2HH155AWt5GUe2bCCpfUe6X3gpn8ydTv7+PaQ24gpsDI/LhbW8DEOC/31QajTEpWWQv3c33S64JGTZqJhYfF4v1opyqmoHCujjIg8DCFk3Oraek6vSXIT56GH6Xz0CgH1//orP66P9wLNDlrNZKjBnHabPVdecyCHWo/jwAdr2OwulVsfmrz5H9PmQK5Qkd+hE1rbN9Lr0KsDvQNPqjSAIiD4fPS+5kvjM1hgTk/l15etIJBLOv/VORNFHSW52g6/p9bjJ2bmNxDZtObRxHR736OBkRoDoFH+EURVl4PCmDTjtNvb+8Qu9Lx8adFNWFhfWi3GGw5iYxO7ffgwrkleXl4YMdvhf44zI9Q8giiIV772HecFTyNNSyfzgfZRtW24yRmOYRo5E2aYteWMe5siQoSTOmoX+0ksaX7GJRA0ejOarryh59hnMixdj+fhj4saOJeqSi/1jWq02CmfNQjPwrKD4JIuNJWXJEvRDhlA0cxaHhwwl/pFH8JSU4MrJodXHHyPIZNjWb8DyyScISiVSg6FBgS7qkovRnHUWRXPn0rp/fyRq/x1h0eul6quvKHluGe6iImLuvIPYe+8NPv9PIooiZS+/QsnSpRiuuYak2bOb/WPpKS0l57bbkei0JM15guI5T3J0+LWkLFqE6HaT99DD6M47zz8FtPYPXuXq1RROnYa6Z09Sn38eqU5LwuTJeMvKyZ8wAUEhJ/qO23Hl5FA4ZSrmJUvxlpeDRELCY49huuVmf5HiSy+SM2oUOXfcSfobr6Ns1XDX2skgSCTEjx+PIjOToifm4Ni1i9SlS4JdWhUffUTR9BkA6C66iOTZs4PH67Vayb3zLly5uWS89WZQAAwg0WpJfe5ZSpY+jXnhQpyHDpE4YzruvDzyHnoYb3k5qS+8QMmSJWSP+i8Zb72JsnVr4ieMx11YSN4jj5K6dElQ6LJv3kzB44/jKSkl/vHHKHvpZRybt3D0+hvIeHMFsphT0+FwhjOEQxRFygtsHNlWwpFtJZTmWlFqZLTrl0CHsxJJyNT/4yJPUxFFkYpCO0e2l3BwYzHlBTbUUXL/sQxIJC49KuyxSOUSOg5MouPAJCqKbOxbV8i+dUXs/CUPY4KGNr3iaNM7/m8VvESfSOFhCwc2mjm8xUyN1Y0hXk2fKzLpNCgJrSG8YKXRK+h3ZSv6Xp5J/gG/E2/Dl0dZ9/lhklobaNM7nja94/9Wwcvt9JK1s5SDG4vJ3l2GzyuS3NbIRbd1ok3v+IgiT0yKjgtu7sg5I9pxZKuZveuK+HHFXn59dz8ZXWNp0zuOjK4x/4rppImtDCS2MuC6wcOhLWb2rSvk+9f2IFdKyegaQ+te/55jOUPLs/ePX0jt3DUYjYtEcofOIAjk7tnZIiIXQI+LL2f9Zx+y66fv6DtkeMTlAn1FNVZrsHerLm369OfnFS+x94+f2fnjGvpdPSLodqosLg7p1FJqtCS2bUf2jm10u+ASjm7fgujzIZFKsRQX4bTbgqXwDcXQ7FWVSGQy9q/7na6DL6r3fFluDm5nDYlt2hHfqg2CRIJEKkNriiZ/3x5kCiVfPvMUTpsVQSKh71XDOGv4DciOu+FYUZBPVYmZtC7dqSjM58iWjWFFro5nn8evb72Kw2bDabdRmpsd9r1qCdqfdQ6/vPkqW9d8SfaObQwYfj0Z3XrWTgD87KRFrqpSM4gixjputsyefdj1yw/4fN6QuGqgk6q8II+qUjOCRILO1LRz2aiYWLK2bwl57MBffyKTK2jVy2822PnTGlr16kNUdGzIclnbt4AgkNmj9wkdY13sVZVUmotJaNOeqJhY1n74DoWHDpDcviOte/Vj7Ufv4nG5gt+N7J3bQBTRGqP57qXnuGnOInpfMZQdP35LRUE+Gd16UlVawv51vzfovDy6bQs1Nit9rxrOqkVzOLptU4jzKy6jNVK5HJ/Hg9tZw4ZVH+N2Oun2n0sBv5BbaTZjbIKTy5iYjMfpxFZRHvL/yuNyUV1WGhxu8b/ImV/WvxnnwYMUzX4C+8aNmG66kfiJE5Gowme9TyWa3r1ovWoVRTNmkD9mDNVXXEH8xAnIEyPbf5uDVKcl8fHHMV5zDeYlS8kfMwZVt27E3H031b/8jLfCQtJbb9X7AxB1wQVo+vXDvHgxxbWRNNPNN6Pq0J7qX34hf8xYNH36EHPPPeTcdRclzy2L2CMkCAKJ06dxdPi1FM+dR+KM6VR/9x0lL7yA69BhdBdeSNpLL55Sx1Fz8FZVUTRzFlVff03s6NHEPji62RdX7vx8cu65F6+1msyVK1FkZKDp3Zv88RPIue02kEjQnj0oOAVU9HoxL1lC+WuvY7j6ahJnzwq6oQSJhOT584LCWOKsWcgSE0EQ8JaVIej1pL24HG3vYz80MpOJtFdfI+f228m+6WbSXlyOukfjdviTwThiBKquXckfM5YjV19DzP334S0rp+LttwEwjLiWpJkzEWqt6e7iYvIeGI0rN5f0115D1bFj2O0KEgnx4x5F2bYNhdNnYPtrHZ4KC8paYVqRmYm6ezdybrud7FtuJXXZc2h69yZl4VPkT5xI3pixJEyehCsnl4qVK1H37Enaiy+ibNUK/aWXkn3rKFyHD3P4iitJe37ZaeMiPMP/Jh63l6LDlWTvLufIthKqShzIVf6L7b6XZ5LZLfa0jesdj8/r+7/27ju+6Tp/4Pgrs0mbNN17QKHsJcgGOQFFRQUnjhNEz7vjcOI+9dA773CcnqdyIm5UBFFxIjJkiIjsKbMF2tJFd5s0+/v7I22gtCiFQtL+3s/H4/tI+816v5O07+Sdz/fzofBgFQe3lXBw21Eqi2vRhmho3zOawVd1ILVbFBrNqecSmRDG4Ks6MvDKDHJ3l5O1uZidPxxh0+LDhMcYaN8nlvRu0SRmWlp8jjWHzUXOL2Uc3llKzq5SaqtdmCJD6Do4kcz+8c1qsqnUKlK6RJHSJYoLbC4ObivhwOZi1n52gDUL9pOQEU56jxjSukcRm2pGpW7Z5l1VSS2Hd5ZyaEcpR/aV43F5iUs3M3h8Bzr2i8MUeervdXQhGjoPSqTzoESqSmrZv7GIrM1HWfLmLjRaNandomjXM5rUblGERwf+C6pfozdq6TY0iW5Dk6gotnFgYzHZW4/LpWsk6T18uVhif33pedE2lBfmk/fLTi678/7fvKzRZCYuPYPcXdubbOqcjrCISLoMGc6mb7+k95ix6PRNN8CPX4kwrl3j98qWuHhi22Xw88KP0RoM9Bs7DvCNVKkuK2l0SGF6r75s/e5rcvfswlVrwxhuwWgOp7zgCD9+/IFvvi6ViqxNPzcaOVQvf+9uYtMzOLR1E2X5RxpNAH5o22a0ISEkZnbBWlXhi8fl5OihbFQqFaaoaKyVFVxw02S6XnAhoeFNT5a+/J1ZAFzw+8nsWP4dWRvX8buJf2j0/9gQZiJz4BByd21DZzCStfHns9bkMoSZ6DnyYrZ8+yUuh4NOA4egUqvpf8XVfDfrv5Tm5RCdknbat19Rt5Li8YfBdew/iA1ffkreL7tI69HLv98Sl4Bao6U8/wgVxYWEx8Q2uUpfUyzxiVQWF+Jxu9FotSheL9uXLabjgMHoDUby9+2hKPsA4x58otF1szb9TEJGx5M+b81RVLcQQkKHTCyx8RjM4WRvXk9Spy60P+98Vn/4Djk7t5HRtz8et9t/OOrIyX/i65eeZdM3n9P/ymswmi1UqPLZsvhr2p93Ppu+XkhlcRER8U1/pt6xfDGx7TLo2H8Qce07sPP7JQ2aXFqdjviMTP8KituXfku34Rf6R8pVl5Tg9bhPevvHi0zwHe1UUVjQoMlVUVQAiuI/vy2SJtc54i4tpXT2G5R9+CH6lBRS33oT09Chv33Fs0gbFUXyyy9T9dVXFD37HFmXXkb0HX8getIk1GEtM/+KoVs30t58A+u6nzn66iscuftuAMLHjkVzkm+vNCYT0bffTtU3i1CcTsrnz8ddVkr10mWYfjeC5BdfRK3XE3vP3Rx98T8Ye/fCPGpUk7cVkpFB3H33UjTjGaoWL8ZbXU3Y0KEk/etfGHv1avI6gVDzwxoKpv8Nb3UNyf95kfBLL232bdi2bCHvrrtRGwykvzfHP/m7JiICY6+e2NatA8B5OIfarVvRJSSQ/8ij1G7dSvyjjxA5cWKj4q3S6Uj+z4vkTvkLhY8/7t+vz8zEuX8/VZ9/gbFHjwbzSuni40j/8APypvyFw7dMJO7hh4i86aazOhrC0KUL7Rd+RuE/nqbkpf/690fffTexU/7sv2/bxo0cuW8aaLWkz3nvpA2u45lGjcK0/HuqlywBtZqI669Hl+Z7E6GNjiZtznvk3XUXhyfdSsLfniDi2mtJ+uc/ySksouif/wKtlthp04i+bbK/0aaLj6f9p5/45uNbuYrDt0wkctIk4u65OyhGFIrWz+vxUnrESu7uMvL2lJF/oBKPy4vRrKN971gyJnQipXNkq2hs1Y88y9tTTt6eMo7sr8Bl9/hzGXZdJildIs+4AaXWqEnvEU16j2hGeDqTv7eCA5uL2b+hiG3LctHq1CR1iiStWxTJnSOISjL5Dxs8VW6Xh6KDVeTvryBvTzkFWZUoXoWopDC6DkmkXa9YEtqHn3EDKiRU5x+p5rC5OLS9hKwtR9m85DA/f5mN0awjrZuvsZKUGYE5qvlfttlrXOTv900an7unjLJ8K2q1isRMCwOvzCCjT0yLNG3CY4z0u6Qd/S5pR1VJLdlbj5K1+Sir5u5FUSAiPpS0blGkdosisYMlqA+xjYgL5fzL2nH+Zcdyyd56lNXz96N4FcJjDKR0jSK1SxSJHS0nHb0nWrdNXy/EYDLTcWDjQwCbktazN7+s/r7BXFJnatC1N7Jn2g9s/OozBl/T9LxgRQcPEBJmQqPVnnS1uMiEJI4eymbkbVMICfV9dqgsLvKNCIo/scnVh3WffuSf66rXqDGU5uVQsH8vRdn7+d3EP5C1aT171qxqssnlcjoozNrP8JsmUXW0iM3ffsno26c0uMzBrZtI696LQ9u3sOiVf/sXTOp/5bVs+PITLr/vYeY98TDakJCTNkrKC/I5vH0LlrgEEjIycdntbF+2mCO7dzV5eNd5l1zB7jUrSerclb0//cCga25o8nZbQr+x49n87ZeEx8b5n5Ouw3/HT5/OY/WH73DVw9NP+7YrCvLR6HSYoo7NpZbYsTORSSls/e7rBk0utUZDRHwCZfl5vnnW0k69sReX3t4/P1tsWjsObt1ERVEBl945DYB1n80jOiWNDn37N7ievaaG7E3rGXZjy8xfnb9vNwaTmYj4RFQqFRnnnU/Wxp8ZdsNEolPSiElNZ+fKpWT07U/hgX143W4scQlkDhxC37Hj+PHjD4hNb0/+vt10GTqCbUsXEZWcikql5vD2zURc1HgF+KKDWWRv3sClU325njfmcl+D8khug3nPkjp1Yc+aleiMRuw2KwPGH5ububxuhGXEKTSoLHHxqNRqSo/kNnjt1t/Gb60C2ZpJk+sscxUWUjbnfco/+giVWu2bo+q2yUEz2bRKpcJy5ZWYLryQktdmUfLaLMrem0PU739P5O9vRhv52ys3nIqwQQNxHDhA7cZN6DMyqFq8mOolSzBdeCGW8eMwDRvmnxPJVVxMzuTb0EREkPruOxQ+/gTV3y5GHR5OzB//6H/som+/HfuOnRy5/wFSX3+dsIHHjk322mxUr1hB1dffULPmB9Bo8FZXEz1lCnH33N0iObUER1YWxc//m5qVKwkdOJCkGf9qco6xX6O4XJTMep2SWbMw9uxJyquvoI3xDe91HjpE/qN/pXb7dmLvn4Zp5CgKH3uMnImTQKPxzUU2572TjiKybdlC8XPPU7tli3+fvkMHkp9/DvvOnRQ89XdsmzeRNGNGg8n/tZGRpL33rm8hgn88jfWHNcQ//hj6lMZL5bYET3U1Ja/NovKLL0ClArUaPB6sq1Zi7NwJY//+lP7vNcreew9j376nNBedoihYV6+m4Mmn8FZWEv/Xv2Lfv5+if/6Lqu++I3H6dEIyM31zeL39NoVP/5PCJ/5G2Xtz8FRU4Ckrw9ivH/bt26lcuJDQ8/o0eJw1ZjMpr73mO3R5xjOUv/suVZ9/TvzjjxF+2WVnbU4H0TbZqpwUZldSdLCKooOVFB2uxu3woNWrScqMZNC4DFK6RBGdFNbiI3hamtPupvhQFYUHq/z51Fa70GjVJHQIp++YdFK6RBKXHt7sJtOp0mh8o4VSu0X5DiM/YiXnl1Jyfylj7cIDeN0KeoOGhAwLiR0tJHSIIC7NjN547G2VoihYK5wczami6JCvsVV0qMp3XaOWpMwILpiQSXrPmNNqMp2qkFCdf1SUx+2lMLuSnF1l5PxSyt6ffZPamiJDSOxgIbFjBAkZFqKSwhqscKh4FSqKbRQfrqYou5Ij+ysoy7cCYI42kNw5kv5j25PaLYoQ49l7axkeY6TP6DT6jE7DbnVxZG85Ob+Ukb3tKNtX5IEKohLDSOhgIbGDhYQMC5ZYY1Aefnt8Ls5aN0f2lZP7Sxm5e8r55Yf8ussYSMiw+LcTnxfR+pTkHGLH90sYdsPEk46gOlGXIRew8avPOLxjK+379GuROCITkuh72ZWs/+ITug0f2eShkEXZWb6pKLr1bPQ3pCgKG79eyP6ff0Sj01GwbzfnjRkLQPGhbABi0to1uE5Spy6Ex8aRvXkDAL1GXcL6Lz8la9N6Urv1pO+lV6I3hrJk9itUlRxtNJF5/p7deD1u0nr0xuNysXbBXPpddqX/g3p1WQm5u3aQ0q0HXzz/D0ItEZijY/C4XZTk+FaorCwqInPgENYtnE+34ReiO+FoGsXrZeFzfwdg1B/+AkBK1x5ExCeyZck3TTa5EjM7+xohWfuwVVZSlH2A+IyzMw2NrW6lPGt5OdWlJZijY9BodYz4/WS++s8z7P1pDZ0HDzut2y46mEVsWrsGhyX6Dukcz9I3ZpK/b3eDQ1CjklMoy8/j6OGDzZqgPCa9HQBHDx8kJiWNtQs+JLFjZxIzu3Bo+xYObtnI2LsfbPQ+eM+Pq/B6vXQd9rvTyu9EWZvW0653X/9ru2P/Qfyy+ntKcg4Rk9aOnqMuYdX7b1JVUsyOlcsA36G+KpWKYRNu4fC2zXw78wU0Oh2jbpuC3mBgxbuvY4lP5JcfVtD7hCaX1+th+Vv/Iyo5lS5DfdP1dBk6grWfzGX1B2/TadAwyo7kEt8hk3a9zmPjV5+BSoUhzERU0rHPT8UHs9Abjad0+LJWrycmNZ3CrP30vujYAIqjh7IxmMMJtUSc6cMYtKTJdRYoTic1a9dS8fECalauRG00EnXrJKInTUITERHo8JqkMZuJf+hBom75PaXvvEPpW29ROns2ptGjiLjmWsIGDWw0efyp8trtFD37LBUfzSPq1luJe/ghPCUlVH7zDZVffEneX6aiDgsjbPhwDF27UPbRR6gUSHvzDUpnzsS2di3hV1yBfe9eDt14E9F3/IGYv/wFtV5P0vPPkTdlCrl33EHcww+h0uqo+WE11rU/odhsGHv3Jv6hhzGPvYzSV2dS+tpreGtqiHvg/kaTlJ8riteLbeNGyt59j5rvv0eXlETyS//BPGZMs96IK4pCzfLlFD//b5y5ucRMmULMlD+j0mrxVFVR+sYblL77Hrr4eNLffx9jn97UrFiBu9JXIFV6Pe6SEio+/xxNVDQhGb5vYRS3m+rl31Py2v9w7NkLgCY2lrj7p6Fv146Cxx7n4DXXEnnDDaTOmsXRF17g0IQbsIwbR+xdd/qbdP6FCIYMpvDv/yB77OVETbyFqIkTW2yxA1dxMWVz5lD+/gcoDgeoVETefDMx99yNY8cOiv/7MnlT7/Q1vVQqom+/ndj77vWPqDqZ2l27OPrCi1jXriV08CAS//E0+hTfmyjL2MsofPIpsq+6moirxhN1xx14KypQaTWoDAacBw6AVus7HPm++3Dl51PwxN84/PtbMI0eRWzdao7gazJH3XQT5tGjKXzySWq+X0H+Aw9SNOMZYv4yhYjx41tsVKVoG9wuD+UFNkrzayg9YqXsSA2lR2qwVjoB3/xMCRkW+o9tR0J7C/HtwoN2tJaiKFSX2Sk7YvXnU3qkhrICKyigN2iIaxdOt2FJJHeKJLGDJSATdqtUKmJSTMSkmOh7cTpup4fiw1XkH6ik4EAlW5bm4vzS9wHKGK7HEKpFUaC22onD5vbtN+tI7BjBkKs6ktQpgujk5o8CawkarZrkTpEkd4pk8FUdqK1xUpjly6Mgq4KsBfvxehRUagiLCEEXosHj8mKrdOJ2+UZEWOKMJGdG0PfiNJI6RZ7VBt2vMYTp/PONKYpCZXEtBVmVFGb78qlvFOmNWmJSTETXPYcxKSaiEsOCavJ3vVFL+96xtO/tq43VZXYKs325FGZVcmBjMV6vglqtIjIx1JdLspmYFBORiWGEReiDspEnGnLW2lj0yr+JTEzmvEuu+O0r1Ilr34HolDS2LV3UYk0ugEFXT2Dfuh/56j/PcMNTzzaYl8phs1K4fy9er5f0Xscmx1cUhZwd21gzfw6FB/YxYNy1RCWlsPi1l0jvdR7dR4yi+GAWpuiYRiOl1GoN8RkdqTpaTFKnrmj1eg5u2YDi9XLBLbehUqvpNGgYqz54i01fL+TCW//Y4Pp7f1qNJT6B2PT2RCYls23ptyx76zWG3zCRwqz9bFv2LaBQsH8P5195DRu//NQ3GbjXy+L//QdLXAKHd2xl+E238u79U1gz/30unHRHg/tY9tb/KM/PI6VrD9rXzfukUqnof+U1LH1zJiW5NxCTmt7osfzdxD/w3oN3oTMY+fnzBVxZt8pkS1IUhR/nv09EfCIuh51vXn6O6574FxqtlsyBQ+k0aBhLZ79CQoeOv7r65MkUZR8gpWvjJl6PCy9ix/Lv+PbVF7nh788RFuEbABGfkcn6LxbgstuJSz/1qV8MYSbCY+MoPpiFy15LUfYBbnjqORxWK8veeJXUbj3pPKThYmwet5tN33xOx/MH+e//TJTl53H0UDYDjxshldG3P6GWCLYv/46Rk/9EjwtH8/PC+ax6/22yNv2MSq2m2wUjAV/z6KI/3sVHTzxAbLsMDGFhjP7DVEyR0axd8CGVRQWs/vAdeo26BEt8AiqVih/mvkfhgf1c/+QM/4hMZ62N+IxMDqxfS/bmDZijY1n/xSdEp6ajUqvRaHXYa6qpKCr0j4ws2L+H+PYdT/nL8ISOncjfu7vBvvx9e0jK7Nym64ZKURQl0EH8mpkzZ/L8889TWFhI7969eeWVVxgw4OSrCSxYsIAnnniCQ4cOkZmZybPPPstllzUeLngyVVVVWCwWKisrCQ8PP+XrKS4X1cu/p3rZMmpWrcJbXU1Ily5E3nAD4ZdfjsbUuj6ousvKqPziSyo+/QTngSzUFgum4cMxXfg7Qvv3bzRRd1MUt5vqJUsofuFF3EePEv/XR4mYMKHRH5R93z6qlyyhYsEnuIt8K3To0tPwlJXjdThIeOIJIq+7FsXppGT2G5TMmoW+Xbqv0WUMxfrTWio/W4i3pgYAQ8+emEePJvyyS9GnHhv6qSgK5XPnUvTMs+iSEom77z7MF130mw2PlqC43dh37aJ6+fdUff01rvx89B06EH3bZMKvuKJZI/vc5eVULVpE+YdzcWZnEzZ0KHEPPYihc2cc2QepmD+PigWfoHg8RN9xB5ZrrsG6cgVlc97HefAgoQMHEv/Iw+jbtaP8ww8pe28O7qNHMfTujUqjwb57N0ptLQC61FRi7roLy9jL/I+T4nRSNmcOJbPfwFtbi2XsWNTh4VR+9RXeqirMF11E5A03ENr/fP91vDYbJbNnUz7nfRS3m/DLL8cybpzvMs2dWL+8nJrvv6f8o3nYd+0CRQG1GvOllxB3993o0tKw//ILVV9+ScXnX+CtrkaXmoqrsBAcDkK6dcU8chRhgwdh7NnTP4LQ63RS8/0Kyj/4ANvGjejbtyfugfsxjRzZ6DXrsds5+u8XqPj0U/9jpY6IIOK667BccTmVn35G+dy5qAwGIq6+ivDx47Hv3kPprFm4cnIwnt+PiGuuxTzyQjSWY28C7Xv3Ufzss1jXrvXt0GgI7d+fiOuvx/y7EahDg3O+ltP9v9lcraUenAnFq1Bb46Km3E5ViZ3KozaqjtZSWVJL5dFaasodUFe1zdEGopNNRCeFEZ1iIiHDgikyJKjetChehZoKB1V18VeV1NblVUt5oRWX3QP4GlrRySaiksKIaxdOQnsLkQmhQTXqzOX0UFNmp7rUTnWZnaqSWsoKbFQUWqk8Wkv9uym1RoWi+HIH0GhVWOJCiUwIIyLeSGR8KOZoA6ZIA2GRIc2aP6wlKIqCw+am+rhcKotslBfZKC+w+humAGqtCq9H8b/m9KEaohLCiIgPJSI+FEusLxdzlAGjSRdUz5fd6qIwu5KS3BpK8nzN4Ipimy8XlW/0WkRcKJa4UCLijFjiQgmP8T0veoMmqP6O3E4PR3OqKcmroeRIDaV1+bidvsajVq/GEnssD0uc0fcaiwghLCLknE9u3xZrwpnmZK0o58sXZ1CSc4gbnnq22fM27f5hBYtefYEJTz17xhOMH68waz/zpz9MctfujLv/Mf/Ipj1rV/PNf59Do9MzZfb7hISGUVtdxbI3ZrLv5x9J6NiJ4TdOIq1HbxRFYensV9i5YhmDr72RAxt/JjIhkcvvfbjBfdmtNcz+y2Rc9lqSu3bHWl6G02bDVlXJZXc/SNe60S1rF8xl/RcLuOWZl4lOSUXxeqkuK+G9+6eSOXAIyV27U3wwm5xd2ynLywFApdaA4iWufQeumPYIX/57Bl6Pm1uefRmA9x68E4e1BqfdzpTZ77N92XesnPMGF/3xTnqNugTF62XFnDfZ8u2XhISZuO2l1xs06TxuF+/c92fCY+K49omnG4x2qvfL6u/5duaLAFz9yJP+SdRbyo7vl7Dk9ZcZ9+ATGE1m5j/1CN2Gj+TiP9+FWq3Bbq3hg0fvRYWK65745ymvdghQU1bK61Mmcemd99Nt+IWNzq8oKmTe3x4kNNzCVY88iTk6hrw9u5g//WFQqfjLm3MxmsynfH+L//cf8nbvxFpeTrcLRjJi4u188fw/KD50kJv/9Z9Gh7puWfwV37/zOhOfe6VF5jxb9uZM9q//iTtmvtNgZcM18+awedGX3Pbf2Zgio9i5YinfzfJNg9Jr9KVcdMdU/2V/Xvgxa+a/D4rCtY8/7V+YoODAXuY/+QhetxtFUTCaw9HodNSUlZLStQfxGR2w19RQeiSXwqz9aPV6QoyhqDUaJv17JsUHs/n83//AabOh1mjQaHX0GTOWC26ejMft4n9/uIn+V1xzyofF7vlxFd+8/Dx3vPo24bFxuOx2/vfHmxl8zY3+1SzPpkC8l4Ygb3LNnz+fiRMnMmvWLAYOHMhLL73EggUL2Lt3L3FNNFnWrl3LBRdcwIwZM7j88suZO3cuzz77LJs3b6ZHj1NbIvO0m1xuN/uHDkObmIh51CjMF40mpHPr75AqioJ95y5qVnxP9YqVOHb7OsG65GSMffoQ0qUzIR06EtKxA7pk30gX+44d1KxeTcVnC3EXFmIaMYK4hx9qcoJ3x8GDVC9eTPlH83CXlmLsex6uvCO4CwpAowGPB3VoKKEDBmDsex4akwnbtu1UL12KYrMBoDabCRs+HE14OJXffAMuF5bx47CMG4exd+9GTRRHdjZFT/8T69q16FJTsVxxOebRownp0qVFDhFTFAX30aM49uzB/stuanfswLZ+Pd7qatQWC+FjxhB++VhCzz+1Bo/XZsO+axe2rVuxrlqNbbNvZRHz6NFEXHctKrUa64YN1Hy/AsfevajDwzGPuRhdYiK1W7diXfsTeL2YR40kavJthPY9D8XrxbF/P1WLF2Ndswb77j3gdvvvUxsbi+Wq8YSPvZyQjPaodI3nOPHU1FAxbx5lH87FXVCANjERXXIyrpwc3MXFqCMjMY8aSdjAgRj79EGXkoK3upryj+ZRsWABrrw8NLExhA0aTNigQRjP64M+La3BiEHF68V5+DDWtWuxrl2LfedO3EXHlo3WxMQQMeF6QgcMwJ2XR+3WbdT88APuwkI0kZFYrr6KyOuvR5+ejre2lprVP1C1+FusP67FW1UFISHok5NBBa4j+Sh2O8a+fYmaOBHz6FH+WLxOJ449e6jdsgXblq3YNmzwT76vT0vFU1KKu7AQbVwcYcOHYRo2DG1SEtVLl1H56ad4ysvRpaT4VhPVaqjdsQP75i2g0WDs04ewIYMx9uiBoUcPtNHRuIqKKJvzPpWffYanvNyXrEqFNjERQ4/umIYPJ2zIEHSJiUFxWOO5KGCtqR4cT1EU3E4vdqsLu9WFw+rCbnXjsLmorXZhq3RgrXRirXRgrXBgq3Ti9R4ry3qjFkuskfAYI5ZY3xaZGEZ0UliDQ+POJa/Hi6PWjcPqxm5zYa9xYaty+nKpqMul0vf7ifmYIkMIjzESHutr9kQlhRGdbApYc87rVXDa3NiqndRWO6mtdlFb7az73UVtlZPqMjs15XZqq13+66lUYIo0EJkYSmR8GBEJoUQlhhIRH4bR7Pt/WV1qp6zASkWRzbcV26gotDVoIqHyjb4zRRowR/kaEkaTHqNZd+zUrMdg0hESqv3Vx8jj8WKv8cVfW+XCVu30PTd1uVkr6nIps+NyePzXU2tVWGJDiUwIJTI+lMjEMCITfE0svUGLx+2lvLAuhyIrFUW1lNfl5Kx1N7gdU6QBc2QIYZEhhJr1GM3HcjCa9RhNOozherQ6dUCeb5fDQ2l+DWX5ViqLa6kstlFRXEvlUZu/YQS+ie9Nkb7no/60Pn6Dyffc+E51ARsR5vUqVB31PReVxTYqi2upqDutLrf7G5Pg+z9iigzxN72MZh2GsGM5GEw63z6TvkUafG2xJpxJTraqSt57wPfheNwDjzU45OtUKV4vHz3xINbKcq7/279Oa6TOyeTs3M7nz/0dU3QMo2+fQkrXHnz41/s4evgQ511yORfe+kcO79jK4pkv4nY6GXX7FDoPuaDB60Txeln7yVx+XvgxitdLp0FDGTphon9i+MqSYub97SFqSkuISWtHSc4hjOZwJjz1HF+9+C+0+hB6jR5DdclRKooKObBhHYrXi85gwGGz+ufWAnyj9hOTiWuXgb2mmsPbtxAWEQUq+P2Ml/hx/vvsWrWcm55+gYQOmYCvmffREw/g9XgYcv3vGXT1BJa/9Rrbli6i8+DhFB/KprzgCDqDgd/PeKnB4WHHHqdtLHj6cfpfeQ3Db5zU5N/JpkVfsvK92ajUai76450nnUC/ufb+tIZFrzxP9xGjuPhPvmlXdq9Zybevvkhq9x5c/Kd7sMTFU1lcxIJ//BWH1crIyX+i89ALmmzINYr7m89Z9cHbTJn9AUZz06/vktzDfDbjSbweN2Om3Et6zz7895ZrMIaH8+dZc045F0VRWPXB22z6eiFx7Tow+o9TWTZ7JhVF+Vz10PRGh4QWHNjLx0/9le4jRjL6D1NPcqun7sje3cyf/jDDb5pE/yuvaXCevaaGt+65g7Tuvbj8vkfY+M3nrH7/LQAGjL+eQddMQKcPoST3MB8+eh+9Lr6MksPZHD18iPEPPeH/265vLKX17EPxwSzsNdVY4hPQaLSgUhESGkpEQhKp3XvS8fxBOGw23n/4buIzOuL1uCk8sJ9uw0eyY8V3/tiG33QrWr2eFe/OZtLzrzY6HPhkHDYbr/3xZgaMu5Yh193sb9zd/vKbpzR5/ZmSJlcTBg4cSP/+/Xn11VcB8Hq9pKamctddd/HII480uvyECROwWq18/fXX/n2DBg2iT58+zJo165Tu80yeCE9FRdAejtgSFLcbZ24utg0bqd26BfuOHThzcn2HiYHvXT/4RtZotejapRPa5zz0aamodHoUlwtPVRWeslKcObk4s7PwlJWDRoPKZEKpqgJFwXBeH8Ivvhi1JQL79u3UbtqEMyenwf1ooqLQJiSgVFfjzM0FRUHfoQOG7t1wl5Xh2LkLT0UF6vBwQvueR0inzugz2qNLTEITGYE2Ksq36t28edSsWOFrQIWFYejZk5AOHdClpqBLTkYTHo4qNBS10ehr9Hi9eK02PJUVeCsr8VRW4qmowH20BFd+Pq4jR3Dl5+O1+uYqUZvNGLp2JXTQQMIGD/bNW6VWo9jteB0OFIcDb22tbw6n8go85WW4S0tx5R3Befgwztxc3IWF4PWCToc+JRlNTAx4vLjy830j3xQFlcGAJjoKVGrcxcXgdIJWiz49DX1qGmpTGJ6KSlwFBbiLi32j3o7709fExBA2aCBhF4zAdSQP29qfsG3dCi4XKr2ekMxM9O3bo0tKQpeUhDYuDo0l3Pf4mMw4DxygetkyrD/+iCvPtxqPymAAlco/0gmDAV1CAtqEeLQxseBy+R6z/Hw8paW+y6jV/pFVitvdoPFWf746IgJdcjJqoxFPaQmu3DwUpxNUKvQdOhA6YACmoUMI6dIF3G7f81NairukBE9pKc7cPBxZWTj27/c3StFqj92XSoXabEJdN4Gqt9aGt6ra/7oOyczE2KsXpguGEzpgAOq6BRTs27ZRtfg7rD+uwbHft2KLJiICfceOqEJC8FZV4srNw1NR4X9tqM1mlLoYcfo++KrDw9ElJqJLSUGXkgw6Ha6DB3Hs3YurqBhcxz5oo1KhCg1FGx3t+5uIiUEXH4c2MRFtTCyaCAuayEi0UVFooqJQh4aelQ+W56KAtbZ6sH1FLpu+PYzd5sLrblxmVSoICdMRZgkhLEJfdxpCmEVPqCWEMEsI4bEGDGG6X33OFEVBUXyNJ69HwetW8NT/7PHicSv+8/w/11/GreByenA7Pbgc9ade3z6Hp8Gpw+b2bVYXTrunyViMZl1d7Hr/aZglBHO0wdfYijGcdHJ4xavg9Sr+U69HabjPo6Aoij8Pj8uL2+WpO/U2+r1+n8vpwVXrxlHrwWl346w9tjnsvvxOpNaoMJr1hIb7mhqmyBD/aKXfGoFV/3wonibyqYvfUevCWuGkpsxOTbmDmnI71iontkon9honzlpPgyZUg9i0Kt9hjioVqvr78/r+HhRv48trtCr0Ri0hoToMYVpCLb6mjSnS4Msryte80Wg1qDW+21bVnarVKtQa1UlHZymKgsPq9jcBq8scvpFu5Xas5Q5q6xpu9YdsnvgY641a9AZN3anWd2rUEGLQojNo0Og0aHVqtHo1Gq0ard73u0anrtuvQaNV++LWHItVo1GjUh/bd3xOJ/tbqp8/rbq0lpoKBzXlDqzlDmoqfM+RtcKXj8fV+EHW6tWEGLXoDL586k/1dXnoDRp0IVp/HvXxa3TH/V53Wr/v+MderVb586n/vX7fyXhcXmoqHFgr6l9jDt/vdad2q685fXyTsp5KRd1zoeXmpwad1hxgbbEmnGlOWxZ/RadBw87oUKuqkmI+/ruvgdH/ymvo0G8gkYlJLTIZfemRXBbP/A+FWfvQGQy47Ha0ISH0uPAi8vfupvhgFmERUWT0G0BUYhJhUdGYIiLRG0PRaLWotVrcDgeLZ/2XsiO5AHhcLjQ6ne9/X917LJVajeL1otHp8Bz/fgagbvXD8OhYdEYjeb/sRKvTYY6JpSTnEN1/dxF9L72CiIREdCEGaspLyd60gdUfvoOz1kZIaBganZba6mp+N/EPnDfmcv8XgYqisPenH/yT0ce164AuNIyirH24HXYADCYTQ66/hXa9z8MUFd3knGkbv/qMVR+8TeaAIfQfdw3x7Ts2evwPbFjHNy8/h9vpJCTMRFqP3rTv3Zfo1HTCY2IxhlvQ/MYUMIqiUFtdRcH+PWxf/h3Zm9bTZegILvnLfQ2ue3jHVha/9hK2igo6nD+Ajv0HExGfyMYvP2X/hp+wxCeQOWAISZ26EJ2SRljdc3b8/8LSvFzmP/UI7fv080+IfjLWinIWvfoCOTu2Ep2SRmleDiqVimse+4d/JFNT3C4XlUUFHN6xjZ0rlnL0cDYarQ6NXofTZiMqKYWx9zzkX8VTURSqjhaz+4cV/Pz5AuLaZXDt4/9AF3L6h8fbqirZ+9MPrPloDjFp7bj+b/9q9DwoisLWJd/w/duz0IUYcDns6END6X7BKLYtXYTOYCQ2LZ3iQ9mEhkdw1aNP4XE5WfTqC5QcPkhCZmfCo2Ow11jJ270Tr8dNWEQkF9w8mc5DhqPRNh40oCgK1aUlrFs4nx3LFqPWaBk5+U/0GjWG7csXs+zN//n+Mdd9blNrNCR16kpkUjLm6BjM0bGYo2J8r9mQENRaLRqtFpVajUrlq4dr5s1hx/IlXHjrHfw4/wOSOnX1HVKrOnldbCnS5DqB0+kkNDSUTz75hPHjx/v3T5o0iYqKCr744otG10lLS2PatGnce++9/n3Tp0/n888/Z9u2bU3ej8PhwFHfPMH3RKSmpp7WE7G7S/O/mRFCiGDSdc/u377QCc52AWuN9WDuU+soL7A16zpBTdXkjyfZQYNRJE2edbbfeajqwlKpfN+/qHzzqtS/l1OpVA33HfezSqVqHF4Tb5W8XuW4Zhb+plZLUWtU/iZOo6ZNfYNDAa/ii8Pj9vobal6PF4+rhWJRcayxovE11/z3f7LH1feL7305CigqoK7pp+B//hWvrylIfXOwrmlX3yys39/iVL/2Oj5hlWH/93e/EYhywo9B+e66ef788gg0pzFSrS3UhJasBwAvTLi82dcRQohgcv/8r3/7QicIVJMraCeeLykpwePxEB/fcOWA+Ph49uzZ0+R1CgsLm7x8YWHhSe9nxowZPPXUU2cesBBCiLOiNdaDuLRwbFW+0XnHPjsf+/Dc1Odp1Yk7VU1ftsG3bifs8zVsmmrmgIrjfj5+v1rlP++kTtbkqr/fRmc0fQMqtS8OlfqEBpNadUJcqmOxnbC/wSiXExo/vlyauvumGxcnjbbpG2nwW5MjbVQ0ise3v2Gc9Q2jBiOTdBr/aB6tVn3G81vVjxzzj3RzevC4j41y89Y36OpOG/zs8TYcUec5NiINpb5xdazx4xtFVt+owtec8u3yXaZ+Wi9/86qukXXCZX4tl+MbiZ7jYm3QIDv+/pQTmmgnNM/q7vq4+z0WW12Gx87zh3csTqXhr002Qhsnctxj1qC5d/xjeiznY3d0fKzHXb/R+Y1jOGlYDW++8RnwG3/TgXMuaoJ8PhBCiNYraJtc58qjjz7KtGnHhmbWf1NzOk5nBIQQQojg0JL1YPTkbi0VlhCnRaVSodH6RoNhDHQ0QrQuLVkP4PRGQAghhDg9QdvkiomJQaPRUFS32l69oqIiEhKaniQtISGhWZcHCAkJISSk8THXQgghgoPUAyGEEPXORU2QeiCEEK1X4JflOgm9Xk+/fv1Yvny5f5/X62X58uUMHjy4yesMHjy4weUBli5detLLCyGECH5SD4QQQtSTmiCEEOLXBO1ILoBp06YxadIkzj//fAYMGMBLL72E1Wpl8uTJAEycOJHk5GRmzJgBwD333MOIESN44YUXGDt2LPPmzWPjxo3Mnj37lO+zfg6Eqqqqlk9ICCHaoPr/l2dzHROpB0II0Tq0xZog9UAIIZrvXNSDJilB7pVXXlHS0tIUvV6vDBgwQFm3bp3/vBEjRiiTJk1qcPmPP/5Y6dSpk6LX65Xu3bsr33zzTbPuLzc3t37aUdlkk0022Zqx5ebmtsS//ZOSeiCbbLLJ1nq2tlQTpB7IJptssp3+drbrwYlUinKu22rBzev1kp+fj9lsbriC1Smon5QyNzf3nC6R2dLaSh4guQSrtpJLW8kDziwXRVGorq4mKSkJtTpoj4JvNqkHPpJL8GkreYDkEozONI+2WBPOpB6AvDaCkeQSfNpKHiC51AtUPQjqwxUDQa1Wk5KScka3ER4e3upfzNB28gDJJVi1lVzaSh5w+rlYLJazEE1gST1oSHIJPm0lD5BcgtGZ5NHWakJL1AOQ10YwklyCT1vJAyQXCEw9aBtfrwghhBBCCCGEEEKI/9ekySWEEEIIIYQQQgghWj1pcrWgkJAQpk+fTkhISKBDOSNtJQ+QXIJVW8mlreQBbSuXYNCWHk/JJfi0lTxAcglGbSWPYNJWHtO2kgdILsGoreQBkkugycTzQgghhBBCCCGEEKLVk5FcQgghhBBCCCGEEKLVkyaXEEIIIYQQQgghhGj1pMklhBBCCCGEEEIIIVo9aXIJIYQQQgghhBBCiFZPmlxnyT//+U+GDBlCaGgoERERgQ6nWWbOnEm7du0wGAwMHDiQ9evXBzqkZlu9ejVXXHEFSUlJqFQqPv/880CHdFpmzJhB//79MZvNxMXFMX78ePbu3RvosE7La6+9Rq9evQgPDyc8PJzBgwfz7bffBjqsFvHMM8+gUqm49957Ax1Ksz355JOoVKoGW5cuXQIdVpsi9SDwpCYEn7ZaE6QeiN8iNSGwpB4En7ZaD0BqQqBIk+sscTqdXHfddUyZMiXQoTTL/PnzmTZtGtOnT2fz5s307t2bMWPGUFxcHOjQmsVqtdK7d29mzpwZ6FDOyKpVq5g6dSrr1q1j6dKluFwuLr74YqxWa6BDa7aUlBSeeeYZNm3axMaNGxk5ciTjxo1j165dgQ7tjGzYsIHXX3+dXr16BTqU09a9e3cKCgr825o1awIdUpsi9SDwpCYEn7ZYE6QeiFMhNSGwpB4En7ZYD0BqQkAp4qx65513FIvFEugwTtmAAQOUqVOn+n/3eDxKUlKSMmPGjABGdWYAZeHChYEOo0UUFxcrgLJq1apAh9IiIiMjlTfffDPQYZy26upqJTMzU1m6dKkyYsQI5Z577gl0SM02ffp0pXfv3oEO4/8FqQfBQWpC8GrNNUHqgWguqQmBJ/UgeLXmeqAoUhMCTUZyCT+n08mmTZsYPXq0f59arWb06NH89NNPAYxM1KusrAQgKioqwJGcGY/Hw7x587BarQwePDjQ4Zy2qVOnMnbs2AZ/M63R/v37SUpKIiMjg5tvvpmcnJxAhyQCTOpB6yA1IXhIPRBtmdSE4Cf1ILhITQgsbaADEMGjpKQEj8dDfHx8g/3x8fHs2bMnQFGJel6vl3vvvZehQ4fSo0ePQIdzWnbs2MHgwYOx2+2YTCYWLlxIt27dAh3WaZk3bx6bN29mw4YNgQ7ljAwcOJB3332Xzp07U1BQwFNPPcXw4cPZuXMnZrM50OGJAJF6EPykJgQPqQeirZOaENykHgQXqQmBJyO5muGRRx5pNPnaiZv8oxdny9SpU9m5cyfz5s0LdCinrXPnzmzdupWff/6ZKVOmMGnSJH755ZdAh9Vsubm53HPPPXz44YcYDIZAh3NGLr30Uq677jp69erFmDFjWLRoERUVFXz88ceBDi2oST0QgSY1IThIPRAgNUEEltSD4CE1ITjISK5muP/++7n11lt/9TIZGRnnJpizICYmBo1GQ1FRUYP9RUVFJCQkBCgqAXDnnXfy9ddfs3r1alJSUgIdzmnT6/V07NgRgH79+rFhwwb++9//8vrrrwc4subZtGkTxcXF9O3b17/P4/GwevVqXn31VRwOBxqNJoARnr6IiAg6derEgQMHAh1KUJN6IAJJakLwkHogQGqCCBypB8FFakJwkCZXM8TGxhIbGxvoMM4avV5Pv379WL58OePHjwd8w1+XL1/OnXfeGdjg/p9SFIW77rqLhQsXsnLlStq3bx/okFqU1+vF4XAEOoxmGzVqFDt27Giwb/LkyXTp0oWHH3641RYvgJqaGrKysrjlllsCHUpQk3ogAkFqQvCReiBAaoI496QeBCepCcFBmlxnSU5ODmVlZeTk5ODxeNi6dSsAHTt2xGQyBTa4XzFt2jQmTZrE+eefz4ABA3jppZewWq1Mnjw50KE1S01NTYMu88GDB9m6dStRUVGkpaUFMLLmmTp1KnPnzuWLL77AbDZTWFgIgMViwWg0Bji65nn00Ue59NJLSUtLo7q6mrlz57Jy5Uq+++67QIfWbGazudGcB2FhYURHR7e6uRAeeOABrrjiCtLT08nPz2f69OloNBpuvPHGQIfWZkg9CDypCcGnrdQEqQeiuaQmBJbUg+DTVuoBSE0IGgFe3bHNmjRpkgI02lasWBHo0H7TK6+8oqSlpSl6vV4ZMGCAsm7dukCH1GwrVqxo8vGfNGlSoENrlqZyAJR33nkn0KE122233aakp6crer1eiY2NVUaNGqUsWbIk0GG1mNa6PPCECROUxMRERa/XK8nJycqECROUAwcOBDqsNkXqQeBJTQg+bbkmSD0Qv0ZqQmBJPQg+bbkeKIrUhEBQKYqitHzrTAghhBBCCCGEEEKIc0dWVxRCCCGEEEIIIYQQrZ40uYQQQgghhBBCCCFEqydNLiGEEEIIIYQQQgjR6kmTSwghhBBCCCGEEEK0etLkEkIIIYQQQgghhBCtnjS5hBBCCCGEEEIIIUSrJ00uIYQQQgghhBBCCNHqSZNLCCGEEEIIIYQQQrR60uQSQgghhBBCCCGEEK2eNLmECFIej4chQ4Zw9dVXN9hfWVlJamoqjz32WIAiE0IIca5JTRBCCAFSD4T4LSpFUZRAByGEaNq+ffvo06cPb7zxBjfffDMAEydOZNu2bWzYsAG9Xh/gCIUQQpwrUhOEEEKA1AMhfo00uYQIci+//DJPPvkku3btYv369Vx33XVs2LCB3r17Bzo0IYQQ55jUBCGEECD1QIiTkSaXEEFOURRGjhyJRqNhx44d3HXXXTz++OOBDksIIUQASE0QQggBUg+EOBlpcgnRCuzZs4euXbvSs2dPNm/ejFarDXRIQgghAkRqghBCCJB6IERTZOJ5IVqBt99+m9DQUA4ePEheXl6gwxFCCBFAUhOEEEKA1AMhmiIjuYQIcmvXrmXEiBEsWbKEp59+GoBly5ahUqkCHJkQQohzTWqCEEIIkHogxMnISC4hgpjNZuPWW29lypQpXHjhhbz11lusX7+eWbNmBTo0IYQQ55jUBCGEECD1QIhfIyO5hAhi99xzD4sWLWLbtm2EhoYC8Prrr/PAAw+wY8cO2rVrF9gAhRBCnDNSE4QQQoDUAyF+jTS5hAhSq1atYtSoUaxcuZJhw4Y1OG/MmDG43W4ZkiyEEP9PSE0QQggBUg+E+C3S5BJCCCGEEEIIIYQQrZ7MySWEEEIIIYQQQgghWj1pcgkhhBBCCCGEEEKIVk+aXEIIIYQQQgghhBCi1ZMmlxBCCCGEEEIIIYRo9aTJJYQQQgghhBBCCCFaPWlyCSGEEEIIIYQQQohWT5pcQgghhBBCCCGEEKLVkyaXEEIIIYQQQgghhGj1pMklhBBCCCGEEEIIIVo9aXIJIYQQQgghhBBCiFZPmlxCCCGEEEIIIYQQotX7PzMfyzpFRscvAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABKYAAAPdCAYAAACwXGBqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3iU15X48e/0Js2ojnoDCSSq6N2AwQbjbidxb4kd983uJllvetuf0+0kjmPHiUtM4hp3GxsDLoAAmyaJIkASkka9a0aa3n5/jDRINAMGRDmf59EjJL2auTOM3jPnvPeeqwiHw2GEEEIIIYQQQgghhDjNlMM9ACGEEEIIIYQQQghxfpLClBBCCCGEEEIIIYQYFlKYEkIIIYQQQgghhBDDQgpTQgghhBBCCCGEEGJYSGFKCCGEEEIIIYQQQgwLKUwJIYQQQgghhBBCiGEhhSkhhBBCCCGEEEIIMSykMCWEEEIIIYQQQgghhoUUpoQQQgghhBBCCCHEsJDClBDDqLa2FoVCwXPPPTfcQzmsw43vpz/9KQqFYvgGJYQQQgghhBDinCGFKSGA5557DoVCMeTDarWycOFC3n///eEe3jFrb2/nW9/6FoWFhRgMBqxWK9OnT+ehhx6ir6/vlN3vww8/zJtvvnnKbl8IIc5V1dXV3H333YwYMQK9Xo/ZbGbOnDn88Y9/pKSkBIVCwQ9/+MMj/n5lZSUKhYL//u//Po2jFkIIcSocLSa43e7ocX6/nz/96U9MmzaN2NhYYmJimDZtGo899hiBQOCQ283NzR2S55hMJqZPn87zzz9/Oh+eEEekCIfD4eEehBDD7bnnnuOOO+7g5z//OXl5eYTDYVpbW3nuuefYtWsX77zzDpdddtlJv99wOIzX60Wj0aBSqb7UbXV1dTFp0iQcDgdf//rXKSwspLOzk/Lyct59913Ky8vJzc09rtusra0lLy+PZ599lttvvx2AQCBAIBBAr9dHj4uJieErX/nKGTvzSwghzkTvvfceX/3qV9HpdNx6662MGzcOn8/H+vXree2117j99ttZt24dPp+P6urqw97Gz372M37605+ydetWJk+efJofgRBCiJPlWGLCU089hdPp5NJLL+XTTz/lsssuY+nSpSiVSj744APefvttLrzwQt555x2MRmP0tnNzc4mPj+fb3/42AM3Nzfz9739n3759PPXUU9x1113D9bCFAEA93AMQ4kxyySWXMHXq1OjX3/jGN0hJSeHFF188JYUphUIxpMDzZTz99NPYbDZKSkqYPXv2kJ85HA60Wu1JuR+1Wo1aLacOIYT4Mmpqarj++uvJycnho48+Ii0tLfqz+++/n6qqKt577z2ys7P50Y9+xKZNm5g5c+Yht/Piiy9SWFh41KJUbm4ut99+Oz/96U9PxUMRQgjxJR1rTAD47//+bz799FMee+wxHnjggehx9957L48//jgPPPAA3/3ud3n88ceH3EdGRgY333xz9Ovbb7+dESNG8Oijj0phSgw7WconxFHExcVhMBgOKcT87ne/Y/bs2SQmJmIwGJgyZQr//ve/D/n9VatWMXfuXOLi4oiJiWH06NF8//vfj/78SD2m9uzZw9e+9jWSk5MxGAyMHj2aH/zgB0cda3V1NSqV6rCJi9lsHlIAW7BgAePGjWPr1q3Mnj0bg8FAXl4eTz755Bc+Jwf3mFIoFDidTv7xj39EpwcPzK4SQghxeL/5zW/o6+vj6aefHpKADMjPz+db3/oWN910EwAvvPDCIcds3bqVvXv3Ro8RQghxdjrWmNDQ0MDTTz/NhRdeOKQoNeD+++9n4cKFPPXUUzQ2Nh71PpOTkyksLDzijFwhTicpTAkxiN1up6Ojg/b2dnbt2sW9995LX1/fkKsLAH/84x+ZNGkSP//5z3n44YdRq9V89atfjV7JANi1axeXXXYZXq+Xn//85/z+97/niiuuoKSk5KhjKC8vZ8aMGXz00Ufcdddd/PGPf+Sqq67inXfeOerv5eTkEAwGWb58+TE91u7ubpYtW8aUKVP4zW9+Q2ZmJvfeey/PPPPMMf3+gOXLl6PT6Zg3bx7Lly9n+fLl3H333cd1G0IIcb555513GDFixCEzXA+Wl5fH7NmzeeWVVwgGg0N+NlCsuvHGG0/ZOIUQQpx6xxoT3n//fYLBILfeeusRj7n11lsJBAJ88MEHR72tQCBAQ0MD8fHxJzRmIU4mWY8jxCCLFy8e8rVOp+OZZ57hoosuGvL9ffv2YTAYol8/8MADTJ48mUceeYRLL70UiMyW8vl8vP/++yQlJR3zGB588EHC4TDbtm0jOzs7+v1f/epXR/29r3/96zz66KPcfvvt/OpXv2LBggVccMEFLFu2DIvFcsjxTU1N/P73v482zL377ruZMWMG3/ve97jlllvQaDTHNN6bb76Ze+65hxEjRhxSwBNCCHEoh8NBY2MjV1555TEdf9NNN3H//fezZs0aLr74YgBCoRAvv/wys2bNYsSIEadyuEIIIU6h44kJu3fvBmDixIlHPGbgZwPHDvD7/XR0dADQ0tLCb37zG1paWrj//vtPdOhCnDQyY0qIQR5//HFWrVrFqlWr+Oc//8nChQu58847ef3114ccN7go1d3djd1uZ968eWzbti36/bi4OADeeustQqHQMd1/e3s7a9eu5etf//qQohQwZPnc4aSkpFBWVsY999xDd3c3Tz75JDfeeCNWq5Vf/OIXHLzPgVqtHjKzSavVcvfdd9PW1sbWrVuPabxCCCGOn8PhACA2NvaYjr/uuuvQaDRDlvN9+umnNDY2HrKMz+v10tHRMeQjFArhcrkO+b4QQojhdzwxobe39wuPHfjZwLEDPvzwQ5KTk0lOTmb8+PEsX76cO+64g9/+9rcnOnQhThopTAkxyPTp01m8eDGLFy/mpptu4r333mPMmDE88MAD+Hy+6HHvvvsuM2fORK/Xk5CQQHJyMk888QR2uz16zHXXXcecOXO48847SUlJ4frrr+eVV145apFq//79AIwbN+6Exp+WlsYTTzxBc3Mze/fu5U9/+hPJycn8+Mc/5umnnx5ybHp6OiaTacj3Ro0aBUR6XwkhhDg1zGYzcGjScCSJiYksWbKEN954A4/HA0SW8anVar72ta8NOfbFF1+MJh4DH/X19fz2t7895PtCCCGG3/HEhCMVnQYb+JnVah3y/RkzZrBq1So++OADfve73xEXF0d3d/dJ2yBJiC9DClNCHIVSqWThwoU0NzdTWVkJwLp167jiiivQ6/X85S9/YcWKFaxatYobb7xxyKwkg8HA2rVrWb16Nbfccgvl5eVcd911XHTRRYf0CTnZFAoFo0aN4sEHH2Tt2rUolUr+9a9/ndL7FEIIcWzMZjPp6ens3LnzmH/n5ptvxuFw8O677+Lz+Xjttde4+OKLDykwLVmyJDrzd+AjJSWFW2655ZDvCyGEGH7HExPGjBkDRHrSHsnAzw5e5p2UlMTixYtZsmQJ3/72t/nnP//Jm2++yR//+McvMXohTg7pMSXEFwgEAgD09fUB8Nprr6HX61m5ciU6nS563LPPPnvI7yqVShYtWsSiRYt45JFHePjhh/nBD37Axx9/fEg/KzgQQI4nWfkiI0aMID4+nubm5iHfb2pqwul0Dpk1tW/fPiCytfjx+KJlhkIIIYa67LLLeOqpp9i4cSOzZs36wuOvuOIKYmNjeeGFF9BoNHR3dx92N760tLRDdnTS6/WMGDHisHFHCCHE8DvWmHDJJZegUqlYvnz5ERugP//882i12i/sWXXppZcyf/58Hn74Ye6+++5DVlIIcTrJjCkhjsLv9/Phhx+i1WopKioCQKVSoVAohsx6qq2t5c033xzyu11dXYfcXnFxMRDpAXI4ycnJXHDBBTzzzDPYbLYhPzu4R9TBPvvsM5xO5yHf//zzz+ns7GT06NFDvh8IBPjrX/8a/drn8/HXv/6V5ORkpkyZctT7OpjJZKKnp+e4fkcIIc5n//M//4PJZOLOO++ktbX1kJ9XV1cPuYptMBi4+uqrWbFiBU888QQmk+mYm6cLIYQ4sx1rTMjMzOQb3/gGq1ev5oknnjjkuCeffJKPPvqIu+++m8TExC+834ceeojOzk7+9re/nZTHIcSJkhlTQgzy/vvvs2fPHgDa2tp44YUXqKys5H//93+j678vvfRSHnnkEZYuXcqNN95IW1sbjz/+OPn5+UOm1f785z9n7dq1XHrppeTk5NDW1sZf/vIXMjMzmTt37hHH8Kc//Ym5c+cyefJkvvnNb5KXl0dtbS3vvfcepaWlR/y95cuX869//Yurr76aKVOmoNVqqaio4JlnnkGv1/P9739/yPHp6en8+te/pra2llGjRvHyyy9TWlrKU089dcw78g2YMmUKq1ev5pFHHiE9PZ28vDxmzJhxXLchhBDnk5EjR/LCCy9w3XXXUVRUxK233sq4cePw+Xxs2LCBV199ldtvv33I79x88808//zzrFy5kptuukmubgshxDnieGLCI488wp49e7jvvvv44IMPWLp0KQArV67krbfe4sILLzzmhuaXXHIJ48aN45FHHuH+++8/7hxAiJMmLIQIP/vss2FgyIderw8XFxeHn3jiiXAoFBpy/NNPPx0uKCgI63S6cGFhYfjZZ58N/+QnPwkP/pNas2ZN+Morrwynp6eHtVptOD09PXzDDTeE9+3bFz2mpqYmDISfffbZIbe/c+fO8NVXXx2Oi4sL6/X68OjRo8M/+tGPjvoYysvLw9/97nfDkydPDickJITVanU4LS0t/NWvfjW8bdu2IcfOnz8/PHbs2PCWLVvCs2bNCuv1+nBOTk74z3/+85DjDje+gx9nOBwO79mzJ3zBBReEDQZDGAjfdtttRx2rEEKIiH379oXvuuuucG5ublir1YZjY2PDc+bMCT/22GNhj8cz5NhAIBBOS0sLA+EVK1Yc833k5OSEf/KTn5zkkQshhDjZjjUm+Hy+8B/+8IfwlClTwkajMZq/3HbbbeFgMHjI7ebk5IQvvfTSw97nc889d9h8RIjTSREOf8H6ICHEOWfBggV0dHSc1F5WQgghhBBCiNPP4XAwf/58qqurWbt2bbR9iBBnC+kxJYQQQgghhBBCnKXMZjPvv/8+SUlJLFu2jLq6uuEekhDHRXpMCSGEEEIIIYQQZ7HU1FT2798/3MMQ4oTIjCkhhBBCCCGEEEIIMSykx5QQQgghhBBCCCGEGBYyY0oIIYQQQgghhBBCDAvpMXWQUChEU1MTsbGxKBSK4R6OEEKc8cLhML29vaSnp6NUnjvXOyQeCCHE8TsXY4LEAyGEOH7HEw+kMHWQpqYmsrKyhnsYQghx1qmvryczM3O4h3HSSDwQQogTdy7FBIkHQghx4o4lHkhh6iCxsbFA5Mkzm83DPBohhDjzORwOsrKyoufPc4XEAyGEOH7nYkyQeCCEEMfveOKBFKYOMjA912w2S+ARQojjcK4tb5B4IIQQJ+5cigkSD4QQ4sQdSzw4NxZ+CyGEEEIIIYQQQoizjhSmhBBCCCGEEEIIIcSwkMKUEEIIIYQQQgghhBgWUpgSQgghhBBCCCGEEMNCClNCCCGEEEIIIYQQYlhIYUoIIYQQQgghhBBCDAspTAkhhBBCCCGEEEKIYSGFKSGEEEIIIYQQQggxLKQwJYQQQgghhBBCCCGGhRSmhBBCCCGEEEIIIcSwkMKUEEIIIYQQQgghhBgWUpgSQogzSF2dnRUr9lNXZx/uoQghhBhGEg+EEEIMONdjgnq4ByCEEOKAXbs62bixCYCcHMswj0YIIcRwkXgghBBiwLkeE6QwJYQQZ5CxYxOHfBZCCHF+kngghBBiwLkeE6QwJYQQZ5CcHMs5eRVECCHE8ZF4IIQQYsC5HhOkx5QQQgghhBBCCCGEGBZSmBJCCCGEEEIIIYQQw0IKU0IIIYQQQgghhBBiWEhhSgghhBBCCCGEEEIMCylMCSGEEEIIIYQQQohhIYUpIYQQQgghhBBCCDEspDAlhBBCCCGEEEIIIYaFFKaEEEIIIYQQQgghxLCQwpQQQgghhBBCCCGEGBZSmBJCCCGEEEIIIYQQw0IKU0IIIYQQQgghhBBiWEhhSgghhBBCCCGEEEIMCylMCSGEEEIIIYQQQohhIYUpIYQQQgghhBBCCDEspDAlhBBCCCGEEEIIIYaFFKaEEEIIIYQQQgghxLCQwpQQQgghhBBCCCGEGBZSmBJCCCGEEEIIIYQQw0IKU0IIIYQQQgghhBBiWEhhSgghhBBCCCGEEEIMCylMCSGEEEIIIYQQQohhIYUpIYQQQgghhBBCCDEspDAlhBBCCCGEEEIIIYaFFKaEEEIIIYQQQgghxLCQwpQQQgghhBBCCCGEGBZSmBJCCCGEEEIIIYQQw0IKU0IIcYYoKWngZz8roaSkYbiHIoQQYhhJPBBCCDHgfIgJ6uEegBBCiIjVq+tYvdoGwJw5mcM8GiGEEMNF4oEQQogB50NMkMKUEEKcIRYvzhnyWQghxPlJ4oEQQogB50NMkMKUEEKcIebMyTxnr4IIIYQ4dhIPhBBCDDgfYoL0mBJCCCGEEEIIIYQQw0IKU0IIIYQQQgghhBBiWEhhSgghzkN1dXZWrNhPXZ19uIcihBBimElMEEIIAcMXD6THlBBCnId27epk48YmAHJyLMM8GiGEEMNJYoIQQggYvngghSkhhDgPjR2bOOSzEEKI85fEBCGEEDB88UAKU0IIcR7KybHIVXEhhBCAxAQhhBARwxUPpMeUEEIIIYQQQgghhBgWUpgSQgghhBBCCCGEEMPinCpM/fSnP0WhUAz5KCwsHO5hCSGEGAYSE4QQQoDEAyGEONOdcz2mxo4dy+rVq6Nfq9Xn3EMUQghxjCQmCCGEAIkHQghxJjvnzshqtZrU1NThHoYQQogzgMQEIYQQIPFACCHOZOfUUj6AyspK0tPTGTFiBDfddBM2m+2ox3u9XhwOx5APIYQQ54bjiQkSD4QQ4twl8UAIIc5c51RhasaMGTz33HN88MEHPPHEE9TU1DBv3jx6e3uP+Du//OUvsVgs0Y+srKzTOGIhhBCnyvHGBIkHQghxbpJ4IIQQZzZFOBwOD/cgTpWenh5ycnJ45JFH+MY3vnHYY7xeL16vN/q1w+EgKysLu92O2Ww+XUMVQoizlsPhwGKxnPHnzS+KCRIPhBDiyzsbYoLEAyGEOPWOJx6ccz2mBouLi2PUqFFUVVUd8RidTodOpzuNoxJCCDEcvigmSDwQQojzw+mMB76gj6d3Ps2VI68kPSb9pNymEEKca86ppXwH6+vro7q6mrS0tOEeihBnnJKSBn72sxJKShqGeyhCnBYSE4Q4PIkH4nxzOuOBL+jjlb2v8F+f/BfBUPCU358QX5bEBDEczqnC1He+8x0+/fRTamtr2bBhA1dffTUqlYobbrhhuIcmxBln9eo6Vq+2sXp13XAPRYhTQmKCEMdG4oE41w1nPIjRxnDH2DvY3bmb53c/f8rvT4gvS2KCGA7n1FK+hoYGbrjhBjo7O0lOTmbu3Lls2rSJ5OTk4R6aEACEw2Ec7gAOjx+3P4jHH8TtC+L2BwmHQaEAlVKBSqFAqVRg0qqJ1Q98aNCqT14tefHinCGfT0RJSQOrV9exeHEOc+ZkHvaYujo7u3Z1MnZsIjk5lhO+r7PZsTxP4uSTmCDOeAEvuDrB5wK/CwKe/s9eUCgjH0pV5LNKB3oz6MyRz9qYSNA4CU5XPACJCRIPhsdwx4N5mfN4s+pNnix7kotzLiYjNuO03K8QJ0JyhNNHYsIB51Rh6qWXXhruIYjzWCgUpsXhoaHbTX2Xi4ZuN3WdThp73HQ6fXQ7ffS4/QRDJ77fgF6tJClWR0qsjlSLgfQ4PbmJJkZaY8i3xpBo0qI4xkRlzpzML30CHLiiMnB7h7NrVycbNzYBnLdB51ieJ3HySUwQw8rbB9210GODnjroroPuGuhrBWcHuLvA5zzx21cowRAPMalgTgNzBsTlQFIBJI2ChBGg1h7TTZ2ueAASEyQeDI8zIR5cmH0hz+16jp9t+hl/XfzXY36/JsTpJjnC6SMx4YBzqjAlxOnS1uthT3Mv+1p7qWh2sKell+r2Pjz+UPSYWL2aeKMWs15NvFFDmkWPSavCqFWh06jRqkCtUqFTKdCoVaiUEApHZlWFQxAMhfEEI7OpvP4QvkAIty9IrzdAnzfAzkY7JdUdONx+BmpdsTo1OUlGxqZbmJIdT3F2HCOTY1ApT82bn2O5ojJ2bOKQz+ejk3HlSQhxhgr4oH0PtFVA225o2RH5d2/TgWNUGjAkRgpJuhiIzwPrWNAaQWsClTZyjFoHSm3ka0IQDkc+CEHQH5lN5fdEZlYFPJHil9cB9npo3QXuHgi4I/epUIElA5ILIXNa5CN9EhjiTsnTcKznufM9Jkg8OH/FamK5fMTl/Lvy37xZ9SZXF1w93EMS4pSRHOHYSEw4QBEOh098+sY56Mtscbu3pZeRySbUqnOqddd5z+ULsKPBTllDD1vruimt76HVEdlCWKtSYjXrSI7RkRijJcGkJc6oIcmkI1avQaNSoFUr0aiUqJQKlCfp6lggGMIfDOMLhnB5A7Q4PLQ4PHT0+ejs89Lq8NLR5yUMGDQqxqTHMntkEheMSmZiZtxJXRIoxNmwNfiJ+FKPK+CDrv1gLTw1gxPDIxyOzHpq2AoNm6Hhc2jdGSkaARgTISYFTMlgSgJjAhiTIt9X6/sLUFpQqUF5kq4NhvuLVkHfgaWB9kboa4nMzOprBUdjpJAFEJcNWTMhfxHkzY/MthLiJDoXY8KXfUw19hrW1q8l25zNI1sfocvTxWtXvEaqKfUUjFYIIc4Mx3PulBlTJ4nd7ecrT25g5ohEnrxpMiopTp21ej1+Ntd2saG6kw1Vnext6SUYDqNVK8mIMzAiOYbZI5NIM+uwmvUYtWoMGhU6jfKkFZ6+iFqlRK0CAyosBg1pcYboz4KhMG5/kG6nj/0dThq6XTT2uPnbuv089lEVOrWSiVlxXFho5ZJxqeQkmk7LmA/ntdf28vrrlVxzTQHXXjt62MYhxEn36a/hsyfhpn9DzqzhHo04UeFwZPZT7Tqo+RTqNoC7O/IzUzJYsiD/YrCkR5bSGeJBbQBNfxHqdFAoIzOt1DrQxUYKYsmjD4w/6I0sGey2QVc12Bsij2fHK5Fj4nIgbx4UXQl5F0TGPkwkJohznUKh4I6xd/Dw5w/zw/U/5G8X/02W9AlxGBIPzj9SmDpJLAYN/3FhAQ+vqODBl7bz+I2TJdCcJbyBIJ/XdFFS1UlJVQe7mxwEw2EsBg15SUYuHmslPc5ARpwRs16NQatCp1YN97CPSKVUEKNTE6NTk5VgBCAQCtHrCVDd1sfetl5snS5+t3Ivv3p/DzmJRhYVpnDZxDSKM+NQnqJlf4fz+uuVrF0b2Yr2fA06A40fLRYtdrvvvG4AeU6Z8y3Y8Sq88FW47V1ILx7uEYlj1V0LVWtg/6eRAo67KzK7KS4nshQuNgPisyHGChoTaIygPEMvRikUkZlaan1k1lbGpEixKuAGR3Nk2WHXftizArb/EzQGyO0vUhUui8z4Oo3O95gg8eD8kGBI4Or8q3lp70ss372cW8feOtxDEuKMc77HAzj/YoIUpk6ii8aksM3WxYodLTz0Wjm/vnaCFKfOUE09bj7Z286aPa1sqOrE7Q9i1qvJTTJx8dgUchKNZMQZiNVpMGpVp7VYcyqolUrijVqm5iYwNTeBQDBEh9NLWX0Pe1p6eWmzjWdKakgx67hsfDrXTc9iVErsKR/XNdcUDPl8Phpo/KhWKwgEIiurz+Wgc97Qm2H2f8Anv4TlV8Md78uyvjNVwAe2jbBvJez7IDKrSKGC+BxImxhZ+paQD6aEyE54at1wj/jLUSgixbTEkZGPcBh8fdBRCU1bIzPEKj+Ed9WQOxeKb4LCyyL9sE6x8z0mSDw4f8zJmEN5RzmPbX+MuRlzGRE3YriHJMQZ5XyPB3D+xQTpMXWQL7OGvLbDyardLZTV23l3RzM3TM/i4avHS3HqDBAKhdlm62bNnjbWVLSyr7UPpQJyEk3kJRkZkWgiK8GI2aDBpFWf9YWo4xEOh9lS3sraHW34zCoanV48/hAjkkxcOyWTG6Znk2A6eUtSZGvYoU7F1ZDT/Ryfi/1E4CQ8rrKXI719NjwGShXc9g5Yi07+QMXx62uHfe/D3g9g/8eRpuL6uMgSuISRkJgfmRGliz37C1HHqWJXM7bynUxNriHRty+y9E9jgIKLYepdkDc3Utw6CSQeDHWqro5LTPjyTlaPqRzLgQbHvb5e/t9n/4+s2Cz+dcm/0B7jLppCnE4lJQ2sXl3H4sU5p3zXOIkJQ51vOYLMmDoFrpqUQTAc5sXP63H5gjz6teLzqtBxpgiFwmy1dfNeWTPv7WymvddLjE5NgTWGq4rTybfGYI3VE6tXozmPe4IpFAqqKrpp39nDhIlJ3HPFWLbU9VDW0MMjq/bx6Kp9XFho5Y45ecwckfClC62yNexQOTmWk/48yHN8BjEmwoU/go//D569BG5+I7KcSpx+fe1Q8Tbsej3SKwogPhdy5h6YPaSPi+ySdx5fUCot76G0TEfXxHnc8LXboWMf1G6A2vWw+63IksYpd8CU2770Uj85Vw11KuIByPN8porVxnJz4c38dcdf+c2W3/DDmT8c7iEJcYjVq+tYvdoGcMoLU3KuGup8yxGkMHWKXDs5E71axZuljbh9QR6/cRKaM7gv0blioBj1blkzK3Y0097nxWLQUJQay5IxKYxMjiHOqMGkU5+2RuVng+KJydHP8SYdF41JYVGhlSa7m3WVHWyp6+bD3a1kJxi5dVYON87Ixqg9sdPHmbI17MFNFU/nFaHjdbxXN86U51j0M6fBop9GilPPXw43vgI5s4d7VOeHgWLUztciy/UAEgsiPZSshRCbFilGyUyFqInFyQc+q7SQMi7y4XNB/WdQVwIf/Rw+eRhGL4O5/w3pE0/ovs6Uc9XZFA9AYsK5ZFzyOBZkLuCVva8wLXUaS3KXDPeQhBhi8eKcIZ9PpTPlXHU2xYRzKR5IYeoUunRCGjqNkle21HPdU5t45vZpxBnlze/JdqRiVGFqLEvHpVBgjSXOqDnhQsr5oKgoiaKipCHfUyoVZMYbuWF6NnOy4li7qx2bx8vDKyr4w+pKrpuayd0LRmKNPb4dnE7VFeHjdXBTxdN5Reh4He/VjTPlORaDxCQPKk5dBVc8BhOvG+5RnZsOW4zKh8LLIXU8mNNBb4ksrxSHGFOUxJiD4gEQ6TE1ciGMmE/n/r0E964msepjVLvfhKwZMPe/YNTS45ptdqacq86meAASE841VxdcTY2jhp9u+ClFCUVkm7OHe0hCRM2Zk3nU8+DJXBp2ppyrzqaYcC7FA8nUT7HFRSlY9Gqe21jH5Y+t5/lvTCcvKWa4h3XWG+gZ9U5ZM+/vbKatN1KMGp0ay5JxKYxOiSXeqEWvOT8Tj7Z2JzZbL9nZsViTTV/+9ppc0OrlotHxxE/PZs2eVpZ/ZuMfG+tYOi6V/1xUQP5paJZ+Mh3cVPF0XhE6Xgdf3ZA1+GcpYzxc9DNY9wi8cTd0VsHC75/Xy8ZOmi8qRlkyIw3pFefnsu22tkExwfolY4JCSU13PHu6FjGmYBmTY3dBzafw4vWQMCLS9H/SzaDSnJzBnwZnUzyAoTFB4sHZT6lQcue4O/nV5l/xX5/8Fy8sewHdedbbTpw+J/uccSYvDTtRZ1NMOJdyBGl+fpCT0fz8cIWn6vY+nvikmmA4zB+vn8SFhdaTNeTzxkAx6t2yZlYcVIwaZY1hdGosCUYtunO8GHUsRactW1vYs6eLwsIEpk5JPSX32ebwsHpPK5tru+nzBlhclMJDS0afdQWqL2s4AsCKFfvZuLGJWbPSWbZs+HfyORcb3cJJan4e8ESaaA8WCsDnf4sk82OuhKuePC07np1zosWo18HW3zMqMR+Si86rYtSxFJ22bBkUE6aehJhw8H0G/FC/CapWQ8deiE2HC74Nk287qwpUJ8PpjglnWjyAczMmnIrm5wfb3bGbJ8uf5JK8S/j1Bb/+MsMV56ljOf+c7HPG2VwIOdUkR5Dm52ekkckxfO+SQv7ySTXf+Mdm7po3goeWFqKSpuhHFS1GlUeW6Q0UowpTY7l4TMp5U4wazGbrZc+eriFfH1ykys6OjX6uqOigtKyd4onJJCYZTmgmlTXZdMjxVrOeG6fncNn4dFZVtLC+qpOL/rD2vCtQna4rRYOD25HWh8ubg7OEUg0z740sKdvxKjw5B677F6SMGe6Rnfn62mHPO5GZUQMNzBMLzuuZUUeMCdbDx4TdFR2UlbaTk2NGq1Wd0Cwqq9U09HfUGsibBzlzoKUMKt6B974Na39/3hWoTkdMkHhwbhqTNIZlI5bx3v73GBU/im+M/8ZwD0mcZQaffwa+PvgcMPicMbh3UmZm7AmdM87kpWHDTXKE4yOFqZOsptbOptX1FE9MPqRnT2KMjv9dWsiLm238be1+Ntd08ecbJ5MRbxim0Z6ZBopR75U3896gYlRRfzFqVEosCabzd5ne4ARjcEIyuHA0uJC0Zo2NstJ2AAoK4g97/GBHm5E1uMgFRP997eQsLh6Tyoe7Wllf3cFFf1jLxWNS+OGlY8hKGDoT5Gw4MR6P09VEcHBwW7ZsxGGfu2MNgOfa/8GZal9lF3t2NpNfrDx8z54xV0Zm+Gx6Av62AC7+fzDtTlnad7CjFaNSxkFcJugsoDx/ilGDHTEmDCocDS4krVljo7SsncamPlJTTIcce7CjzcgaKHLFxeno6fEysTiZMUWTIG0iNO+AircOFKgu/AFMvHHI/9O5eC46HTFB4sHZqaa2hw27XRQXH5ojDFiSs4SmviYe2/4YIywjWJi98DSPUpzNBp9/jnQOGFxIeu65ndHeSdOmpX3hOeNo54vBRS7ghJqFn2vnI8kRjo8Upk6yyn3d1JRH3hQeLuho1EpunZXLqJRYXtpcz+JHP+WhpYXcNisHxXmcjARDYbbWdbNix4GZUXEGDYVpkWJUvjWGBJNWGphz+NlLA4nJ4YpKxROTaW93UVnZRWVlF3FxekzGIz+PJesb+XxzC9OnpXL11aOG/Ky0rD1a5AKi/y4qSiJWr+HaKZlcPDaFD3e3sHZfBwt//wk3TMvmujFp2Krshw2UZ3sQOl1Xio4luB1tnfmWLS3RHUYMBs051w/gTLRjZweVuztxEnf4whRAylhY8jBs+gus+A7sfhOu+muk2HI+62uLzLrZ9UZkFziApFH9u+mNAUt6ZDc9aWB+6OwlIjHhSAWlicXJVFZ2UbO/B6USUtOMtLU5D1uc2l3RwYoVNaiUCubNyzzkmLLSdkrL2lEqIRSKfG9MUVJkxlr6REgbD83lkf/Ht+6HDY/RUvwDttnHHTFxkpjwxU4kHsDhY0Jurhllf7HwbHy+zyb79nWzvyzyXB+pMKVQKLi16FYecT3C99Z/j+WXLKcgvuB0DlOcxQ53/jla76HFi3Ow2Rxs3tzM5s3NpKSYsFiOvFHXq6/u5Z13qrn88pF85zvTh/xscIPwyNfH1ix88LgkRzgx50qOIFn+SdTY1ItWqyK/IC46o+RIZo5IZFRKDMs32fjp27t4p6yRX187gXzr+bH8CSAQDPF5bRcrdjTzwc4WOvp8xBkPzIwaaY0hwajFpJOXKRy+6HRwkergGVSOni6cXTvpbtzGjtIqfO5u9Dov+zYq0aoDXH3LXcy76FIA9u0q41cP3U+P3YvPr8a21cy21SmYYmIxxyUwc8FFFE+MLDWaMD6RcDiShRz8Wo/Va7h2chYXjk7hrfJGXtps49XN9RSGNdwRClE8PnL8wInxXGyaeCocS3A7+JjBz+3gHUYefngecGZuFXuuqKuzo9epyc01M6H46PEAvRnmPwSVq2Dnq/D4tEhT9Jn3nV+FF0fTgWKUbVNk5ljS6P5iVCGYM8AQF1kKKQ5beBpcpBroKzXwfYAtO/ZR29jGup2fU9/cwUe7fcR8okShDpKWYuGtv/w4evu3PvQ7Vq/fgc8bJsZk4J3tCSTGxxJnNpGWnMCP77uRif2vbVOMCmdfMPp1lEIJ6cWQOiHSlH7X66SuuoXC8Hhsrh8wdtpsYOi5SGLCFzuReACHjwlOZwrf/OZEiQenWFNTH1qdivx8C8VfEBPUKjV3T7ib3279LfesvocXlr1AiinlNI1UnI0OV8A52nvCnBwL7e3t9PXtoqNjLevW7cLn6yY2NkB5uR69PsD3vvc9li1bBkBJSQnf+MY3aGtz43Yr2L8/nnXrsomNjSU5OZmrrrqKxYtHArBwYSYDLayPpVn44HEdXDyReHBszpUcQd7dnUSVlT10drrIsBhJTPri5XkJJh0PXphPSVUHb5Y2suTRdXxtWib/u7QIi/Hc7MXgD4bYWN0ZKUbtaqHH5SfBpKUoNZZLxsWQl2QkwaTDpFWd1zPIDudIy/aCgQC2/ZVs2fQ52z8rZdTE+WRnXwRARfk2fnjvzUNuxw10N0b+PevCJdGCl7unh/qaquhxbb3Q1nDg9+KTkrnhrgsoKkqirnof91yziLTsXPZuyCczdyQjRo8lKb0ATyCB3FwL1mQTt8/K46LCVF76rI6ytj5+sb2Gn2UbWXZJXvT/93RNcz0fDX5uB+8wIv0ATr1duzppbesjyaIhKfEYlmsrFDDqYsiYBJufgQ9/CFufhaW/gYLFp37Aw6WnPtLAfNcb0LA5UnRKLoRx10DiaLCkgT4eVPJ25WBHWrbX0W1ny85KPviknNq6bh6eclv0Z9/8yWNs31099IaaI5/iGyIbtwwUvKrrWmjujMyK7eyDutb66K+YjHp+9uDNjClKYkxREtc8+H+s37qLwhGZjM7LZMzIbEakZxJnSKJotDUyvtw5kDWd3u3vkLl/JXk7b0Ch/Bo5S38FxsP3PxEn15FiwpnQIPdcV7mvi652N2mmJBKPISZY9Bbum3gff9z2R+768C7+ueyfmHXnRiN5cfIdqYATCATYvXs3H3zwKWvWfM6MGcsYO3Y8AGvXruUrX/nKkNvxeKC9f2FEXV1dtODV1dXO3r17o8c1NNTR0FAa/To3N5dvfWs+c+ZksnXrVmbNmkVBQQFlZaN5771CJk6cSFraaHp7Yxk3LumIPa8Ofn8q8eDUORNzBNmV7yBfZteNl9/dyC1fXUJ63gzmXbyM6265Cr3hQH+do/Xu6XX7eau8kQ1VXWjVSu6Ynctd80dg1p/9Bapup49P9rWxZncbn+xrp88bIClGS2FqLCOTY8hLNBFn1GLSnd/FqC/abW/g58lJCmz7trBz62fs3VlK9Z4deNzu6HEXf+V+vvuzHwGw7fPtPPKjB0lJSyMtM4MkaxrmuHiMMTF0dYdxeKykpOfgdAXIzdZgMXYSCoXYsaORmqpWEhMUJCcpsXd1MnP+RYybMgOAkjXv89P/uOOwj0OjM3HZjf/Nfd+5P/q9cDjMnpZeXt/WSE2nk+l5CTx89bgTniE4+MoQHL654/nudE5/Phd3YIIv97jq6uzcdNk8Wjo6uGT+HB68/WJG5R2Yzn7UndTCYWjYEmmMbrdB9mxY9CPImX0yHtbwCoWgaRvs+wD2roDWXZFilLUoMjsquRBiUyLL9M6TZtlH8kW77Q38vNfXybY9e/msfA+bd1RS29gaPUar0bDu6SeYPj2dtjYn3/zxYzR1tJKTkUxGSiKpSfFYYk2YY4w4eoLEqTPQ6VW4nAFURieZ2Qa8Pj/by5qo2t+BJV5NbJyCQCDEz/7jwEWPsZfdw+4q2yFjVKAgPzuDPR88GV0uBoDXCbteh+o1kf/n+f8b2RDgBGcISkw4utO9HOZcjAlf9jH9483X+OZNt5CRP54Fl17A9XdchFZ/YMnUkf7eK7sreaLsCQoTCnl26bPoVLqT8njE2eWL/oYHfp6VpWbPns9Yv349mzdvprS0FPegHOHOO3/A3/72fwC8++6nPPjg3eTkZDFyZDbp6ekkJSURGxtLU5Of9vZ4srJysdt9jBtnIj29j1AoxMcfV1FeXk9GhoacHB3t7e1ce+21TJ8eWdr3wgsvcNNNNx32cej1Mdx//8/43e/++xQ8S0OfC4kHh3cmxwO5BHkS7Sxdi9/TS13FauoqVvPqX3/A1LkLmXPhUmbMvwibzXvExtOxBg03z8hlwSgrb5c18cSn1TxdUsNNM7K5a94IrGb9cDykExIOh6ls62NNRRurK1rZbusmFIaseANTc+LJSzKRm2gkzqjFKDOjog3F9ToVTlcAGPr68LhduJ1OrMmRqd8b137On388dKcWg9FEbsE4ElLzmTpnVvT7IVUaS299KrJF+JShW4S/+FIFtZXtqPUeiout+HxBdlYGKJ6YzMWXTzxskWygODZy3Fz+tWoLtpoqNqzdzt5du3E7ammx7cXvdZKTlxb9nbLNG/j7I//HxGmzuXj6HLqzCli5t4Olf1jHzTNz+J+lo4f0DhvcPPFI69IP3nXkSNN8v+i2zva160cj05+HV3q6kfL9VfS63Pz55X/z55f/zZj8bK5ePIurFs0i7Ill795u4DCNpxUKyJoGacVQuRKqPoRnL4HMaXDBQ5C/6Oxq9O1xwP5PIsWofR+AqxO0MZEi1PivQfJoiEmRZXr9BhqKDxSI4MBrJBwOU9vYSl5mavR7Vz3wCBvLdw65jVG5GYzNzyUtIZW09MgFMputl6/MvSISD6YOjQcAL75YQWlZOwX5cSQkGujq1JFYlMqYqUlMyB912KR5IJl+98//R7ezhxVrdrK1fD/d7k4qbTaa2jsx6DVDilLXPPh/6DQaFkwfz9Li/yanZQV8+APY/jxc9odDCrAnKyZIPJB4MJx2bNuIz+Wmpvxzaso/58U//pkZC2Ywd+lcZl44E5ut77AzIAviC7htzG08s+sZHljzAH9Z9Bc053nR/nwycN4ymTTY7T5g6N9wX18fLpeLnBwrAK++upLvfve6IbdhNpsZO3YiKSkFXHzxnOj3lcosbr7578yalc7SS3Lp9fXS5emi29PNpuc3UOrcgs1fSvZ4Pav8TlrLekhMU6OY4ic0ykmnSUWvTkk4HOaxzsfwvOHH4wpjMRm55V+34GxwUr+rndaqTjytPXTa2vB4+lBnO9jcshmLzkLZujIe/dWjLFiwgEWLFjFv3jy02iP3uJIc4cs7k+OBvAM8iW678x7c5iy2fPg+W9avwmlvpWT1CkpWr0CpUvGDR/9FYWFhtFH1gA0bG9m4oYlZs9OZPSuDe+ePpK7LxdvbGnlmfS1Pr6/hglHJ3DE7l7kFyaiUZ14hp7HHTUlVBxuqOiip7qS914tOrSTfGsOycankJZtINRuwGDTn7W56RzLQUDy/II7iYivZ2bF0tLXw2Ser2PjJSrZvWs+Fl13Dt3/+CDZbL3ZXEtn5E5g4dTJFE6cwauxEsvLyh7zxH3hNjRmbSGFhwpDX3EBxKSfHjNPpJzFBT3Z27JDd+264vuiws7YGLx2ZOiUTa3om2aOmRROWhDgttVV7ScvMjv7O9k3r2FO+jT3l23j56T+j1RkYO3UuyQXTeW51F++UN/Hjy8ZwZXEGMLR54pGCzuGm9h5umu8X3daZfHL+smT68/DSaDTsefP3/O2lj3jtk3Iq6qrZXWVjd5WN//fky1w0ewoP33f/IfFgd0UHG0qaSEjUM3dOBtaiyyKFqOqPCOxdjfqFrxAwpqGecQdMuQNirMP0CI/C74GGz6FmLVR/DE3bIRwEc3qk11DCiMiHMRF05rOryHYaDDQUL8iPxIS0dAMfbyrjnY8/4+2PP6Pa1kzjp8tJT0nEZutlVHoBKpWKyy6czLTxBUwek0+cOSZ6e21tTl5/o5KGegeZWbFD48GgWRo5OWYam/oYMyaRujoHlVU9mEwaxhQlHbbBOhyICZFiVz6ZyWnYZh8oYLV2dNPeZY8e3+d0887HnxEIBHlpxacAjMzM4PJpY/hKeiMzW5eiGnc1XPoImCLnrpMVEyQeSDwYTnd/627UuWo2vVXGlk834bT38OmKT/l0xaeoNWp+/vRvKSxMPTRH2NDIxo0+pk5bwmfNH/DgRw/y2IWP0dTgOieTZjHUwHlr6tQULrool7FjE6mvr+fdd9/l7bff5uOPP+auu+7iscce619yl8yoURO4+OILmDlzJlOnTqWgoIAgQRp6G9havZe7/vwbml3NxKS76C3sYK29i+8v7yYYDh64YyuQrKA2rKXVr8PvUeANQ0eXnjSrGU2MioBCQcAfmRmrUCjoc3rpc/rwhl0YY1QEC4JYcgxofVbCqgQyfanY6+y8rXuF91a+BkDLSy10bOxg48aN/PKXv0Rt0FAwbRQLLrmAyy69jEl5k0gxpaBUKIc8HyA5wok6k+OBFKZOIrVazejiGXR3pNOruBxPbw2tdZ/h6txCwNvO9NnTqal1sWaNDWfrx/i9PaTkTmP3PgPV+3uxO7zU1TkonhjZRnZWfCy6Fh++BDW7mxzc9uxm4o0aFhelcEVxOjNHJKJRnf439MFQmMq2Xrbbethu62ZjdSf13W4UQEa8gdEpMSwcncyIJBMJJh1mvRr1MIzzTHXwkr2B5uE5GQHKN7zIn3/yDo01u4f8Tm3lHuDA7ntL//5GtHDU1u5k2/a26O1VVHTw4gsV9PR4Afj2tw/0jmhrd7JmjY2WFiepqSbycs00t7iw2Xqj4zi4mfnAjK7iiclDtiU/3GMByC8aR1u7k4p9LWRnx3LZ124lIzuP0s9L2PjxGnrtHWwvWQUlqwBI+e+/862XfLy6pYHffGVCtFHi0RomDt494tprRx8xYHzRbQ0+OR/tysjJuGpyIrfxZe5X+kgNv3RrApOyinBNyOfBr5j4bOdO1ny+hcZuG1PGFDB1aiq7Kzp46909vPv5ByydN4W2Wj1NNh86vYr9++0sW5YX2eWs8FLK7ONxVW5kPHuI+/Q38MmvIGMKjLsWxlwZKfwMB1dXZOlh4xao2wD1n0PQC7pYSMyHwssihai4LNBbQGOMzAoTwKFLeCYWJxMIBnHSyq+ff4+V67fS63JFj9dq1JTu2U96SiLZ2bE8cPPlQ2YytbU52dJ//rVaTawvaeTdd6tRKhQkJxuHHDc4HiRbDaSmmNBqVdEm5oc0M+fAjK6JxUNjwuGWIqUkxaMIadmyJTKe+Hgdq595mE8+L2f1xlI2bNtNdUMjf2ho5A/A9bNzeVH7QaSgefEvYPKtX3gef+21vdF4MLjp78EkHkg8GE5qtZqi6UV0d+TgNs3E3d1Ec/VOnK37IOhi6uyxVFXbWbPGRnftZhRhH6kjithVBdXVDrLsZvImXcAG1vIfH/0Hl3j/i82ftQHnVtJ8vjv473zgfDV2rJJPP32e//iPf1NdvWvI7+zatav/mES8YTfzr/8LLkMbNfYafl35CPs/r6En3BYtPIVNClDqiPWYyU21kq7Nx6Q2EfZqqK1y0dsFVnM8KfEWOtsD5I9MICZBy66dXUwoSGb0qCQUCgVKlOzd20l5eQcTJiaTOFqPrb6XrMwYEpMNtLc7sdU7yMg1kZCoJxgO4p/pp6G9k7rmDkwJIfq+0cme8Xuo2VZD/eYGfA4vFWt3UbF2F098/wkKfllAbHosaTFpZMdmYyxOpdAYx/ipeQRDQVSHWf4tOcLRncnxQApTp0BOjpmmxj6yps6gdPsIunuuISs9TE2tixUraqitc9C47Xl6u2sB0BnMJKRNwqGZxBbHWCCyjWxOjhmFQkF2diyxFh3ljXbKGuysqmjl1a0N6DVKirPimJufxLTcBArTzFgMJ3d6r9MboLKtj30tvexr7WVHo50djXZcviAKBaSZ9WQmGJiWl0BugpHEGB2xejUGjSzRO5KDm5gXFSVRWJjIHZfOobFuPxDZLjinYAKJGVO56LJLuXBJZHleZ4ebDRsa2bABLlqcQ2KSgTVrbDgc3ujtlZa1EwiGMcVoUCoV/P3pcubMTqeoKAmbrReHw0coGMbh8GJNNkZnVA2M5WCrVtdRVtpGe7uL668vPOJjGfg6Ozv2oJlVaVx05de46Mqv0dLay1uvfsqe0rU42rfR293KT29byqf7OnmrrImJX/1PZubE88RPHyQYjGHFiv2HPeEO3j3i2mtHH/G5njMn86jb1A4+Oa9Ysf+IV0ZOxlWTE7mNc/VqzfmkqCiBNqeXhHg98ydNRedLR6tTkJ+UyO6KDt54vZKPt2xlTUUJb39SggIFGUnpjLDm0d6bQ1qqMVKYArLyErGp5uPLWga6HqgrgbbdsPL78MH/Qnwe5M6FEQsjO6HF553c2UihEPTUQfseaKuI9Idq2AI9tZGf62IhLicywys+F+KyI4UoXaws0TuKg5uYjylK4vOK7dz7/Uejx8SbY5k/tZjcpBHceNVspk3OAmDr1lbWrmvggnmZTJmSgs3WS4/dQ0uzK3p7XZ0eQqEwWp0alSqyZG9icTIuZwCHw0cwFIkHydZB8aB/HIezelUdpWWHxoRjiQdWq4n508czf/p4fvLATeypbOGv//yYDWXl7GmoYuGSy2HJBNjyDI3/eoAfPPA9lt35c2655Rr27Omhrs4u8eBL3K8Yfjk5Zpqa+siaUkxpUgbd3QvISlNRVW2P5Ai1Dmo+fQdnTwcAelMMiVmjcChH4XRkkzf/AkpYizshwDUzvnNGznoQJ+7gv/M5czKZPTuDrKwsGhsjOxcplUrGjp1CYuo45n91Mpkz9Hz7k2+zvWkn7b4miLx0MKst4DKi8BgpSppOUW4mm9faqdjsxqgzkDEyCRo0TJyVxbiCFLZsaaGttZVQnw+FX4M5Pp6sAl00Jkwdl3fIeD9Z00xZWRtd7X6uv74QjUKLVqXDoDbQ1mindp8HvdKISa3GZnOTnR1LuCOMqxqyNQksmZEKkfa1NDb38MbL66nYup2ehkrczj6um3MdPb4eWuwdrHx6DUGtD/1kHZtsf+MXy7VkmbIZnzqGcYnjmGidSEF8gcSEs5i8UzyJGpt62by5BUeTi5hYDSNGxDN+XDIrVtSgVCkoLWtHqVISY1KTO/4KfPYd1O7bjNftoHn/pzTvj0xr97bNp6Dgj2Rnx0bf1GVnw4y8RHJNOvZptPiMKppdPuq7XfxpTRW+YAiAVLOegpQYshOMZCUYSbPoidWridVriNWr0alVhMJhwuEwoXCk8GR3+3F4AthdPprtHhq63TR0u2jscdPaX/BQAIkxWlLMemaNSCTVoifDYiDeFGlarteoUEoh6ogGzzpKT9eza2spbz6zmgnjn0Cr1aFQKFhwyZVs27iB0ZMu4uIrLmfLdhdlpe209cTT3hGZ1VRa2kZpaRsKIDnZSEFBPA6HD683yIYNjdTbHOTkmLnggkz0OhUfrKyhs9NLTU0PV189CpNRTf7IOBwOL2azlvETkqiq6uFvfysnKdFAfn4c4yck09nhjo4XIAz09HhY/vxulCoF8+ZlsnVrK6+8vBevN4DPF+mDMpB8HDyzakB3l5e6JjMB4xIW33AHV12RjUatZvGYFJTdHn776Ku8u7qbd5/5DYVjZzB65EXceut15ORYolcGLBYtubkWnE5/dBeJE3HwlYajTW09kWmvg6/iX3vt6BO6jTN5uq04uro6O91lbZh0YDJpaG9zMTI/nquvHkVtjZ2AN0RZaTtud5BkSxJXXXAh+xqr2V1dR0NHIw0djcB6PtjxFjHJ3yUjIQujqT9kK5QQl0Wb73LqvXPJHdFLonsPdFdHejhtXx45Tq2HpFGRWUsDhSJjIujNkSV0ulhAAeFQ5CPoA4/9wEdfK9gbIsUoez302MDf30RVY4DYtMgsqMxpYMkGc0rkNrUx533j8i8yeNZRSO3i4x2f0B3MYerUSwG4avEsfvLnf3LRrKnMGlvMsoUT+eSTRkrL2qna20dOZmR20po1Nmz1DiASE/bs6SIcDmOzOQiHw2RnxzJ7Tjo9di99vV5WrbbhcvqpqOjk+hsKmTIlBZ8vSF2dg/T0SDHq/ff3s2aNjfyCOK65uoCOTnd0rNFiVTgSE55fvhuVMhIT3nxrH7t2djJ2XCJXXTnqC+NBW5uTBpuXJG0uc0ak8uBXb+IrV40CnRYW/pCn1vyCf2zaxD823UWy+T/JH3s5t956B/fcczEQ+Rv7+ON64uN1TJmS8qXiwcDtDcQEiQfiZGtq6mPzlmZ6aozExPTnCOP7cwSlgtLSdpRKJTExKvKnLsDTVUNtxW48zj4a92yjcc82UCjwN89gxreW8HnXh7jMPyOw4/sAQ94nyfK+s8vgXkcFBbGUlJTzxBOPcvHFL6NWq1EoFHztuq/x0fpPSZ08kqR5Jva499Gh3sxrbEZbpiOWBIJ2I77akYR6TUwbnU9BTiq799nxuxV4bCo6283Myh1JusKBXq/igw8iOYJtv4urrw5jMqnJzx+UI4xPYuvWVl5/fR/FxcmMGBFPdnYsnZ1uSkvbKe6fURvujwfLl+9GqRyUI7xyfDmCoydAU5sZZdxsLlv2Fa66MheDMbKD5cYN9bz95lv4PG4U/1SQPi6HuMnpeC4I8ln4M96tfpcQIdQKDTHz0skZkcrosTpanC2kmg7tqfhFJEcYHlKYOokqK3vYs7cLRW+Q/IK46B9ccbEVh8NLn9NPbKyGjAwr9baLmDX7NqZPtfLGq6vY+PEa2mxbaG3Yi1ptiP7x9nS5eOpXd5M9ooj0vGLs7jTiEpOZMD6ZwjgdCycloDVpqety0tTjobLezo6qLnZoe3AHQ3gDoWMev0qhwGJQYzFqMRvUFFhjmJ6bQHKsDmusjli9BoNGhUGrGpYlhGez0rJ2PltfzuY1m2jYu5ru/i24//n0a1z2lSvZUd5BZtHXWHb9A9ElcYFQ5JJH8cRkbLZe1q1rpLvbTW6uGb1OjV6nwucLYjZraW8PsHdvF7Y6B1OmprJoUaTH04oVNQQDQdrb3NE+IJY4Hc0tTrKyzViTTSx/fje7d3ei16mor+9l02fNeL1B+vr8QGRmVnKykfZ2F7W1DjLSY8jOjuXJJ0rp7PQAsH1bG5ddNhIgOvvqcD2qSsva6e3zExujoXhiMgbjgWNG5cSy5Ko7+bzkfdprd7Jn5yb27NzEhx8+ylVXXcuMGVfR0ZGEWq1AqVTwzW9O/FJbXA9caSgpaaS21h4NDodzItNeD75ic7TbONKbyTN5uq04ul27OnFWdqNTBXA4jJjNOiaMjyT1DoePrk43cXE6Ys0aCrIzWbp0HrNnZ9DY2sFf//kxH6zfyu7aSnp6+3DaVexp68LjCfDBphIae2yMzctHF4onLy2D4kmpxFlmkT1qMdY4oLcZumrorNuPp6WRBPvnGMIfRYpNHMdGvBojGBIiTcmNiRA/AkzJkV3zTMmRn2uNkQKYQmLC8diypZl/ryzh/z1fwa6aSgCKynO57pIFlO/oAMJ8/uLjpKQc6BU1sdjX/zmZ9SVNbP68mYQEPRqtkknFydjqe/F4Arhcfpqa+ujq9qBWK1m0KJtbbxnD88t34+zrwecL0GP34nIGmDo1lS1bWggGw9FG62vXNVBT00NXtweTUcNnnzcTDEReN2OKklh80dCYkJ4RQ3l5G2VlnQDsqegi+8EDicfR+lNt39aK2x0gPSOGyZNT0ev6m94qFMy66AquaodPNm+h3eGkfeNLbNz4En/4QzG33nobhYWLWbmyhnCYLx0P4PAx4XDnX4kH4kRUVXazd08Xoa4w+fmHyRH6BnKEFOrrTcyadRXTplp5/cV1bFi1idaaPbTW16PW6gjvz2PuiCtY3/kOt/16HhMyFjN6xCyamxOwWq0sXJiN1Xroa+hYGkeL02/16jrefnsjH374OJWVq2lvj+QIX//xQ2RdaOGzhi20jasjPCFEu7IajSGdPPUIXG06irKy0fvi2b65B0dnkHSlGoNeQ7I6Hl3ARIIJ2l2u/hyhl6kH5wjBIO3tg3IEi47mZidZWWasVhPr1jVQXd1Dr8NHY6MLl8s3NEc4KB5kZERyhCeOliMcISaUlrbT2xv5OyguTo4WpQAyM41cfP21lK7bSEN1NY3ltTSW11L9ipHZl8xl+oxLaFO7cOk6cKm68Rfs4lXvZ7z670ewGq1MsU5hVvosZqTNID3mi9seSI4wPKQwdRIVFMRRWJtAolbN+AnJWJNNbNnaQnOLE48nQHV1DyajBpstSENDL8FgCK1WxbhJ08kbPRl7j4f9VQ3EWyC3IDKdvnLXTrpbdtDdsoOyDa8AoDclUZU/jpj4fOYsWszMedOwV/ViIoy51UdbVR9jJiRx6eUjcPqCOH0BXN4gHn+QQDiMAujr9dPV7YFAiO5OD2MK4ikqSECrVqFWKdColOjUSilAfUl+n491q95j7evPULVrc/T7WkMcurjZNLVZsNl62ba9FcIQFx85CdtsvZiMagoK4klMMpAIdHd7qKvrZcoUK7NnZ7BnTxd1dQ4cDh89PZGTfzgcprbWzttvV5OXa2ZicRKl29uZMDGJwsIETEY1TU1O0lKNmIxqtmxtYczYRDzeAEmJBjo63dhsveh1KrKzzdF+Z0VFSWzY2IjfF2LW7HSsySb8/gNFz4TEyK6RAzP84NCdJysqOmhvd1FQEMdFi3MOWTaYmZnAf37/27z40jI2bdyF3bOJ1h2rcNtbefHFf2AwGLn22u9gsWix231f+grBwO8/9VQZW7dGtlc/2pTf4zVw9f5YruKfi9Nxz3djxybS3RGPSRckPWCJvhnbsqWF6qpu3J4gPXYvbW0uerq9vPNuNQBarYrrly3kivnz6OxysnH7PqwJicRZdNjqHey27aXCto9NO8sAUKvUFKzJIjMpg7lTCrnjKxfS2mLGaJrCivIEWpoKmDk1ga9cmRuZ7eTrBa8T/E4IeInMh1Xg6PNRWWWnu09J/pgMcgsyQK0FlTYy+0mlBZVOGpV/SXv3N/Dkyyt49rVV2PucQKRxbJoli6kjplNX52D7tlbCQJxFT0pKTLR3k9EUiQlJiQYqK6ux1TuYMCGZXz58AVu2tPDxxzbcniBxFi0pKUZaW118/nkT7e0uxoxNZPasdFxOH62tLsaMScRoUrNlSwtGk5rUNBM9dg9tbU4umJeJ3xcivyAOm81BT7eHuHh9tN/UmKIkkhINrC9pwmjUMHtOOn/5S2n0McbF6Vlf0sjcOZENLQb6Sx2ciPh8QXy+IKNHJ7BkSe4hP1+6oJilC4pZ/s8dbF7/FtVN21hZ6WHv3lJ+8pNdbNmyjyVL8oDwSblifCpjgsQDkV8Qz+iuBOJJZfz45Gg8aG4elCOYDs0RJkyfwMixY7DbPVTtbSIxQUtufgLZ2Tk0vdlCeVUZG6r+zYZP/w2AyWRl9+6JmM0jufbaK7j00tl8/HE9EKasrJ0tWyKv7aMVpgYSYbfbz86dHVLIOkW8Xi+vvPIKr7/+GOXlB3IEjUVL3DwLnye/R2VTEgF7LDGeQibkjmRMxgi6W0PEW2LxaRRkZ0YKnGtXbMdW5z5qjgCDcoQ8MxMnJrF9ezsTJvTnCKb+HCHNiKk/PgzMiiouTqa+vi+SI+j7c4TiQTnChkb8/hCzZqVjtZoIBL4gR7AeJUe46NAcISs7kW///Bu8+OJsPlu/B6Wzkpryz+np6OSj1z7EbLYw7/JrMJnU9Pb5sGaoCRudVNursfXa2Nq2lfdr34/ct9HKZOtkZqfPZnb6bFJMKYf830iOMDykMHUSZaTHMm1aKnlJB65wDlwRqbc5aG7SkJpmoqsz0ii8z+ln69ZWzGZtpHqdHYslTj+kkfTMuWNxOn5JQ9U2dm7/HHuHDY+zg31lnwCfkJNjwJZTyLbtrdg722ireYfElFwSdVPAFU9WcgpKpZK2dicl65vo7HIzZ3Y6JlTs29lDxe4O3J4AdPlYPF2CzskwuCG4o2M/v/yfewFQKJTkj5tFVuES8gpnUb2/j+xsMyajmsmTUnA4vFRUdLJyZQ1Go4bUVBPBYOQq9dQpqSQl6WlocOBxB7D3eDEZI3++9T0eqqsdhEJBDFYTTU19kWTDoMFqNUSWbYagvd3F39+qxmBQcdmlI3C6Amzd2opKpWDmjLToEr6SDU0kJugpLEygqclJU1Mf4ycko9WqSEmNNMYFuPSyPN55uzoyhbfbG1nmp4Tq6h5mzEznlpvHDnk+SkvbaGp0MrE/kB3pOYssHxxL8cQFNPv+ixfeW0VX2SqSZ17C0qV5KJUKSkpK+P73f8S9997LnDlzDtvP7IumtA9caXC7/bhcfgKBICUlDSftzde1144+5iB2MqbjnurGjOL45ORYyJlohYBnyM552dmxTJqcQm2Nnd5eHznZZhT00tfr5+OPbWi1KiZNTmHxohza2pwkJpiiSX12diwP+a6jtHIPqzeUUVVfh8fvpaKmhoqaGtaVfcbFM6dTVeVApVKwtnwT9l4nSXnj2N2URE66FZMlUizYsKGRDRubmD0rndmzM1j9RiVvvL2PQCDErF49/zEjd5ieuXPLwQ3B/+tXT/H+2i0AWBPiuXTuHJJ1I9EpTMyalY7d4WNkflz/TFgXv/v9ZlKsRhQKBSqVIhoTDHo1uv5z8UBxaWR+PKXbW2lo6CMUCuPxhHA4vDQ2Olm3rpFZs9OIi9NTW+egrdXJP/6xk85OD/MvyKKoKJGtW1tpb3MzsTiZ66+P7CBcVdWDTq9m7JjEaDyYMD4yi9fl9FNcbGVMURIXzMtgLY1YzFp6erx88kk9n33WjMcdIDUthosW5wxpum6z9bJ7dyeOXj9qtfKQJGXw8zZlShpq1bXcN+4W/lL1Av/+6HNawklMzAgwceI4AL7+9a9TXFzMrbfeSlxc3GH/L4YzJpzueAASE8406ekxTJuaRo7lQKPlaI5Q76C5OfK+r6vLjUIBfX0H5QjEYrHohxR5L1+4iKDDw6byVTj22vE2e3A629iyZRWwimnTUtm1azQrV9bQ2lpPW9sq0tJGYLXqaW5uJiUlkiPU1dl59dV9NDb28pWvjMJu9/Hyy3tZv76evj4/NptDClMnweC/uxhrgOfee47v3PqdyA+VEDsxlpQ5maQXFeDtjCUzmMHUpJF0h0K4FQqc1QHe+bi9P0cIHsgRpqaSlGSgoSEya9Zu92LqX/pfX38gR9DrD+QIBoOGlBQDMChH+Ht/jnDZCJzOAznCokXZjB+fTGenG4tFR2LiQTnC+P4cIWVQjnBpHm+/Hbng1tPj7V/m158jzEjnllv6c4S2QTlCk5OJEw+TIwyKBwcKZfOIj7uHj1Z8xu7PSrjmtsvJGhFZsrd13VZe/O2HXHnLlSyatAgAb9BLu6udfd37sPXa2Ny0lQ9qPwAg15zLnPQ5LMxeyGTrZDQqjeQIw0QKUydZd7eXzrq+aLAZ+EPKzo7FbNYBYcaMSSQr20xOjrm/mu2NHjdYpC9RD3MWXU7RA3ewZWsLmzbW4OurJc7UQmPNbmbPn4/OqEanU9HTUUXNjreo2QFbVsMfAZVagyUhhRhLCirzhfjVYwCYP9dCS81Gulv9hNHQ2+WjuT4JjU6HVqtFbzSh1epO87N3dhrcP0oVauSjlRuJSbkAe48XS1wyMxYsQ2NIRxkzC3/YQn27m75AN52dXurre6ms7GZSsRWzWUtJSSNNzU5MRg2Ewe8P0tXlxucLkpVpxmjUkJigp7nFiUqlYO/eLvbt6yYYCKHVqSgoiGfr1lb8vjB2nw+FInJVuqG+l/Kydjo7Pf3BKtJUv7Kym6rKHrq7PFji9EydkhoNCFu2tkRnckVmVUBaqjGy+1K7kxEj4rn3vkns3t2JzeagsakPl8tPb68Pm80RfX4GGt8mJhgwFWsO2fUPYEd5O9u2tTF5spVFi3KjYygCphfexL8+m8dL1d3seryEP91QzOOPP86LL77ICy+8wLhx47j33nu5+eabMZvN0ds81isM1147mp07O1i92sbq1XXD8uZrYHy7dnUO+fp4fPxxPStX1rBkSR63337yGzOK49fe4aK5vpPUkZEkYuA8P1B0GliyNXVqKnV1DgKBEM0tTiB8SEFjoCfRtOICbrtuFlu2tLC7ooOQykV9eyO2tgaUKhgxIp4+Z5Dmpj4+37uV1p421u5ey/f+HBmTJSaGnPRk1CEzYxPn0dnpJj8/jpLtO6jvakWFhqZOJftqGtDrtOh1WnRaDZbYQ6fdi0MN/n8dMTKGJ19YSWZcHj32DOIsvdx2xRJUSiWzxkxD6U7E5QzQ2upEq/Xwyit7USoVTJxo5frrR/P88t1s29qKSq2gID+OvLw4IFJU1OpUzJ6dQUKiProEo63NSWVVDwpAp1NhTTEBOvbu6SYYgs2bW8nMjKGv109lZTdud5BQfz+qJUtyqazsxuHwUlbaHk14Zs/OYPbsjOiMrIGZXEaTGpVKgdGkpq0tEg8WLMimo9PNhpImbDYHlVU9BPwhjCbNkPc3AzEhIdFAsUlzyM5/A7sFDmzqMXVq6oHeVuO/x7cnb4Btz8OTs+HCH7EzdgHPPvssAP/7v//LDTfcwL333svUqVOH3O7ZEhMGEqK6OvsRNwA5FhITzjzdPW7aK1u+OEfIOsYcobSbSy69kq8/cC1//OwJWh0NWHdNYGbsaKqqdnLllRcTCmkxGtV0dOxj16432bULVq9+hPvuA61WS2JiKnFxqYRCC3A6I82tr78+jdrajbS39xIKqenpUbN//370ej06nY7Y2Fi0Wu3pfvrOSgPLJxcsSuetkldZW/4x8ZeoaAnWEQ6HSZiSSEJOCnEFo1H5UnE0afH3xdLTFqQHaNvVxqRJVixmLSXrm2hudmIyaYAwfn+IpqZe6usdTJ2aSnKyEb1eRXPzQTlC/+y7goJ4tm1rxe8P4/f7UCr7c4SGXsrK2unqOkyOUNVDd7cHi0XP1KmDcoQtLWzb1tr/KPtzhDRjdIfWESPiuW9wjtD4BTlCogGTSRMtPA22Y8fhcwSAG79xEXzjoiHHv/GPNyj5sIQPX/uQ/LH5XH7T5Vx09UVkmbPIMkc2Dtm4uY6yhhq0WZ34NO28Wf0m/9rzL3QqHZOsk1iQuYD5WfOHPR7A+ZUjSGHqJGtpcdJl64t+fWBnslQscZE+QaFgiGXL8igqSiI/P44d5R1s3dLCSy/tISnRwOKLcqK7q5WVRtYZFxUl9Z8k4nBoi5gwZSFffzBSGd6ytQWvN4jJnMLYmV9FFWqltWE/7a3NBAN+utoa6GprYNy8BbgVKnQ6Fe2NFWxb/X/RcX5SBZ+8cuBxmGLN/OWVD0nPzj31T9pZbtv2Fj59/13efXYVbQ270Gh1fPXBYhwONVXVPYyd910CgRCl29sI48NoUNPc7KS7y4NSqcDtDtLR4cZojOyiRxhcbj/V1d0EAmH8/mBkZkWOheJia3QqrMmo5qM1NpxOPzqtgpgYA319fmbOSuOD92sIBMMoFKBWK3G6/CiVCuLidBSMiqem1k56uolFi7IJBEJUVnazdUsL9h4P4ydEgoK9x0v+yMiVewjT3OKisDABa7KJN96o5PPNzUyflsad35gQLc6pVFBv62PW7HQqKjoo2dCETqciPc1EenpM9OpKYpLhoKV+ClBAVVUPpaWbmTU7ndmzIjM7YnQa7r5gJMWZnby8pZ6lf1jHdYuu5+sGAy+++CI7d+7k/vvv53/+53+46aabuPfeeykuLmbs2ERKShp56qky3G7/Ea9M1NXZMZm0TJ2acsQtY7/Iybja8GUCQ0lJA2++Wdm/5v/QHkLnYoPEs0FjYx811XZ8msjU9cE7k1mtJuIskZgQDEViQlKigfIdHTgcXp59bidtbS7mzMngmqtHUVbaTmlZJB6M6Y8HAD12D+pQDJfMmcXUqZGYEGeJ9O4pHjERZ6ALu7sLW0sb9l4n9r4+yvf1kZOahjlPi06nwmbr5e2N71NVH9nx56Nq+PXLQx/Lf912FY9875un42k7q9lsvaz+pIL1uz+jtLoMp8fDlXMXkZl2OdVVPZjNCfz6Ww+welUdde0OLGYdao2S1jYXbncQtQrqbHZWrqylvd1FmBAuZ4j9++2gUOJ2++nq9JCQoOfaa0cN2iAllpde2oPHHen7odYoMMdqWLgwm1e8e7DZHKjVClxOPwplpFltbKwGs1lHQUEca9bYyMkxo9Wq2L+/m/IdHWi1kWQjOzsWo0lNfLyehER99D4H+lLZnENfx3feOYHdFR288041zj4/S5fmRYurG0oiMcEUo8Fs1pBeGI/LGaCtzRmdBTKwe6zZrIvOGhuY2QdAzmywjoXNf4MPf0hO8hQe/93/8cRzL7Fz506eeeYZnnnmGaZOnco999zDDTfcgNFoPKaYMHAuHzcukvicjTFhIBH2+YKEwyAx4czR0uyio+rAEqdojjA1FUt/PAiFDsoRdnSwZSBHSDKwuH/2YWlpO2VlAzlCEXeNvo+/b32e9uk7qdLoeOZnz2DWmVmxYj8uVwCLJYOZM69Dq+2gtraShoYGfD4fzc02mpttTJx4AXq9noyMGGpqyli79hfRcb7+euRjQHx8POXl5WRmyiyqo6nvreeJDc+ybsfb/OYfFbhqXCj1Si6Yu5TRhll4mmOYfIMVhU/Lju09BMNgUChoafDQ3X1ojqBSRc7JLpef6uoeAoEwfX2R5dk33FDEDTcURS9qmUxqPvookiNo+3MEp9PPzJlpvP9+DcHBOYLTj0rVnyMUxFNTc2iOsGVLC3a7h/Hj+3MEu5f8/EE5QnN/jmDtzxE+b2b69DTuvLM/RyjtzxHq+5g1qz9H6I8H6ekH5QiJhoNm0UYed2Vlf44wOB4cxo3334gp1sTH735M1a4qHv3+o/z14b9y0TUXccXNVzCicAQjc5Ko2tOH7RMdCxbM4KYZFqp7qtnbvZc6Rx2/2fIbfrX5V6Qbsoi3jqVg3hguXJR1Qq8DyRGOnRSmTrLUVBNWo3bIlY3Buw+EgiEam/ooLWunqCgJa7IJS1wvO3a009nlRatRRo/PyTFTUdFJvc1BRUUHRUVJLFqUfciVk+zsWCZPSoFJVsZPuAJrsom2dic1Nd0EPN00NdTj7m2jtikJd39xW6vTUzh+Eg57Dz6vB5fTjc/rIRjwkZFXxP/86q8kp35xc7jzUVu7kx3lHfh9buoqVvHh68/g6G4GQK3WMGrCQhpsnai1sfT1+ujqcmPv8dLR6SEhQceUaans2dNJX5+fhHgd1hQTTY19tLW5MOhV6PQqQqEQPT1e4uJ0eL1hKnZ3YjSomTLZGi1KrV3bQG+vF5VKQVKSkYzMGJQqBRMmWOnr81Na2kZ8XGTHP7NFS1ycnvh4Pbt2tlOxu5Oqym7GjkuirKydnm4vXZ1uHA4fljg99h7PkKsTbe1OoAN7j4e2diedXW7sdi+dXZEdugbWmA/24ksVbN/eitmso6goEacrEJ2BZYnTDylMjZ+QhCVOx8qVNVRV9eDxBtBqVUOWtc4YkcjotFj+8mElz1eGyEq/jpWffI/tm1bw5JNPUlFRwVNPPcWaNWvYt28fOTkWamvtbN3aismkOWJhateuTux2LxddlHvCV0JOxtWGLxMYVq+uo7Gxj1Gj4lm4MPuQn5+LDRLPBhkZMShDXlIPEw8G/h0MhWhq7KOstJ0bbiiKFpX27+/B5w3R1d88dGJxMk6nH7vDy9//Xs7sOelMnZpKW5uTOMuhMWHS5BQmTb6aCf1vIm22XoL42G9rJaBwsX1bG872IAaDmuzsWCYW5aLTq+lzuul1evB4fPiDAYLBIH/+4YPceMW80/SsnX0GZklV1dv490er+WjzFsKRigA5aanEmxLo6vTg9QaoqnZhq3dQua8HFGGKJ1rJy7PwySf1KBQ+EhL0WK1GNm1qorUtcn7V6VQEQyFqa7oJh8HpDJDaP3t1QEenG41GSRjQalRo1CqUKiVarYoZ09MJBiAmVkNysoFAMERGegzjxifT1ubio48aCIZC5OaYyc42U1LSRF9fpNG6zxd5HD12D13dHnLzzNGEocfupcfuIT09ZsjreExRUvRjsLLS9mhMmDAhmRani/Y2d3R21sDtDn7P9Pzy3eza2YHXMygmWE1gsMC8b8P+TzFsXc4dgd1k3vCf+EYV8+ab/+TVV19ly5Yt3HnnnZhMJq6//vpjigkD5/JZs9L5yU/mnPBrYjhjwurVdaxebWPq1BRuvXXsYX9fYsLwSE0zkqSOO3KOEArR2NhHaWl/jmA1YbH0snNnO52dXrTaw+QI9QdyhHumfZ0PKtdQ6v+UK9+6kl9f8GvGjh3d34stl4ULvxmdjVde3orP10V1dS3bt++lsjIRtVpNXp4FrdbEtGnT6OrqwuPx0Nvrwu32EAh4GTNmMs88sxyr1Xq4h3hec/ldvFf+CW/vWEOVdyu1a/fSubITf2fkgoFKo2LU1EmwfQzm3By8bW5afUHs9l46O7wkJOiYNjhHSNBhtZpo7M8R9PrI5IKBHEGjUeH1hujp8eHzBYcUpT799ECOkJxsjLwfUR6UI8TrAAWWwTnCrnZ27+6kqqqbsWMjOUJ3t5euLje9vT4sFj12+0E5Qlt/jtDfp7Czsz9H6DxKjvDiQTmCMxCdgWWx6IcUpsaPT8JiGZQjHBwPBqmo6GDD1gCFF1zLdffdwZZP1vLOP9+hoaaBt55/i/LPynn6w6exWk20tbmoqupBr1czZ04mxdZiiq3F+EN+Olwd7Ozcyda6XezRf0Rw9AdUNz7H3PVzWZK7hJlpM9Gqjm3WoOQIx04KUydZfLyOvIKhL5rBzaCXLcujZEMTep2KtnYn1uRI35AZM9Ox2RzRK5fFEyPrdf3+EPv2dbN8+W5uuWVMtJg1mDXZxKJFQ7+3o7yDjRubSE0zccUV87HZetny/C76+tx0d3uYevMCps5ZED1+YMaLXqeit89Lr8uIRqbpDul9NPC822y9rF6xirJPfovfYwfAFBvPxdfcTOGUKygr91BW3kFbVzMGgxq73Ut3VyS51KUasSYbaG83kJxsID09hpwcC319Prq63ThdYQwG8PtC+HxBlEoFPn8QtzvI3n09TJjg5JNPIg1um5v78HqDGAwaCkYlkJtjobPLzdYtLXjcAQpHJ5CWHkN3twd7jw+jUUNLi5PWNjduj5/WNhd9m5rweILExevJSI/B5fbj8wWpquphz57O/t4GRAuoe/Z0YYnrjfQpMx1YlldR0cGq1XV43AEKCuKZMzeD4omRRDoxQR99IzV5UgoQPmRK+oDJk1PQ69RYU4wHZpf0P+8D/xfJHQFsjU4asozc+04Vj918PbsefJC1a9fyxBNPMHv2bJT9DZovuyyb8vJ/MmfOXUf8Pz4ZVwpOxm18mcAwcFV/8eKcMya4CEhOMpIcp4SYyGs48kbIOaQZ9LJleZFZJHoVbW3OaFEpNdVEU3Nk6vvuig7GFCXhcgZ4fvkuOjvcuFx+xvQnLge/MbNaTSweFBNWr6lj48Ym0lJNXHHFGKxWE5Xb19PQ3YWzz4/VauLff/pB9PiBZYM6vYq+Ph+j8uNlKV+/g5dYAtTVOfjPX/+BXba90eOmFo3h1suXkmxMY31JM/treggGwzQ3O/F6AwSDYWJjtHi9QQAsFh1FYxIpLk5m+7Y2AoEQAX9kxotGrcLrCeMM+gmHIBiCpubIDKPVa+r45BMbvQ4fra1OFIBWqyQrK4ZQMISt3oFKFSlu5eSYsVqN9PUFSE8zYTZrWbmyls4ONzExGtzuAJs+a8Lj9RMXr6MgP46WVic+X4Ddu7v6+95HrlwPzPjbs6eLOIueZcvyKCttjy7Le//9/axZYyO/II5rri7AajVFi6sJ/f1JXM4ARpMalzNwxJgwe1bkAlmK1ThkxiFAW7sLW3chlY7bmBZ4jSssv6Sx+RK+8swzPProozz33HO88cYbXHPNNdHbS0urJi+vjSuvPHyh9WRdOR7OmDA4HkhfoDNLfJyBnJyhW9cPbga9bFkeJSVN6PvjwUBvwRkzDsoRiiM5gt3upbo6klgPFLJutV7Bwt5JLN+9nDtX3sktY27hP2/5TzQqTfQ+P/64ntdf38fIkfH8539egtU6jq1bN9HX18v69Y08+ujlXH755dHjB2bhmUwaurtdtLWpZSkfUFvbw5rybfTE72GnczOlbaUEwgGc2/zYnt5P0BUpSJnizFxy3aWMnTGf7TsclJV10NHWEs0RuvpzhLQ0I1br4XOE7m43rv4cwecL4fcHUan8BALgcHjZvbsTtzsQyRHcQ3OErCwzJpMGo1FDe7sLgMLCBNLS+nME+6AcodWNx+OntdVFX18TbneQ+Hg9GRkmXK4A5eVth40Hlv54YLH0MmdO+pBleRX9M2j7+mfQzp6dQXF/PEhMHJQjTD6GHEGvxnq4eDCoV9VAwSsry8zX7voaX73zq2wr2cbby99m6gVTo31pp0xKYO/GDykquGzI/WiUGtJi0kiLSWOCfiZ7a1vwWBppDNSwtmEtb1e/jV6lZ3radC7OuZgLsy8kVnv4MYPkCMdDClOn2MDaWTiQYNt7vPT2+sjKNtPZ4aa0rJ2RI+NIT4th02dNdHZ6cDr95OVaGDMmkTJ/iN4+f3SW1eGKJQdrau6jpqaH3j4vNltk+Vd+fhw2jZKsTPMhxztdkTfKZrOOrGzzEU8K55vB/39JiQaUSiUmo5r0nHy2B9yYE9LIGHUl19xyMzGxMezZ00VjkxO3y4/XG0QB+PwB/P4wBr0KrU5FVXUP8fF6RuTFodMrKS1tQ61SYjJpcbn8/UstFKg1CowmDUqPgkAgREqKkZpaO+3tbtzuAOFQGKNJw9ixSaSmRhLeHTva8XpDBAIhVCoFoRAkJRuw9/hwufzkj4wjHApTvb8HAEucjlEpJgoK4lmzxkZPj4eUlE4am/qwO3xs3doavRI38JowGdU4XQEWLcqOzs5bsaKG8h0dBANBunu8ZGWbo/2qKio6osXW9PTIEtWqqp4hr+GB5zkt1cT8BVm0t7vYvauTESMsh/xf6HVqstRaTH4VDXq449nN3DIrhx9fNo/58+cDB6bNtrZuYufOl3nggVdYsWIZ9913H0uWLEGlUkVv92RcKRjuqw1z5mRKAnKWGHxOAWhqiuzM1t7mYn1JE15PgJwcM0VFiXR3e9izpwujUUNSooEeuxeDQYVaPXRnvMMVSwZrborEg77eSDywWiN/851dbgoK4g853uU8EA+ysyQeDDbw/xcKhaLPtSlGQ3JCPMp6JZPyx3HjJUuYMDqPlmYXZeUdOBw+PJ4gXk+A3j4foRDodSrMZm1kmXZ/rHf0eln7aQNx8TpSUkzY7V6criBuTxC1WoFOF2l47uj1olYpWL2mFofDR3e3h64uD4Fg5OLY3LmZdHV7aWxwsGZNH4kJBjo6XTS3OJk3LyNScGpxUlvjICM98hhyss14PAHiLDpSrEZ0ejW1tQ76+vxUVXbT1eXBaFRjNBx425idHRudNZWdncwNNxQBkdfjeyv209TUR1e3h6lTUrFaTdEZVAMtCowmNWWl7eTkmIck5wPPcY/dS5xFx623jKGqqocNG5sOGxPCukRebv0aS3Rbmdz5If4/TSP5+uf57ne/y3e/+12A/hkibbzyyqPU19exf/8/2Lv3bu68807S0tKit3myzuXDGRMkHpw9huQI/ecTu70/R8gy09npprS0P0dIj2HTpkE5Qp6lPx6ohtxmW5uTVpuG27LvYW3PSpbvXs7H9R/zi9m/YErqFAAqK7soK2ujq8vNrl05LFyYxbp19ezc2UFGxqHne7vdRyAQJinJyJgxSWfEkp/h4vA52Ni0kXUN61iz/1P6wj2ouzXkmXOZnzkfVW88uzV26jx/JC45mazx87j29sswxRgiOUKjE7e7P0dQgM/XnyMYVGi1Kqqq+nOEEXHodP05gnpQjuDyo1AoUKsVmExa3O4AGo2SQCBETc2gHCEcxmiM5AharYqaGjt+fxCbzUF7e6R3bSgESUkG7Pb+HCE/jnA4THV1DxC5YDJqlInUVCPr1jYSCIZpaXbS3ePBYNCwa1cH6emmaI5gt3uxHyYerFhRQ2lpO8FgCItFx+zZGdFZVNEcobg/Ryg9KEcYFBPS0kzMn9+fI+w+fI4QWRoYQ2KiITqDy2o1MWXuFKbMnRIdk83WS3NlKZWfr+b3Wz5iw9uzuPLWK5kyd0r04jZASkosKSmxQAGwAJffxX77fnZ27KSyu5K1DWtRb1QzxTqFS/IuYXHOYiy6oed+yRGOnRSmTqLGpl4qKrowFSqiBaPBU3QBSsvaqa1zoNOpqKiINITr7PTQ1NhHKBzG7QqQkR4TbXBdVJTI1CkplJZF3rxt2RrpA9TcEql4DxS2ivt3MRgoWjU39REIhtHp1NHk//rrCw/bQLGt3Ym9x0taqpHxE5JY/8ELrH+3kqVXX0/hhMmn8Rk882Rnx9LaWM0bz/yR57o7ufHBP7JxQxNKVQx3/+BpXIE0dpR30dziZ9HYWOw9Xpz5cRiNavr6fDQ3OwkGw6hVCuITDHjcARobncSY1HR0uKlviMyI0OtU/YWkMMEgKEJhLIl6jEY1Pl+QpCQjTqefHTvacbn8aLWR6bwGowaPJ0BLi5Pubi+9vX7MFi29vSH6nH46Ot39S/wgGAyTlW1mztwM/va3cvbt68HrCTJ7dgYframjpqYHtUpJMBAixqRBq1Hh9QZ4sb+vQVZmLHPmZrCjvINt21uZPCmFRYsiAUOpUpKTE0uMSUNBQfyQ19jgXmkQSUqaGvuIidVSWtpGXq6Z9PQYCgsTsPdEEvHWFift7W7q6hzRXlPZ2ZHnt6bWTlKSAbNZR4I/SFeCgX9tqmNTdSdP3DSZ/JTY6LTZ2FgzF198MR9++CHvvfce7733Hnl5edxzzz18/etfJykp6ZD/83PN4da2D1z9HLiiHgwG6enpITHx/H2zebLV1dnpLmsjM1XDoI1ah8QEmy2ybK+t3UU4BPtrevD7wjQ29ZGaEokhFouOhEQDNlsvLc1OZszIwOsJMLE4OfrmqsfuoaU5EhM6Ot3RmStjipL6j3EQCkEwGCkGACxZkktRUeKh8aDNSY/dS2qakQnjk+hxdvOTvzxLalI8P3ngptPwzJ3ZrCk6Xv+onB88vZKf3X0no7Jz2bCxifnj5jKrcCZBj560+GQmjE8mztIb7dOkVICtvjf6b6NJjVanorvbQ06umYREPWs+qsPlDBAXp+ufwRSZTRUKASgwGTUYDBrCYXC5Arz66j4UQHa2GcLQ2ekhNlZHXLwevz+y01Jfr584S2QjE683QMXuTuYvyCI2VkswGGL2nEziLDo2bGikqqqb+AQ98QkGysracLsjM6sSE/XYHT5C4TAbNjZht3vZtbuT2bPSibPoorv5LVqUHU0ikhINBPwhiidZh7zGBvdKg0h8aGzqIzZGS2VlNxOLk6OvPwhHk/a6OseBmNDfW2SgAbtOryYnJ55K1UV0BEexwPsOmmeWwPyH4ILvgELBrl2dlJTUMWvWMjyef9PY2MiPf/xjfv7zn3PNNddw3333ccEFFxx2h9dzzbHEhPb2dpKTD21CLE7cG6+spNFox1CYdNhlqwClpe3U1h4mR2iK7LTpdgfIyIghMVFPc3888HgCFA+KB3a7h+ZmF5BAsekiursSaFZt4o6Vd3BhylLmBW6mqqobvz/UX7iIvA5+/OPZ0dfFYHV1dtraXIwcaWHhwixeeeUp3n67mnvuuYfi4uLT+RQOi1A4REVXBSWNJaxtWMuOjh2EwiFSjCmMtIzEuSdE9Qe72eOuZfJ/XsVnm1rRKk3c//DPcIfj2bGjk6ZmD4sWWbHbvfT1HSZHUCswm3XY7V5iYjR4vUFaW53U1/fnCPqhOQKESUzUEx+vo6fHGy1o+f1BXC4/Gk1/jmCI5AgKRSSO9PYGsFgiKzKcTj8dHe7+JX79OUKWmTlzDuQInv4c4d//3kNDYy8Gg5px45LR6dW4XH527eqgo8MdyRGyYjGbtVRV2Wk7KB4olZElqFqtilmzhraJGdwrDaCsrJ2mpj5iYvpzhLxBOYK9P0dodR4SDwYKYzU1B3KE5mYXFkvvIRfsBopYKo2FSbMnsX3Ddko+LKHkwxIycjO44pYrWPrVpZjjDp3IYdQYGZc0jnFJ4/AFfdT31lPWVkZlTyU/2/gzfrHpFxRbi7kk9xIuzr2YeP2hF//OJMcSDwKBAA6Hg4SEhFM+HilMnUSVlT3U1tmxGrXRwpQ12TRkVlPxxGT27++hrdVFWWkbSqUCvU7FmLGJaDUqIBxtPr2jPNLTx+eLTL+tru6hpdlJfn4chYUJZGfHsmaNjbLSdpxOP1u2tlJW1k5SogGjSUN6egyTiq1HHMuAwYUGa7KJTZ98yPZN6xg/ZcZ5XZh6741VvP78E9j2bYh+7903N9JpjyU728ychbPp7HDjdofQ6yJXrCxxOkwxWgoK4qms7CY21ofX1Ucg4KCrxU2TqwedyoNG48PZ58Tn8RAK+fCG/EAIUKJQKlCpVTi9Wrpq1YTCelRaI6AnrDSgUMaTYE0lNy+VtjY3TY19uFwBzGYtcXE6DAY1apWSUFiHTqekZH0jZkv/FfgeD2RHxl9V1UNvn4+tW1qo609cdUYVKrUSS5yembPSIsWz+l4qdneh0Sjpc/pJTzP1984L9zc0bCM3J5abbio87OsrLk6HUhn5nJsTOckP7DazfVsrpdtbmTEznaKiRNLTY7DE6RkxwkJdnWPIDn4DywkHZnIUT0zG6YosAWnx+nl+Yx2XPraeH15axAXRabPj+Z//uZ7KykqefPJJnn32WWpqanjooYf48Y9/TE1NzZCr5cPpVG3Xeri17QM9SAAyM4PceuutBINBPv300yGzycSJ27WrE2dlN8qQkaRB/ZMPXno3Mj+e1lYX3d1edDolljgdY8ckkpxsPGSZU4/di8PhRadXsWdPF12dHoLBECPz44fEhM2bWygta8McqyU724zRqCUtzYQ12YjLGTjsOAbYbL39TbojyzSa2rp48qUVFI3MOq8LU59tsfGHZ99h9bb1dHRHlnA/+dJ7LByzlL5ePzm5ZmbPSqeuzhGdATTw/9bY6KKltQ+9Xk1vnwe3z03Y1YutwonL52LtjhBaHTQ0OfD6fYTagoTDAUIhBQqFAp1WRUyMjkB3mKBPiVqpRaPSoQxr0GsMuANWFszNZ926RhwOL6Xb28jONlM0JpHKym4CwTBxcTo0msjSzA9X1jJnTgZp6RYgjNGkxu0JEAiG8bgDJMTrCAbCBAMhfL4w2dkWUlJMdHS46en28O671bS2uti7t4s7bh+H2ayN7hzW0emmtLSNCROTue++4kNeY4PjQU7u0HjgcHgjTeFtDnKyLSy+KJs4iz7afB0YsoPfwTP7In8v8TjSpqKv/Rd8/H9QvQa++lw02b733l+Smvoor732Gn/5y18oKSnhlVde4ZVXXuE73/kOv/3tb0/1S+mYnMrtu48WE8LhMNu2vcFDDz3E22+/zeLFi0/qfZ+v2tra+P5//DdJI7Ox/vRH0b+Lg8/DxcX9OUKbi9LSNlQqBXq9ijFjEtFq+3OE/r6BO/p3/0xJMVJa2k4gEKKl5dAcwVZmQG9agDpjBx+FPuTT8MekFi4kv20CF1+cG30NHGlWx+DdvHJyLLz55pts2LCBJUuWnLOFqR5PDxuaNrC+cT3rG9fT7e1Gr9KTZ8ljcfZismOz2bWmnvefXUHDnoro773+8nb84Rhyc83MXTyJzk43bncQvb4/R7DoiBmUI5jNkfYZwWCYri43CoUStVqBwaClqakPj8dPOEz0IgWASgUGg4bYWA2trS683siM2o4ONwpFZGOL+Hg1OTlmWltdNDb2ER+vJzFRD4T7z5laYmK0kRyhpBGzeWCWrgc4kCP09fnYsqWF7u7IDqkKhQKNRskll+ThcPjYvr01kiNURHKECy7IxGLRReNBZ388yM3tzxEO855jSI5wUEzYvr2V0tJWZswYlCNYBuUIg+LBwHLCaI5QnIzzCMvEDxSEc7jh64upq6zj7X++zcp/r6SxtpEnfvEEz/7uWV7+7OXDFqcGaFVaRsaNZGTcSPwhP429jWxv305ldyX/77P/x8OfP8yEpAkszVvKktwlJBlO7GL4cMUDgNRUL7fccgsGg4FVq1YNmU12Kkhh6iQqKIgjt+PQGUmDFRUlMbPJycaNTZgtOoxGNcFgCI87SE+PF5UKlj+/m1mz07HE6aKzRxqb+lAqFVjMOsxmHVOnpFJR0UF7u4v0DBOJCXrWrKmjs8uL3x9i5MjI0gCzWRvtZXVkYQhH1ihv2doSXeu8b18Xi07yc3SmeuXVCtatbWTuvHRUvgre/NdfabWV9/9UQdGkBVgyLiUhNRdfsBeNWsnKlbXU1PTQ0uJEq+plb3kJlRV76eloIuTvxOtqI+jrIBSINP9z9d+aCwUqjYEwGhRKLaAhrNBAWAmEUCjDKEIK3N4gfp+bUNBNOOhm8E4Kzlpo3KZDb0xEY0jGE5OOMy6beGs2gUAyOr2F/Px4tm1tpavLg88fpK3Nxc6d7ZSWthMTo0GpiOzssWVLKx6PH5NRzaRJVubMTo8WfHaUt/Pa65X09HgIE8JmczB1Sgpt7W7S02Miy/IqezAVJx/xNdbY2Ifd4aWxsY9Llo6INkDMz49j/347Dkdk61iFQkFhYQJTp0T6LwzMlBowUASzJhuYMzdjyP1ZgR9fbuKZkhp+9NYulo5N5ZGvTcSoi5ziCgoK+P3vf88vfvELXn75ZR5//HFiY2OjRamSkgaeeuo1brnlEhYvHnWCr6Iv53iaI7722l5ef72Sa64pOGJT9wGHW9s+eL25zVbDunXrMJlM7Nix45x9o3m6jR2bSHdHPOmpmiMeY7WayM6KpS4jlvh4HbGxkV3yBopSG0qaCARDlJa2MXtOZHbK9m2tNLdE+hTFx+sZOyaJCeOT6Oh0s2aNjbg4HekZMeyp6KKhf4ZO0ZgkVCqIj9fTM2hq++EMbBHd0uJkzRobfk1kW+fubk+019X54JVXKli7rpHxxbF8XrWFf72zGm8g8uY8JSGBBRNnMyW/GGdvCGI1JMTreOvtKiBMe2cv1fVN1DU3U9vUgjvQR6/bQa/XgdPTR/igXXFUChU6rRYFKhRhFSqlGpVSRSgUJkwYHUq8LhWOXg8enwd/yEcwdCBRWVcHy9crMOmNxOhjSWxIIKMqhRmT8knJstDVEsKg15AQr6diTzd+h58PP6yloCAejUYZWRrk8qMAAsEwO3d2EA5H3txfeGEmI0ZEZsGW72hnw4ZmAoEQoXAYl9NPXZ2DicXJlJW2R5fmVVb1UGxKPuxrrKfHi9cTZNfuTqZMSYku98jPj8Nm62XDhsZow3+XMxDdaXLwUkCI9EErLW0jIVHPhPFJh95XxrcgbSJsWw5/mUnONX8jZ9mBLcVvvPFGbrzxRsrKynjiiSf45z//ydVXXw1E4sG///0ZEyfGcvvtF5/YC+hLOlXxAI4eEy68MIuf/OTHuN1uXnjhBSlMnSRWq5VfPPpbHrr/P1j1wnKmT3/osLPzioqSmDmzP0cwD8oRPINyhOW7mTUrHYtFF5090tjYnyNY+nOEqYNyhHRT5ML2zmwyirIwz6qmIe999FkbaVFfz/7afEbkHm0mRJhwGDo6XKxYsZ/W1si72Q0bGuj/kznrBUIBdnbsZGPTRtY2rmV3x25ChEgzpVGYUEjbPg3Vm8PETMjB4Wjn4ef+SJutBogUa8bNmA7xxSi1FmK1SsaMSaSkpIkdO9pobXVhMmno6/OzZ08n7e1udDoVfX1+UlKMuN2B/ublYSCIzxfEalWhxIde5cTt7iPo9xDw+yEUQGdSEqPV0LXf01+wUuIJRzaqUKvVxJhNaINmgi4P8bEaTAYNSrUShUJBdraZ7m4PCoWCkSPj2Latlc5OT3/j9AM5gsmkQamM5Ahbt7bidvsxmTSMGZPI5MlWxvefc81mDa+91p8jhEN0drqZPz+z/zbU0WV5piPEA+jPEez9OcIlx5Aj9MeEg3fli+YIVgNz5mQc8f7g0IJwTkEOD/7sQe586E7WvLmGN59/k6TUpGhRqqKig3dfXcfFl09n4qTD7waoUWrIteSSa8klEArQ1NdEaXsp+7r38ZvPf8OvP/8145LGsTRvKUtzl2I1HvvmAcMVDxYvzmH//go2btyI2Wxm7969FBUVHfO4T4QUpk6ijPRYiooSIAxbtrawf383pdvbmXdBJpcsHRFdZpeebmLpJXmYjOr+/iJhamodVFX24HT66HNGmuWNGZvI7l0d5BfEAeDzB8nNtTB+QuSPtrSsnaZGJxOLk5kzN4M+px+bzYFGraSp0YnfF+oPfB1Y4o7ck8rnD9Hd7aGtzYXTFaC7J7IbT+W+rkOOPZcM7tW1bm0jjU19vPXia7TvezxygEKF1jKTUZO/iiE2nZ4+P4mKAKpwPaUlO1nXXYfP2UDI1wQhN7sAFGoU6kTU+mSMcaMwmefh8ceCykwQI16vEWtaIrNmZ7N5czPxcXqASA8Sb4C+Pj8Ws468ERZaW13ExekIh8PodCpqqlrp7e2BgJ1wsBtl2IFB04dBZ6ertYL9NR8S6k9WtPp4WncX4vSnEVBk0BfKwx8y4nH7USqVJCbqSUwy4PWGCIdD2O2RWRgqtTK6NNSabMJg7MFo1JCYaECtVpGWZmLFihqUKgXOgvjojKbBM5sOptOpUPR/hgON9osnJnPN1fmUlvVvIWvrG7Je/OD/o6MVwQaOu2F8OltTYnmnrIklf1jLEzdPYVzGgds0Go3ccccd3HHHHTgcjuj333xzO8uXf5uXX/4Bd9/9De69914KCwtP4FV14o6nOeLrr1eydm0DwBcGnsNdBR0zxsScOXP6r8Jk8PDDf+CrX72UkSNHnuDoxcFycizkTLTS0RrZZnn//m62l7ZzwbxMLrlkBHBg2dz4CYlMGJ8cXYY3kOBv396K2xNAr1NjMmmIi9PR2hrZvdNoVJObY4lOl1+zxhb9u7r1ljGsXFmLzeZg4cJs6uocNP5/9s48rK3zTPs/7RtIAiEBAsRisAEbG6+xwUsc27HjxNn3xknb6TadptO06TLttF+X6Uz3pkmTNk3SZl+bpFnqxLGdzcF4NzYGbIPZESAh0IL27fvjSEJgSJw0aTMdP9eV2JbOOXp1dM553vt+n/t+rF5C4Rg+X2SS7GpqmEwa9HoFDXsGcLmDxJVCdZA/EEl1XPtnjKk+XW/vHqCvz83Db/8RT9AJgFaZxdy8hczOm0OmVE2WLoNAaJSW9pNsPzjI4OgwnuAY3vDEs0UhUZGh0KLT6CjMKUQlzUAUVSAVKSAiR5+Zwac/WUtr2yinE92GJFIxuSYVAwOCeW12tpLcXDWeccGDsGa+ke7uMdpO2VFlRnF73Yy4XERFflSZUZy+MRpP7ue1w28AIBaJycvKxaTNRSXKRiXOJhLW0dnpTDTICCKVwaxZeiKRGD09LoIh4XOT8k+TScP8GmhtGWWgH4w5KgoKMohEYuxpsBKNxvB5I6mKpvTKpvRYkKgIcTqDHGu2s36dJmW2v6DWyPoNxfgDEbzjQiXBTL9TU5PtXQkwm81L72glpYv/A8OJ++Gxa6DuVlj/A0hb8V2wYAG///3v+dnPfkZmprCouHNnD089dS933LGD+++v54tf/CJXXXUVCoXig11cHyA+qnwAZ+aEcDjMggV66usL6elxccstP+SCC/bzne/c9gFHfy6mi6tv2MzJkSM88N0HEMk0VCxbT1OTnVWJnJC8ts1mDZs2laLRpGGELjcdHU6842kYodpAa+sI5eV6AEKhBEaoSWCEJjtWq5cFC4xUVGSxe3c/q84rZGy0gsN9x4lXnmC77PfsefMZ1mVewy2LrqO89Mzne9IuorvbhcsVYmREII737rX+Xc7bRxHxeJwOZwf7BvfRONjIwaGD+CI+VFIVpdpSLiy5EH0sl6BDTbk+l5/vOMyA1Yvt8G5sx/8qHEQkQWmsonL5Bai0BsbGgsgBiUREY6OVvj4PY2MB4nHIyJDhdocZGRGke0p5HEnMTd+oi2jQQ9jhIBJwEw+5OXnCT0vQl+rsOjUCwKhECiKJUCEVE+bx8cT83wMMAq1p+8jkcjKzs5GrtPhCCnLyjCgjFrxjIsRk4PNBMBgjEEjDCIYJjOB0BlEqJWRkyLHZ/DgcfkwmDSqVDJlMgk6nQKdTUlGhFzCCWITXm5WqaKqdIR9AAiOIpmCEJju1tUauvLKcpqYERuibBiOk5e13I8Hey4czGSq1iktuvISLb7gY37gv9fo7b55k2wN3sesxFZfedDGX3nQphaUzezZJxVIsWgsWrYVoLMqQd4gj9iOcGj3Frw7+ip8f+DnV2dVcWHIhm0o3UZAxPdmVjL9nPoCpGGEW//Vfv+Kmm66kuLh4hqN8eHGOmPqQIh6P8/P/+RnBnCUYM0wMDvnYt9eKzSZc2BdtKptk8KzTK7Baxxkc8lFZmU19XQYajSwF0FfUmWncY2VgYByAS7bMSkmbkqA8nRQwGTVsvWkuMAH8i4u1QteOhG8PMAnQJ8H8jh3d9PS4CQQj3HhjNdnZatw2mFU+c/niP0M0H7NzYH8fxYVBcnNVDA6NI1XPRyzPQ6yeh1S/jngsRseJY8SDLxH1d3HyjT7isTAgRqLIRyw3I82sIdtYQphcQjEdUokYqVQqzH0lYiJeodtFRYWegD/KqtXCw+xok0SY/GepWFBrQq9XsPvtfrRaoQzW7Q4Siwor01qtgou3zGX7a90MDupAZEGrl1M1T5hEZLmDiEQxhgd6sVs7EUf6cY714HNuJxYVzJVl6iKyS2rJ1S1n6Xn1DNvjCW+qQMrUUhiXoPWuqsqhp8dNLBbHZFRTXKJlbDTIgHWcAnMGFksmjhH/e55nc34GxSU6zPmC0U6659QN11dRVZXDE0+2MWAdp3GPlfJyfcpUfdeuXoaGvOTlaShOyACnI8HSDUQ3L85ntjGT+xs6ufKePXz74ko+WVd6xj5a7cT1XVEBWVn5jI72c+edd3LnnXdSX1/P1q1bufbaa8nK+ug14u/HHPHKKysm/Xk20dPjYs+eU7z22v0888zj/OpXzyOX53L6tIsVKy5h1qyyDzTuczF9vPHGIbb/8c9csqyWbpuSvfvS8kGCmEr6RuXla1JeUdFoPAXwvd4wkWgMqUTMgloj27Z1YbP7yNIrqKkxUldvTk2y0gkBk0nD1q1zU2PRZwmAOl0y1ds72XchfeL25lt9WK0e4rE4K9YJ175CLp6RbPhniGPNdg4ftpGZE+AzN9WRm6uir9dDqb6KfncnFdkLyFGbGfWPcOD0IbxRBw+9Y8PjF6rSFFIVWnk2uRkWLLn56NXZRH0q5FI5Wp0ClzOIRCoWPJHkEjQZMkQiERdvLqO4RJBNyOViQMqscj2bN5dy4sQYba0jDA/76OpyIxJDPAY93W6WLSukfJaB5mY7/jEluUoT2kwZc+Ykfi+lFLvDxbETPYyM2/GEHfTYehnzNQEglyiYU1TGurIFWCrymTfbgkgk4sD+ITIy5WRqFZiM6pQfVLIDpFotJRyOkZWtpKIim/5+D/5AlIpyPaFQNOUTNROBWV2Vg3W5lyOHh0l2dEr3nbrhhiqONtk5cGCIPY2JfJDWdSmZEyQSERXl+hmvyVROqMzGsOFHcPhB2HMX9DbCtY+AdrKEOz0frF9fzAsvKLDZpDQ0NNDQ0MCXv/xlrr/+em6++WaWLl36kXtRfdT5AISOYg888BSPPPILKisXc++999LS4qCjA1asuPz/hN/W3zOs1nFy5lSz9qqr2Pn0sxxvcRPT1gBCTkg3eNbpEhhhMIER6tMwQt84K1aYaWxMwwiXzEpJm5L3SzopUFWVk8o7bW0jiKihyLCCYfFpmn37+Mv473lt92Nc67iKGytvJD8jPyUfeuCBZo4fH8HrDfGDH6zkqac0uFywbFnuP+AsfrCIx+MMjA9wYOgAewf3sndwL6OBUaQigUBYkruEwsxCCjML0cl1aGQa3nyjj/17+7AVjZGbp2ZwyIs8uxyxQo9UX44sZwFimYbeQRFSuxOJRIRMJmJkxMf4eBixWAREiQdGGXc7GPM5iAfHCPscOBMdvQFEYhkytQ6VRoehpJya2hKCETltJ71I5Soy9FouWF+BVq/htR196PRqPB7BnypDI0thhGXL8nn1lU4GB0aJRYIo5VEMWWJKiuT0dg3iGRvDMzaGzz1Ct72TzkOvp8YgVeqQZRgxlZeRr5vNwqXzsDtiUzCCCiDlB5XECIFAhIwMGZdeWobN5mdgYJyCggRGcJwFRkh0HjSbExghzXPqhhsSGOGJNgYGxmlMywnp+WASRpgmJ0zXZODdQiQSoUnrRJxniJGpz8Yz5uCZ+57hmfueYf5587nwqgtZs3kNGdqMGY8lEUsoyCygILOAaEmUYd8wTbYm2p3t/PbIb7nj8B2U68vZWLKRTSWbKNGVnHGMv0c+6OlxsXv3CV555V5eeulZ7rjjRcTi7ARGuOzvQkrBOWLqQwuXy8Uzj/4RX/h+PvW1+6msNCOXi1IVUzChaU0SRRq1DIlEhEYtTXUngAnCqHquAYfDj1aroKfHTTQax+uLpD4zfZ/0mPq6ze5NVUylR2+vh0OHhnE6BXmCXCZmyeI8/pKrofuEsHr6zxo7d7Tw4N2/Z6T7VWRyNRmzfkg8DoGAE7FuI/FAO8H+XxCPOAAQyXKQqErJMC8jKrEQExei1iiRKySEwzF8oSixWByxREROjjplUimRisjJUZGbq+Gaq+ekfpf7HzhGKBwlK1tJXV0+ZnMGXl+ES7bM4uDBITzjQYqKMpk3z4DbHcaQraR+pZlxb4hXX+0iHI4hlYg4cXI01e1JJBaRn2+mqMIMIlDIJYTCMezWHsK+08QCpxju3ktv60vsfEpEdl4VZXNXos5exKpVc1i3zpIy0y8u1rJrVw/uhBFjgTmD8ll6VGrZJIL0xRdPc+TIsNDyNUc1yVcl+fea+TmC95ZaysFDQ2cQTMly84wMGWKJiN5eDx0dTl5+6TRyhQSZTExHuxOTUc0N109fQjrVQLQ8N4PvXlzFAw3dfP/FVvaeHp0k7Zsan/vcFj7zmYvZuXMn99xzDy+99NIkQPLCCy+wadOmD+nq+9vjqqvmnNVKSDLGx8f53vd+xJNP/o5QSCBHHnvsCbZs+QJSqQid7lzb5w87Hn/8Oe5/9M8E/H5uuuIq5HJRqmIqGRPeUYnuexohJ6g1UqqrclLgPkkaza0WckI0EmN0LJDyiwImbT810t9LSqamywfJTmjjnhAiRGRkyphVKhAdmVr5P221VEurnQef3s1bzQ30j/ZytO16XP3ZiMRR1NJsctQhOkabOWDdRSweRSKSkq0xYs6chS4nB63MSKYyA4VCRjQaAxGIYhAWR1EqpYQS3ZfkMjFareCttHhxLvNrBBD5xBNtdHe70ekUWCxa6urN5BhUaLVeDDkq3J4QOTlKTLkaQsEohUWZrKw309vrwW73J7owhQlHYpw4MUY4HEUsEWHIVlFVUkY4XEKmVo7TGcTl9uLw2rB7BxnzDnLXk88QjUXJUGpYPGcuBfpS6mvncfVVlakKvuJiLTt39Qj+ZgoJcyqzUSkFDxOjSTApn19jTPmbDVgFsJzuj5a+Wj2/JnkdxbHZvGdUWen1CkLhKOPjoVQ+2NNoJdekxueL4POFicageu7M1/yknCCVwbLPgqkaDv4RflcHV9wLs6eX6dXXF3L48EsMDg5y//33c++99zIwMMDdd9/N3Xffzfr169mxY8eHdPX97fF+8wFAY2Mjn/3sv9PScgCAkREHL710nIwMHbNm6f5Pd137qKKjfYzuHjd1F18CsTBvPP8iJUtkrFp1NZCGERL5QJPIBxrNFIyQyAfV1dNgBO/7xQhF1A8vZl/XMfqlzTx+4nEeanmI8/LPo2S8joG3chkeFhY3lUoJmzeX8YtfaGlvh2XLPh7+nNNFNBbl1NgpDtsOc3j4MIdthxnxjyBChDnDzJysORRkFFCYWUiWIosMeQZyycQ8aMerbfzpjiexte9HoclEO3cr8ThEomLUlVsnkbZCownhGW/r72d8ZIDQ+DDxgJ2I1w5xoZJJJNcizzBgsFQjVugJi3RIVdkUFueQn5/B5s2lExjh/mN0jw6Sm6thzZpCASN4I1x62RwOHhxifDw0GSMYlNTXmxkfD/Hqq2HCYQ0QxxkU0e9U4UJHSBPFUp7wiBWBmBDesREcQ1ZC4yNE/SN0N+3m1N7X2PYAaPQ5FJZXoM4pZtGi+Vx65fxUl8gkRnC5gmRlKcjOVmI2Z6TIpSRBOgkjGGbACDU56HQKNBopBw8OnUEwTcII4jSM8PJp5PIERuhwYjKpU9LwqTEVI7zf2HLtKjZfVceBtw7wwsMvsO+NfRzbd4xj+45x53fv5CcP/YSFdQvf8zgSsQRzhhlzhploLIrdb+eY/Rinxk5x37H7uLvpboq1xWwo3sBFpRdRoa943wsEHyQfuN1uvvOd/8fTT/+BcFggEx977EkuuujTf3eMcI6Y+pBCr9dz95+e5VM3XsJfHvgKv3n0LyxZXMW110zcJEnz8SRR1NbmoLXVgVIhnURK7drVi9sdZPHiPL5y22J6ez1o1NKU7890kS55mipzmsn0XCh9tKHTKsjOVjF7Tja//OWBlMldPDZ9Gen/5mhraeepB35P465niUWEcuQ4YlzdDxANdBML2QAQyc2INTVIlHMQq2YhkmSiUklQqiS4XSHiUQgEoyhVMsSixHkSiSAONrufgoJMiixaxGIRJSW6lFG3ze7FMeKnrXUk1YFx3boSDh4aEjpESET09rhxjAaory+gZp6RpqN2KiuzMRk1bNxYQoZGTsOeAXp73UQiQutVg0GJ2xVCo5Zx6WXlNB+z09o2Sl6eBr1+NsPDBbicy1Gbwe+xEXC14g+2cuydhwkF/0B7USnj/Rex5qLLuP66+Rw6PExDwwDDQ14CgQiBgCAz3Ly5lCy9MbW6bchWotUqMGQrJ61IAKm/a9RSmpps+HxhFAoJixfnTSKYkpLU8go9tbVCB6dHHm5NrbosmG+ko8NJusdWuhywqipn2mtco5Bx69pyXj0+xAtHrVx4x9vce9Ni5qZJ+6YaCl544YVceOGFWK1WHn/8cR5++GFOnDjB0qVLU/vs3LmTWCzG2rVrkclm9g/6sCI5Rp1OjssVel/mh3a7nbvuuovf/va3jI2NATBv3gK+/e0fotPNw2bz4nIF2bati3vuaTprTfq5eO/4zne+Tti6j988+1fmL6rg09deyLXXTp40JX0ObDYvet1ETlAopZNIqfSccNtXFnMsYXr7bpOsmUrXZzI9T00W+9xoNDIKCzPJzdXw0sunAYj9E+aDwUE3Dz33Fr97+kV6hwcAYaX05d17CIeiOHxDRONRpGI5BlU+lTlLMajMZCqyUMoliMQiYrEY4TCEIyCTC6RUJBIlS69ErFUw6vCn2naXl2cxZ042C2qNKVKxtW2E9vZRPOMhtDo5tbUmqqtyOHhwiCOHh+nucREJxzAas5lfY6Snxy3kg8RvuGFDMWIJ7N83SCgURaOXkZenZnw8TKZWwby5Bry+MNaBcYotWgIBNWNjGegG85BKFyEtidM13MeIf4ATvZ28dXQ/z+99nteOL+LKDfVcvmUFp064aWgYYGjYi1wmYdYsPR5PmD2NVjZvFqpR0/3NJGIRR5vsRKMT10z6anVHh5Ndu3rQahXodUqWLMmbRDA5nUHkMkE2YrFk8vAjrbQcHyFYrmfjxlJ6+9yTckK6FDB5nGmv85J6yC6DPb+Bx6+F+i/Duu+npH1T80F+fj7f/e53+Y//+A927drFww8/zPPPP8+SJUtShwwGg9x3331cdtllFBUVfTgX5nvEB80J8Xic7du385Of/IS33noLALlcwXXXfZYtWz6D1yvm9GknK1aYOXhwiG9/e/e5nPAhRnlFFiVBLfPLjKxb9xVMJhVP3fsUgUsrgLJJ+UCXlg+USukkUmoSRvhKAiNopDMaPSf3m0nKlJebyWW59cTjdYz4R2gcbKR5pJm93r2Ia6Xo9cUYO6uoNc/iE594OSXliwntQv/hEY/HGfQO0upopdXRyjH7MZpHmvFFfEhFUgoyC6jQV7DSvJLCzEIMKgMamQalRHkG6D/e1MmTv3uKxh1vEIsIkslwSE3Q60amykQsFqf2iceixPw2IuNWot4BYt5B4lEBP4kVWUjUJnSlVYiURkRKAxKZXOiOKxKRV5CJyaSawAgJo26bzYvD4aetbUToiprECAcnMEJPj5vRJEaoMdLUZE/lhI0bS8jIkNPQMEBXl5NIJIZYLMJiyWRw0ItGI+PSS8s5dsxOW9soZdWzMZeV0dExSiAQo7AwE8fQEGODvUhiDvzOQU4ebOTIq0/y1hOFLF61mLr1dcREGRw+PMxQwu8yFouzbVsXmzeXUlsrjAnAYEhgBMO7YATNNBghjWBKSlLLy9MwwiNpGGHBDBghIQesSlT7nk2l1NSYet8sv2A5yy9Yjn3Qzs7nd7L9z9sZ6h9izvyJZ+T+N/cjkUqoXV6LRDpzMyGJWEKeJo88TR7rLOtw+B00jzRzauwUj7Y+yv3N92PWmFlfvJ6LSi9irmHutCTV34IRhoeH+c1vfsM999yDyyVU8dXWLuHb3/4hGs2cfwhGOEdMfYixdNlcvnHnI/zqKzfy9U9fx9bb7mF2pTlFRqUTRyajhqYmGy5XEMfoRKlj8zHBR0enl6c6qCXNoEG42Xbt6k0B8uRxXc4Ag0NCJcR0JNR0xJXJqKG0RMvYaIBFi0w0Ndk5dsyOzyaMJ/4xSTofRlh7u3n0979i18vPEYsKgEAkURKPhYmFXSDqQqqpgqxLEatmI5JkIpUJ7dXjidMQjkSJ+0i0ahVej0aiZGcrsNli5JtUxOKCHl+pFFNdZUCrVZBsed1x2smihbm0tI7Q1z+OWAwSqTAhDoWinDo1KrSM1SkIh2OMOvw893w7Q0M+DhwYRCwWs26dhSJLJoaTKkZH/YRDUXJNKi69rEKQflrH6elxMz4eZmTERzQS5bzlZny+CNFIDJFIjF5nYSwjlwLzFj5xYzmDPUd4e/s2Xv3LUzz9p3sw5pewdPUllM5ei0Kh5dTJUfr7xlOTEZ1eQUe7EyAxHm3KLy0/T51WGRjE5QzQ1CR01lAppSxeknfGxKl2gSBZMmQrU9fnijqhneyKOjPl5XqKLNpJ+6XLAadbEUyGfcSHMSTiX5ZaeLZlkCvu2cN/XlzFzXUlwMyGgmazmdtvv53bb7+d7u5uDAZD6uH/ve/9J4cO7UOv17NlyxauvPJKNmzYgEbz/pPe2URyjFKpiEgkfsZYZ4p4PM7KlSs5deoUAOXl5fzgBz/g+uuvT3XV6OlxYTI5+MMfjnLo0DBwdpr0c/HeUVKi508//gwqVYzPfvdOIiFYVDF/2gqS5H/JnDCaKH9PgpDubhcyuSTl9bN+3cS1NhWUJydSTleAocFETpjJg2eaMThdAXKM6oRRtoOT3cJ99nEBIR9GxONx7nv6Vf7rnqfoG04sRohEyCQyQpEQQ64BDKp8ZhuWYFDno1MYkErEiMUCAQUQCsdRKESkn5ZgMIrRqGZsNEC2QcX8GiPvvNOPzx+hqCgzRUodbbKn5Ad2u4+2E6PEYyArFqeuj1AoyojDj1gkTNyHh70891w7sVic48ftuNwhVq8q4Nprq+jt89DSMkLAHyErW8HVV82hp8dNe4eTwYQUIykZNRk1uFxBNBopYrGIHKMahVyBVFbB5ZdVoDNGeOrlBva2HOOWb/0SpVzGefPms2LuQgoKChh1hLBax+nt8xCJRNHrFGg0skn+ZseaR3C7g2i18kkdJZPG+3vSJEjTAeniYi0D1nHqVghS1bpEe/G6FWaWJHKIpWgiJ6RLAd+rqs8W0NKb/W/MVb2EquFO6GmE6x6FzNwZ84FUKmXjxo1s3LgRj8dDKBRK5QOb7RC33nort956K8uWLePKK6/k8ssvZ/bs2R+ZFO6D5oRHHnmEW265JfWdbrnlFr7//e9TWChUcSbzwdy5Br797d3vy6fkXLx3mM0ZVEUNmHQC+bT4wsvwekPc+b07sQ07WXTBJoqLtWfkg3Q5VHOz4KMjgFChg1rSDBrSMEICkCef8y5XgMGzzAeXzrqUTSWb6HJ18dcj79CX30mo7DRv8jLhbD1DjT0AjPpHicfjf1fJpy/so8vVRaerk9PO07Q4Wmh1tOIOCb5+WrmWPHUeS/OWkqfJoyCjAK1ci1qmnpaISkbv6V4eufMRXn/h9VSuU+ryKZi7Eqm+DKczRDgcYXxkiIinl+h4P1HfMMQiIJYhUeehyK1Fri0iJstBlKi+UqolqFQygsEoxcWZuFyhCYxQPQUjdDhZtCiXlpYR+voEjCCdBiPodAoikRijo36ee24ajFCUicEgYIRQKIpGI+XSS8tT0s+eHjdebwIjRKOcd54Zh8OfMNcXYSrIJyrWMmdOFv/2bwtxj7l4e/sBhnvaady1lxcefgGFUkHp3HmojeVEyKd/VDKBEXSKBFGUwAhF2pRfWn5+GkZwBXG5JjCCUilNPd/TozZha2AwKFPzlRWJnLBiRQIjFE3BCGlywHfDCO/lPTWTBNCYb+SGL97A9f96PcP9w6gz1Klj/e7Hf6D75Gm0ei11G+pYtWkVi1YuQqlSzjgOiViCSWNinWYd5xedz1hwjOMjxzk5epJnTj3Dw60PY1QZWWtZy6aSTdSaapGJhYXxD5oPYrEYS5cupa+vD4DKykp++MMfcvXVV6fuk38ERjhHTH3IkV9Szk/ue4qv3HQFP//WJ7n+i3dwwyeWTr64E8RQfZ0ZjUaWkjTZ7F66uoWHq1otY3DIh07vmUQ0TQXkvb0edu8ewOcLYbFocTkD03bhm/r5NruX5mMjuN0h8vI1dHW7KbJkMDjkJZr1WW74wndZu3neR3uy/k4Rj8d5a8dOdrzwdNqrYqSqUiSaecTlcxHLBa28SAQSqUA+JRZLAOE1qUQkSDQS7VgBcnPVjDj8KenEuvOLOdI0TMAfwTEaQKuV03HaxciIj3hM6Hw4MhJAKhVjNKqorzNjs3tp3GOlp8eDSBSnoiKLmvlGBq3CSkRmhoy+fg9+f4Tdb/dzyZZZeNxBLBYtoWCUQDBKT4875UtWXKyluFhLIBjBYtESDAoyw9IyPT5fmI52J/G4sCrdesKDyTifrLJcbrzgy3Se3M+xva/w6rP3E4v8Fp2xEo1pDXHJAsQiaUoeQgUoE0aFSxbncfDQEIND3lRlF4BOL1xzhmwVc+YIHV+SbdQ7OpyptupyuYTSEi2DQz7B98aooW5FAVl6BU1H7WTpFZPIWZggs5QKyYxdJ6dWH3734ioeeKeL773YQmOng19es+CsDAVLSkoA4eG/Z08/ubnlmExd2Gw2HnnkER555BFkMhl1dXVceeWVfPnLXz7razM9Ghr62bmzh/Xri6mvn5B7JceWvhoyNeLxOMePH+eFF17g9ttvR6kUJmDXXXcd27Zt41vf+hZXXHEFEonwm6VXBmzeXJbquPJ+Nenn4t1DJBJx9ze3YnWE+Ncf3sn151/Bbf9yMcC0k526eiEnLKg1TvJPkMklZGbIJkn3kjEVlL/TYOXA/kGKS7TotArUmunT/NTVy95eD2qNlEGrl3AoSkFBBo5RPy53Lr/60re57pqPthPL3zNOtA/xo7ufot9mS72mkqopzCojL6MIjTgXiVg4b2IRqFRSQZ4dmDDjzsyQIhKLiEYmmCmFQvid7HYfVqvgAzN3rpETJxwpnzCfN8LQkA+b3UcgEMHvF8ztJVIxVdXCBPrgwSFaWx3YbT5isXhKHi4Ri8jLz+DkyVEcI37e3j3A+edbACgp1mG1evF6I/T0uFm3zoJCKWXU4aekOJNeg4q51QZaWh3EYjB7dja5uRqam+2MjfmRSiW0t49RLc+hUDOXb964Erk6zAtvvMO23Xt56/AhlDIlc/KrmJNfgyyagVwhJdugpLIyG683jCLREl2vUzA06MVSpE1d33qdcL3pdR7qVpgJBoT8NOLw09vrIRSK0trqINugRKuVk5erQS4XjldXV0BdXQGtbSM88UQbC2qNk8B40o9NoZS8a8fJ9GoTFl/JkhXz4eCf4J7lcNX9zJ0rVEK9Wz5IGqTv29dJY6MVpdLPypUraWhoYP/+/ezfv59vfetbWCwWNmzYwDe+8Q1mz/5gnV7/lpzgdrt55ZVXUKvVbNmyBYAtW7aQk5PD1q1bue222yZVeE2tFvugPiXn4uyioWGA/fuHWLp0I7fkaHnojodoPtLHzV/9TOr6rU/kg6SkyWbz0tWVhhEGfeh0k70CpwLyMzDCDF1ZpwJwpyNMf7OSUvcqsr2LcTlsjEh6GY1bMX/JSC4Z3BO5hyefepLZWbMp05VRpiujWFdMrjoXg9KATqF7X6RVLB7DE/LgCroY9g0z6B1kcHyQQe8gfZ4+ut3d2HwTz2ydQkeeOo+anBpyVDnka/IxqAyopWpUUhUyydlXtJ9q7WPn8zsBUBlKUOYtQZNjYWRslEDvfqKeXiKePoiFEEkUSDIKUOQtR5JRgFiVg1QqQSoVIRKJCaTlCZNJjcMRwO+PEAxG2bChhCNHhgkEIjgcCYzQkcAI8SRG8E9ghHozNpvQpXESRqgxMjiYwAiZMvr6Ehhhdz+XXDILjyeBEUJRAoEERkj4kqUwQmACIygUUqqrM/D5wqnrQOiG58HlCuMI5lO5sprixZtpOdKOtf041r6TuA8dBpEIhb4EXcFcYpXLMRj0gCD9BFiyJI+DB4cYHPROqvbVJXKCwXAWGKFUy+CgL+WNWVdXQFaWgqYmO1lZikn5ACbILOW75IRJ+YDpCdv3kgCKRCLyioTP7u310Npix1RkYcw+gmvUxavPvMqrz7yKTC5j3pJ5nH/x+Vy69dJ3vRYlYgk5qhzOLzqf1YWrcQVdtDhaONB9jOdaX+Lpk0+jlqo5L/881lnWUVpRywrM74kRjh49yssvv8w3v/lNZDIZYrGYa6+9lnfeeYdvfetbXHrppZMWrf9RGOEcMfURhM2ZjbH6m1iP/Yxn772VjRe+OO3FndR52+xeDh4awuUUjG/LK/Qpk1qNevJPNLULmsWSSSwaw+EIoFRIZ+zCl/75bW0jPPd8O7ZhH0ajGpVKmjK0XrDASEuLGJE0C9VHVAHyUcfAwCh/+M2DdHccp9iSxYkjuxgbGUIkViBWVyHJWI5YNQeRWGCv09OmSiXolV2uCVZKIhGRmSEjHo8jlUrQaGR4vWFMRhU6vYIBq5ekyiXZWU+pkODxhOjqdhMMRgj4IxSX6NBq5WRlKVm8KDelJz94aAixRExxsfAbqdUySkt0lJbogDhmcwZvv91Pe4eTVasLE0b1UQwGFSsuNNPT40avV9C4x4pYIsLvi6DTK/jsZ+fT0eHk1Ve70OvlWCxadr/dn2gvC+FwjKFBL3v3WnG7Qxw5bEOrzQP9TWRpriboPErAtQdXy71IpBryFm9iTtknKK3IoulohBMnR+nsdLF5c+mkVf4nnmyjdoERjVqKRCKisjKLIksmJ06MpnwQhoe82O1+rAPj5OZpJvmtJaPpqJ09e6w0H7OzdWv1pFWPqqocvL4Iu3cP0NnZOkmbn4zeXg9udwitVoHFkilI+y6o4JXjQ7x41Mqm3+zmizWFnDxgQ6eTp1YYpk7Qk5F82H/2s3dTWJhBY2Mjzz33HH/5y1/o6urirbfewmAwpIipeDzOj3/8YxYuXMjixYvJzc2dNEmb+jk7d/awc2cvwCQQcvDgEI880srcuQY+97kFqTH19fWxe/dudu/ezWuvvUZnZycACxcu5OKLBfLjO9/5Dj/4wQ/OmBxOrQz4IJr0c3F2caTJToF0KeW5Tp544zlqF2Vzy2WCt83UyU7SC2o6U8+eHve0JNNUf55Rh19YZR/xk6GR40vIA6auCqbnhO3bu9m7z4rFosU5FmR01I9CKaWiIotgMEamUoNUNPNq38c93tl/kv/4xWNopHpGg1YOtZ0gFouRqdBhzqggP7MUjexMECWTCZWxIrHwXE1GRoYUhUJKplZOhkaGYzSATCahvi6fg4eGicWE/YR27wECgYggp7N6cbtD+HwhtJlyZHIJSqUUi0VLSamW+TXGFEDMNqiorTUxMuJHpZJiNKpT27z5Zi9v7x5g9aoCens9nO4YQyqTMH9+Dmq10L1x165eFErh+NkGNWVlWVgsmXg8Qbq7XeTna9BnqbBavYQjQkXwyIifY8dsHDtmp/m4HblcQoG5mk2VFgYdw3Q6TnLC2sbR3iOU5Fq4bM1qliw5D6VCjkYj4+QJISfUrTBTWZkt5IMEkaTWSFP+aUuW5CGXSzhxYjQl+Rsa9tLV6USrVbB0WX5q2/TYuaOHpiYbdrtvUmVUdVUOPm+EEydGeafBSjAQmdaAfWpOwLRSkPY1/AYeu5rilV+lX3sLDz54PEUGvVc+mDu3hu9852aGhoZ48cUXefbZZ3nzzTfp7e3lgQce4Pbbb0/ts2PHDrq6ujjvvPOorKw8o8vf2eSEnh4Xf/jDMVpaRti6tTr13A4Ggxw4cIDdu3fz5ptv8uabbxIKhVixYkWKmMrKyqK/v3/a7oLncsLfL/bsGWD79m6CwSijo0E+89VPIlVq+ONPf8eL98VYWPsdZHLZBEaweTl4cAhXojlGfr4mIZGST1tdkv6nxZJJLJbACMo0jKCbOR+0tY3w3HPt2GwCRhCJwGoVMWfOQizqJVj7x6hcKsNQHmDYO8xIYIROVydjgTGi8QlSRiKSoFPoUElVKCQKlBIlcomcOHEisQjRWJRwPIw/7McT8jAeHifOZMl4hiwDrVyLVq6lTFvGItMiDEoDOeoctHItSokSpVQ5yR/qvaK/b4x7f/EsNpuLW269XiA4TsowVtThlxQSDQUYHz6Js30H8ZALECHR5KHMXYgqpxSVPh+PJ+17SkRkZsqIxeLIZBI0mWICYg+GwjiavHE8o2NIJEHCOdCkOIqz0odYCqfkYk77xcRNYkKZoFVp6NdqEZeLqCpSsea8YopmKTlxzINYPAUjlOooLZ3ACG+91U9Hh5NVqxIYIZDACCvSMEKjFbFYhN8fQaebASPs7iccFn6D8fEwBw8O0dbmEDDCERtarYzxcQlR1XxU5TVoZwdhvJOxvuPYjr/EjvbXsNctxVi2EJstb3qM8EQbtbVGNJo0jFA0BSMMJzCCdZzcXM0kv7VkNDUlMELzDBjB+/4wwnThcPhpbx9Dk6hWh5mrrJLH2HTR1zBkK2k+2MzuV3bT8FoDwwPDHNlzhJzcnBQxFY1GefSuR6lcUEnFvAqycrImzUHSP2dlwUp6385msLWfsoVBDFUeToye4I2+NwARcmceJZGF/NvGq7FYBHl9T09PCiNs376dnh6h0rG+vp61a9cC8OMf/xi5XP6xwgjniKmPIBr3WImQT/Hi7zLa/gtuu/ky/ufeJ1iyuCS1Tbq0Lr1bX/ksPW53kNZWB9FobJLZOZxJZlksmWzeXErDHivRSIxAIIJ1cJw9e6zkmzVceqnQ/j1dxrdrVy+9vW4C/gg+X4TSMh0GgxKxREQwGE34Bv3vM0Mec9h58M6fsuPFPxMOCSWl1vZMlFlLMFZ/kqKyBbS1OWfcXyQWyJpwJI5YTEqiEY3GCYWjlBRrKS3V43aHKC/X09np4lT7GBKJCJVSgjlPSbY+hFI6gk4tIeSNMuwMEQyEGQ+a8fnUqNQydBkBZpUp8bhG+elPTjHmDDN3Xg6f+EQlAM3HBP+YmvkTHRjTPci2b+/GYFCyos5Mll5BTw+0J0w1MzNkuN1BBocEs8rGPVZ6ut1otXL6+8ax233I5CIyMuRUzNZz/LgdrzdCJBolEo4TDIaJxUEmk1FQvppQaCWi6AjekbfpbHmdX+97lrKqpeRXbCHIbIKheErC0d4+ht3uo73dSfMxO0uX5hGNxjlxYgzHqB9DdmJl3RehrEw3aTXE5QxgO+2j6agdQ44Kk1FD7QIjzcfseMbDNB21n5FUkqTsgHU8tV/6dT6VDE7eL0vytETGgrw95OQ7b51C2y6Utycn/s88c4qXXupgy5Zybr99wltqaleMlStXsnLlSn75y19y+vRpduzYwaxZs1Lvnz59mu9+97upf+v1eqqqqqiqqkImM9HZaSA/v5rrrqvEbFazeLGGQMDAqlUmnE4ngUAAv9/PH/7wMvv3e+noKKS+vpCuriPceOONDA4OTjofSqWSDRs2oNNNjHGm9ubvp/Xsufjb4tDhYdzOEOvnXciyxQV845f3EYmF+Nbnrk1NBqZOdJITpsxMOUaTiqFhL339Howm1Rlgu7oqh5yEqajN5k1VXUkk0Ns3jsGgpKnJhnXQS12dmfXrNNN8nhvnWBCxyCN4SYmEZ6FWq6CiXD9tF7+Pe8TjcZ55dTffu/MxTnb1pV7PUZu5YN46jIpiVHI1Nvu7dw2KRCEcikyqlBUhlMGXlGgpKdHR0eFM5QSfN4JEDDk5SjJ1IsIiHzpTGLEswsHjJznVPko8ImNhdQmFRQJodAXGcPvg3vv7GXdHmTc3h5X1ZkymCmw2b8pTLGmWfu21VVx7bRU2m5d3GqwoFBJmlevJy9UIEr72Mbq73RgMSs5bnk9SKgLCNeF2h9i5s5dAMIJcJhH8E5USAoEIPd3BhLl4HLEIRkcDEI+jVxs4T1fPktgK3LEBTjta+c3Tj/Loay9y+flrmGOqwe2JEUyszi+oNfLsc6cY94Sx232EwjEkYhFGqzpB0AXJy1djNmfg8wo5Qa9TJCqmZAx5BSIvaaCeuvZmKMBIPuebmmy0dzjxesNn7JvcRq2R0tvrSeypo9fwb8xVvYhq9y8o4FX2vyXI3errC886H+Tl5fG5z32Oz33uc/h8Pt5++20aGxuZM2diMn///ffz9NNC5bZEIqGsrCyVE0KhDAYHa5DLZVx3XSVabYxly7SEQibq6nIYGRkhEAiwbdtxHn/8LTyeAjQaGVddNYfLLruMV199lVAoNOmczJ49mzVr1kySW53LCf/4aGy0Mj4eIksvGFYD3PTFaygqNvHjf/8xX73+q9z642/i9konY4R8DeXlelpaRhga8rJiRf4Zz+SpZFYKIzRYiSQxgjWBEfKnwQimNIwQEDBCVpYCpVJKUVEmWq0c51iIHEysKy4BIBQNEYwG8Uf82H12nEEn3ogXX8iHL+IjEhdIqEgsQjgWRoQIiViCTCxDLVKTo8xBIVEI5JVUiVKiJEOeQZYyC7VUjUwiQy6WI5fIkYllH1g6OGof5YWHX+DPf3wen8cDYjk/8xaiUomIj/cS8Y8ybj0AsTAiuRZpZjGSTAvSzEKhSkoiLFIEAgmMEI8hy/EizxlHluclozCAWOchIvWT7NE2DqhDEuJhKeKojHBQTsQVQIyIaDROLBonEokgK1HiVo7hFUXxZLiJSaM80bWDp20SRFE5msosKnIt5KsKCFiVxIkyvyY39fune5AlMUJ1tQG/P4LJpKKry013t5vMzARGGPSmrsWeHjfaTDn9/QmMIBMwQmmplgMHBgWMEIkSiSQwQgxkMjEmk5pQSIEiezEF1StYskBFwHGSlx5/lQNvvIMiI4vskoXoMy+kbtWsyRiheQpGcPgxpKpvp8EIrgA2m4+mJjsGgwqTSUNtrZHmZjseT5imphkwQizGwMB4ar/06/wMjJC4X9Lvh+kkgQ0NVvbvH2TZsnyuuGKigmiqj1Xt8lpql9fype9/ib7OPg7tPkTJ7JLU+92nunnwVw+m/p2py8RSbqG4ohi5OosRbzbZZgurVhWSpZdTXqIgHMihtiyXWWYdbr2bPkcfj720C6fWzcmK7fz7oW3EHovR/YdufKO+SedDpVKxceNG1Gp16rWPYz44R0x9iDFg9dDWNkp14odcUbeQ0sI1/Mfnb+DWGzbzlR/+DpV+zqREAwKDPDzkpaxMh1wu4fCRYQL+KOUV+jNY3Ok8pZYszsPri/D0UydwOAIUl2Ti90cZGvSmJl/pMr6kDKq52Y7d5sc64OGKK2anOqe99pdn2PX8KeRczqp1a/5ep+8DRTwe58+PPMJfHr0X28DpiTfECiSaJUgNVyCSaIhJJMyrMXG600UoOL2Jr0YjRSaTMD4eElZAtDLC4Sje8RB+t42x4R50shjhgIM9p2zkVX2a3Fw1BQUaeo7ex65HX2XXo9OPs+S8O+jtkaNWyzjy9pM88etnEu+IEEnUnHg7i0PbLciUJgqrr0KpMaLTKydJ1PY0DvDyS6dTZafDQz56etwcbbJjLtBQUqxFLBGh1SpSnkwr6gTtuFwhSZCdoFSJmTc3B4VSgsGgIisbVEox3d1uwpEYPm8UiURY7Q8Eo4jFBZjMN5G99lN4bAdobnyGzrbvYcwvpWTe5QQDF6a8sLKyFCgUEsacQVrbHCw/L5+ubjcd7U40Cc+DZNStKEj93Wb3YrP7JwCwUUNVVQ5bt1aniK/pfNLKyvSMjvnZu9fK0KCXSDTGooW5rFunmdRsIL1cF8Dd5+PSWUbeHBqjtwLaDRCMRFFIJQwMCJ2uBgY8vFukr26Xl5dTXl5+xrV5yy23sG/fPk6dOoXT6aSxsZHGxkYAzOYrMBormTvXwPHjx9myZREAP/nJmZ9VVXUTl112PnPnGvB4fAwOCn4CixYtYtWqVaxZs4b169eftc/V+2k9ey4+eNhHfOQYVFRVaVi71sKKFeuZVZLDt3/9EB29g/zgi59kaDAwyQ9qxOGnqcmG0aRCq5UzNChIvoSp+JkT8qnl6Ekj6Z/+bB/Hjtmx231oNHL8vjBJc9Cpso21awXZl93upb9vnIxMGSXFWubX5NDabuXR+17kmDWLJUs+93c4a39bdPcP8bWf/olX3t6PPzhxz2sV2cwxLCU3w4IiJqaoQFhkmClEIsgxqHG7Q4jFImLxCMSFzqturxd/ZBznwQGOD4jw+N34xLPQiYsoLMxg1DPG3Tvv4K7XpvflmpM3D5PegEIhIRgJ8e93/Sj1nkQkJXOnhpJnc9CqdCyuqmJzfT1Dgz70abIdm83Lk0+epKV1BJVKSigco7/Pw4DVS4FZkzIh1+sEXw59okKiboWQE06edBAOC1VhF24oobvbRTQap6paj06nwDHqZ3jISzAUT8kZk402cnOL8XiW4A272N28j0de3k6cV9hUt4J55lrsdh8vvXQa27CPrCwl/kCEztNOLBYtEOfIYRtx4IK1lklEa11dQeq76XWeVLdKEK7T9RuKMRrVKanrVI80gLY2B+FQhAMHBjl1apQLN5amPNmS2+3c1c3hwzYWLTKh1yk5cWocKq9mybK5FB18iKfW/Jiuxb8B+ED5oLhYx6ZNm87o5Lp8+XIcDgcHDx7E5XLR3t5Oe3s7L774IhKJjNra+5kzJ5u5cw3cdNONbNu2DYD//u/JnyWXq7jooscmySpCoRAmk4lVq1axevVqNmzYQFXV2ctvz+WEjz6s1nHa2hxUVycwwgrz5CqPpUv4/A++y6O/+DXfuOHfWXP9Z1i1fqGAEYYnMILbHWJ8PMxM+WCqp9SSJXl4vRGefjqBEYoTGGFoGoyQAPwpjGD3I5HAmjUW6uuF+7Pp7d3seGIXStFG6i9YhFwikEaZ8kxMatMZY4rFY0TjUeLxuFARlZyCi0CMGLFIMBQXi8Qf1qlORTwep/HNJp5/8AWa3mkgkjAJFMs1iJRGPKf+gss3DMQxFpWgNi+FjFLEiuwzCDCVFpRmFzH9CHKzE7nJjUgWIx6J4++N4zkpRRNQIXZnEHFGKVt4NZ4BBQpUnGp6hLZT78w4zvJ5P0GdncXi83J467V7OXn0tcQ5EiFWyJDrZJw0HUFsEGG8zIhcp6KxLZ8l3hpqcmooyCigsdHKyy9PYIT2dgXBoPB9y8uzKCkRGjJptYqUJ9OKRD6Qyycwgkwmpq7OjEQixukMkpUFKpWYri6h4ZLPl4YRAlHEYhEymQirXUxW1kLqrqtEGrHRcbiRY3ve5vG2t3jt8So05kUUzCoXMMKYUICxfHk+XV1CMwuNZgpGqEvDCDYvNpt/0iJZCiMkTM6nq2QqK9MzOprACEPjRCJxFi1KYIS0ZgNTMULyfphagQhCFdVU77epMXUsllkWLLMsk7aRSCRsuHIDJ5pO0N/Vj8floeVQCy2HWgAw16xHn1eExZLJyWMn+eZ1t874eRV1m1mgr6dwUYA2VxOto60gBlWJipzqHJbWLeW6S67jvOLzsGRaZjxOMv6R+eAcMfUhRnu7k+4eF8uqjHzta2Wp12+67X7+8JMv81+33UTdxbdz8dXXTWJqd+3qxW7309PjxuHwceSIjYoKPevWWWb0ikqXPu1pHOCNN3pxuYP4/REikTjr1xUztWtT8u/JFZVXXu1k165eKsr11MzPSX3WfT9rpHn/a+QVWD52xJTN7uWd3QOcajlCdPwQB99+gXG3K/W+RJmHwrAZlWEpPu/EfuFwjH17rTOSUhIpZGeJ0OkzsA54iUSihByv4rU3EPQNQzxKZzd07p/Y54sbP4U2q5DBIR/uXi29CHpjuTIDiVSOVCojFhcTjoiQySVAHIVCglIpRypXEwn5gDjxqBevy0vLYcFoVJa9kZqFhVgsmTzz4O94Y9vzlFfW0Duox+42I1Xlo1JKcYz6qU+YhNcuMJ5RMWSze5HLJWzdWo3V6iUYjNLT7aa4JBNEEI3EkUrFrFpdiNMZJByG7h4nACLiBIIR8nI1rEyUBne0O+m1zwbj1zBkd4H3DQ7svIOju/9I7qxLMJZsJCtLycJaHZ2dTkLhKDa7n+pqwyQvtenCZNSwbp2F5mMj9PW6cTkD1Mw3TmprnOxc6HIGcbuttLaNIBaLGB7y4XaHCAZjzCoTSpunViSml+s6RvxIJCKMOgXfWVbNS8cGeeX4EJt/s5v7b17C1VfPRq9XsH598bRjTfp+aDQyXC4B2E73AK+oqODBBx8EIBAI0N7eTmtrK21tbezb10J29nl88Yu1FBfrGBwMnrG/SCRCqVRiNBr5l3+p5WtfW524ltU0NjYyd+7clN/JTGOc6k1yLv6+MTAwjkgkYuPG0pQHwvdvvYlYUMl///EhGg+e5stX30J5mZHKyuxUPmjvcFKrMTIa9vPmW31kZSlYscLM/JozTTyT17dEIsbpCvDKK520tDoY6PcQDgvESF2dmWTFDZzpm5D08HnlFSEnlCfzj0nD6w0utu19i+w2LXf/4ONHTO3ZM8CON9rxiwc5eLKZXXubUu9JRBKKs2ZTYaxFKc5INa4IhmJYreN4PDMTU5kZUoy5cjK1cqLRGPbRMXa0bMMdcBJMdHRND7EkxtdvXo7TZWDv/j5iu4Vzr5DL0SgViMUSpBIJsagIuViJYyRIRbkYrUaKWqEiFAkRiUaJxiM4x100nRDyms8bZ3P9Siors8nLVzJrw6eZW15Mrj6XUascedSACDXWgXFKSrTULjCyoNaYqqJLJ25sNiEnbLlkFpGIcA7M5gw8nhByuRi3O0yxRcsXPl/LE0+08ZcXOiAUQSKFTK2MUDhKRYWe88+3JK7TMMb4fNaVlmELdbC3uZmX3t7NrNxZrJm3CpMpj6XLhOveORZMEFMiZpXrp5UhJSN9vDBCb58bpyvA/BpjqltTsksVQEeHkz2NVnJNarq63QzbfAQDUcKROBCfBrCIUkSvxZI5YcxuWYbpwjIy9txFzeFPg+40V1917bvmAxCet/fc04RUKua66ypnnNDfdttt3HbbbUIXscFB2traaGtr4+TJk/T0jLJ48SzWry+muFh3RvUTCJXMGRkZmM1mnnhiEyqVCoCf/vSn/PrXv6a0tHTaapJz+eDjER2JyvYls8yTMMKePQM0NloxmdSIRAa+9JP/4sk7fsO2+36NSftZRPq5kzBCa6uDigo9NTPkgxMnRidJn/bsSWAEVxpGWH8WGCGZD8on8gFAZ3MTrQcPYykvof6CRe/5vcUi8UdCOk0XNpuXhgYrDoef+nozxxve4J4f3jMxFrmGeBxiIS+EA0gyLSiK1qI2zMJkMdLbO552tDiyHC+qYgfqMgdS/SgSjZh4UErEoWX4wRCe40MEXW7gzEWIL1z5CzLnZ3H6tAt3r4luQCwWo1JlIJHIkclkRKNiAgFQokYUUJEtM6JTZSGTqQmHfRCPEwuECARCBIYFUDO75CYMi/2I8uw8cucjOA87ySzNRJOTRyRYhsg7C5VCDggkDMSpqTFSX2+e9BxM5oN0jNDR4cRoVKHVChViUqmYVavSMEK3EwCRKE4gECEvT8PKlQmM0OHk2DGh8YVKJWXugktYdtGV7H7lDbqPNWLrfJix9iKWb9pEbm4ZkQjYbGkYofZdMIIpgRGaR+jrc+NyBaipmYIREjnB5UpghFYBIwylY4RZCYxgexeM4PCn7p304ydjqvfb1GhrG2Hbti7EYhGrVhXOWGleMruEb9/xbQCCgSB9nX30dvTS097DyZYeckqr2by5FJNJw0BH+Iz9RSIRcoUcfY6eizaVc8Un6gBYV7qStUVrySzKpDfYS4+7h35PPz86/CM4DJnyTAok5YitBWyYW8c1q1ejU3x8FiXOEVMfYlRU6MnpduByBmhrG8HrE8rIjx7zoi76d8Syx3jnxf8h4uvhez//CaaEoXO6b9Qvf3kQrzfMQP/4tIbOEx3PAniHwnh9ERr3WOnocJJrUjO7IpsVdeYzqlGmC6NRTW2taZJhtc3uTbn66/Vnbxz4UUc8Hqft2GHu+dmdtB9vJBZxI5JqMRUuwudtwFi0nKB0BYFYCXGRaBIpBUKr876+iYQTj3qJBfuIh3qJh/oIBXs5edLG/Av/wIUbK2hrc3B0wEvQK2hsRWIZqgwTpvwClJocQjEtEqmcmvlGYITWnIspXr6W81aU8tnP1KZIlHg8jm3YR0aGDLc7hDlfw8Yf/5De3q9jNitRycI4x0ZwjTo43d5F85ET1K+rYcHCfExGDW1HD9Hecoz2lmOpsasysiFvHicO1bJk0U3ccP3kVdHkClhyglJZmY1OryA7W4laJSPfLHRj3LtvkMEhL9u2dQq+WEoJpaV6xsaCyGQixsaCGAwq5HIJtQuMmIxqvN4QY6N+QtFiVPp/YW39pxnt3UbzvqcY7f0rpotuYfGif6F+pTnlkQNMS7K2tY3QsMeKIVtJ/coCHCNCpcjYWACdTgGIUl5pAH29HgKBCG53kP0Hhhgd9WPIVmEyCT5pq1YXpHxU0itCkvtr1NJUtWE0GheMgn0R6ix6yo0aHtzTw8V3vcNPr5rP//t/9TNei0nfjyVLctmwoWTaUtepq+dKpZKamhpqamqmPeby5cuJRqOEQiFCoRDDw0FOnXIzb17OGSBHJpOxfPnyGceXPkbgHBD5B0ZBQQbjLqHyo7VtJCUt0oqKuaBiC7tPv8r3//QbHvnp11myZD4w2TPqkUdacYwIk6pFC6Pvas6ZrLpqaR1haNCLKVfNsmX51K0wT1p5fLeYlBMSn6VO+r7Fpyf1/1ExMubi1w9s494nX2V0fIQ4YMkpoizfgts7zmzTPDLjpcgkcohPdFNNhscdIprAEvF4jPGQE1fQgSc0gjMwgivgoNo+j1uvvY6SUi1v7+7h8X1Dqf11mkzyjQaUEg0qWQbVJbNZsiQvYVQ7yA3LPsPsciNf/MIiTCZNatIsmJDakUhIeUa9VXk3RUUZqDVi7GMuRsbctLUPsu9wJ5b8PObXCO2um9pO09k3RGffxDgkYjGzLSUUZhci1cxl/YYVqSqkJPhIShSSz0WJRMSC+SbmzM5mcMhLZqYcny+Mw+Hn8OFhenrdHNg/hEIhJjtbQ0mJDu94mL4+D+3tTsrKslhQa8RoUnPypAOJSIFFM5er163DQx9/euGv/HHXg6ysnc/5m25gYVU5liItvX1ujhweZuGi3MTi2UQku0smpRsWS2aqetA5FkCukGK3+VMAWa2REghE6O1z09bqoKPDSbBcjzlfw+io0GxkyZK8Sb5dyXMyvyYHvU6RJumLJyoWR9DrFFgW/gemrsdg1w+pL99D/Tf/CMqZJ+47d/Zw6tQYs2dnzSh9mJoTzGYzZrOZdevWTbv9jh07iEQi+P1+BgbGaW8fZ/5807SkV2Vl5YxjS47vXD74x0d5RRY5o0pcrgRGSOSDxkYrx4+PkJurxmhUU1Zm5u7n7+LuH97N/T+5hwV1S1mw/hpqa4384hcCRujvH3/XfOByBfB6w3i9ERobExghV83s2dmsmJITBAL4zJguH9hsXiJRIRdkZX38LD9eeHofb+/uJxDTse3lk+gkPYhEYkRiMbFohHgshkRbilRXijTDgihhkB6XIJBSojgKsxNFQT9iWR8hmwfP0QC254OERwMsvOE2zp9Xx9FGD10HHyQUPAGASCRDo8mluNiCRpODz6dBJJKwdq0F6OOddy6mtHQNl15azR13rGfbNqF5QiwWp7vbRVaWgpGRABUVej73uXtpaflvZs/WkpERwW63Y7fbOXz4BLt3N3P56n/hgguKMReq2XTfJl7veh1/lx+wAceQZcnQlZk4JZvH6lVbqV04Of9PixF0AkaYMyeLrCwltbVGtm3rYnDwLDFCrRGTKYERxoQOf4cPD6NUFnDVp68iHrucMWsHrz39Iq8+dB/GfBPli1fTL1kIMIn4TEZb2wgNDVYMBiX19QU4HNNgBF0aRuhLwwj7ExjBoCI3V436bDBCIh8kvdySzUSmeklNR1alR1OTnYGBcQoKMmZcfJm6WKJQKiivLqe8unza7RfWLWRX9y7CoTCRcASXO8yA1Z/q4pkecqWchUuE81pOOfF4HH/Ez4h/hC5XF/3j/bT0dOPJaKbV+jK/eRIMSgNl+jIqsyqZkz2HMl0ZBZkFZCmyPrB09oPGOWLqQ4wCs3ABHj5so6vbjVIpnN7quQYcDj+KslvpOV7Cvtcf5eaLD3PTrT8jt8CCxZLJDddXYbN7KSjMxOeLMKcyK+WJk6x+SV7ESxbnYbN7U6B9RaJqZiohlYz0G7Cjw0njHmtqn6SEMH3bQFCYrWvU/1hiKklG7fjLU7y+7S/4xoVuJCJZNnLzbYiV5bhFYuSWy3CLlRAX5BfTHUcsESOVivCN7CY8+grxiGPazzRlO7nh+ipeebWTUds6mLUQqSKPnPwCrrpyNlVVOexKyACicU1qUiuWaFCqxOQYBO1uOoEoEonIz9OkpJLJ39Ex4uetoyPULjBSe14Vteet5KqbJo/n81//f5y/6TLa25ppazpI69FD+MdH8Xe8zWBnI401FxCJCSvPukzxtA/b5J+LFubS1e0iGo2h0ytZu9aCUiGlpXWEsdEASqWEslI9V101m1Aoyhtv9CKTijl0aIjFi/NYt66YUDiKZzyEyylU+BhMhXzmC7/i6OHPc/CNR9j53D007niEZRfchF+yHJFYwbgnjMmoZt26yQ/PpqN2jhwZTrTLFXHgwCBjziCFhRksWmQi6Yvicgax2X10tDtRKiUoFIJB/awyPStXFeL3RSa1Jk8SXIZs5aSkYLWOc6zZgc8XorrKkDo+CHLYb29Wcf87Xdz6xBH2djr4/qVzkUnOXOVLrpzPtPrc0+PiwQePMzIilPlOBySmM9QVi8UolUqUSiXvvNPJ3r2DiESiSfvPZMT7bmM8F//YGHUEGHQ7sdv8RKNxnK4guSY1ZfmlGLNuZPfp7Wz+wnf4xqdv5Ms3bcHnjbBunVBqXVysZdThR5MhGFonCYYk4ZDKCQlCRK/zYDAoaWl1vCshlXxOOBMri6MOPwUFGQwMjJNtmHzfJDsMRWP/eGJqZMzFs9v3cN8zr3C4tSPFlc3Kmk9Z1nwUUhWRWBhJhnTGyVTSb0cigUg8wp6ev+IOjhKNn9nx0BdxpjxYBq1eNtVsQSHWUFlWyM03z6e6KmdCFrbAlPpNSoq1gmwgLErJDtIJRJ8vglYrx2zOSP2GIw4/r79uZ0GtkWXz57Bs/hxuuer8SeOZU1rI7sd+zpHW0xw4foq3DjTTa7XT1t1JW3cnHncEkz6PHIOK7GwlsVhs2pyg1kjxeQVSZ3QsQEmplupqAwqllFyTmjfe7MUxEkChlHLRpiJuuKGKV17pJBzpx5CjSoEZs1mQkHd1uRGLIeCPccXFq/nS1k088MzrPPTyy2z6/H9w8ZqlXLF6A21HIkSjUbKylGd0Skp2lxywjpOXq6G3z8OBA4M4x4SckJurSck4kttbB72MjgVQqWVoMmSpaq6SUl0qJ4BglzCUkEKl3zfJDpbV1Qaqqgxp0sFsTHW3Qk4FHHtS6Np33WNQMH11SPrzdqbn/QfJCVKplMzMTDo77ezfP4xEIjmXD/4Xh9ksOA8dPmyjqysNI1QLGEGplGK3+zl4cIieHjfnXXItWQXlPPv7+xjo/Bl5WV+ksDADvz9CZWXWe+aDJGhfsSKBEWbICWdghEZrap+khDB922ASI2g+HovXYyNjvPDYK+x8ficDnV1INSbiEg1RTy9j8SgiuR6pfhZSXRlidS6iKdVb8XgMudlNZqWN8d7jjO4cJuw4s0IFYJ50Fr/69tX8/vdHON28DpFoKfPmVTJrVgnXXFNJfX0hDz7YzKuvdhMIyGhpcQBxxOIM1GooLNQCE949NpsXsVjErFl6TCY1Op2clhYHfn+Yxx47mZhnCguaF1xwAWm9FAC473f3cfDgQQ4fPsw7De+wf/9+wmNhRg4NMHp8kAc3jlHjW8q60tXkZ+veHSMsyqWrS8AIXm8kdQ20tIwwNpbACGVTMIJsCkYIRfF4QrhcAkaQyyXU1AjdIecvqOeaWy6ko6WDu//7IfZuew6p/BUs81eh117ORRdPNtduapoGI4xNgxFcQWw2Hx0dUzDCLD0rVxbi90/BCAmCy2CYBiMcS2CE6skY4f34a6bL/z5oN8DpZIlisRiFUoFCqaDt5BAnT44hEokm7T/dfiKRCLVMjUVmwaIV5pbHYlYOHe8nryKMKMvDiH8ER8DBS50v8UjbI6njKSVK8jR5mDPM5KpzubDkQlYWrDzrc/FB4hwx9VGECAzZgj+IyxlALhNTPTcHjVrG7Nm30N6ygH2v/g93fe96qpZ/nlUXXo6lWEdfr5tQKEp1tYHCQm3qhnCM+IWyQEmiLNA42T9HLpeweXMpXl8Em907iXzK0ivYs2cAECpG3nqzj2PH7Dgcfspm6RmwjtO4x0p5uT7VnSGQ6NoW/weskMdiMU4cO8wb2/7C6399DrdzdMoWYsSKYsTKWankkuyuF4/HIeoiFuwjFuwRKqKCfehKP4c6YzbaTAWOiAq7TSClsowF6HLKKa+qQZlZSoh8yisKsdm9GI1qlq9cmCKU0n2NauYL/k8uZyBlWr92bRFJw3Jg0u+T3iExWUkFgknrkSPDeL3hGdn3XHMRueYiVm8UuuocOzrAzlffZmyoGY/bQ15edoq8eew3n0Emk1Fbdwk5dVemxpCMdes07GkcoHGPlVAoSt2KAupWFPD0M228/nofublqsrKVaNRSQqEo3vEwcoUk5VcFgjQJwJCjJhAIM+Lw03zMzvCIkg3XfJNLP/GvPH7vnex8/h5EkgfJn30NVYsvYcJUYCKSXmeGbCV9/W5sNh8KpYTMTAGwGXJUwAhd3S48nhD5Zg0KhYSjR+0Eg1EsFmFl3e8L03HaCXHQ6QWj58OHh1m0KHfSOc/P06Q6WAaCUernGydVZGVrFHxt/WyePdLPE/t7OdLr5L6bF1OQpZ407vr6wndddW5pcTAyEiAnRzXj6vnUjhdTYybjwZYWBz/84R46O53cfHM1v/jFBdMef6Yxni2QORcfTgwMCHIxrXai06rbHUQkEnHhxhKCgQiLh4p4fMfL/Pd9j/DmvqNcMHcDC+cXMeoIYLP5Wbo0H6VSitMZxOEQJGQjDiEnSNJKxdMnJ5s3a1Pd+JIypyRRlZR1JP1+DuwfZHTUT9NRCSJEFJdoWVk/sV1YLBAB4r+PEuOMGBlz8fyORh58fgeNTW1nFG6pZZkY1GYUUkHWJBVPgKVoLIInNIYrMIIrOIIrMEKGMoO6kk2o1VJ0IgWBTi/ReAS1SkFlSTFZqhxmFRRRkldIdmY2Iw4/Pm8EkUjE176wWaioSZv0za8xpnycUibF5gyuuGI26VKZdHna1O1hcj6YanCfDJVSwcrFc1m5eC4gTEJfe/MkR0+d5Gj7SeYVLEAiFnGseYRjp9v47wf+xOXrV7KmdilFRZYzrhNhbCK6u9zU1Zu5/WtLsdm8eH1hjhweRpMho7hYAFIjI/7URDopO33xxdM4nUHM5gyCwSjBYBS1RsrAgI+S7Nk8+l8/5HD7MX56/9P89a3/xpI9i1VVq4lGDWeY6ScrBZMVU3v2DNDf70EiFrFoUS6LF+fS2+tBrZGmqnEVCjHhkOBdI5dJ6E1URet1Co4cHiYO6HVKWlsddJ52otcpUt0AYaKDZTAYnUTuWiyZwirXnIvAUAGNv4UHLoQLfwTnfeGMFbCPOie8Wz545ZUufvGL/QwMeLn55iq+8526M459Lh98/MJgSGAEVwC5XEx1dQ4ajYxAIILd7uPoUTudnU7k8lyu+ep3aHj+cX522w/JtsylevWlkzFCIh+Ip+SDdLnW5s2leNNyQpJ8yspKwwgaKW+9lYYRyvQMDIzT2DgFIwQSJP4/cK0iGAjS8FoDzz/8V1oOHJmEVyJeG2J1Por8FUi1pYiVWYCAEeLhcaJ+O1GfjVhoiFjQhuXfysiYK0YUUuA/oSPsEGw1cvOKyDFUUFu7ELW6FK83h/nzS+npcWGx6NiypZ6cHCWf/OS8SffP2rWW1LlvbLQya5aerVurgXiigmrCw6enx4XJNHEPJiupOjudnDo1xqlTYxQWZs54f5aVlVFWVsa1115LT4+LV189xenTRzl1ei+dY50YpHqOBnbT1Po2vd/vJVtnYtnqCzDWrzsjH6xbp0nJSkOhaEri//TTaRghS4lGk8AI3jByuSTlVwVpGMEgYASHw09zsz3ldwbg9GeQU72ZguhcAkMH6Ty4g9+2vsNY9w1cfsvlqDOEOXfS68xgUNLX52Z42IcyHSMYEhihK4ER8mfACP4wHR1OAHS6KRghrZo5P1+T6mAZCESprzdOqsg623iviqqz6QY4tcp3akwlFdP3e/LJEwwNjXPBBRY+/en50x5//lwz8+eaU/+Ox+OEYiEGhsZo7xtCmj1OTOHHFXThDrkZ9g3T6exELpGfI6b+t0V5eRZlpgw0ailNR+243UHKZ2XhHQ/R1GRj3ToL19y4Acuscvb89Q6O7/411tNvs3zTV5DIDfi8YWQy8aRy9l27ehmwjlNgPrMssOEdKw0N/ag1clQqCXKZBJc7SF+fACbMBRmcPDmKSimMJ1m9JVdI8PmEGz4UjrJrVy+dnU5On3YSSHQCjMenN279sCMWi9F65ABvv/Yy7+z8K/YhK2KJjFh0YsVCpLAgzTgPScYSRFLtpP2jgU4iY9uIB/uIR91nHF8at0J8DpmZctbceBmH95WwblMdthFh1dUy10hFRRZvvNFLR4dzEhGTTkglYybSaWpMZ9adfty+XjdarQJD9tm3YW9pc2MbK2DBebWpKrvmYyO0NLfT19kC8RidJw7z8mM/Y82mS7ly62fR5pSlxtHT4055FSSr6669poprr6lKEThJeWiyFDUpw7PZvfh8EVSJNvLj42HEEhEgVIS5nAH63KAvuZk1potobniIgZYHcPZvx5h5G8M1ORxvFlaPpvpHPf98O4ODXmQyCdYBL01H7axbZ8Fm9+HxhMjLE/Tlu3b1EgxGycyQYchWpginRQtz6egYY/v2LtQqmWDSm60645yr1FLeeKMXtytI8zH7pM6HABKJmPOLDcTdERptLjb9Zje/unYBG6rzJv0OUyf06f9OBxEzTSZmAhrpx9m8ueyM/XQ6OW1tDjyeMH/+c/skYupsfETeixA7Fx9uFBRkII7lINUbOdok5INZpiwsRVo6O8c41mynolzP17beyEhwJf951wMcbrubq4YvpjhrNiMOHwqFmMWLc1Pdy5I5wTowjnlKqXhvr4cdO3oYsHrIzJRjMKhwuybyQV1dAXsSsg6AfHMG1dUGenvdjHvDeDwhwuEYx5pH2LWrh+5uN2KFMKH8e2KQ4ZEx/rKzkT+/9g5v7DtGLBabREhJxTLyM8oo1FaQrco7s9WxrRGH34onOHZG+/Fw3EdurppxT5iSEi23ZF3D6royrr18IU8/fSrVbAGEqk5tpj1VwTa1pB/O7MQz03bw7m2me/uEfJBtOPt80NvrYbAnglExi/++dW2K7Ortc/PES2/jcHl44NlXeODZV6iZXcKXPrGFmy5dy7gnmhpHMBChvcOJRiOjukqQDH7h87WpybpcLkl8ltC50THiT5E4Pl8EpUpKeYWe8fEwErEodY06XUE8nhC56jL+ddPnaOpq5uW9O3hiz0OMxeqZu+A6Dh4cSlVvWSyZKf8ogN4+D01HbYhFIpzOCQ8+q1XoKpiXp8HrDdPe4Zxk9p78XgsXTeQElVowbs82qCblA3Wi9bhCIeG550+h1cpTnQ9Tv1ksn37jrVSP/xnlq9+Cnga44l6QT2zzbvmguFj3oeWEqfvqdHJGRwX5pdcb4cknT6aIqXP54OMZ5eV6SnR6NBopTYmcUF6exXgaRqitNdLUZCcSidHT46bPKmLh5k+iLTjEkR3P0/jUr9GJr2blxRsnMMIM0qGGBivvvNOPRiNDpZImOpylYQSzgBGUSmE8yeotuTwNI4QmYwR/YvE69nfCCFNj0OrmK9fciq2vN+1VEWKlAZlhLtKsCsTSiQXFyHg/oeGDxPx24pEzDasDp2LEepZRLT+Pz1xcwou+I9x88wa6uoLs3NlLRYWFpUvzeeSRFg4eHKa6Oudd7+mZSKepMd29nTxuba2R555rRyoV09LiOKv7s6XFwZtvDhGP5/K5f/k2mzeX0dU9xp/fbOTFE49wvK8Zd6+L7uZ2/vLAn1h/+Xqu+vRVZGTnTo8REtV1yS6wyZyQlIdOwggJIs7ni6BMYASvN4xYnMAI+RpcrgANDYIXlVoto6jMjHnlDTjtF+Lp288ff/knHr37CeovvphbvnzdDBhBjNXqpakpgRFsM2CETBkGgzJFOC1alEt7ewIjqJONPKbBCCppyo+tudlOTc2ZVU8z5fF32yb935Pw5Qz7z0Q8Ta2MnBoajZT+fjc+X5SGBuskYqqtbSRlFD+VOBOJRCgkCkYHwd4hp7KyPHX8WDxGOBpm2DeMXqmfdrwfZpwjpj7kyMpSUFph4OChoRQjWjM/h127eujrdbP77X5KtlajUGbwya/+jB0vvcy+7Xfw2qOfZ9kFn0SpWolcJkEul7BkigdVcbE2VcaeBNPt7aP093vQ6QUg7hkXOi8pFFKKLBnUzBMYZ58vjNsdpKIii6/ctjhVRji32ozN7mNoyItMKpQ+2iJq3EMCYfRRRTQa5fihvex48Rne2bkNr8eNSpNFTlEdecZbcAx1EhvdjjRzGeKMpYhEUmLBPiKuncSCfUi1q5BkJMrq4zFiPqGLgUgkJkNfRHZuBcrMEgzmCmZX1zA0HE1JHa++Zgkg3KTJ82vIUbFooWASmCSSpiOb0uO9tpnEeCe2S9+nfmXBJBLsbCLdjyx5PJ3eg0Jt5LovP4nIf5A9O5+nt7OdHS88zY4XnqZkziLmLLmJ8zdecMb+6ZH+IExKPYssGeza1StUN/kiRKNx8vMzqJlvxO+LIJBMOanvOjoaYHQ0QH5+Hpfc/H2O7DvEyQN/4om7v0bjzscwVdyAPmcOOr0AvpqPCW3QKyuzKLJkEgoJrcZrFxhTqwrJhJPsKJkc/5gzSOMeK2VlOsrL9eza1cOA1cvs2fqU+b/N7p10znt7Pfh9UfafHqS/f/yMzofJbcKDAbaU5rDPOc7nHj7Ep1eW8u3NVUjEAgB+440+tm/vYuPGUj75Sd2kCf7mzWXvOYmYqePFewEFlytEVZWBzk4nV19dMem9s/ERmQ78JCdHOp0clyt0bvX8QwxjjhqjXszBE5FUPkj6BT373ClOn3bi84ZZvtzMuvMWY84q4Ie/e5jHXn+W2YWzWD5rNaGQFr1OOamKJr26JJUTTBpCoSgdHWN4vWH8vgjjnol8YCkSZCR1ifL8XJOaoUEvVVUGNm4sSVWh5OUJkqloJIbJqKKoLJPHGz/afABgHXbw7Gvv8KfndnKk7TQikYiy3BI21l6IyJvDzvZn0SlzBDJKmcd42IUraKfXdYJwLMiygokOaO7gCO6g8OzNUKnJz84nV5dLeWERmy9YgDimZmw0QF29meqqCT+5dH+v9NemI5+mi/fabuoqaPr2K+sLsBS9v3yQJGBSeStxPKcryFUrt3D5+nqOdR/jhV17aT7Vzef/311861d/YsuqVZw/b82M3zl57PQ/k50bLUUZPPFEG4qEZKKq0kC2QYnJREoqYTJp0Os8HDo0zMiIj1gc1i05jyxJEY0n9vP6of289a8H2bz8fC5esQaJWIrTFQSEfDC/xsjKeuE6HXX4WVA74ROVl69h8eLclPxRo5GxoNaIcyzInsRKPwhVU44Rv7DYVJTJ/PlGKiuzJp1zk0nDiRNj7NrVjUQiprAwE71OOek37O31cKIjSGzOVpbkz4GW5+B3dXD945ArVK69Wz5IPus/ipzgcoXIzlaxaFEuAwNerr9+QgpzLh98PCNLr6K4OI+DB9MwQk0CI/S52b27n5KSagBmzdITDEbp7nYhlaqpu3A1qAqxHn+dbY8+xpE3X+cz3/wM8+cL1+HUfAACRhgY8KSAuCctJxQVZVBTMw1G+EoaRphrxmZLYISEPKrfqcY9CPG/g7x71DbK/rf2s+Mvr5NVUEXbkWaGTrcRiwQAEWJVDtLsuUg1ecQCo0T9dgLdryI3LkSqKxUOEosS9SRILDEozAoyLXr02aUUqJdzXvUa+k5JuOry2Vx11Ry+/HkhlzQ0CJVT69cXU1iYycaNpUA8dU980Hs6GdPd2+n7LFmSlyKuzibmzjVMGiNAaUkWc02V9B76DPO/cjEd7ifYve0N/IN+tj25jW1PbmPWvGqq6jexZuPSabvQJWMSRkjMI4qKEhih1ojXK2AEszmD+fON+P0JjFAzHUbQUF2dw6lTowwMRFlQexHrr7mcR+58hF1PP8PBXbu46cu3oCuYi0gsEjBCURpGqJ0GIyQ6SibHPzYWpLFxCkYYSGCEhPl/UlKevF8aGqwMDo6nCC/dlHwA713NBNDcPJKqylq3TjNpnyVL8t5zPjHTXOK9PtvrjVBYKFgJ1NebJ73X1GTn6FE7wIwVXdMRYiN2P729HmKKEL2BERZIXR9pTjhHTH0E0dY2wuu7ehj3hqmpKcVk1LBqdSGhcIziYi0Ne6x0tDsBWLluIzHJLGynn2Lva/eiM7zI2stupaioJnWspEH08JCXjtNOFi3MTfn1KFVSwRciV8OmTaU07rHS0+tGLI4TjU5cfA17rCgUklTHsyTRkPTk2TYwjkwuYc3iPHYMCyzyh510QqEgh/a8zbZnHuHIvt0E/ZNXLsLKCxkJnw9hEKtUSDSDxPwdRFxvQXxK1zKVmdLS8/F6w4yMFKGdtZUvffUyFp+3iOOtbp599hQuV5DK+YVnmIMnY2q55VQPpL81ZmK8k3E25Fcy0quvpn6fic8px2Rczae/fBttRw/x/KP3s3vHy3SfPEzdhutThNvUB1Ky6ipZyZQcV92KAp54so2jTXa83jClJToyM2VEozEOHhzGah3nvGV5k75DX6+bYDBCUaGWIksm1oHZjI7fTkFOP9a2x9j/8tepOe9idJd+j95eOHxkOCXBS6721y4wcuLEGH39booKM6lfWZD6DEOOioqKLAw5KpqO2lMrO3K5hEytggIEAJWUa+j0wiQt+f3M5gxUagkikRilSoJGLZ3k5ZY8n329HrraxthyXh5Hs1X88Z0uDvWM8YetizFplUA8UcEh3CMzrXa/33iv48yda+B736ubFiycjY/IdBOl5ORIKhWlGh+cAyIfXrR3jNHUFCROXHheOfyYTBpWryokHIoRi8c4cEAws163rpRb7Tfx5sEmdjXv5NG3H+TilSu5Sjvxm+7ZM5CS5vn8ERoaBhJm0prUvaBSS1m9qoDevnF6eybyAQhVU/osBTt39ACC/05vr4cFtUYqvFkJ750BJBIxS5YYycxOrI5/BCCks2+Qh/6yi8dffpOOHuuk9+RiFZWZ6xB5BDK4wrCIEd8Abfb9+CPjZxxLKotSbMlixO6nOn8hOUYl/3n7BqIBBc89147LFWTVikKuuXz6fABQXZUziQCcSVL3QePdcsLZkl8wedV0qok4kDL3tljmYzJdzJjLw5+e28Fdj75E98Awh0608qXrrk6RSOnfM3nsZDVRMpKyjieeaOPAgSEMBiXnLc8H4M03+hhzBli3rjj1HSyWTNrbx/D5wuTlaRLkkpv5hUu45sLz6fYc40/Pb2dPywG+cuP15MaraDpiT8nvLJZMLEWZVFZm4fMK8qakT1RyJddk0qS6D7a2OiblgxMnRrFYtCnfrGg0js8bSX3HY81CTujvcxMJxzBkqygv1wvd+dL8r4RqNg9NR0dQ16+kek0F7LsX/rAWLv4lLNrKR5UP3utYydduv33JuXzwvyja2kZ4/fUexscTGMGkYdWqQkKhGBaLloaGiarW0lItg4OCOXllZbbgt3NxJXq1j2f/8Cg//LcfojPlc96Fm5DJltLV5UmBYQClUopCkYYRGq309EyDERoSGCHR8SxJNCQ9ebZtG0cmk7BmTR4vtSuAj2axIhwKc/zgcfa/uZ+dL7zJyOBQ2rsHECtzkBrmI1IaiHr6iAXshKzvEJriESjS5VNSOh+/0kY4b4zQiJmMUg3lJTVkjSwieLKQoXYxa5eUzdjsZqoE9pOf/HDvg/d6TpwN+ZWMJKG8dm3Ru0iBl1BcfBO+sI//efJ/uO+e+xjeN8zp460svLgulQ/OwAg2L82J52Wygshk0qTywdGjCYxQOg1GOG8yCdPXl8AIRVqKijKxWj2paugFi0sR3/5FRgatHHrtRX77vV+iNZqprNvMNbesm8AItQmM0OemqCiT+vqC1GcYDAmMYFDR1DQFI2QqKCiYghF0CYyQ+H59fW7C4ViC8Deh0UgneblBAiP0eWhqsqU6950Z8Ul/vhcePNt4r+NYLJlcf33ltNVY70Y6JmO6eUiSDAvLxiEqoUV5dhV8HzT+KYmpu+++m5///OcMDQ2xYMEC7rrrLpYtW/Z3+/ymo3ZOnBxFBCnJ1EWbyjAa1UIbV7UMTa0sVanT0urA67+Ra1dfQ/uhP/Lc/d+kec9j3Pj5r3Co1ciB/cMYDCrBvygObncwBaY3rC8WOmcsEErzysv1NLxjxTHqT1WXNOyxcuTIMJkZcsbHQ2Rlqbjs8vJURVbzMTs+X4R8swaIU1b7CVZf/ElWrpoz85c8yxi129i5bRvb//IyvR37IDaNoaA4E5FYSTw6lnpJJJITdb89sY1IhkheiExdhNE8m8V1dVTXzCIUjtHa4mBF3aqUNM1iibNsaf6kc/CPiA9KPE23z3TVVzN9jkgkIqegio03fJ+rPv11Du1+ies+fQNSmeC98vrLzxGLx1i7+QokEgm9vR4OHxnG5QzS1GRn8+bS1IM2ef4ikRhvvtmLSCxmYa2Rvn4Pw0Netr/WQ26ehiy9gvb2MYqLtakqMJNRg0YtJdugwpBdzqbLNrHjhSdpeusBvrZ1HXUbP0t+xUWEwxMd85Ido44ds+NyBTEa1UJ3wrYRmo7aUSokeBNS0/TqKUOOig0bilOfm+xEmUxk6QTYlVdUpOQ6Xl9k2qq2QDBCR7sgb/nEdZWU5WTw1KE+Lrzjbe66fmHKQyCZ8NMnEH9La+73moi82/vv5XMyUyS/Q/oK+T9T/KPzQVvbKO0dYcRiiMVISaYuukjICbt3DxCNxVKVOSWlWkq6S/nCxs/hlXfxh2dfZOl1+/nCdZu5/dNX8eqrXZw4OYrbFWT1mkLiJHLCwSGKi7WsXl3Igloj1VU52Gxe3mmwpqpOkrGnwUpTkw2lUsrgkBeTUc2qVYUpidaoQzCUDgajREfg6Z/+Fwvmm/7mcxEOR9h79AQPPvsW297cz9CY/YxtxCIJCokKsUhMJBYWuuoBroCdofHu1HZqWSY6pYEio5klNeXMKy1lzZriROVMLnUrzCyqKcBm87J0Wf4Z5+AfEWdLPr2XVOC9Vk2nfk44KGZ1TR03PLqe/a0tKOQyli4VSCWvL8B37niI2265nOKC3EnP4aEhH9FYjM2bS1Pk1YJaI52dTuwjPvbtHWLt2iJUKin2kTjHm0fo7HQxt9qATC5BoZRQMz8nJY+7/obKVOe9oeF8SnTVbG/awdfv+C1Lqqq5Zs3FZGcYUt3ykuOIRuMMDXtTIKO8XJ8ilgCGBn1kG1TUJqqnctIkGlNlFMnzl/SgKi/PwmhUs6DWiM8r5AO9bsL/ymTSTJY73jAXNvwQ9v4OXvwSdO9m7aofzZgP4KPLCefywQeLf3ROaGqyc+LEKCIRKclUMh+cODGKRiNLtaM3GFS0tDhoa3NgMKi44oqJSunFK/6b733jz+x/7RVee/RPNLz0AkXzVmDOW8vBg4J/zYYNCYxQm4YRGqw4HP4UQG1oSGCEzDSMcNmElKe5OYER8gWMULXyYi687ipWnT/7bz4X8Xgcu93H9u3d7Hh+F32HXoAzJIJikCiQZc1GWShUesaCLoI9r6RtIkOsykGeYcRYWMScDSYCc/YSFw2jCampVG3hyxfcTIbXTN+pKIGyCMeLRv6hDQE+CPE0UwXju1VWTv0ctUzNZ1bfzuKsGzkceI5H/nw/bXMaeWHIx9Xaq9n30j7kCjnnX3I+YrHQVOnw4WFcrmkwQu0UjCASsXChib4+D8PDXrZv7yE3V0NWVhpGSFQGm0waNBop2dkqDAYlHR1ObDYftYsrWHvhf7LtuUZeefRx9r9wP17rIS6+ZSsOt+JMjGDSpGRqSqUEb2IBIp2IMRjSMEIiJ0AaRjg8DEzkg+T9kpQvApNyQiAQoSORE6YjpmpqjOh0E+bq6Tn53SR17xXvNYd4t/ffy/tqpkh+h5hCTigg/shzwj8dMfXUU0/x1a9+ld///vecd9553HHHHWzcuJGTJ09iMv3tE+uzidoFRux2X+rvyZjOt6itbYTTp52MjgbQ6vTMv+B7rNiwlXde+SM/+PdPk5lVjChzNVH9GqqrDcjlQtXTG6/3smiRiXXrSgCBDAPhwktPXACGbCVarYLx8RCjo0HkCgkuZ4A9jQP09LiJRGIoVRJKS3TUzM8BRECcQFjBZDenmSMcCjE82E/niRYONLzJvt3vMGbrB6II2u9SxJnnE3PtSB0/FTEP8ZiHeGgw9ZI2OwdpaAuG3GJy8itw+/VkZalYsjhvUgUNwEWbJnvxmIyaM87Bxz3ejXiCydfOe5FY6cerrMzmE5//Sur1UDDAvb/4AaP2YR79/W+pWflZVpx/PosW5rJ3n5UB6zhNR+1UVeVgs3uxWr2YjCrc7hBjYwEikTiO0UyKCrU0NdlwjPh59dUuqqoMHG0SrsF16yypcvKqqpwU+dO5d5igeDmXf341p488xq7n7iDL+BeWXXgrXp8pVanU1++mpFiLRCqe5PWyJ1H1V19nnrb6K/1cpPuAuZxBymfpAaFLosViTFWdpRNY6ZFOeolEIsp1Ki4uNPCO3c3Nf9rPl9aWc2V1bqLjyuSJwLtJKM7GbLanx8Ubb/SRNMr8sFcmpo7h/UyO/rfFxyEfVFVl4yWGXq/A6QxOIkcslkxWrSqYRECEQzEGB71EIjHMBcVs++3PeHXfO9z5yIvc/fjLzCuaS7akHKnUwPwaI4J5tQu7zcfixXksqDWm7sXqqhyunOZZmG1QolRK8YyHUka2drsvJdGKRuNUlOtZUGvEavUCcfSarLP+zvF4HIfTzcmufnYfbOEvr+3j6MkuAmHBvF0uUZGrKSJDFmY87Jy0byweTVVE+SPjyCTZaNRS5pfNw+gwUl5USJm5gKBPTG6ehi1bZp1R2ZTeecpk0kx7Dj7O8X6MT8/G7yL9eJetWzHpvd8/uY3fPPwCv39yG1sv2cj8giUUmPVUVmYzsK0L68A4R5vsKaLTavWSmSmnt0/wsmptdVBVnYNUJqajw4nfF8Hh8JOdpSQOXJAw+02uOt9wg+BVcmD/IC5XlM9fvJXL1qzhJ398lG//4VdctHw1syuvoXK2kd4+D/19bgqLMqlbYaanx52S9R1JACWVSkpVtYGV9eZJ33/q35NgJOlrtXBRbqJTk4z5iX3TwUp6TJU72jwyejVbqSopQnP8OYqtR5Cu/gNHBUeBM56nf2tO+FuIrfeK/0v5AD4eOaG2Ng0j1M6AEUxnYoTmZhuBQGQSoM0pLMVYcwUqiRtNqJXmvds5tfdVckvnsvqSC6hbN5lwM5nOnB8bDFMwglyCyxVgz540jKCUUFqqo6ZmAiP4Q2LOtv4jHAoz1D9E54lOOts6ef2VQwx0dyNWGBDJNETHB4iHzvSIFSIGUT/xyISBttZgQGw5D2NBAcaCItwBFfpsOeblY9j0xxgK9WDJtHBl8afZXLqZoswi1DLBd2p+4utfddXfvvj+94r30zDnbJ4pLS0ODu1zsGLFDXzj4X/ngeYHePzE43z/ze/T/oN2/G4/D935OAsuuIzl5y9i0aJc9u4VfKWamhIYIZEPTKYpGMERoKgogREcaRjh6AwYIbEg0NhoxW4XlDQVFVlIM8xc9sXb6TzWxJFdL/DLr3yD2jXrMc9dRXGxFqlUnLp/mprSMEK9edrqr5lygssVpLxcD4BWK6M+LZfMVKE0tfpoah5O7j9VWpsc60ySurP1r5pawfZhxnTfxWTSMOofRSaRfeT54Z+OmPrVr37FZz/7WT71qU8B8Pvf/56//vWv/PGPf+Rb3/rW32UMVVU5GHKE8nKhs5gQ6T43yX83HbUL3c9kYiIROHZ0hPKKIq770t1c6jrJcw/9nuOHHsM7+Gf+ymau/9RWMjJMQl4Q/kfTUTsHDgxhHRjHkKPCMeJPVYRUVeWkvIxe39WD1xsmI0PO4JCP4SFhBVKtkRDwRwmFoynPov17mrEPHKXYoiToDxDw+xh3u3COjmAw5VG5+HKe+fNJmg734Gn/FsRD058MkQJl8Y8QSTKJx+ME3G9NbCvJRCzLRyTPQyzPR6y0oFCIKS7R8Y1vLAXWvicB888S70f2l97ZL/28pBNWMxrn2b0sPf86dm/7EwPdJxjo/hot++r4wa9/htlcMcn4N73SSCgNL8Ex6seQrcTrC2MyqgkFPWRohM5N1oHxlMdB+viSYzAYlLS2OJhTZebiLT+h8fwrefnRn7D9sa/Sf3IjX/rPHxEIRrAOeFlQa5wkWaxdYKT5mB3PeJhAMJoinXp7PSnNuV6vYGBgHEO2MkVe9vZ6GBzyUlmZDZCS903n+ZUeU1cWens92LrH2VSRzclIkLte7+CZN7vIbQ+QIZfyxS/WpgDDdBKK5ETBZvNy+rQLm803oylmS4uD7du7iMeFZDadme4HialjgH9+icbHIR9UlGehMwvX4uLFudOC5/TJS0urg2BQIIvGPWF6OgN86foruaC2ntcONHDvU9s45G6iy2chd7aLUmM50Wg81eFl165eIa94wylT6RGHn6NN9lQl1cr6Ajo7XZzucCKRijAZ1bQkpFAatQR/IMrqVYVUV+Xg80Y4dnyIzsEeLMUavP4g/kAQz7gPh9PDkGOMb37mGo43eXj8iTZ2tb7C4HgXM9mlV2QvYrZhESKRiBP2/XSMOQEQISZDriNDnkWmQk+GPIsMhYY5s7PYdFEJZvOK1Pf5sCdiH7d4z3yQNvGdbkU3GemyvGQnvalRVVrKkupKDrae4P7nXkYtf50bNmzm0i23wGZS1w1MVBr5A1HmVhtQq2VkG5T4vGEkEjFSiRh9loKFtUbc7jDZhjO7D5pMQk5Imu6XlOhYX76KZfOqeWrHa9z355c4cLKJr998EzpJAQNWoUtuUkqY/F4LF+Wyb68VhyNAMBBNnYup+SDboGRlQuqRvmCzfl1x6twlK6RmWm2eKvHs7fVw4pQbKtezZGU1HHwA0/ObaO//NA0NFyGXSyaRSH9rTphKbJ3LBx88Pg45oaoqB0NCgpo0YIbp80FTk53x8TByuZhIJJ6STSVldhs2FBMOxxCL81i16gIqyr7O3T99isbtu3jqjjt47ndKMnPLaVmymHWXLGfu/CIcDv+kio36+gKKirS8/noaRhj0MTwsdPCLx+PU1xdQk/BH1Ok87NvdxnB3OyUWDQF/gIA/gMflwTniJLcglznLVvLMMydpOtTN2NGHpldLANGQV5DnaUsRa/IJ9mwnmTtEUjViZXbqP4k6V8AIxUmMcAG9vR5yC2ScDB3h9b4dnAx5mK2ZzadrPskFlgvIz8hHltap9X9rvB/ZX7KzX/L1ZMzUpCdDnsG/L/53rp5zNf/5yg8YWjdE6JUQvadO03vqVxx/ZyE/uudrAkZIXDfApEqjFEZw+DEYlHi9YUwmNaGQh4xEd1erdRqMYJqCEVodFBdPeC1qNFJyc+tZsmYJnYff5rkHnubYnj2suvwq/vMnW1ONT2prjTQ32/F4wgQC0UmVsqFQlIMHBUnokiV5qcZiyZwwODgFI0ypmJ0uJ0yHEdK/k83mZdeuXrq7XamumFOrzNJJ6eRYXa4Ag4M+XK5gqiPgdNK65HlPemCdDaH1XjF1DMnv8veOfypiKhQKcejQIf7jP/4j9ZpYLGb9+vU0NjZOu08wGCQYnPAvcrtnYuzPLsbGgjTtHqS1bQSxWIRGI8PpFFjkTZtKJ7UqTpo5e71hDNlKcvM0tLY68PnCHDo0xOLFc/j1Q0/Q1tLOXx5/hCPvvMhXb34WXVYOlQvXEpm9Ea8ni9oFQmn92FiA5mMj2Oy+1Ip5VVVOCnwnZVXRSIxAIEKRRTDDtdu9DNv8tLY4uGhTGX+64/ucOvyXmb+kWIVU10gs0EUs0DUzKYUYsbIUkUR4wEgkIhT5nwVxJlJFDpk6PYsW5VFSokWrlafJ8syTiIP/C/F+ZH8zgZZJ5nqLJ7yf0gmroeEweRWX89WfXcHbL9/H7lefpK99D5+9/Hyu+dQXuekLt6FQqhKlpjby8jSY8zWJSjrhM+x2H52dLhYtNrGg1pSSxOXmaVIPfBDkec8/345j1E99nRmManLzAsjlEkxGDZddtZYtV6zhD7/5Ay8/9iu+dtOFXPmpbzB/wfIzJJhVVTls3VpNwx4rSoUkJe1zu4OMe8IMWMcJh6KEwjGys5UUWbSTSLH0c/V+NN7Jc6dRTwC75TlqxN4oe6xObEUSMo952LmzJwVCppNQJFe7Zs3Ss2KFOdVGGCYmDumms1MNLD+M7klTx/DPKNFIj49DPrCP+Bjsc3C0w05rq4PqauGcH28ZITtbyZYts1LyIRAmAUlzcktRBtGoYGibNKK9cs0GvnTDZTzxUgPb9uzmiz+8B4izcM4crrywjhG3hvkLhHs1Eonxxhu9LFyUi93mS1XVJjuvbd5cyp4GK5FoDKlEjFYrTN7tdi+2YT8trQ4uuqgMjTbOv/78+4SiMz3n4cUX20EEzoANT2hsxu2kYhmGtC56Rbo55GjMZCi0GLQ6ior0FBUK3WZOn3bS2+tm7VrLpAqo/wvxfvym3o3ESidikrKcM1ZDM/P58hX/gn1TH3c9+TTd1iEe+OufOXj6MPf96MupTnmtaTkh36xJVOvB9u3d9Pa6qajQU2DOmCSJsxRpU9/D6QrS1uagqclGXb2ZqioDIpFIyAeJ77uy7jN87V+2sPX2X3P7r+9i+bwFbL3w8jMkmCaThvXrNJjNGvY0WFEoJbzTMEBHh5NwKIrbEyYaiQmVWwZlahxTz9X79f2YlugzLQJ9EZ5X7uDfC+5h+0grPzl2NcDflBPSQeRUYutcPvhg8X5zwoedDwDGnH4Ov95Oa+tZYISEmbPXK3THy82djBFAANpJkstiyUSXreEzX/sEG67egiTq5M2/vs2eHQ00PPcQDc89hCE/H5NlFoF4FrbeSkqK16buv1AoikQipiiRe4qKMmhtdeD3RxLEqXAv3/tfd9JxePocCoBEhbKgjVhwlIjPMSMpBSIkGUWoyy8HQCwGsViGSKZBqtKiz9ZSW2uipEQnYIRQjNZWBytWCBUtvrCP4fFDPHXqTUKxEDU5NVxRfgX1BfWY1CbEIvHf/Ht9XOL9VDLORGJN16Snp8fFtm2dCZK7gGs030K2ZAmt656k7dmjjL45StfxI3xq/ae48Ys3cuO/3YhcIZ+MEcyaRCXdFIywyMSCBaaUX1lu7hSMoElgBIc/YdStJjc3MCknAImKKi/LNl7C/Lo6Hvj5fbz+xJ8Y6TzEbT++jZLZJRMYocGKUilJyeXc7iDj42GOHRshGo3i8YRS53G6nDD17+8VyZygmbL4kzRm93hCBALRVJUZTC+pS+bq/HwNlZXZuFyBMxac0j9rUVrTk/T907d/vzF1DH+rH9YHjX8qYmpkRLjwcnNzJ72em5vLiRMnpt3nf/7nf/jBD37woY1haMjL/gODjI76MWQL1UvJtqw6rYKtNwvdNpI/+NQL1O8T2nDm5U/cMFVzK6j68Q8ZGv46zz25g5ZDu2g/vod9rz/DL8ViDHmzyTFXIVEUMtS7mJpFgnH6dODeavWyc1cPGrUM0BCLxykt1ZOpVWDKVWOzexlzqRAujclmgqmI+Ym43kSsLEWqX0cs2INIJlQ9iaQ6RBIdIqkOxGqkMjG5JjUbN5YmqliueNfzN1WWdy7OjJlIrLMhrNK3WXP+r+j94r/yq+//Jy2H3uLJ++7kvNXrmbdoGU1H7XS0O1lQa0zJRZOVWslKO3NBBjdcX4XN7uVgApyUlekwGTWCof62Lnp6hTJwTaKqqqfHRTweR6OW4vVF0KilVMy/iM+VLuPg67/j0bu+zZz5K7ANfoETJ0onyTbTZYECKRVCIhFjylUTCEbwjocJhWNUVxsmdN2JsSQ7CyZ91c42JgG7tH0vqs3HqJTzxsAoziVafMVK4vH4GW3rAZ599iSPPNLK3LmGlDFlehthEEipBx88zsiIn4suKuOTn5w36Rh/q5luQ0M/O3Z0o1ZLSe8q888cH4d8MDAwTtdpF729ItzuIL29bqyD4wwNelGqpFiKtKxbJ0idktdsemUIwM5dPXScdpKfp0mRCV/7/EVsvWI1f91+kjcOHKbT3s7/u/shvvObP6LVZLBiQTWFxnxi/gyKyuTMXyAcLx3gJ6uhtr3Shd8XZtYsPZkZcqLRGAq5YBhts3kpKtAhE6velZjq85xEq8gmS5WLQWUmHAuiU+SgkmWglKpRSNUoJCokYim5JhVr1hSlyI2ZJlH/18ioDxrvRmJNlxNmWq3eaCnh1k+t5/u/eZrfPPosR0908v3fPsZf7xXuh6NNdto7nNQuMLI+mRMODtHa6sDlClJWpk+RWK+80klL6wgGgzL1ud1dLg4kVq2n5gO1RorPG0n8Gef33/saL7zeyK8fe4Jv3/cLbvNfS/47FeTkqFPVTzBxDZ84MUogECEYjCKXi6ko1+P2BPGMBzGZ1Gf4fLS2jbBrVy8Lao3TttyeKaYj+oQvZCRS/3UGm55kA2+z4IIe+ur/MO0xnn32JM89186qVQUpQmhqTkjPByCAyHRi61w++GDxfnPCh50PQPBD279/XMAIBhUjI376+xMYQadg69b3wAj+BEbI00y6rkG4Pjs6nKmuZVVVVah0RvKrV+MeHeNE03HEwUEGOzsY6muga/9LvHDPLzAVmMgtyEWiyCQQVtJxUI4mU4NCpULsD6GOgzQY4E+/HUKvkzA8YOcMS470iPoJ9L6GSKZBrMhGpMhGrNAhVuchUZsQyzIQy9QgUaJQiCkqErwR002sZ4qLLirDF/bx186/8kbfG0RjURbnLuaqiqtYkreEHFXOtPOw/0sxE4k13XNjKsktvLeeb1Zeyat1T3HPq/fQ/3g/7uNuHv7Nw6xYt4I5C+bQ1GSno8PJggVpGCFRgTqc8AM0mzO44YaqhIQ6DSOYNAlD/a6UVPQMjKCR4vVG0GikuFxB8vPViflPHoa87/Dnh1/n8I7n+Mymz3LTlz7Bjf924yRZ4P9n79zj2qrvN/7OjZAEkkAgQIBwKbRAS0vpRUttvbRVW3VqvW9ep3Pq1Hmdzs3LNp0653TTTee8zbqfl02nztVL21VbS+8tLS20hRYIECAhkAQSEiDk98dJTpMQ2qr1zvN6VQSSk3NCzvmc5/k+n+cjiFIhjmBUk5Wlxu0eRKGQitsCxH0JTxb8NPUAxq4J4e2Xl6eJ5+NYqK5uZ/VqC2azVnQl2mwe0TEFiA4st9vPjBmZLIgZevJ5w9XDQqNSKSNyyu9XgW+VMPVZ8POf/5xbbrlF/N7tdpObm/uZt5eZqRGDt8vKDHR1eqndZWN4OCg6gQ7tjAmiVMooyNeOelxbm4cDrSn4FKez8AdXM6kwwLJn36Kns5a2xk30O99i9zqBHOtS01mhzyQz24QhLQW1JhlNcjKW1gG6m134tQoGbDJsXb3otAGcPU42Le/mrb+68bhtRIpSEnkqkgSTIDwl5CBNzEciTxcv/qkGJZdcXCZOdBvH4XEkOVGfFkciWMU+xlxYzDFL7sMn+S8aZQdTKoU8gopp6QSDI3Ez0goLdcKFNqLlL0xOwsG0y5c30bjfSUKCjJKSVCqmpVOzwy7YZq39+P0BEhPlYrBtSYmJX//pb2xcs5IH77yVfbt+hC73bHbtPo9Jkwy0WvqZU2US+8DDwpbL6aOj08uxx5iw2YWRxnJ59CrZumor27Z14fEMHTL4L97fJNL9FTm9z5iuYUm6hhP8Jl7eZOG1PZ10vLCZJy6ajk4VbRt/880Gtm7tChXe0SOBQbg56O72kZamiks2Pk/uR0uLi7/8pYZ9+3qZODEFqVQKtEYJY5+3LeTbgqNdD7Kzk5CO+Mko1NPS4iYvT8v+/U7RMRUOPD/0DYBQE/ILtFGPs1j62LXDhdyTzeULZvPBcxO5/Z63WVezi4amLtZs3cmA38cLH4JapSTHmEaqNgVThp6MdB26JDUS5Oyx9OBy+2npV+PzD+F09zM0Msg/q/u44y99+AMePEMHnQIyiTzUbpdCckIK+sR0dIlpyCPaJQoKkvnlL+Z861vujiaOhhU/FvE+W7E3sLGPmZI9nctPTGFXxwaevPta8eflU4VrRWxGWrxg+d11Djo7PKLrbmetnZ077Qz6A+TmJos5aBZLH9aOePUglbuu/x7XXHwit/3uWe576gUytCZOLF3Exo0dKBNknHpqAVVV2eJxqDVydoRWyCsqjDhdPvr7hzGkHmyVAuF9Xh7KzoKxJy/GsADSSAABAABJREFU+3scKtvLmKWHzB9DawWZW18kc/NSMD0FZWdEbffNNxtYs0YYQ/+Pf0wXfx7bivNl1gOjUchKDDt2w6Hn4/Xg6NYDgMwsNbNnC5PuysoMdHV5qa0NcYSQE+hI6kFBnHqwZ08PLS1u2tv78HgEl9KyZXX09Q0xbVo6lfPnYrG4OeeaqzDnqNiyfg+D/Xacti5sHTbamztob+nC5/UyPOQnGDF1b/+6g3sgkUiQyBJAmoBEnohUkYQkIQmJIgmpIhmpUo80MQWJTJjel5oqCG6fNw/HO+RldetqUZCamTGT80vOp9JYiUH17XL8HY123VjEu27EilWRj/kJP2FR3iKuTL2Zlp21SCwqcsuEz39FRTrBkZG4GWkiR6g4DEdojOAIFenUhGpCxxg1IfzZqamx09ajJ6X8YlJ6t7HsT8t446X3+P5Pr2HBaQKHCQtb4ba0RYvysdkEjmCzRU+EX7fuCDnCIWpC7PS+yPP4cIts69cLUzgTE+VjthCGHVjhyIZYfBqXdbzjWr68ifb2frKzk0LcvjtKGLNY+tBmDpNl/OJrwrdKmEpLS0Mmk9HV1RX1866uLjIz46ugSqUSpVJ51PYhJUVJZUyw4NlnF4uk12b3jMqAikT5VCHMFoLY7J5oEcGcjDlPiCMfCQR5f2U/kqS5TDp2IZdcUsY7b9exY9tOMlLc6JI8NDU2023rpc9pw9Pfh6fPzaB/kGAQeuRSpBIpMkUi0uEU3E4JgaCK1IxCfnD1bIxZ2RizssnJn4Bak3TU3p9xCDhc2PnRxFiCVfgzmZen5fjFp1ExLV38mUrhYvkLV2E94TpgsdgSGt73BQvMUeJN5BREi6UPqUxKil5JulHIBgl/zjdv7qCjw8POnXZmzcokUSlHq00QL37HzF/IfU/+h8fv/zXte19nY88WWg/8mCGEAlc1Jzr43mb3oNMfvHiGVxQsloM5UkqlDKlE+HooQTD8N3E5/eI2w+/dWLle/W4/FSoVaSVG/tfYzSmPreHpiyupMB8Mil66tDjqazxE3hwcbTKwe7cDuVzGxIkpLF1ajEqliGobAT53W8jXEV+HepCepiZdL4Uko3hzEpmTY7H0YbN5RmVARcJkSsJuE1YfI2E2J5NnFurBcGCEd95uIlObwwyz0P7gHwywcesBktKGKJyooHpzE50OB81tdg60W3H1eXH3eyEYJBiUIGuVoJDJUSeq0CVrhFVMuZ7ywhIuOqeCPJORgpxMzKb0kLg5jqOJo2HFPxKMdQMb/jzm5WmBfK6rmEVBTpr487/86zX6PH58gycDBwUdc27yqODxcDtq+CtIUCRISTWomH98jvjcAwecWDv62by5A41GzsRJBoqK9OL1PFWfzPO/vRlzSjGPv/J//HPzP5iadQwTDFPQ6pRUVWVHHU9aREuTmWTstoGD9SDCVTI0OIIyUUZennZMQTD893C6/Oh1o0Nt42Z7SSTYEsvpzPgJJc7XSHj9YjjmGjj5AZAJt9tfx3owebJBdE7I5RKGhwUnzLepHsCnrwlHux4ApOhVVJwd7XY4++ziqHoQmwEVifLyCI5g84wiyMFgkP7+QYaHR1i2rI7u7gHS0lTMnWsSxYDERDkDFek0WORUVk7j/Cvzxe2H9yM3N4lBv5/9DQ5ycpJYtqyOfft6KSlN5577jv9SXUneIS8ftX7E6tbVDI0MMStjFheUXEBlRiWpialf2n58mTga7bpHgkOJ3C0tLhp3y7kh9RHeLH6Ffccs5zfr72dOwhmYZQb+89SDdJx6HpwzV+AIxhiOEPHZnD07S5wEabH0IZVKSUlRivmBY3KExGiOAIIoduCAk6YmN/LMYymcX0Trtv/yzL2/prPxe/zojh+RpBXul2KdR1EcwRjBEaQhjnCIBSKRI8TkPxmNmjGzHo9kwWlOqE7OEevlaMQbjHC0EP57ZGcnMWeOSRx+ED4eELK3ckZk48LUp0VCQgIzZsxg1apVnHXWWQCMjIywatUqrr/++i9tP8L5N+Ex9h980MyGDVaCQVi0MI/Wtj5qamzY7V5x+tm6T6xiFo9OrxRDmgFqd3aHpscksGhhHh7vMDU1Nvr6h0hLU3HJJWUY0lSYcgwMj8zgxBPNDHiH0WzvonJ6xijLX7z9/c9/9tPvGeLUUwsw6nvp7rKiSdKOi1JfED6v7fKzIlKYibSghoPGwwLMrrWP09XexAf/uJ3WfdU8/NSjNDV7Wb68CalMwrx5OVE5YOEpLza7B+vObqaWGzCZhM+qGGyYpkIqlTLoD9DdPYCty4skU0NuiFxv2dqJRi1nOJjA1bf/inffmEft2sexbP0lxTMu45hjrx51LLU7QyPDQyJSeNpH+DXr67uxWNyoNQn4/QFqd9rp6PRGiU9hoTgvTyv0djt9o0SoQ7VJ7tvbS0lJKjctLObF6hbO/et6LpiUheKAh0WL8jnnnEmHnf5yJCvg8SYzHcmq2uTJBi64YBKTJxtoaxPysKZMSRuVK/Jtyxj5utQDEPJ5dtQIn7GEBBk7d9pYt85KRqaapWdPpLq6XawJ4elnn6yz0hPKyAkEgnhDI5Dr6rupXmcl1ZDIwkV5eD1CPajZYSfbpGHRolSmVaTT0uymp8fH/Hk5pKeryUgoRatNiLphPNS+ymRgae1neqUBb9COf2iI/JyMMZ83js+Hr6ImRN40R9WDiw4OnrBY+li9bi8vvv0hwWCQldU13HTBxdxbuoRP1rWzeVMns2ZnsvTsg6Pjw+2o4Sl4JpOGxYsLgaCYTVVWmgZL4S9/qcHhGMDpkqJUKoR8xIgwV7VGznGV5Uwy38Wzb73N/7avw+5r4fwJ18U9JqfLj7PWx9Ty9FH1wGbzYGntY2BgCJlUgndgeJQAFQ5PD9cDZ5ysDzhM6/wBGUPFVzPDuAo2PQOtG9k84VGWf+Jj4cI8/vGP0w/5dzlSR9RnqQnx6oFOlyBe/yMdU982fF1qQuS4eIMhhiMsyqO1NYYj2DysW2cVs3h0OqUY0gxQW3uQI8ycmUFpqUHgCH0RHMGgwmhUU1QkZIoNDIS7IqIFpmjhOolcs4H6+m402mSKSxJZdEoB+2r30WPrIX9iPlnmrC/sfRoYHhAcUpbVDI8MMyNjBheWXPitFqTC+Lztup8VkdePsDg2Z46JV2/6DXscP+An793MCs8ruP7aT6elnXef+SOW+loeee5n7G9yCxxBGuIIEe4fkSPYPFit3UydGuIIngiOYAhxhMEQR7B5kUg05OaGOMKWTtEJdeKJZhSKNvr7h8jPn8Kk8glI+upY8c9/Ur2imtt/dzv5ZZPF6XUgCDpjcgR1iCPU2keFj4eFYpEjxKkJRxKlElk/Iq8BsfEN8XAkjqjIbYaFviMRxszmg9OhY4818ni0mWPE+xxlfKuEKYBbbrmFyy67jJkzZzJ79mwef/xxPB6POIHji0Zvr5/Vy5totwo28eLiFDZusNLZ4UGhkOLoEcZlSwDfwDBbtnbicvrYtLkDl8uPRqOIyhwJT0ZzOHwYUhNxu4dobXPjdPpIT09Er0+k1+mnZocdr3eIY48R1M4UvRKd3jzmTW6kQFGzw05nl5dsUxIpeiV/eeRxaje+y4VX/4wrf3pL3OeP4/Ph04SdH02MlTcVRvj/j5//W154XMPa91+hbvO/ue78Xcxc9HParSqyTUkMDgZ45dX6Ua6/8BS8rEyNOGYeczI2u9AfnZSkICdXS7ZJw5wqkxiEaLH0sXVrF/19g0hlEkYCQVS6icw9608M2N6k+sO/8dbIboryHycz2yy+VnhqoE6fKL6n4Yl9q1a1sGGjlc5OL8lJCvr6BmlqdlOQrwWC4vtQU2Nj+/YuPJ4Mrrpy6igXFhx5m+Sdp07ipQ0t/KPOSqJjiOEVo8eDf1qEbxRWrGhmyxZhpTe8zSNZVYskOS++uEuc7nTvvXOjHvNtxFddD8Lh55t2B2hodNJu7SczQ8O6dVZ6egQ7udmcTHU1IIEB3zBbtnTidPnYvEmoCZWVGVRUGMXP2o4aO9u3d6HVKtFqhdV8d5+f/j4/TqecmTMz8XqGUSRIyc/T4XT6ycvXMmNGxpg3J5E3Lztq7NTssFNcpOeE43M50NbBBXf+Co0qkf7tb34p79t3EZ/Hiv9Zcbh6EP7+RCbxr0n38JP7n6Czu4dfv/hnJBonmYoy3G4/DQ29vPJK/SjHX3j7mVnxpwU6XT6yTcnIpBIMhkSmlKeLr7+ztpvt27pISRGE2b7+QY4vO4mirCLe3fxfrvj1r+nxXcXVFywW3RvhqYFBQK9LZObMgyLXli2dWFrdbNrYiXdgCI1agdstBFtnZqkJ14TOLg/W9n7arf1cekkZZpJFx1Qkxvp7hR+Xa06G9MshrRi2vcQU6xm8XnM5KzntK60Jh6oH39Y6EImvuib0OgdYtdxGe3sER9hopbMzxBEcIY4gAV+oHrhcPjZtOgRH2BbiCIYQR2iN4Qi9fmpqQhzh2BBHSFGi0x2CI0TUhJoaO52dXrKzk0hJUfKnu/9E3aZNXH7bj7nsxguP+ns0MDzAx60fs6p1FcOBYSozKrmg5AJmZsz81gtSYXyedt3Pg8jrR6w4VmIo4emqF3lo0yNsuOw9slTZdKxuZ+faVVz7vSZmnn4J7e1BsrNDHOGV+lGuv/AUvKysCI5AspihlJQkJydHS3a2RnTvRHGE/kGkUgkjI0H8/hGSkxOYOtUYync6hkuuOY3f3/F77rj0Do49eQHaguORJyjF6XXhf8LrtbBhQ4gjJIc4QpObgoJDcISrpo5yYcHh60HseVZTY2fHjoNDyj4PwudqTY2NxkZn1DaPxIkdue+rVlnE/YpcoDIaNfQM9MR9/tHGt06YuuCCC7Db7dxzzz10dnZSUVHB+++/Pyrs8ItCZ6cHqUxKtilJzOAxZqgZGh4hOztZzJ0KY+vWToompIijk/PytKNIcOX0DHE1pKnZTU2NDQmQkaHB6vGwus9CcITQzV8wblgzHHRyCQFzbvGmLC9PS+1OO0NDI9TssONwCPvndPkZx7cLh8qbgmgB5p5HH2PzWWfw+7tvpvVAA50vXMexp97EkiUXU7PDzo4aYWxxuLiUTz1IKlxOH9u220TRCMDtHmTSpFTxpiq2pa662orF4kalkqFQyEhOTiDVoGPuWb/g7AvP4fe/vIkfnXkiSy66laWXXIrZnEzRhBQcPQNo1NGXsrBo5XL6SU5SMG9+Dk6nH7fbj04vjDDX6YXVcYvFjVwmxZCaGPUe1IcCcuO13EYKu5HnWVKigmuOn8DLqw/wCb28L/FSunwfjZvtUavanwbhG4Xs7GT0emXUyPFPu6oWb2z5txlfdT0Ih5+nGtKp0CjQ65U4nX5KSlLYswemTxds7cXFKQwOjZBhVLNnTw9qjYKsLA1ZWRqq5pqiyP600JSmVEMiEGT7NhvNLS6cTj8DvmGq11tJTkpAJpMgkwmh617P8KhQz7AzalpFOlZrP9u22YQpOqHthyc/HWgXiG9E3Mg4viWIbQ+Id+Ma/vlMMlkwdwo33P8Uy97+H/c+8TJVFVO4dOF5+L1SakJj7A+GmA+L0+ucLh/bt9lEwQgQBatFi/KicizC6LD209ziQiaXMDIC/X1+FAoZp8ybzh03LuCh5/6Pa+57khff+Iin7r2eiikCyZ5QlEKPYwC15mBNCN+c+3zDyBUS9AlKKqYb0WoT6AyNCjebBQEqIUFCc7OL/v5BLJY+UdyKDEyPbbcdlTcV+T7mHwcphbD6cX5X8WdqVN38+r4ACxYVfmaB6mjVhO9aPYCvviZ0dnjFtplwBo/RqGZoKIIjdMVwhKIYjhDzGausjOAITSGOIAlxBKuH1astBINCBm4UR5gZhyPUjMERakMcocYuLqo4nUeXI/gDfkGQsqzCH/Az3TidCyZdIIaaj+OLR2wbcaw4VlyYwXOFv2eVZTH36u4labqazhc7ObDnAO0tD3Pc2T9gyZJTReEliiNELDy4XD62bbMBoNNFcgTDaI5gHJsjpKQkoom41iPXcN6NN1Mxt5qXHnsW5dYdzD79IjSa6MFaYUHX5fKTnKxg3rwIjqALcQRdBEeQS8VhHuHzT+QIcVpuI2tCvED18LlfUZEe1+n0aRCubwaDCo1GETf360id2JH79VXhWydMAVx//fVfeqtGGJmZGozzDvbDvvPOftyuQXJztJy6uAAAj3cItVpBZ4cHrU4JBDFlacTRyZEQ2pOi7X9erxBqWFycIpxILj/NLW4MqYmUT01Hp+8bFdYMsGJlCzU1NnJyksnOThZD1Gp32lGpFKSlq6iYls7G95VYgdSU6NDQcXzz8WmdWrPmncTTb6zkoTt+wrb1a1j7zkPMnZtLxbTjAUhUyqiutuIdGMLtHiTXrBU+++ZkwjkIsY6seJlNxnQNarUcn384NL4+gEQqRacfYc+eXnx+A7c89C/+9dzDvPn8r9m99X/85omnyDUnY7N7qdlhp9fpF0PZzeZkMjM1dHV50WqFPvYZMzKiLLwAdXUO+vuH0OmVOHp81Nd3i+21yyOcj2ONdg3vfySkEgmXnjSBObY+nv+kmbvXNJB8wEcwGPxMRGTyZAM2mxcIct55E6NuFMI3DtEjf8deZYs3tvzbjq+yHoTDzzMnCBk8b/57Hzt22DGZNJx4ohmZTMKePT3IZBKSkwQreaohkR7HAEqljBkzMkeR4LLSNPFnNpsHkJCZqcHa0Y8qUU5xcQq76xzIpBLKp6aj1ylRxwRzAqxc0XKwfXByWqihQ0JZaRpWaz/V1R2YsjRMr0iH10EhH8+V+rbh07q0dMkaXnr4NhYcW8G1v/oz1TW7cHn6eOXBX7Gr1oEyUcbWrV309Q+SnKRgQlEKep0ylI82Rj0YI7PJ7w8wPDSCtd2DwZBIf/8wiSrw9A+xcb2dm77/fSbnl/Crp59n3qU38+z9N3LBkuMx5yZjt3mpXmdlz54etNoETKYk1BoFPT0DGNPVKJUyzLlaUYxSa+RibWho6CVBIWMkEKSmxoZaI6esNI3qiIDc2HPysKvSOhOq0++HbX+nYv9rKJybWLHi3s98LdbpEpDLJcyZkzVqG+Hr/+7djqjv4+G7WA/gK+YIWWrS5umjOILLNUhurpZTTw1xBE+II3R6Qq7YICbTGBzBeHiOEA6dNhgSKS9PR6frGxXWDLBixRgcoTbEEdJUVFSks1avpBNINRwdjjAYGOST9k/4sOVDBoYHmJY+jQsmXsDsrNmkq786gvxdxJE6tRaYF1CSUsLNSTdTa66l/4V+2na0ser/nmP+8WYqKoTpkomJIY7gDXGE0HUXDsER4mQ2GY0hjuAbZnh4BLk8IAz60inZs6dXFHY8nmH27u2lZOZcnv9wDr/88W9Y+fcn6dq/m3Ouvhhrh4+Kis/AEXRKHI4IjhARGA6H4QhxakLktM1XXqn/XO4pszkZl8sPBJkbk/cY6RCLPd/jIXYK6FeBb6Uw9VXC6fLR1egWp4Z1WD2A4GYK59nIZBKUShlKpQy1Wk7jfhcymYSCfG3UCREvqLm0NA1Dmirq56tWteDuGwQk4s9rd3azTcyYOvghlABJGgUzZmSgUcvFpP9ElYyCfB2GNBUEheBLyXjA7XcewmcwwM33P8uKN59hw0crmLfoNBKUiaKA4+jx0WEVvnq8Qg/yzBmZLFigicqBMpmSxBXxeCr+3CoTXV0e2tv68Q8HCI6MoNUqcfQM0NjgxG7XUDjjWtLNx/LJu7/jx2efxI9+9jBabQFut5/Vqy1Yrf14PENcdeVU5HIpIyNBFArpKIdYWBgzpKqYNSsTu91LY4MTjUZBaWmaGOAe6XyMfE9cTj9Zmeq4AnAYxcZkfnlaKY++W4+lENYqBuly+cjQJfJpkJenw2gUVsiNRkfcm4bY9o2nn97Oq6/uZeZMI8nJys/s1hrH50Nvr4/mZjdy/YBghXb46OvzA0mUlKRG5dmEV6j9vgB9fUMERkaiXB/xsgKMRg1Ty0GvU3LKKfniDV1yUl+IkGvweoaxWvvZ3+iioaE3OmMqFC8ytTx8IxIUxS5VooxUgwqnV1gdl8nG68E4hM/h5NwpvPf0b7nm14/zmxsvoXyKkfIpRrEdw+sdEgl12J2xMJR1abN52BnK/VA7DgpCsTWhaq5QD1yuQUZGgiQmyhgeGhHuWfoGAZhVOpmbzr6ONXtWceEtD/P+2q3c/eNL0WoTaGh0Ur/HQYJCxoKFZvy+YdqtHoqL9GJrbLzg2vB0QbvdS0OjUBPKStNINajQ6ZSjyLjN5sHp8pOZpY4rAIuQJ8DsH9HgzKAw8G+ul14HNQNQ8f1P/TdwuQYZHg7icg3G/X28dr6nn97Oiy/uZuLEFE46ycyJJ5q/E617Xzc4nX46GnrFrJyOjhBHyNSIGS+jOEJjiCMUxHCEODWhtDQNQ8QQAKNR4Ah9sRyhtptt27qorIzhCBJISgpxBE0ER0iUUVCgw2BQEQxxBOnnDEAfGhmi2lrNh80f0jfYR3laOedNPI85pjkY1cYvNWB9HJ8e2cnZ/HbKn7nf8wBbblyJ5j0NsiYZVQurkCvkooDjcPjo6BC+ekJZmTNnhjiCzSPmQB2WI4RqQnu7MLUvGAwKHMExQGOjE7vdi1qtwGBIFD/7v33hYf7465fY9P7b7N9VS0b56Xg8FVx1VRyOEGe4hcEQwREaYzhCjPMxDJvNg8vlJytLHVcAjkVenhartT80eOTTw2jUoNP1iblz8V4nVih7770DrF3bRlGRHpVK8ZndWl8ExoWpo4yGfb007RT++AsWmKmqMhFuczKma7BY+ggEgpiykigtNTA4GGB9tZXBoQAaTfSY+XWfWNm0uYPZs7LE4DgYPT3MZNKg05tptbhZvdpC5fQMICi07gr/AYQLwdDgCHOqTMyckSmS86xMYfXebE7m3282sH9/L3D0bbrj+OYh8mJ2yXW3cdGPfopcIXxOR0ZG8DgtfO97E7BY+kQxNrKQROZA2ewDBALC53HmjMxRQk5paRple3rp7fFhNAqrF+VT03F0D6DRKETxaFrFbJ596yMe+cWN/O6OH7L4vB9Sdeo1NDT20dc3JLbkhQWlimnpo14rtqUxcmBB+OfhMMB40/s6OoX2D493+JDTFS0HnKibfWSpJLRJfSx67GMeOLuc9vVdvPrqXi68cBLp6WrefLOBpUuLxwxJP1x7hsXiYu3aNrKzhX149dW9bNvWRXOzSwyOnDs35wsZQTyOsVG7q5uGOgce9JSVplE114RGoxDbgbZs6SQQCJKQIBNDOQcHAxw44GRgYBir1SO6Mz5ZZ2Xzpg5mzc5iaZx6EIbT5WdCkY6p5eliTs+EohS02oSoaTQLF+WhVitCLYGCuLVnTw96XR9Ty9PQ65SsWdvK/z7ZC4y38o1DQGRI+s63/4xCcfA2sqe/h3nzs+js8InX2Nh8psgcKLstoiaEWubCKCtNY09ZL5s3dWA2a8kyJQFB1CoFLS1uplWkC+3kbvjhqRdwydnz+Mlv/sIn2+p48q4bqDKaqNvdjdMlEPKw4BSvFS+2pbGsNC2q1RXguLkmzLnJUccSPp5wO6DXM3zYPI9dnhLe3HcOPyxbh/Gta6H+XZ7vuYaX/mn9wuoBCDVhxw4b+/c7GRwcEfdvvB58udi3r5cDOwSRP4ojlKdjNEZwBFMER1hvZXAwDkdYZ2XTpg5mzx6DI4QCnE0mDTqdmdbWEEeoDHEEYBRHGBphzhwTM2dmiuQ8K+sgR3jzzQaam10A9PR+No4QGAmwoWMD7ze/j8vvosxQxrkTz+W47OPIUGeMC1LfIOyr7yN397mYKyax/MznUEvUOAYdZCgyCAQCeJ32gxwhJMaO4gjbhLgA2yHqAYQ4QlkvPT0+MjJCHKE8HYcjgiM0OtFo0sXnZmZpuflXV7D5lDm88NAfaV73EtmpfYyMTIlqW4t9rdiaENluF/65yBHiTO/rCNUEz2FqQn19N+vXW5FKo92QYeFo3rwcdDqlGEI/Vkj64Vr27HYvdXXdYjvi2rVt7N/vpKvLS3q6Wnx/jyQs/YvGuDB1lFE8MQWtVCaS4fBKhM3uEaeOhfMMBLdTM17vMFKZkE+1apVFWNFO1+DoGcDl8uMI9XOHYTYn43L6aWp20dc3SGamMGnA5fSJYpTJlITNHj1iPCFBRkamRvzwa0K2SLfbT/nUNIzpGhoanQwPBwBITR1v5fuuI/ZiFxalAF584mH++fxfuOm+Rzjl7PgBmGZzsiiUmkxJUcJVZOZZOOBQq1WQkaGhstLIggX5gCD4lJamRYlHKWlp3P/UP3jrH8/x7KO/Ye/OjVxz1x8oLZ0ohEmvb2f1agtms1ZwAYYQuY3IbChDmori4hTxsZEh6rGOqHgFQKOWs2pVC2EROjzpz273YrX2k21K4qLFhbyz18YNr2xH3T1EW63QX5+dncSaNW0AYxKRsL163bo2Xnxx1ygH1Nq17ezf72Tt2nauuWY6ixaZcTgGmDMnk+xsrZgh8mWNIB6HgPIpaSgYoqji4CSy8NS9LVs6xQyeyJuAVassDAwMEwgEcbv94mpbj0OoBz2O0fXA6fLjdPmwrHOzv9HJ9MqM0PbsBAGtVoGpJIUdNXbRhVVWmiYS6fD0M59vGEurW8xFePXVPfh8wgqnfLyVbxxEX/8iRanmti7mX/wzSgtzeeOJX5CWctDVF/v86ZUHa4I3RFRiJ1eG60FKaiJZJo3ouAJG3ZwLYlMZcyvLuOjWhzn9J7/kNzdewmXnnUp7u5fBwQArV7TEPZ5IASpyX9MMQk1ICzmkxmqJiFcP1Bo5K0P1YGp5Ot2OAfE1ehw+Wh1K3um/gKuqWmD3m5zlXcO7PWfy6qtfTD0AWLTITEdHP5MnGzj11PyoqVvhbY7ji8fEiSkkDyeIZFjkCKHPlSamJogcQRrDEYwaHKGa4IhTE1wuP01NMRzB5Qs9IsQRbHE4QkYER9BEcITyNIxGDY2NTgIBYZUiLe3TcYTASIDNXZt5r+k9enw9lKSW8JNpP2F+7nwyNZlIJeM15puGgyJ5Oeeq53Lj/27k0a2P8sMpP2TVk6t4Z9k7/Oz3P2PBmQviPt9sThaFUpMpSRSuYidXhsUSrVZBZmYMRzBGcIQI8SgMo1HDaWfNYPqsP/HMQ8/x8dv/4sdNe8madjrFJdkYDDEcIbSNyGwoQ6geGA5TD8LHFPkVhHNJ5AghMa2mRuAI7e39ZGcnRT0+LByFX3vXrm5gdO2LPMZD5V7V1Tno6PBQV+dg8eJCKirS6XMPMqkkBYNBLb5nRxKW/kVjXJg6yijI13HSTOGDE9mKF7nKGEmI3e4huru9qFQKkpMTaG52seylOuZUmTCkqqiszGBulWnU69jsXvr6BhkJBMVilZenJSc3WRQAAoGg0HsbIuKRJ4vN7qFmh53mJheNjU60WiULFgjFq3m7HFffeCvfOMbOpBoZGaGteT/Dw0P8/pc30dy4h6tuuRuZbHRGWvlUqN3ZjdXaLzoHbXYPb/67QTw/wjfFQkZaYtwWudjeZ6lUytJLfsS0WVX89vZr+OXVZ7LkotvIvexy1ldbhQuxtZ/SUoO4jXBoe3h74XPU5fTR0ekVXYjh142XJRX7noQzsyInBDY09LKjxo4pW8OsWZlCgHpBKpPMel5cvZ8NI04Ml+RzjNnI7LwUAJYuPbjiGYlIl9PKlS3iFCWAf/1rH9nZScyblx21jenTM/H5hJXPJUsOhj5+VSOIv6uYWJzKxAI1JEWvREXVg4ibH4ulj717e+juHqBiuhFP/xBvvLGPWbOzKCsz4HT5KSsb/bez27y43X5kMikDvgDNTS7q6rsBCZWVRqaWp4sr8Xv29IokObIm7Ky109joRN4iwe8LsGCBmQULzPQOdMN+ocPbZvN8ZTcr4/h6YKxcqub2LvyDQ6zZsotZ597Ef566lykT8w+5rTSDCmOpcHP/7zdH14Op5enoQ0G08VZyI/PWAIryTKz7v99z7xMvc9djf+eN9zfw7G9uoqHBQ02NDSSQnq6Oek54CmV4e5ETAzs7vDhdftH1FXa0xGafxGZ6bNnSGTUdsKGhV3yNSNckpRXsH8hDvfM53lz6MvWqXvYW3gGMXQ8g/lQ+GLsewNg1AcbrwZeJgnw9J0w72NZ6uJoQlyMsq2POHBMGQ4gjzI3DEWwhjjASwxFykkUBQOQIISIexRFsHmpq7DQ3j+YIjZ/IcTlBcoRCUmAkwJauLXzQ/AH2ATvF+mJ+VP4jjs89nuyk7HFB6huM6Eyqqbx2+mtcu/Jantr2FP49fgb9g9x/w/0072vmiluvQBrDK41GDeXlUFsb4ggh5+A77+xn8+YODhxwcuyxWXR0CAMBhIy0xLgtcofLR5IrFJx+2Q+Yu2g2j/7sdxyof5yWyjMEjhDaRuy0vPA56nL56Ojwii7EsepB+Gu8mhB2hulCNSGcNzprVmaUa6u+vpvERBmZmRrRMQUwZ87o8xxGT9AM7z8IrkqDIVG8bwxvo7AwhcHB4KjrzacNS/8iMC5MfYGIzHkqnyqcLLF/bK1WQSAwgtPpo6hYz9DgCO3WftZXW8nI1FBRYYw60Wx2ocB0dnrEqUsAbrcQbhgIBEVXSqulj3XV7fj9ggPqogtLozJ23O5BVGo5wREI23kXn1qIs+sydu84hpSM8i/4Hfr2YjgwgsMziKN/kB7vIH2+Idy+YVzeIfr8Q3gHAwwNjzAYGGEoEGRweIQgQSRIkEqE3n2JBJRyGYkKKaoEGWqFDI1SToomgVRNAqnqBFLUCRiSEkhUyA6/U0cRUqmUXz76DMv+8ntefuoP/OvFp+lsa+Xnv/szCcqDGUrhz2tjg5PERBk6faIo+Ax4AyjkEtIMKmQyCRq1XBR9lr28m40brBxzrIlLLp4c9dqRuVXlU9OZUDKZP7/+Aff/7A7eevF+GmqrOePSu/H5h0kzqHA5fdjsHozpmqj2Pji4OpCVqSErU0NTs0tcDTSmx18Nj4dIZ5jZnMzgYABrez8zZ2ZSNefgCodMJkXdPYy22cdwoZrXbA6GchL56/On4uj0xA0wj1zVjpyitHJlCx9+2Examoo77jiGf/xjuvicSAEqtn1vfGX8q0F43HFDQy/TKtLFVfFImM3J+AcDDAwM098/hFwmFV1S5txkMiNWs8PYWWunodGJUilFlShHr0sgEBhhR42dQEC48QivdHd2eQgERujpEVowLrqoNOIGqhtNkgKpRCK2/C1eXMjsY9MwmodwdA+KbYDj+JQIBmGwD/rt4LGDzwk+N/hcwv/7+2DYB4EhCAyG/g0LgS8SCUikgARkCpCrQKEChRoS1JCoA00aqNNAlQJqA6hTQ8/58nDCMVNZ/+ofOOPa+zjQ2snc79/GW0/ezYnHTot63M5aOytXWNAkKdCHRnhbLH0MDASQKySYzVoyszQ4XT7MCM696up2/vPufrRaJYsW5kV9BiMzq6aGSM2Dt15BXno+dz3xDMdfdiv33/AjKiqMDPiGUSbKogTWyBY/OFgTMrM0ZGZpaG6KqAljOKRiEekKM5uTUWvkeDxDKBNlpBlUUWO4N+1TUrv3bC6ZtpNS/weUtm7nrF89CUWTxmy9jjeV71D1AA7WBJ0uIarOjNeDrw6ROU/l5UfAEYr0DA2N0N7ez/r1VjIy4nAE2xFwhJArpbW1j3XrIjhCRD3YsiXEEVTyUOxsiCMsLsTRejb1O5tJNpoPeXxDI0Ns6tjEhy0f0uProUhfxGVll3FS3kmYNCZk0i/3vnUcXzwyNBn8Y8k/uPXjW1nzwzVMz57O9te28/ITL2O1WLnj93eQoEwQHx/+vDY2hjhCqCYYDCoUCik+XwC3e0jgCBq5KPosW7abjRutHHOMiUsuieEIEblVYaELItvQi7nlsYd55oE/Ydn4Ov98qpesX11Hdo5+1FQ6kSOEpiQ3fYZ6EP59ZWUMR7CGOEKMC6qmxo7XG+DYY00sXiwsIlRVZY8ZYB4pjkXuf02Nne3bu9BqlZxzzkRuvfXggkSsCD3mVNmvAOPC1BeKIL6BAE3NLsqnpkU5pcIwmZKYOCkVQHRGxbY3RaJ2p53GBidZJuGD09jgpKhYCPOMzPgxpmvw+Yfx+wMkJymiApxtdg+tlj5kMgknnmge9ToLlpxM8ZQ5X6li+k1AMBjE7RvG6hyg3TlAW+8AHa4BHP2DuAaGIjr3IVEhRZ0gR6OUkaSUk6ZRkiCXkiCXkCCXopTLkEkkjBAkGISRkSDDwSD+oQDewQC+oQD9g8N09fnpa3PSH7qRCEOnkmNMTiRLl0h2ioq8VA3mVDUJX2D7jVQq5bLrf0behIn87uc38snK/3Lnjxz86okXSdbpAeGC2dzsxuX2k18QvSJ34om5hG92Ojq9YnC68Dw3vU4/Fos76jVtdg/vvLOfPfUOVCo5NvuA2Pp64z0P8X55FW88dy9/+dX3WXT+vcjkhTTud4qCWHhFJV5rbdhREp5EA0c+xTB2eqbF0ie2zcYOMaiYlo7d7mXEFSRxkpb/7LCyclcXWdYhMoekXHBBSRRZiB3fG9my4XT6yc5OGrXiHUk4li8/MN6u8TWA2SxM/Ors9EAN0SHkESgrNZCkUVA1x4Q+RSm6K8ItRbHht81NwjkyPBSkvedguLNaIxfbpABaWtzY7QNkmzRUTNOKRByEdqbmJheTJxvErJzw8wwpWm6+4nujptWMIw4Cw9BnBacFnK3gskB/F3gcEIjIY5HKQ8JSEiiThK/qNJArhZBsWaIgQgEQhJGAIG4F/DDohaEBGPJCXyd0NwgC18hQxPYVkGQErQl0OZCSD6kTBNHqC8xvKSsys+n1xzn7ht+wdstuTv3R3bz8yO2cd+q8iEdJGBkZweX0Mzgo1DGzOZkTQvUg7O4L550ZjRqq11vF6Uexn/933tlP/R6hHthtA+J5tfTU2RTl5vLQi3/nhgcf55yTFnDeiYtD7o8EFi6Idl3Fa6+NWxOO4MbdaNSI2w9/H26b3VnbHeXACp+Hzfp82pylzBv8kMSXl7JfczLPWi+lf1g47w9VE8IYqx6En5+XpxuvB18hRoKxQX1BfL4ATU0uysvTRo2VDw+iOOYYE35/QHRG1dQcgiOEnK9ZWSGO0OikKFQTIjN+jEYNPl+IIyRHj5i32Ty0to7NEU4+ax4llRVj1oPBwCDV1mpWtqzENehiUsokrpxyJSfmnogpaVyQ+rZDpVDx5ElP8vstv2eZdBnHmI5hyxNb+N/b/8PZ7eTXz/waTfJBsai52Y3L5Sc//yBHmDvXhFabQJgjeDxDYnC68Dw3vb1xOEK4JtQ7UKvl2CJqQnjbGo0cl0vD92+5mer3PmTLyre5vWEfv/v7/ZSW5ohOqdjW2s9aD8KPG8URQguNscJQRYXAEex2L/X13RgMKmpru0eJYmHE5mFFCtUez5AYBh+7P2NNxP2qMS5MHUWMBINR35dPTcdmHzgYOBuH4Hq8w6SmqigpSRU/TIdOxpeQqJJhCOc/FQuCVuykPggl/bf3M6fKFLVNi6WPxv29EBR6ymMFsyMl4981OL2DNHV7OGD3sL+7n/beATyhG2uZVEJ6UgLpyYnk5WnI1CoxG9TkpWrITVWTpJSjVEhRyML/JMilUmRSCTLp2EQhGAwyPBIkMBJkKDDCcCDIYGAEj2+YDtcA7U4fzd0eDnR7aHcOsKezj08auxkJCvwjU5tInkHNRGMyJVnJpCcpj3qw5AmLzyLFkM69N15B7dYN/OzK83jytfeRyYSbmQSFMPlCLpeKbXwWixDI6fEOo1HL0ekPXjhtdg9msxDYfeKJ0Sty4aDZYFBoNW1scGJMV2MyCZlOs+YtIitvEn998Cbe/OtPKKi4jONPuziazES4DsPZC5Gf93iB558WkYUiTLLq6x1YLG7x2Pbt6aVSncAdZ5bwx/f2sjdNQrPdz4TaLnS6BFyuwUOuah9u1Hd4tV2nS2DOHNMh2zXeeGPvYQN3x/EZEEFEhBsTM6tWWaJCyCNhsfQhkUg45ZQCkaREth3Fe7wwTEODUinD7w9QNddEWsxUJhDqQfsYK3Q7agTXVYVmdDB0+HW/DjcsXysEhsDZAo5GQRzqOSCIUOG/uVILyZmQUgjmOaA3C/+fWgiadFAkCkKULEEQoaQKkMoE0epQ1+iRAIwMC/8Cg8J+DPnA0w3uNuhtge590NsEbivY6mBQmPxFQpIgUhmKIWMypE0UhLCjCEOKlg+fe4CLb3+ENz5cxwU3P4QyQcH3TjoWECZA1tTYsLb309LipqhIL9YDb4h4xK7mZhjVTJqYwoknmketFHd0CvVAKpHQ0Ogk3SjUg3C76oPXX8f9/JO3PvqQbfX7uHDeOUCGuI3I1r39jS602oRRovHRCIINH5PT5RNJwNatXaxZ28b8eTm0t/ezbZsUS+UPWJyzlVzH/7g9sZq/WS9Dpys5rPP1cPUAhJpgs3mZMEE3Xg++ZHiHvNz28W1M0E0gTyc4n8vL07HZBg5ZDzo6PJSWGqJEq8NyhERZVG7O3LmmUZP64OA0sDlz4nCERmEIUkKCbJRgNlY98A55WWddx/8s/8Mz5KHMUMb1E65nbs7ccYfUdwxSqZSfzf4ZpiQTj0geYfYvZrP9ke1sW7eNOy69gz+98SekUmEaXkJCBEcI5TaJHMEzjEYjR6eL4Ai2w3CETqHeSSQSGhudGEM1Idyy6vEMs21bFw6HD515JmdfX0L1v//Oj0/7Mbf/7nbKZs8azRG+oHpwKI6wZ08ParWCigoj27Z14XL5UanktLa6R4nM8fbncK2N4fc5UnyLh/r6btats6JOG2TObDNM+FyHfliMC1NHCX2+IW74v20U6KQUpAl9/YKLwiwWg1jnBHz6fs7yqWno9EoxE6eiwoghTSWSnfDrwsGw89qddl57bS8GQyLnnTsRjVqOUnkwAD2McDB0uq4HQ0qQ3MIi0oyjXV7fBYwEg7T1DLCny02DrZ8Ddg+uAWFFOkkpJydFRVVRGoXpGspNOoqMSWhVCjQJctRKGYqjNFpdIpGgkElQyIhu19NCoTEp6rFDgRE8/mF6vYPssrqpsfSyu91Nc7eXjQd6CAI6lYKJGUlMztIxJVuLXn10SMm02XN57KW3+cW1P+C8y68Vs6aM6RqWLCmImngXvgjLZBICgSBZmRp0eqW4rTA5P/YYk+g4ijxfhB7pIG73II2NTiAYlR21YMEkrv7583z4xhPsWPc8Gnkzudn3AdliG6HbPYjXO8T+RieJShm5ZmEMczxX42dBPHH3gw+axNyriZNS0emUGFJV5KdpuLIyh5c/bsGRquDv3Q62vNmHqt3P4lPzufzycp5+ers4xS8cZnsotLS4ePzxrTQ2OjnnnIlcfvmUqN/Ftoe8+WbDYQN3x/EpseNV3CsfJfm4qwnLDGFxKhw2fiShmYdCJNnt7BDqQZohph4YD9aDzAwN3oFh/vDYFvbt7eWkk3I4//xS8vK0HDjgZHh4JKrNqa6+m/UbW5Go3JQUp1NVWXa03p1vHvx9YKsXhJ7ufYIoNRIAiQy0WYLgNGGhIPhkTRV+lpAECRrBHXW0FgSkMuEfSiDiGpNiBioPfj8yIriqBvuhpwnaNoN1O9j3QMMHUPdvQQRLyYfMcsiqEASro5AtmahM4LXH7uSnD/yVzbv2seDYCvF3RqNQE8LCUWw9EDKdlOJ5sWVLpyjWms3Jo4LH49WDyNyoBQvM3HDpmSyaP5UHX3yeJ/7zVxJTLmNqKMw5/PpqjYK+fqEuRLqaYkn5Z0VkWG5422+8uU8MuJ01KwudTkmKIRl55fd59z9mKkeWc0fBn2lbu4V/+q7hgEMgLG1tfTz/fC0AP/xh+WEFKRhdEyKFrdiaMF4Pjj4kEgkF2gKW71lOh6eDS0oviaoH8VpqPkveS3l5GjqdUszEqagwYjhETcjI0LAzkiOcNxGNJoIjaGI4Qo0dQ1I/aaky8ovzSTWm0j3QzcetH1PdUc3wyDDlaeWcVXQWVaaq8VDz7zguLruYVFUqd0vupuKeCvb+YS/nX32+mDUVrgeRoeWjOEKWRsxZCv9eIpFw7LEm0XEUeQ8VlyNEZC8tWGCmsjIDt9uPVpuAyZRExewilr/4Ar+67lfMXXIKpvJFAkfYL7QY5uZqv5B6EAmRI3T0M3FiiCMYVGIbYFOTi44OD42NThwOH729vlAIvCZqil+4/e9QCDvLOjo8VFWZWBAxXCT2OhRuCUwyDmPOTj0qx38ojAtTRwnqBDnKfit/vuUSPqw4hiVnnEnViadiTDeKLpF44tGRupMiRa2ZMzKpXt9OV6eHhAQJH3/UyuBQgPR0NfX1DmpqbMytMonF7NVX92CxuOjs8FBcbKe4OAW/P4DL6Wf58iZAmEq2fHkT7dZ+XAeewLKvmpt/9ShLzv3BF/SOfb0wEgxiDTmO6jvc7OvqZ2AogFwqwaRXMS1HR0lWMrPyUykyJqNNlJOcqPhCW+U+LRQyKXp1Anp1AgVpSZwx1cTISJD+wWHaeweobuymer+Dug43m5uF1bCcFBXTc/XMzEvFpE/8XG6qgomlPPeftajUBz/PwWBwlGov2mlDracup48VK1pwOAaYNi2dmTMyKClJxeX0xQ0ej5x0GRaUGhudWNv70euVWCx9VFRmcfIpf6T6f0t46M4bePTO87jspt9z9vmLxNdvtbhp3O/E0eMT2wjjnYv19d2sq7ZiSE1k7nGC0yRWYA4jnvgcPscPtq1omTkjQ3SLhUPebzmvjE+2drLV1c9O/xBqk4TygUFAGPUdDk48EmFq9WoL1dXtAGzZ0sGKFc3i6ne8SUzhkNxDBe6O41MipYBLnqtl54M3cPbpp3L2ycdRNf1ghkc8ovBpnEmRNw+DjQE6u4R68NHHrQwNBsjP16HWyHnz3w30OAYoKxPa9JwuH1u3duLxDLFmbTvnn19KQoKMkSBsr7GJriuvZ5iaGhtrNu9l2ccvkZ+dQdOqF76Y9+rriEGPIER17RL+uQSijioFUgpg8izInQU5MwUHVKJOEKK+LqPOpVKhTVCZJDi38uYIPx/2g7cH2rfCgY+gdRPsfQ92/1sQ0DKngvlYQahSJB7qFQ4JmUzGE3dfi3fAj0Z9cDvBYDAqtFxoV0JsPQ07irZs7aSlxc30iDy2eMHjCyOmmplD5KHbMSBmOnU7BtDrlJx/xix+cO4Mzr7uIe7969PstRzghYd/EiXuJicliO0jh2ptqK5up3q9lao5JtHxNdYqerz8jvDj5s/LEb/OmJGBOVfIo7JY+iipmkFjWzFDA2vI867h+uDVrDcsJa/kfl5c1sCKFS1IJEI9ORKn1Isv7mLnTjvDwyOHrQnj9eDoQyVXcaHmQp648Qnay9rZfMxmfnzhj5lRNEMULGNrwmetBxqNnJoaNwZDIoODAZYtq2NwMIYjzI3DETpjOIIrgiMYQhyhvR9bzeu0N+7h6oeuxlvuZYd9B0qZktkZszmz6EymG6djVBuPujt/HN9MLClYQooyhZs/upmy35VReuzBjL1DcoSQK8jliuEIM0McIcJ9GnkPFTnpMiwoNTY6sVoPcoTwlEkQWtmaWwY4+5prmX18JX/+1Z/J2tfIgu//EFuvHIfDJ7YRxjsfw44igyGRuXNjOELM4+MN8Qif51EcYWaG6BYL7295eZqYneV2D9Lb64PQsmfkFL8jEaZqa+3U1zsAhOEcNTbmzDFRVZU9qs4KLrMh1GmDZGcnHWqzRwXjwtRRgkwqYX6SjX+PDNOwbR1/3LaOP/36DorKKjhx8RloM2bhdidE9aaGUb2+nfXVVuZUmcSg5NiA5/AHJTw1rK7Ogd0+gMMxQF//EMlJCkompbJpcyculx+NRsFFF5bi6B5Aq1VgNKrJzk6mYlo6hjQVldMz2LDRSru1n5odQiGSyqRkm5IYsQvZFt/2ouIdHKbO6mZHm4vadhf9/mFkEgnZKSrmFhmYkZdCVWEaRp0SvSoBVcI3z4YslUrQJirQZikozdJy5bxCPP5h9tv7WVHXxZp9dj7Y3cV/dnaQolYwMy+F44rTydZ/ujHAYUSKUt1dHdxzw2Vc/4sHKZs2Y5S4GkZYtG1rddPb48OUpaF8ajq1Tj9Zmeq4q4WR2wIhPycpWYHT6cfhEEYiNzY6Wb89lR/c9AIfvHoff33ghwR9d3P2JT8Sg81zzVoGBwPU1TlotbhFQSly+zU7DgYI5kZYbGG0kBV5QXd0D7Cu2opSKROPKTIIHYQhBOHHz5yRydJTJ3BWMMjKHR28X9/Fcy2ddL+2neMWZONwDLBo0aHDRg9CQkaGhgkTUmhqcrJ1qyBqnXPOpLiT+c45Z9L4yvhRxlBWJZ90KOlx9fHYS+/w2EvvYNBrOXvRHKbklSLzGzCkxv98RxLfcOhlbMBzZJi6xzMk1gO/L4DBkEi6UYXV2s/mTR1iTZhWkU5NjZuiCXq6ugaYH5reZTYnk5Wpwen00dHpEYPTUw0qior08PG3vx4QDEJvs+Aqsm4Dx34gCIl6SCuG4lOg8ATBEaVKEYSob2JrilwpuLm0p0Pp6UIulscOTWsEgcqyHlo3CG4qYykUHA85s4TnfUpIJJIoUeqBp1+lscXKs/f/FIfDd7AeRKxChx1Fy5btpr29n6HBEU444aDL8FAtB2GkGVRoNArsNi9+X4BAQIhZGBwMsLD0NLJTc/nniv+y39rCa3+4k5kzM0OvmyiSmM4uD4WFB11FkYSier2V3aHx3QkJskOKWOGa4HT5gW46rP2i+Lt4cWEUiQg7xMLT2RYuKgQK6bYsQLLjFeb1/xPJW59w3tQ7qZuTRW+vnylTDtXWJWD3bgfd3T6mTk1n2rR03nqr8ZA1YbwefDH4+OOPGR4axr3DjXuHm9v+dhvppUbOPvssDLlTcLtH4nOE6nbWr7eKxBFGBzyLHMHlp6bGRnt7P7NmZdLS4qa52U1ysoKSklQ2bYrgCBeV4nDEcISKdHHa34YNQrZbTU2II0ilZOUqse0dAGB583IK8go4reA0zio6i+LUYlITv3hHxTi+eZhjmsMLp7zANSuv4bGtj3FdxXXIXXLuufoebnv4NvQZ2WMGcIdF27Y2N729PkwmDeXl6dTW+snKGoMj2OJwhKQ4HGG9VVy0M5uTmTXrLEqnlXLfdffxz8cf5Pzrr6WobJrAEVrd4v7FTsITOUJuDEeI054rcgTHAOvWhThC6JhiYxYi859mzsyMK7qBEHbe5x6Myoo7NCSkpCSSmamhq8sTcpYJIeuxTs2wcNgz0INCzL784jAuTB1F3PTTG5lUcgzXPvo3Onetxd+xj4bd22nYvR2AxZc8xvx5izCma6LEqPXVVnbtFm5ywsTVYumLGj8f/oCEXSSGVBUUQ2B4hG7HAGq1Aq1WyexZWTh6BsjL07JlayfV1e10dXmZNSuLq66cKu7rggUaTCYN66qtJCplaNRy5s0TPpCP3CkQkH7PEN8mBINBrE4fO9ud7GhzccDez0gQ0pOUVJr1zMhPYV5xGlk6FSnqL3/S3ZcFjVLO1Bw9U3P03LRwIh2uAVbV2/hwdydrG7tZUW8jU5vIMQWpzC1KI1UT3e733vsHWLumjXnzc1h86tjK/ItPPEzD7p3cedX53P/UywxKCtizp4dWSx+tbUJg4aKFeZSWpnH6GRN4882GUBeJRMwOKSlJjetiihRqbXav2Auel6elpcWNRi3n449a2bnTjsORxP1Pv85//vFHnnr4Hj5e8T9u+tUfKCg0YUzXsGVrJ729Pnp7fOSatWK7nzjlYpqwWmBIjQ4QjFcMzWZhGmZNjQ2vd4i9e3uQIKxChwPYYx8fuy2pRMLJFSbmlWXwbq2V92o7YSTIpDNymTzVeMi/LcC6dW3s2GFj/vwczjtvUijAUSGufo9PYvpyoFAoaLV28vrvbmPVv5/lnb0jOJxunv3nB8AHVJaU8PANNwLCTcYn66z0OAaommuKIr7hFazI8fPhNo+Ghl7cbj/pRg3FCNNA5TIpqYZEOju8ZGZpmDU7i7ZWN8pEGdXrrNTVOTBlJ/GTn0yPWrH73vcmkGpQ0eMYiArWzcof5t7nYGgwus3vW4EhL3TWQvt26NguhIjLlEL20vSLofAkME0TptwpdUelze1rB5lcEKqmXSD88/dD+xaoewcaV8L6J4UcrKwKmHAiZE6Leh/q6rtZuaIFgIWL8uJmlAHsPdDGvU+8TCAwgs8/xE/P/wGNjUId6HYMRG1j5sxMtmztpK9/kKJifcQ0pdQxWykiBSC7bXRNUGvkfPBBE/X1PZSVTeOT/zuR8296kIqzrufuH13JxWfNE7e9apUFu32Alha3SBQia0JVaOR21RxT3Gt4JMzmZCytfWzcYGVgYJhep4/gCGg0irjvVbztpZlzIfd26NwFO/6Psh038JfZlbzqvAyV6tBEYd26NlasaCYvL5nzzptEXp6O5OSE8ZrwFeC2225j+vT5vPTS6/xv9XLa2/Zgr7PxTN0zAJx5/W3Mn3+MEPgfIUatX29lV0Q9gBBHiBg/L3IElw+pVEp2dhJ5eVq6urxkZqoPcoTZWThC1/gtW2I4wlXRHEGlkrN+vRWzORl5ugvZzBpah3fjfF/Yl2MMc7n/5PswJ5tRK9Rf2vs4jq83xoqeKDWU8vLil7nigyt4suZJeBkadjVwy0W38MO77sQ7IoiaDscAK0L1YNGiEEc4PQ5H6PCIU4djESnU2uLUA41GzscfhznCADfddNC52Dek44G/P85zD/6JF377CCecdQaJ2XPo7fWRm6uNagEHREdRbMj4mByhNYYjSEIcIXRvF/v4eNuKFe8KC1MYHAxSWJhy2L9Pfb0QpD55soG5c7NDExHloRbIrz5TdFyYOsrYXSshZ2gBqgvOot/vIKujhkDXNup37sCQVSq2DP3jqT/S3mqhq2Uui88+FYCUVCX33PsJSRoFx83LITNTg8Xixm73AqEPpjkZnb4vytZeVJSCTq+Mah8KOzF8A8NIgD73IK+8Wk/FtHRxKpnHO0xBvlaciBZ2sYStxO1t/V/yu3f0EQwGaXJ42NLcy5aWXno8gyhkEgrSNCydnsNJpUYmm7QYkpQkKb97p4NMKiEnRc1lVflcOiePTpeP5bWd/LfWyn9rO3hnh5XSrGROLDEyLVuPVCph7ZoIy2hImIrXwvaTux6graWF3dvW8/OrL+LWB56hpGQq1dXtbNzYgVwuIz1dTWlpGlVzsqNaIsI41M0+CO1427d1MRKEY47JIiFBJoxD9g4zp8oUWg1UYu3w8+Pb70OlL+G1p+/m1kuWcMySX2DKKyNJo6Bogh6tNkHMgnNFuLXC0/wiMVb7bXgaZmODE1O2hunTM0THVLxjOVQrrypBxnkzcjluQhqvbrRQ29XHr7YdoD9dwUWzzcikElpaXKxe3QoEOfFEM3l5OlaubGHLli70eqVIOMZXv78abN/ew4qGJcyfJePZM17izSYD/7blUV1by7zKqXR2eNHr+uhxubn1sccxac04vccy59ii0FQWD6+/Xo/bPUSyNoFBfwBLq1tse5pWkS5O0Isk7+HvI3N69uzpIdWgwmBIpK3Nzd/+VsvZS4uiyLHfN0wgMBIVeNvQJoR5+3zD7Ky1R00b+0bC3y/kLVmqoWu3EFauSQdTJeQfB0ULhWl2qlRBtPmuQZkkOMMKTxBC1Vs3wI7XBJHq44cFB1nhCTDxFFClCHlONTaQQHq6WpxwF9uuMKkwh9cf+zkX3vIQry7/mG5HP7+65mrUGjnLlzdRu9OOTC4Rt7H07GJmzsg8onoQ/p3T5Wfr1k7a2/spmpAi5vcEAsHQeaLF2tGP2axl9tRJbP/3E5x93UPc+oc/8eb7m7jye2eRm6slL09Y9Z5WkS4eS6Rby2jURK1sH+om3mjU4PcN43D4MBgSmTRJmLA2bYyV7TFJgUQCWeVg/DU0rEBf/1+uk92Et/MU6H1YyAqDUTUhth7AuCPqq4JEIqGmRkJLy0zmVs1nYMAB2vVs3vUu3c3dtE5dx85eBRNHFvD3x/5OR1s3XQemseSc4wBISVFyzz2fkJSk4LjjxuAIJItClcXSh8czxLHHmtBF5LbBQSeGzzeMRAJ9fX5eeaWeiop0cSrZnjYLXvMelg+9i3t/D0mKJOZkz6F7pB8PDaT3VlKSWvJVvZ3j+JoiNnoiOsMul2WLl3H5B5fjONtBQdsEmmr388yvHuCHv7gDszmPd97ZP5ojVH1GjtDqZvv2LkZGYjiCZ5g5cw5yhPDwgfB9lEajIP/Y8xmSGfn4nXfIKtjD+Tf8BE0oG1QTUw9GcYQxakJ4GmZjoxOTKYIjmMbgCEcoEo0lYMU6K8OZUY2NTjSadHH7sU6trxLfwbuuLxbt7f20NbnR9Q2SemIa9okLmTbtdH5wQwqDwwdHrva0f4zH1sL2VR+xY/XDFJXNQKIqo6PXTII6B5lMik6vpM89RN1uBxmZgvUwLB5ZLH1Ro+7D5DYsEIR/p1HLkUgkeAeGxHDo0tI08eTLytREWeNtdg/esFPqGxpYGClGbW7uodc7hDpBxmSTlh8cY+akEiPZehWpmgTkRymk/NsAiURCll7FlfMKuGJuPs3dHl7f0so7O638efV+dCoFxxUZmBUaWTxv/sFci6ie5NBnUaXWcMF1j/HXB2+kff8mHvrZlRy/9Nckp01Fp1OSlqYWA9HDz4v8HINgtV21yhIlqEa2uLqcfrzeIXz+EdZXW1mypICsTA0upw+VWkHhBH2U0+nUs84gyzyRZx66iZWv3ITOfCHT5pzD4iWF4rm1ZWvnId1ah0Okw2rucdlxtxEr5B3q+6x0DTedPJF9Xf28u9PKL9/axd/WHuDmhRORW3188EETwaBQwPLydCxcKIQYhr+O46vDypUtbN3axU5FJbrTkjm/6ClOKUli/w9+hUKjYnhQgtmczMYPttFsa6bZ1kx14xrSdCmYDfnoFSbs3f2olEpMpiQSEmQ0NjrF9qRIESqWOIdvZmw2D06Xn8wsNVPL09FqFfz73w1YWt3sqLGLwlR4KEBsK4nDIbRtCENnv6HtfGExqqUabLuFg0nJhynnwMRTwTQdkoygPPKQ4e8EFIkHRSpfHzSsgG1/hz3/hfp3ILOcqsIq7BXpgEQUW2IzKsJYevJcfvfT67ntsSdZuXEr9u7HuPWiKxgaDJCXpyUtTSVuI94NuTAtzElLi5tpFcIEybr6bjFIXa9TYrN5cbv89PUJC2xqjRyZTIJaI2fCBD1dNi8TJugBSNEl89offs6P7niOdzeuYG9LMxedcC6XXlTJRRcJOSiRrXWfNfg2PBGzKqIVKxaxrSeRwt4ooa9kCbLC+VD/Lpr9q+CJGTDtIjjh5+ze7Y+qCeP14OuF9tA0Srd7kLlzcxkYyOKWi69EMamR5a7X+MT3H3as+4i2xlq8jn42t29n6/KXmTitDKnGTKc7lYSkNIEj6JT09Q1RV+cgIyPEEWZGcISYmgCjJ3FpNCGO4B2mZocNj7wbi8pLdfMWetI6kQblTNAUc17e2ZycdzJBZzJv968FQDpOIccRBxdeOCnqa2yGXVZSFssWL+OK969g6PoAxkfysTU28/S9v2V/4zVo0vJCHEEV1ZoWe18DERwhQlCNFGJcrhBH8I2wfn2II2RpcLl8qFQKCgv1UU6n8Nfq6na2bu1CIplI5elXsW/N67z84P1ceNONDAQNn6seRDqs5s7NPmw2IYzOrDpUdmEkYp2V4cyo8H58HTF+VTnKOPfciWzfbqOnx4d+Sx99E5TUGIJ4dgW44uQijOkagsEgN91zP5vW/o/V739AX6+Vfbs2AhsBSEqdxOC0h/F6hygq1pOdnYTT6cdu9/LKq/UkKmV4vMOUlKRy4EAvf39xF/PmZ3P+eaUH1V61Ap9/mLw8bVSOTqJSmHIWeRKGWwuXvVSHMUPNSGjcdXhk5TcBY4lRU7J1HF+czoJSI5m6RHQqxbc/K+UoQCqVUGhM4s4lpfx0YTGr99r5x8YWPqwTVh4qT82mvPzgRXkstX5CUTrX3PUkD/7sGryObXz85r3MP/sB5s2bKYxgHUP4CX+Ouzo92O0CMQ4LqpEtruVT03C7B6mr70Yqk4QciUG2bbMxOBSgzz2EpiIdY7omIsQ8idMu/xPvvvworpZ/0KRsI+2SP455LPHcYIdCaWkaHu8we/b0CKswh2hFBEa1Dsb7XiKRMCkzGZ00mzW77NT1ebjptRoyk5XMnJ3GyP4+nnlmBwMDQ5xzzqQjmtI0ji8eCxfmsXp1Kz09Pp7eMJU6wxXcPeXvFOx/nDWySzhuQRlGo4YzFsxkMPAj3luzhdUbd9Lt6qXb1QtsR9Yg46xZSzEryphQpBe3rdUmMDgY4KVldcikEubNy0GtkfPCi7vw9A9x6qkFYhtg7c5uAiMjmExJTC1Px+0eElv2wlPOIj/3jY1OXlpWR9UcE51dwg2gUilnavnh82y+NhDFqHXCJL2wGDX1Qig7U8iKSjJ+puyk7yQSk6F8KUw5GxwHYOsLsPsN8jqe4saCTCg9DQqEVqBDtbd9/8zjeP/9FlbU/Ycd+/fw2KsvcctFl3HyooJDrgyHr4mdXQdrQllp2qgJfHPn5lBf141arcBi6cPp8tHa1ke6UYXdNhDVohfOcrt4yckkydJ4e/PbPLfyeeaeqGMmmWMeSzxH2KEQnoiZcIicyshrPkRnlMQV+hKSYNqF2FOOI7jrTdJ2/gvpjleYn386AydeyOqdcp55ZgeXXFLGvffOPew+juPLQSRH2LXLgd3uZdeubpYsKeTpS1+kRb6Tl2pfwnqxlf5aJf07vPgdA+zZthPYCYAucwKDU68SOEJRDEd4pZ7ERBkeTxyOcH4ER9Ao8PmGSTdDfmYf7f5mHIP72CH3srtJQY7aTEngNL436VRmTSzj4+XdPPCHA+TnaxkZETLbpk79ehLbcXy1uOaa6VEtfPFyTY1qI8sWL+MH714KPwPPr3LwtLexYtlfWXDxtcybN0ngCGNcX0WO0BWHI0QIMeXlIY5Q141UKgmFmIc4wmCAvr4h0TkUGWKekpKISiVDKpVSUjGZq679I0/+8nc8dfevOeuqyzGffJa4L5+2HpSWpuHxRHCEQ7QihhF7/R9r8SfeZM/KygwaGnr54IMmBgcDVFVlj3J4fZ0wLkwdZcydm8MDDxzHypUtZGSoqdvrYP2gnwbJEC9vsHDT6SVIJRKOOX4RWuN0RrTn4HFZSVUdwNKwkR2b1zPj2Knk5+twu/3k5Wp45oGLSDYUojWUMaLIZ8r0KVRWZmE2J/P3F3fRbu3nf/9rpbAwRXRK1dTYqKtzYG3vZ8mSAgCxba92Z3dU65/N7uHd/+yn3eohz52MLHTvpNd9tgDsLwtjiVHl2TpOmJTOgtIMsnSJJCd+8WFt32aoEuQsKc9i8ZRM9tv7eXFdM+/ssLK5uZeJGUksKc9icpY2rgATdkFdeO1DvPqX2/H27GDPxr9x1U/Oinp8rPgTJgGFhTpaWtzo9UqefW4nSqUsqu3OmK5h7nEmcZKS2ZxMrdMPoWlFcrlUdGWFQ8xViXJKSg384Lq7se4/kfdf+y33XbeUu//wNyaUTI5ybtXXd7N8eRNSmUD8Y52JY4lVGrWwSq9Rx7/EilNHQlP5It2Pkb8Pf62v76Zmh51EpYxB7zBLJhnoKwjy0b5u3u3qQaEK4h/wovx3g9iiETsCfBxfPmLrQVdXLhvypjKr+eecPPJXmvddh9FYidlk5JRj5pGpLOHa78H6HXW0OVvYuGsXB1o7OWluGbKgEnOulmff/C8frNtE1fTJ5BpycXUpmVCQjtmczKpVFnbutDPoH2FoeISiIj1mczKBkRGs7f1Ur7OSX6BDq1Vw3FxTVID6ggVmMQT6P+/ux9outHKnmQVXqUql+PrnS8UVowoEN8nkpYIYpUn/brboHS1IJJA2AU65H068C+rehk1/hc3PCS1/xSdjnLQE4xiryUajhh9eMI+Et6S8V/M22xt34w50YDROER8T70Y/siZs2dKJ3e6lurodZaKc4iI90yoEcrH07GLqSoQWQ7VGjtMlCfn8Djq6wl/DWW5+3zDnnj6bWdMKeXP921x0+2/Ztf8C7rv+B6NWoutCNSEsBo+1gh2JSNfWWAgfn1ojx2r1kBkR6htPHAs7xZSJMryehZRPWEjx8Ccom1ewdORt8hOn85vW2bz5ppxzzpk0Xg++JoitCXv3CjmB3d0D7Kl3sWTJiRyfczz7jt3HU2te5pOONfQ5O+mr7WOobghnnZPiY9IxTggw1JtAbo6ap+76OfrMXHQZ+QSVGUypLKayMjOaI6xuIT1fgk/hYLCgkz0OCy5tB/gFUq+RaMmU5aNymKlMncMEZS6zpxRSWGCgpcXFn5/cyb59vUyZYkAuF86ojIxxh+k4Do+xMuxSVam8coaQOTVy7wgH7h3B22FlzyfvctX1Cw8ruEAMR3g2xBGKIjiCUcPcuTEcoVZw04ocIVQPwiHmiYlySksNnHJKAVptgtgC99hrj/HnX/+ZN55+Fp+zgxt/fSP7m9wCR/gU9cBm8+ByjR3cLuzbwcmEVqtn1GPjcoQauyhKhxGe6FdTYxOzpCIHKHwaQe3Lwvjd2ReAuXNzohwLTU29PPDfPaxs6+GxFfv4yQkTSEyQU7PDTofVy7SKYi668HsA+H0DePr6GCa0SrZzO87uFpzdLcBqABrXJ1I3eSqTplRQZC4D0igs1B20m8/IRKOW43L6kcokrKu20tnhQatTMrkslahRyCF3RrJWSTZQXJxCQuB0Ko45ngmlU/i64XBi1MLSDEx6FZrvYF7UFw2JREKRMZn7zy7n1pMnsWxDM69sauXxlQ1k61WcVWGiIlcf15F20UVTyc9/hpf/fD/nXH4DmRnJothSMS0dq7WfbdtsVFYaxakTAEVFeqrmZPPKq/Xi1ItzzpkYNdWvdqedbdtsYv+5yaRBpzePanFNVMqZNEkIVwwERsg1a5l73AVMKJvCP5++gxu/fxrX/+K3nLr0IvEYVqxsoXaXHbNZG1UUYlczwhf3xkYn66utGDPUSCQSrFYhyy3SjqtRy8WfRYX6RhxTbPZUzQ47O2rsFBXrqagwis8t9smoyDWw09FHe4WOrVIpP311O1ceV0Db7p4o+/ShME5avjjE1gOYS/v2ElLfu4wy6x+h7XrImSU6PyqmpfO7e88BhOtdc3sXmoSDmVFb6+tp7mql+f1WcYumtDQ2t5ViNmZTWlaIvcsv5ibMnJnJkiUFIondvq0rNLnJTtUc4YbN7fZHZSxok5WQLYQ79/S5uGjh6RQVfE1Xx+O26YXEqClLIWOKIEZ9Eyfofd2RoIaKi2Dq+dD8CVT/SWjx2/MuTDhJeP+Vo53X559fyvnnl/KHZ3LYsdvC7LJy4KDYMjw8Qkenh8pKIwsXjG5la2lxU7PDzuB6K5kZGioqjFFZaVZrP61tfSgTZWi1SqZXGpkaGg8ezsDasqWTyWXCCn6GUY3XM8S8qgIuOv8X/ObPr/Hbv77Gum11/N/vf0Zmeqq4f8uW1eHs9TMhJPqGERm+rtcd3Nfq6nb+8+5+tFolxcUpUZlVXs+w+NVsFqYTbtnSSWdMqG+8No3w9aK4SKgJWeZk6iyptAxNpSqtlimyLbx1xjbcyvdhUyd7uqpYv6kXOHw9gPGa8EUitiZEvtcAUomUktQSUncsRrV6IlWnBCm8tYetXVvZ37UfZ7+TGu2rkCZh+95hXN02XN022LUVgLpVMlYWpaIr0pFQlkT2EikoB3kzFBurlClJ0uvRdJpQ27IwDZfiaFSRnmzghDlFSJCwe5MLrcxFYYGB3bsdGAwqJk6EWbMy0WiWsmjRaUyZ8vXjCOP4ZkGfqOelU1/iig+uQHIf9L9g5NKrryEjI0kUWyoqDsMRqrJ55ZUYjhCxMFJbG4cj6MyjWuMSE2M4QmjqncXSBwjX4Zvuv4mSaSX84a4/sL9+P3nHnMueRv+n4gjvhupBuL067FoPP06jkeOJyA6NF/IeWxNqauzs2GGnqCiaI4T3IRxsHv4au4+HE6ZsNg91zXbyclJgwiEf+rkxzt6/BBQUpPDs9XN4dbOFe97azX3v1nHN8RNEJ0dkzo4yUYUyUXAqGdM1ZGYcQ6/jcfbXb8HZtRtb+16GBr3s3r6J3ds3cfkNd/DTJy7EZvdQs3UPb7/wC+o3lpE3YSLHHZOOb1iHo0cqjoIMT/hzu63U1NjQqOWYzcksWpR38MQoNRxx29KXgUOJUcdPTGdhWQbZ42LUl4oUTQI3LpjIj+YV8lZNO39b08SfP9p/SIEqiJzC6VfT3avglVfrsdu9tLY4ADCmq0PxNcJzYlvZxpqMJ0ACEnD0+MQW10iRJ9b1FBkMbbH00d2bxFU/f4EN7z/JH+65hY8+XM1PfvFbzGbhvJRKJaSlqaLOh8jVish9Xb3aQl2dgwkT9Hzve0XiFM0w9uzpQSaTiOPLD9XyEonIa0WsBddsTubstHxae7ysabDz0V47b9dYydWpmGrSkJp7+PM4NgNgHF8ssqcfC0Vr4ZULYO0foOQ0pk07GSAqFFkikVCQI3yWwzcOP7vsYv65fCN9Q13UNTVh6ezC2t3N6++tRaNOxLX5nzgcPiyWPv61+gNeen+AsqJcJhZkk6RMRqU2sG2LDWso62TBAjOfrBPqgVoTXQ+EfBs9mYalh/2MfqkYFWAeatObdiFMPgcyx8WoLxVSGRQeDwXzwVYPax8VBKr9/zukQHXslHKcbUms+l8Lao2cjZvaqK9zodMmhNre4tQDo0Y8RyKnR0ZDcEn1OHx4Qy1N4fMn1vF0262FUcKXxdLHnElVlN85gfueeZZpZ17Pr6+5mrNPFcTj/r4h9ClKliyJbj0M74PTFX3N/8+7+2m19JFrjq4X4ToQWQ8inQCHO98i3V/R0/3ykZnLUep/AM2foLVUw/LbWSRTMjXtOKTaH0AgFw4z9nu8Jnx5GMtRIuaDzc9j7owchkeGcflddPR3sMuxiyZXEw2aJlQ3pdK9t5O+/T30t7gJ+APYd9ux77YzM30mcxbNQTGkwVHvo+H9bcyurGTy5MmkFJsZ9KTS1hbgP20H6NVDhjGJyZMNdHfvY8WKZnS6BCZPNnDlleWicLZ7d864YDmOo4ZkZTLPn/I8Z712Ifyok33uVjpeGQlxhPB1Pzz1MX5NGGsyXuRzHA6f2OIaKVyJHEEanyNEvo7N5iGtoIJfP/sIj9/5IAeWPUZq6RmkVc6MWw/icYSmJjfZ2UmjfgefgyNE5EbF4wjxAs6PdNsgvN/79zuRS774DqRxJv8l4sJZZiYak7nhlW089N4ezq3M4cILSg6ZeZSTk0pazjTau00cV3Up+eZkeuwtyIJtdLbUU1l1PCCQd7W8iw2r/8uG1f+N2oYyUUWSLoMZJ16By5mFQy1n984GGndXU7/NgEKRSPm0LNSyHBKUStJ1CeiSv9qCc8jMqIlhZ9R4m95XDVWCnItm53FOZQ5vbW/nqY8PiALV0spspuXoef2f9axd045Wl0BgWAhTHhmBEc8m9m56ntNO/TtlU81ieynAgQO9bNxgJSFBCIf2eIf53vcmjBJL6+u7aWp2UTRBT6JKTt1uB4WFOvF3NTvstFrc7NvXiz4lEY1aHuVGcnQPIJNJ0OuT+MH1v6J/KJd1//0Dd11VxwNPvcCihXmkp0eHtEP8aXpCTo+WDms/xcUpzJyRic3uEadohhHpmDrUVL5IlJamxZ0MGPncPIOGSwwazpo2xKbmHna0OfmwzcF//9FNWZaWhaVGFpRmUJ6tQyoVrjnhlVqdLoE5c0xRGQDj+IKRbIQffgDv/Qy2vkiZYQ9lZ94C6tRDPm14QElBaikV0+YzrSKddetbkKr7sLm68Az4kMlk4mrapfdWU7+/Ner5EomE9BQ9WakZnHvureys7aa+rpv1u3awfX8SebmpNDa4qZiWwawZ2SQmKMjM+RpYvccSo6ZeAGVnCxPLkjLGxaivEhIJZJTBuc+BvQHW/A7q3jooUJWfCwlJvP56PWvWtqPTJtDR4QEJpKbJ+eObz5OfbuauMy+OEpzM5mS2bO3k1Vf3YLd7mTEjg+LilLgtCHX13TQ3uZhQpEeVKGd33cGaUFffzfPP7cJm9wj3TKHWusjV526HUBOmFk7kxfvu4c4//oVrH3yEnQ1nc23I2T5aDDq4DZvNIzqmwu7DXDOccfqEqH2N55iK3ZdDoaw0bcx9EDHxZCg6CbobkTavIatrJ6xcCWu1ULwIJi0R/i4R15zxmvD1QayzSi6VY1AZMKgMTEkX3ErB2UHu272GVb4mKs5Io6RMR1dHC0qFDUvTHi6/4nJmzZiFQqbgH93/4O8fPE71B2uiXket1qDXZ3LKKddSV5cjuCPq9rJ27cds2pRKQoKKE04oICVlIomJieTnK8nMTPxS34txfHvxwAPVvPrqXlKzz0Wy+O/UapaTuGcegQMd7Nuwgu+dfj+TJqeJkyUhDkfwhDiCMQ5HaHJRVKQnMVFOXV0MR6ix09rqZu/eXlJSEtFo5FHXUUeoHmg0cmw2D6tWWXC7/cyYkclf//tX7rj8bvbVvI50ZgLBYKXI5+Ndx0WO0NHPtGnpcYUsIMoxdaT1IC5HOMxzj2TbkcMSJkwQ8uy+aEiCQWHWzjgEuN1udDodLpcLrfaLCf92ege59fUdrNpjozQzmSvmFpCqSRjz8ZEtT+FQ5XAezbpPrDh6BigrM+DuacN6oBpHZzN1O3dj62hjcMApbueinzxMgm4WMpmEmg2r2Lbi/rivZy6awq2/eojcgiKSdfqjfPRjIxgM0tTtYUtLL1uae+iJmKY3rziNk8syydKr0KnGxaivKwaHA6JA1dTtYUK6htaPOulsdGFIVXHSAjN6vZKeHi//e+0mLI27yDDl8Pg/3iXNeHAF46671rB/v5MJE/QsPWdi1Gc+cirfqlUWNm/uJNuUhE6vpK7OQbYpiUsuLWPVKgs7auwkKKX0OAZQKGTk5CSzZEmBeAHfsrWTrVu78PuH6esbRCqVoNP0svG9B+ixWbn5vt9z0ulLj/j4P21QeuS5Hd6n6vXtrK+2MqfKRNWcgyscn3bbgZEgtj4fW1t62dPZR1O3B//wCNpEOTPyUqjMS2Gow0dnfS8nVOWwZEnhER9nLL6M6+ZXgS/tuGr/Be/eAiNDUHkJFJwgkPw4iJxC5vUcrAczZ2aKYc5Vc0wUFel5+v8+oMvZxbbdTey3dODyuhkcEqauTp1UwHN3383q1RZcLj9/W/E3bK7uUa8nQcI911zGeacdw+TiL3myl78vJEatjxajco8RAsyzpgpi1GHcH+P4CtHdCB8/JGRRSWRQegY3PaPB0jZAqkElBuoHk2zc9LsnAPjd7T/k9ivPjdrMzyNqwjlLhZqQmRW+DgaZGsoBefbZnWzf3sX06RloNAo2b+7ElJ3EpZcINWHlyhZ8/mEKCvRUVmbg9w1HCU0rV7Xw0UcWfAMBsrOTKJti4PWV7/H82++yeP5Mlj18G4aUI7sWfNoMj8hzO7w/ked07Ir3p84IGfQI51HbZnA0Ql8HIBGy13JmQe4xfLzfyP9q5BwzJ3e8JsTg63pM69a1sXJlCwsX5uFyDbJ+vZU5c0wMDAzx5psNLF1azMyZmbz33kaam9fT0XGA6uoa2tos+HxOcTv33PMM+/ZlEgyCTFbD//3fPXFfr7x8Fs888ydKS0vR6cZdU+P4fCgvf4F9+3rJzk7igityWZPzCJ5hF52/7aSr2Up2fjZPvPkEKWkp4nOiOMLSGI4QMZVP5AjZSeh0IY6QncQloXqwY4edhAQpPT1jcIQtozlCfr5ODGYPDAd49nfP8urTr3LS907itt/dhko9dj7zp71mR7YzlkbUhPA5HlkTvojMqMiptIWTE1DIFJwx4YxPvZ1Pc+0cd0x9BdCrE3j2spm8tL6F33+wl3ve3sU5ldmcMMkY1z0VqYTa7MKEpPBq3KbNHbhcflxOPxmZyaTknI4qfZg+uQNa+ygoUDO7MpEEqYvcwkm4+pVo1HJ8rhw6D8yhz9VLYMiPRiPBN+BjwOujo7WF3999K79//p9f+HsxEgyy397P1pZetrb0is6oySYtlxWlsagsE5N+fJreNwUJchnnzzJz1vRsXtlk4c+r9zM4OZm0LCVVWVouuqBUfOySU17h5kvOpL3lAD+/+kL+8Pe3RCF03vwc8evgYICuTg+FhbpRU/kqpqVjbe9HKpMQGB5haDBAT88Aq1ZZyMsTLn55eVoGvMNs2GilucXN357diVQqZcECMzNmCNMqtm7poa9/kInFqZx74Xyu+OF8/vibO3jwjuvYuXUD1935axKUn22FMJ74FP75smV19PULQkH4d+urrezaLQgEKXrlKFEaOKwwFSlunT4nm1OnjODyDlHf0cc+Wx/NDi/V+x34h4UJnMs37OPPje1cMDOXS6vyP9NxjuNzoPxcMFXCO9fDxr8KeT3HXgfq0W6FSKdEeGRyeLUtHOYMwiSwwrQSpuSVI3G0MEHpZ1pFOotPz2brDguGNCEcdHplBhBks2Ui+1uTCQSH8A8OIVfAgG8Q74Cf37/4T6Ty4JcjTPlcITFqQ/Q0vfLzoPR7ITEqE+RjL+aM42uEtCI451k47hZYeR/s+he/naPhjYYKlJNO5PwLysSHDgW93P7Ic/zskedJT9Fx+dJF4u/mz8sRvw4OBujs8hAMBuns9BAE9KFR2KmGRLRaJcMBoRVEkSDF2etjZ20300LtHkqljCyThrrdDvbu7WHXLjsjQWHbigQpvb0+/L4RMrM0TJ9m5JRF13He6bO5+PbfM33pDbz2hzuZM72Uz4J44lP458uW1dHfJ9QDUZiKOKf1Kcqo5x5pRki0uDUbcmfDoBeczdCxC3r3C7lgW1/geGCeTEagzgT2QrjwFVB+PWIdxhEfkc6qlhYXIExAu+uutaxZ0wYIwyva29WkpS1BpRqko6Mdn6+Higo93/teOipVH5MnT2XHDi8QxOnsZ8uWudhs3QwPD6LXy/B4vPT3D7Bv3x6uvPJq1q796Cs53nF8u3DhhZN49dW9XHjhJH7xiyps3hlcvPxiZLfByINDtDe3c8eld/DYa4+hSRauRfNC9WBeqB50dUVwhIipfOF8KqlUwvDwCF7vEG1tfdTWdovtb3l5WgYGhtmwwUpzs5u//W00R9iypYf+/kEmTkyNmhYok8v48V0/ZtLUSTx828Ncf9b1/OZvv8GUZ4pzpPERT3wK/3zZsjr6+mI4wnoru0I1ISVFKT43POkPDp8ZNZa4FYvodj//ER/T58G4MPUVQSKRcFlVPieVGPn5mzv5x6ZW1jR084Nj8igyjm2Vi23fmT0rS3RMJSTIhOT9BiepqUqmTE7DmKGm2ymhpCSP4kkHHSke77EMSgrw+4dRqxXMrTLR3OLm7bf3o1LJOP20QlLTjV/IsY+MBGmwCWLUlpYe3L5hNEoZU0w6qiYYWBAKME9Rj4tR31QkyGVcVlXA0socnv54P3+vbmH9kB/FxhbOqcwhUSEjxZDOQ397lZ/+4AyaG/Zw908u5aG/vUqiSs3iUwtZfKqwWvvKq/W0W/tZX21lyZICKqcLRDrsHDKkqajd2c2GjVaQSAgGwe32k5AgY8ECsxhcmJycgN8foKnJxcDAMGvXtLH41EIWLDCTqJTj6BlgbpVJPL/uePAJps44lid/+wv21m7n7j/8DZM5P+7xRk7N83iFiRiO7gFWrGxh/34nIyMHHxsWmmp22Ol1+pHLJKKIBjCnyiR+DYeegzAKHY6sHzxS3Kqak41cKsWQpOS4YiXHFafhHwrQ5x+mtcdLu2uAXs8gTu8QB+z9BIPB8fPuq4ChEC57Fzb/Df53P7x7s9BqM3npmCJMrBW7KhRsWTXHJH5OampsBIaD6FOUzK3KxtcvQzakI1Mn5O4sFINEL2H9eis6rZKyyalMLU/no48sfPBBCxmZapYcO/GLO/aB3ggxql74WWohlJ8PJacLYlRyJsiVX9w+jOOLRUYZfP81aP4E9cr7uIS1kNQEnZcLmWDAbVeeg63HySPPvcFVd/8Rg17LGScdA8DixYUsXhyqCa/UY23vx+8bprTMIE5gAjhubjbmXC3V1e3s2dNDWpqKpGRhIlNZaRppBhWfrLPS3OQmQSmEo9vsA7hcwk33zTfNwO0eoscxQNVck3h+nTpvJtv//QQX3vIQ8y/5GY/cfiU/vfTMMa+V8ab3vffeAf71r31IZcJzykrTRKHKbvfS3yeIZspEGTabR8gFiTinw4Hn4eceaUZIpLglkpAENRjLhH8jAcFN5e0W2v48dqQDPYJI3NcByqJP9acex1eHyLyqpUuLxa/hlswVK5rZsqULk0nN/Pk55OdrsVikzJlTwPTphUyfLmxn+XINJ59sxOsdRKtVcu65E6mttfPYY9tITlZw/fXTSU09dNv5OMZxJPjFL6r4xS+qxO+NaiMvnvIil7x/CcFbgvgf8NOwq4G7f3Q3D/39IRKUCaPqQXt7P+vXhzhCZQRHMGowGFTU1nazYYOVoaEgcnkACFJamobBoBqbI6xtY/HiEEdIlONwDDA3oiZE4oTTTyCvOI9fXvVLrjn9Gn755C+Zffxs8ffxpuY5HAOsWBGHI4SEppoaO729cThCRJB5OPQcPiVHiBC3DiVMRd5j9gyMC1PfCeSmqnnph8fwVk07v/9wLw+9v4fpuXrOrcwmQze2HRAEkerss4ujfqZRy9FoFKI7I7L9JxKRpKWxwYlGI7RCBIMjDA1COCzuaME/HKC+o48drU62tzrp9w+TnChniklLVVEaJ5UYydQmkqpJGCfF3yIkJyq4/ZQSLp2TzyMf7OXtmnY2N/dyzvRsjitOIzPbzIN/fYVbLjuL3ds38cCtP+a+P72ATH7w0hTpivJ4h1mwINq1YUzXoNP3oVYnkJ8nZ06Vidqddl59dQ/FRXo0SQl0dXqw2wcoKtaTbUqirr6HvDytmDUSeR5FOpyWnHcxE6dU8Jubr+La8xZx2/2PM2/RaaOOM97UvFWrLNTU2BgaCpCboxXFqDVr2qhe1868+dmkp6twOf10dXrEbVXNyRZb+FL0AhHPy9OKbbvhnKzYlr/Icz1S3IoHpUKGUiFjZGCYgN3P7AnpSBLlKOSCsDd+Cn5FkErhmB/DpMXw4S+FAOkDH8HU84T2vsPkJ1VVZUfdZBiNQo6ORqMQXRaxLqswppanYbd5aWh0sm2bDb0uEUtrP0PDIwSDR3azc8QIBqHPCu3bBEGqu0H40KVOgIrvC2JURpngjFKMZ5l8ayCRQME8uHIF7H5TEGBX3w/ZM2HmFaA28PBtP8TmcPH3t1Zy/s0PsuL5BzhuxuSozUyrSKfd2o9MKsGcq40Ksg3fSFtahWlGxcUpZJmSaGzsZeOG9ZjNWurqHLhcfiorMzjnnIns3Glj23Yb0yuEdsClMfdVkS6nj156mJ//4UVufvAZ1mzZxfMP3IReO3oxcUeNHWt7P6ZQyC3AmrVtuFx+dDqlGF6+o0aoCUPDI2QYVchkUlqa3ZhztWJgbfic1qcoxeO32Tx8ss5Kj2MAdSgXJbaVN1wPIsWtuJDKIFGLzS3D4laHFn1U0L0PGE/7+KbinHMmcc45k8Tv8/J06HQJ6PXCRLC5c3NGTQQMI1bI0ofuRUZGRvD5hjnaHGEc44iEKdnE86c8z8XLL6b49mJ237+b7dXb+e1Pf8vdf74bmezgvVCkK8rjicMRjBp0OoEjFBZqKSsz4HAMcNddazCbtSQlJdDVFeIIRXpMpiTq63swm7XiAsEojhDH4VQwqYCn//M0D/z0AX5+2c+56mdXceG1FyKRSOJOzYviCLlaUYwaxRFcfrq6IjhCRE1ISYngCOusOBwDYk5WrCsqstUv3pS+eIh8jvxLmn8zLkx9DSCVSlhamcMpkzN56qNG/r6+hV++vZsKs56zppnITlEffiMhxAagjRWuHP55pJAFiJPPyqemjXrOp0WPZ5CdbU5qWp3s6exjeCRIilrBtFwd84rTOH6ikQxt4rgz6juADG0ivz9vGpdX5XPfO7v5+4YWPtpn5/QSI4H+VG554Bkevv1yNny8glXvvsHJZ10ACK2rHu8wS5YUiIHh8WA2JzNvXrYYLN7Q6KTV4gbgwgtLKCzUUVfnoM89iHdgiJkzM/B6h1m1yiLYciPOkUiXUmlpGkWlU/jLPz/k0btv5tc3Xcmp517B3CXXUViYKj4v3tS8imnp2O1eABYtzBN/vvp/FrrtftaubWdoaAS/L4Cjxxf3uMLn85atnaz+yEK3fQCLxc31108f5YqKbOuompMtEpOw+BYPkc8pLBlf/fzaQG+G8/4OLdWw4h7Y9DfY9SaUnQWFJ4LsyEt3bEjyWIGXRqOGBQvMpBvVhFcbIwnt584sCAyDvV4Qo9q3gscGUjkYimD6JVB2BqSXCJlR486obzekUqF9teR0WPc4VD8B795Cv/lU9srm88CNV9Ld6+K/H2/mql/+kd3vPiUSEZvNg9cj1ITI0PBYHDfXhDk3GbVGzo4aO9u32+jvGwRg1uws2lrdpBoSsdsFMTY7O5lUg1oc3R35eY91Kv3+jqs4bkYZl//8MSrOuoH7r72Gk4+fEvWcyKl54Z9HtiOGz0m9Xklfnx+fP0Bfnx+tVok2IuQ3EpHn8pv/buCdtxsIBEbE38W28or1IERkbDZP3OMLY1RroHScInzbEBuoPtZEwPDPI4UsAKfTT3Z2EieemPul7fM4vpvI0+Zx7+RHuWPwekpvKqP2kZ18vPxjjl9+PCeecSIg1ANPqB54DlEPRI4QChZ/9dU9tLa6GRwcieYIfX683uHRHCHiehnpUooNHE/WJ3PTQ3fx7CMv8sxDz7B3517uePSOuFPzKioiOMIigSM0N7vp6/Pj9wf44IMW8vKSGR4eweE4DEfY0snq1Ra6uyM4QowrKoojVEVwhJD4Fg9RHGHylxOfMF51vkbQKOXcdkoJl1bl88zHB/jn1jbu/U8dRcYkFpQYmW7WI5dKj+prxgpZsSfZp4FvKECjrZ/6Dje7rG7anQNIJGBOUXPy5AzmT0xjhjkVozYRbaJ8XIz6DmJKto7XfzyH371ey0s1bfy5uplMZJRrsph/5i+RBiwsOvN88fHhi2JWpgadfjRZjXQJDQ4GePONfaH2DAW5Zi0LFpjF6Xh1dQ5qdtgZGgwAkJGhYfeubjyeoaiJf3q9EqkUcYUQQJOs5e7HnuWtfzzHX393H5s+2cDC8+/lzKWzMKZr4k7EGOtnRUV6du604/EMMTQYQK9PpKzMwJatnXGDzW12Dy6nH7VKuFy7nH5qd3ZjzFBT5NeLrqjYto4okjGGMPVpxsWO40uGRAL5c+HKD2HfB/DJH2DLc7DzdSg8HiaeApr0w2/nUyC6tY+4I4aPGGFXVOcu6KyFrl0w7AOlVmgfmnYRTDoV9HmQZBwPMP8uQpEIJ9zJ5uGT0HxyL6VN7zAx+DEdnvP41bVX09szzC+v/X7U6rjF0sfWrV1otQmjCEPk6m5jo5Pq9VaSkhTY7QNkm5KQySSceKKZoiI977wzwK5dDtwuP7YQOeiw9rNqZQuzZmeJrqm6+m7sdi/ZJo0oNgGctbCKbZMKOP3qX3PFfQ9w6aln8tufXUBGhuCeijc1L7L9JAyn009yspKh4QGCQVAqZVTNMYntJfEIg83mob7OwdDQCAqFlFRDIjabhwyjGn+RPqqVN/LafrhMqvF6MI5YxApZkf8/jnF8UQgH+ms0Cmb6f8yGoicpvLyUooFJnHD6CeLjRI6QpUGni8MRbDEc4c19JCSEOEKuwBHCmc0GQyLr17czMBDBEXZHcATj2BwhEm3tXtInHc+iS9JZ+8YyrjvzOn7zt99w0UXRuYTxOEK4HgwPDzAwMMzwcJDjjsshL0875qKCzebB5fKjVoc4gstPbW03RqOaoiK96Io6JEcYQ5gaz5gaBwDG5ER+eXoZ154wgZfWt/DW9nb+uuYASUo5M8x6ji00MMGYhPQrFnZ8QwGaHR72dvZR1+GmqdvDSBCSlHIK0zUsCI2nL0zTkJakRJUwPsZ7HIJD0L+3j5T1LjJnpWBRjLC6v4/EhFJm51dFCZbhi6LL6YsSWcKClMvpo6NTIBXrq620t/ej1SYwpTyNJUsymTlDaPGo3dnNnnoHCrkElUpJZWUGCQopjY1OOjuEbYXFG6fTT1//EKtWWfANDDP3uGyM6RokEgklM87ixPOTWfef+3nrmR+hUvyWi3943pjHGm+S3hlnTCDXrEUmg1ZLP3OqTFGr2+HHxR7j5ClpJChlJGkUuN1+JBIJp5xSwMwZmVHth+HnxxaheCHskY7KHs/g5/q7juMLglQGJUug+GShrW/TX6FxBez5L6RPgry5wpS6xK94SlQwKOTRdO8TxKiuXeBzgkQKulxhLH3BCZB/HCRngCpVcM6M4zuP5euGWLnqUr5/zCIuTnuJiR1/o7VjEqdMnIezK/ozYjYn09DQi9vtF67boRvqyFHecDBXyWBQYcxQU1lpZOGCfECYNNTc7KbXOUC2KRlFgpT583Job+/H5fLT4xgQX29HjZ2GBidKpXCNTjOoxNdMUmq554obePzlV3n+v2/Q3tvOv564nSRN/BiGeFOTwmKXTAaW1n6q5sTUgzjCm9PlQyqVkJamwpSdRElJKhZLn1gT1Bo5q1ZZotxa4fcu8mtsEPuRjiYfxzjGMY4vEitXtrBypYWZMzM4c9GJ9G1yUXvsi7iHvIwER5BJBD4pcgSXL+qaGb5Wulw+OjpCHGF9iCMkR3CEmZni5L3ubi8qlRyFQi5whIQQR+j0RNUap9NPX1+II/iGmTs3W/yd0OZnw+8fxmAu5fqHfsNrj/+Ra864hl/+6Zcce9KxUccZWxMqIupBa2u/2IYXno4XPr7I54aPcfLkNBISZCQlxXCEmZlR7Yfh58flCDEtiuMZU+OIgiFJyc2LJnLtCRNYs8/Oq5stbG7q5eOGbpKUciabtJSZtJRmaknVfLEWu8HhETpcA1h6vBywe9hv76fD5SMIJCqkFBg0nFlh4pgCA9PNegxJSlLUCcik466ocYxG2Ba+cGEeaYVafvLSVhol0JA4gqPfj0YW4NG7b+H08y9h5uy52OwedPq+UUq/Rq1AJpOgUctF51DZZAPp6eqYVd8gOl0iKamJpKWpIn4vIdy2BIIYlKiUo1TKcPb62bS5k1yzVhTDli9voqvXyOzT/kBd9R/5+6M34Hc3cPn1P2Nfg5OaHXZRcMo1J9FqEbKx5s3LEQWg8CpJvPy3eKvbWZkaSkpScTl9dHZ68A0IrX8F+VrM5mRxv9qt/QA0t7hZu6aNefNzxAB5GN2iOI5vGGRyKF4IRQugpwm2vQR734Utzwv/DEVCSHjmVCGr6VO0+31qBIPgdYCrVRg7370PHPthyAtIIDkLTNMhezoUnAQpZtCkQcI46R3HaITrwdSF80g+5gZY9zimjx/lziktdOecBcES3lu7hZffWc1LD98qDrWIvV663YPIZFKcLh+Ty4SMnMllo+uB2ZxMfr6WhA4ZRqMas1lLerqavHytmMcWRl6elnXV7XQ7vGze1ClmP4WFsIZGF/NKTiJDZ2LF1g+Ydd5N/PPxnyMNJLGjxi4KTpPLDLS399PR6WHOnCzRmRg7ZdNi6UOtkYujzyMRrgmZWRry87UMDY8gkUiwWoX8kcwsNWqNnOXLm7C2C/WgpdnNmrVtzJ+Xw+LFhYdsURzHOMYxjq8DIjnC3Lk56HTn88wGP9vS/o+X61/mvLzzePjWhzn/6vOZOXMyNpsHnS4OR9CEOIJGLjqHymJqQnixw+sdoqBAT1KSYmyOYPOQmChwhN5eP5s2dZIbUROWL2+ivb2fzEw1Q0MjpJSb+Ms7f+HBmx7krivuYsbJpzNzwSm0tXvJzU2itVXIxgoPyIh0UYXrgc3mOaQDNisrxBFcIY7gC+Bw+CgoCHGEiP0CaG52s3ZtG/NCNSGMQ7UofpkYF6a+AUhUyDh5ciaLyjJweAb5eK+d93d1UNvuZmOToKDqVHKy9SrMqWrMqRoMSQkYNAloVYojclYFg0EGhgL0eofo8QzS4xmku9+P1TlAu3MAR/8gQYRTND1ZiTlVzXHFaUzP1VNhTsGgSUCvTiBBPr4CPo7DI9Ye/sFtx7Nso4VHP9zLPe/sRrn1dWrff4uNa/7Hk6/+F3NhcVQ7WqSTytM5hMc7TFGRnoQEWdx2uPKp6ej0iRw40EvNdjtms5aZMzJZsOCg+6qx0cn6aitSmYS5Vdk4egYwpCZGFTqpTEq2KYlAYARd4Q1k5a3h9ef+zMa168gtv56mVpDLpAwNj9Dc7AKJhOQkBRr16EttpI125ozMUfusUcuRySSYTBpRyAIJTc0u4fX1iRjTNWzZ2olUJg21rHjZsMFKZ4dAVCKFqcgcrHF8gyGRCBP8Ft0HJ9wJXbuh7t+Cm2rPf2HXG0I2jDYbUvIgpQC0JlCngcYA8iMMEw8MC44nrwM83cLErr5OcFrA3S605QEo1IIjqvAEyCwXHFx6M6hThba98ZbtcRwGsfWA429HNuVsZO/8FFPLq7S+Ws05D+5jYHCQtBQtf/zFNaOcPeHrtNPlo7PDS0lJKpdekjHKoQTCKvD3vjeBDz5opqGhl+LiFPExaaEpTXX13VitHpqbXGSbkhgZCVJaZoiqB273IKYsDZahAJmaQu76wfX8Y/XrzDz3Jr5/0ploAmZ6ewcACQ7HADKZhN5eH273UNz3IVwTSkpSowLdw1BrDtaEqeVpYh4cBMVj9nqGkUmlmLKT0OuV/Otf+3C5BDdsbBthZA7WOMYxjnF8XRCvhXTu3J/zzE4DT2x/go1/2Ub9ezvZVr2dv777NKY8U1x3qMvlw+MZwuOJ4Qgx9SC82HHgQC81NSGOMDPEEWwRHGG9FalUwty52TgcAxgMMRxBKiU7W+AI+/c70emUFBXpOfOan2Bzq9nywX+or9mLoWQxzU1JAkdIVqDRHIYjzMwcVfM0mhiOYAtxhKYQR9AlYjRq2LKlE6k0hiOEBi5F1oTIHKyvEuPC1DcIEomEtCQl58zIYWllNm7fME32fj5p7GZnm4tmh4d1+x28v7vr4HMApUJKokJGolyGQiYRbmOCghjlHx5hYCjAwGAgavaKRALJSjnpyUomZSSTU6JiUmYy5dl6MrSJaFVykhMV446ocRwRwv3i4dWPWMhkUi6vyueUyRn88t+7WDFwBsqa9Qx07uWX113Mn/7vv+hTo0P9AWqdfrIy1WKP+FiZSuHv33xjH+1WD3W7HaJoE35eV6eHdms/2aYkSkpS8HiTo0SucHii2ZzMBx80Y7G4qaj6PsfOr2LZn35GW9NNpBReTVbJLFJTVFGOKY9XGA8b6ZI6XKudxztMIBAUn2tM10QJaZHPn1qexoaNVpqb3RgMiWjUCubNz4l6bLx+9nF8w6FIhJwZwr/hQejvgtYN0PQJ2PcILqbmdRAMHHyOVA5yFShUgkglQSgIACPDgutpaAACMa2d8kRQpUCyCTKmgGECZE0TAssTdcK/hCMf1DGO7zYOVxMwFMHl78K2lzD85xc8d4aC778xyJ+WvcOE3CxuvPTMuNs1mZLQ6xJH14Q4LWp19Q6s7f1odUrx9+HnyGQS2tr6GPAFMGVpyC/QMrU8fhvEJ+usrFvXhjZRxyM33sojL/6DF97/J1PzpjItcy5abaLYKqhUytFqD+apRbZyRG4zts0OwOsRaoLXM4yx9GAenM3mQR/hFhCG1wRpbnIjlUnQ6RLE4PXI14uXgzWOcYxjHF82DlsPQrh66tV0ebp45bRXUG1Kpb+rhzsvv5Mn//0kWv3BOIPwdbq21k9WVhyOEFMPwt+/+eY+2tuFTNqwaCNyhC4P7e39ZGeHOIInOUrkiscRlEoZFksf+/Y5ySo7nj5/Mt11y+mpfYWqq66l368RpwnC2PUARrfaeUL1IPxcQWDTRG0j/PypU9PYsCGCI2gUzJuXE/XYrwtHGBemvqGQSCToVAoqzClUmFNEx1Ofb5gut48WhxdLj5dOtw+3dwjP4DDewQDDgaC4gC2RQKJchlopQ5MgR6dWkKVLxJyixpSiIkkpR5Ug/E6lkCEdF6HG8RkR7heHQ4dnZulUPHvZTB79ZyJ/HbqX5mW30NHawj3XX8Yjz/8LZeLB7A6LpY+OTg8lJamj3FTx8pQslj6StUqyQWz7g4POpLLJBkzZSeTlaanZYRezSsLbjsxjMmVpyMvTYcrSUD71BNJN/+SVP99J055HmTzxaubNv5r8fJ3owhoMBa4fyiW1rtrK9u1deDxDlJamjRlEGztp05iuQafvY2hohKHBALNmZYmi25atnYcNQB/HtwTyBNDnCv/Kz4PAEPj7YKAXepuhpxmcLYIDyu+GQc9B1xMAEkG0SlALLXdKndB+p88PteKlC2JWggYSkoTXG8c4PiOOqCZIJDDjMmpd05jGXTzk/B93rvJz80PPUJCTyRknHSM+9FBuo3hCj8XShzZZCdmI0yfhoCspL08rOpLc7kG2bbMBiGJQZPbGcXNN+H3DuN1+EhOUPHr7tazbNYs7//AsTp+dh396ndgquGdPL81Nburqu8X9iLcqvmrV/7N35nFRVe8ffw87DDDsssiMCySLKCpqQJYmrmWWpmWlWWa7lrapbbb6LbNfttumaWVZmppZJuYKpKKCiqiIwiCLAyjbsC+/P4YZZ4YZBBVFPO/Xi9fE3HPPPXfC+5nnOc+iZO/ePLJzynR1rcxqglFtKBeZZs7auno8POx1aXz6n5P2PIFAILjatNRGAHjlxldIPZ1Bw0sJZL9bR1Z6Fq89+hrvr3gfG9vz30uUylJycxttBC8TNoJRPSWlshQnJ1v8/NCl/cH5yKSQEHd8fRtthCQ9G8GrqSb4+jbaCL7nn9vduskIDnbHwTqSnxZ9xLrPFjL+iccoqvExbSMYRUnFxbXQRjDSAy8vKTKZkY3QqAemalddbVrsmMrJycHX1/fCAwVXBYlEgoONFQ42VnRytqNXZxeD4/X1DdQ1NFBX32DwvoVEgpWFRDidBG2Kfr44wOrVx1izJo1x4wIZP76HwViJRMLzE8OYdlsPnvS3YdVrU0lN3sdbL83grY++1hVHN34o6ztstmxRNqmnJJc7MWyYQjde2wVPG5nk6enAqJHdSNyXR0lJNc7OtmadXNrUQG1EldeQEIKCf2DZJ4vYsm4JB/fu5v6n3qWs0o78/AoyM0uIivQzKSTaqCZbW0ucnW1xd7Nrcj/6xCdkkxCfY1BLSy53wsnRhpKSaoqKzhco1F5H6mBltuufoINiaa1Jp3Nw00Q3GVNXq4mkaqg//57EAiSWmoLrIgVP0Ia0RhMG3hoOt24k+OBvpE9/mK/3lHLvrHeIW/kh4SEBgOmOcvpf0LdsURrUU2qiB40dj7RRSTY2lrqOlLFbMtH8a5CgUqk5eKgAaNBFUOmngmh30OXyIXSSeTP3k895aP7bPBBzF4/dN5yqylrSThQhlVrr1mG8bpVKja2dFe7udlhaSHSFd00VJ4+PzyY+IYeoSF9d+29tjaqkJBX19ZjUBAepldkuTwKBQHAlaa2NsOyuL5j892QsZkk4+W4Vyf8l8+HcD3lp0UvmbQQjPTCup2ROE7SRSZ6eDowa1Y3ERBM2gpGTKyzME1lj5K72uiqVGhsbS7KyLOl9+2Mo967jhw/+D7+wwfh4301UlBkbQWVkI7jbNbkffeLjs0lIyDGopSWXO+Hk1IyN0I70oMWOqdDQUD777DPuu+++tlyPoI2wsJBggQRr0RhPcBUwzhdfsyaNHTtOAzQRHS2uUhtWvjCenq4NvPLYveyO3cBbb7/Dq6+8jEQiMeu4AU3B2pzsMhQKTWivcXc8/Uii6uo6MjOLaWhoaBI+6+UpNenk0l5X29IbYOu2bFwVd3HLuC7E//k/lr4/hWkvLKJ3uL+urpP+mo277vn6OBIc7G4gSMao8tVs+COd7Bw1hYUVKLrISEs7R3hvT7p1c0HmYkt4b0+d8yoyypeoSD+D+9WuWziprnMsrRBB04KrxcVogqTX3Xz2dxQZN/dl8+EzjJ32PImrPsDTP+CCHeUUCmeyc85rgj76u9QaQ6OQTZtOUV1dR1SUH73CPHCR2erSQQ7sP0MD4NJYwwPO7zYrlaUUFFaQnJRPSYkVr06ZwRe//8I3G3+m3q6IGfdqurhq6zrpGy1aw0CpLKVcXcPAG3111zWFSqXmjw3pukLn5RW1HNh/hu4Brsj9nQgJcUcqtcbFxZZvvjmIm7sdN0X76TpRHT16lqLiKl0a4NU2SAQCwfVJa/XAxsqGJcOWcG/VvTQ83cDRhUfZ9Nsmuod0Z8Ijmmdsc5qgUDiTo6cHxt3x9COJmrURvKQmnVz6eqBF2zXW0tICaxs77n7qaQ7u+Ic/lv/Cf+tKuWPMfLy8HM123fP1bYGNoFKzYUM62dlqcnPVdOrkQN++nQgL89DYCDJbwsM9dc4r465/xcVVuiLyV0sPWvyt9J133uGxxx7j999/Z8mSJbi5ubXlugQCQQdm3LhA1OoaunRxJjOzGIVCBkBmZjEpKYWEhrrr3nv5kbuxL1/My6++xnFLOXN/SaZ7tSWSmgZCQtybFDxPTS3QFTG3sdF4Yo3rT+kLy5YtSpTKEnJzynCU2uAvN6wtFd7bE7W6BjtbS1T5agOnlHbOLGUp+xLzkCtkjJ80hshBffn925f5+PWHeGTWywQFPWFw/6r8863NA7q76jowXchRpJ+OOOjmzhQVVVFSUkVScj51dQ2Eh3sRHOzBokV7OXgwn8LCCgICXAzuV6ksZd++M6SlnWPoUDmFBRXExefg4GLDgAE+l/T/VSAQCC6GQYP8yM4uY9AgP917pvTA2tWXX3akMqB3MEO8y3Dc/gYp0lH8dTKAqEg/XdSQ/hfrI6kFxCfkYGlhWhOMDY0zqnKOHT9HmboGF1dbytW1BvP16duJkpIqioorUanUJutTZWSUUFJaxc2DOvP5K8+w9UACr36yjIPH01n10Vy6dj5fy0Pb4U+bGmK8HnMYpyOWV9TQAJwtrKBcXUNQkBuTJgWzcmUqBw6cwc7eiqrKOoYOlRsUi9d3UGmMsBIUCmdc6guROZbid/XLjggEguuIltkILnw17Cvuq76PgMkBFP5diF/3ALZsySQnp4yqqjpDG8FLz0ZoLGJu0kbwMmMj5Jbh6GiDv79hbanw8EYbwc7SpB4AZGWVkpiYh0IhY9iwzqgbNSVm2GNEDenN2zPf5sk7nuStr9/CXuZh4JDSdt1ribNIPx1RLnemtLQaaECpLEWtrrmgjVDcqAf6DqrCwgri4nJw8KgmcoAcTATgX05a7Jh68sknGTVqFNOmTSMkJISvv/6aMWPGtOXaBAJBB2X8+B7Y21uTkJBDSkqhTnRSUgpJSMgB0L0HMHvmU0x9YBIf/n6KlUdz2U0NlpnlFBdV0cn7fA0ogKTkfDIySwy64ZnLxQaN4+nkySIqK+ooPFtBRmYJ9XX1jB7dVVcMUF1ey9GjZ3W7H4cOFlBScr7welKSivKKWkBTrDwsPIBbVvzOZ++9xVcfvMl/O7Yx7/1PcPfsBJzv6OTsbEtYL48WRy7phxp7eZ4vhJ6fX86RlEKqq2vZvi0LVzdb/PwccXa2RaksbVLPKi3tHCUlVRw6WEBSkorjaeeQednj52d+J0YgEAjaCrlcxqBBnZHLzz/3zemBq6sre5JT2bc1ldNJ8witXE+dtS/b/7sTG5sbmtTMiI/LIe34WeRy5yZaoP9lX/t8j4r0pbCwAmdnW5KT8snLK6euXqMJIcEexAw9v6PuItOcc/CQRhO8fRzw9XUkO6eMqso6srPL8PR0YOqdIxgaFca4Ge/Q646neG/2dJ64fwQSicRAD/RTPy78menpQWPUlYvMDgepFUePniMpScXJk+dITS2kUycHXFzsKCmp0mhCY/0SbeH0ouJK9u07Q0ZmsWbdOWWEdirBwaUIv16X9L9WIBAIWkVLbQS5s5zPhn7Gw7UP0z2mO5b2Xuzfnk1mZjH19VBcXEWnToZRrUlJ+WRklBh0w2vWRghvtBEq6ygsrCAjo4T6eiMbQW1kIzTqgbbwelKSigqtjaC30aFSqbFy7sI7yz7k/156lyfueIIJTz2BtUv3VjmktBinI2o3aU6cKOLMGbXGRtiehaurkY2gpwcyWamBgyopScXx4+dw8a1D7tf2QUmtiuPv2rUr//77L59++injxo0jODgYKyvDKfbv339ZFygQCDomoaHuBq/m3tPi5ubG9BhL3Ost+Oa/BEr8XDkrtaIuT023bueNlvDenuRkG3bDM06h09+djujnzXQPTYtwqYMVGzeeIjunjM2xmbraUtqHfHV1HSuWH+HcuUpkMluG3CrHy1NKdJQvUqk1draWepFZ3kSPepKK+q7s+XsR08bcwsARz3LnvXc3SRdsKcbpi4UFFaSlnSNLWaJxqJ2AqqpaeoZ68OysfgadOf76+yQ7d5xm0M2ddfVQiosqsbC0QC53omsPV/z8HFu8FoFAILhctFYPXF1dCewXSortt2SnfEOd+gse67actOJJ5J1xNtAEN3c73NzsCQ5xb1KoVptCV1RcSV5uOQBRUX4G9ZqyN54iJ7uM2M2ZugLq+pqwfMURis5V4iyz5dYhcl2nu+SkfGztLPWK2QaybP5rvPzxtzz19ses+H0Hi156lIAumrS+1qZPmCpyq00jVGaVkJlRQn29RhNCe3pw771BOk3466+T7Nh5WlcYXaVSk6+qwNnJBmt3S6IifXGpr0cW6NLi9QgEAsHloqWa0NurNwsGLeCF7S+w32IjffoOw7r+HDZSGR5ejmRllRnaCOGe5OSUGXTD03+WGkewRkR4M316o40gbbQRssvYvDlTV1vKwEZYoWcjDJHj5SUlOrrRRtDTAy8vqS6qSiq1ZsjkZ0j+5xeWv/8hQ+++i5gXpuLt0zT1vDmMNaGwsIItW5RkZZU0OtQabYSeHjz7bD8DPdi58zSD9PRA66CysGi0EUKtr4iN0OoCE5mZmaxZswZXV1fGjh3bxDElEAgELUGhkBnsgpt7z/h4UOc8Mn95EZ/Anqhi5pIvs8Dp1DmiIjUpIMHBHrg3OppM7X4Y705DU4dPUnI++fnlutpSk+4NxstTysqfU8nOKcPd3Y6+fb1052t3TfRrWYHG0Ii5bRQTJsWw4KXZ/PvbfJTH4/ngq0+J6GfYOcpUkfULkZScT3JSPja2Fshktnh5OlBf30BklG+Te9q54zTp6UUAjBrZjcKCCpKSSuiicCL6Jj+sHKyxsGjRZQUCgeCycrF64OVlw12fHCA2toxNT/pwa/03FFn3RJk5Vle8/KZoP+T+zmb14OjRs3jr7U5D0y/4yUkaTdAWUJ80KRgvLykrV6aSk91UE0KCPQgJ9mjSujs0uBMfz53BVz9vZvmmNdz+1Bx++ehFhkX3NViXcRfBlpKclE9Scj62NhpN8PTSaEJUpK/BPe3YqacHo7rh5SXV1eGKaqw7QmEF+IooWoFAcOVpjSYM7zKc7LJsPtz3IZWny/j7m78JjwxHNmLK+QZEUXo2gnsrbQQjPUhq1INkE3qQbUIPdDaCqqmNoJlPxYkTpUTcPoWI6F588/43lJ3N4ZXFr+Ao0ziDTBVZvxBJSfkkJ+dj06gHXo16EGmkBztN6EFhYaON0MWJ6Gg/rJyqsLa0btF1L4VWeZW+/vprnnvuOWJiYkhJScHT07Ot1iUQCAQm8ff3RyKRcCJpN+F2y6ka9DAH6ir5KT6DQBtbFArnZgujXyhaSSsgf/19krxcNS4utrpj2iLm4b09dc4vOJ9GqI1gkjpYGcx9PL0Gn54zcfToy4n93/DYuFt54d2P6d0/SjdG62RSq2tQl9e2KJpKux6FwrlJrS1jBt3c2eA1KTmfE2lFSMM98fKUclZd3ey1BAKBoL1hZ2eHp6cndXV13Lk0l7WzhjHEczP97AopOPUkGYWOyOVORER4mzy/JfWctE6mv/46SW6eoSZoi5hrn8HGFBRqNMGhMWVEa5TEDIigutiRfdnbGD7tFWY8cAf/e24qDvaajktaB5NaXdOkxlVzGK/H3Hk3D+ps8AqQmVnSxIgTCASCa4GHej5EelE6v2T8QgMN7Nm2h1oLF4Jvuo3wcM8mBc7NPU8vpAk6G+Gvk+QZ6UF44/M3PNxT5/yC82mEhY16IJVaGcxtYQHqsmqsrCRMfOo+AkIDeHvG2zw+5nHe+votuvboqnMyqdU1BumAzRHeQj0Y1KgDg/T0ICkpnxMnipBKNd1nz1ZUNTmvLWixY2rkyJHs2bOHTz/9lClTprTlmgQCgcAsPXv25Mcff+TOO+8k6b81PNY3nJKgW/n3RAEJNTC+tq5Zh05zTiv9iKeioiqDVtuqfDXq8lqGDpU36eynrfekTQMEjXhpd+OPpBSQm6emZ2gMjzx9F4vnz+aFh8YzbvKjPDjjRewdpDonkzYdsLioCtC0JQ/r5WmwZu06pQ5WBAa6mnRIGXciHDWyG6NGdtMd13eyCQQCwbWIRCLh66+/Zs+eQxw/nszD3ydzeM132P79HLL4+RSVDgZuN/sF/kL1nPSNGX1N0H9/0qRggy5O+ikhGxvTAAECA111Y5RZZUhq7ZgYdQ8jotP57Jff+CduP9+98yxRfUN0DiZtKqC2OLmD1KqJo0q7Fu2xoUPlTe7J2CgbNaobo0Z1Mxijvab2VSAQCK4l3oh6g6zSLGofqSXjswz2//sPN/QMAHxZseIIFhYSBg3q3OwzvzlNMKcH2mNqveevsSZo9SA7u6mNcOJEEWXqGrKyylCp1Fg4ynn7+w9ZPGcBT459kjmL5hAeHgqgSwcsLtazEcI8DdasXadUqmcjmDjenB7oO9muJC12TNXV1XHw4EE6d+584cECgUDQhtxxxx08//wrLFz4Ft99/RYPPtgJp1wZ5SFSfjupwtlHSl+Fa6vn1e+iYey4aa6zn/a4haUFfr6OunO0x9zd7di//wyOjtb8t7eafsPfIjh8M3/88iXxW/9m1vxF9LnxJoKDPXQpfSUlVZxIL4IGkLnY6a6h7ayn7f5UV9egW5O5e9Gvr6WdQ7vrIxAIBNcydnZ2rFjxM6NHD0apTOOhBT8xIPRjbi58mxjPWCrPFULNTLC2b/Xc+s9RfcdNc12c9M+1tLDA18+R3uGeeLjb68aEhrhTWFiBVGqNbW0PPn1xDl+t/4Wb7n+BGQ+M4Z1nHyQk2EOX0ldSUkVerlr3zNc6qszqgVczemDGQNFGhgkEAsG1iKWFJZ/c+gn3lN9DzelastedZvWSb6hGRnaOpkaSqfS9lmJgIxg5bi6kCUplKRYWFvj5OerOMbYRpFJr1q9Pp66unn79vPl07acsfGEh85+Yz31P3sfDLzzM8ePnSGrUhBMnigCQyVpgI+g991uiB1fLRmixY2rz5s1tuQ6BQCBoFe+99wbp6SmsWbOGNWte45ZbFjKydyh/nC3i8+3p3NrDk3v6y7G0kJg8Pz4hm4T4HCKjfHWFbqUOVue7YHhKdXWjtmzJNOjCB00jr+RyJwYN8jOIXtIf4+npwNatSior6ggIdGHc+BlMfHAiH742mxen3c2o8ffz6POvoS6vpa6uAWdnW/r26QQ0IJc7cehgPvv3q+jb14uwXhpRkzpY6dL+tOhHU+nXTAHTziqBQCC41hkwIIg//vidW265hdWrV+Pg0I3kuleQhv1HWP5X8NeLcNMscOtmdo74+GziE3IIDXHH01PzrDdO6/BoTM+orq7D0lKiS9EztctuoAl6RddBowehIR5UVtZy7lwlCh9f4lcuYvHydbyyeAXrtvzHV2/OxM3OV6cHcn9nXVSUMquE/fvP0LevF73CNHqgH02lj0qlpqhY0zHQ+Jg5A0UgEAiuRZxtnfly2JfcU3EPVVmVFOwvYOvP39D/rqd0tZVaQnx8NgkJOYQ0owfaulE6G0HvGWusCeb0QF8Ttm5VUllZR0CAC3K5E/YO9rz66av06NWDrxZ8xfHDxxkz7bHzNkJfPRvhkJ6N0KgJUqmVLu1Pi0qlprjYcK1a2oMeiMrlAoHgmkQikfDGGx+xZ08yp0+nk5f3F51do/n9nhDe3niE7+MzSc9XMzHMh9KCqibpbgnxOSQlnSEjo5hbb5Wjyq/A0lJC1y7OYOTM2X/gDDSg68KnxbhgeXPOnurqOqqr6+jS1RkXF1tWLD9CZJQv0178ilXLlvLvxq/YvSOWB2fOJygoErncSVOgPFmT530qo4TKyjpA0mw6olZYgoLcmhRY1xfViym2LhAIBO2VyMhIXnvtf7z66nP8+uvnPPnkzWTJpxF221j47SHY/DqE34fK9WaDNAYtf/99iqPHzpKlLKF/fx+KirU1NRqQc37XW38nuryxqxM0LVjeXEpIdXUdeWfUhIa44+Zuz5EUTXvxG3sM5N3pnvy8bR0jHnmFe0cN5pGx4wgL8dB13FMonDlbWHleDy6QjqhUlpKXqyYoyM2k80z7erEF1wUCgaA9oXBW8NGtH/FI6SOo55dzTpVPftoebEb0aDLWOK1NS0JCDgcOnOHIkUJ69vSgVy9tSlsDYGQj7D8DoOvCp8W4YHlzz2mdjdCl0UZYcYTISF9cXW2pd+7F0++8zLL3FvPp3Fe495mnsbeXkZlZoou+OnWqpEWaoFSWktsCPbiYYuuXA+GYEggE1yxKZQ233z4fpXIbjz/+IqGh7lhZWTD/jp7c2M2dl1YfYvHOkwQ2WDMIwyihyChfMjKKqa1roPBsJZaWEo6mFpKXq0bmYqcbK5c7GUQu6aMtWA40++BOTS1gwx/pnCuqws7WCqWyRBeC6+vnSJVlJHc+GklG0lf836tPcOMtw3hizlskJWsMkZzsMhydbAgIdCGsl0eT+lH6mEopMUVL1y4QCATXCn36jCU6OokRI8bSr1+Ipq24fzd4PA7WPAr7v8dauo+0ktsAw11hqaM11tYWuLvbERTkhjKrhD2785A6WuMiszNIzzAVnaQtWA5c0LGTmJjH4UP5lBRXIZc7c+zYWXJz1bh72JOf38DMux6m4p4snnvvG2L/28+C2VOxr/Hn4MFCsnPKcHK0ITDAhV5hmuuYM66g5ZrQmvULBAJBe+ZG3xsZ5/UEPz39f1gmSrl38v3NdmYFQz2IjPQl41QxVdV11Nc3UFJSxe7deTg6WiNr1ANotBH6mrERGguWQwtshA3pnDtXhZ2dkY3g60hycj69e/uw5M8lvPHUG3z+8nz6j7iTeucwQFO/sK6ugYAAF8LCPC6LHrR07Zcb4ZgSCATXLKGh7kAUoaFjmrSQHdnTh56+MqYt3UNKvhrnUjV96xuwaEzti4rUdB1KiNeE6laU15KXq8bbR4rUwYotWzKBBnx9HZG52OqcQPpOIeM6VKbSA+VyJ5KS8yktq8HKUoKFpQS53Bk7Wysio3xxbezoEd7bk2nTV7Br8598+f7rPDL2Fm694yFCQ8fSPcDLoOueceF1fbTRVKp8NYn78gycV83V0BIIBIJrnZ49PZg3bz6hoe6GmmDvAvf9AnEf4/Lv24yzzaHM5WngfFTpmDHdcXezx83dTlPctrgKqaM1MmdblFklFBVX4uurad3t4W6PV7Bh8XGFwhkwLB6uTQ+MijTUBICa2nqKiqsId7enT59OuLnb4d1JSmZmSWPUUgi33dKflz5YyvRXP6ZnQDfuGTyGqMjuTTosNZeCoT/G+Li5GloCgUBwrTMt4gHyapUkyDdS0/kUXl7RTcaYc9RoO5MmJOQQGelLRUUtjo7WeHtLkUqNbASZre55rO8UMq5DpU0PjDTSg6SkfEpLG20Ei0Ybwc5KFzGlncPb34OPf/uYbxd+yy9LfkEefIyAcbObpBiaasahRRtNpVKpSUzMM6sj7b74uUAgELQ3FAqZgfFRXV3N3LlzefjhhwkNDaWzmwN/PnMzb/95hO8TMjn84wHuDfNhYLgPADY2ljg62WjCYXt7MnJUV13hQG363qmMEjIzirGzt2bcXQGoy2t1D+6Ift4GOwkJ8TkcTinQzW3sBNK2bNWvDaWtZaVl0PDb6T/oVn7++hNWffcZrh5/8PiLb9Bv2G1IJBJU+WqKiwzrXZnCVD0pA/Eyuq5AIBBc6xhrQkJCAn/++Sdvv/02SCRw0zNI5DfS8NMUXPa+S27OXfjcPB7QRAmVq2vZt+8MW7Yo6R3uyaiRXSkqruTAfhUNQL6qgpKSauLjs3FwsCYq2pdyda0ufXrSpGCD9cQn5JByuKkmxAxT4OBgjZu7HUFBrpSrnXQGgtYgAvD2dOP7957j0XtG8vRbX/Datx+TWTycd559EC/3844xczWktJhzXBkbNCJSSiAQdBQUChlfyhfw2OazrE5bjbuVO5s/38xdU++ic1dNMzetoyY1tYAtW5QGqWs2NpY4OtroUuZGjtSzERrT906dKiEzsxg7O2vGjQtArdazESKMbISEHA6b0AOt80dnI+jVhtLWstJibWPN4y8/Tu8be/O/2f9j4cyXeOXjV4gY2AtovoaUPqY0wVQNrSuNcEwJBIIOw7x58/jwww/ZsGEDe/bsQSaTaVL7xvYkc18+29RlLD2YjY2bHX3kmhaqaWnnKCmpQl1ea1CTSZu+l5OrJienDImFhKTkfIYOlQOmw2Ajo3x1r805gUxFPBmn502d+RLDxk7ki/de5c1ZjxDcux/Tn3uVKrqQm9eYH95MTStTu0DN1aYSCASCjkROTg633norlZWVdO3alWnTpmkOyAfyUeViBuW/RTS/ws5MuPFJsLYz0IRydS0REd6oVGpAAjTgYG9NfEIOyswSamvrkUqtm9WEqEhf3as5J5C53W39nffovqEk/raYJb/8xcsfLefnP3fw/MPjmD31rmZrSGkxFxVwofpUAoFAcC1jIbHg/wb/HxM3TOSNeW+QtzmPA/EH+GzdZ9g7nO/Uaip1zcBGaNQDLX37dqKkpIqsrFLy8yuACpKSLmAjNOpBpAk9MLARTGiCcXpe5NBIvvn7G96e8Taz7pnFQ889xKQnJzVbQ0ofkzZCO9ADSUNDQ8NVXUE7o6SkBJlMRnFxMc7Ozld7OQKBoBXk5+fTr18/srKyGDt2LGvWrMHCwgKAuLjT/P7PSfbZ1XKquIKYYC8GK9xIOVQINBDWy9Ok02bLlky2bVPqIqZasoMQn5DN1q1K5HJnRozoops3NbWAzbGZVFbUEhjoSvRNfrpjWmeVj7cUmYst+fnlHEkpJDLKFzvJSb758C3SUg7SJ/JWbh7zJN1vCDKIurpUzqqrsbCAcX0669IdW0pHfW521PsSCK4X3nnnHV555RVsbW3ZtWsXERERgEYPYjdnMCVgC11PfQr2rhSGPMGpcy4G9aOMv6QnJuaxb98ZqqpqdRFTF4oyio830oPGObXFxi0tQZlVRlSkr0G0lNY48faRkptThlJZwpAhcoJCnPnf16v4eMV6ZE5SZk0eT++u4VhbWdIrzPPyGRaFJ+CGkeAR2OpTO+KzsyPek0BwvZBZnMm4H8aR8koKVUVV3HrHrbzyyStIJJrvu8bFvrWOIOPoJX2M9SA62rdlNoIZTUhNLWDz5kwqKxtthGg/3TGtHvj4SJHJGm2EI4UMGNCJtD2x/PDxD4RHhvPIvJmUV9s1u+6L4WzFWawtrRnTfUyrz23Ns1NETAkEgmuazMxiUlIKG2uKeLJ69Wpuuukm1q1bx//+9z/mzZunG+tkYcn8m7oQW1jMD/8pOZhxju6VlvQOadpRT9u1TqFwZuydgSYdQOaKkG/dquRgcj5ZWaUEB7vrjiUl55OUpEIC+Ms1D2dtHSjtrkVxUSVHj57lSEoBuXlqAJ57bhCf/vw3f/z6Kz98vpADL08guE8MAX0nws39m9S+ElFRAoHgekVfE+bOncuePXtYv34948aNY//+/Xh4eBAdrUnjWB4bw139wul1fA6ue9/heN0IynvEGOyMazmSWkBSkgpPL3tu0jMYtJgrOLt1q5Lkg3p60HhMW2zcwgLq6+HIkUKD2lFaTSgqruS/3TkUnavC1s6KqCg/3n9hGpNGxjB30XLmLf6OTm5ujBowGHv74WZ32AUCgeB6Q18PPhr7EQ/lPsTJ/53k3/X/EhwezN2P3G3yPIMO1yb0ILVRD7y87A0cSPo0pwkHTWhCUlKjjSABf/9GGyHRyEYobrQRjhSQm6u1ER4m/MZw3n12AbMnPMmoyZMJvfFG8vIqAJrUvmrPeiAcUwKB4JomJaWQhIQcQJNP3r9/fz777DOmT5/Oq6++SmRkJEOGDCE2NpPYWCUAb70eTVdHe9779zj7JLX0sG8aIaTftW7SvYZ1Q7ROKztbS9Tlmnbh+s4gudyZLGUJ3brKDMJkw3t7kqUsoUxdg0LhbJDjHdHPW+dgkrmU4u5up4uYArCwsMAv4BYiRncm+3gs2cfXkrp/M6dTbsXh6dmU13U2WxBdIBAIrheMNWH58uX079+ftLQ0pkyZwoYNG7CwsNDTBDm9nt9F8bf3E3l2A0X5eVA3EyxtDOZNTson7UQR4dKmUUlHUgvYuPEUlhYSBg3qbFTHyRllVglduxnqQe9wT9TqGmrr6rGytMDN3c4gfUO/SG1ujhqlskSXGghQV2XL0NARhPiEc0C5h2V/r2Hjnn95Ydp4HrtnVLMF0QUCgeB6QF8PRo8exJx75vBaxmvk/pjLl+9+SXCfYEL7hTZJ5ZNKrbC0lCCVmnaVJCXlc+JEEVITeqCNvrKzs0StbrQRjDQhK6uEbkaaEB7uSVZWCWVlJmyECG+dHshkjTbCkUJdemDf6L7MXLiAJW9/xtqvvuL4gSTueXq6bv5rRQ+EY0ogEFzTaDrznX8FmDZtGrt27eL7779n0qRJHDhwgJgYBQAxMQoyM4vJijtDr7wG0jpZ8H1iFvlVtYwN98WiMay3ua51WqdVQKAL4eFeTXLJR4zoQnCwe5PopeBgD3Jy1Ow/cIaK8loCAlwA83WgRo3sZjCvXO5ERERnIiIeJDjkGVL2bubnrz/mmftv54ae/ehz03h8vO9ssl5tNFV1dZ2u0LsofC4QCDoixpogk8n47bffGDhwIH/99RcLFizg5Zdf1mlCz54ebNxezJHK+SgKljCedfDXHLj5BXD20c3bXNe65KR8crLL8PVzbF4P9AwC/WLrUqk1QUFuuhRCfby8pEyeHNrkmnK5E336dqIPXswJu5Ui9Tne//Y35v7fMt5Z8jP3jBjM8AHRTebT7pxr9UDTAVDogUAg6HgY68G0ntNIfSSVb9O+pXhPMW88+QZf//W1QRc6lUpNUlI+eXlqkpLA3d2+iTOnua51WidXQEALbAQvEzbC/jNUVJixEfTqQI0aZWgjBIX48PDcZ0nZ/R///LiCT16cy4uLXsTLq7/ZOoPQVBP0C8BfaUSNKSNEDrlA0DEoLy9n4MCBKJVK1q5dy5AhQ3THNm48yV9/neLs2Qqc3Ww4182e/86UcEMnR568pTtZp4p1aXxn8sopPFtBdNT53HFtxNSFHDym0uu2bMlg69Ys7B2sGDJETkV5Lc3VuLoQ9fX1LP3iR/75fQVncw/i4ubOyPH3M/KuSfgpujZeM5P9B85QWFCJKl9NeLgXM2f0M5gnTVlETo6ah2/tRtcuLq1aQ0d9bnbU+xIIrke+++47pk2bxvjx4/n11191tUU2bjxJQkIOZWU15OaW8dDN+YxQL4CqEug/DboM4khqAfFxObi52+HdSdrEoaOtF9Wck8dUKoVKpebnn4+SqSwhOrozN0X7cvBQAdBw0fWift9wiMXL13EgPZkStZrh0X15/N7RjL6lP7Y21sRuyeTA/jNUV9eTl6fG0cmayZNDDNatUqkpOH4YWf878OvVt9Vr6IjPzo54TwLB9UhNXQ13/3o3/8z6B8sKS/639H/0jOipO66tHVVWVo2jozX9+nkbpPNpI6IUCmfOnCmnsLDCoL6Ucb0qc5jSBJ2NYN9oI1Q02git1IP83Hzef/59EncmMiBmKK4Bt3Dz4G4GdQy1bNmSyf79ZygsrESlarQRZhraCMdPn0aVW83kfuMNOt+2BFFjSiAQXPc4ODiwevVqLCwsCAgIMDh2fifdhuLiamQyG7ofPcPqUypeW59CQI0lykPnyMkuo6CwguLiKqRSa9w97HUiYpzeZwpt6GyWspTKqlrCe3sS1suTpKR8snPKSIjPoby8lvKKGgCGDm29EWJhYUFRZRB2fs/SM7gIX5ck1q9cys9ff8wNob0ZPPpOrBz7QQNAPfpJi/qOs+ycMtJPFJPSqbDVjimBQCBo7zz88MP4+voyYsQInVMKmupBUKg7WeqbkG58FLeEz0CVysH0KA4cOIOzsy3uHvbk51egVtfoIpxCgj0uGHWk1YOi4irgvPPJwcGaivJazhZWoFSWEh+fQ0W5RhNiLkIT0o9V0lXaj8F33IzEOZ91O7YzbsbbuDg7Mm5YFDf49KC+3gW53JkydTVlpTUkJ+UTolfwt6i4kprcEhxcivDr1eolCAQCQbvF2tKar8d8zajTo7Czt6N77+4Gx7VRRdoC4lKpla7Wk5eXVBcRlZNTRkGBno3grmcjTGqFjZBVSmVlLeHhnoSFNdoI2WUkJDTaCOWttxE8fTx5b8V7rFuxjs/e/BJ27ibj6B0EBNxnwsGljVGqR08aDRxnOTlqTp0oI8WusNWOqdbQoRxTXbp0ITMz0+C9BQsWMGfOnKu0IoFAcDW54YYbDH6vr6/HwsIChUJm8GDduPEkFhkVzO6lYKVSRVKBGr8ejnha2eDVyYGqqjrCe3sa5mibiG4yjqTSiltSkooTaUWApl7V6NFddRFZR44UkpujbUeuwVSklfY9qYNVk258kVG+FBZW4OzszpBhtzJj3nx274hl68a1LP1oATU11bh1CqB7yI2EBvZl8C29AcOccz9fRyRIDFIir2WEHggEAmNGjhyp+++GhgYaGhqa6AHAxo2F/Fc8nwf9VtP95A/caXeM8uDbKKuXEhjoSlFRFbZ2ls3W7DCOotIvZn5gv4oGwEVmR1S0L1KpNb3DPfFwt8fXR0pO7nlNMFe0Vvu+cRdBbR2qTl4OSCQefPVyNPayKlb+uY2Vf27nu6x/cLCzZ1DfMKL7hOEn99GlJ2o1wdtHiqKLM7JAl8v10V91hCYIBAItXlIvvpn8DdP+mcayI8t4LOwxQLPZq58uB+c74oHmWR/eWB/Q1tYSL69GGyHc84J1nIwjqQxshBNFAEya1GgjJOnZCLlGNoKZ6FtTXQTvevAubF278fW7n3Fs20+8O/Mkr33yAm6ebrr5fH0dUakq6NnTg6KiKl16ov79+PpKsZJYt7mN0KEcUwBvvvkm06dP1/3u5NQ0l1IgEFx/xMbGMnPmTP7++2/kcrnBsdBQd1Sqciiv47OxYXy2J4M/D+VxrqoS35IGxozqqmkfm6/pgNGkZkej0ygpScWRI4XkZJfh7mGvqxcldbBCKrXW1asKDvbQhfcGBLjoBEaLKQeY9j1LSwl1dQ0Gx6Ii/QzmsbN34JYRd3DLiDtQl5bw6QfL2f/fdg7v+ZOKrT+weaU1XXsEI+/eE2f37pR5BuHiFkhYmBcKedvthFxphB4IBAJTlJaW8thjj9GlSxfefffdJse1mrCTR3EaMgivhJeY7P49K08NoaIymkmTgg2MA2NUKjUbN54iM6OE7JwyPBprlGiL12qMjAad8aAfbXXHHd0N5jVn7JjUBC8pUVF+REX5GRkv3rz97IO89cwUFn6yhfX/7uZk1mk2/5dIfX09vj+50z8skOCuXXCVutO5e1e6yJ1w8O1Yz0yhCQKBQEufTn2YO2Aub/73Jot/Wkzy0mQW/bQI906Gzhe53Ini4iqKizWpbsHBHqjVtezcmU19fT2jRzfaCCozNoLKyEbIKdPVrfLykiKVNtoI4RdhI3g1YyM0Hht9R2/6DfyQdT/8zYZlK3ho6EM89vJjjJwwEgsLC44ePcvBg/kMGOBtEOmlX5fKyqkKH6+mmziXmw7nmHJycsLbu2lbR3NUVVVRVVWl+72kpKQtliUQCK4A+m1h9R+e9fX1vPLKK6SmpjJx4kR27NiBjc35jksKhQwvL03nDi8vKZ/e15duG47y2c500pwb2H4gj+BgD7w8pRQWVLBli9KgvtSmTRns/i+H7t1d8fN1xMJSglJZqnMcuXvYExjoiruHfZM16xc712KqSKEutFgvYupC8wCoKy2pte2HS9cbiJngxZBoS1IO7OXYoQMcO7yXrFMr+b2x1OCYyY9x97IvWv6Bt3OEHggE1y/m9ADg33//ZeXKlQBER0dz2223GRzX14RErwhGP7qV3EXjmNL1bw6VFEL9s3h5SSko1OiBcW2pTZsyOJpaiK2tJZYWjXrQaCR4eUnpFaYxJExhvFtvrmit9nf9iKnm5gHIzy+nplRKaKf+TO0/hnF3d2XbnoPsPXScvYfT+OKXPygu1RhXEokEdeZwmqrWtUtrNEHogUDQsTClCRN6TOBw/mHef/V9KrMqefPpN/lw5YdYWlnqzvPykiKTaRw/MpnmWS6XO1FfX092dhlJSfkEB3tQWFhBWto5pFIrg2fvpk0Z7N7daCP4OWJhpAnu7o02grsJG8HEc7xZG0EvYkqfTp0cefS5u5k4NYbP3/ychS8sZMNPG3jg2ekcOVLJ2bOVFBZWmr322YoqrgQWV+QqV5D//e9/uLu706dPHxYuXEhtbW2z4xcsWIBMJtP9+Pv7X6GVCgSCy422LWxKSqHB+wkJOdx443M4OsrYvXs3L774osHxzMxiVKpyuneXERrqjkQi4bkxwbw2KBCpjSX76ypZu1fJ3sRc4uJzSE7KJ6mxrSyAUlnCuaIqyitqmDwlhF5hnhQXVeoirA4dzGfrv0ridmWTuC9P974xqnw1W7ZkcuhgfpOOfl6eUiL6eRMc7EFEP80X6+bmOj+fEgsLCTcEunJTdGcCgsMYe9/DvLjgE779Yycb9mfw8uL13HLP23QJHdq6D7ydI/RAILh+MacHcXGnSUryYNy4BwGYPHlykxQvY03AtQunh//KHm6jp00iNX+9QnLCUeLjcnRdWvVRKkuoqKjF3d2eQYM649BYo0S7o37wUD7/blWyKy7b4H1jjqQWsGWLEgcjQwc0RkNEhLcuTVCpLDU7D2h27bV6EHiDK1HRvri5ODFueDQLnnuI2KXvcm7PKnYs/ZTXH3qa/3vybuzt7Vr2YV8jtEYThB4IBB0Lc5oQw8OEPRKNhZ0FB3cf5LtF3xkcV6nUFBdX4ePjoHP4eHlJGT26K/37e+s6+W3ceIq9e/NIMqEH585VUV5ew+TJIfTq5amLvgI4dCifrVuVxF1ADzTP8EwOHcpvktqt1YPgYA9doXZTc7m4uzBv8TwW/7qYcnUlL099jtTta1B0tiY62rfJNVNTC1i5MpUTJ8625CO+ZDpUxNTMmTPp27cvbm5uxMfHM3fuXHJzc/nwww/NnjN37lxmz56t+72kpESIj0BwjWLcFlZLbGwm+/bVcvvtc/n55zksXryYQYMGMX78eEAjVunpRURG+qJQyFi9+hhr1qQxblwgO18dynO/HmRDqgoPLOjn6kjvcE9dWh7AkCFy7GytiIzSPNRV+eWUlFQhc7FrdC5JqKqq40jqWVT55YDpGlVKZSn7D5yBBvTONc2F6l1px5SUVCOVWuPgYG1yTFFxLfuSJRSUB3C2rGPUlwKhBwLB9U5zehAbq2Tw4AdRKlNITEzknnvuMYik1deExMQ85s3bybhxgYx//Uc49Cusm0VQ8XuUuExA2rurrkaTliFD5NjaWREaorl2Tk4ZebmNz34vKSUlNZw7W8nprDLK1bW6943R3wRprrj6hWqbaMeUlFTTpYsMhcJZ50zTnzc/v5zd8YWUnLEnsn/Heva1VhOEHggEHQtzmvDvltNY77iPrg9mk77kKD999hM9I3oSOTQS0Dw7c3PVBAW54eUlJT4+m4SEHCIjfXWpb4mJeVhYWODn56hLydMyZIgcOzsrIhvr/6lUjTaCzK7xed1oIxw5qykrgunnuFJZyv79ZwD0zjXNhTSh18BePPHOW/z6zVoObv8T1akUHOruoutLk7HT25CIi8th//4znKtyILhHJ/Mf7mWi3Tum5syZw3vvvdfsmNTUVIKCggwEpFevXtjY2PDYY4+xYMECbG1tTZ5ra2tr9phAILi2MFXEFiAmRtH4Ogh//0IWLlzIww8/TO/evQkICDAQq7i408yfH8+ZMxpxGD++B19PiWDB2sMs25vFnroKnhkRSGdXB11tqYAAF6IiNS1YE/flkZFRQmlJFWFhGnEK6+WBKr+cvDw1zs62JmuSgCYUt2+fTpSUVOkirsw5ncyld5gaoy2+LpVac66oioT4HCKjfImK9EOpLMXC0gLvTlJCQ5vvKnW1EXogEAhayoX1QMHDD6+ib9++7N69mxdeeIHFixcDhgbM9Omb+O+/XPLzyxk/vgf0moiqvitOm57gpooVSELGQtBE4HwtkYAAF6Ki/EhMzGPnzmzKy6sJDnHXPZOdna1xdbOjs78jcn9ns89xrcNLoXA26AplTGv0QC53YssWJUnJ+ajVNRw9eo6zhRVERftSrq7F0sICXz9HAgPbf1JFW2qC0AOBoGNxIU3ocdOXzDw5gfzN+Sx4dgFf/fUV3p29DZ6dqakFrPwplXNFmtS2qCg/3bFBg/xMFiTX6gFoHFgZGSWUlurZCGEeqFQttBH6NtoIjRFX5pxTLdGErl1duPex8XQJ68Ou9ev44/tf+Pf3v+jSZwgTpo1l0CA57u72yGS2uLhcmehZSUNDQ8OFh1098vPzKSwsbHZMt27dDOrFaElJSaFnz54cPXqUHj16tOh6JSUlyGQyiouLcXZ2vqg1CwSC9ktNTQ29ekVy9Og+unQJ4siR/djbn8/rfuONOFauPIq1tQXz50dpDJFG4tMLmP1LMoXqKu4bIMe+pI6jR88SFORGRD9v4hOy2bpVSWlJFdU1DfTv782kezW7KaY67ZkjcV+ewbytPd8Y/W6Ba35P48iRQrp3d+GOOwJ0NatknnZ4ejowrk9nLCwkF55Ujyv13BR6IBAILjd//PEHd9xxBwCzZ3/EokXPGBy/5551/PtvFrfe6s8vv4w9f6BKDRufh+SV4NkDBs0m8VC57tldXV3H1q1KSkqrqKlu1IPG3XVznfbMoe0KFRTkpkvTaO0c+mg7BtbW1vPf7hxqaxvoH+FNl64yoIFeYZ54WebCDSPBI7BVc0PH1AShBwJBx2dt6lruu+0+Kk5V0Ll7d77b9AXWNuczDlauTGXHjtNYWUqYdF+wzuFkCuPndnx8o41QWkX1JWjC5dYDbbfAzp3q+fztr8k7kYy9szt3PDiRm0beTGUVOHvX4uMlY0z3Ma2aG1r37Gz3EVOenp54enpeeKAJkpKSGts+el3mVQkEgmsVa2trgoJmcPz404APxr55/d306OjOBseiunuw9ukoZv+SzPcJmYT7OhNxg6tuRyIhPocTJ4rw93eid7i7QbqffnFyfUeRttufUlmqcxJJHazw8ZYaRE1pC6wPvNGXyQ+Etuqe9Tt8yPedITenDEeptYHz66y6ulVzXg2EHggEgsvNmDFjCA4ez7Fjm0lOLm9yfObMfoSEeOi0QYetFMZ+Bv4D4Z958OfzdAt9AoJ8kMudWL7iiE4Pwnu7G6T76ReV1TqJ9Auoa40MbWFzB6kV3j5Sihp3yU+cKOKPDek4O9syLEbRakMkJNiDkGAPYrdk4upqh72dNW7uduTppavQvL+nXSA0QSAQXE7uDL6TXneMI/Gbn6lzsaKh3tBG0KbphYefb4BkDuOopYQEPRuht7tByp++JmgdRdpraPVAW9hcKrXCx0dqEDWlLbA+cKAvkydfvI2QkT2dbf8coDQzjl8++YJ/fv6VyTPv48buN7Zqzoul3TumWkpCQgK7d+9myJAhODk5kZCQwKxZs3jggQdwdXW92ssTCATtiAceuBH4lPvvH4iDg4PBsejozk0cUvp4O9uz7KH+LN6SxpLtJ8kurmRoTS29QFdjSpsmZw79YrnBwR5N2rwGBbkhc7HVdABx0XT30xZYVyovrTPQiBFdCA52N9vdryMg9EAgELSG+fPf4Oefx3L//QOaHGtWEywsIGIq+PaB1dNwO7AQm65jOZp5s66+VFSkb7O76qbqSJnSBBeZRhNcZKXEJ+SQnV0GNJ+qcSF6hXngIjufOmLclryjIDRBIBC0lOdveoV3nQuo736G05Wn6WbXTXdM34lzIbSOJm0HVm2NqcgLaEJSUj7JyRewERr1QNslUFtg/bLZCNKRnDhykt2bNvLp65/y/UffM23eNMbMbn3EVGto96l8LWX//v08+eSTHD16lKqqKrp27crkyZOZPXt2q3LERaiuQNBxaK5duD719fUUFBRccOc0Lu40sbGZumiqrakqZv60H3VNHUP83Jg0VCNe8QnZBnWcjNFGTFVU1HAirYjwPp506+baxFmkn7p3oTnNocpXE7crh8KzFURH+ZoV1LPqaiwsaNepfC1F6IFAIDCmpXoAcObMGTp1ar7Qq7EeUFEEG2ZByhpyGrpxpvsj9BnYjfj4bOITcsw6qLQRUxUVNaSdKOLmQZ3p16+TQcSUsSacOFHU7Jzm0O68V1fXkZlZYhCl1YTCE+0+la+lXA5NaG/3JBAILo3mNKGsuowJf0ygtKaUWX1mYVlhiYu7i9m5jKOctJhKu9Mvnm7q+a2dq6KihhMniggPb7QRGiOmmtgIRgXZW6oJxnpgLgosOyOb5Z8tZ+DQgbw5/c0Wza1Ph0rlayl9+/blv//+u9rLEAgE7Qhta1jApCGSmVnMf/+l89VX88jNVbJnzx4cHR3Nzqft5gSaXfQhwV7MDO7Mx3sy2JJ9lup4C+4fKCchPofDKQUAJp1I2h2XefN2kJ5eBMDECcFNxunXkoqK9DOYyzgd0BhtvStrKwtUqnLKK2qRSq1bvNNzLSP0QCAQGNMSPUhJKeTkye3MnTuTzz//nMmTJ5udz1gPsHchzucN8va6cofDD3TKfh8Knic+4Rwphxv1wITBoE2rm6unB6NGdTOZnqd9z8tL2mQuUymBWrS1TaysLXCR2VJaVkN+foXu+h0doQkCgcCY5jTB0caRl4P/x5NbHuSxiY/hUuvCZ2s/w9bOtCPbOMpJS3V1HWfOqOnW7fz8CQk5HG5GE0zaCBNN2Ah6GhEV5WcwlzlHmZb4+GzWrEnD0hKcnW0pLa1psnYtfl38eOzNx7C2NN3d+3LSYRxTAoFAYIy51rBaUlIK2b07m/3791NUlM/kydNYs+ZnJBLTEUP69ae05KQV47y/FPkgD+LSCzhZoCYqQhN5pU3tM8egmzsbvOrTnONJla9mze8nyFKWoFbXmDy+4Y90MjJKcHa2JiTUAwcHa4OaV8YUFpaTk6Omn7sTXbu4NLtugUAguNZoiR4kJORw6lQyZWVlTJ/+GN7egQwbZrq2hik9iN2SRWxCf84NDeERh08h9nXGh4wGAomKbF4Pbh7U2eDVmOYcT0dSC1ix4ghljcaF/nGVSs0fG87rweBb5ISFeeoipkyhUqkpOF6IzLEUv47vtxIIBNchF9KEkgwnQrLv5sip+RSWFrLwpf/jlcVzTI7Vrz2lT2ZmCfn5FWRmlugcR/opfc0xqFELBpnQhOYcTyqVmjVrTpCVZcZGUKnZsCGd06c1dat69vTEysqiydr1KSgsR5VbTS+r4gtGHF8KwjElEAg6LOZaw2rRiFEodnbv87//PcLatav45psYpk+fbnK8qVojWqNk6FA5ZS5WzFtzmD9yCpl6d3ciFG7A+Y56unDZRmfTqJHddCkb2iLnWozrUOl35VMqS6msqMHKSoK7mz3GKJWlODnb4uvnSO/enowY0eWCnfyyc8pIP1FMSqdC4ZgSCAQdjpbpATz00GukpCSSlBTHtGmTOXLkgMlI2ub0IDhGAX3Gwbqn6XrsD56P6Av9ZwDm0+lGjdLTAxNtwI1rUel3YUpOyqestAZHJ+smzialshRnJ1v8fDV6MHSo3GTElfE5+RklOLgU4dfL7DCBQCC4ZmmJJkzhPkrqjvLXoh/Z8vsmBtzcl+HjhzcZa672lCmHlXF0k7mUuuY0wThCS18PlMpSKisbbQR3MzaCky2dOzudtxEu0EAjJ0fNqRNlpNgVCseUQCAQtAXah6tKFcHdd8/g118/YsaMGURERNCnT58WzdG5sxP9+/vg7++MQiEj1EfGjJ8P8OX2kwzpUcqtXdzZtjWLkpIqykrPp09onU1btigpKakCDFP3tNFNFRU1zJu3A4XCGamjpuW1XO7E4MFyoIGwXk13OORyJ4YNU+jqUxljKhrLz9cRCRKzO0cCgUDQkdEaKZmZxTz00Du8/voEsrJO8Pjjj7NixQqzkbT6aPWgc2cncJDBPT/Af5/Bv2/BxhcoDH2SLXsllJRUmUynO3gon/37VfTt60XMUMNnd+9wT5RZJSQlq6itrcfHV0pebrnumPbVOJrKQA/MGB/G0VhyuRMOlc7IAl1a9RkKBAJBR0FrI0xQvUT6HYc4vu4gi+Yu4oawG+hyQ5cWzeHubk9goKtJBxFonFJaO6CszMhGUBnZCHrPb62jS2sjyOXOOJqyEcIuYCOY0ART0Vi+vlKsJNZtbiNYtOnsAoFAcBWIizvNrFn/8sEHe8jMLG52bEpKIenpRUyZ8hS33347VVVVTJgwgeLi5s/TPz8hIYeUFE1vbX93Bz4YGcxgX1e2Hcvnw3/TSD1ZhKWlBZFRvvQO99Q5nZTKUkpKqrG0tKC4qBJVvlo3b3CwB5PuDeZEWhHp6UWknSgiKMhN52waOlTB0KGmI6G8PKVE9PPGy1OKKl9N4r48g7m10Vja3XcAd3cHevf2RCFvu50QgUAguNLExZ3mjTfiWL36GBs3nmyRJuTnWzJ37sdYWlry448/8s0337ToWsZ6gIUFRM0gd/hKymutcdn7Di75W7G0lBAV6Ut4b0+jCCcJVVV1ZJwqQaVSG8wdEuyBpaUFp7NK+W93DiDRaUJIsAeTJgWbrBfl5SUlIsJbZ4CoVGoSE/MM5tfqgTZK18tLSkiwO36+Ha9Dn0AguL5prY1wMr2Ydx76AY9eHlRXVvPqY69SUV7RomtpO+ppO/OB4TP40KF8TpxotBEifend21PndDKwEYorDZ7ZwY3P/BMnNDbCCX0bwUvPRjBTq1CrCab0QBuNlZR03kbw0NoIbRgtBSJiSiAQdEBiYzP5558MPDzsCQnRfFE313lDP8f8+++/p0+fPqSnp/P444+zcuVK3Thz3TtM5agfP1aEf349jwT78cOxXIp9rejsZtOkgLm2s0ZxUSW5eeXIXEqbOJr061BF9PM2eb/6aX7G52tFEc5HZGkdY83VnBIIBIKOgLZI+fHj5+jWzQWVqhwvL/Pd+c4/08NoaHiHOXPmMGPGDKKjowkJCdGNM6UJ5mqWHCjoyoGKD7mz/gNGee6g0DoX977PNUmn6xXmQb6qnJKSKpTK0iZGRVSkL1WVtcjlzvQK8zAbAaWf1mE8xkATGo/pR1wJBAJBR+ZibYRNazZxY8SNnE4/zeLXFjPng/P1psw9c7Xf87WvYPgMBgl2dpZ07SprkuKnsxGKK8nNLUcma6oJ+nWotF3/jGmtHpirl3UlEI4pgUDQ4YiJUVBUVIWfnyOhoe7Ndt7QT9/4778iFi/+jpdeepLZs2cbjDM3h6kcdX0hG9bPh5f/OMKeojKq/k3joaguONppOlt4eUp1UU0yl1ID4dIyamQ3Ro3spvvdlBPKUOQwOG5KFM3lwgsEAkFHQ1v3qWdPD+ztrVGp1M1259PXhNDQ8QwdupU+fcIIDAw0GGdKE8zVLNFoQhBFzt9zOG05Idmfwp/Pw4BHwX+Abpxmp1uue4YbY2y4gGmjw6wmeJnWBG1nQIFAIOjoXKyNkHfMhdcWLuDt117GapChC8WUg0f738bOIMNnsBMyma3J5732XJVKjUxmxkYY1Y1Ro/RshMugB1fTRhCOKYFA0OHo3NmJYcO6mI1uMoVWmCIju5KSkoKVleHj8ULdO/TRN04UyPg72JNvdp3i/2KP8+r6FKZGdaF3ZxfdeK2DqiWYioDSFxbj462ZWyAQCDoa0dGd6dzZSbcjHhrqrouYag5N19Y8nnnmY8aMuaHJ8YvVBG56GfLvht8fg10fQpeboP8jYGUHmDZkmsOUQWRWExrnbs38AoFA0JG4NBvhLj7505mPD37MpoxNjOgyAjAdGWUO42fwhZ7HrXlmX+t6IBxTAoGgw2G8+3GhzhtgaGToO6WSkpKQy+UoFG4XnVttaWnByC4eSMIq+TlTxSf/nuCmAHfuH6jA2tKi2VQ8Y0yJX2FBBWlp55A6WJkVx/iEbBLic4iM8jVIJxQIBIKOjr4mjB7drUXPclOOp5qaGv777z8GDRrUIl0xi2cPMmN+o2bzO3RXrkCiSoXIp8ErGGg+9cIYU8/8gkKNJjhIm9GE+GziE3KIivRttkOfQCAQdCQu1UYYrZjO8ZLjbDy1kTplHTeH34yXl+MlOXiae+Zfqh4UNuqB9AJ6oHG8XV09EI4pgUDQ4WjNTrYWU8L0yy+/8OCDDzJs2DDWrVuHhcXF94tISSkk69A5nhnoz2FJNUvjMjicXcJNXjKcaiE3T9NdqTnHlCpfzaGDBUAD6ImKftHaSfcGm5wjIT6HwykFVFbVYmNjqRMlrdhZOVhf9L0JBAJBe+ZyaEJJSQkjR44kMTGRXbt2MWDAgGbOvjApR0tIOD2eUT1vJurMmzRseZN8WRT0eQBldpXJtBBj9Lvp6Y/Tb24xaVKwyTniE3I4eDCfwsIKAgJcdCkjOgPI8pJuTyAQCNoll0MP3r7pbbb9vo0PPv2AHTE7WPDVghZ1bjWHqUgn7fNYW2NK/5gp9Lvp6Y/TFjMH83qQkJDD4cMFVFaasRGuUB8M4ZgSCAQdjkvaydbjhhs06RsbNmzggw8+4MUXX7zoufSFcKxCRkxwJ2as2MeGjAIcy+uI7uRiNgRYG1FVXFTJ/gMqaACZi51BMfP8/HLy88tJTS0wmRseGeULgFcnB4Ncc+1/dwtyu+h7EwgEgvbM5dAEJycnfHx8qKmpYeLEiezfvx83t4t/bmo1wS80DLyHk/nts/ifWU3VtkOoKkbj4BpiUhP0nUf6Dij9GlEuLrZYWGhezREV6UthYQXOzra6QusGxlHXi741gUAgaLdcDj2wtbTlzTvf5LZPb2P3pt2s+m4V90y756LnM1ckfefObMrLqwkJcTdvIzRqQlKSihMnigAM7IDw8BbYCJGNNoKXGRsh1Oai7601CMeUQCAQmKFPnz58/PHHPPbYY8ybN4+jRx2ZNu0OoqM7t3ouYyEc2M2dH+6PYOqH8eQ4WrC1rJSAimq8aLqToTUWfLyl9O3TCWhoUqhQGzWVlJxvUnQCAlywsbFE6mCFurzW4PyW5MQLBALB9YxEIuG7774jOTmZ9PR0IiPH8M03Kxk0SH5R8xlrguS2D9iTMJyuKfMZbf8zpyrD8HKZ1eQ8feeRuW56RUVV1NdrXs0REODC0KEK9PXE8LXsou5LIBAIrgdGDR7F7PmzWfTqIpa8vYTcQidGjBlwUYXDzRVJr6+vp7CwksrKOrPRUlpNcHe3Ryq1btJNLzjYQxc1lZR0ARtBaoVabcpGMK8ll5OLz0sRCASC64Dp06dz//33U1dXx48/vsLatUlmx2ZmFrNx40kyM4tbNPcNAW4svD+c2+2c8HG247Nt6Xy69QTF5dUG4+RyJ6QO1pzKKMbXV8rQoV2apOuF9/akd7gn4b1Nt3fVCpe6vJaIft6691pS10ogEAgEIJPJ+PXXX7G0tOH48Xjeeus9s2NbqwcKhYzIeydwcth6djIBhcUx2PAsZMZBQ4NunFzuRFCQG9XVdbo0PuOOelotMHZY6aNUlpKXq8ZFZtc0ja8dFcMVCASC9srClxcyYNgAGuoa2LjiM/6LzzA7VqVSk5iYh0qlbtHcXl5SRo/uSv/+3k2cTfrI5U5IpdYUFlYQHu5p0vEUHu5J796eZufR2QjqWiIijGyEK6gHImJKIBAIjFi9+hhr1qQxblwg48f34Msvv2TXrt1kZp5g27b3qasbhaVl0wIczbWcNUd0dGeioztTU1vHF9tP8uX2dOatPcztvXwYHuKNpYUEL08plVW1nEgrQiq1Nik6ptq7pqYWkJScj0LhTEV5LT7eDgZ548bd/QQCgUDQFENN6MPs2W+ycOEc/v13CTt33sugQYOanHMxegAQdXN3uPkbyJ0Jf8yE+E8gbTMMmA7Ofrqd9ZUrU02m8Wl/N34PNDWp4uNycHO3IyjIjaAgN9OaIBxTAoFAYBJjG+GfX/9B3kNByZlidv35NQ8+1NdkTdqLecaa+m5vjJeXlMrKWk6cuAgbIanRRqioxcfHjI1wBfVAREwJBAKBEWvWpLFjx2nWrEkDwNHRkT//XIuDgwOJiTv58ccfTZ4XGupOZKRvqwoqarG2smTm0ED+emYQ0QEerN6fzavrDpOao9ltVyic8fS0R6FwbvGc2vS+hPgccvPUBnWptLvu+fnlvPNuAmvWHKegoKLV6xYIBIKOjrEmvPfei7pI2unTp1NXV9fknEvRAwB8esG0WBj1AajzYeOLsG8Z1FaiUqmxtbMiMMCl2agoY5KT8jlw4Ax79+RR3rgzrt9SPCjIjZMnzzF33g7iE7Ivbt0CgUDQgTHWA5lMRuyGzVhYW3Ay8Thr16w1eZ72GdsW5TMuykZoTO9LSMghN1eNrDF6Vn+t+fnlvPNOAmt+vzI2goiYEggEAiPGjQs0eAUIDQ3lyy+/JDMzkwceeMDkeRdbUDEzs5iUlEJCQ91RKGR8+2AEsUfO8M7GVBbFptG7s4wQOzs6eUuxsTHdKkkbHRXe+3wYrzatT6FwNuiyAZooKS9PKYsW7eXIkUJy8tUEBrq2eu0CgUDQ0THWBIlEwpdffkl1dTVvv/22yQjay6UHDJwOoXdC7Otw8BfITKBcNpJy9Q2Eh3uZjYwylebXO9wTtboGN3e7JsaRNhJr9ZrjpKcXccC+mqgHW718gUAg6NCYshH6R/Tnw8Uf8kn8JyR7JzOiegRSG8NII1N1pFpCS9KsbWws6dTJtI2g363PuCg6mLERGteqtRFyi+oICvRq9dpbi3BMCQQCgRHjx/dg/PgeTd6fPHnyZb9WZmYxy5Yd5uTJYrp1kzF1ak8UChnDQr25KdCDL7en811cBoeqiukhcyDYWkLivjxdbSitQyo/v5ycbE3eenCwB/EJ2STE5xAZ5UtUpJ/Z60dG+VJZVUsnfyf8/Bwv+/0JBALBtY4pTXB0dGTVqlWX/VpbtypZvTqNgAAXnn22n8Y55egJd34O/R6CTfPocvoXOtl5oaq9i8S9DcgVzjqD5UhqAStWHKGstAbQpPXpp/DdcUf3Zo2jmwdpmnv06dNgdoxAIBBcr5izEZ554hliJsTw4N8P8u3hb3kq/CksLUxvJrcUlUrNli1K8vLUeHtLGTpUbvL5rXUqSaVWJCbm6ZxYqY16UNqoB1rHVHx8NgkJOURG+hIV1YyNEOlLZWUtnbpKroiNIBxTAoFAcBFUVFTw6aefMmvWLKyszj9Km+x2m0B/TEpKIQUFldTW1nPwYD7z5u0kJMSNI0fOMm5cILPG9+C+gXI+ik1jzf5s0pJP44slMXX1eHlKdel6vn5Seod7olA4k7gvj61blbq2sfqOKVW+ZudF250vIMCFqEg/zqqrMZESLxAIBIIWsHXrVgCGDBli8H5rNQEklJRUkZ5exK+/HketrsbKSqLThPEPb4Ija7HftgDFqSU4NPhRUDkeL68oQJOuV1Zag6OTNb3DPVGp1GzceIq04+dwc7ND7n/eiaXdiXeQWlHe2Ilp1KhujBrVDQpPtN2HJRAIBB2QUI9QXo98nTmxc3j13Vd5a+5bBhG1LYl+0h+jVJZSUlJNfX0DGRnFrFhxBH9/R7KyygycStoIp8TEPIPaUElJ+ZSW1uDkpOnWp53bwEbQc0ypVGoOHSoAGggL8yQqyo+oKD/OVpzF2tK6bT40PYRjSiAQCFpJQ0MDI0aMYOfOnZw6lcvttz+tMzpSUgr5669T7N2bS0yMguLi6iYGiX5RXG39EZnMhs8/T+L48XMcPJiva/M9fnwPOjnbs2BcL6bd1JU3f09h16lCfjyRR45lPT1C3QB0KXxbtmQQtysbD3d77GytiIzy1V1XlX9+56W+roHSsmqqq+q4fUx3gnq1vE6JQCAQCM7z559/cscdd+Dm5s6HH67j5ptDdM/81mrCkCH+je82kJycT2LiGYqKKg00gZ7joMdtFG5ZguO+T/E8/TFs3gRhE+jduxOgSdvzcLdnyxYlNdV1yOVOBIe463bWtTvxJSVVWFpacOz4WRrqNekpze2gCwQCgcA8t3W9jScXP8mR1CPMr3ybsXc+pnNEKZWl7Nt3hrS0c4SHe6Ju3BDQd1LpFx7Xj4TauPEU2dllZJwqpkytiYAyflZrx2tftel62jS+LVsy2L9fhbu7PXZ2VkRG6tkIjZqQklJAXV0DaWlFqNU1REb6EtTHvo0+LUOEY0ogEAhagXZn+557Hmbnzp188cX/cfasN1Om3I1CISM01J29e3MpKKggNjaT2lpNOoRCISMu7jSxsZn07OmhK4prXIckNjbTYHdcnwAvJ75/dCCHsov5ZEsaW46e4V8kRAe4460reCgBCQQEuDJ0qMLg/EMHC0g/UYTEQoKDgxWFBRWUlNaQEJ8jHFMCgUBwEWRmFlNd3ZUbbgjm6NEUXnnlCT79dJXuuW5OE06fLiU2NpOYGIVug0KrCVOnas6NizuNi4utaU2wtsV95EwY8jDs/Qb2fA1b3ybEtQshg8aDXw8S96koKammSxdZkxQQpbKUvLxy6urr6eTlQGFhBRUVdcQn5AjHlEAgEFwEWhvh2WnzeP75J9m1YhsWdr6MGTkGLy8pcrkTaWnnKCmpIikpn7o6jR5o0+60XfK0RdKN61IlJeVjaYkuYsoY4/FNu/FJAAgMNGEjHCogPb0ICwsJtrZWnDhRRGGhpuB5UJ/ul+kTah7hmBIIBNc9LUm10KLd2Y6MvJmnn36aTz/9lD//fJcZM0YBNBoVPUlJKUQms9HtjoPG6RQbqwTg9dejm8wdHd2Z6OjORmkdhkgkEnp1duGrKREczSvli20n2JRyhm3H8+npKyPC15nBMn9dZw5t6p5m96QBW1tLAgJc8JdrhO9ISqFBVJVAIBBc77RWE/bvP8vs2YuZPfsulMpk/v57CWPGLALMa8KyZYcN9MDUdVqiCdg6wk3PwoBHIelH+O8L2LkI7N0I8rkFq/B++Hb1wctLapAiIpc74e3tQElJFT6+jgwZLEepLCHKhLEjEAgE1ysXZyOMYMpDU1i+dDnxP69i9G0DAE0X1KFD5ZqSGlIrXcQUnO+SBzBpUnCTubVOJv3neGsJC/NAJrM1iJw1thFCQ93x93cmP7+cI0cKTTrA2grhmBIIBNc9+mkUFxId/Z3toUM/YPfu3ezdu5fnnpvOjh07sLGxMduNycpKQlFRJVZWkhatR6Uqx8vLtBhKJBKCfZz5eFJfMgvVLE/I5I/kHJZmF+PhaEO0dQNR9lYGIcFhvTyRudjpCqcDjBrZDVW+moOHVHT2u/wtbAUCgeBa42I14dtvv+Gee+7h888/5LbbhjJ69GjdHMbztFQP9NfTnCZg4wADpkOfyXB0AyR+h+Op9YRL/oDqvlAzmKycThw9VgxARIS3zkCSy52Iadw9V6nUJCbm0c2lErcLf1QCgUDQoblYPfhyyJfs3buX1MOp/G/ufJb/vhwn+6ZRUFosLUFdVo2JJq8GaL/XFxdXIZM1X6/KGONrG9gIYZ7IZHYG840a1Q2VSs3BQ6dRdHaFNg6cEo4pgUBw3aMvJBfC2MBYtWoVffr0Yffu3Tz33HN88sknZs89cuQsBQUVbN6s5IEHQs0KnExmg5WVhIKCctLTi3TXNbsmdymv3h7CrJhA/jqcxy97s/jzUC7rknPwdbZD4WGLo4ctXp5SnUNKn0MHC9idfIawnh4wLNDEFQQCgeD64WI1QaGYyM6dO/n000954IEH2LdvH127djV5Xkv1AFqpCdZ2EHY3hI6DM4ch8Vs4uhF2vE8fKwfkLj2xkt4EdW4mDSRtDZRC53x6+pfi52H6MgKBQHA9cCk2wtrVa+nbry9FR4p4bs5zfPF/X5jt1JeVVUZJaTVJSfkMHmy6+x5o6k1ZWmqaZOTmarpxt9QxZYx+TSpzDrNDhwrYczib8p71MPCiLtNiRA8mgUBw3aNQyBg9utsFd0JM0aVLF5YvXw7Azz//zJkzZ8yOHTcukB493PDwsCclpVD3fmZmMRs3niQzU7OTXVxcTW1tAx4eDrpaVC3B0c6aCRH+/PJYJJuevZlnhgZiBfx3ppgPtqfz7MoDLPk3jcSMsxSWVdHQoG0H3gCiM7hAIBAAl6YJH3zwAQMGDODcuXP88MMPZse1VA/gIjXBwgJ8esGYxTBjH0xcgUXAUFwqjuGa9CF1qx6m+u/5kLoBCtKgrhrQGCjOzjaoy2o4kVbU6vsXCASCjsSl6MENN9zA0u+WAnDq31Ms3bvU7NjISF/8/BxxdrZFqSzVva+NYlWpNE4otbqWuroGnJ1tdbWoLpbCwgrS0s5x4kSRwTUMuXIGgoiYEggEgktkzJgxfP311wwfPpxOnTqZHTd+fA8iIryb1AoxDhPW7o4HBroQHd251euxtJDQ3cuRWcNu4Fycik378rHwt0ft1MCh2hL2ntYYPFJbS/xdHbCta6Chky1Wzm3fClYgEAg6Mra2tqxevZqNGzcyffp0s+NaqgfAJWsCds4QcgcEj+HDN/4me9cmhipSiSIbj6KVSBrqaJBYIHH2w9m2EwMdZDQ4SLDrfnG78AKBQCDQMGHCBL744gvOdTvHT7k/8XfG34zsMrLJuKgoPwICXJrUj9JPt/Pykuoipnx9pUaFzVuPtq7VyZNF2NhYEhDgir+/k0E6n6+vI94FjnTq5HBJ12oJwjElEAgEF0DbTS8mRmHWKHjkkUdaNJd+C3Ht71qjo6Kiho0bT6JSqamtbaC4uPqS1947zJP0tCJcHWzJP1OJu48ttQ4W2PtLqZJakHm2nJNFFZTV1+FUaGqnRCAQCARaWqIHnTt35tFHH73gXNq0D22UVGioO6Gh7qhU5Rw5UoBKpWbIELkuYupSNSFTWYKlowdqxQjWM4LthfV0cVfjXXeMAT5Kutidpu6MEr/KFGwkVUh8376k6wkEAkFHpyWa8PjjjwNQtKOIjSc34mnnST/vfk3GaZ1B2ogpfUdUdXUdiYl5FBdXUlfXgFpde8lrVyicyckpQyq1prS0msLCCtTqGoO1qNW11Nc3UFFRd8nXuxDCMSUQCAQX4LffjvPPPxkUFVW1aLd6/fr1LFu2jFWrVmFl1fQxa7wjrjU6Dh8uoLa2ge7dXUymaxh3BjHu1GSqa4i9vTXdurnQvbsLXl4OBl2hFAoZlTV1HD1xlqSUAgICXLCwuHAhXoFAILheaa0eFBUVMXXqVJ599lkGDx5scoy+Jowe3Q0vr0I2bTpFQ4PGODBX46S1mpCSUkhxcRXjx/cgNNRdr1NgBJJQd/B3pPBENmlHcgiWN+DrYthOXCAQCASGtEYT3o5+m4S/Enj787dZ+NVCAtwCmowxjpDSpu5lZpZQV9eAj4/UZAqffoc94y6s2nmNC6Xb2FjSqZMUHx8pMpltk06BoEnvLqt3wc/P8aI/o5YiHFMCgUBwAfz8HPHwsG/RQ7mwsJAHHniA0tJS5syZwwcffNBkjNZoqKio4Y034ujZ04PISN8mTiMw3IkpLq42cGjpGzOAya4h+gaNqfx4O2tLwoM9CQ/2bOnHIRAIBNctrdEDgHfffZd169YRHx/Pvn378Pf3bzImNNSdI0cK2bw5A5nMhtBQd0aM6Ao06J7dCoWMuLjTLFt2WLczb7zJcSFNMNYDU5ogv0GO/AZ5qz4TgUAguF5plY2QX0ji4kQqKiqY/8Z8PlzwIV4OXgZjtE6h6uo6Vq5MRaFwJijIzcBppHUupaYWkJSUT3i4J2p1rYFDS9/BBRgcM75Wc539vLykWDl5Ym3Z9uU+hGNKIBBclxjvNDfHhAk9CAnxaFHBWXd3d7777jsmTJjAokWLiIiI4N577zUYozUI3ngjjthYJQCvvx5NZmYxxcWFBmNjYzN1Y6ZO7QlojIrMzGJUqnK6d5cZrEt7TP/eLqZgo0AgEFwvtJUeAMyfP5/NmzeTlJTEuHHj2LlzJ3Z2dgZjFAoZanU1iYlncHGx5fXXoxkyBIOi6GCoB9HRnQ0cTeY0QSaz0aUJCj0QCASCC9NWmuDt7c2SJUuYMmUK2b9n82b3N3n3sXdxtnXWjdF2x1u5MpXk5HwAJk0KRqVSo1aXGsynrREFMHSoZkNBLndCpVJTXFyFj49Dk+gn48iqi+3o1xYIx5RAILguMVVg1hyt/TJ/991389JLL/Hee+8xbdo0QkJC6NWrV5NxMTEKg1dTa9Ifo7+OjRtPkp5eRGSkr16r8vPH9HfNWyquAoFAcD3Slnrg4ODA77//Tr9+/UhMTOTJJ5/k22+/RSIxTJturR4Yr8WcJujrgXG6n9AEgUAgaEpbasLkyZPZu3cvn3zyCamfpvK+//u8OuZVbK1sDcaFh3savBqn+BmP0XcyJSbmkZurJijITfee/jH9SCpTKX5XC+GYEggE1yXmanZcLt555x3279/P5s2bueuuu9izZw/u7obXio7uTOfOTqSkFJKZWdxkTZoIqmqmTu3ZRPS0Y4x3w43vrTXiKhAIBNcjba0HXbp04eeff2bkyJEsXbqUfv368dRTTxmMuRQ90B9nrAnG8whNEAgEguZpa01YtGgRSUlJ7Ny5k8T/JfKpx6c8G/0slhaWujHBwR64u9ujVJaiUqkN0u6AxgiqWoYOlTdxKmnHSKVWJCbmGTie9Ocx5ey6mgjHlEAguC5p65QGS0tLVq5cSf/+/Tl58iTjx4/nn3/+wcbGxmCccdFb/TU1Z0Bo12+8G27u3tpKXAUCgeBa50qkuA0bNowFCxbw0ksv8cwzz9CjRw9iYmIMxlysHmjfM6UJxvfW1gaXQCAQXOu0tSZYW1vz66+/0q9fP7Kzs9m2YBvO7zrzSO9HDKJp9R1HERHeBs6j5pxK2ugp/ego/cgpc46sq43F1V6AQCAQdFTc3d1Zv349Tk5O9OrVCwuLpo/c0FB3kx349I9pd8AzM4tNjqmvb+Crr5JZvfpYm9yHQCAQCC6dF154gcmTJ+Pr64unZ9OGE5eqB9pxQhMEAoGgfdOpUyfWr1+Pg4MDN/W/ieSCZFanrTYYI5c7mezAp39MGxWlUqlNjmloaGDTplPEx2e32b1cLkTElEAgELQhPXv25PDhw8jlTbsctbTWR1raOdLTNUaI/jhtx769e3NJTT2LVGrN+PE9DM4VaRsCgUDQPpBIJHz11VcUFxfTqVMng2OXSw9iYhRkZBSzb98ZoQkCgUDQjunbty+pqanI5XLe3/s+K46swNHakZFdRzYpUm6OnJwycnPLAcPIKW3HvrS0c2RllWJnZ0VUlJ/BuSKVTyAQCK4z9J1SNTU1pKam0qtXrwsaCCkphfz11ymsrCT07u3ZZBc9NjaTDRtOcvZsBWp1DVKpZZM5RNqGQCAQtB/s7OwMuvIdPHiQ4ODgy6IHsbFKtm/PIi2tCFdXW8aNC2wyj9AEgUAgaD9obYQXIl6goKSA1TtXY2tpi5MquFmn0aFDBezff4aAAFeTUVVJSfls3aqkrKwaZ2cbQkKaPvON61ZdbUQqn0AgEFwhioqKGDFiBIMGDSI1NbXZtA3QGA4eHnbU1tbj5SVtYqzExCi44QZXyspqqKys5fjxpqkdCoWsSa0SgUAgEFx9fvrpJ/r378+sWbMuix7ExMjJzCxBpSqnoYEm0VIgNEEgEAjaI2fPniX+9XhOv3+an+N/Jt/xiNk0Pg0NADg7WzepPwWaTn11dQ1UVNRRU9OAp6dDkxm8vKQmz71aiIipi6Curo6ampqrvQyBoMVYW1tjadk0mkZwZbG3t6empoaSkhLGjBnD7t27GT26m9nxCoWMqVN76tI7jNF2cXJ1tSMuLpuePd3JzCxuYnCI9uBti9AEwbWG0IT2gYODA9XV1Xz22WeEhobyxBNPmB3bEj2Iju6MlZWE5cuP0KePp0k9AKEJbYnQA8G1htCD9oFWDypLKsn/NJ8/567hwX5OeHn1Nzk+LMwTmczOrOMqONiDu+++gS1blPj5SSkurkSlUjdxQrU0ZfBKIBxTraChoYG8vDyKioqu9lIEglbj4uKCt7e3QbcHwZXF1taWNWvWMGDAANLT0xk/fjybNm3C1tbW7DkX6gySmJjHuXOVjB7dFQsLC1JSCpuMFzVF2gahCYJrGaEJV58777yTd999l3nz5jFjxgwCAgIYNmyY2fEX0oPVq49x5MhZ7r77BrN6AEIT2gKhB4JrGaEHVx97e3vWrl3LgAEDyFZm4/CNAz/Y/IC1hTXhXuFNxpvqrmeMTGaLj48UDw8HcnPLkclKm5zTnupMCcdUK9AKjpeXFw4ODuIfr+CaoKGhgfLyclQqFQA+Pj5XeUXXN56envzxxx9ERUWxfft2HnroIX744QeTHftawpo1aezYcRq1uhOPPtrbbDcn/VctYtf80hCaILgWEZrQvpgzZw6pqamsWLGC8ePHs2PHDsLDwy9qrpboAZjWBKEHl4bQA8G1iNCD9oWvry/r1q1j0KBBZO/Lxu4XO5ZZLuPhsIfp5dmr1fMlJORw+HABAQEujBjR1Wx3P/1XLfqRVFZXqASVcEy1kLq6Op3guLuLgpGCawt7e3sAVCoVXl5eImS3DWjNl/qePXvy+efLmTp1AitXrkQul/O///3voq6rLW47blxgk7TA1auPsWLFEUJD3Xn00d4ikuoyIjRBcC0jNKHtaakmSCQSvv76a9LSTvHff7sYMWIUe/fuNtnJ9UI0pweZmcV89dVBUlIKmDw5RHTru4wIPRBcywg9aHtaYyP069ePTz75jkcfvZ/0f9Lp6dGTpZKlTAmdQh+vPq26bmSkr+41IsLb4Fh8fDZbtyqRy50ZMaJLs5FU3UJtWnXdi0UUP28h2nxxB4emhcMEgmsB7d+uqH3QNmi/1KekFLZovJtbL0aPfhGAL7/8kpycnIu6bkSEN/ffH9JEcECze75rVzbr1p0wua4LFdsVmEdoguBaR2hC29IaTbC1tWXWrE/w9OyKSpXHkiVLLuqazelBSkoh69ZpNGHNmrQmx4UeXDxCDwTXOkIP2pbW2gg+PgMYMWIWALmbculu3Z3vU74nMS+xVdcNCHDhllv8CQhwaXIsISGHI0cK2b07B6WytMlxudzpAsXXLz8iYqqViNBcwbWK+NttW1rbgjs01J3HH59G9+52BAZGUFNzcXndze1yjxsXiFpdQ2iou8l1XaheieDCiH9XgmsV8bfbtrRWEwYO7MpLL31FfPw6Hnnk+Yu6ZnN6EBrqztixgaSkFOgiq/QRenDpiH9TgmsV8bfbtlyMjfD000/SvbsDYWE3c8vAMBYce4kVqSuora/lRt8bWzRPc/WjIiN9qaysRS53Nul80q9hdbaiqkXXu1SEY0ogEAguA639Un9+/P26XRSFQkZdXV2rwqjNiV1c3GkOHy7ghRf6Ex3ducXzCQQCgeDSuRhNCA7uRlHRPaSmnqNrV1fq6+sBWlyDsDnj5/TpUmxsLIQmCAQCwRXm4m2EqSQk5JB+VM2SEUt44p8n+OnoT9TW13JT55suOI+5+lGpqQVkZpYwblwgwcEerbqXtkQ4pgQCgeAqom9I7Nixg+nTp7N+/Xp69OhxgTM1mBO72NhMYmOVAMIIEQgEgmsAfT2orKxkypQpyOVyFi5c2KKIhuaMH6EJAoFAcG1hYCP8u4O4WXH0f7k/vxz/hdKaUkZ1HdXs+eY69yUl5ZOcnA/QrhxTosZUB0cikTT7M3/+/Euae+3ata1ag1QqJTAwkKlTp7Jv375WX3Pw4ME8++yzrV+sQNBOUShkjB7dDbncmXnz5nH8+HGGDRuGUqm8pHljYhTExMjp2dODjRtPkplZfJlWLLhWEXogELRvtHqgUMjYsmULv/76K4sWLeLdd9+95LljYhRERHRCKrUWeiAAhCYIBO0drSb4+zsxZ84cjh87TsL8BAY7D2bjqY38fPRnGhoaWj1veLgnvXt7olA4k5iYh0qlboPVtx7hmOrg5Obm6n4++ugjnJ2dDd57/vmLq2PQWpYuXUpubi4pKSl89tlnlJWVMXDgQJYvX35Fri8QtAWZmcWXzekjkUj4/fffCQoKIisri5iYGM6cOXPR80VHd+b116Oxt7duVcFFQcdF6IFA0HZcTj0AuO222/jwww8BeOWVV/jkk08uab7o6M4MG9aF4uJqoQcCQGiCQNCWXE5NsLCwYMOGDXTr1o2TJ0/y7yv/co/fPcTlxPH1oa+pratt1XzBwR5MmhSMjY0lR4+eNVn8/GogHFMdHG9vb92PTCZDIpEYvPfzzz8THByMnZ0dQUFBfP7557pzq6urefrpp/Hx8cHOzg6FQsGCBQsA6NKlCwB33XUXEolE97s5XFxc8Pb2pkuXLgwfPpzffvuN+++/n6effppz584BUFhYyKRJk/Dz88PBwYGwsDBWrlypm2Pq1Kls376dxYsX63ZXMjIyqKurY9q0aXTt2hV7e3t69OjB4sWLL+8HKRCYoLVdNi6Ep6cnmzdvRqFQkJaWxvDhw3X/PrTExZ3mjTfiiIs73aI59TstGYvk5TakBO0boQcCQdtxufUAYNasWbz++usAzJw506Sh3hpNaE4PQGjC9YbQBIGg7bjcmuDj40NsbCy+vr4cOXKEdXPXMTN4JkcKj7D4wGLKqstITS1g5cpUUlMLWjSnfuc9lUptED1l/PuVQNSYuo758ccfee211/j000/p06cPBw4cYPr06UilUh588EE+/vhj1q9fz6pVq5DL5WRlZZGVlQXA3r178fLyYunSpYwcObJVxZq1zJo1i+XLl7N582YmTpxIZWUl/fr146WXXsLZ2Zk///yTyZMn0717dwYMGMDixYs5fvw4PXv25M033wQ0hnx9fT2dO3fm119/xd3dnfj4eB599FF8fHyYOHHiZf3MBAJ9WttloyV07tyZ77//nbvuGsHBgwe57bbb+Oeff3B0dARaXydEv+bIxo0nDTo2NdfBSXB9IfRAILg02kIPAF5//XWUyjMsXfolDz30EE5OTtx11126463RhOb0AJrv6ie4vhCaIBBcGm2hCV27duX779cwfvwoEhMTkb4o5a0v3+LtfW/z3t73UGQP50SyJrWvJbWj9GtQJSbmGXTw0+/o1y3U5rLdQ3MIx9R1zOuvv86iRYsYN24coPljP3LkCEuWLOHBBx9EqVQSGBjITTfdhEQiQaFQ6M719PQEzu9yXAxBQUEAZGRkAODn52cQNjxjxgw2bdrEqlWrGDBgADKZDBsbGxwcHAyuaWlpyRtvvKH7vWvXriQkJLBq1SohOoI2pa3aa6vVMiZMWMhPPz1DQkICH374Ia+99hqgqROi/9ocmZnFpKQUEhrqjkIhayKSbWVICa49hB4IBJdGW+mBRCJh3Ljn2L9fSXLyRh555BFiYmJwctJ0WWqpJlxID/T/W2iCQGiCQHBptJUmVFd7NtoIz7J9+3Zu33A7Sx9ayjP/PkOK5+90GzCE8OCQC86jUqlRKkuRy53w8pI26eBn+Fp12e/DFMIxdZUw/oJwpVGr1aSnpzNt2jSmT5+ue7+2thaZTLOeqVOnMmzYMHr06MHIkSO5/fbbGT58+GVbg7ZYm7bTTF1dHe+++y6rVq0iOzub6upqqqqqcHBwuOBcn332Gd999x1KpZKKigqqq6sJDw+/bGsVCMwRF3ea2NhMYmIUl63TkcYoGMSoUav59dfvmDNnju5YdHRnoqM761IuKipqOHy4wOT1jXe/9UVSf91iZ/zqIvRA6IGg49AWmhAW5slbb/0f338vY+bMx3VOKdBoQufOTqSkFJKZWczp06Umr9+cHhivW2jC1UVogtAEQceg7WyEIQwf/gsbN67i2WefxcrKip9v/5lntj5DcsM/WBUW43pmLOfOVpGUlE94uGeTCCr9iCht5JQ2eio1tUB3npeXlLMVwjFlwDvvvMOff/5JUlISNjY2FBUVNRmjVCp54okn2Lp1K46Ojjz44IMsWLAAK6v2d5tXO1y6rKwMgK+//pqBAwcaHNOG3Pbt25dTp07x119/ERsby8SJE4mJieG33367LGtITU0FNLsXAAsXLmTx4sV89NFHhIWFIZVKefbZZ6murm52np9//pnnn3+eRYsWERkZiZOTEwsXLmT37t2XZZ0CQXO0RQvu8wZDN+68c6ju/YaGBqqqqrCzs9M9Q06eLNIVLTS+fnO739d66/COpAlCD4QeCDoObakJY8b8ZPB+RUUF9vb2Bs+QvXtzTV7/QtFQ17ImdCQ9AKEJIDRB0DFoaxth4sTRuvddbV1ZMmQJz6x/nd0Vm1ClZqE4E8PR5AqgaWqfcWSUPklJ+SQn55s8ry1pf09jM1RXVzNhwgQiIyP59ttvmxyvq6vjtttuw9vbm/j4eHJzc5kyZQrW1taXpc3u5eZqh0t36tQJX19fTp48yf333292nLOzM/fccw/33HMPd999NyNHjuTs2bO4ublhbW1NXV3dRa9B2wEkJiYGgLi4OMaOHcsDDzwAQH19PcePHyck5Hw4oo2NTZNrxsXFERUVxZNPPql7Lz09/aLXJRC0htak1l0KDQ0NzJgxg8OHD7NhwwbdsyM83FMXMWVMc2HE+uu+2ruzF0NH0gShB0IPBB2HK6UJBw8eZNSoUXz55Zf06nUzoHmGyGQ2Jq9/obSSa1kTOpIegNAEEJog6BhcKT2or6/n0UcfJSsri48//p7VKWGsr/iSw16r6DJgsMnUPv0IKWPCwz11ryqVmiMZ+Sg6u0L3Nr2Na8cxpc0PXrZsmcnj//zzD0eOHCE2NpZOnToRHh7OW2+9xUsvvcT8+fOxsTFdtKuqqoqqqvPhaSUlJZd97aZoq7zT1vDGG28wc+ZMZDIZI0eOpKqqisTERM6dO8fs2bP58MMP8fHxoU+fPlhYWPDrr7/i7e2Ni4sLoOm6sWXLFqKjo7G1tcXV1dXstYqKisjLy6Oqqorjx4+zZMkS1q5dy/Lly3XzBQYG8ttvvxEfH4+rqysffvghZ86cMRCdLl26sHv3bjIyMnB0dMTNzY3AwECWL1/Opk2b6Nq1KytWrGDv3r26XRaBoC3Rpta1NadOnWLFihWUlJQwevRo/vzzT0aP7gbA+PE9TJ6zevUx1qxJY9AgP+RymYGRob9uU0Vw2zttoQlCD4QeCASXypXShM8//5ycnBzGjx/PqlWruPPOOwHN88TU9bV6MG5cIBER3k0cT9eyJnQkPQChCUITBB2FK6UHx48fZ+XKlZSXl/P005NZt24dD9QO4YUdL3Ck4W+kdSoUNffgYH0+9TU+PpuEhBxCQtzx9HTQ1ZoCTZSUNlIqMTGP9PQirCTWbX4fFm1+hStEQkICYWFhdOrUSffeiBEjKCkpISUlxex5CxYsQCaT6X78/f2vxHLbBY888gjffPMNS5cuJSwsjFtuuYVly5bpHtZOTk68//77RERE0L9/fzIyMti4cSMWFpo/m0WLFrF582b8/f3p06dPs9d66KGH8PHxISgoiCeeeAJHR0f27NnDfffdpxvzyiuv0LdvX0aMGMHgwYPx9vbWfdHS8vzzz2NpaUlISAienp4olUoee+wxxo0bxz333MPAgQMpLCw02BkRCDoC3bp1459//sHZ2ZmdO3cydOhQCgqabwe7Zk0aO3ac5uefj5GQkMPWrVkmW4HrtxDvKFyMJgg9EHogEFwrfPrpp9xzzz3U1NRw9913s3z58mbHa/VgzZo0XarY9aIJQg9aj9AEgeDaISgoiL///hupVEpsbCzDhw/Hqc6JH0b9wPSw6RwuOMxb/71FsipZd05CQg6HDxewc+dpjh49y6FDBSQm5qFSqQ3mlsud6N7dBT8/xza/D0mDtrrcNcKyZct49tlnm+SPP/roo2RmZrJp0ybde+Xl5UilUjZu3MioUaNMzmdqR8Tf35/i4mKcnZ1171dWVnLq1Cm6du2KnZ3d5b0pgeAKIP6GW097TGdITExk5MiRFBYW0qNHD/755x/kcrnJscYRUyqVmvT0YiIjfXXRVpeDkpISZDJZk+fmleByakJL9QDEvyfBtY/4G24d7VEPamtrmTZtms4ptWjRImbPnm1yrKmIqY6mCUIPBIKLQ/wNt572qAnx8fHcdtttFBUVERYWxt9//42vry+pham8Hv86qWdT6eHagwk3TCA9udYgYqq4uJLc3HKCgtyIiDDspnm24izWltaM6T6m1WtqjR5c1YipOXPmIJFImv05evRom67B1tYWZ2dngx+BQCCA8wVIU1IKr/ZSdERERLBr1y78/f05duwYUVFRHDlyxOTY8eN78OOPt/P4430YPbobQ4bI2/Uu+NXWBKEHAoHAHO1RD6ysrFi6dCnPPfccAM899xxz5szB1J6zVg/Gj++BQiFr95og9EAgELRn2qMmREVFsWPHDnx8fDh06BDR0dGkpaUR7B7Mj6N/ZHa/2eSp83h3z7tkue/i8ZkhjBrVjYgIb8LCPAkKcjNZDP1KcVVrTD333HNMnTq12THdurVsB8fb25s9e/YYvHfmzBndMYFAIGgtV7sAqTmCgoKIi4tjxIgRHDt2jPT0dIM6C+ZoD3UrmkNogkAgaK+0Vz2wsLBg4cKFeHp6MmfOHPbs2UNNTY3Z2qr6tGdNEHogEAjaM+1VE8LCwoiLi2P48OFkZmaSkZFBYGAg1pbWPNTzIe7ofgcfH/iYP9L/YE/uHqJ8oxjeZTheXk5mi6FfKa6qY8rT0xNPT8/LMldkZCTvvPMOKpUKLy8vADZv3oyzs3OLDDaBQCAwpj1/aff392fnzp3ExcUxZkzLQ2vbY+ixFqEJAoGgvdKe9UAikfDSSy8REBDAsGHDWuSU0tJeNUHogUAgaM+0Z03o2rUru3btIjExkWHDhhkcc7d3542oN3gg+AG+OvgV/yr/ZVf2Lnp59qKXdAD1BW4oFM5XxUl1zRQ/VyqVJCUloVQqqaurIykpiaSkJMrKygAYPnw4ISEhTJ48meTkZDZt2sQrr7zCU089ha2t7VVevUAgEJgmM7PYZPHZllBWZsXZs91YtuwQmZnFbN9+gKlTXyAjo8jsOe0x9PhiEJogEAg6GpeiBwARETGsWaNk2bJDxMWdZurUF9i+/UCz53QETRB6IBAIOiKXogmVlXbk5yt0NkJs7G6mTZursxECXQNZeMtCfh3zK3cE3MHJ4pMsO/Ulv5z7jN+PryerNMtkWnhbclUjplrDa6+9xvfff6/7XdvhYevWrQwePBhLS0s2bNjAE088QWRkJFKplAcffJA333zzai1ZIBAILojWKIDWteXOzCxm2bLDJCaeQSq1xsXFihkzJnD6dDqnTqXy11+rcHBwaLIb3l5Dj1uL0ASBQNDRuFg9gKaasGbNj/zxxwesWfMN69f/zuDBg3XjOpomCD0QCAQdkctlIzg5wdNPTyQvT0lm5jE2bPgJOzs7MjOLOZoCD4fOZla/Wfy0by0bT23keG0ih/fGI7WWIneS4yv1JcS97aNLrxnH1LJly1i2bFmzYxQKBRs3brwyCxIIBILLwMUaBSkphRQUVBIQ4ELv3p706ePLzJnPMm/ebHbs+JMbb7yR3377jRMnrAxErT2HHrcGoQkCgaCjcSlOImNNcHPz49ixvzl+PJmYmBjeffddXnjhhSaGTkfQBKEHAoGgI3K5bISICDlPPTWT119/iS1bfic6OprffvuN1NQGnR6MVnTjyaipPHbjZM6Un2HH6R3szt1NelE6O7J3YG1pfdnvz5hrxjElEAgE7Z2LqdVxsUZBaKg7KlU50MCQIXIUChkvvPA0Awf2YuLEiRw6dIiIiAjee+9TIiNvMhC1uLjTxMZmEhOjIDq6c6uvLRAIBILmuZJ6AKY1YdiwBB577DFWrFjBSy+9RFxcHG+99bFBJz6hBwKBQND2XG0b4ZVXnuPGG3tz7733sn//fvr27csHH3xBZOQAk3pwb/S93Bt0L+U15RRVFVFXX9fqdbSWa6bGlEAgELR3rmStDoVChpeXA+npxQbXu/nmmzlw4AA333wzpaWlPPnkg2ze/Am+vg66MbGxmcTGKomNzWzzdQoEAsH1yJWu3WRKE+zt7fn+++9ZsmQJNjY2rF+/njvvHIK3d5HO2BF6IBAIBG1Pe7ARYmJiOHDgADfeeCNFRUU88sgktm9fgp+fptC5KT1wsHbA19EXf2f/Nl+3iJgSCASCy8SVrtVh7no+Pj5s2bKFl19+mffff5+kpCQsLS11x2NiFAavYsdcIBAILi9Xo3aTqWtKJBIeffRR+vXrx4QJE8jIyKC0tFR33FgPQGiCQCAQXG7ai43g7+/P9u3befHFF1m8eDEHDx7U2QhXWw+EY0pw2Zg6dSpFRUWsXbsWgMGDBxMeHs5HH3100XNejjkEgivFla7V0dz1rKyseO+997jpppvo1asXFhaaANnKykpuvNHHQFy0OySAMEIElw2hCYLrmatRu6m5a/br1499+/axceNGbrnlFt37ffq4NXnuC00QXG6EHgiud9qTjWBjY8NHH33EzTffzI033ohEIgGgb193IiN9dTYDXFk9EKl81wFTp05FIpEgkUiwsbEhICCAN998k9ra2ja97po1a3jrrbdaNHbbtm1IJBKKiooueg6BQNCUMWPGoFCc3/l4/vnniY6OJikpSfdeTIyCmBi5wQ6JoOMiNEEguD5xdXXl/vvv1/2elpaGQqFgwYIFVFdX694XmnD9IPRAILh+GTduHL6+vrrfn3rqKW655RYOHz6se+9K6oGImLpOGDlyJEuXLqWqqoqNGzfy1FNPYW1tzdy5cw3GVVdXY2Njc1mu6ebm1i7mEAgEGlQqFT/88APFxcX069ePGTNm8OabbxId3Vnsil9nCE0QCARfffUVBQUFzJs3jxUrVo7y4A8AAQAASURBVPDFF19wyy23CE24zhB6IBAIsrKyWLVqFWq1mj59+jBr1ixef/31K6oHImLqOsHW1hZvb28UCgVPPPEEMTExrF+/nqlTp3LnnXfyzjvv4OvrS48ePQDNH+fEiRNxcXHBzc2NsWPHkpGRoZuvrq6O2bNn4+Ligru7Oy+++CINDQ0G1xw8eDDPPvus7veqqipeeukl/P39sbW1JSAggG+//ZaMjAyGDBkCaHbzJBIJU6dONTnHuXPnmDJlCq6urjg4ODBq1CjS0tJ0x5ctW4aLiwubNm0iODgYR0dHRo4cSW5u7uX9QAWCaxAvLy+OHDnCxIkTqa+vZ/HixQQFBfHtt99SV9f23TYE7QehCUITBIL333+f5cuX4+npSWpqKoMHD2bSpEmcOnXqai9NcAUReiD0QCDw9/cnNTWVu+66i9raWhYuXEhwcDArVqygvr7+iqxBOKauU+zt7XVh21u2bOHYsWNs3ryZDRs2UFNTw4gRI3BycmLnzp3ExcXpHt7acxYtWsSyZcv47rvv2LVrF2fPnuX3339v9ppTpkxh5cqVfPzxx6SmprJkyRIcHR3x9/dn9erVABw7dozc3FwWL15sco6pU6eSmJjI+vXrSUhIoKGhgdGjR1NTU6MbU15ezgcffMCKFSvYsWMHSqWS559//nJ8bALBNY+vry+//PILmzZtIiAggNzcXB555BF69+5NZqboynS9IjRBILj+kEgkTJ48mWPHjvH4448jkUj4+eef6dGjBx988MHVXp7gKiH0QCC4PvH392fNmjX88ccfdOnShaysLKZMmULfvn2viANXpPJdIuXl5Rw9evSKXzcoKAgHB4cLDzSioaGBLVu2sGnTJmbMmEF+fj5SqZRvvvlGF577ww8/UF9fzzfffKMrhrZ06VJcXFzYtm0bw4cP56OPPmLu3LmMGzcOgC+//JJNmzaZve7x48dZtWoVmzdvJiYmBoBu3brpjmvDcb28vHBxcTE5R1paGuvXrycuLo6oqCgAfvzxR/z9/Vm7di0TJkwAoKamhi+//JLu3bsD8PTTT/Pmm2+2+rMSCDoyw4cP5/Dhw3z++ee89dZb1NfX4+fnd7WXdc1zNTThYvUAhCYIBAJNJMoXX3zBo48+yosvvkhsbCxdunS52su65hE2gtADgeBa5Pbbb2fo0KF88sknvPvuu0gkEjp16tTm1xWOqUvk6NGj9OvX74pfd9++ffTt27fF4zds2ICjoyM1NTXU19dz3333MX/+fJ566inCwsIMcsaTk5M5ceIETk5OBnNUVlaSnp5OcXExubm5DBw4UHfMysqKiIiIJqG6WrTt6vU7wbSW1NRUrKysDK7r7u5Ojx49SE1N1b3n4OCgExwAHx8fVCrVRV9XIOio2NraMmvWLKZOnUp2djZWVkISLpWroQmt1QMQmiA0QSBoSp8+fdi8eTO7du0iOjr6ai/nmkfYCBqEHggE1x729va8+OKLTJs2jTNnzhh06msrhBVyiQQFBbFv376rct3WMGTIEL744gtsbGzw9fU1MEClUqnB2LKyMvr168ePP/7YZB5PT8+LWq+9vf1FnXcxWFtbG/wukUjMiqFAcC0RF3ea2NhMYmIUZgsRZmYWk5JSSGioe4vb0rq6uuLq6no5l3rdcjU0obV6AEIThCYIrnXaSg8Abrrppsu1zOsaYSO0DKEHAsGl01aa4O7ujru7++VcqlmEY+oScXBwaPVO9dVAKpUSEBDQorF9+/bll19+wcvLC2dnZ5NjfHx82L17NzfffDMAtbW1ze7QhIWFUV9fz/bt23Vhuvpod2OaK8AcHBxMbW0tu3fv1oXpFhYWcuzYMUJCQlp0bwLBtUxsbCaxsUoAs6KTklJIQkIOQKsMEcHlQWiC0ASB4Eog9KD9I/RA6IFAcKXoCJogip8LmnD//ffj4eHB2LFj2blzJ6dOnWLbtm3MnDmT06dPA/DMM8/wv//9j7Vr13L06FGefPJJioqKzM7ZpUsXHnzwQR5++GHWrl2rm3PVqlUAKBQKJBIJGzZsID8/n7KysiZzBAYGMnbsWKZPn86uXbtITk7mgQcewM/Pj7Fjx7bJZyEQtCdiYhTExMiJiVGYHRMa6k5kpC+hoVdmd0PQ8RGaIBC0P4QeCK4GQg8EgvZJR9AE4ZgSNMHBwYEdO3Ygl8sZN24cwcHBTJs2jcrKSt3uyHPPPcfkyZN58MEHiYyMxMnJibvuuqvZeb/44gvuvvtunnzySYKCgpg+fTpqtRoAPz8/3njjDebMmUOnTp14+umnTc6xdOlS+vXrx+23305kZCQNDQ1s3LixSWiuQNARiY7uzOuvR5vdCQHNDsjo0d3a5U6I4NpEaIJA0P4QeiC4Ggg9EAjaJx1BEyQNIrHWgJKSEmQyGcXFxQYhqpWVlZw6dYquXbtiZ2d3FVcoEFwc4m/4+qMl+eaXA3PPzWud5u5L/HsSXOuIv+HriyulB9AxNUHogaAjI/6Grz/ao40gakwJBAJBB6Ul+eYCgUAg6PgIPRAIBAKBlvaoCcIxJRAIBB0UbZ55c/nmAoFAIOj4CD0QCAQCgZb2qAnCMSUQCAQdlOjozu1mF0QgEAgEVw+hBwKBQCDQ0h41QRQ/FwgEAoFAIBAIBAKBQCAQXBWEY0ogEAgEAoFAIBAIBAKBQHBVEI4pgUAgEAgEAoFAIBAIBALBVUE4pgQCgUAgEAgEAoFAIBAIBFcF4ZgSCAQCgUAgEAgEAoFAIBBcFYRjSiAQCK5j4uJO88YbccTFnb7aSxEIBALBVUZogkAgEAjgyuuBcExdBipr6iiprLliP5U1dVf7ls0ydepU7rzzTt3vgwcP5tlnn72kOS/HHBdi27ZtSCQSioqK2vQ6bY1EImHt2rVXexmCdkhmZjEbN54kM7PY4P3Y2ExiY5XExmZepZV1QGoqoLL4yvzUVFztuzWL0IOri9ADQXMITbgyVNZWUlpdesV+Kmsrr/Ytm0VowtVFaILAHO1FD6yuyFU6MJU1dfyTkkdxZc0Vu6bMzprhod7YWVu2aPzUqVP5/vvvAbC2tkYulzNlyhTmzZuHlVXb/gmsWbMGa2vrFo3dtm0bQ4YM4dy5c7i4uFzUHBdLVFQUubm5yGSyFp8zdepUioqKxENecE2QklJIQkIOAAqF5u88M7MYqdSGiIhOxMQorubyOg41FXB0I1QWXZnr2blA0Giwtm/RcKEHF0bogeB6QGhC21NZW8lW5VZKqkuu2DWdbZwZIh+CnZVdi8YLTbgwQhMEHZ32ogfCMXWJVNfVU1xZg52VJbZWbR+AVlWruV51XX2LHVMAI0eOZOnSpVRVVbFx40aeeuoprK2tmTt3bpOx1dXV2NjYXJb1urm5tYs5LoSNjQ3e3t5tfh1TXM7PWyAwR2iou8EraISouLiKYcO6EB3d+WotrWNRV61xSlnZaX7aktpKzbXqqlvsmAKhBxdC6IHgekBoQttTU19DSXUJtla22Fratvn1quqqKKkuoaa+Bjtarj9CE5pHaIKgo9Ne9ECk8l0mbK0scLCxavOfi3V+2dra4u3tjUKh4IknniAmJob169cD50Nr33nnHXx9fenRowcAWVlZTJw4ERcXF9zc3Bg7diwZGRm6Oevq6pg9ezYuLi64u7vz4osv0tDQYHBd4xDbqqoqXnrpJfz9/bG1tSUgIIBvv/2WjIwMhgwZAoCrqysSiYSpU6eanOPcuXNMmTIFV1dXHBwcGDVqFGlpabrjy5Ytw8XFhU2bNhEcHIyjoyMjR44kNzfX7OdjHKZ7oTnmz5/P999/z7p165BIJEgkErZt29aiz83U5z1v3jwGDhzYZF29e/fmzTffBGDv3r0MGzYMDw8PZDIZt9xyC/v37zd7TwKBPgqFjNGju+l2QkAjQJGRvgZCJLhMWNmBjUPb/lyk40vogdADgUBowpXD1tIWeyv7Nv+5WOeX0AShCYLrm/aiB8IxdZ1ib29PdXW17vctW7Zw7NgxNm/ezIYNG6ipqWHEiBE4OTmxc+dO4uLidA9e7XmLFi1i2bJlfPfdd+zatYuzZ8/y+++/N3vdKVOmsHLlSj7++GNSU1NZsmQJjo6O+Pv7s3r1agCOHTtGbm4uixcvNjnH1KlTSUxMZP369SQkJNDQ0MDo0aOpqTmfTlleXs4HH3zAihUr2LFjB0qlkueff75Vn1Fzczz//PNMnDhRJ0S5ublERUW16HMz9Xnff//97Nmzh/T0dN2YlJQUDh48yH333QdAaWkpDz74ILt27eK///4jMDCQ0aNHU1pa2qr7Egi0mBIiwfWH0IMLI/RAcD0gNEEAQhNagtAEQUfnauiBSOW7zmhoaGDLli1s2rSJGTNm6N6XSqV88803unDRH374gfr6er755hskEgkAS5cuxcXFhW3btjF8+HA++ugj5s6dy7hx4wD48ssv2bRpk9lrHz9+nFWrVrF582ZiYmIA6Natm+64NhzXy8vLIH9cn7S0NNavX09cXBxRUVEA/Pjjj/j7+7N27VomTJgAQE1NDV9++SXdu3cH4Omnn9btKrSU5uZwdHTE3t6eqqoqg/Delnxu0PTzBs3Ox08//cSrr76qu6+BAwcSEBAAwK233mqwvq+++goXFxe2b9/O7bff3qp7EwgEAqEHLUfogUAg6OgITWg5QhMEgsuPiJi6TtiwYQOOjo7Y2dkxatQo7rnnHubPn687HhYWZvAATE5O5sSJEzg5OeHo6IijoyNubm5UVlaSnp5OcXExubm5BqGlVlZWREREmF1DUlISlpaW3HLLLRd9H6mpqVhZWRlc193dnR49epCamqp7z8HBQScWAD4+PqhUqlZd62LmuNDnpsX48wa4//77+emnnwDNl4OVK1dy//33646fOXOG6dOnExgYiEwmw9nZmbKyMpRKZavuSyAQXN8IPRB6IBAIBFqEJghNEAjaAyJi6jphyP+zd9/xTVX9H8A/2WnSvXdLGV3sAsoGQaYKggqICjh/ilsf5+MDuH143ApucKAiCC6QUQRkbwqUllFKWzroTjrTjPP7ozQ23S2lacvn/XrlBb05uTn35uZ8c7733HNHj8bSpUuhVCrh7+9f604bWq3W5u/i4mLExMRgxYoVtdbl5eXVojo4ODR9ct7LVfMOHRKJpNa17VdiHU3dbzX3NwDMmjULzz77LA4fPoyysjKkpaVhxowZ1ufnzJmDvLw8vP/++wgJCYFKpcLgwYNthv8SNSQlRYf4+DxER3vwUo2rGOMB4wER4wFVYUxgTCBqDzGBiamrhFartQ73bIr+/ftj5cqV8Pb2hrOzc51l/Pz8sG/fPowYMQIAYDKZcOjQIfTv37/O8r169YLFYsH27dutw3Srqzo7YDab661XZGQkTCYT9u3bZx2mm5eXh1OnTiEqKqrJ29calEplrbo2Zb/VJzAwECNHjsSKFStQVlaG66+/Ht7e3tbnd+3ahSVLlmDSpEkAKidQzM3NvfwNoatGXbeDpasP40HrYzygjobxgKowJrQ+xgTqaNpDTOClfK3EYLKgtMJ0xR8Gk6VNtmf27Nnw9PTElClTsGPHDiQnJ2Pbtm149NFHceHCBQDAY489hjfffBO//PILEhMT8dBDD1nvWFGX0NBQzJkzB3fffTd++eUX6zp/+uknAEBISAgkEgn++OMP5OTkoLi4uNY6unfvjilTpuC+++7Dzp07ERcXhzvuuAMBAQGYMmXKFdkXDW3PsWPHcOrUKeTm5sJoNDZpvzVk9uzZ+PHHH7Fq1SqbIbpA5bZ/++23SEhIwL59+zB79uw2PcNEHR/vuNSGTOVARemVfZjK22RTGA8ax3hAHQ3jQdsxmA0oM5Vd8YfBbGiT7WFMaBxjAnU07SEmMDF1mZQyKVzUCpSbzNCVG6/4o9xkhotaAaXsyn50Go0Gf//9N4KDgzFt2jRERkbinnvuQXl5uTXL/9RTT+HOO+/EnDlzMHjwYDg5OeHmm29ucL1Lly7FLbfcgoceeggRERG47777UFJSAgAICAjAokWL8Nxzz8HHxwcPP/xwnetYtmwZYmJicMMNN2Dw4MEQQmD9+vW1htVeaffddx/Cw8MxYMAAeHl5YdeuXU3abw255ZZbkJeXh9LSUkydOtXmuS+//BIFBQXo378/7rzzTjz66KM2Z0uIGsM7LrUBmRJQu1YmjcoLr+zDVF75XjLbuShaG+NB4xgPqKNhPLjyFFIFnJXOMJgM0Bv0V/xhMBngrHSGQnpl2z/GhMYxJlBH0x5igkQ096LaTk6v18PFxQU6nc6mkSgvL0dycjK6dOkCtVpt85pyoxkV5rYZyQRUJsPUClmbvR91Dg0dw0SXo752s6NraLsa/D4ZywBzG83rIFMCCp4VpeZjTKArpTPGhJbGg3JTOYwWY5vVUyFVQC3n95mah/GArpTmxAPOMdUK1AoZE0VERFRJ4cBkERERQS1XQw129ImIGsNL+YiIiIiIiIiIyC6YmCIiIiIiIiIiIrtgYoqIiIiIiIiIiOyCiSkiIiIiIiIiIrILJqaIiIiIiIiIiMgumJgiIiIiIiIiIiK7YGKKiIiIiIiIiIjsgokpIiIiIiIiIiKyCyamiIiIiIiIiIjILpiY6uQkEkmDj4ULF7ZZXUaNGmV9X7VajaioKCxZssT6/PLly+Hq6tpm9SHqKFJSdFi//hxSUnT2rgp1YIwHRJ0DYwK1BsYEoo6vM8UDub0rQFdWZmam9f8rV67Ef/7zH5w6dcq6zNHR0fp/IQTMZjPk8it3WNx33314+eWXUVpaim+++Qbz58+Hm5sbZs2adcXek6iji4/Pw549GQCAkBAXO9eGOirGA6LOgTGBWgNjAlHH15niAUdMtYKSkpJ6H+Xl5U0uW1ZW1qSyzeHr62t9uLi4QCKRWP9OTEyEk5MT/vzzT8TExEClUmHnzp2YO3cupk6darOexx9/HKNGjbL+bbFY8MYbb6BLly5wcHBAnz59sHr16kbro9Fo4Ovri7CwMCxcuBDdu3fHb7/91qxtIrraREd7YPBgf0RHe9i7KtQEbRkTmoPxgKhzYEzoONhHYEwgupI6UzzoMCOmXnvtNaxbtw5Hjx6FUqlEYWFhrTISiaTWsh9++AEzZ868onWrfkahpkmTJmHdunXWv729vVFaWlpn2ZEjR2Lbtm3Wv0NDQ5Gbm1urnBCi5ZWtw3PPPYf//e9/CAsLg5ubW5Ne88Ybb+C7777DJ598gu7du+Pvv//GHXfcAS8vL4wcObLJ7+3g4ICKioqWVp3oqhAS4tLhz4K0NsaESowHRFcfxgRbjAf/YEwgurp0pnjQYRJTFRUVuPXWWzF48GB8+eWX9ZZbtmwZJkyYYP2b1yM37uWXX8b111/f5PIGgwGvv/46YmNjMXjwYABAWFgYdu7ciU8//bRJQcdsNuOHH37AsWPHcP/997e47kR0dWJMuDIYD4ioo2E8uHIYE4iorXSYxNSiRYsAVE5+1xBXV1f4+vo2eb0GgwEGg8H6t16vb3bdiouL631OJpPZ/J2dnV1vWanU9srK8+fPN7suLTFgwIBmlT979ixKS0trBaqKigr069evwdcuWbIEX3zxBSoqKiCTyfDEE0/gwQcfbHadiejqdiViQmvEA6BjxwTGAyLqaBgPrhzGBCJqKx0mMdVU8+fPx7333ouwsDD83//9H+bNm1fn8N0qb7zxhjWgtZRWq7V72ctR832kUmmtocBGo9H6/6ogu27dOgQEBNiUU6lUDb7X7Nmz8eKLL8LBwQF+fn61Ai0RUWtqTkxojXgAdOyYwHhARJ0V40HzMSYQUVvpVImpl19+Gddddx00Gg02bdqEhx56CMXFxXj00Ufrfc3zzz+PJ5980vq3Xq9HUFBQW1S33fLy8sKJEydslh09ehQKhQIAEBUVBZVKhdTU1GZdKw4ALi4u6NatW6vVlYioPs2NCYwHtTEeEFFnwHjQOhgTiOhKsWti6rnnnsNbb73VYJmEhAREREQ0aX0vvfSS9f/9+vVDSUkJFi9e3GBiSqVSNZrBv9pcd911WLx4Mb755hsMHjwY3333HU6cOGEdguvk5ISnn34aTzzxBCwWC4YNGwadToddu3bB2dkZc+bMsfMWEFFHZO+YwHhQG+MBEdkD40H7xJhARFeKXRNTTz31FObOndtgmbCwsBav/5prrsErr7wCg8HA4NIM48ePx0svvYRnnnkG5eXluPvuu3HXXXfh+PHj1jKvvPIKvLy88MYbb+DcuXNwdXVF//798cILL9ix5kRXt127LiA2NgVjx4Zg6NBAe1en2RgT2h/GA6KOqyPHBMaD9okxgahj6gjxQCJa+76iV9jy5cvx+OOP13kr2Jpee+01vP3228jPz2/y+vV6PVxcXKDT6eDs7GxdXl5ejuTkZHTp0gVqtbolVSeyKx7Dnd+iRbsQG5uKsWODsWDB0DZ73/razbZwJWNCQ9vF7xN1dDyGO7+rLSYwHhC1DI/hzq8jxIMOM8dUamoq8vPzkZqaCrPZjKNHjwIAunXrBkdHR/z++++4ePEirr32WqjVamzevBmvv/46nn76aftWnIiojYwdG2Lzb2fGmEBE1LCrJSYwHhARNawjxIMOk5j6z3/+g6+//tr6d9W1zFu3bsWoUaOgUCjw8ccf44knnoAQAt26dcM777yD++67z15VJiJqU0OHBrbb4bmtjTGBiKhhV0tMYDwgImpYR4gHHe5SviuNl/JRZ8VjmK4Ue17KdyXx0g3qzHgM05XSGWMC4wF1ZjyG6UppTjyQtlGdiIiIiIiIiIiIbDAx1UwcYEYdFY9dotbH7xV1VDx2iVoXv1PUUfHYpfaAiakmUigUAIDS0lI714SoZaqO3apjmYhajjGBOjrGBKLWwXhAHR3jAbUHHWbyc3uTyWRwdXVFdnY2AECj0UAikdi5VkSNE0KgtLQU2dnZcHV1hUwms3eViDo8xgTqqBgTiFoX4wF1VIwH1J4wMdUMvr6+AGANPEQdiaurq/UYJqLLx5hAHRljAlHrYTygjozxgNoDJqaaQSKRwM/PD97e3jAajfauDlGTKRQKngUhamWMCdRRMSYQtS7GA+qoGA+ovWBiqgVkMhm/wEREBIAxgYiIKjEeEBG1DCc/JyIiIiIiIiIiu2BiioiIiIiIiIiI7IKJKSIiIiIiIiIisgvOMVWDEAIAoNfr7VwTIqKOoaq9rGo/OwvGAyKi5uuMMYHxgIio+ZoTD5iYqqGoqAgAEBQUZOeaEBF1LEVFRXBxcbF3NVoN4wERUct1ppjAeEBE1HJNiQcS0ZlOZ7QCi8WCjIwMODk5QSKRNOu1er0eQUFBSEtLg7Oz8xWq4ZXXWbYD4La0V51lWzrLdgCXty1CCBQVFcHf3x9Saee5QpzxoBK3pf3pLNsBcFvao8vdjs4YEy4nHgA8Ntojbkv701m2A+C2VGlOPOCIqRqkUikCAwMvax3Ozs4d/gAEOs92ANyW9qqzbEtn2Q6g5dvSWc6KV8d4YIvb0v50lu0AuC3t0eVsR2eLCa0RDwAeG+0Rt6X96SzbAXBbgKbHg85xGoOIiIiIiIiIiDocJqaIiIiIiIiIiMgumJhqRSqVCgsWLIBKpbJ3VS5LZ9kOgNvSXnWWbeks2wF0rm1pDzrT/uS2tD+dZTsAbkt71Fm2oz3pLPu0s2wHwG1pjzrLdgDclpbg5OdERERERERERGQXHDFFRERERERERER2wcQUERERERERERHZBRNTRERERERERERkF0xMERERERERERGRXTAxRUREREREREREdsHE1BXy2muvYciQIdBoNHB1dbV3dZrl448/RmhoKNRqNa655hrs37/f3lVqtr///hs33ngj/P39IZFI8Msvv9i7Si3yxhtvYODAgXBycoK3tzemTp2KU6dO2btaLbJ06VL07t0bzs7OcHZ2xuDBg/Hnn3/au1qt4s0334REIsHjjz9u76o028KFCyGRSGweERER9q5Wp8J4YH+MCe1PZ40JjAfUGMYE+2I8aH86azwAGBOag4mpK6SiogK33norHnzwQXtXpVlWrlyJJ598EgsWLMDhw4fRp08fjB8/HtnZ2fauWrOUlJSgT58++Pjjj+1dlcuyfft2zJ8/H3v37sXmzZthNBoxbtw4lJSU2LtqzRYYGIg333wThw4dwsGDB3HddddhypQpiI+Pt3fVLsuBAwfw6aefonfv3vauSotFR0cjMzPT+ti5c6e9q9SpMB7YH2NC+9MZYwLjATUFY4J9MR60P50xHgCMCc0m6IpatmyZcHFxsXc1mmzQoEFi/vz51r/NZrPw9/cXb7zxhh1rdXkAiLVr19q7Gq0iOztbABDbt2+3d1VahZubm/jiiy/sXY0WKyoqEt27dxebN28WI0eOFI899pi9q9RsCxYsEH369LF3Na4KjAftA2NC+9WRYwLjATUXY4L9MR60Xx05HgjBmNASHDFFVhUVFTh06BDGjh1rXSaVSjF27Fjs2bPHjjWjKjqdDgDg7u5u55pcHrPZjB9//BElJSUYPHiwvavTYvPnz8fkyZNtvjMd0ZkzZ+Dv74+wsDDMnj0bqamp9q4S2RnjQcfAmNB+MB5QZ8aY0P4xHrQvjAnNJ79ia6YOJzc3F2azGT4+PjbLfXx8kJiYaKdaURWLxYLHH38cQ4cORc+ePe1dnRY5fvw4Bg8ejPLycjg6OmLt2rWIioqyd7Va5Mcff8Thw4dx4MABe1flslxzzTVYvnw5wsPDkZmZiUWLFmH48OE4ceIEnJyc7F09shPGg/aPMaH9YDygzo4xoX1jPGhfGBNahiOmmuG5556rNQFYzQcbZ7pS5s+fjxMnTuDHH3+0d1VaLDw8HEePHsW+ffvw4IMPYs6cOTh58qS9q9VsaWlpeOyxx7BixQqo1Wp7V+eyTJw4Ebfeeit69+6N8ePHY/369SgsLMRPP/1k76q1a4wHZG+MCe0D4wEBjAlkX4wH7QdjQstxxFQzPPXUU5g7d26DZcLCwtqmMleAp6cnZDIZLl68aLP84sWL8PX1tVOtCAAefvhh/PHHH/j7778RGBho7+q0mFKpRLdu3QAAMTExOHDgAN5//318+umndq5Z8xw6dAjZ2dno37+/dZnZbMbff/+Njz76CAaDATKZzI41bDlXV1f06NEDZ8+etXdV2jXGA7InxoT2g/GAAMYEsh/Gg/aFMaHlmJhqBi8vL3h5edm7GleMUqlETEwMtmzZgqlTpwKoHBq6ZcsWPPzww/at3FVKCIFHHnkEa9euxbZt29ClSxd7V6lVWSwWGAwGe1ej2caMGYPjx4/bLJs3bx4iIiLw7LPPdtiAAwDFxcVISkrCnXfeae+qtGuMB2QPjAntD+MBAYwJ1PYYD9onxoSWY2LqCklNTUV+fj5SU1NhNptx9OhRAEC3bt3g6Oho38o14Mknn8ScOXMwYMAADBo0CO+99x5KSkowb948e1etWYqLi22yucnJyTh69Cjc3d0RHBxsx5o1z/z58/H999/j119/hZOTE7KysgAALi4ucHBwsHPtmuf555/HxIkTERwcjKKiInz//ffYtm0bNm7caO+qNZuTk1Ota/i1Wi08PDw63LX9Tz/9NG688UaEhIQgIyMDCxYsgEwmw6xZs+xdtU6D8cD+GBPan84SExgPqLkYE+yL8aD96SzxAGBMuCxtdv+/q8ycOXMEgFqPrVu32rtqjfrwww9FcHCwUCqVYtCgQWLv3r32rlKzbd26tc79P2fOHHtXrVnq2gYAYtmyZfauWrPdfffdIiQkRCiVSuHl5SXGjBkjNm3aZO9qtZqOeivYGTNmCD8/P6FUKkVAQICYMWOGOHv2rL2r1akwHtgfY0L705ljAuMBNYQxwb4YD9qfzhwPhGBMaCqJEEK0frqLiIiIiIiIiIioYbwrHxERERERERER2QUTU0REREREREREZBdMTBERERERERERkV0wMUVERERERERERHbBxBQREREREREREdkFE1NERERERERERGQXTEwREREREREREZFdMDFFRERERERERER2wcQUUTtlNpsxZMgQTJs2zWa5TqdDUFAQXnzxRTvVjIiI2hpjAhERAYwH1DlJhBDC3pUgorqdPn0affv2xeeff47Zs2cDAO666y7ExcXhwIEDUCqVdq4hERG1FcYEIiICGA+o82Fiiqid++CDD7Bw4ULEx8dj//79uPXWW3HgwAH06dPH3lUjIqI2xphAREQA4wF1LkxMEbVzQghcd911kMlkOH78OB555BH8+9//tne1iIjIDhgTiIgIYDygzoWJKaIOIDExEZGRkejVqxcOHz4MuVxu7yoREZGdMCYQERHAeECdByc/J+oAvvrqK2g0GiQnJ+PChQv2rg4REdkRYwIREQGMB9R5cMQUUTu3e/dujBw5Eps2bcKrr74KAIiNjYVEIrFzzYiIqK0xJhAREcB4QJ0LR0wRtWOlpaWYO3cuHnzwQYwePRpffvkl9u/fj08++cTeVSMiojbGmEBERADjAXU+HDFF1I499thjWL9+PeLi4qDRaAAAn376KZ5++mkcP34coaGh9q0gERG1GcYEIiICGA+o82Fiiqid2r59O8aMGYNt27Zh2LBhNs+NHz8eJpOJw3WJiK4SjAlERAQwHlDnxMQUERERERERERHZBeeYIiIiIiIiIiIiu2BiioiIiIiIiIiI7IKJKSIiIiIiIiIisgsmpoiIiIiIiIiIyC6YmCIiIiIiIiIiIrtgYoqIiIiIiIiIiOyCiSkiIiIiIiIiIrILJqaIiIiIiIiIiMgumJgiIiIiIiIiIiK7YGKKiIiIiIiIiIjsgokpIiIiIiIiIiKyCyamiIiIiIiIiIjILpiYIiIiIiIiIiIiu2BiioiIiIiIiIiI7IKJKSIiIiIiIiIisgsmpoiIiIiIiIiIyC6YmCIiIiIiIiIiIrtgYorokm3btkEikWDbtm32rkqHZbFY0LNnT7z22mt2ef+FCxdCIpG0yXuZTCY888wzCAoKglQqxdSpUwEAEokECxcubPT1RqMRQUFBWLJkyZWtKBE1y9y5cxEaGmrvalATpKWlQa1WY9euXfauSot8++23iIiIgEKhgKurKwBg1KhRGDVqVJNeP3PmTNx2221XroJEdsS2uOMoLi6Gt7c3VqxYYe+qNCg0NBRz585t0/es2aafP38eEokEy5cvty6bO3cuHB0d27ReV8pzzz2Ha665pkWvZWKqE0pKSsIDDzyAsLAwqNVqODs7Y+jQoXj//fdRVlZmU9ZsNmPZsmUYNWoU3N3doVKpEBoainnz5uHgwYPWcsuXL4dEIrE+1Go1evTogYcffhgXL15sUT2rkgg1H2q1+rK23x4yMjKwcOFCHD161N5VabFTp07hiSeewJAhQ6BWqyGRSHD+/PlmreOHH35AWloaHn744StTyXbkq6++wuLFi3HLLbfg66+/xhNPPFFnud27d2PhwoUoLCy0Wa5QKPDkk0/itddeQ3l5eRvUmDqDjtK+r127FuPHj4e/vz9UKhUCAwNxyy234MSJE3WW/+2339C/f3+o1WoEBwdjwYIFMJlMLXpve1q/fn2TEtPt3eV8HhaLBf/973/RpUsXqNVq9O7dGz/88EOtcnPnzq3zN0BEREST6/nyyy/jmmuuwdChQ5v8mvYiMTERc+fORdeuXfH555/js88+q7NcQ78vnn32Wfz888+Ii4u7wrWlmtgWt29Xe1ucmJiIZ555Bn379oWTkxP8/PwwefJkm+OtSmv0x95//304OTlh5syZzdo+anulpaVYuHDhFRuI8fjjjyMuLg6//fZbs18rvwL1ITtat24dbr31VqhUKtx1113o2bMnKioqsHPnTvzrX/9CfHy89cdPWVkZpk2bhg0bNmDEiBF44YUX4O7ujvPnz+Onn37C119/jdTUVAQGBlrX//LLL6NLly4oLy/Hzp07sXTpUqxfvx4nTpyARqNpUZ2XLl1qkyWWyWSXtxNaaMSIESgrK4NSqWz2azMyMrBo0SKEhoaib9++rV+5NrBnzx588MEHiIqKQmRkZIuSbIsXL8bMmTPh4uLS+hVsZ/766y8EBATg3XfftVleVlYGufyfpnX37t1YtGgR5s6daz0jXmXevHl47rnn8P333+Puu+9ui2pTB9aR2vfjx4/Dzc0Njz32GDw9PZGVlYWvvvoKgwYNwp49e9CnTx9r2T///BNTp07FqFGj8OGHH+L48eN49dVXkZ2djaVLl7bOzmuGzz//HBaLpUWvXb9+PT7++OMO3SG63M/jxRdfxJtvvon77rsPAwcOxK+//orbb78dEomkVqdFpVLhiy++sFnW1PiRk5ODr7/+Gl9//XXTN64d2bZtGywWC95//31069bNunzTpk025Rr6fdGvXz8MGDAAb7/9Nr755pu2qDaBbXFbYVvc8s/jiy++wJdffonp06fjoYcegk6nw6effoprr70WGzZswNixY2u9pqX9MaPRiPfffx9PPPGE3fpwHUlISAjKysqgUCjs8v6lpaVYtGgRADR5dG5z+Pr6YsqUKfjf//6Hm266qXkvFtRpnDt3Tjg6OoqIiAiRkZFR6/kzZ86I9957z/r3/PnzBQDx7rvv1iprMpnE4sWLRVpamhBCiGXLlgkA4sCBAzblnnzySQFAfP/9982u74IFCwQAkZOT0+zXtjcHDhwQAMSyZcvsXZUWy8vLE3q9XgghxOLFiwUAkZyc3OTXHz58WAAQsbGxV6iGjas6plpLSUlJvc+NHj1aREdHN7qOxvblDTfcIIYPH97SKtJVoqO173XJysoScrlcPPDAAzbLo6KiRJ8+fYTRaLQue/HFF4VEIhEJCQmt8t5tpWq/d2SX83lcuHBBKBQKMX/+fOsyi8Uihg8fLgIDA4XJZLIunzNnjtBqtS2u5zvvvCMcHBxEUVFRi9dxpRUXF9f73KJFi5r0G6ix3xf/+9//hFarbdf7oTNhW9wxXO1t8cGDB2u1Cbm5ucLLy0sMHTrUZvnl9sfWrFkjAIizZ8+26PVtKSQkRMyZM6dN33PkyJFi5MiRDZa5nHhoNBqFwWBocvmcnBwBQCxYsKBF71ef6vFu9erVQiKRiKSkpGato2N/Y8nG//3f/wkAYteuXY2WTUtLE3K5XFx//fVNWnd9wfKPP/4QAMRrr73W7PpWNYTZ2dlCp9MJi8XSrNcDEPPnzxffffed6NGjh1CpVKJ///5i+/bttcoePnxYTJgwQTg5OQmtViuuu+46sWfPHpsyW7duFQDE1q1brctGjhwpoqOjRXx8vBg1apRwcHAQ/v7+4q233qr1upqPqh+Rp0+fFtOmTRM+Pj5CpVKJgIAAMWPGDFFYWNis7RVCiIqKCrFw4ULRrVs3oVKphLu7uxg6dKjYtGlTs9fVkJYkpv7zn/8IpVIpKioqbJbPmTNHhISE1CpfVxKp6jNdu3atiI6OFkqlUkRFRYk///yz1ut37NghBgwYIFQqlQgLCxOffPJJvYmpb7/9VvTv31+o1Wrh5uYmZsyYIVJTU23KVH3WBw8eFMOHDxcODg7iscceq7Wu5OTkOj/vquOmemNfVZ+aj+r79f333xcSiUTk5eXVsVeJKnW09r0uFotFODs7ixkzZliXxcfHCwDi448/timbnp4uAIhXXnmlSXXfvn27uP/++4W7u7twcnISd955p8jPz69V/uOPPxZRUVFCqVQKPz8/8dBDD4mCggKbMjXbrKrv/OLFi8Wnn34qwsLChFKpFAMGDBD79++3eV1d3/cqP/zwg+jfv79wdHQUTk5OomfPnjYd2OZozbhS3eV+Hh9//LEAIOLj422Wf//99wKA2LFjh3VZ1Q9xk8kkdDpds+s6YsQIMWrUqDqf++mnn6xtvoeHh5g9e7a4cOGC9fmqGHf+/Plar33uueeEQqGwOX727t0rxo8fL5ydnYWDg4MYMWKE2Llzp83rqtr7+Ph4MWvWLOHq6ir69u1bZ/1CQkJqHSdVcaN6J6ax3xdCCBEXFycAiDVr1jRlt9FlYlvccN3ZFrePtrg+06ZNE+7u7jbLLrc/dtddd4nQ0NA6n/vpp59EZGSkUKlUIjo6WqxZs6bOfkFxcbF48sknRWBgoFAqlaJHjx5i8eLFtepiNBrFyy+/bP3sQ0JCxPPPPy/Ky8ttylksFvHKK6+IgIAA4eDgIEaNGiVOnDjR5MSU2WwW7733nujZs6dQqVTC09NTjB8/3ua7+dVXX4nRo0cLLy8voVQqRWRkpFiyZEmtddVMTFUdx9Xb8ap4mJSUJMaNGyc0Go3w8/MTixYtstkH1b8D7777rggLCxNSqVQcOXJEGAwG8dJLL4n+/fsLZ2dnodFoxLBhw8Rff/1V6/X1xR8hhNiyZYsYNmyY0Gg0wsXFRdx0003i5MmTNtvUWLwrLCwUEolEvPPOO43u6+p4KV8n8vvvvyMsLAxDhgxptOyff/4Jk8mEO++887LeMykpCQDg4eHR4nWEhYWhuLgYWq0WU6dOxdtvvw0fH58mvXb79u1YuXIlHn30UahUKixZsgQTJkzA/v370bNnTwBAfHw8hg8fDmdnZzzzzDNQKBT49NNPMWrUKGzfvr3RCdoKCgowYcIETJs2DbfddhtWr16NZ599Fr169cLEiRMRGRmJl19+Gf/5z39w//33Y/jw4QCAIUOGoKKiAuPHj4fBYMAjjzwCX19fpKen448//kBhYWGzL3lbuHAh3njjDdx7770YNGgQ9Ho9Dh48iMOHD+P6668HABgMBhQVFTVpfZ6ens16/4bs3r0bPXv2vOyhqTt37sSaNWvw0EMPwcnJCR988AGmT5+O1NRU63F2/PhxjBs3Dl5eXli4cCFMJhMWLFhQ53Hz2muv4aWXXsJtt92Ge++9Fzk5Ofjwww8xYsQIHDlyxObyury8PEycOBEzZ87EHXfcUef6vLy88O233+K1115DcXEx3njjDQBAZGRkrbLTpk3D6dOn8cMPP+Ddd9+17m8vLy9rmZiYGAghsHv3btxwww2Xte+o8+qo7XthYSGMRiOysrLw3nvvQa/XY8yYMdbnjxw5AgAYMGCAzev8/f0RGBhofb4xDz/8MFxdXbFw4UKcOnUKS5cuRUpKivWmFkBl+7lo0SKMHTsWDz74oLXcgQMHsGvXrkbbru+//x5FRUV44IEHIJFI8N///hfTpk3DuXPnoFAo8MADDyAjIwObN2/Gt99+a/PazZs3Y9asWRgzZgzeeustAEBCQgJ27dqFxx57rEnbWKWpcUWn08FoNDa6PrVabb1843I/jyNHjkCr1dZqDwcNGmR9ftiwYdblpaWlcHZ2RmlpKdzc3DBr1iy89dZbjU4CazQaceDAATz44IO1nlu+fDnmzZuHgQMH4o033sDFixfx/vvvY9euXdY2/7bbbsMzzzyDn376Cf/6179sXv/TTz9h3LhxcHNzA1B52fbEiRMRExODBQsWQCqVYtmyZbjuuuuwY8cO67ZVufXWW9G9e3e8/vrrEELUWf/33nsP33zzDdauXWu9fKZ37961yjX0+6JKVFQUHBwcsGvXLtx8880N7je6fGyLG8a2uH20xfXJysqq97d/S/tju3fvRv/+/WstX7duHWbMmIFevXrhjTfeQEFBAe655x4EBATYlBNC4KabbsLWrVtxzz33oG/fvti4cSP+9a9/IT093WbKjHvvvRdff/01brnlFjz11FPYt28f3njjDSQkJGDt2rXWcv/5z3/w6quvYtKkSZg0aRIOHz6McePGoaKiokn76Z577sHy5csxceJE3HvvvTCZTNixYwf27t1r/UyWLl2K6Oho3HTTTZDL5fj999/x0EMPwWKxYP78+U16n+rMZjMmTJiAa6+9Fv/973+xYcMG65xiL7/8sk3ZZcuWoby8HPfffz9UKhXc3d2h1+vxxRdfYNasWbjvvvtQVFSEL7/8EuPHj8f+/fvRt29feHl5YenSpXjwwQdx8803Y9q0aQBgjT+xsbGYOHEiwsLCsHDhQpSVleHDDz/E0KFDcfjw4Vo3I6gv3rm4uKBr167YtWtXvXPw1qlZaSxqt3Q6nQAgpkyZ0qTyTzzxhAAgjhw50qTyVWdCYmNjRU5OjkhLSxM//vij8PDwEA4ODjZnIpvqvffeEw8//LBYsWKFWL16tXjssceEXC4X3bt3b9LZU1zK8h48eNC6LCUlRajVanHzzTdbl02dOlUolUqb4YQZGRnCyclJjBgxwrqsvhFTAMQ333xjXWYwGISvr6+YPn26dVl9Q+2PHDkiAIhVq1Y1aZ80pk+fPmLy5MkNlqn6rJryqE9LRkwFBgba7JMqzR0xpVQqbYYDV50N/vDDD63Lpk6dKtRqtUhJSbEuO3nypJDJZDbrPH/+vJDJZLXOMh4/flzI5XKb5VWf9SeffNKk7a0aYVUTapx5aGxfZmRkCAA2o/CIquuI7XuV8PBwa3vj6Ogo/v3vfwuz2Wx9vur7UXMEoxBCDBw4UFx77bVNqntMTIzNaM3//ve/AoD49ddfhRBCZGdnC6VSKcaNG2fz/h999JEAIL766ivrsvrO0nt4eNic+f/1118FAPH7779bl9V3+chjjz0mnJ2dbS5la6mmxpWqNq2xR/Wzx5f7eUyePFmEhYXVWl5SUiIAiOeee8667LnnnhPPPvusWLlypfjhhx+soxyGDh1qc+lKXc6ePVsrLghROarY29tb9OzZU5SVlVmXV404+c9//mNdNnjwYBETE2Pz+v3799vEfIvFIrp37y7Gjx9vc9a6tLRUdOnSxWYkTFVMmzVrVoN1r1m+5uUzNc+uN2WqgB49eoiJEyc26X2p5dgWN153tsW12aMtrsvff/8tJBKJeOmll2yWX05/zGg0ColEIp566qlaz/Xq1UsEBgbaXFK4bds2AcDmc/3ll18EAPHqq6/avP6WW24REonE2ic4evSoACDuvfdem3JPP/20AGAdGVR1jE2ePNmm3X7hhRdq7ee6/PXXXwKAePTRR2s9VzMO1DR+/PhaMbCpI6YAiEceecTmvSZPniyUSqU1TlS91tnZWWRnZ9u8j8lkqnVJX0FBgfDx8RF33323dVlDl/L17dtXeHt721zFERcXJ6RSqbjrrrusy5oS78aNGyciIyPrfb4uHDHVSej1egCAk5PTFSlfpeZkeSEhIVixYkWt7HdT1DwzMX36dAwaNAizZ8/GkiVL8NxzzzW6jsGDByMmJsb6d3BwMKZMmYLff/8dZrMZQOVEolOnTkVYWJi1nJ+fH26//XZ8/vnn0Ov1cHZ2rvc9HB0dcccdd1j/ViqVGDRoEM6dO9do/arOlmzcuBGTJk1q8QTxVVxdXREfH48zZ86ge/fudZYZP348Nm/efFnv0xJ5eXnWM8yXY+zYsejatav17969e8PZ2dm6v81mMzZu3IipU6ciODjYWi4yMhLjx4/H+vXrrcvWrFkDi8WC2267Dbm5udblvr6+6N69O7Zu3YoXXnjBulylUmHevHmXvQ3NUbXPqtePqLqO2L5XWbZsGfR6Pc6dO4dly5ahrKwMZrMZUmnlTYGr7l6lUqlqvVatVlu3pTH333+/zVn2Bx98EC+88ALWr1+Pm266CbGxsaioqMDjjz9ufW8AuO+++/DCCy9g3bp1jX73Z8yYYdPGVY1eaUoscHV1RUlJCTZv3owJEyY0aZvq09S48vbbb6OgoKDR9fn7+1v/f7mfR1lZWb2vrb5+ANbRplVmzpyJHj164MUXX8Tq1asbvLtTXl4eANSKOQcPHkR2djYWLlxoc0epyZMnIyIiAuvWrbNO+jpjxgw8/vjjSEpKssaclStXQqVSYcqUKQCAo0eP4syZM/j3v/9tfc8qY8aMwbfffguLxWJzTP3f//1fvfW+Utzc3BhD2gDb4saxLa7NHm1xTdnZ2bj99tvRpUsXPPPMMzbPXU5/LD8/H0KIWm1xRkYGjh8/jhdeeMFmBOzIkSPRq1cvm/qvX78eMpkMjz76qM06nnrqKaxevRp//vknHn74Yevv+yeffLJWuf/9739Yt24dRo8ebT3GHnnkEesoPaDybnGvv/56Q7sJAPDzzz9DIpFgwYIFtZ6rvj4HBwfr/6tGxY0cORIbN26ETqdr0Y2gqt/VXCKR4OGHH8a6desQGxtrExOnT59uc/UFUDlZfdXk8xaLBYWFhbBYLBgwYAAOHz7c6HtnZmbi6NGjeOaZZ+Du7m5d3rt3b1x//fU2/asqDcU7Nze3Zo/sY2Kqk6hKrDT1Eq7mlq/y8ccfo0ePHpDL5fDx8UF4eLhNYLlct99+O5566inExsY2KTFVV3KmR48eKC0tRU5ODoDKSwXCw8NrlYuMjITFYkFaWhqio6PrfY/AwECbhgio/LIdO3as0fp16dIFTz75JN555x2sWLECw4cPx0033YQ77rijRQ3Wyy+/jClTpqBHjx7o2bMnJkyYgDvvvNPmEgA/Pz/4+fk1e92tQdRz2UJzVE82VXFzc7MG9ZycHJSVldX52YeHh9s0nGfOnIEQot4kXs3h4gEBATZ3ZdTpdDYdKaVSadNYt4aqfVbzGCOq0pHb98GDB1v/P3PmTOslXv/73/8A/PPDzmAw1HpteXm5zQ+/htT8jjs6OsLPzw/nz58HAKSkpABArVigVCoRFhZmfb4hNdumqh/iTelwPPTQQ/jpp58wceJEBAQEYNy4cbjtttta1DFqalypftKmqS7383BwcKj3tdXXX58nnngCL730Uq0f4fWpGXPq+5wBICIiAjt37rT+feutt+LJJ5/EypUr8cILL0AIgVWrVmHixInW79CZM2cAAHPmzKm3DjqdzqZT1qVLF+v/y8rKoNPpbMr7+vo2ul3NJYRgDGkDbIsbx7a4fbTF1ZWUlOCGG25AUVERdu7c2eil0kDz+2P1tcXV7zhapVu3bjaJkpSUFPj7+9dK4FYdo1XrSklJgVQqrbVOX19fuLq62pQDah+LXl5eTTqBnpSUBH9//0Z/7+/atQsLFizAnj17UFpaavNcSxJTUqnUZhAFUNmnBWD9/lSpHmeq+/rrr/H2228jMTHR5vLR+spX11D8jIyMxMaNG1FSUgKtVtuk9bYkLrVeRoHsytnZGf7+/jhx4kSTykdERAConKunOQYNGoSxY8di1KhRiIyMbNWkVJWgoCDk5+e3+npbqr5bnzY1CfP222/j2LFjeOGFF1BWVoZHH30U0dHRuHDhQrPrMmLECCQlJeGrr75Cz5498cUXX6B///42t9suKytDVlZWkx6tycPDo84fBfU1SlUj2mq63P1dncVigUQiwYYNG7B58+Zaj08//dSmfM1A/9hjj1kTfX5+ftZrsVtT1T5rzfm+qHPpLO27m5sbrrvuOqxYscK6rCqJnpmZWat8ZmamzRlke7uctsnb2xtHjx7Fb7/9Zp1LY+LEiQ0mPBrSlLiSn5/fpDhQPXFyuZ+Hn58fsrKyau2TqvU19noHBwd4eHg0+hugaq6dpnRE6+Pv74/hw4fjp59+AgDs3bsXqampmDFjhrVM1a3qFy9eXGcM2bx5c61OXvU4snLlSpsYcqVOGhUUFDCGtAG2xe0D2+Kmfx4VFRWYNm0ajh07hl9//dU6/25TNKU/5u7uDolEclltcXO1hyR8UlISxowZg9zcXLzzzjtYt24dNm/ebJ1PqSp2XCl1JSa/++47zJ07F127dsWXX35p7ftcd911V6w+DSVIWxKXmJjqRG644QYkJSVhz549jZadOHEiZDIZvvvuuzaoWdMJIXD+/PlawxPrU3U2s7rTp09Do9HAy8sLXl5e0Gg0OHXqVK1yiYmJkEqlCAoKuux6N9ZI9urVC//+97/x999/Y8eOHUhPT8cnn3zSovdyd3fHvHnz8MMPPyAtLQ29e/fGwoULrc/X9UO4vkdrioiIQHJycq3lbm5uKCwsrLW8KWfF6uLl5QUHB4c6P/uan3PXrl0hhECXLl0wduzYWo9rr722wfd65plnbDogb7/9drPr29ixUbXP6po8nahKZ2jfgdojSPr27Qug8hKs6jIyMnDhwgXr842p2R4UFxcjMzPTOlFnSEgIgNptREVFBZKTk63PX66Gvu9KpRI33ngjlixZgqSkJDzwwAP45ptvcPbs2Ra9V2NxZdq0aU2KA9Uv47jcz6Nv374oLS1FQkKCzfJ9+/bZrL8+RUVFyM3NbfQ3QHBwMBwcHGrFnPo+56plNT/nGTNmIC4uDqdOncLKlSuh0Whw4403Wp+vusTP2dm5zhgyduzYBidqrrq0vvqjuRqLISaTCWlpaYwhbYRtccPYFrePthioTI7cdddd2LJlC77//nuMHDmyydvU1P6YXC5H165d622L69qnNZeFhIQgIyOj1sjCxMREm3WFhITAYrHUOsYuXryIwsJCm3JA7WMxJyenSQm0rl27IiMjo8Gk3O+//w6DwYDffvsNDzzwACZNmoSxY8c2ayRbTRaLpdblqKdPnwaAWpOO12X16tUICwvDmjVrcOedd2L8+PEYO3asdcRylfq+Gw3Fz8TERHh6etqMlmpMcnJys+MSE1OdyDPPPAOtVot7770XFy9erPV8UlIS3n//fQCVWfD77rsPmzZtwocfflirrMViwdtvv92iUT1NVXWpXXVLly5FTk5Ok4fU7tmzx2Y4aFpaGn799VeMGzfOeq3tuHHj8Ouvv9oMg7x48SK+//57DBs2rMH5pZqq6otaMwGj1+thMplslvXq1QtSqbTO4bmNqTnHhaOjI7p162azrrp+CNf3aE2DBw/GiRMnam1X165dodPpbC59zMzMtLl7RnPIZDKMHz8ev/zyC1JTU63LExISsHHjRpuy06ZNg0wmw6JFi2qdSRNC1NqfNUVFRdl0QFoyHLu+Y6PKoUOHIJFIbIbZE9XU0dr37OzsWsvOnz+PLVu22NxlKDo6GhEREfjss89sRlEuXboUEokEt9xyS5Pe77PPPrMZtr506VKYTCZMnDgRQOWcLUqlEh988IFNW/Dll19Cp9Nh8uTJzd7GutT3fa/Z1kilUusl2M2NBU2NK2+//XaT4kD1+Uaa83nodDokJibadG6nTJkChUKBJUuWWJcJIfDJJ58gICDAeiez8vLyOi9veuWVVyCEaPQ3gEKhwIABA2p12gYMGABvb2988sknNvvizz//REJCQq3Pefr06ZDJZPjhhx+watUq3HDDDTY/vGNiYtC1a1f873//Q3Fxca161PU7pjo/P79aiazmaiyGnDx5EuXl5U26SxxdPrbFDWNb3D7aYgB45JFHsHLlSixZsqTBEf+X2x8bPHhwrbbY398fPXv2xDfffGPTdm7fvr3WCMJJkybBbDbjo48+sln+7rvvQiKRWI+dSZMmAai8q2l177zzDgBYj52qEwYffvihzTFW83X1mT59OoQQ1vkIq6taX9Woverr1+l0WLZsWZPeoz7V94EQAh999BEUCoXNHTTrU1ed9u3bVyuJXjUXWs3vhp+fH/r27Yuvv/7a5rkTJ05g06ZN1v3fFDqdDklJSc2OS5xjqhPp2rUrvv/+e8yYMQORkZG466670LNnT1RUVGD37t1YtWoV5s6day3/9ttvIykpCY8++ijWrFmDG264AW5ubkhNTcWqVauQmJjYpDkeaqrK6ta8HramkJAQ621E1Wo1du7ciR9//BF9+/bFAw880KT36tmzJ8aPH49HH30UKpXK+mO4emPy6quvYvPmzRg2bBgeeughyOVyfPrppzAYDPjvf//b7O2rS9euXeHq6opPPvkETk5O0Gq1uOaaaxAXF4eHH34Yt956K3r06AGTyYRvv/0WMpkM06dPt76+6ta5W7duxahRo+p9n6ioKIwaNQoxMTFwd3fHwYMHsXr1apvJ8lo6Gkqn01l/OO3atQtAZQPp6uoKV1dXm/eoy5QpU/DKK69g+/btGDdunHX5zJkz8eyzz+Lmm2/Go48+itLSUixduhQ9evRo0mR8dVm0aBE2bNiA4cOH46GHHoLJZMKHH36I6OhomwRY165d8eqrr+L555/H+fPnMXXqVDg5OSE5ORlr167F/fffj6effrpFdWiqqmTWiy++iJkzZ0KhUODGG2+0/mjavHkzhg4delm3gabOr6O177169cKYMWPQt29fuLm54cyZM/jyyy9hNBrx5ptv2pRdvHgxbrrpJowbNw4zZ87EiRMn8NFHH+Hee+9t8tm2iooKjBkzBrfddhtOnTqFJUuWYNiwYbjpppsAVI60fP7557Fo0SJMmDABN910k7XcwIEDbW5wcTmqvu+PPvooxo8fD5lMhpkzZ+Lee+9Ffn4+rrvuOgQGBiIlJQUffvgh+vbta7ONTdm/f/31V5PiSksS6UDTP4+1a9di3rx5WLZsmfXYCwwMxOOPP47FixfDaDRi4MCB+OWXX7Bjxw6sWLHC+sM5KysL/fr1w6xZs6yXO23cuBHr16/HhAkTrJOPN2TKlCl48cUXbW5golAo8NZbb2HevHkYOXIkZs2ahYsXL+L9999HaGhordtWe3t7Y/To0XjnnXdQVFRkcxkfUNlp/eKLLzBx4kRER0dj3rx5CAgIQHp6OrZu3QpnZ2f8/vvvLdrPTVXf74uquT02b94MjUaD66+//orWgyqxLW4Y2+L20Ra/9957WLJkCQYPHgyNRlNr1N7NN99s/R16uf2xKVOm4Ntvv8Xp06etcyIBwOuvv44pU6Zg6NChmDdvHgoKCvDRRx+hZ8+eNsmqG2+8EaNHj8aLL76I8+fPo0+fPti0aRN+/fVXPP7449aRq3369MGcOXPw2WefobCwECNHjsT+/fvx9ddfY+rUqRg9ejSAymPs6aefxhtvvIEbbrgBkyZNwpEjR/Dnn3826dKy0aNH484778QHH3yAM2fOYMKECbBYLNixYwdGjx6Nhx9+GOPGjbOOvHvggQdQXFyMzz//HN7e3nVeftkUarUaGzZswJw5c3DNNdfgzz//xLp16/DCCy806UqiG264AWvWrMHNN9+MyZMnIzk5GZ988gmioqJs9reDgwOioqKwcuVK9OjRA+7u7ujZsyd69uyJxYsXY+LEiRg8eDDuuecelJWV4cMPP4SLi4vN1TmNiY2NhRCiSbHcRrPu4UcdwunTp8V9990nQkNDhVKpFE5OTmLo0KHiww8/FOXl5TZlTSaT+OKLL8Tw4cOFi4uLUCgUIiQkRMybN8/m9rZVt4E9cOBAo+/v6enZpNuY3nvvvSIqKko4OTkJhUIhunXrJp599lmh1+ubtJ0AxPz588V3330nunfvLlQqlejXr5/YunVrrbKHDx8W48ePF46OjkKj0YjRo0eL3bt325TZunWrAGDz+pEjR4ro6Oha66t5C1shKm9XGxUVJeRyufU2oOfOnRN333236Nq1q1Cr1cLd3V2MHj1axMbG2rz2qaeeEhKJRCQkJDS4za+++qoYNGiQcHV1FQ4ODiIiIkK89tprNrfmbamqW5DW9ai5rfXp3bu3uOeee2ot37Rpk+jZs6dQKpUiPDxcfPfdd9ZbjVZX9ZnWFBISUuv2rtu3bxcxMTFCqVSKsLAw8cknn9S5TiGE+Pnnn8WwYcOEVqsVWq1WREREiPnz54tTp05Zy9T3WdenvvKo4xasr7zyiggICBBSqVQAEMnJyUIIIQoLC4VSqRRffPFFk9+Xrm4dpX1fsGCBGDBggHBzcxNyuVz4+/uLmTNnimPHjtVZfu3ataJv375CpVKJwMBA8e9//7tJ7VpV3bdv3y7uv/9+4ebmJhwdHcXs2bNtbndc5aOPPhIRERFCoVAIHx8f8eCDD4qCggKbMvXdonzx4sW11lfz+24ymcQjjzwivLy8hEQisbZHq1evFuPGjRPe3t5CqVSK4OBg8cADD4jMzEyb9TVl/zY1rlyOpnweVfu++i2vhRDCbDaL119/XYSEhAilUimio6PFd999Z1OmoKBA3HHHHaJbt25Co9EIlUoloqOjxeuvv97keHbx4kUhl8vFt99+W+u5lStXin79+gmVSiXc3d3F7NmzxYULF+pcz+effy4ACCcnJ1FWVlZnmSNHjohp06YJDw8PoVKpREhIiLjtttvEli1brGWq4k/Vbb0bU1/5mrcWF6Lu3xdVrrnmGnHHHXc06T2p9bAttsW2uH21xXPmzKn3N33136FCXH5/zGAwCE9PT/HKK6/Ueu7HH38UERERQqVSiZ49e4rffvtNTJ8+XURERNiUKyoqEk888YTw9/cXCoVCdO/eXSxevFhYLBabckajUSxatEh06dJFKBQKERQUJJ5//vla3zmz2SwWLVok/Pz8hIODgxg1apQ4ceJEnf2JuphMJrF48WIREREhlEql8PLyEhMnThSHDh2ylvntt99E7969hVqtFqGhoeKtt94SX331Va39W7NNrzqOa35eWq1WJCUliXHjxgmNRiN8fHzEggULhNlsrvXaur4DFovFGnur+sR//PFHnX3W3bt3W/tQNb87sbGxYujQocLBwUE4OzuLG2+8UZw8edLm9Y3FuxkzZohhw4Y1sIfrxsQUtar4+HgBQPzxxx9X/L3qS2J0RAMHDhS33HKLvatx2b755hvh5ORU68cF1e3dd98Vfn5+orS01N5VIWpUW7bvTdWcjlx71x73b3t39913t+jHb2dx5MgRIZFIbJIb1Pm1x7aCbfHV7eWXXxZdunQRJpOp0bJ9+vQRY8eObYNakT1kZmYKtVotfvnll2a/lnNMUavaunUrBg8e3GrXiF8N9Ho94uLi8PLLL9u7Kpdt9uzZCA4Oxscff2zvqrR7RqMR77zzDv79739f1mSJRG2F7fuVxf3bfAsWLMCBAwesl59fbd58803ccsstTZ6YmjoHthVXFvdv8z3xxBMoLi7Gjz/+aF1mNBprzcG1bds2xMXFNThtCXVs7733Hnr16tX8y/gASIRowT3YidoBiUSC+fPn15osj4iIrg7Lly/HvHnzcODAAZuJfImIqO2wLaaazp8/j7Fjx+KOO+6Av78/EhMT8cknn8DFxQUnTpzg3KpUCyc/JyIiIiIiIqJW4ebmhpiYGHzxxRfIycmBVqvF5MmT8eabbzIpRXXiiCkiIiIiIiIiIrILzjFFRERERERERER2wUv5arBYLMjIyICTkxMkEom9q0NE1O4JIVBUVAR/f39IpZ3nfAfjARFR83XGmMB4QETUfM2JB0xM1ZCRkYGgoCB7V4OIqMNJS0tDYGCgvavRahgPiIharjPFBMYDIqKWa0o8YGKqBicnJwCVO8/Z2dnOtSEiav/0ej2CgoKs7WdnwXhARNR8nTEmMB4QETVfc+IBE1M1VA3PdXZ2ZuAhImqGznZ5A+MBEVHLdaaYwHhARNRyTYkHnePCbyIiIiIiIiIi6nCYmCIiIiIiIiIiIrtgYoqIiIiIiIiIiOyCiSkiIiIiIiIiIrILJqaIiIiIiIiIiMgumJgiIiIiIiIiIiK7YGKKiIiIiIiIiIjsgokpIiIiIiIiIiKyCyamiIiIiIiIiIjILpiYIiIiIiIiIiIiu2BiioiIiIiIiIiI7IKJKSKidiQlRYf1688hJUVn76oQEZEdMR4QEVGVzh4T5PauABER/SM+Pg979mQAAEJCXOxcGyIishfGAyIiqtLZYwITU0RE7Uh0tIfNv0REdHViPCAioiqdPSYwMUVE1I6EhLh0yrMgRETUPIwHRERUpbPHBM4xRUREREREREREdsHEFBERERERERER2QUTU0REREREREREZBdMTBERERERERERkV0wMUVERERERERERHbBxBQREREREREREdkFE1NERERERERERGQXTEwREREREREREZFdMDFFRERERERERER2wcQUERERERERERHZBRNTRERERERERERkF0xMERERERERERGRXTAxRUREREREREREdsHEFBERERERERER2QUTU0REREREREREZBdMTBERERERERERkV0wMUVERERERERERHbBxBQREREREREREdkFE1NERERERERERGQXTEwREREREREREZFdMDFFRERERERERER2wcQUERERERERERHZBRNTRERERERERERkF0xMERERERERERGRXTAxRUREREREREREdsHEFBERERERERER2QUTU0RE7cSuXRewaNEu7Np1wd5VISIiO2I8ICKiKldDTJDbuwJERFQpNjYFsbGpAIChQwPtXBsiIrIXxgMiIqpyNcQEJqaIiNqJsWNDbP4lIqKrE+MBERFVuRpiAhNTRETtxNChgZ32LAgRETUd4wEREVW5GmIC55giIiIiIiIiIiK7YGKKiIiIiIiIiIjsgokpIiIiIiIiIiKyCyamiIiuQikpOqxffw4pKTp7V4WIiOyMMYGIiAD7xQNOfk5EdBWKj8/Dnj0ZAICQEBc714aIiOyJMYGIiAD7xQMmpoiIrkLR0R42/xIR0dWLMYGIiAD7xQMmpoiIrkIhIS48K05ERAAYE4iIqJK94gHnmCIiIiIiIiIiIrvoVImphQsXQiKR2DwiIiLsXS0iIrIDxgQiIgIYD4iI2rtOdylfdHQ0YmNjrX/L5Z1uE4mIqIkYE4iICGA8ICJqzzpdiyyXy+Hr62vvahARUTvAmEBERADjARFRe9apLuUDgDNnzsDf3x9hYWGYPXs2UlNTGyxvMBig1+ttHkRE1Dk0JyYwHhARdV6MB0RE7VenSkxdc801WL58OTZs2IClS5ciOTkZw4cPR1FRUb2veeONN+Di4mJ9BAUFtWGNiYjoSmluTGA8ICLqnBgPiIjaN4kQQti7EldKYWEhQkJC8M477+Cee+6ps4zBYIDBYLD+rdfrERQUBJ1OB2dn57aqKhFRh6XX6+Hi4tLu283GYgLjARHR5esIMYHxgIjoymtOPOh0c0xV5+rqih49euDs2bP1llGpVFCpVG1YKyIisofGYgLjARHR1YHxgIiofelUl/LVVFxcjKSkJPj5+dm7KkTtzq5dF7Bo0S7s2nXB3lUhahOMCUR1Yzygqw3jAVH9GBPIHjpVYurpp5/G9u3bcf78eezevRs333wzZDIZZs2aZe+qEbU7sbEpiI1NRWxsir2rQnRFMCYQNQ3jAXV2jAdETceYQPbQqS7lu3DhAmbNmoW8vDx4eXlh2LBh2Lt3L7y8vOxdNaJ2Z+zYEJt/W2LXrguIjU3B2LEhGDo0sM4yKSk6xMfnITraAyEhLi1+r46sKfuJWh9jAlHTtFU8ABgTGA/sg/GAqOnYR2g7jAn/6FSJqR9//NHeVSDqMIYODbzsBrDqjErV+uoSH5+HPXsyAOCqDTpN2U/U+hgTiJqmreIBwJjAeGAfjAdETcc+QtthTPhHp0pM2ZsQAhKJxN7VIGozTTmjEh3tYfPv1ag1zjwREbVnTW3nrvaYwHhARFcD9hGahjHhHxIhhLB3JdqTlt7i1lxUhLQH/g/ud90J5wkTrmANiYjal45wa/CW6KzbRUR0JXXGtrMzbhMR0ZXWnLazU01+bk9SR0dIlEpkPP8CyhMT7V0dog7h559PYfbsP/Dzz6fsXRUiIrIze8SE0/uzcHp/Vpu9HxERNY59hKsPL+VrJRKJBF5PPYm0++7HhUcfQ5c1P0Pm6GjvahG1a2vWnMHff1feinb69HA718Y+qiZ+dHFRQqeruKongCSiq5s9YsLmr04CAPx7uMLRVd0m71kfxgMiokrsI1x9MYGJqVYkd3aG8w03oPCHH5Dx3HMI+ugje1eJqF2bNq27zb9Xo6qJH+VyCUymyiurO3PQIVtnD2UjP7MEAyeHco5CuurZMybo88rtnphiPCAiqsQ+wtUXE5iYamXKAH+4TJkC3Zo1yPviS3jce4+9q0TUqLa8VWn1W8NOnx5+1Z4FqVI14WP1syGXi7ff7Tg2fn4CANBjkDdcvbV2rg2R/eJBSIiLXWNCma7CLu9b3ZWIBwBjQntQlJ8LRzcPnoCgDod9BPu52voITExdAY5jxsBw7hyy33sPqogIOA4bau8qETWoLW9VylvD2goJcWn1/cB9bH+p8Xk4feAirrsrElJp3R2R8hKj9f+5F4qZmKJ24WqKB2aTxfr/Ep2hzd+/pisRDwD77+erXaleh+VPPYT+E2/C0NvusHd1iJrlaooJ7c3V1kdgYuoKkEgkcJ87F9n//S/Sn3wSoSt/hKpLF3tXi6hebXmr0vZya9iffz6FNWvOYNq07pg+PbxNzwg1V3PPbrSXfXw1M1VYcHpfFspLjJj8UO86z5LnZ5RY/194sbQtq0dUr6spHlSUmaz///6beJzJL2338QBgTOhoNM4u6DbgWuxb+xP8uocjrN9Ae1eJqMmupphQhX0E+2Bi6gqRKpXwnD8f2W++ibQH/g9dVv0EmUv7ykoSVRk6NLDBhrY1h31eqTPCzVVzUsW2PCPUXM09u9Fe9vHVLKyfFyKH+uHkzkxs+ToBY+ZE1kpO5aUXQyIBhACK8srtVFMiW43FA6D1YoK92ypD6T+JqbyLpViz5ky7jwcAY0JHNPCm6UiLP44NS97Dnf/9AE5u7a9TSFQX9hHad0zoTPGAiakrSO7mBo/770fuBx/gwsOPIGjZV5DKucvpymvt64fb87DPlqo5qWJbnhFqrppnN9rz9eH0D/9ubijRVeDU3izIFVKMvD3cJjmVk1YErZsaRoMJJYUVEEJw/hG6IhgT6lZR/k9iKsjPEdGTbONAzXhgNJhRUW6C1kXVdpWsQ/WYcD65EPEn89Czp2eH/iw6O6lMhoghI3Bk4+/44503MWPBG+wTkF0wHjSOfQT7YIt4ham6doXr7bej4Ouvkfn8C/D/71vseNBlaUqD09pBoj0P+2ypmpMqNmWUQF3aIgDUPLvRGX8EdFZd+nhBKpMgfkcGjBVmjJ0TBcmlOaeyknRwdFWhvFiCsqIKWEwCMgXjAzUPY0LLVY2YUqhliA5zwc1TKzsh9cWDPz89jrST+bj//ZFQqGR1rrOtY8KyBXugyysHBONBe6dxcUXf8ZNx8Pe12PzFxxj/f4/Zu0rUyTAetA72EeyDiak2oL3mGpjy8qD//XfIvb3g869/2btK1IFVb3Cq/q7Z4FUPEtWviw4MdGpRA9meh33aW1sFgOrBrb4fAR35LElnFjnEH3KFFKf3XYShxIRx90ajVFeBgqxShF/rC4kMKM43wGQ0Q6aQ2ru6ZGcWswWF2WUoLiiHqcICs8kCmUwKmVIKubzyX7VGAZVGDpVG3uKY0LOnJxwcFC1qLzpLTKhKTDk4KmEoNcJsEpDWnW8CAFxILAAAZJwtREg9nbC2iAlVbX14N1eUXiyDAoCfq6rOMowH7UtgZE/oc7JxYutmeAaFIGbyVHtXiToR9hHaF/YRmoeJqVaWnFyIw3tOom8fb0RGelqXu0yaBItej/wvv4LcwwMed99tx1pSR1a9wamvwaseJJYvP2G9LnrgQL9GG8imNlwtnQiwIzSMzdFWZ4qqf9aTJoXVue+aGgA722fQXp0+nYf4E7no3d8HkQN9oVDJkbgnE98v3AdHVxXkSincfDUwVZiRl1YMk9EC+14gRPZkMVtwaEMKjv2VhvISU+MvuESmkCJAKkHunovYc06P+KwiAI3HhNOnCxAW5lqrbE1NaS86ajyomvzcwVmB4rxymI2WekdCAYCwCACAsbz+z6ctYkJVW19a7aYJ0jJznWUAxoP2Ivl8ITZs16FP797w656L7d8tg4uXD7oNGmzvqlEnwT5C+8I+QvMwMdXKTp8uQNy5yjPe1RNTAOA6YwYsRUXI/t/bkLm5wfXmm+1RRerg6joz0dB1xVXXQ/v4aPDzz6cAAC4uynrXv2rVKfz+exJuvLErnn56kM1z1QNNcyYCrF6vjjzEtC5tdaaoKcGtoevMDx7Mst5hxMFB0ak+g/bqRHweEk7mQ8gkiIzyRGhvTzh7OeD03kwU6wzoPsAHju5qlBRWoKLcDEOJ0e5z15D9bFtxCol7MuHf3RUuPho4OCogV0ohlUshLIDFVDl6ymyywGiwwFRhhqnCApPRDLPRglJ9BfJO5KN7FydER3vU++Ny7NgQpKbqUVxcAYvFguzsEqSk6OpsC3btuoAlS45CLpdixoyIWmWqYkJqqh6nTxcC6FjxwFBqglwhhYOjAnkXSmAyWpr0OnMD5doiJljjQGYpVBo5KspNKMwpq7NM9ZhRV0wIDXWGVCq11p2unNOnCxCXUJlAvO3Wadjx/ddY98Fi3PzcAgT37GPn2lFnwD5C+8I+QvMwMdWK0tOLoFLK0a2bC/r28a71vEQigdvdd8Py0UfIfOk/kKhUcJk0yQ41pY6oroDS2HXFZWVlcHcvgotLKt57bwcuXsyCo2MFMjOd4eYmwZw5czBu3DgAwPHjx/HEE0/gzJkCFBRYkJ3tiXPnusPZ2Rmenp4YOXIkYmMrrIGmORMBVq9XZ5qkry01Jbg1dDxUv8PI668PB9C55gNob1JSdFCpZAjt4oI+1eKBu58Wg6Z0RUWZCTKFFAqlDI7ulcmo3PQSuPs72qvKZEfppwqQsDsT3QZ4IzjKA2pHRaOvyckuQWpqEYLDXOHlrYUQAid3ZSDlWB5K00uQXFhe68fl4V0J2PXTfljSkpF9MROn4gqgcrJgxQqge3dvLFmyxLr+p556CmvXbkdenhGurs4wGLpg82YPuLq6ws/PD/fcc4+189GjhyvGjg2+7HgAtG1MqCg3Qa6UwcFJCVOFGaV6AxzdGk8OVxjMjZZpirST+fAMcoSDU/0dwbqEhLggOMgZKxbshZuvBrqcMhTlltvcQKGumFFXTCgp8cH99/dhPLjCMtKLoFLJ0a27E/r28YZMLsfQ22bj7++X45fFr+K2l16Db7ce9q4mdVAt6SOUlpbCzU0PF5eUan0EIzIzneHqCjzwwAMYOXIkAODQoUN49tlnrX2EnBwvJCd3h5OTE7y8vHDdddchNraUfQQ76Sx9BCamWtGZM4UoKCyH1tcDHp4OdZaRymTwePBB5H70ETKeeRaQSOAycWIb15Q6oobOIhQUFGDduu1Yt24XIiIGIjq6FwAgNjYWN910k03ZwkLgQmXbgwEDBiA8/BrEx+ehtDQdW7ZssZZLTAQSE2Otf7/66qsYO3YOACAiwoLbbx+K8PBw5OVF4OjRcPTp0wfu7l1w/ryhwevZO9Mkfe1d9f1e/Q4jnA/gyouPz0NebjmcHOXwrBEPpFIJ1Np/Eg9OHpXP56QVocdAnzatJ7UPhzach5OnGn5dXZqUlAKA1NQiJCbmAwC8vLWQSCSIGuqPwovF+HHJRpT75uH4yQxMmPAkAOD88VzcNOUGpOedq3N9+/e4YnyP+xA80BuZOgN27dqH5ORDAAC9HkhN3Wkt6+DggPvuu8/a6Thw4EMcPXoGp09HYMuWcERFRcHXtzt0Osdad4trKB4AbRsTykuMkCulcLw0P1NBVgm8Q5zrLFt1GR/wzyWAl8NssuC3D47CK9gJtz4/oNk3xkk5kQddThkCI91grLCgWGeA2WSBXFH/pYhV+97RaMG4GF8AlTFh0qSwlm8INcmZs4XIzy+H1t3Z2kdQqNUYOuMO7FixHKtffwnTX3gZft3CG1kTUW0NtZt5eXlYt2471q/fg169hlj7CH/88QdmzJhhU7Z6H2HEiBEIDe2L+Pg85Oen2fQREhKAhITN1r/feecdjB17KwCgS5dSzJ49DBEREcjPD8exYxHWPsK5c2XsI7QT7bGPwMRUK3J0Kcei7V8gPLAPLOpRuH3KYJsfGtk5l85uBjvB8+GHkfvhh8j41zMAwOQUNXpWoKoBCQ93wf79+7Fz504cOHAABw4cQFJSkrXc3DlPI8BxDMoTEiDOpsPRQQMPrQuc5BqEerkiyNsVjkoVzGUCxt8PI25fJkqNUmh91fjs4Ydhkclw6nwhkrNKoPVSw8Nfg1y9Hv3797feleKPP/5AamoqUlNTsXnzP4FJKpXCwyME8+Y9hrfe+uduMw01ci25/rr6vgLqntzxalfzeAoJcbG5wwhdWdHRHnjl30+jUJeLzMLJuHvOrXB2+qfDax3tEuwEL28tHJwUyL9QbMcak71UlJmQfroQIb08oK02gXXNY6Sm4GAnAIDWqRx/bFiLo8cP4/jJoziRcAxlZZVzDymVGsyfPx+pJ/OwfulxeLr5wygph5urF+RSFwT5+cLFwRkSkxIKqQappwqQerYQ2S4yTBp/L6aOnQG3ADWOxKXh1KkseHpK4e4uYLFYIJFIrDGhb9/5iIuLw+HDh23q6ODgjOjofti37y+by8UaaqvbMiYYSo2QKaTQuqoBADmpRQi/xq/ustWSUa2RmCovMQIACrNLW3RHzuPbL8DZUw2PAEcU5ZcjJ6UIpoq6E1PV98+kSWH4+P/+AgAsfX8MnOs5kUqtS6ksxFe/vYewkP5QqMdg+tTKPoJa64ihM+/E3yu+wQ8LXsDwe57GwOs45xTZamofoUcPZ+zdu9emj5CcnGwt5+rybzgpBuHc4dPIOJEAjdoBLlotHNWO8PXxQtceXRDQJQz6YiXi4hxQXHwKOl0FwsN9sWLFClgsFuzedQZnjx+HwpSJ8jIdyoxmKIsKMWiAJ4YODcSqVauQkpKClJQUbNy40freUqkUnp6huO++p/Hqqw9al7OP0LZqxgMA7aaPwMRUK9p/bDcu6HNw4WQstpyMxWsrvTF56FDcOHQYhvTujdTUIpy6dHbTO8bXNjllNsPlhhvsvAVkD1XXZGu1Cuh0FQBszwoIIVBaWmpdtmrVJvzrX7fVWk+wRotwlRr9t6zEmaF/AAC6A9gfHFxZQCqFRC4gKdQBEgnKy82oMGVBnnMSSimAU0Z0NZkggcCIqpUWAjhz6eWnzyDx7fdQonGHf6AP/vjXv5BsMOBYRi7iktORmn4GWVkZyMlJRmCgk7VeBw8exFtvvYVRo0ZhzJgxCA8Pt0nY1gxITZkwseZdR1p6NqUzDxHmWSb78vfX4OTZrdAXFSLx3A4sXfYSrh04FOOum4zrR09AWipsRrs4eTigILsURoO5wcmXqfNJPZkPi1nA3VcLqUyKhJO5iIvLhkotR+mlSdCrJ6ZKSouh1Thal939yD2IT9xvs04HtQb+bl0R5NMVhvMFWLc+FQpHOWbc+Aq6RXtgwEDb5IvZbMHqHxNw8rQOPX0c4S6VwZwdDAcBKAwK3H/HRGTpK2q1lVVt6Lvvfgm9/gL27DmKw4dPICvrLBIT41FWpkdRUY41KQUA8+fPh1arxahRozBq1ChoNBqburRlTCgvqZxjSq6SwsFFicTD2Qgc4I3QLq61yxYbrf+vKL/8S/mMly4HFBZReefFZtyRU1gEMs4UIjDcDQ7OSmhd1UiLz0dFmdlmNGaV+uJBYXYpE1Nt5MCRnbiYl4mLeeuw5/A6fLTMD2NHjsS40SMR06c33HpPxoV9v2PHF2/B3eV5dI25xt5VpnagsT6CxWJBWVmZddmKFb/hxRfvqrUeH3c3+Dk7w5SwCcueOFK5UCrDwptvglqrgUYjQ1lREQwlxUDScbgo3ZFSoEO+pRj9B4fDUGxEcmIB/Bwy0F1/El0DjNB6RMHd1wdlRXrknTyMzx+5H17XzkbkoGuxY8cOJCYm4sCBYzh8+DhSUhKQk3MR2dnnEBrqaq3Xzp078eGHH1r7CD162F7Oyj5C62vP/QMmplrR7VOnQn3hAjYknsLmA/txITsbn65di0/XroWbkzM+e+YlhEcEWM9ySlUqeD7yCM698S4uPP0MDm4/gzGLn7DzVlBbq5qjY8AAH1x/fSiioz1QXl6Ov/76C7/99hv++PVXTBo4EK9eNwa5W/djRPIp+MrliFSr0VutRm8PT/QJCIC7lyekGi2kWg3S8sw4nWaAb6gnHL1c4RPsDncfF0hlMkAiASQSnD1bgAMHL8LdTYUBA3ywa9cFJJ7MQ1S4CyaO9oe5pASiuLjy37IyWEpLkZeSjYqsbDheTEPX8mKEGQwYc2k7TAHBKBt8LRKVSlwrK0fJvv1QR0Zg06ZNWL16NVavXg0A8PUNxoQJEzBr1nSMHDkSKpWqzv0B1D9hYl1nUOo6m9JYAGvPjfPlaqs7gVDd5HI5vnz/B2zauh5bd23E2XOnsWPPNuzYsw0vvfYvTBw7DXfPWmSNBz6hzji+7QK2bjiHP7elISDAEbfeGt7pjkuq7dzRHGhdVXDxrkzQxMVl4+jRHHTr7oZ+fb0RHOyE5JQkbNm+CX9t34jDcQewJ/Y43FzdkZpaBF/P3igO0mHEkKHo3bMfekf3Q1hoN2SfL8Lp/ReRe6YERqUUKfll8A7UIqSOS9VkMimCurjgQmYppCoplDkGAEC5SgKtXIo9352Gb5gLyjwcYPRzhEJZmTyNj8/Dnt3piPRxxI2zx0Oh6AWFIgODB/tjzJgAnDhxAkVFRdb3KS8vx5dffgmDwYDFixdDqVShd+9rMWXKjbjzzlsQElJ7PpLWigl1xYPyYiMUShmkMgkkGhnKM8sQd/BinYmpsmqJKWMrzDFlLK9KTAEWs2iktC19XjlMFRY4OCshk1VeiigEoM8thbOnulb5+uJBQ5O4U+u6c9ZMSEqKsOvoMezYsxcXMjKx/IcfsfyHH+Hm6op3XnkLgddORVHCRvz6v9cw6q570X/iTfj551PWSYnbw4gGalt19RFKS0uxZcsW/P777/j9998x87bb8PBdt+PvP3bBfCYBzg5qBLu7INjdFcGe7ugWEgRPTy+oHZ1gkaqQftECXZkSXXoEQO2gQmCQK7y8NbCYzSgtLET2+XNIO3MewaZ0yArPIuXPPwEAKgHkKd3QrU8/eIaEws3HDypN5WXkeRfSsPe335Cy8SMUX7gOc/79KIYNGwZ//3Pw9q6MCX37qnHw4EEMGzbMun0bNmzATz/9hJ9++gkA4O8figkTJuL226dj+PDhUCqVde4PgH2ElmrP/QMmplqRq4sLbh08GP37XI+x3S5g78lj2HvqMNKLz6CotATX9g5HRlo5tmxJQZ45CUJuRDevCByRDcNA8xZE/v4ZViVnwf+JRzB0aGCnzdRe7Wp+rlVzdAwd6oWE+C14/cXlOHLyEEorDNbXbNm4EU9lZkHr4YWS0B7YNnQoXIJ9IfPyhs4oR3pOBVxC3eDh54rE0wX4bMlRFBYa0NfZA0/NG2hdT3ZOCY7H5UKvN8DZWQn/cH9kZZUiTS9H5DXdYFA7I7yPN1Rh/9xRMiEhF0fjstG3jzfcR6lQeL4QXr5qeLooYNLrkX8mBYXnMuAiSqAt02Nweg5MH32MVEvlD94+To54ZtAg7NXrsefMWWRlpWL58s+wfPln0Gq12Lt3L3r27Gl9v6ZMmFj97hHTp9ffeW8sgFVvnBv6vrXGd7El67ic9+U8UvYlkUjQK7IvFAhEl4Bb4OFVgh9Wr8HhY1uhL0mCr7c/Ygb4IuFkLtb/mYD4M2sQKIlC6poy/LE7E1qtHEeOZOOhh/paj13GhM7HYrYg+Vgu5E4K6IoNUDsqrJPlu7gV4o/NPyN2+59Iz0y2ed3+Q3swfsxkBAc74YG5jyIk5N/WEVQ52SU4eiQHwcFOGHZLd/z2y2lsjk1BhVlgrFewTbljx/+JBwDg66uFo5cD9ElFqFBI0K2vFyJ7eSH1eC4yzuqwZVkC/vomEWUKCaKH+SEqxgf5CQUoiC/AHx/F4do7KjvO0dEeUKlUiImJQUqKDuvXn0N0tAd8fFT48ssvsW3bNmzevBkpKSk4eHA7Dh7cjpdeehr33nsvPv/8c5ttbSwmVO+4V5/0t6a64kFZUQVcfTSQSiXo3t8bcetSILLL6vyulRdXjlaQSIC0FF29dzJsipQUHQ79nQ6gclS0xdJ4Yqp6nRQVlfFVrakcHaW5dBetwuxSBEa413ptffGgqXchpMvn5uaGydeNRkz/Cbi2dxoOHzuEo/EHkVOQiJLSMgzoF47z50pwTj0E5wpWYt+ClzBow27sSBmIQ4dykJNTihMncq2daMaDzqm+PsKQIR6Ij4/Fyy+vQlzcLpSX/3MXztXffo3ArCQoHbRwc3LDR08+Di8/L2jdPGAQalzMMSIoxB2+/i747fdz+GPHOUikZqjcJJg1q6t1PdnZpTieYIa+yBdOAcFw9jUgOyMbQb4yqBRSJF+oQGTPQET1DYJcUdn2JJzMs/YR+k+7Eye2bEJ+/F/47vlkTHjoCZvf2f7+LrjxhhtwbN9xrNu5FhpJPrwNRbh7+lQkpF7AgSNxyMg4j6++WoqvvloKJycnHD58GN26dbPWkX2Ey3/f9tw/YGLqCti1KwNHjuagS3APuIWHIq+gDM7e5chIK8f69ck4n6JH7IXVSNelAQD83fzxt2s3TJa4YPLxX5H6hh7it487bab2alf9cw0OdsYAPyMiQs9i0PTJOKfXWct5K1W4xsMf1/fqjSnjR8DRPwBJaaWI3ZkNS5YM1/cMgYeTA/7akgK9vgIWB0f4BMpwNC4bJrOAo6MC3t4OyM4pgbdXZUckNbUIR45cRF5eGdzdHdC/vw/CI9wRHOwEby8tIiM9a9V3c2wK4o5mIyenDDNnRgByBSQaDWSuWuQZFUh3VSJ4an8AQMr5QgR5K5GdlI2Lx5MRqilGtKwU4Tk5mFduQHFYGPaWlCC2vAK7S4thsFgQbDBAVFQgNbMMH3+8DF27euCZZ25BdnaFtTNT8/ivfveIhs4gNhbAqjfO69efq/f71hrfxZasg21Ax5eQkIf9h7MR4O+I0UNnQyO/DlJpEXzdvZBwMhdr1p7BwaPbEHe6sjOuVmjg7tkbCkVvnDgRhdhYN+sPJh4PnU/WOR1MBjMKJQIXLhTDx9cRkVGeSEjagvnPPmwtJ5PJ0TNyAAJ9BuLmG2/EdaP7AQAOHcrC3zvSMWJ4AGJifJGaWoRCXTmyMivnmPLy1iJPV4EygxlqtRzB1UZLpaYW4cjhavEgxgcRl+KBsr8PpDIJHN3UkEgk6Brjg9A+XijIKsHmX85CXiqQFJuOlB1ZMBnMUDrIkZ9RgsO7M9BvsB/O7snEoR3piBkeUOO4DcPs2bMxe/ZsCCEQG7sP7723AnFx25GZGW9zkuLIkXN4992PcPfdd2Du3J6Ij8+rMxnU0ngghEBZsRGeQVJIpBIEhLigqJ8Xzh3JQZlF4GR2yaU6V75fia4CkAASuRQFueWIj8+7rHgQfzwX7pfq0ZQRU9X3Yw+fyrt3qhwrf8Y7OCkhkQAFF0ubVQ+OmGp7u3an48iRXISE9IRW0QN5+SXw8CrH+XMlWL/+HM6n6LHv5Ank6zLx04Fj8HPzgIfvUJhM12DTpsoTlkOHBjIedFI1P9ehQwMxZEgAQkJCkJaWZi3nqnFAlL8vYqJ6YvSIa+DpH4TsAhl27s2GpUSB68PDIHdzwPZLfQS5gxMCguXIyysHJIBWq4RaLUN2dim8L43WTU3V4/CRi8jLK4e7uxox/X0Q3rs7goOd4e2tQV0Xl26OPY+4o5WJ05kzI+EeOQKBPboj9dB2fPvMI1B7hiAoKhrHU+XYmJSC8pyzMJaVQEAKhdYFjo5q9HVSIqqLD6ZFTMHxAi0OnctAZtZRyOUShIVVzoGUkqLD++9/hsjIADz33HRkZZWzj9AJ2wAmplpRenoRTh3IQn4+4KCWo3t3d0REuGP9+mTIZBIcjcuuHHKtlSPcNxJarQJnMpORUZCBjIIM7AbwqkyOyRez4H+zHi6PLkTXrq7Izi6x/hjjGZKOqfpw0cguaqRt2IpVL/2OLm9pgIsXAbkcIz3cYbRYMKZrFKZcNxoFuS44klAMVYgfjAEhiEstwtEjehw+lgcJAC8vB3Tv7g693giDwYzdu9ORlqpHSLAzRowA1Co54o7l4JWX92D48ACEdXWDViNH165uUKpkCAp0Qq/enjh7pgCff3YMwcFOGD+hC7y9tDajpABAACgsLMe335yETCbBsOGBOHwoCytWJMBgMGPwYH8MHxGEU6d1gNQdwb1CYXHxgEewEzy8tLBUVMBSUgJZYjI81x3GXYU5eF5dCn1xDtJn3wGJUokyr2As37MdOWVFePqpB3Ht4Anw8xuFGTMm2hz7Li5KhIa6oKTEaL2LRH2qJuatS83vUkNDW1sy7LXm8PuWrKM9D7elhqWk6BAXlw1n58off0aTGf7+Trj5ZickJ+tgMVsQF5eNsjIztA6u6NfreiQlH4C+uBAZmXuRkbkXAFBSEoE+fT6CUtkFZWVGyOUSuFwaHcF40HFVxYRIVwcYUYbTWbshc++CmAFTAQDDh4yGg1qDQTHD0C96LG6cNAH79hbg6NEcZGeprBOjb9mSitS0ykvlvLy0SEzMh0UIpKbqYREWBAc7YegQf+gKDZDJJDh+LBdr15xBt26uGDEiCP36+yAjowgGgwX+flpERnliw59J1mTXhIldrXNe9enjjcgoT+RaLIhPyEXPMFd4aJQwA+ga6orykwVY9dkx/PnTKfTzd4FZAiicFOjdtzKO1GzHJBIJevSIhKvrePj5DcLs2Z6YM+efSZ+/+uoHfPvtu/j223fRtWs0unUbi7lz70RISAyAyuN/69Y0uLmpEBPjU2c8yM8owbolcSgvNqLX6EC89NIQSKWVcxyWFRlhNlqg0iggkUiQk12CYjng6q9FfnwBwrs6Iyrqn9FHupwyODgqICSAQi61ea4xdcWD4vQS5BzKqbyUz9J4gqh6PNCdK4JEKoFSXfkzXiqVQO2ogK6ZiSmOmGo7GelFOHAwE/n5JqjVMnTv7oaIcA+sX38OUpkUR+OyIb3URwgL7gvnAg1SLpxDZkEeMgt+AxJ+g0qlhYvLVKxf7wcXFyX7CJ1E9T5CVJQ7EhOP4JdfVmLChPdRnJ+H03t2oLuHK8oK8tEvJBBD+vWDSh2MxFQVvMMC4BPZHWlpRTh6PBuH4/SVfQRvR3Tv7ga9vgIGg6myj5CmR1SUB7RaBdRqGeLicrFlSypGjAhEWJgrtBoFunVzg0qlR1CQE3r19sKhQ1lY8/MZDB8RgIkTK5NE1UdJAVV9BAO+/SYeUpkUw4cHwBw0Hie37oSHPhfFuX9BpZKhwqKCs1cQAnv7o9jshOAuPvDxdYbFbEZeehrOHDyEXobziIjSwDzyMdz6yDTr/ITHjmXjs8/eRElJPp5++kFce+0E+PmNxK23jm/1PoLZZETK+UIknNJb7yrLPkLbYGKqFZ05U4hTifkwCFfEDPDB0GEB8PbSwsPTAceP5SIjowiOjgr4+3vDM20MBg++A+HRTvhi1RbE7t+PhMwE6EuLkOPsBdWZOMgXPQT5tOfw7/dew5o1fRAW1h/nzjnAzU2DGTMi6gw6TZkUjtre3+vikffnn/hhxd/YkpaAxPJyAEBMzDCMG38DzhlcMFmpxvODusLX3xVA5SV0RnVlw5+aWoSdO9KRn1+G0FBnqFUyqFVyVBhMcHZWICfHhFOn8pGaokfMAB+MGVOZ/f/zz3PIySlDbGwKRhoFwiPcERTshNJSI4KCneHtpcW335zEyYQ8pKXpUVBYeTYuN6cMxZfuGHT92BB4eTkgJ6cM58/rEeDviOBgJ3yy9Ch0usoyp08XYPYdUQBgHX1VNUoLAKRKJaRKJeJLddiDcDj4RWPajSGI8VPAmJwMQ2oqypKSMdlRg43GMmSWlCA29mcAP2Pzb56YNfN29L72FiQlSSCXSyCVSnD//X0u6xbXVWcadu1Kx/nzugbnb2jJsNeaZ2waWkd9Pybb83Bbalh8fB7OnC2ATAKEhrjA2VmB3r084eWttXb0XV1VcHaWIyy0FyZMuBGDBvni+4/X4UD8ThxN24+MzAQkJSUiMbEMJSUZKC42Yv/+DYiNTUHXrjG4eNEb3t5ejAcd0ObN57FmzWY4VOzFkaTtMJoMiOgegxFDrsex47kABDasOoSg4H9GsZaXVV460aePN3buysD+/Rlwd3eAQilD375eSE0rQlm5CWWlRmRkFKMgvxwKuRRjxoTgrruisHNXBn799Qz0ugrkFxgwYIAfxowJwaGDWUhMzEdpaeVE63/vSMfZMwUo0ldeurZuXTJM5soERmSUJ8ZWiwkHzxciwN8RFcmFMOSWok+oGyQSQO2sQLneCMcKUW87lpKiw/LlJ1BebkKPHm646aZecHV1tT4/cGAk+vcfjqNHdyMpKR5JSfHYsmUJPvpoDO65Zx48Pfti48ZkCIE644EQAn99kwCT0QI3fy0O/ZmC9NMFmPxQH6i1CuhzKy+FUTtW7tfU1CKcOlUAi9kMqdEMJOlx7Ndk+N3fEyoHBQqzSuDgpITFLKBQyRAUWHuurvrUFQ9Kojyw9VAOAMBi+idB1JR4sPdoLpRqGWTyfyZMd/ZyQH5G826gYKq4/LmyqGnOnC1EYmI+DAZHDBjgi6FDA+HtrbnUR8hBRmYxnJwUCAjwgWfqJAweci/CIxywbPkv2Lt7E05npKPUUAJdQT727Kmcs8diMWHRosexdm1/hIXF4Nw5FVxd2UfoaGJjU/Dnn/HYu/cnXLjwF06cOAEA0GanI1BVAUhkGN8nBvffNhNhPcPh6OaBs+dKYD6Wg759vJGWVoQdO9JRUHCpj6CWQa2WoaLCDGdn5aU+QgFSUvQYMMDX2kdYvz4ZuTll2Lw5BSNHWhAR4Y6gICeUlBgRFFQ5SmrH3+lIOleICqMZ5eVmpKXpkZtbhuLiqj5CKLy8NMjJKa3WR3DG0qVHkZPtCanEHSFBKjz11ABkZpYgONQDfgGutfZBQHgkElIdkHDKDQEOF+CSvw+b3opD7qSbMOCGaQgLc8D110/F33+vQ37+RWza9BOAn7BhQwjuuusu9Ow5HmfOiBb3EXLTUhC/fQvOHtwLXVYmhBAQEiWOqf2RauiBMdPH4ZZbIup8LfsIrYeJqVbUvbsrLBHuCHHzRa/eXvD20iI7p/Kspl5vwMmEPGg1CqSmWnAhvQgKpRRDhgRi3pTxGNNvCAoKSnEg/jQ8PRxQ6KyAx45f4Pzp40hJOYGUlK0AAIlEAQ+PbigrG4KtW6Nx883XIyAgCFu3pgEQiIvLwcGDFwHUPykc8M9BXlZmtLlmnVqPKScH+thYbPnmG+zZvQebivQwiMrh+nKJDKGaMJxS9UF0YH/s2ZoKIcxwDyqHVFF5zGg1laPuPDwd4AEgP78Mqal69I/xwZAhATiVmI+UVD30eiMKCys7IM4uKlzMKsVvvyahSxdnaLUK5OaWQatVIDzCHVqNHBkZJfD11UCrkePgoSxER7ujvNwEhUKC1BQ98vPL4eSkRHCwM/r28UZkpCciIz2xe/cFGCssGDzYD95eWhgvnWmVSIAePdwAVCalUlMrz95XT0wBlYm2vXszAQDXXuuPyN7+AACFlxc0gwbB1WLBu6Wl+PPb3Th2eC9OFCdha24GsnS5ePfTD3DrLz/hX6NvAvoMQEFYFHo042x1XarOMHz2WRwOHar8zrTmxKJVZ2oaO2MDdM7huFe76GgPFKcVQ6WUwigqvxte3lrkZJcgLi4bWVmlSE8vQfbFMhQWGvDHH+fg5qrGlFnXw3N1F9w29SHotGXYvn07fHxC4OOjxcmTuUhL24m0tN3YuXMlAECr9UZa2iD8/HM0rr9+GAYMuBanT+vh4qLEkiVHcfp0AYCG4wFQGRNWrTqN9PQi3HJLD8aDGuJ3pOPYXxcw/v6ecPfTNv6CeuTl5WH58uVYvvwTpKSctS7XqP3h6RKDlBQ9jhy+CCEAVxc1goJhHR2luRQTPD0dcOaPs0hLK0Lv3iq8/voIHDqYha1bU1FWboKriwq+Phrk5ZUj8VQBiktM6NLFGXl5ZYAAFAoJunV1gUYjx6GDWdBo5PD106JQV46c7BKMGB6AIn0FPL0c8PeOdBQWlsPVVW2d+yoyyhOeng7YuSsDDhoFhg7xx5IlR4EyMybG+EEIAaW3GjK5FOcPZeMPByl69fKq1batWnUK69efQ8+envjPf4bUev6uu6bhrrum4Zln1uHnn1ehtHQPsrJOY9euDdizZzP27o3H+PFdAIg6zxjnZ5bg4nk9Iq71RWgfT2Qm6XBiezpWvrYfNz7SBxfP6yGVSaC5NL9W1Y0INmxMRtLZQgzt7Q3pmUL8sHAfrpsTiYvJengEOsJQaoKpwgyLRaCp98+sKx5Un0C9osxk/X9T4kGJrgIKdeWk7VW8gp1w4lw6CrNL4BXUtKSZkYmpNtO9myuyItwh03hW9hG8NcjOLkVqqh76IgNOnqzqI+hx4ULxpT5CDO66YyZGDBuP7IQDSErYDYXcgO6O8YjoEY6DBw8jNXU7UlO3AwAkEiU8PbvBYBiCbduiMW3aOPj5BbCP0E4JIbBt2zbs2PEeDh5cD7O5sh2Qy6ToHeAHs8EM54j+iE+WoaJMi2C3bjDJXXAsXgetRoHu3d0u9REcUFCQhJSUIsTEeGPIkAAkJuYjJUUPvb4ChYUGyOVSuLiokJVVit9+O4suoS5w1CqQm1sKR60CERHu0GoUyMgohp+vFlqNAgcPZqFvPy8AQHCIE/bvz0RWVimcnRT/9BGiPBAZ5YHdu9Mr+whD/OHtrbH2ESyQIrSrD9SOzujS3RmpqXrIFP9cPlgl4WQe9u3PQpnFGQEDxqN/tBxn9u3BvrWrcHj9b+g/aQp+XPEhXn9rLtau3QyZ7BASE7fh4sUULF78CubOzcattz4DFxcldLqKJo8iKsjKwK6V3+HU7r+hdNDAMzgUXsGhKDMIFGQXIO9CGrpJz+PkqqPIH/Iy3P1b53vAPkLdmJhqRQEBTnAe6AtlSKh1WWpqEU4l5qOszASNgwK+vo7Izy+FBEB5mRFbtqQAEOjV2wvBwU5wc9NYR5wYr+2G3Hffx5Pe3tjn5I6DF9JgMJQgNzcBq1YlAABSUv4Pc+f+Cxs3JiMvLxeFhbvg798V0dGhMJvNkMlkl8rZdjp0ugqsXHkKO3emobjYiNRUPYNOK7CUlqJoyxYUrl2L0r37cKysDDPP/zNpbTffAEwYMBr9Qwfg1MkSBAc7QauRo18/H+j1BiSczMXGDcnQahXw8dXAcuk344AYX3h6OeBCehHKy4zQFRqg0VR+fdMK9TiXpINUCnh5aZCRUYRz53RwcKicY8rNTY0uYa7IzSnBl7+eg4ODDJMnh6Gk1IRTifnw9dVi/IQu0GrkSEwsQNoFPYICnRAR4Y6MjBJkZBSjV28vKFVy+PpqoVRVvu/kyV2weXMK1A5y6PQGfPvNSUilQFJSIa65xg933lk5V0hVcvbokWzk5ZcjwN8RvXrXnstKIpVC5uiIrqP6o8gtEDf39sJrSgN++vVPbDm2EzMjI+CacQqmoztwoawMr5mMmDtmLKImTIDm2mugDA2FRPLPj/TGhrRXnWkoKzOitNQIk8mMXbsutNr3YPr08CYnulpjOO6VnpiRmickxAXlfbxhMlmsHV8Al05UGGE2C8hkEoSEOEMi0aO4yIjY2BR4eTkgwF+DopQiDJgShq5dZ1s/tx7dXJEeNw2HDnviTMZRZBWmoqQkG1u3/oGtW//A11+/jdWrj+HQoTzI5RKcPbsdRUUlUKsdUFRUBCcnJ2s9ag4jX7XqNBYv3o+KCjP0egPjQQ1HY9NQeLEU65cewy3PxEDtqGz8RXWYOXMmYmNjAQAqpRr9u45Gr16TYBLBGBDjA52+Al27uV46y12Ct/93AN4+DpBKpJDJAPOlmOCgVkB56c54Vcmlrt3ccOTIRVy4UAyLxQJDhblyioHEPJjNAlFRHvAPcERxkRGOjkp8/fUJ5OWXY8SIQERFeiIxMR+uLkWIifGFQikHIGCsMCM+3gHR0e7IyCxBRmYxevfyQmpqEUpLjOjXt/LyvuEjArDj73TkWEwwGgWO7MmAwgL08nHCgZ+TIEzC2vZUtUcJCXkoLjbC2VnVYLs0ZUofaLWuGDv2Vej15/Hpp19BLi/HwIHhGHjp3h4vvfQS+vXrhxtvvBGKS5PyJh3OgVwphXuAFlKZFEpXJZy7uaAkpQir3zwElUYOZy8HqLWV5b28tfDy1sJQYYLBYEae0Yj+vf1QdL4Iv38QB0gAd38tci8Uo7zECNGMO+nVFQ+q7soHAOWl/ySmmhIPyvQVUKrl1ssSAcArqPL7nXoiH15Bzk1q9/Oym3fpH7Wcf4ATBg7wg5u/v3VZaqoeiYn5KC83Q6NRwNdPi/z8sso+QrkJW2JTAAC9enshNHQcPELDYUg/jJwjf2DD2b8RFjEQd85+FKfPHsORI/tRUVGKnJyTWLnyJAAgM/NxzJr1CDZuTEZOThaKivbD378revbswj6CnZmMRvz83deYefd91mUBbi4YGt0LfSMHIj1PCw9/H/hGhkK4lUJfZEBiYj42bUqpPFZ8NTBfaoMGDPCFp6caFy4UobzcBF2hAVrtpT5CWjmSLvURvL01yMwows5zOjg4yOHjrYG7mwO6hLkgJ6cUX/yaBAcHOW6YHIaSUiMSE/Ph56vFtOndodUokHgqH2lplZf5RYR7ICOj+J8+glIGH1+tNS7dcEMYNm9KgdpBBp2+ovIyPymQlKTDNdf64c47owHAmpw9ejQbeXllCPB3RO8+3nD31mDQ1FuQn34BSQf3Yd/an3B4/a+I7DUa0qkjMXb8/XBzk+Dzz1dg9+5f8dhj/4e+fStHSO3btw+fffYl7r///jrv9AoAicfOY9eqH6A7uwcqjQY9rhkG3x7hcHR1g0KttvYndu1MwcG/9iFAfR5fP/MYbnjkKXS/Zshlf/7sI9SNiakrKDunBLpCA3x9NfD3d0RGRgkAgagodwQFO0OtkuPIkcozoy6uauvZuioKb2/0XvgfBK1YgXsPHkTxuJvwsWY49BWZkMnSceLEEUyYMAouLkpoNHKcOnUGR458CQD49VdAJpPB19cfbm5+cHb2RnFxPxiNoXB1VeHmmwORnX0KeXk6mM1yGI2lMBqNkMvlNp17atyuHak49v0mDC6Pg27/ViTodBjcJRyi/zAEeASh/7pv4O7oixBNb/g6+aMwpwJnyktx4UIxsrJKUFBoQHSUB5ydldi1Kx2ZmSXQaOQQwgNGoxl5+WWoMJgQFOgMjYMCHh5qZGWVQCoDLmaVITm5CGazBYAUMpkE2dllqKgQqKiogFZb+XlWGIxYvfoM8vIqR08BEgQHO0FXaEBysg5miwUxMb64+eZ/MvcHD2VZj0+g8pjw9a1MnGbnlCCsqxuu0RtxMiEPebnl0OuNKCs1Ql9UYR01BfyTnPXwcMDAgT7o28e7ztFUVderV43QqvLsU/fhWdxXOazWYIApNxevvvsOvj96FF9+8zWG/rwaM11dcV1gEBwHDIB2yGBor70W8QkCey6N0GqooZ0+PRwnTuQiNjYVsbEpdvnxVVW/+Pg8m7+bY+vWNGzcmIzx47tg7tzWn5iRLk/1US8xMT7QaOTIyKyMCTEDfJCaokdOThmOHs0B+njCz02Fw7+eQ+SoAHg4q3DmwEXs+vkswl1jMP7xccgrrkDqiXRkXjyNC5bzSM1OhJubAv36+aOw0IwzZ/Jx6tQa6HTn8NxzS/Hcc4CLiyvc3f3QtWso0tM1KCoaC6DyOxAXdwwlJRmwWJQwGIpQVlYGlUplnd/halZWXIHCi6XwDXNGTmoRvn1pLwJ6uMLJXQ0HJyXUjgqotQqotHLoiitw4HgOJBJgxIgAxMb+CSencAQH+0Knq8C0aXciNzcXffrchO6iPyRyBxxP18MkDPh5zRmoVXL06euNYUMD8M03J3H4cBZkcim6d3NFaJfK7+7u3elQKqUYMiQAHh5qJCbmI+LSndiyL5agosICBwcZHLVKlJRWoLTUDIHKS6779/dCZkYxTpzIQV6+AcIikJpahAnju6BQZ0ChrhyFxysnT4+IcEfMAF9MmNjVOiKraiSXRiOHTAZoNHLkZJega5gbRo8KxpYtKYg7cBHGCjPy8spgLDaiTxc3ZPyVjsMaJfqMCbK2R5GRnggOdq418WzV3FGAwJBBfhjY37dauxyIiROH2ZQ/d+4cXnvtNQgh4O/vj3vvvRf33XcfUk/mwc1XAwcnFYDKWHQuvQjdujtD5BhQqq9AaG9PKDW2P4WHDAlEaooeR4/m4FRyIW65JRypJ/IgU0jhGeSEwuxSmI2WJt1JryEV5f8kowzVRkxVnTSpfjfDmu12aVEFFCoZJLJ/vp8OTko4OCuRdqoA/ceH1BsTLOZ/LhvMbuacVNR6srNLoSs0wM9Xe6mPUAwAiIryQFBQ5eVYh619BBWCg52h0LohbMxUSA05OLNvN7IP/oV+EglumDwYZTfPwtbDhdCV50OmuIgTJ45i4sTRlX0EBykKco/jcNwXAIBffgHkcjl8ffzg5u4PJydvlJTEoKIiCK6uKkydGoDs7NPIyytkH+EyVV0+OXKoBwrS47Dzr23oE+CE/NSzMFYYEOThhiBvP/QI7ANnt+7IK5TjbJ4jUlNLkJShQ74+FdFRnnB2UmHnzso+glajAIQHjCYzMjKKkJZWeYmel5cGarUMmVklkMkkyMoqxblzepjNZkgkMsikEmTnlMFYYYGxogKOWgUgAQwGE1avPo38vPJLfYTKmzPpCg1IPq+D2SwQE+Nj20c4mGU9Pqv4+WoRHOyM7OxShIW54pprK3DyZB5yc8ug11egtNSIoiJjjT5CZXK2so/gW9lHuDSaSiKRwCMwCBcL1Sgr8IFWnobMQxvgrvgL5pTJCAyfjHfffQbAMzb7/IMPPsD333+PN998E5MmTcKDDz6I8ePHQyaToaSwAAd++xmHN6yDxSKBU0AU+o0cAFdvX8gundSobuiwEKSmleJonBv6+57G7++9ievvexi9rhvXikdJw66mPgITU62sIL8MablZ1kuasrJKEB7hjshIT5SUmrBzRzrMZgsmTeoCD08HODuroNcbcOhgJn78MQGeHg4Ye32o7QTU196IwLAw4Jdf8IgsGZui7kSf2XOt186uX38OpaUmaDROiI6+DiZTFs6dOwOj0Yj09DSkp1fexWHs2CgUFSnh46NBaupxbNjwhLXe335b+ZBKpVCpVAgMDMS2bdvgX+3MDtkyJCWhcO0vUH23Ci4FmXhWX4wtugKo5Eo8230WnE2+MF2U4r7Rj8BiAo4ezUFqYTFMxsq7LxUXVUAml8JoFMjJLkVIiAu8vR2Qm1uGcoMJSUmFMJkEjEYzivQVCA11Qd9+3tZjS6uR4/MDx5GdXZnIcnNTwWwGBg70wfbtF2AyCRQWGmAyWXDiRD6USilcXVXo0cMdyck6+Ptr4eKqQk5uKYr0FejV859kUFVStWtX10u3ERfIyipFeIQ7vL20WLv2DPYfyEBoiAsGDvSBm6sKBYUGyKQSpKUVY/BgPyQk5GLXrgyoVFL4+ztak7MZGcXw8HSwSU4djctG3NEcpKXqsX59MgYP9sOQIbYJIolEAolaDWVgIKbeehuy5HL8dfAgdpaUYGdJCfwLCnBrdjambdwIL5kMXZxdINeG4vD2YFjOX4/JD46t8wdVSooOWq0SAwb4NHj72Ya0xtmGyw8M4tIPhNqdpc44QWJHkJtXigupRejS3RWpqUXWBELMAF8AQGmpCTuqxQQA2LU7A0azwP4LBfCWyICt6UjYWnlbeaNcAv9wV4T19Ya7rhwKRwVcTrqgR1l/eE/xxG0P9AYAeHvnYePGZHh49ISbmwuKitKQl5cLna4QOl0hkpMT4OMTitDQqXBzUyElRYc9e95GSUnlSNwVKyofAKBUKqFSqfDiiy/i2WefbeM92D5knC4EAAREuKFrjDfOHclBfmYJspL1MBnMlZdDVfvaFZXrsfXkOjzz9Hrk5GWgd+87cd1182AyWeDu3gUffvgbfll+Eq5yBRJzi5F16Ue7yWiBXC6Bq6sax47nwttHA4VShrJSI86n6AGJBGVlpkt3TFLhlunh1ngQHOyELX+dR0GBARKJgEKpgpe3Gr39PLFvXyYyM4ohV0gRH58Pnc4AhUIGZycFnJ1V6N7dFVu2pECllqO0xASLEMi+WIouYf9cDqbRyOHqpoaHh9r6nmZz5TGcmlpkPY6jo90xaKAPXF1VOHY8B8XFJrhEucChTGDPmiT8vSYJRY5SuPg4wNNTjcGD/aDTVdjcbS8+vvL4lQMo2pcDs1nAd5gPZt7VE3XRarV47rnn8OWXXyIjIwMvv/wyXnvtNfQMGYxpE29HP2Vlux4c7ISTCXmI3ZaGUaMCMXhMEORKGWTVkjtVCeSquxf26eMNuUKGsH7e1jIKpQwmo6XBO+k1JSZUlJsgkUogLAKGaiOmqjQUE8qKKuDqpbEZMQUAnoGOyE7Ro6ykAvXFBLPpn79dnVs28o9aJr+gDEkZWQgOrrykKTOrBBER7oiM8kBJqRE7dqTDYrZg0qSwyj6Ckwr6IgMOHszCjz8mXuojhGDAgFDkFDkipfQM/DTZKMrNhS77BHrBAqgBiUyB0cMiUbDle2SVfokoixkqtzyYAn1xUV+MnKISmEwmXEhPw4VLfYQhQ8Lh7e2Inj09cerUfmzY8Li13jX7CKGhofj777/h6Vl79DtVTp6dk3IemWdP4e9Vf+P86YP4+fMEnMjIgoNCiRemz4CTR1cUFTn8P3vnHR7XWWf/z8yd3mekGfWRZEm2JfcSF9lO4jjVJJAEEhJCWNiFhYWlLWVZlmULbQm9E8ISSAJJSOIkpNmJHXe5xEWyLcm2+qiNpkjT+9z7++NqxpJLCGxg2f35PI8eyeOZO3fuvPe+95z3fM+XD9y1CVGh4/iJMONDeXI5icTwVJEj5Aococ5KWZmBQCA1gyOIxGJZJiYS3H13M3ff3Vx0IBkNah547QR+XwK9QYXdpiUvSqxc6WL37hHyeTmwPJsT6eycRK2WOULTXDsDg2EqK00yR/AnZY6waAZHmBZVGxttWKaF/8JYdrkMMkc4PE5trZUrrijHZtMSmm7AMeyJsra1ku6uIPvbRtFqBSorTEVxtsgRZpT6dZwM0HFawlEyBwOlzLFNcPT5Z3jt2aeomt9M84aN1C9diaVULju844478Hq9vPrqqzz//PM8//zz1FRVce0Vy5ijzGMx6ilrWkDfhInTAyoMdUpaqy4UpQqfVadTUddYxrzViwl1b+eVn/0ApSCw4KpNb2g8XOYIbxyXhak3Gd6JBGeC8pdecEDN/J3Pi4yOxWjv8HH3XS1s2mTkyFEvO3YMEQym0aiF4vP37x/j4MExjh6d4G/+ehENn6zH/4tf8rZjP0RV5UW69gsoNBoWLCiZzlmoY+PGD1NbayWfzzM+Ps7hw10cPNhFJDLByZNleDxRXnttgvLyHJWVlQSDQdLpdHH/RVFk4cKF/PSnP8Vo/ONzNP6vIjc5yeAjTxF66mn03n52pjPcPxXiVGSq+By3083ZyRRLXRCLZZiczBMOpQkGk5jNGubOtREIxunry2M2qdFqlQSDKYaHo8yb52D5ijLOnpkkFEpjs2lJpyW6u4MYDCqWL3cVRak9e0bwDIXJ5eSLjSAokSSR1WuqyIvQ3u5Dp1WRSGRxufRU11iw27R0dgbo6grS2ztFfb0Fz1CUfD7Pzp3DJJM5Fi12cvKEn2PHfCxf7mLTpjp8/jgQIBxK4fPHCQaTRMIZBEHJ3Xe1XPRYPfpYF8fbJ7BYNDS3yMLsTIfgTGGq0Nmju2uSkZEpUqkcGq2qWNZ6PpY3LOILd9bx+XdHea7tVR7e+hJjkQjfG+hnS2kpbX/3d+Q9HkzHerg5fQLh+89x9ldWDMuXYWxtxbBqNdqmRhRKJZ2dQcLhNNddV/dHu6XejNWG/87EsH//CB0dflauLGPjRvcF//9/MSDxfwNGR2L09YUQtMIF80Hh78Kc0NHh4667W0gkcuzc6aGvL0x3RuSqtVVsWFXB0fYJOrqDKEfCdPRMsa61kitWV+KtMXNyxwj+9gBtT/ey5q1zinPCDTd8mY0b3dTWWolGoxw4cIoDB7oQhDAHDkxw6lSM9nYFnZ1Bysrs+P0WotEo0owl0Gw2y49//GM2bNjwZz9+fykYOTOF3qzGZNdhtGpZep1bFiZysmsm4ItzumuKySkvOw88xq7Dz5DJysHaBq2FEpWWTCRNComhoTADZ6ZYoNfhjaewOvXM1ynp7pokHs9iNKpRKGHnq0MEgynqai34A0lSqRwDAyGQIB7PUjHtXi0gEJCbUyRTeVQCxOM5opEcm64pRa1S0tY2jsmsRqNWcvbsFNXVJta2VuGbiLPz1WHyeZHyChMmk4qhoQjplIhGo0Srka/DY+NymHp9vQWnS74mFxxWlRWm4jiuqjJy193ynHDjTQ3F/ZMkiScf7iTjS+FAQy6VwBNIMTQUITctlBSuUYXxmx6KkhtPolQq6Hp1hBdLDRe9sS8rK+ODH/xHVq9+Dx5PG08++Sv27NlDR/8+On60D3Ml3HrzHThdRnwTCfp6Q+i0Ktatq7ngu54pIBc+x/lQaQXyWRHpdRxTb2ROyCRz6IwqktEs6elmIzPxenNCOp5DqFKiOM/Q6Kw1M9w1yXe/eoh5K8t4z3sWXPD6/IxOfHrNZRrw58SEN0H/uHzP7XZbLvgt5ofPcYS7m9l0bS1HjnjZsd1DcDI1zRHk57cdGOPAgTB2u5X3/dUaVlQoGTo7yMSoH5NOQqsGlArSGQhOZmmuUnHtLVZsDjNKtQqfL0B3Vw8D/b34/OM0Grt5baKMgYE6qqtFKioqCAaDZDKZ4v6LosiKFSv4/ve/j1ar/fMevL9ghH0TjPWcZrznDIOnOpkaGUTM5zg1NsHOM4MMB4PF57pK3ZwIVNLsbCSQTpGJ5QmHYgSCacxmNXObbASCCfr6IrM5wkiMuXPtrFjh4uyZKTlbViOQTucJhTJkMvlZotTuPSMMDUXI5kT0EigFWQRfs6YKUZQXy3VagUQyh8upp7rGjN2uo/PUNEfomaKu3srQUIR8XpQ5QuIcRzh6bIIVy8vYdG0tvumS4HAojc+XIBhMEg5nUKkU3H1380WP2aOPdnP8uNy5uLlZFmZnOgRnClNFjtAdpHtYJNzYyDXrV6FODhH1DrH9gR8BYC51UlrtBo2FezbcxK1XXMG2vbvYeeQYw6OjPDg6SpWzlMd/9D3sZeXs/0kXZ3uDaLRjtLZWXXQ/PZ4I8XiWpUtdLFhUhthyF22//TWv/OwHGO0O6hYv+73j4zJHeOO4PCO9ySgvM5B12mcR6plh0Js317N//xg6rQqfP47LacTtNrN6dSUeT6S4crl0iYuSEh2SJCvlDz/cxb33tjDvn/+J8JYtxJ9/ir6Ow1R98xvULlp0gS3v4MFxnnzyLFVVNj7ykffR2Rlk9+6dxOMxYrE0t956K7feeisgTzS7dvXx8st9NDaaEAQRk6kaq/UvY5D+T0NMp4nt3EXo6aeJ79uHJEocyuv42oiX0WQYALWg4m0bNnLD0msY61XS0eHnVGcQg15FKJRmakruwldebmTpUiedXUoikSwlDj1ms4bu00GmQmmOHh2npERPJJIhlcqj16tIp0XiiSxnz4ZYvDjOrl0ekqk84+Mxsjm5A0VtrYWycnm8HT0yTiqZZf48OxUVJqZCaTmTSq9mYiKBz5ckmcri88WJxTJks/L7JJM5jh3zYbXp6O2d4vTpIBaLmk2bZAef1SaX5FltUdatq8RoUs2YLAK8sn2IVDJLU5ODdeurWLrERTyWK66wAyxbVgZIF5StlpTqaWpyTAtnWlwuPWdOTwIXD1F/8cUBBEHB+g3VfOmDH+Sf3/c+ntm9m/967ndcs3Il1qs3IkkSXdU9fPepZ3j/4jrmGVKke/uI7dkL+TxKiwX9smXMbV6Gxt1AY7P9jx4jb8Zqw39nYti+fYgjRyaw2V4/q+Uy/ryoqjYhiVIx+LwQfn70iLf42ObN9exvG0Ork0ui3G4zy5aXUVZuYHw8RiSVJa1RsHBVOZ5AkrNng/T1hUgmsjS3lFJeacb5rnl07h7l+Mseeg5PsPDqam57yxysTvnGbv/+ken5wMR73/sOamutXH/9EwSDozgcehYsKGH//v2ALCDs2TPItm290/NBngULypg79/cHdP5fhacziK3MUOx0plAoUGsEmM7SmOgO8r1f/hun+15BFGXnS2V5A5uvfBdNJa2oMyo0KiVTqSx6lNTqdeRFiV5fnDmlJTgcBuyOJI1NdsrKjIyPxzjbHyYayzDhk8s20tNB2bmcSD4PY2MxnC4jO3YMsWunh2g0Q8Avi2EajRJnqR6FEjzDcsC3Vquk1m3GVWZEUCmpqDBhsWjYtnWQQDCJyaRGnC7ri4QzxSzB06cn6eoOcqLDN+3OkR06TpcRmzU6nUulY/Pmejo6fMWA9K0v9bFjh4fGRhu33z4Xp8vIwpXl7N8/htGgwpCRUIXzmI1aLItsF1w7S+06Ro4G0Dg0eCeSuHQaDu2VOxidf43bv3+EH/+4HZVKyTvfeTW7d/81v3t4J9++7wec9R3m+ms2F59rcQxTWpZkbeuii37XFxOQz4daI5DPieRndNI7H29kTkgn82iNapLRLKmLCFOXmhPyWbHYee98F3BplQkJ8PaGyeoE/vVf113w+pmB57nspT/DZbz5KCs3oLHK5U4F4u3xRAA5/2fz5jnsbxtFpxPw+eSAaLfbwuo1F+cImUyekZEoO3aO8LGPrWBhqZOL+wpno7sryPGzeUrKruRvb7ub4/s6mOzex1sb9zJ00sqnP/0B7rrrLmAmRyjMCRImU/WszML/35CIhPGcbGdo+icakLtrGixWRLWVDp+S548cYCoqL1qr1Wo2b7qe9atuYLBXQceJANHYBHq9mnA4zeSkfO2uKDewdKmLzq6AzBFKdJhMGk6fnmRqKsXRo15KS6c5QjKPKp0nlxPlBltdQZKJ3DRHEBkfj5LLiahVSioqjej1KixWDX6/LCLNnz/NEaZShMMZDAYNXm+cCZ+8EDLhSxCLZWdwhCxHj00wNi43cJnp1nS5DFhtWk6fnsRq07KutQqjUT1j0TnIc8/3EotlufHGelpbpzlCPDvNEWSxdfmyMuCcWFuAzBHs2GxarJYgrjIDfcN55s9fzJXXXkMk4MM/MEDY72V8aJTI1GkUSOiNWu5oXcm7btzE8X4PL7Ud4sZNGymfIy+arLzCSVfffpYuv/mS3/X5ArJSEFjz9rvY/ciDPPftr/HOf/s6rrr61x0vlznCG8dlYepNht2hp6y2vPjvQr4OnCPY4XCaWCxDjdtCMJCkvcNHQ4OVykoTBw+OEZxMEY/lqK+3cvXVNXSc8BONZWnv8NHcXEp20y1M6qtxHN7K4DvvwvaOd+D67GcRTOcI/C9+cZLf/a6PqioTLS2lLFhQQmtrJadOBbjiitnleUqlklRKQK02MTqqIJdTUlYWY+5cF/+/QpIkksePM/Lwb8nufAVlKoG6uhrTNRuZMFUR6Agy3tuOXqNnefVqPvKO2ykvLeXM6UlGxyZIJnOk0yIKBWSyWbJZ0OuUaDQCvX0haqotOJ16kskcXV2ygBUWFGQyEuPjSdRqBVqtXJ4HkMnmKCvTMzAQxu9PkkzmkEQJk0nNyhXlbLiymu6uAIcOjZOenqgEQYkoQmmpgXAoTSKZpaHBhiiK9PWFAAVWm5a5ZUbKywwcPDTOVChFwB9ndDROOJLh6NEJursD01kg8k2I0aAinsixaVNtsfPkiy8OcPKkn1xOZCqUpsZtYeWKcpqbS+nuDhRvpCorjbR3+OjtmSqWn7icxuJ5Mm++g099qoG2thEOHBinvv7c5FQIUW9rG+Xs2UnKyoxFB5fLaeSu667jruuuI5/PF587lPLwxOmtvDio485rr+Vv3vY2mm020r09ZDweMgMDZPftoyqfJ32/Cc/yZRjXrsW4ejXaefNQCG+s59L/9GpDoQTxjy1FvIw/DUpLDHIez3nh56en5wRgOmcK/L4E+/aPkU5lcddaaGkuJTQlh53qDWre9tYGli5z4ffHSadn58JMBpNkLWoa15YzNRTl0LN9HHy6D71ZTUmViaOdfs6e9NOvV9FQacaqU7N6hQufN8bmm+qorDCRScnXlHQyx+RoCn1ei7cnS1JQ4HS+0d5j//cQGIkRCaSobLKh1grnSr2mhUUAo1GNUplDFHNUlS/ipk1/xarlVzLhTXK8K0BwIkFDuZESo4YSg4bhQAJPIIFSLxCLZaits7LqijKUgoKenhAmkxqnSyYfORHCkSwOhxaNWokoSUxNphBUSnbsGCQSyTAVSjEZTCEBpaVabryxHjEvceyYjx07hnA45BLxcW+CDesr5e5g3gQDAxGqquTPUFtrKXb0s1m15HISsZicGRgMJhgdiaM3qNDrz40Ft9tcdE253c6iw8jvi/PCCwOMjcWYnEqzcmUFTpeR5ha5FKSjw0fTSifh4TiTQ1GiYwnCPWHW3tbA3JZSOjuDnNo9ijknsnR1BeudBl59qJusN0EyeU7AKZRHPPXUGQ4fHqe+3orPF2doKIxZUcF73/IpVmx2YzDo8fviDA1FePzZb9E/eJYznqW82/c+brnxNnQ6fXGbBQH59aCaFiTTiSygv+hz3sickEnm0GgFBJWCRORCYepSSE63aVdrLsx/U2kEdGY1c1QmVl5z4co4QG6WMHW5K9+fEw67noYFMzlCpDgfFISqcChNNJqlpiYymyNUGDl4aJxgMEk8nqW+zkpVpYlx7+z5oOCamSl+nY9Xtg9y+JCXkhIdNTUWlm9YyuPD4IgfoDbzEv6ha3HWymT7HEcwT3MEibKyKE1Nzj/FIfqLRSTgo/fwAc4c3M/42W4kSUJnsaPQl1C7Yj6Vc2ow2ewMDCVpD54kFH0Wg95Ic/163nfPOyktcXD69CSjY75pjpBHQYpMVm4YodcJaLTTHKHGgtNpIJnM0tU1Oc0RlGQzIuNjCdRqJVqtIJfIheUSuVxOYmBQzqpMzOIIFZRXGDh+zMfZM1MEAkn8/iSZTB4xD6VOA+FwhkQiQ2OjDUmSzuMIdkwmNUeP+kgmckwGk3i9cfQ6FZ1dASorTTS3lBQzqcKhNG63peiU8vkSvPhiP+3H/eRFCatFS2trVbGbX3dXcAZHMMkcoXdq1hgunCfz5zv41Kfn0NY2yoG2MebMsSKoVNjLK8kqbYRVYXoGPJwdDOByalmzsIq6BU7KK62sVqv50N//vcwRps+R4YmT7H7tMY50/Y7bXtvMu95xO3Mb5sz63l0uwwXnkUqjofXOe9j98M955r5/556vfhejzXbJsfPf4QiimOdM216GTrajN1tYduMtxZLFN4r/TRzhsjD1JmJ0NMpod5AKg7MoQp2/+tbe4WNwKIJWq6S7K4DHEyU4mWJsNC6LIckcVZWmYsB1c0spK1eW097ho9Zt4chRL+FQCm/Mwby3fABHx04mn3yKyZe2Uf3FLzC1aD1dXZNMTMTJ5yXMZnXR+v7FL7YWa1xnYmgojM+XoKHBSlOTnWeeeYJXXw3idt/FwoVvZO3l/w4yHg/h3z1H+JlnyI6MkDdaOKOv4GlxklAwwUedKzhwyIegcvHv7/kkZso52xUjOqVk1XI5TLyp0YZBryYWTzM+lkDMg0oAu8NAKpVjdCQGkkQ4nOb0mSkikTRajQq9XoUkZcnlIJeXKC1VEwqnSaXzOEsNxOJZTp3yk0hk0WgEtFolBoOabDbHsCfC+HiMaDSLxaohGskQj2cJBJNUVZlQKhWIeYkat4V166t44Gcn6OmZIp3K09paRU/PJN7xOJmsKJd8mNRo1LJF+NFHT+N2W1i3rpKVK8rZsWOI48cnWLasjE2bZFFJEJS43RZMJrmd+czV5kJ+VAEd7X7GRuOYzBraj/uor7dQWWli3nwHRoOKI0e9dHVN4vcnGPJEaJ1ufuHxRDl6dIKAXy6JLHXq8XoTWG3RWa4qQRCKQlcgn2aeu5YzniEefP55Hnz+edYsXMj73/o23nrHnWhEkXwoRLq3h6zHQ2bIQ7ztAORyKI1G9MuWYVi7BuPqNeia579hoerPjXXrqi9Zhnix2vZCGOfMFtDpdPqyNf9NxNBQmI4OHxXlhlnC1Mw5weOJcvzYBD5fAkmS6O8PkclKjI7GKZ92QFqsGkpK9HJm4Xic1WuqSKeyLFniKookofC5sGpzo4XBaBK304hRLRAKJLGh5IbF5QhKBWN7xvn1nnHKgQ+01sJknp99bPcF+++Y/q2zRNm582WGh6v54Ac/+Kc+bH9RyOdE2p7qQWdSY680olAoGBqK8NxLL3Go/XE++J4vUOaq50DbOMsX3MW8+psQcDOnxsmSxS48tihqjYL2dj8RJDrPBEgncogSGE1qnBYNk1MpaussuGst/PLBU0xOpnE4tFitWpRKyIuyRymTzqNRKxEEJWazlmQixxO/PYtCIa/kShJMBlNYzFqqq80kk3mUSgWxaBabVT6v0+kc3d2TXHV1DSazBjEv0rquGptVS1vbKD29UzjsOioqTJztmWRkNIpOp0KrlRtrSKLEgTa5oYRnKMKSJS5sVi1Hj07g9yXYtKkWp0ueE0pK9eRyIkuXOmfNBx0dPjngfxqdninmlZsRh2O8/P0THJ9nJZLMY07mMZXpGRqPUW9UkVUpKMkJnDrhK3YyKoS5iqJEZaWJmhozfX1hXK4gkYEwJrsWrV4+9zyeKCdOjlJVPpeR0UFOdrbzj//6cb76rX/lHW+7m3vufC917tmE5FJQTQtCF8uF+kOQSebQGlToTGoSoTSSJL2hYOlkTC6tUmkvfgtfM8/OQHuAJQsunv/jGQwX/y6U9Z0/J1yeD958jI1G6e4O0qiyFYnu+W6McxxBoLs7KHOEYJKx0RiiJJFMZoscYdwbZ/WaSlKpHEuXuIpkOxxKM+6VFzwKwtbSJS6aW0qKzwmF0oiihF6vKpL/d75rKQM9FQSPP8Mz932Je+/7Pjqj6QKO8NRTj/Lqq2EaGu5l3rw31lXsfyvSiThn2vZycufLeHvPohQEHFU1NK1Zj6OimsFxkeOnvDz30n5EaTfvfvv7OdA2hlbt5B8+9I/o1W5Od8WYmlSwfJks3MQabRgMKmKxDOPjMldTCQrMFi3hUBqTSW5oNT4e4/RpmSNoNAJ6vYAoieRzkMuLlDp1iJKEWq3EaFTT2ztFNpsnkcyiVgtotYLMEXI5cjkRpRKisSxWm5ZMJn+OI1TLHCGfh5oaC+vWVfPAAyc4e1aO1WhtrWL3rmF8vjigpKbGRHm5kUQ8S2enHGzudltY11qF1SbPBz6/PB8URCWloMTtNqPRCqxtnW2OuDhHiMkcod1HfZ1s3Jg/34HRoObIES9dXUH8/iRDQ5FiCZ7HE+HYMR/+YBaN3oC1xMLEpITdn6O69lx+lMwRZKErnMhS565h0DPMI088ySNPPMnqFcu55463c93VV6FWXVom0ZtMrH3H3ez99S95+uv/xl3/fh8qzZub2RcPTfHsN7/CeM9pzKVOkpEI7S+/wFs+/lkaV6x+w9v573IESZIbav055oTLwtSbiJ6eEL7BCFnnOaLschovyNLp75Mv8h0dfpRKBTqtwIIFDtRquT3zosWyEnryhJzpk0nLX1NfXwivN0Fjo41582Xyv8OzinGdhWvFUyg/8xl6hCp21L6NsoomFi0q5ZZbGooD7VKK7cyk/nXrqvnXf32BHTt2sHx5y/8XwlQ+FCKydSvhZ58lebwdhVaLrqWF7tI6vn24nf2el8nmsyhQUKlbQyygxu228IF7riYYSCJm5NJMkOuiTSYtb31bBUaDiv/6xUn6+6bIiBkmQnF6x2OotDkO9WYIx+NkcxlyYh7Ikyc/XSQhICiU+Pxq8lkFSjQYkwZ0IT35tApB0lFe4qC21s7ERIKurkn6+8PYbFpsNi16vQqVoECSQKsV2L9/DKtVW3QY4Tbjdpvp65siGpWD9ycn00gS6HUCJpMKq03HmrUVBPxJRkYinDkzyb59I9x11zzUamFWgJ7bbWb9hqpL5kHZbVqUSgX2GRbSWreFIU+E48d8tLdPsGlTHbfd1sSRo95iB7+ZpYKF9+npmSTp0NHc4pBtwIncRUsuCo9d567lY/duZl9HBz//3bM8t28fB0+d4uCpU5TabLT97AHKKypQV1TIXf9SKVmo6usl6/GQHRnB/53v4s/lUBgM6JcuwbhmDcY1a9C1tKB4nUnrD8Wfql3rxWrbt28fYvt2DwAtLUY+/OEPE4/HefbZZy933HmT0NkZpKd3CkmUqK63FR8/35HR0GhnYiLO1FQarVaJ1aZjwQIHTqcRg0FFYsYYD4XTspCtU3H6zCTBthRiXqSh0c78wpywY4jDx/wcVwcxWzS4a0yEcnkmJ5OUl+hZMN9BTbUZMSuRy+WRJFAo5B8USsbGYwwNR9EZBFwaNWNjp/nmQ1+mpaXl/5QwFRyNEQ2mqFngmBV+DXIo9dCpIMe2DhEcizO/tZzhsTBf/8HPOXjscTyjPQA8+JufsrDxg8SiWWprK7j+uuV4hiK4ay1FVxVANiNhMKoRJeQFgUwGTT7O2f4hMukIZ/ryoEji9YbIZDOMB3NIijy5XA5QolGrCKfUSAElkqhCJRhRq0wo0CMoDUA1revq2bVrmEgkzdNberBYtThKdORyIrmchM2mRa1WEotleHnbIK3rKqmstAISBoOKZCpHPieRTGWxO+Sbz1xWRGVUUF1tYf48Nf5AkqlQiief7GFsNMbefSPcc08LFouaSETuxup0yfEEt9zcMMtVVoDNpkUpKGaVFLhrLQz3hVBG80ycDqEERJ2A2q6lpy+EoBGoWejA2x6kwW2bsTU5X/GKK8ppaSnFatUQDmeYP8/O1ueHqFtSWhSR5O+imltu/iFKVZInnvkNv3niV4yMefivh3/Cfz38Ez7+d5/l4x/6zO8dOxqdfN1PRDO/55mvj0wyh8GiQW/SkIhmyOdEVGp58eP15oNUwTGlvfhCiavWQu8RH6NnQsxfe6Gjq7cnBIBCUJDPyVlZM+cEn+81PvKRj/Dcc8+xYsWK/9ZnvIxz6OkNMTgURmONFIWp890YS5e46O8P45uI097uQ1Aq0WlVtCwoQTM9Ns5xBJnMl5UZaO/wkcuJjI/HaWqyTc8HFrlLZrufnp4pUsk87lozJpMGm01HbZ2FVavKz9uXeqYa7mLPIw+y479+zOaPfuYCjvDZzz5DW1sb69ev/D8pTEmiyHDXKU7tepmzB9sQc1lKqt3MX3cVJdW1mBx2tEYTO3d38pNfPMSpswfJ5bMoFErU+WWIeSN1tRbe/tbrCQaS5LJyaSYUOIKGt761EaNBfY4j5JJ4fVPkxRTBCBw5kSAQCJPNZcmLeZBy5KX89FytRKlQERtWkc8rQdKg1xlRCXqUCg2SqMdVUkJdnY2JiTidnUH6+6Y5glVDPidiMWswmTQyR9g3isWqpaxMrq7ALV8ve3uniMUyHDniJRLNoFAoUQkKjAY1V19dQySa4fjxCYaHo5w5M8W+faNs3lyPxaKZng8ixVLUDRu4pIPPNs0RbDYtdUW+amFoaJojHPex6dpamSMc8RY7+M0sFQR5+z09UyQSepqbS6Y5QvaCssDCc+XfN/J377+VA68d4ddPPsX23Xs5dPQYh44ew1VayouP/xrb68TaWJ1lrLj5Vg4//QQv/vBb3PLJz71p99Dx0BS/+ZdPk0nEmbP2WhKU0FBuYPDAVl783jd457/9J2VzGv/b7/P7OMK8eTo++MEPolKpeOyxx/7kHOGyMPUmoqnJhqHOQsXrZBM0N5eyZk2cAwfkC4FBryYvipQ6jaxcUU5b2wgPP9TF2rUVWG1azpyexOuNMzoWQ6kEq0WLxaJl5YpyursD+P1JVLW19FW1cHj7blZlzvKh/h/TE1rIqSvuorRUP6vbzcUh39wFArLd0j+dU3H6dOBNPkJ/ORAzGWK7dhF+9lliu/cg5UV82jK0S65kwGLk+zt2cnjwBJIkrya21Dawoelq5tgq6EtHUKuVbNs6wMBgmImJBHq9kp4RD0e7ehgJeFEbU4STYWLZMIFIkLyUg8jsfVCgRKkQUCL/KJi+yVSISEiQE8mLeXJSBs7r6KyIKLB4rVi0VnRKC4aUjUpFOXVl1SgyJnR6FQ1z7Bw7NsHkpGwVnpiIc+qUlvZ2Py6XHoNBTSyW5ciRCUKhFPm8RFmZhVtuaSwKPidP+Hn22T7C4QyRSIY9e0a5994WfP4ElZWmc50jl7guKkoBjIzECUfSjIzEufHGBpqb5VXcxqY4/X0RIpEMwyMRjhz1YjSoiqLr+dsLBpLEYzlqa2XX16XeDy4UhDcsXcqGpUvxBoP86sUXefD55ygrKaG8RHYPdncHeHFnBzdetYgFC2YIVek0+XCYdG8vGc8QuZFRAj/4If5vfweFXo9+0SL0K1divGIl+sWLUf43Ggb8IeGITz11hi1berj99qaie+BSuFht+0xbb1tbG4899hiCIHD8+HGWL1/+R3+GyziHBQtKiA3HqCi/eCkFyCKVu8bMUJUFmz2DxSzfKDqdRlasLMfvi7Nv/xjH232sa63EZtVy/NgE49446XQOu03HggUlLF5USiCQZMeOIWw2LVWVJrpPBxkekfMNW1pKQQCDXUtarcDg0l+yXMnqMzIWTTHqTaAyS2RTcqmPzxdn//6RP7pBwF8STu4aYc9jZwEw2bUsvdaNzqQm5Esw3hNivD+MmJNI5EVMlSoe3/YIjzz1AImkTAT1OgMb1tzO3PqbiYSUmMxq7A4tv3u2D5DdsBN+P2Pj/QwM9SBowojSFNG4j+DkOJlcePYODQMoUCrUKBSqcz8ISJKIIEhI5Mnnc+TFNJI026nTPQy7j5nQaUvRa0sw+J1YLdWsXrmE+c01DA6KKJQqHA4d3d2TZHMZXnl5iKYmOyq1kmh0uiOgWkE+B6dOBQj4E4ACV5mR66+rw+02c+Kkn2NHfUxNJclkckxOnnNOdXT4MBhUdHcFillTFxtjoVCaVCpPZ+ckK1aUnyv/a7QzNBTh8IEx+ntDlFUYecuaMuabNUWBa/94At+JSYY6gwz5Ypxq97NyuYs77pg365rp7Q8jiRJmu6Z4Ez1bEDbyob/+GB/4q4+wp+1VHnn8QXbt287yxSvl49kVYP+Bs7Q0O2htnX/BZzBY5VXxsC/5B4y6C5FJ5RFUSgxWDX5PlFzmnDD1uh35ph1TWr18C9/WNsKBtnHWtsrdbK1OPSqNEk9nkPlrKy54X3eVCS+ysJXLioiSVJwTNm6s5pOf/Bjj4+Pcd999PP744/+tz3gZ59DUaCM2bL0oUS6guaWENWMxDhwYkzmCQUU+L+F0Gli5spy2tlEefqiTta2VxUyfiSJHUGC1arGYtaxcWU53VxC/P0FllbG4sJ3J5lm3rorJySQtLSVYzNpillUB9vIK5q5p5fT+PTStWgdYZnGEyUk5vL2ry890VO3/CUT8Pjp37+DUzleIBHwYbXbci5bgqp9Dr0fihbYQa9epCJ7q4ue//jWdZ49QWKBtbmqmtnwDBq0FhUKgZUEJ+/ePcvKkn4mJOHq9kv6hIdpPnsHrG0OrTxJPTBFPTREKBxFnXtNlUyoKlNNzgSD/TFN2hUIERKS4iCjmyIsXCuTdo0qO9dkx6m2oBQtatZ1kvorqihrEvFnmCA02jh2dIDiZJpOVy9tOnfLT3u7DVWbAaFATjWU5WuAIooTTaeTqq2tYtNiJy2XAYtbw7O96iYQzRLIZ2o/7uffeFto7fBgNarq7guc4wiXKSkdHY4QjaUZHY9x00xyaW+R71cZGO/39YSKRNMPDEY4c8WI0qIui6/nbCwbkEte6OjPr1lVf8v3gQkF43epVrFu9ivEJH48/8yyPb3mGWndNUZTq7gqybcdxrtu4hAULZ5fRVTTOo+WqTXTu2s7+xx9h/V33XvJ93yjSiQRPffWLZBIJFl1zI6NhE709UVR6Fa133MOrD97PSz/6Nu/+2ncvcGn9IfwAfj9H2LVrF1u2bEGlUtHd3U1Ly8WbgrxZuCxMvYmoqjJjaS4hBBw56qW/b4r2dj9XXlnFjTc2FHNvKiuN3HjTHIwGFWNjcUAik87x6GNd013JZDKxYIGDzs4AjU02ADLZPHV1FhYtlol9e4ePsdEYS5Y6Wbehhm3x9bw0MJ/FyS4aps4yZ9sXGe5aSdvku+mc33BJJ0YqlcPrjTM4GCYczuD1yjdbhw6N/RmO2p8PkiiSPHaM8O9+R+SlrYjRKFlHOdpV63j+FBwbkvCHg7wy+LPia0rUbtY3XM28irmk4nlM1Tq0xin2nzrO2P5hplJ+4mKQhBhGOiaLWCq06MMWDIIFu7GGcnszasmISqEjm1BTU2lnzYp6Oo4H0WgF4rEsSqWCdDpHIpGltFTP/PklDA1FsNm05PIiU5Eow2NB0vkkkpAmJcXIEAdNAjRJBoMddPj3wllQoMBhLKUxUE8+YkWbL4VYCbmsglQqh1JQotbIttrJyTSJRJbgdCdJo0k9S2jS66ew2bSIokgmk6eqylgMHo835ejpmSxacAuC0/nQapUopn/Duawot9vM7bc30t7hIxJO89RTZ1h1RSW33XYuZHnmcwt150aT8wJRaubzXk+wKi8p4R/vvZdPvetdeGd0SWk7PMhXnr6PH71s5RPvejv33HAjJVYrCp0OpU6HuqwM1q1DnBaqMn19ZIYGyY6OMvmLXxD88Y9BqUTb0IB++XKMq1ehX74cdXn5JfflfPwh4YhbtvSwZ48cBPz7Jp6LOSVXrSpj3bpqhobChMPNfPKT/8Q73/m2y6LUm4jaWiupJS58EzGOHvHS1z89H2yoKnYr8/vihMJpFi0uYfEiJ4FAchbBf/HFAYY8EfI5EZNRhc2mlW9ydQIGvYraOmuxfGrHjiHa2/0sXerkPe9pYeu2QTyeCBs31uAZijA6GiOTEUkm8rPKrs6H02XEZtPKIdW1VrIZ+boWjabZvn3of7Uwlc+LHNs6xOHnBqieb8dRacTTNcm+J2QHlEKlwOTQUbughK27hjjRHeRI7xeIJ0cBUAkWKkuvZU7N9ZSaXdTXljPEJKe6uujoOs1EoI90dozsDi+ZbHT6XZVo1A606lKMeifVZc0gWVELFvI5PWazlbvfuYKB/gzdp6eIx7PodXK+4NhYDIVCQV2dFUeJloA/STyRpbnZwvH2QcbGg+h0afKECUd8SITQGWLEk2cZPL2dY50y2dGozZTY6rGZG1CIbpSSm3zOTF9/iMpKOfzWZFSzcGEpU1NpPENhRFEOUTeZVBgMKpwuI4sXwdhYnOHhCA6HjvJyI9mcyP62McS8SCIhzwmFUr1CptRMLFnioq8/TCiU5sRJP5s2GYslqbW1FoxGNd5AkuHxOGfOhmbNByturKNtSy/P/6ADgHpA6o8zdjww6xo33htGKSgYnoijdeguKcIKgsDGDdexccN1jIx6qKyQx3ZHh48tzz3I13/4PDddfwvvfuf7uGLZmqLIpdGpUGmUhCYSF93uG4EkSWTTOQS1Ep1JzXDXJPFIGp1RLjl5vfkgFcuiFBRFN9iBtnE6O+WFxNbWahRKBY5KE96BCLlMvpiJVYDdqgNAZ1CRz4mIeXHWnPCBD3yNkye38Z3vfO2P/nyXcSEqq8ykmkvIAkeOeOnvD9F+3M+GK6u46aY5xTK7ykoTN95Uj9GgZmwsBkAmk+fRR7vp7g4yPCw/1rKghK7OII1N8tiXOYK16KiSOUKcJUudNDXZ2btnlA1XVhEKpRkbjZPNiMUxbbVpZ5H9+a1XMnb2NLse/jm55g/O4giFxeu2tpE/5+H7k0DM5+k7eoiOV15i6GQ7gkpNWX0D9ctWojC68E0pEMwOXtl5jDNnpjjUvp9jZ35bfL1F38CKBddTVzOPcCiNWqMimYzw5LPbGfD0EYqOk84GSecmKYhYglKHRmVDo7Jg1Ncxr3YFybgGBTo0agNXX9WEyWim/fgkuZxIKiU3EYpGsoTCKaqrzSxY4KS7O4jNpiUv5gkEQoyNTyJJaSRlkkwuQl6KIqgSKFVxvP4+eoZfhXbZcWU1u+gZaSAZdyCILpQxJ5kspJI5lMppjlBrZjKYIpHMEpyUAAmbTYfPnyAYSOJyGdAbVBj0KhwlWjQagcYmKy++2I9SUBJvytLTM3WOI7Rc/N5WqxWmOYJ8nZqZkXb7bU20d/gIh9M89dRZVq2qmM0RZjxXzq8NYTQ6LxCl3kjuGkBFmYtPfPADfORv3kcgeC4LdP+BXn780L/y6O+cfOh9d3H7zZuxWs4JzE2r1hINBjj09OM4qqpp2bDxjQy/iyKXzfLsN75EyDvO4k03UN7QiHoqi1KQq3U0ej1Lb3gLB596jEPP/JZ1d7571uv/EH4Ab4QjLOejH/00733v3X9yUQouC1NvGnK5HB/8zD9zlcGFrWoRXm+CgwfHii00b7yxoZh7U15uxGqTbzq93gTz5juKBN/h0LJgQSlr11Zw4MA4o6PyBHTzzXMY8kRmOVMKFsbCY/feuwCA7u4FnDjcT0voFO7Bk9Q+8HFGKpZw9l3vp/b9m4r7XLCKb9nSw6lTATQaJZ/4RAOPPqrB56MYvP2/GZIokuzoILrtZSJbt5LzehHsdvRLlnA2befoqECpzkp3OsZ4MoJGKkejMGATqnCrV2BQOBgdnqBr6CWieR/RIz7i2elOfAodZqGUUq2burJqSJpRpM3oBD2SpEAURYwGDalUDq1eRVWliVgsw+rVFTidero7Q6hVSurrrTQ22bDbtBw96itmz0QiGfJ5CVGSUAk6ljbPYWQ0QjCYRi/J2TOLFpbicOixWNSc6Zugo6ePkcAYKcUkfWPDBJNHkBARFCoc2nIWuObjcC+msrKcwYEoRqMajUYgn5coKdFT6tTPEpqGPBGCk0kUQFOTg1RquiV4pQm320zAHy+W6V0KlZVm6uoSVFbKTsKTJwIzMqpqaW4u5ec/P8FkMEVXV4B16yuLoeo7dgwx4U1QVm6gdnqVcaZ1t4CLNRl4PagEgWrXue3oHQnUKhWBaIAv3H8/X/rFL7h5/Xruuu46Nq28AtV0tpRSq0XpcqF2uTCuXYuUzZKPRskOD5MeGCA3Nkb0lVcITa8yq1wu9EuWYLjiCgwrV6CdO/eS5X9/SDji7bc3zfr9RjA0FObYsVEOH36Shx56gK997XFEUc5kufba97N69RvLV7mMN4ann97Ogz/5NTdv+hC+YFqeD6a74RSEqUJuVHmFsZgVlc9TJPijYzFs04RhyRIXL744gM+XxG7XsnCRk3WtlUXSXeiGVnCqFOYDALtNJq3uWgueocissqsCZoZ6Hz3mIxBMkigzopSmybhG+b8iOPN8SJLEeG+Yntcm6G/3k4xmqF1YQk2LA0upnsomG/FwmgNto3R3T1FpjbFmVT2eJ7oJRrKYdCvJZtM4rddjN7WSycXoG3yN0/1DvLTbQzg2gChmAQU6dQU6TRVNdStRCeUkonZ0WicGvY5INItKpUCrUaHWKNFqlOTyEldfXcOClnLGx4aKjrnGBjubN9dz+swUI8MR/IEkfX0RufRShNHRNKtWzqe3d4poNCNn7enBbFaxZnUlTU02hjxhuk6f4WzvGWKJYdLZEfqGXyUzPX/pNE7mCMtYWHY1en0tZpMZk1mDz5fAZNZgNsvtuieDaTo6fDS3lOJ0GfFNJAhOpuQxuLCUkZEYyVSOpkYb6UwOv1/ONVxykes0yGLVmvE4x49NUOjwd+JkgOPHJli2XJ4T3G4LExPjdHUFWL/u3BiPxjP4lHkS2RwqAdQqFZWlOo5tHcJo1bB4Yw0A430hlHqBgaEoGqPm94aZA1RXnQsKX7LEBU/6yIs5nt/6NM9vfZqmOfO47ZY7edtb3kFFWSUGi4ZIIIkkSiiUf3hpQzYtf5eCWkFpjRlJgsGOACUVJuD154NEOINGJyCoZGFqbWvFrN8Arlozp3aPMjURx1kz26GTne7wiFLBqTMn+MaqT9LYtIRvfvPrdHYGGR018Ja3fATNm5yX8v8zstksH/74Z1lW24zdOY9xb5yDB8eKIs9NN80p5t5UzOAI49448+c7igTfUaJl4YIS1rZWcqBtjJFRWQC/+ZY5DA1FZjlTZnKE5pYSbrpJnuO7u+RFudpaCxqNQDiUviCAXaFUUrtqE6defIy+l5/m1KmaIkd46CENwSDY7bo/3wF8kxEJ+Dn56suc3LGVeGgKW3kF89ZuwOmuw1xSisZg4NUdHl47Mk7jiJ9oJEMqlUOtqUFQ6jFp51BiXI1GZccz7OVM37Mk0mOkcl5SGfkaq1Ia0KldWAz1mI2r0Qgl2ExlKJV6kok8mWwejVrAaFKjtss5fqWlepYvcZPJ5uk8FUKtVuJ0Grju2lr0BhU7dw6fxxFEObZDbWTpYgcjI1GCwRQ6BRhNKqqqLNx+u1zu9eqrZ+g808u4b5ScGGBgeIBwrA2QUCrVWAxVNNUvoKJ6OVVVFfT3RzCaNGi0ArmcRGmpgdJS3SyhaWgogs8vc4T162Vh/9RYcJojWPD7E8UyvUuhssJEbZ2Fyulr38kTfo4dn2D5sjI2XVtLc0uJzBEmU3R1BVm3rgqXy4DPl2DHjiG83gTl5VPU1r4eR7iwycDrQa1SUVF2bjsGcxS1Wk1wystXvv1dvvWjn3D9NVdz21s203rFSgRBYOkNbyERDvHyT7+P1VlG1fw/XMSRRJGXfvgtRs92s3DjdZQ3zUNQq3G51LP2u7yhiYqmeRx9/hkWXLUJW9m5a/8fww9A5ghHjw7T1vYYjz32K+677ykyGT19fWFuvPHvWL78z8MRLgtTbxISiQT7Dh/mae8YX3vfvzB/vhu1WlF0TMG53JtwKMWZ05MYDGqUgtzlbOYEUlIqB90uWOAgGExisWgY8kQQ8xCfEbbZ3Fx6UZfKucdXkQ+HmXh+G5XHjyB88+8ZeGUJjnvvxXLD9XR2BnnppQG8Xjl4vbxcblX7zW9a6euDFSv+d3blk0SR5PHjRLZuI7ptKzmfH6XFgm7eXIxXX4W2oZGD3RHu+/VWOibaUB9WcYX+nSgVIOYl5mmuJSpO0JveR0T0IpJDQI1ZcFKmbcSoLsUglWE32NDq1GQzIvlInnxeQhCUlJbqEUWJaCxLXpQwmTRUV5u58cY6NFoVbreZ3z3bRyaTx27X0dpaKdtinUbUaoGdO4dJJLNUV5tZuLCk2DJ23foqtm0dZOu2AbLZPCpBwekzQUBBKplHkiQqnLVUGGtBAVqNQCqTxhMYIZwbJ5gdpa1/L7t6tqNSaKi1z2F5wxLq7XNZ31LFpk21s4IyQc6C6nZMolIraGy0UVZmmCWQzizTm+laAop/L1pcitWmLQabRyLpWRlV3d0BEsksZWVGjEY1Hk+U3p4pnn++H41WQK1S0tsTwuU0cvddF7/Qv5EW36+Hd91yJW+79gqe2rmTB559ho7eXp7auZOndu7EZbfzi3/+AlcuW3bB6xRqNSqHA5XDgX7JEqR8HjGRIOvzke3rIzMyQqq7i+irr0I+j0KvR9fSgmHlCvTLlqFftAhVyR/ePvbtb5/3hlZCCsjn83z/+w/w859/g0jEB8D99/+Y2277OCqVAqv1MgF5s7FnzzGee+WX5HLw1+/+VDEE+8oNVcXnnMuOSnH69CQGoxpBAINBNUtoKp05J0wmyedEpiZTJGbOBy2lF3WonP9/TY2zz9MCCt0CQ+E0yUQOpQJMFg3JoEy6HQ7t/zq3VDycZtcjpxk8GURnkjsUNq104agyoTfLY14pKBnxxnl++2u0dz3JmH8/7V3/zvh4OUoFmPXLERRW4qle/OGXyeRkkU+rdmHU1VFhvxWtqg6jwY1Oa0AUJVRKBWqVgKTLYTKq5S6pSlCrFFSU6qipMeNusGGxalm8yMmOHUMMDEawWLXTIbKVNLeUUlqq57HHIgQDCew2LfX1FjIZkeoaM+vXVeHxRHn5lUGi0QzJpBxwe7zdx9FjE4h5EbO5hHlzNpDN5jGbtUxNpYjGfMRT/YTjPYx5u/nxL14GwGJyM79hFaX2lSxevJzbbp1bdPAVxqLfF8dVZqCm2oyjRIu71jIt+kizPkdVpUwwjh7xXjAfyM6rwjiV8Ptk1/jMOaG6ykhHu0AuJ+LxROnpneJA2ziuMpnQ+WNycHNraxVXbarl4LN9HH5ugIZlLvQWDeO9IWwuPXaH9o+aE5pbSnnxqWfp7D7Br5/4Jc++8BQ9/We473tf4hvf/zI333gbf7v5i4z1hEjGsxjMl75+hiYSqLUCxvOIWSE4XaVWYrJpsZUbOLbNQ/U8B2X1ly71AggHkuhMapTTwlRrazWtrbPPzbJ6C6d2j9J7xHeBMJXL5AnGxvnVngd5rXsHAF3dJ7jqqnsxmaw0NFj/W23NL+NCxGIx2g4e5KWXXuRzf/8V5s+vRqNRFh1TcC73piAUGY1qhOlMnws5QoSWBSUEgymZIwxFyOcl4olz3R0LXc/Ox/mP+3yJomNqJkIpM0lVBW7taaxaO+XldWzePIeqKjMeD6xe/cYd4X8JkESRgY6jdLz8IgPHjyCo1ZQ3NDG39UpKKqvQW+QObwC7dg/wk1/8lh7PHnQ6A3WOd6NUgCQqqLRuJpn14o1sJ5kZQyKHUqFBrynDZmxBaylDrSjHYraj1apIJnPkcyIKJahVWuwOPYl4llAoPc0R1NTXWVnbWolGI+B2W/jd73rJZkXKygxcdeW50rlkIsfOXR4SiRw1NSYWLiwlEsnIHGFdNdu2DbJ1az/ZrEg+LzI8HOaFF/oJBlOEQimczjmUWOegUIBGI5BOpxmbGCKSGCGa9NBxZgevnXwBQamlwtnEoublVJS0sGFD9cU5Qq0Fl1Nf/Ntuk8XKgkA6s0xvpmsJKP69aLFzmiOop/OsChxBRndXkEQiS1mZAYNBjccTobd3iuefm+YIaiW9vSFcTkOxE+D5OL/JwB+Kd915LW+7uZXfvbSNR554kjO9ffzupW387qVtuEpL+eHXv8ryJYtZdesd7Pn1gzzzjS9xz1e/g63sjZ8jkiSx81cP0HNoPy1XbaJqXjPq1wkbX3zdTWx/4Mfs/OUD3PaPXyw+/ofyA5DNNd/+9k948MFvEY3K9zj3338/t9zyoT87R7gsTL1JsFgs/OZHD/CO99zBV578Ntt/+ANWrmjmzjvPnSSF3BufP47VFqW7K0BXdxCdVs1ttzXR3FxadIlEIhlWrCjnE59cgccTxWhQXTLoGS5dyiRYrVTecyf5t20mvm8fyWPHGPv0p5n4ip2mjTdwJNlANJpFq1WhVguyBVNZICL/e1ZD8rEY8bY2Yrt2E9u9m3wwiNJqRTd/HqZrrkFdV4/KbmdwMsn9jz/HI9ufI5aWQ5/UWQ2n821E834msyOI5BHQYBOqqNesxqqswqR0YjTInfMikQy5HKQzEiqVRDYri1LydVTE509SXWXC5TKSSuWYO9fBunWVxe8vGEjS3R2QOzBWGdm0qQ6fPz4t2mQIBBKkUnlamktnjR+AG26sw2TSsL9tBI8nQi4rotOpUSohlwOjQc1b39rAyZMBuruDVFXY0Gm1+CYqKVMsZolJgT82zkRqiHB8hKeOPIGExPK58/Err+SW9Ru4+66W4jjs7AqQSGQRBAX9/WHmz3fMugEuKdFhsWgoKdHNci0Bxb9XrpAvzIVx3dhgZ+M17lmdKsdGYzQ22lm6zIXbbebhh7oYHY3JK++LnfT2hiiQFmBWtlVzc+kFmVJvFOefN+/ZvJl7b7qJ42fP8tgrr/DEqzsIhMM01dQUX3PszBkMWi3z6+ou2J5CEBDMZgSzGV1Dw+xA9f5+siMjZMdGmXz4EaT75ZJRVVkZupYW9MuXoV+8BN2CBQimc5+l4GwsBPv+IeHo6XSahx56iG984xv09MjlSpWV1Xz601+gqWkTgUCScDjNiy8O8OMft7/hmvTL+P34xCc+SHDEx8NPfotFi2v40F9/7ILzuZB74/fFsVmjdHUH6OoKotVNzwktpfh9s+eET35iBSdOBgDpdUn3TAfUTMfI+eHrBRQFhOEIgUACpVJJMp0vlnooL+xM/xcLSZI4e8jL3t/2IEkwb005zlozOqMatVYofia/L84rr+7lV4/9hJ6BtuLrd+zZgpizEEmcKgpROnU1Zv1ijLq5GLRNGHQWFEq5U102KyGJgCSRz4lks6BUKtDrVIQjch7Lwloby+ptaFWy+1IdE2lZ5SAQSNLTM0UsmsZq1bBsqWvW997TGyKeyFFZZeb22+de8N1df10dggCHD3nJpEUEZa6YU2Q2a1mwsIREPMvoWJy6OiuTkxomp0pRsZgKu4BCiDHuO0E8fZrOnh3EE09yoL2UgfEbuW7jTdz+jqsJT2XZsWOIrs4A4XCaxiY7sWiWA23jbN5cXxQ9lyxxMToaRxAUdHT4yOfP7Wdhtbqw/35fnEgkg82qY/EiJzar7pxQG0qj1giYjHK+1EMPddHZGSCVtnHjDfV4hiPTAd7ynKCvMhAcjfO7B06y4ZY5pOI5mmot1FyidORSOP+cWdC8mK9+8dt87pP/xkuvPMuW537La8cOUmIvoWq+XQ7If2WAgLKb66+/HoNh9kr84MkAL/zoBEqVgmvePZ95a86tasfD8rgoBKkvu97NoWf62fLNo6y4qZaVm+uL92IX7OdIjFQmT2/vFOmseNGQea1Bja3cwMCJAKveOqcY8H/y5En+8T++yLZdv0OURBQouP6627jrXZ8ELPT1hVi7tpIjR7x8/vN7L88JbxLsdju/vP9B7r73Dn788Nd48sGfsXLlfO6881yGWSH3piAUdXcH6eoKotOppueDkqJLRJ4PyqY5QgSjQX3JoGd4/VKm8/N2CnC7LXQYF2HNbOe6+T1kVYt58cX+4vWzpOR/B0fIplN07n6Voy88Tcg7jsXponH1Olx19VhKnWj0huJn6h/w8eBvnuSZF58hOc0R0tkYI9IeEpkxYikPkpRHqdBh1NTgMl+JQetGp3JiMKrR6QQikSz5nEQ6LaJUiHKDAQBJQTiSJhrLUlVlZu48A6lknrnzHKxrrSx+f8FAku6uIMlklspKE5uurcXnSxRFm4A/STKVp6WlZNb4AbjhhjpMJjX7948yMBAml8szPh6bnp+mOcLbGjlxQuYIlZU2dDodQ0PlmDUrqF5gZHRigHH/WSLRIbbufhhQsLhlAUnxGq7feBV3390sj8PtMkfI5kQEQcmBtjE2b54zSxyazRHOuZbg3JywcuX5HMHGNde4Z3WqHBuN09hkY+lSF263hYcf6mRkNEp1lZklS0rpmW7oUMDMbKvmlpJLjvHfh/PPm7vffht33X4rHZ2dPPPCVp5/+WWmQiHqamXHrUanw9i8lDM7t/Hkl/+ZO//t61hKLr5gOBOSJHHgyUc5vvU55q29kqr5LWgNr89p9CYzc9eso3vvTh7/2XNUL1j2uhxBkiR6Dx/gxI5tJMJTlDfOZfGNb2XL8y/wjW98g4GBAQBqamr5zGe+SH39lf8jHOGyMPUmYsnCOp77/D9y83338bbPfoaXvv0dnHY7cCEBdjmNtB/3EQlnCAbPBWiePOGntyeE1aYtdlArEHuQCfmOHUNFQl7YbjiUwuuVy0QuRtAFkwnLjTdi3rSJ1OnTxA8cIP3iM9yRSrHBWMKJqmVMSFb+/d/34/XKNlRppmT9FwZJFEmfPUu87QCxXbtIHDsGuRyqsjK0c5vQ1F2Ppr4ewWZDaTQSCIX4yRO/5adbniaWlI+TSqFGrVKRzCYZSh2nVFtNvXYNNkUNJmUJarWS3Iw8wmxWRJJyxZttORddwmrTEgmnsFp1qFQKsjkJrVZg2TIXFosWkDh9epK+vhDLlpXR2RVgeCSKoFQgTJeI7d83xq5dHvR6FZVVsng1OZng4YdPMRVKE49lCU4muXaTmxq3mZIzeiYnU2QzeWx2LTXVZmKxHLF4liFPhFgsiz+QJJcTWb26ko4TPkJTChQKBXOtc3CGqqiqNHLbHbW0D57k2T37+NIvHuQL99/Pgtq5rJ+/GkuunlBQIhpLE4vm8AdSAExNpYquqXXrq6hxW4p5aeXlhhnOwDThUEoOZj0wPisj7fxOlfGYXENfOD/WTge2rl1bQWOTnRq3ZRYJn9le9lLZVvD7s6cuVgKoUChYPm8ey+fN4ysf+hDHzpyhovTcufaFh35K26kOmmpqeOv6DdyyYQPL5s69aKcKhUKBQq9HqdejrpA/k5TNko/HyY2NkfF4yI6Nke7rI75/P1ImAwoF6poa9AsXol+2lN6wlSPDOiSDkVxOPiffiDAlSRKrVq3ixIkTgHxj/LnPfY6PfvSj6PXyCtfQkNxa/Wc/6+Do0QngjdWkX8bvR22tlX/+1KcxGvPc970vYTZZuOfO9wIXEuDCz/H22XNCQZwYGIygUQvFrJ9Nm86N5Zlh0wVBo1AW6B2Xr3VvpJSpsA+hcIpSpwGzOUc8mcWskAntX/J8AOAbiuAbihKdTDF0KkhwJEZZvYWaFgeOShMq9TllTZIkdu3bzje/9026e44VH9frrKQzMXyTx9ConJj1CzHqmjFom9CoTSiAvBy5RSYrodUqEEWpKJlnMiJ2h45QKIXdLl/PhvvDLHXbqLDpyaoUVCxy0NsTQh/NcPjFITypDN3dk0gSqFTK4nVu3/4x9u4dIZeXcDjkNuIP/vIUDoeedCrL6dNTbLiyijvvbMYzHKXzVJBUKofNrqWuzoJepyYUTuMdTzAVShVLRquqLPJqek5EqVRQWlqBQedApdrIW986B61hnOe2Ps/+gzt5fMsjWC125jdeRam1FbWyFoVC7vjqGZYXRqzTTqDCGHzPe1o4cTJAJJLGYtHM6igZCqemA/1HOXJkgtpay6xzoAB3rYXR0ThrWytwuoyzStVWrCzH7Tbjrjk3J3T3TBGNpKAP9j3Zi96sxuK6sBsdXFqwhXOuQZh9zljMFt55+7288/Z7GR4ZQlCpyCKhdWh54pfP8/3nPo1er+emm27i9ttv5y1veQs2m42jW4ewlOoQVEp2/KobSaIYRh4NyvOp1iivROtNGlrvaKRz9yivPT9I31E/G98zn/L6C6/10WCKBBL+Tj958Vy4+/mommenc/co3r4wVXPtPP7449x1113F/1/e3Mpblv01//ijd2O0aYvzwYIFJXz+83v/oJySy/j9WLq0gZ/953/wwX/+Iu/9+4/zyE9/VAxXPp8Au1wG2tt9hC/GEXpD8kLVdAe1ArEHmZAXOcK0kOXxRAiH0ox748AbK2UqPK+uoZzTbW4aSwbpT3v47Ge9xOPyvPKXPifEJoO0v/wC7S+/SCYRx1XfwNLr34KjugajzV50RwH4A0EefPQxHn78KZIp+fMJSg2CIJDJJvFFDmE11FJmuQqDuhatyolaoyB3zqBGNptHFCGfl4+LJEJeFDFOu2ZLSw1kc3myWQmdbpojmOXr5+kzQXp7QyyfwRGUSgWqaVfk/v2j7NrpQa9XU1llmuYISR5+uJOpqRSxWJbJyRSbNrmpqTFTUiJzhEwmh9GopqbGTCyWJRbLMjQUIR7LEAjI7uvVaypJJnOEQilUKoHaykY0igrmzbdz9z317D90gG2v7uKbP/wxX/3O95jf2MLKxetRSXOYCkpEYxli0SyBgDxOp0KpYlnpunXV1NRYinlpFeXGWc7AcChNW9soB9rGZmWknd+pMh7PTnME+fxY21oJwNrWShob7dTUWGaJsrM4wussUPy+7KmLlQAqFAqWLlzI0oUL+fw/fJzO02dw2GzFbd33k59zsruTcquFLfsP86kvfZVrNt98yW52ophnzyMPcvSFZ2hYuZqaBQsxWN7Y4nPT6lbOHjnK0J7fcnrURm56PjifI+RzWbb++Luc3r8be2UVWr2Rzj07uedT/4Q/KkcGlZaW8vnPf54Pf/jDaKedWv8THOGyMPUmo8rh4NlvfJNNH/koq9/7d3zvw1/glhsWXpQAr1tXidF0rozP548zMCAr9Aa9Ws6NsEVnEerzCbnHE2Xf3lHi8Qxut5lwKIXPH3/9cOhFi4iU1dNzcABNfyemiX42BXcitG1nU97CVkUJ9r/+V95y/fV/8uP1RiHlcqTPniXx2mvEDx0i8doRxGgUhVqNZs4czNdsRF1bh7qyEsFsRqHXz7oIvLT/CN/89a9nbVOt0FOqrMOmdWMTqlEJalSCfNERRWmWKCUIoFLJPdVnzsUVFUaCwST5PBiNajZurOX48QlSqVzRYt3bFybgTyBJEpGIvNqhVgk4nXrWravE54/T1RXE708iCArmz3ewaJGT8fEYhw6Nk0jIoei5vMSePaN84pMrpomHCp8vQSqdp8ZtodZt4cCBcWqn/06lZIeWyaTGapFt2qlklrNnpxDzIqFQhsG+FFc0rcaSaeKjm1VsP3qQnSfa+Nm2R1AoFNRYGqk3L8ZENUoFCIJCzj4bizE2Gufe97SwckU5R4568XrjzJvvKI49qy1a7Co5OBTBbFIXSwALjqdatwWNVkV9vQWvN4HHI4/380sTzh/PBTFLp1VddLwDs9yHF9sG/P4SQLVKxeoFclaPxxOluzuAQlKhUavpGR7mW4/+hm89+htcdjsbV6zgprWt3H711RfdVgEKtRqVzYbKZkPX0lJ0VZ3tGMbz2mkajEn0+TCJ9nYi27ZRmc9zByBaHaRcbizSAsLiMrRNTWhq3Sh18qql3+/nhRde4J577kGtVqNQKLj22muZnJzkU5/6FO9///sxmeQSm5mtyDdvnkMymcVoVP/BNemX8fvxkb/5NGMTQf7lK5/h2LExPvcPH78kAV7XWonJKJfxFUQprzeBRi1gNqtnle4V0NHhmxU2vW//GIcPj1FXa8Vq1WAwXHyan0nQQR7fhmmBWa9XsX5dJYf2jtLkcvO2a77Ov9y36aLb+Z9GPi+y77c9nNo9CgrQGdWY7FoWrK+gxG3BaNVccEPom4jxz//xeby+weJjClRoVTU4LYvQqlrQqFwoFQoEFZhMGjLpPInkOQuQ2aRCoYTYdDg8yOGtNpuWqckUoVCa69ZW02zUk8uLnJmKc9vfLCSRFelsG0MIpVlRYSEbzaDTqRBUCrl7InIJ3MhwhFA4g1KhwGLWIIoS/X1hhgYjRCJp4okce/eMcuedzaxfV0kwmOTIa17EPLhrLGzaVMu+/WMEg0lq68wMO/QsWOBgZDSO2ayhocGG3qCmv3+KeDyDQqGgry9Ca+tcrlj0Xm6+7sNEYh5e2fUs+w6+QDz5DAZdGZWu9VS7riKbNqPRqigp0dHR4ePwaxOMjsZ5z3tasFm1eMfjuGssxfFts8pj3maVM1CisQyR6LluUt1dAfa3jRVX2MvLjWg18tg9fz44X8hassRFWzSHJCkIjsaYv6Yco+XCEoiZ7sPCdmbijZSE11TXFr8jbyZLRpGixFxOMOply5YtbNmyBUEQuOKKVdizTdx9x71csWkRR18a5NWHuxHUSppWljE5FkejV6Eznjs/NVoVS69zU9EQ5vQBL099/SgpvZIr3lrPlRvl903Fs4hZkZIqI64mK4lLOOnz+TwTyR6GggO0v1JC1Vw7V111FVqtllULr+L6ZXezuvUKel7zkcvkZ80JtbXWPzqn5DJeH1XlZfzyR9/nzvd9kBve/j7+/TNf5sYbWi5KgNe1VmE0nivj8/kSDAzKC8cGg4ZxbxyrTTuLUJ9PyD2eCHv3jpJIZKc5QvqCLnyFbc8k6D5fgpMn/ESiaSx1SxF9E5Qm9zI2uorqmtt56qmvsGHDhfEGfwnwDw1w5LktnG7bg1JQUdE0j4rGudgrq9CZzBcVCF58ZS8/+9XDsx5TKY2YtHMwmuZg0NagVqtRKmQeIIriLFFKEEAQlPK2L+AIKdJpEY1WyaZrpzlCMk8wmMZi1tLbFyIwnVcXiaYJBFKoVEqZI7RW4fMlihxBKaRobi5h0WIn4+NxDh0cJ57IkUxkyeVF9s7gCDqdCr8vQSqdo6bGQm2thQNtY9TWyn+n0vlpjqCivNzIvHl2UqkcJ04EyIsikUiWWERgSfN6tIoW/uodSvYc3M/Bo3t4ZMsDKBUCZSXzqShZhkANCoVcGn+gbWyaI8S49z0LWLmynCNHvMW8tMLYm9lVUuYImmIJYMHxVMhBq6+zMu6N4/FEcLkMtLZW0dp6Lhbh/PFcELN0OuGi4x2Y5T682Dbg95cAatRqli1aCMgiVmenD6VSi0oQ8IYjvHT8FC/d/FacDjs3bn4Lt91+O7fddlvx9SHvOC8/8AOGO08yd8163AsXY3JcXEg73wUGoFQqmbf+OrpeeYr5ti7M8667oAw7k0ry7De/QvexI4QMNq658RaMNjupaJRnO7rp6B/kI3/7t/zTl79adP3+T3KEy8LUnwA+D6yx3cHOscf46A//naVLf3jRG55CFlShjCs83Y6zsclGrdvCkCeC8TxSMbPOvLC9fF4kOJlCp1OhVCovELNgtjMkGEiyZUsPPl8Cp9ONoaSeWGqCFsGLM+PnTmEM0/7HCW1+itS8uehXrsSwciW6+fNRV1Wh+BPXdIjpNJnBQVJd3SRPnSR18hTpM2eQ0mlQqdC43eiXLUVVWYmmugbBbkcwmVCo5W42E74YP/jh05wZHGbJogoOnj3CvpPHATAobZQLLZSqGtArrLMmKEkElVaJ0aghMO0OArmbnNGoJp8XUamU6HUCsVgWp1M3HVAZR5yeiFLpLLF4Fp1WIBbLMDAQQVAqMBrVlJUbsFg0OBx6rFatXALRXMqRo16MRjWNjTZAFrjq663U11sZG4vOckxdeWWV3BI1lqO21sKqVeUMeSLYbVoOHBhHEBQkk3msNi0f+NvF9PZMseXpHvI5eWXbO5EoOp90ujyRcJpXdwwyPh4nGEzhcFSxoewdNKkm8cS6GE+cYVf4SYxqC9e5r6Jl6WbElIpgMEkwmOThh7rYvLm+OK4L3SWXLnFhNKhQCnJ3SZBFrbGxOPFEjvbjcoe9sdE45eXGWXlrBXR3B3hl+xAA111bO8sZ1dxcSjyRY9/eUfr7u4rHcibkcMjsrFX78xEMJOnpmcRoUBXPmUu5rArb+NUN/4ZWL/Hy4UM8t3cvLx8+jG9qise3b2cqGi0KU5Ik8Ztt21jS1MT8urpigHoB57/P8cEcHaNWgksbuevO+XIJYDTKqZ0n8Z4coN6ewyHFyL38HGNP/pq0KHIyleKYUkFbIsGRQABRkigZH2fTddehKi3l85/8B7761a8WVz8KOL8V+R9Tk34ZbwzHjnnJxW6i2unn6Ze+g9Gk4KN/+zHgQgJcyIKaKUqVlxuKoeUXE5lmZlEBBINJIuEMgWASk0lzUTELZrtDuroDHDo0jtttZmoqzeRkCp1WRXWNGZ0kUFe5gNLSxjftmLwZGOsN4R+KcubQOIGROA3LnZTNsaJSKxHUSrR6NUpBvr6fPevhvu/+GJ26AUHbQ9vhbQSnxlAo1Fj0S7GZ1mDUzkNQamZyChQKmWzo9QKR8DkRxWxWodWoMJs16LRZJqeSaNQCGzZUceTIBDq1wJXzS1GHs6SUCp57bYyMRmD5mOxYcDi0TCKRFkVqLDosrVXUz7GweJGz+L1U11hYA/gDSfR6FU6nAa1WSTotznJM+X1xTpwMTOcQVpJOi9hsWnbsGEKrU6HXqSgpMdAwx47bbWZo6Cxj4zEcJTpKSvTs2uUhnsijVMrv1dc/xWuvjZNMZhElaGm5C6v+Zjq7j+AN7qN/+Hn6PE9TV7Oa669+J61r19HXH+bEyQDBySQPPdTF2tYK5s93kM7keOzRLpYscWEwqIr5aetaKwmH0giCghMnA9isUY63+zh+fAKLRcOqVZXF587E1pf62LN3dFZnS5DPm0Qix+muAEaNmte6/KS1ygsy137fnOB0GQkEkuzYMXSBA/F8h1Xh9ddsuptV865kONBLqqyXZ559mu7ubg4ePAAc4M67bkelEVi5uY5Hf/o83/3Xw/zVJ9/GyOkEJrt2Vse8me+17s4mnn+4C3U8T8dv+zBlYfHGao7vlTtEDnvjuJqsrJh2y0iSxOjYMK8dO8jBI/t5dc8rBCf9LJm3ijrnQiYGI5TXlePxeNj7q2HyORG9WYMkSsQjGTrPTl6eE/5M8Hs1zKt+Nx29D/EvX/88y5Y/cFECXMiCKpRxhUNp8nmJigojJSVaLOYLc6Eu5AgWxPwwwWAS3XQZ8/liFsx2hgQDSbY83YNvIo7TaUChVJCZqmGZ6yybVwYYSMwnEqnE6XT+yY7RH4Oxs6c5uOVxBo6/ht5ioX7ZSsob5mF1yeV6BUxMxPnJAy/QPzjKwoUujp08yNETRwHQqkqw6hdj0TWhUdlnbT+fA41BicGgIRg452LTapUYTRpyORG1SolOpyQey+F06igt1ROZjFBqSlKiTpH1J7BLk2hNIsLUKN6ECpNChUKnwuqwYdKJ2O06ViwvY/PmOTS3lHDkiBeDQV3s0G4wyJlU9XVWxsZjsxxTGwocIZ6lrs7M6tXlxQ7fB9rGUApKkomczBE+sJje3im2bJnmCFYtXm+iKNTEohm6u4OMj8cYH4sTnEzicNSxaE4tZeYAvtBJJmOnGA88jEHnYMPqTSxZejPplJpgMEUwmOLhhzrZvHlOcZwWukvKHEHOUGuZFlKUgpKxsRjxRJb2drnD3thojLJy46y8tQK6u4K8sn0QgOuurZvljGpuKSGeyLJ37yj9fZ3FYzkTHo/cCEaeDy4uPAWnS+2NhnPh45dyWRW2cdNN30Snz/Pq3n1s3b6DPW0H8U9O8fAjjzB0uosmm4lsJo3nZAePPvEkjVUVrLv+RqrnzZ/llDr/fS7lAgskrcRwMfraVt711o2UT7ulkskku1/dwc+//lWOnT7LYGASSZJYu+lalpc6Mdrt/Oc3vsmJF58hNjHI+OlTNCxfBfzPcoTLwtSfAAcOjKPKWbim8l0ciz/NjZ/4OFv+8+usXHGuo9FMUjqzW19jg41IJE1X1yR5UZwVdg4Xillut5nNm+vZv38MrVZJebmBTDrHz39+ohiYDbJlslBmtWPHEB5PhFRKduLMmWNDKHUyYqwkZFTTEQixqirNfGOU7NgY4aefYepXDwGg0OvR1NejbZiDuroaTXU16spKVE4nSrMFwWJGodNddEVCkiSkdBoxkSAfCpHz+cn5feR8PrLj46T7+8kMDJLzeinYklQuJ6rycozr1qEqK0NdXY1gtaI0GIpOkQJSmQwPv/QSX/vlwwQi8gS77QzY1BUstF3JfNcCfCOv3z0nL0okoklKhSR2IYVDncauSmEXcjis4DAA6QymSolUKk9yLMc1ZpG8SYFObcA5bsepy5BRa4iEtEQjGvIGI5m4lZxDS2WlCb1RSXWNiVg4z333HWRyMs2CBSW86x65VvzkCTk/ZtFiJ5s2ze6C5fPH5fylsRhXXFGG3a5jyBPhbE+o6EqKRNJ4py3bBw6MM+GNo9WqaG+fIBhIo1CAXi8wd66d48d9RCJZ0ukc+bxEKp1DgQKNysAV7nVkMmuIin76o8d58fhWXjj+EusXrKSldDWKmJ3RsVhRwe/pmcTvT9LTE+LkiQBXXFGOmIdkUp7w5DwCiTOnJykp0WM0qYqOqXAoRcKbnTXe2zt8tLf7UABOp/4C4akgyhb2odA0oCD0nC8GF84XOBfEe7GSwP37xjj82hirrqic1Zb2/ByrO67ZxB3XbCKdyXCos5OdR4+ysOEcWRrx+fi7b9wHyKsqjdXVzHO7meuupaGqCnXWQWpKX9z2zBtKhVKJwmBA1Gp5tk/BGY+DerGUj39kEZ6xXj73s/s55fGQmRniAjTr9Yz96McMTZ+vAH6ttnjOKPR6lAYDDZJAWSyLqUfJ4G8UkM8hJpJYbn4LpR/4wOudIpfxB+L4MbnVcUvDu5nfXMYjT3wbq03iHz7yT7OyjmaS3wKBNpk1OF0GJiYSDA/HcLoMF5DtQki2xxPF74sXXVc2m5ZQKE06k+Ppp3sIBpPFUG2/L04onKa8Qp4Ttm4bYGoqjVKhIC9KKIBsLk/tnFIyfVGsZi2dncE3nG32p0Qum2fv4z107RtDKSiwOPUs3FCJs86Czqie9dzTPV3857e/wt4D25Hk2msEpRF3xWqqS9+N1TSfyclz15wLClMUcgn35GRabiAngaAE5fSKeV29hbo6K709IRqbbHj6wyyoMDO30owI1K10oirTcDwaQBTz9PYO0NXlJ5lUsHx5A0pJgWEyw6K1dnKSmgd/eZLJYJoFC0umu9E1FYWnQsD4+Z0UCzlUOq2KxiY7alWWnp4QA4MRSkp0rFlTQaGcHCAQlEPzDx/ysm/vKEpBgUqYDsJN5WjbL3f6yuckFEo4dHAchVKBq2QhJdYWcvkUydwRRv07uP/hT/Dynh9w1dq3U1GxnvHxLKNjMTxDEZYscfHUlrPEoln8/iSZjIggKHC65LlpToMVi0VT3LeSEj3LlpVNO6bUeOPZC0TVPXtH6esLAcwSpuDcdf54u4/enimiyXzRTVQ4ZoXnGAwqPJ5o8bUzz71LORBXrZo9H8x0bemuFUhsyXLFuqv46te+wuDgID//zqPsfGUPS5cvlcedWuDI6FZ+99KT/PjFf8JiKGFObSMLTrXQ1DCXivIqrMbF9JwNF7c/f20FJ496carUHHi6jyMvDhJLRBkLBjgzriElyPv4T//+SXbv24HXNz7rmJjNFuY01qHSKNn5SDdv/+xKnE4nIe8ZnLVmDNOBttHJZHGV/XLo+Z8eB9rGUEoOlja9lz7vo9z9gb/jFz/4DitXnsuynElKZ3bra2yw0dkVwDseZ+3aygsEpvPFLLfbwubNc9jfNopWK1BRbiSTyZ/jCNMNLcKhdLHMqsARkkn5HLTbdeQlF5I+xPKy00jZRVzkavk/AkmS8Jzq4NDTjzPceRKTo4T5667ENacJs6NkVnh0KpXisaef5YcP/JJQZAqAtnYw62toqLwed8VivKOvwxEUcpleLJouPiQIkMuLZLM5aqrNNLqV5OJByqxJ0uFB1GKUxYvPHSspBGV6ibykJJfMk4qLiGKWUoMOpV9B3A81CjWmklL8Z4K8/LzAeFDNgoVO7rlHzm46eUK+Pi1a7GTTeZ1yfb4EDz/UyehYjJaWEixmLS6ngYHBcNGVFImeK+s80DaG1xtHqxVob58gEEihVIJer6J+jpX9+0aJRDKk03nyokgqlUOhUKISTCxs3EgqvYFUdpzxySPs2P8Mr7Y9w+plrdRVtpKJO87jCFP4/YlzHGFVmcw7UvJieiGzrDAfGI3qWZ0j4/HsrHD/9ulrtcwRDBcITwVRdjZHOCf0nC8GF84XOBfMfjExaP/+UQ4fHmfVqorZHOG8HKtbN9/ErZtvIpVKsX3bNra/8jLlBh3bfvo9FEolMaWaxw+3A+1oX9hBfa2bhro65tTVUueuQSE6iRQ4gstwgegMkM3leGV7F309Vja3RHjiK/9K+VXXc98Pf0xHezvZ3Ow5dFFLM+n0ufFbWlrClXfdy97f/IoXvvt13vEvX6Gyaf7/6HxwWZh6EzE6GmW0O1h0iKxdu5Tapk3c/rl/5LqPfZQffPKfqDLXzxKjQHaZeL1x6utlkn78+ATJZI7GJtsFq3oXy5RauaKceCLH88/3cfiwd5rIxLFYNNRMn2Qzy6wKZVCnTvnx+ZKMjka57ba5xc5pz+0Z4tFRL7duWsPVt96KGI+TnZggOzIsi0mBAMljx4nt2o0YjXIBVCqUGo18xVYoUCiVSJkMYioFonjB0xU6HYLFguBwoKmrQ79kCYLDjqqsHJXVWszoUaguPlwPtJ/hS7/4Lw6faSdTPAkVWJTlNGmuwiw4MagErlhSwyv+ITLpwiQh4RBS1GvCVKpj1GhjlKlilCiTzMwcTYkCUzkBb1yiO6NgQhKZCGe43V6LqFWjUMAjE728PDxOtCNL7iJ196/OacA+oSfX6eCRgJdHBs+iUgqo0aFS6HH229jR70aLlXmOpRi1Zqw23SwhpFCaNu6NEQmnEZSK4kWzsspEXa0FQVBgsWiLmUxr11YQDCbRaAW6ugJIkvy1NDY65DawGhVGo4TFoiYSyZLJ5sikRVSqfNHqa1FW01hRh8l2G6f97ezq2svOjoMsqJ3LmtoryWRK2LKlB++E3DlKq1UyFUrT1RVkzZoKBgbkDhpGk5N1i6uw2i50I/n8cSAwqxR16RJXsZXy0iWuizqZ5syxkc/n8fuTbNs6wMREgmXLyti0yThLSDpy1HvRYPaLXegLjpOZuQ4Xw8z9uXLZsgu69kUTCa5evpyjp08TTSToGhigazpcEOD6hTdwz9W34XabOdHby8ZPfBi9VovqcYFMNksqkyE3LTy11lzHEmsVwxMZDA4Hx6a347LbWbtoEesXLOT65cuptloRIxHy4TD5SBgpnkCMxxATSaRcDnI5pFQKdS6HXamAjBIxJ9vPlUYj+akpJFH8k7si/39BIJigpFTP/OYSNm6sobX1Bu5/sJavf/c/GBkd5tMf+Qpeb2ZWHlQgkOR4uw+nS4/FosE7niCZyiFrWBfeNJ9fnrRiZTnNLaXc/9N2Dr82Tl2tlUQySyScwWRU0dwil4B7x2VbvdNlZOPGGnRaFX5/nOGRGGaTmrpaCwsXlbLn1AjHPDtIGKvZvPlzf8ajNxvxcJqhk0Hat3sI+5M0LHdS0WhDrRXQGFTFcOdcLsdPfv4THnni5/gDY8XXC0oTDvNGXNab0Go1NDbYSKdzTE5Gis9RCwrqXEZqSg1UOHQYtSri6RxHeoP0jss38pIEsVgaSRHjVNcYkYRIMhFAc7qWBssixCo13WMefrv/n8n8Jko8Eb/gs+h06/B638/GddVUZpJsvudaAFSCEUFpYs9RBzsPuFGpSmiqX8ryxRvxjiewWaOzwsML+WPxWJZsVqSnJ8hkME1VlYmqShOCoCiGitus8rVq48Ya4vEsZ04HyeZAKyhoaLCRz0soBQUlJTpi8SyiKBKJZIrli4IALpeJkhIHZWV3E43czlT0DO1dz/HQ499Cq/0J1119J+WuTfj9SZ57vhffRAK7XUsylaWvLzx90y9x/JgPSWI64Pbcvs38bDarXFpa6OzndBmLHS2v3FB10Zw2gK7uIBqtwPhYlPHxGK2tVcVMtsLzjh7xXjSE1+kyXtKB+Hrzgb3ciNmp49j2YUrm2WhoqmPtvM002zeiM5zrZlRZUUl9bQMDQ31EEkHau4O0dx+aPr4qPvt3L1FaKovFH/jYu9l/aA86rQ5RFEmnU6QzMqHQqg3cfNUvi0Ruwu/F6xtHpVKxsHkJVyxfw/o1V7H6inVo1BomBsMc2zrEs985TsNyJ6l4FrNDi9Eqk/aQN8HqVRV/EcLz/2WMjUbp7g4WHSJrW5dRU3sNf/3RT3DHe9/P177wJWxm9ywxCmSXyYQ3zpw5VjQa2b0Zi2cv+h4Xy5RaubKceCLL88/3c+jQOK7pxQ6LRUPNdMfGmWVWhTKokyf9+H1yxMRVV9ewfGUT7c/+CmNqC9u2uamsvI3rr1/7ZzhyF0KSJPqPHebgU4/h7evB4nTRcuU1lDU0YrI5ENTnFikOHO7kuz+9n47OY+Ty5ziCQVNNueU6dGonFrOG5Uur2B4YIpO+kKeA7IxSKBTkcnlUKnCYM9i0cRzGJHZDFBQhJvsShBIpTmVF1sxbyWTWTgYr+07vpX/sJPFEjPx5C4oAC+Z8gRqnlk1r9bzw6m/Ye+IZVEolRq0Gg0bDsVNm2o7UozdUUFe5Bq3GdIHzrVCaNu6NEQ6niUbSHDs+gSRBU5OduloLSkGJxawtZjKtba0kGEwVOQKS7BResthFqdOA1xvHaFRjsWiIRDJksnky6Rwqtcw1NGkBm7Ke+ppGTJY7GRw7wqH2new7vJvmpoUsarqGbNbJlqd78Hrj2O1atFqBqVCKrq5J1qyuYGAwTG9PCKPRybp1zmKHyPM/GzCrFFXmCPLjS5e4LupkmtNgIy+K+P0Jtm2Tu9AvX1bGpmtrZwlJRy4xJ1yKI5yf/XY+zt+Xm9/2Nt7y1reSSSRIJ+NIokTPkIfVpwc42X2aRDLJ6Z5eTvf0Frdx9erbecu1t+J2Wzh24iT3/O3fodVqUatUZLJZ0ul0kSMsm3cro6zCJJ5iz0MPcOTIEQCsRgPLFy5g/fp1XLdxI5XlZRfsq0qjofXOd7Hn17/k6f/8N+7+0jepra3+H5sPLgtTbyJ6ekL4BiNUXVHFpz51bjXvy/d8js/c/y3+6sv/wrvXv4v33rJ5lptjx44h/P4EQ54IyWSOzs4Ac+fa2bSp9pIleeXlRubNd+B2m2lrG2HnzmE8njCxqNxBbdnSsmKYdAGFvwuuq61b+9i+w0NTo21WIPU//uwgu04cxGjUsnHVYlk0sljQNcnKsJTPy86nafdTbnISMRxGSqWKj5PLySvUEiBJKAQBhUaDQqNGodag0GpRmEwIViuC0YhCrZ7+/+mfS4TEgVzideC1IcJ4eGr/S5zoPXciqxRaanSLmGtZRS4pFIPKc3mRyWCKckWEuaYgDdoQ9ZowFmHasppXM6UwMqYs5UjWzITSweHMCB2+s0TTAXJS5IL9aPnwd7HZXAz0hxjbcz9TE0/M+n+lUomgEFBICn6bW8YSrUQDcTJReVs5MU+OOBAnGgzQv0f+HO9fVcsVS0rkbkQvvshLBw6wuKmRdNDMpEdPKq4glxMZHo6xeXM9MLOF8DnhxuePo9GquPfeFsbG4qTTOYYGo9TWmbFaNeRzEhqtkgULyhAEgd7eKfr7QxRWwlLpHOVlBtavr2bII3dBEoJNrNS5CeuHGAkf47/2/BznMRdLylppcizE4dCxrLaM/v4QgqDAatOxbp2pmKV2qe55LqcRqy3K0aMTDAxEqK+XW8h+7KMris8piEvhUJpIZIyurgBGo5pYLMfpM1O4nHpKSgyANEs0gtmOwWAgWSwbLJwLM3F+9tvFxl97hw+dVlVc0b/YZ2qpr+d33/gmoijimZjgjGeIs0Mezng8HOroRUqYSKVzuJxGBv0ZsrncBasbAIJSyfJVJVy7ug6324zF6uBXX/wiixoaaaiquvBcKSmR93FMU2ySIEmSLAqLIlI+X3QkIk3fhSgU5CMRWVC+jDcNoyMxlAoFN95QXyy5+eD7Pko8ZuQnv/gC7SfO8q5bv8ycOZXMn76e79gxRG/PFCajk6xO4LXXxjGZ1KxYWc7iRRcG/Z9fntTWNsKBtnF6eiaLN09XXe0mGEwWyfb5bsJChs/Wl/rYscNDY6ONTZtqKXUaCCeCPL/rR+xrL+Ub3/jzCVOSKOEfjjJ0KshARwC/JwoKcFQYWXh1FS63BY1eRXdXgPb2CUzWAKfO7uTBR+4nN+M8MukbqSy5FaN2Ltnph7MZkUQyi28igQIw6lSsaLDTVGlCJSiZimXwRdKIQhqbVs2VC8rICj3sP/EgydQ4qcwEopSBfuCwvM0rF76NxbetJm/5tTJmAAEAAElEQVRREQsbmAp5L/hMarUaSRKQJCWBQApJLZAQzxHMXD5OLh/H65/A6+8GwOOZYPnia5g/30FllZ67/+ZtNM6Zh0nnJuh3kYjaESUJRVSBs9TB0qUWlixxFV10M4Ubvy+OVqPi5pvnkMvmGRuPUVlhorLSTDSaJhLJMG+Zg82bGzje7mP7K0NkyKFUgMmoIZvJ09RkY+PVbnbsGCIWn4NVfS9zq68nntnNK7seJZt9GHfFVSycdytOVxmrVslh31NTaVpaSli8yEnBfnax4HOYLSAdPTrB8XYf9fUWVqwoLzqlZopLPb1THGgbx1WmZ8KbIBRKEwmnsVrl5iPni1gzywpLS/WzgtkL5bQFzMx9uxS6uwJ0Dkdx69Qc2z1KQ5MD32AUR6VxVqneZz/+L3z24/9CNBalf6CH3oGz9PafZWCwjyHPJH29YcwmDU6XkUQyQSqVJJW6kPyoNQK3vb2epka5lOrvP/APfOh9H2Vh8xIMF+nkNJnIEtcp8Y/EmBiIUFJlwl5pRKNTYbBoGO8LI0nS6953XcZ/Hz29IQaHwsxd7ORTn55TfPwzf/cffOnbX+Yjn/sHbr3ur7nj1s2z3BwyR0gyNCS7mPr6QjTNtbNo8YWldDPdVfKcYqGtbbTIEaLRLIKgZNkyVzFMuoDC3wXX1Usv9c+aD1wuA+FlV/Bf3/sRXWMTuFyOP7swJYp5zh7cz6EtjxMYHsJeUcXCjdfhqm/AZHegFAS6u4IcODRIMtvHCzue4Wxff/H1glJHmW0l1c61xKLKovErnc4zOZlCvNjiORIOc5ra8jx2fQKzJoZVm+BA3wCnRr34IgkiFzlPN7/3u7itpfT3R9F6TxM5E571/0qlEqVShSgKRLIWxpJOuiPljMbk609OFAknU4STKQhH6J+Qy3j//iYV1oaV1NQ08vBvn+TAa6/RMm8e0ZCV8WEjyYSCXE4ikcyzZrV8/V202Mm6dVUX5IhpNMI0R4iRTufo7Q3hcumprZMXujUagZaWElQqJb09Ifr6p6b3Xq6wKC+f5ghDEXp7Q2RjC2lwNpKw9xIIHuK3Pd/HYa1kbu2VVDuXYrfrWbbMQn9fCKWgxGrTzspSu1T3PJfLgNWmlTnCYJj66ZD0j31sBkeYnhPCoTSRaIauriAGg5pYTC59dzn1OEpkB9JM4QhmOwaDgWSxbLBwLszE+dlv56O7Kyh3uBeUbNgwOzRdazSiNcrX6JWuMn59xRXk83lGxsfpHxyib2CQ3oFBjh7vIZM0k0rlcbkM9A2lL8kRVILA6jWlXLW2haqK5bj7O9BVVNMybz6Lli3D6ipDeV6UyPl5VVqDkdY77mHvo7/kt//xee756ncwXyLr6k+Ny8LUm4imJhtiqZ5wKEV3d4D4tI38xPEwSw23oFPs4qG9jxDN+XngX/8Bl1MmKjMV2e9//zihUBqPJ/a6Yc1Gg6pY9nTgwDh9fSFsdh3lZSauvLKKG288J4zJbpQLUeo0smxp2azAapCDXgFs1ouTVIUgoDAYUBoMYLejqaq66PPebETicf7zgSd56tXdTMSHEclT45BtyLUlbkrFhRjTdSgVAmm5yQAGRZaFej8L9EHme4KYS7NkJSXDaSMvRYwcTBo4lcoQYopkrpclLV9j7pJ6JCRO7vgJU6kZE5qgo6ysEpPJSS5nQVRpufr6RqSdw0j7rqKmpoXW1gbuvHMZpaVmYrE8Hk+YvXtHEexadgVSxJY7udGY57rYJHNNQVK9JxjvPIVveJiRQJDhTIYPpfZiCvsxeZLsOvIaL7Tt54W2/fKxR0GZuZIqSx3aiblcn6/h7rtaZh2nQolCQcScN98h22Qdehx2PcuXl2G1adm2dYDJYIpT6SDxWBatTqCh0UZoKoNKrSA0labEoZcDWadFpXg8y9RkCn2+hsW6Om7ckKHD28b2nmfonNrPPbW3smrNZtatr+TkiQDDnggWi+aiImt3d4D9+8eKJaeZdI6hwTD5vMjUVApQFN1VAMOeKMlkjkgkzeHXxpkMpnC7LWQyOcS8hMOhY+P0CvxMRyLIjsHycmPRbSjmKeZdne/euphYNRMFl1pjo52ly1wXzSo5391VV1FBXUUFN6xeU/zshUkBYGlTE92PPU4ynSaXyxGL5Qn4Msypt9Pgdha7NxZw21VXX3L/Zu5j4fMo5LAcEIRiFtv5EJOv7xC7jD8cVdUmwtOkt7srUCwtktKLaKn7LKc93+dnv/4Q3/7Kz1ixcjUwOzNqy9M9jIxE0WoFFi4svWjnrfPLk3buHKavN4TNrmVuif6CPJ7Xg9NpZOnSsqKTCkCY7gp03hD8kyCTyjFyeoqhkwEGTwZJRDKoNErs5UYaV7qwlxsxWDXoTRoUSnj2uZ1850c/whfsIpXxo9NaMBudJJIhqsquRpXfgEYtn8vZGfdzEjA+HiOdlqgp1XPd0nLiySgvH9/PicFTBGODpLMeSkpWcON1H6ZECYvryvjd3sPFbSgUSqwGBzajE72+lLqWxdz5yWUEwime3+uhouKfmDOnnLvuWs4NN8xDrVbT1TWJxxPml7/sRKVSsGRJKcaYjW+pXqRkkYHKWjWTUwEmpybpHxim4+QZ6msXsHiR/N2f7T3NoSNtHDrSVtwPjdpKhXMh7qrFRGOtXHvtyqKwUhCjCq6jQn6VIMCSJWUsX142LWrKreaDwRQ9PSGmJtO89poXrVaJo8RIXZ2FWCzHyHCUnp4QDXPsLFniwukycuZMEJXSQYnpNq6/6r1E03t5cftveO7VHWxY8xZq6z5FTVUd7hoL6UxuVn7TTBS6S7prLWg1KtxuM+lMjsGhMPmcyPh4DL8vwaZNtUVxKZnK4RmO0NUVpK83RCpto6WllJGRKEoluMoMs3K7CsckkZC7646Nx6cXF6Rpx2LgAvfW+ULVxdDR4ePsSISKOQ7EYIrYVIpEJENNi714/swWx8wsWbScJYuWX/D5C+f/D+57gHg8Rjojd67y+3PU1zlwu53o9bOJ2/IlV/ze/WvvDrJ0cQnXXTUHjUHAaJPdVq46C57OICOnp6hpdrzudi7jv4emRhve03rCoTTdXUHiiSxut4WTHVHmuO5CLbzIU1t/Rirn41tf/jQu14Uc4XvfPzbNEaKvG9ZsNKiLZU8H2sbo7Q1hn+YIG66s4qabzgljBTfK+XA6DSxd6poVWL3gqmtQ/ehnALicfz4Kmc/l6N67k0PPPEHIO0ZJTS2Lr70JV109BpsdpVJJJBrl2z98lBdf2cVUdBBJEnEVOEJVI2pxCWppDgqFkth5a835vMixYxPkshIWfYZSYxy1aoJM3ks4GWBsKsTRwSifvvFGlDoHU5TR6R2l1xcsbkOl0uNyneMIklLFNdfUoVAMs2vXNdTULGHdugbuuGMZpaWmWRzBbtcSCKRobnawdu1/ks3+G4sWGdHpMvj9fsZGRji4ez8njx+j1pZG4XuVk891sK3tGAdPnOLlnbsBUKCkxF6Ny96Ab7KZsrI5LFw0W0DxeCLF36dPTzJ/miM4HDoWL3YWhciHH+qcDm4PEIvl0OmUNDbamZpKo1YrmJpKU1KiR6MRpjmCgXgsw9RkCpU4B7etiQ0r45wd2s3BE49R4drNbTV3smbNzaxbV8XJE36GhyNYzNqi8DkT3V1B9reNFktOM5k8Q4MR2WgwKWflFtxVAMPDUVKpHJFomsOHvUxOTnOEdJ58XsJRopt26c52JILsGKwoNxbdhvm8VMy7Ot+9dTGxaibaO3yMjsWoqjRdMrvqfEdVbXU1tdXVbFy/rvjZZ3KE5UsWs+f5Z8lk0mRzeWLRPH5/hjn1DubUu1DOqHKoqLqKxRuuuuT+Ffbx/BJFo83Gmtvvou23j/Dbf/8n7vjCl/8fe+cd31Zhdv+v9rQsW7ZsyzOJncTOsuNMZ0BIgCTsPVqgUOiiE+huaXk7KKWDlra/FnhLSyl7BggrYSVxQhLHzrCdxE5iy1uybEnWsPbvj+t7LXkkgYbSl+Z8PvnYju+SfHWfe849z3kwZU/+QOajwmlh6hQiPz+NQyTYs8fBsWNedDrh7V06Mh64PHoZloM5bNjxBg3XH+Ku675KQY4w+viaqytwOP2kpSlxueTk5OikTJxk0iw6TpJbk8TtL12alzK5RkQySW9tGWT79h5pHbGFUITD6Sc4InjpDR//6eH1+3lp61Ye2vAi9YcOEU8kUMm0TFEvJVtRii6Shk3nQTc8YjmUgUEeZp7WyXx9HzM0AyhkCfqiehqCOTw1OMz2QBvBRCsJwuP2VzhtmOtvmM3f/74fmWwuJSUFTJ1aSm5uCV/84jKWLy/kb3/bz2uvtRGLGWlsdAEJ1OpsTCYdCxbM4NJLZ7Nx41G2b+9GqZQxdaqZadPMguKfrsbjCTNr1mw6O4fY3l/Gmju/wacrMwh3dhGorcW/fTvDTU0M7K3jinCYGbNmc0ipYEdXL539ffQOddE71MWerloqiksJhQRymp2lT/lbj3VFVFXl4PWGEJ9Ur1pViFarpLHJycBACK1WwdQpZi67bAbhUJS33+5ApZJRV9dLdXUuq1cXE4lEGfKFhTHFwIy8aXzn1nW8u7OJp7dt4FfPPMizta/wpYuvwhiaQnPTILFYHJCljLgH4cJY39A3kjMiY9euHgbdIQryjcyfb0XMo/K4Qzicflpb3Gi1SjQaBSqlgmnT0ikry6S9fYi0NA1lZZmSI6qh3iE5BkWHlJi9JboNPe7hcZMyTwbJN4kTCVgnMw3QkqWjrCwTS5bw9EatUpGfFCS6u64XV0+IrHRQTBlVBCYLZj/eMZ7GxwtXfwCPP4LTEZAcnEtr8mhrm02G+Sccsv+Rm75yCV+44Xtcd/VnCASiUracSiXDYFBjTBMyo5LbmkSMbU8qKjKh1ShZWjNxPYDR4HO3R3AfulxBCvINdHb5xzltxSdtEz1JPpVo29/Pm39tIhyMYjBryMw3MGVeFuk5enRGFWqtEmTQeHAfjz/zCK+8/iLeIeEJdLp+PrnmazEbZxCK+JCZ9MjlajhOR2o4lMCSBj0DD/KTJ1sY9PWMW0ah6OLzX6pk30ttpEWMlBZ8GktaLmfNnkVeZj7TKnPoCoV5d0cPq84twTWSDzl7djZHjpSi1RqZOtVGWVl2Sk1YuDCPrCwtZWUZODt8aJQaNFEju9/3M2/edBZVTyyE5Fhzue8Xf6Hp4H72NzZQ17CLcMRDe/c22ru30evoQqO2kJWlIytbuJFOFmWSRcxAIEooHJXyoIqKhfPGmqPjnXc6cPUPo9EqWbeugKuvqRCCx6NxsixaiczY8gyUFKdz7JgHuVxGNKrhigs/z5c/92X+9s+/s+G1/+Wqz67msguv5trLvsg773hpb/fS1eUnK0uXch6L2U5dIwMx7B1DQk0YHKagII2cHANeb1h68LJ3r4OeHh+DA8Po9SoMBhVlZWaKCtMoKTHjD4SpGLnhDoVH4hKmmlLy1cR8q9w8wV3i9gxPOC3zRBDFpCyjhgG7jyN7hBv+tJGn8yeaBgiQNVITskZqQmaGhcwM4fjrdvficg6QbdGkiFKTBbNPdnzz5lmxFBhTfle2KAdHm5cNv2sgI1dPzpR0MnL1GDM1yGQySqutp51Upwi2fOHzV7dHcH1otSMcocYGQEXsenbU57Fx8wYONDdx2xe+SU52NkVFJq65phyHI4ApTTXCEfRSJk4yaRYdJ8mtSeL2l9bYUiaZiUgm6a2tg2yv7ZbWEVsIRbgGwijTsoBOeg9sP8Xv0HjEolGatrzFjmcex9vvxDplGlVrzyerqAS9KZ0hv59nN7zMo888S9OhwyQSCZRyPda0VZi001EpTJiy3ajjZmGDY05luSyOxThMrjlAjslP9+Ahdre3scfuJRwd33LXLF/Ep6+6kMeePEL/sBKbrZKlS+eRlVXEddctZNmyAokjhMO6JI5gxWTSU109nUsvnXVCjhAM6tm8uZ81a4pZt24BAJ8dyf8MeDwc2r6Fpi1vs8hqxlpZQX8kRmuPC8dAP/2DdvoH7Rxs28KM0pkMh+IUFZnIztal/K3HZizNr8oRpjCmCS2+4jnQ2NTP4KAwEGXKFDOXXTadcDiWxBH6qK4W2uPCkRhDvsgIR0gwtaicO75+EVtq9/Lypmf4099+x2tvv8ANV18HkSk0Nw0QjQq2tbF5WQ17HdTXO0Y5ws5eBt1CPaieL7SkHZQ4QoDWVjcajQKNRolKJR/hCBm0tQ2RZtJQVpYhOaIaGhySY1B0SInZW6Lb0OMOjZuUeTJIvv/+sNMABY6QIXEEjVqd0oa3e3cvjt4BMs0gnzZ6ozNZMPvxjjEZ5pxcFl9yJe8//zR/u+NW5p29jqlVCwj6hmje+g5li2qoWLHqJN+JD4ePX3n4xEGGTAYWi5AP4nEPY7MZOePMQsKhKEXF5zHrcCn/3P4In/vd91k/6xIuWrGSwiITHXYv8bhwkSgoMKWQ5rGENFl0sGYbKC3LwG4fGiHwo+JTRoaW2lrB/mnQK3n3nQ727XPicgWZOtVMV7eP7dt7KC3LkCa4dYihoB9TtqHX72djbS1/f+UVth84QDyRSoh0MjP5ynnIZXIScdDJ01EQZ47OySJdB2p5D03Dw/x9IM7e4QiFhnPQFizCHlHRGd9KMLEVALVai9U6jVmz5mEyTSUczmHJkipmzbKwcKGN3t4qSkszsNmMLF1qY/lyIZhy1aoirFYDDoef7du7mTbNzHXXVQAJVq0qAkYD40aFKGEEs1iMAN58s4033mjD7Q6xbPlZ6GbOQDdzBpk3foa4z8dwYyPmN95g/rZaIu3tkJVJ36wK3pEb2eF2M+ANUGSzSOLN3c/eR7rRwOrKFeQXFIxrm1u92sDzz7ewaXM7Xm+ESy4po6amgKeeaubttzvIydGTkaHFoFcSDkXx+yOoNQoKi0YnGHV2Cu67rCwdwWCU/v5h9u9zEnYb+NZlt/KlS67kF488wjf/9FvSNRYWF5zJvMJKJjqZxKwzi0VLR6cXhyOARqsgzaTGZjOOXJD7OXbMg88XJi/PyJQpJo4d8xIOx8jMNGEyaSguBpdrGIczgN0+REO9MN2pqioHa7bgkorHwGTSADKOHfOwbJmNoqLsFEfWyeJEjqqTmQaYLCAezxk5dn27fYgnnmimr9fPqrOKuOnGuR/oGE9W2DqNU4OuTh8+XxRTulqarBcKR9GolVxz7Uzs7Tbm9f6aV9/6E3/8613sqNvGnNKbmDOnGJdrGK83wvQZmWRnaXG7Q7hcgiAsOmGSSenYc0YMQxfbnEShSmz9FpZLsHNnNwMDw+xtECY2FRebWL4sX1rOkhBuzqPRj06YGuz188ZDjZiytBTOspGWqUWtU6LWCqJY48F9PP/SU7zwyrMMul0p68rlWkz6hRh1s4jGQCE3C/8vA7lcRijiIRrrRKXoIhLrJNOYybnzv4TTF2JqtoEfP7YXf0gQuPLyCjEYSsjPn0Fu7nRMJqFVOqMojdhgiNWLLqc8y4hGp2TVtTMonmWhrz9Aflkms2ZZpEk2ZWWZ3HHHIiAxLkQ0uSY0NrqoO+AkX6ugs9XDlgN9+PzRSR066SYzF667lAvXXQpAV+cAb2/ZQVfvPrbueIeZJWdKk+46uur5xzO/5LxzLmfuzLMnbJur291Lb2+Qrq5jrF8/hdvvWIjT4Sfgj7Knvg+jUUVRsUBanP3BkQcbaVLb6YsbjjDoDmGzpREKxQiFYuj1Svp6I0zJX8t9P7uUXQ0v8vBjf+LZF5+kIOdMZpRchkKRjt0+lHIsUpvpiGOqtrZrxPkko3q+lerqXOx2IXdKnFiZXBNUagUddh9zZmczZ24Wx455cDqEmtDUNMDRo27SzRo0aqWUr5YsWFUvyJWyrT5wTRhxVQWHwrz96EG2Pt2CPl0tZTidbE2YTBQ7Xj2oq+vj+ecP43INs+qsQq68snzS4xsL8RoyY1U+gZ4Ag44AHc0uWnb1ERv5vNtKzRjMmnHrnsaHh8QR0tR43KFRjhCOUVR0OTMaZ/DK2//Lt3/yDVYuvJqzz1xJYaGJjg4vsXiCoiIThYVpKaR5LCFNFh2sVj2lpRnY7cJ9VrL4lGFO5ggq3n2ng737nLhcw0ydli5whNpuSkszpAluvQ7h4XV3y2H2bNzA/PUXnvL3KB6L0bz1HbY/8xgeRx85U0spW7yMzIJCojI5r7+7hSeef4H6/QeEqIIkaFRZZOqrJUFVrTRLv1PKw+jVnSDrIhjpY8DvYu2cuWSnmfBF9OxuV9HWL7SradRarNapzJpdiclUSjicQ/WSSuZVF3P4aIgDjbPJzTVy000LWL9+1IF2KjjC0aNuDh8e5PDhQQoK0lLyfvTp6VStPZ9556zjnE47+ze/QcvOWnwDLtyhGP0yDYf63Li9MfJyzZJ48/uHf0q2JYtlC88kP79wXNvc6jXFoxxhKDzCEfJ56qmDvPWWnZwcPZmZWgx6FeFwDL9vhCMUjk616+oSOIIlS8fwcBSXS+AIQV86t37mm9x4zXXc/+CD/Oien5Kmz2F26blML6mc8BwQs84sFi0dHV76HH60WiVpaaokjgDH2oQW1bw8A1NK0jnW5iEcipNZpMOUpqGkZIQjOILY7V4aGhzs2eNg/nxBOLLbvcRiiRFBTsaxNg/LavIpKjKlOLJOFidyVJ3MNMBkAfF4zsix69vtXp544iC9vX7OOquQm26ahCNMcowORwB7r5rZ511L775t1L/2Ertfeg4AY4aFdGvuaWHq/xpKp6WjmZKBQa+kYa8DrzeMwxng0KFBXP1BzjtvCjdesYLpRQU88t5jPLf3MY4MNHLt8qtRoUOrVaLTKamoyEStEezszc39bNx4DIVCxvIVo4KDNdtAbW0nDz6wD5VKRiwOapUCjydEZ6cgLtnyDRw6NIBOKxzPrFmZUhh2IBjBkqklHImxeXM7R4946Or0EwoJRGSsIPRRwuPz8er27bz43nu8uWsn4UhqsKNaZiBHOZ0c5UyM8tEbLJtyiEL1QQ6HDrPJF+CP/SEiY0SQqF5NgT6bFYuymTp1Kq+8ks+VV57FwEAab7/dzdKlRSxcmMc//tFIQ8MAc+e6uOKK6VRUWFKKhoji4nSKi9Npb/dgtbqkgpIM8efGxtTfJ5OUpqZ+srJ05OenPsGUyWQo0tIwLFmCYckS4uEwoUOH8G58leALr3LVYAtXKFUYa6oIFYVpGjRS39jOzkN7AXizrpb7XrBw3bp13HzBhSgSo1kjEwW5XnllOVdeWS658PyBKNu399DV5SM/3yi14TmcfgLBCDqtkrIyMz5fFIVCBsjIzTXgcQ/j9WpYU3wFNuaz5egm3jjyLE2uXeSV3YDDmZ0ycTBZPHn++RZ6enyolAq6u4QJGqtXF+Nw+vH5wuTk6lm9uhhXf5DGJhe2fCMWi5beXj9yhTBNUbzp77APYUpXYxl5Wp18U7/hxSPs2tWD3e7ljDMKmDM3e5xAczLizdhlkn8eKxpPhMmIRvJ2FlTnjlvPoFfS2TFEMBijdlt3ijCV3B44mXB2IkHsNE4t8guMJOIJ0jI07B2pB/Z2L7EY+Hxh2u1eSkvN3HTtd/EGz+X+B39M08FdeANfJ90wn+FglByrnmmlZmx5RqkVsLlptCasWFGQIji89nob+/Y6UKkVWDJ1eLwhOjuEelBTU8D22h6OtLoBsNnSqKiwYLcP4feHGfJGiERj7Nvfz+bN7bQd87C0TLieymQfzZOKYV+EV/+yH7VeSWm1lcyR6+H+pr28+uYGXn3zJeydbWPWkmHUVmA2LsGkq0QuF4izXAblBSbc/tfpcjXT7mjBE0gVstJ0WVy07KtUmDRE5TKWL/oii84s4+tfv5j7729m0ya7RB42bbKzaVM7V182nU37XMzNSQOZjHlrCymrtiJXyCk2pI+7/n+QmgAQs/to39dPRrpaCrQ+GfT2hgl48ynOLeGm+78CCJ9xe4eXJ59/kmPtLfzhwbuRy+9h5bKzuP7qz7Ky5ixc/UFJ5BEnm+7d66C8QmgZ/PwXKiUHnkatlLY7OBii3zUsiTjBgFAPSkvTpXognqNuT4hgMEFR3jquWl/JjvrnaT7yAp19W5BpPs0ZZ3yJut29knurqCiNq68ZbUu3dwzRsNeBTCbD7R6dItTd48PrjQiZgSNib0G+AY87JO3fnK4hHhutCfaO0ZowNt+zq9vH2293SGHQE00+PJErKXkZi82Aq8tPXCPH6wthMGtS9jnZNiarCcfbv16vZGgozJEjboaHY2x5r0sSppJbAycTOpPFsOoFuSTiCSLhGNFwjEgwxnAwSigYOS1MnUJMm2Ym02bAoFeN4wj9/QHOO28qN1y7mtIpxTz32l95Y9tDdPbt4/zVn0Yu06HTKdHpVFRUWFCrFRQVmSbMtBH/1dZ28eCDIxwhlhA4gjdER4eQd2HLN3Lo0CBarYKGvQ4qZlmkMOxAIILFohvlCEc9dHX5CIcFbpCWlc27j/4vRksW0xfXnJL3Jx6Pcah2C7VP/xN3bw/WkmlUrVuMJiOTbfV7ee3Bv7Flx/spOYIAKkUaJu0szLpZaFTi+Z4gTRtBrWzDMbQfT7Afp9dDbIyQ9daRNPSmVZyxppyrz4LEE5u46qrVDAwYeeutLpYsGeUI9fUu5swROILgbkyMm1x2KjhCZWU2zz3XglIpn3QirlyuILtoCmfd+HmWX3M9zz38KoHat5gW6aS00EhWYTGWgiBdbhN1DYdpPLQfgHdq3+Z/n7By5UUXcu1llxCPjU6rmyjY+8orZ3LllTMlF54/EGF7rTC9tSA/TWrDczgCBAIRtFoFZWUZ+H0R5CNDSfJyDSPZT3oWzboBs3YJ9QdfZfu+R2jr2caUss/hcGSnTBxMFk8EjuBHpVLQ3eVP4ggBhoaEejDKEfqx5RuwWLT09PpRKIRzXxSCOjqGSE/hCKMiz4YNreza1StwhJWFAkcYIwydjCtp7DLJP48VjSfCZMJT8nYWLJiII6jo7BgiEIyybVt3ijA1NldqIkiC2MxMFl50GX63G4+zD4VCeHCZbh2/z1ON08LUKUZGpo6c4lx21/VKT8gq51mp3dZNX5+f997r4rrr0jFoDfzi5tt5adtWHn7rn/zk+Z/y2XOvJN08HZVSgVqjlIipePNkydSmTC0DeO21Npqa+jGZ1OTmGhnyRYAEGo2SwkIjc+Zk4/dFhalM3jBlZZl8/RvVko1w1hIbDqefvt4AKpWMsjIz/b1G2o9APP7RWqYGvF5e2vIef3/1VfYcPEg8kWB6/jSqc86kx+HGHq4nSzGNXOVM0uRW/IkB3LEuOiP1LNFZuckSplTj5h3fMPc4R3uFlUo9Fksp6elTyMubQVraDI4cEf4W3//+WXz/++cBsG1bJwqFkjVriikoSOPcc6cgFhmxsBwPJ1pGfHouLjt2nSuumEFFRdYJx3HK1Wp0c+agmzOH1yxraH7uXc7TNqE8uI/4zp1MTc9i2DiD7114Gx2hw7xc+x69Lhf3Pvoov338cc6Ys5jFxStZw9zjBnsn3xgnt4eK55roPMrLM7JyZWFK2LooeLgGgrgGgpRYi8hJu55j/Ueo7XiD2x78CS++v5i5GSsx6yykj+RbiELVzJkZFBalCTlTdi+V86zSU2ZRlLJmG9i8uZ3uLh/zKrPJydGzfXsPs2YJGWmtrQM8+MA+qqutrFldghiCnuwcs1i0qFRyPJ4Qe/Y4xk0+FF/nicSbscsk/7ygOveEos9kIfAn2rc/EKWgMI2+Xj81y2wpvxubKzURJiI/ohhmjPsJBuMUVXkomZJx3OM/jZNDlkWPOV1L8+EBqR7Mm2clEIjyxBPN2DuGCPgjLFmSx4ola5k1s5qf3Ptdnnv1LsrLVjCn7DpisTTM6doUcinVBItWCm3OthrYuq2L118/RiQSJ82oxjck1gMFhUWC4LO0RvhsW3N09Pb4qSjPYu25UyQXSm6uHq83RCwax2rVozWIosCprQd+T4jWOgd7XmsnGokxsyaXY44mfvPXp3h100u4PYOkGc3MLF2ORnYhRzofQK3MGhGjFpAgglzWjUy2mVDEx8KyW5hdlE6aTsnPn66lZ/AQIOTymdPyMaVNwVYwg3PXr+DAoRA9h4c4a1Uhr7z1MykHaM1IK8GapJaCNWuKmTE7m/ctWoZcw5QuyGb+GUXSDXcyPmhNEP91HBzA3tDPujOLmV45PtB4MhQVpdHSMiC1uFUvyCXbasDtCbF8wS0sql5MU8ub1DXs5J0tm3hnyyamFE9j1bIrKcxdzexZOaxfPyUl2yh528lfxcmN4vljtw+h0SiZWW5hyhRTinCabTVgThfcPM7+AIm4imULr8agrKGtdwOb3nuEnQ0vcebSm6ieey6JuBy3JwQI9WDunGyWj1zfxNB+UUTJzTNQXZ0jCUsNDU4qK7NZWpPH9toeQuEoGWYtJpMKuULGI480UVhkZN7cbGbOyEgRcefNs9LV5WfQPczO93vIzNRhTtemCEDHczJNtMzsVQXsfNNOrzdEem+AvALThAHvYzHZMsfbfyAQJS1NzbRpZlyuYVasHG3TElsjgUmFqbF/Y5lchscbkkRLtyNIWoGBzDzjhOufxgdHZoaOabNy2b27V3JNVM6zsm1bF319Aba810XJdekY9Ca+//Uf8urmTTz/2iP86dEfcM3F12NOL0OhVKJWKyRiOloPdClTywBee+0YjY0uTCY1eblGhnx+RmtCGnNmZ+P3RwgERI6QkcoRKrJwOAP0JnEEP3r6PVA4ex7psQAbf38v8m98h9KRnMQPg0Q8zuH3t7HtqX8y2N1JdslUSlesYndrG/f+8rccOHiIRCLBtOIZVJSspbvXgctfj0k7g3TdLLTKHMIxJ3AYf/g9qgoLqS4xolPHaOruY0vStDOVUoctt5R081QyLdNJM5XT2prAH9bwla+exVe+ug4QOIJcrpiUI3zmMx8tR1iwIFcSrk4EtVbH0vWrOdRnpdPRR6Wti0jfXg69vQG5WkeeMp/PXfVtnENNbN7yDr19Dn7/wEP8v4f/ztLq5cwuO4uVzDlusHeyWJLcHiqea6LzyJZn5AyJI3hTMp0GBoYZGBim0DaNrIwv0NnTzL7WV/jxr7/Nm++tpDjnLIx6IfMKkISqmTMyKSxME3Km2kWOIDiPRFHKatWPcAT/CEcwsL22m4pZFqzZelpaB3nwwX3Mn29lzUhcgvhZEV+DxaJFpZTjcYeo29M3bvKh+DpP1OI3dpnknxcsyD1ha+BkIfAn2rc/EKGgMI3eXj/LjscRJhGmkv/GMpkMY0YGgYgGu92LmmHaep0YSzwf6cS+08LUR4Dm5n7e2tyGzxdlztoSysuzOO+8KWzabKe4OI1t27ppbRWsonML53LJdCP7B9/hdy8+jM2czzXLL6eoqFzaVofdi9GgIitLS329g+S8HqNRiVqtFMZRnj+V7dt7aG/3IpcniMUTkivF4fRLYdQe97BgkRy5iXT1G9jYdQy1WskZZ+Rx8A1BRR5rjz0VcA4O8rdXXuHJzZs4bLen/G6qahk2txAGalV4SKhkBOIDtITfJZhwpyyboXSgV5XyXHgej7msZBga+fxXLuGWW9bT3Jzgl7/cidMZZNWqGaxZU8ymTe0pZANg2bICli0bzWA5UZH5oBjbwjEWJyN+iWhv99DY6KK03Er2ly+iaNZN5JvBu/FVHP98gnmt25in1WFYuoR7P/MArzc38efnnmf7gf1sbqhlftlsycEzVrQQzw3RySSKJjU1BTQ39/P4E00UF5kIBmMYjSpi8Ti7d/fhcARShCuADruXcCjGtGmC0PTWZg26aA6JzA62tW1iW2Md5y1YzaVZN2G3D1E/Mso23ayVBC7x3DTolRIBEfdRXGSiu8tPcZGJdrsXpzPAoNtAWZmB/fv7GXSH0GqVnHFmIYcODpBuFpwiowJYJj5fhJaWQXJz9Rj0ynFZbqLrqqHeIU3uGwuDXilN9hPXSf76YXGi7RQVpXH11eUTurFOJldqIkFMFMO0UR/xuAxfo+u0MHUK0doyQH2Dg0Qijs8vPOWtXpCL0+ln82Y78USCnbv6ACgry2RZ1TexmBaxv+URDh+9lRWLruKSS78rba+2tpOm5gFyc3Xk5Rmp3zNaE1yuYVRKOWlGNavOKqTD7qPd7kUulxGPCddzcQKf6KgIhaPY7UPMm2elrEyoCVu3dSFXyKhekIMq4ABOTT0YGhjmaL2T1j0Oeo96kAEx/RAvvv8QW//fZkKh0ae0SoWZwoyfExxUopFDQdY1qJU9BENNtDleIRwdXVYmk/P5c7+GdzjGW7sd+MMLyc2t5vbbL2LKlHJ+//sDOJ1Bzl0/gx/9aBnbtnWyaVM7q9YUS6IUjK8Jyd8vumAKLbv6mHdWIRrdh7t1mqwm5JeZUWsV6JGdVLZRsotm9erilAmkAHPnZGFO12DWziXkvgL3cC+b9zzP0y8+xrH2I0Qij/Pru66WRKRk4ULctl6f+hqTz5uHHtqHRiNnWqlQv3bu7GVoKMz550+Vjl8UzQIBFbm5eubNs+LzRVGrr2Xd6qux9z3D86/+gr1NL3L9Vd8E5lC/x0EiAeZ0oR4UFaYxc0YGgUAUvV4ptRAmC0s+fxSNVklT0wBOZwB7uxeNWkksBvv2O+nt8eMaCDKrIkuaoup0+Nm3X6gJs2ZlUrfHQZZFizXHkCL0iq/D3jFEfYMDvV45ociTPOXPYNIwa3kepg7fv1wPxP0nf53od5dcUjruvEnOlZoME4lhyQH5hOPoc/XMmj9+xPhpfHg0N7l46612fL4Ic+ZMobzCwnnnTWXzZjtFxWlsq+2itcUNwKyyxQz0ZXC053Ue/OcfyM0u4YLV145yhCYXHR1ejEYVFouWPfVCLRHzeoxGFRq1ghyrnvMvmMr22u6RmgCxWEJypTgcASmM2uMOjdyHRaQMno1dR1GplJyxMpdjDuHBolwuZ9lln2Lrk4+y4dc/Y8U1N7Dggks/UCZZIh6nZWcttU8/hqvTTlqujda4ivsfe472zq6UZXNN56AJVxENQ7rWilYpI5ZwMBjYyNDwUMqyBRkKen2LcQZM7GmZiiXdxM23nMf0mfM5ekzBsWMe7PYhzlxV9IniCGvOLsHjsTFr1hoK8vUc3bOL9196iXhrE+lyGeeumM8PvvZF3tu1m78/+RQN+w/w3o63qZw1X3LwjBUtxHMDkBxEVquempp8mptcPP54M8XFJoKBKGlpKmKxBLvr+nD0+VOEK4CODi+hUJTS0gwKC9N46y0NSlkBKsMRGg69yvv121mz/Dyysm/BbveyR+IIGkngEs9Ng141whFGnUfFxSa6u3wUF5tob/fidAZxu0OUlWVwQOQIGgVnnFnIwYMD4wQwrVZJnk3oyCgrzcCgV43LchNdVw0NDmly31gY9Cppsp+4TvLXD4sTbaeoyMTVV8+c0I11UhxhAkFMFMOUiQCxuALzJA6+U4XTwtRHgIa9Dg4eGkQGtNu91NTA2rXTyMo2cOjggBDUmeRaaW4aYH5iHefMO5OX97/Ir1/+HfW92/jOddez8+0Q+/b1j1jQTSQSEbzekESmL7iglMIik9S+U1qWwbatQpituP3a2k62b+9BLocjR9xkZOi46OJSyZG1f5+TQCBCXp4RSLCgcBlnVdaw9szZ//J7kUgkaG5r45nN7/LEa5vpHOwat4wcJRqZkWgilPR/ctojO1OWsyqVlGu05Got6AuXcOiCT5GVk0vZm51cPOtyPve5eRQXp6NQeLjgglK6uoZYs6Z4XHH5d+HDFJWJLL8w+mRl6VJbSi975jVXk3HlFQTq6hh45B/4t2zB/+67LJo1l5KLPsfgp6K8tP1tvnnTpWjVwpTFTbt2oVGpWFFZCSAJRG53iIYGJ+vXT5HEGFFhP3rEw/BwFJlMRlWVVZiCdMQNCITF1R+kpWWA4iIThUUmSTgx6JUj5+digqHz+c1jT/J6/Sa2376LT6+8gqnWCsLhBIaRiWKHDg4gV0Bfb5BYLM769VNSWuWCwSi5uQZpUiAIF1lLlo7Fi23Y7V6WLs1LuZkfK4ApVTLC4RhKlRx/IDrOoWTNNjAcitDaOojBOLEw5Q9EiceQJmMmCz4n01I3GSZzUp3M70+UfTUZxPfKGNcIjqmTeDp3GieP5mYXrS2DyBWCOGQ0COR27bppZGcb2LKli1gszrx5VrKydOTZ0vD5aijKX4hr6HW27HiCy254lc9e90Wuu/qzvPZaG4cODTBjRiY2m5HengBeb4i63b1UVGRKo+3LK7JwOvxs3dYtuU5E1NZ28vLLwsTRffv7sWbrWbGiQGrRcrmEQOlQKI4ynsaXL7iHtTdPnFVwMnD3BXj70YN0t7iRySGk8NHQXsuTm+4nFBk/EUopN6OQG5ARo8CSxoz8NLY129ndujlpGRVmYxFqbRElUyrY4fJxxRVzmHPpVAyPGpk1y8IVV8wD4IILhqV6AOMJx8lg5pI8plZmo1J/+PGEk9UEuUJO+TIb+9/pZMgVZDgWP2772NgWrLHLZFsNBPuHOfBOF2qdgnBQxeKca/nUI19m665XMKdnsHCR8DQ1HAnzyGMPceWln8aUZkoRJnqTrsOiILN3r4Ndu3qIxRJMmWJm1aoChobCdHf52F7bQ01NgST8aLRK5szNktrjrrl6ZpI7awmlRet5Z8df+PEvb2Lx/HWsWHwzaqVZmjApHkcsBnqDitBwRBLMxPenqtLKwYMDWCw66dwXA8QtFg2NjQPMmpVJdlI2p90+RP0eoSbI5TKGvGGmTU2nqNDEwYMDmNNH86+yrQZCwxFaWwalz+5YiFP+ROHLmmPEmjPqMjqZtrrJcDy31fF+dzLTBCdCckC+2xGkrNT8gbdxGsdHw14HBw+OcIR2LzU1wpS87Gw9Bw8OYDCoUlwrzc0ulIrLWL7oHN55/ykefOLntHS8w5dvuYn33gqxb2//SJBzOokEeIdCEpm+4PxSCgtNUvtOaWkG27Z1jeEIXWyv7UYul41wBK3AERYkcYRglLy8EUF4xtmsqlnDmjMrUWo0rLjmeuo2buC9fz7M0T27OPtzXybTdvzra3g4SPOWd6h/7SVcnXZ8MhVP1O7nYOcr45aVy1RolAbSdQMsmtJDVlqQWNzJb998P2U5vdqATm3FmFaKsbiGkjWrmWUyEHq9nVkjHAEgt9FFVZWVAwf6P/EcoWxRDaULl+LqaOf9F56mZWct7fvqyZ42i2/e8n2CsQHe2raZL95yCSqlcG19a8tW0tPSqK4U3i9RIPJ4QjQ0OFi/fqokxkgc4aiH4WAEmVxOVVU2TU0DtI5EBtTU5I9whEGKi00UFpok4cSgV42cn0sIBC/hTw8/wlvbNrLnwDYuOfc6cnIqCIfjGPQqSSBRKGT09gaIx+KsXz81pVUuGIiSk2uQJgVCEkdYMsIRamwpAk+yAKYYqQdTp6azek1xyhABUbCxWvUMD0dpbXFjMEwsTPkDEWKxhDQZM1nwOZmWuskwmZPqZH5/ouyrySC+V2r0BMPjW1dPNT6RwtQf//hH7r33Xnp7e5k3bx73338/ixYt+rftv3KeFaczKH0vYqLsmebmfrzeEIPuYbKyM/jauV9jMH6MR99+gXO+9lWmZE3DGp9NJhVS7lSH3cvbb9mZP9/K6tUlgHBxAIGcXnJJWcrxbN/eQ2NjP8gSDAfjqDXyMS2BMnQ6JVOmpDNnbhbC2IoEeuUHU3YDw8M0t7VRf/gwm3buZFvDAXzBYWKEkaMiXTb61E2GjMRIa0icKMGEm0BiUPp9miaNkvgMqo1wtm6YGRotLkMpgZq1LL9lLSVV06SnMp+/NXVUcnFxOnfccfzxyf9pmMjSm4zkJytjC5RMocCwaBGGRYsId3bi+utfGXj2BbL2N5BWPIN7Pn0F6hFRKhqLcfvvf8ex7m5qZlVxdvl6ls6bQVVVDjt2dNPVLeQ7iS67aCRBWpqarCwt+/f3E40mcLmEEaydXUM0Njl56qlmYvGEZBEVn+CDcD6KLX8N9QMUyBfwo8sWs3H/S/zmxb8wI286Vy29En/AKjmVOjq9DAwE8fkj0rHs39fPO+/YJWFsIvfXddfNSnnPREHL4w4xbZoZAI97mOKRi6xYrGD80+ixTxYmGj7gcYfGtdbC8VvqTja/aqyD7VRi7DGI/6KDg0IP+Uf4JOTjwMddD8rLLSQUMsxmDW53KEUgKipKY8WK/BQBoiDfwI7t3USjcWz5F/LnX1/Pm+/9g/v+dA8P/v2PlNjOgchCVEoLc+dkIwb6Ox0BqqtzmTfPyl6xHlSMrwcA22t7aG/zEIsl0BuEJ3rJhD8eS1BWahZaqJoHSE8soKSgYtx2jodEIoHdbmfzK9t48dHNtPUe4kj3AaKxKKGon0zjdLQqM6FIAJlMTiIp0zAadxONuzl3vpapuTaGghEy06rIzZSRZp5GQcF0IiELhSVmbv1K9ThScfnlM1N+PlX1QK396G6ZFqwv4eCOHva81o4m38CRDmGk90TCQ/K9xEQZRJ0HBznwThe2MjMrripj88ajOPe4OLbLw3VX3ZTiaHj+pSf5+W9+xJ8f/j1XXfxFTLoVWK1GZs7IpKvrWEr+lNPhJxJNoNMq8XpDdNi9NDUNUF5uIR5L0Nfn4847t1JWZqavN0AiAWedJeR1iRMlr76mAqfDzyOPNNHXk811l/2Ozr73eOTJ39DQ+B6rl93E3Dk3MWVKBvaOITo7vBQUCvmIrS3CPUJZWSZ1dX1SaHNBYRrLl9nGTasEWLtumvR/TodfyrWqmi9MqfX5wqSbNSmC1th6MNZ9NNHgAbcnNM5tJeJ4bXUnk2H1rwhbJ8LY/SeLXW6LH5vtk9fG93HXBIEjBKTvRUyUPdPc5MLjCTE4OExWlpUbL/8+3uBBXnjtKS7/zM0U5ZWjV1aSaRnhCGoFHR1e3nrLTvX8nHF/P6tVP54j1HZzoNGFTJZgOBgb4QipLYFarYIpJenMmTvaaqyUC8erUKlYeOGlHKsv4lDtFh6+7YsUz61iZs0K8spmYszIJB6L0dthZ8e777DlrU3s27uPrgE3WWlGBvx+PIEoGfrR/BqZTCa5dOOJCMGIG72mmynZ+QwGNLj8heRnzECtK8GaU05w2EZWbj7r1pdyxRUzUu6jv/jF+SmvV/zdZZfN+KB/uo8N/xJHkMnIKirhvK9+k8Hebt5/7kmatr5H/HAjaQXl/OBrX5ZEqVA4zJ2/+CW9fQ4Wz1/CknkXUV01nflVOex4v2eUI4y47KLRBGkmIRvxwH4f0WgclytN4AidXhqb+nnqqYPEYmM5glDfyissUstfQ8Mg2YYV3Hr9ct7d+TR/+edvKC2ZzbozPjXCEQSnUkeHl8HBID5fRDqW/fucAkcYEcYmcn8JAfSjEAUtjztE6YgA7/NFSDdrpM/lZA6lcRxhguEDAkdI/RzB8VvqTja/aqyD7VRi7DGI/wIeNwql6iN1S8EnUJh68sknue222/jzn//M4sWLue+++zj33HM5dOgQVuu/Z3R6MhkXiS+MOjJE0m7NNtCw14HPF0GtkhONJNi/10VpaTG///xPOORo5A/PPMX79hc5GHwX+dZzuO2Gi/G4NQj3lcLNZcNeB7t29dHd5ceSpRtHZMW8oIHBID09fowGDb29AbzeboZDEYLBKAMDw0QiUazZBtLNQzQ1OVFq4kRJIzA8jC8YZNDrpXdwAJPewNTMGTTsdRCODvPNv91FKBEgwfjRqnIUzNVcSLoiHzkK3gv8iQRxSZTSytIxyDMxyDMxyfNQKGCaFW4oc2JuV5KQKVDOX47ts9ehmzsXZcYns8Xog1h6kyf7JV8ghGIUZtYNX0N/wXX0PvC/mHe9geNnP0M7dy7pl15Kx7CMucWz6Ojro7axnu2NDaxsXM5ff/J1bDaDpOKDcJ729flRqxWUlmZitRpxuYJYLFoCgSiRcBz3YJgtW7q45pqZUovdZPlLGo2C7Gw9VRV5XHHRnTzz5lb+8OLf+NkLd7O/+xx+/IUbGQ5F6O7yYcs3Ul6RmXTTlmBwcJhoNMFwKJpyjosOpQyzhs5OYdz9suX50r57e/3MmJkJwKGDA8yYmck1V48WqImEn7Huo4mynxxOP21t3nEus+PZZcXteNwhaSLgRK11yQ6viaZyfhiI2/C4h+ntDUz62j9J+E+oB6VlmeQVCs696urcCcmzWBOyrQYaGwcIhQTnhW8oQk+Xkq997sesWPQp3tr6KC9ufIpI9Gli6hU0tXwRo2F6StCzmLvj80dTMn+SsbQmj7Y2j2SHt2brOXhokL17HQSCUdraPaxckU95RRYeZ5D+ngB1W9qwFirw+/34fD76ul20H+nkWGs7S+eswTugYE9TP4+/fB+9/VuJxQIkGD9AY+WsG1k991IsJj3PbPsj7xx4ThKl1Eo92elFFGVPwZpejC+oZEuLk+JZ2dz87ZswpGkmfWL8fx1ag4rzvjiXV/+yn4GmQTIVMjwHB9nWPoRSKUehUqBUy1GqFajUCjI0csKDYezdPo51eEkkEmRl6+lsHmD/u13kTjVRdqaNnfucFMyyEAvEGDzopvvwIPkzMqX9qlVm8vOm0NVzjP/38E9JM+RzybqvcPHFNwGk5E/Z7UP09Qr3GdOmmdHphfahgD9Kdrae+oY+IhHhb1lUZBpxcaSNy0my24cIR2JotQpKSsycveYGFlWt5ukN9/PqW3/g4JFN3HTt9wj4bHR1+cjO1rGsxpbiiGppGWD37gGCwSjZ2TrpHBdFHLNZQ2eXUA+WL8uX9nvw4AAzZ2ayenWxFPBeVTnqLppIHBrrPhr7eoR1nOypc9Dd7UOllKeISMdrqxO35faEpImAJxK2TkbMOhHEbbg9w/T2BCZ97Z80/CfUhGQynsIRkrJ6xJ9HOYKCaDTB/n0uSsvK+Mm3fkNrewN/e/yfHLQ/TveghfSc8/jSzZcncYRREuz3R6TWvLFEVswLGhgcFjiCUU1Prx/vUJiWlgEGXMPMmp0lkeB0s4bGJgdKVYQ4JgKBAMHhYQbDcbx5xQT6+lAfOUb73j0MBYf5/eZt+EMRwrHxHGHAH+SHF6xGJoNILMb3nj1MAuHBhgxI06VhUGcgl1npGpzGn96pIDsvg9u+uZzPz8hOmWj3Scap4wjDzDrvJgoWraP2mcfw2/fx+p8PMXX+QsoW19DR5aWibB5O52be37ODnfU7WbJ3Nfffewc2m3EMR/DS2+tDpZJTVppBTo5B4gh+f5RwOI7bHea99zq59tpyqcVusvwljUZJdraOqnk2rrjslzz30iYeefoh/t+jP+RIx4Xc8eWbGR6O0t3lx5ZvoLzcknKfPTgYIhqNMzycmXKONze5eHNTGyDkO4lDA8R99/QKU1oBDh4coLJy1Mk0mQNprPtoouwnhzNAW5tnnMvs+BzBK01RFNsXJ2qtS25xnGgq54eBuA2PO0RPrz/ltfw7IUt8FEFCHyMWL17MwoUL+cMf/gBAPB6nsLCQr3zlK3znO98Zt3woFCIUGm0h83q9FBYW4vF4MJk+mGMo3N7O0FtvcSRgZOPGY4QjMQwGFcPBCFqdirPXFEutQzNmZrKgOpfm5n62bevGYtGSk6OnqWmAQDCCRqOgujqXBdW5bN7RwAMvbODtvbUMh8PMK53B0hkLuPisZSydN4ODB10891wLwWCUVauKUgSGZHIt7isWi6FQKBgYCNA+EmgdCkWZNSuL229fyDW3/ZqNezdK4tFYqNAyU3M23ngfnlgP7njHpO+JQWZhof5a6eeeSCNKmRadzIROnkFJUTozZlooLEjDoIgg2/EuM73NyDVqDDU1ZFx7DbrZs1Gkf7KLzgfBZJZesRglW3ljbjdHf/tnQi8+gyIcJDBtLg3pVahsSv76+hO8u28XACaDgR999mY+e8EFyOVy6VzRaOTYbEbpKZndPkS/009j4wCJRIz2dh8rVuQzdVqGdF6LRMSgV3Lw4CAdnV4KC9IwmdT09gakcx9gOBzm2799iEc3v0hGmonvXvM59NH8ceeuw+mXWlSXLbNhydJJrqJjx7w0NbuIhGOEw3EyLRouu2wGC6pzUwQd8fg/jLgzVhjaXddLXV0f7W0ehkMxFi7MSRG7JlvfoFfiD0QlcSj5vUheprtbCCgVHVPixMTk5T8oxG3k5hpGCl7q+yA5pi6+CJl8fLDz8eD1eklPT/9Q182PEh9nPQA4tKOXaDTO65vb2Lmzh4oKCyCjpWWQsjIza8+dkkKWqxfkCq3XtT0UFhmJxxLS5DGvN0x1dS6ZlgSPPf0Eb297hqNthzGlmVlQeRbnn3sBZ68+E3vbMHv3OohE4/T1Bqian4MtzzDOcdHc1M+22m5i0RgK5Ug9aBfcUqFQTKgHdyzk6JEerrj+bAZ9fZO+zmtXfpeZhQsx69P446vf4VBn3aTLXr/qR2SlzafN6WfPkUYcniNolFbOWzCb6tISAtE46fkGHJEYTS2DXPWpmeMcUJ9kDPsjHNzeg6PNS8AbJhqJE4vGiUWEf9Hkr9FR4U+ukKFUKwgHo+RONbH8qunUNfZLNWHd2ik8e28dri4f5vIMppSZybYaqNvdS2Ojg86+t3hqw5/wDgmupDOWncX/fO+XFBYI7Y/i+SLWBMGtJ0yBtNu9lJWZaWvz4PNFKSszI5fJpXNabO3r7h4iFIpTUZGZck5XJ00X2nugnju+/w2OtDWytPpizl5xC4sXT53QaSS2qS4bIdZ79zpwOoN0dfmIxeK4XMNkZmq55ppy6TiSBZ0PK/BMtN7mze3U7+kjFI4z5A1RWZmdMmVwsm2IUwlFgSj5PRP30d8fTPn8ioKauOyHgbiN3DwD5nTNhO+Bu89PyZwsMnI/uGD1SagJp7oeDHR3crRuF71uDRs3Hh3lCMNRtFolZ68pwR+ISH/bBQtyaW5ysa22a4QjGGhqchEIRNBohAzO6uoc3t5Sx6NPPcuOuq2EIxHmlM+iavZi1p99BnqNhb37nESjcXp7/cyvykkRGJLJtdjSV1iURiyWoKPDy546B7F4giWL87h9xHl6w+d/wra6jUw2EEMhN1BoPhelohutaoAD3YcnfU+yjBZWlF3CYFDDoE+HfbCRWMxEAgvIrMyeW0h5RS7lFVkYjSq2bOni0kvL/k+5nf7dOFmOkEgk2Lt9H+8/9wT+riYUCgXavHL6hnMxWmQ8/sIj7N4rcIR0k4lvffVWrrhwhCOMnJcajQJbXjJHELJfmxpdxBNx2tuHWLmygKlTzdJ5LbbPGfQqDh4aoKPDS2FhGqY0jSQSiW2kweFh7vz5H9nw+vNYMix89bNfJRG1jTt3HY6A1KK6rCZ/hCMIYv6xNo8QmRCNU15hobjYJO0jWdARj//DiDtjhaHdu0WO4GU4FGXhwlyuuab8hOsb9Cr8gYgkDiW/F8nLdHcLUzVFsXh3Uk2YaFrfyUDcRp7EEVLfB9ExVbHyrA+87Q9SDz5RjqlwOExdXR3f/e5oUKxcLmfNmjVs3759wnXuvvtu7rrrrlN2DIMDQTa+5aSt3UuaUYWrP0hXl18IxtSpuPAiwVYuEuWxzoxgMMb27V3k5hqlZVYvqWT1kkqO2p08/cZ77Gyt4+E3nuLPr/yTXIuFlZVVZKjyCAfSCEWsNOz1T9hKVF6eRXe3n02b2zDoVajVCmQjxxKPJ7BadYILpKN/UlEKIMIw+0MvoUSLSZGDTmZGIzNikuegk5tRy/SoZYaRrzrkcmH06ZdurcKafcm47cXDYXxvv83QG2+QiEYxrFhO5nWfRjdnzmlBagJM1pc+0RMVhdlMy+Ir2eOfyxrXZtLrNrM0dgCFdjkX3/MTtjU3843f/p5DHce4/fe/Y3pRIWdUzadhr4PW1kHmVWZL7aKisNHb68fpDDCvMps77liCw+nn9dcEcjJliglrtkEIy9x4jPZ2L7FYnOxsHTk6PW1tHuLxuCTQGPRKLlxwHoumLeDRrU/wjf93N+sWrcThOpeDBwck55M128All5RJ4k33Pif19Q6CwSjpZg2WTC1+f5hwJE5FuUX67IjHsnlzO5XzrB9Y1EkWpJLXFbc/Z7ZFmiJ4PIhOKVFYcjj9kmNK3I84Bae6OpfVq1NDOE9FuLrYfgiJf8l59X8F/wn1oN8VoNM+RGfHkDQ5rafHh6MvQFfXEDZbGnPnCNdo8W8rhkyL2Ly5ndZWN7l5Rok8fv9b3+CWvlt4b+suGg+/wzu1r3LbD55D+WMl82bPZ+nC5SRiNrxDFhKJ7AlbicpHwqA3vnqUQCBCRoYGnVaJVqtArpBjzdHhdPjJsGgZCvqP+zofe+9uqqaeyVXLv8b8qWcQCoWRK7KIRK0M+nRoVGZK8/LwD+t5rT7BnEo/n/7cbH6zar10LYvH4gwNDCOTyzCYNSgmmHr33wCtQUXlGqH9LRaLE48lSMQTJBIIX+MJ4vGEICD6I3icQQb7Arh7AwwHImQVGJm+KIeMXAOzRur4rFkWZHIZ59w8i0d/tIPe/S5QyKQ2NIB1627hy1+8iZ/c83Ne2PgI7257i+/c9Q3++eBzgCD6tLYMUplUE+p299LU1I/XI2Q0fetbSwB47dUjvLelC4tFI72uY8c87N7VC4DRoKSo2MTbb3fQ1NwviTN6vZLocB6//dmTvLjxMR5/7ncc63gfmeqHbKudkeJ+yrYKNUEUcOobHDQ1uTAaVZSWZTA0FGJoKIw1Ry+9RnG95qZ+Nm9uZ9486wcSdpLForHriYHzoXAUe7v3uKHjwDhB2unwS44pp2O0HoCQI5YszJ2qeiBMQkz8S86r/0v4oDXhVNcDEDoXNr7aNcIR1PT3B+nu9qOQy9DrVVx4YSkw2jo01pkRDETZvr2b3Dw14uSss1YuYPbMCg4e6uFY53627dzK4y/8g0ee/is51myWLliAQZOP35tOOJIxaSuRWq3AmKamwz6EMU0NyNDplej1SipmWaTcqo5O4aHgZIjF/bQNPIdSrmfx1BlMzbaQplGjU6UTjlvpdefiC1kIR824fCZeaVSyalURL/7l3BM6n77whaoP+c7/9+BkOYJMJqPbnUandh3zzl2Dom8bx/bWYYjtRRM08/1PXUDnpev41YOP0N7Zxvd/ejdlU6Ywf95cgSO0uAWOMJLdKAobfb1+nM4g8yqz+eY3F+NwBHh95AHG1KnpWK36EY5wlHa7l2g0QXa2npwcJe3tgvtXFGgMehVrV15OVXkNz7/xN35wz/c5+4xzcA2s5+AhF8uWFUiupksuKZPEm+59PvbU9zE8HCM9XU1erh6vN4xKJScv1yB9vsRjkTjCBxR1kgWp5HXF7c+ZkyVNETweRKdUsmAmikPifkY5Qo70no/d378Sri62H4rffxxuKfiECVP9/f3EYjFyclIniOTk5HDw4MEJ1/nud7/LbbfdJv0sPhH5sOjtC6BQyCkpNrF0aR59fUHef7+LYDCGxaI9YbixMMZVKRH8ZAw4Y8T785khz+bW73yWdtcxnnmzlq11B+nzvk0sHuNv78uwmrIwaTNo9GdzYKCI/JxM0o1G0g0Gmo8M0htwkanVkqZS4VMP4Fap6HF6ePmlPh5+N0JY7UaNkTA+ad8KNBjlFozybEyKXEzyHLQyk5RVMX26iWXLCjGZ1Cedi5OIxfBv34735ZeJ+3zoqqvJvO7T6Bcu/MS27H2UOH4xmknerGXkyb6G47f3MfT66/Tsr6fq0kv5+tlf57FNrxHVDHBGldCLP5HVVLwJnjLFlCLG2O1DNDUL5KTd7qW0zM/GjcdoPeJGo5ZTWia05DXsdUjEPBSKo9MJk+3iMZgxs4iNl/2af77+Gnf87g+8Vbeb+ZY1NDYuYvr0DDo6fCxdmodao5RcP1VVORw75iEWjzNriQ2H009fbwClKpXQHi/z6USYqIVP/F78uabm+Nuore3k7bc7hClTSYJZ8vbs9iG83ojUjjUWJ75uTI5kt5nYhpluHkppSbTbhyhMj5GV9ckhJ/8J9aCr08eRI24KCk1kZ+soKjZx5IiHut29aLQKIHESo+RHa0Lych0dPloO6wgNrean37mZvPwQDz38HNt2bOVvjz2Mzy84X557Iw1bbhFKhQWHN58uZxF5edmY0kxEIyoC4V4GPEHSMtLRm4YZdHuQyYNseM3FI0/1YzQF0KrN+INREgyP7F1Gtmkm0/IWMSVnNiXWKeRbMujqD9DcUY47WMRZZxdxwYWlrFpVdFJtFnKFnPTsj+dG6D8VCoVcmI42CdIytWQVjl4v4rE4MrlMqstja4LJoqP64qnsfu4I7gMD7AvGyLQZmFmWgd6kRiaTUT3rerShanY1PcSXrvm2tO5E7WhFRWksWmQbF67f2DhAb4/grF27bhr79jvZt89JOByjoDBNykFLqQdapRR0PnNmJt//1jf4zHVX8IOf3sFd934Ja8YSZpfdwPs7elBrFKxdW0JNTYEk8FgsOvJtRhQKGVWVVtyeYXy+CJmZo61SIo6X+XQ8jG3hS0by5/h4NUF0RM6alSlNGRy7ft3u3uPWgxNfMyZHstNMbMNMDntPFt9UH2oP/7n4oDXhVNcDgL7eAHKRI9TY6OsL8P6OboLBqMARThBuDKDWKJhSkkoc7XYv9vYQ8sR0ZuTnc9XPvkB33xFeevU9tu04gMv9OvF4nBffkpGVYcWgy6TDlUNbbzF5uZmY0ozEY2r6XIMMDAyTEdagUspQGwbIylPx4mv7OHK0B0NaGJlyEIXMSCwxyhHkMh1aVRZaVQ46lY0so5U1szzkpQfoHCyjJzaDBWctx5Jn5azVUz7xrXf/iZiIIySLVUWFq3D39dKys5aj9buw799LJDTMF5ZV89LeIsIqGfPnCUNQJuYIgigydWp6ihhjt3tpaurH4wnT3u6ltDSDjRuP0nrEjVqtYOZMcxJH8NLT7SMUiqHVKlEoZMRiCWbOnMKTV/0/nnz+RX7669/zbu12yvLX09S0lLIyMx32IZbW2FCrFZLrZ35VDsdGsjTPPrsEhzNAb28AhzN14MrxMp9OhIla+MTvxZ9ravKPu43a2q4kjjAqmI39fHu94ZGaMF58OpnrxmRIdpuJbZhii6D4e7vdizUTcnI++qrwiRKmPgw0Gg0ajebEC54kcnP0LM/OSHEkLFtuk9qOHE4/rv7gpFO7BDukTFo2mYwWFaUx5A3T3e3jnbd6iEbVZPqryTUv5IxLbBzp7mT73ia05mFCDHG4s5199gOEoiECw8NMBtk+GWqFBkVCgyWWwdLqUi5YtYgCq5UZRcXMLC4m+xQLRcNNTbiffppoXx/aWbPI+NSnMK5YjjI7+8QrfwJwogkbpxKpxSidgt/+Bn9dHR0/+imDDz/M4ux8DMtXMqOmfLSdzBznf9/7C+e6zgeqKC/PSslIW726WPq5qCiNRQtt0pQXu30IhUJOxsiFraYmXzrPd+3qpafbz759ThYuzEGvV0s33zKZjE+vXUdJRhlf/+3v2O7YQIe/maWda0mEhfHE111fIe1zbPYSZElPFOz2UeElw6xBLpeRYT7+53xsu12ykGTQK6VJmMmfyZPJftq+vYcjR9xotcpJl5loMMKpgt0+xM5d3Xg9Yaqqcqissqa8HmkaYqHyEyVMfRic6nqQX2AkEU9IbVMgOKLWnlsijat3OvzjWnWSYcsz4iwMYMtLDbEtKkqTpqG9/no7FeWZBNzV5JpnUjM/HWtOlNoduzGmD5Bu9tPY3ErDgXfZ1eAjOOwjHh+T/7Rt9Fu1SoNcrkMhN5Edz+PiC8+mMLuMfFMpBkUWUZ+C0MgEMpVWQVqmlvzpZq49s4CfWfXI5Cc/Lvw0BJyKmiA/CZfZ4jXFTCnNYOfLx3C0e+lsFgRMhUqOxqKhIM9I2pQZLJ1yL+EuFT1dXrp7Arz53sMEAhFi8YuBUUGnaILg8aU1eSlfQYZaJSczU8sZZxRI6x456qGnx8euXT0YDEpmTM+ktCxDuh7m5xXw1z88zg/v+gPPvPxbtu75FkU512A2LiLdpKGmpiDl2rl8mU26HheRhtMRkOpBsvASGQnsLSqe/Ony2Fa75HowWeh88nqTuZC2144MowFuv2PauN+L2xe/nmonk90+xM6dI/Vgfg5VldaU15OcOTWt8MM7sj4JONX1ACAnV8+K9NFwZoBly/KltiOHI5DKEcYQ5eTw8eRQZZGsvv56G62tbjzeENGIHnW8hoqCFZzx6TzaO9vZtacRY3qAaMzLkfZWmo80EA4HGU5qWRwLuVyOUqFBhpaMSCaLF5ax7pwabDk5TJtSQunUKViSOILj2BF2vfQ8MrmMqnVXc/OZazBlWT9wRMB/M/5dHGGsWJWRZ2PRRZez8IJLOdTUwZ7N23Ad3Mqlc4fRpGfTfqQb56AcnSHMs6//HofrMqCK8gpLSkba6tXFKefmokV5SRzBi1whJ8OsJVvkCCPn+a5dvfT0+EY4Qi5arRJTmuAcksvlXHPZJRTkVHDnL35JY9uTOD0HmNV+AdGIyBFmSfscm70EJHEEr3R85hGOYD4RRxjTbldUZJK2a9CrJEdhskB0MtlP22u7aW11o9UoJl1mosEIpwp2u5edO3vweMLMn2+lstKa8npE8S1arCIn56OvCZ8oYSorKwuFQkFfX2oWRl9fH7m5H67n8oMiI1PHQEAp2QItWTpef62NHe93QwK83jAdnUM0NAhZCOL0s+T8nHSzhkMHB0g3C4G4+/cJk/tMJjUrV+bT2DhALBajYyToeeo0M6VTLbgHo8zN07NsWQEmk5r6+j6qqnJYvbqYcCSCx+cjHBXIhAzBxmnQ6eho8/PKK0fx+aKsXVtCwTQl7iEfeRbLKRekIn19eJ59luEDB1AVFJD97W+Rfs45KG22lElBn3ScaMLGR4XRYlfK0c//EufjTzL/8MssqH8So+kMWouXcqjFy4v7nmbnof3sPtxEY+cF/O9Pb+Xw4UE2bjyGQiFj+YoCSUAR2+xAEGq69/UzZ44Fm61YEngALFk65HI54XAMlyuIwxFELpdTOHLB3V3Xi0GvRKs08o8f/YgHn3mdx2uf5OX2h1hXcTFLl85JcQ4lT69jRNARJwKK+2xu7ue997oY8kUYdIcmFJ/Em0CtRiAgoosLYEF1bkrGk/h6RUzmqBID2SvnWaXhA+LXiXAyjqjkbYpC38kIY8nCYUGBgZaWAem1ir8HyE8fH0z6fxn/CfUgy6LHnK6lvdPL5s3tFBWb0KiV7N3noHZbNzk5OszpWmpru6gXa8JIuHGyqyF5FL2Y9WOxaFm5YqQexGM0NDixWLToDSpWrsjH2R8kJ2s+ixfnUVGeRV1dHyaTitWri8nK1uMP+PH5hkiQQIbgslEqlXR1hmlqdCNXyOiw+1iw0ELU18XRPS7k8SwUGRoyinRk5OjJKk7DYjOgNajQp2tQqY9j7zmN4+LfWROsJSbOu3UurYcGOLDHQYZWydG9/fh7g8h6gyhVchasK+b9Dcdore9nz9EWHvrH74jHY2Smv8Znrvox5RXnsHVbFzt39rBoUR6XXDJd2r7YjipOwbPlGVi3fiqQkLKpyiuyuBT4058acLmCeNxyNBolCxbkpeQ/6fVKVq24kOrKZTz+3K/YvfcB8nP2MmvOz4FU95DT4Rem4+0fZu6c7HH1wOnw8+KGIxxsdmE2a9ColeMEKLEVT6NVEvBHJRcXCC11ya6midxTk7mqxFD2wiJBYB4V7cbjZB1RE03rO5EwluxyK8gX6oH42sXMKcnJ9YlKoP3PqAmZGTrCMlUqR3i9jR07ukgkwDsUoqNjiIYGJ05nQJp+lpyfk27WcPDgAOkjRHr/PifeoRCmNA3z51vRahTE4nE6OnxYLDqmTUuntDQLtztKWXEay5cXYEpTs6e+j/lVQltQKBzG5/MRjoxwBNkIR9DrsbcFefmVI/h8EdaunUJhsYwhn48ca3aKIAXQ0bSfPRs3kJFrY/m1n6FkbiUqjfbf8t5+kvDxcwQLR+0xmvuLWHL+bUw1d/LWw39h74Z/4jMt5rVdL9FwoJ59Tfs50n4F993zFQ4dHGTjxqPIFXJWrBh1ECVPgnQ4AnTv8zF3ThY2m1ESeCCJI4Ti9PcHcfQFkMkMFBaOcITdvRj0KnTadP54zz38/fGXePmtR9nR9AdWVl/F0po5Kc6h5Ol1FAnHIU4EFPfZ3ORiy3tdDPnCuEcm6I0VnySOoFXg90clFxcIYerJGU/i6xUxmaOquck1yhFGMhLFrxPhZBxRydsUhb6TEcaShcP8fCMtLYPSaxV/D2DNnHD1U45PlDClVquprq5m8+bNXHzxxYAQbLh582a+/OUv/1uOQcyY6hoJJisry+T997vp7fGhUilwuQTnkgwYDkbYXdeLxz0sORoMRqWULyO6Gerr+3C5gmRm6pg/P4epU820tLjIztZiNmtZUJ1Du91LPJZg5kwLJpMKm81AurlIuiFTq1QpIpPD6cfePkRREezb309vX5B8m5GMDC1f/cXveWvfVu645nruvPkzp+R9iQeDeDduxPfOO8gNBjKu+zTmq69GU1yMTPmJOg1PCieasPFRIbnYzZprpVFxLcai69E8/gCe558n19SAaun5zL/lZvwhP1v27+a5nS/Qd8dRLph9JV3dIfJtRsKhKI8/0TTO9SdOwcvNNUgB3hSlSRlKRqOSwsI0bDaD1Jonnud1dX34hsIoFDKMRjUVeXP41voS3jm2kecaHgdzLzNnf41Mk0na19jpdeI/cX87dnQz6A5hMCiJRuJsePEIsXgck0ktiU8N9Q7qG/qYMSOTmpr8FNFKxGSZHpP9f7I1+JqrK1Iygz4oRPGpoV7I/YLRlsTJhLFkJAuHjz/RxN4GJ6WlGVRWWSVBy5ptIDo4+KGP8T8R/wn1QMyY2tfsorVlkK4u4bNRu62bgYEgIJw7tbUCEQgOR6jb3YvbMzyhqwGENqT6+j5MJjVr1pRw5pmFHDk6SHdXNwaDivPPn4pGrSQ4HCM3x0AoFEevF4Jyk8mq0WDEaBBI8iiZ1dHUKLQ5lZZlcOaZhbR3HOWOH1+KRq3jaGM3aZla1FoFKo3ipBw6p3Fy+HfXBJlMRstRD3uaXSxdamP1TRXseqeD4TYfU2ZZmLUyn5bdDvwDISqnlnL7zT/jT4/+jAFPC3/8+83k5P8Cj2s2Xq8wueuJx5vGOf5EkSY3L/XalOzOseUL7XcWi5bZc7Kl83zf/n7q9/RhztASjyWQK5Scs/I7FOYuZdO2+/nhL65GqfkNa85cm7K/+j1CTTCnayUhSRTI7B1emptdDAcjZGTqCIWj0hN0k0lNLAa9vX66un1YLFqWLMnDlmeUHFPJ+KA1QWwfrKzMlkKkPyySc7VaW0ZqQsVoTZis3VD8P7EePPF4k9TSmHzfKa7n7jt+ttz/Nfwn1AQxY2qUI2Tw/o5uenv84znCcJTdu3vxuEOSo8FgUCX9rUzShC4x6L96fg5Tp5lpaRkgO1uH2axhwYLckbxPKC+3YEpTY7MZUzJsNGo1msxR5ulwBLC3eykqkrF3n5Pe3oDAEcxavvnDn7J733a+/vkv8+VbPi2t07Z3Dw2vv0LutOmcdePnyZ1Wdtol9SHxH8ERko6huLiUvNIZPHHXD0i4a7n1U1cyHA6wZ18dG99+HM+XW1k+/1N0dQtcMhyO8fjjzeNcf+IUvLxcgxTgTdFohpLRqKSgMI38fIPUmiee5yJHkCvkpKWpKCup5uYry9jV+Ayvb/tfdOndzJ5zG6a0NGlfY6fXif8cjgCbN7Wz4/0eBt3DGAwqotE4Gza0EhuZciyKTw0NDurrHcyYkTHCEVQpghpMnvE02f+ncIRryk/Y7nc8iOJTQ4OQ+wWjLYmTCWPJSBYOH3+8WeAIZWYqK62SoGW16gl43B/6GD8IPnGKwG233cYNN9zAggULWLRoEffddx9+v58bb7zx37J/MWMq32aU+mutOXoikRj5BSYqKjLp6wtKy9fV9VI6LYOK8izsdi/FRaZx7omqqhzJMeX1hti8uZ1oNEFmppZuv4+3vWESiQS5uUamTDHR2xsg3awdF/QsOi6Ki4SMIDFYs7jIxP59/UQiMRr2OnC5BBu31xP5l9+PRDxOYPt2PC+8QDwcwnjmGWTedBO6WbOQa/97n6JMlgf1USO10CQdw89+SvqFF9Bz54+wvPoP9INLePHnP+bxd9/l23/8A9v27aPpaBs3rLye9evnjI4g9kVTJsiJN+Me9zD19Q5JNALweiPMmJGZ0gaYjNraLux2LzqdMBZZoZBhtRr4xS3foLFnNbf9/ncsuukmbrv0Fi4/ezlFRWlUVeUghrcmQxStPJ4QGWYN5eWZ9PUFCAajwgV3nhV/IEo4FMVu96JUyCksSA04b27ul55qJrcywuSh6CKS++8ncjp9EIjik8Wiw2BUTpj7dbIhuMnH9WGO5f8aPu56IGZMWSw6jAYlZrMGtzvEzJlmDh6Eqqps7PYhysrMhMNxrDk6Dh4cQG9QYcszYsuDZTW2FLI/b54Vn1/II4EEdXV9tLV7cLtDDPnCbK/tIS1NjVwhIzfPSDwWJxCIjgtrTnZbdPf42FPnYH61Vdp+MBChrq4XZ8/IE0fk2ErN/5b37b8RH0dNGFcPbkgnGokRjyVQa5UsumAKrz/YSMgXoVi2kO9e9iBP1P6KA0d28+0ffY01Z1zC8sVfwONO0NDgxOePSiHm4teZMzNxe4ap3+OQBCNAEqzOObtkQndPd/cQbe0epillxGPQ1+cnFk9QXn4Gt9x0Pr/64w/43NeuY9XyS/jBHf/DlCm5Qk2YP74miGJNcDiKXqdELpNh0CtHJgMKWU7z5lkJBKKo1DLa2jxEo3HM6dqUKZZiYHp5RdY4p1ayS2kiQUjM4DKbNROKeB8EyblaRoNyXO5X8tfjITk37F/Jrfq/hI+7JogZU+M4QjRGfn4aFRUW+vpGM3Dq6voonWamomKEIxSbxrkn5lflSI4p71CIzZvsRKNxMjN1dPv9vD3UQSKeIDfPyJQSEz29ftJHBKtkiI6L4mIT7e1JHKFY5AhxGvY6GBgUOIzbPdr+1324mYbXXyF/ZgWrb/wC2SVTP7L38L8B/3EcATDn5HHd3b/m8R9+E1fDuzxw9w/ZuKWWu+/7Pdt27qL58BEuOfdzrF8/d5Qj+CMpE+REgcbjDqWIRiB0FEkcYQIRpba2e4QjKOnsjKNQyMmx6vnB13/AobZd3PXLX7F9Vx03f+pWzjtnBUVFJuZXCXlyY4UhUbTyuENkmLWUV2TS2+tneDhGaanIESKEw7ERjiCjsDAt5TPT3OQa5QhJrYwweSi6iBSOMIHT6YNAFJ8sFh0Gg2rC3K+TDUVP4Qgf4lhOBT5xwtRVV12F0+nkzjvvpLe3l8rKSl577bVxYYcfFZIzpgA2vHgErydMYaGJteuEC3UgEEGvU9Hb68OUrgES2GwG5HIZak3qn0RoTxq9Wdi8uQ2zWYtOp6S62sqgO4TXE6Kt3YvFomXO3OyUaV/JeHNTOw0NDgry08gvSJOyffbvc6LTKcnK0lM5z0rGDi10QWbGvyYchVpacD/1FJGuLrSzZ5N5440Yl9WgMJv/pe2exofH8YqdYfFipm54Ecfvfof7H48y3NzM5TfcQM1fHuD6u37M/iNH+N2rf2T+AguV84Q+bq1GSW1tF4FgBK83TGGRSTj3itIQs9LGOo/GZkOJQqxeJ4xNlsmE6TCxOCgUMg4eHCQSyuXRb9/LXY/8ie/87z1sa9zNX35wG3PmZrF/X//IOTwohbIXFaWRk2Ogt8+PyaTGZkvDZktDFNAA/PYhmpoG8PkjpKdrcLmGaW7ul9prN248Jj3VHCvinMiplDxtU3QpTbSdk0HyNL1lc20ThrA7nP4JM7COd1z/Dfi468HYjKnnnz/M3r1ObDYjq1YVoVAIBF2hgLQ0NaFQHItFjcsVRKNRUF2dO468lldkpbTtOB0B0tKEvJzsLB1lZWYaGwdQKGTMmZstjYIfi02b2qX2wYpZWQid1DLKK7Lo7vFRW9tNXp6RqSPrqlSn2/Q+aZioHihVCsTU62lVVq69y0hkOEo4GOPwrj5yc3/Ni+/8nZd3/41N7z5Pn/MYP/v+oxzY70KjVVJX18fQUJi0NBXTSjMwp2uEfLT5E9eDycSdUChOJBKnu8tHfn4aWp2SgD9CLBqjoT7IbV+4j+lTn+av//wFV9+8k/t/+ScWVdcwd47gttq6rQtAuP7nGdEbVAwMBLFa9cRiCXJz9ZIYlZwj1dIygEqtIBZLUN/gQK9XUl6Rxbbabur39OHzR8d9Jk/kUoLRz22yS+nDClN6vRAUP3NGxrhtiPu324eOezzJx/TfhI+7JiRnTAFs2NCKxxOisMDE2nVTAPD7I+j1Knp7/JjShYgLW55BujdKhtWqT5nQtXlTO+YMDTqdivnzrbjdITyeEO3tXiwWzQhH0ExIVN/c1EZDg5OCAiP5+WlS0PL+fU50eiVZ2Toq51kxv6GBDrBYBCI+0NXJ7peeJ7t4Kqtu+NxpUer/ME4kiBnSzVx558957Ae3s+PZJ7joU59hUXUVX/7292g9eoy/PXMvi5dkUTmvHACtVkHt9m4CgQjeoRCFhSO5TEWj2xzrPBqbDSUKsXq9kuFQDGQyNGoF8biQq3jo8CDDwyX87id/4Dd/+Q0/u+9H7Nl3Pvf+zx3MmZvN/n1O6RwWQ9mLikzk5hrp6wtINULM8RzlCBGamlz4fBHSzSMcockltddu3Hh0lCOMEXFO5FRKnrYpupQm2s7JIHma3rJl+ROGsDscgQkzsI53XB8XPnHCFMCXv/zlf5stdyzcnhAtvQNSO1BPj3DS5uYapTwbuQI0GiFPQa9T0XrEg0IuY8oUU8pN20T5Mcnh6OL0u82b2xkaigAyafnk8ZfJRFQGGI1CW4dBrxyZBhZGp1MyZUo6liwdiYRgX/ywFtyoy4Xn+ecJ7tmDMi+P7Nu+Qfr556PMy/uvypH6vwi5RkPut75F+vr1dH/nO7juv5/ozGoe+/7P+NUzj/BeQwOrqqtJNxolAcflGqanx4fLNSzl4CyozmX1akNKDpTNZpRulicSdpYts9HXJwRBxxMJLBYdObl6XK4gra2DOJ1Grp5/IxW2XTy1/VmWfa6ZOy79An1H1CQSEA7H6O7x4fdFufnmuShVMuJxgVDPmZvqeBIzoywWHQsX5uB0CvswGJWUl2dJAe7JTzVFOJx+PO4Qubn6SUPRk1FcZKK7y0/xhxzjas02kG4eknLnJtrP2PfztdeO8N57XVRWZjN1WsYJBatPMj7OejDgCnLsmJu0DA3ZVgMu1zDeoTA2hMljYp5NUbFpxL0RJjQcxTcUIRYTWvBETJQdk201pLgeyiuyqNvdS1qaT2jpzjMQCETp7w9KYetz52RL64uX47lzxBohhLGDDJ1WicWiw9MtOGcVytPC1H8jzEmTEvOnZ1C4MBvj1K8yZ9Z87n/yh8zNPQurUcfV11TgdAgt1IGA4EKChDQCW2w/cjr80rmo71dK5/RYcWdZjVAPvB6hvTs7S4dbJaffFeLYMS8AyxdfiN9dyM4D93PNZy/m5uu/xKqlN1G/R4g/iETiqNRy1qwpJjQcoavLR2lZhtQaO1FelPh5cjqDtLYMYjQIwpTFosOUrsZiSZ3yJ+Za5eYJxKlud+9xQ8uLik10dfmPG7x+IgQC0ZTcubGYSCh77dUjbN5sp7TUzKWXTv+vcEdNho+zJng8IVraw1I7UE+P0C6Zm2eQ8mwUChkajQK1RoFer6T1iBuFQsaUkvQUEj9RfkxyOPqcudlYrXo2b2pnaCiMwBG80n6S3R4iBI6gGuEIKmEa2FAIrVbBlJIRjhAXOIJcJiMU8LPzxacxZlo468bPY50ycaD/aXxyYMrK5oof/Iwn7vwmWx77Bxlzz+cvv/oD9z/0B/Y3N7O4ej4GvV4ScASO4MflCuH3C9elBQtyWb2mOCUHSuAIwrV9ImFnWU0+fX0B+p0iR9CSK3KEFjdOp4Hzz7yV0uKtvPrOU1z06f189pqv0H5U4AiRSJzubh9+f5Sbb56DUikjHk+gUsmlz4oIMTNK4Ai5OJ0BWlvcGAwqyissUoD7hBzBEcDjDpGXa5g0FD0ZxcUmurt8FH/ImmC16lNy5ybaz9j389VXj7LlvS4qq7KZOtX8kYSqf1h8IoWpjxOHDw+y96gg6KxeXTzSNzoqItntQ8RjYLOlUV6RRTgUZfv2HsKRGAZj6p9j29Zudu7qZtFCm9T/mUxSoZ9085CUJ9Vh9/LO23aqqnJwOP3jXBoLqnOIhOMsXZrHgupciZzn5ho4c5WQR/X8cy1Sjo17cPIpHRMhHg4z9MYbDL3xBnKNhvQrriDz059CM3UqMtUnbfDwJxu62bOZ8uyz7Lz1B6RtfYV4dxu/vvVz+D/3edKNwlOFRCJBXD7MhRdNGxcoLiI5B8rhDEi5ThO1G5SXZ1FRMcjmzW2o1WpKSkysXl2Mqz+IwajE6Qxy5Iibmsoavn7TOj5399189U8/5pqVl3DJ0nX09gTw+cIjLU6pltSxoszYKXjJ7Xbi/y9fkT+hoCPmaM2YmYk/ED2uc6q5uZ/t23tQKFLdkKJwtHJlPiaThu3be1i6NG/SLKoTtWf0O/00NvZjsQiW6Pfe6+LIETeDg8PY7UMjQxDGO9VO46PFgUYXzU0DJBSCE2lZjU1qvRFFpFgMNGqlFNQcCkc5ctRDMBilu8cvORq2butm585uFi0arQeQSlJFkjytNJ25c7JTcnrcg8NSK1W21cCaNcXo9Crp82JOF25szOlDzJ2ThTldw3tbOvDYhXoQj3/CkpBP40PhcKuHA11D1Fy+luu+dj71G3po2GRn+VXTGXQ6sMZk5M+wMHPBSOta+tD4mjCSA+UsDEjB4mOvceUVWVQcGmTnTiHvRKNRUlaqk0TcefOs7N3rIDRs4rpLf40v8i6/vv/nvFf7Lp++7C6mlebR2TGE2xMCZOME3GSMnYJXXpGV0uoKsHyZjaLCtHHXYLt9iN4ePzNnZkoB4jC5U6mvL0C/K5DSrvXaq0d4b0sXK1fkY0rXsL22h6U1H74eOJ1+GptG6wHAe1u6OHbMg7M/SHq6RhIKjxeUfhqnHocPD7K3WTjpV68upmapEHgsEmO73UsslsCWZ6S83EI4HGN7bbfAEQyp99HbUoYPjHCEJJIKQpuUmCfV0eHl7bftzK/KweEMjHNpLFiQK3CEGhsLFuRK5Dwv18CqVUUUFZl47rkW2to9AAwMDrP75ReIRiKs+sz12KbPPP3w+b8EloJCLvnuXTzx4+/RteMF4rH13HvXnXiHhjDoBYEjkUggkwe58MLScYHiIpJzoBzOgJTrNFELWnmFhYpDA2ze1I5KraKkJH2UIxhUOJ0BjrR6WVC5mi/ech63//DH3Hnvd7j43GtYvWw9vX0BhobC0nUxhSOMEWXGTsFLbrcT/3/Fiomn5Ik5WjNnZuIPRI7rnGpucrG9thu5Qp7ihhSFoxUr80lP17C9tpulNbZJs6hO1LLndAZoanRJ93tb3uviyFE3A4NB2tu90hCEkwlL/6hxWpg6xZg+PQOfSS2RYbENT2y1MeiVzBiZeCK4ndoIBCLI5bJxY+5driBeTxiXK5iyD7G159gxDz5fmJxcYdKAxy0QD0ikfOBEqDVKcnMNEkGeaER9S+sg0ZgwRtySmfpkcDIkEgmCdXW4n3uO+NAQ+iVLsNx0I7p5lSiMp292/q9CrtGQ98MfcOTZReQ983scv/wl6RddROKss5DJZPzlhef52cMP89cf/JCzFy2acBvJOVDCBI6odL6JT+yKi0xSCLrJpCInx0BenlHKorJmGygvz0oRj6blZ/Haffdx9yN/59ePPUaH5yg/v+VrlFdkjYRJd/L22x0UFaVhyRo9j5O3kZwNZcnSUVaWKS17vBa5iUiBQS9M4hRFaHGKh9MZpKvbR77NmLK8KBwBWCw6aXz4ZEREPJ6xuVciGhsH6O3109g4wNq106iszGZoKIzNZpCuCXByYemncWow0O2nyKxFVpHJ3JHrsNg6I4Yxixk8ycRw8+Z2gsEosVic5LFYx6sHbk8It2cY+zYvR1rdVM3PGdmek0QCLBYtU6akk9xKVV6RJRHp5MllyTk5TzzRjFkhEA2V6vTtwmmMzyApKMrhHz/cTsOWw3zjnk9RmDmdz5z9bQzLbOjTNeMEj+QcqORg8f7+IC0tA4KLcOR8NJlUZGboKChMo6jQJJ2bNTWpxySITV+mZvEKvvqtz3H3767jru/dw1VXnU9Hh49QOMqmTe0Tvp5kASr5WLNGakLWSE0QPxPiZ1c8lonqgT6pHsydk01/f1Dah8s1jNcblkKuQRCNpHqQeeJ6IB7L2NwrEY2NA/T2jNSDdYKDpbIym8GBYSwWrXSvCZxQSDuNUwd3Xw9lZWYSGrlEhsU2PLHVxqBXjdQEk+R2CgSjSRxhdMy9yxXEM2FNEFp7jrV5GBqKkCtxhNDI/QATcwS1gpxcg0SQJxpR39o6OFKbQBnux9kWZOFFl1O6cDFyxWlX7X8TbGUzWHnzt9j6t9/i3PUce4fnklc2E61SiUav58FHHuWBR/7B/ffczdIF1RNuIzkHKnlKn6s/SEvLIAa9IMaKYokpTU1OroG8PIOURWW1Cu6sZPGodIqFpx9+iN/86c889I9/4Bhs4Vu33kF5uYWiIhO1tV0Tc4SkbSRnQwkcIWOUIxynRW4ikcigV7F5pAalcoRAEkcYXV4UjkC4fzvQ6AKYVJgSj2ds7pWIpkYXPb1+mhpdrFs3lcqqbLxDIWw2o3RNEN/nE4Wlf9Q4fad5ijFlipkZZ5YAqa14IiGcMTNzTFiyjHA4hkwmQ69T0tzUT0O9g4qKTCwWHVVVOSxbNn6EpMPpx+cLE4sl6OsNSAS/oNCIzWaUiPbg4LA0PW2iG6iOkWlfy5bZKC/PYs3qIjYdVYIb5PITP/kId3TgfuopwkeOoC4rI/O2b2A880xUVusJ1z2N/3wUF6dTfNsVRG86m57vfR/Ps88Samkh/brr2LBlCx6/nyu+/z1+/oUv8sVLLx33tMyabWDOXNi/r5/ubp/kHHQ4/Tz3XIv0+SgpEXrahfwDrdRmKm4DxucjqZRK7rzps5xZNZ9b7v4553/7K9xx2ecpKjqD7dt7aGp20dPjo7xitI0veRKG2Ipotw/hcQ/T2yvYb8WMNtHhOFbIGTucwJptYHddb8qEwJaWAfY2OLHlG1m4MCfFtdXc3I9WpyAvzyA5pgCWLp14fHjydST5+AG2bevGYtEya1ZmyjamTssgEkmQm2sYyZNI/eyfbFj6aXx4dBwcwN3uY27lqBg1tm1p5szMlFByu32IY21eQsNR5s7LJhKO8etf7WJpTR4VFZl43CEqKsbP7HU6/Hi9wrSa4HCUY8c8NDf1AzLmV1uZOydb2n5L66BEZseeD25PCPs2LyaTmrlzslm9uojD24XzPx4XRkl/HIGsp/Gfg7EZJMZMLaXVVp59+gUGvA6c7m6cz3VjLvkjy9dXHndbWVk6Sex57vmkejCy/blzsjGna6Xzc2xu0tiMpNnl83jpyc38+O7v8s0ffoXli1/lru/ew/s7vNQ3OJDJIDtbl7KOOC1P3F7yxMDengBuT0hyfWVbDePa5MaGhmdbDdTt7k2ZDtjSMiDtI9k1CYIwptMqyMs1SI4pgKU1E9cDmHgqH8C22jH1IGkb06ZmEAknyM0zjMudO10PPnoEvB5e+s0vMOfmcfmlV6LSaFLcCSIhnDkzc1xYcjgURSaXo9craW520dDgoKLCgsWiY/58K8smIKsOZ4ChoQjxWJxekSMUm0amIhsloj3oHpamp01EqDs6hmhocLCsJp/yCgurVxexY78SbxAG7a0UrD+XynPWo9ae3IPs0/hkYcGqxcyY+wfe/cf/cqyhjraGPQAodXqefXMLbo+XG2/9Knd+83auvfzScetbrXopB0riCFY9Gza0smtXL0ePeliyOI+eXqHlVcxIE9tMxW3A+HwktUrFd772FWoWLeSbP7qL6798C5+/7qsCR6jtpqnJRU+3j/Ly0eDyFI4w0opot3vxuEP09PpHOIJGEqImEnLGDiewWvXs3t2bEvbe0jI4whEMLFyYm+Laam5yodUpyM3VS44pgKU147UASG3pHccRaruwWLRUjDxQErcxdaowcCdP4gipn/2TDUv/KHBamPoIsX9fP/X1fVRV5TBnrnAjNPYGwGYzEIslGPKFcTiC9LsCeD1hPJ4QubkGKqtSnREOp5DhIEz2kCEfeZrt9YZpt3uJx8AfiOK3D7F1SxdHjgxKQSLXXF0hkWNxO3W7+wgGo1K2ztq109jXdRa7DxSQbZj4QwAQGxrCs2EDgdpaFBkZZN5yM+ZLL0VdVITs9FOTTxyUZjMFf/wDAw8/jPO399F/zz08+ZWv8u1nnubR117jO3/6I0e7u7jnS7eiSPr7i+dZa4sbrVZJulkrCT7BYAyVSkZWlha5QnAdiaLPP/5xgPff72Hx4jyuu252yrEk51bNmZvNyqoqah98iGu//xO+/7dfsbtlPzeuvoLh4ShZWVo87mEcTj/WbMO4p4Si8JSbayA318CxYx5iceFpoDV74qfhE2HshMBwKEp3l58F1Tnjnno37HUQ8EdZvCSPtWuFp9k1NQWTBpgni2PJx9+w10F9Qx8mk5rLLpvB7bePZjuMPe5kke+0U+rfg3lnFTLQ7aNpaw8anZLBWJy6uj5aWgaYN88qOaWSUVSURjwOQ0MRQqE4jY0DknvizDMLyc01oFGnlu19+520tLrRaOTotCrM6RrisTh79zqIxYQsKyF4vYWdO7tRqRSEQ0IrydXXVCQ5tdrY9GY7kUicnBwD5nQta9dNI9Tey/pl1xNUaWlsdJ0Wpk5jHKrXlXB451K+de3v+MsrP6TDeZiv/uwafiP/X2K9ZoyZWqZWZpNVaGTffieb3mzHYFBJbaXJ9aCoKI3cPANuzzBFpFG9IJfa2k5efvkoJpOas9eUpAhByZlVQn6akXt/cj/5OZX85e//wzU3r+XbX/s1VZVWgsMRNFolTodf2kZyix+M5jPl5hnIzRNqQnzEITKZQ2osxk4H1OuV+PxRNFolWVlCHpeIvXsd+P1RlizJk9xNYs2YKFcu+RiTp/Lt3eugvl6oB5dfNoPb75g27pgAKehdfD2nnVL/HuhN6az+7BfZ9NAfeftvD7Dk0qvYvy/Invo+5lflSNlQYwmhzWYkFoMhzzCOvgD9Iy4pjztETq6ByspUZ4TDIYhQvb0BFApQKIRoEa83THu70CboD0Tw2yNsGeEI4gPFa64pl8ixuJ3du3sJBmNSts66dVNpPnIOTbuU5FsyWXzpVZiyTj+I/m9GmiWL8772LQJeD46jrfQda8Vpb+Nb6Rn8+cVXqG/v4s5f/BJ7Vxff+sqtyJPyi8XzrLXVjUajkDKSLBYdKqWc4WAU75CQM2jQqyTR5x//aOT9HT0sXpLHddfNSjme5NyqOXOzWbl0Ca88/iif/8YPuPv3d7G/+WIuXXc1w6EYFosWjzuEwxHAatVPwBG8UjtrXq6BY20eqd3QatWftJAzdkJgOByju8vHggW541xQIkdYssTGupGhaTU1+ZMGmCeLY+M4Qr1jhCNM5/Y7RocSjD3uZJHv486aOi1MfaRIEAwKT6/nzM2acKx8d7cPuVxGbo6epUvz6OsL4nIFqajIlNqbkrF/n5PWFjd5I9MDWlsHKS3NoLLKOi7jJxaLE40lyDCrU+y6yeJWUbEJvS51vORnLjyXsyprJrzxSsRi+N59F+8rr0A8Ttrac8m47jp0FRXItf/aFL/T+M+GTCbDctNN6Kqq6PrGbXjvu497Lr+c8uISfvDAX3jghRdwDAzwwHe/h1atBoQb6LY2Lx5viJISU8pN/apVhYitSr29AfxJQa52+xCD7pAkqIhwOP1sePEIBw+60OmUOJyBkZa/dB6588f8/oln+csrj1Hf0sTn19yEImGg9YhbEsRE19VErbV2+xCxeEKaVgknL+SMnZ5ptw+ltM0mo3KeFacziNMZTJkCuHlzuzSeOXmfY1tuk4Vqvy+KxaId91lNPm4xS27sdk/jo8eZn5pJKBDl4PZeiudnYTKp6O0NAA5Wry6ekBSa0lQYjSosFp3kjlpakzchIXY6/FIQdCQCA67RcOfkSWMw2gpYXJJGUXlmyoh5cTsKpRybzUjFLIu0nkGTwY2XfBXdTLPUxnUap5GMzDwDl35zPolEFTf96FzWnbOe1mOHufWH13L7tfcyTT2XXS8fI92qI6aVE48n8HjChMLCNT+5Hsydky0JL+b0IbKtBrbX9tDV6YMC47jz/8UNRzjYLNQDpyMgfa4+deXVTJ82l/sf+g7f+tGnuGjdF1hafTWtLW5MJrV0vT5ee62QCZpaE05GzMm2ptaDbKshpW02eX3xc2g2a3ji8SbmzbOSlaVLcW2J2xAxtu1WhM8/cT1IPu7koPfTotS/F7PPXENGno2XfvsL3n30r6jylzA8rOFYm4c5c7PHOaUcjgANex2kmYQswKU1Nvr6AiMcwYJarRhHiPfvc9La6iYvT/jbtra4KS0zU1lpHZfxE491EIslyDBrUjlCkrhVXGxCr0/lCGsXzGBqoJXpZ15A/owKTuM0ZDIZhnQzU6oWMKVqAQCJeJwLv3qEL994A89u2c5D//gnjv5+fnHnD1CrRlv02tq8eDwh5s0bnVa5bFk+pjS1tH2/P4I/EJF+npQjOAJs2HCE5uZ+9MkcwWrhj7+8lz8//ChPvPAo+5v3cdUFX0Ce0I9wBI3UEig6pca21or5b+K0Sjh5IWfs9Ey73ZvSNpsMgSMEcDoDNDe5sGTpUlxb4vZEjG25TRaq/f7ISE1IvU4kH/fupJrwcYtScFqY+kgxZ242DmdgXHZUKmSYzRqqqsY7KyaGDJ1OmTIZZtky28iJmxpqLLb1LF2al0Jm7fYh+nqDxGIJzj23ZNz4+InIeCKRYPjAATzPPUe0rw9dVRUZN9yAYfEilBkZJ/eGnMYnAvqqKqa+8Dydt92O5/HH+dTSpeR973t84Ze/5IX33sPl8bLh3ntRKBQUFaWhVgljXZUqudTGZ7cLof3+QBSDXnBSiTfTDqdfuogKZGUUQvC4j0RCKIStLW6s2QZsNqFf+9Nnn8fcqeV894Hf8MMnfs450y/kohWrUm7Uk0Wg6urccYLxqQgGTyYO4uvtd/qpq3NIvzt0cAC9TkV5eRb79/XT1OhCJpNhzfamiMyTiWNjWxtP5lgmg8Ppp7PZSX5+Gqf9MKcOMpmMsz87i3BwH/b6fioXWmkAqSaMJYZ2+xAajZIFC3JYvsw2kqczWhcmWj4eS5CXZ0SjkRMK6VlWY5OIbTJxFVsBJwpV3re/n94eHyUl6Vx04bSU/cQicUwZWs457/S0pdOYHHnTzCPfZVD7/jaWVa2mpWsf9z72DZ5//gUKDLOpe7WdqCPI/IJ09nZ6sbd7KSsdqQcjEyQh9ZrldPix5uiZPiODVasKxzmHent8JACZXEZLq5tsqwFbnpjpNIUff/Nv3Pv7X/DcK3+iYf9Ozlj0DSBH2sbY1r2x7bXicfyrIk6yY0nMqKqr65VCzzu7/NTv6cPnj1JVaWXLli4GBoNkZ+nQ65Xj3FNjj2dsW+OJjuN49UDcV6ZRRcmHf8mnMQHyZ1Tw6V/cx0u/vpvuw1uYaSllIFqekh0lwm4XJrWKIc8nSxq1WkUqR6jJl8htsttCbOtZWmNLIbN2u5fe3gDxWJy1505N+V08FqNz7zYsBUUsv+QCVOrRgP3TOI1kyORycqeV8eRb73L79ddy/xPPsuHV13F7PDx032+Qy+UUFZlQq4SHFUqlXMptstu9UuaUQa9KaTdzOALH4Qheent8kBD239rqxpqtx2Yz0rDXwVUXXUHF9Nn84v57+M0DP2RZ1VWsOWNVinAjCrMCR8gZJxifimDwZDFJfL1OZ4A9e0Y5wsGDg4IoXGmlrq6PUEiojx0dqUHyk4ljY1sbT+ZYJoPDEeDoISeFRR893z8tTJ1CDL25iWgwgKjxCi6KYulmYqKJWHPmZqVkwJwI4vJiJo7Y6jeRK0IMO9+/v5+nnjpEpkXHFZdPF0ivPyxMfer2S+RWDIa2FSvJL9STbTaTbjQSbm/H/dxzhFtaUBUWkv2tb5J+7rkobbbTEzj+S6Ewmyl86EH6f/d7XA8+yMqSEp6+804+fffdrFu6VGrns2YbWL9+Sso0C7E1Ta6AeAwpB0mE3T6EXC5jyRIbao1SasMD4WZ66VJh0qXXG6a11Q0kUvqqV6+exR+U/8MfXvo7Gw8+izJjkKKS66XjsduH8HojhEIxGuodhENRyZ04kavxw2Aix1JjYz/tdi89PT6mz8gcM3o8QTQaJxKJ09rqxuUaZnBwmPnzraxebUiZ4ie2/x0PDqefbVu7cbmCLFtmS3ldE12Htm3tovH9I1RW5jDts6fkLTgNIB6Po1DIWf+lOWy4r4G2OifzF1sZiiYmHC0/mRNiMoxmQwmkumokz2oiV4RGLdSDYDDGb3+7m8OHBlh1ViFXXlmO1xvC7Q5JWQYimhqdBIeHOXD4INPbDJSUlJyqt+Y0PsHIzs7ivdq3uPHmGzja3sLCRQvIyspixuJc6t+0s+cNO8tKMkjTqmk76uFwqxuFAmIxRjKdNNJnoG53L3KZjLXnThHEnDHB40trkupBixtIpORGrV5dzBc/+y2aDq3kr4/fyfNvfp3s3J8xd05WSmaU3qAiOBzF3uFNcRuOFak+9HsygWMpOfR84cI8qSYUFaURi8Xp6wsQicTo7vGzd69DctT29welMPc1a4pPSpByOvxs3TZSE2ps49ohk0WvrSPT3hZX5lC18mQemJ7GySCRSJBIJDCaM7nyRz/n7b89yN43N1KQ5sGaefG4iVgThY+fCGIGj+iuEFv9JnJFiGHn+/b18+STh7BYtFxx+QwMehWBQIRgMEJ3t08it81NLvZvrSXQ08OCpWeg0J123J3GiaFQqvjto09i0n+Ge/7+GAtmzpDa+axWPevXTx3DEYTWNIVCRiyWkHKQRNjtXmQyWLI4D7VaIbXhgfBZWToy6dI7FKKlxQ0whiPMx6C9l4ef/DPv7n4Eo3mAkpIbpOMRBeFQKEpDg4NwOCa5E8eKVB8WEzmWmhpdAkfo9jF9RgbpUj0w0dIySGtrAL8/wvBwDJcrxMBAkOr5wjS95Cl+Yvvf8eBwBNi2rWukHuSnvK6x16HmJhcbNx5FLQ8hU3z0stFpYeoUIeb1Uv/HP3LVgf2sW7qUi9au48z581Ome03UqnOyrULJZHJBdS4Op5908xDhUJSHHtqHRiPHaFRL4enLltkk0vLEE83C+MqeAGVlDsrKMonHEwwNhdmxoxubzYAlS8fGjcfo6vax640X2Nu+n99+7nNc7PMTrKtDYbGQeeONpF92KZriYmQq1QmO+DQ+6ZDL5Vi/8XU0M6bT8/0fMHPjq9T+/G6K58xJWW6ss0dqERpxBXncw7z5ZhsuV5B5I3b2GTMz8biHJwweT550WVgktAe2tgzS3eUnw6zBbh9iQXU+G9f+jEdfe5Vv3Pc76g4e4uc338Yla6uk/TfUO2htHZTy3JL3k4zm5n4pZHzZcqEXfKywI2Ii0Ufcn8Wioa5OJXyGF+RKbrHddb3YbEbWrCnB6w1hMqnxesO43cOAIPwmT/E7GWFq/z4nmze3EY0KrZLJ7quJAt1drmF8QxEGB4cn3eZpfHBcd9112O12LrnkEs6/4AKiz8U5ttPJtKU57E4imiJJ/CCZL8lksog0zOlDhMKj9cBmM6LXK3n++RapPXzmzEzcnmHq6nrx+yJsea+LK68slwL4W1vdvLjhCMtqbAQCURrqHYQGjvKr/72V3z9RTFtb20fyPp3GJw+5RRZefvVF+vv7ycoSrv9qrZLFF0xl9sp8dr18jIPbewi6hinK02MpSSMYjOH2DHPw4AC7d/fSbvdSWZmd0lo3NnhcrAdOh1+a3NffH5Qynfr7g5jTNVx9+flcefkZ3PSlG/jVH79Ad9/X+PH3vp0i7h5pHWRwYJjQcJSYEMM24eextraT7bU9LK3Jo6w0Y8IcKBFjRZ9k8XnlCqGerFyRT3V1LkWFQh6V3T7E0po80s2akfHeCbzeiNRSuHlz+6Rh7hPB6fCP5AUJmaKAJLxNFOguTg70eMIf5E9+GidAY2Mja9as4aKLLuKSSy7hrOtvJn9mBZv/+mf2vvh3AmmVuGMCQRSJ68kKUslkcsGCXByOAOlmDeFwbKQmKDAaVVJ4+rKafEn4euKJg9jtHnp7/SMcIUPgCN4wO97vkcLSX33lMIWxAzxRd4ifvvw5HlXr+dSnPvWRvV+n8cmBTC7nzv/3EBa1Epl/iCFXP2kW4bo11tkjnpeiK8jjDvHmm+0CR5iXzYLqXGbOFBzgEwWPJ0+6LCw0UVRkorV1kO4uH2azBrvdy8KFRaxf/1sef/Z5/udXv2HPvv1896vfY/3aedL+GxoctLa4pTy35P0ko7nJJYWML1smCPlj3Ykixoo+ya/XYtFi2KOSeL7oFrPbvSMDlPR4h0KY0jR4h0IMDo5O40ye4ncywtT+fU42b2onGhXyE5PdV2MD3Rv2Oujq9lGcp6Ag/6MflHFamDpFUJhM1K9fx0BDPf/csoV/btmCTq1l1fwFXL76TLI1JSk3Fsmore1k+/Yeli4dbbEYS3BFMilODQuHorTbvTidQRoP9KNSyamszOHI0UG8njAGo5Jrrq7A1R/EZFKTna0jv8BE5TwrliwdNTX57NjRjWtgmIa9glilUMjJtxk5GBKUbN9LLxPKyyP94osxX3MN2ullyHWnJ2+cRirS169HXVJC55duRfnXvxK4/nr0VVV4fD6++Mt7uOuWz1FWWDhOXBUhiLZ2OjuGGBwQxpfOmZvNfneI3Fz9hG7C5G0BtNu9GNNUDLpDuFwhAFpbBulrzOJnn/ouv3vlAb50/w+Ia+7gslWrsGYbMOiVGIxKMswaOjv9dNi90udt7CQ8MWS8cKSATJbZlCz6uPqDbNvWLYkE86tzx4lKoptqxsxMVq8e7T9PFt1AGPU9NBSmsjL7JP8qMjIytGi1KmKxGM8+e4hFC21ccknZhK0cy5bZyFANM+sknryfxskhEonw8ssv4/V62bp1K7fffjszZ86mIncJHc7FkFGCKWN8PYBU4ltTUzBhCLLdPiSFqRcVm7C3C/Xg4KEBdFolKqVwHd+5sxuvJyyFJNc3eCmdZqavL8CKlQIxnjsni2PHPBxsdtHb45OC0zMztPR0CuJmcmDpaZzGyUChUJCTM9o29/DDD3P06FH+53/+hynL8xiUJxg+NsRAuw+ZP8qcVQWEE4LI+o9/NNLZ5SMSjrHqzCLs9qGU/KfjIStLCAV3OgIpIlMoHGXJvB9iyXiaR5/+Dd19B/jVT/9A9YJcnA4/woOABJFwjMbGAaZMHW1tSP4Mbq/tkYYSaNTK42Y2iaKP2xMC+unuHiIUiqPXK1m7bpoUeC6uLzqqZs7M5Oab50r7FqcTZlsNzJtnxd7hxeeLUlR84ulJoku4uNiETq8iFo3xzLOHWLRo4pogTg6cOdV8wm2fxsljw4YN9PX18cADD/DAAw+g1xtZs2Ytl5x/DgO7dqEZ2IlFX0hezoUp69XWdrG9tpulNTYpKHkswRXJpMcdwjsUlpwQLS2D7NrVi0opp7IqhyNHBvF4whgMKq65plziCFarnvz8tFGOsNTGjvd7cLmCIxwhgwyOoZTH0GdYoKfrdE04jQ8EpUrNZ392L4988yvsfPEZ5l54OT/4+T384PZvoFGZU87nZEFHaK0TOcIwtjyRIzjJyzVM2IKW/PkAaG/3YkxT43aHcLmEB7CtrYP0tBVy2y138benf8/37r4NlfZOzj7zDKxWPQa9ShjSYdbQ1eWjo2P0+MZOwhNDxgsLhf1NltmULPq4+oNsq+1Co1FgyzNSXZ07TlTanVQPkjOqkkU3gMqqbLxDISqrTpYjQEaGBq1ORTQa59lnD7NoUd5IPUht7ROdbLPKdGRlffQawGlh6hTi6z/+MbnFFbz0szt5t9uOIzzMxh1b2bhjK0qFgm+s/yorVywdR2a3bx+9yRGFqWTSsXp1sXTDILpIenv9dHX7MBpU5OQYSCQEtdViseFyBSkuMrG7rpfa2i76+gIsXGiTbnIAVq82YLMZ2LatG61GiUGvZGW1idxju3nnvaMA6GbOIP+nP0U3Zw6KtNPjhE9DwJ//XM8TTxzi6qtn8IUvVAGgq6hgyrPP0PHFLzHw0EPELr6Y79Tv4eVt29jZ1MSGe39FYEDHoYMDdNiH6OgUApvPXlNMeXkW558/leeeb0EhlwGykSwpPzNmZk7oYkoWah1OP329AXJy9RQXmWi3CxlN777Twb59TvLzjbz0y/v46T/+wo0//QkvbN7Bz7/0RcnJtbuulwMHXAwODlNYZBrnKqqcZ50wZHwiclRUlEaHfYiGegeBYIRDhwaQIYxYFwPYxy4/0bbGOimnTssgEkkwddqJ+7ubm/s5dszD/Pk5LFuez4YXj+D1CDeqE20bBFdbWa7idGvuKYRKpWL//v389a+P8/e/P0l7+14OHjzAwYMHgIeYO3UZt37pNxOuu722h6MjY+BragrG1QPRedHSMoDXGxbCobt9GI0qZs4QAtO93jDZVgOLFtno7PCi0SrZNjIiOd9m5NZbq1KcWhddOA2LRYfLFaSo2IRGrcSaqeXFfcITtdMk5DQmwrZtnfz1r/sBuOmmOdIT47E4dOgQN998M/F4nEAgwFlnfYk9TS6WLMnDWGikdWsPW59qIXOaiaVrp7B7dw9DvjClpWZJ3Jko/0lEsgDkdPjp7Q0IDzZGRFu9Xslrrx/j4EE3FRVXc+P153P7929l/eWr+Ootv2T1mcukhwNPPN6E0xnA3u6lpiZ1+yAMIxC/niizqagoDXvHEDt2dBMMRnG7h0nEwWhQTuh0mmh7Y52U5RVZUpj6/2fvzMPaqrM//GYhCQmENSlrKBQsS1vobqGtS6u2dW+1U8d9HMf5qeM+LnV3dNRx1NFx361LO6PWddpqW6vV0kVooQu0hVIIZUsIhEACgQC/P8K9JCHQdsa13vd5fAK5S7432Jyczz3ncwKndAZSXtbMjhILBmMoMwsSMRh1vPLKTr+YEOz8Wdmx2JucI55b4ui45ZZbSErKZMWK9/n22y9ob7fxySfv88kn76NSqfj9Wb9njLuO0o9fp3/OPJKyvNPGNhfWs3uPDUAUpsxmx0BMaB3IEbxJZJvdzbZtDWK1W0xMKKNGaenv81Ztx8TEe3OEFD1FRb45Qrx/jjA3hVCtks2F9aSk6ImLlVMnq8Z43HiiGr3f36SYIBGMYDmCQFhUDGfccBvvP3Q3N910C5vL9rJn3z5uvfpeHK1e0cPW3MnaddUAnDJ3NFnZMZxxZhorV1Ygl3u/o5rNDhoanWRmRgetYvIVai1WlxgPUlL01NR4PZq+/qqW0p1WkhLDefv5l3n8uSf4v1tu4/S5Z3HbddeKlVxFRY3s3t1MS0sXyclDq4ryco1BTcaDCWYmk57a2nZKSiy4XD3s29eKDDCl6EUD9sD9g50rULxLS4uku7uPtCO4mVBeZuNgdRuTJo+ioCCJTz6ppM03Rwg4t/A+uNrshz3394EkTH2PhISE0OTIwGp6gIeSvkR36Eu+6O7hG/qobW4mMTJJnDx299Nvs7O8joVzCpg+3QRAVLSae+75lrAwJTNnJuF2eyguasHT00dWdqz3i4opnIjIdlJT9Wze3IBCIWP8eIPoUxXoa9PV6UEGtLe7Wb6ijLxcozgFzOnykJqqp6XGgvzLzRj3FdOvUOAJ00NHOy0T5xAmfCuTkBhgxYp9bN/eBCAGnZqaNvbsaSPrr88S/sxDtH34ITdNnUqxaTR7zdXMv/EG3lj6F8ZmGiksrGPr1gZClHJvG0JWLPn5SaRnRPlVQcHIX/YBas0Odmy30Nffz7RpcajUSvp6va1rM2Z4v4Dp9SparL28uvROkiNT+efHb1JSuY+Ljr+E41KSyMyMZuLEwdHeFquTNp9qrcBJeDD8dDujQUeXu4fKylYSEsOYmDdKrJgKdi1H2so7XPITrHWwpNTboqgLM2A06CgoSEAXpvSbqiPx41BbK6eiIodJk+5h0iQndvsOOjpKKCn5FlPMcbTWujBHtdPe0cbSB+4kcdQk5k2dTVaYmqzcOPr6+/n4lV009/Vjb+ukttZBh9Mjttrl5hpxuTy4uz1sLvTGg/z8RLHtydenRxgvHxOj4dAhBy+9vIuF56b7Jcfurh76evtQq5RMnhJHm7WT/oHJma2tbjZtOjSs8CDx62TduhrWrq1BJvN+eS4oSBqIBzZycmJISfGOUxg7dixPP/001157LU888QRVVVauuOIeIiPVPPduOZu+qePMiXFkymSUbapn4cLjmDIl/ojigbDN3uamuLiBukNO0tMjRY/P3t7B1rWGhg5MpnBOmjWDT//1Jb+7+lLuevhSPv7PZZx/9mXMmpkkTsrLzTWKlVK+1VqHG0rgi8Gow93Vg83WRUyMhrFj43G7+/ymYgbufzT+coHvSWB1ZWmphcqKVsJ0BvG8QkXUcGuQ+GFQqVRYLEk4nWcyb975tLRUEBJSRkXFtzQ0NBGRcR4pWXI6yz/iqSefoL1HxcyTz+H4GV6BajBHCBnIEXopKmrE4+kjKyvGm7yaECumYmI0OJ09nDA7WTSPDvS16erq9eYIjm6WLy/35ggDU8mEKhOVSkHzvu9QKJXMOm8xj3+6AYB9+1p+qrdS4mdMYI4QGA9M43Ip+M1FtDlfora5hUNNFh544k7uvP4BTKbRfPJJJVu3NqJUyjEYvFPm8vMTSU+P8quCguENu4Xna2sHc4Tp0+NQqRT09vbjdPUwIz8Bm63LmyPY+njmbw/z4GOv8tb7r7OrvIzTT7yCtNGJZI6NYdJEb+WvThsyZFpf4CQ8GH66ndGopavLQ2WFnYREHRMnGsWKqWDXcqTtvMMJWMFaB0tKvS2KOp0Bo1FLQX4iOl3IzyZHkISp75m6ug4O1nbwbNRsbjh7OrdseYM/dzg4NP1EQrINg75PX66mqb2BDfs/Rx8azqwJk9DUJ2A3RxAaokWhUBCiknvNOM0d4p0JoQXKbG5nwYJUP+8YGExUdVolYzOj0WqVyGQyXC6PaPyWlRWL2dxOXdFe0lt2c9yhvchClOgKCug++Qxqrr8TqKOsqnPoBUr86lmyZKzfI8CePTY2b64HYP6TT2CJj6fl9dd5Pi2Ty5y91NhqOf/O2/nTadcQpY4jMkJNTEyo3wehr0hjsXrv1FZWtLJ+fY2foLprZzPQz/gJBtrsblyuHrrcvWze3MCCBanExelos3cRGqokLS1SrHSSyWRcs/gcMpPHcMcrj/O3zx5jmnE+i04+kbPOHuMn6o5UrXU4fCusCmYmBj1HoKB0uN+HE7ACK2mMBp34ngqPRzq9T+L7Z926GoqLmwgJkXPNNXmYTDOIiFDR0NBC/deH0IQoSE4K498ffsC2HZ8Bn/Hx53JS4nIwxuSSGJHLzMwJRPRBvbMXT2+fX6udr/fOggWpfr4xQhJqtTixt7mJi9cyYbwBvT6EDz+soNbsoLTUIgpTQruPb7u5p7uX/v4BDwKnh3XraiRhSsKPuXNTMJsd4s/gHw8EYQrgmmuuYf/+dp5+eikfffQWBw7YOPfc2+nq8nBcZhSuWBWxYyOoLm0mwhA6pDrKbG6norIVc42D3FwjWdmxlJc1D0zgMxIZocbS1Embw9vOBN4peAqF93HMmEgsTZ2MGZggmBifxOvPvM81N9/G1pJXOHCwhKqqO7j0ksksuSAbwK+17r81Qjel6KmrcwadiCngKygJ1yr8Ww7WyjucgBUYE3xFNoEjneAn8f1TV9dBTY3XXPnCC09kxozfYre76elpQaWKIScnhqQLCrjumXha25tZt2sHeq2OqZOOR2FOoak+CnVIKAq5nBCVnK6uXszmdrHaecqUOAoKEjGbh07ugsFEVUisdTpvGujq9MkRsmNEA2i9XoUhwkPJhh1kHF9Aj3oUdXXtAOzebfsJ3kGJnzuBOUKweDDt7PNp2L+PKxRKXvhmJ022Bpb+9XYuXfRntGojEREqYmO1/jmCj0hjsbgAbzuemCMMCKq7dnr/Px6SIxTWs2BBGvFxOtrsbkK1StLGRIiVTjKZjKsu+y0Zqcfx6DOP8PKKB8hOWciCU0/grLPSMRq1fq11/60Rum+FVUFBUlDhKbAVMVBcChSchhOwAisrjUbt0BzhCKf3/VhIwtT3zHnnHceOHRZaWrrY6ExmY+r1zKn+mNx9pcgbDhJ27jn0RU9m8Umn8cWWbVTZKnF0tvOfrV8DIENGatRYxvdcQohKzsS8USQl6Wi1u2m2Olm+ogyN2jsxZmxmNFUHWnnzjd3MmpXI4sVZYguSVhtCl7uHFJOeZJOebreHsrIWQkOgYUMh8dsKiaupgrBwwuedyq5Rx/PBDhi1U0+v3DtRbfz4n4d6KvHz4o9/nDikPDcnJ0Z8lMlkjLrtVkLi4+CRR3k7YwyLnL1Yuur55+fPcu0pf2LmrBRRSAmG8P9xY6MTq9UbgARBdceOJvr7ISJSw/gJsTgc3ZSVNaNQyAYqEvvZvt07SaO9vVusHBo0MY9m6dm38tQnr7Kp6SO6vrGQM/6PQ8zKhcdgVUkjkZUVi9PlYd/eFszm9hFbEYEhrYPDGZQHQ2jn2revhV07mznjjDTy85MkIepnwty5KWzYUEtLSxfffddIU5MLnS6Empp2ktU6lE4PYaEqJk8axwlTFrOvcguNdjMHG3ZxsGEX8DariyO5Yu495MSNR5aggYGbFHq9Cne3h2XLylAoZMyalYRWq+T1N3bR0eFh3rzRYhvgrp3N9Pb2kRAfxoTxBhyOHrFlT5hy5vv/fUVlK8uWlTElJ4aBginUaqUoPEhICBQUJA0RK33jQSA33fR/vPPOfmy2N9i1axUQwsKFt3D55eNJSYmgv6+ffz/8Hfu3NTEqVY8yxPt9RGil84sJ2bFDJvAVzEyirKx5wDS2HXtbF7W1HRiMWqwWl1+LnuDldsHCGwn9bAzf7XqWN9+/mpTUpzl/0clA8MqkYELRSAgTMUdqu/NtFQT8fKsCzclHQogJe/e1sHOXNyYIIpvET49vjlBebmPHDgtdXR4mTDBw2WXeipK+vj4W/eZq1qz6jKamnThcTtZ/ux4AmUxO8qhcunsu9eYIE40kJoZht7uxWl0sX16ORqPA6fSQmRlNVZWdN97YzezZSSxenCm2IOl0IXR1eUhJ0ZOcrKe7u5eyMhsajXfKmW8FxsFNn4FSwydbYthirUDo+M/LGzXcZUr8ignMEYLFA5lMxoLrbqGpppprT1Lx+OrvsDsbefODv3Pxubcya5ZJFFKCIfx/3NToxGr1FlEIgup2MUdQM36CAUd7N2VlNuQKOU5XDwDF25vo6emj3dEtVg4NmpjH8X8X3ctrK55lZ9U79K9vZPz4q4dMyhQIVpU0ElnZMThdPezd24LZ7BixFVEg0LMq0KB8OISJfmKOcGYa+fmJPyshKhBJmPqeKShI4qGHZrJuXQ1ms4OdVd0c0J3FaWMKmN+4ipY33kC5ejV3nnEGF809jdXrqqmxVdMT2sD2A7soO3iQcTlxjB6tx+HoJmV0OHcvewxjeDwJYaPR9MYyLjORvIlGTKZw3nxjN3V1HWzYUEvamCixUqpkh4Wychv1dU4WzB+NsqWJaY4iwnfuptfjpifKSOhZ55F40flYlDE8evU37N/fyrhWGRqNN/HJzJSSW4kjIyUlwu/OOED0JZegjItD9udb+XdGAosrerF0NfHB9uWsvfRZP8ElUPwRkoDUVK9nVFSkWpw2NmZMpFjVYTToKJiZgF6vQmjF22V3i20lyhCZeFdAMDEP1SjJzIzhL5feyNqdG/jXpg+4/fUW3km9jySj0a86qby8mVWrDqJQyJg5K2lIZeJwYpVOq0Su8D4Gw3cyYVFxo/jvNjAJEh7Ly5spKbWQYtKjUiv97qrn5RrZtbOZ+voONm9uGHaAgsSPT2A8WLfOzJQpo4iN1dBs6UTXJ8ducTJj+mQ6D+jomHYV7TEdbNn+DQ7HTnbsKKSjw446OQF1n4zQXjnf7FvDpi1fM31qPjERYzlUF0pSotcof/36GnbubKbb3YvH00dGehTC6Pm6+g42FdaTmhqBXh/CzIKEIdUVggn0Z59VUV/XQYRCTh/eiqnoaK1ULSVxRASLB77bbrzx97zwgpJDh15h166P+e1vzyQlZSYAMrmM9FkJbHl3P3uLGhk3w+upI8aEND3FRU1YrZ0UFh5CrQkhPSOK3FwjBqOOc8/NIHNsFKWlFrRaJfY22UAiLRtSPSSYmHe5PZx/7kKyjsth7bePcPfDF9PT91cuOO+SIZVJ5WWDMWHWrCS/ysThxCrfqq3hEK5Pq1VS3+AkLl47bDwQ1lFaahH94HxjQm6ukZ27mqmv62BzYcOwAxQkfnwCY8L+/a3odCE0N3eyZ4+NlJQI5HI5L798P5s2XclLLxXT0lCIu/VLdu7fS5Ojg4xkBaNNOhwdfZiSw/j7iw9iiDYRG5GGot9IdnYCeXlGTCY9b7yxm/p6J19+aSYtLVKslCopsVBWZqO+roMFC7yGy6mjI2hodLJrp1Vs/VP02Gio2Ee1K53Pd3SR2dKIWu3NEbKzj9xoWeLXy3DxQKUJZcm9f2XFvbdy42lTeOLzbbQ5LXy5eRnvXPbSEAN0X/FHEIbS0iKoqXEQKeYICtLTI9GHD7auFhQkog9XAd68YJfdOpgjKANyhB0WNBoFWVkx/PmapWzcsprVX73H319o5tkxD2E0xvqtq7zMxqpVVcgVcmbNYtiKJl8sFhdtdvewxu3COsHbOlhf3zFk30CBrLzM5s0RUvSoVAq/SishR6ir72BzYf2wAxR+LkjC1A+AcAdx06ZDrFtXw7hxsYSGhhCZuYTI3YXYXnyRlldfRR2iZbRsNKPzprDwst8AUGe14urqIkITjdnczs79lZTV7aWMveL5E2tHMb0hm8ljx5KaHQ2EkZYWIU73mjI5Dl2oAkXTIZJb9iF/eSWx7ja65SqcyWNpPW4auxWpjJs5jowJYylbVUVMTCjHHQdTp8ahVJ7AhAnjGTt27DBXKCFxZOhPPRVldDSyq69h5XFJXNMcyY2//T1xo8JFsSUv10h9fQfbt1uYNMnInDn+rWv5+bB8RZk4GW/RorF+U/127bSyfbtFNMlNSNAREWka0uKqUYcwdsAYurevD1NKBPfPupj83HE8uPxpZl71B16+YymnTJsmnnvtuhp27bJi8pmQB/4VT8Lvvq/ndHno64X6eqfYbivsp9MqxeeE8wj/bgUCW/dKSi2Ullipr3MSFzf4vHDsGWekiZM9g63xcMKUxerkULmVxMRwgqeTEv8tgfFg7twUkpLC2VVqpWa1GUdzF6PS+ui0d3PI3kmYIZrPPnsMgO7ubrZt20Zy8ng2/rsCxwEHO0q+orLmGyprNgKgCgklY0w2XUwjJnIMOTlpNDV6WzDM5nYmT4ljwYJUSkstqDVKdmxvwt7mpmSHlRn58ej1ITgc3ZjN7WJ1Rni4ioTEMMakRVDTFcv0KeeTmSNVS0l8P9x5Zz533pnP9denUVS0m/HjTwQQ/410uz1E9fZRu6+NnOkJyOQyP4HIXOOgpMRKd3cfcXE6JuYZ/VrT6hs6qK3tQK1RotermTjJyITxsRiMOrKyY7FanBQXNZKT440HxlGhuJw9LJg3hcsv+5gHH7uXux68he+2b+HBux9Dpw0DvGLQW2+X0draRfqYqCExQTBfj4zwF4BcLo/oc+XrWeVyecRHkymcyVPiKC5qpLHBa+o7UtueUClWFxAThDaTM85IEyd7+q5PON/hsFqcVJa3oIrREBUnCVnfJ8PlCIEVhuvW1VBV5WLu3LO4555HqN+/l09ffQFz2W7CLKsxJmRTVaukylxGlblMPO67fQnsOTiO8dlZjM02AjrGpEX4tSDptCG02d3IFXI2FdbR2OBEH6EmZ6CSYu/eFvr7+3HtXYsyNAK7Zxxp6WFMnRqHTHYSkyZNZswY/ynDEhJHS4RxFIvve4T3HljKTadO5J3iKq6+8iZGjdKJYouQIxRvb2LypFHMmZvi17qWn5/I8uXl4mS8RYuO82uz27XTSvH2JjIyvJP/EhLChniuWSwuNBolY8d6Bwz19vaTYorkzplXMWXiBJ594wnO/O3F/OOhvzBj6hTx3GvXVbNrt5AjDApHgRVPgRM0BeN28Pq9+QpJvi24w5m8B7buDeYIHYwKFg/OTBMnewZb4+GEKYvFRdU+K8mmww9g+l+RhKkfkGAl7qSdScS802j/+msOPvcaU/buQr6tjMbatYTm5hKTmUn86NHIVSqMBh0R0TKurL6M0qpy6tqqqbM1UdfcxMqvmlj51QZuvehi/vnPy2mqt7OzsIS3/7WM796XMbqtjUkeD5EaLY6oZL7pyKYiZgJnXXEC2dNSKXu/grUb6oiI0ZGTE8MVV4wXg+KePUl+pqUSEv8L2ilTSFn2Jt0XXsprkVr2NrhYvqIMq7WTQwPT+YwGnXhXG4ZW+ww3Gc+L9464zdYltrj6ijyBVU++xtBmcztyVzTPXfsQz695jfOW3sGFJ5/N3VdcRvwob6CQK2TEGkL9xB3fO9i+AtD24kY2bqwjL8/A2MxocYqmwL69LcgV0Nc79DwjIdzRCayYEo41GnRDvEuO9NzgTVoOVtqRIUP6qvnDEBgPUlIieHd7M067G3ujCxkQYwpj1imjxX1UKhUzZ3orSS68aRIr/rKNU8f/Bo0mhY7OfRw076Gzy8WevcXs2VuMSqVmV+FB7K1eoamo9GOKd/eQnnYc0/PHoFJEoder2bKlnrr6Dsw1DubMSeHbTfXsKPFWmJhM4Zx6ymivmXRNBz1WE3ec+xfypv93fgoSEsMxe/a5lJensWzZbiIj1XzxRRVffllHTIyGzMhQkjvldHZ04+zy+FX7CBVPgdVCg/jEhIGWJkGMCax4uvmWMX7VRGZzO7OmXk1mxkReefsBSneXcN2Vf6fg+DxKSy10tPcQFaVhwYJUP4FHWIO9rcsvIVnzeTUVFa1kZESK59+7twWFAnp7ER8Bcdqm7/mGY6T3IJhB+9HEA/DGhJqaNrRxWnImSS1bPwRBcwQfhNbpuXNTkMlkJI7N4qpH/0Fj5X62rFzBwZJiwj29LD5xPuX1rTS1VGNpbqShqZ5PP6/n08+/4JZrr+aZZy7BYnFRtL2CT9etwNyYwZjRoznz7CTa7HDoUDuVlXYAMWF3tHdTvq0EvbOOzJPPZkzCLMZPiBPXLeUIEt8XUaPiuejhp3jtjrv4w/FK3AdKWP62HGuLh7pDXj8zo0GL79DowGqf4SbjCXjjgRunc6g/lH/VU6IoCAmPst54HrrtcZa9/yyXXnMd552xhOv+8Dvi4rw3LORyObGxoX7ijm9Fk68AVFzcyPr1ZtLTI4dsAwZig4ze3v4h5xkJMUcIqJgSjjUatWKlVLA1Hg6z2cGBA3Zkih9eNpKEqZ8AmUqF/pRTmDBnDt01ZhyrV9Px1QY6Nmygfc0akMtRxMQQYjBgMBo5V97PxPAxaBPG0Svv4VBnM3ZZK2VN9Yyvqabh3nvpbW6mqb2d1+oO+b1WqEZDfFwHoboWjh89gUaXkiyZjKamJr74YiMdHZVcd90MMjI0yOUONBoNM2fGotX+fMr6JH7ZPPRQIStW7CM76mKu71xGZvFKPgmdRU2omy8OfMaZ597H2DGx4mRJgA9XVrBtWwPTpsVz7sIMnC6Pn0G5QHl5MwcPtjFmTCSZmdF+1UmCuFVYWEd5uY3IKDU6rdKvGsnW3IlcAQmGKJ65fim3PvkK73z5Mbur9/PeIw9wytwUDIbQIdMqgpmRm0zhrPxgPwcO2AFYvDgLi9VJRKT/pEHfiqkjnco3nIH5SMceybl9hyWMSY8kITHssGuR+P6ISQqj6aDDK0zJZVzxp0kYkoMnjnKFnLmXZdPyiIu5qjTCTDpiYjVs+KoYTVgTnn4zXV1dhISEYDCGYDDquPvR5ezdv8fvPIZYI9GRcYSFJnJeyl8xm9ux2TrZvHUTlmY9Z589nohoDV3dbposrXT393B8voFRSVISIvH9IMQEgyGUyko7MhlkZOxn/foH0etzuPjia1H09FP3VT2W6nZs3R4+/ewAtuZOTj89lcmT48jIGJyQ50t52UBMSI8kc2y0WI0E3iqglR9WcqCylZgYjdha51uR1NzciUIB0yadRlpKFn975kZue2AJf7z0HubNORdANF73RTiH1eIUK6bM5na2bq2ntdVNhF7tt9ZgFVOBaxmJ4QzMhzv2SM/rW9GVkhJBRnrkYY+R+GEIJlzJZDLiM8Zyzq33YDlYSeH7K1AXb2NSrBGHfCrtqiTaOptQa1upqqlkal4u4K2I6FdYeef9Fbzz/uD5QjUajAYjutAoZk2dT5s9AUxgtTTSuH8t4eGRTE8fzSiT3C9H0OmkKjqJ74fBeHA8aWodx/XvQdHRxCGrhsKyTZy78FHS0gyiaAqwcmUF321rYOq0eBYuzMDp6hENyn0pL7NxsLqN9PRIMsfGiJVIMChuFRbWUVZuIypKg04b4leNZGvuRKGQkRBn4JG7/8o9f32Gf3+ynH2V5bz89MOcMnc0BoN2aI4QxIzcZNKz8oMKamvbUYUoggpZwJChBUfqWxXMN2qkY4/k3L7DEsaMiSQp8chubPwvSMLUT4hMLkedOhrD1f9H7JW/p8dmo6u0FFdREe4DVXgsFjp37iTF6SLF7UbW5R3c3S+TQ4gKeUIy7e4QzAodMfmTyEqJ5v/Ky9l76BCle/bR0mqls6uLquoqoIoFCxZz4EAbUEtz8z7Kyh6jrAxeecV/XVOnTmXFihXEx8cTGhr6E7wzEscSK1bsY//+VpyJYXy76E7mfv0453R8zaJaC/WtTdz26qOsevIfflVOFZWttDm6vROYAtrmfKfylZR6vdQSE8IYNUpLWVkLtWYHBTMTxRa//v4+NBoFvZ5+Vq06CCCKPE6XB4ejh7Xramh3dJMVOYMxp6ex7NtlzLzqD7x+191csCR3xOvzFYBmz070ewwUh4IJa0KpsrCmwsJDYlue7x3vH8IzyreVMG+8QZzsI/HjEJMYxsHSZjpau9CEhaDRhYy4v3G0HkNmJOy1E2+KoLWrh6iIFCaOn0zqqDCq9rWw4ukdxI7SMjo9khOnzscUn0rZ/nIaLYfw9LqxNluwNlvISHOjVikpLm7C7faws+I1Nmyr5pXl/q8pQ0bouFc4e+GZGAySp4jE/44YE5w9nHKKtypEodjDli0bgA1cdNE0LrroIpaV2rDVdWCabMDW3ElTk5ON39RhMOjEtjnwxoMJ4w0YjDo2FdazY0cTEwfGe+8osWCudTCzIJGdu6w0NTnp6+tHowlh775WcaKfIPLUNzjZs8dGcbGFxMQwll7/Ju99+hj/fGUpza17uee2h1CrNcNeW6AANH16AmazQ2ypG0kg8p0wKKxHMGgPNtHvh/CNEiq6MjOjycqKJiFBulnxc0QmkzEqLYNzb72bz1duYsd/3iPaeYConlqcoakcd/wCZk2V89W6etyuOvLzE0lOSODixedRebCa8n0HsDta6ezqoqbWDJiZf/J8Kg/YsVhdWA99zbJNhQA8u2aV32vPnDmTt956i7i4ODSa4f8tSEgcCYPxIIwTLj0DXehMHDvfY2PxezR3uHjkmQd4+8Vn/aqcKitbaXO4qaxsHVJ15DuVr6TU66XmzRF0lJXZqK11UFCQJLb4QT+hGuVAjlAFIIo8TlcPDkc3a9dV097eQ1rCSZgWZfDx2pc568JLePqvD3LBBRNGvD5fAWjWQG4gPAaKQ8GENTFHGFhTYWGd2JbnWwX1Q3hGCe9tZmY0EyYYUChH/o76fSAJUz8TZCEhqOLiUMXFoT/tNPr7+uhzddLf6aK/u5u+7m76e3tpaHBSeaCN9OOi2X+wg3++sJv6Zg8nhKdzypQ05uT0MGp3M8rQOsrKmpg0ScMNN4zBbDaTkTGZtjYdFosTm62bqKg02tvb6O3tRqnsBTz09HTz3XffMWXKVIqLi0hNTf2p3xqJXzhLloxlxYp9LFkyllvvzMfTXEDNxZfwQl8PF3V3sruqigvuvouVjzxKqFoNwNw5JjZurGP27MQhbXO+U/nyco3U1zlRKGSsWVNNVZWdiAg1XW4PGrUSmQzS02OYPDmeLVvqqa5xsHJlBccf38H4CQZxglFxUQvt7d0cd1w0V1w0lz9eOosrHnqQM265mbsv/x03LlmCfGAa2khMmhxHrI95OwQXn4Tn33qrjPYO75QQYdvmzV5DXoCoKI14rDDpDw7vGTWcuBWIf3tH92GvT+L7JTYxjN6ePloaXWjDQwhRKw57zKJrclnxwDaay1uJSNCSawyj+2AHFWYnrp5eero8tFs7qWzrZlzYfMZlzuesTPD09tLmdqDUdWB3WVAo5dDixqCU4+5VYoxIgF4P7p5OPL3d9Pb14PG46aefK/94BcUlN/D880/+CO+KxLGOb0y48858APr7++noqOaJJ57g8ssvJyYmhpTxaVRsa2J8RBILTknBVukgOkpNVKiSzMxo7G1d7Nhuob8fIiM0GIw6YmI06PUqej29vPV2GQ31TnRhXq8pkGE0hJKRHkl2Tgxle2zs3deC1drpU7XUT6u9i66uXuLidEydksz8+a/w7w/f4b5H7qB093aeffw1UpKP7LtRdlYM804b7ddKGCg+Cc+/9XYZHe0D8WBgm2DQDhAVqfE79kh9o0YStwLxiwn9R3SJEj8xpy0s4LSFBTRWVbD+zWU07iuhaXMNlm4TZXu9lRjp6VF0d0ZzyswLOC7ZQarBRk2NnZTRcuadbqC+sYms9PHsLHXR2dJAv6OB+GgDzQ4Pnl6PX47w7bffMnXqNHbuLCU+Pn7kxUlIHIZg8aC351RMT43lqrvuY/fevVz5pxt488XnUIV4hZE5c0x8s7GOWbMTh7TN+U7l8+YIHcgVctasqaaywjtsQB/uzTW8OUI0kyfFsWVrgzdH+LCC4+uFHME71a6oqIWOjh6Oy4jiiksWcOUVs7n+jrv47R/+jz//6Rp+d+EFR3Rjd/LkOAwGrV+FVDDxSXjemyN4v5sL2zYX1rN7jw3wxoTBHKHniD2jhhO3AvFv9/txcgRJmPqZIpPLUYTpIMz/y0ZqOqTO8v4sT2zjxAYFdXXtJCaGsXlzPVVV9gEDaC0nnJDKrFmJdHVFcNJJk8V+8JqaNmpqZhMVlUttrYO6OieXXJJFVVUbK1fuIyJCwd13z5REKYnvBcHoVkAZG0vK8nfhoot5sa+PS7q72bRzJ7978EHeuu8+lAoF8+aNYd48r9tReXkzJTss1JodZGZGD9wJ7xcrh2JiQ9m1s5m1a6uRyWSEhMhxOLoxjtGJ+4aGKgjXq3C7e2lo6ODdd8s5sd7JxRfnMGdOChp1CDZbJwUFCQOij46P//YYf132Jve/+gqbd+/ixdtuJyYieDuTID5p1N62DPCWAK9dV0PVATu93sFmfsJUSamFVrsbpUJGik+QEgzMZ8yIFw0NwTsKHY7MI8RX3BopEfGt6PK0SsLUj01UvPe973R0E5uoQ6k6vPipDFFwzk0T2fDWXqyHOoiM0ZAwPZKMqaPYuKWOz/5TxZknpaBWKdnxXSO2Bif2RicRWhUTskahViQQ40xFqZDhaHKhQ05oiIyr5/+F7p4+evv66entIyJSja2ti8+21OLo7+XMM0/9od8OiV8JgTEBvBUgjz32GBaLhbfffpvzzjuPFa99SHdXCA0VdlStPSTEalGEyNm7sR6bHNDKGZM+OKUVYGZBIqZkPYWFdViaXISEyIiKDEWoqgKor2/n4EEHKpUcvV5FU5OT19/YxfTpCcw7bTQOR483HuQniILPbxZexIScPK6+5XecuWQOf7v/aebNPWPYaww2vW/N6gO8/34Fcrk3gfEVpgT/KrVajlqjxGpxYjDqxEqrGfnxouG5cOyR+kb5iluHE6Z8K7rsTc4R95X4eRGXlsFv73uAxsr9bHrvHXpLd7AgU0lEykRqqlvZt7+NpkYnVmsn0TFqJowfRXZODCq5ltnH52A0atGHNrLjo8+ITc8mOvsGdlQqg+YI99wzSxKlJL4XgsUDRUgIF95yB1Gjx7Dwtxfy3c5dXPV/V/PKiy+gUCiYPz+N+fO90yTLy2yUlFiorXWQOTaGSQPVskLlkDdHsLJ2bTV9ff0Iivv4CYMV4KFaJeHhIbjdahrqB3KEBicXX5ztzRE0yoGYkDgg+mh5+8XnePzZ53n4H09TXFrKI/fchT48+GexID5pNAqcTt8coZoDB+z0CTmCjzDlzRG6UChkpKT45AgDBuYz8hOGyREO7xnlK26NJEz5VnS52iRhSuIwpKREcMstUwGv2LRnj428PAO7dzczd24KBQVJrFpVxebN9eL+wuNll41jzx4ba9dW09PThMfj/YcqkymQy9UoFD98uZ7ErxdlZCQpb78FF17EM319/KGmmv8UbuKGJ5/knzff7HfnoaTUIk7kSzbpxQ9fAaNBR0RkO3FxYRgMWmbMiGfXrmZWr6kiIz2SsDA1jY1OrFYX6elRuDo9NDd3UbrTwmnW0RgN3hHjAr4VTndf/juOzxnHlQ//ldl/vIo37rmXqVlZQ65HCA7p6VHkTTRiMoWzfn0NJSUWenp6SU7Sk5drpLy8mU8/raSjw8O4cTEYYkNpa3PT1OQSz5WfnyQmD1FR3mQixaRn07f12Gydok9WIL6tfr7i1kj4HhMtRYMfHX2Mxuv33w9hURpvFdMREBal4Yxrc+kcqLbT6JTIFXIWp0Ww+LfZgDcmKEOVdHb2iDHh+OMTWP2fKrZtbWDK5FGcfFIK/f3ez/66Q+289/4+SkuthGqVLD4pjc+e20FZrZOMjMghE6MkJL5v5HI5r732GjabjdWrV3PZ1Rdw/RlPsmcjqDQKTrhwLIljI3l56SbCu/ooqbVz5jnHMdmnxUMQVsy17dQ3dJCdHUtCQhiVFS1s2dKAyRROWZkNR1s3EyeN4rxFY3nvvX1YrZ1UVLRy8cU5fvEAfKuc4vhk+Xpuv+96rr75ci6/6Cpuu+EeVCGqIddSWmqhrr6DxIQwUTja+E3dwNQ+tWheXl7WzKefVdLY6EKvD0GukFNT7cCUrBcNzMV4EOmNB7m5RqwWJ99u8sYErVY5pGLKt83PV9waiR+iNVDix0XwoFp0x/0cKt/N5vfepbb8O9yNu0lKziP1+OMw13aI1RlFRY1ilYVO3U35F+8RolKSe/YFHKdIp299bdAcQS6XvjBI/PAsOG8xH4bqOOvss/mmZBdX//GPPP3006h9bGZKSi3iRL7kZD1z5gbkCEYtEZFqRsWFEa5Xk50dja2lk388WYwpJZywMJUo2KZnROJy9dLc3ElpqYXTThuN0aj1zxF8Kpxuv/5PTM7N5bb7/8LZF13GPx99iHGZmUOuQ8wRMiLJyzNiMukHcgSrf45QZuPTzyrp6Ohh3LhYDIZQ2uxumnxuEuTnJ4piUlSkt5U2JUXPpk11AzlCSNCKKd9WP19xayR8jwlTH+6v9f0gfbIcI6SkRIjC06JFY8XnhWQiMKkQ9o+IUBEZqRanf+j1ahITwzjppOQfaeUSv1aUkZHIH3mW3Gt+z2MeDzeYa1i2ehX5Eybw21O91RkWqxONOoSxY6NJTgof9s6wyRTOzFmJorF4RWUrtWbvNI8lS7JITdVTVtZCe7ubvr4+YmI1hIWpWL++hjlzUvyEHt87EFlZsZwybRrfvvgSlz7wAPNuuJ4Hr/ojfzz3XD/xTDA+9G3Xy8s1YrV2AnDK3BSysmJZvqKM7dstdHf30WrvwtPTR1eXB5utK+h1CabnRcWNbNhgprm5E7PZwbV/mkhlRatfu56vF5dvMjMSvsdEp/1IUUdCRCaXIZfL6OvtJzJOe1QeXzK5DK1+aEIsMFxMGJ9rQK6Uk5MTQ1jU4N88M1rDJREqNmyoBfqZkGfk93/IJTpWy8KFGdIEJokfHOEG2+OPv0Jr6yK2bNnCsm8e4v5LXifz+ERSxsfQ0OSkJ1GLqtrJlJQokpKCCygzCxIwJYej1SopLbWwY4dVbImYNi2BQ7UOYmI0WK1O2jvc6LRKEhN0FBc1DhFm/CuVsnnmsVd5892XefiJ+yjZWcw/H3uFhDj/u86C8JSbaxTPNXtWovgoVEutW1fDtm2N9PX1owpRoNeriNCrg8Y6X8PzDz+s4OOPK+gbKMfNyo71a9lTq5Si4HA08eBIWgMlfv7IZDKSs8eTePeD1OwqYcsHK6jfV4imbicTciaQaIihv78fk0lPX4+bEGclG17fhDJExewLLyNr5omEqDVERoVKOYLET0ZNTRv9siyeePIlrr/+96zfsYsn7r2La/58G3qDEYvFhUajZOzYKJKTw4etFjKZ9MyaNWgsvmLFXmpr2+nu6WXJkkzS0iIoK7PR7ugOniP4CD1+OUJ2DKecOJvMjDf50+1LWfy7P3D3zTeyZOE5w+cIA1VR3hzBe1P6lLmjycqO4emni8V4UFfXQUqKHk9v//A5woDpeVHRQI5gHcgRrp1EZWWrX7uerxeXr7g1Er7HZGf8OH5ykjB1jOObnAQjcOrHSKNrJSS+LzZtOsS6dTXodCF0Tr+Jee7HuLu7h6LYeM4/+WRxP7O5HZerh5xs79S+QHwrfqZMjqOouJHiYqG6Kpy5c0yiqXpnZy/vvltGZ2cvOTkxpI2JoKnRNUSciopUI5fLiPJ5vSSjkdVPPsm9L7/Mbc8+w0frt3Dt6ZczfaoJo0EXdGpesOfyco18+20dtuZOnM5uerr7iIzUkJ0dTVFxY1Bjc4vVSZvdLU6Qamtzs2tnM+vX11Bf3wF4E4/Ato4jMUuXPKZ+emKTw7BUtxOd8OMkgiPFBG81bYTf776iloTED4FvPGhr6wYSuPvul7j66ku4486/sPjC6cgUMkJUCvbssVFT7yQhKgS93UPrwQ5GxQ185jV1UFvbIQpLBqOO9etrqKy0k5gYhlwh46STksnPT2L9+hp2bG+iqclFR7uHxKQwjKN0bNhgZuKkUcyZM+gJZbV2kpgYJopNMpmMyy78A3njJ3P1zVcwb+EJ/O6393Ph4nNEQSfY1Lx588cwb/6YIdevVivo6e6lH1CrlczIj8c8cGMlmEBktTgpK7PR09NHSIjcK7BZnHz2WRX1dd6YcMkl3spJX4HrcBVRR9oaKPHLQS5XkJo7GVNOLtWl2yn+z0dU7fiOim2FyBUKFMoQetxdIJMRNyaDaeecx+gJkwgZMPiXcgSJn4LAmBARMZ55864Hz0Emp4bzzbtvMOWs86i1aXE6R8gRfCp+pkyJo6jIJ0dIDmfOHJNoqt7p8vDuu+V0dnrIGRdLWloEjb45woA4FTmQI0T6vF5yYgL/evUl/vrkU9z98KN8unoTF557JVOnJmM0aoNOzRtukp5araC7u5fOTg8eTx8zZyaSkqKnqKgxqLG5xeLy5gihAzmC3c2unVbWrzdTJ+YI/l5cge/NcJ5UkseUhITEr4J162pYt87MlCmjOOWUsXzgvJ7T2v/GQk87fYcOwejRwOAX5DZ7l5/xtyC6tNm7aGz03nGorGhlw4ZaQkJkjBqlY8GCMaIoVV7ezJYt9YSEKFCplEyebCQlJYJVdQdpanRhNreL4k2r3U17Rw/r1pvp7OylYGYiRoMOVUgIl5y0GOvBUD4q/Td/ev4eHu29hd+cOX3Y6wwUh7KyYrn2momUlFpQyGXU1nYwY0Y8KrVyiLF54DXm5MSiUikIC1PicLgJ16tIIIwZM+L92g+F432roYwGXVATdslj6qcnf2E6e7c0Eh0vVShI/DrxjwejycmJ4Y03GkhK+jN1dVGoQge/qubkxPDddw3UN3eSkBzOwRIrvZ4+7M2d2BtctMu8FUQVla1sLmwgLEyJWq1k0mQjc+aMBgaEnT3NNDY6iYkJJUQlZ/asRDq7erG1dOJwuMXXKy21UFFhR62Ws3dfC7GxoaKokxiXyZKz/snyD//C0y/fwKH6PTzywAMolcG/WgcThubOTcFgCEWukFFr7hhS7eQrIAnH29u6kMvBEBtKQqKOzLHRmM3thIerSEgMI9kUxvr1NX7VWjC0IirQiH2kiYESv2wUSiVjJk8jbeIU2qwWDpYWYamqorvThSYsjOSc8SRkZBEeE4vsCAa9SEj8kATGhLVrq2lvn8acOYu46LosPvjrPWxduYLU4+eSmWmize72M/4WRJc2u5uGRm8bXGVlYI6QxpQpcVgsLnbttLKnrJnQUCUhKgWTJhkZnRLBqroqGhu95xLEG7vdTXtHN+vXm+nq8lBQkITRqEWtUrHkzN/RdCiMr7YtZ39VBXfdcBfnnDV12OsMFIdOmTsag0GLQiGj1twuVjv5ttwK6wi8xpxxBlRqBWFhITjavTlCImHMyE/waz8UjvethjIatUFN2CWPKQkJiV8FQlm44IUWEaFio/5Ozvz2MWzPPUfkn/7EX1f9h9/MPYUpk8dgsTqJiGwXhSpBdNFqQ5ArQKdV8vVXtRw4YGfMmEgmT47zu+tbUmrB1tJFdLSGlNF6Yg06nC4PYeEq9PoQvyojjToEtVqOvdXNtu8aSDbpRTFs1aqDhLpNnJ/9B9YdfJ9rnrkHt+J6Lp4/n717bX6CU3JyGLW1HSgUMmbOShIFIKGSyle0EvD9WbjGuDgdYzOjabN30dTkpLPT2/o3bWqcaN741rIy8c5ITU0bGzfWkZdnYGxmtHjOwBZFiZ8HicdFEZcWccT+UhISxxqB8SDwOYCioiLee+89HnnkEdEjM3NsFPvXH6KqpBm5Sk4X/YT3y7HVt/PdrmYOVNoZkx7JvNNSh3y2trW5CQmRYzB6JyQZDDrsbW5iokMHJvh5MaXo2bSpnubmTrZtaxC9n6wWJ+vX12BpgryxN1FnWc2Hq16lvqmMpx59kWaLgtJSiyg45eREc6jOSWNDBzPyE8SKLN/KKkF40mq9UwcDK5cEYSkuXkfqaD0eTx8y5NQ3eBOvadPiSIgPY9Wqg/7x4Js6Zs9KZPLAjRrhvIFm6hLHPjK5nMhRcUw8dXjjfgmJn5pgOYLQUhoeHcP59z7M4lPnkmP/gFPOPQ/ThBwiItVihY8guuh0ISgUMnTaEL7+qpbKSjvp6ZFMnjzKb9/tO5ro6uolNTWCsHAVBoMWp6tnIEdQ+VUZaTRK1GoFra1utm1rJDlZL4phq1ZVEcJxnDz1T2zb8w5LH7kFlLdzzoL5ovAjiE7JpnBqze3IFXJmzWJIZZUgPFksriHVTr7XGB+nIzMzmja7m8bGDrq6eoPkCHvEmFBd08Y3G+vIm2gYiDPecwa2KP5USMKUhITEj06w8vCCgiR66nKpXnIB991xBy801LPii/V88+LzxBti/drRfCupXI09OF0eP8NvoVJKQOjv7uz0UFlhJ8UUzqSBfXRaJWZzu+jZpFDIKMhPwmbrJCZG4yeGKRRyRqfo6e3VMcd9EQf7NnHt43/nk6+2khc5h6oDTpQKGR5PP9XVbSCTER4Wgk479KPWt6JpyuS4Ie12vm0VgjAGMg4ebKO3r4+ISA1Gg46i4kYUCjlhuhCs1k62bmmgYSBRWbx40Kjdt8dd4ueFJEpJ/JoJjAeBz61atYtzzz2B7m4XUVFR3H777WI7ampaJB2tbmrNDg7UtGFeewhnYyem5HA0A21xvubowIAheCKVFS2YzQ4yMiIxmcIxIQhB/ZSXNVPf4OTgwTYSEsPo6+snOzvGLx44HD2MHh2BXC6jv+90cidMYc1XD3PawhM5/eQ7aLMl0traCciwtXSikMtotXfhcPQEfR8E4SkzM3rImoV1Dz7GDlQ3eadMNTa4yMyMxuXyoFDISUwIIzJSzfvvV2Bv81aAzZs/xq8iytcHS0JCQuLnwnA5gsAf/ngbq7Z8x7aICLQqFfkL+pkyZZq4XRBb2uxunM4enK4eP8PvKT6fryaTXpzkZ2vppGSHFZMpXBTyddoQzGaH6NkkV8gpKEj0yREGBS65kCP0heHp+QOW9rXccs/9rF67mRTjqVRWeG9Wezz9HKxuQyaTER6mQqcdOnDMt6JpypS4Ie12vmKVIIwBHKxuo7e3n4hINUajlqKiRuQKOWFhIVitLrZsqRc7TRYvHjRq/7nkCJIwJSEh8YMj9Iv73hEPRkhiIslvvMEFZy1kta2FGruNxXcuZfU/niLMZwqH0IIWWEmlUiuDm8ZmxRITG8o/niymvr6DPXtamDdvjCjs7NvbQmOjU5yilJkZhdMV7ufPJBism0zhfL6mGrO5nYvyL+DEKXk8/v4rFKv2MSXyDI5LMREdFepXMeV0eYasKdDPI1irnS9Gg445c3RDKq1MpnDGj49ly5Z6qqsdRMdo0GpDmD070W/fYJ5XEhISEj8FRxoTAL77zkFS0mKqqt7gjjvuIDU1ld/85jeA1+8pPFpDdrSG7DwjH9e5qN/byvEnm1CqFJjN7VgtTj9BxmDUMWE8Xp++ug4i9Gpxe2SEVxyyWlwcOtRBZ5eH+PgwUlP1TBhvEPfz/fz9dlM9m749hDEqm6XXv8Wzry7l3Y/+zLjjlhCtO5UwnZrZsxI5VOdE3aBArw8+9dj3nIFtdoEYjDqx6spqcRIZMRgTxk+IBfo5eNCBXA6REWrReN23nTCYD5aEhITEj83RxAOAxMTT0Wg+pLmtiXe3l6NRKpErFKTmTQYGW9AsFpdfJZVKpRhikG40apkzNwWLxcU/niymrr6Dsj025s9PE4WdvXtbaPLNEcZG43T1+PkzCQbrJpOezz+vxlzTzsJ5v6dg+mReffdFwnW7yYhfROpoE9FRGr+KKadr6M2KwCqpYK12w12H0B4oHD9hvJstWxuornYQExOKTqti1uxEv32H87z6sZGEKQkJiR8coV8cDm+eqRmThuqOx3nugWu5+OABSisr+d2Df2H5A39BoVCI+wX6NwkCE4CtuXOIyGM2t/v5MgnotErkCsjJiSYhUUeKSU9JqQWHw9tPLQhTvn5MCQk6UlIiSEjQcdqE+WQkjua+Zf/gK8vb5BVcwQlTZ2EyhYtVWN1uT9A1+1ZJbdpUz46SJpwdHrKyYod4RAkEHmc06IiIbKfH00dPdy/TpsYxb57XYNf3PRnOAF1CQkLix+ZoYoK3reP3lJUp+Pe/X+XSSy8lOTmZ/Px8cR9hop8hVc+hnTZUcgXVPp5KwvhvQejx9WSakT8YD7RaJQqFt4VPqEhyOLrZXmwBEMUgXz+mmQUJuLt6cDi60YdH8de7X+Pzr17l9Xf+ydgxVdxwwcPERntjxt59rRw86KC8rJms7NghvlPCOdevr2Hbd03U1TlFX6vhpuYFekMJ4lqvp49Yg5bZsxJF03Vp8p6EhMTPjaOJBwBnn51HZ+eTvPnm/1FRe4iP9eEolWvQ6MKIz/AObAn0b/L1afLLEQbEGLPZ4efLJKDTetsBs3NiSEgMIyUlIEcYEKZ8/ZgS4nWYUvQkJoQxb95C0lLG8MSLj1J68BWmz7yWgqkFmEx6sQqru7s36Jp9q6Q2FdaxY4cFp7OHrOyYIR5RAoHHGY1aIiLV9PT00d3dy9SpccyfnwYQ1Lvqp+aIhan6+noSEhIOv6OEhIREAIF+IR98sI+VKytYuDAj6NSv4y+aQ0f6Gzx30UVcerCKNVu2cMfzz/O3a68V9wkUbnzvNq9fXzPET8lkCueUU0aL+wlT8JwuD329EGvQMW/eGIqKG3E4egb6ysODVjKNn2AgIlIjCkznLZjC5PH/4OannuLR955n7Zbt3LrkMtrsvVitLmrMDvLzh64ZBsUqtVqOXq8iJkYjrtf3UaCw8BCbNzeQkxNN7MB1m0zhhIepcDi6abUPGvdKU5YkJCR+jhxNTBDaOHp7j8ftbubjjz/m7LPPZtu2baSmpgKwZ4+NzZvrmTrR24bQ2tAxJCb4+imZTOGc6hMPiou88cDl8tDbC2qVkvx8b4K0fn0N3snfMqwWJzt3NQP9YgWVt3opxU9gSh19M/GGbJ555Q7u+MsSTp9zO+ecMRd3Vw+VFa2E6ZSiQBYoFFktTtSaEGJiNCgUMszmdgxGXdDP88LCQ2wubGBGfjwZ6VF+HlU7Siz09fZjl2KChITEz5ijzRG8MeECzj8/kblz57JlTzkxYVpC/vMR+YsvJDohaYhw41tB5JcjDAhTJpOeU05JEfcTpuA5XT309vZjMGiZPz+NoqJG702IAe+pYJVM3hxBLQpMi86ZwaS8l7nrrw/zz1cfY8PGbfzxkt/TavdgtXZSU+MgPz8xqNgkiFVqtSIgRxjqOwVQWFjH5sJ6snNiMBi8120y6QkPC8HhUATEg+Dn+Ck5YmEqJyeHZ599lt/+9rc/5HokJCSOQQL7w1eurGDjxkMAw46jDzt+OgteeJ5HL/8dNxyq5YUPVzIuLY1LFiwAhn7B9q0kSjHpqa9zkiIYFo5QXdXt9lBd3UZfX58o8gjnNRp0QUUu38l3Als2WTg1YyFRyiQ+LF7Jza+Zefj3N5CbZxB7tn3PHTh1LyEhXEyYAq9HwGIdGAle34HN1knK6AgqKlrIyzWSlhZJRISavFyjKF7NmBFPfn4SFqtTFOKEdfu2KUpISEj8mPw3MUGhUPDOO+9wwgknUFxczNlnn01hYSFhYWHk5HgTgpycGJo3N+G0u0mfPGqw9S5FT12dE1PK0C/gvuKQyRROWbmNNZ8fxN3tIT8/iQnjY4mMUGMyhWM2t7NjexP9/RAZoRHPLzyaze1idVZfdzp/vORl3l15H+9+dDNq7bWcPe/3wKCvk/CZrNUqRXHMbG7H5ezh+OMTxNcVXiNwSt9nn1VRX+c1te3s7GXH9ibGpEdhSg4nOzuaMJ2SyEg1r7yyk5gYDTMLEpk8JQ6rxUlxUSNarRKXy+M3KVBCQkLix+S/iQcAs2fP5rXXXuPiiy/mP1uLiQsPI+TjDzjh4iuGiC6+lUQpKXrq6zpISRk0NR+uuqq7u5eaGgf9/f2iyCOc12jUBhW5fCffCWzZ3MysSZcQHmpiw+b3efjZg9xx3W0BOcLguQOn7iXEh5GVFRP0egQsFheffVpFXX0HDY1ORo3SMmniKMZPMJA2JpKISCFH8IpXwtQ/i8VFUVEjOm3IkBbFH5sjFqYeeughrrrqKj788ENefPFFoqOjf8h1SUhIHMMsXJiB09nD6NF6amraRCNboR0jJyeGlJQIwufO5ZLH/86Bq6/hlTY7sv4Q1q+vAfoZP8EgfomHQbGovLxZNDFXqb0fcYerrjKbHTQ0dBAWpibZ5O8tlZdrxNnhQaNWYrE6/UQp4Zy15naKi5owpei55dJFLJg9hb998DxXPH4n915xBWPHni++tuCNtX59DQ5HN+ljosTpeYcTinzbEWfPTqTV7sbh6Kak1EJfL+RN9FZ1Pf74d+zcacVm6yQ9I8pvrQDFxU1UVLQwZ04KtuZONm2qJ07Xw9RpCUT8z39dCQkJiaNj1qxE6uo6mDXghQRD4wGATqfjo48+YurUqRgMCaxZc4D4+Bja2rpFcapfraDN1kVvTx+KEDnlZc1sLvTGBLVqMCb4ilHCo8Gow9LkYv++VpzOHqIiNUOEm4mTRuFwuLG3dfn5VwnnVCjgYLWD9vZuZs9K5u8PvM2Xm97i1befYvvOTTz58POkJHtvcvi27gmtIYHrGY7AdsTOTg/9/WCzdeJy9pCZGc2SC7JZsbyMHTuaCNUocXd5xOouYa29vWBvcxMZ0Y6724O5xoEpRY+sux9VjIaoOEmwkpCQ+PE40hwB4KKLLmLPnj08++yz5M1fTOd3a/li2XKmLbwAk0kvikOC0FJeZhNNzFUqrz3I4aqrzGYHDfUdhIWpSE4O9xNu8nKNOJ09aDQKLBaXnyglnLO2tp2iokZSUiK4/qqLOfXk43l+2T+46b4buf26a8nMOt9vjb6ClDB170jEIt92RFNKuBhTzGYHTmcPeXneqq7H//4dpTut2GxdpKdHiWtVKGT09vbTZneLFV+25k42FdYRo+9l2vTk//VPe1iOWJi6+uqrmT9/PldccQXZ2dm8/PLLnHnmmT/k2iQkJI5RFi0aS2hoCJs317Nnj00MMEI7BiA+F7V4MXc2NHDGU08TWWfjP44m7HY3JSVW0tIicA0YiwuiTkmpRTQoDKyqCta+kJdrpOpA28CIVW9JbW9vHwsWpIqG4U6Xh317W0QRbNfOZhwON3FxWkymcEp2WOjs9K7D6fIwa2omZ8x9jgdff527XnyRdd99xwu33kaCwTu6VZjopNerGD8h9ogrl3zbEQWBy2xup9nqZM+eFtzdHr7+qpaoaDWJiWHo9aohRukAFRUtOBzd7NrZTEmJhf37W0mO6iUxUc+Yo/lDSkhISHwPmEwRzJqVhMk0KI0HiwcASUlJFBYWsnu3h23bmli9up7KSjtnnplOdnYMzc5u9B7w9PSiCJFTepiY4CssAczIj8fW0oler6K01EJjY+dgTMiOZc4cHcUDd9QjI7zH7Nw1EBPitSTEh1FX56Srq5dDdU4MBh1XXHQdp809hRvv+D/OWHwS997+MIvOWoJMJvOLB4FeUyO/Z4PtiAajbsAEXYNWq2TvvlZ2lFg4UNVKWXkLcaO0REZqcDi6/WKCUDFlb+uiuLiJ6hpvLKyrc5JoCEUbpyVn0qj/9c8rISEhccQcTY4A8OCDD/KHP/yB8vJ+/rO1k7SODaxe9hGRGdNwOgdyhAFRxz9H8K+qCtbSlpdrpKqqja5ODzZbJ9XVDvp6a1mwIE00DHe6eti7t0UUwXbttOJodxMfp8Nk0lNSYqGzsxfox+nqYeaMCSw47Q0ee+Y5Hvj7E3xVWMjf7r2b2JhB76ijEaQEAtsRhSqwyspWmhqddPvkCEmJ4QM5wqBRulAx1WZ3s3dvC212tzdHqGglLhYSkiKP5s/4X3FU5uepqal8+eWXPPPMMyxcuJCsrCyUSv9TbN++/XtdoISExLGJb+vFSM8BGK+7jnENjbR9/DEnTNTyfpuK6loXvb29KBQKUlMHg4lQ4ST0YYN/W5xvtRLAlMlxXPmHUMzmdnRaJatWHaSuvoO162rEvnHhS3y328Nby8pobe0iIkLNSSebMBp0FBQkoAtTolErxcqkKZPj+NPCi0iOGMNj77/AtN9dwQX5S/jdOacOaRc8UoIZnxsNOl55ZSdVVXb6KsHt9pCTE8sNN04e1mhduGPeZu9CoZBjMoWTm+a98y4hISHxY3M08QC830fl8jYUCgXvv7+XQ4cOUlc3itRUPfUtnYSFquly9qDWhohtfDPy4/1a7wQxp7ioEXtbF40N3hHa+flJfn5NdXXemLBuXY1ooC58hru7PSxbVkarvYsIvZqTTzaJk+5KSy2oNUrxrvnkKVN449nPeOBvd3LrPdfx1rsfcufND5M62juW/Gjb6QIFLN/fNxXWs2N7E319/bjdveTkxLJkSWZQo3XwtgVaLS7Cw1XERCuYkR+PrLufjPTII16PhISExPfF0cQEbx7gjQmW+adR+K9yRmsPcKgimm65gbS0QRFLqHDyyxF82uIsFpd/jjAljitjQzGbHei0IaxaVTWQI1T75AjeHKS7u5e3lu2h1d6FfiAeGI1aCvIT0elC0GgUYjyYMiWOqy75I3GxY3nhzX8y55wl3Px/NzFv7gkARyVIBbsO4XeATz6p5EBVG32V3ngwLidmIEcIbrQuTDNss7uRK+SYTHqyM7xi1g/NUU/lq6mpYeXKlURFRXH22WcPEaYkJCQkjoSUlAi/Ox7DPQfekeDxDz1IT1MTTV9/wr+bLIwelUG65gIa6p2iuTgwpMIpUPgJvDsNQwWfklILVmun2Dd+wZJsjAYdy1eUUVffQUy0hkmTBpMTobLK18tKeC1dbwIvXPcw97/5HC+ue4Wd5l3867E7mTI5zm9dwUzWD4dwTG9vL/oIFUaDjr6+fmbMiB9yTWvWHGDjxjpmz05k3rwx3qkkOxykpIRTMDORaGU3Mq/Dr4SEhMSPytHEA9/t8fGhPPvs7ZjNnzBhwkfs3t3MgboOjktX42juIsKgRa1SEhenE9v4fBFa2uLihbvTwf2cSgdigmCgvuSCbAxGHSuWD8SEGA2TJvvEhOzYIVP3AGzN/czJvwmVPIsNm//JVTedydN/e5ZZ+Sf5rau8rNlviuCRIhzX6xmICUYdfb39oignXNOa1QfY+E2dOLHPYNT5CXj5+UnYm5wkJEg3KyQkJH58/tuYkJpawg2FKxkTE8l5U8MosWpEc3FgSIVToPhjNjv8zM1hqODjzRFcgznCBVkYjVqWLy8fiAehTJ40SjxeqKzy9bISXitUmco5c27l82+W8cAT91NRfS63XX8tYTr/dQUzWT8cwjEeTx8RYo7Qx4z8BL9rWr26im821jFrdiLz56dhNGq9OUKJhdGjwykoSCJM3Y1CGXJEr/u/cFSq0ssvv8zNN9/M3Llz2bNnD4aBthQJCQmJHxqZQkHSc8+iOOVUHNUHKT64gxRjMjPTTxaNAwVGat07XLWSIDKtWXOAxgYnUZFqcZvwOnm5RmJiQ4f4W9maO6moaEGnVWI06NBplcgVYGv0cELCQpJ0Y/jywGqOv+J3PH3TzZw6fbp47pJSC6UlVpwdHpwDniaHq6YSjklPj2LRorEjHrNxYx0HDtgBmDdvDCWlFiorW9GFGTAadHhau0d8LQkJCYmfGwqFgr6+djweN7fd9jsefvg9mBkPTd04W7uAI48Hw1UrCSLTmtUHaGh0EukTE0QT8xR9UOGreSAmaLXebfY2b7vftEmn4HEnYba8zqX/t5jfLLyIpTc/QHiYdz2lpRZKSqx0OD1HZU4uHJeeEcV5AzEh2HEbv/GJB/O9DdzmGgdWqwtzzeCNHgkJCYlfEh6Phw6ng+2OVhL0Go4fbyA3N9dvn5Fa9wLNzQMRRKbVq6tobHD5xYOhOYK/v5U3R2hFpw3BaNSi04agUMiIiowgN/1Cpk2q4OPV77Fx82YevvtO8qdNFc8t5gjOniM2KBdzhIxIFi06bthjvtlYx4EqOwDz56eJx1ZW2NHpDBiNWlxtP06OcMTC1Lx589i2bRvPPPMMl1xyyQ+5JgkJCYmgKEJDWfjxR9yXX8Cd+/excusn5I0dAySIU4cKZiYGnWgnMNI234qnVrubvr5+WgdGq1qsTpwur3Fs4GQ/we9JaAOEwcqtvl5vv3ljo5PJOdO59f9O5+ann+K8pXdw0bx5/PX/riYyLEwMaEI7oNd8MPj0PGGdUZFqDAYt2dnRQyqwAicRzp7tvVskPPoGUAkJCYlfIgqFguXLlzNu3CTq6g7yxBPXs2NHIW8u3cqe0mbKmzrESXTBOJyfk2/Fk93upq+3H7vd7ff8kguyRc8p4ZzCsb4xISMjmsYGJ5mZ0ZS0WOnz6Jk99R5OnlXE2+8/wcbCDTxy75PMyj9JFLyEVkDBnDyY0CSsRatVotaEkJ4RRUF+gl+lle96DUYdswdM5mf7mM0Lr5krxQQJCYlfKHPmzOHJJ5/kuuuu4z879xIXEU5Gcx6vvFLnzREKkoJOtBMYaZtvxZN9IEewCzmCxYXT1ePNEQIm+xmNWiwWl9gGCIOVW729/dTXuXC5eklLncqbz5zKvY8+wiVX/4kLFgrVU7rBHGGgHdDXoDzYdD6z2UFkpBqDIZTs7Bim+MTAwCmEswbyAuERfroc4YiFqd7eXnbu3ElSUtLhd5aQkJD4gVDGxHDT6lWUHz+Dt60WHv33C/R36qjc3YteryLZpD8q3yZffKfXBX4ojzTZT9iuUMhJTAjzGf3q3RYTo6a42EJYmJKiTe2cn3cpJ0zYy0ur3+XLoiKxeiorK1Zsz3M43FQesIvT83yvSViLXAFxcTpx+uBw12I06Jg3bwyTJsdhNrdjsTrFyjAJCQmJXzKRkZEsW/ZvzjrrZMrKirnxxhsZozwPt6uH3dtaMSXrj8q7yRff6X2+wo3v8wbj0HggHCvEhNxcI7GxoeI+OTnR2Fo60elC8PQczz03L+fTdY/7VU9lZWeLrXkOh5vGBmdQgSpwwt7EvKHtf4HrnTd/DPPmjxE9tkymcLEyTEJCQuKXzLXXXkthYRErVizjnS0lxER+RmnTZML1oSQnH713k4DvpL2hOcLwk/2E7fIhOYJ3W0yMhu3bLejCQij+zsWC2ddw/OQSVny0jK8LN/Pw3UspmD6NrOwYsT3P0S7kCK2iGBa4ToVCxqg4nTh9MNh1GI1a5s9PY/78NCwWF0VFjZhMerEy7MfmiIWptWvX/pDrkJCQkDhiNGlp/PPf/2bf6Qv4zuXilQ2vsij7SjLSYoK2awSjsPAQmzc3MGNGPOkZUaL5+dgBnxGjQSf6RnmNEAen8MHQyiuTKZyZsxL9Kpx894k16Phqg5nOzk7SMyJZOOcsfrdoDn964nHOW3oHi+fM5a9//KNYZaXXq+lye8QpSrbmziFm7DqtUmz7ExAqpXyvRSBQrJKQkJA4Fjj55Cn861/LOeOMM3juuee44rxYxkfNJjsr+uhiQmEDOTnRGAZuPgS2+sUOtHC7uz0oFIgtesEqr0ymcGYNxARf03UAg0FHTnYsnV0e7K1dxEQnsOyF91jxwVv89fF72LjpS+6+9SFiIybTOxAPTMl67G1dXm+U2nbcXT1+RuzChL3A67VanGILYeC2QMFKQkJC4peOTCbjjTde4uDBfWzdupW3Nn7F+bOTiUydFLR9LxiFhXVsLqwnOycGg8ErNAW2+Qm+UevX1fhN4YOhlVcmk55Zs/xbBH33MRi0bNhgpqurl/T0SBYu/A0XLzmNO/7yEJdecx3nnXkGt15/rVhlpQ9X09XVO5AjOAJyBP8pe77XbLG4aLP7r1UgULD6KZCcyyUkJH6RRJ54Ak8v/Qvn3Hcbtc0N7G75lrPO+P2wbW+BLXGbNzdQUtJEdXUbJ59swmLtRCGXeSf8BYg5O3Y00d+POIUvGCO1CIJ3op/b3cvo0XryBu64m0zhPHTJLSRpP+WjLR/z+ZbN3PSbS8g/roDU0RFUVijYvLmBZquTr/e0iCXAghl7MATxaWzm0PY+3yTrvzFbl5CQkPi5cvrpp3P99bfx1FOP8vYnj3H/kjzSTaOHbX0LbItbs6aafftaqK11MHVqPPY298CWfkwMVsb6Vie5XJ5h1zNSm6C720Njo5OcnGgm5hnRapVsL24iJeFkrr40ia+3vsDVN19O/rST+O3CW5kwPoXm5k52lDhQq+WUlTVjs3k9tAQj9uEwm9vFFsJg4pnw+N8arktISEj83FCr1fzjH68xf/5s6u02dh9Yz+Vz8odtewtsidtcWM+OEgtl5TbGjTMwYbx78CDT4I9ms4PtAzmCMIUvGCO1CIJ3ol93d59PjuDAZIrkjmvv49V33mfNlx+wbuNG/njplUzILMDj6cfp7MFoDPWbFgiDZuzBMJsdNDR640HgPr7C239jtv59IAlTEhISv1haJp7DjVO/ZdOe9dwwcVzQO+PDVQnNmBFPdXUbnt5+bLYuFHIZe/faaGzsICJSI+5rMoUzceIooH/I+Y9U3Ckvb+azz6potbvRaJQUFTVSVm5j2tR4utwedK4x3LPwTnbaNnLva88zaeyX/OOGG6kxe7BaXezZg1+b4HBim7Be38fhEEwRAUmYkpCQOCaYO/f3fPllKaeedA5h7gj0ocNP4gP/KqGwMCUhIXJiYjRkZkZjrnWwbWsDOl0IkREav5a9YNVJRyPsFBc1sWu3lTaHm3nzRvPVV7UoFDJ6e/uxWhWcc+p9XHHJ5dz3yB3cfO+5XHvljURoTqayog2DQYtOq0KjVorthcOJbXDkMUEwTgckYUpCQuIXT0uLhjPOuJeDlauYmyin37obGOO3z3BVQjPyEzhY3Ybb3Utfbx+OdjdbtzYSpgshIlIt7msy6Zk0cZT4sy9HKu6Ul9n47NMqWu1daNQKioobKSuzMW1aHF1dvaj6crjmkknsN3/OI08/zqQJXzAj73ya6jTodAacrh6/NsHhxDbfNR6ucswvR5CEKQkJCYnDk5MTA0v/xjnvPED/jg3oZ2SBYazfPsN9Kc/P9/rlbd7cQHZ2NJ2dvTQ2dhAXF4ZOq2T9+hqgn4SEsAGDwaEiUKC4E6w90GQKp6TUQntHD0qFDIVChtncjsPRjc3WRUFBAuDtU78yaxoXnjaPG//xD0685mrOyZ/DjLEnM35sPCq1UlxDoPG6L0LllsXqpKi40W/dI3loSUhISPzSGT/ewCOPPEtWVjRr/r4Dmad/yD7DxYQzz0gnOlpLTIzGa3be5kanCyEiQo251oG9rYuE+DAAYmNDhwhAwYQdoT1wRn48GemDMQHA4+mjze5mc2EDdfUdJCaEMSM/HnONY0DcyiZ/+iz++eLjPPXCY8QZV3DSjCs5fsY8NOqQoD5TMLQlz3efwO3DeWhJSEhI/NLJyYnhggtOJyfnEvZ9voyyjV/SbisgPGZQeB9OqMnP9xqBby6sZ0Z+Ap0uD2G6EOLiw9BpQ1i/rgbAJ0cYKgIFijtCe+CM/ATS06NE8cibI3SjUMiQK+T+OUL+4MCiK6+YzqIzT+feRx/j+bfvY1ruyZybdsWQNsFA43VfhMotXz8pYZ+RPLR+LCRhSkJC4hdLSkoEKSkR9J70PNWLzsP26qt8kJ3NufPnkzzKewdDEGrKy5tZv77Gr7pJpVYSFq6ixuwgL9fIvPlpmEzhfu17Bw86qKlpQ6MJYeHC9IERsN7kIvCDe/PmBvbsaRbPHSgCpZj0qNRKmq1ONHuUZGdHDzEhP37cODa+8AIvfvQhf3vrLdZu38RNF/yWqxctIlStxmJ10mb397sKRrBKMd+ETPDQkpCQkDhWEGICgD42lANVlRTXfc5Fiy8X9zEYdTQ3d7J+fY1fdVNWdiwul4fi4iZx2/z5adjbutix3UJ/P1iTXTgcPRQW1hGqDaEgP0H0nTKleBMbX2Fnc+FgTFCrlOKX/rlzUwjVhhAToyFU4zWmnZEfT35+Evn5g9ej04Zx+433cs4Z5/OXv93FWx8spdK8iqU334/B6G3VHslDSmA44SrQQ0uqlJKQkDhW8I0HhiWXsGfjBh577DGuufkWRhkMwKBQU15mG8wRBiqEVCqFN0eoEXKEVEwmvV/73sHqNmqq29CEhrDw3IyBHMErOA3JEQrr2b3HJp47UARKSdGjUimwWl1o1AqyBwzIfSuWjp8ymU/ffYvX31nOc6+/wR9v28I1V1zOxb85H7VKNaKHlC/BKsWCeWj92EjClISExC8ehU5H8isvc/306bxQXMTKrVtY89TTaFQqcZ9grWsmUzgVFS04HN04XR4/Tyahfa++voP6+g5kchklpRYyMqJFwWfK5Dg/cWfGjHjxcSQRqKi4kbg4t980vcD2vGvPO58LTjmVv739Fg+98TqvffoJ91zxe1IjsmlsdDI2M3pET6tgVQGH88GSkJCQOFbo03Rw26OX0Ol2EmeMZ+6J88Rtw7Wt+cYEl8vD5ClxWC1OQAb0ExqqZHNhAzVmB72ePsJ0SjIyotm7t4XMzGiWXJDtt4YZ+fHi43AiUHGRNx6oVf5fyX3b8zIzsnn7pQ/4cuNaHnnyPs66YC4Lz1zMTdcupb5WPqyHlO91+T4KjOSDJSEhIXGsoNVHsLnFyXvrvmZPfRMrXnuFEOXgZ26w1jWTSU9FRetAjtDDlCmDOcKkiaNwtLuprW3Hau0EOgdyhChR8JkyJc5P3JmRnyA+jiQCFRU1Miquy2+aXmB73lWXXcJ5Z53BUy+9wmPPPMc773/ALddejSEie1gPKV+CVYodzgfrx0ASpiQkJI4JVElJXPf88yxfuJDt+/dzy9NP8cwtfxa3D1eW6hVrtEMEnDlzvF/W16+vISEhDI0mhLxcIzE+I78D8d7tTqKw8BAvv7TTb6oTeL2m1q6roauzh4yM4BPz2uxuIiLbabY62bOnhbNnnMOVZ5/DvS+/xJUP/5WMJBMXnHAOeZr8Ia16Q69LSjgkJCR+nYwdl8bxY09lw84PuenOq/nonbWkjfb6iwRrWxOEoNxco59/lME4GA+KixoJD1eRkR5JqDaE3FwjsYeJCQAbNtRy4ICdeaelikKQ4EklV8hobHSSmhY4Iclb5WRvc1NfX43Z7OCkk7JZ9d7XrFj5Fk89/zc+Xf0hZ81fwtS832Bv02K1OIMKTZIAJSEh8Wvn3kf/zqfrJlNatpeHn3yae/58k7gtMEcQhKC8XOOQyXZGo5Y5c1MoKmrEYukkOycGrTYwRxharZSfn0h+fiKFhXW8/LKQIwzuV15mY+26arq6PGRkRPltEyqcvDmCGqvVRdkeG/NmX8glvzmfR59+huvvuIuMtDGcecr5hGoKhrTq+fJzEKGCIQlTEhISv2hqatrYs8dGTk4MWWedxau33ML5jz7KstWrmZqVzaWnnz7ssWZz+7DVR4KxeYpJz9nnZPgJQMLjSBP/ysptNDR0kJUdK24rKbVQUmJBBiQPBBxBXBKSmjZ7F/v2trBnTzONjU4Abs6fyjv3P8CaTcU89vZbPPDO0yxbt5I5WaewZN4c0VNqOEN0CQkJiV8LQkyI0cg5e9pVtPbWUrKniKtvuoyVb69Bqx2sViottQDeqilBCMrMjGbylLgh5y0va2ZHiQWDMZSZBYl+Qo/BqMNqcVJc1DjEgHxzYQNlZd54kJ0VK24TqrbkChl9vf2UlbWgVinF44WYYG/rYuvWelpb3WjUSvLzk7j4N79j5rQFvLLsZf6zdhkfrVrO5PFncPlvr+bUU/OAkQ3RJSQkJH4N+OYIOePHc/9N13Hbo4+z7F//Jm98DmfNOy3ocYIQlJkZ7VcpJVBeZqOkxILRGEpBQZKfyCP8PNLEv7IyGw31HWRlxYjbSgZiggxITh7IEQbEJUGkarO72bu3hbI9NhqEHOGWqbz85ON88eUWnnvtNZ548RHe/2w0x088nXMWzBE9pYYzRP85IQlTEhISv2j27LGxeXM94O0nX/TII9y6ZQuPfv01tzz9FBPHjmVCevqwrXy+j7747n/BEv/2DEG00qiV4rhwXzEoJyeahsYOMtIj/c6dl2uk1uygo8NDiknv5wM1ZXKcKDBFRLYTE6Nmz54WsT0QIFaTyOKJl3Ny5iE2Vq7n1a9e54uy1Vxz3iJy4iZyqLpryFokJCQkfk0IMWHKBANKRQhL//g419x/PvsP7OXuh27l7w8+g0wmG9LOd7jpdaWlFiorWgnTGYYIPeVlzaxadRCFQsasWUl+23Nyomls7CA9IB7k5hrpcHro9fSiUCqIidH4+UAJ/1ktTurrnZjNDrE1EKDFBilxZ3HD7+dRXf8FKz97nWtu/5TTN5zN5RdehacrflhDdAkJCYlfA4E5wo33PciXa1bzeWkZdz30CNljjyM9NXVIK9/hpteVlFqorLCj0xmGCD3CND6NRoHTOZAj+OyTnRNDQ6NzICYMnj8v10htrYOOjh5SUvR+PlBTpsSJAlNEpJqYGA1le2xieyBAtH4082ddw/Tcaop2reLfnz3L5u0f87uLlpCaMJnq6s4ha/m5IQlTEhISv2hycmL8HgEe+uILtqak8FVjIxfffRcbX37Fr0zXYnWya2czDocbvV4FQRKRkSZSCAEsPT2KvInGIYlMrEHHxLxRQyqxsrJicbo87NvbIk7Zg+F9oObN8x9rK/ifQCIPXXYrMp2d51Z+wF0vvoBapeK0ySeQknUG4H93R6im6nZ7RKN3yfhcQkLiWESIBdnZ0bQWWZG7NDz96EtceOVCPvzs30yddDxLFl0stvGZUvQUFzXi7vZgrnGg1SqDCjkjTa0rLbWIk/WG+DgZdOTljRriASWYrQt35YXBG8F8oC6+OGfIaw76YfVz5qlXcMv11/PeR+/wxjsv88mqD5iQPZkTC85n9qhz/I4TKqmE6/U1gJeQkJA4lgjMEUI0Gu66YylV199ARVMz1962lJVvvuafI1hc7NppxdHups3uZvyEoeLTEeUIGZHk5RmHiFsGg5a8POMQH6is7Bicrh727m1BpVIc1gdq/vw0v/MKnlgwmjuuux+5ysoby1fw4ONPEqrRcMKMuRyXdS5DcoSBaqru7l7R6P2nMD4HkPX39w+dpfsrxuFwEBERQVtbG3r98G72EhISP2+aKiuZNG4clu5u3r7rbhaceKK4rai4ka82mLHZOomODuWkk01+xue+bXxNTZ3YbJ0UFCSIYo6wfTiBRxCCdFolzgGvEkFsEnymAKZMHkVnZy/Q7w18R1DpFKxl75M1O3lh5cfsbPgOh6uDiWPHcuGpp7HopJOIiYhg/foaduxoorm5E4vVRV6ekev+NDng/aqjvt6F6dLzGZ0adVTv9bH6uXmsXpeExK+FDW+Xc2C7lVlLjuPVd57lsacf5PgpBbzzyofIZDLA6xu1d28LjY1OrFYXeXmGISbm5WXNbCqsJyZGw6hR2iGCjuAXFUzkEYQgrVYpelcJApXV4mTN54J/VDIZ6VHs3NUM9DNh/NDKrECCtet9+20Ny//9EQfrV7O3opiwsHDOPO1cFp71GyblTuXLL83s2N6Eu7uPpkYnYeEhXHxRtt+6rRYnlWUt5M5MIGfSqKN+34/Fz85j8ZokJH6NdHd18vfLlvDYf9bjdHfz6lNPkD9tqri9qKiRDRvM2GxdREdrOPlkk187n1ARlZKip6nJ5c0R8hNFMUfYPpzAIwhBOm2I6F8liE2CzxR4q6Q6B7oygoljwQjWsvfJZyUsW/EeFeatOF0d5I0fx8LTF3D6qXOJ0OtZv66G7TuasDV3DeQIBq67zj9HMFc10tDYScFZ88VJh0fK0Xx2ShVTEhISxySj0tNZ8dpr1N1zD1N37aJv1izkCu+EC5MpnIkTR4kVUzqt0s9IXLjbUV/npNnmwtHWjS5MKYpQWVmxI1YcCVVPRcWN7NvbQq25nS53z4CJooeGhg4cbd30dPfhcvXg6uwBEA12RyKYqXnFHjcG92QuzClg/Kw+PtvyFbc9+wy3PfsMBRMmkGHIQutOBjTIfI7zFbnq6p0cONBGxx7bUQtTEhISEj9HsvLjKfu2gdryFq66/E9ERUaz8KzfiKIUDFaspqbpRcEpUPApLbWwY0cTer2K2BgtVqvLe/4BMScrO3bYqiOhJU8QwOxtbmBQfLI0uThQaUejVqJWKSksrMPlOrKYEMzUfOsWC53tx1EwcRpXXy5nx57PWbN+Jcs/WEb8qAQy0wvQqXOZmDsNp7ObjvYeSkstZGXHitdtb+vCeqgDbZz2vxKmJCQkJH6uqDShnLhoMQ02G1NPP9tPlAJv5ZEwdU8frkanDfEzEh/METpotnXS1taNThciilBZ2TEjVhwJVU9FAzGhtradri6PaLTe0OCkTcgROj2D8WBuymGvLZipecXeHrTyAuYdP4eJ07tYt3Ed9/3t7zzw2ONMnzyJ5PjxyHtTGJIj+Ihc9XXtHKjqIHKP7aiFqaPhmBKmRo8eTU1Njd9zDz/8MLfffvtPtCIJCYmfklm//S12lYqGu+7G8dFHRC5aBPhP3QNEAUnYlpdrxNnhQa2WYzSG4nb3iS2AIxmMB1ZSCQlPyQ4LlZWtAMyZk8K0qQnYbJ1kZ0dTVtZCQ0MH+ISDYK8zUhXWjBnx2Gyd6PUqMuNGc9Ff5mJpaeHTTd/y2aZNLPvyPXp6PcRHGRltSGWsbhLl1dG0WUI4UOEAIDlBhwwZppyfpnz3+0aKBxISEnFpkSSNjaJqu5VRqREsWXTxkH18xZ38fO9zgogkbM/NNQ6MBIeMjEjsdp3YAjicuXhgFZWvmfmO7Rb6+yEyQiP6Rs3Ij8dkCic+PswvJgxnYj5cJZZwPuOoUNpa5Sw4+Q/cectdbC0q5Isv/8Pn61fTaHmPtZs0ZKbnERuVRb9iFi2tozCbvW0kcfE6UlIiyEiP/N//CD8TpJggISEhMOWMcyle9THK5ib6+/v9blYIU/cEinzigdGo9eYIzh7UagXGUVrc7l6xBXAkg/HASiqhRa+kxOtXBQM5wrT4gRwhZmBwhtPvPMFeZ6QqrBn5CdhsXej1KtJTslny1AIszc18/uVXrPvqa9777E16e3sZZYgjcVQGcvUUKqqisVlDqBzIERISw5EplH62KT8Ex5QwBfDAAw9w5ZVXir+Hhwc3sZSQkPh1EHneeXTu2cPWN97kic/XsOyxvxMT4a/2m0zhtNndtNm7sFidfl5QYzOjxTa/QAFLQBCNSnZYKCu3UV/nJCY2VKxu0mmV6MKU5OUaMRp0nHtuhnhsekbUEF8RX1N04XWE5+QK6OvFb1t+ftKQ8xijo7nizLO44syzWPtlBStWfUO32sLB5ioeevcFHnynnxCFkiRDPBm7kkg1RnPqpMnM+gHvhPzYSPFAQkJizmVZ/Ouh79j8QSU5JySSkB5JT08Pjz/zMKOMo7j8wquGHGMyhWNvc3srhyxOPz8og0HHvPljhohXvlgtTlatOkhNjYO6OiexsaF+ZuZe0alfFJPy85PEY88+a4zfZ7kwLTDwdYTnFQroHYgJwrny85P8BC25XM6MaTOZMW0mc2ddzaf/2YRSU4XFVs532z9k/bevc+dDEB0VS/yoNEabTCQYEzj57Hu/x7/ET48UEyQkJABUoVomzjuTbR+9h72xgTq7g8f++SzP/O1hwsPC/PY1mfQDOYIbi8Xl5wXlO7UvUMASEESjkhILZWU26us6vDnCQHWTThuCThfizRGMWv8cIT1KFKEEfE3RhdcRnlMoZPT29vtty89PHHIeY2wsFy8+j4sXn8fadfv58JOv6FM2cKihgqde+Qf/eLkfpVJJwqhE0lJMJMXHcvLMgh+0WgqOQWEqPDycuLihYx2Hw+1243a7xd8dDscPsSwJCYkfAd+xsL4fnsalS1n6j39Qbrdz5X338v7jTyCXywe3G3RERHqFn4jIdowG76ju2gGxSadVihVQgc8BfL6mmq1b6xkzJorEhDAUChlmc7soHMXEhpKREU1MbOiQNQdrzQtmii787FsxdbjzgFc027Cugd7mOPLGj+eth27H3tFBWVUVZdUH2XPwINUNDWwoLSUhOoZzj+od/3kjxQMJiV8vvvFg0a2TWfvqHkq+MFO/r5Xa3u289MY/USqV5I6bxKRc/1YOg1FHZIRX+ImMaMdg1OHu9tDY6CQ1TTCkDcdc286OEgtardKvlW/N59WU77WhVsvFeCCISgajjgnjvcJSMALb84abFij87lsxNdJ5wCuY/ec/B2ms0zN+/Ck8eM9S+vr6OFhzgH2V5eyv3Etl1T7qGg6yo3QLDz/64BG/378EjiYmSPFAQuLYIjBHmHbWInas/pS9hd9w77srqaqp4bb7/8Kzf3tkSAVVRKSavXtbiIhUYzRqMZn01Na2U1JiQaf1tvF1d/fS1OgkLc1fvPn882q2bhnMEeQKOWazQxSOvDlCVPAcIUhrXjBTdOFn34qpw50HvKLZhvVNONuSmTB+Ii88MZU2h4O9FZXsP1DF/soD1NbXs+m7IkyJiUfzdv9XHHPC1COPPMJf/vIXTCYTv/3tb7nxxhtRKoe/zIcffpj777//R1yhhITED0XgWFiBLduamLvor1S9di3rdu7k8WXL+PNll4nbLVYnbXY3cXHawYojg44udw+Vla3owpTExIZiNrdjs3WKzwnClNnsoNXuxuXq4co/TGDXzmax+spo0LFrp5Xt2y2kp0eSbNIP2wro28Lna8YurCewSsvXFysYFquT9etrUKnlJCSEMWOGt8UjMiyM/AkTyJ8wQdzX09rqF4iPBaR4ICHx68U3HixYkMbCP0+iZN0htn1WRUhPOjMmncLm7Wv5059/z6f/+pLoqMEWBavFib3NTVz8YEww1ziwWl2YaxxkpDsH40FFK2E6f2HKbHbQ2ekhISGSWbOS0GqVfm1/O3dZ2V5sIT0jElOyfth2wOHa+MBfeBL2E54PhtUyEA9UchISw8SWP7lczpjUDMakZrDglLPE/e1NTr8bOMcCRxMTpHggIXFsEZgjeKumzmDrR+9zyvRzebXuGb7Y8DWvv7uC3114gXicxeKize4mPk43WHFk1NLV5aGywo5OF0JMbCibC+upq++gpsZBfv6giCPmCJ09XHnlBHbttIrVV0ajll07rRRvbyIjI5LkZP2wrYC+LXy+ZuzCegKrtHx9sYJhsbjEHCExIYwZ+QkAROj1TJ88iemTJ4n7utrsKJQhR/uWHzXHlDB13XXXMWnSJKKjoyksLOSOO+6goaGBJ554Ythj7rjjDm666Sbxd4fDQXJy8o+xXAkJie+ZwLGwAuvW1bBjXyQLT7qc5V++ykNvLWPqhAmcOMn7oWs2t9PY6GRsZjRGg47CwkNs3txAcnIYuXkG8nKNYitdTEyo2JYncNJJyWg0SlH4sVidOBzdRERqBkQjGW63h7KyFiwDprnBxCSzuZ3i4iYqKlqYMydlxCl9wdr9gu3jcPQwdmz0sOezWJ1s+raejgYrU6fGMWXYV/xlIcUDCYlfN4HxQKFUMHleCv/ZZEZR6+KcvD9Rb62kpvYgNy39P157doUoxJjN7TQ2OMnMjKaispVly8pINoWRl2cgdyAe7B2IB2E6JbkBI8NPOikZjVpJTk40APUNHTQ2eD/7DUYdDkcPLa2dHKpV4HJ6xOcD2bmrmR3bm5g4adSIRujDtfsF7uNw9JA5EA+GE8K+3VSPzdbJlPGxjB4//JCPXxpHGxOkeCAhcWwRLEeYdvZ5bPn4I6K7Wpk3ewmfffk2f3v6GfLG5TAp13vz1mx20NDojQdGo5bCwjo2F9aTbAr3yREcyBVegScvaDxQiMKPxeoayBHUomjU7e715ggWr5dhMDHJbHYM5Ait3u/0I0zpC9buF2wfh6N7MEcIsp9wrdMm6Zk2PSnIWb5ffvbC1O23386jjz464j7l5eVkZmb6BZAJEyagUqm46qqrePjhh1Gr1UGPVavVw26TkJD4ZZGSEhG0/3nugInh3Ln3Qc9+ln/zDVfcew+b3niTuJgYv1aJ8vJmli/fi93uLeG/+WZvi4fF6hT3CTQkT8+IEj1Cioobqa520O7oZvw475f68RNisVidNDW60OtVQ1ouBEymcCoqWmhq9N7FGEmcGq69I9g+3W4P69fXkJdr6VOMYQABAABJREFUpLW1i82bG5gxI578/CTM5na2fVdPv70NrS7kZy1MSfFAQkLiSBkuHsyZl8qXaw6iaw7h1ksf46bHLmJj4Qaef/UfXHOl93PD9/P1n8/sYN++Ftoc0TzwwEyAAZ8ohjUkz0j3xoTioka++aYOp6ub7OzBWKPXhxAdFUpScrhYMRWcfvr7weFwj2i0fjTxwGQKp7m5k/XrazCl6Glq6hwYd56Ay+Vh27Z6HG3d6NUKThzh/f058EPGBCkeSEgcWwSLCapQLYmT5kDRGi6Zs4g+RQOr1q7nuqV38ck7y4iOjPRrnSsvs/Huu+WDOcItAzmCxcWsWQQ1JE9PjxIrqIqKfHKE8UKOYMBiddEo5gj+bXgCJpOeiopWGn1zhGFEp2DtfsPt093dO5gj2LvYXFjPjPwE8vMT2VxYz+49NpT9nZIwBXDzzTdzmU/LTTDS0tKCPj99+nQ8Hg/V1dWMHTv2B1idhITEL4GCgiQKCrwfqBPXrGFrfBJVjlbOv/4WNrz5il+b3Pr1NXh6+4mMVIsVUBDcwylY1ZLJFI4qREGXu5cas4P8fGEKYMqIE/2Ec8yZk8L69TU4HN1+PlXB9h2posp3n+UryigtsQJQdaCNsnIbbW1uVGolOq2SaVMT6GgIIWeE8bY/B6R4ICEh8b8ixIMPHivG7dRy3+2PcMf9N/DEs4+iVqby+8vP9WuTCwtTEhIiJyxs8CtzMP8mGFq5ZDKF09vbh83WhbvLIx4zYbyByAjNsEKTgLCfva1rxIqo4dYz3D7r19dQUmLlQFUbDQ0deHq8ZrmpqRFkZ8fgdvdx3HFRI57v54AUEyQkJP5XFl17OS/+31d4LHv4611L2V5aTmNTPVdcezsfLHvOr01u/foaeoUcYaACCoJ7OAWrWjKZ9KhC5HS5PWLLn9GoHcgRhp/oJ5zDP0dwjLjvSBVVvvssX14+mCNUtVFWZqPN4UalUpA9UF02adLwAtf3yc9emDIYDBgMhv/q2JKSEuRyOUaj8fA7S0hI/CrQarWMm/kXGlZfh8bRQltdHTEmk7hdKMHNyzWKHlLDEXiX2rcFMCFR51fO6ysklZc3D46MzYr185YKFLEE1qw5wMaNdcyenci8eWOO6pp9r8nT009DQwdhYSHi1MFzz83A0xr7s/eYkuKBhITE90ViRiQ7vzrE2b9ZzJtvf8b+g9+wfXs1XO6/35lnpGNK1g9p1wuGb0woLDzE5sIGkk1hJCbq/I73FYnKy5opLbWQm2sUfap8vaUmT4nDanESGdHuF2s2bKjFZApn3mmphxWlAhHW0uPpo6vTgyY0hJgYDY0NTrKzYpk8JQ57k/MwZ/npkWKChITE/4o4oe/j98mYXsDsSZfy/ueP0dbWTWdXFzrtoMDjlyMc5mZuYNWSbwtgQqJ/y5+vkFReZhvMEbJj/LylAkUsgdWrq/hmYx2zZicyf35wMX44/HIETz8N9R2EhanEqYM335KGq81+VOf8b/nZC1NHyubNm9m6dSsnnXQS4eHhbN68mRtvvJGLLrqIqKif/10fCQmJH49LfjcXTff9LG1aiWfFCvpuvBF5iNfULysr9rCClIAgNAmms5s3N7BnTzMw2AIYjJJSi3h3IisrVqy8arO7iYj0Jh8mU7h4XqNBx8aNdRw4YAc4amHK95piYkPJyo4ZdrrfsYAUDyQkJA6HwRROT1cvLoebP1/3AF9+uZv584Z+bmdlx/oZm494TuNgTNiwoZYDlXZgsN0jGKWlFkqEeJAtDNTwVl7Z29yiIOUbEzYXNlBWZqOhoYPsrNijFqaEa7JavEKUaPAecEPkWEGKCRISEiMx7ezzKPliFeXfbuD0+bOBW1gwb7KfKAWQlR1zWEFKQBCazGbvRE+hLQ5Gjgl+OUJ2jFh55c0R1JhMXoN04bxGo5ZvNtZxoMoOcNTClO81xcSGkpUVPex0vx+aY0aYUqvVrFixgvvuuw+3201qaio33nijX0+5hITEr4vA0bACixaNZdGiu2j/Mp9D11yL/V//IvT88wk9jJ9EYKUT+LfzCa1/UdFqHn/8O9HHKRDh7kRnp4elSzeSl2dgbGY0bfYu8VyAX5vg7Nne/nTh8UgRzM1ttk4KChLIyoo9bAvgLx0pHkhISAQSGA/0A6O5XW3dnHRiBiedmCHu29XViUYzdHS3L8EqnWBQVDKZ9GjUSm88+Pt3zMgPHg+E6iXXQDyYPSuRyQNTWX1b+ADx5xn58XS5PaJgdaQIlVjubg/mGge5uUYm+0x3OlqB65eCFBMkJCQCCYwJMxYt4atlrzB94hT++uA5fvt2dXWh0WiGPVdglZOAbzuf0Po3GBMS/Kb3CQzmCD0sveMb8iYayMyMps3uDhoPjEYtswZyg1lHkSMIlVjd3b3U1DjEtR+uBfCH5JgRpiZNmsSWLVt+6mVISEj8jAgcDRtI+Mkno730Uv78yCNUrV3L56+8gipk+HGogZVO4DUWb2x0kpqqJz8/ifz8JB5//DuxcipYIiJUMC1dulGsglq8OAuL1SlWTAkIP8+bN8avUiqYSBaIxeodD15c1ERnpwddmPKIq8F+yUjxQEJCIpDAeBAW5b0R4Xb1+O23rbiQ62+7iofve5ITZ84d9nzBKp3Ky5rZUWIhJkbDzIJEDEYdj//9MPFgoHrJNx7Mmz8Gg1E3pIUPBg3XA881nFAmYLU4RW+S9vYerAMTYo+0GuyXjBQTJCQkAgmMCRPnncmOz/9D+TdfYUwdg0KhoLOri/sefYzaunqWPfdPlMrg0klglZNAd3cvTY1O0tIiyM9PJD8/kcf//p1YORVMmBIqmJbe8Y1YBbV4cSYWi0usmBIQfp4/P82vUmo4ocyXXTutFG9voqenj3ZH95C1/xQcM8KUhISERCDBRsP6UlPTxpeG6axxOmlvs/Pnh//GU/fcOez5fPuwxXOYHVitLtHoHAYrp3zN04MRWAUV6ENVUdGCTqscUuFksTpZubKS2loHzg7PELHJYnXy+ZpqSndaCAtTYUrRow0NGTLC1hebzUV9vQvTxDZGp0qtDRISEscWgfFAExaCXCGju7MXGKwm+uCTlTRZG7nu1j/y7kurGTcuI+j5hEonX++o0lILlRWthOkMYvXRjPx4v8fhmD0r0e8RhnpRVVS0oNUqh1Q2lZc189bbZXS0e0U2X7HJanGy5vNqdpZa0IWpyBwbxbjxsWLFVDCsFieV5S2oYjRExR2bVVQSEhK/bgJjglyh4KTLruSjRx+gYusmotOnsPW7vaxa+yWdXZ08/OTz3P3nPwU9V7D8AKCmxoHV2ikancNg5ZSveXowAqugAn2oKipa0WlDhlQ4WSwuVn5YQa3ZgdPZM0RsslhcfP55NUVFjajVCsaPN6BUykbMEZptXTQ0tqJLaQt6o//7QhKmJCQkjlmGGxcusGePjapqJWedvZR3Prif179ez8nrpnP23OB3yYP5TwULRkLl1OGYN28MkybHYTa3Y7E6/QSowOosX4N0s7mdrq4elEoZMTFD203M5na2bq3HZnOTmqpgyZLMw7bv1dU7OXCgjY49NkmYkpCQOOYIjAcymQy1VklPt1eYElrwzp1/HcUl31FVU8bNd/+RT/+9GlWIasj5gnlPBROrjjgezB/D5IF4YLU4h4hPgRVavgbppaUWOtp7CAsPGSI2DcaDLlJTI5gzJ2Wg4mr4tZjN7dTUtKGN05IzadRh1y4hISHxSyNYjjBm0jTSp82gYutmYnuMtLVqOGPOpbz3nxd481/vMDt/MicUDP3wHM57KniOkBi0UiqQ+fPTBmKCA4vF5SdABVZo+Rqkm80Oujp7UCrlw+QIDrZuqcfW0kXq6AhOO230Ydv36uvaOVDVQeQemyRMSUhISPwQ5OR4P8wjIhbQ1rSDz779hKv//hjjMjMZk3T4RAK8RoEZGdHExAb3I7FYneza2Qz0ExqqpMbs8JvGJ7RWAH7ikRDEoiLVLF9RhkatxOXyAN5WjhNPNAH9jJ8wdCKRyRTO9OkJmM0OTjopeYgoFawNMDFBhwwZpmGqyyQkJCSONTS6EHq7++jr6xfb5bRaJb+/6GH+8viFVFTt5LGnHuTOWx44ovPFDsSD2GHigdXiZOeuwXggVC0JAtfOXVa2F1uYNNnInDn+n9u5uUY6nB56PH2sX18NQGODS9wmPAaKZYHxIJiPVGAboMkUTndHDxnpkUd03RISEhLHCqdceS2v3XAVroObGJVwMjpdPhZbFV9v+YJb7rmfj99ZRkLckQn23hwhavgcweJi106vwBSqVfp5PVksLv8cwTh0OmBkpJrly8vRaBQ4nUKOoB/IERgmR9Az/XifHCFAlArWBpiQGI5MoRy2A+X7QhKmJCQkjjk2bTrE++/vJzExjPPPHzusup+SEoHRaOPAATtX/vlvNDWV811FBZf8+RbWv7kMjWroXfJAfM3PBQHIt7pp104r69bVoNOFEBoaMujrMTCNz+HoQa9XDTGwFaqznv5nMaUlFsaOjebkOSmYTOEYDbohSYsvRoOOiy/OEddSVNwoHgfBvbJiYrTExuqI+AHvhEhISEj82GzadIh162oYNy6W0NAQv2EYGl0IPd299Pf2i21zxUWN9HZH8qffP8TfnrmeV996nikTp3PanNMP+1pC1RX4G4kL1U3mWgfbtjYMjQeimCRDJvM+BpKVHcvefa2sX19NVGQoJ56UTGZmtOg5NZxXlME4GA981yIcB0OrsQxGHSH9kJAQdthrlpCQkPglcbgcQauPYO7vr+E/Tz1KmKoEZ99Yfn/hldjazOwu38v1S+/i3ZeeJ2QYvylffM3PBQHIt7pp104ra9fVEKYLITRUidXaCQxO43M4ugdyBP/peEKF1tNPb/fmCJnRnHyyCZNJj9GoZc7clGHXZDRqufjibHEtRUWN4nEQ3C8rNkbDqFHhP2i1FEjClISExDHIunU1fPFFNbGxoWRnx474QerbY/7B+vXkjh3LLouFWx98kKcfGLxL7is2+VYgCYKSr7DkK1aBDJ0uhLi4MLKzo8WKKd9jdFqlOAY8WMtdfz9oQpVMmRw3ZNtIawtci7BtuF54CQkJiWONdetqWLfOzP79raSlRQKDwzDUWiVdzh76+vpRDOw/+Jl+Ni2Ofbyy7Dluvfc6ssbmYEoaLZ43mMCTlBRGf3//kBsNgmDV2eXxxoN4bzwI9HmaMF4Ql/qDtvPZbJ309PShCVUwYXzssFP0gq0tcC0wKJ4Fa0GUkJCQOBY5khwhM38Wh8p3U/rFKpKzohkzZjRPP/wQZ190KTt27uLvzzzHHTdcJ+7vKzb5ViAJgpKvsOQrVgGE+cQEoWLK9xidNgSz2QEQpOWun75+0GgUTJkyTI4wzNoC1yJs+ylzBEmYkpCQOOaYOzcFu91NYmIYOTkxQ0bC+iL0mNfUtLFrVw9PPvM6N/7xYqY3NdHT0kJIdDQQXOARfg4Ug/zEKlP4wBQNr2jk6+shHFtU3Bj03ACnzE3BYAgVA0QwEcpfCMNvezDhLJhXloSEhMSxyNyBO8dCxVREhIpVq6rIyYlBpQ2h1+Okv79f3F+onLJanMwp+D1bi7aQYkohOsr/MzNQ4HG1udm1qgalWoF+3NB2OvC2CbpcHp/Jev5rNRh1REZ4zxsZ0T5EVCrITyBMpyQ31yhuCyZC+a5N+F3YHjQmBPHLkpCQkDgWOdIc4eTL/0BLXS2HyjfRPEqPSx7P0htu5e/PPcms46f7nTOYwCP8HCgG+YlVJsRJe0aj1s97Sji2qKgx6LkBTpk7GoNBO5gjBBGhAoUw3+3BhLPh/LJ+DCRhSkJC4pgjKSmcU04ZLQaZVauq/EbCBkMYGztjxlQqSktpvuRSWl56CcPNNyMPCQn6ZX44AsWqwxmPj3TuQBEpmEDme3zg9mDCmYSEhMSvhYKCJJKSwsXEw3dEeFioAk9PH/19XmGqv68fZF5jdLO5ncrKdv589XMUzExDJhtsr+vv7ydaF0JGagQmUzh9vX3s+MJMr6eP7q5eanbZOG7a4N1r3+l6h2PEeBBEQApWARUYE3y3H81aJCQkJI41jjRHkMsVnHvbvbz3l6Xs//o/uMPHM2bKdNZ/+D5husAb0kMFnuEIFKsOZzw+0rkDRaRgApnv8YHbgwlnPyWSMCUhIXHM4Zt4pKREDBkJGwzffWJSIlA99hiHrr6aPa+8wpjLL/+fBZ6R2u2OhmBJi625k4qKFnRa5bBJTWHhITZvbmDGjPgjmhAlISEhcazgGxN8P+sbS2309njNz5sPdVC8uhq5XEZqXizJyV5/JZMpXBSl+vv7OVhzAFlbBOWbGrwnt7k50NePw9bJ9LPS2LelEYe1k76+fuTyoV5RAsO12/lWPfn+PhzBPvObB2KC9nAxobCBGflSTJCQkPj1cDQ5Qohazfn3PMR7D/+VhrLttJfbkR93jri9tq4eY2zM/yzwjNRudzQEE7G8OUIrOm3IsCJXYWEdmwvrmZGfcEQTA38oJGFKQkLimCMwyAQbCRtI4D7hJ57Aztmz+MPLLzP/QCUv//3x/2lNI5mkt9m7aGx0+W0Lhu+EP3ySDF+jwguWZAc9x+bNDezZ00xXlweVejBZERKjaCkaSEhIHKP4xgTfz/qW/W14evro6+2nfFM9mrAQokZp2b+tiYiqUCaeloJW7x2C4XR1cPOd17Jpy1fcdeHLpCSlYcqO5sAOK329/eTOMZGVn4CjuYuDO5vpcfeiDh3+gzWwkslXqBrORD0Q32l6vvv5mpkvuSA76Dk2Fzawc6cVW0snGelRQ9YQcjRvsISEhMQvhKPNEUJUGpbcfR8laz6l8L13WfvSsyRmZlHnkXHvk//k7AXzuP+2P/9PaxrJJL3N7qah0em3LRi+0/R89/PLES7ICnqOzYX17N5jo8vdi0qlEIUrQSwLU/9Pl3fESKmIhITEMceRCFFHgmHxYjpeeol/7dhBwTvvcNmFF/7X5xrJJD0uTsfYgelKwfAVsHbssNDfDxGRGj8zc6u1E6u1k/Ly5qD+UTNmxANgNIb6+VEJP0en/UhRR0JCQuJHZriYoA5V0tvTR1d7D+22LvLmJjNjYToHtlv4+t19fPvv/eTOSWZUagRqlQaHw47T5eSfH9zJS4+8R/7CdKaekYrb5UGtVaLSKIlPj6Ds23q6OrpHFKYCY4KvGDVSO5+veBQ4TU8gMlKNXCEjMnL4z/UZ+fHYWjrR61WYzV4/K981jEk+fNu6hISExC+N/yZHkMvlTFpwNunT8tmycgX7Cr+hvKqaDqeTd977gCxTMr9Z8hu/lu+jYSST9Pg43cAE1uBtgoKAVVJiobLCDuDX3ufNEVxYrS7Ky2xB/aNm5CcAYByl9fOjEn7OztD8V9d1tEjClISEhMQwnHzyydx3553c8+CD3PrG67TYIpl/yvT/yjh8OJP0WnM7Bw+2UVCQMGy1lK+ANXHiKMB/6lNWVqx4R6Sk1BJ0fekZUajUSnRaJc4B813fdUD3UV+ThISExC+ZEI13Fl/rwN3oxMwo5HIZGVNGETcmgtXP76J4TQ3HTRtF+uRR/OORFzj9/JOpbznIvU/fTWT2SxQUJKHSDH6djk3ytgA6mruIMAx/dzvQ60n4THZ3e1i/vmZIFZSAr3g03DQ9u91NX28/drt72NfPSI9izpwUfOOJ32P/sIdKSEhI/CrRxxo49Q9/YuZvLqHiu0JaHnyIlV9v4i9P/ZO28t1kZOYy+ZQTiDAc3US74UzSa2vbOVjdRkF+4rDVUoKAFRMTik4XMmSaXlZ2jH+OEESYSk+PQqVSoNOG4HT1+Ilg3p9/nBxB/qO8ioSEhMQvlDvvv5+5BQV09fXxyurn2LK1eth9LVYnRcWNWKzOIzq30aCjy91DZWUrJaWWYfczmcLRakM4eLCNhAQdc+aMHiJi5eUayc0zDDveVRC3nC4PUybHic/9r55XEhISEr9UhIomR3MnIWoFkT5CUniUhkV/nkT6ZCP7tzZRVWLBaIjjgVv+gUwmp3j3ah577Lkh54wapUMmA2tdB8VFjVgtRxYPDEYdk6fEYa5xUFJipXSYmGAyhZOZGY27+//Zu/O4qKr+D+CfOzsz7PsiIAopkDtZYKW55FaZVpZZaYtP66/VMnvKNCuftHqqp33TVstKzcwyNZcSM5dwQVxwARdwAFlnmP3+/hhmZGDYlwH8vF8vRO7c5cww8OV87/ecY3EO46s5IXq/fqHo3z+kVsKqutzccuTn6eDvp6o1jI+ToxMR1U3t54d+I8fim99+xxWXXw6jxYrFf+xGQe4RbFz8Af789guUFxW6HKPV6rFzZz60Wn2jrhEaqobBYEH2kZIG+gi+0GjkKCqqRP9+oW4TTw33EezJLZ3ejJSUcOe2ls551VSsmCIiquGHHw5h+fIjmDQpATfc0AtLV65Ecs8EnCorwZotH2D6tEFuy3XdzSPVEEeQqCtYOM7lSGBpvGVuK6Jqrt4HAFlZhcjYo0VsjC8qK60ID1e7DBtpaluJiLoSRVViSldiglItc1ZQOUjlUlx9dzJyj5di/9Y8nCmrRP/egzE+ZRpW71iMX3/9L/btm4I+ffpUO0YC32AvFBdUIj+/AkDDE5hXV1cVlIOj0uqbpQfcDuNzfF1zG2Cfk2pr+hkEBanQu1dg1fCQ2kMJmZgiInKvZh/h22XLcPHF/VB4rgB/lsvw3Ixb8M8vP2Hjkg9x0WWXo1faFVUrvdaeR6ohjeojVEtgaTRyt4mpmqv3AefnpIqN9UWl3oKIcI3L3FJNbWtrYMUUEVENy5cfwZYtp7B8+REAQHBwMFb88jNkEgnW5hzF15995va4mBifeueKcicxMRhTbklqcHhgbIwvQkLUiG3EUrQOjtLdbdvykJ+vc5mXytHWwgIdXnppG5b/cAiFRZWNPjcRUWfnGIKnLzNBqZFBJq/9Z7EgCNiZWwqZICBrVyHMJiuuHnArRlw1EkajAVOmTIHVanU5JiBCA6kootdFAU2KB4A9qXTLlCS3iSWHAq0OSpUc8QkB9VZF1bRnjxb//HMWf/+dB73egkEp4c4klKMS6+ixYjzzzBZs23a6Se0mIroQ1OwjRERE4Pvvv4VEIsEva5cjX6LC9NffQ8LgNBzcuhnbVyyD1WpFTIxvvXNFuZOYFIQpUxLdJpuqi431RUiIF2Jjm9FHSD+DvHwd/PyVziSUo60FBXq89NJfWL78CAoL276PwIopIqIaJk1KcPkMAGlpaVjw8svY/f77SNu3D5bCQsiCXTsO7uaRagzH5Ob1DatTKGUID9dAoXT/a9tRHdW/X6gzyeW4wxIb4+uyEl/1tr722g4cyCpCxRkbEi4KQs8mt56IqHNSeNkrpKwWG1QaOWRyqdv9Rk3ogdPrTiMuQgOzwQq5QoaPP1iMW6dNxquvvgqp1PW4oG4anDp4Dn36BEPp1bT17RozpC43txx6nRkD+tcexge4rtZX/fF+/UJRobMgKEhVK2HmqMT6YflhHD1aAm+5FFOa1HIioq7PXR/hqquuwrx586DVajF+/HgoFApc8+gsRFzUG5u/+AR/fb8Ul904BaGh4U2+nmNy8/qG1SkUUoSFa6BQ1I5h1VfrqzkpOmBPalVfiQ84P+fVa6/uwIEDRSg+CyT0avr8uk3FxBQRUQ033NALN9zQq9b2J556Cpbbb8exiZNQ9OGHCHnySUjkLVtUW1ugw4YNOTibr0dYuBojRsS6TU45OhEatQw7d+U7k1iOhFRBQSXOnLYPG0lMDEZ6+ils25aH1NQIpKV1q/P6qakRMBgsSAgTEBnl3aLnQkTUmSiqrZrn5a2AROZ+RaUbb+yNH47rYDFZYTJYIJNLEBIagq1bt7od1h0a7QOLyYbKMlOTE1N79xUgPf0MIiK8MeG6nm6TU454oFbLsGtnvksSK+tAIb748gAqys0A7BVY1Yfw1XVOhyuviAIADBgQ0qR2ExFdCOrqI/z73/+uFQ8GjZsApZcav334P+xavQKXXHdDk1bu02r12LAhB/n5eoSHF9v7CG6SU46kkkYtx86d+c4kVtaBInzxxQGUV9gnL3ckptLTT2Nb+hmkpkUiLS2qzuunpkXCYLQiNlKKblFtv1IrE1NERI0kCALkkZGIenURTvzrXnz24ouYPneuS5BpTPVT9X1yc8tRVmaG1SqirMyE3NxyZB8prpVUclQ47dyV7zI3lKMUNzLKG/36hyA2xhc7d+Vj48aTOHq0BABcElOOaztW54tPCEBaWjdYioubvcwtEVFnJK92d1ntp6j3d6BvkAp5R0uhUlshlUsgkQgu++/btw9WqxX9+/dHUDf7H/BlBQaYBTRYAVW9SgoQoNebkZ9XgdzccoSEauw3GtLzkJpmjwmO6qZdO/NrzQu1Z48WFeVmePvI0a9fKAq0OqxZcxyHjxQjMFCJmGhf576O66rVMuirVmsdM7YnxoztiZKzjZu0nYiI4BIPLBYLvv/+e9x88824+KpRqCwvw5avFmPXug1A4MX1Vj9Vr5DKzS1DWZkJNqutqo9Qhuzs4lpJJUeF085qMSE0VI2MPVqUV5jg461A/36hznNv3HgS2dklAOCSmNJq9di31z53YZ++IUhLi0JaWhT0pSWQylp2I74xmJgiImoizeWX4wmpBL/9+Qfy57+EUePvcSaicnPLsWvXWRw5cg79+4VCV/XHfvUkVfWJx6tXQh08WIyMf7TIzS3DqVPlAFCr2qnmst7VJ0ZMTAzGhg0nsHXrGQQHq6BSBSM1NcJ5bPXqLKtVRHmFESajDddc0wODEznZLRFdWATJ+Y6EJkBZ774+wV7I2VcEk9ECmUIKifT8sRs2bMC1116LkJAwLFq0AoMHd4dULkF5sQEFBrMzJvTrF+pMAFVPUlWfeLxvH8dwCRFGkwXfLD2AA1nncOpk7ZhQMx4ArpOnBwd7YcOGHJjMVsTE+CApKci5b4HWHg/KykyQSCU4fOgcRFHExEkJ9VbZEhFR3Ww2G8aOHYv169fj2LF89O9/HZL7jUTvE8dwMP0PnFNLcORIRFUfwVwrSVV94vHqlVAHD51DRoa9j3DypH2ERM1qJ8f+js8ufYSkIGxYn4Ndu88iKEgFlTIIqWmRzmMd1VmZmYWwWkUcyS6GrsKM1LRI9E9unz4CE1NERE2Qk1OKzMwiDJk8Db89/xQWbf4dcmkMho25GqEhGsTE+ODIkXMoKzMhY48Wtqo5casPu4uN8XVOkl59XqqMPVpkZ9vvaicnuyaVHGrOY1V7NT4BggDExwdixIhYl2P37S3E0ewSCIIEGo0MRYUGlJebsG1bHgYnxrf6a0VE1Fn4NJCY8g1UwVhpganSCrlC4kxq5eSUorAwEEFBIcjNPYE5cx7Ba699Cv9QL+hLjejeK8wZE/bs0cIxT3phYaVzHqjqCaaQUA1GjLD/jnesvBcYVBUT0lxjgqNyqrrqK/Lt2pmPsjIz4rr7YsSI2FrJsPz8SlitNoSGeaHoXCUq9RZsS89jYoqIqBkcfYTBg4di/fr1eP75WZg2zQfAVbj63v9DTuZ++FfsRUGJHzL2aGG1igDgHHbnWCXPMUm6oxIKqOojHClBYJASFye7JpUcqu8PuF+NTxCAhPgAjBhZs49QgKPZJZBIJFAqJcjOLkVR1aJI/ZMT0B6YmCKiC54jkCQnByE21q/efTMzi7Bt2xlcdtkk3DTpL3y3fDk++ONrjLsuFUA4QkM0GDEi1mW4nKPT4Rh2BwBTbkmqde76JitvrD59g+Hnr3QeW33YICBCqZQhPt4f0TG+6N07AJmZ59wmwIiILiTegSrn/93FBJW3fRiDQWeGb7DKWTGVmVmE/ft1mDnzTTz11M04dGgLtm9fhiu6X4fTh4oREKByxoTqQ+Y2bMhBRlU8uGVKktthfo7qp5hYXygVTY8JNRNe1YcMxsT4IDzcC2VlJkRG+mDYsBjk5pbVSn4REV3ImtNHSEubguuu24FVq1bh559fwCOPjIJcqcJ1jz6Fb+c9jZ4BpxDV93JnxRRQo48wJbHWueubrLyx+vQNqeoj2I+tPmwQABRKKZIvDkJ0tC8KCvQ4kFnkNgHWVpiYIqILniOQAGgw6CQnBzk/f7JkCTJ278aREycw6+XnsOKLLyGTyepcnU8qEaDTmSGVuJ/HxFH95JhHqrTECD//+uerqqnmtasPG7QHJJXL+caM6QltgQ57951GVJQP6n/2RERdy2XX98Cx3QUuk5S7iwkqjf1xo94MudIbEqkEQPWY0Acy2et46KGHsGDBHPT5sB90pSoUn9EhJNa3VuJJIrXHg+pDAmtyVD855pIqKTXC36/++aqqq1lRVX3I4KCUcGfCLCbGx1lhW6DVYdfOfAR6y9G9wSsQEXVtze0jLFmyBAMHDsSJEycwd+5j+P7779EtMRm9hwxF9t/p6Hb1EPgEnl+lTyoVUKEzQVpHTHBUPznmkbL3EZT1zldVU82KqurDBqsnrRz7jB3bA1qtHnv3nkZ0TECjrtESkja/AhFRB5ecHITU1EhnQKlPbKwfxo3rgdhYP/j4+OD7H3+ESqHAZq0WLz37bL3HnjxZYR/il1EAbUHdE8tq1DJIpEBZmRGHDp5Dbm55k5+TQ0yMj8uwwZRB4bWSXPv2FmJb+mkczCpq9nWIiDqjQWO649qH+8M/1Mu5zV1MUGrs93JFGyBT2Cc/B1xjwgMPPIDJkyfDYrHg8Tn3wiypwIGteSg+q4coii7XPZl7Ph4UaOufaFytlkFaFRMOtiAmxMT4VA0RsVdShYRqMCglvFbyateus9ixIx9nzlQ06zpERF1Fc/sIAQEB+O6776BQKLB8+XK8/vrrAICr7rgHgkSCA5s3usSFk7nl9pjwTwG0Wn2d19Co5ZBKBZSVO+JBWbOfW0yM67DBlJTwWkmufXsLsG3bGRxohz4CE1NEdMGrHkiaqm/fvnj3/fcBAO/u3IET69fXuW9qagSiorzh66tw6VhoC3TYuSvfmazS6S2wWQFfX6UzqdRcRYWVOHLkHLKPFLtcw5WIGn0mIqILhspb7qyAAtzHBEfFFAAoVFK4IwgCPv74Y/Tq1QunTp3CUdsmWC02bPshG1u+PoRjGVrYquYUSU2LQFS32vHAUbFUPVml11tgrYoJvVsQE0JCNVCrZfhx1VGsWHHYbUIsJsYHvr5y6HRmHKlatYmI6ELVkj5CSkoK/vvf/wIA5s+fj+LiYqj9/HHJtTcgP/swis+cdu6bmhaJblE+VTHhfLJJq9Vj5858Z7JKp7ev5O3ro3QmlZrL3kcoRnZ2scs1ahKr/duWOJSPiKiF7rzzTuTk5GDwjh2Qr14NY3w8lN2719ovLa0b4hMCqs35ZFd9uF1oiMZZMRUZqakxsXnTOcasHztaCqVSip49AxBdNb+Io3KqT98QBMhNiIpqfgKMiKgrU6rP/8ksV9X957OPjw9WrFiBpUuX4vnnn4fZYMPh7Xk4vEOLg9vykZt5DpdcG4e0tG5IiHcfDxxDKxyVTI6KqcgIjXNi8+bas0eLf/45Cy+VDEaDpdZKgfbJ12ORfeAcEuL9W3QtIqIL3f3334+8vDzccsstCAiwD4dLuWYidq/5EYf/2opLJ02GIAhIS4tCfHyAy5xPgOtwu9BQtbNiKjLSu9bE5k3l7CMcK4VCIUF8fACio31chvP16RsCjdLULkP5mJgiImrA1q2nsH59DkaOjMWQIe5XK5o7dy4sZWU4fv1EnPvoI4Q+9RSkfrXvrjiSQY475NUTUZqqjo+jYkqnt7S47Y7JEi1mG/Lz9SgqqoReb3ZpCxER1U8mP18ltXN3PhTdveuMB4mJiXjhhRcAAFKNFH2Hx6DPsGjkHjiH9YszsfuXHKTdEO9MBDmqpByTkpeUGlFSakCBVoeQUI2zYkrfCjGhX79QVOgsqNSba60UWH2C9PBwNSIjvVt8PSKirqyhPoIgCJg/f77LNrlKhUHXTkL6t1+g6PRJBHeLAQBnMshRMVU9EaVR26t2HRVTuqq/5VvC2Uew2JCXp0NRUSV0OrNLW9oTE1NERA34/vvD+O23EygpMdbZEQEAma8voj94Hz9ecy1+eexRvPHBh5DK5bX2q1kh5UhEnTmjg05vgUYta9QQPtcV9+D8f/WEU1CwFxISAp0rBNZcKdBx3PHsEggQ0LNJrwwR0YVn7/5CnLHZ6o0HDkajETNnzsQ999yDfv36YdjU3vj1w/3Izy5BVO9AALUnJff3s8/zVKDVY8SIWJfV9epTfdU9x3mrT5ReoNVBr7dgwnU9nY9XXymwelt6dGMFLRFRQxrbR3D4448/8OOPP+LlF+dj10/LcXTHXwiKioYg2OctrFkh5UhEnTlTAZ3eDI1a3qghfDVX3HP8v3rCyd5HCIBGLXeeu/pKgY7jjh4tgSBt+7QRE1NERA2IivJGcLAXoqIavnusCwzEPSdzUVFZichnnsHsRYtq7ePoAJiMFiz95gBiY3zRq3cgSksMOHTwHHr1DkTKIPtKHVlZhcjYo0X/fqEICvZyST5VT3ABcEl2OTj2qX5Od+2R6PwR2YjnR0R0oZJIBdisIuQqWaPiAQA8++yzePvtt/Hzzz9j586d6DEgBCpvOQpOVSCyVwAEQUBMjA9yT5bjnwwt1GoZYmJ8cOTIOZSVmZCbW+6coDzrQCE2bMhBv36hSEwKdklEhYRqXBJcAGoNCayZAHO3sp8jPgV6176pQkRErprSR8jPz8fVV18Ng8GAuLg49B01Fjt/WoHyogL4BturlxxJIZPJiqVLsxAba5+gvLTEPtl5796BSEmp6iMcKKrRRziffKqe4ALgkuxycOxT/Zw1xcT4wlLpj27tMN0HE1NEdEHKySlFZmYRkpODGpzQ8KabeiEpKbhRK3IEBQXhlVdfxYMPPohXdu9C348+wvgZM1z2CQ3RIDREg6XfHMCejAIAwJRbkpCVVQhtgd45pA84P/4bABISAl2ST+7uosfE+LhUUjXmTntoiAaBshDn3RoiogtJY+OBRGJPTI0eG4fLxnZv1Llnz56N5cuX49ixY5gyZQrWrFmDiJ5+KDqjg9Vsg0whRUioBkaDGdlHiuGtkeGWKUno1y8Ue/bYE1UOe/ZokVEVDxKTgmvNR+Xu971aLXMZJljz8ZocwwtLzta/UiARUVfVVn2E8PBwvPjii5g5cyYeffRR/LL6JwDAsd070f/qcQDsiaPQUDWWLs0630eYkoisA0VVfYTzNw1c+wgBLsknR4KrevVTTIyvSyWVu31qCg1Vw1sZAqms7W9WMDFFRBekzMwibNt2BgAaDDqxsX5NWo3j/vvvx44dO7BkyRLc/90yrOvVC72uvLLWfo6x3Y7P7uaWqr5PULB9OfOaySdHhZTj885d+c4EVktW9CMiuhA0Nh5IpAJgBlIGhzc6JgQGBmLFihVITU3Fb7/9hueeew7XXXo3Th8ugcVkT0wB9rmfqn92N69UzX2qJ5pqVk8B9iTTrp35LlVSwPk5Dt1VTBERXejaso/w+OOPY+fOnfjmm29w27TpeOXBGcg7nIXeQ66ESnO+6qp2H6H23FLu+wiuySdHhZTj885qMaElK/q1BSamiOiC5Liz0Zg7HE0lCALee+897N+3Dzt37cIdC1/Br926IaBHD5f9EhODncPztAW6WneztQX2OadGjIitM/lUWmKEn79rgqr6eWrOZ0VERK4aGw98glQoOq2Dop5V+dzp27cvPvnkE0yZMgULFixA2IvdIauMh7HSAlXVkLnEpGAEV8WDAm3teOCYH2rEiFiXxJPj/44EVEmpEf5+5xNUNc/jbtU/IiI6r637CB9//DEyMzOxb98+/G/FatzYIxw5ezLQK+1y536JSUHO4Xlarb5WdZNWq4dOb7b3EepIPtn7CEqXBFX189Scz8rTmJgiogtSU+9wNJVKpcLyFSswaMAAZBUV4V9Pz8LXH30MeY2V+qonjlIGhbudHwqonVRydDIc81JV38cxVNDd/kRE5Kqx8WDsvX1wZOdZBDZjPr5bbrkFO3fuxGuvvYanX3wUj4x7HYaKWPiFeDn3qW8OqIYSSo7f8SWlBpf9qievqu/HmEBE5F5b9xE0Gg1WrFiBlJQU7PonA17mJASGZyJ+8GWQys6nZ6onjlJSwt3ODwXUTio5kk+Oeamq7+MYKuhuf0+TeLoBRERdVXR0NJavXAm5TAarxYK8d96Bzey6vGtMjE+dK/A5HtOoZdi5Kx/agvNzfoSGaJAyKBx9+obAZhOx9tfjSE8/1ebPiYjoQuUXqkbKuDho/JTNOv4///kPxowZA6VSiUqTDgadxeXxmBifqtWW3MeD3r0DnXNGFWhd54AKCdVgUEo4+vYJgU0U8etaxgQioo6qZ8+e+O677yCVSuEbFo7i/HwU5Bx32ScmxrfOFfgcj2nUcuzcmQ+tVu98LDRUjZQUex9BFIG1a08gPf10mz+nlmJiioioDV1++eX4a/t2fP/995Dk5eHcp59AFEUAcDtPVHWO5JNOb8Ghg+ec84I4ZGXZV2g6cqQYR4+WYNu2vFrncFRd1TyWiIjal0wmwzfffIMtv/+Bi6IGwGKyOh9zN0dUdY7Ek15vwUF38eBAIb5ZegCFhZXQntXjaHYJtqW7jwnujiciovY1cuRI/PXXX/jxl1/g7eeH3P17zvcR3MwTVZ0j+aTTm6t+p5e5PJ51oKiqj3AO2dkl2JZ+ptY5HFVXNY/1FA7lIyJqYwMHDgQAWJ9+GvkvvohDn32G3tOnNzj/k7ZAh317C1FWZkR4uLrWXfSMPVrs2HEWFeVGGAxWqFS17zVw2AYRUcfh5+eH5D4++ANaWC025J/NQ1hoeIND9Qq0OuzdVxUPImrHA8eKffv3F+LMGR28veVITYuodR7GBCKijiMlJQUAkHTlcGSsW4PjR7PRIz6hwfmfsg4UIWOPFrGx7quqMvZo8fvvudBVmODrq0SSm/myGrMqX3tixRQRUTvxuvEGPKtSYvzXX+Pwjz/WO4wPsN/Z/uefs8jOLoGfv6pW8qp/v1BERXqj0mCFyWzF6dO1l/d2VF1x4nMioo5BKpdAIhWwc186xtxwBd756PV6h/EBVfFg91lkHymBv5+qVvKqX79Q9O8fAq1Wj5JSI0QRSEvrVus8jsorTnxORNRxXHTFCCze/Bduve8hFBYV1TuMD7AnnvZkFCAnp6zW/FOAvY9gs4moNNhgNtsQElJ31VVHmPgcYMVUs1itVphrzBND1JHJ5XJIpVJPN+OCZ7FYcMRmQ4HVgmkffoCfIiKQMnhwnfvHxPhgwIAwAKLbzopjVT/v5XJkZRUhNtYH2gJdrSRUQ0MGqWUYE6izYUzwPLlSiry8UygrL8Xr7/wHPXtchLEjr61z/5gYHwwYWE88SApGYlIwJFIBG38/iR49/VCg1dVZfVXfsEFqPsYD6mwYDzoGdUAACitNKCwpxf0zZ+HL999BSkp4nfv37xfq8rmmxKQg3HjjRdiwIRdRkd4oLTFCq9XXSkI1NGSwPTEx1QSiKCI/Px8lJSWebgpRk/n7+yM8PByCIHi6KRcsHx8frFq1CoMHD0ZmYSHuW7AAny9YAHXv3m73Dw3RYMSI+jsN2UeKUVFhxqBBYZBIJMjNLa+VfGpoyCA1D2MCdWaMCZ4lV8kwcvD1qBDy8dnSj/DY0w9APs8PI8Zd4fZ7EhLacDxITz+Fk7kVSBsSCYlgjwfuEk8NDRukpmM8oM6M8cDzAgICsPjd/2HibdPwz779eObFBXj1hefr/J4kJgUhMan28Lzq/PyUiAjXIDjEC3n5Ovj5K2slnxoaMtiemJhqAkfACQ0NhVqt5g8vdQqiKEKv10Or1QIAIiJqzzlB7ScuLg4rVqzA8OHD8VtZKZ6e+zxeXbgIipiYZp1v27Y8ZGYWwmDwx+gxcXWu5lT9s0P1SqpARoMmY0ygzogxoWNQqKSwWUTcNfFx7PgzAwdO7sAT8+/BvPyPMeqGS6Hxb/rKf9vSq+KB0R9jRruPB4D7mMAqqpZhPKDOiPGgYxl1w82YseQTvP3rRvz4y6/oFhmBx+6/t9nn25Z+BvszixBvtGL06O51ru5X/bND9Uoq7+YtRNtk7Io0ktVqdQacoKD6s5NEHY2XlxcAQKvVIjQ0lCW7bSAnpxSZmUVITg5CbKxfvftefvnlePXVd/HIIzOwpKAAkXOew8xFr0IWEtLk66amRjg/pwxyLflNTz+FjRtPIibGB6PHxNVbSRXYo52iThfBmECdGWNC22soJsiVUlgtNpScqcR9183DO+uexKHDmXjli0dhrfgf+l2RgJ4DQpqU4HBMdp6aFoFBNYaAFGh1+HXtCeTmluGqq6JrzT/FKqrmYzygzozxoO01to8gkUpx4+13IL+oCMv+3oN3PlmMiPAw3DLx+mZdNzUt0vm55rDA9PTT5/sIo+PqraRKSlA16/pNxcnPG8kxXlyt7hiTgxE1leO9y7kP2kZmZhG2bTuDzMyiRu0fHz8cw4ffBwB47dRp7H91ESylpU2+bnxCAIYOi0Z8QkCtx7Zty8OBrCJs357ndmnwhiZfp7oxJlBnx5jQthqKCQovGawWG0oLDQjvFoynZ70PX99QnC0+ifSc5Tj8Vz62fp+NinOVjb5mQnwAhg2LRkJ87XiQm1uO7dvP4MCBImxLz6v1eEOTr1PdGA+os2M8aFtN6SMMGHMtBsfFYHj/SwEAC/77Fs41c4hwfHxVH8FNTNiWbo8H2//KQ25uWa3HG5p8vS2wYqqJWJpLnRXfu20ruWoZ1mQ3y7HWtf/jj8/ERRepMPGy/gj939sofPNNhDz+OKTe3o2+bn3zR6WmRsBgsCAmxsdtZyM0ROM8xlJsavQ16Tz+XFFnxfdu22ooJihUUpQV2mCoMCEgXI2UYQn4z38+w9at3+HTT99Dzp5i/LHsMP78Lhs9B4QiPiUUgqT+71l9VU8xMT649NJI5OaWOSurqgsJ1bBSqoX4M0WdFd+7baspfQTvgECE9+6LaxRHEBwTiRuvH4dAf/9mXbe++aNS0yJhMFqr+gi1k0+hoWrnMfrS9ukjMDFFRNQKYmP9GhzC527/iy+ei8zMIsjndodpzuMo+O9/EfLYY41OTtU1f1RWViFycsswaVICEhODG/9EiIioxRqKCQovGSxmG0yVVmh8FYjr4Y9x41IRG3sR8vIqkXBJGKITA7B56WEc2XkW+cdLkTKuO7x8FHWes654AACFhZWQywRMmpiAxCTGBCKi9tLUPsIVN96E7+b/G1NGXA2jKcTtanqNUdf8UVkHipCTU1YVDzrO8GMO5SMi8iBHee9BSTTKn5yJqTt2IPOV/8Cq0zXq+NAQDVIGhdeqlsrYo8WejAJk7NG2RbOJiKgFFCopTHoLAEDpLQfgOtzDZrNh9nOzsL9sLcbcezFMlRb8tfIojAZLnecMCdVgUEq428qnPXu0yMgowB7GBCKiDi06uS/8wyJwMnMvDmYVITe3DAcOHcbUex9AUXFxo88TGqpGSkp4raRWR+0jMDFFRORByclBSE2NRFJSIB54/XXs0FVg+u7dOLxwIax6fbPP279fKPr1D0FsjC927sqHtqBxiS4iImp7cqUMZqMVAJxVUI54kJwchFWrVuGNN97AzJkzsfmf1bjukf4w6CzI/ju/Wdfr1y8U8QkBUKpkKNAyHhARdVSCIGDg2OtgKslH9zADunXzxsw587B9127c+dAjKK+oaNH5nX2EWF/s3JkPrbb5/Y3WxMRUFycIQr0fc+fObdG5V65c2aQ2aDQaJCQkYPr06di1a1eTrzls2DA8+uijTW8sURvIySnFmjXHkJPT9EnLHWJj/TBuXA907+6PZcuWITIyEtkGA2bs3oUTixbB2szgk5gYjCm3JEGhlOHQwXNuJz+nCwvjAVHbaWo8kKvOr3zlVVUx5YgHsbF+mDBhAmbOnAkAmDFjBjb/vRY9+gdDm1MOs8na5PYlJgVjQP9Q6HUWxgMCwJhA1JZa2kfoO2oM1H7+EIoPIixMg7dfeRmBAQE4cOgwZjz6BCoNhma3LTEpCFOmJEKhkOLgwXNuJz/3BCamuri8vDznxxtvvAFfX1+XbY4/etra4sWLkZeXh8zMTLzzzjuoqKjApZdeis8//7xdrk/UFpq6El9D4uLisG7dOgQFBWGvXo/7du/CqYULYWlC2W5N1Vfe0xboXKqnan5NXRvjAVHbaWo8UCjPJ6ZUanmtxwVBwMKFCzFjxgzYbDZMnToVpyr3obLcjPKi5nVIqq+8V6DVYdfOfJfqKXfbqOtiTCBqOy3tI0hlclxy3Q0oyDkGbc5x9OgeiyVvvwkfb2/szNiDB596GqYWrqJYfeU9rVbvUj1V8+v2wMRUFxceHu788PPzgyAILtu++eYbJCYmQqVSoXfv3nj33Xedx5pMJjz00EOIiIiASqVCbGwsFixYAADo3r07AGDixIkQBMH5dV38/f0RHh6O7t274+qrr8b333+PqVOn4qGHHkJxVae7qKgIU6ZMQVRUFNRqNfr06YOlS5c6zzF9+nRs3rwZb775pvPuyokTJ2C1WnH33XcjLi4OXl5e6NWrF958883WfSGJ3Kg+7KK1JCUlYfHi7+Hl5Y3tFRV4OHM/zixcCPPZswDsk5ov/eYAsrIKG3W+6nNQOVbwc9wtr/k1dW2MB0Rtp6nxQF4tMaXUuF+LSBAEvPfee7jmmkkwm834v6fvwdG8fSg9e76jkHWgEN8sPYCsAw3HhOpzUDlW8Kv++9/dNuq6GBOI2k5r9BH6j74GvsEhyPz9N1itViT1ugiLnn8ZSoUSW9L/wmPPPIvMPzdhy9dL8MfXS5D+80Ys/ToTWQcalwyrPgeVYwU/R/VUza/bA1flu4B99dVXmDNnDt5++20MGDAA//zzD2bMmAGNRoNp06bhrbfewqpVq7Bs2TLExMTg5MmTOHnyJABgx44dCA0NxeLFizFmzBhIpdIGrlbbY489hs8//xzr1q3D5MmTYTAYMGjQIMyaNQu+vr74+eefcfvtt6Nnz54YPHgw3nzzTRw+fBgXX3wxXnjhBQBASEgIbDYbunXrhu+++w5BQUFIT0/Hv/71L0RERGDy5Mmt+poRVdfUVTYaSyqNwY03voxvv30SG0tK8GF+Hh547TUEPfQQMvZUYE9GAQA0uNqetkCH3NxyxMT4IDREU2vFJtfP7bMULHVMjAdELdPUeCCrnpjyqvvPcalUinvueQkHD55BdvZf+PC3OUgbNhhxCAFwflJzAPWutlegPR8PQkJrx4Pq/4+J8QHERj8V6oIYE4hapjX6CDK5HKPu/T/88NIc7F33C/qPHg9/nxjcNO4BLF31FtZu3AxFcSFuHDUcomjD2cw/YTb7IsN2VYOr7Wm1euTmliEmxhehoepaK/i5fm6fPgITUx6Sk1OKzMwiJCcHtUnHtjGef/55vPbaa5g0aRIA+zCiAwcO4IMPPsC0adOQm5uLhIQEXH755RAEAbGxsc5jQ0LsfxA57nI0R+/evQEAJ06cAABERUW5lA3/3//9H9auXYtly5Zh8ODB8PPzg0KhgFqtdrmmVCrFvHnznF/HxcVh27ZtWLZsGYMOtbmtW09h/focjBwZiyFDurXKOZOTg3DLLeMxfHg4lix5B8+98w5KHn4EhW+8gUGjbgCqTWpuMlqQk1uG/v1CayWqHBVRgL1yyvEB2CuvMvZo0b9fKEJDNLAUMzHlKYwHjAfUdTQ2JlSvmJLK6x/A0L9/BF555WO8/vqDGBR+NSRWBURRhCAI6NcvFBU6i3NS88LCSuzZo0W/fqEuiSpHNRRgr5xyfDhkHSh0HhcSqkHJWQ7n8xTGBMYE6hpao4/Qve9AXDLhRuz48Xvoy0qg8o9ASkABJJf1w87TBXh+0avonXIplGoNVn/xE7J/+xwoTkd+fg8UnzM6/9avmahyVEQB9sopxwcAZB0oOt9HCFVDX9o+fYROM5TvpZdeQlpaGtRqNfz9/d3uk5ubi/Hjx0OtViM0NBRPPvkkLJa6l9X1pNaem6apdDodjh49irvvvhve3t7OjxdffBFHjx4FYC+LzcjIQK9evfDwww/jt99+a9U2iKL9dpwgCAAAq9WK+fPno0+fPggMDIS3tzfWrl2L3NzcBs/1zjvvYNCgQQgJCYG3tzc+/PDDRh1H1FLr1+dg/fpcrF+f02rndEyAO336Tdi4cSOCk5MR++03UMTFQbX6a1wTmu+c1Hzbtrw6l3ytPr9UTR11qdjG6koxgfGA8YC6jsbGBLny/L1hibT+P8djY/0waVIy/vhjI4ZfPhamSgusFhE2m63WpOaOCqo9NX63V59fyp26jusMulI8ABgTAMYE6hpaq49w5a3TMfS2u6AvKUHegZ3w9ffGfU88hT//2o6BI0ZD4x8AqVyO6+6ciMjLp0CoLEDmls31/q1ffX6pmjzVR+g0FVMmkwk33XQTUlNT8cknn9R63Gq1Yvz48QgPD0d6ejry8vJwxx13QC6X4+WXX/ZAi+vnGG/amnPTNEVF1UpfH330ES699FKXxxwltwMHDsTx48fxyy+/YP369Zg8eTJGjhyJ77//vlXakJWVBcB+9wIAFi1ahDfffBNvvPEG+vTpA41Gg0cffRQmU/1Z2m+++QYzZ87Ea6+9htTUVPj4+GDRokXYvn17q7STqD4jR8a6fG5tjj/K5MHB+HbgAKTv24eXvvsOkZekAn1HIS7O11kxVVP1CqmaHPv37xcKbYEOp7IKEBXlA8/cm226rhQTGA8YD6jraGxMkCvPJ6MkEqFR5xYEAWpfBcoKK3HqdC4eeupOvPDvhYiJSQJgTz6p1fY/7fvViAk1K6Rqcuzfr18oCrQ6ZGedgyJIhYDwuo/pKLpSPAAYEwDGBOoaWrOPkHLtJPQZMQaVZaWQyGT2ZJTsfCpn3rx5OHbsGObOfQPrc/dBd2ofEodcBCDEfR+hWoVUTS59BK0exw4VIDomoMXPoSGdJjHlKMNcsmSJ28d/++03HDhwAOvXr0dYWBj69++P+fPnY9asWZg7dy4UCoXb44xGI4xGo/PrsrL2meCrreamaaywsDBERkbi2LFjmDp1ap37+fr64uabb8bNN9+MG2+8EWPGjMG5c+cQGBgIuVwOq7XpSxY7OFYAGTlyJABg69atmDBhAm677TYAgM1mw+HDh5GUlOQ8RqFQ1Lrm1q1bkZaWhgceeMC5zXFHh6itDRnSrdWG8NXn2LFjeH7+fJjNZoh9+uDlHdsQU1KIoH/9C2lp7q+fnn4K27blITk5EMFVc0w5ElWJicHOoX87d+XjeHYJBAjo2ebPpHW0RUxgPGA8IGqpxsYEx1A+QSJAIm1cYgoANH4KmAxWvPX+Ihw4tB/T75+Mxe9+i0EpgwHYE1Du5ppKTz+Fbel5SE2LQEJ8gMt8U4B9firHcbt25iMnpxTqcDWSB4Y1um2e0pXiAcCYADAmUNfQ2n0EpVoNpbp2MunAgQN48cUXYbVaYbPZ8O7/3sLnj98Pw6lduOWWm503uatLTz+NbelnkJQchJAQtXOuKQBITApyDv3buTMfR4+WQJC2fdqo0wzla8i2bdvQp08fhIWdD6CjR49GWVkZMjMz6zxuwYIF8PPzc35ER0e3R3M7hHnz5mHBggV46623cPjwYezbtw+LFy/G66+/DgB4/fXXsXTpUhw8eBCHDx/Gd999h/DwcGeZdPfu3bFhwwbk5+c7V82oS0lJCfLz85GTk4N169bhxhtvxNdff4333nvPeb6EhASsW7cO6enpyMrKwr333ouzVSuROXTv3h3bt2/HiRMnUFhYCJvNhoSEBOzcuRNr167F4cOH8dxzz2HHjh2t/noReVKPHj2wfPlyKBQK/LxvH2Z6a1B28iTOvvQSjHX8kbVtWx4yMwuxZctpHDp4Dvv2FmLnrnxoC1znDomJ8UHPeH9ERnm3x1NpF82JCYwHjAdE7cUxlE/SxMSU2k8Js8GCZx59EZelDEGFrgLT7rsJf6RvrPe4ben2eLAtPc8539TefYXYtTMfBdraMSE21g8J8f5Nfl4dEeNB0zEmEHUeSUlJ+PbbbyGTyfDVV19h+t33oN/4Ccg/lg3tiWNuj9mWfgb7M4vwx5bTOHjwHPbtLcDOnfnQavUu+8XE+KJnT390i3I/DLw1dZnEVH5+vkvAAeD8Oj8/v87jZs+ejdLSUueHY0WJC8E999yDjz/+GIsXL0afPn0wdOhQLFmyxFk26+Pjg4ULFyIlJQWXXHIJTpw4gTVr1kAisb9tXnvtNaxbtw7R0dEYMGBAvde68847ERERgd69e+P++++Ht7c3/v77b9x6663OfZ599lkMHDgQo0ePxrBhwxAeHo7rr7/e5TwzZ86EVCpFUlISQkJCkJubi3vvvReTJk3CzTffjEsvvRRFRUUud0aImisnpxRr1hxDTk6pp5sCALjmmmuwcuVKeHl5Yd3u3XhAKkG5Ro2CN95A2dq1zjkZHFJTI5CcHIwrr4xCr96BAEQccrMUeGiIBn37hCA4yKsdn03bak5MYDxgPCCqS2vHA2XVkDuFlxQSWeP/HPfyUcBqESGXKvHJ21/jitRh0Ffqcc//TcXqX1fUeVxqmj0epKZFOOebAsSq5cBdY0JIqAaJiYGIjOwaNysYD5qOMYGofh2tj3DDDTfgu+++g0KhwIoVKzDnnY8g1fjg0NYtsNlstfZPTYvExclBuOLKqKp4gKp44FodGhqqRt++IQgObvs+giDW7Mm0o6effhqvvPJKvftkZWU5V2YA7GW6jz76KEpKSlz2+9e//oWcnBysXbvWuU2v10Oj0WDNmjUYO3Zso9pUVlYGPz8/lJaWwtf3/GRgBoMBx48fR1xcHFQqVaPORdSR8D3cdGvWHMO2bWeQmhqJceN6eLo5Tlu3bsU111yDkpISXJyUhE8vS4X31q1Q9OyJwDvvhCww0O1x2oLzy4XXnHvKUlwMQRDgd/0ECJKm3bOo6/dmU3W0mFDf8+LPE3V2fA83TVvEg52/nIBCJUWfod0gNHKeqZMHzmHVWxlIGdcdod19YTKbMPPfD2L12pUQBAFzZ/8Ht998V6POVaDV1RrS51ByVofufYKbNcdUa8QExgOi9sP3cNN11D7Cxo0bMWHCBJSXlyPpogTc1DsWQyfdhJiL+9V7nFarR25umcuQPgd9aQmkMjmSrhze5PY0JR54dI6pJ554AtOnT693nx49GveNDg8Px99//+2yzVHi2dylSonowubpCUjrMmTIEGzZsgWjR4/G/gMHkDVrFq4dOwbaVxbi7Pz58LvhBmiGDKk1pry+ydA7AsYEIuqo2iIepIztDtEmNjopBQBevnIAgLHSvqKcQq7Afxe8jwD/QHzx7adY+v3nmDxxKpQKJQCgRKvH0V1aGCrMCI7xQXxKKKRVqwA2NCG6JzEeEFFH1lH7CFdddRU2bdqEMWPG4MDhIyhKjMfB9D8Q2SsJMrm8zuPqmwy9vXg0MRUSEoKQkJBWOVdqaipeeuklaLVahIbaZ5Jft24dfH19XSbGIyJqLE9PQFqfPn36ID09Hb/++ivuuOMOAIAmNRV5s59ByddfQ5+eDv/bboMiMtLluPqqpjyNMYGIOqq2igdNSUoBgEpjn6jbbLQ4t0mlUsyd/R90j+2B8VdPcCalCnLLsXPNCag0MngHqnDsHy3KCiqRMr6788bF8YNFOHWsDGERaoRH+0Ljp4RU7vmZPhgPiKgj68h9hIEDB2Lr1q3YsmULxl45BEufnYlD6VuQPHREvcdptXocO3wGGqEISpkFKo03Qru3XzVYp1mVLzc3F+fOnUNubi6sVisyMjIAAPHx8fD29sbVV1+NpKQk3H777Vi4cCHy8/Px7LPP4sEHH4RSqfRs44mI6pCTU4rMzCIkJwc1OcAJQgBUqsuxZMk+XHVVDLRaHb4N7oP7Hh0B6xcfQvvyy9AMGQK/CRMgqVrFIze3HIcOngOADpeYagrGBCLqahoTD7y87Xe8LUbXOUMEQcA1o27D3r2FAE4gLMgL3332BVL6XIGx96YhOMYX+zefQvoPR1F0ugLB3XyQf7QUWb+fBgCUnyhH9jZ7FZGXjxwqjRzderX98uCtgfGAiLqilvQRFIpQSKWX4retZnTrexl2//kH1u7OwW1Tb3FbGaUrKcbu1T/BUJgDAJApFLCYTIAgILxHPJKurD+p1Ro6TWJqzpw5+Oyzz5xfOybS27hxI4YNGwapVIrVq1fj/vvvR2pqKjQaDaZNm4YXXnjBU00mImpQZmYRtm07AwBNCjo5OaVYsmQ/du48C41GjoAAGWbNuhWHDmXg2MS7sfTHlSh68y2UrliB8r+2Q5Z6BcKvH4+YGPuqGo7PnRVjAhF1NY2JB1K5BHKl1KViCrDPF7VhQw6OZJdApZRBV7QdX/z+Cn7d8wWuuutXRCj6IPmKKKQvP4r9O84iWSFB9m4tNIFK+CYHIK67H1SCBOfOVKA4Xw99qRFyVefoJjAeEFFX1Fp9hBuuG4WPX3sNp4t/xSmtFq++9BQkEgm0Wj1OHCuCUJKFvMydkMiV8I9PRd/hw5FwcRyMeh0yN63Hvt/XInd/BgaMuaatniqATpSYWrJkCZYsWVLvPrGxsVizZk37NIiIqBU0d4x6ZmYRCgsNiI/3R79+IejXLwLjxo3FoUMZWLHiE4wrPY6lS5fiZOww4OuP0O3PjcjbkQ7NkCEYMHw4pP6dt1oKYEwgoq6nsfFAqZbBbHKtmMrNLUdZmRkREd7oHu2Nk7viEBoQBW3RaVyWehk++ugj3HrrrZCpZSgp0OP40RKUFVQi+YpIDJ3Sq9aQQovZCmkTVgv0JMYDIuqKWquPkJLaDaPGXIslS7/AqnUrUVB0Av959hkc3nUYxUd3QyKaEdd/EAZffwPCeiRArjhfSRoW1xP9x1wD0Vp7Zb/W1mkSU0REHV1zSm6bO0Y9OTkIWq0egIirropBbKwfXn/9ZVx2WX/cdddd+P333zFgwAC8+eYnUD/xIlTys5Cv/Aq6LVtQvmEDzgXEwis1FQmjUyHIGAqIiFpTW8YDlbccFqMVoig654qKifFBSakRgIhQpRzmwBj8uup3PDn3AWzYsAFTp07F1q1bkRp+K4RyAcF+ShQCKDVZ8ML8dIwcGYshQ7o5ryGTS5vztImIyA1P9xEWf/05Lk6Mx+x5L2Db7gxMuO0O3J46CL0u6oOLh4/FJVcPxT/7yvHJtztrxYPAiKgmt6E5OsetECKiTsBRcpuZWdTm14qN9UNoqBpHj5a6XG/y5Mn4+++/kZiYiDNnzuCWW65B1sGV6D7yMnR7523ErfoRRxKGQ1JSBPXPS3Fm1iwUffIJKvfsgU2vb/N2ExFdCNoyHqg0cljMNthsonNbSKgG/n5K5OfpkZddisAIDS7qE4u1a9fi2WefBQC8++67mP/pvajQa6GQ2LsA+4+cw/r1uVi/PqfV20lERHYdoY/wxHNz8OcffyAmKhIlegPe37wd+uhoXDFxPNS+fli/Psej8YCJKSKiVpKcHITU1Mh2Wzq2ruslJSXh77//xpQpU2C1WvHll1/CYrFAEAQou3dH8KynsXHSApQ9OBfeV16JiqMnULpsGU7+uLZd2k1E1NW1ZTzw8lHAbLRCrJaYAuxVU/GxvrDoLeiWGAi1jwJSqRTz58/HmjVrEBgYiMMnMnHs1EHoy0yQSAVcenkURo6MwciRsc7zbN16CvPmbcXWradave1ERBeijtJHGJyair2ZBzBp0iSYLRb88OMq2ER7LBk5Mtaj8YDjN4iIWkl7Lx1b3/W8vb3x1Vdf4YorrsAVV1wBhcK+xLjNZkNaWlS1Et2b8fm/1+Hw+l24JDQU/SS8X0FE1FJtGQ+8fOQwG62wWUVAfn57SKgGxSfKUSKXICEl1GXeqLFjx2L37t14ff57SFIPgclghUwpRcol4Rg5rqfL+R13zQG4DOcgIqLm6Uh9BD8/P3z//ff43//+hzFjxkBWNaVHampkrd/57RkP2AOhVjN9+nRcf/31zq+HDRuGRx99tEXnbI1zEF2oBEHA/fffj4svvti57YUXXsCkSZNw8uRJ57ah4xIRN+4K9L/1ak80k7ooxgSitlFXxZQoijh9qBjB3bzhG+RV67jY2FjMuP0hWM02WExWlFeew6WXD8KXX34JUTx/Lnd3zYlagvGAqGMRBAEPP/wwLrroIue2p59+GjfffDPOnDnj3Nae8YCJqQvA9OnTIQgCBEGAQqFAfHw8XnjhBVgsloYPboHly5dj/vz5jdp306ZNEAQBJSUlzT4HEdVPq9XilVdewcqVK5GYmIhXX30VZrMZQ4Z0w/PPD+Gd8QsEYwJR56b2VVQll1xXSSrO16Oy3IyY5ECovOVuj5UppRBFwGK04tcdX+Hw4UO4/fbbMWLECBw8eBAAGBMuIIwHRAQAJ0+exBtvvIFly5ahd+/eeOutt2C1Wts1HjAxdYEYM2YM8vLycOTIETzxxBOYO3cuFi1aVGs/k8nUatcMDAyEj4+Px89BRHahoaH4+++/MWTIEOh0Ojz55JMYOHAg1q7l3FIXGsYEos5L7WMfmm00uCYPTh08B6Vahrh+Ic7V+mqSK+yr7ZkMVtx69f/hhXkvQqVSYePGjejbty+efPJJFBcXt+0ToA6F8YCIoqOjsX37dgwePBjl5eV45JFHcMkll2Djxo3t1gYmpi4QSqUS4eHhiI2Nxf3334+RI0di1apVztLal156CZGRkejVqxcAe9Z08uTJ8Pf3R2BgICZMmIATJ044z2e1WvH444/D398fQUFBeOqpp1zKwIHaJbZGoxGzZs1CdHQ0lEol4uPj8cknn+DEiRO46qqrAAABAQEQBAHTp093e47i4mLccccdCAgIgFqtxtixY3HkyBHn40uWLIG/vz/Wrl2LxMREeHt7OwMuEQF9+vTBli1b8MknnyAwMBD79+/HmDFjcPXVV7uU7lLXxpjAmECdl6MayqQ/n5iyWmzIyy5FWA8/+ASq6jxWprQnpsxGC5RKJZ6e9TQOHDiAcePGwWw249VXX0V8fDw+/fTTtn0S1GEwHjAeEAHAgAEDkJ6ejvfeew/+/v74559/MHz4cIwfPx5arbbNr8/Jz1tIr9c7S5/bU+/evaFWq5t9vJeXF4qK7MtHbtiwAb6+vli3bh0AwGw2Y/To0UhNTcUff/wBmUyGF198EWPGjMHevXuhUCjw2muvYcmSJfj000+RmJiI1157DStWrMDw4cPrvOYdd9yBbdu24a233kK/fv1w/PhxFBYWIjo6Gj/88ANuuOEGHDp0CL6+vvDyqj03AmAvOT5y5AhWrVoFX19fzJo1C+PGjcOBAwcgl9v/UNPr9Xj11VfxxRdfQCKR4LbbbsPMmTPx1VdfNfv1IupKJBIJ7rrrLkyYMAEvvfQS3n77bRw6dAiBgYGeblqn54mY0NJ4ADAmEHUmXj7297ZRb3Zu054og9VsQ48BwVBp3A/jA85XTJmNNnj5CpBIBMTFxWH16tVYs2YNnnrqKRw4cAA2m63Oc1DjsI/AeEDU2UilUtx3332YNGkS5s+fj/fffx+HDx+Gv79/219cJBelpaUiALG0tNRle2VlpXjgwAGxsrLSZfuuXbtEAO3+sWvXrkY/p2nTpokTJkwQRVEUbTabuG7dOlGpVIozZ84Up02bJoaFhYlGo9G5/xdffCH26tVLtNlszm1Go1H08vIS165dK4qiKEZERIgLFy50Pm42m8Vu3bo5ryOKojh06FDxkUceEUVRFA8dOiQCENetW+e2jRs3bhQBiMXFxS7bq5/j8OHDIgBx69atzscLCwtFLy8vcdmyZaIoiuLixYtFAGJ2drZzn3feeUcMCwtr3IvVhdX1HiY6evSouHnz5mYfX9fvzc6uvufVkWJCU+KBKDImMCbYMSZ0XsZKs/j2vRvEtR/vE4/tKRCP7SkQv/vPDnHx03+KJVpdvcdqc8rEt+/dIL77wO/i96/sFK0Wq8vjZrNZ/Prrr0Wz2dzs9nXFmNBZ4gH7CIwHzcF4QHU5fPiw+Oeffzb7+KbEA1ZMtVDv3r2xa9cuj1y3KVavXg1vb2+YzWbYbDbceuutmDt3Lh588EH06dPHuZQ8AOzZswfZ2dm1xm0bDAYcPXoUpaWlyMvLw6WXXup8TCaTISUlpVaprkNGRgakUimGDh3apHZXl5WVBZlM5nLdoKAg9OrVC1lZWc5tarUaPXueX/o4IiKiXcoPidra1q2nsH59DkaOjK1zEsKcnFJkZhYhOTmo0cvS9ujRAz169GjNpl6wPBETmhoPAMYExgTqzBQqGWReUmTuKYBFI0NiUjCK8/WI6OkHjZ/SuZ+7eCBT2GfxsFlFSGUCBInrXFQymQxTpkxpvyfThbGPYMd4QNT22qqPkJCQgISEhNZsap2YmGohtVqNgQMHeroZDbrqqqvw3nvvQaFQIDIyEjLZ+W+9RqNx2beiogKDBg1yW9YaEhLSrOvXVXbbFhzlug6CINQZDIk6k/Xrc7B+fS4A1Bl0MjOLsG2bfa6oxgYdaj2MCY3DmEDUMjqbDaZyM/ZknEV8zwCYKi3wD1dDVjVUD3AfD6o/LlNI6pwknVqO8aBxGA+IWq4r9BE4+fkFQqPRID4+HjExMS4Bx52BAwfiyJEjCA0NRXx8vMuHn58f/Pz8EBERge3btzuPsVgs9d4V6tOnD2w2GzZv3uz2ccfdGKvVWuc5EhMTYbFYXK5bVFSEQ4cOISkpqd7nRNQVjBwZi5EjYzByZGyd+yQnByE1NRLJyUHt2DLqbBgTiDq3Hn2D4a2UoXfPAFQUGwAAIdHeLvu4iwfyaokpqVwKIsYDos6vK/QRmJiiWqZOnYrg4GBMmDABf/zxB44fP45Nmzbh4YcfxqlTpwAAjzzyCP7zn/9g5cqVOHjwIB544AGUlJTUec7u3btj2rRpuOuuu7By5UrnOZctWwYAiI2NhSAIWL16NQoKClBRUVHrHAkJCZgwYQJmzJiBP//8E3v27MFtt92GqKgoTJgwoU1eC6KOZMiQbnj++SF13gkB7HdAxo3r0SHvhFDnxJhA1PGMnJQAAYC3VIqKYiMAIDDSNTHlLh5IZOcrpBzD+ogai/GAqGPqCn0ERiSqRa1WY8uWLYiJicGkSZOQmJiIu+++GwaDAb6+vgCAJ554ArfffjumTZuG1NRU+Pj4YOLEifWe97333sONN96IBx54AL1798aMGTOg0+kAAFFRUZg3bx6efvpphIWF4aGHHnJ7jsWLF2PQoEG45pprkJqaClEUsWbNmlqluURkH28+b95WbN16ytNNoU6MMYGo4/EOUCEgQo1z+TqUF1VCpZHBy7vu970jHvy9I8+5TSZnN4CahvGAqGvoiH0EQeTAWhdlZWXw8/NDaWmp8xcsYJ/U7/jx44iLi4NKpfJgC4mah+/hC8+8eVuxfn0uRo6MwfPPD2mz69T1e7Ozq+958eeJOju+hzu/Ld8cwpEdWqj97EOdJj4xECqN+0549XgQnGevsOo7vBuumHxRq7erK8YExgPqyvgevvB0xD4CJz8nIuqiHOPM6xtvTkREnVNEvD/2bToNY6UF0YkBLvNH1VQ9HmR8cRgAh/IREV2oOmIfgYkpIqIuasiQbvWONScios4rvId9nhDRJsI3WAVpPUPzqscDR2JKrmA3gIjoQtQR+wi8VUJERERE1Ml4Byid/6858XljyJTsBhARUcfAiERERERE1MkIgoCES8Kg8JIhrLtPk4+XK+se+kdERNSeWMNLRERERNQJjZiWiOI8HfzC1E0+lqvyERFRR8HEFBERERFRJySVSRAc3fRqKQCQylkxRUREHQNvlRARERERXWDqmyydiIioPTEiERFdwLZuPYV587Zi69ZTnm4KERG1I7midjeAMYGIiID2jwccytcKbAYDRLO53a4nyOWQqFTtdj0i6vxyckqRmVmE5OQgxMb6ObevX5+D9etzAaDDLRvbWVlMVlitYrtcSyoVIFNwOA4RNV7v1HCcOlKCnRlaWFVSxoQ2ZDYZYbNY2u16EpkMcoWy4R2JiKp0lD4CE1MtZDMYUL5hA6xl5e12TamvD3xGjOiQyanp06ejpKQEK1euBAAMGzYM/fv3xxtvvNHsc7bGORqyadMmXHXVVSguLoa/v3+bXaetCYKAFStW4Prrr/d0U6iDycwswrZtZwDAGXRyckqh0SiQkhKGkSNjPdm8LsNisuL4nkIY9O1zs0KlliOuX3CHTE4xHngW4wHVZfgdifjphyPYkXEWCh8FY0IbMZuMOLrjLxh0una7pkqjQc9LLuuQySnGBM9iTKC6dJQ+AhNTLSSazbCWlUOiVEJQtn0QEI1GWMvK7RVajUxMTZ8+HZ999hkAQC6XIyYmBnfccQeeeeYZyGRt+xZYvnw55HJ5o/at6xd/U87RXGlpacjLy4Ofn1/DO1epGWCJOrLk5CCXz4A9EJWWGjFqVHfeGW8lVqsIg94MmVza5vO3WM02GPRmWK1io4M540HDGA+oqxMEAf0uCYNMLWNMaEM2iwUGnQ4yhRwyhaLNr2cxmWDQ6ewVWo1MTDEmNIwxgbq6jtJHYGKqlQhKJSReXm1+HRsAGI1NPm7MmDFYvHgxjEYj1qxZgwcffBByuRyzZ8+uta/JZIKilQJoYGBghzhHQxQKBcLDw9v8Ou605utNVJfYWD+X8lzAfSCi1iGVSyBXtn0Vk8VsbfIxjAf1YzygCwFjQvuRKRSQK9tnlIPF1PRqXcaE+jEmUFfXUeIBJz+/QCiVSoSHhyM2Nhb3338/Ro4ciVWrVgGwZ/Wvv/56vPTSS4iMjESvXr0AACdPnsTkyZPh7++PwMBATJgwASdOnHCe02q14vHHH4e/vz+CgoLw1FNPQRRd51UZNmwYHn30UefXRqMRs2bNQnR0NJRKJeLj4/HJJ5/gxIkTuOqqqwAAAQEBEAQB06dPd3uO4uJi3HHHHQgICIBarcbYsWNx5MgR5+NLliyBv78/1q5di8TERHh7e2PMmDHIy8ur8/XZtGkTBEFASUlJo84xd+5cfPbZZ/jxxx8hCAIEQcCmTZsa9bq5e72feeYZXHrppbXa1a9fP7zwwgsAgB07dmDUqFEIDg6Gn58fhg4dit27d9f5nIgaEhvrh3HjetQKRtS1MR4wHhC5w5hwYWJMYEwgqskT8YCJqQuUl5cXTCaT8+sNGzbg0KFDWLduHVavXg2z2YzRo0fDx8cHf/zxB7Zu3er8xes47rXXXsOSJUvw6aef4s8//8S5c+ewYsWKeq97xx13YOnSpXjrrbeQlZWFDz74AN7e3oiOjsYPP/wAADh06BDy8vLw5ptvuj3H9OnTsXPnTqxatQrbtm2DKIoYN24czNUmoNfr9Xj11VfxxRdfYMuWLcjNzcXMmTOb9BrVd46ZM2di8uTJzkCUl5eHtLS0Rr1u7l7vqVOn4u+//8bRo0ed+2RmZmLv3r249dZbAQDl5eWYNm0a/vzzT/z1119ISEjAuHHjUF7efvObEVHXw3jQMMYDIrpQMCY0jDGBqPVxKN8FRhRFbNiwAWvXrsX//d//ObdrNBp8/PHHznLRL7/8EjabDR9//DEEQQAALF68GP7+/ti0aROuvvpqvPHGG5g9ezYmTZoEAHj//fexdu3aOq99+PBhLFu2DOvWrcPIkSMBAD169HA+7ijHDQ0NrXNywSNHjmDVqlXYunUr0tLSAABfffUVoqOjsXLlStx0000AALPZjPfffx89e/YEADz00EPOuwqNVd85vL294eXlBaPR6FLe25jXDaj9egP2Ox9ff/01nnvuOefzuvTSSxEfHw8AGD58uEv7PvzwQ/j7+2Pz5s245pprmvTciIgYDxqP8YCIujrGhMZjTCBqfayYukCsXr0a3t7eUKlUGDt2LG6++WbMnTvX+XifPn1cfgHu2bMH2dnZ8PHxgbe3N7y9vREYGAiDwYCjR4+itLQUeXl5LqWlMpkMKSkpdbYhIyMDUqkUQ4cObfbzyMrKgkwmc7luUFAQevXqhaysLOc2tVrtDBYAEBERAa1W26RrNeccDb1uDjVfbwCYOnUqvv76awD2Pw6WLl2KqVOnOh8/e/YsZsyYgYSEBPj5+cHX1xcVFRXIzc1t0vOiC1dOTinWrDmGnJxSTzeFPIjxgPGAiPGAHBgTGBOIOkJMYMXUBeKqq67Ce++9B4VCgcjIyForbWg0GpevKyoqMGjQIHz11Ve1zhUSEtKsNni1w+TwDjVX6BAEodbY9rY4R2Nft5qvNwBMmTIFs2bNwu7du1FZWYmTJ0/i5ptvdj4+bdo0FBUV4c0330RsbCyUSiVSU1Ndyn+J6uNuOVi68DAeMB4QMR6QA2MCYwJRR4gJTExdIDQajbPcszEGDhyIb7/9FqGhofD19XW7T0REBLZv344rr7wSAGCxWLBr1y4MHDjQ7f59+vSBzWbD5s2bnWW61TnuDlitda8ylZiYCIvFgu3btzvLdIuKinDo0CEkJSU1+vm1BoVCUautjXnd6tKtWzcMHToUX331FSorKzFq1CiEhoY6H9+6dSveffddjBs3DoB9AsXCwsKWPxG6YHDFJQIYD9oC4wF1NowH5MCY0PoYE6iz6QgxgUP5WoloNMJWWdnmH6LR2C7PZ+rUqQgODsaECRPwxx9/4Pjx49i0aRMefvhhnDp1CgDwyCOP4D//+Q9WrlyJgwcP4oEHHnCuWOFO9+7dMW3aNNx1111YuXKl85zLli0DAMTGxkIQBKxevRoFBQWoqKiodY6EhARMmDABM2bMwJ9//ok9e/bgtttuQ1RUFCZMmNAmr0V9z2fv3r04dOgQCgsLYTabG/W61Wfq1Kn45ptv8N1337mU6AL25/7FF18gKysL27dvx9SpU9v1DhN1flxxqf1YzTaYjdY2/bCabe3yXBgPGsZ4QJ0N40H7sZhMMBsNbf5haafqGMaEhjEmUGfTEWICE1MtJMjlkPr6wGY0wlpW1uYfNqMRUl8fCDVKSFubWq3Gli1bEBMTg0mTJiExMRF33303DAaDM8v/xBNP4Pbbb8e0adOQmpoKHx8fTJw4sd7zvvfee7jxxhvxwAMPoHfv3pgxYwZ0Oh0AICoqCvPmzcPTTz+NsLAwPPTQQ27PsXjxYgwaNAjXXHMNUlNTIYoi1qxZU6ustq3NmDEDvXr1QkpKCkJCQrB169ZGvW71ufHGG1FUVAS9Xo/rr7/e5bFPPvkExcXFGDhwIG6//XY8/PDDLndLiMjzpFIBKrUcFrMVRr25TT8sZitUajmkUqFNnxPjQcMYD4ioJolMBpVGA4vJDEOFrs0/LCYzVBoNJLK2HRDDmNAwxgSiphPEpg6q7eLKysrg5+eH0tJSl18SBoMBx48fR1xcHFQqlcsxNoMBYrVlSNuaIJdDUqMNRA2p7z1M1BJ1/d7s7Op7XvX9PFlMVlit7RNapVIBMoW0Xa5FXQtjArWVrhgTmhsPzCYjbBZLu7VTIpNBrlC22/Woa2A8oLbSlHjAOaZagUSlAvhDTEREAGQKKYMrERHZk0RMFBERNYhD+YiIiIiIiIiIyCOYmCIiIiIiIiIiIo9gYoqIiIiIiIiIiDyCiSkiIiIiIiIiIvIIJqaIiIiIiIiIiMgjmJgiIiIiIiIiIiKPYGKKiIiIiIiIiIg8gokpIiIiIiIiIiLyCCamujhBEOr9mDt3bru1ZdiwYc7rqlQqJCUl4d1333U+vmTJEvj7+7dbe4g6i5ycUqxZcww5OaWebgp1YowHRF0DYwK1BsYEos6vK8UDmacbQG0rLy/P+f9vv/0Wc+bMwaFDh5zbvL29nf8XRRFWqxUyWdu9LWbMmIEXXngBer0en3/+OR588EEEBARgypQpbXZNos4uM7MI27adAQDExvp5uDXUWTEeEHUNjAnUGhgTiDq/rhQPWDHVxYWHhzs//Pz8IAiC8+uDBw/Cx8cHv/zyCwYNGgSlUok///wT06dPx/XXX+9ynkcffRTDhg1zfm2z2bBgwQLExcXBy8sL/fr1w/fff99ge9RqNcLDw9GjRw/MnTsXCQkJWLVqVSs/a6KuJTk5CKmpkUhODvJ0U6gTYzwg6hoYE6g1MCYQdX5dKR50moqpl156CT///DMyMjKgUChQUlJSax9BEGptW7p0KW655ZY2bZtOp6vzMalUCpVK1ah9JRIJvLy8GtxXo9E0o5V1e/rpp/Hqq6+iR48eCAgIaNQxCxYswJdffon3338fCQkJ2LJlC2677TaEhIRg6NChjb62l5cXTCZTc5tOdEGIjfXr9HdBWhtjgh3jAdGFhzHBFePBeYwJRBeWrhQPOk1iymQy4aabbkJqaio++eSTOvdbvHgxxowZ4/y6PcYjVy91rWncuHH4+eefnV+HhoZCr9e73Xfo0KHYtGmT8+vu3bujsLCw1n6iKDa/sW688MILGDVqVKP3NxqNePnll7F+/XqkpqYCAHr06IE///wTH3zwQaOCjtVqxdKlS7F3717861//anbbiejCxJhgx3hARBc6xoPzGBOIqLPqNImpefPmAbBPflcff39/hIeHN/q8RqMRRqPR+XVZWVmz2teZpaSkNGn/7Oxs6PX6WoHKZDJhwIAB9R777rvv4uOPP4bJZIJUKsVjjz2G+++/v8ltJqILW1vEBMYDxgMi6nwYD9oOYwIRtZdOk5hqrAcffBD33HMPevTogfvuuw933nmn2/JdhwULFjgDWnNVVFTU+ZhUKnX5WqvV1rmvROI65deJEyda1K7Gqln2K5FIat1xMZvNzv87nu/PP/+MqKgol/2USmW915o6dSr+/e9/w8vLCxEREbWeMxFRa2pKTGiNeAB07pjAeEBEXRXjQdMxJhBRe+lSiakXXngBw4cPh1qtxm+//YYHHngAFRUVePjhh+s8Zvbs2Xj88cedX5eVlSE6OrpJ123KeO622rc1hYSEYP/+/S7bMjIyIJfLAQBJSUlQKpXIzc1t0lhxAPDz80N8fHyrtZWIqC5NjQmtEQ+ArhUTGA+IqCtgPGgdjAlE1FY8mph6+umn8corr9S7T1ZWFnr37t2o8z333HPO/w8YMAA6nQ6LFi2qNzGlVCobzOBfaIYPH45Fixbh888/R2pqKr788kvs37/fWYLr4+ODmTNn4rHHHoPNZsPll1+O0tJSbN26Fb6+vpg2bZqHnwERdUaejgmMB7UxHhCRJzAedEyMCUTUVjyamHriiScwffr0evfp0aNHs89/6aWXYv78+TAajQwuTTB69Gg899xzeOqpp2AwGHDXXXfhjjvuwL59+5z7zJ8/HyEhIViwYAGOHTsGf39/DBw4EM8884wHW050Ydu69RTWr8/ByJGxGDKkm6eb02SMCR0P4wFR59WZYwLjQcfEmEDUOXWGeCCIrb18QxtbsmQJHn30UbdLwdb00ksv4bXXXsO5c+caff6ysjL4+fmhtLQUvr6+zu0GgwHHjx9HXFycy9KuRJ0F38Nd37x5W7F+fS5GjozB888Pabfr1vV7sz20ZUyo73nx54k6O76Hu74LLSYwHhA1D9/DXV9niAedZo6p3NxcnDt3Drm5ubBarcjIyAAAxMfHw9vbGz/99BPOnj2Lyy67DCqVCuvWrcPLL7+MmTNnerbhRETtZOTIWJfPXRljAhFR/S6UmMB4QERUv84QDzpNYmrOnDn47LPPnF87xjJv3LgRw4YNg1wuxzvvvIPHHnsMoigiPj4er7/+OmbMmOGpJhMRtashQ7p12PLc1saYQERUvwslJjAeEBHVrzPEg043lK+tcSgfdVV8D1Nb8eRQvrbEoRvUlfE9TG2lK8YExgPqyvgeprbSlHggaac2ERERERERERERuWBiqolYYEadFd+7RK2PP1fUWfG9S9S6+DNFnRXfu9QRMDHVSHK5HACg1+s93BKi5nG8dx3vZSJqPsYE6uwYE4haB+MBdXaMB9QRdJrJzz1NKpXC398fWq0WAKBWqyEIgodbRdQwURSh1+uh1Wrh7+8PqVTq6SYRdXqMCdRZMSYQtS7GA+qsGA+oI2FiqgnCw8MBwBl4iDoTf39/53uYiFqOMYE6M8YEotbDeECdGeMBdQRMTDWBIAiIiIhAaGgozGazp5tD1GhyuZx3QYhaGWMCdVaMCUSti/GAOivGA+oomJhqBqlUyh9gIiICwJhARER2jAdERM3Dyc+JiIiIiIiIiMgjmJgiIiIiIiIiIiKPYGKKiIiIiIiIiIg8gnNM1SCKIgCgrKzMwy0hIuocHL8vHb8/uwrGAyKipuuKMYHxgIio6ZoSD5iYqqG8vBwAEB0d7eGWEBF1LuXl5fDz8/N0M1oN4wERUfN1pZjAeEBE1HyNiQeC2JVuZ7QCm82GM2fOwMfHB4IgeLo5REQdniiKKC8vR2RkJCSSrjNCnPGAiKjpumJMYDwgImq6psQDJqaIiIiIiIiIiMgjusZtDCIiIiIiIiIi6nSYmCIiIiIiIiIiIo9gYoqIiIiIiIiIiDyCiSkiIiIiIiIiIvIIJqaIiIiIiIiIiMgjmJgiIiIiIiIiIiKPYGKKiIiIiIiIiIg8gokpIiIiIiIiIiLyCCamiIiIiIiIiIjII5iYIiIiIiIiIiIij2BiioiIiIiIiIiIPIKJKSIiIiIiIiIi8ggmpoiIiIiIiIiIyCOYmCIiIiIiIiIiIo9gYoqIiIiIiIiIiDyCiSkiIiIiIiIiIvIIJqaIiIiIiIiIiMgjmJgiIiIiIiIiIiKPYGKKiIiIiIiIiIg8gokpIiIiIiIiIiLyCCamiIiIiIiIiIjII5iYIiIiIiIiIiIij2BiioiIiIiIiIiIPIKJKSIiIiIiIiIi8ggmpoiIiIiIiIiIyCOYmCIiIiIiIiIiIo9gYoqIiIiIiIiIiDyCiSkiIiIiIiIiIvIIJqaIiIiIiIiIiMgjmJgiIiIiIiIiIiKPYGKKiIiIiIiIiIg8gokpIiIiIiIiIiLyCCamiIiIiIiIiIjII5iYIiIiIiIiIiIij2BiioiIiIiIiIiIPIKJKSIiIiIiIiIi8ggmpoiIiIiIiIiIyCOYmCIiIiIiIiIiIo9gYoqIiIiIiIiIiDyCiSkiIiIiIiIiIvIIJqaIiIiIiIiIiMgjmJgiIiIiIiIiIiKPYGKKiIiIiIiIiIg8gokpIiIiIiIiIiLyCCamiIiIiIiIiIjII5iYIiIiIiIiIiIij2BiioiIiIiIiIiIPIKJKSIiIiIiIiIi8ggmpoiIiIiIiIiIyCOYmCIiIiIiIiIiIo9gYoqIiIiIiIiIiDyCiSkiIiIiIiIiIvIIJqaIiIiIiIiIiMgjmJgiIiIiIiIiIiKPYGKKiIiIiIiIiIg8gokpIiIiIiIiIiLyCCamiNrJjh07kJaWBo1GA0EQkJGR4ekmtZru3btj+vTpnm4GEVGnwZhAREQA4wERwMQUdUKCIDTqY9OmTZ5uqpPZbMZNN92Ec+fO4b///S+++OILxMbGerpZTZKeno65c+eipKTE000hInJiTPAMxgQi6mgYDzyD8YBag8zTDSBqqi+++MLl688//xzr1q2rtT0xMbE9m1Wvo0ePIicnBx999BHuueceTzenWdLT0zFv3jxMnz4d/v7+Lo8dOnQIEgnz3ETU/hgTPIMxgYg6GsYDz2A8oNbAxBR1OrfddpvL13/99RfWrVtXa3tNer0earW6LZtWJ61WCwC1flm3hE6ng0ajabXztYRSqfR0E4joAsWYYMeYQEQXOsYDO8YD6oyYvqQuadiwYbj44ouxa9cuXHnllVCr1XjmmWcAAD/++CPGjx+PyMhIKJVK9OzZE/Pnz4fVanV7jgMHDuCqq66CWq1GVFQUFi5cWOt6//vf/5CcnAy1Wo2AgACkpKTg66+/BgBMnz4dQ4cOBQDcdNNNEAQBw4YNcx77+++/44orroBGo4G/vz8mTJiArKwsl/PPnTsXgiDgwIEDuPXWWxEQEIDLL78cgH3s9jXXXINNmzYhJSUFXl5e6NOnj7NMefny5ejTpw9UKhUGDRqEf/75x+Xce/fuxfTp09GjRw+oVCqEh4fjrrvuQlFRkcv1n3zySQBAXFycsxT6xIkTzjbUHD9+7Ngx3HTTTQgMDIRarcZll12Gn3/+2WWfTZs2QRAELFu2DC+99BK6desGlUqFESNGIDs72+33loioqRgTGBOIiADGA8YD6qhYMUVdVlFREcaOHYtbbrkFt912G8LCwgAAS5Ysgbe3Nx5//HF4e3vj999/x5w5c1BWVoZFixa5nKO4uBhjxozBpEmTMHnyZHz//feYNWsW+vTpg7FjxwIAPvroIzz88MO48cYb8cgjj8BgMGDv3r3Yvn07br31Vtx7772IiorCyy+/jIcffhiXXHKJsy3r16/H2LFj0aNHD8ydOxeVlZX43//+hyFDhmD37t3o3r27S3tuuukmJCQk4OWXX4Yois7t2dnZzmvddtttePXVV3Httdfi/fffxzPPPIMHHngAALBgwQJMnjzZpax23bp1OHbsGO68806Eh4cjMzMTH374ITIzM/HXX39BEARMmjQJhw8fxtKlS/Hf//4XwcHBAICQkBC3r/3Zs2eRlpYGvV6Phx9+GEFBQfjss89w3XXX4fvvv8fEiRNd9v/Pf/4DiUSCmTNnorS0FAsXLsTUqVOxffv25nzriYhqYUxgTCAiAhgPGA+oQxKJOrkHH3xQrPlWHjp0qAhAfP/992vtr9fra2279957RbVaLRoMhlrn+Pzzz53bjEajGB4eLt5www3ObRMmTBCTk5PrbePGjRtFAOJ3333nsr1///5iaGioWFRU5Ny2Z88eUSKRiHfccYdz2/PPPy8CEKdMmVLr3LGxsSIAMT093blt7dq1IgDRy8tLzMnJcW7/4IMPRADixo0b6309li5dKgIQt2zZ4ty2aNEiEYB4/Phxt22YNm2a8+tHH31UBCD+8ccfzm3l5eViXFyc2L17d9Fqtbq8LomJiaLRaHTu++abb4oAxH379tW6FhFRfRgTGBOIiESR8YDxgDoTDuWjLkupVOLOO++std3Ly8v5//LychQWFuKKK66AXq/HwYMHXfb19vZ2GZeuUCgwePBgHDt2zLnN398fp06dwo4dO5rUvry8PGRkZGD69OkIDAx0bu/bty9GjRqFNWvW1Drmvvvuc3uupKQkpKamOr++9NJLAQDDhw9HTExMre3V21/99TAYDCgsLMRll10GANi9e3eTnpPDmjVrMHjwYGcpMWB/Lf/1r3/hxIkTOHDggMv+d955JxQKhfPrK664olY7iYhagjGBMYGICGA8ABgPqONhYoq6rKioKJdfZA6ZmZmYOHEi/Pz84Ovri5CQEGdgKS0tddm3W7duEATBZVtAQACKi4udX8+aNQve3t4YPHgwEhIS8OCDD2Lr1q0Nti8nJwcA0KtXr1qPJSYmorCwEDqdzmV7XFyc23NVDywA4OfnBwCIjo52u716+8+dO4dHHnkEYWFh8PLyQkhIiPM6NV+PxsrJyanzeTker6/9AQEBtdpJRNQSjAmMCUREAOMBwHhAHQ/nmKIuq3qW36GkpARDhw6Fr68vXnjhBfTs2RMqlQq7d+/GrFmzYLPZXPaXSqVuzy1WG7udmJiIQ4cOYfXq1fj111/xww8/4N1338WcOXMwb968Nn9O9bWzMe2fPHky0tPT8eSTT6J///7w9vaGzWbDmDFjar0ebaUx7SQiagnGBMYEIiKA8aC+7YwH5ClMTNEFZdOmTSgqKsLy5ctx5ZVXOrcfP368RefVaDS4+eabcfPNN8NkMmHSpEl46aWXMHv2bKhUKrfHxMbGAgAOHTpU67GDBw8iODi4zZd6LS4uxoYNGzBv3jzMmTPHuf3IkSO19q15V6g+sbGxdT4vx+NERJ7GmOCKMYGILlSMB64YD6i9cSgfXVAcWffqWXaTyYR333232eesvmQqYB9jnpSUBFEUYTab6zwuIiIC/fv3x2effYaSkhLn9v379+O3337DuHHjmt2mxnL3egDAG2+8UWtfRwCs3ta6jBs3Dn///Te2bdvm3KbT6fDhhx+ie/fuSEpKan6jiYhaCWOCK8YEIrpQMR64Yjyg9saKKbqgpKWlISAgANOmTcPDDz8MQRDwxRdftKgc9Oqrr0Z4eDiGDBmCsLAwZGVl4e2338b48ePh4+NT77GLFi3C2LFjkZqairvvvtu5FKyfnx/mzp3b7DY1lq+vL6688kosXLgQZrMZUVFR+O2339zeHRo0aBAA4N///jduueUWyOVyXHvttW7v2Dz99NNYunQpxo4di4cffhiBgYH47LPPcPz4cfzwww/OZWiJiDyJMcEVYwIRXagYD1wxHlB743eeLihBQUFYvXo1IiIi8Oyzz+LVV1/FqFGjsHDhwmaf895770VFRQVef/11PPjgg1i5ciUefvhhfPnllw0eO3LkSPz6668ICgrCnDlz8Oqrr+Kyyy7D1q1b65zEsLV9/fXXGD16NN555x3Mnj0bcrkcv/zyS639LrnkEsyfPx979uzB9OnTMWXKFBQUFLg9Z1hYGNLT0zFq1Cj873//w+zZs6FQKPDTTz9h4sSJbf2UiIgahTGhNsYEIroQMR7UxnhA7UkQOXMYERERERERERF5ACumiIiIiIiIiIjII5iYIiIiIiIiIiIij2BiioiIiIiIiIiIPIKJKSIiIiIiIiIi8ggmpoiIiIiIiIiIyCOYmCIiIiIiIiIiIo+QeboBHY3NZsOZM2fg4+MDQRA83Rwiog5PFEWUl5cjMjISEknXud/BeEBE1HRdMSYwHhARNV1T4gETUzWcOXMG0dHRnm4GEVGnc/LkSXTr1s3TzWg1jAdERM3XlWIC4wERUfM1Jh4wMVWDj48PAPuL5+vr6+HWEBF1fGVlZYiOjnb+/mwLW7ZswaJFi7Br1y7k5eVhxYoVuP766+s9ZtOmTXj88ceRmZmJ6OhoPPvss5g+fXqjr8l4QETUdO0RE9ob4wERUdM1JR4wMVWDozzX19eXgYeIqAnacniDTqdDv379cNddd2HSpEkN7n/8+HGMHz8e9913H7766its2LAB99xzDyIiIjB69OhGXZPxgIio+brSkDfGAyKi5mtMPGBiqhWVr18P9eDBkDJgEVEno9+9G7KgIChiYz3dFLfGjh2LsWPHNnr/999/H3FxcXjttdcAAImJifjzzz/x3//+t87ElNFohNFodH5dVlbW7PYW5+tQnK+HIBEgkQgQJKj6bP9appAiqJs3JJLW6bhZLTacO6ODQWeG2Wht9HGCRIAAAIL9jwah6jMEIDBSA42fEqUFepRqKyGKgFQugUIlhcZPCY2/stb5RFEERPt5a9KVGHEuXweryQYI9tfDL1QNvxCvFjxzV2WFldCVmhAUqYHCq/F/4lgtNpRqK2HUm2Gx2JyvhVwpRXA3b0ik7TdPjiiKKNVWorzYAIvJBogiRNF1H4lUgFQugVQqgXeAEr7BTX8NRVFEcb4eumIjbDYRGn8lgrt519qvOF+HUm0lbDbR+R4WJPbvsUQQ4BfqBe8AVa3jrFYb8rNLYTJYIFa9J4Tq77PqX0sACAIEQYBMLmnVnw0Hk8GCUm0lTAYLrBYbRJv9Pe4TaG+7ocIMbW4ZrGYbRNH+/pRIBUhkEvvrLZMgKEoDmVza/DZUWlBebIDVbIN/qBoKLxmsZhvOHC2BxWi1v06O16bq9XW81ud/d0gQFOnt9mesqQpPlaP8nBGiTXT7eFy/4C6VXKLzrBYLCnNPoLKiHGE94uHl3XWq24ioc2JiqpVYy8tx5pl/Q5DJEPr4Y/CbNAlCF5nwkYi6LnN+PrQLF6FszRoETp+OsKdnebpJrWLbtm0YOXKky7bRo0fj0UcfrfOYBQsWYN68ea1y/aO7tdi+6ni9+4TE+OCGWYMgbWHSY//mU9i24ihMhsYnpBrDy0eOMff2wY+v/wObm45rWJwvRs+4+HzHXmfGyv/+g4piAyY+MRBBkeeTHMcyCvDrB/tqJVgAYMiN8eg/MqbF7c3epcVvH++HKNoTSuPu74NuvQPrPUa0ifj75+PIWH8SljoSepEJ/pjw2IBWT5S4U6LVY+1H+1F4sqJJx8X1C8aou5IhVzYuaaIvM2HNe3tx9rhr8nXknUnodWm48+tj/xTglw/3Ae7zFgDsycrJsy9BYKTGZfumLw7i4F/5jX8S1QREaHD9YwOg9lU4t4k2Edm7tSgvMiDyIn+Ex/k16lwWkxV/LDuCg3/lwWZxfSJSmQQ3Pp0CmUKCZS/vgLmBn6GeA0Iw5t4+TX4+RacrsOWbwziTXeJ8Lb18Fbjl2cFY92kmTh0sbtL5EodEYPjtiU1uR3WH/srD+iVZ9e7zwLtXAcxLdSmiKCJz8wZs/eZzVBSfAwDIFEoMu+Me9BvV+Js/REStjYmpViL18UGPn36C9rVXkffscyj+5luEP/tvePXv7+mmERHVIppMOPf55yh49z1I1GpELFgAvwnXebpZrSY/Px9hYWEu28LCwlBWVobKykp4edWuMJk9ezYef/xx59eOcfHN0X9kDJKvjILNKkK02Vd0Em32zrXNJqLkrB6/vL8P2Tu1LomApsrepcXmpYeRdHkkEtMioPZVQKaQwqXIQaj+3/NfiLC3TazKFjn+L4oijDoLlr28A3s3nIRUIcHUZwdDIpXAarHCVGlFiVaP9OXZ2LDkAK5/fCAAIPOP0yg5q4dUKiBzyxlcectFzmvt23QKYXG+GDE9yZ48EQGbTcSuX05g+4/HkHxFVKOTKnX5e/VxRCcF4bLre2Drd0ew4bMs3PZiar2Jv4N/5WPnzycw4OoYdO8TBJW3AjK5BKJofy0Kcsvx28eZOH2oGNGJ9Se5Wkq0ifj1g32wmG0Y/2BfBISrq76X9u+ZIMD5vbRZRFgtNlgtNpw9UYbNXx/C9h+P4fLJCY261u+fZ6G8yIDxD/RFYKQGEqmA3784iP2bT7m8H/dtPoWIHn4YPeNiCBLB/v6oeg9DBCwmG1a8vhuHtucjdWJP53EGnRmHtudj8LVxSL4iCoLk/PvL8b13/N9+zvOf9WVG/PrRfuz4+TiGTul1vs1fHsTB9DzIlFJYVlhx6XVxSBkX1+BzTV9xFIe25+PS63ogMsEfKrUcUrkEok3EDwt34dB2e/JMKpPgprkpUKrlECSAzSpW+7Ahe5cWf/90HAadGSqNvFGvMwBUFBux4vXd0PgpcdVtvREQroFos2HF6//g6G4tTh0sRtqkePRODQeEaj+HVa+z4/eGKNq/PrLjLHavzUXapPhGt0MURXvSTQAUKvuf/of+PovIBH/797bqvSXUzEIxKdWlmE1G/Pb+Wzi4dTN6DxmK/qOvgZePL3av+RHrP34HgiCg78gxnm4mEV2gmJhqRfKwUEQtXIiAW25B/osv4sQtU+B/040IffJJDu8jog5D99dfyJ/3Aky5uQiYeitC/u//IO1Ck9Q2l1KphFJZe3hac8gUUsgUdSdaAiM0CInxwalDxc1OTNlsItKXZ6N732AMm9qrdYfcBAFKtQwlBZUI7uZda6hYSIwPJBIBv364H+fydAiM0CBnfxFikgKhUMmgzTlfiWM123AmuwRpE+PhH6p2OU/f4dHI/OMM8o+VtijxU1lhQnGeDoPGxCIk2geXT07Aty/uwOmDxYhJDqrzuP1bTiO2TxDSJsW7fdwvxAtbvjmMvOySNk9MnTpUjKLTOkx8YiAiE/wbfVxAuAalBZXIWJeLlPHdG0xWFJ6qQM7+Ilx9dzK69w12bo9JCsT2H485h+yJogjtiTIMGB3rdtimQ3gPPxSeLHfZVnS6AqII9BgQ4lL11BiBkRokXx6JrPQ8XHnLRRAEAdqcMhxMz8NVt/VGYloEdvx8HNtXHUdET39E9Qqo81wVxUbs23QKqRN7YuDVtYcph8X5ouh0BSwmK6J7ByAgXOPmLHYxyUH4+6fjKM7X48TeAoTE+CJ+UGiDz2f3rycgCAImPjHQ5XsTEKa2V1ABiIj3g5dP414nyaUCdv2Sg4KT5YhuoCLQZrVhz4ZT2Lf5FMqLDPbrRmhw+U3xKCuoRFz/pn9/qHMyVFTghwVzUJibg2senYVeqVc4Hxt5zwOAIOD3xe8jOrkPAiKiPNhSIrpQcaxZG1APHIi4775D+PNzULbmFxwbfw3K16/3dLOI6AJnrahA3pznkTv9TkiDAhG3fDnCn3mmSyalwsPDcfbsWZdtZ8+eha+vr9tqKU8I6uaNc6ebNmSrujOHi1FeZMCgMbFtMg+M2k8JU6UFSrX7REfMxUGQSAScOVxsry7KKUdkgj/8Qr1QVtUJBoCKEiNsFrHWUC8A8A/1gkQqoOSsvkVtLdVWAgCCorydn7185Dh9pKTOY8xGK7Q5ZejRP6TOfQRBgG+wFypKjHXu01qO/lMAvxAvRMQ3bohadRdfEQWLyYbczKIG9z2WUQCFlww9Bro+78BIDSxmGyrO2b93ZoMVJoMVfg3MX+UbpEJ5sevr4zhHQ8fWpVuvQFSWm53viyM7zkLtq0DvtAgIEgGXXBOH4GhvZGw4We95snedhUQqIPnySLePa/yU0JeZUH7OAN8G5jpzJHCyd9orltZ+tB/HMgrqPcZmteHILi16p0bUShh6ByhRUfVz4hNUe46uuviFVP3M5Nf/M2OziVj7cSa2rTyKbr0CMOruJIy8MwlKLxnWL8lCRbEB3vUkHKnrMOp1+OHl51CSn4db5r3ikpRyGHr7XVD7B2DLV0vav4FERGBiqs0IUikCpkxBj59XQ5WUhFMP/R9OPfoYLIWFnm4aEV2AKv74E8euvQ5lq1cj/Pk5iP38c6h6XdTwgZ1UamoqNmzY4LJt3bp1SE1N9VCLavMNUqH8nKHhHetwYm8RvAOVCItrm4pcpZcUFpMVyjomEZdXTeCuzS2HrsQES9WEzl4+ChgqzM4JlQ0VZgBwWxEikUrgG+zlTCw1l77MBOB88kAQBET09K81h1J1hacqANFe/VUftY8cleXmFrWvMfKPlSIywb9ZSUaNvxJB3byRm3muwX1zM+2VbTWHOGr87EkKx2tp0Nufs1Jdf3G9l68ClVXHOOjLzJCr6q8arE9glD2JWZxnT76cOVKCbokBznm+BEFA78sikHugCKZKS53nOX24BJHx/nUmVx1tN+gsDVaaeXnbHy8tqIRvsApx/YKx6auD9S42UHRaB0OFGT36Bdd6zMtHgcoKMyQSoUlVS5KqCe8riutPlu7ZcBLHMgow9t6LMfyORFx0STh6XRqOS8Z3R2WZCVaLCLmqZcNnqeMzVeqxfMFcFOefwY3/no+wHu6rQ+UKJdJuvBXZO7ah6HT9CV+i1lBxrggZv63BiYxdzikF6MLGxFQbk4eHo9v77yHy1Veh374dx66bgPJNmzzdLCK6QFgrdDjz73/j5IwZUMbFocdPqxAwZUqnW5yhoqICGRkZyMjIAAAcP34cGRkZyM3NBWCfH+qOO+5w7n/ffffh2LFjeOqpp3Dw4EG8++67WLZsGR577DFPNN8tlUYOo87S7D/IzmSXICohoM1WzZLKpbBaRCjq6bz6BnuhrNAAXVVFkXegEl7ecog2EUa9PWFQWWFPWjg69jV5ByhRUdL8BB0AVJabIAiAqto1AsLVKNXWXVVSnK8DAATWM3wLqEoglJvq3acpbDYRRr1rostksODc6QqE92h6tZRDZII/zp6ofyVJq9WGwpPur6P2sydH9KX25+r4/tWV1HEe56uAQWeG1WJzbqssN0HdyKFpdZ1ToZKiRKuHKIo4l69HcDfXBGLsxUGwWUTkHyt1ew7HUMSw7nUnbtW+CujLTbAYrQ0mpmQKKeRKKSpKjPAJVOHymxJgqDDj8N91T/BecLIcggAER9dOfqo0cpiMFshV0ib/DKt9FdCX1Z2YMlVasHPNCfQZ2g1x/Vwr46oPy5XJO1ccoKYxGwxY8coLKDyZgxufqTsp5dD78mHQ+Afgn19WtVMLqTMTRREZv63BDy/PwZG/05t07Nlj2Vgy8wFs+PQ9/LDgeWz45D0mp4iJqfYgCAL8rhmPHj+tguriZJy6737kvzAfNkPL/hAnIqpP5f5MHL9hEsp/+RXh819A9CcfQx7VOeeO2LlzJwYMGIABAwYAAB5//HEMGDAAc+bMAQDk5eU5k1QAEBcXh59//hnr1q1Dv3798Nprr+Hjjz/G6NGjPdJ+dxReMthsIixmW8M712AyWFB4srxZw74aS66QwGaxQVFHxRQA+AarUF5UWS35pICXj72D79jmqJhS1ZGYUnnLYdDVXfXSGPoyE1TecpeV8/zD1KgoNtZZ0aIvNUGlsU+EXZ/WTEwZKsxY9tIOfPLEHziy4/xQ01JtJUTRPryzuUJjfFByVl9vBVFJvh5Wiw0hMbWvo1LbXz9dqT3hcT4x1UDFVFUCyqA7n2yrLDc53wfNIQgCNP72YXa6EiMsRisCwlznJ/ML9YLKW15nYkpfaoK+zITQ2LoTU0q1zLlKXmMmEpcrpTBUmOETqIJvsBeiegUge5e2zv0LcsvhH65xO7G/XCmF1Sw2Kzmk9lVCX1Z3FV/2Li3MBgsGjq49r1b1n0OZnBVT7eXY7h0wm9p+SLCD2WTEykXzcfb4UUyaPQ/h8Q1XSMvkcvQZfjUObt0Ci6n1kvHUNe37/Tds+ORdlBcVYtXrC5CzL6NRx9msVvzyzuvwD4vAAx9/jVH/egh71q3B3vW/tm2DqcNjYqodyYKDEf3BBwh79lmU/PADjt9wIwxZ9S/VS0TUVKLNhqJPF+PElCmQevsgbvkPCLjppjarrGkPw4YNc64YV/1jyZIlAIAlS5ZgU41q1GHDhuGff/6B0WjE0aNHMX369HZvd30cCZ/6Egl1KTpln1w6LK7tElMyhRRWa/3DfXyDVKg4Z3QmblQaubPCxlj1vEwGC6QyCaQy939yqNRyGPVmGPVmfD33L2z++lCdd053/Hwce36vPcykssxUaziUf1Uio7TAfdWUvtTorBKqj8pbjsqK1hnKt+3Ho6goNiAszhfpy7Ptq9vBPjwMsM8f1FzB0fZkU9EZXZ37FFRNUl6z+ggABIkAlY/c+b10VHUpNfUnppRe9veH2XA+AWg2Wp2rvzWX2lcBfanROc+Uf43ElCAICIrS4Fye++9vSVW1XECE2u3jAFyGGiobkZiSyiUwGy3O903PgaE4fbjEJSnn0oazegSGu7++XCWF1WJr1nBHr2rfJ3eO7tYi8iJ/eAfUnkOqepJMqmA3oD3oy0qx+s2FWL7geZgqWzafXmNYzGaseu1lnDlyEJNmPY+oXomNPrb35cNg1Otw7J8dbdhC6uysFgu2fvsFkq4cjmmL3ka3xGSs/+gdWMwNx8r9m9ah6FQuRs14CF7ePug7Ygwuvupq/PH1EuhKituh9dRRMSK1M0EQEHjbVMR9/x0EmQwnbr4Fxd995+lmEVEXYSkqwsl/3QvtwoUIvON2dF/6NRTdu3u6WeSGo0PfnMRU8Vk9BAHwD2u7idxlcgkginUmlAD7BOk2m4jycwbIVVJI5RJnIstcaU9UWM0ipLK6k6IqbzkMFWYc3JaP4nw99m85jVNZtf84LS3Q4++fjuPPZUdgMblWQenLTbXmsPIOsE8oXddcPPoyEzSNSEwpVFKYjdYWDzPQlRiRtTUPg8Z2R+qkeFQUG1GQY08UlRVWQuEla7A6qT5+VSse1jd88dxpHXyDVXVWwSm9ZDBVfd+cFVP1VMwBgFxZlWA1nH8fm03NS7hUp66amLyi2jDRmgLCNHVOnF9W2PDE4tWrlRReDbdXJpfAZhWdz61b7wCINrHOIZQVxUZ413F9qUwCsdq5mkKpljkTvzVZTFacOlRc56T+UpkEEqn955FD+dqH2tcPN8yeB+3xY1i56EVYLS2rEK2PxWzGT6+/jFOZ+zDxqTnolnRxk44PiopGWI94ZP2xqU3aR13D0Z1/QV9agpRrJ0GQSDDirvtRos3HgS0b6j3OZKhE+rKvkHj5MJehpVfedicEQcD2lcvauunUgTEieYgyIQHdl30Lv+uvR/5zc3Dm3//m0D4iapHKPXtwfNINMGRlIfrjjxH25JMQFFwKvKNyJAfq6mDWpzhfD58gVZsOxZHIJRBF+2TLdXHMG1VRbHT+X1GVqHAMobNabfUOl1OqZTDozCjILUd4D18ER3u7rYrK2X9+Yu9zea5VQXo3FVNqXzkE4fycSTXpSk1Q+zW8KplcJQVEwGJq+pDL6g5tz4dEKiBpSATC43whU0hwJrsEgD0x5RusalFVo1whhXeAst4VDssKK+utylJ4yWCsSjAZdfb5j+r7/tuPqZ1gtZiskLWwGsc+j5J9OJ7CS+b2ve4fprbPQ2WrnTQsK6yExk9R789I9aRQzcng69q/emLKL8QLXj6uwwkdCUxRtCdsfQLqTkzZRLFZr5PCSwaT3v3vjYLcctisIiLi/et9HgCH8rWnqN5JmPjUHJw+eAAbP/uoTa5htZix+o1XkLMvAxOefBYxF/dr1nkSLh2CE3t3N6r6hS5Me9b/isiLEhES0x0AEBwdi4sGp+Hvld/Vm3jd+dMKGHQVuPyWO1y2e3n7YOD4Cdi7/ldUnGt4dVnqmlpWZ00tIlEqEfHCPHj174/8efNgyMpCtzffhCI6us2vbTMaYTpxAsbsbJhPnYb1XBEsxcWAxQpABAQJpH5+kAYFQhYSAmXPnlDGx0Pq13bDRlqLaLXCUlQEW2kpRLMZotUKiVoNibcPpAH+kHSijrrNZIJFWwCxUg+bwQhBJoVEo4FEo4E0IKBTTWBtrdDBWlgAm9EE0WSEIJdD4u0NqY8PJL6+HX6YmWi1wnz6NIxHj8J0/IT9Z6akBLYKHSDYqyEl3j72n5mgYChiY6Ds2ROyiIh2eW7Fy5bh7PwXoUpORtSbb0IeFtrm16SWcQx1albFVL4OAQ1M2t1Skqr3raO6wh3HsL3KcpNzjh5HEspirkpMWWz1Vl0pvGSwmGyoKDFA469E1EUB+HPZERgqzC7z4Zw9XgrfYBXKCg2oKDYitNr0OQadBSExrkOxJFIJvHwVzoqbmgw6M8K9G17RUCazd96tZpvbuYIa6+C2PPToH+J8zQIjvVF0qgJAVWVNHQmMpvALVaOknhUOSwsr650MXOElc74fjXpzoyq4zldMWWGqtCez7ImpFlZMVSWm3A3TdAgIV8NqtqH8nMFlUm/Akeyrv6KwesVQfe9zB6nMXjElr0om2YcTeuNc1fBJs8mKr+f+hfhBYRh4dQysZht8AutITMklgIhmJaaUVd8nURRrxZf842WQKSQIiqz794PUUTHFoXztqlvSxbhq2gxs+PQ99BiQgh4DL2m1c1stFvz85iKcyNiJCTOfRfd+A5t9rh4DL8GfSz/DqQP7WnQe6pqK888gd18GxjzgupjMpZNuxhezHsbBrZuRPHREreN0JcXY+dNyDBhzLXxDav+NOnDsddi1eiV2rfkRQ2+7q83aTx0XE1MdgP+kiVAlJeLUw4/g+A03Iur11+F9+ZBWvYZNr4du2zbo/94B/c6d9rmtbPa7v/YEVJA90SGv+sPeZoPxyBFYis/BWnTOua88NgbqSy6BZvBgaK64ArKAgFZtZ1PZdDroduyAYd9+GDIzYTx8GGatFqgrWy+RQB4RAUVsLFTJyfAaNBDqAQM6RMLNfFYL/Y4dMOzfD8P+/TDl5MBSWAjUMXxEUCohj+4GZVwcvPr1g9eAAVBdfDEkyoYrANqSKIowHjmCyt3/wJC5H5WZmTCfOg1bWd2rRUl8fKCIiYEyPh5eA/rDa8AAKBMSPJp4E0URhgMHoNuaDv2OHajcvRs2nb3zIajVkFX9zEi97X/8i1YbbDm5sJw7B2thIcSqO40SPz+oBw2COiUFmrRUKHv1atVElc1oxNkXX0TJd9/Df8otCJ89m1VSncT5OaZqT86tKzFiw+dZKCusRNqk+FrDcorz9YhzswR9axKqfvzq67A7hu3ZExL25yNzJqbsccNmsUFST2LKkezRl5oQGOGNngNDseWbwzixvxC9L4tw7ld4qgLRiYHI2paHimIDygorsePn40i7IR4WoxVyN4kQjZ/SOZl3TY1NnkiqhiFarc2vmCrR6lGcr0fqxJ7ObcHdvHH2uP33olFvgX9oy4dl+od6If+4+9+1oiiirKASCSlhdR6vUMmcc0sZ9ZYGV+SzH2N/DSuKjfj0qT/Rb3g0zCab2+9HUyjV9uSLrsxY50TqjsRTeZG7xJShwTm7qidmGqoMAwCp3JHQOf/cAiI0OJVlr+Y7e7wMFeeMyFiXi96XhQNAnfOYOZK19SVt66JQVy2cYKqdLNXmlCEkxqfe5yNULRLQ0MT/1Pr6XT0Ox3b/jbXvv4m73vgASnXLbzDYrFas+d+rOLrrb1z3xDOIG5DSovMFR8fCJygEx//ZycQU1bJvw1qoNN64KPVyl+2h3XugZ8pl2L7iWyRePgwSqevvpvRlX0Eqk+HS6ye7Pa9SrUGfEaOx7/e1SLvxVshVLb9ZQ50LE1MdhKp3b8R9/x1OP/kkTt57L8Jmz0bgbVNbdE6bXo/yjRtRvvY3VGzZAtFggDwyEupLLoH/5MlQJiRA2bNHg0kZm8kE0/ETVcmG3dDv+Bul3/8AyGTQXHYZfMeOge+YMZBo2vbuvYOluBhlP69B+fr10O/aBZjNkAYEQJWcDN/x4yCPjIQsLBxSf38ICgUEqQQ2vR7W8nJYCgpgzsmB8fgJlKxcgaKPPgIEAV4DB8Jn1Ej4Xn015JGR7fI8AMB47BhKf/oJFZs3w3jAPhG+vFs3qPpcDP/BgyGPsj8XiUYNiVIJ0WqFTaeHraIc5jN5MOXmwpidjYJ334Oo10NQq+F9+eXwGTkC3sNHOJMmbU202aDfvh1la9eiYssWWM7kAVIplBddBFVyEnzHjoU8IhKy4GBIvFQQFAqIFgtsFRWwlpTAdOoUTDk5MB48hNLVqwGrFbKQEHhfdRV8Ro2EJjUVgqx9fl0ZjxxB6apVKPt1LcwnT0KiVsNr4EAE/etfUCUnQxnfE7KwsHqTS6LNBvOZMzBmZ8Owbz/0u3ah4K23oF24EPLoaPhcPQq+Y8dBlZzUoiSVpbAQpx58CIasLES89BL8b5jU7HNR+3N06M1G10S6aBPx64f7UFZkQGCEBms/3o9bnh3srJCymm0oL6ystUpZaxMaUTHl6BRbTDZ4+dp/RgWJAIlMgNVsg2gTq+aYqicxpTifmFL7KaD2VSAoyhunDxU7E1MWsxUl+Xr0GdYNqr2FMFSYsX3VMRz++yyCu/nAbLJC5qaaSeOngL6OiimLydaoihFH261mGww6M/75LRenDxdD4SVDzwEhSBwS6bIaoDu5mUWQyARE9Tp/M8c/TI0jO87ak/l6M5Tqhqu3GuIfpsah7fluK2mMegtMBmu9VURKLynKiyqr9jdD1YiKKUdyoyC3DFazDYd35EMQhBZX4yi8ZBBFQF9qhtrHfXLHkfRxl3ysKDYgqpd/o9oONK5iypHsqX5cYLgamZtPw2q1obBqcnkAKC+2T89Q12p/jvdVc2KAo9rSqLfUSkwV5+sRHlf/e8mRmOJQvvYnCAJG3ft/+PTRe/HX8m9bXBlis1qx5u3XkL1jG659bDZ6DhrcKm2MGzAIx/7Zgaum/6vF56Ouw2oxY/+m9UgaOgJyRe0b4ak33IIvZz+Kg+lb0L3fQEgkUqi8vVGQewL7fv8NQ2+/Cyrvulef7X/1eOxavRJZf25C35Fj2vKpUAfExFQHIvX1RfS770K7cCHOvvgiTMeOImz27PNVTI1kOHwYJd98i9JVq2CrqICqTx8EP/gAfK++GorY2ksHN0SiUEDV6yKoel0Ev2vGAwDMWi3K169H+a9rkffsczi74D/wmzgRAVOmQNkjrsnXaIgoitD98QeKv12Gis2bAQCatFSEzZoF78uHQB4b2+Q/7kRRhPnUKei3b0f5+g0oeO11aF9ZCM2QIfC/eTJ8hg1r8mvfGDaDAaWrVqH0h+Wo3LMHEl9feF95JYLuvAuaIWmQBQY2+ZyixQLDoUPQ/bkV5Rs24MxTsyCo1fAbPx7+kyfDq0/TJr9sLPNZLUq+/RalK1fCfOaMPekyYiS8r7wS6ktSIGnG3Q6bXo/KvftQsWkTyjdsQMmyZZCFhsL/xhvgf8MNkEdFtfrzEM1mlG/4HcVffQX9jh2Q+vvDZ9Qo+M6bC/UllzT5fSBIJFB06wZFt27wGTbMfg2TCbq/d6B87VqULl+Bc598CmVSIgJuvgW+48c3OYloPHIEJ++7HzaTEbFffQmvPn2adDx5nkQqgUQi1Jq76PjeQuQfK8PEJwYgrLsfvpyzDTt+PoGr704GAJSfM0AUW7aCW6MIjnY2XDFlNtvgU62zLpNJUFZYiXcf2IieA0Lqnfzc0bE2Vlqck5F36xWAoxlaZ4KlOE8Pm01EcDdv5wTdRaftFYza3LI6K6ZUPgoUV81HZbXYsH/zaXTvGwS/ELW9YqoRHXNH281GK9Z+tB/FZ/WI6xsMg86MTV8dwqG/8jHugb51JiAA+/xYkfH+LivV+QSqYDZaYdRbYKy0NLj6XWP4BnvBYrJVTezu2mkoK2x45T+Flwwmw/nJzxtTMeVIQunL7HN56UpMUKqlLR7K55h03aAzwy/YfSxRqGRQqKTQlbjOIyaKIvTlJqh9668grv79b9RQvqp9qida/cM19gUACg3O1RUBoLRqSGVd31fH+0poIKnpjuP7Yqq0AP/P3nmHR1H9Xfwz23fTey/03jtSFRvFAgIqTVEQsHexK3axo6IIAhZQFATBglSlI0jvJY0kpPftO+8fs7vJkmwJJJT3l/M8eZTZO3fulJ2de+ac861SeU8URYpzKpxqLXdwEKm+7HMD6h4BoeH0uHkkW39eTPtrrick5vyea8qLi/jj0/dJ3b+HIQ89QdNuPetsjI07d2Pfmj8ozDpz3uNrwOUJk76C1AP7OLb1H4qyM9EFBdOqzwBa9O7ndS51fMdW9CXFtL+mZtIoqnFTmnTtyfqvv8Bk0AMC1099mD2rVxESG0fH64d47D8oMoomXbuz+/cVtLvm+ss+5uP/K4wVFfz93TzOHDlEcscu9Bk9DsVFcGM0EFOXGQS5nKjp01E1bkL2jBmYUlKI+/BD5IHe36RW7NxJ3uwvKN+8GXl4OCFjxhB824h6yaxSRkYSeuedhN55J+YzZyj84UeKliyh8NtvCbjheiKmTUPdrNkFb0c0mSj+dSUF87/GePwE6tatiHr6aQKHDD4vAqcqBEFAlZCAKiGB4Ntuw1pWRumfqyn88QfOPPgQyvh4wiZNIujWW+okl8paVEThokUUfPMt1sJC/Pr1Je7DD/AfOPCC7XeCQoG2TRu0bdoQft9kzJmZFC1bRtFPP1O0ZAm6bt0Im3Iffr1718lN3njqNPnz5lKyfAWCUkngkMEE3TocbaeOF9y/TKfDr2cP/Hr2IPLppzAcPETRkiUULFhI3hdfEjhkMOGTJ6Nu2tR7Z14gWiwUr/iVvM8/x5yejrZrF+Lef4+AQYPq3A4nqFT497kK/z5XEf3Si5T98w9FP/xI9iuvkDNzJiFjxxA6frxP9tiyzZs58/AjKGNjSfpm4UVV+TWgbiFXybBaXImpo9uziUgMILaZdC10uCaBrctOYryjOWqd0qnE8HeTXVNXcHyTZR4stXK5DLlChvUckkeukjsDocsKjR4VU1WVTo7KerHNg9m7Lp2yQiMBoRqK7JXmQmL8pIDuCrMz5Ls0z4DFTf6T1k9JVplkTdu3PoMtP58gZX8eNz3cEYvZN8WUw4aYciCPnNRSbnumqzOnKfNEEb9/vp9Vn+7jlkc71WiNspisZB4rpPuwxi7L/e2EQlmhAWOFxW2lvNrAQTqV5OqrEVMO0iTQDckDrhlThgoLYcG+/TYpVHL09uMs2kR7Vb4LV0yBRAjWpIZzwC+4ul3TWGHBZhHdZlNVjrt2iikHiVRVIRdgrxZYWihln4XG+lGQWU5pvvQ9dVfV8EJsdI7AeaPegmgTObIti6S24diskr0vONKzmtJp0z0PUqwBdYMuw25l37o/2fzjdwx9+KlarXvmyCE2//gN6Qf3O5et/mIWafv30WP4aALDa67IWBvEt2qHIJORfmh/AzH1/wCizca2ZT+wa9VyjOVStqEuOITkDp0pzc1h1cfvcnTrJoY89KRHAmLfX78T36otYfHu55ZXjR7LwicfQBcUTHTT5vzx2QeIosjol99CrvD+sqPTDTexZMazpB/cd94B/g04f9isVn5591VyTp+iWfde7P1zFSW5Zxn26PR6JwobzOWXKUJGjyLxq6/QHzxEyu13YD5zxm3b8q1bSRkzltRx47Hk5hL77rs0W7eWyEcfuShB6sq4OCIfe5SmG9YT/fLLGPbu49RNN3Pmscc9jtsTRJuN4lWrODlkKFnPPYcyPoGkb7+h0c8/Ezpu7AWTUjVB7u9P8IjhNPrhB5J//glNu7Zkv/wyJ6+9jsLFixHPs7yvTa8n74svOTHoWvJmf0HA9dfR5I/fSfziC8kCWQ+ZUMrYWCLuv5+ma/4iftYn2PR60u+5l5TRt1O+Y8d592vOyiLz6Wc4NWQI5Rv/JuLhh2i6cQMxM2ag69ypzm9YgiCgbduGmFdeptnfG4l65hkqduzk1LCbyHjkUUxpaefVryiKlPz2GyeHDCHr2WfRtGxBo6U/k/zttwQOHlzvGU2CQkHAwIEkzP6cpmv+InjECArmL+DE1ddw9s23pEIEblD4w4+kT74PbedOJH3/XQMpdYVDoZS5KKZMBgsp+/No3r0yB6hplyhsVpGU/VKlmrICaRLuH1LPeXI+qiqUGrkUcF5lkq9QyjCUS/dMs8nqk5UPKrN7HMRPbppkjSrNN6DSKlDb//RlZqwWG2Hx/pTYrWcKdfVtaPyVGMolwuTYjmwAzhwrQl9qctmeJzjGnnW8mIjEAJfw8NimwQy5vz05qSX8+3tKjetnny7BYraR2Mb1d8sRil2co8dqtvlkm/MGh02vOK96AHpJnh61TuFRBaXS1D78HCSCx1huxt9O0lhNtgtXTNm37S0LTBekpvwcu6ZDveWVmKpCDvmS9eT4jROqfCf8g6XzWFZgpKzQQHiCv3MMKq3CbdZTpZXP62arQa2tVExlnSpm3cIjrF1wyEngBnnJK3MQbEKDYuqSQalS0/3mkRzbuomCTN+elW1WKxu/ncfil54iJ+U0gkxGvzF3M/qVt+ky5GaO79jCgiemcXjzxgsen1qnI6pxUxfyqwFXFipKisk4fIAtS77ns8lj2fLjd5gNehLbdqBVnwHoi4sRrVZGvvgGNz/xPCl7dvHrB29is1XPvQTITUsh/dB+Olx7o8ftHtv6D3KlCqO+glO7diDabDTq0Jn4lm18GndCm3aExSey589Vtd7nBlw4/vtjJWcOH+LWp17khmmPMvjBJzi+fQtHNm2o9203KKYuY/j17EHy4kWkT5pMyh13kjBnDpoWzZ2fG44dI2fmTMr//gdN+/bEf/Yp/gMGXLLAaJlaTcjoUQTfegtFy34hd9YnnBw8hLB77yXs3nuQaX2znVT8+y9n33wLw8GD+A8YQPysWS77fTGgbdOG+A8+wPjgKfI+n032y69Q+N33RD7zNP5X+RZML9psFP+ynNyPPsKSn0/IHXcQft9kFOH1G1hcFYJcTsCgQfhfcw3lm7eQ+/HHpI2fQMC1g4h84gmfrZ3WsnLyv/ySggULkPn7E/XC8wTfdttFrXAo8/MjdNxYQkaPomj5cvI+/YyTQ4YSOnYs4VOn+KQqBDAcPcrZGa9R8e+/0vX14YdoWrWq59G7hzI2lqhnnibsvskUfvMNBQu/oejnnwmbPJnQ8eOcdkhRFMl9/33y53xFyJgxRE1/5qLlbjWg/iBXuCqmzp4uwWYRSWwd5lzmH6ImPMGfjKOFtOgRTVmhAY2/st7zYZyKKS+TV5VGjslgdZnkK5QyjPZy9haTFbmbAGhwVa04+tAFqdAGqshNK6VxxwhK8w1OIkelVVBaIKlRIhMDOLw1C6BmK5+/EmOFBX2pkbyMMtoNiGf/hgynDVDhg2pFbicWSgsMRCQGVPs8unEQna9PYvefqbToEU3wOdlf2SeLUOsUhMa42nV1gSpkMsGp/FL5YJvzBqVaji5QRUluTcRU9YDwc6HSKrCYbVitNp+tfCAde32pibjmIZQV5DrHciFwKKYsXoLU/YPVTnLSAb2PxFRVG51viqnqbeVKGdoAJWWFBsqLjDTpFIFMJmAo90zsnU/ouQNOxVSF2UmyVpSYnHbNwDDP59mhlGpwyVxatB0wiG1LF7Nj+RJumPqIx7Y2m5QldXTrP0QkNSI/I41hjzxDsx69AYhv2YYuQ25lzVef8tvH71KSc5Yet9YcMu0rElq34/A/62vMrGvA5QN9aQlnjhwiPyONwqwzFGZlUpCZgaFMerEjyGQginS68Sb63jnBmQ3VuHM3Vn38LnEt29Dh2hu5+YnnWPr2K/z97TwGjJ9UbTu7f1uOf1g4zXq4nweJNhuH/llPm/5X02vEHWQcPkDagb0c374Fq8WC3IfnVkEQ6Hj9UNbNm01JXm6dKACvdOSmpbB39W8oVCq63TQCv+DzKz5WXlSIIJOhC6w5X9psMLBj+RLaDBhEfGspBqZZj950GXILWjfr1CUaFFOXOdSNGpG86Hvk4WGkjh1L+Y4dWAoKyHrhRU7fcium1FTiPv6I5B8WE3D11Ze0ipkDgkpFyOhRNPn9D0LHjyP/yy85OWQIZf9s8riepbCQzOeeI3XsOJDLSfpmIQmzP7/opFRVqBs3Ju7dd0hesgRZYCDp99xLxkMPY8nN9bie8dQp0sZPIOvZZ9F26kSTVSuJfu7Zi0pKVYUgCPj3uYrkxYuIffdd9AcOcnLoMHI//RTRZPK4bum69ZwaOpSChQsJnXg3Tf78k9A777yopFRVCCoVISNH0uT334iYNpXCH37g5A03UrxqFaKbCoYgZVdlv/4Gp28djqWggISvvpKur0tISlWFIiSEiIceosnqPwm69VZyP/5Y2q9fV2Izm8l6/nny53xF5NNPE/3C8w2k1P8TyBQy8tJLObpdUvNkHi9C468kJMaV3IhuFMRZhzWuyFj/ailwzlq9KqbUCqwWm6uVTynDbJLeulpMNo+TcHkNqhVBEIhICKhUTBUYCAirJKYcpFdItB/Yv/Y12b20/hKxknWiBERo3kNSouVnSlYGnxRT9kps5UVGt8ROlxuT0Aao2PVHSrXPsk4WE9UoqFqWkCATnIQG4LM6yRsCw7VuFVOebHxQSXiY9BY7MeWrYkqOxWQjpAr5dqFWPgexZTVbPfblF6w6b8WUIAgS2ST4FkLuLAhwzrn0D9FQWmDAUGZGG6BC7afAWG72mDvm+F6dT8aUUi1HJhMw6S3OfdWXmqkolioYerMJ1mRJbMDFh0KlouvQWzn8z3pK8tw/V4qiyNqvPufo1n+IbdaS/Iw0hj7ytJOUckCt0zH4wSfoddudbFq8kN2/r7ig8SW0bkdZYQFF2ZkX1E8D6h5mk5F9a/9k0YtP8dm9d7J85mv8++tSCs5kEBQVTZfBNzPs0WfoMOhGRFHkpiee5+q7JrsElre8qj9t+g9i8w/fYKwoJ7ljFwaMn8SuVcvZt+YPl+3ln0nn0N/r6HzjTR7JpbOnTlCSm0PL3v3wDw2j5VX96Xj9UAzlZaQf3Ofz/rXuOwClRl1tHP+LOHvqBIteeJJT/+3k4N/rWPTik5QW5NWqD5vNypqvPmP2feOYfd84tv28uMY505Etf1NRUkzP4a6k9oDx916UCp2XnsVogFcoIiJIWrgQdZvWpN09kRODrqVk9WqinnmaJr/+SuB1112WbzLk/n5EPv44jVf+ijo5mfRJk8h87jmsJdVLWRf/upJTg4dQuvovol9+meTFi9B163YJRl0ztO3akvTtN8S+N5OKXbs4OXQYRUuXVftSiyYTuZ9+yumbb8Gcm0Pi/K+J//CD8wqdrw8IMhlBw4bS5LdVhN0zkbzPZ3N6xG3o9+6t1taSm0vGw4+QYc8La7xyJZEPP3zRKv15g0yrJXzqVJr8/ju67t3JfPwJMqZOw5yVVa1txa5dnLrlVoqWLJGuyV+W4d/HN+XbxYYiNJTo556lyaqVaNu1I/PJJznRvz/Fvywn9p23Cbv7rks9xAbUIeRygZT9+az5+hCiTSTrZDExTYKq3dOjGwdSmF2BodxMWYER/5CLUUZZur95KjsP0iTZZhXPUT5Jy0AKHfdITFX5rOqEOizOjwJ7cPm5xJTDbhYcVUkU1ayYkoiJvIwyBAEi4gPQBigpzTPYx+lDxpR9/40VFrfEjkIpp+OgBI5tP+tUc4GUt5R9qoSYJjUrOjX+KiexUFfEVFCElpJcQ7XlJXl6r0oah0qpvMiIaBN9DmRXqGRYrSIav0pS5EKtfI71rRbRo/pKF6SmvNjk8ntcUWJCrpQ5w/k9QZAJyHx9hnIUBKhGTKkpzdcjilIwuVqnxKT3TOwJF6BaEgQBlU6BocJChV0xVV5spLTAiJ8PuWCObZ4PKdaAukX7a65HoVJ5nIDvX7eafWv/IKpRU7JPHpNIqe69a2wrCAK9R95JlyG3sH7BHE7uOv/4htgWrREEKWeqAZcHRJuNfWv+YN5Dk1gz51NUGg3XT32ESbPmcf+8xdz5+nsMfuBxeo64ncDwSPat+5NeI+6gadceNfbX5/ZxmI1GJ4nZ6YahdLx+CGvmfsaJf7cDYDIYWPXxu/iFhNLp+qEex5d2cB9KtYbYFq2dyyKSGhEUGeXszxeotDra9B/E/nV/YjGbfV7v/xssJhO/fTKT0Ng47n7vc8a9+SFWk4k/Pn0f0Wbz3oEdW5d8z761f9B/3D10u2kEm3/8lv3r/qzW7uDGtSS160hQpOcCGvWFBmLqCoHl7FkwW8BqRayoIGzSvYSOH1/vWTh1AVVSEglz5xI941VK//iTU8NuonzbNgCsJSWcefwJMp98El3PHjT5bRUht4++LJRf50IQBIKGDKHxyl/x79+PrGefJX3yfVjyJNbaePo0KXfcSd7nswmdOJHGy5fj17PuKqTUJWRaLZGPPEKjn5YgqNWk3H4HOR9+iGi/+ZeuW8epYTdR8e+/xL43k4Qvv0AVf3mGXyqjIon/8APiP52F4dAhTg0dRvGvKwGpAuLZt94mdew4FGFhNP5lGWH3TLxivjcxb7yOulkzrIVFIAiY0tKxeVG4NeDKQlXSp6LUREFmGeHx1UspRzWSJNQ5qSWUFRoIuAiKKQHfVBUqjURCVSWVFCoZNqv00GSzis4A8ZpQk5UPIDhKR2mBAbPJ4mLlU9gD4wWZ4KJgqokIcSimCrPLCAjXIlfKnESGu3XORVXizJMCpnWfWGRKGUe2VpLjBVnlmPQWopsE17iONkDpDA135AZdKAIjqiumbFYbpQVGAr1UcnQEdZfkOVRcvo1JrpQh2kSUGrmTIFReoGJKJhOcles8nSe/IDVWs82pogPsFflUPqugBB+HKnOTzSTlXEnXlMZfiVqnwGS0ejx+zu/Veb5YVNuVgw7bIqJEPp4bel8TnFlZDcTUJYdKq6N1v2vcTsDz0lJYO+9zgiKjyE09xdBHn3FLSlVF/7ETady5G3989kGt1RUOSDlTTRpypi4TFOdk8+OMZ/lrziwS2rRn4odfMOLZV2k7YBCBEZEubW1WK3/O/oiIpEYeLZ3+oWG07jeQvX/9jtViRhAEBk6YTNOuPVkx83V+m/UeX0wdT27KKSwmEwZ7cLo7pB/cR1zL1i6qKkEQSGrXqVaKKYAO1w2moriI49s8O27+P2P/uj8pzMrkhmmPotRoCIyI5Ib7HyPtwD4O+5j5lJt6mu2/LKHXiDvoOvRW+t4xgXZXX8eGhXOpKC5ytivOOcuZIwdp0+/q+tkZH3D5zf4b4ALRaiXviy85dcutWPJySZg7l5Dx48id+R75c+de6uH5DEEQCBk5ksYrf0XVqBFpd0+UQrRvupmyv/8m9t13if/gAxQRl7+PWBESQtw77xA/+3MMhw5x8uZbyH7jTU4PH4GtvJzkxYuJfPQRZzbQ5QxNy5YkL15ExMMPkz/nK1LGjOXME0+SMe1+tJ070/jXFQQNGXJZKvLORcA119B41Ur8r76azCefJP3++zk9chSF339P5BNPkPTtN6iSky/1MH2GJS+P1PETMJ89S+K8eYTdew95X3xByshRGI4cudTDa0AdQVZlvp2XXoq+1ExobHViKihCi0IloyCznLJCY71X5AMq1SE+hJ+Louhq5VPIEG2SAsdmE50EQ01wUUwpXIkpRMhNLcVstDqJKaVKLoWF+ylciCKlm/BzgOI8g7NSmV+QiooSyfrli92s6tjdVVgDKTi8aacIjm7Ldqp3sk4WI8gEl8D0c8fnCGf3VZ3kDUHhGvQlJszGygDbskJJAeXNyucgUhxZRb6quBzXiEqjcIbQX6hiqmofns6Tzp5fVlFcSdpXlJi82vgcEGRCrX/jziVrqxKMGj8lGj8lFpN0jbrtw2Hlq9WWK6HWKTBVmKkoMTktlGWFvimmuDBOrAF1jI7XDZEm4Ns3uyy3Wa388fmHyBVKSvPzGfbodJp16+VTn4JMxvVTHkahVNZaXVEV8a3bkXFov8eohAbUP1L2/cc3Tz9MSW4OI194g8EPPkFwdIzb9gc2rCEvPZXrJj/oNdep0w3DKC8s4KRd0SSTyxn66NP0uWM8KXt3Y6qooMetoxAEgb+/nee2H6vFwpkjh0ho077aZ/Ft2lFwJp3yIvfFfc5FWFwCiW078N/q/80QdIvZzI4VP9OyT3/CEyqdN0ntOtK8x1X8s2gBZmN1dfS52Lb0B4Iiouh20wjMJunZp++ddyGTydj68yJnu5O7diBXKGjS7dKJKhqIqcsYpvR0UseNJ/ejjwi7awKNV6zA/6reRE2fTtjUKeS8O5PcWZ9eUT8WypgYEuZ8ia57d4qXL8dWVkbCV3MIGuZZGno5ImDAAJIXfY8AFC5ciCohgeQfFqNt61vVicsFgkJB+JT7iHv3HQyHDlGyciXBI28j/tNZ9VL9sD4hDwgg7t13CLnzDsrWrsN0+jQxb7whqaTk9RsUXZcwZ2eTOmYs1vx8kr79Br9ePSWF25IfATg9chR5s2efd6XIBlw+qDoxzD4l2ZzPDckGafIcHKUjL6MMk95ycTKm7PBGTClUchBdyQPHOtoAJaJN9GjlEwTB2b6q6spBJGWflo6Lw8onV0q2MaVa7kKc1ESEqLUKBAH0pSZnxTiNn9JpBfSWxQOuZJnKAzEF0KJnNMW5es7ax5x9qpjweH+3VjStnxJThQWZXPDJVugLAiOk41ZSRTXlayi243g6FFMaHxVTMrvKWaWRO/ejLogpx/nxFH6uC7ATU6WVxJS+FsSUTKiFcshN7pouQIWxwkFMKVDrFFjNnhVTF2LlA+lcGSukjKnwOOmeoS814eeh0EC1MTQwU5cFwuITiG/VlgMb1rgs/3flMs6eOoHVbGLYY9NpWssJoy4wiBumSeqKQ/+sP6+xOXOmzlaPSWjAxcF/f65k6ZsvEdu8JePf+YTEttWJn6owGwxsWfIdLa/qT1Tjpl77D09IIqpxM45s/tu5TCaT03nwzQiCQIdrb6TP7ePpcetojmz5m9L8mhV4+RlpmI0G4qrY+ByIbyXNjTKPHvY6nqroeMNQso4d4eypE7Va7/8DTuzYQll+Hj1uGVnts7533oW+pJh/f13msY/CrDMc376F2Bat+HLaXXw8bgQ/vf4CFrOJbjeNYP+61U7VVMreXcS1bINK41uxsvpAAzF1GUIURQp//JFTN9+CJTeXpG+/IfLxx5GppYdqQRCIfPhhIh57jLxZs8iZOfOKIaesRUVkPPAAFTt2EDRiBIJOR8bUaVTs3Hmph1ZrGE+fJn3aNESDgcCbbsJ46hQZDz6EpaDgUg+t1ihds4asF15EFR+PX9++FC35iZx3Z15xxIdoNpP96gwKv1+E/8CBqJs3J+vZZyla6vnGfTnBlHGG1LHjEM1mkr77Fk3zyvB/TcuWNFryI2ETJ5L78Sek3HEnxtOnL+FoG3DBqDIxzD9ThkwuEBRV80NBSLSfM7T74mRMSfCWMeVUtVQhVhyTbl2gClH0TExJ26hOTGkDlKi0CvIzpH2uqpgSbSIKlRyFSu7cVk3kjyATpMp85RanxUmtU2IyWJx9eYOsFsRUbPMQNP5KTu+THtwdmWHuoPFXYjJYUesUdUYSOFRRxVUq85XkG0CoJPfcwbF/jip3viumKteXK7yrnHyFLySXg4ByWtqQFFNaH4kpBHyWLbnLZtL4KxHtghSNn5QxZbN5zsZyqq7O006n1ikx6i3oSysVU0a9xceMKeH8pVoNqBe07n81aQf2Oif9JXm5bFq8EEEQuOnxZ91mBHlDUvuOtLyqPxu/nefVhlUT4lq2BkEg4/CB89p+A84foiiyZcn3rJs3m043DOOWp19ErfOe87p3ze/oS0roc/s4n7fVsndfTv23E2NFhXPZ6f92UlFcRKcbbgKgTf9rkMlkHN+xpcY+clJOgSAQkZRc7bOA0HD8Q0LJPnXc5zEBNOncnYCwCPb8D6qmDmxYQ1zL1oTFJ1b7LDg6hk433sSOFT+5JQoB/v11GQq1mkN/r6NRxy4Muvd+8s+k88NLT9Os51UIMhl7Vq/CYjKRfnA/yR271OcueUUDMXWZwVJYSMb9D5D94ksEDRlMo2XL0HWuOQU/fPIkop59loK58zg747XzluleLBgOH+b0bSPR79lLwpdfEPv6azRe/gvqpk1JvXsihYsXX+oh+ozS9etJGTkKrDaSl/xI3DtvkzT/a4wnT3L6ttswHDp0qYfoE0SrlZwPPyTjgQfxu+oqkn/6iYQvvyDq2ekULFhA+uT7sBYVXeph+gRLYSFp99xL4ZIlRL/8MvGffUryou8JvGkYWc8+S/aM15wZWpcrTGlppI4fB4JA0jeSCu9cCCoVkY8+QvKi77GVlJAy4jaKV1xY5Z0GXDpU5SKkqmla5G6IoJBoHSV2suFiKqa88SXOHKAqVj7HOroAFaIN34mpKu0EQVKJFeVUoFDK0AZI6hMH4eEglbzlEKl1CsxGq1NJovZTYNJLNjdfFFMymeDcH5WXMG2ZTCCpTRip+/OpKDFRkqsn2iMxpcJs8qysqS10gSoUKlk1xZR/sNr7eZAJqDRy53Wm8pGYcpBqSrXcWcXQF9LPGxzj9UTwKO0qrYoqxJS+1ORUUnmDIAg+q5Yc7c79jjq2JVcIKFRyVFo5os0zOedUTPm26WpQ6xToy8zoy8zoAlWodJJyUevLfjeQUpcdmvfog0Kp4tA/67FazCx+6SlEm40bH3yCJl3Oj5RyoP/YiVhMJrYs+a7W66p1fkQmNebM4YMXNIYG1A6iKLL5h2/Y+tP39Ll9PAMnTEIm835PtVos7P5tBa369K9VgHXzXn2xms2c3FUZUH7y3x2ExScSFi89i6p1OhLbdeT4dnfE1ElComNQaXU1fh7VpFmtlU8yuZwO197IkU0b0ZeV1mrdKxkluTmk7t9D2wHXum3Tc/holGoNmxYtqPHz8qJCDmz4C7NBT49bR3PjA4/T4dobuf3ltzHp9Wz6fgFtBwxiz5+rSN2/B4vJeFEq73lCAzF1GaHiv/84PXwE+t27if/sU2JmzPBaAS10/DiiZ7xK4aJFZD3/AqLV6rH9pULpmjWk3DkGWWAAjX7+Cf++fQEprylx7leEjB5N9suvkPXSy4iXcbizKIrkff45GVOnoevRg+QlP6Ju3BgAXdeuNPppCYqQUFLuHOMM4L5cYS0rJ2Pa/eR/OYeIxx8j7qMPkfv7IQgCoePHkzh3LoZDhzh920gMR49d6uF6hPH4cVJGjcZ4/DhJX8+TAvQFAZlaTcyMGUS//DKFP/5I6l13Y8nPv9TDrRHG06dJHTcemUpN0jcLUcZ5DpvXduhA8s8/E3DtIDKfeprMZ6ZjKy+/SKNtQN1BmiGGROuoKDF5VLQEhGokQkUAv4sRfu5j5S6H8kOuqq6YcqhWZB4yppztherZPYHhGsqLjQSEaZzkh4MAc2xPrpAh1LCuAw4VkM6umNLolM78JV/JE0fYtVLjnahJahtG/pkyTu+Vyr97Ukxp/ZUgeie8agNBkELhC7LLWfnpXtZ/c5jiXL1LULwnqHVKSvINEsnkRS3n3GYV1ZrzPNUBMeVQq3kkeAQBbWBldUNRFNGXmp1EpjcIstpb2mpSTIGUsQWVRJpHxZTDDngBVr7inAoQJTLSEZ7vGIsn1EIk1oCLBLVOR9NuPTm4cS0/vf4CpXm5tLvmBlpd1f+C+/YPDaP7zbex76/fKcnLqfX68a3bkn6oQTF1sSCKIhu/ncf2ZT/Sf9w9HsPLz8WxbZsozc+ly9Bba7XNwPAIops0c1ZxtNmsnNq9gybnKPUad+pG5rHDNWYb5aacJiK5idttRDduxtmTx2vt8ml39XWIoo2D6/+q1XpXMg79vQ6lSk3zXn3ctlHr/Ohz+zgO/bOeM0eqCyI2LPwKm9VKi159uGr0WOfyoMgorp44heM7thAWn4S+rJT9a/9A4x/gkmV1KdBATF0GEEWR/HlfkzpuPMroaBotW0rA1b4n4oeMHEnsO29TvHw5Wc8+d1mRU459y3jwIfz79yf5++9Rxce7tBGUSqJfeJ7oGa9StHQpaffdh7X08mPFRZOJrOnPkvvRx4Q/8ADxn3yM3N81pFgZE0PSd98SeP11ZD755GWbAWY+e5bUceOo2LWLhC++IHzSpGoP5n49e5D800/IAgJIvfNOyjZtdtPbpUXphg2k3H4HMq2W5CVL0HXt6vK5IAiE3D6apAULMKWmkjL6doynLi/7m/HkSVLHj0fm70/iwgUoo317yyX39yP27beJefNNSv78004iHq3n0TagTmG/P4TF+2MyWD1W23MEnmv9lT4TBhcGxz3B8z2skjCqPiaHzcoXcqsmYikgRIOx3OK08UElSeHYniATPOZgOcgnh2JKpVVgs4oSEeaFMHOOz66q8VahECChdSgIcPK/HPxD1R5tlw6rnMIDgXE+CIrQknW8mNT9+RzanEVeeimBXmx8Dqh0Cilc3geCwwEnOamUOc91XWRmyeW+kVy6QJUzY8pssGK12HxTDlFZfdLHxkD1jCmH4s1xHuUK7xZE2QUrpqSAdZBIV8d1rvXpvDXQUpcjmnXrRWFmBhmHD+IXEsI1E++rs7473zgMlVbH9qU/1nrd+FZtKMk9e16kVgOqQxRFCrMz2b9+NZt/+IZ187/g7+/ns3/davLS01g//0t2rVzG1XffR9daEEyiKPLvymUkd+hMRGJyrcfVqFM3UvfuxmqxkHPqJPrSEhp36ubSJrZFK2xWK9knXS15oiiSm3qayKRGbvuPSG6MobyMssLavSDWBQXTvFdf9vz122XvDqorHNu+mSZde3jNe2o78FpimrVg1SfvUlFS7FyecfggRzZvJCA8ghsfeLzaHK9Fr74kte/E7t+W06hjF9IO7iOmWYtLnjvYQExdYliLisiYdj8577xD6ITxJC1cgDLGfZUFdwgaNkwip379VVJOXQZfXNFsJvvlV8h55x3CJk0i7v33PFaqCxk5kqR5czEcPETqmLGYs7Mv4mg9w1pSQtrk+yhZtYrYd98l4oH7EWQ1f31kGg0xb71FxCOPkDdrFlnPP39ZWcgMR4+SMmo01qIikr7/Dv++7tl4VXwcyd9+g7ZLZ9KnTKHo56UXcaTeUbhkCRnT7kfXsyfJi75HFe9eZaTr3InkxYsR1GpS7rjjssk1Mxw9Ruq48ShCQqXvf2Sk95XOQfCtt9Do558QVCpSRo6i6Oef62GkDagX2B8CQmP8sJptHpVQDnKmLm1fvsArt26/FdZk5XNUzfP2qCMIQo3klX+oBovJ5lKF0ElM2Sf/MnnN6zqHZydIHCSZQ8WiUMp8fggTZJ63URUaPyVhsf7kppUR0yTYY1uHmquugs8dCAzXUlpgoHHHCEJj/SjJNThziLzBod7y1QoHlcSjXCFznmufA8U9wEEAeVO2aQNUzowpB0HlKzFVq4wpe8NzCUonwaiqvCYBj9UoncfnPCcCVYlDvyC1U0FYtVKl2203SKYuO5Tk5bDlp++lf4giAyfch1xRd/d6lVZHt5tv48CGvyjOqd3zdVxLKbi6qp3vxM5tLHzqQWZPGc+auZ+7ZBM1oGYYKyr4d+Uyvn5sKvMensxfX8ziwMa1pO3fy9Et/7D6i09Y8MQ0/vvjV9oOvJaO1w2pVf9nT50g5/RJOt047LzG17hzN4wV5WQeO8yZo4dRKFVEN23m0iY8MQmVVlctxFxfUoyxopzQWFfxQVWExkmfFWRk1HpsHa8bQvHZbE7v3VXrda80FOdkk5t6mqY+VOCUyeQMfeRpLEYji55/gl2/LWfvX7+x5LXnABjx7Iwa7yOCIND3jgkUZp0hJCYOs8GAX/ClL3jVQExdQuj37+f08BFU7N5N/OefEfXkkwjK8/8RChoyhNi37cqpFy4tOWUtKyN9ylSKfv6ZmNdfI/KxR90SOVWh69aN5O+/w1pWSsro2y8LC5k5M5PUMWMwHDpEwtyvfKogKAgC4VPuI/bttyhevoL0qdOwll16m1XZP5tIvXMMirAwkhcvdgnWdgeZnx8Jn31G8PDhZD33HLmfzLrkKjBRFMn97DOyX3iRkNtHE//xR8j8vE+6VPFxJC/6Hk2rVqRNvOeS2y2NJ06QdtddKKKiSFwwH0VY2Hn3pW7cmOQfFhN0881kPfc8WS++hO0ytsU2wBUO0snTpNLfHmrsyR5Ul/A5d8f+X0e2EOC83yvtJIdXkkKoeXsBzkp61avvOex1glCz2srZ3q4ucxB6DuLFW96Sy/BkvucQAUQ3DsRQZia6sXsbnzQWRa3H4gv8Q9RYzTbiWgQT3TgQm02ssdpjTbCapWcHq8X3ZwjH+ZXJBbfn8nzgVF+pPR8fXRUrn6FMehHkm3II+3hrd7Gfez0rqthKXT730K0v6jtPqBpyrgtUOrftS2D95afj/t/Gqf928s0zj2A2GtEFByOTy2nW3fuktLboeN1gVDo/dv9Wu1xKXWAQYfGJpNsD0A9uXMvyma/hFxxC674DOfT3Opa9/YqzFH0DXFGYncnyma/z+aQxbPxmLsbyMhp16sYN9z/GPR/N4a73PuOej7+kdb+BAIQnJnNg/V/88Mp0inPO+rydAxvW4B8adt45QVGNmqALCubU7p2cOXqQqCbNqpEaMpmcmGYtyDzmSkwVZJ0BICQm1m3/QZFRyBUK8s+k13psMc1aENW4KbtWLa/1ulcaju/YilyppFEn34LIA8Mj6TL0VorOZrFhwRzWfPUZAgLtrr6OsDj3RGFU46Y079mHw5s3AlCYVXvCsK7RQExdIhQt+4XUMWORh4fTeNlSAgYOrJN+g4YNJfatNyleuozsl166JOSUpaCAtAl3od+3j8Sv5hA8YkSt1lc3bUryosXIQ0NJHTOG8m3b6mmk3mE4eoyU0bdjq9CTvOh7/Lp3r9X6QTffTOKcL9Hv2UPquHGYcy6dDLr4119JnzIFXdeuUoZRlO/KHEGhIPqVl6VKkJ9+KllGL1HFPtFqJfvlV8j7+BMiHnmEqBdeQJD7PlGXBwaS+OUXBA4ZQuaTT5L/1Vf1OFr3MKWmknb3RBTh4STOm4siJOSC+5RpNMTMeJXoGa9SvGwZqWPHYc5qKPF8OePcinKeLHqSTaqSkKlvOCav3rbmbFdlou2Y5zv2yxsxJQVQV2+jthN18iqKGbnSdfIvyPDIhAhOO5iDLKs9GSTIaqcAcuRZBbupsOiAQzElq2NiyoHAMK2TkPML9tHadh7ZR848sjq+NB3XhLdzpQtUobcrpRwElc+KqfPAuVY+h+LPsVwmOGx63q/L8z1kVYlGmVxWaTf1weYrDa9BMnWpUVFSzJ+zP2bZW68Q26wF106+n4qiImxWq1ThrI6hVGvoMOhG9q//C2NF7V6WxrdqS8bhg+Slp/LXnFm0HXgtw6e/Qr8xd3Pbc69y9uRxtvxY+3D1/88oyc1h2duvMO/hyZzYuRW1nx9Nu/UirmVrCrMy+H3WTObcfze7Vv3CH59+wOF/NnDjA48z4d1ZjHzhDUrycvjmmYfIOOI9eN5sMnJk8wZ75bzze3klyGQ06tSV0//9S+axI8S1aFVju+gmzck5fdJlWVFWJgBB0e5dPzKZnJCYOAoyfSdAzEYD+9evZtXH72LS60nbv4elb7/CwY1rz6vK5JWAEzu3ktSuo1cbnwPlRYVs+3kxrfoMoINdZWezWek5/Hav6/YeNQa93QKYefRIrYjQ+oBv5VYaUGcQzWbOvvMuhd98Q9CI4US/9BIyVd0+PAXddBOizUbW9GdBkBH98ks+qZXqAubMTNIm3oO1rIykbxaiadnyvPpRRkWS9M03nHn4YdInTSbuww8IuOaaOh6tZ+j37iVt8n0oY2NJnPMlivDw8+rHr1cvkr77jvTJk0kdO47EefM8Ws7qAwXffcfZGa8RNHw4Ma++gqCo/VdfEATCJ09CGRNN5vRnsZaWEPf++3V+/XqCzWDgzBNPULZ+AzGvv07wiOHn1Y+gUhHz5hsoY2PImfke1qIiIh6v7sGuL5jPnCH17ruR+fmR+PW8OiGlqiJk5Eg0LVuS8dDDnB5xG3Hvv49fzwur6tOA+oVDhWjzoEYURVGy1dkujt7B8XXwujXR0b46MeWw23n7agleVDZVP3LaunzkTxxkgdVskyqm2RVTvuZLSeOrmThzB4tJyno0Vngm8FVa+1jq+CfaMVZ9ucmpgHIoibzBZpVOqFiL68yxPce6dQWH5czbsdcGSBlTUvC5CQTfQsBBIo9EHzVEjmG4Uzs5xukgnTz16uhDPM+fHYf90xny3sAzXdYoyctB6x+IzWYl5/RJjm3fzMENa5Ep5FxzzzQ6DLqBX96dQUhMHBWlJRzfvpnoJs28d1xLdLx+CDtX/Mz+tX/SdZjvz1Dxrdqw96/fWDv3cwLCwrnmnmnO6z22eSt6jbyTTYsW0nbAtc4qbv/LOLp1E3989j4Wsxm1zo8hDz9Jo46uGaj5GWnsXPEzGxZKL0gH3jWZ1n0loUJi2/aMf+cTVsx8nZ9fe4Fbnn6RpHYd3W7vxM5tGMvLadP/wuZKjTt34+CGNYBURa8mhCckUlZYgL6sFK1/AACFWWcICI9AqfJcmCU0LoECHxVTx3duZc2cT9GXlBDdtBnRTZtTXlTAmcMHOb17JwqVmha9+tLtpuGExSfWYi99R3HOWbYt/YHis1kkte9E12HDkZ/HHMpXlBcVcuboYa6770Gf19n9+wpkchlX3z0Fi8XEvr9+IzA8gsAI7wKEsLgEQmPiKMg6g0qn5b8/VzJg3D0XsgsXhAbF1EWEpbCQtHsnUbhoEVEvvkDMa6/V26Q++JZbiHn9dYqWLCH71VcvivXKeOIEKXfciWixkPz9d+dNSjkg9/cj4fPP8B84kIyHHr6otqvybdtIvXsi6iZNSFow/7xJKQc0LZqT9J30Jil1zBiMp+r+TVhNEEWRvNmzOTvjNUInTCDmtRnnRUpVRdCwYcR/8jHl/2wiY8qUi1YJzqbXkzFtGuWbtxD/6azzJqUcEASBiIceImr6M+R/NZfsF1+6KIUDzGfPknrX3QgyOYnzv77ga8sdtO3a0ejnn1C3aE7axInkz513yS2YDagZggBGvURgOMKMa4Kx3AIiWMwXWQnr5bpxZgpVmRg7iQSHqskXUqeGNsYKiUyxWirH4LTyVW4ZX8xJejsx41Bx+aIscRlaLSb++WfKkSsE8tI9v9F1qr/qmBSvKDEikwnkpJRSmC3do4tz9T6t68zgOo+qehaTDcQ6tIr5eFx0gSpsFhFjhUWqyOevrJVVzteWopOErfnDavvt4UA4VWY+bvtc5GdK59VkrzBps0nEtc166TNGG+AKm83KVw/cy8cTbmPW3aP58dVnObZtM12G3sLED7+k43WDyUk5xandO+k54naadevFse2b6+U32z8klJZX9eO/P1fVylUR36otABmHD9Bv7EQU50SPdB58M36hoez4pfbh6v/fsPXnRaz88C2sZgsxTVtwz8dzqpFSAAHhEVQUFyGTy9EFBrH1p0VkHK6sfqjx82f49FeIb92WFe+97lFFd2D9X8S1bENIzIW9+E5q19EpZohwE2Qebg9Wz0tLcS4rzM4kJNq9jc+B0Lh4r8SUKIpsWfI9K2a+Tkyzlkz86EvufO09Bj/wOFffPQWTvoLbnn+NnsNHk3ZwL/OfuJ9VH79LQeYZ33bSR+SfSee75x4jZc+/qP382bLkO5a9/QpWy4XlBlvMZnYs/4lvnn6YuQ9NYvUXH1NeVAjAyX+3IyDQpItvL5NFUeTwpg206jMQjb8//3z7NXKlkuLcHGef3qBQqaSK7LEJHFi3GpPBt2eF+kADMXWRYDh8mJQRt2E8fpzEeXMJvfPOeldnBA+/lZjXZlC0+AfOvvZ6vU5K9fv2SdbEoCCSvv8OVWLdMNeCSkXc++8RdNNNZD71FIU/1P8PXum6daRPvg9dp04kfjUHeWBgnfSrio8j6dtvkAcGkjpmLPqD3qW5FwJRFMl5511yP/yI8IceJPKZp+tMORcwcCAJc75Ev3efpJArLva+0gXApteTcf/9VPy3h8QvvyBgwIA66zt0wgRi3niDop9/5szjTyDWYy6TJT+ftLsnIprNJM6f73P1vfOFIjSUxDlzCLtnIjnvvsuZxx7D1hBQellCX2pGEKC82H1GR2mBVJ7Zoca5WBC9SDo8/bLYLNJYBR9uPTX9JJYVSMfDbKhUHp0bFC56Y0LsnzkUQw7CRV4LS6Qg+J4xZbOJZJ8qJiBMS25aice2ZkP9nMvC7Aq0QSqObMsm42gRGj8lxXnVy3vXBJudBDTVYmyOY2M2WaVnjTp73PCtI0ewfcq+PAqzy9H41/Kln68RUw4V4TntrVabq5rR/rzl6bnrQg9ReaH9fNq5BQchZSi/NDb7BnjG8OkvM/iBxxn6yNOMe/tjpsxeyFWjxqILlHLoti1dTHB0DC1796N5z6soys4iN7V+Kgi3H3QjJblnSd2/x+d1/EPDUKo1kh2ta89qnyuUSroNG8HhzRspycutw9FeWdj60yK2/PgdgiDQtFtPRr34BtqA6vOI8qJCfnxlOmeOHmL4M69w1weziUhM5uc3XyLtwD5nO4VKxbBHnyE4OpZlb7/iUnmtal/pB/bRup/vFd3dQa3zIzAiEkEmIziy5mfUkJg4ZHIFeempzmWFWZk+kWKhcQmUFxV6tOHtWvULW3/6nqtGj+PmJ54jOKpyHC2v6k9gRBT71v5Jj1tHcc9HX3LNxKlkHD7A/Mensnbe5zUeo3NhtVg83p8tZjO/vv8m2oBAxr87i5ufeI7h018h/eB+/v72a6/9u0N5USHfP/84m3/4htC4eJp07c6Jf7fz7fRHyM9I4/jOrcS3auO8L3hD9sljlObl0rxnH/b+9TuH/llPv7ETERA4uWu71/VtNisFWWeIb9WWnNRTmPQVHPp7/Xnv34WigZi6CChetYqUO+5EHhxMo5+W1Dqn6EIQPGIE0a+8QuF335H7/vv1Qk6Vb9tO6l13o2rcWMouOo+qYp4gKBTEvP4aIWPGkP3SS+TPnVen/VdF8a+/kvHgQ/gPGED8558h0+nqtH9lZKR0jBISSJtwFxW76qe6hGi1kvXCCxR8/TVRzz1HxLRpdU6E+nXvTuL8+ZhSU0kdNx5Lbv08iJxLSum6dfO+Ui0RPPxW4j/+iLK1a0mfdn+9kDfWoiKJxCstIWn+1xfNzikoFEQ+/jhxH35I2YaNpIwZizkz86JsuwHe4Yh60ZeakCtllBW4Jw8cxJQ3e1jdw/PvRo2WL/vtxmo5Z4E7uPm4tMCAXClzVloDnNXHKrfvWdRls49PXyb14ciaqm3VOF/voQWZ5Zj0FqIbB5KTVurxd9dxLj1ZOM8HhdkVxDYJwmK0IgjYK/P59hbUoVIzlNf+rbDFZMN2DlFyIRBFfGJwHMTU2gWHObk7t9LeVl84Z0xGOxnkuNZE+wXtyQ4pXqDtsaLUoSa0YbPaamXZ/P/i+vv0009JTk5Go9HQo0cPduzY4bbt/PnznZZcx5/GQ6XouoRMJie5Q2da9R1Ii159iUxu7PKiMCflFCd2bqPn8NuRyeUktm2PWufH8R1b62U8sc1bEhafyP61f/q8TmlBHmajAaVK7fZe2HbANSiUKg5uXFNXQ72icHDjWrYs+Q6ZTE6Trj0Z+sjTKGpwxuSlpbDoxScpK8hn9Mtvk9S+I1r/AG595iXiWrRm+cwZ5FZRI6m0Om556gUsZjN/fv5htd+U49u3IMiEOgvMV+v8EEURq5ssWblCQWhcvFMxJdpsFGVlegw+d8BRta/gTM05UxmHDvD3d1/Tddhweg4fXe1akysU9Lh1FMe2/kP2yePIFUo6XjeYez6aQ9877+LQ3+uZ9/Bkdv66FLPRiM0mvSw5e+oEO5b/xM9vvMhnk8bw4Zhb+ODOm5n78CQ2LPyqGpm6d/UqCs5kMPThp5zEYlK7jvQbcze7//iV7JPHve7ruTBWlPPjq8+iLy5izBsfMOShJxkwfhLj3/4YjZ8/S998ibT9e2hai/N4YsdWNAGBZBw+wJq5n9HphmF0un4o8a3acPJf78RUUXY2FqORTjcMQ6XW4BcSyo7lS6oVMtj71+/nFVpfWzQQU/UI0WolZ+ZMMh9/goBrryXpu29Rxnr/0tY1QkaPkuxKc74if/bsOu27fOtWKVC7Y0cS536FPMg3hre2EGQyop57lrAp95Hz7rvkfvxJnZNsRT/9ROZTTxN0003Evf9evdks5cHBJM6bh6Z1a9LuuZfyrXX74CFarWROn07xsl+IeetNQseNrdP+q0Lbri1J336DtaiI1PET6jzc/WKQUg4EDBpEwpdfULF7N2mTJ9dpFUVraSlp907CcvYsSfPmoUpOrrO+fUXgDdeTvHgRtpISTt82koqdOy/6GBpQHY67mL7UjEqjoDTfPTFVVmhAJhMwVliwXgy7juN50Mut1nErrmq3c8BJTviaoH4OSgsMqDRyKoorialKi1ZlFpKn3wObxXXC7sioqhVXXwsrX9aJImRygeT24RjLLR7PqYMEulCSoipEUaS0wEBUoyCGP9mF0c93JyRaR3Ger8SUBbWfwkWl5issJqvTHlTT9VBrOK8tz9e7NrDy99pqsdUq2F6ssh3vqDl4zUHiOdSMDkLK6uG82i4wK86krzw/Rr3Fqb4zlHtX/Z5vrtXlhB9++IHHHnuMl156id27d9OhQweuv/56cjw8hwQGBpKVleX8S01Nddv2YmL70h8Iioqm5VX9AZArlCR37MKp3e6JtguBIAi0HXgtJ3dt9zlA+tjWzQgymTNb6FwYyssoLcinWfdeHFj/1yWtDH4pkHnsCKu/+AS5QkFc67YMefgpZDUU5jm69R++f/4JlGoNd8yYSWRyY+dnSrWGmx5/lqCoGJa9/YqLFSsgNJwbpz3Kqd072bv6t2p9JrbrWKMy63xg0utBFF1sheciNC7BGWJeWpCPxWwi2BcrX6z0UramAHSLycSfsz8itnkr+t4xwW0fbQcMIiw+kb+/rYyoUKhUdBs2nHs+nkN863b8/e08Ph4/gg/uuJkPx9zCt9MfYevPiwDoeN0QrpvyENdMnEJS+84c3LCGrx+bwv51qwEwVlSwbekPtL362mp2xk43DCU8IcmZC+YrRFHkj88+pLywgJEvvuly3v1Dw7jlqRcptxc+aNqtuiKxJpTk5XDon/WYDXq2/byYnsNvZ+CESQAkte9ExuGD2LxElOSmSvbQuJatGXTvNMoK8ikryGd3leqH6Qf3sXbu5z4RXReKBmKqnmAtLib9vinkz/uayKeeIvadt5FpfUvXrw+ETphAxMMPkfvRx+TPn18nfZZv2UL6lKnounWrF3XRuRAEgchHHiHi8cfI++wzcj/6qM7IqaKffybrhRcJvn00Ma+/dsE5TN4g9/cj4csv0HXvRvqUqZRv2VIn/YpWK1nPPkvJqt+Ie/cdgm+5pU769QR106YkfbMQm15P2vgJmM/WTUUHm15P+rRpF4WUcsCvVy8S536F8chR0idNwlp24RU/bOXlpE++D1NaGonz5qJuVvdhpr5C06IFyT8tQd20Kal3T6Rw8eJLNpYG2GG/hxnKTKj9FJQWerLyGdHYlSCG0gvLOPAFjgwnb8HQjvuwC3lgX8ViJye8zoPdEVP5BjT+SmelNaiiShEr/+1JmWI2SaohR8aUIBOkQO1aZhD52jrrRBERiQFEN5Ze1OSkVp/EOeDIFvNGvNQGxnILVrMN/xA1MU2CCI3xIzBc65Egc1m/wkJAqMaufvLtN9ZxLiRiSvr/utgnx/a92VdVGjmCAP4hUvBurdRaNWVDuW1qL1JwDuFkdBBTdtWSY/tWD3lwFxoU70JMlVsw24+R3seQ+zr0W14SvP/++0yaNIm7776b1q1bM3v2bHQ6HfPmuVfVC4JAdHS08y8qKuoijrhm5KWlcGz7ZnrcMsolVLlJ527knD5JaUFevWy3Ze9+WK1Wju/w7fnz6LZ/SGjTHoAzhyujKHJTT7PsnVf59J47mP/YVI5u+YeS3BxS9u2ul3FfjjBWlLPyw7eQyeX4h4Vz02PTq2Vw2axW/v7ua1Z++DZNuvbgzhkzCYqsfv2pNFpufepFrGYzv3/6vgvB17hzN9pfcwP/LJrvvC7KCvLJOHKQFj371Mm+WC1minOyUfv5c/q/f922C4mOpShbqvpckieRwTXtz7lQqjUERkTWmDP1769LKcnL4dpJD9RI6jkgk8vpN+Zu0g/t59Ru6SWr2WQk7cA+Vrz3Oif/rbmae8/htzPi2VfpPfJO2g28jg7XDmbQPVOZ9Ok8Wl3Vn9VffMyWJd9zcONajBXl9BpxR43b7nP7OM4cOehTtcSK4iKObN7Iivfe4MTOrXS+8SYCasiWDYqMIjROUpOZDe6fA0E6R39/P5+vHriXsoJ8ops0Y8LMWVw1aoxTiRnfqi0mfYXX6p65qafxCwlFFxhE8559aH/NDYg2G1uWfE9uWgrph/az4oO3SGjTlq7DbvW6vxeKBmKqHmA8fpzTo0ah37+fhDlfEjbx7otW7csTwqZMIWzSJHLeevuCs5rKNm0mfeo0dD26Ez/rE2Rqz1UY6hLhkyYR+eST5M/+gtwPL5ycKlq6jKznXyB49CiiX3jholUwlGk0xM+aha5nD9KnTqNs0+YL6k+0Wsl67nmKf11J7DtvEzh4cB2N1DtUSUkkLVyAzWgkdfx4zNnZF9Sfg5TS79130UgpB3SdOpE4by7Gkycl612J54wYT7AZDKTf/wDGo0dJnPMlmtat63Ck5wdFSAiJc78iZPRosl9+hayXX67XXK0G+ABRmkzqAlToS0xYzDVPwssKDPgFS/faqkRNvQ/Pyy3WMcGuaRLuzJjy8hMoIta4ndJ8A35BapfsLed2nJYx0SOBYtJbkStlLhYnwYdKb9XgQ3vRJpJxtJC4FiH4BanRBigpyHRPcDssYHWiLrKjrEg6Vo5rBUAXpMKkt3gleCxmK1aLDf8QyeJkNvqWM+X4HbaYbJXXQx0QUw7C0Wz03JcgCAgyAY2/EkHwTAjVBc693pyKKfvxchBUno6fk5g6T/mSSW9BYQ+qN1ZYnNv6X7DymUwmdu3axaBBg5zLZDIZgwYNYqsHFXpZWRlJSUkkJCRw8803c9BD1qfRaKSkpMTlrz6wbdmPBEZE0rrfQJflyR27IAgyj+TAhcA/NIyE1u04svlvr21L8nLIOnaEtv2vISA8wqmkObhxLd9Of5SirEwG3TOVUS++QY/howFY9dG7tcqaKi8qxGzwjTy/GLBZrRRmZ1KQecar6mTDwq+c6qZbnnwBjZ+/y+cFmWdY/OJT/LtyGQPG38vgB59A6cFGGhAWzo33P0bqvv/Y/fsKl8/6jrkLpVrD+q+/BODY9i3IZHKadqsbG1/BmQxEm434Vm04vcf9tRccHUNZQT5mo4FS+3kOCIvwaRshMXEUZrkGlRsrytn561I6Xj/Up6qO0c1aEJaQxO+z3uPb6Y8w665RLJnxLGeOHCI0LoE+d0xg/DufMOK5GU774KZFC/jvz+qFtFRaHdfd9xB9bh/P1p++Z/uyH2jWrRcBYTUXJ2rcqRth8YnsXP6Ty/KclFOs/PBt5jxwD3Mfmcz8x6fx+X3jWPXxu5zYuRVBJmPrz4uYPXkcmxYvdAkZt5hMFJ3NQqXVsX3ZD273WxRFfvvkPXat/IU2A6T73zUTp1arShjdtBkKlZqMQ/s9Hsfc1NMuqrBr7plK635XY7NaWPjkA/z4ynTC4hIY+uh0ZLLaF0SpLRqIqTpG6Zo1pIy+HZlKTaOfluB/1VWXekhOCIJAxGOPEjJ2LNkvv0zxihXeV6oBZf/8Q8a0afj17En8rFkXlZRyIOyeiUQ+9RT5X3xB7gfV/da+omjZL2Q99xzBI0cS/eKLF42UckCmUhH/ySf49exJxrRplP2z6bz6EW02sl54keIVK4h9+22Chgyp45F6hyoxkaSFCxDNZsnWl5V1Xv24kFJfzL6opJQD2vbtSfx6HqbUVNLunoi1qKjWfdhMJjIeegj9nj0kfDEbbYcOdT/Q84SgVBL9wvNEz3iVop+XkjpxIpb8/Es9rP9JOG5d+hKTU+1R5kY1VVpgIDBMepitmrlUf2Ozq528Wfls1Ykpp4rKvkz0MhWWsoRcN2QxW6koMREYrsVssDon3g7Co1K9YpNyptyQUyaDBaVa7qIkqS0p5esvTF5GGfpSM4mtQgEp26kgy70t2GHlq8tA+zJ7KLbjegLwC5T+v7zY83VjsRNAuiDJGueznc9+gMwmq9NmWieKKXtf3o6PaJPISZlcQBTBqK/l8fRZMlW5vapwEFNGvRSo68j28nT8HH2I3r5gbmAyWAkI1di3b8JisqHUyNH7oKb0NbvrckVeXh5Wq7Wa4ikqKopsNy/GWrRowbx581i+fDnffvstNpuN3r17k5FRc9bNm2++SVBQkPMvIcH7ZLm2yD+TztGt/9D95pHIFa4KG21AILEtWjkVIfWBllf1I/3APq/Vu45v34pcqaRxlx7Et2pLxuGD7Fn9G3989gGt+w1k3Duf0OHawSS0aU+v2+6gVZ8BmAx6fnj5aa99nzl6mAVP3M/s+8bxyd2jWP3lJ5iNrgTVxawobNJXsGnxQmbfN455D0/m60fv4/P7xrH5x++qjQvg5K4dHFj/FzarleumPER4QpLLuPes/o1vnnkIQ3kpd7z6Ll2G3OLT709yh850GXIz/3w/36XanMbPn4F3Teb4ji2k7N3NyV3bSWzbHo2/v4fefIeDMGresw+FWZnVCCQHHBX4is5mU5KXi9rPD7WPzpmgyCiKc1zdFXtW/4bVbKLbMPcVt60WC0e3bmLJjGeZPXks+empGCvKsZhMtOjdD4ABEyZz9/uf0+OWkUQkNSK5fSfGvf0xfe6YgCCTsW7ebA5v2lBj/z1uHUWTrj2pKC4isV1Ht+MQZDK6Dr2VU7t3Upwj3W8Ob97Id88+Sk7KSYKjoinOziI/Iw1dQBCNOnVFGxDIlC+/5a73PqP9oBvYtWo53zz1kDNLLHX/HswGAx2vG8zRrf+4/d7s/et3jm3bxNBHniIwPAK1n5/LNeeAXKEkplkLzhw95HY/AHJTU1yIKZlczo33P8awR6ej1GjxCw6hy5CbMRv0GOrAReINlz0xdaUEG4o2G7mfzCLjgQfx69OH5MWLUNXDj9iFQhAEop6dTtDwW8l8Zjolf66u1fplGzeSMe1+/K66irhPPq63HCZfEDbxbiKffpr8L78k9/0Pav3DVbx8OVnPPkvwbbcR/fJLF52UckCmUhH3ycf4XXUVGfffT9k//9RqfYmUeoHiX34h9u23CBo2tJ5G6h2qhASSFn4DVqtETtUyZPtyIKUc0LZpQ9KC+ZjPnCH17olYCn0ruwogms1kPv44Fdu2E//prEu6H54QMnIkSQvmYzqdwumRIzEcPnyph/S/B1GaJOrLzASGS3bvUjcB6KUFBoIipQc//cVUTHn53OqwW1mqElP2z+zLBB/sgOfewh0V+YKipOPiUE05yC7bOYSYxQ0RYjJYUarlGMrq/5ilHy5AoZI5bXyhMf4UZHogpvQWZHKhVhXwvKG8yIggVAaCQyXRVOGh6iPgVOtp/aVJsq/jqrTcVSqmbHWgAnP0ZfZCTJUXG0GsbG/S+251lYoI+mhZtLerrpiyoFDKEG2SWspssiHIBM+KKZtvxK87GPUW/Ozn1VGJT6VROEP+G+CKXr16MX78eDp27Ej//v1ZunQpERERfPHFFzW2nz59OsXFxc6/9PS6D/7dvvQH/EPDnMqHc9G4czdpwmry/L09XzTrcRWCTMbRrZ6fO1P27Sa+VVvUOh3xrdpw9vQJ1s79jE43DuO6+x6qZltrO/A6RJsNk17P8ndfczv+4zu38uMr01FpdQx95Gn63nkXhzdt4KfXXsBsMnJ8+xa+nf4IH9x5M7PvG8f6+V/WmG9VVyjIzOCbZx5m12/LadVnALc99xq3Pf8arfsOZOfyJSx64UkXFZjZaGDNnE+RyeW06N2PVvaMMJAsdkvfepm1cz+jTb9rGPfWx8Q0a1Gr8Vx1+3j8w8JZO/dTlzlO8559iG3Rmg0LvyLj0AEad6m7olqF2Vmo/fxo0rUHcoWC03tqLtIUHB0DQFF2JqV5uQSG+174KigymuKcs5VKW7OZ3b8tp3X/a/APDavWXhRFju/cyvzHprLyw7ewWqwMumcakz+fT5/bx1NwJp1j27fQZsAgOt84rNr6MrmcHreMZNzbH6NQqfht1nsc/qfmynNa/wBkCgW7fluOxYOboEXvvqi0Og6s/4vU/Xv4/ZP3aNG7H4279CDtwF463jCUce/MQqFWcfq/f+l8403oAgIJi0+k/9iJjH/nY5RaLT+8/DSZx45wYudWQmLj6XbTbchkcg5uXFttm/rSEv75/mvaXXM9zbr3JvvkMaKbNHc7f41u0oyzp0+63QezwUBpfi5hcdX5iuY9r2LcWx8SFBnNivfeYM79E9lTg9qsrnFZE1NXUrChraKCkpUriXjkYeI++hCZn99F2e75QJDJiHn1VQJvuIEzTzxB2caNPq1XumGDRLz160f8Rx9eUlLKgbC77yLymafJnzOnVuRU8YoVZD4znaARw4l+5eVLRko5IFOpiPvoQ/z69CFj2v2U/e1dWg0SKZX90ksUL11G7FtvEjSs+g35YkMVH0fSwgUgihI5dabmty3nwqbXkz718iClHNC0bEniggVYzp4lbcJdWAoKvK4jWq1kPjOd0vUbiPvow8tKNVkTdJ070+inJShCQn2+FzSg7lA1syYo0k5M1ZAFZDJYqCg2ERqtk8LALyYx5UX4IlpqyNNxZkzZqv7T4zbOvX87CLqwGOlNsGOfKxVT0v9XzTeqCWa9BbVO6ZOS5EKRfriAuOYhyJXSb0porB9FOXq31jJjhQWFSuaSF3ShKC8yog1UIZNX/q75BfmomLKPU+vvUEz5aOWrkgXlOD91oZhyhIdbTJ77KrWTmM4A8FpUrhQlZsrHxvb/1KCYUmokm4OpQrJMyrwRU1ZHVtp5Kqb0Fud5ddj31DqFT1Y+uKIFU4SHhyOXyzl7Tqbl2bNniY6uucT9uVAqlXTq1IkTJ07U+LlarSYwMNDlry5RkJnBkc1/0+PmkdWIHQeadOmOxWgk46BnO875QusfQHLHzhzZ4v6Z02IykXHoAMntOwEQEhsPokh0k+YMHD+pRvVPfKs2aAMCadylO7lpKfzx6QfVwtCzjh/lt4/epWnXHox66Q1a9OpLt2HDGfXCG+SknOTbpx9mxftvoPEPoP2gG/ALCWPP6t/46oGJHN9Zc4ZQbZB+aD8bv53HpsXfkJ+RRn5GGouefwK5QsmEd2Yx8K7JJLXvSFK7jgycMIkxb36IobyMn157noqSYgC2/7KEsqICNP4BDLpnmrPvo1s3seDJB8hNOcXwZ15m0L3TPFr33EGpUjNo4lTSDuzjSBWVjyAI9B87kfyMNGxWC4071d3zclF2FsFRsai1OuJatXVrJdUFBaPSainKzqI0P5eAcN9sfCARUyZ9hTN4/9TuHVQUF9Fl8M3V2poMen6f9R4rZr5OcEws497+mNtfeZv2g24gIDScLkNvRanRYrOY6XXbnR7VaBGJyQx/9lUQRX6b9R77zqlKabWYObFzK236XU1JTjbblrq31CnVGlr16c/+dav57ZOZJLRpR0h0LLtWLmPA+Elcfdd9RCYlE5HYCEEm4/jOrS5EV0hMHKNfepOw+CSWvf0Kx3ZspVm3nmj8/WnW8yr2r/2z2ndm16pfEG0ifUaPAyAn9TSRjZq4HWNkoyaU5uU6r9dzUWBXw4XE1FwlPCQmjjtmvMtd733G8Omv0KrvALfbqitc1sTUxQg2rCsPudzfn0bLfyF8ypTLIk/KGwS5nNi338K/Xz8yHnqY8m2ek/ZL160n48GH8Ovfj/gP3ke4DEgpB8LuqkpOve/1Ia/4118lUmr4rcS8+uolJ6UckKlUxH/4AX79+pFx/wNeSQKJlHqZop9+JubNNwi66aaLNFLvUMbZySlBIHXceEwZnskpJym17+JnSnmDpkVzkhYuwFJQQOr48Vjy3AeROiyVJb//TtzMmQQMHOi27eUEZUwMSd9/R9jkyZd6KP9zqHq78g/W4B+ipiS3evW04hxpWXCUH7og9UWx8jng7Z5qdWZMVU7Cz1UzeZsF22zVFVOl+QYQIDzBTkzZSZWqAdNVJ/41kRdWqw2L2YYmQOnMXnKMpzaEgDdyDiQFS+bxIhLbhDqXhcb6IdpECs9W1LiOqcKCQiWvU2JKX2ZGG+D6G632UyBTCF4JTcf50tgVU75aDK0WSSEkKabq0Mpn78PiJeuq3H5unWHyJpvvx1T0nqNWtS1UDy43lJtR6+yFCSrMWIxWr0o4p5XPx02fC5PB4qxG6LCEav2VvoWfX+FWPpVKRZcuXVi7tlJVYLPZWLt2Lb16+Za1Y7Va2b9/PzExMfU1TI/YtvQH/EJCaHv1dW7bhMYlEBQZxcld9VOdD6B5j6vIOn7UrXXozNFDWExGkjp0RhRFtv28WJprNW3m9vlZJpfTqGMXclNOMfjBxzm2fTN/fz+fzGOHMRsMFOdk88u7M4hs3JQbH3jcxcYY06wFjTp1oyAzg+a9+2KsqGDv6t8wlpcSnpiE2WBkxczX+On1Fykr8D2CwGqxkHZgL9uX/cj8J+7nx1ems3/tn+z5cyXzn7ifRS88SUBYOLe/+o5TDVQVEYnJjHrhDQzlZfz6/psUZGVKGUOiyPVTH0bj74+hvIzfZr3Hyg/fIrFNeybM/JRGnbr6PMaakNyxC8169ObvRQtclGexzVsSGB6JTC5HV4cV0YvOZjr3v3GnrqQf2l9j9pcgCARHxVKYnUlJXi6BtSKmpLl5id3Od3DDGqKbNq+Wk1ReVMii55/gxM5tDH7wCUZMf8Wlmh1Ayt7dmPQVKFQq1s37HJvN829FQqu2tO53NQqVmr++/MRFmZS6fw+G8jI63TCMbjeN4N+VSynJdS+GaXf19VI2mslIqz4D2LLkO3qPGkOXIRLBlpt6mpO7ttP9llHkp6ey9afvXdZX6/y45akXkCuVmMrLaNKlBwBtB1xL0dkssk8ed7a1mM3sW/MHbQdeiy4omIqSYsry86odj6qIspNW7gLQC+2VER0ZXO4QFp9Io45dCIr0jfS/EFweM/IacDGCDaFuPeSyi2QbrCsISiVxH7yPrmtXe/Wz/2psV7p2LRkPP0zAgAHEf/DBZUVKOVBJTn1F7nvvuZ1wFK9cRebTzxB0883EzJhx2ZBSDggqFfEfvI9f/35kPPCgW3JKtNnIfuVVin76iZg33rgo1fdqC2VsLEnfLASFgrQJE9ySU9VIqa4X9iNeH1A3bUrSwoXYiktInXAXltzqgZ6iKHL2tdcpXiap1wJvuP4SjPT8IVOrL7vvw/8CqiovNAFKQqJ1FGZXJzGK7MRGUKQWbYDyolj5RDeT8HPhICAsNWRMWUy+qULEGirrleTr8QtSowtUIVfIqlv5rKILMVWTKslszxryD1ZTXmisQgaIPpFNVUbodSKfsi8Pm1WkUYfKB/TQGEk9XZBVczaDscKMSi3HbLDWWY6KoczstOI5IAgCukCVD1Y+6aCodQqXf3uD1SIiyCQroIMgrIsAckdfXq18RUZkMgFjFaWUu6y2cyHWgqR0Z+UzlpnR+NntjxVShTyZQuZRMWV1Vg48v5eZFpMNpUqGQiVzEnKaABV6H0jr8821upzw2GOPMWfOHBYsWMDhw4eZOnUq5eXl3H333QCMHz+e6dOnO9u/+uqrrF69mlOnTrF7927Gjh1Lamoq995770Ufe0HmGY5s2kj3W9yrpUD63jbu3J1Tu3fWW85So05dERDcZlml7vsPv+AQwhOSOPHvNtL27yG+TXsyDnueXzXq1JXc1NNEN21O/zF38++vS1n0wpPMfXgSP73+AiqNlpufeA7FOXOKzGOHOb5jCwHhkRzbuomK4kJGvvAG93z8FePe+ogpXyzEPzSMtP17mP/4NFL37/E4jvKiQjZ+O4/Z941jyYzn2LLkO/LTU/ELDsVqsWCsKAdRxFhRTnhiMmqde8dLcHQMNz02nTNHDrFi5muINhtNuvagcadupB3Yx8InH+Tkv9u58f7HGProM2gD6kZl1/fOu6goKuS/3391LrPZrJgMemxWK/vW/FEn2wFJMRViJ6aadOmB1Wzm5O6aidGgyChKcnMozcv1OfjcsR5I+VTlRYWc3rOLNv1d7axlhQX88Mp0DGWljHnjfVr1GVCtH5vNyubFC0ls256hDz/N6f92sWbOp9WURuei54jbsZhNRDdtwV9ffsKZI1IO07GtmwmNjSc8MZluN9+Gxj+Av7+f77YfxzcyOCqGjd/Oo1n33vQcfrvz850rfiYwIopeI26n1213snPFUrJPHHPpQ+sfQFxLqTDS6b2SbTK+dRu0gUEc215ZFOv49s3oS0vocJ1U2MpBNkUmu1dMBUfFoNJqOXuqZlVoQWYGuqDgOssnqwtctrOQixFsCBfHQ345Q6ZSET/rEzStW5E++T705xB5JX/9RcbDjxBw9dXEvf8egocf0EuNsLvuImr6M+R/NbdGW1/xqlVkPvUUQTfdRMxrlx8p5YCgUhH//vuScuqBB6vZ+kRRJPvVVyn68UdiXnuN4FtvuTQD9QHK6GiSFswHmYy0CdVtfVcCKeWAunEjEhcuwFZaKlkUq1iKRVEk592ZFH7/PdGvvHxZqdcacHmj6n1KF6AiONqPwuzqmURFORVoA5Ro/JRoA1S1KAl/QYOT/uOh4h2A1SxKldCqKGQqK7PZJ+beAtRrqKxXkmcgMFwjkSpBKqdiylHBzmYVXaxmNVUzNNnDp/1DNFgtNvRlZinPqgbroMfx+dD01J5cIpMDnYHUABo/JX5BKgrO1JwzZaywoNQqsNnEOqskpy8zVSOmQLLz+ayYspMs7ipEVlvPYpOsa4YqxJQXQtMXOLbvTblVXmRE7adAtImo/SRSzReCBhz5Zj4SUw4BYA1WPm2AdMyMegtmow25wrOVz9nHeRIOFrMVhUqOUi13ElO6QJVvVj57JUBv3+3LGaNHj2bmzJm8+OKLdOzYkT179vDHH3845w1paWlkVSnCUlhYyKRJk2jVqhWDBw+mpKSELVu20PoSVMvdvnQxfsHBtBvoXi3lQOMu3SnNzyXPHpJc19AFBhHboiUnd9XsnMg8dpi4Vm2xWixs/GYuyR270O7q68hLS6E0372CPKlDZwRBRsqe3S7P2/rSEkpyc7j1mZfQBboqfWxWK6u/+ITI5MaYjXoQRVr2GUBi2/ZON4ouKJg7Xn0XtZ8fMoWCn994kb1//UZFSTEHN64lZc8uRJuN8qJCNiz8iq8evNepNBkw/l5sVivXTJzKlC8W8tCCJXQZcgsAKq2Ww5s2MPfhSZzctd3tPSG+VVvaXX0t+RlpIJPTf9w9bFj4FUtmPEtwVDQTZs6idb+r69Q9ExIdS/tBN7J92Y9OW1b2ieMYykpp1KkbO5b/VGMwe21hNhooK8gn2B5sHhwdQ0zTFm7DwgMjIig+m42xorxWiimNfwAqrY7inGyJEBWhRa8+LuNY9vYrmA16Rr38VjUllQNHNm0kLz2VPndMoHHnblw/9WH2r/+L1V/Owmpxfx8MiY6ldd+BlBXkE920OSvef4PyokJS9u6icZfuCIKASqPlqtFjObrlb7eKox3LfkTt509eWgoyhYJrJz/gPO+lBXkc3foPnW+8CblCQbebRhCemMS6BV+6XFuiKJJ17ChRjZuyc8XPFJ3NtldZ7MnxHVucbQ9v2kBcy9bOPKi81NMo1GoniVgTBJmMyOQm5LjJmSrIPOPWxnepcHnOzM8TtQ02hPr3kF8JkGm1JMyejapRI9LvuRfDMYnNLVm9mjOPPkbAtYOIm/nuZU1KORA6YUKlra9Ktb6S334j88mnCBo2lJjXX0OQ13/JywuBUznlIKfsgeiiKHJ2xgyKFv9AzGszCB7hvnrF5QJlTIxk65PJXDKnriRSygF1o0YkfbMQm15P2vgJmO35FnmfzKJg3jyinn2WkFGjLvEoG3AloeqLPbWfkpAoHcU5+ipqCgmF2RUER0nB51p/pc+T7guD9IBl8zJxtpisCDIBq7nKw5ZNBKFS8eJt4m+zSYqkquRUab6ewDApd0sXqKKixKGYkib7NqsNk7FSIVOTlc9BTAWFS2RRaYGhMtunNpNyL+SFUW8h7UA+TTpVfzgPjfN3W5nPqLeg1irsY62bAHRDmRmNf3Vls8ZP6awe5w4OIsipmPKS7eSA1WxDJhdcLKZ1YeVzKKW8jUNfXqlYcuRj+Uze1sLW5mhWPfzc7AybNxmkjCmFUu6xKp9TiXie3JDVZEOulEnbsRNTfkEqJ/nqGTUrv640PPDAA6SmpmI0Gtm+fTs9evRwfrZhwwbmz5/v/PcHH3zgbJudnc2qVavo1KnTRR9zQeYZDm/aSLebR1ZTC9WE+FZtUao19Vqdr3Hn7qTuqx6ybrVYOHvqJDFNm3Po77UU55xlwLh7SHaQTnt3u+1T6x9AdLPmnNq9g39/XUrLPjkUCzcAAOqrSURBVAPxCwnFZrVis1qpSSl4YMMaifABFAol7a+5gT1//FotIycwIpLrpzyMvqSYhNbtWPPVZ8y5fyJ/fPYBP7/5El89dC9z7p/I/nWr6TpsOJNmzaP3qDH8u3IZjTt3c6pOCjIz+O+PlXS7aQTT5i4iPCGJ8sICfnlnBotfetptcLSjopx/SCjL332NPX+upP/YiYx84fVahYDXBr1G3A6I7FzxMwCndu9E4x/AgAmT0JeW1IlqqvisJPwIjqokO1r2GUDKnl015hQFhkdSmi85CAJqsd+CINjVVmdJ2bub6KbNXNRlf305i4LMDG59+iVn9b9zIdpsbFv2I0269iSmqRQq36b/Ndww9REO/b2OJTOeoyjbfXXwzjfeRFlBHm0GDEIURVZ+9A7lRYUkd+jsbNOm3zUER8Ww7efF1dYvzM7k+M6tJHfojGiz0XbAtS77sOfPVShUKtoOvBaQ7K39x91D1rEjHK+ihDp76gSl+bn0HjkGbWAQf38rxRU1796b4rPZ5KaexlBWRuq+PbTo1bdy+1mZhMbEexVZhCcmk5dec952YeYZQuM82/guNi5bYupiBBs2oBJyf38S53yJIiaGtIn3kL/wG848+hiB111H3LtXBinlQNhdd1VW6/vwI4p//50zTz5F4NAhxLzxxmVPSjngJKf69CHj/gco/ftvzs54jcLvFxE941WCR4y41EP0GS7k1IS7MJ48SfqUqVcUKeWAKimJpIULsBmNpI4fT85775P32WdEPP4YoePHXerhNeAKg4McUarlyGQCITF+2GxitZyp4pwKgu0V+bQBPqoiLnx0LmN0B4tZyhdyqqOwW7sEoQox5WErolhFYVVJQJTkGQiwE0p+QepqGVNWi6uVrybbmclu5XMEy5cVGJzqm9pMyr3N849tz8ZqFWnRo/rzSWi0n3tiqsJSaQGro5wpfWmleqcqNP5Kr9eN1Wnlq13GlM1qQyaXuVgFL1QBZrPaEK0g86I8Art90Z6rpfFTIMgEryScA5KN1NdB1fydMJRJxJQgEzDprVhMVuQqz1Y+x/V3PoIpURSxmG0olDIUarmT1PQPUWM127weL2dW1hVOTF2J2PrT9/gFB9P+Gt/s/gqlksR2HTnlJoS6LtCkaw8sJiNp+/e6LM9LT8ViMhLVpBk7V/xMs+69CItPdJJOp/d4HlPjjl1J2fcfZYUFZB07jKGszBnWvG2p62TfZrWybeliIhs3Jef0SQY/9CRX3T4Om83Gf39UrwbWtFtP2g68jsxjR1Co1VhMRkJj45HJ5ZTk5hCemMSkWfO4atQYNP7+7P5tBRXFRQycMBlBEBBFkfUL5hAYEUHvUWORyxUMfeRpbFYrrftdjUlfwXfPPsrf3893IezyM9JI3b8HhVpNaV4OxvJyxrzxAV2HDa9XJ4YuKJhONwxj72pJHXZq9w4adepKaEwsbfpfUyeqqcKzEpFTNWOrZe++iKLIsW2bq7UPiIjEapF+t2qjmALJzleUnUXa/j0uZNDRrf9weNMGrp30gMf8pNN7dlGYmUH3m13nQm36X8Pol9+kJC+X+Y9PZe282eSmpVQj66MaNyW2eSsO/7OBayfdT8ah/cgVCuJatnG2kcnl9Lh1FMd3bCE39bTL+rtW/oI2IJDsE8dQajSU5FbyFWajgX1r/qDd1deh1umcy5PadaRx525sWrzQmYV1YudWNP4BJHfozFWjxnJ8xxZyUk4R36Y9CrWalL27OfHvNmw2K816VBZTKsw6Q0hMzaRdVYQnJFKUnVlNQSbabBRkZRDaoJjyDf8fgg2vNMiDgkic+xWCQk7OG2/g368fse+8jaBQXOqh1Rphd99F5FNPkf/FF2Q+9jiBN95A7JtvXjGklAOCPRBd17s3GVOmSlaxV18hZOTISz20WkMZE0PSgvmIosjp4SPQ791L4pwvryhSygFVYiJJCxdgLSwif84cQsaPJ3zSpEs9rAZcgahKTAGEREsPMVVzpmw2kYLsCkKipewLjb+SilJTvWWOOMfmrEDmuZ3VLFUgq6pqkaxdleomT+RW1QwrB5lhMVmpKDG5KKbK7TY0m6WSxHKx8tVAojjIHv9QDUq1nOJcfRViy3fiRLL/1bwPoihy8J9MktuF4ResrvZ5cLSO0jxDNRUcSBlTTmLKg7qmNuM0VMk7qgrfFFPSGBVKGXKlrFYZUzK5a7j6hSqmHNeTXCHzaik0lJnxC5aIKYVagcZPgaHMN1WhFLzva8aUfZ0q16woipJiy1+FSiMF2ZuNVpRKuWcrn7OP2n+PHcdWoZKjVMkwm6wo1HJ0ga5V+txu2011wQbUL86ePsmRzRvpNfJOn9RSDjTu3JWsY0fQl5XWy7hCY+MJjo7h1Dkh69knjiHIZJTm5lCUnUWPWyoV4Y06dCF13x4nMVETopo0w2KUSB1dUDB3vjaT2199B11wCEc2bXDJvjm+YwulebkUZWXSduC1JLRuhy4wiPZXX8+eP37FZHB9WSOKIi379MNqsTi3UZCZQUKb9vQfdw9nT52gKDsTAGNFBTuX/0T7QTc6SZdTu3eSuu8/+o+715nzFRafSKcbhnJi5zZue/41eo8cw+5Vv7Do+Sec6ps1cz8HwGI0SpXpdDrCE5Jqf9DPA50H34yIFECfm3qaxp2lQkE9bh2NvrSEvX/9fkH9F2VnodRo0QUFO5fpgoJp1Kkr+/76rdp90qEOE2Qy/EJCarWtoMhoCjIzMJSXkdyhCwCGsjLWzP2c5j2uqjFTqir+XbmMmGYtiG3eqtpnsc1bcff7n9P9llEc3foPC598gNn3jeOHV57h1/ff5NcP3mLFe29gMZtIP7iP3b+tQK5QYLPZOLJpPfrSykJorfoOJCgyyqVCn7GinIMb1xLVqAkleTm0HXAtJ3ftcBKYx7ZtxlBWSsfrq1dK73XbnRRmZXJs22Yn4dekaw9kcjmt+gwgKCqabUsXo1AqSWjdjtR9uzm2bRPxLdvgH1JZWKUg6wwhsd5JpbC4RGxWazX1WGlBPhajUaqyeRnhsiWm4MoONrxSUbFtG5bcPAQ/HYajR2sMeb5SoIyLA0EAUUQZn3DFkVJOKJWo4uIkz49cjtIHhvxyhTwkBGVEBKLJhCwgAOUVTBqXb96CraQEmZ8fpevWYc7MvNRD+n+PTz/9lOTkZDQaDT169GDHDveViubPn48gCC5/msuwQIVjgusoNa8LVKENUJKbVjkBKcwux2K0EpkUILUJUGGzuOYr1QccD6FeFVMmycblmjFlr9JWRd3kDlWVNY4+SvKlN79BEdI50waqnIHvFrsyy2rxXpXPQfaotUpCY/3IP1PmbGerDTFlE93SBxlHCsk/U0bbfjU/JAZHamtUwYmiiLGisrJaXSimTAYrNpvorKpXFRp/78SU41zIVTIUSpnPqierxWYPqK8kg2pzfGuCw8anUHpWHoGrlU6uEGqVwyaKvhM0NX0nzEYrNouIxl+BSqOQiCmTFYW6/hRTjmtYoZShUMmxGK2o1HLnedeXetv3ypy2Blw8/PP9fEJi42k74NpardeoU1dE0ebROnchEASBRh27krJvtwv5kHXiKBGJjTiw/i/iW7clqnFT52dNuvbApK8g/dD+av3ZbFZ2/7aclR+8BUjWuztefYfI5MYoVWoGjJ2IKIosee158jPSEEWRf1cuIyAsHIC+d0xw9tVl6C2YDHr2r/0TgIriInYs/4mvH5vKTzOeR7QrTwZMmETvkWNI3fcfCAKhsfFssVdBO7B+NWajge633OYc38Zv55HYtgNNunR3GXu3m27DZrOy549f6Tl8NGPe+ACz0cC30x9hx/KfyLDv74Dx93LTE89RcCado1v/ubAT4CN0gUF0uHYw+9b+gSCTOZVGwVHRtOl/Df/+urSaHbM2KMqWKvKdm4/V6YZh5KalkHH4gMvywAiJmNL4+SOT1W6OFRQZRVlhAWqdH9FNmwGSis5qMnH1RM8V7nNSTpF+cB9dhtzqto1SraH3yDu57/P5DJ/+Cu2vuR7/kDCM+gqMFeWYjQZ0gUEIMhnlRYVYrVZEm40/Z3/M7PvG89us98hNS7HnQ93G8e1bKLJbHY9u+QeLycTZ0ydp0/8aOt0wFLNBT8p/Unj5vrV/ktS+E8FR1RXU0U2akdS+EzuW/cjZUycozDpDy979AKRtDRvB8R1bKc45S3KHzmQcPkjagX0u16lJX0F5YYFPaqfQeHsmVXqay/LCTClWJdQHcuti4rImpq7kYMMrEcUrV3HmiScJGjqExsuXIwgCqXfd5RLyfKWg5K+/OPP44wTeeCMRjz1K/uzZ5H4y61IPq9YQRZGct96i8LvviHr+Ofz79CHj/vsp21RdUnu5w1ZRQfqUqRiOHSPuww+QqdVS5tQVSOgULfuF7JdfJmTsWBot/wUBSB033m3lwQZcOH744Qcee+wxXnrpJXbv3k2HDh24/vrryfFwfwoMDCQrK8v5l5pas8/+UsIxOVWqpIc6QRCIahRE9qnKPIecFImkikiUiCmN3aal91ERct7w0e5jsecLuRJMoqSistiqBaOfi6qfOYmpPInECaiimNKXmV1Cwp2WJfvzq7XG8HMp/0qhkhEe709eRplTWeWJLDsX7sgL0SaybfkpohoFktA6tIY1IThKUroV5bgSUxaTDZtVRBfoUExdONHoyB5z2NqqQuMnWfk8kTAWs3S+ZDJBUkz5aOWzmiViqqpS50LDzx3blsbhJWOqzITC/h2SK2TOffUFok30vTKffRhVvxMOsk/rp0KllWx1FpMNpUbhsdqiow9vGW41wUkgOogpkw2VVlElX8vzvUH8fxB+fqUhdd8eUvf9R987xiOr5YvSgNBwIpIbc7oec6aS2neiJDfHqTICSTEVGhtH+qH9tL/a1XoYkdSIoMgol7wckCqt/fjKdNYv/IrkTl3sSwUXm1uTrj0QZDKUKhVL33qZ9EP7yT5xjIqSYjoPvtlFsRMYHkmrPgP4d+Uy/v52HnMevIetS74nqlETmnTtidrPn4Q27fjv9xV0GXYr3W4awcaFXxHXsg2n//uXrBPH2P37r7To3Y+AUIn4Orp1E4WZGfS9865qBIhfcAgdrxvC7t8llVZEUiPGvvkhofGJ/GOv0Dbonml0GXILcc1b0ahTV7Yt/cFrJbi6Qteht2K1WAgIi0DjV1lNrfstI6koLmb/2tXn3XdRdhYhUdVfGCe160hYfCK7Vi13Wa7x80eQyVFqtbXeVlBkNKLNRmyL1shkcoqys/jvj5V0v2UkfsGe1Vd7V/+Gf1g4zbp7d1DJFUoadezCVaPHMeShJ7ntuRnc9twMRjz7KiOefZVWfQZgNkhB+51uGIYgk9PtphGcOXKQb556iLXzZtO0ey/U/v7s/l3a/wMb/iIsPh5DaSndb76NkJg4IhKTObZ9M/kZ6WQePUS7q90XNuh562hy01LYvuwHdEHBJLbt4Pysdd+BqLU69q35naT2nbBZrVjNJhe7Y2GW9B31JbhcFxiENjDImd3mQEFWBjK5gqBI3+KRLhYua2IKrsxgwysRxStWVFase+MNVPHxJM7/GtFgJG3iRCwFBZd6iD6jdM0aZ2h77DtvEz55MhGPPUbep5+SO+vTSz08nyGKIjlvv0PBgoVEvfgCoWPHEvfJx/j16iWRU5uvHHLKVlFB+tRpGPbvJ3HOlwRef72UOQWkTrjriiKniletIuu55wgeOZKo555FFR/vzM9KGz8ek4cqoA04f7z//vtMmjSJu+++m9atWzN79mx0Oh3z5s1zu44gCERHRzv/zq3yejnAMTlVqCsnKtGNAzmbUuL8LPNEEaGxfqjsIdnOyadXVUTdwHvGlFWyW51DMMkUMqwmKwiCR2VGVbuYw6ZXmm9AJhec1jhdoArRJtnUpPwqaT2zwSrZIAV3GVMWVBo5giAQnhBAYXaFk0iojdXMZicvzsW+9RnkpJTQ69Ymbt/w+gWrUKjlFFWxZ4KULyXtm7SPdWHlc5AxNVXl0/gpEUWcFdxqgtVsQ66SjpeiNlY+q81pRwXsYfh1Y+VTquRO9VRNsNkk5VnVa0zrQ56WY10HfCFpHCSSCzFl347GX4lKKymmHAomm010e505rXzncZgc1kaFUoZSJSnbVBq587x73/f/H+HnVwpEm41/Fs0nplkLmnbzLY7kXDTu1JXTe3c7s2nqGgmt2yKTy0ndtweQ7G/5Z9IxVlSg9vOjaY/eLu0FQaBp996c2LnNOaas40f57rnHKCvIZ/RLbxLfqi2CTEZJ7llK8ipfIqm0OiKTmxDdpDkVxcWsn/8lSo0GmUxO5xur259im7ekrCCfXb+voMvgm5k8ewHXTXmIjEP76XDtjQy69wFK8/PZvfIX+t55Fx2uG8L+9avR+Aew+YeFlOSepcvgmwHpXGxf+gONOnYhukmzGo9FpxuGYTYaOLhxLaIocmD9X2SfOOr83GqtvId2v2Uk+RlpnN676/wOfC2h1ukQBIGKkmIspkoCOiQ6llZ9+rNz+RKX5bVB0dksl3wpBwRBoNtNIzj57zYX+6UgCMgVCuTy2ke+qP0lUi08Uaq4t2PFT2gDAugy5GaP65kNBo5s2UjbAYNqTfDWhNZ9r6assAC/4FD63D4ejb8/FSVFTPzwS/qNuYuDG9aw+MUnada9FwfW/UXm8aNkHT9KeXExLXr3dZJDzXpcxandO9n7129oAgJp0rWn223Gt25LdJPmnP5vF8179nHZD6VGQ5v+17B/3WoCI6JQarUo1RrCqthFC7Kkl+DBPjpowuITyD+T7rKsMPMMwdExdXIM6xKXPTHVgPpH0bJfyHz6GYJuvYWYN153Wt5UCQkkfv011qJi0u65F2tx9YoMlxtK164l45FHCRg0SAptt+djhU+eRMSjj5I3axa5n17+5JQoiuS8O5OC+fOJeuF5Qu+8EwCZSkXcJx+j69mDjGn3U75lyyUeqXdUJaUS5nyJrov0Bk0ZG0vSgvkgihI5leW+esblgpK//iLzqacJGjaU6Fdedk5ElbGxJH2zEBQKUsePx5Se7qWnBtQGJpOJXbt2MWjQIOcymUzGoEGD2Lp1q9v1ysrKSEpKIiEhgZtvvpmDBw963I7RaKSkpMTlr75hs1ZOvh2IbRaC2WAlJ6UEURRJO5hPYhU1jiPYur4r8zmIGG+TV6vJTkK5EEw2ezaQpMDxREzVaOXL0xMQqkEms5cID3SQcSas5kqboMkoVbVTuFHVmAwWVBrpdyC+RQiiTST9cEG17XqDaJOIhNVzD3Lqv1ysFhuHt2Sy+afjdLg6gbjm7t/wCoJAcKSWopxziSmzc9/kCpkzqP1CUJUkORdO0sKDnc9itqJQSI+GCpW8VhlTKq10DTvUVheaMeWwwUmKIPfHxlhhBhEs9vZWsw2Nv9InK5+tSu6XL7Y2R96aWINiSu1XaeWzmG1OItmdnc9p5TuPjCmnlU8ldx5rpUb6f5VG7p20bsiYuqgwVJSj9vOn3513e7QoeUKjTt0wlJaQfeJYHY9OgkqrI7Z5K1L2/QfA2VPHQRTJPnmMVn0GoFRVz89r3qM3FcVFZB47Quaxw/w441lCY+MZ8+aHxLdqS8bhg0Q1aoogk3H6nPD22BYtyU1Poddtd5CXloLVbKbDdYNdKpsB7FvzB2vmfo5KqyW6SXP63D4erX8AJ3ZsxVhRTtuB1xIaG0enG4exY/lPlBcWcM3d99GkSw9MBj2p+/cS27yV04Z4fMcW8jPS6DnidrfHIjA8gmbde7N71XJ+/eBNNiz8Co2/pFhuM2AQ6+d/yb61UhW8uBatiWnagn9/XXb+B78WSDuwD9Fmw2I0cHjTBpfPegwfTVlRIQc2rKl1vxazmZK8XILdVMFr1WcAobHxbPrhG5floigi+lw9ohIOZZ5fcCjlRYUc+nsdnW68CaXac+TCse2bMen1tB0wyGM7X5HQth2CTIbG3x+VVku3m0ZwcMMaygry6DpsOOPe/giVRsfBjWuxmE1sXrwQhUqFobSEHrdU5v0269Ebk76CgxvX0KbfQGdumTsktm2P1WImtkX1jKwO1w1GX1rCqV3bkclkyJVKl/tGYeYZdEHBLoo5TwiLTyL/nMp8BZkZl52NDxqIqf95FP38M1nPPkvwbbcRM2NGtYoS6saNSJw3F0tWFmmTJmMtK7tEI/UOJyl1zTXEvftOtdD28PsmE/HII+R9Mou8zz+/RKP0DicpNW8eUc89R+iYMS6fy1Qq4j/+GF2P7qRPnXZZk1PuSCkHlHFxEjlls0m2vsuYnCrbuJEzjz1O4PXXEfP669W+K8roaJK+WYhMqZJsfWlpbnpqQG2Rl5eH1WqtpniKiooiOzu7xnVatGjBvHnzWL58Od9++y02m43evXuT4UHR9uabbxIUFOT8S0hIqNP9qAmOybBCVXk9RTUKRBuo4uj2bM6eLqGi2ERS2zDn584cmXquzOfM0/FgNXJUB5MrzrHyWUXnMkEm1Bj87WxbhcBwECFFOXqCIirtAQ5iqqLYhMVslayDJismvQWlWo5CKa8xINuktzoJk+AoHUntwvhvdZp97L6pphzB5zabyIldOfz+xX5mP7iBdQuP0LJXDL1va+q1j+AoHUVna1ZMqbQKuwXswhVTDguXu4wp8KymsZhtyJV2YkppV7z5AJulkojxC1ZL5/6Cw8+lbSvVcixG93059sdQIV0L+jKznZjyTtxWJaN8UQ85vgtV13MQUxo/STFlsBOOjuvOXRacs4/zyZiqauVTyrBabU4C1pd9r2k/GlB/0PoHMPL514hv3fa8+4hp1hxNQCCndtdfdb6kdh1JP7gPm9VK1vGjKFRq9KUltOozsOYxNW2BX0go+9f+ybK3XyWqUVNue+5VtP4BiKLImSMHSWjbnriWrTl1jg0xrkVris9mow0IAqSqfJ2uH+rSZutPi/hrziw6XDuYq++eQubRQ07lx6F/1hPXsjUhdiKl5/DRKFQqNi3+BkEmY/CDjxMQFgGi6FS1iKLI9l+WkNi2Q42h2VXRpEt3is5mcfq/f+l7xwT0JcXEt27H9VMepuP1Q/lrzqcc2bwRQRDoOuxW0g/uc1ET1RdO7d5BSEwsTbr2ZNeqX1x+n0Nj42nZux87li+pVoXNG4pzskEUa1RMgVShrveosaTs2UXGISlryma1YrWYsRhr/5Is49ABBJkMU0UF//2xEplcQYdrb/S63v51q0ls26HOLGileXmINhvlhQWINhsdrx2Mxj+AbUt/BCS73B2vzaRVnwGINhvpB/ehUKpI7tCZ8MRkZz9h8Yn4h4RKpNlA9zY+B4pzcxAEGZnHDlf7LDQ2nuimzdm/bjXG8nIMZWUYKyqfH6SKfL6TSmFx8RRlZ2KzVv4WFWRmXHbB59BATP1Po/DHH8l67nmCR4+S1B9uypxqmjcnYe5XmE6fJv2+KdgqKmpsdylRum6dREpdfTVxM99FcMNUh0+5j4iHHyL3o4/Jmz37Io/SO6qRUuPG1thOplYT/8kn6LrbySkPqpFLBW+klAPKuDjJCmezXbbKqfItW8h48CH8+/cj9m33lSqVUVEkLlyITKuVyKmUlIs70AY40atXL8aPH0/Hjh3p378/S5cuJSIigi+++MLtOtOnT6e4uNj5l34RlG+OiaFcUXn/lckE2vWP48iWLDYuOkpQpJbYKoocuVyGWqeod8VUparCfRMH+XCulc9msTmVHILgOQjbUoNiqjC73FmFEHAGhFeUmqT8KoUMUZRIAbVOgUJVs+2sqmIK4Lp72hCRVPlG3pcMpaqqkusntWHUs93oO6o5I57qwtXjWzlVXZ5QIzFlt9SpdQp7HlFdEFNmVFoFcnn133NHpT5Piimr2YbCTkzVqiqf2YZGJ/UvUwjIFbJaZXjVBLPDyqf2rJhyEFP6UhPaACVlhQa0/ioMPlhdbVXG6BNJU4PSyFBmRq6QoVTLnVX5AOfxcKeYcvRxPnY6axUrn1wlx2YVnde5NkDle1W+eq7s2YC6g0wmp1GHzpz6rx5zpjp0wqSvIOvEMbJPHkPj709AWAQxzVrU2N4RwH140wZ0QcHc8uQLTsVLSW4O5YUFxLVoTeNO3Ug7sM/FYuYghvavX+20E5mNBufnu39fwZYl33HV6HFcM3EKLXr3QxsYxN7Vv2GsKCdt/16a9+zjbK/x86f3qLEc/HstZ0+dQKXROjOITu/5F9FmI/PoYXJOn6TrUPeh2VaLhe2/LGH1l7OQK5XEtmjNwY1rQRAY/MATCILA1XdNpnXfgfz+6QdkHDpA0+69CIqM4t+V9auaEkWRU7t30rhzN7oOuYX8jLRqgfg9bh1FaX4eBzeuq1Xfjqpt7ogpkBRykclN+GfxQkRRpKywAEQRQ0XtRAuiKJKyZxfawCCKc7I59Pc6Wvcd6FUBVJB5hjNHDtLWQ35TbZGydzeCIMNQXkbWiWMoNRq6DhvOob/XUVaQD4BCqeT6KQ/Tuv/VUuXb8jLaD7rBpR9BEFBqdQgymVfSyFBWxsmd24hv1YZDG9dVqzgJkkIt7cBe+79EFwKrMCuzVsRUaGwCVotFIh+RvmelebmENhBTDbhcULh4MdkvvkTInXcS/dJLbkkpB7Rt2pA450uMhw+Tfv/92AwGj+0vJkrXrSPj4UcIGDjQIynlQPjUqYQ/9CC5H35E3mz3k9SLDV9JKQdkajXxs6qQU9u2XaSReoetvFwKOvdCSjmgjIsjccECsFolcsqNCuZSoGLnTtKn3Y+uZw/i3n/f6/WljIokccF8ZH5+pI6fgPH06Ys00v+/CA8PRy6Xc/bsWZflZ8+eJTrat7dmSqWSTp06ceKE+zeaarWawMBAl7/6hoOwkcldyY32A+MJitRSmFVB/9tbVCM/tAGq+s+Y8sHuU1kdTO5ipbNabCiUcmcIukcr3znZVFazjZI8AyExOudypUqOUi2nokSy8sntx0tfZkbtp5RIsJqsfHqLU8kDoNIoSGpTaYv0Fqotjaly7P6hGiISA2g/MJ7oxkFe13UgOFJHRYnJpfKew8qn1ilQaeQY68jKV5NaCnwjplwUUyq5z6onq8VGYLg0IQ0I1SCXyy64Kp+DjFJpPGdMOZSDpQUGAsO1VBSbUGokG6I34tFaSyufrQYySV9mRuOnQBAEKWPKrpBS+flo5TuvjKlKK59CKbMTU9LkXhugosIbad2gmLoi0ahTV3JTTlFakFcv/Uc1borGz5+UvbvJOn4UQ3kZzXv2dms/tFmt5KScQrTZ6Dl8NBr/SmIhJ+UkIFUha9SpKxaT0aWCX0BYOH7BIWQdP4LNakXt589/f/wKwLFtm1g//0u6DhtOj1tHARI50P6aGzi4cQ3Htm/BZrXQtJtrjk/7a64nLC6BDQu/wmazcfLfbQRGRlFRXMTOX5ey+49fCYmJcwmSrorsk8f57tlH2bz4GzpeN5irRo0l/eA+CjIzaNy5GwFhknJZkMm47r6HiGvRihXvv0FpXi6dB9/MsW2bJLKmnpCbepqygnwad+5OXKs2RDVuyq5Vv7i0CU9IonmPq9jxy49YLb6/7CjKzkKhUuMfXHMRD5D2u88d48k8eojT//1LaZ5Uud1iNGIo952cyk9PpcxeVS43LYXS/FxnZTpPOLhxDRo/f5qdZ05bTUjZu5uY5i3RBgZxYqf0kr/9NTegUKmc1yNIxFNkUhPnv3f//qvLPhsryinOyZZUVTVUqqyKw5s3YLVa6Dd2opSZtXljtTYtevVFtNkIiIhEFxTsrIgoiiKFWRmE1KJCe2i8REAVZEqOAUd4eoOVrwGXBQq++47sl18hZPw4ol543me/u7ZjRxK+mI3+vz1kPPgQNuP5lyStK5SuW19JSr030ytp4EDEtGmEP/gAuR9+SN6Xc+p5lN5RW1LKASc51bUr6VOmXhbklLWsnLT77sNw8CAJX83xSko5oIq3k1MWi2TruwzIqYpdu0i/bwraTh2J//hjZKrqla5qgjIykqSFC5AFBpA2fgLGU6fqeaT/v6FSqejSpQtr1651LrPZbKxdu5ZevXx7QLFarezfv5+YGPdvAy82qgZqn0tMqXVKRj3bjYkz+9RY7U0b4JtV6YLG50NAstU5QT4nY8oqolDLKq18HtQzLhZAs43iXD2iTSQkWufSTheoqiSm7AozY7kZjU5pJ8ZqrsrnmLA7oNZVElWeCA/nmKoQLLoA335jzoVjX6rmTBnLLShUMhRKuTOb6EJhKDfXGHwOkgJKqZZ7VNO4KKYUvimmHNexX7CaQXe1YuDYlnWaMaXUKNySO1BJtJXmGwiLlVR2jm077JJux17VyufBbuqAWAOZpC8xoQuS8neqnkeHYsqdRbPSyncBGVN2K58oiig1lVbK8iLPz2e+5sc14PJCcscuCEL1vKa6gkwmJ6Fte07/t5PyokIsRqOLKulc/LNoAXlpKfiHhZOyxzX8Ozf1NLqgYPyCQwiLTyQwIrKanU8bGASiiH9oGJ1vHMbBv9eRefwIf3z+ES169aXfGNdMrvaDrsdsMLLnz1VENW5KYHik6/jlcgaMu4eMwwfYufwnCrMy6XnraOdYj2/fTKcbhlZ7GW82GNiw8Cu+f+5xAO58/T0GjL+XNgMGOavt3TD1UZd15AoFwx6bjlrnxy/vzKBpt97IFAr2r/vTl0N9Xji1awcqrY64lq0RBIEuQ24hdd9/5KaluLTrOXw0xTlnq2VQeULR2UyCo6K9ChWSO3QmvnVbNi1a4BJoX5LrewX3lL27UajURDVpRlF2Fn4hocS29GytFEWRI5s30rxnHxQ+Pot7g9ViIe3AXhp16EzTbj05vmMLoiii1ulod8317F3zu4ua6di2TTjKAOecOsHiF59yHoPjO7Zis1dLPL7Nc3GqA+v+onHn7kQ3aUZS+441qtu0gYGSklAUiW/ZhjNHpIzUiuIiTHo9IbUglfxDwlBpteRnSC6AQnt4eoOVrwGXHAULF3J2xmuE3nUXUdOn1zqEUdetGwmff0bFzp1kTLu0yimJlHq41qSUAxH330/4/feT+/775M25dOTU+ZJSDsjUauI/nVWFnNpeTyP1DmtZGemTJmE8cpTEuV+h61zzWyl3UMXHkbhw4WVBTlXs3EnapMlo2rUj4dNPkWk8BzKeC0V4OEkLFiAPDpKUUydP1tNI/zfw2GOPMWfOHBYsWMDhw4eZOnUq5eXl3H333QCMHz+e6dOnO9u/+uqrrF69mlOnTrF7927Gjh1Lamoq995776XahWqoOnE/l5iSlslcbGhV4atV6YLgi2KqiqXIRflktqHWKCQrn0zwOOl3DU0XKTxbDkBwlJ9LO12gCn2JCaulUtVjKLeg8VO6tfKZDRaUWtdjWJUH8EUxVZW8ULo5H94QHCkRU4VVKvMZys1OFZNKWzdWPmO5BbXO/W+hxku1Ouu5GVM+EFNWp+pPRoueMQSGa+0ZUxdGelhMNmQKAZVG7vE8GcrMqDSSnS2yUaBzXfCsDoNzialaZExVKQ1fUWJCGyBNlFTaShJNY6+e6VYxZd+e7TyIKWvVjCmVHNFWmWnlH6zymZg6H7VWAy4dtP4BxDRvWW/EFEBy+87knJaeV7RBwcQ0rdnGd3zHFv79dSn9xtxNh0E3cmzHFpdJfE7KaSKSGgGS2qRRp26c/m+ni33UaM+t7TDoRjpcOxibxcqKma8TEBbOdVMeqjZHCQyPJLljZ3JSTtKkSw9qQnLHLjTq2IUdy3/CPzSM1v2vJiA8ArlCCaJIqz4DXNqn7N3N/CfuZ+/q3+hzx3jGvPGBs1pf+kFJ+aLW+bmowRzQBgRyy1MvUpKXy8ZvvqLVVQPYt+YPlyyfusSp3TtJ7tBZ2hegec8++IeGsWvlLy7tIpIa0bRbT7Yv+8HnsRRlZxEU5f3FnSAI9L1jArlpKZz8dzsqrfTbVmJXT/mC03t3k9C6LcGR0Zj0FTTr3guZzHN1uKzjRynJzaHlVd6VVb4i68RRTPoKkjt0pln33hRlZ5FnDwnvfOMwTHo9B9ZLQfL60hIyjx1BkAmExMQR1aQ5ZqOR759/grOnT3J40wYSWrejRe++nPh3m9vqmZnHjpCTcpJ2djtim/7XkHn0kJMscuDUrp3YrFZK83JR+/mRdfwoFpOJwkypXWiM76SSIAiExsY7FVMFZzLQBgahtQf6X05oIKb+RyCKInmzZ3P2jTcJvWcikU8/dd6VQfx69SJh9udU7N5N+tSp2PTVvbH1jdL1dlJqwIDzIqUciHjwAcKnTSP3vffJnzu3jkfpHRdKSjngJKe6dCF9yhTKt++o45F6h7W0lPR77sV44gSJ8+ai7djxvPpxIacmXBpyqnz7DtIm34e2Q3sSZn+OTKfzvlINUISFkbhgAYrQUImc8mAja4BnjB49mpkzZ/Liiy/SsWNH9uzZwx9//OEMRE9LSyOrSj5ZYWEhkyZNolWrVgwePJiSkhK2bNlC69atL9UuVEPVSX9t78faAKV3u84FolId4oOV75wKblariEqnwGb1buU7N2OqMLsCtU7hrD7ogC5QsihZLFLYOoCpwozaz16VrwYSxai3VCP3rPZKgdL4a6eYOt8qZiqtAl2gykUxZSiXbIjS53KnBexCIJFd7skzjZ8SvbeqfLUlphwkSZWcNClj6sKtfEqV3KeqfHJ7VcvoRkFShUO7Usphl3SH2lfls38nqrStKDGhC3IQU3JnP1p/z1Y+Z8bUedjpnISwvSof4LzO/YLV6EvNXs6d9+92Ay5PNO7UldR9e7CY6+fFRGK7joiiiCCT0aRztxoVNEXZWfzx2Yc069GbLkNuoXXfgViMRo5vryzGk5taSUw5xl2cc9Y5OS7Jy3VaEht17oZfcAjB0TGUFxUy+MEnUGm01ITY5q1BFAmKjKrxc4Deo8Zi0lcQnpCEXK4guX0nrBYzoig6K9ZVlBTz+6z3+PmNFwmKjGL8zFl0v/k25PYMUVEUWTvvcxBkGCvKnWTduQiLT+D6qQ9zbNsmNP7+lBXkc3J33T+DlxcVknXyGI07d3MukysUdLphGEc2b6C8qNClfc/ht1OUncXRLX/71H/R2SyP+VJVEdu8FY07dyN1/x78w8KRKxQ+K6bMRgNnjhwkuUNnzCaJQI9v1c7reke3/I1fSChxrdr4tB1fkLp3N5qAQCIbNyGxbXtUWp3zGg4Mj6RFr77s/u0XbDarXe0nkty+M91uGkH6oX0MeegJ/EPCWPzSU6Tt30vLPgNo3uMqKoqLOHPkUI3b3PXbcoKjY2jcqSsATbr1RK3z49Dfkmoq/0w6v77/JstnvuZcZ/+61disVg5vWk9B1hkEQUZQVO3C312Iqcu0Ih80EFP/ExBFkZyZM8n98CPCH3qQyCeeOG9SygG/nj0lW9/efaRPmXpRA9FL/vqLjIceJmBAf+Lef++8SSkHwh98gLCpU8h5dyb5c+fV0Si9QxRFct5594JJKQec5FTnzhednLKWlJB2z70YT58mcd48tO3bX1B/TnLKbCenzskWqk+Ub9tG+n33oevUiYTPP0emrfnhyFcoQkNJXDAfRXg4qeMnYDhWP6We/xfwwAMPkJqaitFoZPv27fToUfnGdMOGDcyfP9/57w8++MDZNjs7m1WrVtGpU6dLMGr3qDpxF3wI0K4KXwKOLxSV4czu2ziJKbXMGchss0lV7NR2pZIgeK5+d27GlBR8rqv2O6UNVFFRbLLbzSQiwqh3KKZ8t/JZTFbn8a6tle9CMnnODUA3ViGRVBpFnVTlq0p21QSNvxKjl/Bzuf3Y+hp+7gzAV9YtMWU2WVHYs8U8nSdDuQW5XEChkhEQqiEgTOO0uRrKfLfyeaoc6WxfU8ZUqclZNbIqCarWKZHJBfdV+Rx9nE9VPpMNmVxAJhNw8AZK+3XuFyzZCsuL3aumnFa+hoypKw6NOnXFbDQ4M2fqGsFR0cgVSkSbjUYdq0cx2KxWfvv0PbSBgVw/5REEQSAwIpKENu05aCd9DOVllOSe5f/YO+swN8qFi/8mnnV3r7u7U3cFSqEUKUUubkUucPELxbW4lxZaKtTd3d3W3X03Pt8fs8luNlntlrb32/M8PGyTkXcmE3nPHAmoQkyFd+iEQqkivsLOd273dqx3CMoLC8hJTrSpRmqbo+jLSxEEGYmnjte4jDXkOTPuMka9DrlSBaJIy1592fPHrxxds5Ifn3yQ2KMHGfXAo9z80pu2dj8rjm9cQ3lRIR2HDsfVy9tGHDhD6z4D6D52EkfWrMQvPJITG9fWuGxjEXfsEAIC0RWEhhWdh49BJldwfOMau8cDY1oS070X+/9aUqN6xwqzyURRdhbe9SSmALqPm4yupBiVRouHf4Cdra82pJw9jdloJLJLd7ISpJgLrXvtyh2LxcyF/btp03dgncqqhiDhxFEiO3VFJpMjVyiJ6d6L2MOVrpOeE6ZSmJVJ7OEDNrtdpxGjaTdwKFp3D87t3s6tr7yNp38gIJKfnkpAVAxuvn52JK0VRTlZXDqwh+5jJ9kIX6VKTZt+gzi1bRPrv/iQn576F+mxF/EKCiGqaw+CW7UhtI1k3dz87Zcknz2FR0AAigbOfX1Cw8lLTa7IqErFuwGKq38SzcTU/zhEs5mM/7xK3nffE/jC8/g/9NAVk1JWuPbuTcTXX6E7dYrkefdjKS1tku3WhsK/V5P6+BO4jxheryDq+kAQBPwffRTfB+4na8ECcr//oQlGWjtEi4WM114j74cfmoSUskKm0RD2xee4dOsmkVMHrz45ZS4oIOnuezAmJhLxw/doOzW+DrkqrOSUaDSSeOed/wg5Vbp3L8n3P4BLjx6EfdFw+15NUHh7E/HjDyiCAkmcfSflx483yXabcWOj6qSwocSUxk1JebHxqrZqWURAqF1VYSUMlCqFTaFhDb22WcqEhoWf5ySX4Bvm+EPVqpiqauUTLRJJV5O6x1gt/BykSb1V3VMvK19Dm9tqQHViSldmsuUQNVXGlL6KPdAZNC6KOsPPG9rKV9nMWHkNyxTClSum9GaUarlk09TXvC19mRFRlM6vIBPw8NNSWlhBTNWpmGrYa2tdxmqBE0WRskIDLlWsfFYo1XKUGnmtVj5BaKxiqvJ1ssJ6Tbt5Sd9bJbXY+aqOvxk3Fvwjo3Hz9bMRPE0Ni9mM2Sx9FkV2dryZc2DFH2Rcusi4h59CXUVN3ummUSSfPUVuSjI5iQm2sVqhVGsI79iZ2KMHEUWRU1s2gCiiUKnITIhj+8/f4hkQhNbdg7M7t1TfrQ3Jp0/iFxHJhX27KC8ucrrMmR1b8I+KQV9WxpG1qypIPAGfkHBEs4VtP39DeMcu3P3BQjoNG+UwLzIZjez+/SdkcjnD5txH634DubBvV60Ez+A77iYgOoaSgjwSTx5zsGZdKeKOHCS4dVtcPOxLNzRubnQcNpLjG9faFEhW9J0+k7y0FC7WkXlUnJONxWzGK7D+gdoRHbsgVyopLyrE3S+Aouz6/UaPP3EED/8AvIKCSaogF+uyAaaeO0Npfh5t6hGQXl+UFRWSEXfZLgi/Rc8+ZCXE2ki2wJiWhLbtwOHVK0g5fxqFSk1Mt54oVCq6jhrH6e2bMZtMKFQqfELDOLJmBUv+8xxhbTtw6cAeWz6ZFcfWr0al1dJh6AjbY6UF+ehKSyjNz+Py4f0MnTOXO976iKLsTFr06EOLnn3JTIgltH0nlBo1F/fvxs3Hr8HH6xMahr60lNKCfPLSUpsVU8345yEajaQ9O5+CP/8k+M038bnzzibfh0vPnoR/+y26c+dImnc/5pKrR04VLF1K2rPP4jlxIqHvNd6+5wyCIOD/2GP43n8/We++e1XJKdFkIv35FyhYvITgN15vMlLKikpyqivJ919dcsqUl0fiPfdgTE0l4qcf0XZoOoktSORUZAU5lXTn1VVOlezeQ/KDD+HSp3eTklJWKLy9ifzxR9QtW5J49z2U7NrdpNtvxo0Heytfw9Z1cVdhNllqVGM0BUSLiEDtAclVm9NMFUSEuWKirbZayoTag6XNRilLSK6QYdCZyU8vxT/cMc/DxUOFrthgs3hZ4e6jQe4kY8pstmAyWhysfFWb5+pl5bOzezWebPEKcKEgq9xGBuhKjKjdmtjKV2aq08pXm4qoavi5Qim3qeBqg5W4q27lszRBxpRCJbO1A9Z0HepKTZhNFluOl6efhuLcctR1kHDQ8FY+0YJ0PVeMxagzYzJabFY+dRViyqr2qkkJJ1pEBEFoVAB51SwwUZQ+PKyvm6t3hWKqNmKquZXvhoUgCMR07Un88auTM5WbkmST1BmqRXVkxF5i39Lf6TPtFkJa24dVt+ozAK2HJyc2ryUrMR65UukQrtyyV19Sz50l6dQJCrMyULu64h/VgsQTR0k8eYwhd9xDu0HDOLd7h9NGOV1JCZnxl+kwdDhUseVVRWlBPgknjtJ5+Bi6jBzLwRV/kJOUgKu3F4f+XoZCLb0/uo+ZiKuXt9NzcGD5HxjKy+k6ajwqrQtt+w+htCCflLM1q9TkCiUTH38O0WxBplBwYtO6GpdtKEwGAwknj9GiR2+nz3cfOwldSTHndm6zezy4ZRuiuvZg/7LFDiRJVRRkSC1t9bXygXQdCjIZRTlZuHp5U5Rdv4yphBPHiOrcnbTzZykrLEDr7kFhVu2/7c/v3YmHfwDBrZznnTUGSaeOgygSVYV8je7aE5lcweVDlaqpHuMmk3bhLKLZTMve/Wz5Xl1GjkO0WDiwfAmZcZfpf/MdzHz1HfRlpZzfs4OS/DzO7KgkWMuKCjmxaR2dR4xFpdGSk5zI1h++4tuH7yXx5DE0bu5Ed+tF97GTSL14FovZTFSX7rTs2ReTXo+bt7f0uS2KFGSk1amCqw6fkHAAUi+cwagrxye0WTHVjH8QFr2elEcfo2jjRkI/+ACv6dOu2r5cuncj4rtv0V+4QPLcuZiLnN/BuBLk/fIr6f9+Ca+ZtxL81psI8qaTclohCAL+j1eSU9mffNLkdxNFg4HUp5+hcPVqQhYswGvGjCbdvhUyjYawzz9H27WLRE7tdZSUXimMGRkk3jEbU1Y2ET/9hKZt2ybfB4AqLIzIn37CYjRI5NRVyJwq3rKFlIcewrVvX8I++wxZxQ+Xpobcw4OIb7/BtU8fkh96iMI1a+peqRn/s7gSK5+mIn/pajbziRYRBKF2xVSV5rTqiiltRfizQO0TYJPRgkIhQ64QKM4tRxTBP8JRMaV1VyGKkj1Poa78DnDzUTtt5TOWV5BmWkcrn5XYqq3tzYqqBMuVBHp7Bblg0pspLZBeM32Z0UExdSXfOSaDWQqdryX8XO2mrFMxJa+imGpI+HlTZ0wZK14n62tVE4moLzNiMpjxCpSIKQ9/LYU5OlRaOfrShrTy1UcxZbG7nsuKpNfSqpiy2umsNjtVLY2CFrMIssblPElZYNK+rNeMrEKxptLIUajl9SOmmjOmbkhEd+9Ffnpak6tyAFIvVGbjJJ0+YfvbYjaz8etP8Y+Ipu+0mQ7rKZRKOt00ijPbt5AZdwnfsAhbXpMVLXtJLboHli8BQaDTTaPxj4gi7dJ5Qtu2p0XPPnQYMpyywgISTx1z2EfymZMgirTq1Z9WfQZwctM6B8Ll3K5tyGQy2vQfRJ+pt2DSGxBkMkrzpQymu97/koDoFmz/+RunZI2upIRDK5ciVyjpf4t04zi4VRs8AwI5v2dHrefOwz+AsQ8/hcVk4sSmdRj1TVMQlXTmBCa9vsbAd6+gYFr27MuRNSscjqnf9JnkpiRx6dC+Grefn5mOTK7A3a/+ShyjXodJr0e0WDDpdfVSTBVmZZKflkJUl+5c2LcLdz9/vIJCal3XbDJx8cBe2vQf3GSOH5AIMr+IKNx8fG2PqV1cCO/QidjDlQ3nLXr1QV4hhOgxdpLtcVcvb9oNHMqJzetRajTE9OhFSOt23LngM4beeR+CILBh4cd8/8QDrP/iI1YueAOz0UBxTjY/PvUQPz39L87t3k6vyTO499Nv6Tp6AvFHD2EyGkk8cRSvoGC8AoPwCQ3DKygYfWkZhrIyRFGktCCfw38vb9DxegUFI5PLST1/DpAyp65HNBNT/4MwFxSQdO+9lO7bR/gXn+MxZvRV36e2a1cifvgefXw8iXfOwZST02Tbzvn6GzLffBOfu+8m6OWX66wyvRIIgkDAE4/j/9ST5HzxJZlvvFnrXYaGwKLXk/LIo5Rs2ULYJx/jOWF8k2y3Jsi0WsK/+AKXXj1Jvv8BijZsbLJtGxISSJx1OxZdOVG//oKmTesm27YzqMLDbeRUwqxZ6OPjm2zbhStXkvLoY7gNHUrop58ga6Ia2pog02oJ+/QTPMeNI+3pZ8hbtOiq7q8Z1y+uRK1gJX3Kr2Izn6ToqN3uU1UxZTZaEEXRRkioXSonJbUROlb1h1wpozhPj0wm4BPi6rCcNcfHWIWYEmQCLhVWvuqKKatSxZliyrq+vqxu+1yTZUwFSHl11tZBXanJpiqztspdCZmjqyBharXyudafmKopUL46rhYxZTKYJcWU2kpMOd+ersSIyWCpJKZ8tZj0ZtRaRQOtfPU5VhFBVknWFudLE083H+lmhvVas6qXlOparHwWi6SYasQ1ZaeYqhiLIMgq/i/g5qWmJK82K19z+PmNjIiOnZErFMQdbXrVVOxhSWXvGxpO4slKcujY+tVkJ8Yzct7DDoSTFV1GjMWgKyf57CkComIcnnfx8CS0bXtSzp8BUaTTTaMxGfSYjUYG3HqndIM4MhrfsAjO7drusH7i6RN4BQXj4R9A11HjKchMt8uaEkWRMzu32gic3Ut+QRQtiBYLQ+6ci2ixkJ+WzLA595ERe4lzToimnYt+wGwy0mPCFJtVURAE2vQfzKUDezGbav9MadGjNx2HjcJk0HNgxZ+1LltfxB05iFdgcK0qlx4TppCXlkL8iSN2j4e0bkdk527sWfxLjQ19UiNfUIPym4pzpXmef2Q0+RnplBcXYayjqT3hxBEEmYyw9h0lsqnfIDwDAmtVTCWdPoGuuIi2TWjjE0WRhBNH7Gx8VrTs2ZeUc6fRlZbYHrOeN9cqJBZIOVtGXTkBUS1QqqTvALlCQY/xk+l002hcPL0Ia9eB7MQ40i6eQ6FSkZeWQkibdkx++t/cv/Bn+t88C62bO237D0JfVkr88SMknDhqG5vUaNmTnCRp3iNaLLTuM4C9f/5GbmpyvY9ZrlDgGRhMTmI8MrkCz4CGhaf/U2gmpv7HYExLI+H2OzBcjiXih+9xGzToH9u3tlMnIn/5GXNuLgm3344x9cru5IiiSNZHH5H9wQf4PfQQAc8+06RseW3wu+8+gl59lfxFi0h77jnEK2w/sZSWVgSSHyDsiy9wHz68iUZaO2RaLeGffYb7qFGkPvEEBUuXXvE2dRcukHDHbAS1mqjffkMVFXXlA60HVOHhRC1ahEzrQuLtd1B+5swVbzPv199Im/8cnlMmE/rB+1edlLJCUCoJfvstfO68k8zXXif7s8+bsz7+H8JOMdXAda2NdeVXsZnPysnXrpiSbHhKtRxRlBQYVhJKoZQhyKQJf61WPpOU+SRXyCjJ1+Ed4mpTg1SFlZiyKp4EQSK/BJkUfF1dUWMjphwypqTsIgBdPRRnTWXl8/DXIpMLFGSUYTFbMFQEt4OkOAMwlDfezmclnOoipsxGS41h4uYqSpz6K6bsFTvQRIopvQWFSsqYkv7tfMzW4/YOqlRMSeORoa+jIKChrXwWs9ToaFUaFefqQKjMdbJa+WSKKsRUDRZNK/F7xVa+ivWrzik9/DQU5tTcmGwLP28mpm5IqDRawtp3Iu5Y0+dMZcZdQqFWE9OjN4mnjiOKIsW5Oez541e6jhpPUItWNa7r4R9ATPdeFOdk4xcR5XQZn9AwRIsFv4ho3P38SDh+FMCOBGo3cCiXD+3HUG5frJR0+gQRHbsAENKmHX4RUZzYVBk0npUQR05SAnKViu8fm8fZnVuRyeUoNVqKs7PQeniSeOo4Ye060qpPf3Yt+tFO1ZSbmsyprRtRqNT0mXKz3b7bDhiCrrSEhBNH6zyHI+Y+hNrFlUOrltkRHI2BKIrEHjlITI/etc6BQtu0J6hFK46sXuHw3ODb7yYvPZVTWzc4XbcgIw2vBra8WXOhWvXpT25ykt1jNSHu6CHC2nYgKyGO8qJCGzFVW6Pfhb078Q4Js8sru1JkJ8ZTWpDvNNy/Rc8+WMxm4o9JpG/SyROIFgsyuZyTm+xD7a2EVWlBnsNv+NZ9B1JWWECXEWMJ79gFpUbL3E+/Y/Z/P2bUvEdo2auvXYC5b1gEfhFRnN66gcKsTDvSLKpLd4pzc3D38wdgwK134OEXwIYvP2qQpc8nJIyCzAybeup6RDMx9T8E3fnzJMy8DVGvJ/L3RbhcgwYqTevWRC76DSwiCbNuRx/rvF61LogmExkvv0zuwq8IeOZp/B995B8jpazwvvUWQt9/j6K160h57HEs+prvPtYGU24uiXPuQnfyFBHffI3boIFNPNLaIahUhCx4F++Zt5L+75fI/e67Rm+r/PhxEmffiSLAn8jffkUZXH8/elNAGRRE5K+/oAwLI+nOOY1uHhRFkZyFC8l84w185swh+I03EGq4A3i1IMhkBDw3H/8nniDns8/IePmVKyZAm3FjwW7S38DPN42b1cp3FRVTonXiXPMyVpLIOkk2Gy02QkKmkCEIAmaTaMudcgabYkoho7TA4DRfCqoopgxmFAoZgkywkTBypdxRMVVeqeayG7PRYnusPuevqcLP5XIZnv5a8jPKbEot6/ithMaVNPNZ2/bUdWRMATU2OjoopkyWOklzZ4opmUKoF6lVG6wEYm1WPovZYlNS2TKmKpRpgiDUrZhq4GsrBZZXUUzl6XDxUNnZHwVBsvIBFRlTtYWf126VrQkmU2UWmJVcklWxA3sGuFCYXQsxZVVMNWdM3bCI6d6LlLOnMehqfp0birKiQsqLi1BrXMiMu0RZYQGXDu1j9+8/oVSrGThzdp3baN1nAAAmg/PfzJmxlwCppe/Yur8pL5HiP7ITK5Xw7QYOxWTQc/lQpaWqODeH/LQUIjt1RRRFTAY97QYOIfbwAS4f2s+JTWv5+4O3Abi4fzet+/RH6+5B+8E30XPCFE5uXk9I63YknJBUYINm3UVZYSFH164CpO+7TV9/BqJIn6k3o9JWBrsD+EdE4RsWwfk9O+s8B3KFgiGz78ViMrFywZtXdOMxKz6WkrzcGm18VgiCQI8JU0k6fcLWdmdFQFQMHQbfxN4/F6F30qKen57m0EpYF4pzsqGCRBQr2hRqs+QZ9TqSTp0gpkdvLuzbhWdgEIExLfHwD6Q4L8epEs1kMHDp4D7a9BvUpHPA+ONHUKo1hLRp7/Ccu68fgTEtuVzRzndk7QoA2g4aKtkzq1zXF/buRKV1oSAjndRz9jfLw9p3ROPmzskt6zm27m96TZqG1t2j1nG17T+YhJPHkMkVhHeobDcPb9cJuUJhI5O8g0IY/eDjpF++aLt+6wPf0DDKigquWxsfNBNT/zMo3bePxNvvQOHnR9Tvi1BHNx2z3FCowsOJ/O1X5B4ekrLlVMMqbS06HSmPPkbBX8sJ/u/b+N5771Uaad3wGDeO8C8+l9ra5t2PuaRhdz4MyckkzJqFMTODyF9/waVXr6s00tohyGQEvvQSvg8+QNaC98h6/4MGf1GW7NpN4j33om7VisiffkLh43OVRls7FN7eRP7wPdouXUi+7z6Kt9Tc3uIMoiiS9e4Csj/6GL9HHyHgufn/OOlphSAI+N0/j+C33qJg+XKSH3iwwddYM25c2CtKGvZ+lMtlqF0UV1UxVd+MKYVKbiMlzMZKdZRcXqF0MZhtuVPOYJ1kyxQC5SUGAiKd/3hTqKSWM2tYusUs2kKnFSpHdU9NiimjzmyzGerr0YRnb+W7MrLFO9iV/IzSKuomhd0YryTM3krC1KWYAimXyRmqhp/LlTIQqTPE3FKTle8KSQ9jRSufVd3mTDFlff3ULgrbOVSq5Lh6qbGYRZu9scaxN9DKZzGLFWH+0noluTrcfeyLMmRymY0kUrsoMJQ7P9cWi2hTFDYUJkPl62S9Pqt+pXv6aynKLq/xvdusmLrxEdOtFxazyc5udyW4uH833z46V/qHACaDdN3+/f5bnN21jS6jxqF2cbRYV4c1biP28AGH5wqzMsiMj0Uml5OflsrBFX/SZeRYPAODyE5KsC3n4R9AUMs2HFy1jO2/fMfyd15lyX/mA7Dxq0/5cNZkPrlzBrsW/YQoiqx87w22/vAVxTnZhLXvxH2ffU9Ut56U5ufRddR4uo+djEyhwGQ0kBl/mfLiIryDQug6ejwHV/5JWWEBlw/tI/X8GVQuLnQfN9npsbUdMITLh/fXaVkD6DB0OFoPT1LOneLY+tV1Ll8TYo8cQO3iSmhbRxKlOlr3GYC7nz9H1650eG7ArbMxlJVxaNUyu8ctZjOFWRl4Bzespa04NxtXL2+8AoMlNZMg2NrsnCHx1AlMRgNRXbpLZFPfgQiCgKd/IIgixU4iYOJPHMFQXkbb/k3r/kk4cYSITl3sFEtV0bJnXxKOH8ZoMJBy7jRu3j70mzqT8pJim8VUFEXO791J2wFD8A2L4OAqe0eKXKGgZa++nNu1DVdvH3pOrDvruU2/QVhMJryDQ1BptLbHlRoNoe06oi+TYgBKC/IJbdOO7mMnsWfxL+Sl1c+h5BMajtloxDMgsF7LXws0E1P/AyhcuZKkefej7daNiJ9/RuHvf62HhDIggMhffkYVGUnSnDmU7qs5dK8qzIWFJN0715aP5TVlytUdaD3gNngwEd99i+7sWRLvmF3vZjjd2bMk3DYLAYGo339H065d3StdRQiCQMBjjxH4/HPkfvMN6S+9VG+FTsGyv0h+4AFce/Ui4ttvkLs7BhP/k5C5uhK28EvcbrqJlEcepWDZX/VaTzQYSH/uOfJ++IHAF1/E/6GHrhkpVRVe06YS8c3XlJ88SeKs2zGmp1/rITXjH4D9xL3h16HWXXV1FVP1aOUzVqharJNkk9GC2ViReSOXJvAWU+3ZSWajZOUTRUAE/8iaP19cPKQ2wuJcaWLgWqGiksLPqyumnGdMGQ1m1BUEjaGBGVNXSrZ4B7rYKabUNiuf3G7MjYG+1ASCIxFXFRo36bn6KaYqlEp1WPJqypiqjYysD4x6KUtMVYuazBpuXp0c8grQYjKabSqyGsde1cpXD5LGYq7ImBIrFVPuvvb7FuQCFXFPqF2VNeaY2Vr5GpMxZap8naznv+p16umvxWyyUFJDAHpzxtSND6+gYPzCI7l04MrKbSwWM5u//Zy/P/wvKrV0Lc95/0tue30BER27oNK6IMjkHFj+B/v/WuK0La8qshPj0Xp4kn7pAqkXztk9d3ClNHmP7NyNxFPHMJvN9Jt+G/4RUeQkJWA06Dm5ZT2/zH+MjMsXyE1O5OK+XYBEeLl4eNF7ys0Mv+cBxj3yNFOefZkWPfqgdfdg9IOPY7GYuenu+3H18ub4hjUEt2pDYExLNG5udB87kdRzp0EUSTp9EoC+025FEGTsXvIrW3/4Wnps6q12pEBVtO0/GJNeT+wRR9KtOmQyOT3GT0GQydjxy7dkxl2ucx1nuHxoP9HdetaY62W3T7mc7mMmcm631ApXFe6+fvSYMIUja1bYWe6KsrOwmM14BTdMMVWUk427rxSWHtO9NwJQUEtWVNyRA3gHh1CSm4OuuIjW/SSyyUqSFDpRW13YsxO/CqVaU0FfVkbahXNEdXG08VnRoldfDOXlHF29ApPBQJv+g/EKCqZFjz4cXbsSURRJv3Se4pxs2g0YQp+ptxB/7DAZly/abcfd1x+jXk/3sRNtGVS1wd3Pr8Y5SVSX7ugrblxb31cDZ87GzceXjV99XK88ZI8KK6DKxaWOJa8dmompGxii2UzW++9LGTmTJxH+5RfI3eq+m/FPQe7lRcQP36Pt3p2k++ZR8FftDQJSy9sdGGJjifzxB9yGDPmHRlo3XHr0IPK3XzEXFpJw60x0Fy7Wunzpvn0kzr4TZXAwkb8vQhV2/cgmfebMIeSd/1K4YiXJDz5Uq0JHFEWyP/uc9BdfxGvGDMI+/wyZ1vkX9j8NmUpF6Pvv4XXzzaS/+CLZn3xaqwrMXFxM0v33U7R2HSHvvYfP7Dv+wdHWDdd+/Yj6fRGWkhISbrm1STK0mnF9o6rCpzFSf6278upnTAm1T15Neimg2s7KZ7a281WuV1uItsloRq6sJDL8Qp1b+UAipixmkdzUEpRqObIKVZZCJWUaVR2rQWe25U9VhbEiGBuBGm1WVWFpovBzkHKQSgv0ttBsq4LJSp5diZVPV2pErVXYWbqqw2blc6IkEkXRUTEFdVryrBlT1uWhqTKmJNLTSkw5I3isKjGrfc8KzwAXDOVmdHUQj41q5atCJhXnOSqmpHmF9BpoXBQ1hs1bSa5GZ0zZVIqi7TErrLbGwixH2471OKBZMXWjo1WfAcQeOYCpkTEAFrOZ9Z9/yMnNGxg57xFEQO3iitZN+gz2CQnDUF7GiLkP0mP8FPb++Ru/vfgkmfE1x3RkJ8YT3KoNPqHhHFxZGf6tLyvl9LZNKFQquo2ZiGixENOtBy6eXvhFRJN++SI/Pvkgm775HHc/P0Y98BgyhYIe46cy5dmXMer1tB9yE70nz6DLyHG0GziUFj16M+DWOygvLuLYulUExrTEPyKKvLQUkk4dp+voCbb9dx83GUEmR+Pmbmv807p70GfarZzauoGSvBy07h50HVVzMZFXUDDBLds4DU13hk43jUImk+Hi6c3fH/3XpnipL/LTU8lOjLfZI+u1z+GjkSuVHN/gqNLqNWkGKq2Wnb9+X7mPjDSABlv5irKz8PCXSKWY7r0QRbFG8s1sMnHp0H5a9OzLhf278Q4OsYXju/v5gSA4BKAbdTpijx5s0tBzgKTTx7GYzUR3dQw+t8IvPBLPgECOb5Kas/tMuQWAHuMmkZuSRNKpE5zfuxM3bx9C27anTf9BeIeEsW/Z77Zt6MtKObl1A4JM5tQ+6Qwp584giiL5GWkO60R36Y4oiijValIvSPMDpVrDqAceJfX8WY6u+7vuHVSoGYVG3Aj9p9BMTN2gMJeUkvLwI+R+9z0Bz80n+PXXEWqQJF5LyFxcCP/yC7ymTiH9hRdqJA90Z8+ScOtMzKWlRC5ahLZLl2sw2tqhad2aqMWLkXt7k3j77TWqwKoq2CJ//OGaWd5qg+fkyUR8+w3lJ06QePsdGDMyHJYRjUbS//1vcj77DP8nniDoP6/84zlMdUGQywn6zyv4P/kkOV98Qdozz2IxOE7UjenpJM66Hd2Zs4R/9+1Vb0RsLNQtWxL1xxIUQUEk3jGbovXOgyqb8b+BqhP3xmS9aN1U6K5mK59YdwZOpWJKUteYTRYbkWOu56TfbJBCrk1GCyqtAoWq5lBOFw8VokWUsn08VTYix6bYqnJODeUmVBq5wx1IUwXhIZcLGPV1E0FVSbUrJqaCpZtHeaklIFRmham0FYqpK7HylRprtfFJ+5HC4p2RJdbr0XouFRXEh7NsJ7v1jNLzcrvw8yvPmLIRU2q5RCI6UZNZlV/eQfY35TwDtFJbn95c6zga2rgokUkSoWOxiJTk6WsgpiSoXSTFlLPfPRZr62VjMqaMFtv7xHp8Va9Tdz8NgkygIMt5/pClWTH1P4E2/QZiKC8n8WTdgdzVYTaZWPPJAs7v3cn4x56h/eCbKCvIxz+qMgrESlp4BYYweNZd3P7mB2Cx8NsLT7Dr958wOfm9lZ0YT0BUC/pOvYW4IwdJPX8WgP1/LcFiNtNr4nRObd2ATC7HbDJhNhlJv3weQ1kpngFB3P3BQqY88xKdho0kplsvzu3eRl5qCqX5eUR2dJwb+EdGE9SiFRmxl2g/WCoWOrp2JS6eXrTuW5npqnX3oNvo8RjKy4g/fsT2nozq0t3mbR04806UGo3DPqqi7cAhJBw/QnlxUZ3n2MXDk9b9BiHIBMoKC9n4Ve03UKvj4v49KNUaorrVrO6pDrWLK52Hj+L4xjUORJjaxYUhd9zDhX27bKqx/PQ05AqFRBA1AAWZ6bbA9KCWrZArleTV0BKXeOqYpJLqO5DLB/fRum9lZpRcocTdx88hAD326EFMej1tmpiYSjh+FO+QsFpb6QRBIKZHH0rycnH380frIcULhLXvhH9UDEfWLOfivt206T8IQSZDJpPTb9qtxB09REZFhtr2n7/FWF5Gix69uXywfqrG2MMHcPX2wWIyEXt4v91z7v4BAKhcXEmrokQMb9+J7uMms+OX7zhfB2FampcL4FAqcD2hmZi6AWFISSHxttsoO3SI8IVf4nvXXdeFHakmCEolQa+9ZiMP0p97DrHKl1nxli0k3H4HCn9/on5fjDrm2uVj1QVlYACRv/yCtmtXSQW2YoXtOdFiIevDjyQF28SJhH/5BTLX60fBVh2uffsSteg3zMVFJNxyK7pzlR905pISkh/6F4UrVxHyzn/xu3/edXuNCYKA37z7CP3wA4o3biTpnnsw5efbntdduEDCzNuwlJYS9fsiXHv3voajrRsKPz8if/4J92FDSX38cbI++BCxhorfZtzYsE2KhcYRHhp35dW38gkg1hZ+rrfYhZ+bjBabgsZKWEDtx2esyMsxGy22PKGa4OKuQhSljB2Nq7IKMeUYkG3QmRxsfFBJeMgVMoz6+rTONV3GlFegpGTJTy9D66a05XDJFTJkcuEKrXxGmzWwJgiCgNpF4dTKZyU45NZWPpW9Vawm2BRTduHnMtvjjYEoipj0ZlRqOYJMQKVROM0DswZ8+4XZq+y8Alxs464tAN2qWpL+rse1YBaRyQREs0hxbjkWi4invxMVccXkU+OqxGIWneZjiVbFVGOsfBUqQ6i85qtaWeVyGd5BLuSmOFdEW4mpZsXUjQ3fsAh8QsO5uH9Pg9Yzm4ys/ui/XD60n4lPPEebfoO4dEDaRsuefQEoyski6fQJFCo1yWclEiMwpiW3v/0h/WfM4sjq5fw8/1Eb8QRS9k1ZYQEBkdG0HTAE/6gYdv72AwZdOcfW/41CpcY3QrIftuk3iITjR/n95WdJriBJek2egU9IZdZR+0HDyIy7zLnd25DJFYS27eD0ePzCIwFJ0VRWVMiZ7VvoNmaiQ4ZQjwlTEWQySnJzKMhIQxRFtn6/EKEiVNorqO5Cnzb9BiGKIhf3767Xue46ahzFOdl0HzeJi/t3c2LTunqtB3Bh/25iuveqlw2sKnpOmIbJYODoOsdg7HaDhhHSpj1bf1iI2WSiICMNz8BgZLL6t7SZTUaKc3Ns5I5MJsc7JIyywkKny5/fsxOf0HDKigrQlZbQplpmlId/AIVZ9jfIL+zdSVCLVg1uC6wNoigSf/wIUV3qLgdzqQgqD2/fyfaYIAj0GDeZ+ONHKC3ItyPN2gwYjHdwKHv//I24Y4c4vW0TQ2bfS/shw8lJTiQvLaXOsV0+vJ9WvfsR0qY9FyosrFYUpEskscVkIishzq70YMjse2g7cAhrPlnA5u++JC8tFbPJREleLpcPH2Dnbz/w+0vPsGHhxwCc3bWNMzu21GnLvRZoJqZuMJTu3UvCzbdg0euJWrIYt8FNyyRfLVjJg5CKlruk++Zhys8n97vvSHn4EdwGDybyl59RBgZc66HWCbmba6UK7LnnyfroI8ylpaQ+/gS5X39NwNNPEfzmG9elgq061K1aEb1kCQp/fxJvv4Pi7dsxJCWRMHMm5ceOEfHN13hOdh4Ceb3BY+xYIn76EUNsHIkzb8OQmEjxli0k3jYLha8vkYt/R92ixbUeZr0g02oJef99Ap5+itxvv5VC0Wv4wm/GjQtrkLJMLthl3dQXLu6qfyT83FLLHV6TQcoBUjhp5bMSHQqVrFZlhtlotimmqtrBnEHjXvm56uKhstm7rCRK1cm5odxsUyLZjkkUbSovuVJmR57VfIxViKkrIFtAsuy5easpytXZWgZB+o5UaRRXZuUrM9nC1GuDxlXpVDFlVdwoqrTyVX28Jpgqwuir3ryQws8bT+JZTJIiSVFBVKq0cqekXUGmdOfXN9RRMWVFTVY6qMhqUgj1IodFUUS0SMSU2WwhL13at0+Ia7XlKpssbSH7TiyFloptNYYcMhktNkWblfSqfi37hbuRk1Ls/FgqFr1SBWAzrj1a9x1I7OH62/lMBgOr3n+L+GOHmfTUC7Tq3R/AZk9rO0CK0Ti2fjUqrZaoLt1JPHXctr5coaTv9JnMfucTNC6uLH7lWf56+xWSTp8kq8Li5x8ZjSCTMXjWXaRdPMfyd17DbDTSe+rNbP/5W6K69qBVnwGYTUYKMtK55ZW3UajV5FYJQAeI7tYTtasrF/fvIaR12xrVTBnxsSg1Wk5sWsvxDWtAJtBl5FiH5Vw8POkyQnr88sH9nN62iZRzpxHNZryCQtj52491ZvW4enkT2akr53Zvr/NcAwS3aot/VAw5SQl0HT2e7T9/49Ca5wz56alkJ8TRpl/Dg7/dfHzpPHwMR9esdFBNCYLA8HseIC81hWPr/yY/Iw3vhuZLZWeBKNqRRqFt2iFazORWU03py8q4fHAfbQcM5tyu7fiGRdiIRCs8/QPsFFP6slLijx9pcrVUVnwsxbnZtOhee8MhSMHrABo3+8zLNv0Ho1CqUGm1BLVobXtcJpPT/5bbiT92mDUfLyC6W0863TSaqC7dUao1dWbBZSfGU5yTTYuefSXS9sQxdFWiVvLSpYDz8uIiRIuF9EsX7PY99qEnGHrnXM7v3s4PT9zPR7dP4asH57Byweuc270dN18/vAKDUWo0GHTlrP/iQ356+iEuHz5Qp4pPFEV2LfrRITPuaqCZmLpBIFosZH/xBUn3zkXTvj1RSxbfMJPsqvAcP56IH75Hd+4cl0eMJGvBe/jeP4/QDz+4brKL6gObCuypJ8ld+BWXhw6jZOdOwj79BN+5c69bdZEzKPz9ifzlZ1z69SPlgQeJmzgJ0Wgi6o8luPbrd62H1yC4dOtG1JLFiIJA3KTJpPzrYVwHDJBIz4Drn/SsCkEQ8J07l/CvpVD0+JtvQXex9myzZtxYMBstyAQBWSMDkDVuSsqLjVdURV0b6mM1MhrMdoqpqsSUldCwBnvXNAE3GiRiQ8rNqf2zs6pVzd1HQ3mRRMwpnOQh6cuNDkHgJqMFxIqGP7W8TtIF7NvgrlQxBZJqqqxIj4un/V1wiXy5AitfiRG1S903RGoipioVU5UqrqqP1wSzqZIkseJKM6as59yqoFNrlU6D6q0h+B5+1TKmqqiY9LU081lMok2tVtd70Pq8TC6pwfLTS1FppAbAqhArbH5QGW7vrAXRbA1Sb5RiymIjY/XlJgSZI4HoF+ZOTkqJw/uu6vu52cp346NN3wHoy0pJOn28zmWNeh0rFrxO0qkTFcHhlQry9IvnUWq0uHp5Yygv4+Tm9XQePoborj3IuHzRgeDwDYtg5uvvMvZfT1KSl8ufr7/Aus8/sKu1j+rSnfD2nUg5ewpXbx/Szp/FqNcT1KIVqz96B5XWhYDoGELbtMcvPNKumQ9AoVLRqnd/8jPSiHBi4wPIjI8lJzGejsNGEnfkIEfXraLj0JFo3Z23u/aZeguCIHBiyzq2//Italc3wtp1ZNT9j5AZd4nz1ZQqztBu4FBSz591sJ85gyAIdB01jrgjh+g6agK+oRGs/ui/deYONcbGVxW9Jk/HqNdxzEn2UEBUDF1GjWPf0kXkpSbj1cB8qcJMSd1U1Q4X3bUngK21zoqzO7dgNhklAvXQftoPvslhjuQZGExBZmXpz+VD+zEbjY0i5WrD5UP70Li6Eda+Y63LGQ160i9dQKFWk1SFlIUKq7YgEby6UntFastefVFqNJgMekY/+BiCIKBUqYnu1pOLB2pXNV4+tB+V1oXw9h1p3XcAFouZS4cqyay81BS07h4IggyFSm2nVASpHKDH+CnM+/JHpj73CqMffJxJT7/IfZ9/z7wvfmTi4/MRZDL8I6IRzWbu+O/HePgHsnLB6yx/51Wbbbc6RFHkwPI/OLhyKXlpzq2aTYlmYuoGgCk/n+QHHiDn08/we+ghwr/+CoW397UeVqOhDI9AFR6GWFoKKhWa9u1t9bI3EgRBwKVHT+RenlhKSpD7+aFu2fJaD6tRELRaXPv2karh9XrULVqgDLx+60Rrg8LPD3WLFoh6PQgCms6dEK7jBoq64DZwANFL/0Sm0ZBw60wKlq+41kNqRhPBbLKAjEbbebTuSswmi1ObUFPAauWrtZWvojnNSmKYTBbbsVgtRuoKcqimljaTwVw56a/ju8CqQAHwCNDaiDlr3o6pimrEUG52IGpMVQgPpVpeLwVU1dynK23lAylnSldqslNMgZT/5MyuVl/oy4y2zKraoHFTOm2rM1a8XjbFlKp+iimzE6WbXCFgMYmNJk2tY1FWUUzpnajJSgv0yOSCLQTfCoWykjCqSzFlXb/exJRCwGyykJdeinewq8MkS2qilM6ZVcHmLGzebLTUixCradxWMtBQbkImFxxaKQOjPTAZLA52Puv7ubH5Vs24vuAbHolPSBjn9+ysdTlDeRl//fc/pF44y9TnXpGylSpQlJONrqTYFkh9evtmTAY93cZMJKJTV0SLhaQzJx22KZPJaT/4Jma/+yk3v/QmSo0Gi9nMN4/cy5L/PMehv/+yTXgFmYyEE0fRuLiw/68ldB01jgG33kHquTOUFRXiHxHlQEwBBMa0AlHExdPT6XGd3LwON28fBt02B7WrG/rSEnqMq1np7+LpRXDrthRmZmA2mdGXljD4jrsJb9+JFj37sruG7KyqaNmrLwqVut4h6O0GDEXt6sqJzWuZ8MR8SgsKWPvpAiyWmr+7G2vjs8Ldx49Ow8dwZM0KpyTYgFvuQKZQUpSdhU9wqJMt1IyCrExkcrmtlQ+wNefFHTtke0y0WDi2YQ0te/cn7cI5TCYj7QYNddieT0goZYUFNqLnwt6dhLZtb7f9psDlQ/uJ6d6rzobD87t3SOH8XXuSk5xIQWalzTDx1PGK60Pg1Bb7HNidv/2A2WjEYjYTd7TyPLTuO4Cs+FjyK1RPzhB7+EBF+6ISN28fwtt15MLeSpI0Py0F37AIglq2QuXiQtpF5+ollUZLTLdedBw6gla9+uHhF1BR2GEmLy0Fv4hozCYTKq2W6S+8xqSnXiAnOZGfnnqIPUt+sbtWdKUlbPrmM/Ys+YX+t9xOp2Gjaj1vTYEbjw34f4byEyeInz4d3YmThH/9Ff6PPGzzQt+IKD14kPjp0zHl5BLx04+433QTqY8+RtbH9au6vF4giiJ5v/5G4p13ooppQcQvvyBTKom/5VZKdtXPd369wKLTkf7SS2S++ZbU2PfhB5Tu30/CbbMwJF99drwpYUhJJeH2Oyjdt4/Qjz7Ed948st//gNQnn8RSz1aM6xGq8HCiFv+Ox5gxpD//PGnz52MuaVi7SzOuP5isiim5UCNpUxu07hKxcbXsfNb8ndomr/oyE2qtopLEMJhtShmj3oIgE1BW5DzVNAE3Gau06dUhNrVmRqm0Clw91FgsIvoyU6XtrMrkXF9mdLDyGasTU/X43jFVCUhvCuuTd6ALZqMFrbs9iaRxVaIrafxrqSs1oXGpj5XPeVNcpfWyImNKYR+uXRMkO1w1Yqri9Wis9dGos75O0vGoXZwrpsqLDTXmknkFSqopZ2olK8xmaezyethprWo5mVzKQ8tOKnbIthItIhazaHsPWIlRZ0Sg9bxZLGKDCSKToZIMNOjMyOQyO1IWIDDSA7lSRurFfLvHbcRUI22Ezbi+IAgC7QffxKUDe2tU4ehKSlj6xktkxccx44XXHdRHsUcOANCiRx8sFjNH166kdd+BuPv64RUYhHdwCPFVJtrOxhDRsQsKpYqON41i1P2PoNJq2b3oR0oqApdLcnMA8AkN57bXFjDsrnm07T8Y0SJy+eA+/CKiyUtJcsi90ZUUgyCQlRDvsF99WRnndm2n0/DREkFcQYSbTbXbGsPaSblBFpORdgOHEtyyDQCDb7+L4twcjq2vveFMpXWhRc8+nK+nnU+p0dB19HhOb92Exs2dCY/PJ/7YEXb//rPT5bOTEshOiLPZKhuL3lNmYDToObz6L4fnNG5u9BgvEXhGvb5B2y3MysDDL8CmjAPw8PNHEGTkJCbY1HXxJ46Qn5ZCt1HjObVtIxEdu+Du40g2eYdIzeX5aamUFxeReOp4k9v48jPSyElOpGWvup0gxyqyuQbMnI1cqbQLIrfaEdsNGsqxDatt1+uJTWs5tu5vhs2ZR5v+g9mzuJLkienRG7WrK6e2bXI+tvRUshJiadW7cmxt+g8m6fQJyoqkGI+89FR8QsKI6d4bfUkxqRfOYWlA/mx+Rhpmo5HwDpJaLC81GUEQaNW7P3d/8CW9Jk3n0KplfHnfLH5/6RkWvzKfr+6/k/O7dzBy3iP0m35bvfd1JWgmpq5TiCYT2V98QcKs21H4+xO9/C/cBjWtpPGfhCiK5P7wI0l334O6RQui/1qGa58+hH74Af5PSna4lAcfsgutvl5hKSsj7dn5ZL7xBt6zbiPypx9x7dmDqD+W4NKtG8nz5pH96Wc3RGC1ISGBhJm3UfT3aoLfeovA5+bjOXYsUYt/x1JeTsKMmynetu1aD7NeKN66lfhp07AUFRH1+yI8xowh4InHCf34Y0p27CTh1pno4x1/2NwokLm4EPL2W4S8+w7FmzaTMH06urNn616xGdctTAYzgkwipkyNIabcrMTU1QlAt1qNaiMX9GUm1C6VTXpGvRmLSSKkjHoTKq3cppiqaeJvMpgrJ+Z1KGyUWisxJcfFQ5r0lxcbnKp7DOVm1Fp78qcqMaVyUSJaqFPVY1XvNFbdUh1eQZKCUyazZ+G07iqnoeT1hb60flY+tavSqYLHSupZz6Uze6QzOCWm5PULTq8Jla+TtB2VVu5UTaYrM6GuIVfLK9AVQQBdSe1WPlkDrXxyhYBRbyYvvZTAaHsVh/X6MxstiKIoWUkF5xlTVc9bQ/O4zKZKYkpfbkIulzko2+RKGUExnqRcsP9dZbUOSo2bDdptM65TtB98EyajgYsHHG+MFufl8Mdrz5Ofmc4tL79FaNv2Dstc2CuprSI6dSH20AEKszLpMX6K7fkWPfty+fCBWhU+Rp2OvPRUglu1odOwUQyZPVdqdq1QwfqEhiNTKOg5YSohrdsCknopolMXzu/ZQUCkpOSoripJOn0Cr8AgLu7f7UA4ndu9HZPRQKfhozm1bSOG8nJcvX3Zvdg54QNQVljAyS3rAUnR02fqrbbnfELC6DxiLAeW/1Fn6167gUPJSU4kO7F+vyu7jZ6AxWLm5KZ1RHftwZDZ93Jo1TLO7NjisOyZHVvQengS3a1nvbZdE9x9/Og+bjKH/15OcV6Ow/NWpdTJzesaFIRdkJGOZ7VQcplcjod/AKJoIeHEUURRZO8fvxHSpj1ylYr0i+fpOmqc0+1Zx5GXlsKlg3sRLSKt+wyo93jqg8uH9qNQquyUgs5QkpdLdlICHv4B+ISEEdmpK5criCl9WSmXD+6j/eCb6D52EiW5OVw6sIf440fY8v1Cuo2ZSNfR4xl8+10YysvZ9ftPAChVatoPuokz2zc7JU3P7d6BSqslpoq1tlUfKfvt0oE9iBYL+WmpeIeEEtO9F2aTCZNe51RhWBNykhIBCO/QGaVGS15qZRi7Uq1hwK2zufeTbxk06y68AoNw9/Wj/y23c8/HX9N5+Oh67+dK0UxMXYcwpKSQeOcccj77HN959xH1668oQxrm/72eYC4qIvWJJ8l65x18776LiO++ReHrC1SGood/tVBSh02dRtmRI9d4xDVDHxdPwszbKN68mZD33iPohRdsIedyd3fCvvgc/0cfIefLL0m6515M2dnXeMQ1o2j9euKnz0AsLyfqjyV4TZtqe07TujXRf/6Btls3Uh58iMx33rVrUryeIBqNZL67gJSH/oVLr15E/7UMTZs2tuc9Ro8iesliRKOR+OkzKFy58hqO9srhOWkSUcuWIri6kHDrTHK//+GGIEGb4QiTwVIRfi6rc/LvDFbFzdVq5rNUNJDVRC5YLCKGcomYkskEFEoZRr0Zs0lErhAqiCGFTdFSo2LKYJEscvUIoFZV5FUp1fIqijGj01Y+fbnRzvoH9sSU2kVu91hNMOmtShmhSTKmrBa+6nyYxq3xLYsGnQmT0YLWo54ZU072Y1Xc2DKmbGRf7efHuZWvcYSLFdWtfGqt0iH83KAzYTZacHF3bnXxCtAiilBeWvN3l9lkQS4XpBDyOq69qu2D5UUGECEoxj7HxnotWZsjZTIBtbZmhZo1U62hDYYmo8V2zRvKTciVgtPPkKhOviSfy7NTjVlJcKGRbaDNuP7g7utHZKeunNluT3JkxF7itxeepLykmFtffovAGMe4CaNeR/qlC8gUCvwjojiydgWhbTsQ1KKVbZlWvftRXlRoV1NfHdlJCSCKBETGYCgvZ9GLTyKKInKlkmnPv8rsdz4hvH0nlv/3VTu7V5v+g0g+d9qWCVV1sm3U60i7cJZWfQagKykm/vhR23OiKHJi01pa9OiN1s2Dgyv+pN3AIQy+/S4uH9pP2sXzDmMURZGNX9vfOD6/194C2X/GbYiihf3LFtd4rCDlZ2ncPeodgu7i6UWHwcM5um4VJoOB7uMm0XHYKDZ9/aldqLTZZOLcrm20Gzi0TstZfdBnys0o1Wr2LP7V4bnc1GTULq7kpaXWqRKrioLMdKdteX4RUSg1GmKPHOTCvl1kxl1m4K13cHzDajz8A2jR03nouFKjwd3Xn7y0FC7s3UV4h064ejVtZM3F/buJ7NK9xgB9K05v3wxAhyHDAWjRsw+p585SVlTIhX27MZtMtBs0lICoGCI7d2P34l9Y/dF/ie7ag6Fz5gLg4RfAwJmzObFxDSnnzwDQafhoygoLiD1y0G5/oihyfs92WvXub2fbdPHwJKJjFy7s3UVxXg4mgx6f0DD8I6Nx8/ZBEASHnKnakJMUj6uXN66eXviEhDmE1IP0OdJj/BTGPvwU4x99hl6TpuPm7VPvfTQFmomp6wiiKFKwfAXxk6dgyswk8pefCXjssRui3a0mlB09RvyUqZTu2UPoxx8T8PTTCE4+aN0GDyZ6xXKUoaESKffV19eVtU8URfL//JP46dMRDQailizGc8J4h+UEuRy/Bx8k4scfMMTFETdlKqV7a29i+KdhMRjIeONNUh9/AtfBg4hattSOyLFC7uVF2JdfEDB/Pnm//ELCHbMxpNRed/pPw5ieTuLsO8n7+WcC5s8n7LNPkTvJIVC3akXU0qV4jBxB2vznSJv/HJbSG9cKp46OJmrxYrxvv52sBQtInH0nhsTEaz2sZjQQVhJFrnDMh6kPrHlCV8/KJ2Xg1ERMWYkCq0pHqZFXEFOSEsRQbkKpUVQqpmrKmDJKKiulSl73eaiYRyuUcjsro9yJlc9QZnIIP69KeGhcpPXrUik1tWLK+robdfaEj/YKiCnrNWA9J7VB46pEX2Z0sI/ZFFNKq5WvnhlTThRTMivhYmyklU9f3cqncFB55aVLn+FuPs6JKc8ASZlWml+zTcVisiBTyJCr5HWSw1ZSUq6QUVZsQOuuxCvAPr/QWMX2aX1/uHioKCt0fI9WPW8NsfKKoojZaEGhlALmrX87e51a9gjEYhaJPVp5k+zifikvxWIR62VlbcaNgQ6DbyL1/BkKMqQQ6fN7drDklfl4+Ppzx1sf4hcR5XS9xJPHsZjNBES1IDP+Mqnnz9JjwhS7ZYJbtsHV24fLh/bVuP+shDhkcjlKjYZvH52LvqwUDz9/7v34G6K79kChVDLlmZeI7NKd5e+8xt4/f8NiMdOqV39kMjmJp47h7utPThUFUuqFc5hNJjoMvgn/yGg7Eij90nlykhLoMmIsJzatpTQ/nz7TZtJ2wGD8IqLY9fuPDmrYszu3Ent4Py5e3jbi4+jalXYh1i6eXvSefDPHN66pNRNIrlDQpu9Azu3ZUauSrCp6TJhKWVEhZ3dtQxAERsx9kOBWbVm54HXy0qTf1wknjlJWWGAjRq4UahdX+t98O2d2bnFoA8xNTsI/Kpquo8ex989FTlVV1WExm8lPS8EnNMLhOZ+QUASZnNjDB9j83Ze07NUPD/9Azu/ZSdfRE5DJao6i8Q4JJSs+jqQzJ6/Ywlgd+empZFy+SLuBQ2tdTiI71wHQdoC0bIsefRARiT92mLM7txDRqdKO2GXEGAqzMtC4ujP+sWftjq/rmAkEt2zDxoWfYNTp8I+IIrhlG4dcqszYS+Snp9HWydispK2VuPQJDkMQBGK690amUJB2of7EVHZSou0zwCc0zHa9XW9oJqauExhTU0m+bx7pzz+P+4jhRK9YjkuPxjUxXA8QzWayv/iCxNmzUQQGEr18OR6jaw9NUwYFEfnTj/jOu4/sjz4iee59GLPqbry42jAXFJD62ONkvPQynhPGS4qc1q1rXce1d2+iVyxH06YNSffOJev9D7BcB4oj3YULJMy4mYIlSwh86d+EfvABcje3GpcXBAHfu+8iatFvmHNziZ86jaJ16/7BEdeMwjVriJs8BWMFiet79121tiHK3VwJeecdgv/7NkWbNhE/fcYNbYWTqVQEPjefyF9+xpSdTdyUqeT9+tt1Reg2o3aYDGYQG99gJpfLULsorm7GlFyoUc1htSdZVUlKtURMWczSZL+82ICLu9JGDjmb+FvMFiwmEZPRglIjx6Cv3U5gJSxkMilUXSYTKC8x2uxn5gp1j2gRMejNNlLMCmv4uUIltxF7ZUW152tYJ/xSG9uVv7+Kc6X9lRba71frJimZGhMYbrVzutSTmBJFHKxxlRlT0rmUVdhM67TyGWvOmGq0la8i6Nw6FhcPFeXFBrtzk5cmEVNVG/iqwitAerykFmLKbJZa+ZQqmZ3azhmqWvnKiwxEdfJDqGbHrNqqaKg4BhdPldNrrKrSrCHnybqsXCmzkV9ypRyzk/G7eauJ6uTHkfUJmE0WdKVGjqyvvInRbOX730HL3v1QabWc3LKeDQs/Yc0nC2jZux83v/JWreqTSwf3IQgyorv24MialXgFBtu19YEUXN6yZ18uHdxX4+dTZvxlXDy9+OnphykvKkTl4sJdH3xpp7hQqFRMeup5+t88i33LFvPn6y9i0JUT1bU75/fuxD/SPgA96dRxXL198AkNp92gYcQdPmDLLzq67m88A4MIiGnJ/mWL6TR8FD4hochkcgbNmkPK2dNcPlhJpBXlZLH1h68IadWW/LQUBt9+DwAmo4Gja1fZHUv3cZNw8/Fl83df1vp53HHYSEpyc0g4cbTGZarCJySUlj37cPjvZVjMZuQKJZOefhEXTy+WvfUyJXm5nN62Ef/IaFsQfVOg84gx+ISEsfWHhXa/EXOSE/ENi2TArbNRqtXs+Pm7OrdVkJmB2WTCNyzc4Tnv4FAMZaUYyssQLWZGznuYfUsXoXFzo+tI5zY+K3xCwshKiEWhUNK678CGH2QtOLd7OyqtCzE9etW6XOq5M5Tk5eDhF4BPiGQvdPXyJrhla87t3k7q+bM2wrA4N4ftv3yHUqNBFETkCnsRiUwmZ/SDj1Ocl8PWH78CJNVUwsljFGZVhqmf270dVy9vIjp2dhiPlbS9tH83cqUSj4p28ZgevTAbjSSdOVnv3ws5yQn4hUcC4BsaTn5qylVrdL4SNBNT1xiixULer78RO3ES+suXCVv4JSHvvIPc3f1aD63RMCQk2KyIfvffT+QvP6MKq1/jg6BQEPDYY0R89y26SxeJmziJwtVrrtmbp/TAQUn1dOAAoR9/TPDrryOrZ8ObwteX8G+/wf+JJ8j98UcSbr4F3XlHafE/AdFsJve770iYcTMAUUv/xOf222slcqpC27kz0cv/wnXAAFKfeJLUJ5+8Znlg5oICUp98irSnnsZt4ABilv+FS7du9V7fa8oUopctRdBqib/lVrK/+ALReHWsUP8EXHr2JGbFcrymTiHzjTdIvPNO9JcuXethNaMeMBoqJ5h1qVJqgtZddVWtfPJayBirPag6MWU2icjlAiUFely91KgqnjfqHbdjPW6TwYJKq3BQEVWHjWQQBASZgMZdSVmRQSJGhMrtGXQmEHFQTFnJGLVWgbaCmCp1omapChtho2yc5bI6inLLkckF8jPsVZsaNxViRZh7Q1FWJB1D9aY/Z6hsirO/bmytfKrKu741KXGqomrekRU2K18jiSlDuUkKzq+w8mndVVjM9ucmL1VSObh5O7dmePhJxFRZLcStpFoSUKjk9SamLGaJSI3q7Bjiq6timdPbFFNq2+vjsO8KdVqDiCljpXLLug+lSl7j69R3SgzFeXo2fX+G9V+ftttXc/j5/w6Uag3hHbtwePVyzu3Zzsh5jzDukadrbXWzmM1cPrwfUbTgGx7Bxf276TZ2klNlS6ve/SnKziIz7rLDc1kJcVzYs5OSvFwsZumanDr/FZRqx/emTCan3/TbuOXltyjIzODnZx/G0z+Q9EsXcPf1t8tsSjh+hMiOXRAEgbYDBmMyGbl0YC9FOVlc3L+bHuMmc2D5H5jNZvrffLttvZhuvYjp3ottP3+DUa/DbDKx5uMFKDVaclOTaTdoGO0HD8MzIBDf0HCOrFlhC5m2nsvh9z5I0qnjtVr1AmNaEhDVgpOb19e4THX0nX4b+elpnN0l5bdq3dyZ/sJriBaRP15/kdjDB+hSB4nTUMjkckbc+yCp589yattGgIo8rzT8wiLQuLox5I57uLBvF4knj9e6rdzUJKCyha8qvEMq53q+oeGUFuRzduc2+k67tU4LnXew1MzXoldf1E3YpC2KIud2bad13wF1Nhwe27AaBIEOw0bYPd6iZ1+Sz5xEqdHQsldfyooKWfrGvxFFkclPvUhxTg6nK85rVfiGhTP8ngc5vW0T53Zto23/wWhc3Ti6TrJNmgwGzu7eTtuBQ52+5zRubkR16Ubq+bP4hkXYlono0AWZXEF5UWG9Ms70ZaUUZmbgHxkNSCSgrrSEssKCOtf9p9FMTF1D6M6dI/H2O8h84w08J08iZvXfuA8deq2H1WiIZjO5P/5I3OQpmLKyiPz5J/wffcSpda8uuPbvT8yqVbgNGEDa00+T+vgTmPLyrsKoncNcUkr6q6+SNGcOqvBwYlbUrfhyBkEmw2/efUT/+QeIIvE330LOwq8QGxAyeKUwJCeTNOcust57H+87ZxO19E+n1r26IPfwIPTDDwh57z1K9uwlbtIkirf+s8HoJbv3EDd5CiW7dxPy3nuS4svLq8HbUUdHE7VkMb5z7yXn8y9IuHUmugsXm37A/xBkrq4EvfwyET/+iDk3j7ip08h6770buonw/wNMBjOiKFYQHo3LCdO6KdFdpfBzq5WvJpuRvrqVT11p5ZMpZJTk6XDz1tia4nROsn6s9jGj3ozGRSE1mtVChJTk66SxVUyo3bw1FOeWIwgCCoXMtr3qai7bmEtNKFQy5EoZLp4SiVNaUD/FlFJdD6thPVCcq0PrrqIwq9yODLESZY0JQC8rMiAIUrB5XaiazVUVZqP0elcNZZfXg4wzOVNMXWH4ua4iVN9688RKuFUleHJSJGKqeruhbQwKGUqN3GkjnhUWkwWZXCblo9Xx2lptb7qKayu8nWP2hr7UuZXPGflpqrDgQcMsj6YqyjbrtaLU1ExM+Ya4MeLudqSczyc/o5TBt1UqvhvaBtiM6xPlxUVsWPgJsYf2I1osDLj5djpbm+pqQcq50xjKSpErVaRdOIdKo6VjtUm5FeEdOuHq7cPZnVttj5Xk57Fh4cf8Mv9RjHpdRUubQM+J0whr26HWfYe378Scdz8jslM3jq3/G0Emo6yogJK8XMqLiyjKziI7KcEWCO3u40dExy6c2rqRo2tXoda6ENauI8c3rKHPlJsdVGHD5syjrLCAA8v/ZM+SX8iIvYh3cDBypZJhc+4DILJTNwzl5QDsW/q73fox3XrRpv9gtv/0jR1pVRWCINB5xGjijhyqlw0OIDC6Ba1692ff0t9tQdjuvn5Mf+E1irIzQRBo2btvvbbVEIR36EyHoSPY+esPlOTnUZCRhsVswjdcIpjaDRpGWLuObPn+S0y13KzNS0lG7erqVIVnzcTyCg4lMy6W9V98iHdIKJ1HjKlzfNZrNbJT10YcXc1Iv3Segsx02g0cVutyZYUFXDq4F0SR9tWWbdGjNxazmeCWbTCbTCx782V0pSXc/O83iOzcjfaDhrHnj9/QlZQ4bLfDkOG0HzSMTd9+QUFmOl1GjuPU1o3oSku4uH83uuIiutRyftr0H0xZUSFegcG2x5QaDZGduiAIMuJqacu0IiNWulkd1EL67PcJlVoQr0c7XzMxdQ1gys8n/dVXiZ8+A3NREZG//EzwK6/Uaqm63qGPiyfxjtlkvfMuXrfeQszKFbj0vLI2CYW3N6EfvE/ohx9QduAAcRMmUrR27VVXT5Xs2k3cpIkUrlxF4L//TcRPP6IMDq57xVqgaduWqKV/4nvXXWR/8gkJt81Cd67mEMmmgGg0kvvtt8RNnIQxLY2In34k8JlnkKnqvqNeEwRBwHPCeGJWrULTvj0pDz1E2nPPX3X1lCkvj7T580meOxd1ixhiVq10mvHVEMhUKgIef5yoxYuxGPTEz5hBzsKF123Ie33g2rcP0StX4P+vh8j7+RdiJ0ygePPm61Ku2wyJlBEtIvJa1A51QeuuuqpWvtoypqyTcDvFlM5cMeEWKC004OGntRFXzpRAlXlLJjQVpEptdj6rYspq6fMK0FKYJU0sFCq5LajbaqOqrpjSlVU211n/X5uiBirIFcF++1eCohwdHn4aRLEyJwmqZIY1gpgqLzagcVc5NP05g5WQK6tmJTQZKokSK+TKuu2LZpPoZD1pHLU1OtYGa9ujbcwVxFR5BTEliiLZyVZiqubvNK2bEkMtKjyrla8hiilrC6RVzVUVulIjVLwE1veHlDHlxMpnqkJMNUYxpZTZiDqVi6LW8bfuFcS97w/irv8OIDBKCpkWxWbF1I0Oo17HwZVL+f6xeVw6sIfh9z5ERMcuXDpQv2zTc7t3oFCpCG3TjtPbNtJl5FhUGufWWJlcTruBQzm3Zwe6kmL2Lf2d7x+bx+XDB+hSpW3NJyycAbfOrtf+NW5uTHh8PqMffBwQiD18AICcpATijh5CJpfbtah1Gz2BtIvnOLF5HZ1GjGHnbz/g6u1N9/GTHbbtFRRMr0nTObRqKYdWLaNN/8GknD3NTXc/YAtaj+zSjcKsDLqMGsfJzescJurD5tyHxWJm568/1HgMbQcMRa5ScnrbpnodM0D/m2dRlJPF6W2bbY95BgSiUKoQBIG1nyzAqNfVe3v1xZA77kGmULD1h4VkVShtrPYuQRAYfs8DFGSmc2T18hq3kZuShG9YpAPpaTGb2fbjNwiCQItuPRFFC1nxsYx+4FEHm5szZMZLSry6lFUNxYlN6/DwDySsfe1E6altm0AUCWzRCq8g+zlfQaZkvTMaDSx/5zUKszOY8eLreFe0CQ6adRdmo4E9fzgGzAuCwPC5D+EVFMxf77xK6z79sZiMnNy8nuMb1xDZuZttO84Q3VWaS1dv82s7cCiiaOHiwbrf6xmxl1BptTZ7oldQMIJMZtfMd72gmZj6ByGaTOQtWkTsmLEU/b2awPnPErNiOS69ave8Xs+wlJeT/cknxE+ejCkvl8hffibohRfqbXerDzzGjiVm9d+49OhB6pNPkTz3vqsS9GzKySFt/nMk33cf6qgoYlatwueO221Vt1cKmUpFwFNPEvnbr4g6HfEzbibzv+9clRDu8lOniL/5FrI++BDvW28l5u9VuPbuXfeK9YQyMIDwhQsJfuN1irduJW7sOAqW/dXk+UaiKFLw13Lixo2nePsOgt98g/DvvkMZ5NgG0lhoO3UketkyiTT89DPipk6j9MDBule8TiFTqfB78EFiVv+NukVLUh5+hKQ5d1F++sy1HlozqsGoN2OxiCivwCKmcW98YHZdqLTy1ZQxJe3XSv4o1QqMejMmg9n2o9XTX4u6wjrmTLliJZAMOrNN+VKbnc+qbrJuy9NfS0G2lZiqtJ3pSmtWTFmtbNb8ovKi2s+f2SQpiRQqWZMopvLTSwmI9AChUvUDlQSLrqThRGN5kaFe+VIgZUzJ5IKDisdkNCNX2ZMtCmXdpKnVDlcVV2rl05cZ7fLBqiuminJ0lYqkWo7b1VNd6xiszXhVr52aYCWm9KVGZHLnvwv0ZVITpEwhUF7xOrr7aDDozA7WSbPRYrNNNuQ8VW2WLC82gCBZU+v6DBEEAUGoGuAvIja38t2QMOjKObpuFd89eh97lvxCmwFDuPvDhXQdNY5uYyeRfvkC6Zcu1LoNk8HAhX27bFlHJoORbmMn1bpO+0E3oSsu4rtH7+PA8iV0GTWOOQs+I/7YYUAiOsc/8jSKBpQ2CYJAx6EjGHHvg1gq2vJijxwk9uhBwtp1QO3ials2pkcvNG7umAwGPHz9SDhxlOH3PFijRatN34GIFgtqF1fijh2iZa9+tO47wPZ8RAdJdeLhF4Cbjy87f7MnoFy9vBl8+z2c2bHZrkmwKtQuLrTtP4RTWzbaxl8X/CKiaNt/MPv/WoxRJxFQZ3duRV9expiHniD90kVWvPs6RkPtat6GQuvuwYh7H+TSgb2c3bEVD/9AG0lnHVeP8VPY/9cSCrMynW4jNyXZab7UoVXLyLh8Ef+oGFLOn0G0WFC5uNhUOrXBbDISe/gASo2mXta0+kJq0ttFl5Fjaw1eN5tMHN+wGhGchs6f2LgGdz9/0i+cIzshjmnPvWqzxQG4efvQb8YsTmxc6xAwD6DSaJk6/2UANiz8hNb9BnH4779Iv3SBrqMn1H4MhdKN//w0+yD+lj37IFMoyI6PrVHRZ0Vm7CUCo1va5rNyhRKvwGDynDTzXWs0E1P/AESLhaJ164ibMJHM19/AfeQIWmxYj8+cOTd0417x1q3ETZhI7jff4jP3XmJWXLlKqiYo/PwI+/QTwr78AkN8PHETJ5H9+edNEigumkySumTsOEq2byf4jdcJ/+67eudiNRQu3boR/dcy/B9/jPzFi4mdMLHJVC2m/HwyXn+DhFtngiAQtWQJgc8/h8zVte6VGwhBEPCaMYMWa9fgOngQ6S++SOLsO9FdbBpLnP7yZZLuupv0F17AddAgWqxdg9f06fXOxWoIZGo1AU89SfRfy5B7eJA0Zw6pzz6LKTu77pWvU6giIgj/+ivCFn6JKS+XhBkzSH3mWYypNbfMNOOfhb7ciGixKnEaqZhyU15dxVQtwezlJUbUrgqbSkehlmHUmyQlWMXnmVegi00J5EwxZX3MoDOh9VBX/F3zj3vrsZaXGLGYLXgGuFBeZMBQbpKyuiqIo/IaMpd0pZWKKWUFKVBX+LnFZEEQBHQlxjpVNXXBoDNRnKfDL9wNrwAXcqsQU1bCrDFEo7Ulrj4QBMGpisdktKBUOVFM1XHMVUO8betdacZUmcnOlqjUyO0UQpkJlT/Eaztud18NiNT4uhn1ZpRqeb0UU9ZjqYmoBYkQ1bqp0LqpbFZJj4pw9qKc8mrbEytD+xtNTBnRuilrzZiqDqtKShTBbG5OP7+RUJybw87ffuDrh+5i+8/fEtm5G3d/+BUj7n3QZq2K6d4T7+AQDqz4o9ZtxR09iFFXjsVsJiPuEu0GDa21Gj7l3GnWf/EhADKFkrs+WMjgWXex9YeFFOdIv5UGzpzd6NDujsNG4uLphUwm5+i6VSSdPEZM9z52y5iNRswmE4gie/9cROs+AxyC2q3QlZSw6sP/4urtjb6sFNFsYeS8h+1+Q2rc3Ahs0ZKUs6cYdNscYg8fcMhY6nTTKKK79mDDlx/XmMnTdfR4inOzuXhgT72Pd8CtsykvLuLgqqWYTSYOrPiT1n0H0m7gUKY+9wppl85fFXKqdd+BdBgynMSTx2yWrqroN+M2NG5ubPvpG4fnzCYTeanJ+FXLl8pOSmDvn4voNWkangGBZMZdpmWvvhjKyiR7XB24dHAfupJiAmNaOiV2Gguriq3jsJG1Lndx3y5K8nIRBIE2/QbZPZefkUbCiaM2m2L7wTcR0rqtwza6jZmIT2gYG7/6RLpGq8Hdx49p81+hMCuD7KQEyouLcPXypkX32sUpVmVbXlqKTbkFoNK6EN1FKkmzKg1rQkbsJQJbtLJ7zCc0jNxmYur/F0RRpGTnTuJnzCD1iSdRRoQTvWwpIW+8gcLX91oPr9HQX7pE8v0PkPLQv1BFRxPz9yoCHnsMmda5/Lcp4T5sGDFrVuMzZw45Xy6U7H3rNzSa1Ck9cJD4adPJfPttPMaNI2b9OrxmzLgq5EdVCEolfvfdJ6laWreSVC133d3oljjRaJTItTFjKVyxgoCnniL6zz/QdurYxCN3hMLPj9B33yXixx8w5+URP3UaGa+9hik3t1HbM+Xnk/Ha61LjXno64d9+S+iCd/+R94ymTRsif/uV4DffpHTXbmLHjiPnm2+w6JpeUv1PQBAE3IcOJWbFCoJee5XSffuIHTuOjDfexJjp/G5YM/45WK0+SrVUVd+YzzFXTzVlhQZblX1TwmKW1CQ1TZpLC/S4eVXeqVZpFBjKJcWUxSwpqbTuSptFrzZiCrGSRLI2sjlDeYkRmVwAUfrbO0hS5+all6Ko0kxWVmxArnS0W1W1iFlJgdpa20AiECwmC/kZZQ6ql4bCat3zCXbFN9SN3NRKYkoml6F1V9aZeeUMZUWGegWfW+Hiqaa0WiC32VAZxm2FQinDVKeVz0nG1BUSU7pqVj5BEHBxV9lsl5nxRTblV3W7ZlVYSaGqlsmqMBnMKFRWYqp+iimoOZtJXyopprTuSlv+k6eflZiy/x6RFFPSeWqI5dGqKLQqprTuqnopvhzGLtIkCsBmXF1Iyqbd/PXf//DNv+7hxKZ1dLppNHM//Zax/3oSr0B7BblMJqfP1FuJPXyAzPjYGrd7ZudWtO4eaD08KS8qpNfEaU6XK8nPY80nC1jyn+eQyWX0mTaTssJ8TAY9W374ytbU5+EfQO9J0xt9nDK5nI7DRiICcqUSi8WCQW9P5p7YuBaTQY8gl2MoL2PYXfOcbstsMrLqg7coLyqkTf8h0mNGI/pSxwygqC49SDhxlBa9+hHWriObv/3cjgwSBIHRDz6OaLGw4atPnH5PB0a3IKJjFw7//Ve9v8e9AoPoOWEqh1f9xdF1qyjKzqTv1FsAKX9r2vxXSLt4juX/fRV9E+eFDrnzPkREclOSHVReKo2WoXfeR+zh/VzYt8vuudyUJExGA4ExlSSHxWxmw5cf4xUUTMve/WyZRyPve4SITl3Zt/T3OpVkJzatJaxdR8LadSQrPrZJbtSbTSZObFpHm36DcPHwrHE5URQ5uGoZSrWGVn0GOCx7dO1KBJmc0oJ8Ijp1rbEJT65QMOahJ8hKiOPA8iVO9+UfGc2MF1+nMDMdkN7bJlPtvymyE+Nx9fFFpdVyZscWu+eshNuJzTW3pRfn5lCcm01wK/ts4cCYlmTEXrzumrybiamrANFioXjrNhJvm0XyvPuRabRE/voLEV9/jaZ9+2s9vEbDmJFB2osvEjd5CvrYWEI/+Zjwb75GFRX1j45DptUS8NSTxKxYjio6itTHHyfxtlmUHTtW723oLlwg6f77SZozB0GrIerPPwl+9T8ovGuu1L0aUIWFEb5woaRqyc4mfvoM0p5/od6kgSiKFG/bRtzkKRK5NmokLTasx/feexoVOn8lcO3bl+iVKwh48kkKV68hdtRochYuxFJeXvfKgEWvJ/fHH4kdPYbCVasIePJJYlb/jdvAAXWv3IQQZDK8pk+jxbq1eE6ZQvbHnxA7dhwFK1Yg1lOmfb1BUCjwvuUWWm5Yj+8D91P499/EjhhJxmuvYUxPv9bD+38Ji9lSqXzQSGRAYyaJnv5aLBaxTnKlweOziIiiRJbUFH5eWqDH1asyD0LjpkRXKqmKzEYLXoEuCIKAxpoxVV6zlQ+wkVwGfc3vM12p0UZ6lBUZ8AlxRZAJ5KSU2E3Orda26jcZ9GVGmxLHaqMqdZL/UxVmkwXr79C6lq0LeWmlIIB3sCt+Ya7kpJTY/ch189ZQktdwIrysyIC2AcSUq6ejYspoNDtkRdWnidBkMKOoRgA2tZUPwM1bbTs3mfFFuHio0Dp5javCp4K4tOZRVYfRYEGpklfYNGv/fK9K/NSUzaQrNaJxlchYq5VP7apApVVQmF05uRRFEbPJYlPtNUgxVTFOlVpRQUwpkVchZetC1dfTWMt7rRnXDkadjkuH9rH+y4/46oE7Wf3Rf9GVFDP83ge4/8sfGXLHPXj4BdS4fruBQ/EKCmb/st+dPl+UnUXckUOYDAYsJhMtevZ12rJ26cBefnr6XySdPsHoBx5j1hvv02/6rbh6+7D643c5sXGNbRz9Zsy64uiLjsNGIlrMmPR61K5u7F3yK3v++BVRFDHoyjm4ahkRHbsgms2I4HR/ZpOJNZ8sIPX8WfpOm8nRtSvpMWEqbr6+rPv8Awc1S9v+g9CXlZJw4ggj7vsXxbnZ7K8WhO7q5c2oBx4j7shBTmxc63TsvSZOIzPuMslnTtX7eHtPuRm1mxv7/lxETI/edvaw8A6dmf78q2TFx/LHa883aYNaWUE+iCLFudns+v0nh+db9x1Am36D2LDwE7vcrYzLFxFkMgKiK1VxR9asIDP+MgNn3snKBW/gFRQCQE5yIoNum0NuShKnt2922IcVuSlJpJw9TZeRYwmIiqGssIDS/Csvuzq/ZwdF2Zn0GD+l1uUSjh8hJykBo15H15Fj7Z4rysnixMa1CDKB6S+8Tr9pM8lPSyHxpPP5ZlCLVvSdNpP9fy0h7aLzFvaglq3xj5BeZ31ZKYdWLq11fBmXLhDcojVtBwzh9DZ7u2h0t56oXVzJjL1Eca7z8P3kMycBCGtnL1QIadUOfWnpdReA3kxMNSFEo5HClSuJnzyZlIceAkEg/KuFRP7261WzuP0TMOXnk/Xee8SOHkPJ1m0EPv88LdauwWPUqKuuLKoN6pYtifjqKyK+/w6LTkfibbNIeeRRdBdq9tUbUlJJmz+f+ClTMSQkEPrhB0T9/jvajrWH4l1N2FQtK1cQ+NK/Kdm+ndjRY8h8d0GNqiNRFCnZs4fEmbeR8uBDKPz8iP5rGcGvv47Cz7HC+p+CTKXC9957aLFhPV4zppP9+RfEjhlL/h9/1BgqLhoMkqVx9Biy3l2Ax7ixtNi4Ad9777mioPYrhdzLi6B/v0iLNavRdulC+nPPEz99BsVbttywYeIyV1f8H3qIlls24/evf1G0Zi2XR40m/aWX0Mc1nXy6GXXD2mgHoHWTrnN9WcPVOFZFSGF2/Qjg+sKqwFIohBqtSyX5ety8Kt+jGleJmLLmTHkFSmOzkhY1KaZkcul7xN1HIrlqypgSLSKGcpONyCsvMqBQyvEOcpGIKWUlMVWTtU1XoWiBSiufrthYawh01Ym8rrRmNVd9kBlXiG+IK0qVHN8wd/RlJjtS0c1b3WCSUbSIlOTpbeevPnD1VDtkTJkNlQoeK+TKupU4VjtcVcgqMqcam52mLzU5NAx6BrpQkFmG0WAmO7kYhVqGm3ft9d8+IVKpTE5ysdPnTXozCrUMpUpuI3xqQtVjqUmhqCuV7K1ad5VNMSUIAh5+GjvFlFUhZX1vNNbKV5ynw81LY3ft14Wq+zKUX9n13IymQXlxEYmnjrNv6e8sffMlvpg7i1XvvUn6pQt0HjmWuz74kllvvE+XkeNQaevOcJXJ5fSdNpPLh/bbGrmq4vimtSjVaox6HfryMgbeeofd82aTic3ffcmqD94irF1H5rz3OR2HjUSQyZDJFXgGBJGbnEhQi9YU50o2vqoh5Y2Fd1CIjZxp1ac/g2bdxf5li9n41SccXfc3upISMuMuEdW1BwqlioMr/nQY97rPPyD28AFuuvt+9v+1mPAOnRk86y7GPfw0mXGX2b34Z7t1fMMi8I+M5vzuHfiGhtNn2q0c+vsvB7VZy5596DJqPNt++oa0i47lRZFduuMfEVWnhbIqVBotUZ27Y9TrHIgDkMiEW155m9L8PBa/8myNuU8NRfql8yAIDLh1Nof//svBgigIAqPufwQ3H19WLHjDRoplxF7ELzwSpVr6rslPT2XvH7/RddQ4di/+GYVKxfQXXkOhVpMVf5mgFq1oO2AIe//41WljHcDxjWtx8fSiVZ/+BEa3lPYTd/mKjs9iMXNg+R+06NmnVmupaLGw549f0bi54x0cSlj7Trbn9GVlLHnlOURRZPJTLxLaph2h7ToQENWCI2tX1rjNPlNvIahla/7+4C1KCxyLoRJPHift4jmGzL4XpVrDvmWLST572vlxmM2kx14kpE07Og8fQ0leLvHHj9ielysUdB0tFUGd3LLe6TaSzpzEPyLKQQkW1LI1giCrkUC7VmgmppoI5pJSYseMJW3+cyhDQon87Veifl+E25Ah15S8uRIYs7LIfHcBl4ePIO+3RRLhsGkjPrPvQLiGhEF1uPbvT/SypQS//Ta6c+eInzyFlEcesWu908fHk/bii8SOHUvJ3r0EvfIyLVavxmPs2CYLN79SCEolPrNm0WLjBnzuvouCJUu4PGKkHUEliiKlBw+SNPtOku+diyiKhH/7LRE//YimXbtrfASVUHh7SwTmmtW49OhOxiv/4fKYMeQtWoRFL026RKOR/D//5PKYMWS8+houvXoRs2Y1wf/5DwqfmnMO/mmoIiMJ++hDohb/jtzDg5R/PUz8lKkUrVt3wyqo5G5u+D1wPy22bCHgsUcp3r6duHHjyf7ii2s9tP83qForb81gagzp4e6rQZAJTU5MWcmo2lrZJMVUJTGgcVViNkpKMIPejHegNIGyqnCcEVOGcpNNuWQ9lprscmVFBkRLZaC5NW/IL8yN3JRi5MrKnKDyGqxtZUUGXCuyrKwkjChSo32uKmGldlHYKbwag/S4IoJipB+IAZHuAGQlFNmed/PRUNxAYqqs2IDZZGkYMeWlprTafgw6EyqNvUpJqZZjqkNV44yYUqrlINSeF1YTRFGUXidP+9fPK0BLQVY5qRfysZhEBEGok5iyErc1EVNGm5Wv7mD7qo2MosW5akpfZkLjopSy36pkhXn6a+3eo9b3lLKRxJRMJiBTCBRkleMZoK0XgVh5HFWIqSu8nptRf/z90Tus/fQ9Niz8mHWfvc/yd19j0UtP88XcWXwxdxZL3/g3R9euRK5QMODWO7jno6+4+4MvGXTbHHxDHcOm60K7gUPxi4hi249f291MMxr0nNq6UWoeEwTaDRyCX0SU7XldSQl/vf0Kp7asZ8Tch5j01Au2Sa3FYmbrDwtJu3AWmVxBRuxFQtq0xzs4tNZ8qoYgtK10o9hsNNB78gzG/utJzu7cyt4lv+Lq7Y1MrmDsv56k18RpnNi0lqKKfCtDeRkr3n2NSwf2MOK+hzm6diVad3cmPv4cMrmckNZtGXTbHA7//ZfNblb1XMUdOYi+rIzek2fgFx4pNeNVi3EYNmcuQS1a8fcHbzuQDoIg0O/mWSSdOk7iqeP1OlZdSQmXD+/Hwz+AQyuXOlVFBUTFMPO1BYgWkcUvP0PmFZI2IOWFBUTG0GfKzZIy6suPHPKGVFoXps5/GUNZKUvfepmyokLSLp4nqKUUZi6KIpu++RwXb2/y0tMozc9j2vOv4u7jS2B0S9IuSYTH4NvvxmQwsPXHrxzGoS8r4+zOrXS6aRRyhRJ3P3/cfHxJPX9lZT0X9uwkPz2VvlNvrXW5iwf2kBl3GV1JCd3GTrTN18uKClnyn+coysmiVe/+xFTkQAmCQPdxk2wqK2eQKxRMevIFRGDV+29hMlZ+D5iMRrb99DUhrdvRY/wUZr72LgLw5+svcG7PDodtZSfGY9LrCWnVlsCYlgREtXAgoLqNkcZ9dN0qp5bJ5DOnCO/Q2eFxtYsLfuERTknWa4nrY0b+PwC5myved9xB9MoVhH+1EJcePa71kBoNQ1ISGa+9RuyIkRT88Qc+s2fTcstm/B99FLmb27UenlMIcjleU6fQYt1agt96C92Fi8RPnUbCHbNJvHMOcePGU7pzFwFPPEHLDRvwnjnzug2el7u7E/DYY7TcshnfCoLq0k3DSZp7H/FTppJ05xzMZaWEffkFUUsW4zZwwHVLfqoiIgj94ANiVq3EpVt3Mt94k8vDR5D84INcHj6CjJdeRtu5CzF/ryJ0wbuoo6Pr3ug1grZrVyJ//onIX39B4etL6hNPEjdxEgXL/rKRbTca5G6u+M6dS8stWwh+801c+/W71kP6f4OqJI2LhzWDqeGKKblchruPmqImJqasOU9KtcJpQLLZbKGs2ICbt72VDySyyWyUgsnB2gbmfBKsLzchVwgIMgGNqzShLytyrq60Tuy1ripUWkUVYsqdnNRSFErBpmopKzbaWu6sMOhMGHVmXCtUXjK5zJZPVJjlPMOjqtXJN9QNi0mscXx1QVdqJD+9lOAW0iTP1VONq5earMQqxJS3mpL8hln5iivsbe6+9SemPP216EqNdso9Q7nJIa9JqamdjJMsNmYHQksQBClzrBHEh77MhNlkwcXDnnTyCnTBUG4i7ng27j4adKVGu+vPGZQqOXKFjIJM5+8Pk95cYeWT12lrM+rMCDKwft06I5N0JZJVVFOtlMA72JXc1ErbppUcUlactwYRUzozSo0cQ7kJXYkRrwAXm+WyPmreqvtqzpj6ZyBaLOhLSyjOzSE3JYmCrEwQRXyCQ+k2diITHp/PnPc+56FvFzF1/iv0nDit1gr5+kAmlzNszn2kXTzH+SqT3pOb1qMrKSY/PQ0BGHBLpVqqICOdRS89TVZCHDNefJ0uI8fZfl+ajEbWfPQuJzauo/OIMVjMJhAECjPTiezc7YrGWhUFGWkgCCSdOgFIYdORnbshihZKcnMYeNscXDw86T5uEmpXN3b++j1F2Vks+c/zpF08z4QnnuP4+tXoSkuY8uwraKrMW3pMmEpM916s++x98tMri2DaDhiC2WTi/J7tyBVKxj/2LEW52Wz5fqHd2OQKJROffF4iHT54G1M1J0DLXv0IbtmGXYt+qtd7cffin7CYzUx9Vmps2/TN507X8woMYuZr7+Lm68fiV+ZzYd/uep9PZ0g+e4rwDh0lZdQDj+Lm48eq999CX2afxecdFML0F1+nND+PX597jNyUJBvJcWbHFpLPnCQwugXJp04w4fH5+IRIYerh7TuScvY0oiji7uvHsLvmcW7XNrvrEKRsKZPBQJdR4wDpeyO8facG2SGrw6jXsfP3n2jZq6+NRHMGk9HI7sU/4+bjh6uXly2vqSgni8WvzKcgMw1BJmfonXPt1ms7YDCeAYHs/XNRjdt28/Zh0pMvkBl3ibWfLrARRgf+Wkx+eioj5j6EIAgERMUwaNZdiBYLaz9ZwNYfvsJcJXMq7eI5ZHIFgTGSkqzziNHEHz1MYVZlCLqrlzet+w3CUFbG2Z3b7MZRkJlBUXamU2IKIKRNO1IvNBNT/7PwvfsuNG3a1L3gdQjRYqFk1y6S73+A2NFjKFq3Hr+HHqTl1i0EPPH4daVgqQ2CUonnxAn4P/Yoqphoyg8fpuzgQRSBgfg98gjed9yOzKVuGfT1ALmXFz733IPv/fcjU6sp3b0b/YULaLp0IeDZ+bgNHXrdElLVoW7VCv8nHsdzyhTMBQWUbNuOKTcXj3Hj8H/sUdQtW17rIdYbLj17EvH9d0QtWYwqMpL0F1/k8tBhZH34EcaMjLo3cB1CplLhNX0aLt2a7sdlM2pH1bwl6+TamaKoPqiuxmgKWJUuSo0ci0l0+LFckqcDETvFitZKTFWQEV6BlZ+1glxwatEzlJmQyWVo3JQIMgGth8rWqFcd1mN09VJJrXJWYircDZPejMUi2mVMVc9csqqiqqq8XD1VCDLISXFuM6hqdQqKkWq1M+Jqr2auCUlnJOVrSOvKLMPAKA8yEyrVPB6+Wow6s80GVh8U51YQUw1QTNma4qpcN3onxJRKI69V9WQ2WRAtooNiyrpuTbbM2lBWQ6OiVwXRmXAql4iOPlL4fh2KKQCth2QxrU78ihXXi1ItR+OiwGy01JozpS832ZGZ1W2KFrOF8mJJ6aV1V6ErNdlUVQGRHuhKjDabpnU/KpUcmVxoEEFk1JtQquXkZ0pkqmeA1qY6rI91sjlj6p+HIJMx48XXufU//2XWG+9z22vvMnX+K4x56An6Tb+NNv0G4Rce2eQK/oiOXWjVpz/bfvqGsqJCjHodB1f+SXCrNpgMetoOHIpngBSennH5IoteehpEC7PeeM9uMqsvK+Wvt18h7ughek2azultm2jdbxCuXt6U5OUS2blrk4y3MCuDhJPH8AuPpLQgn9yUZDLjLhN/TLIvadzc2PHzt1w+fACV1oUhs+/lwr5d/PjUgxVE1EscXPEnRdmZzPj3G/iE2JN7giAw9l9PofX0Yvk7r1JeLN0UcPf1o0XP3hxbvxpRFPENDWfEvQ9xZsdmh8BpK+mQFXeZNZ+8a6dSEQSBQbPmkBl3iQt7d9Z6rEmnT3Bi0zoGzZqDX0QUI+c9zOVD+zhag03M1cubW155m5a9+rL6o/+y98/fGhVcXZiVQVF2FmHtpddXpdEy+ekXKS3I4+8P/+uQweUfEcXtb34AgnRtZsReoig7ix2/fEdw67ZcOrCXoXPm2lk5w9p3ory4iNyUJEAiF9sNHMqGhZ/YFF8mg4Eja1bQYchNuPv4VVlXCkBvbOD7oVXLKC8sYMjsubUvt3IphVlZlBbk0XPiNJQqNTlJCSx+eT4mvR7RItJ97AQ8/O2z3OQKJf1mzOLSwb21qtdCWrdlwhPPE3v4ABu+/Ij0yxc4sOJP+ky91S5LrMf4KfhFROHu68fxjWtZ8urzNhVg8plTBLVohaLCpdR+0E2o3dw4vHqF3b6G3jkXQRDY9fuPdtdE7OEDyBWKGomp8A5dyE9LoSgnq9Zz9U+imZj6fw5Tdja5P/xI3LjxJN83D2N2FsFvvEHLbVvxe+AB5B4e13qI9YYxM5Pszz/n8vARpD31NHJvH0Lee4+wr79C3aY1GS+/zOVhN5H1/vvo4+Kv9XBrhCiKlJ84QdqLL3Jp0GCyP/4Yt0GDiFz0G8FvvI5YVkryXXcRP3kKeT//jCnf0cN8vUA0GinasJGke+cSO2IkxZs343v33UQtW4bvvPso3b+fuLHjSJo3j6KNG2vMoboeoe3ShfAvvyBm3Vo8Jkwg/9dfuTx8BCmPPU7Jjh2ITupim9EMK6qSUO5+VmKqcY1v3kGuNbaONRZWQkFVkedUvTUsP1360egd7Gp7zNq+ZyWHrEQCSMouvZM8m/ISIzKZYCO1XDwqm9eqIy+9FJlMwMVDbU9MhUl3xE0GyUYoiiJlxVL4eVU4I6ZcPCX1VXYNVi8rQaRUy/GoaFdLu1zgdNm6EH8iB/8IdzsCKSDKnezEIltTmpXMK6hBweUMxXk6lBq5XYtdXfB0kk0mKZ/sCSapabHmz7KqeUfVodLWvm5NsBFT1ax8ngHSmMuLDER29MNksNSpmAJsr1tmFcskVF6nCpXMlmdVW+uiUWeyawGsTiaVFRkQRen6cvNSI1pEG8kaEFFh26xQx1nJPpVWIamfGqAsM+ol+2FWQhEyhYBPiKvNLlsfO1/VZeoKfG/GjY/h9zyIKIps/uZzjqxdRVlRIbkpScgUCkbMfQiA2CMHWfLa83gFBTPztQV2aq2S/DyWvPo8WfGx9Lt5FodXL6dlz76Mf+RpojpLZERZQUGTjPXEpnWoXVwYfs/9AGz54UtWf/QOggAtevbh3o+/IbxDZ1YueJ3N331pC3YWgbH/epJNX39GYZZESvlXsSdWhcbNjWnzX0FXUsLK9960qZ66jZlIbkqSTa3TfvBNdBw2kk1ff0ryWXsFj0Q6PEfskYMOKqfwDp1p2asf2376psZcJV1pCRsWfkJY+450HSmphVr17k/PidPY8ev3DvuzQqlSM+6Rpxk48072Lf2dv955tcGh6LFHDiGTKwhvX5lp5RMSxqQnXyT5zCk2f/uFw40oD/8Awjt0ROvhybF1f/PDkw9iNhrJjL1Ep5tG0W3MRIfzI1coSKqwNAqCwMj7H8EvPIIV771BUXYWp7dvpryoiF7VmhzD23dCFC2NsvPlpiRxcOVSeoyf4tBWWRV5aSkcWL4E39AwNK5udBkxlrijh1j00jNoXF0Jb98JuUJBnxqsgO0GDsU7JIydi36sVRnXsmcfxj78FGd3beePV1/APzKaPlNvtltGJpcz+oHHKC3Ip/2goZTk5vLLs49wYd8uEk8dJ6prJeGn1GjoNnoCp7dtoqyo8gaZm7cP7YcMp6ywgIOrltkev3RwL5Gdu6GuQZAR2bkrgkxmI36vBzQTU/8PYdHrKVq7lqT77+fS0GFkf/ABmvbtiFz0G9HLluE1fRoyTf3vvF5LWEpLKVixgqR77uHy0GHkfvsdbkOHEr1iOVG//YrnhPG4Dx5MxFdfEbN2LR5jx5L/x5/EjRtHwszbyP/zT8w1fHH80zBmZpL7w4/ET5lKwq0zKd23D79599Fy6xZC338Pl+7d8Zoxg+hVqwj/7ltUUVFkLniPy4OHkPL4E5Ts2nVdkCGiKKI7e5bMBQu4NOwmUh97DEtpKcFvvUWr7dsIeOpJtB3aS3bFbVsJfustzHn5pD76GJeGDCXjrbfs8sGud6ijowl68QVa7thB4HPPYYiLI/n+B7g0bBiZ7y5Af8kxeLQZzdCVGKUbkAJoXJQo1fJGK6Z8w9wozCqrM7y5ITDopbGoKxr1qm87L70UpUZup1ixElNmo4jaRWFHVihUMqckRVmhHgRstjsX95oVUznJxSADjZsCFw+VzSqldVfh6qnCZJQUK7oSI2ajxUFNU5SrA6Gy/c+6P7lCRnaic2KqrFgiszTuShshkXK+4TcDDDoTiadzie5iX04REOWBQWe2EVFW8iU/o/5EY2FWOZ7+2gYpaDWuStQu9k1xzqx8kh2v5uvKSmDWpJhqjJXPSiBWV0wplHJUWgUKtQyNqzROK8FWG3yCpebG5LP2TU/W61GlUVTJeauZmDKUm6WWSVel3fpWWNVQbt4a3CrIR6vN0tVLjZuPmrRLBfb71spRaRQNUpZJzX8K0i4WEBDhjkIptxUC1Od8m40Wq/ih0a2Jzbhx4OrlzYh7H+LSwb3sW7oI/8gYDGVl9Bw/BZVGy4lN61i54A2iOnfj5pfetAtJzkqIY9GLT1FeWECvSdPZs+QXYrr3ZNyjzyCTy8lOjMfdz58dv35vZ41rDAy6ck5t20THoSMIbdsRrbsHyadPUpCZjk9oOOMefgqNmzsTn3yeDkNHcGLjGk5v30yHISNAhD9ffxGL2cxtry+wWZ9qgldQMFOefYnMuMusfF8ip8I7dMYvPJJDf0sTe0EQGDH3IULbtmfVe2/a1D9WtOjRm9EPPMbpbRvZ9PWnWCyV7+Hh9zyAyWBgx6/fO+xbtFhY99n76MtKGP3A43YquUG3zSGsXUdWvf8WuSnJDutax9Vn6i22xr6fnnmYhBpa4pwh9vA+Ijp1Qe3iavd4RMfOjLr/EU5v28iu3+2tiGaTibijh+k4bCQ9J0zBZNBj1OtQaV3oOXG6w3ePUq0holNXLh3cV/mYSs3kp/+NXKFgyavPsffP32jTf5CDZdUrKASvwGAuH95f72OSxmhk7afv4xkQRN8Zt9W63LrPP0Dr4UlOciL9b7mDYxtWs/zd14jo2IXBs+dydvc2+s24Da27c3GGTC5n6Ox7STp1nPN1KONa9OyDb3gEJoMeRJGyQkfFdVCLVvSbfhtnd25j+L0PEt6hM6s/egdDeRnh7TrZLdttzAQEQeBQFQIKYMTcf6HUaNn7x2+UFuZTnJdD6oWztOxdc0SHxtWNkNbtiD9+uNZj+CfRTEz9P4GltJSi9RtIfeZZLg0YSOqTT2EpKCTopX/TavcuQj/4AJfu3W8Ia5ilvJzizZtJfeZZLg4cRPpzzyMaTQS99iqtdmwn+LVX0bRt67CeOiaaoH+/SKudOwj98ANk7u5kvPwKl/oPIPmhf1G4ciXmoiIne7x6MOXlkf/77yTeMZvLFSShKiKc8K+/ouWmTfg9+CDKwEC7dQRBwG3AAMI++ZhWO7bj/9STGGIvk3zfPC4NGkz6Sy9TsnsPorFx6ovGQh8bS/YnnxI3dhzx06ZT+NdyPEaPJnrlSqIW/47XtKkONkqZWo3XtKlEL/2T6FUr8Zw6laK164ifOo3Y8RPI/uQTdOfP3xAteHI3V3xm30H0qpVELVuKx+gxFP71F3ETJxE3cRLZn3yK7ty5G+JYmnH1UZKvkybErkoEQUDtoqh1Ulwb/MLcEEXISXJOrjQG1omylRyoTpplJRbjF+pm952h1MhtDXtVVUlQEaJtsDjkVZUWVgR3V+QjaasooapCtIhkJRZhMYto3FQOy/mFu6MvM1JWZLCRPB7VSIvCrDLcvTU225N0fGoEID+jzGkAenGe9JiHr8amSMpNKaEgs2E2g/P7MjAZLbTtF2z3eECk9MPXquZRquR4BmjJSa7/DZP8jFK8g1zrXrAaPPwqLaCiKDUeqqsRU2pXKSeqpha6qpbP6qiL1KoJhdnlaD1UDrlVJfk6DDoTCqWcvLRSBAG8g+u25nsFuIAoknjGvuXW+n7TuCltZFNtFkor6WNte6yuALReP27eatx91BVjrrymItr7knRGIseqkmJ12SWro7zEiNpFSdLZPCI7SkSntdmzPhZQk9GCohEWwmbcuGjddwDufv5YTCayE2JRubjSe+qtbPr6MzZ/+zldRo1j4pPPo1RVfm7HHjnI4lfmo3V3p8Owkexe/DPtBg5jwuPPIVcoyE9PJSshlgG3zsbVy5tV77+FQdd4S/nxDWswlJXRfexkBEHAv6KhTSaXc/PLb6HSupCVEMeyt17mzPbNhLXvREBUDGd2bMZk0GMxm+h40yi8g0Lqtb+Q1u2Y8uxLpJw9zcr33sCk19N3+kwSjh8hpUKtI2VKvYCbjy9/vPYCOcmJdtvoMGQ4Yx56gtPbNrP20/dt6is3H1+G3HEPp7dtdMiD2vPHr8QdO8z4R55xUPXI5HImPfkCbt4+LH3rJYqya7ZYRXXtwZ3vfop/ZDTL3nyJzd996ZARVR1lRYUknz1Ny559nT7fYchwht45l0Mrl7Lj1+9tv1eTT59AV1yEq5cXh1cvR+vhicbNHZlczi/zH2X/X0vsQr5BalVMOX/GLiTezceXW156C11pCeVFhXQfO8lhDIIg0LJ3Py4f2m9H9tWFHb98T05yAuMefsruOna2XHZCHAqVGr/wSC4f2seuRT/Se/IMxj/yNNt+/IqgFq3oNnZijdsAiOnei9Z9B7K9wibrDGaTkb/ff4vCrAxGznuYsuIifn72ES4fPuCwbO8pNxPWrgMbFn7MkNn3EtGpKwCbv/2c7CpB61p3D3pNms6xdasoyEi3Pa5QKhn/6DNYzCYWv/wsp7ZuRKFS0brPwFqPo0XPPiSeOIau9PoQaTQTU//DMKamkv/nnyQ/+BAX+w8g9fHH0V+4gM+ddxKzbi1RSxbjPXMmck/Pujd2jWHKyaFg2V8kP/QvLvbtR8rDj6A/fw6/+++n5ZbNRP7yM94331wv66FMrcZj7Fgivvmaltu24v/kE5jz80mb/xwXBwwkad488hYtwpDs/G7FlUAURXTnz5Oz8CsSbpvFpYGDyHjjTQSNRlIU7d1D2Kef4jZ4MILc8Yd+dSh8fPC96y6iV60iaulSvGZMp3T/fpLnzuXSoMGkPfc8hWvWXBW7n2gwULp3L5lvv03s6DHEjZ9A3s8/o+3WjfBvvqHVzh0EvfRvNG1qDh+sCk3r1gQ++wyttm0l7Msv0HbsSN6vvxE/ZSqxo8eQ+e4CSvftw3Kd2/0EQUDboYONBA37/DM07duR98svEuE2chSZb/+Xkl27sJQ3bS5QM24cFOfpUagq7VdqV2WjFVN+YW4oNXJSK9QYTQGrRctqp6qqDhFFkfTYAoJb2n93CIJgI6Q8qgVxW0mGssLK96+lwupk1Jlt9jYXd1WFJcqewM1JKcFQbgZRUvu4eqooLdDblvMLc6Os0IDFLJKXJv049/SzJ6byM8rwCrR/zMVThVFvRpAJJJzKcTgP1lB07yBX2+RfpZVzYkv9vx9MRjMntiTRopu/Qw6UWqvAJ8SV9CqvXUCkh10gem0QRel4fepB0FSHT4gruRXZWmajBYtZdLDyad1VIGLXMFcVupIK1ZqbY5mIsg4bYE0oyCzDK8BRCXVsUxIKpQxdiZGMuEI8A1xQKOv+nvQJcUUUJftpUU7lZ66VxNG4ViGmamnGNOikHDOr4q76sRVklaGqsFRaLXpWxRRAVCdfCjLLyE0tsdlVNW5KlGqFrWygPigvNmKxSLZVqwLPpviqBzFl0EkEpEIpw2QwN98s+X+AY+tXU5yTbUvu7zx8NEvfeJEzO7cw6v5HGX7PA8hk0ntJFEUOr17OigWvE9GxMwExLTjw1xL6TL2F0Q8+hlwhfZaf3r4ZldaF1n36M/npFynMzmLlgtcxGhpeBqMvK+PQqmV0umkUHv4BJJ46TtIpSQVkMZs5t3Mr67/4kF+ee4zi3BwmP/1vek+ega6kGEEuR6V1QRAE9iz+2UFJUhsiO3Vl6vyXST1/lsWvzCe4ZWv8o2LY+ev3tqwejasbN7/8Fq6eXvzx6vMOuUIdhgxnwhPzuXxoH0v+M5/iXOl7pNPw0VLj3cKPbY13B1cu5cDyPxg86y6iu/V0OiaNmxvTX3wduULB7688W6NyCiQ13PTnX2XYXfM4u3MrPzz5IOf37qzxPX1251YEQUarPv1r3GaP8VO46e77ObJ6OWs+fhejTsfpHVtw8/Fl528/ota6YLFYuPU//+Xej7+m6+jx7Fu6iJ+ffYSMyxdt22nZsy+CIDhkbZWXFGPU6VBqtKz7/AMKszIdxtC6zwDKiwpJPl2/EPTjG9dybP3f3HT3/bWq5Y5tWM2x9X8T0qY9hZkZlOTnkp0Yz/TnX2XQbXPY/vO3FGZlMPr+R23vh9ow7K55UnD5p+85kGi60hKWv/MaSadPMPnpf9N5+BjufPdTQtt2YOWC11nzyQJK8ipvlsjkciY88RwqjYaV771BTnIibQcORZDL+e2FJzi2YbXtde05cSpaTy+2//Kt3WvdokdvOt40koKMdA6u+JM2/QbVaOOzol1F8P/FKwzUbyrUP5CgGdc9TPn5lB06ROnevZTu24cxMQkEAW3Xrvg/+ijuI0egioi41sOsF8wlJZQdPETp/n2U7dsv2aEEAW23btKxDL8JVVTUFe9HGRSE71134XvXXRgzMijetJnijRvJfOttMk2vo4yMwG3gIFz790PbvTsKb++6N1oNxtRUyg4fpvTQIUp37caUmYng4oJr/34Evfof3IcPv+JweUEQ0HbsgLZjB/yffBLd2bMUb9hIyY4dFK5YAYKApnMn3AYNxrVPbzSdOjXYrimazegvXpSusYMHKdu7D0tZGYrAQNyGDCFg/rO4DhiATF13GG2tx6JU4j5sGO7Dhknk14GDFG/cQOGqVeR9/z2CRoNL7164DRyIS9++qFu2bPLA0KaCoFLhPnw47sOHS8dy8BDFGzdStG4deT/9hKBUou3RA9cB/XHt2xdN27bXbVtkM5oWRTnlyOQCrp7S+0Xjomg0MSWTywhp6SXZhMY2zfiMOpMURl5hsdNVyb/KSS6hrNBAaBvHz0Otu5LiXB2+ofYNrpoKlUlRTrmNnCnOLcdiEbHozTYiyzNAi1FvpqzIYDs3INnn5AoBs0lE46pAkLmgLzNRXmzExUOFf4S77fzlJJegrWK9s407pYSYrv52j7n7ajDozATFeBB3LJsOg+xtBVZiyjfEzTbuyI6+nN2bRrfREXj41m0lO7IukZJ8PRMedt46Gt7Wh9jjWYiiKDX1RLoTdzwbs9mCXF77Z1thVjn6MpNNedUQBEZ5cOlQJmajxUaUVG8ytOZ0SaHejp/t5cVGp+sBqF0UdkRQfVGYVeZw/eSklHB6eyrdRkdwfFMyaZcL8Q+rX0uwT4ikJpMrBC4cyKDXeOl1qKqYshI1zlRzVhjKTVhMFtwrXvPqmXA5ySX4hlWqCD39tRRUsWRGdPTFxUPFmZ2puHqrUbsqkCtkklqyAe99XYkBi0mBh7/WdmxWYqomAtHuOMoky6a1UVFfZrIRc83430PiyeNs//lblGoNZpMJUbRw+O+/cPPxZear7xLUopVtWX1ZKRsWfsylA3vpMmocmfGxxB87wsj7HqbziDG25Yx6HSc3r6fTTSNRqjX4hkUwbf4rLHv7FVYueIOJTzxf54S4KvYs+QWT0UCfqbdwft8u1n78LjKZDHdff0oL8tnx6/eoXd0Yfs+DBETHsPeP30g8eYyIjp2Z8eLruPn4cmz9avYt/Z2dv/3Ame2b6TlpOq16969zHBEduzDztXdZseB1Fv37aSnn6ZfvOL5pLd1GTwDAxcOTm19+i7/++x8WvzKf0Q8+Rtv+g23baN1nAB5+Aax8/01+ff5xRj/wGDHdezHq/kdY9O+nWfrmS7TuM4Cja1fSd9qtDrlK1eHm7cPM/7zDsrdfYfHLzzDp6RcJb9/J6bKCTEb3sZNo1bs/W39YyJqP3+Xw338xcOadRHbuZvs8Ei0WTm5eT+u+A+zsms7QbcxEXL28Wf/FR/z4zMMUZUstkgq1GmQybn7hNfzCIwEYcsc9dBgynPVffMSil56m3/Tb6DP1FrTuHrTq3Z/jG9fSbcxEBJkMk8HAus/exy88knGPPsPKd1/n95eeZtrzrxIQFWPbf1DL1viEhnNy87o6g/XP7NjC1u8X0m3MRLpU5HU5w+ntm9n6w1eEtGlnyyaL6NiVm+6+H1cvb05sWsvJLesZdf+j+NWQT1Ydbt4+jH/0WZa+9RK7Fv3E4NvvRhAEclOS+PvD/1KSn8u0518joqMUPq51c2fy0y9ydudWdvz6Pd8/8QC9Jk6j29iJaFzdcPHwZMozL7Ho309j1OvoNGwkIa3bsePX79n6/UISThxl5H0P4+btw7A59/H3B29zdudWOgwZbhvTqHmPknzqJIXZmRRkpGE2GZErav58d/PxJbJLN05t3UCn4aOvuXOqmZi6QSGaTBJJcPw4uhMnKD9+AkOiJDFVRUbi2r8/rk89hWufPte9IkoURYyJiZSfOFHx30l058+D2YwiJBjXfv3wnTcP1/79UPj6XrVxKIOC8Jl9Bz6z75CIsf37Kdm9m5Lt28n/7TcAVDExuPTojrZ7D7Rdu6CKtG9RsRgM6C9eQnf6/9q77/io6uzx/687Pb1XUkgIIdSEXhUQFBuCfRUR3fb7+ENXF13Lui7qFnRdd+3CWnBdC6IuoIDSpHcInRBaSCGNJKRNkqn3+8ckkwRCCW2G7Hk+HpfJ3JnMnPfMZA5z5rzfdy/1OzKp27oNW2Eh4DoyXcC4G/AfORLfgQPRGE7/j/yl0NSx49OzJ5HTfoutpATzunXUrl1HxaefUvbOO6DXu67Tvx++/ftj6tULfWTrI084ampo2Lefhn17qdu6jbrMTJzV1SgGAz59+hD261/hP2oUxm7dLtsbmWIw4H/NCPyvGUG0qmLJzsa8fj2169ZR+trfUW02NAEB+GRk4NM3A99+/fDp3RuNX/untVxuisGA/4jh+I8Y7vpAcOSIaywbNlD23vuceP0fKCYTpl498e3bF5++fTH16oUuIsLjiUJcWqpTpbzQjI+/Hv/GKT9GX/0FL34OENs1mK2LcnDYnWh1F1+obVoI272eTosPzlkbivANNBDXRmFK0bheq9FdWucd1wLUJynLr6VT41HpKkvqT7nctR4QuNawalkIObSthPCEAEqOVuMXbHR3ZlUU1uIbGEpMSrD7uifyaohoXGy6ibnSQk15A9HJreNqWmy8U7cQtv+QS1lBrXsxdYCKYldhKi4tGKOfDp1RS2iMH4WHqlg+ez+3/Saj1dTAUx3cWsy2H44xeHzSGafbxXUPYddP+VSW1BES7Ud0lyAcNielOdWtxtWWpimAkZ3bX5iKTAzE6VApK6h1f+vqe0rxqWnaWlvTKwHqaqxo9Zo215jyCzJw7CyFnrY4nSoni+vo0q85HzkdTn76NIvgaF8G3pxEZUkdR3eeIHVg5FluqZlvoAGTvx7/ECP71xfS78ZEtFoN9bU2FMXVtaZoFAIjfM666HxdlQWnQyUgzIjepMVc2foxKSuoJb5785dM4fEBnGgxJVOr1dBjRCw7l+eR0j/SXfTzCzFSeuz8lxGoq7FSX2ujx4hYd27QG7ToDJrz6piy1Nkx+upQnSpmXGuySWGqY8rbu5t5f3vZ1SilKDgdjWsH+vljt1mx25pfw8cP7OfH9/5JXXUVA267k/2rV6DRavnZS68S07X1Ecd3/LgQS52ZjHHN053ievTi9mf+yHev/5UvX3iKCU89f9r6QW0pyNrLjiULufb+h9i5dBFb5n+NRqslNrUHBVmujhmTfwB6o4mj2zez4qP3CI2NY/y05+g6aJj7b2DQhLvIGHcr8155kYKsvSx5/w2Wf/geyf0GkNx3IJ0z+uMf0vaXwJGdk3ngr/9k0Vt/Y/V/PiIsLoHV//mYTt16uAsmPgGB3DN9BktnvsWiN//GsV2ZjJ7ya3fhK7pLVybPeIMf3vsn8159iR7XXse1kx5m/G+f47PfP0Hm4gX0v2Uiw+554LyeO//QMO598RW+e/2vfP3y8wy7ZxKDJtyF5gyzKQLCwpnw1B/I37+HtV/+m2//+kdiUrrR98ZbSR06gsNbN3Oy6Djj/u/x87r/1CEjUJ0qi9/5O7jzQzB3/+Evp01BDI9P5L4/vcam/85h4zdfcjRzC6Me/BX9bp7AnD/+juxN60gdMpyl/3qbypIiHvjrPwmPS+BnL/+Nea++xFcvPsNNjz5FyoDBgOtzTN8bx/PTxzMpy891F8FaaursW/P5bHqPvp7RU37V5jhUp5NN8+ayYe5n+AQGUZidhcHHl1ufeIakjP4AZK1bxfKP3qfvjePpfd0N5/X4NEnsk8Goyb9k1acfoNXpMPj6sXHu5wRGRnH/n18nNDau1fUVRaHnyDF0GTCYTd9+yZb5X7N90Xz63ngrfcbeRHhCZ4KjYyjLz2XdnE+Z+LsXGPPz/6Nzel+WznqbT558hFGTf0nPUWPpOXIsyz94l+DoWDp16w6AxWzGZrNi9PPn+IH9/Pupqdzx3MtnXQy+/0238e2M6eTu3tHq6IqeIIUpL6eqKvbSE1gOHnRvDYcOYj1yFNViAZ0OU1oaftdcQ/ijj+Lbry/6TudOBJ7irK/HcvgwloOHXOM5dJCGfftxNC4GZ0hKwic9neC778Zv6BD0CQke+VCu9fcnYOxYAsaOdT0HhYXUZWZSt3079dszqfz6G9cVjUb0kZEoRiPOujrsJSXgcIBWi7FbKgHXj8VnwAB8Bwy4oG6rS0EfFUXwnXcSfOedrq6nQ4fc46heuIiKj1yLM2oCA9GGhaEoCo7qahxlrnZkxccHn4x0Qh+agt/AgZj69LnorqgLoSgKprQ0TGlphP3iFzjr66nftdtVAMzcQcXsTyh7621QFAwJCRi7d8eU1g1jt26Y0tLQRUd7TYFHURSMKSkYU1IInTLFVdDcv5+6HTup37GDqvkLKP/gQwC0oaGN40hzj8eQmIjG59ydGsI7VZbWYbc4sOk17qOK+QUZKMi+8Cm3ib3C2DjvCLl7y0/rCroQNosDvdG12LRGo7gLE+YqCwc2FdF7ZCc0bXTzWOtd7ewRia0LQwEhRjRahcLDlaSPiQeg/HgtGp2C06ESHu8qBgWGm9DoFCqOm4lPc32IOJFXw4m8GnqN6kTJ0WoCwkxoNAoGk5bio9XEpYXiG2ggJMaXk0V1VBSZ3ffR5Pgh12N76vTD0Gi/xq4VPSHRvqz8TxZ3PNUfbeNRzsyNawQFRbqmigSGmairtjHulz357q2dfPfmTkZPTjut6NRgtrFt8TF2rcin25Bo+t/Y+YyPdafUEDQ6hWN7ygmJ9iMyMRCfAD05u8rOWZjKz6ogNNbvggoL4XH+6Ixa8g9UEBLt+nDlF9z6CxOfxjXGzrQgfX2NFZ8AfZvvrf4hJupqrO0qlpYfr8VmcXWwNdm5PJ+y/BrufHoAWr2GLn0jOZJ54qzT7lpSFIXopEDqqq3UVljYt6aQPqPjqCmvxz/E5C6mBkf6ujvkTqWqKjVNi5sHmwgINVFT3lxYtVlcC9j3vb65Kz0iPoCDW4pbdb5lXJ9A9uZicnaVuV/zASEmjmaeOK+x2K0O7BbXFKPUga3Xn/Txb3t9tlNZ6u0YffUoCpwsdhW6mgq0omNQVZWdyxbx08ezQFXR6HTYGuoJjonl5qlPEhwdw3f/+CtzX3qOfjdPwFZfx+4VS4hKSiEsLoFt331LlwFDuOHXj+IbFNzqtmtPVrB53ldk3HDLaR92E3qlc9+f/s6Cv/+JT5/+DcPvfYCMcbeiO0MneHVZKd//8xWiOndh94olVBa7vsh1OhzU11Rx7aSH2fLdtzisVhpqa6irqmT0lF+RMe7WNgs0BpOJe6bPYPN/v2L93M/xCw6msriIJbPeAlUlMqkLib0z6JTWk07demDyb/4SwjcomLue/zM7ly5izeef4HTYmfvyc62KC01HxUvonc7KTz4gd89OrvnZg3QfMQpFo8E3KJg7nn2RfatXsOrfH3Bgwxp0Btd0aL/gUPat+YnEPn3dBZFzMfn5c9fzf2LjN1+wfu5nHNy8nrG/eITY1O5n/J34Hr257+XXOLZzO9sXL2DxO6+z8tMPcdhsRKd0Izb19DV4W3I6HBzblcnW77+lYP/e5lj8A6guLeG/r7xI9xEj6TpwKGHxie73fq1Ox/B7HiApYwDLP3yXOdOfJrFPX6KSU1jz+WwOb93EwY3ruPk3T7k7kvyCQ7jnj39l8Tv/YMFrf6LfzRMY8bPJ6I0mel93PdsW/pe1X/6b25/+Y6sY66oqWfHR+xzcvJ5BE+5ixM8ebHPmxPHs/Sx5/033wvz11VVEJCZx359eQ280oaoqW+Z/zbo5n9Jz5NgzFrfOpe+Nt1J0+ACb580FFDLG3cy1kx5GbzzzzBSTnz+jHvwVA8bfydbvvmX74u/YPP9rYlK6cSI3h2vuf4jti+bz2XO/ZcJTz9Ol/2Ae+kcPVn/6IUtmvsn+tSsZfvckqkqLmf/qS0x8ZjqxqWms+Ph97BYLD/7tbX6aPZOjmVv5+IlfM+yu+xlw251t/i0mpvcjpms31nw+m/ievc/aYXW5eX1h6t133+W1116juLiY9PR03n77bQYNGnTG63/99de88MILHDt2jK5du/Lqq69y881nbu3zBs76euwnTmA7fhxrXj62/DyseflY8/Ox5eXhNLtawRUfH4wpKZi6dyd4wgRMvXtj6tHD646g5zSbsRYcd40jv8B9as3NxZaf76q8Kwr6hHiMXbsSMnkyPunp+PTp7VXdXaqq4igrw1ZYiK2oCHtpKardjiYgAE1gIM7qarBYsBUUoOj1qC3WPtKGhqINCMTZYMF2/Dj1Wh36mGj0MTFogoKueIFEtdmwlZRiKzyOrbAQx8nKxjhDcFRWolosOKurcdbWglYLTYsYajToIiLQGE04q2uwHM3BabWij4lFHxPt0eKIxscHvyGD8Rvi+oZFdTqxHD5Mw549NBzIxpKVRflH63HWuBaEVnx9MSQkYEhMbN46J6KPiXF1JXlwCp3GYHB1fWVkwMMPuYuh9fv2YTmQTUN2NjXLllExe7b7d3RRUY3jcI1JH5+APiYaXVQ0uvCw81qj7GrTUfJB3r4KNFqFhlob4Y1TlkI7+bN3bSF2m+O81s05VVgnfyISAti35vglKUxZzDZ3USogzER1eQP1tVZ+nLUHnV5D3xtO/wbT4XBS27imTk1ZA36BLY5+F2TE6VApPFTpnrJWeKgSH38DBh+dew0qjVZDdFIQBdknSR8Tj+pUWf/tYVfBSqMQEGpyPz6xqSHk7i1jwM2dAUjoGUZlcR02i4OopNYdRIe2lhKREHDadDStXkNk5wBKcqq4bkp35r++g4Xv7mL05DR8/Q3YrU4MPjr3e3ZAqInq8npiUoK57TcZLP9kP1+8uJmopED30d+qTtRRdKQKjVbD0Nu70PeGs3/BojdqSeoTwYGNRWSMjUejUUjpH0XWxiIGjU86Y0eWw+bk2J4yel1zYV9GafUaEnuEcnTHCboOjEKn12Dybf0+qDdoMfnrqSpraPM2aioa8A9u+/8gfiFGUF3FzPOZ8giQv78CnV7jnpp4stjMlu9zSB+b4H5Oq8vrUTSwf10hSenhJPQ4dyd1UnoEqz4/QOrgKDbOO0xCj1CqTtS3WiA/ONqXrA1F7tdnSxazHYfNVRDyCzYSEGZqtX5UybFqUGnVqRcR74/TrlJx3Ozeb/TRMe6Xvfjm1W2N0zBtBISZaDDb3MXgs2larD4gzHRaV2BghMl9+dk01FoJivTFP8xI4aEqKkvqiD1HAdRbdZSccCkVZO1l8Tuvu9aUauS020kbdi03/+Z37tf2TY8+yaI3X2P7wnmgKEQmpVBWkEdVaTE3Pfqkq9hyyt+Bw25j8VuuD/VDz3Dks7C4eCa/8hZrv/w3qz/7mMwfvmPgbXfSffioVoWgk0XHmTP9GRrMtdRVVbr3J/UdQFRyCifyjrH+q//gsDsAle4jRpG7ewdbF84jMqkLcd17tXn/iqIw5M6fEdezN0vee4OyvFy6jxhFRGJnSnOOsn/tSvc6VOHxicR2605k52QiEpMIT+hM3xvH03XwcFb/5yMOrF/N7GmP0PPa6xg08W5CY+NQFIXeo28goWc6qz/7iB/e/QdbFnxDv5tuo/s1o9DpDQSEhhMWn0BhdhY2hwONVkdC73QqCgv474zp9Bw5hmH3PEBg+LlztUarZfi9k+nSfzDLP3qfL1/4HZ0z+jPotjuJ69G7zdyiKApJfQeQ1HcAZfm5LHzjVcoL8ig+nM2sR6aQ0CvdtfVOJzA8EqfTQeHBLPYsX8LhbZuwtlj/1DcomPv+9HeCIiLJ3b2DrHWr2Prdf9kw93MCI6JI7jeQLv0HEdejNzq9ntjUNCa/8ibZG9eS+cN37jW5sstO0P2a0QSERWCzNLiLNgYfXyY89Tw7fvyeNZ99zKEtG7j2/odIHTqCa+9/iO//+Qp7Vi6l9+gbsDU0sHvFj2z6dg4oCrdN+32r9bLMlScpOpTNsd07OLhxLfU1rk5UU0AADTU19Bp9PWN/ORWtTkdlSTE/zZ5Jzo5tDL3rPobeeV+7lwWpKi0he+Nadi1bTPWJUsITOnOy8Di5e3ZxPDuLxN4Z5/y81zQtb9jdk9i1/AfWz/kUgK3ff0vnPv0oOXqYL/7wJAPG38GQO+7lxv//t6QNu5ZV//mIOS8+Q0LvDPxCQvn65eeI7daD/H27ufk3vyMoMoqJT/+RHUsWsurfH7B+7mdsX7yAYfdMoteosa2KZoqiMObnj/DFH55k7ZefMmryL9r1OFxKXl2Y+uqrr5g2bRozZ85k8ODBvPHGG4wbN47s7GwiI09v4d6wYQP33XcfM2bM4NZbb+WLL75g4sSJZGZm0qtX229gl4Nqt+OoqcFRWYmzqgp746mjqgr7iTLspaXYT5RiKy3FXnrCVeBootGgj45Gn5iAT+/eBN1yM/rEREypqejj4z2ylo6qqqj19a4umqoqHJVVOE5WNI7jhPvUVlqK/UQZzhaHwlR8fDDExaFPSCDguuswdu2KMbUrxi5dTjtC2xUbS0MDjspK7OUVOCrKXaflZe7zttJS7IVF2IqKWhWbNL6+GJKSMCQn43/NCAzJXTAmJ6FPTERjMOCsq8Ny6BDWY8ew5ORgPZZL/c6dVC1YgNrQ/B9YxcfH9RzHxKCLiUYXFo42NARdaCja0DB0oSGuwlZo6Fmn+6mqitNsxlFRgb28/JRT15hsRcXuohrO5qPvaENDMSQn4dO7D0ETJmBMTsaQnIw+NtY1D7y8HMuhw1iP5WDNOYblWA41K3/C9mlB69sJDkYXG4M+JhZdRHjzGMJC0YaEuk7DwtAGBV32Qomi0WBKTcWU2rzYelOBpyH7INacHKy5uVhzc6natQt7cXGLX1bQhYeji4lBHxWFLjoaXXjj8xISgrblFhR02f8OFUVB36mTq/vxhua2YkdNjet5yc3FmpeLLTeXhn37qV78g7uADYBWiy4ysnksYWGu2E8dT3AI2pDgyzat9FK6WvPBqZwOJ1kbigiP86c0t8b9YTs8zt81xa/AfFpR5Xz1G5fIkg/2cnTniYsuTlUU1xEc5Uve/nJUVA5uKSZrvevb7PGPZbTZobN31XH3ouk5u8taTZtrWjC6odZG8ZEqQmL8KDhQgUarIaVf6+cvsXcYW7/PobaygcwleRzPPsltv8lg8/dHW00R7D4shh9m7qHwcCWxKcH0HBHLruWuhWLj0po7VEtzqzm2u4zRD7T9TXGn1BD2rCpgzJQe3PJoH5Z/vJ/P/rDRPY3N6Kdj2+Jj9LkujsjEAHavLMDpVIlJCea+Pw7m8PZS8rMqKD9ei6q6ur6GTuxC6qBo91ENz6X3qE7M/8cODm0rIXVgNOlj4tm7uoCdy/PdhbdTZW0oxFJnp9uQM7fon0va0BgWvbcbk5+O0E7+7u6hlsI6+VN+vO0j9lQUmok8pUDSJKix6HOyqO68ClNOp8qBjUV0Tg9HZ9DisDtZ8e8s/EONDB7vWhfKYXOyb20hXQdE0WC2sfDtXfQaGUffGxJOW1i+peS+Eaz+MpvgKF/8go0seHMHTrtK14FR2K0OtHoNcWkhZP6YS1l+7WlFnxP5ri84tDoNAeEmgqN8ObK9eV2wQ1uK8Q8xtpoGGpkYiNFXx+HM0la3FxjhirPBbOO/f89k6O2uqULV5fWExZ593axD21wLBfe9/vRiZ3CkL0VH2j46VEvVZQ3Edw/Fv/HxKsmppsfw8zuSmTfpKDnhYtgsDVQcL+B49n72r1nJibwcnHZXJ6FGq0PvY8JaV8fIB35B/1smUFVawrFdmRzN3ELOzu1otDqCoqKpKimmNOcwPoFBDBx/J53TTz9Kd111FT+8+w8KDx3gzt+/jE/AmfOU3mTiuof/P9Kvv4kN33zJyk/+xepPPyKiczJ6k5GKggLMlRWtficoOga9wUjOzu3k7NhGVHIK19z/EN2GXcvGb75g78rlXPvAwxzavJ6vXnyWbkOvof+tE4nuktrmh/+4tJ5Mef09di1dzOb5c8lau5KEXukMueNeIhKTqCwu4viBfRRmZ7Hnp6Xuxc6Do2IIjoklOCqajHG3sH/NT+xbvYJ9q1cQEhtH10FDiUvrSWy37tw27fcUHsxiy4JvWPbBO6z4eCYanRa7xUJYXDy3PzOdqC5d2bNiCbtX/EhN2QkMPj4cWL+a/WtWkjJwMH2uv5mEXn3Oudh2dEoq9//l72RvWMuWBd8w9+XfExwVQ9rwa10dLympp3W62KwWdvzwPeUFeYx75AmCo2M4un0LuXt2krVuVePrRIvT6XRP19NotEQmdaG2ohxFo+H+P/2dwAjX31PnjP50zujP9VYr+fv3cGT7Fo5s28zOJQvRm3zonN6X5H6DiEruit5owj/E9aWBwccXa30dB9atImvtShSNhrC4BKKSuhAWl0B4fCIpA4fQOaM/qz/9kEVvvca6OZ/S+7pxdB08nKWz3ubA+jWU5hzBUmem6+BhdB8xirrKSlb95yNOFhZQeuxoq8XEFY2GoMgoqstOoKBwy+NP023oNa7ne+VSstaudK3p9PQLdOk/+KyPfRNLXR2FB7M4fmAfubt3UHzkEDq9gdQhw+n35PNEJXWhLD+X5R++x7d/eYHoLl1Jv/5mugwYfNa/FwC71cKhTesw+Ppx4yNPUJi9n+yNa6kqLUGj07FlwTfs+HEhvUaPZcCtt/Pga29zYN1qMn/4jvIC15rS+ft2ozcaKT58kKikFEJjO9HvxvEk9x3Isn+9Td7eXfz08UzW/Odjug27hl6jricmNQ2tTkdUcgrXTvo5qz79AI1Gw/B7J7sPdHAlKaoXH45j8ODBDBw4kHfeeQcAp9NJfHw8jz32GM8+++xp17/33nsxm80sXLjQvW/IkCFkZGQwc+bM87rP6upqgoKCqKqqIvA8jvDWRFVVjt54E/aKCneHxqkUk8n14TciAl1kZOMWgb7p5+hoDJ06oZzjQ6KqqmC3o9rtqDZb82mLjdMuazy1NOCsq8fZUI9aX+/6ub4eZ31d6/Nms7sQ5ayqct3mqeMxGl1xR0Q0b5GR6KMi0cfHY4iPRxse3mbCUFUVHA5Uh8N9qtrt4HSi2h3gsDdfZrfjtFhQLVZX/BYLaoMF1WrB2dDQvL/B4ur8MZtx1NbgrDXjrKnBUVuLs7bW/TP209v/NYGBrqJKWBi68HD0sbGurVMs+pgY9LGxaAID2x6L09liDA5wNo7Lbkd1OlGtNlcBr8RVJLIVl2AvKXHtKy/HWV3tiquNxxitFkWnBY3WfTQVnE737XPqn6+ioPHzQxMQgDYw0PV6i4xAFx3j6qaJjkYfG4vWz6/xtnWugpFWh6LTun7W6c5Y4VetVmylpdgKC7EXuYp3ruJXIfayMhzlFTgqKtp8vWh8fV3dZv7+aP390fj7N573Q+sfgOJjQmM0ohhNaExGFIMRxWREYzK59hkNKCYTisGA0hg7jfG3+bNOd9YCkrO+Hmt+PvaSEmzFxdiLS7CVNJ4WF+EoK3dNMT31MdZo0AYGuuL382ve/F2nWj8/NH7+aHx9XGMwGlGMBtfYDIbGfY3njY3j1Ld4HrSa5udGo3GPC632zM+LqrqKrWcaS3kFjpMnsVdWtvk6U4xGNIEBhD74IOG/an8r84W+b7bH1ZQP2uJ0qpwsMrP9h2Mc3l5KZOdAGsw2Jr3kOnKNw+7kk2fXk5wRwahJF7Zum6qq/DBzD/lZFQy7I4XUwdEYfdr/Hwunw8nsp9cTlxbC4e2l6I1abBYHvUd3ov+NnU/rOnLYnOxde5wN3xxGq9cQGG7CXGnlnucHuosF9TVWPv7dOnwDDfgEGvAN1HM8uxLVqfKzFwYTGuuHpd5OdVk9ZQU1rP48G41Wg83iYOR9qcSlhfLFS5sZeV+qe4Fy1any9SvbqK+xMmpSGnqjlvn/yERVYcTdKfQa2YnS3FqWfbwPo6+Ou54Z0OaUsuqyej774yZ6jIhhyMQuVJbUsW1RDrl7XR+cwuL8qSypIzDMxOAJyfw4ay9jHupO2pCYdj+2Z/PjrD3kHzjJ2Ie6k9g7nC3fHWX7klwG3NyZXtd2cj/uqlMlP6uCH/+1l+S+EYx9qMcF36eqqnz7t+2U5lbTpW8k4351+gf0jfOOsG/dcabMGI6+RfeWudLCJ8+tZ/QDaW0WNlRVZfbT64hLC+X6n/c462vaZnWwcd4R9qws4K5nBuAfamT1F9nk7i3n9qf6EZ0UhLXBztq5hzi4uZh7nh9ISLQfO5flkbkkF0udnaikQCITA/EPMWL01aEzaNFoFTQaBUWjsG/tcY4frKTbkGiObC/BUudAZ9BgtzqJSgpk2J0pLP1wLyHRftz4614YW3SPrfwsi6wNxcR3D2H8Yxkc21PGond3c/tTfbGY7fw4ay+DJyTTb1zrTsJ1cw+xf30hE6f1JTIx0DV15PscMpfmMvG3fVn07m6iuwSRt7ecoben0PeGtg9QY7M4OLy9lFWfH0CjVfjVGyPRnFJEPLi1mGUf7Wfyn4e612w7Ve1JC/9+bj03/LIn0clBfPr7DeiNWia9NBi/UzrfLHW2Vo9Be3TEnHA5xqSqKk6HHYfdjtPuwGG34bDbsNbXY6mrw1pfR0NtDbWVFdSWl1NVUkJNeSm1Jyuw1JlxtJHPDT4+oIK1oZ6gqBgiOydhPnmSisICGmprXDMWjCbsVguq00lobBw9R40lODqG/WtWcjRzC6rTSWRSF6KSUzD4+FJbUU7Ozu0AjHrwF8SkdMNhs2FraMBSX4fFXIu5uor66krqq6upq66itqKc2sqTWM212M/jaMp6Hx/C4xKI7daDxF7phMR0wujnh9HXD1VVWTrrLfav+YmE3hmERMdweNtmzCcrCInpRHyP3kR3TSUkKpbAyCh8AgLQGYzu9xy7zcbBTevYu3IZBVl7UZ1OAiOiiEruQnh8Z/xCQkFVaaitofpEKTUny6k+UUpVaTF2y5nXydNoXf83dzZ2dSmKgkanx9G4dpcpIJDQTvGEREUTFBmNU3VSnp/HiWNHqSwpct+OomjwDQ4mKDKa4KhoQmPjCI6OwT80HP+QUIy+fhh8fNzTF1VVJX/fbrLWrebQlvVYzGZ0BiNhcfH4h4Sh0euoq6yk9NgRbA0NRCQmoTeaqDlZTkN1NTZL6w5Yjc615pza4shyWr2e2NTuBEdF4xMYhG9gMCZ/f/RGI3qjCa3B4Hr92u2U5R0jb98eSo8dpq6y0n0bTTHFde9FQ20N2RvXogJhsZ3Q6I001FZTU16Go/H1odHp8PEPRMWJta7uvF43Wr0BVBWH3fW3YPD1w+mwY7dY8A0KJqFnH0LjEjiRe5TC7CzMlScJCIug303jSb/hZvRGE06HA5ulAWtDPbaGBuqqKjFXnqS2ooLak+VUFBZQUZBPZWkxqCo+gUHEd+9F18HDSO4/CIOp9futqqoc25XJtu//S96+3SiKQkRiEtFduhKe0JnA8EgCIyLR6Q1Ul5WSu3sHu5f/iM5gcBUzG48sqKoqpTlHOLZ7B0e2baLo8EH3ZxKdwYjJ3x9VVTGfrECj02H09aO+usWXE4oGk78//iGhBIRHoNVqKSvIp7JxamPTazgoMtpVKOySQmVREfvWrCAoMpoeI0aR1HcAYfEJp42xPdrz3um1hSmr1Yqvry/ffPMNEydOdO+fMmUKlZWVLFiw4LTfSUhIYNq0aTzxxBPufdOnT2f+/Pns2rWrzfuxWCxYWrzpVFdXEx8ff0GJJyvtzHN+rxpt/cdRcf/T9vXO9RJqefnlerkpymmb0vSzRtP6vKKARkFRNK7L2ipetBVni4KQerbi0EWMQTEaUfT65kKEXu8qtDSNAVBVJ6rD6YrDanUVxFoUJC8JbYsiVeN9n/4YNu0HhebzKo2vFlV1Fe1U1dVlpaqugmTTPtWJ6nQVKHE6XZe1vPxSanq9nvr6Ptf5lk6N6WznvfNt9Zz0cXGkLF/W7t+73B9CrsZ88O7//dSu6wshhLcZ/2gKCb3afzTnjpATLmU+sFmtvDX5jnb9jhBCeJsnv1p47iudoj35wGun8pWVleFwOIiKar24Y1RUFAcOHGjzd4qLi9u8fnHLKTunmDFjBi+99NLFB4xrepTaYppTq4JO04d3aPtDcouflVMvb3U7LU7PVGyBFkWDxutoFFA0rjZ9pUUxxn23Le//9H1n/GB/ytWaL2++fsv7VJoKGi3j0Wgai0SN+7Qa1/Wbflejbe4g0WlRtDrQ61ynWo3rcT1nweH0sE+9zmnf5p42VgVFrwNNU9FGi6Jp7Ghq2enSFFdjFxJN19Fo0Biaun6MzR1ARqNrKpW+7QVk20N1OFCtVlcnmdWK2tDYYWaxuDvoaOzsUh3NP+No7MBrc7/rm6DmwlJjAYkWhSeV5mKTu8B06vVoLjyhuopSZxtLUyea3d5cEGwsYrmLXi1/brptp7PVefXUYtcpp+5427is5anqPq82j5lzjEHFfbSrVkU3VUVVnc2PU8vbdN8HqLS4H/fpqftOiaNVfayN+Frta/17ph4X3nlxOV2N+UAIIa523vody5XICZcyH+ivgunyQgjhaV5bmLpSnnvuOaZNm+Y+3/SNyIVI3bD+UoUlxAVRtFoUHx85YpsQF+BS5oOpM6+7VGEJIYS4wi5lPoAL6zQQQoj/JV5bmAoPD0er1VJSUtJqf0lJCdHRbS/0GR0d3a7rAxiNRoxG4xkvF0II4VmSD4QQQjS5EjlB8oEQQlxZV/4Qb+fJYDDQv39/VqxY4d7ndDpZsWIFQ4cObfN3hg4d2ur6AMuWLTvj9YUQQng/yQdCCCGaSE4QQoiOx2s7pgCmTZvGlClTGDBgAIMGDeKNN97AbDbz8MMPA/Dggw/SqVMnZsyYAcDjjz/OyJEjef3117nllluYM2cO27Zt41//+td532fTmizV1dWXfkBCCNEBNb1fXs5jaUg+EEKIq0NHzAmSD4QQov3alQ9UL/f222+rCQkJqsFgUAcNGqRu2rTJfdnIkSPVKVOmtLr+3Llz1dTUVNVgMKg9e/ZUFy1a1K77y8/Pb1x5WDbZZJNNtvZs+fn5l+Jt/4wkH8gmm2yyXT1bR8oJkg9kk0022S58O598oKiqtx5zwzOcTieFhYUEBAS0+whpTQsj5ufnX5bD414pHWUcIGPxVh1lLB1lHHBxY1FVlZqaGmJjY9FovHaGeLtJPnCRsXifjjIOkLF4o4sdR0fMCReTD0BeG95IxuJ9Oso4QMbSpD35wKun8nmCRqMhLi7uom4jMDDwqn8BQscZB8hYvFVHGUtHGQdc+FiCgoIuQzSeJfmgNRmL9+ko4wAZize6mHF0tJxwKfIByGvDG8lYvE9HGQfIWOD880HH+BpDCCGEEEIIIYQQQlx1pDAlhBBCCCGEEEIIITxCClOXkNFoZPr06RiNRk+HclE6yjhAxuKtOspYOso4oGONxRt0pMdTxuJ9Oso4QMbijTrKOLxJR3lMO8o4QMbijTrKOEDGciFk8XMhhBBCCCGEEEII4RHSMSWEEEIIIYQQQgghPEIKU0IIIYQQQgghhBDCI6QwJYQQQgghhBBCCCE8QgpTQgghhBBCCCGEEMIjpDB1mfzlL39h2LBh+Pr6Ehwc7Olw2uXdd9+lc+fOmEwmBg8ezJYtWzwdUrutWbOG8ePHExsbi6IozJ8/39MhXZAZM2YwcOBAAgICiIyMZOLEiWRnZ3s6rAvy/vvv06dPHwIDAwkMDGTo0KH88MMPng7rknjllVdQFIUnnnjC06G024svvoiiKK22tLQ0T4fVoUg+8DzJCd6no+YEyQfiXCQneJbkA+/TUfMBSE5oDylMXSZWq5W7776bRx55xNOhtMtXX33FtGnTmD59OpmZmaSnpzNu3DhKS0s9HVq7mM1m0tPTeffddz0dykVZvXo1U6dOZdOmTSxbtgybzcYNN9yA2Wz2dGjtFhcXxyuvvML27dvZtm0b1113HRMmTGDfvn2eDu2ibN26lVmzZtGnTx9Ph3LBevbsSVFRkXtbt26dp0PqUCQfeJ7kBO/TEXOC5ANxPiQneJbkA+/TEfMBSE5oN1VcVrNnz1aDgoI8HcZ5GzRokDp16lT3eYfDocbGxqozZszwYFQXB1DnzZvn6TAuidLSUhVQV69e7elQLomQkBD1ww8/9HQYF6ympkbt2rWrumzZMnXkyJHq448/7umQ2m369Olqenq6p8P4nyD5wDtITvBeV3NOkHwg2ktygudJPvBeV3M+UFXJCRdCOqaEm9VqZfv27YwdO9a9T6PRMHbsWDZu3OjByESTqqoqAEJDQz0cycVxOBzMmTMHs9nM0KFDPR3OBZs6dSq33HJLq7+Zq9GhQ4eIjY0lOTmZSZMmkZeX5+mQhIdJPrg6SE7wHpIPREcmOcH7ST7wLpIT2k932W5ZXHXKyspwOBxERUW12h8VFcWBAwc8FJVo4nQ6eeKJJxg+fDi9evXydDgXZM+ePQwdOpSGhgb8/f2ZN28ePXr08HRYF2TOnDlkZmaydetWT4dyUQYPHswnn3xCt27dKCoq4qWXXuKaa65h7969BAQEeDo84SGSD7yf5ATvIflAdHSSE7yb5APvIjnhwkjHVDs8++yzpy0Aduomb87icpk6dSp79+5lzpw5ng7lgnXr1o2dO3eyefNmHnnkEaZMmcL+/fs9HVa75efn8/jjj/P5559jMpk8Hc5Fuemmm7j77rvp06cP48aNY/HixVRWVjJ37lxPh+bVJB8IT5Oc4B0kHwiQnCA8S/KB95CccOGkY6odnnzySR566KGzXic5OfnKBHMZhIeHo9VqKSkpabW/pKSE6OhoD0UlAB599FEWLlzImjVriIuL83Q4F8xgMJCSkgJA//792bp1K2+++SazZs3ycGTts337dkpLS+nXr597n8PhYM2aNbzzzjtYLBa0Wq0HI7xwwcHBpKamcvjwYU+H4tUkHwhPkpzgPSQfCJCcIDxH8oF3kZxw4aQw1Q4RERFERER4OozLxmAw0L9/f1asWMHEiRMBV2voihUrePTRRz0b3P8oVVV57LHHmDdvHqtWrSIpKcnTIV1STqcTi8Xi6TDabcyYMezZs6fVvocffpi0tDSeeeaZqzbhANTW1nLkyBEmT57s6VC8muQD4QmSE7yP5AMBkhPElSf5wDtJTrhwUpi6TPLy8qioqCAvLw+Hw8HOnTsBSElJwd/f37PBncW0adOYMmUKAwYMYNCgQbzxxhuYzWYefvhhT4fWLrW1ta2quTk5OezcuZPQ0FASEhI8GFn7TJ06lS+++IIFCxYQEBBAcXExAEFBQfj4+Hg4uvZ57rnnuOmmm0hISKCmpoYvvviCVatWsWTJEk+H1m4BAQGnzeH38/MjLCzsqpvb/9RTTzF+/HgSExMpLCxk+vTpaLVa7rvvPk+H1mFIPvA8yQnep6PkBMkHor0kJ3iW5APv01HyAUhOuChX7Ph//2OmTJmiAqdtK1eu9HRo5/T222+rCQkJqsFgUAcNGqRu2rTJ0yG128qVK9t8/KdMmeLp0NqlrTEA6uzZsz0dWrv9/Oc/VxMTE1WDwaBGRESoY8aMUZcuXerpsC6Zq/VQsPfee68aExOjGgwGtVOnTuq9996rHj582NNhdSiSDzxPcoL36cg5QfKBOBvJCZ4l+cD7dOR8oKqSE86XoqqqeunLXUIIIYQQQgghhBBCnJ0clU8IIYQQQgghhBBCeIQUpoQQQgghhBBCCCGER0hhSgghhBBCCCGEEEJ4hBSmhBBCCCGEEEIIIYRHSGFKCCGEEEIIIYQQQniEFKaEEEIIIYQQQgghhEdIYUoIIYQQQgghhBBCeIQUpoQQQgghhBBCCCGER0hhSgghhBBCCCGEEEJ4hBSmhPBSDoeDYcOGcccdd7TaX1VVRXx8PM8//7yHIhNCCHGlSU4QQggBkg9Ex6Soqqp6OgghRNsOHjxIRkYGH3zwAZMmTQLgwQcfZNeuXWzduhWDweDhCIUQQlwpkhOEEEKA5APR8UhhSggv99Zbb/Hiiy+yb98+tmzZwt13383WrVtJT0/3dGhCCCGuMMkJQgghQPKB6FikMCWEl1NVleuuuw6tVsuePXt47LHH+MMf/uDpsIQQQniA5AQhhBAg+UB0LFKYEuIqcODAAbp3707v3r3JzMxEp9N5OiQhhBAeIjlBCCEESD4QHYcsfi7EVeDjjz/G19eXnJwcCgoKPB2OEEIID5KcIIQQAiQfiI5DOqaE8HIbNmxg5MiRLF26lD//+c8ALF++HEVRPByZEEKIK01yghBCCJB8IDoW6ZgSwovV1dXx0EMP8cgjjzB69Gg++ugjtmzZwsyZMz0dmhBCiCtMcoIQQgiQfCA6HumYEsKLPf744yxevJhdu3bh6+sLwKxZs3jqqafYs2cPnTt39myAQgghrhjJCUIIIUDygeh4pDAlhJdavXo1Y8aMYdWqVYwYMaLVZePGjcNut0u7rhBC/I+QnCCEEAIkH4iOSQpTQgghhBBCCCGEEMIjZI0pIYQQQgghhBBCCOERUpgSQgghhBBCCCGEEB4hhSkhhBBCCCGEEEII4RFSmBJCCCGEEEIIIYQQHiGFKSGEEEIIIYQQQgjhEVKYEkIIIYQQQgghhBAeIYUpIYQQQgghhBBCCOERUpgSQgghhBBCCCGEEB4hhSkhhBBCCCGEEEII4RFSmBJCCCGEEEIIIYQQHiGFKSGEEEIIIYQQQgjhEf8PmZxgwOIQk2IAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -717,7 +718,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxYAAAJOCAYAAAAqFJGJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd1QUVxsH4N/CLsvSi3QQEBAL9i5SVbDXBEtCRE3UxJqIJlawJEZDLInGxAaWT2ONPSooYDdW7ChSRJAqvcPe7w/ckXUXWATB8j7ncNi9c2fmzmybd27jMcYYCCGEEEIIIaQWlBq6AIQQQgghhJD3HwUWhBBCCCGEkFqjwIIQQgghhBBSaxRYEEIIIYQQQmqNAgtCCCGEEEJIrVFgQQghhBBCCKk1CiwIIYQQQgghtUaBBSGEEEIIIaTWKLAghBBCCCGE1BoFFoQQ0gCsrKzg4+PDPQ8LCwOPx0NYWFid7YPH48Hf37/Otqcof39/8Hi8et9vQ3B1dYWrq+tb2XZN3hM1KYerqyscHBxqVzhCCJGDAgtCyEcnKCgIPB6P+1NVVUXTpk0xZcoUJCcnN3TxauT48eMNEjy8LRcvXoS/vz8yMzMbuijvtcTERPj7++PWrVsNXRRCyEeEAgtCyEdr8eLF2L59O9auXYvu3btj/fr16NatG/Lz8+u9LM7OzigoKICzs3ON1jt+/DgWLVokd1lBQQHmz59fF8Wrkfnz56OgoOCN1r148SIWLVpEgQXe/D0BlAcWixYtosCCEFKv+A1dAEIIaSh9+/ZFx44dAQBffvkl9PX1sXLlShw6dAijRo2Su05eXh7U1dXrvCxKSkpQVVWt023W9fYUxefzwee/Wz8v+fn5UFNTa+hi1MjbeE8QQsjbRDUWhBDykru7OwAgJiYGAODj4wMNDQ08efIE/fr1g6amJj777DMAgFgsxurVq9GyZUuoqqrCyMgIEydOREZGhtQ2GWNYunQpzM3NoaamBjc3N9y7d09m35W1p79y5Qr69esHXV1dqKuro3Xr1lizZg1XvnXr1gGAVNMuCXl9LG7evIm+fftCS0sLGhoa6NmzJy5fviyVR9JU7MKFC/juu+9gYGAAdXV1DB06FKmpqdWeR3l9LHg8HqZMmYKDBw/CwcEBQqEQLVu2xIkTJ6TWmzVrFgDA2tqaO57Y2Fguz44dO9ChQweIRCLo6elh5MiRiI+Pl9qXpA/B9evX4ezsDDU1NcydOxcDBgxAkyZN5Ja5W7duXJAJAIGBgXB3d4ehoSGEQiFatGiB9evXV3vs8gwbNgzt27eXShs4cCB4PB4OHz7MpV25cgU8Hg///vsvgMrfExs2bICNjQ1EIhE6d+6Mc+fOSS0PCwtDp06dAABjx47lzmNQUJBUvvv378PNzQ1qamowMzPDihUr3uj4CCFE4t26pUQIIQ3oyZMnAAB9fX0urbS0FJ6enujRowcCAgK4u94TJ05EUFAQxo4di2nTpiEmJgZr167FzZs3ceHCBQgEAgDAwoULsXTpUvTr1w/9+vXDjRs34OHhgeLi4mrLExwcjAEDBsDExATTp0+HsbExHjx4gKNHj2L69OmYOHEiEhMTERwcjO3bt1e7vXv37sHJyQlaWlqYPXs2BAIB/vrrL7i6uiI8PBxdunSRyj916lTo6urCz88PsbGxWL16NaZMmYLdu3crfE4rOn/+PA4cOIBvvvkGmpqa+O233zB8+HA8ffoU+vr6GDZsGB49eoRdu3Zh1apVaNSoEQDAwMAAAPDjjz9iwYIF8PLywpdffonU1FT8/vvvcHZ2xs2bN6Gjo8PtKz09HX379sXIkSPx+eefw8jICB06dMAXX3yBq1evchfeABAXF4fLly/jl19+4dLWr1+Pli1bYtCgQeDz+Thy5Ai++eYbiMViTJ48uUbH7eTkhEOHDiE7OxtaWlpgjOHChQtQUlLCuXPnMGjQIADAuXPnoKSkBEdHx0q3tXnzZkycOBHdu3fHjBkzEB0djUGDBkFPTw8WFhYAgObNm2Px4sVYuHAhJkyYACcnJwBA9+7due1kZGSgT58+GDZsGLy8vLBv3z58//33aNWqFfr27Vuj4yOEEA4jhJCPTGBgIAPAQkJCWGpqKouPj2d///0309fXZyKRiD179owxxtiYMWMYAPbDDz9IrX/u3DkGgP3vf/+TSj9x4oRUekpKClNRUWH9+/dnYrGYyzd37lwGgI0ZM4ZLCw0NZQBYaGgoY4yx0tJSZm1tzSwtLVlGRobUfipua/Lkyayyr3IAzM/Pj3s+ZMgQpqKiwp48ecKlJSYmMk1NTebs7Cxzfnr16iW1r2+//ZYpKyuzzMxMufuT8PPzkykTAKaiosKioqK4tIiICAaA/f7771zaL7/8wgCwmJgYqfVjY2OZsrIy+/HHH6XS79y5w/h8vlS6i4sLA8D+/PNPqbxZWVlMKBSymTNnSqWvWLGC8Xg8FhcXx6Xl5+fLHJenpydr0qSJVJqLiwtzcXGRcxZeuXr1KgPAjh8/zhhj7Pbt2wwA+/TTT1mXLl24fIMGDWLt2rXjnr/+niguLmaGhoasbdu2rKioiMu3YcMGBkCqHJJ9BgYGypRHcn62bdvGpRUVFTFjY2M2fPjwKo+FEEKqQk2hCCEfrV69esHAwAAWFhYYOXIkNDQ08M8//8DMzEwq39dffy31fO/evdDW1kbv3r2RlpbG/XXo0AEaGhoIDQ0FAISEhKC4uBhTp06Vaho0Y8aMast28+ZNxMTEYMaMGVJ34gG80VCuZWVlOHXqFIYMGSLVHMjExASjR4/G+fPnkZ2dLbXOhAkTpPbl5OSEsrIyxMXF1Xj/QPn5trGx4Z63bt0aWlpaiI6OrnbdAwcOQCwWw8vLS+qcGxsbw87OjjvnEkKhEGPHjpVK09LSQt++fbFnzx4wxrj03bt3o2vXrmjcuDGXJhKJuMdZWVlIS0uDi4sLoqOjkZWVVaPjbteuHTQ0NHD27FkA5TUT5ubm+OKLL3Djxg3k5+eDMYbz589ztQvyXLt2DSkpKZg0aRJUVFS4dB8fH2hra9eoTBoaGvj888+55yoqKujcubNCrwUhhFSGmkIRQj5a69atQ9OmTcHn82FkZAR7e3soKUnfb+Hz+TA3N5dKe/z4MbKysmBoaCh3uykpKQDAXYDb2dlJLTcwMICurm6VZZM0y6qr+QZSU1ORn58Pe3t7mWXNmzeHWCxGfHw8WrZsyaVXvNAGwJX59X4kinp9e5JtKrK9x48fgzEmcy4lJE3PJMzMzKQuviVGjBiBgwcP4tKlS+jevTuePHmC69evY/Xq1VL5Lly4AD8/P1y6dElmlLCsrKwaXcgrKyujW7duXF+Ic+fOwcnJCT169EBZWRkuX74MIyMjvHjxosrAorL3k0AgqLTvSGXMzc1lAlRdXV3cvn27RtshhJCKKLAghHy0OnfuLNVhVx6hUCgTbIjFYhgaGuJ///uf3HUkfQLed8rKynLTK97tr6/ticVirmOzvO1oaGhIPa9Y41DRwIEDoaamhj179qB79+7Ys2cPlJSU8Omnn3J5njx5gp49e6JZs2ZYuXIlLCwsoKKiguPHj2PVqlUQi8XVlvd1PXr0wI8//ojCwkKcO3cO8+bNg46ODhwcHHDu3DkYGRkBQJWBRV2q69eWEEIACiwIIaTGbGxsEBISAkdHx0ovYAHA0tISQPnd9op3lFNTU6u9Sy9pMnT37l306tWr0nyKNosyMDCAmpoaIiMjZZY9fPgQSkpKXOffhlTZ8djY2IAxBmtrazRt2vSNt6+uro4BAwZg7969WLlyJXbv3g0nJyeYmppyeY4cOYKioiIcPnxYqpbl9eZWNeHk5ITi4mLs2rULCQkJXADh7OzMBRZNmzblAgx5Kr6fJCOYAUBJSQliYmLQpk0bLu1jmfmcEPJuoT4WhBBSQ15eXigrK8OSJUtklpWWlnKTu/Xq1QsCgQC///671J3g15vdyNO+fXtYW1tj9erVMpPFVdyWZE6N6iaUU1ZWhoeHBw4dOiQ1fGtycjJ27tyJHj16QEtLq9pyvW2VHc+wYcOgrKyMRYsWydxVZ4whPT1d4X2MGDECiYmJ2LRpEyIiIjBixAip5ZK7+RX3k5WVhcDAwJocipQuXbpAIBBg+fLl0NPT45qcOTk54fLlywgPD6+2tqJjx44wMDDAn3/+KTWqWFBQkMz5UvR9QQghdYlqLAghpIZcXFwwceJELFu2DLdu3YKHhwcEAgEeP36MvXv3Ys2aNfjkk09gYGAAX19fLFu2DAMGDEC/fv1w8+ZN/Pvvv9xQqpVRUlLC+vXrMXDgQLRt2xZjx46FiYkJHj58iHv37uHkyZMAgA4dOgAApk2bBk9PTygrK2PkyJFyt7l06VIEBwejR48e+Oabb8Dn8/HXX3+hqKjonZnDQHI88+bNw8iRIyEQCDBw4EDY2Nhg6dKlmDNnDmJjYzFkyBBoamoiJiYG//zzDyZMmABfX1+F9iGZk8TX1xfKysoYPny41HIPDw+oqKhg4MCBmDhxInJzc7Fx40YYGhri+fPnb3Rcampq6NChAy5fvszNYQGU11jk5eUhLy+v2sBCIBBg6dKlmDhxItzd3TFixAjExMQgMDBQpo+FjY0NdHR08Oeff0JTUxPq6uro0qULrK2t36j8hBCiCKqxIISQN/Dnn39iw4YNSElJwdy5czFnzhycOXMGn3/+udQ8BEuXLsWiRYtw8+ZNzJo1C0+ePMGpU6cUmr3b09MToaGhaNq0KX799Vd89913OH36NAYOHMjlGTZsGKZOnYoTJ07A29u70hnDAaBly5Y4d+4cHBwcsGzZMixatAiWlpYIDQ2VmcOioXTq1AlLlixBREQEfHx8MGrUKG5Svh9++AH79++HkpISFi1aBF9fXxw+fBgeHh7cXBCKUFVVxaBBg5CTkwM3NzeZTvj29vbYt28feDwefH198eeff2LChAmYPn16rY5NEjj06NGDSzM2Noatra3U8qpMmDABf/zxBxITEzFr1iycO3cOhw8flmnGJhAIsHXrVigrK2PSpEkYNWoUwsPDa1V+QgipDo9RTy1CCCGEEEJILVGNBSGEEEIIIaTWKLAghBBCCCGE1BoFFoQQQgghhJBao8CCEEIIIYQQUmsUWBBCCCGEEEJqjQILQgghhBBCSK198BPkicViJCYmQlNTk5uQiBBCCCGEEFI9xhhycnJgamoKJaWq6yQ++MAiMTFRZuIgQgghhBBCiOLi4+Nhbm5eZZ4PPrDQ1NQEUH4ytLS0Grg0hBBCCCGEvD+ys7NhYWHBXVNX5YMPLCTNn7S0tCiwIIQQQggh5A0o0qWAOm8TQgghhBBCao0CC0IIIYQQQkitUWBBCCGEEEIIqTUKLAghhBBCCCG1RoEFIYQQQgghpNYosCCEEEIIIYTU2gc/3OybKikpQVlZWUMXgxBCCCF1QFlZGQKBoKGLQcgHjQKL12RnZyMtLQ1FRUUNXRRCCCGE1CGhUIhGjRrRvFaEvCUUWFSQnZ2NhIQEaGhooFGjRhAIBApNBkIIIYSQdxdjDCUlJcjKykJCQgIAUHBByFtAgUUFaWlp0NDQgLm5OQUUhBBCyAdEJBJBU1MTz549Q1paGgUWhLwF1Hn7pZKSEhQVFUFbW5uCCkIIIeQDxOPxoK2tjaKiIpSUlDR0cQj54FBg8ZKkozZ17CKEEEI+XJLfeRqghZC6R4HFa6i2ghBCCPlw0e88IW8PBRaEEEIIIYSQWqPAghBCCCGEEFJrFFiQd5Krq+t7W13t7+8PHo+HsLAwqXQejwdXV9cGKRMhhBBCyNtGgQUBAMTGxoLH48n8qauro3Xr1li0aBFyc3Mbuph1Ij09HT/88ANatmwJNTU1qKmpwdLSEj179sSiRYuQnJxcb2Xx8fEBj8dDbGxsve2TEEIIIeRtoHksiBQbGxt8/vnnAMonFEpNTcW///4Lf39/nDhxAufPn4eysvJbL8e2bduQn59f59t99uwZunfvjvj4eLRt2xZjx46Fjo4Onj9/josXL8Lf3x+Ojo4wMjKq830/ePAAampqdb5dQgghhJB3AQUWRIqtrS38/f2l0oqKitCtWzdcvnwZ4eHhcHd3f+vlaNy48VvZrp+fH+Lj47F48WIsWLBAZvmdO3ego6PzVvbdrFmzt7JdQgghhLxbxOLy4YyVlN7+zdh3CTWFItUSCoVwc3MDUD47eUWhoaEYN24c7O3toaGhAQ0NDXTs2BEbNmyQu60bN27gk08+QePGjSEUCmFgYIBOnTrhxx9/lMpXVR+LQ4cOwcPDA/r6+lBVVYWVlRW8vb1x9+7dao/l0qVLAICpU6fKXd6qVStYWFhIpUn6Rjx79gyjRo1Co0aNoKamBkdHR4SEhFS7z9e3I2FlZYWtW7cCAKytrbnmZ9QPgxBCCHl/FebmYtusqVjrMwJJTx43dHHqFdVYkGoVFxcjLCwMPB4Pbdu2lVq2fPlyREVFoWvXrhg6dCgyMzNx4sQJTJw4EZGRkfj111+5vLdu3UL37t2hrKyMwYMHw9LSEpmZmbh//z42bNiAefPmVVuWmTNnYuXKldDT08OQIUNgaGiI+Ph4hISEoEOHDnBwcKhyfX19fQDAo0eP0LlzZ4XPQUZGBhwdHWFgYIAvv/wSqamp2L17N/r06YN9+/ZhyJAhCm9LYsaMGQgKCkJERASmT5/O1ZRYWVnVeFuEEEIIeTfcOnkU6c+eAgBOb/4Dn/20qoFLVH8osCBSoqKiuKZQjDGkpaXh5MmTSEhIwIoVK9C0aVOp/OvXr4e1tbVUWmlpKfr164c1a9Zg+vTpXLOm7du3o6ioCAcPHsTgwYOl1klPT6+2bEePHsXKlSvRqlUrhIaGckGCZJ+KbMPLywvnz5/HwIEDMWnSJLi5uaF9+/bQ0tKqcr3bt29j9OjR2LFjB1eTMn36dHTq1AkTJkyAp6cnRCJRtfuvaMaMGbh16xYiIiIwY8YMCigIIYSQD0D8g1ctKJKePEZBTjZEmlVfZ3woKLBQwMDfzyM1p6ihi1ElA00hjkztUevtPHnyBIsWLZJJHzBgAHr16iWT/npQAQB8Ph+TJk1CcHAwQkNDMWbMGKnl8i7AKwYJlfnjjz8AAGvWrJHJz+fzFepwPWXKFMTHx2PNmjVYvHgxFi9eDB6Ph+bNm2PgwIGYPn06TExMZNZTVlbGTz/9JNU8q3Xr1vD29sbmzZtx/PhxDB8+vNr9E0IIIeTD9iIhXup5/P07aNrFsYFKU78osFBAak4RkrILG7oY9cLT0xMnTpzgnqenp+PChQuYPn06HB0dcebMGXTp0oVbnpOTg4CAABw8eBBPnjxBXl6e1PYSExO5x15eXli9ejWGDh2KESNGoHfv3nB2doaZmZlCZfvvv/8gFArh4uLyxsfH4/GwYsUKzJ49G8ePH8fly5dx7do1XL9+Hffv38dff/2FEydOSB0jUN6Z3NLSUmZ7Tk5O2Lx5M27evEmBBSGEEPKRKy4sQO4L6RYUWSn1N4x9Q6PAQgEGmsKGLkK13lYZ9fX1MWjQIKipqaF3796YP38+goODAZT3vXB1dcWNGzfQrl07eHt7Q19fH3w+H7Gxsdi6dSuKil7V9HTp0gVhYWH46aefsHPnTgQGBgIAOnXqhOXLl3MdxCuTlZUFMzMzKCnVfsyBRo0a4YsvvsAXX3wBAEhKSsKUKVOwf/9+TJgwAREREVL5K6sNkaRnZWXVukyEEEIIeb/lpKfJpGWnpjRASRoGBRYKqIsmRu87yR38q1evcmmHDh3CjRs3MH78eGzatEkq/99//82NeFSRk5MT/v33XxQUFODKlSs4cuQI/vjjD/Tv3x93795FkyZNKi2Djo4OkpKSIBaL6yS4qMjY2Bjbt2/H0aNHcfv2baSnp0s1t6ps0jxJura2dp2WhxBCCCHvn9drKwAgO/XjqbGg4WaJQjIyMgAAYrGYS3vy5AkAyHTEBoBz585VuT2RSARXV1f8+uuvmDt3LgoKCriakMp07twZRUVFCA8Pr2nxFSIUCiEQCOQue/r0KeLi4mTSJcfZrl27N9qnZLLBsrKyN1qfEEIIIe8OeYFFjpy0DxUFFkQhK1euBAA4OztzaZI+B+fPn5fKGx4ejo0bN8ps49KlSygslO2rIrnrr6qqWmUZJk+eDKB8NKYXL15ILSstLa20VqGiX3/9FQ8fPpS7bO3atcjNzUWzZs1kOoeXlZVh7ty5YIxxabdv38b27dthYGCAfv36VbtvefT09AAA8fHx1eQkhBBCyLtOXmBRkP3xNJemplBESsXhZgHgxYsXuHDhAm7cuAFdXV0sX76cWzZw4EBYWVlhxYoVuHv3LhwcHBAZGYmjR49i6NCh2Ldvn9S2ly9fjtDQUDg7O8Pa2hqqqqq4ceMGTp8+jSZNmmDo0KFVlq1fv37w9fVFQEAA7OzsMHToUBgaGiIhIQGnT5+Gr68vZsyYUeU2tm/fDl9fX7Rq1QpdunSBoaEhMjMzcfnyZdy4cQMikQjr16+XWa9169Y4f/48OnXqhF69enHzWJSWlmLDhg01HmpWwt3dHQEBAZgwYQKGDx8OdXV1WFpawtvb+422RwghhJCGk5shG1jkZ2WBMVbpxL8fEgosiJTXh5sVCoUwNzfH119/jR9++IGbkwIANDQ0cObMGcyaNQtnz55FWFgYWrZsif/9738wMjKSCSy+/vpraGtr48qVKwgPDwdjDI0bN8bcuXPx7bffVjuXBAD88ssv6NatG9auXYt9+/ahsLAQJiYmcHd3R+/evatdPzAwEEeOHMGZM2dw8uRJJCcnQ1lZGZaWlvj666/x7bffws7OTmY9XV1dHDt2DL6+vti4cSPy8/PRrl07LFq0SKH9VqZv375YsWIFNm7ciF9//RUlJSVwcXGhwIIQQgh5D+W9bDoOALompsh4nghxWSmK8vOgqq7RgCWrHzxWsW3HByg7Oxva2trIysqq8sK1sLAQMTEx3J10QiR4PB5cXFwQFhbW0EUhhBBSS/R7T96mPYvmIP7+HQCATceueHLtMgBg3Oq/oGui2PD67xpFr6UB6mNBCCGEEEJInSjMywUAKPP50DYw5NLzP5Jh6SmwIIQQQgghpA4U5pYHFkJ1Dahp63Dp+dmZDVOgekaBBSGEEEIIIXWgMDcHAKCqoQlRhWZDBdnZDVWkekWdtwmpxgfeDYkQQgghdaCstAQlReXD6qtqaEJVQ5NbJmki9aGjGgtCCCGEEEJqSdIMCgBU1dWlRoGiwIIQQgghhBCiEKnAQkMTwgqBRVEuBRaEEEIIIYQQBVSslVDV0KQaC0IIIYQQQkjNSTpuA4CqhgZUNSrUWOTnNUSR6l2DBhZnz57FwIEDYWpqCh6Ph4MHD1aad9KkSeDxeFi9enW9lY8QQgghhBBFSAUW6hpQURWBx1N6uYxqLN66vLw8tGnTBuvWrasy3z///IPLly/D1NS0nkpGCCGEEEKI4opeawrFU1KCUF1dZtmHrEGHm+3bty/69u1bZZ6EhARMnToVJ0+eRP/+/eupZIQQQgghhCiu4LXO20B5zUVhbs5H08finZ7HQiwWw9vbG7NmzULLli0VWqeoqAhFRUXc8+yPZEISQgghhBDScF5vCgWgQo1FHphYDJ7Sh929+Z0+uuXLl4PP52PatGkKr7Ns2TJoa2tzfxYWFm+xhIQQQgghhLzeFEoSWJT/Z0yM4sKCBilXfXpnA4vr169jzZo1CAoKAo/HU3i9OXPmICsri/uLj49/i6UkhBBCCCHk9VGhXjWFerX8w28O9c4GFufOnUNKSgoaN24MPp8PPp+PuLg4zJw5E1ZWVpWuJxQKoaWlJfVHaub69esYP3487OzsoK6uDpFIBBsbG3h7eyM4OBhZWVlQU1ODrq4uCgsLq9zWxo0bwePxMGHChHoqPSGEEEJI/avYj0LSBKpiYPExDDn7zvax8Pb2Rq9evaTSPD094e3tjbFjxzZQqT5sYrEYvr6+WLVqFfh8Ptzd3TFo0CAIBAJER0fj2LFj2LFjBxYvXozhw4djx44d2L9/Pz777LNKt7llyxYAwPjx4+vrMAghhBBC6p2kRkKopg4lJeXyxy8DDIACi7cuNzcXUVFR3POYmBjcunULenp6aNy4MfT19aXyCwQCGBsbw97evr6L+lGYP38+Vq1ahbZt22Lfvn2wsbGRWl5QUIC1a9ciPT0d48ePx44dO7Bly5ZKA4sHDx7g8uXLaNmyJbp06VLlvn18fLB161YwxurseAghhBBC6oukKVTFifGEahUCizwKLN6qa9euwc3NjXv+3XffAQDGjBmDoKCgBirVxykqKgorVqyAvr4+Tpw4ASMjI5k8IpEIs2bNQlFREVRUVGBjY4PQ0FDExsbKbZ5GtRWEEEII+RgwxrimUMIKzZ+EH1lTqAbtY+Hq6grGmMxfZUFFbGwsZsyYUa9l/FgEBQWhrKwMEydOlBtUVCQUCsHj8TBu3DgwxhAYGCiTp7S0FNu3b4eKigq8vb3fVrEJIYQQQhpccUEBmFgM4FXHbeC1plAfwVwW72znbVK/Lly4AABwd3dXeB0fHx8oKytj69atEL/8MEkcP34cycnJGDRoEBo1alSnZSWEEEIIeZfIGxEKAIRqatzjovz8ei1TQ3hnO2+/U/5yAXJTGroUVdMwBCaGv/HqSUlJAABzc3OF1zE1NUWfPn1w7NgxnD59Gr179+aWSZpBjRs37o3LRAghhBDyPqg4IpRqhVoKoVrFplAffo0FBRaKyE0BchIbuhTvpC+//BLHjh3Dli1buMAiJSUFx44dg7m5OTw9PWXWsbKyQlxcnNztyZuzJDAwED4+PnVabkIIIYSQulJZjUXFIKOQOm8TAOW1Ae+6WpbR2NgYDx8+REJCQo1G3RowYACMjIxw8OBBZGRkQFdXF9u2bUNpaSl8fHygJGfq+hkzZiAzM1Mq7eDBg4iIiICfn59M/rZt29b0cAghhBBC6k3Fye+km0LRqFDkdbVoYvS+cHR0RFhYGE6fPl2jfhZ8Ph9ffPEFfvnlF/zvf//DlClTEBgYCB6PV+l8I/I64MfGxiIiIgL+/v5veASEEEIIIQ2jYsdsqeFmP7J5LKjzNgHwqiP2hg0bkJqaWmXeoqIiqeeSfhRbtmzBlStXcP/+fbi5uaFJkyZvrbyEEEIIIe+KgopNoSoMMctXEUJJufw+/sdQY0GBBQEA2NraYvbs2UhLS0Pfvn0RExMjk6ewsBArV66UqVVo1qwZHB0dcfPmTcycORMAzV1BCCGEkI9HZX0seDweNzJUUcGHH1hQUyjCWbp0KQoLC7Fq1SrY29vD3d0dDg4OEAgEiImJQUhICNLT07F06VKZdcePH48LFy7gwoUL0NHRwbBhwxrgCAghhBBC6p90UyhNqWVCdXUU5GR/FDUWFFgQjpKSElauXInRo0dj/fr1OHv2LM6ePQuxWAwTExN4enpi7Nix6NWrl8y6Xl5emD59OnJycjB69Gioqqo2wBEQQgghhNQ/qc7bFZpCAa+GnC3KywNjTO4ImB8KCiyIjI4dO2Lz5s01WkddXR3Z2dlvvM+goKBKZ1wnhBBCCHmXSTeFei2weNmBmzExSgoLoCJSw4eK+lgQQgghhBBSC5LAQlkgAF9FKLVMVe3jmcuCAgtCCCGEEEJqoeBlHwuRhqZMUycVtY9nyFkKLAghhBBCCKmFwpzyGovXO24DH9dcFhRYEEIIIYQQ8oZKiotQWlw+x5e8wEL1I5p9mwILQgghhBBC3lBRrvxZtyWoxoIQQgghhBBSrcomx5MQVhh+tuJ8Fx8iCiwIIYQQQgh5Q1JzWMgLLKgpFCGEEEIIIaQ6Bbmv5vGSH1i8mreikJpCEUIIIYQQQuSpWGMhqqYpVDEFFoQQQgghhBB5qpp1G6CmUIQQQgghhBAFVNd5W7XCqFDUFIoQQgghhBAiV3WdtwWqIvB45ZfcVGNBCCGEEEIIkUu687ZsUygej8fNZVGUT8PNEkIIIYQQQuSQ7rytJTePZGQoqrEgH53r169j/PjxsLOzg7q6OkQiEWxsbODt7Y3g4GCZ/IWFhVizZg2cnJygr68PoVAICwsLjBw5EmfPnpW7j9jYWPB4PKk/gUAAMzMzeHl54dq1a2/7MAkhhBBCaq0wp7zGQkmZD75QKDePUK28JqMoPx+MsXorW33jN3QByLtDLBbD19cXq1atAp/Ph7u7OwYNGgSBQIDo6GgcO3YMO3bswOLFi7FgwQIAQFRUFPr3749Hjx6hSZMm8PLygo6ODqKjo3H06FHs3r0b06dPx8qVK6GkJBvH2tjY4PPPPwcA5OXl4fr169i7dy8OHjyIkJAQODs71+s5IIQQQgipifzsLACAmrY2eDye3DySplDislKUFhdBIFStt/LVJwosCGf+/PlYtWoV2rZti3379sHGxkZqeUFBAdauXYv09HQAQFZWFvr06YMnT55gwYIF8PPzg7KyMpc/MTERQ4YMwZo1a6Cnp4eFCxfK7NPW1hb+/v5SaT///DPmzJmDBQsWIDw8vO4PlBBCCCGkDjCxuEJgoVNpvteHnP1QAwtqCkUAlNc8rFixAvr6+jhx4oRMUAEAIpEIs2bNwqJFiwAAv/zyC548eYLPPvsMixcvlgoqAMDU1BRHjhyBnp4elixZgvj4eIXKMn78eADlTbIIIYQQQt5VBbk5YGIxgGoCiwpDzhZ9wEPOUmBBAABBQUEoKyvDxIkTYWRkVGVe4cv2g4GBgQDANYuSx8jICF999RVKS0sRFBRUozLx+VShRgghhJB3V35WJvdYvYrAQmouiw+4AzdduSlgxNERSCtIa+hiVKmRqBF2D9j9xutfuHABAODu7q5Q/ri4OCQmJsLMzAz29vZV5u3ZsyeWL1/O7aM6mzZtAgD06NFDofyEEEIIIQ2hYmBRVY2FiqhijcWHO+QsBRYKSCtIQ0p+SkMX461KSkoCAJibm9cov4WFRbV5JXkSEhJklkVFRXF9LCSdt0NDQ2FkZIRffvlFobIQQgghhDQEqcBCS7vSfKpSTaHy32aRGhQFFgpoJGrU0EWo1vtQRvHLNogVPXnyhOuzIWFsbIxz587B1ta2vopGCCGEEFJjUoGFjm6l+YTqrybO+5DnsqDAQgG1aWL0vjA2NsbDhw+RkJBQbdMmSX4ACnXIluQxMzOTWebp6YkTJ04AAFJTU7F161Z8//33GDRoEP777z9oyJnBkhBCCCHkXZCnYFMo6VGhPtymUNR5mwAAHB0dAQCnT59WKL+lpSVMTU2RkJCAyMjIKvNKttmiRYsq8xkYGMDX1xdz587FgwcPMH/+fIXKQgghhBDSEPKzsrjHVTWFolGhyEfFx8cHysrK2LBhA1JTU6vMW1RUBAAYN24cAODHH3+sNG9KSgrXGfuLL75QqCxz586Fqakp/vjjD8TGxiq0DiGEEEJIfcvPyuAeq1fVFOq1eSw+VBRYEADlE9XNnj0baWlp6Nu3L2JiYmTyFBYWYuXKlVxn61mzZsHGxgbbt2/H4sWLUVZWJpU/KSkJgwcPRnp6OgYNGoT27dsrVBaRSITvv/8eJSUlWLJkSa2PjRBCCCHkbeD6WPB4EGlqVZqvYmBR+AHXWFAfC8JZunQpCgsLsWrVKtjb28Pd3R0ODg4QCASIiYlBSEgI0tPTsXTpUgCAlpYWTpw4gX79+sHPzw/btm2Dp6cntLW1ER0djWPHjiE3Nxdt2rTB9u3ba1SWCRMmYPny5di2bRvmzp0rd8I+QgghhJCGJOljIdLQhNJrEwVXVLEpVDEFFuRjoKSkhJUrV2L06NFYv349zp49i7Nnz0IsFsPExASenp4YO3YsevXqxa1ja2uLiIgI/PXXX9i3bx927tyJzMxMbvm8efOwcOFCqKio1KgsqqqqmDNnDqZOnYpFixZh27ZtdXWYhBBCCCG1JhaXIS/jBQBAQ0+/yrxCkRrA4wGMfdBNoSiwIDI6duyIzZs3K5xfJBJhxowZmDFjBpcWEBCAWbNm4fHjx3Jn0LaysgJjrMrtTpkyBVOmTFG4HIQQQggh9SU/MxPil83ANfWrHvafp6QEoUgNRfl51BSKkJry9fXFw4cPsXnzZmhpaWHjxo0NXSRCCCGEkDqTk57GPdZsZFhtfqG6Oory8z7o4WYpsCBvzfr162FnZ4eCggI8fPgQzZo1a+giEUIIIYTUiey0V6NoVldjAbzqwP0hDzdLgQV5awQCAb7//vuGLgYhhBBCSJ3LSX8VWGg1Mqg2vySwKCspQWlxMfg17H/6PqDhZgkhhBBCCKmhnJrWWHwEk+RRjQUhhBBCCPnoPL0bgQfnw6FrYooO/QdDmS+o0fpZqSncYy1F+lioSQcWVU2o976iwIIQQgghhHxUnj28h31LF4AxMQAgLT4O/abMrNE2Mp4nAACUBYKa11h8oEPOUlMoQgghhBDyUbm4539cUAEAD86F4tnDewqvLxaXITPpOQBA19gUPKXqL6mFahrc4w91ZCgKLAghhBBCyEcjLzMD8fduy6Sf27m12jm2JLJTUyEuKwUA6JqYKbSOaoUai0IKLAghhBBCCHm/JVSomeg4cBj0TM0BAImR9/H0boRC28h82QwKAHRNTBVaR1VDk3tckJOt0DrvGwosCCGEEELIRyPh4X3usUWLVuj26Wju+dXD+xXaRtqzp9xjRWss1LS0ucf52RRYEEIIIYQQ8l7j+lLweDBt2hxNuzhC29AIABB3+yZSYqOr3UZydBT32NDaRqH9iioEFgXZWTUo8fuDAgtCCCGEEPJRKCstQWpcDACgkXljqGpoQElZGR0GDOXyKFJrkRzzBED5iFD65o0V2rd0jUVmDUr9/qDAgnyweDweXF1da72da9euoXfv3jAwMACPx0Pbtm1rvU1F+Pv7g8fjISwsrM62yRhDhw4d4OHhUWfbJO8HHx8f8Hg8xMbGNnRREBkZCT6fjz/++KOhi0II+chkpSSDictHg6oYEDi49oKqphYAIPLSOWRXmKPidUX5+chIfAYAMGhsBWW+YrM3iLS0uMcF1BSq7p09exYDBw6EqakpeDweDh48yC0rKSnB999/j1atWkFdXR2mpqb44osvkJiY2HAF/khcv34d48ePh52dHdTV1SESiWBjYwNvb28EBwfLXae0tBSBgYHo168fjI2NoaKiAm1tbXTq1Anz589HXFycVH4rKyvweDzuT1lZGY0aNYKHhwcOHTpUH4epkOzsbPTv3x///fcfRowYAT8/P0yaNKnByhMbGwsejwcfH583Wn/btm24ceMGFi9eLHd5QUEB/vjjD3h6enKvo6amJhwcHPDVV18hJCSkFqV/t+Xl5WHHjh3w8vJC06ZNIRKJoKOjAxcXF+zatavS9cRiMX7//Xe0atUKIpEIBgYGGDVqFKKjq69Kfx/VRcBub2+PUaNGYdGiRcjJyambghFCiAIyKna6Nn3VN0IgVEU7zwEAACYW4/qxg5Vu4/njh9xjoya2Cu9bIFSFQKgKAMinplB1Ly8vD23atMG6detkluXn5+PGjRtYsGABbty4gQMHDiAyMhKDBg1qgJJ+HMRiMb777jt07NgR27ZtQ5MmTTBp0iRMnz4dHTp0wLFjx+Dh4YElS5ZIrRcXF4eOHTti3LhxuHHjBnr37g1fX1/4+PhAVVUVP//8M+zt7REVFSW1nrKyMvz8/ODn54fvv/8ezs7OOHPmDIYMGYJff/21Pg+9Uv/99x9SUlLw/fffY+3atfD392/QwKI2xGIx/P394eTkhK5du8osj4iIQMuWLTF58mTcv38fHh4emDlzJr766itYW1tj9+7d6N27N7799tsGKP3bd+7cOXh7e+PMmTNo164dZsyYgeHDh+P27dsYPXo0pkyZIne9iRMnYtq0aWCMYdq0aejTpw8OHDiATp064fHjx/V8FJVbtmwZHjx4ADMzxToZvm2zZ89GSkoKfvvtt4YuCiHkI5KRWHE0J+nvw7ae/cFXEQIAbp85WenFf+ztm9xji5ata7R/ST+LD7WPRYPOvN23b1/07dtX7jJtbW2Zu+Nr165F586d8fTpUzRurFh7NqK4+fPnY9WqVWjbti327dsHGxvpzkgFBQVYu3Yt0tPTubScnBx4enoiMjISs2bNwpIlSyAUCqXWi4qKwnfffYfcXOkxm/l8Pvz9/aXSTp06hT59+mDhwoX4+uuvoaamVrcHWUOSGjJTU8WGknuX/fvvv4iNjcW8efNklj179gweHh5IT0/HypUrMXXqVPBfq9rNy8vDxo0b8ejRo/oqcr0yNjbG9u3b4eXlBRUVFS79p59+QpcuXbBu3Tp88cUX6Ny5M7csNDQUmzZtgrOzM4KDg7n1Ro8ejX79+mHKlCk4efJkvR+LPCYmJjAxMWnoYnBatWqF1q1bY+PGjZgzZw6UFJhcihBCaivj+auWL68PE6umpQ0Ht964dfIoSouKcHZHIPp8M0MqD2MMMTeulj/h8dDYoU2N9q+mpYXs1GQU5OZALC6DkpLyGx3Hu+q9+ibPysoCj8eDjo5OpXmKioqQnZ0t9UeqFxUVhRUrVkBfXx8nTpyQCSoAQCQSYdasWVi0aBGXFhAQgMjISHz++edYsWKFTFABALa2tjh8+DBatGhRbTk8PDxgb2+P/Px83Lun2AyYmzZtgoODA1RVVWFhYYHZs2ejsLCw0vw5OTnw8/NDy5YtueYunp6eOH/+vFQ+Ho+HMWPGAADGjh3LNdsKCgoCUN5kbMqUKXBwcIC2tjZEIhFatWqFn3/+GSUlJTL7raoJiZWVFaysrKo8zqCgIFhbWwMAtm7dKtWUTJF+GIGBgeDxeBg+fLjMsjlz5iAlJQXz58/Ht99+KxNUAIC6ujpmzJghc4f50aNHmD17Ntq3bw99fX2oqqqiadOm+OGHH2SCyeqO1dXVFTweTyqtsLAQv/76K9q0aQNtbW2oq6vDysoKXl5eiIh4Nd64WCzGpk2b0LlzZ+jp6UEkEsHc3BwDBw5U6Py0bdsWn3/+uVRQAQBGRkaYOHEigPLmmxVt3LgRALBkyRKp9fr27QtXV1ecOnUKT58+RXUqNnG7d+8e+vfvDx0dHWhoaMDDwwPXr1+Xu15cXBzGjx8PMzMzqKiowNzcHOPHj5e7T3l9LMLCwsDj8eDv78/1JdLU1IS2tjaGDh0qNy8AhIeHS73/JJ+Jmr4GXl5eiIuLQ2hoaLXniBBC6oJUUyhj2RrcrsNGQKhWPpHdvfAQqdoJoHw0qBcv+1eY2TeHSFNLZhtV4UaGYgyFcn4j33cNWmNRE4WFhfj+++8xatQoaGlV/iIuW7ZM6sKXKCYoKAhlZWWYOHEijIyMqsxbMXjYsmULAGDhwoXV7uP1C7bqvH6BKc+SJUuwcOFCGBkZ4auvvoJAIMDu3bvx4MEDuflfvHgBZ2dn3Lt3D46Ojpg0aRKys7Nx6NAhuLm5Ye/evRgyZAgAwM/PD7du3cKhQ4cwePBgrtO25P/GjRtx5MgRODs7o1+/fsjPz0dYWBjmzJmDq1evYv9+xcbCVlTbtm0xffp0rFmzBm3atOHKCaDaoIQxhtDQUNjb20NXV1dqWX5+Pnbv3g2RSISZM2dWW47Xg44DBw5g8+bNcHNzg6urK8RiMS5fvozly5cjPDwcZ8+ehUAgUPg4XzdmzBjs2bMHrVu3xtixYyEUChEfH4/Q0FBcvXoVbdqU3y2aM2cOVqxYARsbG4wePRqamppISEjA+fPnERISUqt+AZLyv37sYWFhUFdXh6Ojo8w6np6eCAsLQ3h4OLy9vRXaT3R0NBwdHdG+fXt8/fXXiIuLw969e7lmgl26dOHyPnr0CD169EBqaioGDhyIli1b4u7du9iyZQuOHDmC8+fPo2nTpgrt9+rVq1ixYgXc3NwwceJE3Lx5EwcPHsSdO3dw9+5dqKqqwsrKCn5+fli0aBEsLS2l+vlIPhM1fQ26desGADh9+jR69uypUFkJIaQ2MpLKayxEmlpQ1dCQWa6uowun0WMQsql8cIljv/2CUYtXcJPoXTtygMvbwtm9xvtXe23I2YrPPwjsHQGA/fPPP3KXFRcXs4EDB7J27dqxrKysKrdTWFjIsrKyuL/4+HgGoNr1CgoK2P3791lBQcGbHsJ7zdXVlQFgISEhCq8TGxvLADBzc/Ma78/S0pIJhUKZ9JCQEMbj8Zi6ujrLz8+vchuPHz9mfD6fmZmZseTkZC49KyuL2dvbMwDMxcVFap3Ro0czAGzjxo1S6cnJyczCwoIZGBhIvQcCAwMZABYYGCiz/7i4OFZaWiqVJhaL2bhx4xgAdv78eall8sojYWlpySwtLaXS/Pz8GAAWGhrKpcXExDAAbMyYMXK3U5l79+4xAOyzzz6TWRYeHs4AMCcnpxptU+LZs2esqKhIJn3RokUMANuxY4dUurxjlXBxcWEVv5YyMzMZj8djHTp0kDnXpaWlLCMjg3uup6fHTE1NWV5ensx209PTa3BE0kpLS1mrVq0Yj8djd+7c4dJzc3MZAObg4CB3vX379jEAbMGCBdXuQ/K6AmA//PCD1LITJ04wAKxVq1ZS6W5ubgwA++uvv6TS161bxwAwd3d3qfQxY8YwACwmJoZLCw0N5fb7999/S+X39vZmANiuXbuk0qt6H9f0NcjKymIAmLOzs9ztEfI2fOy/9x+zooJ8FuDVnwV49Wc75/tWmk9cVsb2/7SQy7t2/Ch2NyyEXTm4l0tbN34UKyqo+jpFnrDtm7ltPL0bUZvDqTeS7+rqrqUZY+ydr7EoKSnhqsvPnDlTZW0FUH43XV5znNqIGf4JStPS6nSbdY3fqBGs9+974/WTkpIAAObm5m91nYpKS0u5PhYlJSWIjIzEoUOHwBjDkiVLIBKJqlx/586dKC0txXfffQdDQ0MuXUtLC/Pnz5e5S5yWlobdu3fD3d0dX375pdQyQ0NDzJo1C9OmTUNISAgGDBhQbfnl9fPh8XiYPHkytmzZgpCQELl3shvCs2fl1bbyaqMkr2Nl/Uhe7wfzelplnYGnTJkCPz8/hISE4LPPPqthicvxeDwwxqCqqirTBl9ZWVmmWaSKigqUlWXbq+rp6b3R/gFgwYIFuHPnDsaNGwcHBwcuPSurvOOdtrb8u02S7ypJPkXo6OjI9IHx9PREz549cfr0aVy/fh0dOnTA06dPERoaihYtWuCrr76Syj9p0iT8/vvvOHPmDOLj42FhYVHtfp2dnTFixAiptHHjxmH79u24evUqRo4cqfAx1OQ10NLSgqqqKvf+JISQtykz6Tn3+PX+FRXxlJTQb9os7Fk8F6mx0SjMycaJP1ZJ5ekxagxUVKu+TpGnYtMpRWbfLsgtxqP/ktHSyRR8wbvfH+OdDiwkQcXjx48RGhoKfX39BilHaVoaSpOTG2TfH7KysjKu2ZqSkhJ0dXXh7u6OyZMnKzT6l6R9vZOTk8wyeWlXr15FWVkZioqK5F4sS0bwefjwoUKBRXFxMdauXYu///4bDx8+RG5uLhhj3PJ3aWhkSYf7qvonVUZe08KK548xhsDAQAQFBeHu3bvIysqC+OUY4UDtzoOWlhb69euH48ePo3379vj000/h6uqKTp06yTSvGjlyJP744w84ODhg5MiRcHNzQ7du3aoNUKvy559/YtmyZWjXrh3WrFnzxttRVLt27aAhp2reyckJp0+fxs2bN9GhQwfcunULAODi4iLTZFBJSQnOzs54+PAhbt26pVBg0aFDB5k0yQ2DzMxMhcv/Jq+Bnp4e0t7xGzeEkA9Ddloq91jb0LjKvKrqGvh0wY849edviLp6SWpZ+36D0cr9zeaDUtPW4R5XNjIUEzM8e5SB++cTEX0rFeJSBpGGAE07V13md0GDBha5ublSQ5DGxMTg1q1b0NPTg4mJCT755BPcuHEDR48eRVlZGXdnVU9Pr8bt9WuD36hRve3rTdW2jMbGxnj48CESEhJgb2+v8DoAkJCQUE1O+YRCYZWdrKsjuRNcsbZCQt6d+RcvXgAALly4gAsXLlS63by8PIX2/8knn+DIkSNo2rQpRowYAUNDQwgEAmRmZmLNmjUoKipSaDv1QXJhJ+98S85VZQFAxWCpWbNmiIyMlFo+bdo0rF27FhYWFhg0aBBMTEy4WsNFixbV+jzs3bsXP/30E3bu3MndzdfS0sLYsWPx008/cSOHrVmzBtbW1ggMDMTSpUuxdOlSqKqqwsvLC7/++isa1fAzsmnTJnzzzTdo1aoVgoODZS74JTUVldVISAaOqKxGQ57K+jdJ0iX7kmy7svyS0Z8UHbxCXk2wpD9JWVmZQtsA3uw1KCgoaPDR3wghH4ectFeT3mk2Mqg2v0hDE4NmzkVcxA3E3Y1AWUkJmnToDKvW7d64DGoVfhPysjKllhXll+DBxee4E/YM2WnSv9f3zydSYFGda9euwc3NjXv+3XffASjvrOnv74/Dhw8DgMxMx6GhoXUyo7KiatPE6H3h6OiIsLAwnD59Gu7uinVGsrS0hJmZGeLj4/H48WPY2dm95VJKk1ywpaSkwNLSUmpZspwaJsnF08yZMxEQEFCrfV+9ehVHjhyBp6cnjh07JtX04/Lly3LvbvN4PJSWlsrdXlZWVo0uQGvKwKD8C1QSXFXUsWNHCAQCXL9+HTk5OdDU1FR4uykpKVi3bh1at26NS5cuSV0gJiUlya3tUFJSQnFxsdztybtIV1NT4y5SY2JiEBoaij///BNr1qxBQUEB/vrrLwDlF8K+vr7w9fVFYmIiwsPDERgYiG3btiEpKalGw75u3LgREydORIsWLXD69Gm5taXq6uowMTFBTEwMysrKZJr/SGrAavK5kPe+rZgueY9I3suV5ZfchKmu6Whdq+lrIBaLkZWVhZYtW9ZrOQkhH6eKNRZaCgQWQPlvt1XbDrBqK1uz+yY0dF/9nuS+KG9NkJGUh9uhz/DwchJKi6Rv5og0BbDvaoIWju/OcOFVadDhZl1dXcEYk/kLCgqClZWV3GWMsXoNKj4WPj4+UFZWxoYNG5Camlpl3op3oMePHw8AWLp0abX7qOxi8k1JRgM6d+6czDJ5aZ06dQKPx8OlS5dkltXUkydPAAD9+/eXuaCUt28A0NXVlVu7Exsbq3BzE8m+anIXGQBatmwJJSUlmdoGoPwCecSIEcjPz8eqVavkrF256OhoMMbQq1cvmbvOVZ2HlJQUmSArLy+v2gnlrK2tMW7cOISHh0NDQ4O7+fA6U1NTjBo1CidOnICtrS1CQkJQUFCg0DFJgormzZvjzJkzXFAmj4uLC/Ly8uTWgEkuop2dnRXaLwDcvHlT7hC9knPZrl35XTLJzZazZ89K1SgB5TVMkmFxX78pUxeUlJQUev8p8ho8fvwYYrEYrVq1qvNyEkLI63IqBBaa+g3TGkVD71Vgkfr0OY78fgs7/a/gbniCVFBh0VwXnl85YMwyRzgOt4WusXpDFLfG3qt5LMjbY2tri9mzZyMtLQ19+/ZFTEyMTJ7CwkKsXLlSqn29r68v7O3tsW3bNsydO1dus5eYmBgMGTIE9+/fr9Myjx49GsrKyli5ciVSUl5Vb2ZnZ8sNdIyNjeHl5YWLFy/il19+kbkgA4ArV64gPz+/2n1Lakhen/vi3r17WLZsmdx1OnXqhNjYWISHh3NpxcXFXE2dInR1dcHj8RAfH6/wOkB534rWrVvj2rVrUv0fJH766ScYGBhg8eLFWLNmjdwLx8LCQpnXV3IeLl68KLXdZ8+eYc6cOXLL0qlTJ5SUlOB///sfl8YYw5w5c2SaoaWmpuLu3bsy28jIyEBRURFUVVUBlAe7Fy9elMmXl5eH3NxcCAQChSZg27RpEyZOnIhmzZrhzJkzcpvZVTRhwgQA5R28KwbO//77L8LCwuDh4SFTm1aVzMxM/Pjjj1JpJ0+exOnTp+Hg4MD1hWjcuDHc3Nxw7949bshniQ0bNuDBgwdwd3dXqH9FTenp6cntbP0mr8GVK1cAlAdohBDytmWnvwosNBoosBCqa0JJubzBUEpMIp7ee9WSgC9UhoOLGUb7d8Gg6e1g28EQyvz361L9ne68TerX0qVLUVhYiFWrVsHe3h7u7u5wcHCAQCBATEwMQkJCkJ6eLnXRrqmpiZMnT2Lw4MFYtmwZAgMD4eHhAXNzc+Tn5+PmzZu4cOEC+Hx+rZsfvc7W1hYLFy6En58fWrduDS8vL/D5fOzfvx+tW7eWe3f+jz/+QGRkJGbPno3t27ejW7du0NHRQXx8PK5du4bHjx/j+fPn1bb57ty5Mzp37ow9e/bg+fPn6Nq1K54+fYrDhw+jf//+2LdPtvncd999h1OnTqFfv34YNWoU1NTUEBwcDB0dHYVnRNbQ0ECnTp1w9uxZeHt7w87ODkpKSvD29q72Anbo0KHw8/PD5cuX0b17d6llFhYWCA4OxtChQzFjxgwEBATA3d0dZmZmKCgoQEJCAoKDg5GZmYkePXpw65mYmGD48OHYv38/OnbsiJ49eyI5ORlHjx5Fz549uZqdiqZMmYLAwEB8+eWXCA4OhoGBAc6dO4fMzEy0adNGatK7hIQEtGvXDm3atEHr1q1hZmaG9PR0HDp0CCUlJfD19QVQ3k7f0dERTZs2RYcOHdC4cWPk5ubi6NGjSEpKgq+vb7WjxZ05cwYTJkwAYwzOzs5Yv369TJ62bdtKzR/i5uaGL7/8Eps2bUL79u3Rv39/PH/+HLt374aenh5+//33Kvf5OicnJ6xfvx5XrlxB165dERsbi71790IkEmHTpk1SedevX48ePXrgq6++wpEjR9CiRQvcu3cPhw8fhoGBgdzy1wV3d3fs2bMHQ4YMQbt27aCsrIxBgwahcePGNX4NgoODwefzFRosgRBCaktSY6GmrQOBSt2OIFqdslIxIq8k4cbJODCmDiALjJXXUGvqq6K1mzmadzeBUO3N5316J9TpQLfvIEXH3qVxrV+5evUqGzduHLO1tWUikYgJhUJmZWXFRo8ezYKDg+WuU1xczLZs2cL69OnDjIyMmEAgYJqamqx9+/Zs7ty57OnTp1L5K5vH4k1s3LiRtWjRgqmoqDBzc3Pm6+vL8vPzKx1vPz8/n61YsYJ16NCBqaurM5FIxKytrdmQIUPYtm3bWElJCZe3qnksUlJS2Lhx45ipqSlTVVVlrVq1YuvWrWPR0dGVzjWxd+9e1qpVK6aiosKMjY3Z1KlTWU5OjsLzWDDGWGRkJOvXrx/T0dFhPB5Pbh55EhISGJ/PZ19//XWlefLz89natWtZr169mKGhIePz+UxDQ4M1b96cjR07Vu7rn5OTw2bOnMmsrKyYUChkdnZ2bMmSJay4uLjS1+DMmTOsS5cuTCgUMn19febt7c2Sk5Nl5rHIyMhg/v7+zNnZmZmYmDAVFRVmamrK+vTpw/79918uX3FxMVu+fDnz8PBg5ubmTEVFhRkZGTFnZ2e2c+dOJhaLqz0/kte6qj95r2lZWRlbs2YNa9myJXc8I0aMYFFRUdXuU6Li/CR3795l/fr1Y1paWkxdXZ316tWLXbt2Te56sbGxbOzYsczExITx+XxmYmLCxo4dy2JjY2XyVjWPhZ+fX5Vlquj58+fMy8uLNWrUiCkpKXGfj5q+Bnl5eUxDQ4MNGTJE4fNESF2g3/uPU2lJCQsYMYAFePVn23+YUW/7LSsTswcXE9nWuRfY2omn2dqJp9mvoydwc1lEXolnZWXV/0Y1pJrMY8FjTE57kA9IdnY2tLW1kZWVVWVHxsLCQsTExMDa2pprXkHIh8bb2xvHjh1DXFxcjTppk7crNjYW1tbWGDNmDIKCghq6OPVi06ZN+OqrrxAeHl6jfiiE1Bb93n+cslNTsHHKOACAXefuGDRz7lvdHxMzPLmZiv+ORCMjSbqJNV8pGLnpdwAA41b/BV0T+fNBvSsUvZYGqI8FIR+VpUuXoqCgoMZNdAipS6Wlpfjpp58waNAgCioIIfUiu+JQs2+5f8XT++nY+/M1nNx4VyqosGiui2GzOqBZ91ejBUpGhvpQUB8LQj4ilpaW2Lp1a6XDlBJSH54+fYovvvgC3t7eDV0UQshHoj5GhMpIysOFfVGIuysdLJjYaKPL4CYwa6oLAEh8+GpkqBwKLAgh7zMvL6+GLgL5yDVp0kRqdDlCCHnbstPTuMeajaoe8a+mCvNKcPVoDO6EJ4CJX/UwaGShgS6DmsDSQR88Ho9LrzjkLNVYEEIIqVOSeXsIIYQoLjk6Cud3b4equgZcvMdDQ1ev0rw5FQOLOqqxEJeJcfdsAv47EoOi/FdzM2noCtF1iA2adjICT4kns56mvmKBRXZaCvYungdtI2PYde6ONr371km53yYKLAghhBBCyHulrLQEBwOWIvdlwJCZ/Byjl/4qVTNQUU6FOSw0G71ZYMHKylCakgJxYSHSUstw/lQ60p69mn+Jr6KE9p6WaNu7MQQqypVuR0Pv1f4r9v14XWZSEjKTnyMz+TkaNbZ6ozLXNwosCCGEEELIe+XxlYtcUAEASVGPkPTkEUxs7eXml9RYKCkrQ11HV+H9FD15gqwjR5B38RIKHzxAqVgZT5oMQoKpE8B7NQaSjZ0AjuM6QVO3+pHGNPT0oMzno6y0FFkplfd5zEpJ4h7rGBorXOaGRIEFIYQQQgh5r9w6dVwmLfLiuWoDC3VdPSgpVV6bIFEQEYHUNWuQd/ESgPLJjFIM2uOx7XAUC3W4fBq5z2D/6G9oh8Ug5XQTlH31FbQHDQRPufJ9KCkpQ8vACBnPE5CVnATGmNyalopBh7bR+xFY0HCzhBBCCCHkvVGQm4OEyPsAymfRVnp5ER917bLc/CVFhSjMyQYAaDUyqHLbpRkZSPz+e8SOGMkFFUUqWrjjMBH3Wo7nggpllMI+5wI6RvwK7ewYAEBxdDSez5mDmKHDUHD7dpX7kQQKJUWFyM/KlJunYo2FNtVYEEIIIYQQUrdSop8ALwe8sO/uhJSYJ0h4eB9ZyUnIy8yQaeok3XG78sAi/9o1JPjOQmlS+QU9A5De3BMPzfqjuPRVDYRV60ZwGmEHLX0PlOV+h9zQM8jYvRsF164DAIoePULsyFHQHzcWBtOngycQyOyrYqCQkZQot3lWxvNEAACPpwQtg7odyeptoRoLQgghhBDy3kiJfcI9NrK2hWnT5tzzxMcPZfLnpFU/IlTGnj2I+2IMF1SU6Jvh8bAA3DYaxAUVIk0B+kxwQL+vW0FLXwQAUNZQh/bAgbDasQONt26FsMXLsojFSN+0GU/HjkNpaqrM/hqZN+Yepz2Nk1nOGMOLxGcAAG1DI/DlBCfvIgosCCGEEELIeyMlNpp7bGjVRCqweP5ITmCRXvnkeIwxpP7xB5IW+gFiMQAgs9un+K/LAjx7IeLy2XY0xCi/LrBpb1jpyFPqXTrDes8eGMz8DngZCORfu4aYTz5F0ePHUnkbWVpxj9OexshsK/dFOkoKCwAAembmcvf3LqKmUIQQQggh5L2RHFNeY6EsEEDPzAIiTa1Xy6KjZPJX1hSKMYaU5SvwIigIAFCmpIKn/eYgJtcQyC8DAKhqCOAyyh62HRRrisTj89Hoq6+g3qkTnk2fgdLkZJQmJyP2c29YrF8PtfbtAAAGFYaPTY2LBQBkFGYgOisaMVkxiLt9i1t+Jvcyyh7twydNP1GoDA2JAgtCCCGEEPJeKC4sQMbzBABAIwsrKPP50NDTh4auHnIzXiA5OkpmlCXpOSxeBRZp6/7ggoocdTNEOs1Cdu6rJkdN2hnAZZQ91LRUalxOUdu2sN6/D/ETJ6Hw3j2Is7Lw9Msv0XjTRqi1b49s5ENFVwvFGdl4FvMQTruckFmcya3fPFYTXVA+4V+CSiYSchNqXIaGQE2hCHlH+fj4gMfjITY2VqH8sbGx4PF48PHxkUp3dXWttNqWvJnKzvW7KjExEerq6vjpp58auiicoKAg8Hg8BL38UW8Iv/32G1q2bAk1NTXweDysXr0aAMDj8eDq6qrwdkpKStCkSRN4eXm9nYISQjipcbFcx21D6yZcumETWwBAUX4eMpOfS61TcdhWSSfoFzt3Im3tWjAA8WauuN55DrILy4MKvooS3Lyboc8EhzcKKiT4jRqh8datUO/eDQDA8vMRNW4MJqx2g/ted0QJyvtzKJUwlGbmSq2rn/VqvyWNhODh/fgdp8CCyLh+/TrGjx8POzs7qKurQyQSwcbGBt7e3ggODpa7TmlpKQIDA9GvXz8YGxtDRUUF2tra6NSpE+bPn4+4OOmOSVZWVuDxeNyfsrIyGjVqBA8PDxw6dEjhskoumuX9WVlZ1eY0EABhYWHg8Xjw9/dvkP37+/uDx+MhLCysQfb/ttXX8c2bNw9qamqYNm3aW93P++Tvv//G9OnTIRQKMX36dPj5+aFr166V5q8q0BcIBJg3bx727t2Ly5flD3dJCKkbFTtuG1rZcI+Nm9hxj19vDpWZXH4BL1RXh0hDE3mXLiH5x59QwlfH7VaT8NjuU4hZ+YV7IwsNeM3thBaOprW6KccYw+OMx9jwZBu+H5iNW9bl2xIUlmJCYBIsUhkytIq5/JaF+uhq0hWjmo3C3C5z0arEEkD5hH7/fBmMae3fj+9vagpFOGKxGL6+vli1ahX4fD7c3d0xaNAgCAQCREdH49ixY9ixYwcWL16MBQsWcOvFxcVh8ODBiIiIgJGREXr37g0LCwvk5eXhxo0b+PnnnxEQEIC7d+/C1taWW09ZWRnz588HABQXF+Phw4c4fPgwgoODERAQgJkzZypcdj8/P5k0HR2dNz8Z74Bly5bhhx9+gJmZWa22s23bNuTn59dRqQgAmJmZ4cGDB9DW1m7oolTr8ePH2LZtG+bNmwcNDY2GLs474+jRo9x/U1NTqWUPHjyAmppajbY3ZswYzJ07FwsWLKj0BgwhpPZSYqQ7bksYNXl1fZEcHYVm3Z0BAGWlpchJK28KpW1ojOK4ODyb8S2y1cxwt+WXKFTV59Zr08sC3QbbQFnwZvfdGWN48OIBTsaexOmnpxGX/eqmauRwJczZK4ZDHIN6EbBwvzL+G9sJJVHlnbqnWYxDd4/RAMprXdam7gQAGFg2eW9GhAIosCAVzJ8/H6tWrULbtm2xb98+2NjYSC0vKCjA2rVrkZ6ezqXl5OTA09MTkZGRmDVrFpYsWQKhUCi1XlRUFL777jvk5kpX8/H5fJk74adOnUKfPn2wcOFCfP311wr/uDfUHfW3ycTEBCYmJrXeTuPGjavPRGpEIBCgWbNmDV0MhWzYsAFisRje3t4NXZR3SmJi+fjwrwcVAN7oteXz+Rg5ciR+//13REVFSd1EIYTUHUmNBY+nBIMKIyu9HlhIZKelgLHy0Z609Q3w9JvJiFdriUd2XmBK5RfsIk0Bevq0gGXLV0FGTaQVpOFY9DEcjDqIqEzZzuMAYGPUHIkLOqLZL2HgR8ZCO6MYrifjEPzySrxiwJQcHcU19zK2bfpGZWoo1BSKACi/+F+xYgX09fVx4sQJmaACAEQiEWbNmoVFixZxaQEBAYiMjMTnn3+OFStWyAQVAGBra4vDhw+jRYsW1ZbDw8MD9vb2yM/Px71792p3UG/g0KFD6NmzJ3R1daGqqgoHBwcEBASgrKxMJm9BQQF++OEHWFhYcHk3btwot/lQdW3y5bXprqzpRVlZGZYvXw5bW1uoqqrC1tYWy5Ytg/jlMHmvk9fHQiwWY9OmTejcuTP09PQgEolgbm6OgQMHcs1y/P394ebmBgBYtGiRVDMzSZkePXqE2bNno3379tDX14eqqiqaNm2KH374QSaQrFiWkpIS+Pv7w8rKCkKhEE2bNsUff/whk1fyXnNzc6tREzfJuYuOjsaKFStgZ2cHVVVVWFtbY/HixSgpKZG7XmBgILp06QINDQ1oaGigS5cucvsAVNefpa6O7/Hjxxg7diysra0hFAqhp6eHNm3aYMaMGWAvf3SqIhaLsXXrVrRt2xZ2dnZSy97kPVmT45N48eIFJk2aBCMjI6ipqaFTp074559/qiz37du3MXLkSJiYmEBFRQWWlpaYOnWq1E2N14/hwYMHGDp0KPT19avsmyTp2xEaGsodp+SvsmO3srLC1q1bAQDW1tZc/tfPj5eXFxhjXF5CSN0qKy3h5nzQNTWDQKjKLVPX0YXGy6Fkk6OjwF7+JmYlv5q9WvnRE9zmd0Ok/WdcUGHcRAteczvXOKgQMzHOPjuLyacno9feXgi4FiAVVCjxlNDJuBN+6PwDgj8Jxt6BezG9x/dovmkb+KblNw359x5AhVd+KR5/7zbKSksBAIkVhsw1tpH+7n7XUY0FAVD+Y1tWVoaJEyfCyMioyrwVg4ctW7YAABYuXFjtPlRUatYBqiZtG3fu3InY2Fioqamhbdu2cHZ2hpJSzeLmOXPm4Oeff4aZmRmGDRsGbW1tnDt3DrNmzcKVK1ewd+9eLq9YLMagQYMQEhKCVq1aYfTo0UhPT8e3337LXYy/LRMmTMCWLVtgbW2NyZMno7CwECtXrsTFixcV3sacOXOwYsUK2NjYYPTo0dDU1ERCQgLOnz+PkJAQuLq6wtXVFbGxsdi6dStcXFykLqIkzcwOHDiAzZs3w83NDa6urhCLxbh8+TKWL1+O8PBwnD17FgI5VbijRo3Cf//9h759+0JZWRl79uzB5MmTIRAI8NVXXwEAd8EbHh6OMWPGcBfcNWniNmPGDFy4cAFeXl7Q0NDAkSNH4Ofnh9u3b2Pfvn1SeadNm4bff/8dZmZmGD9+PABg//79GDt2LG7evIk1a9YovN+6OL7ExER07twZeXl56N+/P0aMGIG8vDw8fvwYf/zxBwICAsDnV/0VfufOHaSmpmL48OEKl72ujg8A8vPz4erqijt37qBbt25wcXFBfHw8RowYAQ8PD7nbPnz4MLy8vKCkpITBgwfDwsIC9+/fx9q1a3Hy5ElcuXIFurrSM9RGRUWha9euaNWqFXx8fJCenl7p903btm3h5+eHoKAgxMXFyW1G+boZM2YgKCgIERERmD59OvcavR7kdujQAQKBAKdPn8aSJUuq3S4hpGbSn8VDXFZ+8W1kLXsD1MjaFrnpaSguyEdG0nPomZpx/SsA4FmuBUpNunHPW7mZw3G4LZT5il8v5BTn4GDUQex6uAvxOfEyy9satMVAm4HoZdkLeqp6Msv5BgZo/NdfiB01GuLcXDR6kYVEXU0UF+Qj4eF9NHZojdiIG1x+8+YOCpftncA+cFlZWQwAy8rKqjJfQUEBu3//PisoKKinkr1bXF1dGQAWEhKi8DqxsbEMADM3N6/x/iwtLZlQKJRJDwkJYTwej6mrq7P8/Pxqt+Pi4sIAyPw1bdqUXb16VeHynDp1igFgnp6eLDc3l0sXi8Vs0qRJDADbt28flx4YGMgAsD59+rDS0lIu/fbt20xFRYUBYH5+flx6TEwMA8DGjBkjd/8AmIuLi1TamDFjGAAWExPDpYWGhjIArE2bNlLlfPbsGWvUqJHcfUjOUUV6enrM1NSU5eXlyZQlPT1dZn8Vj6WiZ8+esaKiIpn0RYsWMQBsx44dcsvSpUsXqc/kw4cPGZ/PZ/b29lL5/fz8GAAWGhoqd/+VkZw7AwMDFh8fz6UXFRUxZ2dnmdczPDycAWDNmzdnmZmZXPqLFy9Y06ZNGQB29uxZLr2y17Muj++3335jANjq1atlllV8jaqybt06BoBt3LhRZtmbvCff9Pi++uorqfQTJ05wn9XAwEAuPS0tjWlpaTEzMzMWGxsrtc6uXbsYADZlyhSZYwDAFi5cWNWpkCHvcyGh6OdRnnbt2jGBQMAKCwtrVB5Sfz723/v32Z0zp1iAV38W4NWfXT28X2b5pX27uOX3z4cxxhg7E/gXl7ZmXCBbO/E0W/9NCIv873mN9v00+ylbcmkJ67SjE3MIcpD667mnJ1tzfQ2LyYxReHs558+z+81bsOAuHbnyhW7dyHJepLNfRwxkAV792ebpE2pUxrdF0WtpxhijGgsF7PnpKvKzi6vP2IDUtFTgNbfTG6+f9HIKe3NzxWd3fJN1KiotLeWaC5WUlCAyMhKHDh0CYwxLliyBSCSqegMABg8ejFmzZqFdu3bQ1dVFbGws/vrrL6xduxa9e/dGRESEQn0M1q5dC6C8Pbq6ujqXzuPx8PPPP+Ovv/7Crl27uDu/27ZtAwD8+OOPUFZW5vK3atUK3t7e2Lx5s8LnoSYk+124cKFUOc3MzDB9+nSpTvXVUVFRkSq7hJ6e7B2WylTWsXzKlCnw8/NDSEgIPvvsM5nly5Ytg5bWqwmN7O3t4ejoiPDwcOTk5EBTU1PhMlRl+vTpUu9PFRUV/Pjjj3ByckJQUBD3ekqarvj7+0t1yNbV1YWfnx8+++wzBAUFwcnJSaH91uXxyfscKPoaPXv2DACqrYWsKUWPb9u2bVBRUcHixYul1vf09ETPnj1x+vRpqfRt27YhOzsba9euhaWlpdSykSNH4pdffsHff/+N33//XWqZsbEx5s2bV5eH+MaMjIxw8+ZNpKSkwMLCoqGLQ8gHRWrGbXk1FhWaDSU/eYzmji6Iu/OIS1NSbgQNpTwMmOsGfTPFBrN4nPEYm+9uxr8x/0LMpJscdzXpitHNRsPZ3BnKSrK/p1XRcHSEwbRpKP79N/AYA+Px8ODsGSgpK3N9Quy79ajRNt8FFFgoID+7GHmZRQ1djA9OWVkZ18ZcSUkJurq6cHd3x+TJkzFo0CCFtvHtt99KPW/evDlWr14NLS0tLFmyBAEBAfjtt9+q3c7ly5ehrq7ONe16nUgkwsOHr9o8RkREQF1dHe3bt5fJ6+Tk9NYCi4iICG4f8varqJEjR+KPP/6Ag4MDRo4cCTc3N3Tr1k2hYK4ixhgCAwMRFBSEu3fvIisrS6qvh6SD7Os6dOggkyYJADIzM+sssJB3Trp16wY+n4+bN29yaZLH8uYukDRtu3XrlsL7rYvjGzhwIObMmYPJkyfj9OnT6NOnD1xcXNCkSZNq15WQ9Emo6xHSFDm+7OxsxMTEoEWLFjA2NpbJ7+TkJBNYSIZqvXLlCp48eSKzTmFhIdLS0pCWloZGjRpx6W3atJFp+iRvQIcZM2a89dHiJEFfWloaBRaE1LGKQ80aWMl+F1bswJ305DHO7X6E9ISn5Qk8EQwKkzBo5acQNao+qLiffh9/RvyJ0PhQqXQRX4RBNoMwqtko2OjIBjc1oT/hKxTcugWjmAdI0tFAfk42rh7eD6B8mNmWrr1rtf2GQIGFAmozOUp9qW0ZjY2N8fDhQyQkJMDe3l7hdQAgIeHNZoMUCoUoLCx8o3WrM3HiRCxZsgQXLlxQKP+LFy9QWloq1TH9dXl5edzjrKysSi8a6vrucEVZWVlQUlKSuqh6k/2uWbMG1tbWCAwMxNKlS7F06VKoqqrCy8sLv/76q9ztyzNt2jSsXbsWFhYWGDRoEExMTLg+OIsWLUJRkfyAvOLdbglJfwF5HeXflLxzoqysDH19fWRlZXFp2dnZUFJSgoGBgUx+IyMj8Hg8ZGdnK7zfujg+KysrXL58Gf7+/jh+/Dj27NkDoHzEosWLF+PTTz+tdhuSQLGuP2eKHJ/kfBkaGsrdhrzX5sWLFwCAdevWVbn/vLw8qfeovG3J+yz7+Pi89cCioKAAAGo8XC0hpGpMLEZKbAyA8knuRBqyN2jUtLSh2cgAOWmpSHz0GGnPIwFWPty6qEQZ/Wa0gqhR1cOER2dFY+3NtQiOkx42Wkeog8+bf46RzUZCW1g3Q43zlJRguvxnNPf6FMkvay0k2noOgI6R7E2Zdx0FFgqoTROj94WjoyPCwsJw+vRpuLu7K7SOpaUlzMzMEB8fj8ePH8uMOtOQJCPDVAwGqqKlpQUej4e0tDSF8mtrayM1NVXusuTkZJk0SUfy0pcjPlRU8QJXkf2KxWKkpaXJXATL229l+Hw+fH194evri8TERISHhyMwMBDbtm1DUlISTp48We02UlJSsG7dOrRu3RqXLl2SupBKSkqqMkirL8nJyTKBcllZGdLT06UuRrW0tCAWi5GamipzIZySkgLGmNyL6bfNwcEB+/btQ0lJCa5fv45///0Xv/32G0aMGAFTU1M4OjpWub7kPSK5YK+ort6TlZGcr5SUFLnL5b1fJevcuXMHDg6Kd1iUN9ADU2DUrLdBcq7lBamEkDeXkfQcJYXlgbuhnNoKCT0za+SkpYKJi1FW/Gp0SStjTWh27VLpeom5iVgfsR6HnxyWavJkqGYIn5Y+GG43HGqCur9hoKytjeYrV+HFxC9xx0QXYiUlmJiaw9FLthnx+4CGmyUAyu/kKSsrY8OGDZVeMEtUvAstGT1n6dKl1e6juLj++qn8999/YIwpPPt2ly5dkJ6ejsePHyuUv02bNtwEgK87d+6cTJrkLqm82p2KTXIU2W9l+5CXpghTU1OMGjUKJ06cgK2tLUJCQri7rpI+GPLuskdHR4Mxhl69esncnX3Tsryuqv0rQl45Ll26hNLSUrRr145LkzyWNwO2JK1t27ZvVIaqKHp8AoEAXbt2xaJFi/Dbb7+BMcZN8FaVVq1aAQAiIyNlltXVe7IyWlpasLa2RlRUFNcfqyJ5r02XLuU/+pcuXar1/uuaoq9VZGQkzMzMatRXiRBSPakZt+X0rwCA5NhsJMe+GoK2rOA699hu1Ody18ktzsXK6ysx4J8BOBh1kAsq9FX1MafzHPw77F94t/B+K0GFhKhlS7T/egp63ouFy4M4dLh6D0r5BW9tf28TBRYEQPlcE7Nnz0ZaWhr69u2LmJgYmTySYU0rtl329fWFvb09tm3bhrlz58pt+hITE4MhQ4bg/v37dVrmmJgYuXdiExIS8M033wAARo8erdC2pk2bBgAYN26czFj5QPkd+AcPHnDPJZONzZs3T+pC486dO9i+fbvM+lpaWrC3t8f58+cRFfVqnOucnBzMmTNHoTJW3O/ixYulamMSEhIUHg61qKhI7tC0eXl5yM3NhUAg4O5mSy6O4uNlh9STdK69ePGiVL+KZ8+e1eiYqlLV/hWxZs0argMzUB7cSjr5Vpy/YcyYMQDKm89UbPKUlZXF1bxI8tSlqo7v+vXrcptfSe70q6qqyix7nZOTE5SUlHDlyhWZZXX1nqyKt7c3iouLZYajPnXqlEz/CgAYO3YsNDU1MW/ePLnz2OTn53P9MOqbIu/Fp0+fIikpCc7OzvVVLEI+GlIdt61kA4vYO2k4uPIGyspeNZNkeHVxbt6mnVT+MnEZDjw+gAH/DEDg3UCUiMvnN9JU0cT09tNxfNhxjG4+GirK9dMcXnf0aOg4OUG9uBTitDQ8n7+gwWpea4OaQhHO0qVLUVhYiFWrVsHe3h7u7u5wcHCAQCBATEwMQkJCkJ6eLlU7oampiZMnT2Lw4MFYtmwZAgMD4eHhAXNzc+Tn5+PmzZu4cOEC+Hw+AgIC6rS84eHh+Prrr+Hk5ARra2vo6uoiJiYGx44dQ15eHj777DOFZxvu06cPFixYgCVLlsDW1hZ9+vSBpaUl0tPTERUVhXPnzmHp0qVo3rw5gPKLzJ07d+LEiRNo164d+vbtixcvXmDXrl3w8PCQezd55syZmDBhArp164ZPP/0UYrEY//77Lzp1UrypnZubG8aOHYvAwEC0atUKQ4cORVFREXbv3o2uXbsqdBe7oKAAjo6OaNq0KTp06IDGjRsjNzcXR48eRVJSEnx9fbl+Es2aNYOpqSn+/vtvCIVCmJubg8fjYerUqTAxMcHw4cOxf/9+dOzYET179kRycjKOHj2Knj17yu18W1OSiePmzp2Le/fuQVtbGzo6OpgyZYpC63ft2hVt2rTBiBEjoK6ujiNHjiAyMhLDhg2TmtvB2dkZU6dOxe+//w4HBwcMHz4cjDHs378fz549w7Rp097KxWJVx7d9+3b89ddfcHZ2ho2NDbS0tHD//n0cP34cenp6GDt2bLXb19XVhYuLC86fP4/CwkKZYKQu3pNVmT17Ng4cOICNGzfi3r17cHZ2Rnx8PPbs2YP+/fvj2LFjUvkNDAywa9cufPrpp2jTpg369OmDZs2aoaioCLGxsQgPD0f37t1x4sSJOilfTbi7uyMgIAATJkzA8OHDoa6uDktLS6nvmODg8jbZQ4YMqffyEfKhS4mpWGMh3RTq3rkEhO+MBGOAEt8cPJ4KGHvVSsLYtilEmq+as95IvoGf//sZD168umGooqQC7xbeGOswts76UNQEj8eD6Y8/InrQYJS9eIHc0FBk7t4D3ZEj6r0stfL2Rr19N9A8FjV39epVNm7cOGZra8tEIhETCoXMysqKjR49mgUHB8tdp7i4mG3ZsoX16dOHGRkZMYFAwDQ1NVn79u3Z3Llz2dOnT6XyVzaPRU1EREQwb29v1qJFC6ajo8P4fD5r1KgR8/DwYH///fcbbTM4OJgNHDiQGRgYMIFAwIyNjVm3bt3YkiVLZI4hLy+PzZ49m5mZmTGhUMhatGjBNmzYUOXcD+vWrWN2dnZMIBCwxo0bs4ULF7Li4uIajZtfWlrKli1bxpo0acJUVFRYkyZN2E8//cSioqIUmseiuLiYLV++nHl4eDBzc3OmoqLCjIyMmLOzM9u5cycTi8VS61++fJm5uLgwTU1Nbs4ASZlycnLYzJkzmZWVFRMKhczOzo4tWbKk0mOqau6Ayo43KCiItWrVigmFQgaAWVpayl1f3raePHnCfv75Z2Zra8tUVFSYpaUl8/f3lzv3BmOMbdmyhXXq1ImpqakxNTU11qlTJ7ZlyxaZfNXNY1EXx3f58mU2ceJE5uDgwHR0dJhIJGJ2dnZsypQpLC4urtpzILF7924GgO3evVvu8pq8J9/k+NLT09mECROYgYEBU1VVZR06dGAHDhzg5oKpOI+FxMOHD9n48eOZpaUlU1FRYbq6uqxVq1Zs2rRp7L///uPyVTcXR1VqOo8FY4ytWLGCO1fy8ri6ujJDQ0NWXFxc4/KQ+kO/9+8fsVjM1o4fxQK8+rN1X47mfqfEYjG7fOgJWzvxNPd3dFkY2+/ag5sbIsCrP7sbVj5HV0peCpsVPktmHopvQ79l8dnxVRWh3mSfOcPu2zdj9+2bsQdt2rLC6OiGLlKN5rHgMfYe1rPUQHZ2NrS1tZGVlVVl58vCwkLExMTA2tpaoSYGhFQmLCwMbm5u8PPzkzvkJXn7fHx8sHXrVsTExCjcz+ZDVVJSAnt7e9jY2HB31Ende/z4Mezt7eHv7y/T9Iu8W+j3/v2TnZqCjVPGAQCs23bAsDmLIC4TI3THQzy89KoPVxt3MxgHfYfCmBjctjBAhlEjNHPrBVefCdj/eD9WX1+NnJIcLn9T3ab4ofMP6GT8bg3S83zRImTu+hsAIGrbFpb/2wGenHmn6oui19IANYUihJAPmkAgwLJlyzBy5EhcvHgR3bt3b+gifZAWL14MExMTzJw5s6GLQsgHJzn6VT8woya2KC0pw6lN9xAT8XIkRx7Q41M7mEWdQGp0NJQBdNc1geXWnXicFYUxJ8YgIjWC24aOUAfT2k/DMNthNZ7Yrj4YzZ6NvIsXURL3FAW3buFF0Fbojx/X0MVSCAUWhBDygRsxYgSePn0qd2ACUnuSWiEfHx+oq6s3dHEI+eAkRb8asVHP3BrH1t3Gs4cZAAAlPg8e41qisUkZnnz3R3kmJSU0WjAPayPWYcudLShlr4bVHmwzGDM7zoSuqm69HkNNKIlEMF22DHGffQ4whtQ1a6Dh6gKhTe0m5KsPFFgQQshHYNasWQ1dhA+WQCDA/PnzG7oYhHywKtZYRJwpQnpCecdsvlAZ/Sa1gkVzPSTMmg0mmQx0eF98Ee2HxxmvAhIrLSss6LoAnU0612vZ35Ra+/bQ8/HBi8BAsOJiJM6ZC6vdf8udt+ddQoEFIXXM1dX1vRwi7kMSFBSEoKCghi4GIYSQWmKMIfnliFBKympIewbweIBQjY8BU9rAuIk2CiIikH3kCACgRFMV35iHICujfCh4Po+P8a3G46vWX0GoLGyw43gTBtOnITc8HOLCAhjOmP7OBxUABRaEEEIIIeQdlZ2agsKcl3P68AzB4/Eg0lLBoGlt0chcozzwWPYzl39bt2JkqZbPxdRUtyl+7PEjmuk1a4ii15qSqirM164F39AAyhoaDV0chVBgQQghhBBC3knRN+5yj3l8I2jqqWLQjLbQMSyfCTvr2DEU3LoFAHimDwS340GZp4wvW32Jia0nQqAsaIhi1xlhE+uGLkKNUGBBCCGEEELeORlJebiw7yz3XKuRFYbNag8N3fJhglMzEhD943xIBkDd2lMJTfTssLTHUrTUb9kAJSYUWBBCCCGEkHdKRlIeDq68ieL8eC5t6Kz+XFBx9tlZXPzpOwzOKAIA3GzCQ/tB4zGl3RSoKKs0SJkJBRaEEEIIIR8tsbgMeZkZ0NDRA09JqaGLAwB4kZiHg6tvIj8rB6wsFQCgZ24JXWM9FJcVY9X1VTh6dTt+O1feQbtMCbBdsASjOw5vyGITUGBBCCGEEPJRKiksxN6l8/D8cSRMmjbD0NkLIdKsemblty09IReHVt9EQU4JxKXPAZSPsmjRwgFx2XHwDffFwxcP8XW4GKol5etofDIMDt0oqHgXvBuhKSGEEEIIqVe3go/j+eNIAMDzRw9xad+uBi1PekIuDq4qDyoAQKSWyi3L0C/DyKMj8fDFQ1gnMbjcLg84lDQ1Yf6tb4OUl8iiwIIQQggh5CN0LyxE6vnDC+FgYnGDlCU9sTyoKMwtDyoMLTWhofuCWx6QtAm5JbkAY5gYpsJdwDb65hvwdd/dWbQ/NhRYEPIBsrKygpWVVUMX453A4/Hg6ura0MX4YIWFhYHH48Hf318q3dXV9a1M5vQxvLeHDBmC5s2bo6ysrKGL8lb89ttvaNmyJdTU1MDj8bB69WoANf+slpSUoEmTJvDy8no7Bf3A5WdnIf3ZU6m0gpxspL2WVh8yk/NxaPUtLqgwstZCv29aIDn6EQAgV1SKfFH552FSZjs0iSkAAAgsG0Pvs9H1Xl5SOQosiIzr169j/PjxsLOzg7q6OkQiEWxsbODt7Y3g4GC565SWliIwMBD9+vWDsbExVFRUoK2tjU6dOmH+/PmIi4uTym9lZQUej8f9KSsro1GjRvDw8MChQ4cULuvChQvRq1cvWFhYQCQSoVGjRujYsSNWrVqF/Px8uesUFRVh8eLFsLOzg6qqKkxNTTFhwgSkpKQofpLIRyUoKAg8Ho9m8yZvXXh4OA4dOgQ/Pz8oKys3dHHq3N9//43p06dDKBRi+vTp8PPzQ9euXSvN7+PjAx6Ph9jYWJllAoEA8+bNw969e3H58uW3WOoPU0Lkfe5xxU7b8ffu1Gs5stMKyvtUZBcDKK+pGDitLS7cPIKykvJAI0mvEHwlPua2mwXPY8ncukazZ4OnQiNAvUuo8zbhiMVi+Pr6YtWqVeDz+XB3d8egQYMgEAgQHR2NY8eOYceOHVi8eDEWLFjArRcXF4fBgwcjIiICRkZG6N27NywsLJCXl4cbN27g559/RkBAAO7evQtbW1tuPWVlZcyfPx8AUFxcjIcPH+Lw4cMIDg5GQEAAZs6cWW2Z165dCzs7O3h4eMDQ0BA5OTkICwvDd999h61bt+LixYtQU1OTOsbBgwfj5MmT6Nq1K4YPH47Hjx9j06ZNOH36NC5fvgwDA4M6PKukoT148EDqPUDeb6dPn27oIrxVCxYsgKWl5Qd7F/7o0aPcf1NTU6llb/JZHTNmDObOnYsFCxZUeuOLyJcY+YB73G34KFzc+z8AQPy922jfd2C9lCE3owiHVt9E7sshY/XNNDBgahvsidmFsBOb0AKaAIAccxUE9QmC+ZEbSIkvH35WrUsXaLi710s5ieIosCCc+fPnY9WqVWjbti327dsHGxsbqeUFBQVYu3Yt0tPTubScnBx4enoiMjISs2bNwpIlSyAUCqXWi4qKwnfffYfc3FypdD6fL9N84tSpU+jTpw8WLlyIr7/+utofmcTERKiqqsqke3t7Y8eOHQgMDMTkyZO59K1bt+LkyZMYNWoU/ve//3FNNf788098/fXXmD9/Pv76668q90neL82aNWvoIpA69Pr30ofk3r17OHfuHObNmweld2TYz7qWmJgIADJBBfBmn1U+n4+RI0fi999/R1RUlNTNK1K1tPhXLQkc3Hrj6pEDKCksQEpsdL3sPz+7GIdW30R2WiEAQNdYDX2ntsCPtxbj0JNDGJJqAgBgPOCXLzbBQFkTT9Z/Vb4yjwejH75/K80tSe18mN9cpMaioqKwYsUK6Ovr48SJE3J/vEUiEWbNmoVFixZxaQEBAYiMjMTnn3+OFStWyAQVAGBra4vDhw+jRYsW1ZbDw8MD9vb2yM/Px71796rNLy+oAIBPP/2UO66KNm7cCABYtmyZ1BfSxIkT0aRJE/zvf/9DQUFBtfut2K784sWL8PDwgI6OjtQ2t2zZgsGDB8PKygqqqqrQ09ODp6cnQkNDq9zetWvX0Lt3b2hqakJbWxtDhw6V2wwAAA4dOoROnTpBJBLByMgIX331FTIyMiotd1paGmbMmAFra2sIhUIYGhrCy8sLd+/elckraYIQHR2NgIAANG3aFCKRCC1atMDff/8NoLymad68edwxtm7dGv/++2+150/C398fPB4PYWFh2Lx5M1q1agVVVVWYmZnh22+/RU5Ojtz1jhw5Ajc3N2hra0MkEqFNmzZYuXIlSktLZfLKa7ctObaYmBj89ttvaNasGYRCISwtLbFo0SKIK3Re9PHxwdixYwEAY8eOlWrCJ/H8+XNMnz4ddnZ2EIlE0NHRQfPmzTFp0iRkZWUpfD7k2b9/P1xcXGBoaMg13evVqxf279/P5YmNjQWPx4OPjw8ePHiAAQMGQEdHB7q6uhg1ahTS0tIAAJcuXULPnj2hpaUFXV1dfPnll8jLy5PaX3FxMX7//Xd4enrCwsKCe58MGzYMN2/erNWxVCU0NBR9+/aFqakphEIhjIyM4OTkhA0bNkjlq6yPRVpaGiZMmABDQ0OoqamhU6dO+Oeff+Q2Y3tXz1dgYCCAV99f8o5Rkc/v+PHjwePxcPbsWbnbWblyJXg8Hvd9KHH79m2MHDkSJiYmUFFRgaWlJaZOnSp1MwmQPX9Dhw6Fvr5+pU2WgFfNCSXff/I+R69/Vq2srLB161YAgLW1NZf/9c+zl5cXGGNcXqKYFwnld/5VRGrQ0NNHI/PGAIDs1GQUF1b/O1gbhXklOLzmJjKTy5ssaxmI4DTJEpMvTsKhJ4egXqAMndzyJk6mds1g0qgx0n5fC/HL3wTtYUOh2rz5Wy0jeTNUY0EAlH/pl5WVYeLEiTAyMqoyb8XgYcuWLQDK+zpUR6WG7SBrcyfi2LFjAAAHBwcurbCwEFeuXIG9vT0sLS1l9tW7d2/89ddfuHbtGpycnBTaz8WLF/HTTz/Bzc0NEyZMwNOnrzq9TZ48GW3atEGvXr1gYGCAhIQEHDx4EL169cKBAwcwePBgme1dvXoVK1asgJubGyZOnIibN2/i4MGDuHPnDu7evSsVSG3btg1jxoyBlpYWvL29oaOjg6NHj6JXr14oLi6WOd+pqano1q0bnjx5AldXV4wcORIxMTHYt28fjh07hpMnT6JHjx4yZfruu+9w5coVDBw4EMrKyvj7778xevRo6Orq4vfff8f9+/fRv39/FBYWYufOnRg8eDAePHhQozvLK1euxOnTpzFixAj0798fISEhWL16NS5fvoyzZ89CIBBI5Z05cyb09PQwevRoqKur4/Dhw5g5cybOnTuHAwcOKPzemTVrFsLDwzFgwAB4enri4MGD8Pf3R3FxMX788UcA5R1pMzMzcejQIQwePBht27aV2kZ+fj4cHR0RGxsLDw8PDB06FMXFxYiJicH27dvh6+sLbW1thc9FRevXr8c333wDExMT7uItKSkJ//33H/755x8MHy49bntMTAy6d++Ojh074ssvv8S1a9fw999/Iz4+Hj///DM8PDzQu3dvTJgwgQvmxGIx9zkGgBcvXmDGjBlwcnJCv379oKuri+joaBw+fBj//vsvzp49i06dOr3R8VTm2LFjGDhwIHR0dDB48GCYmJggNTUVERER2L59OyZMmFDl+rm5uXBxccH9+/fRvXt3ODs749mzZxg5ciQ8PT0rXe9dO1+nT5+Gurq61PeWRE0+v97e3tiyZQt27NgBZ2dnmW1t374dQqFQKoA5fPgwvLy8oKSkhMGDB8PCwgL379/H2rVrcfLkSVy5cgW6r428ExUVha5du6JVq1bw8fFBenp6pd/zbdu2hZ+fH4KCghAXFwc/P79qz8eMGTMQFBSEiIgITJ8+HTo6OgAgE1h26NABAoEAp0+fxpIlS6rdLgFKigqRnVrer1DPzBw8Hg/6Fo3xPKp86Nn0Z09hYmv/VvZdVFCKI7/dQnpCeZCuoStEiy/U4XPuc6Tkl5fJKu3VXBrWbTug6MkTZOzeDQDgqanBYNr0t1I2UgdYAwoPD2cDBgxgJiYmDAD7559/pJaLxWK2YMECZmxszFRVVVnPnj3Zo0eParSPrKwsBoBlZWVVma+goIDdv3+fFRQU1PQwPgiurq4MAAsJCVF4ndjYWAaAmZub13h/lpaWTCgUyqSHhIQwHo/H1NXVWX5+vsLbW758OfPz82PTp09nHTt2ZACYh4cHKy4u5vLcvXuXAWADBgyQu42AgAAGgG3evLna/YWGhjKUz9rDtmzZIjdPdHS0TFpiYiIzNTVldnZ2lW7v77//llrm7e3NALBdu3ZxaVlZWUxLS4upq6uzyMhILr24uJg5OzszAMzS0lJqO2PHjmUA2Jw5c6TSjx07xgAwW1tbVlZWxqWPGTOGAWBNmzZlKSkpXPqVK1cYAKajo8N69OjBcnNzuWW7d+9mANjUqVPlnpPX+fn5MQBMRUWFRUREcOlisZiNHj2aAWABAQFcelRUFOPz+czQ0JA9ffqUSy8sLGQ9evRgANi2bduk9gGAubi4SKVJjs3a2polJiZy6ampqUxHR4dpamqyoqIiLj0wMJABYIGBgTLHcPjwYQaAzZgxQ2ZZTk4OKywsVOhcyNO+fXumoqLCkpOTZZalpaVxj2NiYrj3z+rVq7l0sVjM+vXrx71eBw8e5JYVFxez1q1bMz6fz5KSkrj0wsJC9uzZM5n93b17l2loaLBevXpJpUveu35+flLpLi4uTNGfmGHDhjEA7NatW1UeJ2Pl3x2vv7fnz5/PALAJEyZIpYeEhHDnpeJr15DnqzI5OTlMSUmJOTo6yl1ek8+vWCxmjRs3Zrq6ujLvvzt37jAA7JNPPuHS0tLSmJaWFjMzM2OxsbFS+Xft2sUAsClTpnBpFc/fwoULFTo+iareF1V9VmNiYqrcbrt27ZhAIFDo8/ax/94zxlhyzBMW4NWfBXj1Z/+uW8kYY+za0X+4tDtnTr2V/ZYUlbL9v1xjayeeZmsnnmZbZp9j/1w7xjps78AcghyYQ5AD67mnJwtcMJ0rS9KTx+zphInsvn0zdt++GUtZt+6tlI1UTtFracYYa9CmUHl5eWjTpg3WrVsnd/mKFSvw22+/4c8//8SVK1egrq4OT09PFBYW1nNJP3xJSUkAAHNz87e6TkWlpaXw9/eHv78/5s2bh08++QR9+vQBYwxLliyBSCRSeFsrVqzAokWLsGbNGly7dg2ff/459u/fL3WnW9IkpbK7x1paWlL5FNG+fXuumczrrK2tZdJMTEy4DuOvj5QFAM7OzhgxYoRU2rhx4wCU12ZIHDx4ENnZ2Rg3bhyaNm3KpQsEAu5Oe0XFxcXYtWsX9PX1uQ7zEv369UPv3r0RFRWFCxcuyKw7b948qQ7tnTt3RpMmTZCZmYkff/wR6urq3LLhw4dDIBAgIiJCZjtV+eKLL9C6dWvuOY/Hw08//QRlZWWpJiw7d+5EaWkpZs6cCQsLCy5dKBRi+fLlAFCjkZsWLFgAExMT7nmjRo0wePBg5OTkIDIyskbHIO/9qqGhIbd5YE0IBAKp97GEvr6+TJqNjQ2mTZvGPefxeBg5ciQAoF27dlK1ZAKBAJ988glKS0tx//6r0WGEQiHMzMxktt2yZUu4ubnh7NmzKHk5Uktdk3cO5R3n63bs2AEVFRUsXrxYKr1nz57w8PCodL136XwlJiZCLBbLrTGu6eeXx+Phs88+Q0ZGBld7K7F9+3YAwOeff86lbdu2DdnZ2Vi2bJlMbe7IkSPRvn17rvljRcbGxpg3b161x1YfjIyMUFJSQqP7KSgnPY17rGVQ/p7TNX31Ps5MTqrzfYrLxDi56R6eR5X/xqpqCJDtcRcL7n6PorLyztttDdoi0OkvvHhU3s9D28gYaolJyA0PBwDwjY2hX8lvLnk3NGhTqL59+6Jv375ylzHGsHr1asyfP5/7ct+2bRuMjIxw8OBB7su/PuyYMwN5mZW3W38XqOvo4vNlqxu6GDVSVlbG9ddQUlKCrq4u3N3dMXnyZAwaNKhG25K0iU5KSsKZM2fw/fffo0uXLjh58uQbBz6KqKqJQ3R0NJYtW4YzZ84gISEBRUVFUssTExNlfsQ7dOggsx1J+TMzM7k0yYW7vCZb3bp1A58v/dF++PAhCgsL4ebmJrdDvJubG4KDg3Hr1i2Zbb7e9AcoD5Cio6NllikrK8PQ0JDroKkoecdhaWkJCwsL3Lt3j2vaJWmzLm+s+27dukFVVRW3bt1SeL+Knu+qODs7w8TEBD///DMiIiIwYMAAuLi4oHnz5rXuWDhy5EjMnj0bDg4OGD16NNzc3NCjRw8uCH5d69atZfYpCZwqex0ByLxet27dwooVK3D+/HkkJSXJXBinpaVJBWS1NXLkSBw4cABdu3bF6NGj0bNnTzg5OaFRo0bVrpudnY3Y2Fi0aNFC7kW5o6MjTp06JXfdd+l8SfoxSJr7VPQmn19vb28sW7YM27dvx7BhwwCUj4q3c+dO6Ovro1+/ftz6kqFar1y5gidPnshsv7CwEGlpaUhLS5N6Tdq0aSPT9On1ATmA8iZN8o6rLunp6QEoP9cVbzrUp/ysTARvXIvSkhK4fvEl9M0aphyKqBhYaOqXv6baBsZcWlZK3QYWjDGE7niI2Nvl+xWoKiOq+xkcfbaPyzPMbhjmdZmHeyGnwFh5Pzf7rj2QuuIXLo/hd99CqQY3HUn9e2f7WMTExCApKQm9evXi0rS1tdGlSxdcunSpXgOLvMwM5L5Irz7je8zY2BgPHz5EQkIC7O0Va1dpbFz+JZSQkPBG+xQKhXVe+2RsbIzRo0fDzs4OnTt3xsyZM7H7ZbtMSU1FZTUS2dnZUvkUUVl/lKioKHTu3BnZ2dlwc3PDwIEDoaWlBSUlJYSFhSE8PFwm0AAg94JREiRUnCxLcgyGhoYy+ZWVlWXu8kqOrbLySi56JPkULVNly2p6R7uychkZGSE2NhY5OTnQ19ev8jh4PB6MjIxq9H5U9HxXRVtbG5cvX8bChQtx5MgRHD9+HABgYWGBH374Ad98843C5Xmdr68v9PX1sX79evz6668ICAgAn89H//79sWrVKplasTd5rQBIvV4XL16E+8shHD08PGBnZwcNDQ3weDwcPHgQERERct+7tfHpp5/i4MGDWLlyJf7880+sW7cOPB4Pbm5u+PXXX+Ve5EtI3hPyPgtA5e8t4N06X5LaGnnfiW/y+W3evDk6dOiA48ePIyMjA7q6uggLC8OzZ8/wzTffSNWCvXhRPrtxZa0HJPLy8qQCC3nlqTi4h4SPj89bDywkg2401NDSpSUlOPDzIiRHPwYAHExKxJiAP8CXU9v4Lsh9USGw0Cv/vdCq8Bmq68Di0oEneHipfJtKyjzcancU53JOlD/nKWF2p9kY3Ww0eDweIi++GnTANK8IRY/KJ8lTdXCA1oABdVouUvfe2cBC0szm9S8uIyMjbpk8RUVFUl/i8i6Uakpd592fKr62ZXR0dERYWBhOnz7N/UhWx9LSEmZmZoiPj8fjx49hZ2dXqzLUpU6dOnE/pBJNmjSBkpISHj9+LHcdSXpNjqOyO9KrVq1CRkYGtm/fLtXkAAAmTZqE8JfVum9KEvzIq/YvKytDenq6VPMMyUVScnKyTH7g1eetsjvhb1tl5UpOTgaPx4OmZvlY5hWP4/XaHsYYkpOTG+QYGjdujKCgIIjFYty+fRunTp3Cb7/9hsmTJ3MjDb0JHo+HcePGYdy4cUhPT8e5c+ewa9cu7NmzB48fP8bt27frfBK1H3/8EUVFRTh37pxMZ/7Lly/XuJmbogYPHsw1Q7tw4QIOHDiAzZs3o0+fPnj48GGlF6aS17uyJjCVvbfqSl2dL0lzQ8lFfkVv+vn19vbGjBkzsGfPHkycOJFrBuXt7S13+3fu3JHbcbwy8r7/GGMKr1+XJOetoeYhirx4lgsqACAz6TkeXTqHFs7v5jwLFWssNF7WWAhUhFDX1UNexgtkpdTd5+bGqTjcDH45sAkPuOpwEFdxBgAg4osQ4BIAZ/PyQQay01KR8LC8qaGeqTlKg7Zz2zH64XupifzIu+mdDSze1LJly+TeMamN962J0Zvw8fHBzz//jA0bNmDGjBlVfjkXFRVx7cbHjx+PxYsXY+nSpdUO9SdvpKK3JTc3F1lZWVLND0QiETp37ozLly8jLi5O6sKUMYbg4GCoq6ujY8eOtd6/pDnB6yM/Mcbk9mOoqTZt2gAAzp07JzM05aVLl2SGXW3WrBlUVVVx9epV5Ofny9zVkwRgVd0ZfpvOnTuHL774QiotLi4O8fHxaNmyJfe+adeuHf755x+EhYWhc+fOUvmvXLmCwsJCdO/evc7LJ7l4r64WQ0lJCW3btkXbtm3RrVs3ODs74/Dhw28cWFSkr6+PIUOGYMiQIUhLS8OZM2cQFRWlcA2jop48eQI9PT2Zi+T8/HzcuHGjTvclj6amJvr06YM+ffqgrKwMW7ZswZUrVyod3UlLSwtWVlaIiopCSkqKTM3FxYsX32p56+p8mZqaQl9fX27fnjf9/I4aNQq+vr7YsWMHvvjiCxw4cAC2trYyM1136dIFBw4cwKVLl2oUWNQHRT97kZGRMDMz45pE1bfH/8m+zyLfk8BCU//V7722gRHyMl4gPysTJUWFEAjlD+muqAcXE3HpwKvmdf/ZHcINtfKgwkBkgHU916G5/qthY++Fh3CPLZRUIH7ZRFDTwwNqdfDbTN6+dzb0kzSzef0OTXJyMrdMnjlz5iArK4v7i385QyOpmq2tLWbPno20tDT07dsXMTExMnkKCwuxcuVKqTa0vr6+sLe3x7Zt2zB37ly5Vf4xMTEYMmSIVIfHuhAdHS337l5JSQlmzJgBsVgs1Y4YADds5Zw5c6TurP3111+Ijo7GZ599VqNO45WRBC3nz5+XSv/555/lzhlRU4MHD4aWlha2bNmCRy+riYHyY3+9cydQPtSvZHz+ZcuWSS07ceIETp48CVtbWzg6Ota6bG9i27ZtuH37NvecMYa5c+eirKwMPj4+XPro0aPB5/OxcuVKqXbuxcXF+P777wFAKn9dkVysyPs+uXfvntw7yZK0ikMES8b/lzcPgzxhYWEyd4BLSkq4931l87jUhqWlJTIyMqTmkSkrK4Ovry9SU1PrfH8AcPbsWbkXjpJaiOqO87PPPkNxcbHMEKZhYWE4efJk3RVUjro6XzweD05OToiJiZFZ700/v4aGhvDw8MCFCxewevVqZGdny9SgAuXzs2hqamLevHly5w/Kz8/n+mHUt6o+exJPnz5FUlKS3KF16wNjDAkPys+bqqYW1LR1yst19zZKiuu22WBdkTSFUhGJIKwQqGobvmolIhmO9k1F30pF6PaH3PNrjY/jhn55UGGna4ed/XdKBRXisjLcDilvHgUeD3phLwcjEAhg6DuzVmUh9eedrbGwtraGsbExTp8+zd2Fyc7OxpUrV/D1119Xup5QKKz1KCwfq6VLl6KwsBCrVq2Cvb093N3d4eDgAIFAgJiYGISEhCA9PR1Lly7l1tHU1MTJkycxePBgLFu2DIGBgfDw8IC5uTny8/Nx8+ZNXLhwAXw+HwEBAXVa3rNnz2LSpEno0aMHmjRpwo3xHxISgmfPnqF58+YyIySNGTMGu3fvxq5duxATEwMXFxdERUXhwIEDsLa2ljq22pg0aRICAwMxfPhweHl5QV9fH5cvX8aNGzfQv39/mZFaakpbWxu//fYbfHx80KlTJ4wcORLa2to4evQoRCKR3I6iy5cvR3h4OJYuXYqLFy+iS5cuiI2Nxd69e6GmpobAwMAGm+3X09MT3bp1w8iRI2FgYIDTp0/j2rVr6Nq1K6ZOncrls7GxwfLlyzFz5ky0bt0aXl5eUFdXx5EjRxAZGYnBgwfLvXCqrW7dukEkEmH16tXIyMjgavTmz5+P4OBgzJo1C46OjmjatCn09fW5eQxUVVWlZn6XTLz3euf6ygwZMgRaWlro2rUrLC0tUVJSguDgYNy/fx+ffPKJTHOwujB16lScOnUKPXr0gJeXF1RVVREWFoaEhAS4urpKNS+sK9OmTUNiYiJ69OgBKysr8Hg8nD9/Hv/99x+6du0qd36Vir7//nvs378ff/75J+7evQsnJyc8e/YMe/bswcCBA3HkyJG39t6uy/M1dOhQHDx4EMHBwRg9erTUsjf9/Hp7e+P48eNc0CXv82FgYIBdu3bh008/RZs2bdCnTx80a9YMRUVFiI2NRXh4OLp3744TJ07U7OTUAXd3dwQEBGDChAkYPnw41NXVYWlpKdWcKzg4GED556UhZDxPRGFeLgDA1M4eato6uBsajNLiIjy7dwfW7d6tO+2MMeS8rAnQ0JMeIKFiYJGVkgz9l5Pm1VTi40yc2nQPkvsit03CcM20PMh3NHVEgEsANFQ0pNZ5cuM/rj+rqUAVorzyyfN0vb2h0vjNykHqX4PWWOTm5uLWrVvcKC4xMTG4desWnj59Ch6PhxkzZmDp0qU4fPgw7ty5gy+++AKmpqYN9uXxoVNSUsLKlStx9epVeHt748mTJ/jjjz+watUqrilCcHCwzPCClpaWuHr1KrZs2YK2bdvi5MmT+OWXX7B582bk5ORg9uzZePToEWxtbeu0vI6OjpgwYQLS09Pxf/buOzqKegvg+Hf7pveEFEjovTcpUlWaPvVZ3/MpdqTYsBcUsSBWBAS7goINsStNOkgn9A4hpJHek63z/phkkkhLIA24n3M4Z2Z3ym9Qkr37+917FyxYwJtvvslPP/1Ew4YNeeONN9i8efNJS7r0ej0///wzEydOJC0tjXfffZe1a9dyzz338Pfff1fb+tzOnTuzePFiunTpwoIFC/jss8/w9/dn7dq11bLUCtQg6ccff6R58+bMnj2b2bNn06dPH5YuXXrKJWchISFs2LCBhx56iMOHD/PWW2+xZMkSrrvuOjZs2HDWD281afz48bz33nts2LCBqVOnkpiYyMMPP8zixYtPepbx48fz888/065dO7766iumT5+O2Wzm7bffZv78+eddielUAgMDmT9/Pi1atODjjz9mwoQJTJgwAVCDorFjx5Kbm8uCBQt499132bx5M7fccgtbtmyp8N+7dLaqssUnJk+eTOfOndm4cSMzZszgq6++wtvbm1mzZjFv3rxqf06Aq6++mvnz59OkSRO++uor5s2bR6tWrdi4cWONBDKgziAOHDiQHTt28OGHH/Lpp59is9mYMmUKS5YsOWseiY+PD6tWreKee+5h3759vPvuu+zZs4evv/6a/v37AzWXP1Sdf18333wzgYGBfPXVVye9d67/fktnNx0OB7169Tpt48oRI0awbds27rzzTnbt2sX06dOZO3cux44d46677qqzxnPDhg3jjTfeAODtt99mwoQJfPrppxWO+eqrrwgNDeX666+viyGScrhs1ji8eSsadyqrNpew9/xnqKtbcUE+zpKZlNKKUKX8Qs+/MlRmcgF/zNqBy6l+kXIgeBPron8CHdzQ/AamD55+UlChKAqbf/1R24/cpy6fMoQEEzzm9F8mi/pHp9RVphXqNPXAgQNPen3kyJF88cUXKIrCiy++yEcffUR2djZ9+/Zl5syZFer2n01ubi5+fn7k5OSc8RdLcXExR48epXHjxjWyvEAIcbKJEyfy0ksvsXz58lOWkL3YPP7448yaNYtjx45VqpSqOH//+9//mDt3Lnv27KF169ZnP6GOTZgwgddff51Dhw7VWCB3MTl48CAtW7Zk4sSJvPDCC5U6p7p/36/48lO2/KZ+KL7h2UkEN4rhwwfUnLGoNu245cXXz/se1Sk17ghfPqX2b2k38EqGPFDWxfrYzljmv6Iup+1+7Y30+++dVbp2QY6NH6ZsIS9TrW4W77eXha0+wq13M67TOO7vcP8pv/w5tiOW+a+q9/VxKfTddQQdEPHGFPyqWH5eVL/KfpaGOp6xGDBgAIqinPSntMGVTqdj0qRJpKSkUFxczNKlS6sUVAghRH2yevVq7rvvPgkqakBycvJJr61cuZJvvvmGli1bXhBBBcCTTz5JYGDgKRtdipNNmjSJ8PBwHnus7tbgZyUlaNtBUY3wDgjEN0QtIpBy+CDuSpauri3ly+f/cymUd2BZqfKCKpbZtxc7+f39HVpQkeZ1nCUtPwcDvNjrRUZ1HHXaSmLr5pfNwDZNOIEO8OjSBd9rrqnSGETdq7c5FkIIcbHZsGFDXQ/hojV8+HA8PDzo1KkTXl5e7Nmzh4ULF2IwGJg+fXpdD6/SfHx8+PLLL9m8eTMul6vaywlfTBwOBy1btuTOO+/Ey8urzsaRWRJYmCxW7YN5ePNW5Kal4rTZSDt2lLAm1bsU+HxUrAhVseeRd0DZfn5W5QMLt8vN4k92kxafp97DnMmfrT5CZ1J4p/87DG40+LTnHtywlqT9anEXb5uD8OwC0OtpMOH5GlnaKmqWBBZCCCEueCNHjmTu3Ll888035OXl4e/vzzXXXMMzzzxDz54963p4VXLVVVdx1VVX1fUw6j2TyXTKKni1yelwkFNSAS4gIlL7IBzRvKXW6O3EkUP1KrAoyC6rplg+kACweHpisnrgKC4i/xRVF09FURRWfnOAY7vUQMRmKOSP1h9i8FJ4f9CHdGtw+rzC4oJ8ls/+WNtvkZSODgi49RasF8gso6hIAgshRJ2ZOHFihfLFQpyrRx55hEceeaSuhyEuMdkpSSiKmqQcGBGlvR4aU5Yknxp3pNbHdSaFOTnadmlp3PK8AwLJSk6s9IzF1kXH2LNaLf/t0jlZ1PJTjEEuPr7ic1oGnr7PjqIoLPlohrY0KyS3gLDcQgz+/oQ89FAVnkjUJ/W2j4UQQgghRH1WvkO1f4MIbTskpom2nRp3mPqkKLdcYOHrd9L7pcu57EVF2IsKz3it/RtSWP9TWeC0vOk8zA2dfDn8yzMGFQAbf57PgfVqryeTW6FdgjpbEfr4Yxj8/Sv5NKK+kcBCCCGEEOIclE+ELp+vYPH0xD9M7SeUFh+H211/ErgLywUWHqeo8OMdUNa9PD/r9MuhEvZl8tecssa36xv9irlVEbOHzSbSO/KMY4hd9Dtrvp6t7bc/dgIPhxPP7t3xu+GGSj2HqJ8ksBBCCCGEOAelHawBfP5RYSm0ZNbCabORlZRUq+M6k8KcbABMVg9MlpPL7ZavDHW6PIuMpHx+mxWLUhIv7Q5bg75TJp9e9SmB1sBTnlNqz+rl/PXZLG2/ZUoWDXIL0JlMNHjpJUnYvsBJYPEPddjWQwghhBA1rDp/z+dVKN1aMRG6vi6HKszLBcDzNP0IKs5YnJxnUZhr54f3NuJSe+wRF7ALV+8kZl0566TGd/8UF7uFRbOmavst3EaanlCDl6DRD2Bp0rgqjyLqIQksSpSW9HM4HHU8EiGEEELUlNLf89VRyrdCT4h/dLEObVw+sKgfCdxul4tiLbDwP+UxFWcsKgYWToeLeVNX4ShZTZXqFY9jYBzTr5iGp8nzjPfOy0zn16lTtL4eLaMa03TnfgDMzZoSfO+95/JIop6RwKKEyWTCYrGQk5MjsxZCCCHERUhRFHJycrBYLJhMpvO+XukHb6PJjNWr4rf1FSpDHa0fMxZFJUEFgIffyYnbAF6n6WWhKAqzZyzBlqR+dMw3Z+G48ghvXjEFs8F81nsv/+IjLRm8cet2NF28Eh2ATkf4pJfRmc9+DVH/SbnZcoKDg0lMTCQhIQE/Pz9MJpOs9RNCCCEucIqi4HA4yMnJIT8/n8jIMycXV1ZpsznvwKCTPi94BwTi6edPYU42qXFHUBSlzj9TFJ6lIhSAT4Xu22U5Fp998QvF+30AcOht2K86wstXvYhBf/aZn/T4OA5uWKfdt832/SglM0eBd92FZ5fOVX8YUS9JYFGOb8l6w/T0dBITE+t4NEIIIYSoThaLhcjISO33/fmwFxVq38B7/6ODdanQxk2Ji91CcX4eeRnp+AaHnPd9z0dp4jaAx2kCi/K9LQpysgD49MfvKd6gPqOCG/eg4zw/4vFKB0qxS/7UttsEhqGsVvctzZsR8rD0rLiYSGDxD76+vvj6+uJwOHC56k95OCGEEEKcO4PBUC3Ln0pVSNwOOE1gEdOEuNgtgLocqq4Di+L8fG3bw+fUwZXRbMbs4Ym9qJDCnGw+W/o1+YsDtQ+MymWpPHrDfZUOKtxuFwc3rAXAYDQS+PvikhsZiZgyBb3Fcs7PI+ofCSxOw2QyVesPICGEEEJcPCr2sAg+5TFhjcvyLE4cPUSz7pfV+LjOpDg/T9u2ep++gpOXvz/2okKyMtJw/+yJp1LyeahVNuNG/qdKS7qSDx7QZkpC8osxOtUvbUPGjcXapk3VH0LUa5K8LYQQQghRRflnKDVbKqxJM237xJFDNT6ms6kYWPic9jhtOZTdgYfdQ92OKOCBcddVOU8kYc9ObTskTc3Z8OjWlSCpAnVRksBCCCGEEKKKKsxYBJ56xsI3JEyrFnXiyKE6rzpZXFBuKZTX6QOLE0p22Y5SCH527nlsKAZj1T82JuzdpW0H5hdjCAwk8u230Rll0czFSAILIYQQQogqKq0IBaefsdDpdISWzFoU5mSfsuFcbarMUqiPdnxEWqpN21eMedw2vh9Wr3NbHp5yYB8AZocLT4eTiDfewBQWdk7XEvWfBBZCCCGEEFVUPkg4XVUogAbll0MdrtvlUBUCi1Mkb8/aPotFi9cTUtRCe63n0Ej8w87c/O50snfuoLikcpZPsY3gB0bh3bfPOV1LXBgksBBCCCGEqKLSpVA6nR4vv4DTHlchz+Jo3QYWRXnlAot/NPT7YPsHzF/9O/0O3wJ6L+11D2/nOd3LlZPDvqef0vYDgkMJGTfunK4lLhwSWAghhBBCVFHpUiivgAD0htM3iatPCdylMxZGiwVjuU7Xn+78lM83fsmQ/fdgVEzodGUzFOV7X1SWu6iI42PHkpVd1mCv0c23ojvD35O4OEhgIYQQQghRBS6nQ+tifbr8ilL1KYG7NHm7fEWor/Z8xfRN7zN03714OdSmeSGNQrX3S5vkVZbicJDwyCMUbd5CvrUseAlp1vx8hi4uEBJYCCGEEEJUQUFWFpQECKerCFVKp9PRoJmas1CYk03OiZQaH9+pKIqizVh4lAQ63+3/jikbp9D/yC2EFkQD4BNoZeDtXbTzCrOzK38Pp5Okp5+hYOUqAPK9PLT3gqOiz/cRxAVAAgshhBBCiCrIq0QPi/IiW5Y1gkvcv6dGxnQ2TrsNl8MBqDMWPx78kZfXv0zHpEG0SO8OgNGsZ/iY9gRGlnUIr+xSKLfdTuL4x8j9/XcAdGYzhYH+AHgFBJ6xIZ+4eEhgIYQQQghRBfmZZy81W15kq3KBxb7dNTKmsynOL+thkaUv4MV1L9Ioqw2XxV+jvX7FnW0IjvLBbPXAaLEAUFCJwMJdWEjC2HHkLV6svmAyEfrmG1pFqIAGEdX3IKJek8BCCCGEEKIKKjbHO3tg0aBZC/QGtSFcwr66mbEoX2p2a84O/IpCGHzwDnQlHwW7X92Ypl3Kciu8Srpvn23Gwp6QSNx/b6Ng9WoAdFYrDWfOxN2mlXaMb3DI6U4XFxkJLIQQQgghqqBCc7ygM+dYAJgsVsKaNAUgKylBS/yuTeVLzToMOobuuxeLS82BaNo5hO7DYyoc71kSWBTn5+FynrrkbMH69cTdeCO2fWoTPL23N40++Rjvy/uSm5aqHecbEnrK88XFRwILIYQQQogqyK9ijgVAZKu22nZd5FnExm/UtqNzuuBfrHa/Dor0ZtDI1uj0ugrHe5brzVGYm13hPcVuJ/W994i/+x5cJcnd5uhoYr79Bs9u3QD+EVhIp+1LhQQWQgghhBBVUNXkbagYWMTvjK3uIZ3RxuSNzN02W9v3tzUCwOptYvjo9pitxpPOKV0KBVCYUzbDUrh5M0dvupmMWR+A260e2+9yYr7/DkvTptpxuenlAotgmbG4VJz8f5IQQgghhDit0hkLq7cPJrOlUuc0bNMevcGA2+XiaOwWFEVBp9Od/cTztDNtJw8ue5AmtrKPfDqdFb1ex7BR7fAN9jjleZ5+ftp2YU42tiNHSJ/xPrl//FF2kNFIyNgxBN1//0nN7yrM6gRVLvgSFz4JLIQQQgghKklxuynIUj80V3a2AsDi6Ulkq7Yc372DnBMpZCUnERgRWVPDBOBg1kFG/zWaQmch/oUNy97QWbn81hZENA847bkevv7adsKsmRSv+lvr3QFgadOa8Ekv49Gu7SnOhoJyXbe9AwLP/SHEBUWWQgkhhBBCVFJRXq6WzFyZilDlNe7UVduOi91creP6p+N5xxm1ZBQ5thwsDk+aZZQFAE27RNGu36mDGkVRKD5wAPemsvHl7tmtBRUGf38aTJxI4++/P21QAZCfpXbsNpotmD08q+ORxAVAZiyEEEIIISrpXPIrSjXu3I1Vcz8H4ODGv+ky/NpqHVup1MJU7lt8H2lFaegUHdfFjUXv2I675P1e17WucLzbZqNw40byl68gf8UKHElJFHtZoZkafNiNBgxBQQTdfRf+t9yKwdvrrGMonbHwDgislSVfon6QwEIIIYQQopIqNsc7e6nZ8oKiGhEQEUVWUgIJ+3aTm55W7T0esouzuX/x/STmJwIwJPV2AtKjsCtlVaE8/HxwZmaSv2Ilecv+omDtOpSiogrXMTtd2rbhsp40mzgZvaVy+SQOuw1bQQEAXgGnX24lLj4SWAghhBBCVNK5lJotpdPpaN2nP+u+nwuKwv6/V9P9mn9X39js+Tyw9AEO5xwGoFvBIGKOlC6/smvHpTwwhuKtW7WqThWYTHh1745f716w5CcAHL4+lQ4qAAqzs7RtL3/Jr7iUSI6FEEIIIUQl5WWU67pdieZ4/9SqTz9te++qZSjlEqLPR7GzmIeWP8TujN0ANHW1oee+67T3LQZ1BsHgclO8eXOFoMIQGIjfv/9N5LT3aPH33zT67FPC774bnV79mHi27tv/lJ9ZlrgtMxaXFpmxEEIIIYSopPOZsQAICI+kQbMWpBw6QFp8HIl7dxPVpt15jcnhdvDEyifYlLIJgGB9GNceGEuhXU0yD8/cRrIjA8xGjCUBhTkmBp8rr8B74CA8OnY4qVysTq/H09ePguysKgcWFStCSanZS4nMWAghhBBCVFJeuRwLnyrmWJTqMvQabXvz7z+d13jcipvn1zzPioQVAHgavLg/bSKFGWpQ4Z0XT4tds3EY1I98Fk8vYr75miZ//kHoY4/h2aXzSUFFKU9ftZdFYU5OlWZWSitCAXj5y4zFpUQCCyGEEEKISiqdsTCaLVi8zl4d6VRa9Oqr9XY4vGUDWSlJ53QdRVF4bcNr/HFUbVpn1pt5Wv8mmQfUfAqTI5/2uz5GrzhxlQQWXjExeHTqVKlKTR4l3bfdLie2woJKj6soN1vbLt/BW1z8JLAQQgghhKik0qpQPkFB51xG1WA00al01kJR2PjT9+d0nVnbZ/Ht/m/Va+oMvBjxFkmrHCXXddN2z2f4NfAh/NNPtHMsnpUPhsoHBYU5OZU+rygvV9v28PU7w5HiYiOBhRBCCCFEJdgKC7GXlGU939yBjlcM0z7k7175F5lJiVU6/9t93zJr+yxt/4XWr5C8oKxEbNMjP9OoSxQxP8xH36yp9rq5CoGFp19ZUFCYk3WGIysqzC0LQjx8fSt9nrjwSWAhhBBCCFEJ55u4XZ7V25tuV18PgOJ28/f8eZU+d3HcYl7d8Kq2/0THpyj81orTpX6sC03dQscB4URNn4bB27vCMiaLZ+W7YHv4+mvb5YOFsynKlRmLS5UEFkIIIYQQlZCXkaZtn0up2X/qMvxfePio3+jvW7eK9Pi4s56zMXkjT69+GgU1mfrutncTsLAROfklORT5ifTuqafBs89o5WLthYXa+bWxFKo0CDFZrJjMle9/IS58ElgIIYQQQlRCXka5ilDBoed9PbOHJz2uvVHdURTWfjf3jMfvzdjLQ8sfwuFW8yiubXotvQ8NIj5OrQBldBTSJzqRiCfHV8j/sBWVm7HwqPyMhWeFwCK70ueV5ljIMqhLjwQWQgghhBCVUN0zFgAdh4zAq6RC1KFNf3PiyKFTHnc87zijl46mwKEGCf2j+nO391g2Ly8JdhQ3XVhPs4mPnZRUbis3Y1GlHAvf8jkW2ZU6R3G7Kc7LA8DDR5ZBXWoksBBCCCGEqITc9OoPLExmC5ddf4u2v+bbL086Jr0onVFLRpFRrOZ4dAzpyIQ2L7P0o11QEkQ0y1xNl3efRGcynXT+ueZYVJixKFdC9kyK8vNQFLUJn6fMWFxyJLAQQgghhKiEikuhQqrtuu0HX4VviLq0Ki52C8kH92vv5dvzGbN0DMfzjgPQ1K8p7/Wdxl/Tt+Nwq43tgtN3cPmz12E4zQf5c82x8KhQFapyORYVSs36SGBxqZHAQgghhBCiEkoDC6PFgtXLu9quazCa6Flu1mLX8iUA2F12HlnxCHsz9wLQwKsBs66YxeZvEsjKLJkVKEyh30BPPDt3Pu31z3XGwmS2YPbwACpfFaqoQqlZWQp1qZHAQgghhBDiLBRF0XIsfIJCzrk53um06tMPk8UKwP6/V+Nw2Hh2zbNsSN4AgJ/Fjw+v+JAT6x0c2qoGOAZnEd3sK2nwwD1nvHb5wKIqORYAniUlZyvbx0JKzV7aJLAQQgghhDiL4oJ8nDYbUH35FeWZrR40634ZoAYCb/30AoviFgFgNViZMWgG5hR/1v1Qltzd5sBXNH/xEXQGwxmvXT552+pVtcCidDmUraAAl9Nx1uNlKdSlTQILIYQQQoizyCuXuO1bjfkV5TXu3E3b3r91HQAGnYG3B7xNU2MrFn2yG0VtX0H0sT9pOaIz1tatz3pd+3nMWFToZVGJ5VDlj/GUGYtLjgQWQgghhBBnUROlZv8pukNnKFlhFZmm5jZM6jOJ3qF9+PODnRTnqzMGQRm7aVG0hZBxYyt13eLCc+tjAWVLoaByCdySY3Fpk8BCCCGEEOIs8tLLVYQKqpkZi9j83aT72gEIzDPzUKvRXNPkGlbO209afElviKI02uz9nNBHHkJfyWVNpVWhTBYr+rMsm/onT7+q9bIoP2MhS6EuPRJYCCGEEEKcRU3PWOzL3Mf4FeNJDSjWXhts7sGulYnsW58CgN5lo/2uj/BuHoPfv/5V6WuXJm9XpSJUqap23y6fYyFLoS499TqwcLlcTJgwgcaNG+Ph4UHTpk15+eWXUUoXGAohhBBC1IIKPSyqecYiOT+ZMUvHUOAoIM3Ppr1+aNNO1nx3UNtvve8rvAuSCHvyCXT6yn+EK03ermp+BfyzSV5llkKpgYVOr8dSxURxceEz1vUAzmTKlCnMmjWL2bNn07ZtWzZv3sxdd92Fn58fDz30UF0PTwghhBCXiNz0VG27OpO3c2w5jF46mrQidUYkpEkT2K4ue9q3bjsGazQAjeKXEpa2Fa9+l+PVq1elr+92u3AUFwHnOGPhW7WlUKUzFh4+vtVeklfUf/V6xmLdunVce+21jBgxgpiYGG688UauuuoqNm7cWNdDE0IIIcQlJOeEuhzJ088fk9VaLde0u+w8vPxhDuccBiDaN5o3r31f647tKFbvGVh4lCZHfwYg9JFHqnaPwiJtuypdt0tVZSmUoiha8rYsg7o01evAonfv3vz1118cOHAAgO3bt7NmzRqGDRt22nNsNhu5ubkV/gghhBBCnCuH3UZ+ViYAfqFh1XJNt+LmuTXPseXEFgACrYHMumIWgR6BGC0lMyJKPp7mYtpsm4VeceN1+eVY27Sp0n3OpzkeVG0plNNmw+lQk88lcfvSVK+XQj399NPk5ubSqlUrDAYDLpeLV199ldtuu+2050yePJmXXnqpFkcphBBCiItZbmrZMii/0AbVcs13t7zLwriFAHgYPXh/8Ps09GnInjVJFBeUBQBNE77B7FCDg+D776vyfcoHFueyFMrq5Y1Or0dxu886YyHN8cQ5BRbZ2dls3LiR1NRU3G53hffuuOOOahkYwHfffcfcuXOZN28ebdu2JTY2lkceeYSIiAhGjhx5ynOeeeYZxo8fr+3n5ubSsGHDahuTEEIIIS4tOakp2rZ/2PkHFnP3zuWL3V8AoNfpeav/W7QLbkfK0RxWfrMfnSFQO9aetBcAj86d8ejW7VSXOyN7ua7b57IUSqfX4+nrR0F2VtUCC1kKdUmqcmDx66+/ctttt5Gfn4+vb8XEHJ1OV62BxRNPPMHTTz/NrbfeCkD79u05duwYkydPPm1gYbFYsFgs1TYGIYQQQlzask+UBRbnO2Ox9NhSpmycou0/f9nz9IvqR2GunYUf7sLtVNDpywKLAosJgKD77junZGhb0bk3xyvl6edfEljkoCjKacdRoYeFr8xYXIqqnGPx2GOPcffdd5Ofn092djZZWVnan8zMzGodXGFhIfp/lFMzGAwnzZIIIYQQQtSU3LRygcV5zFhsS93G06ufRkEtm39/h/u5qcVNuFxuFn60k4JstdRsWJNG2jkFVjOW5s3xHtD/nO5pKzdjcS45FlCWZ+F2OSssrfonWQolqhxYJCYm8tBDD+F5Duv0quqaa67h1Vdf5ffffycuLo4ff/yRd955h+uvv77G7y2EEEIIAZCVkqxtn2vy9tGcozy47EFsLjV4+FfTfzGu0zgA1s0/RPIh9dt+Lz8zw0b31c4rNBkJuv++KvWtKO98cyzgnyVnT5/AXZQrgcWlrspLoYYMGcLmzZtp0qRJTYyngunTpzNhwgTGjBlDamoqERERjBo1ihdeeKHG7y2EEEIIAZCVlAiA0WzBJ7DqXbfTi9IZvXQ0OTb1Q3mv8F5M7DURnU7H/vXJ7FieAIDeoGPoqPaYUuKwOJzYTEaKPSz4nqEa5tmcb44FgKdf+cAii8CIyFMeJzMWolKBxS+//KJtjxgxgieeeII9e/bQvn17TCZThWP/VYUW82fj4+PD1KlTmTp1arVdUwghhBCislxOB9kn1BmLgIjIKs8cFDoKGfvXWBLz1eCkZUBL3hnwDiaDibT4PJbP3a8d2+/WFjRo4kfCIxOx2tXAwqbX4UbBcI7jr5YZC7+Asuc5Q8nZogo5FpK8fSmqVGBx3XXXnfTapEmTTnpNp9PhcrnOe1BCCCGEEPVB9okUlJLczsDwU39TfzpOt5PHVz7Onow9ADTwasDMK2bibfamKN/Onx/sxOVQr92mbwRtL4/EdvQoeYsW4dEolNKP6fmZmee8BMtWcH59LKAKS6FkxuKSV6nAQpKlhRBCCHEpykxK0LYDI6MqfZ6iKEzZOIXViasB8DH7MGvwLEI9Q3G73Cz+ZDd5mcUAhDX2pd8tLQDI+PRTUBSsDqd2rbyMtHMPLMrNWFi9zi95G87cfbtiYOFzTvcSF7YqZwLNmTMHm8120ut2u505c+ZUy6CEEEIIIeqDzMRygUVE5QOLuXvn8s3+bwAw6o28N/A9mgU0A2D9T0dI2JcFgIevmaH3t8dg0uNISSHnZ3X5uYe+bPFTXkb6OY/fVlQNVaEqzFhkn/a40sDCaLFgsljP6V7iwlblwOKuu+4i5xTTYHl5edx1113VMighhBBCiPogq8KMReUa7i6LX8Ybm97Q9if2mkj3Bt0BOLj5BNuWxAOg1+sYel87vAPU/luZn38BDgcAwT17aeefV2BRWA19LPz9te3C3OzTHleaf+Ep+RWXrCoHFqdrjJKQkICfn/yPJIQQQoiLR/kZi4DwiLMevztjd4VeFaM6jOLaZtcCkJGYz7I5e7Vj+9zUnIjm/gA4s7LI+v57AHQWC+HXlZXWP5/AorQqlMliRW84txRwT19/bbsgO/uUxyhuN8V5eYDkV1zKKl1utnPnzuh0OnQ6HYMHD8ZoLDvV5XJx9OhRhg4dWiODFEIIIYSobYrbTXqCOrvgGxJ21uU9yfnJjPtrHEXOIgCGNx7O2E5jASgucPDHBztx2tW81ZaXNaD9gLJk8Ky581BKggD/G27Aq0lT7b3qmLE414pQAEazGauXN8UF+RRkZZzymOLCAhRFfTYJLC5dlQ4sSitDxcbGMmTIELy9vbX3zGYzMTEx3HDDDdU+QCGEEEKIupCVkoyjWA0SQmMan/HYfHs+Y5eNJb1IDQK6hHZhUp9J6HQ63G6FJZ/tITdNvVZIIx8G/LeltgLEXVBA1pdfqhcyGAi8+26MAQHo9HoUt5u8jLRzfobSztvnml9RyjswiOKCfPKzMk+5ekWa4wmoQmDx4osvAhATE8Mtt9yC1SpJOUIIIYS4eKXGHda2Q2Oanva40rKyB7MOAtDIpxFTB07FYlBzJzb9dpT43eo3/VYvE0NHtcNoLluWlPX997hK8lf9rh6BOUqdyfDy8yc/K/OMCdNn4na7tMDofGYsQA0s0o8fw+VwUJSXe1IehfSwEHAOORYjR46UoEIIIYQQF73Uo+UCi8ZNTnmMoii8tuE11iatBcDP4sfMK2YSYFWbyh2JTWPzH3EA6HQw5L62+AZ5aOe77XY1abtE0L33atseJWVeC3NyUBSlyuO3FxZp2+fadbuUd2CQtp2fefJyKOlhIaCSMxYBAQGnTNg+lczMzPMakBBCCCFEfZAad0TbPt2MxZw9c/j+gJp0bdKbeG/ge0T7RgOQlVLA0i/2aMf2ur4ZUa0CK5yf+8svOE+cAMB78GAszZtr75XOCrhdTmyFBVi9vKmK8hWhqmMpVKn8rAxCYyoGWhJYCKhkYDF16lRtOyMjg1deeYUhQ4bQq5daCu3vv/9m0aJFTJgwoUYGKYQQQghRmxRF0WYsPHx8K3ywLrX02FLe3vy2tj+pzyS6hnUFwF7k5M8PduIodgHQrFsona6sWK5WcbnI+PgTbT/4vnsrvF9+uVFRbs55BRbnvRQq4MwzFoUVlkJJYHGpqlRgMXLkSG37hhtuYNKkSYwbN0577aGHHmLGjBksXbqURx99tPpHKYQQQghRi/IzM7Rv4UMbNz1p5cbOtJ08s/oZrazsmE5juLrJ1QAoboUln+8hK0VNnA6K9GLQ7a1PukbekiXYjx0DwLNHDzw6darwvkeFxnQ5BIRHUhWlpWah5pdCFWSXrVjx8gs4r3uJC1eVcywWLVp0yrKyQ4cOZenSpdUyKCGEEEKIulQhcbtxxWVQifmJjFs2jmJXMQDXNLmGBzo8oL2/8bejxO1Qq0NZPI0Me6A9JkvFHhKKopD+0UfaftD99580hgodr/NObk58Nrai82+OV+qsgUVWlrbtFRB40vvi0lDlwCIoKIiff/75pNd//vlngoJOniYUQgghhLjQpBw+pG2XzyfItecydulYMovVb+i7hXVjYu+J2mzEoS2pFZK1r7q3LX4hJ3+oL1izFtsetVmetU0bvPr0PumY8jMWRTnnEFiUm7E43xwLn6rMWATIjMWlqtLlZku99NJL3HvvvaxYsYKePXsCsGHDBhYuXMjHH39c7QMUQgghhKhtSft3a9sRLVoB4HA7eGzFYxzOUWczYnxjmDpwKmaDGYD0hHz+ml0uWfvfzWjU5tRfuqZ/+IG2HXT//acskuNZUhUKOKeSs7aCfG37fHMsPHx80RuMuF3OM85YWDy9MJkt53UvceGq8ozFnXfeydq1a/H19WXBggUsWLAAX19f1qxZw5133lkDQxRCCCGEqD0up5PkgwcA8AkKwTc4FEVReGX9K6xPXg9AgCWAmYNn4mdRZxWK8u38MWuH1lm7Rc8wOl3R8JTXL9y8maLNWwAwN2mCz1VXnvI4z3JJ0Oe0FKoacyx0ej3egeoSp7ysihVAFUUhv2TGwstfZisuZVWesQDo2bMnc+fOre6xCCGEEELUubRjR3HY1PyJiJatAfhs12csOLgAALPezHuD3qOhrxo4uF1uFn28m7wM9ZzQaB8G3tbqtKX60z/4UNsOuv8+dPpTf8/r6euvbRee01Ko6qsKBWplqNy0VIrzcnHa7RjN6kyNvagIp80GSH7Fpa5SgUVubi6+JVFzbrmW7afiKyXGhBBCCHEBS9xXtgwqslUbFsUtYurWqdprr/R9hc6hnbX9tT8cInG/uhTIw9fMsAfaV+isXV7Rzl0UrFkDgCkyEr8RI047Dk+/iuVmq8pejTkWAD5Bwdp2bnoagRFqlaoK+RUyY3FJq3SDvOTkZEJDQ/H39z9lBK4oCjqdDpfLVe2DFEIIIYSoLcd2xmrbBWFGnl39rLb/YOcHGdZ4mLa/d10SO5YlAKA36Bg2qj3eAdbTXrtCbsV996IzmU57rMnqgcFkwuVwVOgTUVnlZyysXucfWPiFNdC2c1JTygKLckujTtXvQ1w6KhVYLFu2jJycHEJDQ1m+fHlNj0kIIYQQok44HQ6O79kJgNXPl+f2TcbutgNwbdNrua/9fdqxKUdyWDFvv7bf79YWhDf143SKDxwgf+lfABhDQvC7/vozjkWn0+Hh60d+RnqFztaVZSuq3hkLv9BygcWJFG07P7tcqVmZsbikVSqw6N+/P3q9nujoaAYOHKj9iYqKqunxCSGEEELUmuQDe7V8gbiAXDJt6rfxPRr04MVeL2qrNgqybfz54U7cTrVBXvv+kbS9/MwN7DI+KqueGXjP3egtZ6+eZPXyJj8jHVt+/lmP/acKORbn2ccCwL/cjEV2allgUX7GQnIsLm2VTt5etmwZK1asYMWKFXz99dfY7XaaNGnCoEGDtEAjLCysJscqhBBCCFGj4nZs07YP+KlN7hr7NeadAe9gMqjLlpwOF39+uJPCHHUmI6K5P31ubn7G69oOHSL3998BMAQEEHDzzZUaj9Xbu+Sedhx2W5VKuZbmWJgsVvSGU+d8VMVpZyzKL4WSGYtLWqUDiwEDBjBgwAAAiouLWbdunRZozJ49G4fDQatWrdi9e/eZLySEEEIIUU8dKxdYJAcXEWgN5P3B72tlZRVFYeW8/Zw4qi5N8g60MPT+dhgMZ67gnzZ9Bijq7Ebg3Xehr2SVJquXt7Zty8/HFFj5wKJ0xqI6KkKBmrytNxhwu1zklJuxyE09oW37hsiXzJeycyo3a7VaGTRoEH379mXgwIH8+eeffPjhh+zbt6+6xyeEEEIIUSvyMzM4cUTtuJ3pY8ftaWLaoGk09CnrR7FjeQL7/lY/VBtNeoaP7oCHj/mM1y3es4e8RYsAMAQHE3jbbZUek9Xbp+w6+XlVSo4u7WNRHfkVAHqDAd/gULJPJJOTmqIV7ildFqXT6ytUjhKXnio1yLPb7axatYqXXnqJgQMH4u/vzwMPPEBWVhYzZszg6NGjNTVOIYQQQoga9fOiT7Xt+LBCXu37Kh1DOmqvHd+bydr5h7T9QSNbE9LQh7NJmzZd2w6+//5Kz1YAWMrNWBQXVD7Pwu124SguUq9RTTMWUFYZyl5URFFeLoqiaMuifENCq2XJlbhwVXrGYtCgQWzYsIHGjRvTv39/Ro0axbx58wgPD6/J8QkhhBBC1LitJ7ayde1iIlBLxfYdcD1DYoZo72efKGTRx7tQ3Opypi5Domne7ezLfopiY8lfsQIAY4MG+N9SudyKUh4VZiwqH1jYC4u07fPtul1eQHiktlws4/gxghvFYC+pPlU+B0NcmiodWKxevZrw8HAGDRrEgAED6N+/P0FBUqtYCCGEEBe2+Nx4Hl/0MMPS1Sa/bh8z9w1+VHu/uMDBb+9vx1boBCCmQzA9r21y1usqikLq1Pe0/eAxoytVCaq8c52xKF8RqrqWQgGERMdo22nxcZgsZT07/CWwuORVeilUdnY2H330EZ6enkyZMoWIiAjat2/PuHHjmD9/PmlpaTU5TiGEEEKIapddnM2Yv8bgk+BAr6ilZLv0HYJer35EcrncLPp4Fzmp6gxAUKQXV97dBr3+5GbB/1SwahWF69cDYGrYEP+z9K04lfKN7Yrz8yp9XoVSs9W4FCqkUWNtO+1YHJnJidp++QZ64tJU6RkLLy8vhg4dytChQwHIy8tjzZo1LF++nDfeeIPbbruN5s2bs2vXrhobrBBCCCFEdbG77Dyy4hGO5R5jwImypOMWPXpr22u+O0jCPrUBnIePieFjOmC2nv3jk+J0cuKNN7X90EcfOWOX7dMpn7xtO8cZi+pcChXUsJG2nR5/VCuHCxDSKKba7iMuTOdUFQrUQCMwMJDAwEACAgIwGo3s3bu3OscmhBBCCFEjFEXhxXUvsuXEFgwuHVFp6rf6Hj6+RLZqA8DOFQnsWql+I6836hj2QAd8gzwqdf3s77/Hfviwes2OHfEZNuycxlm+3GxRFXIsSitCQfUGFmarB/4NwslOSSYtPg5duWTt4HLLpMSlqdKBhdvtZvPmzaxYsYLly5ezdu1aCgoKiIyMZODAgbz//vsMHDiwJscqhBBCCFEtPtj+Ab8d+Q2Axum+GF3q0qam3S5DrzdwfE8mq787qB0/8H+tCG/qV6lru/LyKlSCCnvmaa1jd1Wd64yFvYaWQgE0atuR7JRkXA4HyQfUVgNeAYF4B0ju7aWu0oGFv78/BQUFNGjQgIEDB/Luu+8yYMAAmjZtWpPjE0IIIYSoVr8e/pWZ22cCoEPHCFs3clDLyLbq3Y+slAIWVqgA1YhWl1W+Cmb6zFm4stTlU77Dh+HRqdM5j9VSbqlRVXIsigvKBRblZj2qQ4crhrLjr4UVXmvUtsM5B0/i4lHpwOLNN99k4MCBtGjRoibHI4QQQghRYzanbOaFdS9o+4+2e4icJb8D4OnnT0jjVix4cxv2orIKUJddW/kvUYv37ydzzhwAdGYzIePHn9d4LZ6eoNOBolSpKlRNzliENWlGWJPmnDhSNqPT4rK+1XoPcWGqdFWoUaNGSVAhhBBCiAvW0ZyjPLz8YZxuNWi4ucXNdM+LweVwAOqH48Wf7C1XAcqbK+9ug64SFaAAFLeblIkvgculnj/qfsxRUec1Zr3eoAUGVZqxqKHk7VJdhl2jbbcfPIRm3S+r9nuIC885J28LIYQQQlwosoqzGPvXWHLtuQD0iezDMz2f4efXJ2nHFBXGkLi/fAWo9pWqAFUqZ8ECirapzePMMTEE3XdftYzd6u2DraCgig3yajawaH35QIoLCnA57HQZ/q9qv764MElgIYQQQoiLms1l4+HlD3M87zgAzQOa81a/t7DnF3BsZywAVu9A4naa0OmqXgEKwJmZSeqbb2n7DV58Ab3ZXC3jt3p5kwPYCgpQFKVSuQy2CjkW1R9Y6HS6CrMWQkAVlkIJIYQQQlxo3IqbCWsmsC1VnUkI8Qhh5uCZeJu9ObB+LYrbDYDT2VT7wD6oChWgQC1dm/LSJFw5OQD4jhiBV69e1fYMpTMOiuLGXlRUqXNsRTVTblaIM5HAQgghhBAXrfdj3+fPuD8B8DB6MH3wdBp4qR2i961dqR2nN7UCoOvQaFpWoQIUQO7vf5C3aBEABj8/wp5+qjqGrinfy8JWWLnlUFppWp0Os7XyMy9CnA8JLIQQQghxUfrp0E98tOMjQC0rO+XyKbQNagtAbnoaift2q+/pA9EZgmneLZSe/2pSpXs4TqSS8vLL2n6DiS9iDAmppidQlV/KVH6J05mUNsizeHii08vHPVE75P80IYQQQlx0NiRv4KV1L2n7T3Z/koGNyhr57llVNlthMLckvKk/g0a2rnQFKFCXQCVPeB536RKo4cPxPccO22dSvg9FZUvO2kqSt2siv0KI05HAQgghhBAXlSPZR3h0xaM4FbWs7H9a/YfbWt+mve92udn8+2Jt37dBJ4aPbo/RZKjSfbLmzKFg1WoADCHBhE14vhpGf7IKS6EqPWNRElh4VG8PCyHORAILIYQQQlw0MooyGPPXGPLsas+HflH9eLL7k1pitqIoLP50Hbb8JAAMpjCue3QAHj5Vq+BUtH07J8pVgYp45RWMAQHV8xD/UD75ujIzFk67XevNUd1dt4U4EwkshBBCCHFRKHYW89Dyh0jMTwSgVWAr3uz3JkZ9WXX92KXH2V8uabv94IEENKjaciFnVhYJjz4KTnVGJOjee/Du378anuDULN5Vm7GwlethYa7mrttCnIkEFkIIIYS44LkVN8+teY4daTsACPUMZcagGXiayj5YH96WytofDuKy79de637NkCrdR3E4SHzkUZxJyQB4dOlCyMMPV8MTnJ613IxFZapClQ8srFJqVtQiCSyEEEIIccF7b+t7LD6m5k14GD2YMWgGYV5h2vsnjuay9LM9KM50FHcmAJGt2uIbXPkKToqikDLpZQo3bADAEBRE5DtvozOZqvFJTlY+AbsyS6HKz2qYJbAQtUgCCyGEEEJc0OYfmM9nuz4DQK/T81b/t2gd1Fp7Pze9iN9n7cDpcOOy79Neb9W7X5XukzVnDtnffw+AzmwmasZ0TA0aVMMTnJmlisnbFWYspCqUqEUSWAghhBDigrUucR2vrH9F23+mxzP0iyoLGIry7fw6fTtFuXYUxQ2KugxKp9fT4rI+lb5P7sKFnJjyhrYf/uoreHbuXA1PcHbWKpabrZhjIYGFqD0SWAghhBDignQw6yDjV47HpbgAuL3N7dza6lbtfYfdxe/v7yD7hNoszss3DZc9F4DGnbri6edfqfvkr15N4hNPgtsNQNADo/C75ppqfJIzK18VqqozFhYJLEQtksBCCCGEEBectMI0xvw1hgKH+iF6UMNBPNb1Me19t8vN4k92c+KoGkh4+pkJCk/Q3m/Tb3Cl7lO4ZQsJDz4EJeVb/f79b0Ieeqi6HqNSjGYzRpNaDrd80HA65YMPCSxEbZLAQgghhBAXlEJHIeOWjSOlIAWAtkFtmXz5ZAx6tcGdoiis/OYAcTvSATBZDQy9vyVxsWrStcXTi6Zde5z1PgUbNhJ/3/0oxcUA+AwZQvjLk9Dpa//jU2kCd+WWQhWedJ4QtUECCyGEEEJcMFxuF0+tfoo9GXsACPcKZ8bgimVlt/wZx57VagM8vUHHsAfak5W4E4dNDRBa9roco/nMDfHyV67k+P33o5R8SPfq25eIN99AZ6had+7qUprAXbmlUGXBh0X6WIhaVO8Di8TERP73v/8RFBSEh4cH7du3Z/PmzXU9LCGEEELUgbc2v8WK4ysA8DZ58/7g9wn2CNbe37suiQ2/HNX2B49sTcNWgexZvVx7rU2/QWe8R+4ff3B83IMoNpt6n/79iXp/BvqzBCM1qXTmwVFchKukMd/pVJix8JTO26L2GM9+SN3JysqiT58+DBw4kD///JOQkBAOHjxIQEBAXQ9NCCGEELVs3t55fLX3KwCMOiNvD3ib5gHNtfeP7cpg+Vdlze96/7sZLXo0IC8znWM7YwHwC2tARMvWnIqiKGR88AFp703TXvMZOpTIN6agq8OgAipWhrIVFuDp63faY20FMmMh6ka9DiymTJlCw4YN+fzzz7XXGjduXIcjEkIIIURdWHl8JVM2TdH2n7/seXpH9Nb2T8TlsvCjnShuBYAOg6LodGVDAPauXgGK+nqbyweh0+lOur7bbidlwgRyfv5Fe83vhn8T/tJL6Ix1/3GpQmWoswUWFWYsJMdC1J56vRTql19+oVu3btx0002EhobSuXNnPv7447oelhBCCCFq0Z6MPTyx6gncilru9Z5293BDixu097NTC/n9/e047er7TbuE0vfG5uh0OhRFYc+qZdqxp1oG5UhJIX7knRWCipDx4wl/5ZV6EVQAWL3LzVjknzmBu7RylMFkOmsuiRDVqV4HFkeOHGHWrFk0b96cRYsWMXr0aB566CFmz5592nNsNhu5ubkV/gghhBDiwpRSkMK4v8ZR5CwCYEjMEB7qUlbuNT/Lxi/vxVKUp5aDjWjuzxV3tUanV2clkvbvJSMhHoDIVm3wD6vYKTt/9WqOXv9virZtA0BntRL53nsE33/fKWc26kr5XInis5ScLQ0sZLZC1Lb6EYafhtvtplu3brz22msAdO7cmV27dvHBBx8wcuTIU54zefJkXnrppdocZq3KSU3h2M5YghtGE9Hi1GtEhRBCiItBvj2fsX+NJa0oDYCOIR15pc8r6HXq96LFBQ5+nR5LXoZa7SkwwothD7THaCqr3LRj6Z/advtBQ7RtxW4n7f2ZZHz4ofaaMSKcqPem4dG+XY0+17koXzbWdpaSs6WVoySwELWtXs9YhIeH06ZNmwqvtW7dmvj4+NOe88wzz5CTk6P9OX78eE0P86xSClK06dvzkbBvN188NpYlH83g6wlPsPa7r6phdEIIIUT943Q7eXzV4xzIOgBAlHcU0wZNw2q0AuCwufhtxnYyk9QP0b7BVv71UCesXibtGkX5eexfvwZQk59b9OoLQPGBAxy99dYKQYX3gAE0WbCgXgYV8I/k7TOUnFXcbuzF6uyO9LAQta1eBxZ9+vRh//79FV47cOAA0dHRpz3HYrHg6+tb4U9dOpx9mFt+u4VJf086r+DC5XTw54x3cNpt2mvrF3zLiSOHqmOYQgghRL2hKAqTN0xmbeJaAHzNvsy8YiaB1kAAXE43f364U+uq7eFr5pqHOuHlb6lwnT0rl+Eq6Zjdpt8gjAYjGZ98QtwNN2Lbs1c9yGAg9InHiZr5PgZ//9p5wHNQPkg4U5M8W1GhlqguMxaittXrwOLRRx9l/fr1vPbaaxw6dIh58+bx0UcfMXbs2LoeWqUUOYu4f8n9ZBZn8sPBH5i4buI5Bxd7Vi0nN+1ExRcVhfULvq2GkQohhBD1x5w9c/juwHcAGPVGpg6cSmM/tSqk262w9PM9HN+TCYDZw8i/HuqIf2jFsqqKolRYBtWycXOO/fc2Ut96G6Uk2DA3a0rMt98SdM89ddJNuyoqzlicIbAo9175c4SoDfX6X1H37t358ccf+frrr2nXrh0vv/wyU6dO5bbbbqvroVWKh9GDJ7o/gUGnrvX88dCPTFg7AZfbVaXruF0uNvz0nbZ/y4uv4xWgfmtzZOtGivIkQV0IIcTFYcmxJby9+W1tf1LvSXRv0B1Qg4VVX+/n0JZUAIwmPSPGdiA4yuek6yTu3U1mUgIAIZ4+5IweR9H27eqbOh2B99xN4x9+wKNd2xp+ourxz3Kzp1NcrmKU1fvkvxchalK9Tt4GuPrqq7n66qvrehjnbGjMUPToeWrVUzgVJ78c/gVFUXi5z8sY9IazXwCI3xlLzokUABq170RUm3a06tOfLb/9iNvlIi52C60vH1iTjyGEEELUuB1pO3hm9TMoqEt5xnQcwzVNr9He3/DLEXavTgJAr9cx5P52RDTzP+W1tpebrYjYewjc6ooBc+PGhL/6Cp5dutTQU9QMS7nZh+IzlJstys/TtiWwELWtXs9YXCyuirmKt/q/hVGnxnG/HvmVZ9c8i9PtrNT5e1Yv17Y7XTUcgCadu2uvHdm2uRpHK4QQQtS+hLwEHlz2IDaXmkt4TZNreKDjA9r7sUvj2fLnMW1/8J2tiWkffMprZWzcwP61KwEwOV00yClA5+FByGPjafLzTxdcUAEnd94+neIKgYUshRK1SwKLWjI4ejBvD3gbo14NLv44+gfPrj57cOFyOji8ZQOgJm41LgkoIlu1weyhrieN27ENxX3+VaeEEEKIupBjy2HsX2PJLFbzJrqFdWNi74laH4m965JZO7+sWMnlt7SgRY8GJ13HlZtLyquvsfqpx0rmPKBRRi7+V11F0z9+J/i++9BdoA3jzJ4e2vaZqkLJUihRlySwqEWDGg3i3QHvYtKrpfD+jPuTp1Y9hcPtOO05x3fvxF6klo1r0qUHRpN6rsFoJKqNWhKvOC+XzOTEGh69EEIIUf3sLjsPL3+YIzlHAIjxjWHqwKmYDWoAcHDTCZZ/uVc7vvvVjekwMKrCNRRFIfunnzg8bDhpc78iPlD9QK1TFHo9PYGo96ZiCg+vpSeqGXq9QcuzOFNVqGJZCiXqkAQWtWxAwwFMHThVCy4WH1t8xuCidLYCoFm3nhXei2xZ1uMj6cBehBBCiAuJW3Hz/Jrn2XJiCwCB1kBmXjETP4sfAEdi01jy+Z7S6ql0GBRF9xExFa5RvH8/x/53O8lPP4MrI4OEAB8cRjWHsdXlAwkbOrTWnqemlZaclaVQor6SwKIO9Ivqx7RB0zDr1W9jlhxbwuMrHsfhqhhcKIrC4c0bAXWGIqZjxTWhES1aadtJ+/fV8KiFEEKI6vXe1vf4M05NsrYarMwYNIOGPg0BiN+dwaJPdqG41aiiTd8I+t7UXFse5crLI+W11zj67xso2qIGJgpwLLpsZqLbNf+uxaepedqMRX4+Smm09Q/ll0J5yIyFqGUSWNSRvpF9mT5oOhaD2sxn2fFljF85HrvLrh2TGneEvIw0ABq266jlVJQKa9ocvUH9VkZmLIQQQlxIvt33LZ/t+gwAvU7PG/3eoH1IewAS92fxxwc7cTvVD88teobR/78t0el0KIpCzq+/cXj4cLLmfAkutYS7OToa59OPU+BScxcbte9EaEyTOniymlOawO12OSs0zC2vuECWQom6I4FFLXC7T/2tQu/I3kwfNB2rwQrAiuMreHTFo1pwcXjzeu3Yfy6DAjCZLQQ3igEgMykBR3Fx9Q5cCCGEqAErjq/gtY2vafvP9HiGgY3UsukpR3L4beYOXA61KEnTziEMvqM1er0O25EjxN95F0lPPIErLR0AndVKyCOP0PjXX9h9uGz2vtvV19feA9WS8t23T5fAXX4plEUa5IlaJoFFDcvNKOKrCX+zZ22SNp1bXq+IXswYPEMLLlYlrOLh5Q9jc9m0ZVAATbr2OOX1Q2OaqhuKQlp8XLWPXwghhKhOu9J38eSqJ3ErauBwV7u7uLXVrQCkxefx6/TtOG3qLER0+yCuvKct2G2kvjuVI9deR+GGstxD7ysG0/T33wh+YBQpcUe02fugqEYnLR++GFToZXGaBO7SpVAmi1Ur+CJEbZHAooat++EweRnFLP9yH9+/vpnkwzknHdMzvCczr5iJh1EtJbcmcQ2P/TKW1LjDAIQ1aYZP4KlrdYc2LpvmTY07UgNPIIQQQlSPhLwExv41liKnWu1wWMwwHunyCAAZSfn88l4s9iJ1KVNUqwCG3t+OwlUrOTLiajI+/BAcai6iKSqKqA9m0XDGDEyRkQBs+e1H7T5dr75Oy8W4mFgrMWNRlJerHivLoEQdkMCiBrlcbqBsliItPo8Fb25hyWe7yc+quDaye4PuzLpilhZcpOzcrb3XtOvJy6BKhUaXBRZpElgIIYSop7KLsxm9dLTWq6JrWFde6fsKep2ezOQCfp4aS3GBGjiEN/PjqlujOPHUkySMGYMjSe22rTOZCB4zmia//YrPgAHatXNSUzi48W8APP38ad13YO0+XC2xeJ55xkJRFG3GQipCibqgU05XVuAikZubi5+fHzk5Ofj6+tb6/f/+6EGsccfYmXsTec5I7XWDzkZz70U09foLg66sSd5uC7wQZqDPljCi0tQgo3+T44RZ7SddG8Dh0vHj/saAjkBrMVc0kX4WQggh6he7Dp4LM7Dbqs4iNLQrvJXiwscNeY4w1mU+gs2t/o72N8XRrXA6yuZilHLfwRnCwNIN9Kf4Vb4tJYiDmf4AtAvJoE1Idg0/Ud04mOnLtpQQAHpGnCDav2Jw4XDr+HGf+oVjqGchA2KSa32MomYkNruVy257sU7uXZXP0sZaGtMly1CYTmfzSjoGrWZ30VVsyPsvNsUHl2JhX96/SCrsQT/fj4m2bAWgYTEEJ1pZlh4NQL7VycxGhcxITcPzVDGgHgLMDciye5JrMxHpTkJ/8c3+CiGEuEC5gSeDg9htVZfxBDldfHwihUiXiyxnJEsyH9SCimD9Ybrvn4ot3q2dbzC7CeuSg290ETod5RcCAFDsMhCXrf7ONOpcXO5/AE/FycUoT+8E1MDCy5VHQ6Vi4JDrtABqYOFvKKChklTLIxQ1JaEws66HUCkSWNQwxehBNt6gg4aeawi1xrIj/98cLByMgp5cVwN+y5pAI+t6uvl8hYchB2OmHwZFjQ6OhxaxydPK/WENeONEHp6niC38LTay7J44FQPH7MEEWKQ6lBBCiPrh/QAPFnmrM/AeboUpJ/LxcnpwzBnO0sxnKXb7A+DnPkabjbOwFZYFFdYoB77dilGsBnI49dKeHdmhONzqx5lmfpnYjVZOPcd/4XPqyz62Zbs81c8X5WS4PLRtnUF30vviAma01vUIKkUCixrWc9xnJ712JdAlMZ9V3xwg6WA2APHFl5FCHy67rinJu7+DxGUAZESo52z3MPFMjyuYecVMvExeFa4X+dP3HP16NgBFwz+h8eUX59pSIYQQF5Z5e+fxzcbJgNqr4q0rp9Mzqh9ZKQUse2cbxW41BPDT59BhzQyMJUndhsBAGrzwAr5Dh5zx+m6Xi30P3guoPZ96vfgD/hFRNfdAdSx/32548SkAdD3H4H/HvRXez921HV5+DgC//g/g/987a3uIoob0qusBVJIkb9eRoEhvrhvfmUF3tMbqpZaDsxe7WPn1PvatU/tXmKweTLp1Gj5mtbLD1tStPLDkAfLtFddUhkY31rbTjh2tpScQQgghTm9Z/DKmbJqi7T9/2fP0KwkqfnpnG4W5alDhU5xCh1WvYHIWAuA7YgRNfv/trEEFwIENa7VGsk26dCfwIg4qAKye5apCFZ5cFap8DwupCiXqggQWdUin09G6dzj/faknrXqHA6A4k3CX/HD1CWlBm+D2fHLVJ/ia1fWnsWmxjFo6ijx72Q+P4OgYbVsCCyGEEHVtR9oOnlr1lNar4r7293FTi5tOCiq8847TafPbmJyF6H18iHjrLSLffgtjQECl7rP195+17S7Dr63+B6lnLOUqPZVWfyqvKE8CC1G3JLCoBzy8zQy+ozXXP9YZo6msZGxeRjjfvraJoLwoPh3yKf4Wf0D9gT1qyShy7Wqtau+AIKw+auAhgYUQQoi6FJcTx9i/xlLsUvP9RjQZwYOdH1SDincrBhWdt0/D5CzEo2tXmvz0I35Xj6j0fZIO7CX50H4AQhrF0Khdx+p/mHrGWq7c7KlmLIpyy3plefr51cqYhChPAot6pEETX3AdLNkzoDc3JSu5gB+mbCZrpZEPB35MgEX9Fmdn+k7uX3w/ObYcdDodoSWzFoU52RRkZ9XNAwghhLikpRel88DSB8i2ZQPQo0EPXu79MplJBfz4zjYKc8oHFdMxuYsJfuhBomd/oTW6q6wt5WcrRlycDfH+yWixoDeo6bGn6mNRkJOtbXv6+tfSqIQoI4FFPXJ8z04KS75tiG7fldBotdu2osDWRfHEzsrm7dYzCbQGArA7Yzf3Lb6PHFsOwY3K5VnEx9X62IUQQlza8u35jF46msR8tZ9Si4AWTB04lezEYn56ZxtFuRWDCqu/B40+/5yQMWPQGatWSyY3PZWDG9YBakO8Vn36V+/D1FM6nQ5LSfftU3XeLpQZC1HHJLCoR/auXqFttx88iBue6krPa5ugN6jfwmSlFLLpg1SedL1FsFmtY703cy/3Lr4Xr4gw7VxZDiWEEKI2OVwOHlnxCPsy9wEQ4RXBrCtmUZDg5qd3t2odtX1z4+i8/T18O7Wi8Q8/4NWzxzndb+dfi1BK8jc6Xjkco8lUPQ9yAbB6qcuhbIWnyLGQGQtRxySwqCdshYXsX78aAIunF026dMNg0NNtWAw3P9ud0Gg1CUtRIG5VHncdmERjdysA9mXuY0biF9q10iWwEEIIUUvcipvn1j7HhuQNAPhZ/Jh15Swcx038PHUb9iKX+nr2ITptn07YHf8h+vPPMYWFntP9XE4nO5ctBkCn19Nh8NmrR11MtBmLwkIUt7vCe6UzFkaLBZP1wuh7IC4uEljUE/vXrcJpswHQqk9/TJayHwhBkd7c8GRXLruuCXqjOnuRl2xn2JYxXJYxDBTY4T5ISU89mbEQQghRa97e/DZ/Hv0TAKvByoxBMzAm+PHrtG047eoH34DMvXQ++BnRb79O2JNPoDuPGYYjWzZquYTNul2Gd2DQ+T/EBcRSWnJWUbAVFVZ4r7BkxkJmK0RdkcCiHlAUhR1/LdL22w+66qRj9AY9XYfGcNPT3QgIV3+ouJ0KnQ4M5boDD2F2+ZDtpa5fzUg8jsvpqJ3BCyGEuGTN3j2bOXvmAGoDvDf7v4lvUiS/vx+LS52oIChjJ13SfqTpl59VqjfF2Wxf+qe23eGKoed9vQtN6VIoAFu5BG63y0VRSR8Lya8QdUUCi3ogcd9uThxRq0GFxjQlrEmz0x4bHOXDzc90o/3AsiZADTKbcuuOZ7FZPAH1h8vhI7tqdtBCCCEuab8f+Z23Nr+l7b9w2QtEnmjNwg934HarU+ghadvorl9Ps+++xtqmzXnfMzslmWM7tgHgF9aA6PadzvuaF5rSpVAAxeUSuIvyctX10oCnrwQWom5IYFEPbP7tR22769XXnfV4o9lAv1tacPWDHfHwNQNgcXgSVXiZdswbv79AWmFatY9VCCGE+Dvpb55f+7y2P6bTGNqkXcbiT3ahlKzLDUvZSK+YEzSe8wXGkJBque/uVcu07faDhqDTX3ofY8rPWBSXa4hXsSKUf20OSQjNpfcvsp5Jj4/j8GY14c07MIiWvS6v9LnRbYP4z4QeNO6olqXVGcp+cBsS7dy96G5OFJyo3gELIYS4pO3N2Msjyx/B6XYCcGOLG+mZNIRlX+4H1KAiImkN/a7wIeqtKegtlmq5r6Io7F2tBhY6nZ62/QZVy3UvNJ5+ZV3JC3Ozy7YrVISSGQtRNySwqGOrv56tbXcdfi2GKtby9vAxM+yB9vT/b0uM5rKSsy1SGmM44s/di+4mpSCl2sYrhBDi0pWQl8DopaMpdKpJwwOjBjI4/kb+/jlOOyYqcQX9/9ea0HFjq7VpXeL+PeSkql+WNWrf8ZJL2i7l6e+vbZdviCszFqI+kMCiDiXs2cWRrZsA8A4KpuOQEed0HZ1OR7t+kdz0bD90BjXPAmcmVx68i+jtPbnn93tJzk+urmELIYS4BGUWZ/LA0gfIKM4AoFNwZ645MpLty8tmxpsc/5OBjwwg8Oabqv3+e8otg2pzic5WAHiVCxrKz1IUyYyFqAcksKgjLqeTZV98qO33uek2TObzmy4OaehLZMuSxG+lEMVdQNsTfemx/mbGLRhPUn7SeV1fCCHEpanQUci4v8ZxLPcYAE19mnPTgdEc2FLyLbniptXxn+n/yn/xHVz9H/qddjsH/l4DgMlipXn3XtV+jwuF52kCi7zMjLJj/AMQoi5IYFFHNv70vdZvIqRRDG36V88P4rDGTcp2lFQAgguj6Lvhdp6Z8yoJeQnVch8hhBCXBofLwaMrHmVn+k4AIkxR/GffIxzfXwSAzu2ifdJP9J3+MJ6dO9fIGA5v2YitUK2A1Lxn70u6+ZtXuaCh/FKovIx0bdsnqHqS5YWoKgks6kDCvt2sX/ANoHYNHTL6EfR6Q7Vcu0GzFtp2q556fELVqlFml5UeO27gjZmfE58TXy33EkIIcXFzuV08u+ZZ1iWtAyCYMG7b+wTp8Writt5lo3PKfC6b9QyWJk3OdKnzsmfVX9r2pbwMCtSqUHqD+pmhoPyMRYXA4tLMPxF1r2qZwuK8ZSUn8us7k3GXdA7qed1NZ+xbUVXhzVpq2zmpR7n12dtZ+EUsx2NzAWh5tA+/Pv4bA6z78HW7QadW19B7e2MMDsLYoAHWli2xtGyJwcen2sYlhBDiwqIoCpM3TmZh3EIAAp2h3L7/afLUXycYHQV0Tf+Jjh+/hiks7AxXOj+FOdnEbd8KqPmIDdu2r7F7XQh0ej2evn7kZ2VWXAqVoZaYt/r4YrJcujM6om5JYFGLMpMS+f7lZ7UfBI3ad6LXjf+t1nv4hoTi6edPYU42SXt2kfLIg7TYsgWLX3cON70ORWcAQyvW5wbRftfH+BQknvZapkaN8OrTG+/LL8ezR08M3l6nPVYIIcTFZeb2mXy7/1sAQgqjuPXAeIqK1IUOZls2PXJ+o+2nb2AMDq7Rcexbt0r7Mq513wHVNsN/IfP0C9ACC8XtRkEhvyTHwieoZv97CHEmEljUkgPr17Dog2nYi9QSfcGNYrj64Se16czq4C4sJOeXX/HLzacQsDvsnPh7Ld42B43yluGTf5xdbe7BYfah2COELV0ep9X+uTRI3XzK6zni48mOjyf762/Qmc34XHEFftdfj1fvXuiqcdxCCCHql7l75/LB9g8AiMxpwbUHHsDhVH/uexSm0rN4MS0/fRtjQM0nCe9dvVzbbnP5wBq/34XAq6TkrOJ2U5SXi9vlQnG7AQksRN2SwKKGpcYdYdXczzm2Y5v2WnCjGG6a8CoePr7Vcg9HYiKZ8+aR/f183Lm5+IT6kxyurq/M9rTg5+WDR8eOBLVoQWgDBz9vSMZaHI7bYGZPm7souO1+Bg8Iw52Rjj0+nuJ9+7Dt20/R7t3gcACg2O3k/vEHuX/8gTE8nMA77sD/pptkFkMIIS4yvx35jdc3vg5A87SuDD78P9yKOlPhmxtHD2U1zT6dVivLZbOSE0k5fBCA0JimBDeMrvF7Xgh8Q0K17Zy0E6CUvSeJ26IuSWBRg9wuFz++MYn8cglVLXv346r7x2H28Dzv6zuSkkibOZOcH3+CkmliAP9CW9kYbrie5uOfRqdXfymEAiOvzuDdaV8TcbwNAMe2Ofg5P53rR3fHq3fvsnMLCijYsJH8VSvJW7gIV3Y2AM7kZFKnTCF91iwC//c/Au++C4O396nHaCsmMzGB4vx8dHo9Xv4B+DcIr3IjQCGEEDVvVcIqJqyZAAp0SrqCy+Kv0d4LSt9JV90Gmnz+0Wl/5le3vWtWatut+/avlXteCPxCG2jbOSdSKqx+kBkLUZfk010N0hsM9L7pvyz+YBq+IWFc/p87aNm733l3InUXFJD+wYdkfvEFSsmMAoDOZML36qsJv/HfbHzzJVAUUtNPaEFFqWCfIJ58/HZe+OQdmu7qg0ExknGwmHmT/+b6cd3wD1ODHr2XFz6DBuIzaCANnn2WvJUryZn/A/kr1R/07txc0mfOJOvrrwkeO5aAm29CZzbjcjrZv24VO5cvJmn/Xm1tbCmj2UJ4sxY07daT5j374Bss364IIURd25a6jcdWPIbL7eLyozfR9kRf7b2IpNW018XSePbntRZUKIrCvrUr1B2djpZ9+tXKfS8EfmHlAovUExUCC/mdKuqSBBY1rG3/waBA68sHYjSZzutaiqKQt3AhJ6a8gTMlRXtd7+ND4B13EPCfW7UkuuCG0aTHx5EWd5TignysXhV/EfhZ/Jh073ge/+YFWm4ajIfTm8I0J9++voHhozrSsFVgheN1ZjO+V16J75VXYjt0iIxPPyPn11/B6cSVlcWJV14h+9tvcN09krVrlpGRcPqStk67jeN7dnJ8z05WzPmERu070enK4TTp2kNmMoQQog4cyDrA2L/G4rS7uOrg3TTO6qC91+TIzzQ3HiLmyzkYStb214YTRw6Rlaw2dm3Ypj0+gfJNfKnyMxbZJ5IrvBcYEVXbwxFCI5/iapheb6D9oKvO+zqOEydIfn4CBatXa6/pTCYCR95B0L33nvTDvlHbDqTHx6EobhL27qZZt54nXdPP4sfb/3mZhzwep8nf/QgqisBZpPDrtFguv7kF7Qec+oeTpVkzIia/RvCY0aS9O5XcP/7ADWwryCLumy8qHOvfIJzIlm3xDgzE5XSSm55GyqH95KalasfE74wlfmcs3gGBtBs0hPaDrpJvXIQQopYczzvOA0sewFHg5up9Y2mQ3xhQG9+12v8VjSwpRH/+JcZa7o2wd80KbbtVH1kGVZ5/WMWlUK5yKwMCIiLrYkhCABJY1HuKopD72++kvPwy7txc7XWvfpfT4NlnMcfEnPK8hu06svXPXwA4vmv7KQMLAF+zL9Ove5sxlgfJW9+FmKx2KG5Y9c0BMpML6HtzcwyGU/dRNDdsSOQ7b+P1n1v49Y1XSNW7tff8HS76/e9uml1/4ymXfmUkHufA+jXsWblM+7YlPyuT9T98zfoF3xDToTPtBl5F0249z3umRwghxKmlF6UzaskoHBl6rt83Hj+bOitgcBbRfvcnhFpziP78S0xhoWe5UvVyu13sX7dKHYvRSIuefWr1/vWdxdMLq7cPxfl5ZKem4LCpuZXeQcGYrR51PDpxKZPAoh5z5eaSPOEF8hYt0l4zhoTQYOKLeA8adMZcjajWbdHp9CiKm/hd2894Hx+zD7OGzeAB42iyt5ygU9JgAHatTCT7RCFD7muH1evUH+5thYX8On+uFlToFIXWielEZ+TifO5F0o4lEjJuLLp/BAdBkQ3pdcN/uOz6Wzi2M5btS/7k8JYNark8RSFu+1bitm/Fw8eX5j1707RrTxq264DJbKnU350QQogzy7Hl8MCSB1COe3L9gTFYXGp+ndmWTcedswjwsBH9xZeYImv/G/Dju3ZSkJ0FQOPO3bDWUl7HhcS/QTgph/LIS0/TXguKbFiHIxJCAot6q2jXbhIfeQRHQoL2mu+IETSY8Hyl1rhavbwJa9KUlMMHST9+jNz0tDMuL/I2e/PhVR8wWj+a5bvm0u/ILRgUIwn7sljw5hauHtcR3+CK34I47XZ+fusVUuMOq/f08WXEyPvRffIFhRkbQFHI+PBDCtevJ3LatFN+46XT64np2IWYjl3Iy0hn94ql7Fy+hNy0E+rfQ14uO5YuZMfShRjNFhq160BEi9ZEtGhFSHQT+WUjhBDnoMBRwJi/xmDYG8zwozegR03+9c47ToddH+DlqaPR53MwR9dNedfyy6Ba9x1QJ2Oo78IaNyPl0IEKr4U3a1FHoxFCpVMURTn7YReu3Nxc/Pz8yMnJwde3evpG1CRFUcj+9ltOvPqaVvHJ4OdHg5cm4jt0aJWu9ff8r1n3/VwABt39AJ2HXH3WcwocBYxZOoakQ1kM2X8PHk61TrmHr5mrx3YgNFr9O3S7Xfw2dQoHN6wD1KDi1olTCIpqiOJykfHZZ6S9Nw2cTvUZQoKJem8anl06n/3vwO0mfvcOdi5bzKFNf+MqV/nqnzz9/AkIj8QvJBQPXz88fP3w9PPDw9sXq5c3Vm9vLN7eWL28MZot512RSwghLnQ2l40xS8Zi3BBBh+QB2uvB6Ttos/cLzF4Womd/gbV16zoZn8Nu44P7/4e9qAizhwcPfPSVzFafwu6Vf7Fw5rsVXrv+6Rdp0rl7HY1IXKyq8llaZizqEbfNRsoLL5Dz8y/aa9aOHYh6911MERFVvl6z7pdpgcWhTesrFVh4mbyYdcUsxurG8qP5XYbvHYV/cRhFuXZ+fHsrQ+5tR3T7IP76dJYWVBgtFv791IsERalTsDqDgeD77sPrsstIePhhnEnJuNLSOTZyJA2ee46AW2854xh0ej3R7TsR3b4TjuJiju2M5fCWjRzZupHCnOwKxxbmZFOYk03ivt1nfTaDyURQVCPa9htEx6uGYzBK7oYQ4tLicDt4YslTBK7sQExWO+31hsf/otnhHzF4edLok4/rLKgAOLJlI/aiIgCa9+gjQcVpxHTsoi15BjBZrDRs076ORyUudRJY1BPOtDSOjxtH8fYd2msBd9xO2OOPozObz+mawY1i8A0JIzftBAl7dlKUn4eH99k7pXqaPHl/8Ps8uOxBfjRMZej+ewnPa4rT7uaPWTsIb7yfI1sWAmqvjmvHP0t485YnXcejfXsaz59P4qPjKdywARwOUiZOxB4fT+jjj53UX+NUTFYrzbpfRrPul6G43WQmJ5J8YB8phw+QmZhAZlKCtg73bFwOB6lHD5N69DCHt2zk2ieelyQ3IcQlw+V2MWHhJIKWdiG4UK36p8NNi/3fEJm8Fp2HBw0//ACPDh3OcqWatXPZYm27Tb+BdTiS+s3LP4Auw//Flt9/AqDbNddjsljrdlDikidLoeqB4j17OD52HM5ktTqSzsODiMmvVXnp06msmPMxW37/GYBBd42i89BrznJGmSJnEQ8te4hNiZsZeOg2mmV0wVm8DWfRcu2Y4eMeo/XlZ/7BrzidpL75Jpmz52iv+Y4YQfjk19CfY9BUnq2wkPysDIpycyjMzaEoN4fi/HyKC/Ipzs+jOD8fW0E+BdlZZCaV5ay07HU5Vz/y1HnfXwgh6ju34uaVX97GurQZXg4/AAzYaR/7AYHZ+9GZzTT8YBZevXvX6Thz01L5+MF7QFHwCw3jnvc+rtSXUJeyjMTjFOXkENm6rSz3FTVClkJdQHIXLybpqadRSqZ9jeHhNJz5frVNQ7cdcKUWWOz8axGdhlxd6R88HkYPpg+azsPLH2apbg4UHyEqq6zxXYPmV9P8srN3QtUZjYQ98wzmJk1JeeklcLvJ/f13nBkZRE2fhsHn7LMoZ2Lx9MTi6QmVqIaRsG83P02ZhK2wgP1/r6bTVSOIatPurOcJIcSFSlEU3vn+Y3xXtMfkVr/Msejy6bThHbwKT4DJROS09+o8qAA1b4CS7zvbDbhSgopKCIpsWKnff0LUBvkXW0cURSHjk09IfOhhLaiwduxA4+++rda1rSGNYghvpi5TSouP48SRQ1U632q0Mm3QNK6kC+GJx7TXDdYeZKe34JepsRQXnD65uryAW24masZ0dFZ1qrZw/XriR96JM6tyS5mqQ1SrtvS/4x5tf8sfP9XavYUQ4nwpioK9qPDsx7nd5GWm43I6ef+Tb/FY1lwLKryNaXRfM0kNKvR6It96C58BA2p45GfncjrZsaykvLpOR5v+g+t2QEKIKpPAog4objcnXptM6ltva6/5XnMN0XPmYAyp/o7T7QcP0bZL12JWRcbhI8Qsy8egqDMdSaFGFM9uACQfzmHBW1vJzyqu1LV8Bg2i0eefaSVzi/fsIf6uu3FmZlZ5XOeqzeWD8A4IBODI1k0U5+fX2r2FEOJcHY3dwkdj72L6nTcz54lxxO/accrjju2I5eMH7+Gj0Xfy3l3/w72+QHsvwHqMbn+9gtlRADodEa9PxnfIVbX1CGd0aNPf5GekA9CkS/czlkgXQtRPEljUMrfNRuL4x8j68kvtteCHHiTijSnoLTVT+aJl78ux+qhr4vatW0X68WNnOaPMiaOHWTB5Ig6bGjgUxniypMthfmk3nUKT2gk8K7mAH97YQmZywZkupfHs3JnouV9hCFE7vNr27SN+5Eic6elVeaxzZjAaadn7cgDcLhdHt2+plfsKIcS5So07wk9vvKx98E6Lj+P7V55j7Xdf4Xa7APXn2ZpvvmT+axO0pmmKPR9H/i+4XFmE+O2g08I30CtqGfAGL03E71//qpsHOoUtf/ysbXcZVn/GJYSoPAksapErL4/j991P3kK1ohIGA+GvvkrImDE1mnBltnrQ4183qDuKwqq5n1OZnP2kA3uZ/8rz2ArVgKFRu448/tLnDG06jHTvBH5qN5Uci/pLLj/LxoK3tpByNKdSY7I0barO0ISFAWA7eIhjd9RecBHTqZu2nbBnZ63cUwghztWKOZ/gdqkBgdlD7ZCNorD+h2/4/uXn2LboN+Y9/zgbfvxWy1GA0pLaLozun2j/84eU/qYJe/ZZAm6+uTYf4YySD+0n+cA+AIIbRtOoXcc6HpEQ4lxIYFFLHCdOcOy2/1G4cSOgVn6Ken8G/jf8u1bu32nICG35z9Ftm4ld9NsZjz+46W++n/Qcxfl5AES0bMN1T0zAw+rF5L6TuaH5DeRaM/ip3VTSPdVKS7YCJz+/u41juzMqNSZL48ZEfzkHY0Q4APYjR4i/9z5cubnn+piVFtmiNXqD2mk2Ye/Ze2AIIURdST9+jOO71WVP/g3CGf3RV1z+3zvR6dRf4Ql7drHssw84ceRgyRk6jB6XY/G/H0Wv5rQV5WdRYFbrtYQ8Np7AO26v9ec4k00//6Btdx72L6luJMQF6oIKLF5//XV0Oh2PPPJIXQ+lSmyHDxP3n/9gO3AAAIO/P9FffF6ryXImi5VB94zW9pfP/pjDWzacdJy9uIgVX37KL2+9itNhB9SZin8/PRFTSdK1QW/gxV4vMrLNSIrMefzcdhqJvuqzOe1u/nh/B/s3pFRqXOZGjYie8yXGcDW4sO3bx/FRD+AuPHty4vkwWa0EN4wBICspEafdXqP3E0KIc7Xzr0Xadueh/8JoNtPj2hu56YVX8QmqmIeg0wdi9rkVo7U78QGH8AkrK+mdFOBD8JgxBN93X62NvTJOHD3MwY1qw1Uv/wBaXz6gbgckhDhnF0xgsWnTJj788EM61HHjnqoq3LqNY/+9DWeS2qPCFBlJ9Nfz8OhY+9O8zbv3ots16gyJ4nbz85uvsvij6cTt2MbxPTtZv+BbPnnwXrb89qN2Tuu+A/j3MxPVcq7l6HQ6Huv2GGM6jsFhtPFH6w85HLgNALdbYenne4hdGk9lmKMiafTZpxgC1RmVom3bSHjwIdw1/GE/uGEjABTFXaG/hRBC1BeKonBo83pAzQ8r3zCuYZv23DPtI4aNe46AqBGYvG/E7HsHemM4WyOX0C5wG93/2qEtjToRE0XQuLF18hynoygKa74p63HU47qbpdO2EBewCyKwyM/P57bbbuPjjz8mICCgrodTae6iIhIefBBXjpp3YGndmphvvsbSuHGdjeny/46kZW+194SiuNn51yJ+eHUC3730DGu//ZKiXHWsBqOR/v+7m2Fjx2Mwmk55LZ1Ox+hOo3m82+O49E6WtpjN7rA12vtr5x9i3YJDlcrnsDRuTKNPP0Ff0tOiYO1akh5/AsXlOt9HPq2ghtHadlUS2oUQorZkJSeRm5YKQGSrtli9vCu8n3woj79/dlJU0BKDqRFOg5Mlzb+gr0cy3T9fj4fDRWCBWnwjt7iQ7JTkWn+GMzm8eQNxsWoBDZ+gEDqUq2IohLjwXBCBxdixYxkxYgRXXHFFXQ+lSvQeHkS++QaYTHj2ukzNJ6iBcrJVGpPewIgHH6ff/+7GZPU4+QCdjlZ9+nPHmzPods2/K9WcaGTbkbzQ6wXQwerG37Mp6g/tvW2L41nx1T7c7rMHF9bWrWn44QfoPNRx5S1eTOobb1b+4aooWAILIUQ9d2znNm07ukNnbVtRFLYuOsYv78VSnK/2Esq1pPNTu6mMAC77bJM2UxHdvJV23tFtm2tn4JVgKyxk+eyPtP3+t9+D0Ww+wxlCiPqu3nfe/uabb9i6dSubNm2q1PE2mw2bzabt59ZCIvCZePXuTfTnn+HRoQO6evIDU6fX0/2af9Nu4JUc2bKRtPg4FJeLwMgoojt0wT+sQZWveVOLm/A0evLcmufY0nARheY8+h29GZ2iY8/aZOw2F1fc2QaD8cyBimeXLkRNm8bxBx4Al4vM2bMxRUURePv/zvVxT6t8YJEhgYUQoh46tiNW2y4NLOzFTpbN3svhbWnae/H+e/ir2Zfcm92cvp9vBbcbgID//pfgO29n2xPjADgau5muI66tvQc4DUVRWPLxDG02plH7TrS4rE8dj0oIcb7qdWBx/PhxHn74YZYsWYK1JHH4bCZPnsxLL71UwyOrGs9u3c5+UB3w8PahbTV2Nh3RZAQeRg8eX/k4e8PWYTcUcsWhkegUPYc2p+IodjH0/nYYzYYzXsf78r40mPgiKRNeAODE5MmYIiPwGTSo2sYK4BMUjMFoxOV0kpuedvYThBCiFrmcTo7v3g6Ah68fodGNyUwuYOGHO8lKKStwsTlqIVuiFjI2qTX9vtyqzVT433wzYc8/Bzod3kHB5Gekk7h3N067vc5nBjb98gP7160CwOLpxVX3j5NKUEJcBOr1UqgtW7aQmppKly5dMBqNGI1GVq5cybRp0zAajbhOsf7+mWeeIScnR/tz/PjxOhj5pWtQo0HMGDwDD6MHh4Nj+bPlx7j1au31Y7sy+HX6duxFzrNeJ+CmmwgaNUrdcbtJfOxxinbuqtax6vR6vAKCAMjPrFyJXCGEqC0phw5gLyoCILp9J47EpjP/9c1aUGE3FPFHq4/Y3PBPHjzajH5zyhK1/W+6iQYTX0Sn16PT6Yhu1wkAp8NO4v49dfI8pWIX/c7qeV9o+1eNehC/0KrPlAsh6p96HVgMHjyYnTt3Ehsbq/3p1q0bt912G7GxsRgMJ3/zbbFY8PX1rfBH1K7eEb358MoP8TZ5Ex+wh19bzcRpVCs8JR3M5uep27Q1wWcS8vBD+I4YAYBSVETC2LE4UlOrdaw+QWpgUZyfh8NuO8vRQghRe8rnVzjsESz8aBcOm/qFWpZnMvPbv0V8wG4e2RtD32/3ascG3HE7DSa9VCFHLrpj53LXja35wZ+C4nbz9w9f89dns7TX+t56By0u61sn4xFCVL96HVj4+PjQrl27Cn+8vLwICgqiXbt2dT08cQadQzvz6ZBPCbQGkux3mJ9bT8NuUr95Sz2Wx4K3t1KQfeYP8jq9nvDJr+HRtSsAztRUEqu5DK13YLC2LbMWQoj6JG5HWWCRcKCsGtSRkFh+aPcOudY0Ht8SQe+fDmnvBY0aRdgzz5y0rCi6XCfrY+WuW1ty09P4/pXnWffdXO21HtfdRM/r60/3byHE+avXgYW4sLUJasPsobMJ9wonzfs4P7aZSpFZ7eSdlVzAgre2kJtedMZr6M1moqa9pzXQK9q+nZSXXqpUCdvK8A4M0rbzM9Kr5ZpCCHG+igvySTmkNh7V6QPR6X3Q6WFDk19Y3PRzFGy8uCyIHovL+gWFPPIwoY8+cspcBU8/f0JimgCQevQwhSWlxWvD/r9XM+fJcVr3cHQ6Lv/vnfS99Y5aG4MQonZccIHFihUrmDp1al0PQ1RSjF8Mc4bNoalfU7I8U1jQ9l3yrJkA5KYXs+DNLWQmFZzxGsagIKJmTEdXksCf88MCsubOq5bx+ZSbsciTGQshRD2guBVWfPkXSkllJ70pGpOPjj/azWJb2F9Y7QqTf/Wl7caSpaE6HWHPPUfwAw+c8box5crVxtfCcihbYSF/znib36ZOwVag/pz3Dgrmpudfpce1N0qythAXoQsusBAXngZeDfhi6Bd0CO5AnjWDn9pMJdvjBAAFOXZ+fHsrafF5Z7yGR9u2hL/yirZ/YvJkCjZuPO+xVZixkMBCCFHHivLt/Pb+dvat3aC95hUVw5etX+KY1z4C8hTe+t6DmL1ZAOjMZiKnTq1USe7o9rWXZ5G4fy9fPvUge1Yv115r2etyRr4xg0btOtTovYUQdUcCC1Er/K3+fHzVx/SO6E2BJYef2r5Hmpdasau4wMFP724j5eiZp+b9rh5B0L33qDsuF4mPPYYz/fyWL5UmbwPkyVIoIUQdSj6UzbevbOLYrgxczqPqi3oDnzb/gGxDBs0SFd750kDo8Xz1LT8/Gn32Kb5DrqrU9SNbtcFoUsvMxu3YVm1LSv9px9KFfPfS0+Skql8gmT08GDZ2PCMefhKrt/dZzhZCXMgksBC1xtPkyYxBMxgaM5RiUwG/tplBss9hAOxFTn6ZGkvSwewzXiPk0Ufx6t0LAFdaOomPP4FyirLDlSXJ20KIuqYoCtsWx/PjO9soyLahuDPBrc7iJgcWUqAvpt9ON5PmKXjlqMUrTBERxMz9qkp9koxmM5Gt2wJqTllmUkK1Pofb5WLZ5x+y5OMZuEt+Lke2asMdb8ygTb9BsvRJiEuABBaiVpkMJl6//HVuaXkLdmMxv7f+gARfNUHRYXPx6/RYju/LPO35OoOBiDffxBgSAkDh+vWkv//+OY/Hyz8ASn7Z5WfKjIUQonYVFzj4Y9ZO1i04hOJWZxC8/VK095OCCrhrsYtxv7kxOtWcC89u3YiZ/z2WZs2qfL/ocnkW5bt6n6/i/Hx+mPwi2xb+qr3WZfi13PzCZPxCw6rtPkKI+k0CC1HrDHoDz/V8jgc6PoDTYOfPVh8R7682bHLa3fw+YwfHdp1+9sAYFETkO29DSR+T9FkfkL96zbmNxWhUgwskeVsIUbtOxOXy3WubiNtR9qVG16HR2I27tf0b1+QzbEvZkiX/W2+h0WefYgwMPKd7RrfvpG0f2vT3OV3jnzKTEpj3/HgtIVxvMHLVqIcYOPI+9KfoNyWEuHhJYCHqhE6nY2ynsTzd42lcBgcLW37C0QC1FKHL6eaPWTs4Ept22vM9u3cn5JGH1R1FIenJJ3GkpJz2+DPxKUngLsjOwuU8e1dwIYQ4H4qiELs0ngVvbiEvoxgAi5eRq8d1JKvxDvKPqkuUPGx2WiWpzUR1ZjMNJk4kfOJEdGbzOd87JLoxAeERABzfs/O8c8uObtvMvOceIys5SR2zjy83TXiF9oMql/chhLi4SGAh6tRtrW9j8uWT0Rt0LGnxOYeD1MZNbpfCoo92cXDzidOeG3TPPXgPGACAKyuLxPGPoZxDYKBVhlIUCnOyq3y+EEJUVmGund/f38Ha+Ydwu9SZiAZNfLnluR7s9Pyb7795Wzu2YWYeOsAcE0PMd98ScOst531/nU5H674D1R1FYe+aFed0HcXtZtMvP/DjlEnYCtVSssGNYrjttXeJai0NbIW4VElgIerc1U2uZvrg6VjMFpY2n8OB4E0AuN0KSz7dzf71yac8T6fXE/H6ZEwR6rdvRVu3kj7rgyrf39PXX9uuzaZRQohLy/F9mXz7ysYKSz07X9mI6x7rwsK0X/j1g6fpus9Ley8iOx/ff11D4x/mY23VqtrG0brvAG17+5I/qjxTW5CdxYIpL7Fq7ucoipr30ax7L/7z8puSTyHEJc5Y1wMQAqBvZF8+H/o5Y5aOYXmzubj0Dlqn9kZRYOnsvbicCm36Rpx0nsHfn8h33ibutv+By0X6rFl49emNZ5culb63h6+vtl2Ul1stzyOEuLjsXb2cXSuWoDcY6Tr8WmI6da30uU6ni1/emUPctqUoig29sRHeIQMZcm9vGrUN4rs/38Ix4zNuzPRmRyMTAMFFdpq99jq+I4ZXezUl/wbhNO7UlaOxW8hNS2X3yr/oMHjIWc9TFIV9a1eyfPbHFJX7EuayG26l943/RaeX7yqFuNRJYCHqjbZBbflq+FeMXjqalU2+w6Vz0u5EP1Bg+Vf7cDndtB8QddJ5Hp06ETx2DOnTpoPbTdLjT9D4558w+PhU6r4ePn7atgQWQoh/2vjzfFbP+0Lbj9uxjRuenlip4CI3vYjvXp5OTsoq7TW34wCFGfGk7yvk4PRvabtyLw6DgdUtyhKy+z/zAn69+lbrc5TX47qbOBq7BYDV876gSZfueAecOiFcURSO797Buu/nkrhvj/a6p58/w8aOJ6Zj5b/IEUJc3OTrBVGvNPRpyJxhc2gf0o41jX9ge3hZ19ZV3xxg25L4U54XPGoUHl3VX/KOpCRSXppU6XtWmLGQpVBCiHIS9uxizddzKr6oKCz64D1shYVnPPfQllTmvfgrOSmry14smX1w2opZ/t2XJMRnczzQl/VNI7Cb1O/6mnbtSUwNBhUAUa3b0bJ3PwCK8/NY8NoL5KRWLIBRkJ3FtoW/Mu+58Xz/8nMVgopm3S9j5JszJKgQQlQgMxai3gm0BvLJVZ/w5KonWclPOPV2uiaq0/TrfjiEy+Gm2/CYCufoDAYi35jCkWuvw52fT+5vv+Hd73L8/vWvs97P00eWQgkhTua021k4610tj+CyG24l+eB+ju3YRn5WJrGLfqPn9TefdJ7D7mLN9wfZszoJe95KQE3Sbj/wOjqa9ayaP494HysA6T6epPt4aud6BwRy1agHa/7hgEF33k/Sgb3kpaeRFh/Hpw/fT3izlhgtFvLS08hKTjzpnIDwSAbccS9NunSvlTEKIS4sMmMh6iVPkydTB07lhhY3sKnRH2xs+Lv23oZfjrDhlyMoilLhHFNkJA0mTtT2U16ahD3h7J1lPXzLLYWSGQshRIktv/9ETqpamS6qdTt63fgfBt8zGp1O/dW5bdFvWofpUhmJ+Xw/eTN7VifhdmXhdh4DwNvLh5gfviPzjTdpdySRbkeSsTgqJk0HRTXi5omv4+nnX/MPh7qU6cbnXsY3RE24Vtxukg7sJX5n7ElBRUhME4Y/9AR3vjNTggohxGnJjIWot4x6Iy/2epEwrzBmMhOXzkmv+GsB2PxHHC6Hm17/blohsdHv6hEUrF5Fzs+/4C4oIOmJJ4n+6kt0Z2jSVHEplMxYCCEgPyuTDT9+B4BOp2fQ3Q+g1xsIaBBB0249ObTpbwqyMjmydRPNul+GoijsXp3Emu8P4nKoMxyKY7t2vaiDR3GllX1xcaBhEb/0S+aeFqNoaYgmIDyShu3ao9fXbkO5wIgo7nhjOpt//YE9q1eQm6YGUgajkdDGTWnYpj2t+g4gpFFMrY5LCHFhksBC1Gs6nY7RHUcT5hnGpL8n4dI76Bt3IwDblsTjdLq5/ObmFYKLsAkTKNyyFUdCAkXbtpH5xRcE3XPPae/hUW4pVGGezFgIIWDN13Nw2NTmdR2uGFrhg3WHK4ZqXat3LP2TyFZdWPblvgodtP2DFNIPxQKgd7uJyswDYFe0ji8H6kmINPNm/zcZ3Ghw7TzQGVg8Pelzy+30ueV2HMXFuN1uzB4e1V6NSghx8ZOlUOKC8O/m/2baoGkcbriZlU2+QUH9RnDn8gRWzNuP4i5bFmXw9iZiyutakmTa1PewHTx42mubLFaMZgsgMxZCCEg5dIDdK5cCYPHyovfNt1V4P7pDJ3xDQgE4GruVr15cUiGoaGJNIHDlBJwlP6cisvLJDDHx2s16Jv1HT0pDT2YMnlEvgop/MlmtWDw9JagQQpwTCSzEBaNfVD++GPoF6TGHWN50Hu6SX9p7Viex7Mu9uMsFF55duxJ4550AKA4HSU8/g+JwnPba1pLStMX5eTX3AEKIek9RFJZ98aG23/vG/+JZLg8LQK830Lb/laVnUJChlm21GJx02Pcp0QsnEx9Y1uhuX0cdD490EttUj781gM+GfEbviN41/ixCCFHbJLAQF5Q2QW2YN2IetMxhWfMvcaMmTu77O4Wln+/B7XJrx4Y88jDmpk0BKN69m/SPPz7tdT28ywKLfyaFCyEuHfvWrCD54H5AzT/oeNWIk45JT8jj8I5QSn+Fumw7CMrdR/dVzxOcspV0bw/yPdRZ0KwAF/M7ZKLodYR7hTN72GzaBbertecRQojaJIGFuOA08GrAnGFzaNDRkyUtZuPSqcHFwU0nWPTJblxONbjQWyxEvD4ZvqYupwAAUelJREFUShK302fOonjPnlNe01oSWLicTm1dtRDi0mIvLmLV3M+1/YEj78NgLEtFVNwK25bE8/3rm8lN06E3tyh5o5jAo19gduSB0UhCxzbaObExmQA09WvKnGFzaOLXpHYeRggh6oAEFuKC5GXyYvqg6fTo3YrFLT7FpVPLNh7ZlsYfH+7QqrJ4tG9P0P33qSc5nSQ9/Qxuu/2k65XOWAAU58lyKCFqS8rhg6z99kv+nPE2f0x/i02/LiAvM/3sJ9aADT9+R36WGgg06dK9Qmft/Cwbv0yLZd0Ph3A71VlNH1ek9v6RUH88Bw7E58OZJOdnA5Dr6SC+QSEdQjrwxdAvaODVoPYeRggh6oBUhRIXLKPeyHM9n+Mr36/4RvcJV+2/G6NiJn5nJj+/v4V/jemC0WwgZPRo8pevwLZvH7YDB0if8T6h4x+tcK3SHAuAovw8LTFTCFEzctNSWfrJ+xyN3VLh9b1rVrDm69l0Hno1fW65HZPFWivjST9+jM2/LgBAbzDS//Z7tfcOb01l+dx92ArK+k40il9Kk6O/sqFJKFneHhRYzezr2IoD332kHbMnJo/eUX14p/87eJrKmuAJIcTFSmYsxAVNp9Nxe5vbeezfD/BXu9k49DYAkvflMf+9DThsLnRms1olymQCIOOTTyiKja1wnfIlZ2XGQoialbB3F3OefPCkoKKU2+Viy+8/89Uzj5KTmlLj41HcbpZ8/L7W7K7HdTcSGBGJvdjJsjl7WfjRLi2osNiy6BQ7jWZHfsRgNtBn0FCtAt2u5Yuxp2QBkO3loGn/vkwfNF2CCiHEJUMCC3FRGNRoEJNveZ61nb7GrldzJDIOFzP3rVXYi51YW7YkZOxY9WC3m6Tnnq+wJMrq5a1tF+VLyVkhakpc7BZ+ePUFbIUFAPgEhXDFvWO58+2Z3D5lGj2vvxmjyQxAZuJx5j3/OJlJCTU6pp3LF5O0X82/8m8QTs/rbiblaA7fvrqJveuSteNC0rbRY9NrBGbvx7PXZTT59RdaPvYEff87ssL1is0ufG7syWv9X8ekN9Xo2IUQoj6RwEJcNNoGt2Xaf6ewo+dv2AyFABQcV/j09SUUF9gJuvcerO3bA2A/fJj0mTO1c60yYyFEjTtx9DC/vDMZp0MN6mM6dWXkWzPoeOUwgqIaERrThL633sHtb0wjICIKgMKcbL6f9CzZJ2pm5qIgO6tCwvagu0azZWECC97YQm5aEQAGVzGt9n1Ju92fYDYpNHjpJRp99hnmRo3Is+fxiXURi7uf4FBkPvui84gacx1PDp+EXie/YoUQlxb5qScuKuHe4bz/37c4MWgTxQb1G1F3ioVZr/5BXqGN8FdfKbck6lOK9+4FwKNcjoX0shCi+hXm5vDTG5O0qmvNe/Tmuieex+LpddKxgRFR/OflNwmJUSso5Wdl8uPrEykuyK/2cS2f/TG2AvVnRdOul7PpDxeb/4ijtOq0b+5Rum+aTETKeqxtWtP4h/kE3HIzOp2OlIIURi4cyfrk9SSFFLOpSz63jJ3AyF6jqn2cQghxIZDAQlx0PE2eTP73i1iuT6HIqH4QMWf68sErf5Ie4Evw/ferBzqdJD/3PIrTidWrYvK2EKL6KIrC4g+nkZ+ZAUB4i1YMf/BxDMbTLxPy8PbhxudeJrBk5iIzKYHfpk7R8iCqw/6/17B/3SoAjBZPkuPakRav/vvXKS4aH/2NLtvewbM4ncCRI4n55hssTdRgZ3/mfm774zYOZh0EwN/izydXfcIV0VdU2/iEEOJCI4GFuCjpdXrGXXEfLUaaKTSpORNeuYF8+fpKEof2xdK8OQDFe/aQ8dnnFapCFedJjoUQ1WnnX4s4vHkDoBZK+Nf4ZzGazWc9z9PXj+ufnqgtVTy2YxvLZ390lrMqpyA7i6Wfli2H1Bn743Z7AOBVnErXrW/R+NifGKwWIt99h7BnnkZfMua/k/7mzoV3klqYCkBDn4Z8NfwrOoV2qpaxCSHEhUoCC3FR+1f3oQwY15giixos+BaE8MfM/Ry+53rQq//7p8+YgSEjSzunJpZbCHGp+mcOw5DRj+AdEFjp8/3DGnDtY8+iN6jV0WMX/c7WP389rzGVzqCUfomgNzVHb2oFQMOUVXTb+Bq+efGYGjYk5ptv8B02TDv3hwM/MGbpGPId6s+J9sHt+XLYl0T7Rp/XmIQQ4mIggYW46HVv2ZEbHu9OsYe6xMGvKIRNy704NLQPAIrdTubk17Xji2TGQohqs2ru51oFqLb9r6Bp1x5VvkZU63ZcNepBbX/F7I85tGn9OY/p7/nfc2TrJnVH54nJczDentB51wya7/sWg9uBZ48eNJ7/PdaWandtl9vFm5veZOLfE3EqaunZgQ0H8umQTwnyCDrnsQghxMVEAgtxSWjcMJKRzwzA6a1Wi/KzBbPHeRUnStZv27Ztw1yy3luSt4WoHgl7d7Fn1TIALF5e9PvfXed8rbb9B9PjupsAUBQ3v097k+SD+6t8nY2/rObv+V9q+yavq2gSDl2XPEFAulrMwefKK2n48UcY/PwAKHAU8PDyh5mzZ4523v9a/493B7yLh9HjnJ9JCCEuNhJYiEtGcKgfdz93BTp/BwDe9kC2thpNgYfaZdtYqJaWLMqXpVBCnC/F7WbZF2X5EH1vHYmnr995XbPvLbfTqk9/AJx2Gz++MYmMxOOVOtdW5OS36ctYPW8qoJZ8svr2ol9TE42/fQKjU/3373/TjUROfRe9xQJAUn4St/95OysTVgJg1Bl5odcLPNXjKQx6w3k9jxBCXGwksBCXFJ8AKyOfGYA1RO2Ua3H7s777o+R7hmNyqssbbPn5KG53XQ5TiAvevr9XkxZ3BIDQmKZ0uGLIeV9Tp9czZPQjRLVpB0BRbg7fTnya1JL7nE7C/izmvvAn+9d+CIoNAK+AZgyPMGCZU7YMMuj++2kwaRI6gxowxKbG8p/f/6NVfvIx+/DBlR9wU4ubzvtZhBDiYiSBhbjkePlZ+O+TffCNUL+R1Ol92dL5YfSKuhRKUdwUl6wJF0JUncvpZN23X2n7/W67C301fbtvNJm49rHnCY1pCqjBxTcvPsW+tStPOtZpd7Hm+4MseONnso7PAUX9d+0XFsMQq47ib2drx4Y+9RSh4x9Fp1O/dPjtyG/cvehuMoszAYj2jWbe8Hn0DO9ZLc8hhBAXIwksxCXJw8fMTY/1ILiR2pzLZfIhz6+l9n7igR11NTQhLnh7Vy8n+0QyAI3adSS6Q6dqvb7V25ubXniV8BZqJSdHcRG/T3uTH6e8RPyuHbicDpIPZfHVhF/Y9MvHOPLng6IudQpoEEX/giKKFy5UL2YwEP76ZILuuhNQk7SnbZ3GM6ufweFWl032bNCTucPnEuMXU63PIYQQFxudopT2F7045ebm4ufnR05ODr6+vnU9HFHP2Iqc/Do9lhNHcnEULsNliwUgxJFK5w8+oX1oh7odoBAXGLfbxRePjSUrKQGAWye9SWTL1jVyL0dxMUs/eZ89q5dXfEOnK0mjqPjrrVHrdnTcexTXdvWLA53FQuS77+IzaCAAufZcnlr1FGsS12jn3NjiRp7t+Swm/emb+QkhxMWsKp+lZcZCXNIsHkb+9VAnIpr7g86qvR6UGcr7U2/n631fc5HH3kJUq0Mb/9aCioZt2tdYUAFgsloZOnY8wx98HO+g4LI3FIXyQYXZw4vLr7+Fzpt3aUGF3seHRp99qgUVh7IO8Z/f/qMFFXqdnie7P8kLl70gQYUQQlSSsa4HIERdM1uNXD2uI/Ne2EB6nPrakegruH7dCiY2fJUtJ7YwsddEvM3edTpOIeo7RVHY8OP32n5pediapNPpaNGzH5kpDdjyx3JcjsMorix0OgiMbECHwb1p1rAxKePG4UhSl2cZQoJp9MknWFuqyx+XHlvKc2ueo9CplqP2t/jzVv+3JJ9CCCGqSAILIQCTxUDXYS1ZNOt3ANw6J0dajOaOVZ8y03MR+zL38Vb/t2gV2KqORypE/XVsxzZS4w4DENakGdEdOtf4PU/E5fLX7L1kJRdgMLfEYG5JaLQPg0e2ITDCi6Jduzl+z724srIAMDVsSKPPPsXcsCEut4v3Y9/n450fa9drFdiKqQOnEukdWeNjF0KIi40shRKihJd/WY19RSnCrTeh+NzH4N2dOZZ7jNt+v43vD3wvS6OEOI2tf/6ibfe47iatwlJNcDncrP/pMD+8sYWsZLXak96g47LrmnDDk10JjPCiYP164u+4QwsqLK1aETNvLuaGDcm15/LgsgcrBBXDGw9nzrA5ElQIIcQ5khkLIUp4ePto2z7WQooBRW+gec4dZCR4Ehu1lkl/T2JzymZe7PUinibPuhusEPVMVkoSR2O3AOAbEkqz7pfV2L3S4vNY+sUeMpPKykKHNPJh8MjWBEWqSxZzFy0m6fHHURxqZSePbl1pOHMmBl9f9mfuZ/yK8cTnxQNqPsX4ruO5o80dNRoMCSHExU4CCyFKWH3KKh2EtvZHt/sAxwwtQKfnsuM3o8eTrZFL+OPoH+zJ2MPbA96mRUCLOhyxEPXH9sW/lyRNQ8crh1db34ryXE43m/+IY8vCYyhu9V56g47uI2LoPCQag0GdhM/67jtSJr4EJY0uvQcNIvKdt9FZLCw4uIDXNryGzaU2yvO3+PNm/ze5LLzmAiEhhLhUyFIoIUp4+JTNWNgK8rnyhRFEJ/6lvdbj+NVcnnAjKBCXG8d/fvuPVI0SArXs667lSwEwmsy0H3RVtd8j7Xge37++mc1/xGlBRXBDb256pjvdhjfGYNCjKArpH3xIygsvakGF3/XXEzXtPWxGhefXPs+L617Ugoo2QW345upvJKgQQohqIjMWQpQwe3ii0+tR3G6K8nKxNGxI75taYvzyRw43vR6AtgmXE0gwv0R9iN1t57UNr7E2cS2T+kwi0BpYx08gRN3Yu2YFtpJu9S379MPDp/p6Brmcbrb8GceWP4/hLp2l0OvoOjyGrsPKZikUl4sTr00ma+5c7dzAu+8m9InHicuNY/yK8RzKPqS9d0vLW3iy+5OYDeZqG6sQQlzqZMZCiBI6nQ5rSZ5FcX4+AAG33UaroHRa7p8LivoNaHhCa+5OeQG9W13qsTJhJTf8cgPrktbVzcCFqEOKohC76Ddtv/OQq6vt2ieO5vLda5vY9HucFlQERXpx49Pd6HF1Yy2ocNvtJD72eIWgIvTxxwh78gkWxS3i1t9u1YIKD6MHr1/+Os9f9rwEFUIIUc0ksBCiHA8tsMgFQGcwEP7qK0Slb6Ldns/QuZ0AmOICGZ/6LiGGMADSi9IZtWQUb29+G4fLUTeDF6IOpB49TFp8HADhzVsS1qTZeV/TYXexdv5Bfnhjs5agrdfr6DY8hpue6U5Io7Jli668PI7fex95CxeqLxgMhL8+Ge+7bufV9a/yxKontP4UTf2a8s2IbxjRZMR5j1EIIcTJJLAQopzSGQt7UREupxogWJo2Jfj/7d13fFRV2sDx352ZTHrvlQAh1NCL9I4gIKAioi6IrrosqCzqCuqruNb3ZVV0cUXXgqsi2CiKAoIQipRQAoQWkpDee51Mff8YmBBJIBBgCD7fz2d05s499z6XgeQ+c85zzpy/ElBwiK5Hl6E2W7dXnrHwSMYrDPYdZmu//Nhy7v/5flLLUq936ELYxfHtv9qedxk2utnHyzpVwsqX9xG/OeNcLTj+Ee7ctbA3/W5vg1pT92vLkJ9P2p9mUL1vHwCKszPh/36PwqFduOfHe1h5aqVt34ltJrJi/AraeLVpdoxCCCEaJomFEOdxOq+A+9xwKADfhx7CsUMHfEtO0D3+HRxUJgCK0qoZGHcvT0YvQKOyliwdLzrO3T/ezdenvpbCbnFTMxmNnNgVC4DawYHo/oOu+Fj6GiPbvjzJmrcPUV5QYz2mRsUtk9tw1zO98A93r7d/bVISadPvpfbkSeu+Xl5EfPoJPwXlcc/6uqFPjmpHXuj/Aq8OelWmiBZCiGtMEgshzuPsVld0qqussD1XHBwIfvUVUKvxLD9DjwNv4uxq/edTmleDZU0rPuj+GZEekQDUGGt4ec/LzN48m7yqvOt6DUJcL6mHD1BTXgZA29634OTqdmXHOVrIV//Yy7Ed2bZtwW09mfZ8H3qNjUSlrv+rqnLnLlLvmY4hKwsATUgwPsuXsbD4U17e87Jt1qcoryi+Gv8VU6Ov7WJ9QgghrCSxEOI8Tm51N0Y1FeX13nPu3BnfB2cB4FaWxi3ZX+AV6AxAdZme+I9LeLvdh9wdfbetza7sXUxZN4Ufkn+Q3gtx0zkWWzcdc+ehIy67fU2lnl8+Ocb6945QWWJNBjSOagZPi2bKkz3xDnK9oE3JV1+R8eijmM/2KDp26kjZO88w7eh8fs2oG5Y1vcN0vhr/Fe282112XEIIIa6MJBZCnOf8aTJrzuuxOMdvzhy0kZEAKId2MSI8icDW1jYGnYlf3j/JPZpHeH/U+wQ4BwBQoa/g2Z3PMn/bfIp1xdf+IoS4DmoqK0g5YK1tcPH0IrJrzya3tVgsnN6fx1cv7SVxX12PXnhHb6b/T1+6Dg9DUdXvYbCYTOS++hq5L/0DTNahiK4jhvPzUwN58ODT5FfnA9YF794d/i7P9nsWJ41Tcy9TCCHEZZDEQojznCvehvpDoc5ROTkR/MrLttdl773NbVP9iezqB4DZZGHTx8dwOxHB95O+rzf7zOb0zUxZO4Vf03+94LhCtDSJu3dgMlpnSes4aCgqddNW2q4qreXnZUfZ9NExairOTpDgomHEjI5MfLw7Hn7OF7QxlZWRMXs2JZ9/btum3DeFp27NZ9np5Viw9gb2C+rHtxO/ZXjE8OZenhBCiCsgiYUQ5zl/9W1dxYWJBYBL795433svAJaaGgpeXsTYRzrTaVCIbZ9d3yZx9Id8Xh/4Om8OfRMvRy8AinXFPLH1CRbsWECJruTaXYgQ19j5w6A6DRl5yf0tZgsJsZmsWLSHM4cLbdvbdPdn+ov96DgguME6CN3Jk5y5aypV23dYN2g0JP3lVu6N3MCJ0lPWTYqGeT3n8eGYDwl0DWzmlQkhhLhSN3Ri8frrr9OnTx/c3d0JCAhg8uTJnDp1yt5hiZvY+T0WDQ2FOsd//nw0IcEAVO/eQ8Wa1Qy7rz19J7a27XN4cwabPjnGiNCRrJ60mmHhw2zvrU9Zz6Q1k/gp5SepvRAtTnF2FjmnrT+L/SMiCYi8+BSuRVmVfP/PA8R+lYheZx3G5OzuwK0Pd2Hso11w9XRssF3ZDz9ai7QzMqwbvDz58uE2POu9BcPZaZ+jvKL4cvyXPBTzECrlhv6VJoQQN70b+qdwbGwsc+bMYc+ePfzyyy8YDAbGjBlDVVWVvUMTN6lLDYU6R+3mSvBL/7C9zvvf/8OYn0+f8a0Zfn8Hzn3xmrQ/n7Vvx+Nq9ODd4e/yysBX8NBaazJKakt4ZsczzP11LrlVudfmgoS4Bs5fu6LT0MZ7K4x6E7vXJPP1q3HkptRNhtBhQDD3vngLUb0CGuylsBgM5L72GtlPP41FpwOgOiqEv80wstYrBQAFhVldZrFqwio6+Xa6WpcmhBCiGRRLC/q6tKCggICAAGJjYxkyZEiT2pSXl+Pp6UlZWRkeHh6XbiD+0CqKCvnwrw8A0K7vAG5/8tmL7p+9YCFla9YA4Dp4MOEffoCiKKQeKWTjRwkY9WYAPPycGP/XbviEuFJYU8hre1/jl7RfbMdxdXBlXs953N3+bvnWVdzQLGYz/3nsISoKC1AUFY8u+wxXL+8L9ss4Wcy2L0/Z1qQA8Ap0Ydi97Qltf+H+5+jT08l66ml0R47Yth3tF8AbQ4owaKxJSLh7OK8OepUeAT2u4pUJIYRoyOXcS7eoO5iyMut86T4+Po3uU1tbS3l5eb2HEE1Vb7rZykv/3Qlc8Awaf38AqnbsoHTV1wBEdvXjjqd64eqpBaC8UMd3iw+QcbwYP2c/3hr2FkuGL8Hf+WxbQxWv7n2VWRtmkVKWcrUvS4irJuN4AhWFBQBEdutxQVJRU6Fn86fHWbck3pZUqNQKvW+LZNrzfS6aVJT98ANnptxhSyrMGhWf3Kbl5eF1ScW09tP4duK3klQIIcQNqMUkFmazmXnz5jFw4EC6dOnS6H6vv/46np6etkd4ePh1jFK0dA6OTmgcrMnA+StvN0bt5VVvlqi8//s/9OnpAPhHuHPXgj74hVuTFX2NkR+WHiZhu3VRr5ERI1kzeQ13trvT1v5g/kHuXHcn7xx8hxpjDULcaBobBmWxWDi5O4cVi/Zyam/d0L7gKE+mPdeXfre3QePQ8MxRpsoqsp9ZQPbTf8d8dqhrkZ+WZ+9X2NDNDIpCiGsIH4z+gOdveV5W0BZCiBtUi0ks5syZQ0JCAitXrrzofgsXLqSsrMz2yDhX9CdEEzmdnRlKV9G03i63oUPxmjoVAEt1NdkLn8Vydp59N29HpjzZ0zYdrcVsIXbFKXZ+exqz2YKH1oNFAxbx8ZiPCXe3JsFGs5GPjn7E5DWT2Zq+9WpfnhBXzKDTkbh3FwCOLq607d0PgNK8atYuiWfLZyfQVVmLqrXOGobd154p83viE3LhQnfn1Bw5wpk776Bs7Vrbtu0xKv42w0RKsIKCwv0d72f1pNUMCBlwDa9OCCFEc7WIxGLu3Ln8+OOPbN26lbCwsIvu6+joiIeHR72HEJfjXAF3TWVFk2dsCnjmGRzO/t2sOXCA4s/+a3tP66Rh3F9i6D6qrvfs8OYMfl52FL3Oug5A3+C+fHf7dzzS9RE0Kg0A2VXZPL71ceZumUtmReZVubZzjHo9R7ZsIPaLTzixcxvms4mQEBdzOm43Bp21Jy26/yAUNOxdl8JXL+8l61Td9MlRvQO4d1E/Og8OvWChu3PMtbXkv/mmddanNGsvn85R4d2JKpZOUKFzVIjyiuLz2z7nmb7PSC+FEEK0ADd08bbFYuGxxx5j9erVbNu2jXbt2l32MaR4W1yur19aSMbxowA8/tm3ODg1bfXe6rg40mbMBIsFRaul9Xff4vi7v7PHdmQR+1UiFrP1n51PiCvj/hKDV0DdTdOZsjO8tvc19uTssW1zVDvycMzDzOoyC61a26zrq62u4ttXnic3+bRtW0SXrkx+5kUctA1P+ykEwLev/g9pRw4BMHTGs5zYba0fOsfdx4kh06OJjPG76HFqDh8me+Gz6FPq6olOB8O7k9TkeStoVBoeiXmEP8f8GQe1w7W5GCGEEE1y0xRvz5kzhy+++IIVK1bg7u5Obm4uubm51NTI2HNx7Ti5N20ti99z6dMHn5kzAbDo9WQ/swCLwVBvn86DQ5n4WDe0ztZeieLsKr59Yz9px4ps+7T2bM2Hoz9k8dDFBDgHAFBrqmVp/FImr53MlrQtzVr7Yssny+olFQDpCUfY/sUnV3xMcfOrKCok7Wg8AA5OPuxZV2NLKlQqhR5jIrjnhb4XTSrM1dXkLV5M6vR7bUmFQQ0rhqr4nxnWpKJHQA++mfANs7vPlqRCCCFamBs6sXj//fcpKytj2LBhBAcH2x6rVq2yd2jiJubsVpeNX2wti4b4/20e2rZtrW2PH6dw2QcX7BPe0YepC3rjHWTtpaitNvLj0sMc2JBqSxgURWFs5FjWTVnHjE4zUCvWoteMigzmbZvHgxsf5ETRicu+tsKMNE7ssNZtOLq6MuieGWgcrb0U8Zt+Ijvx5GUfU/wxHNu+Fc7+/bTQ3rb+RGi0F9Oe78uAO6LQOmkabV+xZQvJEyZQ/PEnYLZOw5wUBAtmqVkzQIWXiy+vDHyFz8Z+RpR31LW/ICGEEFfdDZ1YWCyWBh8PPPCAvUMTN7F6U842sYD7HJWjIyFvvAFqayJQuGwZNfHxF+znFejCXc/0pnW3s9/uWmDPmhQ2fXQMQ21dvYOrgytP93maVRNW0Teor237/rz9TPtxGi/seoGC6oImx7dvzTe257fccQ/9ptzNoGl/OhuDhd3frriMqxV/FOknitj7/Xrba5W2I84eWkY/2IlJf+tx0eJsfWYmGbP/SuacuRizcwBrL8WXw1Q8P1NNVoCae9rfww9TfmBS1KQGF8wTQgjRMtzQiYUQ9uDkfn6PxaWnnP0955gu+M2ebX1hMpH11NOYKi7s+dA6axj3aAx9J7a2bUs6kM93/7efsoL6w/3a+7TnozEf8c7wd4hwjwDAgoXVSasZv3o8Hx75EJ1Rx8WUF+Rzctd22zV2GzUOgB5jJ+IZEAhA6uGD5KUkXfY1i5tTZYmOTR8lsPbNjRj1hQCoNKF0H9WF+166hei+QY0mAmadjsJly0iZMJHKrXWzmx2OVHjyz2rW9lfRJaAbX43/iuduec62Ir0QQoiWSxILIX7H2a2uxkLXhEXyGuL3l0dx7mFdwMuQmUnuS/9osC5CUSn0Gd+a22bH4OBk7eUoyqri69fiSImv3xOhKAojIkawZtIanur9FO4OZ2evMtbwr0P/YsLqCXx/+nuMZmODMZ3YuQ2LxToEpefYibaidJVaTe+JdWtpHNmy4YquWdw8jAYT+39K5csX93B6fz4m/XHbe/0m38bgadE4Ojc87MliNlO2bh3J426jYMk7WHTWhLfYDd6erOLVe1ToQ3xZ1H8Rn9/2OZ18O12XaxJCCHHtSWIhxO84nZdY1DTQ09AUikZDyOLFqM4Wgpf/+GO9efp/r3U3f6Yu6I1XoLXuQl9j5OdlR9n5zWlMRnO9fR3UDszsPJP1d6xnWvtptvqLvOo8XvztRaasncLG1I2YLfXbnfptu+155/MWNgPoNHgYDo7WROPkru0Yai/e+yFuThaLheRD+axYtJe961Iw6s1YLEbMBmvtjdpBS6/xoxptX71/P6l3TyP7789gzLEOezIrsL6Pwt8eUXOgsxMPxfyZ9VPWc2f0nagU+RUkhBA3E/mpLsTvnD8r1OUWb59PGxZK8EuLbK/z/vEy+rS0Rvf3DnJl6oLetO0ZYNt2eEsGq988SEXxhTf63k7ePH/L83w78VuGhQ2zbU8tT+Wp2KeYvn46v2X9hsViobwgn4L0VACCo9rj4R9Q71haZxei+w8CQF9TTdL+vVdwxaIlK8qqZO2SeDZ8kEBFkfXvm6JSCIsuxWK2vo7uNwBHlwvrKXSnTpExZy5p9/8JXUKCbfvBNgpPPaTms1FqhrYfx7op65jXax5uWrcLjiGEEKLlk8RCiN9pzqxQv+dx22143nkHYJ1qM+vJp7Do9Y3ur3XWcOvDnRlyTzQqjXXset6Zcla9uo/Uo4UNtonyjuJfI//Ff8f9l54BPW3bjxcd59HNj/LQpofYuu1b2/Y2vfo2dBg6Dxlhe356z66mX6Ro0XSVBrZ/dYpVr+yrt8hdWAdvpj3XB5P+mG1b52H1eytqT58mc97fODNpMpVbtti2pwbAy/eoeGOaGu+OXfl83OcsHrqYULfQa39BQggh7KbxuQGF+INqzqxQDQl67jlqDhxEn5qKLiGBgnffJeCppxrdX1EUYoaFEdjag43/SaC8UEdtlZH17x2h+6hwbpnUFrXDhd8J9AjowfKxy9mZtZN3D73LyWLr8JW43Di89qURijMAbXr2afC8oR074+LpRXVZKWcO7Uevq0Hr5Nzs6xc3JpPJzLHt2ez7MYXaqrq6HA8/Jwbe1Y7W3fyoLCki7bB1QTwP/wAiOncFoDYlhcKl71H+88+2KWjBWkexaoiKbTEKrbxas7j7HMZEjpEhT0II8QchiYUQv1OvxqKZPRYAKhcXQt78J6n3TAeDgaKPPsalf3/cBg68aLuAVh7c/Wwftnx2gjOHrb0V8ZszyDxVwuhZnRuc4lNRFAaHDWZg6EA2pm5k6aGlZJSlE1BiXauiytHI08cX8aj2L/QP7l9vRh+VSk27vv05/MvPGA16Ug8fJLrfxWMUDbNYLOhralBrNGi0zVsp/WqzWCykxBewe3UyZfl1s49pHNX0GtuK7qPC0ThY63aOx/5qK/jvPHQkumPHKPr4Eyo2bbKtRQFQ6gqr+6vY3F3BxzOIRd3/yu1tb0ejkl8xQgjxR6JYmrOEbwtwOcuQC3HOvx64G31NNd4hYTz49rKrcsyiT5eT/7//C4Da25vWq7/HISjoku0sFgtHfs3kt9VJmI3Wf65qBxUD7mhLzLCwi877bzQb+X7Xf8lY+j0AZ4KriO1hTVK6+nflz13+zNDwobZvlFPjD/Dd6y8C1mEvY2fPu+Lr/SMyGQ3Erfue+I0/UlVqHVYU2KYd3W8dT6fBw1GdXd/EXnJTyvjtuyRyksvqbY/uF0j/yVG4eTvatlksFj7926OU5GQDME7rhRJ3oF67cmdY01/Fpp4Krm4+PNz1Ye5ufzeOakeEEELcHC7nXlq+ThKiAc4eHuhrqqkpK71qx/SZOYPqPXuojI3FVFJC1hPzaPX5f1Eu8Y22oih0GxlOaHsvNn18nJKcKkwGMztWnSYtoYgRMzri6tnwjZxGpaFddQAZZ1+bgt0Aa2JxpOAIj299nEiPSGZ0nsHENhMJ6xSDxtERY20tZw7tx2I2o6hkGEtT6HU1rF38CukJh+ttz0s5zcb3l3Bw/RrGzplPQGSb6x5baX41e9Ykk3yw/hTGIe28GHBnFIGRF/6iyDh80JZU+FbUoKQk1x3PBdb3VbGhl4KLuw+zO89geofpuDo0vlCeEEKIm5/0WAjRgJUvPkPWSWvR6uP//dY2FWtzmUpLOXPnXRiysgDwvv9+gp5/rsntjXoTu1cnc2Rrpm2bk5sDQ6e3J6pXQINt1r+7mJO7YgGY/so/OeKQygeHPyCptP5CeD5OPtzT4R58f8omI946rv7+15cQ2Cbqsq7xj8hisbDuzVdJitsDgKJSEdq+E7qqSgrPzsYFoFJrGDbzz3QfM/66rDBdU6ln//pUErZnYTbV/aj3DnKh/5S2RHb1uyAOfVoaJStXsWXHL+S4WhPWbml5hJZWku0DP/RTsb2Lgqe7Pw90foCp0VNxcXC55tcihBDCPqTHQohmcvf1sz2vLC7CO/jqzGaj9vIi9J13SJs+HYvBQMkXX+Dcozue48c3qb1Gq2bwtGhadfFly2cnqC7Xo6s0sPE/CSTt92fI9Pa4eNTvAclOPGFt6+hIYOsoxmo6MKbVGHZm7WT5seXE5cYBUKwr5t/x/6azyZs+WH9wpByMk8SiCY5s3mBLKhxdXJmyYBGh7TsCkHk8gV8/XUZBeipmk5FfP1lGYVoqIx58FLXG4ZrEo68xEr8lg8Ob09HrTLbtzu4O9J3Yhk4Dg1Gp63qiLEYjlbGxlKz4iqpdu9Bp1OR2agWA1mCkwrWSxSNU7G+nEOgezNNdHuSOdnfIkCchhBD1SGIhRAPcfHxtzyuKrl5iAeDcpTOBzz9P7ovWWoac/3kBp/btcYxq+g18RGdf7nmhL9u+OGVboTv5UAGZiSUMvjua6L6BKIpCRXEh5QX5AAS3jUatsf6TVykqhoQNYUjYEI4VHmP5seVsStuE2WIm1a/cllhs2r6K0l5ejIoYhYP62twEt3S6ykp2rvyv7fW4ufNtSQVAWKcu3Pva2+z86jMOrF8DWFc3L8rK4Pb5C3Hx9LpqsRj0Jo5uy+TQxnR0VQbbdo1WRfdREfQYE4HWqe7Hvi4xkbK1aylf9wPGgrphUum+HljO9mQkh1by4SQNUV5RvNRpBhPaTJC/C0IIIRokiYUQDXA/L7GoLCm66sf3unsqNYcOUbZmDZbqajIff4LIr1ehdmv6wmHOblrGPtqFpAP5bF+ZiK7SQG2Vkc2fHud0XB7D7mtP9qmTtv1DzrvZPV9nv84sHrqYeZXz+OL4F3x3+jvKXQx4VDvgnG/g2V+f4Q03b+5sdydTo6cS7Bbc7Ou/mexd87VtvZOOg4fTtle/C/bRODgwbMafCWjdlk0fvIvJYCDr5DG+fG4+k//+Av4Rkc2KwWQwc2xnNgd+TqW6vG6dFJVKocPAYPqOb42rl7V3wVhcTPmP6ylbswbd8eMXHCvHCxKDPVBZwKxYMI7swAd9HqR/SP/rMnxLCCFEyyU1FkI0IHHvLn5463UABk2fSb/JU6/6Ocw1NaTeM53aU6cAcBs6lLB/v4dyBTMH1VTo2bEqkdP7823bHBzVePntJyNhKwBTFrxImx4Nr2Fxvgp9BV8s+R+qD1hrMDb1ySPb37ryskpR0T+kP5PbTmZ4xPA//FCY6rJS/jPnQYwGPRoHLbOWLMPDr+Fal3Nykk6x9p+vUlVSDICDkzPjH3+ato0sXHgxJpOZU3tyiVt/hsri2ro3FIjuG0jfCa3x9HfBWFxMxebNVGzcRNXevWA01juOUQUHoxQ2d1eo1rgz4Jh1KGBwj67cu+C1y45LCCHEzUNqLIRoJjfv83osihte8bq5VM7OhL37Dmfunoa5rIzK2FgKliwh4MknL/tYzu5axvy5C1G9C4j96hTVZXoMtSYyT9R9Ix3SruEei99z17ozYvBd/HjgDQAGGDqwRknAaDFitpjZlbWLXVm7cHdwZ2zrsUyKmkRXv65/yG+zD21cj9Fg7SHoOnrcJZMKgOCo9tz32lusXfwKeSlJGHQ1rFn8MkPum0XvCVOa9OdoMpg5sTuHgxvSqCjW1XuvTQ9/+k5sjadDDRWb15K2cRPV+/bVW3finKQg2B6jYlcnhQoXhXCXMEZv8cBMFQAjps5qyh+DEEIIAUhiIUSDfl+8fa1oW7UibMnbpP/5YTCZKPrPRzhGR+M5ceIVHa9Nd39C2nmxZ00yCTvSsJisPRiKypcd36Qx4I6oRqemPV9455i6Y5b5sOmJTXx7+lvWnF5DdpV1CtIKQwXfJH7DN4nfEOkRyYQ2ExgTOYbWnq2vKPaWxlCrI37TesA6C1Sv8ZOa3Nbdx49pi95gw7+XkLhnJ1gsbP/iE4oy0xn98JxGi7oNehPHd2RzaFMaVWX6eu9FdPKheyczTidiKX/iZfITEuqtin1Ovifs7qgQ20VFpr+CWlEzNGwo09pPwzNFx4aStwBo1bUHQW3bNfmahBBCCEkshGiAq5c3iqLCYjFTUXTtEgsA1/79CVywgLxXXwUg57nn0bZqhXPXrld0PCdXB4bd1wHvoFI2f2i9sVRpQkjcm0fq4UJ6jYuk64gw2+rKDXHx8MS/VWsK0s6Qn5qCm9mJ2d1m82jXRzmQd4A1SWv4Je0XaozWlZtTy1NZGr+UpfFLifaO5tbIWxnTagyRnpFXdA0twbHYX9FVlAPQvv/gJvVWnM/B0YkJT/yd3WHh7P72K+sxt22mNDeH2598FhcPT9u++hojCduziN+cTk2Fod5xQvxNRFXvx3Hlj1QWF1PZwLlyvWBPB4XdHVScCQIUhXD3cP7adiJToqYQ5BqE2Wziv289ZmvTb8rdl3U9QgghhCQWQjRApVbj6uVFZUnxNRsKdT7v+++jNjGR0m++waLXk/HXOUSuXIk27Mpno9KVp9uea13CsAB6nXUdjKOxmdwyqS3RfQJRVA0PvYno0o2CtDNgsZBx7AjR/QaiUlT0CepDn6A+PNfvOX5J+4W1yWttU9YCJJYkkliSyL8O/Yv23u0ZGTGSIeFD6OjT0bbCd0tnsVg49PM62+veE++4ouMoKhUDpt6HT0gYG99/B6NBT9bJY3yxYB4T5j2Du18kR7dmcmxnNvqa+nURAdWniTj+HR6V1uUPTb87dmqAtW5idwcVaQGAouCudWdq5Fhub3s73fy71Rt2dXz7VooyrX9nQqI7EtaxyxVdkxBCiD8uSSyEaISbrx+VJcVUlZViMhptU7VeC4qiEPQ/z6M/c4bq/fsxFRaS8cgjRK74ErWX1xUdM+tUXX3FlL+P5+RuHSd2ZWOxQGVxLZs/Pc7hLRkMuKMtYR18LmgfEdPNNj1q+tHDRPcbWO99FwcXJkVNYlLUJHIqc9iUtolNqZs4UnjEts+pklOcKjnFvw//G39nf9sUt7cE39KiF1VLOxpPcbZ1kcKwjl0IbN22WcfrMHAonoFBtqLuiqICvnrh7zg4D0Gl7VGXAFjMBOQfJDJ9I25nh6Sdo9PC4UiF+LYKh9ooFHtY22hVWoaFDmBCmwkMCx/WYMG9oVbHrvOmzB00fcYfsmZGCCFE80hiIUQjbAXcFgtVpcWXPdTlcilaLWFL/0Xq9HvRnzmDPiWFjDlzifjkY1SOlzf7ksVsJifROtWss4cnQW1aEdxWoevwMH77Pon0Y9YZiQrSK1i7JJ6wDt70Gd+akHZetmOEdeyCSq3GbDKRfuxIQ6exCXYLZmbnmczsPJPsymx+SfuFjakbOVp41LZPQU0B353+ju9Of4eDyoHuAd3pF9SPfsH96OzXGQdVy1kb4dCGH2zPe4yd0OzjmfV6vAxm+nQez297N6E35IHFjKF6GypDJlrnEQTnH6ZV+mZcaqx1MyYVnA6GY60UElopnAxXMKmtyYCT2onRYYMZ3Wo0Q8KG4OrgetHz7/72KyrPzlLVtvcthHeKuej+QgghREMksRCiEecXcFcUFl7zxAKsK3OH/+dDUu+ZjqmwkJoDB8hesIDQN99EUTV9GFFxdia6Kuto+5DojrZvn31D3Zj4WHcyThTz2/dJFGZY98k8WULmyRJrgjGhNSFRXmidnAmKak/2qeOUZGdSUVyIu49fo+c8J8QtxJZk5FblsiNrB7EZsezJ2UOtyTolqsFsIC43jrjcOJbGL8VZ40yvwF70DepL94DudPTpiJPG6ZLnspjN5CQlUpCWgq6yEkcXV/xbtSYoKvqa9TCV5uWSctA69MvN14+oPv2b3NZiMmHIzqY2OZnaU4nUJiZSnpROmi6ErKAB6Jz9UVzvQV2zC1PtfgDMhiSoOoVfdh5ZPrUkRFgTicRQhVptXa+Ch9aDgSEDGdVqFINCBzW5Ryg3KZH9P6wGQK3RMOS+B5p8PUIIIcT5JLEQohEefv6252X5uYR26HRdzqsNCyP8/fdJmzEDS00NFT9vIM/Hl8Dnn2vy8JSsUydsz0MbWBgvvKMPdy/sQ+K+XOLWp1JWYC3CPpdghLb3osfoVoR3jiH77JCq9KOH6Tx05GVdS5BrEFOjpzI1eio1xhricuPYlrGN37J/I6syy7ZfjbGGnVk72Zm1EwCNoqGDTwe6+nelq39XYvxiCHMPs9VomE0mjmzZyN41X1NZdGENjKuXNzEjb6XnbZNwdnO/rJgvJX7TettsS91H34bqd+uOWPR6DPn5GDIy0KeloT+Tav1/Whr6zEwwGLAApZ5RZIcMIj9wDBZV3Y9iRVHjSXsca8+Qoy0ARYVOq2Zfm2COR1ZwsH0pJrX1/J18OzEodBCDQwfTxa8LGtXl/Ug36HRseH8JFot1Ktr+d92LT0hYM/50hBBC/JFJYiFEI7xD6gqnS3KzL7Ln1ecc04XQt98i869zwGym5MsvUbm6EjD/b01qn31eYhES3fD6FYpKof0twbTrE0jivjzifkql/GyCkXWqlKxTpbh41A3BSk+4/MSi3jVpnG01FgCZFZnE5caxJ2cP+3L3UVhTlyAYLUYSihJIKEpgxckVALhoXGjn3Y722ki8NmWjT8tv8DwAVaUl7PluJfEb1zP0Tw/ReejIq1IzUFteRsKWjQCo1WrCCkrIe/11DDm5GHJzMebkYCwsbHCaVwC9gxt5YYPIDh5IleuFK5jXcoIznts50PU4Fa7gVq1m0GE/gkqcUFDonOpBh1J/IqaOZtTAu/BzvnQPUmMsFgsb3l9iK9j2j2xzxUXoQgghBEhiIUSjvIJCbM9LsrMusue14T5sGMGvvUrOgoUAFH34ISpXV/wefeSSbbMTrYmFWqMhsE3URfdVqVV06B9MdF9rgrH/p7oejKoyL6w/JowkxR2goliHu8+lhyg1RZh7GGHuYUxpNwWLxUJKWQqH8g9xuOAwRwqOkFKWUm//amM1yWnHiN5TiF5X96MrN9CAPtIdL98AfM0eOGZUUXkiDcxmdJUVbHx/CRkJhxn557+idXKud0yLxYK5vBxjURGmoiKMZx/W58UYiwoxFRVjLC7CVFhEirOG2lDrzXxQQQnlby255HWaVBqKfGPIDr6FYu+OoNTv4dBpKjkZsJfjAb9R7lyXXCkoBAS3wiWmG/7JjhRtisNsNKIurSXrPz+y72QVQ+6bhZv3hYX3l2KxWNjx1WfWNTQArbMz4x97+ppOUCCEEOLmJ79FhGiEV2CQbS2L691jYYth8mTM1dXk/eNlAArefhuViws+f7q/0TbV5WWU5FgToYA2UWi02iady5Zg9Asi9XAh8ZvTyUkuQ6UJw2xMRV9TxmcLfqRNj2g6DQohorMvqkamqr1ciqLQ1qstbb3aclf0XQCU1ZaRUJjA4YLDnCw+SVpWIj32guvZpKLK0Uhsj0LyfWrPHuUUqMAhxEKIo5ouKd74l7oBcHzHVhJ3baGVRo9XlQnnSgNOFTocymtQTBeuSN0Qk6KQ3CrC9rp1QVm99y0KVLipKfRQyHMzU+wdhd61F67mnmgsF9Y75LgnczxwFym+hzGpjAS5BtHXdxRd/LoQ4xdDJ99OuGmt8TMIikZmsOHfb5GbfBqAEzu2khS3hx63jqfXhCn11r246HUYjcR+8TGHfq4rQB839yl8w8Kb1F4IIYRojGKxNNJnf5MoLy/H09OTsrIyPDw87B2OaGE+euwhyvLz0Do7M/fTr+02BWfRRx+R/883ba+DFr2I9z33NLhvUtwe1v7zFcC6vsLQ+x+84vPmppSx+ZMV5J22rjCtcR6GxqknAG7ejrTvF0S7PoH4hrpd8TmawmgwsGrRM+QmJQKg9XLFuZ0L5pxslLxCXEpq8Kmw4FsO7rq6dtleriSEBWBUW2sznGsN9E3JxlVvbOg0jap0gpQADzK9z9XdVFHqlU+hBxR5KBR6QImriqCq9rQp6kbr4hicjRfWdlRqS8kISsDcroSwCH+ivKKI9o6mrVdb3LWXrgUxm00c3bKRnV/911acD9bF9rqOupWYEbfiGxbRaPvcpER+/exD24xhAKP+/Fe6jb6t6X8YQggh/lAu515aEgshLuK7114g9fBBAP7ywee4ennbLZb8d96h6P1ltteBzy7EZ8aMC/bb/uWnxK37DoDbn3yWdn0HNOu8hRlpfPbUHAAcnNugdpp8wT4+Ia606xNIu96BePo7X/D+lTLk5aM7lsC2NV+TmGddN8K51kD/pCycjL9fEq5hlY4O7GsTjE5rnc5WazDSMy0Hi0pPmQuUuyiUuUK5C5S6Kmf/D+WuCmUuUOYKoOKO2BBbb8m6gTkUe+rRGp0JK2tPq5JOtCrugpOpgWldHcx4dlDRrm8Anbu2xs3x4lO/NkV1eRm/fbOChF83YjLWT5L8IiJpFdMNn9AI3Hx8MBmNlOZkk3r4AOkJddMGq9RqRj08h5jhY5odjxBCiJvX5dxLy1AoIS7CKygEziYWJTlZdk0s/B9/HAwGij76GIC8117HXFuL38MP19svqwmF25fDNywCN28fKkuKsZgyufXhDpzaU0BaQpGtRrk4u4q9a1PYuzYFnxBXImP8aBXjS1BrD1Tqpk+Ta66qomrvPip3bKdqx04MmZlkebmR2CoQAJXZTM+03IaTCgcHHAIC0AQF4RAYgNrPD42PD0E+PoRpHfjpl3WUFhagd9AQF9OO1rNuxxzijtlYjbPZiMZswN1kwGC2PkwWExqVBrWixrIjBZMuGQBtqzAe9p6LPs2BmiwFGvhqRqNV0aqzL216+hMZ44fW6er+qHXx8GTUQ7PpO+ku4tZ9y9FfN2EyGAAoTE+lMD31ou29AoMZN/dJQqI7XNW4hBBC/LFJYiHERXgHn1fAnZNNWMcudotFURT8n3wSxdGJwvfeA6DgzbcwV1Xh/8QTKIqC0WAgL8U6Bt8rKPiqJEKKotCqa0+OxW7GqNejdSxg/JxuVJXVknQgn6T9eeSmlNv2L86uoji7ioMb03B01RDe0YfQdl4Et/PCJ8gV5Xd1GRaDgcodOylbt47KX3/Fotfb3qtwdCAhrG7a35jiKoLad0IbGWl7OISG4hAchNrH56Jrfdw3ajTfv/EiOadPYarRkfrxWiY9+RyR3Xo22sZoMHF630l+3vPc2S0qKBlF2a4L61YcnNRExvjRtqc/EZ19cdCqL9jnavPw82fkg7Ppf9e9nNwVy4md26w1GI10RHsFBtPzttvpOmosak3LWZBQCCFEyyCJhRAXcf6c/kVZGXaMxEpRFPwfm4vi6EjBW28BULTsA4x5+QT/4yXykk/bvrkObX/11t1o1a0Hx2I3A5B25BARXbrh6ulItxHhdBsRTnlhDaf353HmcCF5qeW2b/Frq4wk7c8nab91algnVwdC2nkR2NoDHz812rjNVK38DGNu7gXnNGq1HO7QChPW4upOfQcycv6CK65zcXJz467nX2HtP18l/Wg8xtpaVv/vPxj/xNNE9xuI0WCiKKuKwowKCjIqKcyoID+tAF3JSixm63AjtWMvVOq6WZi8g12J6OxDq06+hLTzQu3Q9N6Zq8nFw5Oe426n57jbqamsIC8pkdK8XKrLy1Cp1bj7+hHQui1+4a3sVickhBDi5ieJhRAX4RcRaXtekJpsv0B+x++Rh1E5O5P32mtgsVC2ejXGggKyRg+17RPaofNVO1+rmO6256lHDjH43gfqve/h50yvsZH0GhtJTYWetGNFpB4pIuN4EXpd3bAlXZWBlPgCUuILzm6JwDFyLm5+mbjU5OGqVOMXE4l//xgOpeynfPcO6/VGRDLqsfnNvilWqbWMeujvbPrwLTKP78dsMvLDW2/g5jsQo6UXWOp6GSxmHfqqtVjMRQAoKl/c/QcTGu1PeCcfwjv54OF79epJrhZnN3ciu/eydxhCCCH+gCSxEOIi3Lx9bPUFuclJWMzmiw63uZ58/nQ/Gn9/sv/+dyx6PVU7d5JcmgNn742vZmLh4uFJQGRb8lOTyT+TTFVpSaPDrJzdtXS4JZgOtwRjNpkpyKgk+3QpWYlFZBxJQK8vQUGFovFHUflR6+RNrZM3RcRYD1ACxu/2YNT9BoCi0uLicztbP0/CwUmNg1aNg6P1oVIr1lE/FrBY/4Oh1oRBZ0KvM6LXmaitNlBVpqe6rJbaamvPg8UyCLW2BpP+GGChsmgnqA6jceyJovbFYirBWHsAzNYhXg5Obkx66gUiurSRb/yFEEKIRkhiIcQlBEVFkxS3B31NNcU5WfiG3jjz/XuMvRWNrw8Zc+ZiKi+nCBOgxtnZpV59yNXQukcv8s/22iQf2EfXkbdeso1KrSIw0oOio7+Suf0Tqqm/ZoRKcULtGAXqtqgcIgAzxppdmGrjbftonEeTn6YhPy3vql2LoqjQuIxBUXlj1O0CLGCuwFgTe8G+Tu4e3LlgEUFRba/a+YUQQoibkSQWQlxCUFtrYgGQl3z6hkosAFz69CFy5UoSHp+LUW39Nt0zJ5+iDz7A95FHrloPS1TvW9i7+msAkuJ2NymxMOv1bHlhAUfOJDb8vkWHWZcAJNjitJjrkg9X3xGg6ojJ2LRF7BqjcVDh4qnF1dMRF09H3Lwc8Qp0xjOgB0b9ZA78uIK0IwcvaBcR050xjzyGZ0Bgs84vhBBC/BFIYiHEJQS1jbY9z0lKpNOQEXaMpmGObVrDw7NgxXIAfKp0FCx5h+r9Bwh+9VUcAgOafY7Atu1w8/GlsriI9KPx1FRW4OzW+KJuutOn2fDsUySr6mos/Axm2o8ehyokmOzEE6SdLaKG+gmF2sGB4TMfptvo27BYLOhrjNRUGDDoTRhrTRj0Jgy1Jswmi21okqICBQWNVoWDkwatkxoHJzWOzhq0zpqLDGHyoXW3f1CUlUH60XiqSktwdvcgvHNXAiLbNPvPTQghhPijkMRCiEsIbBtle56b3PA37zeC7JQk23PvKuvy01U7d5Jy++0Ev7QIj7Fjm3V8RVFo338QB9avxWQ0cnJXLD1unXDBfhaTieLlnxH3349JDjpbh2Gx0DusLYNeeQO1i4ttX4O+loyEIyTv30vG8aOoHRwI7dCZnuNuxyck1HZeRxcHHF2u7fSovqHhN1xvlBBCCNGSSGIhxCU4ubrhHRxKSU4W+WeS0ddUo3V2uXTD68hsNpGecBgARxdXOr37L/Keex5jfj7msjKy5v2N8tHrCVywAIfQ0Cs+T5dhozmwfi0ACVt/uSCx0Kenk73wWbJPJHC8bd15hk+4g54zHrrgeA5aR9r07EObnn2uOCYhhBBC3BhujOlthLjBteraHQCzyUTa2Rv4G0l+SjK6ygoAIrp0w2PwYNqsW4v7eb0UFb9sJnn8BAqXLcNcXX1F5/GLiCSwTTvrOc8kk5+aAoBFr6foo49ImTSZsvhDHGoVhOXsQni9xt3eYFIhhBBCiJuLJBZCNEHr7r1tz88c2m/HSBqWeriu8PjcStJqLy9C336LkH/+E7WfHwAWnbX2Imn0GIqWL8dcU3PZ5+oyfLTt+cGf1lK5cxcpk6eQ/883MdfUcCQ8AJ3W2hka1rELQ/4kSYUQQgjxRyCJhRBNEN45BrWDdYz/mfgDWCwWO0dUX+qRCxMLsNYneE4YT9uff8J7xp/g7MxLpqIi8t/4X04PHUbua69Rm9z0xf86DhqKo4srAMdit3Bizmz0Kdaei+RAb/I9re85e3gy/vGnUanVjR5LCCGEEDcPSSyEaAIHRyfCO1kXcKssKiT/zI2zCndtdTXZiScB8A4Jw8P/whmg1O7uBD37LG1+WIf7uLrhUebyckr++zkp4yeQPH4Cef+3mPKNm9BnZmIxGGz7WYxG9BkZlG/YSPH/LaZ1bpHtvfiIQAxqFZndOpEY5GPbftuc+bj5+F6LSxZCCCHEDUiKt4VoonZ9B9iGHB3bvoXANlGXaHF9nDkUZ5uqNbJbj4vu69i2LWFvv43uL3+hePlnlP/0E5az073qk5Mp/l3PhcrdHUwmzLW1YKqbNjZCpZAeHU61owPlLo780qU1UGt7f/C9DxDZvddVukIhhBBCtATSYyFEE0XfMsg2HOrEjm0YdDr7BnRW4p5dtuft+vRvUhun9u0Jef012sVuI3DhApx79oQG1nkwV1RYC73PSyoANGoNQ4Jb4+TkfEGbvpOn0uf2Oy/zKoQQQgjR0kmPhRBN5OTmRvQtgzixYyu6ygqObv2FnuMm2jUmva7GVkzu4ulFaMfOl9Ve7eWFz8yZ+MycibGoiJr4eGoSEqg9fRpTQSGm0lLQaFA5OuIQGoq2dWtc+vTGpVcvVC4uhORms2vVF+SfScLF05t+U+6mtfRUCCGEEH9IklgIcRn6TLyDEzu2ArD/x++JGTkGB62j3eJJObAPo0EPQLu+/VGprrxQWuPri/vIkbiPHNnkNt5BIUx44u9XfE4hhBBC3DxkKJQQl8G/VWvbYm4VhQXErf3OrvEc/XWT7Xn0LYPtGIkQQggh/ugksRDiMg25bxbK2Wlb967+mozjR+0SR0lutm21ba+gYMI7dbFLHEIIIYQQIImFEJfNNyzCVpxsNhlZ989XKcpMv+5xHPhxje1515FjbcmOEEIIIYQ9yJ2IEFdg4N332xai01VV8tULT5MUt+e6nb+8IN82DMrByZnOw0Zdt3MLIYQQQjREireFuAIqtZoJ8xbw9UsLyU9NpraqirX/fIWILt3oPmY8ETHdcXRxabR9dXkZhelplOZlU5afh7G2FkWlwt3XH++QEELadcTJza3BthaLha2ffYjZZASg57jbcfHwvCbXKYQQQgjRVIrFYrHYO4hrqby8HE9PT8rKyvDw8LB3OOImo6+p5qelb5G8v35vhaJS4RcWgWdgEI4urqjUavQ6HdVlpRRlplNdVnrxAysKga3bEtmtF5HdexLSrgMqtRqLxULsF59w4MfVADh7ePLg2x80moQIIYQQQjTH5dxLt4jE4r333mPx4sXk5ubSrVs3/vWvf9G3b98mtZXEQlxrFouFk79tZ9eqzynLy70m53B0dSW0fSeqSkvIS0myblQUbp+/kHZ9B1yTcwohhBBC3FSJxapVq5gxYwbLli2jX79+LFmyhG+++YZTp04REBBwyfaSWIjrxWI2k3r4ICmH4sg4dpSSnCzMv1uxGsDZ3QO/iEj8IlrhExKOV0Agjq5uGA16ygvyyU9NIePYEQrSzlz0fGMefZyYEWOu1eUIIYQQQtxciUW/fv3o06cPS5cuBcBsNhMeHs5jjz3GggULLtleEgthL2azicriYgy1OswmEw5aR5w9PNE6O6MoyiXbV5YUk3bkEGcO7SftyCF0VZUA+ISEMWj6DOmpEEIIIcQ1dzn30jd08bZer+fAgQMsXLjQtk2lUjFq1Ch2795tx8iEuDSVSo2Hn/8Vt3fz9qHz0JF0HjoSs9lEaW4uji4uuHh6NSkxEUIIIYS4nm7oxKKwsBCTyURgYGC97YGBgZw8ebLBNrW1tdTW1tpel5eXX9MYhbgeVCo1PiGh9g5DCCGEEKJRN906Fq+//jqenp62R3h4uL1DEkIIIYQQ4qZ3QycWfn5+qNVq8vLy6m3Py8sjKCiowTYLFy6krKzM9sjIyLgeoQohhBBCCPGHdkMnFlqtll69erFlyxbbNrPZzJYtW+jfv3+DbRwdHfHw8Kj3EEIIIYQQQlxbN3SNBcD8+fOZOXMmvXv3pm/fvixZsoSqqipmzZpl79CEEEIIIYQQZ93wicW0adMoKCjghRdeIDc3l+7du7Nhw4YLCrqFEEIIIYQQ9nPDr2PRXLKOhRBCCCGEEFfmcu6lb+gaCyGEEEIIIUTLIImFEEIIIYQQotkksRBCCCGEEEI0myQWQgghhBBCiGaTxEIIIYQQQgjRbJJYCCGEEEIIIZpNEgshhBBCCCFEs0liIYQQQgghhGg2SSyEEEIIIYQQzSaJhRBCCCGEEKLZJLEQQgghhBBCNJskFkIIIYQQQohmk8RCCCGEEEII0WwaewdwrVksFgDKy8vtHIkQQgghhBAty7l76HP31Bdz0ycWFRUVAISHh9s5EiGEEEIIIVqmiooKPD09L7qPYmlK+tGCmc1msrOzcXd3R1GU637+8vJywsPDycjIwMPD47qfX1wZ+dxaJvncWh75zFom+dxaJvncWp4b4TOzWCxUVFQQEhKCSnXxKoqbvsdCpVIRFhZm7zDw8PCQf8QtkHxuLZN8bi2PfGYtk3xuLZN8bi2PvT+zS/VUnCPF20IIIYQQQohmk8RCCCGEEEII0WySWFxjjo6OvPjiizg6Oto7FHEZ5HNrmeRza3nkM2uZ5HNrmeRza3la2md20xdvCyGEEEIIIa496bEQQgghhBBCNJskFkIIIYQQQohmk8RCCCGEEEII0WySWFxnr776KgMGDMDFxQUvLy97hyMa8d577xEZGYmTkxP9+vVj37599g5JXMT27duZOHEiISEhKIrCmjVr7B2SuITXX3+dPn364O7uTkBAAJMnT+bUqVP2Dktcwvvvv0/Xrl1tc+r379+fn3/+2d5hicvwxhtvoCgK8+bNs3co4iIWLVqEoij1Hh06dLB3WJckicV1ptfrmTp1KrNnz7Z3KKIRq1atYv78+bz44oscPHiQbt26ceutt5Kfn2/v0EQjqqqq6NatG++99569QxFNFBsby5w5c9izZw+//PILBoOBMWPGUFVVZe/QxEWEhYXxxhtvcODAAfbv38+IESOYNGkSx44ds3doogni4uL44IMP6Nq1q71DEU3QuXNncnJybI+dO3faO6RLklmh7GT58uXMmzeP0tJSe4cifqdfv3706dOHpUuXAmA2mwkPD+exxx5jwYIFdo5OXIqiKKxevZrJkyfbOxRxGQoKCggICCA2NpYhQ4bYOxxxGXx8fFi8eDEPPfSQvUMRF1FZWUnPnj3597//zSuvvEL37t1ZsmSJvcMSjVi0aBFr1qwhPj7e3qFcFumxEOI8er2eAwcOMGrUKNs2lUrFqFGj2L17tx0jE+LmVlZWBlhvUkXLYDKZWLlyJVVVVfTv39/e4YhLmDNnDuPHj6/3+03c2E6fPk1ISAht2rThvvvuIz093d4hXZLG3gEIcSMpLCzEZDIRGBhYb3tgYCAnT560U1RC3NzMZjPz5s1j4MCBdOnSxd7hiEs4evQo/fv3R6fT4ebmxurVq+nUqZO9wxIXsXLlSg4ePEhcXJy9QxFN1K9fP5YvX0779u3JycnhpZdeYvDgwSQkJODu7m7v8BolPRZXwYIFCy4osPn9Q25KhRCiYXPmzCEhIYGVK1faOxTRBO3btyc+Pp69e/cye/ZsZs6cyfHjx+0dlmhERkYGTzzxBF9++SVOTk72Dkc00bhx45g6dSpdu3bl1ltv5aeffqK0tJSvv/7a3qFdlPRYXAVPPvkkDzzwwEX3adOmzfUJRjSLn58farWavLy8etvz8vIICgqyU1RC3Lzmzp3Ljz/+yPbt2wkLC7N3OKIJtFotUVFRAPTq1Yu4uDjeeecdPvjgAztHJhpy4MAB8vPz6dmzp22byWRi+/btLF26lNraWtRqtR0jFE3h5eVFdHQ0SUlJ9g7loiSxuAr8/f3x9/e3dxjiKtBqtfTq1YstW7bYin/NZjNbtmxh7ty59g1OiJuIxWLhscceY/Xq1Wzbto3WrVvbOyRxhcxmM7W1tfYOQzRi5MiRHD16tN62WbNm0aFDB5555hlJKlqIyspKkpOT+dOf/mTvUC5KEovrLD09neLiYtLT0zGZTLZq/6ioKNzc3OwbnABg/vz5zJw5k969e9O3b1+WLFlCVVUVs2bNsndoohGVlZX1vsU5c+YM8fHx+Pj4EBERYcfIRGPmzJnDihUrWLt2Le7u7uTm5gLg6emJs7OznaMTjVm4cCHjxo0jIiKCiooKVqxYwbZt29i4caO9QxONcHd3v6B2ydXVFV9fX6lpuoE99dRTTJw4kVatWpGdnc2LL76IWq1m+vTp9g7toiSxuM5eeOEFPvvsM9vrHj16ALB161aGDRtmp6jE+aZNm0ZBQQEvvPACubm5dO/enQ0bNlxQ0C1uHPv372f48OG21/Pnzwdg5syZLF++3E5RiYt5//33AS74uffpp59ecmipsJ/8/HxmzJhBTk4Onp6edO3alY0bNzJ69Gh7hybETSUzM5Pp06dTVFSEv78/gwYNYs+ePTf8CBlZx0IIIYQQQgjRbDIrlBBCCCGEEKLZJLEQQgghhBBCNJskFkIIIYQQQohmk8RCCCGEEEII0WySWAghhBBCCCGaTRILIYQQQgghRLNJYiGEEEIIIYRoNkkshBBCCCGEEM0miYUQQgghhBCi2SSxEEIIcV2ZTCYGDBjAHXfcUW97WVkZ4eHhPPfcc3aKTAghRHMoFovFYu8ghBBC/LEkJibSvXt3/vOf/3DfffcBMGPGDA4fPkxcXBxardbOEQohhLhcklgIIYSwi3fffZdFixZx7Ngx9u3bx9SpU4mLi6Nbt272Dk0IIcQVkMRCCCGEXVgsFkaMGIFarebo0aM89thjPP/88/YOSwghxBWSxEIIIYTdnDx5ko4dOxITE8PBgwfRaDT2DkkIIcQVkuJtIYQQdvPJJ5/g4uLCmTNnyMzMtHc4QgghmkF6LIQQQtjFb7/9xtChQ9m0aROvvPIKAJs3b0ZRFDtHJoQQ4kpIj4UQQojrrrq6mgceeIDZs2czfPhwPv74Y/bt28eyZcvsHZoQQogrJD0WQgghrrsnnniCn376icOHD+Pi4gLABx98wFNPPcXRo0eJjIy0b4BCCCEumyQWQgghrqvY2FhGjhzJtm3bGDRoUL33br31VoxGowyJEkKIFkgSCyGEEEIIIUSzSY2FEEIIIYQQotkksRBCCCGEEEI0myQWQgghhBBCiGaTxEIIIYQQQgjRbJJYCCGEEEIIIZpNEgshhBBCCCFEs0liIYQQQgghhGg2SSyEEEIIIYQQzSaJhRBCCCGEEKLZJLEQQgghhBBCNJskFkIIIYQQQohmk8RCCCGEEEII0Wz/D1SS26lJ0c6tAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxYAAAJOCAYAAAAqFJGJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd1xV9RvA8c9lbxBFEVFQVDRx50RRceAeWa6cmaullVqaA5VyZJpZOcvZsLSfOxeKIqW5zUUORHMvQPa45/cH3SuXe4HLEtTn/XrxesG5Z3zPvQc4z/k+z/erUhRFQQghhBBCCCHywaSoGyCEEEIIIYR49klgIYQQQgghhMg3CSyEEEIIIYQQ+SaBhRBCCCGEECLfJLAQQgghhBBC5JsEFkIIIYQQQoh8k8BCCCGEEEIIkW8SWAghhBBCCCHyTQILIYQQQgghRL5JYCGEEEXA09OTwYMHa38OCQlBpVIREhJSYMdQqVQEBgYW2P6MFRgYiEqleurHLQotW7akZcuWhbLv3FwTuWlHy5Yt8fHxyV/jhBDCAAkshBAvnJUrV6JSqbRfVlZWVK1alXfeeYc7d+4UdfNyZfv27UUSPBSWP/74g8DAQKKiooq6Kc+0mzdvEhgYyMmTJ4u6KUKIF4gEFkKIF9b06dNZs2YNX3/9NU2bNmXRokU0adKE+Pj4p94WPz8/EhIS8PPzy9V227dvZ9q0aQZfS0hIYNKkSQXRvFyZNGkSCQkJedr2jz/+YNq0aRJYkPdrAtIDi2nTpklgIYR4qsyKugFCCFFUOnTowMsvvwzAm2++ScmSJZk3bx6bNm2ib9++BreJi4vD1ta2wNtiYmKClZVVge6zoPdnLDMzM8zMite/l/j4eGxsbIq6GblSGNeEEEIUJumxEEKI//j7+wMQEREBwODBg7Gzs+Py5ct07NgRe3t7Xn/9dQDUajVffvklNWrUwMrKijJlyjBixAgePXqks09FUQgKCsLd3R0bGxtatWrF2bNn9Y6dVT794cOH6dixIyVKlMDW1pZatWqxYMECbfu++eYbAJ3ULg1DNRYnTpygQ4cOODg4YGdnR+vWrTl06JDOOppUsbCwMD744ANcXFywtbWlR48e3Lt3L8f30VCNhUql4p133mHjxo34+PhgaWlJjRo12LFjh85248aNA6BixYra87l69ap2nbVr11K/fn2sra1xdnamT58+XL9+XedYmhqCY8eO4efnh42NDRMnTqRz585UqlTJYJubNGmiDTIBVqxYgb+/P6VLl8bS0pKXXnqJRYsW5XjuhrzyyivUq1dPZ1mXLl1QqVRs3rxZu+zw4cOoVCp+//13IOtrYunSpXh5eWFtbU3Dhg0JDQ3VeT0kJIQGDRoAMGTIEO37uHLlSp31zp07R6tWrbCxsaFcuXLMmTMnT+cnhBAaxeuRkhBCFKHLly8DULJkSe2y1NRUAgICaNasGXPnztU+9R4xYgQrV65kyJAhvPfee0RERPD1119z4sQJwsLCMDc3B2DKlCkEBQXRsWNHOnbsyPHjx2nXrh3Jyck5tmf37t107tyZsmXLMnr0aFxdXTl//jxbt25l9OjRjBgxgps3b7J7927WrFmT4/7Onj1L8+bNcXBwYPz48Zibm7NkyRJatmzJ/v37adSokc767777LiVKlGDq1KlcvXqVL7/8knfeeYd169YZ/Z5mdPDgQX777Tfeeust7O3t+eqrr+jZsyfXrl2jZMmSvPLKK/zzzz/89NNPzJ8/n1KlSgHg4uICwKeffsrkyZPp1asXb775Jvfu3WPhwoX4+flx4sQJnJyctMd68OABHTp0oE+fPvTv358yZcpQv359Bg4cyJEjR7Q33gCRkZEcOnSIzz//XLts0aJF1KhRg65du2JmZsaWLVt46623UKvVvP3227k67+bNm7Np0yZiYmJwcHBAURTCwsIwMTEhNDSUrl27AhAaGoqJiQm+vr5Z7uu7775jxIgRNG3alDFjxnDlyhW6du2Ks7Mz5cuXB6B69epMnz6dKVOmMHz4cJo3bw5A06ZNtft59OgR7du355VXXqFXr16sX7+ejz76iJo1a9KhQ4dcnZ8QQmgpQgjxglmxYoUCKHv27FHu3bunXL9+Xfn555+VkiVLKtbW1sq///6rKIqiDBo0SAGUjz/+WGf70NBQBVB++OEHneU7duzQWX737l3FwsJC6dSpk6JWq7XrTZw4UQGUQYMGaZft27dPAZR9+/YpiqIoqampSsWKFRUPDw/l0aNHOsfJuK+3335byepPOaBMnTpV+3P37t0VCwsL5fLly9plN2/eVOzt7RU/Pz+996dNmzY6x3r//fcVU1NTJSoqyuDxNKZOnarXJkCxsLBQLl26pF126tQpBVAWLlyoXfb5558rgBIREaGz/dWrVxVTU1Pl008/1Vn+999/K2ZmZjrLW7RooQDK4sWLddaNjo5WLC0tlQ8//FBn+Zw5cxSVSqVERkZql8XHx+udV0BAgFKpUiWdZS1atFBatGhh4F144siRIwqgbN++XVEURTl9+rQCKK+99prSqFEj7Xpdu3ZV6tatq/058zWRnJyslC5dWqlTp46SlJSkXW/p0qUKoNMOzTFXrFih1x7N+7N69WrtsqSkJMXV1VXp2bNntucihBDZkVQoIcQLq02bNri4uFC+fHn69OmDnZ0d//vf/yhXrpzOeqNGjdL5+ddff8XR0ZG2bdty//597Vf9+vWxs7Nj3759AOzZs4fk5GTeffddndSgMWPG5Ni2EydOEBERwZgxY3SexAN5Gso1LS2NXbt20b17d510oLJly9KvXz8OHjxITEyMzjbDhw/XOVbz5s1JS0sjMjIy18eH9Pfby8tL+3OtWrVwcHDgypUrOW7722+/oVar6dWrl8577urqSpUqVbTvuYalpSVDhgzRWebg4ECHDh345ZdfUBRFu3zdunU0btyYChUqaJdZW1trv4+Ojub+/fu0aNGCK1euEB0dnavzrlu3LnZ2dhw4cABI75lwd3dn4MCBHD9+nPj4eBRF4eDBg9reBUOOHj3K3bt3GTlyJBYWFtrlgwcPxtHRMVdtsrOzo3///tqfLSwsaNiwoVGfhRBCZEVSoYQQL6xvvvmGqlWrYmZmRpkyZfD29sbERPd5i5mZGe7u7jrLLl68SHR0NKVLlza437t37wJob8CrVKmi87qLiwslSpTItm2atKyCmm/g3r17xMfH4+3trfda9erVUavVXL9+nRo1amiXZ7zRBrRtzlxHYqzM+9Ps05j9Xbx4EUVR9N5LDU3qmUa5cuV0br41evfuzcaNG/nzzz9p2rQply9f5tixY3z55Zc664WFhTF16lT+/PNPvVHCoqOjc3Ujb2pqSpMmTbS1EKGhoTRv3pxmzZqRlpbGoUOHKFOmDA8fPsw2sMjqejI3N8+ydiQr7u7uegFqiRIlOH36dK72I4QQGUlgIYR4YTVs2FCnYNcQS0tLvWBDrVZTunRpfvjhB4PbaGoCnnWmpqYGl2d82v+09qdWq7WFzYb2Y2dnp/Nzxh6HjLp06YKNjQ2//PILTZs25ZdffsHExITXXntNu87ly5dp3bo11apVY968eZQvXx4LCwu2b9/O/PnzUavVObY3s2bNmvHpp5+SmJhIaGgon3zyCU5OTvj4+BAaGkqZMmUAsg0sClJBf7ZCCAESWAghRK55eXmxZ88efH19s7yBBfDw8ADSn7ZnfKJ87969HJ/Sa1KGzpw5Q5s2bbJcz9i0KBcXF2xsbAgPD9d77cKFC5iYmGiLf4tSVufj5eWFoihUrFiRqlWr5nn/tra2dO7cmV9//ZV58+axbt06mjdvjpubm3adLVu2kJSUxObNm3V6WTKnW+VG8+bNSU5O5qeffuLGjRvaAMLPz08bWFStWlUbYBiS8XrSjGAGkJKSQkREBLVr19Yue1FmPhdCFC9SYyGEELnUq1cv0tLSmDFjht5rqamp2snd2rRpg7m5OQsXLtR5Epw57caQevXqUbFiRb788ku9yeIy7kszp0ZOE8qZmprSrl07Nm3apDN86507d/jxxx9p1qwZDg4OObarsGV1Pq+88gqmpqZMmzZN76m6oig8ePDA6GP07t2bmzdvsnz5ck6dOkXv3r11Xtc8zc94nOjoaFasWJGbU9HRqFEjzM3NmT17Ns7OztqUs+bNm3Po0CH279+fY2/Fyy+/jIuLC4sXL9YZVWzlypV675ex14UQQhQk6bEQQohcatGiBSNGjGDmzJmcPHmSdu3aYW5uzsWLF/n1119ZsGABr776Ki4uLowdO5aZM2fSuXNnOnbsyIkTJ/j999+1Q6lmxcTEhEWLFtGlSxfq1KnDkCFDKFu2LBcuXODs2bPs3LkTgPr16wPw3nvvERAQgKmpKX369DG4z6CgIHbv3k2zZs146623MDMzY8mSJSQlJRWbOQw05/PJJ5/Qp08fzM3N6dKlC15eXgQFBTFhwgSuXr1K9+7dsbe3JyIigv/9738MHz6csWPHGnUMzZwkY8eOxdTUlJ49e+q83q5dOywsLOjSpQsjRowgNjaWZcuWUbp0aW7dupWn87KxsaF+/focOnRIO4cFpPdYxMXFERcXl2NgYW5uTlBQECNGjMDf35/evXsTERHBihUr9GosvLy8cHJyYvHixdjb22Nra0ujRo2oWLFintovhBDGkB4LIYTIg8WLF7N06VLu3r3LxIkTmTBhAnv37qV///468xAEBQUxbdo0Tpw4wbhx47h8+TK7du0yavbugIAA9u3bR9WqVfniiy/44IMPCA4OpkuXLtp1XnnlFd5991127NjBgAEDspwxHKBGjRqEhobi4+PDzJkzmTZtGh4eHuzbt09vDoui0qBBA2bMmMGpU6cYPHgwffv21U7K9/HHH7NhwwZMTEyYNm0aY8eOZfPmzbRr1047F4QxrKys6Nq1K48fP6ZVq1Z6Rfje3t6sX78elUrF2LFjWbx4McOHD2f06NH5OjdN4NCsWTPtMldXVypXrqzzenaGDx/Ot99+y82bNxk3bhyhoaFs3rxZL43N3NycVatWYWpqysiRI+nbty/79+/PV/uFECInKkUqtYQQQgghhBD5JD0WQgghhBBCiHyTwEIIIYQQQgiRbxJYCCGEEEIIIfJNAgshhBBCCCFEvklgIYQQQgghhMg3CSyEEEIIIYQQ+fbcT5CnVqu5efMm9vb22gmJhBBCCCGEEDlTFIXHjx/j5uaGiUn2fRLPfWBx8+ZNvYmDhBBCCCGEEMa7fv067u7u2a7z3AcW9vb2QPqb4eDgUMStEUIIIYQQ4tkRExND+fLltffU2XnuAwtN+pODg4MEFkIIIYQQQuSBMSUFUrwthBBCCCGEyDcJLIQQQgghhBD5JoGFEEIIIYQQIt8ksBBCCCGEEELkmwQWQgghhBBCiHyTwEIIIYQQQgiRb8/9cLN5lZKSQlpaWlE3QwghhCiWTE1NMTc3L+pmCCGKEQksMomJieH+/fskJSUVdVOEEEKIYs3S0pJSpUrJPFFCCEACCx0xMTHcuHEDOzs7SpUqhbm5uVGTgQghhBAvEkVRSElJITo6mhs3bgBIcCGEkMAio/v372NnZ4e7u7sEFEIIIUQ2rK2tsbe3599//+X+/fsSWAghirZ4+8CBA3Tp0gU3NzdUKhUbN27UW+f8+fN07doVR0dHbG1tadCgAdeuXSvwtqSkpJCUlISjo6MEFUIIIYQRVCoVjo6OJCUlkZKSUtTNEUIUsSINLOLi4qhduzbffPONwdcvX75Ms2bNqFatGiEhIZw+fZrJkydjZWVV4G3RFGpLIZoQQghhPM3/TRnwRAhRpKlQHTp0oEOHDlm+/sknn9CxY0fmzJmjXebl5VWobZLeCiGEEMJ48n9TCKFRbOexUKvVbNu2japVqxIQEEDp0qVp1KiRwXSpjJKSkoiJidH5EkIIIYQQQhSuYhtY3L17l9jYWGbNmkX79u3ZtWsXPXr04JVXXmH//v1Zbjdz5kwcHR21X+XLl3+KrRZCCCGEEOLFVGwDC7VaDUC3bt14//33qVOnDh9//DGdO3dm8eLFWW43YcIEoqOjtV/Xr19/Wk0WBahly5bPbPd6YGAgKpWKkJAQneUqlYqWLVsWSZuEEEIIIQpbsQ0sSpUqhZmZGS+99JLO8urVq2c7KpSlpSUODg46XyJnV69eRaVS6X3Z2tpSq1Ytpk2bRmxsbFE3s0A8ePCAjz/+mBo1amBjY4ONjQ0eHh60bt2aadOmcefOnafWlsGDB6NSqbh69epTO6YQQgghRGEotvNYWFhY0KBBA8LDw3WW//PPP3h4eBRRq55/Xl5e9O/fH0ifAOnevXv8/vvvBAYGsmPHDg4ePIipqWmht2P16tXEx8cX+H7//fdfmjZtyvXr16lTpw5DhgzBycmJW7du8ccffxAYGIivry9lypQp8GOfP38eGxubAt+vEEIIIURxUKSBRWxsLJcuXdL+HBERwcmTJ3F2dqZChQqMGzeO3r174+fnR6tWrdixYwdbtmzRSzERBady5coEBgbqLEtKSqJJkyYcOnSI/fv34+/vX+jtqFChQqHsd+rUqVy/fp3p06czefJkvdf//vtvnJycCuXY1apVK5T9CiGEECJ7iqKgTlUwNS+2yTrPhSJ9d48ePUrdunWpW7cuAB988AF169ZlypQpAPTo0YPFixczZ84catasyfLly9mwYQPNmjUryma/cCwtLWnVqhWQPjt5Rvv27eONN97A29sbOzs77OzsePnll1m6dKnBfR0/fpxXX32VChUqYGlpiYuLCw0aNODTTz/VWS+7GotNmzbRrl07SpYsiZWVFZ6engwYMIAzZ87keC5//vknAO+++67B12vWrKlX8K+pjfj333/p27cvpUqVwsbGBl9fX/bs2ZPjMTPvR8PT05NVq1YBULFiRW36mdRhCCGEEAUnMTaFtZP/ZMl7IZzYVfCTLBsSH5PMw5txT+VYxUmR9li0bNkSRVGyXeeNN97gjTfeeEotEoYkJycTEhKCSqWiTp06Oq/Nnj2bS5cu0bhxY3r06EFUVBQ7duxgxIgRhIeH88UXX2jXPXnyJE2bNsXU1JRu3brh4eFBVFQU586dY+nSpXzyySc5tuXDDz9k3rx5ODs70717d0qXLs3169fZs2cP9evXx8fHJ9vtS5YsCaSn1DVs2NDo9+DRo0f4+vri4uLCm2++yb1791i3bh3t27dn/fr1dO/e3eh9aYwZM4aVK1dy6tQpRo8ere0p8fT0zPW+hBBCCGHYpeN3ibmfCMAfv12iTtvyhTpATGJcCmun/ElKYhod36pFxVqlCu1YxU2xrbEQRePSpUvaVChFUbh//z47d+7kxo0bzJkzh6pVq+qsv2jRIipWrKizLDU1lY4dO7JgwQJGjx6tTWtas2YNSUlJbNy4kW7duuls8+DBgxzbtnXrVubNm0fNmjXZt2+fNkjQHNOYffTq1YuDBw/SpUsXRo4cSatWrahXr16ORf6nT5+mX79+rF27VvvHaPTo0TRo0IDhw4cTEBCAtbV1jsfPaMyYMZw8eZJTp04xZswYCSiEEEKIQhB1V7dmMz46GVsny0I7XuSZB6Qkps9Ev/3b07y9uPBTyIsLCSyM1GXhQe49TirqZmTJxd6SLe/mP0Xs8uXLTJs2TW95586dadOmjd7yzEEFgJmZGSNHjmT37t3s27ePQYMG6bxu6AY8Y5CQlW+//RaABQsW6K1vZmZmVMH1O++8w/Xr11mwYAHTp09n+vTpqFQqqlevTpcuXRg9ejRly5bV287U1JTPPvtM5wlHrVq1GDBgAN999x3bt2+nZ8+eOR5fCCGEEE/X4/96KzQe3Y4r1MDC0ubFvb1+cc88l+49TuJ2TGLOKz7jAgIC2LFjh/bnBw8eEBYWxujRo/H19WXv3r00atRI+/rjx4+ZO3cuGzdu5PLly8TF6eYT3rx5U/t9r169+PLLL+nRowe9e/embdu2+Pn5Ua5cOaPa9tdff2FpaUmLFi3yfH4qlYo5c+Ywfvx4tm/fzqFDhzh69CjHjh3j3LlzLFmyhB07duicI6QXkxsajax58+Z89913nDhxQgILIYQQohiKeZCg83NcdHKhHi9zmlVSQiqW1i/GLfeLcZYFwMW+8CLbglBY7StZsiRdu3bFxsaGtm3bMmnSJHbv3g2k1160bNmS48ePU7duXQYMGEDJkiUxMzPj6tWrrFq1iqSkJ708jRo1IiQkhM8++4wff/yRFStWANCgQQNmz56tLRDPSnR0NOXKlcPEJP9jDpQqVYqBAwcycOBAAG7fvs0777zDhg0bGD58OKdOndJZP6veEM3y6OjofLdJCCGEEAXv8QPdB8PxMYUbWKjVuvXD9649xt27RKEes7iQwMJIBZFm9CzTPME/cuSIdtmmTZs4fvw4Q4cOZfny5Trr//zzz9oRjzJq3rw5v//+OwkJCRw+fJgtW7bw7bff0qlTJ86cOUOlSpWybIOTkxO3b99GrVYXSHCRkaurK2vWrGHr1q2cPn2aBw8e6KRbZTVpnma5o6NjgbZHCCGEEPmXFJ9CUnyqzrLCDiyUNN3AIuFx4R6vOJHBfIVRHj16BIBardYuu3z5MoBeITZAaGhotvuztramZcuWfPHFF0ycOJGEhARtT0hWGjZsSFJSEvv3789t841iaWmJubm5wdeuXbtGZGSk3nLNeWqGTM4tzWSDaWlpedpeCCGEEFmLua+fxp5YyDf6mXss1GnZj4D6PJHAQhhl3rx5APj5+WmXaWoODh48qLPu/v37WbZsmd4+/vzzTxIT9X/BNU/9rayssm3D22+/DaSPxvTw4UOd11JTU7PsVcjoiy++4MKFCwZf+/rrr4mNjaVatWp6xeFpaWlMnDhRZ3jk06dPs2bNGlxcXOjYsWOOxzbE2dkZgOvXr+dpeyGEEEJkLS5Kf+CdxEw9GAVNyRRYZP75eSapUEJHxuFmAR4+fEhYWBjHjx+nRIkSzJ49W/taly5d8PT0ZM6cOZw5cwYfHx/Cw8PZunUrPXr0YP369Tr7nj17Nvv27cPPz4+KFStiZWXF8ePHCQ4OplKlSvTo0SPbtnXs2JGxY8cyd+5cqlSpQo8ePShdujQ3btwgODiYsWPHMmbMmGz3sWbNGsaOHUvNmjVp1KgRpUuXJioqikOHDnH8+HGsra1ZtGiR3na1atXi4MGDNGjQgDZt2mjnsUhNTWXp0qW5HmpWw9/fn7lz5zJ8+HB69uyJra0tHh4eDBgwIE/7E0IIIcQT8QZ6J5ITCjeweJF7LCSwEDoyDzdraWmJu7s7o0aN4uOPP9bOSQFgZ2fH3r17GTduHAcOHCAkJIQaNWrwww8/UKZMGb3AYtSoUTg6OnL48GH279+PoihUqFCBiRMn8v777+c4lwTA559/TpMmTfj6669Zv349iYmJlC1bFn9/f9q2bZvj9itWrGDLli3s3buXnTt3cufOHUxNTfHw8GDUqFG8//77VKlSRW+7EiVKsG3bNsaOHcuyZcuIj4+nbt26TJs2zajjZqVDhw7MmTOHZcuW8cUXX5CSkkKLFi0ksBBCCCEKgKF6iqT4lEI9ZuYeisyBxvNMpeQ09fUzLiYmBkdHR6Kjo7O9cU1MTCQiIkL7JF0IDZVKRYsWLQgJCSnqpgghRLEj/z9FcXZg3T/8ve9fnWV2JSwZNNO30I55Luwm+9Y8Sbtu3rsqtVq5F9rxCpux99IgNRZCCCGEEOI5lZChx8LUPP22N/MoUQVNr8ciTZ3Fms8fCSyEEEIIIcRzKWMqVAlXGwBSktJIK8Sb/cw1FS9SKpQEFkIIIYQQ4rmkCSzMrUyxdXwymXByIfZaZK4ykOJtIYTWc16GJIQQQjy34qPTh5u1cbDA0ubJbW9SfCrW9haFcszMgcSLNNys9FgIIYQQQojnTnJiKsmJ6RPQ2jlZYmnzZBLcwqyzUDJlWb1IPRYSWAghhBBCiOdOxsnxbJ0sM/VYFN6Qs2q1bmQhgYUQQgghhBDPsGwDi0KcJE+/x+LFGRVKaiyEEEIIIcRzRyewcLTEwtpU+3NhpkLpzbz9AtVYSGAhhBBCCCGeO7GZeixMTFTanwszFUp/HgsJLIQQQgghhHhmxUU9mcPCroQlaSlPUpKkx6JwSI2FEEIIIYR47ujVWNjqDjdbWJTME+RJj4UQQgghhBDPrthHienfqMDG0UJnXqpCHRUq0/xXmQON55n0WAghhBBCiOeKolZ4dDseAIeSVpiammD1tOax0OuxeHFGhZLAQgghhBBCPFceP0wkJSl9cjxnNzsAzK1MUf1Xv124E+RJjYUQWseOHWPo0KFUqVIFW1tbrK2t8fLyYsCAAezevZvo6GhsbGwoUaIEiYmJ2e5r2bJlqFQqhg8f/pRaL4QQQogX3cNbcdrvncvaAqBSqbD4by6Lwp0g78WtsZDAQmip1Wo++OADXn75ZVavXk2lSpUYOXIko0ePpn79+mzbto127drx1Vdf0bNnT6KiotiwYUO2+/z+++8BGDp06NM4BSGEEEIIHt7MEFi42Wq/t/wvHapwJ8h7cXsspHhbaE2aNIn58+dTp04d1q9fj5eXl87rCQkJfP311zx48IChQ4eydu1avv/+e15//XWD+zt//jyHDh2iRo0aNGrUKNtjDx48mFWrVukUVgkhhBBC5EVWgYWVjRkxQHJ8KopaQZVhbouC8iL3WEhgIQC4dOkSc+bMoWTJkuzYsYMyZcrorWNtbc24ceNISkrCwsICLy8v9u3bx9WrV/H09NRbX3orhBBCCFEUNKlQKhWUcLXRLrewTr/1VRRITkrD0rrgb4Vf5MBCUqEEACtXriQtLY0RI0YYDCoysrS0RKVS8cYbb6AoCitWrNBbJzU1lTVr1mBhYcGAAQMKq9lCCCGEEDrUakUbWDiWtsHM3FT7mqXOyFCFU2ehqDP/LIGFeMGEhYUB4O/vb/Q2gwcPxtTUlFWrVqFW6/4Wbd++nTt37tC1a1dKlSpVoG0VQgghhMhKzP0E7SzbmsJtDUubwp8kL3MPxYs03KykQhlrSQuIvVvUrciaXWkYsT/Pm9++fRsAd3d3o7dxc3Ojffv2bNu2jeDgYNq2bat9TZMG9cYbb+S5TUIIIYQQuZVVfQU8ncAic73oi5QKJYGFsWLvwuObRd2KYufNN99k27ZtfP/999rA4u7du2zbtg13d3cCAgL0tvH09CQyMtLg/lQq/SKqFStWMHjw4AJttxBCCCGeT8YGFslPq8fiBUqFksDCWHali7oF2ctn+1xdXblw4QI3btzA29vb6O06d+5MmTJl2LhxI48ePaJEiRKsXr2a1NRUBg8ejImJfrbdmDFjiIqK0lm2ceNGTp06xdSpU/XWr1OnTm5PRwghhBAvqJj7CdrvnUrb6LyWscYisbBqLKTHQuQoH2lGzwJfX19CQkIIDg7OVZ2FmZkZAwcO5PPPP+eHH37gnXfeYcWKFahUKoYMGWJwmzFjxugtu3r1KqdOnSIwMDCPZyCEEEIIATEPnkze61DKSue1p5IKpVdj8eIEFlK8LYAnhdhLly7l3r172a6blJSk87OmjuL777/n8OHDnDt3jlatWlGpUqVCa68QQgghhCGPH6YHFhZWpjo9FJApFaqQJsnTG272BUqFksBCAFC5cmXGjx/P/fv36dChAxEREXrrJCYmMm/ePL1ehWrVquHr68uJEyf48MMPAZm7QgghhBBPn6JWiH2UHljYl7TSe93SOsNws3GFNdysjAolBEFBQSQmJjJ//ny8vb3x9/fHx8cHc3NzIiIi2LNnDw8ePCAoKEhv26FDhxIWFkZYWBhOTk688sorRXAGQgghhHiRJSWkok5Nv7G3dbTUez1jj0ViYRVvZwosMqdGPc8ksBBaJiYmzJs3j379+rFo0SIOHDjAgQMHUKvVlC1bloCAAIYMGUKbNm30tu3VqxejR4/m8ePH9OvXDysr/acEQgghhBCFKTH2SS+ElZ253uuWtoWfCqXXY/ECpUJJYCH0vPzyy3z33Xe52sbW1paYmJg8H3PlypWsXLkyz9sLIYQQQiQ8TtZ+b21nofe6hXXG4u3CSYXSnyDvxQkspMZCCCGEEEI8FxJy6LEwNTXB3NIUKMwJ8nR/lsBCCCGEEEKIZ0zGVChre/3AAp7UWRRWYPEiT5AngYUQQgghhHguJMQ+SYWysi2awOJFniBPAgshhBBCCPFcSE5M035vYWO4lFgzt0VaqprUlDSD6+RH5kBCUSt6wcbzSgILIYQQQgjxXEjJGFhYZhVYFO7s24ZSn16UdCgJLIQQQgghxHMhJfFJoGBuZWpwHcuMI0PFFXxgkXm4WXhx5rKQwEIIIYQQQjwXkpMy9FhkFVjYZJh9uxDmsjAUWLwodRYSWAghhBBCiOeCbo9FFqlQGSbJS8xQ7F1QJBWqiBw4cIAuXbrg5uaGSqVi48aNWa47cuRIVCoVX3755VNrnxBCCCGEeHZkLN7WzFeRma2Tpfb7uKikAm+D9FgUkbi4OGrXrs0333yT7Xr/+9//OHToEG5ubk+pZUIIIYQQ4lmT8l8qlJmFCSYmKoPrZAwsYgshsDDYY/GCBBaG+4iekg4dOtChQ4ds17lx4wbvvvsuO3fupFOnTk+pZUIIIYQQ4lmT/F8qVFZpUAB2GXssHhVCj4WBIEKtVhf4cYqjIg0scqJWqxkwYADjxo2jRo0aRm2TlJREUtKTiyQmJqawmieEEEIIIYoRzXCzWRVug/RYFKZiXbw9e/ZszMzMeO+994zeZubMmTg6Omq/ypcvX4gtFEIIIYQQxYGiKBkCi6yfnVvamGmHoo25n1Dw7TDQOWGo7uJ5VGwDi2PHjrFgwQJWrlyJSmU4R86QCRMmEB0drf26fv16IbZSCCGEEEIUB2mpam1vQVaF2wAqlQpHF2sAHj9MIi2tYNOUpMeiGAoNDeXu3btUqFABMzMzzMzMiIyM5MMPP8TT0zPL7SwtLXFwcND5Erlz7Ngxhg4dSpUqVbC1tcXa2hovLy8GDBjA7t279dZPTExkwYIFNG/enJIlS2JpaUn58uXp06cPBw4cMHiMq1evolKpdL7Mzc0pV64cvXr14ujRo4V9mkIIIYR4jujMup1NKhSAY6n0wEJRK8Q+TCywNiiK8kKPClVsaywGDBhAmzZtdJYFBAQwYMAAhgwZUkSter6p1WrGjh3L/PnzMTMzw9/fn65du2Jubs6VK1fYtm0ba9euZfr06UyePBmAS5cu0alTJ/755x8qVapEr169cHJy4sqVK2zdupV169YxevRo5s2bh4mJfhzr5eVF//79gfRRwo4dO8avv/7Kxo0b2bNnD35+fk/1PRBCCCHEs8mYoWY1HP7rsQCIvpeAo4tNgbRBySJ+kMDiKYiNjeXSpUvanyMiIjh58iTOzs5UqFCBkiVL6qxvbm6Oq6sr3t7eT7upL4RJkyYxf/586tSpw/r16/Hy8tJ5PSEhga+//poHDx4AEB0dTfv27bl8+TKTJ09m6tSpmJo++UW+efMm3bt3Z8GCBTg7OzNlyhS9Y1auXJnAwECdZbNmzWLChAlMnjyZ/fv3F/yJCiGEEOK5k5ryJLAws8ihxyJDYBFzr+DqLNRZpFXJBHlPwdGjR6lbty5169YF4IMPPqBu3boGb0BF4bp06RJz5syhZMmS7NixQy+oALC2tmbcuHFMmzYNgM8//5zLly/z+uuvM336dJ2gAsDNzY0tW7bg7OzMjBkzjK53GTp0KJCekiWEEEIIYYy0lCc39Wbm2d/iZu6xKChZ9UxkFXA8b4o0sGjZsmV6Llqmr5UrVxpc/+rVq4wZM+aptvFFsXLlStLS0hgxYgRlypTJdl1Ly/Rh2lasWAGgTYsypEyZMgwbNozU1NQsP9esmJkV20w9IYQQQhQzqclPbt5Nc9FjUZCBRVajP70oPRZy52ak3lt7cz/hflE3I0ulrEuxrvO6PG8fFhYGgL+/v1HrR0ZGcvPmTcqVK5djalrr1q2ZPXu29hg5Wb58OQDNmjUzan0hhBBCCJ1UqBx6LOxKWGFiqkKdpjylHgsJLEQG9xPuczf+blE3o9Dcvn0bAHd391ytb8w8IZp1bty4offapUuXtDUWmuLtffv2UaZMGT7//HOj2iKEEEIIkbHHwswi+8DCxESFQylrou7EE3MvAUWtoDIxfnqDrGTVM2FoNu7nkQQWRiplXaqom5Ct4t4+MDyd/eXLl7U1Gxqurq6EhoZSuXLlp9U0IYQQQjzj0lIz1lhknwoF4FQ6PbBITVETF52EXQmrfLdBeiyEUfKTZvQscHV15cKFC9y4ccOoUbdcXV0BjCrI1qxTrlw5vdcCAgLYsWMHAPfu3WPVqlV89NFHdO3alb/++gs7O7vcnIYQQgghXlA6NRY5pEIBOJa2AdJHuoy6m1C4gcULUmNRbCfIE0+Xr68vAMHBwUat7+HhgZubGzdu3CA8PDzbdTX7fOmll7Jdz8XFhbFjxzJx4kTOnz/PpEmTjGqLEEIIIURaLmosIL3HQiP6bnyBtCHL4m0ZFUq8SAYPHoypqSlLly7l3r172a6blJQEwBtvvAHAp59+muW6d+/e1RZjDxw40Ki2TJw4ETc3N7799luuXr1q1DZCCCGEeLGlpuSlxyJd1N2CKeCWHgshSJ+obvz48dy/f58OHToQERGht05iYiLz5s3TFluPGzcOLy8v1qxZw/Tp00lLS9NZ//bt23Tr1o0HDx7QtWtX6tWrZ1RbrK2t+eijj0hJSWHGjBn5PjchhBBCPP90i7dzrrFwLIQeC5160gy14FJjIV44QUFBJCYmMn/+fLy9vfH398fHxwdzc3MiIiLYs2cPDx48ICgoCAAHBwd27NhBx44dmTp1KqtXryYgIABHR0euXLnCtm3biI2NpXbt2qxZsyZXbRk+fDizZ89m9erVTJw40eCEfUIIIYQQGrkZbhbAvoQVpmYmpKWqC6XHwszcRBvsSGAhXjgmJibMmzePfv36sWjRIg4cOMCBAwdQq9WULVuWgIAAhgwZQps2bbTbVK5cmVOnTrFkyRLWr1/Pjz/+SFRUlPb1Tz75hClTpmBhYZGrtlhZWTFhwgTeffddpk2bxurVqwvqNIUQQgjxHErNxczbACoTFQ4u1jy6FVdgQ85mTHkyMzfVBhZZ1V48bySwEHpefvllvvvuO6PXt7a2ZsyYMTqzos+dO5dx48Zx8eJFgzNoe3p6oijZ/5K98847vPPOO0a3QwghhBAvrrRcpkJBegH3o1txpKWqefwoEYeS1jlvlI2MPRMZ6zykx0KIfBg7diwXLlzgu+++w8HBgWXLlhV1k4QQQgjxHMuYCmVM8TboFnBH303Id2ChZEqF0pDAQoh8WrRoEVWqVCEhIYELFy5QrVq1om6SEEIIIZ5TuU2FAv0hZ8tXd85XG3RSoTLM/m1okuDnkQQWotCYm5vz0UcfFXUzhBBCCPEURd+Lx9LaHCs786d63NyOCgUFP+SsbiqUqcHlzzMJLIQQQgghRIG4dvYBWxaewtLGjH6BjbFxyN3gLfmRlpr/Hov80i3efvFSoWQeCyGEEEIIUSAOrPsHgKT4VM4dvPFUj52anKHGwsK4W1xbR0ttAFAQPRY6NRY6qVASWAghhBBCCGG06Aw358mJadmsWfDS/quxUKnAxMhhY1UmKu1EeTH3E/IdAKSlZZj920x6LIQQQgghhMg3c0vj6hwKiqZ429TCFJXK+PkoHEqlBxbqNIXYR4n5aoOiU7z95PwVCSyEEEIIIYTImxymqypwmlQoY+srNBxdntRZxNzPX2CRdY3FizEqlAQWQgghhBCiwKWlPN1UKE2PRW4DC02PBUDMvfzVWaizmsdCaiyEEEIIIYTIm4zDvz4NmhoLY4ea1cjYYxF9v+ACixdx5m0JLIQQQgghRIHLOGHdUznef4GMsbNuaxRkj0VWNRbSYyGEEEIIIUQepT7FVChFrWjnschtKpR9SSs0td4x0mORLxJYCFHEWrZsmavRK0TB2bhxIyqVij/++KOom6I1ePBgVCoVV69eLZLjx8TEMHr0aCpWrIi5uTkqlYqTJ08SEhKCSqUiMDDQ6H2Fh4djZmbGt99+W3gNFkIUG0qmau20p5gKlZpxcjwj57DQMDUzwa6EFQDRhVVjIYGFeFEdO3aMoUOHUqVKFWxtbbG2tsbLy4sBAwawe/dug9ukpqayYsUKOnbsiKurKxYWFjg6OtKgQQMmTZpEZGSkzvqenp6oVCrtl6mpKaVKlaJdu3Zs2rQp3+eguTnL6ut5c/XqVVQqFYMHDy7qphSqhQsXMmTIEGrVqoWZmRkqlYqQkJA87SslJYXx48cTEBBA06ZNC7ahz7Dx48fz1Vdf4ePjw8cff8zUqVNxdXXNcn1PT088PT0Nvubt7U3fvn2ZNm0ajx8/LqQWCyGKi8w3z08zFSpjEGNmnvthbh3+q7NIik8lMS4lz+1QqzMGOBlSoV6QUaHMiroBovhQq9WMHTuW+fPnY2Zmhr+/P127dsXc3JwrV66wbds21q5dy/Tp05k8ebJ2u8jISLp168apU6coU6YMbdu2pXz58sTFxXH8+HFmzZrF3LlzOXPmDJUrV9ZuZ2pqyqRJkwBITk7mwoULbN68md27dzN37lw+/PDDfJ/T6NGjcXJyyvd+CtPq1auJj48v6mY8E9577z0AypYti4uLC7dv387zvtasWcPFixdZvHhxQTXvubB161aqVq3Kli1bdJY7ODhw/vx5SpUqlav9jR8/nrVr1/LVV1/xySefFGRThRDFTFqmQOJppkJlPFZuU6EAHEtZcSM8/fuY+wlY2ZrnqR06qVAZJshTXpAaCwkshNakSZOYP38+derUYf369Xh5eem8npCQwNdff82DBw+0yx4/fkxAQADh4eGMGzeOGTNmYGlpqbPdpUuX+OCDD4iNjdVZbmZmppdWsWvXLtq3b8+UKVMYNWoUNjY2+TqnMWPGZPk0tbioUKFCUTfhmbF161bq16+Pq6srI0eOZMmSJXne16JFiyhfvjytWrUqwBY++27evImfn5/echsbG6pVq5br/dWsWZNatWqxbNkyJkyYgImJdJQL8bxKS80UWDzNVKgMQY1pLlOh4EmPBaTPZVHawyFP7dCZx8JCUqHEC+rSpUvMmTOHkiVLsmPHDr2gAsDa2ppx48Yxbdo07bK5c+cSHh5O//79mTNnjl5QAVC5cmU2b97MSy+9lGM72rVrh7e3N/Hx8Zw9ezZ/J1UAMuaVHzx4kJYtW2Jvb4+TkxM9e/bk0qVLBrc7c+YMvXr1onTp0lhaWlKxYkXGjBmjE5RpGKqxWLlyJSqVipUrV7Jr1y6aNm2KjY0NJUuWZNCgQTr7WblyJRUrVgRg1apVOilfmjShxMREvvjiC2rXro2joyO2trZ4enrSq1cvTp06la/36Pjx47z66qtUqFABS0tLXFxcaNCgAZ9++mm+9mtIp06dsk3LMdaZM2c4evQoPXv2zPa9zyyrOgOVSkXLli25c+cOgwYNolSpUlhbW9O4ceMsU7XOnj1L586dsbe3x9HRkY4dO3LmzJls271p0yZat25NiRIlsLKywsfHh7lz55KWpvtUMOM5bNmyBV9fX+zt7bMNsjXpg4qisH//fu011LJlS4Pnrkm/i4yMJDIyUue6y/z+9OrVi8jISPbt25ft+Qkhnm2ZA4vMPxfqsTMEFmZmeQgsMowMFX0v71kEygs+j4X0WAgg/UYkLS2NESNGUKZMmWzXzRg8fP/99wBMmTIlx2NYWFjkqk0FUQuxdetWHj9+jKWlJdWrV6d169a5bgfAoUOHmDlzJu3bt+fdd9/l7Nmz/O9//yM0NJRDhw5RqVIl7boHDx4kICCA5ORkXn31VTw9Pfnzzz9ZsGABW7du5dChQ0ank2zevJlt27bRpUsXmjZtyoEDB1i9ejWXL1/m4MGDANSpU4fRo0ezYMECateuTffu3bXba24kBw0axC+//EKtWrUYMmQIlpaWXL9+nX379nHkyBFq166d6/cE4OTJkzRt2hRTU1O6deuGh4cHUVFRnDt3jqVLlxbb1Jfg4GAAGjduXGD7jIqKolmzZjg6OjJgwADu3r3LunXrCAgI4NixY/j4+GjXPXPmDL6+vsTGxvLKK69QpUoV/vrrL3x9fbP8LCZMmMCsWbMoV64cr7zyCo6OjoSGhjJu3DgOHz7Mr7/+qrfNr7/+yq5du+jcuTNvvfUWMTExWba/e/fueHp6Mm3aNDw8PLT1OlkFI05OTkydOpUvv/wSSO8d1NAEIxpNmjQB0t/31q1bZ9kGIcSzLXNNRdH1WOS+xqKgZt/WLd42Nbj8eSaBhQAgLCwMAH9/f6O3iYyM5N9//8Xd3Z0qVaoUSDuCg4MJDw/H1taWGjVq5Ht/7777rs7PZcuWZcWKFQQEBORqPzt37mTx4sWMGDFCu2zJkiWMHDmS0aNHa/PR1Wo1gwcPJj4+nh07dugcZ/z48Xz++ed89NFHfPfdd0Ydd8uWLYSEhODr6wtAWloabdq0ISQkhEOHDtG4cWPq1KnDmDFjWLBgAXXq1NF7WhwdHc2vv/5K/fr1OXz4MKamT/7QpaWl5auods2aNSQlJbFx40a6deum81rm3pmQkJBcFVp7enoWWjG65nqvX79+ge3z1KlTvPXWWyxcuFCb7uPv78+bb77J119/rVPL8c477xATE8PatWt5/fXXtcsnTpzIzJkz9fa9e/duZs2aRUBAABs2bMDW1hZIH4HlrbfeYvHixWzYsIGePXvqbLdjxw527txJmzZtcmx/9+7d6d69O9OmTcPT0zPH0Z+cnJwIDAzU9uxkt/7LL78MPHnfhRDPJ71UqKdYY5GWzxoL3R6LvI8MlbFnwvQFTIWSwMJIET1fJfX+/aJuRpbMSpWi4ob1ed5eUwTr7u5eqNtklJqaqr0ZSUlJITw8nE2bNqEoCjNmzMDa2jr7HWTDz8+PTp060bhxY1xcXPj333/56aefmDlzJl27diUsLEx7s2OMqlWrMmzYMJ1lw4YN44svvmDbtm3cu3cPFxcXwsLCuHz5Mh06dNALXqZMmcJ3333Hjz/+yKJFi4zqOenXr582qID0gvdBgwYREhLCkSNHjHrirklvsbKy0stvNzU1LZDidkOfVcmSJXV+DgkJ0Umjy0mLFi0KLbD4999/AXLsncsNW1tbZs+erfMeDxo0iJEjR3LkyBHtsmvXrrF//35q1aqlE1RAemCxaNEioqKidJZ//fXXACxdulQbVED6Zztr1iyWLFnCTz/9pBdYdOvWzaigorA5ODhgZWWlfd+FEM8ndWqm4WZTn97NtE6PRR4CCytbcyxtzEiKT83XXBY6gYWZCagARVKhRCap9++TeudOUTfjuZKWlqa90TQxMaFEiRL4+/vz9ttv07Vr13zt+4033tD5uXLlykyePJly5coxdOhQpk+fzubNm43en6+vr95NuYmJCb6+vly8eJFTp07Rpk0bTpw4AeinggDY2dnx8ssvs2vXLsLDw6lZs2aOxzX0RF0TyGW++cyKg4MDHTt2ZPv27dSrV4/XXnuNli1b0qBBA8zN8zbqhUavXr348ssv6dGjB71796Zt27b4+flRrlw5vXUDAwNzNQdCYXrw4AGmpqbY29sX2D6rVq2KnZ2dzjIzMzPKlCmj81lpalqaNWumtw87Ozvq1Kmj17Nz6NAhbG1ttamHmVlbW3PhwgW95Q0bNtT5+erVq3q1I05OTjppTIXF2dmZ+8X44YwQIv8yP5VXP8Uai1Sd4WbzVkLsUMqae9ceE/swkbQ0Naamud9PxvfAxESFiYkKdZoiw80KXWa5HGLxactv+1xdXblw4QI3btzA29vb6G0Abty4kadjWlpakpiY9zzGvBg0aBBvv/12rlMysnqyrVkeHR0NoM1hz2r9smXL6qyXEwcH/VEpzMzSf20zF+xm59dff+Wzzz7jxx9/1NY9ODg4MGTIED777LM8j77VqFEjQkJCtPtesWIFAA0aNGD27NnFdsQla2tr0tLSSElJyXdwpWHos4L0zyvjZ6W5VkqXLm1wfUPXzsOHD0lNTc22xycuLi7HfV29elVvHx4eHk8lsEhISMj3KG9CiOIt881z5uFnC1PGNKy8zGMBTwILRYHHDxJxKp37v1lKhvfAxFSFiWl6YCHDzQod+Ukzehb4+voSEhJCcHCw0XUWHh4elCtXjuvXr3Px4sUCq7MoTJrUn0ePHuVquztZ9FZpljs6OgJPbi6zWl+TPpbVTWhhsbGxISgoiKCgICIiIti3bx+LFy9mwYIFJCQk5GvY1ubNm/P777+TkJDA4cOH2bJlC99++y2dOnXizJkz2sL24lRj4eLiAqTfsGe++db0TKWmpuptpwkK8kNzrdy9e9fg64auHQcHB1QqVa6f+GceAKFly5Z6M+M+DWq1mujo6AKpmxJCFF+Zeyye5qhQGXss8pIKBZkLuBPyFFikZeyxME3vsQCpsRAvmMGDBzNr1iyWLl3KmDFjtDdehiQlJWlHhtKkFQUFBbFq1apsj5GcnJynEZkK0rVr17h9+7bRvTIaYWFhqNVqnXQotVrNH3/8gUql0o7kU7duXSD9Jnr8+PE6+4iLi+Po0aNYW1vn+vg50RRkG9OLUbFiRSpWrEjfvn0pXbo0mzdvzldgoWFtbU3Lli1p2bIlTk5OTJkyhd27d2sL3otTjUXNmjXZs2cP4eHheoFFiRIlAMM9cZpUt/zQXCuaUb0yio2N5eTJk3rLGzVqxO+//14sA3hTU1OSk5OzXefixYuo1Wqj0v+EEM+uzHUEipLei2GSh5Si3NLtschrKpSV9vuYPBZwZ+ylMTUz+e/c016YwELmsRBAeg3C+PHjuX//Ph06dCAiIkJvncTERObNm6eTJz927Fi8vb1ZvXo1EydOJCkpSW+7iIgIunfvzrlz5/LcPk9PT1QqFVevXs1x3du3bxu8KYyKitLeqPbr1y9Xx//nn39YtmyZzrJly5bxzz//0KlTJ20g5uvri5eXF7///jt79uzRWT8oKIgHDx7Qt2/fAg+wSpQogUql4vr163qv3bt3z+D8CI8ePSIpKQkrKyud5bl5r//880+D6Wyap+4Z9x0YGIiiKEZ/5aZ3I7datGgBwOHDh/Veq1+/PiqVip9//lnn3C5evMiCBQvyfewKFSrg5+fH6dOn+eGHH3Re++yzzwzWzmhmHH/jjTcMzoVy+/Ztzp8/n++25YWmdiK7tEbN+6x534UQzydDN89Pq4A7NfnJg7WC6LGIzuOQsxkDHFNzE1Sm0mMhXlBBQUEkJiYyf/58vL298ff3x8fHB3NzcyIiItizZw8PHjwgKChIu429vT07d+6kW7duzJw5kxUrVtCuXTvc3d2Jj4/nxIkThIWFYWZmxty5c/PcNrU6/RdVU1+QnQsXLtC2bVuaNm1KlSpVcHFx4fr16+zYsYMHDx7g7++v15uQk4CAAN577z22b99OjRo1OHv2LFu2bKFUqVI6N5smJiasXLmSgIAAOnbsyGuvvYaHhwd//vknISEheHl5MWvWrNydvBHs7Oxo0KABBw4cYMCAAVSpUgUTExMGDBjAo0ePqFu3LrVr16ZWrVqUK1eOBw8esGnTJlJSUhg7dqzOvnLzXs+ePZt9+/bh5+dHxYoVsbKy4vjx4wQHB1OpUiV69OhRoOc5a9YsbZHyn3/+qV2mKUjWDJmak9atW2Nvb8/u3bsZN26czmtubm707duXH3/8kfr169O+fXvu3r3L//73P9q3b8+GDRvyfR7ffPMNvr6+DBw4kI0bN2rnsThy5AjNmzcnNDRUZ/327dszefJkZsyYQeXKlWnfvj0eHh48ePCAS5cuERoaSlBQENWrV89323LL39+fo0eP0qFDB5o3b46FhQV+fn46s3fv3r0bMzMzOnfu/NTbJ4R4egwVKKelqjG3zFvNQ24UTI9FhlSovPZYpOr2WJhqAgupsRAvGhMTE+bNm0e/fv1YtGgRBw4c4MCBA6jVasqWLUtAQABDhgzRG77Sw8ODI0eOsHbtWn755Rd27tzJw4cPsbKyokqVKowfP56RI0dSvnz5PLUrKiqKGzdu4Ovra9TQtl5eXgwePJgjR46wceNGoqOjsbOzo1atWvTr148333xTZy4HYzRu3JhJkyYxadIkvvrqK0xNTenevTtz5szRmRwP0kf7OXToENOnT2fXrl1ER0fj5ubG6NGjmTRpktGT4+XWmjVreP/999m6dSvR0dEoikKzZs20c1vs3btXGxyWKlWKevXqMXr0aNq3b6/dR27f61GjRuHo6Mjhw4fZv38/iqJQoUIFJk6cyPvvv1/gtSQ7duxg//79Ost27typ/d7T09OowMLOzo7+/fuzdOlSbt26pS2q11i+fDmlSpVi3bp1fPPNN3h7e7N06VLc3NwKJLDw8fEhLCyMjz76SDvXRLNmzQgLC2Pu3Ll6gQXA9OnT8fPz46uvviI4OJioqChKlixJxYoVCQwM1Bu69mmZPHkyjx49YuvWrYSGhpKWlsbUqVO1gUV8fDwbN26kc+fOuLm5FUkbhRBPh+Eei6dTZ1EQNRZ2zlbpozipFaLzOOSsXo+FtsbixRgVSqUURSXfUxQTE4OjoyPR0dHZ3uQkJiYSERGhfeoqio+tW7fSpUsXtm3bRseOHZ/qsUNCQmjVqhVTp04tNkOlFqaifK+ftvDwcHx8fAgMDCy2M4Q/D5YvX86wYcPYv3+/Ti+GeH7I/0+hcfHIHXZ9d1Zn2YCgJjo9AYXljw2XOLH7GgA9PqyHWxWnPO1n7eQ/ib6XgLmlKcO+9NMbBCMnG+Yc5faV9JEfR33bih+nHiL6XgKWtma8+cWz+TfQ2HtpkBoL8QwIDQ2lTp06z/2NbnHwIr3X3t7evPnmm8yfPz9fs4+LrKWmpvLZZ5/RtWtXCSqEeAFklQr1NOR3gjwNh//qLFKS0kiMTcn19pqaEs0cFiYvWI2FBBai2Js9e3aBjMYjcvaivdfTpk3jnXfeMapQXeTetWvXGDhwIPPmzSvqpgghnoK0IkyFSkt5Uryd1xoLAMcMvSvReaiz0JyvyX9t0AQWygsSWEiNhRDihVW6dOkXIsWtqFSqVEneXyFeIIYmgUtLeUqjQhVUj0Up3bksXCs55qkdpmbpAYVmqN0XpcdCAgshslFUE4oJIYQQz5qiLN7OOH9EXmfehkxDzuahx0KdqhlZMT2g0BZvq9OHUs9tzcazRlKhhBBCCCFEvhXpqFAp+R9uFsDBJcMkeXkYGUpzvppeE81ws2C4R+d5I4GFEEIIIYTIt7TiUrxtUTCpUHnpsXiSCvVfYJEhyMnYxueVBBZCCCGEECLfijYVKkPxtlneb28trMywcbAAIOpOfO7bkanHwsziSVpWxrk2nlcSWAghhBBCiHwrDqlQJmYqbV1DXjm72QKQ8DiFhMfJRm+nKArq/4ab1fRYmGXoPUlNTjO43fNEAgshhBBCCJFvBuexeEqjQmmKt/PTW6HhXNZW+/3Dm3FGb6cJKiBjYJGhx0JSoQrXgQMH6NKlC25ubqhUKjZu3Kh9LSUlhY8++oiaNWtia2uLm5sbAwcO5ObNm0XXYCGEEEIIYZDB4Wafco9Ffoaa1SiRMbC4ZXxgkZrhXDXDzWYsJJcei0IWFxdH7dq1+eabb/Rei4+P5/jx40yePJnjx4/z22+/ER4eTteuXYugpUIIIYQQIjtFOUGeJrDIz1CzGppUKMhdYJGmM5dGejtetBqLIp3HokOHDnTo0MHga46OjuzevVtn2ddff03Dhg25du0aFSpUeBpNFEIIIYQQRigO81gURI9FdqlQ965d5caFc6AoVKxbH8fSrk/aYKjH4gWrsXimJsiLjo5GpVLh5OSU5TpJSUkkJSVpf46JiXkKLRNCCCGEeLEZCizUT63HIv2m3SwfQ81qWNmaY+NgQXxMMo9upwcWyQnx7PluEedD9z1ZUaWidpv2tBj4JuYWlpl6LNLbYf6C9Vg8M8XbiYmJfPTRR/Tt2xcHB4cs15s5cyaOjo7ar/Llyz/FVgpR+AYPHoxKpeLq1atF3RTxFG3cuBGVSsUff/xR1E0pFEePHqVt27a4uLigUqmoU6cOkLfrfdKkSdjb23Pnzp3CaawQwiBDxdtPo2BZUeuPxpRfGUeGin0Yx2+zAnWDCgBF4dTu39k4ZwapycmkJD3pkTC3TH92r9NjkfL891g8E4FFSkoKvXr1QlEUFi1alO26EyZMIDo6Wvt1/fr1p9TK58exY8cYOnQoVapUwdbWFmtra7y8vBgwYIBeeppGamoqK1asoGPHjri6umJhYYGjoyMNGjRg0qRJREZG6qzv6emJSqXSfpmamlKqVCnatWvHpk2b8n0OX331FZ06dcLT0xNbW1ucnJyoXbs2gYGBPHz40OA2arWahQsXUrNmTaytrXFxcaFv375cuXIl3+0pjlQqFS1btizqZhS6I0eO0LFjR5ycnLC1taVx48b88ssvud5PUlIS06dPp0qVKlhZWeHm5sbw4cO5e/eu3rpXr17Vub4zfwUGBubq2CkpKYwfP56AgACaNm2a67YXdzExMXTq1Im//vqL3r17M3XqVEaOHJnl+iEhIdm+jx9++CEmJiZMnTq1kFoshDDEcCpU4Y8KlbFouiB6LEA3HWrvyuXp6U+ApY0tzfoMpOlrr2NmYQnAtb9PsmPRlyQnpmi3MbeUGotiSRNUREZGsnfv3mx7KwAsLS2xtLR8Sq17vqjVasaOHcv8+fMxMzPD39+frl27Ym5uzpUrV9i2bRtr165l+vTpTJ48WbtdZGQk3bp149SpU5QpU4a2bdtSvnx54uLiOH78OLNmzWLu3LmcOXOGypUra7czNTVl0qRJACQnJ3PhwgU2b97M7t27mTt3Lh9++GGez+W7774DoEWLFri6upKYmMjhw4eZNm0a33//PX/99Reurq4624wYMYLly5dTo0YN3nvvPW7evMkvv/zCrl27OHToEFWqVMlzewrSzJkz+fjjjylXrlxRN6XY27dvHwEBAVhZWdGnTx/s7e3ZsGEDvXv35vr160ZfY2q1mm7durFz504aN25Mz549uXjxIsuXLyc4OJhDhw7h4uKit13t2rXp3r273vLcBnRr1qzh4sWLLF68OFfbPSv++usv7t69y6effsrEiRN1XsvL9V6iRAnefPNNFixYwIQJE/Dw8CjoJgshDCiqGgudFCSz/Bdvw5MeC3XqbS4eTn+oampuzquTgnD1Sr8f8KhVh/VBk0lJSiT8jwPYlawCOAIZAosMNR8ZezSMpaSlEX/4MNYvv4yJhUV+TumpKNaBhSaouHjxIvv27aNkyZJF3aTn2qRJk5g/fz516tRh/fr1eHl56byekJDA119/zYMHD7TLHj9+TEBAAOHh4YwbN44ZM2boBXaXLl3igw8+IDY2Vme5mZmZ3hPHXbt20b59e6ZMmcKoUaOwsbHJ07kcPnwYKysrveWTJ08mKCiIL774gs8//1y7fN++fSxfvhw/Pz92796NxX+/vP369aNjx46888477Ny5M09tKWhly5albNmyRd2MYi81NZVhw4ZhYmLCgQMHtKk1U6ZMoWHDhkycOJFXX33VqJvOVatWsXPnTvr27csPP/yASpVelLd48WJGjRrFpEmTWLJkid52derUyXXvhCGLFi2ifPnytGrVKt/7Ko40w4i7ubnpvZbX671///7MmzeP5cuXM2PGjHy3UQiRs6IKLDL2BBRUj4VLBXsURSElYb92mV+/wdqgAsCtanU6vP0Bm+d9BsDJHWsxsxmAysRBG1hYWD251U5JSjX6+EkXLxL12/+I2bqV1Hv3cP96IfZt2uT3tApdkaZCxcbGcvLkSU6ePAlAREQEJ0+e5Nq1a6SkpPDqq69y9OhRfvjhB9LS0rh9+za3b98mOdn4WRCFcS5dusScOXMoWbIkO3bs0AsqAKytrRk3bhzTpk3TLps7dy7h4eH079+fOXPmGOwtqly5Mps3b+all17KsR3t2rXD29ub+Ph4zp49m+fzMRRUALz22mtA+vlmtGzZMgBmzJihDSogfeSyli1bsmvXLq5du5bjcTUpMIMHD+bs2bN06tQJJycn7OzsaNeuHceOHTO4XWRkJEOHDqVcuXJYWFjg7u7O0KFDDR7TUM55xtQQTa66vb09jo6O9OjRw+C6APv379dJ0Vm5ciWQ/oR++fLlNGzYEGdnZ6ytrXF3d6dLly6EhITk+D5k5+LFiwwZMoSKFStiaWmJs7MztWvXZsyYMShKwXWZ7927l8uXL9OvXz9tUAHpI85NnDiR5ORkVq1aZdS+NNfHzJkzte8dpPdyVapUiR9++IGEhIQCa3tGZ86c4ejRo/Ts2VPn2BmtWLGCRo0aYWdnh52dHY0aNdJ+lhqhoaGoVCreeOMNg/u4e/cu5ubm+Pr66ix//PgxU6dOpUaNGlhbW+Pk5ERAQAAHDx7U20fLli1RqVQkJiYyadIkvLy8MDc3zza4UqlUDBo0CIAhQ4boXYuZr/fAwEBtgDVt2jSd6zfjdV63bl0qV66s9z4IIQqPoRoL9VOosUhLfdITUJA1FkraFZTUGwCUKFuO2u066a1XpVFTavq3S29HShIp8QeAJz0WFjZPAouk+OwDi7SYGB79/DMRvXpzpUtXHq5YQeq9ewBEb9ma/5N6Coq0x+Lo0aM6T+A++OADAAYNGkRgYCCbN28G0LkpgPSnyy9CbvjTtHLlStLS0hgxYgRlypTJdt2MwcP3338PpD8FzolFLrvwsrqJyo9t27YB4OPjo7M8JCQEW1tbvZsqgICAAEJCQti/fz8DBgww6jhXrlzB19eXevXqMWrUKCIjI/n111/x8/Nj7969NGrUSLvuP//8Q7Nmzbh37x5dunShRo0anDlzhu+//54tW7Zw8OBBqlatatRxjxw5wpw5c2jVqhUjRozgxIkTbNy4kb///pszZ85gZWWFp6cnU6dOZdq0aXh4eDB48GDt9prftQkTJjBnzhy8vLzo168f9vb23Lhxg4MHD7Jnz548//7dvHmThg0bEhcXR6dOnejduzdxcXFcvHiRb7/9lrlz52JmVjB/ljQBULt27fReCwgIANIDq5xo0ui8vb31ejdUKhVt27ZlyZIlHD16lObNm+u8fvPmTb755huio6MpU6YMLVu2NBi0Zyc4OBiAxo0bG3z9vffeY+HChZQrV46hQ4cCsGHDBoYMGcKJEydYsGABAM2aNcPT05MNGzbw7bff6gXfP/30E6mpqTrX+MOHD/Hz8+Ps2bP4+voycuRIYmJi2LRpE61ateLXX381mOrVs2dPTp06Rfv27XFycqJixYpZnt/UqVM5efIkmzZtolu3btprMPPffY2WLVty9epVVq1aRYsWLXSuxcwjBjZp0oQ1a9bwzz//GP07JITIO3URTZBXGD0WZuamKKlHtT837TUA0yz+P/n1f4NLRw+TEBONOuUf0lKuY26Z/jDV0jpDYJGgH1goikLCiZM8+uknHu/ahZJhZFMAzM2x8/PDsUvnAjirwlekgUXLli2zfUJZkE8vRfbCwsIA8Pf3N3qbyMhI/v33X9zd3Qus/iA4OJjw8HBsbW2pUaNGvve3dOlSbt68yePHjzl+/DghISHUrVtXG8RC+kSNt27dwsfHB1NT/dxMzbldvHjR6OOGhoby8ccfM3PmTO2yQYMG0b59e4YNG8bp06e1y0eOHMm9e/dYsmQJw4cP1y7/9ttvefvttxk1apT25jIn27dv5+eff6Z3797aZQMHDmTNmjVs3LiRPn364OnpSWBgINOmTdN+n9ny5ctxc3Pj9OnTeuloWRW/G2PDhg1ERUXx5ZdfMnr0aL39ZgwqTp48ycaNG43et5OTE2PGjNH+rPm8DF2brq6u2NnZGfWZXr58GbVaneU1nvH6yBxY7N69W2fAA5VKxeuvv87ixYuxtbXFGJrfzfr16+u9duDAARYuXEj16tX5888/cXRMz+0NDAykcePGfPXVV7z66qs0b94clUpF//79CQoKYvPmzfTq1UtnX2vWrMHCwkJn+bvvvsvZs2dZtmwZb775pnb5zJkzefnllxk+fDjt27fXC1Ju3rzJ6dOncXZ2zvH8AgMDWblyJZs2baJ79+46ga4hmkBi1apVtGzZMtvekJdffpk1a9YQFhYmgYUQT0FRFW9nDF7MCqjH4uY/F0hJSO+tUJm6YF8q63sSK1s7mvcdxK4lXwGQmhCCmUV7ACwz9FgkZ+ixUCcmErNtGw9/+IGkc+f19mn5UnWceryCQ+dOmJUoUSDn9DQU6xqL4uSXz44QH1N8U7BsHCzoNbFBnre/ffs2AO7u7oW6TUapqanam4KUlBTCw8PZtGkTiqIwY8YMrK2t87TfjJYuXaqTftSuXTvWrFlDiQy/pNHR0QDam7LMNAMGaNYzhpOTE5988onOsoCAAFq3bk1wcDDHjh2jfv36XLt2jX379vHSSy8xbNgwnfVHjhzJwoUL2bt3L9evXzdq6GQ/Pz+doALgjTfeYM2aNRw5coQ+ffoYfQ4WFhYGAy1jbhZzYuizzbzfkydP6qTd5cTDw0MnsDDmczXmM83L9WFjY8PkyZPp3r07Xl5eqNVqjh8/zieffMLatWuJj49nw4YNRp3Xv//+C2CwJ1GTyhUYGKjTvhIlSjB16lRef/11Vq5cqQ14BgwYQFBQEGvXrtUJIM6fP8+xY8fo3r279nO4f/8+69atw9/fXyeoAChdujTjxo3jvffeY8+ePXTurPskbdq0aQVyneSX5j3TvIdCiMJlKBXqafdYFMQEeQAnd217sk/Lety6HE25qlnf4Pu0bEPYL78R9+hflLR73L1yEq+6AVhk6rFIuXWLh2vXEr1+A2mZ/geZOjri0LUrTq/0wKp69QI5j6dNAgsjxcckExeVlPOKwmhpaWnaG0cTExNKlCiBv78/b7/9Nl27di2QYxw9mt6Nef/+ff78808+/vhj6tWrx/bt26lVq1aBHMOQunXrYmdnp7e8efPmBAcHc+LECerXr6+tL2rRooVe6peJiQl+fn5cuHCBkydPGhVYGHqqrQn8oqKijG5/nz59+Pbbb/Hx8aFPnz60atWKJk2a5DvY69KlCxMmTODtt98mODiY9u3b06JFCypVqqS37uDBg3N8el1clS5dmunTp+ssa926NU2aNKFevXr89ttvHD9+nHr16uW4rwcPHmBqaoq9vb3eaydOnAAMjzKlSTPVXGMAVatWpWHDhuzYsYP79+9TqlQpANauXQugkwZ15MgR0tLSSEpKMtgroOntuXDhgl5g0bBhQ52fN27cqNMOTZsLO6U1Y5AkxLPu3rXHXD5xl+pNy+LokreBTQpb0RVvP6mxyDi8a14lJ8Rz8a//5gxSWWJq4c2tS9k/iFKZmFDWuz2XDi0H4Nz+/9GoRxvMLU1RmahQ1AqxFyO51HYgpOqmRFn5+FCi/+s4dOiAyTM+sqkEFkaycSjeQ3zlt32urq5cuHCBGzdu4O3tbfQ2ADdu3MjTMS0tLUlMTMzTtrlVqlQpunTpQp06dahSpQrDhg3j8OHDwJMn0Vk9vdbM3p7VE2tDsqpT0SzXHEuz76zW14yGY+wM8oaGY9akF6WlGT/M3YIFC6hYsSIrVqwgKCiIoKAgrKys6NWrF1988YX2hjS3PD09OXToEIGBgWzfvl07n0S1atWYPn26tri+IBjzuZYwonu5IK8PGxsbBgwYwKRJkwgLCzMqsLC2tiYtLY2UlBTMzc31jm1iYmJwqNsyZcqgUqn0rp0BAwbw119/sW7dOt5++20UReGHH36gRIkSdOr0pDBRk/IWFhamTccyJC4uzuCxM9q4caPBQvnCDiw0BfV5HV1OiOJky8KTJDxO4cqJe/QLNFxzVdSKKrBISc44MV3+A4t/DoWR+l+tg6XtS6hUZty+HIVarWBiknX9p6WtFyrTsihpt4i68y/hf4TiaeeEuTqRZCxJik3SBhUqc3PsO7THuX9/rAvxQefTJoGFkfKTZvQs8PX1JSQkhODgYKPrLDw8PChXrhzXr1/n4sWLxWaeh+yUL1+e6tWrc+TIEeLj47GxscHW1payZcsSERFBWlqaXvpPdrn6Wclqxl/Ncs1NqCYQyGp9TbpZTvO3FDQzMzPGjh3L2LFjuXnzJvv372fFihWsXr2a27dv52voXR8fH9avX09KSgrHjh3j999/56uvvqJ37964ublpC+jzW2ORsfYhc0/O7du3iY2N1XuybkilSpUwMTHJsh4jt9eHJigzdENuiCZoePjwod4Nu4ODA2q1mnv37lG6dGmd1+7evYuiKHrXTp8+ffjggw9Yu3Ytb7/9NgcOHCAyMpIRI0boDMyg2e7DDz9k7ty5RrVVI3Pv28qVK4tkdCZNcGQo8BLiWaKoFRIep0++9uh2fBG3JmuawMLERIVaUUDRnWPCGIqicOP8WW6En8OhdBkqv9wIc0vDIz1q6BZv5z+wOHdgr/Z7N+/G3LoCyYlpPLgRi0t5/d5jjaT4VMysfUmJXQ/Aga/noT55EdNGgWDtQqqZNSaOjpTo1xfn11/HLI8P6YozCSwEkJ52MmvWLJYuXcqYMWOy/UeclJSkvQEZOnQo06dPJygoKMehO5OTk3M9MlRhuHXrlna2b40WLVrw888/ExYWhp+fn876mpvozMuzc+LECWJjY/XSoUJDQ4H0VCl4MvLNgQMHUBRF54ZMURQOHDigs15BMjExMaoXw83Njb59+9K7d2+8vb3Zs2cPCQkJ+U6LMjc3p3HjxjRu3JjKlSszcOBAtm7dqhNY5KfGokWLFsycOZNdu3bp1ZZoPtMWLVrkuF9ra2saNmzIoUOHiIyM1BkZSlEUdu/eja2tLS+//LJR7dT0lHl6ehq1fs2aNdmzZw/h4eF6gUXdunU5ceIEISEhesXYmlGxMl87pUqVon379mzZsoVLly5p06D69++vs16DBg1QqVT8+eefRrXzadL87uZ0/YaHhwPp76EQz7LkTBOrpSSlFciT+YKmqbEwMVWhQkVaijpXxdsJsY/ZtmAOkadPaJfZl3Sh29hPKFOpcpbbZZx4Lr+jQkXfvcP1c38D6UPMVqpXk1tX0oeov3UpKsfAwtS8Amlm7qhT/yVWUXOzhB1mqenBYKq5LV579mBmr58q/bwo0nksRPFRuXJlxo8fz/379+nQoQMRERF66yQmJjJv3jydfOuxY8fi7e3N6tWrmThxIkmZh0kjfX6S7t27c+7cuTy3z9PTU2+c+qzcunXLYHqWoigEBgZy584dWrdurfN0VjMa0+TJk3XmSfn9998JCQmhXbt2uZq9Nyoqik8//VRn2c6dOwkODsbHx0f7BL1ChQq0atWKs2fPaofu1Vi6dCnnz5/H39/fqPqK3HJ2djZY1JqUlMQff/yhtzwuLo7Y2FjMzc0xMXnyp0Mzd4Ex81scO3bMYFqXpscm4+hCgwcPRlEUo78yXxutW7emUqVK/Pjjjzr5/dHR0Xz22WdYWFgwcOBAnW1u3brFhQsX9NKeNNfHhAkTdEarW7JkCVeuXOH111/XCbROnDhhcFS73377jVWrVlGiRAk6dOiQw7uVThP8aAKSjDTzP0ybNk3nfY2OjtYGZZp1MtLUUixfvpxff/2VihUr6g217OrqSq9evfjjjz/4/PPPDZ7P4cOHiY9/+k9PNbUT169fz3a9w4cPY2ZmRtOmTZ9Gs4QoNMmZhimNffR00ohzSxNEmJiZaOeTMDYVKjU5mf/NDNQJKgAeP7jHhplTib57O5ttCy4V6kLYk2HIa7RojVsVJ+3PN/6JynK7xHPniL2W3kZLszra5ZfLlcamQnrquIIKtXn2vS/POumxEFpBQUEkJiYyf/58vL298ff3x8fHB3NzcyIiItizZw8PHjwgKChIu429vT07d+6kW7duzJw5kxUrVtCuXTvc3d2Jj4/nxIkThIWFYWZmlut0iozU6vQ/TMbMcRAeHk7btm1p3LgxVapUoUyZMty/f5/Q0FDCw8Nxc3Pjm2++0dmmVatWvPnmmyxfvpx69erRqVMnbt26xbp163B2dmbhwoW5am/z5s1ZtGgRhw8fpnHjxly9epVff/0Va2trli9frrPuokWLaNasGcOGDWPLli289NJLnD17ls2bN+Pi4sKiRYtydWxj+fv788svv9C9e3fq1q2LqakpXbt2pUKFCvj6+lK1alXq169PhQoViI2NZevWrdy+fZuxY8fqBGW5+WzWrFnDkiVL8PPzw8vLCwcHB86dO8f27dtxdnZmyJAhBXZ+ZmZmLF++nICAAPz8/OjTpw/29vZs2LCByMhI5s6dq9drMGHCBFatWsWKFSt0CscHDRrEunXr+Omnn4iIiKBFixZcunSJ3377jYoVK+r8TgC8//77XL58mSZNmuDu7k5aWhrHjx/n4MGDWFpasnLlSqNrdlq3bo29vT27d+9m3LhxOq/5+fnx7rvvsnDhQnx8fOjZsyeKorBhwwb+/fdf3nvvPYM9bV26dMHR0ZF58+aRkpLCe++9Z3DemG+//Zbw8HDGjx/PmjVraNKkCU5OTly/fp2jR49y8eJFbt269dRrGKpVq4abmxs///wzlpaWuLu7o1KpePfdd7Xva2xsLIcOHaJt27ZGD+0rRHGVeWK12IdJlHAtfte1To/Ff39SjA0sDv9vHbcupfcyWts70LD7a/xz6CC3LoaTEBPN5i9m8vpn8zAxMFphQRZva4u2gWq+LbAvaYeVrTmJcSlcP/eQ1JQ0zMyfHCPl5k3uzv+S6C1bSPT7EkzAJs0W22Q19y1MiDNV4Wh5B6gAQMLjFJ3ZuJ83z++ZiVwzMTFh3rx59OvXj0WLFnHgwAEOHDiAWq2mbNmyBAQEMGTIENpkmlLew8ODI0eOsHbtWn755Rd27tzJw4cPsbKyokqVKowfP56RI0fm+al7VFQUN27cwNfX16ihbatVq8YHH3zA/v372bp1K48ePcLa2poqVaowefJkxowZY3AozCVLllCzZk2WLl3KggULsLOzo0ePHnz66ae5ntSsUqVKLFq0iPHjx/PNN9+QlpZGy5YtmTVrll6+v7e3N0ePHmXatGns2LGDbdu24eLiwpAhQ5g6dWquekpyQzNx2t69e9myZQtqtRp3d3eqV6/O7NmzCQ4OJjQ0lLt371KiRAm8vb2ZOXOmTlqRoiicPXsWT0/PLCdwy6hv374kJiYSFhbGX3/9RVJSEu7u7owaNYpx48ZRoUKFAj3HVq1acfDgQaZOncq6detISUmhZs2azJ49W29Y3uyYmJiwadMmZs2axZo1a5g/fz7Ozs4MHTqUoKAgvdTB/v37s2HDBg4dOsT9+/dRq9WUK1eON998kw8//JBq1aoZfWw7Ozv69+/P0qVLuXXrlragX+Orr76ibt26LFq0iKVLlwJQo0YNpk+fnmWgZmVlxWuvvaYNcjOnQWk4Ozvzxx9/8PXXX7Nu3Tp++OEH1Go1rq6u1K5dm8mTJ+e5kD8/TE1N+e233/joo4/46aefePz4MZB+HprAYsOGDSQkJDBixIin3j7xYrp6+j5nQ29gV8KK5n2qZlvkm1vJibqBRcZi5eJEW2NhqtKevzE1Fg9uXOevTev/29aUnp/MoExFL3xatuXHSR/y6NYN7l69zIkdW6nfqZve9ikZaizM85EKFXPvLnf+S3sqU6kyjqXT0089a5Xkwp+3SUlK498Lj/CsWYq02FgeLF3Gw1WrUJKSSDG3QzFJH2DDoYILDV+fxbrpE9PP79peMB+ASmVK7MNEHF3yP5x+caVSnvNZ6GJiYnB0dCQ6OjrbAtjExEQiIiKoWLGi3mRPomht3bqVLl26sG3bNjp27FjUzcnW1atXqVixIoMGDSqSYtWn7cyZM9SsWZNvvvmGt956q6ib89wKDw/Hx8eHwMBAvflRhGHNmzfnzp07nD9/3uB8LKLgyP9PeHAzlp+n/6X9uceHdXGrUnCTml0/95DNX53U/tzuzRpUednwaIJFacX4g8THJGPnbImpqQnR9xKwtDHjzXnZ1yhu//oLzofuA6Bxzz749nrysOPmPxf4aco4UBSsHRwZtvA7zDNdZ6Hr/uH0vvTU3p4f1ce1ovGjOGZ0bNsmQlYvA6BZn4E06pFeuxZx6h7bF6XXXVRv4kpdy7+5t3AhaQ8eaLeNL1udQ97vpK/jWxb/AdVZ/+lkbWqXmU1bzCxr0npQdao10X1AVNwZey8NUmMhngGhoaHUqVOn2AcVL6LQ0FDKlCnDG2+8UdRNea55e3vz5ptvMn/+fO3TeZG14OBgDh48yOzZsyWoEE9F1B3dWqP4mJQC3X9qpnQiQ8O6FgdPeixMtBPV5ZQKFXX7FhcOptc1WNk70KBrT53X3apWw7tJ+iSfCTHRnNq9XW8fOsPN5iMVKmMaVOWGTbTfl6/urC0Kvxx2hZvTpmuDCpW5Oc5vvIHjp/O169uVSA98mr7WT7ssNfEwipLG44fFsz6moEhgIYq92bNnaycCE8XLqFGjuH379gv7lPJpmjZtGu+8845RAxi86KKjo5k7dy49evQo6qaIF0SKgVGbClLmdCJDM1wXB5p2mZqqMhRvZx8Endy1FUVJ365+x25YWOmnCTV+pTeaoo0jW34jNcMgK1Aww83GRT3iRnj6IDPO5cpTslyG9O24GEqTXpidbGLDA2cfAOzbt6fS9m2UGT+OqKgnbXAum17/4la1Op51/kt/VseQlnyWxw8ksBBCCFHESpcuTWBgoAydaoRXXnmFDz/8sKibIV4gqXqBRWoWa+ZNWoru/nMzhOvTlJahxsLULD0QUNQKarXh9qalpnDuQHoKlKm5ObXbGc5MKFXeg6oN00d3i4+O4p9DB3VeL4jhZi8dOQT/VQdU+e9YilpN1Pr1XOnQEZejv2rXvVm1Ax4//oD7l/Ox+K9+9MHNJ3MTlSj7ZEALnV6LhMNE33u+e50lsBCiAHl6eqIoygtRXyGEECJdxuJhKPgei9RnpsciQyqU2ZNbzKzSoa4cO0LC4/Shsis3aIK1XdZzRNTr+KRo++SubTqvFcRwsxnToKo0bELSxYtE9nudW5MmkxYVhfPD81gn3gfggWUFHjs/mVdDURRuXUofptzM0hSnMk8Ci7KVvalY9795jpTH3L64L0/te1ZIYCGEEEIIkQ+Zb5xTEgs4FSrT/otjj4WiKCjqjD0WGQKLLEaGOhOyW/u9T6u22e7fzbs6LhU8Abh1MZw7EZe1r+n2WOQ+sEiMjeX62dMAOJRywWTnbiJe6UlChjmQHDt1pF7PJz3GYesvas/3ztUY4qLS5/Eq6+WIqanu7XWL/m+AKn1Z/KM/uHU5+zl4MkpVp3I77jbRSdE5r1wMyHCzQgghhBD5oBdYvIA9FhkLyk1MVZjk0GMRHxNNxIljANiXcqGCT61s969SqajdrhN7lqfPQ3U2ZA9lKqYPBa+ZQNDc0jRPw/xeOf4X6rT0z8zlzgPuB3+lfc3C0xPXwKnYNm6Ma6qaM0eiiL6bwK1L0fy1NYKGnStybPtV7fpVXi6tt/+S7hUoW9WPW+EhQBr7ViylX9AM7etxKXFEREdwOeoyV6KvcCP2BrfjbnM77jb3Eu6hVtSMe3kcA2sM1Nt3cSOBhRBCCCFEPqgLObDI/MS/OPZY6AYWOadCXTpySFu0Xc23BSYmOfc0VPP1I2TVMlJTkjkftp8WA97A1MxcG1hYWOfttvafP5/UbLhE/NebYGJCyaFDKfXO25j8NymsqZkJLfp6pw/9q8DR7Vc5GXxdW2Nj42CBVz39wALg5S692fLPX6DEc+viCZb9PIOLbo85c/8M1x9n3YNR8UZ6WtXtl7Keebw4kVQoIYQQQoh8SEvRvdF/EUeFytgmU1MVZuZPbjHVBgKhjDUNmsLsnFja2GqHgU18HMOV40cASPov9SwvgcXj8+eJOJY+B4lFSiol4hKxrFoVz3XrKP3hB9qgQqN8dWd8ez6pr9AEFSoTFS37V9ObVTtFncKJuyfYY7INE/tm2uUPNh/i4Jnd2QYVnkmlaHbGhRanXCgReg9FXfw+98ykx0IIIYQQIh8KPRUq8zwWxb7H4smoUKD//iTGxXLt71NAehpUGa8qRh+nhp8/F8LS5704u38vXvUba2/uLa2Nr69QFIWon3/mxLcLUbs5A+D6OAGXd96h1PBhqCwssty2TpsKOLpYc3T7VR7diaeEqy2Nu1ai/Evp+4lOiubAvwcIvhbMnzf/JD41fZ6TpuV6UC2xOurk85inqWj/Vzl2NL9LxbJVqOxUmUqOlajkWAkPBw9sk83ZMHUij9PuAeBu6Y7KpPj3B0hgIYQQQgiRD5lv/As9FaoY9lhkTM/KKRXq6sljqNPS05eqNGiCSmV8XUSFWnWwK+FM7KOHRJw4QtTdJ7NfG9tjkXr/Prc+mUTs/v3c9ngyg3nt997HpUt3o/ZRsbYLFWu7aH++n3CfH8//yN5rezl65yhpiv41cMx9J1UefojJvbso6gfYJsCrwS/hWPYVHEqVxdTMhHsquP74DHcu/YA6Nb1gW2VahrLeXY1qV1GTwEIIIYQQIh8y3/gXeipUseyxeNJGEzMVJhlSoTIXn0ecOKr93uvlRrk6jomJKdX9/DmyaT3qtDTOh+4H0nsKjAksHoeEcGviJ6Q9fEiaSsVd+/QaBitbO7w6dM5VWxJTE9l3fR9bLm/hj5t/GAwmnK2caeLWhEaujWhctjGWHR3Y+rUj9658D0ocStp9ov79nsf3fFCZlkZJu0Na0t9A+numMnHAwq47EaceUadNxVy1ryhIYCGEEEIIkQ+Zi7czzqtQEDLfmBfHHovMqVAZ55PIOIGgolYTceo4AOZW1pSr9lKuj1XDrzVHNq0HIPzPfUBPIPvAQklJ4e68+TxcsUK77GG5MqT9NzSsV4PGmJoZd1t89sFZfgn/hV1XdxGbEqv3urudO60rtMa/gj+1XWpjmrEw3Q76BbbhxK7SHNrwFcnx94BU0pJO6u3HzLI0lV5+A696lfCq56L3enFU/JO1hBA6Bg8ejEql4urVq0XdFPEUnThxAlNTU3788ceibkqeFZdrd+XKlahUKr2JLD09PfH09NRZFhgYiEqlIiQk5Km1ryjt2bMHlUrF9u3bi7opzxS9GosCDiwy7z/jTXxxkXlUqIyBRXKGeT3uXLlEQkx6io9HzdqYmpnn+lgl3ctTtrI3AI9uRqJOvQuApZXhwCDl1i0iBwzUCSrsWrXicYcnc2dUbeSb7TGT0pLYfHkz/bb1o8/WPvx28TedoMLV1pU3a77J+i7r2f7KdsY2GEu9MvV0g4r/mFmY0qBzXUYuXkS9Dl0xM9et5zA1t6BRj968tfRburzXjJeauWFpk/v3qShIYCH0HDt2jKFDh1KlShVsbW2xtrbGy8uLAQMGsHv3boPbpKamsmLFCjp27IirqysWFhY4OjrSoEEDJk2aRGRkpM76np6eqFQq7ZepqSmlSpWiXbt2bNq0Kd/n8NVXX9GpUyc8PT2xtbXFycmJ2rVrExgYyMOHDw1uo1arWbhwITVr1sTa2hoXFxf69u3LlStX8t2e4kilUtGyZcuibkahO3LkCB07dsTJyQlbW1saN27ML7/8YvT2iqLw+++/M2rUKGrVqoWjoyM2NjbUrl2bzz77jMTERIPbZby+M38NHjw41+fxwQcfUK1aNfr06ZPrbcWz6+rVq3m+ZvKiTZs2NGvWjPHjx5OWVrA3x8+zzDf+qUkF26OgnwpVDHssMoxYZGKq0hkdKSUpVfv9lQxpUBXrvJzn42WcUC8t+QxguMci9sABInq88mSyO3NzynzyCa5fzifizKn/trOhQs06Bo9zJ+4O84/Np82vbfjk4Cf8ff9v7Wu25rZ0r9yd79p9x86eOxldbzTezt5G14yYW1rRavBwRixZTZcPJtD6jVF0/WAiIxavolmfAZhbWRm1n+JEUqGEllqtZuzYscyfPx8zMzP8/f3p2rUr5ubmXLlyhW3btrF27VqmT5/O5MmTtdtFRkbSrVs3Tp06RZkyZWjbti3ly5cnLi6O48ePM2vWLObOncuZM2eoXPnJEG2mpqZMmjQJgOTkZC5cuMDmzZvZvXs3c+fO5cMPP8zzuXz33XcAtGjRAldXVxITEzl8+DDTpk3j+++/56+//sLV1VVnmxEjRrB8+XJq1KjBe++9x82bN/nll1/YtWsXhw4dokoV40etKEwzZ87k448/ply5ckXdlGJv3759BAQEYGVlRZ8+fbC3t2fDhg307t2b69evG3WNJSUl0bFjRywtLWnZsiUBAQEkJiayc+dOPvnkEzZu3EhISAg2NjZ623p4eBi8IaxTp06uzmPv3r2EhITw3XffYfIMjAryrAoODi7qJhQL48ePp2vXrvz888+8/vrrRd2cZ0LmeSUKPxWqePdYmJropkJlrDm5evKY9nvPOvXzfDzvps3Zt2oZqclJpCWfx8zaTyewUFJTuffVQh4sXapdZu7mRrkv52Ndqxb/HDpIUnwcAJVfboSZuW6PwJXoK6w8s5ItV7aQqk7Vec27hDd9qvWhY8WO2Jjr/+3PLStbuxx7TJ4VElgIrUmTJjF//nzq1KnD+vXr8fLy0nk9ISGBr7/+mgcPnozA8PjxYwICAggPD2fcuHHMmDEDy0xjPl+6dIkPPviA2FjdPEQzMzMCAwN1lu3atYv27dszZcoURo0aZfBmzRiHDx/GykCkP3nyZIKCgvjiiy/4/PPPtcv37dvH8uXL8fPzY/fu3Vj8N8xcv3796NixI++88w47d+7MU1sKWtmyZSlbtmxRN6PYS01NZdiwYZiYmHDgwAHtzfyUKVNo2LAhEydO5NVXX8XDwyPb/ZiamhIUFMRbb71FiRIltMtTUlLo2bMnW7Zs4ZtvvmHcuHF623p6eupd43mxaNEirK2tefXVV/O9L5G1zH/zXlTt27enVKlSLF68WAILI2W+8U9NUaOoFVR5mAXakGeix8KIVKjE2FhuXf4HgFLlPXAolfe6AUsbW6o2asq50H2gJKFOuYyldU0AUh894sYHHxD/5yHt+natWuE2ayamjo4A6dv95yW/1trvT987zXd/f8e+6/tQeHJO5ibmtPNsRx/vPtR2qZ2rkaxeJPLoSwDpN/9z5syhZMmS7Nixw+A/WGtra8aNG8e0adO0y+bOnUt4eDj9+/dnzpw5ekEFQOXKldm8eTMvvZRzgVa7du3w9vYmPj6es2fP5vl8DAUVAK+99hqQfr4ZLVu2DIAZM2ZogwqADh060LJlS3bt2sW1a9dyPG7GtIWzZ8/SqVMnnJycsLOzo127dhw7dszgdpGRkQwdOpRy5cphYWGBu7s7Q4cONXhMQ3nqISEhqFQqAgMDOXr0KG3btsXe3h5HR0d69OhhcF2A/fv366ToaHLO1Wo1y5cvp2HDhjg7O2NtbY27uztdunTJd675xYsXGTJkCBUrVsTS0hJnZ2dq167NmDFjUJSCewq3d+9eLl++TL9+/XR6CBwdHZk4cSLJycmsWrUqx/2Ym5vzySef6AQVmuUTJkwA0t/HwvLo0SM2bdpEQEAADg4OBtdZsmQJNWrUwMrKivLlyzN+/HgSExOzTHfLzfWWl/XPnj1L586dtddgx44dOXPmTJ7O/9SpU7z++uu4u7tjaWlJ2bJlad++PVu2bNGuEx0dzezZs2nRogVubm5YWFjg5ubGwIEDuXz5stHHMlRjkdF3331HzZo1sbKyoly5crz//vs8fvxYZ52MfwPOnz9Pjx49KFmypM7v7P/+9z/69u1L5cqVsbGxwdHRkebNm7Nhwwadfa1cuZKKFdNHgVm1apXO72rG38O4uDimTp1KtWrVsLKywtnZmU6dOhEWFqZ3DhlrRlauXEm9evWwsbHRuU7Mzc3p3r07Bw8e1PtbKQwzNLN05mCjIPdfHHssMrYxPRUqQ4/Ff4HFvxfOwn9/57NKPcoNnXSopDNYWJuRGB7O1VdfexJUmJpSevx43L/9RhtUxMdEa0emsivhTHmfmpy9f5aRe0by+vbX2Xt9rzaosLewZ1jNYex6dRezms+iTuk6ElRkQ3osBJD+DywtLY0RI0ZQpkyZbNfNGDx8//33QPpT4JxYZDPZjCGF8Yu7bds2AHx8fHSWh4SEYGtri6+vfldkQEAAISEh7N+/nwEDBhh1nCtXruDr60u9evUYNWoUkZGR/Prrr/j5+bF3714aNXoyvN4///xDs2bNuHfvHl26dKFGjRqcOXOG77//ni1btnDw4EGqVq1q1HGPHDnCnDlzaNWqFSNGjODEiRNs3LiRv//+mzNnzmBlZYWnpydTp05l2rRpeqk6mhvwCRMmMGfOHLy8vOjXrx/29vbcuHGDgwcPsmfPnjzXZty8eZOGDRsSFxdHp06d6N27N3FxcVy8eJFvv/2WuXPnYmbkqBw50dx4tWvXTu+1gIAAIP8Bgfl/XedZtTkqKoqlS5dy//59nJ2d8fX1pWbNmrk6xoEDB0hJSaFx48YGX58yZQozZsygTJkyDBs2DHNzc3755RcuXLhgcP3cXm+5Xf/MmTP4+voSGxvLK6+8QpUqVfjrr7/w9fWldu3auTr3DRs20K9fPxRFoUuXLnh7e3P37l0OHz7Md999R5cuXQA4f/48U6ZMoVWrVvTo0QNbW1suXLjAjz/+yLZt2zh+/HiOPVM5mTdvHsHBwfTu3ZtOnTqxZ88evvzySw4dOsSBAwe014LGpUuXaNy4MTVr1mTw4ME8ePBA+zdwwoQJWFhY0KxZM8qWLcu9e/fYvHkzr776Kl999RXvvvsukP77OHr0aBYsWEDt2rXp3r27dv+aACgxMRF/f3/++usv6tWrx5gxY7hz5w7r1q1j586d/PTTT9oHKhl9/vnn7Nu3j27dutGuXTtMTXULTJs0acLy5cvZu3evTgqrMMxQD0JKUprOU/v8yBykFPseCzMV5jo1Fv8FFuee1Ce4v6T7fzgv3Kv7YGlbkqS4B6hTI4n6cy9JS2ajJCQAYFqyJO4LvsTmZd1ajgth+1H/V0NU+uVavB/yAXuv79VZp7R1aQbWGMirVV/F1tw23219UUhgIQC0T7b8/f2N3iYyMpJ///0Xd3f3Aqs/CA4OJjw8HFtbW2rUqJHv/S1dupSbN2/y+PFjjh8/TkhICHXr1uWDDz7QrhMXF8etW7fw8fHR++cKaM/t4sWLRh83NDSUjz/+mJkzZ2qXDRo0iPbt2zNs2DBOnz6tXT5y5Eju3bvHkiVLGD58uHb5t99+y9tvv82oUaOMzv3evn07P//8M71799YuGzhwIGvWrGHjxo306dNHm54zbdq0LFN1li9fjpubG6dPn9ZLR8uq+N0YGzZsICoqii+//JLRo0fr7TfjDfrJkyfZuHGj0ft2cnJizJgx2p81n5eha9PV1RU7O7tcfaaGaAJrQ8ELpD9tHzFihM6y9u3bs2rVKkqXLm3UMTS/m/Xr6+ci//PPP3z22WeUK1eO48ePa/c5bdq0LAOR3F5vuV3/nXfeISYmhrVr1+qk0UycOFHn9yEnd+7cYdCgQZibmxMaGkrdunV1Xv/333+131evXp1bt27h7Oyss86+ffto06YNQUFB2l7JvNq5cydHjhyhVq1aQHpRf//+/fnxxx/56quv9Op1wsLCmDJlik4Pr8b27dupVKmSzrLY2FiaNm3K5MmTGTp0KDY2NtSpU4cxY8awYMEC6tSpY/B3dc6cOfz111+8/vrrrFmzRvtA5r333qNx48YMHz6c9u3bY29vr7Pd/v37OXz4cJaB7sv/3YiFhYXpfO7CMIM9FgVYZ5GWoruvZ21UqJTE9BqF65rAQqXCvXr+AwuViQklKzTi5vn0UczOb1xJ3f+CCqsaNXD/eiHmmVKHFbWaEzue9HjOS/yRqOsp2p/dbN0YXms4Xby6YGGauweiQgIL8Z/bt28D4O7uXqjbZJSamqr9R5mSkkJ4eDibNm1CURRmzJiBtbV1nvab0dKlS3XSj9q1a8eaNWt00lqio9OHvXP8r4s0M036iWY9Yzg5OfHJJ5/oLAsICKB169YEBwdz7Ngx6tevz7Vr19i3bx8vvfQSw4YN01l/5MiRLFy4kL1793L9+nXKly+f43H9/Px0ggqAN954gzVr1nDkyJFcjShkYWFhMNDKfPOWF4Y+28z7PXnypMGbsqx4eHjoBBbGfK65+Uwz+/3331myZAnVq1dn6NCheq9/+OGH9OzZk6pVq2JhYcGZM2eYMWMGv//+O507d+bPP/80+P5mprmBNtST+NNPP5GWlsaHH36oE6jY29szadIk+vXrp7N+bq+3vKy/f/9+atWqpZebP3HiRBYtWkRUVFSO5wzpqT9xcXFMmTJFL6gA3b87WX3GrVq1okaNGuzZs8eoY2Zn4MCB2qAC0ntUP/vsM9atW8fKlSv1AgtXV1e9vwEamYMKADs7OwYPHsyHH37IkSNHaNGihVHtWrVqFebm5syaNUunl7du3boMGjSIZcuWsXHjRr3e1uHDh2fbe6a53jIGcCJrmWsgoGCHnNWbebtY9lhkkwqVlEZiXCx3r6aPsuhSwRNrO3u9feSFg3NdbrIbSOGOvQnJpia4dO6M67RpmBhIiz7z136ibt8C4GbJBKLs04OK0talGV5rOK9UeQVz02djaNfiSAILI62dMIa4qEdF3Yws2TqVoP/ML4u6GbmSlpamvXE0MTGhRIkS+Pv78/bbb9O1a8FMXX/0aHoO5f379/nzzz/5+OOPqVevHtu3b9e5SShodevWxc7OTm958+bNCQ4O5sSJE9SvX5+T/w1/16JFC73ULxMTE/z8/Lhw4QInT540KrAw9FRbcwNm7A0dQJ8+ffj222/x8fGhT58+tGrViiZNmuQ72OvSpQsTJkzg7bffJjg4mPbt29OiRQuDN1qDBw9+akNs5taRI0fo3bs3jo6O/PrrrwZri+bOnavzc5MmTdi6dSv+/v7s37+fTZs28corr+R4LM1gCU5OTnqvnTqVPlRis2bN9F4zlNaX2+stt+tn1x47Ozvq1KljdI3OX3/9BWTdG5RZSEgIX375JYcPH+b+/fukpj4ZxSW3aZiGNG/eXG+Zh4cH5cuX5+zZsyQnJ+scp3bt2lke9+7du8yaNYvff/+dyMhIEv57wqpx8+ZNo9oUExPDlStXqF69usEHPK1atWLZsmWcPHlSL7Bo2LBhtvvWBPr37983qi0vusyjQkHBDjmb+gzUWOhNkJchFSo5KY0bGeoryr+Uu5TQrCT/e4PHx89jaulDWtIJ1CYqHrzSmVrTZ+n9zUpRp/BL+C+cXrua0qQHDuc8H+Ns5cybNd/ktaqvYWX27A3vWtxIYGGkuKhHxD58kPOKzyhXV1cuXLjAjRs38Pb2NnobgBs3buTpmJaWllnOAVDQSpUqRZcuXahTpw5VqlRh2LBhHD58GHjytDOrp9cxMTE66xkjqzoVzXLNsTT7zmp9zehPmvVyYqi4V5NelJsx6RcsWEDFihVZsWIFQUFBBAUFYWVlRa9evfjiiy8oVaqU0fvKyNPTk0OHDhEYGMj27du180lUq1aN6dOnG8wFzytjPtfMBdnGOHr0KO3atcPExISdO3fmKmXPxMSEYcOGsX//fsLCwowKLDTBnKHfFc11YSitytA1ldvrLbfra97rrNK8cqrfykizL2OGVf7111/p3bs3dnZ2BAQE4OnpiY2NjXZAgszz6ORFdr/TV69e5fHjx5QsWTLH9R8+fEiDBg24du0avr6+tGnTBicnJ0xNTTl58iSbNm0iKSnJqDbl5+9HTp+FJtjJ68h8L5rMN/5Q0KlQz1aNhamBVKjr554M4FAQ9RUJp09zfdRbJHkOw9Sm3n8zVyucv3Ud34R4LG2e1EUc+PcAnx/5nNhrN+l877/fC9tUOrTpz9CaQ6WGogBJYGEkW6fc34A8Tfltn6+vLyEhIQQHBxtdZ+Hh4UG5cuW4fv06Fy9eLDbzPGSnfPnyVK9enSNHjhAfH4+NjQ22traULVuWiIgI0tLS9NJTssvVz8qdO3eyXa656dUEAlmtr0k3y2o0oMJiZmbG2LFjGTt2LDdv3mT//v2sWLGC1atXc/v27XwNvevj48P69etJSUnh2LFj/P7773z11Vf07t0bNzc37ZP2/NZYZKyNydyTc/v2bWJjY3N8apuZZsQttVrNrl27aNCgQa62B7RBWVxcnFHru7ikD8doqLZFc13cvXtXrzjZ0DWV2+stt+trruu7d+8aXD+r/Rii6aG5ceNGtiM1QfpIR1ZWVhw7dkzv9/Tnn382+pjZye53WqVS6dUwZDX4xHfffce1a9eYMWOGdh4fjVmzZuVqgtD8/P3IaXAMzfWmuf5E9tSFmAqlKIp+KlQx7LFIy5QKZWKiwszchNQUNcmJabqF2/msr4jZuYub48ejJCWRXNUeE1NHLGyqkxx/jsTHMfy5/kdaDhzGzdibzPxrJiHXQ0CB9uefBNStXxmMXz2ZcLSgSWBhpGctzSi3Bg8ezKxZs1i6dCljxozJ9p9JUlKSNvVj6NChTJ8+naCgoByH7sycKlBUbt26pZ3tW6NFixb8/PPPhIWF4efnp7O+5iY68/LsnDhxgtjYWL10qNDQUABtzrhmFKYDBw6gKIrOP3tFUThw4IDOegXJxMTEqF4MNzc3+vbtS+/evfH29mbPnj0kJCTkOy3K3Nycxo0b07hxYypXrszAgQPZunWrTmCRnxqLFi1aMHPmTHbt2qVXW6L5TI3NY4cnQUVaWho7d+7UGdkrNzQ9ZTndLGto8uDDw8P1jlm7dm3+97//ERYWphfk/PHHH3r7yu31ltv1NaM+HTx4UO/YsbGx2tQqYzRs2JD169eza9cug2ldGV2+fJkaNWroBRW3bt3iypUrRh8zO6GhoQwcOFBnWWRkJNevX6dGjRpG/23TDH/brVs3g8fITPN3ytDvqoODA5UqVeLSpUvcuHFDr3dHk3aWl78f4eHhALkexexFpKgV1Gr9G/2Mk8Llh1qtkHkk7uLeY2Fimv63wtLWnNSoJOJjHhP9b4b6Cvu8PSxTFIWH33/P3c/TU00VVKRYpO/LuUIb7l2+SFpKCse2b+ZCyYd892g9iWnpvb3e1+xwfZSe6lSibDl828u8QIVB5rEQQPpcE+PHj+f+/ft06NCBiIgIvXUSExOZN2+ezsgkY8eOxdvbm9WrVzNx4kSDXfgRERF0796dc+fO5bl9np6eenM3ZOXWrVsG07MURSEwMJA7d+7QunVrnbx4zagnkydPJjk5Wbv8999/JyQkhHbt2uVquMqoqCg+/fRTnWU7d+4kODgYHx8f7RP0ChUq0KpVK86ePasdYUhj6dKlnD9/Hn9/f6PqK3LL2dnZYGFmUlKSwZvSuLg4YmNjMTc315n9uWXLlnrj6mfl2LFjBtMyNE9cM84/MnjwYBRFMfor87XRunVrKlWqxI8//qhzQxsdHc1nn32GhYWF3o3irVu3uHDhgl761LFjx2jbti2pqan8/vvvNGnSJNvz/Pvvv0lJSdFb/scffzB79mzMzc2NTvvSBD+agCSjPn36YGJiwhdffKGTCx8XF6d3/UHur7e8rO/n58fp06f54YcfdNb/7LPPclXnM2jQIOzs7Pjiiy8MBiQZf8c9PDy4dOmSzpP7xMRERo0aZfBzyIvVq1frjOamKAoTJ04kLS0tV7VAmr8jmYOvH3/8ke3bt+utX6JECVQqFdevXze4v0GDBpGSksKECRN05oE5ffo0K1euxNHRUWeYWmNprrfcBN8vqqwKqVOTC+bm31Bh+LMwKhSAjUN6wB0fdRVFST8P9zzWVygpKdyeGqgNKgAsu7yGoko/llMZV3x79f9vZYW76/ZhHpNea1U1tjRNw5+kaLYaNAzTAhraXOiSd1VoBQUFkZiYyPz58/H29sbf3x8fHx/Mzc2JiIhgz549PHjwgKCgIO029vb27Ny5k27dujFz5kxWrFhBu3btcHd3Jz4+nhMnThAWFoaZmZleMWtuqNXpf5CMmeMgPDyctm3b0rhxY6pUqUKZMmW4f/8+oaGhhIeH4+bmxjfffKOzTatWrXjzzTdZvnw59erVo1OnTty6dYt169bh7OzMwoULc9Xe5s2bs2jRIg4fPkzjxo25evUqv/76K9bW1ixfvlxn3UWLFtGsWTOGDRvGli1beOmllzh79iybN2/GxcWFRYsW5erYxvL39+eXX36he/fu1K1bF1NTU7p27UqFChXw9fWlatWq1K9fnwoVKhAbG8vWrVu5ffs2Y8eO1QnKcvPZrFmzhiVLluDn54eXlxcODg6cO3eO7du34+zszJAhQwrs/MzMzFi+fDkBAQH4+fnRp08f7O3t2bBhA5GRkcydO1ev12DChAmsWrWKFStWaG8WHz58SNu2bYmKiqJ9+/bs3r2b3bt362yXOQ3riy++YNu2bTRr1ozy5ctjbm7O2bNn2bVrFyqVim+++cboWZ5r1apFpUqV9I4J4O3tzccff8xnn31GzZo16dWrF2ZmZvz222/UrFmTM2fO6ASBkPvrLbfrf/PNN/j6+jJw4EA2btyoncfiyJEjNG/e3OBTeUNKly7N6tWr6dOnDw0bNqRr1654e3tz//59Dh8+jKenpzZV7t133+Xdd9+lbt26vPrqq6SmprJ7924URaF27draovL8CAgIoEmTJvTp0wcXFxeCg4M5evQojRs31s47YYwBAwYwe/Zs3n33Xfbt24eHhwenTp0iODiYV155hd9++01nfTs7Oxo0aMCBAwcYMGAAVapUwcTEhAEDBuDh4cH48ePZtm0ba9as4fz587Ru3Zq7d++ybt06UlNTWbZsmV6aljF2795NiRIlctVT+6LKKi2poGosDAUWGdOOiovMo0IB2DimBxZpyU8C47wUbqvj4/n3/feJ239Au6zUe++SGtAPPj8OgIWDio1Ox0gpkUiZR1bYJpnRJawsZuWcMfv3sXbeijoBnahY92WDxxEFQHnORUdHK4ASHR2d7XoJCQnKuXPnlISEhKfUsuLryJEjyhtvvKFUrlxZsba2ViwtLRVPT0+lX79+yu7duw1uk5ycrHz//fdK+/btlTJlyijm5uaKvb29Uq9ePWXixInKtWvXdNb38PBQLC0tjWrPo0ePFBMTE8XX19eo9W/duqWMHz9eadSokeLi4qKYmZlp2zJ58mTlwYMHBrdLS0tTFixYoNSoUUOxtLRUSpYsqfTu3Vu5dOmSUcdVFEWJiIhQAGXQoEHKmTNnlI4dOyoODg6Kra2t0qZNG+Xo0aMGt7t69aoyZMgQpWzZsoqZmZlStmxZZciQIcrVq1f11h00aJACKBEREdpl+/btUwBl6tSp2bYp8/vUq1cvpVSpUoqJiYkCKCtWrFCSk5OV2bNnK+3atVPc3d0VCwsLpUyZMoqfn5/y448/Kmq1WrsPtVqtODs7K56enkpKSkqO78+hQ4eUESNGKD4+PoqTk5NibW2tVKlSRXnnnXeUyMjIHLfPi8OHDyvt27dXHBwcFGtra6Vhw4bKzz//bHBdzXu7YsUK7TLN+5fdl4eHh85+fvvtN6Vbt25KxYoVFVtbW8Xc3FwpX7680rdvX+Xw4cO5PofZs2crQJbbfvvtt0r16tUVCwsLxd3dXRk7dqxy/fp1BVC6deumt35urre8rP/3338rHTt2VOzs7BR7e3ulQ4cOyt9//23w2s3JiRMnlF69emn/rpQtW1bp0KGDsnXrVu06arVaWbx4sVKjRg3FyspKcXV1VYYOHarcvXtXadGihZL5X92KFSv0PmdFSf+7lPmznDp1qgIo+/btU5YtW6b9+1C2bFll9OjRSkxMjM76Wf2+ZXTy5EmlXbt2SokSJRR7e3ulRYsWyp49e7JsV3h4uNKxY0fFyclJUalU2vZoxMbGKpMnT1aqVq2qWFhYKE5OTkqHDh2U0NBQvWNnPJ+sREREKCqVShkzZkyW62T0ov//jItOUr4eEaz3dWyH4d+P3Ip5kKC37yXvhRTIvgvSid2R2vb9c+S2oiiKErz6nPL1iGDli75vKHN7dVLm9uqkxEVH5Wq/KQ8fKhG9eivnvKsp57yrKed9aipRm7coiqIoF4/e0R5zxOyJis9KH6X+klrKpDfaao+X8eu3WYFKSlJSgZ/7887Ye2lFURSVomTO3Hu+xMTE4OjoSHR0dLYFsImJiURERFCxYkWddAxR9LZu3UqXLl3Ytm0bHTt2LOrmZOvq1atUrFiRQYMGsXLlyqJuTqE7c+YMNWvW5JtvvuGtt94q6uY8tx4+fEilSpV47f/s3XV8VfUbwPHPubnuLkZ3IyiotGAHdjci/uxCxcLEVgwwsbsVUFFAurtrzbq3u1vn98fZznZlwDZWsOf9eu3F6fM9KLvnud/n+X4vuqjOE7399ddfjB07lvvvv5/nn3++iVsojiePPPII06dPZ9u2bXXqWWvrn58l+TZmT9HSR01WI87K2ooTzkxk8NkHD6VdXwWZZXz22HKPbQaTwqQZI4/62o1pzdz9LP9Rq6M4/ZbedOgXzvKf9rD6951UFLwFqIQlJHLNCzPqfE1HRgbJN96EvbI2yeDnR9xbb+JbOfDGsrk7WPujlhY5v9PH7Apfg7/Zn9t73krwiny2LpiP2+XE6utLv9PO4qQLL8Vokjkq6quu79IgqVDiGPDvv//Sr1+/Vh9UtEX//vsvkZGRXH/99S3dlONaSEgIU6ZMYerUqTzyyCMe9T7Z2dmEhIR4DEZQUFDAlClTABqUXy/arvz8fN544w0mTZpU53S9tq7mHBZePiZKKgMLR2PVWNRSw+F2qgcNqNDSnDVStkzmqhoLK25nGlrnbv1Gg6rYs4fkG27EWTm6mTE8jIR338WrWzcA5u2fx++r19CFEwEosRZwatypPHrio0T6RkJfGH3tRMqKCvELDsFQhwlJxdGTwEK0es8//7x849pKTZo0iUmTJrV0M9qEO+64g4qKCpKTkz0Ci88++4wXX3yRUaNGERMTQ0ZGBnPnziUrK4trr732iIXmQtS0b98+7rrrrnrVjbR1NWsLrD4mSvK1QUwaq8bCWUuNBWijUSnG1hNY1BypymiqLt52O6oHCYnvWbf6ivL160mZeAuuyoE0zO0SSHjvPSzx8RRWFDJt+TTm7Z/HmcW36OfceuqNnNvnTI9gy2SxEBAmQyY3JwkshBDiGODl5cWjjz560PahQ4cycOBA/vrrL/Ly8jAajXTv3p2pU6dKepqotwEDBjBgwICWbsYxpWaPgtWnOs3G2UjDzdZWvA1a0bihFX0JXzMAMpprBBbO6sLtuvRYlCxaROrtd6BWTgrq1aMH8e/OwhQayoqMFTy0+CGyyrJAheBybbI7s7fxoKBCtAwJLIRoRImJiRznZUuilRk8eHC9JlUTQjSumqlQFu/q16rGmiDP6aj9Om6nGyytJ7Ko+fdQ1WNhMjtRXdqEmVbfSHwCAg97jaLffyft/gfAqQ0T63PSicS98QYubwsvrnqR2Vur58uKcSfiZw8CILJdgAQVrYTMYyGEEEII0UA1U4C8fKsDi6acxwI8X+RbA1eNAKgqsCjM3ktVfYXZO+Gw5xd8/wNp996nBxX+p48nfuZM9jkOcNlvl3kEFUOih/BYfHWKdFy34MZ6DHGUJLAQQgghhGigmvNY1EyFaqyZtw9VY+FuZXNZePRYVKZCZezcom9zOqJQa5mhHCDv88/JeOghqJwXKeiii4h54QW+3PMtl/x6CTvzdwJgNpi5b9B9zBo7i6K91X+/8d1DGv15RMNIKpQQQgghRAPVrLEwexlBAdRGnCDvEDN7t74ei4OLt1O2btK3qcSSl1FKaKyfx3m5739A1gsv6OvBV1+F9z2Tueff+/gr+S99e6egTjx3ynN0DemKrdRB8tY8QCuYD4uv/ySQomlIYPEfkh8vhBBC1F1b/9z872hIZosRR4Wr8YabPWZ6LDyHm7WXl5G5dzcAiiEUxeBD8tY8PbBQVZWcN98iZ0b1vBahEyeSdeVo7v31EtJK0vTtV3a/kjsH3onVaEV1q/z79U69R6jToEgMBqmvaC0ksKhUNQa8w+HA29u7hVsjhBBCHBscDgeAx1wqbYlHCpDRgMmqBRaNNSqUx/wQNSbgc7taV0BXs50Gk0La9m2olalNBnMcAJsXpdFnRBwGk0L2Sy+R+977+jlhd9zOvOH+vDT3apxurc4iwBLA0yc/zYj4EbhcbtJ25rP69/2kbs8HtB6igeOrh98WLU8Ci0pmsxmr1UphYSH+/v4yuoAQQghxBKqqUlhYiNVqxWxumzMa1+w5MJoVzBYD5Rx6NKf6qtljYakRWBwqRaqluP/TY1EzDSosoRuFOVCUXc7Xz6witHQPzg1pKAljUVQV6/BT+NqZzf7vNzJAHYeiGoj0imJYxMmU/mLim8JV5KWXegQvigIjr+yGf0jbm+29NWvRwGLRokW88MILrFmzhoyMDH744QePWWJVVeWxxx7j3XffpaCggGHDhvH222/TuXPnJmlPWFgYaWlppKamEhgYiNlslgBDCCGE+A9VVXE4HBQWFlJSUkJsbGxLN6nF1OyxMBgNmCqHgG2s4u2DajiKtOXW2mOhKNrfQ+qW6sDilMtGMOedPbgcbvIySskjCtqfXX1yKoSlhhFGd49r7ttbUOu9/EO8GH55V9r1Cm305xBHp0UDi9LSUvr27cv111/PBRdccND+6dOn8/rrrzN79mzat2/P1KlTGTduHFu3bsXLq/Ej1ICAAABycnJIS0s7wtFCCCFE22a1WomNjdU/P9sil0eNhaIHFk67G1VVj/oLyprD1lq8ql/bWltgUfX3YKysrziwdxcAIbHxtOsZz9n/82PBjCUU2H3qf3FFCyai2geQ2CeMDv3DMZnbZupda9eigcXpp5/O6aefXus+VVV59dVXeeSRRzj33HMB+Pjjj4mMjOTHH3/k0ksvbZI2BQQEEBAQgMPhwOVqnG8bhBBCiOON0Whss+lPNdVMhTIYDVi8ql94HRUuj2CgIWpOtGf1qRlYtK5UqKqULaPJQPqO6vqK+B69UVUV00/v0f+PD7BbAinziWDX+L58G7gHRTWgKi7iA+K5ud9NhPmGYjAqKAYDRpOCT4AVnwAzBqPMkHAsaLU1Fvv27ePAgQOMGTNG3xYYGMiQIUNYtmxZkwUWVcxms/zCFEIIIcRh/XfGaWuN2bft5c6jDixqDltbc2ZvVyvusahZXxHXoxfZL79M3vsfoABWeyH/nB/CB+1/1I+Z0HkCU4ZMwWq0NnOrRWNrtYHFgQMHAIiMjPTYHhkZqe+rTUVFBRUVFfp6UVFR0zRQCCGEEG2eR/G2ScFSo1ehosyJ31FOCl1zdKmagUWrTYUyeQYW3guXkDv7Y339i3MC+aFDCqBNePfQkIe4sMuFzdtY0WSOu36lZ599lsDAQP0nPj6+pZskhBBCiOOUy2OYVc8ei4oy51Ffv+Z8GFbv1p8KZTA69fkrArx8KKsRVLw/3sQPPUsBiPCJ4MPxH0pQcZxptYFFVFQUAJmZmR7bMzMz9X21mTJlCoWFhfpPSkpKk7ZTCCGEEG1XzZQko1HxqIOoKD/6wMJ5qBqLVjbztrOyx8JZkYa7skY1KDVD3//uOAPz+mvLAyIG8NVZX9E3vG+zt1M0rVYbWLRv356oqCjmz5+vbysqKmLFihWcdNJJhzzParXqBdhVP0IIIYQQTaHm/A0GkwGrT3V9pr3McdTXP3SNRevpsVBVVQ90HOVJ+vaQUhsA751m4M8B2ivn5d0u571x7xHmHdb8DRVNrkVrLEpKSti9e7e+vm/fPtavX09ISAgJCQnceeedPPXUU3Tu3FkfbjYmJsZjrgshhBBCiJbi0WNhMni8/NsaMRXKYFIwW6pHnGpNPRY1h9y15e/Sl0NLyvlotIE/BhowKSYeOfERJnSZ0BJNFM2kRQOL1atXM3LkSH397rvvBuCaa67ho48+4v7776e0tJSbb76ZgoICTj75ZObOndskc1gIIYQQQtTXf+exqJmuZG+EVCiHTbuG2WrEaKqeE6M1zbxdNTKWqtqxV2SBAn42Oz8MVfl9sIFAayCvjHiFE6JOaOGWiqbWooHFiBEjUNVDR9yKovDkk0/y5JNPNmOrhBBCCCHqxiMVytj4xdtVdRpWHzMGU3UGe6sKLCoLt93ONFC097pC33K+H6rQIbADM0bNID5ABtNpC1rtcLNCCCGEEK2d5zwWikeNxdEWb6uqir1cq7GwepswttLAomjJcgDcjuoBcxb1rmBY3Mm8cOoL+Fv8W6ppopm12uJtIYQQQojWznMeC4PnqFClR1e87ahwobq1wMXyn8CitcxjUbpyJalPPA2A21kdWJxy0tnMGDVDgoo2RgILIYQQQogGqtljYTAaPCbIO9oai5rnW31MGGrWWDhavseifONGUm6ZhMuloKoVqK4sAMwRQTwwYiomgyTGtDUSWAghhBBCNJD7P8XbJrMBg1ELAI42Farm+f/tsXC1cI+FbedO9t94I2pZGU6jFbcjFdDa1GvAKS3aNtFyJLAQQgghhGigmvNJGEwGFKV6ZChbydGlQtlrFH9bvU0Yja2jxsKRlsbe66+FomIA9kVZcTtT9f3xPXu3UMtES5PAQgghhBCigdxOz3ksAHwCrACUFdkPO/rlkRzUY2GuToVyt1Bg4czLY/s1l6Pk5AOwOwqWjUqoUV+hENe9V4u0TbQ8CSyEEEIIIRqoqudAUcBg0F78fYMsgFZgbTuKAm6PGgtvE4YW7rFwlZSy/uoLMaVqtRTpITD3f4O4qsvVen2Ff1gs3v4Bzd420TpIYCGEEEII0UBVxds155jwCbTqy6UF9gZf+7/F257DzTZvjYWrooKl156L7+4MAPL8YMl9Y3jlvPcpTkvSjwtL6Nas7RKtiwQWQgghhBANVDXcrNFYnabkG2jRl8sKKxp87YOLt1smFcrhqODPG88mbHMaACVesH3qxUw973UsRgu5Kdv1YyPad2+2donWR8YBE0IIIYRooKqUJKO5+rta35o9FkcRWPw3FaolJsgrd5Tzy23n0HuVVpxdYYIDj13PDefepx+Tm7qtckkhunPPZmmXaJ2kx0IIIYQQooH0VKga9Q++QY2TClVRY1Qoy39ToZphuNkiexGf3Hc2vRdqQYVLgcKpN3H2+dVBRWFWJrZirb5CMcXgFyT1FW2ZBBZCCCGEEA2kp0KZaqZCVQcWxfm2Bl+7vLi68NvL19ysE+Rll2Xz1mPncsrcNH2b7YEbGH7J3R7HJW1cpy8bTe2weBubtF2idZPAQgghhBCigWrrsQiM8NaXCw6UNfjaxXlaUKIoWt1GzXks3K6mCyxSilJ48YUJnP3Dger7Tb6aQdfee9Cx+zeu1ZcN5nZYvCXLvi2TwEIIIYQQooGqiqhrpil5+ZrxCdAKuPMPlDb42iWVvR2+QVYMRgOKQdGHtG2qUaG25W7jibcv4Yqvs/WXRNNVF9Lzf1MOOtbtcpG8aYO2onihGCP1yQFF2ySBhRBCCCFEA+nF2zXSlACCo30ALZ2pvKT+dRZOh0tPhfILrk6tMlQWiTdF8faazDU88uk1TPwiH7NL22Y5ezydHnqy1uMP7NlJRZkWOBlMCRjNRkxmSYVqyySwEEIIIYRoALdbpWpi7ZqpUADBUb76cn5G/dOhSvKrR5PyC/bSl6uGtW3swGJp2lIe+P5m7visGL/KshDr0BPp8Mx0FEWp9Zz9GzzToKySBtXmSWAhhBBCCNEANeeS+G+PRUh0dWCRnVxc72uX5FUXffuF1AgsKlOu3I2YCjU/eT73zpnMXV+WEV6kbbN060q712egmM2HPG9/zcJtcyJefpZDHivaBgkshBBCCCEaoOaQrzVrLACiOwXqy6k78ut97fwaRd8BodWBRdXIUI3VY/Hb3t+4f/7d/O+7CjpkattM0dEkzJqF0c/3kOfZSko4sGsnAIohFMXgj7ffoYMQ0TZIYCGEEEII0QA1h3w1/CewCI3xw9tfe9FO25lf70Agc1+Rvhzezl9frgpgXI0wKtS3O79lyqIHuWGOg377Kke3CvAn4b13MUdEHPbcpE3rUVWtDQZzOwAJLIQEFkIIIYQQDVFzyNeq2ocqikEhrlsIAA6bi/2bcup17cz9WmBhMCmEx9USWBxlKtQnWz/hiWVPcOFiFyM3atdSzGbi33oLa8eORzx/75oV+rLBnAiAl7+kQrV1ElgIIYQQQjRAzZf7//ZYAHQ7MUpfXv37/jrPPVGQWUZBppYKFRbnj9Fcfe3qGouG9VioqsrMDTOZvmo6Ize4uWhx9TPEvDAdn0GDjngNt8vF3vVrADBZvDCY4gDpsRASWAghhBBCNIhHj4Xp4JGT4ruHEBbvB0BOSgn/fLIdh911xOtumJ+iL3ca4JmSVHUft0tFddev10JVVV5Z+woz1s+g3x43N8+pbn/EAw8QMH58na6TvnMbtmKtRyU0vgeKoo0GVXNYXNE2ybhgQgghhBANULNuorYeC8WgMPyyrvzw0lrcLpXtyw+wb2MOcV2DCY72xdvfjNlqomo0V0eFi4w9hexapVVRmywGug+L9rhmzWFtXS43JkPd5o1wq26eXfEsX+74kvYHVO7+wY2xMi4JvvoqQq69ps7PvWfNSn05IKIHhXnacs3Rq0TbJIGFEEIIIUQD1EyFMhprTwKJ6hDImOt6MH/2NlwONxVlTvasy4Z12Ue8/qAzEvHy9UwvqpkW5XaqUIfsI7fq5sllT/Ldru8IL1CZ8rULL23uPfxPO43IBx445FwVtakKLBTFgMW7I6ANp+sfLIFFWyeBhRBCCCFEA9QcFaq2VKgqnQdFEhbnx5q5SexZl42z4vDpUFYfE4POSKTv6PiD9tUsEq/LSFMut4vHlz3Oj7t/xLdc5aGvXQRpk2XjPWAAMdOfRzHWfbbs3NQU8tNTAYjp2p2y4upAxy9EUqHaOgkshBBCCCEawOmoDhBMlsO/nAdH+TLm2h6Mulql4EAZxfk2bCUOHDWCDINRITDMm4j2AZgPcb2a82UcaWQol9vFo0sf5ec9P2N0qdz7g5vYXG2fpX174t6cgcHLs5fBVuJgz7osDEaFDv3Csfp4donsXL5YX+48+CTWzdeiFL9gKxYvea1s6+T/ACGEEEKIBnDaa/RYmOs2Ho7BoBAS40tIzKEnnzvs+R6BxaF7LFxuF48seYRf9/4KqsrN86BnkhaIGENCiJ81E1NwsMc5RbnlfDd9DWWFdgCW/bCHsdf1JL5HiH5MzcAiptsJLP9lBwAhMX4Neh5xfJFRoYQQQgghGqBmKtShehgaW82Uq0MNX+t0O5myeIoWVADnL1cYuUHrGVEsFuLenIEl/uA0q+U/7tWDCoDyYge/vLGe9X8lo6oquakp5KQkARDTpTvFudXPHBbXsEBJHF+kx0IIIYQQogFqpkLVtcfiaBmP0GPhdDuZ8u8U5u6fC8CwHQqXLXDo+2Oeexaf/v0POq+syM6etVkAmKxGIhP9SdtRgKrCkm93k5dRitW6Tj++y4kns2t1lr6e0DP06B9OHPOkx0IIIYQQogFqpkKZLM3zSmU4TI2Fw+3ggUUP6EFF9wwjt/9avT/8zjsIOOOMWq+7b0M2bpd2vd7DYzn3jv4MOiNR379tSQZrfv9LX0/ofQLJW7SCDd9ACzGdgo7mscRxQgILIYQQQogGcNZIhTKZmysVqvYei6qg4o+kPwCILjLy2I8WFLvWWxF43nmETpx4yOum7SzQlzv0C0cxKAw5pwNjb+iB0WTA7czGUa71UPgEteOP95P1QKTToEgUQ92HqxXHLwkshBBCCCEawFVzVKjmSoWqZbhZh8vBvQvu5c+kPwEIspt56dcQDAXa/BI+gwcT/eQTh52rIitJm0nbaDYQ3s5f397lhCjOv2cACtv1bXZ7JwoyywCw+proMzKukZ5OHOukxkIIIYQQogE8RoWqQyqU2+Vi18pl7Fz2L1lJeynJz8Pq7UNEYgdiunSn54gx+IeGHfYaNVOuXA43DpeDexbewz8p/wDgg4U3/0nElLQVAEtiInGvv4ZisRzymi6nm6IcGwBBkT4HTfYXFu+DgR1VT4rR3BWAgDAvzrqtLwFh3kd8dtE2SGAhhBBCCNEA9UmFSt68gfkfvENeWornNSoq2Ld+DfvWr2Hpt5/TfdhwTr7smkMGGDXny7DZ7Ny/6H49qPAyWJm5fiDmtYsAMAYFET/zHYxBQYdtW1FOOapbS2sKjvQ5aP++9WsoL9Z6NDoPPpGBZ52EW1WJ7hjYbClg4tgggYUQQgghRAN4Bha191ioqsry775k6befg1pdbG22ehEQHkFpQT62Ei1lSXW72frvP+xevYLRN0yi+8kjDkpfqhlYfLn5K/4yaAXVVqOVWdlnYv3tawAUs1kbVrZduyM+R/6BMn05qJbAYsuC6qLtXqPGENs1+KBjhAAJLIQQQgghGsRprznz9sGBhaqq/P3hTNbPqx6aKbpLN4ZedAUJvfpgMBhRVZXCzANs/fdv1s39FVtJMfbyMubMeInkTesZe/NtGE3Vs1+ba9xne9ZOiAKLwcLbpmvwmvV29X2eeRqfgQPr9BwFWYcOLIpzc9izZgUAvkHBJPYZUKdrirZJAgshhBBCiAY40szbS776pDqoUBROvuQqBp97IYqh+lhFUQiKimboRVcw4PRz+eejmWz9V0tt2rJwPkXZWZxzz8N4+WkzWxtq3MfksmA2mJkRfSf+976MWtkjEnbbbQSefXadn6OqEBsgOMozsNjw5xxUt/acvUePw2CU1CdxaA0KLAoKCli5ciVZWVm43Z6Ts1x99dWN0jAhhBBCiNbMc1Qozxfu7UsXseKHyrQkxcC4SXfQc/jow17Py8+P02+7h8T+g/jj7ddwOuykbN3EF4/ex0VTn8YnKIiv935JEL0BsKhevNrjEULvfAWXTSu+DjjnbMIm31qv56gZWARFVAcWTrudjfO1OTEMRiN9x5xer+uKtqfegcUvv/zCFVdcQUlJCQEBAR65f4qiSGAhhBBCiDbBo8aiRopSXnoa895+TV8fcfUNRwwqauo+bDiB4ZH8+MI0yosKyUtL4esnp5B+ZiSLDmzk3MrAYmz4SOIef4uK7BwAvAcNJPqppw47rGxtCrPLtfMDLFi8q18Ndyz7l/KiQgA6DxmGX4jMri0Or96DLt9zzz1cf/31lJSUUFBQQH5+vv6Tl5fXFG0UQgghhGh1PGberkxRcrtdzH37FZz2CgB6Dh9D/9PPqfe1Y7p04/KnXiIgPAKA/PQ07J+vwOCo0I8JWL2fil27ADC3SyDujTcwHGZY2dq4XW7Ki+wA+Adb9e2q282qn7/T1/uPr3tqlWi76h1YpKWlcfvtt+Pjc/CoAUIIIYQQbYWjsnjbaDJgqJz7Yd2cX8jYqU0mFxQVzejrb6l3D0KVoMgoLpr6DGqAFwCBpWZO3KSguksBsGXmavcPDCT+nXcwBdd/tKayIoc+WJVPYHVgsWvVMnJTkwGI6dKdmC7dGvQMom2pd2Axbtw4Vq9e3RRtEUIIIYQ4ZjhsTgAs3lp9RWlBPku+/kzbqSiMm3QnZi+vBl9fVVU+Sv2Sbwfupthbu5d/mQF78beo7nJcRiuYzcTNeANr+/YNukdpQXUPiF+QVb/v8u+/0refOOHSBgdHom2pU43Fzz//rC+feeaZ3HfffWzdupXevXtjNps9jj3nnPp39wkhhBBCHGvs5VqPhdlLe51a/OUnOGxavUKf0eOI69bzqK7/5vo3eX/z++AN84Yc4JJ1XXEVlqK6c7GXfIfd1IfoaU/ic8IJDb5HaWF1YOEbpKVR7Vj2L9n79wIQ2aEziX1liFlRN3UKLM4777yDtj355JMHbVMUBZfLddB2IYQQQojjiaqq2Kt6LLyMZO3fy+YFf2rr3j4Mu+Sqo7r+zA0zmblxpr5+58gpDO8ZxbevPUeFyYjqyiLPshHv024+qvvU7LHwDbLisFew6LMP9W3DLr5CeitEndUpFcrtdtfpR4IKIYQQQrQFLqcbt0srTrB4mVj27Rf6zNonTrgUn4DABl979pbZzFg/Q19/cPCDXBB4KsUPT2XI7jRQvAFwOLL4/rnHsVf2kjREWWXhNoBPgJXVv3xPcU42AIn9BtK+/6AGX1u0PfWusfj444+pqKg4aLvdbufjjz9ulEYJIYQQQrRmDlv1l6luZza7Vy0DwDc4hP7jzmrwdb/Z+Q0vrn5RX7930L1cGn8eKbdMwpmdjV+FA3/fM0HRajfSd2zlx+efxFFha9D9yksc+nJFaSYrKmsrFIOBEVfd0ODnEG1TvQOL6667jsLCwoO2FxcXc9111zVKo4QQQgghWrOqNCiAvLQF+vLgcyZgqueQr1V+2fML05ZN09dv7XcrV3e9grR77qZixw4AzPHx+MV2weI3ARSt2Dpl6yZ+evFpnHZ7rdc9HFuJdo6qulj27Tu4nNpzDTj9HELjEhr0HKLtqndgoapqrbl2qampBAY2vNuvNi6Xi6lTp9K+fXu8vb3p2LEj06ZN06esF0IIIYRoCVWF225XDkWZmwDwCQyi95jxDbre/KT5TF0yFRXtHee6ntdxS59byHzueUoXLgLAEBBA/Mx3sPpZMZgisfhdgMVbS4tK2riOH55/HFtpSb3uaytxoKoqzrJ/yEnWCrZDYuMZdunR1YiItqnOM2/3798fRVFQFIXRo0djMlWf6nK52LdvH+PHN+wf06E8//zzvP3228yePZuePXuyevVqrrvuOgIDA7n99tsb9V5CCCGEEHVV1WPhsq3Rt51wzgTMFuuhTjmkxWmLuXfRvbhULVi5pOsl3DXwLvI//Yz8Tz/VDjKZiHv9NawdOmDx3gCAwRTNGZOn8ssrWipU8uaNfDH1Pi548DECI6LqdO/yEgeuirW47BsBMJpMnD757gY9hxB1DiyqRoZav34948aNw8/PT99nsVhITExkwoQJjdq4pUuXcu6553LmmWcCkJiYyBdffMHKlSsb9T5CCCGEEPVht7lQ3WW47NpkeFYfX/o0oLdi1YFV3PnPnTjdWqByTsdzeGjIQ5QsXEjms8/qx0U/8QS+J55Yea/q17fgmE5MeHgaP70wjfLiIvLSUvjkgTsYfeOtdB82/LD3VlWV/LR/cZYv1LeddssdRHXsXO/nEALqEVg89thjgPZyf8kll+B1FBO+1NXQoUOZNWsWO3fupEuXLmzYsIHFixfz8ssvN/m9hRBCCCEOxWFz4qrYCGi9DL1GnYbFy7te19iUvYnb5t9GhUsbFGdsu7E8MfQJ7Nt3kHb3PeB2AxB6880ETbhAP88noLqGo6zYTmzX7lz+1Et8//wT5KenUlFWyu+vv8C2RX9z8mXXEJHY4aB7F+flMP/9tykvWKFvO+nCy+hxysh6PYMQNdU5sKhyzTXXNEU7avXggw9SVFREt27dMBqNuFwunn76aa644opDnlNRUeExalVRUVFzNFUIIYQQbYittAJnhZaShKLUeySoHXk7uOWvWyhzlgFwSuwpPH/K86jZuaTcMgm1TNvuP3484Xfe4XGuR2BRqBVfB0VFc/lTLzL//bfZvkTrgdi3fg371q8hpkt3Yrp2JyQ2DltxMQd272TP2pW4HNUjQoXGj+akCy+v31+CEP9Rp8AiODi4zpOj5OXlHVWDavr666/57LPP+Pzzz+nZsyfr16/nzjvvJCYm5pABzrPPPssTTzzRaG0QQgghhPivtG2rQS0FILrzAAIjIut87r7Cfdz8580U2bUvP0+IOoGXR7yM0WZn/6RJODMzAfDq24eY555FMXiOteMTWCOwqDEPhZevH2fefh8dBw5m0WcfUZyrzUeRvnMb6Tu31d4YxQuz73hiup8kE+GJo1anwOLVV1/Vl3Nzc3nqqacYN24cJ510EgDLli1j3rx5TJ06tVEbd9999/Hggw9y6aWXAtC7d2+SkpJ49tlnDxlYTJkyhbvvvltfLyoqIj4+vlHbJYQQQoi2LXXrv/pyt2Hj6n5ecSo3/nEjeTbti9g+4X14Y9QbWBUzqffeTcVWLQAwx8YS/9ZbGGpJPffosSg6eG6xbsOG0+mEk9j41xw2/DmHvPTUg47xDggksd/J7N2QgGLwxsvPXOdnEOJQ6hRY1HyJnzBhAk8++SS33Xabvu32229nxowZ/PXXX9x1112N1riysjIM/4nSjUYj7sqcw9pYrVasVhnJQAghhBBNIz8jjaLs3QAohmAS+/ap03mZpZnc9MdNZJVlAdAtpBtvjX4LX7Mvmc8+S8k//wBg8PcnfuY7mEJDa72OT0D1e07NHouaTBYLA844lwFnnEtJfh6Ze3dTnJON1deX4KgYwhM7kLK1gH2btNGgvCWwEI2g3jUW8+bN4/nnnz9o+/jx43nwwQcbpVFVzj77bJ5++mkSEhLo2bMn69at4+WXX+b6669v1PsIIYQQQtTVpn/+1JeN1t74Bh75C808Wx43/XkTqSVa70GHwA7MHDuTQGsgeZ9/Tt7sj7UDTSbiXnsVa6dOh7yWZ4/FkSfF8wsOwW/g4IO2l5fUTKOSwEIcvXpPkBcaGspPP/100PaffvqJ0ENE1g31xhtvcOGFF3LrrbfSvXt37r33XiZOnMi0adOOfLIQQgghRCNzOZ1sWfBX5ZoBi09PLN6H/562yF7ExD8nsq9wHwCxfrHMGjuLEK8QSv79l8ynntaPjXp0Kr5Dhx72et5+ZgxGrR6iONfW4GcpL6ku3vb2b9hs4ULUVO8eiyeeeIIbb7yRBQsWMGTIEABWrFjB3Llzeffddxu1cf7+/rz66qseNR5CCCGEEC1l77pVlBUWAGAwd8Q36PAD3JQ5ypj812S252nzXUT4RPDeae8R6RuJbcdO0u68Sx9WNuSG6wm++OIjtkExKARG+JCfUUpBVhlut4rBUP/Ca1uNwEJqLERjqHePxbXXXsuSJUsICAjg+++/5/vvvycgIIDFixdz7bXXNkEThRBCCCFah81//6EvG629PUZo+i+Hy8HdC+9mffZ6AEK8Qnj3tHeJ84/DkZVFyi234C7VRpbyHzuWiHvuqXM7gqN8AHA7VYpyyhvwJJ6BhdRYiMZQ7x4LgCFDhvDZZ581dluEEEIIIVqt0oJ89q1bo60Y/DGYEjzqHWpyuV08vPhhlqQtAcDP7MfMsTPpENgBd1kZqbdOxpmRAYBX797ETH/+oGFlDyck2pe967ThZLOSigiK8Kn385RLj4VoZHUKLIqKiggICNCXD6fqOCGEEEKI48nO5YtRVS1tyWjpjqIY8KmlcFtVVZ5d+Sxz9s8BwGq0MmP0DLqFdEN1u0l/4AFsmzcDYIqJJv6tNzF412/W7pjOQfpy2vZ8upwQVe/n8UiFkuJt0QjqPEFeRkYGERERBAUF1ZpLqKoqiqLgcrkavZFCCCGEEC1t+5JF+rLR0g0A31pSoWasn8FXO77SjlOMvDT8JQZGDgQg68WXKP5TK/42+PoS/847mMLD692WqI6BGEwKbqfKvo05nGx3YbYY63UNW6kWWFi8jBhN9c6OF+IgdQos/v77bwoLC4mIiOCfyjGWhRBCCCHaisKsTH32at+gaFxKGABBkZ4pSJ9s/YRZG2fp60+d/BTD44cDkP/V1+R98IG2w2gk9tVX8erSpUHtMVuMdOgbzu41WZQXO1gzZz9DzulQr9mzy4u14Wa9ZEQo0UjqFFgMHz4cg8FAu3btGDlypP4TFxfX1O0TQgghhGhx25dW91b4hfWhMFdbDo3x07f/vOdnpq+arq8/OPhBzupwFgAli5dw4Mkn9X1RUx/B75STj6pNg85IZPcabbK9NXOSyE4u4dRLOxMYfuR6C7fLTUWZE5DCbdF46tzv9ffff3PNNdewd+9ebr75Ztq1a0fnzp2ZOHEiX375JZmZmU3ZTiGEEEKIFrNjyUJ9WVU6A2AwKgRGarUR/yT/w6NLHtWPmdR3Eld0vwIA286dpN15J1Smi4dcey3Bl1561G0KjfXjxPM66OvJW3L54smVbFqQesRzbaVOfVkKt0VjqfOoUCNGjGDEiBEA2Gw2li5dyoIFC1iwYAGzZ8/G4XDQrVs3tmzZ0lRtFUIIIYRodrmpyWQn7wcgskNnCnO11KGQGF+MRgOrDqzi3oX34lK1wOGybpcxqe8kAJw5OaTeMgl3SQkAfqNHE3HfvY3WtoHjEwmK8GHxN7soya/A5XCz6MudGE0Gepwcc8jzPIaalcJt0UgaNNysl5cXo0aN4uSTT2bkyJHMmTOHmTNnsn379sZunxBCCCFEk3M53GxfnkFOagmKQSEs1o/4HiH4h3ixvUZvRUjcAArzteX4biFsyd3C//7+H3a3Vq9wZoczeXDwgyiKgttmI2XyZBzp6QB49exJ7AvTUYz1K7I+ko4DIojvEcKKn/ay8R+tt+Lfr3bq7a+NrdSuL0uPhWgs9Qos7HY7y5cv559//mHBggWsWLGC+Ph4Tj31VGbMmMHw4cObqp1CCCGEEE2irMjOT6+uIy+99KB94Ql+ZO+dD4CiGMhNrx7W1auzg0l/TqLUoZ13atypTBs2DYNi0IaVfXAKtg0bATBFRRH31lsYfOo/30RdWLxMnHJJF1xON1v+TcfpcLP8pz2Mva5nrcfLHBaiKdQ5sBg1ahQrVqygffv2DB8+nIkTJ/L5558THR3dlO0TQgghhGgyqqoy793NtQYVAJl7d2MvzgFAMcZSlKv1NoS08+aBHbeTX6F1XwyIGMCLw1/EbNBe0rNffpniuXMBMPj4EP/O25gjI5r6cTjpgk7sWZuNrdTB7lVZDL2gE761zLXhkQolo0KJRlLn4u1///2X0NBQRo0axejRoxk7dqwEFUIIIYQ4pqVuyyd9VwEAvkFWzrm9H+ff058TzmpPWLwfLnt1mrehcu4Ks5eBn+NncqDsAABdg7vyxug38DZphdx5n39O7nvvV55kIObll/Dq1q1ZnsfqbaLHKVpthdutsm1Jeq3HlRfL5Hii8dU5sCgoKGDWrFn4+Pjw/PPPExMTQ+/evbntttv49ttvyc7Obsp2CiGEEEI0ulW/79OXh13YifgeIcR0DmbwWe25aMpArF6V+xUjUR0H0PnEcJae+DmbXWsASPBP4J2x7xBgCQCg+O9/yHzqaf2aUY9Oxb9y8Jvm0uvUWH15z7ra389skgolmkCdAwtfX1/Gjx/Pc889x4oVK8jJyWH69On4+Pgwffp04uLi6NWrV1O2VQghhBCi0eRllJKxuxCA4CgfOg7wTFVK27aFsspK7Y4DB3HelMF8Hf0aayqWARDhHcGs02YR5q1Nlle+aTNp99wDbjcAoTfd2CjDytaXf4gXEe38AchJKaEot/ygY8qKq4u3fSQVSjSSBs/f7uvrS0hICCEhIQQHB2Mymdi2bVtjtk0IIYQQoskkbcrVl3ucHIPB4Dlr9fYl1ZPidT7pZB5Y9AArDqwAIMASwDtj3yHWT+sdsKemkTJpEmq59hIfcMYZhN91V1M/wiG17xeuL+/fmHPQ/rKiGoFFgAQWonHUObBwu92sXLmS6dOnc/rppxMUFMTQoUN56623iIqK4s0332Tv3r1N2VYhhBBCiEaTtitfX07oEeqxz+V0sHPFEgBMVitfOf9ifrI2OpS3yZu3xrxF52BtojxXYSEpN9+MK0d7gfceNJDoZ59BMTT4+9ujlti7+nnSdhYctL+8ssfCaDZg9mrc4W9F21XnUaGCgoIoLS0lKiqKkSNH8sorrzBixAg6duzYlO0TQgghhGh0bpebjMqibW9/M8HRnsPA7t+wDltJMQDODoH8kPQzACaDiVdHvkrf8L7adex2Uiffhr3yy1VL+/bEz5iBwXrwSEzNKTTGD6uPiYoyJxm7C1BVFUWp7pGp6rHw8bd4bBfiaNQ5sHjhhRcYOXIkXbp0acr2CCGEEEI0udy0Uuw2babs2C7BB71c15wU7y+fzQAoKDx3ynMMjRkKgOp2kzHlIcpWrwbAGBpK/KyZGIOCmuEJDk8xKER1DCRpUy7lxQ4KMssIjvIFtKDKVqoVb3tLGpRoRHXuo5s4caIEFUIIIYQ4LuSkFuvLke0DPPY5KmzsWa3VUlSYXaSHa3UTj570KOMSx+nHZb/6GkW//QaA4uVF/DtvY4mPb+qm11l0x0B9OWNPob5cXuIAVVuW+grRmFou+U8IIYQQooXkplVPiBca4+exb8+alTgqbAAkRZXhNsAdA+7gwi4X6sfkf/U1ubNmaSsGA7Evv4R3795N3/B6iO4UpC/XDCw8Crf9ZahZ0XgksBBCCCFEm5ObVqIvh8T6euxbOv9HfXlvdBnX9ryWG3rdoG8rWbiQA08+qa9HPvwQ/qNGNV1jGygiwR+lcqSrrP1F+vbyGoGFpEKJxiSBhRBCCCHanNx0rcfCy8/skQ60Omk5OVt3AFBmdXLS4PHcPfBuvQajfMsWUu+6G1xafUbIddcRcsUVzdz6ujFZjIRWBk15GaXYbU5AhpoVTUcCCyGEEEK0KbYSh/6tfWiMrx407M7fzctfTMHo1tZdXUJ5dNhj+n57ahopt9yCWlYGgP+4cUTcd28LPEHdRSZW1o+okJ2s1ZXUDCy8ZXI80YgksBBCCCFEm1KYUz0TdWCkNsxsWkkaE/+cSHRy9avRdRc9iMmgDaDpzM8n5aabcGVXzlXRvz8x059v0bkq6iIisbowPbMyHcpj1m3psRCNqHX/axBCCCGEaGRFNQKLgFAvcspzuPmPmykuyCEq10vbHhFJQpdeALjLyki55Rbs+/YB2lwVcW+92eJzVdRFZI3AoqrOoiTPpm/zDWr9zyCOHRJYCCGEEKJNqRlYmIPglj9vIbk4mXYZvhjQ0p66DxuBoiioTidpd9+DbcNGAEzh4cS/+y6m4OCWaHq9BUf7YrJqM2tX9VgUZmvPrxgU/EO9Wqxt4vgjgYUQQggh2pSi3Opv7N/Z+zo78rVi7a6ZQfr2bsNORVVVMh5/nJIFCwAw+PkR/+4sLHGxzdnco2IwKEQk+ANQkldBaWEFRZWBhX+IFaNRXgVF45H/m4QQQgjRphTX6LFYVbYUgDhXKMG52mtRWEIiYfHtyHnjDQq//Q4AxWwmbsYMvLp1a/4GH6Wa6VDJW3L1GccDw71bqkniOCWBhRBCCCHalKribbvBhs1Uiq/Zl1ut1ZPfdRt6KvlffEHOW29rGxSFmOnP43vikJZo7lGrWcC9c2WmvhwQ7tMSzRHHMQkshBBCCNFmuF1uCnO14WKLvfKwGC28PvJ1ctdu1Y+Jcxs48OQ0fT3yoYcIOP30Zm9rY4lsXx1YpG7P15cDw6THQjQuCSyEEEII0Wa8vfJdFLf2+lNmKeTF4S+SWBFGbmoyAFGxCRQ/MQ1UFYDQm24i5KorW6y9jcEv2FrrsLJBUdJjIRqXBBZCCCGEaBM+2/YZX6/7Xl/vFt+JkQkj2bZ4gb4tbMMWVLs2z0PguecSfvddzd3MRqcoCvHdQw7aHlWjJ0OIxiCBhRBCCCGOe7/u/ZXnVj6Hr736Zbp7fGdUt5vtSxcBoKgqUQe0CfB8TzmF6Kem6bNuH+u6DIn0WA+L95NZt0Wjk8DiGKZWdtMKIYQQ4tAWpS7ikcWPAODjCNS3+wZaSN2+hZJcLZgIKy7D4nLj1bs3ca++gmI2t0h7m0JCj1A6DojQ1wec1q4FWyOOV6aWboCoP1VVmTtzMynb8xhxeVe6DI5q6SYJIYQQrdKazDXcveBuXKo2xOqQgGH6Pp9AK1v/+Utfj80vwdwugfiZ72Dw9W32tja1sdf1IK5rEIERPrWmRglxtKTH4hiUnVzM3vXZOGwuFn6+o6WbI4QQQrRK2/O2c9v826hwVQAwPnE8J/ifpO+3WJzsWPQ3AEaXmxiLNwnvvYcp5Ph86TaaDfQaHidBhWgyElgcgwoyy/Rlu82Fy+VuwdYIIYQQrU9SURIT/5xIiaMEgGGxw3jm5GcoK7Trx+x5+QkcaGnFUeV22r/3Hpb4+BZprxDHAwksjkEFWeUe6yV5thZqiRBCCNH6ZJZmcvMfN5NnywOgX3g/Xh7+MmajmbKiqsBCJTm1ute/3/U349WlSwu0VojjhwQWx6DCrDKP9ZL8ihZqiRBCCNG6FNgKmPjnRNJL0wHoHNyZGaNn4GPW5mwoLdA+M40VmWQHaNt8fP3ocv6ElmmwEMcRCSyOQUU5nj0WFWXOFmqJEEII0XqUOcqYPH8yewr3ABDnF8fMMTMJtGojQamqSmm+1suv2ragVg4l22vMeAwGY8s0WojjiAQWxyBbqWcgIYGFEEKIts7usnPnP3eyMWcjAGHeYcw6bRbhPuH6MVmffIWKgqqq2F179O09R4xt9vYKcTySwOIYZCt1eKzbyyWwEEII0Xa53C4e/PdBlmUsA8Df4s/MsTOJ968uxC789TdSX30bANWViVPRirpjunQnJCa2+RstxHFIAotjjKqqB/VQ2MochzhaCCGEOL6pqsq05dP4M+lPALyMXrw1+i26BFcXYpcsXEj6gw/iMGlzU7jsW/R9PUeMad4GC3Eck8DiGOOwuVDdnjNuSyqUEEKItuqVta/w3a7vADAZTLwy8hX6RfTT95cuX0Hq7XeA04nd7IeqOnHZt2vHW6x0PemUlmi2EMclCSyOMbX1TlRIj4UQQog26P1N7/Ph5g8BUFB49uRnOTn2ZH1/2dp1pNx6K2pF5UhQA07E7dgNqrbeZchQrD4+zd9wIY5TElgcYypKD+6dsEuPhRBCiDbm253f8uraV/X1R058hPHtx+vr5Zu3kHLzzahl2hDtfiNH4jX+PFwVm/RjpGhbiMYlgcUxprbeCUmFEkII0ZbM2z+PJ5c9qa/fMeAOLu56sb5u27GTlBtuwF2iFWj7Dh1K7KuvkJ+VjtuZAoBfSCTxPXo1b8OFOM5JYHGM+e9QswA2CSyEEEK0EUvTlvLgvw+iotUbXtPjGm7odYO+v2LvPpKvvx5XYSEAPoMGEffmDAxWK2nb/9WP637KaSgGeQ0SojG1+n9RaWlpXHnllYSGhuLt7U3v3r1ZvXp1SzerxdTWY2GXGgshhBBtwPqs9dy54E6cbu0LtfM7nc89g+5BqZzozp6SQvJ11+HKzQXAq28f4t55B4O3Nw6bjbyUNZVXMtJrpIwGJURjM7V0Aw4nPz+fYcOGMXLkSObMmUN4eDi7du0iODi4pZvWYmpLe5JUKCGEEMe7Xfm7mDx/MuXOcgBGJ4zm0ZMe1YMKR0YGyddehzMzEwBr9+4kzJqF0U8bYnbbkoW4Xdqs20ZLN4Ii2u67hBBNpVUHFs8//zzx8fF8+OGH+rb27du3YItaXm09Fk6HG5fLjdHY6jughBBCiHpLKU5h4p8TKbIXATAkegjPn/o8JoP2GuPMzib52utwpKUBYOnUkYT338MYGAhoc11s+PN3/XpeQQMwyGemEI2uVf+r+vnnnxk0aBAXXXQRERER9O/fn3ffffew51RUVFBUVOTxczypWWPhG2jRl2X2bSGEEMej7LJsbv7jZrLLswHoFdqL10a+htVoBcCZm0vy9ddjT0oCwNwugYQPPsAUEqJfI237FrL27QFAMUbiH9KumZ9CiLahVQcWe/fu5e2336Zz587MmzePSZMmcfvttzN79uxDnvPss88SGBio/8THxzdji5tezR4L/1Bvfdle7mqJ5gghhBBNprCikIl/TSS1JBWAjoEdeXvM2/iatfQmZ24uyddeS8Wu3QCYY2Jo9+GHmCMiPK6z+tcf9GWTtT9evuZmegIh2pZWHVi43W4GDBjAM888Q//+/bn55pu56aabeOeddw55zpQpUygsLNR/UlJSmrHFtVubuZZ8W36jXKtmj0VAmJe+LD0WQgghjidljjImz5/MrvxdAMT4xjBz7EyCvIKAg4MKU1QUCR99iDkmxuM6eemp7FmzUltR/DBYuuLtL4GFEE2hVQcW0dHR9OjRw2Nb9+7dSU5OPuQ5VquVgIAAj5+WtDF7I7f8dQvXzL2GjJKMo75eVY+FwaDgG2jVt0tgIYQQ4njhcDm4e8HdbMjeAECIVwizTptFpG8kUHtQ0e7j2VgSEg661prffgRVG5rW5NUfRTHi5SeBhRBNoVUHFsOGDWPHjh0e23bu3Em7dsdGbqRbdfPEsicod5azr3AfV825ir0Fe4/qmlUzb1t9TVi8q2vv7TYJLIQQQhz7XG4XUxZPYUn6EgD8zH7MHDuTdgHaZ399goqyokK2LvxbO87qhdHaBwBvP8tBxwohjl6rDizuuusuli9fzjPPPMPu3bv5/PPPmTVrFpMnT27pptWJQTHw+qjX9V+GmWWZXDP3GjZlb2rwNW2VPRZWH7NnYCE9FkIIIY5xqqry9Iqnmbd/HgBeRi/eHP0m3UK6AVVBxXV1CioA1s35GafDDkBCr1NQFK2nX3oshGgarTqwOOGEE/jhhx/44osv6NWrF9OmTePVV1/liiuuaOmm1VmsXyyzx8+me0h3AAoqCrjhjxtYmr603tdyudw4bFqRttXHhNXbqO+rkOJtIYQQx7jX173ONzu/AcCkmHhpxEsMiBwA1AwqtJqLIwUV5SXFrJ3zCwAGo4nY7iP1fd4SWAjRJFp1YAFw1llnsWnTJmw2G9u2beOmm25q6SbVW6h3KB+M+4AhUUMAKHeWM3n+ZObun1uv69hrTITn5WvG7CU9FkIIIY4PH23+iPc2vQeAgsLTJz/NqXGnAocIKmZ/dMigAmDt7z9hLy8DoNeIMaD46/ukx0KIptHqA4vjhZ/FjzfHvMmYhDEAON1O7l94P19u/7LO16g5w7bWYyE1FkIIIY593+/6npfWvKSvPzTkIc7ocAYAzry82oOKw9Rb2kpKWPv7zwAYjEaGnH8xtmK7vl9qLIRoGhJYNCOr0cqLw19kQucJAKhouaRvr38btXLEisOxlVbPYWH1lRoLIYQQx765++by+NLH9fXb+t3Gpd0uBcCRlUXSVVfXK6gAWFOjt6LniDEEhEdQXuMzVHoshGgaElg0M6PByGMnPcZNvatTut7a8BbPrnwWt+o+7LnlHt+2mLHUqLGQwEIIIcSxZmHKQqb8OwUV7cu1q3pcxc19bgbAkZ5O0lVXYd+jzZhtioysU1BRWpDPmsoJ8QxGI0POuxgAW0l1YCHzWAjRNCSwaAGKonD7gNu5b9B9+rYvtn/Bg4sexOFyHPK8co9fipb/DDcrxdtCCCGOHSszVnL3grtxqtoXYxM6T+C+QfehKAr2lBSSrrwKR5I2b5U5NpZ2n35yxKACYMnXn+KosAHQe/R4AiO0uS/KiyvngTIpmK3GQ54vhGg4CSyageqq/aX/6p5X8/TJT2NUtF9wc/bP4X9//48yR1mtx3t82+JnxiLF20IIIY5BG7I3cNvft2F3az3xpyeeztQTp6IoChV795J0xZU40tMBsLRrpwUV8fFHvG5O8n42//2ndp63N0MvulzfZyvR7uXta0ZRlMZ+JCEEElg0OVdhIXvGjSfn3Xdx22wH7T+n4zm8NvI1rEZtbO0l6Uu46c+bKKwoPOhYj1QofzNGkwGjWftPWCGBhRBCiGPAjrwdTPprEuXOcgBGxI3g6VOexmgwYtuxk6SrrsaZlQWAtXMn2n36Cebo6Dpde+FnH6JWphUPPu9ifAICAW1+jKoaCy9/KdwWoqlIYNHEct99F0dqKtkvvcyeceMp+O67g3owhscPZ9bYWfhbtKHwNmZv5Jo513Cg9IDHcTVTobwqR7SoSoeSUaGEEEK0dvsL93PznzdTbC8GYEjUEF4c8SJmg5nyzVtIvvpqXLm5AFi7dyfh448xhYfX6dp7165i//o1APiHhTPwjHP1fQ6bC7dTq+OQOSyEaDqmIx8ijoa9uAgMBnC7cWZmkvHwI2S/9x4Bk27BevJQvTu2oyWBN056hXuWP0BuRS57Cvdw5W9X8spJ00nw08bpLs4r1a/rcBVTmF+OqfL3Y0WZg8L8nGZ/PiGEEKIuDpQd4NYld5BnywOgZ3APpg14DFtRMUUbl5J7932opdrnnLlnD4JffpFSXFCHzzanvYI/33tTXx94zgWUlhZB5cdmcV6Fvs9occvnpTjmWK1eePn4tXQzjkhR6zLO6TGsqKiIwMBACgsLCQgIaPb7L3v/XgZs/pCsDQGUpHt57PMOryCibxE+YdU9EakmIzdHRZBi1iKGYJeLtw9k09Nu55vc6WQ5OgNuJkVehEFx803OdLKc2rZbIy9EUY7r/5xCCCGOQTlGA9dER5Jc+dnWpcLOBwcyCXSrlGRYSV0cjOrSkih8wiuIOzUPo7nun2eLshJZlavVYCT4FHBhwiZqllFk2jvzbd50AHr7/MapAe810pMJ0TyWxVzNSTe/0SL3rs+7tKRCNQNroJP4U/NoNyoH79DqOonybCtJf4WTtjQIR6lWwB3ndPFxeibdKrTj8o1Gro+OYLmXlXK39h/TSynGoGg5pBZDVaG3AYdqbb6HEkIIIeqg0GDgpqgIPahItDuYeSCLQLdKUbIXKf+G6EGFb6SN+OH1CyoOlPuxOjcOAKPiZnTUbv5bm131+QngZSg6yicSQhyKpEI1MXN4RzZmn6CtJADxKkqyDeOaIpQirS6iKNmHwjRf3L38cPf2A5OBe/LdvBxcwDargzKDgUmRkdyYFAyAwWRno5d2zXKTF1TGKhssQ7Gaipv7EYUQQohalStungnJZ69F+7wLdRq4Oz+adEscB3aUYlhWQFUM4G7nRcGpMRQY6z5ik8sFy/daUCuv0i7SRWpgL1L/c1yms7e+nGcJ0T9DhThWGMM7t3QT6kQCiyY26JxJcM6kg7arTicF335H9muv4crPR3GpGDcUY83yI+Leuwg44ww+cdu5b+F9/JPyDyaXL6hawXZYl670+d9fAGTP3kruMq3Iu8P1nxAa0/rz74QQQhz/bE4bk/6axN7MbADCvMOYPX428f7x5M56l+xlr+jHBl44gegnnkAx1m9+ib/ef5uyjb8BENWxM+c8+QJG08GvNuv+SGbn97sB6HjB3XQeFNnQxxJCHIakQrUQxWQi+NJL6DhvLiHXXAOVvwidGRmk33MvSVdcibprHy+PeJnzO52Pf0Wofm6quo+q0piak+Q5ZJI8IYQQrYDD5eDuBXezOnM1AIHWQGaNnUW8fzxZ018g+5XqoCL0xhuInjat3kHF3nWr2PCHFlSYLFZOv+2eWoMKgPKSGsO1y6hQQjQZCSxamDEggMgpD9Lh55/wPfUUfXv52rXsm3AhudNf4tG+93NOxAX6vmUli5i+ajpu1e0xSV5FmQw5K4QQomW53C4e/PdB/k37FwAfkw/vjHmHTv7tyXj4EfI+/FA/NuLee4i49956T1hXkHmAOW+8pK8Pv+oGQmLiDnl8zeHavWUeCyGajAQWrYS1QwcSZs0ifuY7WBITtY0uF3kffcS+s87mxKx2+rHFlnw+3fYpDy9+GItv9X/Cmt/ICCGEEM3Nrbp5fNnj/JH0BwBWo5UZo2fQw78zqXfeSeH332sHGgxETXuS0BtvrPc97LZyfnphGrbSEgA6DhpC37GnH/YcW40JZr2kx0KIJiOBRSvjN3w47X/+ifA770CxaqM8OQ8cIHPOIv2YMq8CAH7d+ytfpXxWvb1QAgshhBAtQ1VVnlnxDD/u/hEAk8HEKyNeYYBPV1JuupmSv+YDoJjNxL78MsEXXVT/e7jdzH3zFXJSkgAIiYnj9Mn3HLHHw3OCWQkshGgqEli0QgaLhbBbbqHDLz/je/LJANi8QvT9U4v74a1qvxjXFq/St5cVS2AhhBCi+amqyvRV0/lqx1cAGBQDz5/yPCcaO5F0xZWUrVwJgOLjQ/zMdwgYP65B9/j7o1nsWrkUAIu3D+fe9whWH58jnlsVWFh9TBiN8uojRFORf12tmCUhgfh3ZxH76itU+EYAoLhdhMz+mg++i6B7rhdl5urxuPNyZWxuIYQQzUtVVV5f9zqfbvsUAAWFp09+mlMrEtl/6WVU7NoFgDEkhHYffYjv0KENus+yb79g/bxftXsYDJx1x/2HrauoqSoVSnorhGhaEli0coqiEDB+PBUhsQBYK/JRUDHuSuKJ98s5b12FfuzapA0kFSW1VFOFEEK0QTM3zuS9TdUzWT8+9HFGZkeQdOWVODMzATAnJJD4xed49+lT7+urqsriLz9h2bef69vG3XIH7fsPqtP5Locbe+Woid5+UrgtRFOSwOIYUF5ix16u/VIM7hSNtXMnbYfLxRkL81Dc2jcxxnIrV8+5mm2521qqqUIIIdqQDzZ/wJvr39TXHx7yMGN2eZFy4424i7UJW7169SLxi8+xtGt3qMsckup2s/CT91nxw1f6thFX30TP4aPrfA3PEaGkx0KIpiSBxTEgN7VEXw7vEknid98RduutYDKhANYKLQUqqMyP4uJcrpt3HasOrDrE1YQQQoij99m2z3hlTfV8FPcNuo+xy2yk3X0PqkN7mfcdfirtZn+EKTT0UJc5JIfNxs8vP8ua337Ut426/hYGnnluva5jK5U5LIRoLhJYHAOyU6oDi9A4PwwWC+G3/4/2336DtUd3LA7tWyGD4s9zH6pEpJRwy5+3MD95fks1WQghxHHsm53f8NzK5/T1O/rdzrif08l6/nl9W+CFE4h/800Mvr71vn7+gXS+fOwBdq9aBoCiGBh78//oP+6sel+rvLjmiFCSCiVEU5LA4hiQvqtAX45sH6Ave3XrRvuvvsI/PlzfFlHsz9OzXZz5r417/76L73d935xNFUIIcZz7afdPTFs2TV+/tdsNjH9vE3mzZ+vbwiZP1mbTPsRM2Iez7d9/+OSBO8javwfQRn86/8HH6DO6/iNJwX9m3ZZUKCGaVP3/xYtm5XaremDh7W8mJNrzmx/FbCawTxfS/k0HwG4JwN9eyGWL3AzY42ZGwaPkj87n+l7X13tmUyGEEKKmOfvm8OjSR1FRAbgl9hLGv7CE4s2btQMMBqKeeLxBc1QU5+bwz+xZ7FqxVN8WHB3DOfc8TFh8/eszqtTssZBUKCGalgQWrVxOSjH2cicAMZ2Daw0OfAKqu3at510Cn78Mbjdd0+CF913MTnqZly7L4+4T7sGgSCeVEEKI+pufNJ8p/07BrboBmOR7OmOfno8t4wAABl9fYl99Bb9TTqnXdZ0OB+vn/crSbz7HYSvXt/ccPoZR10/E4uV9VO221Zwcz19SoYRoShJYtHK712Tpy3Hdgms9xrdGYGEZdTrtzhhA+gMP4EhJwcsBE+e4Wb3rQ56anMmUcc9iNsg3NkIIIepuUeoi7l10Ly5VG6HwtvKhjHhtPs6yMgBMMdHEv/0OXl271PmabpeLLYvms+zbLyjOyda3ewcEMuram+k2bHijtN1jVCjpsRCiSUlg0YrZbU62L8sAwGBQ6Ng/vNbjvGsEFmVFdnyG9qfDjz+Q+dzzFHzzDQCDdqt0mPobL+zP4O6b3sfL5NX0DyCEEOKYtzR9KXf9cxdOt9Z7fm9STwZ/uRi3W+u58Ordm/i33sQUXvtn1H+VFRWy6e8/WP/Hb5Tk5lTvUBT6jhnPyZdeg5efX6O1v2pyPJAJ8oRoahJYNAOHzYbZq/4v8mvnJem5oR0HhON9iC5cnwCrvlxWpP0CNfj6Ej3tSfxGjiRpyv0YC0sIKYFzX1vLJ9vO5OLnviHQJ6QBT9O0KspKydi5nZzUZBwVNowmM5EdOhHXvSdGk3wgCCFEc1qWvozb/74du9uO4lZ5bGUCPf7ZoO/3HzeOmOeexeB9+HQll9PB/g3r2L5kIbtXLsPpsHvsb99/EMMuvpLIDp0a/Rk857GQVCghmpIEFk2svLiI2ffdRveTRzD0ossxW48cYKiqytbF6ayZq82irRgUBp/d4ZDH+wRUv3BXBRZV/EeNpOsvv7H9jkmY1m3FAJz8RzpLd42l/5uzierQq2EP1ohUt5vda1aw+Z8/SdqwFpfTedAxFm9veg4fw4kTLsUnILAFWimEEG3L8ozl/O/v/1HhqsCrQmXaHyG027xP3x96002E33UniqH22r3ivBySNq4naeM69m9Yi62k2PMARaHjwMGccPYEYrv1aLLnqPpcNFmNmC3GJruPEEICiya38NMPKM3PY/Uv37NrxRLG3HArif0GehzjqHBRVmSnJN9GVlIxu1dnkpVU/Qt48FmJBEX6HPIevoHVPRbFubaD9psjIuj16ddse+0Z3O99jtENifvKSJ1wCeXTHqP9WRc3wpPWn6qq7Fy+mKXffE5eWsphj7WXl7Nu7i/sWPYvZ95+Hwm9+jZTK4UQou1ZkbGC/83XgorIfJUnfvIiJKOyDsJkIvqJxwmaMAHQeppzU5PJTU0hNzWJ3NQUclKTPdOcavDy9aPniNH0O+0sgqKim/xZygorAM96RCFE05DAogmpqoqt1AcUI6guCrMy+e7ZxzD7dMcr4FRQAnA7VVxO9yGv0XtkHAPHJx72PiaLEb9gKyX5FRRkldV6jGI00uPuqewZNIAD9z1ASKEL33I3tnsfY9vylXR99BkMlub7pVtwIIO/3n+LpI3rPLb7BYfQafBJRHXsgndAALaSEvZvWMuulUtxVlRQVljAt09P5Yz/3Uu3oac2W3uFEKKtWJGxgtvm34bNZaPXfjf3/2TAq6wUN1AWFoxy7dWsK8kj9+mp5KYmU5KXe8RrWrx96DDgBLoNO5XEvgOaLbXVYXdht2kF5z6BElgI0dQksGhCiqIQ3XUMKTtCcJT9hepMBcBRtg1H2U6M1n6YvIagGA5OjwqL92PwWe1p37duxXBBkT6U5FdQUerEVuI4ZIFax1PPxOeHLiz53+X03FI5o/e3v7F1y3a6vvUu5uhDf3tUnGdjz9osHBUuOg+KPGwvyqG4nE5W//oDy7/9wiPHNrZbDwafdxHt+w48qFu9xykjKcm/jnlvv8r+DWtR3W5+f+NFvPz8SezTv95tEEIIUbtVB1ZpQYWznNNXq1z5D2QFeJER4UdugC8uBfjz1yNex+rrS1h8O+J79qFdn/5Ed+qKscZkeS6nG7dbbfLUpKreCvDs3RdCNA0JLJqYyWzA4h2G1fcynLbN2AoXoLrLAReuijW4HZsIjBxMVOfhBISFEhLjS3THIEJifI947ZoCI3xI3Z4PQEFWGVF+h65DiI7pzJjP/uTDaRcz6scULC4wbtvDznPPpt0rr+E3bNhB5yRtyWXuzE047Vrvypo5SZx8cWd6nRpb5zam79zGn7NmkJOSpG/zCw1j9HW30OmEEw97rl9wCBc8+Dh/vvcmm+bPQ3W7+fWV57j6hTcICIuocxuEEELUbtWBVUyePxlnRTkT57npmO7Poq7BVJgP/arg5etHaHwCoXGeP75Btc+7BLD6932s/j0Ji7eRc+/sT2hs440A9V+lhdVfYEmPhRBNTwKLJjZwfGKNVKbhVJRdy8ofv2Ht7z/jdNhR3XYKMhZTkrOSniPHEtX+rHoHFQBBEdUjcuRllBLV4fAFzkFeQUx8/Eee63gzo2euIaIQDEWlJN94E+H/u42wW27Rew4KssqYN2uzHlSA9m3Tws934O1npuOAw7/Y20pLWPzFbDb8NRdUbbZWRTHQ//SzGXbxFVi869bzoRgMjL1xMmWFBexZvYKKslL+mPkGEx56UmYVF0KIo1AVVFgKyrj3R4Uirxi2xnr2pvsGBRPXozdRHToRntiBsPh2+AQG1ev3b8q2PFb8rBWAlxe7WfbDHs66relq5spqBBbSYyFE05PAoplZfXw55fJr6Xvamaz4/iu2LPwLl9OJ02Fnwx+/seGP34jr0Yu+Y06n0+ChmMx1y0MNi/fXl3OSi+HgToeD+Jh9mHrthzwZfT9dZ8xj4B4VRVXJef0NytevJ3b6dIxBQSz5djeOCi1HNbF3KD6BVrYuTgfgn0+3E5EYgH/IwelcVcXZ/3w0i9KCfH17RPuOnHbz/xo0rKBiMDD+1ruYfe9kSvJySdq4jk1/z6PP6PH1vpYQQghYfWA1k+dPJiqljEm/mtgVGY3DVJ2i1OmEExl45nnEdu1xyBGg6mrPumyP9eSteYdN3z1apR6pUNJjIURTk8CihQSEhTP25ts46cLLWP3bj2z8cw6OCm1Ep9Stm0nduhkv/wC6njiMbsOGH/EXenhCdWCRlVx8yOP+y2ww88T4l5geHMHODz7lkkVuDEDpon/Ze8EEzFNeZP9GLSjwDbQw9oaemK1G7OVOdq/JoqLMyfzZWzn3zv4e31rlpafxz0cz2b9hbfW9rF4Mu+Qq+o8/C4Ox4Xm1Xr5+nDbxdr5/9jEAFn/5Cd2Gnlrnng8hhBCaNZlruHX+rQzYUMoVf5tZmxiNs/L3c2BIGGfc9SAxXbo12v2SNnuOFKW6VZK35tJlcFSj3aOmmjUWPtJjIUSTO7qvHsRR8wsJZcRVN3DTWx8y4uqbCI6J0/fZiovY8Occvnr8Qd697QYWfvoBaTu24Xa7DrqO1dtEYGU6VE5KCS7XoUea+i+DYuCBIQ8SO/l2nr7UQFFlVpUzPZ01b/+hHzf4nA5YvEwoisKIK7riF6L9kk7bUaD3YDhsNv79YjYf3zfZI6joMHAw1778FgPPPPeogooq7fsNpOtJpwBQXlTI6l9/POprCiFEW7I2cy23zbuFi+eUcNNcA+vaVQcVcV26ceWLMxo1qCgtqKAkr+Kg7em7CxvtHgfdU2oshGhW0mPRSnj7+TPwzHMZcMY5pG7dxIa/5rJn9Qqcdu2XcHFuNqt/+Z7Vv3yPd0AgHfoPouPAIbTr2x+LlxYJRLQLoDCrHJfTTV56KeE10qOORFEUJvadSLBXMA+GTuPOH5y0z/ImK1TLfTUrDjr3D9WPt/qYGXllN355XZuBdcm3O7EVbWTNb19TnFvd1e0fGs7Ia26i0+CTGr0OYtilV7Fr5VLcLherf/2BfqedgU9gUKPeQwghjkerD6zmoR8ncd+3JXROV1jWKUpPf4rr1pMLHnqiThO61kduWom+3OvUWLYsTkd1q2TsLmjU+9Qko0IJ0bwksGhlFEUhvmcf4nv2wV5exp7VK9i2ZCFJG9fhdmk9FeVFhWxZOJ8tC+djNJmI69Gbdr374eUbiaq6URQD2cnF9Qosqlzc9WICrYE87P8AV/0zGJNR+4YnMmUx6bd8Tuxrr2IKDgYgoUcoXYaEsW3RIioKV7Dg4+o6CqPJxKCzL2DIeRdj9mrcD6cqwVEx9B41jg1//o7Dpk2gN+ySq5rkXkIIcbxYnrGcNz66lce/LSe4FDbHhlLsrb10B8fEct4DjzZ6UAGQf6B6nqWIRH+ykvzISiomL70UW6kDL9/Gr7Oo6rEwmBSsPvLKI0RTk39lrZjF24fup4yk+ykjKSsqZO/aVexds5L9G9bq9Rgup5OkjeuqJ5pTrBhM8Wz8ay8RCWMJjY2vd7HduMRx+I/1Z/6mvYSUattiMpZStjud/RMuJO7NGdjDQtm84C92L5uDoyzf4/z2/QYy4pqbCYmp+1C0DTXk/IvZ9Pc83C4X6/+cw+DzL8ZskW+lhBCiNktSF/Pb9Mk8+Jcdkxty/LxJDtNGETRZrZx7zyNYfeo/MmFd5GdWBxbBUb5EdwoiK0mrCczYU0j7PmGNej9VVSnO1T4r/YO9ZPRAIZqBBBbHCJ+AQHqNGEOvEWNw2u2kbN3EnjUr2bNmBSW5NYrh1Arcjt2kbd3N7Ht/xOLtQ1THzkR37kpUp66ExbcjIDwcg+HwdQ6dnL1YV6r9Qi607MdOOgU+VnKdZSx84A4KvA/OVVVMcfiGnMrpt12It3/z5LL6h4bR9aRT2LZ4AbbiIrYt+oc+Y2SEKCGE+K+FO/9g15S7uWqL1vvtNChs7hgHaDV5p15xHaFx8U12/4IDpfpyUKQP0Z0C2TA/BYADewoaPbCwlTr0EQ0Dwpqm51wI4UkCi2OQyWKhfb+BtO83kNHX30JeeirJmzeQsnkje9auw+0s14+1l5eRvHkDyZs3VJ9vthAcE0twVAw+QcH4BgbhHRCI0WTSezc2L9yDozwT1V2M276XxV3aY3If3POhKAY6DT4Rh6MXGXt9cToUFn21k9Nu6Nls3w4NPPM8ti1eAMC6eb/Se/Q4+WZKCCFqWLD0CyoemMawbFXfljp2OGUHtBf7+B696Tf2jCZtQ1UqlLe/GS9fM9Edg/R9GXsav4C7KMemL/uHeR/mSCFEY5HA4hinKAqhsfGExsbTf9xZrJmzj6XfLcftTCE4opCyohRK8/M8znE67GQn7SM7aV+d7uFth/8OIOZfXkF0QQmdu/ak803/o0K18vkTy6kodbJ7dRbh8f4MGNeukZ7y8CI7dCK6c1cydu0gJ3k/Wfv2NGiODCGEOB4t/OwF/Kd/QGRlHbPdy0TII1PZ8eMXgFYTd9rE2496jorDqSh3Ulak1TsERWpDg/sEWAgM96Ywu5zM/UU4HS5M5iOPGmgrdbBhfgp5GaXEdAqi14hYjMaD216UU/0lW0Co9FgI0RwksDjOdOgfwfKfIjGYIvENC+Cq5wdSnJvDgd07yNy7m7z0VHLTUik4kI7qruOQtIpCQEQE+71z2e57gC7p5YzbaMeogpq1hKTLLyfu7bcZfllX/nhvCwDLftiDy+lm0OmJKIam7z3oNXIsGbt2ALDpnz8lsBBCtHmq3c7yqZOJ+Gmxvq0g2p9+737G/N9+wOVwADDgjHMJiopu0rYUHPCsr6gS3TGQwuxy3E6V7KRiojsFHfY6pYUVfDd9jV47sXddNllJRYy9vudBx3oEFtJjIUSzkMDiOBMc5UtIjC956aUc2FtEaYGdgLBwAsLC6XLiyfpxLqeDkrxcSgsKKCssoLy4CLfLhaqqrPszieJcFRQvxt5wAp0GdcFssVLmKOOuBXfxa/pS9kcbuOsHN/42qNi1m/0XX0LcjBkMOacDK37eC8DKX/aRuj2fEVd09fggaQpdTzqVfz56F6e9gu1LFjD8quuliFsI0WbZU9PYPOlagnal6tuST4hn9NvfkZWeyo6liwDw9g9gyPkXN3l78jOr6yuCo6onM43qGMj25QcALR3qcIGF2+Vmzjub9KCiys6VmXQdEkVCz1CP7UU1jpPAQojmIRPkHYc69g/Xl/euz6r1GKPJTGBEFDFdutHphBPpPeo0+o49nfhep1JW3BWjpRsRiT3pdlIv/QXdx+zDjFEzOKfjOWxONPDwNUbSQ7TrufLySL72Wjq7NnPSBR31+6TvKuDzJ1bwyxvr2bwwleyUYr2YrjFZfXzocuIwACpKS9m7ZmWj30MIIY4FxfPns/Pcs/CuDCocRlh31QmMmT0Ho68fCz5+Tz926MVXNtkoUDXVHGq2KhUK8AgkjlRnsfGfVDL3FQHgF2z1SLdd8t1uVLfqcXyxR4+FpEIJ0Rykx+I41HFABKt+2w/A7jVZ9BlZ91E+tixK15e7D4s5qAjabDTz1LCniPaNZubGmTx8tZG7f3DTO0lFtdtJv+8+4m+9lfA7ruCfT7dr3yypkLwlj+Qt1bUeXr5mrD4mrD4mjGYDBoOCYlD0Pz3Sp9TqDwuPjw3PzxBK8xP15QWf/MrO1f4HHed5vkpFuQt7uZPwBH/6j00gPKH+c38IIURroNrtZL30MnmzZ1NVqXAgCHbcfTYTL3oeRVHYvmShnjYaGpdAn9HjmqVtBZm1p0IFR/pg9TVRUeokY08BqlutNX22JL+Clb9U1gUqMO6mXkQmBpC6PU+fCyNtZz5x3UL0cwori7fNVmOTzJEhhDjYMRVYPPfcc0yZMoU77riDV199taWb02qFxPgSFOlDQWYZGbsLKcgs8/iG6FDsNifbl2cAYLIY6DokqtbjFEXhtv63Ee0bzbTl03jmEic3/OFmzHrttT3nrbcI2L+PSx6bxpblOWxakEpJfoXHNWylDmyljqN8Uk+qGgCKN6jllOTuIGlzJopStw+TgswyUrfncfUzQ+tUPCiEEK2JIy2N1LvvxrZho75tWTeF0nuu4baT70dRFBz2ChZ9/pG+f/hVN2AwNs/vu6oeC6PJgH+NQmrFoBDTKYh9G3KoKHWSlVRMZPuAg85f+v1uvbe758kxRHXQ5t7oNzZBr+3buiRDDywcdpdeYxEc5SMjBQrRTI6ZVKhVq1Yxc+ZM+vTp09JNafUURaHHsBh9fcvi9MMcXW3H8gM4bNov7i6Do474Dc+ELhN4Y9QbWKw+zBpvYPZoA+7K391Fv88h/ebr6TPAh6ufHsrFD53ASRd0pNuJUUR1CCAgzAurr4nG/F2vKAaM5qqibSduRx1Gvapx//Jih97NLoQQx4riv/9m7/kX6EGFwwjvn2ag/LFb9aACYO3vP1Ockw1AYt8BtO83sFna53a5KczSAovACG8M/+mRSKwxf8Xe9dkHnZ+xu4BdqzIBrbf7xPOq02079A3XP6v2rsvWv7DKSy/Vu6hDYv0a72GEEId1TPRYlJSUcMUVV/Duu+/y1FNPtXRzjgndTopi+c97cDtVti/NYMjZ7TFZDv3NlKqqbFqYpq/3HlG3WbNPiTuFD8d/yOS/JvPb4FwOBMMdP6t42VVsGzay75JLiH/7HcK7dqk1zUhVVdxuFdVV+ae76k/P4zwCEKXqD+WgbSlbAvj5pU0AJHTP4/TJp9R6kaolo9nAln/T+PerXYD2YRTbJbhOzy6EEC3JbbeT/dJL5M3+WN92IAheOc/IOWfeyY29b9S3lxbks/LHrwHtS5jhV17fbO0syrHhdmlv+TULt6sk9g5DUbSs173rsznxvA56MOR2q/z79S792CHntPf40sto1nrXN/ydgsvpZteqTHqPiCM3rUQ/JjSm6WtIhBCaY6LHYvLkyZx55pmMGTPmiMdWVFRQVFTk8dMWeftb6Ng/AtDSjrYuOXyvRdLmXPIztFE7ojsFEhZX91qDnqE9+ezMz2gf2J41nQ1MvdJAboD2oeBMzyDpiisoXbq01nMVRcFoNGCyGLF4mbD6mPH2s+AT4Pnj7V/jx0/78fIzV//4aj8dB/bH21/rRk/atAaD0YXVx6z9eJv0H0vlj9Fk8HjW/Bp5wEII0VpV7N3L/ksu9QgqlndVeOA6I5ef94hHUAGw9JvPsJdrqUG9R59GWEJis7U1/z8zbv+XT4BFL+IuyCwjbUe+vm/9X8lkJxcDEBrrR49TDv7Sq/uw6qFyty3V0nkP1CgEl9o5IZpPqw8svvzyS9auXcuzzz5bp+OfffZZAgMD9Z/4+LoXLh9v+p+WoC+vnZuE01H7aExut6oPEQvQb0xCrccdTqxfLJ+c/gkDIgaQFKkw5RoDu6Mrv3EqKSH55okU/PBjva9bXwajkU4nnAiAs6KClC2bjniOb5BFX7YV25usbUIIcbRUVSX/m2/YN+FCKrZtAypTn8YaePUCE4+MeYZLu13qcU7mvj1smv8HABZvb4ZdfGWztjkvozqwCDlE70Gv4dUBw6rf9uNyuclKKmLFT5WfTQqcemmXg9KoQAs4ItppwUN2cjHZKcWk7yoAwGBSiEw8uGZDCNE0WnVgkZKSwh133MFnn32Gl1fdhoqbMmUKhYWF+k9KSkoTt7L1Co/3p31fLXe1tNDOmjlJtR63fWkGOSlat3FYvB/ta+S71kegNZBZp81iXOI4CvwUnrjcwKrOlR8CTicZU6aQ/eabqKp6+AsdpQ4DBuvLe9euOuLxNbvVG7ugXAghGoursJC0O+/iwNRHUSt7H1JDYcq1Rv4ebOXlEa9wTsdzPM5R3W7mf/A2amV+6ZDzL8EnMKhZ252fUd0THBJde2DRsX84/iHa53z6rgK+eWYVP726Xk+h6j82gZjOQYe8R/eh1b0WS7/bTWG29vcT2S7gsGnAQojG1aoDizVr1pCVlcWAAQMwmUyYTCYWLlzI66+/jslkwuU6+Bt4q9VKQECAx09bNuScDvo3PGvnJpGTWuyxvyinnKXf79bXT7m481HNlG01Wpl+6nSu7XktFRaFFy8wMHdA9fVy3phBxiOPoDqa7gU+oXdfjCatfGjv2lVHDGQs3ib9mW2lziZrlxBCNFTZ6tXsPe98iufN07f92V/hweuMZEV7M2PUDEa3G33QeVsW/U3Gzu0ABMfEMfDMc5utzVWqeiwUBYIiah+h0GA0MOa67hhN2mtJblop9nLt93F0p0CGnN3hsPfofEIkJrN2bur26lSqDjXmdRJCNL1WHViMHj2aTZs2sX79ev1n0KBBXHHFFaxfvx5jMw2TdywLjfVjwHhtEiG3W+X3tzZRnKeN7V1aWMHvb2+iokz75d35hEhiOh994bJBMXDPoHuYMngKGAx8cJqBj0dV/69W+N33pNwyCVdJyWGu0nAWL2/ievQGoDg3m5yU2ntqqiiKgpevFohIj4UQoiU5KmxUlJXqX4ioTifZr79O0tXX4MzQ6gfKvI28eIGBd8cbsfj4M3PsTIbGDj3oWiX5eSz85H19fdR1EzGamnc+B9Wt6jUWAWHeh+09iOkczGk39MRkqf686HpiFGdN7ovRfPjXFauPmT6jPFOfjSYDXQbXPmy6EKJptOpRofz9/enVq5fHNl9fX0JDQw/aLg5t0OmJ7N+UQ05KCcV5Nr58cgVx3ULI2FtIeZFWUxAQ7s3wy7s26n0v7345kb6RPLDoAX4dUkFuANz2q4rZqVK6ZAlJV15F/Mx3MEdGNup9AToMOIGkjesArdci/AiFihYvE+XFDuw26bEQQjQvVVXZtXIpq37+jgN7doGq4hMYRMde/YhduhrD+g36sXvbezP9DDt5AQaCrcG8M/YdeoT2qPWaf8x8HVuJ1kvd5aRTSOzTv9meqUphTjlOu5aGFXyINKiaOvQP5+pOQ8ncX0RAqPchazJqM+iMRHJSi/XJWE++uDM+AZYjnCWEaEytusdCNA6j2cBZt/UlMNwbALvNxd712XpQ4R/ixVmT+2D1bvw4c3TCaD4c9yGhXqEs627gyUsNlHhraUcV27ez/5JLse3Y2ej37dD/BH25LnUWVd+QuRzuIxwphBCNx+lw8PsbL/LLy89yYPdObcxVoKywgE1LFvCHq5jdEUG4jQZ+GR3A1AnQJ+tyxu+/jndHfFBrUFGSX8EnD73DvnWrAfANCmbMDZOa9bmqVI3oBHUfncnb30Ji77B6BRWgzbB91m19mXD/QC5/fAi9Tq3bsOlCiMZzzAUWCxYskFm3G8A30MqFDw6ix7BovUtZMSh07B/OhAcGEhzVdON89w7vzednfk7n4M7siFd4+CoDWUGVw9EeOKANR7tsWaPeMygqmpCYOAAydm6nvKT4sMdX5fU6He4mLy4XQggAt8vFLy8/w/YlC/VtoTFxRFh9MLq0LzncBoWd0aF8PziOn3rY6Z8+jm7ZJ5KY0Y89P9Q+PPaf7/5K9t7f9fXTbrldH4a7uWUlVf/urRq5qSkpikJUh8Am/UwTQhxaq06FEo3Ly9fMyKu6M+yizpQWVOAbaMXSBL0UtYnxi+Hj8R9z76J7WcISHr7awAPfuOiUUT0cbcwzzxB49lmNds/2/QeSl56KqrpJ2bKRLkOGHfJYPX9XBbdLxWhqxCnBhRCiFgs/eV/vUTVZrYwYfQbeH36K68AB7EYDeyKC2RcRBIBPmZlzFkdj8g9AVVQURWHfhhyKcssJCPXWr5m6fSt7135K1bTTXgFDaN9vUHM/mi47qXouKZlPQojj3zHXYyGOnsXLRHCUb7MFFVX8LH7MGDWDS7teSqGvwhOXG1ndqfIF3uEg/b77yP3wo0a7X7ve1fnEVfUWh1KzoFDSoYQQTS1p43rWzvkZ0ObfGRHXCcuzL+I6cAAALx9fgq88jTlDsyj01QaVMLkNULgER8mPuF1aHUHWfq1HwO1ysX7eb3w77WFQteMN5i6ohqEUtNDEn6pb1VOhfIOs+AZaW6QdQojmIz0WolmZDCYePvFhEgMTmb5qOi9MgBv+cHPaOu3btaznn8eZnU3EvfegGI4u7o3r3guD0YTb5SR504bDHluVCgVaOpTF+zAHCyHEUXA6HMz/4G19vVeZC8v3P+vrPieeyNLrBvDM/lkQBL8Ms3F+Wh98txQA4Hbuw160D4OpHWt+3UjqFl/2rl1Ffka6fg2DKR6z7zgURSFjT2GLpAblppdit2nDwjdHGpQQouVJj4VoEVd0v4LXR76Ol8WH98YZ+OqU6v8V8z74gPQHHkS1H90s2GYvL2K6dgOgIDODwqwDhzzWZK4ZWNQ+Q7kQQjSG1T9/R35GGgDBZTZit+8BQLFYiJgyhe8m99KCikoTel7Mw4/MptOJN4JSPQ+E25lE6ta/WPPbTx5BhdHSB7Pf+SiKNrTsgb2FzfFYB0ndnqcvx3Y5+qHMhRCtnwQWosUMjx/OJ6d/QqRvFN+dbGDmeAPuysyool9+IWXSrbhLS4/qHu169dOXkzatP+RxNQMLSYUSQjSVgswDLP/+KwAUVaVnSjYKYO3Rnfhvv+bVTrv4cOtH+vG39r2Vh4c8jNFgxFYWgzXwekzep4DhPz0AikJcj16EJFyD2XcMilI98eeBPS0UWOyonqgurpsEFkK0BRJYiBbVNaQrn5/5Od1DujO/v4GXLjBgr0zQK12yhKRrrsWZm9vg6yf07qcvJx0mHcpo9kyFEkKIxuZ2u5n3zGO4nFoNRGJ2IQF2J6ETJxL56Yc8kPIGP+7+EQAFhaknTmVSv0koioLT7iI3rRRFsRDRYQTxve/CEnAdZv8LOf/BJ5k061MufPgZykvDAAiL99OLpfMPlDX75J/2ciep27TAwifAUu+hY4UQxyYJLESLi/CJ4KPxHzEqfhSruhiYdqmREi9tn23zZvZfdjn25OQGXTuqY2esPtoHWvLmDaju2oMGk1mKt4UQTceRlcWKm64n9YCWAuVld9Ld5EO7Tz/BcMuV3Pj3LSxM1YadNRvMvDj8RS7uerF+fnZyMapbq0WLTAwgNMYPgzEYoymBgPDO+AQEUphVrh8THOVLdIdA/fzMfdWjMzWHfRtzcDm136Ud+4ejKDLSnhBtgQQWolXwMfvwyshXuKn3TeyIV3j0SiM5lT39juRk9l92OeVbttT7ugajkfievQGwFReRnby/1uOkx0II0RRUVaXwl1/Yec45rM2rrvMa1K4zXX74gcyOwVz5+5Vszt0MgJ/Zj3fGvMNpiad5XCdzf3VgENk+gKCo6lqL/ANllX9Wp44GR/kQ2aF67ormrrPY8m+avtxpUGSz3lsI0XIksBCthkExcPuA25l+6nSyo7yYerWRFK1XH1duLslXXU3p0qX1vm58j976cuq2zbUeY5QaCyFEPRzYW8iG+SkU5ZTXul9VVfYt28fyyc+T/OBUdnibsFm0PM+4uHYMfuV1NpTu4Ko5V5FWor2ER/pEMvv02QyOHnzQ9VK2VhdC/3cCuPwMLaDIy6gZWPgS3bG6xyKjGess0ncXkLFbu19wtGc7hBDHNwksRKtzevvTmT1+NsaoSB690sh2bQJt3GVlJE+8hcJff6vX9eJqBBYpWzbVeoyMCiWEqKuti9P5bvoaFn+zi2+fX01pYcVBx6x44w9+n72Pte7BLB9wC/vDtZdro8nMafc9zLykedz0x00UVmgv4F2Du/LZGZ/RJbjLQdeylzv1Qmi/ECshMb4E1+yxqJynIi+9OrAIifHFL9gLv2Bt7ojMvYXYbc5G+hs4NJfTzaIvdurrA8Yl6EXkQojjnwQWolXqGdaTL8/8kg7xfZh2qZFVnWtMpHfvveR+9FGdrxWekIiXrx8Aqdu31FpnIT0WQoi6yNhTyMIvdujr5cUONi+sTvtx5uWRfPtdbFyv9WSoqkqxay1qZY3B4PMu4qecP7hv4X3Y3dqQ2kNjhvLR+I+I9K09ZWjnqkzcLq12on0frV4hINwbQ+ULe1UqVG5lYGEwKQRGaJPxtOutdfs6HW62/Jv+30s3KofdxZ8fbCE3rQSA0FhfOp8gaVBCtCUyQZ5otcJ9wvlw/Ic8vvRxXrrgF26Y52bs+sqJ9J57HmdW3SbSUwwGYrv3Ys/q5diKi8hJTSY8IdHjGJPUWAjRIlRVxe1SKS+2U1pgp7SggoLsMgqzyinILKMgqwy7zUV4nB/dhkbT/aToRv0G3Gl3se7PZHauzKQopxyTxYhfsJWgSB/tJ0L708vXRFZSMf9+tVN/ya+yZ102Q87pQNG8PzjwxBNku8Nw9DsbAJd9E6pLe6E3e4ey0C+Fz9d8qp97XqfzePSkRzEbzAf/3bhVctNLWfXrPn1bt5OiADAaDQRGeJN/oIz8A6XYbU4KK3sugiN9MRq132l9RsaxZZEW+KyZs5+AUC8SeoVithg5Wi6Xm/IiB8V5NtJ25LF5UTqlBVrvjdFkYPQ1PfR2CCHaBgksRKtmNVp55uRn6BzcmVeVVyjwc3HRYu1DPe+DD3DmZBPz9NMo5oM/lGuK76EFFgCpWzcdNrCQHgshjszlcpO1r4ic1BIKs8spK7JjL3diL3fisLtwu1RUt4rbXeNPl/an26Xicrpxu9SDXtIPJWNPIRl7Cknbkc/oa3vo39YfjYoyBz+9up7s5GJ9m73cSV650yOtqDaxXYNw2t1k7isiP6OUXXc+gnPudwDkdhwJgOouQXUsrj7JOJKAnxK4wdAXp6ECb4s3Plt8+OSnFaBW/z1ULToqXB6/jxL7hBHRrrogO6JdAPkHynA7VXavycJdOSJUzaFdQ6J96dg/nD3rsqkoczJ31mYMRgWLtwmDQUFRtPupNW6sukFF26iq2nZtvxYIVu465O9Kk9XIuBt76sPdCiHaDgksRKunKArX97qeTkGduN9yP/l+xdw4z41BhaKff8GVl0/ca69i8D30OOkedRZbN9F//Nke+401hpuVHgshDq0gs4y1fySxe00WDlvT1yN5+5sxmg2U5GnfhO9cmUlguDeDz+5wVNdVVZV5723RgwpF0V7InXY3xXm2wwY8CT1DGHdTL9b9kawP45q+Zi8RlftLE/qiulUcZX/hdti061u7YTQnAGB2WzC7LeCEMux1am9wlA8jr+zmsS0iMYAdK7SRpmqmY4XGev4uHHFFNwqyyvUUJbdLxVbSBPNaKNC+TxgnnteRkGiZt0KItkgCC3HMODXuVD474zP+5/U/XvJJ4o6f3FhcULp4MUnXXkf8zHcwhYTUem54u0SsPr5UlJWSunUzqqp6jKvuWWMhxdtC/JeqqqyZm8TKX/bpcyUcisGkYDAaMCigGBQMRgVF0f7Ufgwey0ajgpefGd8gK76BFgLCvAmK9CEwwgert/YxtXddNnPf3YzqVln9+346DoggNNavwc+zY8UBfaQlLz8z593VX7+e26UFFwWZlelYmWU47S68/S0k9AoltksQroICjP98BwwEoMg/kSj7XiIefoSiv/xwFa3G7dgLQIVVZe6QFXTIV4gr6UJ7SyfMLqv27T/aZHgoWnCjUxRMZgP+oV7EdAqi94g4lUR7NAAATHZJREFUzFbP9KXI9tW9FzV7XaI7BXkc5+Vn5qIHB7F/cw7Jm3M5sK8Ip8ON6lK1Nij/aYOioICeclbVLs91BZPFgE+ABZ8AC2Hx/sR3DyEw3Lth/0GEEMcFCSzEMaVjUEe+OPMLHgx4kKe9/+X+b134VoBt0yb2XXYZ7d5/H0tc3EHnGQxGYrv3ZO+alZQXF5GbmkxYfDt9v9FY/YnuqmNqhhBtyeJvdrHx71R93eJtol2vUGI6BxEc6YNvsBUvHzNmb2OT5NV36B/OCWcmaoGNCst/2suZt/Zp0LVcLjcrft6rr4+5rodHkGIwGggM9yEw3Id2vUI9zlVVleJ58zgw7SlMxQ4YqgUWpQl96fDRnRQ5fbD//CPO8kX6OYt6Z5HvZyMjciMPjb6p1pGfGiIs1g+j2eCRkmQ0G4iskS5Vc3vH/hF07B9x0D4hhGgsUlUljjmB1kBmjJrBKWdN5NErjeRVvg84k5LZe8kl2LZvr/W8+O699OXUrZ7zWRhM1f8U6przLURbsWtVZnVQocDA8e245pmhnHZDT3qdGkts12CCInzw8jM3abFu/7EJ+vCp+zfmUFBZrFxfe9Zm6alVCT1Dadcz9AhnaBxZWaTdfjtpd96FKzcXq70Iq70AgEJrFMawcPat24m95EdAe9nf1KGQtAgbfcP78vmZnzdaUAFasJD4n8CnfZ8wjx5YIYRoTvLbRxyTjAYj/+v/P+655DWeud6ftMoMKDU3jz2XX0bpipUHnRPfs/rbzZT/TJRnqNFj4XZKjYUQVcpL7B7Dq468ohsnntcRi3fzd3ibLEb6jIrX12vWFdTH+j9T9OUB4xKOeLyqqhR89z17zzqb4j//0rf7jRlNdF/tfGeFiz1rt7L065dA1eoq8gIU1nYp4MwOZ/L+uPcJ9a5bAFMfA89IrC5kV6DfmCM/jxBCNBUJLMQxbXTCaN644kvem9yBnTHaNkOZjf03XEfh3Dkex4YntsfirU0qlbp1k57fDHh8yyqpUEJUW/9nMhVl2sRqnQdF0OPkmBZtT/eTojFW9jBuW5aBw16/mqjctBK9HiE8wZ+YzkGHPd6emkbKDTeS8fDDuIu0Qm1jaCixr75C3BtvENU1DFVVcdm389urj+KwaRPeKcZw/hqUxeQBt/Hsyc9iNVrr+aR1Ex7vz1m39aXPyDjOv3uAR92FEEI0NwksxDGvQ2AH3r/4axbfP4Y1HbVv7gxON2l33U3Gxx/oxxkMRuK69wSgrLCAvPTqfHGDqUaPhQQWQgDaHA+bF2lzMBhNBoZO6NTCLdIKkTsP0uoE7OVO9m/Iqdf5O1dl6svdToryGMShJtXtJu/jT9h7zjmULl2qbw889xw6/PoLAePH43I4cJTvwl7yDY7S33E5tPQqxRhFRegInhz3JBP7TjzkPRpLfI8QTrmkyxGDJCGEaGpSvC2OC75mX6aPe50PImex4JnXGLFJRVGh4JkXKEjbT7cHn0BRFOK692Lv2lWA1msRGqulVUgqlBAH27shG3t5dW+FX7BXC7dI0/WkaLYv14ZZ3bU6s86zO6tulV0rtcBCMSh0GnjwefbyMpIXLWDPh+9TnJ2FPcwPVfHH4OWFV8+eGEICcLz1MmUF+eSlp+JyOj3ON5i7YvY9jbhufoxLHHaUTyqEEMcWCSzEcUNRFG7oP5Glr/Tit8dv48zFWp4zs79hefpehrz8IfE157PYsom+Y88A/psKJYGFEAA7ltf4dn9odAu2xFNM5yB8Ai2UFdpJ2pJLRZkDq8/hJ8kEyNhbSHGe9nshvlswPgEWQKuh2L9hLRv++I19a1fhrkqTDAv0vMCeHbCn9msrhmBM3sMwWrTi7O4929V+oBBCHMckFUocd4bGDePSV35hzrkxVIUIQX+u4a+rxuETGoTFWxtnPXXbZr3OQlKhhPDktLtI25kPgG+QlZj/zI3QkgwGhU4DtXQot1Nl7/q6pUPtXFkdKHUZrPVWJG/eyGcP3c33zz7GnjUrq4OKI1AMBuzBZnbFlZAR2xVLwDV6UAEQ1y24ro8jhBDHDemxEMelOP84Jj/zO1/ETGbgzCWY3BC/PoOll44naMhwsnbsorQgn/yMdEJiYj16LNxOCSyESN9VoM+PkNAzRJ8crbXoPChSHwJ39+pMuh+hR8XlcrNnTRYAJrOBqE5W5r71KlsW/uVxnNXhJLKojLhBg0m48mp8w8IxmExA5ZcQBiPpFZncu+wB9hXvBiCyZCftN52pXyM8wZ/gKJl5WgjR9khgIY5bVqOVa+94j7/jXyXo8Zl426FdUjm5ygoI1ManTd22iZCYWI8eC0mFEgKSt+Xpywk9Gn+Y1KMV2T4A/1AvinNtpGzPp6zIrqc21SZlSx62UgcA4fFFfPHInZTmVz+jf3kFnTLzaRcZQ8wrL+Ldu1et11mUuogHFj1AiaMEgABLAE+eN4UynyB2rDiA0WTgxPM6NOKTCiHEsUMCC3HcG3XBneyO60nerXfhX+KifVYZByoDi6QtG+kzerxnj4WkQglBxu5Cfbk1pvUoikLnQZGsnZeE6lbZvSaTPiPjD3n8zlWZ2rCwtpXsW7sUKlOeTC4X3dLziC8uJ3zSLYTdeCOK5eAARVVV3t30LjPWzUCt7L3oFNSJ10e+TnxAPO5rVDoOCCc4ypegSJ+meWghhGjlpMZCtAmdBo+l69ffUxThS2BZBcbKXoltqxaSXJQso0IJUYPL6SYnVZvrISjSBy/fIxdGt4QuQ6pHddpROUpUbew2J3vXJeEo+QGnbYkeVIQWl3Hq9hS6tutIx++/I/zWW2sNKorsRdz5z528se4NPagYkzCGz874jPiAypHlDArt+4ZLUCGEaNMksBBtRmCHLgz4fi4VnWIJLtNGhjHaFV549iL+SPlDP84lNRaijctNK9FrjSIS/Vu4NYcWGuNHWLwfAFlJxeQfKK31uPV/rKE091Pczv3aBlWl84E8TswqJvGRqbT77FOsnTvXeu72vO1c+uul/J3yNwAKCv/r/z9eHvEyPmYJIoQQoiYJLESbYg4Lo++XPxESFKRvO2uhyrwZ96Iq2ouUW2osRBuXlVSsL0e0a90zOXcdEqUv71hxcK/Fln/+ZPHnz4BbmzXb7ILBezMY0G8wHX/7jeBLL0Ex1P5R+P2u77nitytIKU4BtHqKGaNncHOfm5t80jshhDgWSWAh2hyjny/9pzymr+f7enPLHDe4tYmuyirKW6ppQrQKWfuL9OXIxNYdWHQ+IZKqd/yti9NxOlwAuJwO5r3wFHPfeQ1V1bYZlTCG55XRb/qLxL32KubIiFqvWe4sZ+qSqTy29DHsbjsAPUN78vXZX3Nq3KlN/1BCCHGMksBCtElR3XpgqsylzvXTZhM2ubTAIqUwlU+2fqLPcSFEW5OTqo14pCgQFufXwq05PN9AKx0HaAFCebGDnSsyKUpL5bObr2bz6uX6cUZLH/q1O5leP/+C/6hRh7xeclEyV/5+JT/u/lHfdknXS/j49I+J9YttsucQQojjgYwKJdokk9lMTJduJG/eiM1ipsxswqC6cAEhxUZeWfYMS9OX8tSwpwj1bn1DbQrRVFS3qtcqBIR5Y7IYW7hFR9ZvTAK7K+eoWPrlXMozv8Ouz7thwOQzBi/fXpz46CkYD1OIPj9pPo8seUQfStbb5M2jJz3KWR3OaupHEEKI44L0WIg2K657b33Zff3VKJXpEhankYe+crF2z79M+HkCS9OXtlQThWh2xfk2nHatzig4+tiY5C2yfQDR7bxwlC2iMPt7Pagw4oXF/1JM1l70HdPukKNbVbgqeHbFs9y54E49qEgMSOTzMz6XoEIIIepBAgvRZsX1qJ4AK9dqxhwUCICqGOmZDE9+6oLMHCb+OZHnVz6PzWlrqaYK0WzyM8r05ZDo1j/qkep2k/T+e+SsfAZXxWp9u8mUgCnwWgymKHwCLPQf167W8/cV7uPK36/k8+2f69vGJ47ny7O+pFNwpyZvvxBCHE8ksBBtVnSnrhjN2jeYqds2YfL1BkA1atsSsuGZ2S7aH1D5dNunXPLrJWzN3dpi7RWiOeRlVA/Z2tp7LMq3bGH+ZRfyw5zvKdannzBg8h6O0W8CisEHg0FhzHU9sHp7Zv6qqsoPu37gkl8vYXvedgAsBgsPD3mY6adOx9fcup9dCCFaIwksRJtlsliI7twVgMKsTNTK4Sjx8cXcLgGA4FJ44lMXA3a52Vu4lyt+u4KZG2birBxBSojjTc25IIKjWufLtauklJ2PTeWLB+5gA3ZcRu2jzM9kYcg5d+ITPARFUQgI8+Ks2/oS3z3E4/wSewkP/PsAjy59lHKnNgpch8AOfH7m51za7VIZSlYIIRpIirdFmxbXvTepWzcD4LClAB1wuxUSv/yS1FsnU75uHV4OuP87Nx+MhT8GOpmxfgaL0hbxzMnP0C6g9vQKIY5VhVnVwy23tlmkVVWlcM5clr7xMjv8zLh9vfR9PfoOZPRdD2Dx9mHoZSoOmxOLt+mgIGFT9ibuX3Q/qSWp+rYJnSdw/wn3y4R3QghxlKTHQrRp8TXqLOxlSQC4XG5MwcEkfPQh/qePB8Cgwo1/uLn6bzeKqrIxeyMX/XIRX+/4WoalFceVohwtsLD6mg5KH2pJ9uRkNt1wPd+8/RLbAqy4Kye18/f24aKHnuT0h57A4q0FBgaDgtXH7BFUuNwu3t/0PlfPuVoPKvzMfrxw6gs8PvRxCSqEEKIRtJ5PDSFaQHTnrhiMJtwuJxWlSZh8ABXcbhWD1UrsSy+RHRdH7rvvAXDWCjcJJb48f7qNcsqZtnwaf6f8zeMnPU6Ub9ThbyZEK+dyuikpqAAgMMy7hVujcdvtZL87i+Xff82eUH9UH62XQgH6DR/DKTfcgtnqddhrpBSn8MjiR1ibtVbf1iesD8+f+jxx/nFN2XwhhGhTpMdCtGlmqxfRnbsA4KzIQ3VrQ026ndpwm4rBQMQ99xD1xBNg1Mbz77OllNd/CCagVOupWJK2hPN+Oo9vdn4jvRfimFacZ4PK/4X9Q1s+sChdvpw1F5zHj3/8zO6wANTKHoigoBAunfYio26987BBhaqqfL/rey78+UI9qFBQuKHXDXx0+kcSVAghRCOTwEK0eR7zWTi1FAmXyzNACL7kYuLfeRuDj5YuEbonh5nfhNCrVCsKLXWU8uSyJ7npj5tIKU5pppYL0biKc6qHVA4IO3wvQFNy5uSQdM+9zJtyL4t8FEq8tCGfFBSGnD2Ba2a8T0yXboe9Rk55Drf/fTuPLX2MMqc2hG6sXywfjv+QOwfeidlw6InyhBBCNIwEFqLNqzmfhduhBQVul/ug4/xOOYV2n3+GKTISAGNGNo99ZOMW5zD9mBUHVjDh5wl8tu0z3OrB1xCiNSvKrS7cDmiBVCjV5SL/iy9Yef65/L5nI/sigqCylyI8Jo4rn3+Nk6+8DpP58EHB38l/M+HnCSxIXaBvO7/T+Xx79rcMjBzYhE8ghBBtmwQWos2L7dIdQ2WaU1WPhdtZe0qTV7duJH71Jdau2jC1alERo15ZwofllxHtGw1AubOc51Y+x3Vzr2N/4f6mfwAhGklRzR6L0ObtsSjfuJHdl17K/HffZFl0EGVWrZfCaDBw8mXXcOWLbxKR2OGw1yisKOSRxY9wxz93kGfLAyDEK4TXRr7Gk8OexM/i1+TPIYQQbZkEFqLNM3t5EdlBm2FXdeejuktxOQ/d22COiqLdZ5/iO/xUbYPTie+rn/D+lpO4tNNF+nFrs9Zy4S8X8sHmD3C4HU36DEI0hpbosXDm5ZExdSprrr+WvxxFJIUH6b0U0R06cdWLbzLkvIv04P9Q/k7+m/N/Op+f9vykbxsRP4Lvz/meUQmjmvIRhBBCVJLAQgggvodnnYXbdfgibKOfH/FvvUXIddfp20q++Jqr3t/PB0PfIM5PKwqtcFXwyppXuPTXS9mQvaFpGi9EIynKrgwsFPAPadoeC9XlIu+zz9hx+uksXrqAFR1jKLNqKU4mk4kRV9/IpU+/RGhs/GGvk2fL4/6F93PHP3eQXZ4NgK/ZlyeGPsHrI18n1Du0SZ9DCCFENQkshADie/bRl92OJFy11Fj8l2I0EvnA/UQ//TRU5nyXLl1GyG3P8WXvl7iqx1UoaN+87szfyVW/X8W0ZdMorChsmocQ4igV5WqpUH5BVozmpvt4KFu7jn0XXsSOF19gUXQgyWGB+r7Yrj24+sX/t3ff4VHVaRvHv9My6b0B6fTeiRRRijTpAqKuBbGsgopt1dUXdXXFsuviroBd3FVELIDSBSGIdDC0AKGEBNJ7z7Rz3j8GJwkkmBDIJPh8rmsuM2fOOfMMk4nnnl9bQO+bJ6LV1t5Koaoqa5PWMnHFRNaeWevYfn2r61kxYQWT206WFbSFEKKRSbAQAmjVsTMarX1ZF5s1BZul7gOvfW+ZTOTiT9H522eIMicnk/GnGTxsHsgXY76gg7999hoVlWWJyxi/YjyrT6+WqWlFk2KusFJRYu+y53WVxldYs7NJe+ZZztx+O0dy09nRtpVjLIXexYUh9zzIrS+9jl+LVpc8T3ZZNo9tfoy/bP0L+aZ8AHyMPrw26DUWDFsga8oIIYSTNPlgMW/ePPr27YuXlxfBwcFMnDiR48ePO7sscY0xuBjxCoi231GKKMxKr9fx7r17E7VsGcZ27c6fooizDzxIq3UHWDJmCU/3eRo3vb3Pel5FHs/+/CwP/vggKUUpV/R1CHG5inOrTjV7ZcdXqFYreZ99xqnRY8hYs4pdrVuS2CLAsS5FaJt23PXWu/QaPQ6Ntvb/LdkUG18e+5IJKyaw+exmx/abIm9ixYQVjGs9TlophBDCiZp8sIiLi2PWrFns3LmTH3/8EYvFwogRIygtLXV2aeIa4xPa3vFz2vGD9T7eJawVkUuW4Dn0/EBRm43Mv/+d7Ofn8qfW0/h+4vcMDa8cRLojfQeTVk5iYfxCyq3ltZxViMZRlFNl4PYVbLEo3b2bpEmTyZz3OhkahW3twsnzPB9cNBpiJ93K9JffxC+05SXPk5CbwB1r7uC1Xa9RbCkG7DM+vX3j27x949sEugVesZqFEEJcHo3azPpjZGdnExwcTFxcHIMHD/7d/YuKivDx8aGwsBBvb+9GqFA0Vz9+soWD6/8BQKsOvZn+8suXdR5VUcj+13xyP/zQsc3YqSNh//4PLmGt2JyymXm755FeWtkq0sKjBU/1eYqbIm+Sb1ybqeK8ChK2pRHe0Z+WbX2dXU69Hdh0lm1fnwBg2N0d6dC/RYPOZ8nIIOutf1C0ejUqcDLEjxMhfo4Zn7wCgxgz68lq68jUpMRcwrvx7/LlsS+rrQ0zsc1Enuz9JL6uvg2qUwghxKXV51pa30g1XTGFhfaBr/7n+7NfyGQyYTKZHPeLiooapS7R/HkHhoHGDdRyMpMSUGy2353isiYarZbgJ5/AtWMH0p5/AbW8HFPCUc7ccgst3/4nQwYOIbZFLIsOLOLzhM+xqlbSS9N5Mu5J+oX245l+z9DOr91VeIXiarFZFVa8vZ+inAp+3ZDC9Ln98A12d3ZZ9VJ9qtnLb7FQysvJ/fgTcj/6CLWiAotOS3xEMNneHo59Wve5jlEPzcHVs/Z1JVRVZX3yet7c/aZjtieANr5teOG6F2ShOyGEaIKafFeoqhRFYc6cOQwcOJAuXWr+lmvevHn4+Pg4buHhl56qUIjf6PR6tPoIAKymcjJOJTbofN5jxhD11VIMkfZz2goLOXv/A+R88CFuejee7PMk347/lgEtBziO2Z2xm2k/TGPernkye1QzkpVc7FhczmZVSPg5zckV1V+1xfEuY4yFqqoUrlrNqTE3k/Puu6gVFRS5uvBL+whHqNBotAyafhcTnvzrJUPF6YLT/Hnjn3k67mlHqHDVuTKn1xyWjV0moUIIIZqoZhUsZs2axeHDh1m6dGmt+zz33HMUFhY6bmfPnm3ECkVzptVr0BoiHPeTD8Y3+Jyu7doR/fXXeN54o32DopD99tukPvoYtpISYnxjeG/4e/x7yL8da1/YVBtLji1h7PKxLD22VBbXawYyk6qHwNPx2bXs2XT9NsZCq9fg4WOs17Hlhw6RfPsdpD31FNZ0exe/1ABvdnSIpMxgb/Vz9fJm8l9fJnbStFoHaBeaCnlj9xvc8v0tbE/b7th+Q9gNrJi4gpldZ2LQGS7n5QkhhGgEzSZYzJ49m1WrVrF582bCwsJq3c9oNOLt7V3tJkRd6HRadIZIx/3kQ79emfN6exO2cAGBj8x29C8v/vFHzky7FdPJk2g0GoZEDGHFxBU82vNRx+xRBaYC/r7r70xeOZlNKZtketomLDe1pNr9wuxyCjLLnFRN/amq6ljDwsvfFY22buN8LFlZpD37HGemTqP8V/vnRdHA8T5dORAWhO38mIiQmLbcOW8+Ud161ngem2Jj2fFljFs+js+P2rsHAoR6hDJ/yHz+M/Q/tPK89BS0QgghnK/JBwtVVZk9ezbLly/np59+Ijo62tkliWuUVqdBo/VGo/UDIP3EcUxlV+biUKPVEjRrFuHvLUJ7PuyaT58maeo0Cr5bDoBRZ+T+bvfz/cTvGRM9xnHsmaIzzNk8h3vW3cPB7PrPViWuvpJ800Xbko/kOqGSy1NRYsFqsgF16walmEzkvPc+p0aNpnDFCsd2W0w0+2+6nlOWys9N12Ejmf7yG3gHBdd4rt3pu5m2ahqv7HzFsSaFq86Vh7s/zPcTv2dYxDCZ0EAIIZqJJh8sZs2axeeff86SJUvw8vIiIyODjIwMystlek5xZen09o+D9nyrhWKzXbFWi9943nAD0d98jbG9fWpbtbyc9L/+lbRnnkU5P4VyqEcobwx+gy/GfEGv4F6OY/dn7eeONXfwdNzTnC2WLn5NSWnBxcEipRkFi2rjKy4x1ayqqhSt38DpMTeTPX8+6vngrfX2RnlwJj+38iMr0z6+RGcwMOLBRxnxwCPoXVwuOtfpgtM8+tOjzNwwk8T8yvFMo6NH88OkH3iox0OO1jshhBDNQ5MPFosWLaKwsJAbb7yRFi1aOG5fffWVs0sT1xit3v6tqNYQ49h2et+eK/48LhERRH21FN+pUx3bCleuJGnqNCqOV15gdQvqxuJRi5k/ZD5R3lGO7evOrGP88vG8suMVMkozrnh9on5UVaX4fIuFb4g7Hr728QmpiQVYzTZnllZn1WeEqvlivuzXX0m+40+kPvYYltRU+0atFp/pt1L41KOs372VsiL7WBOvwCCmv/wmXYeOuOg8maWZvLT9JSZ9P6naIncd/Tvy2ajPeHPwm7JythBCNFNNfrpZ6VcuGotWdz5Y6MPQ6Y3YrCZO/7oHVVEuuRrwZT2XqystXvkb7rGxZMydi1JWhvn0ac5Mm0bIC8/jO2UKGo0GjUbDsIhhDA4bzLeJ37IwfiH5pnysqpVlictYcXIF09pPY2bXmbJAmJOYK2yObkQevka8A105+ks6NotCamIBkV0CnFzh76u2ON4FwcKcnEzW2/+ieP36atvd+1+H3+OPE7dpDYnffunYHtmtJ2MeeQp3b59q+xebi/nk8Cd8nvA5FbbKFpIgtyBm95zNxDYT0Wqa/HddQgghLkH+igtxnk5n/zhoNHr8WnUAoLyokIxTJ67ac/qMvZmob7/B2MH+fKrJRMb/zSXtySexFVbONGTQGpjeYTprJq/hwW4P4q63r5FgVsx8fvRzxnw3hvn75ssUtU5Qkl95kezpZySyc2WQSD6U44yS6q0wuzJY+ATZg4U1P5+MV//OqZvHVgsVLjExhC1cgMcrL/Pt4kUk7tzmeCx20q1Mfu6laqGiwlrBZ0c+Y/R3o/no0EeOUOFp8OTRno+yevJqJredLKFCCCGuAfKXXIjztPrKj4N/q86On0/v331Vn9cYHU3UV0vxu/02x7aiNWs5PWEipTt3VtvX08WT2T1ns+6WdczoPANXnb0/fLm1nI8Pf8yob0exMH6hBIxGVFpl4Lanr5Gwjv6O8TrHd2dirrA6q7Q6q9pi4empIeeDDzl10wjyP/8crPb6dQEBhL70IjHfryTVqGPJX58gL9U+1sfFzZ0JT/8fg6bfiVZrn162wlrB5wmfM/q70fxj7z8cv5N6rZ4/dfwTayav4f5u98s4CiGEuIZIsBDivN+6QgH4hXZ0/Hx6/96r/9xGI6Fz59Jq/r8cs0ZZMzJIuWcGmW+8iWI2V9vfz9WPJ/o8wZrJa7i9w+0YtPa5/UssJSw6sIiR347kX/v+RU558/jGvDkrqTJw29PPiNFNT9t+IQCYy60c25HurNLqrCjb3orgYlA4d8t4st9+G6XEPoWuxs2NwIcfpvX69XhPuYXNn3/M6n+/hcVkPyYwIoo/zfsXbfrEAmCymfji6BeM+W4Mb+x5o9rv4M0xN/PDxB94pt8z+Ln6NfKrFEIIcbVJsBDiPF2VYKEzehMS0xaArDOnKM5rnAt071GjiFm5AvfrrnNsy/v0U85MmVptYPdvgtyDeC72OVZPWs0tbW9Br7EPmyq1lPLJ4U8Y9e0oXtv1GmklzW8l6Oai6oxQHn72FqQew8Id2379MaVJt1pYLTZK8uwtFsbcs44F7tBq8Z06hdbr1hH06COUmcr56uXn+HXtD45jOw0eyu2v/gO/Fq0w2Ux8eexLxnw3htd3v+5YMRtgeMRwvhn3Da9f/zphXrWvQySEEKJ5k2AhxHlVu0IpVoWYXn0c95MaodXiN4YWLYj45GOCn3kGjcHeEmFKTOTMlCnkfvwJqu3imYZaeLbgpQEv8f2k75nabqqjBeO3i72bv7uZF7a9QFJhUqO9jj+Kkgu6QgEEtPIk4vxYi5I8EztXnHZKbZeiqiql27dz7E9/RsUeqt0q7AHa44bBxKxcQYtXXsEQEsypfbv43zOPkp54DACdXs9N989m1MOPU64x89Ghjxj5zUhe2/UaWWVZjucYFjGMr8d9zb+G/Iv2/u0b/0UKIYRoVBIshDivalcoxaYS06uf4/7JvTtrOuSq0Wi1BMy4h6hvvsbYrh0AqsVC1ltvceb22zGdPFnjceFe4cztP5d1t6zjrk53OfqvW1UrK0+tZPyK8czeNJtd6btkxrUrpGqw+G2qWYDrb22LzmD/E3toyzl+3ZDS6LXVpuzXX0m5ZwYp986kIKVyvQ0vLy0RixcT8f77GNu2xWKqYONHC1jx5iuUFxcB4B0UzPS/vUVI/578c+8/uenrm3hn/zvkVlSeZ0j4EJaNXcb8IfPp4N+h0V+fEEII52jy080K0Vh+mxUKwGZTCYlug6d/ACV5uSQfjMdUVorR3aNRa3Jt356or5eR/a/55H32GagqFQcOkjRpMoGzZhEw815Hq0ZVwe7BPN33ae7reh9fHP2CJceWUGwuBiDuXBxx5+Jo59eOOzvdyZjoMbjoLl7ATNRNaYF9rIFWr8HNs/K98A12Z9DUtsQtOQ7A9u9OYiqz0G98DFqtc1aSrjh+nOz571CyuXL9iPIq0xSH3zcdj+taAZCZdIo1/36LvLRzjsdb97mODrdPYMGZ/7Jq+yqsSmUXL61Gy/CI4czsOpNOAZ0a4dUIIYRoaqTFQojzflsgD+xdoTRaLW1jB9jv26yc2rvLOXUZjYQ8+wyRn/8Pl6gowN56kT1/PknTbqXi6NFaj/Vz9WN2z9lsuGUDT/R+ghD3EMdjifmJ/N8v/8eIb0aw6MAiGeh9mX5rsfD0NaK5IDB0GdyK2PGVCy7uW5fMd2/tIze1pFFrrDieyLnHHydp4qRqocIQGYFu1C2O+z5BblgtFn5Z9gVLnn/SESr0Li5ETLmJtd1TmLrxdlacXOEIFS5aF6a2m8oPE3/gnzf+U0KFEEL8gUmwEOK8qi0Wis3eTajddYMc2xJ3/dLoNVXl3rs30SuWE3DfTDi/YJ/p6FGSpk4j659vo5SV1Xqsp4snM7rMYO0ta3lz8Jt0DezqeCy3IpeF8Qu56ZubeHLLk9JNqh4sJhumMvsFdtVuUFX1GRPFoKltHaEjM6mIZX/fw7avT2Aqs1zV+iqOHePco4+RNGECxWvXwfn3VR8SQujfXqb1qlWYvFs69i8vSuF/zzzKzm+/RLGdn2a2hS9bh5bzt7KP2J6+w7Gvl4sX93e9n/VT1jO3/1wivCOu6msRQgjR9ElXKCHOqzrGwmZTAGjVriMefv6U5udx5sB+TGVlGN3dnVUiWldXgp96Cq+RI0n/6/OYTpwAq5XcDz+kcPUqQp9/Hs+hQ9Foau5qY9AaGB09mtHRo4nPiud/Cf9jY8pGFFXBqljZkLyBDckbiPSOZGq7qYxvPV6mBb2E0mpTzbrWul/3YeEERXqx+X/HKMgsQ1FUDmw6y/FdGcSOj6HToJZXtHtU+ZEj5CxaRMnGTdW26wICCLjvPvxuvw2t0R6ECnPKUZUybBU7+P7tg47woWo1JLQuZl/rZJQqX0G18mzFbR1uY0q7KXgYGrdroBBCiKZNo17jX00WFRXh4+NDYWEh3ufXBxCiJqUFJhY/a2+ViOkRxOg/27/V3/TJIuLXrwZgzKNP03HgDU6rsSrVbCbn/Q/I/eADVEvlN9+eN95IyAvP4xJWt2k900rS+Or4V6w4uYK8irxqjxm0BoZHDmdi64nEtohFd37xM2F37lgeK+fHA9DzpggG3NLmkvvbLAr71iezf30yNovi2B7QypNB09oS1r5hIa780GFyFi6s1t0JQBcUSOB99+E7bRpat8oF6SxmM+8//A6mkp2gVoakHB8Tv3TNJd+78vdqQMsB3N7hdga1GiS/B0II8QdSn2tpCRZCnFdeYuaTp7YBENklgLGzuwNw9shBlv3trwC06dufCU8977Qaa2JKSiLzlVcp3b7dsU1jNBLwwP0E3HtvtQvJS7HYLGw6u4mvj3/N7oyLVxsPcgtibMxYxrUeR1u/tles/ubs2M50Ni22j3EZNK0t3YeG/84RdkW55exYfoqTe7OqbY/pEcSAW9rgE1T31ahVVaVsxw5yP/q42u8AgD44mID778d36hS0rpUtKorNxtFtW9j+9RKKsjMd2y06hfi2BSREFaNqwcPgwYTWE5jeYTrRPtF1rkkIIcS1Q4JFFRIsRF1ZzDY+eDQOgFbtfZn4eC8AFMXGew/eRXlRIXqDC3/+4HOndoeqiaqqFK9fT+Zr87BmVV6s6kNDCX58Dt7jxqHR1n1I1ZnCM3yT+A0rT62kwFRw0eMd/TsyNmYsI6NGEuIRcvEJ/iD2rj3DrpX2NSpGPdiF1j2D63V82skCti07QXZKsWObVq+hx7Bweo+OwsW19t6qqtVK8YYN5H70MRUJCdUe04eGEnD/ffhOmeLo8gRgNZtJ+Pkntn23hPKc6q1TBb4BrO8dT7lRoVtgNya1ncTo6NHS3UkIIf7gJFhUIcFC1JWqqCx82N6FJCTamynPVC6Qt/HjRRzYYO8ONeLPj9J1yAin1Ph7bCWl5Lz7Lnn/+x9UWUjPtXNngp/5Cx79+l3i6IuZbWZ+Pvcz35/6nq3ntmJVL15BukdQD0ZEjeCmyJsI9Qht8GtoTuKWHOfw1lQApjzTh5Do+v+NURWVYzvT2bHiNOVFZsd2Tz8jI+/vQmiMT7X9lfJyCpYvJ+/TxVjOnq32mCE8nICZ9+IzeTJal8ophAuzMolb/SUn4uKgvPqAca0+Ar3bYPZ22knn61syqc0kaZESQgjhIMGiCgkWoj7ef2QLVotCQCsPpv9frGN7+onjLHnhSQDCOnbh1pded1aJdWI6dYqsN9+iJC6u2nbP4cMIfvxxjK1b1/uc+RX5rDuzjh9O/cChnEM17tMtqBsjIkcwNHwo4d516xbUnK1ecIAzh+wLw93z+sBaZ4aqC3OFlX1rk4nflIJitf9Z1mo19J/cmu7DwrFmZVPw1VLyv1yKLT+/2rGunTsTcN9MvEaMQKOzj38oKypk6+ZvSfglDiUlF80Ff+lTA8vBoxeti0YDMO7xrkS0D7rs+oUQQlybJFhUIcFC1MfHT/5MRakF70BX7nx1gGO7qqp8+sRD5J+f1/++/3yET3DT/3a+dMcOMt94E9OxY5UbtVq8x95M0KxZuERGXtZ5TxeeZn3SejYkb+BkQc2rgEd5RzE4bDCDwwbTK7gXBt3FC/k1d1+8uJOCzDJ0Bi0PvnPDRetYXI7C7HI2fZZA+slCx7Zo/RmitsxHY63e2uAxaBAB983EPTYWVJW004ls37GapAP70ZwrQKtWr8emUUkOLUPTO4wbYyeg+SGSjBP2blj3/mMQbp6yUKIQQojqJFhUIcFC1Mdnf/2FkjwT7t4uzHhzULXHdi1fxral/wVgwNQ76D/lNmeUWG+qzUbhihVkz38Ha3Z25QM6HT6TJhL00EMYWrW67POfLjjtmKb2RP6JGvfxMHgwoOUABrYcSL/QfoR5hdU6Je6VVJBVRsLPaRTnVdB9WPhF3YoawmZT+OCROBRFvaiFq6GsZRX8/J/NJCRVtoAE5hygc8Kn6DQK7iNHYJg4nmKDjsRj+ziTeJjy1Cx0JqXG8xW5Wyhp50m3YaMY3WUCwe72sSCf/GUb5UVmXD0NzPzH9VesfiGEENcOCRZVSLAQ9bHkpZ3kZ5Th4qrj/vnVp5Utzs3hg1kzQFXxDWnBve980CgXx1eKUlZG3hdfkPfRx9gKK78Nx2DAZ9w4Ambee1ldpKpKKkxiU8omfj73M/HZ8ShqzRe6LTxa0De0L7EtYukX2u+qjM3ISyvlmzf2YjHZx5roDVqmPNeHgJaeV+T8BZllfPHiTgBa9wpi1ANdL9pHVRSsVguK1YbNakGxWlFs9p9tVqv9ZrFgs5ixWSxUnEul6JdtlOzZg7WslDyfKDKDOqOqJlS1HIOmCI2xjIri4oue60IlblYsbfzoMHAwI/rdQrBH9YHlVadXDuvgx4Q5Pa/Av4oQQohrjQSLKiRYiPpY9toeslOK0Wo1PLRwyEWPf/3qC6Qcigfg1pffIKxD50ausOFsJSXk/fe/5H26GOWCC1TPoUMJuO8+3Hs1/CKz0FTIL6m/sDV1K9tSt1FoKqx13zDPMLoHd6dbYDe6B3WnnV+7BnWdUhSVb9/YS1Zy9dcX0TmAcY90v+zzgr1bXGFWJke3JbB71WFQSggM0+Dha6W8qAhTWSmm8jLMZaWYy8sb9Fz1Ue5ioyBAxatdBD37DmVo97F4utQeopIO5rBm4UEAeo6IYMDkS6/BIYQQ4o+pPtfSsvK2EFXoXexTsiqKis2qoNNXn6K18w3DHMHiyJaNzTJY6Dw9CXr4YfzvuIPcxYvJ/2IJSlERACU//UTJTz/h1qsX/vfcjdfQoWj0l/dnwsfow5iYMYyJGYNNsXEo5xC7M3azO2M38VnxmGyVC7KdKznHuZJzrD5tn3nLqDPSKaATnQI60d6vPe382tHatzWu+tpXt67q6C9pjlDh6WektMCEqkLKkVxSE/Np1a5uC9FZTBXknE0mOzmp2u3CwJBR8zCTq0PjToVRR6p/OmWe4B8ZQedO13Fz+6G0929f51a07OQix89BEV5Xq1ohhBB/IBIshKhC71K5orDVbLsoWLTt259Nbu6Yy8s49stWbrhzJq4eV6ZrTWPT+fgQ/NhjBMy8j4Jly8j77DOsmfbF0sr37yd1/370ISH43joN3ylTMATXb42Gas+l1dEjuAc9gnvwQLcHMNvMHMg+wJ6MPexK38WR3CPVgobJZuLXrF/5NetXxzatRkukdyTt/drT2rc1kd6RRHhHEOkVWe2b+dJCEzuWn3Lcv+neThTlVLDpM/tCdntWJ10ULFRVpSQ/1x4cziSRdT5AFKSnodbSnas2eqMRo7sHRjd3jO4e6I1GtDodOr0eTCZsGZlY0lLRlpShVdXKm6JS7KZyqgWcbAllrvYF60wuChUuCr6mCIacnolBdccV6BirZ8yUfnUOWxequnZGcKQECyGEEA0nwUKIKgzVgoWC8YJ18AyurnQaPJT49auwmk0kxG2i15gJjVzllaXz9CDg3hn4/+kOCletJvfjjzGfsl+YWzMzyfn3f8hZuAiv4cPxnTwJjwEDLrsV4zcuOhf6hvalb2hfHu7xMBabhcT8RA5kH+BgzkEOZR8ipTil2jGKqpBUmERSYdJF5/N39SfSO5KWHi1ptS0WbZl9kHZwdyO6lmYiI/3wWeNGYXY5547lkvDzAVQlh+zk02QnJ5GVfIaK4qKLzlsTr4AgAiOiSE3UoqieGN19mPD4ILz8A9B7uFNkKya/Ip+c8hzSStPISz6B+9b9hO1IIvRc2UXnqzDAL500/NRNy4lWQJUWh5YeLekc2Jlewb3oGdwT/Rk/Nn5kn+ErfYuVs60Ladv38oJF1vlgYXTX4x1Y95W+hRBCiNpIsBCiit+6QoF9Je6a9Bgxhvj1qwCI/3EtPUePb1aDuGujcXHBd/IkfCZOoPSX7eR/+SUlW7aAooDVSvG6dRSvW4cuMBCfsWPxmTAeY4cOV+S1G3QGOgd2pnNgZ27ndsC+bkZifiLH846TmJ9IYn4iJwtOYlEsoIIGDer5xRnyKvIoLC3G60xbtFn2UFGuL+Ed9Xk+fM+Kf5GBmNwwAovcUW15rH23Dq0QOi3aIC+0wd5ogr1Qgzww+etJN1g5l2Yk5Ew/tEBG6CnuO/g4+RX5FFvsF+stclX6Jar0TVQYnHbxqRUgIVLDtk4atnfUYHbVEeEVwWj/jnQM6EgH/w509O+Ir6tv9QMDoTTX4miR2fTfo/i1cCcwrH4tDqWFJsoK7YvxBYZ7XRO/v0IIIZxPgoUQVVzYFaomAWERhHfqytmEQ+SnnSP54K9Ede/VWCVedRqtFs/rB+F5/SAsqankL/uagm++wZZrXwjOlpND3uLF5C1ejLFtW7xGjMDrpuEY29e9f39d+Ln6EdsiltgWldO4pp3J45cfjpOdWIZq0aDqbJiNZZRqC3EvBoOlBIvtZxRrFiZNCpPiAqqcsQyVi1sMwD7wOc/bTJ63mXwvC3neZgo9LKhVe8IVnr8Bg05PIeT85kOuO0gtSKb9OZUep1X6nFAJy635NZ1pqeNYn2CKB3UlJLITN/tEM9snmgjvCIy6ui2u13NEBAVZZRz9JR2bRWHt+4eZ9lwfjO51H+yecapyIL10gxJCCHGlSLAQooqqLRZWc+3favcYeTNnE+yrT+/54btrKlhUZWjViuDH5xA062FKfv6ZwhUrKd6yBSz2hdpMJ05gOnGCnAULMISH4zVsGF7DhuLWvTsalyu72NrR7els+fwYNlsFqjUbxZaNassGWzbuthzARtXl42rqIKQCWm0AGn0QZhd3trbbRJZfCRXGuo+jcLG60TanNwAKZiZsjadrsg1Xc837W6NbYRx2AyETptCxbUdG1/mZaqbRaBg8vR2550rISi6mKLucjYuPMubPXeu8QF9qYoHj55ZtfRtYkRBCCGEnwUKIKqq2WNTWFQqgTb/++Ia0oCAznZRD8WSePklIzLU7XafGxeV8aBiGraCAonXrKFyxkvL4eMc+lrNnHS0ZGnd3PPr2xWNAfzwGDMClTZvLas2wVFSQmXSS3T/sIvnQUVRrJqqSX6djjR4eBEVGExwZQ1BkNEGR0fi3DOeHdw+TfrIQF+BPmlF0HeOHarRispkwK2ZMVhMqKho0aDVae902BWNyJm5Hkzl9wIdUxT74plX6PjqeuGBKWY0Gt1698Bo+HK9hQ3GJiKj36/49eoOOkQ90YdlrezCVWjlzMId965PpMzqqTsenJNibVDRaDS3a+F7x+oQQQvwxSbAQogpD1RYLU+3BQqvV0WfcJDZ+tBCAPd9/y9g5z1z1+poCna8vftOn4zd9OpaMDIo3baJ440bKdu8Bm/3fTC0royQujpK4OPsxfn64deuGW4/uuHbrRqrSiqSjxXj4Guk1MhIPHyOqqlKUncm5o0c4d/QI6SeOkZd67vdnZdJo8A1pcT5ERBMUZQ8RXgFBNYaZYXd35JvX91FRaiHvdAX7F+UTOz6GDj2DMLjoUBUFy9mzVBw9SsWRBCoSEig/eBBLaTlnIseQGtkHAK3NTPQZ+1gbXUAAHgMH4DlwIB6DBqEPCLjoea807wA3RszszA//OQAq7P7+NCFR3oR39L/kcfkZpRRm2cNQi9Y+GN3kfwNCCCGuDFkgT4gqDm4+x89fJQIw7J6OdLiuRa37WswmPpo9k7LCAjQaLffOfx/f0Nr3v9ZZ8/MpiYuj9JftlO7YgS0np8b9kiLHkBR9M6qqoip5aKwpeHuco8yURWlR7YvoAWi0ekKiYwiJaX2+FSKGwIhIXFzrN6tRRlIhqxccpKKksvOUDhs+1kzc8pIxlOWjt1WgaPTYdEbK3IPJ922P1VA5TVgXyy46xwbiOWigfRC7VlvTU111e1YnsfsH+0xZrh4Gpj7X55KzPO1fn+wY/D1gcht6jrjyLSpCCCGuHbJAnhCXydWj8iNhKrVecl+Di5Geo8bxy1f/Q1UV9q5azvD7Hr7aJTZZej8/fCdOxHfiRFRVxXTiBGU7dlC6Yyfl8fHYCgpIChvAiZZRKKVrUCzJoNq/Oc+ucUy1Fo0uEK0uBJ0hmF4d/ejcMwyDpycaFxc0LkY0aFHTMzApCqrVBjYrqtWKUlaGragIpbgEpaQYW1Ex1pwcrJmZWLIysWZm0avERkKHuynwaweADR15+pYQ3PKSr1Ojgf4Touk5augV/he8PH1GR5F5pojkQ7lUlFpYs+ggk5/ujYvrxX/eVVXl+K4Mx/3oHoGNWaoQQohrnAQLIaowelTOrFNRarnEnnbdR4xh94qvsZgqOLx5A/0mTME76PIXkmvurGYbO1ee5sTeTFw9DLTrOwDvezuQmnCAxO07KSnMhLL1tRytR6tviVYfhkbfCq0+FI3GgHtZBl0OfIzn9jTSr2CtrkDPA+9Q4NuWzOA+5AR0wWz0rXV/g1FHdI9Aeo2IJKBV01kUUaPVcNOMTnzzxj4KMsvITS1l46cJjHqgC1pd9VaU1OP55KWVAhAa441vsHtNpxRCCCEuiwQLIapwrRIsTHUIFm6eXvQcNZbdK7/BZrWy/esljHp4zlWssOlSFZWNnyZwYm8iiiWJAstp0o6kAjWPVXFxc6NldBtc8SM9I4QKpSUaTeXgeZ21glZpm4lKXoe+yqrcDabToQ8KQh8SjEt4BEFRUXSOisIlKgolOIziUjCVWTGXW9HptRiMOjz9jPgEu6Ot46xLjc3obmDMQ1355vW9mCtsJB3I4af/HmPY3R0dM0WpisruVZWLC3YbGu6scoUQQlyjJFgIUUXVrlAVZZfuCvWbvuOncGDjWkylpSRs/Yk+4yYRGB55tUq8IgqyyijIKMM70A3f0IZdMCs2G6nHE9i27EfSj/96iVmbNGh0oYS26cLg24bRom0HdOdX8FYUlbQTBeSmloAKPsGuhPhZ0RRHY8sfj62gAGt+PraCAtQKE6rZjGoxo5jN9qlvdXo0Oh3odWi0OrTu7mi9vNB5e6H19ELn5YnOPwB9SDD6gAD7vrXwuOx/CefyC/Vg5ANdWL3gIIrN3uXJVGZh2N2dcPU08OuPKaSftI9h8Q5yo3XPICdXLIQQ4lojwUKIKqouMlaXFgsAV09P+k2Yys9LFqOqCtuW/o+JT79wtUpssF0/nGbv6jOO+3qjjqAwTzz9XXF116M36tAbtOgMWvQGnf2/LlpcXPX4hbrjHeSG1VRB0q97OLVvN0nxezGVltb4XAZXPxQlHK0hElfPKPqO60iP4eEXzdak1WoIa+9HWHu/C87wxx0MfzkiOgUw8v4urPvgMKqicuZQLv99fjvega7kpla+R0P/1OGiblJCCCFEQ0mwEKIKo5sejVaDqqiUFdey4lkNeo4ay/6131Oan8epvTs5c2B/k1w079yxvGqhAuzT6qafKoRTl56RSVUqUCynUayJ2CzJoNbUxUmDb2gMXYdeT+ve/fBvFU5pgQmrWcHL3xWdQS5mr7aYHkGMm92d9R8fxlRqxWKyVQsVfcZE0eqiACeEEEI0nAQLIarQaDV4+LpQkmeiJK/u/foNRlcGTb+L9YvmA/DTp+9z11vvojcYLn1gI7LZFDZ/cdxxP7p7IFqthqyUYopzK2o8RlXKsVlOophPoFhTgBrWlNAY0eqj0Bmi6T7iem64rXu1hz39aloDW1xN4Z38mf5CLHvWJJEUn015sQW/UHd6jYqkfWyos8sTQghxjZJgIcQFvPxdKckzUVFqwWKyYTDW3h+/qs6Dh3Jo03rSEo+Sn57KvlXLiZ007SpXW3dJ8TkUZZ9fGK2ND6Mf7OoY2Gsqs1BebMFUZqWssIgzB3dy9shucpKP1bhAnUbrgdbQFq2hDVp9K7z83ek/qTVt+4Y06msStfP0MzLkjg7ceHt7bFYFvaFuv8dCCCHE5ZJgIcQFvAJcHYNci3Mr8G9Zt+G8Gq2WYTMf4vNn56CqCju+/ZI2ffsTENY0Zt85vDXV8XPfsdGOUAGg06tkJe3n6LYtJP26F5v14oHrXgFBtLtuAG37DSS0TXtKC8yUFZlx9TDgE+RW7Xyi6dBoNBIqhBBCNAoJFkJcwMu/sutOUW55nYMFQHBUDL3GjGff6hXYLBbWLnib2155yzH7kbMUZJaRetw+W5NPkBth7f1QFYVzRw+T8PNmTuzajqns4gHYPiGhtIsdSNvYAYS2bldt0LV3oNslV3gWQgghxB+LBAshLuAbUrloWM7ZEqK61m914oHT7+T0r3vJTztH5ukTbP38E4bc88CVLrNeEn5Jc/zcpo8Xe77/lkM/racg4+Il5zx8/egwcDAdBt5ISEybi2ZwEkIIIYSoiQQLIS4QGu3j+Dkj6dIzJdXE4GJkzKwn+HLuX1BsVvav/Z7Qtu3pOPCGK1lmnZnKrRz5ORWbJQXFfJAdX51GsVXv6mRwdaNd7AA6DLqRiC7d0Gql64wQQggh6keChRAX8Al2w9XDQEWphfQTBZjKrRjd6vdRCW3TjqEzHmDjRwsB2PD+vwkMiyAoMvpqlFwrm9XKhg+/ozhzHaot66LHI7p0p8vQEbTpE4vBKLM3CSGEEOLySbAQ4gIajYboHoEc/SUdc4WN/evO0H9Sm3qfp9vw0aSfSORI3EasJhPfvjaXW19+A7/Qlleh6upMZWUc+mk9e75fQVlhbrXH3H186XzjcLoOHdEotQghhBDij0Gjqqrq7CKupqKiInx8fCgsLMTb29vZ5YhmojC7jC9e3IWq2D8e/i098A5wxdXTgPa32Y9+G3ugAa1Gg0arQaO1ryJtcNXj38KD0Gh3Vv5zLhknEwHwCgxi2tx5+IZcnbUESgvy2b9mJfEb1mAuL6v2mIdfODfeOZ22sQPQ6ZvO+hpCCCGEaLrqcy0twUKIWuz+4TR7Llilur4MRh09hgWRsHUBuWeTAXuLwaS/zCW0Tbs6n8ditpEUn01uagnmchuKoqIoKqqiothUTGW5ZJ+OoyB9H6paffyE1hBDi3ZDmPLceJl2VAghhBD1IsGiCgkW4nKpqsqJvZnE/3iW7LPF0IBPSlgHI3nJn5OXdhYArU7P4Dtm0Gv0ODRa7SWPzU4pZvXCg5QWXLwSuGLNwmrah2I+RvUCdehcOqJz7UOXG7owaFpbDC4SKoQQQghRPxIsqpBgIa4ExaZQUWqlosRC1Y+M/UcVVaGyBUFRqSi2kHw4h4Tt6Y7r/ciunhRnfkPa8QTH8aFt2nHDnTMJ69C5xuctKzKz9JVdlBdbqjynGcV8EqvpIKot7YIjDBi9ehAQfj3hncNp3y+UoAivK/SvIIQQQog/GgkWVUiwEM509lgeaxYcxGpRAOh0fQgaZSf7Vi2vtl9o67Z0umEYkV174BvawjHd64+fHOH4rnRUWy4ePrm4eWaSefIgNqul2vFGDy+6Dh1Dn7Hj8fD1QQghhBDiSrjmgsWCBQt46623yMjIoHv37vznP/+hX79+dTpWgoVwtjOHcliz6JBjIHj3oeG0al9C3H8/JPdcykX76wwGPHz9UWwqJfnloJZQWz+sgLAIeowcS+fBQzG4ynSxQgghhLiyrqlg8dVXX3HXXXfx3nvvERsby/z58/n66685fvw4wcHBv3u8BAvRFBzfmc7GxUcd970DXYnpHkBZ0SFSDm2mID25zudy8/ahXexAOgwcTKsOnWVlbCGEEEJcNddUsIiNjaVv3768++67ACiKQnh4OI888gjPPvvs7x4vwUI0FYe3pvLz0kQUpfpHTlVVVFs2kIxel43NnIe5ogRVVQAtLm4+RHWNoWX7jrRs35GQ6DZodTIQWwghhBBXX32upZv0Anlms5l9+/bx3HPPObZptVqGDx/Ojh07nFiZEPXXZXArgiO92LH8FOeO5zt6N2k0GjT6YCAYBdAYwWi0P+bl78otz/TGw8forLKFEEIIIeqkSQeLnJwcbDYbISEh1baHhIRw7NixGo8xmUyYTJXTchYVFV3VGoWoj+BIbybM6Ul5iZm0EwUU51ZQnFdBYXY5eamlFOdVAKDTa2nfP5R+Y6MlVAghhBCiWWjSweJyzJs3j5dfftnZZQhxSW6eLrTuefEYIVOZhdJCM55+Rlxcr7mPpxBCCCGuYZdemcvJAgMD0el0ZGZmVtuemZlJaGhojcc899xzFBYWOm5nz55tjFKFuCKM7gb8W3hIqBBCCCFEs9Okg4WLiwu9e/dm06ZNjm2KorBp0yb69+9f4zFGoxFvb+9qNyGEEEIIIcTV1eS/Fn3iiSe4++676dOnD/369WP+/PmUlpYyY8YMZ5cmhBBCCCGEOK/JB4tbb72V7Oxs5s6dS0ZGBj169GDdunUXDegWQgghhBBCOE+TX8eioWQdCyGEEEIIIS5Pfa6lm/QYCyGEEEIIIUTzIMFCCCGEEEII0WASLIQQQgghhBANJsFCCCGEEEII0WASLIQQQgghhBANJsFCCCGEEEII0WASLIQQQgghhBANJsFCCCGEEEII0WASLIQQQgghhBANJsFCCCGEEEII0WASLIQQQgghhBANJsFCCCGEEEII0WASLIQQQgghhBANJsFCCCGEEEII0WASLIQQQgghhBANpnd2AVebqqoAFBUVObkSIYQQQgghmpffrqF/u6a+lGs+WBQXFwMQHh7u5EqEEEIIIYRonoqLi/Hx8bnkPhq1LvGjGVMUhbS0NLy8vNBoNE6poaioiPDwcM6ePYu3t7dTahD1I+9Z8yTvW/Mk71vzI+9Z8yTvW/PTFN4zVVUpLi6mZcuWaLWXHkVxzbdYaLVawsLCnF0GAN7e3vJBbmbkPWue5H1rnuR9a37kPWue5H1rfpz9nv1eS8VvZPC2EEIIIYQQosEkWAghhBBCCCEaTIJFIzAajbz44osYjUZnlyLqSN6z5knet+ZJ3rfmR96z5knet+anub1n1/zgbSGEEEIIIcTVJy0WQgghhBBCiAaTYCGEEEIIIYRoMAkWQgghhBBCiAaTYNHI/v73vzNgwADc3d3x9fV1djmiFgsWLCAqKgpXV1diY2PZvXu3s0sSl7B161bGjRtHy5Yt0Wg0rFixwtklid8xb948+vbti5eXF8HBwUycOJHjx487uyzxOxYtWkS3bt0cc+r379+ftWvXOrssUQ+vv/46Go2GOXPmOLsUcQkvvfQSGo2m2q1Dhw7OLut3SbBoZGazmalTp/LQQw85uxRRi6+++oonnniCF198kf3799O9e3dGjhxJVlaWs0sTtSgtLaV79+4sWLDA2aWIOoqLi2PWrFns3LmTH3/8EYvFwogRIygtLXV2aeISwsLCeP3119m3bx979+5l6NChTJgwgSNHjji7NFEHe/bs4f3336dbt27OLkXUQefOnUlPT3fctm3b5uySfpfMCuUkixcvZs6cORQUFDi7FHGB2NhY+vbty7vvvguAoiiEh4fzyCOP8Oyzzzq5OvF7NBoNy5cvZ+LEic4uRdRDdnY2wcHBxMXFMXjwYGeXI+rB39+ft956i5kzZzq7FHEJJSUl9OrVi4ULF/Lqq6/So0cP5s+f7+yyRC1eeuklVqxYQXx8vLNLqRdpsRCiCrPZzL59+xg+fLhjm1arZfjw4ezYscOJlQlxbSssLATsF6miebDZbCxdupTS0lL69+/v7HLE75g1axY333xztf+/iabtxIkTtGzZkpiYGO644w5SUlKcXdLv0ju7ACGakpycHGw2GyEhIdW2h4SEcOzYMSdVJcS1TVEU5syZw8CBA+nSpYuzyxG/49ChQ/Tv35+Kigo8PT1Zvnw5nTp1cnZZ4hKWLl3K/v372bNnj7NLEXUUGxvL4sWLad++Penp6bz88stcf/31HD58GC8vL2eXVytpsbgCnn322YsG2Fx4k4tSIYSo2axZszh8+DBLly51dimiDtq3b098fDy7du3ioYce4u677yYhIcHZZYlanD17lscee4wvvvgCV1dXZ5cj6mj06NFMnTqVbt26MXLkSNasWUNBQQHLli1zdmmXJC0WV8CTTz7JPffcc8l9YmJiGqcY0SCBgYHodDoyMzOrbc/MzCQ0NNRJVQlx7Zo9ezarVq1i69athIWFObscUQcuLi60adMGgN69e7Nnzx7eeecd3n//fSdXJmqyb98+srKy6NWrl2ObzWZj69atvPvuu5hMJnQ6nRMrFHXh6+tLu3btOHnypLNLuSQJFldAUFAQQUFBzi5DXAEuLi707t2bTZs2OQb/KorCpk2bmD17tnOLE+IaoqoqjzzyCMuXL2fLli1ER0c7uyRxmRRFwWQyObsMUYthw4Zx6NChattmzJhBhw4deOaZZyRUNBMlJSWcOnWKO++809mlXJIEi0aWkpJCXl4eKSkp2Gw2x2j/Nm3a4Onp6dziBABPPPEEd999N3369KFfv37Mnz+f0tJSZsyY4ezSRC1KSkqqfYuTlJREfHw8/v7+REREOLEyUZtZs2axZMkSVq5ciZeXFxkZGQD4+Pjg5ubm5OpEbZ577jlGjx5NREQExcXFLFmyhC1btrB+/XpnlyZq4eXlddHYJQ8PDwICAmRMUxP21FNPMW7cOCIjI0lLS+PFF19Ep9Nx2223Obu0S5Jg0cjmzp3LZ5995rjfs2dPADZv3syNN97opKpEVbfeeivZ2dnMnTuXjIwMevTowbp16y4a0C2ajr179zJkyBDH/SeeeAKAu+++m8WLFzupKnEpixYtArjo796nn376u11LhfNkZWVx1113kZ6ejo+PD926dWP9+vXcdNNNzi5NiGvKuXPnuO2228jNzSUoKIhBgwaxc+fOJt9DRtaxEEIIIYQQQjSYzAolhBBCCCGEaDAJFkIIIYQQQogGk2AhhBBCCCGEaDAJFkIIIYQQQogGk2AhhBBCCCGEaDAJFkIIIYQQQogGk2AhhBBCCCGEaDAJFkIIIYQQQogGk2AhhBBCCCGEaDAJFkIIIRqVzWZjwIABTJ48udr2wsJCwsPDef75551UmRBCiIbQqKqqOrsIIYQQfyyJiYn06NGDDz/8kDvuuAOAu+66iwMHDrBnzx5cXFycXKEQQoj6kmAhhBDCKf7973/z0ksvceTIEXbv3s3UqVPZs2cP3bt3d3ZpQgghLoMECyGEEE6hqipDhw5Fp9Nx6NAhHnnkEV544QVnlyWEEOIySbAQQgjhNMeOHaNjx4507dqV/fv3o9frnV2SEEKIyySDt4UQQjjNJ598gru7O0lJSZw7d87Z5QghhGgAabEQQgjhFNu3b+eGG25gw4YNvPrqqwBs3LgRjUbj5MqEEEJcDmmxEEII0ejKysq45557eOihhxgyZAgff/wxu3fv5r333nN2aUIIIS6TtFgIIYRodI899hhr1qzhwIEDuLu7A/D+++/z1FNPcejQIaKiopxboBBCiHqTYCGEEKJRxcXFMWzYMLZs2cKgQYOqPTZy5EisVqt0iRJCiGZIgoUQQgghhBCiwWSMhRBCCCGEEKLBJFgIIYQQQgghGkyChRBCCCGEEKLBJFgIIYQQQgghGkyChRBCCCGEEKLBJFgIIYQQQgghGkyChRBCCCGEEKLBJFgIIYQQQgghGkyChRBCCCGEEKLBJFgIIYQQQgghGkyChRBCCCGEEKLBJFgIIYQQQgghGuz/AYW9ceXB8bNfAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -727,10 +728,10 @@ } ], "source": [ - "mapies = [mapie_split, mapie_cv, mapie_cqr, mapie_ccp, mapie_ccp_2, mapie_ccp_3]\n", - "y_preds = [y_pred_split, y_pred_cv, y_pred_cqr, y_pred_ccp, y_pred_ccp_2, y_pred_ccp_3]\n", - "y_pis = [y_pi_split, y_pi_cv, y_pi_cqr, y_pi_ccp, y_pi_ccp_2, y_pi_ccp_3]\n", - "titles = [\"Basic Split\", \"CV+\", \"CQR\", \"CCP default (Gauss 20 points)\", \"CCP 5 equidistant points (under-fit)\", \"CCP 30 random points, small sigma (over-fit)\"]\n", + "mapies = [mapie_split, mapie_cv, mapie_cqr, mapie_ccp_2, mapie_ccp_3, mapie_ccp_4]\n", + "y_preds = [y_pred_split, y_pred_cv, y_pred_cqr, y_pred_ccp_2, y_pred_ccp_3, y_pred_ccp_4]\n", + "y_pis = [y_pi_split, y_pi_cv, y_pi_cqr, y_pi_ccp_2, y_pi_ccp_3, y_pi_ccp_4]\n", + "titles = [\"Basic Split\", \"CV+\", \"CQR\", \"CCP, 5 points, s=1 (under-fit)\", \"CCP, 30 points, s=0.05 (over-fit)\", \"CCP, 30 points, s=0.25 (good calibrator)\"]\n", "\n", "plot_figure(mapies, y_preds, y_pis, titles, show_transform=True)\n", "plot_widths(titles, y_pis)" @@ -741,8 +742,8 @@ "id": "4a4529ae", "metadata": {}, "source": [ - "#### Using gaussian distances from randomly sampled points is a good solution to how an overall good adaptativity.\n", - "$\\to$ We just need to find the good standard deviation parameters to have a good trade-off between adaptativity and overfitting." + "#### Using gaussian distances from randomly sampled points is a good solution to have an overall good adaptativity.\n", + "#### $\\to$ We just need to find the good standard deviation parameters to have a good trade-off between adaptativity and overfitting." ] } ], From 73c3a29acf841a284ec8fb8c1aafbd4c5d203759 Mon Sep 17 00:00:00 2001 From: Damien Bouet Date: Mon, 17 Jun 2024 18:15:43 +0200 Subject: [PATCH 062/165] ADD: tutorial_ccp_CandC.ipynb --- notebooks/regression/tutorial_ccp_CandC.ipynb | 804 ++++++++++++++++++ 1 file changed, 804 insertions(+) create mode 100644 notebooks/regression/tutorial_ccp_CandC.ipynb diff --git a/notebooks/regression/tutorial_ccp_CandC.ipynb b/notebooks/regression/tutorial_ccp_CandC.ipynb new file mode 100644 index 000000000..b997104d1 --- /dev/null +++ b/notebooks/regression/tutorial_ccp_CandC.ipynb @@ -0,0 +1,804 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "10d4c771", + "metadata": {}, + "source": [ + "# Using ``SplitCPRegressor`` and ``CCPCalibrator`` to get adaptative prediction intervals\n", + "## Tutorial and comparison with other methods on \"Communities and Crimes\" Dataset." + ] + }, + { + "cell_type": "markdown", + "id": "502511f8", + "metadata": {}, + "source": [ + "[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/scikit-learn-contrib/MAPIE/blob/master/notebooks/regression/tutorial_ccp_CandC.ipynb)" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "d7990401", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Requirement already satisfied: mapie in /Users/damien.brouet/Documents/Repo Mapie/MAPIE (0.8.3)\n", + "Requirement already satisfied: scikit-learn in /opt/miniconda3/envs/mapie_env/lib/python3.8/site-packages (from mapie) (1.3.2)\n", + "Requirement already satisfied: scipy in /opt/miniconda3/envs/mapie_env/lib/python3.8/site-packages (from mapie) (1.10.1)\n", + "Requirement already satisfied: numpy>=1.21 in /opt/miniconda3/envs/mapie_env/lib/python3.8/site-packages (from mapie) (1.22.3)\n", + "Requirement already satisfied: packaging in /opt/miniconda3/envs/mapie_env/lib/python3.8/site-packages (from mapie) (23.2)\n", + "Requirement already satisfied: joblib>=1.1.1 in /opt/miniconda3/envs/mapie_env/lib/python3.8/site-packages (from scikit-learn->mapie) (1.3.2)\n", + "Requirement already satisfied: threadpoolctl>=2.0.0 in /opt/miniconda3/envs/mapie_env/lib/python3.8/site-packages (from scikit-learn->mapie) (3.3.0)\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Requirement already satisfied: ucimlrepo in /opt/miniconda3/envs/mapie_env/lib/python3.8/site-packages (0.0.7)\n", + "Requirement already satisfied: pandas>=1.0.0 in /opt/miniconda3/envs/mapie_env/lib/python3.8/site-packages (from ucimlrepo) (1.3.5)\n", + "Requirement already satisfied: certifi>=2020.12.5 in /opt/miniconda3/envs/mapie_env/lib/python3.8/site-packages (from ucimlrepo) (2024.2.2)\n", + "Requirement already satisfied: python-dateutil>=2.7.3 in /opt/miniconda3/envs/mapie_env/lib/python3.8/site-packages (from pandas>=1.0.0->ucimlrepo) (2.9.0.post0)\n", + "Requirement already satisfied: pytz>=2017.3 in /opt/miniconda3/envs/mapie_env/lib/python3.8/site-packages (from pandas>=1.0.0->ucimlrepo) (2024.1)\n", + "Requirement already satisfied: numpy>=1.20.0 in /opt/miniconda3/envs/mapie_env/lib/python3.8/site-packages (from pandas>=1.0.0->ucimlrepo) (1.22.3)\n", + "Requirement already satisfied: six>=1.5 in /opt/miniconda3/envs/mapie_env/lib/python3.8/site-packages (from python-dateutil>=2.7.3->pandas>=1.0.0->ucimlrepo) (1.16.0)\n" + ] + } + ], + "source": [ + "install_mapie = True\n", + "install_ucimlrepo = True\n", + "if install_mapie:\n", + " !pip install mapie\n", + "if install_ucimlrepo:\n", + " !pip install ucimlrepo" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "c5438c1b", + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "import pandas as pd\n", + "import matplotlib.pyplot as plt\n", + "import matplotlib.colors as mcolors\n", + "import matplotlib.patches as mpatches\n", + "from tqdm import tqdm\n", + "\n", + "from lightgbm import LGBMRegressor\n", + "from mapie.calibrators import CustomCCP, GaussianCCP, PolynomialCCP\n", + "from mapie.conformity_scores import AbsoluteConformityScore\n", + "from mapie.regression import (MapieQuantileRegressor, MapieRegressor,\n", + " SplitCPRegressor)\n", + "from sklearn.preprocessing import StandardScaler\n", + "from sklearn.model_selection import PredefinedSplit\n", + "from ucimlrepo import fetch_ucirepo\n", + " \n", + "import warnings\n", + "warnings.filterwarnings(\"ignore\")\n", + "warnings.filterwarnings(\"ignore\", category=UserWarning)\n", + "\n", + "random_state = 1\n", + "np.random.seed(random_state)" + ] + }, + { + "cell_type": "markdown", + "id": "665ea4be", + "metadata": {}, + "source": [ + "## Getting the data" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "4da3ba44", + "metadata": {}, + "outputs": [], + "source": [ + "# fetch dataset \n", + "communities_and_crime = fetch_ucirepo(name=\"Communities and Crime\") \n", + " \n", + "# data (as pandas dataframes) \n", + "X = communities_and_crime.data.features\n", + "y = communities_and_crime.data.targets \n", + "\n", + "X = X.drop(columns=[\"communityname\"])\n", + "# We remove columns with missing values\n", + "X = X[X.columns[(X.isna().sum()==0)&((X==\"?\").sum()==0)]]\n", + "\n", + "col_names = list(X.columns)\n", + "X = X.values\n", + "y = y.values[:,0]\n", + "\n", + "scaler = StandardScaler()\n", + "X_scaled = scaler.fit_transform(X)" + ] + }, + { + "cell_type": "markdown", + "id": "e3ca073e", + "metadata": {}, + "source": [ + "We normalize the data, to simplify the following (even if the used model doesn't requires it)" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "8184e7fe", + "metadata": {}, + "outputs": [], + "source": [ + "def generate_data(seed=1, n_train=1000,n_calib=1000,n_test=500):\n", + " \"\"\"\n", + " Return a new split (x_train, y_train, x_calib, y_calib, x_test, y_test)\n", + " of the dataset, based on the ``seed`` value.\n", + " \"\"\"\n", + " np.random.seed(seed)\n", + " if n_train+n_calib+n_test > len(X):\n", + " raise ValueError(\n", + " f\"n_train + n_calib + n_test = {n_train} + {n_calib} + {n_test}\"\n", + " f\" = {n_train+n_calib+n_test} > len(total_dataset) = {len(X)}\")\n", + " \n", + " indexes = list(range(len(X)))\n", + " train_indexes = np.random.choice(indexes, n_train, replace=False)\n", + " indexes = list(set(indexes) - set(train_indexes))\n", + " calib_indexes = np.random.choice(indexes, n_calib, replace=False)\n", + " indexes = list(set(indexes) - set(calib_indexes))\n", + " test_indexes = np.random.choice(indexes, n_test, replace=False)\n", + "\n", + " scaler = StandardScaler()\n", + " X_scaled = scaler.fit_transform(X)\n", + " \n", + " return X_scaled[train_indexes,:], y[train_indexes], X_scaled[calib_indexes,:], y[calib_indexes], X_scaled[test_indexes,:], y[test_indexes]" + ] + }, + { + "cell_type": "markdown", + "id": "17abf40f", + "metadata": {}, + "source": [ + "## The goal:" + ] + }, + { + "cell_type": "markdown", + "id": "8b2ef22b", + "metadata": {}, + "source": [ + "- We will try to have an adaptative prediction interval using the ``CCP`` method (using ``CCPCalibrator``). We will compare it with standard ``Split`` CP (``MapieRegressor`` with ``method='base'``), and ``CQR`` (with ``MapieQuantileRegressor``).\n", + "\n", + "- The adaptativity will be evaluated by looking at some scores (coverage, but also normalized excess and deficit) on different subgroups of interest.\n", + "\n", + "- The groups are the 10 target groups (see the histogram below), and the 4 quantiles (with thresholds at Q1, Q2 and Q3) on features of interest (``'racepctblack', 'racePctWhite', 'racePctAsian', 'racePctHisp'``).\n", + "Those features were chosen to make sur there is no bias toward one or the other ethnicity. " + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "afb83741", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbsAAAHWCAYAAADuAyeaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABXU0lEQVR4nO3dd3gUVdsG8HvTNgmkEEqKhIRepUvAQtdQxAIoTd5QBJSmIKiokIAoVeUDUWwQUDSoL2ABQUQQQeCVIKCEYkJoQkAQEtPLnu+PkCGbZHdnM7szm937d117OZl95jlnTiY8zuzMWZ0QQoCIiMiJuWndASIiIntjsSMiIqfHYkdERE6PxY6IiJweix0RETk9FjsiInJ6LHZEROT0WOyIiMjpsdgREZHTY7EjsoHIyEiMGjVK624QkQksdkQViI+Ph06nw6FDhyp8v3v37mjVqpWiNrZu3Yq4uDhFOYhIHhY7Ihs4deoUPvjgA6u22bp1K+bOnWunHhFRaSx2RDag1+vh6empdTeskpWVpXUXiFTDYkdkA2U/sysoKMDcuXPRuHFjeHt7o2bNmrj33nuxY8cOAMCoUaOwcuVKAIBOp5NeJbKysvDcc88hPDwcer0eTZs2xdKlS1H2S0pycnIwdepU1KpVC35+fnjooYfw119/QafTGV0ijYuLg06nQ1JSEoYPH44aNWrg3nvvBQAcO3YMo0aNQoMGDeDt7Y2QkBCMGTMG169fN2qrJMfp06fxxBNPICAgALVr18bs2bMhhMCFCxfw8MMPw9/fHyEhIXjjjTdsOcREinho3QEiR5aeno5r166VW19QUGB2u7i4OCxYsABPPvkkOnXqhIyMDBw6dAiHDx/G/fffjwkTJuDSpUvYsWMHPv74Y6NthRB46KGHsGvXLowdOxZt27bF9u3bMXPmTPz111946623pNhRo0bh888/x8iRI9G5c2f89NNP6N+/v8l+PfbYY2jcuDFef/11qXDu2LEDZ86cwejRoxESEoLjx4/j/fffx/Hjx3HgwAGjIgwAQ4YMQfPmzbFw4UJs2bIF8+fPR1BQEN577z307NkTixYtwvr16zFjxgzcdddd6Nq1q8VxJrI7QUTlrFmzRgAw+2rZsqUUHxERIWJiYqSf27RpI/r372+2jUmTJomK/gQ3b94sAIj58+cbrR88eLDQ6XQiOTlZCCFEYmKiACCeffZZo7hRo0YJACI2NlZaFxsbKwCIYcOGlWsvOzu73LrPPvtMABB79uwpl2P8+PHSusLCQlG3bl2h0+nEwoULpfU3btwQPj4+RmNCpCVexiQyY+XKldixY0e5V+vWrc1uFxgYiOPHj+PPP/+0us2tW7fC3d0dU6dONVr/3HPPQQiB7777DgCwbds2AMDEiRON4qZMmWIy91NPPVVunY+Pj7Scm5uLa9euoXPnzgCAw4cPl4t/8sknpWV3d3d07NgRQgiMHTtWWh8YGIimTZvizJkzJvtCpCZexiQyo1OnTujYsWO59TVq1Kjw8maJefPm4eGHH0aTJk3QqlUr9OnTByNHjrRYJAHg3LlzCAsLg5+fn9H65s2bS++X/NfNzQ3169c3imvUqJHJ3GVjAeCff/7B3LlzkZCQgKtXrxq9l56eXi6+Xr16Rj8HBATA29sbtWrVKre+7Od+RFrhmR2RHXTt2hUpKSlYvXo1WrVqhQ8//BDt27fHhx9+qGm/Sp/FlXj88cfxwQcf4KmnnsLGjRvx/fffS2eNBoOhXLy7u7usdQDK3VBDpBUWOyI7CQoKwujRo/HZZ5/hwoULaN26tdEdkmVv/CgRERGBS5cu4d9//zVaf/LkSen9kv8aDAakpqYaxSUnJ8vu440bN7Bz5068+OKLmDt3Lh599FHcf//9aNCggewcRFUBix2RHZS9fFe9enU0atQIeXl50rpq1aoBAG7evGkU269fPxQVFeHtt982Wv/WW29Bp9Ohb9++AIDo6GgAwDvvvGMUt2LFCtn9LDkjK3sGtmzZMtk5iKoCfmZHZActWrRA9+7d0aFDBwQFBeHQoUP48ssvMXnyZCmmQ4cOAICpU6ciOjoa7u7uGDp0KAYMGIAePXrg5ZdfxtmzZ9GmTRt8//33+Oqrr/Dss8+iYcOG0vaDBg3CsmXLcP36denRg9OnTwMwfeZYmr+/P7p27YrFixejoKAAd9xxB77//vtyZ4tEVR2LHZEdTJ06FV9//TW+//575OXlISIiAvPnz8fMmTOlmIEDB2LKlClISEjAJ598AiEEhg4dCjc3N3z99deYM2cONmzYgDVr1iAyMhJLlizBc889Z9TOunXrEBISgs8++wybNm1C7969sWHDBjRt2hTe3t6y+vrpp59iypQpWLlyJYQQeOCBB/Ddd98hLCzMpmNCpCWd4CfIRE7lyJEjaNeuHT755BOMGDFC6+4QOQR+ZkdUheXk5JRbt2zZMri5uXHmEqJSeBmTqApbvHgxEhMT0aNHD3h4eOC7777Dd999h/HjxyM8PFzr7hE5DF7GJKrCduzYgblz5yIpKQmZmZmoV68eRo4ciZdffhkeHvx/WaISLHZEROT0+JkdERE5PRY7IiJyelXyor7BYMClS5fg5+cn68FZIiJyTkII/PvvvwgLC4Obm+nztypZ7C5dusQ7zYiISHLhwgXUrVvX5PtVstiVfPXJhQsX4O/vX7kkBgNw4ULxcng4YOr/COTGWYq1R3u23FbNnGrmV8KR+6Y1jg0pYcPjJyMjA+Hh4eW+EqusKnk3ZkZGBgICApCenl75YpeVBVSvXrycmQncmpS30nGWYu3Rni23VTOnmvmVcOS+aY1jQ0rY8PiRWw/4v2NEROT0WOyIiMjpsdgREZHTq5I3qBCR4ysqKkJBQYHW3SBHlJcHRETcXr71JcIVcXd3h4eHh+LHzFjsiMjmMjMzcfHixXLfgE4EoPhuzFWripcvX7Z4N6avry9CQ0Ph5eVV6SZZ7IjIpoqKinDx4kX4+vqidu3anPiByisqAkq+nioy0uSZnRAC+fn5+Pvvv5GamorGjRubfXDcHNctdh4ewMSJt5eVxlmKtUd7ttxWzZxq5lfCkfumNTNjU1BQACEEateuDR8fHw06Rw7PYABq1y5e9vExe2bn4+MDT09PnDt3Dvn5+fD29q5Uk677nB0R2UVubi5SU1NRv379Sv/DRFSauWOKz9kRERHd4rrXZoQArl0rXq5VCzD1uYLcOEux9mjPltuqmVPN/Eo4ct+0xrEhJYQACguLlz08VDl+XPfMLjsbqFOn+JWdrTzOUqw92rPltmrmVDO/Eo7cN61xbFza2bNnodPpcOTIEQDA7t27odPpcPPmTXkJDAbg6NHil8Fgt36W5rrFjoiolD179mDAgAEICwuDTqfD5s2by8UIITBnzhyEhobCx8cHvXv3xp9//im9n5eXh5EjR8Lf3x9NmjTBDz/8YLT9kiVLMGXKFHvvik2NGjUKjzzyiNG68PBwXL58Ga1atdKmU5XAYkdEBCArKwtt2rTBypUrTcYsXrwYy5cvx6pVq3Dw4EFUq1YN0dHRyM3NBQC8//77SExMxP79+zF+/HgMHz5cetYwNTUVH3zwAV577TVV9see3N3dERISAo8qdJcyix0RqSMry/TrVrGQFVvyfJalWCv17dsX8+fPx6OPPlrh+0IILFu2DK+88goefvhhtG7dGuvWrcOlS5eks8ATJ07goYceQsuWLTFp0iT8/fffuHbrs82nn34aixYtknUHeVFREaZPn47AwEDUrFkTzz//PGJiYozOsCIjI7Fs2TKj7dq2bYu4uDjp5zfffBN33nknqlWrhvDwcEycOBGZmZnS+/Hx8QgMDMT27dvRvHlzVK9eHX369MHly5cBAHFxcVi7di2++uor6HQ66HQ67N69u9xlzIrs3bsX9913H3x8fBAeHo6pU6ciq9Tv5Z0vvkDjgQPhXa0agoODMXjwYIvjogSLHRGpo3p1069Bg4xj69QxHdu3r3FsZGTFcTaWmpqKtLQ09O7dW1oXEBCAqKgo7N+/HwDQpk0b7N27Fzk5Odi+fTtCQ0NRq1YtrF+/Ht7e3iYLaVlvvPEG4uPjsXr1auzduxf//PMPNm3aZHWf3dzcsHz5chw/fhxr167Fjz/+iOeff94oJjs7G0uXLsXHH3+MPXv24Pz585gxYwYAYMaMGXj88celAnj58mXcfffdFttNSUlBnz59MGjQIBw7dgwbNmzA3r17MXnyZADAoUOHMPWNNzBvwgScSkrCtm3b0LVrV6v3zxpV5xxUZZEvbgEA+OTn4oTGfSEi7aWlpQEAgoODjdYHBwdL740ZMwbHjh1DixYtUKtWLXz++ee4ceMG5syZg927d+OVV15BQkICGjZsiNWrV+OOO+6osK1ly5Zh1qxZGDhwIABg1apV2L59u9V9fvbZZ6XlyMhIzJ8/H0899RTeeecdaX1BQQFWrVqFhg0bAgAmT56MefPmAQCqV68OHx8f5OXlISQkRHa7CxYswIgRI6T2GzdujOXLl6Nbt2549913cf7CBVTz9saD994Lv4gIRLi7o127dlbvnzVY7IhIHaUun5VTdrqoq1dNx5adbePs2Up3ydY8PT3LfeY3evRoTJ06Fb/99hs2b96Mo0ePYvHixZg6dSr++9//lsuRnp6Oy5cvIyoqSlrn4eGBjh07Wj3X6A8//IAFCxbg5MmTyMjIQGFhIXJzc5GdnQ1fX18AxfNOlhQ6AAgNDcVVc+Mvw9GjR3Hs2DGsX79eWieEgMFgQGpqKu7v3RsRoaFo8Mgj6NO/P/r07YtHH31U6pM9WF3s9uzZgyVLliAxMRGXL1/Gpk2bjK4jm5oHb/HixZg5cyaA4v/DOHfunNH7CxYswIsvvmhtdyrPwwOIibm9bEKRmzu+bNULADBYznRhpnLKbE92nK23VTOnmvmVcOS+aa0yY2PNt1HbK1aBkjObK1euIDQ0VFp/5coVtG3btsJtdu3ahePHj+PDDz/EzJkz0a9fP1SrVg2PP/443n77bUX9cXNzK1f8Sn/LxNmzZ/Hggw/i6aefxmuvvYagoCDs3bsXY8eORX5+vlRYPD09jXLodDrFE3hnZmZiwoQJmDp1arn36tWrBy8PDxzeuhW7DxzA98eOYc6cOYiLi8Ovv/6KwMBARW2bYvVfcMkdS2PGjJFOsUsr+WCzxHfffYexY8diUJlr8vPmzcO4ceOkn/38/KztijJ6PRAfbzEs38MTM/pPAwAM1usrn1Nme7LjbL2tmjnVzK+EI/dNay44NvXr10dISAh27twpFbeMjAwcPHgQTz/9dLn43NxcTJo0CevXr4e7uzuKioqkIlJQUICioqIK2wkICEBoaCgOHjwofY5VWFiIxMREtG/fXoqrXbu20b+3GRkZSE1NlX5OTEyEwWDAG2+8IU2e/Pnnn1u9315eXib7akr79u2RlJSERo0amYzxaNwYvRs3Rm8AsXFxCAwMxI8//lhhXbEFq4td37590bfsB8SllL2u+9VXX6FHjx5o0KCB0Xo/Pz+rrgETEdlTZmYmkpOTpZ9TU1Nx5MgRBAUFoV69etDpdHj22Wcxf/58NG7cGPXr18fs2bMRFhZW7jk0AHj11VfRr18/6bOoe+65BzNnzsTo0aPx9ttv45577jHZl2eeeQYLFy5E48aN0axZM7z55pvlHtju2bMn4uPjMWDAAAQGBmLOnDlwL3U5uFGjRigoKMCKFSswYMAA7Nu3D6tKvlbHCpGRkdi+fTtOnTqFmjVrIiAgwOI2L7zwAjp37ozJkyfjySefRLVq1ZCUlIQdO3bg7bffxrfffoszZ86ga9euqFGjBrZu3QqDwYCmTZta3T/ZhAIAxKZNm0y+n5aWJjw8PMT69euN1kdERIjg4GARFBQk2rZtKxYvXiwKCgpM5snNzRXp6enS68KFCwKASE9Pr3znDQYhMjOLXwZDubcjXvi2+PX8N6LZtC9Fs2lfVhgnO6eF9qyOs/W2auZUM78Sjtw3rZkZm5ycHJGUlCRycnI06lzl7Nq1SwAo94qJiZFiDAaDmD17tggODhZ6vV706tVLnDp1qlyu33//XTRq1EhkZmZK64qKisTTTz8t/P39xV133SX+/PNPk30pKCgQzzzzjPD39xeBgYFi+vTp4j//+Y94+OGHpZj09HQxZMgQ4e/vL8LDw0V8fLxo06aNiI2NlWLefPNNERoaKnx8fER0dLRYt26dACBu3LghhBBizZo1IiAgwKjtTZs2idKl4erVq+L+++8X1atXFwDErl27RGpqqgAgfvvtN6OxK8krhBD/+9//pO2qVasmWrduLV577TUhhBA/79kjunXtKmrUqCF8fHxE69atxYYNG0yOh7ljKj09XVY9sGuxW7RokahRo0a5Dr7xxhti165d4ujRo+Ldd98VgYGBYtq0aSbzxMbGVngQKip2mZlCFM/QVrxcRkmxazbtS7NxsnNaaM/qOFtvq2ZONfMr4ch905qZsamqxc7RxcTEGBW7Kq2wUIhffy1+FRZaDLdFsbPrp+6rV6/GiBEjyn0lw/Tp06Xl1q1bw8vLCxMmTMCCBQugr+BzsVmzZhltk5GRgfDwcPt1nIiInIrdit3PP/+MU6dOYcOGDRZjo6KiUFhYiLNnz1Z4zVav11dYBImIiOSwW7H76KOP0KFDB7Rp08Zi7JEjR+Dm5oY6derYqztERFVavIvd/WprVhc7S3csAcWXGb/44gu88cYb5bbfv38/Dh48iB49esDPzw/79+/HtGnT8MQTT6BGjRoKdoWIiKhiVhe7Q4cOoUePHtLPJZ+lxcTESP/nkZCQACEEhg0bVm57vV6PhIQExMXFIS8vD/Xr18e0adOMPpMjoqpPKHwwmaiELY4lq4td9+7dLTY8fvx4jB8/vsL32rdvjwMHDljbLBFVESXPeuXn58PHx0fj3pAzyL71BcFlZ3uxhuvOgeTuDpR8pUTZeflKMbi5YUvT4oc/+5uJs5hTZnuy42y9rZo51cyvhCP3TWtmxsbDwwO+vr74+++/4enpKc3eQSQxGICSrzrKyys/3+ktQghkZ2fj6tWrCAwMNHpo3lo6UQWvNWRkZCAgIADp6emyvhuqMkq+9aC0swv726UtImeTn5+P1NRUGAwGrbtCTiAwMBAhISEVzr0stx647pkdEdmNl5cXGjdujPz8fK27QlWcp6enojO6Eix2RGQXbm5u5SaUINKK615Mz8oCdLriV6mvii/LJz8XZxc9iLOLHjQbZzGnzPZkx9l6WzVzqplfCUfum9Y4NqSEBseP6xY7IiJyGSx2RETk9FjsiIjI6bHYERGR02OxIyIip8diR0RETs91n7Nzdwf69bu9bILBzQ0/NugIAOgpZ7owUzlltic7ztbbqplTzfxKOHLftMaxISU0OH44XZgJ1kwXVlGsuXgiIrINufWAlzGJiMjpsdgREZHTc91il5UFVKtW/LIwXVjSm4OQ9OYgi9PalI71yc+tVHuy42y9rZo51cyvhCP3TWscG1JCg+PHdW9QAYBbXwhoiW9BnuyUZmNltic7ztbbqplTzfxKOHLftMaxISVUPn5c98yOiIhcBosdERE5PRY7IiJyeix2RETk9FjsiIjI6bnu3ZhubkC3breXTTDodDgQ3goA0NlMXNlYg05XqfZkx9l6WzVzqplfCUfum9Y4NqSEBscPpwszgdOFERE5Pk4XRkREdAuLHREROT3XLXZZWUDt2sUvC9OFJS4fjsTlw2VNF1YSW+F0YTLakx1n623VzKlmfiUcuW9a49iQEhocP657gwoAXLsmK6xmTobslGZjZbYnO87W26qZU838Sjhy37TGsSElVD5+XPfMjoiIXAaLHREROT0WOyIicnosdkRE5PRY7IiIyOm57t2Ybm5Ax463l00w6HQ4GtIYANBGxnRhJbEVThcmoz3ZcbbeVs2cauZXwpH7pjWODSmhwfHD6cJM4HRhRESOj9OFERER3cJiR0RETs91i112NhAZWfzKzjYZ5l2Qi73vjsHed8eYjSsb611QZrowme3JjrP1tmrmVDO/Eo7cN61xbEgJDY4f171BRQjg3LnbyyboBFA346rFuLKxurKhMtuTHWfrbdXMqWZ+JRy5b1rj2JASGhw/rntmR0RELoPFjoiInJ7VxW7Pnj0YMGAAwsLCoNPpsHnzZqP3R40aBZ1OZ/Tq06ePUcw///yDESNGwN/fH4GBgRg7diwyMzMV7QgREZEpVhe7rKwstGnTBitXrjQZ06dPH1y+fFl6ffbZZ0bvjxgxAsePH8eOHTvw7bffYs+ePRg/frz1vSciIpLB6htU+vbti759+5qN0ev1CAkJqfC9EydOYNu2bfj111/R8dYT9CtWrEC/fv2wdOlShIWFWdslIiIis+xyN+bu3btRp04d1KhRAz179sT8+fNRs2ZNAMD+/fsRGBgoFToA6N27N9zc3HDw4EE8+uij5fLl5eUhLy9P+jkjQ/6XqZqk0wEtWtxeNkHogNM16wEAmpiJKxsryobKbE92nK23VTOnmvmVcOS+aY1jQ0pocPzYvNj16dMHAwcORP369ZGSkoKXXnoJffv2xf79++Hu7o60tDTUqVPHuBMeHggKCkJaWlqFORcsWIC5c+fatqO+vsDx4xbDcj298cCT7wAAzvr6yo6tbHuy42y9rZo51cyvhCP3TWscG1JCg+PH5sVu6NCh0vKdd96J1q1bo2HDhti9ezd69epVqZyzZs3C9OnTpZ8zMjIQHh6uuK9EROQa7P7oQYMGDVCrVi0kJycDAEJCQnD16lWjmMLCQvzzzz8mP+fT6/Xw9/c3ehEREcll92J38eJFXL9+HaGhoQCALl264ObNm0hMTJRifvzxRxgMBkRFRdm7O7dlZwMtWxa/LEwX9v2HE/H9hxNlTRdWElvhdGEy2pMdZ+tt1cypZn4lHLlvWuPYkBIaHD9WX8bMzMyUztIAIDU1FUeOHEFQUBCCgoIwd+5cDBo0CCEhIUhJScHzzz+PRo0aITo6GgDQvHlz9OnTB+PGjcOqVatQUFCAyZMnY+jQoereiSkEkJR0e9kEnQCaXD9vMa5sbIXThcloT3acrbdVM6ea+ZVw5L5pjWNDSmhw/Fh9Znfo0CG0a9cO7dq1AwBMnz4d7dq1w5w5c+Du7o5jx47hoYceQpMmTTB27Fh06NABP//8M/R6vZRj/fr1aNasGXr16oV+/frh3nvvxfvvv2+7vSIiIirF6jO77t27w9z3vW7fvt1ijqCgIHz66afWNk1ERFQpnBuTiIicHosdERE5PRY7IiJyeq775a06HRARcXvZBKEDLvoXz/hSV8Z0YSWxFU4XJqM92XG23lbNnGrmV8KR+6Y1jg0pocHxoxPm7jZxUBkZGQgICEB6errdHjCPfHFLuXVnF/aXHWsunoiIbENuPeBlTCIicnosdkRE5PRct9jl5AB33VX8yskxGaYvyMNXa6fhq7XTzMaVjdUX5Bm/KbM92XG23lbNnGrmV8KR+6Y1jg0pocHx47o3qBgMwKFDt5dNcBMCbdL+tBhXNtat7EehMtuTHWfrbdXMqWZ+JRy5b1rj2JASGhw/rntmR0RELoPFjoiInB6LHREROT0WOyIicnosdkRE5PRc925MAKhVS1bYdZ/ip/JrWhGrpD3ZcbbeVs2cauZXwpH7pjWODSmh8vHjusWuWjXg778thuV4eaPD1OLv3jtbrZrs2Mq2JzvO1tuqmVPN/Eo4ct+0xrEhJTQ4fngZk4iInB6LHREROT3XLXY5OUD37sUvC9OFJXz6IhI+fVHWdGElsRVOFyajPdlxtt5WzZxq5lfCkfumNY4NKaHB8eO6n9kZDMBPP91eNsFNCHS+8IfFuLKxFU4XJqM92XG23lbNnGrmV8KR+6Y1jg0pocHx47pndkRE5DJY7IiIyOmx2BERkdNjsSMiIqfHYkdERE7Pde/GBABfX1lh2Z764nArYpW0JzvO1tuqmVPN/Eo4ct+0xrEhJVQ+fly32FWrBmRlWQzL8fJGi+n/BSBvurCS2Mq2JzvO1tuqmVPN/Eo4ct+0xrEhJTQ4fngZk4iInB6LHREROT3XLXa5uUD//sWv3FyTYfrCfKz+Ig6rv4gzG1c2Vl+YX6n2ZMfZels1c6qZXwlH7pvWODakhAbHj+t+ZldUBGzdenvZBDeDAT3PHLIYVzbWrewUODLbkx1n623VzKlmfiUcuW9a49iQEhocP657ZkdERC6DxY6IiJweix0RETk9FjsiInJ6LHZEROT0WOyIiMjpue6jB9WqAWW/TbwCOV7eiHzhWwDypgsria1se7LjbL2tmjnVzK+EI/dNaxwbUkKD44dndkRE5PRY7IiIyOlZXez27NmDAQMGICwsDDqdDps3b5beKygowAsvvIA777wT1apVQ1hYGP7zn//g0qVLRjkiIyOh0+mMXgsXLlS8M1bJzQUee6z4ZWG6sJWbF2Dl5gWypgsria1wujAZ7cmOs/W2auZUM78Sjtw3rXFsSAkNjh+dENZdOP3uu++wb98+dOjQAQMHDsSmTZvwyCOPAADS09MxePBgjBs3Dm3atMGNGzfwzDPPoKioCIcOHZJyREZGYuzYsRg3bpy0zs/PD9UsfCZWIiMjAwEBAUhPT4e/v7813b8tKwuoXr14OTOz+BpyKZEvbgEA+OTn4sRbg03GmYptPu1LnHhzkOz2rI6z9bZq5lQzvxKO3DetcWxICRseP3LrgdU3qPTt2xd9+/at8L2AgADs2LHDaN3bb7+NTp064fz586hXr5603s/PDyEhIdY2X6WUFEHgViHUsC9ERK7M7p/ZpaenQ6fTITAw0Gj9woULUbNmTbRr1w5LlixBYWGhyRx5eXnIyMgwehEREcll10cPcnNz8cILL2DYsGFGp5dTp05F+/btERQUhF9++QWzZs3C5cuX8eabb1aYZ8GCBZg7d649u0pERE7MbsWuoKAAjz/+OIQQePfdd43emz59urTcunVreHl5YcKECViwYAH0en25XLNmzTLaJiMjA+Hh4fbqOhERORm7FLuSQnfu3Dn8+OOPFm8iiYqKQmFhIc6ePYumTZuWe1+v11dYBImIiOSwebErKXR//vkndu3ahZo1a1rc5siRI3Bzc0OdOnVs3R0iIiLri11mZiaSk5Oln1NTU3HkyBEEBQUhNDQUgwcPxuHDh/Htt9+iqKgIaWlpAICgoCB4eXlh//79OHjwIHr06AE/Pz/s378f06ZNwxNPPIEaNWrYbs8s8fUtvuW1ZNmEHE89mk/7EgBwwkxc2dgcT73J98zmkdkvm2+rZk418yvhyH3TGseGlNDg+LG62B06dAg9evSQfi75LC0mJgZxcXH4+uuvAQBt27Y12m7Xrl3o3r079Ho9EhISEBcXh7y8PNSvXx/Tpk0z+kxOFTqdvGc7dDrkeHnf3kZubGXzyO2XrbdVM6ea+ZVw5L5pjWNDSmhw/Fhd7Lp37w5zz6Fbeka9ffv2OHDggLXNEhERVZrrfutBXh4wYULx8nvvASZugPEqLMDr298u/mFub5NxZWNfip6MfA9P6/PI7JfNt1Uzp5r5lXDkvmmNY0NKaHD8WD1dmCOoKtOFlb6kKSePnH4p2adK4XRhxcuO1jetcWxICQ2mC+O3HhARkdNjsSMiIqfnup/ZOaDIF7cYTRjdfPY25Hh54+zC/pr2i4ioquOZHREROT0WOyIicnosdkRE5PRc9zM7X1/g6tXbyybkeOrRfsp6AMBhGdOFlcRWNF2YnDzmclgkc580z6lmfiUcuW9a49iQEhocP65b7HQ6oHZtWXH/+Abc3kZubGXzmMthidx90jqnmvmVcOS+aY1jQ0pocPzwMiYRETk91z2zy8sDSiaffvNNs9OFvfLjh8U/yJgurCR2fs8ny00XJiePuRy22ier2COnmvmVcOS+aY1jQ0pocPxwujDAYaYLk56zK5ND9nN2nC7Mthy5b1rj2JASnC6MiIjI9ljsiIjI6bHYERGR02OxIyIip8diR0RETo/FjoiInJ7rPmfn4wOkpt5eNiHX0wv3PvURAGCvmbiysbmeXpXKYy6HRTL3SfOcauZXwpH7pjWODSmhwfHjusXOzQ2IjLQYJnRuuBgQfHsbubGVzGMuh0Uy90nznGrmV8KR+6Y1jg0pocHxw8uYRETk9Fz3zC4/H3j55eLl114DvCq+ZOhZVIAZez6+tc39JuPKxi7tOhIF7p4Vvmcuj7kcttonq9gjp5r5lXDkvmmNY0NKaHD8cLowgNOFqZ1TzfxKOHLftMaxISU4XRgREZHtsdgREZHTY7EjIiKnx2JHREROj8WOiIicHosdERE5Pdd9zs7HB/jjj9vLJuR6euH+MSsBADtkTBdWElvRdGFy8pjLYZHMfdI8p5r5lXDkvmmNY0NKaHD8uG6xc3MDWra0GCZ0bvizdsTtbeTGVjKPuRwWydwnzXOqmV8JR+6b1jg2pIQGxw8vYxIRkdNz3TO7/Hzg9deLl196yez0XZP2f35rG8vThZXEruzyeLnpwuTkMZfDVvtkFXvkVDO/Eo7cN61xbEgJDY4fThcGOPx0YaaUm0aM04XZliP3TWscG1KC04URERHZHosdERE5PRY7IiJyeix2RETk9FjsiIjI6bHYERGR07P6Obs9e/ZgyZIlSExMxOXLl7Fp0yY88sgj0vtCCMTGxuKDDz7AzZs3cc899+Ddd99F48aNpZh//vkHU6ZMwTfffAM3NzcMGjQI//d//4fqJbeiqsHbG/jf/24vm5Dn4YmH/vMmAOBrM3FlY/M8PE2+Zy6PuRwWydwnzXOqmV8JR+6b1jg2pIQGx4/VxS4rKwtt2rTBmDFjMHDgwHLvL168GMuXL8fatWtRv359zJ49G9HR0UhKSoL3rZ0aMWIELl++jB07dqCgoACjR4/G+PHj8emnnyrfI7nc3YG77rIYZnBzx7HQJre3kRtbyTzmclgkc580z6lmfiUcuW9a49iQEhocP1YXu759+6Jv374VvieEwLJly/DKK6/g4YcfBgCsW7cOwcHB2Lx5M4YOHYoTJ05g27Zt+PXXX9GxY0cAwIoVK9CvXz8sXboUYWFhCnaHiIioPJtOF5aamoq0tDT07t1bWhcQEICoqCjs378fQ4cOxf79+xEYGCgVOgDo3bs33NzccPDgQTz66KPl8ubl5SEvL0/6OSMjQ3ln8/OB//u/4uVnnjE7fdfoQ1/f2sbydGElsWs6PlRuujA5eczlsNU+WcUeOdXMr4Qj901rHBtSQoPjx6bFLi0tDQAQHBxstD44OFh6Ly0tDXXq1DHuhIcHgoKCpJiyFixYgLlz59qyq0BBAfD888XLEyeaHGyPoiK8tHvNrW1WmP2llI79uF1/o0IlN4+5HLbaJ6vYI6ea+ZVw5L5pjWNDSmhw/FSJuzFnzZqF9PR06XXhwgWtu0RERFWITYtdSEgIAODKlStG669cuSK9FxISgqtXrxq9X1hYiH/++UeKKUuv18Pf39/oRUREJJdNi139+vUREhKCnTt3SusyMjJw8OBBdOnSBQDQpUsX3Lx5E4mJiVLMjz/+CIPBgKioKFt2h4iICEAlPrPLzMxEcnKy9HNqaiqOHDmCoKAg1KtXD88++yzmz5+Pxo0bS48ehIWFSc/iNW/eHH369MG4ceOwatUqFBQUYPLkyRg6dCjvxCQiIruwutgdOnQIPXr0kH6ePn06ACAmJgbx8fF4/vnnkZWVhfHjx+PmzZu49957sW3bNukZOwBYv349Jk+ejF69ekkPlS9fvtwGu0NERFSe1cWue/fuMPd9rzqdDvPmzcO8efNMxgQFBan7ADkREbk0mz56UKV4ewO7dt1eNiHPwxNDhxV/fXyCjOnCSmIrmi5MTh5zOSySuU+a51QzvxKO3DetcWxICQ2OH9ctdu7uQPfuFsMMbu44UK/17W3kxlYyj7kcFsncJ81zqplfCUfum9Y4NqSEBsdPlXjOjoiISAnXPbMrKADef794efx4wLPiS4YeRYUYdnTbrW0eMBlXNvazNn1Q6O5R4Xvm8pjLYat9soo9cqqZXwlH7pvWODakhAbHj06Yu9vEQWVkZCAgIADp6emVf8A8Kwso+UqhzEygWjWjtyNf3AIA8MnPxYm3BpuMMxXbfNqXyPG6fS1abh5zOco6u7C/VftUKfbIqWZ+JRy5b1rj2JASNjx+5NYDXsYkIiKnx2JHREROj8WOiIicHosdERE5Pde9G7MSms/eZvaGESIickw8syMiIqfnumd2ej3w7be3l03I9/DE6MGx0rI55mJLv7fGRu2VI3OfNM+pZn4lHLlvWuPYkBIaHD+u+5ydBSXPztlDuefjKtmmqTxERK5Cbj1w3TM7J1ZR0WRhJCJX5rrFrqAAWL++eHnECLPTdz2StBsAsLlFd7PTd5mLLf2epenC5LZXzq19Gvz7Ueu3tZATgNlxctj8Sjhy37TGsSElNDh+XPcyZiWmC7M0fZcjTRdWdttKn9lxurDiZUfrm9Y4NqQEpwsjIiKyPRY7IiJyeix2RETk9FjsiIjI6bHYERGR02OxIyIip+e6z9np9cDnn99eNiHfwxMTH35RWjbHXGzp996xUXvl3NqniesPW7+thZzSsq3ZO78Sjtw3rXFsSAkNjh/Xfc7Ogqo8XRhnUCEiV8Hn7IiIiG5x3cuYhYXApk3Fy48+CnhUPBTuhiJEn94PANjepAuK3NxNpjQXW/o9FEbbpD1T+9Tv5GHrt7WQE4DZcXLY/Eo4ct+0xrEhJTQ4flz3MianC5OH04UVLzta37TGsSElOF0YERGR7bHYERGR02OxIyIip8diR0RETo/FjoiInB6LHREROT3XfTjGywtYs+b2sgkF7h6Y0e9Zadkcc7Gl31tqo/bKubVPM744av22FnJKy7Zm7/xKOHLftMaxISU0OH5c9zk7CzhdGBGR4+NzdkRERLe47mXMwkJg+/bi5Wjz03d1TT0MANhTv73F6cJMxZZ+z9J0YXLbM7VPPVJ+tX5bCzkBmB0nh82vhCP3TWscG1JCg+PHdY/QvDzgwQeLlzMzTQ62V2EB1nw5F0DJFFymC4i52NLvIX6mTdoztU9rKrOthZwAzI6Tw+ZXwpH7pjWODSmhwfHDy5hEROT0WOyIiMjp2bzYRUZGQqfTlXtNmjQJANC9e/dy7z311FO27gYREZHE5hdKf/31VxQVFUk///HHH7j//vvx2GOPSevGjRuHefPmST/7+vrauhtEREQSmxe72rVrG/28cOFCNGzYEN26dZPW+fr6IiQkxNZNExERVciun9nl5+fjk08+wZgxY6DT6aT169evR61atdCqVSvMmjUL2dnZZvPk5eUhIyPD6EVERCSXXe/33Lx5M27evIlRo0ZJ64YPH46IiAiEhYXh2LFjeOGFF3Dq1Cls3LjRZJ4FCxZg7ty5tu2clxfw9tu3l00ocPfA7PufkpbNMRdb+r1XbdReObf2afZXf9h2ujAZ4+Sw+ZVw5L5pjWNDSmhw/Nh1urDo6Gh4eXnhm2++MRnz448/olevXkhOTkbDhg0rjMnLy0NeXp70c0ZGBsLDwzldGKcLIyIXJ3e6MLud2Z07dw4//PCD2TM2AIiKigIAs8VOr9dDr9fbvI9EROQa7Fbs1qxZgzp16qB/f/NnFEeOHAEAhIaG2qsrFSsqAn7+uXj5vvsA94pnG3EzFKHTxeMAgP/VbQmDmSm4zMWWfg9FfWzSnql96nz+mPXbWsgJwOw4OWx+JRy5b1rj2JASGhw/dil2BoMBa9asQUxMDDxKTQOTkpKCTz/9FP369UPNmjVx7NgxTJs2DV27dkXr1q3t0RXTcnOBHj2KlzMzgWrVKgzTFxYg4bOXAFiegstcbOn38MFUm7Rnap8SKrOthZwAzI6Tw+ZXwpH7pjWODSmhwfFjl2L3ww8/4Pz58xgzZozRei8vL/zwww9YtmwZsrKyEB4ejkGDBuGVV16xRzeIiIgA2KnYPfDAA6jovpfw8HD89NNP9miSbKzkJhef/FycuLWu+extOPHmIO06RURUSZwbk4iInB6/l8NFmHqsgY8kEJEr4JkdERE5PRY7IiJyeq57GdPTE1i8+PayCYXu7ni9+2hp2RxzsaXfe8lG7ZVza59e33rC+m3t0R85ZP4eNOHIfdMax4aU0OD4set0YfYid3oYJZxtujBb5eBnfETkSDSfLoxMs2chJSKi8ly32BUVAYcPFy+3b292+q5WV1IAAH8EN7Q4XZipWLl5rGnP1D61vnza+m1NKNsfm5P5e9CEI/dNaxwbUkKD48d1i11uLtCpU/GyhenCvl43HYC86cJMxcrNY017pvbp68psa0LZ/ticzN+DJhy5b1rj2JASGhw/vBuTiIicHosdERE5PRY7IiJyeix2RETk9FjsiIjI6bnu3ZhUKXzYnIiqItctdp6eQGzs7WUTCt3dseyeYdKyOeZi5eaxpr1ybu3Tsh9O23S6sEr3Rw6ZvwdNOHLftMaxISU0OH44XZgJVWGWEy2mC7M2DxGRPcmtB/zMjoiInJ7rFjuDATh+vPhlMJgM0wkDGv99Do3/PgedMB1nKVZuHmvaM7VPldrWHv2RQ+bvQROO3DetcWxICQ2OH9f9zC4nB2jVqnjZzHQ13gX52LF6EoCSKbi8TaY0Fys3jzXtmdqnHZXZ1gRF/ZFD5u9BE47cN61xbEgJDY4f1z2zIyIil8FiR0RETo/FjoiInB6LHREROT0WOyIicnosdkRE5PRc99EDT09gxozbyyYUurvjvU4DpWVzzMXKzWNNe+Xc2qf39pyx6XRhle6PHDJ/D5pw5L5pjWNDSmhw/HC6MBM4XRinCyMix8fpwoiIiG5x3cuYBgNw/nzxcr16gFvFdV8nDLgj428AwF/+tSF0pv//wFys3DzWtGdqn+qmX7F+WxMU9UcOmb8HTThy37TGsSElNDh+XLfY5eQA9esXL1uYLmzvqrEA5E0XZipWbh5r2jO1T3srs60Jivojh8zfgyYcuW9a49iQEhocP/zfMSIicnosdkRE5PRY7IiIyOmx2BERkdNjsSMiIqfHYkdERE7PdR898PAAJk68vWxCkZs71rXrLy2bYy5Wbh5r2ivn1j6t23/O+m3t0R85ZP4eNOHIfdMax4aU0OD44XRhJnC6ME4XRkSOj9OFERER3eK61x+EAK5dK16uVQvQ6UzGBeVkAAD+8fE3HWcpVm4ea9ozsU9B2enWb2smZ6X7IzO/rN+DFhy5b1rj2JASGhw/Nj+zi4uLg06nM3o1a9ZMej83NxeTJk1CzZo1Ub16dQwaNAhXrlyxdTcsy84G6tQpfmVnmwzzKcjD4RUjcHjFCPgU5JlNaS5Wbh5r2jO1T5Xa1h79kUPm70ETjtw3rXFsSAkNjh+7XMZs2bIlLl++LL327t0rvTdt2jR88803+OKLL/DTTz/h0qVLGDhwoD26QUREBMBOlzE9PDwQEhJSbn16ejo++ugjfPrpp+jZsycAYM2aNWjevDkOHDiAzp0726M7RETk4uxyZvfnn38iLCwMDRo0wIgRI3D+1lc5JCYmoqCgAL1795ZimzVrhnr16mH//v0m8+Xl5SEjI8PoRUREJJfNz+yioqIQHx+Ppk2b4vLly5g7dy7uu+8+/PHHH0hLS4OXlxcCAwONtgkODkZaWprJnAsWLMDcuXNt3VVSgalHGPioAhGpyebFrm/fvtJy69atERUVhYiICHz++efw8fGpVM5Zs2Zh+vTp0s8ZGRkIDw9X3FciInINdn/OLjAwEE2aNEFycjJCQkKQn5+PmzdvGsVcuXKlws/4Suj1evj7+xu9iIiI5LL7c3aZmZlISUnByJEj0aFDB3h6emLnzp0YNGgQAODUqVM4f/48unTpYu+uGPPwAGJibi+bUOTmji9b9ZKWzTEXKzePNe2Vc2ufvky8aNPpwirdHzlk/h404ch90xrHhpTQ4Pix+XRhM2bMwIABAxAREYFLly4hNjYWR44cQVJSEmrXro2nn34aW7duRXx8PPz9/TFlyhQAwC+//CK7DVtOF1YVpgWzJ3tPF8bP7IjInuTWA5uX1IsXL2LYsGG4fv06ateujXvvvRcHDhxA7dq1AQBvvfUW3NzcMGjQIOTl5SE6OhrvvPOOrbtBREQksXmxS0hIMPu+t7c3Vq5ciZUrV9q6aesIAWRnwyc/FzmeerPTd5XMHGI2zlKs3DzWtGfLbdXMWSa/NIOCr69jTTvlyH3TGseGlNDg+HHdiaCzs4Hq1XHircEWp+868dZgi3GWYuXmsaY9W26rZk4jt34PqF7d8aadcuS+aY1jQ0pocPzwk2XSRMlneT75uThxa13z2dtw4s1B2nWKiJyW657ZERGRy2CxIyIip8diR0RETo+f2RERkV2Vfd629Gf1auGZHREROT3XPbNzdwcGD8aW3y/D4Ga65hvc3LCl6T3SsjnmYuXmsaY9W26rZk418yty6xiRluk2jg0pUPJ33//OUNWOH5tPF6YGThdmO1pNF2ZtHiKquuw5baDceuBg/ytNRERkeyx2RETk9Fy32GVlATodzi56ED75uSbDfPJzcXbRgxbjLMXKzWNNe7bcVs2cauZX5NYxAp2ueJlu49iQAiV/92oeP65b7IiIyGWw2BERkdNjsSMiIqfHYkdERE6PxY6IiJye686gQlWGPR9IJSLX4LrFzt0d6NcPP568anH6rh8bdJSWzTEXKzePNe3Zcls1c6qZX5Fbx4i0TLdxbEiBkr/7ns3qcLowczhdmO1UhenCeGZHVLVxujAiIiIVsNgREZHTc93P7LKygDp1kFRQhA6T1yPHy7vCMJ/8XCS+PQIAzMZZipWbx5r2bLGtpcuMSvojR9n89mT1pZRbxwgA4OpVoFo1O/WsCuLYkALS3/0Kd9WOH9ctdgCQnQ1fGWG+BXmyU5qLlZvHmvZsua2aOdXMr0h2ttY9cFwcG1LAtyAPKFCvPdcudlSl8cYVIpKLn9kREZHTY7EjIiKnx2JHREROj8WOiIicnuveoOLmBnTrhgNnrsOg05kMM+h0OBDeSlo2x1ys3DzWtGfLbdXMqWZ+RW4dI9Iy3caxIQVK/u47N6ip2vHD6cJcfLowW9FiujBb9YV3bxLZF6cLIyIiUgGLHREROT3XLXZZWUDt2khcPhw++bkmw3zyc5G4fLjFOEuxcvNY054tt1Uzp5r5Fbl1jKB27eJluo1jQwqU/N2refy47g0qAHDtGmrKCKuZkyE7pblYuXmsac+W26qZU838ily7pnUPHBfHhhSomZMB5KjXnuue2RERkctw7TM7spmqfFeryTvFZndXtyNEZDc8syMiIqfHMzsiK1V0Jshn9YgcG8/siIjI6dn8zG7BggXYuHEjTp48CR8fH9x9991YtGgRmjZtKsV0794dP/30k9F2EyZMwKpVq2zdHdPc3ICOHXH0YrrF6buOhjSWls0xFys3jzXt2XJbNXOqmV+RW8eItFyF2H22mCo8NqS9kr/7NnUDqu50YX369MHQoUNx1113obCwEC+99BL++OMPJCUlodqtr17v3r07mjRpgnnz5knb+fr6yp76i9OFOS8tpguzRR5Hu4zJqdHIkTjCdGE2P7Pbtm2b0c/x8fGoU6cOEhMT0bVrV2m9r68vQkJCbN08ERFROXY/f0xPTwcABAUFGa1fv349atWqhVatWmHWrFnIzs42mSMvLw8ZGRlGLyIiIrnsWuwMBgOeffZZ3HPPPWjVqpW0fvjw4fjkk0+wa9cuzJo1Cx9//DGeeOIJk3kWLFiAgIAA6RUeHq68c9nZQGQk9r47Bt4Fpqep8i7Ixd53x1iMsxQrN4817dlyWzVzqplfkVvHCCIji5fpNo4NKVDyd6/m8WPXRw8mTZqEP/74A3v37jVaP378eGn5zjvvRGhoKHr16oWUlBQ0bNiwXJ5Zs2Zh+vTp0s8ZGRnKC54QwLlzqAtAZ+ZTS50A6mZclZbNMRcrN4817dlyWzVzqplfkVvHiLRMt3FsSAHp7z4Dqh0/dit2kydPxrfffos9e/agbt26ZmOjoqIAAMnJyRUWO71eD71eb5d+EhGR87N5sRNCYMqUKdi0aRN2796N+vXrW9zmyJEjAIDQ0FBbd4eIiMj2xW7SpEn49NNP8dVXX8HPzw9paWkAgICAAPj4+CAlJQWffvop+vXrh5o1a+LYsWOYNm0aunbtitatW9u6O1TF8FEQ63C8iOSxebF79913ARQ/S1famjVrMGrUKHh5eeGHH37AsmXLkJWVhfDwcAwaNAivvPKKrbtCREQEwE6XMc0JDw8vN3sKkavhQ99E6nLdiaB1OqBFC5y+kglhZpYqoQNO16wnLZtjLlZuHmvas+W2auZUM78it44RaZlu49iQAiV/902Cq6t2/Nh8ujA1cLowUoM9pwuz1ZmdraZAI7InR5gujDO4EhGR02OxIyIip+e6xS47G2jZEt9/ONHi9F3ffzjRYpylWLl5rGnPltuqmVPN/IrcOkbQsiWnxCqLY0MKlPzdq3n8uO4NKkIASUloAsvTdzW5fl5aNsdcrNw81rRny23VzKlmfkVuHSPSMt3GsSEFpL/761Dt+HHdMzsiInIZLHZEROT0XPcyJpED4sPmRPbBMzsiInJ6LHZEROT0XPcypk4HRETg4o0ci9N3XfSvIy2bYy5Wbh5r2rPltmrmVDO/IreOEWmZbuPYkAIlf/d1a/hwujBzOF0YqUGL6cJs0ZfK5CGyJ04XRkREpALXvYxJZIE1Z028i5JnmeTYXPfMLicHuOsufLV2GvQFeSbD9AV5+GrtNItxlmLl5rGmPVtuq2ZONfMr4ch909ytvx/cdVfxMpEVSv621Dx+XPfMzmAADh1CGwBuZj62dBMCbdL+lJbNMRcrN4817dlyWzVzqplfCUfum+Zu/f1IyzbEs2TnJ/1tpcHmx4/JNlVphYiISEOue2ZH5IKs+VzN0c6kbHEXLLkuntkREZHT45kdEVkl8sUt8MnPxYlbPzefvQ05Xt6a9onIEp7ZERGR03PtM7tatXA9K99i2HUf+bO0mIuVm8ea9my5rZo51cyvhCP3TWscG1Liuo8/albzUq09ThfG6cLIjuw9zZc9j197t2mL/LxBpWpwhOnCXPvMjohM4v8IkjPhZ3ZEROT0XPfMLicH6NsXCWeuI+axucjz1FcYpi/Iw9ovYgHAbJylWLl5rGnPltuqmVPN/Eo4ct+05ihjY+/5ODmbi31Ix8+BJcB33wE+PnZv03WLncEA/PQTOsPy9F2dL/whLZtjLlZuHmvas+W2auZUM78Sjtw3rXFsSAnp+LkA1aYLc91iR1SF8POzqs0WN93wLFMZfmZHREROj8WOiIicHosdERE5PX5mR2RH/KzNsTjj517OuE/24NrFztcX2QVFFsOyrbit2lys3DzWtGfLbdXMqWZ+JRy5b1rj2JAS2Z56+Hq6q9Yepwvj/3kTaUKLKdBMsfcdkPa8G9NWeex5JugI04XxMzsiInJ6LHZEROT0XLfY5eYC/ftj9Rdx0Bea/poffWE+Vn8RZzHOUqzcPNa0Z8tt1cypZn4lHLlvWuPYkBIlxw/69y/+t1gFrnuDSlERsHUregJwMzNdjZvBgJ5nDknL5piLlZvHmvZsua2aOdXMr4Qj901rHBtSQjp+zqD432IVuG6xIyJNOdLNYdb2xdVv96+K+++6lzGJiMhlaHZmt3LlSixZsgRpaWlo06YNVqxYgU6dOmnVHSIixWxxtqrVGW9F7drzEQu1aXJmt2HDBkyfPh2xsbE4fPgw2rRpg+joaFy9elWL7hARkZPT5MzuzTffxLhx4zB69GgAwKpVq7BlyxasXr0aL774ohZdIiJyKlX5LNMeVC92+fn5SExMxKxZs6R1bm5u6N27N/bv31/hNnl5ecjLy5N+Tk9PB1D85HylZWVJi0V52TCIiu8oK8rPRYaMOEuxcvNY054tt1Uzp5r5lXDkvmmNY0NKlD5+kJGh6I7MkjpgcTIwobK//vpLABC//PKL0fqZM2eKTp06VbhNbGysAMAXX3zxxRdfFb4uXLhgtvZUiUcPZs2ahenTp0s/GwwG/PPPP6hZsyZ0Ol2l82ZkZCA8PBwXLlxQPMemM+G4mMaxqRjHxTSOTcVsNS5CCPz7778ICwszG6d6satVqxbc3d1x5coVo/VXrlxBSEhIhdvo9Xro9cYzrAcGBtqsT/7+/jwIK8BxMY1jUzGOi2kcm4rZYlwCAgIsxqh+N6aXlxc6dOiAnTt3SusMBgN27tyJLl26qN0dIiJyAZpcxpw+fTpiYmLQsWNHdOrUCcuWLUNWVpZ0dyYREZEtaVLshgwZgr///htz5sxBWloa2rZti23btiE4OFjVfuj1esTGxpa7ROrqOC6mcWwqxnExjWNTMbXHpUp+eSsREZE1ODcmERE5PRY7IiJyeix2RETk9FjsiIjI6Tl9sVu5ciUiIyPh7e2NqKgo/O9//zMb/8UXX6BZs2bw9vbGnXfeia1bt6rUU3VZMy4ffPAB7rvvPtSoUQM1atRA7969LY5jVWbtMVMiISEBOp0OjzzyiH07qBFrx+XmzZuYNGkSQkNDodfr0aRJE6f8e7J2XJYtW4amTZvCx8cH4eHhmDZtGnJzc1XqrXr27NmDAQMGICwsDDqdDps3b7a4ze7du9G+fXvo9Xo0atQI8fHxtuuQbWa8dEwJCQnCy8tLrF69Whw/flyMGzdOBAYGiitXrlQYv2/fPuHu7i4WL14skpKSxCuvvCI8PT3F77//rnLP7cvacRk+fLhYuXKl+O2338SJEyfEqFGjREBAgLh48aLKPbc/a8emRGpqqrjjjjvEfffdJx5++GF1Oqsia8clLy9PdOzYUfTr10/s3btXpKamit27d4sjR46o3HP7snZc1q9fL/R6vVi/fr1ITU0V27dvF6GhoWLatGkq99z+tm7dKl5++WWxceNGAUBs2rTJbPyZM2eEr6+vmD59ukhKShIrVqwQ7u7uYtu2bTbpj1MXu06dOolJkyZJPxcVFYmwsDCxYMGCCuMff/xx0b9/f6N1UVFRYsKECXbtp9qsHZeyCgsLhZ+fn1i7dq29uqiZyoxNYWGhuPvuu8WHH34oYmJinLLYWTsu7777rmjQoIHIz89Xq4uasHZcJk2aJHr27Gm0bvr06eKee+6xaz+1JqfYPf/886Jly5ZG64YMGSKio6Nt0genvYxZ8lVCvXv3ltZZ+iqh/fv3G8UDQHR0tMn4qqgy41JWdnY2CgoKEBQUZK9uaqKyYzNv3jzUqVMHY8eOVaObqqvMuHz99dfo0qULJk2ahODgYLRq1Qqvv/46ihR8lYujqcy43H333UhMTJQudZ45cwZbt25Fv379VOmzI7P3v79V4lsPKuPatWsoKioqNytLcHAwTp48WeE2aWlpFcanpaXZrZ9qq8y4lPXCCy8gLCys3IFZ1VVmbPbu3YuPPvoIR44cUaGH2qjMuJw5cwY//vgjRowYga1btyI5ORkTJ05EQUEBYmNj1ei23VVmXIYPH45r167h3nvvhRAChYWFeOqpp/DSSy+p0WWHZurf34yMDOTk5MDHx0dRfqc9syP7WLhwIRISErBp0yZ4e3tr3R1N/fvvvxg5ciQ++OAD1KpVS+vuOBSDwYA6derg/fffR4cOHTBkyBC8/PLLWLVqldZd09Tu3bvx+uuv45133sHhw4exceNGbNmyBa+++qrWXXN6TntmV5mvEgoJCbEqviqqzLiUWLp0KRYuXIgffvgBrVu3tmc3NWHt2KSkpODs2bMYMGCAtM5gKP7Gbg8PD5w6dQoNGza0b6dVUJljJjQ0FJ6ennB3d5fWNW/eHGlpacjPz4eXl5dd+6yGyozL7NmzMXLkSDz55JMAgDvvvBNZWVkYP348Xn75Zbi5ue75h6l/f/39/RWf1QFOfGZXma8S6tKli1E8AOzYscOpvnqosl+xtHjxYrz66qvYtm0bOnbsqEZXVWft2DRr1gy///47jhw5Ir0eeugh9OjRA0eOHEF4eLia3bebyhwz99xzD5KTk6XiDwCnT59GaGioUxQ6oHLjkp2dXa6glfwPgXDxaYrt/u+vTW5zcVAJCQlCr9eL+Ph4kZSUJMaPHy8CAwNFWlqaEEKIkSNHihdffFGK37dvn/Dw8BBLly4VJ06cELGxsU776IE147Jw4ULh5eUlvvzyS3H58mXp9e+//2q1C3Zj7diU5ax3Y1o7LufPnxd+fn5i8uTJ4tSpU+Lbb78VderUEfPnz9dqF+zC2nGJjY0Vfn5+4rPPPhNnzpwR33//vWjYsKF4/PHHtdoFu/n333/Fb7/9Jn777TcBQLz55pvit99+E+fOnRNCCPHiiy+KkSNHSvEljx7MnDlTnDhxQqxcuZKPHlhjxYoVol69esLLy0t06tRJHDhwQHqvW7duIiYmxij+888/F02aNBFeXl6iZcuWYsuWLSr3WB3WjEtERIQAUO4VGxurfsdVYO0xU5qzFjshrB+XX375RURFRQm9Xi8aNGggXnvtNVFYWKhyr+3PmnEpKCgQcXFxomHDhsLb21uEh4eLiRMnihs3bqjfcTvbtWtXhf9ulIxHTEyM6NatW7lt2rZtK7y8vESDBg3EmjVrbNYffsUPERE5Paf9zI6IiKgEix0RETk9FjsiInJ6LHZEROT0WOyIiMjpsdgREZHTY7EjIiKnx2JHREROj8WONLV7927odDrcvHkTABAfH4/AwEC7tjlq1Cg88sgjdm3DEWm93zqdDps3b5Ydr3V/K+vs2bPQ6XRO/bVPVRGLnZMYNWoUdDodFi5caLR+8+bN0Ol0GvXKekOGDMHp06c17UNJAS55BQcHY9CgQThz5oxd2ktOTsbo0aNRt25d6PV61K9fH8OGDcOhQ4ds2s7//d//IT4+Xvq5e/fuePbZZxXlTExMhE6nw4EDByp8v1evXhg4cCAA4PLly+jbt6+i9pSKi4tD27ZtZcVmZGTg5ZdfRrNmzeDt7Y2QkBD07t0bGzduNDtpc3h4OC5fvoxWrVrZqNdkCyx2TsTb2xuLFi3CjRs3bJo3Pz/fpvnM8fHxQZ06dVRrz5xTp07h0qVL+OKLL3D8+HEMGDCg0t+0XVBQUOH6Q4cOoUOHDjh9+jTee+89JCUlYdOmTWjWrBmee+45Jd0vJyAgwOZnzR06dECbNm2wevXqcu+dPXsWu3btkr7BPSQkBHq93qbt28vNmzdx9913Y926dZg1axYOHz6MPXv2YMiQIXj++eeRnp5e4Xb5+flwd3dHSEgIPDyc9hvUqiabzbJJmoqJiREPPvigaNasmZg5c6a0ftOmTaLsr/nLL78ULVq0EF5eXiIiIkIsXbrU6P2IiAgxb948MXLkSOHn5ydiYmLEmjVrREBAgPjmm29EkyZNhI+Pjxg0aJDIysoS8fHxIiIiQgQGBoopU6YYTfa7bt060aFDB1G9enURHBwshg0bJq5cuSK9XzJZbMlEuCXtlO4LKphMtsT58+fFY489JgICAkSNGjXEQw89JFJTU6X3CwsLxbRp00RAQIAICgoSM2fOFP/5z3/MTtZctk9CCLF+/XoBQJw8eVIIIcTmzZtFu3bthF6vF/Xr1xdxcXGioKBAigcg3nnnHTFgwADh6+tb4aTZBoNBtGzZUnTo0EEUFRWVe790+88//7xo3Lix8PHxEfXr1xevvPKKyM/Pl96PjY0Vbdq0EatWrRJ169YVPj4+4rHHHhM3b96UYkpPUh0TE1NuTFNTU0VhYaEYM2aMiIyMFN7e3qJJkyZi2bJlJsdKCCGWL18u/P39RVZWltH62NhYERYWJh0PAMSmTZuk948dOyZ69OghvL29RVBQkBg3bpzRN2mUnVS7qKhIvP7661LfWrduLb744gvp/ZLf2w8//CA6dOggfHx8RJcuXaTf2Zo1a8rts6mJhp9++mlRrVo18ddff5V7799//5V+1xX9raSmpgoA4rfffjPq17Zt20Tbtm2Ft7e36NGjh7hy5YrYunWraNasmfDz8xPDhg0zGkNL+0vWYbFzEiX/MGzcuFF4e3uLCxcuCCHKF7tDhw4JNzc3MW/ePHHq1CmxZs0a4ePjY/RHHxERIfz9/cXSpUtFcnKySE5OFmvWrBGenp7i/vvvF4cPHxY//fSTqFmzpnjggQfE448/Lo4fPy6++eYb4eXlJRISEqRcH330kdi6datISUkR+/fvF126dBF9+/aV3rdU7K5evSp9pdDFixdF586dxX333SeEECI/P180b95cjBkzRhw7dkwkJSWJ4cOHi6ZNm4q8vDwhhBCLFi0SNWrUEP/9739FUlKSGDt2rPDz87O62G3cuFEAEMeOHRN79uwR/v7+Ij4+XqSkpIjvv/9eREZGiri4OCkegKhTp45YvXq1SElJkb7WpLTDhw8LAOLTTz81/Yu95dVXXxX79u0Tqamp4uuvvxbBwcFi0aJF0vuxsbGiWrVqomfPnuK3334TP/30k2jUqJEYPny4FFO6eNy8eVN06dJFjBs3ThrfwsJCkZ+fL+bMmSN+/fVXcebMGfHJJ58IX19fsWHDBpN9u379utDr9WLt2rXSOoPBICIjI8VLL71kNCYlxS4zM1OEhoaKgQMHit9//13s3LlT1K9f3+gbAsoWu/nz54tmzZqJbdu2iZSUFLFmzRqh1+vF7t27hRC3f29RUVFi9+7d4vjx4+K+++4Td999txBCiOzsbPHcc8+Jli1bSvucnZ1dbn+KiopEjRo1xPjx4y3+Xir6WzFV7Dp37iz27t0rDh8+LBo1aiS6desmHnjgAXH48GGxZ88eUbNmTbFw4ULZ+0vWYbFzEqX/YejcubMYM2aMEKJ8sRs+fLi4//77jbadOXOmaNGihfRzRESEeOSRR4xiSv6vODk5WVo3YcIE4evra/R/49HR0WLChAkm+/nrr78KANI2lopdaVOnThURERHi6tWrQgghPv74Y9G0aVNhMBikmLy8POHj4yO2b98uhBAiNDRULF68WHq/oKBA1K1b16pid+nSJXH33XeLO+64Q+Tl5YlevXqJ119/3Wibjz/+WISGhko/AxDPPvusyTaEEGLDhg0CgDh8+LDZuIosWbJEdOjQQfo5NjZWuLu7i4sXL0rrvvvuO+Hm5iYuX74shChfPLp16yaeeeYZi21NmjRJDBo0yGzM0KFDjb6uZefOnQKA+PPPP6V1pYvd+++/L2rUqCEyMzOl97ds2SLc3Nyk74Ir3d/c3Fzh6+srfvnlF6N2x44dK4YNGyaEMD6zK50TgMjJyRFC3D4DNufKlSvS969ZUtHfiqliV7pfCxYsEABESkqKtG7ChAkiOjpa9v6SdXhR2QktWrQIPXv2xIwZM8q9d+LECTz88MNG6+655x4sW7YMRUVF0rcmV/Rt5L6+vmjYsKH0c3BwMCIjI1G9enWjdVevXpV+TkxMRFxcHI4ePYobN25I31x9/vx5tGjRQvY+vf/++/joo4/wyy+/oHbt2gCAo0ePIjk5GX5+fkaxubm5SElJQXp6Oi5fvoyoqCjpPQ8PD3Ts2FHWt0LXrVsXQghkZ2ejTZs2+O9//wsvLy8cPXoU+/btw2uvvSbFFhUVITc3F9nZ2fD19QVQ8RiWJqcPJTZs2IDly5cjJSUFmZmZKCwshL+/v1FMvXr1cMcdd0g/d+nSBQaDAadOnUJISIjstlauXInVq1fj/PnzyMnJQX5+vsWbOsaMGYPo6GikpKSgYcOGWL16Nbp164ZGjRpVGH/ixAm0adMG1apVk9bdc889Un+Dg4ON4pOTk5GdnY3777/faH1+fj7atWtntK5169bScmhoKADg6tWrqFevnsV9B6z/xnBLv+eK+hUcHAxfX180aNDAaN3//vc/ANbtL8nDYueEunbtiujoaMyaNQujRo2qVI7S/wiV8PT0NPpZp9NVuK6koGVlZSE6OhrR0dFYv349ateujfPnzyM6Otqqm1527dqFKVOm4LPPPjP6ByMzMxMdOnTA+vXry21TUhCV+Pnnn+Hv7486deoYFdTMzEzMnTtXusuwNG9vb2m5ojEsrUmTJgCAkydPmv0HbP/+/RgxYgTmzp2L6OhoBAQEICEhAW+88Ya1u2RRQkICZsyYgTfeeANdunSBn58flixZgoMHD5rdrlevXqhXrx7i4+Mxc+ZMbNy4Ee+9957N+pWZmQkA2LJli1FBB1DuppfSx2TJncglx6QctWvXRmBgIE6ePCkr3tLv2VS/zP3tWLO/JA+LnZNauHAh2rZti6ZNmxqtb968Ofbt22e0bt++fWjSpIl0VmcrJ0+exPXr17Fw4UKEh4cDgNW30ycnJ2Pw4MF46aWXyhWX9u3bY8OGDahTp065s5wSoaGhOHjwILp27QoAKCwsRGJiItq3b2+x7fr161d492L79u1x6tQpk2ctcrVt2xYtWrTAG2+8gSFDhsDNzfjm6Js3byIwMBC//PILIiIi8PLLL0vvnTt3rly+8+fP49KlSwgLCwMAHDhwAG5ubuWOgRJeXl7l7i7dt28f7r77bkycOFFal5KSYnFf3NzcMHr0aHz00Ue444474OXlhcGDB5uMb968OeLj45GVlSUVi3379pnsb4sWLaDX63H+/Hl069bNYn9MqWifK9qXoUOH4uOPP0ZsbKw0niUyMzPh7e1t17stbbW/dBsfPXBSd955J0aMGIHly5cbrX/uueewc+dOvPrqqzh9+jTWrl2Lt99+u8JLnkrVq1cPXl5eWLFiBc6cOYOvv/4ar776quztc3JyMGDAALRr1w7jx49HWlqa9AKAESNGoFatWnj44Yfx888/IzU1Fbt378bUqVNx8eJFAMAzzzyDhQsXYvPmzTh58iQmTpwoPcBeWXPmzMG6deswd+5cHD9+HCdOnEBCQgJeeeUVq/LodDqsWbMGp0+fxn333YetW7fizJkzOHbsGF577TXpcnPjxo1x/vx5JCQkICUlBcuXL8emTZvK5fP29kZMTAyOHj2Kn3/+GVOnTsXjjz9u8hJmZGQkDh48iLNnz+LatWswGAxo3LgxDh06hO3bt+P06dOYPXs2fv31V1n7M3r0aPz111946aWXMGzYMPj4+JiMHTFihNTfP/74Qzp7HzlyZLlLmADg5+eHGTNmYNq0aVi7di1SUlJw+PBhrFixAmvXrpXVv5J9Tk1NxZEjR3Dt2jXk5eVVGPfaa68hPDwcUVFRWLduHZKSkvDnn39i9erVaNeunXTmZS+22l+6jcXOic2bN6/c5Zv27dvj888/R0JCAlq1aoU5c+Zg3rx5lb7caU7t2rURHx+PL774Ai1atMDChQuxdOlS2dtfuXIFJ0+exM6dOxEWFobQ0FDpBRR/hrhnzx7Uq1cPAwcORPPmzTF27Fjk5uZKZ3rPPfccRo4ciZiYGOmy3KOPPqpov6Kjo/Htt9/i+++/x1133YXOnTvjrbfeQkREhNW5OnXqhEOHDqFRo0YYN24cmjdvjoceegjHjx/HsmXLAAAPPfQQpk2bhsmTJ6Nt27b45ZdfMHv27HK5GjVqhIEDB6Jfv3544IEH0Lp1a7zzzjsm254xYwbc3d3RokUL6RLzhAkTMHDgQAwZMgRRUVG4fv260VmeOfXq1UPv3r1x48YNjBkzxmysr68vtm/fjn/++Qd33XUXBg8ejF69euHtt982uc2rr76K2bNnY8GCBWjevDn69OmDLVu2oH79+rL6BwCDBg1Cnz590KNHD9SuXRufffZZhXFBQUE4cOAAnnjiCcyfPx/t2rXDfffdh88++wxLlixBQECA7DYryxb7S7fphLWfxhKRw4mLi8PmzZs5RRWRCTyzIyIip8diR0RETo+XMYmIyOnxzI6IiJweix0RETk9FjsiInJ6LHZEROT0WOyIiMjpsdgREZHTY7EjIiKnx2JHRERO7/8Bmz7491Kn0GMAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "thres = [0] + [round(x, 2) for x in np.sort(y)[[int(len(y)/10*i) for i in range(1,10)]]] + [1]\n", + "fig, ax = plt.subplots(1, 1, figsize=(5, 5))\n", + "for t in thres:\n", + " ax.axvline(t, linestyle=\"--\", c=\"r\", label=\"10% quantiles\"*int(t==0))\n", + "ax.hist(y, bins=60)\n", + "ax.set_xlabel(\"Normalized Per Capita Violent Crime\")\n", + "ax.set_title(\"Histogram\")\n", + "ax.legend()\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "0e049e14", + "metadata": {}, + "source": [ + "By doing so, we create 10 groups based on the target value, where each group has the same number of samples." + ] + }, + { + "cell_type": "markdown", + "id": "3d7fba42", + "metadata": {}, + "source": [ + "## Evaluation functions" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "1c8eddff", + "metadata": {}, + "outputs": [], + "source": [ + "def estimate_scores(mapies, alpha, group_functions, score_functions,\n", + " n_train=2000,n_calib=2000,n_test=500, seed=1):\n", + " \"\"\"\n", + " Sample a new data split, train the estimator on the training set, then\n", + " fit the calibration on the new calibration set. The scores corresponding\n", + " to ``score_functions`` are computing on each group of ``group_functions``.\n", + " \"\"\"\n", + " (mapie_split, mapie_cqr, mapie_ccp) = mapies\n", + " \n", + " x_train, y_train, x_calib, y_calib, x_test, y_test = generate_data(\n", + " seed=seed,\n", + " n_train=n_train,n_calib=n_calib,n_test=n_test\n", + " )\n", + "\n", + " mapie_split.fit(np.vstack([x_train, x_calib]), np.hstack([y_train, y_calib]))\n", + " _, y_pis_split = mapie_split.predict(x_test, alpha=alpha)\n", + " \n", + " mapie_cqr.fit(x_train, y_train, X_calib=x_calib, y_calib=y_calib)\n", + " _, y_pis_cqr = mapie_cqr.predict(x_test)\n", + " \n", + " mapie_ccp.fit(np.vstack([x_train, x_calib]), np.hstack([y_train, y_calib]))\n", + " _, y_pis_ccp = mapie_ccp.predict(x_test)\n", + " \n", + " scores = np.zeros((3, len(score_functions), len(group_functions)))\n", + "\n", + " for i, y_pi in enumerate([y_pis_split, y_pis_cqr, y_pis_ccp]):\n", + " for group_num, group_fn in enumerate(group_functions):\n", + " x_filter = group_fn(x_test, y_test)\n", + " for score_num, score_fn in enumerate(score_functions):\n", + " scores[i,score_num, group_num] = score_fn(\n", + " y=y_test[x_filter],\n", + " lower=y_pi[:, 0, 0][x_filter],\n", + " upper=y_pi[:, 1, 0][x_filter]\n", + " )\n", + " \n", + " return scores\n", + "\n", + "\n", + "def get_scores_n_trials(\n", + " mapies, alpha, n_trials, group_functions, group_names,\n", + " score_functions, score_names, n_train=2000, n_calib=2000, n_test=500,\n", + " ):\n", + " \"\"\"\n", + " Compute ``n_trials`` evaluation scores on different dataset splits.\n", + " \"\"\"\n", + "\n", + " scores = np.zeros((n_trials, 3, len(score_functions), len(group_functions)))\n", + "\n", + " for trial in tqdm(range(n_trials)):\n", + " scores[trial,:,:,:] = estimate_scores(\n", + " mapies, alpha, group_functions, score_functions,\n", + " n_train, n_calib, n_test, trial\n", + " )\n", + " \n", + " method_names = [\"Split\", \"CQR\", \"CCP\"]\n", + " \n", + " scores_df = pd.DataFrame()\n", + " for group_num, group_name in enumerate([e for g in group_names for e in g]):\n", + " for method_num, method_name in enumerate(method_names):\n", + " temp_df = pd.DataFrame(\n", + " {\n", + " 'Method': [method_name] * n_trials, \n", + " 'Group name' : [group_name] * n_trials, \n", + " }\n", + " )\n", + " for score_num, score_name in enumerate(score_names):\n", + " temp_df[score_name] = scores[:,method_num, score_num, group_num] \n", + "\n", + " scores_df = pd.concat([scores_df,temp_df], axis=0)\n", + " \n", + " return scores_df.reset_index(drop=True)" + ] + }, + { + "cell_type": "markdown", + "id": "416c3a11", + "metadata": {}, + "source": [ + "## Plotting functions" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "d2fc2079", + "metadata": {}, + "outputs": [], + "source": [ + "\n", + "def plot_subplot(ax, y_test_sorted, y_pred_sorted, upper_pi, lower_pi, lw,\n", + " color_rgb, xlabel, ylabel, title, showlegend=False):\n", + " color = mcolors.rgb2hex(color_rgb)\n", + " ax.plot(y_test_sorted, y_pred_sorted, lw=lw, color='black', label=\"Prediction\" if showlegend else \"\")\n", + " ax.fill_between(y_test_sorted, upper_pi, lower_pi, color=color, alpha=0.3, label='Prediction interval' if showlegend else \"\")\n", + " ax.plot(y_test_sorted, upper_pi, lw=lw, color=color)\n", + " ax.plot(y_test_sorted, lower_pi, lw=lw, color=color)\n", + " ax.plot([0, 1], [0, 1], lw=lw, color='black', linestyle='--', label=\"Perfect Prediction\" if showlegend else \"\")\n", + " ax.set_ylim([-0.1, 1.1])\n", + " ax.set_xlabel(xlabel)\n", + " ax.set_ylabel(ylabel)\n", + " ax.set_title(title)\n", + "\n", + "\n", + "def plot_score_boxplot(ax, df, score_name, group_names, color_discrete_map):\n", + " flatten_group_names = [item for sub in group_names for item in sub]\n", + " for i, method in enumerate([\"Split\", \"CQR\", \"CCP\"]):\n", + " df_method = df[df[\"Method\"] == method]\n", + " color = color_discrete_map[method]\n", + " \n", + " ax.boxplot(\n", + " [df_method[df_method[\"Group name\"] == g][score_name] for g in flatten_group_names],\n", + " positions=np.arange(len(flatten_group_names)) + (i-1) * 0.2,\n", + " widths=0.2, patch_artist=True,\n", + " boxprops=dict(facecolor=color), medianprops=dict(color=\"black\"),\n", + " labels=[g if i == 1 else \"\" for g in flatten_group_names]\n", + " )\n", + "\n", + " for g in group_names[1:]:\n", + " ax.axvline(x=flatten_group_names.index(g[0]) - 0.5, color='black', linewidth=2)\n", + " ax.tick_params(axis='x', rotation=-45)\n", + " ax.set_xticks(np.arange(len(flatten_group_names)))\n", + " ax.set_xticklabels(flatten_group_names, ha='left', rotation_mode='anchor')\n" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "ee58ce3d", + "metadata": {}, + "outputs": [], + "source": [ + "def plot_results(mapies, alpha, n_trials, group_functions, group_names, score_functions, score_names, n_train=2000, n_calib=2000, n_test=500):\n", + " (mapie_split, mapie_cqr, mapie_ccp) = mapies\n", + " x_train, y_train, x_calib, y_calib, x_test, y_test = generate_data(n_train=n_train, n_calib=n_calib, n_test=n_test)\n", + "\n", + " sort_order = np.argsort(y_test)\n", + " x_test_sorted = x_test[sort_order, :]\n", + " y_test_sorted = y_test[sort_order]\n", + "\n", + " cp = plt.get_cmap('tab10').colors\n", + " plt.rcParams['font.family'] = 'DejaVu Sans'\n", + " plt.rcParams['axes.grid'] = False\n", + "\n", + " fig, axes = plt.subplots(1, 3, figsize=(20, 5))\n", + " # ========================== Split ==========================\n", + " mapie_split.fit(np.vstack([x_train, x_calib]), np.hstack([y_train, y_calib]))\n", + " y_pred_split, y_pis_split = mapie_split.predict(x_test_sorted, alpha=alpha)\n", + " split_lower = y_pis_split[:, 0, 0]\n", + " split_upper = y_pis_split[:, 1, 0]\n", + " plot_subplot(axes[0], y_test_sorted, y_pred_split, split_upper, split_lower, 1, cp[0], \"True Price\", \"Predicted Price\", \"Split\", showlegend=True)\n", + "\n", + " # ========================== CQR ==========================\n", + " mapie_cqr.fit(x_train, y_train, X_calib=x_calib, y_calib=y_calib)\n", + " y_pred_cqr, y_pi_cqr = mapie_cqr.predict(x_test_sorted)\n", + " cqr_lower = y_pi_cqr[:, 0, 0]\n", + " cqr_upper = y_pi_cqr[:, 1, 0]\n", + " plot_subplot(axes[1], y_test_sorted, y_pred_cqr, cqr_upper, cqr_lower, 1, cp[1], \"True Price\", \"Predicted Price\", \"CQR\")\n", + "\n", + " # ========================== CCP ==========================\n", + " mapie_ccp.fit(np.vstack([x_train, x_calib]), np.hstack([y_train, y_calib]))\n", + " y_pred_ccp, y_pis_ccp = mapie_ccp.predict(x_test_sorted)\n", + " ccp_lower = y_pis_ccp[:, 0, 0]\n", + " ccp_upper = y_pis_ccp[:, 1, 0]\n", + " plot_subplot(axes[2], y_test_sorted, y_pred_ccp, ccp_upper, ccp_lower, 1, cp[2], \"True Price\", \"Predicted Price\", \"CCP\")\n", + "\n", + " lines_labels = [ax.get_legend_handles_labels() for ax in fig.axes]\n", + " lines, labels = [sum(lol, []) for lol in zip(*lines_labels)]\n", + " fig.legend(lines, labels, loc=\"upper right\")\n", + "\n", + " plt.subplots_adjust(top=0.95, right=0.9)\n", + " plt.show()\n", + "\n", + " if n_trials:\n", + " # ========================== Compute Scores on many tries ==========================\n", + " scores_df = get_scores_n_trials(mapies, alpha, n_trials, group_functions, group_names, score_functions, score_names, n_train, n_calib, n_test)\n", + " # ============================ Plot results ============================\n", + " for score_name in score_names:\n", + " fig, ax = plt.subplots(figsize=(30, 10))\n", + "\n", + " color_discrete_map = dict(zip([\"Split\", \"CQR\", \"CCP\"], [mcolors.rgb2hex(c) for c in cp[:3]]))\n", + "\n", + " plot_score_boxplot(ax, scores_df, score_name, group_names, color_discrete_map)\n", + "\n", + " if score_name == \"Coverage\":\n", + " ax.axhline(1 - alpha, color='red', linewidth=3)\n", + "\n", + " ax.set_title(score_name, fontsize=22)\n", + " ax.set_xlabel(\"Groups\", fontsize=20)\n", + " ax.set_ylabel(score_name, fontsize=20)\n", + " ax.tick_params(axis='both', which='major', labelsize=20)\n", + " \n", + " legend_handles = [mpatches.Patch(color=color, label=method) for method, color in color_discrete_map.items()]\n", + " fig.legend(handles=legend_handles, loc='upper right', fontsize=18)\n", + "\n", + " plt.tight_layout()\n", + " plt.show()\n", + "\n", + " return scores_df" + ] + }, + { + "cell_type": "markdown", + "id": "4f7526a0", + "metadata": {}, + "source": [ + "## Evaluation methods and configuration" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "47a9f9d4", + "metadata": {}, + "outputs": [], + "source": [ + "# Number of trials, to reduce stochasticity in the evaluation\n", + "N_TRIALS = 10\n", + "\n", + "# scores functions\n", + "coverage_funct = lambda y, lower, upper : np.mean((lower <= y) & (y <= upper))\n", + "width_funct = lambda y, lower, upper : np.mean(np.abs(upper-lower))\n", + "score_functions = [coverage_funct, width_funct]\n", + "score_names = [\"Coverage\", \"Width\"]\n", + "\n", + "# Groups functions: the scores will be evaluated on each one of these groups.\n", + "thres = thres = [0] + [round(x, 2) for x in np.sort(y)[[int(len(y)/10*i) for i in range(1,10)]]] + [1]\n", + "\n", + "# index of the 4 columns of interest:\n", + "# 'racepctblack', 'racePctWhite', 'racePctAsian', 'racePctHisp'\n", + "group_cols = [4, 5, 6, 7]\n", + "\n", + "group_functions = (\n", + " # all dataset, for marginal evaluation\n", + " [lambda x, y: np.ones(len(x)).astype(bool)]\n", + " # 10 target groups\n", + " + [lambda x, y, i=i : np.logical_and(y>=thres[i], y <= thres[i+1]) for i in range(10)]\n", + " # groups on ethnicity features\n", + " + [lambda x, y, c=c, q1=q1, q2=q2 : np.logical_and(\n", + " x[:, c] >= np.sort(X_scaled[:,c])[int(len(X_scaled)*q1)],\n", + " x[:, c] <= np.sort(X_scaled[:,c])[int(len(X_scaled)*q2)-1])\n", + " for c in group_cols\n", + " for (q1, q2) in zip([0, 0.25, 0.5, 0.75], [0.25, 0.5, 0.75, 1])\n", + " ]\n", + ")\n", + "group_names = (\n", + " [[\"MARGINAL\"]] \n", + " + [[f\"Crime: {thres[i]} - {thres[i+1]}\" for i in range(10)]]\n", + " + [\n", + " [\n", + " f\"{col_names[c]} : {q1}-{q2}%\" \n", + " for (q1, q2) in zip([0, 25, 50, 75], [25, 50, 75, 100])\n", + " ]\n", + " for c in group_cols\n", + " ]\n", + ")\n" + ] + }, + { + "cell_type": "markdown", + "id": "cbd5a78b", + "metadata": {}, + "source": [ + "## Model used for predictions" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "e5f1e425", + "metadata": {}, + "outputs": [], + "source": [ + "estimator = LGBMRegressor(\n", + " objective='quantile',\n", + " alpha=0.5,\n", + " learning_rate=0.2,\n", + " max_depth=12,\n", + " n_estimators=100,\n", + " num_leaves=7,\n", + " random_state=4,\n", + " verbose=-1,\n", + ")" + ] + }, + { + "cell_type": "markdown", + "id": "92245e47", + "metadata": {}, + "source": [ + "# Experiments and results:" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "d9162ab5", + "metadata": {}, + "outputs": [], + "source": [ + "ALPHA = 0.2\n", + "n_train, n_calib = 650, 650\n", + "\n", + "# PredefinedSplit is used to make sur that each method is trained\n", + "# and calibrated on the same data, to have a fair comparison\n", + "cv = PredefinedSplit([-1]*n_train + [1]*n_calib)\n", + "\n", + "# ================= Split =================\n", + "mapie_split = MapieRegressor(\n", + " estimator, method=\"base\", cv=cv,\n", + " conformity_score=AbsoluteConformityScore(sym=False)\n", + ")\n", + "\n", + "# ================= CQR =================\n", + "mapie_cqr = MapieQuantileRegressor(estimator, alpha=ALPHA)" + ] + }, + { + "cell_type": "markdown", + "id": "e3a08161", + "metadata": {}, + "source": [ + "---" + ] + }, + { + "cell_type": "markdown", + "id": "e57f92fb", + "metadata": {}, + "source": [ + "## 1. Using ``GaussianCCP`` calibrator for adaptativity without prior knowledge on the dataset or biases" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "45ef86a4", + "metadata": {}, + "outputs": [], + "source": [ + "calibrator = CustomCCP(\n", + " [ # GaussianCCP is used to have a general good adaptativity\n", + " GaussianCCP(100, 10, random_sigma=True),\n", + " ],\n", + " normalized=True,\n", + " bias=True,\n", + " reg_param = 5e-4,\n", + ")\n", + "mapie_ccp = SplitCPRegressor(\n", + " estimator, calibrator, cv=cv, alpha=ALPHA,\n", + " conformity_score=AbsoluteConformityScore(sym=False),\n", + ")" + ] + }, + { + "cell_type": "markdown", + "id": "a827bd88", + "metadata": {}, + "source": [ + "### Plotting the result" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "c0d5742b", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABxYAAAH5CAYAAACs6ttbAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3xT9foH8E/2aJJuaOkEmQqKgiLKVXCCC9wiCji4DnBcxf1T0Xu9ep2IinpFQRFUvAxREFSQ0RbKEFD2aEtL90rbpFln/P44TehImpPdtM/79fJVac45+SYt9PR8zvM8Ep7neRBCCCGEEEIIIYQQQgghhBBCSCekkV4AIYQQQgghhBBCCCGEEEIIIaTro2CREEIIIYQQQgghhBBCCCGEEOIVBYuEEEIIIYQQQgghhBBCCCGEEK8oWCSEEEIIIYQQQgghhBBCCCGEeCWP9AIIIYQQQgghhBBCCCGEEEK6I5Zl4XA4Ir0MQkRTKpWQSj3XJVKwSAghhBBCCCGEEEIIIYQQEkQ8z6OiogJGozHSSyHEJ1KpFH379oVSqXT7uITneT7MayKEEEIIIYQQQgghhBBCCOm2ysvLYTQa0atXL2i1WkgkkkgviRCvOI5DWVkZFAoFMjMz3X7fUsUiIYQQQgghhBBCCCGEEEJIkLAs6woVExMTI70cQnySnJyMsrIyMAwDhULR4XHPTVIJIYQQQgghhBBCCCGEEEKIT5wzFbVabYRXQojvnC1QWZZ1+zgFi4SQLmPRokWQSCQoKipyfW7s2LEYO3ZsxNZECCGEEEIIIYQQQggh/qD2pyQaefu+pWCREBKQv/76C7fccguysrKgVquRlpaGK6+8Eh988EFInq+srAxz5szB3r17Q3J8QgghhESnEydO4IEHHkC/fv2gVqthMBhw8cUX4/3334fFYnFt53A4MG/ePJx//vnQ6/XQ6XQ4//zz8cEHH4BhmA7Hzc7OhkQicf0XExODCy64AF999VU4Xx4hhBBCooTYcxKWZbFw4UKMHTsWCQkJUKlUyM7Oxj333INdu3a5tnPehO38T61WY+DAgZg1axYqKysj8RIJIYT0cDRjkRDit7y8PIwbNw6ZmZmYMWMGUlJSUFJSgu3bt+P999/HI488EvBz/PLLL23+XFZWhldeeQXZ2dkYPnx4wMcnhBBCSPRbs2YNbr31VqhUKkydOhVDhw6F3W5HTk4OnnrqKRw4cAD//e9/YTabce2112Lz5s247rrrMH36dEilUqxbtw6PPvooVq1ahR9//LFDu6Lhw4fjySefBACUl5djwYIFmDZtGmw2G2bMmBGJl0wIIYSQLkjsOYnFYsFNN92EdevW4ZJLLsHzzz+PhIQEFBUVYdmyZfjyyy9RXFyM9PR017FfffVV9O3bF1arFTk5Ofj444+xdu1a7N+/n1otEkIICSsKFgkhfnvttdcQGxuLnTt3Ii4urs1jVVVVQXkOZz9nQgghhBB3CgsLcccddyArKwsbN25Eamqq67GZM2fi+PHjWLNmDQDgiSeewObNm/HBBx9g1qxZru0eeughfPTRR5g1axaeeuopfPTRR22eIy0tDXfddZfrz9OnT0e/fv3w3nvvUbBICCGEEAC+nZM89dRTWLduHd577z08/vjjbY7z8ssv47333utw/AkTJmDkyJEAgPvvvx+JiYl499138cMPP2Dy5Mmhe2GEEBIi06dPh9FoxKpVqwAII7GGDx+OuXPn+n3MYByDeEetUAkhfjtx4gTOOuusDqEiAPTq1cv1/xKJBLNmzcKSJUswaNAgqNVqjBgxAlu2bPH6HK1nLG7atAnnn38+AOCee+5xtQFZtGhRMF4OIYQQQqLQm2++CZPJhM8//7zNBTyn/v3747HHHsOpU6fw+eef47LLLmsTKjrNnDkT48aNw3//+1+UlpZ2+pzJyckYPHgwTpw4EbTXQQghhJDo5ss5yaeffoorr7yyQ6gIADKZDLNnz25TrejOZZddBkAINAkhJJimT5/uuu6qVCrRv39/vPrqq25HRwTTihUr8M9//lPUtps2bYJEIoHRaPT7GMR/FCwSQvyWlZWF3bt3Y//+/V633bx5Mx5//HHcddddePXVV1FbW4vx48eL2tdpyJAhePXVVwEAf//737F48WIsXrwYl1xyid+vgRBCCCHR7ccff0S/fv1w0UUXdbrdzz//DJZlMXXqVI/bTJ06FQzDYN26dZ0ei2EYnDp1CvHx8X6tmRBCCCHdjy/nJAzD4O677w7o+Zw3OCUmJgZ0HEIIcWf8+PEoLy/HsWPH8OSTT2LOnDl46623Omxnt9uD9pwJCQnQ6/URPwbxjoJFQojfZs+ejebmZgwfPhwXXXQRnnnmGfzyyy9wOBwdtt2/fz/WrVuHF198EU8//TS2bNkCnufx0ksviX6+3r17Y8KECQCA0aNH46677sJdd92Ffv36Be01EUIIISR6NDY2orS0FMOGDfO67cGDBwEA55xzjsdtnI85t3VyOByoqalBTU0N9u/fj3vvvRcVFRW45ZZbAlg9IYQQQroLX85JDh06BACitm2toaEBNTU1OHXqFL777ju8+uqr0Gg0uO666/xaMyGEdEalUiElJQVZWVl46KGHcMUVV2D16tWYPn06Jk2ahNdeew19+vTBoEGDAAAlJSW47bbbEBcXh4SEBEycOBFFRUWu47EsiyeeeAJxcXFITEzE008/DZ7n2zzn2LFj21Ry22w2PPPMM8jIyIBKpUL//v3x+eefo6ioCOPGjQMAxMfHQyKRYPr06W6PUV9fj6lTpyI+Ph5arRYTJkzAsWPHXI8vWrQIcXFxWL9+PYYMGQKdTucKVYlnNGOREOK3K6+8Etu2bcPrr7+O9evXY9u2bXjzzTeRnJyMBQsW4IYbbnBtO3r0aIwYMcL158zMTEycOBE//vgjWJaFTCaLxEsghBBCSBRrbGwEAFF3pDY1NXnd1vmYc1unX375BcnJyW0+d88997i9Y5cQQgghPY8v5yS+bNvaFVdc0ebPWVlZWLJkCdLS0nw6DiEkcpqbm3H48OGwP+/gwYOh1WoDOoZGo0FtbS0AYMOGDTAYDPj1118BCDdiXn311Rg9ejS2bt0KuVyOf/3rXxg/fjz+/PNPKJVKvPPOO1i0aBG++OILDBkyBO+88w5WrlzpauvsztSpU7Ft2zbMmzcP55xzDgoLC1FTU4OMjAwsX74cN998M44cOQKDwQCNRuP2GNOnT8exY8ewevVqGAwGPPPMM7jmmmtw8OBBKBQKAMLX5e2338bixYshlUpx1113Yfbs2ViyZElA71l3RsEiISQg559/PlasWAG73Y59+/Zh5cqVeO+993DLLbdg7969OPPMMwEAAwYM6LDvwIED0dzcjOrqaqSkpIR76YQQQgiJcgaDAUDHINAdT6Fha87HWs+KBoBRo0bhX//6F1iWxf79+/Gvf/0L9fX1UCqV/i6dEEIIId2IL+ckvmzb2kcffYSBAwdCLpejd+/eGDRoEKRSakZHSDQ5fPhwm8KLcNm9ezfOO+88v/bleR4bNmzA+vXr8cgjj6C6uhoxMTFYsGCB6/ehr7/+GhzHYcGCBZBIJACAhQsXIi4uDps2bcJVV12FuXPn4rnnnsNNN90EAPjkk0+wfv16j8979OhRLFu2DL/++qvrxorWXesSEhIACL+7xcXFuT2GM1DMzc11talesmQJMjIysGrVKtx6660AhGD0k08+wRlnnAEAmDVrlmscF3GPgkVCSFAolUqcf/75OP/88zFw4EDcc889+P777/Hyyy9HemmEEEII6aYMBgP69Okjamaz82anP//8E8OHD3e7zZ9//gkAHdqsJyUluX6ZvfrqqzF48GBcd911eP/99/HEE08E8AoIIYQQ0h34ck4yePBgAMBff/3l8ZzEnQsuuAAjR470d4mEkC5g8ODB2L17d0Se11c//fQTdDodHA4HOI7DnXfeiTlz5mDmzJkYNmxYm5ss9+3bh+PHj3eoxLZarThx4gQaGhpQXl6OUaNGuR6Ty+UYOXJkh3aoTnv37oVMJsOll17q89qdDh06BLlc3uZ5ExMTMWjQIFdbagDQarWuUBEAUlNTUVVV5ffz9gQULBJCgs55otu6F3Xr3tVOR48ehVar7dBarDPOu14IIYQQQgDguuuuw3//+19s27YNo0eP9rjdhAkTIJPJsHjxYkydOtXtNl999RWUSiUmTpzY6XNee+21uPTSS/Hvf/8bDzzwAGJiYgJ6DYQQQgiJfr6ek3z99de4++67w7hCQkikabVavysHw23cuHH4+OOPoVQq0adPH8jlp6Ok9r//mEwmjBgxwm3rUF+u+7bmqbVpKDhbojpJJBKPgScRUL08IcRvv//+u9t/ZNeuXQsAruG9ALBt2zb88ccfrj+XlJTghx9+wFVXXeXTfEXnDy6j0ejnqgkhhBDSnTz99NOIiYnB/fffj8rKyg6PnzhxAu+//z7S09Nx33334bfffsPHH3/cYbtPPvkEGzduxAMPPIDExESvz/vMM8+gtrYWn332WVBeByGEEEKim9hzkoyMDMyYMQO//PILPvjggw7bcRyHd955B6dOnQrHsgkhxK2YmBj0798fmZmZbUJFd8477zwcO3YMvXr1Qv/+/dv8Fxsbi9jYWKSmpiI/P9+1D8MwnVZvDhs2DBzHYfPmzW4fd1ZMsizr8RhDhgwBwzBtnre2thZHjhxxdbQh/qGKRUKI3x555BE0NzfjxhtvxODBg2G325GXl4fvvvsO2dnZuOeee1zbDh06FFdffTUeffRRqFQqzJ8/HwDwyiuv+PScZ5xxBuLi4vDJJ59Ar9cjJiYGo0aNQt++fYP62gghhBASHc444wwsXboUt99+O4YMGYKpU6di6NChrvOS77//HtOnTwcAvPvuuzh8+DAefvhhrFu3DuPHjwcArF+/Hj/88AMuu+wyvPXWW6Ked8KECRg6dCjeffddzJw5s8NdroQQQgjpWXw5J3nnnXdw4sQJPProo1ixYgWuu+46xMfHo7i4GN9//z0OHz6MO+64I7IviBBCRJoyZQreeustTJw4Ea+++irS09Nx8uRJrFixAk8//TTS09Px2GOP4Y033sCAAQMwePBgvPvuu50WjmRnZ2PatGm49957MW/ePJxzzjk4efIkqqqqcNtttyErKwsSiQQ//fQTrrnmGmg0Guh0ujbHGDBgACZOnIgZM2bg008/hV6vx7PPPou0tDSvXWpI56hikRDit7fffhvjxo3D2rVr8cQTT+CJJ57Ajh078PDDDyM/P7/N4NxLL70Uc+fOxeLFi/HSSy8hISEBP//8M84++2yfnlOhUODLL7+ETCbDgw8+iMmTJ3u8c4UQQgghPcMNN9yAP//8E7fccgt++OEHzJw5E88++yyKiorwzjvvYN68eQCEu25/++03zJ07F6WlpZg9ezYefvhh/PDDD5g2bRp+/fVXqFQq0c87e/ZslJSUuG35QwghhJCeR+w5iVarxc8//4wFCxaAZVn885//xIMPPohFixZh1KhR2L17N9LS0iL8agghRBytVostW7YgMzMTN910E4YMGYL77rsPVqsVBoMBAPDkk0/i7rvvxrRp0zB69Gjo9XrceOONnR73448/xi233IKHH34YgwcPxowZM2A2mwEAaWlpeOWVV/Dss8+id+/emDVrlttjLFy4ECNGjMB1112H0aNHg+d5rF27lm4MDZCEp2axhJAQk0gkmDlzJj788MNIL4UQQgghpI3GxkZceumlOHHiBLZs2YLhw4dHekmEEEIIIYSQKGe1WlFYWIi+fftCrVZHejmE+MTb9y9VLBJCCCGEEEJ6LIPBgJ9//hlJSUm45pprcPLkyUgviRBCCCGEEEII6bJoxiIhhBBCCCGkR0tJSUFBQUGkl0EIIYQQQgghhHR5VLFICCGEEEIIIYQQQgghhBBCCPGKKhYJISFHo1wJIYQQQgghhBBCCCGEkOhHFYuEEEIIIYQQQgghhBBCCCGEEK8oWCSEEEIIIYQQQgghhBBCCCGEeNXjWqFyHIeysjLo9XpIJJJIL4cQQgjpEnieR1NTE/r06QOplO47CiU6FyGEEEI6onOR8KFzEUIIIaQjOhchRLweFyyWlZUhIyMj0ssghBBCuqSSkhKkp6dHehndGp2LEEIIIZ7RuUjo0bkIIYQQ4hmdixDiXY8LFvV6PQDhHwiDwRDh1RBCCCFdQ2NjIzIyMlw/J0no0LkIIYQQ0hGdi4QPnYuQ7qDWUotrV16LM2LPwCdXfgK9kv7tIMSdebvnYemRpbh14K14cuSTkV6OW3Py5mBv1V5MO2sakjRJovbJK8vDyuMr0dfQF99c901Q1hGucxGrg4Wd5UL6HK0pZVKoFbKwPZ8vpk+fDqPRiFWrVgEAxo4di+HDh2Pu3Ll+HzMYx/Bm06ZNGDduHOrr6xEXFxey5wk1iUSClStXYtKkST7v2+OCRWebD4PBQCfQhBBCSDvUDiv06FyEEEII8YzORUKPzkVId2BX2CHTyCBRS6DT62BQ0fcyIe5ItVLINDKoY9Rd8t98juewu2E3BqUMQu+E3lDL1aL2U8eoIdPIoNAqgv66QnkuYnWw+OVABRqsjpA9R3uxagWuOitFdLg4ffp0fPnllwAAhUKBzMxMTJ06Fc8//zzk8tDGSStWrIBCoRC1radwz5dj+Ouiiy5CeXk5YmNjRe/TPkSNdj0uWCSEEEIIIYQQQgghhEQ/lmfB83ykl0FIl+Vgwxdg+eNI3RHUWeuQrk8XHSpGMzvLocHqgFoug0oe+jmONkZ4PjvL+VS1OH78eCxcuBA2mw1r167FzJkzoVAo8Nxzz3XY1m63Q6lUBmW9CQkJXeIY3iiVSqSkpIT8edwJ5vsdCJpCSgghhBBCCCGEEEIIiToMx4BD+FoKEhJtHFzXDhZzy3KhkqmQpc+K9FLCSiWXQquUh/w/f8NLlUqFlJQUZGVl4aGHHsIVV1yB1atXAxAq7yZNmoTXXnsNffr0waBBgwAILdZvu+02xMXFISEhARMnTkRRUZHrmCzL4oknnkBcXBwSExPx9NNPd7gxZOzYsXj88cddf7bZbHjmmWeQkZEBlUqF/v374/PPP0dRURHGjRsHAIiPj4dEIsH06dPdHqO+vh5Tp05FfHw8tFotJkyYgGPHjrkeX7RoEeLi4rB+/XoMGTIEOp0O48ePR3l5ucf3Z9OmTZBIJDAajaKOMWfOHHz55Zf44YcfIJFIIJFIsGnTJlHvm7v3+/nnn8eoUaM6rOucc87Bq6++CgDYuXMnrrzySiQlJSE2NhaXXnop/vjjD4+vyVcULBJCCCGEEEIIIYQQQqIOy7PgeAoWCfGkqweLOaU5yDZkI04dF+mlkE5oNBrY7XbXnzds2IAjR47g119/xU8//QSHw4Grr74aer0eW7duRW5uritcc+73zjvvYNGiRfjiiy+Qk5ODuro6rFy5stPnnTp1Kr755hvMmzcPhw4dwqeffgqdToeMjAwsX74cAHDkyBGUl5fj/fffd3uM6dOnY9euXVi9ejW2bdsGnudxzTXXwOE4/XejubkZb7/9NhYvXowtW7aguLgYs2fP9uk96uwYs2fPxm233eYKG8vLy3HRRReJet/cvd9TpkzBjh07cOLECdc2Bw4cwJ9//ok777wTANDU1IRp06YhJycH27dvx4ABA3DNNdegqanJp9flCbVCJYQQQgghhBBCCCGERB2Wo1aohHTGztq9bxQhZocZe6v2YmzGWOgUukgvh7jB8zw2bNiA9evX45FHHnF9PiYmBgsWLHC15Pz666/BcRwWLFjgmlG5cOFCxMXFYdOmTbjqqqswd+5cPPfcc7jpppsAAJ988gnWr1/v8bmPHj2KZcuW4ddff8UVV1wBAOjXr5/rcWfL0169erWZsdjasWPHsHr1auTm5uKiiy4CACxZsgQZGRlYtWoVbr31VgCAw+HAJ598gjPOOAMAMGvWLFfln1idHUOn00Gj0cBms7VpoSrmfQM6vt+AUJ24dOlSvPjii67XNWrUKPTv3x8AcNlll7VZ33//+1/ExcVh8+bNuO6663x6be5QxSIhhBBCCCGEEEIIISTqMDxDFYuEdKIrVyzuKN8BlmeRZciCTCp+/h8JvZ9++gk6nQ5qtRoTJkzA7bffjjlz5rgeHzZsWJuQa9++fTh+/Dj0ej10Oh10Oh0SEhJgtVpx4sQJNDQ0oLy8vE37TrlcjpEjR3pcw969eyGTyXDppZf6/ToOHToEuVze5nkTExMxaNAgHDp0yPU5rVbrCgQBIDU1FVVVVT49lz/H8Pa+ObV/vwFgypQpWLp0KQAhAP7mm28wZcoU1+OVlZWYMWMGBgwYgNjYWBgMBphMJhQXF/v0ujyhikVCCCGEEEIIIYQQQkjUYXkWPKhikRBPGI6J9BI8yi3LRaI6EX1i+kR6KaSdcePG4eOPP4ZSqUSfPn0gl7eNkWJiYtr82WQyYcSIEViyZEmHYyUnJ/u1Bo1G49d+/lAoFG3+LJFIfK6G9+cYYt+39u83AEyePBnPPPMM/vjjD1gsFpSUlOD22293PT5t2jTU1tbi/fffR1ZWFlQqFUaPHt2mxWogKFgkhBBCCCGEEEIIIYREHZajGYuEdKYrVyxuPbUV2YZs6JX6SC+FtBMTE+NqqSnGeeedh++++w69evWCwWBwu01qairy8/NxySWXAAAYhsHu3btx3nnnud1+2LBh4DgOmzdvdrVCbc1ZwceyrMd1DRkyBAzDID8/39UKtba2FkeOHMGZZ54p+vUFg1Kp7LBWMe+bJ+np6bj00kuxZMkSWCwWXHnllejVq5fr8dzcXMyfPx/XXHMNAKCkpAQ1NTWBv5AW1AqVEEIIiTIsxyPnWPBOBgghhBBCfOKwAlvfA9iue7GSENIzsDwFi4R0pqsGi8WNxSgzlyFdnw6NPHyVaSQ0pkyZgqSkJEycOBFbt25FYWEhNm3ahEcffRSnTp0CADz22GN44403sGrVKhw+fBgPP/wwjEajx2NmZ2dj2rRpuPfee7Fq1SrXMZctWwYAyMrKgkQiwU8//YTq6mqYTKYOxxgwYAAmTpyIGTNmICcnB/v27cNdd92FtLQ0TJw4MSTvRWev588//8SRI0dQU1MDh8Mh6n3rzJQpU/Dtt9/i+++/b9MGFRBe++LFi3Ho0CHk5+djypQpQa0CpWCREEIIiTLf7SzBXZ/nY9nOkkgvhRBCCCE90YkNwIY5wKEfI70SQkgPx/Ksz+3qCOlJHF30JqDcslzIJDJkG7IhkUgivZywszEcmu1MyP+zMeG58UKr1WLLli3IzMzETTfdhCFDhuC+++6D1Wp1VeI9+eSTuPvuuzFt2jSMHj0aer0eN954Y6fH/fjjj3HLLbfg4YcfxuDBgzFjxgyYzWYAQFpaGl555RU8++yz6N27N2bNmuX2GAsXLsSIESNw3XXXYfTo0eB5HmvXru3QujTUZsyYgUGDBmHkyJFITk5Gbm6uqPetM7fccgtqa2vR3NyMSZMmtXns888/R319Pc477zzcfffdePTRR9tUNAZKwvewn76NjY2IjY1FQ0ODz+WlhBBCSKTxPI+r3tuCY1UmvH7jMEwelRmU49LPx/Ch95oQQkjU++VFIG8ecOOnwDl3BOWQ9PMxfOi9Jt1BjaUG45aNgwQS/Hjjj8gyZEV6SYR0Sbf+eCsO1x3GnYPvxHOjnov0clwe/u1hnGo6helDpyNBneDz/ltPbcWyo8twRuwZWDVpVVDWFOyfj1arFYWFhejbty/UarXwOQeLXw5UoMEavsA3Vq3AVWelQK2Qhe05SfRz9/3bGs1YJIQQQqJIfmEdjlV1bO9ACCGEEBI2xdsivQJCCAEA8ODBcEykl0FIl9UVW6E6WAd2VuzEqNRR0Ct61nxFtUKGq85KgZ0NXwtnpUxKoSIJOgoWCSGEkCiyKLcIUgnA9ah+A4QQQgjpMhgbUL4v0qsghBAXO2eP9BII6bIYtusF73uq9sDKWpGhz4BCFt52lF2BWiGjoI9EPZqxSAghhESJMqMFvx6sxKCUnnVHHyGEEEK6kPJ9AEsX8QkhXYed/k0ixCOG73rBYk5ZDvQKPTL0GZFeCiHETxQsEkIIIVFiSf5JKOVSDEujWTiEEEIIiZDi7ZFeASGEtEHBIiGedcVWqDmnctAvth/0SrppmpBoRcEiIYQQEgWsDhZL84txbmYckmJUkV4OIYQQQnqq4u2AXBPpVRBCiIuD7XrBCSFdhZgZpBzPgefDM2+lurkax4zHkK5PR4wiJizPSQgJPgoWCSGEkCjw05/lqG92YGhaLPXiJ4QQQkhk8DxQsh2Iy4z0Sggh3VyDrQGLDy4WtS3NWIxOJ4wnIr2EHkFMxeIzW57BCzkvhCVczCvLgwQSZBmyIJVQNEFItKK/vYQQQkgXx/M8FuYWYnCKHn0TYyCRSCK9JEIIIYT0RPWFQHMtEJse6ZUQQrq557Y+hzd3vomDtQe9bkutUKPP4brDmPTDJOwo3xHppXR7YioW/6j6A8eNx2F2mEO+npzSHPTR9UGyNjnkz0UICR0KFgkhhJAubk+JEQfKGnFOeiwSYpSRXg4hhBBCeqrifOFjXFZk10EI6facAUe5qdzrttQKNfocrT8KAKgwV0R4Jd2ft2Cx2dGMquYqWBgLWJ4N6VpYjkVeWR6yDFnQK2i+IiHRjIJFQgghpIv7Mq8IyToVBqXoIZNStSIhhBBCIqRkO2DoA2gTIr0SQghxCVcrVI7nMOzLYThuPB6W5+vOihqKIr2EHoHnea/BYmFjIQDAylhFVTcG4lDdITTaG5GuS4dKrgrpcxFCQouCRUIIIaQLq2qyYs2f5Tg3Mw699OpIL4cQQgghPdnJbUBsJqCgcxJCSNcRrlaoRY1FAID/7PhPWJ4vkh767SHUWGpCdvyChoKQHZucxvIseHQ+N7GwoSVYZK0hr1jMLc2FWqZGloE6H/RUc+bMQe/evSGRSLBq1apILyck5syZg+HDh7v+PH36dEyaNCmgYwbjGMFGwSIhhBDShX2TXwKZVIKz02KhVsgivRxCCCGE9FQWI1BzVKhYlLcEiw5LRJdECCEAYGNtkV5Ct1JprkROaQ5mb54dsudwhlkktMRUIDq/FnbWDo7nQrqeraVb0Te2L2JVsSF9HhKY6dOnQyKRQCKRQKlUon///nj11VfBMIFVtB46dAivvPIKPv30U5SXl2PChAkBr7V9iNfZds7XJJfLkZ2djX/84x8wmUwBr8Gb999/H4sWLRK1bVFRESQSCfbu3ev3McJFHukFEEIIIcQ9B8vh6+0ncU56LFLjNJFeDiGEEEK8sTYAv/8buPxlQKkVtw/rACQyQNrF7/s9tQsAL1QsSlrWSsEiIaQLoBmLweUMl0IVMnE8h1NNp0JybNKWg/P+d+OE8QQAoaVwKFuhNtmb8FfNX7g883LoFLqQPQ8JjvHjx2PhwoWw2WxYu3YtZs6cCYVCgeeee87nY7EsC4lEghMnhO+1iRMnQiIJ/5ifs846C7/99hsYhkFubi7uvfdeNDc349NPP+2wrd1uh1KpDMrzxsYGHqQH4xjB1sV/cyGEEEJ6rnX7K1BtsuHs9DgY1HQvECGEENLlHV0P5H8CHP9V/D5LbwPWzgb4zluVRVzJdkBlAGLTI70SQghpI1wzFklwVJgr6GsWJmKCxQJjARRSBRiOCenXJb88HxzPIUufBZmUujF1dSqVCikpKcjKysJDDz2EK664AqtXrwYA2Gw2zJ49G2lpaYiJicGoUaOwadMm176LFi1CXFwcVq9ejTPPPBMqlQr33nsvrr/+egCAVCptEywuWLAAQ4YMgVqtxuDBgzF//vw2azl16hQmT56MhIQExMTEYOTIkcjPz8eiRYvwyiuvYN++fa5qxM6q+uRyOVJSUpCeno7bb78dU6ZMcb0mZ+XjggUL0LdvX6jVQncOo9GI+++/H8nJyTAYDLjsssuwb9++Nsd944030Lt3b+j1etx3332wWq1tHm/fxpTjOLz55pvo378/VCoVMjMz8dprrwEA+vbtCwA499xzIZFIMHbsWLfHsNlsePTRR9GrVy+o1WqMGTMGO3fudD2+adMmSCQSbNiwASNHjoRWq8VFF12EI0eOeHx/fEVXKQkhhJAualFeEfon69AvOSYid3MRQgghxEcnc4WPrMg7/nkeOLVTqFpkbF17duHJbUBcFqDSAZa6SK+GEEJcKKSKLkUNRZFeQo/hrQKR4RiUNJUgJSYFp0yn0GxvDtlackpzkKxJRqouNWTPQUJHo9GgtrYWADBr1iwcPHgQ3377Lfr06YOVK1di/Pjx+OuvvzBgwAAAQHNzM/7zn/9gwYIFSExMRGpqKsaOHYt77rkH5eXlruMuWbIEL730Ej788EOce+652LNnD2bMmIGYmBhMmzYNJpMJl156KdLS0rB69WqkpKTgjz/+AMdxuP3227F//36sW7cOv/32GwDfKvs0Gg3s9tM/P44fP47ly5djxYoVkMmE8PvWW2+FRqPBzz//jNjYWHz66ae4/PLLcfToUSQkJGDZsmWYM2cOPvroI4wZMwaLFy/GvHnz0K9fP4/P+9xzz+Gzzz7De++9hzFjxqC8vByHDx8GAOzYsQMXXHABfvvtN5x11lkeqyaffvppLF++HF9++SWysrLw5ptv4uqrr8bx48eRkJDg2u6FF17AO++8g+TkZDz44IO49957kZubK/o96gwFi4QQQkgXdKCsAbtP1uOm89KQEBOc9guEEEIICbEiH39RN9cAtiaAtQMhnmsUEJYByv4A+l4CKClYJIR0LdQKNboUNRZFegk9hreKxVJTKRieQe+Y3jhlOoUmR1NI1sHzPHJKc5Adm01tUAGUl5e3CdcAID4+Hn379oXVasXBgwc77HPeeecBAI4cOQKz2dzmsezsbCQkJKC6uholJSVtHtPr9a6wzx88z2PDhg1Yv349HnnkERQXF2PhwoUoLi5Gnz59AACzZ8/GunXrsHDhQvz73/8GADgcDsyfPx/nnHOO61hxcXEAgJSUFNfnXn75Zbzzzju46aabAAgVewcPHsSnn36KadOmYenSpaiursbOnTtdgVn//v1d++t0Olcloi92796NpUuX4rLLLnN9zm6346uvvkJycjIAICcnBzt27EBVVRVUKhUA4O2338aqVavwv//9D3//+98xd+5c3HfffbjvvvsAAP/617/w22+/dahadGpqasL777+PDz/8ENOmTQMAnHHGGRgzZgwAuJ47MTHR42sym834+OOPsWjRItecys8++wy//vorPv/8czz11FOubV977TVceumlAIBnn30W1157LaxWq6siMxAULBJCCCFd0Jd5RUjQKnBWigHyrj5ziRBCSPBYG4A3MoG7VgD9L4/0aogvmuuA2mO+7ePcvqsHi5X7AUez0AZVRpcRCCFdi52lisVoUthQCAkk4NHFW4C7satiF8rN5bj+jOsjvRRRvIXuBcYCAEBqjFBF2OwITcViYWMhKpsrcVGfi6CRa0LyHNHk008/xSuvvNLmc1OmTMHXX3+NU6dOYcSIER324Vta5k+fPh3bt29v89jixYtx1113YdmyZZg1a1abx6666iqsX7/e5zX+9NNP0Ol0cDgc4DgOd955J+bMmYNNmzaBZVkMHDiwzfY2mw2JiYmuPyuVSpx99tmdPofZbMaJEydw3333YcaMGa7PMwzjqjzcu3cvzj333DZVeP7666+/oNPpwLIs7HY7rr32Wnz44Yeux7OyslzBHgDs27cPJpOpzesCAIvF4poXeejQITz44INtHh89ejR+//13t2s4dOgQbDYbLr/c/9/zTpw4AYfDgYsvvtj1OYVCgQsuuACHDh1qs23rr0FqqvD3vKqqCpmZmX4/vxP9RkAIIYR0MfVmO37YW4YxA5LQy9CFW6IRQggJvsqWO5R3fU7BYrQp3u59m/ZqjwsfOQboyhdYS/IBqRyIy470SgghpAMxc+RI11HYUAiDyoAGW0Okl+Kz1SdWY3v5dlySfgliVeJbLkaKt78bhY2FUMlU6K3tDQAwOUwhWUduaS7kUjmyDdk05gXAAw88gBtuuKHN5+Lj4wEA6enp2L17t8d9Fy1a5LZiEQBuu+02jB49us1jer3erzWOGzcOH3/8MZRKJfr06QO5XIiRTCYTZDIZdu/e7WoX6qTTna5G1Wg0Xr/WJpPw/fbZZ59h1KhRbR5zHlujCV4QPWjQIKxevRpyuRx9+vTp0GY0Jiamw/pSU1PbzI90clZf+iqYr0cMhULh+n/n14PjgnMzIwWLhEQhjuPx459luOGcPvQDmZBu6LtdJeB4HsPSDNAoaag5IYSQCHjzDOD694Eh10V6JdGjeJvv+9S0VCxybNeuWCzeDsRlApq4SK+EEEI6oGAxuhQ1FiFBlRCVwSIPHo32RlgYS1QEi95mLJ4wnkCyJtnVntRkD02wmFOagyx9FuLV8SE5frRJTU11VY+1p1arXW1P3Rk0aJDHx5KTk9tU3AUiJiamTctRp3PPPRcsy6Kqqgp/+9vfAnqO3r17o0+fPigoKMCUKVPcbnP22WdjwYIFqKurc1u1qFQqwbKsqOdTKpVuX5Mn5513HioqKiCXy13hbXtDhgxBfn4+pk6d6vpc+4rS1gYMGACNRoMNGzbg/vvvd7tGAJ2+pjPOOANKpRK5ubnIysoCILSe3blzJx5//HERryw4ItpbbcuWLbj++uvRp48QjqxatcrrPps2bcJ5550HlUqF/v37Y9GiRSFfJyFdzcHyRjz27V78dqgy0kshhAQZy/H4Kq8IZ6fFIT1OG+nldHt0LkIIIR401wBrn4z0KqJLUQ6g8bFNU81R4SPHAHwXrlgs3gbEZgjzFUlQ0bkIIYGjYDF6WBkrqpqrEKeKi/RS/GZ2mEPWMjTYvP3dOGE8gQR1AvRKoaotFBWLVsaKXRW7kGHIgI7OI6LewIEDMWXKFEydOhUrVqxAYWEhduzYgddffx1r1qzx+XivvPIKXn/9dcybNw9Hjx7FX3/9hYULF+Ldd98FAEyePBkpKSmYNGkScnNzUVBQgOXLl2PbNuGGvuzsbBQWFmLv3r2oqamBzWYL2mu94oorMHr0aEyaNAm//PILioqKkJeXhxdeeAG7du0CADz22GP44osvsHDhQhw9ehQvv/wyDhw44PGYarUazzzzDJ5++ml89dVXOHHiBLZv347PP/8cANCrVy9oNBqsW7cOlZWVaGjoeANGTEwMHnroITz11FNYt24dDh48iBkzZqC5udk16zEcIhosms1mnHPOOfjoo49EbV9YWIhrr70W48aNw969e/H444/j/vvv96tPMCHRjOWEiw51ZpojQEh3s+FQJcoarBiWHguDRuF9BxIQOhchhBASFPZmoOJPoarPF86KRb4LVyw2nAKaygFDH0CuivRquh06FyEkcN7myJGuo7ipGDx4xGuiu3KtxlIT6SWI0lmwyPM8ihqLEKeOg0FpACCEpsH2R+UfsHN2ZOmzoJDSNY7uYOHChZg6dSqefPJJDBo0CJMmTcLOnTv9mtt3//33Y8GCBVi4cCGGDRuGSy+9FIsWLULfvn0BCBV8v/zyC3r16oVrrrkGw4YNwxtvvOFqlXrzzTdj/PjxGDduHJKTk/HNN98E7XVKJBKsXbsWl1xyCe655x4MHDgQd9xxB06ePInevYX2wbfffjtefPFFPP300xgxYgROnjyJhx56qNPjvvjii3jyySfx0ksvYciQIbj99ttRVVUFAJDL5Zg3bx4+/fRT9OnTBxMnTnR7jDfeeAM333wz7r77bpx33nk4fvw41q9f72qpGw4RbYU6YcIETJgwQfT2n3zyCfr27Yt33nkHgFBqmpOTg/feew9XX311qJZJSJdlc3TRiw+EEL8tyitCdqIW/XvpIKVWxyFH5yKEEEKConS3UHUYlwmU7xW3D8sAxpPC/3Nc161YLMkXPsZlA3RuEnR0LkJI4Bw8BYvRoqihCACQpE6K7EICVG2pjvQSROksWKy11sLsMCNOFQe1XA0JJCEJFnPLchGrjEWaLi3oxyah4a0TgkKhwCuvvIJXXnnF7ePTp0/H9OnTO3x+0qRJ4N2c795555248847PT5fVlYW/ve//7l9TKVSeXystTlz5mDOnDk+P67X6zFv3jzMmzfP477PP/88nn/++Taf+89//uP6//bvp1QqxQsvvIAXXnjB7fHuv//+Dm1S2x9DrVZ3uq6xY8d2eK+HDx/u9v33V0QrFn21bds2XHHFFW0+d/XVV7tKX92x2WxobGxs8x8h3YWNoWCRkO7keFUT8k7UYnhGHBJjlB63y/3pW1gK94RxZcSJzkUIIYS4VbwNUGiBuAzx+xhPCmGkOk6YsYguGiwWbwd0vQB9L9enlv6yEysP0YX8SKBzEUI6YjkWXFet+iZtnGw8Ca1c62q9Ga2qmqsivQRROpuxWGAsAAAkqBMgkUiglCnRzAS/xevWU1vRN7Zv0L/mh7YcgjHPGNRjEkLEi6pgsaKiwlVm6tS7d280NjbCYrG43ef1119HbGys67+MDB9+0SOki7Mx4obTEkKiw6K8IsRqFDgrNRYKWccf0SzL4pP/vIzv5r4E68l9EVghoXMRQgghbp3MBeL7CuGiWLXHhY+6XgDPdN1WqMXbhEpMpQ48z+PleV9jypwv8csJzxcrSejQuQghHTEcQ8FilChoKECiOhFKmecbaaNB1LRC7aRNcGFDIaQSKXpphBuHlDJl0GdHVpgrUNhYiHRdOrS+nCN1gud5fPfpd/j2uW/R9GdTUCuwCCHiRVWw6I/nnnsODQ0Nrv9KSkoivSRCgsbO0okzId1Fo9WB5btLcW5GHHoZOs4vajabMOeR6Vj59We4ZdaLiB87PfyLJH6hcxFC/MRxwIFVkV4FId6xDFCyA4hN9z1YlKkAbZJQsdgVL4zZTEDlQcCQBgsrx+Qn/4NX5y/F6w/egPnXqiO9OiISnYuQ7o7hGPBdteqbtFHQUIB4dXzUz9qrtdRGegmidNYK1RnyOgM/lUwFK2sNakifV5YHCSTIis2CVBJ4DOGwO/D2M2/jk9c+wd/u/hvS/54OCbVpJyQiIjpj0VcpKSmorKxs87nKykoYDAZoNBq3+6hUKqhUNGCedE92aoVKSLexfPcp2FkOQ9MMiFF1/PH83stP4s9d2/Cv+V9D138kdv56NAKrJHQuQkgY5b4HbHgVkHwNnHl9pFdDiGeV+wFHs9AGVerDr9g1R4GYZECuAni2a1Yslv0hrC02A4+/sQCrN+bjf+8/j5vP7wOs3xTp1fVIdC5CSEcsT61QowHP8yhuLMa5vc6FUhrdFYtGmxEczwUlLAulzlqhHjceR6ImESqZ8PNBJVPBxtjAciykbjoo+WPrqa1I16cjWZMclON9/tbn+GX5L3j23WehvVCLZUeXBeW4hBDfde1//doZPXo0NmzY0OZzv/76K0aPHh2hFRESWRQsEtI9cByPRXlFGNrHgMyEmHaPCX/P7338eby/9Cec/7fLIrFE0oLORQgJI1O18NFYFNFlEOJV8TZAqhBaofqi5igQkyQEixyHLjljsTgfnEwDxGVgzqwp2Pr1m7j56jGRXlWPRucihHTEcAy1Q4wC9bZ6mBwmxKviIZVG1SXpDhptjZ1WA3YVna2xsKEQ8ar4tsEiawPDB6fVOcMx2F6+HZn6TOiUuoCO5bwuMvnhyXjvu/dw9S1XB2OJhJAARPRfcZPJhL1792Lv3r0AgMLCQuzduxfFxcUAhHYdU6dOdW3/4IMPoqCgAE8//TQOHz6M+fPnY9myZfjHP/4RieUTEnE2ChYJ6Ra2Hq/BydpmnJ0eizjt6ZYwm9f9gFm3j4epsQGp6VnI7j84gqvsnuhchBBCSMCKcoH4LEAd69t+tccBTUKXrlhcs3olhn/ShCozj9ReCRgxdECkl9Tt0LkIIYFjOapYjAYnG08CAOLV8RFeSeCaHE2ws/ZIL8MrT8Gi2WFGtaUaceo4KGTCNQi1TA0bK1QsBsP+mv0wOUzI0Ge4wkt/7Mnbg3uvvBdVZVWIjY/F0JFDg7K+cHIGo4REE2837ES0FequXbswbtw415+feOIJAMC0adOwaNEilJeXu06mAaBv375Ys2YN/vGPf+D9999Heno6FixYgKuvprsUSM9EFYuEdA9L808iPU6DAb10kEok4HkeSz55D19++CYuv+5mKKl1VcjQuQghhJCA8LxQsZgyDFDpAEt9x20sRiF0bD0DyGYCTFVAdoLw+S42Y5Hnebw/dy6efG8brj83FVp99F8E7qroXISQwDE8zViMBkUNRZBAgiRtUqSXEjCTwxQ1waIEkg5/P4oaigAACaoE1+dUMhVMDhNYPjjBYm5ZLrRyLbIMWX4fY803a/DeC+/h3NHnQhvjwxzrLkKpVEIqlaKsrAzJyclQKpU0E5JEBZ7nUV1dDYlEAoXC/UzciAaLY8eO7TT5XLRokdt99uzZE8JVERI9HCwFi4REO47jsa2gFudmxCNRp4LdZsW7Lz2JDT8tx7RZT2PKg/+gE88QonMRQgghAakrAJprgNh0QK7u+Li5BnjrDODKfwIXP3r687XHhY8xiYC1sUtVLDocDjzyyCP49NNP8fRFSrz+9K2QGnysxiSi0bkIIYGRQgqGY6hiMcTe2vkWLu5zMS5Ku8jvYxQ2FiJOFQedQgcLYwni6sLP7DBHRStUhmMgk8o6zFosaCgAgDYhr1reUrEYpGBx66mt6BvbFwaVwed9WZbFZ298hu8+/Q433HUDHnnlEcgVEY0x/CKVStG3b1+Ul5ejrKws0sshxCcSiQTp6emQyWRuH4++v5GEEBc7BYuERL0jlU1otDBIi1dDJZdhz65tyN2wFi+8/QnGTpgU6eURQgjxZk4scOYk4LYvI70SEgnF2wBIgLhs94+bKoWPJzZ6CBZ7A/ZmYcZiF7kovnfvXnz11VdY8H/TcZ98FZCQHeklEUKIRzKpDCxPrVBDbfWJ1aix1AQWLDYUIlGdCKVMGfXBooWxoNnRHOlleOXgHJBJZGDQNlgsbChErDIWscrTNw6p5WrYWXtQWqEarUYcqj2Eq7KvQow8xuf9S06U4IfFP2DWnFm46Z6bovpma6VSiczMTDAMA5YNTmhLSDgoFAqPoSJAwSIhUc3BUqsPQqJdfkEt5FIJ9EwDeL4Xzr1wDL5avwPxicmRXhohhBCxDq4CGDsgV0Z6JSTcTuYBsWmAzsPPbWebNGm7X71rjwMqA6CNBxqKhYrFCLfxO3XqFFJTU3H++eejqKgIvXJfAk6mA9oE7zsTQkiESCVSsDzrdRYUCQwPHlbGCo7nIJVI/TpGYUMhkjXJAc3b60pqLDXoF9cv0svolIMVgsX2jhuPI1GT2OZroZapYefsQalY3F6+HRw4ZBoyIZN6Dibaq62sRWxCLLIHZmNpzlLEJ3WPVuzOdpKeWkoSEo38+0lACOkSGJYDx9HJMyHRLK+gFjHV+/HPe67FT8u+AgAKFQkhJBpRpUTPVJQLxGUBSp37x9mWNmntL6pVHwFikgGZCpDIhO+fCF4U37JlC4YPH463334bANCrVy/g5DYgNlOYHUkIIV2UTCK0eeRAP4dDLZA2mQzHoLSpFAalAQppdIcrzmC12lId4ZV45+AcboO9goYCxKvi2waLLRWL7dum+iOnNAcp2hSkaFNE73Nk3xE8cO0DWPjuQgDoNqEiId0VBYuERDGGpfHkhEQzjuOx9tuF+Ovz5zB0xChcft3NkV4SIYQQQsRqqgSMRYAhHVBo3G/jsWLxGKBNBBRqIXTkOSAIrcf8sWjRIlxxxRU4++yzMWPGDOGTpqqW19YHkHt4bYQQ0gVQK9TwsbN2v9/nclM5GJ5BgjpBdMXjH5V/wGg1+vV8oaSVawEAVc1VEV6Jd85WqO0/V9pUijhVHBSy0yGvSqaCg3MEPDuS53nkluUiy5AFnacbr9rZvGYzHrv1MfRO742b76XrIoREAwoWCYliDMeDo3YfhEQlhmFw9/0PoHTtfIy8dgr++eGX0MZQRQAhhBASNYq3CR/jswBPs3+cwWLri3o8D9SeADQJgEx9OnR0bhsmHMfhueeewz333INp06Zh/fr1SEhoaXtaskP4GJ/p+bURQkgXIJPIwHLUCjUcbKzN7/l7RY1FAIBEdaLofaatm4aJP0z06/lCKUYhzAyssdREeCXeOVhHhyD3VNMpIeTVtA151XI1AMBsNwf0nMeMx1BjqUG6Ph0aLzcn8TyPJR8uwZyH5uDiqy7Gu9++i4RkasFOSDSgGYuERDEHx4HleCjEtysnhHQREokEh0+cRNL4Wbjvycc7HYhMCCHdks0EOJoBXa9Ir4QQ/xRvE9qZGlI9b+NqhdrqV29TpfC9H5MISKWtgsXAKgR8JZFIUFJSgrfffhtPPPEEJK0DxJLtQvCp7xPWNRFCiK9kEqpYDBc753/FYrWlGhJIEK/2rb1lo73Rr+cLJblUDpVMhVpLbaSX4pWds3eoWCxsKATQMeR1tkU1M4EFi3mleVBIFcgyZInavqqsCtP/MR1TH5/a9lyEENKlUbBISBRjWD6So1gIIX4oLCxEeXk5LrroIpx//2vQVzQhThvdMyYIIcQvW98Fjv0C3P+r5zaShHRlRblCtWJnbb7ctUKtOSZ8jElqeUzWdtsQKysrw9GjRzF27FgsXrzY/UW8k9u8vzZCCOkCZBIZ7JwdNCgm9Oys3e8Zi/XWeqjlaihlyiCvKjJiFDGot9WD4znRrV0jwcF2bIVa0FAAtUyNBHXbykBXsOgILFjcWroV2YbsTkPkhroGHN1/FOdfcj4ef+1xvwJFG2sDADQ5mvxeKyHEf133Xz5CiFcMx1ErVEKiSF5eHkaNGoXHH38cHMdhR1E9MhK00KnoPh9CSA9kawSaawFrQ6RXQojvrI1A1YGW+YoxnrdzBYutLurVHgckUkDXW/izJHzB4p49e3DBBRfg4YcfBsuy7i/kOaxAxT5AnwYoO3lthBDSBcik1Ao1XGysze9g0WgzQivXQibtHp16dAodmmxNAc8jDDUH7+jwnhcYC5CkSXK1PnVytUINIFhsdjRjT9UeZOgzoFO4vznp5LGTePiGh/HOM+/AbrP7XaXYZBcCxWiYdUlId0TBIiFRjGFpxiIh3uw+WdclfslcsmQJxo0bh8GDB2Pt2rUoqDGjzmxHWpwGKupnTAjxRfF2YE4sYO767Ze84hwAtS7z7s9lQFNlpFdBWju1U/jejcsS2pl64q4Vas0xQJt0uhrQVbEY2ouTq1atwpgxY5CamooNGzZ4bsNevk9YS1x620CUEEK6IGcrVH8DLyKeg3P43Qq1zloHjVwDuaR73FSrU+rQ5GiCPczzkX3lbsbiiYYTSFAnuCoUnZx/NtlNfj/frspdcHAOZBmyIJd2/Frv2rILM2+cCZVGhbnL5kKp6h4VrIT0RBQsEhLFGI4HF/m8hJAuq9Rowc0fb8Oav8ojuo65c+firrvuwuTJk/Hrr78iKSkJ2wvqIJNIkJWgjejaCCFRaM/Xwsf9yyO7jmDgGAoWxfhhJpDzXqRX0bnaE8DRXyK9ivAp3gaoDEBsRufbMUKbrrbB4lGhDapc1faxEF6c/OKLL3DTTTfhmmuuwebNm5Ga2slcyJLtgEwlhKaEENLFSSVSsDxLrVDDwM7awXL+t0LtThWLeoUeJoep6weLXNtWqDzPo6ihCHHquA7BolomVCw6KwH9kVuai3hVPFJjOp5nbPppE56Z9gyGjhiKD1Z8gJSMFL+fhxASeRQsEhLFWI7vEpVY3QnH8Zj6xQ44WLrI2Z7JxsBsYyK9DJ+YrMJ6qxttEV3HZZddhrfeegsLFy6ESiWcvG87UYv0BA0SYugOPUJID0bBojg83/Vbxu75Gvh+GmCqjvRKwqMoF4jPBlReZhC6m7FYewzQJgLOFmTOx7jQnWddcskleOWVV/Ddd99Bq/VyU1PxdmG+ojo2ZOshhJBgkUvlPa4V6spjK1FuCv/Ns4FULBptRqjl6g7z/qKVQWmA2WHu+q1Q2wWL1ZZqNDPNiFfFdwh5XTMWGf9boW4t3Yq+sX1hUBk6PHbWiLMwZeYUvPb5a4jRU6t1QqIdBYuERDGG5ahiMcjWHajAlqPVePXHg5FeSpfz9P/24fHv9oKNom86OyP80hOJu1crKirw4IMPwmKx4Oyzz8bs2bNdswN4nsf2wlpkxGsRQ/MVCSE9GUvBomiMNdIr6BzPAY5moUVod8fYgdLdQGy6iGCx5YKjTH56X2MJoIkHZC03F0lDM2OxtrYWDzzwABobG9G/f3+8+OKLkHbWthUQQuzi7cJro/mKhJAoIJVIwYPv8gFPML2U9xLuWHNH2J/XztrB8P7dBGO0GaGWqbtPxaJSDwtjQbOjOdJL6ZSDa9sKtbChEACQqEnssK2y5bzE3xmLp5pOoaSpBOn6dGjkGuFYTWa8+9y7aKhvQHJqMu6dfS9k8u7xPUBIT0fBIiFRTGiFGj0hTzRwVipGU3gWLvVmBwqrTa4qwGhgY4Q2LeH+au7btw8XXHABfvzxR5SUlHR4vKDGjFqTHX3i1VDTfEVCSE9GFYviMTaAi4L3qiQ/0isIvfK9AGsT2qC6mR/UhjMsdFYLGE8CPCtULLbccOR6LIgXxY8cOYILL7wQy5cvR0FBgfgd6woASx1gSD/dqpUQ0uNtObUFw74cBiaEldX+clZj2bmu3ZIy2KwRuOHIwTn8boXaYGuASq7qVjMWAaDGUhPhlXSu/YzFgoYCyCQyJKmTOmwrkUiglCn9DhbzyvIglUiRrc+GVCJFRUkFHrnpEWxcvRElJzpeFyGERDcKFgmJYiwFiyTMGq0MbKx/v0hEgrNiMZx++uknjBkzBklJSdixYwcGDhzYYZv8gjpIJaD5ioQQwjHREZZ1BazV/xC24RSw8TXAVBXcNblTtqf7f02Lt4mfQeisWHSGiDXHhI8xvU5v4wwnmeAEixs3bsSFF14IhUKB/Px8DB8+XPzOzmA4LjMoayGEdA+f7vsUALCzoutVpTsr4Bxsz6lYjCQLa/F5H5ZjYbKboJFrXF18op1OIQSLVZYwnFsFwME52lSJFhgLkKBOgFbh/lqESqqCxeH71xgAckpzkKnPRKImEQd2H8DDEx+GtdmKD1d+iKEjh/p1TEJI10XBIiFRjOF4UK5IwqnR6ohIWOcvW5jXevDgQUycOBFXXHEFtm7dirS0NLfbbS+oRXq8FokxVAlACOnp+KBWaXVrjF2odPPHkZ+BLW8C84YD2z4KbfBXewywNYbu+F2Bc76iJs77tu3bm9YeF2YrxiSf/pwzWAxCK9STJ09i/PjxOP/885GXl4czzjjDtwMUbwcMfQBdsvdtCSE9jo2N7Ox6d1wVi0FuJx1NGmwNYWvJabH7Hjo12ZvAgYNapg7BiiJDr9QDAKqbu95saZ7ncaTuCHieB8MxkLa6/H/CeAJJmiTXPMX2lDIlrKzV51maDs6B/PJ8ZOozwTQxmD1lNtL7pmP+6vnIHpgdyMshhHRRFCwSEsWoYpGEm9XBockSPReAwxUssi1VnGeeeSZ+/PFHLF++HDEx7ucS8TyPbQW1yIjXQEfzFQkhRAjMiHesHfCz/RjsJiHMSjgDWP888OkYoHRPcNfn1FgONJWH5thdAccJVX2x6YDSy3xFoGNYWHNUCBUVrS6uBmHGIsdx4HkeWVlZWL16NdauXYu4uDjfD1S8TahWpPmKhJAoQcEiMObbMRi1dBT4MFwfamZ8DzCNNiMAQKPQBHk1kROjEH5OdsVWqEsOLcEtP96CzSWbO85YbCxEnCrOY7CokqlgY20+t7zdV7UPZocZfWL6oFevXvjnf/+Jt5e+jbjEuEBeCiGkC6NgkZAoxnAcaBQgCbfKpq53l6onzhmLoVRfX4+rrroKn34qtAe65pprIJV6/vF6srYZ1U02pMVraL4iISRydi4A9n0X6VUIIjAjKCoxNv8rFu3NgEIDnH8/cNFjgKka+OJKoNaH2XuiSADwQMkO75taG4F3hwCFOUFeQ4jVHAGsRmG+olzpffv2rfmcwaLcTbDoZ/WuyWTCpEmT8NZbbwEAxo8fD7ncj5uXLPXC+vR9AA8t0gghpKtxtUKlDghotIe+Y0BAwaKs+wSLcqkcapm6ywWL28u3461dwvlAZXMlGI5xhe821oYaSw3i1HFQyBRu91fJVbAyVjC8b/NUNxVsQsV/K7BzkdAueeQlI6FUiThPIoRELQoWCYliLMeDo2SRhFl1FAWLoW7bevz4cVx44YXYu3cvBg0aJGqf/MJaSGi+IiEk0tY8Caz8O2A3R3olQWn/2COwdv9nLNpMgEwpBFhZo4Hz7xMCr+rD/q/H1iSEg61pEwCp4vScvs7UHAMay4CiLf6vIRJO5gESKRDfV9z2HVqhngA08W2DxZYLfv5U75aUlGDMmDHYtGkThg4NcH7RqV3Cx7gs4TUSQkgI1VhqUNUc+Hw6ZzVWV2zT2h1ZWd9vCHMGi1pl9/odWKfUwWgz+tw2NFRONZ3C7E2zkahOdH3OwTlcNz5XNlcCQJvH21PL1LCxNp9eU2VlJV6/93UYdxsxeNhgP1dPCIk29NsCIVGMpRmLJAIqG6OnsiSUrVA3b96MUaNGAQC2b9+OsWPHitpv24lapMdpkKij+YqEkC7A1hTpFQB0IVAc1hFYK1SZ8nSAJQ1CK+6fnwGWTQPYVne0S6RCi9DKA95DsvpC4WNX+B70RfE2IDYTiEkQt33rYNHaADTXAJoEQNbqa+DnjMUdO3bgggsugNFoRG5uLq655hqf9u+geDugMgAG9zOiCSEkmMYtG4fLv7884EDQWY3FcL5VWBH/+DPL0Rks6uX6IK8msvRKPZpsTV2iWrbZ0YzHfn8MCqkCl2Ve5vo8wzGu8L3SLASLyRrPc5RVMhXsrF3036e//voLI88ficaKRtwx7w5cdcNVAbwKQkg0oWCRkChGMxZJJFRRxSJ4nscrr7yCc845B9u2bcOAAQNE77e9oA4ZCVqar0gIEc/aIFRJdVc0Y1GcQCoW7SZArgpuFZqlHmgsBWztqhYT+gJ1hcL3bWeMJ4WPflygDEhDKQK6M+9kLhCfKW6+IiC0sHWqPS58jElqu40rWPTtwuTrr7+O7Oxs5OfnY9iwYT7t61bxNiA+G1CJfG2EEBIEgVYttm7zSELP7PC924XRaoRapoZSTAvxKKJX6NHkaIr4fE+e5/Fy3ss42XgSE/pNQJY+y/UYwzGQ4nTFYqwyFnql54BXLRcqFlmR7fffeecdKHQK9HupHy4adVGbeY6EkO6N/rYTEsU4XpizSKLLgbIGTHh/Cxotkb+rzR+1pui5ABzsikWO41BSUgKJRILly5dj/fr1SEgQWbEAoKTOgopGK9LiNFDJ6UcwIUSkL68HFk4AjCWRXkloUCtUcVh7ABWL5paKxSD/7GGsHdeUcAZgaxBmEXamvkj46LAEd02dsRiB988B9q/wb39jidC+1ZDWtpVpZ1pf6K5pCRb1KW238WHGIs/zKC4uBgB8+eWX2LhxI3r37i1uLZ2u0wGU/gEY+ogPTQkhpAtwzliMdLjTU1gY339uG21GaBVayCXd6+baWFUsTHZTxL/3Fh5YiHVF63B19tU4K/GsNvMTHZzDFfY12huRpEmCSua5e5JapoaNs4Ht5Jyz9bnI/PnzMendScjKzOq0EpIQ0v3QVU1CopzNQcFitNl4qAqHyptwpDLKWn+1MFrsUTPb08b4eQHWDbPZjFtvvRVjxoyB1WpFfHw8FAr3A8892V5YCwmA7EQtJBJJ0NZGCOnmmoS2Ra5qp+6GLgSKw9oBkXePd2A3ATIFIA12sGjruKb4bOFjsZc5i3UFwkdHGFusW+qF8K6u0L/9i7cLH+P7AmJ/jrf+/q49DqjjALWh7TbOYNFLxaLNZsO0adMwcuRINDQ0wGAwQKPRiFuHN5X7AcYCxGa0bdPqiVG4oIiGbnrDAyEkalDFYnj5EyzWWeugkWtcIXB3EauKhZkxR7QVak5pDubunosxaWNwXq/zEKOIafM4wzFt3vd4dTxU8k6CRbkadtbusWLR4XBg5syZGDZsGCorK6HWqLHLuAvZhuxOKyEJId1P97pVhJAeKFStHkno7CkxAkDUtrFttDCwsxzUUfBLQbD+fpSWluKGG27AkSNH8M0330CtFlml0M72glqkxWmQEEPzFQkhxIWhC4GiBDRjsTmEFYvtZvBo4oTwrHRn5/vWnzx9DJ4XH9QFwlUd6ef5wclcQJ8K6HqJ36d1q9+aI0BMcsdqR4n3isXq6mrceOON2LVrFxYtWoTY2FgfFi5Ccb7QkjUuy/u2wOmvu7/fk4QQEiQ0YzG8LH50Gqi31kMj10AejBnPXYhBaYCFsfg1dzIYTjaexNObn8bA+IG4KPUiJGoSO2zDcIzr7wgAxKnioJR6bkmrlqvhYB1u/z4ZjUbcdttt+P333/Hxxx+jd+/eOFR7CPW2emToM6AW282BENItdK9/0QnpgewsBYvR5s9TxkgvISCNVgdsDAe1ousHi1ZH4Be79uzZg+uuuw5SqRS5ubk455xz/D7WthO1yE6k+YqEENIGBYviBDJj0WEGFEmnA6ygrcnmPlhK6AdUHxVasCpj3OzHAE3lwv8726mKqZILlPNiqL83d53ME4I3X2YQtq5YrDkGaBPdBIsSIfT1ULF46NAhXHvttTCbzdi0aRMuvPBCPxbvRckOoVpRExf8YxNCSAi5WqFy1AEhHCysH8GirR5qmbpNwNUdOCv0qpur0S+uX1if2+ww49GNj0Kj0OCKrCuQpk9zu137YDFBndBp9yS1TA07Z+8QLBYUFOC6665DeXk51q9fj8suuwwAkFuWC5VMhUx9ZhBeFSEkmlArVEKinJVaoUaVigYraqJoRqE7JisTNZWywZixaDab0a9fP+zYsSOgULGkrhnlDcJ8RbWCfvwSQogLBYvicA7/W6E6moVWqEGvWLS7D8OSBwMNxYC5xv1+jaWnK95YN+1UQyWQioLmOqHi0JAGKLTi93MGizwvtGDVxAPuWpBJ5R4rFq1WK3r37o0dO3aEJlQEgMq/hNmPSh9eGyGEdAHO0CTSc+56Cn9azhptRqjl3S9YNCiF1ubV1uqwPi/Hc3hu63MoM5VhQvYEnBF7hmuOYms8eDA80+axRHXHqsbWnPMXzYy5zeftdjt0Oh3y8/NdoSIAbD21FdmGbMSp4wJ4RYSQaERXNgmJcsGcIUdCb1+UVysCgMnGRE2lrL8VizzP47vvvgPDMBgzZgy2bNmC1NTUgNaSX1gHCYCsxBiar0gIIa1RsCgOxwKMnzN87M2ANATBIs8KwWB7yQOFwLHsD/f7GVvaoKr0wtc/XO3rAgkWS3YIH+OyfHsfncGrpV6YYRiT6H5/iVSo5Gzlf//7H2w2G84991zk5eUhK0tkm1JfMXZh5mVMUsdqSkII6eKcoQkFi+FhY23gfaz8b7A1CBWLUTBOxRetKxbD6dM/P8XvJb9jQt8JODPxTChkCrfbcZxw3UbaasZ2vDq+02M725ma7CYAwKpVq2AymTB48GDk5+dj4MCBrm3NDjP2Ve9Dhj4DOoUP3RwIId0CBYuEdEGvrz2E7GfXwCEivBGzDek6or0NKiBUAZqskRtO7gt/Kivtdjvuu+8+3HHHHVi3bh0ABCUI3F5Qi9Q4NZJ0NF+REELa8OPO9x7L32DM0QzIlaGZY2gzdfxcfF8hKCve7n6f+pMAJEBML6GiL1xz+gIJFovzAHU8ENvHt/2cF7qbKoSP2iT320llroCVYRg89thjuPXWW7F8+XIAwTkX8ajmqPDcMb2DHz4TQkiIuSoWqRVqWNgYG1gfOg3wPI9GeyPUcrXbqrpo5gwWayweOjSEwO/Fv2P+3vm4NP1SDO81HNpOuigwvHBeIcPpQNfbHERnxaLJZsL//d//4cYbb8TixYsBdDwXyS/PB8uzyDJkdbvQmBDiHQ15IqQL+u/WAgDA/tIGnJvZ+d1EwWj1SMJnT7ERUgnA+TnaJ9JUcilsDIeqRhsGpUR6Nd5Zffz7UVtbi5tvvhnbtm3DV199heuuuy5oa9leUIvMBC1iVHTCTQghbVCFgXiM73ONwHHCHEOZMvjrAQC7m2BRrgIMfYDyfUJo2P5ik/GkMMtPGSOEfWFrherH++dUlAMkZAMqg2/7Ob+/TRXCjEudhxMoiQzgHGhsbMQdd9yBX375BfPnz8edd97p/5rFqjoofDT4GJoSQkgXIJFIIIEEDg9zaklw2Vk7OB9mPjc5msDxHDRyTQhXFRlyqRxqmTpswWKBsQDPbn0WZyWehdGpo5GgTuh0e+ecxNahn5hgkbNxePmhl5G3Pg9vvvkmHnzwQbfb5pbmIkmThD46On8gpCeiYJGQLowRkT7ZaMZi1OB5HvtLG9DboEZ5gzXSy/FLjEoOG2NHVVN0VJfYfWgVXFtbiwsvvBBGoxEbN27ExRdfHLR1lBktOFVvwQV9E6BRULBICCFtUCtU8exm79u056zSC2ewCACJA4TAytoAaNtd+KotADQJgEIDWI1C+BkOfld8WoSQdOAEIQz1hatisRyISfY8w1Aqg8lswcUXX4ySkhL8/PPPuPLKK/1br68q9wPaxI5fJ0IIiRJyqRwOD3Nqe5JwvAd2zg6GY6AUeV7RYG0AgG4ZLAJC1aLRZgTHcyGtyGy0N+KRjY/AoDLgsozLkKrzPqrFGSxKWxoWxqvioZR2/nWTcTIU/qcQJ8pPYMWKFZg0aZLb7Xiex9ZSYb4itUElpGfqXjXohPRANpZmLIbayj2n0BiE1p8na5vRaGWQYoje2TU6lXA/SmVjdASjvgTvCQkJuOuuu5Cfnx/UUBEA8gtrAQBZCRqar0gIIe1RxaJ4/lTcOcPIkAWLHsLO5EGAqRJoKOn4WH0hoIkXgkXGHr6KRbufwWLpbqFVaFxGx+pLb5wVNM21nc8wlMqhU0ow5c47sW3btvCFigBQ8ZdQSUnzFQkhUUomkVGwCMDiT2cDH9k53yoW6231AACNrHsGizqlDk22ppB+/7Eci2e3PIsaSw0mZE9A37i+okJMZ8ta57Zqufc5lzqNDrGjYvHUwqc8hooAUNxUjHJzOdJ0ad02NCaEdI6CRUKiHLVCDS0bw+If3+3Dgi0FAR9rX8t8xT5x0XvSFaMUTkKrmqIkWBQxg/Szzz7D8uXLIZFI8PLLL6Nfv35BX8f2E3VIjVUjWU8X7AghpANqXSaeP8GioyX4k4coWLR5CBaTBgofi3d0fKyhBFAbAEVMmGcs+nnBtXibEILGZfm+b+vgXJvgNrz75qdN+HK3CeBZPPvM0xgyZIh/6/RX1UGhmrKTOU2EENLaX9V/YdiXw3C8/niklwJAaPXorM4ioeVgHT7NWDTajAAAraeK/ShnUBrQ6GiEPYQ3yn1z+BvklOZgQt8JGJwwGAqpQtR+LNc2WOxM7i+5WPXVKqhkKiRdnYTE/omdb1+aC5lEhmxDNt08TUgPRcEiIVHO7qCKxVDiW7rR1jcHfpL4Z4kRiTFKxGnFnQR2RVKpBFqlDLWm6KgusXcSvLMsiyeffBJ///vfkZeXF9J15BXUIDNB66r4JISQLm/DP4E5sf5XeInhbKHJUitU0bpkxWKT+8/rUwC5BjiV3277ZsBc3VKxqG0JFsN0MdjfVqhFuUB8XyEM9VXr4FyTAMhOnwfyPI85H3yNO2e/ia2FVuF98KEKJCgs9UBThRAship8JoR0OzllOQCA9UXrI7wSgVxCrVDDxdcZi85gUa/Qh2hFkWVQGmC2m0MaLB43HkdqTCqGJg2F1oebgBi+pRVqJ8Eiz/P47tPv8OKMF7E3b68rtDQ7Om+/v7V0KzINmUjQUBt1QnoqusJJSJSzs97nMJLANdsDD3D3lBjRJ04NlTy67+nQqeSob7aD43hIpV37zjRPFb0mkwl33nkn1qxZg3nz5uGRRx4J2RoqGqwoqbNgZFY8zVckhESPP5cJH0/tBPpdGprn2PeN8JGJjptVugR/Ziw6w2GZKrhrcR3fw4xFiRRIyBaq4RgbIG95fmOx8FETDzisQvAWtlaoHtbaGY4FTu0AssYASj9mCLW+0K1NBFru6rdYbbj3+bn4du1mvPb4NDyXuUt4rnAHi5UHhY/6lPA+LyGEBJGzYjHUc+7CpcHWgFhVbKSX4ZaD87Fi0WqESqaCSh6i85AIi1XFwsyYwxJsi51r6eSsWPTU/tRhd+D9/3sfa75dgztn3on7nroPUqkUSqkSzZ3cjGVn7dhVsQujUkd128CYEOJd9P+0JaSHszFUsRgOgQaLDMvhYHkjeuvVUEZ5sKhXy9FoYWAX0WY00jxVLP7973/Hpk2b8NNPP4U0VARazVdM1FKLEEJI9AlH4EOty8Tzp+LOGaaF6oJeZ2Fn0iCgrghorj/9OeNJ4aMmQVgT5wBYkd8DlQeBsj1+L9WvCtzK/cJrjE1vU20oWuuKRV0v1/8+8cZn+GHjdnw/93k8/+DtkEjlLRWLYb5psOogIJUDhj7hfV5CCAkimUQIFvlw/xsaAnmleRjz7RisK1wX6aW45eAcPlcsauQayCTd8yZbg9IAC2PpNIiLFGd7YE9h+8J3FmL98vV45p1nMOOZGZBKhe2UMiWaGc+vZ0/VHlhZKzL1mVD4c25ECOkWovvqNiEEdib6T5yjgdXBguP8f6+PV5tgdXDoHauGLMrDJb1agUarIyrme9rbBe8sK/z53//+N/Ly8jBhwoSQr2H7iVqkGNToRfMVCSHEPV/u8K4rCH/w0pX4c9HKuY+b2X5B0VmwmDxImPFYdfD05+qLhCArJkkIFnlOfDvczW8CKx/0v0WvP+/fyW3CeuOz/XtOZ7AoVwPaRNe5yMsz78SWxf/BLePHCI9L5RGqWNwP6HoDKj+qMQkhpIuQS+VgeRYcuv7vqN4UNhYCAPbX7I/wSjpytpxlfZiNXGetg1auhVzaPZvm6ZVCxV51c7XofQoaCsJS4ehshdo+1HWei0x+aDLe++49jL91fJvHVTIVrIzVY4CcW5oLg9KAdH16CFZNCIkWFCwSEuWioWqsO7A5ODABBIt/ljRAAiAtLvrDpViNHCYb0+n8wq6idavgZcuW4fzzz0d9fT2ys7MxdOjQsKxhW0EtMhM1NF+REEI84RiAE/EzpeEUMO884GjXvIM/LBxW3/dxBn+KEJ2DdDb3MbG/8LF4++nP1RcJLUHl6tNVlDaRLV45B9BYBlgb/FqqX8Fi2R+AIV1o3eoPZ9VvTC+szT+C4ZNmobKmHinJCRg5bODp7aTylm3DHJxX/CUEi3JNeJ+XEEKCSGzF4k8FP+Hrg1/7/TyNtkYAwMnGk34fI5rJZXI4WN9aodZb67t9xSIAVFvFBYs21oZbVt+CZUeWhXJZAE5XLMolp69F7N22F/ddeR8qTlVAH6fH0JEdr4uoZCpYWavHr/PW0q3oa+jrClUJIT0TBYuERDm7g1qhhoOVYcEFUCGxt8SI3gY14rXRP1cgVqOEyRo9rVB5nsdPX36I22+/HUOGDIFGE74LZ1WNVhTVNiMtVkPzFQkhpKEUaKro+HmWEVel1VQBgAfqe+bFPABAJ22pPLKbhHmHoZqx2FlYp9ID2iSgbPfpStO6QiGkk6sA56wghw+zI22NgFl8VUAb/syodFiFFqgBtJLleR7ztltw/ePvol9GKmI0bkJeqSz8FYs8D1QfBmKSQxc8E0JIGMilcteMxc78dvI3rDq+CqaWNuFH6o5g5bGVop/HWUXYYPPzBpcop5AqfK5YrLfVQy1Xe5zzF+18rVg0O4R5jJXmylAuCwBcwaDzvS/dWIrZU2YjKSUJOr3nTgUqmQo21ub261zVXIXjxuNI06chRhETmoUTQqICBYuERDlHAFV0RDwbE1jF4t4SI1Lj1NAoo/9k2qCWw8pwMFm7/kwsq82G2jXvYtWC9/DKK6/g66+/hlodvgtn+YV1AIDMIM9XLDp2GABgamoM2jEJISTk1jwJ/DCz4zw9zgFRVVoWo/CxJ5/6+FWx2CyEiqG6oOewCoGYJ4lnADXHAFuT8Of6QkATJ6zJ2Z7V18Cv5phfS+20utIr/36OO1geD6+x4rFlJ/Dk9ElY8cEL0MW4ucnJFSyG8RvcWCy89zG9hIpJH5RU1AAA6hpNoVgZIYT4xNUK1Uuw6GAd4MG7ApefC3/G3D/moqSpRNTzHKw96HWb+XvnY8WxFaKOF20UUgV48LCJbWEOYcaiWqZuUzXXnfgaLDpnMYZjHqhrxiInRcV3FTj48UFcc/s1eOPLN6CL7SRYlHuuWMwry4MEEmQbsj3ObgwXE52DEBJRFCwSEuUcYWxHubOoLmzP1dXYGA4s69+Jn41hcbSyCb31Kmi7QdWaXi38QlDV5MfFzTDieR6m4oNoPpqHv788Fy+99FJQwz0x8gtq0UuvCvp8xc2//AgAaDY1BfW4hJAeKJwhhtUIWBsBpl24wzGdB1Ot9+/pGD9bocpVQtViKLBegsXkwUIbW1O18P3WUAKoYgG58nTFoq/BYu1x/9bqTyvUQHAc9lVy+OpPBxY8NAZvPj0DMpmHc0GpXPi7EM6KRefsS0OKz7tu2LYXANBkCvN7SgghbsglQsUi7+XuI+fMOSdnQFZndX+tg+d5LD+63PXnA7UHvK5l1fFVWF+0Hg429DP0wk0hVQAAmn3ooNBga+jWFYtyqRwauQa11lpR2zvfu3DMA3UGi7WltajbWIdB0wfhH//+B+SKzkNelUwFO2t37d9abmku0nRpSNYmh2TNvji2388bzQghQUHBIiFRLlztKH8/XIVbP9mGRbmFYXm+rsbGsGD9vPh6qLwJDMcjJVYNqTS8wVYoGNTCLxPVjeLvUgy34uJi2BkO6sxhSHvgc1xwxfURWUfeiVpkJmqDOl+xsqwEB/fsDNrxCCE9nLkqfM/FebjAxjEQV7FYH9TlRCW/gkWTEOKFKlhkbC1fQw+SBgqzA0t3Cl9Du1lohSqRnq5Y9DXwqzvh31oDqlj0zamKWrB2C0b2kaHwrctw3z3TOt/BOWMxnMFi5X5AoRVmLPqguq4BO/86GqJFEUKI72RSmaiKxfatHR2cAzzPQ+rh8ujqE6sxZ9scLDm0BABQ0FDQ6fE5nkO1pRocz4UlOAo3eUt1e7PIn9s8z6PR1giVTBXx6rZQ0il0MNqMXr//gPBWLDbUNIBjOKT3S8fAtwYi69osUTdba+QaoRVqu4pFlmORV5aHTEMm9IrIzle0mC0oOloU0TUQ0tN133/VCekhGI4HF4Z2qOUNwoWsopqeeVeyzcGB4fz7xeCv0gbIJBKkxYZvtl8o6VuCxa5asbh+/XoMGzYMH82fDwCQxcRFZB01JhsKasxIi9MEtQXuj99+Cd7P70VCCOkgkIsavrajZD0EiKxDXJjSVSoWP78KKNsTmedm7eKqO1uzm4TKwFBVCjA2IRDzJC5LCM1KdgD1RcLnNPHCR3lLxaLNx1ZWDad8fx+AsAWLW08yGH7bbLz51psAgF4Z/QFDWuc7OVuhhlPFfkCfKoSLPljw/To4GJrzTggJDoenG498IJfKwXLeg8X2FVh21g4AHkMvo80IQJgr56mqsbV6a72oWY/RylmxaGnffcKDZqYZDM9Ao+ge10I80Sl1aLQ1ivpe9qXaMxCWQguWPLAEVSuqoJarkdUnC2PSxojaVy1Tw87aO3wfH6w9iEZ7IzL0GVAFMHs6GNYvXw+HvftVBRMSTShYJCTKMSwPLpxtzHooO8vB3yynpK4Z8TEK6FoCuWjnbIVa2dT1Khbnz5+Pa6+9Fn/7299w022TvW7P8zxu+SQP8zYEv4VGfoHwi2dWggbSILVgtVkt+Hn5UqRmZAfleIQQ4reGUuDDkcDhn8Xv47FiUWSVVrNR/HOFUkk+sGx6x893Fq4FC+NPsGgW5hmGtGKxkzXJ5EBsBlCxD6htqfTQJgkfnRelfG2Faqr0r62pyAuhgfjq5x24/KtmnD0gCw9Mv1v4pJhQVxKJisUDQrWiDxd8GYbFx9+uRUZK5FugEUK6hwpzRcDHkEvlYHjGaxVY+1aodk4IFsVUcYmZr1jRLLwWChYF9Vah24RG3jWCRaPViPvW34elh5a6bfPpL4PSgCZHkyuo7owlDDc55f+Sj4LXC6BL1iHp6iTIJDI8e8Gz+Fv630Ttr5K7b4WaW5YLjVyDLENWKJYtGs/zWLVoFWITYyO6DkJ6OgoWCYliUgnAsBzCULDY49kZzu9WqGVGCwwaBZTy7vFPrkwqgVYpQ43Jt2DR6mAx+/t9qA5BpSPDMHj00Ucxc+ZMPProo/jhhx+g1MR43e9geSN2FdVjR2EdHEFuK7y9oBbJehV6G4L3S9TvP69CU0M9LrpsfNCOSQghfnFeFKnvvCVYG6yHCzhi58pZQjDr2d4shCs+c1d56f1iUsBYu+/Bk80EyBSAJEQVi6yXYBEAEgcAdYVAzRGhOk4TJ3xe1hIsOnwMFs3VwtfOV47QdVvgOA4vvPclpr22BFPPUWDdJy8gIbblXETMe++sWAzXDYOMDagrEEJeH6oOVm/cjpLyaoy78OwQLo4QQnwjk8iEikUv7Uc7tEJtmYMoQXCCxUpzJYDwtLmMBIVMCBbNIn9uN9gaAABauW+V8WJ9ffBrvJDzguggd2flTuyo2IHXd7yOG1bdgI3FG4PytTIoDTDbzaKCxVBWLPI8jyUfLsHcx+bCcK4B1711HRSxCsh8PAfUyDWwc/YOrVBzSnOQbchGrDKygd4fuX/g5PGTGDB0QETXQUhP1z2uchPSQ0klEjg4qlgMBzvDgWX9Dxb1KjkUsuifr+ikV8lhNNt9asNbXNeM/+0+hfX7A78jtT2JRIKysjJ8/PHHePfddyGTyWBnvP9y8cPeMgCAyeYAG+SEfltBLTITNIgJ0nxFnufxw5IvcMEllyOxV0pQjkkIIQFjfLjJhHO4H6UoOlhsmbHoT6WaJ/v/Byy4HDDXCn+2m4Hv7vLvWOE4H2PtvldGOsJQsehtTcmDgOZa4NROQJtwOsiStbRC9fVram30PWhmGc9Vs0EgkUhwqqIGb8+ciM+uV0OpUJwOm8VULErl4qt3g6H6iPB1M/T26Xvjg69/xJgRZyEjJSmEiyOEEN/IpXJRMxbbVzU6W1eKmf+3v2a/14CmsrlSxGrbMlqNmPfHPJ/3iwTXjEWR4Vi9TTh3C1WweKjuEHJLc0W1qQWAQ7WHYFAaMHnwZHA8h8d+fwxTf56KWkttQOuIVcXCzJjFtUIN5nmsG9UV1bh55s1IfzAdUAjzR8VU5LamkqngYB1gWt0U2GhvxF81fyFDn4EYhfebuENp5aKV6DuoL3ql9oroOgjp6ShYJCSKyaQSMCwXthubezKG42Hzc5ZMRaMVOpUcSln3+SdXr1agwcrA7kOVn8UuvH9MEAO8wsJC5OTkQCaT4fvvv8eDDz7oeszmJVhkOR6r9pS2rI0LasVindmO41UmpMVpoQ3SfMWDe3fh+KG/MHHyvUE5HiEkROoKgTmxwInfI72S8GB8qADzNGORY8SFci3ttMAHr3UVGJtQfWmuFv685W3g0I9A/ifBe45g8mvGolloRyoN0XkIaxe+hp1JarmjvChHmK/oDBYlEiFc9KX6UKoAwAO1J3xbZ4gu5JVV1mLj9r2QSCRY9MYTeHLyZacv4LVUwogOFnkW7tP3EKhqqbzR9xG9y/6jRdi040/MmnJdiBZFCCH+UUgVYDjvrVA7VCy2BEFigpcDtQeQEtP5DZ7OikVfzNk2B5/99Rl2Vezyed9w87UVqnNGpU6hC9WSYLQZRYd1f9X8hZSYFAxNGorZI2bjlgG3YF/1Pnyx/4uA1mBQGmBhLKLWEYqKxYa6BuzYtAMSiQSP/fMx3DLrFkgkErA8C5lEJqoitzW1TA0ePMzM6crU/PJ8cDyHLH0WZKGa2y1CRUkFtv22DZOmTYrYGgghgu5zlZuQHkgmlYChisWwabb7fiGT43hUN9kQo5JD3o2CRYNGjiarw7dg0dHyS1yQvl3z8vIwatQo/OMf/wDP8x1+GfRWsbijsA5VTTbEaxWwMmxQKxZ3FAp3PGYlaIM2X3HVks+RltUPIy4eG5TjEUJCpHS38HH/isiuI1wcPlQsegoExVZpWRrEP5evnBeCnBVm/sy/CUelGevwvWLR3iyEd6GqWBQTdsYkA0qdUDGojjvdAhUQ1uZLQK1NED7WHvdtnSGYabTn4AlccNvjePiV+WAYtuOFaef3k6hWqGGuWKw8AGgThaBXpA+X/IjU5ATcdOXFIVwYIYT4TiaRiapYbN/a0dm6Uurl8miTvQlVzVVI1nQ+X7bMVCZitW1ZW34GVjVX+bxvuDmDRbFBntFqhEKqgFquDtmaWJ5FTXON1+14nsfhusNI1iRDI9NALpPj0oxLYVAZcLLxZEBrMCgNAIDq5mqv2wY7WDx57CQevuFhvPPsO7Bb7W3ORRiOEYJFPyoWAcBkN7k+l3MqB700vZCii2z3pB8W/wCtTosrb7oScolQQStD5IJOQnqy7nOVm5AeSC6VgKVgMWxMNt+DxbpmOxwsD4NGEYIVRU6sRoEmKwObw49gMQiWLFmCcePGYfDgwfj555/dnih7qzBdtacUiTolzkjWwepgg1pJub2gDkk6JXrHBucXqNrqSmz99SdMvPNeSENVcUIIIf5gfQgWA52xaDWKfy5f+TOvr71wtULlfAye7Gahyi9krVBFVCxKJEBCP+H/1bHCzEcnmdK3akK1QXg9Ea5YXPVbHsZMmY3U5ARsXPQ65HI3F7VcrVBFtEWXyoTQOFzBYsWfgD4FUIibBW1sNGHx6o148I5roFAEp807IYQEi0KqAMuz4L3cxcq0+3nl4BzgwXtthVrSVAIAXisWK5qDP/ajK3G2grWy4m4IMtqM0Cq0Ia9wKzWXet2msrkSRpsRSZok16xIAEhQJaDGUgObL+e07eiVegBAtdV7sCh2PqUYu7bswswbZ0KpVuL979+HUq1s8zjDMUIrVB8rFlUtnSWcFYs8zyOnLAdZsVmu1xoJNqsNa79diwm3T4BGq0GGOgMAcJbsrIitiZCejK5OEhLFnK1QgzwajnhgtvkejFU0CCfcenX3ugATp1XCbGN9qli02oMTLL7//vu46667MHnyZPz6669ISnI/46ezVqg2hsXa/eU4K9WAOI0CNgcHxs8Zmu7knahBZoIWuiDNV1yz7CsoFEpcNfG2oByPEEKCxpeLMFxnrVBF/DyxNYp/Ll+JbOnVuXAEiw7fgydHsxDkiama8wfn8B4sAkDSIOGjOl4IGp3kqpZwUux5gkSoWjQW+xayBjFYXLj8F9z0yGu45pLzsXnxf9Cnd6L7DX1phSpTCK8nXDcMVh0EYnqJDhYXrvgVDobF328bH+KFEUKI7+RSOViO9d4KtV3FooPtvBWqs6KxwlwBjVzjtWLRnxmLOqXQJjQULTKDTSKRQClVim6FWmetg0aucc1mDJVSk/dg8WCt0AK8fTicqElEnbXOVTnqD2fYJqbq1GwPTrC4ec1mPDPtGZx13ln4cOWHSMnoGHq7WqH6WLGolqnbrLWwoRBVzVVI16W7HouEDT9sQFNDEybePbHN530NTgkhwUHBIiFRzNkK1dvJMwkOsx+tUMtbgsW4blixaHGwMPtQxRmsisXLL78cb731FhYuXAiVSuVxu85aof5+uBpNVgaDUvQwaBSwMRwYXytAPDA223Gs0oS0OE1Q5is67HasWbYYV068DTF6QxBWSAghQcTYxW/bMseoAzFVWiwjVN6FSjBCp1BXmkkVwnvoaytUh7MVaggvuoip+EwZCkAC6NpdlJUpAdbq2+zImGTAVOlbIBzEVqiXnD8Mrz56F75771loNZ1cYHMG72IuqErCWLHYXAeYqoT3Uab0ujnHcfho6U+4bfzfkJKcEPr1EUKIj+RSOTieAwcvrVC5tlWNzhmLnioWnQFahbkCqTGprkoud3ieF9UKs710XToAcW00uwKFTAEbI+7GsnprPbRyravSMVTEzLY8VHcIOoUOieq2NwMla5JhtBmDEiyKacnaem5hIM4ccSamzJyCf3/xb8ToY9xuw3AMpBKp7xWLzlaoDqEVak5pDuRSObIN2T6HlMHC8zxWLlqJUeNGIS07LSJrIIS0RcEiIVHs9IzFSK+kZzBb/alYtEAmlSC2mwWLhpYKzOom8ZUqgQSLFRUVeOCBB9Dc3IyhQ4di9uzZXk9oO2uFumpPKdLjNchOjIFGKYONYcH4UH3ZmfzCOvAAMhODM19x669rUFdThYmT7wl8cYQQEmysL8Ei474aS0zFojWE8xUBwOH/xSSXUN/oJZOLm2fYGs8LgZrce3gUEFuT922SBwFX/RNIGtj283IVwNh8C0x1vQFztW8tbAMMj+saTPj7i/PQ0GTGGZmp+L+HJntvT+5qhSriPFAqb3kPwnBiXyVUbUDfW9Tm67buxonicsyacn0IF0UIIf6TS+VgeMbrjEWG79gKFfA8Y9HZ8tPKWpGsTXYFLu4YbUbX8XyRphdCkipL15+xCABKqRJW1irqBvd6Wz3UMnXIKxarmqu8rmd/zX6kaFMQo2gbwiVrk2FhLKiz1vn9/HKpHBq5BrXWWq/bip1P6Xbfpma88+w7MNYakZySjHtn3wuZu1bsLfyesSjvGCxm6bMQrxY/lznY9u/aj+MHjuPG6TdGbA2EkLYoWCQkitGMxfBqsvn+S0J5gxWxGgVUnZzsRSPnzEifgkU/W6H++eefuOCCC/Djjz+iuLhY9H6eWqE2Wh3YeLgKQ1IMiNMqoFHIwPGAOUitWvMLapEYo0RqrLjWYt78sPRznHvh35DVf1BQjkcIIUHlS7DoccYi6z2UC+V8RSBIbTJDfD4mVbS0QvXh55XDAoBvO9MwmJwVCC0XnrxK7A9o4tp+TqYSN6exNX0KYKkDbD4EzgFULB6tsuLCu17Ail/zUFDiw/wsZytUMe+/VNbSCjUMFYuVB4QgU99H1OYffL0aI4cOwKhz6FyEkK7Iyljx6MZHe3QnI5lEBo7jvLdCbXdzjisI9JC7tG75maxJhqKTG0UqzBUth/Kv7aSYNppibSzeiG8OfxO047WmkClgY21eQ1wAaLA1QC1Xh7xisc5aBzvX+TnpodpDSNYmQy1v22nAWcFY3CT+WoM7OoUO9dZ6r++Lv8GipdqCZ29/Fr//+DtKCkpE7cPwfs5YbAnQzXYzrIwVuyt3I9OQ6WrbGwkrF61Eet90jLxkZMTWQAhpi4JFQqKYTCptqVjsub9AhFOzH8FTqdECg1oOpbx7/XNrUAu/UFU0ir9IZ/WjYnHNmjW4+OKLkZiYiB07dmDw4MGi9/UULK77qwIOlsPgVB1UchnUCuGXnEaL761u3dl2ohZZiVrolIHflXn0wD4c3LsLk6bcF4SVEUJICLB28ZV6noIjTkT7R4vRp2X5zFn5Zm8JyPw5twp1ICRTCO+hLxWLzotXnVRYBMRZCRlIm1q5yvdKzJhewvtdVyR+Hz/X+PuBClz47mHIZFLkL3sP5555hvidXRWLIs4JpM5WqGE4r688AOhSAJX3C4THikqxbutuzJpyfcTanxFCOrfwwEL8XvI7vjzwZaSXEjFyqRwcODBeblLpMGOxJVj0FHy1bo/ZO6bzKm/nfEWtQut1ve7UNNe4Zj4Gan3Revz3z/+iwZcbcERSSpWws/YO76U7RpsRannoKxaNNiNsncz9rm6uRq21FkmaJCjbtQBP1AjBYkmjuLDOE51ShyZ7k9eqVX9maZ7afwr5z+XD0mzBBys+wLDzh4naz++KRWewyJixu3I37JwdmfrMToP1UKqpqMGWn7dg0rRJ3rtFEELChv42EhLF5FIJWJZDkEbDES9MPswTdCo3WqBXy6GQda8LMf60QvU1mD18+DBuuOEGXHbZZdi6dSvS09N92t/TjMUVe0pxRi8d0uKEX/iccxCbrIH/EtfQ7MDhiib0iVVDqwr8rswfln6B3n3SMerSKwM+FiGEhATrEBeEcO1aPLbeR1Qr1Hq/lieaM4Ar2Sl8NHmf1dNBqAMhZ8WiLwGcMygNRsXi1veAA6vafk4WrGDR5lswq+slfKw9Ln4fPyoWS0pKMP71DRiRocW2r/6FMzJTfTuAM1iUiQkW5cJ7EI4T+4q/hDaocu/dFT5a+hOS4g24/ZpLQr8uQohfnGGUs21nT+QMrrxVrbUPHp1/9lTR5QwWNXINemu8BIvmSkglUmjl/gWLtdZaWNjgzAPmeA61ltqgVkE6KWXigkWe59Foa4RKpvI4wzJYGu2Nnc59PFR3CACQEpPS4TGD0gC5RI4SU2DBokFpQJOjCXYv3Tx8DRZramqw+PHF0KZo8fbyt9F3UF/R+7Ic69eMRalECoVUAbPDjNzSXMSp4pCmi9xcwx+X/AiFUoGrb7k6YmsghHREwSIhUcw5Y5EPxywW4lfFYkWjDTq1AgpZ9/rnVi6TQqOQoSYEMxZZVthu8ODB+Omnn7BixQrodL633HBXsVjZaEV+QS2GpOgR19LO1VmxGIxgcWdR8OYrGutq8PvaVbj+jumQybpXK11CSDfCiWzN6boDn2/3Z7RUaUW4YpFpdyHPr6AsDDMWwQshnFjOSkxpECoW/1gE7F7U9mvnrIQUM2PRE38qFjUJgEQK1B4Tv48Prcec7fQyMjKw+qlxWPvgAMQZYrzv2J7zvRI7YxHwrb2wPzgOqD4ExCQDis6DRZPZgoUrfsWMW8dDrQrxnE5CCAmAs+LQW8Ufy7Ntrp84t/dU0eUM+lJjUr1WIlY2V8KgNPgdotXb6mEJoG13ezx4HK47HLTjOSllStg5u9eWnxbGAjtn9zto9YXJboKZ8XzudrD2ILRyLZI1yR0ek0gkiFPHodxUHlA7YYPSALPd7D1YFHk+wvM8OI5DUlISbn/9dox4aQRiE2N9WhPDt1Qs+hgsAsLXudnRjJzSHGQbsmFQGXw+RjA47A78uPRHXH3L1dAZIteKlRDSUfe60k1IDyNvCRY5yhXDwtcZgTzPo7LRihilDHJp96pYBAC9Wo76Zgc4kd+AzTYRrVKMRowfPx7z588HAEyYMMHvUM1dxeKP+8ogk0owMEUHeUvYq2kJFhuC0Ap1e2Et4rUKpBoCn6+4bvk3kEgkmHDznQEfixBCQoYVUW0ICAGkpz/znPdQKdQzFu3tLuTZGn0/RqhboTrDKbsPd7o7A1J5ECoWbSYhQGx9wczZCtUmcsaiO3K1MGPRl9mRUhmgTQSMxeIrRUVerDWZTLjxxhvxxhtvAACuPqeP/50nXK1QRZzLONvweWmhFjDjSeG90PXyuq7FqzfC1GzFQ5OvDe2aCCEkQM6Kxc7aYQLuW6F2dqO2s2Kxl7YXNF6qvMtMZQEFi3bWjjprnV/7ehKqYNHBOrxWLDrbsLafaRiI//75X3x96OsOn+fAodpc7XG/A7UHkBKT4jEcTlAnoNZaG1DVb6wqFiaHyWsrVEv7m9ncsFqtmDJlCp5//nkAQL/z+0Gm9P26iL+tUAGhHWplcyUKGwuRoc/w+v0fKpvXbkZ9dT0mTZ0UkecnhHhGwSIhUUwmlYDjeNHBDgmMxe5b8NRgccDGcIhVK7rlTBq9Wo4GqwN2VtyFVG8Vi8ePH8fo0aOxe/dunHnmmQGvz8Z0fL4Vf5RicIoeKa2CP7VC+FHYYAm8QiDPOV9RHdgMCZZhsPrbRbjs2hthiEsIeF2EEBIynENcoOasIHCesrS/m7uT9lUAwl+x6E9QFupWqM52pj5U3sHhDBaDcDHIbhKCyjYVi85WqL7PC3KRq31v8QoIwVhjOcCIvAjoaBaqHDtx6tQp/O1vf8PGjRtx9tln+7Yed1i7EN6JucjsDPlCXbFYdVD4qOvYDq41nufx4ZIfMenyC5GR2rHCgxBCuhJZy7+h3qrFWI5t02DA20xGZwiUoE7oMJuvvQpzBXQKnV/VYU7FTcV+7+vOcePxgKrw3FFKWyoWvbTurrcJbeyDFUhxPIdFBxbhv/vazo50zv0rNZd63Pdg7UEka5M9riVJk4R6a32bmZq+ilXGwspavVYkenuOyspKXHbZZVi5ciVGjBjh93oAIUj3pxUqIASLR+qOQAIJsg3ZIW9n68nKRStx3sXnIXtgdkSenxDiGQWLhEQxmatikYLFcLA6OLA+hLjlDcIJo14T2kHlkRKrUaDRwogOFps7CWa3bNmCUaNGgWVZ5OfnY+zYsQGvr33F4vEqEw6WN2Jgih6x6tOVG86KRX9maLbWaHXgcHkj0uK0iFEG9jXP+309qitKMfHOewM6DiGEhBwrMlh0XbhztkJt92+ut/aeFiMQwIU6rxztLvL41dozDDMWAf8qFhUBVgtwrBDgOcytvpZoCTslgD2QVqjqllaoPv4c1qUA5mrx74fdfDoIdWPXrl244IILUFdXh7y8PFx7bRCq9FgHIJGLDBadrVBDXLFYeRBQxpyeU+nBxu37cPB4MR6564bQrocQQoJALhH+DXXwnv8N5XiuQ3UiwzGd/viOU8UBAJLUSV7XUNlcKQSLAdxUXNRQ5Pe+7pSZykRVyPlCJVPBwTrA8J3/3DbajAAQtFaox+qPocnehHpbPfLK8lyfNyiFFp3lpnK3+9VZ61DVXIUkdZLHcDhZkwyjzRhQK1q9Ug8AqG72XDnp7X3bv38/Ro0ahYKCAmzevBm33nqr3+sBhCA9kIpFO2dHhj4DiZrEgNbhryP7juDgHwdx4z03RuT5CSGdo2CRkChUWircieWwWcD28Faovx+uQlVjeIbU2xjfgsWKlmDRoAlC+7EuyKBWwGRl3LYcdcdTxSLP83j11VdxzjnnYPv27RgwYEBQ1md1sJC1akH7w95SaJQyDOqlg7TV5+UyKeRSCRqtgQWLu4rqwPFARoKmzfH9sXrpFzjr3AvQf8iwgI5DCCGhUlNbAwBobGryrWLR9ef2FYteqrQsdYAyhDN62CDMWAx5xWJL8OTLBUJn6BZosGg3nT5emwBQIoSLvlRRtidXip/V2ZqhD9BcK/5r5WjuNFh84403kJmZiR07dmDYsCD9/GVsQmAo5oKes2LR29+FQFX8CehTAS+zwj5c8iOGDsjCpRfQuQghpGsym4R//ysKK1ytUDurWGRbKuOd4SLDMeDQ+TmMTqFDX0Nf9Ivr1+l2PM+j2lLtdQ5jZySQoKSpxO/93alsroTJHkC7cjecgZO3GYvGljb2zsAtULsqd0EukUMtU2Nd4TrX5zVyDeQSOcrMZW73O1R7CADQO6a3x2MnaZLg4ByotFT6vT5XsGjxHCw2M52fL7333nuIjY3Fjh07cMEFF/i9FieGZyCV+l+xCACZhsygfQ19tfLLleid3hujLx8dkecnhHSOgkVColBDg9D2gbNZwANwiKwY647uWbQTV7y7OSzPZWNYnysWpRIgXtt5y5T2WI5H9rNr8PHmE74uMazitAqYbOKDRWu7GZUcx6G4uBgSiQT/+9//sG7dOiQkBK/tp43hoHAGfDywck8pzko1IFnf8eKqWiFDc4AVi/kFdYjVKNAnNrCLt4XHDmHvjlxMmkLVioSQrqupSahQs9usgc9YBES0Qq0PTjtPT9o/v8MMeGnx1UG4WqH6FCyaIIR/qsCe29ka1mHpGBLLlKLnF7olVwthJeNjpZ4+Rfg+ahDZNs7eMVjkeR4nT54EACxcuBC///47evf2fOHRZ6yjpRJRTLDYEhyHesZi5QFA1xtQeP77dLK0Eqs35mPWlOu7ZTt/Qkj3YLEIP3tMDSZXK1RHJ1Xf7WffeZuFBwitUOVSudd2no32RthYG/Qqvd+tUA1KA8rN5V4DO19YGAtOmU4F7XiAMGOR4RjvwaLNCJlEBrUsODMWd1XsQpo+DYMTBmN35e427VD1Sj1qmmvctn09VHcIapkavbWef747K/JKGv0Pdg0qoXKyylLlcRt3bVJbn4t8+OGHyMnJQWZmpt/raI3lWMjgX8WiczZmhj7DaxvgUDDWGrHxx42YePdEyGS+z5ckhIRexIPFjz76CNnZ2VCr1Rg1ahR27NjR6fZz587FoEGDoNFokJGRgX/84x+wWsNTrURIl9NyZ7e7WXI9SaAtLMWyMRxYHy4aVjRYYFAroJb7dhLkDOpW7/E8I6AriNUoYHGwogM5i+P0Lx5msxm33norLr74YlgsFsTFxUGpDO7JqtXBQiYTTqCPVZlwqt6Cgb11bucfqhVSmO1sQPMn8k7UIjtRC706sArV1d8sREJyb4y5Iggt2IgodC5CSAA4RmTFYqCtUOs7DUICxtjbBol2sx8BT5haodp8qKZ0NANy1elqOH85W8Mylo7VpoEGi86LVQ4fq0SdMwJrjonb3m46Hc4CsNlsmDZtGkaMGAGj0Qi9Xg+NJsjfY/7MWORCWLHosAL1RYA2Sfi+8ODjb9dCH6PBXTdcFrq1kA7ofIQQ/7AMe7oVaic/u9l2lfFig0WFVOE1mKkwVwAADAqD12N6YlAZUGup9Tr30an962lPrxCqzJwVe8Gikqng4Bxen9/kMEEtV0MuC3w0DM/z2F25G2m6NFyYeiEa7A3IK23VDlVlQL2tHnY3P0MP1BxASkxKp9WkiWohWAxkxqXz/e6sFWr7ikWGYTBr1iwMGzYMFRUV0Gg00OuDVx3Ig4dEKvEr7NbINVDL1MjUByfk9NWab9ZAAgmuueOaiDw/IcS7iA7++u677/DEE0/gk08+wahRozB37lxcffXVOHLkCHr16jjzYenSpXj22WfxxRdf4KKLLsLRo0cxffp0SCQSvPvuuxF4BYRElqSllYfYijESGDvDgWXFXzQsNVpg0CigkHXPO72dLV6rTTb07+395NfZCrW+phKXXnorDh8+jKVLlwb/Il4LO8NBLpUCYJFzvAZxWgX699JB6uaXQrVCBoudBcPxfn29TDYGB8sacdXQ3gHNVzQ1NuC31d/jtntnQa7oni10uxo6FyEkMBKOEVep57x459y0fTjVSesyAIC1IbTBImtv24rT3ixUm3USvnQQropFX9qO2s1CtaIkwGDR2UaN505XLzrJlcL8RX8rLJzvsa/tZ3XJACRA7XFx27dqhVrTYMaNV1yBnTt3YuHChYiLi/PtucVibC3BoohzC+fXKJQzFmuOCN/n+l4ew06L1YbPlq3DvTddiRhtcKpMiHd0PkKI/1iGdbVCtXVyo5KzFapTZ21TnayMFXKpHFIvN4hUNgstNANpGalX6lFuKu+06rI1O2sHz/MeQ894dTwsrAVH6o/4vSZ3lDIlHJwDnIjODhJIIA1CTUthQyHqbfVIjUnFkMQhiFHE4Oein13vd5wyDjXWGlgZq6uFp9OB2gPI0GdAI/N8HqlVaKGSqXCqqWN156HaQ9DINciOze50jTKpDBq5BnXWOo/btK5YtDRZcO2112Ljxo2YP38+UlJSOj2+v2SQ+RUsjukzBvHqeMSr40Owqs6xDIvVX6/G5ZMuR2x8bNifnxAiTkQrFt99913MmDED99xzD84880x88skn0Gq1+OKLL9xun5eXh4svvhh33nknsrOzcdVVV2Hy5Mle7+QjpLviW+5ks1GwGHJyqcTnisWyBisMajkUsogXh4dEbEtlXlWTlyqTFlYHC3vlCfzz7zeisrISOTk5uOGGG0K2PivDQd7SCvVUvQVn9TEgMcb9BWK1QgargwXjQ3Dc2q6iOrA8j8x4bUDzFdev/BaMg8G1t97t9zGIb+hchJAAia5YdF4ka/l31tdWqFajbyGfr1g70PqCo6PZ94rFILYuc8vZKtOX6kC7WQj+xFTMdcZZsQgI1aOtyVTC18/f1y/zM1iUKQF1rFCBJ4bDAsgUOFTNYtTDH+Ho0aP4/fffMXnyZN+e1xes3fdWqKEMFisPCB/1aR43+WbNZtQ3mvDwndeFbh2kAzofIcR/LMNC1nJzRmdhIcO3rQR0VgbynXQcsLItwaKXy6cV5gpIJVLEqeJErrojg9KABnsDrKy4ymMefKdVgxJIkKRJQlFjkegqSDFUMhU4nhO9zmDYVbkLUokUGfoMSCVSnJ10NnZX7nYFyfHqeDTYGjoEyw22BpSby5GkSfLazjNeHY/K5soOAfRTW57CGzveEFXhqlPoUG+t99gm1lmxaK+2Y/7987Fjxw6sX78eM2bM8Hpsf0mlUr9aoWbFZuGavtcgRhETglV1LueXHFSVVeHGaTeG/bkJIeJF7Gq33W7H7t27ccUVV5xejFSKK664Atu2bXO7z0UXXYTdu3e7TpYLCgqwdu1aXHON57Jom82GxsbGNv8R0m20nPDYHBQshppCJoWdYcH4MG+posEKXTcOFp0Vi5WN4n6hsDpYcA47klLTsWPHDgwfPjyEqwNsDhbyVtWHA3vpEaNyX02oVchgcfj29W1te0EdDGp5QPMVOY7D6m8W4pKrr0dCcsc700nw0bkIIYGT8GzbQM6T9hdj2ocn3i7WWBtDO2OxfcUieD8CnlBXLLZcELP7ULFoaxL2CzRYtLeqUrQa2z4mVwkVi/6+fmdg7GsrVADQ9QIay7wH04DwvkkVsLFArzgd8vPzMXr0aN+f0xesXahEFHNBTxqGisXKA0IbVE2c24d5nscHX6/GhEtGon9Wn9Ctg7QRjvMROhch0UjR0gLcW8tN1nG6YrHTYLFduCamMtCXikW9Ug9VADdBGZQGcDznaqsqhrf3JlWbinJTOcz+/Iz1wBnQtW/rGUo7K3YiTZeGeJVQPTey90g02htxoEa4YSZOHQezw9xhhuHhusMAgF6aXl7DtUR1ImqttW0C01JTKU42nkQz0yzq+0Wv1KPJ3uQxhHSuj2d5qGJU2L59Oy67LLRtx2US/yoWI2nVl6swdORQDBg6INJLIYR0ImJXu2tqasCyLHr3bjs8t3fv3qiocP9D9M4778Srr76KMWPGQKFQ4IwzzsDYsWPx/PPPe3ye119/HbGxsa7/MjIygvo6CImolvlE1Ao19JRyKewsB19yp8pGK3QqeZtwqzvRt8wqrGrs/GIez/P49ttvYbHaoU4fguc+/A6pqakhX5+9VcUiAPRN8jxTQahY5MBy/l0U3XaiBtmJMa6w1R87czairKQIE6fc5/cxiG/oXISQwEl51scZi84/t7vg4ujkZwnPCcGWIoRtGVlHx4DU14AnXBWLjC8Vi6bgBIttKhaNbR9zVSwGGCz6WrEIAPoUwFQlat//7SyFlZNheIoMeR8+hOzsbN+fz1fOGYu+VCwyIZyxWPGX8J55aCuct+cg9h4qwCN3XR+6NZAOwnE+QuciJBo5w0KvwSLbKljsZE6t8zjOCkUxFWhW1gq5RO41lCo3lcOgNLjCUH8YlMJ8xjJTmeh92lfXtddH1wc1lho0tf45HiClVAgWLb6cjwSCFyoW02LSXNVz/eP7I0YRg1MmoXVprDIWPPgOoezB2oNQypRIifHeZjRJk4R6a32b15VXJsxxFFvxqVfq0eRo8hhwb1i7AayFhSpFhZmfz8SgQYNEHTcQUvhXsRgpBYcLsHfbXtw4naoVCenqoqqMZtOmTfj3v/+N+fPn448//sCKFSuwZs0a/POf//S4z3PPPYeGhgbXfyUlJWFcMSGhxbdc8HKwFCyGmlImhZ3hRVe0NVkdaLaz0Kvkbmf6dQcKmRRqhRQ1Js8Xg+12O+6//35MnjwZ9UeFO6rDdVJrYzg4c8K+SVokeGiDCgBapdAK1eFHK1SzjcH+skakxWugDWC+4g9Lv8CAs87GkLPP8/sYJPToXISQtqQQGSx2qFhsP2Oxk2DRGRqFsmLRXStPn1uhhrhiEQCkCh+DxZZWqNIAZyy2nqtoaTc7SK5qqfgMcMaizZ9gsQ/QXNNpFSfLsnj88cdx6+fH8b89wtrDdoGNdc5YFPFrt/Nr1MlF8YBVHQRikj0Gix9+/RMGZPXBVRfTuUhX5+v5CJ2L9CwNtgYM+3IYfi/+3fW5clO5qCCtK3GGdN5CndYzFn2pWOwshHSyMlbIpDKvFYvl5nLoFLqAgkWdUgcJJCg3l4vex2vFYkwqGJ7BMeMxv9fVnrNi0eJLa/YAMDyDGksNUnQpropQZztUQAiKY1XCHL72oeyB2gNI0aZAq/B8k7FTsiYZjfbGNtWdOaU5Pq3VoDTAZDd1+D7kOA7/93//h9ceeg3GXCOA8J2LSKXSqKpYXPXlKiT2SsQlEy6J9FIIIV74fwU0QElJSZDJZKisrGzz+crKSo8Da1988UXcfffduP/++wEAw4YNg9lsxt///ne88MILkEo7/qBXqVRQqUI4j4WQCOJZBpDSjMVwUMglsDeLr1isaBDaZ+jV/v9iEQ30KgXqzHZwHN9htmBtbS1uvvlmbNu2DZ8vXIRXDyeFdW12loPFIfyilaxTQ63wfFFVq5QJMzT9qFjcfbIeLMcjPV4DmZ/zFU+dLMDOrRvx1GvvR9XdhNGOzkW6KZsJUOkivYoeQwrOxxmLLToEjSKCxVBWLHKOjq/Dl5ajAELeChUAZApxbT+d7CZAqhTacQbC3tJSlbV3rFiUq4VWqP4Gq/7OWASE6jvGCjSVA3HpHR5ubGzE5MmTsX79enw0KRl3XZwBlIivBAkY40MrVOfXqJOL4gEx1wLmaiFYdDNnqqyyFv/7JQdvP32f259lJHTCcT5C5yI9S2FDIQBg5fGVGJc5DgBw1fKrcHbS2Vhy7ZJILs0nCpnwu7SneXVObWYsdlax6Kzua/lxJaa1pY21udbRmcrmSqRoUwIKFqUSKWJVsai2VIvex1vFYu8YoRL6cP1h1/dCoFzBIts2WJy1YRb+qvkLm2/fHJTnaU0CCTJ1mW0+d0HKBdhWvg2lplJXsFhqLm2zzYGaA0iJSYFGxM1pSZokcDyHsqYyZBmywHAM8svzfVpnrCoWZoe5TYjf3NyMadOmYfny5bjtidtw+OzD4BC+a3jRVLHYZGzCryt+xR0P3QG5ImKRBSFEpIj9xqBUKjFixAhs2LDB9TmO47BhwwaPsy6am5s7nCDLZMLJAx+OO4QJ6WpaLjzYGBGzjUhAlDIpWI4X/V6XtwSLgbTGjAZ6tRyNVgfs7apm6+rqcOGFF+LAgQPYsGEDbr7tzrCvzdaqFaq3nxEapQw2P2cs5hfWQq+WIz3O/0qan779ErHxCRg7YaLfxyC+o3ORbijnPeD1NKDiQKRX0n14acsoExsstq82aH8xr7Pncc73C+mMRTetUNtX5nkT6laogBAs+lIh4KxYDLgVqglQ6YXwy92MxWBULPoTLOpaWkfWdqzEMJvNuPjii5GTk4M1a9bg4fOVQsVnOPnTCjVUMxarWv5d1LkPqj77fh1USgWm33hlaJ6feETnIyRcKprFz+7rCpxViL5ULHYWFrav2PRWwclyLBycAwpJ5z87eJ5HdXM1YhQxrnX4K0Gd4FNlqbeKRZ1CB51Ch2N1QaxYbGmFam73c3vzqc2os9ahpCn4FdGpMamI18S3+Vy/uH6u/1fL1FBKlagwnf4eN9lNOGU6hSRNElQy7zdWJGoSAcC1/r9q/oLZYfYpLI5VxsLKWmFyCOeudrsd48aNw9q1a7F8+XKMnToWankIb5RzQxZo14owWv+/9WAYBtffSS3ZCYkGEb0V8YknnsBnn32GL/+fvfMOl+Oqz/87bfve3lQtuchNluQiN9zAEKoDhlBNTCc/ME4CCS02mN4SIBQDoQYSjB3AFGMwuMpF1UVXvUtWub3s3m3T5/fHmdmd3Z26u7q6EufzPHqu7u7szJlyd86c97zv96c/xc6dO/G+970PhUIB73jHOwAAN998Mz7+8Y+Xl7/hhhvw3e9+F3fffTcOHjyIBx98EJ/4xCdwww03lDvRFMpfE7pKOtiiQoXF402EJ1+XBTlYtv5IVgQDoDNxaguLbXEBM6JaJyx2dnbi5ptvxoYNG3DVVVeVnYOziazqgR2EcYE4FpUG3L/r9k9iSXeyKXfqhscfwjV/cwMi0dl9yKDQvsgpx8g28vPY0ye2HacC5UEI7wHqwMJi7UBfnbAoun/WGriKJP230yiaAtQOzhUnw62jgckpobFcg0G3JReImNasA03MEmciHwOkmer3+FhzwqI12KeEdYgCSJvC4sS+ureSyST+/u//HuvWrcNLX/pSEiEbwHXSUlSZCIZBnALscXYsju4g10LbfMe371+zCX/7wsvQnj6Of2cUV2h/hEKpxxJ0/MQzXdXBMiTu0UtYrF2Pn4AnmWkKfsLSjDwDURNJlGmTzrDeeG+o5f2ODQAMJAdwJHekvD/NYjkWiy737eMRubswvbBcX9HCHk8ramLZ7Wk5XHdN7QIA9CX6Ap2XrlgXAOBw/jAAUl8xwSdCnZN0JA0AmChOACATR9761rfiiSeewI033oiiUiwfv9nCL8Z3LrH+kfW4+OqL0dXXdaKbQqFQAnBCfcVvfOMbMT4+jk9+8pMYGRnBqlWr8MADD5SLlh8+fLhqFt7tt98OhmFw++2349ixY+jt7cUNN9yAz3/+8ydqFyiUE4phzu6XG6gLRwlHhCPfRXkpmLA4nBWRjvGIR07tB/uOuIChTAmyKcj98Ic/RFtbG97whjfgE5/4RHm5EyMsamXHoh/xCAcDQF4O186SrGHL0SxefG4fktHGbqmT46M4emg/3v6PH23o85TmoH0RCsUFy0Xm43zhmKCORb8ai16OxVkQFp2iUIvTHh9wOC5GsD5CU1hRqIaOQHNElSKQ6G6BYzFHBEAhTtyL9utCiBEBrVGXFMsS8a0RYVFIAJEUMH2g/NLdd9+NYrGId77znfjIRz5CXtQU4pqd5cE8aCGiUI+3Y3F0K4mOdYiKnskX8cz2fXjP6192fLZN8YX2RyiUeoLWWFTNCdccy3mKWlZsqGHew73qMQJAyaxp7OdCHC2SGGNLVGqG3kRIYdEnChUA5qfmY8v4FhSUQiDnnh9uUajHk4HkAGKc+yRczdDQEe1ARspA1mTE+Bh2TO6AwAqYl5wXaBsRLoKUkCrXaXzi6BNY2r4UOTkXuJ3WNfDHP/wRm6RNuPXWW3HrrbeW3w/rgGwFXLNx+LOEIivY9vQ2vONf3nGim0KhUAJywgOLP/CBD+ADH/iA43uPPfZY1e88z+OOO+7AHXfcMQsto1DmPropLErUsXjcESxhUQw2aDiUKaEtLpQ/d6rSnhCQl1SUJAX/+qnb8NWvfhUf/OAH8YY3vKFquVJIwa4VyJqBFB+sEx036y/mSuEG8549PA1VN7CoK9lwfcUtm9YBAFZc7Bx1RTn+0L4IheKA5ezyEQ05BsGEEPsyhuEQjeojLDLs8Xcs1kWhejgWnfb5eAlCdjgrdlRDoEc5uUhcaq0QFvkIoMfJ+bDvq9WmZmpMcpHGhEWA1AzMDsFQZXzm81/Epz71Kbzzne/EO9/5zsoyVnzsbDsWy1GoAY5/2bF4nK6jkW0kOtahVulTz26Hruu4dvXy47NtSiBof4RCqcYS9PxceZpZroRneE9hUa2ZAOTnrLOERb8ai6MFIiy2Rdo8lwtCX6Iv1PJBHIuLUovw+NHHMVGcKLvymqHsWFQbvG83wKLUIl/XYWess+zMtITF/kR/ndPRbx1jxTFMlCawc3In/mbJ32D31O7An09H0ph4YAKfu+dzeN3rXocPfOADVe0uKIVZdyyeLMLi7i27IYkSVl6+8kQ3hUKhBOTUHvGmUE5xdIVEWcgqdSwebyI86QwGFciGsiW0xfhTX1iMC8jn83jHTW/E17/+dXzzm9/EV7/61brl5noUaswUFrMhhcX1ByaRivJY2NF4hOngprVYdPpZ6OwJNzuVQqFQjivWoIePSwAAcdD5YV9PYbxGPGG81yEXiDPteA6MOEWhFjxqLDoJodpsORblehHUDaVEzmVLhMUoEXeVYrUDlY+QY9dMhCcX8Y7D9SI9ADEzjJtuugmf+tSn8PnPfx4//OEPq5exRMtZFxYVIhgGcSwyplB8HCLkoOvAxG4g2eNYq/SxjVsx0NuJs5YsaP22KRQKpUHKjkWf+6slLPo5Fmudj37Comjel4I4Fhkw6Ix2ei4XhO5Yt+8y9jqqQWJH56dIBPbu6eACmRfWeSmFqfncJD2JHt9lumJdJJbWPG/bJ7ejL9EXqqZhd6wbU+IUnjz2JHToWJxeHKhMMgCoioof3vFDjNw9gmv//lrcc889dWJoUSmWa1TOFrX1eOcqm9dvRiKVwFnnn3Wim0KhUAJycny7UCgUR/RyFCp1LB5vLIEwF9CxOJwVkYoJELjmaizMddpiAqb+fCfWPfk4/vCHP+DWW291nEl4IuqAypoeKgoVCB51a7F2/yRO604g1UR9xS1Pr8PK1dStSKFQ5hhlYTGAyBFEELILiXqNCMVy3i4tuUAiONkAwuIzPwWObPBfrhbdwbEoZtyXdxLRgoiwzcJFAF2uF0GdMAwiqPEtENPkHNl2WVi07as1YCc34Vzgo+Q6aqROZXoe/uVXB/Db+/6AX/7yl/i3f/u3+r5IWVg8EVGobMgai8dBWMwcIiJzqt/x72jNpq24bvWKpmuDUSgUguV0ozSH5RSsdRrWUhYWGZ8o1JA1FkUtuLCYjqQR5ZuPGe2J+wtosl7pg9S6Bp3qHg4kB8CAwc7JnU23DyA1+3iWn9XrPMEnfJfpinWhoBRQUAooKkUcnjmMnnhPqPjX3ngvpsVpPHXsKfQn+jGQHAj82Z987Sf4y6/+gqXvXYrV71rtKOgV1BMQhYqTw7E4uH4QF6y+AFzA1CkKhXLiocIihXISYzkWJbWBQZiQFGXSmRf4v84Bh7A1FkdnRKSi3CntWNQ0DW1xHh3X3owv/uQ3ePnLX+667GxHoRqGAVkNISw24FgUFQ1bjmawsCOOZLSxzu/0xDiOHNiLFZdcGepzoyLZr6xIJxVQKJTjhCXABHHhaUEcizXfr3ZhimG9BUzLsRhEWHzsC8Dab4cXqAy9XtARs+7Lq3L9NmZDWOStKNQA+2dFprZCTJPyprCYIiKd/bqw1t9MJBoXMWtHhruvaZoGtM3HHVezePzeH+Pv/u7vnBe0XBVOg3mT+yvvtxrdrLEY5LGbYcjfwvEQFke3k5/p+gHSfKGEp7ftxbWX0hhUCqUV3H/gflz680uxaXjTiW7KSQ9vOrn9aixq5kRrnuWh6mqVo89OnWPR5/vWEs6irLcwNZQfQlukrSWCUULwF9Ds4mHBqkNt4hTbGuEi6Ip1YX92v+uxCUuEjUAK0v9rASt6ViDu4LavpSPaAYCcjz3Te6BDR1+iD2yI1IbeRC/ySh7rh9fjtLbTkIrU1yWuxbr+3vz/3oyv3/N1LLl+CTJiBrpDX62klHyjdVsNF6T/fIJRFRXbnt6GlZfRGFQK5WTi1B3xplD+CtAUGSwDKNrxj0I9Ok061V3JWZ7pPUcQePJ1WQwgkBVlFTlRRToqgD1FZ34//uf78P7X/w04qQC+rQ/xgdM9l5/tKFTrb4IPKOxaUagzIYTFZw9PQ9EMLOqKg28wXmTL02sBACtCOhYVnVxXOk1BplAox4tWR6HWCpRVjkWeCHVuKHniWAwyMFTKmOJUA1+QtbP8pZx75Kjm4BqclRqLEed6kE5Yg40hZup7rqssLJZqolDN9ctNiHN8lFxHQSNeAfxxzSasfM0HMCzG0JdkcclCj/2UXaJQdR34/rXAo19ooNEBKEehBlye4Y5PFOroDnLukvWx6089uwOapuO6S1e0frsUyl8he6b3AAAGxwdPcEtOfsqORZ++iG5OtOYYDpquOQo6AKDpIR2LZiKDX028kcIIUpGUr7OxVRSUiphYUKuFRbd6evOS8zCUH2qZy1BghbKj83jSFetCOpIO5KjvjJEo2uHCMHZM7gDP8JiXnBd6ewCQkTJYmFqIGOcdo7p5/Wa88yXvxMiREaTaU1h+yXKkI2nk5Jzj9VVUi7PuWAwjrJ4o9mzdA7EoYuUVVFikUE4m5v63C4VCcUVTFfAsC1k9/qLNUMacrce5z3baM5rDjNj4YMihiQKu/NLD0BuJwTrOWI7FQgDH4kiWdLDTsdl5sJhNDMPAPT/4Bj77offgtDOWoaczDQAYm/F+qGhUWPyPP+/GG763DrtGZkJ9TirX2Qi2vOVYDBp1CwAbDkwhGeGwoNN/Vqkbg5vWYeGSM9Dd29/wOigUCuW40PIaizX9A7sIF8SxyMcqNejcUEQSpxnEzee4nRphUc57iIVGvQjmE9XWErioWQ8ywD6WhcVWRKHmybajprCoOQiLDvFrgeEixPkawLFoGAa++fM/4ob3fRpnLJqHdP9i8sbEPvcPWW2rjanLDREBeWRrYzGsfmiKKYgH7JCw3PFxvo5uBdLziPO3hjWbtqK/pxNnL13Y+u1SKBRKE1gCTG2EaS2aYnMsGip0OH+f10aqBo1C9YvSHC2OIiWkZk0wssef1kafuomqC9MLMVocRU7OtaQNES4CSZXqxNoTiVXjcig/hO2T29Gf7A/kOLRjRdHyDI/T2k7zFDQf/OWD+PBNH0ZPfw+S6WT5dUtYlB1i84tqcdYEaAs3sXkuMbh+ELFEDMuWLzvRTaFQKCGgwiKFchKjqgo4loGsHX8h7ljGf2bbTT/YgP98cE/D2/j3v+zGUEbEbzcPNbyO4wXLADzLoCAHFxbbmqi7NxfRFBmD//t5/O+dX8HNt3wYH//Kd5BMJBDjWYznvAeVG62xuPlIBhsPTeFV33wSn79/R1kw9MOKBw7qJORYBgLHhKqxuG7/JE7rSTZ1nrc+vQ4rLqH1FSkUyhzEEqOCiByBolBrHYu2wTxLTHGL51IlIiz6faeXpsnPRoXF2ln8SsG5lqJFnWNxFqNQwzgWm635VK7VaNZYVMXq42INuDYTJ8rHzHhZ7/1SVB23/N9h/NNX/hsfevuNuPdbtyHV0Us+P7Xf44OlynbsTJqfyY/Wn/9WYAmLQRMsjpdjcWQbkOpzFRavueR8Wl+RQqHMOSyhzk8AVFVy/+UYrqVRqEEdi1PiFGJ8rGWCUYT13p5dTMzL+ar3DJfEhoXphSipJRzNH22+gSDHRNZkVyHzRBDlo4hxMQwXh7F9cjt6472BIlTtdEQ7wIDB4vTisgOyFkM3sPt/duNbH/8WXv6Gl+PLP/sy0h3p8vttkTbklbyjsFhSS7MuLJ4MjsXBDYNYfsly8MKpNzmfQjmVmfvfLhQKxRVNVcGzzKxEofoJi7puYLIgYbLgMQDnh7kbyizUjGyECM8Gct4Nm8JiZ/LUEhYnD+3A6JbH8eEvfQd///5/KQ9ApWI8pouyZ72GZmosntWXwuolnfjRkwdx/VfXYO2+Cd/PyGVhMfggWYznkAsoLIqKhs1HmquvmJmawKF9u7Fydbj6ihQKhTIrWGJUIMdigCis2sE7+yAhw/m78Piof43FsrDYYL/IPuuf5YiD0Wv/a9s7G1GovBmFGqQWoRWV1qyDQimSfeWigJAk/5dsA5nWtdKMMFcWTL2vt21HMvjZxkn84I5/wL9/5F3gOI6IdsleIHvEXZi0zm2t62TSdDkWJ49PnUVdNqNQA/ZHWK71ArVSAjLPA4neOpG5UBSxceseGoNKoVDmJAeyBwAAqs/3om5OtOZYDpoRPApV1r3HLkpqCSzYcq1HNwzDAAu2ZQJOT4K45twiYKtqLCrVUahuz+Tzk/MBALsmd7WiiRBYAbIu+7pJZ5u2aBtG8iM4mD2I3kSvr9u0Fo7lcE7XOTij8wxXt+PU0Skc+fMRvOu2d+GDX/hgnRjWHm1HQSk4CouiKvoKx62GbbBsy2yhqRq2bNyCVZevOtFNoVAoIZnb3y4UCsUTVVXAcwwUVQ9dhFvTDWghCrRlit6DZXlZhW64d2RPBaI8G0ggG5kRkYxySEROjdlWhw8fhq7r6DtrFa674/9wzcteXfV+W0xAtqR6OmebqbHIcwzeculp+OCLz4KuG3jLDzfgn+9+DtmS+4Og5VjUzZpdhVzGdztRgUVJVqEH+LsYPJKBrOlY1Nl4fcWtT68HEL6+IoVCocwKlmMxiFgmBxAWawfH7PGpZceil7AYAxBUWGxwgpJdWOLjRIzy2v8TFYWqh4xCFbzrA/liiYh8BIiYjjfrWAO2KNQmHYua5LpfR48ehaqquHBpFw5+6gK8+7XXVy+Q6ieuQ7c4VrcoVMuxWJquj8JtBaoCRWew9Pp34NntHlGtFsdDWBzfRY5ruq9O4Fy3eSdUVcO1qy9o7TYpFAqlSSRNwr177wUAKIZ3X0QzU20EVoCqq+7CohGuxmJJLUHgBHB+E5taTHesGwAwJU05vl8VhapW37vcxmO6490QWAG7plsjLEa5KBRNmVOORYA4DndP74Zu6OiL9zUk9v7Din/ACxe9sC7adnh4GJIkoXtxN6658xq8+h2vdnT7t0faIWpiXf1LTdcgaZKvA7bV8OCh6zpufuHN2Lx+86xuOwh7t+9FqVDCystpfUUK5WSDCosUykmMZkahqroeenL+l/60E+/8702BxMUgYmHWFB5DaJUnHRGehajovsdsJCuiLSZACFrgbw7zl7/8BRdccAHuvPNOAEA01VG3TFucR05Uyi5BJ4pNOBYtzp3XjttfeS5efv4A/rh1BNf9+2P47eZjjstabVFF8qAlFQuOy9mJCxxKsg41wEW8/sAUEhEOC5uqr7gW8xctQU9/uILyACCbhzrM5AAKhUIJhTXoEURYbMSx6BiF6iUsxgE/05dd7GoEuzAmJIgY5TXoeEIci2aNxUBRqJaY1qywaNZj4mIkChUAxEx1m4Bg14EbXNQ1CvXJJ5/EqlWr8KUvfQkA0Jt2cGCm5wGFCXdxUCkBLF/vep3cS6JKNRnIjzTefjd0BUVZx6Fjo3h+aMx/eYYjAnUr6z2O7iA/2xbUvfXYxi3o6WzDeWcubt32KBTKXyWSJuGCn16ALeNbWrK+O5+7s/x/vzp+lrBYjkJ1iQNtJApVYIVZj4q2XHZujkW7S7HWsehWX5JlWPQl+nAoe8h1vU64jQVFuAhkXa6rWwnA0ak3W3RFu5BX8mAZFgPJgYbWwbEc0pF01WtT+6Zw9RVX4/bbbwcARNrdxUHrsxPF6qSlkpnsMFu1OC0YloEkSjiy/whGjhyHvk6TbF63GdFYFGevOPtEN4VCoYTk5B/1plD+itEUFQLHQtUNaCGVxQMTBQxlSjg85T87eypAvGmmLCye3ELH3r1kNvnhA3vr3ovyHCRVg+oz2COpGjiWARcihnMu8p3vfAeveMUrcNVVV+Ftb3sbnj90ECNHDtUt1x6LICeqnsJiSdYgcM0fjwjP4XUXL8THX34OulNR/PPdm3HTD9djaLraJVGuxRjioSkmcCgpWiCxbt2BCZzWnUBbvPGHgi1Pr8OKSxuLQR0Tye27qJzcf28UCmUOYwmLPjFhAKrdh27UDjLZf2d4/yjUSIAaOSXnmf2BsYtSQhxQRCJ2uVE70BninuPFsSFSa3rrnufr3+RCRKFadZdC1heqX48pLPIREoUKAKVM5X2WJ+JcM8KiECPXRM1+/exnP8P111+PCy64AO9///uxd/9+HBhyiERvmweIWXdxWSmSY1frXJjcB3SYotr0ocbb74amQA5TsoDlzOuqhff30W0kKjbWXvfWmk3bcO3qC2h9RQqF0jT7pslz9PcGv1d+7TW/fQ1+vefXodc1OD6In27/afl3J/HKjiUs8izvGYVaux7Jp0Z0SS0hwkXmXI26KseiEsyxCADzU/MxXBiuEyOdmJmZAQA8v9ehLwJbjUWHsZEg6z9eWHUR+xJ9deJgowyvG8ZDH30ICxcuxL/8y79g7569mBh2L8/SFm0DAEyUqpexzttsC4sCI0CWTpzY68fgelJfUYicWqWEKJS/BubW3ZFCoYRCNR2LimaEdiyKigYD/pP/Af/6igCQLYWfpb9/PI8fPnEg9OeOJ2NjZDb59OR43XtRnoWk6oEnkZ+sQzSapuEf//Efccstt+DWW2/F73//e7S1tWF6ehqZydG65dsTAgqSdxRqUVYRaaGDc1FXAh/+m2V44+qFGDySwYu+9hj+a83+coypJXIyQRwdJvEIB1EJJhw/dziDhZ1xJCONxeLMZKZwcM9OrLgkfAyqpGqYkE7Wq4tCoZw0lB2LAb5HfQbmyDK1jkXbAEfgKFQfmnYs1giLhgaIM+7L1zkWWyMsTk6SgajJjMO2uQhplxqg3+UW/xmWchRqzBaFWiPichEixDZKjRNT13XcdttteNvb3oa3vvWt+POf/4yuri5MTExibCpX//n0AAADmNrvvH6lVC8saiqQOQx0nU5+nz7YePudMDTA0KCEMR8G+VsIy8hWIDVAXLg2iiURG7fspjGoFArluHE0fxRPjzwd6jOSJuH2J2/HgvSCcl1AP4edqpD3eZaHpre2xiLP8k0LiyW11FKxzS4mlmrqG7u5NQFgUXoRJkoTyEkO99EacnmyTCHn3O4oG4WiK+V42RMpJtrhWVKOpj/Rj3iTE6sMw8DPv/1zPP2Vp7Hg0gX404N/wsDAAEZHR1HIuu+vJWiOFqvHTqzzNttRqBzLQZFmIVWjATRNw9ZNW2kMKoVykkKFRQrlBLDp0BT2j+ebXo+mquBZBqqmh3YKSopV4NxfoBgKICxmPOrdufGG763D5+7fiYMTc6MT6oclLPoJT3ORbFHB92zCmxcMw2BkZATf/e538fWvfx0cVxHPVLn+PHfEBRRlzbP+ZEnRWh4Ny7EsXnLuAD75qvNwzkAaX/zTLrzyW09gx1C2XGPRM8KuhoRgCos+zoItR8n6F3YmwDe4T1vM+oorGxAWNxycgmZQYZFCoRxnysJiEMdikBqLQaJQPb5/hQCDQ8UWC4sAIHq4IC13neX2mo3oL+u8qAHqGcoFsjzXZM1ny/kYSTg7FgFTvGzCZcdHyfEzB48ZhsHQ0BD+/d//HT/84Q8RiVQG4WTFYYA5ZcadTdQnTgAg4ignVAuL2SNke+2LAFYgImMrMQewQ6XBMzz5XCsTQMZ2Aqneulqb6wd3QVZUXHcpFRYpFMrxo6AWApVWsbjzuTtxNH8UL1z4QsTMSUV+Uai6OcGVYziohuq6vbBRqCW1BIEVwDY5dPqq37wKl991uW9Nx6DYRbySViMsehzrBakF0AwNezMu98oQRLkoZF0ui7h7pvc0vc5WYAmd3bHu8vXTKAzDYHJsEsvesAxXfvhKxOOVvqiquovdaYEIi+Ol6snqlmPRSVhcc2QNRgrHJ6aUZ/g561jct30fCrkCVl2+6kQ3hUKhNAAVFimUE8Drv7cO1391DVQPh1cQNFUBz7HQdCO0sFhSNMAA2ADC4tHp4+NYLCmk0zeSbWKG+ywSFTjIqtbSsjezxa+fPYov/WkXHt3tXt/n0KFDePzxx8GyLO655x78v//3/+qWUaR6V0pbXIABYDzn7lghUajH55bTlYziluvOxHuvOR2jMxJu/M5aHLEifsM6FlX/GosbDkwiLnBY3ER9xS2b1mFg4WL0zV8Y6nOGYeDhnWPgWhmRRqFQKE6Uo1CD1FgMMFjhFYXK8v4uLau2nxelSf9lHDH7QnbHneXuKnoIi9Y9huGqfz+eWO5DxT/KHnKBLN9shJvlbBASRJxjueoaiwCpkdgMXBTQFQwNDeGhhx4CwzD48Y9/jH/913+ti+mUFYdB43gHuY5cHYsOUaiT5rLJXiDRBWSHWlvb0PzbCSUsttqxmB8HihNAsq/yN22yZuM2dLWncf5Zp7VmWxQKheJAUSn6RplabB3fip9u/ymuXnA1zu4+G4x5fw4VhaprrnUGNSOcY7GoFltSY3GsSJ7Bj+SONLUeC7uwKKlSlfDqtu8Ayg7QnVM7m25DhItA1dTyMd01tavpdbaC4cIwAKAj1tGw0zQ7lcX6R8hE4Fs/fSvOfvPZYGrGzXRNdxXrOJZDnI9jqmZyWtmxyFbfjzeNbMIHHvkAbnvyNl8RvRFYloUiz03H4uCGQUSiEZy9ktZXpFBORqiwSKH4MJ6TsPFgkzV7XCiEGmmoR1UU4ljUDQQwolUhqToMGOACdJIDORaLc7Oj0kpiPAtZNeoci6/+9pN4z8/CRbzMNo/tIbPldo44R7qtXbsWl156KT74wQ9C13XXhydVkaHVzM5rixEnxOiMu0BMHIvHz2XHMAwuXdKFt1y6CJKqV1ywPrNQ7SQEDlKAGotr90/itO4E0rHGHSBbnl7XUAzq3rE8jmVK6ImehOo2hUI5ueDMOidBvkcbiULVnRyLHt9tQgBh0UsE9ILlADDVLkDLsei1TqNWWJwNx6J5XuSAwiIXrbSvUaQccWXyUfNnvCI2WjQbt8pH8dywhktf8lrccsstUFXVtS+iGwayuZr9Z1giEE4fdhYHLfemfZ1T+4kYmeoFkj1AYby5OpG1mNG4UpiEXJY3r6sWTSAa205+pvrr3lqzaSuuWb0cLEuHBCgUyvGjpJV8o0wtHjnyCBJCApf0X4K2SFv59VpBsJbANRZr2iH7JA2IqtiSKNRyO1skGlUJi5pUfXw8bh+pSAopIYW90y1wLPLVUag7J5sXK1uBVdewI9rR0Oef3/s83v+378dXP/ZVSKLkKSpnJjKu76WEFDJipupatByLUVufqaSW8MmnPgmO4bB5bHNdfGorENi5W2NxcP0gzr/4fESisxsPS6FQWgN9iqBQfHjJ19fgDf+1DmMeosmJQlMVCFyjUaikA+hmWCzJGh7cQTo1R6ZKSPjUkmvEsRgTyDrz4skhSsYEDpKqQas51oNHs3hwx2hDx2A2kFQNGw4QF8e+0foI3rvuugsvetGLcPbZZ+PPf/6z5wCTAVIf0E5bnAxy+jkWG40NDQNvtl2x4kzDCItRHpKqQ/FwEiuajmcPT2NBZxzJaGPCYi6bwYHd27Fy9ZWhP/vwzjF0JyPoS9LbN4VCOc6UHYsBBgObrrFoxT96CIvRIMJio45FEMFOsQmLVl2e2lqCdqz2srPoWAwVhZqvd+k1gpwn9RXNukUQEi0XFn+34SCu+kkBA71dePTRR8Hz3vfY0als/YupPiA/6nxslGJ9FOrkPiJGCgnyszTZWmGx7FgMMRmo1Y7F0R1kv9Pzql4WJRnrB3fRGFQKhXLcKSnBhUXDMCCwQrlGnYWqu8ebAoChG9A0DTzDe4qQdVGoPqkMraqx6Lb9RvESFt1EVYuB5ACO5o5CCtJ38yDCRaDoCnRzMs+OqR1Nra9VvPXct+LyeZejP1E/ocaPpx9/GrfceAuEqIBv/uqbiMa8+zZewmI6ksaMPFN1jVnCYoyrRLR+89lvYrQ4ilee/krIuowHDz0Yut1+8Aw/Jx2LmqZhy4YttL4ihXISQ0cmKRQfLCfe4akAM8NnGVVVwLMsVN0IPf5g1aBzi0K94/fb8J6fPY3BoxkcyxTRbopHbkwVws+A6kuTjpoViTrXIY5F3dXR5iVInUiePjQNSdURE1gcmS5VRfB+61vfwk033YQ3vvGNeOihh9DT01N+b+9oDpli/XnNTFbXCmiLkWtjzEtYPM6OxVqsQTwjSDyfCRGOvYXFLUezEBUdizoTDUe7bn1mAwzDwIrV4RyLUwUZzx2ZxtVn9SDG09s3hUI5zliDaEEGwdQAgxVeNRYZ3r/GIuvdDwFQX/cvDCxfLSpZ9ei8HIvWfluOwBCTWRrGEhaDOBalPMC3QFiUTGHRWk8kQRyA9s5nE3WM/vveB3Hjp+7Gy87k8fj/fgXz58/3/czoZKb+xfQ84jp0Ojayg7A4sQdI9BBRNNlPanQqAQTboJiORVENMfmP4fxF9jCMbiP1J6Opqpc3DO6GJCu4djUVFikUyvFF1MSmnXqa7u5CtFBkBTzLQ9VV12VrRUe/GouiKpIai3NMWLQEKoC4Lu3H1/BxvC9ILcBIcaRKnGyECBuBZmiQdRmKruBA5kClDa2sExyS+an5eNPZb8K85Dz/hW2s+eMafPRtH8X5F52Pb//m25i32P/zfsJiXs5XuWJLZh8jasbHH8gewM93/hzXLLgGl8+7HL3xXjxy5BHfaz0sHMvNScfiwV0HkZ/JU2GRQjmJoSOTFMpJjK6q4DkGqha+xqKoaDAMgHWJdrCiJI9MFjGUEctxl244CVB+DLTHzM/OvdlTTsQiHBTNXVicqzy+dxxtMR5n9aUxOiNWRfBef/31+MpXvoL//u//RjRaPSPv7T/ZhC8/sKvuwWB6cqLq9wjPIsqzGM+7C4uiooMPUM+zVSiaDpYBjBCDvHHLQeuRWbb+wCRiAotFnXHXZfzYsmkt+uYtwMCCxaE+t2bPOHiOxd9dvAjcLB5LCoXyV45PTBgA6EFcXnWOxRBRqKxQcct5UVv3LwwsX+28ZDgilnmt06pzWHYstmbA0JNyjcUQjsVmoy6lrOlYNPdTSJB9t/cPmnAsXnvpBfj0O1+GX74+jgQXbPB5dNLBsZieB5SmSXtrUYvkOqqtsRjvBLgYcTuqJSJMtgozGlcKIyyyPPk7aNWg7MhWID1QifY1eWzjFnS2p7Di7KWt2Q6FQqG4UFJLgWssuqEZ7nUTLVRZBc/y0A09cBSqn2NR1ETwDA+2RUOnzboELbwci37C4sLUQmSkDMabvN9FzIlOJaWEA5kDVcey1cJYWDiWC10Xc/nFy3HTB27CF378BaTaUv4fgLew2B5pR16pFhatmp2c2Z96augpLG5bjIv6L0I6ksaqvlXYPrkdI4WRUG33g2M4yPLcExY3r9sMISrgvFXnneimUCiUBqHCIoVyEqOqCgSOhWaEFxYtx6IbOZF0umVVR6aklOMu3cg0EAM60EaExekG3I4ngijPQdaMk05YfGzXOM7oTWFxVwJjOQkHDx/Be9/7XhQKBZx33nn48Ic/XNfx1nUDIzMipgty3dhWZqr+ISQV5TFVkF1nJ4rK7EShWiiqDp5loQVx0ZjEzbjfGY9o3nX7J3FaV9LXwevFlqfXhY5BVTQda/aM46JFHThnXtr/AxQKhdIqNH+hR1eaFRZ9olCFeEXU8qIZYZETAFVGVXGiSAIQnWsTA7AJiyHcnc1SdiwGcBqU6wo2WWNRzJn1Fc31RJKmsNi4Y3Eqk8N7P/FNZGbyWLpwAJ949w1kspsSLCHEWVgcIPUJp5+vf08umY5Fmwg8c8wUFgVSYxEApg+F2g9PTMdiSQkjLLYwClXXbK7MamFxzaatuPpiWl+RQqEcf0RVbNqpp+qqb+lZWZYhsAI0XXN9Jq0VEme7xqLdadjUemz3yjph0WdcaEF6AQBg1/SuptpgCYtFtYjd07ur3mtWSJ4tivkivvqxr2J6Yhrd/d1457+8ExwfvM+UcUpPMGmLtqGgFKqFRaWICBcpX088w+O6RddhQYqck9X9qyFpEh5+/uHGdsgBlmHnrGNxcMMgzrvwPERitL4ihXKyQp8kKJSTGE1VwLOWYzH45wzDgKzqnn1zS1zJmj/bY95CSrYB16EVhToRUFg0DAOXfv4h7B72GOQ7jkR5FppulOtTNkqpQOocNhMR8sMnDuBHTx70XW4sJ2L3aA6LuuI4rTuB/NB+vPxF1+K+++7D4cOHXT83VZSh6c7XVabGsQiQOoszJcW1jpB4AqJQeY6BqgS/LmMCuSXmSs4PQlZ9xYWdsYbrK+Znsti/a1voGNSnD00jL6l49YXz0Z2kHW8KhTKLGP7fo5osAbqPEOIVhcry3mKKkPAXFlWpuRhLTqh3ZwpJUktQcxkgswb2mFl0LIaqsVioj/80KZaIayKQq0DKVTsfy8Ki3bEYXFjcc/AoLn/jB/HrvzyFA0fMWfmW4zGIYAqXKNSUWU9pYm/9e0qRXGfWRKr8CLneEt3ktWQveb2VwqJ5zYeKQrVEdr8R9CBMHyLxvqm+KteqJCtYt3kXrl29vPltUCgUig+SJjUtLAZxLFpRqF7L1kayBnIssnxo95sbzcaPWlRFoerholD7E/1gwGDz2Gb8fOfPcd/++7BheAMOZA9UCZZ+RFjTsaiWsHNyJ7pj3eX3gjoWFYkcf1WZfSFy9Ngobn3trXj0vkdx9MDRhtbh51gUNREFtXLOC0oBETYCjuUQ5aJ4wYIXYFnnsrKDcSA5gO5Yd0vjUDmGAwOmfKznCrquk/qKl9EYVArlZKaxkVEKhTJnYBkDqq6HEqkkH1ERqDgWrZhSP8eil8vLjagZPTlVCBYJMlmQMZaT8JFfb8HvPnBV6O01S9QUngpSc8Li1mc2AFiC7PQ0gB6/xR15aOcopvIy3rh6EVIeIteTe4kIeHpPEke3rMXIzz+CRactxZMPP4BFixa5fm5sxhxwdFAWpyfH6l5ri/GYERXIqo6owyw/UdUbrknYCIpmQOAYaG6DwQ5YUagzLu7bbceyKMoaFjZRX3Hbsxug6zpWXBLOsfjwrlGc3pPEC87obdmDLYVCoQQiwGCgpsqmKOjx3Vj7fWwfzON44jTzciwyPo8tpWnfdnrCWsKi3bGYBJQCeZ1z2L4VATurUagujsVPtZOfn5yqtEcpEFHWwbH41HM78BIAR4ZGcdq5PtuUc2aNRcuxmDJFXNuxEoIJi4+uH8Tr/unz6OvqwIb/+zrOPM2sp8iFExZHnITFZC8RUSf31b+nlKqjUGeGK58BgHgH2T8nt2OjmNdDSQ4xOMhy5t9CC4TF0e3kZ7q6TtTGLbshSjKuu3RF89ugUCgUHxRdgRgkMt2DoDUWOZ4jwqJbFKoRMgpVFcGxXMsci60SFku2yUWKplQ5Fhl4PytGuAi649144NADyO/NV73HszzufsXdOLv7bN822B2LOyZ3oD/Rj0lxEgCgBnwG37l5J8AChw8dBvz6Ii1kx3M7cPu7b0c0FsW37v0WljYYCz497t73TEdJytBEcQJndpwJwBQWuQgEVsAnLv8EVF1FW6St/BmGYbCqbxWeOvYUxgpjGEgNNNQuO5zZd5trjsWDuw9iJjODVVesOtFNoVAoTUAdixTKSQ5nGK7OMjckhXS0vcRIq87cVEEGA6DLxyU14+LyCsJUUTkp4kVjpmCWl5sbODx22N9p6IdhACM5EUWPeoAA8PiecSzsiEPPDOPrH3k34otX4E2f/omnqAgQpyPgPOMxM1kfhdoeF5ATVcgOEbu6ThyywizGbcmqBo5loYVwLJaFRReRfMPBKUR5Fou6Eg23a8vT69A7MB/zFp0W+DMHJvI4NFnEi8/tw7yOcFFzFAqF0jSa4ity6KriH91YO3hn/53xcSza6/u50aywaEWh2nc1kiRCl9vAo2zN7LeiUJubeBQIy7HoFj87c6zyf7lQX1fQZPfBELPzLcdiVRRqqSYK1b/28NGRCbz8vZ/ExeefiXV3f7UiKgINOBYdolBZDoh3AZnn669ZtUTE4bKwOES2aQmLDEtiUWeOta6+odaEY7EVToXR7UA0XdlHkzWbtqI9ncTKc2h9RQqFMjvklFxTn9cM93hTC0VWwDO857K1zkk/J6WkSWVnXjNY4k5ezvssGQy7sCjrcpWwGA9wP56XnIe8Qtry3gvei39Y8Q94xdJXQNVVbB7fHKgNUXNCUFEpYs/0HnTHK45FJUDaBQAc2nMo0HKtZCYzgw/f9GHMXzwf3/nddxoWFQFvx6IlGI6XKmMnRbWICEuiUNuj7VXHzGL1wGqImohHjjzScLvsWPUmFXluORYH1w9CiAg47yJaX5FCOZmhwiKFcpLDQoOqh6uxKKr+A1/W6qYKMtriQllUc0JWdZSaiAfNFGRIAdp0oonw5CszLzYnLA49f6AVzcFMScVE3t3tqesG1uwexWndCSxbtgyf++7Pcd7Nn8ZQ0XB0ItoZy7mv1ykKtSMuIC+pjlGo1vXGz2IUqqIZ4NmQjsVyjUXnz6zdP4HTuhNN1Vcc3LgWKy65IpTr8OGdY+iIC3j1hQtm1fVJoVAoAALVe9PLjkUPar+Pq6JQOZ8ai7MgLLICoNc6FlMkQtM1CtUc2LO+0o0G+zKKCGz6YTBBizXFsSBRqEqRCKYOE3t2hYn9kvLV64kkiVszYI1F3UzWWDjQg/u+ewf++F+fQWd7Tb3gsmMx2KCro7AIkNjP3EjFTWqhiAAbqUSh5oaARG+10zLRDRTGSKxuKzAHrItyiOuiLCy2wrG4lbgVI9UToh7buBVXXXQeOK7J2psUCuWU4gdbfoA7N995XNY9IzVXykQ1VN+ITysKVTd0V8Gw9nWvGou6oUPSJPBs80FvAkueH1vhWNQNvc6xaHcIagH6IgtTC8v/b4u2YXnPcrxg/gsAADNysHNlORYP5w4jr+TRE68kMUkB76OH9h4KtFwrMAwDuq6jraMNn/3BZ/G1X3wNnT2dTa3Tq8ZiOkL6OWPFStpTQSlA4ISy0OzE/OR8dMW68PDhh1sSh8oxHFiwc86xuHn9Zpyz8hxEY9ET3RQKhdIEdISSQpmDsOagR5C6hSwsx2IIYdEUAYN8YjwvoSMhwKuGddYlOjIo2ZJSdlHOZSxxNdQAUQ3FQh7jo8OtahL2jbsPwG3YfRi7/vvfML7ht4gJHFZf9ULM60hiOCv6isvjXsLilINjMRFBUdJQcjg21muzKYrJqkaExTA1Fs3zm3NwLKqajqcPTWNBR9wzetaLQj6HfTu3YsXq4DGo2ZKCp5+fxpVnduO07mRD26VQKJSm0LyFRVU3YAQRFj1rLPoIi1zUMc6zCktY5BscoOAixLFoJ5omrkQ3x2JtLaJGHYsHHwfu/xdgf8DZ6ZwQrJ6kXDSdhtX3X1XVsPf5oeDtk/PVjkUhSc6VvQ0uxz1fKOG1t34On//e3QCAl7zgIgiCw33UchMGrO80OuUiLKYHgPyYzU1qopbIcbMoTQPJ7mpBNNULFCaDibZB0CxhMWwUqr+YH4jR7URotblXZFnB2ud20hhUCoVSxzef+ya+N/g9ZMRMy9fdtGPRjEJVdAX37r3X0ZFoCYsA8ODzDzqupzYK1cuxKGnkedgSBZvBqqHXCsdibaysAQNFrXLPUzT/598F6QV1r1lOx8DCounk3D21GwAwkKjEdlrHzgvDMGbNsSiLMj7/T5/H97/4fQDARS+4CJFY805UL8diWiDCYpVjUSlCYAXPuFqGYbCqdxW2TmzFRKl+QndYOIY4FueSsGgYBrZs2EJjUCmUUwAqLFIoc5AYH/xPk9E1aLoRamJzGHfheE5CW4wH7yEKNSsszogqJIcIzblGpcZi4/u7d8eWUPUw/Tgw7jzrcf/+/bjxZddDHtmLC5YvL78+vyOGsRmxHHXrxtiMex0MJ8diW4yHATg6KK3rbTYdi7JmgOcYaAEerCxYlkGEZ8v1Re3sGJ5BUdawqCvesEC6/bmNpL7i6isCf+aJveNgAPzdxQsbFjQpFEoN/3E2MLJtdrf5s1cDU83HYJ8QfEQOSQV0vckoVNaMQnWb8sRHK04zN4pT5rL+EWCOcILZJlsbomkinrndS2pFsEYdi5Yomq+vYewIGwG0APWqlBoxzWT7vuchhYnEkgtEWLRco5YDTrINFDs4Fo+OTODqt34YD68bxIXnnuG/HS4STDAFMDqZce5Ptc0HipPVkaqaQq6v2mMR76oWRFP9QGkqcBt8Ma/xohI2ClVHsOl/HsgFUi8y0VO1j09v24uSKOHaSy9obv0UCuWUxYrIbCXNOhatuonbJ7bjjrV34PGjj9cto8hK2Qn2o20/clxPbe0/rxqLloDXCmHREjCbFVgBZ9dj0TaZplY8dWJBql5YtJx0OTlYGy3H4t7MXqSEFLpiXVjStgRAMGFx9Ogo8tnWX2u1TE9M40Nv/hCe+NMTOHuFf+3IQJhd0sJMwVWw41gOcT6OKXGq/FpRLfo6FgHgkoFLUFJLePTwo0031aoPOpeiUA/tOYTsVBYrL1t5optCoVCahAqLFMochENwkc3QG4hCtdyBAT4ykZfQFhPAe9THy5aam/1UkFQUWtTR+cZDe/Bfa/a3ZF21RE3BNyc17ljcs21zi1pDODBR/2DxxBNP4LLLLkNBlHHlB7+HK666tvzego4EZkQVEx6ORAAY8RAWZ6YnoWnVx6DNjAcdm6lfr+WQFWZTWFR1cCwLNYRjESCifsHh/K4/MIkIx2JxZ+OuwcGNa9HV248Fi4PVcVB1HY/uHsfKRR1YvqC94e1SKBQbxSkgPwL8/gOzt00pBxx4DPjl22Zvmy1gaNh0tGneoqGkAVADOKzqolBtvzMcEeV0txqLAVyIpWkiKjrUEwwEFzH31faaFflZG6tpUStANepYtNwhoosLrxZOABSfQTtNIcIWVz8jf9PWPeHaJ+erz0HEvBfaBx9rztHTW/fg0tf/M6ayOTz1i//AK6+71H87XMS9dmQNoqQgV3AQANPzyH5nD1deswTg2mMR76wWG5N9ZF+bjdW1MAeSCz6TuapgefK30KxjcXwXAIOIpTZR/rGNW5FOxoMJvRQKhdIigrrgLCwhzhJtNPP+akVDOjm5ZFkuOwNdo1AdHIusy7CoJSw2G4VqGEZZaGtFFGpRrXf2F9TKemvFUye6Yl2OgmmMjwUWli1hcaw4hoHEABJCAm8+580AKvUXvdg1uCvQdprh4O6DeP+r34+hw0P4z1/+J154wwtbsl6d1WGYk4a84lBTQgoZMVO+bi3HIuvTV12YWoiOaAceOfJI03GoHMOBZeZWFOrm9ZvBCzzOu5jWV6RQTnaosEihzEGmxkcBwLcOHgAwBnEsagGWtRBDOBZzoopUjPd0m2UCRLZ6YQAYybamns3je8Zx96bDjnGWzRK1olDDDBDVsLvFwuLQdAmqra6hYRj43Oc+h/OXL0fvTf+O8845u8rpNtBOHAV7xrwfGEYdBEIAYFkWuq5jZnqq6vW2mCUs1g8IlswIsNmMQlU0nUShquHOVUzgUJTVur+9dfsnsbg7gfZE4zNWtzy9DitXXxm4vuLmwxlkSwpuWDkPvSlae4BCmbNs/y3wqXYg61Kzzpr404pow1nkxz/+MfmPT41FSTWIkOPn1vN0LJozt92cgQ7iWB2laSJ4hahhW7cNrcaxGEmR390Ev1ZFoZYy5GfQ+DlOADTJe3uWY89RWNwbvG2aSq4Bu3AoWMKibYC0Rlj8yo9+hcXze7Hhnq9jxdnBJtSQOFrRt76gVTJgZHyq/s1UP/k5sa/ymiUA1zoWE93VvyfN+lDTh4K11w/zei5KYR2LLaixOLoDAAO0VbtS1mzaiqsuPh+8V40DCoVCaTFBhUXdnGA9UhwBABw9SPpWVhSqhZOrTpXVsgjoVmdQq7lvyroM1mUCtVXHsFlhUdYrgk5RLTYtFBUdIsPtrylGgHI6DIv+RH/d6zEuhqJSDJSwxDJs2XnXk+hBjI+VBcUgAupsCIu//tGvkUgl8N3ffxfnrjq3Zeu1C4tTTn0Rk3QkjRl5puyMLamlQMIiwzBYkFqA0cJoVT3NRuBYDgyYOeVYHFw/iLNXnI14osGUEQqFMmegwiKFEhJdN3BkKlj9Fz/cxEDDLHYtawE6neZsPCXIsiZ+Uai1okp73FtMsaJQI00IR8OZYDPU/TAAHJ0uYarQ+hlZlmOx0ESNxd3bNqOzp7dVTcJYTkJR0aDrOg4fPgyGYXDPPffgtm/+L/RICqd1J6pibAfaTGFxxDvixK3GIi+QAcrpyeo6i21x8sA16vA563qLeLheW42s6eBYJrxjUeBQUogL2ELTDWw6NI1FnY3XVywVCtizfTBUDOpDO8ewuCuO65b1BRYjKRTKCWD3n8jPPX8+se1oMZf1mfdRr9qHMB2LuuovhNS6B+wz6q1BOzdnYBBhsTgJCAn/5dwoR6HasJx5xcnq163v5FrHYoD4MUcsh1xgx6JZD9JrcNIS/XgHYXHbHszr7Qq2LWtAy+4+sKJQ7bWi+BiplzRFjuGPP/9BPPrTL2Eg6HYAIk6qoq9AGxHIQOaok0sg1QeAASZt4mlZZK3pz6Zq+mNJ8/fp54O32QvzeirIJ8CxOLqd7E+8knigKCqeem4Hrl1NY1ApFMrs4hev6Sa2WQKXFYVq4eSqU2QFPMN7rq/WyajqqmssZUkj979mo1DtNRFFVawTN8PiJNrZXwtSYxEA5qfm170W42MoqsVAcapA5dh0x7oR4SJlYdHJVVnL7i270TPQE2g7YRk5QoTpf/zMP+Jbv/4W+hfUi6jNoLN6+bqZHndPOWiLtCEv5yFrpE9dVIvgWT7Qs306kkZBKZQ/2ygsw86pGotWfcWVl9MYVArlVIAKixRKSD5133Zc/ZVHsW+s+Xz8ostAg6GSm34gsdCKCQlRo1DyERZrB0D8hMVMUYHAMU3V0BvKtqieDQBFM7B9KODgXEAMg9TgEzgmXKSVjez0JEaOHg4chRmEybyEyUwOr3/963HllVeiWCyio6MDaw9l0ZWIYGFn9SyweIRDOsbjwLi7Y9EwDMdaiQAgRMjDQq2wGOU5RHjWs8ZiZBZnx5cdiyFqLAJATGAhKjpUWxzfzuEZ5CUVCzoar6+47bmN0DUNKy4JJiwemSpi33geLzqnH/M76Ew+CoUy+1yzwPz+9BENiWOxgShUR8dizT3EchxEAgiGxSlAiKNc+CYsfATQZNQ7FlGp31jG3EatEKrrjTnNLOFSdHd0GLBN/OLMtnoNTlruBbbaSShKMrbuOYRzTl8YrG1WNKmTY9F2j5V0Dm//nYiLv3kU0zMFpJJxxGMh3fZchFwDPu7XiGBOZprIOK8j1l7tOrQEYPvgMB8H4jWOxUQXAKa1jkWW9+13V2E5FputsTiyFUgPVNUcfWb7PhSKIq6j9RUpFMosU5C9HWxu0aUWmqHBsH0vOolrsiz7ugvtgplhGJ7CoiUIRoJMbvKgVlj0qusYBCfRLm+b6BNUFFyUXlT3WpyPo6SWXM+HoRvQbc/J1rHpS/QBqESg2tvjhK7r2LN1D5YsWxKorUHRVA3f+MQ38I6XvAMTIxOIxCJIpJqYdOaCzuplEXtqwt2x2BZpQ17Jl6NwgzoWrc8W1ELT14t1fc8VYfHwvsOYnpjGqitWneimUCiUFkCFRQolJAfNmnY7h5oXFt0wzLo5bmJhyayRyAix8kCdFEJYLNdYdCEnVnckuxPenelsSUEi0piTKxnlwDLAcAuFRYDESLYCy/F2ZN8OAMSVWWrQsbhn2yAABBYW/YaUWAbITo7hVS+9Hg888ADuvPNOJBKk47xmzzhO70uiLV5/7vrbYjiWESGpzvuRk1TX60mIODsWASAd5TFVkOuiU6zjFRFmz3WnqEZDjsW4wKGkqFWOxfUHJiFwDE7ravyhZMvT69DZ3YtFS88MtPwju8aQjvF47UULEOHprZpCocw+UWucTVc9hR5JI7HsvsJiXRRqTY1FwBT2bAyYAkgygNO/NGkKiw3CCqRPVVtjEXAQFk3UGiE0iHPTCcux6DEQJysKntlzhPxiiaBeApy1rhqX3uadB6CqGs5ZGlBYtLZhdyxyQkUMBjAxPYMX/9O3cM82Bd/82250tjVYj5iPkmPq4+YQeA4Cz2F00sUlkOoDZoYq50dxcF0mewEhVv05lieipFuscVh0FWB5iGHix1iO/C0161gc22HuY+VvYs2mrUgmYrjovGB9EQqFQmkVfhGgfvGgmqFVPWM6CYuKrJRrLLqux3Z/scTK4y0sWqJSjIuhpJZcY1qD4hSFaq+xGNQRuXpgNV606EVICpV7dpyPQ1RFV2Exm8ni4LaD5d8jXAQCK2AgMQCAxMYyYHwdi0f2H0ExX2ypsFjMFfGxt38Mv//f3+N9t7/vuLkhASIsMjqDts42TE94OBajbSgoBSiaAsMwIKoiImyw66kt0oaiUoRU29cMyVyrsTi4fhAsx2L5xctPdFMoFEoLoKOVFMocRPeJQp0okdf5th4Y5mxxN5HICb8ai3mbIy8ucEj5OBanizISkcbcaAwYJKM8xlyiNxtlx3AuUG0APzSNHKtCjjggIzyLkqI1tO7d2zYj1daOzl7vKA6ONWsHOdQrtCNknsfIzz6E0dFRPPnkk3j1q18NADiWKeHgRAGLOuOO52V+ewyjMyKKkvN1MOZSXxEAWI5DPJF0FhZjPLIlte66ta63CDeLjkVdB8eFr7EYFziIig5Nq5zfdfsnsbgrgXYfgd2LLZvWYsXqKwLFnuQlFesPTuKK07uxpKfBwVkKhUJpFb6OxaDCou372DCqfy9Hodbcf1SJvNdeP6u+jlKGiCgN11i0olAdHIslN2Gx5j5t6GjIaSbahEXd5TgaBjI5m0Dm51iUzUG9mtqHm7buQUTgcfqiefWfObzBffv29TBM2Qm3a6SEy266DbufH8Ujb0vgpgvT7m3yg7f2y//e3dfV7hyFCpA6i4XxSgSqNQBt34dEV92xAQAku4H8GImabRZNAVgOkhImCpVrvsZifoxcs8neKmH5sY1b8IILz4MgNFcvjEKhUMJSUkuegpdfHTnd0KvERydxTZXVsovMDbtgZjnB3MTIljkWNbKehJCApEm+7kw/7KKdtb92oTXo+pNCEjeedSN64hUBLsEnPIVF3dBRylfOlcAK6I33Im5OYmEYBhEu4ns+rfqKp515WqC2+iGPy7jjzXdg1+Zd+MrPvoK/fevftmS9buisDqhAZ0+nZxRqe7QdoiaioBYgaiIMGBBqY9ldSEVS0AwNWbm5JC6WYedUjcXN6zeT+opJmspEoZwKUGGRclLz1b/sxpKP3Y8xHwHmZKMchar6DCqwQllYlP2WteFXYzEnVjodHQnBt3ZipqggJjQuGqWiPKYLMvQWCIEWz08WqgTSZlFlck6iPAdJ1eBSHtOT3ds2Y9n5K33FJevtTFHxjF1tEwC+YwC3fP0eXHjhheXXn9gzDoYBTu9NgXXY1vyOOCYLMrKi86DZWM7776mjuxeZiXphsS0mICcqdU7bShTqbDoWdXAMAzXkwGAiykNSdCjmwKquG9h0aAoLOxON11csFrB722asXH1loOWf2jcB3QBed/FCtMWaq+lBoVAoTeMjckiaATaIsGiPQq0dsHKLQpVmAD5W5Y6rwjCA/30dsP9R4vrjY87LBYGLkH2wD3wKMQAMIGacP6NK1UJckEhYJ0rmoJFS8nQhypZAxUWIaOXpWDQHGWtcnJu27cHKc06HUBtPnj0K/PhvgGd+6ry+WjeoWc9S1gz0d7dj4y++jCsXNSlY8TFyTAO4OQZ6OpyjUAGgbYEpLJqDr5Zj0S4kxjucr5dkH1CcqETJNoOuAgwPUQrjWOSbdyyObic/UwPll1RVw5PP7KAxqBQK5YTgFwHqV4NR06ujUEtaqW6ib9goVKs9brGUVo3FKBsy1rsGS6BMCkmImhjKsejk5CwqxbLrjWVZsAyLolIEY8a0NxOdGefjvm3UbGNJp7efjiXtSxC3xW5HuAhKtTWoa9i9ZTcWnb6oZeKSoRuIJ+O487d34uKrL27JOr3QWR2GaqCrt8vTsZiOkMlW48XxshgeVKi2PjtZmvRZ0hvr+p4LjkXDMDC4fhCrLl91optCoVBaBBUWKSc1Gw+SGeTPPO9+Mz8ZsYRFPxciw/Ew1EYci96DFTO2KNT2uADBp3bidFFGTGAbrWqEZIRHpqhAa0Stc2E4K2K62LrOkyqTwc4Iz0JUq2vwBcEwDOzZthnLlq/yXdYusO4fq45FMwwDv/jFL6BrKvrPvABL3/7vmNSrXW2P7RnH4q4EelPOD0Hz2+PQdAMHJ5wHzcZN92jcRSzu6O51dCy2xQXkRLVeWJQ1RDjWUeQ8Xii6AZ5loM6QjniCC/b3kYhwEFWtfC3uGslhRlSxsDPecCTpzsFnoKlqoPqKum7gkV1jWD6/DSsXdjS0PQqFQmka+4CQj1gmqQgmLOoBhMXaySDijOlCdBEWVRHY9xCw90FAzJpCUROORWudFgxLBLRSxvkzteKe0WCNRUu4VIqApsAwH9HYGvdj2fnGRwBddncXAs4uPQCbtu7F6gvOql8+Y8asjgw6r0+ojgP/5Q4ZJcXAigUJPPWzz2LJYstV2kRfruzE9O9j9Xe3u0ehpgfIecwNk98Vm3vTGkCOdVScsnaSfcTtV+tGbQRdDe9YZDhyTYXsZ1Yxup2Iz+0VV+pzO/cjXyzh2tVUWKRQKLOPXwSor7BYE4UqqvXilyIrrrGm5fXYJg9ZrrwpcQoz8kydS09URTBgfMVKP6wo1LSQDuxY7E2QCPhD2UN17xWUQlmcYsAgwkZQ0krldjbjiEwI3o5FAFBspUbeePYb8crTX4mYbaJOlItC1ETPeNtdg7tw9sqzG26nxZN/fhIfW/Ex3HzNzfjWb76FxWcubnqdQTA4o+JY9IpCjbQBAMZL42WnadAo1JRAUjMmShNNtZVjODDM3HAsHj14FFPjU1h5+cqWrdMS/qNobgIAhUJpDCosUihzEEMJLizqZREyTI1FP8dipSPZFgvoWKyd+R6CZJRDtqS0zLHYEReg6ga2HZvxXdYwDIxk/QePFMVyLLKQFT30eM/E6DCmJsZwdgBhcSJfGVhds6ci4MmyjHe/+914y1veguGtTwEAelJRDGVLUMz4UU038NS+CSzpTiDt4rAbaCcd/z0jzg9wYzMSojzrKqR1dPdiysGx2JkQkJcUKFr1eSwpGgSemV1hUdPBsgyUycM49v33Ylk62ANWXOAgqTpUcx9aUV9xcONadHR1Y/EZy3yX3XIsi8mCjFeumIe+NO0cUyiUE4S9xpyfsKgZYBHAYWUfpNJqBjesQbtax6IlFrq4CSCZ9zFVJOJRszUWgfo41kiCtMOpj1IbR2poaCwK1eyvKCKgq1AEMhCV4qqFVsnuWFQV72NuORZtLoKZfBG7Dx7F6uUO96PckLnQkPO+msdW0zT88xf+C2/478P45Q5yHhmGAVi2cgwbhY8ScTmAm6O/qx0jboN5KTNyfnIf+WmvsRhNAxe/HZh/kctn+8j5EP37kL6YUaiiHCYK1fxbaCYqb3QbkJ4H2OpmPbZxCxLxKC5Z7iAqUygUynHGT1DLSt5xj7qhQ0flnucmLIZxLIo1E0jGS9XPtyW1BIEVfOs2AsQl6BepmoqkAguLCZ48e+7P7q9zIBaVYpXrzXIIWttvxrGY4BOQNdlzHXbHIsMwZfGs3B42AkmTXIVkRVawb8c+nL2icWFR13X86N9/hE+85xPYcN8GXLXgKsRq6yYfR+yOxalxl7h8ODsWgwrVZcei2KRjkWXBYm7UWNy8bjOpr3hJ6+orzo/Nx9D/DOFc7tyWrZNCoQSHCosUyhzEMAe1JJcai2VYrixCKiGExZIcPAo1FeMh+Di1ZkQFUYFt2CSQjPLIiWrLHIuWcLb5SMZ32TV7xnHNVx7FkSnvyCvLsRgTWEiqFtqxuHvbZgAIJCwOZypOkaf2TUDXDUxNTeGlL30p/ud//gc//elPsWDVtQCAvrYYxnMSiuY5HTyaQU5UsbgrgaiL47DTjLfdW+OGtBjNiWiLuXd4O7p6HB2L7XEBBVmrE65FxXIseu93KzEMgGNZyJIEdXoI89qDDTbHIxxkVS/XiVx3YBKLOhPoaKa+4tPrcMElweorPrxrFPM7Ynjxuf1gZ/OAUSgUip3M4cr/dW83oqQCHGoiRGsxjGqxqHZQjXFxLEozRGxyG4SxhEXrZzPCouVYrBU3hQSpfVgrhgJEWKzarwDOzVoUkWyTYQG1BOgqDLMtKba6LZLVf+NjpB6kZxRqkQh9XOXYPbNtLwzDwOoLHITFGdPdVxivF1e5KMDxmMkX8bfv/wy+/fP78O23LMPNK2vujXxzdajAx/xrR5r0d3tEoaZNYXFiL/kpF8k1ZB2LZS8Del0m+yR7ABjVfwONoisAy0MK4xIoxwI3MQA4uo2Iq7a/hzUbt+LKC89FJEIj1ikUyuzCgvWN15yRvSdzaIZW5YCTNKmuZmMQYdH+mWP5Y1XvSTX3PlEVIXCCa1SqfTlJkxDnnPsgVo3FpJCEqqtlB2NQhvPDVb8X1EKV6y3CRSBqYrneYjOOxTgfh2qonlGmqo8LP8pFHc+PxcHdB6FICs5ZeY5vew5mDyIjZpCMVCbKiCURn7nlM/jfb/0v3vux9+LGt9/ou55WE7TGYlowhcXSeLnuZNAo1KQ5OWiy2JywOJcci4MbBrFs+TIk00n/hUMw9fAU0tEmanxTKJSGocIihTIHsYRFWfEW2hiOh2YOwvm5EO341VjM26NQY7yv0yxbUhDluXKuv8WWoxkcGHcWr+ykojxkTW9ZTcQIz6InFcHO4Zm62gu1HJooQNZ07B31bqflWIzxxNEWVgTdvW0zunr60NM/z3fZIdNBuWJBO3YMz+DQsVFcfvnl2Lp1Kx5++GHcfPPNGM6KyEkqBtqimMjLZbH4iT0TiAsclnS7d9YYhkFvOorDUwXH/RjJikjFBFeduLO7FxmXKFTDACby1bM/i7IGgWPRsPLcIDwLKHK4gTkr/jUnKtB1AxsPTmFRVxzJaGOOXLFUxO6tzwWKQR3OlrBzOIcXnt2HBZ20mDmFQjmBhBEWNYBjfByLtaJc7Ux4NzHFciyybo7FmeqfQhMDFZawqNSkGERSxP3nNHtfk6v326cepSNWDGqsnTjrbAOCaU6uWp9UW2PRS4CT86YoW7l/bdq2B8lEDOecvrB++RnTsVicJAKnHT6GoqTiqrf8K558Zjvu/96ncctLHQYEuWhjUbC27dSJtS6QKNSMcz9PSJDzNn2Q/K4UyTHzGRwGACRJ/Bymnw/RcBc0BWA4iKGERcu92+AAoK4B43uAZHfZrappGp54ZjuNQaVQKCeECBfxjdeckbyFRd3Qq77vJU2qch8CAaNQbfeX2vbUxrFajkU/YdFyW8Zc6jxbjkVLZPITUWtZc2RN1e95JV8lTkW5KGStUl9S1hufmGLVSvQ6H77CIh/1dCzuGtwFlmNx5vln+rbnu5u/i7ZoG87vOr+87Q+96UPY8MgGfOb7n8Gb3//mQJN3W4lhGJUo1N5O5LI5V9GOYznE+TimxKmyYzHGBXNWsgyLBJ/AtNRc2ae5UmPRqq/YyhhUCoVy4qHCIuWUZrogY8nH7sd3Ht13opsSDnOgSNJ8olDZShRqbV07L/yExaoo1Lj3zGbDMJATVcSF+q+Tv/32U3jRV9f4RromzcjOsVy42XteLOpM4NBEwVestLY5I3oP4CimYzEqcJC18MKiVV8xSMd3KFNCTGCxalEHZkQVB3LA2972NmzYsAFXX301VE3H4akinp8sojcdRUnRMDpDBgEf2z2G03uTvg67gfYYRrMSig7xXKMzIlJRDm5N7ejuQWZ6EnqNa7MtRq6V0ZrzWJRVCLPsWAQAnmWgyOFqJFWERRV7xnLIlhQs6Egg2mDU787BZ6EoMlauvtJ32Ud2jSER4fC6ixY0vD0KhUJpCXZh0fCrsWiAYwxvkat2MLGuxqIpptTWtRNniFjlNlAomZOCZPNnpAVRqLUDYdFkufZhHa2IQrXqN8Y6yP5XCYtKldgqWXWN+Ki/AOcgpm3auhcXn3cmOM7heM6Y8bel6XpxVYgiEY/j5ldfj3V3fw0vvfpiItzVwjcZ4c1HiYDrMfjMwIABIiyWRAn5gourItkLZI+R86aUQgiLPeTn9IHw7a9FVwCOhxQqCrVJx+LUAeKATfaXBfnNOw9gJl/EdZeuaGydFAqF0gRRPuobr5mTc64ONwAwYLTEsWgXE2uFxVrBL7CwKHsLi5ZD0XLd+dWTrOWJY09UiaoFpd6xKGlSWVT1Oo5+lIVFxUNY9LmnWUKnm7C4e8tuLD17KWJxb4Ft7/RePHDoAVw2cBnmp+YDAHiBx0te+xJ841ffwNUvu9rz88cLS7g1VAOdPZ0AgMxkxnX5lJBCRswgr5C+ajREXykpJJGRMp71Kv1gGZY4FqUT61gcen4IEyMTVFikUE4xqLBIaRlHpor44D2bT3QzqrBEo7X7m4sPmG1SF74CQACxkOOhm4KX2MIai9lSpdPRkfAWFguyBk03EHOJ3axdnxMpU1iczLduFtWSniSGsyKmi97rHJkhg2dZn+XKUag8C1nVoYWYkW8YBvZsHwwUgwoAQ9MldMQFDG24H6Wda7Bm9wRuu+02nHHGGQCAP20bKS/baQqI+8YKyJYUbDmaxWndifIxdWNBRwxjOanKnWoxnpOQiHhEoXb3Qtc0zGSq6wm0xU2BOFsrLGoQuNmtsQgAPMtCDutYjJDreKakYMOBKXBsc/UVtzy9Fm0dXTjtTO8aEiVZw9r9k7hsaRfO6KUxHhQK5QQzfajy/wCORQD18Zl2agcT62osWlGoNeuQciRe062+kRWBatUTjDTx/cm59HfKjkWHgTRNcXAshhz8KZkz0eOdZP9txybFKVXHpCxQcVHSHq/BQ0Ukgm2VsLjHOQYVII5FhiXH1OZUuGebgh9sLAAsh3991+tw3pmLyRsRB3doK4RFTQE090FLgdGh6Az6uzsAAKNug3npfqAwRgRWuRBcWOQipA6jvc5oozTiWGSaFBZHt5Of6UpCxppNWxGLRtzPPYVCoRxHolwUqqHW1TS0k1Nyvk47uzDp5IgLFIXq4Vi0hB+LsrDoM2xqORbjvPPkJkmTILBCuW5iGGExxsWwbXJbVQ3KglKAYOuzxLgYERZbUGPREke9XJWaz1hSjIsRYdGlj7JrcBfOWeEfg/qdzd9BZ6wTF/RcgOceew6/+tGvAAA3vu1GLDuB97PydWxGoQLwrbM4I88gp5DzHtSxCJC6nDk519Q5ZZm5UWNx8/rNYFkWF9D0BArllIIKi5SW8eFfDeI3zx3DM8+731QpwWAjpNPpJywyLA/NnFUu+Sy7eySHY2btvqJPjcWZkoLedBRXn9mD3hQZJBo5dgQAMDp8pGpZSzT0EhYVzVuES5piTquiUAHgtK4EVN3AjiHvjvvYDBmwy/g5Fq0o1Ej4KNRjhw8iP5MNLCwemcpj5KEf4Udf+hii0wex6fmp8rVgGEaVA7fHPD/7x/NYt38CmmFgSXcCnI89cEFHAiVFw1C2fqb/RF5GMsJ7RqECqKuzWHEsVj80lhTNdCzOrrDIwIDu4/qtxbqOZ0QVa/dPYHFXwldc92Jw01pccMnlYN1i/EzWHZiEoul47YUL0d7E9igUCqUlZGwxkD5imaia90MvYbFWKHKrsVgrOMo5UxAi749PkYG1HftMR2W5xqI5GBh1cNEFxa3mTTRNHG9OQk9tFKqhNx6FGu8yhcWa7dh+l63BPD5AFGoZcu8dn8ri+aExrL7gLOfFcsNAagCkvuBRGIaBz6yR8KZfl7DusAyj9rHxeAmLhu4pqvGMDlljMNBLBvNGJ10iwtLzSb1IuQgoBSIcBxEWASDRQ45Ho3GkFpoCsFzIGovmoHijg4hjO4BoG5DqLb/0mFlfMUrrK1Ioc5YLfnoBXvbrl53oZlSxfXI7fr3n102vJ8qRe4NXvGZeyfuKJ4rtO1nW5DphUJEVX3ehXeyqjVLNy87CYm3ikCSS/o4VCWqJfkmXOHZrPUFiRms5re005OQcnhl9prI+hazPIsJFIGty2bHYTI1FS/y0C5m1BIlClXVnx6JYEnFozyGcvdJ70u2uqV146PBDuLT/Uqy9ey1ue9dt2Lpxq2+Zm9lA1iqOxa6+LgDA9IR7XGlbpA15OY+cnAPHcFXnzo+0kEZBKVRd+2EpOxZPcI3FwXWDOPP8M5Fqa6KvTqFQ5hxUWKS0DNUUj1rpOvtrx1dY5HhoCunYKj5xox+/dws+9fvt0HTD17E4IyroSkTwuosXYqCddID37dhKfu7cVrVsxnT6xb2ERZ/94DnW8/ONsMisUbf5iHcm/ZgpguV8XJWq6XyL8iwUTS9f70HYs3UzAGDZcv/Yh3w+jz9+/cN4/rH/w3s/+lm89n0fx/7xPEbMuouP753AzpGKWBoTOKSiPA5OFLBmzzj60lEs6PB32A20k5lyu4arhVdR0ZCXVCRjPNxqInZYwuJEtbAYEzgIHIOJmu+AkqyB55jA43mtgjHCP1RZ12G2KJP6ip1xX/enG7IkYteW5wLFoK4/MImz+lK4eElnQ9uiUCiUlpKxTSLyifesOBY9oqdrBwtdo1AdHItctCwI7TpIXGQbt+413zcH5+Q8qc/XjLDl6li0hEUHl2WtuKc3EYWa7CaflWpqPtsdi/YaizBI5GVANm3dAwDOrjXDAPJjQPsiAIA4ug9vfetbccdjEj7/oih+dPNZYGrjU60BVPtx4aIIvf92rPNXewzsm2V1yDrQ30MG80bG3YTFeeS6KEwQcTGoYxEgbse86XZsBl1toMZik47FkS1k3wVaX5FCOdk4lj9Wjs2cC/xu3+9w5+Y7MSU2N3HcEhYtx5ZFbbyn7PO9ZxcenaI2FcX/u9YuJvo5FotqETzL14mVmYlM1fayUhYMGCQE52dwSZPAszziHPleDuNYHEgOIMJG8MjhR6raZRenyo5FpnnHYty8d3g5Fv2ERS/H4t5te6FrOs5Z6e1Y/PZz30a30I2nv/M0vv/57+PN73sz7vjuHbNeT9EJUbM5Frv9HYttkTbkFSIsRriIr/htJx1JI6/km6qbyYFcFyfSsWgYBgY30PqKFMqpCBUWKacU2aKCJR+7H6UwtUxqmCrIGJsJV5fteCFrAYRFiTx8SD5CV05UUZRUKJoOKUCNxajAggvQccsWScfVSxhUdf9YsHafWo5hiQkcelNRbB+a8ZzZNl6useh9TJRyFCoHWdWhh5gtd+TQPnT19qO9s9t32VtuuQUTe57F9f/4H3jdW9+NFYs6oWgGntxHRLzvPLoPi2uiOXtTEQxnRTy2exyn9ySRjvkLYQNtMQgsgy1HM1WvWw7OVLT+fBoMCxh6RViscSwCQDomYKogVR3zkqydkBqLCOhW/PVP/wtbn1kPoHId7xrJYbqoYH5HHNEGRe+dW56FIktYcckVnstJiobnJ4s4f347+tJNuj0oFAqlUbbdCzz4SSJkFcYqr+sq4HEfL4cNaB59p7L4ZN4Iah2MZTHFNqBqGCTCUojCteivPQo1knSvxRgEtxnkkSRpl1KqX15XquscGg1EoYoZImpG2yq/27GJW9XCIohgFpBdB44gmYhh6cKB+jeLU0TI6iDC4kf+48e499578cvXx/FvV0fB8LH6Y2uma1QdFyF4vJcj5uCzl6AXYXQoGoPOtjR4nvOIQjX3c3JvxbHokx5Q+azN7dgMugKdYaH59OcB4L/u/iP+8uSzFZG9UXfC6HYg1VcWFrfuOYTMTJ4KixTKSc7R3FGsHVo7q9vMSBkYMJpyS0maVI6OrHXqibZ+Q1Ep+m7HLq4ougK1pi9hryF3Ud9Fjuuociz6CIuiKgausRjjY1V1D53WEyRmtBaO4bCscxmeHXsWJdVMn1KKVVGoVg1LKwq1GcdiWQT2ED99hUU+5lpj8fD+w2AYBkuWLXH9/NbxrVhzdA3kP8t48rdP4qNf/Sje87H3+CYAzRaSNeFLJTUf2zraMO02yQlAW7QNBaWAglxAhIuUBeAgtEXaUFSLvqK7FyzLgmWClYj586/+jCf/8mTD23Jj5MgIxobGsPIyKixSKKcac+ObmUJpEb/YRKKxvvnwPp8l3fn0fdvxgbue9a9veJywCzKy5h25yXA8FJl0MP3aq9gGNUqK97I5SUWEY33jNIFKFKqXq6sg+Qs8QeImrdaIPu23WNyVwPOTBRRcol9VTUfGFEbzPlGoZceiwEI3SLxnUCZGh9E3b4HnMpopgn3iU59B/1u/gnMuvRYsy2BhZxzJCIfH907g2cPT2HBwCqtrXG39bTHsGp7BcFbEoq5EIPcnxzJY0BnH7tFc1bVhOTidzqfBCWA0BfFEArF4os6xCADpKI9sSa2Kvy0pGniWKZ+/ZoqPh4EJ8FA1PTmO73/1M3j8z/cBIOcXAJ49nAHHNFlfcdNapNs6sHTZuZ7L7R8vQDMMXHZ6F3iO3pYpFMoJ4lfvAJ76BnDs6fr3PAb7yrfYIDUWrcG52tn0TlGoqkhETS8XYllYzANCoiLKNIKbY9GKVy3VzEZn+XrHYiNRqKUMabsVLVobkZav3GvlWmExhKPu6MgEFg30Os/2zw0BALRoFyAk8YkbzsATTzyBvztPqGyvTlg026vahEU+Fn7/7VjnWvZwLDI6ZJ0By3Ho6+rAqOkcqSPVT35O7gfkUtU+PPjUs1C8Bkbb5ptuxzH3ZYKgqdAN/750Ll/EB7/0A/z8vkdtInsDA/lygbiNkz1lkfaxjVsRjQi4zCd2jkL5ayEjZnDBTy/AhqENJ7opoXj5vS/HPzz4D5goTczaNmekmaZM6JZz7miepA3UCmol2/1D1EQUVe97ml14NGCgoBYqbzIoRz0KrIB5yXm1HwdQXWOx1tlXkAtVv4uqSByLfjUWxSzifLws7NViOR8tt1qtgOnHit4VOJo/in3TZIyrpJbAM5X+ToyLQdGVlkShsgyLKBf1FBYN3fCM1YxyUSi64igsTgxPoKu3C4JHNPc3n/km+hP9uPl9N+Pr93wdL3v93IoItlzFhlkKoLOn0zMKtT3aDlETMS1NI8JGyv2w59Y+B7HkbWhoi7ahpJaacjJb16+fY1GRFdz56TvxwP890PC23Ni8fjMYhsGKS1e0fN0UCuXEQkcwKZQanp8sIiuqKDbhemyGnK3OoKIans44VohCVWRwLOPrbpRUvfxcIPrEpuZFFRGeDTSxO1NSwABIODjcLKYK/rOjOgMIi5aYt3s0WHzI0p4khjIipgrOHbGJvFw+JgVZhe4h4lo1FqM82c9iiHqQ4yPD6O13frgBgF/96le48MILMTk5CS7dg0jvErTFycMCyzA4ZyCNLUcz+NYj+9DfFsX589uqPj/QHoOo6uBYBkt7koEjQpZ0J3F4qoScWNmXMdPB2RGvn3Gps0RY5BgGnT29jo7FtriAGVGpuh5FRQPPshgfOQYAOLh3d6D2NYsRYFBuzQO/g65pKOTIgy7LMIjyLA5PFbGwK46upEvNrQBs2bQuUH3FPaM5xAUOFy7qaHhbFAqF0jLGHb6jPQY0NMP8jgtSY9EadKursciQ9+zrEM0BSN7DBSeaNYAMnTi0mhEWWc45KtMS0Io1wiInkP0waqNQQ1KaqhYWrWhUi/xI+b+yqpGJSGVhsb5OshtHRyewcMAlOWFmGH/aq+CCW3+KISWNXi6LSy66sPI+F6l3+1lRqEqNsNgMvL9jUWB0KDoAhkF/T4d7jcVomrRnch9xLLI8wLAYm8zgb951Ox5a95x7O9Jmn218T2P7YaGr0AI8bv/moXUoiRKy+UJFwG1kYHhsFwCDiKpmX3DNpq24fOU5iEUb789QKKcSO6d2AgB+tfdXJ7gljTFSGPFfqEks8TIrZWE0oSxOFMl6LCefl7AIAJOlSc/11QqB9pqIHM8FqiFnF91qBbiCWqiaAFtSS+BZ3vfZelqaJsKiixNNUiXifGRZxLgYCkrBcTk3lvcsBwA8evhRAESojNjqQlsOQaudtbUjwxLjYr7ip1h0F8SiXBSaoVWcfTbGh8fRO6/X4VOE3/75t/jZO36GM7QzcPrA6Vh+yfLgDZ8l7FGoANDZ6y0spiNpAMBQfggRljgWJVHCv77lX7H2QW8XckpIQTd0ZGrTLELAMiw0VYPuM1644bENyGVzKOTCXZ9BGFw/iDPOOwPpjnTL102hUE4sVFikUGoYz0kntCi0VUsPACRV83QssrwARZLAs4xvHUNZqwiLko/jL285FoNEoZYUxCMcBAenlfV5N2HPTmcAAWc4Gy6idmlPEqpuYOeQsxBpxaByDIOirEH1ONaqQq6LKE/2Mx/AhWkxMTqEnv75da8bhoEvfOELeP3rX4/zzz8fiUQCwxnygNUeqwitKxZ2YCgj4tFdY7hsaTf626oH7qx6ickIh+4QQtgZvUlMFWQMZSoDeGMzIniWQTpW/2Ckm7FvLMOgs9tZWGyP88iLapWDVlR08BwDqUi2o9VG4B0vAmznkft/AwAoFioPTzHT8bm4K9F4fUVZwo7BZ3xjUAFg58gMlvQk0JmkMagUCmUOkBsBwGDUPq7gIRqWhROv2dR1jkWH72eGr3ZpWW5EzkOssrv7mnUsAs5xqBHLsVgzaGQ5Fu0ufEMPH4VanCKiqCXUiTWOxdxo1a+FkgTwjTgWJ7Gwv6fudcMw8M0f/BSv+kUJZy4aQFtnL1CYrBYMOaHesWhGbVbV1uxeBrQvhFuNZl+sKFTZfVBLYHXIGgMwLPq7O9yjUBmGOPdmjpLjxAkAwyJXIPvlWZs8bbkd9zawEzZ0FQFSUHHXHx4DAMzkiwDnUm80CKPbADBAG0nJ0HUdj2/aRmNQKRRKKKzYxTCRnU6MFsn9y4rtzEnVz+RiTW1mPzdmnbCoVAuLQaIe7S66WmGxqBSrXhM10bHGYi3T0jRiXMxVWLQEShYsYjwRFsOMN6UjaSxMLcTa4bUoqSUoulIVuxrloiQm1lylU23DMMT4GEpKCbpHDH6p6D6xyYpTrXKUmoyPuAuLP/nJT/D6G14PoUvA6QOnV4mnc4myYGpejn6OxbYImRQ+XBiGwAlgGAZiUYSu676xsimzD+onunsRNAb14d8+DADHRVjcvH4zjUGlUE5RqLBIodgwDAOTBampFKdmGcpUOmmK5l3Lj+UjUBQlkGNRUSvxXF6ORcMwUJBIjcUgzrdMUUZc4MA7xKa2my7EqYL/7MHuAKKKXVj0chdaWLUInzvi3NGzYj87EgJKsuZdC9IAJLFUjsoshHEsjg6jd6DasWioCv7jjo/gtttuw6c+9SncddddiMfjOGaef7tTznIodsQFXLCgreyatOhPm/UaRDVUlOaSHjKI+ezhTPm1sZyEdIyHwDnUWDSjUFmWQWdPHzKOwmLEQVgkUaiKPLu1Sw2fWgRDhw9h5+AziCeSKOQrD7oxUzye3xFruL7i7q3PQZZErFjtLSzKqo5Dk0WcM9AWKA6YQqFQjju5YSDegao5SB7fp2VhUfFyLNYIi06OcpYDbPWTIJluxCBRqABxp7nEkAXGaRDL2n6t4McKxK2o2vZF1xqIQp0mIl3UnMUt1vRZ8sNVvxaKYkWAU8M6FquFRVU38Mlv3YV/+o+78MGr0vjNf/wTUt0DxEVpH/DlHepcWg5LO0uvAq78RyDWEbhdVfABhEVGh6wDYFgM9HS6R6ECQGqACLNygZwvhkXRJ3YMABGThSSJUW0GXYHqE4U6OjGNB9c+h1QiToTFsmOxgShUq75ijPQbt+19HlPZHK67lAqLFAolPDk515RjcaRI3JUsw0JgBeSUamGx1rEYVli0O/84nvMVaYCaGos1zr6iWi0sSqoUSFjMSqTGolsUqiVQMgyDKBdFSS2FdhVe0HMB9k7vxZGZIwBQXWORi0I39PI6nSJIwxDn475t9HMsAkSorWV8eBw9NX0RQzdw34/vwzvf+U5c9reX4byPnofF/YsbbP3xx3IsWlGoXb1dmBqfcl3eEhbHS+MQOAEcw/lGoFqkBdI3HBfrx12CwjKsbwxqIVfA2gfXIp6Mo5hvsr50DSNHRzB6dBSrrljV0vVSKJS5ARUWKRQbeUmFqOihx4SCiFxBsTsWFc3wcSxGoMimY9FHWLQLj16ORUnVoeoVZ54f00XiWHSqx9gRN4XFov+s6yCiyki28vDhJ6QCQDzCoScVwY6hGcdZgWM5CQyA7lQEJcXbsQgApWKhLOo5CYtO100hn0Mxn6tzLEoje/HUow/irrvuwh133FEWcYezIlJRHolIxXXRkYhgxcJ2XHFGNwba4nXb6Es35nTrb4shyrMYPJIpvzYyIyIdEyBw9edTZ4XyYHBndw+mJ+sf/jriAgqyCtFWg1JUNAgcA1lqvDZAIxg+jsVH7r8X8UQSV17/chTylQHjmMCBZdBkfcV1SKbbcPrZ53sud2AiD003cOmSTkfXL4VCocw6M0NAvKv6NdV9AES3Hic8lik7FL0ci6yLY1Gov+9VlrE7FmPNOxYd6yxa98Oam7y1rH1g1NDql/NDzBBRNJIk26pxdNhrLAJAvliqbFsONvijaRqGxuodi9vHdPz6L2vx/fddh/947WngIjEg1UvETvu6ncRdNydBrK0+NjUolhNTco9gi7A6FJ2ck/6eTvcoVABIDwCFcbIvHIlCLYoB+yKpPiB7NFD6gSu66iss3vPHx8FxLN74iquRzRcr17Dq7y6oY3QrEVPNv5k1G7ciIvC4fNU54ddFoVD+qjEMw7POXhDGbHVqrQjQPxz4A7ZPbAfQvLDYSBRqrWPRLhpabkALURPBM/7C4ow0gygXrap7aEdUK+uJ8TGIqhjaVbiidwVkXcajR0gcqt3NZwl5lgO0WcdinI+jpJU811MqBHAsOkS+OkWhymMynrr/KXzta1/D8n9YjgVtC5AQGn8OP95Y9Q4Zldzf/RyLKYG4DnVDR4QldTalUrC+iBWj2pRjESwUyftv44kHnoAsyXjxa17ccsfi4PpBAMAFx2mSk2ZoWP7fy1HQW++0pFAo/tBRTArFhlVfTg8xKPTUvgmc/m9/xF+2t6bewXCVsKjDy0TH8AJkWQbPslA13TNSQ7bVWJQ8HIszIul01Lri3MgUZcQEZ2ExFSOd6+kAjkVLhPRiKFN9bIKwuCuBQ5NFFOT6fR6bkZCK8UhGeYiKDlXzPu9isWiLQq0faHJyl06MEqeBVWNxdOgIDF1HbOF5+Ol9j+DNb35z1fLHpkvoSAiI1Ai7H7juTPzNef2IR+rPS6OuOpZhsLAzjj2j+bLDcHSGCJu1zkdF0wGWB6NbwmIvpibG6tbZFhegG8CkLf5WVHUIHAtZnmVh0SNGzDAMPHL/vXjBi1+Orp5eFPOVB9N4hEN/WyyQi9aNwU1rccFFl4FzcH7a2T2SQ0xgceFpnQ1vi0KhUFrKzHC948zDsagzAYTFWseil7Bo3UvLwqLH4FLLHYshnOOWAGSfkW/oDTgWM6TtnEAEPKtupEVxomqd+aJYEfU8nH12Ricy0DS97Fg8MjwOVdOxcoDDkz//Et5zeTsQbSNtSPaS8120DfByDvfDgPWcQ2HF3npEvPKMDtkSFrs7MOIxmIe2+eR4SjPlGovFgIN5SPeT+pYha2FVYRhQfMZ3f/6HR/Hyqy/BkgX9xLFoXcM+qQtO28LoDnL+ePI389jGLbhs5dmIx2jUOoVCCUcjrrparChUAOUI0I8/8XG86f43QdXVKmGRZ3lMie6uLwB1NfvswifHcb6uLN3QqxyYqq5WiYElpUZYVInT0I+snEWUj7o6FiVNKkehxvk4RE2si2H1ozNGnhUP5w4DAAS22rFotRdojWNRVEXP9XhFoVqiZ62wWCqUkJ/Jl4XFiZEJKLKC6EAUt//4dnzwgx/Ezqmd6E30Is57TCo7wZQjfM3D09nbiZnpGVfHLMdy5f0RWAEswwZ2LMb5OFiGbUpYZBjG92/j4d8+jBWXrcDSs5eikG+ttwyAEQABAABJREFUQLd5/Wacfu7paO9sb+l6LQ6XyN/Es+Kzx2X9FArFGyosUig2xmbMzmqIMaFdI6RD+/Qhj4GNEByzRaHKqk8UKicQxyLHQNEMuBnuVE2HbpAxB003oHgIaDmRdIhiQrCvh0xRQUxgHYVF6xVrnV50JPwz9KtjYoOdpKU9SQxnS5gu1HemRmdEpGM8UhEeouIThQpALBXL9fechEUnsdMSFnsG5uHppx7De298EXY89WcAQHtHV93yxzIltMV4CDWz/VmWQTrmP+CpBhRcLZZ0J3FkqoicKSiPzUhIRrk6x2LRFGYZrSIsZqYm6movtMXJw9foDOksK5oOTTeIsCjOchSq6i5o792xBUcO7sOLXvk6JFNtKNqiUG+8cAGuP7cv0PF2QpFl7Nj8NFZceqXvsrtGcljSnayKvqVQKJQTSn6kHKVYxim61MSAOZDmVRMuSI1FlifLWf0eK3rUKXLTwi4stmJ2e5h6Pk6uQUMLX2PRciyyHPlZKxaK2arjXyiJFQehEiwK9egoEQkXDvTgyWe248Ibb8WP/vQMAKCrPU1cqtE02aeE6WqcPlRZAe9zXFoV3MEJABhAdnEsGgYirEFqLIIIi8WShLybcyLVTxon5wE2AjBMcMdi24KK27EJvEqg7z10DBu37MFNN1yH9lSyOgrV42/OkfwouZaSvQDHwzAMPP40ra9IocxVLvjpBfjQYx+qez1M7b3jiVVfsZn2DBcqUd6WU89C1uQqYTHOxzEtTXveT+oci6rNsSj4OxZrxTxVV6vEwJJWKi9jGAYkTaoS8NzIyTnEuJirs9ESKBmGQZzzF+28sMTVqhqLZp/ActI1Kywm+ERTwmLZsVjTnxkfIQkMvfN6sXvLbrzvhvfhwf95EACQak9hrDiGKXEKvfHeOVtfETCPsw4wRsWxCADTHgkKVqSpFa0b1LHIMAwSfMJXdPdcB8t4/m1MjU3h2aeexYtf82IkUgkokuIrRIZhy/ottL4ihXIKQ4VFCsXGeJ7c4E9kd75WPNM8aywKUBQFPMtA1Q1XEdIeG2pFVDrogAAqImDQKNRMSUGM58B7xF7lJcU3LjYd858NOGyLQrULaF5rXtqThKIZ2DFcX3x+xHTnpWKmsOgjVpIoVKvGYn1H20nsHB8dAgCsf/RB3Pa+m3D+hatx1uprXbcxlCkhFRMg8OGcAD0p0vkOEhFr54zeJDIlBYenyMDZRF5CIlIvbBZlcl1YwmJHdy90TUMuW92BbjPFuPEZ0hktmdcbiUKdXWHRa5D7kT/ci47uHlx0+dVIpNJVNRbP6E3humV9da7RoOzZPghJLGHFJd71FRVNx8GJApb1p9EZQFinUCiUWaE0BURrZhV7uKcMa1AuiGOR9RBNWJ4IjpYwJ+WI0OflIrRHZnpFpgYlzEBWObLSNrim6wjVizQMIqAKMSK6CnEiLJqTdmSdMYXFyv2MRKGa7fRw9tk5OkKExSef2Y7r3/5xLD/rNLzxOpvglB8hdQXZCJDoJq9lDlfe52M++9HcIGYZhgEiCeCZnwDfuQK474PAtnsrYqt5X7cS/fvNwbzRyYzz+tIDlf/z5DoKLCym55PtFurTGcIge/R/7/rDY0gn47jhhZehLZWAKMkoB2zoIQf1Rkm0INrIPu/YdxgT0zNUWKRQ5jBWJKgdSxx6zW9fg5f9+mWz3aQyWSnrv5API4VKopPl1LNTKyzm5Bx0j8k5dTUWbcJVkBqLtcKioivgmIqwKKoiZLO/I+syDBjgOe8xClEVIWkS4px7H0TURHAsB5YhjkVJk+r2JSjWMYzaIsotIa9lwqKQgKRJjUehmm0rqDXC4jARFg/uOoh/+rt/Qs9AD66+8ery+zsmdwAA+pP9Dbd9NpA0CYxeGavp6iGTxafHPeJQIyQOVeBMx2KICdepSMr3b8MLDt5u3kd+/whYjsW1r7wWyTYyma9VdRbHhsYwdHgIKy+nwiKFcqrS0Kjp//zP/+AFL3gB5s+fj+effx4A8J//+Z/43e9+19LGUSizzdjMLAsfDlRFoeq6tyDH8VBkGRzLQNU8hEVzurQBUkMRQF3UpUW+7Fj0jhPTdQNfuH8n9o/lEXVxLFrkRA2KjxuQDRCpNZKtDAbZBTTDcJ9Nudisk2evI2gxnpOQippRqKp/FGqpWCiLTUWHBxcnx+LY0DFEYjHc+cXb8Ldvfgc+++2fIRJzd1VYYmfYent33HA+PvrSs9GTChd3tbSHdHKffX4aiqZjuqggFeXA1pxPS0i1R6ECwPRkde2ndjPSdjRHrmPRHCHjOXbWhUVdkQGWQ+f170HJdro0TcOjf/otrnv5a8DxPBLJFGRJhCK3Zmbe4Ka1SCRTOPOc5Z7LHRgvQNUNrKb1FRuC9kUolOOEYQCJjurXvKKlrRgxT8eiQ43F2pn9LE/q2ZWFxRkitHnFm9qdbfwsOxbLUaj2Gosho1CVEnFpWpFfQtx8jdw7c6pABFZbvb18QayIrQEdi0eGx8GxLD7w2e/iphteiL/86HPoSBGxkNVkIl5G06Q2YryDuOYyz1dW4HdcmqznVMWLPgGc8yqyzZ2/A371DuC+fybH1RSv7VGoADDqFoca76ycJ9N1EjwK1RQlx/c0shdl3KJQDcPAz+97FK99yQsQj0XRliLX74zVvrCOxbEdJLLWbPdjG7dAEHhcsercRptOCQDti1COF/uz+3EsfwxjxeYmNzRK2bHYxJRre9tjfKyupqL99xgXQ17Oe4oncs0kp6JaET+C1Fi0BDfGzFWqdSxqhoaiOWHHclfanYFOWMcp6lSL2ETSpHKNxSCinReWeBjl6oVF61xputawCAUQYbEljsWaKNSxIXI9fOMT38Dl11+O//zlfyLdlS6/v2NyB5JCEr3x6hqMcw1RFcFolbGSzl7TsegRzd4WIUkg1nUQ1LEIkBqNOaVxYZFhvB2LD/32IVz2wsvQ1tGGZIoIi62qs2jVV6SORQrl1CX0SOZ3v/tdfOhDH8IrXvEKZDIZaBq52XR0dOA///M/W90+CmVWsWoszhZOY0+jNnFT9XEsMhwPRZHAcyxUXXcdy7KERRhG2bEouAiBViRmIuI9O+/wVBHff+IAVN1AlPcWFguSGji61A3DMMqOUgAo1dRMdNv3RIRHdzKC7UPZOvFxPCchHuGQinLQdKPsynNDLBXBMgwEjkHRwbHo9PnJsRFEIlHcevsXccvHPweOdz+uM6KCoqyhPcYHElrtxAUOZ/WnQwtUPakI4gKHwaNZTJjHNxmtb2OtY7EsLE5MVC0X5VkIHFM+VxXHIgtZmt2/L10RwXcMoO2SV2PPVOXcDG5ai6nxUVz/ytcCABIp8kBTKrpEr4Vky6Z1WH7xZZ7nGgD2jJL6iquX1kfiUryhfRHKXy1ersBWEu0IvF0mSE242hqLmlKJfLRgOcCwCYtilkR+1i5XXqda3a5IKxyLISKwncS9sFGoYob8tByBQoK4EM3BvJxmCos2x2KhJJLjyArVbkkPjo5OIBGP4sv/+g786PP/jEiksp+cZA6EWfG3jCkuzgxVVuAXMxuyVpQnnUuAVW8BrvkI8LIvAel5QG6YXDPmNaZYwqKfY5FhgaQZ7cqFdSyajonJvY3sRRmHEt8AgGe27cXe54fwllddBwAVYbFo/h2FFRZHthJRUSCDgms2bcXq5WchmfBxm1IahvZFKLNB2Fp8rcISzBpFN3RMlCrPiQk+UedYtEejxvk48kreU8yqcywq1Y5F2WeSqHUsrchSVVerHIsASBwrKqKnX43FjJQBQIRRN2RNJlGoYMqOxUbrV1pRqPYahNGaOsiarjUVYRvn45B12fPaE4vu/UIrPrZWWJwcnUQkGsHf/+Pf45N3fhLRmvq/2ya2YV5iHhKtiLY/jogaERYtgbrDnOQURFi0Il6D1lgEiLDoJ7p7wYJ1dSweOXAEu7fsxotf82IAQMLsi7TKsTi4fhBLli0pHyMKhXLqEVpY/Na3voUf/OAHuO2228BxlZvwJZdcgq1bt7a0cRTKbDOSnV1HlVbjRsyZwpKFUq6NaJQFPzsMSxyLAmvVWHTuQEpqfRSqm2PRikKN+zgW7XUT4y4ipLV7BVmF4lVkJgCZYvX+T9XUTPQSYBd3JXBoooiC7dgahoHJgoRkhEcqSjq/WVFBUSUdRNmo3/9SkXSOozznKCLa2yhOjWD7M+swMTaM5Rddhr998zv8dhHDGXL9peP+A5vvuHIJblgxz/c8+cEwDBZ1xrFvLI+j0+QBKuUoLJJjp8dIPF5XTx+AesciwzBIRXlMFWQYhlElLEpSsAHQVsAyxLHIlAeJK9fHI3/4NeYvWoKzL7gQAJBMk46+PQ61UVRFwfbnNvrGoAKkvuJpXQlaX7EBaF+EMqexxLMmZoufcFJ91b+r7oN1HMcR8SRsjcXawTpOIGKK3bFo1R50Qq75zjZjpprCw3FQh9X+qhqLIaNQSxny0xpEE+JELDWdDHlNIK5Mm3iZt1wCnOB9zAEMz6j4y7qtODY6iQvPPQMfeffrwdRMXOItYTFiq6sZ7yL1BcsLnQBximVNF6XtOqlxLHZ3pMFxLEY96hqROouoCItBXQKRFBHpJvaFbrodN2Hx5394DP09nXiRGQ/WbgmLBfNZJGxM3ug2U1hMwDAMrNm0DddduqLRZlMCQPsilFOZGak5YXFKnKoSCeN8vCyKAcR5Z3csJvgECkohsLDIgIGoimWxheM4KFJAx6J5H6yNQgUqQqElevrVWLQiY+MeceyiSqJQGaYiLCphJ4+YSJoEBkxVu+qERUODjsb7oJZoWSsM2vFyLLIMiwgbKTtKlZyCpx99GuPD41h0xiK881/fCdahjM6OyR3oTfRWiaZzEVEVYT+8kWgE6fa0ZxRqu1liwHLAhnEstkXaUFSKjQuLDOsquj/824eRSCVwxYvJ2EWqjfSlC/nWOBY3r9+MVVesasm6KBTK3CS0sHjw4EFceOGFda9Ho1EUCq358qFQThSjsxyFWlsPb7hG2FQ1A7pu4Im9E7j8iw9jLFf9PmNGoVqORbfUVMkWhSqahWl4F4fhjKggyrO+9eXsQmfcZVlLfCtKqm8Uqh+1x6ZWWHQTVQFgaW8SQ9kSMsXKZzJFBYpmIBXly+JctqhgXCL7kkP9IJolLPakIjg0WSxHnwocOZbTZpuO7R7EljtvwU+++mmMDw+hd2B+oH206mu2x/yFxRec2YNXr1rQcB1AO0t6kjgyXcThSdL5b3Ood1k+l33nQ9F0xJNJxOJxZGqERQBIxwRkzeNrOUt5FrPqWOQ5Fpoqg+GrRTtZEvHEg/fjRa96bfmhMpk0O9C55oXFPTu2QCwVsWL1lZ7LKZqO/eN5LOtPoyNOhcWw0L4IZU5jDS75iD5zllgHqXNnR3PfF4HnIGmGj2PRikI1B/B0tV4wZHkiqFkDJ6Wst7Ao1bjMY2nn5cIQKgrVcizahEVdDycolyxRzxIWE0RENNeRU3ny/+Jk+SN5yyXACZ5RqJv3j+DSbx3FLV/6bxweHseiec7RYpw4Rf6T7K68mOwBilOV32uvhxOF+TclmxFkLMuir6sDoxMZ98+kzEhTlgy8FkPUNUKqD5g5imaqr0sOiR2apuHuP67Bm15xDXieXN+WYzGbFwEw4RyLmgpM7AUSPQAfw64DRzA2maH1FY8ztC9COdnZn9mPydKk43vNOhZHi6NVv9c6Fu2xowCQFJIoqkVvYdH2vSiwQlWkqBWF6uXUKzsWzWFQRVeqolABIGMmCQR1LFoCbEpwn9wka3JZCIyZE3XySmNJOaImIspFq9pVK35qhtbMbass7OU19zZ61VgEiDOvpJYwcnAE2+7Yhv/65H9h5OgI+ub1OS6f1/KYFCfRG+8tu/rmKrVRqACJQ52amHL5BNAWJZO3BHOSUxjHYjqSRkEthBYWu2JdOLPjTHTGOh0di4Zh4KHfPoSrX3Z12T1qORYLM83fwyZGJnDs0DEag0qhnOKEHpFeunQpNm/eXPf6Aw88gHPPpTUcKCc39qjNRlE0He/4yUbsGPYveC6r3sKiouvQdAPTRRkFScOekZrOHctBVWTwLANVD1ZjUVQtx6JbFKqKmMD5RnHO2ByLbvUYC5IGlgGKitZ0FOpwtrrzWisseqV9nN6ThKIZ2DFUeUCyYm9TMQ7xCGm/kyvUjlgiDz+rFnVgz2iu3CarruB0UcFdd92Fez79HsR7F+ITd/4cE2MjwYXFbAkMA3TOsoPtzL4UcqKKwaMZMAzQkajfvlVjEXwMkilOd3T3Ymqivu5HW5zHjKhA1vSyYzHCc5DDDOY1Cc8yUGTJ5lgkrH/sQRTzOVz/qteVX7OiUIuF5oXFLZvWIp5I4qxzvQfzDk1Y9RW7WiIO/7VB+yKUOY0lLHqIcXOaeFe9wOYhkkYEDpIKb2HRchlYM9R1xUVYrKmxyHlEoUq272wu2hpXnd2xWOuIrIWzaiwWKyJj2BqLVhRqhMRXQkgSV55hcywCQG6k/JGCNRjFCsDYTuChzwAP3lG12t///ve46l9+hr4Uh8d+cBuGxqawcKDHsQm8NE2OXdQmzCb7gJJtgGyuDPKZDhLF1n3u7+nAiEf8GNrMPhgf0rEIEAdgfrSpqFfZof/7yPpBjIxP46YbXlhppuVYzBfNeqMhhMWpA+TvL9UHsCzWbNoKjmNx5YX0fng8oX0RysnOa373Glz3f9c5inGWE69RRgvVwmJciHvWSIwLcai6WiU21mJ3LAqcUBUpygkcDMOArrmLL7VRqJ6ORS2gY1Emx8ktvlPVVaiGCt6sR20Ji40Kt5ImIcJFyvsAEAemXYzT9OYci2XxU3UXFr2iUAEiLO7buA9f/vsvg+VZfO6uz2FqfAq9LpOchpVhAEB/sr/BVs8e5ShU23hZZ08npsbdhcV0hPSxrOsplGMx2oaSWqqLAvYjwkXwgVUfwKq+VY5u3l2Du3Ds0LFyDCqAco3FVkShDm4g9RVXXEbTEyiUUxnv6TcOfOhDH8Itt9wCURRhGAY2btyIX/ziF/jiF7+IH/7wh8ejjRTKrDHRghqLeVHFo7vHcVZfCue9st1zWUmtnpE3ki2BQWWCmWFULzNVqGkfy0NRZPAcA00yXCfJl9dhoCwKudXiy5mORa+aidZyFnHBeV15SUVHIoKpgoyST/1CO7VOTqBedJ2oEYFrY2XtLO4iHf3NRzL4m/PJzPVxS1iMCkiYwmKm5CMsmo7FCxd34rebh/DorjG87cqlaI8LmMjLuO8XP8Zvv/M5nHfNq9D+N7cgFk8gl51GT/88z/WW9zEjoiMuNB1vGpYl3aQD+eTeCaSjvKPQZTkWdSEO1XSfdnb31kWhAsRxeWCiAFnVy9G7UZ6FJM2isMgxUBUZDF/9MPjI/fdi2fkrsXDJGeXXkikyg7DYgijULZvW4vwLLwUveD+E7h7NIcqzuGQJra/YCLQvQpnTWINLJ6tjMd5RHwnqIRoKHAdJ9XMsOkSh1gqGnADIBZR7QdKMd41Fu7AYSbgvF4aGHIslIpIyrCkINhCFGjWdDhHTsWg6MHKquY18ZYA2b7kEepcBo9uBZ35SOa4Afnb3r/H29/8LbrywBz97qYh4TweOjU5gYb+LsChOAbH26vqSqV5AtA16urlGZxszkteKQgWA/u5O9xqLAKnRCBDxGSFqLAJElBzZUj4fjSAq9dfDz+97DGedNh+XLD+r/Fp7mvTFZgpFIsCHETNHt5Gf5r4+tnErVi9fhlRybsfJnezQvgjlVEHUxLr4SUtga5TR4ig4his7EONcvM6NaI9CtbZv1Th0wi6sRNgIJFUqi6Kc6f72qrNobd+rxqIlqFpt83PPZaQM4ny8HHFZi2ROMrMchtZ+5vwmL7kgqmKdsAiQ42EJt5rRXI3FBG+61hqMQgWA7NNZPPG1J3Du5eci8Y4E+hf1Y3x4HL2vcBEW5WEk+SR6487vzyVEVQSj1zgWezo9o1A7o6QmtFWLUwwx4TotEFGyEbHfcuQ6ORYf+s1D6OrtwoUvqDjvI7EIhIjQkijUzes247QzT0NXLx3voFBOZUILi+9+97sRj8dx++23o1gs4i1veQvmz5+Pb3zjG3jTm950PNpIocwKkqpVufCaZSRArGpt3cChjIh0nEe2KIMxO4sl2S4s1nQIGM6sscgGciwCFceiwLHQHcS4bElBTOACCIuVY5VwqLFoGAaKsoq+dBJTBbkcExoEJ5FwJCuWnZkAMF2sXp9XFGoiwqM7GcH2oSwMwwDDMOVY2c6EUBWF6oUVhTq/PYaOhIBHdo3j5iuWoM10LPadsxpf+cpXMLbkJVh3YAqTY8Rh0BtQWDw6XUJbXChHq84WnQkBySiHAxMFLOiIOYrOBYnE0xlConw9uQmLHYkI8lIWsqqjJJNlozwLeTaFRZaFKstVjsVcNoONjz+Md3/o9qplEymrlkBzwqKmqtj27Ea85b3/7LusVV+xJzVHXCAnGbQvQpnTWM65k9WxGGtzcCy638N5noOoAroqgzUMwCnxQFdM8ct8TzMdi7F2QMySz1iORUvEkXIkktM1CtX2nS3E62s2NgIXpsYiB4Apu+jAcERYDOtY5CKV7UYSRJAuOxbNfbI5FstRqJd/ABCnK9vb8D1A13DtC6/Hpz/9adym/jtYhsHYyBBkRcXCAVvUqY2ysGh3ZSR6UCWQtkK0bQXlGouVfkp/dwf2HR5y/0z/cmDVTUDnaQBCCovp+UTstpylDSCp1ddDSZRw74NP4UNvv7HK7RCLRsDzHLK5AhDhwtVYHNtBzmGyx6yvuBVvszkQKMcH2hehnMrYRQyjgVzN0cIo2iJtZaHQqW6e3Z1ovZ+p/b419SsWbLWwyEUg6mJZLLTqnCqy+3enFZtqfffWCosRNlJ2IFo1Ft0EQ4usmEWcj9cJlBaWsGg51eJcc8KipEloi7TVCYtRLlqOV9UNveF6fEAwx6JfFGrPuT04/w3n473/8l7ctecuyJKM7FQWPS7pCcPyMAbSA67Oz7mEqIlAzXyjzp5OHNpzyPUz81Pz8fbz345FqUUAwjkWU2YNcevabITavwtN1fDofY/i+ldfX1UjGCBxqK2IQh3cMIgLr6iPC6dQKKcWDeWv3XTTTdi7dy/y+TxGRkZw9OhRvOtd72p12yiUWcVysMVaFEs4kZOhekRxAPWuu6FMqa6+XsmW9zRZK86Z4gnPMWaNRRdh0dYOUbaERfco1CjPgvOJQrULi6lovTurpGjQDaAjITi3PSTHMqVy5ChQL8p6GBYBENfiockiCub+j+UkxAUOiUilxuKMTxSqJSwyDIML5rdj8EgGew4eweBdX4YulxDrWYQPf/jD5YeVyTES6dETMAr1WKaItpizY/B4wjAMFneSTnwqKjjW3ywpZt0rlkPedC92dvciMzlRt2x7XEBBUiEpWjkKNcpzkOXK9Z4TFfxi42Hc/KMN2HjQubZHM/AscSxykUo03hN/+QM0TcV1L39N1bLRWBwsxzXtWNy3cytKxQJWrL7CcznVrK94Vn/aMXaWEgzaF6HMWSyBy8ux+Kl24HtXu7+vqeGiEJ249x+AzJHwn4u2VbvXAEB3v4dHzBqLmiK51xfUahyKukJ+f+kXgevvIM4wq8aihZTziUK1Oer4FgmLtU5NT5jqOocMS/Y/TE3pUobEoFptFxKAroBRybkXdY68Z3csWi4BlgUS3UCyB1NKFO+56wCmiypOW7wYn/jEJ8qR9kfHyD3WzbHIidMkBtVekzhZsywzu/0SVyxh0XaZ9Pd0eDsWWRY494ZyJGroKFQAyB4N2dAKJcUo11EEgPse3YBcoVQVgwqQvlhbMmFGoXKVuqRBGNlK3IpCAnsPHcPI+DSuXb284TZTgkP7IpRTFbuweDB7MPTnRwoj5fhHoCJW2XFyLNa6spiHGRz+9mFwLFcWBgEiLMqqXI43tRyLTpGPFpYwWRWFapu8FOWjyMk5GIZRFhYth5kb09I0ERZdJkFJarVjsRyFKrUuChWodlZ61akMgiV+FtRwjsVivoj/+Oh/YGp8Cu097Tj3LeeCNScsT42SmFC3KNS8nkdfos9RgJ5rONVY7OrtwrRXLDuAi/svRl+S1JgMU2PRqt/ZTDyxLMnlvxEAeOapZzA9MV0Vg2qRTCWbjkKdGpvCkf1HsPJyWl+RQjnVCf2UePDgQezduxcAkEgk0NdHvhj37t2LQ4cOtbRxFMpsYgmLyWgLBqYAZEqyY6QngLKQVSssHsuUkK4VFm2jJ7UuPTAsNE0FzzLQNMNVXJMUu2PRjEJlnf/8Z0QFEZ6Fy9tl7FGoMYco1LwpPFrCSbPC4lCmVHYGAiS21B7x4eS+tLO0J4mhTAkZ8xiOzohIx3jwLAOWZRDhWeRK3oM4Vo1FALjotA6MHd6La666EsNb10KbmUBOUqvaNDlqCot9A4H2cTgrIhUVIHAsbn3zK3Dk4L5An2sFS3tJBFcyyrk4FtWyK8JydnZ09zg6FtviPHQDmCxIKCmkzqbAseUai0+MsFj9+Ydw22+2Yu3+SXzrkX1NxbU4YdVY5KOVh5NH7r8Xqy6/Gl291UXjGYZBMtXWtGNxcNNaxOJxLDvfuwN9aLIIRTNwyZIOWl+xQWhfhHJS4BUNCpCIRbfvvgc+Bvz0hsbFRVUCttwN/OLN4T8rJKt/Z1jiWJwZBn79HjOu1LY4T2os6qrsLizW1lS0HIsMA/SdS1x7rFBTYzFPhD63DondscjHWhPXGbaWICsAqoidu/cia/XRjBCCUGmq2m1pztTnNNsxjqaBYmUCTqFGGNt76BiueNOHcO9zEzgwYb4nV/orR8cyAOBaY5FTckAkDdhdGYkad+OciUIl+6cYdsdiJ0YnMoFXEc6xaPbfbI7RsIiqjmik0n+96w+PYfUFy3DWkgV1y7ank0RYZLiQUajbgWQvIMTw2EZSX/EFF53fcJspwaB9EcqpjOWO0nSt7LoLw3BhuCyIAM6ORSdhsbb2IKMymHl6BgIrVDkWo1wUki5V4k3NZypF8XAsWsuiEoVqF+iiXBQFpQDVUCs1FmsnWtWQkTKIcTFXx6K1Hkt4bLbGoqIrEFihbntRW+KCZmhNORYFjqzfOu8GV99Xra2xOHpsFLe+9lY8et+jOHrgKDk/mlSu9Tg5QvoxbsIiAPTGex2jZ+/4hzvwzBPPNLw/rUbSJEADGFTExc6eTsxMz0BTg4m6YRyLlkDf6DUDEMeiYOuLPPzbh7Ho9EVYtmJZ3bLJtmTTUaib128GAKy8jAqLFMqpTugRzbe//e1Yu3Zt3esbNmzA29/+9la0ifJXREFSfQWh2WKs1cJiUYGoOHfoLOddretuJEvELjuirXNSu7xhdihZRodqGK7ijF3glEyhxy3qNB/QsWh39/EOQlReMoXFONmfqby/sGhtsy7yFUR0S9vOTUFSoWg2YdFHmFrak4SiGdg1TAYiR7MiUjG+3Pa4UHHiuVEqVgbqcns3YeR/PwxEU3jRR38AoWcRCpJajmoFgKmxYaTbOxGL+0d6GIaBsRkJqRgHTRaxa8uz+PYXbvP9XKs4o5c8+CWiHHgHN2veLiyatSi7evqQmZyAXuPOaDPF8dGcBFHWEOFZMAwgF7IwdA1Z2cALzujB+649A5ec1oktR7NlwbdVWDUW+Sg59vnsFLY8vQ4vesWNjssnU6mmhcUtT6/DeQHqK+4ZzSHCs7h0qXMsHcUf2hehnBQ0WmNRKQGDvwByw0DJe/azK9Y9MYzIZRGpuWcxHHEsjmwBtv4fcPDJqrcF07GoK7J7LTrNRVi0DcqA4yvComEAct47mlTKVWJnvaJQjz0DDG12X48dPqSwyAnl82zVFA7lNCtOmW5L89gIZGCVU2zxY9G2Si1G2ByLAB7bsAWXvfGDYBgGGz52ES5ebIrCYzvLyxwdz4DnOfR1dzg2gYEBRFLk+FsI8XJbyEJzRFg0BzntNRYHejuRL5ZQKAab/R/KsRhJkn9NuD9KsoFYhFxXU9kc/vj407jphuscl21LJZDNFyqxwEEmXUk5IHuECItcFGs2bcVF552JttTcj5M72aF9EcqpjBXVmVMaez4aK46FEhZZhkWcj5fjPGvhGK4uClXW5PL4B8+Te1gzUahRLoqiWoSqqyipJSLg+UysyUgZxPiYr2NRYITyNgC47mcQnByLdmFRN/SG4mvtxPgYJJ20XU/Uj2nZo1B3PLcD7/vb96FYKOLbv/k2Vly2AlEuWnV+ysLigLuw2J/sd3z98T89jtveNXvjIn5ImuToWDQMAxmvBAUbYRyLUS4KnuGr/l7CIksyItFIedtPPPAErn/19VWR7BaJVAKFXHPC4uCGQSw6fRG6++l4B4VyqhNaWHzuuefwghe8oO71yy+/HJs3b25Fmyh/RZx/x5/xhv9ad0LbsORj9+OqLz+CsZwEjmGQjLZm8CRbUqpqG9pJmNuoFVNGc2KdsFm0iV05UakSYg2zQ8kZhqdj0d6OkqJB4FjHEkgAkJNURHjWt8bijM3d57SsJSxaIupUAOHovPltAICfrD1Utd+GYWAsR4RA+/pVm6Dlp0+f1k0GWJ47QgZpx3ISklG+HAkbE1jiyvPohFtRqMeeP4hP/+Pb0bvsIix719cQ6yQzlInYaYuuHRsOXF9xskAcru2xyqCmESZOrUmWdJuORYEH7+AOIcIiaY8VJ9vZ3QtVVZCfyVQtazlLx2aIYzHCsWAZBvLMBI5+++/xyv4CbrxwAS5c3InLT+9GtqTg6ecbHDx3gWPZKsfirmfXQYhEcdVLXum4fCKZbioKVdM0bH1mA1Zc4h2DCpD6ios74+hJhYnco9ihfRHKSYEmhau3Z7HnASKqhXEsBeGJrxGRzY9ouvp3lgNU20Bdvtq9FQnkWKyJQtXMKFR7Z4QViDBp6GT/YQCCRwSZlCOiHGA6G136bz94EfD9a+uclo6EdSxykbLYVe5q+TlV7ZSmTVHUEhZJX4XXbBFUVh1KE0tYHBqdxMve8wlcdN6ZWHf3V3Fmn23QdmSw/N+jYxks6OsG6xVFEWurfy3eVfm/X4zFbGE5Fm3CYr8pmI5OButHhHIsAkCyz38ZD0RVKzsWf/XnJ6FpOt748mscl21LxStRqHb3rhdju8jPVD8MAI9t3IrrLr2gqTZTgkH7IqcOb7jvDdg2vu1EN2NO0WgNQIvx0nhVvTwnYdFy81nYhchaWIaFZmhlocoSrlSjJgrVQ1i0lrVEuVphMcbFUFSqhcVaAa+WGWkGUS7q61i0nI8sw1bVQ2wEp3ZVORb15hyLADlfVtv1hF6OnLWwolBzmRw+8taPYP7i+fjO776DpWcvBUCOpaRJ5XZMjkwi1ZZCPOkcdRplouiNu4uOze5PK5E0CdBrHIu9nQCAqfGpYOsIMcmJYZima08qsoKIOclp3UPrUCqU8OIbnWsxJ1NJFHPNRaEOrhukMagUyl8JoZ8SGYZBLlffychms9C08LM577zzTixZsgSxWAyXXXYZNm7c6Ll8JpPBLbfcgnnz5iEajWLZsmX44x//GHq7lLnDwYnmCwM3y9HpEo5NF5GK8b5OvaAUZA15l5p91haypWrRsCBpdY5FexRqXtKg2MQmw1wTAx2qbkBzGcCUbK5HSdEdoy7L2xBVIgT5CYu2fXMUFs0o1HiER0xgMR0gCjVqRpjkRBWfvW9H+fVsibg/7cemKGlQ1OCOxUSER1cygm3HsqZQKSEZqcR+xgUORbMupBMMy6FUKMAwDCw4bSk+/92f4113fBtH8wYmTTdmQa52UU6ODqNnoF5YdGrqUIZ0ztPx1jhmw9IeF/CmSxbinHkOg4sAirIGS3QtSJUaiwAwPVEdh2rVCR2dEVGSVQgcC5YBpFIJemkGPekoYmYc8NkDaQgcg4d2jLV0f6woVC5KBqUP7hzE5de9BMlU2nH5ZLoNxULjD9D7d21DMZ/DSh9hUdV17BvLY1l/ulx/lBIe2hehzCpbfgk8/NnwIqHq4eDzYvPd5Gf2aGPCpBsPf5qIbH7rrI39YlgSZWpRqP6+5nkWkgbomuJRY7HGsWgJjfY+F2eLQrViTr2EPilXqYnIRf1rLEoBBvGCCouGThylnEDOM4BySEUYQVjMEGGRsaJQLceirW8c6yjXk+RYFvmiCMMwML+/G3/43qfwp+9/Bp3tNfe24S3l/x4dz7jGoJaJOtz77XGoc8WxaNa8UgwHYTFgHGooxyJQiUNtkKKsI2bWIn/giWdw/eUrMdDb5bhseyqJmXzJdAlrwf7+x7aTv9G2Bdh/eBhDY5O4djUVFmeDVvdFANofOVHsnNqJjz7x0RPdjDmDbujIy40LXyW1BEmTQtVYBLyFRY7hoOpq2YkXYSPQDA2yOZmnHIXqUWPREsfswqJdoIvxMZTUEhRdgaiKEDihHJvqxow8gygfLddQrMUS5+wRnzEuhoLS+BiYo7DIV0ehNkuMi0HUSduNiFE+zgDAsAxKhRI0TUO6I43P/uCz+NovvobOns6q9ii6Uj5fk6OTnjGo3Wx30+LZbCGppmPR1oW19t2vzmJ5HSEnOXn9bQTB7ljc+NhGnLPqHCxwiGQHgEQ60VQU6vTENJ7f9zwVFimUvxJCC4vXXHMNvvjFL1Z1ljVNwxe/+EVcddVVodZ1zz334EMf+hDuuOMOPPvss1i5ciVe+tKXYmzMeYBZlmW85CUvwaFDh/CrX/0Ku3fvxg9+8AMsWOD8hUihhGFsRkI6xjvGATTKcNY74iBbUqCaDrcRc9n2mhqLRaXyt1Yb/wmGARgWrKFD0z2iUG2ORVHVIHCMq2MxL6mI8BzYEFGoTsJizhSfEgKHZIRHtqYmohfnDKRxz9NH8Ogu8l1gHUe7sFiQ1aqIVz9hEQAWd8VxaLKIoqxhIi8hGSE1FgEiPIqy5mpY5FgGh/buxG/+94cAgEtecB0uWtINA6RmHkDEt2rH4gh6++fXrWtcJvsxnKl0KIcyZB874ydObHrxeQO4YEG743sFSQVjDhiXY257TGGxps5iTGDBswwm8hKKMnHIsiwDUayP7xA4Fmf1pbDp0FQlRq4F8CwDVZbBRyoPsde/6nWuyydSKRQcBoeCsmXTOkRjcSy7YJXncocni5A1HRef1okoP0cGak9CaF+EMqvsvA/Y/hsgczjc5zQleITiY18GNv0QKEwC+x+qvD55HGrt+s36rp2dz3LVLrx89d8GcSwaMPyERft6Ndl0wdleY21RqKJZR8bB4VBGzBJHY3oekHaOz6rCp04SWSaAsGjVL5w5RpbXybFRGxEWS5lqt6VVY1G1zRSPd5SFVoblcPDoCD5z510AgBdfeSEEwWEwc7jasegrLMYd7v1Jco9XdMwhYVEyY1BtwqI5mHfcHItt9f24MJRkHbFo5bq66YYXum8qlUA2VyDXg6EFcyyObCOuylgb1mzaCpZlcdXFtL7ibNDKvghA+yMnmmajI08lRFUs18ZrhIyUAYAqYZFlWETY6nusqNY4FiPu4gnP8tB0rSIsmvfronm/tByLsuw+mdkS3CynmWpUOxYTfAIltVTlWPQbG5qRZxDjYq7OxnIUKlvpg8T4GEpKqRzNGhae5X2jUFvhWLSiUIFqdynHcshMZvC9z38PAHDhlRciEqs+tzEuBlmTqxyLXsJiO9vu6Gqdi1g1Fu10dodzLIaJQgW8/zaCIEtyVY3FF7/G2a0IAMl0sqko1C0byOQ2KixSKH8dhLbGfPnLX8Y111yDs88+G1dffTUA4IknnsDMzAweeeSRUOv62te+hve85z14xzveAQD43ve+h/vvvx8//vGP8bGPfaxu+R//+MeYmprC2rVrIZg1rJYsWRJ2FygUR8ZyElJRHj5GvVAMZ71z0HMiEcd4jnUUzwAQscukIKllIdKC4QXAFBbdkjMlpyhU1O+ooumQVB0xwf8gWI5EnmXK4pzT+/EIh0SEQ94URSO8/7pXL+lCtqTgY/duwQP/dE1FdLWJbqUaES9Iqc6lPUls3zKM4WwJRVlDMsqVHxbiAoepooS4w0OlkhlBfs966FIJS886t/x6RyKCBR1xHDPdhkVZg2p3LI4No6f/5XXryyjkAaaoVAYfh7Ml8CxTtY9ziaItCrUka1B1veJYnJyoWpZhGKRiPKYKMjoTEQgcA5ZhIDkIiwCwalEHfrHpCA5O5HHuPGdhMyyc6VhkhVj5sXj1VS9yXT6RTGNqfLTh7Q1uWotzV16MSMQ73nT3aA4Cx+DSpc5uBUowaF+EMquUSF0YaO6z4B3RQjgWH/sC+amI1WKC0ng9lYapHRxjzFhGq5NRrB40ITUW4SMsytXilK4S8cTeJeCEiphiORZ5rxqLM0TYu+bDJEbVD586SaQNAYTFonk9GAapyWg5Fq37f5goVDELdJ9eV2ORV20DOvFOQM7jWE7HPVtFlEQdF513pvs6da2uxuJFK90dbAYYMPHO+jdSZsy7AnTMoShUpUZY7O5Ig2XZ4I5FMdxgHtqaE2kKciUKFQBufMmV7ptKJbDzwBGATQaPQh3dRlyVQgyPbdyCC889He3pZFNtpgSjlX0RgPZHKHOHolodgxhWpMqIGQDVwiJAXGx24U/Sqid6tEWck3MA4ljUjHphsWDeLy1hUVXcJ/cEcSyKqhg8CpUl+xDj3GPbrX2scixa2zFUcAg/ccepXfY22I9To8T5ODJ6pvx7SSkBMUDNqZh8chKqouLcVee6fj7GxyDr1cLiOcvPcV2+nWmvOkZzGSdhMRKLINmWDO5YDJmekBacU5eCIktylfj7Qo9JTs1GoW5evxkLlizwrKdJoVBOHUI/JZ533nnYsmUL3vCGN2BsbAy5XA4333wzdu3aheXLlwdejyzLeOaZZ/DiF1dmSrAsixe/+MVYt8655t7vf/97XHHFFbjlllvQ39+P5cuX4wtf+IJn1IgkSZiZman6R6E4MW7W3GulY9FyobmREyt1GIezJTAAupLVHaqSzcVVlLUqlx4AMJwARlehGYara69KWJQ18JzzPlpiYBAnVc5cNiY412PMSyp4lkGU55COCXU1Eb1gGeAfrjkdk3kZ//abrRjOimAYIuSV90PRoNj2Sw+gLJ7ek4Ki/X/2vjtOjrM+/5m6s/V2r6udiiVXNVuSeyMQIKaH8KP3EkrA1MQEQjHEQGihhIBtCCUhgIFQjSk2trEt2ZJsSVZvJ510vW3f6fP7453ZnZmdmd29O51O9jz++KO7vZnZd8rufOf7vM/zGHjkGGkKJmx5ljGeQUXR61yntm59BCPffz8AINnWhkuvdM5A3rC0RoTZyU7D0JGbmvC0Qs2p9cd3KFtBOsYhwi0QVYALJblmyWURqLF4AnxEqFMsAkAyQlSqJZcVqhc2LE3DMIB7D8ydHSohFmXQHGlKZ7p6wfH+DyvxZBLl0swsfzRNw97HH8WGLf7NQgsHRwroa4+hKxmQGxaiIcJaJMS8opIj339Mi/PxNLl5xaKFJ38CdF9c+30O7KxmDSvvzUIlC/tMJs7MWAwkQnQfK9Q6xaJFLJqfkSBbLCkPsAL53ysjEHCMsylbSbYZYtE2mYbmq0Riy4pFwzD3IVojcxkeoGgwmu1+KbRh52kJ1/1XGaIK8ByLF/zVFf7bnT4B2OzlGikWNS5RJTQdMBWLJQX1ZPPZQpVYrIFhGHS1t2F0MtvUJlq2Qk00oYYNQEnSIJj1B8exSCX8r+m2ZNzMWDTVu40aw4YBjO0H4p0wmCge2L43tEGdR8xVLQLMTz0S1iIhmoXbplNpcWJVVsqCAoU0n3a8bie/dENviVikKZpYoRreikWWJTVaUMaipRC0SDnN0MDYahOLDKuolaaIRYM1quv5oUos2tSaAiNA1ERPxWJQzqAFLwLOfWxnq1iMcTHIeo0EHhfHsW/fPpz4wgloRTLu6557ne/6ESYCVVerKlE/K9Q0k0b2kSx6mNnda+cTsiaD0uv7X+2d7U0Ti60qFpPu/PMWYbdCBYB2H0t2AIglZmeFunvb/OUrFuQCdheIS4eMFib2hQgRYs4wozCvxYsX47bbbpvVG09MTEDTNPT0OG8gPT09OHjwoOc6x48fx3333YdXv/rVuPvuu3H06FG8853vhKIo+PjHP+65zmc+8xl88pOfnNVYQ8wNxvIiLr/tXrz3WWvw3medf7aHU4eJooTuVKSaHzcXaGSFWpRUyKqOX+4axL/+9gCSAoso7ySWRKVWFBKrTWeTgWI4UIYGTTeg+RB3DitUM2PRiz+tkoVNEIuWHabAMb7EovW3RITBaF4imYhNTkRbmonh+esX4Re7hqBoOtoEzjEu3QCmK4rt92asUEkz58HDhAhzEIsRBpKiVR8QLHzpC18A19mHrpUXY2L7b+q2eVlfBnfvHQEAqLqBgmkRq5mzJd1WqJpuoKjVH9/T0xWkopyZ+bgAGskulG3EYklWoWoGBI5CpqPTk1hMRTnkKypiPAuWoaCpKlTV+0GvIxFBdzKCvxyZwDtvXN0w37MZMAxRLIqSDBbAeWsvC1w+Fk+iVJhZg6X/8H4U8zms3xKcr6jpBo6OFfGMC7rDfMU5QFiLhJg3iFnS6G91JrWlWGyFlBneDax7OVEhAc0pls40KMZUa5pjkXKOzEWOYSBphmn96nMv1hSnYlGzMhZty3gRi3wQsVgg5yRIiSjlnT9H0/7LAiSrsREsxSJMxaKZ3VgttbQm60i5RMgjO6lHUQArgNVsM8WFNnxhq4SlKQrPvqgdn/7TBFRVA+tXq43td/xakRQs7fEnFlUuCdZL8WlmLN53ksZrm9ujMw9VhKzTgMt1o6cjfeasUJPWBLGZqT9Kso6KWTO/8BkBhDCAVNxmhWp9FoJQGCGq13gX+ocncGp4HDdevn5G4wwxM8xFLQLMTz0S1iLN42tPfA1berfgykVXnu2hnBW4iUU7wdQMVENFik85cv8AOKwuLYtQO1Jm3q+X2o6lWaLEs4hF2kks0gyptWRZ9u03qEZjxSIA5KRcc4pFa70AxaKoiqAp2pHBGGWjmBanoegtOmGY4Dys3ec6Y9FthTpUGMKvvvYr0BEaS565BCd+cgKVcsVhr+kYj1lPVUznjdxEDp2L6msRnuZx+vbTWPLCc8PCWdM1qIaKiFZfL2Y6M2dMsdjGz87VSZEVMAypGy/c4K8cBYB4ilihGobRsugiN5VD/6F+vPIdr5zxWBthojKBPeN7sGtsF/rz/dXXp/Xmjn2IECHmFk0Ri3v27MHatWtB0zT27NkTuOz69WfuYUbXdXR3d+P2228HwzDYtGkTBgcH8fnPf963mffhD38Y73//+6u/5/N5LFu27IyNMYQ/xgrk5rlrIHt2B+KD6bKMOM8Sy8c5wnhRDLwhFyUVkqrj5h/tAgAsy0RNYomAppyKRVHRIKuuQpHhYJhNLEn1y1isrVNRNHA05WmFauUmNmNXaqkgIz55jEVRQYQlSrWEwOH4RKlObdkI65em8YtdQzg0WkAqylUtV1magqobmCrVCjKtCcViPMKiPcZhx0lSdKSjtaeOOM9CVHQYLFEbSnmiSLjzO/+F677yGLh9v4ZYKUPXddA2S7C+jhgSERaqrkNUdEyVyDG0SLTOHqdicThXge5x7IeyFaQEFjxDL0RekVyHtoxFS32a6exG1oNYbItyODFZQkpmwTE0NDm4eF63pA2P9k9hsiTNiZqPpWgoigSaI+eY5YKbxbFEEuXSzDIW92zfCo6P4MJ1lwYuNzBVhqTquGx5GsICVaYuZIS1SIizBjEHxNoJ8dUKLGvQVohFVgB6LgaebO2tzigsxaJFGkoFwNYQ5DhihUoFZcJpipmpaEJX6zMWq1aoRs0KNVCxWADincH5f6YdGwBiD5ru818WaI48Lk3WfmZqisXqPLBmG4XW2NxqQS4KRiP140RBAoQ07nhBFAwFfOuAaf1WEf3tLkf3AdF2oFKzrA1SLKpcwnu/42SdE/kFolYEAEWEalBuXhG9nZmmrFANw2hdscjHAD4xY5K/JKngTCVNLBpci6QSMaJYpNjaZyEIo/vIv8lePPDYk6AoCtdtDvMVzyQWSi0CtF6PhLVI87h9z+24fc/t2P263U0RS0812PP0gNYViwCxQXUTYHZi0f0eAJDgSI5cRa13uWEoBpquVZV4FnFVtUI1n60USQEVoTzPW0MrVJMgnJamUVErYGnWs2fiRtRL9W9C0qQ6gjLKRjGsDc+YAHRnVQJzn7EYY2uKRXlcxuniafz7v/87/rzmz2COkGNdKVWQSnurTKvEolqBruswDCMwY5FZKFnODVBV2XqcukxXBtPjTSoWW7Rln8uMxUiDWiSeiENVVCiSUped2Qi7HyXqwblULBqGgcHiIHaP78bu8d0YLg2DoRisbFuJl655KbLTWdw7cW9dbRgiRIj5QVMdko0bN2JkZATd3d3YuHEjKIqqzhSyg6KoQCswOzo7O8EwDEZHnZlWo6Oj6O3t9Vxn0aJF4DiuOtMCAC666CKMjIxAlmXwHjZ3kUgEkUgTs49DPO2hG0AiwmDch1uYyTzl6ZICWdM9rUU5hoKiGciJtUI9KXAOYpFlaEg2YtEAkC07ZwxSjGWXxNaTjibEOitUGjsHSNFj/yxbisUoF/zVYM82zMS9Z6nlRRUR0yY1KbCm2nJmBe5kUcaqzjg408JV4Ehm43Spdizsys4gLGuPYffpHFiaQkKonZcoz0BUNSiShIlf/DuGh/aj9IW3oq2tDRTDgTOz8ySxgmis1syjKQov27QUh0cLePjYJKbN86Mq5Lx29ToViycmvP3qh3Mizu9NgGMp+JzGs4qKbCMWRbWqgs10dGFqot7CtC3KoSiqKMsaWJqCIgXnhF3al8a9B8fwaP8Unr9+ceCyzYChAUWSqlaojRBPJFEqzswKdc+Orbh4wybwkWBC9LCZr3jFyo4Zvc/THWEtEuKsQNcIgRXNoOUn1iCizQ+9653WiwtFsWi3OZWKjrxJnmUgqQaoIIWVbikWqdrvTAwO+wSaJetrCiCaNqdB9rNSgeTfBTWjKtnaz8N7gPOfE7ir8FAB1KFsJxYjVSJRtSY4NWuFao2NdTUk2Si0chlv/KWIuw4cwNv/gUE7T45TxKzPSuUgYvFJILW4aWJRY+Le+y1kIKoGZG1mSr0zAk2E7GE/1tOZxvFTIw1XF6UZ2mTFu2ZBLGqI8P5NZzvakjHIigoNNJhmFItj+0gOaXIRHtj+MDZcuBLp1OyajyGCcSZqEWB+6pGwFmkdqq6eM7lvblhKvtFy6xnyFbUCClRVOdiqYhEgmXCcSw1vtwwV1XpixcpkdFukAgBDMw4izjovFgnZTMaiZT1qkYWaoTkILWt8WTFbJRabIZbjrH+uraiJ4GjOMdE8ykYhaVKV6GwVjYhFu7JzpohyUWiahuEfDiP7UBYH1xyEsF4AIzBgzVpELPuTY9Z4ymoZutkDeipk7lnXpqcValc7Bo4ONLedec5YVGTFV13qRsy0bC8VS60Ti9t2Y9GyRehe3N3yGO3QDR3HssewZ3wPdo/vxrQ0jQgTwer0ajyz75l45rJnYllqGdqj7fjWI98ixGKIECHOCpoiFvv7+9HV1VX9eS7A8zw2bdqEe++9Fy9+8YsBkFl39957L/7hH/7Bc51rrrkGP/zhDx2KocOHD2PRokWejbwQIVpFQvD/SOTKrc3UY2gK2YoCSfUmFhMRFtNlBeOFWkGWFFiTPKsp8+ykIABMFp3joBjOtN1ifZs/ko10k1StqvwDgKmSjI4EKfwsG88YHzxjzCIg1y1pw7Mu9C4aCqIKnqFBUxSSERYVRYM0Q8asLGtICGyVdBU4GkWJEI4W/EhVN/pMYpHYjtb2M8YxUApTePj/PonK+Gmsfv7bEY/HiSUVaoo3sVx2EIsAcM3qTpzXlcDDxyYxWSRFoqrKiMWTiMWdDZ7+yXryStV0TBQlbIpkwNI05k4zOzcwDANl2VSrGAZUndihAoRYPHKgfsZ2JsajJGuoyBoycR6yHDwrb3V3AhGWxr0HxuaIWKSgKDKibATNtALjiSQUWYIsS+D55psuuq5jz45tePGr39Rw2YMjeSzNxNCTCvMVZ4KwFglxViDmMFMLRACEmGxlEnbXBc68wBmoBOYcNO3Me5OLVZUeYFmhApSh+mdCVq1QzW9kS7HoJhYBsm2pYGYPBhw8uWhaoQY0/eyKxZEmZKDNNJDtxCLLV89RdR5Ys4rFijmr3aXKnJA4vPTbh7HzlILXXLsC7V09RPVq6Ijw5BgVywGTdUb3A4s3AmYvmaYp9HZmfBdX2ag3sUjTuPG7ZUiRdnyquT0681BEM2PRbYWawdZd3naRdrSsVrSwaCOQPz2jVQuihkSmuWaelb+o6gBDaWj43TOyl1i1cjHc/9gevOSvG2c9h5gdzkQtAoT1SIi5R960Ah8pNZ504UZZKUNghSppJ2utE4txPl5HLMbY2v3OS7FoEYteYCmWZCzCO2PRIthl2X+sFjFpVyw6iEVTsZiVshBVETzDN0cs8v7EoqTWKxZjbAySJnlmLDaDRlaouqF72sm2AkqkcPLLJ1HcX8Ti1y5GJV6pkpWsWYtUAmoRazyWYhFAoGLxXEGgYrFJK1RVUQMJcC8EfTaagSzJaMs0Z6caT5HruVwsIxNQP3ph17Zd2HDV7NSKT048if/Z/z8oqSUkuAQuyFyAzb2b8Yxlz0BPvAftQvvTUkkeIsRCRVOfxuXLl4OiKCiKgk9+8pPQdR3Lly/3/L8VvP/978cdd9yB733vezhw4ADe8Y53oFQq4Y1vfCMA4HWvex0+/OEPV5d/xzvegampKdx88804fPgwfvvb3+K2227Du971rpbeN0QIPySFucs9S0RY5CuKg9SzI27m+43nJcdrDsUiTUFWnTPOpkouxSLLwTCbWn7Enf11UdHB2t5DshGXVm6iO+fRDYuAXLekDZcs8S5QCqJCbFJpCokIC8OoV1u2gkSErRKilo3khO1YSGpzM8l5lux7MsJWFZAAMHXqMEa+/36IxWn0vvrf0H7+Zsd6nPmAXil7B1knTVLaOj+qoqDdZYMKAMfHS2BcVNdIXoRuAKkAYvtsQlZ1ECGGDsqcXWoR7ZmOLmQnJ+rWSQksNN3AZEkGx1CQxWDFIkvTuKA3iZ0npwiJOUvQNA1ZkkCxzc7MI8V6udiaHeqJIwdRyE1j/ebgfEVdN3BktIg13YkwX3GGCGuRpyju/ZRJ3i1QVImpGTZoWrW5Si1xWqfOoJk356gqFi1iseQkFjkGktrAClV3WaFqLgUjUCMWVdlULEYC8hMNQC6TZYJgqQKTvcD0cUBpYD3FNmOFalPpM5EqsVjLWGzynFvXVqQ2Aeng8VO48suHcGRcwp9fH8MVqzsI+Roh9yies4hFn/2QCkSpaFO9LupI+ecxAlDZhK9d76ODGkraArpnqRax6ERPRxqjTTTzWs5XtLDh5cCmNwIBzWM/lEQVEa5JYjFOmu6yDqdK2A+jTwKJHpwcL+Hk0Bhu2LK25fGFaA1nqhYBwnokxJmBl/rPDbdtZlktO/MQm9iGG3E27sgVBJxWqF52p5YVqhcYiigWdfM5mgIFlmJRNjOJKYoCy7FQZP/JPW4rVE3XwNAeikUp66k09ILACHUEqh1eyscoRxSLM7GYBeCponVYoZrWozPF8MAw/vMt/4nysTJWfGAF2p/RjmlxuqpctdShlVIAsWizQjV0A0JMQNzPaeEcQlWxqNVfF5nODHJTOWgNJrxLM6hFLCvUmRLGiqyAizRXi8QT5DwV8625OeWzefQf7MeGK2ZHLD5w6gHEuTg+uOmD+N5zv4d/f8a/410b34VLOi9BZ7QzJBVDhFhgaOkTyXEcfvazn83Zm7/85S/HF77wBXzsYx/Dxo0bsWvXLtxzzz3V0PKBgQEMDw9Xl1+2bBl+//vfY/v27Vi/fj3e85734Oabb8Ytt9wyZ2MK8fRGeg6JxaTAIi8qEH1mI8XNmV5W9iRAlIL2vEKWoSGrhiNixZ4rCBDFoqFaxKJ3A8L+uluxmK3UmoMFUQVLU54KSzssxaLA+X+FFEQVPEuDoaiqEtSttmwFCYGtFvYsTYGlKQdRac+ibAbxCOsgWFloYNt6cOlbPgO+57y65auKxYq3lWmUZ0ABmK6YDUZFQUe307pI0XQMZUUkWedYf7tnGCxNoTe9MJVsZevYGgYYhex/1iSX0x2dyE5O1D28pKLks5SrKIQglxrnCGxclsbAVAVHx2ZmSWoHSwOKLINqpkkMIBa3iMXW3nvPjkfAcTwu2rApcLlT02WIYb7inCCsRZ5CKE8Bf/kC8KNXne2R+MNSlc20QdPqbPS4y7JyIRCLNEP2w2o86qZVqQmiWDRAQw/OWLSrD3WVkFleikVVJKQbJ/gqFjlKJ6RtI2LRIu/aVwO507XsRj80lbFom0zD8jYrVPO1Zs+ZRXracnNUVUN3KoK/vK0LVy+zNWQjRMUaMe8fpYrPPbVoKlOStYlNS7vSgcPQAizcFhzUirdisTONQqmCSoNm3YwViwDJWW3QYPZCUVIgRJqrRSzFoqIZjTMWNQWYPArEOvHAE4cBANdtConF+cJc1yJAWI+EODOQ1Mbfe27isCgXq+o9r783gwSfqCMA7IpFr21G3dbgNrA0S5R4tu9FnuEdyseGxKKhgjL/s363KxZZmgVLschJOYiqCJZmG2b/xbgYWMp/crBFUNK21muUjUI39Cop2irs58aC2wpVb8qzxxu6riOWiOG8fzkPiUsSgAJMi9NV+9pWrFAtxWJHb0dDkvZcQCNi0TAM5KaCJ0y2aoMK1Ej3mRKLsiSDb7IWsaxQy8XWrs89j+2BYRjYeOXGVodXhW7oOJk/ibWda/GKi16B89vPR1pIPyWunRAhnqpoWR7z4he/GL/4xS/wvve9b04G8A//8A++9h73339/3WtXXXUVtm3bNifvHSKEHTGegdBAqdcKkgKL09MGpssKfrf3GJ59cS9WdJLmzbHxEtIxDhTqiUU7WJqCrFlqMYKpkuz84DIsDJU0sZQmiEVR0dEer92YR3O19y+ICgSOAUMH37jzJqkkBBCQJVlFnGfB0FRVnelWW7aCNhfpG+MZZG32tH7KUD/EIwxYGrjvt/+H6/76ebh4/Sb0vOqzoAUJsNV6uvnwopvWdH6KRZqiEOUZZEsyojwDTVXQ0e1ULJ6aLkMzDGQ4HVmTb1Y0Hd95uB8blqWxNB3z2PLZR1myiEUdtFIG0IGS+VqmswuKIqOYzyHZlq6uk7KdL5amoTRQLALAelP9eu+BMaxfmg5euAFoioIii8QquAnEkyaxWGpNsbj7sa24cP1liAjB+UmHRgtgaQpXrfTPuQrRPMJa5CkCa6Z2E02vs4aKTQVVGAYSLdo4NatYXHwpIRFcs/sXDrFos0IFgFIts4mmKSg61ZhYpGnAasToqr9iUZMBKVixGKHMmyjThGKRiwKZ5cDJh4D8YPA5dB9/LziIRaFmhVrNWGxyEpWYJeuzPO665y943g1bsPb8FXj4YzdC7X/EKZIVUkCulrHoa4Wqq8RCNlmb2LS0O+29qNkIVfiU598XJFSJEIuuMrWng1h1jU5ksWJpj8eKBDNWLM4UNAtJ0RBpMtfIys2UVABUA2Jx8hi59pI9uH/7Xqy/YCU6MufQuXwKYK5rESCsR0LMPVSjdSeYglJw5CHOxAo1wderD6Nc7XnJK2MxiDxgaIYoDm1fixEm4iAWeZ6HIvnfgzVdq5KdlkrTTX5G2Sjych6SJoGhmCoJ6QeBERyqRzcsgtK+bxYxWGg02ckHEY9JVQ7FoqHXqVCbwUO/fwgbr9qIJSuW4Nb/vRWf3f5ZAABVopCL5aqkWjNWqJaqUlRF6BohFp8KqBL1Hoc300VqkamJKbR3t/tuQ/SbHBYAnuFJtuYM5zkqUvMZi5aytFT07nv5YffW3ehZ2oPeZd65wM1grDwGURNxUcdFjms6RIgQCxctE4tr1qzBrbfeiocffhibNm1CPO6c5fqe97xnzgYXIsR8IiU4bUhni6RpNTCUFXHb3QfxrQeOY+e//HX179myghjPOHIC3UQdS1NQVL1KblEApssK7C0xiuGgN7BCtecPSopTsTiarxWEeVGFwNHw4hU1zbQOoemqYjEoi7EoqUhHOdA0sTEFgMnSzBs6KRexGI+wKEi1ByW5SStUCxHawH986h9xz89+CP4r38HFVz2LWBu5NqOYYeNaJJhYBMjxyIsKojxDFIsuK9QTE2XQFNApAP3mYf/tnmGM5iU8f/0ipKMLyG7MBitPEYYBSpPB0hRKUi1jEQCmJ8edxGK0dnthGQpipTGxmI7x6E5GsP3EFHTdAN2A4A4CQ1EkY6NFK9RSId9gyRp0XceTO7fi+S9/fcNlD44UsDQTRXfb3BTIxWIJQBQVsbWC/6mCsBYJMaf49c3AupcBK66t/5ulKgOcJGOz0GZp7awuAGKRYgBNdJIcpXEAtYkSGmhi8+1rhao2VixaE0E0mdjjsvWKRdWsZwTGrGvYBkr/SpZkGKb7yO/Du0n+4Gxgz1hkOA8r1CbPeSULjYnig1/6Mf79f/+A/7rtfXjD3/41qEgCrOE670IaAKqOEr5WqADQtsShgvRTLOYji7HljiJ+9I2+5sa7EGARiy70dKYBAKOT0w2IxdabebMCzUCUpZYVi5KqA2yAtTAAjO0j/yYX44HtP8Lzbrh8tqNtGdl8CcsB5FpsPj5VENYiIZ5KsCsB50KxmOLqJzo0skINgtsKFSAEm0UsihDB8RwUJdgKlaZoUBRVzVt0qw2jbBQlpeRJCFrQbJbnUTYaqGq0tmMnMC3SNq80/9xpRyPFom7oLRFQuq7ju1/+Ln7wlR/gXR9/F/7uzX/nIIGpMoWSUqoSoa1YoYqaCF3X0d3b3fyAFjCqnwUagOsSb+8kZGKjnMWZWKECQJyLz6tisZRvkVh8dPesbVBP5E4AADZ1B7tB2VEuEWWlLC2AZ6YQIZ6GaJlY/Pa3v410Oo2dO3di586djr9RFBUW0CHOWSQEzpG5N1tYmXvDOSv0vL45EI+wmLbZeVrKPgssQ5uKRVJARDgauYqCLps4iuYikFXSxPrZ44N48aVL697HruYTVd2hSBwv1N4/VyG5iF6KxezkBJBeg7b2ziqxGI0EKBYlDTzLECvUWSoWKQrIxJ2FUCLCVsktwJ9UdUPTDWiVAv7875/A2JHd+Mfbvoprn3UTRNPuU9W9yWXatNT0s0IFyPkrSRo0TYeqKuhY5CQW+ydK6EkJ4Nnacbj9weM4vyeB1V3JBWvxUJZrikXAQDrGVcnG9k7ykDA9OY6+VWuq60RN5aumG+AYGlITxCIALE5HMZyroKxo1etmJqBgQNc0ICDzwo64aYVaasEK9eSxQ8hNT2H9lqsDl9MNkq94zZoOZGLNFfSNUCwWAUSbImyfighrkRBzip3fBR7/AfDxKfL7J9qIJea/jM+MTLRjBs045/oL4CHZnbEIAIUxQKgRizoYsJQO6EFWqHRNaVYlFm33XLsVqlQgakTaeU8eGSfnoyvJkdniDTMWpwixmFxE9mN4dxM73ACVqdrPDA8YGhgaqDqyN6lYLEwM45U/mMQ9h/+Er//LO/CGvzUnn3ExUO7GkUBmwVsZi6UgYjHZS1SaJvwUi6Ao7BjSicXnuQJVhGzUW6H2dpqKxcls4OqzskKdCSgWkqw2rVi0iEVRNUwb5YAG4ug+QEjjVIHC8VMjuPHydXMw4NaQM23ScoWZ2fmd6whrkRDnCtxZgm4YhgHFdu8qKSV0RGsKs5kQi2lzQowddmLRS7EYBIYmxKKdABUYAaKZnVyiS+AiXKAVqmZoVRJQM63qaVedEeNiKCvlqoWpF7K2e02EjQQrFjWToLTdt6zjUJRbj/9gKKZxxqKhN01ASaKEz77/s7j/N/fjbbe8DS9900sdYwQIsQgAg6VB8jsoCDEhULFIUzRYmoWkSsQKteepoVi0iGxpuQTqPAqyJlfPh6VYnB4PfnaYiWIRIMSilXPZKhRZAc8314fgIzy4CNeSFWohW8DRfUfxkje8ZEbjs9Cf70dntBO9ieZVj+VySCyGCHE20XLXtr+//0yMI8QCwAUf/R0+/7L1eOGGJWd7KGcFcZ4BS9PVEqwsa5iNM6VFigxn/QuHBM+iINaKX551FrYsTUHR9GovL8oxKIgq9EitccfwQpU43Dvo7ecu2UhNUdEcyswpG7FJrFBpT2JxemIMSAOJZBIFUQHHBGcxliQVHENmBHIMBZ6hHSSqF/xCxlMCV5fnGI84j12zGYvjk9MY+e8PgpVL+Lfv3IV1m64EAERYGhQAxacGp0zlW5BiMc4TsrNULgMG6qxQ+ydK6OuIgauQ2X4npiXsH87jFVuWIRNfmGpFADUC15w53x7nUZY1aLpRUyxOjDnWoUxCOVdRCLHYhBUqACxJCzgyWkBZUpGIsJiYmMBkNgdNWwmgeatiQzfH3IytHWZmhbpn+1awLIeLG+Qrnp6uoKJouGxZZs7yFVNUBTCAJDtDP5RzHGEt8hTG9Ekg0e0gRuYFbmWQJgOlSadiUZlB81xusI5hBOe2LQSbWJo2MxZdikXbhHmNYgAY/kSoblqhWo01Xau3OXVYoRZMMtD5HT40Pgl0AZ1xDiig8XVSmSZZjaxACLfxQ4T8pGfoUKFrRE1pwWwmCSxlUyw2JhYrlQqu/ccf4cRYGb/92j/hOX91Xe2PvEfmYTQNgNjOChE+WLEY73YoOX2JxXMRqgTVQ7HYmUmBpukq8eyHmVqhPvDYk9h39CTe+rLnguNaeHxmWIiyAqFJYlGI8OA5FqKiO3NNvTDyJJBchAd2k/vh9VvCfMX5RliLhDhXoBs6mIDnKM3QHArCklLC4sTi6u8zsUL1yku026tKmgSWYpu2auUoDpquOQizCBNByXRvMWAQxWJQxqKpWARQVSzW5UByMRSUAnRDB+vzHDk1MVU1bRAYYeaKRal1xWKEiXjas9rJRh16lTgNgqqoeP8r3o9j+4/hk9/6JK7/m+sd72OBKpnEYnGw+lo0Hg3MWAQAnuYhaRIM3XjqWKGaJLtBG6CSFCpqpXrsI0IE8WQcU+NTQZuYUcYiAFAVCvlintj9tjhXuRXFIgDEE/GWrFCf3P4kDMOYtWKxP9ePpYmlSJ1LNv0hQjzN0dJT9bZt2/CRj3wEH/rQh3DPPfecqTGFOEuQVB3/+psDZ3sYZw1xngXLUHh8IIv+iRJG8rOzS2IZClGOqduOYiP5EgKLvFgrpt2KSYamoGhGVbEY5RiUZNVh6c7yAnSz8ahq3iSDZRNqgCgn7cTidEmuEnr5iooI600sTo5bxBGFgqiSLEZXM7SYz+LkkQNQNB2SqkOwEaXuTEQvHDtIbJ3KRSdB2hblwLtsahMRtqakA8mObAYVRJBY+0y8/rP/XSUVAUKECRwD1fD+WjQoBgzLQgwgFq0xFU3VW0dPbaaVqGgYzYtY1RkHYz5YPHIij8VtAi7sTYKdaZNzHmCRtpR5nVjEoqrpiCWS4PgIpicn6tZLmapdjqEgNk0sxlCSNQxlyfIDJ0/g5KF9+Kc3vAjHD+1vftCWFR3THJHH8RGwLNeSFeqeHVtxwbpLIUSDZyAcHi2AoSlcdd7cPVB1U4QATXBPP2IxrEWe4vjKeuDrm8/2KAgMHSgHNwcaQpmlReCCIBZZM2PRdp8tO7/zNathqfh812seVqi+xKJCiEWWryMAB0fJ+ahmLHL137+D49PYfXiA/CJmSeYgzRA71NwAIDc3gWRwwuN+UMk6yR6zmRRlAbWFjMVoNIrXX70Ij3xoA55z7WXOP3o0Yy1iEQDiUcE/YxEAkj0OstrPCvWchCZD1qk6Mp5hGHRmUhidbEAszrCZ980f3Y133foNbHnZe7H9ycNNr2dQDDRNb9oKFSCqxYqskXzWoIzF0f1AogsPPHEYl6xZjs5MW9PvEWL2CGuREOcSvMg794Reu4KwrJZJnpuJmRCLXmo/t2KRY5qfWMtQTJ0ST2AFh9KS41onFt1WqHE2XiX8/BSLdkVahI14EpAjAyM4eehklUC1E4vWcQiyQj267ygAYPjYsON1juE8iUyaoqFLOgyzH9QMYctyLJ790mfjKz/9ioNUtLYXoQi5WFUsFmzEYjQaaIUKEHJS1mUYeOoRi5RBgYpSJPfThkxnpqEV6kwVi9P905g8NYmbX3Az9jy6p6V1ZVluOmMRIDmLrVih7n50N7oWdWFR36LGC/tAVEWMlEZwXtt5SPLJGW8nRIgQ84umO9k//elPcc011+ArX/kK7rzzTjzvec/DF77whTM5thAh5hWxCOPIHsxVmrOycsOyiDw9XUFblMNk0dnEsG83JbAo2ohFN7nEMbRTscgzKEkq7K6qNC9AV8k2FR8LMotY1HUDhgHHfmbLCslyAVEs8iwD2kM9MWVTpOUrCgQXAWkYBjRVRSGXrSrcImzt71YmouphCVsdp0SKLMWVgZMUWLAuYjEpsCjLKgyzwSc2sEL93c9+iHt/8zPkRRVtV/0/LFq2om4ZgaPhw83CoGgI0VigYjEhsCjJKoolsoxdsXhysgwDwMZl6WqG5emcjE3L29GdbJARdZZRs5wlx7orGUFZUqHoBiiKQqajE9OT43XrWbmYHEM1bYW6KE2OxeHRmjVMNJGAWCnjnf/v2fj2v9/WlPrRMIlFI2AGqR0URSGWSKJcas6SxjAM7NmxFeu3XNVw2YMjeSxNR9GTWtjn+VxAWIs8TVAYPdsjqKEy2XiZIDRSLDZCi1ZhZwQU41Qs0ixRAtqakobVmPMjQnXFaXvqzlwEAMbchiICcpFYobqUBEPj5Hwwuvk+HopFUVIwnTePeyVLFIs0A2RWAvlhpwo1AMWKRyO17LoeLGKRs2U06/7NvB//+Mf41re+BQB4/40duKSvo55g5T0mqwg10igRCyAWKRpIOS3xn1qKRbEuC9tCT0caoxPZwNVnqlgEgPNXLAFD07jy5e/He2/7FooNGqpArQZp1goVMIlFRSPKWj/FopgH8qeBWBfu374fN26ZfxvUpzPCWiTEuQYv9Zpl6WjBUiwyFIOKWnGoC2div+hJLDK2jEWt4iAv3XCTZyzNelqhymYmsU7pDRWLmqGRjEVQ1WPitjGNc3EUzAlIfsSnnTiKMJE61SNAyKNyoUyIRZcVqpWRaGUWeqFUIP2EStF5r+Fpvs6+1YIu2ojFgLznrX/aip/c8RMAwIte+yJcsP4Cz+Ws80NpFOJcHMOlGskpxIOtUAGnivKpRCxSoAADoDgKZZebSaYz09AKdaaKxczxDEq/LKEt04abX3YzvnjLF1HMNde7aFWxGEvEWrJC3bV1FzZeuXFW0T4n8ydhwMDGno2en6kQIUIsTDT9af3MZz6Dt771rcjlcpiensanP/1p3HbbbWdybCFCnHHIau2BXeAYx41Q82OYGuDoGLm55yoK0jGuTqWXtxGLSYFz5AS678MMTUFRdViT4GM8a1pQOq1QDZkUdRaR44a1n5Za0q6MzFVsxKKkgme8FYvZyTHHOhGOgX0xQvaQgRbNfeJtVqnxCIOSqEKZwXFNRNg6xSIhFjUYJqkq+XSaNE3DHV+4FV/62Ptx6MldVWI37pEPKXAMNJ+vRQMUhGg8MGMxGWFRkTWUiiVQNI14stYIPDFZAsdQWL80XX0tztNYtyRZZ4G70FCWNfIoZD7IdSUiKNpI4kxHlzexGCXXI9uCFWpvSgAFQsZZiETj+PL/3oPXvuMD+Nl3v4m3veSv8MS2hwK3UyUWm7RCBYgdarnYnJJl4PgRZCcnsH5zMLGoGwYOjxaxujsxZ/mKT2eEtUiIecesFYuzJBZnm9E4F7AUi1Yzj4sRO1Cj1qisEovf/Rtgx3fqt1ElFu1WqK57XzVjsUKOG1c/GWNwlBB7rC6T5V0Zi4ZhOGokiDmAEYilavtKMo6xWbhzuJSaYO2KRfM1j2aeYRi49dZb8YpXvALbtm0jjVExRyxLXWoJT3tXO7EYj6Lk15SKdwER5yzvxZ1PISWbKkHRbdeRDT2d6TOasbi0txOP/uTL+LcPvgl33HUPLnnB2/Hb+x8LXEc3a8pWFIttyTgqkmoqFn2IRfMaHlPjODowhBvOQr7i0xlhLRLiXINm1BOLbhtOi2i0lrXILwBQNAV6kDWzC0k+6UnK2cnKiloJVCy6rVQ9MxZZwaEYa8YKtZqx6GOFas+x81Ms2q0u7cfJDs2c9CxpEhiacbwPQzPgaA5FpfWMRZ7hfUkXu2JRMeqPg2EYuOvOu/CRN38Ee3fshe6Xi23CboeajqQxaZtsF41FGxKL9vWfKhmLkkqIYqsMcZ/DM6lYZBUWaTqNr/3sa3jvv74X9/3qPrz+r16PB377gG+kEECuRV3TwUVaVCw2aYVazBdxdN9RbLhydjaoJ/InEGEiuLj94lltJ0SIEPOLprvZhw4dwgc/+EEwpq3cBz7wARQKBYyNjTVYM0SIhQs7qRfl5obcOTFh+vwbQCbG1Skf3YpFUfUv6FiagqIbVcuPeIQxVXq1woHhIqDN2W7PW+dtPSBrTmKRsTXz8qICySx8S5JphdpgplFBVCGwjIOALOZr9qUWsRix5cklIkTNJwcoFv0QjxCbWjsSEdYkKcmxkD0Ui5VSCbe+98346fe+iXd++NN4xy234vnrFyEeYZDwKKyiHAPNo1kFADooRGONFYsVRUOpXALLcQ6i+vhEEb0pwZGluLYnit62ec4RmwFKsgrezKAEgK6kgKKkVq+nTEcXshP1xGJbzLJCpZu2QuUYGpk4j+PjJcd1znE8Xv329+Fb/3cfOrp78I9v/jt8/iM3I5/1bvrrpmWP0YLjdyyebNoKdc+OrWBYFpds3BK43FC2grKsYWNfGlF+bvIVn84Ia5FzDHIZeOyOsz2K2aES3BxoCD9r0GaxIKxQTcWiZYXKx4hVqS1L0DGJY9s367ehqU71oaEBFIPf/PlRfO6Ou8z3Me+PYpb8yzhJQwAYGjMVi4ZMSDmX0qBUFgGbTRoh7yKmFepy8trw7gY7HAAfxSJD2xSLroxFURTxmte8Bh//+Mfx6U9/Gt/5zndA7fkJMH3CtHt13Rs87F2rxKJhIB6NeCsW+64ClmwC+ITjZb6VTMCFDk0KUCxmGluhzkKxCAAsy+ADb/pb7P31f+KiVX14/ts/gZe/7zMY8clT0s1rviXFYjyGomRaocKnUTi2D6Bo/Pkwqf9vCBWL84qwFgkxnxDnwLnAk1iUXcSi633cikWvbfghwSU8STn7NkVF9CXuvMBSLDRdg26zZRfY1hSLiq5Un8+t/XFnT8a5Ws6xX8aiXZHmlSWp6zp08znZskJ1K7kiTASlGdjlczQH2uf5VhO1GrHoqkVURcWXPvwlfOPWb+AVb38FPvGfn/BVPloQ6Nr5ykQymJZs+x1rzgoVAChQSKQTgcueK5A0CRzNVRWoBZe9fqYrQzI4g7Yxi0lOAEDTNF702hfhu/d9FxdfdjE+8Y5P4KNv/ijGhrzvQbJMPiMtZSy2YIVqkdQbr9rY9Pa9cDx3HIvii5AW0rPaTogQIeYXTXdcy+UyUqlagCrP8xAEoZolFuLcwlhexIpbfovbHzx2todyVlG0EYvxyNw0XvonajfgTJxHTvQnFhMN3pNlKCiaDt2ULMYtxaKtrqc5AYpZLLAeSkPArlgk27Gr//KiCtHMKiyKKniWAu3ajptMy4sKeM6pbCzkstWfLXvXiE2JR9SZmiNjslmkBLbOntU6drSpaPAiaL9+2z/jiW1/wa1f/x5e8pq3gKIoXLO6E59+0Vqs6Kxv3MV4Bl6z4AFCLEaiMVTK/uqTOM9CNwBRNeoK9f6JMvraY0gJHJLmM9TSNhYxfuE3/CqyZp5Lcmw6EjwUzUBJItdNutNbsZiOkuKVZ2hIlQo4rrlitjclYDhX8czNXLZyNb7wXz/H+z75RTxy3z148wuuw32/+XndLD1LyWq0YKMRSySatkLds/0RnH/JBkTj8cDlDo2QfMWr5zBf8emMsBY5x/C7fwTu/iDQ/+DZHsnMYZFcM4U8y4zFhaJYtOe98QmTWKzVUA3V4bpSsz61mpM0g1//+TH88Df3194HqJG5LjWifWY9o0um2s/ZEJzK2Ro8hmFmNUaJJYSQAiIpYPTJhrvsi/IkHHWCjfysZiy6co1uueUW/PznP8dPfvITfOQjHwG17T+B/3tbbR/dk7m8FIt8EpJKMrcTsSiKJY9G88rrgfWv8LZSfapAVaDo3nVaU1aoFWlOiNaVS3vxuztuxX9//kO4b9tuXPS8t+PbP/19XS1SUyy2ZoVaEhXTftinZh7dByR6cN/uk7jovGXo7kjPdFdCzABhLRJiPjElztI5Ad5WqG5i0bJCtWBXm8ma3JJiMcElPFV19tcqWqUlYpGhzYxF2/esndQzYDTMWNR0rZaxaFmhMs46Imab3OObsWhTpHkpFsvFcnViuKRJYCim7ngIrICyWm7puAKmFarP823h8QJK+0nd6c5Y/MFXf4B77roH//iFf8TbPvy2hqQiAETo2jXQLrQjK2Wrv0fjUYjlYNLbskKlKGpWFpkLCbImOwhnNznclGJRFFvKO/RDV28XPnXHp3Dr7bfi0J5DeMMz34Cf/9fPoWnOz7v1mWjlPVuxQt21dRc6ezqxePni5gfvgmEYOJE7geWp5UjxqcYrhAgRYsGgpSerO++8E4lEbaaJqqr47ne/i87Ozupr73nPe+ZudCHOGIZypAh4rH8Kb7v+vLM8mrMHO7HYFnXeaNUG1hB+OG4jFjviEcd7AITIs9CQWKRpqJpRnZcX4xkomgFFrxXUNMdDVYMbl27Fol39p+kGJooylmZiKMuaQ2VoYWx4EDCtSjTdQEGsVzYW8tnaz+Y+R21WqJZNqJ1YNAzDEcDuhkVctkXrCSk3ESzZiEXDfFB4480fxt+9/u1Yef5FjmWTPpaxsQBFmQ4akWgs0ArVOp8qzQOoneeCqGCqJGN1dwIxnkG7+fzR7jOOhYaSrIFnaVhXWWeCnI9sRQYQR3tHN3ZOPFC3nmXNy5tWqJFoFIrSOKNjcVrAjhPTdZ8dCzRN46a/ezWuvOGv8Y3PfhSf+ad34k+/vgvv+djnABBVh6bIAKiWiMV4IoVSE1aohmFgz/atePaLX95w2YOjBSxJC+eEMvVcQViLnEMQTSV79tTZHcdsYM/j81KSNcJsiUW19VyjOUc1Y9FSLCaA3ClnlmCj5qBuUyxaDU6KQUWyEadVYjFL/mWdzboRm0KA1WUgItRlME7ni6h+28oFQmLaibq2pcBUP8lxNCcmWU3KplpepQmy/9YMdZuNW7W80UkDR9M0MAyDj370o3jNa16DzZs2Afd9Gnjw84CQJqS1hyrT8zqjaTznhxJe9aLFSMTGUfKz0WKf4pbbmgRZ997H3q4MRho088qihFhUgDwD+zk3KIrCq1/wDDz32k34wOfuxFs++hX84Jf34fZb343zTTda3SBXVYRrvt5rS5rEoqE7ckwdGHkSSPTggScO4xlXbpzlnoSYCcJaJMTZwkRlovFCLjRlhepSLNqVe4queJKTbiRMxXxntLPBkqYVaouKRd3QHUJuO6lnUAbYCFtVZ3lBNYgVKgWqekxYlx25fb/tGYHVcbscA6Iek4HsuXeyJnurNxkBFaVCyE6m+edVlmHr8ictjP1iDIm1CbRd3lZVLFoKxv/3tv+HLTdswdrNa5t+L7tisSPa4bhmhJiA3HTOa7XaMj42secyLMWiDHKduQn59q525CZz1RrQcxsVCREhEkiCt4LrnnsdLr36UtzxuTvwtY9/DX/6xZ/wwc99EKsuXAUAkMUZKhabtELd/ehurL9y/azI44nKBMpqGRdlLnIom0OECLHw0TSx2NfXhzvucNpZ9fb24gc/+EH1d4qiwgI6xKzwiV/tw6V9abxo45J5eT+HYtGlHKvIzdt92HF8vHYDbotydT0Bh2JRaE6xaPXyLCvFkk3JxXARKHI2cDuK5lQsum1Fh/MVrJYTMADPvL+xodOIrtoMADieN1CQFPSkBIeykSgWyf5YikWBtysWWZQVDbJt7HfeeSfyHesBrPQc9+I2Aa+7ajlWd9erwtykrGWFOvjE/Tjw2+/glet+ge6eXnR293pu2wtB6kEdFGLROMQgK1SLWKScxOLJSUJGblqecRRc7DxmKxqGgaGBE1iy3PtYB6EoEStUq+vaESeN0HyF7GOmsxPZyXEYhuHYv4sWJXHFynZ0JHhCLApRh2WuH5ZmYvjTgTFMlYKVOu1d3fjoF2/HM5//d/jap2/BW190A276h38F6PMBVQbFtkbcxhNJjI0MNlzu9IljmJoYa5ivaBgGDo8UcMXKdmRi5waJvNAR1iIhGqL6HTSznGQHrBy82WDWGYsLgFikaSeJyCcIYWp7jQrISQJgWqFS5H+9plisiLb9Y8x7sNW4cjUWBoZryniiWGyrsxGdyhZQrSAr5rmzZzVmVgAnHyFKRvP17//g+3hFWoEHxVeP0iQQiduIxVqTxgAI0ampuOeee/C+970Pf/zjH7F06VJ0trcT9e72O4ELn0+ui2P3OdavwkuxCGDraR0vSy5FPJpvSKAtZBw9OYTVM5nVbhiAJgcoFjPIF8sQJdk307AsiogJEWTzc6cs68ik8N3Pvh+veeEz8Pcf/xrWv+hd+M93PwdvTACa0XrGYioRQzEfoFg0DGDsAAodG3DoxBA++Z7XztWuhGgSYS0S4lyDPYfQQp0VquYkFu3KvWYVi5aCsF1ob7isqLZmhWplLNqtUO2qSkuxKJX9nx9VXSVqP6pGtrrtTmNsbb95uv67e2zQaTcZZ+v7FPlsvjomSZM8LVUFVoCoiVB0BRzD4ac//SnQi4ZkE0dzvopFoEYkqoaKU7tO4YF/ewAv+v6LcP7557dEKgJOYrBdaIdqqKCjNJBr0gqVbaqyOisYPDGIJSta7zlWtApYmq1aoZZVZ52f6cpA13XkpnJo7/L+HIgVEUJUQHEOa5FEKoH3/ev78KwXPwtf/Kcv4m03vQ2vePsr8Lr3vG7GisVSoTGxWC6WcfjJw7jp5TfNeOwAyVcEgE09m2a1nRAhQsw/miYWT5w4cQaHESIEwXcfOYHvPgL8zdpFngTXXKNoUw9yrverKK0Ti4ZhYDBbK7C8yIR8K1aoNAVVN6CZ7GSMs4hFm2KR5aFUghuPNStU8i/vsr4YyYooWGSgF7E4PFibym8QomkZ67JCzWcBkNmJFmEr2DMWBRaabjgUm4ODgxA61vuOm6IoXL+my/Nv7mMnKTo+85nP4LE7P4rFlz0TQqx1ZUk8ULFIIRKNolLyV7TFI2R9olisFZmnpsuIsDQuWpRseUxzhYf++Ft8+oN/jx/e+zg6unpaWrckqeBsMyk7TMWilVGa6eiCosgoFfJIpNqqyyUFDm+6ZiUoChBNYrEZLGojDzGHR5ortq96xrOx4fKr8V9f/Sx+dce/YcnL/gWIMg4lSRAGpytIRVnE4gmUm7Cx2rN9K2iGwSWXXR643FBOREnWsH5Z+pywvD0XENYiIRrCajJp3ornlqBUiPqshcZX/TbmgFicoYPCnIFiTCtUS7EYB1QRlE3d0HAih67WSEDLnouiUbFn3lmqAYvMdSn3Tg6NVn9mddm0EXXet6fzxRqxaNnY2vOP2lcBh+4GcqeBBKkvBgYGgHTw8KsojQE2NUOdQpCi8bVfP4H3fuc/cNNNN6GtrY1kLv7f24F9PwcueSmw6gbgwK/I8l7EIs1Co1gwhvc1nIhFUSwPNznghYU/PfIE/vpNH8Hhe+7AmlYbeqYtsGL4W6ECwOjENJYv8a5zyhUJseiZaXQ+6+pL8eSvvoFbv/G/uPOu/8Mb3xiDbDZ4W81YLIwq/jao+SFAymPXMHmeCPMV5x9hLRLiXIOi15NVQRmLNGgHqaToSksZi0GIMBFckLnAl3DzA0MxMGA4xmFXNunQwfM8FFkB69PmVHW1Lp/QrVi0E6oRD1eB0cFRx+9xvp5YLFi27OZbsUz9eKJsFEW5WN2f/v5+oLemLvNDs8Tib370G9z1z3chc1EGqczMrCXdxCIAUOYE9WasUBeqYvHArgN45wvfiW/+5pu4YP0FLa0rqZLjmikrZcfk6vZOcpymJ6Z9iUWpIiFyhmqRdVvW4fbf3Y7//c//xf98/X/w4N0P4pYv3QKgNcViIplAudD4GWbvjr3QNR0brtww4zEDQH+uH5lIBkuS8yMwCREixNxh/uQyIUK0AMu685rP3ofz/vnuusySuYJdsci5yLaZKBanSs5CMB2rv3lny7VlGJpC1MN61FJaWNackqnGsxSLFTexGGAvqWo6LOfUKrHIOt9zKFex5SLWj2d0+LTj96JErFDtuYf2jMWSpEJgaQcZZRGBkw1UaM0iyjM1rlNV8Kdvfhz//M//jAtveiMue8PHmyax7IgFEL26QSESjXtaoT5wzy+x85EHqvasqqtROFmS0RblEG8hY2euse2BP0LXNJw8eqjldcuS6sjlTAkcWJpCUSbXTLqDNGe9chYZmgJNUZAqFQgtEosHR/MNlqwhFk/gXR/+NN73oQ/j5B3vQlyabEqxqGo6Pvf7g/jx9lOIJZIoBxDHFvbs2IrzL16PWDw4hP7wSAE0BVwT5iuGCDF/sIgejyZay5A8FG+tQgmezd0QquRPMDSDuaifrMafpXgwm2iMVFPNNVQs2jMWLaKUZlC2E4s0TRR/FrHoatY5FIuGRIhFt2LRnrFoWaraMwczy8m/w7uCx+uH8oRzXLb7vaYbeNdvy3jPnQ/hve99L37xi18gGWGA/30lsP+XJP9w9TOBRDcgmZNYfKxLNcr/eCZigqcV6m/+/Ch+8adHZrZfM8W6/wcsv8ZXZenGb+5/DACw51B/6+9l2gIrmg+x2JkGAIxOZn03URYlxIQzp6CIRQV89gNvxG3vez2AWs3fimKxLRlHviwDMAgp7cbYfgDAH/Zncf6KJej1aVyGCBEihAW3qgoIzliMclEH6afoSstZgH5IcAkIjABRFVsmFq2xWHAoFikDLN/YCtWdLRikWPRSVLqJRa9lCllSixiM4btMlI1C0iRPNWkQWJoNJBZ1VcfIT0bwxX/8ItY+dy0u/+jlSLQFP7P6IcqQe7sBAxkh4/xbLFpnCwsAjz/8OP70iz8B8CZmFwK23bsNAHDswLGW1xU153UraqLjs5HpJMdpetzfWUKsiGeMWAQIgfj6974en/v+53Dq+Ckc2nOo+nqziCVjKBVLDfuwu7ftRqYrg2Wrls1qzMdzx7EsuQypSJivGCLEuYZQQhFiQcNS/w1mK1iamUG2UQM4iEWXPWh5BsRi/4TTLiApsKApwBaJiGxZqVvGTx1pkZ2SaR9qqZ4sK1SaIioBRfYn62RbpqFqDoRna/sqcDTG8hIKomL+Top2wzCgyBL4iICx4UEwDFHb6QBERa8jIAu5LGDWKgVRRYRjHIpGi3SbLtX2v5nQcD/QFIUoz6Asa5BHj2Jox334wQ/+Gz/Pr6juZ6vwJnkJiGIxhoqHFeqnP/D3AIA/7B0GQ1HQXLYpUyaxGJlH61M7DMPAzkdIBuLA8SO47KrrW1q/JGvgWLpK5NI0hUyMR0ki123GRiwuW7nacxuSWAHf1oll7/sphosagua0xXgWSYHFsbHW7UEynd0AAE2VGze6ATw5mENZ1lBWNHTEkyg3yFg0DAO7tz+CZz7vbxtu++BoAYvTUSw+A99dIUKE8IE1e92rId8qLIJrNlkfsyUWNQUwNOTyObS1cgup5hXOgWWm1cBSzVrDzFBiKlO1RbyUd3bYMxYttQHFOq1QATJuqUAsU01C17K2PDk4ViVoKICQelQAsWgpFnlbQy25iKwzvLv60qYuBRGWgq4qjWdcllzEIs2ZozEwWjLw/V0SvvW2q/G2L36REJs/fDkhMTe+Gui7EoimyXpW9qbPtaXSEfC697UTjwkoejTzXvCOTwIAjIN3N9qLucPaxvdCO/7w8OMAgIP9pxss6QFTTeOvWCTNvNGJrO8mypUzSyxa6EingCygmratLSkWEzEUKhKAiLcV8uhegBXw88cGcOPll87NgEOECPGURskj7znnsnp3EIusi1jUiGJxcGiw+rw/W4iaiHa6+YkR1njsxKJbschybKCVqKoRxSJlS1V2E4t++W6yKIMXeIwOjjosJd2KR8BmhWoSi16ZiDE2BlETq4pFiyzU1OAeFEdzgVl2uqhj6s9TeNOH34TMszM4OHUwcHtBsNSdap+KBJcAS7FQTTcFISZ4EosfeOUHAADPevGzFmxW3o6/7AAADBwdaHldNyEuqiJUXQVjTnTLdJnEYoBlvSRKEKJn/thYiknrM8HzLRCLiRg0VYMsyYgE1E27tu3Cxis3zipfUdZkDBWHsLlnMxLczEjwECFCnD2EisUQ5wS0GRJFjVCyEYusKzTbTjo2CzexSFMUkoKzmWDPWAQIsegHKwvRIh4FjpA7FdUqUk1iUfEfq2WDav/ZrlhMRFhMlmRkzXFZdqu/+fH38LzLVkCslDE2dBrxJCEWLZ5SYJ3FQ9GmWCyISp2iMemhWEwkSOEQRIwGgS1NwDB0RJZchBd95ud4xStfOaPtWIg1sELlhagnsWiBoijPbUyXZKRjnMMadj5x4uhBTI6NgGYYnOo/2vL6JZdiEQDaEzzKsgpNNxzEoh9EsQw22QmaFzBWakza96YEnJ6eeUNekWVQPkoQO7YdJ41xTTcgxBIoFQqBM/OGBk5gcmwE67c0zlc8NFLA6q5EmK8YIsR8gplDxaKleJtNY0QNtolqCE0CdA0VD4WaA7oGfH0LILtUCcXR2ZOslirQIjk8FIt0o+9bzWaFWs1YpFGR3MQiQ4hFNgrQLH56z0OIbngxRsancHJoDEu6bQpwJkJUjjZM52wTUqrEop0IZIHUImDicHUcm7vJ8ZkYPhW8DwBQmXKq8ygKpwoUFM3A4iSN/g92423PXA0Ux4Dv3kRIoMteB6y4pkYqAjWrbp/8IY32b+IkYlEUS7O8rs4CTg2P48CxU2AYGgePN3Gs3TCJbdknY7GrvQ0URWF00r+ZVxbPnBWqFywrVKEFx4pUIlZzTfEiFkf2Qol2Y/+JEdywpbW8rBAhQrQGYy7ymhcASkr982tWzjp+t2csCozgIMMsxeL09Nzl+0pq61aoACE5LbgzFlmehSr790VUQ61T+zEu5wMvNeCurbvwnPOfg5NHTmJ0cBTt3TVC1L0+ABTNWsSg/RWLESYCRVOqisVUG1Fq5SaDs739ciknRycBABRN4fx/Ox/Pe+PzZkX2ADZCNEr6HG2RWuSJlbEY9NxcPT+zG8acopAt4OCug6AZGqeOtV6LuC18K2qlSrYCgBAVEI1Hg4nFihRI1s01ZLPW5oXWrFABoJT3731VShUc2nNo1jaoA4UBGDCwsXuj5+cpRIgQCxshsfg0wkysPc81HBohM9Univ5E1X/efxT7h0nBVrDl/bmJk1JAUeoHN7EIAOmos/jLuojFlODfbLCsREXFmslGQeAYVMyhMRSxH1MV//2V1GDFYlLgkC0ryJo2rpbd6oO//zUAQNM0jA6dQjxBiEXF3EaEcz4IkIxFgnyAYtF+blIpUkDnJ50h6M1g5yMPYP833o7C9l8CAOhYG2bLP0cdpKCzAjZAgRMSnlaodsQiHsRiWUEmxp81xeLOhx8AHxGw+ZobWyIWpyfH0H94P8qyViW5LXQmeJRlDaqmI5FqA8fxmJ7wJxalSgV8lDR3m3nGWdQmYDQvzfhxXpbEhorFiqxh9+ksGZ+qIZpIQFWVQKJ79/ZHQNM01l52ReC2R/IiipKKDWG+YogQ8wuLqJlLxWKTNo+eUEVgNo1JTW7OCvXQ7whZdvcH6/8225xHq4ESRCxyLSgWLWKRYlB2E6aUqVhkBYBm8NsHiHXmdL6IgeFxLLYTiyznoVi0EYuVLNmOm/RM9wG5U+R9AKQ4cnwHx7NkeEGnqzwF2GzSHtq5D5d9M4dPP0juG50JnuzrHz5Kchwvex2w7Eog4spYvuLtwEUvBFLeWTLBxKK3FepCxx8efhw0TeMFz7gCB483r1jsHxzDrsMD1YxF1YdYZFkGnZlUsBXqPCkWLViPXhGueWKxLRGHYn3kvSzyRvdioES2d8PlYb5iiBBnEq3aVC5UeBGLecllhWpzWBBYwdHgr1qhmvfHoeLQrMckamJLJIK1rK9ikdLB8sGKRU3X6ohDL8WhG0888gQAYHRoFGODY1W7S8BbjehWLHoRqBbpZxFz7RlCVk6NTdUtawfn8Xx7+MnDePvz305+0QA2yc7Jtcu7XJjsdqjReBS6pgceb4tYpLiFwyw+/vDj0HUd1z77Wgwca16xOHh8ECcPnawSi5bqtayWoenOPmt7Vzumxv3Po1gR50WxaMGyB+ZacE+IJUmtWyr6E4t7d+6FpmrYeOXGWY3vRO4EOJrD2s5wslSIEOciQmLxaYLfPTmMiz52Dx487N/4X8gYKzSnaLOIQnfWoYW8qOBz9xzCfz10wlzevxCybB5bwbHxItpcRGKbS62UdxGL7uXtYE1iTlJqTcUYz0AyFYu0SSwGFXR2xaK1TdY2w79NYJGrKJguy6ApoooEgJJpCWnoOibGRhCrEotkPd6lWCzkarPrCqKCCEPDxisiwtJgaArTNivYmRKLQ1t/iX9++6vQvnItEhueA8DKkpwds2i3QpU8nKLZaAJigGIRAOIuEknVdBQlFV3JSJ0qdr6w4+H7sW7TlVh94bqWiEVFllAq5FGWNUdeJgB0JSIoSSoUnYSVpzu6golFsQI2Wh9u74elmSgmSxKMGd6mFFkGHw220nj81DRU3cAli1OQFB1CjFzjpQA71D07tuK8i9Yingz2/z80UgAV5iuGCDH/sIhF1T9jp2lYijd2NsRik8SgH0wr1Iaw3sPrPuhWMbYKyqVYZEi2ISPV7vsMF0DW6BoAo6ZYtGZ2Ux6KRYYly3ICQDHIFcnYE7Goh2JRqJupMp23W6HmAC5WRz6CTxL1m6kmFWhyfIcmSSNQNXzuO5q5jpnZ+IOdBTzzDR/GxT083nOF2XyjaZIhWZ4EUkuBxRudGY8WhBSw8VVAarHnW6kBxGI8KkCSlUC3ioWI3z+0E1vWrcHVl16Eg8dPN52fXqpIyBUrDRWLANDTkcZIQK7R2VMsNq8SSCViqCYkuBWLmgJMHsXO0yJW9y3Ckp7OORppiBAhgvCLo7/Ar4/9+mwPY8YoKvXxEu6MRXsOY4SJOAg4VVehGRqYk+R++oUdX8APD/xwVmOSNKmOuAqCReDZCTOBqbdCDcxY1J2KRYZiAslNy6a0VCDP/4lkAqODo05iMUixGEAsupHOpAEA2bGs599jbAzPWPYMrGpb5Xh9esc0bv67m9HZS+4Hhnnfkb0U7y0i4qpF2oWaUlOIkWPvZYdaXd8iFvmFQyxuf2A7+lb3YfP1mzE0MFRV8zVCuViGWBIhaZKDTC4rZYdiESA5i0HEolSRzmjGohuyGTvQSsZiPEH6NuWC/zPE7m27kenMoG9136zGdzx3HIvii5CJZBovHCJEiAWHpmQU+Xy+8UImLKIgxMLCQVPJ98TANK4/v+ssj6Z1tKq2zPkQhvuHyLWsmH6edsVi/Xu23rA5Pl5Ce5x32J22x5w38LxrbG7i0Q5LJSbavPbjERbTpqKKoShoDAtZ8S+IJBexyDG0ow/XFuVxbKKEXEWFwDFV8qtUIMdqcmwEuqYhkUhhEjXVY7QuY7HWyCmIKniWcigWKYpCnGeQLdfGmkymgAqQm3SGoPtB0zRM/el2FHb+Ci9+9ZvBXv16bB+wzqkxe2LRplgUDa6u6UULcYiVCnRd982HtJSZFiyF6qK2uZ2VdnDP4+AjAlZdcHHgcpJYwZM7t+GN77kFmc4uTIwOo1wqIhYPJt3KpWJ1/0VFA0c7Hwi6kgJKElEsAkCmozPQClUSK2AjzROLi9NR6AagRNrAlCeaXs+CLEtgheBsw23HJtHXHsMFvUk8dGQCkbRp+VEsVO1d7TAMA3u2b8UNz31Bw/c/NFLA4rYoFmdmQUiEcCCsRUI0Bct2SZ8DYrEyRYipWeQBEyvTWRKL+iwdJ0rjxP5zprD232pSURTAJ8DINWKR53noBkB79Y4s9WhVsWgeD9rMWGyzLWs1a1gBoGjkzGZeoVRBrlDC4l67YrG+KeNULFrnrznV+OCEWU8YDHh4nDPRVCBwMfzLfSL+9S95vOElz8K3thwHL03Uxm9vMDWhhPBCIytUAChVRKTPchbNrgPHoKoaNq87P3A5TdPwp6278O5XvxAXrVqGYrmCobHJhsSYpmlQNA1gUCUWlSBisTPT2Ap1XhWLpg0e2/x1kErEquvVEYsTRwBdxe+enMQNl2+co1GGaAVhLfL0xL88/C8AgGcsewYS/Nn93p0JPBWLLmJRtFm3R5iIQ8mn6Ap0XQdVId+/q9pW4TOPfWbG49GhQ9EVT/WdH6zx2BWLdltQAwY4PnjCtWqooCiqqjZjKMaRt+iGpUSziEVe4DE+Mo6O7g6MYrS6DTfyObNeMK1QmyFQo0IUMIDpMe97GEVReMnqlzjsecd/O47Ru0Zxw0034JYv34K/ueBvqsTiXCgW7VazgJNYjJq1SKVUQVumDV7gzXgCyrM4nDucOHwChVwB67YEq/gNw8COv+zAtc+5FstXL4eu6Rg6OYQV569o+B6KrAARQojH2FjV3ErUREiqUwSR6coEWqHOt2LR+ky0oliMJ0nfplion5RgYfe23Vh/+fpZWe4ahoETuRPY0L0BqUh4zwwR4lxEU0856XS66S8LTXvq222GWPjwIwz3DpImmGVzVQjIUSzLGvQWvDUNw8Cp6TIuXpRCv+319riLWKw43zNIscjRTitUgGQijmbJzzQNaAwLVZF9S2JJtWxUyX5zLAVdq40hFWVRlFSUJBUMTVVzEUtFUhCPDQ8CAGLJJCABplgSUReBVsznqtqykqSCZxkwru+NGM+iIJJcPoamIAgRQixONEcsVsolaJUcuq97Od71z/+KH20fAGAqDHR91laodstKEVw129ICzZMCWqpUEI17k2RJ13GZNtWzS9NzSzB992v/BpZj8elv/HfgcnsffwyyJGLTNTdAMWdwnjp+BBesuzRwvanx2jkpyxp4l41rTyqCoqRWieZMZ1dwxmKlAibS/DFY1EaW1SKpGRGLiiSBE/zfL1dRcHCkgL/btBRdyQgkVUckZs7M81EsjpwewPjIINZvvjrwvQ3DwKHRAi5dlkEm1vzMwBDBCGuREE1hLq1Qi2NEbeaRt9MUKJqQIc0oDv3QrBVqECaOAIvWz3x9q2lmV4HySTC2RiXPsZA1wDM2WncTi5afO4uK5HKksEhANgLQbJVYHBgmzgaLu9oBq/fJ1H+/OjIWy9NE+dgysehzvi3bOC6G8ZKBD10bxeduex+ouz8IWLtB07MnggFojH/DKREnfytVRKRTZ7fBfdu3fozh8Wn85X8+H7jczn1HMZ0r4tnXXoqeDjIj/cCxUw2JxYnpfM1J2Gx6+54fEMXi6RH/mqFcmV/FoqQaECJ8UxbwFlKJWM0KVXV9j43tBwD8ctcYvvq3s/hMh5gxwlrk6Y2iUjwnicWiXE8OFGTn805FrSnPIkzEocTTDA2ybcLWDctuwPmZ8/Hr4zNTcVrkYDM2pBa8rFApigJHcVAMBTqlg+GYlqxQGZoJ/DxrcBKLU2NT0DUd6Y50bRsexKJbsch71Ct+mA5Q3dtJUQBQCyo6/6YTH/vGx6qTni1iUZmDrPEI5bxfdkRrk7uicfKcLZb9rdkjPjnSc42f3vlTHNh1AN/+w7cDlzt1/BRGB0ex+frNVZXdyaMnGxKLkihBNydTS6oEJuokpAtyAYtQm8CX6cxg6KS/XfC8Kxal1hWLlhVqueitWBQrIg7uPoh3fuydsxrbtDiNglLABZkLEJ2NQ0yIECHOGpq6k//5z3+u/nzixAnccssteMMb3oCrrroKALB161Z873vfw2c+M/NZSyFCzCX8LE6fHMw1tRwAlBWtSpo0g2xFgajodQrFjI1Y1HUDJReZGZSxWFUs2qxQExEGsvkrQwEKzUJRFPiVCZYVKkNT0DUDHE1DtTXykgILwwAmSuQ1q0QqF0lBPDpMcnDiCZNYNN87xrsVi9mq6KAoqeiIR0C7ZqfFIwyxz9R0RyGfb6BYHB06heFTJ9GxbDU6n/9BsJPHydhtJJ6iGdBmySzarVANikbRRVDTZq5UpVzyJRbjroxFy/p1aSZYPdcqDEPH6RPHGy634+E/o6O7FytWXwixTArDgf6jDYnFSRuxKCr1xGJXMgJZ01GSVHQmIsh0dOHEkYM+YzUgia0RiymBhcDRjmu/FciyBC5AsfhY/xRomsLzNyzG4ZECREVDNE6sUP2Ixd07HgFFUVi3KThfcbQgIS+qWLc0VadgDTFzhLVIiKZgNW/mKmORi2HGyQE0R4jBQKKpwX1rLhSLk0dmt747YxEAIkmwhcnarzwHyY9YtM6FtR2TKDXAoFxxEYuMuQwTAWgaebOhMTBEJq4s6ekATprLcvXk21TOboU6TWxsm8xwsisWvTA8PIw9R1U85/oUvvl8AYenaVLH2BuGFEP2b6ZktIlGVqgAUCyd/ZxFXTdw+MRgw+V+/9BOpBIxXLH+QgCEiD54/DSedXVwLTJstxIzr79AxWJHGjv3+Vu+E8Xi/KkECLHYvEIAANqSNitUt/J6dB8qVBzTYh43NFBmhDgzCGuREOci7DanFoKIRZ7h67IIJc15v372imfDgIHfHP+Ng3ACQPIYA6CYdYFdcdgIFoGnuOo7juagaErVClVRAhSLphWqNT6WYj0ViwIjQNTEOsXi6CB5Pm7vrk1y8rJCdWcstqLM9FMsWshN57Bvxz5c/ddXo/flvdDLTieluVQsVoke89KwW1W2YoV6pqEbOk73nw50lQKIDSrHc9hw5QYIUQGpdAqnjp1quH177qWkS1VC3NANUDSFguL8LLV3tgcSxKJ4dhSLLNd8XyIWNzMWC94xQPt27oOqqLPOV+zPE0nGpp5Ns9pOiBAhzh6a+ma54YYbqj/feuut+NKXvoRXvvKV1dde+MIXYt26dbj99tvx+te/fu5HGSJEiyiaqjg33MRiUI5iRdagtmBfNpon1WUm7iwc0zZFYkFS61qIKc8uHIGVhSi5rFCNqn0HAJoheXI+27ATi4pmgGNoqHKtGZUyxzfuyrFUTHvVseFBJFNpsBwPQIeqk5xGwWaFqus6ioVclVgsSRoWtVF1isWkQBSLsqZDsJF4uYCMxf27d+Lj73492jt78M9f/YFjVmHSRsqqmt50Xo8fOIYCafKS9zg9XcbSVO38ULxVQPvnLCZdRPF0WQbP0sgk5l65NjI4AE1VwQRYbO185AFsuvoGUBSFaDyOrt7FTeUsTo2PAWChUwwM1NSzFroS5EEhW1GwHCAZi9v+4rktRZZgGAZojyawHyiKQk9SwMmpmWWDKbIEhvcnMrcen8TqrjjO70lgKFuBpOpVItIvY3HP9q0478K1SKS87V4sHDbzFa9dE2YfzSXCWiREU2DN7xlXA2xGELOEmJqpxQ/DNs5IbHTf0pXZKxanjgX/PdEd/Peq0tDWrBNSYKYHqr9GOA6iaqAt4nGsrOaWdRzN3z1LMLti0ZaxeHJoDCzLoCuTqhGLHg0rQiya71PJmYrF1ojFYSWOLq4MxTZTf/eIhhd8/VfgdRH73xoDb78m7A1DmiH714I6wQsa43//sqxQiwHNvPnE2GQW+WIZqYT/ZJ4/PPwEnnnVRrBm7bhmxRIcPN64mTc8PoVe65eqFWqAYrEzg9HJrO/fyxVxXq1QRcVApAXrMQBIxm2KRXdjeGQP+gssVi7pwrJF5160xVMBYS3y9MZkZRK98d7GCy4wuK1QRVWsU7TZrVC9FHYVpf6eY+X9WSTkUJGotIZK/motAFX1YytKPi/FIkBsRstaGQYMMDwDRQq2QqVBQ4fVH/FWLMa4GCEWDR9isbMdOA3fuWGFbAEJJKrz0lrJkpwe9SekBo4N4MNv+DCkioRLr7nUc+xzqVisbZT842eF6of5IhYBosqbGJlA92L/mnbHgzuwdvPa6tiXnbcMA0cHfJe3MDlWm0gna3JNpSoCiNV/vjKdGWSnsr5Ep1SREJlPW3ZJBh/hA21/3eB4DnyE9yUWdz+6G6lMCsvXLJ/V2Ppz/WiLtKEvNbucxhAhQpw9tDydduvWrdi8eXPd65s3b8Zjjz02J4MKEWK2KMlaNUfRQllWcWLCeWMsBlihiooGRWueqBorSKApoDPhLBLsVoj5Sn2BlwqwQrUUi/acRDtxRZvEoqrK7lWrsNa1SD6OoaDItYarRWxOFLybsGNDp9G9eGn1d1UHBI5x5CeWCnkHqVeUVPAsXadYjLAMZFWH6jqueR8r1D/f/Qt88A1/iyV9q/C5O39cV5jZ1WCqbszaCpWiKDC2J4R9Q87sCYprTCwmrDGZx3uqJCMpsA4ida6gqSpGBv0bcxNjI+g/fACbr3lG9bVlK1fj1PFmiEVyTnSzcHYrFjuT5DrPmYrMTEcXpicnPMldsUIeOKgWiEVgdrmUiiyD9VFIjuRFDEyVcfXqTnQlIkianwGDI8v7KRb3bH8E6zdf1fC9D44U0JsSsCQ9tyrVEDWEtUgIX7CWYnH2M7Uh5gFuFsRiU4rFBmhETDaD7OngMTRS11nEnL3WENrA2G3TeA6S6nMTrmYsWopFMhZPRTptVywyVSvUk0NjWNbbBdpOErLOe4SqalWFI3mDrJnV2JoV6pRK7gXW/e/XDz6Ba75TQlecxQNvzoCPuTJgHIpF2iSCZ1eQBCkWE6ZKoBhgPzbfOBKgWswVSti66wCec81l1dcuXLkUB/tPN9zusH3Gv9n0lhtYoWbzRUgeVniqqkFW1Hm1QhVVHQLfGskc4TlQ1nXuzlgc3Y9HB8q4MVQrLgiEtcjTD3NK1swj7GpEoD5fESBZcRa8lITubXjhVIE8lzZSy1mqQ7ZJq3IAYMB4btsi7XTotQw5n1uwpVi0ZyzqWn0tEmPJM5xqZibbicVUOoVkjLjcxDTvZ72C6Z5QVSy2oMycsiv1bdj50E6860XvAsdz+OrPvlolx+pglntzoVh0Iy2kAZBjbVmhLhRiEQBOB9QVsiRj19Zd2HLDluprfav7MHCsdWLRum6NCjm/bkVwpisDXdORn/bO5D0bGYtci+4JABBPxX2tUHdv3Y0NV24IVIg2g/5cP5YmlqKND564HSJEiIWLlr8Fli1bhjvuuKPu9TvvvBPLli2bk0GFCDFbaLoB2VUkHhgu1BFPQcRiRdFastYczYtoj/OIuiwG0jFyEzcMkuvmRqAVKm1ZodYagnb7T4aiYFAMVNmfWLQrFgGAZWgoUq0AjEdYUAAmS97bGBseRPeiJdXfFd2AwNGwc4aFXNaxTllWwTP1Xy9Wb9ZNPpWm67P5fv2j7+K2D70d1z/nBfi379yFdHu9+ithJxbnwAoVAFjUrpt6YpEUx2LFX0VXJTtNEm2qJKMtyiHCzq7o8sPggL8d6uOPPACKonDZVddVX1u2cjVO9Te2xasjFl3n0yLQizL5DLV3dkGWRE9SThLJ9UZzrTXXlmZm7rMvSyIY3rtgf/T4JCIsjeevWwSWoavXkUqx4PiIp2JxZHAAo0OnsX5LMLFo5Suu7ko4bJBDzC3CWmSe8Ik24GdvOdujaA0WSeZuyM8EUsEkFmdqhcrOPiNRnwMr1OIoIPtPiPFDdSY85UFyCG2gbPdLnmPhE2/tkbFI9qfsSSyaNRHLARRTJYgGhsfQ51Zocc57RLbgypCS8mZWY8DEHhsBPTRR/93/37+6Dy/6wFfx7PNYPHjz+VjSmarPbLQ3ziimXmU2A2gBzTjLCrVUWUDEYkCW0J8f3Q1N0/Hsa23E4qqlTSsWq6gqFv2J/t4uYtM2OlGv+KiIZP35VCxWFL1lxSIARKyMaHvGopgDCkO471AeN1yxcW4GGGJWCGuRpz7OBDnTKhrZivrBnolYUSuO5++8VE942IlDLyLMy07VjeHSMADAaDC5ppqxaLuf+qmprFw43expyK76rkosUjooNngimGZoDpUfTdFQPfpBW3oJ+UQZZFmLWBwbHEP3ku7quONafTSKqqg1so0ix9LLLtUPhakCdJdr1kN/eAj/9Lp/woUbL8TX/+/rWLx8se/6c2mF6gZHcxCPi2BEpmqFKgbUIguJWNy3cx/Eiogt19uIxfMIsdjI9cpuhSprcu3zIZNruKw4PxvtXUTZ6UUSG4ZxVjIWW8lXtBBPxD0Vi5Io4cCuA9hwxYZZjUvRFQwWB7GybeU5mV0bIkQIgpbDn7785S/jpS99KX73u9/hiitIztRjjz2GI0eO4Gc/+9mcDzBEiJlCUZ0F2b6hnENlBwDlQMWiDtVjBpsfpssKLuhJ1Cm7LKVahKU9FYvu5e2gKAocQ1XJQcCp0mNokgVo2ZZ6wSJYrX3nGAqKLWORpigkBRa5iuKZBzc6dArnXXhJ9XdVBxKsU7FYyGerP+tgoBtEndgspidG6wq6S6+8Dm95/0fx/970Lt9QdQexqBMr1HwuB2MWTVyaMqqzHI+Pl2AXVxqmKqEpxSJHZjBOlWR0JPgzolgEgMGT/cB13n/b8fD9WHPxerRlarkXfavW4Lc/+UFDC9XJiTFgMaCZSg/OdZ2moxxoCtXM0EwHafhOT44jnnSqOSxiEQwPtPCMszg9c2JRkWWwvFD3doZhYNvxKVy8KIW+DvIwaCkWy7KGeCLhSSzu2b7VzFe8MvB9x4sSchUFa5e2Oa7PEHOLsBaZRxz41dxta/wQ8B+XA2+4G1hxzdxt1wtzQizmgfQyp1KvFTCWYnEWxKI2AytUMQf88eO130vjgNK6rTS59xpQDAoc4MpYdH7PBysWzW9iV2Otongsby3DRBxK0ZNDY7hxy3rnsrxTKTCdqxGLFAyiOG1kZSvWLPIn82WIkvNc37BlHW79+5fgn7v/CNooAnyinlhkbc0ammQsTk1ngXIJ7ZgZtCDFYnxhWaECwJGT/orF3z/0ONYsX4yVS2v2gRed14fB0UkUimUkAyxUh8emAKvXZNobq4ZlW1+Png6TWJzMos9lh1a2iMX5VCwqBoQZNPMIsVh2WjqPHQAA7BnV8KlQsbggENYiT33MlNSbSzRD6HmhKNfuiZImVdV3gI9isYEVql3R6AfLCrURLNJTYGqTQO02m3bwAhmLJpNJSX6KRQBgGjxva7oG2jZZlqVZKGJ9f+YZy56BdZ3rqmRH0Zy4NDo4itWXrA58j0LO+RzJ0mxdXmUj5Kac8T2XXHYJXvWuV+H1N78eTIMei90KdXpq2tfKcqaY+I8JXPH6KxARIqAoKlCx2IoidS4wGOCesP2B7ch0ZbDqolXV15avXo5KqYKJ0Ql09frbi0+OTQIJwKANYrlrq2dTfKpOzZvpJLXI9Pg0cKFzW4qkwDCMeSUWFVkB36J7AgDEEjHP62f/4/uhyAo2XrVxVuM6XTgNzdCwvmv9vF8rIUKEmDu0PAX7pptuwuHDh/GCF7wAU1NTmJqawgte8AIcPnwYN91005kYY4gQM4Jbsfjk6RwWtQlVS1DDMFCS/VUAkqJBaVEBl47x4BnvBtblK9o9FYtBMAwDLE079sVOVtAUIRZV1Z+tsfIZLSKQoSkosvPBoC3K+dqIToyNOBSLxAqVdhKLNsWi6mOdGQRFllDITUMt5zH5u69CFstYuuI8vPzN/+BLKgJAPFIr6lSNWKEODAzg5OH9Tb+3G6zZrGJ1GYPZiuMaMcwcJTGAWKyOycz3y1YUZOL8mVMsnvRWLOq6jse3PoBN19zoeH3ZyjVQVQXDp096rmehkWKRpilkYnyVWEzbiEU3LCtUo8XMqUVts1AsyhJorr5g758sYbwo4brzO9FhKgote+GKoiEWT3qqLvfs2IqVay5CKp2p+5sdh0YKoABct7ojcLkQs0NYi5yjOGVaw+3/xZl/r7mwQpWKppXmTK1Qm8hYbARdbU2xOLgT+PoW4Ikf1F6T8kBpouW3tu6/FdmsQTRbDSN4EIt+w6wqFpsgFq3mG+NUSwyOTqJvca3pYwB1isUpWzOPpzVy3BtZcFecyrahsUkURA1v+VUFubKMZYu68NG3vBA0RRESko+R7Ew76hSLGo4e68e+4801WL0QZIUaN5tRC8oKNUCx+IeHH8ezbTaoALFCBdDQDrVOsUhzgQrino40AG/FYvkcUiwKlmLR/pkb3QvNoFBh2rBiac8cjTDEbBDWIiH8YKnvGin3ZoOj00fx7vve7ft3OyEpqqKDJG1khdpsxqIbg0V/YscOywrV/j5+z/yWZaRq2iIoRn3GYu0X8o+fAk01VAfJx1AMZA/nJ4qi0BXrQpQl38VWbuP4yHhghh9A8hXd46NbbLtOjExAERUM/tcgxLyITGcGb/rAmxqSigAAg1x/qq7i0MFDGD453NJ7NwOBFUDTNISYgMoCmuQUpFjc8Zcd2HztZod1Z99qkus3cCTYDrVqhWoefjsJ1sa3QVRFaLZaPWO6J0xN1CsWRZF8zubTCnXGisWktxXq7m27kUqnsPKClbMaV3+uHyzFYn3n+sYLhwgRYsFiRtMCli1bhttuu22uxxIixJxCdlls7RnMoScVwVieNBYkVQ+0zhQVHVoLGYsAIejcyi6AqBVZhmqZWFRkiSgMVW9ikaEAAzR0zb/p6LZC5WjaVCzWiou2GIdT07Wi0F6M65qG7sVLYc2bU3SyP3ZisVhVLFLQzMahwLVWQO9+bCtO/OLL0A0Dhal6csoL1rEwdA2qzkIzDAAGSvlsQ0sLPzCUDhgAZ8gYK4go2s6ZYar3gqxQ7edH0w3kKwo64zw4D2vYucDgyX7P148eeBK56SlsdhOLq8gsy4HjR7F0xXm+260Ri2R/vIjRjgSPikwsg6uKxYn6c2cpFg13M7YBOuI8oCkzOpeKLCPi0VB+9PgUEhEWz7mkt5oBap0zSdUQT6ZQLnkTi1fc8NcN3/fQSAE9KQHL2uutcULMLcJa5GmCz68GOtYAb/pda+vNRQ6SWiHkleSdu9oQVcXiLK1MW1EbThwCejcA618OPPLVWubfZONsXTeqxKKiIwU4SY6WFIsuK1QTZa/JXZYSwWXDpmk6ltuaeRrFg3UtM50vVscdpc3tcA0mqIhZx6/bdh/ELT86hpKo4pmTrklESpm4ETRULGowYCBfqkBVNcefm0VVsehxSBmGgRDhUVpIxOIJb2Lx6MkhHD81gudcu8nx+gUWsXj8FLasO993u8Pj04DVt1KlelLXha52ktEzOpmt+1u5Mv+KxYqiQZhBrlE1O8uuEh7dh/48jasuvXiORhdiLhDWImceV/3wKvztmr/Fh7Z86GwPpWlw5uSYM2ml+tGHP4p9k/uwe3w3NnTVWxLaFYuyJjuIDy9iUbIppO1KQgvNZCy2qlhsxirTUiyqZvyGojnru4htIg7FNbBC1YkVqkX80hQNWZRx8isn0f1X3YheEVwz6JqOXpv63guWYtEisFiaDZwo7YWj+47iL1//C4rTRZTWtq44pCkaqqHCgAG5IqNSqpwRq0khJkBsshY5kyS7hcF+b2J7anwKR/Yewcve8jLH671Le8HxHAaODWDTdZs81wVMK9RVtcxM1pbdnYoQxaJmaNUc0GgsCiEmYNpjkpNk1iLzbYXKzWCSUzwZR6lYf/3tfnQ31l2+bk7yFXviPeiIhhOyQ4Q4lzGjb4K//OUveM1rXoOrr74ag4Pky/sHP/gBHnrooTkdXIgQs8F0uVZ0qrqOo2NFdCVrRXJQviIAaIaBkly/zMjICPm7R6OwI84HFo55UWmKcLO2oEgieJaGbCM47So9hgL0Bh9jWdXB0LUCmmUoyJLLriHq7HrJkrNA7F60tPqzqgM8y5DZ+yYKuSwYlhTNmjlfoRXFIgB87sPvAh2Jovd1X0LH4uVNrcMyNHSpDENVoOk6dJMoVmQJ4yMzUwqwlBmyrstQNAP9E7ViSjMosCwXaIVqt5MtiAoMAIvSZ25Gml/G4s5HHkA0FsdF651FckdXD2LxRMOcxanxMQCoEcV8/fnsTERQljWomo5kWxosy3kqFi1iUadaIxZpmgJTmZ7RY4gsiaBcmY6abuDR/imsX9qGJTab1YRgEYs6YvEESgUniTA2PIjhUyexfnOT+Yrd8Wq2aogzh7AWeZqgNA4MPOKwrGwKmkLCjWcLzt+msSFolhCcs1EsAp7E4tAwmYFuqbCQNvO8ll8DbHo9sMRUiEVNlfWE6ztfbkxWWrf5clWxaLNl9CIWfRWLHlaoFI2y5EH+Wg1DhqubVNK3qEYsqjRfR1ROmSoBhqYRpc3BsA2IxUrW8evff+xrAIBH3xLHJcs8FOpexKJDsUhXrW81XceB48GKPD9IbAojRR051fu+mYgJC8wK1bvm+sPDj4NlGdx4udO6MxGPYmlvJw42OD5OxaJoEs7+dTbHsehIpzA6ka3729lQLJalmSkWo1Hze8fWQFdOP4Htp8S6Yxni7CKsRc48ikoR39//fc9n74UKS0Vntx+da1gKxJzkXR+VlNrzap0VqpSvy1GU1No93ovwq2j195xB0wbbUulZGYuN4KVY9EPE/M62shDrrFDt22jwqKkZmkOxaFmhFp4ooPjjIhbFFzUcTyPFYj5LSFvLcrVVK1RDN/D1T34diqhg1UdXoeO81kkXhmIcn5fjB7z7BbNFNBYNtEK1w49YFHURy9+3HCV19patQwND0Dwm3O98aCcA1JGHDMtgyYolGDjWnGLRIhY5m6tGJpKBqIp112V7ZzuxQnXByqQUhIWvWIwlYijlnedFFmXse3wfNl65cdbj6s/3Y3lqOVJ8qvHCIUKEWLBomVj82c9+huc85zmIRqN4/PHHIZlZbblcLpytF2LOICreDw7P/vIDWHHLbxuSggDJOrMwOF2BphvoSdWK5KLYeBtemYjWQ6PkoVprjwc3D3IVBdEA73/WlQGpSCI4hobia4VKQQ9osACELLFvl6VpKC7isD3uLDTcxEqPjVjUUa9YLORzSKbILPGaYrG5TEEtTwisJctXYcULbwab8ve390Jx9+8hntwFVTccPeSjB/a0tB0LjEUsmjYrB0Zrsz0VXYcQjQUSi3ZlYta8fpZmZtGYboDRwVNQPCxcdjz8Z2y84lpwLj99iqKwbOVqnOr3V6/IkljNzbSsUAUP65WuZAQlWYWiG6AoCumOzkArVJ1q7pqwIzq0E9z4YbQ6IU6RZdAsD7vc48BwHkVJxTMv6kY6VjsuCZ58pmRVRyyRrFMs7tmxFQCwfnNwvuJEUcZ0WcHaxWG+4plGWIs8DdGqtak+g2xCLzRSvAWB5si4Z00s1s8GP3bsGABgcNS0OLUI0PRyILW4RrpxUYCNAFPHais/eRfwNZs1pa2ZaEfNCtUcv71pIiQdy/IcC9/SzItYpFlUvFawlKY0W5d36FQscnWZjdP5IniOdSkWG9x/TSvU4QK5VhZ1teM/XnEeVrf73HQ4oYFikXWc750zbOZpjIBFXyxiFJ2ef0/EogvKCnUym8d0rl7Z+/uHHsc1l17smaN44aqlOHj8lO82DcNwEouabB774Lq3pzON0UkPK9SzoFgsyzqEGeQaRWMWsWh+BgwDGDuIJ0c13HDlZf4rhphXhLXI/ELH2c87bBYW2XUmFYuNYCcWvRSLUdvEG1VXHcSjFxHmZYW6d/teAMCxg8eg6RqUJt0iVEMFS7NN5apViUXRm1i0KxarxKLPvDJVN61QzduIpVgMgnuSU08DK+qimffMMKRG4WiuacWiVtIAnSjFbrz5RghLZ0Y+0RTtOE7H9h4LWLo1MO0MNIpcS9F4tGkrVL+80nF1HMkNSQxUgsm9ZqDICsaH6nsR2x/YjtWXrEZ7V32OZ995fRg4GvzeU2NmLWLFgNvqz4yQQVkt100iyHRlFoxiUZGVGSsW3VaoB3YfgCIp2HBlvUq6FWSlLHJSDmvSaxCbzSTOECFCnHW0TCx++tOfxje/+U3ccccd4Ljal9M111yDxx9/fE4HF+LpC93HovSwSfIcGmlsSzZZqDVcTk1XQFPAYltmWzPkpN26NMg21UJnMrj4my4piPL+5EqkSsaR4lOWpTpikWdpUGa1zNBwEIsRDzWkpOpgbbmPLEOZVqg1ZNzEYrFmj8JxPNIdzsYWz9LVrEoAKOSmkWwjM/stYjHaIANA0zSSIZnuRSzZhqv/6rmemXiNIKzYCL1SgKoZphUqwbH9MyMWOZNYpA0NMZ7BkTEbsagZEGKxQCtUO3JVYrG1xjRN0+AXX4BcLlihk+7ohK7rGBl0FsPlUhH7n9iBTVff4LneslXBxOLUxFj1Z51iQVP1GYsA0J2MoChp1c9GpqML2cn6HK+qYhGtE4uxiQPIFPoRaSZTwgZZlkCxvOMdt/VPoj3O4/o1TvKapinEeAaSqiOeTKJcLDr+vmf7VqxYcyHaMsEzRg+Pku+la1Z3tmx5E6I1hLXIUwxzoSx0Q5sjYtGueGu2QZgzyRKpQEgmNbhp1RCtWKHWgQLiXbUxAcD//T2QsDXGfParRiyqJDvQbj/GJ2DY6w+eg+RnH6/VyMLaxhlUghSLbAS5gnMSz7JFtVpEo7i6zMapXAHtaUJ4RhlznyLBttR6eQq6YWBRksbSzhT+5vrNSAoB9xs+Xp/x55GxaGHn/lmqBHxs4uIxAaXK/BCLk9ngmrvbzDV0qxYVRcV923bX5StauHDlssCMxWy+CEm2XSOqSK6hBrfXno60txWqmWsUm0eVQElWZ6RYjMfM69b6POROg9MrGJFjWNm3xH/FEPOKsBZZmCgrZewa23VWx2CpAd22nfOJomKzQtVlaLZJL1kpC4GtfRfabVABJ3FioZEV6niluSgTCzzNN6Xks4hFRSTHMihj0WBJHeKnjtMMreriBBBln+JVi9gguyY59SwOJhbz2Tz4CA/KnITN0mzDjEXDMKDrOpg4g65lXbj0mksRSc6ceGJoxkEsHt3buh2+H7re3oWBJOk9CNHmrVD9iMWyTmrcRhMHGp2nTCfpRblzFg3DIPmK1232XK9vdV+gYlFTNWTNmsLLCrVdaEdZLdcpqjOd3sRiVbF4jmQsuq1Qd2/bjUQqgVUXrZrVmE7kTgAANvX4W9CGCBHi3EDLxOKhQ4dw/fXX173e1taGbDY7F2MKEaIOsupdaGSz5GbtlcE2UXIVgSkBKaH20NcqsXjPvsbWHrEGKr1sRfZUfvlBFivgGQqKrVlHURQsV8oqX+hR/Fe3oepgbXIvhq63Qk1HnU2PcrHWROpatKTOP51n6Go+HUCsUBOmYlE1C60gAjWXzeKmm27CkW1/BAD0LF7mmc3XDPjulYivfSYMwEHAHj3w5Iy2Z1mhAsCiNgGnp2vFsqLpEGLxQMWiHdmyApam0BFv7cFANygseu0XkVvxjMDllvSRgm7wpLNxufuxR6CqCjZf473+spVrcOr4Ud/sQssGFSBEcYSlwTD1nTxCLKpQzeOe6exykJIWJJE8MKiNuoE+oOnW11NkCRTLgTbPp0ExeGIgi8v60liUrid64zwLSdEQiydRKjqbqLu3P9LQBhUADo4U0JOKYHlHmK94phHWIk8RqOb36/ATc79tXZ19tiEA8Ika8aZ5E4RTU2Qms/VdWCXxrNnLTeQSBWK26yd6gcJo7fdNbwQ2vaHhapbleVlSSJ1hVyJQNDSm9l1KMhZ9NmStZycCaSbYCpWNIm+bJd3V3oaYrQmjUhzcUvapXBGZFMkQitLmdgIyhUqlMl76oa/hE/eThuqapZ2ehJQDXrOqHYpF2kFo79w/dyoBO+bTCnXKQ4lox5rliwHUE4tbdx1AsVzBc671IRZXLcWRk0NQVe/P6bDbQkypkNzSBujtzGDEw36sqlicTytUWYMwk2Ze3EUsju0HAKR6VoQTlxYQwlpkYeI9970Hr/3dazFY9M5bmw9YisVmFXxzgVyWTEi1iLCybVKSpEkO4iMn5Rw5inXEomviDkMxENVgAqnV480zfEPCDagRi5IogaGYesWibQIOxTbOWKQp2pGxKInerg0WSrZJTlyEQ7ozHbh8IVtAsq3m6tAoY1GSJLzuda/DvT+8FwCwaNUiZD3svFsBQzEOBd1cEosUT0FiJBiGQRSLTVqh+hGLJX32FqgA0LOkBwzL4PQJJ7F47MAxTI9PY8sNWzzX6zuvDxMjE3XKPAtTE1O1nol5udrJ7HQkjbJSrptE0N7Vjim764KJc0mxGEvEUC44j8uurbuw/vL1VUXuTNGf60eST2Jl28rGC4cIEWJBo2Visbe3F0eP1t+YHnroIaxaNbtZCyFCNAvr5n7i5EkAhERwY7zgfK03JTjIrmasUO3E4q92D2PrsXo1loX2ON8wVzBXUZq2CAUARRbBexCR1m5YfAsV0GiRVM1lhUrVZSi68+DsxErP4qVww62MLOZzSLalAQAaGLA05aswEyeH8DfPuhGPPfYY0r0kEyrT1YOJseYyGYIg2Sx0j+7f40ucBYGxEYvLMjGM5GvXkazpEKJxiOXm1CPTZRkpgQ0kWb1giWOZVBdkj2vbQkd3DyJCFIMn+x2v73zkfvQu7cPivhWe6/WtWoNCPuupLgSAyXHSgKYpCqDoukxNC11JAbKqo2Ta5GU6unytUDk+Ap/5AWcEsiQBDFcl3wvRHkiqjueu7fW0KU0ILBTNQDSeQNmm2J0YHcbQQD/Wb2lMLB4aLeC8rgQyDSyRQ8weYS3yFIHVHDoTuUmaPDeKxUiy4SL7D5Cm/6lh8/vPyoO0FHpN5Bli6Alg/ID33+RZEkjJRSSr0sJ5zwCSvQ1XqyoWJYXsi6tporE1ki1YsWieZ8b23Uv7KBatJiwbQc7W5FnuyjQiikXnd/l0roh2s5kXpTWAFYgNrAcGcyque+6L8Mcdh7FlMblHL+5MYnB00nsfLPAeE0cYfyvUXYdO+BJns8F8W6HmfRpuAJCMR9HTmcGRE86m8h8efhydmRQuvfg8z/UuOm8ZFEXF8VPe9Z9lg1qd3GYpFhtaoWZ8FIvzb4VaFDVEeA6sWROzTTbi4gmTEDc/D+LJnciJBtauC/MVFxLCWmRhYrRMnmP6c/0NljxzOBtWqLt27wIAnDxM+iMFpfY8L2tOxWJOyiFiuz+6SUO3RSlLs3XkoxtDRe+sXT80ItwsNCIWHYpFJvjZXzVUh0qSoZmqEtIPdmKxZ3FP3YRrNwq5ApJpG7FI+WcsKjkFL3vey3DXXXdhyWqiRs90ZjAx4t9zagY0RTvO9+DxwaYtS5uBwRjQDX1OrFDLWvOuHJMBNRrDMljctxiD/c5aZMeDOyBEBazdvNZzvb7VfQDgq1qcGjVrEYb2zFhMR9IwYDgUwoCpWAzKWIwKoDjKV107l6gqFs2PW7OkoKVYtHpqsiRj/+P7Z22DCpDv56WJpUi5MttDhAhx7qFlYvGtb30rbr75Zjz66KOgKApDQ0P4n//5H3zwgx/EO97xjjMxxhAh6pAtN579N112Kgu6khGHorAkt0YstkU53PLzJ2H4fGzaY1xDu8Z8RfW0K/WDIkngPJRikapikfwtmFh0WqEyNAVJdBGLUXfGYo1Y6V5Ub7kkuAjUfG4ayVQaAKBRLASOcWQwWhg/uhu7/uNdUFQF27ZtQ/fKiwAAma5eTIyO+O5DsxBN5orlOOSmJzE+0toDDgCwtuKurz2GgmQV5QYUVUckGm3aCnWqJCMVbXxduGG3oj2wa4fvcjRNY3HfijrF4o6H78fma270fVhbtnI1AGCg/4j3uMdHwbIcKFMJy7O0J7HYmSAPelnzs0asUOuJRUmsQBCiUJqwE54rKLIM0ByECBljIbEMS9ICtqyoz1YAgHiEWKHGEkmUbFaoe7Zb+YrBxOJkUcJUSQ7zFecJYS0SoiF0dfbEIsOTTL1WUcmSf00rtKatTFWppuK0Y1ZWqCCZixbZCdRnBPqgnlh01k0aVyPZeI6D5MefeSkWG1mhMrzDCrVvkdPC2luxWKgqFhnKIPmSHtm+O/uncflXBzAxOYWH//WFeMEF5Dwt6Uw1Jha9FIt2YpGiq0Q5xzKoiHJgjuBMkYgJKJ1hYtFuQ/rnR3cHLrtm+eI6xeLvH3ocf331pb5N2AtXksllfnaoFrHIWTWUKjVHLHb4ZyzSNA2em797dFFUIUQ4rFq2CM+6eiM+98E3NbVeKhmHbhgwTJX05P4HsHdMw42Xz76ZF2LuENYiIfxgkV3zqVh0oySTeyhN0VB0pS5j0a5YFDXn/cSevwg0RywOl1qbJMzTfJ0y0nM5gRxLWZLrLD6t7VioKhb95jmZikULDMXUWZ26YScWu12TnLxQp1hkvK1QJ/on8OTHn8SJ4ydw//334+IrLwYAZLpnTywyFFM93zRDQ9d1HN03d6pFndYJsRiLztoKtagXPV+3YJ8ovuMv/n0RAFiyYkmdFer2B7Zjw1UbfK1A+84ziUWfnMXJMVIXshxbIxbpWu+tLUJcu/Jy3rFepiuD6clp6Lpzvy2FLCuwuODLF+AUNfc1ohuyJIMXePARHtc+51p84LMfaGq9eDIOXdOrZOih3YcgidKsiUVVV3GqeAorUiuQ5BtP4AwRIsTCRsvE4i233IJXvepVeOYzn4lisYjrr78eb3nLW/D3f//3ePe7330mxhjiaYi5oB+yZcWR1didijjtO0UVjSbJFWwz2J55YTcGJsuopJZ5LtsW4z1JQDtyFQWRBqpGOxRJ9FRB8mbRzFQVi/5NEknRwdC12VAsTUFyKRbjEaIytOo2O7HlqVh0EWV2xaJuWmd6uVcevOe/EetZid/f+yAuuOCC6nlu7+rB5BwoFiumci6eJGM50kTO4smjh/ChN76UEFFwKhaXttceqhgYxAo12oIVakVBOsZBaIFMBohKzsKORx4IXHZJ3yoMDtRm5A6fPonBk8ex6eobfddZvGwFaIbxzVmcGh9DprP24MQz3uezM0kKdIuAJ4rFiTqlqCRWEIlGoZwBUZIfVFUBGLZKqiuagc0r2tGT8iYJkhEOsqojGkugXCpU92HPjq3oW7UGmY4uz/UsHLLyFdd0hDZl84CwFgnREHNBLHKxpkk4BywSz7o3BxGD7u8Lrzym2RKLyV7MpLKyhlaRVdMK1UUssjViMdAK1StjkWZQkT321Wr4UbSDWKxXLLJ1pOF0vqZYBECIRY/z9+XfHcbSNhaP/fl32NBTO/5LOlMYGpsMPlRCW/1rdYpFHTAMpOKkhtjZRDPv5OAorn/Nh1Bs0lIsHhXOuGJxcLTW2PzDw8F5cW5icWI6h537jvrmKwLAou52JONRX+J1eHwKqUSsVru3kLE4nStCdl1fZVFCTIjM6z26rOgQeHJ9/PE7t6Gr3eP68UAqHoOsoZqJTk8cxPECi/NWLT9jYw3ROsJaJIQfLEXTXCkW/UiZIJRUcg/laA6aoTnIw7ycd1iISmowachSLGQfO3gLpwv+mble4Giuqe9j1pwMIokSaIquO6Z2kkenyXEKyli0k5k0aMhiA2Ixb1MsLg3OVwS8FYte+7nrl7vACAzuvv9uXHnlldXXMz0Z5LN5aLNwO2AopqpYjEQj4HgOh5883HC96YlpvPtv343cdC5wOUuxKMSEphWLdgWlHVbGoh/y2VpfqhGxuHTlUgza3BPEiogntz/pm68IANF4FF2LunwVi5Njk6BpmlyH5qXD2+o+i1j0Uizqmo6CK6faIukojgKbYJHXnYTkmYCmalUr1E/d8SksNi3sGyGWIJPpLDvU3Y/uRjwZx+pLVs9qPEPFIai6inVd6xyf3xAhQpybaJlYpCgKH/nIRzA1NYW9e/di27ZtGB8fx6c+9akzMb4QT1OUmsg/bISCpEK1FeGL25yEQklSA/MOOYZCvlIbR09KwA3n+5MLKaGxnUdBVFpSr8lSBTxT/zEVzJeqk8ADiEXRtELVTJKVoWlIFWcBSFEUUkJtG2WbYqvLQ7EYcdm52jMWyd9pMDQFVVGgyDJGBkmhduWbP4G1b/4c2js6oOsG+pU2aNNDaO/qRXZqsm5GV/Mw7RnMApwXBKQ7unBkX2Nicd8T27HrsYeRnSINNI4iY6AALGmrEYs0RdSfkWisaWIxX1GQifEtKxYtpWUs2Yadj9wfuOyS5SsdisWdjzwAmmFw6RXX+q7D8TwWL1uBU8d9iMWJUXR02YhFlvZUoHaZikXr85ru6IIkVuqOj1SpICJEoc6jYhEAQDOOfNHnr1vka0WcFFhIqoZIPAFNVSGJ5DOyZ8dWbNhydcO3OjRSQHcygpUd/nleIeYOYS0SoiE0ZY6IxRlkiIhZ8m9VsRjUdHF9t3q935wQi63DyiAqi7JJmLkVi7Xvu0ArVEuxYbdeolmUKx7NvGo9YzjsN/tcxKIKro5YnMoVkGmzfQezUYBmoCgqZFlB/2nijHD7mzfh/ncsRW9Pd01dCkIsSrKCiq96gfK2xnUQi0zVCpVlGJy/fHFTxOKjew7hLzv24eRQfU6xF4gV6pnNWBwYIg4Ef3XlBvzh4eAcVItYtCbl/OmRXTAMI5BYpCgKF65ahoPHfRSLY1NY1GVzGVAl8/pobIUKAGNTzsZoWZTm1QYVAGSNfDZaRSoRg6IBYqUEqDK6qCyUaBcorj4jOsTZQ1iLhPDDXCsWW1UDAkBJqRGL9t8BoCAXHOSIW7HoBkuzkPVgAm6wOIg2vrnJE9Y2/SxC7bD6K1JFAkuxdQRVhLZ9rzco2TRdc/RraLqJjMWi0wq1EQq5AlLpmr0jQzPEmlTVoMgKhgfIubzxnTdi7cfXYmmfcxJ3povcw4qFYCVfEGiarpLRFEVhxYUrmiIWj+w7gr079uLUsWAVncEY0AwN0VgTGYtmaegXUdMoY3FskNRFl159KXb+ZWdgv2jJyiUYGhiqkrK7t+2GIiu4/IbLA9+j77w+fyvUsSmkO9KkJjYvVzspn46kAQAVVx56xqxF3DmLUkUCF+GgYR5nXAO+is0gxBNkAqGl2t29bTfWblk7+3zFfD8YisGlXZfOajshQoRYGGiZWHzTm96EQqEAnudx8cUX4/LLL0cikUCpVMKb3tScvUuIEPOBoqRCtNlsZWKRur8H2ZJGWAZFF8H58i31asULe0mTybKF9IMBopJ024gGQZYkT4Wj5bRYUyz6Ny1kVQdL01A1i1gEZElEfudvgInjVeIyFeVgVX4OxeKi+n12j6mYzyLZlqn+ThRuFG66bDledt0leM8rn4dKqQQuGgfNkrH+avcQJvUYKo/dhWXLlpr7O7vZ95ItxG/1RetweH+wdRdQyxO09jlGmxZmhoQIxyAdJQebgQFZ1RERYk1boRYlFR3xSMPsTTcsYjGZ6cTR/U9WSU87Ht/6IO7/3S+xZPkqjA0PVo/dzocfwEXrNyGeDParX7ZyNU75WKFOjo+ivav24MQzlCdpnonxoClUPyeWqm96wmmHKoqEWFTmMWMRAAy6plhkaAoXL/F/2CXEoo5ojHyey8UiJsdHcar/aAv5inGkw3zFeUFYi4RoiDlRLHor3hqi4sxYNCTyQD6db2JSileTbbYZi0LaSX41iapiUVK9rVBt9kXBikXzD/ZMRIpGRfZoUpozv2EYDTIW2TorVHvGIgDz/DFY9ozXIX35y3DpS96Nyek8YhEWUav+s0hgEGIRgD9hx8e9jyNrt0JlAFvTa9PFq7Bzn/e91g7L9tOu0gxCIiagVDmzisVTI+Re/uaXPhtHTw55ZiH+7A8P456/7MSa5UuQzRcxaSoL/vDw41i7ZjkW93QEvseFq5b6E4vj0y5iUazL1fRCT0caADA64bRDLVeIYnE+ILFpPDGs4VROhzCDZl5bMg5FJxOzSgO7wNJA5+JV3t8PIc4awlrkqY+Z5p8x5iShuVIsHsseI9ttwjrUgkV0WMRiUSZEVaVUQVEuOhWLDWxOWdpULAYcjqHiEJJN5FJb4GiuKWLRgiRKYGimjlh0ZCzSFovlvQ3N8LBCbaRYLLSuWEzYJjlZBOpbb3ornr3m2Xjjs96I8eFxsDwLJlp/PjPdpKdSaqZm9IHdChUAVq9d3RSxODVGapFSg1qkaoUab2yFShvkePspFit6cI07Zk64uukVN2F6YhrHDxyvW+Z3P/4d9u3ch6UrlkJTNYyYE8l2PLgD3Yu7sew8b8cxC32r+wKtUDtstQxN0Y4M0iSfBE3RKLsmAbab9cu0qxYRKyIEQahOOqAa2TDMEbgZTHKKp0xisViCqqjYu2MvNl65cdZj6c/2ozvWjY5ocI0YIkSIcwMtP51873vfQ6VS/+VfqVTw/e9/f04GFeLchKVo0uZbleSDkqji2LGaRWTUpVTKV9RAW1KepVF25TByDA3h9HYAtf2N8mS7rJdXpA2KqkPVjSZtMckxJFao9QWnYL5EN0EsSiqxQlWrikUKklTB9J++ifjj/4MOkxBNx/hqDV4q1CwbvDIWY3xtTLIkQqxUkLQrFlkG2ckxGLqOUrGA93zsc4jGa5Zpsqrj878/hHZlAtrYUXT3LiJjnSWxKNqYq9UXr8eR/Xt8Z8dZmJ4gxWoxT5ph1lm0/l2UIseHpgzIWmuKRd0AFrW1ns81blqhxlJpGIaBJ7Y95Pj70QN7qz8vWb4ShmFg+NRJaKqKJx79CzZfc2PD9yDEor8VartNscgxdDXP0w6appCO8SiZFrSZzk4AwLQrZ5FYocbgJ2Y5UzAoBrJJNm/qy6A76d9QTAocJFWHECcPguVSAU/usPIVgxWLUyUZE0UZlyxuQzLMV5wXhLXIUxAzVqw7Uf3OnzMr1JkoFs0mgqm+qxTJ717ETB1Yj+8pdZbEIkUB8WA7Zy9Yk7Mqspmx6LZC5VzEYkPFossKVfRQclz/IeDC5wHxzuCMRZcswTAMR8YiAIAVMJmrYHQii4oo4+v/8g50ZFyTbipZ5HSiAlvSTRocgcSiF9Hso1gECLG46+BxaFrwzPSRcXKNZJskFuOxM2+Femp4Ah3pFJ534+VgGBp/dKkWj9qsT9esILZaR04Q1eLvH3ocz7l2U8P3uHDlMhzsP+VZqw2PT2FRV23SGjTZ/Dw2p1gcncw6Xp9PxaLCJXHZ7SVMi7NRLBqQpAqOPvJLAMBF68KZ/QsNYS3y1MdMLEiBGlkwV4rF41lCpqT44ImjXrBsWS1r1FwuB1mXHRmLDa1QaRaKrgQSraPlUaS45sfHMc0RixYhJomSgzAryKRfkbTVIjrlf750Q4cBw5F32BSxaCP4ms1YtCsWWYpFuVBG/8F+wADe+S/vRNci/5rMIhZno1i0W6ECwHmXnIeBowMNbUstYrGYD35vndGhg2QsNmuF6gVN1yAawbXM2PAYWI7Fdc+9DkJUwPYHtzv+PmnLxl66kkxWt+xQtz+wHVuu39LQVWzZecsweGLQ0352cmwS7d21SU4czTnIQJqikeJTvopFN7EoVSREopF5z1+djWKxXCjj0J5DECvirPMVAaJY7Ev2IRVp/fssRIgQCw9NE4v5fB65XA6GYaBQKCCfz1f/n56ext13343u7sY32hBPXRw9uA8AIM5nkFoASrIKxdaoFHjn5V6Qgm1JIyyNsse+sCVCRLU6t8jalsA1Jh6skl2RxWqeIlBT5FnEokX2BGcsaiaxqJvr1KxQ7faW7XG++salYh4cH8Ell17uTSza9qGQJ8oMK2MRAMTR4/in1z2/+vu1z7rJsf5dO09hOFdBd/EoKAro7CbE4uwVi7aZeRetR3ZywpFX6IUpk1i0qzTtWJImD12WYpGLxiA2SSwCwJJM67ZV1phZjseKNRfW2aH++Ntfr21/+SoAwOBAPw4++QRKhTw2NUMsrlqN0aHTnurLqfFRtHfWZmRyPpmZANAR51GWVOi6gXYzl9Eiay1IYgWR2PwHcxsUU53o0J2KgPOwFbbQFuUgKRoiMdKULhXy2L39ESxbudpBsnrhsJmveO3qzjBf8QwjrEWewvCZydwq7rrrLgCApspzo1hsQiFVh6pikTTzKLmByt2uBGRd9wyanT2xCACJxrPs3bAsQSuSD7Foy1jkObZBxiLltC6lGJS9LEdj7cClrwVSi5ErlMBxLC5ffz4uWOm0CtNcxGJFlCDJCtptuUaHxlVc8ap/qv7+mhf+Vf37SXnskfsQua2M3gs2g6Iof8KO98ncZFyKRcOpWCxXJF9VnoVhk1hsRbF4pq1QT42MY9miTrQl47hyw4V1OYtf+M7Pqj+v7jOJxZND2H90AENjk4E2qBYuXLUU07kixl22pYBFLLqsUJvIWOw2cwxHzqJi0Q4hMkNiUSd18fTBhzFYAFaff/4ZGF2ImSCsRZ4+mCmx+Pvf/x4AkMsGZ9U1iyNZonyfyXOGpVi0FFWUQLYhsDVisZEVKkdzkDXZl1gUIULRlZaIApZiHSSfHx437z1iWQRDM1Bdtux2kkc1VHA85zlOSz1K29wOKIpqbIVq3pfPX3c+zrv4vMBlDcNAPpt3KBZLYyW8+29rmasvfO0LA7cRTUQRjUeruXYzAU3R0AytehxWr10NXddxbP+xwPUmxwhJ10gtadC2jMVSpeFEbj+4cwm9MD40jq7eLkSECDZctQE7HnTmLP702z+t/ty1uAscz+F0/2mMDY3h5NGT2Hy9f76ihb7z+qAqKoY9JgBOjU2ho7umrGPp+vijdCSNilpxfF9E41EIUaHOClWsiBCiQu16nCcnAp5vnViMJUnGYrFQxK6tuxCNR3H+2tnVIgW5gClxCqvTqxFjY7PaVogQIRYGmu6WpNNpUBSxwzvf48GGoih88pOfnNPBhTi3UM5PA12LIMpzY/kxG0Q5BiVJQ1YkjUpKFR1ZawBQFBsoFhkaFXnuSFJrW0H2q27Iogje5mGeryjm2CgAhs0K1f+jTKxQKYiiBDAcGMZbGbh+SRsmixIoikKpkMf6zVfhs3f8qG45CnCoLou5LACYVqiEnGMoHT1L+jxJPVHVcedf+rF5eTuYnAwKQCLVBj7SurKvbts2Inj1xesAAEf270FXr39AddUK1abStGOpSQzSlAFdB3gh3rQVqn39VjA+MgSsJT9vuvoGPHDPr2AYBiiKwtDACTz4+19Vl23v7EY0FsfgyeM4sn8Pkqk0zr+k8UyyvlXnwzAMnD5xDKsvWld9XVNVZKcm0NHVA5j8IEfToH2YxY4Ej1xFgaLrSKTSYFi2TrEoVirgzgKxqFN01Qq1EZICC1HVqwRoqVTEnu1bsX5zYxvUgyMFdCYiWNkVb7hsiNkhrEWewtA1IEB93ywGh4aAxYChzYFikY3MzArVnbHYiBiUAxorNEsIldkiuaj2s4GmZkeRRhGFcpVYdNZEGuciFv1KJl0lSjOKwpPHhrCuDQDFBGQZEuSKZVx28XnY9uMv1/1NdT3CTJuz69vbEsCg+bY0h57ODI6dGvF+A1UCVBGiQc4TFxHQ3ZGGJJcBeBBQXNw709qhWHQep0svXAkA2LnvKC5Zs9xnT21WqMVmicUoSmdYsTgwPI5lvURV8exrLsOXvvt/UFUNLMtgeGwK//XzP1aXjccELO7uwJGTg5iYzkGI8Lhu8yUN3+Mi055s/9EBdJsWphaqxKJ1+asiUY02uHh5nkN7W7LeClUUzwqxOBPFYlsijqwGyLIEbuoYRrk4lnALrwEnmp8TkZp9DX8uIaxFnj6YKbF4+tRpYDlQqszcztKOo9nGWb1+sIhFS+FXJRbtikVNAk3RWNW2CpImOexFrW0EKayKIPfgJN/8816zGYvjw+S5UqyIRGGo+dcOqk6IRS/+s0rkgEb//n6gpznFYrFQRN/qPnzrt99qOFaxLEJTNaJYNE89S7GIJ2v1kvVM78YEJmBoBihQ6OzpRDFfRAKJuuWaAUuzjizCvjV94HgOh588jLWb1/quVyUWG1mhMjp0nVih6roORVLAC60TV3nZe2K3HaNDo+haTGqRzddtxu2fub1KzhVzRfzqv2t9EYZhsLhvMU73n8b2B7eDpmlcdm3jSU7LV5P67MSRE1XVo4XJsUlsuWELBkCsUr0sfNORNERVhKZroM2JzBRFIdOZwfS4S7EonoOKxWIZux/djXVb1oEJEGY0gxO5EwCATT2bwgnZIUI8RdA0w/HnP/8Z9957LwzDwE9/+lPcd9991f8feughDAwM4CMf+ciZHGuIBQ7KLPLsOXfzD1JFRjkGqm6gLJuh1R7VZUFUA7PveJaeU/VlxdyW25I1CESxWD9GwcpYtP4UZIWqEStUaxmaoiCL9c2otUva8JZrVyEd5VAqFRFPej8YMBTA2MiagkksxpMplA4/AkNV0LPyInz+uz/3XH+8IEFUdFyxsr2acURRFDq7e333oVlUbFaoHd2LkO7oxOF9wTmLU1Vi0XtG6WLTCpUxryEmmkCl3ByxyFAUulOtN7EmRmv2YpuuvhETo8MYOEZsYO767jeQSteswSiKwuK+lRg82Y+djzyAS6+6rqlA7RWrLwBFUTh6cK/j9empCRiG4bRCZSmbFaqzAOxKRFCWNKiaAZqmkW7v9LRC5WMzezCaDXTQdRMK/JAUWFORSgrooYF+DBw/0hSxeGikgPO6YkjHWi/YQ7SGsBZ5CmO2JKALlKHNEbE4gwdoyWyUmLaNlNqAAGpELCpzQCClbMQiWjsufopFlbW+1ynQNA3F8Pm+1RRTrUjVVIo07W2FakO+WEZbwjlhQ+fiODCuoUw77ylTWdIwzaSSuPuwgpJs4KLlPXjoh1+oLlM3o14k933JqNVQS2yz0uvANaFYpGnHddeWjGPN8sUNcxYtYjHbZKZSPCpAVlTI8plrTJ0aJopFgBCLuUIJ201Luq/84Jd1hNma5Ytx5OQQ/vDwE7h+81pEmyDxVvcthhDhseugMzOpVBZRKFWwqLtesaj7NGXt6OlM11uhVubPCtUOYQYqgWQ8CkUzUC6V0ScUiOJ4ARKLJ6jleMMvKjhF953tocwrwlrk6YNmicXjueP4ys6v1C2vt3i/9YJhGOjP9Tde0LWOBSsPrqw6n18jNut1URXB0zxedeGr8K6N76pTHlpWqH5OqCWTRWuPtHsv4AEv5ZcXKiUyOUsW5TqLTzc0XfPNkrPWoykaoplRTFN0Q8ViuVh2EINByJs5w8m2JPL78tBKGjoWd+BrP/9adRnRIx/5kaFHsE3fhvHfjiPBJ9DZ2+kgBlsFTdEOZSfHc1h14aqGOYtNW6HSOjRDQzRGJlDP1A41LzUmFseHxqsWtFuu3wJFVrDn0T0AgF/+4JdQFGcdtGTlEgyeGMSOB3fggg0XOGxp/dDR04FUJoVj+5yKTl3XMTU+5bBCZWkWFCjHZywjZFBRK3Vq2kxXxjtjMSrMO7E4k4xFhmUgRAXkp/PYu2MvNlwxNzaocS6O89LB6t8QIUKcO2h6GvYNN9wAAOjv70dfX184uyBEHWiN3BzPJrF46tQpABFALgHgkPWdPg8UJRV8gDVihKVRKM2d+rJsKhbjLWSwyZLoOcZOc4JhJtLYClVWdYcyk6Vp3yxDKy+yXMh7WqCS9eHI27OsUH90x1cx9fufgY6mwF/8Ygeho2kaGIbBdIlcI1ed146VnXHss22no6cXTaRPmfB+qpFtVqgURWGNmbPouxXDwPQEIcH8FItdCdIQEigVQAR0JA5JrFT3KQhJgUW0CetbOzRNw+T4KKy5cus2XQGOj2DnIw8g2ZbB7//vx3jNO96P//rKZ6rrLFm+EgeffAL9h/fjb1766qbeJxZPYNnK1Ti8dzee+5JXVl+3iNb2rh7APCMsTYOiAF3TwPHO/elOCShKk9UMz0xHF6YnJxzLSGIFbdH5V/MZoMA1qVhMWFZlpi3Qtvv/AABYvyWYWMyWZYwXJbxgwyKkhBkom0K0hLAWeQpjjqxQLVC6WqewaxmsQPIJW4XZWHz8yBAu4zmitAqC1IBY1OZYsdgiKpJCJie5GiZybBHe/KsK3vg2sm3dIhbd51JXqopF3crhphlUGtif5woltLmaeTobxcXfKOHP377Y8bqlWPzWj+/Gd+8uI8oKeNMmwfEdkS+WndszG1oOYrGnA8Ap7wFxUQexWK1EPK1Qa/XBpkvWYOe+YLVJVbHYghUqAJQqIvgZNIuawamRCfQtIs28zWvXIJ1K4A8PP46LV/fhP//3t3jHK5+Hf7uzZkG2ZsViPPLEARw/NYJ/fe/rmnoPjmOx8cJV2LHXSbxax2NRV6Z2OjQZoBiUKhLisWCFXE9HBqMTWcdrZfHsWKHORLHIcSxUg8LU+AguW0yD7jkPYBfm5KXv7VZw/Wvn35XibCKsRZ4+aJZY3D68HXfuvRMvWv0irGhbUX1dMzTohj4ru8NpaRoVtYJMJNN4YRP2vLfRI6NAV02xaMFuQyhqIsmOoyjEufpnNo7moGj+REgJJQiM4LmuH5pVLFqQRAlROhpMLBr+xKKlWKQoCoZZizAU09gKNV+qKrcaoZAjx/iBux/A6R+dRq/aC24tOa6pdAr5bB756XyVkAOAsfIY/unBf0KH0oG9/7cXbZ9tQ2dPJ04WTjb1nl5gKIbsr61lcv6687F3x17/lVBTLDbKdzRoA7Im14jFUgVtpg15K2hGsTg2PIZ1lxN3pb7Vfeha1IXtD27Hhis34Gff+Rme+3fPxa//59fV5ZeuXIr/z953hjtykFef6er9lu1919u8LuuKccOYZgi99xLgIwlgCJCEUEIP4ISETsCmhRZMN9U22Ma9Yq+3993bdHWvuqbP92OKpmt07zYvOjw83iuNRqPRaOad97znnNt+fRta9Rae99rnRdoOgiCw7sx12PmXnc7tm61DkRXdCtWYmzYVi4qsgDB6cYVYAdsr261jzES+5CUWhY4ALsZ5lj3emItiEQASqQQevuthdFodnHXRWfPejn3VfViUWoQs1//xMsAAA5ya6LvCueWWW/B///d/nsd/9KMf4Zvf/OYx2agB+sdUncdDh2Z7L9gHlr/vV/jbb9/fe0EDpmKxcxIzFgVBLwxJowlX54NvBprCiVUsmutKsuFklCh2i1tJEMDQ3ptVM0sgnzBUiExwg0WUVUeWIksRVsZiEFrNBpIp/yYBTTizGcsTuufYn37zcxSuejOS654EliYdN9mmGnCnkUW3fkEGmbiz6DdzFkNhFMeN2Yrv025Se+2GLdi97S+Bvv+NWhWSpB+3QRmLpgVonDSmHFm9gI5ih5qJ031Z3wJ6PqGq2LJB4wlsPvcCPHDXn/CT73wNDMPgOS99reM1i5atxN4dj0FVVZx78WWR32vdprOw67GHHY85iUUdLK3bPamql0wdyXBoCjJkY5vzxRKqPlaoNHfiiUUFBOiQ4QE70gYpKGoUWC6GB++6HQuXrkBpJPy43DnIVzwpGNQipyFORcUiNb9GfqMjAhQTQbEYQiZRDCCH23RFQro/VwD7dbMTYIUKgsA3HpKgGaSlauZRKq5miSJZ6k2LWCQotHvYj9WaLWTTASot2ln3HJ3UB1q+9bOb8aHLY3j92ayVV2kSO5Wq6zrfqQIABNucpU4sBoCO6Yo5Q0VgWf/TLitUTYG9m3fuxtV4aPteKIp/TSlJMqZn9W2rNaM5IqSMZl5gHiSAWdncR/1fmxrNNqr1JpaM6opFmqbwlAu34Pd3PoQvfe9XEEQJ73j1cx2vWbNsIR7fcwi8IEbKVzRx3ua1lhLSRJdYtKlfFBEgKTTbvEWsBkFXLPpkLJ4MxeIcm3kqSAxT+nGxcMW6Y7lJAxwjDGqR0x9uVVFVqIYuP91xDlcqUOZsp2pioqXbeedj0YnFltStK6S2BJIgrYxFEymmq/znZR4M5bV4NGFaoQZlLLbQQpbLgunD0p7u02peEARdsRgyNGYqFv3u/e2KRfM6ThAEhE7vjMWoikWTmLvp+zdh+OnDKF5dBGU4X2TyunKuZssUVjQFH7n7IyBAYMXMCqt0KBnX3ijw+6wU6VV2rt28Fgd3H/RVTJow8wB7WaEC+jETT85Psegmu91QFAXTE9OWYpEgCGy9dCseuP0B/OZHv0FtpoaXvPkljtcsWr4IE4cn0Kg1IuUrmjhjyxnY8Zcdjv1pfp/ujEWSIKEoipXXWYwX0Zbbnn2eL+U9GYtCRzg5isU55D0DQDKTxAN/fgCxRAxrN88vX1FRFRxuHMaKzApk2Oh5rAMMMMCpjb6JxU984hMolbwXuuHhYXz84x8/Jhs1QP+46JO34HlfvBOV5jGYarfhd9smI5NrhHFxPJZk3FzBEvo21PngbWn1UCzGaAqCdOwanW1RAUMR4HpYoVYmu1lAotAJ3UbzKZoJblq4iUWGClYsmmg16kim/C/2NNklFluNOr71Rd1m7FNf/yGS6y8FAHCuba5Xnc2d0Yy3IVQa6d30rExPhj7Pu76vNRvPxGyljMqUf77SjG19zQArVBMsqReZhEGQRSEWswkWXJ8+9FPjRz2PnXPRpfjLfXfi59+/Ade85DVIZZwTXouW6hlOxeHRQKWpH9Zu2oJ9Ox+HJHabuzPlKT0ToNA9z5s5n7pK03kTOJTmIMgqWoYiN1cc8rVCpWMn3sJL1fpQLBrEYluUkUylIYkCtpx3cc/X7ZxooJhisXLoxFu9/jVjUIuchpivutAFAtoxIBbnQEK4STWK7a1YDGuskLROqMwX8egNSaBrLQqgm7HYA4p5W+FulqiyruQjCKhal1jsmbHY8Fqh+qHDC3jvZ64HAPz8ix/Eq88yvjdGb3gVDRusStW1n03FIro1SSixyOrbMuWy2ATJ2D4X6Tnuzt24Gu2OgJ37vdd3AA7LzmoP+zETSZtiMQifmLgE669ngEz0usDE4Qm9Ob5kwZD12FMvPht3P7ID193wE7z2eVc5bUoBrFnWfZ+wPEk3tm5ag10HjjrUmiaxOFqyHbeyAJAMWh3eIlaDMFL0sULlBSRiJz4LcC6KRQDQQGLDEAFZBYjM3BXHAxw/DGqR0x/9Nv9rgvN+UoUaOOAaFROtCTAkE6jw8SMum5LzWsKSrEPFyJCMxwqVIRlQhP99K0OFZyyaxCJN9K4VzO0Nei87JJvdt9ARfAkzO2RNBh3gFmQqxChQFkEaxQq12Wgimeldiyiygi986AsAgPd+9r0oXa4PnZoZlyaxWJ/tDjm15Tb2VPfg6SuejiG2e72NQiyGEYQUQXmOi7Wb10JVVex9fK/va9rNNnhjWKmXFSqgq1xjRi0yV2KxJob3X2bKM1BkBcMLuhEtW5+8Fft37se3P/dtXH7N5Vi03Fnj2DMSN5ztdLcIw9oz12K2PIvpie5wgEksFmxDTjShW6EqsgLC6IkVY0W0pJZH1RtkhfpEyVgE9JxFSZCwaeumwN9WVIy3xiGqIjYUN/Q1hDDAAAOc2uibWDx06BBWrFjheXzZsmU4dOjQMdmoAfqHYkyAH56d20U9DGaz5MrP/BFnffh3gcuRpmJRPAZZAvN8PW3kGdSF4G1pi4qlBlyci4N08Q8sTYKXj12jsyMqSLC0w0bUD2Vbvp4k8GBCiEVTcEmxwQ0WQVEd78nRFMRexGKzgWTaRSwaXwpF6jmNgJ6ruGLNehRKw44sOs7YryYBVpt1TmqRPvsgimIxiCDU1wmIiotY3HAmAGDXNn871JnyFABgZOHiQCtUEzRh3ICwZgHde5Ivn2AQ61OxaCpA7Tj34svBdzqQBAHPf/Xfep5ftGwlAKA246/kDMLajWdBkkQc2LPDemxmegrZQhEU3S0cWeP7VFUFpEuxWErpN6W1jv77zxeHMDM95VhG4DuguBNPLCoaQol5O9KGRXFHUpAw1Lq9bFABnVhcWUoif4LzFSXDZk+d78nyCYpBLXIa4hgrFo/JOoNueqd2ALd8zP85d14MxVqODoEItUJlolmhmuRlEEHrUCH0GLggSByZ7DZWOhGJRc1cxt0sUSTj/YluZhAZgVhseq1Q/RCPcTh7w2ok4hyedfn53SeMTLqS0cybnnU1sHj9u+LRI2PR3HesPkByeGLa9TwB3uSTSQpw5SKds3E1AATmLJok2rKFw30oFvVapNkKq/sJqGQMCHG1CMLhcX1AaMlot9F59SXnQFFUVKoNvPv1L/C8Zs2yhd137kPBv3XTGgDAgza72InyLDiWQS5jG9pRRICi0Wx1eisWi3lMlF2KRf5kKRbn1jxTCRI0SaCGDMD9dVmNPlEwqEVODfz56J/xlUe+clzW3S8p6FY0KlD6zll0Ew7jrXEMxYcikXYm7IpFAOAozpGxGKNjDnWiSSwGnbsZkgm1bmyhhTSTBh0Sz2LCzKGL8nkqkxWkz05j0w2bwHd40AQdqgCVVbmnFSpJklAJfR0kehOLURWLFE3hjC1nAACe+vyndh83FIvZvN4XMXMYt1W2AQCesvQp2FTcZBGQQDRisTxeDnzOL4tyxboVYFgmMGfRJNFGFo+gFSHvWVAEhxXqXFATamARfA9dHtM/49DCbi1y7iXngiAIVKYqeNlbX+Z5jZ1YpPoY8F53pu4MYLdDNTMnHcSioViUZdlSLBZiBSia4lEFm1ao9rxMgRdOCrE4l4xFQLdCBYAtF84/X/FA/QBIkDhnJLqrxQADDHDqo29icXh4GH/5i7dJ/8gjj6BYDJnyHeAJj33TLVQ7Esaq/oUDYRRrx4KMa4dkI0YBCU3PSAwhOduiDI4m8dVXnYu3XL4KHEM5bEg5msQ8BwwdEBUVMYZ0qAf9UJ6wE4tCqF2rSRhSbHCjRHIpFilSt6YMgixJEPiOxwrVFH8yBHDLz3+A3//shwCApSvXIFdwFr+sUcRlsvqkuVux6IdiFMViCLFIkyREl1p2aHQhcoUidj/+iP/6DNvPJSvWBFqhWus3bgoJo0HHRyAWCwk2MrFlYmpiDLGEk4RbuW4DSiML8LTnvxRFm0WpiUXL9KaGLPdXoK5ctwEkRWHXY939M1OeRKHkfA+T3FZ9ciUtYrGt//4LpWGPFarQ6YBiT7RKgIAKIpSYtyMd04ttUVaRSOmNTDtZ7odaR8JkQ8DGhVnLSvVEoaLp29iU/zrtVwe1yDHAxKPAh7LA/ttP/Hv7XVyPB7HoVg/2Czrg2vrt5wK3/btOMAJIkua5VwP4qnNZiu2tODStUJ/0DiCWdTYyKUYn5nrh3q/q/20GXye76HHeoFiLWAKAjigFk6w2aIFWqGI3Y9Gm7OtlhapnIgYPpfzw17fhS9/7FQBg05plGMq71ByGwrCY0+sZj2KRrwIUC5WwZyz6NPOSJeC8NwGjmwAAR9zEIoCO1FViuo/lbDqJ1csWBuYsmsTiGSuX9JGx2NsKdT44PFEGQRAOBeeKxaNYv2oJXvKMJ2O1jUQ0sWrp3FR161YsQjIRw/024nW8PIMFQwWryU1Ac1ihJuPhNcXoUB4ztQYkqXsstjtPnIxFAPqxBIDKLbRI8gFOLQxqkVMDb/nDW/D5hz+P8eb4MV93mDrODzO8c5hW1dS+rVDdBN5EawLFeNdSMwrcxCJLseBt7gkxKuZQDPIKrxMmAe1B0wo1CCpUpNhUJLLQXE8UK9SpsSmUnq5flxvthq5YDBigIjQCiqaAZmnfKXXzuyRAQCOiKxbbjXYosXjXzXfhB1/5AQBgxRkrkMwkHffLjFFjmLahphXq4YYeILwiswIZzjnQPW9ikdQVi3brWoZlsGLdip7E4tJVS6NZoSrRrFBzjRwA/4GjulBHnAwekJ8aM4fAu72JbCGL9WevxwVXXoDVxuCWHf3YyDpeN1JCYajgIRbT2TTYWJf8pEkaBEFAkbqKRdOmuCE568zCUAGKrFjZm4CuWDwZVqhzViwax/6WC+ZPLO6v7cdQYgjDieHeCw8wwABPGPRNLL7sZS/DP/zDP+DWW2+FoihQFAW33HIL3v72t+OlL33p8djGAU4xKIESGf3xU8EKFQCSHI2W5L+toqJC1XT1HkkQljXnrE1p1cuy1MTUpE5OdXoQUwAQY6j+iEWRDyemCIChiFBiUVTcxCIZqlhst/TCJ+EiFpuSBk1TcfQP38B/fehd2Glk8zXrNaSyzmaeue/S2RwAoF513mT5oTjUm1g0FYZ+oEjCk7FIEATWbDgTux8PUixOIpnOIF8aQrMe/v0xxg2ImaXEt3urCooptu/cvfL4GIZcuX4kSeLzP/gN3vref/N9jZvYjYpYPIHlq8+wvktAVywWh5zFHkvpWRSqqoJ0TaKaxGLTsKrJF4fAdzrotLo3JDzfsQjZfqEwCShM//mMBK3fxIUR83aYVqiCrCKZymDBkmU9bWV3GfmKT1pVtLI4BzgxGNQixwCH79X/u+OXJ+49zVw8P6LsGFuhAuhtQdoLTECzQzaaUE39+n92Uv8vJbet3D4LURSLYkNXxWUXAwThJJcopjcxydeAh74DAJhpRFO8hYJiXYpF+RgqFrvEYieEWJQkGe2OgEzSn1D51s9uxkve+Unc/bCehzNbbyKfdVlSc/rfcYNM8mQs8jWASTrUnAuHC7hpt97UbZO2Omj1U4DcUgABxKJdsejTRD534+pgYnFqBiRJYvXSBahGJBZNYi3MCnU+ODw+jQVDBTAu26s/futT+J+Pvt33NfE5knYUReHcDasdOYvj5VlHviJl1mAkjWa7E8kKFQCmZqrWYydNscjO0dHAzOUaXjIn1ekAxx+DWuTUwqzQe5C1X/SrWHRvgwKl73W47RQnWhPIx/J9ZRK6rVA5ioNgcz+I03EHUWkqFu0qRsU2LE6TNBRNsQg5P2TYDGRjmKM1G3wtM4nTKJ+nPNElz0RRtLbDDxQoS7HolwVpEpIkSVpdUIIgoikWfWzZNU3D4T8cxvvf8H48dv9jUFUVzVoTmayTJLQsH41bRbsVKgDEfWrNkt+Qkws9FYs+dfXazWsDiUVTnbd01dJIVqiiIlpWqHzIkNOaI2tw+F2HsSS9xPNcQ2ogToQQi+NTiCViSLnqu49f/3F84PMf8H2NqSLsFwRB6DmLj3SdnCpTFRRctu80YVMsGn26HJcDADRF534rlPTXztocFISOAC7GhSqAjwdMxeIfD/8RNT7cgtaOZDoJLsZZatz5YH9tP5aklwzyFQcY4DRD32fdj3zkI7jgggvwlKc8BfF4HPF4HFdffTWuvPLKQZbAAAAA4RQhFlMcjbbsX/ya5KebtKvYiKuhlH/zQU7qpMuX7zyKf/zRI/jkL3S118HtD/fcpngEYnF6sjttKfIdMD2IEYYiQQapKmBkLNrekoAGgQ+eKjMtQd1WqPVmB+WffBxH/vxTvPk9H8bb/lm3gWvUZpE2lIkm6cYZ22xmP0YhFksjo6Ayus2FHEBeT5eDMxYZivBYoQLAmg1bsDvACnV2uoxCaRjJdAbtHsQwRWggABDGZ4xihVoKOIbCMDVxFKURrxKgODQClvNvLPVLXtqxdtMW7NrWVSxWypMouFSRLE1CMFSubsViIcmCJICWoTLOlfTv0MxZVBQFkihYFrL9orHiSoxvfAV+8tARyGr0iV/CuImLqhhNMBQI6MTik57ydDzvlW/q+ZqdEw0UkixWjwwsyk40BrXIHLDtJ7pCsX3sG2+RYTZP/Ai/PlUBkSD3Y83kc92h5kAIuG/WaS6aFSrNWeSdqWDTt8FULIY0Ju/8b+uff9kXnkUcCMm2rwjSQZ61eVG3ZO0BzWxSuhWLqtTNWDSv7z2sUOuGJajbClUwhliuv/H3+MjbX4UbPnktCILATK2BQrZ7LhZV0pOROT3rJharABu3lGGAnrF46wEFxIfrkPNrfLfNTrqaaIoaFBXGujSQru/r3I2r8dD2vVAU73E+MT2L4WIWhVy6D8WiYYU6x1yjXjg0PoUlC3yy44o5JHqoBeeCrZvW4P7HusSrrljs5isyhm2dRlBodYQIVqg5AMDkdNV67GQpFmNzVAkU8zkAAJkajUTsD3DiMahFTn/0q1isu+zQVeiKxabYxOZvbsYDkw/0XIekOYlFXuGR5/IgerkN2OBnhWonFjmK81Us2u8p7dlwFgkYMned4TIYO6gPSE/sC3ZPMAkVJkJdYSfPRF4ERVC+pKG+aTqxGJQDZyrEKFAWQUoRFMSQISdZksF3eE/GoizLGPvmGPb8aA9e/Lcvxoe/8mGQJIl6te4hwVhXLVlz27L7wG69GQQ76eqGX8YioBOLB3Yf8CVTZ6ZmwMU4DC8cjqRYFFURXIwDQRA9rVBJkgTnk1veEBtIUsEDxFNHpzC8cNjT68jms5ZF57HE2jPXYtdfdlnDAJWpCooui3yKpKyMRbsVKuD93eWNOsb+WzqZikVREfHj3T/Gn47+KfLrzr/8fLzoTS+as5WqiZbUQrlTxurcaiTnMDQ+wAADnLrom1hkWRY/+MEPsGPHDnz3u9/FjTfeiL179+Ib3/gG2LlOZA5wSqMj9ldQ83I3pPxogG1qL9y7v4LpZu9MISVk2iUdo7sT5O5tlPRCi3Pl39kVi0nOv3JWkgb5paj4895pHBD14rET4g9vgqP1vBQTMR9VpF2xKIpCT2KEoUiQTPB7S4rqaHCphl1m0DSXaQnqtkLdc9NXwB98BGe/6l/wwte82SrwGvUa0kaWoqlKi7s+VyQr1KFR0Cm9cAs65CpTwRY3NEVC8iMWN56JmekpTPvYqFbKkyiUhpFKZ9BqhmcsAvrxopHRicUgcjoM5fGjKI3OzU5sLli7cQsO7Nlhkc0zPsQiR5HW53UrFimSQC7OoCXoP7Z8UW9EmsSiyOsEAhFCfodBI2kQqoSbHp3AB3+2Dbsne39PAIA+FYskSSDBURBlBc99xRvxvFe+sedrdhj5ioUTnK84wKAWmRMe0W2asPu3J28bQonF42CFKgtAe0YnVGcO9P/6uQxt+Fmh9moeiC1dzWkoBRzZcCQbaoVKS03gri+gScxzwKE+5vjz8LhNsSjKQITcJIt89FMskhQApxVqhxcCa5FaU7/muInFz3zjxwCAD/y/l+P9b32ZVYvM1prI2/L42irlIWM8VqidKkDHHYpFR6Yf69+0OuyjEnjTL3h88T7RUplRhJdYbLV57DrgzVE2bT9z6WRkYtFU3h0/K9RpR77i8cbWTWuw/8gEKgb5a+4TEwyp709R1XM6U8keisWS3sybrOi/JU3TdMXiE8gKdYlp/Zbu7egxwMnBoBY5/dGvjWlDdF5nzIzFHTO6Cuo7j3+n5zpE2Ut0DcX7Ox97iEWag2gbcorRTitUQRGs7DgTM7YhJ5ME1OjgISdTtRUVTASLddMKEwAkQQq1WrWIxV5WqARhdUFNK9Tgvoi+H91WqDfdcBNmb5/Fuletw5v/+c3W6xu1BjI5l2LRRaBGIRaDyFE7zPxB39cHKDvXbl4LVVGx9/G9nudMEi2ZSaLdbPsOQtkhyiIIgkA8GQ+1Qg18vSJCUASkyFTgMlPjUxhe0L9tZjo7t5p43ZnrUK/WMXFY7xvNTM14iEXzd6LIXSvUXCwHAOgozv2QL3mJRaFzcjIWWZa1hgv6UVFf8ewr8IZ/fMO83/9A/QAA4Ozhs+c1FD/AAAOcepibThzA2rVr8aIXvQjXXHMNli1bdiy3aYBTDP3GDPKyCkXVcNOj43jSJ2/Bbx7rP+/gI7/ajq0f/UPP5WTjIu5nz5rmaMgB9wKC7K9YnLEp4vxIPzuevCKD91x9BlbJBwEAWoQpQs6lWPS7ppYn7RmLfE9ihKVIkEyAutKwfIXNakES9YInSP3WahjEoqFYVGT9telLXoXRV/w7Fqzfai37+CMPoFopI53NQVZVq0iIuQjbKMQiE+EGfGYqXLEo+ShU1244EwB8VYsz0zqJlkxl0Kz3LvITLA3VaBrynd52c5lY/82k8sQYhnwUi73wlRtvwce/8r2+X7d24xYosox9u7brdnKGitMOjqYsYtGtWASAQopDS1SgqhryRadikeeN/RTh5jEITGMMX3zFOWAZEp/67U5c/+f9PS2XCWM6NCqxCABJlgYfdNJwod6RMFHnsWFB5oTnKw7QxaAWeYLBzAmTfQaHjosVqgDs/r3+7zs/13t5N4FHz0GZ5atY7NE8EBq6us64vngUi2rwNP3QxC0ACOwi1/a/rXbUjjj+dFqhSpEUi6ZSHG57J0UECH3EyVQsqiAhSjLiMf9rf82wdM0aE+myUbe97eXXAACuuOBMa9n7H92Fo1MVh2Kxo9DW/jThb4UaBxx1We9azr5vzObMHYcUHKxpFplJu1ZzzgY9B8jPDtW0/cymk2i0Oj2beYB+LY7HOLR8iMV+bff8cHi8jKUL+icWd9z0Vfzsi/72ZGHYuklXh5r7Z7w8gwU2+zHaUCyaWZbJHpamwy7FoijJUFX15FihzlGxCJLSz0Epb7b2AKcWBrXI6YugPL8gNKWmw+JQhdr3OdlNCtIkjVK8v9iLXopFlmSdikWZ1y0ebe1BM3PP3Ab9H8HvmWWzwU/6gCN7n4+nbe4JkiCF5kxSoCBrMhjGv14xv0uKoCzlJQkSfId3ZOjZ0ao7iUXTHvbql12Nle9biYWXdO/Z92zbg8mjk0jnnKSWW7HotkKdK+xqTrcCMUixuGLdCtAMjZ2P7vQ8Z9p+ptI60dfuYa1vEmOxeMxhhUrRZq8kfPCpLur7IcMECwXKY2UML+qfWPzqTV/FB77Qfy2ydrNeS5s5i35WqBRJQZEUqJpqEcoMySDJJNGRnMRiIpUAy7EOkp7ndcWi2MvN5BiDjXWJxX7Uz8cKB2oHEKfjWJdfd8Lfe4ABBji+iNQNvfbaa/GRj3wEyWQS1157beiy11133THZsAGeuBAkBbKqYf+0XohtG6vj6Zv6U2C9+qJlaHQk/OThsd4LByATD26CdRWLrqZTeRLIbgIAxCIQEqkY3RdxwdEkqB5Nq/LEGMzyShJ4MFT48gxFgKRZXwLYzBwkbDdFsqgXFPHhZVDS3mZFq6l7wydTadz221/gW1/4ND59/Y9BJAtgkwVQ0Nc1U57C21/+LABAOpt3KFvdpGwtghVqFFTKkzDntlVVdUwX0iTha6E6tGARsvkCdj/+CC664mrHczPlKazZcCaS6Qw67VbPZl6coSCrBBiG9VUsurep39w9URQwWynrisXe0QYOrFy3ASvXbejvRQBWrF0Pmmaw89GHsGjpckiSiKJbsciS6FT8FYsAUEyyaPAyJFVFJlcASVEWsWjZ7tLzm9y+ZE0Jv117KT7zu5349t0H8ejRGl5x/lKcu9zfKsbMWOT6+H2mOBqSrEJVtZ7f3a4pI19x9SBf8URhUIucgtjzB6AxCZz9imjLmzlhyokiFvtUc8m8cwgiykCEe7s9GYtcKDEIQCcWac6y5BwvzwKmIIsKVyymGvuAtc+AeFgC5uOKWXcq6eyqvI4gOfdFpwJfBO0vVVcsCmK32Wper+MBpIvdCvXXt92Hd3z8q/jD9R93Kgqh222f96J3AACuufz87iYqlMPiFPCzQjWIxTBvNx8cmeh+/marg7TdjitAsZjLpLBq6QI8sG0PXvmcKx3PjZdncOa65cgaGU7mZ++FVCLmq1j0bFOf0DRNVyzOgVhct3Ix1q1c3PfrVi1dgGw6ifse24XLz9+M6dm6Q7FIG/uzI+r/7ZWxyLEMcpkUJitVAEDbaHA+kRSLYDNAekGgcnaAk4NBLfLXhX5VRS2p5SEW+7VTdec0DsWHfHP43LBbhLqz3mJUzGuFSroUi5RLsTg1Axi3hJZikfEnSQmN8LW6DIObcPPD1NgUcLb+b4mXQnMZaYLuKhZ9IGv692InFgmCgMiLHjLQRNu4HqfSKTx898P47Hs/i0/c8AnEkjEk1iQAWzn7pmfoMRprNjpt1N375ZgRixNlxBCz1jlku2ZTpD+xyHIsVqxb4ZuzaKrzTBK1lx2q+duIJ+MOK9RMPoPZ8iwa1QZiIdbppro3T+cDl5kam8KFV14Yuh1+GF0yitEl/av9C0MFDC8cxo5HduCyZ12m75MRl2KRoC0i1d73yXE5tOU2NE2zhtQIgkB+KG8pFhVFgSRI4OIcmmqfzZ55gmEZi8w8GYrBfbV9WJRahGysvwGEAQYY4NRHJGLxoYcegiRJ1r+DMJA0DwDomX5qH5N5frl4q0opLMrHsW287qtGBNBTsZQJURGZr024CLCZ8hRgXOtYmgSB/hWbYeBoMpSEkEQB1cq0RSyKAt/bCpUmQdIs/PaGaKqv7MSioFfAifOej1Z2FG1RRsJWgJtWqL/64bfwzc9/Gpc/42/AxrtNDcqwo6rOdCcIU5mslbFHaAoYY5vNCc0oGYu9wHfakKRuc7bVqCOdzVl/MxTpeywRBBGYszhTnkRxaAQpQ53Z7mGHGmcpSIqKWCLpSyy6t6kf0hkApid0de/QyMKexOL6LeeiODR/eyyW5bBy3Qbs2vYItpx/MQB4rFBjNIVaiGJxKM1hos5DVjRwNIVcoWTZCpvZjCpBz/v3lOBofODZG/Hcsxbhn3/yKL502z5s3juNV1+0HHmXHSnpyvuMglSMhiirUDQNZI9Jvp0TDeQTDNaODsLHTxQGtcgpiO+8QP/v2qcDyWL4skDXctJPsXg8Jnf7JhZFwN7/ISIQTrXDzr/nrFhkrf0zXp7BM25v4+r1ObxzXSqUWAQALD4fGLu397aGodYlFjVNw5HJCgRZrw3aghQp440MGiBR9IxFewa3+c8gBZlphfrD39yOD/zXd/DMS7cil05iasa5f+0knN0KtWOzQrWyctxWqEIdiOf6srxVVdVQLCasdfoRiyThvdqdu3E1Hti22/P4eHkGT7vkHOSMDKdaD5WAiVQi7shYTCZiaLV57zb1iUq1jg4vYMlob4XMs6+4ILJ9axhIkjRyFndbZKAjY5HU67uWMRjYi1gEgNFSHhNGM69tqDlOimJxrsTiOa8EqocBblBnnEoY1CJ/XRD8BqFC0JE6DjJSgdK3nWpVqDr+LsaLiFG9HRQUQr+w0qDRlFzEIh2DaBty4ijOQSIKigCacGYsVqYqFrHYS7EYRzyStakdUYjF8ngZWXSJCFILvq+jQaOtthFn4745jCbhSxKkRSxqqgZVVQMJsGZD34/333E/brjuBmw+bzMy+YxDoQfAMZzsIClV274zNimKFWoUTI1NYSmWWut0EIsEBUVTfJVpazevxfaHt3ser0xVsHT1UisjstlomqWOLwRFgKZpHivUTFYnFt3b5IapWMwxOd/nRUHETHkGQwt7Dzk9/cVPx/aHvJ9pLli3ZR12PboL7WYbfIf3zVg0v3/C1tfLcTnwMg9FUxyWvYWhgqVYNPM8T1bGYkvR67UTfX1SNRUH6wdxyaJLkAmJshpggAGemIhELN56662+/x7g1MWf90zjDd+8D49/+Ol9qWkmG97iWYxoDWhCkFVf5VgQGrwcqBAiQqiIhw9XQ9ebDlEsmlaoMdbZNJydngJWG+9NEOAY0lI3zgcm0erOHnTDnvEI6IpFu3Wq6qOoYykSBO3/U7aINlvhYlqhkmwCIEjUeSexWJ+dAUGQ+ObnP41XvvVavOr/vRuz7e7rzc0xCUgAyGRzaBlKBFLTrG021WqNCFaovTA96bTUrVdnHSQeTZGQFdX3aFmz8Uz89iffdzzWabfQbjWRLw1btq/2z+SHBEtBVlXkiiVMHDnked7cJlaoQqSTgTmdQShP6I3doZEFwN7wm47/+t9f9bXuMKzdtAWPPXCPTqwDKAx1LUcITQFDk+gY1q8k7f1Mw2kOLUG2fvf54pDNCtUgFkkKNKniGPyccOaSHH76tifh63fsx3/dsgfv/+ljeN7Zi/CUM7rbzcT0Bi3rs71BSHE0ZluibtXX42VmvmI+Mb8g8wGiY1CLnMJoV6IRiyb8iEUpGpnSF2SxPxtmdwMxApmGisvasuMapKG5CBmLhmLRmHyemJ7Fb/bIKHM5vDOW9X39CK2TZJXsZhTzywDMl1jsEqSz9TY6vIC/+b6EN5zDoCNIet6t8bwgKvClZ4L2tSIBJOlQLIqKqVj0J3pmDBLw/f/5LbzzNc/Fp9/zBlAU5SEW7SSc0wqVtL6/dkf/Xr1WqHVDKRp9AKU8U4MkdT9HpVrH8sW2YRyDjNYVds669tyNq/GRL37f4W6gqiompmcxWspbeZImqdoLI8Uc9h3p5kcXc2mDWHRtU58w8zWjKBZ//qUPzvl93Ni6aQ2++4tbLStgR8aiYYXaFk1isXeTfaSYw6RJLBrHQCI2B3vjeWLOikUmAQwNLMNONQxqkb8uiL0cB1xoy+15W6HOdpz3zXkuH0kNKFL6tnIEh4bYAAHCIthiVMyTseh4rSJGylgMuj+Kq3GwZH/uNL0+kyzJmJ2edRCL9klqoeOy/zQyFimGCs1YVBUVhOEIpRiOS2yMhSh4v+uGUYv8z6f+B8966bPwjo+9AzRDo2I4N5hEp9021J7vRyiERe6Z1qBRFYuJkAEhgRcc63GvkyZp3arTJ/lq7ea1+PUPfw2BF8DZVPwzUzMoDBccisV4yBCPrMpQNRX5Uh7jh7p9mkw+47tNbtSFOkiCRJr2V4uaNrhRMhbf+5n39lwmKtZtXofvfel7qEzq37HbCpUhGV/FYiFWwFhrTFfN2u4f8qWuYtE8BrjYic9YZFim70GJY4XJ1iQERcCGwoZIAwUDDDDAEwtzzlgc4NTGv/9mB3hJxd37A+yq+kCQYnBvuYnfbpvwPC4YVoL9gJf7t0C7Z1+4Ci7NhSkWVVAkAc6lBqxMOzP8ehGBYVAVW66h0UDjmPCf3Myk0/pVEnnHRFG76SWbWJq08uTcEAwWR5O7hYtphUoalnRuPvfwgb3QNBXv+9QX8Jq/ew9IkkSl1S20U5T+WcwsRgBIZXJoCfrnJaCCNLa53dKL8dqs/3d1iFqI7Ju+Gel4KU+MA8Y+VcU26jXnTVeQFSoArNlwJmbKk7rVrYHZaZ340jMW9YK2WQ8vgJMsDUnWcPaFl+Le22+2bhQzOb3gbBjblOCngfoElhaSgevyw9SE/v2XRvqzDp4v1m48C4f27cbYof0A4LBCJVUFFEGAtxSL3t/VcCaGpiBDNohsnVjUbwZMclkFhT4FnKGgKRJvvmwVfv32S3DBigK+f99hfOym7ZgR9WOPiev7vh/FYjpGQ1B0xWIYGryE8RqP9Qsyc8rRHGCAJyw+lNX/P98MN78bW6lPdWEU9KtYNLNRCquAkY066dQLlb3Ovz1WqCyIXs0DoWkoFgMyFm31hIlRg1iss6OhVolShLw+AEC1OyxzeEq/lu2sqHjP7/XvSla7xcLRaf9rZS/FIi/ZhpxMYjEg12jXAX3Q5ssf+jtc909/66uWB5wknKlYVDWgLVOWerDe0ht+DitUTTMsaBMexSLlcl2w44gt7wnwUUEGWKECwLkb16DZ7lifDQBmag3IsqJnLBpNxGo9GrF49ZPOwW/veNDKnyzmMtY654PDE3p9NJeMxflg68Y1ODIxjYe37wMAXyvUpuGOEUWxOFLKda1QT5JikSAIMMwgh3mAAZ6o6FuxqDgViyrUvhWLbivUDJsJzRY0YRKLJEg0pSZom4YgRscg2dwP3MSioAhd8tDAzFS3FrGIkoDbHk7jQhWLqo+rkJ2UAbzX3OpU1Xsdtq2mMubsc5nEYlDGokn4aqIGgtGv+6pgxOME2GSPHdTvzd/03jfhXZ96F2jjfF7gCpj+7TSWtnXFoN021KFYVLrqMNNWtdPq+JKYbrhzHe2YdtUiJom3/B+XY+SFIyAJMvC4W7d5HVRFxd7t3fpVFETUq3WHFWqzFm6fJKkSVE3F1ku34qG7HrJUiyax2HDXRy7UxToSdCLQ3nZqXB94nkvG4nyw7sx1aDVaeOSeRwDAq1gkKOuz2o/hfCyPjtTxWB/nS3nMlvXftEmGnyzF4skiFg/UD4AAgXNGzjkp7z/AAAMcX0S603n+858feYU33njjnDdmgGMPe+5dVNh9wcPw4weO4Nt3H8R5ywsoJLuNIVHpT7EI6ARYos/hlbv2TYc+nw5p+AuyghhNgnLlF86Up2BP79GzAvvMVjAIt+r0OICNjufiPZoLM1NOolaWJIe1Rrte9byGpUiQtP9nFY3XaqoM8+duEosEw0IjYJGAE0cPYWh0EZKpNEYXLcVTrnmBtZ5Ks1v8dhWL3WIxnc2hYhxrpKZaisVOq4nSyALMVsq+Dbr9tF6M76+0sGqou+cVn6yt6ckxqEILs7dej8bDN6H+rLM9+4GXFd8JxbUbzwQA7N72CIqX6zmLMwbJWCwNgzIUnz0VixyF6aaAC558FX7+v1/Hvp2PY9UZG5HO5lCvznjIzn5dJsoTY8jkCuDivRtm/eLwTBtf//N+XPvUNci4GrlrN26Bqqq497abkcpkwXLdm01Sk0ESsKxfST8r1BQHXlLRlhQUAeSLJRw9dABA1wpVAQmGJNA5pubCwNJCEt98/fn46UNH8bGbtuPHlSQy5z8fNK/fbPZDLGZijG6F2uP8tXtKv9G6eNUgX/FEYlCLnELozAIJ/3zTSJBFQHU1PI6LYrEDcP6T0L5olYHiKoBN6gRRFCXbtMva0qU0AB3zWpkeuEP/b3aJ/l+xqdsd+hKLLKBKPcyZvZBlBTSAqWoLi3osqygKqPoR6+8jBrFI05RFWolqt5842/QPcwwkFlUZIEgItprUVCwmYpwjJ/DweBmjpTxSiTiKuTTe/NJnhm673YazkNPriH+9k8OmM0ZxqdGIbbQ6WDRSxNHJCtodXnf2UkRAU7q5nzYsGini0FgZs3VvU023Qe3Co4I0jhk/YvGcDasAAA9s24MzVurf/fhUV51nVyza1ZdBuOaK8/FvX/xf3PnQ47j0vM3WazxkZ584PF4Gw9AYLubmtZ5+sXWTnkv1i1vvAUWRGCp0VSq0oVhsCPp+TUZSLOaxbY9OmHcViyeWWORYZmCJeZphUIv8dUHwc1gIAS/zDsWiZvyvH5gWkSbSbLQ6xiQWAT3rkQEDyehjcBTnsUK1Q1IlD7FYmaqg/H9llJ5aQpzW7001WnPYayqUfl3nVKe1qhtC27sf3cu3G22H9ebMpH59pOzuM7YWQafurEUo6PafFOtPwpr9BUVSLMWiKnWJxYZtKKcyWUEqmwIbY0EzNF7+tpd71jfxvQmsfMpKAF3LVMClWFQJ63O2m22URkuYnpiOpFpMppMQIaLT8NZcZVsONtAlFlMbU0htTAGartCkfdq9K85YAZqhsevRXdhw9gYAsBR1xeEiUmm9lmo1WhhC8ICRqIhQoeKip1yEL33kS3jozw/h4qdebCkte1m+1oQakkzSYRvq+Ixj+mccXnhiicW1Z64FANz1h6eq7LgAAQAASURBVLsAeIlFhmSsTEm7FWoxVkRH7jh+/4BuhepRLMZPvGKR5ViIrf4U2McK+2v7UYqXMJqcf4zPAAMMcOohUsc1m81a/89kMrj55ptx//33W88/8MADuPnmm5HNDoJYjxUm67yl/jnRMKfIe0HVNDR4GRM1pyIgSmPeDaFPu1VZUfHQoap3m2yFbjo0Y1EFR1OgbDf7iqJY9o0m5qJY1IzpMIn3KiVitLO50Gw5G6kz5XHLltOEaFtPu+Et0BiaBBEwIWjtV8WuWDQ84Rn9hoIkCDx41214ywuuwo+/+WW0mg2kcznHeiot782AXbGYzuTQdigWjWWaTYwuWgpFlkPzCyXXsa6I3vcz1Xz1e38MTeyg7rJXZSgCcsCxO7xgMTK5AnY/3s1ZNNWphaGRrhVqI7wZl2RpiIqK9edcgHgiibv/9HsAQDpXAECgUauGvr4XpsaPYmh04bzWEYR79s/gyGwH2456P+Py1evAcjE8ePftKJScxTupKSBJAp12CwRB+N40DqX1Y6nW1ovVfHEIVZcVqgLymCoW7SAIAs87ZzH+cO1l2JxXkL/i9aCzeuHajxVqOsaAlxT0On3tnGggF2dwxoJBRsCJxKAWOY1gkjp2yP5k1bzQZ0MQ9bHey7gxvcv5N1+DZG/k0CwIe1NR04CbP6L/e2Sz/l+xpSsTSTNj0XZ9MxwJAvpkPSH2yKMGgOnKLFDv2lgdmaqCokiMlroZd4Lc/QyzPk0uAKAZg1jc9ALnE1bGYrfZYq4vbiN67nzwcZz7gn/Ah7/wXdSaLeQjkGt2K9R8Rl/+/ikaVXaBRfLVm22sWKxfEyzVoqlOZbyDPJmk3hRrtryf8/D4tEOB5lUs6s/5EYv5bBorl4zigce6ZLT5XTuIxYiZheduXI2RUh6//KNug2vag85XsXhovIzFIyWPmuR4Y9miYZTyGfzhrocxUsw73p8x8r0blmIxArFYslmhniTFYowbWH6dbhjUIn9dEPvMfxYUAbzLLaFfxaI7HzHFpgKWdEIku9vaFJ2KRTeRyPk4MriVY5WpCsq/LKN2XQ1L00uNhZyvERj93Moo4Q4uvopFVyuyOl11/D07qZ+/GZudtGrL1Og0vcQiAFAxynegWdaMGkQGCNpphWpXLO56dBfe8uy34Csf/wpajRZSGf/9nz4rDdWQUNoVi5lc9/6QUJzE4oIluitR3T2U5APWuH5IopeAmhpzxuf4rU/VVN+Ba5ZjsWLdCux6tFu/Vqa6tp9sjAXDMY7P5AdTsbhk5RIsXrEYd92sE3HmtTuKYjHNpD2EtonJsUlkcpnA/MvjhUwug4XLFuKBOx5ALBHzWNLSJG0Ri/Y6pRgvoiW3PMRivpRHtaKrb+2KRfdyxxs0Q580xeK+2j4sSS9BZpAZPcAApyUi3TFef/311v9HRkbw4he/GPv378eNN96IG2+8Efv27cNLX/pSlEql4729fzW44OM342VfvTvw+UeP1HpmDM4VsltF0AMHK86iQ1T6JxZbQn8TOwcqbV8ysmEUtTFCRirEClVRNXAM6cgvrFdnPBmGibl28gCIgpdYtGcZAsDMtJPInJkc9xBLgtAtmls+xCJHkSB87CmBLrGoyt0bDVUyFItGs/IPP/kO/unNL8OGLefiWS96FVqNOpJJZzPPrli0tsWlWGwZhTlhKBZFUYAkChhdrE/lu4lAO6IcctOTYygOd6ec3LmNNEUGKmUJgsCaDWdi17YusThTngLDckhlsjZiMXyyLslRkGQVFMVg65Muxz0Gsdh5+oew7L2/CLR8jYryxPEjFh8b0z/bZMN7XFI0jdXrN0EUeBRsNqgAQGgySIIA32mDDLDhKaUMYrGjF8i5Ujdj0bRClTQCjEvdN1sp4zc/+d68CVkTuQSLy5boxzXJ6TcBHBNdKZCJ0RAiDEbsmGhgRSmJfL8y6wHmhUEtchpBFgC3Mv1UsEJtTPZexg23FSpfg2T3CnNnCO29GThs1Hfm6ckkFgkSvCCiWm92CQmj+RcyKxUKO5kXhPL4IV01ObwRWHoRDleaWDhcBGVrmNgNMGYCiEUrS86tZlX1jEVelCwlv1mfxI3P+d1f3IorXvM+rF+5BO98zfNQa7Qsgi8MdivUQta/+acTi/q1zSICzeYK7X2PMIXZkclpLB7pnmOCFYv+rz9342o8sK2by2mqU0eH8ohxLDiWiWyFSpIknnXZeRaxaG63Z5v6xOHxMpaMnvjzKEEQ2LppDXhBxIKhvOM5M2Oxwev5lFEIu5FiDpWqbjUbplicqTbwzZ/8wSIhjyXmnK84wCmLQS3y14W5NOKrQtXxd7/EYktqOV4TpgS0w61YdFuh2pHwufbZCR5N0zBTngHLsbqlsznE7KpFTMUipYX3THyJRdfnqlWc9+EzEzNIpBIOK3TV1v9xK/nMz0ty/vvLJHIUUQFpxNPIvP6YSSze8ds78PYXvh2lkRJe8bZXoFVv+WYd1sU6lr1jGe6SdDKtVQ+2QjUJ1FazhdElei+jNhPecwDCa5HyeNlBYLrVgRRJQdXUQLXs2k1rHcSiaXtrqvNS6RSaPq4NdkiKZB2nFz7lQtx9890OQrcXeVoX60iz6UCb3/JYGUMLT6wlu4l1Z66DKIgetSIA0ARtKQ/tisVCrABRET3njHwpD0mU0Kw1wfPBisVmvYnf3/h7D2l8LGD+jk8GsdiRO5hsT2JlbiVSTLQhiQEGGOCJhb5HUb/xjW/g3e9+t+MCT1EUrr32WnzjG984phv3144j1eDp/Wd//g489wt/npPVaS9EVSyaODjjVN1Jc1Asjtf7a/7tmmwg5pNXOKsauYFQe1ogsjRp2YACOtHkxnyIRcmPWHSRnbUZp6XWzNQ4hlz5enbFIt+setbJ0qQ1Ie+GaBbfNmLRtELVCAozd/0fvvaJf8ZzXvpafOQL30YynUGrWUcyncHhmTY+87udEGUF000BSdr5ndoVi4lU2paxqIEiCHRaejE6ukifcKxXvaQbDf01UTI2pyec+8ZNVLIU6VE+2rFm45kOxeJMeRKF0hAIggDLcmBYrqcVapLTFYuqpuH8y67Cjr886FC5Tlfml2lanhjD8IJepnX9o9aRcGRWP59Umv4F5dqNWwA48xUBPWPRtEL1s0EFgFJab/A1jAGBfHEInXYLnXYLQqcDgtDzL82f5KFd2/Dht78BL7vybHz2/e/ET77ztXl/RjcoVj8XcAHb7IdMnIEghZ+/moKMsWoH6xdkkI0PGoYnC4Na5BRDn00zX8WiZK95jpFjg9TnDXRjvPcydsgCUD/qfEyoQ3QQi10ChAB0tWJhFWC3NpNaOgFJkJiwKdjsr4/PmVjsfX2tjxvk6LKLgCe9HUcqbQd5BjgVi9Wmf83GBtm9K6YVqgyzdDMzoGMcg4npWbzyHz+Nl19zOX7/jY+hmM+g1mgjm45ALNom6v0UjqIogRdErFikN/M8pJuPYjEMRyamsXi022jqR7EI6DmLDz6+F6oxUTVenkEuk7KIsmw66SBLe+FZl52H7XsPY++h7rE7byvUiWksPUnNPNMO1Z6vCHQzFmsdCalELJK96EgxD03TUJ6poW3U0nZi8c8PPo6XXfspLLz0lXjtP12HT37tR8fqY1iIDYjF0xqDWuT0R7+KRcCbkeinngtDS2rNySZRprqDRG25HapYTDJJz+vtisVmrQlJkCxihSRI/fk51iKRiMVpJzk2OzmLIVfWr2arRdzEoqlYJFj/64NlhWrrOyiGCp6NsWg1WvjA334AF1xxAf7jh/+B4kgRrUbLyhy0Q1D1+lIg9f86MhbtVqgK0c1YbNgUixGsUMNQniijtKBbp7nXRxKkTioGXCrXbl6LA7sOQDDU/JWpCkiKRNawIE+mkz0Vi6IqWnmCF155IaYnp7HHNjjV6zPWxTrSXDCxODU2hZGFI77PHW+sO3MdAK8NKgDQlL9iMR/TB6LqgvNz541BqdnpWd+MxfLRMj7+jo/jhVtfiI+/4+O4/rrrj/GnARhOr0Xmcj6bLw7WDwIAzh46O/KQxAADDPDEQt+/bFmWsWPHDs/jO3bssG6SBzhxGK8de+uwfi1YD1WcxKKoaKHr8Cutx6r9EYs7JxtYWvAWeXb0ajpwNOnIRzMz9+xwKwz7gR+xGHeRoR5isTyB0ohbsdhdT6vunW5jaRIIIE+6xGL35sRUUmo0C5Vv4U3v/Qje9s8f6+YMNhpIpNL40QNHsGOige3jDVRaItIu5ZedhCNJEk2TWDSsM9tNJ7FY8yEWOU0vbtwEueLOo4JuhWpX87mJSoYiQrM91244E5WpCVSM73lmesqhzkulM9GsUGUVqgZc8OSroGka7rv9Fuv55jyVd2XXZzxW2D6uf1eL83HMtiVfAtYkFgtDNitUJgYVhK5YbLcDC/9CggUBoG3cnJl2qtXKNAS+Ay4WhyhrYCj9+L/rtz/B2KH9ePM/fggXXHaVYx8eK1CG1S/bh/9qKqYTx2EE9e7JBjQAF68qDPIVTyIGtcgphtn9/S2viD6KRVst4ZOzOyf0O5nb7FOx2JiAp6pxKxZtdmPnFDvA+MPAisu6zR5N1UlVI5/QVLBZii1qfspoMYJisVPWb/oRywEwVHmjzmYKb7dCDchYDFRnabJlhWrOa5nrS8RiUBQFn3zX6/CNj78TrLGOWrNlWYOGwW6Fmk56ScKG0fwxFYvT7kZXSAan377T1XzdRmc/GYuArlhstjvYdUAnpCemZx3qvFw66fhMvfDUi88Gw9D4laFaBOZvher+jCcSwcSifl6vdSQkI9qijRr7dWJ61lIsxmOcde3+9//5Pzyycx8+9o7X4MXPeDJ+fdv9geuaKwaKxdMbg1rk9Ic9lzAqqnzV8bfiHqTqgbbUhqRI2FzajDW5NX2/v7kOk2gDvMRijPKeR+3Eot0a0wRDMseUWHT3atwqPj9iMYoVKsmSvg0n83uwr0M2+hexeAyqquKVf/9KfOCLH7DsN8OsUO1wZCy6FYsECVmSIfAChhcNgyTJnvmDdqg+Ll3lsTKGF3Tv2d0kHmVkdmsBtcjaM9dCkRXs3a4Pls1MzaBQKlhEWSrTQ7Go6WpeU7F45vlnIpFKWHaoQLhiUdM0NMUmclzOY8FrYmp86qQqFgHn8W/CtEKlKMpB3JrEYkNy1mAFo56ZKc84MhZNa95td27D4w8+jlf9w6vw9Bc/Hffeem/fwwi9YNrqum2aTwQO1A4gRsWwvrj+hL/3AAMMcGLQN7H4ute9Dm94wxtw3XXX4Y477sAdd9yBz372s3jjG9+I173udcdjGwcIwVTj2MvZw8gZP4xVO56LX8tHSWmqexq8lzQam+2PIN0z1cTifO/GQljfn6VJUASBf3vHG/CjG75kZe7ZEZ+XFar3M9GUm1h0W6F6iSXTShIA2o2qZ50cTYIIKMhMqzHFljNVmRwHw7AASaN0+avxjBe/1vGadquBZDoD3lA5CLKK2baItKu36SbhLMWipoIiCMsqdXSxqVj0Wkxxmr5dJilJM/oxct/vfuJZdnpy3EG61ms+Vqg9FIsAsHvbIwB0haqdWEymM2j2sEJN2RSL+dIQzth8tpWzCACNmvczRkW71USzXsPw6LFXLD42VsNwmsO5y/KoNEXru7Vj7aazAACFUnefEGwCKsmAJIhQxSJNkcgmGLRE/XvMF/WbgNlKGTzfQSweh6ioSBtWMq9890fx5RtvxvNe+UZcevWzsfOxhz35pvMFycZAEnDYHfdC2lAUt8XgRvzOyQYyMRrrFw6yc04mBrXIKYrmFLDn5t7L+SoWo5MpkdEvsdiu6BmIUeEiVAlVAlQ5ULEIABg6Axjd1P1b1CfCv/LL+/Gvn/uWjVgs+L++T0RRLCq1MQAEkNSn3/2IJV7sXl9nfSy1gRASRZF0m1dRghldfXRGr20ScQ4Lh4t475te5Ggy1pttZFMRiEWbus9voKxuZFkvGimCYWgvEch5G4ZnrlsBAPjIl77neU4nXe1WqG7FopHxFNDMO2fDagCw7FDHyzMOEi2bTqLaCLcfsyOdSuDy8zZbdqi+29QHFEXBkclpLFlwcpp5521aC8BLLDKkBpA0moZiMQpGijkAwGRlFm1eAMvQoGkKpXwWX//YO3Dn9z6Lbb/8Mt71+ufjZc+6DDv3H3EoP48FBhmLpzcGtcjpj7koB92KxX7JybbcntP7mtCggVd4MET3muwmFv2GRVmSxZc/9mV87l8/ZxGLdsUWQzLAHGclVFWF4oqccauX3BmLMxMzGF447HhMsdU0bdcQjl2x6GcBalmhCt11NCr69ZKLcUhlUnj9u1/vUKG1mv6KRTfs6j5HJqAKECDQNmqRVCaFdC4dSbGYM65hj//5cU+vrTxRdpCubhLPJBaDur0r160ERVOWHWplquIg0ZLpZCixSKokREW0iEWGZXDepec5icWQz9iRO1A0BcWYVxFoYurolIM8PZFYs2kNCILwVyySNDrtDija+RsqcPr+a0lOpWfeyCufKc90FYuxbsbiNX97Db79p2/jFX/3Clz9/KsxU55xKD+PBVhWr0VOhmJxX20fFqYWIsflTvh7DzDAACcGfROLn/nMZ/Ce97wHn/3sZ3HppZfi0ksvxXXXXYd//Md/xKc//enjsY0DnGCEqXX8UG4KnrxDv8a8aU1a63QLZVXUm1P9Ki8FWcXinNMiy88WNhEyVcdSJEgSuP33v8JXP/1hzE6Xkck5GxnJeSoW3dOqlHsyb9ZpnVmbmcbQqNMKVbBZoXZ8iC+GJqEFKMksxaKkFxHC2E78/Ltfg6IoUOHfhGs1Gkim0mgbhbsoK5AUDYVYsGIRAFpGkc6pHZAkgU5bL0YLpWFwsXgAsWgoFo33ooysyP2P3o8H7vyTbR90UK/OOPaNxwqVDs5YBICRhUuQzuYtO1TdCrVbrCZT6Z6KxQRHQZBVi8C84LKnOrZzPsRieVxXLwwtiKZYFOVwZZ0JTdOwbayOM0bTOHNRFpWWgLbPb2Xx8lW4+Mqn48zzLgKgK5cJkgQBzWaFGnzJKCRZtAQFqqYhV9SbrrOVMoSOrliUZNVSD44sWWkde+ddciU0TcP9f/5jpM8dFQTNgqZIRHBLs5CO6XfLnZBG/I6JBlYO8hVPOga1yCmKr10JfOf5QO1I+HKK5A3XlVx1wLFQLfZrhdqp6qRnVDTGASYBXtFPNJSsN47EAMUiAGDZJUDKZu0k6tfKn9+9Gx/90vcxMT0LhqFRMK205kksyoqKdid8Qplsl4FYFqBj0DTNQ54BTsvynhmLbqhdK1SWIvDIhIL/d8ND+nsTpG8tUmu0+rZC9YOpWMymkyjm0k7SjY7r2ZYujBpNoH2HJ/Dj395hPa5pmm6FGpax2INYLOTSWLF4FA88thuAH7GY6PmZ3Ljm8vPxp/setT7rfDIWJ6ZnoSjqSclYBICFI0W87FmX4SkXbfE+STFodgSkfJSpfhg2icXpKtq8gISt2fv6F1yNi85ebx17T7nwLDAMfcxViwPF4umNQS1y+mMujfia4Lxfl3yceMLQltsW6RAVduJJgv5+YRmLFvFkA0Mx+MFXfoCffvOnmDGGnI6VYhGalzh0b4MnY3FyBkOuISfFdg/bqftnLBKGy5KbjJM1GQQIi5wUxgX8/L9+DgAgKf9apFWPSCzW/YecCIUASZBoN/X6MJlKIpPPRFIscjbr7l//8NeO58rjXWJROCr4WqECwYpFNsZixboVFrE4MzXjINF6WaG6iUVAz1nc+chOzBp5xWGKxbqoPzeS8Lc67bQ6aNabJ02xmEwn8cyXPBNbL93qeY4hGHRaHdC088eQM1w/2q5ByWQ6CYZjMDs9C77D65mlHGP9xhesWGAdM5u2bkIilcA9t95zTD+PpVhUTqxiUdM0HKgfwNL0UmS4TO8XDDDAAE9I9E0skiSJ97znPTh69Ciq1Sqq1SqOHj2K97znPY58gQGeuBB97BbCUGmKHlKvyQc3BKttCapFAOn/nWoKfUn+WYrE0oKz4bS37J2qStDBrIKpWDRhZu7ZMR/FoqZpHrtOt3qqVnFaoQLAkEux5rBCDVAswufmAABEYzJQlQW0tt+Gif99H5LpDPKlIRDuZqf5Hs06kqm09Z02DcKwlHC+h0exaJDJrKpvb9tQLCZSaWRyedRnvVaojKbf+LiJnPzQAnzm/e9Aw7AWnZ6cAAAURhZi2Xt/idSWp6HmWh9L6cRi0FFEEATWbDwTu7YZxOL0pCNPMJnJ9sxYTLAUNA0QDULvwsufan1OAGjWq6GvD8PUxBgARM5Y/Pqf9+N/bt8Htcfv5shsBw1exjnL8tiwMAtVAyZq3qKSoih8+L9vsCxRzQEAQlNBkgT4ThtkgDIWAEpJDm1JgaxoyOR0K5XZSrlrhaqo4GjvcZovDWHtxi2497Y/RPrcUUHSLGiS8JD5YUjF9M8XlF3bFmUcne3gjNFBvuLJxqAWOUXRMq5pswfCl9MUr2LRbc8zT2JRAwH0a2Em1PTcxKiojwPJYf29AJDGDbsIGxnoJgZHN1nkk76w3rhpivq5fLw8g5Firmu1bBBfVtk0sy/69hkYm/Jef+3ghAoQzwEUi9laE+2O4FEstsXeVqgsE6JYJEkIkow7D8u45PoWUjEayXgMVMDASq3ZRiYVhVgMV7rWjWZeJpVAMZdxWqGyicCMakAnpt78wc9j3Nh/07N1iJKMJbZcI4+1KmESi8HbdO7G1TbF4qyDWMylU31ZoQLAsy4/H6Ik488PPg4AmJmHYvHwuP4bXrrw5KgEAOB/P/teXHreZu8TJI1WR4ysWIxxLLLppK5Y7AiOfEU30qkELt26Cb/6072By8wFMW5QK5zOGNQiTwxMtadw/nfPtzL2+kE/pCBFUKAJ2mOFKvTpntCROn0rFjty97osaV5ikXXVIn7Eon2ZmakZJFIJh/qOpdi5E4sApiedfQ+PFaorY7E+XfdYodqJRd6V92wpFg1i0W2/qqiKZUvafLyJvR/Za21DEHnYarSQiFCLBJJwhhWqSSwm0glkcpm+MhYpmsLnP/R5jBuKepEXUa1UMbRgCNvfth37P7XfYyNrKlKDiEVAz1kMUiymsqlQYpFSKcia7Ph9XHDFBQCAh+96GADQCKlFTGJxOOFfa0yNTQHASctYBIB3//u7ceGVF3oeZykWfIf3EItxOg6O4jx2owRBoFAqWBmLXJwDQRC+v3GGZXDuk8/F3bfcfUw/C2MMOfV7Lpovyp0yOnIH6wvrParpAQYY4PTBnNJTZVnGH/7wB3zve9+zLsZjY2NoNqNb99jxhS98AcuXL0csFsMFF1yAe++NdlP3/e9/HwRB4LnPfe6c3ncAf9Q70QpZs8lVbYseYijMSrDWkTwKx9mWZJE1UbCsmEA24bxZ3zPlQywyIcQi5cxYrJQnHdaYgE4kzQcmIWbCQyzOeInF0ohTsSjyHRAGXdb2yVjkaApaQBCyYGQI7Lj/Dkz//N+RPOMSXHzVsxBL5XyXV1UVnVYTyVTGIldMi9PhpLN4Mkk40y7ErYJrGeeDRDKFTK7gIVmBri29m8h5ysvfAr7Txn9/9J8AAOUJXc2XLulqvviq8z3qQJoioCjhJNvaDWdi9+N/gSxJqM5UkHcpFpuNXsSivg94Y7+uOmMTisOj1vONeWQslifGdMuNodHeC0O3FD402/FVH9qxbawOmiRw+dohrBrWb5rGIiiETWKRVnjLCjWsSTKU5tASZMiqCoqikM0XMTutW6Fy8TgkRUUsIO/w/Eufgvv//Ecocn/TuWEgaU7/vfWhWEwZVqhBisXdU01oAC5aXezLYnWA44NBLfIEh7vB5yYWtf6GnNzQCAqQ+yQW+Xr/isVkd8LbVCw6MxZdxGLS1UQR9OO1IXSJRYcNpNHou3PMOOfs/HV/dq0Ajk5WQp9PaQ1DscjiiNH4cysW7efF2SDFokEsejZP1TMWb73nUfzDrwVctZLGP//NGUiGEES1RqtvK1Q/WMRiMoFSLuNU8zGJwMEsAPjKh/8ONE3hjf/6OWiahsPjumX3fBSLgE4sPrR9L1RVxXh5xlJIArpisR8rVABYtXQB1q9aAl4QjW2aB7E4oX/Gk6VYDAVpKBYT0RSLgG6H2lUshje1nnnpVtx6z196Knz7QYwduBuc7hjUIqcOptpTvo/fsO0GdOQOvvX4t/peZ78EX4yOWaSJiX6b+aIqOojCKKgKVevfforFSFaoNmKxMlXx2EAyJAMiZGi7F6YnnH0P0tWKrFaqjr81TXMo1giCcBCLQVaoJKOv1229KqsySILEjvt34MBnDyC+Io7LX345GI5x2J/aETVj0Y+EUx9UwR5iQRGU9XwylUS2kO0rY/G8Z52HbCGLT177SSiKgrJxnR5aMASlpQAq0Kw3HZ+XUA3VJhlOLB7YdQAiL+oZi/1YoSr6/uoo3eM0X8pj/dnrIRq1SL1aDxQO1AX9NzKU8FckTo3rv2W3Fe6pAJZi9YxFxvsbynJZtGXvcFi+lNcVizyv53lqamD26gVXXIDHH3zcQxbPa5sNxeKJJhb31/TIiK2jXuXnAAMMcPqgb2Lx4MGD2Lx5M/7mb/4Gb3vb21Au6xe2T33qU3j3u9/d9wb84Ac/wLXXXosPfvCDePDBB7FlyxY87WlPw9SUf2Fo4sCBA3j3u9+NJz/5yX2/5xMR//6bHbh1R/g+OVaYbfdXQPOyirIr67EhBBMEsqpBkJ0X0mpb9JCNYVicj1skgAk/YjEZQiwyFAnSoVicQmHIWbzEfQqGflCZcma10K6i1Z2xCMA3Y5E2iMVO01tgsDQZSCyKigqaJDC0cAlyl78WxWddC1mSwCb8C+ROqwlN05BMpy2itynIoEkC+bjzPUzFYjqbg6ZpHnKw3WqAJEnE4gldsRhiE2oSUiaS2SL+/l8+gVtv+gluvemnKE/q+9H+/bitUBmSdKzDD2s2nInK1AT27dKn+ou29SXTGbR7EIumNa6ZWUUQBC687KnW8815EItT40dQGBqxciajoNoWe+ZnPTpWw/JiAqPZOIZSHJIchUqrd+PcJBY5pQWCAPgeVqgmsSgZ5G6+OGQoFtvg4imoGsAF/J7Ov/QqNOs1bH/kgZ7bFRk0A5okHL/xXkgbisWgc9HOiQbSMRobFgysPE42BrXIaQBPxmIn/Pl+V09QBknYBwkn1L0EZxga40C8SwqRxmtFwtbAc0/ouptXhhVqwzgtuxVsJjHJmi87dDcw3V/2ytFJ7xCTHXmaB9g0QLE4MuFPLLaFCMSiMRHtbuZBlQCCwIrFI3jHhSx+/OI4VI1APCB/TlVVNFodZCPYj/WyDTWJxXQy7rVCZWKhisVSPouvf/TtuOlP9+GrP/i1L+naaHUgira6mYhGLDZaHTz0+F602jwWDNmIxVSyb8UioNuhmpitNz1W/FFxaKyMZCKGXIRG6gkHSaPZEZCMR1MsAsBIKYfJSrWnYhEAnnnZeRBECbfe85f5bqmFgRXq6Y1BLXL6Iygf8b8e/C9c9aOrPMRJjIqhJbWgonsO7jdjEQBmOuFOA270IhZJgtStTA34KRY5snuOdCvYAK/qsV+4FYu06/pbr3jvw+1WqEyMgWzrMXVctYhJLJqzXYqr36RoCiiCwtCiIQxdM4Tl1y4HAHBc8LWh1eg/Y9HCTqDUKoEiqa5iMZVAJt+fYpHhGLzvuvfh0fsexQ+/+kMHsWhC0zQ0a91emGYOW4fcBq/dvBaKrGDP43swM+1jhVoPVywC8KjzLnrKRda/FVmxPrcbdbEOhmSQ5bK+z08dnQJBECidgkNODKlbofoNXOe5PDpKx6OOzpfymC13FYthVscXXH4BNE3Dfbfdd+y2+SQpFvfX9qMQK2BBakHvhQcYYIAnLPomFt/+9rdj69atmJ2dRTzenRh93vOeh5tvvrnvDbjuuuvwpje9Ca973euwYcMGfPnLX0YikcA3vvGNwNcoioJXvOIV+PCHP4yVK1f2/Z5PRHzxj3vxuhvus7LdTDT5cIVPn0PtAJwZiFFxsOIsPFq8dx280L2Q2e1WNVVBvSOD70GQ2DGc5sC4SI6dE94JbT/FommWyTHO189OT6FQcioW52OFCgCVqUnH370Ui4lUGomks5kj8LzVoGr7ZCxyVJdYtH/fU1NT+OpH3wNC6iCRTCJ7wQtBEAREgQebTPtub8uyL+0SJ3VeQibOgHXtb1OxmMrkIMoqFNfB1m42EE+mQBAEMrm8x7rUjqYgQ3apDa941vNw2dOfg//6yHuxf9fjSGfz4LhuM0ngOxD47g0FQ5GGija4gl6z8UwAwD1/0m037QrVZCptff4gmMeDPWvqAhux2G7W56y6K0+MeUjlXpAUDZVWcIEoyAr2TDWxYWEWhSQLgiCwvJjETEuEEpJHCQBV13mg026BDMjyBICRDGd8j/pvO1cawuy0nrHIJvTjLYioX7fpLOQKRdxze//XkCAQFKNnLPYhWTSJxSA76B0TDawoJlFMDaw8TjYGtchpAPdNtduCNMiyrLxLJ9d6QCMondByXZtM+2iPhSUASG1LQRgJQh1I2BSLiqFYJGzNN7di0Q2DWDStUCfKsw6iySQmY7TxOTQFuP9/om8jeluhjsQUIJZBsyPjwcf3gKJIxzbEYxzatmbebNOffOWM4RvJRizOzs7iDd8fx3RTRiIew7UXsSAJAm1BDlSQNds8NE2LlrFoNK2CCJx6sw2CIJBMxAwrVFsdRSectrQ+eNbl5+NNL3o6rv3U13DPIzvBMLSV3WdiptatHczLR4BAHwBwzobVAIBf/UlvGjkzFpM9VZh+sBOLmqahGtIQDMPhiTKWjA75Zk2ddFAMmm0hshUqAIwU85iYntUViz2IxXUrFmPlklHcdAybebEA8nyA0wODWuT0RxAB8LVHv4bJ9iT21Zz25DFaJxbthGNYTmOQKmxWCB7I9YOdWBQ1/f1Ywnn+sRODbmKRAOEg+mbLsx7FIkvO73xWcbknuO/R3IpFwEmeMZyTWBTaAmSp+7eVsWioKu1DTs1mE1//wNchz8pgORYjzxsBQRGQBMlh92qHqqpoN9uRiMWg79G8lprEYyKVQDaf7YtYBIAtF2zBi//2xbj+s9fj4TsfBgCPTaxdBaka7kphisVVZ6wCRVO477b7oCpq3xmLgJeouvApTuvQoM9ZF+tIMslAe8ypsSkUhgqgmXl47x4nMCSDTrsDyifiJRfLgZd5yJrzvJEfymOmPAO+wyMWi4UqoUujJazZtOaY5iyaisW5ZMbOB/tr+7EkvQQZdjCUPcAApzP6JhZvv/12vP/97wfrsnZZvnw5jh492te6RFHEAw88gKuuuqq7QSSJq666CnfddVfg6/7t3/4Nw8PDeMMb3tDzPQRBQL1ed/z/iQy5BxlwLFBtR7/gcEbn5FDFOY3U8rFn3LVrl/VvO4motWdR5yXwPSwd7cgnvIXt7qloxKKpqHLnvc1MT6JQOraKxWmbYpEkvEIFN7GYHzameYxCmCQpCAIPitCLw3aj5pmMZBkSmvFTVo1G7GOPPYbzzz8ff7nrVmjNaUh2Ulfgwcb8J9FNsjCZthGLHQm5OAPG1SUzswXT2Zzv991uNpEwCEzdCjX4BqnBy5BcpDlBEHjx69+GZr2Gv9x3l4N0M4t0+zppyrT8CP7ORhctRTqTwz1/+j0AJ7GYSmfR9LGatSPJmcRid1vPvvASxzJhyswwlCfGIucr2jFRDyYWd002oagaLlldAmt8f6uGUphpiR7VsBvuAQO+0wYZaoUaAy+pll1eoaQrFnm+SyzGAoh6kiSx9ZIrcO9tx45YBEXrisU+rnJxhgJJdK1u7eiICg7PtLF+wSBf8VTAoBY5DeCxQnWdy4IUi184D/jG04BONXT1GkHq2X4uS9VaTT/P7zsy4fcyoDnp/3gQ4t1palLmAYqBQtgaIb0m/E3Fos0K1W6NaWYsxiigxmtAcQ2w7SeWRXoUHJ0Kt0KNM4DKppHe+kL86+e+jQVDBcckdpxjHdf5Ni9BEL1NEZPck43ry549e3DhhRfip9ta2D/dAS+KMGe62qKCeIBKwFQhRrJCNZYtZP0HpurNNtLJOEiSRCmf8VEs9q7z3vPGF6LdEfD7Ox/CouGixzLNvs4oQ3LFfAbLF43gl3/ULQ4X2FQhuXRyTqTgxWdvQC6TsuxlPRatEXF4vIylrmblKQOSRqtPK9TRUh6T00bGYg8rVIIg8MxLz8NNf7q/r9z3MAwUi6c3BrXI6Y9ejXhecQ7axOk4OnIHqq32CMtp9CPTgP6JxZrQvYeVoZMaDOE8/9hJHLcVKkMyjscqUxUU7O4JABhqfuczU2kXBKEtoNPuDg3HkjGHDSkbYx3EIgA0bIM9lrWqUYKZGYuHDx/GJZdcgvt+ex/EKRGS0P0+JEECG/Ov0zqtjuHkNEfFog2mci+ejCObz87J5vKlb3kpJFHCPbfeg3Q2jbjrWmgn8Uy1ZljGIhtjsXztctx9sz6s58hYzKQg8ALkgIFpStGPFbdl76r1qzC0YAgxoxYJIhZrQg0pJhWogp0an8LwolPPBhWK/tvh296MRQAoxoroyF7FYmHImbEYplgEdDvUe/94r9cBZI4wFYsnklgUFAHjrXGszK5EmvWv0QcYYIDTA30Ti6qq+p7gjhw5gnS6vxPG9PQ0FEXByIhTJTYyMoKJCf+Gzx133IGvf/3r+NrXvhbpPT7xiU8gm81a/1+yZElf2/jXiNk+iMUUpzfvD844icVmiBUqAIfKSmtVIasappu93/fKM/QCg3ap5xRVw+GZDljFWdyEZyw6n+M7neOaschSJCjXBHizXoUsdYvbokEsakaDleE4iDwP2igKFUkE33Hua5YioRoTf4os49e//jUuvvhiZLNZvP2/f4TU6ArIUnffCjwPOq4XyJ2Wk4w17U2TNtVkjZdRSLIOhajdYiudyaLlk6nZajWQTOnryeTynkxEO+q85KsSMxVy5clxDI12LRQowy7UTixSRpNVI2loASo1giCwZuOZ2PnYwyBJErlCtyGcTGd6KhZNK1RJ7hbpsbhTUTHXnMW5KBYBoNIMJha3Ha0hE6Nx9tKc9djakRSmm4LHutYN93mg026HZiyWUvqNQc2wUu5aoXbAxvXjIIyoP//JV2Hfzm2YnhwPXKYvULoVaj+aC4IgkGBpiD6k6+6pBjQAF64qDPIVTwEMapHTAO78Q0VwqgvdVo7uzMWZveHrD1As9kS/xGK62/ig5Lae22c/8/QiFoUmAAKmC/1kpeq0QiVIgKQRM/sXC88CmpNIU9FrtV5WqADQULsT+0tGncRSPMai5XLIqPg0i1jj2iwrCv70pz/hggsuAADc/ZYSzls9BEGUrNqrKSiIx1jc/9hu/GXnfsd6TLIwk+qtWDStTvNZ/4Gpeqttrafozlikw61QTVBG/XNkYtphg2oOOdnXGaR4d+Pcjatx36P6wJ1bscgLIkSpP/cQmqbwxhc+DVecrzsz2FWU/eDwxDSWLDj1rMcAGFaofH+KRdMKNYJiEQCeedlWHDg6iR37Ds9nSy3EuAGxeDpjUIuc/pBUqa9BgwSTQFtuO14Taj8YcIqY7cxDsQh/xaKdWCRdMSoMxTgeOy5WqBO9a5HZcvdz50fyjucYjoHsqkXsxJWlujRuNxVFwb333ovzzz8f1WoV115/LfIb8pBtfQuRF8HFOOzfuR+TR5z1n5WLGIFYtBOHQc8nUgmQJIlMPhOaXxgEM5KkPF72qBUB577QzF5Fj27v2s1rseORHQDgUCyahK47x9LaFkOx6CaqCILANS+/Buc86Rx9m2rBisUUk3LY89pRHitjeMGpSSySBKkrFn36GvlYHm2p7SEOrYzFtp6x2Ivgu+CKC1CfrWPnIzuPyWafjIzFQ/VD0KBhy9AWz/lmgAEGOL3Q9y/86quvxn/+539afxMEgWaziQ9+8IN45jOfeSy3zYNGo4FXvepV+NrXvoZSKdpN7z/90z+hVqtZ/z98+NjcKJ7O6NcKNRNjMFbrEnoE9En0MIzXuhc1tV01HusdUr5uJI1CwluATDVFKJqGuOosfhJmwLjP/QDr41PlyVicB7FIAKiUuzeCBEH4WktVZ7tKgoJFLOrFBs3GdMWi7QM0XMo/ju4Si+UjB/Cc5zwHl112Ge644w4k8iOgSMJBXoo8Dybm36wLUiwWkiwYG5nSaTWtz/TW930ELR8iudNqIpHSb6qz+WKoFSovqb6qRxOz01MojXRJN4ryEoumrZ4ay0FKDgVqOdZsONPaJjtRlkylIQo8FCWYFDeJZlEJbhyGKTODoGkapsaPYni0f8XiTEhe4qNjNawZTqFks+5cO5IGL6mhFqoAUG33Z4VqvkeN7xKL1YpuhWoS2WFE/bkXXwaSJI+dapGkQLtyVKMgxdEORaqJXZNNpDgamxb6Z0EMcGIxqEVOA4iu6W5FdKoY3YpFd5PNncnogkZSumIR0YgeC/U+hhtiOSDWPSeQCg8wcZ0MNNHrZlpsATRnXbNUVXUo2AAAFNMlFrNLgFR/zZZeVqgAMMV3z8+LR532Z/EY5xkg8lPEmeqso9MNPOMZz8CWLVtw1113YU0BAEFBECWYfZiWICMeY3HXw9s96zGtQHtlLJpZjADwrU++y3eZRqtjEYulfAaNVgeKSVpTnJWJGAUT07NYPNL9zZtDbnbFYieirf+5G3U71BjHOghU0/51LjmLn37PG/DlD/+dZ5v6waHxsodYPmVA0roVakDj1g8jxTymZ+uoN9s9FYsAcPn5ZyLGsfjVH4+NHepAsXh6Y1CLnP6QVRlKH5nPCTqhKxbtGYshJALB+d+nzMcKVYKkKxDhvL6FEYMsyTqa/61667hbofphdrr7uQsjLsUky0Byxe24FXEcxVnEYqfewdOe9jQsX74c99xzD0ZWjYAkSId9qiRI4GIc7vjtHZ5t6YdYNJf9xA2f8H3eJBYBIFuY373kTHnGQSxa6kBbXWZZoYYoFgGdWDSRt7llmJ+53QonFmWfvsmr3/5qvP+/3q9vU5AVqlBHmk0HKxbHpjC08NSrRQiFAAECnVbHV7FYipXQltteK9RSHpIooTJVARfnQq1QAWD92euRyWVw9y29ox+igDGGnOaS9zpX7K/tB0uy2FTadMLec4ABBjg56Nu0+jOf+Qye/vSnY8OGDeB5Hi9/+cuxe/dulEolfO973+trXaVSCRRFYXLSOR00OTmJ0dFRz/J79+7FgQMH8OxnP9t6zFRO0TSNnTt3YtWqVY7XcBwXGsg8gBe1Trja0G2hmI7TmG6I1mQeQxFo+yjY7JiodW1DNINYHKt2m4RaHxZf+vp0kiSmtlFDtwjOGsU6JXjtJjgfYrE4NAJs7xa07lzBfkCznEOxGIRqpWsLkh/Wj3tVEkABYONJCJ0OqFR3f7itNlma1H8HBIlMaRS//vWvccUVV4CiKAiyApoiIInd/S0KPBIBxGK7qROGyVQGgG7hI6saRjIcKKr7nbYaepH4sS//L5asWI0HDurbpNmawu1mw2aFmoco+GcymZgJIbo0TcPQiI9isTYDwCAczckwkoRKxNESZMR8JslSGb2Yd6tTzcd5Png7E5Zi8dgSi/XqDESBn5NisdqWICmqJ3N0piVisi7gWZsXOKw7Vw3rE4hjVR5rR4L97u0DBrIkQRKFHlao+nm2YUyS5opDaLeaqNdmsYzTb07CFIuZXB7rt2zFvbffjGe+6JWBy0UGaVih9kksJjkakqJCVTWQNjJ9+0QdK0pJFJKDvKRTAYNa5DSA1AJgm0ZXRKcq0a1Q7BN6xqLcv2Kx0QexmBwCaJu1mNwG4inAdd7RCBJE0OcRm451AE4FGwCAZBCjOvpHIQhg9VOBh78baRNZmsLRHs08SdFwtNHdZjt5BgCJGIeGa9ikUm1goYsAZWgKqqahmObwy1/+Ek9+8pPBMIz+PZAkeEGwrFBbgoJErKs80zSta3NuTP73ylhsGDZlP/iP9+HcTWt8l6k328gkTcWiXpPwgoAkoO/3Pq4RmqY5FIsUqQ+M2UlWXox23JoKywVDBcfQWS6tP17rYasWhGJOv67PxQpVECVMTs9iyalqhUrRaLZ5JAPysPwwUspB0zQcGp/C8gi2avEYhysv3IKbbrsP737DC+aztQCAGDuoGU5nDGqREwtFVQIVTscLPRWLrqcSjE4s2l/jtkt1gNM/l92GlKM4B1EYBVW+u7ykSeBormsNaiBGBZ87aZL2qIqKw0XstzkKBOXhRQFJkdEUi5VZq0OZH3UpFmMMRJejTq1aQ3Zxl6hjSRaKpkBTNdAcjZ/97Gc477zzEI/HIR2WQBAERKG7DpmXwdmGTkRBtNRdUYlFM4vxXZ98F7ZcsMV3mVazhaRh757JzS9vTtM0lGy1CMMwIFOkTuIZbTDFGHIKy1gEgLRhI89wjPW5AZtisdkGfC5jlGoMWwcQVbFEDAzLBBKLDamBDJfxJas1TcPU2BSGF57CisWWf8ZiIV5AR+547I/zRm75xOEJrNqwqqcVKkVR2HrZVtx9y914/btfP+/NZjkWmqadUCvU/bX9WJBagByXO2HvOcAAA5wc9M2aLFmyBI888gj+5V/+Be985ztx9tln45Of/CQeeughDA/3d/JnWRbnnnuuI9xcVVXcfPPNuOiiizzLn3HGGXj00Ufx8MMPW/9/znOegyuuuAIPP/zwwM7jGKHBh0/QHJh2Ti5lYgxm2yLM+EeGInsqFifqXRJRbddAADhqIxaFiFZSJsYbAlIcDQ7Oi7RpWUgJ3qLGj+TIuzIW/RSGWgTbLABguBgqU70blLPTXWKxOKwTS6ZikUmkIQidrmKRpDzEldhuYOpHH0L93hshyxKuuuoqS4knyCpoknQqFgUeFNdt1tmfazXrICkKdMw5Db4472zumZahprLRJJI1sXtstFpNxJNGAZ113hj4oVe2p510oygKJOXcF4RVoBHQKLanpa9bnZo01JUCH6wSiDEkCIQrFsMsX4Pw2IN6ztLiFat6LOnFbFuC4JMJuG1M/11dvnbIQZAtLSRAkQTKPayH6zZi0bTfDVMsFpIsCMBSteSLemNyavwoKON4MonZIJx/6VPw4F23QRTnb9OhERRoiuinZwwASHEURFmFYm8ISHq+4rrR9CBf8RTBoBY5DSC6zrWK5FQpujMY+8SciEU2CTSnoi+fKOp2mgYsxaLbhDmsESo0PMSiI2MRACgWcfvpc9WVkTeRYyiMTVVCG6NHGxombQNfbmIpHmPRENzEorOuarV5fPDz38W/3iJAllVceeWVOqmoacbgj65Y5GjTClVXLJqo2mzBTLVer4zFKFmMZsYi0CXdxLah5qP7J32W2K1QAeQySYc6UIioWDSxYMj5XZsqzeocicUYxyIR5+ZkhXrng48DANat6N894URAA4U2L/RnhVrMAdCVmFEUiwDwzEu34vYHtlkE93wwUCye3hjUIicWZm5hTag5MgWPJyRVcqgP3Sh3nLmBcToOQRGiKxYpwqNuitNxNMT+zuGzfPf+U4Kkk4CuUiSMGGRIxkNEHksrVJIi0ag1IPDB93gESTisUN2KRZZjeyoWaZXGPV+6B5M/nISiKLj00ksRj+s1gKIqoAjKYYVqKhZNzNgcHixiMRNei7Sb7Z5ZjO1mG/GUvh2ZfDRiMSPoy8Ulr0rfTbpl8hnUZru/CVOxGDUTxK1OtRSLAddBQtVtZ4OObYIgkMllUK/WIVESYutjVh2qqApaUguFWMGT9QkAux/bDYEXsGTlKXgOk21WqD7EYp7Ta7q66DwuCyX9WJ4cmwQX5yIpBy+84kLsfmx3JKVvLzAs01MleSyhaRr21/djaXopMtz8iPQBBhjg1EdfikVJknDGGWfgl7/8JV7xilfgFa94xbw34Nprr8VrXvMabN26Feeffz7+8z//E61WC6973esAAK9+9auxaNEifOITn0AsFsOmTU4pdS6XAwDP4wPMHS1RgRxCnLiRidHYMSEiZvSsaIqEIClQQ5pYU3VbUakpSHI0JutzJxMmagKG0xzURnQWIe4iOWLxOBK2bMEgKAm9MJB67COWi6M2O9OTJJmtlAHoF9yCoVi0iMVYCiLPw+SFCJJCvToD5PXtnJ4Yw2f/8U0Qx8eQueAFUFwB24KsGlao3W0Q+A4oplugVitl5NPLAOhKxGQy7SGqlhUSqNsGaE3FoknGtQQFHE2iY1NktJsNDBtkYCbvUl/YoEkCCIazlG5BKDnUfAQy2ZxOLBofRZONYslgkg5U2lg9HJxvUnQpFk2SVOjwQEDPiiAIxFkq8LuPJ1OGorQ3kWrHj7/5FWw46zysWLO+r9cButKTl2SkYs7j+bGxOhbmYlgx5DymGYrE4lwcMy3BoRCxQ1U1x/dhEYshikWGIpGJM5YtrkksKrIMitW/pDgbPsty/pOfgus/9wk89uC9OOfCJ4cu2wsaSYGhSN/PF4Z0jEGlKUBRNcuyb89UE6oGXLSy4Ml3HeDEY1CLnCaQ3cRiDyvUPqERc7BC5TJApwJf/3Q/xHO6naYBUm7rJCHpPE9oFAMiKNdEbDjWAXTJEAsUo5+PzJ4A29uWywTL0BAlGZVqHUFmeUcbGibZLpFlV+UBQJzj0Ox4FYsmyjM1XPrK92D7vkO49rkUJLuzhc1NQBC762h0ZAyPdJuURycryBuT87VGCyRJItmDQLKIxZBmXr3ZdlihAoDCG9s+hyape9+4cxt5UdLtbyMqbt3q1K4V6tyIRQAoZNNzskK97oafYNOaZbj47A1zfu/jCdnokKYS/VmhAoAsOxWyYXjmZefh7z7yJfzhzofw/Kuf1P+G2hDjBorF0xWDWuTk4ZLvXwIAeOhVD+mZescRsipD6WPQKWYMG4lklzjopRJSVAV219I4HUdL6u8aMCvMgpRJqLQKCRJYirVUZe5t8wNDMp57JjexaCcm41T08zDQzQcMUy1m8hndCtUwKfLLWHQrFu3EYrvexsNffBi1vTWMvmoUistlS1Il3QrVRixqkgYu2f1c5YkyRpfo/RiTWEylw/tDUQjIVqOrWIxqhZoRM3jstY/hqs9e5XnOnbGYyWUc+0IRoykWTXiIReOztBttIKCNE6fioQRZOpdGfbaOzhkdFF9fxH888B947cbXWmRiMV70fd2P/udHGFk8gvMuPc967O9v+XssSi3C+85/X6TPc7xAKASgAXyb9ycWY/ox6x4MMG1mFVkBF+N6KhYB4LzLzgNBELj3T/fiGS9+xry2m+XYE5qvWOEraEktrCusQ5zu71wxwAADPPHQV4eUYZhQm8C54CUveQk+85nP4AMf+ADOOussPPzww/jNb35jBZcfOnQI4+N92FL9lWO6Mf8LRluQIavRJ/wzcQaSokFh9GYIQxHgJTVUJFBpiVBs75GNM6FZcb0wXudRTLF92R66FYuF0khEEkJfptceYji9eJ8p64xcp+WjmkylDWLR2IYRU7Gof490PAnBZSFqqvT4I9vwH//0ViiyjNFXfRbx5Wd58gEFSQVNEpBs5KauWOzeWJjbB+hKxEQq5ckIWlxwKxadWYwtUfbsT7cVahA0WUCcodDgw2/a7FaoAJDOFRx5k5p106Z/P70yOwulAGJRCH9djKECFbXpbB6NWjX09W7sfPQhPPrA3Xjha99iPUYYn0Ht8TtkKRKiomHapT5UVQ3bx+tYN5pBMeVtaq0cSmKmJUIM+BwNQXYc3522fsNEhRCLgK5abIv6UIFJLAKwEYvhr191xkYUhkbw0F23hS4XBRpBgiHJvhWL6RgNQVEdgxE7JxtIshTOXBztRnCA44tBLXKawFexaDsnzVuxSPavWIxlAb4W/TWxrINEJDXFUDC6yuuwXCKXYrGUz4B1q5x8CLCdLf36qpDhKizOuDaH2aFO8zQmZ7tNEHfGXjzGohOiWHzzB/8b5dka/vfT78Gz1zFQFNt3Z9pBkRR4sXutagiyQ0Fmz4GsNVvIpBI9a7JaBMtUO7FoKhYhGOrIOVjqeYlFJ4nHC2LvXE0b3MTifK1Q9W3KYKZPYnHHvsP45R/vxbWvfV7fAzknCpJqEov9WaGaSMSiKRZXLB7FuhWL8Ye7Hu5n83wxUCyevhjUIicf053e1przhaRKfUW0JGj9eiNR3Wtmr4a+W0k0F2KxJtRAyvq1Zy6KRbcVKsMyHstOuw1tmg0e3vUDYUxJT08Gf2fZYtaZsTjqvD7SMRpix59Y5I/y+OFHfoj2eBtX/NsVyJ6XheoaBFY0BSRBQrINOUm85LBCtavDmvUmSJK0MgyDEIWAbDfbSBi1Sr9WqEnGS1gOueq0TN6fWIyqWHSTyOZnCcpYBHTbX7flp3ubGtUGNGhQJRUVvoKP3/tx3HxIV2UPx72q7vJ4Gbf+4la88PUv9BB3E63eEUPHHQogiRJUVfXNWCzE9P3o/v2msikwRj0Qi8dC95uJXDGHdVvW4f7b75/3ZrPsiSUWD9QOAAC2jmw9Ye85wAADnDz0Lb1429vehk996lOQ5d5TFlHxd3/3dzh48CAEQcA999yDCy64wHruj3/8I2644YbA195www346U9/esy2ZQCgLSk91Xh2ZGL6RVKJ6U13hiIhyGqoYrHWlhykRj7B9LTCDEOlJSGfYN0igVAwroxFd+befGESi2bOoqp4m6SZfAnVmW6BXRgyFIuSSSymIfBdoouNJyziqn7PjRhdshxf/MFNYIqLAQBjhw861m9mLMq2Zp4o8CAYO7HYLdJajTqSqQw6NivbFEcj7VLDtRqGFaqhWGwKMmIu0qjdaiKR0ovSTC5YsQgAuQTjsVlzo+QiFjPZPGrVbvGvuhSL000neW3BeMhrhaoX+Xw7nFhMsBRkRfO1lUtlcn1nLP7fN7+MhUuW4+Irn249Zh7HE3U+9HdkkoYTdWdj48BMC21Rwfkr8r72o6uHU6i0RPABxGLNlaXFG8Qi2eMHVkrpxKKsaMgWitbyBKvfsCVCMhYBXRG6at0GHNizM3S5KNBAgqYIkHMhFiXVcezsmGhgeSmJfDJaU3KA449BLXKS4WMv3v86ms6/e1mhagogR68TdMVin8RiPGcQixFrIL/Gmk9unxamjBMaDuLQk68I+BKLU6J+Hdd6dI04Rr8GhBGLNYXF1Gz3+3CTZ4kYh3an25BIJVjM1LrLl/JZ3POD/8CWM1YAAB7fe7j7YrNhSlAexWKcsxOL3e2rNdrIpsLzFfXlIlihtrrEYi6TBEmSIBXjOs9EJ6hMuEnXYi6D6dk6GGM/86IIEOHXOjvc37e5rXO1QgWAQjbVt2LxP274KUaH8nj5s6+Y8/seb5ilaT8Zi/EYZ+3TqFaoAHDW+pXYtvtg7wV7IMYNiMXTGYNa5PSHrMpQ+nBQMFWBdmKxlwWhW72UoBN9E4tVoQpK1q89kiaBobzWpmHKIYZkHMRiwZX/C8zPCtUcTg1TLGZLWYcVqluxyMZYh2KRjbOoG0NOM7fOgOEYXH3d1civ1V+3d/tex+tlVfYQi6IgOnJH7cRnq9FCIsKQU6veO4ux3WxbikWKpnraq/ZCLytU2XAQ0oi5KRYpmkIsEQu0QgX040lURcui2A3TChUAtI6Gz1/5eWwZ2oJbD98KABhJentvP/7GjxFLxPDMlz4z0nafcCiwjsEwxWJbcu43giAs1WJUK1QAWL1hNQ7sOjCPDdbBcuwJz1fMc3ksSZ+CdrYDDDDAMUff3hH33Xcfbr75Zvzud7/D5s2bkUw6L4o33njjMdu4AU4OOgYxEPa8HRmDdFJiOQC6YlGQlcBeHqGIqPMSBJs9RT7BYvdU0/8FEVFMsdjfezELlKtIzJeGApacG1jDcknPWfTPq8kWSpitTANGXRU3rFhNK1Q6loDAz1htw1gijfHDB7HoLKB0zbvw1gvzGBoqAdAL51t//TPgA2+w1i/KKkiCgCR1CwmB74BkujcGs9NdxWK71UAynXEoFnMJBjEXIWRmMcbierOmJcge0kgnFvWmayKZAk0HN1dyCQZNIfimPJ3JIZ5IArZGWSaXd5J4sgT7WN5knUdHVDwWoWYGYqHkJhaNjEUhPFMnYVihKpoG2nUMpbM53ao2nEe1MDs1jtt+90u89b3/5qsGVDWgxctIB+T65RMsJus8Ki617+NjdXA0iSet8je+O2M0g2pbQoOXfDMDq8Y0qGYoYE3FYpgVKgCUUhy2j9chqypYlkYmX0C1Mg2S5kAqXjLfD0tXrsVdf/xdz+V6QSVI0BRpqT+jIhNnIMiKRSwKkoKDlRaed/Yi5E6hfEWWYwEe4GJ/nfYig1rkJGOeakIAgLtppoqAamtOuCdrO1Wd9IsIPWNRQGRbUwCI5YHpPUAqIgER85k6p2MA4bqeUSHnDrHlIA49+YrAnCw7TbA0BYIgQonFNuKYnOnuW/c2xGMsyrbncwkOB452h5L++/1vwYLhAo6M6w4MP7vlHvyN+aTppEAQDmKx3pEcGYt2xWK92Q61NzURxQq10epYxBJJkihkU2BUXh+t7MNSFgBomsJw0alcL+bS2Hd4AjGWgSTJ+mckSaDHT0Q0rNhGXRmLNE0hmYjNW7FYqdaxZEGQ+a0T5ZkavvWzm/H+t770lFbYibL+W04l+7vujRRzqDfbkRWLALB+5RLccvcjfb2PH07l/XksYOaXZnrkoZ6uGNQipz8kVQrNKHZDNq55ImW79+6hFHITl0kmifHWOPJ9RGvUxTpISb/PEiGCIzkPIdZTsWgjIvND3vdm5qDyN0GQBBKphE4sBogdc8UcZqeCMxYZjoHQFhA3clDiqTgmx/Q+xuhLR3GpdCk6Czto8npPafdfdjtebxKLvNgdyBU6AlhbLWJXLLab7UgEYLOhv18vYjFhG5jK5ufnglNyDYBl81ns37EfSejboJi9nB633uaxXfAZakulU2g1g2uRJJOEpEqWEtSNTD6DfTv2WcfxSHIEX7v6a/ju9u/i1sO3YkHSOTQudkT88nu/xDUvu8axr04pKPoxAwA0TUOA87edYlKgCRptxdtPypfymBqbQiwei2SFCgDLVi/Db3/8WyiK0tM5Kgwn2gp1f30/FqcXI8OemHxFczhgPvtogAEGmDv6Vizmcjm84AUvwNOe9jQsXLgQ2WzW8f8BnvjoiAokNXha/8is80LJMRRiNNklFslwxSIld1DvSA47yUKSRa3T2xIgDENRG4EG3Eomd+befEFRDLhYHJWpScfjqm3fZvIlhxWqCTuxKBpWqKokQKjP4NabfgKh0wbJJUAzDFhb5pssO/ehIKugKZcVKs+DoG0F9JRdsdhAMpX2EouuiSx9uYx1w9ISZCS47jKqqqLTaiJpWKHqAd7BN0f5BGtl8/mhNLrA85ibWFRtOZLQdHvQWR8VbGV6CoBXoUrRNGLxBIROuGIxzujEot/hnerTCvWPP/8+EskUnvbclzoetxP7+yrBBT1FEhhOxzDbFh03vY8erWFFKYmRjP9U/6phncA+WvX/rNZv0cih4o190qtYG05zaIkKJGP7LTtUmgNDkR4y3w9LV67BxJGD1nE/V2ggwFIENi3SC9pzlkS7Oc/EGAiSClOwuKes5yuev+LUyle88MILAQBLV6w5yVtycjCoRU4DSD2sUN1WqQDAV7v/7tHo04lFObr6EAASBT3z0IQQoPo6w5ikJn3OiT4ZRuGKxSZAexWLj+zYjwe27THWOXdikSB0O0i7ItANmU5islK1/qZd1/w4x6Ej6NdTUdEwXpfw0z/cjZmavn9M8sSXRDGVGiQNXrATi07F4tGprkqg1myF2pt2l2uDoshQJVq92UYm2V1XMZdBjDC2g+6vcbVwuOC5DuokXsP67LwgRbJCNff3Ap/mbTaVtGxe54JiLm19N1Hwpe/9CgRB4C0vOUUVAgYEozTtxwoVAEYMorwfxeL6VUtQnqmhMjs/dXaMPb0zFl/6rMvwL6+5Gi941lNO9qacFAxqkdMf/SoWzXlGh2Kxh+2hm2RIMkm03TnUIVBUBS2p5bBCZShvZmJYxiJN0o7lTQXbob2HcPTAUQDzUywCQHGkGG6FWnJaocbTziEShmMgtszhVw2d6Q4euP0BVCYqIGkSbJwFR3FQAiZ7ZFUGCRKS4FIsxoIVi2FkoX05IDxjsd1sO9aVyc+dcElmkh7izZ2xGFWxaCoS3VaogE6UdlrBfZEEnYCkSqGKxYbLPYEkSLxqw6vwpau+hBXZFY7nHrr1IfBtHs9/3fNDt/mkQQEIiYDQ1ntOfopFgiCQ4TLoSN79Zlcs9lIxm1i6ZikkQcLE4fnZwDIsc8KIRVERcbR5FCuyK/q2TJ4rVq5cCcBLuA8wwAAnBn0rFq+//vrjsR0DRISoqB712LEGLzkVi+68xf0+REchyWJMzAHQFYstMVixSMkdNAQZguQkFt25fv2AInQbxr5e42IWj5UVqunnL4kCisOjmJ4aB2ziuHazW2Cl80Uc3Oa1WjIzFik2AYHnQTRnMfmDz0Bq1bD6jE3g4gkA+vuwNhWYO6RclFVQhNMKVZYlvUlpPDTryFisozS8wKFKLSY5xFhnk6zVrCOZ7hYKLVHBwnh3//OdNjRNsxSYgE4EBpW2uTiDx8flwIlQtw0qAGRzBdSrszDbmIrMA9BvmEhFhEpz2D/dxBJXPqSZKWlaobZFGffsn8Hla4eQymTB853QE2OSo1FtS3r+oeunmM7mMH5wb9AgpgcP3vZbvOAlr0bcNeFsJ0S3j9exZXEucB1LCnFU2xIkRQNLE+iICvZP6wq7fNL/N7FySH+/qbo/eVfrSEiwFFpN/TiwFIt+TXQbRjIxNHkZsvEbyBeHsB/bAZoxbEkjEIur1kJVVRw9uB8r1q7vuXwQVMMKtZjk8OiHrg5VYduRjtHgbYrFXZNNJFgKZy/JzXlbjgf8JkP/mjCoRU4DeDIWZacVqlvRSLNOxaIY7nLQJRb7zFiUBUARdYLQTmTaUVwDMAGkFBMH4Nq2EJUApJb+vgYWGM2dux/ZYXt9/80883raEWUsGi7qikWb05WiKN1LGJvC5HSw7WM8xqLDC6i0Vbzghx1MVBWsWrYIhazzascyPldPs6FKkA7FYicsY7HhJAODUGu0kE0lA23KNE1Dvdm2VFWATroxhNF8o/q7DVo84m1YlPK6OjDG6d+RnrHYu04fL+uf18/6NpdJolqfu4tHIZvuywr1ezf9CW984dNQnEej80SANxWLif4Vi0D0jEUA2LBqKQBg+77DuOTcjX29nx3mcXG6giAIfPRvr/HYP/+1YFCLnP6QVTmQOPEDTdKgCRoy1SULe1qhKi4rVCYBXo4+YGmSkKZiUYYMhmRAua5F/WQsmsTinb+/03psPsSiLMkojZTCrVALuhVqFnpN5L62MywDgRegdBQc/tJhNCeaKA4XURwtAlV9GY7iAr8vWdMVi7LY3d8iLyJms9d2ZywmI6ixW40WSIp0rMdvmbitFsnms2hhbs4E7nxFQN939WodC6D3TKzP2ON2ccaovdxWqICeC2javPohySQxw8+EW6EGDOf4HYuP3fEYLr/mco/N66kC4nYCXIaDtEX/PfsRiwCQ43LgFR6qpjp+U6YKOBaLQVIlkCChIvzcsnzNcgDAoT2HsGi5vwNaFLgVi9sr23HNymvmvL4wHGkcgaqp2FLaAqpH7+hY41TNCB9ggNMdkTuTqqriU5/6FJ70pCfhvPPOw/ve9z50eih7Bjj2UP0y444xeFmFZFMTCi6y6mCl7dmOUoqzJvd7ZSxSUgeSoqFqy+vJJ+Z34z2UYhH3yZILA0USUGy5h25rzLlicuwIAKBZm0VpZNTKWDTRqFetf2eDFItmxmIsjnp1Bo9+45+gNKax6tzLQLmCop3EovPGRVRUUBQBSXQp98ju/p6xE4s+isVSinWoIvXl6lYmIQC0RQVJm2LRJE/NjEUAyOSD/UFzCRb1jhTYmBge9RZS6VweDYdisfsZSVUES5E4WvXelJmf11SoPnKkhu/ecwj7yi0kU2mIfPh5LcFSEA0rVDf6VSwCwN+84g2ex2aMacyhNIcDlZZF1PlheTGJmZZo/U53TNShasBla4fABCjsMjEGxSSL6ZZX0QkA1baEFNc9zviIVqhDaQ4dSQFvHD+mYlEjGTAUCTJC4OHSlboC79C+XT2X7QXzPdMxJpBkdSMdYyApGgTj3LB9vI7lxcQgX/EUwaAWOY3gViyqbsWi63uVRd0O1Y1fXgt8KAu4poPnpFg0nBf6sVz1oF/FothyWKX6KdhCickATExXAQC1Fo9FIyUcdSkWa43u/meSeYdi0Y1EjEO10cKFX2/j8bKKZ29dDsonczdUsUjQTmJRlBC3kS7OjMVWZCvUsOVabR6apllWqICeB2mB7K9uXLLA28wz1YHmZ9etUOdHLM5fsZjpS7Eoywre+Zrnzvn9ThQ6kkks9qtYzAHoT7G4ZvkikCSJ7fa80DngdLdC/WvFoBb564Gs9UcsAkCciUOmbeRVjzy1huw8XyfoBDRo6MjRjikzj9HMWNSggSW9dUc/xKKfgs1vnb1gKt4kQUJp1Ess2oeis6UsmiFDNWycRbvZxr6P7UN7dxvrLl3ncbuPUTHImr8LUlDGot0KdU6KxXoLqXQqdMjJnrEIzE+x6Ee8ZfIZx+dSeGO/9rj1rhi1lx+xmEwn0W4F1yJJJhmesZjPoFlvRv79KIqCF7/pxZGWPRkgGyQyagaiERlD0/41ZD6WR0fueJTIDsWiIkUi3YYWDCGejOPgHn34TyVVc46+LzAc48hYPNQ4FPn80i/21/eDJmlsHtp8XNY/wAADnHqITCx+7GMfwz//8z8jlUph0aJF+NznPoe3ve1tx3PbBjhJUFQNTdskFy85i4Ejs23H84BOKJigKRKi0rUSdIM0LmLj1S6xmEvM78a7kGTAheS3aT5VFUkQFmECHDticWLskPXv4tAoKmUnsdhqdCe3MoUSarNeezLTCpViYxBFAVxuGKOvvg6lhcucuYKAg/S74pnPdTwnyCpogoQoOq0PNFshM+NSLLozFhfl4p5CudVsOBSLbVFGkqOtvdwyiMW/tDL47Tb982eywcRiPsFA1YxGsA/8FIuZXAHNhj2kXHB8yyuHkpis85byzMSqMzYBAFhOr8qqhjqwzktIpjMQ+PAJ0SRHQ5JV+LkFp7N5NGoz3icCcM6lT0NpeNTz+GxLvzF42sYRHKy0fS1dd002sXOygZVDScy0RYvM2zZWRz7BYNOicAum5aUkZlsiJB/ScrYtIhPr/iY77RZYLtZzCqxknAdqHf38kCvq6g6NpHWSL8IUWSaXR65YwqF9u3su2wtuQjwKTEKVFxUIsoKDlTbWjWbmfY4a4NhgUIucRpBc51pFcmY3+tmA+SkIH/0//b9HH3Q8bBGL/WQsxnP6fzvzIBYZr5qqF7Go2nKLfDMW52CFuufgmPXvhcMFjxVqtdFt3mULJV1pF4B4jIMgSBhJErjnjUmsX1pEpeqdQjcVi0+75Ozug7aMRd425KSqGuI2BZk9A1K3Qo1ALDbboZapdYOcsxOLxZxNZdnnJLWfYrGYy0BRVLQ6+vHMi9EUi+tXLgGgKx7dyKYT88xYTKPebEOSozmBPOfKC7BmHpPwJwomsZgMUYX4YaRoWKH2oVjkWAarloxi+95DvRcOQYwb1A6nIwa1yMlBEGF0XN+zT8UioBODCt09//bKU6sLzutp3KgjWm7nhgCYy5lWqAB0K1RX/yOUWCRcxKJr6EVVVTBhedEBMG1UAaA0UnIoAoFuPiGgZyyGgeEYSIIEKkZh1b+uwoLVC1B31SIxuptft3rTasdziqpnAYq2ekfsuKxQJ1zEYoC9qWarLXsRkHyHh6qqSNjqlflkLPopFt1EpegeKg/AwqULAQAji73OXT2JRTYJUQknFjVNg8hH25blG5Zj7ea1kZY9mei0jYiYAMVingsnFmNxXbFIRxhuIwgCS1cttYjF6qoqqBdRPe2V3fDLWPzz0T/3tY6o2F/dj9HkKPKx6BmxAwwwwBMbkbuu3/rWt/DFL34Rv/3tb/HTn/4Uv/jFL/Dd737XkRc3gI6XffVuLH/fr3wb9qcKTAVbvVr1fb7a7l6s3FTARF3wEB12YpGhCIg9MhYBYLzWnZKZr2IxH/fmAAJAXdC/AznhbQZRJIF2q1vMHisr1MmjR6x/+yoWa92GZSZf8v0Nkck8Wo//UZ+m1zRsfNWHQadLiKezDpUeAIcqLV9wfk5RVkGR8CgWNVsT004stptNJFMZtG3E8dKit2nXanYVi6qqgZdUZOPddZr79Z4yiR89cAQdUQnNWMwZ378W0OQLyli0W6dKEu+wt92wIIOJOu+wdQWAd33kOnz39/dbf5t5gi1RQTKdgSyH3/wlWdogzn0Ui5kc+E4HqhrezDMDpq987it8n59pi0hyFC5fOwRJ0fD4uHOStcHr2yzKKhbl4pAVDeWGXiw+erSGtSNpFHso7FYPp3Slo+Q9/qodCZm4TbHYaSOe6G1LZ+acVo1JPlOxqBAUWIqAj8DFF0tXrsHBvfNXLIYNGwQhHdM/d1tQsK/cgqJpOH95PlD9OcCJxaAWOY4Q27ry787/7r1sj3NcJMgd53lUdVuh+kzSBlmTAs7XAnrOnar4WKHq1wnfX7SpWIyYfeILP4vUoGaeBkBqQ1S71z63gk1V1TlZoe451CUWF40UHcQdAMzWuvXPSCl48AcASJKApCi4/XUJrMiTKKRjmKk1PLvWHD5ZaJ98tzIWKYdiEXASPRPTs5aLRL3ZRjbV+5pjWqEGod7yIxbnrhJY7JPdYhKVpvVo1IzFT77rddj/h+t9s4tz6RSq8yAWC8Y2zfSwQzUVfO86VfOMXGhLKhiGBtunCtCyQu1DsQgA61ctxeMDxeIAPhjUIk9smNcqdwSHn+3jfIlFQiMgq7KDiHKjIXoVi0D/xCItd+/d/NSFYRmLFEk59odbwdZpdcCQ/Z/Pjuy39UVGS5iecioWm7ZaJFsKJtvqD9R1kkoUseJfVoBbyCGRSUASJfDt7qBajNKJRQIEhlwuA5YVqmSzqRUlcLZrQ6fVsXIH3bmIdpjqL0qj0Gw0w/MVDYeIY6VYdH8uQLcdtUMW5EixGS9+84vxndu+43k9AKQyKWvb/ZCkw4nFtFGLCHx4tl8sph+XFz/n4p7beyrAJBaDFIvFeBEdqePJZjXJei7OQVTEyL+npauX4tAefchJoRRQwxT21fb1tc0MqysW7cfEnWN3QpSjkb79YH99P5allyHDntr2+gMMMMCxQ+RO6aFDh/DMZz7T+vuqq64CQRAYGxsLedVfJ+7apzdvdk5EtyE60di9W1cD7d+93ff5qo04jLPOpoeiatjpIjocikWSgKSogXl5fsRinKXmpC4ykY7RvjaLlqOrT2FFEoQj79DM3DMx15vDyaPd6ebS8AJUppzEYtNmhZopeJtUsiRBOPI4pn/xGdSO7IUg8NYNUCKdRbNRcxRwYeSJqKggSQKy5CzoFNs0fatRszIRzezEtkHG0SSBZQUfYrHRVSyay9qJxU7LaWMiyEqoFWreVIMFTG75WaG6iUpJFEFT3WNg8+IsKk3RcSwDulJxeOFi62+TRBckxWHvGoQkRwUSi+ls3tqWMGzerFtDLFrpP5VXaQrIxhlsWJhFLsFgz5Tz93bLjinr3wvz+lTrZEPAVINHpSXi7CU5BzHoh3UjaUw3RXQkL5Fa70jO77PdQjzRWz1SMojFphEYb6qAVVBgKBJURN/7pSvXHBPFIjMfYlFSsHOygThD4exlg4m7UwWDWuQ4om0QT9t/2XvZ+ViFmpB5VKZtDSbFbYXqtkqV/d/XnFgQnA04jfS3QtVo/Tw1FPMhD7lUJFIoFKz3XGm+pweqCGgq2kr33OgmFpttHgh6fQh2H+yqBBYNF1Gece672bqdWPSe4xRFsew0H99zCB1esGqRfCoORVFRa0ZoeloZi4SHWIzb7McURbW2sdZoHxMr1IZhwea0Qp17o2OJL7Gor08yrqVRrVBZlsFyH4UAoCsWJZ9rc1SYZGcvO9TzNq/F9pu+gidv3TTn9zqRaIlq3zaoADA6ZCoW+3vt+lVLsH3fPBWL7OmdsfjXikEt8sRGnNbvnXjF6Zxgt8E0oahK/8Qi0yUWSZA9ycm66FIs0nNTLJpWqIC/OrGXFaqdoHMTi61Ga04Zi25iURKcdUDDdp3yIxY1TcPkHyZx6L8P4dC2Q9A0zdYX0a/tjXp3HRzNhVqhEgThsAwF4FAsAt3jwLQ49UNT1msoVmV7KhZN1d8xUywu9MlYdK1PEiVPxqYfKIoKzO7rpVhMsSmIqugh0NzbJHTCicXly5YDANaec+qrFQGdfCZJEmRA77IQK6Attz2KRZNYNBWLUfMHl61ehoN7Djp6q9sq2/raZlOxaA4cECBQ7pRxz8Q9fa2nF2b5WdTFOtbm1yIRlEU/wAADnHaI3D2RZdmaJjHBMAwkaR5T3ac53BaMTyRUO+Hf61+OOhtUJqEA6IpFSdEgB3x+QpXAUiSmGk7yJRtgNahpwP7pFv7j97vwpT/txUzbu21prj87KwJ6L7Jts0LN5p0FNN+Z27S4mbEIAMXhEQiuzL5G3aZYdBGLrXoN//Tml6H56B9QfOY7MLT+fAi2zI5YSreUsBN3bBixKKugSBKi4CzoVNdPf6Y8BYHvQJFlJFJpdEQFy4sJfP7lZ2PlkLegtisWW4a6MW/7/lpNZzNLVrVQxWImxoAk4GnoLlq2Ak973kuxbvPZ3te4iUVBAGOTxK1fkIEGYN90+PdoEo+CrCsWeyHF0YYi1/tcOpvTt0UML6DJHtK9SktELs4iwVK4aGURBypty+qUlxTcbCcWszGQhE5GbjtaB0kAl60b6mlbumYkBVnVMFF32eRqGuq8bKlIAT1jMRaBWCym9Ne0DGJx1RmbMLpoCTSKAUuTiBCxCABYunItjhzY58hAnQvmolg0rVAFWcGOiQaWFRM91Z8DnDgMapHTCLLgVD5qCmDPCXZnMIpN/4zFdUZzd9dvHA9rBKWTigHqykVxsUt6mSBIgNWveR0h5Jh6/Kfe7TPB+jShgpp5sn7+bcvBxGKt0ZpTxuKeg+PWvxf6ZOc4iMUhZy3SbHXwvL/7qEXMXXXx2Q5SMJfSf4ORcvzMxgrJeOxW7cQiAIxNzUDTNNSaLQcZGIR5W6FGxKLhIt7wwqtx6XnevBi3ApIXolmhhiEKqRqGQtapogwCQRA4w7BkfSKgJahIJbxWw72wee1yLB4t+SpOw7B+5RIcGiuj2Zp7DtFAsXh6YlCLnBoot8tzel2S1s+xvBwefwHMLWMxySStLptJLAYNXANATXD2VUzFoqIpkWwkW1ILMSoG0nZ/70cChhGLFEFZSj0AKIw4a5FWozWnjEUHsehjJ24nFj12nryIj/79R1G+pYyRF47gzCvOdDwfT+nXA7vqMU7HIQW4TvhZoQJeYtG0a202mkgE1CImschoDFr1HsTiHBWLAiVg0w2b0NH0a1AyncSzX/FsbH3yVs+ynn0niJEUi2FIZpJQpOB78SSThKAIwYrFbDTF4hMNfJtHPBlcixRjRbQlL7G4dNVSDC0YwuiSUYiqCIaIVh8sW7MMrXoLM1PduJ39tf2Bx7kfGJaBIAuWSnJVbhXWF9bj9qO3922rGoYD9QMAgHNHzz1m6xxggAFOffQ2djagaRpe+9rXWhZ+AMDzPN7ylrcgmexeJG+88cZju4UDnBRUfcg7E+kYjR1jdawc7n7vpWS30DQtA90WlO51zLScRUYuzlh2jqaN7M5Jvdj82E3bkWB9GjWqApCUR1XZCyytq6fsikU32dNu1AGb1UQy4ntMHD0MU/tYHPZaeLYaNcBY1chwVyWpCm186E3PQ6s2i5GXfhSxJZtAKGMQhO5NTzKtT37pxF3K+ixBEGUVtI8VqkqQALpF4PTUOLi4XiAlU7piMc5QuGhlyZfwbTXqSKT0YtEkFgs28qXtIhYVVUMmmwcCelwkSaCY5FBuOo+JeCKJd3/0P31f485sFAUBdKLbnF1RSoCjSYzVwhtCZh4gL6tIRSAWkwax6Dc4kDIUi6IggPQfcIyEmZaINSMpxBgKV54xjF8/NoHxGo8VpSRu3z1tkYyAnmm6MBvHTFvEeI3H4nwCS4u9m5JrhvXv78hsG5tteYxtUYGiag4VcqfdRiye8DoKusBQJDIxGi1B376V6zbg27+7D5/53U4wFOGwqg3D0pVrIIkCJo70rxRIJBMA9Ju9ORGLhmKxJSo4MN3Cs85cMMhXPIUwqEVOExAUoAgeNSHsTT4/4q4z632saGToPP4T4Ip/th62MnsV/4YGTQIQW91cRROxLCDU8eNbH8QrNz7Df/vHHvJ/HAB8MogCMxaNz9sQuifXlKtZUa03scT++oik1W5bxuKiES+xWLVZvuULBVAUCcWovZ78yn/E3kPjeNHTn4wf/eZ2xDnn9ufT+jb2Iq4A2BSLpI8VqrMxf3SygjNWLoYsK5EVi5lkBGIxaScWM4BXlBIKlmXwPx99h+9zbqKSF0RE9v0OQG6exKJJdvrlYD6R0RTkvvMVAWDlkgU4/Mdv9f269at00nWnrTEeFZlUAgRBzMt6d4BTF4Na5NSAirm5C5kEm1ux6PsemtpXAx8AUkz3JpBA/1aoDMWAJmnIqoxH734UT1v7tND3a0ktxOm4I1ORpVhIcCnzeigWWzYXgnzROcDbrDWxiOo/i/fI/iPWdpV8hjuatSZg/GQYlrHIKE3R8Jk3fQaHdxzGur9dB+ZiBrGa8/yfyOjX9nqtDhinWo7iAjMtZU0GCdKrWHTZZE9PTOtOTiEZiw5isdHC6OLRoF1g7Vc7SZnJZ4AefFs5oRPnuxQ9HoSiKFz7iWt9l40n46CZbmtXFMRIisUwpDLhzYwEnYCsyp79/YOdP8CRxhH8/ea/B6ArFhmcPvfSnVYHsZBaJB/LQ4WKptTEELq9xMJwAT+854cAAOmxaBmLgG6FCsDKWQSAw43DqHQqGE0GH3eAflwQBIFcMYc9yh49J9U4/N+65a34h1v/AQ9OPYgLFlwQaVt6YX9tPzJsBsszy4/J+gYYYIAnBiLf+b7mNa/B8PAwstms9f9XvvKVWLhwoeOxAU4P1Fz2kXYio5TicHCmDdnGG3JMt3BhDDvKdgixmI0zHvLSnrPoJm1esnUx3vVUH3sEo2FlqrM60NchauGFFEUSIFzEohsd93MROBG+03ao1Uoj3ou9XbEYTyQRMwg9kkvg8me/BP/9vZsQW6LbUhEUC1VRoBnN17hJLDa6zaIwC1lJ0bWJsuzc14rrp1+ZmrT2RTKdQUdSEGcph7WoHa1mA0mDWGwbJFLBRi63W02wXLfgkhQV2RArVMBppxsFpjrQeg9JAG1r5tEkidXDKUzU+FD1cN3IKxRkNZJiMcGaxKL3ZtZSLEpzn8zTNA3VtoRikgNHk7hsrV6QbhurQVZU/HbbhIMIBPQczJmWiB0TDaxfkEYx2XuidCTDoZBkMV5z3lSbmZOjme73Z1qhSqoKmiJCfwrFFIeWKDusYkVZBUuRvnbFfli6cg0AzMkO9Ywz1lv/5gJC1cOQ5vQbn33lFmRVw3nLC4N8xVMIg1rkNAFFA7LozUWUbYMgos9QiB+xaIKvA3f8p/WnRSyGKRJEH0V7zHv87Dw4gYMTM95l/eBnbeRDNurbpl8r7MSiG7VmG6Bt5/SMd2DJDVVVse9I14bdj1icrTsHq4YLOevv1z//atz5vc/ih//5T9B23ORRFhZMYnE2AnFlZSzSoVaoJElibKpikYGRMhab4Vao5rrSNrJ2PlaofojHOMRtagdBlE4ZxWIkRekTCA1emZMV6lxhqjm37+s/Z3HD6qXY/4dvBNrdDvDExqAWeYLDuB2JolgEunl6UZFkuudwEmSg6lGT9Wu/2woV6KoW7Ti6/yiq5arn8bbcRpyOOxRqvlaoIbbqNEk7FIt2kgrQ1XtRiRA77IrFwlDB46jTcF2n8oZ1NUEReNLfPAmf+9HncMYzztC3KeZ8/7hRizSrXcVijI4FE4uqnjsYZoWazCQxPTkNURChyEqgEtFuUxtGQAKw9qudWMwWju35gSAIR06iJErzVyz2qEXM47wjO+v1O47egQP1A2iqTcQSMfB8tN/ZEwWddidUsZiP6cewe2DADkmNTiwuWrYINENbxKLW1qBoCh6bfqzna4cXDuN///y/WLV+FXiFd6iOL19yOVZkV+C2I7dBCXB36Rf7avuwOLV4kK84wAB/ZYhcHVx//fXHczsGOIVAk4Sl4jLxyOGq9e9SisXjY3WIATaFph1lWwzOh8klGMy6iMVCMniSaSgdwzIfFRYpNKAyMZj8V4fQGw58xEO77coCtKNW6z9DauzQAcffhSFvQ6FZqwK2IUA2Fsehz70MVDKLV958j5ELp1twELS+T8y8x3jKRiwaQ2QUqRM97rakpmkQZRWEzzSnrHaL+lg8gcrUBBYs1qehkqkMOocVLMjGfBVmmqai3WxYJJypWLSrutrNBhKp7pRbR1SQyRWAEAHaSIbD4+PBzwOAeS+iJotgWBaJZPc9REGwSG0TmxdlcfP2KXRExVKi2SFICgQjiJOXFBRTvS3SkhwFDbBeZ0cilQFBEBAFEXM1z2yJCkRFxWg2BoIgMJyJYWUpiX3lFu7eX0G1I+Gd5yzGI0e6x+fKoSTu3KsfMxeuLCLG9G5qEgSBjQszGKt2dOLPUPeZxOKCbLd5x3faiCeSECQVXIoKVR4Wk6yleiSN78NcPxkxY7E0sgCJZAqH9u0CMNxzeffnMjEXYjHGkKBIArunGogxJLYuH+QrnkoY1CKnCUgGUER4ZND2XEXZh1jkq/7rY1NAfjnw8HfAafq1rEsshjQE62NA1jWB71YwArjt4d04c5jCMsC7zTaoJAPSh1TSAq1Q9WZLjQ8hFhstoNCf/djh8bKlPgSAXCblIL8AYNamEgAAlu1eI//+Vc9xLBs3VDmKRoIi1LkpFkkKvCgBtql1uxJytJTH2NQMaoZlWDTFYm8rVI5lwNrsKI+HgqyYS+PIhE4S8xEzFsMwX2KRpilkUglUqg2LZDwdoBOL/VuhzhWZVAKLRorYvrd/YhEAli0akIqnKwa1yOkBIcDRwA03cdILHmIxgOjSoIEA4ZulmGASHsLx3pvvRfos7zndVCzK6L5PjPYOYdBEcH+EIRkHseh5j0YLJEFCkzQQTLT7uUa1gdpMDUugD2nQDI18yauExMLu3xRFofyrMoaeNYTLXngZVmRX4NcP/FrfRs7ZK+LiHCiacpCTHMUFW6FqCmiS9uQ82onF0nAJlckKWoarQ6+MRQA9MxZbjQDFYo++R7+w26FKQrSMxTAEfXYT5nEeRNCLqohMLgOhIyCN06cW6UUsFmL6MH1TDO4zSqpk2ZL2AkXrOZiH9hwCVgNqXcWSoSXYW9uLK7UrexLIpppWUASHRTJBEHjzmW/G+25/Hx6dfhRnDZ8VaXuCIKkSjjaO4urlVyPNnj7f9wADDNAbAxnGKYJHj/RPYh0vxBnKUnGZuP9gVyVQSnFoiQom6wH2YgaZ0AnxZM8lWM97FOaQY0YYVmm98uSC4EcsilMHwB/dAVXoP2PxyIG9jr9ZlvMo9ZqG2lDTVHz3859AfXYGGt+AXDkCjqFQt+dbGgWHapC4TitUHQRB+CoLZVU3XSF8JpBkWw8zPzSC6alxa53JdBq8pFuh/n/23jtMjrS+Fj6VQ+fpSRpJo6xdaVfAsiy7sOxiWJKxScY2XANO2Nfp+vraOKdrrsH3OnM/B2yDDbbxBYwxtskYk/PCeqM2aCWNtBqFCT0dqyvX98dbVV25q2dG2lTnefRouru6urqqut5f/c57zklSaumaCsdxRhmLmgWaGmXTAS6xWBoVFD3VyMxYBIAdtfHNor5GGqWO2/itBvatrmlgI9v79MU61vqan6MYRSdwDuqmHdrmNEguaZdELDIMg3K1jjjNmx8bA7Ktu+qj/XHLoWksrQ/w0Xsu4vBcGc+/Oky2HXRzMAWWxo374sqUNDxtdx0XOioGgRssL191Rz1ALLqKRc20ILB0JrE4XRGg6KZvZwwAumX79sN5QFEUdu87uCnFYhAiN/kQR1EUSjyDgWZhz1QppMQtUKDANoFm4xmLQJhMNJIUi+30dS4+C9D7uK3mzugdY4UKAFh9MP6cOGYyQf9S6ks2LZDvFkWqFSrZtraabufW7g3S35+Ch5aWQ48pisLCbLgWabuNLsdx8JZ3fAhnlleQBtm1CfPcDiSeg8Bz+aw23YaqDQaGEW6uBsnOnXNNLK+soeNaho0j12zHRrevoFbOUCwOlFhW42YyFschqIIkGYtbu73Ko9Ych2a9mpnp9XhEZ2hcUcUiQOxQN6NYLFCgwGMfmqXlUurkVTZ6SCIWs3Ia+0Y/dr32ciDzYGAMCJEYuM2S2Ph9tdcvsXrx7zyOWOx7uczp88ZjOLcUt5FuRhwUvPU6joOPvvujOP3gaSgPK3AS3Ib4iC07KKBar8aIxTRYtgWGYjIVi9Pz01i7uIZ+j2xXGmHYM0af2e/1szMW+wo4ngttf62+/YrmoApyWzIWcyoWsyyF82RJPt4wHAwhZUxy8hSLAzO9l2hY+RWLALDn4B6cOTGyQr1p4SYsdZYyycsoosQiALxk70uwUFrA5859buIs2SiW+8swHRPHpo9tSt1coECBxy8KYvExgFOrfbzsT7+E3/7I8cv2GaareMvTY5B4BgMtXDXevjSyAJsuk+LrxKXITHW3MM+TsdiQOfRVM/bcVuFlCZp68kw1H+6OSLJCpaUKHEODPsw/UHtYPns69pyXs2j13CDwbhu2rmL1Q7+Dj7znL7H34NWh5UNKToY0Rj3FIsPyECU5ZIUKAFwC0aO7xFcisRioG5oz81hfueSvUy5VMDQslIRkZZo+dAPIK64Vqm5C4piQOkxR+iiVK76CsK+5isUMLNTHN4s6kXOmWhs1gA09QbG4qw4HwOn15MKu4+7rEs9AN21IASvUtN9KySVQ1RTiPGrROilaLgm6ODVqLD7/6ll0VROrPQ2veNoCFurhYnafSyxSFNAs529AP32xAUW3cL49uiHoKAYElkZVHP0eh8oAolyCbtoQOSaTIJytCBhoFkwrYIVq2RAmUCwCxA51y8TiJjIWgdExPjxXRl0qiMUCBbYdDAfYenbGYlIjT8sgsqQ6sHgTriqTcd3xGipmBrG49kDCelwbrjTT59WE97iwGBGgGQyGZNu7CvnspIxFw7RhuQrNlpJ+M9/ZBLEYzFf0sHM23Mzb6Pahmg7e8CEVv/Hn/4SnXr0vdX2estB0yD6hKEJcTaJYTCoJ5UAzb2F2ylUskvE6KzsRAPoKmeSURUD2BsMYsXg5FHxBFaSmG8nk8gSoB3KNNksOTtW2EPT8GEVHMa+oYhEAjuxf3LRisUCBAo8u0pSCHlRLhRW1ZE+Abk9mhSpzo3GHdsYTi0NjGNuOEj8hsciIoAOtPZERfQJN7YfrKSfBfp2lWV9Zl/gZXi7zJMRiQj7tzPxM6HGv04NjOjj/t+fx7v/9bhy69hAWf3oRVEIPgvPuTd3NdxwH1XqVqB5deMRiUqal6ZigQCUSi9IBCc0XNdGca2Lt0tpIZZjiiuCTRg6g9JSxxKIcqUV4cfvvL0OKRd0Aswn3hPXhOt70uTfhfP88ymPqCI+81jLq7MoTyDXBg6qomYrFGl8DBQrDpAmSLgzbiJF8WdhzaA9RLLq4ddet6Bt9PLzxcO51aJYGgQ4T7wzN4EeO/QhOtk/igVb6/U0eLHWWwFDMlpWPBQoUePyhIBYfJXzrzIioW3cVSo+00meJbRVfOE5mr5++RJSHujsLTEuYDSfzDAaBDpDtOLgjoFisSSwElsbSemR73eLdIxazMhbrEg/NtEFxo8EtmLG4GQtDAFCHZABXeu3E103DbXBppMCOKhZt2wFTqpPXMvIX03Bu6STkiJ3m9Nw8zv/NT6Pzb78DgGQsbvzHX0FduhM///vvxNGnPSO0/EZAXee4liV2wHa2Wm+EFIsAEpWFvqIuclPFMCyMQD5gY2YO66sX/XWKpTJ00w4pEIPwiUVXsdjXTIhcOI9R6fchl8o+QaPoFsrV7Jl5eRSLbXW0HyzbCZGVuh5XLB6aLYNnaCy3kws7z/ZzZ12CZtoQA4pFdZB8/GWenJtpxOI4ZeY4tAY6aAqYD1iR3ri/CY6hsGdKxrdfuyNG+O5zbYJVw56IvDu2ixyTM63RjWR7qKMksKHc1OFwAFEi+0jimMysxNmKgL4WViwaE2YsAsDi/sNbJxb5zTV3vXP/hn1TvkVsgQIFto6V1VUAgGbTgGnEicVgrmISsaiOcXc49lr/z5FiMaMhuH4y/pyriE+N/U1SObqwGQGgGbRcwu38mkuERjIWHcfBpXbfn9DTGqbXS5shFh9aWsaehXDzLpqzuNHp49c/o+Gfjht47//+b3jhs5+euj5PWWg5o2t4s17JqVh0c4yteJMvmLG4MNuMWKFmE4seATnOCjVKLHLc9s+iDqogt1uxuLyyvslteuKpBNqKgZK8WaP5zeHIgd14+Ox5GOYE3fQCBQo8ptHrkTF6qA3Hko9AfstUD0HFIgUKpjOe4IxuR5nLPzlkYAwgMIKvSGTBgqEZXw3YWx/f0+BpHsog2woVABwj/2SXc6fOYWomPLF4en469LjX6WH1o6vY+OIGfvwtP45bXnILzF7y/vKsUCm3FnHgoNqooheY5JRkAevBU6cmEYu1Z9TQfFET0pSE9ZXxVqgesWhoBhzHQbmafryUvoJShruCBwcO+LnNE47BjEVd0zdlhbo2XINu6zjdPR0iS3U1Xkt757lmp/8+nqiKRVFKP88YmkGFr2BoZROLWdbEUSweXMT6yjpM1/nj2ua1KHEl3L9xf+516JaeSGa+8tArMS1N47OPfHZLqsVTnVOYk+fQFPO7ZxUoUOCJgaJj+ijgPV87g1e//av42D2TG6ubCbYQebC6SiyuHnBnsffdmWpdcT62rMyzUAKKxUdaCroBpZjAMjHFFAFZJ5fDCrUmuYVhoPkSzOjbpLOpD0NLHsjPnHzI/ctVLEbIo55mgnJnd6URi7Tb2PRUgt4RcQAsnzmN+Z27Q8s3Z+ZhrJ4G5+iwTBP9bgf1W9+A+df/Hq6/5QVoNMPNv9ZgVLjZVFixCADV+hQG/XAzj41sCzBSLCKSM8CLIoxAg29qZg7rK5eg9HuQ5BJMm4IDoCIlK0g1lRTSnmJxoJmQ+Six2INcrqDkknBDwwJNj/F/r02mWDRtO0TiJWUssgyNQ3NlXOyqsBJ+O+2hAYamMF8ToZkWRHl0U9BdT7aFk12yKskK1cH2EIsVkfVJWQAQOQb/82VH8aO37sPuqXgTNY/aMwnTZQFzFQHnO6MGflsxUBVZ8AGSVlWGvmJR4rNvUmYrIhTdCu0f3bJz5T4GsXjgEJR+z1chbwbiJicolAWW5CvuyVbZFihQYDJ85StfAQCs9XSX8ItcR41AU8vSgcDYB8cBtDHNscosOob7u/cVi1kZi8uAESEwXWJxvpwyZq2ku0tYNA8EGgV9txETzVg8e34Ftu2Ap0yA4dEZpG9jp68A7OSKxYN7FkLPLQQUi6ZpYaPbx6/dIuCLP1TCa1/yLMw166nr8whAI0QsVtHq5FEsknFbNeNjsCgEicUpnF9ZR9dtbEYJwSh8AjLLCrWvjFU+bgeCJJ66DYrFoArznoeWNrlNTzyVQFsxHgXF4m6YpoWHz25zGFaBAgUeNdx9990ACGGYp5E+KbEoswHFImhYtpWtWDTjBOckxKJiKBDYEbHIgQvZYOpaco0RJOR4hofSG08sTmqFumv/rtBzQStUy7TQ7/TRfHET+395P277ntvQmG7gxC+ewIM/9yBm5XD0h2clStkRYrEb/h5kofj2WI7lk5JBCKIAWib7qzxdJhmLPa/fkVxjKBbZVx7hlpmx2B+kKh+DuEe6B4d/9zAuKJsbb2qN0SRuVVU3ZYXq5YkalhH6TlHVKzAiFg0r3SksuE1PFIzLWASAmlDD0Bym/u5N2wTH5Hdr23NwDwD4tr8MzeDGHTdiqbOU+/qkWzoENj45i6M5/MDRH8CDrQdxuhN3X8uLpc4SFquLqAlPvGNeoECBbBTE4qOA86566uTK5FabumnjWwH1YO73OaTR1taTlG1R6w0mRAred76LqNBodyN9MPXUc2mKLiBMInoIWi9uFYaW7PV+4v67Q4+Hg7DlRzDfcNBLVkbQrorCK97bIEXVAAKWz5zE3EKYWJyeI+Strmv40Vc9D93OBphSA/zsfgBAvRmeubcxCCoWyb60A3amlVo9RnryLAXHtqFYowPlEYtOZJY1L0gwA2oyQixehDpUIEqyf+wraYpFlZy/I8WiBYlnQkTUYNCDXCrnOhc8zFXHz0JvD6OKxaAVqg4ugbw8trOGSx0tkejuDg2UBQY1mYNq2JDLo+Zgt5VGLJLfkpFAVFq2g0pta8Tiel9DTeIgRPIBX3/TXrz+pr2J6tSgUjPJ+iUL1+ys4lJXg+bun7aioxL5fHU4gCCX4WD0/dMwXSE3dJ4a1HEcGJYzObG4/5D72ZtXcvPs5mYoLNQlXLOjiukJbGULFCiQHyZolzjMyFg0tbCi0RzGFY4JuK/rEiresik33H2DAnqXwmQmAIh1AMB8OeX6cSmdWLRpHgiMQ/2hO55HZgjfcZwoJXnKAlgBvWF6U6Dd7W9KsRglFj3F4icfNnH0ZT+B1VYbDYnCDTvJtXluup66Ps+y1LBH+2SqVs5nheo2SyMO+xB5LjThaOdsE6utDjY6fYgCD4bJHjO6fU/ZmE0sVsY0f7YDQRKPWKFublKLh6AV6vGA9dUkuByWr482Ngb6o5KxCAAPJlj6FShQ4PENh3ZyWaFuOWPRMWFHJ1JF1h/djjKfn1g0HTOUqciCDanVnATHAAA4cd/IGYZnshWLm8pYPHUOu/aFiUVPsTh4cIAffeGPorXSAiMykA8R4q0x3YCt2TBaRmg/AgEr1MCurNQroYxFkUkfI0zbTNwXgiSAkcn+mpqbgqEbWLlA+gCiO+bolo6PnvooTMsM5XLmIRaVngI5xySnAU36Uuf7cTv7PAiqA03d3JRi0ScWbQNyWfb7XbYVP389y98sq+DKE3CSUx5isSE0yO86JcPVsA1wdP7e5+4Du0FR1MiSGMBtu2/DReVi7vMlKWPRw2uvfi0qfAX/cfY/NmXB39W62NA2cKhxKDHftUCBAk9sFMTi4wyqYeG3/u2+id/Xd0hTqGvQIVIJANb64YZWSWBDNqb3LHdCCkXNtLG36c1QihcZNAUwNAXNSC+gawlquElsEsdB15KbdA8fvwcAwLoFUNRStBMkFnNaoTrulDjdMNFurceIxeYMIRaVfh/7Dx3BoBtWGzamw4rF9aBi0V13WLHYiGcsMjRsbYCWzvjFgE8YW2Zo9jwvyQhyYlMz89DUIfq9DiiK8rMx62mKRT9jkRSvA92EzLMhcsuzQvWUp6qZh1gc3yxqD0d3M1FiUdfVmGIRAJ6+WMdaX0M7QRGyoegoCxwaMrHmFQKKxWFEFerBUxLqCee3ZTuh3MfNYH2goy7zm7cD1iezsHja7gYutIfo62TfdoYmahI3IoodB0NlAE4iNwalMcTiTFl010P2t6eOlbjJhpsdu/aA43g49uYtOYQJyUwPf/A9T8Vvv/JaNMtX1nKtQIEnC0yHIdl7MSvUiGIx2GjT800y8MZkjMlYXFZYQFmL5zaKZKZtIrHoOMBauhUqUSzGicVoxuIdx0kmCk0BYEV0B+lNy05PmYhYtGwbp89dxKEEYvHPvqHjpf9PweG9O9EdhJ0d5prpY5dnhRqcn0MyFvNboUYnGElCuMbwFJUXVlt+IysLnb5nhTpGsThG+bgdCCkWt8EKtSyLufZB3m16oqA10K+4YnG2WUejVibHtUCBAk845LFCHZrploZJCBIGnmIxrVnvWA40S4MRcRgquXE1dM77J4kJEIsOm4tUOnFvgFikeSj9HIrFdHFaCA4cLC8tJxKLG1/awNLvLWFmYQZDJbxvGzPptYhnheoRi47joNaoJWYsJsFyrBixSNEUWI4FI5H95Skq1y6ukdfdsfh05zQ+sfQJHG8dR98YfZ4+zKlYvAK1SJBY1HV9UxmLQcUiTdMQy6P+jGWF6zie5sFQDPSMyIHtsEL1fjvsFt0gtgvqQIU0phZpiA2iRE6xQTZsYyLFoiiJmNs1F+oJ3rrrVlCgcM/aPbnWodt66DoRWj8r4nVHXofj68dxrjf5RKrTXaJ0vH72+i3XrwUKFHj8oSAWH2f41H2XcM/ymIyhBOggA/HQpqFEmjtRBWSJZ0INoHuXO9gVsT5dbJLiKGiRGgTP0L6y6vRaPAhc5hnfvjMJwhZzzdKsUB++/15c/Idfwv4eUS5GrVDbAWJx0oxF1SWi5gJWqIau4/Of/DcAgCBK+Nn/9YewrPA+y7JCtXxiMZCxWGv4WZIeeIaCrSnomgxUl/DyrChtSwfFjgoX3s0RtA3SbJ2amQMArK9cAgAornd7EvkLAPpwAJqmIcmkgFY0K3Y8lUEvlDWpGTbsMTa+lRyK1XbICjWgDqQo1wo1QbG4qw4HwOn1+HnYVgxUJRYNmcNQt8CJcqgY0tT4eeQp9nQrTpZGyc7NYEMxMCXzECck4n7mtoN49oHmxDbC1y3WoZo2ljfId+2qBuoS5/8GHduGZZpgRXK8y2J2Ue8pFntuHqannB1noRoFw7LYuWffRO+JYrPXEYlncHShFsuyLFCgwPbABE0Ip5hiMUCwmRFFox6/hmfByyhOy1hcHrBETdeK2P64M7D5hIkq0LqZOY82HSYADc8Smk5WLAIAGD6bWOxPlrG40R3CsmwcXBwRi6Zp4f0f/yL+28dV/MyNPP7lT37Nzyj0kKVYlFz7saBisVmvoDfI0Wy1DICiY/bhwXxFgFihAsD5nJmCfsZiRrOuO7hSxGIkY3GLzS+apkPbvbLe3tI2PVGw3tNQysg1uhygKApH9u8ev2CBAgUel8ijWJzUCjV4L0mBIoRWGrGoOlCtuLKpxJP7Lqac7/5J5EbXRhZsLhvMh+59yP+boZkReZiASRWLhmZg0BuEiEXbtvH5j34ey+9cRv3mOt7yrrfEyMyp6fQYCoqiiB2qu6scOKjWqyGlpWf1mERuWLYVc+DnRR4URYGWyP5qupOc1i6thZbzyETTNtHTRz0iT7E4LmMxjxXqVhHMWDQ0Y1OKRU+d65GFpdKIML0QsQSnKAoSK2VaoXrbNKmjUhCKSY7vJPbAlxNDZegrWdMwJU5haA5TFYumbUKgJ5vA7NmheqiLdRxtHsXpzunUz/HgOA50S89UE37/0e+HwAj49NlPT7RdALFBLXNl7K/vn/i9BQoUePyjIBYfZ/jLL5zE03bV/cd6Qs7bOChaeOD5ysPhJk5JZH1yCgAudbVY/t3OxIzFEQSWRlUijZWP3XMhlNkIkEKkkkFQsAkE0SQw9HiTzrIsnHzgXmjn7sPuGmloRa1QOyFiMcdM/ACGLkk5tzAqoE89eB+O3/lNAIAkyxgO4va3UWKxrYy2wbLj9hPVerzg5hgajjFEz2IxcJVnuvsexzJABWZEcRIpyhw3d6rhEotrK6RY9I59asbiUIFcrkAzbfzI330TF7sqykI4k2846IeIRdW0Np0PGkRXHZ27puX4+4KiaBh6MrF4aLYMnqF94iyIztBATeRQl3lopgUbgCCNzu1RJucIAkuDphDKqfRgWBYqtfomvhmB7TjoKAaa5ckViz/7wqvw5697OnZl2BQn4Sk76wCApfUBNINkI85URjkdpknOR1ogN0QlPrth2iyRInmghc/DSYlFANjt2qFuFtImFYsFChS4vDAdhpB6UaWAEbhOxxSLkfFTyCZOPCvxNCvU5YF7LVt5IPxC1uyMTmQWb2RmvEUlj5tpikUAxApVyVIsDhIzFg3HnfwRaRytdUkD5uDiDv+5h5aW8akvfQtv/w4Rf/RiEapmwIo4TmRlLHIcC5qmoQfGvTRFnGk7YIIztG0ToBjfbtuDJIS/0845Yo+2fCkvsaiApmmUM+yoeoPhFVcsaroBbKKZF0V9izmLUy6xOHwCKe26Q/OKW6ECIzvUAgUKbD821A0c+9tjuOPSHY/K549ryAOTW6EGQYMmFpwpxIqjOdBMLaZs8mxA8xKLwVzHvMRiULFIUzSGGZOFJs1YHPbIuoLE4sryCj7/0c9j/jXzWPihBbAcOyIsXdQzJjkBJA/RVx06cUVclmLRdMyQ4gsY5TZ6Vqg+sXgxTCwOjFHPKIlYTFIsUgcoqFUVSl9BqVxCT+9hQ5080igvgvvC0DdHLHoknmdvGlRannrgVGx5mZOzFYsesbgJe00PLbUFgJDGW1nPdmE4GI5VLDalJhRDSZ24YNhGqi1pGhYPLsaee97u5+FM9ww2tOzzylNEi2x6DVXmy/iew9+De9buwYXBZDmfpzqnsLO8E1X+ieeWUaBAgfEoiMXHGfqaiWcdHIVetxLsHaMIkmUAcLETLhrvPtcJEZQyz/pkgIdopmISgROEwI1mp9sO8A/fOBNbpi5dvvwyy4zPnFo+cyqW1xa1O20ro/0ZtRsdB3XQQ6M5A0kuwexcgmPbuOrYdXj7P/27v0yv2w69xwFQnxplLNqOEzpeHhkXUiwmKOI4hoJjaBg6LHru+z0rWseMKBblivs8abY2pkkwuqdY9KxQUxWLqoJSuRI698oiG7KyHbhWqB6GugVzC5aWAFEDquaomBzqVtgKVdMSrVBZhsbBuTIu9lRYEXKzoxqoy8QK1XaAoWFBEEYF16mH4llaFEVB4hjoCfauqmH7ZGf0xiUPukMDluOErIcnQV3mJ7afqMkcFuoiLnZU//wP2tJ6vyXGJRbHKRZ5lkZFDBDc7nVAHkNIJmFxi8Qit0Xlc4ECBS4PLLf8pIL2YhQdVizaetgqNZqFOAY+4WYm10krKksIoLX4BJJUdM4RNVrKjXlUsehvizuD/lyfwYWVFi6uBhoAjJCpWGz3khWL/3xpN959pw5dCk9OWusokEQBC7NTeKRjw7AcHD24iAc/8Q78+DPIeja68UlO041a6jZQFAVZFBA0qUhUxFEUHlyz0bBbgDcGWiRzUNXDdZmX2+ihUStD4DmcX22lbkcQnf4A1bKcOealWaGeHLqNjy1alnoIKRa3IWMRCFu8boZY9Lap1ZnMfeOxCt2daJdFJF8uHNkfb+YVKFBge+DZ+L3/wfc/Kp+fZlUYRBZxMg60Q2crFjUHuq3HVJGeFSpbznf/FMxkZBxmLKmk9BWcOzWaLEVT9LYqFtW+CoqisLBnAUbbgK3bmN89j/d88T2Y/vZpUBQFpa/E7pfFMap0QRoRiw6ciYhFy7bgmOHjIEhkeU+xKPACGtMNrEcmOQWJxagVKk3TiZl71LMptOZbvhXqv578V/z1vX8ds73dLtQCddxmFYseseipEIPE4ukHTseWl1gJhmPATslA3w4rVI9Y5Gk+1+81D/p6H39x11+grbYnep9t21CH6tiMxWlpGgNzkHjtsB0btmNnnqtJiCoWAeC2xdtg2AbuW8+OyvKuL14uZhreeOyNoCgKnzn7mdzbZdkWHuk9gn3VfagKBbFYoMCTEUXX9Qrga6fWcdP//o+xVpB5cPPBaRyaGRWOq/3xM+jObYSbcSdXw0XjqbU+WsqomJUjyqKGzGGuNtmNPM/QPrFVEVi860tLo8w/FzU5v6/4dsDLV6SZ0feLWaEqm7dCVfpd7NyzHw/d/U2cf9d/x8Y9nwUA7NwzsgTod8MWaqbtoFwdFYE91YQVuPEwbAcsxyPI81YSiEWeoWGbGhxQOOVaz/rksKGHFYuiq1g0SKEjiBIqtQbWVy4CIOQaBaAsJN/IaEMFpXIVw4D6IEhC2pYFQ9dQKld8Im+oWzFSb1JECfKuaqDWGKk3dU0Dn0IkHdtZw6WuFtpm07ahaBamSrx/LiqaBUEcnetLDz0QWxcQzyH10NdMX7FoJ1iljkPLJfZ25yAWH37rt+PvfviZmNmGHMBrF2q42NWw2iefvxBQKFsG2e8UT7apLIz/3U6VeAw0C7bj+MTiuGzGJCzuPzzxezwwFJVpt1ygQIFHD6ZDrgchYpHhwsSiZWzRCpUZrScBtgOgNA1sxBslqeguA+XZVOLIotIagORadGlIh9WKgGuFmq4S6KQQi6rN4of+VQWmDoQ3UdFwcHEHvn7PCVz/VwP8xTfIur0MQyCZWGTHqOQlkQ8rFlOaRXddsjHltACvCWcToi2mWIxYoVIUhYXZ5gSKxUGmDSrgEoul+DJ/cvF6XPv3JaC2K+FdkyNIyhIr1O0gFkfbvSnFYo0Qi4MMNezjCZ6RSqFYLFCgwHZCT5l8FMSkVqgAQFvkntTLWLSjHpwuHI2Mq/2IK4OnWKSF8e06mqLDGYs5FIsnj58MkZ00RW9rxqJlWphdmMWZE2dw8s0nsfLhFQBAfaruLxNVK6bBm0DkOA5RLLrkoOPEiUWRcceIhFtAy7F8G1UPvmLRzVikKArNuWZMsRgkE0OKxaEOOWWSEyVRAAUoPQWlSgm6paOn91IVsLTbms1jz5uE2lSEWNxMxqLrHOKRhXJpjGKRlWFYRuo2V7ch79lTeVKgcmWi5sE9a/fgvvX7cucTetCG5FowjlisC3WYtpl4rD1ieVJiMUmxeKB+ALPyLE5snMhUc3rXMO+6koaG2MAz55+JS8olaCkZ9VGcH5yHYRu4ZvqaUL5sgQIFnjwoiMXLCE/R9eYPH8fFjorbl/LNws7CkR0VVAMkzqXu+Av+I61ww+rhlTBhpho2/vNs238cJRZ3T8kTkwICx/jE1jP2NnC+o+Kzp8JNwfoVJhZP3H835nctQpRGBVLUCrW9BStUOA5s28Zfv/UXICxcjeqRZwMgWTkA8JwXfgf63fA6TcsOFaIbEQWqYdngBRHO+hIAgEJyhh/H0oCb3fjwCil89WDGYoBYZEXy/Z1AsdCcnfPzBBXdhMDSqapUbaigVKn6ykYAqAfOSdMlLKVSGUO3E6QYW7dC3VDC+6avmaF9YRh66jZft7uOtZ4WUqT2VBMOgNmKgKqrwlN0C6JLLIqlCk6fuD9xfU/ZVceZluI3Sr0sv+A2RbM088C7ZuyaGm/dxjI0bj08sy0B2dct1nGhM8SlHil+5wMTCXwrVFdxk+da0CzxUAwTlu1AcwnWK61YZGiqyEgsUODRQgoJyNvkGkO5lmBU8Iab5oHgTawVUSzqA4AN3IRrYyb/UBRRpGUpDSo7gN4Edj+dc0BpFokdK6QrFoO44/jDmKpVwLi1AVg+M6uw01NIRuEEfSZR4PCS//pmXD1N4/VPixMx7QxVQhokkQ+5BqRl+N11yUIDnVEWpeVaoerhMVFKmKSyMDuFoZqvkdHpKyFVXxS6YULVdFTSmj8Mv+UsRA/BfbFdVqi1MvluC7PNTSoWn1izxnXLVSyOsR+7HCiIxQIFHrvYqjVikDBKAkMxmyIWGZOMAzTGKBZV8nxHC08+zspCi0JmZXCBe30GTIxYjCoDH7r3IXCBcZgCFcoqjGI4GMKyrNyKRYDkDv7Md/8MuDqH6RdOx14fdPPVIh5ZaNgGIRaNkWKxFnFbGKtYjESZ8CIPy7ZCBG5zrgktUosEid+u3gXv1nuaqqFUjdcitmMD7iFU+opPRGmWlkqOSTZZJqiOnATl2kh8YOhGLjvcKIbuhD/TMgmx6E5y4gQOpx+MT8QrcSUY9uVVLHrEomIq20Ys3rdGFH5RQn8cPLvgcVaoDZH0g3pG/F7FU4NOrFg8FFcsUhSFW3begqXuEpQMZxdPORm0TE7DQnkBfb3v2+GOw+nOadAUjevmrsu1fIECBZ54KIjFy4ioQmugb20g3FETMV0KD0CrvfGFblSxuLQ+eswYAzA0ha8+PJqVFc1Q21EVQ6SAkMNeUGRpX6G4UJewtynj4yfDM3Ya8uWzQk3Cw8fvwaEjx/zHpmH4ZJqHboBYjNqkZsGxLSgPfQXH77wdz3zhyzH73b8JujRS01WqdezYtQf9iBWqGSluW0qUWHTACQKsNml8chyTmLHIMxTgOGBg4+QqKZB8haiugQrkM3EiKX5DxOLMvP/30LAgcDTYBFtRANDVAUrlSkj91yiN1m/qnid/BaphQeIYKNpkisUkt80o6aroJqq1oGJRTSUWn7KrDgfA0tro3O+46tT5moSK6CoWDdPPWKw2Z3H6oWRi8cXXzOF8W8Vym5w/HhmvBO1ZN3Gf2xroYGkKM5WtqxAnwdN2N2BYDh662AdLU2gESH/TJNctxz2HytL4Rux0RcBAs2BYdsAKdRMZi/sOjF8oBSxDgd4G0rVAgSc9cs5YDSGlwdAwzgMAZIpczykjqlgMEosJisUJGm0ACHGURSxWdwL9lfzr6ywDcjP29P190jgxmfgNu2GEa787jp/E068JXNsYLlOx2FeGME0rZEOaBsdx8KWzJm6/5wS+9yU349/fIKMhxcfFjc5kjRQAkATBd6IAnFTi6q6LFnjKBFYeJE+4ikU1sh+iVqgAsHMuvm/T0OkNQqq+KDyy9kpkLNYqJTBu/bFdisW626g8dngv7nv4DGnoToA04vfxCu/8L42xybsc2LMwCynhfC1QoMCjj3U1n8o9DUH1WRIYitmUFapHLFKgYDnjFYtRAmKSiaMSK4VsLxmbianVourAE/eewIGrR7UITdFQetmW80pPyU0s9o/3cfL+k7jxeTdi3y/vA1uN3z/2XKvujS9voHtnN1Xt5OXC6ZYOXuRhu/eWDpyYIo6lWV/5F4XlWP57PQii4JNpHqbn4iRoVLHoKUR1VU/MVxyaQ1A0Bdgu+eguo5laqrqvZJdinzUJmIArl2mYm7JC9faFbuuEWHRrKLEsYnlpGeow3M/zMhbTiMVKbeu1iGeFOjAG20IsWraFBzaIK5Vn/ZoXQ4XsH3GMe8KUSHpUSdeXPHmHSajWq+DFeP/0BYsvQEfr4FQnrij14E2OKHPl1GU87CjtQE/v5d7XS50lzEqzmIlEMxQoUODJg4JYfJxgoS5icSpus7DW12IWo1E80goPmOfbQz/vjnIs7G5I+M9HRrPkogRAsyJMrPwROCaU2/iKpy1gEBmbPJUbtU0zxqPQ1CEkjmw3bao4cf89OHj0Kf7ryiBctDmOg646IhZVZQDLzFm8UDQcU8dLXv19eOkP/gwomgHY+MDf63ZCVpvRY7cx0GP7WpCrMA1SDKiG7VttBsGzNCiGQ4k28UhLgW2PLChtUwPNjRoijEA+37NCBYhi0YOiWxBYBiydX7HYDJDEhu5aLZTK0AwbzRIP3bJDROQ4WE78fIuSrkPdgiiPGoa6rqUSi4fmyuAYCufaoxsHT526UJdQdYlFzbD941OdmsXG+irarbjS+LYjc6AA3HWO/G5Krm2salio1OKK0rxoDXTUJA7SJki4reDanVVQAB681ENZYCFyo8+3XcWi41rxiWPs8gBgriJioJkwrdF5KHGTfydBlMCLm2siMjSFglcsUGAL2ITqehx4m4wPpp+xGKhPGC5MAloGEGy+GAowJhskBpojxFYaqjuB4Ub66wFMyxSgdYDSDKKKRcVyr28J15z1dtip4I7jD+PpRw/6j22KgzLMJm+7fSUXsUhRFFQTePWLbsZf/dZPQmCTL4JJVqjjIEsCFI9YdGzfajOKuy65y1y4k/xvGURxGVMsxmukoF3rOBAr1HTFYte1dLsSxCJFUZiqVSAK/PZlLJZHxKIy1HDqkYuTvT9Dzfl4hKeWfTSsUGmaxlX7dl7xzy1QoMB4LPeXt/T+gZmtDmNpNrdyJ4igYhFIz2n0iMWuNqFTUgAyK4OhGdgUGX+TCKX2ejv0+MS9J3Do2pEzDE3RGPSz90W/289NLNq6jeufcz1+889/M9XOte9Oclp+xzLOvu0sakJy1rOn3tQtHaIkwjZGPaZKZBINRVHgE+zjbceGAydGLPIin4tYDKoIu1rXV34ZqoFyJU7WeMtbbq/HI+hMx0xVwPI22e5Jya40UAn9lHFQLUIcGjaxN/W2WypLsG0bZx46E1q+xGYrFpkcfYNx8CYPDIzkzMJJcbp7GpqlgQaNgTGYSPWsuvby46xQGwLpByWpTzdLLAJEBRzFDTtugMAIuL+VPCEeyJ+xCADzpXmolppbOXuqcwqL1UVU+SeWU0aBAgXyoyAWH2eIDnytgQ5VTx7IPZwJKBRFysJqT4MRUMpdPV/xVW5A3LIwaHOZFwJLIyhQu3ahhjLrPUGKHC+Xj5IuzyDUaa1Dcptq5sZ5DHrdkGJxqIQba6phw7AcOAGFxDjV4sr5c+gs3QuKoiAfeS6+6/U/6r/mJBCm/W4bpcro+/YincLWQEdFZEO9SU6uwHRz7hTDRDWBuOIZGmBYlBkTl7oaFMPyCR3L0MAFyEzGzcpzApkS07M7/L+HugWRYzIUi0PIEcVivRRUuLnFUqkM3bIx7arvesP8Teqk8q410ENNUsWwQkS7rmmpmXocQ+PQbAWXuqqfddoZGqAAzFQEVFyJpGYGiMXmLABg6eF4zuJUicc1O6t4eKUPy3Z8sm1o2JBL42eCpWG9T4hFcRMk3FZQETnsnpLR10yURTakSvbOPZtmwWdY5AYxWxXQ10yYtuNbIstJMlQQ5WlWQV+p1sELkxfeLF0oFgsU2BImsQjNCc52LZa8jEUjMPM5RizqEcViH+AmvBYwbDZBWt2BvPLyA1Puta80i6Gev7Gx2hpN3NJNC2fPr+LpR0cqAc0af53q9AeZxOLF1Ra+fD9Rg962j8H/+IFXZqodNrp9yNJkCixJ4KEa3qS0dGLxYt/B0BGAi25ujaUTK1QjnxVqXvQGw0zy7EoqFgHg8N6d2D0/DcMwR/meW4D33Y4d3gtg8pxFOmVy2OMVmk8sXnkrVAC49RnXYvd8MRu/QIFJcf/6/fiFz//CZVv/ud65Lb1/MCa/maHjisU8RARrkvsej1g0UvKet0IsbrTJxCiRFcFSLNpTbQDA0Im7IHTWR7WIYztYOrEUIhYd2/FJkzQMeoMYsTjdIiRc3ayj2+7i/q8TcqPy1Ape/cZXZ45F/ZzuCR4B41mhBolFXuAhRpTsPMPHJnp56ivHDB87TuBixGIzwT0hSLL0jB5KDBmj0xSLnsWmRyyWAhOhxtlv9s1+KlE3ETaxCi8T0LDCGYtiWQRFUTj1YFgVV+bLmYrF7cCGuoH50jwcOInWopPi/vX7IbES9tT2YGgNc2daOmUHKu0SizmtUKPnFjA6F/080AnQnG2C5cI9FYERcP3c9TjdOZ1KvHrPj8tYBIA5mQgOPAvaLPT1PtbVdRysH8y17gIFCjwx8cS663wSYkPRoY5RLJ7bGA1oMm1ibaBDD7znyI4qlID6TOToUC1WSSEEshAlRiiKws0L5DldIo2jmmu3SMnJs9OykGeb2hsjaxSlSwbGgwFiUemHi7qOq2CzBm3/uUFGzuLyiXvx31777Tj7H/8AxyYk18LiXv91h2ZhWuEiq9/tolIdfd9upFO4PtBRE8PNNlYqwXDJHdVwUK7WQEcINJ6hQDEcqoyJ1b4GRTehmTZYmiLEojAa6GmXWLQjGYseFN2CyNGpJB2AmGIxaGvrWaEyIiHY5qousajlTHtPQWugo8KPLlnBz/c+N4v0OraziktdFYpLiHaHBmSe8f/RFCGXvYzFUq0BXhCxdCJOLALAC4/M4fTaABsDzVfG6aa1pczD9YGOunzliUUAOLaTnJdVkYMQmF1omgYoioINBjxD51Ivz1YEKLoFNUBwBxWLpm3j66fW8QefehD//X134pP3XUpd157DR7B48MjE34fNua0FChRIQSejWae2N7VK3iE35MmKRZ6o2zzYZiRjUQG4TVihZioWFyZbH8UA1fmxCsMgVjdGzbyeq7wPKhaHeYjF3gD9lJDFB0+fwzO/92fxhx+6A5rpgKIoHN6bra5qdwdoJMx6zoIkChh6E9kcCyzLpBJ7LaoOtE4Sa1vLtULVzVCDUUqwc9o5gWIRQKYV6pVQLN6zPhrXPv2u38Gv/8R/AQCY9tbHHs8Kda5Zx3SjuqmcxScSFDdTqzxGJXC58LZf/TG8+//83KPy2QUKPJ7x85//eXxi6RO4b/2+y7L+rRKL44gKlmJjpGAeJY+nWPQsUFMVi2qyFWoeXLxIlOwiK4KhGThefnWCUq3davt/25YN27Jx+NrD/nNajrqm3+uje7KL4dKot8SbPO79wXtRHpTxU6/4KXzkLz4Ca0juh3fvz86n7Xf7Y5VfwIiAMW2TZCJGegBRu02e4UFFmEWPzAmSkkCKYnE+rlgMqgj7eh8ldlT/JGUsenamvmIxUK+MO396es9XtW0FkyoWHceBaqmgQMWsUGmGxo7FHTj1QJhYLHElf9nLAcMy0Df62F0h51IaAb8+XM+tXr5v/T7sr+3HrDyLoTHMbflpP88GfyupXcedtzzDQ2blRGLRU0BvRrF4+CmHMbd7Lvb8bYu3Ybm/jEuD5J6Kp1gMnrdpmJXJ5Pq21h677FJ3CQBw3ex1W+qBFShQ4PGNglh8nKOvWWgr6TPnHcfBcnsI2h0wZZo0+lvD0eB/YKYcsgykKCpEbEQzF/NASshhnC+R5yy3OPStUKX6xOvPg05rRCyapoHpuR1oTI9mG0etUNtDsh+twWh2zqA3Kl4evOOro+fv/yL+7rd+Ajt278XVr/1lYn0KhGxOQbMhZShAFIvlat3/DCViDbahEGIpCE4q+aqxoWGBpmlIpUgBzdKgWA4VxkRPNbHW06CbNliGgmnoYEOKRbL/g4rF5mwgY1E3IXEM2AySrlSu+AQdAEiBc8SzbfUIzPkq+TxF25qtXmugoyqOzkvVsGAHZoyapgGGSp9B+rTFBlb7mp+t2FZ0V53HgKIolAUWmmn5GYs0TWPPgcNYevjBxPW9+Np56JaNe86PzhHNtEPbNCnaio6pEp8rx3S7cd1iHQBREvOBz7dMA4IoQTXt3MTidJmQyR3VIOchTYVI3w988xze8aXTUHQLM2Uedy23fXvmKDZborKFFWqBAltDFrG4yQYCb7vEoqdYNLMUixErVH0ATHoTTnNhsjIKoTrZOsuzAD8ZIRdULAJApSThwOLIJUAxx1+o2t0B3KEL//K5O0Kvff8v/yGa9Qr+4ief76v6Z6ayJ2xtdPuTE4sC7zsVUO7xT8vxa1FNoPMIoPVCikUxoFKUE4jFSaxQAWRboQ5cYrF0eYhF6s1dvOUbo9pKFHiUXBWouQ39Ne+7URSFY4f3FsSiS2qXJlTabheKhlmBApuDpwZquxOSDMvA2+98+7at/5HeI1t6/ziSh6VZmE74HnZlOD6bmbbIfY9PLKbYqTqmA4Zi0NM2r8QSGAEsNboXp534fWTUCpVhGey7ap//WOvnIBa7fZz74jmc/K2T+OZHvxl67S/e8hegGRpv/J03gpFIjTe/az5pNaH15cngiyoWrUi8StQOVWDIOOEEHCm88zCaVyyIgm//6SFqhWraZogY7ht9VLjRZyYqFl1i0XTdGoKKRcXItjrtGJ1tsfykJpzk5FmaVviK/7ccmJy1/+r9OP3A6dB7ylwZmpWeG7lVeOTWgRpx+kjLn/zUmU/hnfe8M9Vm1kNX62K5v4xrp6/FjtIOKKaSm1h0ag4cmpxT4zIWAaAm1KAYSkzhbLpOKpshFtPwbbu/DQ4c3Lt+b+Lr3n4RuPE1lEcsjsufBUi+oszKONQ4NHbZAgUKPHFREIuPAqwtEA9JeGQjvTjpayaGhgXOIrNlZJoMZBcHQYUig1318KybYM5iVB2XB2KOjDgvl44qbT6TLgtBxSIQVisCgOLanAo7j4Ct7xgpFvujTL0gsfj3v/crUAZ9dI5/CWv/9ru4+sbn4ff/5gPgSqSBx0XsGh2ahRFRLPa6HVSqNV8VqUa6TxsDA41S2L6DFcuwXdLFa+oF7VQBYoVKMRzKDDm+J1cH0C0bLE3D1HWw/GjbaM7NzAwQOc2Z0cynoWERYnGsYnFUhAWXNXQdNE3DdvMNFmrkswc5MhY5dzbg+V582Q3FQC2gVFUNG5Yd+S1lFLVP2VWD4wCn1wb++qriiEQrCSxUww5l+u09dHWiFSoAXDVXwWxFwAMXe/5ti2pY8W3KCdOy0VNNzFbEXHaj2w2PWKzLXIjYtC0LklyCalrgWCrzvPDgE4uKAd2ywTEUGIrCXFXAdbvruPXQDH731cfwnjfeiNfdtAdLawO0B1u/gQqisEItUGCL6GQ06zZJLHJ2VLEYmMnL8GFi0bEAM0AKGgOAnZBUYFiifEwDRQHl+MzfVJRmJ7ZjXW2FZ1dfd+RASLk3yDEpvdMfYOjad/34//5brG90cfIssap95rGr8MX3/D5m66PmzzgSZKPbR31CYlGWBN9K3EOznmxl36KnSXZl5xzZ/zTJWBT4EbGYnLGY3woVyM4RvCIZi5Hz0ft+xnYQiwF1Q0EsEsWiKHBgmCvv6FCgQIHtw5/d+Wf487v+HB899dFtWd9WicU0osIDS8cVi6vK6tj1eoo57/+snEaBEdA3J88+Dr6fpkZ1RVStBwCdyCSnvYf3gg9M8FEH2TaoADDojkjYt/+vt2P14ioeOUn2/869O/FnH/ozTO0YjeNRy8Yo+p1+YmZcFBztja1xK1QgWbEICiGne1+xqNuhGixJsRi1Qg2Szx6JVufr/nNZVqgesRhULEaJzCi6ete3JB2HHW/YAX5XvJ4CAEzI9Xn7oS7UoVkabMcOEaL7rt4Xs0ItcaXLaoXaUklf7mjzKIB062LTNtFSW+iq2ZbCXg7hLTtvwaw8i4ExiE0cSIJlW4BM1L7AeCtUgOxH1VJjpKufsbgJK9Q0zMqzOFg/iJOdk4nHQrd08DQPjhofcSWxEspceey1ESD5ijvLO1PzUQsUKPDkQEEsPgr43AOkGN3IUBpOgrPrcYm9h7U++QzezTWSaDKwXRyEB5yr5sIFmZSDGMyCkCOo2Wv606V67DV+G4iVoGIRAA4djRCLA0Iszr/+97Hzx96BtmKAYyg4gcynYMbioLOBd/7hb0PedRXq3/ZDeOVPvzmU/SaVww22JGJx0OuiVK35akE1RLZR6AwNNEvh4pAVRoWoZtiwbQelcoJikeFQpkihcnK1D82wwNIUTEMDE1gHxfIxcmh6bqSeUA0bEs9kKtNKpUrIPjdIhJmGDqlUhuaSpnM1kdiMjskCBYCKSmaA3rliYLk9Iswt20FPNdCQRjcowwQSj7LTK+jDcxVwDIXlDvkttIcGqhLrE4sVkYVuWRAC+2r/4aM4d/pk4vooisK3XTWDU6t9fztUM4HszIn20IADYKG+fUXmJDi6owaJY7B7SopNJhDlEjTDhsDSuSYa+LmamqtYZGjQNMlvfe9/vQn/3/ddh9fcsIjFpoyXXDsPw3JCys/tAMvQBbFYoMBWkEUsbhJeLWKDBkBFFIsRYhEAgrO69QHATEgs0lw2sQgAlewZ9SHITYCdzIpxtdUB3IbfuuLg6dccDL3e08aPGZ2eAnfuE3TDwn9/619gfoZMynrbr/zXkD1kvTx+DGn3NqNYjO/7dMWi21i8cJevWFR1IwexOJliMYs07PYVUBSFUo5Z5dsF0f1O26FYrFdGx+cpV+3Dw2cvxOz1n0zQTAflK3gsCxQocHngkTTrw/UxS+ZDXvvDNITUYwm3DQzFxGwpV5SRYnGcZaWXsZilQJNYKUResfRkblECI4CiKJ9QZBDvw0QVi8F8RQBj8xV5gScZiy5EUcQf/fIfYWYHcYP6wZ/9QZRrk9UV/W4/13u872VYhFiM5iRGiUUhoVb0FYumBS5Qi/ACHyPx6s06mEAvK3hsvPNlShgRqKUE9wTvPZ66Ug64J+QhDT1CbRyatzUx82Mp+b8TlgwesdiUmj5ZGCRED1x9ABurGyEFXokrwbCNRNXfdpCNXs7fgdoBiIyIgZmuMLYdGxeU7Hz44+vHMSfPYX99P6alaQyMQWr+aRBtrQ3K7YGwHBs6h9LQEBtQTZWQkgF4kwySztOt4Nt2fRvOdM6go3Vir2mWBo7hQhMQsjAjz6BvZGd92o6NM90z2FPdgxpfEIsFCjyZURCLjwIeWiFk1WYJiCAoAGfW0wfYNdfWQnAViwzloCFzWB+GB4mjC2FSTN4ysTjJqRWv4rcjGq0TUyw+JfRYGYT3W2ugoyywQKBY8hSL1qCNHfsO48Pv/1uoDovaja+OKQI8e9KylwNI0ehH7D973XYoY1E1LL84o+UaLMfBfC3cOGHFYCFqw7QdlCIkpsDSAMOCo2zIPINTq32ovhWq4dufAgA4IaaIazRn/O8zNCxI/DjFYpRYHC1rGjrkUsXPQKxKHGoSh6ExmRXqu7685DfRuqoB2wFmyqMibmhYMCNWs1lZWhxD4+BsGRc7KmzbQXdooCaNbEcrIgfdDCsW9x0+AtNMX+dLrpnHhmJgpUduEIa6BXOTv+uWq9hbnLqM6ooMSDyDT/6PW/G6G/fEX5NLUA0LPJt9XnjwyPGBZkEzbXABC1WRY1AN5IheNVfBTJnHg5d6MauQrcBTSRYoUGCTaJ/d9lV6xCIAl0iMEIvRxkSIWFQmJvVIxuKYsae2a+xqpkT3WiJPEctWD2MslwA3Y5EV8IYPDfEjHx7i6UcPhF7vjiEWRYFHp0cUi23VwbEDO/H/PvI5/PuX7wQAMJHxfLqWPYYc71exsamMxTgRmKZYbFN1kkd54S5iRetZofKjdSRZoZZL0kQKw1rGsr3BEJWSdEUtLD1i0diG+j6oxjx2eC9s2/bdK56MUE2gnEMhUKBAgScPTNsMkXybQZBYpOfi/QuO5mKkyepwpFhMauIH4RGLWeSFyIoh1VyS4jARxLEQPE3GHk4n9QnvxMfXYMYigFC+IgAM++kT1QGSIxgkFvddtQ9f+8zX8IWPfwEAQkQcAEiV8dfrfiefFaoH3dbBizwc9/7fszqNkpNJSjDvGDqGAz4wsUmQhJhikaZpNAMTnULEouuu1BBGjltJGYtdnfSQTJN8bjCTb5xiEQDWhmtjl/FAMcnnixPtk4yBtx+mxWnolg7LtkKE6L6r98XeI3Pk9SSy1NvnW6nDWloLJbaEslBGQ2wkWosGcXFwMfU127Fxf+t+XNW4Ck2xiabYhOVYuZR5HsEJ5LNBBYApcYpYrUYUkd5+2U4rVAB4wZ4XQLVUPNCKu21ppgaO5nJPWpiRZoiaM+Me6uLgInRbxzXNa8Ax44nWywnvPKzyyfclBQoUuLwoiMVHAdvphFoWWJxvZykWNYgcDTYwoM1UBLT18AB/cDZckMkZuYpTpRS7hcAXE7hH/9SKWqHGFIv9HkRpVCy1hwYqAatNXhDQ73Whry7hwt+/CesXz+HwNU9NLWZEl+wTAsVdK2Lv2O92UA4Qi4o+Ut2xVeLnv7sRbpR5WYXAyP6zVA4fL46hQDEcHAAzZQHLbRWqYYGhKZi6BpYfzYiiGA5spABlWBaN5oz7GRZKAptZBJbKVZ84BBDKY3Qcsn2eGrMicqjLPIa6hX0PfxD43J/451C7tZb4Oa86UsXSuoJ/u+s8AGDD3Y87qqPvQUi8SJNtzIyza3fWcKmrYqCTLMqGzPkka1VkCQkWUKHuO3Qkc33PPjgNnqUx0Cx/mzY7YcA7V3bWHx1iEQAWmzL2NOM3R5IsQzPzKxZFjkFZYDHQTGimlUnyURSFWw/P4PTqwLf63Q4wNIWck/IKFCiQhPb2KxY9K1QAAMuDMgPEHMPHr+FBYtHSUmxInXRrVialXgmiunPsIkdm3IuJMPkNq5ex+J67DSgG8PSjYcVie5hNFtUqJbR7fZzesPGiv1dwz8llPOf6a7DeTlZ5z9TS7UH3vVPEP6wfIxmLEyoLkhSGUykNQYeigcoOYPVBoljMaYUKTKZazLJCtW07N0l5/OTZbbFM9a1Qze0gFkfbc83BPU/6jD/VdFCWCsVigQIFRlgbroVy9DYDjyhKA0uzmYrF1jBbWeYrFjOsUEVGzG19mQSvqR+1Xw2isx4mQKOKRaWfvR/KlTL63REBc98d9+H651yP82fOJy4vlXMQizkzFj0YtgFe4H3FopdfmWqFGoBHkFhGRLEo8onnQNAONUg8eUR0Uxy9npWxCAeQy3LIfjXtWK9dGpGJQSJr05hwLpK3XdPyNBw40GwtlLG4c+/OECkLADJLXg9mG3qquKErbKC34ETWGrZQFaqQGAlT4hSG5jAzzzGLkD3TPYOhOcQz5p8BmZPRlMgxHDc5AAA2tNHxCJLEWWiKTQzNYYyc8yYZbKcVKgAcaR5BQ2jgoY2HYq9plgae4XMrFudL8+jr/UxF9unOaVCgcP3c9Zve5u2C93uckyeItyhQoMC2oWi7PgbhETIXOvGiI8pZVEQWq/30QnWtr2NK5kOWgPPV+CDmEYmOSoqgkpCuWEyzF6QHhMijKApiDivUy43uRrjQD9p9AsQKVQ5YinYUA5WAkkouV/HQvXfi4nt+ATQv4Zfe/kH8+h/+VexzeFcNWK7Fs4HaSpRYbKNcGRGLQYUbUyHE4q5GuFhhhDCxaNp2asYiHGCuKmClq6KvmWBpmmQeBpqxDu2SaZHD2JydBxgetgNUhezZTKVK1SeBRJYOKRYBQC5X/NerIou6xEE1bLDmACWtBZFjcPKB+3Dqwfti2ZQAcKgp4Luu24lP3X8JD6/00HL343x1VMwOdDNG4jlmtjLl6bsbWO1ruNhRYTkOZiojorIictAMG40ZYotXqk2hMT2DWiM980nkGDxz7+j1oRHfprxoDXSIHI1G6dGd8ZUEUZJ9K9Q8ikWATEDwFIs8k01IvujoPNYHOk6tpauvJwVXWKEWKLA19JKbRVsB74QVipQVJRajVqiRiVNcYHzk3UbOt/42TEAGweSYmVvZMXaRozNuTSNNbvWzthEmAK/aF1ZIbgxtyFK6HVKtLOO+E2fxG5/VYMPB19/96/jHP/6V+HJuY2v3bNY2UoBQxUanj3oGKZcEScxvhQoAaCwS1aupJluhuorFxYWwhdckOYtZxCKQL1/x5NkLeMcHPok3/dB35f7cNIh+xuLWicV9u+bx6hfdjGsP7UFJFrF/9wSWvU9AqBauqK1tgQIFHvvIk3U4DpqphRr/UWUhR3MxxdGlwSX/73U129KVctyMxTFWqJMSi0ELWD7HJKrORpg8ORBxTxhHLJYqJSyfHn3mn37oT/Gbf/6bseU80qU6M34ilpexyM1w4OfHfwfd0sEJnK/E82wao8RikhLMt0LVLXBC2Ap1GK01AUzPTft/BxWLA3MAmqJR40a1VlbGIoAQOQe4OY0Re8z1S+u4/fO3k/VxJXT08WTXOEyqWPQI1mmJfHfN1FBrkO8pV2QwDIM9h8LORiWOfPeg6rPCkeMxLu8wD1pqCzWhBoEVRgrADBVdS22lvn58/TgERsBNO24CMCKjenovcfnoej2IOSc5NaUmBsYgdqwN2wAN2s8O3S7QFI1nLzwbS52lmApXtVTwdH5icUdpB3p6byyxOCPNYLY0u6XtLlCgwOMfBbF4hTHO6s9xHPzmv96b+npUoVWROKz306241voa6jKHYH99Ry19MHTcQORShmIxDZQ7Y9CxrUwrVCevvccW0Y5kLEZneyuDPuTSaMZ+VzVQk0YDvCBK+I+P/DPE3ddi/nW/h6m5BezYvcdXHNI0aTTyouQvH0U3YIVqGAbU4TCkWBxopp/DyFamwdAU5qrh5l1Qsai4uYJyxAqVZylQLAcbwI6ahLW+DkUnGYuGoYMOKBYdhgVHU3j1a16Hq5/2TP/55uw8KPezqlJ2oVMKEIcyz8SsVeVSBaphg2Mo8CxDFIuGFVLr/vUfvwXV+hR4Prmh+pZXXovZsoB3f+UMVnoaWJpCQwqEzBu2n+PofzfTu2lL/p0d21WD4wD3uXl+QZK9KrFQTcsnOnlBBEVR2Hvwqsx98eJrRjOjFN2CYW1Oddca6KiKHETu0SfloxDlElST/K7zknXNMo+hbrrnAZ1pS/qcQ9NgaQr3Lm/9JsoDR9PbYqlcoMCTEmoH0MbfaE8K3gkTiVSw0cYmWaFGmj3BZpF3c9w+E1rEu9RYtkMyFschB7HoY8LcI8C1Qg2AjUy8aik2KqV0AqwkC/jgp76MnVUa//76Eg4tzmPH7BRe+9Lnuq+TfVJxm3nT1fFkWrs3mFixmER+plmhAgAa+wk5rQ8AmoGmmxADzTzPCvXMZ/4WzgMf85/fOTeBYnEMcVjN2K8efu1tf4vZqRp+5vtfkftz0+BZoerboFgUBR7/9P/9Ghbc/XHs8N4tr/PxiuU+jYdbdpGxWKBAgRBWlJXcjfI0qJYaUkBFbSpZho0RFZeUALGYlhXp1iJ5iEWZk2NEwDh84MEP+H/nyWqLZixKEWvpYX8YU6NFl//6577uP95/9X5U61W85sdeA2BE7gluHnOpPn7ykpexOPddc1h4w4JvH5oG3dLBSyPFoqdWjRGLCUowj9wxdTP0PXlppFic3TkiSKbnk4lFxVAgsRJ4drSOciVeTwXfk0gsRlR37/7jd4NlSY3ZFJvoat0tq3Edw31/znLPVyyK0/5j2u3pCTI5rvuv3h96j0csBn83FZ4cj56x9fuIltpCQ2hAZERMS9NQjPHEopYSU3Df+n3YV9uHGZlMaPMUi0ra5MTIej2IpfxWqJqlxa4phm2AoZktX7uS8II9L8CauoYz3fC9kadYZKh8fab50jz6Rh+amd5nPt05jd2V3YX9aIECBQpi8UojSYUYxHu+dgb/+M1zuddXFVm0lfSZJGt9DVWJCysWa+Pl++UxirUkeBYPuqZCSFAstt0cIUMa3zRiI0SVp4jr3v4vAODntcXe5844MrtrsYzFKJR+mFjsqSbqEgfHseE4DqqNKdzwnOdh5rt+HbQwKgin5xYAjIjFLPTVUeEz6JHmYqVWH72umTBtB3Ov+11MvfDHURFZiNxo31MAmIDacGi4GYuVcAHN0TQomoHjEOJ4aFi41FWJFaqhgQkUvzbFgGNpRHme5uw8kJdYrFR9Za0ssDEVm+xaoQpuJl+zzIWIxTu+9kXc/qXP4vpnPxexDfHWIbB48yuuwcWuiv88u4GqyELgwstGMyydjJs2ADg8VwHLUHjwEjlPFuqj30Jd4qEadoz833Pw6sx1vvAoUREwFAXbAQb65ohFbxLAY5FYlOQSdNOGwOXLWASIJe9At6AZFvgxFqolgcV1i3WcXhv4RPtWwTJUoVgsUGCz6CyPX2ariBKLjJBghRolFsfXLyxDrqFDzQjnIaYh0V51++BZoaZhfWCimmGrNF2v4eanH8EPP41FQxpd0/7Ld7rE4oT2kJpuYKhqaFTz248Bydal2YrFvYQobp0CKBqaYVxRK1RgvGLx9nsewvs/9gX8r//+hkRF5qTwvp9ubn8W4pOZWPz5r9Twe1/WUc5BFBe4wrBt4M73pttRFyiwCfzRN/8opApMw8pwBXWhvvkPsuPqsahykKO5mGonaLfY0loxRRIAnySyDfLbyLJClVgplQxJgmEb+OCJD/qP82S1tVvtzAnuSl9JVN55qDaqMZUjANx0G1F/1aYmd3TwMhYplgI3zeFsNznb+0T7BAByrDiBA+X2AzR3slq5HmbOBFaIOTN5x9A27LAVqsAnqkWDGYtB9eHAGEBmZbAY9WuSMhaziEXVDJPZ50+dx8fe9zHc/OKbARDFYEfv+IrMzcL2apEyxpK2AFEdCozgE4NJWZBRYtGzQg0qfb33T0qWR2E7NjpaB1PiFARGwIzs5v456cTiuroeOl4eenoPj/QewTXNa/xrRpkrg6M5DMzxjklBy+MoKZ+GhkhyOKPbY9gGWDo7dmizePbCs8HSLI6vHw89r1kaeJoHk6N/CRBLUQcO2lo78XXFULAyXMGB+gGfXC5QoMCTFwWxeAVh28DDK+nhwA9d6uG3PnwcNx9Ib6pEbRYrIoeeljG49nVURDbE3cxWxjdPSlshFodKYsaizxfkmJ2TRl5sfOadOPO734nFRnJzgdFI0cQYA3Q21jHsk/3NJNihKYN+yAp1aFgoURq6X/8glPu/ALlchSBJoHIOwEnoqSZst4jvdUlzMahY7GsmdNOGuOsaAEBN5EL7jmNoUNzoeGmmDc20YlaoHEv2l+UAc64K7/TqACxDwdB0UNyogedQLDiaRndooBcgPvccOIxyk6jvqmJ6M5aiKIhyybflTcpjlEtlKC6hxNAUpkoCFN2C7ThwHBvv/MPfxpGnXo89Y9SAHvG3MTBQkznwLmFNuTcAwe0HRcM2s4lFnqVxcKbs/w7naqN9W5M4qIYVsxveO4ZYnK+JuGq+4luYBsnkSdBSdDRkHuJjIJ80CkkuQTNtiO7xzIOZioCBbhIr1Bzve8HROZxZV7CeYe08CdjCCrVAgc2jk2OC01YDo1kBVLBZxwpA1HJHj9zs85GbVy1eU3nEoqLmJBYvM9bbXehG8gQw06HQVowYATZQRs2cWqUEnuOg29tzPdtwM5LqCY2wLCRboWYpFl27rP4lgKKhavmIxaMHFjHdyDf7eRyxWMkgbB3HwS/+/t/gmkN78AOvvC3X542Dr1ic0H4sD7aFWDSGwKX7tr6eKw331C/nbOYVuIJY+iKwch9w37882ltS4AmEd933LvzEp39i7HIXBxe3RCzSFh1TjwXz9ADXCjWgkHIcJ0QsttV2IinIuhOFLZWse6wVagKJk4a7Vu4KNfzzKJ8MzcBwkE70KAMlRoDp2mibS9XSthMhhm6gXCWkIDfFpRJpj/RI5rdHLNI8+b6KTZRmiYpFB7Do0XH1jrGpmeD5gGJR5BMJsD2H96BcLYOiKfSNvp9bqZgKIaQC9WWUkDUsI0QkRzP5VEsNnVP//H//GbM7Z3H9zSSrrik10dbaWyYWPStUiqHwSHd8bvrQHIJneJR5ckw0O35e77t6X+ixzJFzJvh9veey1G550Df6MB0Tc6U5MDSDGYkQi1G7YgB4sPUgAEJGXhxcTH391p23gnXdRyiKQkNo5FMsapsgFgVCLEaVmx6xeDkUizIn46kzT8XpzunQhAjN0iAwQm7F4qxM1LtpWZ+eIvJps0+7LN+jQIECjy8UV4ErjCxicWldwf7pEp571UzqMhEnVFTFbALQtB3UI+qz6fJ4YlHahGrKI+C04SDTCnU7kKV+AgBBrqDf7UDTSJFOM/Hvowx6IcWi0b6I9/zaD8DcuABuaifkcgWD/qgQMDZhbTXQTZhuUTfwiEU3Y9FSOrAdoKeOBv1aRLHGMRQoNtx866kmSlErVFfhaToj4rg9NHzFIhXIXrBAg2MpfOXkOtYHup/x+PLX/iB+6jf+AABQl9ObsbwgITgZ/1n74nlIcqmCoW5CdDP5pko8FN2E4wD33/UtnDh+N/7rm34z9w1KTzNRl3gIrnKVdonFvjbadxTDwdbHF7DHdtbgABBYGlVxtF8qIgvNtGFGFHN7D2WTnwDwju+/Hj9z2yGyTZskFtuKgakSn6j2fbQhSjJ004bEM7mP2VxFRF8z/YzFLCtUAHjhkTmYtoN7ltvbsMUAz1CFFWqBJxe0HqC0wo9XHtjcujqPAONuPpe+ONk6o0Qkw4MKzuBnOMCKWqFGbvaFCJGUQJJ4VqMDVc9nherC3ipRmgCGpmBZdixn0YNmM+gqasgK9fyldTz3Db/oP65VZHT6AyjG9mxf2yUWG9XJrFAnViwKFUCsk79pGpphQgw089KIxde//Hm478NvH7s9FEVlEodAtmLx+MNn8blv3I3ffdMPgUmoETcDj1iM2rRvB7aFWHz408Bn3gK0xzcYH4uYVJ1b4ArAa1wmNHoLFNgKsrK9PKwoK6gJkyvlPFAWFVMsLvfCjg0szYZeV0wltG0drZNNLGrkvVnfR+bkiRSLX1z+IvbX9sO6RNZN5YyZidqhBqH0w8Rip9XBz3/fz/uPS5USBr0UZdcW7rc8UpDm6FRy1VP/aZYGVmChXSD7ylMNVmvhvojIinBsBxo7Orb+/7oVtkJNUSze/MKb8d6vvBcMw6Bv9H1lnmIoKPNln5wC4sRiVAEXfV011RBpeOdn78Qbf+GN/jkzLU0TZR61uZ6CB8sYnbdne8lq0CAUQ4HIiChzpD5MIvD2X5VshRokzr3zcRKyPAme/eiuMskmn5amYcNOzEQMZlImEYv3rd+HWWkWhxqHQs83xAYUU0lUHXtwHAdtte0/FnPasnuKxaB6FSD7iqUuD7EIAM/f/Xw80nskZNOsWzqxQp1AsQgAXSP5/uV09zRERsSRqSNb3+ACBQo87lEQi1cYJ1ayvcZfeu089k7ln0VeyVCWeahL4eZNHsVRSRgNOnmb875iUR0+6naOokz2Yb+bbkGm9PuQy6RwUs/dj4t//yY4loHac14Hfv4gSpUqlN5oMNUntGikLR191fTfF1UsWgp53BmOisYpmQ+RsjxLx4jFvmpi915iRTI3T2xZPWLRdigIHIOaRApTxs1YpNjReWJTtL88QHIeAYBhWVju7LtKBmHNS7Kfr/jjt+7HTz7vYGwZuVzGULcgcIyrWCQ2o5pOis5nPe/FuPb6G1M/IwrLdtCQeV+x6BGLw0DBTDEs7Bwz4/ZOk3OjLLDgA/vas39VjfBx3nPgMABAKqX/LhenSrjtCCnAFGNyK1TNsKDoFmYrQm5F4JWEIJegWzYkLr+SebYqQNEsklvJ0qDHjDb7pktYqIt4aKU/Nos2D1iGekzuywIFLhv+/X8C7/s+wFNu/8VzgD+/EeivTL6uziOA1Eh/3XGAz/4O+buxN986Y7amAqhg04JJylgMEIsUDXARouji3bGP8YhFRTPIOh9FlN36K80OVXcYdAdqiAB75vf+D1wKNP/qlTI6PQX/ftLEX35LTyV8TbcRpNPZDY+NTRKLSRmLV+/fje/99ltw9MBi8ptqu8n/FMlYDCoWZSn52NA0jcoYC1OAqBHpMQNLGrFouXXZc284hpc+94axn5UX3ve7HMTiwcUFzDbrudWciVh/GICT+Lt5PKDIWCxQoEAQa8M1VLjJbL2DoC0auqWHrBWX+2FikaO50OsdLTyed/VuJrFouhNOk0gaDxIrZebGBSHsEHCqcwrXNK/JTSh6aLfaqa9FicWffPlP4tzpkXtFuVrGoBsnFs+YZ3Dtu67F6f7pibbFX28g73kQdalw4alIPcXi8CSpJ3m3xvPyEBcWSV/EUyxqrOYfG+8YWroVskIVJCGRAKMoyldTDowBJI5MZFItFRWu4n82RVExpadnfendz0ZfH5rDEJG1eGQRz3/58/3HTZG4lw3ZzVuJcjzn2/ACwOpwNZM887YraIWaRIZPzU6Bpmk/c1FgBNAUnajIHZrDLakuPbXcYoXUmF4mYpBE9DAjzeCZ889Eja9hTV0LvWY7Nu5v3Y9DjUOYksIT4ptSE0NzmPn7G5rDkCIzL7E4JZLPihKLhmWAo7nc6sFJ8bzF58FyLNy7dq//nG7p/rHKg5pQA0/zibayAHC6fRo7yztR9yYQFihQ4EmNgli8wjhxKX5xbpZIYfJth6dxeL6SqcaLhjiXBTZUUg4SbFGTFIoSk924l/kRgcAx+U4Tb8a3rg5DxNWjAVEmhWC/205dRhn0IbnLdW//Z3DN3fjrD34SbIUULaVyNaRYnBSsOUBPNX0FnEdyVqp1AIA9INvWU0eFSrPEh/Ydz8SJxYFu+haukkQK1aAVKgDMVEjBw9I0DC2iWHSo0DENZgGpOvk7ywpVCBCLczURs9V4cSWXKxgaxDqTZWg0ZPL53/jy5wEAb/wfv5q6/jQ0yzw4lwj0icVAniHF8r5iMevs9uwxKyIbInE9MlUxwr8hySWp9x/OnpHlqTyHm8hYvNAl32dX47Fp88W7v5PghINxmC4LcAB0hwaEHIpFiqLw3MOzOLU6iGVnbgYcTV+W7IICBR6zUNvEwlR1b7g9VdLaicnXtXEGkOrpr1+6Dzj7VYCb4JqlRWa9MhErVIZH7OodJCM5GaAjkxsuJBCLjyEr1LHEos2gp2gh5d3CbBPf+Me3+Y89xeK3Ltj4pU9rgBx3CQCAYWUfXvk+BaulbPvukRVqDmJRHwCrxD5KEuK1ZEkW8f4//hU008guj3SmaKi6nssKNS/G2aAC6cTi//vI5wAAv/cLP7yt4wTvNpL1TThcjAPLMjj173+D73nJLZtfSesk+X/jzPZs1BVGYYVaoECBIIbmEFV+85MtkhSLUWUXS7Mh0iFKLKqWmmgXyHFkvDNVExSoTOJCypEfHUSFr+CqxnhHHQ+sG3HTWU+fcD3sDyEH3BMEScCf/9uf+4/TFIsth6jKzirjFXFJKAdqkTRLSo+c0iwNDD+6F7VAjhvr9q3qU3UAo8xJndV90tDb/6ZmJmYsCky6o9fAGIRy5CpCBZzriMEJXGySk2+n65awsYxFSw0RVd/9s98dWse0RIhSndt8PAgncKOMRRDCPEpwRaGYCkR2pFhMIgspikK5XsahY4f8xxIrJWaIjiPsxqGltsDRnE8oeoRrPxKDYDs2WmoLc/Ic9tX2oaW2QqToud45DIwBnj739Fge4LQ0DcVQMnMbNzT39+0uErW2TYPESuDpuNWubuuXLWMRAHZXdmOxsoiT7ZOh3w7P8GCpfJPEKYpCU2qip/diE75tx8ZSdwmL1UWfhC5QoMCTGwWxeIVxcjVOLAquuq+RYYN4vq2ipeixjEWGpnylFQB86eHV0OslgUE5QX1WF7IHMjlQtHHjpEYuKHc5baiApilwzKPX1BdkMsh1O+3UZQb9LhzXW3b6O34OO1772zi0Z4f/ulyuZCoePXg8cLQ2YM0huqrhz1zv9zpgWBaiTIpLSyHb1tdGNzPNCh8qMjiWBiL5kEoCceUdI8sh752rkuKYoQHD0EPrsBwqpNTrBqxYFcMEz9D+OZkEXpR98qwmJTdtS6UKVMOCyDFgaQoNl3RjJHJcxmUrJmFHLUBgOjZKAoNhYCYexfIwdC137ldV4kL7wVP/DvXkmXXjij+JY8AxVIyYzIPPPbiCssDihr3JDeNHG5zkEot8fsXitGvJa1gOeDZf3uGLj86hMzQSr5OTIu+EiAIFnlDQB/Gcws2g8wggZtiL3ftPhDRqhC2RPFV6ItQIsRjNWIyqCykaCN6Mc1ICsXhn7GN8YlF79InFkphNLGo2jU5fCd20f+7v/g92zI7Gglq5hHZQJZAx2/hfHzRH2YYp8NaVS7G49CXgs28FlHVI4iaIwKZ7flA0NN30rUKBbSAWc6gaq6XkZVodMmnsmU+ZvBbJAkVREAUe6iacC/KgJItjVZqp0HrAYI38zjqPAAnWb491lEuFYrFAgQJhJClm1tbW4gsmwFMsBjMWozaKUSvUJLXU+f75+Lo9JydNB0MzmVaoIpPv2kaLZJ1PmXkKZuT06JwoOIHUQuMUi8HO4J9+6E8xv2vef1yqlKCpW8vMS0IwHzEp6zCGAP+XlAEIEBUdKELMeeRYKGMxUH8wAgPTMTPJXcVQfCtUAKgLdb8vwCe4L/gqL3eYjRKLQFjFdvSmo6HXKjxRROYlFplSvG/DCRwsr2fkEGXthcGFzPUMzSEkVoLESWBpNlNlG+yLSKyUSEIqprIlYnFD3UCVr/pEsUcw9s1wn6CltmA5FhYrizjUOITWsBXKdzy+fhw8zePmhZtjn+HbzmZspz9xwP3YvIpFiqJQE2qx89rLWLxcikUAuHXXrTjdPe3bxuq2DomVJiIzZ+XZRNJ1RVmBaqk42jyaScgXKFDgyYOi83oF0VMNbCjxAXq9TwY+O4UPWemRquTEpX6itd9UaVTQfPbBVfSGo88g9pHxwzw1ZjwMEot5exieZ7euktlmm1Et9u76JNY+9jawW7QwlEqeYjG5mWcaBtZXLuHTH/4AbE0BzUsoSxJEdtS0jGYspmGHWys2InUlayiwHaCjGJj6iffA2PUMlCtVUBQFYeEqlI7cCo6hMNBHg3WzFB6ceYaOZUQlNax4T7Ho6lcXaqQ4ZigKhh4mFk0nfGzagXNyqFvg3VzENAhSyVcsRvM7PcjlMoaGBZEnVqgN9xylpc3PKo2q+WoSF7ZCZXnomkss5uAWaxIX2g9eXulmG4IURaEmcTEr1XHoDA189VQLzzk4jf2zk1nTXSkw4mYUi6MfhMgxY3NRAeCmA00ILI3j55P9/CdBQSwWeFJCHwDRm3tnE9e0zjIgRK7XQYuq1QeAvbfEcnWsaEZiEFHFIitGiMXIeEJzgBEgPzgJCGaD2CbZjghY97c/0PRH3QpVFslM9tWN5Fqkb9I4eW4F//TJL43eE8mRq1VKULXNz1qPYqPbB8exidamMdgWOZ9aS8nEom0C//keQE2ZDFJ3SU6KhqYbYSvUzRCVAWxFsXg5cTmJxS2hdYr8f+A2QiwqcYXNYx1PaMWiqQL3fQi4cNejvSUFCjyu4OWYBdHr5XMcoiwKuq2HiMPV4WqIBGRpNmaFGlU9JRGLXn1kaAZYis0kFvMqFms3kQlf+6v7IUet4TNA0zTK1XJqxqJjOThz4gy+/pmv+89FybDyhPbpeVEJZDUrVrJiMQiHH93k69AT7T1FRgTFULAZG60hUVR6xJGlWT7RCgCUO9k+SBwGYdkWVEsNKWM9RSEA8Am1zMAYENLILd2C+9Kzr81SD1KgsKO0AzqfXfslkXn+dgn8KGPRPX0fbj+cuT7VVCEyIliahcQkqxCTILMyDNuI2Z6OI+zGYX24jppQ84lFmZXBM3xM2bqqEGHF/vp+XNW4Ci21NVKNguQr7q3txaw8G/uMWXkWA2OQuS9bags0RYMakmOXV7EIwCcWg+epZ4V6uTIWAeAFe16AgTHAwxsPw3Ec6JY+sTJ6Tp5D3+jHjuFSZwkAcP3s9du1uQUKFHico+i8XkFc6JAGmUfa3H+hhx//+2/h5X/6ZQDAuY3kWVp/9flT/t9JYqxmgFhc6+v4yD2j2Uh1mUtssE+NVSyOVybtc7PqPAtJX7HoEotCAqE5Dq1P/AkG93zabwxuFiwvgON49BMUi45t48Pv/1uYho7nvfRVoAVS7JXFcOZeqVKDro2f0Z2uWCT7oaUQ4lh6xneh7NqgeqhJHAYBxeJMxLaWZ2k4AYUGS1OJikWPIDNcxeK8q+5jaIqo+ALrsOwREQlEFIu6BZGjwWaoTXlppFispBCLUqkM1bAguSSlZ4W6FWJxZyNc8NclHmpgX7CiDMPQkItVBNn3QoJicSvZSFWJm7ih+NkHV0BTwPfesCvTgvbRBCOQQjRPpquHoAVz3muByDG4ar6ClZ4G095aRlXWOVygwBMWlgbokVoiJbMmFY4F9C8BQsTeZhBQANT3APNPmWy9MWJRABVsQkRJQIYPq6rYCLG4+mCcRAX8Zp6iGrGJOVcaFIBmvZKoWNwY2viB96+ir6h4+fNvwpnPvBsXvvie2HL1av7c7Tzo9AZoVMuTWTCZQ8hiwoy0/grwwEeAk59Ofl95nhwDx4GqGVfcCrUyQfNny3jva4FP/DIEnoM24QSjK4LWKYAVgGPfQwjhvBbJ6ycfM+rGkvQEVSwufwv46JuAu98P3PW+5OtagQIFYhAZEVVua1aotmOHFEUb6kZI7cRF6oiO1onlOp4fJBCLLgzVAEMzI8VcguVi3oY/I5EaSJrEht5FbaqGTkItYg0tnPm/Z9BpdXDds67DB77xAfzj1/8xttzlIBY5noMgChB3kWu7oiuZBCwA2NxofNXtsNrUA8/woNwGjXdsPGLH0IyQFarDuTmIKUSt4vZzgsTijDRSiyYRi32jHzqmQWLRI8nG2ZLuLO/MfB0gyrE0sBw7yli0gYXSApb7y5mZh0OLKBYZioHESZmKxSBkToZhbT+x2FJbqAt1X9FLURQaQgOKGXb6WB2ugqZo7KnswcHGQdiwfXWmYig40z2Da5rXJKqbm2ITpmNmHo+W2iKWn+5HihPUIg2xAdVUQ+epp1i8nMTiU2eeijJXxv0b9/u/qUmJxR2lHejr/dh5cLp7Gk2xifnyfMo7CxQo8GRDQSxeQVzoqKAokhUHAN9YauGuc20c20kKlajNKQCs9TX8/deys1BmK6MG/lSJx/u+cdanVqoil9jUb7rjIZ1y85qkjIzi1156BL/60qux2yV8vCaVr1jMsNMMwbw8N9C1qSa6kYzFUw8ehzpUMHCVjMeuv8l/LZq55+UYbhYesdgJKEgr1bC1XF3moQQUi1HbWo6hQ41Uz/4z6nXec4Ph71OJfdqcm3tIJxCLumWDD1juBhV2im5BZJnM4y9IMhSXPKsm2OwCxApVM22IPAOWoVGTOFAAGHlzN38sTYXOc4CQ5kESjxNLI8ViBrz93ZC5UGPVI8hVc/NKg/qExKJhOfjsAyu4frGBYzvrm/7cyw2aJ7/xkpDfClXkGJRc5bPE51c6HpotY32gb7kxGyTPCxR4UiEh62ciDNuEXIzegCsBYnHvc4DKhDeUMSvUyI15jFjkwoQGJwLBbJCNpcyPI1ao+a9ZlwszU7UYsfjQ6XN42XsVPLxugGMZ3PqMa7G4MIv5mbgddq28vcQiANRdUs60HZxp28A4OyZLz7ZC7aXYa9E0cPQVQPMANMOAGCQWt6pYzGOFeqUVixtLEPnJJxglwtIJWbldeYjrJ4HqLmDXM8hvz8tbHIfPvgX41t9tzzZsEeWc9mOPWTzy9fA9j7IOfPEPgS/8PiA1gEMvBrrnyDW4QIECY9EQGxDYzVvx0Ra57/etKwG0tbafywcglknW0Tso8yOSTWZlXBpcSv0MQyeKRa+pf7pzOrbMpA3/zaDerMcUixfPXcSpt56CckJBqVLCU296KqbnpzGzI26zWsoxmWdSeGSlsIMcw57RixFRsXw3NkAsOnoicSUG6svl3jKAEaFrqmErVI9YjKpQPXjKt6AyNmhDm0Qs9vQeZFb21YlBYtE71uNsXxcri5mvA3Hb3iB4gYcZ6DEdbR7Fcn8583M1U4PMyWBplqgQnThZmIRpkdiJRtWjmqXls7dNQVtrx37jU+IUUQAGiLpVZRU1voayUMbB+kEA8H+TD7QegAMHNy/cHJskAIzsVbt6ultSS22hxtf84zmJYnFKmIplTRr25VcssjSLG3fciKXOEnoaUXBPonIGgPnSPLp6N6bmPN05jd2V3VvKty1QoMATCwWxeAVxoTPEdEnAgRlSRD3n0DR+4rn78YIjc6nveccXTiHI8SRNMJ8JEC7HdtZw97kOzrYIqVUR2URby5JbI/NqK/Q8JU5Gpu2fLsesVvWhq1jMqTp0tAnVFDlRazRjVqiO44CiaNz2su8GECYPaxIHgaNB8RJosQSkDL6WSYjCb33mX3HHV7+Adis5x4G1VNDUiPQDiAoyWCA3ZC6kQIxmG/IMDTtQdJQFFpphwo4U2Zb7UAd5/3SZd88bYoXqBJqGpu2ECNRhoOgcurmIWbmaglTyLVP5lExQT7HoEVEMTaEisqAnPL88VEQWYmTfNGQ+ZIXKCjIhFscoFld7ZBbqVMR2VnQzErdCaDVkfiIr1LvOtaHoFr7r+p0h69DHGmiO3KBNYoUKjGyapbyTDABcNV/BWl8LEe6bAc9cvtyCxwJec8NuAMCB2e2/0S/wOIfSGr9M5vvdMU2KZCwO1kd/V3ZMnl8YUywmEInRx8GbWVYMKxY3loDSTJyg9Db3MaBYBICZRi3RCnW2ROGvXrMThmllEmBpyrzegDRr3vmBT+JTX7oDD5w6l3ubGjVSh3K/3cPe/9sHxDHNAVPLVhgO1oC0me3Hvhs49KKYFSqXUj/kxaNthXpVkwZPx+sNUeB8V4ctwbMuvfcDW18XQIjExl6gNA3seCrQOQtkWRd7sAxg49RlmwQ4CR7XVqj9FeBLf0zUvbYFPPAx4KM/B6zcDzzjh4HX/ANw6y+Q/Z1g8VygQIE46kId/BYszymL9EiCmW1dvRuyWmQj2c5drRsioUpcCevqeqJyDnCtUAM5jWe6Z2JWjleCWKxN1WIZizRNg5EY7P+N/TB0IzEL0EMasWi5E3Lv//L9+MbnvoELZ7Nz/IIo18IqyJ7ei6mjosSUTY/uszVHS9zvfu6bAywPXGLRJXYMzQDPj84ZmyHrSyMWPSVbXaj7z02LASvUhIzFnt4LkThJxGJQFZuEPdXsvGwgm1jkBA5moAf11NmnoqW2sDJIVjnajg3VUlHmyv52GpYRI3aTsFBZIARUgnVqUiZpHmiWBsVUMCPNhAjBptSMZTdeUi5hSpyCxEqoCTU0hAbWh+Se5fj6cTTFJo40jyR+TlMkxKKXRZgETznpOaLkzVgEgCnJJRadMLF4uRWLAHDb4m24pFzCUm8JQPo5noa50hxMxwyRrqqp4uLgIvbX9hMVZ4ECBQqgIBa3BQ9d6uGhS6PByGui338h3ES70FExXeYhu69Pl3gs1OXMLMK//eoSbtg7msHOJhA+QcvBq+Yq4Fjaz80r8Wy23VW0VtiGPCLfCpXb/OllmflIhaxipzbVRL/TgeM4GJ47Dl1TceDqayBIo+Ldy2IERpl78sFnQpg/CIpPLvI7G6Rp++G/+j/4pR/5Xnzmo/8MAFD64ePtgGQm9gJWp5VaDXrAarNZFkLEohghaXmOhh34mVZcxaIdUbfyru2j7VY8LE3jJdfMY19Thq5rcALNWMt2QiSdolv++oa6CZGnwWRZoYoShoYFISOLkZfLsB1ChHqoSRxoaXMFSE3iYsTiVIkP7TtWlEie5JgCeMUlFpuleMO5LLBbUiw2SuHcx3H4xukWrpqv4NkHpiezpbvScInF8gSKRYCc38BkxOKhuQoMy/GP02bxRM9Y3D0l44HffgleeLSwISkQwVbVLkNX8ShHZqwHFYubuV5FFYtMRGWQaIWqhZcPEYtngMpC6rYoqj45+RmBkXM8yKpFZqZqaHc6cP5nFa+6mkGvr+Dwvl34p++VUXWvqVmWnbVKcqPvc9+4GwDwa2/7W7z4R34d3/XTbwEAnFhKt2Tz0JjU0swyIIkZqpDBCpA1K53hYlaoWx3zHlVi0TZxx4+V8KJd8YlxAsc+9jIWh23yu565CuBLwOKzgPYjgJYnh4wimatbVUJvAx7XisWOS/xvLAGf+jXgP/8eWHg68Oq/Bl7wZmD2amDhOmL5vJ6dg1WgQAGCCl9JVCHlhadYDNog2o4dImyixGJH64Ty+Mp8GRvaRqLFKTCyQg2+vtxfDi3D0Ezoe0TtQE1j632RerPuW6H27+uj2+5idmEW+351H8QFEbqmZxOLKbbsqxdJvt1dn7kLv/T9v4S3/cbbAACDjfETx6PEYlfvQrPC939Ri0qLHY2vqq0mKhY9YpExGF+55luhqmErVIsmz3uEWhTe53uKRZ7hUeJH+yKJWOwb/RCJE9yvLM2Co7mQKjYJuyu7M18Hsi14OZ4LKRavbV4LADjRTrZB9/a7p8aVueTcxLRt7WidkLLNOwbd6KTCnNhwa46oJWxTbEIxwsTi6nAV0/K0T9ruq+1DS21BN3Ucbx3H4cZhTIlxRxBgpFj0LG/TtqUhNjalWJyW4mpOwzLA0zzJ4byMuHXXraBA4a5Vkt08qWJxTibilw1tVP+d6Z6BAwfXzV532YnRAgUKPH5QXA22AS/64y/gRX/8Bb+R8N3X7wIAvPNLp7G8MRqkLnRUTJX5TNImCscBnr5nZL2QlBvWDCideJbGDYHlJ1UYJYGZsPnjKRZtjfyvdCefqfTKmw7hTT/4qrHLKX3SFHESgrvrjSb6vQ5an/wzdO/4GL7ymU8AIM0sZUBmJsryqOiry3w421HIblr98rs+jb/7xNdx1bXXARh9755Oivq+vIDZqoCBNro5KFdrvo0oQPIxB9qoMIpmS4psmFisiqRhFY0B9FSjDkbH6lXX7cSzD0zBMs2Q6hEAxADp29csGBZZ4dCwILHjFYuKRixT03LsvNzKoFVqTeY2bYVal/kYUT1d5jHULb+nzAgydF3FOMXiSk/11xkFUYRuXrE4VRImUioMdAsve+oO7Kg9xmfhs+QGbFJi0csMncQK9aCr6D7f3rx1CgBwTwIrVJFjYorxAgWgrI9fZhz4EiBEmiyD1a2tMyFjMYQkYjE4c50VwpadG0tAeRZA8m99oBohYjEp53Acqi97C2553S+MXW5pmTSu+sP4bO2ZqRq67Tbe9EkVH3rAwns/+nkAwP/6KotPnSd1RqZiMcUK1Wsg3vHPf4LTn34XfvXHXgMAWIkoEpJQr0xOLMqZxOIaoGbvX003IG4mV1FZB778NsAIN+EeVSvUwRpkjoLIxOsFkedCThCPCXjqx903kv/33QLo/fw2q7YBrDz6KrrylczM3G503Qbw6S+Qc/n5vwF81zuAwy8eKYYZFtj5dKB9Jl0BfLlg6sDJzwIf/0Xg/W8APvQTwMd+AfiP/wV86W3AN/8GuOefgBOfAs5+Dbh0HyGnx/zuCxS4nChz5U0Ri+smqZP0Ehmzg1aoAHCuN3IAiBGLeifUoC9zZXS0DswUBbiu6WApFpo+Isy+uvzV2HJCcLJV5Fb2F2/5RfzUK38q4xsRnD9DrjODdpzUq0/V0V5r49KHLuHCey7gY+/7GIDwJB+5TMikpJzDkluLlJ9SxrXvvnZElLjb+pIffQne99X34TU/QWoR1cgmzgCgHKlFLMeKKdyixKKJ0X4eSyyaDFpqC4ZtpFqh6g45B8YpFmsCcfEosSXwdKD3lmCFOjAGZH3urvXUnpZtgQKFMlceaxG6q7Ir83Ugh2Ix0GNqSk3Ml+ax3F9OJKC97fFUaDJLzoU0JW4QO8s7ods6Otro2Hn7c1yWZBo8YnF3NUywzsgzJLvRPZ6WbaGltjAnzflZjAfrB7GurmOpu4Se3sN1s9eF7IuDqPJVsBSbup2WbaGn93xlIwBIE7gneNatQdLVtE1wDHfZJ5XXhBqumb4G/7nynwDSyfM0zMqzABA6rkvdJfA0j6PNo9u3oQUKFHjco+hIbiPWB2TA4BgKAktDNSz8zPvu9Afv1kDHlMxPRNQ9c98U9kyNitekt05FCJIXHh1Zq5b4ZCJAcp9mzfTB3uyuoHv7v4DOkbcYhOYSbN01YoVx4fTkzYjv/6lfQK0+mllUlbJvGpIKJEkuw+quoH/Pp1F92ovxbd/+Sv+1oUss8vJIQdeQw58hlrLVdSzHYcfuPZieCyuG1hS3AKNozFVF9AOKxXK1DiXweLosoK+lN6AEloHljPZ/VSTWqVbk+067lpNNekRkUxQFx7VtdRAlFkfN2b5mwLA8xaINic/OWOQlGYphQuToRAUtAFBuqHxFGO3TKZkHPc5uLQUNmYPIxhWLA930f08sL7oZizayyEXT/a7RPEvvOW0risWIte04LNRFvOTaHbkyTR9NODQHmopb9Y6DZ9NcmoBY3FmXILI01vpbs117oisWCxRIxXAblEViI070DZJtv3MjplhMIBKDYPmIFaoQLoKMQWbOo6IaoXzh4yfPTrrF+J03vhA755pjl/NqENOKE021sozTF9t429d1/OQzOPzX13w7AOCTZ1icVMhN/masUD1wLIO9u+Zw/TUHx26nh0ZtUmJxTMYiHEIyZEAzworF3LhwFyEyWmEVVy7FYiknsdi7ANz7wbGOBz58kj0+dosCh2FGXfeooHWK2PvPXE0e77oBAAWsPZh/HevJKocriZL0OFIstk6TjMw1d795+1puAq/9B+DZ/w2o747f2O29Bdg4G5+IcbkwWAPufC/wrz8JfOOvyHlyzauAPTcDjT3ETnqwSn6HD30C+Na7CdH/md8GPv4LwD2uVe9wixbcBQpsAiWutKnmfNtqAwAo27VCjRKL/XRi0XZsVLhRj6DEldDVu4lkHACYmgmWZjEYjHouX7v4tVjvIpgLGFU/vuJ/vAI7FneM+1porZLfYZLCsVQtYfXCKlb/dRXT3zGN17iTkULLlEv4uc/9HH7ucz8Xy8tjORaiLGL2FYRsiCrfKIbC3M451PfXAQBWdfz9cFSxCIwIJQ9exiEAcDQX2s827ESCztuXrMmirbWhmVqqYlG1VF9FmIS+3ofIiD6ZWOJK4AKT1tKIxTJXjmUsDs0hJFZCmS/HlJlRLJQXMl83bANrw/S6nOM5WFr4GFw3cx2W+8uJaknVzTSv8YRAlTk5vxVqiWzrujqa2CixEihQmyYWW2oLFCjsKIXP+xmJEIueZe6GtgHbsbFYXfSvBVdPXY2W2sLda3eDozk8Z+dzUj+HoijUhFrqdna0Dhw42FEebYcgk/6GYioQWTFTudcQG3DgoGeMHCI8K9TLrVgEwmTipFao09I0aNChfXOqcwoL5QXUxfp2bWKBAgWeAJhMflIgE7Y9aijVJA63HJrGB+8IW100ywJWuuNncHl4+mIdFXFUvNCRJgbP0DGV265GwG4hpbleFyj07/k09orpDcjlt/8wAIBj3pJ7ewFA10iBx+SwTkjD9/zQTwIAfuTvvgkAoUxAD1mFjqVr+OKnPwLH1DH32reGs6EwUjpSggyAzMKZKYdn4wvyhI03F+vDURE3XxVx/PyoOVCuVDEIzGSfKnE+qZcEnqURfLkmsRgaVswK1VOmztHhoohkDiKkegQAOUD09FQThj1SLMo8k2pxCgCCJEPRSRZj0nIMw8JwydCqNLrENEr8pq1Qm2UhpsyqyzzIbiD7guZF6LoGSmmBd/RUJddfvuF6vPsrS9jTjBdXVTH7eIzDVInkPlJ0vkLxRUfnsavx2J+Bb9PEJjjrvEjCbJX8puQJlI40TWGxKWN9oMfO80mQN+O1QIEnHNT21tch1eMZiP3kXJbciG5XTLEYzVgUwsRiklV7Jb3RpmjGlu3df/a7nw3svJ4QBJuAYTl4z799Fobl4GPfJ8UmkXT7bh52hhKLZRmUZBEDJX/tOA4TW6E6JphxubWd5dSXbNuGYZiEWJxUiOVZSNrhmjKLWCxzDjg6e7+GcOFuQpDsvJ7kEI5Dxm9B4NjABKPNj2HbivWHgdou8rsGALEGTB8iyjjHBvLYWW2cJb/HbYhM2CweV1aoK/eT/x/5uruvXeJ99iiw6xnp79v/XODz/4cQkovjJzVsCo5Dchwf/Diw/E1y7d11I/CU1xA1a3UnUU9aJjnmlk4UlJZOLI+VDUI2DtaA//w74NztcWvrAgUuA6Jk16SNcg892+0DeBmLAfJKZMSQVWkS4RS0wixzZZi2GbILBEZ9Cj9j0VV+MSqDB1oPhD4TACQmfbx67mufi2PTx/DTn/npXN8vCsd28PH3fxyWZWH3T+1G5bpKIiErl2WgTf7e0DYwLU2HXg8qDNOI1ElQrpVj/Zy21g49DpIaEivFSLG+0Y+RHJ5ikbVYdLQOVEuF6ZigQBFiMTDxWbM0CIyQSg4NjAEkVvIJ5qhKNmqF6jgOBsbAJ+iAkXWmYiqYk+fAUMxYYnFc7uaqsgono8bgeA66Fp6ke+OOG/GJpU9gfbgeU0R6VqCeMrPMlaHbei4rVI90awfqfAouYZchYsjChrqBMl8OkfgAUV5ajoW+0ccMZrCqkIle++v7/WUONg7CgYOvXfga9lT3YK40hyw0xAaG5hCWbYGJ9HBaGiHrg9a0nmKxq3dR42uZqumGQJzkgpMXTNsEz/BXxEr0ZQdehq9d+BoAhCyc84ClWTTEhp8/6TgOljpLuGH+BlT5zYkFChQo8MRE0XndBnhl2eceJAOb5TbDd9QkPCNgSwoAc+XJbrz2TIUL5pgdZGVzN/irQwflY7ehNbX9MnZ9SAoIBvmUW3aCjWkenD35UOprDC/gqc94Ntj6PMTFY7HXBwMyQNIBK5P5WrhhQdMMRGlyG63WcFSALdRFdNVR4V2p1kOKtkaCHWcQIkfDDJArVZE0rKychIuhk4LSIxbNHpnZJnEjoqenmb6Nr2ZaKAlspkqVF0sY6hYkPtkKleV5P2cwqDSdKvFgpM0VITuq8WaSt++8XcHwJGORsk1QtpWqAtzTLOE3v/MoDszEG6uVBBXjJPDsVWkxm0B95r4pvO7GRXzP9bsgsJd/ttpWQFEUTIcCx9KgJ5wVPFshxy1NOZ2GgzNltAY6tKjn7wTgCovQAk9WbIc1nVhNUCxOboVqWYHxPbpd4xSLDJ9NLAoVoJzeLFBUPaRYBABsnEHpP34FAPCUqa3luHpYvpQxY5yh8MKbr4PMAt9+KN548IjFcZadaXaom0U9JSspFXlsGfuXUhV/mk7evykrVC9vLtLcyrJCfe9Lh/ilW0TwkyokN5byLTdIJxZFnn3MKBb373YVva1ThDAVR41OLN5ESFs9PVfIh1gnJOTw0bW9LE9gP/aYguMA/XTLuhAWnk6udWvp9zibhm93+kvAf7wZ2DgFXPvdwPf9E/A97wKuex1RKTLudZNhAV4mhHR5BqjtBJoHgd03AFe/FLj++4GnvY4sy2/vNapAAQ9GYPyJ2jLmJRadyH1zzwoTi0Hyqi7WsaKMrvFRxSKAENnhWSx6WX4eWiCEhCM7YGkWNsgYxm/wWB2u4lT7FGiWBrOD3AdK3Naub/1uP/U1iqZw0/NvAgDUbqilLpeVsQiMLD23C6VqKWQRyVJsjHANHhuRFWOEZlRtCgSIRYdFV+9CNYllKk3RMAwjZIWqmioERkhVj/WNPmRWHhGLfBl8oB6NKhaH5hAOHDSkUQ/Q26+KoaDElVATamMzFsfhwuBC5uucwMHQwvvqhvkb4MDBwxvxHF9PsegRRjInQ7d0/7zNQkNoQGAEdPWw0r4m1KCYCmZ2zKS8Mx3r6jqqfBVCZBKiZ0nqZTeuDldBUzQWK4v+MgfqBwAQ0vjI1BE/HzMNTbGJoTlMzElNynr0iOKe3kOFr4TOhyi8zw6e14ZthOx0Lye8bE1gcxMxpqVp9I0+LNvC2nANiqng6sbVIYV1gQIFChSd123ALYfJbK6/++oZP6vOww8+a4//d03iUJXzNzlqEhezAI3a+6XZqrK97GLD69fbVLRYzj+7WtdUdDbiWU6eFSrrFiLyBDaIk+Dub8bzCTZO3Y3eXZ8CADz/O78LVFQB4WI4GBCrUHb0umfb6MGyHZQqkxNhvhUqCLkcJBLL1RqUgGKxUcouKgSWgR44pyoiC8t2MMwZ4m4YnmKRnCdWnxRHcoCgdhygrRgwbRuG5aCUoi6bmSZFYX1mnmQxckyiFSrH8VDdnMKg3eh0eXLFYrMkQOIYXDUff1898ltieAG6lq9IT7PNGWe5Ow519/1X3/R87Dv6lPTlZB5veeW1OLrw2J/txXAcNNN21dGTEYsLdREUgLI42TXg8HwFa30t93mehMIKtcCTFlo3pu6aGHwlTuQpk1uh3nnXXQCAVqcfJxajN6U0i5C1JBvJWIzOCK7uBHg5tWoZaOGMxZtwJ/AnTwd/guQKNfjN214H8flv3BN77msnVvH/fZ2Mv69/+fOQdjnqDdxMmzGWnbXK9mQFWu55MbFi0RxjTc3JgLIaJoID8IhFgQsew5z1pkewLN8OAJhuVHFwzwKOHFhMXl7t4KqGjbkyO/nvoJeT/OldSn1J5DkojxFi8eS//w2cO95DrgkzR4Bg43rvLYQgzfOdZ64GLA1YncA6dRshszYElhpjx/sYxiSTPTgRmH8KIXITssM2hcEacFfA7pSXgee8Cfj+fwNe9jZg/61AaTo5b6NAgUcZZ7rpWbBRdVEavvGNbwAAzp8lGYR9mzT5KVDEpjRAXk2JUyE7TiriFkWBQl2o+4+9Zv2lwaWQ+s5wyLhnszZYioXlTrjm2+Q69qXlL5HH+8njrTbq7/3mvbHnztx7BqsfIZPCXvCqF4xdx1hicdJJSWNQqVUwtEZWpnWh7qujPETVpHqkzvCUdkH4GYsWA8uxsKKswLIt0BQNy7BCVqhDawiREVN7A329D4kbKRYrXAU8zaNUIvtiasdUeHl3e6dE8jxFUz6ROTSHKHElNMQGNHNrk9suDi6ixKYfD17gYahhYnF3ZTcaQgNn+/FoAM9S1iMWJ1EsUhSFOXkOXb0bWr4hNDA0hnjJ974EtWY6oZ2EdXUddaEezh4FUSwC8K1FV5QV1PhaKEMxqKa7eefNY3NYm1ITiqEk5nVuqBsQGTFEToque0Jf76PKVzPX750HijE6T03HjBGmVwIiK/rXs7zZtHOlOWI9axtY6i4BAJ4xl+G6UKBAgSclis7rNsC7QJ9Y6eNjd1/w1V4VkYXIs/i2qwghM1MRQtl245AkuEqyBE1CSCUwAax+/oyMf/67d+Dnf/C7Ys8bKilM2IhiscKTL8RkeK3v+aWPYPY1b831+UFi0bZtvPOP3oLlr38U+qWTAIB6I91CSOn3IJXKUAOKqLIQHmA100Z5E8RiULE4F1HalWthxeJUCrE4776PZ2k/ExAgikUA6Gn5jq9nheqtguLI50kR8nBD0TF0t6uaotqbnp52v8MUUSxyKYpFbqRYrAWIuoYsgBbL+Sy3XMzXRHzll5+Hmw+Sz56aIsXZzsV9MVKWZgUY2taK9NoWiUVvm/LkLFIUddlDu7cDDMNBNWwILD1xFuSth2bwZ6+7DgdmJiOUr5qrQNEttAaT2+x4W8g9xnMrCxS4bNCVrTekxVr8Wr2JjEXdVc3rhgFoPYREA1GrVYoKKwwZIUwsRpcvzwOcTNadAJKxOLqmC5QBHH4xOk/9sfxfoDQ7dpHP3z5q5jmOg7f+xfvwto89gG8s23AcBzON9GZKd0AaDeMsHuuVCYnAFHR6pP6amFi09GySrr5I7EGNeNYRAKiuHVcoY3HYHv+5RmCy0Pk7AdtErVLCid9/EQ7sSlGrugpHfkKlPADyHfLkLLqKxZfffG3sJYFjCKn9WEGL1MTYfWP4+UWiXsHq/ePX0dhLJgKs51DRnfsm8J/viSlMt4I/u7WLNz9Pmtg14TGDbrpNcCL2PgfYOAOovfHLpsFxiB3rF/8I+PB/J/mIC08HXv4nwPf9I/C8XwXmrimUhgUe83i4E1dXTQrVnXiqDcl9YtcaKasERgiRU02xGbLjjCrZylxYsSazMmiKxpmVM7BMC3ZkkrljhxWLjM5gVprFNy99M7TcpDaFUdz1tbtGn+k4+ODffBAfe/vHoJxU4DAO6s362HWMIxbLk9YOY1CulkMZiXWxjoEe7hMFFYkSK8WIxayMRdoidez5/nlYjuUfS56PKxbTbCn7Rh8lrgTWnYxfFapgaAaCQIih6Z3TseWBEaHEui5RtmNDtVRU+AoaQsNXCGaBt5PzGx3HwYXBhZhVbRAsz8IYhmsRiqLwtNmn4Xz/fMyKdWgOQYOG7Lp5lTiiJs1DLALAfGkePb0XIuempCkoppJ7HUG01TYaQiNmCesRi955sqKsoCk1U61jD9bH5497uY1JxGJLbRHlZIDgFGVCcOu2jobYyOznVPgKaIr2z1PLtmA7NgT6yhOLHM2BZ3i8ZO9L8Lojr8v1njl5Dn29D8M2cLpzGg2hgZ2VnePfWKBAgScVCmJxG/CaG3bjDc9axEyZx1984aTfk2i6JMOuuuQ/Frdoz5eWG5eGSe/BHSt/M3LQ7+Ls6YdhmeH3eIpFJmKd4AkXs4hFAJD2PhWamU3MOI6Du28nxKKtq/jHP/gl/OPf/Bnmr3s+pl744wCA2lQGsTjooVSu+Mo6IG4zq5v2xIpFy3agmKOm1HwtXDSUK1UMAjPZKyKbSNZ8/Gduwa+99Ah21ESYtgPKVQZ6Vp2DnLPhR1ao5DMod3aUFCG4u6qRaF+aBtVwrVATtp3lBaiGBZoKf05D5kDRDGhhsiZGoyT4hB3t7YdaHY2IYpHmBOjGGFXFGNTELSoW3W0KnlePd7AcB9WwwLN0qkI6DTRN4aXHFmI2w+NwcJbcuC5v5LBoi+CGvcRm9uDc9t78FijwuIE+ALaafSMlkGHD/BOPEqF1YSBwjU3K5Aq6DLCRjMXobP7SNMAKfs3V6YebNFHF4r/0ngpc82o4Uwfyb3OOS97nbyeKRc108Bv/8DX8+tv+Dt990yL+/lVkBvzMVAax2FdQKUn+2JaG7VIsetarjdqkxKIGOBl12dR+YLhB/iVgZIU64RgbJGSUdZKFuPogcN8/A7f/VfJ71k4AIFmHE2O4Dlg6eMrEm57FA2lW/a4t8FMOxpsrIs+GnClyQ1kHTvx7PmIzDf/6U8AHfyT8XOsUwJdJzl8Qtd3ESridrgbyQTPAwnVk2SxbXMcB7nwPsPSl7bFkBgDbwtGGidkyk348Huvonp9s+f3PBfQ+sHF68s+K2p22XLvT//IB1+709WG70wIFHuM41T617ev0rFABQiwGyalpaRodbXT9ilqhVvgKuEBtQVEUqnwVA2oABw46q/FrH0uPFIsAcHjqME5snAgtEyRG7E24Ttz1dUIsOqaDez98L/70t/4UV7/gaiz+9CL4XXwqsdj/0z4e/llC3kpjcom32wq1XCuHCLaG0IhZoYYUi2xcsZhELHrE7+oMGavP9c/BsA1fDBC1QhXZdMWiYigosSVfHTsuW84jvKZFQvp5xKK3nXW+jppQCyk101C1yWfZFDkfenoPv/Hl38AdK3fgwuACZuX0yW+8wMesUAHgmfPPxMXBxVAeord9Aiv4SjaPxM1LCu4q70JP74WsaptiEwNjELMwHgfbsdHRO5iWpmPKugpXISpjN7txdbiKaWk6Rix6JHKeLNAZOZ1YXFfXURNqEBmXrGZoMAzj275mkbsAQFM0anzNP/7e9uRVLN69ejcebG2PW4RHnv/+c38frzj4ilzvWSgvoGcQwvhU5xR2V3ajKjz2HbcKFChwZVEQi9uA5xyaxuG5Cl5y7Q7cf6GH25fCzTcvI68ucxMRg8NeN/acVxC94w3X41dfenVM8VaVSPHCnCGWH5MSAZPCtiysXgrfMOuuYpGeoIiIBndH+yqGGX5i+cwptNbIjPGNz7wTJ+/6Gt78J3+L0uK1oCgKglxCLUOxqA6HkOSST6YBAB/xKtNMG6XyZEqr1iBc7EYVi9GMRZqiYgQZQKwyf/TW/b49K+UqNTw1Yd6mlaFrIQWItx4xQKIyFIWeakLVSeFYH0MsOnCgGjZKAptYhBMrVAsCS4fsKH1ycEI71DRIHAMuoJikOT63FWoatm6F6lqdGI/T5lcCGJaFarrE4hVSAe5plkBTwGp/cqJY4hm89VXHcP2eqfELFyjwRIQxSLWkzESQxInmkRjDVDVabmg96Ag06KIKRCBMLDJ8mCCN3oSL9dDDpUthUkvVjND4Zzo0sQDMwFCdTPV+sdXDg6fPAQB+87MaPn3XI3jvH/4SXnjNDCiKgizyaNbTb8CVoTbWBhUAaptp5rnf/asXE2qMSRWQlp5NLNb3kv9TSCrfCnXSzMOo0uvkf4xUjGn2rK51Kr8ZYrG/ChhD7BU6+IMXiSi1H4gvY6qAlq4kkziKqGUnwbnbgY//IvDNvwaWvzXhRgegrBNCSgnch6w9TEhEqR5elqKAXc8A2o+ElaFp2HcrUdFp8XsTHxfvIdaqNLN9isX+JfAMwD3G86gz0V1GrlkKHnY9kyjGJ7GejdmdSsTu9Adcu9MDzy3sTgs8LhEl4ADgaPMormpctel19uwwsRgkt5pSM5S1FiUWy3w5RnbUhTosmoyR68vxmBiWYkNZdUemjqCjhwnIoGKx28q4ziZAUzQ8eDe5Xqx+fBWPfPMR/Pzv/jyufvHVoGgKFE1BEAXfwjEIqkdB3VAhyiIYJvs6u+3EYkSx2BAbsZy+qGJRszQwgfEgiVj01GU2Y4OhGFwYXCBWqG7rM2SFag4hsZL/WhQDc4AyX/bPg5qQbenpEaGedaa3rZ4VZk2soS7UMcxRU5cdUqvpDKl3ljpLMGwDq8oq1oZrWCgvpL6X4znow3iddMP8DbAcCw+3w0rgoTmEwAj+9yxxJThwYkRuGnZVdqGttUPLe0rASRWL68N12I6NXeVdsV4TRVFoCA0ohgLLttBSW5iT53ziz8M/v/yf8dqrXosaP96CtSk1odt6yK7UQ0ttoS7WfSKQdntbnmXvnJye9e6hJhBi0XZsn1iMbm8SHMfBPz70j/jwyQ+HsmY3i6S82HGYk+cwNIfoaB2c75/Hvto+lLli8naBAgXCKIjFbcT1i3VMl3ncdz5cEK30SKOqKnITWR8q/fTZvi+6dgd+7LkH/fWt/tvvYXD885Bd6yf23B0487vfmZhNt924eC7s066rXsZifnKl285WQrQjhdHd3/ya/93rt7web3zrX+NZz3sR2utkZpool1GuZhcScrkCNUgsRkhf055csXipG27OVEQupNorV2voR9SGaXaowEjx5ykNK66F6TCH1SYA6LoGKpAjSXOuYjGQe1mTOfRUE4qbZzeOXLNsB5bj+OrJKFieWKHyLBMiohqyRyxuzywniqJC1qUUy/vWr5tF2nfKC56lIXEMLHsLioPHGFiWh27aECLH83KCZ2nsbshY62sTpL4WKFAAAGAowATuAz6++Iejv0uRiTkpNqj/7zP34It35rQp0/rQnTGKxWCzjhUjGYuRhldEVXn6Qlwt5+TMEPFwfmUyVeYX7xkRab9yi4C//unb8NrveC7OXST7q1mVwXFspiKxOsZ6DABq5U008yga1Ju7eP/peC2UpljcXaXwjIWEbTW1bCvU2i6AYoBesjJL3Syx2AkQizuvJ4pF14Y0EbYNrBPrT2GC6AEfw1ZIaVfWE7IU+6uZq6gIFPrDnA0gUwdufyf57ZXnyXN5cx6z4JHAjgNsnAKm9gFJM8z3PAfonMunRt7/bYRUXc2wQ33oE+T/CSzvx8Illx/XxGLnEaA83lbZh1AGZq8B2kvZv7tMu9MPFHanBR5TyKMcSkKUANkOKM6IQOAZPmQL6VlYeqApOmSTKXNyrEEfzFxcPx8nFimbChGLhxqHYtmNUiADt3Vpslrk1F2nYFs2BEHA9IumcdOP3ITv+C/fgZZb03CuW0Atw0GhFKkzkgil7SQWbd1GuRYmFptSkxA2gV3jKdMAoljULM3/PgwYaJYWI66Cx6sm1LCirMC0zVG+XMA9Qbd0QiwmjFu2Y2NoDlEVqpiVZ1ETapgvzWd+r77Rh8AI/vH0FIve96gLRLFow4bRzv5NMA4Z9xyK3A17GXdtrQ3bsbG/vj/1vWnE4qHGIZS4Es72wv27oREmFj2iO28W5M7yTqiWGiKCp8QpaJYWs10dhwuDCwCAI80jia9PicRidW24BtuxsbuyO9Zj3V/fj1+58Vewu7p77Oc1RXLPEyW1HcdBW22jKTZHuZ1uLeK/mIFBAAD2m0lEQVQRizPyzNj114U6huYQlm1NpFhcUVbQ0ToYmsOJ92ES0ux+s+ARp8dbx+HAwdNmn5Y727ZAgQJPHhTE4jaCpim87CnxmUMXOqRg2ippkQXl/i9g7cO/72fzeeCY7TvE59/5Ezj/Nz/tqyI9XFwOFyYjK9T8xOLapexGSvR7fPrD/wSW42ENe2BKdczvPQxgpA4FqLHWYlFiMWoPqls2SpXJgqajxCIATFcCOQzlCgYRtWGznF5YiD6xOFIasjSFYU6rTUPXQTFh8g0A5MBM/imZw0A3fcJznB2o7uZSpmUxshwPRSeKRTZwDDxlJrNNxCIA1KTRvqVY3rd+3Sy2qlgk63hi2UsxHOtnLLJjflPbif0zZbQGemZPrUCBAgkwhpNbobbPAic+NXoctR1VkolF3chHYFK2BVhaWLHIJFxvA7lFYPhs20UmPCnn9MV2bBHVnGxqwvKlyXIk//7f7wTHMtjQaNRFCtcsNt31kMaiNxljupE+7lXL2dZjAFCvbqGZl0DgpmUsnv3ZCm7/0TJRvQVhaoBj4hvLpGayuQgZyvAkZ7GXTPqNrFDTJ1IlovPI6O8Dt5H/T302ffnuOWLbCoBnNzkWBz6zZLTiFhpZxCaAKk9ByZOxONwAPvkrwKnPAce+B3jNewixHrEn2xIGq8QaefYowCXMjp+7hpCQecjMndeT47yWQiz2V4Dz/5lMYAbRPQ987OfDpHEWOkQRfNmJxa//JXDujsuz7u55oLJjsvfsfTZRiOoJ6ljP7vQTQbvTVxd2pwWecDBsA4/0Hhm/4ASIuiSJjJhJLAJhpU+JHeXtJb0nSbEICyFiUWIl7CrvCi0iMaNaYONSfKJUFm7/6O2gaRqCI4AWaEwtku1ZXyHbQrm1SH2qnroOOWK5HrUkBYh16Xbgvjfeh+M/dhxTU1MxxaLlWGCro/0bVJF5x8pTHEqMBNVUYWXYZNeFOjbUDWi2lmiFqts6RFZMJF28z24IDSyUF/DRV30Uz198fuZ36+t9yKwMniafwXBhxWJDbPhWkmf+8Awe/p8PY0YaT04BwKkOsQVeV8lxPdJIJt4AQp4aSrwWoSkax6aP4Xz/fIg8VkwFIiv6pJGXtaha+dygPPXk2nBUR3uqzaRzKQsXBhcgMmJqlt+USM6biwNSu6TlKOYl0rzcxiixODSH0G0ds/Ksvy5P1dvTe6BA+e/Ngre9pmP6dqt5FIsPtIhrRs/obXpiRhDRvNg8mCsRYvGB9QfA0RyubcazxQsUKFCgIBa3Gc/a38RUiYftOPA4rr5KBpAoceXBUxlGXzcf+sLl29BNwFh/BMbqaQiRm/uLy+GC37ZMGLqOsj3A4P4vQHatQXiBDKCWGR8Y11YuZH52lPC555tfxeyOnaAjjRJ+nhQWfSe5eeU4Durf81ZIh58FWS6HLCtZJjzTybScia1QL3bVmNnRXGW0jQzDhKxQAWAmD7HIke9DURSqIpfbatOIKBY9kjGozmyWBQxU089trIwh1zSfWExejuV4DF1iMahwq/uKxe1T0QZtZClm61aoQfLfI1AnRV2asHH6GAfDctBMCwLH4Aryijg8V8baQIO9lbypAgWejDCG2YRcEr7wh+HHUTJqkNAomwCU25gwgsRi0g1/KGORBxLyTnxErVAvxhtxfS0+VnLuuGomzFrwCME8+PPbdXz4qw9ibrqB63eQsY61SXNyMAyPRdMZdqi5rFA3o1jMwFiVZPR4u4rFf7jPBvXmLuypw/H3zB5JJaA3bYXqkkoAALEKHPlOQqKkYe0EQNG4pFCbs0IFgO6oHpWtDvnuQfRXiM1sigNJmQf6eaxQl79F1Hgv/G3gJf8HmDsKVBeAYXtrOYtBePtq943Jr3u/wTw2ZawA7Hiqq6JL+F2e+HeyzIHspivOfIUc17vem+97tsk9BjvGom9LMFRCWH/znYSI3Ra4383SCYm88DTyeN9z8719//MIydwO3GOF7E7/EuCCdqf/t7A7LfCEw9nu2Ynz2cYhSnIIrBAiFoOkEEBUa0EiUWKlmGLHIxcoikLrQoLaMEIsAsBVU8TK1XGvFcGMuPUJapGNL2/g9o/fjkq9AqYU3i6PWPSQlrMIAHKOWmS7FIuO5QAOsUKNZiwCADdFagXHcTAwRtdkzwrVUwHKjEyIxYxzpCE20Nba0EwNlOMqFvmwYrHElmIKUgD+Z3vbVRNqqPDZfYye3oPMyn4OJ+tOcvKtUIXayE6VBtQzaq7MOtuxcbZLJvOvD9chsRLmy+nqSV7gExWLAMlZPN8/76vuAEKiiYwYVyzmVMp5xGJLG53/HuHej05WG4Pl/jKmpelUy81paRqKoWBluAKGYrCrsitxubzwFIvBcw0ANjRyX7GzPCI4PcViV+9CYqXQhIA0+MSibfpkbjQTMgn3t+4HQI5Nkk3rJOBpflPEopfjeaZ3BvOleZ8sLlCgQIEgCmJxm0HTFL7/pj14yq66T6q86Boy6PsS/UjdsrMh4TuOzeOZe0cX6jO/+51gTn9127ePugxN+iixCABDZQAeJtb+7fcwU3bVdhIpUAw1Tv6sXcwmFtf7WkyN9iM/9xsh0syyRkWlATJwlqvhQq010MHN7gdbm4dcLkPNsBQlisXJ1HUXOyrqQvgAz9fC5KcSaXR6OYpJ8LIQqYBdQk3mMrc7CF3TQEVUHRxDgQ0oQGcqAnoaUSwyNAWZzy46PMLNIwqDoGga5WodQ8OCGMlA5FkatqaAkbdPsdgoBRWLLHR9azYRQbJ0I6+VWQT1hMzMxzNYlnOtUK+sYvHqHRV0h+YTKq+yQIErAlOdLGNxsArc+R5ioechMm5gkG3/OA60OyNdd8aQPVHFYpYZcqSxdzqJWEwgeBh3/NMSsorP5VAsmqaFX/m0ip/6GKll3vIzb8DOijuT2UkeN7IVi3kyFscvk4Q3PYvHtJAwY33Sa7mpAo4FyZvlLydk2M4dS1W+qRo5HyciFi2DnHfBc+LZP5P9nrUTQHkOusOiUQk0be7/MHDvP2W/l2IAuRk610vmepxo6q+4pHYasehgqBmwxpXbjkOIvUMvImQQQCxl1fbkiuM0tM8AfAWYSrdLmwh7byEqOjWS/2VqJP9y901AeUze0PI3yTE9/5++bW0mXAVpSLG49CXggY9OuPEZ6Lvn7bBFzpWtwtSAe/5x9DcAzD0F+NXzwDN+ON86Fm8CQAErx4nd6Zf+OGB3eh3wssLutMATHyfbOa4RE2J9GCbboopFiqJC1qaGboQyFZOURl6znWKoRMWiYzg+gejhaPMoeY2OE4t5rFBt28bKJ1aw/I5lUKDw+v/2erARN6GhEs7x86xQHT0+QMkptYh8WMbUbVNwHAflSfOZU1A6UgI/x0MuyyHFokdEsQ03+sUchvabxEowbAOcOwlaZmQMraGvAktCU2yio3WgWSNikedHdYXlWCjzyd/Lsy/No0rz0Df6kDkZHM2BZVlIriuFYiqgKRplruzn/kWJ4CxcHFyEbpNaqqW20JSaKHHp132WZ6EpyX2RZ+54JnRb9xWQwChr0iPRPcWiZufrrUxL02BpFt1ADrN3PKOE3Tic75/HnDyXelym5WkMjAFWlBXUhFrqcnlRF+qgQcfIuw2V3FfsrozsVL2Mxa7eRYkr+QRyFppSE4qpwHJGVqjjiEXLtnBi4wQO1A4AIMd8K+AZflMWphIrocyVYTs29lT35CLBCxQo8ORDQSxeBly7s4bvfcYuP//tWfubeNv3Pg3XLpAL8YuOzEPiGCzURwPKq67bhWO76qH1XI44MyfHLNaoRcg4RDMWAUAdjgZmj2D1iFVdi4dVj1MsAsDpE/f7f1MUhafe8KzQ65cCBKfpEouVaj20zNnWaLvkUhlKBmmhm/bEisWVnoaGFP5ZRYnFKFEyV00nFqMZiwBQlyZRLOoh8hUAWJoGEzgPZisCeqqJoZ6PPPKtUBOUjY3GFBavOgbVsCBydCyTzx52QYvVic+xNEwFyU2G27oVaoBYbPV12JvISnyiEYuMSyyKLH1ZrklpODhDfnvr/a1nChQo8KSDMoGN1n0fIk3pXc8cPRclFpW1uD3qBKDcxpGB8PXRic6eDXyuZk9WoiYRi4OhDjuFANISbFzHKhZZEQ+fPY/33avj7d9B9sfzbnxqaJHVVjAfm4whWcRiRR4/a7mWohLIvCbbFv7gRSJeMJ+e150bpgrYFmQp4xyYvxaUMcBsKb5RvhUqP4Giv3cBgAPUAvk4O6+LL+c4wLfeBWyc/v/ZO+8wSa7y6p/KndOknjyzYTZqtZJWOSMJCYkoghDBIEwG85kMxuRsbDC2MRgwBmOCAZsMAiwQUSBQQmElbd6dHHumc1f6/rhV3VVdsXtmNtbvefbZ6e6q6upUdes995yXxHSmRzHQl8WerUONZaYfBI7+nvQfdSMxQL7rmoOPU6pAoWl8WpghAiQA2MSvxTjyen0PH4zj8vQwERYln2OZ+X1AyaXYJIvERci3J0yjMEtEzpDmrthwFXkPF/aZlzvyW+KU3vUc4qJzorQILB0m0a98FNj7PXfXoqJo34MmYfHY3cCD33R/7a2gPQf6zgP230Echu0iVYFf/V1DUNT/z2riX3P/WifCaaBzMxE673gvEWHrcadfBM59YRB3GnDacyB3wNG11C56jKROiA1Z+gkaXTnllbIpCjVkMxbSHW0AsDhpPS6pNrHsI8kRAADN05bt+hEWZydnsfj7RWRvyUJVVZx72bmmx6sV6/WT7liUlq3jHydhMfucLDqu60BezK+ZY3H0raMY++gYQJmjTqNcFDzN1x2LzYKU/h5xMfJ4jImhLJYtPRaNZEIZFMUiSpKhr2ZTLLujsKhNLGrFpVUQC0Rwojls2LQBoztGAZDXGWJC4Bm+7lhsRVjU+ysCRAztCfe4Cou8wJMhqM0pdntmO3iax+HlxjbLUhkh1upYtOu1aQdN0egOd2O51hhzJvgEaNCmPpleyIqM+fI8+mJ9juJbd7gbRbGIudIcOkIdvtx/bjA0g6SQtOznYmURNEWb+mrWHYtVIizyzddLNnSEO1ASSxBlsS6Ce/VYPLRyCDWlhisHSMpBrppr5SVZ4GiuLcciQERjABhLj636vQ4ICDg9CYTFdaJZnImF2LpLLBZi8c+3noNzh05OK3m1YhX+3JiZtHcsOlGz2f78rHN/F2l5BrIsYWxHo3g3OrYd8WTKtNyRA42+L3XHYvMyJmExjrKL80+UFURj/mflKKCwWKyhI2w+afclzSfgUpNLwt2xSLZFcwZhMcL7FhZrYrUef6pqhSqOoUyRlp0xAaWajIoog6LgGXdZlcngPenQS5CioAmLjOV3IJdXQIfjkNdKWDQ6FmkWYnV1IpQxCnWuUEVFat0tZ9ynUx2aphEKR1GVFEQE1tIYfT3Z2E0ulvz2Ew0ICDDQysxWVQFGLgMShh5gzcXq4jwgtF/cqzsWm4VFumkihmHmb9EmxtSNw9M5y6SVQqkCGfYX0pLcWhTqsWUFVSqMrRsGce8r4njlHh4j2TSG+rpNy+09cBR7+shz9rIkZmq1jsWUTTHvqvQ05HclwOTde9VtTEiOkbJ3viiCbzzLR5FAqgCK2HAs2tFN3Bc7u62DiLaiUPUY1Ga33e7nk//L2ne8NA88/hMiCOUnga4toCi66XylEuehl2CX7CdimjFWbemIeZnibMNhaITRe1gTh6akUHB13NqR3kBELT/RYwsHgP97D/DLj7YefeyXI78lfR+33ERuD5xPYmDnHmsso6rAY7cDXVvJccSNyXsBUMD2m4ELXwFM3uMebVucrX93oyHjd08l38mJe9p6WRZWpgAuAlzzLkAqAw/9T3vb0UXFuceBnc8i91VyRJiN+uuhZeK8F5OI3MveEMSdBpyR7Mvtqxe114pmx2KYCVvEE6NDrZgvmh2LdsKiQXjKzeYg1szHZMXmWoZrGv8YC/ZuPRbFnIhquYrsQBab37IZnU/qRCQZwcjYiGm5Ywet9RnXHos2Y5GpwhQim8j9siIj5tCf2Q+Vh62JVaIsmhyLFEWhM9wJrsMsLOoil+4W1QW5CBMhTjCXHovpUBoqVEwXp22jUAHUHYTNNEeh+qEgFhDjYuBoDhRF1cciRbGIEBsCR3OIclHQoFsSFg8tHzLFsPbGel1FnvprtBmGcAyH7R3bMVmcrAtdFblCHIu02bEotjC+yEazKNQKdaFXF+xaifGcLc9CVmVsSm9y7JHYEe6ApEqYLE6iI9xR/36shnQojZJUMonUS5UlxLl4/X1mWRa8NhZZqa0gzsdNsclu25ZVGUWxWHedevVYfHTxUYSYEK4bvq7+fKtBYIS2HItAIw71vJ7zVrUPAQEBpy+BsHgKsaEjdFyuIwsrrc1uX5idtkRQVlyERVm0FnYWZuwdi+XD92PqP16Hn//3503372pyKwLA0YMGYVG1dywenm/sVyQWQ8VFoKtKCkItOBYr4KAC6E+YB6u9BseiJCsQm/KxOqLOwqKgRaEyQmPgmIlyroKoEbFaBc2T51e1gSHLmJ2EHVpUbc5n9GfNo8ciQMSgMMfYOBbzYMIJyJ4ZYf7Q9x0AQK8+CjXWFCHT3A/TDxmbiNhTle6eLIa2ngVJURH2iMhdayI8ix4X0T0gIMAGvTdiOdfaev3nE4cMYB9lWJgFVhE1REl6j8UmYbF5pq9hBu9KhRx/cxUV//2QSAQNFwrlGhZy5gvvQqkMpYWhrpOw+LtjEs77bBHv+uz3AADpMDm3XXk2Eb1WquScJlEc9h44Bu3UDZoi93esOgo1iv9+VhjquxOA1qtmOEzGM6xhxrkdG5IS6SFnw5UjLJ69gwOqPvrf1CoIh1zOb5lRqAyPs7qt54q2olBXJjSHV1NRuV9zZegRpYuHyP96DOvQRfbbqxa8I4IT/UBpAawx0jZvGJ+qKhHZY93WdTVRPMKSz7ytYU56hLyuah71qFWbXqColYDffpKIYbkjpG/hWqOqwOFfk5jNTtK/HHwE6NoGrEw23JrzjwHLR4n4mOh33h5AhMD0MNA9BlzyOoANA49819m1qInLCp/Anm3D1sen/rw2/ShXJsn3rGuMCNeHf03uawWjqHjZ64HdzyP3F2aBaHd7x8+LXwO88DvA1e8I4k4DzkgO5A7U4xQB1EUQqSZBskkd8IOtY1Exnxs6Q43zTnG5aHIs2ok5RmFDVVTMTs6aHpd9XE/66bFYPlLGgfcewHc+/h0AABMh59tN526yRJwf3W9NlEp22AtogH3/xLumGm15ZkuziCbaOwY9/JcPo/QTe3HJKCwCQE+0B1yanE/1fpi6oFYXeKLk84gyUYiK6NoHUBcFZ4oz0NtcNguLCd5+jFYQCxAYAWE3J34TJbGEOB83fWcAIizqwh1N0YjxsZaFxYFYo5fgaHLUUXgDAE5wFhYB4Pzs+ZjIT9T7H1akCiJcpL7NumNR8Rg3GeiP9SNfy5via3VRzS9TWkrEtsw2x2X0yQZlqYxsNAuhuS98G2RCGZRFc6zuQmUBCSFRn0yweWwzRraNACC9NONc3JdjMSNovSbFQsOx6LHPexf2YiQ5gmwsiwSfMPXDbAee4V2/L270xfrQEerAcMJmHBYQEBCAk0RY/NSnPoWRkRGEQiFceOGFuPvuux2X/dznPofLL78c6XQa6XQa1157revypwtHPvpk/PodN4Jj1v8jy6/kWlpeVVXMTo6b7nNzLNph51j84Te+jNlvvAt87xgue9rzTY/tOs9aODI6FmugISkK4knzALo5CtXNDVWTFISjrQiLZGAxmDQPVrsTDWHRTqjqjHk7Fhm+sY1MlPc9B16s1cCFyMDQ6Fg0RqHqz7/SgrDIMRQEznkw3HAsWoVFOhyH1EbEqB3GPo8qzUCsVVs2CBjhGBohtvEbm8y15t4FzH0fT3UYhoasnSaix1lYBIDRrrWNPwoIcOO0GIvoxQ8/EYG6YBLvBVJDpN8boPWPa6I4R0SMNqE1YbEG8/HRzbG4rJ2TVBWo2MSI2XFofMZ0u1AqOzoW7eZpTcxaeyx+9fu/wBO+VMKWThpvfsH1pseu0ITFh7XVZFrAIwesxTzXKNSovyjUy4a016ELac3bkRagvjuBYdn8+FBMBqoeM5399PQTiwgLLoUQmgE6NhLHYpMY1pZjMXcMiPaYvhO26I635WNEqMrusl9OETXBzoXkAAAVXSwZK1bYFIk+1QtNtQJxyhnjWXW077Ie5kAciy2S0rabn2kI/QXDd/przyXuwD9+FqguA098P9C1BXjsx46u1LbJHSXi2oariDCm070VKC2Q9wEADt5JomHPutk9llOqAtMPAb27yfZCCeCClxMX49Jh+3WWxwE2BDraAY61uf6Zf5S8D6slPwnEskS4u+bd5Fj4oEdPTiNSFfjVxxqi4kWvAvQ+ROUlINHXvuM7kgniTs8wTouxyBogqzKOrhw1ucX0VIJ7fnMP7r3zXss6flptWHos2kShZsINMbO4YhYW7dJbmu+bPmaua8g+Ehi8olB/89Pf4OAHD4JNsrjh5TeYHtt4zkbL8of3Hbbc5+pYjJrHeLIi4+6pu6Fq1+w1pdZ2FOrmj2xG6Bx7h5YxohQAeiI9lihUXVjU3yMm3HAsAkBedD63p7Qx7Vx5rl4j4JsmSSVD9oKrLgY2u0ud0EXOhJCwfCeatxXn42Bi/q6tZUrGTGkGG5KNBIet6a2u6+jiqQprf08AuLD3QpTlMo6sHIGskN5/MbZxnuIYDizNtuRYHIgPYLm6bHKQGicG+GGqOIUIG0FvtNdxmY5Qw1E8FB9ak0SlznAnSlLJJCwuVZaQElJ1EZBl2XoUakEsICEkfH039O9gvpavv59ujsWSWMKx/DFsy2xDSkihO9KNglhwjfz1QmCEev/MVnnN7tfgjee9cc3d4wEBAacPJ1xY/O///m+84Q1vwLvf/W7ce++9OPvss3H99ddjdnbWdvk777wTt956K37xi1/grrvuwuDgIJ74xCdiYsI9Cup0QLJx+q0HxRX/VntW6983behvCJh7LHpB0TTmpxszwlVVwef//j34x/e+GfFznoTuZ7/HIvCdtccqLB41RqGqDGRZRczgWMyValipNAYLkVjc1bFYEWWEIv4LAWVw4BgK3THzAMPYY9FWWIw7C1F6j0WaNzoW/QtXtVoVnOZ21B2LHGOOCNMdk/mqv6JUTVYgsFbR0EhVVBDhGdBNy6iKCNAMlDWKQk0b+hnqvbrUVQy6ALNrcaIdYVETO+U1Ek9PNLpDNcof/8LWWE8gLAYcH06bsUhdWPToFQg0HF6JPu8ebKX5VbllKLkM0Bzkpv4eFsei4fZyiZyTbNr5OnJ4wiwsFsvV+uSIOpogclYPA1k2n5MnZxehaKKYqqp492e/h+e/+WO4ZSeH/3thBJ0p8zFJdywasRcWrUUrvQDqy7HoY5m4TKLTemAWRzkaRHRbLWIJkbDHrPCubZqwaC5EVUURDEODZVuYoLIyQeJ5vYo2C/vJ/5VlIsxFXIpYXr8LzXHXw5MxbDHcR0Q+PcaroB0POqxFXF2YD2uOxbYmUKW0vpCl+YbQvzJhjnC994ukX+Q5LwC2P4242XKH1961eOQ3ZDLBtqeaM/K7t5OJBqI2PqoWSMxn3LkICACYeYh8LzZdB3DauPiyvya9W51ci8tHiTvULr6LCxOhePKBtl5eHVUlkyziWYDTeiBe+Cpg/A+N75YbdVHxsYaoaPoOqkSwXsXEjIAzh9NmLLIGzJfnIamSKZbUi2b3m9N2jQiMYBFejGJIfiXvW1gCAIqmMD3eJCx6OBZLhZLJTVQulFEuNl7LHf95B971snchflYcG96+Acku85hi83mbLds88vgRsKz52k3vsWhEeJqA9BVpSxTqweWDKEpF5P/cEO1i8fauy9gEC3YDaxtZWpHMiQp9sT6TsMjRXF3Y0R2LdFhz1WnCYnMvRiNhNgyBESAqoqNjMc7ZTyQv1AotCYt65Kfdd7YklRBhI3WROsEn6s5Lz+1qY5Kzu0hbIIER0B93Twjwcizu6toFhmJwaPkQKnKlvk9GwkyYvG8+GYgPoCgVTS7HVsWoicIEuiJdrv0jje/vxpTNeKwNOsOdKIkNYbFQK2C6OI1MKGMRAXUBOS2kfYma+vGkJJXq72eIcxYWH196HCpUXNJ3CViaRU+kB8VasaXPohme4dsWYLPRLJ6y6Smun0lAQMCZzQkXFj/+8Y/jZS97GW677TZs374dn/nMZxCJRPCFL3zBdvmvfOUrePWrX43du3dj69at+PznPw9FUXDHHXcc5z0/fcm3EIXa0d0DmmEwPWEupJVL7sKisY8jTTPIr+QM91EoFfJ4zd98EJnrXgXKUFDIDpCiSypjHqSoqoqjB/eB4xpFSUlRTX0YjW5FgPRYrErOIhSJQvXfY7EMHpkob3HydWtxjhRFWforAu7RmRxDg6bMPRZbERbFWhWsoDsWpfo2jRGlUYGBwNIoVPwNVqqSjBBHg2XsByeKSsTHqOBfiNqS9e8MNWJyLGoXZH5mq7oRM+z3bL71aNWUJnb6jas92RG1PmTNMbHHg3a/FwEBrXLajEV0YbGSW9vtFueBVfQwoaWytm9Nk02ae5MYooGWiuT4G2L9XQgnogIONRXzCsUylGbHolbYEhhgfsk4kYqCJMmYXciRWxSF5UIZH3r9i/DFp4UgGPaD0dIjNvRZRay9B44hGTe/V50p61hClmqg4LPH4ir6GgEAcuPuj3s5+QBALLv3WASA7FnY0cVYIkcrVbE1t6IiE+E7OejuWFRVYMng0OzYZO+41Sk5960CQFxlkQ708KTIVowMEhGtrI2Li3ON53EgxOjCovtT2RLLksjfctN+Nv+eBy8ELnoNEbC2PRXoHCOuRZ3VTt5SFeDwb4m7MD1ifqxrKxHni01Ch1fBavxPxNk4dGHjvlASOP9lJCI1ZxXksTxOJj5QNsJiYoBsb+r+1b3eWp6IpOmRhjPwijcBfBx49Ifu25ZqHqKiRueWoCdigC9Om7FIC+huwWZRUL/dijDhJy5wrjwHWm2UwOycQ0ZHVHG52JKwmOpOYeqYucWLVHGfvLswa530Mjc9V/+7Uqjg1lffisHXDIIWGvvOa+fk/jGryHRk/xF0dJsFrmTGOsmJ3c6i/yX9CMfM6QmPLDyC3mgvqhONa+FIvP1xIN/P1wUsI8339UX7wKU4gCKusDAbrgsi+mdFh7SJPBTZZ68efikhRf7QLs153jyWcYtCjbAR35+//v3Toy+NNAuLSSHpOwq1xJcgMAK2ZohLsSvchRjnPi4MhbTvtcNYJMyGMZYew0SxEYcaF8zX3WHO2n/UDd1lmKvm6vd1hVvrLzxVnEI2knUVsRJ8AizFgqEYDMZtEiTaoCvcRaJKVQmKquBLj3wJFEXhhpEbwDWNQ/XPuTPi79iUFMjvriyVISoiGIpxdQ/uXdyLtJDGtg4SB5uNZpEX8y25R3X0SRNePR0DAgICVsMJFRZrtRruueceXHvttfX7aJrGtddei7vuustlzQalUgmiKCKTsZ+hXK1WsbKyYvoX4E6hhShUhmHR1dOL6fFmYdE9CnVxrlGQoBkyqHrswftRPnQvKIrCX7377/H05/+lZb2rb3wGsv3WAcTK/AzKpSLC0cYgRFJUU4/Fo4slhDgaSpUMPiPRqLdjMeq/mCeDQVdMMEVpAqjH18pL47aORdYj3lZgGVAGYTEZbsWxWAMb0h2L9lGoFEWhMya4xsKatikpCLHW/ok6uhAVPw5ClNmxqAmLdv2IWkAX0ASWxny+Wn89ftHFznb6M56M1HRh8QREoW7uDoTFgPXn9BqLUMQBVFnj7ZcXAT7svZwDlFQm+9VUXHdzLC7kW0tpGOlJ4dD4DFi1sV6hVHGMQgWIQ7GZBx49hB88Ti7eP/H65+Dtr7jFMsuX58h5ovn+fKmGiZkFZJLmIpVdFOrka4D7XxltRKF+7bnAt19Zf/wj1wr4n+eEAUX2FZfqSsEaN2/CxkVgQaogHCJjEUetpWcn4gKFmJwz3V2tiQjxDmOX7/8/8tqNBZPCDKDKRDCzDa3VKM03ei1qzw+XWeCo+fhddGxCty4shvsAqI2ozsIM+R7b9SHV4Gny5vgcUpmhaSDeR3qkGt/kuUfNy139DiCjuWUpCrjq7WaBtYVCoC1zj5Hf/OZrrUJZ1xbyv5dYbURVSORp9izibjRy2V+T13DgF+b7FQVYmQISgw33phGKAjZdC8zu9dcj1IkVTQDoMsTK8VHSy7OcA5x6d0k1rafiY+Q1OImKAHndAQEenF5jEf8cXCZx1hN5q8syykVbilL0IywulBcgoHFdLbBWJ37M0BO1uFIE6yOOmJPJNWmmN2MRFkWPybt2PRWP7DuC5T+RSS03vupGvOytLwPVdO0djmgOvqZagiIrGD80jky3+b2zcyzqCBHz+3A0fxQX9l5ouq+5j2MrMJ0McjaT3podi9loFhRLgU2ydccgpY0DWJolwpy2q6xEPpfmONVmdGFRVVXQDF2PswRAHJE23wFAExa5iEVYckJ3TnZFrGJaSSyRbWkiZZL3LywCRLTThb+eSI+neyyit8JxmRxzXs95mMhPYKlKJjM1C6wRNtKSS64/RgTuFUP8vt174YSkSFgoL6A/3m/by1SHoigkhSQyocyaueg6I52oylVUpAp+duRneHTxUTx3y3Nx1eBVlmV1IbYn7DwWNMLRHGJcDCWROBYZmgFjN2EK5PPau7AXm1KbkA6RGOj+WD9WaittORb1/qN+ekEGBAQEtMsJFRbn5+chyzJ6eswH5Z6eHkxPexRBNN761reir6/PNAg38uEPfxjJZLL+b3BwbWa1nM4U8q1dZGT7h0yORU4Io+IhLC7MNeLKaM2R+J7X3YalOz4PVZFbturPHiMXJWFDdKkkK0h1kJlELMfj8EIRvckQ9EyIcDRWj3m0oyIq4EOtDVa6EyEInPVnJZfzqB17EEUbx6IXAkeDMgwGjGKaF2KtWu/PqEpkMMIzNJqvC7oT/pte1yQFIY4B53BxURWPn7BodG8q2uFsNfnzAJAIkfd3MBPBXKHqKj7boX8+a9VH8kSj/0ZioRbcJmvEpm7yew7m+QesJ6fdWIQLe/fUa5VacVVRqLRUAVjBW1g0FHcWC9aZ7W6MZtM4ND6DpEwKdBs7edJj0eHiHQCm5qzC4gve8jG89kcVVCS15bHIgSmyvY6myNQuG5cAAOzqYZAwioaVHBGFZREvP5fHUJIGqnlzMa8d0agwSyIb/WLXr0+qIqz1JaqJDsWNbjK7Oq3mTHdXay6ORb2H4IqhqKz/7SXINPebHL7UfXk/zsyubQgz5LxfCvUSUWtZE9EKs6T3Iedc8BLqjsU2xwCpARLraiwgLRxo/L3pOmDoIvNvafvTzS7Kcq6959Y5/Bvi/By7weq0Sw2TeNrijO2qtiweIq9p+DLiUjQSTgGjVwKzD5u/o8VZ8h50WiP+6mx/OvnNzPzZ/740o/ea1QVTneQg2We735tFVHy1s6jIhrXenQEB7px2YxGfLFWIqGHXB64z3GnqPejFcs07dWmhvADe0O/ZzsljjCUtrhTBN6cr2MArZJmO/g5Tj0WWYyGWPYRFG8fiJ97xCUz+5yTkcut1keW5ZciSbHEs6nGnQq/1ur+5fyJHc3jKhqe09LxuUDSFwyuHTfepqloXPnSy0Sx5/jSHglhAlIuaXn+Ui4LiyW1KpEBTtEWcbEYXaCBbY1B5hncUeYpiETEu5tuxWBCJ4GTsCwqQ11mWyohxsfp3KxlqTVgcTgzXI1t7Y72uwhvQcLM6RaECwEW9FyEv5nF4+TAAg7NTI8y2FoXaHekGTdEmoVd3HEs++kAvVhahQsWm1CbP73wmlEFXpMvzffCL7lJ+cP5B/PDgD3FZ/2W4deutpkkGOvoEhlZE05SQIo5FWQRLsY6vb748j6XqEnZ27qx/3tloFmWp7OnMtUNfp5XjaEBAQECrnPAo1NXwkY98BF//+tfx7W9/u2H3b+Ltb387lpeX6/+OHVuDPjOnOa04FgESTzpj6LEohCM+HIuNgkRx3x8AAIlUGj23fsgUfeqXmaMHIYTCEEKNwUVVUhCJkRNyLNWJIwslDKYbER5sKO421kJFkiG3WBfqS4bAMc77X6rJLachhVgGFKv37ZORbqXHYrUKRp+9rzkSmqNQAaAn4X+wUZUUhHgajEMUqh4vmzwOQlQixIGmAIamoGjyk7pKQU8XFkc7Ilgo1JD3iK9pJuUSbXsqojs2wyfAsZiJ8kiGOUuvzoCAk4mTbizCRVbn4HHc7ip6LEplzUnm37E4t9xaj9vR3rSpx2KEZ1EoVeqTTuwwCos/1FyKIYHHb14S9R3BauTAxAIoikKqqQ8Rz2lOhoS1AGKJQtXcXenw2hz35ioMcSyKLbyf43c3/tYLalIFEc2xWKo4iJSJPgBAiDI/XqnWvKNQjY7F5QniDEwNu6+zeBDQo7uiXUB6yH35ap68v2707Kj/qdAc2YfCDHEQFmZI/KZLvzyOImOttkMLUsNELDO+H7kjgCyRXoPxHpMAD4A4Ha96e+N23uyWaQlZIj0c+8+r95w0wbDkfS7Oe7+XOhP3kM9z03X2kaBnPYf0ATX2NNTF5d6znbc7cD4RQCfu87cfduSniNjZLAymhsjnIDUJi62IigDpESkE/aID1p+Tbizik8WKdYKPTkeoo95fzw/LVW9hcam6BF5tjDW8tl9aKfkSlnRXXaYvYxIWGZ5BreQ+IcgoLBb2FgCKuA43/O0GMGHn668aTbbbLMouTRGxtllYNIoZzRGXkVjE1ANxe8d2bEhZ+0ivhsnCpOl2Va5a9r0nQoR1roNDoUaiSGnDOC7KRqHrwtVKFQk+4dlbUxeNVFm1CIshJlSPJ22mJJYQ5aKOjzdTEAtgKAYJwez8ExURsiqb7k8JqZaExa3prciEM9jVuQt7uveA8aiXefVYBIDd3btBgcKjiyQVIc6bk4IiXGuORZZmTTHCQKMforHvohN6/9Ptme2ey75696tx4+iNa+ZY1J3RPz70YwzEB/Cas1+D3ph97+i8SITF5tfqRiqUQkWqoCpXwdKso5i9d3EvaIrGZX2X1X+vutjudqx0Qhd5A8diQEDAenJChcXOzk4wDIOZGfOs15mZGWSzWdd1//7v/x4f+chH8NOf/hS7du1yXE4QBCQSCdO/AHfyy/57LAJWxyIfCqNSdp9RszhPPvP8/bdj5gefAMOyuO7pt4CJplzXKzIx0GNXWu6fGz+IwdFNpnqFURBSWQFLJREbuxoX97TgPsNJVdGyW21jl/vgplSTEeJaE2gEjq73GBJrtXoPPz+IYg2sEAJLU/WBO8/SoJsKO9kWhMWarCDs4lisSeQ9Ox49+WiaQiLEQWDpugisrtaxGCb7PdwRhQpgfKm14nYyfPydfeuJ7lg8Hg5UOzZ2RcGzp/QcmICTnNNuLMJFANF9ck97212FY1GuAEzIEmmoNhf0DHFTc8utzcwdzWrConYuCAksimX3KFRdWPz6QyKe/t9lhAQez73xCgwkHI45HueXA1OLGOnvQYUnBYqcZD632kmF8YiNSHXwl67P0woHVzjivCrN+1/p8G+BmnbuoygiZMnVujhYrTkVmhwmHNVEhJr7MzYXxQ4YeoItHyOCTMgjDnthP+m1BwCZje79FQHivJU9Jgt1b226vZ0IilKFOBajXa6ORV1YFFudmaaTHiU9FnVhsWsL6T9YdyE7CM47biYxqoC1/6EXRqfg9APk+LH1JuImtKNjM1BasIpuTkz8iUSNJvvsH996I5lUcMwgaC+Pk+9detR5uzQDjF0PzO0Fqm0e81Ymtc+06fiWGgLEktnlauqp+NfeoiIAxHsBG8dDQEAzp91YxCe6Y9GOlJAyFcQVp4ZxGisecdeiKqIqV03CopeTp7jSWo/Fjv4OLM4t1iMo/TgWF7VY9pX7V3D47w8jFA7h0usvhdBNxkiUw3FfpO23uzSzhEQqgbBLjPrd03ebboejYRSlxnH0sv7LWhJO/DBTmjGJl3Y9F5NCEkpVAZfhUJSKto5FldUix2siEnzCdjtGdNFIlVXwAm+KBxUYwVY4VFQFJamEBJ8wOVjd0KNbm0UcXdzRe+0BxNXYirB4Xs954GgO/3HDf+CGDTd4Ls9o9Sa3CddJIYmR5Eg9jtgiLLKRlvv6NYtxrXyHFioLiPNxX07Aa4evxYt2vGjNBDNdABUYAa/d/dp6f0M79M857DIWbCYtpFGWyqjIFbA0a/udUlQFD80/hN5oLwYTDTd5NkKO/27HSic2p0jqw65O5/NCQEBAwGo5odVanudx3nnnmRqM6w3HL774Ysf1/u7v/g7vf//7cfvtt2PPnj3HY1fPKAr51oTFnv5B5BYXoGgDRT7k7VhcmCUXTaGR3ei44gXoGxxBbrFR9HIS9B5IXAzugudivmCeDT977CCGNpjjkvKGfgZihAwWzh5oDOgoH/2iii1OOR/Lul+gFasSwqzzINJOvAmxDFRDb4eUS49FpqnHglirgeYEk0ORY6zCYl/Kv7CoqkCYc+6xqDsWE8dJYPvos3bh+h1ZyCrZH2WVPRZ1YXAwEwEFYHK5tTg+p/flVEV3LMaEEyMsfujms3DbpSMtC/IBAX457cYifMTcd26tCFmL4y/ezePyYe9jA+mxKKAVx+JSvtRwy/lgJJtCtSZC1s4BEZ5DoVSG4hKFqvdYvHKYwXuuFHD2llHMLboUJj3Euf0Ti9i+cRBVmowviqq30yIRaxqLVAvA1P0oi2sTp30gr72Hep9AP5Tmgb3fa9zmIoBYbTmOTcc2ClVIkD56Ood/QwQbgAiL8V7v+N2lQ0BmlGyr92xrzKZlR/KA16x5Y689RQH6dgP5afKbKi8AsSxx3znAYrXC4ghQK5B/ANBzFhG4jG4+O2gaeMlPyN9+e6zGe8lv7vefAn75UWDyAeDQr0kPyVHrJL463duB4hwRW70ozhNhdPB84va0Q4hZ41Bzx8h+eLn9dj6LiJxzj3jvix0rk+R5mr9ruluzOEf+r4uKj/oXFQEg2b+qGOmAM4fTbizik1w15/hYR7jDVID3usbL1/Im4aqZskomzJh6LHo4FgsrhZaExUwfOS6IVVKHYDkWtaL7eWd+howtIpsi6HpyF7acswXLC416jF1cqxv5xTyGNw87CpIA8OvxX5tEo0gsUu8RCBDXWDvn/DRDYkDZFfPYUBVVzJZmTe5CO6chRVEQl0RwaY44Bvmo6XXE+BgUpvE9SAkp31GoqkIci8ZYzhAbAkuxmCxOmr6LFakCFSpSXhOWDDw4/yAoirJE5+pxlMaI1KSQBC3QoDh/73F/nJyTeIb35dJjee399xiKnNt9LlSoYCnWEisa4SK+nIZG+qLmCUS6YOeH+dI8usJdiLikQqwXHaEOXNx7MV6y4yW4cvBKV0dovpZHlIu2JGpmQhmUpTJqcs0iLJbFMv7vyP/hvXe9F3sX92J3127T96472g3Ae+KEHb2xXtx16114+uant7xuQEBAgF9OuA3kDW94Az73uc/hS1/6Evbu3YtXvepVKBaLuO222wAAf/EXf4G3v70R7/PRj34U73znO/GFL3wBIyMjmJ6exvT0NAqFdYj9OkMprLQmLPb2k+gpsUYGHl5RqEqtjF/95PsorCyDS2WRvvDp6Ortx8KM/+im5aaZf7PjBzG0ccx0X77aWEbhY+AZGlv7GsKfTHkXQ0uGnoiFqnckZo9Hr8JiVULIpgejDmsjSgkcDRhm0vEsjYjPWMpatWIRFnnWGoWaTbaWTx/hGdt9BRrCYvw49eS7fkcWF4xmDI7F1RVjdWExxNLoS4Uxl29NWDSyyl05KahJKliaAsecmNPF1mwCT97Vd8KeP+DM4LQai3DR1mIv/eIl2rjgu8eiUVhcLpgcjF6MZknBRtImQ4QEDoWSs2NxuaLih3fejdmFHHrjNP72CgGDvV2YmDWIhy0UEwFguVjF9k0ecZxNxKNNBZSJPwIAfriv9Z7MdkwUOfK+rkyiM0JB8DN8GL4UOPB/gNZHBmwYkKv+T2pNzs5KrQaBtxlz5Q2xaNEu4O7PErEqP0360rk5vaorROzr3ga86jfAha+0uiDt1vFyLEYNM+Wry0SwlMrA7KMkUj41ZB/nqcGqZPtVqd0ei9r3p6C5DjvHyBhw/jHvddNDQP8eLUrVx/encxPw6t8D57+MRIL+8sPAsd8DAxcACfsIMADkPa8sA2UfsVyT9xKn8tiN7p/PrluIS1EXUHVx2UtY3HAV+Z6M/8l7X5pRFfI+x/us8bZ6X8SSFlH45/9uXVQESO/LNlo8BJyZnFZjEZ+4xft1hf33MAOIk8hNCCkpROARDJN+vMSB0koJnMtYpPm6s6NPi37U6iIMz6DaNCHaiFJRcP/v7sfs5CzYGIueZ/Sgs68T89ONsUhZbn1MN7zZPUp8sjiJe2buqd+OxCIoGial6UJWq+hiJCWZz5PStISl6pLp83YSBMVFEVwHV3cMGolxMchMQzxOCknPKFRdWFQkBRzPmRyOehTqDw7+AECjT6IusupuRy9UVcVEYQL5Wt7yfdEdi8Zt6e5FX65FFZb3wQuG93YsAsDurt1keZqxiGlRNmqJzPViIG7uKdzcb9KNolRENppds3jTVmBoBp+69lN44Y4Xej7/Sm2ldWExnEFJKqEm18BRnElYvHP8Tvzg4A/QF+3D6899PV599qtNIq/ACEjyyfp3s1VifKzl709AQEBAK5wYC4qBW265BXNzc3jXu96F6elp7N69G7fffnu9cfnRo0dBGyIXP/3pT6NWq+FZz3qWaTvvfve78Z73vOd47vppi5ewKIkiWK4xYMoOkCJIrVYFeIALhx2Fxdr8Uazc/b8oSGXMTk3U7+/szuLYIefZ2F4zv2VRxPDGMTw03rivWJNhLBNkk4LJ7VcRvZ1tJYNj8ZePz+LiDc6DSwYKoh6urmJNbrlXXZhjTMIiQMSvkg83pVirgeEEU486nqHQrAn2xP33rwCAqMA69r2raUXdxHGMzhT0qEyGXbWaZ3RajvXEcGCufeePtEr35MmAHn3LOkTfBgScDpxWYxE+ShxOawkruPaV84pEpKSyJho2Ldc0qxusQVhc0YRFhxSmlUIZCYPWOdqrCYuSDLBARGBRKJah2AiLBxYVPPlrZUwsl3FofBrd2v39PR14eP+RxoItxBzpbN84BOCI53I6kXDT+ffoXUDnFsyXHsBIquWntyCrIOJGYQZzb47jSM7HeWn384Hv/wF4/KfkNhcmn7HaXuRUtSYixNusu3io8feVbwN+8NfAXZ8G5Jq3IFPRxqoDF3j3YjSuIzkXeAFYRcOeneT/6QfI/x2bXFenVfKFlRQVnJdVwA5dWNTdsaxA+j7mjjqvY6RjI3Dkd4BHNJxp+Rv/DrjmXcBjPyZO1d3Pc3fZdWoT+XLjzsvojN9DPp/Oze7LbXkSwAgkDrV7GxE6B/bYi8tihYj+FEWOGZuuJb8bsdzab7a0CCgi0LGBOD6NJPoAUI3vWWkeSA8De17iT1RMjwDZs4HBC/3vT8AZz2k1FvGJW7xfK6IEQEQht55wumMxRDUcgDRFg6d5R0HSKwpVWpIAg/6Z6k6R+FMtMpzlWVSKFbA2ZTdxUcSRTxxBda6KicONukimJ4P7f3k/euEywcOD4c3DrtGxG5Ib8KuJX9VvR2IRzFYbMdqt9Lb0gzQhgRvkcGi5cd53ijAVF0WER8JQVAUpIYWjaJz/4nzc5FhMh9KejkVdxFMkBbzAoyo3xgEhNmQS1JbKSxiMD9ZFHL/ColHcbP6+2EWh6kKPH2ExJaUsMaVe0PpEdo9hiC6O8TRv2e8oH23ZsTgYHzTd9uoFabd+qw7dtYKjOV/u5HwtjzgXtzhT3egMdaIkllBTamAZ4ljkaA43bbgJsiLjxtEbsaNzBzrDnbYxqV2RLuTFPCLs8XdzBgQEBHhxwoVFAHjta1+L1772tbaP3Xnnnabbhw8fXv8dOsPxikI9dng/Rjc3csczXT3gOB61ahWIAUIoioqNsPjovXdh+stvAxOKIJvtxoYt24E/kBnGnd29uO/3v4bfU2XZRlQb3jgGjB+s3y5VZcAwNhhIR0xRoxXJW5jT+8sBwKH5En7y8IzjslFaRMRuRr6BUlXy7TbUsYuATIY5TPmI6BRrNVAsD9bg9uJZ2hJt0tNCj0XA3Y1YlRRwDAXeJfJ1rdF78FFrkLNv/I5s70vgroMLbW9LbNexcJLBs7Sl5hYQcLpx2oxF+HVwLPIxywQXEx493SioRDSgzAU/i2PRcEGfyxcAxnmG7YMHJnBpf0OsiIUFdKYTkGRybg8LHArzFciUeWTx2wf24bmfLyIZotDdkcSFZ28FtBTF/p4OjE/PwzR4aJFtGwchH/IvLFqixnJHgYteBeCBlp6XAXGo8ZTN2KZ7W71/3XCKJhGfbgf1eA9w9vOA+/6T3ObCgFIDBRYX9rd+breNQgVIlKlO/znAntuAP32B3O7x0Q9GiHsKfQ0oQJEMvQqdWVSiyNDaODbRR6JWZ7UvSWaD67q0FrEmygDXzhAgniW/tbKh2D58GXDflz0LhACI6PfI94j41gpCDNj1bOCsZ3lP0NJFwsK0+3JShcSbbnua2Qnq9PwbrgRmHibxpHJNc2vafN8K0yQiVo+kPevZwCPfIY7CvnPcn8dIXktK6bLppcRwQLSjISzqePRjqxPrAl5yu6u79bRg4xPI/9mzTux+nEacNmMRn7gJFyGutevTolh0dViVlBJoijZFoQJEXHHaj1K+5OpMmnh8AueOnVu/TTM0uvu6IdZE0KDBciwK+QJiME+SeOyBx3DgfQdA0RRCkRDOueQc4OfksUxPBotzi6sWFg/hkOPjrzr7VXjzr95cvx2KhFAsrEOMvoa8KCPCRjBdbJw3nARBaVlCaIB89s3CXrPApkdMusHRHGJcDDWpRhyLhucNs2FTj8X5CpnUozsW/fYIXK41zhXN4lRZG5OnhFT9Pj+ORb0XaKfc2bJAB4rE8PpNchJYa6/JGBczxcb6oTfq/J2VVe/a25b0lrZj948X+VoevdFeVydzM+lQGjWlhpJYqkehUhSFD176QYiK6NnrNRvJYqo4hTDT+oTHgICAgPUmKBUHWPByLB549GHTbZqm0d03ALFGZn/xoTAqZfMAb3ZyHF/44BsQGtyB3mtegpUlc+xJZ08WC3POol0zkk2sQ9/giOl2s6NvQ2fUJOqVHfo4GqkahMWLN3TgRw9NQXaYxR2jvUXDYk32FB+bsYtOTUX8DWRqtQooljNFnwo2gp8uLLr1YjASDzm/zpqkQGCdo1LXA/01Uezq41cTBtF0R1/Sl7PVCfE0cCwCAM/QgWMxIOBUgY9ovc/WcGKDl7C44iPK3KZAaBEWjY5FjyjU+x8/ZrlvpL+HOBYBhHgWxbI5CnVucRlPf9O/YFcPjZ++MIr5pbyp6NLf3YF80TB+aaNX5baNrUWhWmBDwI5n4OIBBnv6GG/xRiNbOwwAuCQ+QcQZ4+ffu9v3dupc++7G31wYkKoYi+Tw+5dGwS0fbmlTlaqDsLjYVPS8/sONv1PmOC1bEgNAyGe8kz52K3lPFppRdJeMQoShrq1kPT4GRNwdNJRWnJbaPf3TDIkALeca9224kgiiPopy6Bwj0a0+XqctFOUuOgPkvYxnSf9Et+PM9INEzN18ne3v38JZtwAr48RxCRDxsBlZIq8t0d8Q+TZdQ/6euMe6vBv5KRLT2rHR/vF4PxEWWyys1uEjbbmeTynSw8BbjwDbnnKi9yTgNIMC1bJrrigWTX0DmymrZcS4mEWkcXueUr4E2qVkdvRRq5s8O5BFrUrOBSxHHIumbRZKeMsL3wIuw2HDOzagXCyjUm4sk+nJrLq1x8jmEaj68dlm95848kQMxRvjFYqiUNB7+64HKrA1sxUzpUa9pyyV7WsPhvOnRVjkzMJiWkj7ctWNJkeh5lRwAmdyLIa5MFhDexz9PdDFSqMY6MZy1VlYLEkl8DQPgW18z/w4FlMKee6k0norAlmVwQu870uBEBMC09STvJ1I0r5Yn+Njbr9NnS3pLS0/5/GmKBaREBItORb17/FKbcUUhcrQjKeoCAA90R7kxTwU9fSoLQUEBJxeBJXiAAv55Zzr4wcefchyX7Z/CLLWz4Vv6rGoqiq6+wbw8nf/M7pu/lsI8RRWcov1nowA0NnTB0VuFExkjzz4Zjqyg2BYc9GzIsqmNj9nD6ZMM6CqomLpNWiEpsxxqbecP4gQy0BxmHWdYCTPPnBlUW7ZsRi2cSymI/4GMmKtBprhwdEUKG2wyLPW1xzmGcQ8YlyNJEPOzy8rKgSbPo52lGuyTynTHWFNHYuNi4Et2dZiR5qRPCJ8TxUCx2JAwCkEFyG9w9by4pOPuvc7XJlwfkzH5sJZbb4oNxzD88UyVGNxRjGLKvfvswqLowM9ULRiXFjgUCiRKFRFVSErKroySXz7Y6/F7S+IoCPKQBQlLOQaDraBbGfTDvoQcppIxFYZU9R7DpDZiLOz2rnfp7gZlw0Ot5+/H/xP3gQA4BmVuIl8FHRMRDsbn4cmLHKaG5LL+4zl1KjWRISEps9aVYHcYfN9XAh45W+Ac14AhH1E4KVHiJvQD3qPUKMT0IF5rYjHS9p7r7uxIhnnSGCtSETJVXAs076wCADJQdInUWfwQsDvaEkXyVYm3ZdbLR2bSDyoW/F7/B7iVBw43982t2pxqPt/Rv63E/yKs+TY1rGx4QbkwsCGq4HZvdqkCp+sTALhjHP/2GQ/UM0T92SAM+EU+RcQsIYk+ETLwmJFrri618pqGVEuaoka9HoepeZ8QD/ymDWhoHewF4rWGoTlWZRXyD6pqgpVURGJRfCBf/8ARt82Ci5JxjkLM43JIB09/lxybnRmO1FRyfFQDlnHMjRF4xW7XmG6T3fprRc7O3eahMWKXPF875sdg4mmc77eP9GLl571UoQfCyMkhEwRrGEmbKoP6e+BLuCwjL/6yIqWhvCm895kEa7LUhkhNmQSHPXX4avHYhuIsgiO53wL1CE2ZHEsGvv8+SUbzQKAbZynlwCcElJI+xn7nUBkRUZFriAtpFtyVurfU70HZ7OI60V/rB/5WiAsBgQEnJwEpeIAC5VyCZLoXIA6+Ngjlvv0PosAIISIsFirkkHbL2//HgBg0649oGgGfIgMUpbmG9FpnT1Z0/bEFoXF7iFrNFVJlE0C5Y4+c+GgLMqN3nw2hDkGVUNcakxg8YFn7LQsR2tTwVKcd9GuXJM8+zA2YxeFmo76FxbBcmAYChSnZeg7RJR2xgXfiU3JsPtrEFja07FYrEr41b45bO9LQLBxZbZCXVhcA8difzoMlqYQD3MY6YiC9xCL3VDX0jF0AiGfZ3C6CAg4JXDrjdYuXMTdsZifIvGabrDW4pFbFCoASKbEfvPx9IF91v5uowONsURE4FAoVVAQaTz7m2V85TckKv2y3Zu1XsPkHDU120hQ6O9pEhZbpL9zdZNRAAAbrwYi1qKiawFDkZCSSXzXnbWdwNM+BTU1CgC4oqfU6BPYKjHt/eQ0F6z2EfBKaz08baNQy4v2kb3Zs4Cn/DNxQnnRs92fEw5oCJA+olBl7fKI0m0TerymEHd2oNEMEWKlKkICh0M5BQvVNguGqSZhMZxq9DX0Ik0+d6944lXTtZU4Fp3Ed1UBJu8h372YRwyqDh8FNlxFxLxYN3m/m9HjS7ub4kvPehaZ4LBwwPdLwMok2TenY2ZqiHwOHj1kAwICnNEL6HYFcVmxHj9+N0kcywIj2IoTXsyX5x0fKyklIiyiNWFRqji7lo89Zp3klB1qjEVYjgiLiqhg4vMT2HfHPgDAWeefBZqn63NGFg1jkUyPv75+nOp83UtRFKK0dmxzGL7dtOGm+t+qqtb7ChoR+gQI2cb7Ewq33//u7K6zsVJrnIMrkrew2Cwcxpr67vp1FNIUDUgAx3OoGnotR5omCxXEQlvizXJtGQIj4LKByyyPFcWiRbjjaA5yWQYTWx9hsSJXWnIsNkfCAtb3xg8CIziKbm4xxQDQHeluyyV5PClqE846w61dL+j9YkVFrEehtkI2mkVZKjv2JQ0ICAg4kQSV4nXg9m9/De953W0nejdWhVufxQOPPmSZ/ZTtazRq5sMRFPIr+OE3vwwAGBw1zzjmBDIgXTAKi93t9xAAgK5Bq7BYrkmmpuXN8aHlmlTvzWdHhGctMZhP3mWNd0iAFMY6WK+oJAoVUUEi1JqwaOdw7PApLNZqVYBmwdI0KK2oK2hC2bdeeTH++prN6IqT+7vj/meFJj0ckwLHeDoWf/TQFERZwYsvGUFXbHUN4vXPkQ2tvqF1fyqMX775KlwwmgFDUxjtPLkHuMcDnqXBnOT9DgICAjTWI3qPi1hEPxOFGRK/6IadY9ElChUAaopzweXBAxP12FOdkf6e+t9hgcVKsYQX//sD+Ml+Cdv6zZOL9HPU1FzDwdbX7a+Yx0B73iZRZVOfv/Vd2XiNuS+b5jR0FRbnHjPfPucFEG/9FgCApUHEExux0jd8DJCq0CtUnFJ1X76JSq1mFRZzLq5H40SWPS8h/6dshMaBC/zvBM0ScbGa97+OTlYTZhXZ2bEIEPFcVZAMc3jNjyr4zL5se7/H9Abrfg5f7G9dPgLEeoDSoveyq6F7O3EsOoluS0fIaxi5wtkRaMfZt5D/472k72Iz+WlyLGoWnsduIMLusT/6e57J+4DlY0Cs111YLOcCx2JAwCqIieR3vFC2xjPnqjnT7apcxQd+/wFyw+WUFz87juQe++OK3iPPjpJaQoSNWNxCXlGEYsl58vDMkRmUi+bxT9YwyYnhGNSKNRz+2GEs/2EZqcGUeQPa61yYbbw/yXQSnOA9WZaX7a/HY2nynhsjPu1EXIZmUJ2qYuFnC1Cg2EahJs4hk3L02s9q+t/t7DRPcipJJVM8aDMczVmEphjXJCyGUr6fv1YlPRaNUagR1nxOX64tewpgduSqOcS4mGV7ABEWI2zEItzJRXndHItlsdxyFKrx+wIAUba9GkhPpAcUqHp/Rl089npfs5HsyS8sao7W7kh3S+sZBXKe5tsSFgGYhPmAgICAk4VAWFwH/uFvX4/f3vHjE70bq8Ktz+Ly0iIWZs29erIDg1C14kJheQnLiwuQJTKY2LjVPIjkBVJkWTT0VExmOsCuwm3WYyMslmoyZEMUZbxJ0CuLirtjkWdQk62D8O6jpLN6Q2jxN2KjhDBUAIlwa6/TzrGY8e1YrIJiOHAMBUor2PKaO3DPSAZ/fd0Yktr+ZBOC71hSY1yo7T6zNFgXp99SsYY79s7i8s2duGhDx6qbdOs9FtdCWASA/nQEnZrYuaV3DRwopzgCS4NhAmExIOCUYD0uyrkwcWQ5UZwDah4uNj/CYtPtquJ83KlURTx+2BzBOjrQEBanl6uoVGpYKIj4zUuiOH+jeXZx3bE41xBgwiEBmaT3MZ/XhcWm3msb+1cfXwah6fPzE4Vq11uu2WXe6dK35vCvAdHl86s7Fsl4h5fLLUXtkijUpnHD0mEiWHrRNQb8zRQRjppx6o3nRLQLqLbRQ0r/TYWSFvHbhFY8y0QZvO9qAZ+9+Cjwq48BD/8vMPVn/8+dGbHeN3qV//3NjBJH6HpGZnVtIdsvORTxpx8kx41NT2htu2M3EKGvY5P99yM/SUTy5seEGDByOTD3iLfDcGUS+OVHSSxust/22ASARNIqIlDxjs8NCAiw5/477gcATOStkelLTb+tLzz4BUwWVhfjvODRXzbMhluOQnUTFlVVxcFHD5ru6x1sTJiuLlUBFahOVzH6tlF0bzULEhQo8AJvEhYZmkFXj0+ntw2ZrHWSk1MMpSqpddFQd2PZka+1MSmnid5ob723IEAiQt3e+zAbBtcUw28RFn06FgFArIngQ7zJ9dXsystVcm0Ji8vVZcT4GHibtiwlqUReS9MEPblAhEVZkaGoCr7+2NcB2Lt7vWiOsa3KVfACD6WqAA7BAkbC3No4FgFgMDEInuFR0aLJ9T6aXklOg4nBluOPjzf6+9wVae33GWJDCDFkrNGWYzGiCYs+UjcCAgICjjeBsBhgi5uwCAAHHnvYdDvbPwS1RgYPR/beD0DFTc/5C9t1OV4Aw7ImcZKmaWS6nGf+qKqKQ/v2Oj7ePWguLtFQUarKqBrGZVG+SVisyXVByg4ShWod2NFKi32K9PW0GdHJFoVFo2Px2CKZEdlKj0WVZsDSFCjO7Fhspi8V8S3wpTyiUEMc4xqF+qOHpsGzNG67ZBQdq3QrAqhHqXLC2giLRnb2+ezfdBojsO6fZ0BAwEkEv/bHQfBRuGZll5fM0Y122BQorD0WzefHiux+3HmgqZg32t9wCfzi4TkAwL+9dA92Z63neooC0skYJmfNRch+l95GqqrisYPjjqWRNXEsNs/e14oYlh6FRibuQRUe51K9T6CBqbw2xnn8duDbr3Rel49osaW6Y7EEyF4pDQ2qNREC1zT2WT4GJKwpEI7Pbyfo+XXCVfMAJxAnn40jw/v5NWFx+BL35bTPLh1mcXYPDYZSSfTqw98F7vwQ8L8vBb77GiI2TvzJeTupIet99ef2cS7u2ASUFizC95qiR7M6FfGn/wx0bQMS/a1tl48CL7sTuPiv7CczLE+SmFQ7l+HOZxIn7NIh9+cwxqV2bHI+tiW1fS/M+dr1gIAAK2qenDeOFayRoUvVhrA4V57D5x78HC7qvch1e3bORyNzZfffa5gNW653vRyLtZKz0ESzNA48Yo5gNgqLs/eThKbN79yMyCb78VlHd4epxyJAeiS6MXF4ArnFnO1j6V5rnzrRR59ltx6LixUyCSuW9DEhyAGKorAt04ixLomluthih50YF+fNk79aFRYtUahNDsOV2oprn04nlqvLjn1BS2LJNmpULspgoyxERcRX9n6lLmjKbfT3fmj+IQANkbwslcHxHCpHKsCS9X1rJsJa60B27ks/vGnPm/CSHS9BZ8RfXGhXpAvdkW6c03VOW893PNHdrp2h1lsnJAWtfzfTumOxO0rqpHZxxQFAb4wcc/tiPq8rAgIC1pRAWAywJe8iLEbjCRx41CwsdvcNQMwRofC8m14IAJbG1XUoCpnObizOmfu/dPY4nwg+/KJr8PKnX+34eEefuQgTohUUa1I9ypSRKqANwgjLciiLMkIuvf3CPIOajbDYLpQmevntj6hj51hsjnV1olatQqVZsAwNWivKCTbbA4AXXzKCV1+9ERHeXTRkacpxG/V95p2jUPnuUfzpyBKeuD2Ls4dS3i/CB3ofRGaNHItGtvUGwqLA0XV3T0BAwEnOekShevVtVBVg0aOYb+M+8nIsll10kaFsBvc3CYtDfV04nCPn7dfdQBx6EZc4sb7uDkzNLUFWVOwvJwBVxYCxmNfkfBp70T9i640vR3NSQUiL+dzc71NY1NwBFUm1bMuC1ocwFbf/DARpBSjMYIofcd9O79nWdTtHsBDZBLzo+8COm53X5SIAVPAUeW85qdhSPGSlqvVYNM7CX5mwjzdtBcHH+VkWgdwxILORCEXtRKEm+4HX7wUudBFfgYawGCFjpIN5AXjRD4DX3Qs875vAFW8B+veQeM3Zvc6OTTthMd4DXPMuYIPzWLhO5xaguM7CYrSLvP92zorKCumFOHhBexG8XWNAdrv9Y4VpIJ61PyZtvRGgGO841EWDCNDt8DwAkBgg/5cDx2JAwGqZKExYxC2jYzFXzSHOx7GnZ4/rdh6cf9DxMZZmiQBm1dXqRLlo3UGlE2acx00URaFScO5rlh3JYv8j+033pbvSEBfJa936tK0AAKHDefJPpjtjcixKioTOXmfh4oM3fxAvuOIFqFXM52EhTJ6jc9C6rh+xrOSSXKCLwMUIER/bdU6d1dWY5FSWywizzu99lItahMXmqMwEn7B8nk7oUai6k85ueypUzJZa71G8UltxFhYl0tvTNgo1weDLj3wZf5z2GePtwANzD0BV1bpQKyoiiULVaI7/1dGFMrvPoV3HYl+sDzdtvMn1szXSGe7Ed5/2XVzS7zF56yQhxITaem90EZyjuZaFRYERkOSTbYnOZwKjyVF848nfwJNGn3SidyUg4IwkEBYDbGl2LCpKo3CwYct2HDQ4FquVMv71Q3+L5d98BUq1CCFORvPlkvOst0xnNxbmZ0z3dfZkHZYGtl90NT70ma9a7o/GSVGJ5c2DuBCtQFGBsmRfsGM5HhVRthXtdCI8g6q4lsIiGbhmfLoNdez2caQjCo6hLPGuzYi1KkAz4Gi6HoXqFP+aTYbwiis2esasChwNziXmFCBuTyeHG82HkY5weNHFQ0h4RKr6RXcssuvgWNySJTP8zuQegwJLB47FgIBTBZq1CHSrxktYBID5fe6Pc9Zii6q5BMqSdnwx7DdFUSiJzqLb2ZsH8MCjDTGzJkp47fs/jSd/tYSZgoJklDxfqeosrvR2pTE1t4jZElCQeUCRzY5FyVxMvOacjfj+p99t2U53B5mFnIi6ux7qaC6vR+YU7zR10bmgCQDx8jGA5jAX2+a6XL1PoIFMMoaOZAzo3Q3c/G+NB8JNAqkmVodo8l7ycqElYZFEofJmt2A1D3Ru9r2NOvp3JD0KcD7e79wR0guz71wSbdlujFSyjwharvtGvnOpsGHcxkeA5AAw9kTgCe8AnvffwCt+BbzuPuC2HxEXZTPxXnu33uVvBHY+w3tfOzcDcnV9BTGKAjLWNgQAyHNTNDD2JGsk72qQtNeUHLQ6ewEgnAaGLgJmH673JrVlwSAC2Im4OtEu0s/Ry40dEBBQ5+H5h3H7odst908Vpyxum+Yo1CsHrsRgYtB1+3+e+7PjY2E2jFw1B0q7ZrETyuzEDrc+f+FYGJW883m4b6wPB/Y2JisosoJPvfdTGP+3cdTmauC0a13KJdq9o7sDi7ONWHYVKrqyzlGLY+eO4X2ffZ+lD2O6g9RgYinrpBUvJ6eiKq7i42J50SQM//DgDzFdnHZc3omzuxqTnKpS1dUtGmEjno5FhmYs8ahOiFUitpXlxuu0+z7Ml537dNqhqipWqitICSmLeAgAFamCCBex9DBUqgpi22J4aOEh3Lr1Vpzfc35Lz2vk8aXHsVRdqn+Xa3LNJCw6of8m7dyJ7ToW2yHGxzxdlScLUS5qG3nrhd5nsZ11gdb7Op5pbOvYhi0Zl7YPAQEB60YgLAZYoBkGhfwy6HCiHp957GCjYLhx6866Y1GWJbzpxTfj97/8GcJbLgEtREHzZIDmKix29Zh6LAJAZ3evw9LA01/9Tpx/ubVPSygc0fbZ/FUO0UQQdCpKUjRFHIseUagVae1mBVFaPF2rUai2wmJnFL9+y9XYPeQyJROAKNagUgxYQ3883qWvpK/9YZ3diPVlOPsei6FhcjHx1LP7sLXXZ4SZD/RIW4b3WdRtge54CB+++SxctbX9XhenOiGOMTl+AwICTnLanGXsvD0PYZGigcWD7svYFFtUrWD050WhsR2NVCKKQtV8Dp+YaRR7dm8erDsWF8sqrn/rf+LL3/s53nu1gJ4YjbBWUClUnScI9XZl6j0WY6wIKCL6uw3ComAucnzm9U/Fk6++EM1xlOkEKWolYz7PQcskEu7hWR9jDLfehwDilXGgYxNk3uOc6tZjsZmmSFr9+xRiyP6yUqHupPRDtaY5FstNaRj97s4UW/RozT6fkVkL+4mLbfB8Er1aWfHdT9oTVSGf5aFfkV6YWkEvKbiMsyiK9ANMDpB4WsGmIEozQMxBxPQzySmjtQcotO66aIkul+9UerT1Hphe6K+nY5PzMjueSfp3LltjFwEAikzEZh2791+HpolTtPl7GxAQ4Mi3938bH/3jR7FcNf9ulipL9ThNncWq+fbOzp2ePdbun7vf8bEwGzb1ArTr1xi1mSjl6ppLRFFZMQuLhZWGQDqwZQAH9x6EqqqQyzI++/rP4ttf+jY6ntgBvosHqyUBuQqLPR0mxyIAdPY4OxZve+9tuPyGy0E3TdxIZsg4IJaxHtfmnfrhalSkimsPvJnSjEmQ4xke/3zfP6PKVR3XsWN7R8MlXpWrtu/9057xNACaY9GjxyIAJPykF0DrscjzJsdis7DJUAxy1Zyv7emUpTIkVUJXpMsSJ6qoCipyhTgrmx5LXkA+rxdsewFetutlbQtOAHkv7525F7zWYqCm1CzCsx3676XZuQm071g83bFz0vohEyKT9trtI9kTsZmIFhAQEHASEAiLpwnRnU9A183vXJNtxeJJFFaWMfi6r2Lwr78BVVXx8H2NeIaNW3dg4shBzEyOY35mCrPTk/j4f34HXJIUQRjBn7C4MOvfsehE//Aoec6mgmVdWHRJgar4iEKtrKFjkdYci35jTHWc9jGbDLu6C2VZhixJUCize9DNpekHgaNNQqUdUcHeSckmyEyrG3ZmEeZXtx+mfdLEUpZfhwhAALdeMISLNrSepX+6EFnDzyogIOA44Mdh2Aph90ksCCVJMd8BlWLsHVj64zb3pRMxFKpm4e239z5S/3v32CBm5pewb17CRZ8v4sHDM7jjPz6EZ20j59iwVswrVJ2dS71dGUxqLoEoIxFh0VjMcxBxmnYLOzaRSM9MzOc5aHkcAHBkuemVD15E3GpGakXXSEtWqQH953qLySZ3n5dNsnld8rrCmmORApx769lQqdWIY9Ho/GIEoHsbMHIZue0Q0+WI3xSB+X3kPY12E8ehKqMjsgbSoqoAj/8Y+NGbgd//K3FSamJnIrwGl1dJd9eOK+kRItK38Bm1RbeLS7bvHNILcS0pTHk/746nke/GsbvtH18eb7gZac77d5PQ4nPtIl8DAgIsqKqKXCVnEvgA4sJ7fPFx032L5YawuL1jOzrD7tdasirj4fmHHR8PMSHT8x7JH7EsE+esrii3Qn8sGUN52TyR5pH7GmOR/rF+VMoVFKeLOPjBgzh4/0F8+IsfRudF5LXwnHatro0b7BxtrfZYdOqzNjpG6iKp7pTlseWa+wQJt/6K+nMaxcnXnfs6cDSHhQ6y3zLsJ0qpqgpaoMEOk9dtdF1V5aqtK27bVnKMj/JWAcdO7PLbZ7FWJS6+itwQFpsjKTOhTMvCov7e2gk/etRoirfuI61NQrpy4ErP774bETaCzanN9T6LgH/Hov57sXtfj6dj8VQixsfaEoFXKyzqfQQDAgICTjYCYfEkYCW3hOt2ZPHgPb9vexudN70Bkc0XYmrZ/wxyJ2LxBArLOQAARZM+gw/ddzfoaApMrAMbt+yAqqqYOHIQDMviX77+Y4ztOBuMNqCkNZdjpew8y77DzrHo0mOxVQSGFAAqDlGoAFCVFFdxK8qzqIhr6FgUohBYGryLS9ION1elG2KNDGRVmKNLw6sUFknMqfuhI+YgLOp0xtobUDlR77G4Do7FAHj23QwICDjJ4FsvBlRqJNpyfN6m+OS1vVCK9D5zQGFCLQtHqXgMK01NFo3C4tmbSf8zRZHRE6Pwh0//FS7fsxOsds4Ma+ehQsVZlOvrbjgWo7QIyBIGst494Up1rbJNgSpH3FSKPkTRhY7u7dYemWIRkD165W25scXIyVaFRc2xSBvElaKL+6GpUNdwLOYadyZ6gXAKePEPgVf/wV0sWg0L+4HMCBG/NdG2L76GDvxr3gO8+AfAy+4ArnwbACDh5lj0i1tEpxcsD8T7LFG+a06Xy2c2doN9XOlqyE8DbKjhWrUj2gn0nwfMPGz/uzH2V4z3OPe51En0A9XlQFgMCGgBSZUwX7GeIx5dfNR02+hgDLNhk8izsmCNrR7Pj6MkOdcXwmzYJJCN58ehNP12jXGLukPPNY4zHkFx2Sy6PfSnhoDTP0aOR6IogokweP0XX48LrrwAworuYNfSBFxKCh09HVjJmV9vV+/aJuXkqjmoqvO53+191TmWbzjBM6EM/v36f6/fLjL2wuSRFSLucn1mgbDwSAFVuWrrINU/lxgXswh/dr3p6u+xB7Ua6bFYlZxdlp3hTqzUViAr/mtAer/JbNQ6SV53RyZDzvtoJza3ylM3PhWHVw7XRefmHotOuEWhNrtFAwgJPtGWsKiLx3ofzFbpjQbCYkBAwMlJICyeBBw9QGbv/e7n1n4ErVJ2EMKWFkiufilPCob6sFKxueiOJZIo5M2D24fvvRuDr/0v9L/6i9i39yHQDIPJY4fR0ZVFV5YIgvEoKYZRWiGh4uJY7OjqQW7RfMFhdCzKSotFryYESgVNARWXMWFFlBHhGbzgoiG87PLRepymToRnUJXWppDAchyYcBwhjgHn4fZrpl1nn6gViRVQpudcrbAY4hhPx2LCo/fjWkPT5DXSgbC4LkSFwLEYEHBK4RVdasPCEjnvH5u1ERa9ih7hFFCcQ4TTzg1HzROlVFYAaAZzizkAwMySebZ9relcKysq0skYckZhkWbxm3sawuIfHzmMWCSEkSSFX704go395IKdZRjtfzLEbRYnjfR2ZVCp1qCqQJQRAbnJsehFu7FVzTGNumsjOWBdtloAFGfXpUIxQM+O9vZj9hFg6n54Co1aGoAehQrAd985WZYhSTIRFo3rpIYAPb6se6uro7VtagWgMENiYIV4vUdiX3yNLn9Sw8DlrwdGLif9BuM9AEUjLqyBcJkZPbHr+8GuR2bHJiC7i7ho15r8FBDp9HZk77iZCIh5awwiFvY3xPv0KBFh3UgNA5VAWAwIaJUp3WEM0ksuzsexL2fuxbxYWaxHNzZTXLLWER5bfAyUy4SeZmFxsjBpceJxNIfpPJkIlQdxa3k5Fpv35aE/NoTFg/cfRKY7AzWkYvTto+jdQIr/sRiZtCBrbVVUl8nOme6M5T43x2I7rFRXILqMJbwciyEmZOmpuDG1EYN5zV3v8LHcN3uf5T4hL2DDKOnRa+cg1fdFF4E3pUj8dXOUqE5a8EjV0BBrIjiBq7sI7eiJ9mC5ugzJJSnCCE/z9djfnqjVsajHx/p1VbbLUzY+BSrUuttSlEVwnH9h0Cn21E7IPdNJ8InVRaG2OekqcCwGBAScrARnihPAQ/fejet2ZOti3/GgViWzpRamSDFrJUeKWHPjhyzLxpIp5Fdy9dtLC3OYPHYYqixh8aefwife9QZ0dPWgsLJsGuAJvHZhoF2ku0ehdltmzRl7LIry6i7gKQCJMGeJK2ssQEGUVcQEFh94+ll4x03bLb0HnQS9sbExAADL+y8ohiNRqKAQ4szuQT+4xbW6UdMciwrM/Q6ZFoXNZohj0X0bcR+Z/msNx9B1t2zA2hJEoQYEnGJ4uXAA5HI58n/BR9KBp7CYNscu/vYfga88B3GGFLEUWgAoBuUKmfByRBMvS9rt+SY3gKiQKNRcsVa/r1Cu4YHHDkJWVLzppxXc+s7Po6czDUlRTWMRvR+sft9KuQYnervIRb6qqmApFajlzT0WVwllJ9ipCrAyYb5Pf+9Sw9blq/mGo9FAbwcR5cSO7e1FTpaXGn979UvUeiCZHIsVf33nqjWy7yGeMz9neuPaR/Y2o/f9HLyIxGPGSNFvTR2LRigK4CKI8Wuw/fQqhUG3PoRrRXqExIkaC4/nvhB43jfsv8urJT8FxLq8HdQ7nk5+Z8f+aH1sYT/QsxO45HXAha/wfs70EHHaermGAwICTDSLUJlQBpOFSchq4+J8qbIEgSbXbrnZnOc29y7tde0zFmbDKEqN8cRseRYrNfNkaZZmUaySZaratbKbgyiaiKJgmAwlizL23rcXqqpi9juz+PwbP49oPApFUUBRFGitvKaktPSkWgVCSIAqOguLdv0UO9oYi0iq83FqubbsKiyWPPo5D8QHMFe21q62ZrcCAOiYtV6hqirunb3Xcn9XbxcSvWQMk+Ct/RGXKkumx95x0Tvwz0/4Z1N/RqDhbEyH/AmLehSqm7DYG+1FrprzLSwC5L0VGMH2teiORb/72C4d4Q6c33N+/baoiGA9EqQA4E173oRbttyCsfSY7eNu/UfPVFKhVFuCq/4dcHNIu5GNtN42KiAgIOB4EAiLJ4A//Or/AACH9z3W1vrtCJKK5gBcnifxo7qoJ9s5FuMJFFYaBaO995ML89lvvhuFP/8ML3/H32HX+ZdYn0QbL1MMGcR49VhspqN7bRsSp8Kco2OR0mYrO/UCBIBk2F4ce+rTng4AkFvtBwQiVnqJcs00Oyltl9GiLqRaY6As1oVFqh4VCgCM375EDpDX4H7oSIaPf3QmzwbC4npxIoTigICAVSB4C4tT06ToNzmf91gSAGM9pi/nDef4UMrcB3DrTcChX2FnjBSHVIY4FosVcl7SHYtOsVwcDaQSUSwWGue0PxzKQ5YV3PyNMj7x+xr+6Y3PxfWXnounfb2Mbz2qWMRUjmXAcSxWiu49Fk2UcsikrLPnWyUhk9e9SbDpcVecB+QmsbOkORbTNn31qnnApgi2KUref2HDJe0JdPvvaPzt5cZiOIAR6o5FiQkD1RXA4fOr1iTD3+T9F5qFxa4x/30S22XhAInOzO4ktxkOCGfWT1gEiLDIrcH2VxOFChCXJrC+TjuaAdLDluhbJHptjxmrJj9D4mw940v7iGty5iHAGGcn10iPxY7NwLXvBbY9xfs5EwMAVBKHGhAQ4Jup4pTpdiaUwUxpxiRu5ao50DVy/Jg76l3f2Luw1xI3Wa00zo9hNmwShCRFwv6l/fXbHDgiLBbI+VN3E7o5iJqFxcKRAirlCsb/bRyz35nFk1/zZFx+w+WW9SSO7EeFqiAUCUERnY/FdiIiy7V+DP3V+K/IPtr0YMxVc64RoEWp6OgeBYCBmL2wuHkzca7X2JpFuDyycsSxX6Eu7hmjaY37anyMpmhcNXiV5bPX40p1J5gbiqJAlmQShWoYU0WbEj6ykSxERUSuZr/fdixXlxHlorbvXz0K1Wdc62p4+uan1/+uKTVwPq7fk0ISf3vR32Jbh320eSAsWukItTcBsS4sthmFaueIDQgICDgZCITFU5Av/tNHW16npEWbriw490DSiSdSKOQbF9AP3P07MAyL2sxB9Nzyflz1lFuwcSuJ3VJs8udligFN0+49FrutM254YW1jLNNR3llY1GK94i6RnYMZ+xnRd+wl4uwXfnsYr/3qvbgLZKaepHr/nCIcY3IPegl0AIke9VwmRF7P8mJjwK9HocqAyY3JtChsNhPxIY7GHUTZ9YRnaNBekVYBbeEmwAcEBJyE+HAstoRN5M8HPv31xo1wyvxg93bgie+v31TYMEAxmF8kY4vFFatDTlEaRTeaIo7FhUJDgPvlffvA0DR+cUjC928N46+e8wScs30jfntMxou/LxGBo4lYJISjyyKqkoqyaj2OWYTFypJj1FYr6E7FPi5vFXaWx60rlBaIABa2KVaoMlC29ppCTRtjRdvow6RIwP7/a20dPoqw5lgU+RQRPJtm9Ovv3WyuUdQ0C4u5xsIpGxF1rVnYByQHiaNWJ9ZtE4WqAlgjAY6PIMKvLs4fAIkZZXjzvre6PuDbWdo2gxeRvobrjVgBankiuPrp+7TjGcSdWDD0c186Qn6P/ef670mqxxOXA2ExIKAV5kpmESoTyqAgFrCoRX+rULFcXQan+L9mPJY/ZnEsfuOz36j/becEemSxEaEeokJgaRb5nHlClbHQX6uaJ/5EE1EUVhrntEfveRQURWHlnhUMvmYQT/zLJ2LzDptYaA0JEsLRMBQtjakcsY5/EulEW0KiEVmR68Ke3aStqlx1FPkA4lh0c1INxAdMPTGbyVVzqDVNmrpv9j7b3n0A6iJnKpSyPKZHi9qJjgDAKtokdqnsuI1mRG0s0iwsNn+fuiMkAWKhbDMxzIFcNYc4H7ftu1dTaqApGjFujcflNlw7dG1dCKzJtVV/pwD73otnOt3hNlJCAIylx3Dt0LXYlGwvUUL/rq7FdUpAQEDAWhIIi6cY+/c+iB//z1daXq9YIAPo5flZy2Mzk+ZeP7FE0uRYfPzh+zE6tg3ZF/49QkO7AAAbt5LZ39MTTX2CAEiyilAkClFW0fO8j2Bp0TowS2U6Qbtc1H/rnnH87JEZx8fr+zajuR5sHuuI8qjYpFjQNIPN510GAEi4zOSKOYgphSrZ6PMvHMKNZ/VCUMngtKB4C4Bh3txj0U//xFZ6LC4vND7fWlVzLKqUSVikVy0ssp7biB3nHosAEU+pwLG4LrgJ8AEBASchRseiYF+YoVWnrHC7hc3HgH3jC/jkl7/buCOUhKXBTnIAH3+ciEcyGybuJk3k6I5azyEP7Ttiup1OxDC/Uqnf/sNDB7B14yB++5IobtxMzt27t5IePcVSBXbEImEczSlIfiSPg5WU5fFoJIREzFA0qVln+a8ao5gGkP6KjIC5CotnX72b3FecJ+8h51DUa6HA5YuJe/31SDzrmeR/igGEWN2xWBMyQGXFNqIVAGYWG0JopapFoQq8+Tkd+vmsKYsHSe9Do/Adz+JVe3jc/4oo8J1XA9+8Dbjni47uy5bhooiwa1D0iXUDr3sAGLu+vfU7yG8DrfzO2+Ep/wQ8+RPAersx9LjgDvu4Ngs7bya9SY/d3bhv8QD5Lvfv8f+8yX7yf81G3A8ICHBksbJocrDprrKDyySiuiJVIKkSONW/sKhCRTbWmJycm83hq5/6av22HquqE2EjeHzxcUg0uXbnVR4szWIlZ/49Gx2Lj97/qOmxeDKO/HJDiNx//370Dfdh9O2jSJ5PjnubdjgLBRIlIRwJQ6XIOabMW4VFiqLaij41cs/MPZ7L2DkOo4kodly8A4VawVVEGojb9IA2UJWrZkckBdw7ey+2ZrY6Lg/Y91hcqpJ0gyRvf15pFqP99FisadH7nMBZBFAjXZEu0z74Ybm6jASXcOzVGWJCtqLjWhNiQ3jbBW9DT6QHNdmfY9GLQFi00q5zMMyG8bErP4Zzsue0tT7P8EgJKdc+swEBAQEngkBYPMX41w+/E0MbGrPiZHn1BYM///Eu0+1YPInC8jIKD/4f8vffjkOPPoQbbr4VXKa/vszGLdubN1NHlBWEI1F0X34LQoM78bUf/tyyDMMwSGWcZzgXqxK+da/NrH4H7OpBHTHBVnAMR6IIJ8lzx10iO71cWheNduDjt+zGhXH/s5gjPOvLpWgkxPpfPmcQjsVatR5FZXIsrnKWkx+RySlGdj0RWBo0G0R2rgcRPhAWAwJOKUyijf0xf0uF9L1ZVn0UDZqExTd+5sfoM7j98hXZ6lpEY9KPSvMARSMbIoWkLR00VFWFohVh7p2S8cu7HzStm0rEML9SwrceEfGTAxLuenA/nnfTVTirpzHZZsdm9z5usUgIA9lOVGXg4//1Y9tlTK7FmnOEe9tMPWC+nTsGxLrRlUli24hWnCjOEWeak1ugsgwIWu+eZqGyHfb91F8PvGvfA/zVvcDAHoCP13ssikIHEQkd+jVNLzSKsCbHotE9J1h7Ea0plRyJa+3ZAXCGKK94HwBgIEEBgxcAW25c2+flo4is1VAk2QfE2+ypk1xllKpfGIaIty2ObVumNE/+77YvUltIjwBdW7U4VM2NunCAvJ+tOCxDSRI1vFbCc0DAGcJyddkk4CSFJBiKwXiBXN/rcZ08/AsuAiOgN9Jbv/29f/oewtHG8V1aNs8ozoQyOJY/hpUwERIpUGAp1uRAlCXZ5Fh84A/mc3YsEYMsycg/kMfs92bx+H2P4/IbLkdkQ2Ps1Dfc57jPEkUci3pPtvmJeVtHYabbO87TCVVV8X9HnVMI2CoZw+m9C4309PVgYOMAilIREZcJP9lIFpxNeoWRZUNktJSUkKvmcHHvxbbL6sKiXV/CnDYJyWl/msVoPzGjumOR4Zl6b0Y7BEZAJpQxvRYvVmorSAgJR/EwxIY837u14ubNN+OqwauIY3ENrt/DXBCF2kxnuP2UBpZmV/Vd6I50B47FgICAk45AWDzFePCe3+NVb2vEiy3Mekeb1mrmPP1a1Tyz/8/3/N50O5qII7+Sw8KP/hG12YOQJBE7zrnAtEwy7TyrTpRVhMIRSDIZtOXmpnHo8b2W5ez6LOr843N34//ecCWk5VnU5o86LudGV8z5QqUqkSJDwkUAiwk+nYItnNxjQus9Fv1EoeosL8zWL1ZEsQZKi4sS1jAK1UtYpCkg3MI+rxU8S4M6DrMBz0Sc3LsBAQEnKcaee3bOtJlGNJjsEeNdqKmW89z373oMf/+Wl9ZvH5nJAVFrNFBEc7ipNGcp4yzkVqAyAvj3r+CDv67hV396yPR4Kh7FvnkZz/5mGYdzCvLFCi491zCpSaoiHHJ3qcciYRTLZMyzUijhd/c+YlnGJCxW18GxOGN+XVg+Whe36pQWgHDGWVisFYgIBgBT969+n+YeBTZf52/Zjo3k+2RwLIqhDhKFKto7RReWC3VBsSpqjkWWAkRDRP56C1F65OxQU1EzQSbJTRVU4rR79hca/QjpNTjX8VGEmHXsa+gXY4/D00EUE8vke9iK0Lr9acD844AeybiwnwiOoRbdlfFe72UCAgJMrNRWTJGTNEWjK9yI7i5oCQG86v/arS/Wh6hhfPOnH/0Jf/mWv2xsc8Z8Du8Id2CqOAVFi7pmwYKiKJQKjXPR9Pi0qdD/5z/82bSNSIKIW0f+8QjKh8pYml3Czj07Tcu4pTCJEBGOhE09Fu++827LckbHIt1UohMd0gF0xgvjlp6Wpv2TaCT4hGsUalEsurrTGJrBSGLEdT+Mjkg5JSPCRnDl0JW2y1blKmjQtuJhTdHchQ4CTLOw6OZYXF4iAmFNaxEDH5pOf6wf+ZqP/uMgLtqV2gpSQspxf8NsGOxajC98kuATqMrVIAp1HQizYVcBfr3pjnQHjsWAgICTjkBYPA4U8yv47R32M+Vb5aKrnojzLmkM0JpjTO2YnZow3Z46Zo4bMzoWVUXGT75N+ialr/5LZK57FcLRGEbH7Bs62yHJCoRwBJLYmKX41c/+o2W5TBcpQsqUdRAWEziMdkZRnXoMcn7e9nmWy+6D7M6Yc8GxpvU5cBNMeNYcW7oWxEJcy1GkrQiLUq2KhTkSIVurVkFpPQcFprGN1U5y8nIjCiwDjjn+hxaBZUAFjsV1IeJXZA8ICDg5MPZYfPjbAEj/nTo/fz9WwxW7RvDM6y+t3z48nbMt+F/TTWbHq1Axt2ie/b3v8CQAQK+1/epPD9UnxlQlFZ//1k8wWVDx3qsEvPxcDizL4PyzDH2MfER5RsMhFEoVPHULOde//9NfsyzT22UoSIlFwKZ39KqYe6wuqFEAkJ8CUk2RYuUlINJhdtbp8FEi4ukRW9MPAnlrrH1L8FFg13NbW0doOBZrfBqA2oinbEJRgYPHSJGzovWrijHO0WPrQnkJCKWIMGokSURdhgJArcNYhY8izJxkQp5kLwCfckS6WovQ3fksQK4B438iwmR+Gugca70HbcLZjRQQEGDPSm3FEjnZF2v8lnTHogD/bSyykaxJ6BjYOoAbnn1D/XZuMlfvMQcQx+JKbQUSQ5yMLFhUK+YJ1xOHJ+oOIKWq4KF7HoIkkuVVScUd37wDANB5fSeG/oo4wZuFRTdESoQQESDXGmOLL//Tly2uRaNjkaHJdVd1muzrbMn9nP/A3APIRrLYkt7iuExftA8rLpHOJbGEKBd1fBwAtna4O8abezBuzWxFNmI/GUSFCp7hXd1btMM5mlfMYnR3tBs8zdu6HycOkTpYvXemDx17MD7o6mo0UpNrkBQJXeEuRydZmA0fN8ciQHpTVuUqmBba6Tjh9Z0404hzcfD0iZvIfmH2QgzFhwJxMSAg4KQiEBaPA+97/UvxntfdtibbesVb3mO6bdfjEADELddh+K0/QKEqYXrc7PgbP3LQdHvy6CHMa87H/D3fr7sLExc8AxRFYdPOc8Ew/gcmNVlBKByFpM1S33HxNfjl7d/D9IR5Pzq6yEBToRhISuuzu/fNuM8ky7gJi5pj0UskWyunlv58iVDrg0qjwzAU8o6jmDh8AACJQq07FrnGNtp1LIZ5crjocnlfASDE0at2RbYDcSyeHMLiN15xEV5++QbP9+pUgGfoEyIUBwQErAKjY/HxnwD5GTz4IIkaLR57CHjsR5iSvXvSOPHJ19xoKqAcnlmyuvAAcDQpzCigcWjcnLDw+OEJQFUx/voYxjpozC7k8OhBMqZ59501/Oaeh9EZAd51pQCKonDe9o2IhK2OvmfsCOO7zw0DsrWpciwSwjnpIr773Aj+4y/Pxu2/vgcPPnbItEyfsa+RWDLHexZWJ+DVVBYozYNeJOOubEQmfQk7DX3ipBpxJMZ6SB/KZkIpzUmpFbnkGrD/Z6vaLwxfCnQ694SyRUhAP7UnekfJHw7CIqB9vmhEoUZUa1+pdSc1ZHWnaf25umz6fK4JQgzCyeBYNLIevUNPBLFugG9BWOwaIzGt0w+SGFSoQP95rbtlk4OtLR8QEICqXLXESQ7EGpNqphfImKAVx2JnuNMUN/nMNz3TVKNYnFpEjGtMHOgIk/N7TSCiEgsWM+Mzpm0eO2iupVRKFTz+4OMAgPnb53H3HcRdmH1uFhRNoWe0B8mM1fXM8fbXoCJEhCKhumOxZ6QHD9/zMO797b3m19ZjjVesThFhcb5sP8laZ7IwiauHrnbs8QcA/fF+13jPkuQtLJ7VcZbr4819CS/uvRgpIeW4vMAIbTn5etIk9ap3iLjJE3wC33/G9/GEoSdYltU/Xz0KVeW8BcPhhI+oeA1dIHfruxdhI8fVsRjlosSxuAZRqHrMrNF9fCYT5+PgTmC96cU7X4wPXPYBpEPtX8MFBAQErDVBtfg4kFt0Lry0ysDwBtPt2Un7PoRKJ5mhfXCuYBH0JgzCIqM52h74w28BAKnLX4A3vO/jpuW37Npj+xyRsUuQueGvoDTNuBNlFaFIBKLmWNx8zsXo6M7WnZA6umMRQD02tRUe8xAWO6LOFyo1SQHHUOBZd8F0rYRFSSGvb7W9B3nBISZNh6Ywfph8vmLNEIVqcD2222NxU3cc//HiPTh/1L0HRIhjWu4jqZNOk0FSOGZt5A40Po+xHuvjAkvbF2VPABeMduBvbtqGjtNBWGTpluN7AwICTjBGV091BbjnC6hqs7WFvd8EkgPYL7fvwtm9yRwNeGQmBySscYEsRc59KsXhUFMxb9+RCTBiHv0JGh++RgDD0PjF70kE2dsv4/GVj72lfr560W4el55jP1N+Vw+Dp27hgMl7LY/FImHEaPK6r9ySwZbRAXzqKz8wLWPpsWgjULbLMaUbYARwc+R19UU1wal3d2OhsjZGTDmIF+EUEYZUhbgWBy4Ajt5FbrfLWc8hPR1bwSDQpfs056hDkTLEsxZhMXQihMWOjVZhUXPWdkacxynFTU8BAKSGdrT+nHwcPHWSCYtr+J0+ocR7gVbdE9ueQlzD0w8CDG/+7fnFTz/SgIAAC5OFSdPt/nh//e98NY8wG6678/zQLFJtPNfsSG8WFlNCCgxluAYGg6lj5sjQicPmZKdQJIT77roPANBxXQfe9q9vMz/n2U0ueA0nt5oIEaFwqO5YTHQmsGXXFnz5n75sWs62x6JWHpkpzbjGoSb4BJ628WmuvdeGE8OOwqIKFWWpjDgfR1+sD3EubiuEbetwT7Baqa5AMYxNrhy60nWfQmyopc9fZ+MA+Qy6Bxq1pL5Yn624N36I1Mp0YVFhvc/PQwn/PYqLWm9uJ2cm0L6w2NtLxtWt9t+McTHiuFwDY53eT3CiMGFOPjkD4RgOqVDKsZfm8aIr0uXo5g0ICAg4EQRHpFOEkU1bcPMLX265f9ojClUFMNPkatSFJwDgQyF0dGfxzx98O6T8AphIEmNnnWNafmzXebbb5rObEd12JZaK5piTqqRACEchao5FhuFwy1++Bo/+2Vz06zD0WBTl1oswj017OBYNwmLzoLYqKeAZb8Ek5tFPsFXSkfWd4ZRIdWDiqEFY1KNQDQJqq1GsRq7e2oOBtPtscYFt37G4dSspHEci9oWjEMfgj++4Fi+9fIP1MZY29xQKWBN4ll7VdyYgIOAEYIz6y2wA7v0yKL3HUHEa2HA11DXsEXJ4Okccd00wurBIszg8YRYWH28q5m0a6sVb/+ELOLikIBmicOUFZ6EkNiYdXbrTo7g//ifyXCo5XlGqjFg0hIrWV4eiKPzNK27Br+992LSaKQq1WjA7FleJBAYYuRTs0v7GnWwISI82bpe06LD0iHnl224HLv4r4paqGSJatzwJKM2vzoU2eH7r6wiGiDE+QlyxFfsiZU8mXo+6bQiLReB4Rzf17gaaZ5b76Jd300veCvnNhzB05Qtbf04hDp4+SYpvrfYSPNlJD7c+zjvr2YBUBg7cQSJNI60VaAEQ52tAQIBv9NjH6ZI5qcAYhVpWyohyUUs/QTe8HHWLk4uIGcY/zX0dAdJT0UizY3F40zC+/MkvozJRAS3Q2H3pbtPjG3Zbr0HdEEGiUKVqY4LHC173Ajzw+wdMy5l6LDaJBpOFSeRF57rHFf1XYDQ56vg4AIwkRhyjUGtKDYqqICWk8JNn/gRfvemryEatQtlYesxmbUKEjWC5tgxJabxON7ENaN+xqIvHFR8x33Vhsao5Fn1ElQ/G/bvUiyIRFt0ci2GuvSjUsTHyfvcNtTYRsP4bWIP5zcbfnFck7+nOOy58B16848VB38mAgICAJgJh8SSl46Y3AHHnAYpOs2hoh9GxKESideFJVVXk992NhdlpKIoCOkQGDuGo2Q22aYdZaDRC8yEslszCoigrEEJhyFKjOPekZz7fsm7GICzqUaF+KYsyJpetg0kZREBjKNXkWAxFzAOAqqRAYBlPASzeRnSpG5nI+s5wSnb01IXjWq0CSivAhNjGT51ebZNFD8L82vemNNIVF7Ala3Us8iwD9TjGjJwpCIFjMSDg1IM1nGv69wArEzg7kQMASOFOIHv2mvaXOzyT8xAWzY5FiqKw70jDyXD7fgmPH56EKMnojJDjTSoeRdlgtLr0bOeCFgBgbi9QK6KmCYuMXEY0HIIoNkSe5z35KvRkUqbVdMdiSaJJL0Nljd1d254KpmgQVWPdQMhwDtPjRJvjFocvBq7/ABEcq/mGsNg5BnT773tti01srScW51+vo7CYzSTqwrHeY5GXCuaI3nWHAoYust4d7bLeZwMTzbQWu6nDx8DhJHEIvv4R4Gn/au0zearS5d7fy5aenUBigAjx6ZH2xNZkv/cyAQEBdfRed1NFszswyTd+fxW1gggbacl5E/Poj7o4uWjps2cUMwFg6miTY/FQY5JT7q4c9j28D6Iogk2Sa0pO4CCEGgpNq8IiAPBhHrJhLHLpdZdiwzbzdozCotFlKRdl1JQaDi8ftmxXzZEx1pWDVyLiMVlsID7g2DewLJFEAT1ecSQ5Yruc23N0hjuxVFlCQSaTnpgK4xqDCmiORap1x6L+PdD32w1dWNR7LCo+ospbERYLYgECIyAhJByXiXPx4+ow08VAlV99v2djz9IH5h5wWfL0Z2NqI64avOq4xtoGBAQEnAoEwuJJSmznE6Be9BeOj2ee+Gp0POl1/oRFQ49FXXiSJQkLP/4k8o/8Gpc84QaUiwXQHInZDEfNA6OQg3tMZy5vzlyvSQqEsHngKYTCuOYpzwQAVMslAGbHYrHW2uzuqZz9QLJIkcFPlJGRNkWhWoURnvMWTOJr7FhMRtfXsZjq7K730BRrNTBadKoxCjW1yjhWL8Kct2C7HggcDbRxcRLgjsDS6y5GBwQErCOpISDRB0Hrd1jMXgQk3GeRt8rh6SWAs0Z116NQGdbUYzER4bHvyCREScL/+3EFn7tXxFOuugDVmoiEQI43HMdCCDW22dPhIQgU54DZvagqZGjLSBXEIuZ9YlkGL3ve0wAABZEsp/dYXKjSgFzV+hn6xE/PmS03mm8n+syO0vIiia4Np+zXT/STOFs9XoyigIte638f7WgnNjzUVDSL9xLB04aeTNwShcqKeUCwjzlfFxJ99dhTE3aON3YNY8uFk0hYFGLAOc93/m6danR6TC6wg6KAbU8mf3dtbU/cTg54LxMQEFCHozkIjICZojmpwJggVFbKCLNh16jMZrycQovTi4hz5vNMs0g0fawxFmE4BjMTM6iUK5j5nxlMfnES519xPhRZARtrnCviycY2B0cdRCdtuKHAKlwJEQGKYRI1RVH4i9eROo+qtZTp6OmwrAcA5UNlsBSLIytHLI8pRxSoiooQ69EqBeb+lpbnEEldRY+9bIfOcCcKYgEVhUz8plTK87MNM+05+XRhR/ERCT9+cByqqqKmpVfIlHfNKS2kTYKaGwWxgCgXBU87Tx53Ex3XA93R6aefpBdGMfnxpcfbikM9kT0JAwICAgLWn0BYPJlxmdkUP+dGxHY9EbNTE5Bl9xP89OQx6OO6RGcPFudmMH30AEqP/Rapc5+E177jQ6blVZpBJOo+I9DIokMUajN7LrkKAFDK5wCYHYuLxdYaQk/kykiGrcWhKkUGdRQAjnH/eod8RHautidiM+l1dyx2Y+roYciSBLFWA6e5UENc471Yb40ovIoei6shxDJQgrz5NYf0zAyExYCAUxaKArY+pX5T5JNAC7Nt/cyvmV8uoVB0njmugsbhiRnwHNlYIhpCsVTBvXsP4UsP1PCyczl86aNvtBSh0gl/Y5HlikrEuYk/QdSFRaWCWMRaGHrqtZcDAA7myO1erXfNTEErUDm48Nom3gN0bmncTg6ZhcXiPHFRORUGYz2AVCFxjjq7nrO2++iHZlEwOQhUcraL9mTimJpbRL5QagiLteXjJyzSLNCxCQil3JfT3am3fBnY9lR7IbJV+CgYyGCD4cjaEk4DUfvCuyfn/gX5Lgxf1t4gOKE5FoNJVgEBvonzcSxWFh0fL6tEWGTgf6KLl+tLFmUwVfP2BuJmQW16fLouFPICD0VR8Mi9j2Dx54vovrkb7/2394IXzNfrsaQhXtXhGpeKOB8fuDAHNJVrLn8SGYuo2gSsVEfKdl1FUjCYGLT0q2yV7kg3WMp+QFeWzY7FdtAjZ5dl/2OoEBtad/dXpVzB/Mx8vceiTMueYiZFURanqxNFsYg4F3ftu5cUjm8sue5Y9NNP0gtdzB+MD+LwymHX37QT/3H9f+DG0RtXJVwHBAQEBJy8BJe9pziSJGJxbsbx8WqlhNzCPKJxMqAReDLoUWkW/a/8AiKD29GV7UPvYKN3kaKo9eX9kCub+xFJigo+bJ1RyOhCn3ZRkO5oxFEtNcWpejGZq2C0Y3WRWiEfAlhijR2LYW59HXXJjm5IkoiZyXHUqlWwAvkc+ONY4QrzJ86xqAbC4prDszSYdYy2DQgIOA6MXN72qn5//kcmnXuvKKqKI5OziEeJ0FeSyblQlkQc/H9x3LCJRSoRw24tGkwXGFNxw3leLDluvyarwMilwOxeHCkSgY5SJVthkWk67+v7NLGsiUzlJbeX6QteJTP29Xh2bL2p8WDXGGDch9I8EU04h9nxeiy+UfA0Rt0eL7HDKAqWF4kTVrKfFJbNkNn5+45MolITwbIMqMry8ev59+SPAxe8zNwX0g59/9MjRFzMnrX659Zm90e54Ly5psR6AI/+ao707ABedx8w2uZxkBWAcAbBZXNAgH/ifBw5u8knBq0jxIYchTo7GB9u+9qyuabQHzNHGU8dm6oLi2qViHqlYgmbP7oZndd3QggJ2H7udtM6MR+TnNSKszuMiTBQZfPj+uumaAqiLLq+DxuTGzFRnHB83A8MzTj2AdR7FWYE7x60G5L2UbC6aLSi2vdxtCPMhtuKQm2V8YPj9ShUkRJdRUAdN4enEVmVkeATEBjn5IO00L5g2w71vohrUMbSt3Vu97kQFREPzLYeh7olswUfveKjnn1AAwICAgJOTYIrpBPAgUcfAgAUVnJrsj23ONSlaTIIjSWSKB++Hw98598AAHNTk2DCjSLRWec1+tDIqop4wn/xZ6UsQlHMg2UmZB2Ah1lSZJG1aAmO56FqERYrldZio+YLVWzNesdKRHnnwWqI8xZMkuG1dRh6uShXS6qjGwAwfuQARLEKVo9CZY9PRChDU4gK7AlxuIVYBmpwSFtzQiwDJpilHxBwamOKfyS/57lFIlQtFaz9ir2xHhMOTzhPcppbLqImEqHvrmMSXvR1suzB8Rlkwo1tXbFnZ2MlVUXa4BKAV/zSlicDhRms1PQeixXEfJzDdRFzUhcWW4lCdaBPIhH082qK3LGt4RhF9mzzwqUFIlo4xXHGbIRFANhJ4uU9xbO1wigsihXXeMieDFn28cMTqNZECDxH3I1eDsK1YsNV5D33KlhL7Xz3PdDcqDE+OG+uGUIcSI+21/NSJ5JZXSRsoi9wLAYEtECST2K5tlyP+tRhq43xSIgJIb9EIrWLuaLnNmkf13nleXN6QpxvnLvkmoyVpRXEk3GUj5Sx/5/2g2EZTByaMEWf7rpgl3kbhihUx31wnvsERABVchYeqx6x6huSG5Cv2UePt0KzyKpTlkjcatRHVLQes2m5n48hxIZQVLw/R50IF/ElFq8GmqFx7OCxumNRhOgaW6ozlBjy/RwJIeEqVmZC3oLtWrIejsWucBc2JDfg0aVHV73NgICAgIDTi6AKfwJ4+L4/AgAKef8zutyYmRp3fGxxhgiL5cnHMPvNdyMzsBHxRAqz0+ZZb7v2XFz/W5JVxJL+hcXlsoiabB640CHrwFS/HFcMmfWqSAbS+RaFRRXARRvNkUj5imhZztxn0UyI9Y54TLQRhRqNktcuhKzuA3adnV/RZBocL2D88EHUajVwITIYNEahricfe9bZePo5/aBPhLDI0ZBtit0BqyPEe0cGBwQEnPz8aZGcm1StiHNQ63mYL7UWRW4HxzI4MjlLnIM2TC6Qgtjvjoi4+ksljGY4DPd14+CxKdNyV55vcIwpEtKJFqIzhy8BuAjOz5CxFSsWEBX8F6zmyypJVKgZhMVS65FPABBVyTZU/ZzUbXA/pIbNC5eXgGgn4NTPRxcWm/sZcu4iC8OQ185zaxTpbolCtS9QAkAkxKMrk6wLiyGeByorxJl5MiG3lpbhC60wG1vf5Pszi+d8GbjiLeYI4eNNemRte3EGBJzmpIQUVmrutY4IF8HkERLxWfUxFvHq2RdJRrAy5fycpRWi/pWnyjj0oUNgYyyGNg7h2EHzJO2zLzJPADJGoXrFWtoJj6qgWhyLpv1ySWQAsGZOr+Z+k0ZCbKitfoc6FCj0RftQVO2FRdpmcrXfPoaroXewF+OHxiFWRTAsg6pc9eVY3JTcBIZiQPmoLaSElOt7d7yjUHmGB0dzUOg1EBb1sSYFXDd8HQ4tH4KknCR9pAMCAgICTgoCYfEEUCqsfsaZTiyZxrSLY3Fh6hgoisbRX38bsbOvx8XPfyMGN2zC3FSTsHh+Q1gUZQWxFqJQl8sialKTsOgy401hQ5AU8/KFigRF9d9gOiaw2NFnnqU/mbPOPM+4CYs+IjvbiULt6iIRr5u27bQ8tt69B2mKQv/wKCaOHIRYrYLhiGMxdJyiUK/e2o2rt3Qfl+dqhmcZKGoggK0lFDTHYiAsBgSc8shNx8fpuVVEfjY5h4a6kzg8MQPJoYYxMUsKfe/68RSes4PDF5/Xj20bB3Fw3OxyvHzPDsMO18xRqF6wArDpWozEiFjESAXEQv6LZLIC4qgzCot//jqwcMD/PgDAik1cmbEYGjIIdLJIIl5j3c7uunAaoDnzfvmAY8lr37rBX5yXJ83OyISzsAgAYyP92HdkApVqDR1RFlBE8jpPd7TxbzRwLK4diSwwcO6JdQze8BHg8jfXP9+AgAB3UkIKJbEElXa+vg8zYcxOOceot0qmN4OlI85jG11YvO+/7kNsZwxjrxvDyNgIJg6bz9tuUaheYqkdakh1dSzOlJwTHwDiBhyMOYuCfhlODDs+FmEjqxIWASJcVmCfBNDRbe2Rq7vh1pOBDQOYODSBWrUGjudQkSu2saWfuuZTuCB7ARLaWOcpG5+CD172QV99J7vCXa6id0pItb3/7RLhIpBpj6QPP9vRPiMaNG4cvRE1pYaasg6TsgICAgICTlkCYfEkRvWK/QKQ7ul3j0KdmUA4EsWGq56FzHWvAs0w6B8aRaVijgnJ9jfiHvJVCbEWolCXSiIqkozLrruxfh/NO89Ak7kIpKZZe8WqBFH2P6tqtDNqEQ0nl8uW5TpchMUwR3s6FuMtFCWboWz6/XFtOhaFFoTBgeGNGD9yELVaFQxPhEV2nSNYTwYENnAsrjVvvn4rrt+RPSHRtgEBAetLsbyKGEg2ZLo53JNyjUKdWiogHOLx+if04UtPD4FnaWwe7rc4FjvThrGHLJqjUP1w1nMauygWEGt1clC0E6gZZtuHM8AvPtTaNsb/5PwYw5tdV3q8acolcouiyH41OxZ9smYJAs2ORR/Cou5YHEhqn0O8d2325WQmiEI9PUkNAtufErgWAwJ8kuATUKGCijkfC8NcGLMu/ZlbJdObwewR6/YomexDOV8GzdDYceMODL5mEIzAYGB0AOMHzelPobB5jGOMQpVVf2JNqiPVuMHB1bE4XZr23N7u7t31v5vjZf0yFHcea4S5MDhmdcKim3BpJ7zFjoMLfXB0EMcOkShUnudRkeyFxSsGrsC/X//v9R6SHMPhpg031XtHutEddZ40JTACBJ/nDV3Y9XLm+iHKRtfEsRjn46ApGgIrYENqg6vrNSAgICDgzOT0VxtOQX7+g/8FAMhyY+CqPvMfsC95rmXZTE8/ZiatwqJUWET54D1YmpnAll3noH/3lfVBSv/IRsvyxgFMqSohnkj53l9ZUbFYqGFwZFNje0LIZQ1YRMR8VYLoMuBuZktPDMmmmNLJnFVY7Iw5D+SiAuc5cGvHsehGuwJfiPMf5zYwsgEThw9AFGtghBBYmgKzzk7JkwGBo4njJOiBs2Y8/Zx+PPO8gTW5wAkICDi+PPlrZdxxUCLxnm3wg1/8wfnBpiLJSE8Khydm8bWHtXO75uqZLSr43mMiJuZXsHPzMF55RbZ+PBkb6YcouhTopCrSBpcAaB/n483Xmm4muBbjmiKdxEGoc807W3fZHbvbep8+USzR7yAsjrhvM9oFnOjoqWZhUYhZ7zNAhMVJVKo19CW1MYyHGHlaoH3340EUakBAwBmM7vyiE85jkCgbRWHF3Y1//1331/+mPcYzmb4MZsetwiI9T2P5j8soThfRN9yHPbfsAaVNuhkYHcD8zLzrdo3CYjM1h0htlm+MWRRecRUWF8vm2HUV1mUv6L2g/vfexb2O23JjIO6cYBBlo6t2LI4kRlpaPsGZkxDWw8E4sGEAk0cmUS6XwQu8o2NxNfRGnCdNhdkwWD/jVwDvuvhduDB7IXqjq5+EFeEikKnVOxZjfAz/du2/4erBqwGQONSAgICAgAAjp7/acJJR9OiruH/vg/j4u99o+9hKdMAiyCW7+yxRqI/++V5MffsjWPr557EwNY7efvPstIFh95z+Yk1GNJ5wXaaZ2by5LwLFegmLjQGzWitjpSxCasGxuLM/aRHpjMKiECaOyYxNkxs9hjXKew/yVuNYtKNd51crPRL7RzZgdmoCxZVlMJwAlqZwJhjOeIYml2Hr3AQ+ICAg4FTg9gMyrv1yCeg7x/KYKFpFKlUrfJRlGo8dHMfz3/wx38810t+NwxMz2LeondvTI3jwsUN44pdW8Fc/ruDY3DJGB7JYpDMAgEU5hs3Dfe4bLeeQShhiB0X7vj0muLBJgExSNn2LtPMhQ9kU+WLdZseikABe8hPLYozTJKFaEVg8iDmOzOgOC9oYRBcF+Zg58rQuLHrElep9Fk8kduO6WNZx8bGRfuRWChifmUdvTHvNceflT0nsnKaasBhEiAcEBJzJJHmSQEDFnY+FXo61mYkZvOdV76nf9up319HXgekJs/tv/NA4Hv2HRzH5n5NYmVtB76BZtBkYdT//UqBMPRabObJyxHV9AJBoCXDReJaqS5ANSVVV2dpv8tzuxgTzP07/EVPFKdt4USNCiAhoen9DN2Exwq1BFGqiNTdboilivSPs/nraYWB0ALIk4+j+o+B4DlWp6ttB6JeeqPMYrZWI2a5IFz5//edN7tR2iXExSFibCWkX9V2EzenNAIAbR2/0WDogICAg4EwjEBaPM0cO7nN8bHlpEe953W0Y2rDZcZnm5ItMT7+pX+I9v/gR3vjim8HGOtBz64ewNDuJ7IC58NE/bHUsGimLEuJJf1GocoH0MVgqm2frUZz7gK0qGdyYpRzyVQllN+dCE/0pa9Tq1HKlXsjZMEZ6I9hFoeqiZizkLUAlwmvnWOQZGtzxcCwOb4Sqqjh84HHQrACGpkCfAY4zQXuPqFXGuAQEBASc7uw/Omm5T+ETeOcvKvinP4fx9Ne+H30eBSsjIwO9mFtcxrsuJ8fhH/34dlxy65uQDlH4zW1RzCwVMTqQhQhyThbBYmzUw71Wmkc64ewScGRTYzZ1DFZhUdUKPAneTljssfYyjPfgi/fX8PBsY4ySjDnMql/cDwDoOu9pAIDzd42ZH28+FVfzRGxs7l/YzMkgyNmNIxLO4vDYCPl8H3z8CLIxigi+4cx67d3x57V/Aq56u/X+oAdfQEBAAMJsGAzFuDoWy4vWtCEdVVXxzpe9E6GI+2RlI5m+DMSqWL+970/78OqnvhqggA1/uwG1Ws0qLBr6ENs5BRmK8RQWZY/2NQqjQHGZQL1UWTKJiSXROnYxRlByNIdvPfYtPPFZTwTtkkrU3UcSF5IZUteJcs7npxgX8+2sc8ItatWOON/GGK9FBjeQ9+3QY4fACRyqchUhxv93yguBEVxfR4SLrPp99aI7Yk3WiHJRSKpkHXeukrH0GC7svbBld2pAQEBAwOlLICweZ44efNzxsZ999xuoVsp4zye/4Ht76Z5+iCIR9fIP/BSffc/rcOk1T0LPU94AJppGubBs6p8IAP1D7o7Fiqgg5jMKVRHLiIdYLJdE8wOsewaUcXm1lIOqArnmbdjwhK1doClr9nxNUrBSkdCbNA8UM1FngTMuHF/HIs/Sbc9gD7cgLPZrjtSJwwdAc5qweAbMnNf7UFJsICwGBAQEuLH3gH1v5g/8qobv/v4gJmcX8N1PvdN5A01FkpFUYzj5jYdFPOWtn8MTLjob339BAoNJGqIoY7TfPKN7qLfLfSfLS+YoVMk6g98Wg7ATpZyLlhlBts7WivU09TIk505RAQqG+VNUs/ioM78fSI8A6SFtba9zrwqEksRp6cbJ2psw6ex+2DhE9vnxwxPoiYIIqNzaFfNOOJ2bgZFLrffTDNSgD19AQMAZDkVRSPAJV2Fx+pBzb8FapYaj+4/iA5/7gOMyPG2uN2R6G5NX8g/k8alXfwqbd27G1jduhdBDjsvZQfNEnUQqgUSKTO4R5+1rEW5RqEdWjmC66N4jsYaao2NRlVUsVBZQkRp9r/M1a09lY+3j5s034/Hc43hg4QHX53XCSYharQDWE2ktXeF49FjszHaCF3iMHxwHL/CoytU1jUKNcTHX7a3F++rG12/6Ot6w5w22z1uTa67CcztQFIXPXPsZvHD7C9d0uwEBAQEBpy6BsHicOXbA2bEIAO/8xOfR3ecRiWUg09OY8R8e2Y2bX/EWvP3v/hW0QVzp6TfHUoSj7rOpK6KCeMKfYxEgrsDlighFK9CxNAWVcRcWjQ5HtZQDACyW7HsUGOFZ2lbs09cd7jC7CDq0KFTbifZhbwEqvoY9FldjGhRaEBZTmU5E4wkoigKK48Ey9JkRhaoLix7fvYCAgIDTklDK3L/Phb0H7YVFna/+/Vsw5hYP1hSLOZJN1/++YpjBe2+7Hv/7z+9AjG+cfEaahEWGYcxRp81UlpE2ugTa6DEoKM7CYkpQrNuM95h7LDZTLQC//aTz45Uc0HeutwMRACjtvB5O28eMGkmcrMKiszshHBIw1NcFRVHQFVLJe2IU3Np1KnRtJf/37Ghv/eMAxa19n6iAgICAU42kkATFOl+ETh2ccl3/zR97Mzbt2OT4OM84C4uRTRE88SVPxEf/86NgI43r+eyANQFAdy2qNfs+iG7CoqIquG/2PsfHAaCqVME5JepIJPp0obJQv2u2ZO0TaWRPzx7s7tqNfUv7bF2W7bAW7kGmhXYkDMUgchzOlTRNY2B0AIqikChUuYow6zGZqwXifNzyPdRJ8Al0hjpXHTHrxo7OHfX+h837VVWqay4sAgBLs0iFUmu+3YCAgICAU5NAWDzOHLFxLIYipLB28dXXY9eei1vaHieQgZFcKYBNduO6W/7S4uZr7rEIADzvPLOqIkqIxp2FxULVXIjrjAmkR6JCBrYCS0Ol3AW5fLmxDV1YXCk3ZgnqfRD9slSsgQIw0mEuUuoOxq1Z62A54cON2G506VoT1nos+rl4oCgKA8MbAAA0w2k9Fk9/ZTFwLAYEBJzRPPH9wJ6X+Fr0kf1HLfcJPDl2nrN9I2666oL6/X5KVhGBBUVRmC4oyMZovOm5V4JhGIyXyTl4pqhidMA6k93uvjrVFaTiq4iV5KKga3nwnP14hKEAKE3uhKh1Fr++7IUDDPCnfwem/uz+vGPXA34iufViTyTjLSyeDD0W7fDoDanHoXaEZSCUAIzFN6FNp0KyH3jTPuCs57S3/vHAJW4uICAg4EwhJaQcHxMoAeP7xx0fpxka1zztGtN9zTUOyzosDZZjUZuvgYkyuPr5V4NtGgP0Dlkn6vSPuEezxwzpCYpqrlFsSm3Co0uPOu8TRaMiVcAy9mMRVWvRMlWcgrhIxiS5as51fyiKwvsvfb/rMq2S4H1MiPJBjPF3bg8xIbAe9aK1Qu+jyfIsREVcU0EzKSQdHYufuPoTeNXuV61p9KpfYnxsXRyLAQEBAQEBzQRnmuPMUZsei4lkCgDw1Ftva2lbtfmj+OzbbwNFUZBXyMy2B3//C9MynBBCqqPTsm5X1rkvTlVSEEs4Dy6Xy+ZCXGdMQK4k1sVAgWMgqhRol1lrRnFSrRbAMRTylcZ9FbE1YXGxVEMqwlniTfUYMoG17ktsDd2I643eY1GS/c1KHBjR+miyPFiaWpVb8lRB/4wDx2JAQECAO3aOxZBAjp1vf7lZsCl7pJQfWFRw2V9/HhSAo8vkHPXNO4n4VpIbw8zhfqs4tnHQxYlXzSMdb2FWea5JLI1kgFqhLpjaIje9uJh9POtLztHOK33nAM/8d+sCR35L/mfDwMAenzus72enD2HR4LDwik09HugF0oR7MVYXFjOCQiJf1yoiNNYNpAa9lztR8IFjMSAg4MzkG49/A9OlaahQkQ6lHZcTIGDi4ITj4+msdV2aci5diYsiPvmXn4Qsy6jOkOj0P/7wj5blmnssAo0+fE4YHYtlyZyEcG7PuTi6chRwOOxHuSgqUgWMTK5TGTTVJGTiAFuoLEAuk7zUvGiNQm1mJDliEQN1Z9x8ed5z/WbcPqtW6ObsJ2gZYWgGITZ0XByLQMORymtJVm69JlslwSdcHYtbMls8BfH1IM7FUZWroE+SSfIBAQEBAacvwZnmOFKtlDE9bnUJeCGJ1qpe+eA9mP7ym8CHIhjeuAV8N3Go3fntr5iWS/f02w5munqdi0FVUUHExbFo2VZcwHJZhCg1HIuyooLjnQWevMn1qKIzJiBf8e6x6MRSsYbueKgeh+mHtYo53bFjOwBgaMPYmmzPDt1x6DfspF9zLFIMC5ahwJwBymLDsRgIiwEBAQHNjJeIqKOAxaMHnV0CzejnHcUmSeDXRyRc+PkiZFnF+WeN4YJ+UjD71+/8zrKsncA3ahNJVqeaRzrawvG8ue9hOANUVhDiXc71zcJi1KPv42WvB7bc0PS8JUB3MHRtJaJXK8SzDfeiE/o2KQCpYdtFtm3dBgDYsdH+cV9c+nogsxFwKvYJWnFVn33fuZlEujq4D3VhMc1J/iJfTxf4wLEYEBBwZjNTmkFacBEWKQHH9h9DKNzaeUFt7o0MoHyojAPvO4BirojdF+1GdAs5Bv/6m7+2LJ9IWydPezkWQxHnfdzdtRsURYGO2Z/Ho2wUJalUj0LlVOtYqD/Wj8XyYv12vpqHrMhgGMbVcdYfM+/3rq5dAIC9i3vx5zmPdIUmOkIdLS3vxOauzQCAcMR5EhRLswixoePm5NOFYy5C3vu1FBbTQnpdo07bJcbHUJWroM6EfjgBAQEBASeUQFg8jowfPmga3Iq1Ku788Xfwtpc/FwBw8LGHbdf7v+9/03R7dmoCs//zfoQGd+A1H/9qw50G4JE//hoTRw7Vb2d67GOqvByLoYiPnH1tnNIR5aGowEKJzA4UWBo1SQHLOQ+yilXJFHfanRAsEautsFiqIZtsVVhcm0FgZycpRLbSl3K9qX8nGA4sTZ9ZUagOUTMBAQEBZzJfOtSFgY/ncaQSR7lSrceMyoqCb//sd7jpFe8GAPz6T/ZjkW//zCwWzi8t40lfKWFXD43f/8vLsX1TI3b99w8fwb0P76/fHuqxPz9ucBUWVxDmvM9dYcFBfIxkgErOXVhsch54CouAtWHyQ99q/D10YUN8M6Lft+MZ1sdSzn0K6/gQK5NJ8h53ZVYxFrnuPcDL7wQ6Nto/rvdgUmXtSQeA1/wR2Gjt7wMQYZGmgAQnAZEOoIX+S6c0gbAYEBBwhiMpUt0FRwvW63NaorE0v4TuPnJ+U1UVd91xF975sncCAMp5+x7J9/7mXtPtcrGMw/9wGFyGwxv/843YuK1x/po5NIMHfv+AaXm7CdcDbj2lHdbRifExnNt9bv12TamZHo9wEVSkCviQ80SpkcSIKf40V82hKlex/fLtOOeKc1z3zQhDNc6xX3r4SziYO+h73bXqmbchQyY3c4J7nSXMhlvqybga6lGoWq/NGNtmFLsB3T3bHek+IY5EL2JcDJIigeaCcm9AQEBAwPoSnGmOI3oMqu4m++cPvB0ffNMrkVsgcRVLC3OWdSRRxFc/+0kAgKrIUFUV3b396Lnlfei6+W8RisTQ098YDIdjSfzgG1+q385k7Wfg9WiORbuBUEWSwQrOM8h0cfTGZ70QyUwXOuPEBbFYIAPpEMdAVBSwnPMAulST67GekVgc2UQYharsuLwXFVHBYDoMtoW4h5Olf+J60D88Sv6giWPxzBAW9SjUQFgMCAgIsEJhIq9i7xRx9mW7MgCAO+47hJv/6gOYnCWz5afnFy1rKoqC9/3r18jfqgpZVtCZTuLHz4/g9hdEkElEMGKIOu3vTODTX/9h/fZQl4OwOOgiLJZzoJodhTa88rk3Ih61GbNoUaiu6QRaj2cAiEfDJKrTThh0ojgPPH5743anQ3IBRQHvXAAufKX1MQcHoglWIFGiOA7n8pBLnyX9vTH2puzcSFyXNmwe7kdnhAJNwbF/5WlJICwGBAQEICk4T3QRl8l5pKuPTOhZnFzE39z2N5genwYAyKq1LiArMr70j6TOoaoqZElGOBrG8P8bxujbRhHriKHH0Lu5Z7QH3/nP74CWyDU/T9nXJtyExeaeinY8eeOT63+P582JEFEuChUquISz0LYptQmLlcbYa6m6hKpc9XxeJ1561ksxmBjEryZ+5Wt5mqI9eyxmQhlf2xqME3cg5TFeCbNhsPTx7bHIREitIMavXlhMCkn8zYV/g6uH7CdWnWhiHHmNdOj0rXcFBAQEBJwcBGea48jRg48j3dGFLTt3AwA2b9+Ff//+r/G+f/mS4zo//+H/YurYESjVEmb/53342r99HAAQGtoFSpvlle1v9AU4//qb8ZP//TpUzQ2Y7nEQFvvJDPlExlroqYgyZMU5dFN3FsYSSQjhCDqiPCgAOa0Rk8DSECUFnIOwyEplFKoSRFkBx4dw/TNfiN5kaFVRqAAwlm1tkMiextEQungNmiU9Fs+AX7oQzMgLCAgI8GTvwWOIhAV0DZDzxEKVwQPf/RTu/M+POK7zvZ//Hn9+7BBKoornfLOMN3/8vwAAlw+z4BlyLjUKi6948h585ft3QpRIYXDQQVjs7SJuhq6UjRAjV4HqiufrScajCHE2xakwKYL1xV3O9Vr0WFcqilc9+xpyX6SFOLADd5CIz9GrvJdlWBvBiQKSPnsFerkpk9p4z0HkWxN00dEmFteOkf4eDCT1fowu/TRPN9agaBkQEBBwqpMSUo6PleZLoCgKG7ZsqN/3mR98Bp/78ecAAHTKel330B8ewoN/fBCKqGDi8xP40vtIDYWO0KB5GvlaHlnDhKXLnn0ZfvOT30CdI3UNpwjMSIzEfzOc1UGnwPt8d93wdfW/D68cNomR+nOyMes4RVVVSI9J2JTehJXaClL9KcTYGMpSGblKzvN5nRAYAf9x/X/4Xj7CRhz7BLbKaJJMbt6U2uS6XJgNg6WOj7CYzCQRS8TAhMnnG29lApkLt269tR4/e7IR1cabdm7hgICAgICAtSQ406wjC3MzpttHD+7D0IbN6O4js6Ze9sZ3YWjDZtdtfOXf/hHnXXIlpv/rTahOPIptZ++xLNPd2yhKXXzTc5FfyaFaqQAAMln7GXh6mY22cXdVRMVVWFwomiM+OIZGZ4xHrqQLiwxqsgqGtR8ssnIF+YoEUVZBMzQ4nkd/KoSVcvtRqACwrdd9pp1lP5jTV1iMxuLYdvZ54MJRsMyZEYXKn8YO1ICAgIBWiWp9iw5ps/919h44hi2jA8gnt2D3Zwp45jOfhV1bRl239b5//RouOWcbrvxiET/eL+GK87ZZlhnua0xUeumNeyBKEmYXcgCAQYcoVB3HBIHSgut6rkSIsJiNunQnrhDhkmcZREIkfQHRTv/PkTsKnPMCINbCOkaEBCD4dLd5Of76zwNu/Tqw/ant7Ysf9GKcDwcHALAsg+vP04rGSfceVqcVgbAYEBBwhjIQJ7UHCpTJBTd1YMq0XH4yj97BXkQT5By4+fzN2LJri+u2/+uT/4WN2zbi8McOY/kPy9h2ARmLVCeJuy9XySHb3xAWL7jpAnAch/EDxEWY6HSvFdBtXksaX+eh5UNYKDfGLhFWEy1jRNRSqMb5U5VVKPNKXYyroIKuCJlENFM215FaJR1K4x+u/AcA1l6MzUS4yJq5B3WnoptQeV73eRhLjx233oQUReG8y89D5wAZq61lj8WTFd2xSAmnfw0oICAgIODEElTi14BkmMdfXNwoyl3zlGcBAD72N/8PimFWty4stsLk0UN47KEHoEo19L7g77Hjgsstyxgdi519w9hzaSOSwanHohvlmtmxKMrmApIuIBrpS4XrTkaBpSHKzlGoRFgUUZUaESe9qTBqsr9ClR0RnkFXrLUG4Mxp7FgEgH/66g8RTWbA0TSYM0BYDByLAQEBZzK9wxtBnX9b/fZLn3U9AOD5b/oYJMP5du+Bo9i2gYwbHphRfPUVvO+RA9h3ZBJTeRW/uS2Kpz/hfMsyI/0N4au3I46br7ukftspCtWT1QiLmmOxJ+Iytqjlrfe1EtnZtRU45y+AdmfdR9IAG/a3bDwLzyjULU8C+vz3Y2oZoanHog8+9Kqnkz9i6+ikPNkQAmExICDgzGTmgzN46MUPoSfaY+qh96W/+RJqlcbk5NyRHIY2+egxbODBPzyIpfklVKeqGH3rKC5+8sUAAClHahArtRVkB7KAVsYIx8O49hnX1tdPdq+iB7EHowlSCxIVEffN3le/Xxex1AzZqWlm2nFdAMhoYxejONku3REynnGLpKUpGlE2WhdAjwfvuOgdeMWuV4Bjjo+wCADv+fR7sOdaMkF/LXosnuxEOO3zFE7sfgQEBAQEnP4Elfh1IJUhMVr3/O5OfPvLn6vfP37oAIY2tiYsZrp6MLp5K7Iv/AdwnfZxWT19ZvHwqbc2CotOPRYpmnz0dnpTRZRNIp/eC1FnvlCF1CQCDmYag1GBo1GTFLCc/WCRlctQVJgcitlEa6JgM11xAVGhtcIeS5/+X39JVsEylO3nfLoROBYDAgLOZKanzbPbk3FSzPrDnx/DBz79tfr9+45MYtvGQYTUCtR3J8DLJc9tZzvTGO7rxt0vi+KcXgYozFqW6e8xu/Ze87xGz6FBrZhXoEgxJ0WT56T1sYjTE7tFoYoVYGE/cPg3gGjzGrgwwEXQIbgIi9WC9b5Yj/U+J/a8BMi4uz1diXSQ/ol+aI44HdDE3XCLhdJE6xPO6ujColj2v04lR8TTNYoeOyXgz6DXGhAQEGDgvnuJqNYcczlzeAaf++jnEFoh1/wrh1cwvHm47nDT+yC6kcwkkUgnsPFdGxHZHEFJO/erKqlV5Ko5hONhSMuNGsPTXvi0+t9ejkVqFRfMrJYCNZwYxt7FvXVxUxd4qDDZtkzJqErm/okRLoKuMJnkxdM80kIauWqu7X1pBY7mEONjCLGrq8W0Ak3RSIVSx+35dKpyFRQohDmfE7pOYXTHIo6fdhsQEBAQcIYSVOLXgRodwuD51+HmF74c//6JD+LgYw8DACRJxNCGMc/1VVWFuDQJAPjbf/gsPvL5/wYTcS4cRePmQfIFV1xT/zscs19Pd04ObrHmwqsASrXGbHSpKfJqLl9FWTTPVh82CIshlnEVFjmJxLTmSo1Ziz2rFBaziRCigrUvghutOhaTkVNvZCYpKrgzJAqVRL6Sv7v6VlE4DQgICDhN6O3K4J2vei7e/+mv47f3PlK/f9uGQWzAUQDAUPF+23VVVcX+RXL+/48Pvx6//PJH0RfXho02UZgsaz4HX75nZ/3vdIwUcbpVIkhu5qYBVUFnmoxRztpg42YLZ+pRpbbc9c/AT/8WWD7mvEysBxneJWa9VgCUJvedH2FRL8ClhgC6tbGHiUgnEUD90LPTLCKe9yLgVb8Dhi/z/3xvHwdu/rf295nRRFClhej68hJx8K1R/6ZTAs2xONiTPsE7EhAQEHBy8NS/eiq+9e/fwvzheQCAqqgY2jSEKojIJpScJ9lUZ8gyr3zvK/Ev3/6X+mykRxcfNS23WFlERa5AFRuTojftaPT6C8fcz7f/v737DpOqPP8G/p3eZ3a2F7YvvVcFxEVEQWzYBRU0lqiYqCQaoiJ2jLEmakxijPqqsSRq/IkaW4yCWAFFpUgHYYFlF7ZPPe8fZ6f32TMzuzvfz3VxMXPmlGfODsy95z73/eSW5Mb1XtxR2oGPKxyH7Ue2o93ZDkBMFKrlagga35i+O/RdyHaV5krv41JjadoSi4BYVZmutqSZ1OXsglqhzor36k0sqgFLsl1DiIiI4sDEooQO7vsJAPBt4QmQz7gW5119I8qDWp/GaoVq6+rEPTdciYZnfwW3rQMjxx8FtTqxHgYKhe+CUcQ777oXqyLsu8Puu2iklAV+TA612wOSggBQme/rVa9RyWFzuaFQRmqFKt7p3mLztVTtaWKxNEcLXZgJ16NRJphY7IupOafbDaVchn7e9dVLrRQ/q9aCLGq5RkTkZ8O2nwKe33LVPBw9ejCajvjafg6tjd5+zG534PKlj2DME21oaHNj1jHjodf5fU9HS/h1848/VEo54LRjvGsNAEArcwRUGeo1YS7ymIoDKxa7b0rymvRz4NRHAFmU735TCYzKKEkwRzvgDmrvbvJPLEaYn1ElQcuwY28EhpzsS1LGMmY+cPFbgYnPouGJzV2oMQFVfonIxRuAs56Mqx1u0jqbxbkk01gNkXFqMSYuzc/J7DiIiNIsP1/sXrD5m80By+vn12Ni/US0t7Z7l1XWVeKgcBAAws7x53K58Njtj2HLzVtgO2DD5FmTYTAZYPtJTDR+2/gtuvxig0Odh9DpDK2o1+rF7x+VOnpCSaWNL+G048iOiK+NLRwLl+BCU1eTd5lJbYJb5UtGfrX/K2+VpUeNpcb7uMJUkbbE4vwh8zG1bGrUORH7C5vLBpVcFdCit7/SKXViNbAMsOQxsUhERKnDxKIEptVPBwC8+szjAcuP2GW46T7fMr3BiLzCyAmPro4O/PqSs7D6v+8id/Y1UGiTn1haq+9Zi4d2m+8OfoUiNCu181Bg0D7A6juexlOxqIzUClX8BaCty3cMtVIOaxwVgY2tdhzpDJ3jsTxXn3D7kngrFi26vntXm8MlQKWUZUXFIiB+9oiIstE5Z50BALjnydcCliuVCjz/+xsDltVVlITdx7/P10Hj7sSsy5bi2X9/iMdP1qLYKPd+v+5v674wtueLuMZUViS2hteolMCGfwe+2Lo/zBZ+zKWArRXQdl8Q2bEK8L8QV3scMP5iQB1lrhxzacSXbC6Z2ArVFZR4TGSOxZ6YeCkwbkH4nvThyGRAXi2gjjOp6blIWHt85HXMpcDIc3pWdRlL52HxZxjhZrN+KdpnkoioHzvzrDMBAC8//jIAQObubnUql2PJA0sC1q2sq8RBHAy7H1eXC7dcegteffpVFJ9fDE2hxts+HQAchx1o6mrC6r2rvcucghP720Nji/LueaU1RvGGak/71Uj3DsXy9f6vI75m1VoxIm9EwDKzxgy3wpdY3NS0CY2djQHrDLSKN5+7BTeqLdVo7mpObnAJOn/o+bhw6IVhE7v9gcuvK0WnsxMahQaKaDek9RMymcw3zyIREVEKMbEoAaNRTAC+++o/0Lh/X8BrlXWDMWTkWABARe2gqMmvD1a8igP7fsIDz7wGw+CpUERIzMWnZ4mkTnvkO/wVchn2tQQmFsutfnMsKuVwuQXIg6ohDSZxzhmzxQKLToU2W2CCsMAUWj0pkymgrRiFlVsacdNr6/HVzvBBdoU1scBJKZdBFeecfO8tPhY3nDg4YB7JnhpfacUpI0ugUab2n6BYsSiHPEtKFlVhkuBERNlAoxG/Q194exV+3BFYtVg1oAhnnDAFgNgeVR3mrn2F7TCG5svx0efrsH7zDnzw93uwYHRgMsjTGhW7PwdaGuIem9LRAvzwb3QKft/zBzdG3gAAzGViZaRnvrq9a4G96+I+JgDAEtoWW9P93ltdKrEi0hXYgQHGNCUWgfiTismQy4GbG4Cp16buGJE0bQPWPAt8eCfQtBXQ5fjaqGYDdfI3BhIR9WWezklffvglfvzuR6hdvjgitzAXg7qnhXG1u6AyqnAER0L2YT9kx/bfbcf6L9dj+dPLkTczL2Sdji0dqMupw6f7PoVMJoOzTbx2sa99X8i6wZdFrBDbVKvbYt/w4gxq/e0W3Fh7YG3UbU6uOTnguVlthkshJrg00MDpduKzfZ8BAAzd82HX5tQCENu5VpgrYHPZwlZfpkJ/TSoCYpWih6cVan9+v/70SiYWiYgo9ZhYlMCIkaNw4rkXQ6PV4eWnHg95/cQzzgcQuw2qwWjCoy++jcEjxqRimAnpdEaeO6DUosX+FlvATX4lFl+LK42q+2OlDLyIVFgiXuA7dtZpKDBq0GELnNfIvx2qpxWrfvAUyBRK/HigFeW5oVWYw0vF+SUNmsQCRK1KEXfFYqFJi0Uz6nrcrtXfv66agvvOGQVtgu1bE+V0Cd72oNkgm94rEZG/4cOG4qqzjkNRXg7u+fNLIa+fM0tsgTlyUFX4HQhuKOQy5Onl+PzlhwLmSPS3YnP3TUHrX4l7bOaGTwGVAes0k3wLm3dE38hSDti6LziWjhNbfn7zfNzHBADklIcsMnS3dM0tKhcrIl1BXRAM+X5P+vjNKipdehOlgFitt+9bMfkMiBWTI84JiQn7NSYWiShLDRo0CDPOmoHiimL8vz/8P191YLdZNbOwbfk2FJgKsKtlFwRZaNmgTC6DQq/AH1/9IybVTwp53eOEyhPQ0N4AwxADnIed0Cl1aOxshFIZ/bqA50ZvmZD4d3xDewNaHa1R15ldPTvgeY4mx/vYAAMmFk/Et43fQqFQYPY8cd1qSzUAoLGzEeUmMXY5YgtNukoh+GfSn/m3yu1yiYnFbKhYBMS5M4mIiFItO27XSbFblt2Of6/7CXm5ufjX3x9HyXWnB67Q3borOLEoCAI+ePNfsOaKc9vUzz4NBcWR23YlQq3RwBZ7tYhsjsCkn3/70fJcPXYd6kCewXeXn9Kv+k/raUepVIdvMSKTocCkwZHOwCoB/+Rk0LQDeOjcMZhQlYtxd74XsDzXkFxrrXiTiqmkV/v++Q2w6rCnuVPycTndQsqrInsTtkIlomy15IZfAd9WYFBNOX794HO46LQZYdcbWhuabHv57Y8xukSDwVY53r7QiJIIrVIB4EC7AAw9Ffj+1ZhjMhl0AFqg7moEJv0czs2NgOer/8huwNUVeWPLAMDeLlYsyhXAhEuBD26PeczAAfhiKp0r8AKdXGcBmp2B8zgC6WuF2h/JZMDVnwKtBwFDnjino9oIqLJofkWArVCJKGstumYRKk6qwEevfoQ//vaPGH3aaEAFyGXi76MyyNCxqQPjZ4/H9iPbA7Zd+Z+VGDFhBFRWFap+XYXqwdVRjzU0dyiqLdXYju0wwYQCQ4E4t2HQr9NmixnNaIbB0vNEy9bDW2FWm9FijzzXdL4uP+C5f2IRAM4ffD4W/28xIANUKrGLQp5WrMpstjWjzCjOnexfbSeVoblDMadmjuT77a0auxqRq8sFICYZNQpNVsyxCDCxSERE6ZE9GYc0OGXez8LeIde4X2wXVtHd+sPjtef+int/swjrvxbnBkh0jsBoSgZUJr2tXq1AlyOwYnHLgTbv4wFWHRpaumCLUNXoSWQJ8shJvyKLBm1BFYtlOZHbNchlsrBJxPvPGY0ZgwtRmtOzOSUDxmYW76pXpHFewpW/mYF3rpuGCgnbrQqCAJdbiLvla3+gzqL3SkQUzhVnHY+8HDOef/OjgOUtbR0AgKE1vsSiyy3g8f/uwnnX34v/W/EWAKBEH/jdHNaQkwGNJWSxUhF4sWZ4dXeC0lgoJgbl4gW0JuQAR/YAnd0X5g7vApxBF9A88yPauysDCocCQ06JPbZw+wBQ1PmjON+fhy5H/LuzKXAbDZNCEdXNFP825EdeJ6cSKJ8A5FaL62VbUhFgxSIRZb3pp09HcXkxOtvFdp5uQbxu4HSKXYkq6iqw/ch2aN1aCIKALau2YOnlS7HiHysAxHddRCaT4fKRlwMAWtGKYkMxmrqaoDcG/j5dM7QGAGDJD41b/LU72mMec9uRbRiRH76jgz9PMlEuk8OqtQa8Nr1iekiy0f/9qhVqFOgKYh7Dw5O0jcfLp76Mi4dfHPf6fV1Du69tv81lg0ahgVKWHbUVnGORiIjSgVfhJWQ052DuBZeFLN+5bTMAX8Wi3SZePPvikw+w+I4HMW7ydJRe9ic4ZT2ZU1E6Jq0SnUEVi1sO+Fp+VOTq4XQLONAavtLAUzXmjtK/vtisRWtXYPuxkpzELz4VmbV46pKJGF2ek/C2kXx+00y8c920sK1XU2lIsVnS5LLTLZZ9ZlN7UG8bXiKiLKXXafDrn50JhyNwXqAN23YD8FUsdtidOOvlTrz0xT48ctPPcc3IjvgPotQCx94QslitCvzelzV8Kz4YtwDIr/Mu3y8rBNxO4MD34gKXDfjnJcA7S3wbexOL3Rf6ZHLg5AfjH6P/PjxWPQII3efFkxjtOBx5e3WEizJj5ic2jv5iyBzguvVATfhqWOrmSSxmvjkGEVFGKFVKzL96fkj3ok0NmzDi6REorinG9pbtsNgt2PPnPdi6cisuveFSzF8U+ftV6N6ZdoAW2jLxusFJ1Sd5Xy8xlOBQ5yEYcqLf3NEsNAMAHAbxWkRjZyMARJzTcEfLDu9jm8uGaQOmRd0/AJxWexoAMcEYnERUyVU4tfZUAIDdbQ/eFG7BjQGm0Dmie6NhucMAAAX6+BOh6eT52QK+xGK2VCwaVbxRjoiIUo9X4SV25oLLQ5bt/0m8mFc8oAKdHe14/42XAQCXL16Kk86aj32dgCqvHFtVVQHbKVXJtfkMxy4T9+WKYy4Bs1YFe1A14o8BFYvihbb9LYHVBeVWMRHnSe7I1WLAr9aFJujExKIzoOVpsd8chsoMtyqVOskHAMfURbnDPwUcLvFnmE2tULMpiUpEFMlV55+MvBxzwLJBzo0QlplRW2CA3e7AtU9/hQ+2O7H8rEH45fxZ0LbvDrsveaTvwklX+B4H9y/3Lu+OJUylYjvTbk2yXDE52bQ1cH8GvwtTpqB2rMYiwFQU/jiR6H3fuy6lATi4AVj3grhA251YjDZXkjzCDV+z7gYufguonJLYePqDnAqxzSlF5m2FyswiEWWvWWfPgjzod7PtMrH96V7rXrTZ2rD+ofVo+boFI04bgQt/cWHU3789cwOq8lTQlIgdhpR+NzIXG4rhFJxo7upOHLodoTsB8KP7RwCAWyHGKBubNkY8psvtwjvb3/E+z9HkYHLJ5Ijre/iPy79i0dPdav6Q+VGPXWWuinmM3qC+vB7/Pv3fmFLaO+Ohpq4mb7WszWWDVqFNqMKzL2NikYiI0iE7vlXTyGINvdhSPWgoAEChUECnN6Bq6GgUzVuOmsFiG42KWrFFalldYFsNS36CF9CiUFjFXv1uUzEAoKO7DemuptAKBZNWiS6nr2LR4XJjd5PvDr4CkwaFJk3AvIue5YAvkSVTiQlFrSHw4iYAFJq1cLoFb1UdABT7zbGoUfXeO8kM3XMjJpL73HjnbNw0Z2iKRhSe09V9V2cvPpdS07AVKhERjAYd7vrFeagf7qvYm1Ehfq/ndG6HWq3CqeMG4NOfGTClzgrsXRdxXzpNhOSawq868cd3AVfsFqoDB4qdG2oqBwAlY4DmXb4XT/odcEn3xTu5SmxJqjHF3GdUct93gqJ8gpi83PK+uECpBlQGoKstwsaI3ha1aqovOUnkz1uxyMQiEWUvtUYNsyXwOoC5+6anLkMXZHIZjp5+NKp/W42iwYHXPZJp41hiEG9IMqnF2GFNw5qQdRxuBw7jsHgMs3iMDYc2BKyzv32/9/He9r34/tD33ucj80eiSJ/YNRqL2hcrqLXizd6eisQuZ/gOUDU5NQkdI5NqcmpiVlhmqi3n4a7DsLvEqlCbywatUps1rVA9/w6IiIhSiVfh0+CGux/Btcvuw/+99AwAYOCZ10NbMRJb3GISUtF9cU6jjz0ni9PlhssdoTIgCqNRDCxs3e1W7d3VbM0dDghBlQYWnRo2vzkWfzrcCZffOjIAg4tDAxVPVYOnFaqnYi6cwu4kpL8ic9+Yh+d3Z4/COeMHoDI//jl0tCoFyiWcPzGYJ8np/9HwJG01yuy5sNWbE9JEROl0Zc4n+Ef9LqBLnMdwcPUA/PMHB/70pnihbfGZkzCySIHaslxg9+diq9Ew4voG2f8d8NE9gCt8dYBHcZF4Ma6kIBeonAy0HwhcQRF0scdYHM/RA03q7hyhD1NVN/teoGS0+LjzsDgHoD1KYjHe4w88QfxbZ42+HmUHhbq7Qjd74i8ionB0hsDORVWDqtD6bSvWvbIOVo0Vl115GfQ1epQPKw9Yz2QInxRpi/KdbVabYVAZ4HKLNzp92/gtvm/8PmCd7xq/8z7WGrVwuV3Y1LzJu8zlduHZH54FAIwpGINVP60KaGV6dMnRMKoTqwSzhJmTOpa+UrEYjxsm3oCrR1+dkWMf6joEm0vssmVz2aBT6iTvStVbMbFIRETpwMRiirndbjz18D145PYbsW2TGNgWFovVg3pT4kGm0y3g480HE97ucKd4p1ZwlSEAdDkCE4A5ehW6/OZY3HWoI6Sd5ojSyGP3tKMMbqfqr9AUmkQ0a/vG3WMWnQq/P2c0RpT1nkoFo0YJvVrh/TkD/q1Q+8Z5lUI2tX0lIoqqtUH8u+UnCIKA5W/vxDmvdGLt1v0QBAGlOeJd8yW5JmDvGl/CLRnTfgU0bkbIZErRVMWeowimJBKLFUcDS3b7kn3+5Arg7KfFx42bAWNh9MRivEaeDVz7DVAzvef7otS7Zg1w3M2ApTz2usmQyQCVHkwsElG2+e0nv8Wy1cu88yH6EwQB3772LXY+tBONmxtRqi9FVVkVAKC0NnBOZE9yMFhDR0PEY8tkMlSZq9DubIcMMpQYSvDqj6/C6fbNOb167+qAbXa07PAmngDgvZ3vYXer2Br+sO0wNjVvwoxy37zCFeaKiMePJJnEYjLH6a0WDFuAU2pPycix2xxtOGw7DJfbBafbCb0yM5WTmcDEIhERpQOvwqeQrbMDd15/OV7626O44oZl+OXS3/V4n61dDry27qeEtzvUJiacmtsdIZWEh9oD50q06JQBycadh9pRZvXdbdhhd2HUADFAbreFBv0yGaBVyr1Vke4wcy8VmkMrFv3vHlOkeI7FSdW5Kd1/uslkMlTm6tHcYYe7u1LR0wrVM+dlNsim90pEFA9blw0LlzyAm1/fjtvqNXjuxlPF79s9X3av0AI4bUDt8ckfpGw8cO6ziW0zYGLsdSxlyY1HawaU3XGGIWh+Y12O+LdMJs7baG9P7hjBrFWAvju28MwV6TkW9S75tUD9jaGfDSmp9MwrElHW+c/O/wAAGtoDE4AupwuPLH0Eqx5fhbwT81BxbQVqc2thUIXvAHSo65B3bjx//m1Kw6nLqQMAyGVyzB86Hwc7D+KTnz4BALQ72rGxaSPKDL7YYkPTBmgVvhue397xNqaUTkGhvhA7WnbArDbj7EFnx/HOI/OveIxXubEcMsiyproulfa27fUmjw3q+DtOpVquNrXXoyL92yIiIpISr8Kn0L+e+B2+WvVf3PaHp3HOxVdJEhh+uPGAN2EEIKSNaSSetph2lzugzSkAbGxoDXhu1asDKhZ3N3eitiCw5cewUrN3f+Ho1ApYdGLb1R8PhFYDaFUKGDWRK+kM6tS1tPzhjllpn+8wHarzDWjucMDWXSnqcIt/a7Oois/ThpeIiES3//0dvPz2J3jhsmFYNl0jxiJuF9C0TVyhcTNgKATKJsTc18QhAzD/pMnhXxwyJ7GBac2APkZix5LAHfuRLhaZSsMvBwBTCWBrjfx6smrqgeNvBwafJP2+qW9gxSIRZTGXEHjz8YfPfYg3X3gT9dfXo2ReCWRyGUYXjIZCHvl3t+C2p27Bjf0d0ROLg3MHAxCvkVSaK3FG3Rne1zY3b4ZCpsCx5cd6l/1w6AdUWaq8z/O1+fj5qJ/jQIfYqv248uNQm1Mb8XgF+oKo4wGSq1hUKVTI1eZCHqFNfX/2QP0DGFs4FmaNOfbKURhVRsghx8HOg77EorL3JNteO/01LB6/GOWm1HRPMKoSa9lLRESUjOyLVNJAcIntNk695Fo8/Nz/YcqMWZLt+7PtTZgxxBfA2qK0G/UIrhjsdDgDnu84FHi3fo5ejQ6/xKLN6cbIoLaf5dbobSR0aoW36nDLgTbsb+kMWafApI64fSorFvVqJaoTmB+xr6grNOJQmx02p/iz81SmarNo3sFsSqISEUXj6L4Jacm8afjk+d9j3qQi34v7fXMMob0RKB0LGPzmJBQEYPvH4mO3r4W6WimPby7bbR8Bjo7Y65XHqFq0DIi9j1jMUaoeTSVixWYqTLsOqJySmn1T76dmYpGIyN19raL+/Ho8/PLDGDZnmPe1kfkjo267vWV7wHOH24F97fuibuOpWHRDPO5vJv3G+9qu1l0YkjsEJYYSAIDNacPu1t0Ylusb0yUjLsGI/BHe5/UD6qFXxd8+M1wiUK2IfM0jmrqcOmgUGgzLGxZ75X7kxKoT8exJz6LGUtOj/ajkKhQZitDU2YROp3gtKtH5MVMpV5uLS0ZcEldyOhmsWCQionToFVfhH3vsMVRVVUGr1eKoo47CF198EXX9V155BUOGDIFWq8XIkSPx1ltvpWmksa364G3s/dtVcLY2wpSTi9ohwyXdv0WrwqXHVHuft3SFzpkYLHhexYOtga1P9zR3BlQomnVKuNy+ZKRMBhwd1DpUHiPxp1crA1quvvN96N2FBcbQeRYpebWFRrTZnN6ft7cVahZV8cV1wZuIKIz+FIu8t2oNhjzaiq1NbpgNWkwcOShwhZ2Bcwxh4AmBFX+f3A989njiB/ZcUNu7Dnjjl7HXjzXPojlKtWG8ou3DXCImQCPM5RTCUNjz8VB2UBuZVySihPWnWGT9F+vx5eIv0bWnC2qtGiMmjICj+2YljUITsxXkj80/hiyLtxWqh16lh1Vj9T4/tvxYb8Kl2dYMAJhaNtX7+uzq2VApVN7ntdbI1YqpdsfUO3DFyCtg1Vpjr0xhVZmr0GxrRrtDvJHepMqeeQeZWCQionTIeGLxpZdewuLFi7Fs2TKsWbMGo0ePxqxZs3DgwIGw63/66aeYN28eLr30UqxduxZz587F3Llz8d1334VdP10EQcCrz/wJt1/7M6gLqiHX+u6GenXNHlz27FfosDuj7CE+Z4wrw4iyHO/zcHMcBmtsC0wk7g9KLO493Inmdrv3uaeFqUeRSYuSHB0SoVMpYO++Q3FEmRlf7mjyzvPoUWxhYjFenraxyigJXU8V5r4jXQB87W9Vyuy5sqVhxSIRJaG/xCIA8KeX38VJV9yKQXlyFBjC/P8vuIE9XwAFQ3zLqo4NXOfARuCoKxM/uKJ7XsNTHgJKRsdev8LTVjXC91S0pGBOUJtUR1f49crGhV8fAIzdiUJnaFeFsFSJxUKUxQwFgJKfFyKKX3+KRT5/83P8av6voMnTQJnjm/7k24PfAgCG5A6J2epyV+subyISABwuhzcZGEm+LrTFun8Cc2b5zIDpafK0eRiSK8ZD5abykO2TmR+xp1Ry8VpMqbEUx5Yf631OiavLqUNTVxPaHGJbXaOm91QsphoTi0RElA4Zvwr/4IMP4vLLL8cll1yCYcOG4YknnoBer8dTTz0Vdv1HHnkEs2fPxg033IChQ4fizjvvxLhx4/Doo4+meeQ+drsdf7tnCZ55+G6cf/kvkT93CeQqrbdybP1PRwAAWw+2R9tNXKbW5kHnN/9gexzJysaghF5wotEtABv3++YYCk4sVufrkaNPLKA1aBTeNmyzhxfD6RLw/obAOwyLzUwsxuvuM0bg3AkDUBWlhavntYPdP19vK9Q+VLHoaduqVCT3X1M2tX0lIun0h1jE5XLhugdewNV3P4VF80/B/80zwKyRAcqg79rmHWKVXk29+LxgCGAuDlxv7uPAcTcnPxhDPrDwTUDXfZd98Bg8PG1KS8dEeN2TWAzznSAL+v9eiHCjleeCnCJMHGMsDr8Npc68l4CZt/k+G/3VKQ8Dx90E8MIeEcWpP8QiglvA/n/tx7NLn8Xxc49H1Q1VUBrFxKLNaUOHU2yTXmuphS7MzRdC9xQueqUee1r34IjtiPe1Q12HYh7fP2kYbJB1EEqD5l2uy6mLWhGo8dww1S3ZRKMiOGaJtm6UeSf7o6dnP41fjv0l8rR5sVdO0EDrQByxHUFzl5iQNiqzJ7HoafsqY/sEIiJKoYwmFu12O77++mvMnDnTu0wul2PmzJlYvXp12G1Wr14dsD4AzJo1K+L6NpsNLS0tAX+ktnHDD/jyv2/j2jsexs+u/S1kESbZFoLmOkyEUi7DhEorynMDL1C0dTlD5lAMFpxIbG63e8dSaNLAolNhe6Mv6WnWBl58G1xk8lbMAYBeHTvY1auV3orFHL0ap48pxZc7A+8wLDRrwm1KYZi0Ktx39miMKIs8+btZq4JVr0JTd/WppxVqX0q2LTttGGYNK0J1QXIX4lixSESJ6i+xyLZt2/HMilV47Kaf4ZGbr4RS0X0hwROT/PS1+PeBH8RqKs+cLmXjAa0F8MwBVH40MPQ0QBu9kiAmuTx2q1Pvusrwy7U5YhWkXB7YqlUqxqLwyxe8Acy5H9DlSH/MbDd4NnDM9f2/+tNYAFRPAxQRPttERH76SyziPOxE03+bMPfauVhw2wK45L6bfr5t/Nb7uMIcposAgHUH1wEA7G47HG4HNjdt9r7W2NmY1Jg8c9hNLpkcUsU1pnAMjKrIyabgORO1kW6UisGiifw7fLYbXzQel4+6PKG5LGPJ0+bh3MHnoianBgIE7G7dDSC7qvg8n2smFomIKJUyehW+sbERLpcLRUWBF3aKiorQ0NAQdpuGhoaE1l++fDksFov3T3l5uTSD9zNq9Bg8+OonmHHq2ZLv28OsU0GrUgTMWwgArV3OkGXBGv1anyrkMhzudHjbZMpkwNiKHPx02NcGLLhicWipOerdf+EYNUrY/cZ13cxBIesUdlcsdjmij78nPO1BZwzJjnmRKvMMaG63w+lyw+EWz6umD7VCNWtV+POCCRhXkVwlAxOLRJSo/hKLDBxYh22v34erzzsx9EVHh+/x4V1iMtGTqNOEmW9G3kv+L5XJAH2umByNdTEvmcSjPi+08hEQqzknXR6+ypGIiEhi/SUWmT1mNkbcPwLnX3k+nt/wPABfYuOLBt98keHae7Y72vHyppcBAKWGUpjVZmw7ss37emNnI/TK2MmnUmNgVeJA60AAQJ4utCLumNJjol7nCK40TLZi0aJmYlEqMypmAACqLFUR1/nw3A9xxagrUGOpAQDsbd8LOeRJJ4b7IikTtURERJH0kitHqfPb3/4WR44c8f7ZvXt3So5jMGcmWDzS6fBWBkZywC+xWGTWoKnd7q1mA4Cpdfn4qdmXWDQHJRaLLYnfVR5c1Vieq8eUWjGY9yRCC01ixWJLlwOJMmrjuwNcrZRj810n4fxJ0v/i1BvV5BvQ3OGAzemG0yVAhuTbivZFmj7U9pWIske6YhGrOUxyzdEBrH8lcNngOYCyj3QNqDoGsFT4qgd/+Q0w+3fR51+Ml1wuJi6JiIj6uXTEInnaPBTkFuDLhi+xs3UnRheMhlKuRIejA5uaNoVUAPp77cfXvHMqymVyjC8aj12tu7yvH+g4EDY5GEwtV8c93uIILdG1Ci2OrzjeO94/Hf8nXDvu2oiVh1pF9IRVjjYn7jFRdDWWGqyat8qbYAxHLpNDrVDDpDYhV5uLA+0HoFaos2q+SpVcBbVCnXCBABERUSIymnHIz8+HQqHA/v2Bc+/t378fxcXhg7zi4uKE1tdoNDCbzQF/+pPDHfaYicVDfnMsFpm0aGq3w+a3zZTaPG8FIyC2zlQpfAFIji7xAMygCU38XVkv3jG29YA4eXZRd8Via1fseSKDqRJIlqmVcujV2dGKqq7QiENtNnQ5XHC43FDIZVD0lsqTNNCosue9EpE0+k0ssvkdYM+XocvbDgCb/+N7rjaJybqeCG5dmso7wM/4CzDzVl9lZW4VcPSVvlato88PP6Z4GQp6PEQiIqKe6DexCIAWewve3/U+jio+ClNKpwAAth7eCrlMjknFk8Jus6dtDz5v+ByzKmd5l00rm4aGdl/1ZWNnIwp10nUhUsvVyNWGv7no8ws+x9Kjl0LZHVscM+AYXDbysrDzQgLAg9MfxElVJ6FIL1aQmtRizOKpkIuUkIyWaO2Lyozi3NlD84am9DhmtTnutqaV5ko4BSdUClXWzV9pUGZP61ciIsqMjEYyarUa48ePxwcffOBd5na78cEHH2Dy5Mlht5k8eXLA+gDw3nvvRVy/v+tyutHSGTkx53YLONxph6m7wq/IrIVbAA76VTEOKTbDEFRhaPKbZzHe6kB/xjCJxVyDWB3hmRLSU7HYmkTFIoVXU2BEl9PtrUpVymVQZNFdauosqs4kImn0m1hk4wpgV5h5lba8J7b89CgbD5jCX3SMmyKoGsBcFn49TzKwJ/PMyeXRqxPn3Af8Yg1QOi786znd8zhFmk8xQrVCgBu2Aac96tsXERGRhPpNLAKgw9kBk9qEK0ZeAbNaTF7+ePhH1FhqUKgPnxhcc2ANyo3lWDh8oXfZMWXHQIDv5uemriYUG3oYvwDe5OTYwrFQB8cz3eQyeVzVkR7FhmLcV38fBucOBgBcMvwSnDXwLIzIHwEgfAvVqaVTA95vT5WbxA5NmWy7mqPNwf/O+x/OGnhWxsYQrNZSCwDQKDQhrW37O71KzzkWiYgopTJexrV48WIsXLgQEyZMwKRJk/Dwww+jvb0dl1xyCQBgwYIFKCsrw/LlywEA1157Lerr6/HAAw/g5JNPxosvvoivvvoKf/nLXzL5NhLS0l2h5/KrEuyJA61dEV9rsznhFoACowatXU4UmsVk3sE23zYKuQxjK6xYucU3IbpZq0RTu1jpmEwoEi6xGMxT1dhmC02MsmVDcmoKxLvS9rV0weF2Q6GQIZtOJSsWiSgZ/S4WcXQCQndngpa9wLG/AT7+nfi8+tjk5iP0F+FCXIiT7gPcTrGVaSrl1UZ+rXIyMO+lyMlJU4SEoz9DHjDuouTGRkREFIf+EovIIMOFQy/E6KLR2Hx4MxxuBxo7G3FS1Umwu+0Rt7t4xMWoyanxPi8xlqDUUIq97XsBAC7BhSpzVY/H50kmWrXWHu8rEoVcgdum3OZ9Hi7Z98QJT0h6zDMGngGNQoNB1kGS7jdRkapAM8VzPtRyddZVLOqVejiFxLuDERERxSvjicXzzjsPBw8exK233oqGhgaMGTMG77zzjnci8l27dkHu18pxypQpeOGFF3DLLbfgpptuwsCBA/H6669jxIgRmXoLCft+7xEAQLvNJcn+mjoiB+ie+QtLc3TY1tiOXL0aaoXcmzT0mFqXF5BY9K9YTIZeE3/QJoTJrwZXUPYlmUyKVuTqIQNwqM0GQAalXA65PHsyi5xjkYiS0a9ikX3fAute8D0vGQ2MmQf89CWw9UPAEqG60JNsDDfnYPN2wFrte64xht/HqQ8D7y0FFCrfemdGucDpqWjMHxx5HSkMnh35NZMEczUSERH1UH+IRc6oOwN6lR6n150OjcI3l7NGocGJlSdixfYVAesf6jwEAKiz1OH4iuO9rUc9jio5Cq9tec37fGDuwBSOPnXSNcfinJo53scDTAMAAHU5dWk5dm9Vm+OrWFTKMn75M60MagNabC2ZHgYREfVjveKb9ZprrsE111wT9rWPPvooZNk555yDc845J8WjSp3mDulaf6oVchzpjLw/T3VkiUXs7y+TAQOsOhzwa4UKAJNr8wFs8j63RJlXUaOKnbzR9+HEYE9V5elh1aswd0z6L1ZqVQoUWcR5NE0aFZRyGXpTXrEm34Btje0pS3aqlaxYJKLk9ItYpHkHsPpRIG8gUD4J2P4/YMJlQE4l4HeBLyx9LnDaY4DRr01Z/RLg0z8AH94lVj3GMvp8YNjpkY/lSV565mRU64FfbQbaD8bet1Q8yczKqeLf5pL0HZuIiCiKvh6LjCgYgeH5w0NutB2aNxTl5vKQ9dscbQCAgdaBYVuP1g+o9yYWlXIlKkx9syW5pyVsNKPyR2FQ7iDJ5l3M1+Xjw3M+RJczcnerbOCpgtUoNVlXsWhUGdFqa830MIiIqB/rFYlFSl6eUR01sdja6YBRowxI9FV1J3f8jSgNDHajJRY9cyMGmzawAF/tbIZcBujV2fvRkslkWHvriRDClWKmQVWeHs0dDqgUcijkMsh7US/UD389HRsbWlCdl5qJxDVMLBJRttLnAyotMPJsYNJVgLUS2LsGKB4pzlMYj3EXBj4/7rfA+IXA0ycDHy0H5ArAv5vX7N8BO1cCWr8YQqWLvP/hZwAb3hDbsXqYikLbkVamcH4ohQr47R7Ac6El0tyLRERElLBw3XumlU6L2iIzUsefiSUTvY9ztbkwqiJ0TOjlPC1cqy3VEdd5/uTnYXPZoJL3rHOUvwJ9gWT76qvytHkwqAzQK/VZN8diuakc7Y722CsSERElKXuzP71YQ4t4V1m4yka7yx3wPM+o9lYlhtPS5USOXgWVwndRsbbAgA83Bq6n7H69qDtpaNEnHtBeO3Mg5owsRoFJg+9+YsuFTLVErck34P0NB2DReSoWe09iEQCGFMe+YzNZbIVKRFnrxLuAcQuBnAGAtjv7V3VM5PWHnwGsWAwMmBR9v+ZS4NL3gKfnAAc3Bb529JXin3jJZMA5T0df5+YG4PCu+PeZDI3JV7nIxCIREVFKDM0birGFYzG9fHpSvxv7V/oV6AqgV+mlHF7aeKoQNTG6R8R6HUDWJcd6SiaToX5APfRKfUir3f7uNxN/g12tu+KqmCUiIkpGdn2z9gLOoMRgsE67C49+uCXi6253YBVcvkGDTfsjtzdo6XKgwKSBUuEL5AcWmmKO06pXx1wnnIFF4r4TmWMxHore1M+zl6srNOHlr/ag2KKFUiHvVa1QU83TCrWX5VKJiFJPqQaKh0d/HQA8F6T0ucAtcbYgNeQDl/wHeO5MILcGUKewYkClAwpSPOeiP2+1JL84iIiIpDS+aDweO/4x6JRRuhnEUKArwMHOgyjSF/XZxKKUrFprpofQ5yyfthxNXU1QK5K7xtVXKeSKqFWyREREPcW+gWnkFoD9QXMb+hMEAU+u3IbmDnvc+8wzqqOu39LlQL5RA6VfG7Sq/NhtKK1JVCz66+kci3pNYM7bk1j855WTceqoEuQbwweFZ44rAwAML83eu7JqCgxwugU0ttp6ZcViKnlaoWbPOyYiitPJDwJ1M8UWqR5KtS/hGIveClz6LjD8LCC3H12k8FQsSjSnEREREfmY1CZJKsVKjCWStgkNNjJ/ZNzrLpu8DGMKxsTdmnVM4RgAwPTy6UmMLLwcTY5k++rv5DI58nX5mR4GERFRv8OKxTTbd6Qz4mvf7DkCALj0mGr8beX2sOt0OYJaoRo0Icv8tdtcKDZrAyr+quNILJq1PQvaDSmaY3FCVS4mVEWen6HQpMWmu2ZnVTItWE2++AvOwTYbqvMNWXUuOMciEVEEhnzgwn/1bB8KFTDoRGnG01uodGIFZrzzUBIREVHaVZsDb2qSsnJv9bzVaOxsjHv9swedjTPqzoBCHt/N1Eq5Et8s+AZuIXr3qkQ8MP0BPLn+SZSbyiXbZ7ArRl2B5354Lq4WrURERJR9mFhMs31HuqK+PmNIAX4WJbEYLFLlnr9yqw5dTl8QG882Zl1mKxZ7Itvn2Suz6qCUy+BwCVAp5Fl1rVSjEn/22ZNKJSKiHpuxVEwwEhERUa8jgww1lpqAZVaNdIlFo9oIY4Jt3uNNKnrIZXLvXIvJ0Cq06HL5riWZ1CZcP/76pPcXj1+M/QUuGnoRzJrs7QZFREREkTGxmGZ7D4dWLHomMlcpZPjViYNQlhP/xa08Y+y7x6ryDdjY4JuHMZ6J0y1+iUV1ElVgBg0/WpmikMtQZtVh56GOrGuFqlZ0f1az6D0TEVEPHX0lIAix1yMiIqK0s2qtsGgtAICvL/wan+37DANMAzI8qvT68JwP8d6u91BhrkjrcXO0OWk9HhEREfUdWVTL1DvsPRxaseiZz/DiKVUYWmyJur3THdg+w6xV+pIpAA61Bc7hKANQkRs6yfkAa/TkpVnnSwyqFIl/TDRKOeTM7WRMVZ7Y7lYpl2dVYlGlkLFakYiIEpdF35VERER9SaG+EAaV+PutWqHGsQOOjVn9J8W8jr2JSWPCmQPPhFmduerBEypPAIAeVV4SERFR/8GIII3cgoD9LZFboepUCsgjZOOa2u34fu+RkOUymQwlFq33+Q/7WiD43XVv0ilhCjNfYqx5Fv0rFrWqxFuLymSypLbri2oKxHNZYOo9cw/Udo9JpZRl1bVSmUwGtVLO5CIREREREVEfp1PqUGmqjDuhVmmuTPGIstfFIy7GW2e+hfFF4zM9FCIiIuoF+tdtXL1ca5cTTndgq60OuxP/+/EgAKClyxF2uy0H2gAAzR2OsG1My6w67GzqAABsaGjFwVZf1aJVp4ZWHZo/ri0w4pMfI09QbunhHIuAmCjtsLsS2ub1RVOw9UA79H0oKXnc4EL84/KjkB9HW9p0qSsU54jItopFoLvCNrveMhERERERUb/zt1l/w/Yj22FUxTcH4kPTH8LbO97GwJyBKR5Zdio3lWd6CFnh+Irjce8X92Jw7uBMD4WIiCgiJhbTqLndDgDI0alwuNOBT7YcxCdbDsLhEpONP4VpkwoAb3yz1/tYCDMHkH9bU6fLjU+2HPQ+zzWqoQuTpItVsWhQx/5o3HbqMDy1agfKw7RaBQC9WoFD7TF3E1BRN6bcijHl0k3Eni6Ta/MzPYQANQXiL14qhQyKLOtJy4pFIiIiIiKivq/YUIxiQ3Hc66sUKpxWe1oKR0SUesWGYnw+//NMD4OIiCgqJhbTqKnDDpVChqp8A9btPgyHS8CsYUUYWGTCo//dEjYZsu1gG37Y1xJ1v5V5viTh6PIcfLXzsDeZmG/UhG1JOqjIBAAosYSfazFSS1Z/F0+txnkTK6BVhe+oq48jOTm0xIxTR5XEXI8SU9OdOFYpsm+uS41SDs60SERERERElB3UCnWmh0B9xH/O+g8+2/sZCvWFmR5KVHpV+Bv4iYiIegvOsZhC7qC2p80dduQbNRhZZgEALJ45CPefOxr1gwsi7uONb/Yiz+ALktWK0B+Zf8XgcYMKcbDVhl3drVELjRqxNWQQndqTeOxZAK5TK8K2Z/U/RjRvXzsNV02v7dEYKFSBSQOjRgmTVhnx59Nfhfu8ExERERERUf+Uo8nJ9BCojyg1luLMQWdCq9RmeihERER9Gq/AS+D+/2zC2+sbvM+r8sRE39e7mgPWa253oNCk8SYHZTLApI0+l+F3e1swe4Sv9Ue4tpb+rVCHlJgCnhdZeh4sJVvxZogjsQgg6xJf6SCTyfD0JRNx3sTsmwNBo5SDHykiIiIiIiIiIiIiIukxsSiBZ1fvxKdbD6Hd5gIA1HbPb/fljias3e1LLjZ32FFi0UGljD/rkWtQBySHNGHamvonEuUyGS44qsL7vMisif+NRJDsHH16jXSdduXMFCVsQlUuJlXnZXoYaadR8r81IiIiIiKivmhy6eRMD4GIiIiIYuAcixKyOcXEokwG5OpVsBrUeP6zXd7EnM3pRlW+PqEk2ezhxRhYaIq6ToExMHk4f1IlfvfOJgCAVRe+1Wl19xx8Y8utEfd766nD4HS5oVHGV3kYzKBJbrtw/JOnRNHUFhrhFgTOs0hERERERNSHfHHBF2i1t8a9vk6pQ6ezM4UjIiIiIqJwmFiUUJdDTCwKAiCTy3D9CYPw61e+QZfD7V1nSLEZm/fHHyifP6k8YK5CZVD1YK5RHdJK1KL3tVeVR6g2tOhU+GbZid5kaDg/m1od9zjDMail+3ixYJHi9dC5Y7D3SGdcc3wSERERERFR76BT6qBTxn9T8ap5q/Dx7o9RZa5K3aCIiIiIKAR7BkqgMlecU/HTbYcAAIIgAAC0SgWWnjzMu55cBgwsNCa077qg9Q1B7UULTeFbncbTAtWiU6HQlLoJqz1jzdFHn0eS0uMP54/BLScPDfkM9TdyuQwDrPpMD4OIiIiIiIhSSCVX4fjK46FX8fc/IiIionRiYlECA7oTi+t2HUZrlyPgtQuOrvQ+thrUMOviT7KVWLTQB1X9aVXx/ciKzcklDIss0iUajd0JLJU8cMysPsyM08aU4bJpNVAp+M+eiIiIiIiIiIiIiIgSxwyDRApNGrR2OfHehv3e9qM1BeI8hreeMsy7Tk+rxYITjbEkksR745qpWHzCoARHFFnwex1eaoZVr8Ipo0olOwYRERERERERERERERGlR//uiZgmf75wHL7Y3oTnPtuFVVsOYfQACwBfYk2tFPO3JRYdDJqezfum6d7XgqMrsedwZ0ii0VMcqEyiKm3UgJwejS2YIWiOO5lMhrW3nijpMYiIiIiIiIiIiIiIiCg9mFiUgFGrwoyhRSi2aDHnDyuxZlczNCpfUq21ywkAKLNooVH2LLHoccfcEbA73d6kpVoph93pRq5BnFvxoXPH4KbX1iPfGHuuxVTRqaV5r0RERERERERERERERJR5TCxKaFipBfWDCvC/zQcDEotbDrQBAMpzpZ1Q3JNUBIDVS2bgjW/2oqL7GBV5ejx32VGSHk+rkqPL4Y67vaohwbatRERERERERERERERE1Hsx8yOxX504CP/bfDBg2bZGMbFYlqNLaF9KefwTJOYZNbhkanVC+0/UxjtPwnc/HYn7fZi04sdLkcD7CPa3hROwZmczrAZ10vsgIiIiIiIiIiIiIiKinmNiUWKjBuRgck0edja1w+50B7zmX8XorzJPrDIcUmzyLjt5ZAmm1OZJNq7SHC0AwKxV9Wg/I8osca87oSoXt506DHWFhqSPd/zQIhw/tCjp7YmIiIiIiIgoswbnDgYAmDVmAMDI/JEAgFEFozI2JiIiIiJKDhOLKfDY/LFYve0Qcrur7B6dPw53r/gBJd3JvRKL+Lenoq/QpMWXN89El8Pl28cF4yQd03kTK2BzujG+0irpfqNRyGW4OMVVlERERERERETUu5096GzUWmqRr88HAFi1VqyetxouwRVjSyIiIiLqbZhYTIFcowYnjyr1Pi/L0eHxC8Z7n194dCUOdzgwwOqbc7HApEn5uBZMrkr5MYiIiIiIiIiIgo0tGhvw3Kg2pvR4nmrIXG1uSo9DRERElG2yLrEoCAIAoKWlJaPjWDixKKFxuG0d3vXtEVqqEhERJcvzfeT5nqTU6S2xCBERUW/CWCR9siUWmZI7Bc8d9xz0Kj1aWlrQ3toOV6cLtnZbv3/vRESUOMYiRPGTCVn2L2XPnj0oLy/P9DCIiIh6pd27d2PAgAGZHka/xliEiIgoMsYiqcdYhIiIKDLGIkSxZV1i0e12Y+/evTCZTJDJZJLss6WlBeXl5di9ezfMZrMk+8xWPJfS4bmUDs+ldHgupZGK8ygIAlpbW1FaWgq5XC7JPik8xiK9G8+ldHgupcNzKR2eS2kwFunbGIv0bjyX0uG5lA7PpXR4LqUj9blkLEIUv6xrhSqXy1N2x4HZbOYXgkR4LqXDcykdnkvp8FxKQ+rzaLFYJNsXRcZYpG/guZQOz6V0eC6lw3MpDcYifRNjkb6B51I6PJfS4bmUDs+ldKQ8l4xFiOLD1DsRERERERERERERERERxcTEIhERERERERERERERERHFxMSiBDQaDZYtWwaNRpPpofR5PJfS4bmUDs+ldHgupcHzSMH4mZAOz6V0eC6lw3MpHZ5LafA8UjB+JqTDcykdnkvp8FxKh+dSOjyXRJkjEwRByPQgiIiIiIiIiIiIiIiIiKh3Y8UiEREREREREREREREREcXExCIRERERERERERERERERxcTEIhERERERERERERERERHFxMQiEREREREREREREREREcXExGKcHnvsMVRVVUGr1eKoo47CF198EXX9V155BUOGDIFWq8XIkSPx1ltvpWmkvV8i5/Kvf/0rpk2bBqvVCqvVipkzZ8Y899kk0c+lx4svvgiZTIa5c+emdoB9SKLn8vDhw1i0aBFKSkqg0WgwaNAg/jtH4ufx4YcfxuDBg6HT6VBeXo7rr78eXV1daRpt7/Xxxx/j1FNPRWlpKWQyGV5//fWY23z00UcYN24cNBoN6urq8PTTT6d8nJRejEWkw1hEOoxFpMNYRBqMRaTBWITCYSwiHcYi0mEsIh3GItJhPNJzjEWIejmBYnrxxRcFtVotPPXUU8L3338vXH755UJOTo6wf//+sOuvWrVKUCgUwn333Sf88MMPwi233CKoVCph/fr1aR5575PouZw/f77w2GOPCWvXrhU2bNggXHzxxYLFYhH27NmT5pH3PomeS4/t27cLZWVlwrRp04TTTz89PYPt5RI9lzabTZgwYYIwZ84cYeXKlcL27duFjz76SFi3bl2aR967JHoen3/+eUGj0QjPP/+8sH37duE///mPUFJSIlx//fVpHnnv89Zbbwk333yz8OqrrwoAhNdeey3q+tu2bRP0er2wePFi4YcffhD++Mc/CgqFQnjnnXfSM2BKOcYi0mEsIh3GItJhLCINxiLSYSxCwRiLSIexiHQYi0iHsYh0GI9Ig7EIUe/GxGIcJk2aJCxatMj73OVyCaWlpcLy5cvDrn/uuecKJ598csCyo446Svj5z3+e0nH2BYmey2BOp1MwmUzCM888k6oh9hnJnEun0ylMmTJFePLJJ4WFCxcygO6W6Ln805/+JNTU1Ah2uz1dQ+wTEj2PixYtEmbMmBGwbPHixcLUqVNTOs6+Jp4A+sYbbxSGDx8esOy8884TZs2alcKRUToxFpEOYxHpMBaRDmMRaTAWSQ3GIiQIjEWkxFhEOoxFpMNYRDqMR6THWISo92Er1Bjsdju+/vprzJw507tMLpdj5syZWL16ddhtVq9eHbA+AMyaNSvi+tkimXMZrKOjAw6HA7m5uakaZp+Q7Lm84447UFhYiEsvvTQdw+wTkjmXb7zxBiZPnoxFixahqKgII0aMwD333AOXy5WuYfc6yZzHKVOm4Ouvv/a2BNm2bRveeustzJkzJy1j7k/4vdO/MRaRDmMR6TAWkQ5jEWkwFsksfu/0b4xFpMNYRDqMRaTDWEQ6jEcyh987ROmlzPQAervGxka4XC4UFRUFLC8qKsLGjRvDbtPQ0BB2/YaGhpSNsy9I5lwG+81vfoPS0tKQL4psk8y5XLlyJf72t79h3bp1aRhh35HMudy2bRs+/PBDXHDBBXjrrbewZcsWXH311XA4HFi2bFk6ht3rJHMe58+fj8bGRhxzzDEQBAFOpxNXXnklbrrppnQMuV+J9L3T0tKCzs5O6HS6DI2MpMBYRDqMRaTDWEQ6jEWkwVgksxiL9G+MRaTDWEQ6jEWkw1hEOoxHMoexCFF6sWKR+ox7770XL774Il577TVotdpMD6dPaW1txUUXXYS//vWvyM/Pz/Rw+jy3243CwkL85S9/wfjx43Heeefh5ptvxhNPPJHpofUpH330Ee655x48/vjjWLNmDV599VWsWLECd955Z6aHRkQUFmOR5DEWkRZjEWkwFiGivoaxSPIYi0iLsYh0GI8QUV/EisUY8vPzoVAosH///oDl+/fvR3FxcdhtiouLE1o/WyRzLj3uv/9+3HvvvXj//fcxatSoVA6zT0j0XG7duhU7duzAqaee6l3mdrsBAEqlEps2bUJtbW1qB91LJfO5LCkpgUqlgkKh8C4bOnQoGhoaYLfboVarUzrm3iiZ87h06VJcdNFFuOyyywAAI0eORHt7O6644grcfPPNkMt570u8In3vmM1m3pXXDzAWkQ5jEekwFpEOYxFpMBbJLMYi/RtjEekwFpEOYxHpMBaRDuORzGEsQpRe/J8pBrVajfHjx+ODDz7wLnO73fjggw8wefLksNtMnjw5YH0AeO+99yKuny2SOZcAcN999+HOO+/EO++8gwkTJqRjqL1eoudyyJAhWL9+PdatW+f9c9ppp+G4447DunXrUF5ens7h9yrJfC6nTp2KLVu2eH8JAYDNmzejpKQka4PnZM5jR0dHSIDs+aVEEITUDbYf4vdO/8ZYRDqMRaTDWEQ6jEWkwVgks/i9078xFpEOYxHpMBaRDmMR6TAeyRx+7xClmUAxvfjii4JGoxGefvpp4YcffhCuuOIKIScnR2hoaBAEQRAuuugiYcmSJd71V61aJSiVSuH+++8XNmzYICxbtkxQqVTC+vXrM/UWeo1Ez+W9994rqNVq4Z///Kewb98+75/W1tZMvYVeI9FzGWzhwoXC6aefnqbR9m6Jnstdu3YJJpNJuOaaa4RNmzYJb775plBYWCjcddddmXoLvUKi53HZsmWCyWQS/vGPfwjbtm0T3n33XaG2tlY499xzM/UWeo3W1lZh7dq1wtq1awUAwoMPPiisXbtW2LlzpyAIgrBkyRLhoosu8q6/bds2Qa/XCzfccIOwYcMG4bHHHhMUCoXwzjvvZOotkMQYi0iHsYh0GItIh7GINBiLSIexCAVjLCIdxiLSYSwiHcYi0mE8Ig3GIkS9GxOLcfrjH/8oVFRUCGq1Wpg0aZLw2WefeV+rr68XFi5cGLD+yy+/LAwaNEhQq9XC8OHDhRUrVqR5xL1XIueysrJSABDyZ9myZekfeC+U6OfSHwPoQImey08//VQ46qijBI1GI9TU1Ah333234HQ60zzq3ieR8+hwOITbbrtNqK2tFbRarVBeXi5cffXVQnNzc/oH3sv897//Dft/n+f8LVy4UKivrw/ZZsyYMYJarRZqamqEv//972kfN6UWYxHpMBaRDmMR6TAWkQZjEWkwFqFwGItIh7GIdBiLSIexiHQYj/QcYxGi3k0mCKypJiIiIiIiIiIiIiIiIqLoOMciEREREREREREREREREcXExCIRERERERERERERERERxcTEIhERERERERERERERERHFxMQiEREREREREREREREREcXExCIRERERERERERERERERxcTEIhERERERERERERERERHFxMQiEREREREREREREREREcXExCIRERERERERERERERERxcTEIhH1WTKZDK+//nqmh0FERERZirEIERERZRJjESIiygQmFomylEwmi/rntttuS9tYpk+f7j2uVqvFsGHD8Pjjj8fcbt++fTjppJPSMEIiIiKSGmMRIiIiyiTGIkRERMlRZnoARJQZ+/bt8z5+6aWXcOutt2LTpk3eZUaj0ftYEAS4XC4olan7L+Pyyy/HHXfcgY6ODjz77LNYtGgRrFYr5s2bF7Ku3W6HWq1GcXFxysZDREREqcVYhIiIiDKJsQgREVFyWLFIlKWKi4u9fywWC2Qymff5xo0bYTKZ8Pbbb2P8+PHQaDRYuXIlLr74YsydOzdgP9dddx2mT5/ufe52u7F8+XJUV1dDp9Nh9OjR+Oc//xlzPHq9HsXFxaipqcFtt92GgQMH4o033gAg3rl3zTXX4LrrrkN+fj5mzZoFILTlx549ezBv3jzk5ubCYDBgwoQJ+Pzzz72v//vf/8a4ceOg1WpRU1OD22+/HU6nM/mTSEREREljLMJYhIiIKJMYizAWISKi5LBikYgiWrJkCe6//37U1NTAarXGtc3y5cvx3HPP4YknnsDAgQPx8ccf48ILL0RBQQHq6+vjPrZOp4Pdbvc+f+aZZ3DVVVdh1apVYddva2tDfX09ysrK8MYbb6C4uBhr1qyB2+0GAHzyySdYsGAB/vCHP2DatGnYunUrrrjiCgDAsmXL4h4XERERpQ9jESIiIsokxiJEREShmFgkoojuuOMOnHDCCXGvb7PZcM899+D999/H5MmTAQA1NTVYuXIl/vznP8cVQLtcLvzjH//At99+6w1wAWDgwIG47777Im73wgsv4ODBg/jyyy+Rm5sLAKirq/O+fvvtt2PJkiVYuHChd1x33nknbrzxRgbQREREvRRjESIiIsokxiJEREShmFgkoogmTJiQ0PpbtmxBR0dHSNBtt9sxduzYqNs+/vjjePLJJ2G326FQKHD99dfjqquu8r4+fvz4qNuvW7cOY8eO9QbPwb755husWrUKd999t3eZy+VCV1cXOjo6oNfrY709IiIiSjPGIkRERJRJjEWIiIhCMbFIRBEZDIaA53K5HIIgBCxzOBzex21tbQCAFStWoKysLGA9jUYT9VgXXHABbr75Zuh0OpSUlEAuD5wCNngswXQ6XdTX29racPvtt+PMM88MeU2r1UbdloiIiDKDsQgRERFlEmMRIiKiUEwsElHcCgoK8N133wUsW7duHVQqFQBg2LBh0Gg02LVrV0LzBgCAxWIJaNGRqFGjRuHJJ59EU1NT2Lvzxo0bh02bNvXoGERERJRZjEWIiIgokxiLEBERMbFIRAmYMWMGfv/73+PZZ5/F5MmT8dxzz+G7777ztvMwmUz49a9/jeuvvx5utxvHHHMMjhw5glWrVsFsNnv7+KfCvHnzcM8992Du3LlYvnw5SkpKsHbtWpSWlmLy5Mm49dZbccopp6CiogJnn3025HI5vvnmG3z33Xe46667UjYuIiIikg5jESIiIsokxiJERESAPPYqRESiWbNmYenSpbjxxhsxceJEtLa2YsGCBQHr3HnnnVi6dCmWL1+OoUOHYvbs2VixYgWqq6tTOja1Wo13330XhYWFmDNnDkaOHIl7770XCoXCO/Y333wT7777LiZOnIijjz4aDz30ECorK1M6LiIiIpIOYxEiIiLKJMYiREREgEwIbgxORERERERERERERERERBSEFYtEREREREREREREREREFBMTi0REREREREREREREREQUExOLRERERERERERERERERBQTE4tEREREREREREREREREFBMTi0REREREREREREREREQUExOLRERERERERERERERERBQTE4tEREREREREREREREREFBMTi0REREREREREREREREQUExOLRERERERERERERERERBQTE4tEREREREREREREREREFBMTi0REREREREREREREREQU0/8HVXSp5BjTlrQAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "100%|██████████| 50/50 [16:46<00:00, 20.13s/it] \n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAC7AAAAPgCAYAAACx8HFwAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzde1yb9f3//ycJp6TUHkgP1BbDrC10bM52bqzIpHU6nTgwxakz087DdJs70jlRp/UzLTtI99X587SpVWtxn1GKKx43bRU7nSvqHC7UOo1pLVaDpSfCMfn9wS35lEJCgEASeNxvt94I1/W6Xtc7lENyXa/3653g8/l8AgAAAAAAAAAAAAAAAAAAAABglBmiPQAAAAAAAAAAAAAAAAAAAAAAwMRAATsAAAAAAAAAAAAAAAAAAAAAYExQwA4AAAAAAAAAAAAAAAAAAAAAGBMUsAMAAAAAAAAAAAAAAAAAAAAAxgQF7AAAAAAAAAAAAAAAAAAAAACAMUEBOwAAAAAAAAAAAAAAAAAAAABgTFDADgAAAAAAAAAAAAAAAAAAAAAYExSwAwAAAAAAAAAAAAAAAAAAAADGBAXsAAAAAAAAAAAAAAAAAAAAAIAxQQE7AAAAAAAAAAAAAAAAAAAAAGBMJEZ7AAAAAAAAAAAAAAAAAAAAAACiz+fzqaurS16vN9pDQQwzGAxKSkpSQkLCsI6ngB0AAAAAAAAAAAAAAAAAAACYwHp6euR2u3Xw4EF1dXVFeziIA0lJSZo8ebIsFouMRuOQjk3w+Xy+URoXAAAAAAAAAAAAAAAAAAAAgBjW09OjXbt2qaOjQ1OmTFFaWpqMRuOwu2tjfPP5fOrp6dGhQ4e0f/9+paSkaN68eUMqYqeAHQAAAAAAAABi1OHDh7Vp0yY999xz+uc//6mPP/5Y+/btk8lkksVi0ec+9zmdcsopOv/88zVnzpxoDxcAAAAAAAAAEIf27t2r1tZWZWZmymQyRXs4iCMej0cul0tTp07VrFmzwj6OAnYAAAAAAAAAiDE9PT363e9+p1//+tdyu92DxhsMBp133nm69dZbdfzxx4/BCAEAAAAAAAAA44HP59N///tfpaWlafbs2dEeDuJQc3OzDh8+rOOPPz7srv2JozwmAAAAAAAAAMAQtLa26oILLtAzzzwT2DZ//nydeeaZysnJkcVi0eHDh7Vnzx5t3bpVL774ojo7O/WnP/1J7e3tqq2tjd7gAQAAAAAAAABxpaurS11dXUpLS4v2UBCnJk+erNbWVnV1dSk5OTmsYyhgBwAAAAAAAIAY0d3dra9//euqr6+XJM2aNUt33nmnVqxYMWDXkuuvv15ut1u33Xabfv/734/1cAEAAAAAAAAAcc7r9UqSjEZjlEeCeOX/3vF/L4XDMFqDAQAAAAAAAAAMzXXXXRcoXs/MzNQrr7yi0tLSkEtuWiwW/epXv9Krr76qT3/602M1VAAAAAAAAADAOBLqOjQQynC+dyhgBwAAAAAAAIAYsGfPHt1xxx2Sei/2Pvroo7JarWEf/+lPf1q33nrrgPs8Ho/uvPNOnX766crIyFBycrLS09N18skn64YbbtCePXsGPK61tVWpqalKSEjQ8ccfH9Y49u7dq6SkJCUkJCg3Nzdo3P79+1VZWamvfOUrmjNnjlJSUjR9+nQtWbJE5eXl+uCDD0KeZ+XKlUpISFBCQoKcTqckqba2VjabTccdd5xSUlL67JMkn8+nbdu26cYbb9Tpp5+uuXPnKjU1VSaTSXPnztXXv/51PfDAA+rs7AzruUrS5s2b9fWvf10ZGRlKTU1VZmamSktL9dxzz0mStm7dGhjn6tWrw8p38cUXa/78+Zo8ebLMZrOysrJkt9v1t7/9LexxAQAAAAAAAAAQqxKjPQAAAAAAAAAAgHTXXXepo6NDknTmmWfqlFNOiUjef/7zn1qxYoV27drVZ/snn3yiTz75RNu3b9fvfvc7/f73v9ell17aJ2bq1Kk655xzVF1drXfffVcvvfTSoOOqqqpSd3e3JOniiy8eMObPf/6zrrrqKn3yySd9tnd2dmrfvn167bXX9P/+3//TPffco0suuWTQ59jZ2anS0lJt3LgxZNxll12mBx98cMB9H3zwgT744ANt3rxZv/3tb/WXv/xFJ5xwQtBc3d3dWrlypR599NE+23ft2qVdu3Zp48aNKisrU1FR0aDj9x93/vnn6+WXX+63z+l0yul06tFHH9WKFSv08MMPy2w2h5UXAAAAAAAAAIBYQwE7AAAAAAAAAMSAp59+OvA4nKLtcLz55ptatmyZDh8+LElatGiRvvWtbykrK0uffPKJamtr9eyzz6qtrU2XXXaZfD6fLrvssj45LrnkElVXV0uSHnnkkUEL2B9++GFJksFgkN1u77f/D3/4g6688kr5fD4lJyeruLhYX/7ylzVr1iwdOnRIL730kjZs2KD29natXLlSycnJuvDCC0Oe88c//rGeeuopHXfccbr44ouVnZ2t9vZ2vfrqq0pJSQnEtbW1KTk5Waeccoq++MUvav78+TrmmGPU0dGhd955RzU1NXrzzTfV1NSks846S6+99pqOOeaYAc951VVXBYrXExMTZbfbdeqppyolJUVvvvmm7r//flVWVvabODCQXbt26Ytf/KKam5slSSeddJJKSko0f/58GQwG7dixQw8//LDeffddbdy4UYcPH9aTTz7Jkr4AAAAAAAAAgLiU4PP5fNEeBAAAAAAAAABMZIcPH9Yxxxwjr9crqbegee7cuSPK6fV6deKJJ6qxsVGSdPnll+vuu+9WYmLfvib333+/rrjiCvl8PpnNZr311luyWq2B/d3d3Tr22GP10UcfaerUqfrwww/7FIUf6a233lJubq4k6fTTT9ezzz7bZ/+bb76pk08+WZ2dnTrhhBP0l7/8RdnZ2f3yOBwOfeUrX9GePXs0efJkOZ1OTZ8+vU/MypUr9dBDDwU+LykpUVVVlVJTU4N+TV588UV95jOf0bRp0wbc7/P59Otf/1rl5eWSpF/+8pe64YYb+sVt2bJFy5cvlyQdc8wxevbZZ/XFL36xT4zb7dZXvvIV/etf/wpsu+mmm7R69ep+58zPz9fLL78so9Gou+++W1dccUW/c3Z0dGjlypV67LHHJPVOBLj88suDPlcAAAAAAAAACEd7e7vee+89ZWVlhby+KkkftHq073DnGI1s9EyblKxjp5qiPYyIslqtev/99/Xggw9q5cqVYe+LhKF8D/nRgR0AAAAAAAAAouzDDz8MFK+npKSMuHhdkp544olA8fpnP/tZ3XPPPTIajf3iLrvsMm3fvl333HOP2tradPvtt+t3v/tdYH9iYqIuvPBC3X777WptbdVf/vIXnXfeeQOe85FHHgk8vvjii/vtX716tTo7O5Wamqonn3xS8+fPHzBPTk6O1q1bpzPOOEMHDx7UH/7wB/385z8P+lyPPfZYPfLII4NeGP/yl78ccn9CQoKuvfZaPfHEE3rppZf00EMPDVjAfuTX57e//W2/4nVJslgseuyxx/SZz3xG3d3dQc+5efNmvfzyy5J6vz4DFa9Lvd8XDz30kF555RU5nU5VVlZSwA4AAAAAAABgzHzQ6tHy27aqo9sb7aGMWEqiQc+vKhyVInafz6fq6mpt2LBBr732mj766CMZjUbNmjVLGRkZ+sIXvqCCggKddtppQVcAHUv+pisrV67s09xmtBnG7EwAAAAAAAAAgAG1tLQEHk+dOjUiOWtqagKPy8rKBixe97v22muVkJDQ7zi/Sy65JPD4yCL1I3m9Xj366KOSpLS0NNlstj77W1tb9fjjj0uSzj333KDF636nn366MjIyJEnPPPNMyNhLL71UaWlpIWOG4pRTTpEkvfPOO33+b6TeTjJPP/20pN7/q1DdarKzs3XWWWeFPJe/i3xKSop++MMfhoxNTk7WhRdeKElqamqSy+UKGQ8AAAAAAAAAkbLvcOe4KF6XpI5u76h0km9tbdWyZcv0jW98Q7W1tXK5XOru7lZKSopcLpe2bdum3/3ud7LZbANeix8txx9/vBYuXKgpU6b023fzzTfr5ptvltPpHLPxSHRgBwAAAAAAAICo8/l8Ec/5j3/8I/D4jDPOCBl73HHHKTs7Ww6HQy6XS83NzYHicUk66aSTlJubq8bGRj399NP6+OOPNWPGjD45tmzZot27d0uSVqxYIbPZ3Gf/tm3b+nSZr62tHfQ5TJ48Wc3NzfrPf/4TMq6goGDQXH7d3d2qqalRbW2t3njjDe3Zs0cHDx4MjO1ou3fvVnp6euDzf/3rX+rq6pIk5efnKzk5OeT5li1bps2bNwfd/+KLL0qSZs2apeeff37Q8e/bty/w+D//+Y8yMzMHPQYAAAAAAAAAMPouvvhivfDCCzIajfrxj3+sK6+8Uscff7wMBoO6u7v1n//8R08//bQ2bNgwpuN67rnnxvR84aCAHQAAAAAAAACi7MgC6dbW1ojkbG5ultRbBD579uxB4xcsWCCHwxE49sgCdqn3wvs111yjrq4uVVVV9esWfmRn9osvvrhf/iO7t6xbt07r1q0L96nok08+Cbl/7ty5YeXZsWOHbDbboAXxRzpw4ECfz/fs2RN4fPzxxw96/Kc+9amg+w4fPiy32y1JcrlcOvfcc8MelzT41wUAAAAAAAAAMDZ27twZaGZyyy236Nprr+2zPzExUZ/97Gf12c9+Vtdcc408Hk80hhkzDNEeAAAAAAAAAABMdLNnz5bB0Hu5tqOjI9DJfCQOHjwoSZo0aVJY8Wlpaf2OPZLdbpfRaJTUt1hdktra2rRx40ZJUmZmppYtW9bv+JEU5vs7ngdjMpkGzbF//34tX748ULw+Z84cXXHFFVq7dq0effRRbdy4UZs2bdKmTZt0/vnnB47r6enpk+fw4cOBx0d3mR9IqK//SCcrdHZGfolbAAAAAAAAAMDQvfHGG4HHxcXFg8YffV3barUqISFB69at08GDB1VeXq6FCxfKZDLJYrGopKSkz8qrQ3Fkbr+VK1cqISEh8PmyZcuUkJAQ+Ge1Wod1rnDRgR0AAAAAAAAAoiwtLU0nnXSSGhoaJEnbtm3rU0Q9HJMnT1Zra2ufgutQDh061OfYo2VkZOgrX/mKnnnmGW3fvl0Oh0M5OTmSpE2bNgWOt9vtfS56+x1ZIH/HHXfoBz/4wZCez0jdeeedge7pF110kR544AElJycPGLtt27ageY4sSG9raxv0vKG+/kd+TRYvXhz4/wcAAAAAAAAAxK/du3cHrp8P1b59+3TyySdrx44dSk5OVmpqqlpaWvT4449r8+bN+sMf/qBLL710xGOcMmWKZs2apb1790qSpk2b1uea+YwZM0Z8jlDowA4AAAAAAAAAMeCrX/1q4PFDDz004nwZGRmSerup+y9Ah/L2228HHs+ZM2fAmIsvvjjw+OGHHx7w8ZExR5o7d27g8a5duwYdT6Q9++yzknqXaf39738ftHhdkt57772g+4782vz3v/8d9Lzvvvtu0H1TpkwJFLFHous+AAAAAAAAACA6Tj755EBzl7Kysj7X3Ifi5ptv1kcffaT//d//1eHDh7V//3795z//0amnniqv16srr7xSr7322ojHe/vtt+vDDz8MfF5TU6MPP/ww8O+f//zniM8RCgXsAAAAAAAAABADvve97yklJUWS9PTTT4fsAh6OL37xi4HH/uLtYFwul5qamiRJmZmZmj179oBx5557ro455hhJ0qOPPiqfz6fm5mY999xzkqQvfOELWrhw4YDHFhQUBC7eP/3000N7MhHgvxCfnp6uadOmBY1rb2/X1q1bg+4/8cQTlZSUJEn6+9//rs7OzpDn3bJlS8j9p556qiTpo48+ogM7AAAAAAAAAMQpq9Wqyy+/XJL073//W9nZ2Vq8eLG+//3v64EHHlBjY6N8Pt+gefbv368///nPOu+885SYmChJysnJ0VNPPaUTTjhB3d3d+sUvfjGqz2UsUMAOAAAAAAAAADHg2GOP1dVXXy1J8vl8+uY3v6n3338/7OMdDoeuv/76wOcrVqwIPK6srFRPT0/QY3/9618HLpwfedzRTCaTSktLJfV2Ud+yZYs2bNgQyB2s+7okzZw5U2eddZak3ov3VVVVYTyryJk0aZKk3kLxAwcOBI27/fbb1dLSEnR/ampqoFv+vn37tG7duqCxTU1Neuqpp0KO65JLLgk8vuGGG8K6gQEAAAAAAAAAiD133XWXfvGLX2jSpEny+Xx6/fXXddddd+myyy7TZz7zGc2ePVs//elPQ66amp+fr9NOO63fdpPJpJ/97GeSepvE7N+/f9Sex1iggB0AAAAAAAAAYkRFRYXy8/Ml9XZFz8vL08aNG0MWNX/yySe64YYbdPLJJ+utt94KbP/a176mz3zmM5Kkf/3rX/rud7+r7u7ufsevW7dO99xzjyTJbDbrRz/6UcgxHlmk/vDDD+vhhx+WJCUnJ+uCCy4Ieeytt96q5ORkSdLll18+aBH7J598orVr1+pvf/tbyLhwnHzyyZJ6JwccWeh/pKqqqrA61/zkJz8JPP7Zz36mf/zjH/1i3G63LrjgggG/5kcqLS0NdMt/+umndfHFF+vQoUNB43t6evT000/rlltuGXScAAAAAAAAAICxk5iYqP/5n//RBx98oEceeUSXX365TjzxxMB18Y8++ki/+93vlJubq1dffXXAHMuXLw+a37/P6/Xqtddei/wTGEOJ0R4AAAAAAAAAAKBXUlKS/vKXv+j888/X3/72N3344YcqLS3VCSecoDPPPFOLFi1Senq6Dh8+rD179qi+vl5bt25Ve3t7v1wGg0Hr16/X0qVLdfjwYf3hD3/Qyy+/rG9961uyWq365JNP9Pjjj+vpp58OHHPHHXfouOOOCznGL3/5y7JarXI6naqqqlJnZ6ek3oL59PT0kMd+7nOf07333qvLLrtMbW1t+uY3v6nf/OY3Ouecc3TCCSfIZDJp//79euedd/Tqq6/qxRdfVHd3tx555JFhfDX7uvrqq/XAAw+ou7tbd955p1577TWVlpbq2GOP1d69e/X444/rueeeU1pamr7+9a9r48aNQXMtX75cl112me6//34dOHBABQUFstvt+vKXv6yUlBS9+eabuv/++/Xxxx/rG9/4hv73f/9XUu//ydESEhK0ceNGfelLX9KuXbu0fv16PfHEEzrvvPO0ZMkSTZ8+Xe3t7dqzZ4/+9a9/6a9//as+/vhjnXbaabrhhhtG/HUBAAAAAAAAAETWlClTZLfbZbfbJUnt7e166aWXdMcdd2jz5s1yu91asWKFdu7cqdTU1D7HHnvssUHzHrnvo48+Gp3BjxEK2AEAAAAAAAAghkyfPl1PP/20brvtNv32t79VS0uLdu7cqZ07dwY9xmg06sILL9Qvf/nLPts/+9nPasuWLbLZbNq9e7caGxv185//vN/xZrNZd9xxhy677LJBx5eQkKBvfetb+uUvfxkoXpf6dmYPZeXKlcrIyNCll16qPXv26I033tAbb7wRND4lJUUWiyWs3KF85jOf0b333qsrr7xS3d3d+vvf/66///3vfWLS09O1YcMG/f3vfw9ZwC5J99xzjzwejzZs2KCuri49+OCDevDBB/vElJWV6cwzzwwUsE+ePHnAXMcee6y2b9+ulStX6qmnntK+fft03333hTz/3LlzB3vKAAAAAAAAAIAYkJqaqq985Sv6yle+opUrV+qhhx7S7t279fTTT6ukpCTaw4uK/u1eAAAAAAAAAABRZTQa9fOf/1xOp1MPPfSQLr74Yi1atEgWi0WJiYk65phjdPzxx8tms+n//b//p927d+uRRx6R1Wrtl+vkk0/W22+/rTvuuEOnnXaaZs2apaSkJE2bNk1LlizRddddp507d4ZVvO53dLF6enq6zj777LCP/+pXv6p3331XDzzwgEpLS5WVlaW0tDQlJiZq2rRpOumkk7Ry5Uo9/PDD+vDDD3XmmWeGnTuUSy+9VP/4xz900UUXae7cuUpKStL06dP1uc99Tr/4xS/05ptv6owzzggrV2Jioh599FH95S9/UVFRkWbOnKnk5GTNnTtXK1as0N/+9jfddtttamlpCRwzffr0oPlmzpypJ598Ui+//LKuvvpqfe5zn1N6erqMRqMmTZqk448/XkVFRfrVr36lxsZGrVu3bqRfDgAAAAAAAADAGPvOd74TeLxjx45++z/44IOgxx65b+bMmZEd2BijAzsAAAAAAAAAxKi0tDRdfPHFYXc3D8ZkMukHP/iBfvCDH0RkXPPnz5fP5xtRjpSUFH3729/Wt7/97WEdv27dumEVcS9evFjr168PGbN69WqtXr06rHznnHOOzjnnnKD7X3311cDjE088cdB8eXl5ysvLC+vcAAAAAAAAAID4kpaWFnickpLSb/+WLVuCHuvfZzAYdNJJJ0VkPAkJCfL5fCO+5j9UdGAHAAAAAAAAAGAU7N+/X4888ogkacaMGcrNzY3yiAAAAAAAAAAAo+G9997T22+/PWjcQw89FHi8ePHifvtfeuklbd26td/29vZ2VVZWSupd5XTq1KnDHuuRjjnmGElSa2trRPKFiwJ2AAAAAAAAAACG6L333tP7778fdH9ra6vOO+88ffzxx5Kkyy+/XImJLIoKAAAAAAAAAOPRW2+9pZycHJ199tl6+OGH5XQ6A/u6urr0+uuv69vf/rbWrl0rSfrCF76gU045pV+eKVOmaMWKFaqurlZ3d7ckqampSWeffbaamppkNBr1P//zPxEbt7/xyqOPPqq2traI5R0MV8sBAAAAAAAAABiihoYGXXDBBcrPz9epp56q+fPna9KkSdq3b58aGhr02GOPBTrWzJ8/X9dff310BwwAAAAAAAAAGDVJSUnyer168skn9eSTT0qSkpOTlZaWpn379snn8wViFy9erE2bNslg6N+H/KabbtK9996r8847TykpKUpNTdX+/fslSQkJCbr77rv1+c9/PmLjvuqqq7Rt2zZt3LhRf/nLXzRz5kwlJiZq7ty5eumllyJ2nqNRwA4AAAAAAAAAwDD09PToxRdf1Isvvhg05qSTTtLjjz+uSZMmjeHIAAAAAAAAAABj6atf/ap27typJ598Ui+99JIaGxu1e/dutba2ymw2a86cOTrppJNks9l03nnnDVi8LknTpk3Tq6++qoqKCm3cuFG7du3S9OnTlZ+fr/Lycn3pS1+K6Ljtdrsk6d5779W///1vNTc3y+v1RvQcA0nwHVnSDwAAAAAAAAAABnXw4EH9+c9/1l//+le99dZbcrvd+uSTT2Q0GjVz5kydfPLJWrFiRcgbEQAAAAAAAAAQbe3t7XrvvfeUlZWl1NTUoHEftHq0/Lat6uge/eLm0ZaSaNDzqwp17FRTtIcSYLVa9f777+vBBx/UypUroz2cIQn3e+hIdGCPAV6vV3v27NHkyZOVkJAQ7eEAAAAAAAAAAMJQWlqq0tLSkDGHDh0ao9EAAAAAAAAAmCh8Pp8OHjyoOXPmjFkDjWOnmvT8qkLtO9w5JucbTdMmJcdU8fpERAF7DNizZ4/mzZsX7WEAAAAAAAAAAAAAAAAAAAAgTuzatUtz584ds/MdO9VE4TciggL2GDB58mRJvb9IjjnmmCiPBpGUnZ2t5uZmZWRkqKmpKdrDAQAAAABgXOL9NwAgXPzNAACEg78XAIBw8TcDABAtBw4c0Lx58wL1p0C8oYA9BiQkJEiSjjnmGArYxxn/0hwGg4H/WwAAAAAARgnvvwEA4eJvBgAgHPy9AACEi78ZAIBo89efAvGGAnYAAAAAAAAAAAAAAAAAAAAAiBKn0xntIYwpQ7QHAAAAAAAAAAAAAAAAAAAAAACYGChgBwAAAAAAAAAAAAAAAAAAAACMCQrYAQAAAAAAAAAAAAAAAAAAAABjggJ2AAAAAAAAAAAAAAAAAAAAAMCYoIAdAAAAAAAAAAAAAAAAAAAAADAmKGAHAAAAAAAAAAAAAAAAAAAAAIwJCtgBAAAAAAAAAAAAAAAAAAAAAGOCAnYAAAAAAAAAAAAAAAAAAAAAwJiggB0AAAAAAAAAAAAAAAAAAAAAMCYoYAcAAAAAAAAAAAAAAAAAAAAAjAkK2AEAAAAAAAAAAAAAAAAAAAAAY4ICdgAAAAAAAAAAAAAAAAAAAADAmEiM9gAAAAAAAAAAAAAAAAAAAAAAxLjWXVJbS7RHMXLmdGnqvGiPYkKjgB0AAAAAAAAAAAAAAAAAAABAcK27pDuXSN0d0R7JyCWmSFc3jGoRe09PjzZu3Ki6ujq98sor+uijj9TW1qapU6dqwYIFKigo0EUXXaTc3NygOV544QVt2LBBL774opqbm9Xe3q4ZM2boxBNP1DnnnKNLLrlEqampQY9fvXq1br755n7bk5OTlZ6ers985jM677zzdMkllygpKSkizztcFLADAAAAAAAAAAAAAAAAAAAACK6tZXwUr0u9z6OtZdQK2F955RVdcsklevvttwPbkpKSNHnyZLW0tGjbtm3atm2bfvWrX8lms6mqqkrJycmB2JaWFl188cV68sknA9tSUlKUmpqq3bt3a/fu3XriiSd06623at26dVq+fPmgY5o1a1bg8cGDB9Xc3Kzm5mY9++yzuvfee/Xss89q2rRpEfoKDM4wZmcCAAAAAAAAAAAAAAAAAAAAgHFq8+bNKiws1Ntvv6309HRVVFTo7bffVmdnp1paWtTZ2al//vOfuvbaa3XMMceopqZGbW1tgeP37t2rvLw8PfnkkzIajfrBD36gt956S+3t7WptbdW+ffv04IMPat68edq1a5fOPPNM1dbWDjquDz/8MPDv8OHDev/993XFFVdIkrZv364f/vCHo/UlGVBcF7B/9NFHqqur04033qizzjpLFotFCQkJSkhI0MqVK0flnFVVVTrjjDM0e/Zspaam6rjjjpPdbtfLL788KucDAAAAAAAAAAAAAAAAAAAAENt27twpu92ujo4OLVq0SG+88YauvfZanXDCCYEYo9Goz3/+86qoqNB7772n4uLiwD6fz6dvfvObeuedd5SUlKRNmzbpjjvu0KJFiwIxU6dO1cqVK/X666/rxBNPVFdXly655BL997//HdJYMzMzdd999wW6t//v//6vDh06NMKvQPgSx+xMo+DIdvajzePxqLS0tE87fklyuVx69NFHVVVVpRtvvFE33XTTmI0JAAAAAAAAAAAAAAAAAAAAQPTdcMMNOnDggFJTU7Vp0ybNnTs3ZPz06dNVW1srn88nSaqrq9Pzzz8vSbr++ut1zjnnBD02PT1df/7zn/XZz35WBw4c0E033aT169cPecxnnnmmnn/+eXV2dmrnzp066aSThpxjOOK6A/uRMjMzdcYZZ4xa/ksvvTRQvL5s2TLV1tbq1Vdf1f3336/jjz9eXq9Xq1ev1n333TdqYwAAAAAAAAAAAAAAAAAAAAAQW/bu3avq6mpJ0kUXXaQFCxaEfWxCQoIk6a677pIkTZ48WWVlZYMed8IJJ+jCCy+UJP3pT3+S2+0e6rADxfOS1NPTM+TjhyuuC9hvvPFGbd68WR9++KHef/993XvvvaNynueff16PPfaYJOmcc87RX//6VxUXF+vkk0/WpZdeqldeeUWZmZmSpJ///Ofat2/fqIwDAAAAAAAAAAAAAAAAAAAAQGzZsmWLvF6vJOncc88d8vHd3d2qr6+XJJ1xxhlKS0sL6zibzRY4/sUXXxzyeZ955hlJvUX0WVlZQz5+uOK6gP3mm29WUVGRZs2aNarnue222yRJiYmJuuuuu2Q0Gvvst1gs+vWvfy1Jam1t1R//+MdRHQ8AAAAAAAAAAAAAAAAAAACA2PDWW28FHp900klDPt7pdOrw4cNDPv5zn/tc4PGbb74Z9nEul0vf+c539Pzzz0vqbfCdnp4e9vEjlThmZ4pTBw8e1HPPPSdJ+spXvqK5c+cOGGez2XTMMcfowIED2rRpk372s5+N5TABAAAAAAAAAAAAAAAAAAAAREFLS0vg8fTp00d0/FAKyS0Wy4A5jjZ79uzA44MHD6qtrS3weXZ2tu66666wzxkJcd2BfSz885//VGdnpyTp1FNPDRqXnJysvLy8wDFdXV1jMj4AAAAAAAAAAAAAAAAAAAAAE1tHR0fQfXv37g38O7J4/eKLL9brr7+uY489diyGGEAB+yD+85//BB5nZ2eHjPXv7+7u1s6dO0d1XAAAAAAAAAAAAAAAAAAAAACi78iu6Z988smIjg/VSf1obrc78HjatGlB43w+n3w+n7xer/bs2aN77rlHU6dO1cMPP6w777xzyOMdqcQxP2Oc2b17d+Dx3LlzQ8bOmzcv8HjXrl1atGjRgHEdHR19ZjkcOHBghKMEEAva2trU1NTUZ5vH45HT6ZTVapXJZOqzLzs7W2azeSyHOGHwfwEAAAAAAAAAAAAAAAAAGCuf/vSnA49ff/11zZkzZ0jHH3fccZo0aZIOHz6s1157LezjXn/99cDjhQsXDhqfkJCgjIwMXXnllVq4cKGWL1+ua665RosXL9by5cuHNOaRoIB9EAcPHgw8TktLCxk7adKkwONDhw4FjauoqNDNN9888sEBiClNTU1asmRJ2PENDQ1avHjxKI5o4uL/AgAAAAAAAAAAAAAAAAAwVpYtWyaDwSCv16tNmzbp7LPPHtLxSUlJKigo0NNPP61nn31WBw8e1OTJkwc9rqamJvC4sLBwSOcsLCzUt771LT388MP6wQ9+oDfffFNGo3FIOYbLMCZniWPt7e2Bx8nJySFjU1JSAo89Hk/QuPLycu3fvz/wb9euXSMfKICoy87OVkNDQ59/69evlyStX7++377s7Owoj3j84v8CAAAAAAAAAAAAAAAAADBWZs2apRUrVkiSNmzYoLfffjvsY30+nyTpe9/7nqTeJtpr164d9LidO3fqsccekySdcsop+tSnPjXUYevGG2+U0WjUf/7zHz300ENDPn646MA+iNTU1MDjzs7OkLEdHR2BxyaTKWhcSkpKn2J3AOOD2WwO2sU7JyeHDt9jiP8LAAAAAAAAAAAAAAAAAMBYuuWWW/TUU0/p0KFDstlseuaZZ3TssccGjd+3b58uv/xy3X///Zo6daqKiopUWFiorVu36tZbb9WSJUtUVFQ04LEtLS0677zz1N7eroSEBN1yyy3DGvPxxx+v888/Xxs2bNAvf/lLfetb31JSUtKwcg0FHdgHcWT7/UOHDoWMPXz4cOBxWlraqI0JAAAAAAAAAAAAAAAAAAAAQOxYsGCBHnnkESUnJ+utt97S5z73Of3617/WO++8E4jp6enR66+/rhtvvFGf+tSnVFNTE9iXkJCgqqoqfepTn1JXV5fOPfdc/ehHP5LD4QjE7N+/Xw899JAWL16sf/3rX5J6u6ifeuqpwx53eXm5EhIS5HQ6df/99w87z1BQwD6IuXPnBh7v3r07ZOyuXbsCj+fNmzdqYwIAAAAAAAAAAAAAAAAAAAAQW0pKSvT8889r/vz5crvduvbaa3XCCScoJSVF6enpSk5O1uLFi/XLX/5S+/fv14UXXqhJkyYFjp89e7ZeeeUVnXHGGeru7tYdd9yhRYsWyWQyadq0aZo6dapWrlwpl8ulpKQk/eY3v9Hq1atHNObc3Fx9/etflyTdeuut6ujoGFG+cFDAPohFixYFHjc1NYWM9e9PTEzUCSecMKrjAgAAAAAAAAAAAAAAAAAAAMaEOV1KTIn2KCIjMaX3+YyS/Px8NTU1qaqqShdddJHmz5+v1NRUHTx4UNOnT9cpp5yi66+/Xg6HQxs2bFBSUlKf42fMmKFnnnlGzz33nC6//HItXLhQycnJam1tDcTMmTNHjY2N+tnPfhaRMV9//fWSept933vvvRHJGUriqJ8hzp188slKTk5WZ2enXnjhBV177bUDxnV2duqVV14JHHP0NxMAAAAAAAAAAAAAAAAAAAAQl6bOk65ukNpaoj2SkTOn9z6fUWQ0GnXBBRfoggsuGHaO5cuXa/ny5X22/elPf9KFF16oPXv26JFHHtEvf/nLoMevXr067O7sJ598snw+37DHOlQUsA9i8uTJOu200/TUU0/pb3/7m3bv3q25c+f2i6upqdGBAwckSeeee+5YDxMAAAAAAAAAAAAAQmpra+u36rTH45HT6ZTVapXJZOqzLzs7W2azeSyHCAAAAACIZVPnjXrhN0I7//zz1dzcrJ/85Ce65ZZbNHnyZF1zzTXRHtaQTfgC9nXr1unb3/62JOmmm24acKbBqlWr9NRTT6m7u1vf//73VVNTI6PRGNjvdrv185//XJI0depUXX755WMydgAAAAAAAAAAAAAIV1NTk5YsWRJ2fENDgxYvXjyKIwIAAAAAAEP14x//WB988IFuu+02/fznP1daWpq+973vRXtYQxLXBewvvfSS3nnnncDnbrc78Pidd97RunXr+sSvXLlyWOdZvny5LrjgAj322GP6y1/+otNPP10//vGPNWfOHP373//WrbfeKpfLJUn69a9/rWnTpg3rPACA2ERHGgAAAAAAAADAeJCdna2GhoY+2xwOh+x2u9avX6+cnJx+8QAAAAAAIPb89re/1W9/+9toD2PY4rqA/Y9//KMeeuihAfdt27ZN27Zt67NtuAXskvTAAw/owIEDevLJJ7VlyxZt2bKlz36DwaBf/OIX+s53vjPscwBDRVEtMDboSAMAAAAAAAAAGA/MZnPQ69c5OTlc2wYAAAAAAGMirgvYx5LJZNITTzyhDRs2aN26dfrXv/6l1tZWzZo1SwUFBbr66qv1pS99KdrDxARDUS0wNuhIAwAAAAAAAAAAAAAAAABAZMR1Afu6deu0bt26EeVYuXLlkDqzf/Ob39Q3v/nNEZ0TiBSKaoGxQUcaAAAAAAAAAAAAAAAAAAAiI64L2IGJjqJaAAAAAAAAAAAAAAAAAAAAxBNDtAcAAAAAAAAAAAAAAAAAAAAAAJgY6MAOAMPkcrnkdrtDxjgcjj4fQ7FYLMrMzIzI2AAAAAAAAAAAAAAAAAAAAGIRBewAMAwul0sLs3PU7mkLK95utw8ak2oya0eTgyJ2AAAAAAAAAAAAAAAAAAAwblHADgDD4Ha71e5pU3pRmZLS5wWN83V3qnv/XiVOmaWExOSgcV0tu9RSVym3200BOwAAAAAAAAAAAAAAAAAAGLcoYAeAEUhKn6eU2fNDB81dNDaDAQAAAAAAAAAAAAAAAAAAiHEUsAMAAAAAAACDaGtrU1NTU59tHo9HTqdTVqtVJpMpsD07O1tms3mshwgAAAAAAAAAAADEBQrYAQAAAAAAgEE0NTVpyZIlYcU2NDRo8eLFozwiAAAAAAAAAAAAID5RwA4AwBgbSudGie6NAAAAQCzIzs5WQ0NDn20Oh0N2u13r169XTk5On1gAAAAAAAAAAAAAA6OAHYgzLpdLbrc76H6Hw9HnYygWi0WZmZkRGxsQLYP9XEix9bMxlM6NEt0bAQAAgFhgNpuDvi7PycnhNTsAAAAAAAAAAAAQJgrYgTjicrm0MDtH7Z62QWPtdvugMakms3Y0OShiR1wbys+FFBs/G0Pp3OiPj1d0mwcAAAAAAAAAAAAAAADGh+ZDzdrXsS/awxixaSnTlJGWEe1hTGgUsANxxO12q93TpvSiMiWlzxswxtfdqe79e5U4ZZYSEpOD5upq2aWWukq53W4K2BHXwvm5kGLrZ2MidW6MdLd5CuIBAAAAAAAAAAAAAACAsdd8qFlFtUXq7OmM9lBGLNmYrLqSulEtYu/p6dHGjRtVV1enV155RR999JHa2to0depULViwQAUFBbrooouUm5sbNMebb76pRx99VFu2bNH777+vffv2yWQy6dhjj9XJJ58sm82mr33ta0pKSupzXGFhoV544YV++cxms4499lgtXbpUV111lfLy8iL+vMNFATsQh5LS5yll9vzgAXMXjd1gJiiPxyOpt9g5Evx5/HkxdIP+XEj8bERBpLvNR7ogHgAAAAAAAADGM5fLJbfbHTLG4XD0+RiKxWKhMRIAAAAATFD7OvaNi+J1Sers6dS+jn2jVsD+yiuv6JJLLtHbb78d2JaUlKTJkyerpaVF27Zt07Zt2/SrX/1KNptNVVVVSk7+v6asBw8e1FVXXaWqqir5fD5JUkJCgqZMmSKPxyOHwyGHw6GHH35Yxx9/vB599FF98Ytf7DeOpKQkTZ8+PfC52+3Wzp07tXPnTj388MO66aabdNNNN43K12AwFLADwDA4nU5JUktdZcTz5ufnRzQnEE2R7jYf6YJ4AAAAAAAAABivXC6XFmbnqN3TFla83W4fNCbVZNaOJgdF7AAAAAAABLF582add9556ujoUHp6ulatWqUVK1bohBNOkNTbmf3111/Xxo0bddddd6mmpkZtbW2BAvZ9+/apoKBAb731lhISEnTBBRfou9/9rvLy8gIxe/bs0VNPPaU77rhDb775pl5++eUBC9iXLl2qrVu3Bj7v7OzUCy+8oO9973t65513tHr1an3+85/X2WefPfpfmKNQwA4Aw2C1WiVJ6UVlSkqfN+J8XS271FJXGcgLYGCRLogHAAAAAAAAgPHK7Xar3dM26L0MX3enuvfvVeKUWUpITA4a57+X4Xa7KWAHAAAAAGAAO3fulN1uV0dHhxYtWqRnnnlGc+fO7RNjNBr1+c9/Xp///Of1s5/9TJdeemmf/RdddJHeeustJSYmasOGDTrvvPP6nWfOnDm67LLLdOmll+qee+5RQkJCWONLTk7W6aefrscff1wnnXSSOjs7deedd1LADgDxwmQySZKS0ucpZfb8iOcFgHjT09Oj+vp6NTc3KyMjQwUFBTIajdEeFgAAAAAAADDhhXUvY+6isRkMAAAAAADj2A033KADBw4oNTVVmzZt6le8frTp06ertrZWPp9PkvTUU0/pqaeekiTdeOONAxavHykhIUHf/e535fV6hzTORYsWacmSJXr55Zf1z3/+c0jHRgoF7AAAABiRmpoalZWVyel0BrZZrVZVVlbKZrNFb2AAAAAAAACICW1tbWpqauqzzePxyOl0ymq19mvukp2dLbPZPJZDBAAAAAAAGJG9e/equrpaUm8X9QULFoR9rL+D+p133ilJmjJlin7605+GfbzBYBjCSHv5i+sPHDgw5GMjgQJ2AAAADFtNTY1KS0tVVFSkqqoq5ebmqrGxUWvWrFFpaamqq6spYgcAAAAAAJjgmpqatGTJkrDjGxoatHjx4lEcEQAAAAAAQGRt2bIl0An93HPPHfLx3d3devHFFyVJp59+uiZNmhTR8R3N36hy+vTpo3qeYChgBwDENY/HI0nqatkVkXz+PP68AILr6elRWVmZioqKVFtbG5jNmZeXp9raWpWUlGjVqlUqLi6W0WiM8mgBAAAAAAAQLdnZ2WpoaOizzeFwyG63a/369crJyekXDwAAAAAAEE/eeuutwOOTTjppyMe///77OnTo0LCPH4pXX301cK0mLy9vVM8VDAXsABCjhrKk6kReTtU/E6ylrjLiefPz8yOaE7GHpYtHpr6+Xk6nU1VVVf2WIjIYDCovL9fSpUtVX1+vwsLC6AwSAAAAAAAAUWc2m4N2VM/JyaHbOgAAAAAAiHstLS2Bx8Ppaj7S48OxZ88ePffcc7rmmmvk9XqVkJCgH//4x6NyrsFQwA4AMWooS6pO5OVUrVarJCm9qExJ6fNGnK+rZZda6ioDeTG+sXTxyDQ3N0uScnNzB9zv3+6PAwAAAAAAADB2WMEUAAAAAICJ7YUXXlBCQsKA+5KSkrR27dqoNaWkgB0ARmCwi76+7k5179+rxCmzlJCYPKQ8Q1lSdSIvp+rvkJ2UPk8ps+dHPC/GN5YuHpmMjAxJUmNj44DLCTU2NvaJAwAAAAAAADB2WMEUAAAAAICxk56eHnj8ySefaM6cOSM6PhKSkpIC3dwTEhJkMpk0Z84cLV26VJdffrkWLFgQkfMMBwXsADAMFotFqSZzRC/6pprMslgsgc9ZUhUYffycjUxBQYGsVqvWrFmj2tpaGQyGwD6v16uKigplZWWpoKAgiqMEAAAAAAAAJiZWMAUAAAAAYOx8+tOfDjx+/fXXh1zAftxxxyktLU2HDh3S66+/HpExLV26VFu3bo1IrkijgB0AhiEzM1M7mhxyu90h40J1cj6axWJRZmZmJIcJAAFtbW1qamrqs83j8cjpdMpqtfZbdSA7O1tmszlkTqPRqMrKSpWWlqqkpETl5eXKzc1VY2OjKioqVFdXp+rqahmNxog/HwAAgNHmcrnCes935MdgeL8HAACAaGAFUwAAAAAAxs6yZctkMBjk9Xq1adMmnX322UM6PjExUV/+8pf15JNP6q9//asOHz6sSZMmjdJoo48CdgAYpszMzLALEOjkDCDampqatGTJkrDjGxoawvq9ZbPZVF1drbKyMi1dujSwPSsrS9XV1bLZbMMaLwAAQDS5XC4tzM5Ru6ctrHi73R5yf6rJrB1NDorYAQAAAAAAAAAAxqlZs2ZpxYoV+vOf/6wNGzbommuu0YIFC8I61ufzKSEhQd///vf15JNPav/+/Vq7dq1+8YtfhHW81+uVwWAYyfDHHAXsAAJGozsvEK8G66AYbqdFiW6LiA3Z2dlqaGjosy3UKhHZ2dlh57bZbCouLlZ9fb2am5uVkZGhgoICOq8DAIC45Xa71e5pU3pRmZLS5wWN83V3qnv/XiVOmaWExOQBY7padqmlrlJut5v3BQAAAAAAAAAAAOPYLbfcoqeeekqHDh2SzWbTM888o2OPPTZo/L59+3T55Zfr/vvv19SpU/W1r31NZ5xxhp599ln9z//8j3JyclRaWhrynPfdd598Pp+uvPLKSD+dUUUBOxBHPB6PpN6b3yPlz+HPKY1ed14gnvQc2idDwuAdFP3CiTObUuVo2kGxCqLKbDYH/Z0diVUijEajCgsLR5QDAAAg1iSlz1PK7Pmhg+YuGpvBIIAJ+AAAAAAAAAAAIBYtWLBAjzzyiM4//3y99dZb+tznPqdVq1ZpxYoVmj+/955TT0+P3nzzTW3atEm///3v1draqvvvvz+QY8OGDSooKJDD4dA3vvENXXjhhbrqqquUl5enpKQkSVJzc7OeffZZ3XHHHXrttdf0u9/9LirPdyQoYAfiiNPplCS11FVGNGd+fr6k0e3OC8QLb8cheX3S+nNNypkRfFkVT7dPzlavrFMNMiUmBI1zfOyVfZOHbosAAAAAECFMwAcAAAAAAAAAALGqpKREzz//vFauXKl33nlH1157ra699lolJycrLS1Nra2t8nq9kqSEhARdeOGFmjRpUuD49PR0vfLKK7riiiv05z//WRs2bNCGDRuUkJCgqVOnyuPxqL29PRCfk5OjgoKCMX+eI0UBOxBHrFarJA26hHk4/EuY+3NKo9+dF4gnOTMMWpxhDBmTP7IfQwAAAADAMDABHwAAIHawOg4AAAAAAP3l5+erqalJf/7zn1VXV6d//OMf+uijj3Tw4EFNnz5d2dnZOvXUU/Wtb31LCxcu7Hf8Mcccoz/96U+67rrrtH79em3dulXvv/++9u3bJ5PJpKysLH3hC1/QeeedpzPPPFNGY+g6t1hEATsQR/wX+cJawnyIOQEAAAAAAOIBE/ABAABiB6vjAAAAAMDEMS1lmpKNyers6Yz2UEYs2ZisaSnTRvUcRqNRF1xwgS644IJh5zjxxBN14oknDvm4rVu3DvucY4UCdgAAAAwZnZUAAAAAAACA+NDVsivkfl93p7r371XilFlKSEweUh5WxwEAAACAiSMjLUN1JXXa17Ev2kMZsWkp05SRlhHtYUxoFLADAABgyOisFLt6enpUX1+v5uZmZWRkqKCgIC6XiopXQ5ncwcQOAIhdHo9H0uCFPuHw5/DnBAAAAMaKxWJRqsmslrrKiOVMNZllsVgCn7M6DgAAAABMLBlpGRR+IyIoYAcAAMCQ0VkpNtXU1KisrExOpzOwzWq1qrKyUjabLXoDm0CGMrmDiR0AELv8f0sjWejjdDqVn58fsXwAAADAYDIzM7WjySG32x0yLtR1vaNZLBZlZmZGcpgAAAAAAGACooAdAADELJfLFdbNlSM/hsLNlcihs1LsqampUWlpqYqKilRVVaXc3Fw1NjZqzZo1Ki0tVXV1NUXsY2AokzuY2AEAsctqtUqS0ovKlJQ+b0S5ulp2qaWuMpATAAAAGEuZmZlhXxPluh4AAAAAABgrFLADAMaFrpZdIff7ujvVvX+vEqfMUkJictC47v17Iz00DJPL5VJO9kK1edrDirfb7YPGmE2pcjTtoIgd405PT4/KyspUVFSk2tpaGQwGSVJeXp5qa2tVUlKiVatWqbi4WEajMcqjHd+Y3AEA44PJZJIkJaXPU8rs+RHNCQAAAAAAAAAAAEx0FLADwATQ1tampqamPts8Ho+cTqesVmu/Qors7GyZzeaxHOKwWSwWpZrMaqmrjPZQoMh2THc4HGrztGv9uSblzDAEjfN0++Rs9co61SBTYkLwfB97Zd/kkdvtpoAd4059fb2cTqeqqqoCxet+BoNB5eXlWrp0qerr61VYWBidQQIAAAAAAAAAAADAKOjp6VF9fb2am5uVkZGhgoICGnsBQIyjgB0AJoCmpiYtWbIk7PiGhoa46RCbmZmpHU2OsIqm7Xa71q9fr5ycnKBxb7zxhi677DI53D0RGZ8/j8fjiUi+WOZyubQwO0ftnraw4sPpmC5JOTMMWpwR+o1l/rywUgHjVnNzsyQpNzd3wP3+7f44AAAAAAAAAAAAABgPampqVFZWJqfTGdhmtVpVWVkpm80WvYEBAEKigB0AJoDs7Gw1NDT02RaqoDs7O3sshzdimZmZYXfUzsnJCVmc7+8Kbq9pj8jY/JxOp/Lz8yOaM9a43W61e9qUXlSmpPTgFeW+7k5179+rxCmzlJCYHDTO8+527a9fPxpDBcadjIwMSVJjY6Py8vL67W9sbOwTBwAAAAAAAAAAAADxrqamRqWlpSoqKlJVVZVyc3PV2NioNWvWqLS0VNXV1RSxA0CMooAdiENdLbuC7gu3MDRUDow/ZrM5aNH2YAXdE43VapUkrbelKscy8uWkHO4e2WvaA3kngqT0eUqZPT900NxFg+bh99TE0tbWpqampj7bPB6PnE6nrFarTCZTn33Z2dkym81jOcSYVlBQIKvVqjVr1qi2tlYGgyGwz+v1qqKiQllZWSooKIjiKAEAAAAAAAAAAAAgMnp6elRWVqaioqI+90jz8vJUW1urkpISrVq1SsXFxTIaR17/AQCILArYgThisViUajKrpa4yIvlSTWZZLJaI5ALGC3+RbI7FqMUZkXsDc3TxLYC+mpqatGTJkrDjGxoamHxzBKPRqMrKSpWWlqqkpETl5eWB7gIVFRWqq6tTdXU1F2YAAIgRTN4DAAAAAAAAgJGpr6+X0+lUVVVVnwZfkmQwGFReXq6lS5eqvr5ehYWF0RkkEGd8Pl+0h4A4NZzvHQrYgTiSmZmpHU0Oud3uoDEOh0N2u13r169XTk5OyHwWi0WZmZmRHiYAAEOWnZ2thoaGPttC/U3Lzs4ey+HFBZvNpurqapWVlWnp0qWB7VlZWSyNBwDAMA22KlA4q6ANlIPJewAAAAAAAAAwMs3NzZKk3NzcAff7t/vjAATnnwTS09MT5ZEgXvm/d46eUBQKBexAnMnMzAyr6DwnJ4eb23HG5XKFnJwg9RZzHvkxGCYnAIg3ZrM56N8t/qaFz2azqbi4WPX19WpublZGRoYKCgrovA4AwBCN9gpoTN4DAAAAAAAAgJHJyMiQJDU2NiovL6/f/sbGxj5xAIJLSkpSUlKSDh06pLS0tGgPB3Ho4MGDge+jcFHADgAxwOVyKSd7odo87WHF2+32kPvNplQ5mnZQxA4AE5DRaGQJPAAARiicFdCk8FdBO3qSMZP3AADAeBfJhi0STVsAAAAA9FdQUCCr1ao1a9aotra2T9dfr9eriooKZWVlqaCgIIqjBOJDQkKCJk+erNbWVk2ZMkUmkynaQ0Ic8Xg8OnDggKZOnaqEhISwj6OAHQBigNvtVpunXevPNSlnRvBlNDzdPjlbvbJONciUOPAve8fHXtk3eeR2u7mgDwAAAADDFO4KaBJF5wAAAEdyuVxamJ2jdk9bWPGDNWyRele02dHk4Jo3AAAAgACj0ajKykqVlpaqpKRE5eXlys3NVWNjoyoqKlRXV6fq6mpWqwbCZLFY5PF45HK5dMwxx2jy5MkyGo1DKkjGxOHz+dTT06ODBw/qwIEDSklJ6bMacTgoYAeAGJIzw6DFGaFfOOfPG6PBAEPk8XgkSV0tuyKSr3v/3t683b6I5ANiSVtbm5qamgKfezweOZ1OWa3WfjOZs7OzZTabx3qIAAAAAAAAw+J2u9XuaVN6UZmS0oNf0PZ1d6p7/14lTpmlhMTkoHFdLbvUUldJ0xYAAAAA/dhsNlVXV6usrExLly4NbM/KylJ1dbVsNlsURwfEF6PRqHnz5sntduvgwYNqbW2N9pAQB5KSkjR16lRZLJYhTxiigB0AAESE0+mUJLXUVUY2b6uXiRsYd5qamrRkyZKwYhsaGujoCgAAAAAA4k5S+jylzJ4fOmjuorEZDAAAAIBxy2azqbi4WPX19WpublZGRoYKCgrovA4Mg9Fo1KxZszRz5kx1dXXJ6/VGe0iIYQaDQUlJScPu0k8BOwAAiAir1SpJg3ZWCpfn3e3aX79e1qmGEecCYk12drYaGhoCnzscDtntdq1fv145OTn9YgEAAAAAAPB/jl7dTmKFOwAAAGAiMxqNKiwsjPYwgHEjISFBycnBV0sDIoECdgAAEBH+m0JhdVYKQ1fLrt68icObpQfEMrPZPGBX9ZycHLqtAwAAAAAADGIoq9tJrHAHAAAAAAAQayhgB4BR0tPTo+3bt0uStm/frhNPPJHliQAAAAAAAAAAGKGjV7eTWOEOAAAAAAAgnlDADgARcuSSpc8//7zWrl2r5uZmSdKVV16p1atX66c//amWL18uiSVLAQAA4gnL0wMAAABA7Ai2up3ECncAAAAAAADxgAJ2AIiQwZYsbW5u1s9+9rPA5yxZCgAAED9Ynh4AosflcsntdoeMcTgcfT6GYrFYlJmZGZGxAQAAAAAAAAAAYOgoYAeACMnOztarr76qr371q9q3b58KCgp00UUXKTExUd3d3Xr00UdVX1+v6dOn6+mnn2bJUgAAgDjC8vQAEB0ul0sLs3PU7mkLK95utw8ak2oya0eTgyJ2AAAAAAAAAACAKKGAHQAixGw268CBA9q3b59OOeUUbd26VQaDIbD/iiuu0Je//GVt27ZNBw4ckNlsjuJoAQAAxre2tjY1NTX12ebxeOR0OmW1WmUymfrsy87ODvn6jOXpASA63G632j1tSi8qU1L6vKBxvu5Ode/fq8Qps5SQmBw0rqtll1rqKuV2uylgBwAAAAAAAAAAiJJxUcD+/vvv64477tATTzyhXbt2KSUlRccff7y+8Y1v6Pvf/35EikTfe+893XHHHfrrX/+q999/X16vV3PmzNHpp5+u73//+/r0pz8dgWcCIN5t3bpVknTzzTf3KV6XJIPBoNWrV+v000/X1q1bddppp0VhhED88PV0SZIc7p6I5PPn8Xg8EckHAIhtTU1NWrJkSdjxDQ0NFKEDQAxLSp+nlNnzQwfNXTQ2gwEAAAAAAAAAAMCIxH0B++bNm2W323XgwIHAtra2Nm3fvl3bt2/XH//4Rz3xxBOaP3+QG1wh3HffffrBD36gzs7OPtvfeecdvfPOO7r//vtVWVmpq6++etjnAABEzkAdVx0OR5+PRxqs4yqio+fQJ5Ike017RPM6nU7l5+dHNCcAjIZIdxCfaLKzs9XQ0NBnm8PhkN1u1/r165WTk9MvHgAAAAAwcv4GEl0tuyKSz5+HxhQAAAAAAADjR1wXsL/++us6//zz5fF4lJaWpvLyci1btkwej0ePPfaY/vCHP+jtt9/W2Wefre3bt2vy5MlDPsdjjz2mK6+8UpI0ZcoUlZWVafny5UpJSdHrr7+u3/zmN3rnnXf0wx/+UDNnztQ3vvGNSD9NAHGksLBQt9xyi2666SYVFhb26cLu9Xp18803B+IwekJ1XLXb7f220XE1NhnTpkuS1ttSlWMxjjifw90je027rFbriHMBwFigg/jImM3moF+PnJwcvlYAgAAmjQEAEFlOp1OS1FJXGfG8NKYAAAAD6enpUX19vZqbm5WRkaGCggIZjSO/vwgAAIDRE9cF7D/60Y/k8XiUmJioZ599Vl/60pcC+5YvX64TTjhB11xzjd5++21VVlZq9erVQ8rf1tamH/3oR5KktLQ0vfTSS8rNzQ3s//znP6/zzz9fp5xyiv7973/rhz/8ob72ta8pLS0tIs8PQPwpLCzUjBkz9NJLL6m4uFjXXXedcnNz1djYqDVr1uill17SzJkz+xWw+zvHONw9Ix6DP8dE7kYzUMfVwYoPEDmDdVbydXeqe/9eJU6ZpYTE5KBx/g7sORajFmdE7gLT0f//QLyj4Gr8ooM4ACBcvB4YGSaNAQAQWf4GEulFZUpKnzfifF0tu9RSV0ljiggZ6QqmLpdLbrc75DlC5TuaxWJRZmbmoHEAAARTU1OjsrKywCQ6qff1SGVlpWw2W/QGBgAAgJDitoD91VdfVX19vSTpsssu61O87ldWVqYHH3xQDodDt99+u66//nolJSWFfY4nn3xSH330kaTeYvkji9f9jjnmGK1du1ann3669u7dq3Xr1unqq68e5rMCEO+MRqPuuecerVixQs8995zq6uoC+/wXeO++++5+s739b6btNe0RG8tE7kYTrOPqRP16jBWLxaJUkzninZUAhEbB1fhFB3EAQLh4PTAyTBoDACCy/JPnktLnKWX2/IjnxciMZAVTl8ulnOyFavOEdy9joHxHM5tS5WjaQRE7AGBYampqVFpaqqKiIlVVVfVpLldaWqrq6mqK2AEAAGJU3Baw19bWBh5/+9vfHjDGYDDo4osvVnl5uVpbW7VlyxadccYZYZ9j+/btgcdnnXVW0LjCwkKlpqaqvb1d1dXVFLADE5zNZtPGjRv105/+VO+//35g+8yZM4PO8vZ3jllvS1WOZWSdph3uHtlr2ulGgzGXmZmpHU2OsLrvBCsEGSgOQGiRLriigysAAPGHAuyRYdIYAACYSEaygqnb7Vabp13rzzUpZ4Yh6Dk83T45W72yTjXIlJgQNM7xsVf2TR653W4K2AEAQ9bT06OysjIVFRWptrZWBkPv36a8vDzV1taqpKREq1atUnFxcb8GcwAAAIi+uC1gf+mllyRJkyZNCtlh6tRTTw083rZt25AK2FtaWgKPZ82aFTQuMTFR06dP1549e/Tyyy+ru7tbiYlx+6UFEAE2m03FxcWqr69Xc3OzMjIyVFBQEPSNsf+CcI7FqMUZkXnzTDcaRENmZmbYNxooBAEiI9IFV3RwBQAg/lCADQAAgHBFYgXTnBmGQe9l5M8b8tAAABiS+vp6OZ1OVVVVBYrX/QwGg8rLy7V06VLV19ersLAwOoMEAABAUHFbZe1wOCRJ8+fPD1ksfmRXAP8x4UpLSws83r9/f9A4n8+nAwcOSJI6Ozv1zjvv0MkKgIxGI2+EAQBxhw6uAAAAAAAAE0dPT0/YzXgAAIglzc3NkqTc3NwB9/u3++MAAAAQW+KygL29vV1ut1uSNHfu3JCx06ZN06RJk3T48GHt2rVrSOc5sjjnhRdeCNqJ8vXXX9ehQ4cCn7tcLgp5AAAAEJfo4AoAwMDa2trU1NTUZ5u/WcLRTROys7NlNpvHbGwAAADAcNTU1KisrExOpzOwzWq1qrKyUjabLXoDAwAgDBkZGZKkxsZG5eXl9dvf2NjYJw4AAACxJS4L2A8ePBh4fGSX9GD8BexHFpmH46yzzlJiYqK6u7u1du1aXXzxxbJYLH1ivF6vrr/++qDjG0hHR4c6OjoCn/u7twMAAACILy6XKzC5NphgxY1Hs1gsyszMjNjYAACR1dTUFLS5gd1u7/N5Q0MDk74AAAAQ02pqalRaWqqioiJVVVUpNzdXjY2NWrNmjUpLS1VdXU0ROwAgphUUFMhqtWrNmjWqra2VwWAI7PN6vaqoqFBWVpYKCgqiOEoAAAAEE5cF7O3t7YHHycnJg8anpKRIkjwez5DOM2/ePF111VW688479cEHHyg/P1+/+c1vtGzZMiUnJ+uNN97Q6tWr9cwzzyg5OVmdnZ1hnaeiokI333zzkMYCABhbjo+9Ifd7un1ytnplnWqQKTFh2HkAAPHL5XIpJ3uh2jztgwerf3Hj0cymVDmadlDEDgAxKjs7Ww0NDX22eTweOZ1OWa1WmUymPrFHiuSEJ4lJTwAAABiZnp4elZWVqaioqE/BX15enmpra1VSUqJVq1apuLhYRqMxyqMFAGBgRqNRlZWVKi0tVUlJicrLywMTsioqKlRXV6fq6mr+lgHABDfQ6qrBru1LrLAKjKW4LGBPTU0NPPYXjYfi73Z+9C+bcNx2221699139eSTT+rtt99WSUlJv5jPf/7zOvnkk3X33XdLkiZPnhwyZ3l5uX76058GPj9w4IDmzZs35LEBACLPYrHIbEqVfdPQJj2FYjal9lvBAxhtFEkBo8/tdqvN067155qUM8MQNC6cSU+Oj72yb/LI7XbzswYAMcpsNg/YVT0/Pz/kcZGe8CRNrElP/kYRXS27IpLPn2eojS4AAADGk/r6ejmdTlVVVfXpVitJBoNB5eXlWrp0qerr61VYWDimY6O4BAAwFDabTdXV1SorK9PSpUsD27OyslhNBAAgKfTqqgNhhVVg7MRlAfuRBeKHDh0aNP7w4cOSpLS0tCGfKyUlRZs3b9YDDzyg/+//+//0r3/9Sz6fT5I0c+ZMXXHFFbrhhhv0k5/8JHDMtGnTBs3p7woPRBPFjUB/mZmZcjTtCOtnw263a/369crJyQkZ29HRIbfbHTJnuD9r/JwhHC6XSwuzc9TuaQsrPpwiqVSTWTuaHHz/AQPImWHQ4ozQHVzyma8KABNWJCc8SRNv0pPT6ZQktdRVRjzvYJMPAADAyAw2Ac3X3anu/XuVOGWWEhKDr7gcqYls+D/Nzc2SpNzc3AH3+7f748YSxSUAgKGy2WwqLi5WfX29mpublZGRoYKCAjqvY1Qw2Q6IPwOtrhqq5ufoFVYBjJ64LGBPTU1Venq6WlpatHv37pCx+/btCxSwD7fLucFg0OWXX67LL79cBw8e1N69e2U2mzV79uxAV4KdO3cG4hctWjSs8wBjiQ5wQHCZmZlhfx/n5OSEvDjeW0i8UO0R+llLNaVqBz9nGITb7Va7p03pRWVKSg/++mcoNwlb6ionTJEUAADAaGDC0/BYrVZJGvS1bbj8r239eQEAQORZLBalmswRnYCWajKzymUEZWRkSJIaGxuVl5fXb39jY2OfuLFEcQkAYDiMRuOYrxqCiYnJdkD8Cba6qjR4zQ+A0RWXBexSb5F4fX293nnnHXV3dysxceCncuSst8E65IZj8uTJfTrAS1JPT4/eeOMNSdKnPvUpLqAhLtABDhgbvYXE7Zr7nblKmRN89Q1vp1dd7i4lWZJkSB74Z7JjT4d237ebnzOELSl9nlJmzw8dNJeJdwAAAIhd/q5VYb22HUZeAAAQeZmZmdrR5IjoKpesTBlZBQUFslqtWrNmjWprawMNuyTJ6/WqoqJCWVlZKigoGPOxUVwCALGDTtNAf0y2AwAgcuK2gP2UU05RfX29Dh8+rIaGBn3xi18cMO6FF14IPB6tZYG3bNmilpYWSdL5558/KucARgsd4ICxkTInRSbrIAUSC8ZmLAAAAAAAAAAwmiK5yiUiz2g0qrKyUqWlpSopKVF5eblyc3PV2NioiooK1dXVqbq6WkZj6PtHAIDxjU7TQH9MtgMAIHLitoC9pKREFRUVkqQHH3xwwAJ2r9erhx9+WJI0depULVu2LOLj8Pl8Wr16tSQpKSlJV1xxRcTPAQDAROb42Bty/1BWigAAAAAAAAAASDabTdXV1SorK9PSpUsD27OyslRdXS2bzRbF0QEAYgGdpgEAADCa4raA/Qtf+IIKCgpUX1+v+++/X5dccom+9KUv9YmprKyUw+GQJP3oRz9SUlJSn/1bt24NFLVfcsklWrduXb/ztLS0KC0tTSkpKf329fT06Ic//KG2bdsmSSovL1dWVlYknh4AABOexWKR2ZQq+yZPxHKaTamyWCwRywcAAAAAAAAA8cpms6m4uFj19fVqbm5WRkaGCgoK6LwOIKra2trU1NTUZ5vH45HT6ZTVapXJ1HfF4+zsbJnN5rEc4oRBp2kAAACMprgtYJek22+/Xfn5+fJ4PDrjjDN03XXXadmyZfJ4PHrsscd03333SZIWLFigsrKyYZ1jy5Ytuvrqq3XBBRfo1FNPVWZmptrb2/Xmm2/qvvvu0xtvvCFJOuuss3T99ddH6qkBADDhZWZmytG0Q263O2RcqE4PR7NYLGEvXQwAAAAAAAAA453RaFRhYWG0hwEAAU1NTVqyZEnY8Q0NDRRSA0PERBEAABAL4rqA/aSTTtKf/vQn2e12HThwQNddd12/mAULFuiJJ57Q5MmTh32evXv36vbbb9ftt9/eb19CQoK+/e1v66677lJycvKwzwEAkuT42Btyv6fbJ2erV9apBpkSE4aVA4gnmZmZYRech9PpweVy6bXXXgsZ41+9xf8xlIlWED/Y14SvHQAAAAAAAAAAGIns7Gw1NDT02RaqmVF2dnbQXBTpAgNjoggAAIgFcV3ALknnnHOO3nzzTd1+++164okntHv3biUnJ2v+/Pk677zzdPXVV4/oDUZBQYF++9vf6vnnn1dTU5P27t0rg8GgOXPmaNmyZfr2t7+tL37xixF8RgAmIovFIrMpVfZNnojkM5tSZbFYIpILGC9cLpcWZi9Uu6c9rHi73T5oTKopVTuadoz7QuyeQ/tkSAjvayKFF2c2pcoxAb52iH3cwAAAAAAAIPa5XK6wVmo88mMwNFYAgNhmNpuDFsqG08zoSBTpxhaux8eOSE4UAQAAGK64L2CXpOOOO05r167V2rVrh3RcYWGhfD5fyJhZs2Zp1apVWrVq1UiGCAAhZWZmytG0I6wL8MHeNB6JC/BAf263W+2eds39zlylzEkJGuft9KrL3aUkS5IMyYagcR17OrT7vt1yu93j/ufN23FIXp+0/lyTcmYE/5qEs0qE1LtShH2TZ0J87RD7uIEBABhtHk/vRGWHuyci+fx5/HkBAADGO5fLpZzshWqLUGMKGisMH69tAcQbinRjC9fjY0ckJ4pgZJjYAQCYyMZFATsAjAeZmZlhXzDnTSMwfClzUmSymkIHLRibscSbnBkGLc4whozJnzdGgwEihBsYAIDR5nQ6JUn2mvAKroaSNz8/P6I5AQAAYpHb7Vabpz0izRVorDAyvLYFEG8o0o0tXI8H+mNiBwBgIqOAHQAAAMCExQ0MAMBos1qtkqT1tlTlWEJPBgyHw90je017IC8AAMBEMVrNFeh6GT5e2wLh4fcKMDCuxwP9MbEDADCRUcAOAAAAAAAAjBJ/YUKOxThowdVw8gIIX09Pj+rr69Xc3KyMjAwVFBTIaIzczyUAID7R9TJ8vLYFwsPvFQBAuJjYMXxMGAOA+EcBOwAAAAAAAICY1tWyK+R+X3enuvfvVeKUWUpITB52HoxfNTU1Kisrk9PpDGyzWq2qrKyUzWaL3sAAAFFH10sAkcbvFQAARh8TxgAg/lHADsSxgWYTOhyOPh+PxGzCicPlcsntdoeMCfW9cjSLxaLMzMyIjA0AgPHC4/FI6l3ueqT8Ofw5AQBAL4vFolSTWS11lRHLmWoyy2KxRCwfYl9NTY1KS0tVVFSkqqoq5ebmqrGxUWvWrFFpaamqq6spYgeACYyulwAijd8rAACMPiaMAUD8o4AdiGOhZhPa7fZ+25hNODG4XC4tzF6odk97WPEDfa8cLdWUqh1NOyhiB+KEvwA2Ut0lu/fv7c3b7YtIPmC88HfvtNeE9zc33Jz5+fkRywcAQLzLzMzUjiZHWJO0g92cOhqTtCeWnp4elZWVqaioSLW1tTIYDJKkvLw81dbWqqSkRKtWrVJxcbGMRmOURwsA4xcNeQAAAABEEhPGACD+UcAOxLGjZxP29PTolVdeUVNTk7Kzs5WXl9fnxhuzCScGt9utdk+75n5nrlLmpASN83Z61eXuUpIlSYZkQ9C4jj0d2n3fbrndbm7wA3HCX1QbyS6VkuRs9Sp/XkRTThiDrYzBqhjxyWq1SpLW21KVYxlZsZPD3SN7TXsgJwAA+D+ZmZlhv/7h5hSOVl9fL6fTqaqqqkDxup/BYFB5ebmWLl2q+vp6FRYWRmeQADAB0JAHAAAAAAAAR6KAHYhjR84mrKmpUVlZWaBoUeotqqqsrGQJ5AkqZU6KTFZT6KAFYzOWiczfCbtjT8eIc/lz+HMCwfgLYNOLypSUPvKKc8+727W/fr2sU4NPdkFwvStj5Kjd0zZobHirYpi1o8lBEXsMMJl6/87mWIxanBGZbp3+nAAAAIiM5uZmSVJubu6A+/3b/XEAgNFxdEMeqfc6p9PplNVq7fd+mIY8AAAAAAAA4xsF7MA4UFNTo9LSUhUVFamqqkq5ublqbGzUmjVrVFpaqurqaorYgSjxTyrZfd/uiObMz8+PWD6MP/4bfknp85Qye/6I83W17OrNm5gw4lwTUe/KGG0hJxT4ujvVvX+vEqfMUkJictBcXS271FJXyaoYAAAAQJgyMjIkSY2NjcrLy+u3v7GxsU8cAGB0HNmQ50hc5wQAAAAAAJiYKGAH4lxPT4/KyspUVFSk2trawFLIeXl5qq2tVUlJiVatWqXi4mIZjZHpDAogfP5O2HO/M1cpc1JGlKtjT4d237c7kBNAfBl0QsHcRWHncjgcYe0fLE6SLBYLxfAAAAAYtwoKCmS1WrVmzZo+184kyev1qqKiQllZWSooKIjiKAEAAAAAABBNbW1tampq6rNtsFWjzGbzWA4RAMYdCtiBOFdfXy+n06mqqqo+N+AkyWAwqLy8XEuXLlV9fb0KCwujM0hgAvO/iUmZkyKT1TRI9NByxoOB3uSFKqzlTR4QWs+hfTIkSHa7Paz4cOLMplQ5mnZQxA4AAIBxyWg0qrKyUqWlpSopKVF5eXlg9cKKigrV1dWpurqaxg8AAAAAAAwThb8YD5qamrRkyZKw4xsaGgZcZQoAED4K2IE419zcLEnKzc0dcL9/uz8OAMZSqDd5AxXW8iYvNvl6uiRJDndPRPL583g8nojkm0i8HYfk9UnrzzUpZ4YhaJyn2ydnq1fWqQaZEhOCxjk+9sq+ySO3200BOwAAAMYtm82m6upqlZWVaenSpYHtWVlZqq6uls1mi+LoAAAA4kNPT4/q6+vV3NysjIwMFRQUMAkQACCJwl+MD9nZ2WpoaOizzeFwyG63a/369crJyekXDwAYGQrYgTiXkZEhSWpsbFReXl6//Y2NjX3i/PxFgxQjAhhNR77Je/755/W73/1Oe/bsCeyfM2eOfvKTn2j58uWBeMSenkOfSJLsNe0Rzet0OpWfnx/RnBNFzgyDFmeEvjmUP2+MBgMAY4xuPgCA4bDZbCouLqboCkDMojAUQCyrqalRWVmZnE5nYJvValVlZSWTAQEAFP5iXDCbzUEnVuTk5Ax50gX3MgBgcBSwA3GuoKBAVqtVa9asUW1trQyG/+vG6vV6VVFRoaysLBUUFPQ5zn+BiWJEAKPJ/yavpqZG11xzjYqKirRx48bAcu1r1qzRNddcQ8e7GGdMmy5JWm9LVY5l5DdOHe4e2WvaZbVaR5wLADDx0M0HwEi5XC653e6QMQ6Ho8/HYCwWCyvZxBGj0ajCwsJoDwMA+qEwFEAsq6mpUWlpqYqKilRVVdXn+n5paSnX9wEAES/8BcYD7mUAwOAoYAfinNFoVGVlpUpLS1VSUqLy8vLAhaOKigrV1dWpurq6X6cWf9EgxYgARltPT4/KyspUVFTUZ6JNXl6eamtrVVJSolWrVqm4uHhUu0r5V4jo2NMRkXz+PBNh5YkEY5IkKcdiHLTr91AcPascAIBw0M0HwEi4XC7lZC9Umye8Cf12uz3kfrMpVY6mHYEidjorAQCGisJQxCPHx96Q+z3dPjlbvbJONciUmDDsPIi+I6/vb9y4Udu2bdPmzZuVkZGhjRs3asWKFWNyfR8AACDecC8DAAZHATswDthsNlVXV6usrExLly4NbM/Kygp6cdt/w5RiRACjrb6+Xk6nU1VVVX1WiZAkg8Gg8vJyLV26VPX19aPaCc/fwWr3fbsjnpeVJwAAGDt08wEwEm63W22edq0/16ScGYagceEUXTk+9sq+ySO32x0oYKezEgBgKGKl8QMQLovFIrMpVfZNkWvqYTalymKxRCwfIst/ff/KK6/UggUL+q0U8Z3vfEebN28e9ev7AHA0JpADiHXcywCAwVHADowTNptNxcXFqq+vV3NzszIyMlRQUMBFbQBR19zcLEnKzc0dcL9/uz9utPhXiJj7nblKmZMy4nwdezq0+77drDwBADHC5XLJ7XaHjHE4HH0+hmKxWALFiACA8SdnhmHQCf3584ael85KAIChiJXGD0C4MjMz5WjaEdb772Cvf47G++/Y5r9uX15ernPOOaffShHXXXddn7h4RSEsEH+YQA4AABD/KGAHxhGj0chFbAAxJyMjQ5LU2NiovLy8fvsbGxv7xI0W/wXmlDkpMlkjt1oEK08AQPS5XC7lZC9Um6c9rHi73T5ojNmUKkfTDm6iAwCGhM5KAIChiJXGD8BQZGZmhv1emdc/8W/mzJmSpFNOOWXAlSK+/OUva9u2bYG4eEUhLBB/mEAOAAAQ/yhgBwAAo6qgoEBWq1Vr1qzpc4FbkrxeryoqKpSVlaWCgoIojhLRMFgHZDolAwiX2+1Wm6dd6881KWeGIWicp9snZ6tX1qkGmRITgsY5PvbKvskjt9vN7xYAMYvXUhiP6HwJYKKJlcYPADBcCQnBr6/EEwphES7es8QOJpADAADEPwrYAQDAqDIajaqsrFRpaalKSkpUXl4eWGK0oqJCdXV1qq6ultFojPZQMUaaD3mlhPA6IEvhxaWaUrWDTsnAhJczw6DFGaH/nuTPG6PBAMAo4bUUYkmkizfofAlgoqHxA4BY99FHH0mStm3bNuD1/W3btvWJi1cUwiJc4/09i8vlktvtDhnDhHkAAABECgXsAABg1NlsNlVXV6usrExLly4NbM/KylJ1dbVsNlsUR4ex1truk3zS3O/MVcqclKBx3k6vutxdSrIkyZAcvKNyx54O7b5vN52SAQDAhMBrKcSSSBdv0PkSwERD4wcAsc6/AsSaNWt077339ru+f+utt+q6665jpQhMGOP5PYvL5dLC7By1e9rCig9vwrxZO5ocXG+IALr/jx9MFBk+vnYAMP5QwA6MIz09Paqvr1dzc7MyMjJUUFDAhW0AMcNms6m4uJjfUwhImZMik9UUOmjB2IwFAABgtDk+9obc7+n2ydnqlXWqQabEhKBx7+3zSeK1FGJDpIs36HwJYCKi8QOAWOZfKeLvf/+73n77bW3bti1wfT8/P18rVqxgpQhMKOP5PYvb7Va7p03pRWVKSg++jKWvu1Pd+/cqccosJSQmB43ratmllrpKJsxHyHjv/j9RuFwu5WQvVJunPaz4cCaKmE2pckyAlRWZZAMA4xMF7MA4UVNTo7KyMjmdzsA2q9WqysrKqF3gZhYwgKMZjUYVFhZGexgAAADAmLFYLDKbUmXf5In2UICIG8/FGwAwlmj8ACBWHblSxIoVK1ReXq6ioiI1NjZqxYoVrBQBjENJ6fOUMnt+6KC5i8ZmMAgYz93/JxK32602T7vWn2tSzozgKyaG2+jC8bFX9k2eCTFRhEk2ADA+UcAOjAM1NTUqLS1VUVGRqqqqAkuMrlmzRqWlpVHr0sIsYAAAAADARJeZmSlH046wlrcNdtNxoDgAADC+0PgBQKxipQgAiD4mkI8vOTMMWpwRevJXfvAa7QmNSTYAML5QwA7EuZ6eHpWVlamoqEi1tbUyGHpnaebl5am2tlYlJSVatWqViouLx7z7AbOAARytp6eHTlIAAACYcDIzM8Pu5MNNRwAAJiaumwEYqdFcGZmVIgAAAAAAkUYBOxDn6uvr5XQ6VVVVFShe9zMYDCovL9fSpUtVX18/5t1bmAUM4Eg1NTUqKyuT0+kMbLNaraqsrKRDCxAmX0+XJMnh7olIPn8ej8cTkXwAAAAAAGDoampq9NOf/lTvv/9+YNtxxx2ntWvXct0MQNhGe2VkVooAAAAAAEQSBexAnGtubpYk5ebmDrjfv90fB2DoBupa4nA4+nw80lC6lkwUNTU1Ki0tVVFRkaqqqpSbm6vGxkatWbNGpaWlLDOKcc1fHN7VsmvEuTo/3ClJste0jzjXkZxOp/Lz8yOacyJxfOwNud/T7ZOz1SvrVINMiQnDyjERjGaXMAAAAACIVTU1NVqxYkW/9zwfffSRVqxYoY0bN3LdDEBYWBkZAIDIc7lccrvdIWNC1Q4MFAcAAHpRwI6oo1BlZDIyMiRJjY2NysvL67e/sbGxTxyAoQvVtcRut/fbNtSuJeNdT0+PysrKVFRUpNra2sBqEXl5eaqtrVVJSYlWrVql4uJilhvFuORfdaClrjJiOX+5LFlfOyFpxHkc7h7Za9pltVpHPqgJyGKxyGxKlX1TZDrYm02pslgsEckVj0a7SxgAAAAAxJqenh5dddVVkqTTTjtN119/faDxw6233qq6ujp997vfnfDXzfzNASKxIh2r0WE8Y2VkAEAwkSzClnrvj2RmZkZkbLHM5XJpYXaO2j1tYcUPVDsAAACCo4AdUUehysgUFBTIarVqzZo1fQpDJcnr9aqiokJZWVkqKCiI4iiB+DZQ15LBJtrg/9TX18vpdKqqqqrP7yhJMhgMKi8v19KlS1VfX8/yozEuEl2mJem9fb5IDy2m+YvD04vKlJQ+b0S5PO9u1/769VqWlajFGZG7cX307zGEJzMzU46mHWFd9A3W6epIHR0dcrvdIfON5wvIdAkDAAAAMNFs3bpVH3/8sU455RQ9/vjjfRo/PP744zr11FP10ksvaevWrTrttNOiPNro8TcHiOSKdKxGBwyOJmQAMD64XC7lZC9Umye811LhFGGbTalyNO2Iq3sQw+F2u9XuaRv0Hp+vu1Pd+/cqccosJSQmB43z3+cDAAC9KGBH1FGoMjJGo1GVlZUqLS1VSUmJysvLAx1aKioqVFdXp+rq6gndnWWi8XeO6djTEZF8/jwTuSNNsK4l3OAIT3NzsyQpNzd3wP3+7f44xB5DSpoMCYpYl+mJxn8jJyl9nlJmzx9Rrq6WXb05Q0wQQGij0WUk3MmVoTpd9XbxWKj2CF5ATjWlakccXUCmSxgAAACAiWbr1q2SpJtvvnnAxg833XSTTj/99AlfwO5vDrDelqocy8judbAaHRA+mpBhrETymm28NfUAxoLb7Vabp13rzzUpZ4YhaFy4jaocH3tl3+SR2+2eMD9vYd3jm7to0Dz++3yjiQloAIB4QgE7hizSL3YoVBk5m82m6upqlZWVaenSpYHtWVlZqq6uls1mi+LoMNb83Wh237c74nkp2B6+wSYUeDu96nJ3KcmSJEPywBcOIjUpYaxlZGRIkhobG5WXl9dvf2NjY584xB5j2jR5fRq0e3S4Xab9ccBYG42lHlNNZu1ocoz4Im1vF492zf3OXKXMSQkaF87fC6n3b8bu+3ZPqAvIAACEwz852+HuGXEuf46JPOE71nHTFgDGB//v6xyLMWIr0rEaHTA4mpCFbzSaZkyUa3qRvmYbqeu1wHiUM8Mw6Gup/JEtJIwYwAQ0AEA8oYAdQ8aLndhks9lUXFys+vp6NTc3KyMjQwUFBXRen4D8nWMGK4ALl78Ajo40w2OxWJRqSo3YhIJUU6osFktEco2VgoICWa1WrVmzRrW1tX26SXm9XlVUVCgrK0sFBQVRHCXCEe7EMiagIVZFeqnHrpZdaqmrjGiReMqcFJmsg9xEXxCRUwEAMCH5J33ba8Jb9STcnEz4jk1cxwQQ6woLC3XLLbfopptuUmFhYb/rZqtXrw7EAcBYowlZeFwul3KyF6otgisrmk2pcsTRyoojEclrtv7rtfX19YM22TnyYygTaTIBgPGBCWgAgHhCATuGjBc7sctoNHIhexwZqEtYsAsqR3YI83eOCasAbgjoSDM8mZmZ2tG0I6zOG+F0ro7HC2VGo1GVlZUqLS1VSUmJysvLlZubq8bGRlVUVKiurk7V1dVMuAEwZiK11CMAAIg//snZ622pyrGM7D2Iw90je007E75jGNcxAQxlJYZorMJQWFiomTNn6qWXXlJxcbGuu+66wHWzNWvWaNu2bZo5cybX/QEghrndbrV52rX+XJNyZgRfMdHT7ZOz1SvrVINMiQlB4xwfe2Xf5JlwKytG4pptz6F9MiSEN0lAYjIBgPGJCWgAgHhCATuGjBc7wNgI1SXs6AsqdAiLbZmZmWFf2Bqvv0dtNpuqq6tVVlampUuXBrZnZWWpurpaNpttzMbSsacj5H5vp1dd7i4lWZJkSA5+sXmwPAAAAABij79QMcdiHHTZ7KHmROzhOiaAoazEEI1rrEajUXfffbdKS0v13HPPqa6uLrDPbDYrISFBd999N40fACAO5MwwDPoeIz94g/GQhjIhS4rOpKxY4O04JK9PTCYAAAAA4gQF7AAQowbqEhaqOxAQ62w2m4qLi1VfX6/m5mZlZGSooKBgzG7AWSwWpZpStfu+3RHLmWpKlcViiVi+SOtq2RVyfzhLboaTBwAAAAAAIBYNZSWGaF1jPbLxg9PpDGyfNWuWbrvttjFt/AAAiE1DmZAl0fhqNCcTAMBI+Hq6JPWu6hcJ/jwejyci+QAAGGsUsANAjArWJSw/Pz8KowEiw2g0Rm3J48zMTO1o2iG32x0yLtRy8kezWCwx2XWjt1jfrJa6yojlTDWZY7pYHwAAYKLw35CK1IpA/jzc6AIAjEfxshJDtBs/ANHkcrnCumZ75MdQYvWaLTASQ5mQ5Y8HAMSenkOfSJLsNe0Rzet0OqkjAQDEJQrYAQDAhJGZmRn2zYtYuok5VL3F+o4JUawPAAAw0fg7s0ZyZSF/3ni50dXW1qampqY+20IVNWVnZ8tsNo/J2AAAGK5oNn4AosXlcmlh9kK1e8Ir4rLb7YPGpJpStaNpB9cyMa7Ey4QsALHJ37SArt/RZ0ybLklab0tVjmXkk1Ud7h7Za9pltVpHnAsAgGiggB0AAGAcmijF+hOV42NvyP2ebp+crV5ZpxpkSkwYdh4AABB7/Dek5n5nrlLmpIw4X8eeDu2+b3dc3ehqamrSkiVLBtw3UFFTQ0MDr3cBAEAfg3XypuP32HC73Wr3tA/62tbb6VWXu0tJliQZkg1B4/yvbd1ud1z+n/T09LASAwAg4vzNEOj6PXT+Iv2ull0RyefvwG6datDijMj9jTeZTBHLBQDAWKKAHQAAAIgThpQ0GRIk+6bIdbUwm1JlsVgilg8AAIwu/w2plDkpMlkjd3Mqnm50ZWdnq6Ghoc82j8cjp9Mpq9Xa77lkZ2eP5fAAIKYNtIrFYL9DWcUC40nzIa+UEF4nb4mO32MlrNe2C8ZmLNFSU1OjsrKyQJGh1Dt5tbKyUjabLXoDAwDEPX/TArp+D53/73JLXWVk87Z6lT8voinHvUhPJvDnYSUBAIguCtgBAACAOGFMmyavT1q/fr1ycnKCxjkcDtnt9kHjJKmjo0Nut1tutztkviM/hkLXMQAAMNrMZvOAHdXHe9cvIJroCDt+hFrFYiCsYoHxprXdJ/kGX81monT8joSBJsaEupbExJj+ampqVFpaqqKiIlVVVSk3N1eNjY1as2aNSktLVV1dTRE7gFFHcej45Z+kmmMx0vV7iPxF+ulFZUpKH3nFuefd7dpfv17WqcFfX2JgozaZYAKsJAAAsYwCdgAAACDO5OTkhFVAMFicy+XSwuyFaveEt2wkXccAAACAiYeOsOPLQKtYhJoEzSoWGK/o+B05oSbGDHQtiYkxffX09KisrExFRUWqra2VwdBb0JaXl6fa2lqVlJRo1apVKi4uZvJYBLlcrpANPaTwm3qE0/QDiAcUhwL9+Yv0k9LnKWX2/BHn80/sMCUmjDjXRBPpyQRdLbvUUlc5IVYSAIBYRgE7AAAAMEG53W61e9rpOgYEEe4NysHiWJkAAADEKzrCjj/BVrGQwp8sDQBHGmhijMfjkdPplNVq7dedlYkxfdXX18vpdKqqqipQvO5nMBhUXl6upUuXqr6+XoWFhdEZ5DjT29QjR+2etrDiw2nqAYwHo1Uc2tHRoddeey1oHCvAAghHpCcT+DmdzpCrCfA7CgBGFwXsAAAAwARH1zGgr+ZDXikh/BuUg8WxMgEAAIhHdIQFAIQj2MQYuu2Gp7m5WZKUm5s74H7/dn8cRq63qUfboEW6vu5Ode/fq8Qps5SQmBw0zvPudu2vXz8aQ50QPB6PpP/rSjwS3fv39ubs9o0410QU6eLQnkP7ZEiQLrvssrDiw7kWazalysF1VgAR4P8dFan7QBK/oyKpra1NTU1NfbYNNknWbDaP5RABRAgF7AAAAAAAHKG13Sf5FJHVCViZAAAAxCs6wgKINY6PvSH3e7p9crZ6ZZ1qkCkxYcCY9/ZR1IjYkpGRIUlqbGxUXl5ev/2NjY194hA5YRXpzl00aJ5IFF5PZE6nU5LUUlcZuZytXuWPvIE4RsjbcUhen7T+XJNyZgRf2TWcv99S7+sA+yYP11kBRAS/o2JbU1OTlixZEnZ8Q0MDK8oBcYoCdgAYpzr2dITcH07BVTh5AAAAos3fqcnh7olIvvf29RZFJFmSWJ0AAABMWHSEBRArLBaLzKZU2Td5oj0UIOIKCgpktVq1Zs2aPiueSJLX61VFRYWysrJUUFAQxVECo8dqtUrSoB3xw+Hvhm+dGvy+J8ZezgyDFmeEXrGJCQcAooXfUbEpOztbDQ0NfbY5HA7Z7XatX79eOTk5/eIBxCcK2DHusIwIJjqLxaJUU6p237c7YjlTTamyWCwRywcAABBJ/k5N9pr2iObtcndRoA4AGJTD4Qhr/2BxUu97ero0IVbQETY2cL0bkDIzM+Vo2iG32x0yLlRBw9ExQKwwGo2qrKxUaWmpSkpKVF5ertzcXDU2NqqiokJ1dXWqrq6W0Ri6sAqIV/7XMmF1xB+Evxt+qA65AAAg9pnN5qAd1XNycui2DowjFLBj3GEZEUx0mZmZ2hGhi/l+3EBHrBjopm2oYhBu2gLAxODv1LTelqocy8hv6D65s0u/2NKpJEvSiHMBAMav5kNeKUFhF8GFE5dqStWOph0x+x7c5XKFdb3hyI+hcL0httERNjZwvRvolZmZGfbfDAoaEG9sNpuqq6tVVlampUuXBrZnZWWpurpaNpstiqMDAAAAAGB0UMCOcYdlRAAu5mP8CnXTdqBiEG7aAsDE4O/UlGMxDrrUYzgc7h5JkiGZ5YYBAMG1tvsknzT3O3OVMiclaJy306sud5eSLEkh/7Z07OnQ7vt2y+12x2RRt8vl0sLsHLV72sKKD69g36wdTY6YfL6gI2ys4Ho3AEwMNptNxcXFqq+vV3NzszIyMlRQUMDfWQAAxiHHx96Q+z3dPjlbvbJONYRcVWKwPMBERRMOIH5QwI5BxdsvdZYRAYDxa6CbtoMtm43Y4/F4JPUW6ESCP48/b6zyL186EF93p7r371XilFlKSEweVg7Et4n6cwEAwHiQMidFJqspdNCCsRnLaHK73Wr3tCm9qExJ6fOCxg3ltW1LXWXMFuyjFx1ho4/r3QAwcRiNRhUWFkZ7GAAAYJQYUtJkSJDsmyJ378ZsSpXFYolYPiDe9TbhWKh2T3tY8eNh1UwgnlHAjpBGo7NSSkqqNm6sVkZGRtCYWCqIBwDEjmA3bfPz86MwGgyX0+mUJO2+b3fE88bi94LFYlGqyayWusqI5Es1mbkQNUz+Yu5ITQTw54lEkfhE+7kAAADxKyl9nlJmzw8dNHfR2AwGY8bn8/X53OulyxsAYOSY0I/xwNfTJen/VvQbKX8evo+BiS2SjSbDqbvB2DCmTZPXpwFX0zpSqFW3jkbNFGJFW1ubmpqa+mwbrBmh2WyO+Dh6m3C0T5hVM4F4RwE7Qop0Z6X23W/pwPN/UFFRUVjnD6cg3mxKlYNZTsPG0kQAgLFmtVoladA3jeHyv2n05401mZmZ2tHkCHmhkQtRY8NfJB6pyQRH5h1pkfhE+7kAAABAfKipqVFpaamKior02GOPKTc3V42NjVqzZo1KS0vpwo4JJVZuxgPjCRP6MR70HPpEkmSvCa/LZ7j4Ph46JhNgvBiNRpMYmcEaIw11peVwV9Ni1S3Ek6amJi1ZsiTs+IaGhlH9/p4oq2YC8Y4CdoQlUp2Vulp29c4mPNeknBnBZy8NpWjavsnDLKdhsFgsMptSWZoIADDm/Dd0w3rTOIy8sSgzMzOs1ypciBpd/mLuwSZnhqurZZda6iojUiQ+EX8uAGAiG6gALlTXLArgIi8SE/rf2+cbcDswXvT09KisrExFRUWqra2VwdB7PTcvL0+1tbUqKSnRqlWrVFxcLKPRGOXRAqMv1m7GY3jo+B1bmNCP8cCYNl2StN6WqhzLyF8TOdw9ste08308DEwmwHgR6UaTnne3a3/9+tEY6rgX6VWWJVZaxviVnZ2thoaGPttCNXHLzs4ey+EBiFEUsCMqcmYYtDgj9Bv4/JHXFCGEzMxMOZp2hLXsFB1hAQDAeOAv5g5rcuYw8gIAEK5QBXADdc0aqABusKKroSyBOpGMxoR+YLyqr6+X0+lUVVVVoHjdz2AwqLy8XEuXLlV9fb0KCwujM0hgDHEzfnyg43dsYUI/xoMEY5IkKcdiHPT+91DwfTx0TCbAeBPJRpNSZCbzh5NnPAlnlWWJupp4xKodkWc2m4NO4qaJG4Bgxk0B+/vvv6877rhDTzzxhHbt2qWUlBQdf/zx+sY3vqHvf//7EelS5XQ6dffdd+tvf/ub/vvf/+rw4cOaPHmysrOzdeaZZ+qqq67SzJkzI/BsgLERbjdYiRcTAAAAAABEykAFcB6PR06nU1artV+hwpEFcL2dn1IjWnSVOoFWVIvkhH5/DDBeNTc3S5Jyc3MH3O/f7o8LZaCVJwb7vcfKE4g13IwfH+j4DQDjF5MJgIEZUtJkSFBEJ/ObJ9i1JOpqxh9W7QCA2DAuCtg3b94su92uAwcOBLa1tbVp+/bt2r59u/74xz/qiSee0Pz5w++y+Mgjj+jKK6/sN1Nq3759evnll/Xyyy/r9ttv12OPPabTTz992OcBAADh6+npUX19vZqbm5WRkaGCggKWLQcAAEDMC1YAF87Njd7OT6yoNhLceIwtDocjrP2DxUkT73t5tGVkZEiSGhsblZeX129/Y2Njn7hQQq08MZCBVp4AxhsmdkQHHb8BAMBEY0ybJq9Pg14j4loSJhJW7QCA2BD3Beyvv/66zj//fHk8HqWlpam8vFzLli2Tx+PRY489pj/84Q96++23dfbZZ2v79u2aPHnykM+xbds2rVy5Ul6vVwaDQZdccomKi4s1Z84cuVwuPfTQQ9q8ebM++eQTFRcXq7GxUZ/61KdG4dnGP5ZgAQBESk1NjcrKygLL/kq9HZQqKytls9miNzAAAABglFGAjfGg59C+3g5wYXaxDyfObEqVo2kHN9EjpKCgQFarVWvWrFFtba0MBkNgn9frVUVFhbKyslRQUDBoroFWnghVHHHkyhPAeMXEDgAAMJ5RGxJ7wr1GxLWk+OJyucJqdHHkx1AmyuQEVu0AgNgQ9wXsP/rRj+TxeJSYmKhnn31WX/rSlwL7li9frhNOOEHXXHON3n77bVVWVmr16tVDPkdFRYW8Xq8k6fe//72+973vBfadfPLJWrFihcrKyrR27Vp5PB6tXbtWd95554if23jEEiwAgEioqalRaWmpioqKVFVVpdzcXDU2NmrNmjUqLS1VdXU1RewAAAAAEMO8HYd6O8Cda1LODEPQOE+3T85Wr6xTDTIlJgSNc3zslX2TR263e0LcaB0LRqNRlZWVKi0tVUlJicrLywPvvysqKlRXV6fq6uqwVkILtvKERHEEJi4mdgBAdPiLX7tadkUkX/f+vb15u30RyefHSkWIlsF+Nnzdnerev1eJU2YpITE5aFznhzslURsyXlE0HRtcLpcWZi9Uuye8n7NwmgOkmlK1g+YAAIAxEtcF7K+++qrq6+slSZdddlmf4nW/srIyPfjgg3I4HLr99tt1/fXXKykpaUjn+fvf/y5JSk9P71O8fqQbb7xRa9eulSS9/PLLQ8o/kbAECwBgpHp6elRWVqaioqI+HeDy8vJUW1urkpISrVq1SsXFxWHdRAcAAH21tbWpqampzzaPxyOn0ymr1dqvg0h2drbMZvNYDhEAMI7kzDAM2ukqf94YDQb92Gw2VVdXq+z/Z+/O49uq7vz/vyXZsa0kBIhYHBIhfwmJDKaUmMU4CJy20CUGu0LQAVQoXaCl8GVAKTOG0hlaHnYXTEpnhn4boFBwMe0I4xanZRhaFiWlhKgUUEdKgCIc/+ImKGS37Niyf394pMZ4k+1rS7Zfz8cjDyv3Hp17HEXbve/zOT6fysvLU9uLioqYPA5MEBM7APD9OzOSq7ruaqk3tt89vYZ8bm0/0CsZvFIRYUSkw2azKb/Aavhzg2zIzENoOnvEYjF1xju1+LrFyluUN2y73kO96o51K9eWK/Oc4YsIdG3vUtu6tqwuDmDUJJvkBDQAQGZN6wB7c3Nz6va11147ZBuz2ayrr75aNTU12rNnj55//nlddNFFYzrOoUOHJPWflB/OggULZLPZFIvFUu0x2GQtwRKNRkdchoWZnZgJEomEAoGA2tvbVVhYKJfLRTgXs1IgEFA0GlVjY+OA5cul/vf9mpoalZeXKxAIqKKiIjODBABgGotEIiotLU27fTAYJFwDALPAdKlUCeO53W5VVVVxXgoAAINN9Ps31W/HJxl+XVjpU+7CiSfO43/drL2BBjmOHD4QOBZ7OvukPs2qMCKyg91u15ZIOK3XleFWjBmq3VRmQ3jNmxqzMTSd7fIW5anAMXxmSpK0bGrGMlkma5INACCzpnWAfcOGDZKkuXPnjvjl/oILLkjd3rhx45gD7MuXL9ef/vQnvfvuu8O22bdvX+qD/PLly8fUP8aPGeiYLZqamuTz+VJVIaT+E2z19fVUusKs097eLkkqKSkZcn9ye7IdAAAYG6fTqWAwOGDbSBemnE7nVA4PALJGMtDdtb3LkP6S/ST7zTbZXqkSk8tisTBJHAAAg03k+3dra6uKncvVYWD1W2tBvsKz4BppMviau3CJ8o5fOuH+khM8C3JME+7rcLMhjIjsY7fb034NmOoVY8aSDSEXMjV4ncJUmqxJNgCAzJrWAfbkrMmlS5cqJ2f4X+XwL/PpzLT8sK9+9au67rrrtGvXLv2///f/9NWvfnVQm+985zsD2o9LLCZ1GXPByyg5u3fLJmlh5wHN6dg74f7yujpkkpQT75MO9k64v/jeXtn6pEWfL1Te8aPM7PygW7lHjzKz829d2v5Yu/a89ZbsI1R0T9fRiYS6/ven3n9/wv1lQvL/QM7u3Yb8Dkb3Nxu0tLToq1/8oi666CL95/33y+l0KhKJ6Ic//KG+eumlmvPTn6qysnLM/fJYZBcej/TZCwpkkxQJBHTmmWcO2h959VXZ/rfdeP4tZ9NjkanX+GS7ow8mlL+vZ8LHLTiY0N40jpvNMvVYdLe360hJeX/tUO7BxISP27ujS0f+b7/Z+FgY/dn2UOcB9Sj9//MjteN5MbSxvq4Y9T0jr6vPsMdjOj4WVkkrlgxMEib/jU87/nh95EP7dPBg/58Mmk3v3xjaTPj+bTSeFxOTzr9f25tv9v9c12bosdvefFNaln1XeJceeaSOlHT0hTco9+hFE+4vHv2z9r3i19I8kyHv3znxvrF9buC5kXGZeixmwnsG52wnxsjfl8ciu/D9e/rJ5sdjKt4vJvL9e89bb8ka79TPPpOvZQuHv/YZ7+nTtn29WnKEecSA9dZdvfrabzpHvUY6E16nsv36t5HnpaTsf51KPh5HbN+i3M4Dw7br6zmknn3vK+eIY2TKmTNkG8v77xn6WPAdY2iZOmebTjZkpuRCktdurNu3jvi8SJflg+1pXbvhOt/4cc11atgLCmT/8OejDxnxs9QQ7XjPmFyZ+P49254X2r8/0yMAJsTU19c3Lddo7ezsTM2OXr16tVpaWkZsP2/ePB08eFBlZWV6+eWXx3SsRCKhL37xi3r00UdlNpv1xS9+UZdccokKCwvV2tqqxx57TM3NzZKkO+64Q3ffffeY+t+3b58WLFigvZKOGNM9J1+HpMgk9OtU/0kZAAAAZM6fJKW/SHH6gpKmru4KAABAZnDeDAAAAAAAGI1rNwCAdO2TtEDS3r17dcQR2ZY8BUY3bSuw7z9s9si8efNGbT937lwdPHhQBw6MfXaixWLRz372M1188cWqra3Vgw8+qAcffHBAm1WrVun222/XJz7xiVH76+rqUtdhldb37ds35jFNlYj4YAwAADBTOdX/uWwy+gUAAJjprOL8FgAAAAAAMBbXbgAAwGwxbQPsnZ2dqdtz5gy9RNTh8vL6lxCKx+PjOl44HNajjz6qN/93aeAPe/nll/XQQw+puLhYJ5xwwoh91dXV6a677hrXOKYaH4wBAABmLkJXAAAAAAAAAAAA2YNrNwAAYLaYtgH2/Pz81O1Dhw6N2j5Z8bygoGDMxwoEArr44ou1d+9enXjiibr77rt14YUX6uijj9aOHTv061//WnfeeaeeeOIJvfTSS3r22Wd16qmnDttfTU2Nbr311tTf9+3bpyVLlox5XFOBD8YAAAAAAAAAAAAAAAAAAAAAjDJtA+zz589P3T5w4MCo7Q8ePChJmjdv3piO09XVpSuuuEJ79+7V8ccfrz/+8Y86/vjjU/sXL16sG264QRdccIHOPPNMbd++Xddcc402b948bJ95eXmpivADvPOOdNjvlQ3eeOMNffwTn9Bxn7tbc44tmnB/ByMb9MF//1i/+7xVHznOPOH+/OFufW19l4q+4VD+kvzR7zCKzm2devcHUf3uuef0kY98ZML9feQjH1H73/6mwuOP1xtvvDHh/jIh+X/AqH8To/ub6RKJhM4++2wVFxfr0Ucfldn89+dNb2+vrr76akUiEb3yyiuyWCxj6pvHIrvweGSP2fRYZOo1PtkuW9+/M4HHYmoY/dn20M53teMX30z733mkdrPtsUjXWP8vZ+P3jNn2WGRKto8Pk28mfP82Gs+LieH9e7BsP0/4xo5effyxDv34/vu1bNmyYdtt3bpVX7vhhlHbSdLRRx+txYsXT3hsGFqmXqdmwnsG52wnxsjfl8ciu6Tz79fW1qZzy89VZ2eXYcfNz8/Ty394mfeMccjmz1OZer/I1LmQ2fRZyujPtfF3X9MHLfeo14CxHS4bnxeZlIn372x+jcokztkOZvR7RjZfyzi8Hc+Nv8vU94JXNm3SpyortejqQuUdN0QObYy6dnRp+6PteqalReecffaE+8uEmfAaJc2M54XE+/eU2L9fOumkTI8CGLdpG2DPz8/XwoULtWvXLrW1tY3Ydvfu3akA+1grnT/zzDP6//6//0+SdNNNNw0Irx/u1FNPldfr1YMPPqhgMKjXX39dp59++piOJZtNOuKIsd1nkvUcdZRiknLy5ynPumDC/R3Is2qXpJ4CkzR34h8AuvJMiklaMNeigiMm/t85PteimPp/bx1zzIT7+8DS31+exWJIf5mQ/D9g1L+J0f3NdBZJd/zwh/J4PNr3la+opqZGJSUlCoVCqqurU8t//7f8fr8sw7w2jYTHInM6OjoUiUQGbAv/7W+KSXrzb3/rf0wO43Q6ZbVap3CEs9tsem5k6jU+2S5b378zgcdiahj92bYrf96Y/p1HajfbHot0jfX/slHfM/ZZpJik/L09ypvbPaG+uvb2KCZpf37+rHgshjLUZ594PK5oNCqHwzFopbTxfPaZTe/fGNpM+P5tNJ4XE8P792DZfp5wWyKhmEm67IYb0mqfTrv8gnxtiWyR3W6f6PAwhEy9Ts2E9wzO2U6Mkb8vj0V2Seffb/Exx2jjlq2KxWIj9hUOh+X1etXQ0KDi4uIR29psNi3mvWJcko/ZaN+/ew/1qjvWrVxbrsxzhv/ckPwObsRzKFPvF5k6FzKbPksZfo5w4WLtlEZ9vUj3dSXZbrZ8z0hXJt6/Z9t3vnRl6nXKyGxItudCsvlaxuHteG78Xaa+F7y9Z4/2SNrzaPuEj/nhfs+Z4Y9FNr9GSTPjeSHx/j0lhiqiDEwj0zbALkmnnHKKAoGA3n77bfX09CgnZ+hf5/AL5aOdZPqwcDicur1ixYoR25aWlurBBx9MHXPMAXYAGILb7Zbf75fP51N5eXlqe1FRkfx+v9xudwZHh/GIRCIqLS0dcp/X6x20LRgMjvoeBADIDkNOUvrf7xSHf7eQmKCUzbbv75Mkta0bebL0WESjUa1cudKw/qaTkT77DIXPPgCA8djT2Sf1SYuvW6y8RcNfuEk7ALe9S23r2hSLxbIudAUAmBi73Z72a3txcTHfTyaRzWZTfkG+od+/8wvyZbPZDOtvtuCz1MSl+3rB6woAwCgOh0PS6O/f6Uq+fyf7BQBgsk3rAPt5552nQCCggwcPKhgM6pxzzhmy3Ysvvpi6PdbAwOGh+J6enhHbdnf/vTLAcGF6ABgPt9utqqoqBQIBtbe3q7CwUC6XSxaLJa37jyVMJxGom2xOp1PBYHDAttGqkAIApoexTFIipJu9Fs03STLmpC8nfIf+7DNS1TE++wAAJiJvUZ4KHAUjN1o2NWMBAAAjs9vt2hLZYnhF/NkSmJ4MfJbKvHg8Lqn/nJIRkv0k+wUAzBzJXEFa79/j6BcAgMk2rVPW1dXVqqurkyQ9/PDDQwbYe3t79eijj0qSjjzySK1atWpMxygqKkrdDgQCqqysHLbt4UH5w+8HAEawWCyqqKgY132p+J1drFbrkP++s7UqayYxuQOA0cYySYmQbvbKy+kPsBt50nc2n/Ad7rOPlF7VsdbW1rTCDIf/HAlhBgDIDn2J/mIg4VjCkP7e3d0rqb8qKAAAmD6oiA8MFI1GJRm7MmCyX65DAQAAAMgm0zrAfvbZZ8vlcikQCOihhx7SNddco3PPPXdAm/r6+tQF7Jtvvlm5ubkD9r/wwgupUPs111yjRx55ZMD+j3/847Jarero6NCPf/xjeb1enXbaaYPG8tvf/lZPPfWUJOmEE07QRz/6UYN+SwCYOCp+A0NjcgcAozFJCTBWa2urljuXqzPemVb7od6/Pyy/IF9bIlsIsQNAhiUOfCBJ8jal9xqfru5YN1VBAQAAMKruXdtG3N/Xc0g9e3coZ8FxMuXMGXc/Y5Vcxc+IlQElVgcEAAAAkL2mdYBdku677z6tXLlS8XhcF110kW6//XatWrVK8XhcTzzxhNatWydJWrZsmXw+35j7P/LII/XP//zP+ta3vqX9+/ervLxcN910ky688EIdddRR2rFjh371q1/pgQceUG9vf3Wf7373uzKbzYb+njNN+P2RKyHFe/oU3dMrx5FmFfxv9cOhvLu7z+ihATMSYTpgaEzuAAAgu8ViMXXGO0e9aNt7qFfdsW7l2nJlnjP89/HkRdtYLEaAHQAyzDLvaElSgztfxTbLhPv7zVvduvP5Q8q15Y7eGAAAALOWzWZTfoFVu1rqDeszv8Aqm81mSF/J6xJGrgx4eL9IXzwel9R/PskIyX6S/QLTFc8NAABglGkfYD/jjDP0i1/8Ql6vV/v27dPtt98+qM2yZcu0fv16zZ8/f1zH+OY3v6kPPvhA9913nw4cOKC6ujrV1dUNapebm6va2tq0Kr7NVua8eTKbJO9TfPAEAGQekzuMk0gktHnzZknS5s2bdfrpp8timXgIBQAAKc2LtlTbBYBpxWTpD5oX2yxaUTjx7w7hWEKSRpzIBABj0draqlgsNmKb5ArAyZ8jsdlsTKI0UEdHhyKRyIBtIz0eTqdTVqt1SsYGTIVkyC/5GWii3t3dX3ys99DIRchmArvdri2RcFqv8V6vVw0NDSouLh6xLa/xM1M0GpUkta1rM7xfrkNhOuO5AQAAjDLtA+ySdPHFF+uNN97Qfffdp/Xr16utrU1z5szR0qVLddlll+nGG2+c0Ekpk8mktWvXyuv16sEHH9SGDRv03nvvqaOjQ/PmzdPSpUt1wQUX6Prrr9eyZTPzirlRS6j1dh1Qb59G/aKf7gmBZDsAADC1Dr9I+Pvf/15r167V9u3bJUnXX3+97rrrLt1yyy362Mc+JomLhMgu2bo8MAAAwHRg1Gepnr07jB4aABimtbVVxc7l6oh3ptU+nesU1oJ8hSNbCDgaJBKJqLS0dMh9Qz0ewWBwyEIWwHSVDA96m9J7nUpXd6x7VkwQt9vtab8eFxcX8/oxSzkcDkkadWXAdCVXBkz2i7Hp6unr/2lA1W8qfk8Mzw0AAGCUGRFgl6QTTzxR9957r+69994x3a+iokJ9fX1ptS0tLR32ZNhMNVlLqLlcrrROCnBCAACA7DTSRUJJ2r59u77xjW+k/j7URcLRTjL2HupVd6xbubbcEasoGrVEIWa+bF8eGAAAIJtNxmcpAMhWsVhMHfFONXy2QMXHDH9OIt7Tp+ieXjmONKsgxzRsu/D7vfI+FVcsFiPAbhCn06lgMDhgWzweVzQalcPhUEFBwaD2wEySDPk1uPNVbJv4ajbNkUP6zkvd6u3pVTw68UAn4VDMBMn3krRWBhxHvxib7fv7cz1GVv2m4vf48NzATBJ+f+TVZ9L9zvfu7vSyhwCAgWZMgB2TI9uXUEue9DAquMbJFAAA0uN0OrVp0yZVV1dr6dKlqq+vV1dXV+oiYV5ennw+n9555x099dRTAy4S9gdf8g09yZhfkD9rQ8QsmZ2+bP9sCwAAkM2M/izFyooAJkNra2tar1OH/xypTfExZq0oHDkYunJJ+uMb6Zjpji1ptn8ftVqtQxZAIoSG2SIZ8iu2WUZ9nUrHb97qD2Rt/+n2Cfd1OMKhAIwKhx5K9P80ouo3Fb8B2Gw2WQvy5X2KfNhMQ5YQmF4IsGNU2byEWnJ5PCMDcMl+OZkCAMDwrFarDh48qO3bt+vJJ5/UGWecoUAgILPZrO7ubpWVlem73/2uysvLdfDgwQGB6f7gyxZCxAZhyeyxyebPtpg4KmUAADJhNq0sxGcpANmstbVVy53F6ox3pNV+KifRtB/olUzpHzOddvkF+doS2TJrz4cAMNai+f3nSYwIhkqEQwFMXjjUyKrfVPwGZi+73a6wgderKdQwMUZNRpek559/XhJZQmC6IMCOaS150oOTKQAATL329nZJ0jvvvKMrrrgiNbFM6n+Pvvvuuwe0OxzBF+OwZDZApQwAQGawshAAZJdYLKbOeIcWVvqUu3D4suh9PYfUs3eHchYcJ1POnCHbxP+6WXsDDYaNbU9nn9Q3+rWMsUx6alvXplgsRoAdgCHy/neiv5HBUIlwKDCbEQ4FkO2MvF5N1e/xa21tVbFzuTrinWm1T/e9gCwhMD0QYMe0ljzpwckUAACmXmFhoaT+L4kXX3yxGhsbVVJSolAopNra2tSXx2Q7TA6WzAa4GAIAHR0dikQiA7aNVJHG6XQOWCEH48PKQgCQnXIXLlHe8UtHbrT4lBF3d+/aZuCI/i6taxnLJuXQAAAAU45iRpiJOA+HoSQLvVH1e+xisZg64p1q+GyBio8ZfiJ3uqss/+atHt35fBdZQmCaIMAOAACAcSkvL1dOTo4WLlyopqYm5eT0f7QsKytTU1OTFi9erF27dqm8vDzDIwWmj9EqM4ylGt9sw8UQALNZJBJRaWnpkPuGmpATDAZ5HTQI7z8Asp2Ry3BLTLQBAAAApspokyrTWVlouH4IYY8f5+EwlGR1bqp+j1/xMWatKLSM2Gbl8IutpYRjCYNGBGAqEGAHAADAuPzhD39QT0+Pdu7cKbfbrZqamlQF9rq6Ou3cuVN9fX36wx/+oIqKikwPF8hqNptN+QX5hlZmyC/Il81mM6w/AED2cjqdCgaDA7bF43FFo1E5HI5B1WGcTudUDg8AkCGtra1a7lyuTgOX4c4vyNeWyBZC7AAAAMAk6b9eYNWulnrD+swvsA64XkAIe/w4D4ehJB93qn4DwNgQYAcAAMC4tLe3S5Iee+wxffOb3xxQab2oqEiPPfaYvF5vqh2A4dntdm2JbEmrMqLX61VDQ4OKi4tHbEtlRACYPaxW65AXEWf68rIAgJHFYjF1xjtHrQA3lpWe2ta1KRaL8V0DAAAAmCT91wvCk3q9gBD2+Bl9Ho5q+ACA2YwAOwAAAMalsLBQknTSSSfp7bffViAQUHt7uwoLC+VyubRp06YB7QCMzG63px0CKS4uptoJAAAAgLSkVQFu2dSMBQAAAMDoJvt6AcUQsocR1fC7tneNeIyxTFoGAGAqEWAHAADAuLhcLjkcDtXW1qq5uVkVFRWpfb29vaqrq1NRUZFcLlfmBgkAAABgVujq6ev/adDF1mQ/8XjckP4AAACAsSCMCACzw0Sq4dtsNuUX5KttXZth48kvyJfNZjOsPwAARkKAHTMCX+ABAJh6FotF9fX18ng8qq6uVk1NjUpKShQKhVRXV6eWlhb5/X5ZLJZMDxVAFmptbU1rCdTDf47kw0ugAgCA2WX7/v4Au5EXbSUpGo1SgQ4AAGSt8Pu9I+6P9/QpuqdXjiPNKsgxDdvu3d19Rg8N40QYEQBml4lUw7fb7doS2ZLWtRav16uGhgYVFxeP2JZrLQCAqUSAHdMaX+ABAMgst9stv98vn8+n8vLy1PaioiL5/X653e4Mjg5AtmptbdVyZ7E64x1ptR9qmcwPyy+wakskzIlVAABmqUXz+wNZi69brLxFeRPur2t7l9rWtcnhcEy4LwAAAKPZbDZZC/LlfYrVYmYawogAgLGw2+1pv8YXFxcPGZYHACBTCLBjWuMLPAAAmed2u1VVVaVAIKD29nYVFhbK5XJReR3AsGKxmDrjHVpY6VPuwiXDtuvrOaSevTuUs+A4mXLmDNuue9c27WqpVywW47M8AACzVN7/VhTNW5SnAkfBKK3T9+GlumeLjo4ORSKRAdtGW8LcarVO5RCBSdWX6JYkhWMJQ/p7d3d/heTeQyNXSgaAdNntdoUNvEaabIfsQBgRwFRLJBJc5wMAAFOOADumPb7AAwCQeRaLRRUVFZkeBoBpJnfhEuUdv3TkRotPmZrBAAAAICUSiai0tDTt9sFgkPOumFESBz6QJHmbOg3ttzvWLS0ztEsAsxjXSAEARmhqapLP51M0Gk1tczgcqq+vZ6VlAJMuHu9fUYgJ5MDsRIAdAABgFhiqel44HB7w83BUzwMAAAAwFcLvj3wxKd7Tp+ieXjmONKvgf6usD+Xd3X1GD21WczqdCgaDA7aNVMHV6XRO5fCASWeZd7QkqcGdr2LbxCtP/uatbt35/CHl2nIn3BcAAABglKamJnk8HlVWVqqxsVElJSUKhUKqra2Vx+OR3+8nxA5gUiUnzzCBHJidCLADAADMAiNVzxtqaViq580uXdu7Rtzfe6hX3bFu5dpyZZ5jHnc/AAAAQJLNZpO1IF/ep+KZHgqGYLVah/1OSAVXzAYmS3/QvNhm0YrCiQfYk5XkRvpODQAAAEylRCIhn8+nyspKNTc3y2zu/6xaVlam5uZmVVdXa82aNaqqqpLFMvHPxIDRKOA2MzgcDklMIAdmKwLsAAAAs8BQ1fPi8bii0agcDocKCgoGtcfk+fAJlUydTLHZbMovyFfbujbD+swvyJfNZjOsPwAAAMxMdrtd4cgWxWKxEduNVPV7qHYAAAAAAGB0gUBA0WhUjY2NqfB6ktlsVk1NjcrLyxUIBFRRUZGZQQIjoIDbzJDMKTCBHJidCLADAADMAsNVz1u5cmUGRoPhTqhM9ckUu92uLQaGhqT+ULzdbjdymAAAAJih7HZ72p8dqfoNAAAAIBNYwRQzVXt7uySppKRkyP3J7cl2QLahgBsATH8E2AEAAIAp9uETKpk8mUJoCAAAAACAydXV09f/06DgWrKfeDxuSH8AAGAwVjDFTFdYWChJCoVCKisrG7Q/FAoNaAdkGwq4AcD0R4AdAAAAmGJDnVDhZAoAAAAAADPT9v39AXYjA3CSFI1GOZ8ATCOtra1prYR4+M+RTMZKiFSaBv6OFUwx07lcLjkcDtXW1qq5uVlm899f13t7e1VXV6eioiK5XK4MjhIAAMxkBNgBAAAAABiCERdtuWALAAAAYNF8kyRp8XWLlbcob8L9dW3vUtu6Njkcjgn3BWBqtLa2armzWJ3xjrTae73eUdvkF1i1JRI2JAw72ytNd3R0KBKJDNg20mQCp9Mpq9U6JWNDZrGCKWYyi8Wi+vp6eTweVVdXq6amRiUlJQqFQqqrq1NLS4v8fr8sFsuQ92fSEzC7GTU5M52JmwBmLgLsAAwzHSpHAAAAAKMx+qLtdLpgCwAAAMB4eTn9Afa8RXkqcBQY1m9BgXF9AZhcsVhMnfEOLaz0KXfhkmHb9fUcUs/eHcpZcJxMOXOGbde9a5t2tdQrFosZci1ttleajkQiKi0tHXLfUJMJgsEgQWUgQ0YKOxOYHju32y2/3y+fz6fy8vLU9qKiIvn9frnd7kH3me2TnoCRzJaJHZMxORPA7ESAHRnHjPaZof/DyXJ1xjvTap9e5Yh8bYlsmTYnt4DxSiQSCgQCam9vV2FhoVwu17Az2QEAwOQz+qLtdLpgCwAAAExX8XhcUn+oc6J69u7o77Onb8J9AcDhchcuUd7xS0dutPiUqRnMh8zmStNOp1PBYHDAtng8rmg0KofDMWjCkNPpnMrhARBFRyaT2+1WVVVV2terZ/ukJ2Aos21ih5GTM+N/3ay9gQbDxzhbJhMA0x0BdmQcM9pnhv4PJ52jLoE6lg8AbevaDKscAWSrpqYm+Xw+RaPR1DaHw6H6+vohZ7QDAICpMZsv2gIAAADTUfL82q6WeuP63NOrlcNfiwcAzBBWq3XIczsrV67MwGgADCWd0DSB6fGzWCyqqKhIuz3nz4GBZuvEDiMmZxoxCf1wR+abJJNmzWQCYLojwI6MY0b7zJLWEqjLpmYsQLZramqSx+NRZWWlGhsbVVJSolAopNraWnk8nmGXZQMAAJgtklU0japwkewn2S8AYGJYWRFANnE4HJI0agW4dCQrwDmOHL4ICwAAAKZWuqFpAtMAMoGJHdmhcJ5Z6tOokwRm2mQCYLoiwI6MY0Y7gNkokUjI5/OpsrJSzc3NMpv7L4aVlZWpublZ1dXVWrNmjaqqqoZdng0AAGCmS1bRNLJSRrJfvnMCwMRl48qKLA8MzF7JYjhpVYAbRbICXEGOacLjAgAAAAAAUyvdSQJMJgAyiwA7AAAZEAgEFI1G1djYmAqvJ5nNZtXU1Ki8vFyBQGBMy7UBAADMJMkqmouvW6y8RXkT7q9re5fa1rWl+gUATEw2raxos9mUX5DP8sCY9lpbW9Nacvzwn6O1AwAAAAAAAIBsQ4AdAIAMaG9vlySVlJQMuT+5PdkOAABgNkoGH/MW5anAUTBK67H3C8xUiURCgUBA7e3tKiwslMvlYmWnEXR0dCgSiQzYNlI41Ol0ymq1TsnYsl02raxot9u1JbIlreAvywNPPiND2NLseSxaW1tV7FyujnhnWu2HWukAAAAAMArflwEAADCZCLADAJABhYWFkqRQKKSysrJB+0Oh0IB2AAAAAJCOpqYm+Xw+RaPR1DaHw6H6+nq53e7MDSyLRSIRlZaWDrlvqHBoMBhkWdksZbfb0w45szzw5GltbdVy53J1GhjCzi/I15bIlhkfYo/FYuqId6rhswUqPsY8bLt4T5+ie3rlONKsghzTsO1+81aP7ny+azKGCgAAgFmA78sAAACYTATYAQDIAJfLJYfDodraWjU3N8ts/vtFyd7eXtXV1amoqEgulyuDowQAAAAwnTQ1Ncnj8aiyslKNjY0qKSlRKBRSbW2tPB6P/H4/IfYhOJ1OBYPBAdvi8bii0agcDsegVRucTudUDg+YdmKxmDrjnVp83WLlLcobtl3voV51x7qVa8uVec7wYe2u7V1qW9emWCw24wPsScXHmLWicOSVM1YuGb2fcCxh0IgAANMBlZKBwXheTIzR35d5PAAAAHA4AuwYM75UAMDEWSwW1dfXy+PxqLq6WjU1NalwSV1dnVpaWuT3+2WxjHyxEgAAAAAkKZFIyOfzqbKycsAk2bKyMjU3N6u6ulpr1qxRVVUV3zM+xGq1DlkhbuXKlRkYDTBz5C3KU4GjYORGy6ZmLAAAZFo8Hpckde/aZkh/yX6S/UpUSgaGwvNiYoz+vszjASCbkYcDgKlHgB1jxpcKADCG2+2W3++Xz+dTeXl5antRURGVEQEAAACMSSAQUDQaVWNj44AVniTJbDarpqZG5eXlCgQCqqioyMwgAQBTqqunr//n9i5j+vvffg4PS2JsRnssxrIyAYxDUAVTIRqNSpJ2tdQb3m8ySMrKQpgpjHxd5nmRXXg8AGQz8nAAMPUIsGPM+FIBAMZxu92qqqpSIBBQe3u7CgsL5XK5qIgIAAAAYEza29slSSUlJUPuT25PtgMAzHzb9/cH2NvWtRna7+FhSaTnyHyTZDL2scgvyJfNZjOsv9mMoAqmgsPhkCQtrPQpd+GSCffXvWubdrXUp/qVWFkIM4eRr8s8L7ILjweAbEYeDgCmHgF2jFm2f6mgUgaA6cZisVABEQAAAMCEFBYWSpJCoZDKysoG7Q+FQgPaAQBmvkXzTZKkxdctVt6ivAn317W9S23r2gaEJZGewnlmqU9qaGhQcXHxsO3C4bC8Xu+o7STJZrPJbrcbPdRZiaAKpkLy/1HuwiXKO36p4f0iu3C9emJ4XQYAZEK25+EAYCYiwI4Zh0oZAAAAAABgtnG5XHI4HKqtrVVzc7PMZnNqX29vr+rq6lRUVCSXy5XBUQIAplJeTn+APW9RngocxgUcCUuOX3FxcVrXI9JtB2MQVAFgNK5XTwyvywAAAMDsQIAdMw4zsgEAAAAAwGxjsVhUX18vj8ej6upq1dTUqKSkRKFQSHV1dWppaZHf75fFYsn0UAEAALJaIpFQIBBQe3u7CgsL5XK5+AwFYEy4Xg0AAAAAoyPAjhmHGdkAAAAAAGA2crvd8vv98vl8Ki8vT20vKiqS3++X2+3O4OgwGxD4AwBMd01NTfL5fIpGo6ltDodD9fX1fJYCkDauVwMAAADA6AiwAwAAAAAAADOE2+1WVVUVIWJMOQJ/01tra6tisdiIbcLh8ICfo7UDgOmmqalJHo9HlZWVamxsTK1mU1tbK4/Hw4RAAAAAAAAAAxFgBwAAAAAAAGYQi8WiioqKTA8DswiBv+mttbVVxc7l6oh3ptXe6/VO8oiAienetW3E/X09h9Szd4dyFhwnU86cIdv07N0xGUNDFkskEvL5fKqsrFRzc7PMZrMkqaysTM3NzaqurtaaNWtUVVXFxMBJ1tHRoUgkMmDbSJOonE6nrFbrlIwNAAAAAAAYhwA7AAAAAGDG4YI3AABTg8Df9BeLxdQR71TDZwtUfIx52Hbxnj5F9/TKcaRZBTmmYdv95q0e3fl812QMFRiRzWZTfoFVu1rqMz0UTEOBQEDRaFSNjY2p97Iks9msmpoalZeXKxAIMFFwkkUiEZWWlg65b6hJVMFgUCtWrJjsYQEAAEwLXBsBAEwnBNgBAAAAAFMqHo9LGr0yYrqS/ST7lbjgDQDAVDk88NfX16cXXnhB7e3tKiwslMvlIvA3jRQfY9aKwpEnGaxcMno/4VjCoBEBY2O327UlElYsFhuxXTgcltfrVUNDg4qLi0dsg9mjvb1dklRSUjLk/uT2ZDtMHqfTqWAwOGBbPB5XNBqVw+FQQUHBoPYAAADox7URTAUjr/MlV0CL9/RNuC8A0w8BdgAAAACzFpUoMiMajUqS4ZURo9GoVq5cKYkL3gAATJVkkO+dd97RFVdckXqflySHw6G77757QDsAmEx2u112uz2ttsXFxQQ1kFJYWChJCoVCKisrG7Q/FAoNaIfJY7Vah3xuJr/vAwAwG3EtA+ni2gimwmRc54vu6U2rcAKAmYUAOwAAAIBZi0oUmeFwOCRJCyt9yl048bNR3bu2aVdLfapfiQveAABMlWSQ7/Of/7wqKyvV2NiokpIShUIh1dbW6vOf//yAdgAAZCOXyyWHw6Ha2lo1NzfLbDan9vX29qqurk5FRUVyuVwZHCUAAJituJaBdHFtBFPByOt88b9u1t5Ag7q6pT+1D7+qX7ynT9E9vXIcaVZBjmnYduH3eyc0HgBTiwA7AAAAgFmLShSZkfx3zV24RHnHLzW8XwAAMHXKy8uVk5OjhQsXqqmpSTk5/aecy8rK1NTUpMWLF2vXrl0qLy/P8EgBYOxGu/DNBfSZw2KxqL6+Xh6PR9XV1aqpqUlNyKqrq1NLS4v8fr8sFkumhwpgFqLyMgCuZQDIJkZe50sc2C2zSfrS051GDE2SZC3Il81mM6w/AJOHADsAAACAWYtKFAAAwEizMVjyhz/8QT09PdqxY4fcbvegwN+OHTtS7SoqKjI7WABIk81mk7UgX96n4ob1yQX07Od2u+X3++Xz+QZMvCoqKpLf75fb7c7g6DBTdO/aNuL+vp5D6tm7QzkLjpMpZ864+8HMQuVlAFzLADBTWeYdpd4+qaGhQcXFxcO2C4fD8nq9o7aT+r/T2+12o4cKYBIQYAcAAAAAAAAAA8zGYEl7e7uk/otM3/zmNwcF/hoaGuT1elPtAGA6sNvtCke2KBaLjdiOC+gzj9vtVlVVlQKBgNrb21VYWCiXy0XldUyYzWZTfoFVu1rqDeszv8A64sSYRCLB/+UZgsrLAABgpisuLk7rPGm67QBMDwTYAQAAAAAAAMAAszFYUlhYKEk66aST9Pbbbw8KSW3atGlAOwDDi8f7q32HYwlD+nt3d68kqfdQryH9zTZ2uz3twDkX0GcWi8XCqiEwnN1u15ZIeMomxjQ1Ncnn8ykajaa2ORwO1dfXs5rANETlZQAAAAAzEQF2AAAAAACQ1bq2d424v/dQr7pj3cq15co8xzzufgBgomZjsMTlcsnhcKi2tlbNzc0DAn+9vb2qq6tTUVGRXC5X5gYJTBPJkKG3qdPQfrtj3dIyQ7sEAIzDVE2MaWpqksfjUWVlpRobG1VSUqJQKKTa2lp5PB75/X5C7AAAQ3V0dCgSiQzYFg6HB/w8nNPplNVqnZKxAQCA7EWAHQAAAAAAZKX+Jdbz1bauzbA+8wvyR1xiHQAwNhaLRfX19fJ4PKqurlZNTU0qJFVXV6eWlhb5/X5ZLJZMDxVTpKunr/+nQRPHkv0kq5PPZA6HQ5LU4M5XsW3iz5nfvNWtO58/pFxb7oT7AgBMD4lEQj6fT5WVlWpubpbZ3D/Ju6ysTM3NzaqurtaaNWtUVVXF57MRJBKJQSsL8e8FGI/n2swRiURUWlo65D6v1ztoWzAYZAUjAABAgB0AAAAAAGSn/iXWt0zZEusAgPFxu93y+/3y+XwqLy9PbS8qKqLC5yy0fX9/gN3ICWhSf3XymbyagSQVFBRIkoptFq0onHhwJxxLSNKIK9QAAGaWQCCgaDSqxsbGVHg9yWw2q6amRuXl5QoEAgNWzsHfNTU1yefzpVZGkfonmdXX1/O5FjAQz7WZxel0KhgMDtgWj8cVjUblcDhS33UObw8AAECAHQAAAEAKyzwCyDZTtcQ6AGBi3G63qqqqqJ4HLZpvkiQtvm6x8hblTbi/ru1dalvXlqpODgAAhtfe3i5JKikpGXJ/cnuy3Uhm43nCpqYmeTweVVZWqrGxMbWyUG1trTweT9ZMzqRqNaa76fJcQ/qsVuuQ52Vn+iRkAAAwMQTYAQAAAKSwzCMAIF1DhRlGq6w03cMMAEZmsVio5Anl5fQH2PMW5anAUTBK6/R9+H0FAAAMVlhYKEkKhUI666yzBoWcQ6HQgHYjmW3nCROJhHw+nyorK9Xc3JyqYF9WVqbm5mZVV1drzZo1qqqqymhYnKrVmO6my3MNAAAAk48AOwAAAIAUlnkEAKRrpDDDUKZ7mAEAZqp4PC5JCscShvT37u5eSVLvoV5D+sPEdW3vGnF/76Fedce6lWvLlXmOedz9AAAyz+VyyeFw6KabbtL777+v9957L7XvxBNP1DHHHKOioiK5XK5R+5pt5wkDgYCi0agaGxtTgdoks9msmpoalZeXKxAIZGzSJlWrMRNMh+caAAAApgYBdgAAAAApLPMIYKJaW1sVi8VGbDPSkuMfZrPZZLfbDRkbjDVUmCEcDsvr9aqhoUHFxcWD2gMAsk+yeqe3qdPQfrtj3dIyQ7vEGB2Zb5JMUtu6NsP6zC/Il81mM6w/AICxLBaLLrvsMv3gBz/Qcccdp3Xr1qmyslItLS268847tXnzZn3jG99Iq6rxbDtP2N7eLkkqKSkZcn9ye7LdVDu8avWTTz6pjRs36umnn1ZhYaGefPJJXXrppVStxrSQ7c81AAAATB0C7ABShlr+faRgCcu/AwAAADhca2urip3L1RFPLwA31JLjH2YtyFc4soUQexYaLswgScXFxVRbB4BpwuFwSJIa3Pkqtk087PSbt7p15/OHlGvLnXBfmJjCeWapT0NOLDvcSBPQPozJhQCQ3RKJhP7zP/9TZ555pmKxmK677rrUvqKiIp155pny+/2qq6sj5PwhhYWFkqRQKKSysrJB+0Oh0IB2Uy1Ztfr666/XsmXLUpMQpf7Pc9ddd52efvppqlYj62X7cw0AAABTZ8YE2N977z396Ec/0vr167Vt2zbl5eXppJNO0uWXX66vf/3r4w7ZRqNRFRUVjek+J5544oAvjMB0MdLy70MFSw5f/j251LBRy8gm+0n2CwAAACD7xWIxdcQ71fDZAhUfYx62XbynT9E9vXIcaVZBjmnYduH3e+V9Kq5YLEZQCgCASVJQUCBJKrZZtKJw4kG2cCwhSTLPGf6zAKZWuhPLmIAGANNfMuTc2Nios846S4FAQO3t7SosLJTL5dKmTZtUXl5OyHkILpdLDodDtbW1am5ultn8988yvb29qqurU1FRkVwuV0bGl6xGXVNTo4svvliNjY0qKSlRKBRSbW2tbr/99gHtgGyV7c81AAAATJ0ZEWB/+umn5fV6tW/fvtS2jo4Obd68WZs3b9aDDz6o9evXa+nSpVMynuXLl0/JcQCjDbX8ezweVzQalcPhSF3MOrx9UnLShpHL0Sb7nalLEQIAAAAzVfEx5lEDcCuXTNFgAAAAAACYJZLh5ZKSElkslkEh9ZKSkgHt8HcWi0X19fXyeDyqrq5WTU1NKiBeV1enlpYW+f3+jFWuP/bYYyVJ55133oDQb1lZmZqbm3X++edr48aNqXZAtsr25xoAAACmzrQPsL/22mv63Oc+p3g8rnnz5qmmpkarVq1SPB7XE088oQceeEBbt27V6tWrtXnzZs2fP39M/Z9wwgl68803R21XV1enxx9/XJJ0zTXXjOt3ATJtuOXf0wmQJ5caXnzdYuUtypvwWLq2d6ltXVuqXwAAACCTOjo6FIlEBmwLh8MDfh7O6XSOeyUwAAAAAACA8SgsLJQkhUIhlZWVDdofCoUGtMNAbrdbfr9fPp9P5eXlqe1FRUXy+/1yu90ZHN3ITKbhV7gDss10fq4BAADAONM+wH7zzTcrHo8rJydHzz77rM4999zUvo997GM6+eSTddttt2nr1q2qr6/Xv/7rv46p/9zc3NRM9OEkEgm98MILkqT58+frs5/97Fh/DWDaS1Znz1uUpwJHwSitx94vAAAAkEmRSESlpaVD7vN6vYO2BYPBISeHAgAAAAAATBaXyyWHw6Ha2toBVbolqbe3V3V1dSoqKpLL5crgKLOb2+1WVVWVAoGA2tvbVVhYKJfLlfFq0Dt37pQkbdy4UVVVVfrUpz6lgoICxeNxPfPMM9q4ceOAdpgcFLkwzkSfazwWAAAA09+0DrBv2rRJgUBAkvSlL31pQHg9yefz6eGHH1Y4HNZ9992nO+64Q7m5uYaO47nnntP27dslSR6Ph8AtAAAAAMwwTqdTwWBwwLZ4PK5oNCqHwzHoe6DT6ZzK4QEAslQikci64AsAAABmLovFovr6enk8HlVXV6umpkYlJSUKhUKqq6tTS0uL/H4/n0lHYbFYVFFRkelhDJCsmn/llVfqF7/4hVpaWlL7cnJydMUVV+jxxx+nuv4ko8iFsSbyXOOxAAAAmP6mdYC9ubk5dfvaa68dso3ZbNbVV1+tmpoa7dmzR88//7wuuugiQ8fx6KOPpm5fc801hvYNAAAAAMg8q9U65AWOlStXZmA0AIDpoKmpST6fT9FoNLXN4XCovr6e5dCHQQU9AACAiXO73fL7/fL5fCovL09tLyoqkt/v57PoNOVyuXTMMcfo5z//uVavXq3PfOYzqQrsv/nNb/T444/r2GOPpbr+JKPIRfbgsQAAAJj+pnWAfcOGDZKkuXPnDjuzUpIuuOCC1O2NGzcaGmDfv39/KkjvcDh0/vnnG9Y3AAAAAAAAgOmnqalJHo9HlZWVamxsTFW9rK2tlcfjITg0DCroAQAAGMPtdquqqorVgGYYk8mU+nnGGWekvmf89re/zfDIZg+KXGQPHgsAAIDpb1oH2JNVd5YuXaqcnOF/lcNnUg5VqWci/H6/Ojo6JEmf//znU18aAQAAAAAAAMw+iURCPp9PlZWVam5ultlsliSVlZWpublZ1dXVWrNmjaqqqggQfYjRFfSo6A4AAGYzi8WiioqKTA8DBgkEAtq5c6fq6ur0k5/8ZFB1/draWt1+++0KBAI87gAAAACmhWkbYO/s7FQsFpMkLV68eMS2Rx11lObOnauDBw9q27Ztho7j0UcfTd2++uqr07pPV1eXurq6Un/ft2+foWPCQIlEguoCAAAAAAAAmBKBQEDRaFSNjY2p8HqS2WxWTU2NysvLCZYMwegKelR0BwAAwEzR3t4uSbrxxhv1jW98Y9D1746ODt1+++2pdgAAAACQ7aZtgH3//v2p2/PmzRu1fTLAfuDAAcPG0NraqhdffFGSVF5erqVLl6Z1v7q6Ot11112GjQPDa2pqks/nUzQaTW1zOByqr69nmWYAAAAAAAAYLhkYKSkpGXJ/cjvBkslndEV3AAAAIFMKCwslSaFQSGVlZYMmw4ZCoQHtAAAAJlv3rpELCff1HFLP3h3KWXCcTDlzxtUHgJlt2gbYOzs7U7fnzBn6Be5weXl5kvovUBiloaFBfX19ktKvvi5JNTU1uvXWW1N/37dvn5YsWWLYuNCvqalJHo9HlZWVamxsVElJiUKhkGpra+XxeOT3+wmxAwAAAAAAwFAfDpZ8GMGSqWN0RXdgqoTf7x1xf7ynT9E9vXIcaVZBjmnc/QAAgOnD5XLJ4XCotrZWzc3NA1Z76u3tVV1dnYqKiuRyuTI4SgAAkNTR0aFIJDJgWzgcHvDzcE6nU1ardUrGNlE2m035BVbtaqk3pL/8AqtsNpshfQGYXiYtwN7W1qa//e1v6ujo0FlnnTWoms1E5efnp24fOnRo1PZdXV2SZOg4HnvsMUn94fjPfe5zad8vLy8vFajH5EgkEvL5fKqsrBzwBb6srEzNzc2qrq7WmjVrVFVVJYvFkuHRAgAw/SUSiUFLlvIeCwAAgNmIYAnQr2t714j7ew/1qjvWrVxbrsxzzMO2G62fmcRms8lakC/vU8YV4rEW5HMRGACAGcBisai+vl4ej0fV1dWqqalJFXCrq6tTS0uL/H4/5+UBAMgSkUhEpaWlQ+7zer2DtgWDwSELMWQju92uLZGwYrHYiO3C4bC8Xq8aGhpUXFw8bDubzSa73W70MAFMA4YG2Pfv36/vf//7euSRR7R9+/bU9jfffFOnnHJK6u9PPPGEmpqatGDBAj3wwAPjOtb8+fNTtw8cODBq+4MHD0qS5s2bN67jfdimTZtSs6QuueQSHXnkkYb0C2MEAgFFo1E1NjYOuEgoSWazWTU1NSovL1cgEBi0vBoAABibpqYm+Xw+RaPR1DaHw6H6+npWOwEAAMCsQ7AEs92R+SbJJLWtazOsz/xZEsK22+0KR7YYdgFY4iIwAAAzidvtlt/vl8/nU3l5eWp7UVERq48DAJBlnE6ngsHggG3xeFzRaFQOh2NQEV6n0zmVw5swu92e9vmG4uLiaRPOBzC1DAuwv/XWW/rMZz6jv/71r+rr60ttN5kGL19ZVlYmr9ervr4+XXPNNTrvvPPGfLz8/HwtXLhQu3btUlvbyCfCd+/enQqwL1myZMzHGsqjjz6aun311Vcb0ieM097eLkkqKSkZcn9ye7IdAAAYn6amJnk8HlVWVqqxsTEVzKmtrZXH4+GkOQAAAGYlgiWYzQrnmaU+jRquJoQ9NC4AA8Ds0dHRkSqYlhQOhwf8PJzT6ZTVap2SsSF7ud1uVVVVsSIqAABZzmq1DvmdfeXKlRkYDQBkJ0MC7J2dnVq9erXeeecdzZ07V1//+td1/vnnq7Kycsj2DodDq1at0u9//3v9+te/HleAXZJOOeUUBQIBvf322+rp6VFOztC/zuFf/Ec7EZ6O7u5uPfHEE5KkY489Vp/61Kcm3CeMVVhYKEkKhUIqKysbtD8UCg1oBwAAxi6RSMjn86myslLNzc2pVU/KysrU3Nys6upqrVmzRlVVVZw8BwAAwKxDsASzXbrhakLYAIDZKhKJqLS0dMh9Xq930LZgMMh7JiT1r/rEKuMAAAAApjtDAuw//vGP9fbbb2vu3LkKBAL66Ec/Oup9Pv3pT+t3v/udXn755XEf97zzzlMgENDBgwcVDAZ1zjnnDNnuxRdfTN02YhbT+vXrtWvXLknSlVdeOWxwHpnjcrnkcDhUW1s7IFAnSb29vaqrq1NRUZFcLlcGRwkAwPQWCAQUjUbV2Ng44L1Wksxms2pqalReXq5AIMDJdAAAAMxKBEsAAAAwHKfTqWAwOGBbPB5XNBqVw+FQQUHBoPYAAAAAAMwUhiSvm5qaZDKZdPPNN6cVXpek008/XZL01ltvjfu41dXVqqurkyQ9/PDDQwbYe3t79eijj0qSjjzySK1atWrcx0tK9idJ11xzzYT7g/EsFovq6+vl8XhUXV2tmpoalZSUKBQKqa6uTi0tLfL7/VS8AgBgAtrb2yVJJSUlQ+5Pbk+2A4AP6961bcT9fT2H1LN3h3IWHCdTzpxx9wMAAAAA2aajo2PACsKSFA6HB/w8nNPplNVqnZKxAZgaVqt1yIrqRhRkAwAAAAAg2xkSYE+eSLvooovSvs/ChQslSXv27Bn3cc8++2y5XC4FAgE99NBDuuaaa3TuuecOaFNfX58a380336zc3NwB+1944YVUqP2aa67RI488MuIxP/jgA61fv16SdNppp6Ud2MfUc7vd8vv98vl8Ki8vT20vKiqS3++X2+3O4OgAAJj+CgsLJUmhUEhlZWWD9odCoQHtACDJZrMpv8CqXS31hvWZX2CVzWYzrD8AAIDZJvx+74j74z19iu7pleNIswpyTOPuB0C/SCSi0tLSIfd5vd5B24LB4JBBVwAAAAAAAGA6MiTAfuDAAUnSvHnz0r5PV1eXJA0KlI/Vfffdp5UrVyoej+uiiy7S7bffrlWrVikej+uJJ57QunXrJEnLli2Tz+eb0LEk6YknntChQ4ckUX19OnC73aqqqlIgEFB7e7sKCwvlcrmovA4AgAFcLpccDodqa2vV3Nwss9mc2tfb26u6ujoVFRXJ5XJlcJQAspHdbteWSFixWGzEduFwWF6vVw0NDSouLh6xrc1mk91uN3KYAAAAs4LNZpO1IF/ep+KG9WktyGdyITAKp9OpYDA4YFs8Hlc0GpXD4VBBQcGg9gAAAAAAAMBMYUiAfeHChfrb3/6maDSadvWHv/zlL5Kk448/fkLHPuOMM/SLX/xCXq9X+/bt0+233z6ozbJly7R+/XrNnz9/QseSpEcffVSSZLFYdNVVV024P0w+i8WiioqKTA8DAIAZx2KxqL6+Xh6PR9XV1aqpqVFJSYlCoZDq6urU0tIiv9/PxDEAQ7Lb7WkHzouLi6k0CAAAMEnsdrvCkS1MLgSmmNVqHfJ7zsqVKzMwGgAAAAAAAGBqGRJgX7FihX7zm9/opZdektvtTus+jz76qEwmk84999wJH//iiy/WG2+8ofvuu0/r169XW1ub5syZo6VLl+qyyy7TjTfeKKvVOuHjvPXWW3rllVckSRdeeOGEw/cAAADTndvtlt/vl8/nU3l5eWp7UVGR/H5/2p8NAQAAAACZw+RCAAAAAAAAzEQdHR2KRCIDtoXD4QE/D+d0Og3JmgIYnSEBdo/Ho/Xr12vdunW69dZbRz3R/cMf/lAvvfSSTCaTrrjiCiOGoBNPPFH33nuv7r333jHdr6KiQn19fWm1Pfnkk9NuCwAAMFu43W5VVVUpEAiovb1dhYWFcrlcVF4HAAAAAAAAAAAAAAAZE4lEVFpaOuQ+r9c7aFswGKR4AzBFDAmwf/7zn9fatWv1xhtvqKKiQv/xH/+hT33qU6n9JpNJfX192rx5s374wx/qiSeekMlkksvl0qc//WkjhgAAAIAMslgsqqioGPf9mfUMDMbzAgAAAACyB9/RAAAAAACYfEZ//3Y6nQoGgwO2xeNxRaNRORwOFRQUDGoPYGoYEmA3m8369a9/rfPOO0/RaFSVlZWyWq0ymUyS+quc79+/X11dXZKkvr4+nXTSSfrlL39pxOEBAAAwzTHrGRiM5wUAAAAAZA++owEAAAAAMPmM/v5ttVqH3L9y5crxDxKAIQwJsEuS3W7Xn//8Z91000365S9/qYMHD6b2vf/++6nbJpNJl19+uX784x/rqKOOMurwAAAAmMaY9QwMxvMCAAAAALIH39EAAMCHJRIJBQIBtbe3q7CwUC6XSxaLJdPDAgBgWuP7NzB7GBZgl6Sjjz5aP//5z1VbW6v169dr8+bN2rlzpxKJhBYuXKgzzjhDF198sZYtW2bkYQFkka7tXSPu7z3Uq+5Yt3JtuTLPMY+7HwDAzMKsZ2AwnhcAAAAAkD34jgZgsh06dEj333+/3nnnHZ100km64YYbNGfOnEwPC8Awmpqa5PP5FI1GU9scDofq6+vldrszNzAAAKY5vn8Ds4ehAfakE088UTfccMNkdA0gS9lsNuUX5KttXZthfeYX5MtmsxnWHwAAAIDJFY/HJUnhWMKQ/pL9JPsFAAAAxqKjo0ORSGTAtnA4POBnktPplNVqnbKxAcDhbrvtNq1du1Y9PT2pbd/4xjd0yy236Pvf/34GRwZgKE1NTfJ4PKqsrFRjY6NKSkoUCoVUW1srj8cjv99PiB0AAAAYxaQE2AHMPna7XVsiWxSLxUZsFw6H5fV61dDQoOLi4hHb2mw22e12I4cJAAAAYBIlK055mzoN75fKGgAAABirSCSi0tLSIfd5vd4Bfw8Gg0NWeAOAyXbbbbfpBz/4gY477jjdfffdqqysVEtLi775zW/qBz/4gSQRYgeySCKRkM/nU2VlpZqbm2U29686XlZWpubmZlVXV2vNmjWqqqqSxWLJ8GgBAACA7EWAHYBh7HZ72oHz4uJiLgYAAAAAWaC1tTWtiaiH/xxOV1eXJKnBna9i28Qv0IVjCXmbOuVwOCbcFwAAAGYfp9OpYDA4YFs8Hlc0GpXD4VBBQcGAtgAw1Q4dOqS1a9fquOOOU1tbm3Jy+i/ff/nLX9YXvvAFLV68WGvXrtXdd9+tOXPmZHi0ACQpEAgoGo2qsbExFV5PMpvNqqmpUXl5uQKBgCoqKjIzSAAAAGAaMCTA/tJLL435PiaTSfn5+VqwYIEcDgdfuAEAAAAAmGKtra1a7ixWZ7wjrfYfrlI5nGKbRSsKjaswdXiwCAAAAEiX1WodspAKq/sAyBb333+/enp6dPfdd6fC60k5OTn69re/reuvv17333+//vEf/zEzgwQwQHt7uySppKRkyP3J7cl2AAAAAIZmSIC9oqJCJpNp/IPIydFHP/pRfeELX9CXv/xl5ebmGjEsAAAAAAAwglgsps54hxZW+pS7cMmw7fp6Dqln7w7lLDhOppzhJ6DH/7pZewMNkzFUAAAAAABmnHfeeUeSVFlZOeT+5PZkOwCZV1hYKEkKhUIqKysbtD8UCg1oBwAAAGBohgTYJamvr2/c9+3u7tarr76qzZs368c//rFaWlpkt9uNGhoAAAAAABhB7sIlyjt+6ciNFp8yaj/du7YZNCIAAAAAAGa+k046SZLU0tKiL3/5y4P2t7S0DGgHIPNcLpccDodqa2vV3Nwss9mc2tfb26u6ujoVFRXJ5XJlcJQAAABA9jOP3mR0zz//vJ599lmdc845kqRFixbp5ptv1mOPPaZnnnlGzzzzjB577DHdfPPNWrRokSTpnHPO0TPPPKOnnnpK3/nOd1RSUqK+vj6FQiF95jOfUU9PjxFDAwAAAAAAAAAAAAAg69xwww3KycnRN7/5zUHXx3t6evStb31LOTk5uuGGGzI0QgAfZrFYVF9fr5aWFlVXV+vll1/W/v379fLLL6u6ulotLS265557ZLFYMj1UAAAAIKsZEmC/4IIL9KMf/UibNm3STTfdpLfffltr167VVVddpYsuukgXXXSRrrrqKq1du1bvvPOOvv71r+uVV17RD3/4Q1VVVemOO+7QG2+8oTvuuEOSFA6H9fDDDxsxNAAAAAAAAAAAAAAAss6cOXN0yy23aMeOHVq8eLHWrVun7du3a926dVq8eLF27NihW265RXPmzMn0UAEcxu12y+/3680331R5ebmOOOIIlZeXKxQKye/3y+12Z3qIAAAAQNbLMaKThx9+WC0tLVq9erXuu+++Edvm5eXp3/7t3/Tuu+/qt7/9rdatW6frrrtOkvSd73xHGzZs0IsvvqimpiZ95StfMWJ4AAAAAAAAAAAAAABkne9///uSpLVr1+r6669Pbc/JydE3vvGN1H4A2cXtdquqqkqBQEDt7e0qLCyUy+Wi8joAAACQJkMqsP/0pz+VyWRKBdHTcf3116uvr08/+9nPBmz/whe+IEl6/fXXjRgaAAAAAAAAAAAAAABZ6/vf/74OHjyotWvX6sYbb9TatWt18OBBwutAlrNYLKqoqNAVV1yhiooKwusAAADAGBhSgT0cDkuSFi9enPZ9km0jkciA7cXFxZKkDz74wIihAQAAAAAAAAAAAACQ1ebMmaN//Md/zPQwAAAAAACYEoZUYO/s7JQktbW1pX2fZNuurq4B23NzcyVJVqvViKEBAAAAAAAAAAAAAAAAAAAAALKEIQH2k046SZL04IMPpn2fBx54YMB9k7Zv3y5JOuaYY4wYGgAAAAAAAAAAAAAAAAAAAAAgSxgSYPd4POrr61NLS4vWrFmj7u7uYdt2d3fL5/OppaVFJpNJl1122YD9GzdulCQtXbrUiKEBAAAAAAAAAAAAAAAAAAAAALJEjhGdrFmzRo899pjefvttrV27Vv/5n/+pyy67TKWlpalK6u+//76CwaD+8z//U21tbZL6q6/7fL5UP4lEQo8//rhMJpMuuugiI4YGAAAAAAAAAAAAAAAAAAAAAMgShgTYCwoK9Pvf/16rV6/Wm2++qW3btmnt2rVDtu3r65MklZSUaP369SooKEjta2tr07XXXiupv6o7AAAAAAAAAAAYWUdHhyKRyIBt8Xhc0WhUDodjwHl4SXI6nbJarVM5RAAAAAAAAMxQQ52bCofDA34ejnNTACSDAuyStHjxYgWDQf3Hf/yHfvKTnwx6QUpatmyZrr/+et14443Kzc0dsO/EE0/Uv/zLvxg1JAAAAAAAAAAAZrxIJKLS0tK02weDQa1YsWISRwQAAMYqkUgoEAiovb1dhYWFcrlcslgsmR4WAAAAMKqRzk15vd5B2zg3BUAyMMAuSTk5Obr55pt18803a/v27QqFQtq9e7ck6aijjtKpp56qE044wchDAgAAAACAWYQqHgAADOZ0OhUMBgdsC4fD8nq9amhoUHFx8aD2AAAgezQ1Ncnn8ykajaa2ORwO1dfXy+12Z25gAAAAQBqGOjc12uqAmcLEUSB7GBpgP9yiRYu0aNGiyeoeAAAAAADMQlTxAABgMKvVOuz7XXFxMe+FAABksaamJnk8HlVWVqqxsVElJSUKhUKqra2Vx+OR3+8nxA4AAICsNty5qZUrV2ZgNMNj4iiQXSYtwA4AAAAAAGC06VTFAwAAAACAkSQSCfl8PlVWVqq5uVlms1mSVFZWpubmZlVXV2vNmjWqqqqiKiQAAAAwAUwcBbIPAXYAAAAAADBtTJcqHgAAYHbq6OhQJBIZsG20yXZWq3UqhwgAyCKBQEDRaFSNjY2p8HqS2WxWTU2NysvLFQgEVFFRkZlBAgAAANMcE0eB7GR4gH3//v167rnn9PrrrysWiykej6uvr2/Y9iaTSQ899JDRwwAAAAAAAAAAAJhSkUhEpaWlabcPBoNDTs4DAMwO7e3tkqSSkpIh9ye3J9sBAAAAGDsmjgLZybAAe29vr77zne+ovr5eBw8eTOs+fX19BNgBAACALJZIJBQIBNTe3q7CwkK5XC5mnQMAAADAMJxOp4LB4IBt4XBYXq9XDQ0NKi4uHtQeADB7FRYWSpJCoZDKysoG7Q+FQgPaAQAAABg7Jo4C2cmwAPsXvvAF/fznP1dfX58sFosWLlyonTt3ymQyafHixdq9e7cOHDggqb/qus1mY1lMAAAAIIs1NTXJ5/MpGo2mtjkcDtXX18vtdmduYAAAAACQpaxW67AV1YuLi6m2DgAYwOVyyeFwqLa2Vs3NzQOqQfb29qqurk5FRUVyuVwZHCUAAAAwvTFxFMhO5tGbjO6//uu/1NDQIKk/yL5z504999xzqf3vvfee9u3bp3A4rP/7f/+vzGazjjrqKP32t7/Vu+++a8QQAAAAABioqalJHo9Hp512ml5++WXt379fL7/8sk477TR5PB41NTVleohARiUSCb3wwgtqbGzUCy+8oEQikekhAQAAAACAacZisai+vl4tLS2qrq4ecB6uurpaLS0tuueee1gREQAAAJiAwyeO9vb2DtjHxFEgcwwJsD/88MOSpFNPPVU//elPddRRR8lkMg1qt3z5cv3whz9UU1OT3nnnHX3mM5/R3r17jRgCAAAAZhCCoZmVSCTk8/lUWVmp5uZmlZWVad68eSorK1Nzc7MqKyu1Zs0aHhfMWk1NTVq6dKlWrVqlK6+8UqtWrdLSpUuZ2AEAAAAAAMbM7XbL7/frzTffVHl5uY444giVl5crFArJ7/ezEiIAAAAwQUwcBbKTIQH2P/7xjzKZTPr617+eVvuLL75Y11xzjd577z396Ec/MmIIAAAAmCEIhmZeIBBQNBrV7bffPmDZYkkym82qqanRu+++q0AgkKERApnD6gQAAAAAAMBobrdbb7/9tp5//nk9/vjjev755/XWW28RXgcAAAAMwsRRIPvkGNHJzp07JUnLli1LbTt8NkpXV5fy8vIG3Mfj8einP/2pnnrqKd15551GDAMAAADTXDIYWllZqcbGRpWUlCgUCqm2tlYej4cvjlOkvb1dklRSUjLk/uT2ZDtgtvjw6gTJCR7J1Qmqq6u1Zs0aVVVVUaEBAAAAhujo6FAkEhmwLRwOD/h5OKfTKavVOiVjAwAYy2KxqKKiItPDAAAAAGYst9utqqoqBQIBtbe3q7CwUC6Xi+t6QIYYEmBPOvroo1O358+fn7q9c+dOLVmyZEDbY489VpIUjUaNHAIAAACmKYKh2aOwsFCSFAqFVFZWNmh/KBQa0A6YLZKrEzQ2Ng67OkF5ebkCgQAXnAEAAGCISCSi0tLSIfd5vd5B24LBoFasWDHZwwIAAAAAAJiWmDgKZA9DAuzHHXecWltb9cEHHwzYNmfOHHV3d+uNN94YFGB/7733JEmdnZ1GDAEAAADTHMHQ7OFyueRwOFRbWztgMoEk9fb2qq6uTkVFRXK5XBkcJTD1WJ0AAAAAU83pdCoYDA7YFo/HFY1G5XA4VFBQMKg9AAAAAAAAAGQ7QwLsp512mlpbW/U///M/WrVqVX/HOTk644wztGnTJj388MNavXr1gPv8+Mc/liSdeOKJRgwBAAAA0xzB0OxhsVhUX18vj8ej6upq1dTUqKSkRKFQSHV1dWppaZHf76cSPmYdVidIX/j93hH3x3v6FN3TK8eRZhXkmMbdDwAAwExntVqHrKi+cuXKDIwGAAAAAAAAAIxhSIC9oqJCLS0teu655/T1r389td3r9eqVV17RU089pWuuuUaXX365Dh48qJ/97Gd67rnnZDKZVFVVZcQQAAAAMM0RDM0ubrdbfr9fPp9P5eXlqe1FRUXy+/1yu90ZHB2QGaxOMDpz3jyZTZL3qbhhfVoL8mWz2QzrDwAAAAAAAAAAAACQWYYE2D/72c9qzZo1euaZZ7Rjxw4dd9xxkqTrr79eDz/8sP70pz+poaFBDQ0NA+5nt9v1T//0T0YMAQAAANMcwdDs43a7VVVVpUAgoPb2dhUWFsrlclF5HbMWqxOMzjLvKPX2SQ0NDSouLh62XTgcltfrHbWdJNlsNtntdqOHCgAAplBHR4cikciAbeFweMDPwzmdTlmt1ikZGwAAAAAAAABg6hkSYC8qKtJf//pXJRIJHXHEEX/vPCdH//3f/63/+3//r375y1+qu7tbkmQymbR69Wr9+Mc/1lFHHWXEEAAAADDNEQzNThaLRRUVFZkeBpA1WJ0gPcXFxVqxYoVh7QAAwPQWiURUWlo65D6v1ztoWzAY5DMCAAAAgLQlEgmK8QAAAEwzhgTYJcnhcAy5/aijjtJjjz2m+++/X2+99ZZ6enq0dOlSHX300UYdGgAAADMEwVAA0wGrEwAAAIyN0+lUMBgcsC0ejysajcrhcKigoGBQewAAAABIR1NTk3w+n6LRaGqbw+FQfX0915UAAACymGEB9tHMnz+fiikAAAAYFcFQANMBqxNgNmptbVUsFhuxTTgcHvBzJDabTXa73ZCxAQCym9VqHfL6wMqVKzMwGgAAAAAzRVNTkzwejyorK9XY2Jha2be2tlYej4fiSAAAAFnMkAC72WyW2WxWbW2tbrvtNiO6BAAAwCxGMBQAgOzS2tqq5c7l6ox3ptXe6/WO2ia/IF9bIlsIsQMAMIU6OjoUiUQGbBtpAprT6ZTVap2SsQEAAABjkUgk5PP5VFlZqebmZpnNZklSWVmZmpubVV1drTVr1qiqqooiSQAAAFnIkAD7nDlz1N3dLZfLZUR3AAAAAAAAyCKxWEyd8U4tvm6x8hblDduu91CvumPdyrXlyjzHPGy7ru1dalvXplgsRoAdAIApFIlEVFpaOuS+oSagBYNBVtcFAABAVgoEAopGo2psbEyF15PMZrNqampUXl6uQCBA0SQAAIAsZEiAfdGiRXrvvfeUk2NIdwAAAAAAAMhCeYvyVOAoGLnRsqkZCwAAGDun06lgMDhgWzweVzQalcPhUEFBwaD2AAAAQDZqb2+XJJWUlAy5P7k92Q4AAADZxZDE+fnnn6/HHntMwWBQZ511lhFdAgAAAAAAAAAAwEBWq3XIiuorV67MwGgAAACA8SssLJQkhUIhlZWVDdofCoUGtAMAAEB2GX4t5zG46aabZLFYdM8992jfvn1GdAkAAAAAAAAAAAAAAAAAg7hcLjkcDtXW1qq3t3fAvt7eXtXV1amoqEgulytDIwQAAMBIDAmwl5aW6t/+7d/03nvv6YILLtAf/vAHI7oFAAAAAAAAAAAzTCKR0AsvvKDGxka98MILSiQSmR4SAAAAgGnGYrGovr5eLS0tqq6u1ssvv6z9+/fr5ZdfVnV1tVpaWnTPPffIYrFkeqgAAAAYQo4RnXzxi1+UJC1fvlyvv/66XC6XlixZoo985CM66qijRvwwaDKZ9NBDDxkxDAAAAAAAAAAAMEEdHR2KRCKpvycSCTU3N0uSnnzySSUSiQHn/Z1Op6xWa1p9NzU1yefzKRqNprY5HA7V19fL7XYbMn4AAAAAs4Pb7Zbf75fP51N5eXlqe1FRkfx+P98xAAAAspghAfZHHnlEJpNJUn8gva+vT62trdq2bduI9+vr6yPADgAAAAAAAABAFolEIiotLR1yX21trWprawdsCwaDWrFixaj9NjU1yePxqLKyUo2NjSopKVEoFFJtba08Hg8BEwAAAABj5na7VVVVpUAgoPb2dhUWFsrlclF5HQAAIMsZEmC32+2pADsAAAAAAAAAAJi+nE6ngsGgfv/73+u2226Ty+XSlVdeqZycHPX09Ojxxx9XIBDQ97//fX3sYx+T0+kctc9EIiGfz6fKyko1NzfLbDZLksrKytTc3Kzq6mqtWbNGVVVVBE0AAAAAjInFYlFFRUWmhwEAAIAxMCTAfvhSnwAAAAAAAAAAYPqyWq06/fTTdemllw4KnEvSV77yFVVXV+v+++/XLbfcklbgPBAIKBqNqrGxcUBfkmQ2m1VTU6Py8nIFAgGCJwAAAAAAAAAwwxkSYAcAAAAAANNPPB6XJHXv2mZIf8l+kv0CAIDpy+jAeXt7uySppKRkyP3J7cl2AAAAAAAAAICZiwA7AAAAAACzVHJFtV0t9Yb3u3LlSkP7BAAAU8vowHlhYaEkKRQKqaysbND+UCg0oB0AAAAAAAAAYOaatAB7b2+vPvjgA3V0dOiEE05IawlRAAAAAAAwdRwOhyRpYaVPuQuXTLi/7l3btKulPtUvAACYvowOnLtcLjkcDtXW1qq5uXlAVffe3l7V1dWpqKhILpfLgNEDAAAAAAAAALKZoQH2RCKhRx55RI888oheffVVdXd3y2Qy6Y033tApp5ySatfS0qKXXnpJCxYs0B133GHIsd977z396Ec/0vr167Vt2zbl5eXppJNO0uWXX66vf/3rslqthhxHkp577jk1NDRow4YNam9vV05Ojo477jh95CMf0cc//nF9/vOf17x58ww7HgAAAAAAk6GgoECSlLtwifKOX2p4vwAAYPoyOnBusVhUX18vj8ej6upq1dTUqKSkRKFQSHV1dWppaZHf76cYDgAAAAAAAADMAoYF2Hfu3Knq6mq98sor6uvrG7Gtw+HQJZdcIpPJpNWrV+ujH/3ohI799NNPy+v1at++faltHR0d2rx5szZv3qwHH3xQ69ev19KlE7sYv3v3bl177bX61a9+NWjfvn379NZbb+nJJ5/UueeeO+HfCQAAAAAAAACATJmMwLnb7Zbf75fP51N5eXlqe1FRkfx+v9xu92T8KhhBIpFQIBBQe3u7CgsL5XK5mEQAAAAAAAAAYNIZEmBPJBK6+OKL9eqrr8psNuuyyy7T+eefrxtvvHHI9iUlJTrnnHO0adMmPfXUUxMKe7/22mv63Oc+p3g8rnnz5qmmpkarVq1SPB7XE088oQceeEBbt27V6tWrtXnzZs2fP39cx9m7d68uvPBCBYNBSdJnP/tZeTwenXTSSbJYLNq2bZtefPFFPfnkk+P+XQAAAAAAAAAAyBaTETh3u92qqqoiNJ0Fmpqa5PP5FI1GU9scDofq6+uZTAAAAAAAAABgUhkSYP/Zz36mV199Vbm5ufr1r3+tT37yk5I0bIBdki655BK98sor2rBhw4SOffPNNysejysnJ0fPPvuszj333NS+j33sYzr55JN12223aevWraqvr9e//uu/jus4N910k4LBoPLy8vTLX/5Sl1xyyYD9Z555pj772c9q7dq1SiQSE/mVAAAAAAAAAADICpMROLdYLKqoqDBukBizpqYmeTweVVZWqrGxMVVdv7a2Vh6Ph4r4AAAAAAAAACaVIQH2xsZGmUwmXX/99anw+mjOOOMMSdKWLVvGfdxNmzYpEAhIkr70pS8NCK8n+Xw+PfzwwwqHw7rvvvt0xx13KDc3d0zH2bBhgx577DFJ0t133z0ovH44k8mknBxD/lkBAAAAAAAAAMg4AufDa21tVSwWG7FNOBwe8HMkNptNdrvdkLENJ5FIyOfzqbKyUk8++aQ2btyop59+WoWFhXryySd16aWXas2aNaqqqqIyPgAAAAAAAIBJYUjS+o033pCkEYPdH3bsscdKknbt2jXu4zY3N6duX3vttUO2MZvNuvrqq1VTU6M9e/bo+eef10UXXTSm4/z7v/+7JGnBggUjVpUHAAAAAAAAAACzQ2trq5Y7i9UZ70irvdfrHbVNfoFVWyLhSQ2xBwIBRaNRXX/99Vq2bJmi0Whqn8Ph0HXXXaenn35agUCAiQsAAAAAAAAAJoUhAfY9e/ZIkhYuXJj2fRKJhCRNqHrHhg0bJElz585VaWnpsO0uuOCC1O2NGzeOKcB+6NAh/epXv5IkXXjhhcrPz5fUP/7t27crkUjo+OOPT20HAAAAAAAAAAAzXywWU2e8QwsrfcpduGTYdn09h9Szd4dyFhwnU86cYdt179qmXS31isVikxpgb29vlyTdfvvtqqysVGNjo0pKShQKhVRbW6s77rhjQDsAAAAAAAAAMJohAfajjz5aO3fu1LZt23TGGWekdZ+33npLknTMMceM+7jJ5TaXLl2qnJzhfxWn0znoPul6/fXX1dnZKUk67bTTtG/fPn3rW9/Sz372s1Rwf86cOTr//PN1xx13UI0EAAAAAAAAADCpWltbFYvFRmyTPBeezjlxm802qYHpmS534RLlHb905EaLT5mawaQhuULuypUr1dzcLLPZLEkqKytTc3OzLrjgAm3YsCHVDgAAAAAAAACMZkiA/dRTT9XOnTv16quv6pJLLknrPr/4xS9kMpl01llnjeuYnZ2dqRP0ixcvHrHtUUcdpblz5+rgwYPatm3bmI7zP//zP6nbvb29OvPMM1Ph+6RDhw7pueee0+9+9zvV1dXpn/7pn8Z0DAAAAAAAAAAA0tHa2qrlzmJ1xjvSau/1ekdtk19g1ZZImBA7JEl9fX2ZHgIAAAAAAACAGc6QAHt1dbV+//vf69///d9166236qijjhqxvd/v19NPPy2TyaRLL710XMfcv39/6va8efNGbZ8MsB84cGBMx/nggw9St7/3ve+ps7NTn/rUp/Ttb39bH/nIR7Rv3z49+eST+ud//mft3btX//zP/yyn06mqqqph++zq6lJXV1fq7/v27RvTmAAAAAAAAMaqo6NDkUhkwLZ4PK5oNCqHw6GCgoIB+5xOp6xW61QOEQCQhlgsps54hxZW+pS7cMmw7fp6Dqln7w7lLDhOppw5w7br3rVNu1rqFYvFCLDPEjt37pQkbdiwQdXV1aqpqVFJSYlCoZDq6uq0cePGAe0AAAAAAAAAwGiGBNi/8pWv6J577tG2bdt00UUX6Wc/+5lOOWXwcpg7d+7Ufffdpx/84AcymUwqKSnR5ZdfPq5jdnZ2pm7PmTP8yfekvLw8Sf0XZsfi4MGDA4554YUXqqWlRRaLRZJ0zDHH6Ktf/apKSkp0wQUXqLe3VzU1NbrkkktkMpmG7LOurk533XXXmMYBAAAAAAAwEZFIRKWlpWm3DwaDWrFixSSOCAAwEbkLlyjv+KUjN1o8+Dw9UFhYKKn/WsVPfvITlZeXp/YVFRWptrZWt99+e6odAAAAAAAAABjNkAB7Xl6efvWrX6miokLBYFCnnXaali9fntrv9Xp14MAB/fWvf1VfX5/6+vq0cOFCPfnkk8OGvEeTn5+fun3o0KFR2ycrnn+4mthYjiP1V2FPhtcPd95558ntdsvv9yscDuvNN9/URz7ykSH7rKmp0a233pr6+759+7RkyfCVcgAAAABgphuqMnQ4HB7w83BUhgbGzul0KhgMDtgWDofl9XrV0NCg4uLiQe2TkgUBurZ3yQjJfsZaaAAAAEycy+WSw+HQH/7wB23dulUbN25Ue3u7CgsLtXLlSl166aUqKiqSy+XK9FABAAAAAAAAzFCGBNgl6fTTT9err76qa665Ri+//PKA4MHrr7+uvr6+1N/PPvtsPf744/o//+f/jPt48+fPT90+cODAqO2TldTnzZs37uMcc8wxOuOMM4Zt+8lPflJ+v1+S9Oqrrw4bYM/Ly0tVhAdmMkJIAAAASNdIlaG9Xu+gbVSGBsbOarUO+7wpLi4e8TkVjUYlSW3r2gwdUzQa1cqVKw3tEwAAjMxisai+vl4ej0eXXnqpampqVFlZqVAopEsvvVQtLS3y+/1DFvMBAAAAAAAAACMYFmCXpKVLl2rjxo3asGGDfv3rX2vz5s3auXOnEomEFi5cqDPOOEOXXHKJLrzwwgkfKz8/XwsXLtSuXbvU1jbyxdPdu3enAuxjrXR+ePvFixen3fb9998f03GAmYgQEgAAANI1VGXoeDyuaDQqh8MxaDWtwytDA5h8DodDkrT4usXKWzTxSfld27vUtq4t1S8AAJhayRVlfT6fysvLU9uLiork9/vldrszODoAAAAAAAAAM52hAfak8847T+edd95kdD3AKaecokAgoLfffls9PT3KyRn61zm8AvSHl8Mezamnnpq6nUgkRmx7+P7hxgLMJoSQAAAAkK7hKkNTmRnIDsnvb3mL8lTgKBil9dj7BQDMLolEQoFAQO3t7SosLJTL5aLadwa43W5VVVXxWAAAAAAAAACYctM6ZX3eeecpEAjo4MGDCgaDOuecc4Zs9+KLL6ZujzX8cOKJJ8put6u1tVXRaFR9fX0ymUxDtn3nnXdSt0844YQxHQeYiQghAQAAAAAAADhcU1OTfD6fotFoapvD4VB9fT1VvzPAYrGooqIi08MAAAAAAAAAMMuYjejkH/7hH9TS0qKenh4juktbdXV16vbDDz88ZJve3l49+uijkqQjjzxSq1atGvNxLr30UknSvn379Lvf/W7Ydk1NTanbU1GBHgAAAAAAAACA6aKpqUkej0ennXaaXn75Ze3fv18vv/yyTjvtNHk8ngHn2AEAAAAAAAAAM5chAfZf/vKXqqqq0vHHH68bbrhBGzZsMKLbUZ199tlyuVySpIceekgvv/zyoDb19fUKh8OSpJtvvlm5ubkD9r/wwgsymUwymUz6whe+MORx/vEf/1H5+fmSpFtvvVX79u0b1KahoUEvvPCCJGn16tVasmTJeH8tAAAAAAAAAABmlEQiIZ/Pp8rKSjU3N6usrEzz5s1TWVmZmpubVVlZqTVr1iiRSGR6qAAAAAAAAACASWZIgH3+/Pnq6+vTBx98oJ/85Ce64IILVFRUpDvuuEN/+ctfjDjEsO677z4VFBSop6dHF110kerq6vTHP/5Rzz//vK6//nrddtttkqRly5bJ5/ON6xh2u13f/va3JUlvvvmmzj77bD388MMKBoN6/vnnddNNN6XC70cccYTWrl1ryO8GAAAAAAAAAMBMEAgEFI1Gdfvtt8tsHnhpwmw2q6amRu+++64CgUCGRggAAAAAAAAAmCo5RnSyc+dOtbS06PHHH9dvfvMbdXV16b333tN3v/tdffe739Vpp50mr9erf/iHf9DixYuNOGTKGWecoV/84hfyer3at2+fbr/99kFtli1bpvXr12v+/PnjPs43vvENffDBB/re976nLVu26Itf/OKgNscee6yam5t18sknj/s4AAAAAAAAAADMNO3t7ZKkkpKSIfcntyfbAQAAAAAAAABmLkMqsOfl5enSSy/Vk08+qR07dujBBx/Uxz72MZlMJvX19emNN97QP/3TP8nhcGjVqlV66KGHtHfvXiMOLUm6+OKL9cYbb+iWW27RsmXLZLVadeSRR+rMM8/U9773Pb322mtaunTphI9TV1enjRs36vOf/7wcDofy8vK0YMECnXXWWfrOd76jrVu36txzzzXgNwIAAAAAAAAAYOYoLCyUJIVCoSH3J7cn2wEAAAAAAAAAZi5DKrAf7ogjjtAXv/hFffGLX1R7e7ueeOIJPf744woGg+rr69NLL72kl156STfeeKM+/elPy+v1yu12T/i4J554ou69917de++9Y7pfRUWF+vr60m5/7rnnElIHAAAAAAAAAGAMXC6XHA6Hamtr1dzcLLP57/V1ent7VVdXp6KiIrlcrgyOcmzi8bgkqXvXNkP6S/aT7BcAAAAAAAAAZirDA+yHKyws1C233KJbbrlFb731lhoaGvTEE0/orbfeUldXl5qbm/XrX/9aPT09kzkMAAAAAAAAAACQQRaLRfX19fJ4PKqurlZNTY1KSkoUCoVUV1enlpYW+f1+WSyWTA81bdFoVJK0q6Xe8H5XrlxpaJ8AAAAAAAAAkE0mNcB+uJNPPll33XWX7rrrLj3xxBO64YYbtGfPnjFVPwcAAAAAAAAAANOT2+2W3++Xz+dTeXl5antRUZH8fr8hq7VOJYfDIUlaWOlT7sIlE+6ve9c27WqpT/ULAAAAAAAAADPVlAXY33//ff3iF7/Qz3/+c23atGmqDgsAAAAAAAAAALKE2+1WVVWVAoGA2tvbVVhYKJfLNa0qrycVFBRIknIXLlHe8UsN7xcAAAAAAAAAZqpJDbAfPHhQTU1Nevzxx/W73/1OiUQiVXHdZDJp5cqVuuqqqyZzCAAAAAAAAAAAIItYLBZVVFRkehgAAAAAAAAAgAwxPMDe09Oj3/72t3r88cf19NNPKx6PS1IquH7KKafoqquu0pVXXqkTTzzR6MMDAAAAAAAAAAAAAAAAAAAAALKUYQH2QCCgn//85/L7/dq9e7ekv4fWTzjhBF1xxRW66qqrdPrppxt1SAAAAAAAAAAAAAAAAAAAAADANGJIgP3EE09UW1ubpL+H1hcsWCCPx6OrrrpKF1xwgUwmkxGHAgAAAAAAAAAAAAAAAAAAAABMU4YE2Ldt2yZJysvL0+rVq3XVVVdp9erVmjNnjhHdAwAAAAAAAAAAAAAAAAAAAABmAEMC7KtWrdJVV12lSy+9VAsWLDCiSwAAAAAAAAAAAAAAAAAAAADADGNIgP13v/udEd0AAAAAAAAAAAAAAAAAAAAAAGYwc6YHAAAAAAAAAAAAAAAAAAAAAACYHQypwP5hwWBQzz33nEKhkD744ANJ0tFHH62SkhJ94hOfUGlp6WQcFgAAAAAAAAAAAAAAAAAAAACQxQwNsL/55pu67rrrtGnTpmHb3H777TrnnHP0k5/8RKeddpqRhwcAAAAAAOPQvWvbiPv7eg6pZ+8O5Sw4TqacOWPqp6OjQ5FIZMC2cDg84OfhnE6nrFZrOsMGAAAAAAAAAAAAAExDhgXYn3vuOV188cU6dOiQ+vr6JEm5ublauHChJGnXrl3q7u6WJP3xj3/U2WefrZaWFn384x83aggAAAAAAGAMbDab8gus2tVSb1if+QVW2Wy21N8jkciwK7F5vd5B24LBoFasWGHYeAAAmGni8bik0SegpSvZT7JfAAAAAAAAAAAmmyEB9lgspssuu0xdXV0ym8360pe+pK985Ss644wzlJPTf4hEIqHXXntNDzzwgH7605+qq6tLl112md56661UyB0AAAAAAEwdu92uLZGwYrHYiO3C4bC8Xq8aGhpUXFw8YlubzSa73Z76u9PpVDAYHNAmHo8rGo3K4XCooKBgwD6n0znG3wIAgNklGo1KkqET0JL9rly50tA+AQAAAAAAAAAYiiEB9vvuu0979+7VnDlz9Ktf/Uqf/OQnB7WxWCw688wzdeaZZ+rSSy/VxRdfrL179+q+++7Tt7/9bSOGAQAAAAAAxshutw8InI+kuLh4zNXRrVbrkPchIAcAwPg4HA5J0sJKn3IXLplwf927tmlXS32qXwAAAAAAAAAAJpshAfb169fLZDLpxhtvHDK8/mEXXXSRbrrpJt17771av349AXYAAAAAAAAAANKQXL0kd+ES5R2/1PB+AQAAAAAAAACYbIYE2N99911J0iWXXJL2fS655BLde++9+utf/2rEEAAAAAAAAAAAAKZc965tI+7v6zmknr07lLPgOJly5oy7HwAAAAAAAACYKQwJsHd2dkqS5s6dm/Z9km27urqMGAIAAAAAAAAAAMCUsdlsyi+waldLvWF95hdYZbPZDOsPAAAAAAAAALKRIQH2448/Xq2trXrttddUWlqa1n1ee+01SdJxxx1nxBAAAAAAAAAAAACmjN1u15ZIWLFYbMR24XBYXq9XDQ0NKi4uHrGtzWaT3W43cpgAAAAAAAAAkHUMCbC7XC41NDTou9/9ri6//HIdccQRI7bfv3+/vve978lkMsnlchkxBAAAAAAAAAAAgCllt9vTDpwXFxdrxYoVkzwiAAAAAAAAAMh+ZiM6uf766yVJ7777rs4//3xt3rx52LabN2/WBRdcoHfeeWfAfQEAAAAAAAAAAAAAAAAAAAAAM5shFdhXrlypG264Qffff7/efPNNnXPOOTr11FN1zjnn6Nhjj5XJZNKOHTv0yiuv6C9/+UvqfjfccINWrlxpxBAAAAAAAAAAAAAAAAAAAAAAAFnOkAC7JP3bv/2brFar7r33XvX29ioUCg0Iq0tSX1+fJMlsNmvNmjX67ne/a9ThAQAAAAAAAAAAAAAAAAAAAABZzmxURyaTSd///vf15z//WV/72td08sknq6+vb8Cfk08+WV/72tf05z//Wd/73vdkMpmMOjwAAAAAAAAAAAAAAAAAAAAAIMsZVoE9qaSkRP/xH/8hSTp06JB2794tSTrqqKM0Z84cow8HAAAAAAAAAAAAAAAAAAAAAJgmDA+wH27OnDk67rjjJvMQAAAAAAAAAAAAAAAAAAAAAIBpwjyeO/32t7/VihUrtGLFCj3++ONjuu/jjz+euu9zzz03nsMDAAAAAAAAAAAAAAAAAAAAAKahMQfY+/r6dMstt+j111/XMcccoyuvvHJM97/iiitks9n05z//WT6fb6yHBwAAAAAAAAAAAAAAAAAAAABMU2MOsP/+97/X1q1bZTabtXbt2jEf0GQy6Yc//KEsFotCoZBefPHFMfcBAAAAAAAAAAAAAAAAAAAAAJh+xhxgf/LJJyVJF154oU455ZRxHfSUU07RJz/5SUmS3+8fVx8AAAAAAAAAAAAAAAAAAAAAgOllzAH2TZs2yWQy6eKLL57QgSsrK9XX16c//vGPE+oHAAAAAAAAAAAAAAAAAAAAADA9jDnA/t5770mSli9fPqEDL1u2TJIUjUYn1A8AAAAAAAAAAAAAAAAAAAAAYHoYc4B97969kqSjjz56QgdO3n/fvn0T6gcAAAAAAAAAAAAAAAAAAAAAMD3kjPUORxxxhHbv3q09e/ZM6MDJ+8+fP39C/QAAAAAAAGBqdG3vGnF/76Fedce6lWvLlXnO8HUTRusHAAAAAAAAAAAAwMw15gD7Mccco927d+t//ud/VFFRMe4Dh8NhSdKxxx477j4AAAAAAAAw+Ww2m/IL8tW2rs2wPvML8mWz2QzrDwAAAAAAAAAAAMD0MOYA+9lnn60tW7bo6aef1g033DDuA//qV7+SyWTSWWedNe4+AAAAAAAAMPnsdru2RLYoFouN2C4cDsvr9aqhoUHFxcUjtrXZbLLb7UYOEwAAAAAAAAAAAMA0MOYA+6c//Wk99thjevbZZ7Vhwwadd955Yz7oSy+9pGeffVYmk0mf/vSnx3x/AAAAAAAATC273Z524Ly4uFgrVqyY5BEBAAAAAAAAAAAAmI7GHGC/9NJL5XA4FI1Gddlll+mll17SySefnPb9t27dqssvv1wmk0kOh0Mej2esQwAAAAAAAAAAYFbr3rVtxP19PYfUs3eHchYcJ1POnHH3AwAAAAAAAACA0cYcYM/NzdU999wjj8ejnTt3qrS0VN/5znf05S9/WXPnzh32fgcOHNCDDz6ob33rWzpw4IBMJpPq6+uVkzPmIQAAAAAAAAAAMCvZbDblF1i1q6XesD7zC6yy2WyG9QcAAAAAAAAAwEjGlR53u92666679C//8i86ePCgbr31Vt15551yuVwqLS3Vscceq7lz5+rgwYPasWOH/vSnPykQCOjgwYPq6+uTJN11112qrq428ncBAAAAAAAAAGBGs9vt2hIJKxaLjdguHA7L6/WqoaFBxcXFI7a12Wyy2+1GDhMAAAAAAAAAgGGNu/z5nXfeqcWLF+umm25SR0eHDhw4oGeeeUbPPPPMkO2TwXWr1ap///d/1xe+8IXxHhoAAAAAAAAAgFnLbrenHTgvLi7WihUrJnlEAAAAAAAAAACkzzyRO1977bXaunWrbr31VtlsNvX19Q37x2azyefzaevWrYTXAQAAAAAAAAAAAAAAAAAAAGAWGncF9qRFixbpnnvu0T333KO//OUvev3117Vr1y7t379f8+fP18KFC3X66afr1FNPNWK8AAAAAAAAAAAAAAAAAAAAAIBpasIB9sOdeuqpBNUBAAAAAAAAAAAAAAAAAAAAAEMyZ3oAAAAAAAAAAAAAAAAAAAAAAIDZgQA7AAAAAAAAAAAAAAAAAAAAAGBKEGAHAAAAAAAAAAAAAAAAAAAAAEwJAuwAAAAAAAAAAAAAAAAAAAAAgClBgB0AAAAAAAAAAAAAAAAAAAAAMCUIsAMAAAAAAAAAAAAAAAAAAAAApgQBdgAAAAAAAAAAAAAAAAAAAADAlCDADgAAAAAAAAAAAAAAAAAAAACYEjMmwP7ee+/J5/PJ6XRq7ty5Ovroo3XWWWfpBz/4gTo6OibU9yOPPCKTyZTWn0ceecSYXwgAAAAAAAAAAAAAAAAAAAAAZpicTA/ACE8//bS8Xq/27duX2tbR0aHNmzdr8+bNevDBB7V+/XotXbo0g6MEAAAAAAAAAAAAAAAAAAAAgNlt2gfYX3vtNX3uc59TPB7XvHnzVFNTo1WrVikej+uJJ57QAw88oK1bt2r16tXavHmz5s+fP6Hj/dd//ZcWLVo07P7FixdPqH8AAAAAAAAAAAAAAAAAAAAAmKmmfYD95ptvVjweV05Ojp599lmde+65qX0f+9jHdPLJJ+u2227T1q1bVV9fr3/913+d0PGWLVsmh8MxsUEDAAAAAAAAAAAAAAAAAAAAwCxkzvQAJmLTpk0KBAKSpC996UsDwutJPp9PxcXFkqT77rtP3d3dUzpGAAAAAAAAAAAAAAAAAAAAAEC/aR1gb25uTt2+9tprh2xjNpt19dVXS5L27Nmj559/fiqGBgAAAAAAYKhEIqEXXnhBjY2NeuGFF5RIJDI9JAAAAAAAAAAAAAAYs2kdYN+wYYMkae7cuSotLR223QUXXJC6vXHjxkkfFwAAAAAAgJGampq0dOlSrVq1SldeeaVWrVqlpUuXqqmpKdNDAwAAAAAAAAAAAIAxycn0ACYiHA5LkpYuXaqcnOF/FafTOeg+43Xttddqy5YtisViOuKII7R06VJ94hOf0Ne+9jWdcMIJE+obAAAAAADgw5qamuTxeFRZWanGxkaVlJQoFAqptrZWHo9Hfr9fbrc708MEAACSOjo6FIlEBmxLXpcY6vqE0+mU1WqdkrEBAAAAAAAAwP/P3p3HS1nXjf//XOewLwqCKAaKiggGbqgpRIKl3d1uSJZZ5NJmuXxdcAm7c7ldUBNNK0uTbHUpbsMSK3dFxQUyEQNRFEXFBRXZDts5798f/s50Dvt6zuccns/Hg4fDzDXXfGZe3fcwM++5JhcNdoB90aJFafbs2SmllLp06bLabdu3b59at26dFixYkGbOnLlBt/vwww+XTr///vvp/fffT0899VQaOXJk+vGPf5xOOumkDdo/AAAAQLXKyso0bNiwdNhhh6UxY8aksrKPf0xv//33T2PGjEmDBw9OZ599djryyCNTeXl5Pa8WAJg6deoqfzF26NChK5w3ceLEtPfee2/qZQEAAAAAZKXBDrDPmzevdLpNmzZr3L56gH3+/PnrdXs77bRTGjJkSDrggANS165dU0opvfLKK+n//u//0ujRo9OiRYvSd7/73VQURfrOd76z2n0tXrw4LV68uPT3uXPnrteaAAAAgMZt3LhxacaMGem2224rDa9XKysrS8OHD0/9+vVL48aNSwMHDqyfRQIAJT179kwTJ06sdV5FRUWaMWNG6tatW2rZsuUK2wMAAAAAbG4a7AD7okWLSqebNWu2xu2bN2+eUvr4jeJ1ddRRR6Xjjz8+FUVR6/x99903HXPMMenuu+9OQ4YMSUuXLk1nnnlmOuKII9K22267yv2NGDEiXXzxxeu8DgAAAGDzMmvWrJRSSr17917p5dXnV28HANSvVq1arfSI6v3796+H1QAAAAAA5KlszZvkqUWLFqXTS5YsWeP21Uc8X/7oJmtjyy23XGF4vabDDjssXXDBBSmllBYuXJhGjRq12v0NHz48ffTRR6U/M2fOXOc1AQAAAI1f586dU0opTZ48eaWXV59fvR0AAAAAAABA7hrsAHvbtm1Lp+fPn7/G7RcsWJBSSqlNmzabZD3f+c53SkPujzzyyGq3bd68edpiiy1q/QEAAABY3oABA1K3bt3S5ZdfnqqqqmpdVlVVlUaMGJF23HHHNGDAgHpaIQAAAAAAAMC6abAD7C1atEgdOnRIKaX0xhtvrHbbDz/8sDTA3rVr102ynk6dOpXW8+abb26S2wAAAAA2L+Xl5WnkyJHp7rvvToMHD07jx49P8+bNS+PHj0+DBw9Od999d7r66qtTeXl5fS8VAAAAAAAAYK002AH2lFLabbfdUkopvfzyy2nZsmWr3G7q1Kml07169dpk66k+AjsAAADAxjJkyJA0evTo9Pzzz6d+/fqlLbbYIvXr1y9Nnjw5jR49Og0ZMqS+lwgAAAAAAACw1prU9wI2xKc//ek0bty4tGDBgjRx4sT0qU99aqXbPfLII6XT/fv33yRree+999Ls2bNTSiltt912m+Q2AAAAgM3TkCFD0pFHHpnGjRuXZs2alTp37pwGDBjgyOsAkLnKykrP3wAAAAAAy2nQR2AfPHhw6fQtt9yy0m2qqqrSb3/725RSSu3atUuDBg3aJGu56aabUkSklFI68MADN8ltAAAAAJuv8vLyNHDgwHTsscemgQMHGn4DgMzdeeedqXv37mnQoEHpq1/9aho0aFDq3r17uvPOO+t7aQAAAAAA9apBD7Dvt99+acCAASmllEaNGpXGjx+/wjYjR45MU6ZMSSmldPrpp6emTZvWuvzhhx9ORVGkoijSCSecsML1Z8yYkZ599tnVruPuu+9O//u//5tSSqlly5bpxBNPXJ+7AwAAAAAANAJ33nlnOvroo1OfPn3S+PHj07x589L48eNTnz590tFHH22IHQAAAADYrDWp7wVsqOuuuy71798/VVRUpEMOOSSdf/75adCgQamioiLdfvvt6aabbkoppdSjR480bNiwdd7/jBkz0qBBg9IBBxyQDj/88LTHHnukTp06pZRSeuWVV9Lo0aPT6NGjS0dfv/rqq9MnPvGJjXcHAQAAAACABqOysjINGzYsHXbYYWnMmDGprOzjYwntv//+acyYMWnw4MHp7LPPTkceeaRfVAEAAAAANksNfoB9r732SnfccUcaOnRomjt3bjr//PNX2KZHjx5p7NixqW3btut9O+PHj1/pEd6rtWrVKl177bXpO9/5znrfBgAAAAAA0LCNGzcuzZgxI912222l4fVqZWVlafjw4alfv35p3LhxaeDAgfWzSAAAAACAetTgB9hTSunwww9PkyZNStddd10aO3ZseuONN1KzZs1S9+7d05e+9KV06qmnplatWq3Xvvv27Zt+//vfp/Hjx6cJEyakWbNmpdmzZ6dly5al9u3bp09+8pPps5/9bPrWt75VOjI7AAAAAACweZo1a1ZKKaXevXuv9PLq86u3AwAAAADY3DSKAfaUUtphhx3SNddck6655pp1ut7AgQNTRKzy8rZt26avfe1r6Wtf+9qGLhEAAAAAAGjkOnfunFJKafLkyWn//fdf4fLJkyfX2g4AAAAAYHNTtuZNAAAAAAAAWBsDBgxI3bp1S5dffnmqqqqqdVlVVVUaMWJE2nHHHdOAAQPqaYUAAAAAAPXLADsAAAAAAMBGUl5enkaOHJnuvvvuNHjw4DR+/Pg0b968NH78+DR48OB09913p6uvvjqVl5fX91IBAAAAAOpFk/peAAAAAAAAQGMyZMiQNHr06DRs2LDUr1+/0vk77rhjGj16dBoyZEg9rg4AAAAAoH4ZYAcAAAAAANjIhgwZko488sg0bty4NGvWrNS5c+c0YMAAR14HAAAAADZ7ZfW9AAAAAAAAAAAAAAAANg8G2AEAAAAAADayO++8M3Xv3j0NGjQoffWrX02DBg1K3bt3T3feeWd9Lw0AAAAAoF4ZYAcAAAAAANiI7rzzznT00UenPn36pPHjx6d58+al8ePHpz59+qSjjz7aEDsAAAAAsFlrUt8LAAAAAGDje/3119Ps2bNXu82UKVNq/Xd1OnbsmLbffvuNsjYAaMwqKyvTsGHD0mGHHZbGjBmTyso+PpbQ/vvvn8aMGZMGDx6czj777HTkkUem8vLyel4tAAAAAEDdM8AOAAAAlCxcuDBNnTq11nmrG3Lu2bNnatWqVZ2sjbX3+uuvp149d00LKxat1fZDhw5d4zatWrZIU6a+aIgdANZg3LhxacaMGem2224rDa9XKysrS8OHD0/9+vVL48aNSwMHDqyfRQIAAAAA1CMD7AAAAEDJ1KlTU9++fVd62cqGnCdOnJj23nvvTb0s1tHs2bPTwopF6fdHtUy9ti5b5XYVyyLNmFOVurUrSy2bFKvcbsp7VWnonyvS7NmzDbADwBrMmjUrpZRS7969V3p59fnV2wEAAAAAbG4MsAMAAAAlPXv2TBMnTqx1XkVFRZoxY0bq1q1batmy5Qrbs2ms7Gj4a2qx/NHwe21dlvbuXL7a2+nfdeOsFwD4WOfOnVNKKU2ePDntv//+K1w+efLkWtsBAAAAAGxuDLADAAAAJa1atVrpEdX79+9fD6vZvK3uaPgr42j4AJCHAQMGpG7duqXLL788jRkzJpWV/efXUKqqqtKIESPSjjvumAYMGFCPqwQAAAAAqD8G2AEAAAAytLKj4U+ZMiUNHTo0/f73v0+9evVaYXsAoP6Vl5enkSNHpqOPPjoNHjw4DR8+PPXu3TtNnjw5jRgxIt19991p9OjRqbx89b+SAgAAAADQWBlgBwAAAMjQqo6Gn1JKvXr1crR1AMjYkCFD0ujRo9OwYcNSv379SufvuOOOafTo0WnIkCH1uDoAAAAAgPplgB0AAAAAAGAjGzJkSDryyCPTuHHj0qxZs1Lnzp3TgAEDHHkdAAAAANjsH9K84AABAABJREFUGWAHAAAAAADYBMrLy9PAgQPrexkAAAAAAFkpq+8FAAAAAAAAAAAAAACweTDADgAAAAAAAAAAAABAnTDADgAAAAAAAAAAAABAnTDADgAAAAAAAAAAAABAnTDADgAAAAAAAAAAAABAnTDADgAAAAAAAAAAAABAnTDADgAAAAAAAAAAAABAnTDADgAAAAAAAAAAAABAnTDADgAAAAAAAAAAAABAnTDADgAAAAAAAAAAAABAnTDADgAAAAAAAAAAAABAnTDADgAAAAAAAAAAAABAnWhS3wsAAAAAAABojCorK9O4cePSrFmzUufOndOAAQNSeXl5fS8LAAAAAKBeOQI7AAAAAADARnbnnXem7t27p0GDBqWvfvWradCgQal79+7pzjvvrO+lAQAAAADUKwPsAAAAAAAAG9Gdd96Zjj766NSnT580fvz4NG/evDR+/PjUp0+fdPTRRxtiBwAAAAA2awbYAQAAAAAANpLKyso0bNiwdNhhh6UxY8ak/fffP7Vp0ybtv//+acyYMemwww5LZ599dqqsrKzvpQIAAAAA1AsD7AAAAAAAABvJuHHj0owZM9L555+fyspqfwxTVlaWhg8fnl599dU0bty4elohAAAAAED9MsAOAAAAAACwkcyaNSullFLv3r1Xenn1+dXbAQAAAABsbgywAwAAAAAAbCSdO3dOKaU0efLklV5efX71dgAAAAAAm5sm9b0AAAAAAABg/S1cuDBNnTq11nlTpkyp9d+aevbsmVq1alUna9scDRgwIHXr1i1dfvnlacyYMams7D/HEqqqqkojRoxIO+64YxowYEA9rhIAAAAAoP4YYAcAAAAAgAZs6tSpqW/fviu9bOjQoSucN3HixLT33ntv6mVttsrLy9PIkSPT0UcfnQYPHpyGDx+eevfunSZPnpxGjBiR7r777jR69OhUXl5e30sFAAAAAKgXBtgBAAAAAKAB69mzZ5o4cWKt8yoqKtKMGTNSt27dUsuWLVfYnk1ryJAhafTo0WnYsGGpX79+pfN33HHHNHr06DRkyJB6XB0AAAAAQP0ywA4AAAAAAA1Yq1atVnpE9f79+9fDaqg2ZMiQdOSRR6Zx48alWbNmpc6dO6cBAwY48joAAAAAsNkzwA4AAAAAALAJlJeXp4EDB9b3MgAAAAAAslJW3wsAAAAAAAAAAAAAAGDzYIAdAAAAAAAAAAAAAIA6YYAdAAAAAAAAAAAAAIA6YYAdAAAAAAAAAAAAAIA6YYAdAAAAAAAAAAAAAIA60aS+FwAAAABAw7Nw4cI0derUWudNmTKl1n9r6tmzZ2rVqlWdrA1gc1dZWZnGjRuXZs2alTp37pwGDBiQysvL63tZAAAAAACQUjLADgAAAMB6mDp1aurbt+9KLxs6dOgK502cODHtvffem3pZAJu9O++8Mw0bNizNmDGjdF63bt3SyJEj05AhQ+pvYQAAAAAA8P8zwA4AAADAOuvZs2eaOHFirfMqKirSjBkzUrdu3VLLli1X2B6ATevOO+9MRx99dDrssMPSbbfdlnr37p0mT56cLr/88nT00Uen0aNHG2IHAAAAAKDeGWAHAAAAYJ21atVqpUdU79+/fz2sBoDKyso0bNiwdNhhh6UxY8aksrKylFJK+++/fxozZkwaPHhwOvvss9ORRx6ZysvL63m1AAAAAABszsrqewEAAAAAAMCGGTduXJoxY0Y6//zzS8Pr1crKytLw4cPTq6++msaNG1dPKwQAAAAAgI8ZYAcAAAAAgAZu1qxZKaWUevfuvdLLq8+v3g4AAAAAAOqLAXYAAAAAAGjgOnfunFJKafLkySu9vPr86u0AAAAAAKC+GGAHAAAAAIAGbsCAAalbt27p8ssvT1VVVbUuq6qqSiNGjEg77rhjGjBgQD2tEAAAAAAAPmaAHQAAAAAAGrjy8vI0cuTIdPfdd6fBgwen8ePHp3nz5qXx48enwYMHp7vvvjtdffXVqby8vL6XCgAAAADAZq7RDLC/9tpradiwYalnz56pdevWaauttkr77rtv+tGPfpQWLly4SW5z4cKFaaeddkpFUaSiKFK3bt02ye0AAAAAAMCaDBkyJI0ePTo9//zzqV+/fmmLLbZI/fr1S5MnT06jR49OQ4YMqe8lAgAAAABAalLfC9gY/vrXv6ahQ4emuXPnls5buHBhmjBhQpowYUK6+eab09ixY1P37t036u1ecMEF6dVXX92o+wQAAADYUBUVFSmllKbMrtwo+6veT/V+AcjXkCFD0pFHHpnGjRuXZs2alTp37pwGDBjgyOsAAAAAAGSjwQ+wP/vss+mYY45JFRUVqU2bNmn48OFp0KBBqaKiIt1+++3pl7/8ZZo2bVo69NBD04QJE1Lbtm032u3++Mc/Ti1atEhNmzZN8+bN2yj7BQAAANhQM2bMSCmlNPTORRt9v/3799+o+wRg4ysvL08DBw6s72UAAAAAAMBKNfgB9tNPPz1VVFSkJk2apHvvvTcdcMABpcsOOuigtMsuu6Rzzz03TZs2LY0cOTJddNFFG3yblZWV6dvf/naqrKxMF154YRo1apQBdgAAACAb3bp1Syml9PshLVKvjht+xN0psyvT0DsXlfYLAAAAAAAAsL4a9AD7008/ncaNG5dSSumb3/xmreH1asOGDUu33HJLmjJlSrruuuvSD37wg9S0adMNut3rrrsuTZw4Me26667pvPPOS6NGjdqg/QEAAABsTC1btkwppdSrY3nau/OGD7Avv18AAAAAAACA9VVW3wvYEGPGjCmdPvHEE1e6TVlZWTruuONSSinNmTMnPfTQQxt0m6+99lq64IILUkop/eIXv0jNmjXboP0BAAAAAAAAAAAAAGwuGvQA+2OPPZZSSql169apb9++q9zuwAMPLJ1+/PHHN+g2Tz755LRgwYL09a9/PQ0cOHCD9gUAAAAAAAAAAAAAsDlp0APsU6ZMSSml1L1799SkSZNVbtezZ88VrrM+br/99nTPPfek9u3bp5EjR673fgAAAAAAAAAAAAAANkernvrO3KJFi9Ls2bNTSil16dJltdu2b98+tW7dOi1YsCDNnDlzvW7vww8/TGeccUZKKaUrrrgibb311uu1n5RSWrx4cVq8eHHp73Pnzl3vfQEAAAAAAAAAAAAANBQN9gjs8+bNK51u06bNGrdv3bp1Siml+fPnr9ftnXPOOemdd95JBxxwQPr2t7+9XvuoNmLEiLTllluW/nTt2nWD9gcAAAAAAAAAAAAA0BA06COwV2vWrNkat2/evHlKKaWKiop1vq1HH300/epXv0pNmjRJv/jFL1JRFOu8j5qGDx+ezjrrrNLf586da4gdAAAANnOvv/566dfmVmXKlCm1/rum7QAAAAAAAABy02AH2Fu0aFE6vWTJkjVuv3jx4pRSSi1btlyn21m8eHH6zne+kyIinX766Wn33Xdft4WuRPPmzUsD9QAAAACvv/562rVnr7SoYuFabT906NBNvCIAAAAAAACATaPBDrC3bdu2dHr+/Plr3H7BggUppZTatGmzTrdz2WWXpRdffDF17do1XXzxxeu2SAAAAIC1MHv27LSoYmHqcNiw1LTDqn+lLZYtScs+eic12XKbVDRZ9S/SVbwyIX007vebYqkAAAAAAAAAG6TBDrC3aNEidejQIb3//vvpjTfeWO22H374YWmAvWvXVX8IvDJXXnllSimlz33uc+mvf/3rSrep3veCBQvS7bffnlJKqVOnTumggw5ap9sCAAAANm9NO3RNzbftvvqNuuy2xv0sfX/mRloRAAAAAAAAwMbVYAfYU0ppt912S+PGjUsvv/xyWrZsWWrSZOV3Z+rUqaXTvXr1WqfbWLJkSUoppVtuuSXdcsstq9129uzZ6dhjj00ppXTggQcaYAcAAAAAAAAAAAAAqKGsvhewIT796U+nlD4+8vnEiRNXud0jjzxSOt2/f/9Nvi4AAAAAAAAAAAAAAFbUoAfYBw8eXDq9qqOjV1VVpd/+9rcppZTatWuXBg0atE63ERFr/LPDDjuklFLaYYcdSuc9/PDD63WfAAAAAAAAAAAAAAAaqwY9wL7ffvulAQMGpJRSGjVqVBo/fvwK24wcOTJNmTIlpZTS6aefnpo2bVrr8ocffjgVRZGKokgnnHDCJl8zAAAAAAAAAAAAAMDmqkl9L2BDXXfddal///6poqIiHXLIIen8889PgwYNShUVFen2229PN910U0oppR49eqRhw4bV82oBAAAAAAAAAAAAADZfDX6Afa+99kp33HFHGjp0aJo7d246//zzV9imR48eaezYsalt27b1sEIAAAAAAAAAAAAAAFJKqay+F7AxHH744WnSpEnpzDPPTD169EitWrVK7dq1S/vss0+68sor07PPPpu6d+9e38sEAAAAAAAAAAAAANisNfgjsFfbYYcd0jXXXJOuueaadbrewIEDU0Rs0G3PmDFjg64PAAAAAAAAAAAAALA5aBRHYAcAAAAAAAAAAAAAIH8G2AEAAAAAAAAAAAAAqBMG2AEAAAAAAAAAAAAAqBMG2AEAAAAAAAAAAAAAqBMG2AEAAAAAAAAAAAAAqBMG2AEAAAAAAAAAAAAAqBMG2AEAAAAAAAAAAAAAqBMG2AEAAAAAAAAAAAAAqBMG2AEAAAAAAAAAAAAAqBMG2AEAAAAAAAAAAAAAqBMG2AEAAAAAAAAAAAAAqBMG2AEAAAAAAAAAAAAAqBMG2AEAAAAAAAAAAAAAqBMG2AEAAAAAAAAAAAAAqBNN6nsBAAAAAGwaU96rWu3lFcsizZhTlbq1K0stmxTrvR8AAAAAAACAtWWAHQAAAKCRKWveJpUVKQ39c8VG22erli1Sx44dN9r+AAAAAAAAgM2TAXYAAACARqa8TftUFSn9/ve/T7169VrldlOmTElDhw5d43YppdSxY8e0/fbbb+ylAgAAAAAAAJsZA+wAAAAAjVSvXr3S3nvvvdG2AwAAAAAAANhQBtgBAAAA6llFRUVKKaWl78/cKPur3k/1fgEAAAAAAAByYYAdAAAAoJ7NmDEjpZTS+3eP3Oj77d+//0bdJwAAAAAAAMCGMMAOAAAAUM+6deuWUkqpw2HDUtMOXTd4f0vfn5nev3tkab8AAAAAAAAAuTDADgAAAFDPWrZsmVJKqWmHrqn5tt03+n4BAAAAAAAAclFW3wsAAAAAAAAAAAAAAGDzYIAdAAAAAAAAAAAAAIA6YYAdAAAAAAAAAAAAAIA6YYAdAAAAAAAAAAAAAIA6YYAdAAAAAAAAAAAAAIA6YYAdAAAAAAAAAAAAAIA6YYAdAAAAAAAAAAAAAIA6YYAdAAAAAAAAAAAAAIA6YYAdAAAAAAAAAAAAAIA6YYAdAAAAAAAAAAAAAIA6YYAdAAAAAAAAAAAAAIA6YYAdAAAAAAAAAAAAAIA6YYAdAAAAAAAAAAAAAIA6YYAdAAAAAAAAAAAAAIA6YYAdAAAAAAAAAAAAAIA6YYAdAAAAAAAAAAAAAIA6YYAdAAAAAAAAAAAAAIA6YYAdAAAAAAAAAAAAAIA60aS+FwAAAADAx5a+P3O1l8eyJWnZR++kJltuk4omzdZ7PwAAAAAAAAD1xQA7AAAAQD3r2LFjatGyVXr/7pEbbZ8tWrZKHTt23Gj7AwAAAAAAANgYDLADAAAA1LPtt98+vTh1Spo9e/Zqt5syZUoaOnRo+v3vf5969eq12m07duyYtt9++425TAAAAAAAAIANZoAdAAAAIAPbb7/9Wg+c9+rVK+29996beEUAAAAAAAAAG19ZfS8AAAAAAAAAAAAAAIDNgwF2AAAAAAAAAAAAAADqhAF2AAAAAAAAAAAAAADqhAF2AAAAAAAAAAAAAADqhAF2AAAAAAAAAAAAAADqhAF2AAAAAAAAAAAAAADqhAF2AAAAAAAAAAAAAADqhAF2AAAAAAAAAAAAAADqhAF2AAAAAAAAAAAAAADqRKMYYH/ttdfSsGHDUs+ePVPr1q3TVlttlfbdd9/0ox/9KC1cuHCD9j1lypT005/+NB1//PFp7733Tl26dEktWrRIrVu3TjvttFM65phj0l133ZUiYiPdGwAAAAAAAAAAAACAxqlJfS9gQ/31r39NQ4cOTXPnzi2dt3DhwjRhwoQ0YcKEdPPNN6exY8em7t27r9f+L7vssvSHP/xhpZe9+uqr6dVXX01//OMf04EHHpj+7//+L3Xo0GG9bgcAAAAAAAAAAAAAoLFr0APszz77bDrmmGNSRUVFatOmTRo+fHgaNGhQqqioSLfffnv65S9/maZNm5YOPfTQNGHChNS2bdt1vo0mTZqkT33qU6l///6pT58+adttt01bb711+vDDD9PUqVPTjTfemCZPnpweeeSRdPjhh6fHHnsslZU1igPbAwAAAAAAAAAAAABsVA16gP30009PFRUVqUmTJunee+9NBxxwQOmygw46KO2yyy7p3HPPTdOmTUsjR45MF1100Trfxs0335yaNFn5w/S5z30ufe9730tf/vKX05133pnGjx+f7r777nTEEUes710CAAAAAAAAAAAAAGi0Guyhwp9++uk0bty4lFJK3/zmN2sNr1cbNmxY6tWrV0oppeuuuy4tXbp0nW9nVcPr1crLy9M555xT+nv1mgAAAAAAAAAAAAAAqK3BDrCPGTOmdPrEE09c6TZlZWXpuOOOSymlNGfOnPTQQw9tkrW0bdu2dHrRokWb5DYAAAAAAAAAAAAAABq6BjvA/thjj6WUUmrdunXq27fvKrc78MADS6cff/zxTbKW22+/vXS6Z8+em+Q2AAAAAAAAAAAAAAAauib1vYD1NWXKlJRSSt27d09Nmqz6btQcKK++zsYwe/bs9NJLL6Wbb7453XLLLSmllDp27Ji+9rWvbbTbAAAAAAAAAAAAAABoTBrkAPuiRYvS7NmzU0opdenSZbXbtm/fPrVu3TotWLAgzZw5c4Nud+DAgemRRx5Z6WUdO3ZMf/7zn1O7du3WuJ/FixenxYsXl/4+d+7cDVoXAAAAAAAAAAAAAEBDUFbfC1gf8+bNK51u06bNGrdv3bp1Siml+fPnb5L1/L//9//SlClT0qc//em12n7EiBFpyy23LP3p2rXrJlkXAAAAAAAAAAAAAEBOGuQA+6JFi0qnmzVrtsbtmzdvnlJKqaKiYoNu95ZbbknPP/98mjRpUnr00UfTNddck3bZZZf005/+NJ144onpnXfeWav9DB8+PH300UelPxt6ZHgAAAAAAAAAAAAAgIagSX0vYH20aNGidHrJkiVr3H7x4sUppZRatmy5Qbe744471vr7gAED0ve+9730pS99Kd19991p3333TU888UTq0qXLavfTvHnz0lA9AAAAAAAAAAAAAMDmokEegb1t27al0/Pnz1/j9gsWLEgppdSmTZuNvpYWLVqkW265JbVq1SrNnDkznXvuuRv9NgAAAAAAAAAAAAAAGoMGOcDeokWL1KFDh5RSSm+88cZqt/3www9LA+xdu3bdJOvp2LFj6t+/f0oppbvuuistXbp0k9wOAAAAAAAAAAAAAEBD1iAH2FNKabfddksppfTyyy+nZcuWrXK7qVOnlk736tVrk61n6623TimltHDhwjR79uxNdjsAAAAAAAAAAAAAAA1Vgx1g//SnP51SSmnBggVp4sSJq9zukUceKZ2uPkr6pvDmm2+WTrdp02aT3Q4AAAAAAAAAAAAAQEPVYAfYBw8eXDp9yy23rHSbqqqq9Nvf/jallFK7du3SoEGDNsla3njjjTR+/PiUUko77LBDatu27Sa5HQAAAAAAAAAAAACAhqzBDrDvt99+acCAASmllEaNGlUaIK9p5MiRacqUKSmllE4//fTUtGnTWpc//PDDqSiKVBRFOuGEE1a4/rRp09KDDz642nV89NFH6atf/WpasmRJSiml4447bn3uDgAAAAAAAAAAAABAo9ekvhewIa677rrUv3//VFFRkQ455JB0/vnnp0GDBqWKiop0++23p5tuuimllFKPHj3SsGHD1nn/b731VvrsZz+b9thjjzR48ODUt2/ftO2226YmTZqkt99+Oz3++ONp1KhR6e23304ppdS7d+/0/e9/f6PeRwAAAAAAAAAAAACAxqJBD7Dvtdde6Y477khDhw5Nc+fOTeeff/4K2/To0SONHTs2tW3bdr1v57nnnkvPPffcarc59NBD0y233JJatWq13rcDAAAAAAAAAAAAANCYNegB9pRSOvzww9OkSZPSddddl8aOHZveeOON1KxZs9S9e/f0pS99KZ166qnrPVTev3//9I9//CPdf//9acKECemNN95I77zzTlq4cGHaYost0o477pj233//dOyxx6b+/ftv5HsGAAAAAAAAAAAAANC4NPgB9pRS2mGHHdI111yTrrnmmnW63sCBA1NErPLypk2bpkMOOSQdcsghG7pEAAAAAAAAAAAAAIDNXll9LwAAAAAAAAAAAAAAgM2DAXYAAAAAAAAAAAAAAOqEAXYAAAAAAAAAAAAAAOqEAXYAAAAAAAAAAAAAAOpEk/peAAAAAACb3sKFC9PUqVNrnTdlypRa/62pZ8+eqVWrVnWyNgAAAAAAAGDzYYAdAAAAYDMwderU1Ldv35VeNnTo0BXOmzhxYtp777039bIAAAAAAACAzYwBdgAAAIDNQM+ePdPEiRNrnVdRUZFmzJiRunXrllq2bLnC9gAAAAAAAAAbmwF2AAAAgM1Aq1atVnpE9f79+9fDagAAAAAAAIDNVVl9LwAAAAAAAAAAAAAAgM2DAXYAAAAAAAAAAAAAAOqEAXYAAAAAAAAAAAAAAOqEAXYAAAAAAAAAAAAAAOqEAXYAAAAAAAAAAAAAAOqEAXYAAAAAAAAAAAAAAOqEAXYAAAAAAAAAAAAAAOqEAXYAAAAAAAAAAAAAAOqEAXYAAAAAAAAAAAAAAOqEAXYAAAAAAAAAAAAAAOqEAXYAAAAAAAAAAAAAAOqEAXYAAAAAAAAAAAAAAOqEAXYAAAAAAAAAAAAAAOqEAXYAAAAAAAAAAAAAAOqEAXYAAAAAAAAAAAAAAOqEAXYAAAAAAAAAAAAAAOqEAXYAAAAAAAAAAAAAAOqEAXYAAAAAAAAAAAAAAOqEAXYAAAAAAAAAAAAAAOqEAXYAAAAAAAAAAAAAAOqEAXYAAAAAAAAAAAAAAOqEAXYAAAAAAAAAAAAAAOqEAXYAAAAAAAAAAAAAAOqEAXYAAAAAAAAAAAAAAOqEAXYAAAAAAAAAAAAAAOqEAXYAAAAAAAAAAAAAAOqEAXYAAAAAAAAAAAAAAOqEAXYAAAAAAAAAAAAAAOqEAXYAAAAAAAAAAAAAAOqEAXYAAAAAAAAAAAAAAOqEAXYAAAAAAAAAAAAAAOpEk/peAAAAAAArWrhwYZo6dWqt86ZMmVLrvzX17NkztWrVqk7WBgAAAAAAALC+DLADAAAAZGjq1Kmpb9++K71s6NChK5w3ceLEtPfee2/qZQEAAAAAAABsEAPsAAAAABnq2bNnmjhxYq3zKioq0owZM1K3bt1Sy5YtV9geAAAAAAAAIHcG2AEAAAAy1KpVq5UeUb1///71sBoAAAAAAACAjaOsvhcAAAAAAAAAAAAAAMDmwQA7AAAAAAAAAAAAAAB1wgA7AAAAAAAAAAAAAAB1wgA7AAAAAAAAAAAAAAB1wgA7AAAAAAAAAAAAAAB1wgA7AAAAAAAAAAAAAAB1wgA7AAAAAAAAAAAAAAB1wgA7AAAAAAAAAAAAAAB1wgA7AAAAAAAAAAAAAAB1wgA7AAAAAAAAAAAAAAB1otEMsL/22mtp2LBhqWfPnql169Zpq622Svvuu2/60Y9+lBYuXLhB+164cGG688470/e+97207777pvbt26emTZumDh06pAMOOCBddNFF6e23395I9wQAAAAAAAAAAAAAoHFqUt8L2Bj++te/pqFDh6a5c+eWzlu4cGGaMGFCmjBhQrr55pvT2LFjU/fu3dd535MmTUr9+/dP8+fPX+GyDz74ID355JPpySefTNdee2266aab0jHHHLNB9wUAAAAAAAAAAAAAoLFq8Edgf/bZZ9MxxxyT5s6dm9q0aZMuu+yy9MQTT6QHHnggffvb304ppTRt2rR06KGHpnnz5q3z/ufOnVsaXu/fv38aMWJEuu+++9I///nP9I9//COddNJJqaysLM2dOzd97WtfS3/729826v0DAAAAAAAAAAAAAGgsGvwR2E8//fRUUVGRmjRpku699950wAEHlC476KCD0i677JLOPffcNG3atDRy5Mh00UUXrdP+y8rK0pe//OV04YUXpt12222Fyw855JD0hS98IR111FGpsrIynXbaaemll15KRVFs6F0DAAAAAAAAAAAAAGhUGvQR2J9++uk0bty4lFJK3/zmN2sNr1cbNmxY6tWrV0oppeuuuy4tXbp0nW6jX79+6Y477ljp8Hq1I488Mg0ZMiSllNL06dPTs88+u063AQAAAAAAAAAAAACwOWjQA+xjxowpnT7xxBNXuk1ZWVk67rjjUkopzZkzJz300EObZC2DBg0qnZ4+ffomuQ0AAAAAAAAAAAAAgIasQQ+wP/bYYymllFq3bp369u27yu0OPPDA0unHH398k6xl8eLFpdPl5eWb5DYAAAAAAAAAAAAAABqyBj3APmXKlJRSSt27d09NmjRZ5XY9e/Zc4Tob2yOPPFI63atXr01yGwAAAAAAAAAAAAAADVmDHWBftGhRmj17dkoppS5duqx22/bt26fWrVunlFKaOXPmRl/Lc889l8aOHZtSSqlPnz4G2AEAAAAAAAAAAAAAVmLVhy3P3Lx580qn27Rps8btW7dunRYsWJDmz5+/UdexePHi9K1vfStVVlamlFK67LLL1uo6ixcvLv197ty5G3VNAAAAAAAAAAAAAAA5atBHYK/WrFmzNW7fvHnzlFJKFRUVG3Udp556apowYUJKKaXjjz8+HX744Wu8zogRI9KWW25Z+tO1a9eNuiYAAAAAAAAAAAAAgBw12AH2Fi1alE4vWbJkjdtXH/G8ZcuWG20NI0aMSDfffHNKKaV99903/exnP1ur6w0fPjx99NFHpT8zZ87caGsCAAAAAAAAAAAAAMhVk/pewPpq27Zt6fT8+fPXuP2CBQtSSim1adNmo9z+jTfemM4///yUUko9e/ZM99xzT2rduvVaXbd58+alI8IDAAAAAAAAAAAAAGwuGvQR2Dt06JBSSumNN95Y7bYffvhhaYC9a9euG3zbt912Wzr55JNTSintsMMO6b777ksdO3bc4P0CAAAAAAAAAAAAADRmDXaAPaWUdtttt5RSSi+//HJatmzZKrebOnVq6XSvXr026Db/8pe/pOOOOy5VVVWlzp07pwceeCB16dJlg/YJAAAAAAAAAAAAALA5aFLfC9gQn/70p9O4cePSggUL0sSJE9OnPvWplW73yCOPlE73799/vW/vgQceSF/+8pfTsmXLUocOHdJ9992Xdt555/XeX7WISCmlNHfu3A3eF3mpqqoq/VdfAAAA2DS8/gZgbXnOAGBteL4AYG15zgCgvlQ/71TPn0JDU0QD/l/v008/XRpaP+mkk9IvfvGLFbapqqpKvXv3TlOmTEnt2rVL7777bmratOk639YTTzyRDjnkkLRgwYK05ZZbpgceeCD17dt3g+9DSim98cYbqWvXrhtlXwAAAAAAAAAAAAA0fjNnzkxdunSp72XAOmvQR2Dfb7/90oABA9K4cePSqFGj0vHHH58OOOCAWtuMHDkyTZkyJaWU0umnn77C8PrDDz+cBg0alFJK6fjjj0+//vWvV7idf/3rX+nQQw9NCxYsSK1bt05jx47daMPrKaW03XbbpZkzZ6a2bdumoig22n4bsrlz56auXbummTNnpi222KK+l7NZ0yIveuRDi3xokQ8t8qFFXvTIhxb50CIfWuRDi7zokQ8t8qFFPrTIhxZ50SMfWuRDi3xokQ8t8qJHPrTIhxb50CIfWqxcRKR58+al7bbbrr6XAuulQQ+wp5TSddddl/r3758qKirSIYccks4///w0aNCgVFFRkW6//fZ00003pZRS6tGjRxo2bNg673/69Onp85//fJozZ05KKaVLL700bbnllmny5MmrvE6nTp1Sp06d1vo2ysrKfANmFbbYYgtPOpnQIi965EOLfGiRDy3yoUVe9MiHFvnQIh9a5EOLvOiRDy3yoUU+tMiHFnnRIx9a5EOLfGiRDy3yokc+tMiHFvnQIh9arGjLLbes7yXAemvwA+x77bVXuuOOO9LQoUPT3Llz0/nnn7/CNj169Ehjx45Nbdu2Xef9jxs3Lr377rulv5955plrvM6FF16YLrroonW+LQAAAAAAAAAAAACAxqysvhewMRx++OFp0qRJ6cwzz0w9evRIrVq1Su3atUv77LNPuvLKK9Ozzz6bunfvXt/LBAAAAAAAAAAAAADYrDX4I7BX22GHHdI111yTrrnmmnW63sCBA1NErPLyE044IZ1wwgkbuDrWVfPmzdOFF16YmjdvXt9L2expkRc98qFFPrTIhxb50CIveuRDi3xokQ8t8qFFXvTIhxb50CIfWuRDi7zokQ8t8qFFPrTIhxZ50SMfWuRDi3xokQ8toHEqYnXT2wAAAAAAAAAAAAAAsJGU1fcCAAAAAAAAAAAAAADYPBhgBwAAAAAAAAAAAACgThhgBwAAAAAAAAAAAACgThhgBwAAAAAAAAAAAACgThhgJ3uVlZX1vQQAAAAAAAAAAAAAYCMwwE7WlixZkn7yk5+kM844o76XAgAAAAAAAAAAAABsoCb1vQBYlSVLlqTf/va36Yc//GFasGBBqqysTD/5yU/qe1kAAAAAAAAAAAAAwHpyBHaytGTJkvSb3/wmnXnmmWnBggWpefPm6Wc/+1n6xje+Ud9L2yxFxEpPU/e0yIcW+dAiL3rkQ4t8aJEPLfKhRV70AAAAAAAAAOqSAXayU33k9WHDhqUFCxakrbbaKi1btiyllEr/ZdNafmChKIoVThtqqBta5EOLfGiRFz3yoUU+tMiHFvnQIi965GP5x7mqqqqeVoIW+dAiH1rkRY98aJEPLfKhRT60yIse+dAiH1rkQ4t8aJEPLfKiBzR+Tep7AVBT9fD6WWedlebPn5/69++fevToke6444609dZbpxNPPDGl9PETVM0P2Nm4qh/bGTNmpEmTJqUXXnghzZo1K5WXl6eePXumffbZJ/Xp0yc1a9YspaTHpqRFPrTIhxZ50SMfWuRDi3xokQ8t8qJHHmo+ruPGjUu77rpr6tSpU1q2bFlq0sRbdnVJi3xokQ8t8lKzx8svv5y6d++eysrKUmVlZSovL6/n1W1etMiHFvnQIh9a5EWPfGiRDy3y4TVfPrTIhxZ50QM2D/6vmWwsP7y+zz77pJNPPjn97Gc/SwsXLky77LJL2m+//VJKyQfnm1BEpPnz56cf/OAH6dFHH02TJk2qdXlRFKmsrCx9/etfT//93/+djj766FQUhYGGTUCLfGiRDy3yokc+tMiHFvnQIh9a5EWPPNR8PB988MF06aWXphdeeCE99thjaZdddqnn1W1etMiHFvnQIi81e9x///3p0ksvTfvuu2/60Y9+ZMinjmmRDy3yoUU+tMiLHvnQIh9a5MNrvnxokQ8t8qIHbEYCMrB48eL45S9/GW3bto2iKKJPnz5x2223xa233hpbb711bLXVVvHkk09GRERlZWU9r7bxmj9/fowZMyYOOuigKIqi9GebbbaJ7bbbLrp27Ro9evSIoiiirKws2rZtGxdeeGHp+lVVVfW3+EZGi3xokQ8t8qJHPrTIhxb50CIfWuRFjzzUfBzvu+++OPzww6O8vDyKooiLL744Irz3UVe0yIcW+dAiL8v3GDx4cOn5+69//avn5jqkRT60yIcW+dAiL3rkQ4t8aJEPr/nyoUU+tMiLHrB5McBOvVt+eH333XeP22+/PSIizj333CiKIg4++OCYNWtWPa+0cfvoo4/i5z//eey1115RFEU0adIkOnXqFGeeeWY88cQT8eGHH8bcuXPjo48+ihtvvDGOOuqoKCsri6Io4vTTTy/tx4vLDadFPrTIhxZ50SMfWuRDi3xokQ8t8qJHHlb25nv1B7bf/va3S5dVvwHvjfhNR4t8aJEPLfKyuh7nnXfeCtvrselokQ8t8qFFPrTIix750CIfWuTDa758aJEPLfKiB2x+DLBTr5YfXt9jjz3itttui6VLl8bDDz9cehK69dZb63upjdqCBQviV7/6Vey2225RFEU0bdo0jj322BgzZkyt7Wr+Q+GVV16JH/3oR6WBhh/+8Id1vexGSYt8aJEPLfKiRz60yIcW+dAiH1rkRY88LP/m+5FHHlnrSPif/OQno3379tG/f//4n//5n9IX+ZctW1ZfS260tMiHFvnQIi+r69GkSZM44YQT4pBDDolLL7007r333tK2emx8WuRDi3xokQ8t8qJHPrTIhxb58JovH1rkQ4u86AGbJwPs1JuVDa/feuutMWfOnIiIOO+886KsrCy++MUvxqJFiyJixSO9+SbVhql+PB988MHo27dvaZDhjDPOiH/961+l7Wo+2ddssGjRorjuuuuirKwsmjdvHr/97W/rbvGNjBb50CIfWuRFj3xokQ8t8qFFPrTIix75WN1PZffs2TM+/elPx5lnnhmf+tSnYptttomiKKJv377xyiuvrHB9NowW+dAiH1rkZXU9OnbsGF27do199tknmjRpEkVRRJs2beKqq65a6fXZMFrkQ4t8aJEPLfKiRz60yIcW+fCaLx9a5EOLvOgBmy8D7NSLVR15fe7cuRERMX369OjUqVMURRFXXnnlGvc3ZcqU+NnPfhannXbapl56o1HzyfvQQw8tDTKccsop8eKLL650u5WZNWtWnHTSSVFWVhZf/vKX48MPP/QPg3WkRT60yIcWedEjH1rkQ4t8aJEPLfKiRz5W9+b7N77xjXj66aejoqIiIiI+/PDDuP/++6Nfv35RFEV07949Pvzww3paeeOjRT60yIcWeVldj2OPPTb+/Oc/x3vvvRfLli2LJ554IoYPH166/MILL6y/hTdCWuRDi3xokQ8t8qJHPrTIhxb58JovH1rkQ4u86AGbNwPs1LlVDa/Pnz8/IiIqKiritNNOi6Io4oADDigdCa76aOvV/124cGHMnj07hg0bFvvtt1/pycsQ+7q59NJLoyiKKC8vj0MPPTSeeeaZdd7HXXfdFU2bNo2ysrK47777NsEqNw9a5EOLfGiRFz3yoUU+tMiHFvnQIi961K/Vvfl+9tln19q25pHwH3zwwdh3333jzDPPjLfeeqvO1tuYaZEPLfKhRV5W1+Oss85a6RfIKioq4vzzz49mzZrFWWedFR999FFdLrnR0iIfWuRDi3xokRc98qFFPrTIh9d8+dAiH1rkRQ/AADt1ak3D6xERs2fPjn79+kWzZs3i+uuvj4iPf7a8psmTJ8dJJ50Ue+21V+mD+KIoomXLlqVvYLFmVVVVMWTIkCgrK4uiKOI3v/nNeu/ri1/8YhRFESeddFIsXrx4I65y86BFPrTIhxZ50SMfWuRDi3xokQ8t8qJH/Vrdm+/nnHPOSrerNm/evHjggQfi1VdfrYulNnpa5EOLfGiRl9X1OPfcc1e6XbV///vf8Yc//KH0s9lsGC3yoUU+tMiHFnnRIx9a5EOLfHjNlw8t8qFFXvQAIgywU4cWLVoUo0aNWu3wekTERRddFEVRRIcOHeL555+vddldd90V5557bmkfLVu2jM6dO8fXvva16NKlS+mJ7MQTT4w5c+bU5d1rkJ577rnSYzZ06NDS+evyc/DV33D7wQ9+EEVRxJlnnlk6Sj5rT4t8aJEPLfKiRz60yIcW+dAiH1rkRY/6s7Yf2NY8aszyan5R4O9//3t8+OGHsWTJkogIDdaBFvnQIh9a5GVtP7BdXY+aP5e9/JHH9Fh7WuRDi3xokQ8t8qJHPrTIhxb58JovH1rkQ4u86AFUM8BOnaiqqorf/OY3pSeb5YfXq5+Ypk2bFn379o2iKOKnP/1pRHz8rakxY8bEd77znSiKIpo0aRJFUcQXvvCF+OlPfxq///3v4xvf+EZp32eeeWa8+eab9XZfG5IHH3yw9HhWP96re/JfnTFjxsQxxxwTH3zwwcZc4mZDi3xokQ8t8qJHPrTIhxb50CIfWuRFj/p33333xZAhQ9b5zfeaqr/of8ABB8QVV1wR77333jpdn49pkQ8t8qFFXh544IH1+sC2ptNPPz122GGHOP/88+PRRx9d5+vzMS3yoUU+tMiHFnnRIx9a5EOLfHjNlw8t8qFFXvQADLBTZ6ZOnRpFUcT2228fd9xxR60jr1cPsN96661RVlYWe+21V/zhD3+I++67Lw444IBo165d6cnqmGOOiRtuuCGWLVsWjz76aHzlK18xvL6Oqh/v2267LYqiiNatW8fkyZM3aJ+vv/56LFiwICL8I2BdaJEPLfKhRV70yIcW+dAiH1rkQ4u86JGHqVOnxoEHHrhBb74vWbIkxowZE3vvvXe0atUqiqKIgw46KF5//fV12s/mTot8aJEPLfLy8MMPx0EHHRTl5eXrdITKmt5555341re+FWVlZVEURey8886lL7Cty342d1rkQ4t8aJEPLfKiRz60yIcW+fCaLx9a5EOLvOgBRBhgp45Nnz49/u///i/mzZu3wmWvvfZadO/ePYqiiC5dusSgQYNim222iaIoomvXrnHYYYfFX/7yl9L2zzzzTBx22GGlJ7KzzjrL8Po6+vvf/156/B566KGNss91+Sl6/kOLfGiRDy3yokc+tMiHFvnQIh9a5EWP+nfKKaes0we2q3p8Z86cGb/85S+jT58+URRFdOvWLWbMmBERfg51bWmRDy3yoUU+Zs6cGVtssUUURRHf//73S+evzweto0ePjq9//eulfwNccMEFpcv0WDMt8qFFPrTIhxZ50SMfWuRDi7x4zZcPLfKhRV70AAywU+dW9WTyz3/+M9q0aVN6AVI9yD548OCYNGlSvP322xHx8RPLo48+GkcccYTh9Q307LPPll5A3nXXXRGxcYcRfJNt7WmRDy3yoUVe9MiHFvnQIh9a5EOLvOhRf2q+KT5mzJjS6VU9Zst3Wbp06QrbLF68OJ566qnYf//9oyiK2GOPPeKtt97aSCtuvLTIhxb50CJPzz33XFx44YWlv69tj5V544034vLLLy+9fz5ixIiNtczNghb50CIfWuRDi7zokQ8t8qFF/fOaLx9a5EOLvOgBVDPATlZGjhwZRVFEmzZt4txzz43HHnus1pNOVVVVPPLIIzF48GDD6xvJ4YcfHkVRxGGHHRbvv//+Rtnngw8+WDrtm2xrT4t8aJEPLfKiRz60yIcW+dAiH1rkRY/6s/yb6Kt68736MZw5c2b89re/jRNPPDGGDBkS11133UqPnP/444/HJz/5ySiKIk4//fRYtGjRRl97Y6NFPrTIhxZ5W1OPd999Nx5//PG49tpr4yc/+Uk8++yz8cEHH0TEfz7UnTdvXlxyySVRFEVsueWWtT4QZu1pkQ8t8qFFPrTIix750CIfWtQfr/nyoUU+tMiLHkCEAXYyUfMD70ceeSQeffTRFbapqqqKRx99dL2G16uf5KqqqmLevHkbb+ENWPULvlGjRkWHDh1i++23j7vuumuDhw8uvfTSKIoiTjvttI2xzM2CFvnQIh9a5EWPfGiRDy3yoUU+tMiLHg1DdacXX3wxPvOZz0SHDh1q/TJdu3bt4qKLLqp1nfnz58c555wTRVHEAQccEBUVFfWx9EZHi3xokQ8t8lL9HD5t2rT4whe+ENttt12pRdeuXeOzn/1sTJs2rdZ1XnzxxRg0aFCUl5fHsGHDImLj/hrL5kqLfGiRDy3yoUVe9MiHFvnQIh9e8+VDi3xokRc9oPEzwE42VvYhevW3rdZneH35Fyzz58+PK664IgYOHBgnnHDCxl18A/buu+/GIYccEkVRRL9+/WLy5Mnrva/qbz4XRRGf//znY+bMmaUOXkCumRb50CIfWuRFj3xokQ8t8qFFPrTIix75mzFjRulnTVu3bh3dunWLo446qnSUmKIo4nvf+17pCGQREY8++mjpsscff7weV9+4aJEPLfKhRV5efvnl6Nu3b+nx3WqrrWLbbbeNdu3aRVEU0alTp3jggQdqXee8886Loiiic+fOMWfOHM/ZG4kW+dAiH1rkQ4u86JEPLfKhRT685suHFvnQIi96QONmgJ1s1fwQfF2G15f/SZGJEyfGNddcE7vttlutb2Edd9xxm/w+NBTTp0+PnXfeOYqiiAEDBsT9998fc+fOjYj/fLFgTUfp+9///d/SYztw4MD44x//GG+99Vat6y2/Dy8qV6RFPrTIhxZ50SMfWuRDi3xokQ8t8qJHnqofr2uuuSa23HLLaN68eXzrW9+KmTNnRkTElClT4uqrry497t/85jdj1qxZERHx73//O7bYYosoLy+PZ555pt7uQ2OhRT60yIcW+Vm0aFGcdtpp0axZs9hiiy3iG9/4Rrz66qvx5ptvxp/+9KcYMGBAFEURHTt2jL/85S+xePHiiIi46667olmzZtGzZ89YuHBhPd+LxkGLfGiRDy3yoUVe9MiHFvnQIg9e8+VDi3xokRc9YPNggJ0sre/wek3jxo2Lq666Ktq3bx+tWrWKoihK39gtiiK6dOkS77zzzqa+Kw3G1KlTo0uXLlEURey6665xxhlnxKRJk0pHwV+d6p+Qr/6z5ZZbRrt27WKHHXaIr3zlK/GHP/yhtG31FwxqDjL89a9/Lf0jAi1yokU+tMiLHvnQIh9a5EOLfGiRFz3ydeSRR0ZRFPGJT3wiXnnllRUu/+Mf/1h67L/zne/EzJkz4/vf/34URRG9evWKefPm1cOqGyct8qFFPrTIx/z582PvvfeOoihizz33jNdee63W5e+9917893//dxRFER06dIi///3vsWjRojjuuOOiKIrYf//962nljY8W+dAiH1rkQ4u86JEPLfKhRV685suHFvnQIi96QONmgJ3srMvwevW3raqv8/7778ekSZPihBNOiB122KF0va5du8YXv/jFuPPOO2PHHXeMoijitNNOi0WLFtX9HczYyy+/HAcddFBp4L958+YxcODA+O53vxv333//Sq9z2WWXlR7nNm3aRN++feNb3/pWDB06tNZR7y+++OKVXv+2226LfffdN9q0aRMvv/zyprx7DYoW+dAiH1rkRY98aJEPLfKhRT60yIseeamqqoqFCxfGvvvuG0VRxKGHHlq6bPmj2Y8ZM6b0WA8YMCB69uwZZWVlceaZZ8bixYvXeAR9Vk+LfGiRDy3yM2nSpGjbtm2Ul5fHlVdeGREr/+LY4YcfHkVRxFZbbRUnn3xydO/ePVq1ahU//vGPI2LNv7rCmmmRDy3yoUU+tMiLHvnQIh9a5MFrvnxokQ8t8qIHbB4MsJOlqqqqeOyxx1Y7vF79IiYiYs6cOTFu3Lj4r//6r9h1112jKIpo1qxZtGnTJk4//fR47LHHIiLikksuiaIoomXLlvGvf/2rzu9XQ/D222/HDTfcEP/1X/8VRVFEeXl5HHTQQaWfl6+p5iDD5z73ufjZz35W6/Lp06fHFVdcUdrmJz/5Sa3L33333Rg0aFDp8l//+teb9L41NFrkQ4t8aJEXPfKhRT60yIcW+dAiL3rk5//9v/8XRVHEbrvtFlOnTq11WVVVVeko+aNHjy49lkXx8Zf1J06cWB9LbrS0yIcW+dAiH/PmzYu99toriqKIY445JubPn1/r8prvlx966KGl98GLoohPfvKT8cILL9T1khstLfKhRT60yIcWedEjH1rkQ4u8eM2XDy3yoUVe9IDGzQA7WXriiSfioIMOKj2pnHXWWfHGG29ExH++dVv97agbb7wxvvKVr0SLFi1K27dv3z4uueSSuO+++0r7nDJlSvTs2TPKy8vj7LPPrrUPVm7MmDFx2223xZw5cyKi9ovFmoMMQ4YMiQcffLDUpuaR7efPnx/nnntu7L777jF27NgVbuPee++Noiji+uuv38T3pmHTIh9a5EOLvOiRDy3yoUU+tMiHFnnRIw9/+MMfSo/1VVddFQsWLChdVv3m+7x58+LWW2+NHj16lLb9+9//Xms/q3qPw3sfa0+LfGiRDy3yUVFREd/4xjeiKIrYY4894qmnnqp1ec3n8V/+8pfRsWPHKIoimjZtusIvrdQ8siXrTot8aJEPLfKhRV70yIcW+dAiL17z5UOLfGiRFz2gcTPATpZmzpwZZWVlURRFnH322fH666/Xunz27Nlx9dVXl75xW15eHkVRxP777x9nn312vPTSSyvs86abboqiKKKsrCz+/Oc/19E9aZhW9kKv+kk/ovYgwxe/+MXSEe5Xdd0nn3wyJkyYULr8ueeeq3V5zSPr+4dBbVrkQ4t8aJEXPfKhRT60yIcW+dAiL3rk57zzzis95hdffHE8+eSTERGxYMGCeP311+Ob3/xm6RfniqKIv/zlLxHx8eNd84PdiIj33nsvZsyYEW+//Xat8z32a0eLfGiRDy3yMX369OjatWsUxcc/if3oo4/Ghx9+WLp89uzZMWzYsNhzzz3XqkfEx/8GqPnvgAg91oYW+dAiH1rkQ4u86JEPLfKhRV685suHFvnQIi96QONlgJ1sPf/88zF8+PB45513Suc9/fTTcdNNN8Uuu+wSTZo0KT3xNGnSJIYMGRIREQsXLoyI2k8sU6ZMKb0AOuGEE+r2jjQyl156aelxP/roo+Pxxx8vXbambzhXVVXFbbfdFnvssUf8v//3/1a4nn8MrBst8qFFPrTIix750CIfWuRDi3xokRc96lbNN89/+MMfRtOmTUtHFdt7771jt912i/bt25eaFEURd999d0R8/LguWbIkIiLeeeed+NWvfhWHH354dOnSJcrLy2ObbbaJww8/PK6//vp47733Vrg9atMiH1rkQ4s8vfjii6UjinXp0iUGDBgQZ5xxRpxwwgmx00471fql0upfR6nZ4/3334+HHnooTjrppDj00EPjU5/6VBx00EExatSoGD9+fOl29FgzLfKhRT60yIcWedEjH1rkQ4v65zVfPrTIhxZ50QMaPwPsZK36Q+6HHnoorrjiith6662jbdu2URRFbLXVVrHDDjvU+tbto48+GhEfP6HU/BbVL3/5y9hyyy2jU6dOpaOv++B83Y0YMWKdBxlqPs533HFHfPazny3to+YLR9aNFvnQIh9a5EWPfGiRDy3yoUU+tMiLHvWj5pviY8aMiXPOOScGDRoUu+++e3Tu3Ln0q3NFUcRf//rXiKj95vtLL70UBx10UHTu3DmKoohmzZrVesO+VatWceCBB8Zrr722wu1Rmxb50CIfWuRpxowZccYZZ8Tuu+8e7dq1i+bNm0fz5s3X+IHt9OnT44tf/GLsvPPOURRFrX7NmjWLnj17xvXXX1+6HT3WTIt8aJEPLfKhRV70yIcW+dCi/nnNlw8t8qFFXvSAxs0AO9mbPXt29O/fv9aTx1577RW/+MUvYtKkSTFx4sQ4+OCDS5fdd999EfGfJ5QlS5bEvvvuG0VRxP777x9z585d421WVlaWnpj42NVXX73Ogww1z//jH/8YgwYNKu3jhhtu2ORrbqy0yIcW+dAiL3rkQ4t8aJEPLfKhRV70qF/Lf8n+vffei+uvvz723nvv0mNa82dPq998f/HFF6NLly6lbdq0aRPnnHNOXHXVVTFq1KgYMmRI7LTTTlEURXTr1i1mzJix0tvjP7TIhxb50CJPS5YsicrKypg4cWL84Ac/iF122WW1H9hOnTo1unXrVtqmefPmcdhhh8Xxxx8fRx11VHTv3r102QUXXFC6HT3WTIt8aJEPLfKhRV70yIcW+dCi/nnNlw8t8qFFXvSAxssAOw3CCy+8EE2aNIn+/fvH+eefH4sWLSpdtmTJkrj//vtXOsReWVkZ1157bRRFEe3bt4+///3vpfNXpbKyMp555pnYbbfd4utf//qmvWMNyPPPPx9lZWVxyCGHxBNPPFE6f02DDFVVVSsMMvz85z8vbVdZWbnGn6GnNi3yoUU+tMiLHvnQIh9a5EOLfGiRFz3y8sQTT8SOO+640jffq7+wP3369NIHth06dIgjjjginn/++Vr7mTNnTjz44INxwAEHRFEUsffee8esWbPq/P40ZFrkQ4t8aJGH6ufX3/zmN9GrV6+VDvksXbo0IiKmTZsWn/jEJ0rvkw8cODCeeeaZ0uUREU8//XT88Ic/LO3nqquuqvs71UBpkQ8t8qFFPrTIix750CIfWuTHa758aJEPLfKiBzQeBthpMN5+++14/fXXS8Pny5YtK72YWbp0aTzwwAMrHWL/0pe+FEVRRN++fWP69OmrvY3q4fWDDjqotJ9TTjll096xBmTmzJnx1FNPlf6+PkfhW36QYWVfJvBzLGumRT60yIcWedEjH1rkQ4t8aJEPLfKiR15OOOGEKIraP5Vd/di///77cdRRR0VRFLHVVlvFCSecEK+++mpE/OfxrfnYT5w4Mfbcc88oiiLOPvvsWLx4cd3emQZOi3xokQ8t8jF9+vTS8/A999wTEbV7vP322zFw4MAoiiI6duwYJ5xwQul98prvsUdELFiwIK666qpSu+q+rB0t8qFFPrTIhxZ50SMfWuRDi7x4zZcPLfKhRV70gMbBADsN0so+RF/ZEPvZZ59dOn3jjTeudp/Vw+vVL3patGgR5eXlURRFnHbaaZvqrjRYG3uQYcSIEfH9739/0y24EdMiH1rkQ4u86JEPLfKhRT60yIcWedGj/tR83F544YWI+M+b79WP/4MPPhg777xzFEURgwYNKn1gu6puixcvjp///OfRrl272HXXXePNN9/cxPeicdAiH1rkQ4s8vfDCC/GPf/wjIv7To7rVzTffHNtuu20URRFHHnlk6QPbVfV46623YujQodG0adM49dRTax3NkjXTIh9a5EOLfGiRFz3yoUU+tKh/XvPlQ4t8aJEXPaBxMcBOo7L8EHtZWVkURRGf+9zn4u23346IlT8ZLT+83qxZs/jqV78aP/jBD0r7OPXUU+v67jQ46zvIcP3115e2u+aaa+p0zY2VFvnQIh9a5EWPfGiRDy3yoUU+tMiLHnVn+aPUL/9exre//e0oiiKaN28ezzzzzEq3Wd7rr78ebdq0iU6dOsWiRYs27oIbMS3yoUU+tMhXzQ9rqx122GFRFEW0adMmJk+eXNpude64444oiiL2339/v5yynrTIhxb50CIfWuRFj3xokQ8t6pfXfPnQIh9a5EUPaDwMsNPoLFq0KJ5++uno169fafj83HPPXeX2KxteHzp0aDz55JMRETFq1KjSfoYNG1ZXd6PBWd9BhmuvvTaaNm0aRVHEvvvuW2vb6u1ZN1rkQ4t8aJEXPfKhRT60yIcW+dAiL3rko6qqKj7/+c9HeXl5HHnkkVFZWbnGD2Gr+91zzz0xb968iPDYbwxa5EOLfGiRl7fffjs6d+4czZo1i+HDh0fEih/y1lTdYtGiRXH66afHRx99VOt81p8W+dAiH1rkQ4u86JEPLfKhRT685suHFvnQIi96QMNSlqARiYjUvHnztNNOO5X+3qtXr/SDH/yg9Peaqqqq0j//+c90zjnnpEceeSQ1bdo0ffnLX06nnnpq+tSnPpVSSum4445LN9xwQyqKIl1zzTXpqquuqts71QBERCqKIqWU0p/+9Kf085//PD388MMppZRuuOGG9N3vfjel9PHjnVJKZWUf/7+e6667Lg0fPjwtW7Ysde7cOW277bapffv26bHHHksvvfRSadvKyso6vkcNlxb50CIfWuRFj3xokQ8t8qFFPrTIix55WbJkSXrnnXdSVVVV6tixYyorKys95qtS3e8LX/hCatOmTVq2bNkar8OaaZEPLfKhRV7mz5+f3n777bR06dK09dZbp5RSKi8vX+X2RVGU3mP/8Y9/nLbYYou0bNmyUiPWnxb50CIfWuRDi7zokQ8t8qFFPrzmy4cW+dAiL3pAA1On4/KwiVV/Y+pvf/tb7LjjjlFeXh7nnntuLFmyZIVvRq3pyOsR//mG1fvvvx/nnHNOlJWVxR577FH6eRH+o6qqKkaPHr3WR+G77rrrolmzZqVtW7ZsWTrSfVEU0b179/jxj39c6/qsHS3yoUU+tMiLHvnQIh9a5EOLfGiRFz3ysXjx4ujXr18URRHHHnvsOl+/+r2OmkcdcwSy9aNFPrTIhxZ5mTlzZmy11VZRVlYWt956a0Ss23Nu9WNf8zpVVVWarAct8qFFPrTIhxZ50SMfWuRDi3x4zZcPLfKhRV70gIbFADuNRs0ni6FDh5aG0lc2bF49vD5gwIDSdl//+tfj8ccfX+n+IiL+8pe/lD5ov/nmmzfdHWmgxowZE3vttddaDzI0adIkiqKIDh06xIknnhjjxo2Ll156Kf70pz/FaaedVtrPxRdfXB93p0HTIh9a5EOLvOiRDy3yoUU+tMiHFnnRIy/Vj3GvXr3iX//611pdZ/n3OaZOnRrPPfdcPPTQQ/Hwww/H4sWLY/HixRHhCwXrQot8aJEPLfJy0EEHlT60rf4Z7DVZvsfChQvjgw8+iAULFsScOXNqXabH2tMiH1rkQ4t8aJEXPfKhRT60yIfXfPnQIh9a5EUPaDgMsNPo/Pa3vy19EH7BBRdERO1vz1YPrx944IFRFEWUlZVF3759Y9q0aaV91HxSqn7S+fDDD2PrrbeOoiji6KOPXmG7zd2MGTNKAwo33nhj6fzVDTLsscce8dOf/nSFfc2bNy+uvvrq0pcLRo8eXSf3obHQIh9a5EOLvOiRDy3yoUU+tMiHFnnRIy8PPvhgbL/99lEURVx22WVRUVFRumxl71VUN6qsrIzHH388zjnnnOjQoUO0bNmy9B7KgAED4rzzzotZs2ZFxH9+5Y7V0yIfWuRDizxUP9YjRoyIpk2bxq677hqPPfbYGq9X3aOqqipeeeWVuPLKK+OAAw6IrbbaKrp27Rqf+MQnYvjw4XHPPfeUrqPH6mmRDy3yoUU+tMiLHvnQIh9a5MdrvnxokQ8t8qIHNBwG2GlUPvroo/j6178eLVq0iC222CLuuuuuiKj9k1DPPPNMDBw4MIqiKH2oXhRFXHPNNaX9LP9NqWXLlsWtt95a+vnzr3zlK7X2y8cmTZoUv/rVr0p/X90gw5577llr25pP7JWVlTF9+vTYc889o7y8PC688MI6WX9jokU+tMiHFnnRIx9a5EOLfGiRDy3yokdeLr/88tJ7Gtddd128++67pctW9sX8pUuXxmWXXRb77LNP6Xo77bRT7LPPPtGyZcsoLy8vtZsxY0ZEeBN+bWmRDy3yoUU+3njjjejbt28URREDBw6MSZMmxdKlSyNixfe3a/a49tprS0e5rP7TqVOn0kFh2rVrF1dcccUK12XVtMiHFvnQIh9a5EWPfGiRDy3y4jVfPrTIhxZ50QMaBgPsNCo1j5J+4okn1rps+eH1Zs2axbHHHhvf/e53S088V155ZWn7mk9Wb775Zhx99NGl7X75y1/W2X1qqNZlkGFVLwL79+8fRVHEQQcdFMuWLfPEv560yIcW+dAiL3rkQ4t8aJEPLfKhRV70qD81H89hw4aV3qv41re+FXfddVetx7H6vY2lS5fGOeecE9tss01p+9tvvz0++OCDiIiYNm1aXHPNNdGnT58oiiK6d+8eM2fOrLUPVqRFPrTIhxZ5mjZtWunx3W+//eLXv/516Yhh1Wp+YHvuuefGdtttV+oxatSouO++++Kdd96JG264Ib70pS+VLrvoootK+9BjzbTIhxb50CIfWuRFj3xokQ8t6p/XfPnQIh9a5EUPaFgMsNPoPP/887HnnnvGn/70p9J5KxteHzp0aDz55JNRVVVV61tX//M//xMffvhh6bpTpkyJ4447rnT5oEGD4vnnn6+He9awrO8gQ1VVVVRWVsYLL7wQu+66azRp0iTOOeecNd4Gq6ZFPrTIhxZ50SMfWuRDi3xokQ8t8qJH/ar5Jvv//u//Rrt27Uq/GnfeeefV2raysjKuuOKKWh/YFkVR6+hiEREVFRXx1FNPxf777x9FUcRRRx0Vc+bMqZP705BpkQ8t8qFFnl588cXSB61bbbVVdOzYMR544IFa2yxbtiwuuuiiWh/Ytm/ffoXHesaMGTFixIhag0CsPS3yoUU+tMiHFnnRIx9a5EOL+uc1Xz60yIcWedEDGg4D7DRKs2bNKn0LalXD6+PHjy9tP3/+/LjwwgtLT0IDBgyIY445Jg499NDYe++9S+fvvPPO8fOf/7y+7laDdMUVV0TLli3XapCh5t8vueSS0uN+0kknxT/+8Y8YNWpUPPDAA/HKK6+UtnOEvrWnRT60yIcWedEjH1rkQ4t8aJEPLfKiR/2p+djcddddccopp8Q+++wTc+fOjYj/HPll8uTJ8elPfzqKoojy8vI4/vjjS4/98OHDS/uo3v6ee+6Jzp07xw477BDPPPNMHd6jhkuLfGiRDy3y9Prrr8dZZ50V3bt3j44dO8b8+fMj4j+P73333Rd77bVXFEURzZs3j09+8pNRFEVss802MWXKlFrbzp8/P84999woiiL+67/+K95//31HHVsHWuRDi3xokQ8t8qJHPrTIhxb1z2u+fGiRDy3yogc0DAbYadSWLl0aTzzxRHzuc5+rNbz+5JNPlrapfoJ5+eWX4+CDD671baqaf/bZZ5/46U9/usL1WLUPPvggOnbsGEVRxL777rvWgwy//OUvaz3222yzTTRv3rz091133TWuv/76Ve6LFWmRDy3yoUVe9MiHFvnQIh9a5EOLvOhR/2o+NpWVlaU35ZcuXVo6/6KLLio9tjfffHNERPz4xz8unfeDH/yg1j7ffvvt6N27dxRFEZdddlkd3IvGQYt8aJEPLfK0aNGimDVrVixatCgiavc49dRTS4/97373u3jvvfdKB4bZZpttYtq0aRHxnw+B77333mjSpEk0b958nX611HvrH9MiH1rkQ4t8aJEXPfKhRT60qH85vOar7r+5HwRDi3xokRc9IH8G2GnUKioq4vDDD4+iKKJ169arHF6vdvLJJ5c+LD/qqKPi4IMPjj322CMuv/zyGDduXGm7lf0E+ur+vjl74YUX4jOf+UzccMMNpfNWN8gwatSo0j8CevToEV//+tdjwoQJMWXKlPjzn/8cp5xySunyCy+8sK7uRqOgRT60yIcWedEjH1rkQ4t8aJEPLfKiR36q35OorKyMefPmlX5ZbsiQIaU35isqKlb7JvwJJ5wQRVHEpZdeWufrb0y0yIcW+dAiLzWfoydPnhxbbrllFEURp512Wun8F154YaXDPhEff+Dbu3fvKC8vjwcffHC1tzVp0qS49dZbS3/3HnptWuRDi3xokQ8t8qJHPrTIhxb5qMvXfM8//3ycddZZpS8dGA6tTYt8aJEXPSAvBthp9J577rno1KlTHHnkkfHUU0+Vzq/5QmLJkiUR8Z9vUH32s58tnVf90yHVHPlt3c2ZM6d0em0HGQYMGBA333xzrW+9RXzc40c/+lFpu9tvv33TLr6R0SIfWuRDi7zokQ8t8qFFPrTIhxZ50SNfH3zwQXTo0CGKoojvf//7tS5bsmTJSt+EnzVrVvTo0SOKoogrr7yyPpbdKGmRDy3yoUVenn322WjZsmU0adIkbrnlloj4z3voU6dOXemwz4QJE6JFixZRFEXcc889q9z3v//979LBY0488cTS+YZ9Vk6LfGiRDy3yoUVe9MiHFvnQIh+b8jXfv//97zjttNOiKIpo2rRpPPfccxFhOHRVtMiHFnnRA+qfAXY2C2+++WZMmDCh9PdVHTF9yJAhURRF9OrVq/SEsbInjurt33///Zg2bVr8z//8T5xyyilxzDHHxDHHHBOXXXZZPPLIIzF//vxNdZcapLUdZPjMZz4Tt912W+ny5X/S5aWXXopPfvKTURRFDB8+vG4W38hokQ8t8qFFXvTIhxb50CIfWuRDi7zokZ+FCxdGt27dolmzZvGrX/0qIiIWL15cunz5N+HPPffc+Mtf/hLbbrttdOjQIR566KHStsu/l+IL/utGi3xokQ8t8vLggw9GURTRvn37ePbZZyOi9uO4/LDPc889F3/4wx+idevW0adPn5g1a9ZK9/vvf/87TjnllGjfvn2p5SmnnFK63LDPirTIhxb50CIfWuRFj3xokQ8t8rExX/PVVN2i+kj7RVFEu3btHOF4NbTIhxZ50QPqnwF2NjureuGwdOnS6NevXxRFEQcffHBUVlau9oOOJ554Io4++ujYcccdS082Nf+UlZXFCSec4Ghxq7C2gww1e9U8PWDAgCiKIg488MA1tmL1tMiHFvnQIi965EOLfGiRDy3yoUVe9Kh/lZWVMWfOnNL7Fuecc85Kt1uyZElcd911pUbbbrttFMXHR8mvqKiIiNptHnjggZg5c2ZEeKN9bWmRDy3yoUVeqqqq4rHHHoui+PioYKv6ALbmsM9WW20VO+20UxRFEUcddVQsWrRohe2rP7Bt165dFEURO+ywQ5SVlUVRFHHqqafWun0+pkU+tMiHFvnQIi965EOLfGiRj031mm/5Fj169Ij99tvPcOhqaJEPLfKiB+TBADv8/373u9+VnmxuuOGGVW63bNmy+M1vfhPNmzcvvShp06ZNdOzYMQ455JDo27dv7LvvvlEURZSXl0fr1q3j4osvrsN7kr+aT9xrO8hQ01NPPRVdunSJoiji/PPPr5M1N1Za5EOLfGiRFz3yoUU+tMiHFvnQIi965KH68b300kujKIo44IADSj+NvbwlS5bEtddeW2q1yy67xJQpU0qXVfv73/8enTt3js6dO8err766ye9DY6FFPrTIhxb5WbZsWWmI57TTTlvlr4tOnTo1PvOZz5R69OjRY6VfGlj+A9vevXvH3//+9/jFL35h2GcNtMiHFvnQIh9a5EWPfGiRDy3ysLFe8y1durS03cpaPPDAAzFlypT4/Oc/XxoOnTx5ckT4Za5qWuRDi7zoAXkwwM5mr/oJ6fvf/340bdo0WrduHQ8++OBKt50zZ05cffXVpSekoiiiW7du8fvf/77081MLFiyIRYsWxahRo+Loo48uvWg588wz6+ouNRg/+9nP1nmQYcmSJaV/PBRFEb/+9a/rcsmNlhb50CIfWuRFj3xokQ8t8qFFPrTIix55eOCBB2K77baLoijiqquuqnUksZodlixZEpdddllsu+228Ze//CUian9gO3bs2Ojdu3c0bdo0iqIofVnfB7NrT4t8aJEPLfJQVVUVS5cujUsuuSTKyspi9913j6eeemqV20+dOjX69OkTrVq1ivvuuy8i1vyB7f3331/a5uabby69b37eeedt2jvXwGiRDy3yoUU+tMiLHvnQIh9a5GdDXvPVHOxcWYv77ruv1OLll1+OQw45JIqiiB133DFeeumlFW5jc6dFPrTIix5QvwywQ0S8+uqr0alTpyiKIg455JBVblfzJ0G22WabOPbYY+Odd95Z5fYzZsyIq6++uvSiZfjw4Zti+Q1OVVVVzJkzp/S4HHTQQWs1yBAR8atf/arU4LjjjqurJTdaWuRDi3xokRc98qFFPrTIhxb50CIveuTnsssuKz2u1113Xbz33nuly2oOgC5dujReeumlFX4ue+zYsdGnT58oKyuLTp06xQknnBBvvvlmrev7ydO1o0U+tMiHFvl44403Yq+99oqiKGLgwIExadKk0mO3/PP3yy+/HI888kgsXry41vnVH9huueWWtT6wrXm0/KVLl8YNN9xQ+rfCjTfeuOnvXAOjRT60yIcW+dAiL3rkQ4t8aJGXDX3NtzYtqrc74IADoiiK+OIXvxgffPDBpr1jDZAW+dAiL3pA/THAzmat+sPzP//5z9G+ffsoLy8vHZ1n+Q/W//jHP5aerLp27RpnnXVWvP/++xGx4gcgNV/0LFy4MH7yk5+UXrTcfPPNm/x+NRTPP/98HHroofHrX/96rQYZfv3rX5cafP7zn4/nn38+IvykysagRT60yIcWedEjH1rkQ4t8aJEPLfKiR/2r+didc845pcf35JNPjn/84x9rtY+xY8fG7rvvXjqqcVEU0aFDh/jEJz4R++yzT5x99tnx1ltvRYQB0dXRIh9a5EOLPE2bNi06d+4cRVHE/vvvH7feemu8++67EbHmo4Itf7SxT37yk7WONlbTO++8E8ccc0w0adIkhgwZEnPnzt0k96ch0yIfWuRDi3xokRc98qFFPrSofxvjNd+///3vOPnkk0tDoatrsWzZsrjmmmuiKIrYaaed4l//+ldEOLpxhBY50SIvekD9M8AOEXH00UdHURTRpk2b0gfkNf3zn/+MrbbaKoqiiI4dO8app54ac+bMiYi1+yD9gw8+iLPOOivKyspiwIABMWXKlI1+Hxqqjz76aJ0HGQYNGhT/+Mc/Vvkt6ZqqL/Nkv2Za5EOLfGiRFz3yoUU+tMiHFvnQIi961L+aA5sXXHBBNG3aNMrKyqJDhw7xjW98I8aPHx8LFy4sbVPzsbznnnuiT58+pcHQHXfcMQ444ID43ve+F5/61KfiE5/4RBRFEb169YoZM2ZEhC8crI4W+dAiH1rk6cUXX4xdd901iqKIbbfdNg4++OD4xz/+sdpfI63+wLZNmzZRFEXsueee8eCDD0ZFRcUqr3PJJZdEURRRXl4eTz/99Ka4Kw2eFvnQIh9a5EOLvOiRDy3yoUX9W9fXfDUt36JXr14xYcKElW5f/VpxwoQJ0axZsyiKIi655JJNc6caKC3yoUVe9ID6ZYCdzd6HH34Ye+65ZxRFEV/60peioqKi9EFGZWVlLFmyJM4999xo2bJlFEUR//3f/x2zZ88uXb62Hn744dh+++2jKIq45ZZbNsVdadBWN2xwyy231BpkuOeee1b4mZWIiPHjx8eYMWPioosuiuuvvz4ee+yxmDlzZulyH1CtHS3yoUU+tMiLHvnQIh9a5EOLfGiRFz3qV8034X/3u9/FEUccUXrMr7jiitLjvfxgaO/evUu/KHfooYfG9OnTSz9r+sEHH8QjjzwS+++/fxRFEXvssUfMmjWrbu9YA6RFPrTIhxZ5mjFjRhx33HGxww47RFEU0blz5/jVr3610ufbF154IU4++eTYYostSu2+/e1vly5f/uj31fu48cYbS9vfddddm/YONWBa5EOLfGiRDy3yokc+tMiHFvVvbV/z1VR9FPzqIxoXRRHbb799vPnmmxERKz2ycUTEvffeW9r+oosu2jR3qAHTIh9a5EUPqD8G2CE+fiFSFEWcf/75K1y2YMGC6N27dxRFEdttt128/vrrEbF+H4yfffbZURRF7Lzzzj4wWUtrM8hw7733xrBhw6IoimjRokVp+xYtWsRnP/vZuPnmm0vb+qng9adFPrTIhxZ50SMfWuRDi3xokQ8t8qJH3an5Psabb74Zf/vb3+Kyyy6LBQsWRETtx27s2LHRp0+fKCsri7Zt28Zpp51W6/KaQ6QPP/xw7LTTTtGsWbO49tprV7icFWmRDy3yoUWePvzww3jooYfi1FNPjTPOOKN0BLGaj+ELL7xQ6wPbzp07l56rf/SjH5W2W/799DfeeCP+67/+q/Scfv/999fNnWqgtMiHFvnQIh9a5EWPfGiRDy3q35pe89W8vHootF27dlEURXTv3j123nnnKIoievbsGe+++25E/Od1YnXHd955J77zne+Ujmx81VVX1bqcj2mRDy3yogfUDwPs8P+bOXNm6VtQNZ8Yxo4dW3qxUf3Np5V9IL66J5PqJ7Fx48ZFu3bt4hOf+EQ8//zzG3P5jdLaDDKMHDky9tprr1rbHXHEEXHYYYdFp06dVvqtNUflW3da5EOLfGiRFz3yoUU+tMiHFvnQIi961L1VvXdR83EfO3Zs7L777qU30U8++eTS+yArez9k9uzZsd9++0VRFDFkyJBNs/BGSIt8aJEPLfJWfeSwmkcQW37Ip0+fPjF27Nj43//939Jz9JVXXrnCvmbPnh0//elPS0NBO+ywQ+lXT1kzLfKhRT60yIcWedEjH1rkQ4v6s6rXfDVbLD8U2rt377j//vvjySefjD333LM0HPrGG2/U2sc777wTP//5z2P77bePoihi6623jhkzZmzS+9OQaZEPLfKiB9Q9A+ywBqNGjSq9KLn77rtXuk31h+Pvv/9+6ZtXK/Phhx/GjjvuGEcdddQmWWtj8vOf/zzKy8tXO8hw+eWXR5cuXUp9hg8fHhH/+YfDI488EmecccZqX1SyZlrkQ4t8aJEXPfKhRT60yIcW+dAiL3rko+bA/z333BN9+vSJpk2bRlEUMXDgwNUOhla/oX/yySdHURTRr1+/mDt3bt0svBHSIh9a5EOL+lfzw9uaPV544YU4+eSTaw353H///bF06dJYvHhxXHrppaXn6PPPPz8mTZoUlZWV8dxzz8UPf/jD6NatW+kD21//+tcr7J8VaZEPLfKhRT60yIse+dAiH1rkqWaXlQ2F3nfffaX3AidMmFAaDu3evXv8+te/jnHjxsXDDz8cJ510UmkodKuttoqRI0dGhBbrQot8aJEXPWDTMsAOa3DjjTeWvi371ltvRcTKv3H10ksvxW677RZnnHFGzJkzZ4XLKysrY968efG73/2u1nmr2t/mbM6cOaUXiAcffPBKBxl++9vfRo8ePUovFovi45/xmj59+gr7uuqqq0r/APj73/9el3elwdMiH1rkQ4u86JEPLfKhRT60yIcWedEjH8v/At0nP/nJ0uO99dZbxxNPPBERKx8MrTZ79uzYZ599oiiK+MIXvrDJ19xYaZEPLfKhRb6qP7Bdfsin5vP5woUL44orrig1+8QnPhE9e/aMli1bRps2bUrP3eecc068/vrr9XhvGjYt8qFFPrTIhxZ50SMfWuRDi3y88MILcdppp622RUTEc889F3379o2iKKJly5ZRFEWUlZVFkyZNoiiK6NChQ5x99tnxyiuv1NM9afi0yIcWedEDNg0D7LAGt99+exRFEW3bto3Jkyevcrt777239KJlVUPsNVV/sFL9Qczrr78et91228ZbeAP33HPPxRFHHBFjxowpPdlXD/zPmzcvjjnmmNLj/T//8z/xuc99LoqiiE6dOsW0adNqbf/WW2/F4MGDo7y8PC677LL6uUMNmBb50CIfWuRFj3xokQ8t8qFFPrTIix71b1WDodtss020bds2tt1223jttddWef3q9zVefPHF0tHGTjjhBEeMWQ9a5EOLfGiRr6lTp8Zxxx0XHTt2rPWBbc2f065p1KhR0bZt22jevHmtL6Z17NgxLr744nj55Zfr+B40HlrkQ4t8aJEPLfKiRz60yIcW+Xj77bdj6NChscUWW6xViw8++CCOOOKI2G677Wq12GabbeKaa64xFLoBtMiHFnnRAzYdA+ywBg8//HA0adIkmjRpEvfdd99qt/3d735XetI5/fTT1zjEXv1BzFtvvRUnn3xylJWVxde+9rWNtvaGbv78+St9sv/jH/9Yepx/+MMfRkTEtGnT4sADDyw94S8/0PDDH/6w9I+IxYsX+7BqHWmRDy3yoUVe9MiHFvnQIh9a5EOLvOhRf1Y2GFpWVhZbbrllnHbaafGZz3wm9t1331Vev3owdOnSpfH5z3++9OWCp556apOvvbHRIh9a5EOLvM2aNSt22GGHKIoi9tprr9V+YFvtscceixEjRsSnP/3pOPTQQ+PYY4+Nf/7znzF//vw6WnXjpEU+tMiHFvnQIi965EOLfGiRl3POOSeKoojevXvHAw88sMoWNV/v3X///XHVVVfFeeedF1dcccUKA6E1X1uy9rTIhxZ50QM2DQPssBaqP+gYPHhwzJ49e4XLaz6hVB+xvSiKOPXUU+PDDz9c6T6rr/Pmm2/GySefHF26dCldb9KkSZvkfjR01Y/ZWWedVfpHwYsvvli6bOrUqTFw4MAVBhoiIn7/+99HURSx33771cvaGxst8qFFPrTIix750CIfWuRDi3xokRc96saqjmq85ZZbxjnnnBMLFy6ML3zhC9GsWbOYOHHiCtevfgN+yZIlcfLJJ0dRFNGiRYs4/vjj4+23317r20aLnGiRDy0ahueeey769+8ff/vb31Y75LOqx7T6/OovnC2/nRZrT4t8aJEPLfKhRV70yIcW+dCi/tV8jC6//PIYO3bsGr9IsLoDV6zpoBaarJoW+dAiL3rApmWAHVaj+knh5ptvjvbt20e3bt3i7rvvXumTRfV5y5Yti6985SulYfQLL7xwhSeu5YfXO3fuXPog5q9//esmvlcNV/Xj9tnPfjaKoogDDzxwhW2WH2iYPn16RER8/etfj6IoYsiQIXW55EZLi3xokQ8t8qJHPrTIhxb50CIfWuRFj7r1t7/9rdZg6Nlnn10a/Bw2bFiUlZXFZZddFosWLVrhukuWLInvfOc7pZ9M3XnnnePBBx9cYbtly5bFsmXLVvm+CB/TIh9a5EOL/C1YsGCNH9jWVFlZWXpsFy9eXOuyV155Jf7973/HtGnT4q233lrheqyeFvnQIh9a5EOLvOiRDy3yoUX9q/n4r8vjVPO125IlS0qnFy9eHA8//HCMHj06fvOb38To0aPjo48+ioqKinW+jc2NFvnQIi96wKZjgB3Wwttvvx2f+9znoiiK6N+/f60jpNd8snn99dfjsssui6222iqKoohu3brFjTfeWHqCqbn98sPrbdq0Mby+lo4//vgoiiK+9rWvRUTtJ/mI2gMNnTp1iltuuSX22GOPKIoiLrvssojwZL+xaJEPLfKhRV70yIcW+dAiH1rkQ4u86LHp3XvvvbHddttF8+bNS4OhNR+z0aNHl76YP2LEiHjmmWciImL69Onx8MMPx4ABA0qXd+rUKf7v//6v1v6fe+65+NOf/hSDBw+Ogw8+OA4//PA45ZRT4oEHHogPPvggIv5zlOTNnRb50CIfWjRuNR/b3/3ud/Htb387mjdvHuXl5dGmTZto3bp1nHbaafHnP/95pddh49EiH1rkQ4t8aJEXPfKhRT60yEfNwdIf//jHceSRR5ZeE1b/2W+//eK0004rfbFAi01Di3xokRc9YNUMsMNamj59euy0006lo8BNmDCh1hF+Zs6cGZdddlm0b98+iqKIXXfdNX7zm9/EnDlzStusy/C6I/2s2tlnnx1FUUSPHj3i3XffXek2U6dOjQMPPDCKoojWrVtHURSx/fbbr/BN5/X9lhwf0yIfWuRDi7zokQ8t8qFFPrTIhxZ50WPTmz59eunL9+edd17psan5eP3gBz8ovXnesWPH2H///aNDhw6xzTbblB733r171/ogNiLiD3/4Q/Tq1SvatWu3wpvwXbt2jSOPPDJmzpwZEd6Ej9AiJ1rkQ4vGq2bDb3zjG7HtttvWatCmTZsoiiLKy8tjiy22iCuuuKK0vR4blxb50CIfWuRDi7zokQ8t8qFFPmq2OPbYY6Nly5a1Xit27tw5ysrKSuftueeeMWPGjIjQYmPTIh9a5EUPWD0D7LAOpk6dGl27do2iKGKvvfaKn/3sZzFr1qyYO3fuCsPrt9xyS3z00Uel61Z/0LKuw+vjxo2Lm266qW7uYOaqH5enn346dtppp2jXrl3ceuutq3zCnjp1anzmM58pPenff//9EfGfJ/jqfyQsXLgw/v3vf0eEgYa1pUU+tMiHFnnRIx9a5EOLfGiRDy3yokfdmjp1alxwwQWlx6T6cav5GP3whz+MrbfeeoUhz2233TbOPPPMePzxx2vt89prr621Xc+ePeMLX/hCnHTSSbHrrrtGp06doiiK2GWXXeLVV1+tdbubMy3yoUU+tGh8aj6WRxxxRGmgpyiKOPXUU+OGG26IRx99NC655JI47LDDSp0uuOCC0vU8j28cWuRDi3xokQ8t8qJHPrTIhxb5qNni8MMPj6IoomnTprHlllvGxRdfHI8//ni89dZb8fTTT8cll1wSu+++exRFETvuuGO8/vrrEaHFxqJFPrTIix6wZgbYYR299NJLccABB0RRFNGyZcvo3r17fO1rX9skw+tPPfVUfOlLX4qiKOKkk06qmzvYAMyZM6f0uPTr1y8mT568ym1feOGFOOSQQ+Kmm26q9a22moMMu+yySxRFERMmTNjka29stMiHFvnQIi965EOLfGiRDy3yoUVe9Kh7yw9o1vz7ww8/HL/4xS/iu9/9bpx11llx9dVXx6uvvhoLFiyodZ3rr7++9KHsHnvsEWeddVZ89NFHpRZvvPFGjB49Ovbbb7/S4Oibb74ZEX6FriYt8qFFPrRo+Go+hscee2wURREtWrSIfv36xR//+McVtn/ttdfiyiuvLDX72c9+VpfLbdS0yIcW+dAiH1rkRY98aJEPLfJ04oknlloceOCBcdddd62wTUVFRUyYMKE063PwwQfH7Nmz62G1jZsW+dAiL3rAqhlgh/Xw5ptvxve///3Ya6+9an2jdrfddttow+tPPvlk6QP76j/n/X/snXdYFMf/x2eOKqICKmJBEbtg773GrlETW6ImJvYWjb33rlEjdo0aRRN7+6qJsXdjF5COBRUUbHQ47v37g99N7ugIdzccn9fz8Ii7s3uz82JvdmY/MzNlin4uMBcQGBgIZ2dncM7RokULXLt2TbyYSv5S6ePHj4iJiUlxjsjISOGQc46SJUvi/fv39FIqi5ALeSAX8kAu5IJ8yAO5kAdyIQ/kQh7IhVyQD8OT0cwumvsPHTokyrlRo0b47bffEB8fDyAp0FRd5iqVCg8ePEC9evXAOcfAgQPx6dOnFOfWdES+yIVMkAt5IBe5k9WrV8PS0hJmZmZo2bKlWD0FSHKmOTghOjoac+fOBecc1apVw/3791Ocj8r/8yEX8kAu5IFcyAO5kAvyIQ/kQh7IhTzs3r0bxYoVg4mJCZo0aZLCRXIuXbqEihUrwtraGtu2bUuxP7kLWpUr85ALeSAXckE+CCJ9KICdID6T6OhoPHv2DBMnTkTr1q1Rvnx5bN++PceC1/v06SNerFhbW4Nzjg4dOmidP6/j4+ODEiVKgHMOV1dXzJs3D35+fpk+fsOGDVqBDPv27dNhbo0bciEP5EIeyIVckA95IBfyQC7kgVzIA7mQC/IhF5oBnpo8f/4cLVq0AOccFSpUwJYtW0SneWod8CqVCocOHYKDgwPKli2bYmb81DrcNWfXJ8iFTJALeSAX8hMTE4Nu3bqBcw5bW1scP35c7EsrYMfT0xNt27YF5xxbtmzR2qd28eLFC3h7ewOgZbUzC7mQB3IhD+RCHsiFXJAPeSAX8kAu5GLIkCGi/+/AgQNie1ouPn36hOnTp4Nzju7duyM2NlbsU7t4+vQptm7dmmI7kT7kQh7IhVyQD4JIHwpgJ4gcICoqCq9fv0ZkZKTYlp3g9b59+4rKS30c5xzu7u76uaBchJ+fH5o0aQJTU1NwzmFnZ4dff/1VNO4yYubMmeCc4+DBg2IbjXD+PMiFPJALeSAXckE+5IFcyAO5kAdyIQ/kQi7Ih/zcuXMHdnZ24Jzju+++E4Gc6ZXzmzdv0K5dO3DOU11iGwAmT56MwYMH6yTPxgq5kAdyIQ/kQh7OnTsn+rkXLFggtmdUL0+ePBmcc1y6dAmA9oCBoKAgDBgwAEWLFsXff/+tm4wbIeRCHsiFPJALeSAXckE+5IFcyAO5kAd/f3+YmZmBc44xY8aI7Rm5uHbtGiwtLXHq1CkASYMS1BNJBgUFYfjw4eCc48svv9RZ3o0NciEP5EIuyAdBZAwFsBNENkirQsmp4PVJkyZhxIgRUCgUcHBwwIMHD3R3MbmYV69eYcGCBahfvz445xg5ciTev3+f7jGao888PT3F7xTIkD3IhTyQC3kgF3JBPuSBXMgDuZAHciEP5EIuyIfczJ8/H5xzlCpVCoGBgQAyN1PY0aNHMWPGDPH/v/76S3idP38+ihYtCs45fvrpJ11k2yghF/JALuSBXMjDvn37wDmHvb09bt68CSB9F+p94eHhePToEQAgIiICK1euxObNmxEVFYURI0aIvveaNWsiJiaG6vpMQC7kgVzIA7mQB3IhF+RDHsiFPJALeXj8+DEUCgU459i8eTOAzM9eHxISAiBpssqlS5fiiy++wNWrVzF+/HgUK1YMnHOUKFFCpCPSh1zIA7mQC/JBEBlDAewEkcOoGxLZDV4fOXIkbt26hQoVKtCoqUwQHx+P8PBwHDx4EG/evAGQcWBC8ocCagTmDORCHsiFPJALuSAf8kAu5IFcyAO5kAdyIRfkQ17UM4iVKlUKISEhn1XO58+fR/HixeHo6Ijx48fD3t4epqamqFChAn777Tcd5No4IRfyQC7kgVzIw+bNm8E5R8mSJREaGprl4xMTE/HgwQNUqlQJnHPUqlUL9vb24Jyjbt268PHx0UGujRNyIQ/kQh7IhTyQC7kgH/JALuSBXMjD48ePYWlpiQIFCuDGjRsAtCe1yAxv377FoEGDwDlH/vz5xQpetWrVgp+fHwDqU8wM5EIeyIVckA+CyBgFIwgixwDAOOfs9evXbNGiRezIkSMsJCSE5c+fn+3bt4916dIlRVrGGLt16xZbs2YN+/PPPxljjA0ePJjNmTOHWVhYsJiYGKZQKFibNm0YY4wlJibq/8JyAWZmZszOzo599dVXrGjRokylUjHOOVMqlVrpNMtPodD+ClT7ILIHuZAHciEP5EIuyIc8kAt5IBfyQC7kgVzIBfmQDwCMMcYsLS0ZY4wVL16cFStWjHHOxb7MkJiYyKpUqcLKly/PgoODmZubG3v79i0rV64cmzt3Lhs0aJDW5xEpIRfyQC7kgVzIh5WVFWOMsbCwMBYSEpLl4znnrEaNGqxXr16MMcYePHjA3r59y+rUqcMOHjzIKlasSH3nmYRcyAO5kAdyIQ/kQi7IhzyQC3kgF/JgbW3NlEoli4yMZFeuXGGMMWZiYpLp4wGwIkWKsH79+rFixYqx6Oho9v79e1alShV24cIFVr58eZaYmEh9ipmAXMgDuZAL8kEQGUMB7ASRg3DOWUhICJs6dSo7efLkZwWvDxs2jM2cOZPZ29uz33//nb18+ZLly5ePtW/fnjGmXZHRi5G0USgUTKlUMlNTUxYVFcV++eUXxlhS+VGDT7+QC3kgF/JALuSCfMgDuZAHciEP5EIeyIVckA/Do+7XaNiwIWMs6YXrmTNntPZlRGJiIjMxMWEODg6sRo0azNzcnCUmJjJTU1M2cuRI9s033zDGmBiwQKQOuZAHciEP5EI+2rdvz6pVq8aUSiX766+/WHx8fKaPVfenBwcHs9DQUGZtbS3KvF69eqxMmTIiXXrnIJIgF/JALuSBXMiDoV0Q2pAPeSAX8kAu5AAAc3JyYgMHDmQKhYLdunWLvXr1KkvHq10cPnxYy+O7d+/ExBjkImPIhTyQC7kgHwSRSXJ2QneCIF6/fo3KlSuDcw5bW1ucOHFCa7/msh03b95E3759wTkH5xzDhw/H06dPRbqOHTtCoVCge/fuiI+P11r+XPM8Bw4cwPz583V8ZbmLhIQEAEB0dDTq1KkDzjnGjx9v4FzlTciFPJALeSAXckE+5IFcyAO5kAdyIQ/kQi7IhzwEBASgQYMG4Jxj0qRJiIiIyNRxmn0cCxYsQJEiRcA5R758+cA5h6OjI549ewYg9WVVNY8nkiAX8kAu5IFcyENERAS+//57cM5Rr149PHz4MFPHqfvBnz9/jmHDhqFo0aLgnKNUqVKiX33atGkivdqHSqXCx48f8ddff6U4V16HXMgDuZAHciEP+nZBpA/5kAdyIQ/kQi727NkDMzMzcM6xZs0axMTEiH1p1a1puahcubLoZyxZsiQCAwMB/NcPCaRs61Hb7z/IhTyQC7kgHwSRPhTAThA64NGjRyhVqhQOHTqktT2j4HX1Sw8AOHfunNi3fPnyNM9z8uRJuLq6gnOOwYMH6+iKcifR0dEoV66cKEfOeaYbkOmR2gOEUqlM0Yikzsb/IBfyQC7kgVzIBfmQB3IhD+RCHsiFPJALuSAf8rBmzRrhwM3NDZ8+fRL7UusgTyswtHz58li+fDlatGghXuIGBQUB0H5xqz7+woULmDNnjm4uKpdCLuSBXMgDuZCHoKAgVKhQAZxztGzZEjdv3kRUVBSA1OtV9bYXL15ovbCtWbMmvLy8sH37duF29uzZ4ji1jzt37oBzjr59++rh6nIX5EIeyIU8kAt50JcLInOQD3kgF/JALgyPZjnPmjVLlN/SpUvh6+ub4XGpuQgICMCrV6/QuHFjcM7h5OQEf3//VD/z+PHjYl9eH2xALuSBXMgF+SCIzEEB7AShI5LP5pOV4HUAWLVqFSwtLVG2bFl4enqKc2ie58SJE3B1dYWFhQU45+jUqZMOryj3ERgYKMq4ZMmSOHjwYLbPqVmpR0VF4Y8//sCMGTPQqVMnfPnll/jll1/w999/izQU0JAEuZAHciEP5EIuyIc8kAt5IBfyQC7kgVzIBfkwPJpBnpMnTxY+pkyZgitXrmR4jGZgaLly5bBv3z4AwJMnT9CkSRPhVh0gqnn89evXoVAowDnHunXrdHB1uQtyIQ/kQh7IhZx4e3ujePHi4JzD1dUV8+fPx507d1KkS++FrZ+fH4CkwWyaAxRmzZoljg8LC0P9+vXBOYelpSUuX76snwvMRZALeSAX8kAu5EGXLig4NOuQD3kgF/JALgyPZvtt0qRJovw6deqEOXPmaA1eBjLnQqVSwcPDQwxcdnJyQlxcnNbsxkePHkW1atVQqFChVJ3nRciFPJALuSAfBJExFMBOEHogq8HrMTExqFevHjjnaNCggVg+JLXgdVNTU3DOMWDAALE/r79A18TLywvOzs7Yu3ev2Pa55aMOZEhMTMSGDRvQs2dPcM6FA/VPkSJFMGPGjGx/nrFBLuSBXMgDuZAL8iEP5EIeyIU8kAt5IBdyQT4Mj2bQ/4wZM0Q5lSpVCsOGDRMzkAHpz2qsDgxV4+npKQJEf/31V63Punbtmlh2tUqVKliyZAni4uJ0eZm5AnIhD+RCHsiFnPj5+aFly5bInz8/OOcoWLAg3rx5I/Zn5oWt2ld8fDyWLVsGzjnOnz8PAIiNjcWCBQtQsGBBmJiY4KuvvkJwcLCerzJ3QC7kgVzIA7mQB127ILIG+ZAHciEP5MLwaLb5Vq9eDRcXF9Hu8/DwEPsy40LzXA8fPkSLFi3wzz//aH3e4cOH0bRpU1haWoo4ndRW9sqLkAt5IBdyQT4IIn0ogJ0g9MitW7fSDV5XVxgPHjyAo6Mj8uXLBzc3NwBJDRY1yYPXv/32W1GR0bIfKdEcsfa5gQWaDce+ffuKBwX1S6xmzZrh66+/Rr169cTsSpMmTcqR/BsT5EIeyIU8kAu5IB/yQC7kgVzIA7mQB3IhF+TD8Gj2RezatQvdu3eHmZkZRo0aJbZnNjBUM52npyd27dql9VmagaGurq5Yt24dPn78qIvLypWQC3kgF/JALuQkJCQE27ZtQ5cuXXD69GmxPStBPmri4+Px+vVr8X/NWfItLCxw8+ZNPVxR7oVcyAO5kAdyIQ+6cpHW+9TUgnvy+qBlTciHPJALeSAXhkezrO7fv4/NmzeL1U1UKpUon+DgYAwfPjxTLoCkmfE1UQeFmpiYgHOOvn37Ijw8XFeXlSshF/JALuSCfBBE2lAAO0HoiTt37qBz585pBq9rsnTpUpHu4sWLWvsoeD3r5NTM9KGhoWjcuLFww3nS8l23bt0SDwpPnz7FunXrREDDpk2bsp1/Y4JcyAO5kAdyIRfkQx7IhTyQC3kgF/JALuSCfMiBZgf6hw8f4OXlJf6vuXzp4sWLRWBouXLl0gwMTY3kgaFr164VgaF5/WWtJuRCHsiFPJALeVGXf2JioiinkJAQjB07NtMvbJMzdOhQUZevX78eADnIDORCHsiFPJALedCFC02Sp9+zZw82bNgg/k+OtCEf8kAu5IFcGJbUylPTxdu3bzFhwgTY29tn2oXm9uRBob169cL79+9z/kKMAHIhD+RCLsgHQaQOBbAThJ4IDg4WLzBGjx6davB6YmIiYmJi0LFjRygUCnTv3l2roXH8+HG4uLiI4PX+/ftT8LqOUVf2gYGBqFevHjjnyJcvH1xcXPDHH3+kesynT58wbNgwcM7Rp08frQcO4vMhF/JALuSBXMgF+ZAHciEP5EIeyIU8kAu5IB85S2rloNlfsWXLFpQuXTpLgaHq7VevXhX9Ki4uLli7dq2YfZ/KPyXkQh7IhTyQC/lRqVRISEiAm5sbypQpA845atWqBX9/fwCZC/LZunWrCAzt3r27OJbIGuRCHsiFPJALecgJF+rzaPLp0yds3boVffr0EZ4GDx6c4/k3NsiHPJALeSAX8qAu6z/++APly5cH5xw1atTIMChUs+wpKDRnIBfyQC7kgnwQeR0KYCcIPfL48WNMmDABQUFBaabx8vKClZUVOOf4+eefxXYKXtc/6lHS7969Q/369cE5R/78+dG2bVucO3dOpEvtJZSbmxs457C0tEzXN5E5yIU8kAt5IBdyQT7kgVzIA7mQB3IhD+RCLsiHfnnx4gU6dOgAzjkcHBzg7u4u9mUUGHrlyhURGFq7dm2sXbsWkZGRAKhP5HMgF/JALuSBXMhDRESEqJdLly4NX19fAJkL8nny5Ak6d+4MhUIBc3NzbNu2LdV0qdXtNNAgJeRCHsiFPJALeciOi+RpPD098eeff6JGjRowNzcXQaGWlpbgnGPp0qU6uQZjgnzIA7mQB3IhF23atAHnHEWLFs1wIEF6QaFff/01BYVmE3IhD+RCLsgHkVehAHaC0DOaS9Jqon6ZsWLFCnDOUaJECXh7ewMAjh49mq3g9awuP0X8V2YJCQlo3rw5OOewsrJC586dcfXqVZEueadhfHw8AODPP/+EtbU1ChcujBcvXugv40YIuZAHciEP5EIuyIc8kAt5IBfyQC7kgVzIBfnQP4cPHxYvWN3c3MT2rASGlilTBpMnT8bNmzehUqkQGxsLgAJEswq5kAdyIQ/kQh6OHz8ugnGOHDkCIOMyVPtwc3MTL2x//PFHsV+zPlefS6lU4vLly9ixY0eK8xBJkAt5IBfyQC7k4XNcJMfb2xvr1q2Ds7MzbG1twTlH8eLF0bBhQ7i4uIDzpBW6bty4oYMrMC7IhzyQC3kgF/Lw6tUrFClSBJxzzJo1C0Dmg0IbN24MhUJBMxrnEORCHsiFXJAPIi9DAewEIRldu3YF5xxVq1ZFQkICTpw48VnB68lfsoeGhuLUqVM6zbuxkZiYiCFDhoBzDgsLC7Rs2RJXrlwR+9Ob8WL48OHgnKNgwYJ4/vy5PrJr1JALeSAX8kAu5IJ8yAO5kAdyIQ/kQh7IhVyQD/1y7NgxcM5RsmRJ3L17F0DGgaFXr14VgaHql7JWVlYoUqQIatSogVGjRuHly5cAKEA0K5ALeSAX8kAu5MHHxwdlypSBlZUVfvvtt0wfd/fuXeTLlw+cczRp0gTPnj0DkHrZx8bGYtKkSahVqxY45xg6dGiO5d+YIBfyQC7kgVzIQ1ZdqNt3ERERCA4OxogRI1CvXj1Rj9vY2KBJkyb466+/cOXKFfTr1w8KhQKDBg1CTEwMDSDIAPIhD+RCHsiFPERHR6NTp05iEJl6gorkJA8KbdKkiQgKdXV1Fe27zJDaADWCXMgEuZAL8kHkZSiAnSAk4vbt27Czs4OJiQl27tyJS5cuoUqVKlkKXk/eMHnw4AF27dqFcuXKpZjVgUifw4cPo3z58mJZrzNnzoh96QUy3L17FzVr1gTnHF27dkVcXBwt75hNyIU8kAt5IBdyQT7kgVzIA7mQB3IhD+RCLsiHfrl9+zacnJzAOceqVavSTKc5q7G6P0ShUKBo0aLo1asXRo4ciVatWqFUqVLgnKNKlSp4+vSp1rFE+pALeSAX8kAu5OHdu3fo0qULOOdo1aqVCPJMj5cvX4qJYYoUKYLly5cjLi4OgHadHhYWhgsXLohAIBMTE/Gid926dTq7ptwKuZAHciEP5EIeMuMied17+/Zt/PDDD3B1dQXnXNTlQ4cOxd69exETEwMA+OOPP0TA6O+//66X68ntkA95IBfyQC7kYsOGDaLMUhtQoFknHzp0CE2bNhX1sPpn/vz5iIyMzPCz1Oe6dOkSHj58CICCQzUhF/JALuSCfBB5FQpgJwiJ2LVrlxg9O3jwYFSvXl0sJ5jZmdeBpIrG19cXS5YsgbOzs5jVwdLSEpxzjBs3Th+Xk+sZOnSoqOR37doltqcWmKC5bf78+eK45cuX6yWvxg65kAdyIQ/kQi7IhzyQC3kgF/JALuSBXMgF+dA/ixcvTrcTPrXA0HLlyuH7779HUFCQSPfx40dcu3YNDRs2BOccNWvWREhIiL4uwyggF/JALuSBXMiDv7+/GATQsWNHrfLVRO1k7969KF26NDjnqF+/PkJDQ1Ok/ffffzFs2DBxXgcHB5QpUwacc9SqVQvh4eG6vKRcC7mQB3IhD+RCHpK7CAwMBJDyPaq7uzuGDx8u3rlyzmFra4vRo0fjyJEjWmn9/PxQo0YNcM7Rp08ffV2KUUA+5IFcyAO5MDyafXpTpkwRAwM2btyYaprkQaEDBgzQaivOnTsXUVFRaX6euv6/cOGCOObx48c6uLLcB7mQB3IhF+SDyOtQADtBSEBiYiIiIiLQtm1bEWheqVIlEXCe2eD1iIgIBAYGYtCgQahdu7aoaEqVKoUyZcqIJW1Hjhypr0vLtdy4cUO8iBo1apTYnlEgw/79+0W5d+7cGREREWkeR2QOciEP5EIeyIVckA95IBfyQC7kgVzIA7mQC/KhXzRnFJs4caIowx07dqRIoxkY6uLiguXLl4uAneR9ImfPnoWjoyMsLS2xYcMGAOQiI8iFPJALeSAXcuLt7Y3ixYuDc45OnTqJ2YrVqJ3ExMSgcePG4DxpYph79+5ppQsLC8Pu3bthY2MDzjkKFiyIXr164ejRo6hZsyZsbW2xceNGKJVKmiU/DciFPJALeSAX8pDcRUJCAgDg/fv3cHd3R69evcA5FwE+ZcuWxbhx4/D48WMxkzEA4fCvv/6Cg4MDLC0tsXnzZgC0ikpWIB/yQC7kgVwYHs222qRJk0Rw6Js3b7TKLnlQaK9evfDx40cAwOrVqzMMDlW3986dOyfScs7x3Xff0czG/w+5kAdyIRfkg8jLUAA7QUhCWFgY7O3tYWpqCoVCIV6EpBW8nrziuHDhAgYNGgRnZ2dRkXHOMX78eOzbtw9Tp05FgQIFUK1aNfj6+gKgFybpcfToUZiYmMDS0hL79u0DkHEgw+nTp8UggQoVKuC3336jxmIOQC7kgVzIA7mQC/IhD+RCHsiFPJALeSAXckE+9I9mP8b48ePBOceiRYsA/Pei9fLly6I/o3Tp0liyZInogE/NT3h4uBjA37dv3wzzkJiYiBcvXuTE5eRqyIU8kAt5IBdy4unpiRIlSuD8+fNpplGvqJIvXz7MnTsX8fHxYt+BAwfQv39/8UK2Y8eOot4fN24cOOdo0aIFnj59qvNrye2QC3kgF/JALuTBw8MDJUuWxL179xAeHo79+/ejevXqsLOzE+VbuHBh8fvhw4cBQPhQ1+Px8fFo0aKFGKj24cMHg11TboZ8yAO5kAdyYXiSB4deuHBBa3/yoNDevXvj/fv3WmnWrFmTZnCout2oGRRqY2ODb775Bq9fv9bZdeVGyIU8kAu5IB9EXoUC2AlCEp49eyaWhFLPvP7tt9+Kxoh6JG7ylyE7d+7E8OHDtUZGOTo6Yvz48fjrr78AJL0sqV+/vnhZEhkZqd+Ly4WoK3VnZ+c0X0Rp/v/vv/9GkSJFwDmHtbU1Ro4cme6SLETmIRfyQC7kgVzIBfmQB3IhD+RCHsiFPJALuSAfhkGzE/6ff/7R2qcZGMo5R7du3RAWFgYg9cBQdT/JN998IwJ+0iMxMRE3btyAi4sLxowZk91LyfWQC3kgF/JALuREPetkajOBHT58GOXLlwfnHNWrV8fDhw8BAJ8+fcLIkSPFjMb58+fHzJkzxcopmzdvBuccJiYmuHHjhv4uJpdDLuSBXMgDuZCH+Ph4HDt2DLa2tiIg1NTUFFZWVli0aBHWr18vVsLmnIt3qCqVSvhzd3dHwYIFUahQIbi7uwOgWY0/F/IhD+RCHsiF4UlrduHDhw+nGxSqeVzy4NDIyMg0g0L79OmD0NBQAP95UrcV8zrkQh7IhVyQDyIvQgHsBCERXl5e4oX4wIEDxcuP2NhYrXTBwcH4/fff0bFjR63A9UaNGmHo0KF48eKF1iwO6lmDihQpAi8vLwA0+3pGrF+/Hpxz2NraIjAwMN20p06dgq2trfDQo0cPMdqZGozZh1zIA7mQB3IhF+RDHsiFPJALeSAX8kAu5IJ8GI7UOuGvXLkiBvObmJjAysoKnp6eANLvv3j//j2qVKkCzjk6dOiQZrrExETcvHkTLVu2FB7v3LmT/YvJ5ZALeSAX8kAu5COtAWYxMTEYNGiQKLODBw8iNjYWO3bsELNSWlpaon///jh27Jg4/t9//0XdunWhUCiwdOnSVD8DSPm3QP3p5EImyIU8kAu5ePToEQoUKADOk2Ym/umnn3D37l0ASWV28eJFfPHFF8LL33//rXX8sGHDwDmHk5MTHj16ZIhLMCrIhzyQC3kgF/Lh7u6OJk2awNzcPNWgUDWafYCawaFz5swBkLWg0MjISDEAgfgPciEP5EIuyAdh7FAAO0FIhqenJ4YMGSI6mzQrGA8PD+zbtw8VK1YUMzNYWFigYcOGmDVrFgIDAxEXFwfgv+WkgoOD0bJlSygUCvz4449aI6uItPH09ISzszPs7Oy0Og81BwbEx8fj999/FxW8qakp2rdvj3fv3gFIe2QckTXIhTyQC3kgF3JBPuSBXMgDuZAHciEP5EIuyIc8BAQEiDJ2dXWFg4MDqlatioiICC0fmqj7TI4ePYrixYtDoVBg/vz5WvvUqANDmzVrJjrnN23aJGbeJ/6DXMgDuZAHciEv27dvF27Gjh2LgIAAdOrUSfSb29vb49ChQ3j16pXWcQsWLIBCoUCjRo1w//79dD8jJiYGBw4cEP+nANHUIRfyQC7kgVwYDi8vLwwePBjPnj0Tq2ap227x8fE4d+6cVnDo2bNnAQCHDh0S21avXm2o7Bsd5EMeyIU8kAu5WL16tSjXvn37phoUqkYzzkbzuO+++y7DoFA1kZGR6Nq1KzjnWLBggU6uKbdCLuSBXMgF+SCMHQpgJwjJSUhIQFBQEObPn4+qVavCwsICnHNYWVmJymXNmjVax2hWLhs3bhTpDh48qO/s51revXsnZrhv3rw57t69q/VS6tSpU/j5559F2dra2qJXr17iQYECGXIOciEP5EIeyIVckA95IBfyQC7kgVzIA7mQC0P4oICStBk4cCBKlCiBFStWoGrVqqhXr16aaTVf6vbo0QOcJ82IfOPGjRRpkweGWltbY/PmzYiIiNDZteR2yIU8kAt5IBfycf36dZQuXVrU0Z07d0ahQoXAOUfZsmXxww8/wMfHJ8Vxly5dEnW7m5ub1j7Nevrjx4+4e/cuGjZsKF70EqlDLuSBXMgDuZCbhISEFMGhhw8fxty5c2FqaoratWvjyZMnAKgNpw/IhzyQC3kgF/pn4MCB+OKLL9INClWjGYuzY8cOcM6hUCjAOUehQoXSDQoFgCVLloh4n7Zt26YYzJbXIRfyQC7kgnwQxgwFsBOExLx+/Rrdu3dH8+bNReOEc46mTZti/PjxaNq0qdj2zz//AEhqpKgbKt7e3nB1dQXnHIMGDTLkpeRK/P394ejoCM45qlSpgh49emD06NHo1KkTChcuLMq+WrVqmDx5spgZiQJLch5yIQ/kQh7IhVzo0wd1SKYPuZAHQ3xPqVcjIrQhF/KgTxeaHY9U/6eOoZ6nNDt883pdolmWFy9eRHBwMFq0aIFChQrh8ePH6R47ZMgQERg6d+5cANrlSYGhWYNcyAO5kAdyIScJCQmYNm0aOOfIly+fKGfOOdq3b4/Tp0+L1VI0n4cCAwPRoEEDcM7x/fffi+3J6/W7d+9i6tSpcHJyAuccZmZm4Jzj0qVLeb7eTg65kAdyIQ/kIneQWnCoenb8oUOHZulcVO7Zh3zIA7mQB3KhHzTr2ejo6Ewfp54E4/79+8KPlZVVqkGhqfUj9uvXD61bt8bdu3ezk32jglzIA7mQC/JB5AUogJ0gJMbf3x+mpqaiMmnZsiVmzpyJhIQExMbG4urVq6kuH6WuiI4ePQo7OzuYmppi8+bNADJuoHh6emLHjh06va7chK+vL2rVqgVzc3OtQQTqDse+ffvi2LFjiImJAZD66DQiZ9C3C/Xx1KhPCbmQB3IhF/r24eXlhYcPH1LdkwrkQh705SIxMRGenp74+uuvsXfvXjx9+lTso++sJMiFPOj7O2r37t3YtGmT1vLz5OI/9O3D09MT/fr103rZmNd9JC/TkSNHgnOO5cuXi3JXo1Qq8eHDB/zwww/gPGnmmC5duuD27dspzkmBoVmHXMgDuZAHciEn3t7eKFCggKizq1atismTJ6eZPi4uDqtWrYKVlRVq1KghXsBqDrqMj4/Hvn374OTkhIIFC4JzjmLFiqF3797466+/tM5Hbb//IBfyQC7kgVzkDhISEnD+/Hm0bt1atAMrV64s+jGS94V//PgRfn5+OHbsGO7du4ewsDBxLirz7EM+5IFcyAO50A9ZLRt1+rNnzwovBQoUSDcoNDo6GiEhIVrnCQwMzG7WjQ5yIQ/kQi7IB2HsUAA7QUiOl5cXypcvj3Xr1sHPz09rX3x8fIqRt+qOqvDwcFSvXh2cczRq1ChTMyD6+PhgwIAB4JyjX79+Orme3EhwcDDWrl2Lnj17okGDBnB1dcXMmTPh7u6ulS6vBx3oA126SD6q8NOnT1AqlSmW4CHPSZALeSAXcqGvOsPX1xfffvstOOeYPn06rl+/nmPnNhbIhTzow4WXlxe6dOkiAoW6deuGXbt25ci5jQlyIQ/6+o66ceMGnJ2dwTlHs2bNsH379hw7tzGhLx+enp4YM2aMaL+PGjUqx85tTOzbt0+U0YIFC3D16lVEREQgKCgIbm5u6Nixo/iOadWqFY4fP651PAWG5hzkQh7IhTyQC3nw8PCAtbU1Bg8erBW8mdoqNM+fP0eNGjXAOce0adMQFRWlda5Tp06JwQnqnwoVKuDPP//Es2fPtNK+ePEC69evT7E9L0Mu5IFcyAO5yD388ccfsLe3B+dJs99/+vRJ7FO30wIDA/HDDz+gbNmy4JzD1NQUHTt2xNatW0VaWvksZyAf8kAu5IFcyIO6Hj937pyok21sbDIMCm3RogUKFCiAoKAgg+TbGCEX8kAu5IJ8ELkRCmAniFxA8mVANDu4Uls+6syZM/jnn39QsGBBFC5cGH/++SeA9Bsl6uB1dePH1NQUAQEBurmgXE5sbKzW/2nEsuHQhYt//vkHa9asQePGjVGnTh1UrVoVEyZMwP79+0UaCi5JCbmQB3IhF7rwkZiYiPPnz6N+/frgPGmp4KZNm2LdunUiDflICbmQB124ePfuHRYuXIh+/frBzMwMCoUC5ubmmDZtmkhDLlJCLuRBl22MX3/9FbVr14aJiQlMTU0xd+5csY9cpI4ufHh6emL06NGi3W5mZgbOOUaPHi3SkI//mDFjhiirwoULo1q1aihSpAjy588vZrL86quvcPLkSa3jKDA05yEX8kAu5IFcyMO7d+/EaqSAdp2tWa9+9dVX4JyjatWqWjOKKZVKjB8/HlWrVhVOq1SpgkGDBiE8PDzF57169QorV64UaV+9eqWjK8t9kAt5IBfyQC5yB+rBASYmJrhx40aK/SEhIejZs6dYtcvOzk4MVuOca7Wx6X1h9iEf8kAu5IFcyMHnBIVGRUWhW7duIv0PP/yQqYknifQhF/JALuSCfBC5FQpgJ4hcgLojK62X2akFsatfhJQpUwY+Pj7pnl8dvF64cGFwzlG6dGlcu3Ytx68jN6NZ9hRUYFh04UKlUuHdu3cYOXKkGMSR/MfS0hJTp07N8c/OzZALeSAXcqGPOiMmJgY3btwQM3+rOyJHjhyp88/OTZALedCli+TnO3jwIAYNGiRc/PTTTzr77NwIuZAHXX9Hab6Qun37NsaPH08u0kGXPpIHr3///fdYv3698EFB7P+h+Xc7Z84clChRQuv5s0CBAihQoADWrFkDDw+PFMdmFBia18s3K5ALeSAX8kAucicbN24E5xy2trY4f/48AOD169c4evQoWrdureXwm2++wbFjx8RgtoSEBHGeV69eYdmyZShSpAg4T5r9+OnTpwa5ptwKuZAHciEP5MKw/PPPPyhevDgUCgWGDx8OIGV9fPbsWRQrVgxmZmYYMGAAvLy88Oeff2rNir9w4UKRnoJDPx/yIQ/kQh7IhRyoy/xzg0Lz58+PXr164datW4a5ACOCXMgDuZAL8kHkZiiAnSCMhNSC2DnnWstCpUby4PWSJUtS8DphNKS36oD6AS46OhqnT59Gu3bttAIP27dvj++++w4TJ05Ehw4dxPYpU6boK/tGBbmQB3IhF5+zZGPyzskVK1agdOnSMDU1Becc/fv3z6ns5SnIhTx87lKmmh3vISEhcHNzE99TS5Ysyans5SnIhTzkhIvXr19j9erVwsWMGTNyKnt5jox8aNYPyYPXBw0ahMjISADA1q1bKYg9FTTL99q1a9i9ezemTZuGyZMn4+jRoymCQoHMBYam9YI2r5d3epALeSAX8kAucgfqcgsICMAXX3wBU1NTMYDv8ePH6NevH8qXLw/OOSwsLFCpUiWsXLlS6xyarpMHhjZo0IBWL80k5EIeyIU8kAvDo3YwZ84c0VbbvXt3qmnVs9oXK1YMQUFBYvubN2+wfPlycfzGjRv1kXWjhHzIA7mQB3IhD+q22vnz5z87KLRnz564e/euYS7AiCAX8kAu5IJ8ELkdCmAnCCMiNjYWZ8+eRcWKFaFQKFCrVi14enoCSP1lBwWvE8ZIdHQ0Hjx4IP6fWnCJ+n749OkTtm/fjrp164JzDlNTU7Rq1Qrr16/XSv/mzRsReGVubo69e/fq9iKMBHIhD+RCLjLjIyM06/U7d+6gWbNmYnnIGjVq4Pnz5zmSV2OHXMhDTrgAtH3ExsZi8eLFUCgUqFy5Mm7evJntfOYFyIU85JSL5OdcunQpFAoFrK2tsX///myfM6/wOT48PDwwatQo0Wk8ePBgvH//Xusc27ZtoyD2VMhoNjDN8slMYKgm586dw7p16/DgwQNERUVl6vPyMuRCHsiFPJALudEs/4ULF4JzDicnJ+zcuRMHDhyAjY2NqJvz58+PyZMn49KlS1rHa54jtcBQf39/vV5TboVcyAO5kAdyIQ///vsvLC0twTnH119/LbYnb4u5ubmBcw47O7sU/XzR0dGYPXs2OOeoWrVqhjNWBgUF4c2bNzl3EUYE+ZAHciEP5EIeTp8+nWNBoYmJiXpZPdhYIRfyQC7kgnwQuRkKYCcII0Fd4Vy+fBkWFhbgXHtZ+ORQ8Lp+US/lmBNBJ0TaxMbGYv/+/TA1NcWPP/6YbtqIiAi4ubmhWrVqIkh33LhxuHHjhkijuQRnWFiYeIgbO3aszq7BWCAX8kAu5CIrPtJCs5F4+fJlfPPNN2LG7y+++AL37t2jhmQmIBfykBMu0uL27dtwcHAA5xzbtm3L0XMbI+RCHj7XRWrfOcm3+fv7i6Xo1QHT9F2VPp/j48WLFxg0aJDoNG7WrBliY2MBAPHx8SJd8iD2wYMH6+QajJWsBoYGBgaiR48e4JyjQoUKGDt2LF6/fg2A2uvZhVzIA7mQB3JhWE6ePCnq4QYNGmDkyJHIly+feJnr6uqKy5cvIyYmRhyTfLAABYbmDORCHsiFPJALw5KQkCBWynJwcMCuXbtSpFG3k0NDQ1G1alVwzjF9+nRER0drpfPy8hIrmS5dujTNOtvX1xc9e/aEqakpzZCfDPIhD+RCHsiFXIwZMwaccxQqVAj9+vX77KBQzT7B5NDA5cxBLuSBXMgF+SByMxTAThBGRGhoKNq2bQvOOWrVqoWXL18CSFmJUPC6YXj06BG+++47PH361NBZMUpiY2OxZ88eODs7i47f33//PdW0MTEx+P3331GjRg0RpLt48WK8ePFCpEktiGfGjBniJWJYWJjOriW3Qy7kgVzIRVZ8pIWmg2vXrqFfv34UMP0ZkAt5yAkXGdG0aVNwztGnTx+tQTiENuRCHnLCxbFjx3D27Fnx/+TfR7NmzQLnHLa2tnj27FmO5NtYyY6PtWvXon79+rCyskKBAgXw888/i32a94BSqcT27dvF+TVnWCTSJquBoWouXryIHj16oGTJkuCco3bt2qKdTgGinwe5kAdyIQ/kwrAEBgaiffv2sLCwgLm5OQoXLgwzMzNwzlGvXj3Mnz9f9Hek1W579eoVli5dKvrQGzVqBB8fH7Gf2nuZg1zIA7mQB3IhB76+vuCco3jx4ggPDwcAPH/+PEXQZmRkJH766SfhR73ytWabbsWKFeCcY+fOnal+VkxMDAYMGCDafEuWLKEAoGSQD3kgF/JALuRi0qRJaNeuXbZmNAaSJr0YO3Ys+vXrhyFDhuCPP/4Q71epzZc5yIU8kAu5IB9EboUC2AnCCFBXEP/88w/KlSsHzjl++OEHREZGpkhLwev6R6VSISYmBsWKFQPnHL1799YKCCVyhk+fPqFKlSqiId+vXz88fPhQK4260/bq1ato2LChCNJduXKlaPinhrqBP3LkSHDO4erqqjXzCaENuZAHciEXmfGRHhQwnXOQC3nIrouM+PDhAypUqADOObp06UJe0oFcyEN2XTx+/Fi09w4dOqS1Tz17xuLFi2FhYYEiRYogODg4R/NvbGTXh4+PD1asWIH8+fODc45vv/1W7NPs7FUqldi7dy/c3NwQEhKSo9dgjGQmMDR5Z7pKpRLfPWFhYTh48CDq1KkDzjnKli0rBnPQC9qsQS7kgVzIA7kwPG/fvkWZMmXAORernHDO8c0338DHx0fMSplWeaoDQ21tbcE5R8WKFeHj4yNWU1FDPjKGXMgDuZAHciEP3t7eOHHiBADg1q1bcHFxgbu7OwDt/r8nT56IVeW+++47sV1dn8fFxeHvv/8W21Pr8zhz5gw455g4caJYYYXQhnzIA7mQB3JheDTbbuo2XVaDQtXvVO/cuYPSpUuLul89wUibNm3w/PnzFJ9HaEMu5IFcyAX5IHI7FMBOEEbEl19+KSqbR48eAdDuoKLgdcNy6dIlWFlZgXOOr776ioLYdcCjR49QtmxZdOnSBU+ePNHap74XEhMT0bVrVxGku2DBArx9+zbNc2o24Hv27AnOOerUqYN3795R4FU6kAt5IBdykZ6P9KCA6ZyHXMjD57pIC/V3W3x8PHbu3ImiRYuCc45Ro0Zl+9zGDrmQh+y4+PDhA0aMGCE6F3/77TetGZeio6PRp08fcM5hYWGhNUsfkTqf40OzLoiNjcXevXthbW0NzjkmTZqU5nHJg06IlKhUKly+fFms6pDRrMYfPnxI9dk2MTERDx48QIMGDcA5R5MmTcTsNETmIBfyQC7kgVzIg4eHhxhA1qlTJ2zYsCFTx7169QrLli0Tfeicc9jZ2aF8+fJwcnLCjz/+iD/++EOkpxe3GUMu5IFcyAO5kAd122306NHgPGmFa82B3uq+jaNHj4o+wK1bt6Y4Xo1mmSdfsTQgIIAGLGcA+ZAHciEP5MLwaMbcqMszs0Gh6vShoaFwcnISg8+6du2Kpk2bolSpUuCcw8nJiVbfygTkQh7IhVyQDyI3QwHsBGEk7NmzB5xzWFlZYfTo0QCSKgx1RUPB64ZF/bBw/fp1sRQkBbHrhuDgYHh7e6e5f/r06eCcw8TEBEOGDEmxzFpa7Nq1S3QIL1y4MKeya9SQC3kgF3KRkY/kUMC07iAX8pDcRWbLUTOd5u/x8fE4cuQI2rVrJ76nDh8+nHMZNmLIhTyk5SIzTsLDwzFs2DBR5sOGDYObmxv27NmD7777TmwfOnSozvJvbGTHB5A0cGDRokUwNzeHk5MTzp49q5N85hVWr14tOty3bt2aIjD07du3OHr0KJo2bQonJycULFgQQ4YMwe7du7XSJSYm4sSJE3B2doaVlRXc3NwAZN4rQS5kglzIA7mQB09PT6xbtw6+vr5iW3ovWdWBoUWKFAHnHKVKlULDhg0xadIk9OvXDzVr1hTPUfPnzxfH0SzHGUMu5IFcyAO5kIuzZ8+iXLlysLGxwebNmxEXFwfgv1VS3r59i549e8LExASDBg3K8Hx+fn7o2rUrRo4cqeusGyXkQx7IhTyQC3lQt8mioqLQo0ePNINCNdm6dSs457C3t8f+/fsRGxuLT58+4eTJk6hfvz4456hZsyZevnwJgOrvzEIu5IFcyAX5IHITFMBOEEbC06dPUaBAAXDOceTIEa19FLwuB5pB7Obm5uCco127djSKWY8EBQWhTp06UCgUcHV1xblz5zJ13L1799C+fXuYmJigSJEi+N///qfjnBo/5EIeyIXcUMC0POSki+TpyKE2aXV4JA+KViqViI2NRWRkJKKjo/Hy5UvcvXsXZ86cQa9evVC1alXx4vbnn3/WmoGayBzkQh40g6V9fHwyNQNrYGCgWKVL/VOoUCHxe+PGjXH8+HFdZ90o0fQREBCQ5qy6yblx44YINlmyZIkus5gnmDBhAlavXp2i/ENDQ7FgwQI4OzuDc458+fKJwZrqGfA1A4Pevn2Ljh07gnOOL7/8Us9XYRyQC3kgF/JALuQkvbZX8sDQOnXq4NSpU1oz5Pv7+2Px4sXieWrZsmX6yLZRQi7kgVzIA7kwLO/fv8egQYPAOUft2rVx7949sU/dPzJr1iwxmZjmwIPk+Pn5aQ0eP3PmjM7zb2yQD3kgF/JALuQiPj5erLxVqFChdINCAWD9+vViBuPkM+jfvXsX9erVA+ccPXr0wLt37/RxCUYDuZAHciEX5IPILVAAO0EYEQ8fPsSoUaO0tlHwulxoBrGrR7g9evTIwLnKOxw9elQ0xBcsWCC2p9cx/Pr1a0ydOlW8UOzfv3+KNGqvISEhWkutUUBi2ujKBZF1dOkiqzOT5lXUs2MAqS/vBeRcwHRUVFQO5tz40KeL+/fv45dffkn1M4ikmYovXbqEwYMHY+TIkejXrx+6deuG3r17o1u3bmjevDlatmyJ5s2bo3r16nBxcUGZMmVgbm4OKysrrYDdUaNGwdPTM8Vn0H2ROfThAqA6I7PcunULbdq0wbZt2wCkX17x8fFYsWIFOOfo1q0bLCwshIvevXtj//79Im1qM+iTi4y5ffs2WrdujT/++ANA5sqsU6dO4JyjefPmiIyMTDetZr1EPv5DcxCMerYx4L/ZKt3d3VG2bFlwzuHo6IhffvkF06dPR+/evbVWJdAM9tmyZQtMTExQrVo1hIeH6+9icjnkQh7IhTyQi9xJ8sDQBg0apDkjclRUFKZOnQrOOSpUqID79++ne26qw7MGuZAHciEP5EJ/PH/+HHXr1gXnHC1btsTdu3e16vO5c+eCcw5LS0s8fPgw1XP4+flhwIABol6fNm0aXr16pa9LMCrIhzyQC3kgF3IxdOhQEcypOaAgNc6ePSvKfN++fSn2nzp1CuXKlUOBAgXg7u5OdXQWIRfyQC7kgnwQuQEKYCcII0PzJYmPjw/69+8vgtdLlSpFwesSoA6Iu3//Ps6fP4/4+Phsn1OlUtHyLOmgLptx48aBc46qVauKQPP0yu3Dhw9YvXo18ufPD845mjZtKma7TL6U54ULF+Do6Igff/wRp0+fFtvpoU0bXbtIfg4q/7TRhQt1HZQ8KPTTp09a5yAv2qjL48qVK9izZ0+KGfquXr2Kvn37ihn52rVrh/v372e5HO/fv4/WrVtj69atePr0aYrPJ3TvQp3Ow8MDrVq1AuccQ4cOTbGfAP73v/+JWSk/56dIkSJwcXHB1q1b050FgO6LjNGVi+R1zfv37xEfH58iKItcaKMORGjUqFGmZmEPCAiAmZkZ5s2bh2fPnuHKlSu4efOm1out5O2Rjx8/QqlU4sOHD1rbyYU28fHxGD9+PDjnaNOmjVagYVpER0ejTp064Jyjfv36Wh7UJL833rx5g8jIyBTnJx+pk5iYiNq1a4sB/EFBQWLf27dvsXnzZvH99OOPPyI0NBRKpRI///wzOOdo2LBhjrTRCXIhE+RCHsiFnCQPDG3YsCECAgLSPebgwYMwMTGBubm5Vj9gctT1enR0NN6/f5+T2TZKyIU8kAt5IBf6x8/PD8WLFwfnSTMcL1iwABcuXMDatWtFPd28eXO8efMGgHbbzM/PD/379xfpZsyYkam2O5E25EMeyIU8kAvDo9l/t3XrVty8eVNrf3R0dIpYgsjISPTp0wcKhQJ9+/bFixcvtPa/f/9ezIo/d+5cavtlEnIhD+RCLsgHkZugAHaCMFJ8fX3x5Zdfik6tEiVK4N9//zV0toj/J7vBBpkJVqeAhpT8+OOP4Jyjbt26ANIvo3fv3mHjxo0iSLdatWo4duxYmsfMmzcPCoUCJiYmcHJywsqVK8U+cpGSnHKR3oyUSqWSAtozga7ui7///hvdunVDs2bNULduXSxYsEBrCUJyoY16RHP58uWxd+9eREdHA0gKpM6J4PU3b97g+++/F52S33zzTZoz7+Z1dOUiefC6paWl8DF69OgU6fI6gYGBMDMzA+ccZmZmaNSoETp37oz+/ftj0KBB6Nu3LwYPHozJkydjzJgxGD9+PJYtW4bVq1dj9+7d8PX1zbDjne6LzKELF5pl++bNG+zduxe1atVCtWrVUK5cOUyZMgVHjx5NNX1e5/jx43ByckLRokWxa9curQHMmqifgTw8PFCoUCF079491XSaHYznz5/H0qVLUatWLdSpUwfVq1fHvHnzcPLkSZGGXPyHUqnEjh07UKJECRQvXhx79+7N0Mfr169Rq1YtcM7RqlWrFCtAaHYY79u3D2PHjkWpUqVQrlw5lClTBhMnTsShQ4dEGvKRksDAQNjY2MDKygqzZ88GAMTExGilOXz4sPjuHzJkCB49eoQ2bdqAc44RI0ZAqVRS2eYA5EIeyIU8kAv5yGpgqLrsr169Ktp0mzdvTvczIiMjMWXKFNSrVy/DoNO8DLmQB3IhD+TCcPj4+KBq1aqiTtbsxytevDgWLVqU4piMgkJpEqrPh3zIA7mQB3JheJIHfqqJjo7G6dOncffu3RTptm3bBhMTE1haWooVHTXL/d69e+jVqxdOnTqlw5wbH+RCHsiFXJAPIrdAAewEYaS8fPkSpUuXBucc1tbWNPrJiNB8SeXj44Pff/8d06ZNw4gRI7Bnzx6tgQr0QkubCRMmgHMOFxeXFLPqaj50PX/+HCtXrhRBupUqVcLGjRtTzCKdnCNHjqB3795QKBTgnGPq1KliH7nQRhcunjx5gm3btqFXr15o37496tevj/bt22PLli24ceOGSEcutMkpF+oBBUqlUmuWB80fBwcHzJkzR5yTXPyHl5cXzM3NwTlHzZo1sX//fvz999/45ptvsh28DiQ1RA8cOIAOHTqAcw6FQgF7e3v6nkoFXbhIHrxuamoKCwsLNGjQQNQZFMSeEi8vL/GStkWLFvD09Pys86RVnnRfZB5duXj58iUmT56cap1hZ2eHmTNnpnlsXuXdu3cYOHCgGHyW2pKPmmW1Zs0aMSgnNjZWa59mPb98+XJUqVIlVRe2trbkIg3CwsLQq1cvcJ40o/r9+/dTpNHs/J09e7Yo1+XLl6eZbuLEiShQoECqPvLnz0/fU+ng5+cnymry5Mlppjt+/LhIp15lwsLCQnTaE9mHXMgDuZAHciEXL168wIoVK7I0qzGQ1I6YOXMmzMzMYGdnh8uXL6eZNjExEXPmzIG9vT0456hevXqKQQsEuZAJciEP5MLwPHv2DGPGjBGDkDlPWo10/vz5KdphGQWFaqZPHkhEbbrMQT7kgVzIA7mQkz/++AOcJ02Yo0azH1Y9qU7hwoXh7e0N4L93rEBSn7ma5PE9aQWjEqlDLuSBXMgF+SBkgwLYCcKI8fDwEJ1bNWvWhLu7e4rgRCL3oVQq8ebNG/Tv319rZLX6p3z58pg/f75IT43K/8rgf//7H4oUKYKSJUtqddxqltHVq1cxevRoWFlZgXOOKlWqYNWqVXj37l2a59d8mPPx8cGcOXNEQOL48eNT/Zy8ii5ceHl5Yc2aNbCxsREzDKiDTDXvi6VLl6b6OXkVXd0Xmi/a7ezs4OTkhA4dOsDZ2VncFz/99FOqn5PX8fb2FvV2xYoV0ahRI62A6Xv37mWrvFQqFT59+oSxY8fC1tZW+Bg2bFgOXoVxkJMu0gpe7927N4KDg7F3714KYk8HzcDp1q1bi44SQLuM0vo9I+i+yDw56UK9fdOmTaLOKFOmDGrWrInevXvD1dWV6ox0eP78OerVqwfOOVq2bImHDx+KTkLNzsGTJ0/C1dUVnHP06dNH6xyaZblo0SJYWlqKMm/WrBl69uyJYcOGoVGjRmL7hAkT9HOBuYynT5+ievXqwsfdu3dTDfpYtWqV+HuvVq1ams9d48aN03qO7dSpE0aPHo1Jkyahbdu2wsfEiRP1cn25jcjISLRr1w6mpqb46quv8Pr1a7FPpVJptd12794tytPS0hKbNm0CQDOO5RTkQh7IhTyQC3lQKpVioF9WAkMB4Pbt22LgX+3atTPsb79+/To45yhYsCBOnz6dE9k3KsiFPJALeSAX8hAXF4fIyEhcuXIFV69exZs3b1KkySgoVJMHDx5gwoQJ2LZtG7y8vMR2qt8zB/mQB3IhD+RCPn777TdwnjQT/tmzZ8V29cqNwcHBqFu3ruj7jouLS7V8NYNCly5diqdPnwKg4NCsQC7kgVzIBfkgZIMC2AnCyHny5IkINKlRowYFsedy3rx5g127dqFOnTrgnIsXWZUqVULNmjXh4OAgAuw0A6eJJEJDQ9G8eXNwnjR76NWrVxEZGQkA+PjxI9auXYtatWrBwsJCDPzYunUr3r9/n+G5NYNOPn78iA0bNgg/K1as0NUl5VpyysX+/fvRvXt30elSsmRJNGjQAGvXrsXGjRsxefJkNGnSRLgYN26cOJaC4JLIyfvi3bt3YqaHypUrY/78+QgJCQEAPHz4EIsWLRIuZs2apc/LzDU8efIEhQsXFjPsqQNFPTw8st1BqPk3v2DBAhQoUEDUGfPmzctu1o2OnHCRVvB6r169xL0RFxeHbdu2URB7Omg+z7Zu3Ro+Pj45dm66L7JGTrp4/fo1SpQoAc6TZq7+/fff8eHDBwBJg0iWLVsm7ou5c+fm1CUYDX5+flrlt3XrVrx69Urs37lzJxo3bixWlNCcQV2T/fv3o1SpUlrPSvHx8eLeeP78Odzc3MT+X375RS/Xl9vw9fVF8eLFwTlHrVq1MH36dNy4cQO+vr44c+YMxowZI55XLS0ttVak0WTdunUiXalSpbB48WKt/a9fv8b69euFj3Xr1unh6nIfv/zyiyjHtWvXpli9KTIyEh4eHmL2fHNzc8ycOVMrkJRezOYM5EIeyIU8kAt58PHxEf2qmQ0M9fHxEf0epUqVEiv+qZ2o/00+A9nVq1fxzz//5GDujQtyIQ/kQh7IRe4gK0GhHz9+xPr160Xaxo0bY8eOHWI/BfpkH/IhD+RCHsiF/vHy8kKrVq3E+563b9+KfUqlEgkJCRg2bJgYbKYOGNVEs82nXtHRwcEBz58/18s1GAvkQh7IhVyQD0I2KICdIPIAFMRuHDx79gxTp04VSwcXKFAAbdq0wY4dO0Qg6cOHD7F69WoKMEkHzWCf0qVLo0aNGmjatClq1KghGuTqoKzz58+LQN60UAf3JA8yfP/+PSZNmgSFQoGaNWvCw8NDZ9eUW8muiy1btqBatWri771du3bYs2dPilnBfXx8sGLFCpEurYChvMznukj+d//hwwdUqlQJnHOMGjVKBCKqiYiIwMqVK6FQKFC0aFEcP35cb9eYm/Dy8oKdnR04T5rFftGiRfj48SOA7AU0qxuSPj4+cHFxEV5dXV3x+PHjHMm7sZETLu7evYsWLVrAzMwMlpaW6NOnjziH2olSqdQKYteccZpIQldB7HRfZJ3sutAMjC5WrBjMzc2xfPlyREVFaaWLiIjA0qVLoVAoUKpUKa1ZIIgkvL29UaFCBXDOkT9/fjg4OKB58+Zo1KgROOcwNTUF5xydO3cWx2g+u6pUKgwePFh890yePFmk03whFRMTg3nz5kGhUKBFixapzuREJH2PaK6QZWJiAltbW9ja2opthQoVws8//yyOUX8HqVQqvH//Hh07dhQ+Vq5cKdJpBphERUVh2rRpUCgU6NixIz5+/EgDnv4fzXKYOHGiKPfhw4dj//798PT0xM2bNzF58mQ0bNhQDFKbMmVKmkFBt27dwv79+3Hw4EEcOnQIHz58QFxcHAAKIE0PciEP5EIeyIWcBAUFISgoKFNpfXx8ULt2bfFSdtOmTVqrrqjLPCoqChMmTMCSJUtSPQ/V26lDLuSBXMgDuZAPzfLJSlCoJitWrEDHjh3FcZoTKFD9nTXIhzyQC3kgF3Kwfft2mJmZgXOONWvWIDo6Wmu/5kqN9+7d09qn2S87ffp0sQJ5sWLFcObMGbGP6uzMQS7kgVzIBfkgZIIC2Akij0BB7LmbwMBADBs2TMzqZ2dnh6VLl6YIilapVIiOjsasWbNgamqKtm3bIiwszEC5lhc/Pz80adJEzKyr+VOjRg2MHTtWq3M3NdSjDNUvBoGUD2Dnzp1Dvnz5wDnHnj17cv5CjIDPdbFt2zaULVtWBPh06NABd+/e1Uqj6SY2NlbMHmptbY39+/fr/NpyGzlxX4SGhopA+CdPngBI2Znl4eGB0qVLi84yInU8PT2Fixo1auCPP/5IMTNfVlB78PT01Aquc3V1hbe3NwCaPSMtsuti/fr1KFasGBQKBczMzDBt2jSxTzMgUR3Erp4tefDgwTl6HcZA8sBpX1/fbJ2P7ovPJysu0nqp8ezZMxQqVAgWFhZiRYLkae/duyc+J/lM1EQSQUFB6N27txjkmvyne/fuYkBZ8r9nX19fWFpagnOOLl26iO2p/d1fuHBBBMRfv35dtxeVi3n27BmGDx+eYhAg5xxt2rTRCkpPXs537twRab/99luxPbV76OTJk+A8aUWuhw8f6u6CciGa5bpkyRKUKlVKlGvRokXFqirqwNCpU6fC399f6xxhYWE4e/Ys2rRpIwayqdsdDRs2xOTJk8WKB1RPpA25kAdyIQ/kIveiGRharFgxrFq1Siv4RzMwdN68eaLfY/78+SnORV6yB7mQB3IhD+RC//j7+6cbFJpaOWrOXPnkyRMxU2VyFxTok3XIhzyQC3kgF4Yh+Yqv6vJbtmyZeOcQFBSEIUOGpBoYmjwotGjRolAoFHB2dsasWbMQEBCA9+/fi0BTqrfThlzIA7mQC/JByAgFsBNEHiK1IPaMZpcmDM+LFy8watQo2Nvbixdahw8f1gqeS95QPHbsmHiYuHXrlr6znCsICQnBsWPHMHbsWHz77bcYOXIk3N3dtQKwMhpF/vr1a5QsWRLu7u5a2zWPa9q0KTjnGDhwIFQqFY1MT4XMuNB8sD1w4ACqV68OhUIBExMTcM5RpkwZlCpVCl9//XWaM6y/ffsWw4YNg4mJCfr27UuDO1IhMy40A25DQkJw4cIF/P777zh58iTu37+PcePGgXOOq1evpvk5HTp0AOccTk5OiIiIoPsiDTTr7WrVqmHPnj0pRj9nhvSCdNMaaEBok10Xf//9N8aNGycGNQ0YMEDs0+wUViqV2LRpEzjnWLt2bY5eg7Gg6aJFixafPRM73RfZJzMuNOvvBw8e4MCBA1i0aBHc3d1x/vx5DBkyBBYWFnj06JHWcZrPtupnqZo1ayI2NpY6u1Lh3bt3uHz5MoYOHYoWLVqgTJkyGDRoEFatWiXSpPZi6dGjR8ifPz/Mzc0xc+ZMAEixFKTmUvOurq7gnOPEiRM6vJrcT2RkJEJCQrB+/XosXLgQixYtwpEjR/D69WuRJq1BAiYmJihQoAC2b98OQPu5S/O4N2/eoGzZsrC0tMTNmzd1eDW5E83yvXXrFnbv3o2ffvoJY8aMgbW1NTjnMDc3x5QpU1IEhj59+hRTpkwRqxuoZ6FxcHAQAz7U30lPnz5N8XmENuRCHsiFPJCL3EdqgaHqAZjAf2UcFRWFOXPmwMnJCZxz2Nvb43//+5/WuTSftQIDAwFQuyMrkAt5IBfyQC70T0BAAL788ss0g0I18fT0xIMHDxAXF4fY2FitfVFRUVi2bJk4j7odSGQN8iEP5EIeyIVh0aw7J02aJMqvdu3a6N69O9q3by+29e7dW6RNHhRarFgxkY5zLt4vlS1bFgMGDEBwcHCK4whtyIU8kAu5IB+EbFAAO0HkMTQDTWrXro1du3YhKirK0Nki0uDdu3eYO3cuSpYsKYLXz549m2Z6dWCKn58fbGxswDnH8ePH9ZVdoyIzHbOaI88PHDgAQDs46N69e2LW/BEjRugsr8aOpot79+6hS5cuYnYxzjlsbGxQvnx5FClSRGsW0RcvXgDQ7ng/evQoOOfo1auX3q/DGNAMovrtt9+0Gi+ccxQvXhylS5eGlZUVVq1alWLG9sTERLx69QrVqlWDQqGAi4sLvQTJgCdPnsDW1lb83aa1dHxaUJBuzvE5LjTrhHfv3mHXrl0oUKAAOOf48ccfxT5NB0qlMtszixs73t7e4jln8uTJWX6Wpfsi50jPhWYZLl26FNWqVdOqM2xsbFC4cGFYWlpi06ZNWiunqHn8+LHoAGvVqpVerskYSD5IOa3OwRs3bggfGzZsSPecly9fFs9fx44dy7G85kXSmqXq7NmzwkdGqzcdOXJEpL106ZIuspnrSf49/u7dO/Tt21cEhk6ePDlFYKh6Bn11G65IkSKYNGkSjh07Bk9PT9y6dQvTpk1D9erVRUf8s2fPUv084j/IhTyQC3kgF7mHzw0MdXBwwLlz59I874QJE8A5x/nz53V+DcYCuZAHciEP5MIwvHz5UrTHZs+enSIoNCoqCidPnkT37t3FSmZ16tTBjz/+iKCgIK20L168wA8//ACFQoGuXbvSytmfAfmQB3IhD+TC8Gj2xy5atAiOjo5a77Y55+jYsSMuX74MQPv964wZM0Q8j/qd98iRI7FlyxZ8++23qFSpEjjnKF++vBi4TG2+tCEX8kAu5IJ8EDJBAewEkQd58uSJCARp3bo13r9/b+gsEclQPywcP34cFStWFC+m/vrrr0wdt2vXLpibm8PS0hLXrl3TeX5zK5rBI5oPTJld+uzt27cYNWqUeDBbvXo1/Pz8ACQFdM2bNw/58+cH5xzTp0/P2cwbGWm5SL5/8eLFYtZ1R0dH9OzZE48fP0ZoaCj8/f1x+PBhEUjXtWtXcbzmA/i2bdtS/VwiiYxcAMCOHTtQoUIF4aJixYpwdXVF2bJlUahQIXDOUaFCBZw/fz5FQOLhw4dFAO8XX3yh02sxFp48eYLmzZtj9erVWTqOgnRzns91oUapVGL79u2wsrIC5xxubm7ppic/afPkyRP06tUL+/fvz9JxdF/kPBm5WLZsGSwtLUWdUbduXTRv3hy1atUSHVyVKlXCP//8ozXwKTw8HGvXrhXPUn379tXXJeVKNOvvzM5mER4ejgYNGkChUGDcuHEAUv/7VyqVWLlyJfLly4eiRYvi4cOHOZPpPEJmnzdfvHiBatWqwczMDHPnzgXwn0vNc4SGhmL06NEwNzeHi4sLXr16lfOZNkI2btwoAkOnTZuWIjD006dPmDdvHkqUKCGCeq5fv57iWTYqKgo3b95Eo0aNxOCat2/fpvvZ4eHhOX49uRlyIQ/kQh7IhZz4+vp+dmDoP//8o3WunTt34tdffwWQNCGG+qVw48aNM3REkAuZIBfyQC4Mi4eHBxYuXKi10hYAxMbGYuvWrahbty4456IvRP1TokSJFO/sdu3aJfYnX6GOyBzkQx7IhTyQC8Oj2Ud7/vx5rFy5EnXq1EHr1q0xceJE+Pr6pujHnTFjBuzs7MA5R+HChbFu3TqoVCrRNxgVFYVbt26hYcOG4JyjYcOGePPmjV6vKzdCLuSBXMgF+SBkgQLYCSKP4unpiSpVqtBy4xKirthjY2PFCydbW1vs3bs3U8cBELM25c+fXyz1SGQOzXLMzIPU27dv8f3334uGe9WqVdG+fXu4urqKpZ9r165ND2U5wM2bN8Xy2BUqVMDixYsRFhaWIt2///6LggULgnOOSZMmie3JA7I0Z2YnMs+DBw/QokUL8SJj0KBB8PHxgUqlwuvXr3Hx4kURFFqlShWsWbMGjx49wu3bt7FhwwbRoHF0dIS7uzsAChbNDB8+fBC/ZyYQjoJ0dYemC83R5ql9H6VGcHAwOnfuDM45vvrqqxTLchKZJ/ks0xlB94XuSMvF6dOnUb58eVFnTJgwQQSph4eH4+bNm8JFpUqVsGTJEty4cQOnT5/GtGnTxKC0SpUq4caNGwDIUU4zZswYMVhW/QIqeRmfPn1a1N9t27Y1RDbzDEOHDhU+PDw8Uux/9+4dtmzZIgYMfvXVVwbIZe5l3LhxGDVqlFZgqLoD/tGjR+L7yMHBAd7e3gD+e+5Kfl9cvXoVVapUgYWFBdatW5fmd5Ofnx9GjhwpBiUQSZALeSAX8kAu5MLPzw9ly5bNkcBQHx8fsb9x48bgnEOhUKBZs2b4888/9XpduRFyIQ/kQh7IhRxoBvOo61oPDw9RjpxzrF+/Hn/++ScWLFiAevXqifbeiRMnxDGfPn2Co6MjOOf4+++/DXItxgD5kAdyIQ/kwvAkb4tpvlMCtN/3TZ8+HUWLFgXnSbMWJ58wRvNcx48fR7FixVC4cGEcOXIkxbmIlJALeSAXckE+CBmgAHaCyMOoA6YyO0MfoV8mT54sgtCnTZuWbmCcZkXv5uYmRkz/9NNPKfYTmePKlSv47bffAGRcfteuXUO1atXAORcB1uqfGjVq4ODBg0hISCAPn0liYiISExPx888/g3MOGxsbTJs2TQSRaparOij9p59+gqmpKVq1aqU1myuRfTZv3iz+vr///nutfWoXoaGh4uW6iYmJGFCgnkXX0dERY8aMSTHzA5ExmQncpCBd/aBZhgcPHsTOnTsBZK7OXbVqlfBy69YtneUxr0CDOuQhuYt58+aJsv7555+10qVWZ3DOYWFhofVvxYoVsXLlSnz8+FGv12IsqMv506dPWuWu/ntPSEjAF198IQIfLl26JJYV9vDwwLZt20TweqlSpUSHJN0vn4e6/NWroCX3ERsbi7Zt24JzDnt7e/z1119iic3Lly9j1qxZIni9YsWK+Pfff7WOJ1JHc+BqWu3q3r17g3MOOzs7EdSTXl9JZGQkZs2aJQZ0pubAz88PU6dOFYN49u3bl80ryf2QC3kgF/JALuQkMDAQnHOYmppi9erVnxUYqlKpRNpNmzaJ8ykUCrRo0QLHjx/XSkukDrmQB3IhD+RCXsaNGyf6N44dOya2K5VKBAYGokOHDmK2ymPHjiExMRFnz56FlZUVLC0tacWzHIZ8yAO5kAdyYVg022aaK2pNnz4dxYoVA+ccVlZW+OOPP1I9Rs3z58/h4OCQot+dyDzkQh7IhVyQD8IQUAA7QeRhqNNJXmJiYkQDsXLlypmeKf/s2bNo0qQJOOewtrZOMeKNyBxPnjxB8+bNYWVlhbt372aYPi4uDh07doSTkxN27tyJunXr4osvvsDAgQPh6elJs+vmEOq/7apVq4oZ7dP6HtMMmFMHJhLZQ6lUQqlUomXLluCco2zZsmLWN80X5+rfL126hKJFi6JEiRIYPXo0ChQoADs7O9SvXx/r1q1DcHCwQa7DmIiMjERQUBCioqIAaL94oiBd/XHlyhWULVsWhQsXFvdEWqiDU/bt2wdra2uYmpri3Llz+shmnoHuCzlITExETEwMKlWqBM45qlWrJpykVmf89ddfsLGxQfny5TFjxgwUK1YMFSpUQPv27XHy5Em8e/fOINdhLPj7+2PcuHEi2FmNuvwDAwNF0HT+/Pnh7OyMNm3aoESJErCyshL3TIcOHfDixQtDXIJR8fDhQ/Ts2TOFD/X3UEBAgPBhaWmJIkWKoE6dOsifP78Y2GFtbY3hw4cjPDzcEJeQK0mv/+Pdu3eoUaMGOOfo2bNnpsv17t27qFOnDjZs2IC4uDitz/Dz88PkyZNhbm4Ozjm6d++Ot2/fZvs6jAFyIQ/kQh7IhZz4+PjAzc0Nr169Ets+JzAUAKZOnSpmNeZcexUVzRfCROqQC3kgF/JALuRDpVKhZ8+eYhDAp0+foFQqtfqclEolunbtKoJDDx06hLFjx4LzpNXnqM885yAf8kAu5IFcyINmmU+fPh1FihQRfbDLli0T+9JrKzZt2hScc/zwww8ZpiXShlzIA7mQC/JB6BMKYCcIgpCQK1euiMp/6dKlaabTrODv3buHAQMGiOPUs68TWSc0NFQ8TP30009ipu/UUDtQz1p1584d6tTVAa9fv0bx4sVhamqK5cuXA0h9tjH1kkYLFy6EhYUFrKys4OPjo9e8Gjvt27cH5xwuLi4plpDS5PXr13BxcUHBggVx/vx5vHz5Ek+fPqWGSQ4REREBNzc3dO3aFTt37kRERITY5+HhQUG6euT+/fuoWbMmOOeYN28eIiMjMzxmzZo1qc5yQmQPui/kQ73sbNOmTQGkXdbPnj2Dk5MTHBwc8ODBA7x9+zbd5y8i8yQkJGDt2rUwMTFBly5d0hwMEBcXh4kTJ6JZs2aoXLmymOVbHdhmY2OTqYGdRPrExsZiypQp4Jyjf//+af6dK5VKzJ49G506dULTpk1hb2+v5aNGjRo0SDMHuX//vqgf1qxZk6lj1M+0Xl5e+PTpk9a+5IGhWQk4zeuQC3kgF/JALgxLaoMvsxoYOmPGDBEY6uzsLHzOmjUr1c8hUodcyAO5kAdyIR89evQQk/AkX1lFsxy7desGzjkKFCggynzbtm1a6VPrRycXWYN8yAO5kAdyYXiS18M2NjYwMTEB5xx16tQRK6uk997i0aNHKFmyJDjnmD17ts7zbKyQC3kgF3JBPgh9o2AEQRCEdMTHxzMLCwtmbW3N6tWrxxhjTKVSaaUBwDjnjDHGPD092datW9mePXsYY4z17NmTLV26lDHGWGJioh5zbhzY2Niwrl27MisrK3bq1Cl2586dNNOqvbx69YoxxtiLFy+Yubl5iv3E56NSqVhCQgKLi4tjiYmJrECBAowxxkxMTLTSAWBmZmYsPDyc7d69m8XHxzNHR0dWokQJQ2TbaClVqhRjjLEPHz6wDx8+pJomMTGROTg4sGLFirHo6Gj28eNHVqJECVamTBnGOaf7IgdQqVRs165d7OTJk2zt2rXs2LFjjDHG/Pz8WO/evdmTJ08YY4y5uLiwAwcOsMqVKzOVSsUUCnr8z2kqVKjA2rVrxzjnbP/+/ezevXvppn/27Bn7+++/Geec2draMkdHRz3l1Pih+0I+nJ2dGWOMhYaGsg8fPqRa1omJiczW1pZZW1uzsLAwFhYWxooUKcIKFSrEGKNnqeyiUCiYnZ0dy5cvH/Py8mL//vtvijRKpZKZm5uz5cuXs8uXL7MtW7YwV1dXlj9/fpaQkMAUCgU7ePAgq127NgNggKswHkxNTZmzszPLly8fu337Nrt//36KNAkJCczExITNmzeP/e9//2OrVq1i1tbWzMLCgiUkJDA7Ozu2ZcsWVrlyZfKRQ9ja2jJbW1uWL18+Zm9vzxhL8pAe6rZ4pUqVRPuEMcb8/f3Z1q1b2Zo1a1hCQgLr0aMH27p1K7Ozs9PdBRgR5EIeyIU8kAvDou57SkxMZCYmJiw6OpotX76c7dq1iz179owVK1aM7dmzh7Vp04YxltQ3pVKpxHEzZ85kixcvZpxz1rBhQ7Z06VK2fv16xhhjCxcuZDNmzBCfQ/V6+pALeSAX8kAu5KNFixbMwsKCffr0id28eVOr3DT7xQ8fPswqVqzIIiMjGWOMjRkzhg0YMIAxluRJ8/3fgQMH2MaNGxlj5CKrkA95IBfyQC4Mi7rOZiypHt6wYQP79OkTK1++PGOMscKFC4t2X2p96eqyvXfvnohNUL+3JbIGuZAHciEX5IMwCLqPkScIgiCyysGDB8Wo5gcPHqTYrzmS7d9//8XQoUPF6Od27drhzp07+syuUfL69Wsx03TTpk3h6ekp9qlHlCckJAAAfH19UaxYsSzNhkVknbZt24JzjuHDhyM2NlZrn9rJx48fMXPmTBQsWBCcc/Tu3RvR0dE063cOoC7DkydPokSJErCxscH+/ftTlK36/8+fP0eJEiXAOcfChQu19hE5g6enJ4oWLSpGOy9btgyVK1emGaYNQHBwsFi5o3nz5vD09ExRVwDAhw8fsH79evEd1bZtW0Nl2Wih+0IO1H//e/fuhb29PYoWLYoTJ06kSKd24OXlBTs7O3DOsWXLFq1zENnnzZs36NChAzjnaNasGTw8PETZJ58VydvbG3Xr1oW1tTU45zA1NcXBgwcBkJOcIiQkBG3atBF1xuPHj0Vdofm9FBUVhQsXLohZSjjnsLS0xNWrV1OkJbLH8+fPYWtrC8455s+f/9nnoVmNsw+5kAdyIQ/kQh6ioqIwadIklC9fPsuzGjdu3BiHDx8W6VavXi3q9yVLluj9WnI75EIeyIU8kAs5eP78ueiHat68OR48eICYmBitNJ6enpg0aZIo4/79+2u9f9Js6x0/fhyNGzcG5xwTJkzQ23UYC+RDHsiFPJALw5G8Hla38ypXrozNmzejSpUq6NOnT5rHq/tmb968KVbPbNmyZYpVt4iMIRfyQC7kgnwQhoIC2AmCICTk5cuXqFKlChQKBdavXy8CGpJ3Mh4/fhy9e/cWDchWrVrhn3/+oeW5coigoCBUrFhRNOIvXryY4uEqMDAQ1atXB+ccpUqVwu3btw2UW+NFpVIhMTER8+bNA+cctWrVwqNHj8QDcHx8PAAgPDwcK1asEB0v5ubm5EMHvH37Vmtwh5eXl+isUrsICQnB999/D845rK2tceTIEQPm2Lh58uQJihQpkmIpx+rVq8PLywsABbjpi4CAALE8c9OmTXH06FGtgJBHjx5h5cqVsLGxEUt0Xrp0CQA5ymnovpCH0NBQtGrVSgROe3p6iudUdZ3x4sULtG7dGpxz2Nvb48aNG4bMstESGBiIsmXLgnOORo0aYc+ePXj9+rXYf+3aNfz6668oXLiwuGdMTExw8uRJA+baeAkICECZMmXAOUeDBg2wdetWPHv2TOw/ceIEJkyYIOoMMzMzODo6ivuDvsNyDnWbYuTIkVAoFOjYsSOeP3+e5fNQYGj2IRfyQC7kgVzIxdu3b0UfoKOj42cFhqrTxsfHY82aNbCzs8PMmTP1eh3GALmQB3IhD+RCHry9vVG6dGlwzlGtWjWMGzcOR44cwcmTJzF27FjRT8I5x8CBA7UmpNL0dOzYMTRp0kTU36NHjwbwX3uQBplnDvIhD+RCHsiF/kkvKPTo0aNQKpWwt7dHxYoVERAQINImL8t79+6hfv364JyjaNGiWLZsmehnJzIHuZAHciEX5IMwJBTAThAEISERERH49ttvRRDcw4cPxehn9YPDwoULUaNGDdGA7NChAy5dukSVfw7j4+MjZj2sXLkyhgwZgvPnz+PEiRPYvn07ihcvLjp7O3TooBUIROQsz58/R7Vq1cA5R4sWLXD8+HG8e/cOERER8Pf3x4ABA1CuXDkxW+j27dsBUICPLvD39xedW82aNcOBAwfw9u1bJCYm4sWLF/juu+/g6OgoGia+vr6GzrJR8+TJEzFzsbm5ORwdHUWHoubs34Tu8fb2FgGJ9vb2cHFxwcCBA9G3b184OTkhf/784JyjXLly+OWXX/DhwwdDZ9looftCHvz8/FCqVCnxXLt7926EhITg/fv38PLyQqtWrcRAgzp16iA4ONjQWTZafHx8UKFCBXDOUbBgQZQoUQLNmzdHq1atYGFhASsrK3DOYWdnh1q1aolgaXrZpBt8fHxQqVIlMbO6ra0tqlevjlq1aoFzDgsLCzFItkePHmJlLnq21Q379++HpaUlOOf45ZdftFZ8yugeoMDQnIVcyAO5kAdyIQ8eHh6oVKkSTp06JbapJ15Qk15gqGa6+Ph43L17Vz8ZN0LIhTyQC3kgF/IQEBCAbt26wd7eXryvUK90pv4ZMGBAukGhzZo1g4mJCfLly4d27dohMDAQwcHBeP/+farHEGlDPuSBXMgDuTAMs2fP1goK1ZwArHfv3lAoFFi1ahWio6NTHHvt2jXUqlULZmZm4JyjW7du1LbLBuRCHsiFXJAPwhBQADtBEISkaM6SWLduXYwYMQK///47RowYgS+++EKrAdmvXz94eHhQMIOO8PPzQ4MGDWBqaio6dznnyJcvnwg4cXFxwf379w2dVaNHc0CBnZ0dypUrh+rVq4sliNR+3NzcEBUVZejsGjXe3t4iINHW1hbOzs5o3rw5ihYtKlyYmpqKmVsp+E23eHl5iWDdKlWq4OTJkxQcbSD8/f3Rtm1b0fGrrjPU/1arVg1ubm54+/atobNq9NB9IQ+as/rkz58fJUqUQOXKlbVeilhZWdHs63ogMDAQffv2RZUqVbTaE+qfBg0aYNmyZWLwGbUvdEtQUBC+//57rYHJ6p+CBQuiTZs2OHjwoBjYQc9TumXWrFmi/JcvX47AwECxL62yTx4Y2qNHD4SFhaV7DJEx5EIeyIU8kAt50OxvUqlUWmU5d+7cdGc1TgsaZPt5kAt5IBfyQC7k4f3793j48CE2b96MnTt3ipVjOef49ttv0w0Kbd68uXgfpR7grO5bbN68OTZt2pTqsUTakA95IBfyQC70y8KFC0VZJQ8KBYDt27eL8pw5cyZOnjyJT58+4eTJk1ixYoUICOWco3Xr1ggJCQFA/befA7mQB3IhF+SDMBQUwE4QBCExPj4+Wo1FzQrf1NQU5cqVoyUc9cTLly8xc+ZMNGjQQCuwpHTp0ujbty8ePXoEgF4A6gN/f3906NBBBLKrf2xsbODo6Ijjx4+TBz3h7++Pdu3awcHBAZxzmJiYgPOk2Y4LFiyI//3vf4bOYp7Cy8sLhQsXBuccNWvWxN69e/Hp0ydDZytPEhoaCnd3d/Ts2RNly5aFpaUlGjVqhIEDByIgICDVUemEbqD7Qh78/f3RqVMnMfhJ/ULD1tYWVatWFcHr1JGlez5+/Ah/f3+sXLkS06ZNw9ixY7F27VocPnwYSqVSPEfR85R+iIyMREhICLZt24aVK1di5cqVcHd3x61btwydtTyD5vfOpEmTRPuia9euWLx4cZrH+fn5YeLEiaKd3rdv3wwHSiUPIiK0IRfyQC7kgVzIR1pltGXLFhQqVChTgaGZfeYlH+lDLuSBXMgDuZCTadOmiTr8m2++ydSMxpxztG/fHvPnz8fZs2exbNkyfPXVV+I8c+fOFceRi6xBPuSBXMgDudA93t7esLOzg729PY4ePSq2a5bvlClTtN59Ozk5afWlOzo6ok+fPiIolAYHfB7kQh7IhVyQD8JQcABgBEEQhLQ8f/6cbd++nV28eJH5+/uzfPnyMWtra/bjjz+y6tWrsxYtWjDGGFOpVEyhUGT5/AAY51z8X6VSMc651rbkafIqCQkJLCEhgZ08eZLFxcWxiIgI1qZNG1asWDFmY2ND5aRHwsPDmZeXFzt16hSLi4tjcXFxrH379qxatWqsbNmyhs5enuLNmzfsypUr7MiRIywkJISpVCrWvHlz1rNnT1a9enW6L/SMt7c3a968OQsLC2NlypRhGzduZO3atfus+oHIGT59+sQiIyOZvb09MzU1NXR28iR0X8hDeHg4u3v3Ljt06BB7//49UyqVrEuXLqxZs2asQoUKn/08S+Qs5EEuEhMTmYmJiaGzYfRolvMvv/zCNm/ezPz8/JitrS07ePAga9asmVY97u/vz7Zs2cLWrFnDlEolq1ixIlu5ciWrWLEi45wzhULBChUqxMzNzZlSqWTW1tbM3NycxcTEsHz58pHXdCAX8kAu5IFcyE9kZCTr168fO3XqFCtXrhxbtGgR69WrF2Ms9b5X9bNWUFAQe/78OTt37hz79OkTy5cvH2vRogVzdnZmFStWZIzRs0BWIRfyQC7kgVwYltDQUFa8eHHGGGPfffcdGz16NKtTpw5jTLv8jh8/zlauXMmuX7/OVCoVGz16NPv111+1zvX27Vu2a9cuNnnyZMYYY7/++isbPXq0Hq8m90M+5IFcyAO50B8BAQHM29ubde7cmTH2Xz2sWc4LFy5k7u7uzMfHR+vYTp06sS+//JL16tWL2djYUB2cTciFPJALuSAfhCGgAHaCIIhcgEqlYiqVij1//pzZ2NgwhULBbGxstPZnNcgk+TG7du1iQUFB7ObNm0yhULC2bdsyFxcX1r59e8YYBbETuQf6WzUcSqWSmZiYiPInF4bB29ububi4sCJFirAzZ86wWrVqGTpLeZK0/v4pMNQw0H0hP1RnGA76XpILuhcMh2aH+q1bt9ijR4+YlZUV69KlCytUqJBI5+/vz7Zu3crWrFnDEhISWJEiRdi7d++Yubk5UygUTKlUMpVKxezs7JipqSmLjo5mhQsXZoUKFWLx8fHs+PHjzMnJie69dCAX8kAu5IFcyM3Dhw9FG2PWrFls3rx5jLH0n7O2bdvGduzYwe7evcvi4+PFds45q1GjBhsyZAgbMWIEY4wCRLMCuZAHciEP5MLweHp6Mjc3N/bdd9+xhg0bMsbSDwqdNGkSW7ZsmUinHoDGGGMfP35k48aNY7t372YtW7Zk+/btY0WLFjXMheVSyIc8kAt5IBf6J3k9rFne3t7ezN/fnz19+pQVLlyYFS1alLVt21b0G1J7LWchF/JALuSCfBD6ggLYCYIgcgE5HcSgfrD4+PEjO3z4MDt06BA7deoUUygUTKVSMcaSOiJtbW3Z8OHD2cKFC3WSj9wOlYdh0Sx/9eMM+TAMye8FujcMz9OnT1lISAirW7cuzfpNEP8P3RdyQHUGQRAyk1HHevLA0P79+7PatWuzyZMnM6VSyYoXL84iIiJYbGwss7KyEqtFMcaYiYkJS0xMZJaWlszLy4s5OTnp6apyJ+RCHsiFPJALeQkNDWXNmjVjr169YuvWrWODBg1KEdCp6W/atGki4KdYsWKsYcOGrHz58iwkJITduHGDBQYGMsYYmz17Nps7d26K44m0IRfyQC7kgVzIQVxcHLOwsGCMZS0oNLXBAfPmzWPz5s1jhQoVYnfu3GHlypXT34UYCeRDHsiFPJALw5NRffq59W1qffA0AC19yIU8kAu5IB+ELqC39gRBELmA9IJ60lviMTXUlXxISAibMGECu379Onv27BljjLGiRYuymjVrMgsLCxYSEsL+/fdftnjxYhYXF8dWrFhBwUXJoPIwLJrlTy4MS/LyJx+Gx8nJiQIOCCIZdF/IAdUZBEHITPK2tGZ7OyAgQCswtFu3bmzDhg3swIEDTKlUsrJly7KrV6+yuLg4FhkZySwtLVl0dDQLDw9npqamDAB7//49CwwMZIGBgVQnZQC5kAdyIQ/kQl6srKyYq6sr8/f3Zzt27GBt2rRhpUuXFvs1+2snT57MVq5cyRhjLF++fGzy5Mls/PjxIu39+/fZn3/+yZYvX87mz5/PChQowCZMmECBoZmEXMgDuZAHciEHORUUyhhjZmZmjLGkYNOoqCg95N74IB/yQC7kgVwYnvTafKntzwya5zh//jwLCAhgQ4YMYSYmJjQALR3IhTyQC7kgH4ROAEEQBJFrUalU4veAgADxu1KpTDW9evuLFy9Qu3ZtcM7Fz8KFC3HhwgWR9unTp1i3bh0UCgU459i4caNuLiIPkZiYaOgsEP9PWvcIoX/IhVwkJCQYOgvE/0Mu5IFcyAO5kAd6rpULep7SPd7e3pg8eTLy5csHzjl69uyJsLAwAMC2bdvAOUeJEiXw4cMHJCYmarXVNX9PbxuROciFPJALeSAXchAQEIAyZcqAc462bdvi2bNnKdIsW7ZM9MUWLVoUnHMUK1YMQUFBWuk+fvyI5cuXg3MOR0dH3Lx5U09XYRyQC3kgF/JALuTjwIEDaNWqFUxMTMA5x+TJk8W+9Np4Dx48QK1atcA5R4cOHRAdHa2P7Bo95EMeyIU8kAvj4tq1a+jTpw845/j2228NnZ08DbmQB3IhF+Qj70JDFAiCIHIx6lFoly5dYm3btmWTJk1ijLFURzurR0G/ePGCtWjRgt2/f59xzlmxYsXYmTNn2IwZM1jLli1F+jJlyrDvvvuODR8+nHHO2aVLl/RyTcaMQqFgKpWKnThxgoWGhho6O3ka9dLYO3fuZK9evTJ0dvI05EIuTE1NmVKpZKtWrWLBwcGGzk6ehlzIA7mQB3IhD/RcKxf0PKV7vL292YoVK1hsbCz7+uuv2datW1nhwoW10piZmTGVSsUYy3i1KFp94vMhF/JALuSBXMiBs7Mz++uvv5idnR07d+4cmzx5MouIiBD7L126xH799VfGGGNNmzZls2fPZi1atGBv3rxhDRs2ZH5+foyxpJmQCxYsyL7++mvWoEEDFhwczB4/fmyQa8qtkAt5IBfyQC7kIjIykv3222/s4sWLWZrRODg4mO3fv5/5+/szxhirV68ey5cvn97ybayQD3kgF/JALoyL27dvswULFrCTJ08yxhi7desWe/jwoYFzlTchF/JALuSCfORxDB1BTxAEQWSPs2fPokmTJjA3NwfnHEuWLEmRRj1D4osXL1ChQgVwzpEvXz7Uq1cPt2/fBpD27Epubm7gnMPc3BxPnz7V3YXkEVavXg0zMzN8+eWXePHihaGzk6eZMGECOOfo0aMHuTAw5EIu1CObv/rqK/JhYMiFPJALeSAX8kDPtXJBz1O655tvvkGrVq0QHh4O4L9VIdRt5sqVKyMuLs6QWcwzkAt5IBfyQC7k4cmTJ3BxccG0adO0tq9fvx6WlpbgnGPVqlUAAH9/f7Ro0ULMcuzr6wvgv37aoUOHiln1ExMTadWVLEIu5IFcyAO5kAcvLy8UKFAAo0ePFtvSK8Pg4GAsWbIEdnZ24JyjXbt2Yh+tnpJ9yIc8kAt5IBfGQ2hoKEqUKAHOOVq0aIFjx44hJibG0NnKk5ALeSAXckE+8jYUwE4QBJGLiY6ORqtWrcSyjpUqVcK9e/e00qgbhCEhIWjUqBE457C0tETTpk1x//59rTSaqF90nThxAvnz54etrS0FsOcA9+7dE76+/vprCi4xILdu3RLL3lEQnGEhF3Jx9epVMSiKfBgWciEP5EIeyIU80HOtXNDzlO7QfDkbFRUlfle3ozds2ADOOcqXL4+IiAi95y8vQS7kgVzIA7mQk3fv3onfExMTERcXh2bNmoFzjpYtW2ql9fb2RsuWLVMEiALApEmTwDnH999/r7e8GxvkQh7IhTyQC3kIDQ0Vv2clKLRJkyZ4+/ZthscRWYN8yAO5kAdykftRT3To6+uLzp07Y//+/YiNjTVwrvIm5EIeyIVckA9CYegZ4AmCIIjPJ1++fGzDhg2MMcbs7e3ZoUOHWK1atbTScM5ZREQEmzdvHrt//z5jjLEqVaqwX3/9ldWsWZMBSHVpYFNTU8YYY8eOHWPR0dHMzMyMlvjKJgBYrVq12NWrV5m5uTk7dOgQGzduHAsODjZ01vIcKpWK1a9fn12+fJmZmZmxw4cPkwsDQS7kQqVSsSZNmrCLFy+SDwNDLuSBXMgDuZAHeq6VC3qe0i0mJiZMpVIxxhizsrIS29XtaPWy2SqViiUkJDClUqn/TOYRyIU8kAt5IBdyYmtryxhLKneFQsEAsNjYWMYYY87OzowxJlxUqlSJbdq0ibVo0YK9efOGNWvWjL18+ZIxxtiFCxcYY/+5BaDX6zAGyIU8kAt5IBfyYG9vzxhjLDExUdTZyXn16hXbvXs3W7FiBXv//j1r1KgR27NnDytSpAgDkOZxRNYhH/JALuSBXOR+FAoFUyqVrEKFCmz//v3syy+/ZBYWFobOVp6EXMgDuZAL8kFQADtBEEQup3LlyszPz4+dP3+eubi4aO1Tv8C6efMmu3TpEouLi2MFChRgGzZsYLVq1UozeF19nL+/P/Py8mKMMVa1alVmZWUl9hFZh3POVCoVa9y4Mbtw4QIzNTVlhw8fZqNHj6bgEj2jUCiEi4sXLwoXI0eOFB3whH4gF3Kh9tGoUSMtH8OHDycfeoZcyAO5kAdyIQ/0XCsX9DylexSKlF2o6raxOtjHwsKCWVlZicHghG4gF/JALuSBXMiL2o2JiQmzsbFhnHNWqlQprX2MpQwQrV27Nhs1ahR7/Pgxs7e3Z999951B8m9MkAt5IBfyQC7kIb2g0N9//10rKNTd3Z05OTkxxliq7/eI7EM+5IFcyAO5kJ/0BpKp24FWVlbM3NxcX1nKs5ALeSAXckE+iLSgAHaCIAgjoFy5cqxq1aoptqs7GXfu3MmePHnCGGNs9+7drGHDhukGr6uP27FjB7tx4wZjjLG+ffsya2vrVF+KEZlHM/Dq0qVLjDHGjh8/zn777TcWHx9v4NzlLVJzcfLkSXbs2DGakUzPkAu5SM3HqVOn2PXr12kQk54hF/JALuSBXMgDPdfKBT1PGY6EhATGWJIDai8bFnIhD+RCHsiFHJiamjJHR0cGgJ06dYq9efMmhQ91gGjz5s3Z27dv2bZt21h8fDxr1KgRK126NGOMAoByAnIhD+RCHsiFnGQUFEroF/IhD+RCHsiFPGjGfagHMScmJhoyS3kWfbugFXDSxhD3BflIG336UHug78HcA/VYEgRBGDk3btxgx48fZ4wxNmLECNaxY0fGWOqdiQBEx+SWLVvYkiVLGGOMde7cmX355ZcijSYREREsOjpa6xxE+mgGl1y/fp21b9+e1alTh0YSGoDkLoYMGcLq1q1LM5IZAHIhF5o+bty4webPn8/q1q1LAQ8GgFzIA7mQB3IhD/RcKxf0PKVf1N85+fLlY4wltYVjYmKy3TGu2aam9nXmIBfyQC7kgVzIg7qcevXqxYoXL85evXrFbt68mWr5VapUiW3evJk1adKEJSQksPLly7NJkyYxBwcHfWfbKCEX8kAu5IFcyMmLFy/Ynj17KChUEsiHPJALeSAX8qAZFHrhwgU2evRo5uvry0xMTGjCFz2jTxeRkZGMMRpAmBb6vi/evXvH3r59yzjnFDSdCvr08f79e7Z582bm6enJTExMyEduAQRBEIRRc+DAAXDOwTnH7t2700ynUqnE7/v27YODgwM45yhevDg2btyY6jGPHj3Czz//jJ9//hmXLl1K9VxE2iQmJgIAPn78mK3zUHlnH7WLqKiobJ2HXGQfciEXah/x8fGfdbzaA/nIPuRCHsiFPJALeaDnWrnIqecpAPjw4QN+/fVX7NmzB2/fvhXbydV/bN26FZxzVK1aFXFxcdkqG6VSmaltROqQC3kgF/JALuTh7du36Ny5MzjnaNq0KTw8PNJM++TJE3Tu3BknT57UYw7zDuRCHsiFPJALeVAqlVi9erV4r9e4cWMEBQUZOlt5FvIhD+RCHsiFnFy+fBn9+/cXXp49e5aj51f3N6pUKvG7+l9CG127CAwMxLRp0zBgwADcvXtX9MmTj5To2gUAhIWFYfbs2XBxccG9e/cAUF9JWujah0qlwpEjR8A5h6mpKR4/fgyAfOQGOEDTZBAEQRgz69atYz/99BOrUqUKu3HjBitYsKDWCDfGGFOpVGJmpoMHD7Lp06ezwMBAplKp2PDhw9mGDRsYYyzFcUePHmU9e/ZkjDHm4uLChgwZwsaOHZtqWiJjslJmms4YSxrV+eHDBxYeHs6sra1Z2bJlmaWlZZbPS2Sd5C5evHjBXr16xcLDw5m9vT1zdnZmdnZ2jDFyoWvIhVxo+lAqlczHx4f5+vqyDx8+sLJly7Jy5coxR0dHxhj50DXkQh7IhTyQC91Cz7XGQWxsLDt48CAbOHAgY4yxIUOGsK5du7IuXbowxsiHJoMHD2bHjx9nr1+/ZiYmJp91jsTERHHsqFGjmJWVFVuxYgVjjMo6K5ALeSAX8kAu5CEwMJC1atWKvXjxgjVt2pTNnTuX1atXjxUoUCDFM1F0dDSzsrJijFEZ6wJyIQ/kQh7IhTz4+PiwKlWqsCpVqrD//e9/OTajsVKpZKampil8EulDPuSBXMgDuZCLwMBANnz4cHbu3DkGgFWuXJn98ssvrEOHDtk+d/J6/t27dyw+Pp45ODgIT+TrP3TpgjHGwsLC2Lp169iKFStYbGwsq1q1KmvevDmbPHkyc3Jy0mq753V07YIxxsLDw9nWrVvZjh07mJ+fHytYsCC7cuUKq1atGrlIhj58qD/n+++/Z1evXmWFChViV65cYa6uruRDdvQSJk8QBEEYjLVr14JzDjs7O/j7+6fYrznzkru7O5ydnWFmZgbOOb766iuxL60Rm9u2bcOXX34JhUIBzjlmzJiR6rmJnEPTxbVr17Bq1SqUKVMGRYoUgZmZGRQKBXr06AE3NzeRjlzoniNHjmDChAkoVKgQrKysxMjRdu3aYfXq1SIdudA95EIuNm/ejL59+8Lc3BwmJiZas3KsWLFCpCMfuodcyAO5kAdyYVjouVZu4uPjsXPnTjRq1AiccygUCpQrVw6zZ88WafL6zD6as7ds2rQJwcHB2f4bnTlzJooVKwbOOQYMGJDdLOYZyIU8kAt5IBdy4u3tDUdHR3DOUblyZUyaNAl+fn6GzlaehFzIA7mQB3IhD0FBQTk6K+XLly+xevVqPHjwAAC15bIK+ZAHciEP5EIuxo4dC845GjVqhJMnTyImJibHzu3t7Y01a9agU6dOKF++PIoVK4Y2bdpgzpw5CAwMBEAzHGuiSxcAcPr0aSxduhTly5eHhYUFOOdwcXGBp6cnAHKhiS5dhIWFYcmSJahQoQI458ifPz8457CxsaGZv9NA1/eGmoCAALRv35585CIogJ0gCMLIefz4MZydnWFnZ4cjR46IF1UJCQla6X799VcULFhQBO507txZ7MtoiWAPDw9MnTpVBLH/9NNPYh8FmOiOZcuWwcXFRQw44JzD0tJSLInDOcfPP/8s0pML3RAbG4vJkyejYMGCwoWZmRkKFiyo5WL8+PHiGHKhG8iF4VGXp1KphI+PD4YMGaJV9oUKFULRokWhUCjEtnHjxqU4nsg+5EIeyIU8kAt5oedaeYmPj0doaCiGDx8ugtg55xg+fLihsyYNOdnxvXDhQigUCtEuHzNmDP29ZwFyIQ/kQh7IhZz4+/ujTZs2yJcvn3j2WbFiBUJCQgydtTwHuZAHciEP5ML4eP36NdasWSPa1+rgUMIwkA95IBfyQC4+H81A/1WrVuHPP/9EbGzsZ59Ps4336tUruLu7o3DhwuK5QN03qP6pUqWKCJzO64MOctpFRjx79gwrVqxAnTp1wDlHkSJFyMX/o2sXyYPXbW1tcerUKXTt2pWCplNB3/cGkNSmoSD23AMFsBMEQRg54eHh6NixIzjnaN68Oe7cuSMeBlQqFS5cuIAxY8ZoNTT69Okjjk8e6K6JZgPm/fv3cHNzE42WBQsW6O6i8jhhYWEYMWKElrPWrVtj9uzZuHbtGnbt2oWJEycKF3PmzDF0lo2SxMRE3Lt3D3379tVy0aNHD2zfvh1eXl44fPgwZs6cKVzMnz/f0Nk2SsiFHKjrhLi4OBw9ehQdOnQQLooWLYoffvgB58+fR3BwMP7++28sWLBA+Fi0aJGBc29ckAt5IBfyQC7khJ5rcxcLFy5EmTJlROAi+ch5nj59Cjs7O1G+ef1lkyEhF/JALuSBXOQsISEhWLNmDRo3bgxzc3Ps378fEREROXZ+GlyQeciFPJALeSAXxkNERATmzZsn6nBLS0vMmTMH8fHxhs5anoR8yAO5kAdykX004zmyE5ypWT9fv34do0ePFjN8W1tbo2TJkpg4cSKWLFmCH374QQROlyhRAj4+Ptm6BmMhp1xkhNpVTEwM7t69i7Zt24JzjurVq+foygi5mZx2oS7z1ILXPTw8ACStVtCuXTsKmk4Ffd0bmlAQe+6BAtgJgiDyAP7+/ihdujQ456hatSq6d++OKVOmoHXr1nB2dhbBIhUqVMCECRPEcekFr6fGx48fRbCPs7MzLl68mNOXkucJCAjAt99+K5yVKVMGU6ZMSZEuMjIS69atg0KhQPHixXH+/HkD5NZ4SUhIwIULF9CpUyfholGjRvjll19SpI2KisKaNWtgYmKCcuXK4datWwbIsfFCLuRA3WiPjY3Fzp070bhxY+GjZ8+e2Lt3b4pjoqOjsWLFCpiYmMDV1VXMCkBkD3IhD+RCHsiFnNBzbe7i1atXWLhwoZhtqUqVKti2bZvOZ0rJS6g7zv38/LB48WLqSDcg5EIeyIU8kAvdoFKpEB8fj0ePHuXY0tlBQUF48eIFAHopmxXIhTyQC3kgF8bD4sWLwTmHvb095syZg6dPnxo6S3ka8iEP5EIeyIXh0QxeP3PmDLp16yZWy6xVqxZmz56tFRgdHx8PDw8PtGzZEpxzfPXVV/j48aMhsk4AuHfvHlxdXWFqaoq5c+ciMTGRBp3rgNDQUCxfvhxly5YF5xx2dnZ49OgRgP+ebSloWi78/f21BhUk90XIAQWwEwRB5BF8fX1Rs2ZNMUpW/aOePW/gwIHYt2+fSJ9ehR0VFSV+Tz5Txp07d1CmTBkoFIpUA0iJz+fZs2fo3bu3cNeyZUvs2LFD7NdsiKhUKvj6+qJKlSrgnGP9+vUGyrXxkZiYiMuXL+OLL74QLvr164fTp0+LNEqlUtwbKpUKjx8/RokSJcA5x65duwyVdaODXMhFXFwc9uzZg7p16wofP//8s9ZSj8nrllu3bqFAgQLgnOPQoUP6zrLRQi7kgVzIA7mQC3quzV08e/YMs2fPhrW1NTjncHFxwd69e3N0BkYiiawOIid0B7mQB3IhD+Qi58npGYiDgoIwcuRIlC5dGjdu3MjRcxs75EIeyIU8kAvjYtmyZRg7diyeP39u6KwQIB8yQS7kgVwYDs06/9SpU2jdujVMTU3BOUfbtm3xzz//IDIyEoB2H3piYiL27NkDc3NzlCtXDoGBgXrPO5FEXFwcBg4cCM45mjZtaujsGCVxcXFYs2YNHBwcwDmHhYUFTpw4IfZpDhjQDGLPnz+/1nsoQv8EBASIyRALFSqEhw8fAqAgdpmgAHaCIIg8RHBwMNatW4fu3bujcePGqFWrFiZOnIjDhw9rpUtvNKavry/GjBmD48ePp5mmW7du4JyjXr16iIuLo+Ugs4HaRVRUFAYMGCCCfDp37iweiDXTJadVq1bgnKN79+7ppiMyRv137OXlha5duwoXgwcPxr///ivSpVXG6mXUhg4dmm46ImPIhXyoVCqcOXMGTZs2FT5mzZqF4OBgrTSpoQ5InD17NgDykV3IhTyQC3kgF3JAz7W5k2fPnmHu3LkieL1atWpwd3en4PVsoPm3S21lw0Iu5IFcyIOuXZBf3eHn54cJEyaIVTidnZ0RGhpq6GzlSciFPJALeSAXhkMzMIdmxjU85EMeyIU8kAt5uHTpEjp37iyC17t06ZJhUPrTp09hZ2cHzjn++OMPPeWU0ER9D61duxacc1hZWcHHx8fAuTJOnj59ij59+sDV1RWcczRs2BCXLl0CkNSfotnnERAQgDZt2oBzjvHjx9OkAHomeXD6jh07xCSH1tbWIoidkANTRhAEQeQZSpYsyUaPHs1Gjx7NEhMTmUqlYmZmZinSKRSKVI8HwB49esTc3NyYm5sbO3DgAPvqq68YAMY5Z4mJiczExIRZWFgwxhiLj49nnHPGOdfpdRkrAISL6dOnsz179jDGGOvQoQMbO3Ysa9euXYp0msdyzplSqWSMMWZlZcUYY+TiM1GpVKKMly1bxk6ePMkYY2zQoEFszJgxrHr16oyxlC4AMMYYi4iIYNHR0YwxxmxsbBhj5OJzIRdyofbx5s0btmHDBnbt2jXGWNJ31ujRo5m9vb1Iq1nO6uO8vb3Z+/fvGWOMFS1alDGWdh1EpA+5kAdyIQ/kQh7ouTZ38vz5c7Zjxw62cuVKFhUVxVxdXdnUqVNZt27dmLW1taGzlyvRfJYNCwtjRYoUEe1oQr/o2oXm+VP7P/Ef+rgv1HVJap9J/Ic+XKg9REREsAIFCtB3YA4SEBDAfvnlF8YYY2XLlmXDhg2jv3MDQS7kgVzIA7nQL5rPPiYmJuL/BQsWNHDO8ibkQx7IhTyQC/kIDAxku3btYn///TdLTExkXbp0Ydu2bdPqQ0+NV69esQ8fPjDGGDM1pRBEQ6BuU4eFhTHGGIuJiWGxsbGGzJJRolKpWJkyZdj27dvZv//+y5YvX87OnDnDvvjiC3b+/HnWpEkTEY/AGGPOzs5s48aN7MyZM6xLly50f+gZdd1y4sQJdvHiRbZ+/XpR70RFRbFJkyaxY8eOMUtLSwPnlGCMMWoZEgRB5DHUD00mJibMzMxM6yEqIzjnrHXr1mzQoEGMMcZ69erFtmzZwsLDw8U53d3d2cGDBxljjNWuXTvVAHkic6gfoDZt2sR+/fVXxhhjjRo1YsOGDdMK8kkteIdzzk6fPs2uXr3KGGOsRo0aWucksoa6M33BggXs999/Z4wx1qNHDzZ06FARMM1YyvJVD+A4efIk8/b2ZowxVrFixVTTEpmDXMiF5mCCEydOMMYYGzlyJBsyZEi6nVrq4/755x8WGhrKGGPM0dFRx7k1bsiFPJALeSAX8kDPtbkPCl7PeRITE8X3y5gxY1izZs2Yt7e36Ewn9IeuXWgGAd+/f58x9l/dQq610cd9oVm/XLlyhfn5+TGFQsESExNz5PzGgj6/o/bt28f69+/PHj9+zExMTMhFDtG+fXv2008/MVNTUzZ27Fj2ww8/sCJFihg6W3kSciEP5EIeyIV+iIiIYIwxMeGUGmo/GwbyIQ+6dJH8WZnafOmjz/tCpVLl+DmNEXU5nT59mrm7uzOlUsnatWvH1q9fn24futpfYGAgs7KyYgqFQkwcRugHze+b+/fvs2PHjjHOOatUqRIrUaKEAXNmnCgUCgaA5c+fn7Vs2ZJt2rSJ9ejRgyUkJLABAwYwDw+PFN9lFSpUYCNHjmRly5Y1UK7zBsnr3uDgYHblyhXWqVMnNnz4cLZmzRqWkJDA4uPjWY0aNdiiRYvY8uXLKXhdJnQ5vTtBEASRe0i+hEp6hIWF4ccffwTnHJxztGvXDoMGDcLo0aPFNjs7O6xfv16HOc4b+Pr6ok2bNjAxMYGtrS02bNgg9qW37HJISAiGDh0Kc3Nz2Nra4u+//87wGCJ9rl69iooVK4JzjurVq+Pw4cNiX3rl+uTJE7Rr1w4KhQJVqlSBt7e3PrJr1JALuTh8+DAsLCzAOUf79u1x/fr1TB13/fp1lC9fHpxzNG/enJaGzAHIhTyQC3kgF/JAz7W5h2fPnmHu3LmwtrYG5xzVqlWDu7s7IiIiDJ01o2DKlCkoU6YMOOcwMzPD27dvc+S86nuC7o3MoysXarZu3YpKlSqhY8eOOHz4sDh/YmJijn6OMaDr+wIALl68CGdnZ9jY2ODBgwcAstYXllfQ9X0RFRWFKVOmiCWbHz9+DIBcZBfN75UbN24gJCTEgLnJ25ALeSAX8kAu9MPr168xd+5czJw5U2yjtoHh0IcP6qvKHPpwoVQqtd430b2XOvpwcePGDcydO1dn5zdW7t+/DysrK3DOUb9+fdy4cSPd9OpyDQsLQ6VKlcA5h4uLC2JjY/WR3TyH5rNUam3na9euYejQoShQoAA45+jevbs+s2eUZLbv7vbt26hevTpMTU0xbtw4xMfHU7+fntH8nn/9+jUOHjyI+vXro2TJkiJ2jXOOrl27Ys6cOYiKijJgbom0oPUJCIIgCKZSqcTSQn/++Sdr1KgRc3R0THO0c+HChdnYsWOZh4cHu337Nrt06RKLj48X+62srFiPHj3YiBEj9JJ/Y+bx48fsypUrTKVSsT59+ogyTWu5a/z/zGKXLl1ihw8fZgkJCax27drsiy++YIzRzA7Z4fHjx+zp06eMMca6d+/OevTowRhLe7ZQxpKWHzp58iS7desWA8CqVavGKlWqpK8sGy3kQg7U5f3w4UMxQ8OXX37JGjVqlOGxwcHBbN++fez169eMMcZq1apFS0NmA3IhD+RCHsiFfNBzbe6AZl7XLcePH2fLly8X/x85ciSzs7PL1jnV94r6nnj79i2LjY1lAQEBTKlUsnr16jFTU1NmbW2d5v2WF9GFC03u3bvHTp48yfz9/Zmvry/z8PBgDRs2ZIsXL2bly5dniYmJoh8mr6MrF5rtw4sXL7IJEyaw169fs9jYWNayZUt25coV5urqSi400PV9wVhSn+HgwYPZ3bt32blz51izZs3IRQ6gUCjEd3zDhg0NnZ08DbmQB3IhD+RC97x69Yrt37+fubm5sfDwcKZQKNi8efNyrN2sfq5Kr/+d+A9d+4iNjWXnzp1jU6dOZWPHjmVNmjRhVatWZYyl/44kL6JrF4wl9WtdunSJTZo0iVWvXp3t2LGD7pdU0IeLd+/esQEDBrCAgAD27t07tnbtWnKRAQCYUqlkmzZtYjExMaxYsWLs22+/ZTVr1kz3GM45i4yMZAsWLGCBgYEsX758rEuXLszMzIz6nrJAen+bSqVSvNdISEjQKvfY2FimVCrZjRs3mI+PD9u1axcLDw9nMTExrGbNmmzdunWMMe1+9+TtbWp/p82zZ89YbGwsq1SpUoZ/zzVr1mTVqlVjjx8/Zn///TdbunQpMzMz02Nu8y5qN+p7ZeXKlezatWvszJkzIo2dnR2rXbs2++abb1jfvn3FjOuaf/90b0iCXsPlCYIgCKlRz6p+8+bNTKe3sbHB9OnT4eTkBAcHB3Tu3Bnz588XI91ohOHnoVKpEBcXhy5duoBzjtq1a4tZr9KalUq9/dGjRyhRogQ456hQoQJu3bqV7nFExnz8+BF16tQB5xwtW7YU2zP6+z5x4gTs7e3FTOEvX77M1HFE2pALuQgJCRGz83Xr1k1sT29Wi48fP2L9+vWws7MD5xwNGjRATExMhscR6UMu5IFcyAO5kAN6rpUH9XPPhw8fxEwjmn/XNPO6fhgxYgQ455g+fXq2n0U1jw8NDcW2bdtQt25dODg4iNllqlWrhm+++Qa+vr4A6P7RJCddpIanpydOnjyJZs2aibaIk5MTPDw8AFBbRJOcdqH53XbhwgXUrl0bCoUCVlZWcHZ2BuccNjY2NPt3Kuj6vlDj7++P9u3bk4tsQuUlD+RCHsiFPOjaBbXRk1AqlVi3bh0UCgU453BwcMCYMWPw/v37HDm3Js+fP8fr16/x4sULrecEcvEfuvSh5uLFi6hWrRo45zA1NUXr1q2xZcsWsZ98JKEPF4mJiTh37hw6deok2uCjRo0S+8lFEvpwAST5cHNzg7m5OTjnGD16tNhHLtImKipKvHetXbs2Xr16leExsbGx2L59OypXrgzOOezs7HDv3j095NY4uX79OubNm4cvv/wSHTt2RLdu3dCmTRs0bNgQTZo0Qb169VC1alVUqVIFTk5OsLOzE+8vNH/q1KmDq1evAtD+m9esz6dOnUqr0qWDv78/hgwZgj59+ohtaX1/qMtv9+7d4nsnsysAE59H8n6qwMBAzJw5E82aNdO6F8qVK4dWrVrh+vXrIiZEDd0bckIB7ARBEAQA4NOnT6hbty445+jfvz/CwsLSTBsfHw8A2L59OzjnOHXqFD5+/IiXL19qVeb0MjZ7xMbGigZj586d013ORl3uQUFBKF26NDjnsLe3x5w5c/Dhwwd9Zdloef/+vVgCbciQIUhISMjwwfXSpUsi4KpMmTLYsWMHlEoldZJkE3IhF8HBwWIJrgULFgBIv1EXFRWF33//XQTwVK5cGRcvXszwOCJjyIU8kAt5IBfyQM+18vDvv//iyy+/xO7du/Hp0yex/enTpxS8rmM0v0dOnDiR7e8VzePd3d3Ru3dvrY76QoUKQaFQwNTUVAROe3p6AqC2ek67SE7ydkZISAjc3d3RpEkTcM5RrFgxPHnyJNW0eQ1duEgreN3a2hqjRo2Ch4eHCDChwOn/0PV9kRoUxP55+Pr64tixY+L/VF6GQ9cu1N9neb2uyAy6dJFa+ZOTtNH1fREXFyeeowByocbHxwecc1hYWGDOnDl4/vx5jp07KioKv/32GwYNGoSyZcuiRIkScHBwwKBBg/Dbb7+JdOTiP3TpAwDCwsKwY8cODB8+HDY2NiIoePLkySIN+UhCly5SC15Xt78pcDolur4v1CiVSmzbtk3cF+QiYy5dugQzMzOYm5vD3d0dQPrPP/Hx8Thy5AgaNWok/vYPHTqk1zwbE0+fPkW7du3E90dWfiwsLMA5R/PmzTFkyJBUB4VoPotNnDhR9Bk+fPgwxX4iqR/J0tISnHMcPnw4U8esXbtWODl37lya6TLqj6XvqLRJ/nf6zz//YPHixShcuLC4d0xNTWFjY4Nhw4bh4sWLWu8+gJTlS/eGXFAAO0EQBAEgqcLeuHEjChcuDCcnJxw7dizDh6jly5eDc441a9akej4ie4SHh6N69eowMTHBypUrAaT/YOvv7y9mGS1UqBB69eoFf39/fWXXqAkKCkKpUqVgamoqOmXT+xs/d+6cCJhzcHDApEmTEBISoq/sGjXkQi4ePnwIa2trmJmZ4eDBg+mmff/+PXbs2IFixYqJIKr169dTYFwOQS7kgVzIA7mQB3quNTzqmfAbNGgAzjlq1qyJvXv3Ii4uDq9fv8acOXMoeF0P5FTHt+Z5Zs2aJQZ4cs7RsGFDDB48GJcvX8aFCxfg5uYmZqFxdnZGQEBAjuQht6OvlxDqtkpCQgI8PDzQpk0bcM7RrFmzTM1qlhfQlYvkwesjR45EbGwsgKTgCQqcTokhrp+C2LNGUFCQeLH6448/5vj5NQOm8/pgp4zQtYuPHz/i6NGjuHbtmtb9QH3uKdGlC81VZnfs2IFly5al2Ef8hz6+o/766y+Ym5tj0KBBWtuJpMEDCxYswNOnT3PkfHFxcbh//z4aNmyIAgUKpAiaUweHTpo0SRxDLv4jp32oSV4/nzp1CqNGjRI+xo8fL/aRjyR04SK14PW1a9di+/btFDidDrq6L4xbcagAAP56SURBVJJDQexZ48qVKzA1NUW+fPlw9uxZACnLSf3/2NhYHD9+HC1atBB/+wsXLqS2Qzb56aefwDmHiYkJbGxsMHjwYAwdOhTfffcdfvrpJ8yYMQPjx4/HjBkz8Msvv2DlypVYs2YNzpw5g+vXr4u+DkC7ntBsR0yYMAGccxGcTe3v1PH19UXnzp1hZmaGgQMHIjg4OM20SqUS8fHxGDlyJCwsLGBhYYE7d+6kSJf8fjp79iy2bduGRYsWYeHChbh9+zbevHkDgCYdSY/ExERcuHAB48aNQ8GCBcXfcr58+WBra4slS5aI7zA1Gc2eD9C9IQsUwE4QBEEIQkND0b17d3DO0ahRI7GstRrNByZvb280b94cnHPMmDFD31nNM3To0AGcc/Tp00drpsrkyzPeunULjo6O4JzD2toabdu2FQ9WRPZRKpWiMT5kyBDExMSIfZouwsPDceDAARQvXhyccxQtWhSDBw9GYGCgIbJtlJALuYiJiRGzLEyYMCHNThJ/f3+sWrUKRYsWBeccjo6OWLhwoWiQE9mHXMgDuZAHciEX9FwrB15eXuJvvWbNmli7di2mTZsmAhIoeF1+NDvOx4wZoxVMMmbMGDx8+FDrvkpMTISnpycaNmwIzjl+/vlnWo3IgJw/fx4lS5ZEkSJFsG/fPgD0ckoXnDlzBvXq1YNCoUCBAgUwfvx4Ufeoyzt54LS6D4xeTukff39/fPHFF8IFzXaVOk+fPsWIESPECjUmJia4fPlyjpw7M99DVG/8hy5dAEl9Whs3boSdnR045xgxYoTWjNbk4j906UIzeP3PP/9E48aNRX9k8jSE7u8LNQcOHBDPvhSQmJKEhIQcOc+rV6+wadMmMbDczMwMlpaWGDt2LJYuXYpVq1Zh4MCBIjiU3hGmTk75SI3k70I2bNggfKxatUpnn5tbyQkXmvVC8uD1devWAaDA6cygy/tCE3KReR4/fgwrKytwzkU/hSbq75uoqCjs2bNHrC7HOcfEiRPx4sULfWfZaND8Lh87dqwo1+3bt3/W+TT/tlML0DU1NUX9+vVRt25dCtRNB3d3d+TPnx+cc6xYsULrvZK6nNTuHj58CAcHB3DOUaNGjRTlqE4XFhaGo0ePolOnTmLmfPWPo6MjWrduLVYZIhfaxMbG4tSpU/jiiy9Qrlw5rbKrX78+5syZAy8vL61j0itDujfkhALYCYIgCC2ePn0KV1dXcM7RsmVL3Lx5E5GRkVppgoKCsHDhQtjY2IBzjuXLlxsot8aLuoGxatUqmJmZoUaNGrh3716KByR/f39s3bpVBOna2NigY8eOuH//vgFybZyoVCqoVCrMnTsXnHPUqVMHDx8+TOHizp07mDVrlggIKl68OEb8H3tnHRbV8sbxM7uUhCAiCiqKXWBjd+e189peW+xuvXZid2N3d7fiFRAWkEYRQVEaYdnv7w9+Zzxngw6F+TwPj7JnzmF23jP9nfcdOxZeXl65lPO8B7PF70dCQgKd3NnZ2cHZ2VllAfLOnTsYMmQIChUqBEIIrK2tsXr1auZxMothtvh9YLb4fWC2+D1g49rfD5lMBjMzMxBCULx4cepdxNbWFkePHmXi9d8Y4cbWuHHjRAv2q1at0phWLpdj7ty5tD3MqQ1jhioxMTGoUaMGPdDDyHp+/PiBDh060A3BsmXL4vXr1wCSPYkKN3SFInZCCFxcXHIr2/mewMBAdOnSRUXEzg54/OLLly8oX748jajh4OCQJRHm+Dohl8vh6uqK7du3Y+rUqRg6dCgOHDiA58+fq6TN72SXLXiio6MxZ84c2NjYUC/HFhYWWLZsGU3DbJFMdteLpKQknDhxgjryYcJpzWR3veCRy+XMw3E24+vri0WLFlExVrFixTBw4ECVAwk/fvzA1q1bIZFIYGJigitXruRSjhkAEBsbi/nz50MikaBu3brw8PDI7SzlSeRyOe7cuUOdNBBCsGPHDpX5t1A4PXHiRHqNtVM5i7Itxo8fT68xWySjUCjw7ds3dOjQARKJBNOmTVPreOTbt2+YN28eHZ/yER9YW5N5hGvkkydPFrUtP3/+pNeSkpJE721K77AmgW7Tpk1x9epVfPr0ibZjTKj7C2GZrly5ktpi06ZNaveLPD096eHNIkWKYMOGDQB+lSP/r4+PDwYNGoRy5crRg4FaWlqoXbs2LCwsYG5uDkIILC0t4ebmBoCthSizcOFC0Xysc+fOWLZsGX7+/EnLKi3tOqsbvy9MwM5gMBgMFTw9PUUnBWfNmoV3797B398fV69exdChQ6kHmOrVqyMsLCy3s5xnCQoKopPBpk2b4ujRo/D29oaXlxcOHTqEdu3aUcGVpaUlBg0apOI5n5E1BAQEoHLlyiAkOdz7zp078f79ezx8+BAbN25ElSpVqPfDMmXKYMGCBdkeBi+/wmzxe+Hv74+KFSuCEIKGDRti7dq1ePXqFRwdHTFv3jwYGxtTYVzVqlWxb9++TPUbbGFRMzlpC7Z4kjLMFr8PrI36ffgdxrXMPr+QyWQoXLgw9Y5YsmRJ7N27V7Qxwvi9EL6/s2bNQoECBUAIga6uLvX2ppwO+LXAfu7cOUilUpiamrKxcS6RkJAAAOjUqRM9TMDIHoKCgrBo0SLY2dnRA2oPHjwAoLrp6+PjQz3I8WkYOQM/jo2NjYW/vz+GDRtGDx5oa2szMYQaXFxcULlyZaxatSrL1mMTExMREBCAbt26oUKFCqJNYUIISpcujSVLltD0bDyVTHbYQgjv5W/btm1o164dFV5NmjSJpmG2SCarbaEsXucjQRJCMGzYMCacToHsrhc8zKtu9uHv748ZM2ZQxzClS5fGpk2bRPMH4TrUx48faaQnYV/ByB3u3LlDx1Lnzp3L7ezkSdzc3ET9Qv/+/ek1fr4H/GqnpFIpCCEYMWJEbmSXgWS7HD58mPYZY8aModdYn/GLbdu20fd63bp1VLTp6+uLJ0+ewM7Ojq7bEkKwcOFCtraUhQjFsVOmTKHlvHPnznQ7oRD201OnTqUC3SZNmuDSpUv0mpeXlygqHRPqJiMsv5kzZ1Jb9OnTB1u3bsW7d+9w+fJlrFy5EpaWliCEwMjICF27doW3tze9ly9Hd3d32NjY0P5ZV1cXM2fOxIULFxAfH4+goCBcvXoVLVu2pA5mAgMDc/x7/wnMmjUL9evXx/Hjx/H9+3f6eVr3SFnd+L1hAnYGg8FgqMXLywvVq1engzIDAwOULl0aUqkU2traIISgUqVKOHHihMrmHyNr8fT0pKEaDQwMULhwYZQsWVK0mVSlShVs2LABAQEBuZ3dPI2npydKly5NhT7GxsYoWLCgyBa1a9fG+fPn8fXr19zObp4mN2zBvJFqxtPTE2XKlBH1Gcqb3s2bN8e7d+9EodYyw7dv37LkOXmNnLCFsM8/e/YsXr16pfF6fobZ4vchN9ooZ2dnUfhUZotkcmNc6+bmhhMnTtDfmS1+4e7uTg8mW1tbY9++faINV8bvya5du2g9IoRg27Zt9FpKC/aLFi0CIQQ6Ojrw8/PLgZwyhAht07BhQxBCUKpUKURHR7PDaFkMX57x8fFwcnJCt27dQAhBgQIF8OzZMwCqfYG3tzeN+MH6iexFWL4/f/6Ep6cnBg8ejFq1aoEQQoUl1tbW2LlzJ7OHGsLDw7NsnePTp0/YtWsXdRLAl3+1atVgZ2eHEiVK0M+mTJmSJX8zL5GVtlBG+O57eHhg9erV1Bbz5s3Llr/5J5NVtkhJvL53714AYMLpVMjOeiGEidizni9fvmDZsmXUC2jZsmVx6tQpREREpHjfsGHDQAhBo0aNEBcXx8a2uQD/zkdFRdEI23PmzMnlXOVdtm3bhs6dO0NfXx+6uroYO3YsvSYUmvLtFO+ogRfAMbIf5XZIJpOhS5cu9EDBqFGjcilnvx/KzhL4cY+lpSWaNWuGYsWKUeG6RCKBlpYWDh8+jMjIyEz9XWUbsb47a0XsAPDPP//QPfT69euLDuzz5S2MSicU6uZ3ewhtMX/+fEilUjrm5J2A8o5FTE1N0aFDBxpFTqFQ0PtdXV1pekKSI8Y/ePBA7fv/+vVrVKlSBQUKFMCOHTvo5wxx3/rlyxfRtYyUEasbvydMwM5gMBgMjQQGBmLixIk0vLXwp1atWrh69WqmJyiMtOHj44Nu3bqhbNmydEDFn8Ls27cvfH19MyW44gdbbNCVOr6+vujfvz8qVapEBSCEELRp0waTJ09GdHR0pp6fFhswOyWT3bYQ8vTpU3Tr1g179uwReRVgtviFn58fhg8fTr3r6uvrQ09PDwMGDMDatWuztKyuXLmCmjVrYtu2bfjw4QP9nNkjmZyyhYODAw15N3nyZFy9epVeY7ZIhtni9yEn26i1a9eCEILevXuLPF4xWyST3eNaIZ6enrC3t6feEnmYLX7h7u5OPbHXrFkTR48eZYf2fkP4d9bNzU0Uqnz9+vU0jSahiEKhQHh4OLp37w4tLS3Ur19fFA6akb0oFApRm8P3EYSIQ8kzso+AgAB06dIFhBDUqFFDNH9QRtlejKxD2VPV+fPnMXr0aHqQiv+pVKkSJk2aBA8PD9ZWZTNeXl6YPHkySpQoQTfeO3bsiDNnztCxwPv37+Hg4EA36zdt2pTLuc5fCNuj+Ph4bN26FRKJBCYmJsyzbjaSlJSEkydPokmTJrRt2rVrF73+8+dPjcJpJtzNWZiIPWvg31tHR0fqSbRMmTK4dOlSinPzhIQEJCYmok2bNiCEoEOHDjmVZYYG/vvvPyqoYwfPshc/Pz84ODjA0NAQhBAMGjSIXhOOe+VyOS5duoRLly4hLi4uN7Kar1Bu+589ewYHBwcUKVIExsbGonXIx48f51Iufz+E7+zy5ctFjmD4nzJlymDAgAF4/vy56F4/Pz+4uLikq98VRuJ68OCB6N783n9nlYg9ICAANjY2dM23Ro0acHd3B5AsBhaWs1Coq6+vz5wl/h+hLQ4dOoQePXqo1ItKlSph3rx5kMlkAJLfX95Obm5uMDMzo2L3Ro0awc3NjaYT/gsAcXFxNGJj9+7dc+pr/jFk1aEXVjd+X5iAncFgMBgpEhMTg8DAQKxbtw4LFizAnDlzsG3btiwVhjLSxo8fP+Dp6Yldu3bB0dER586dy/IQQhEREfDx8cGxY8dw6NAhPHjwgIl11RAVFYWgoCCcPHkSt27dwoMHDxAbG0uvZySEkHLZ+vv7w8nJCevXr8eGDRtw9epVOoBWlz6/kh22UObjx48YP348nZAOHDgQp06doteZLX4RGxuLr1+/4vbt23BycsK7d+9E17PCHj4+PqKFgt69e+PYsWP0OrNHMtlti6ioKMydOxd2dnYgJDnMWsmSJbF8+XKahtkiGWaL34ecaKMAYNKkSTA2NoaOjg7Mzc2xatUqeo3ZIpmcGNd6eHjA3t6eLhQzQYNmZDIZDRFva2uL06dP4+fPn7mdLYYaVq9eTd/nGTNm0M9TEq8DwMWLF6mwh4mmM0ZmDhonJiYiMTERixcvhqWlJSQSCfT09HDo0KGszma+QPi+p2UDV6FQ4Nq1a7CwsICJiQm2b9+u8hxG9qBcJ5KSknDgwAEMHz4chBAa4bFQoUKwtLTE9u3b4eTklOIzGFmDu7s7hgwZQvv/4sWLw8HBgR7w4OuHQqFATEwM5s6dCy0tLbRv3x4/fvzIzaznawICAtC0aVNIJBJMnz49t7OTJ1EoFNi/fz/q169Px1wHDx4EkNzn8HUjJeE0I2dJTEzE7t27qS2EnpBZH5I6/Dvt6+sLa2trGiXo+PHjojV2TfdFR0dTj9+9evVSEf4wsh++vMPDw7Fo0SIYGRmpHHZmZB3C9zshIQGOjo5UxJ5ShBTmRCz7UC7bqKgouLq6Yvz48SpCbDMzM0yePBmXLl3KzSz/lgjXxd+8eYPDhw9j4sSJmDdvHjZu3IhPnz7ReQB/8DssLAz//PMPChUqhCNHjqTr/Y6KisLSpUtRuHBhtGzZEkeOHKGelfP7XF2TiH3z5s3p2r/4+vUr9uzZg6ZNm9IDy7ynaeXD+97e3mjZsiXq1q3L1oQFCN/FHz9+4MWLF9i/fz82b96Mw4cP4+vXr/RwktDz+ocPH1C+fHkqfG7bti08PT1VnsnDr23x9m7ZsmV2f7V8DasbvydMwM5gMBiMDMMm2r8PGZnMKdvv+PHj6Ny5M9284k+iN2jQAGvWrNF4H0NMRspHaL/v379j+/btqFKlisgTmUQiga2tLVasWJGpv5WfyKryiY2NxdmzZ6k3GYlEAnNzc8yaNYumye8LKjlJTEwMLl68SE+i897HhJu3rG7kDHFxcYiNjcXGjRvRqlUrulk4efJkmobZImdgtvj9uH37NoYMGUJtwdqotJMVfSovXuc9aVSoUIF55UsFmUxGx54bNmzI7eww1ODm5kbDNnfs2JF6fUlNvP727VvRAYX//vsvxfsYqgg3CIODgxEcHIzPnz/Dz88PMpkM3t7ecHNzw/Pnz/Hq1Su8evUKly9fhqOjI3bt2oUePXqgQYMGdOyq3Eerg/d2mVWHq/Iip06dooe8U3uf4+PjUbt2bRBC0Lx585zIXr5G2R4fPnzAmTNn0LhxYyrwEa457d+/H15eXik+A2D1Iqvw9vbGiBEjaL9fqlQp3Lx5U+TxXnmMdPr0aWq3t2/f5nSWGQLGjh1LBVihoaG5nZ08R2JiIvbu3Qtzc3NIpVIYGhpi8+bNous8crkc+/bto55cN27cmAs5zr8o9xNr1qyh46xRo0blUq7+TGJjY9GhQwcQQlCkSBEsX74c4eHhGtML+4hp06ZRcRYThOYeAQEBcHBwQMWKFakdfXx8cjtbfzRp9XQcGRmJOXPmQEtLC9WqVVM5jMnIOSIjI/Hff/+he/fuqFq1qmj+bWdnh1GjRsHHx0fUf7B1ETGplYe6ddRhw4aBEAIjIyMcP348zWutjx49QteuXekco2jRoujatSudF+b3OZ/w+/N9balSpeDh4ZGm+3lbJiYmwsPDAz179gQhBMbGxnj16pXae0JCQmjbl9/LX0hqB5CUr4eEhOCvv/6iax7NmjWj73VKdSw+Pp4eom3cuDFrn7IJVjd+X5iAncFgMBiMfIhw0Pvq1StMnjxZdArdxMQEhQsXho6ODl2EF4YcZGKftJNaWQltcf78eQwYMEBki2LFiqFUqVIwMTFhtsgkmSmrpKQkREREYNKkSTAxMVHr1YeRPjJiD+E9sbGxmDZtGooVK0btMXr06KzMYr4hK9oRd3d3rFixgtpizpw5WZCz/Aezxe9DRm0h7Nd9fX3x77//UltMmzYtq7LHSAFevM6Lsho0aIDo6GgcP36cidhTwcvLC4sWLWJl8pty7949mJiYgBCCZcuWpbihztvQ09MT7dq1g1QqhY6ODsaOHcuiqWWCBQsWoF69eihRogQsLS1hYWGBQoUKoVChQjA2Noauri709PRgYGBA53NaWlqiQ8lFixYVec9Xt/Hh7OyMunXr4s2bNxrT5Hd27doFMzMzjBs3LtW0vIekgQMHQktLC2XLlhUJddMKaxvTj4eHB/bv349y5crRgzT8usagQYOwdetWUVuWUhmzepE1fPnyBbNnz4a5uTkIIShdujSeP3+uMT1vk3fv3tG27datWzmVXYaAhIQEAMD8+fMhkUhgZmaGz58/53Ku8i6PHz/GggULUKBAARBC0L9/f3pN2P7I5XJs27YNTZs2xePHj3Mjq/mejx8/4saNG2jYsKHIGczcuXNzO2u/PXwb//LlS+p9vXXr1iqHyjRx6dIl1KxZE4QQlCtXDs7OztmZ3XwBf1gPSF77/vnzJ+Li4vD9+3eEh4cjNDQUAQEB8PHxgZOTE44dO4aNGzeiRo0aKFasGPUiunv3bgDiNSp14yw2vlXPz58/8d9//6UYhUDI7du3aWShnTt3ZnPuGIDqXOD48ePo378/ChYsKNpfrVu3LubNm4fg4GDqJZnVi7STkoBWWE5Dhgyhh5nSI2L38/PDgwcP0KFDBxQvXhyEEJQsWRLv379P9e/nB4Tv+bJly7BhwwZ8//49Q8/y9vZGu3btQAhBq1at8OnTJ41p83u5Z5SkpCQoFAps376dvs9ly5aljhdSE8DfuHEDpUqVgkQioeNY1h5lP6xu/D4wATuDwWAwGHkIfjMD0LyZJxxcHT9+nHrX4L1T9u3bFy9evICXlxdu376NpUuXUrHP8uXLs/07/Onwkwnh4lZabLFu3TrqEY4QgkaNGsHe3h6+vr74/Pkznj17hpUrV1JbrFq1Knu/SB4gPbZIDaGtZs2aBVNTU+jo6IAQgkWLFmUqn/kF3h6RkZH0s4zaQ3jf1KlToa+vT4UQmzZtylxG8wFZaQvhAkpcXBy2bdsGiUQCAwMDnDp1KnMZzQcwW/w+ZJctoqOjqS0IIdiyZUvmMpqPSMu4VhlPT0+R5/X69evTDeC4uDjs3buXidgZfywLFy4EIQQlSpRIUbDGv8/e3t7o378/9dpuY2NDF+HZO59+rl+/LhKiCzfF+c90dHQgkUigp6cHfX196OnpoXDhwihdujSqVauGFStW4MqVK/SZ6to2Nzc31KhRg4pPXFxcNKbNr/BiQb4+PHz4ME338R6wDAwMEBISkua/xwsdeNiGlRi+PeHLJSYmBl+/fsX06dNp5AHhAf1Bgwbh/Pnzomek9n6zepF5+LI6efIkrKysQAiBlZUVnjx5kqb7du3aBW1tbRgZGdFDBIycg69noaGhqFWrFgghKF++vGjuwsgahG18VFQUHB0dYWRkpOLEQjiWSkpKQlhYGOsfcgC+TUpMTERsbCw2bNiAVq1a0TVavp9v164d9u3bl8u5/XNYvHgxLb9r166l6R43Nzf06dOH3ieMVMBIP58+fcKhQ4fQqFEjtGnTBk2aNEHVqlVRs2ZN1K5dG2XKlEHp0qVRvnx5WFhYwNTUlM7zhD+mpqbYtGmTylhX2GYdOnQICxcuVHuNkdy+HDt2DCVLlsTVq1dTTMuXXWJiIuzs7EAIweDBgyGXy1m55gCJiYnYsmUL+vfvLzo8XrRoUVSpUgWOjo4pHshh9SLzCA8jDxo0KM0idmWP1aGhoThz5gyaNGkCQggsLCyop/H8bgvhnFe4NsGPO6OiokRr6JpITEzEnj17oKWlBQsLC9y5cwcAK9+sRi6Xo2nTpiCEoECBAnj58iUAzetIws+HDh1K+3N2aDzjsLrx58IE7AwGg8Fg5BFiY2Nx5MgRrFu3jn6mPLgS/r5r1y7Uq1ePDoZ79uyJM2fOqHjyi42Nxdq1ayGRSGBjYwOZTJa9X+QPhi/f8PBwLF68WCT4V7aFcFKycOFC6uWE9yL94sULFVvExcVRr7p2dnYICAjIxm/zZ5MeW6T1WQDw4sUL1K9fn3pgqly5MsLCwrIm03kYvgw/f/6MwYMHixYDM/osINm7SdGiRWndadu2bYY9EOQXstIW6vj06RNatWolEoeyib56mC1+H7LaFsrlHBYWhrFjx0IikaBFixYIDg7O1PPzA2kZ1yrj6uqKCRMmUA/VDRs2pNeEIR6FInZ7e/vs+QIMRjawdOlSEEJQqVIljeMdoef1v//+G2ZmZnQD98OHDwCY+DYzTJgwgYrV7ezscOjQIZw6dQpHjx7F+fPncefOHVy/fh337t3Dmzdv4OTkBDc3N0RERKh4vldnBzc3N9jY2NCoaPy/rq6uAJhYV8jr169Rv359SCQSTJo0Cd++fUsx/bNnz1CyZElIpVK0aNFCpSyFfUxoaCjevXuHCRMmoGfPnmjdujX69OmDAwcOIDAwEACzhSbc3NwwcuRIKrDlf2rUqIFevXpBJpPhx48f6X4mqxeZg3+/f/z4QcvSwsICFy5cSPE+YTvVsWNHEEKY1+8sRKFQiNoeodgtMTGRvtu8HUJCQvDvv//SNZAWLVqk2TMsI+MkJiZi586dKFCgAAwNDbF///7czlK+Q3keGBoaitmzZ6N169aig4WlS5dGw4YNcefOHTbnTiN8+9KzZ0/ariQmJqY69w4ICMCYMWNEexn8s9hcI/0kJSVhx44doshNmn6EB2klEgmkUil0dXVRs2ZNdO7cGS9fvqTRh3iE9jxz5gwqVqwIQghGjRqlNk1+JzIyEj169AAhBL1798bXr19TvScgIID2z3369NGYLi31g9lCFeVyc3Nzw549e1C7dm3q1IgQAkNDQ7Ro0QJnz56Fv79/is9g9SLrUCdi19bWxosXL9J0v/BAtJubG1q2bEkjgnz58iVb8vynI3RcMXXqVFpOqb2z4eHhsLCwACEEw4YNS9M9jPTBO1vQ0dGhztbSIl5fsmQJbcvGjBmTI3nNy7C68WfCBOwMBoPBYOQBYmJicO7cObpJOG3aNJU0woHW3r17qfcqQggmTpwIb29vFc9ZPC9fvoShoSEIITh37lz2fpk/nG/fvmHTpk0oX748CCGYPn26ShqhLZYsWQJLS0tqiyVLlohCRSoPkO/fv08XKm/fvp19XyQPkBZbpIcnT57Azs6OiterVKmC8PBwAFA5bMBQ5dOnT5gyZQoNZ5oRewjrw/Xr12nYc168HhERAYDZIzWywhYpMXPmTBBCUKhQIQQFBWXps/MazBa/D1lhC+EmuXL/ffr0aeZBI42kZVyrTFJSEs6ePUs3DCUSCVavXk2vC/sFXsTOe+mbOHFitnwPBiOruXDhAqRSKSwsLETeb/m5G9/uvHv3Dl26dIGpqSkVr79+/RoAE3pmFGG52dvb0/b88OHDaX5GahsfQpGupaUlFixYgBYtWjCxbgrs3r2b2sLBwUE0jxYKd758+YK5c+fSeXRKffyDBw/Qv39/lChRQkUwZGRkhBo1asDNzQ0AE2gJ8fLywsCBA2FgYEDLWUdHB2XLlsXs2bMhk8mot7j0bAKyepF1KBQKjBs3DoQQGBsbY+nSpSke/hbaadWqVSCEQFdXF3PmzFG5zshePn36hKdPn6Jbt24oVaoU9Wz59OlTlbQpibMYYn78+JEmUSKQLIDgncAMHz48m3PG4FF+nx8/fozly5eLnMDwY93+/fvj6dOnKjZVKBSsXqQAXz5839q3b1+N6Xh8fX1F4+HOnTvTuQYj43h6etI1Ch0dHfTv3x+TJk3C3LlzsWrVKixZsgTLly/H7t27sWvXLmzbtg2nTp3CzZs38ejRI0RFRdHxr9Bewv+fPn0aFSpUgLa2NrUfi0ynSkJCArZt24YiRYrAysoK586d0zju58egb968QfHixWk/kVq78/TpU5w6dQrjxo3DhAkTcOTIETx79kxjekYyTk5O2Lp1KywtLWkEAr7ejBkzBo6Ojml6DqsXWY9w3XXAgAFo3bp1hp919epVFC5cGBYWFjQKApt7qxIVFYWuXbuCEIKlS5emmv7nz5+Ijo6m++W9e/fOgVzmP6ZPnw5CCIoXL57iIQ7hO719+3aR07zUDpozUobVjT8XJmBnMBgMBiMPcPHiRZQpU4aGSevcubNG79znzp1Dw4YN6WR85syZiIqKSvVv2NraghBCPVmzCaMqSUlJ2LJlC4oUKUIXT8aNG6dxQ2TLli0oV64ctcWaNWs0PptfKImPj6f3HDx4UHSN8Yv02iI1njx5gnr16jHxegaRy+WYOXMmdHV16cb36tWrRSKT1EhJvN6uXTvqyY+JF1ImK2yhCX6jZN68edDR0UHhwoXx6dOnTD83r8Js8fuQFbY4duwYCCE4ceKE6HOh5+8KFSqAEEK9irP+Wz3pGdcqc+7cOUyYMAF6enoghODvv/+m15RF7LyHs3nz5olCsDIYvyvv3r1D5cqVQQjBypUr1XpdvXv3LsqUKUPrQNGiRfH8+XMArM3JLMIx5pQpU+g4dOfOnSpeDtPL+/fvRSLdTZs2ISwsDIGBgWjXrh0T6yohfJf5yASEEKxatYqGGedxdXXF4sWLqai6WbNmCAkJAaBajocPH4aenh71flmsWDHUqlULEydORKtWrVClShVqIxbOXBW+XpiYmKBkyZLYt2+fiqAtPeXF6kXWEhUVhebNm4MQAltbW7x7905jWqGdLl++DDs7O1reV65cyYns5km+fPmCx48f48KFCzh27BhOnDiBAwcOYPPmzdi4cSNWrFiBuXPnYsaMGfjnn3/QtWtXtG3bFqVKlaLiLN676IEDBwBoFinyoeqVP2ck8/XrV+zatYvO3dJSRrwYRUtLCz4+PtmdRYaAmzdvYu7cudDT04O+vj49xKGrq4vFixfj2rVrovSsXqSfwYMHgxCCJk2aICYmRnRN2L++ffsWo0aNou1RixYtcPXqVVaeWYS7uzsKFy4MQghatWoFLy+vdD8jNfE6IQSmpqb466+/6PiYiXVVCQ0NRefOnUEIQf369eHi4kKvCaOl8LRv35720Tdu3BA9i99HlcvlePnyJaZMmQIdHR06Z+edMJQuXRpLlixR+TuMZIch/fv3R82aNUUHmCwtLWFvb69S5inNC1i9yD7U7ZNmZI4WERFBhaQjRozIiqzlSaKiojBjxgwQkhyF9L///tOYVhiRi3fe065dO9E1RuaRy+V0zt2rVy+N6YT6mn379qFEiRK07RH2A4yMwerGnwsTsDMYDAaDkQfw9fWlk/Zhw4apnOrkB1kymYyGv+M9jyUkJKT4bIVCgdevX6NgwYIghGDHjh3Z9j3yAt7e3rR858+fr3FT486dO2jcuLFos50npUHx5cuX6T1nzpzJ8vznJdJqi9RQFq9XrVqVidczgJeXl0jow3tLTwtMvJ61ZMYWmhCWPd/P6OrqwtfXN9PPzsswW/w+ZMYWiYmJmDBhAr2fF0IIFyOPHDlCr2/bti3L85+XSG1cqw5hWYeFhWH//v0wMjJS8ZIoTCeXy+Hq6pqi91EG43eD94LLj28vX76M4OBgHDhwAPb29qKQ8uXKlYNMJsvtLOcpUhKxZ3Re4ObmhqpVq1IPTRs3bqQCawD48OEDE+uqQdie8xtThBDUqVMH9vb2WL58Oezt7WFnZ0frRc2aNXHkyBGVNZCIiAhR3dLX10fjxo3x33//UVtERkbizZs3aNWqFRVssXDmyQhtsX79euzYsQN+fn4a06QFVi+ynps3b9J3fPv27RrTCefez58/R+/evel9ixYtyoGc5k2CgoIwevRoGi0oIz9mZmYoU6YMbt68qdKOCe3m6OgIQgj++ecftdcZwJUrVyCVSmFmZpbqQVm+f1+7di11kPH+/XuN6fmyZmWePpTLKyQkBK9evUK3bt1gZWUlqgtVq1bF0qVL8erVK9E9KXk8ZvVCPXwZHDx4EEZGRihfvrzo8JlyGfLeLAkhaN26NU6fPs3e+SzG3d0dZmZmIISgZcuWosOZ6SnjlES6ixYtgkKhwOHDh5lYNwX8/PzoAdbmzZvjxYsXKgc8FAoF+vfvD0IItLW10bJlS9HBA35sGh8fj1WrVqFRo0Yq7VmdOnVQpkwZaoupU6fm6Pf8E/D39xeVW/369TFixAj4+vqm6zA5qxfZj7AvzogTPH6My0e+6dy5c5blLS9y584d+h7PmzdPrbNCoXO85cuXQyKRQCqVYtmyZaLrjMwjl8tpVBtNAnZhvdi5cydKlSoFqVQKQghGjx6tNh0j/bC68WfCBOwMBoPBYOQR3N3dMXr0aDx58oR+pjy4WrRoEZ3kjxkzhoo+NSFcxOTvO336dNZnPo8hk8mwZMkSFS8ZQnuMHTtWJD7h0TQp4e9dtWoVXUB59OhRNuQ+b6HJFmmFeV7PWmQyGfbs2ZNq2yNEWbwu3PBl4vWMkxZbKC84Cjel+GvK/cyaNWsgkUggkUjQpUsXxMXFsYl+KjBb/D6os0VaFwvDwsIwfvx42j6tWLGCej0+d+4cunfvTq+dPXs2W/Kfl1A3rk3Pwq1cLsfBgweph74NGzZkRzYZjBxD+P7PmjVLtHlbokQJEELohke5cuXQr18/fPz4MUv/LiOZrBSxy2Qyaj8jIyPMnz+fPl/YZ3t7e1OxrpGRkcgDYH5GaItly5bBzMyMzpV5j4b8740aNcKBAwdURCfh4eFYsGABtWOlSpUwbdo0tZtbSUlJuHbtGszMzFCsWDE2HxcgfPc1jU3TCqsX2cOVK1egra0NExMTPHv2TDSP4BGW79u3bzFkyBBaN4YMGULtwPqG9BMaGko9SfLj0xIlSqBkyZIoWLAgLC0tUblyZZQuXRplypSBnZ0d6tWrh/r16+Off/7B3Llz8fDhQ7VRtYR2O3bsGExMTKjdxo0bpzZdfufevXuwsrKCvr4+1q9fn2I0JoVCAblcjqFDh4IQAmNjY3h7e6tNJyQiIgKfPn2Ct7c3fHx8RPWG2UIz4eHhuHr1Kpo1a4ZSpUqJxrwdOnTA3LlzERkZmWoZsnqRPoKDg2m0jWbNmuHGjRsIDw/H9+/f4enpiSFDhojs0b17d9y4cYOJ17MJmUwmErF7enpm+FlnzpyhAq7ChQuL9qHi4+Oxd+9etWJd1tcn4+npCQsLCyo2HzNmDK5du4YbN25g9+7dIkG6ubm5aO+UHx/HxcVh+PDh1LMrIQQDBw7Ejh07EBsbi58/f+L9+/fYsGEDtcXGjRtz6Rv/vri7u6Nx48ZYuHAhQkJCqHA9I+8qqxe/J/xcIy4uDmXLlqWHFYR7IQxVHBwcaNuydetW0ZoHH102ISEBV65cQcOGDWnax48f51aW8zRr166FVCpFkyZNEBgYqDZqBwCsXLkSpqamtK0RRpFle91ZA6sbfx5MwM5gMBgMRh5CuOCuPKG7fv06HXx17NgRzs7OaXrmu3fv6OJK48aNMx0ePb+Qkmf748ePU1sMHjwY3759A5D6Yu/Tp0+hra3NTp6nk9SiDGiCidezh4x6i8lKz+tswSsZYTlkZlHk27dv8PDwwIQJE0Sbglu2bMmKbOYLmC1+HzTZIjXPfECyl7iBAwfSci9cuDBsbW1haGhIPxMuRjJSRjiuFdoirYegQkJC0KdPHyp2UCdGZDD+JIT1YNOmTTQsLf9TpEgR9O/fH1euXFGJLHDo0CGRyCQt8GmdnZ2xatUqfP36lY6r8/tYSpOIfdeuXemaJ3h5ecHOzo6KGmvWrAknJyf6N5TFuq1bt6bCovQcCM3LCG1x6dIlTJ06FcbGxjQKR6lSpTBixAi4ubnRDSr+nsTERCxfvpzar1atWti8eTPtf9SNycLDw1GuXDmVg+iMrIPVi+yB9z5sYmKiNjqHUJDz5MkTDBo0SCRU5L3cMzLO+/fvqSCxSpUqePLkCWJjYxEWFkbHqT9//qRtFaBeKCWsA8oiXX7eIQxDz7yHqhIREUEjaFWvXl1jxCe+H/j8+TNq1aoFQgiKFi2Kr1+/qk0HAB8/fsSmTZvQqFEjFCpUCMbGxtDS0kLv3r1F0Q+YLX6RlJSEiIgIODg44K+//hKNbwsWLIgWLVpg165diIqKonUipXUTVi8yhpeXF4oXL07XMkqXLg0rKytYWlqKbDJlyhTIZDJabhkRdLIyT52sELEfPHiQjqdMTEywZMkSek1Yl4Ri3UmTJmXVV8gzeHl5oUaNGqJ6QAihbYuuri6srKxw+PBheg8/b46NjUXPnj2ho6ND79uwYQPCwsJU/k5MTAzmzp0LqVSKtm3bsnGtGpTX9TLSlrB68Xsi7FN45296enpYuXKl6DrjF8L+V3gof+HChSKHMPHx8dixYweaNWtG0yxfvjw3spwvuHbtGt2Xc3BwELXlcrkcLi4uIgeHhBCMHDlSlIaROVjd+HNhAnYGg8FgMPIgwskcP1CbPXs2dHV1YWpqil27dqVpwhcUFIRhw4bBwMAAEokE06dPz7AYmJFsi9jYWPTq1QuEEFSoUAHXrl1L070eHh5UpGJmZoatW7eq9ZjFyBoyK15nAvfMkx2e14WeSNmi1y+EZfjo0SNcv34dV65cwfHjx3HkyBEcOnQIDg4OWLt2LTZs2IDFixdj4sSJmDBhAvr06YMKFSrA2tpa5OVy+vTp9JmsrNMOs8Xvyfbt27Ft2zYAKZehQqHA9evXqSdF/tAZ/9O3b1/4+PgAYF570oOwzF+/fo3z58+rfK6JnTt30vJ/8OBBdmWRwcgxhP1EaGgoXrx4gevXr+PevXtwd3cXpeXbmYcPH8LIyAh6eno4duxYuvqCt2/f0rDpDRo0wKpVq+h4Kr+3Y5pE7Bs3bkxT2fB2iIyMxMWLF9GmTRu6Sct79la2lbe3N8aPHy8SwDFU38XAwEB4enrCyclJ5QCaMO2uXbuo3erUqYN9+/al6MkvMTERP378gI2NDQghIrEDI2tg9SL78Pf3R4UKFaCtrY09e/aIvNoL27OTJ0+ia9eutG506tQJT548YfOILMLd3R2FCxemgsQPHz4AEIt2+PUkhUIhWltStoHw9+PHj1MhXaVKlbB+/Xrs3r2biXVTIDAwEPXq1aMHYFxdXWl5K6/pdevWTaOQSliXHBwc0L59e7UCRzY/10xMTAx69OhBy5gQAmtrazRp0gQPHz5EUFCQKH1qc3IeVi/Sj7e3N9q0aaMiWtfX10fr1q1x8OBBUfrY2Fg4OTnh8+fPaf4bwrJ++fIl3r9/r/F6fkdZxJ7eCLPr16+HtbU1pFIpdHV1sXTpUnpN2M7xYl1dXV0QQjBjxows+w55haCgIEyfPh1169YV1Q0DAwMMHjwYV65coWn5/dO4uDj07duXptXT08Px48dT/Dtnz56l6fkDnAxVMtNOsHqRfWTGLhEREfj8+TMGDhyIQoUKgRACU1NT3L17NwtzmPcQzuNmzpwpcqrTrl07tG3bFhUrVhQ5Opo4cSJ8fX0BsD43u1i0aBEt7+HDh2P16tU4duwYevfujZo1a9JrVlZWmDNnDr0vo+J15fuYCJ7VjT8VJmBnMBgMBiMfEBkZicqVK4MQgiZNmog2QzTx9etXrF27lnreKFu2LL58+ZJTWc6zhIWFwcrKCoQQdOvWLU2D4ICAAIwfP55ucjVp0kTFazsbTKePnz9/IjAwkIaMUvY2lhnxOj8x+vHjB+7du8fCBKeBr1+/QiaTITo6GoDYHlnlef3du3cwNjbGgAED6GfMHmLGjBlDxc8Z+ZFKpahevbrolLo6Gzk7O+P69espRg3J7+SULdTBbCHmxo0bMDY2hrGxcZo8XsXGxqJGjRpo3Lgxbt26hX79+mHatGnYvHmzKF16xI2MZLy8vNCqVSvo6OjAxcUlxbR8f/3s2TM6fjp58qTatKycGX8amt7ZlLwg8tEhDA0Ncfz48TS/946OjujduzcKFiwIQggKFCiAxo0bU++9+X1TRJ2IvU+fPmk+9C2cy/n6+tKDzhYWFnj79q3ae/jxsvB+xi80CTyV68WNGzfouKlatWrYvn07Fa+nVK7//fcfFTEsW7Ysi3PPAFi9yC4iIyOpiKpJkyZ49+4dYmNjASSPm+RyOWbNmkUPLRFC0LNnT7x48SLfH1jKarLCq67QJkIP0xUrVsTGjRtpPWBi3ZTx9vZGyZIl6UG9AwcO4NOnTwCA79+/4+XLl+jcuTMIIdDW1kaTJk3w/Plzer9wfX3YsGGitaumTZti3LhxuHHjBnbs2IHx48dTW7AIHqq4uLjA1NQUWlpaGDp0KO7evasSUSi195bVi6zh69evePr0Kf79918sWrQIq1evxrt370QeoxUKBRQKBa5duwZCCNq2baty0CA1zp8/j5YtW4IQgjlz5uDOnTui5zOSEfYZjRs3pgef0srjx48xb9486OvrgxAiWhcXzmXkcjm2bt0KU1NT/Pfff1mV/TxFfHw8YmNjce7cORw+fBiOjo7w8PCg+0vAr37h58+fGDduHN1fMjExwdmzZ2k65Xect4W3tzfMzc2hpaWFhw8f5sC3yp+wepH18OUWGxsLT09PuLm54f3793j79i0ePXqEJ0+e4OHDh7hw4QLOnTuHixcvYu/evfj3338xf/58NGrUCGXKlBHtb+zatSvFv8l75GfrUr++/9q1a1GpUiWNe0bz589XOUArbMMyQnR0NNUr5HdbCMeic+bMER1i5deR+J8+ffrgyJEjovuF+6UZYdeuXfRgYH63BZD7dYORfpiAncFgMBiMfEBgYCCKFSsGbW1trF+/HkDKQtzv379j165ddMJYrFgxGk5V6FlGE2yRUTPOzs7Q19eHgYEBTp06BSDlicTHjx8xZ84cWFhYgBCC4sWLw8/PT+W+xMREBAYGYs+ePdizZw/u3bvHvE1rID4+HgcOHECrVq1w4MABREZG0muZFa/zREZGolixYiCEYNasWdRbHMBsoUxoaCjmz5+PZs2a4dChQ4iIiKDXskq87uzsLNqIHzduHL3G7JFMaGgoypYtC0IIdHR0IJFIYGlpCUNDQxQsWBAlSpRA8eLFUbx4cVSoUAFVqlSBra0tmjZtio4dO2L8+PE4f/68SFSqzkYymYx60Zg6dSru3btHrzFbJJMTtvDx8cGdO3cwYcIETJ8+HSdPnhSlZ7b4hTBU8JIlS0QCKU106dIFhQoVwsePHzVuSvE4OTnh3LlzmDZtGhYvXoyLFy9SYSjAbCFEJpNRr7ezZs0S9d+a2L9/P237jx07lmJab29vPH36FCtXrsSWLVtw+/ZtkedeZgvGn4iwzRk8eDD1oHjixIl0vdNubm4YM2YMXewvWrQo3RTJ78JGYRkfPnxYRWyVHlxdXdGwYUMQQjBw4MAU2znWJmUcX19ftGjRgnpfWrBgAeLj4wGkXK7h4eEYMWIEnZe/fv06p7Kcr2H1Iuvw8fFB6dKlQQhBrVq1MGzYMOzcuRNDhw6lZcz/jB49Gp6enplq45k9NJMVInYAOHr0KPUaV6lSJWzZskUUSYL3HsrEuprx9PSk9cLIyAhWVlbo2rUrqlatSj/X0dGBra0tXccFfnnYTUpKQqdOnUT1Z+nSpdR7H09kZCS2bNkCiUQCMzMz3Lx5M0e/559AUFAQbty4IfosI+8pqxfZgzonOk5OTqJDT2kVscfGxmLp0qV0rVZLSwvlypXDmjVrVP4eIzkyL38gY/369fR9Tglh/x0ZGYmjR4/CyMiI9vE8ypGc+XV3Fl1WldQOkgsPzm7fvp32IVpaWjhz5kyqzwGAjRs30jr15s2bLMw9A2D1IrsJDw/HkCFDUK5cOZiYmMDAwIBGA9TV1aVRVviDgepEpIaGhihXrhz27dtHn6tuPnLx4kVYWlrSSAX5Xawr/P7Pnj2Dg4MDqlevjsqVK6NatWro37+/2mjwnp6eaNiwIRwdHTPU70ZFRcHBwQHFihWjh82ZLX59//3792Po0KEwNDSEubk5rK2t0alTJ5w8eZKK/nn8/f3Rr18/nDp1KkO2uHjxIgghKFiwIFxdXVXykl/JrboRGRmJO3fuIDQ0lLZhbGybOkzAzmAwGAxGHkehUOD9+/d0cqh8olOZsLAwbNu2DeXLlwchBGZmZti/fz8SExNVJooJCQmIj4/Hixcv8PDhQ7x69UrFCwQbkP1CoVDg+fPndDJ+8eLFFNP7+/tjxowZKFGiBD1IwHsjEQ66/f39sXbtWurZnT/V27p1azg4OIj+PiN5Us0vkNeqVQuOjo4AksOW2tnZZVq8DiSLV3gBqkQiQb169bBhwwZ6ndniF+Hh4bS9qVmzJrXHnTt3sky8LhRbsQ0qzbi5uVFxuZWVFR48eAA/Pz/4+fkhPDwc4eHhCAkJQVRUFOLj4xEZGalx00TdwmJSUhKOHDlC659EIkGtWrWwevVqmobZIpnstMWTJ0/QqVMnKpjgf5gt1BMTE4O5c+dCKpWiSpUqePLkSYrpQ0JCULt2bejr66t45xGWaUxMDLZv346CBQvSzRL+p06dOli7dq3a+/IzMTExWLhwIXR0dFCpUiXcv39fY1q+zHiPyIQQtYuRPCdOnICNjQ1MTU1FY6mmTZuy/pvxxyMcxw4aNIgKsVILX67suToiIgL37t2jnhKtra3T7QEwr6JuriDsfz99+oTExMRU25CfP39i1qxZIISgTJky6fZkyUgZ3iYXL16k84xOnTqpjQKljlu3btHIdra2tiobjozUEdYBVi9yB09PT9HhbqlUSv+vp6eHSpUqicahQLJXPd5be1oR1id+Hs8Qk1kR++vXr6n4R0tLCz179qTXhN77lMW6Y8aMybLvkFfw8fFB9+7dUapUKZGnREKSo8907twZ58+fp+mFYmh+XKSlpQVLS0scPHhQ9GzhGMHPzw9169aFRCIRrdcyVMmo4IbVi6xBWbyZUppnz55BR0cn3SL2qKgofP78GStXrkT9+vWpLSZPnqw2H/kdT09PTJ48Ga9evcrQ/YmJidi5cycKFCgAfX19HDhwIGszmA9Rfj/5uhIYGIj27dvTfkS4H6vuneY/k8vlGDJkCD0s6+vry+pANsPqRdbi6OhI33u+X5BKpXS/VVdXFwULFoSBgQFMTExgbm6OIkWKoFSpUmjQoAHatm2LI0eOiA6Kq+uDbty4QcfQhQsXpk558rtYV7msYmJikJiYiISEBJU1K75tWbBgAQghMDAwSFe0RiC5H9+zZw/dwzI1NWW2+D/K3z84OBifP39GZGQkdZ7Aw9vNwcGBzsnTawsg2VFD27ZtQUhy1A8mYv9FTteNmJgY7NmzB4QQ2NnZ4eDBgwgNDVWbF4YYJmBnMBgMBiMfIJfL0ahRI+rxVhgam/8Bkge4S5cuhbW1NZ38bdy4UWVjNjw8HM7OzujWrRvq1KkjmpTq6elh+PDhqS7M5FdiY2NRt25dEJIccpwfHCufwHR1dcXw4cOpF++iRYvi7NmzKmUZERGBZcuW0XTa2tp0oZ7fiJw6dSpNz2yRzPv371G0aFEq2ly4cCHq1KmTJeJ1INnO79+/pyIhfhGeef5Wj5ubG7VH7dq1MXPmTBQpUoS2LW3bts20eL1kyZJwcHDApk2bmIg9Bdzd3VG4cGF6aMDDw0NUNsL6IJxsp7X84uLi8OHDBwwdOlRj3WAkkx22cHNzQ+vWrWFgYEA9MhQtWhRaWlpsszAFPn36hObNm4OQ5FDwbm5u9BrfJvE2cHR0pGUpDIEN/CrP8PBwzJ07VyRat7CwQIUKFWBsbMxskQKfPn1Cs2bNQAhBkyZNRLZQHlPxnkcIIWjdurWoDIX/37x5s8gWpqamsLCwgI6ODh1LMVsw/nSEfcaAAQNACEHz5s1FEZvSiru7Oxo3bgxCkkNtpyUaQn7m4MGDaNSoEfXUmprnvv/++4/20zt27EjxHkbGaNOmDZ0fBAYGAtC8icT386GhoWjatCn1Cnfr1i0AzDYZhdWL3CUwMBDLli1Dq1atULp0aVStWhUNGjTA/v37afRFnu/fv2Pjxo0YO3asKDJNWjlx4gQ6duyIw4cPw8fHh37O7JeMUMTepk0beHh4pOv+w4cPo2/fvtRpycSJE+k1Yd8vl8uxb98+unb76dOnLPsOeYWvX7/i5s2bGDZsGFq1agU7Ozu0a9cOp0+fFh0uELZbXbt2pWVauXJlnDt3jqbT1K907twZhBD89ddf2fp98jOsXuQc/Hv+7Nkzuh/Rp08f+Pv7p3ifch/w7t07LFmyhK6FzJo1K9vy/CcjdFzBv8tyuRyfP39O0/3e3t6ws7MDIQTDhg3LljwygGXLltH1pWXLltHPUxv7CMW/9vb22Z3NPAnfJrF6kXtMmDCBvscdO3bE1atX8ezZM9y7dw9PnjyBq6sr3r17B2dnZ/j5+SEgIABBQUE0QooQdXXmxo0bNMoKfyidiXXVIxyLpiSaFUZrTKtQlxevFyxYkDrfY7YQo6kcU7LFwIEDMyyaBpLbs3bt2jFbpEJ21g0A+Pz5M8aPH0/bwtKlS6NPnz50TsnsoRkmYGcwGAwGI4+jUCjw8+dPTJ06FYQQ1K1bF66urioDpFevXqFHjx50olGkSBFs2bIFISEhonSvX7/GpEmTqFdwLS0tuvnLe1GWSCTQ0tLC3LlzRflgJAubR48eDUII6tevD1dXVxWB9J07d1CjRg0YGxtTUdvFixfVeteVyWTU83qpUqUwY8YM3Lp1C/v378e4cePowu+0adNy6iv+MQg3Co2NjalXgGrVquHr168AMiZeV37XN27ciIoVK1IRnFA0zfiF0B76+vp0cte+fXt8//4dQObE61u3bkVYWBgAsFDBqZBV4cyVUS7ftWvXoly5crQfmTRpUpb8nbxEVtmCL/tjx45RD9PVqlXDlStX4OXlhatXr2L27Nm0XsycOTMrv0aewNfXlx7wa9KkCa5fv07bJh6hYLpBgwb0IJQy69ato+mqV6+OSZMmISgoCF+/fsXjx4+xbNkyaovFixfnwLf7s/Dx8UGZMmWoLa5duyayRXh4OE6cOEHLmD/AJJfLVdqhQ4cOidL16tULLi4u8PPzw82bNzF//nxqi4ULF+bwN2UwshbhuHbJkiUqHkLT85ytW7eCEIIKFSqIBIkMMZ6enrSNOXToUJruuXfvHr1n69at2ZzD/MePHz9gY2MDQgiGDh2KhIQEjXMM4SG1jh07gpBkT7xTpkzR2MczUofVi98DhUKBpKQkBAYGIjIykkYi4OE3ckNDQ+laX69evdLlAf/ixYv04CE/t9+3b58oD4zkOR9/oL9du3Z0PSolhGUXGBiIHTt2wNDQEIQQDB48mF4TbsjL5XKcPn0azs7OWfsF8iA/f/5EfHy8yjqssL/gBVpSqRQVKlQQRdlM6d1u1aoVCEmOAMLqQNbC6kXuIBSx8+u5o0aNSpOHSeUodTt27KD7SocPH862PP/p8OX28+dPrF69GkePHhV9nhJ8VBttbW14eXllaz7zGwqFAkFBQahatSoIIWjVqlWay/jevXvUmU+1atVoxEHWT6QfVi9yB+EYyd7eno7/hWP/1EjNVkLxeo0aNbBp0ya0bt2aiXUziLpojQYGBjhx4kSKtlAWrzdu3BinTp1i3r8zgbCc0mMLdTARe+bJaN0Q4u/vjxMnTtB6wuuu+DkH88SuHiZgZzAYDAYjn+Dv70/FnA0bNsTGjRvh5OSEI0eOYMmSJdDT06MCHQsLCxw7dkxFmHXr1i3Url0bRkZG9NTglClTcP/+fXz//h1JSUk4c+YMxo8fT581ffp0ej9bcEnGz8+PbgDWq1cPS5cuxd27d7Fu3Toqbud/rKys8PTpU43PWrRoEQhJDit4/PhxUWjmb9++ibxNs/C0qshkMirmlEqlKFGiBPUqxntVyij8JCcwMJAK7fT09NCwYUP4+vpmOu95EaE9dHR0YGtrSz2Dpucwwbt371C5cmVah3bu3CnyupGYmCgSsQu9MbF2KpnsErELefjwIT2AU7BgQfz9998qh6YYWSti7927NwghqFixIoKDg0XXo6Ki4ODgAIlEAolEgj179mRF9vMUHh4e9J0tXbo0OnfujAMHDmD58uUYM2YM7bvNzc2xYMECtf3IzZs3abo6depg//79KqEj4+PjsXXrVkgkElhYWNCNK8YvPD09UbJkSToGatSoERYsWIBRo0ahQ4cOooXBkSNHqoxpAeDFixe0zylTpgyWLFmC2NhYUZrY2Fhs27YNEokEJiYmuHr1ag59QwYje1A3nsrI2OfDhw90Trhp06asyFqe5OPHj+jXrx90dXXRo0ePFMX+/ObF6dOn6Rh18+bNOZXVfIO/vz+NcLN7924A6uuA8DOhh902bdqoeKhmpA9WL34P0tP2P3r0CLq6uiCEoGfPnmkWsX/79g2HDh1C//796ZqjRCLB7NmzM5SPvIy7uzssLS0xcuTINHsMFZadXC6Ho6MjFesuWrQoxXvZhrl60vo+Hj58mK7zFSpUCGfOnEnTM27fvg1zc3NoaWlhxYoVmc4vQxVWL3IHvuwePHgAa2vrDB9wDQsLQ8+ePemhg6SkJNZPpMCJEyegr68PCwuLVPca+AM5K1asgK6uLgoUKJDuqB+M1HF2dqZtjnC8kxIvX75EixYtqHOlsWPHqnVkxUgbrF7kHkKB7JQpU+ja7M6dOzPkKEyIsnj9+PHjiImJQWBgIBNOZwJ1Ql1CCC5duqQ2vbJ4vVGjRnj+/DkUCgV8fX2ZcDoTaLLF+fPn0/0sJmLPPOmtG5rw9PREy5YtaftFCIFMJsvq7OYZmICdwWAwGIx8hKenJ0qXLk0HSXwIZt4zdKFChVCrVi24u7ur3HvlyhWUKFGCbhpWq1YNb9++pSHjhSKt8PBwbN++naZdv359jn3HPwVPT0+UK1eO2oJfoOI9EZcpUwbdunWj4l1h+DsehUJBvQM0a9aMbnIJF3bDwsIwZswYSKVStGnTJs0bYfkJd3d3kUfiy5cvZ5lHPZlMhjp16lCv4n/99ReeP3+eJc/OqwjtYWNjg4sXL6oVHqpDoVDg48ePsLS0pG1b//796cEOYTsll8uxd+9eWufGjx+fHV/njya7ROwJCQm4ceMG9UhjbGyMiRMnsol7CqTXFnw/IOwP4uPj0aNHDxBCaIQU5cXjoKAgdO/eHVpaWujfv3+mF5fzIt7e3mjevLnIe4JwLFW8eHEMHz4c3759E93H22L27NnQ0dGBjo4OFi9eTMXrypuy/v7+aNCgATuAlgIfPnxA8+bNUahQIRBC6LiTb9fLly+P8ePHU1soCxK2b99ONxZHjBhBxevK6YKDg9G+fXsQQrB8+fKc+XIMxm/Oq1evqJiRzfVS5ty5c7QPX7FiBeLi4ug15f7ax8cHtra2ICQ5upaLi0uu5DkvExwcTO2xevXqFNNGRkaiU6dO1BtfrVq1cPny5RzKad6G1Ys/B6FnXW1t7TSL2JXHtpcvX8bo0aPpeG3y5Mka0+ZXwsLCqEMFIP0Cg4iICEyfPh1aWlqws7NTu7bLyDxJSUno378/nQfyh6GA1A9ELVy4kN537NixHMlvXoPVi98Xvr/gBaEZXU9atWoV3SvJDmcaeYlHjx6hQoUK0NHRwfr161UO5Ktj2LBhdGzL6kPWc/XqVerY4r///gOgusYk7BecnJzw119/0cPhDRo0oFFx2KGajMHqRe6SHSL2Gzdu0GjltWrVgqOjI9UlAEysm1mEduEPkR04cEDFXpGRkdizZw9dS2/atCmePn0q2nNltsgcwjLv06cPCEmOzpuWdkwZb29v0eEOfh2F2SLtpLVuKKMcYWjWrFk0SpGpqSmOHDnC+ngNMAE7g8FgMBj5DF9fXwwfPpyGzeY933br1g1btmyhoWqFA7Bbt26hVKlSdBJvaGiI7du34/79+3QCAogHvnFxcVi5ciUkEgmqVauGly9f5tyX/EPw9/fHhAkTULt2bRgYGEAqlaJs2bIYNmwYLl++jIiICAAQeVz4+fMnEhMTERMTAyB5E1BXVxeTJk3S+Hd27txJbf3gwYNs/U5/Ku7u7nQDvUaNGnB0dERUVFSmnunl5YXatWuDEAJDQ0N07dpVJF5nm7SaEdqjZs2a6bbHxo0b0bt3b+jp6YEQggkTJtBrwrZNLpdj9+7dIISgaNGicHJyytLvkRcQCqdbt26d6c2jhIQE3Lp1C1WqVKGLJxMmTGDi9TSQEVt8+vQJwcHB+PjxI6KiorBr1y4QQrBhwwaN98yePZuKgNmivXo+f/6MjRs3omXLlrSdIYSgRYsWWL9+PT10o7wQlZCQgEaNGlEv+Pxiu6b+YPDgwSCEoG3btgDYAqM6QkJCsGPHDrRv3x5FixaFlpYWLCws0LdvX5w7d46WsbItkpKSqCixZMmS+PLli9p0PJMmTQIhBLVr10ZiYiKzBSPfwr/7p0+fpptWvAdRNrYVIyyPNWvW0L5i69atosOyfLvj6+uLYcOG0Y3ZFi1aZNmhWoaYkSNHQktLC8OHD8ePHz+orfiN1+joaDx//hwtWrSgAqrq1avj1KlT9Bnsfc8YrF78magTsXft2pWOn1JCOGb68uULjTJECMGqVauyLc9/Ony5KRQKnD17FjExMWna5L58+TKtV4cOHcrubOZLjh8/Tst4xowZ9PPU7HPp0iV6X7du3bI7m3kSvoxZvfi9yegYid//2LdvHwwNDVGgQAE4OztnZdbyHBEREZgwYQIIIbC1tU01StCbN2/oXoW1tTWCgoLYmDaLOXfuHN1DVWcPYXm/ePECnTt3pg4yqlWrhtDQUABs/S8zsHqR+2SliP3OnTv0fnNzc9GehnAMIBROGxgYiHQLjNQR2uXBgwdUJ8Lz8+dPHDlyhNrCwsICJ06coNc12UJPTw/v37/P/i+QhxDa4vTp0/Dz88vws/z8/KgtjI2N6biK9TFpJ7W6kRIfP37E8uXLqcO+8uXL49ChQ2l22JcfYQJ2BoPBYDDyIXFxcfj69Svu37+Ply9fqkzmhIPXV69eoU6dOpBKpXSTSfhjbGyMQYMGUbG1cHLv7u6ORo0aQSKRYP/+/Wzir4aEhATExsbC1dUVMplMxUO6cHB88+ZNjBgxArVr10a1atXQo0cPjBkzBlZWVmjatCld4OLhJ423b9+mm4x79+7N/i/1hyKTyWBubg5CCMqVK4dbt25l+BQsE69nHqE9rK2t8eDBg1TLTXjdz88PW7ZsoeKqwYMH02vCNk4ul+PixYuiBReGGJlMhqJFi1IvFyEhIRl6Di9e5z2vM/F6+kmrLWJiYrBr1y6ULVsWFhYWKFy4MOrWrYuOHTvCzMwMAwYMoJEJgOS6w/c3GzZsgFQqhZaWFp4+fZoj3+tP5uXLl3j27BkeP36MhIQE2m+o6z+io6OpV/WOHTtqTMcL6P755x/q5ZKROoGBgfD29qbRa3jU9R1JSUno3LkzCCGws7NDXFyc2nR8vVi8eDEIIWjSpEn2ZJ7ByAWE73xa/s/j6emJ4sWLgxACKysruLm5ZW9G/2CEbTx/QIwQgnHjxuHkyZNISEhAQEAAHjx4gCZNmqBw4cLUIw8/PmLzhqzn4MGD1BabN29GYGAgvebj44NFixahevXqdMO1adOmuHjxIk3DbJI5WL34MxGK2Hl7ZGReGB8fj+XLl0MikaBGjRpMnJgKo0aNQtGiRfHmzZs0pf/+/TtKliwJQgjGjh0LgNWXrIIvR3t7e0ilUpQvXx6PHz8WXdPEkydP6GH0smXL4vDhw2m6j6EeVi/yHsKxAS88JYTg1atXuZirP4OgoCDUq1cPhCRH6H3//j1d9xY6RQoMDKQH8wkhmD17dm5lOU/z+fNnVKtWDXp6etizZ4/aqMpAskfpBg0a0H2LKlWqUEclTFiYeVi9yH00idh37dqVLhG7h4cH2rZtS/eTbGxsaP+flJQk6s+9vb3RqlUreliQdwLHSBuptT0+Pj7o1asXjY5WtWpVuuetbAsfHx/qEGDChAk0Ai0jbWS2HxDa4tq1ayhXrhydwzMnbuknI/b49OkTVqxYQSMHV6xYEQcOHBDtyTJUYQJ2BoPBYDAYFGURVUhICEaNGgUDAwN6ctnKygqzZs3CvHnz8M8//1APAR07dsS3b98AiEXXq1evRvXq1VMNL8wQozzhO378OCQSCbS0tEQHCPjfrayscO3aNZGXJgD4+vUrRo4cSdMzkW7KyGQy6OrqwtraGo8fP87QhgYTr2cdMpkMUqkUtWvXhre3d5ruEZZvYmIijh07RheD582bl+r9LHSXemQyGQghaNmyJeLi4tJ9PxOvZx2abMG/+9HR0Zg7d66oryhQoAAIIdDV1QUhBGXKlMG9e/don8G/9x8+fKDe8S0sLFi45hTIaFs+ZswYEEJQr149Om5Sh4+PDywsLEAIgb29fUazmS/QZIvU2vPp06fTjcJPnz5pTBccHIyaNWuCEIIBAwZkKq8MRm6TkbZLLpcjPj4ejx8/xtatW2nbZGxsjBEjRqh4Q1b+G/l97Cvc6JgzZ46of65QoQIKFy4MqVRKPytUqBCNmpWVm1YAG+cKEdqifv366NOnD3r27AljY2M6bjI0NMQ///yDhw8f0vsy+z7zNs3vwpTcrBeMjMO3Ie/evYOPjw+AjNWJx48f0xDaR44cydI85iWCg4PRvn17EEIwaNCgFKMP8Hb48eMHPWTWp08f0TVG5omPj0e1atVACEH79u3TdM/Lly9Ro0YNSCQSSCQSDB06NNMRH/MzrF78OSgfiuV/VygUIm/6Qk6cOIESJUpAIpHAxsYmxXk64xfe3t4oUaIECCFo0KABjhw5InJ0dPXqVboWxbdfHz58AMDqQlYTGRmJvn37ghCCRo0awdnZmTqpAJIFbTt37oSenh51FlatWjX4+voCYPbISli9yH00idgdHBzSVMZ8XxEdHY3r16/T/l9XV1fjIUIfHx/Mnj0bly9fzsJvwuBtERMTg7t376Jjx47UFk+ePAGg3hYbNmxINQoCI+sQ7g+GhIRg/PjxaNiwIQhJjiwodOTDyD6YeD3jMAE7g8FgMBgMFfiJ5a1bt6hAoVixYpg1axZcXFxEaV+9ekXDOfft21flGQDoYjLbMM8YV65coZu3urq6aNiwIY4cOYIDBw5g/vz5KFu2LAghqFy5Mi5evEjDOH/69Anbt2+np2sLFSoEf3//XP42vz/+/v64ffu2yBtDWmHi9awnKCgIHh4etOzS245ERkZi9uzZ0NLSQvXq1VnIukwQHByM6OjodN/HxOtZT0q22Lx5M10Qrl69OiZNmgQPDw88ePAAe/fuRYUKFWif4ejoiICAAACAi4sLevfuTft0Ozs7Gl2FkXVs3bqVCj95QRx/8I8fOwUHB2PKlCkwNDSEkZERzp8/D4CNo7KaAwcOgBACIyMj3L59GwBUDnX8+PEDDg4OKFasGAghNFQtswXjT4R/v11dXXHgwAFs3boVu3btwqZNm7Bw4UIsW7YM//77L+zt7TF27FhMnjwZ/fv3R7NmzVC/fn3o6upSYa+pqSnat2+f4rjK1dWVHmLO74JT4fffsWMHmjdvrhLZrEiRIrC1taXeiJW9V6V3HiFMf+fOHSqKYLb49f0XL14MExMTFVvo6+ujRIkSOHHihMg7O5A8x87onC44OBg9e/bE27dvVfKSH8ntesHIGMIyzMx4iJ8b/v333yrPZSTz8+dPbNy4EUZGRihTpgwuXbqUajnxcw2pVErHrYysIzExEXZ2diIHCcpeRIU2evHiBerXrw89PT16YIoPO8/mExmD1Yvfk8y04bGxsYiKisKqVatga2tLRb0zZsxQm15Yd1jf8QsPDw+UKVOGrnFYWVmhZcuWsLOzg6mpKR1bNW3aFGfOnMmWNojZIxkfHx9YW1uDkOTomePHj8f+/fsxZswY6h2adzbSqlWrFA/iZBRmi2R+h3qR3xHO+ezt7UEIwdy5c9N8v/Bd9vf3R8+ePUEIQcmSJfHu3Tu196hz+MPIPMKyDAgIoLawtrZW0Y3wCA/wMLIH5Xbr5cuXGDlyJJ1v8z82Njbo378/3QtkZA9MvJ45mICdwWAwGAyGWn7+/EkX5c3NzbFixQrq9YKfqPCTz2vXrlHvSceOHaPPSC38PCNlFAoFQkJC0Lp1a0gkEujq6mLUqFEq4bYCAgKoByArKys0btwY9vb2qFOnDg2Rampqit27dwNgmyTpIT3vLROvZz/Cd9fJyQmfP39O0303btygE/U9e/ZkV/YYamDi9ZzFycmJ9se2trY4ePCgyoZ6cHAw7TPMzc1RqVIltG3bFoULF6aeGMzMzNQKhRhpIzVBWufOnWn5Ky/w+vv7Y86cObCysgIhySHm+YNpjPSTmi26du1KbaEsxA0JCcGuXbtQqVIlKqJjEYUYfzoPHjyAtra2ikg0PT8VK1bEzJkzU+zLXVxc0KdPH+jr6+O///4DwMS6wu8fEBCAS5cuYezYsRg6dCgmT56MixcvIiQkBIB4zLtq1Spoa2vjyJEjae6Thelu3bqFRo0awcDAgG7wMlv8+v5Xr17FihUrYGdnh7Zt22Lo0KE4fPgwPn78qHLfsWPHoKWlhcOHD2dIOD1v3jx6sNzV1VUlL/mRnKwXQi5cuIB///0XMpmMChzYmDf74W0YGRlJD9V269YNACt/TXz58gUdOnQAIQQNGzZUGa8K69Dr16/p2JYQgrNnz+Z0dvMFfBn36tVLtD6r/A4/fPgQNjY2dI5duXJlOq/L721/ZmH14vdC2D97e3vDyckJb9++xbNnz3D37l3cunULFy9exIkTJ3DixAns3bsXa9aswYoVKzBlyhQ0adIEtWrVAiGEitcHDhyo9vn8+pZQEMf6j1/4+PigS5cudD+IL0/+3x49euDSpUuiOpKUlJRpUZVwfZ7ZIxlPT09UrlyZtj3KtmjUqBHmzZuHmJgYeo9CochUhI579+5h7dq1oucxcq9eMH4hLNtr166J2vX07lW/ffsWdevWBSEEo0ePRlxcHHvXc4mXL1+ievXqkEqlmDx5MhITE5ktchDlunP8+HFMnjwZWlpaIucMlpaWWLhwId69e0fHUUwjkj0w8XrmYQJ2BoPBYDAYann16hWKFSsGqVSKfv36UY9tyigUCgQGBtLNpyVLluRwTvM2Hz58gJmZGQ11FxsbC+DXQi0/+ff396ee2EuWLEm9I/Li9a1bt6ZZ7MsQw0/mkpKSNJ4YZ+L1nGXXrl0ghODu3bspphOWu42NjcjDG5ukZx6+/ZHL5WojFjDxes5z9uxZKkwcP368imdv/l+ZTIZSpUqBEILatWtT0XuhQoVQoUIFODk5AWD1JCMIPXffu3cPgOrBv+DgYOp1qXDhwpg+fTo2btwIBwcHVKtWjXqDLViwIPO+ngn4MouKilIJZ8rbIiQkBC1btqQC9X///RdHjhzByZMn0alTJxpu2MDAAJs2bRI9l8H4E5k6dSoNHaunpwcrKyuUKVMG5cqVQ4UKFVCzZk3UqFEDtWrVQosWLdC6dWu0bNkSAwYMwMKFC7Fjxw6EhISoHKgV4uzsjH/++YduCJuamjKx7v9Jy5xAOc2AAQNon3D8+PFUnyG8fuPGDXTp0oVG82LC6V8ot+XqyoNPw5dp//79aRSVtNhCGU9PTxr23MTEhNni/+REvRDy5s0bdOnShY6D161bh+DgYADMFtmJsGw3bdpE16uWL1+ei7n6M/D19aUHKps1a4bHjx+rbII/fvwYI0aMoOU6ZMiQ3MlsHoZvZzZt2gRtbW1UrVoVTk5OKu1PfHw8Tp48KVqXtbGxoWuyrJ3JGli9+P1Yt24dGjVqJJpr8GWf1gO0JiYmGDt2rEpkNOCXeD02NhalS5cWRQJm6+6/+Pr1K65fv46hQ4eicePGsLa2Ru/evbFx40bExMSIykoul2PgwIEYNGhQhg/ru7u7o2jRohgwYAD9jNkjmcDAQCxcuBDNmjWDlZUVzMzM0LZtWyxfvhze3t70nVYoFEhKSsL8+fMxYcIElQhQaSE0NBT169cHIQTjxo2jnzNbJJPT9UImk+HWrVspHnTLb6gb/wg/8/DwQFJSUqprrnFxcRgzZgwIIahQoQLCwsJS/dsKhSLD0Z3zG/Hx8fD09ASQelnFxcXh77//pgc1M3MAh5E2lNuR8PBwnD59Gv369YNEIqFrf0ZGRrC2tsbevXvx6tUr0T3K61ysbmQNTLyeNTABO4PBYDAYDLVs376dLh7euXMnxbRRUVHUo0CvXr1yKIf5g6tXr9KTsrwHdWVvunK5HAqFAtOmTYNUKsW4ceNw48YNzJw5E6tXr4abm1tuZD1PERsbi927d+PixYt0Is5P7Jh4PWf59u0b9bLQr18/Gn5ZEwqFAp8/f6YixN69e9PPGZknKioKS5cuxalTp0SLVEy8njts2LCBigV5EbryAnFSUhJiY2PRo0cPEEKwcuVKvH79Gnv27MH9+/fpwi9btMo4MTExsLKygoWFBRVEKfP161f06tWLHh5Q/tHT08OYMWNo9BtGxoiLi0PTpk1RtmxZjZuAX758Qbdu3TRuomtra6NTp05UaMhg/OlMnjyZvt8zZ87Ex48fERERgfDwcERERCA2NhaxsbFISEiAQqFQmXsAmsdRzs7OGDVqFH0+f8CWiXXVI+xrlctU+PvQoUPpnDAlsa468brQcz6zhWaUPe5pIq220IS3tzfatWvHbJECWV0vlPHw8MC0adOoZ7KiRYuiRYsWdN2E2UIzyuIeHr6/AJLXq/hrQrEIz86dO1GqVClIJBIUKVKEHtZkpIynpycsLCyoQKRPnz44efIkHB0dMWXKFBpBkxCC9u3bs4gb2cjHjx9ha2sLQgiaNm2Ks2fPwsvLC9++fcP+/fvxzz//iLweNm/enHpeVzemyghsPSsZVi9+H378+IHGjRuDEEL7V1NTU5Ew3cjICAUKFIC5uTksLS1RrFgxlC9fHnXr1kXHjh2xZcsW3Lhxgz5T+J4Lxeu8SJcJddNGdHS0xmt+fn7UcVKPHj3SLdaVyWSoWbMms0cK8OUQGhqKsLAwFedI/PXg4GC6v9q9e/d02yIpKQn79u2jtpgwYYLK32D8Ijvrhbe3N4oVKwZCCKZNm4b79+/Ta8wW6pkyZQrq169Pf9dUTvw88f79+/SQ1MmTJ1NMy6PsEI7te6jy8+dPDBw4EK1atUo1LV+O586dg46ODqRSaarOxhgZR7lOeHp64sKFC7C1tUXRokVF+xgdOnSAg4ODyp6UunWWiIgI7Ny5Ex4eHgDYGFkTfNkJ+3BheTLxetbBBOwMBoPBYDDU4uDgAIlEAltbW3z//h1JSUkqg2R+gBYcHEw9ufbp0yc3sptnuX79Og1pd/To0RTT8otU6mzAJuSZY926dZBIJKhatSocHR0RGRkJIHmiyMTrOUtCQgK2bt2KIkWKoFSpUjh//rzG95sv//v379MJvL29fU5mN88zZcoU6lHM0dGRRom4efMmqlSpwsTrOczOnTtBCIFUKsWjR49STLt48WJIpVLMmzdP5RrrMzLH8+fPUbx4cZiammLv3r0qQgVh3+Dq6opz585h1apVKFiwICQSCbS0tNCsWTM8ffo0p7Oe53B1dYWtrS309PSwZcsWjZFUAODhw4c4efIk1q1bh4IFC0JHRweEEFhbW+PSpUs5mGsGI3sQbkTY29vTsdGOHTvo58L2Sd04NqWxrbJ4ffz48Xj//j0T62YCYf8xaNAg6klJnVg3JfH6/PnzER4ezrx/ZwJ1tjA0NGQi9lwgPfVCExEREbh+/TqKFy9Oo0WYmJjA2dkZAJvHqyOl91N4LT4+nnqy/PHjBzw8PODs7Iw1a9Zg4MCBdH2LEIJRo0al6W+zuUkyHz58QJ06dagnYy0tLTpe5X86d+6MBw8eUEcXWYGw/JktkvHy8oKVlRWNbmJsbEwjk/I/tra2mDRpEr59+5bpv8fbUhgdlbVTyeRWvWCo4ubmRqPJFS1aFOfOncPr16/x5s0b+Pr6wsfHB+7u7vj06RO+fftG/01MTFSJ6ijsV4Ti9Xr16tF6x3sZZUJdVTTNE9SVz9OnT2n96dmzZ5rFujKZDNWrVwchBGZmZsweGkivLfgDIOmxBY9cLsfevXvpOIvZQkxO1AuFQgFHR0d6GEEqlaJ27dpYs2aNxnzkd54+fUr76xMnTqSYli+748eP03vUCdiF49Xbt29j8eLFqF+/Pjp37ozJkyfjw4cPANj8W5nbt2/Tcj137lyKaXlbrF+/nt7DR6JVR2pzCFYvNCMsm+DgYDg4OKB27dooWLAgLXuJRIJBgwaJ1ncB9eXOPy8qKgrbtm1D0aJFoaWlRddCWL0QI3RkuGrVKrx//150PbPidVY3xDABO4PBYDAYDLWsW7cOhBAUL14cHz9+VLkuHFTxQgV9fX04OjrmZDbzPJGRkahTpw4IIRg9ejRiYmJU0vBiLN7zbo0aNdSmY2Qcb29vGBsb0/I9efIk3r59qyJef/HiBb0nv00scpIvX76gc+fOIISgQYMGIq+4vJc3vo3y8vKiXoDMzMyohze28Zo1eHp6Uq9KNWvWxKFDh3DhwgXqeb1QoUKYOHEiE6/nEH5+fqhSpQokEglWrFihUawbHR2N7t27gxCCbt26sfqQxURGRlLPe3Z2dnQBEPjV9vAbtJGRkXj69CkaNmxIN9yrV6+Oq1ev5kre8xrR0dGYMGECCCGoU6cO9boH/OoveFskJSUhJCQELVu2pAvAhQoVwpEjR3Ir+wxGliPciJg6dSp913fu3Jkpr6DOzs4ij6Njx45FXFwcgGRhERPrZhyhXQYPHkzL+MmTJ/TzlMTrc+fOpdc8PDyYLTKBJlsIveqlFSZizxxpqRcpwZezv78/GjZsSOf6hBAEBARkS57zCnv27MGQIUPQvXt3dOjQAW3btkXDhg1hZ2cHOzs7VKpUCaVLl0aFChWoZ2QDAwORmFRLSwtDhw6lz1T33n/48AErV66kv7P1lWSCgoKwZMkSusbBl6elpSUmT56MoKAglbndli1b0i2C40lMTMSNGzewdOlS+hmzRTLe3t7o1KkTjTbD/xgbG2P48OG4d+8ePeDP4+jomOEIW7zAa8yYMfQzZotkcrpeyOVy5lFRA+7u7ihcuDD1eu/l5SW6rinijaZ3WShe5z3qm5mZwd7eHsuXL2dC3UzC2+DZs2dUrNurVy+N0et43N3daSQKCwsLrF+/Hhs2bGD2yAQZtYUyTMSeeTJri7i4OHh6etJoUbwthBEKGL/w8/NDr169oK2tjQEDBqRpLrZmzRra3ytHcxL2Ldu2bYOhoaFonMa3W7wIle2J/MLLywtdunSBtrY2hg4dqlYXAojbkunTp9NyffjwYYrP//HjB968eYNVq1Zh+fLlWLhwIZ48eYLQ0FAAzBaaSExMREhICOzt7dGkSRPRu1ymTBn89ddfuHfvHl2DBTSXpVC8vmXLFtjY2Ij2QNi6lHrCwsJoZI6JEyfC3d0dAPD582csX748057XWd34BROwMxgMBoPBUIuzszOsra1hYmKC06dPiwZIws3CTZs2Ue/rZcuWxatXr3Iju3mWuLg4TJ48mQqn3759K7outEWzZs2oiJQJ2LMemUyGIkWKgJDk0LTW1tYi8TrzvJ6z8EJdQgiaN2+O58+fIyoqSpTGw8MDgwYNogJrW1tbOuljZB3CulGuXDkUL16cLnowz+s5S2RkJBXx1K1bV+VwB4+rqyuqVasGQgh69+7NFqWygYCAALoI2KxZMzx8+JBG7+Dx9vbGv//+S9syPT091KtXDxcuXMilXOdNAgICUKNGDdpfPH36VKW/+PjxI44cOUIPDfKCh/379+dSrhmM7EPY5vORVDIjYndychKJ1ydPnqwyFxGKdYWbIvlpET4zCO3StWtXNGjQQO2GyKVLl+ghT0IIli1bRq/xdme2yBxCW3Tv3h0VK1aEi4tLhp7l7e2Ntm3bUhE7/xw2Lksbaa0Xygjf9cuXL9O+nxCCLl26qIzXGL/YsmULFeGk90dPTw9aWloYOHAgtm7dSp+p7n338/OjXnbHjh1LP2frLMkkJiYiPj4eN27cwOXLl/Hw4UMVT3B8WY0YMSLDnlwTExNx//59OqdhtlAlPDwcMpkM27dvx44dO3D58mW8efNGlIZvcxYsWABCCHr06JEh4fSJEydofWKCRFVysl7cvHkTtra2WLNmjWi9i9kiGZlMRkU+LVu2hKenZ4aew/fzMTExIvH65MmTqTCeCXUzj1Csq6enB0II+vXrh/DwcLXp3d3dqed1CwsLbNy4EV++fAHA7JFZhLbQ1dUFIcmRlsPCwtL1HCZizzzprRc8yuW7Zs0alCtXjnrWnzhxYrbl+U/mxIkT9EDx6tWrER8fT6/xzkd4Hj16BEtLS7pfrulgwebNm+m4qUePHli0aBEWL16MRo0agRCCKlWqpPuASH7g6NGj9PDx2rVrRbZISkoSzaWvXLlCy7hVq1aiaCpCm/348QP3799HrVq1UKJECdEc0dLSEi1btoSHhwcAthaizJ07dzB58mS6d8T/VK5cGQMHDoRMJqPtUkpRJYSf8+J1/iCaVCpF/fr1mXOFVJg4caJo3fvevXtYtWpVusXrrG6kDBOwMxgMBoPBUEt4eDi6du0KQgiaNm0KFxcX0WQFgEh0RQiBg4NDLuU2bxMQECAS6r5+/VpFePX333+DEAJdXV1Mnz4dAFuQyg5kMhn1JCORSKCnp4eOHTvCycmJpmHlnnN4enqiWLFidNFp5MiRuH37Ns6dO4cDBw6gQoUKNJSaubk53NzcADCBTnagXDcMDAwwevRo+Pj45HbW8h1+fn4oX7487TMePXqE79+/A0heoHr37h311mBkZJRqSEhGxvHy8qKL6uXKlUPPnj1x8OBBrFu3DgsXLoSFhQVdoDcyMkLPnj1x+/bt3M52nsTLy4t6Aa1cuTKGDBmCy5cv4+jRo9i5cydq1apFbaWvrw87Ozu1YWgZjLxCVonYv3//jhkzZtD7K1SoQA/cyuVy0ZhLKJyWSCR0EZ6RNoR2UfboCgChoaEYPny4aEOL9/L68+dP0RxFaAtCSIaFRfkVoS0CAwMzPP9TKBQIDg5G69atQUiy114Wtjl9pFYvlBG2SSdOnECDBg1oPRgwYAATr6eCl5cXPRxeoEAB1KlTB/3798fo0aMxbNgw/PPPP5g5cybmzp2L+fPnY926ddi2bRsOHjwIJyenFD3x8vj5+YkiExFCMH78eHqdrbekXAbKax1PnjyBjo5OusW6vHi9Zs2azBYZRNkWr169ouWYEeE0EySmTE7UCyA5ckevXr1ovejWrRsOHz6cpnzkJzIrYufLUVm8Pm3aNOr1Ekhuq1i9yDx8HXny5AmMjIzQpUsX+Pv7q6Rzc3MTide3bNki8tCrbA+hWJfZI20IbaGvr48qVaqoHMZJC6zPyDxprRcp8ezZM+oEy8DAAH379s1wJJa8iPBdXLVqFZ2XbdmyRe3BjWfPnqFLly4oUKAACCEYPHiw2vnEhQsX6LOWL1+Or1+/0mvOzs6oWrUqjIyMcOXKlez5Yn8gQlusXLlSpPkIDg5WSX/9+nXY2tpCIpFAS0sLc+fOVSugfvXqFaZPny6KeKatrY2qVauiTJkydD/R0tKS7d2qYdq0abTcjI2NYWFhgeXLl6scmE0NTZ7XpVIpHj9+jKioKJFzBSZi/4XwfeSdTRJC0KhRI/peV6xYEfv370+XeJ3VDfUwATuDwWAwGAyN+Pj4wMrKCoQke3KdMmUKTp48CQcHB7Rr146ePieEYP78+bmd3TyNUKhra2uLwYMH49ChQ1ixYgWaN29O7WBhYYGrV6/mdnbzNO7u7nTTtnDhwliyZAm9lh8mEL8bXl5eqFWrFq0DUqlUxdububk5nj17BoDZKDsR1o1ixYph7dq1tLzZ4njO4unpScW65cuXR+vWrbFs2TJ06dKFHojS19dH7969mWgtm/nw4QOaNWtGD9Ooa6ssLCywdetWZots5sOHD2jQoAEdv6rzIGpiYoIZM2aIoqowGHmVrBKxBwUFYfLkyahbty4IIbC2tsajR48AJI+7lIXTjRs3BiEEBw4cYOOydJJaeQUHB2P+/PnUc3HJkiVx//59eq/QFj4+PmjQoAG0tLRw9+7d7Mx2niSj767ymDgiIgLTp0+n0YyMjY3x7t27rMhiviGtthCmO3nypEi8/vfffzPxehpxc3Ojm6lt2rRBQEBAhp6jbn4oFK+bmpqid+/eTHiVCYTeQ9Mj1lUWrxcpUgSjRo1itsgEvC2ePn2aYeE0wASJWUFG6wVPbGwsTp06he7du4scOEyePJmmYbZIJrMi9oSEBJQrV46un7Rr1w6+vr70Gg9fL/g1FuFBG0ba4euGt7c3PVApJDg4mEZhlkql6Nu3L/X6qs4e6g4+MdIGbws3Nzc8ePAgQ89QKBRISkoS9RmjR48WXWekTmr1QhOJiYm4c+cOHUsZGRlh7NixokipjGSEc7RZs2bR+dmwYcOwf/9+hIWFwcXFBfv370flypWpd3BhFHL+fU5KSkJiYiKNtDJy5EhER0fT5ysUCkRERNAIXEuXLs3ZL/ubI7TFzJkzqS369euHrVu3wsvLC9euXcPq1auhr69P2/lWrVohLi4OgHid8fr162jbti21WYUKFTB06FC8evUK4eHh+Pr1K65cuYJWrVqBEILq1aszr/hqGD16NMzNzbFjxw6NkZ5SIiXxurCP+fDhA3V0wUTsYoRlIBSxE0JQunRpHDp0SMXppDLCfpfVDc0wATuDwWAwGIwU8fT0RMWKFUWCK21tbXoakBBxaHJG9uHp6Ylq1aqJbMEvtuvo6MDS0hIHDhzI7WzmC9zd3emmba1atXDs2DG24Z2LBAUFYdasWVQ4xf+UL18enTp1ol7A2eJs9iOsGzVr1mR1Ixfx8vJC3bp1qVcSoVjXyMgIffr0oQJDRvYSEhKCQ4cOoW/fvrCxsYGxsTEqVaqEHj16YPny5RkKIc/IGMHBwdi2bRu6dOkCKysraGtrw9zcHM2bN8c///wDd3d3UchTBiOvI1yEnzp1Ku0njh49mq774+Li8OLFCxrBS09Pjx4eVB5/BQQE4Nq1ayIvWIzMw9siPj4eb9++Rbdu3agt+EM5yrYIDAyEk5MTa/dyAHWeeLds2YJy5cpBV1dXtL4yZ86cXMpl3iUlz+uDBg1i85V04u7uTkWJzZo1o6JEuVxO2xnh/9MyD1cWr69cuRIBAQE4ePAgE+tmAqFYl29jOnXqJPKYK0RZvG5ubg5HR0dERkZi3759zBaZQJ0tunTpwkTsuUB664U6FAoF5s2bhyJFilBbDBs2LLuy/MciFLG3bt063SL2ZcuWoVOnTtDT04NUKsW0adPoNeGBW7lcjj179tC+/c6dO1n2HfITym2I8u/r169Hz549qVMAYfujyR5mZmZ49epV9mY8D5KaLdJ6b1BQEEaPHk3bqaFDh2ZZHvML6bUFP5aqUaMGCCEoWLAgxowZw8TrKSBcl5o3b55oH8PCwgKGhoaiPb+aNWvSA03KzhfCw8NRunRpEEJw6NAhtX+jVatW0NbWxvHjx7P5m/15CMtp/vz50NLSogfEzMzMVJyHNWvWjIrXhetK586dQ+3atelaR8OGDXHjxg18+/YNwC+7JSUl4c2bN6hatSoMDQ2xb98+AGxMC4htwR/W4Elv+URGRmL16tXUsZW2tjZ1nCCsQ8JojYULF4aLi0uG/l5eRGiPiRMn0jrQpk0bvHjxgl5TV1bCz1jdSBkmYGcwGAwGg5EqAQEBmDVrFho1agRtbW0ULFgQFhYWGDp0KE6cOJHb2ctXBAQEYNq0aTR8Ju+lrV+/frhw4UJuZy9fIVyEr127Nvbv368ykWTkHAkJCYiOjsbp06dx7NgxHDhwAF5eXlSMwDx85hzCulGjRg0cOXIEsbGxuZ2tfMnHjx+xatUqtGjRAkZGRihWrBjKlSuHHTt2ZCgELSPzxMbGIjQ0VKW/YG1UzvPlyxf4+fnRUKi8DZgtGPkN4SK8vb09CCF4+vRphp7l7++Pv/76C4QQVKtWDTKZTG26vL7g/jvg7+9PDxTUqlULHz58yO0sMQA8f/4cy5YtQ5EiRehGPO+5bPLkyTh58mRuZzHPwcTr2UNmPesK8fPzo3YxNTXFv//+i0+fPgFItt+ePXuYWDcTCMW6woNqymNeZcGVubk5Dh8+TOfyvCCR2SLjqLPFpk2bRN6L0wITsWeetNYLdQjHzuPHj6eRCAkhuHjxYrbl+U9FJpPB3NwchCRH+E3PQQEg2TnDhg0bqJfKQYMG0WtCW8jlcjg6OmLt2rVZlndGMsJ2xdfXF5s3b6bj2MGDB9Nryva4cOECjhw5kqN5zc/w5Z+YmIiYmBhs2LAB7dq1ow6w+J+MenVnpA4Tr2ccYfuxZ88edOzYUfTe8p6Ou3btioiICADqxzxhYWEoVaoUJBIJzpw5A0A8H9y0aRMVyLPDNeoR2uLgwYPo2bOnii1q166NcePGIT4+HoBYvH7lyhVUr16dtj1t2rRBSEiIxr8XFRWF1q1bgxCC3r17Z98X+wMRvruZ2a8IDAxE165d6dyhUaNG+Pz5MwDxwXMgWcTeoUMHauv84vk7LahbP+fX8tKy18rqRuowATuDwWAwGIw0kZCQgISEBLx+/Rrv379HcHAwnZwAbIE8J4mPj0d0dDRu3LiB27dv48OHD/j+/XtuZytfIpPJYGFhAUIIWrRokWqYKEbuwNqnnEcmk6FIkSIghGDAgAHscEcukpSUBIVCAVdXVwQEBDCPt7mEJo89TCyd82jqE5gtGPkZ4SK8v78/AHFdkcvlaQ5Ne/v2bZQpUwaGhoZYs2YNAFa/spL4+HgVL2PqUCgUuHLlCiwsLGBiYoIdO3YAYLbICZS9Tn/79g0eHh4YMGAAKleuLNr4rVixIuzt7VUOjbAwzVkDE69nL1khYvf29qaR1IyNjbF69WrqfYxHWaw7bty4rPoK+Qa+Ljx//hzz5s1TsZVcLsetW7dQtWpVEEJQqFAh6rBEWI+UbTF27Nic+xJ5BKEtBg8enOGoaImJiRrrBevr00Zq9SIlfvz4gVOnTlGRopGREebPn08jQDLEyGQySKVSVKpUKc1lJJyLJCQk4Pjx41Q0PWPGjFTvZ2OprEVoj8TERBw7dozaY+7cuanez9ql7EF5fevLly9YuHAhFbzxfUSpUqXQtGlT3L59m3pLZmQtTLyeeYTtdlhYGO7evYvFixdj+vTp2LRpE54+fUoP/alr4xUKBX78+IG2bduCEIKJEyeK5hXbtm1DoUKFQAhhh51SQdhmR0dH4/nz59i+fTs2btyIo0ePIigoSHRohufx48do1qwZ9S7dvn37FNev+DZs8uTJdE7JHGFlD6GhodiyZQsaNWpE53sPHz4EkGwHZRF7o0aN0KxZMxrtgJGMsO3h31v+QLGHh4fG+1jdSBtMwM5gMBgMBiNNqAv9yxaefh+YLXIPV1dXVKpUCe7u7rmdFQbjt8Ld3R2tW7dmG3i5jLr+mx3qYDAYDIYyyhuAwv7DxcWFinpSm3fExMSgRYsWIITAzs4uxfRsDpM+YmJicOPGDfj5+QFIvfxiY2Np5K6mTZvmQA4ZQpvExcXh7t276Nq1K8qUKSMSrjdu3Bjjxo3D58+fUxWR8NeZECt9MPF6zqAsYvfy8krzvQqFAtu2bQMhBHp6ejAyMsL06dPpdaEnP7lcjn379lEbLl++PEu/R36ArxPCcuWRy+XYvn079PX1oaenB2NjY8ybN49eF3oIV7bFli1bsj/zeQzeFtHR0Rm6Xzif37x5MzvckQlSqheaiI6OxvHjx2FrawtCCAwMDLBgwQJ6CJShnqCgILx//17tGlVaiImJwdKlS6GtrY0KFSrg2bNn2ZHNfEt67REVFYW5c+dCW1sbNjY2cHZ2zqacMdShPC94/Pgxli9fDisrK9Gcw9TUFP369cPdu3dVDggysg4mXs860tIWpbYOcvjwYVoHevTogSFDhqB///70s7Fjx9I1FYZm0tJfC699/PgRo0aNQoECBUAIQdu2ben1lNYyQkND6YHmbt26ZVHuGUL4OpOYmAg3NzfqVd/Q0BAvX74EoP5AFB+1liFGnYjdyMgIp0+fVpue1Y20I+EYDAaDwWAw0gAhRPQvx3GcRMKGEr8LzBa5R7Vq1TgXFxeucuXKXFJSUm5nh8H4bahcuTJ3/fp1rkyZMrmdlXyNuv5b+H8Gg8FgMDiO46RSqeh3vq948+YN99dff3Hz5s3jOC7leYdcLuf09fW5Fi1acFKplPv48SMXGBioNi0A+qzv379zHh4eXGRkJBcZGclxHMcpFIpMf6e8hEKh4K5du8YNHDiQW7JkCcdxKdsiMTGRK1CgAFenTh1OKpVyX7584b5//57q3wGQ4u8M9fDvK2+TnTt3cqNHj+Zat27NXb58mfPz8+MKFizI1ahRg9uwYQN36tQpbuvWrVyxYsU4XV1djc99+fIl17VrV87FxYWTSqVsvpkCwvc7KSmJ2uLkyZOcg4MD9+LFC47jOO7vv//mtm3bxhkZGaX52axeaKZSpUrc48ePucKFC3P379/nxo4dy8lksjTdSwjhxo0bxz148ICbOHEiJ5fLufXr13ODBw/mOI7jdHR0OLlcznFcch81ZMgQbvfu3Vy1atU4bW3tbPtOeRW+Tujo6Khck0ql3NixY7k7d+5wU6dO5RITE7kVK1ZwgwYN4jiO47S1tWn7w9ti165dXOvWrbkiRYrk3JfII/C2MDAw4Dgu7W0KbwN+jHb+/HnOx8eH09fX57S0tLgdO3Zw48ePz4Yc511SqhfqiImJ4S5fvsytWrWKc3V15fT19blp06ZxI0aM4EqVKpWdWf3jKVGiBFe1alWOEMIpFAr6HstkMi44ODjV+/X19bnmzZtzhBDuw4cP3PPnz1O9h80n0g5vDxcXFy4kJCTV9IaGhlzz5s05uVzOvX//no6zGDkDP3e/d+8eN3/+fK5jx47c8uXLuaCgIE5PT48rUKAAN3/+fO7o0aPc8ePHuZYtW3Kmpqa0v1HX77DxbcaQy+XckydPuClTpnDOzs6ckZERN2DAAG78+PFctWrVcjt7fxzKexYKhULlvdW0DsJfHzRoELd582aOEMJdvnyZO3z4MHfixAmO4zhu8eLF3NSpU7nSpUtzHMdpnF8nJCSkeD0/oLynpK6N4Pt0juO4Fy9ecCdOnODi4+O5xo0bcydPnuQIIVxSUpLKeiPH/SrbL1++0HGApaVltnyX/A5fZ7S0tLgqVapwa9as4Tp06MDFxMRwM2bM4AICAlTqnrm5OWdhYZEb2f3tEa7Nbdy4kZs1axbXuXNnrmvXrqJ0rG6kH63czgCDwWAwGAwGg/Gno6WVPKxWN9lgMPIzfN1gMBgMBoPxZ/L+/XvO39+fi4mJ4e7cucO1bt1aY1q+3/f09OSSkpK4+Ph4jYemCCFcXFwcN3fuXO7hw4fcu3fvuIoVK3LW1tbchg0buEqVKmlczM+vfPnyhQsPD+cePHjAPXz4kGvWrJnGtNra2hwAztvbm0tKSuKio6PTJEoghHAAVDYrFQoFOzSthLBMJBIJ9/nzZ+7cuXPctWvXuOvXr9OyMzc354oWLcotW7aMq1ixIlexYkX6DGFZK/P27Vtu9uzZ3MOHD7lGjRpxz54942xsbFi9UMOWLVs4mUzGjR8/nqtatSotn6wQr3McqxepUalSJe7Jkydc06ZNuXv37nGHDx/mVqxYkeqhWb78mjZtytna2nI2Njbc+PHjuaNHj3L6+vrczp07OS0tLVr2UqmUGz58ONekSRNRPWJkHt4WDRo04KpVq8ZVrVqVGzNmDOfo6MgVLFiQ27ZtGyeVSkW2GDFiBNe+fXuuZMmSuZ39P56U6oqw7ZFKpVx8fDx37tw57s6dO9zBgwc5LS0tTi6Xc8bGxpyOjg7XpEmTnMp2vkMoXndxceH09fW5qVOncsOHD2fi9XTC952XLl3ixo0bx+3duzdNwpwmTZpwderU4Z4/f85duXKFs7e3p22Spr8DgIuOjuYKFChA5yopjb/yM0eOHOGGDBnC3bx5kytWrJjGdHz5tWnThqtevTrn7OzM3b9/nxs1alSaxkYARIeZGSnDlzf/75cvX7iAgABu9erV3Js3b7igoCCatlKlSlzv3r25rl27crVr16af8/MH5bHsw4cPOZlMxo0ZM0ZlvMv4VW4AuMTERJXDTlkpXmf1Qj3C8kjt3eTF1BKJhJswYQJnbW3NvX//nnv9+jVXpUoVrlmzZlyrVq04juNEY1oeDw8P7suXL9ylS5e4T58+cbNmzeJq1qyZPV/sD0RT+UskEu7Lly/c9OnTuaioKK5q1arc6tWrORMTEw6A2j5aoVBwUqmUi4uL4yZOnMgFBwdzFhYW3MiRI7P7a+RpwsPDOWNj41TXi6ysrLh+/fpxjx8/5jw9PTkXFxeuVKlSrA9IB7yIXSqVcitXrqT/F67XsbqRfpiagMFgMBgMBoPByCRsUsdgMBgMBoPByIvUrFmTa9asGffo0SPuwoULXPXq1dV6WxUu1n/+/JnjuGQRtSaPlq6urty8efO4K1eu0EX7jx8/cp6enpyTkxP34MEDrnLlymwD5f9IJBLOzs6Oq1+/Pvfy5UvuwoULnI2NDWdqaqqSlt+09ff358LCwjiO4zgTExMVj8XKApMHDx5wd+/e5Z48ecJpaWlxBQsW5Nq3b08Fikw4LYYvu//++4979+4dt3TpUi48PJyLioriJBIJp1AouL59+3Ldu3fnWrduLbIV/16nJF63t7fnXrx4weno6HAxMTFc06ZNucePH3PVqlVjthDw5MkTbtKkSRzHJbc5EyZM4MqXL8+dPn06Q+J1Vi8yRsWKFbl79+5xS5cupYLC1BCWs4mJCTdgwADu58+fnL29Pbdv3z6uevXq3NixY1UiQfLidXaAIOsQlqORkRHXt29fLioqipsyZQp38OBBrlatWtyIESNUbMGL11lfnfUo9xPe3t6cl5cX9++//3JeXl5ceHg4x3HJ4rnGjRtz/fr149q2bcuVK1cuN7OdZ9EkXmee1zNOdHQ0d/DgQS44OJhzcHDgatWqxZmbm2tML5fLOUIIFxsby3Fcsndc/pCTEL7uyGQy7v79+9yFCxe40NBQrkKFClyTJk24iRMnMqGuGn78+MFt376d4ziO27t3L1ezZk3OzMxMbVpeJPr161faFv38+ZNeU0a5v1Y3Bmb2UI+wXL5//869fPmSW7t2Lefr6yuKdNa2bVuuVq1a3IwZMzgTExOVsuTHqsLnvXjxgnNwcOAuXLjAvX37ltu9ezerG0pIpVLu58+f3MaNG7ly5cpx7du35wwNDTmOy7x4ndWL7IGfh0skEq5Tp05cp06dRNf5Mk1MTOTCwsK4d+/ecffv3+fev3/PPX36lIuPj6fej93d3blHjx5xxsbGzA4a4Mv69u3bXGhoKKenp8d1796ds7Gx4ThOfZ/AH9RISEjgFi1axL169YqTSqVc48aNRYfZNM31WL1QT2BgIHf79m2uU6dOXLFixVKcK2tpaXEdO3bkihQpwvn5+XFHjhzhunTporFcmS3Uo3zAWyhKz866kZdhAnYGg8FgMBgMBoPBYDAYDAaDwWCoUKNGDe7vv//mHj9+zG3fvp0rV64cN3bsWE5XV5fjuF+hTflF+sWLF3P379/nOI7jhgwZIgo5yy/gf/v2jZs9ezZ3/fp1rmDBgtyePXu4IkWKcBEREZyDgwP34MEDbsKECdypU6e4woUL5/A3/n2pW7cuN3ToUCo2sLa25kaPHk1tkZiYyGlra9ONpXXr1nHv3r3jOI7jhg0bJhLuCkW3V65c4W7evMlt27ZN5W/euHGDK1++PHf8+HGucuXKTDAq4OfPn9zMmTO5ixcvcj9+/OAiIyM5Qgino6PDTZgwgbOzs+P69OlD0wvLLqVNPmXxert27bjIyEju/v37XJMmTZiIXYnGjRtzY8eO5Xbs2MFt2bKFk0gkXIkSJbhz586lW7zO6kXmqFq1Knf8+HFaFryokI+4UaBAgRTvl0qlXJs2bbimTZtyt27d4p4+fcqNHTtWY3phmef3zfO0AoCLiYmh4itNSKVSrnXr1lzt2rW5p0+fci9evOBGjBihMT0r+6xF+D4HBARwd+7c4TZs2MCFhoZy3759o+n69+/P1alTh5syZYrKvcrtEqsjGUedeH3atGnM83omKVCgANe1a1fu+fPnnKurK3f//n2uV69easc2ADgtLS3O3d2d8/T05DiOo3MM5feaEMI9f/6cmzhxIufu7s7Fx8dzHMdxLi4u3JkzZzhfX19u48aNrD4oYWBgwA0ePJjz9fXlXrx4wT1+/Jj766+/NArWJBIJ5+PjQw8uFy1alOM4VXvwaQFwMpmMe/r0Kefl5cV9//6da9q0KVexYkWuXr16TDithHIbvnHjRu7x48fchQsX6GfGxsZcjRo1uP79+3P9+/en41yFQqFRGMd//vz5c27jxo30eXv37uV0dXW5LVu2MFsosXDhQm7t2rWcjY0Nl5CQwHXv3p0rUKAA9/jxY27q1KkZEq+zepG9EEJU5srfv3/n5HI59/DhQ+79+/fcgwcPuHfv3nGRkZEcxyX3SSVLlqSRobp06cJxXPIhW4Zm+Hbq4cOHXFxcHGdoaMj9/fffGucawgMEe/fu5a5cucLFxcVxOjo63D///EP7Ev7ZX79+5dzc3Dh/f3+uSpUqXIkSJTgLCwu2FqJEXFwcd+jQIW7RokXclClTuPXr16e4PpGUlMQVLlyYK1euHOfn58dFRERwcrlcYzRtZgvNCNtn5cPeHJc9dUNTv5An1qXAYDAYDAaDwWAwGAwGg8FgMBgMhgCFQkH/v2zZMhBCQAjBunXr4OPjo5J+yZIlNE3ZsmVx/vx5tc8dOXIkCCEwNzfHf//9J7p269YtFClSBNbW1vD398/Kr/NHI7TF0qVLaTmvXr0aMplMlPbHjx+wt7enaRo3bowXL17Q63K5nP7/33//RZUqVWjakiVLok6dOrC3t0f79u1RuXJlEEJgaWlJ/44wL/mdIUOG0LKzsbHBqFGj8Pr1a1EaYXmnhpOTExo3bgypVIoCBQpg0KBB+P79O0JDQ9G2bVsQQmBiYgJXV9d0PzsvIvz+kydPprYoXrw4/f/gwYPx48ePdD2L1YusgS+TW7duYenSpQCApKSkVO9bsWIFCCHQ1tbG27dvM/W3GWIOHDiATZs2AUibLWbPng1CCAwMDODp6Znd2cv38O9tXFwcwsPDMW3aNDRt2pS2RXz71r17d5w/f15kQ2EbJnz/nZ2d1X7OSCa1ehAdHY3jx4+jevXqtC4sXLiQjVGziLCwMPTo0QOEENSrV0/0vvLw721ISAhGjhwJbW1taGlpYdWqVQBUbfjy5UuULl0ahBDY2dlh8uTJ2L17NyZNmgSJRELnMgxVQkND0aVLFxBCUL9+fTreBH7ZgS9vPz8/tGzZEoQQmJqa4tSpU6LrPImJifj48SN69eqFihUritozQgisra2xZMkSlb/DAIKDgzF16lR06NBBVGalSpVC/fr1cffuXQQEBIju0VR+ws+fPXuG3r170+f16NGD1o0JEyak+qz8hqenJ0xNTUEIQc2aNXH48GFcvXoVNWvWBCEEBQsWxJgxY0T1JTVYvcha1PXlMTExCAsLw6FDh7Bs2TLUrVsXVlZWonKuU6cOBg8ejP3798PZ2Rlfv35V+1xW/qnTrl072p4AQEJCgkoavjwTExNx8OBB1KlTh9pi//79orTfvn3DxYsXUbZsWRQoUACEEBQpUgQ1a9aEm5ub6HmM5LnDvHnzQAhB7dq18erVq1TvCQoKQvny5UEIQdu2bTWWJ7NF5sjKuqGunL9+/aqy3vUn24MJ2BkMBoPBYDAYDAaDwWAwGAwGg6GCcOF7xowZdBG9ZcuWmDt3Ls6ePYt///0XPXv2pNf09PSwePFitc9zcXFBkSJFoK2tjdu3b9O/wW8Kuri4wMjICIQQep2RjNAWM2fOpOVdt25dTJw4EVu3bsWYMWPQokUL0UGCnTt30vsSExPp/8ePHy/awB04cCCuXbuGmJgYAMmbYK9fv0arVq1ACEGLFi3w5cuXnPvCvzHKhzvGjh2LsLAwxMbGqlxPK7x4XUtLCwUKFMDff/9NN9EVCgW8vb3p5hcTsf9C+P0nTZokeqe7dOlC3+eUbCJ8BqsXWYuTkxMIITA0NMTHjx9TTMvbaNeuXSCEoECBAnj8+LHatHx7+PnzZzx//hyrV6/GsWPHcO/ePZXnMZK5efMmPTwWHBycYlq+7P79919qv5SEWWkRzDHUoywwcHZ2hr29PRXG8T9Vq1ZF9+7d4ebmpiKwEiIs80uXLqFGjRoYOXKk2uv5HWHb/+zZM0RFRQH4VUbqxOsLFixIs3id1Yu04e/vDxsbGxBC0Lx5c7x+/Zr2uXz9+PTpE5YsWYJSpUrRdszX11flWZ8+faJjpc6dO+PNmze0vGNiYrBgwQJoaWmhZ8+eOfcF/zD8/PzoIb7mzZvjxYsXiI6OFqXx9fXF8OHDYWZmBkIIKlWqhE+fPqk8Kzg4GHv37kW1atVACKEi6SpVqqBOnTooXrw4pFIpCCGYMmVKTn3FPwZ/f39YWlqCEAJdXV0ULFgQQ4cOxZ07d1TEaim1K8ri9T59+tC+ZenSpUhISMDevXuZiD0FZDIZihQpAkIIypcvT9uijIjXWb3IHmJjYxESEoJjx45h6dKlsLW1pfWHL+M6deqgV69ecHR0xOvXr/Hz50/RM5QP6jBSRy6XIykpCfXr1wchRGP/yo+5fv78iZ07d8LOzo62Q//++68obWhoKNasWYPChQuDEIIKFSrAysoK1tbWIISgWLFi7GCtGh4+fEjHU3PmzEFERITadLwteOchhBD069dPbXvPbJFxsrpu8Gu5CQkJiIiIwPLly9GnTx+YmZnB2toazZs3x6JFi+Dn5yd67p8GE7AzGAwGg8FgMBgMBoPBYDAYDAZDLcKF7yVLlsDExARaWlp0M10osLKwsMD8+fNpeuXNv1u3blHPcUFBQQCSNwr5v3Hv3j0ULlwYFStWxOfPn3Pg2/1ZCG2xdOlSmJub0w1ubW1tkS1q166NrVu30vTCDdphw4bRzVw9PT2RzYBfmyMKhQLXr19HsWLFUKJECZEn9/yOug2hjIo8nJycYGtrCy0tLWhra6N79+70mtBDk1DEXqRIEbx79y5Dfy+vIbTFxIkTaR0YPXo0PDw80nwvqxdZz4MHD1CmTBno6elhxYoVVJSoDt4WmzZton3MlStXVNLx/cqbN2/QtGlTuvFOCIGxsTFmzJhB0zLh1S9u3ryJUqVKwdDQEBs2bEBcXJzGtPy7Pn36dGhra8PAwECjJz9hP69QKCCTyeDn5wdvb2/Ex8eLrjF+oTw+On/+PGbNmgU9PT0qtNLT00OxYsUwe/ZsvHnzhpZnWoTRly5dQvv27WndGD9+vNp0DKB169aoWrUqHB0dERkZCQCIiorCsWPHMux5ndWL9OHl5YVixYqBEILq1atj+vTpePXqFV69eoW7d++iQ4cONLpKwYIFcfnyZQCq3nEfPnwIU1NTlCpVCnfu3KHX+X/3799P5yvfv3/P+S/6h+Dp6UntUbVqVYwZMwb37t3DlStXcOzYMVSrVg3Gxsb0UCUfLUU4pvLx8cHUqVNRsmRJmq5du3Y4ceIErWeurq7YtGkTbfM2btyYG1/3t8bV1RVFixbF/Pnz6XvPk16R7fPnz9GrVy/aLyxevJjWncTERI0idibmTUYmk1ERp0QiQYECBTBixIh0iTdZvchaXrx4gVOnTmHRokWoV6+eKAoXIQQNGzZEz549ceLECdy7d0/lXebbLNYXZ56VK1eCkOTIJwEBAbRMhWt9cXFxWLx4MWxtbamN5s6dS4XWfDpHR0ca9WDEiBH48eMHPn/+jDdv3qBZs2YghGDYsGGIi4tjtlNiy5YttGy3bNlCHSwAyeXLl1dYWBg9RFOsWDE8fPgQgOohDmaLzJMVdYOfm4eHh2Pt2rVo3rw5CCF0LVj4U7FixT/aMz4TsDMYDAaDwWAwGAwGg8FgMBgMBkMjQkHC6dOnMXr0aCq25RfKhwwZgkOHDqm9h+fFixcoUKAArKys8P79e9G1xMREKs7t0KGDRo9B+R1huV68eBFTpkyBgYEB9PX1oaurCwMDA8yaNQu3bt2i6YTi9TFjxtDNjhIlSmDz5s30mroNjo8fP6JEiRLUSx/jF8JNusxs2MlkMrRv3x4WFhYghKB+/fpUeC2MUAAki9g7depED5BERESwzUKI64W9vT1tl+zt7VXaGh7h+87qRfYQFRWFKVOmgBACGxsbPHnyRG06/h3++PEjKlasSD28hYSEqE33/PlzGBoaghCC0qVLo06dOqhXrx7dxJ09e3b2frE/kIiICBphoHr16hoPXvDvu6+vLz0cUKNGjRQF79HR0ZgzZw7++usv6OnpoVChQtDX10ePHj2wfft2mo61VWLCw8Nx/fp1DBkyBLq6unRMZWhoiJIlS2LHjh149uyZ6B5NQgRl8To/niKE0AMhzKuuKsHBwVSIW716dZw6dQqfP3/G6dOnqYgkveJ1HlYv0oeXlxf1HEoIgY6ODnR1dUXiHCMjIxw+fFh0uA/4VYazZs0CIQRt2rSh14R1Zs+ePSAkOXqRUNTFUMXLy0sUCYK3g9AeJiYmuH//PgCxMM7T0xPDhw+Hubk5Fcdt2LCBCn2F4q2YmBjMmzcPWlpaaNeuHTtYoAblw38ZEaQ9ePAA3bp1U/HqKozOJZfLNYrYGcm4u7tTMWfRokWxatUqlYMymmD1IutZu3atSLhpa2uLAQMG4NixY3j69CkAqHhZB5LHX8Cv9/9P9VT8O3Ht2jUUKlQIhBBs3rxZFCUiISEBnz59wl9//UUPgfBz6G/fvomeExgYSOfY48aNUxkjbdu2DYQQNG7cmI2fBAjbn4ULF4rK+PXr1/RaREQEnJyc6HjL0NAQAwcOVBspjdkia8hs3eDbp8+fP6Nr1670gCEhBLVq1cKoUaPg4OCAMWPGoFatWiCEoESJEip9y58CE7AzGAwGg8FgMBgMBoPBYDAYDAYjRZQ3Zb28vPDw4UPcvXsXLi4uKablkclkKFOmDBUY+vj44OvXr3BxcUGHDh2oZ2levPunLbbnFMrlGxQUhPfv3+P9+/cqAiuhMGH+/PnUa5yVlRV27dpFrylv3PJln5CQQMPYMqFu9hEREYEzZ86gVatWIIRAX18fjx49AqBaD7y8vNC8eXPs3bs3N7L62yJ8hydPnkw39iZMmIDAwEBRWmGZsnqRvQQFBaFhw4YghKBp06Zwd3cXec3l///582f8888/MDAwACEEvXr1QlRUlMrzXFxcqPinR48eePr0KWJjY/Hp0yds2bIFEokE5ubmGj2G52cCAwNpGPNmzZrh/fv3oj6Ct4W/vz/atm1L26IZM2aIDtPw/3758gVHjx5FgwYNRAKiAgUKiH5nXvFVkcvlaNu2rYrnvFatWmHDhg0qbVZKwriUxOsrVqzAqVOn1AoSmS2SkclkMDMzowdtJkyYQL1SGhgYYMGCBWkSr7N6kXkCAgIwfvx41KhRQ1RWZmZmqFy5Mh48eJDi/UuXLgUhBF26dEF8fLyo3rx48QLly5cHIQSLFi3K5m+SNwgKCsL06dNRp04dkT2sra3Rpk0buLu7AxC/v76+vhg1ahStU8WLF8fVq1cRHR1N0yi/72fPnqXPfvPmTc58uT+IzLYPCQkJcHR0hJ6eHhUsrly5UnSdRy6XY9++fbRvWr58eab+dl7E3d2dCg1r1qyJY8eOUe/pmmD1IvtYsWIFdu3ahVevXokO0vD/CqOeODo6YtKkSahQoQK6dOmC6dOnq4hEGRln8eLF9J0dOXIk1q5diwMHDmD48OGwtrYW9SPbt28XzUF4e23fvh2EENSpU4deF6Y7ePAgFeiGhIT8kR6mswvhOzxz5kxRn92rVy+MHj0arVq1opEKDAwM0LhxYzx//lzt85gtso6M1g2+TD9+/Cjyzk4IwbZt26indSDZ/i4uLtQ7e7du3f7Iw09MwM5gMBgMBoPBYDAYDAaDwWAwGIw0k9JGemqb7Lt27aKL7tWrV0flypXpor2ZmRkV7Qo3QJRD2abl7+QX0loOx44dg5WVFfWYuHXrVnotpc2mq1evUq+wO3fuzHR+GaoIPff5+PigV69eIISgcOHCcHJyUntPSoKH/Ixw43bixIkghKBTp07UA5UyrF7kDN7e3ihVqhQIIWjUqBFOnDgh8vT24cMH9OvXD5aWllTo+fbtW9EzeI+UI0aMACHJkTo+f/4sSuPv748KFSqAEIILFy7kyHf70/D29kbJkiVBCEGDBg1w4MABKs6NiIjAf//9h/r169ODBKVLlxaJFPn2xsfHBxMmTKCH0vT19VGhQgXMnz8fR48exe7duzF69GgqnJ4/f36ufeffFVdXVxpJoH///tiyZYvoelqEICmJ11etWkWv7d69m4nYU0AoYi9YsCB9p5csWQI/P79U72f1IuuIjY1FSEgIduzYgQ0bNmDp0qW4c+cOvnz5AkD9O8t/dujQIUgkEpQuXRqPHj2iY6WHDx/SQzlt2rTBhw8fAGTMk3V+4+fPn4iMjMTx48dx+PBh7Ny5E+7u7lQUJRx3hYWFYd68eShatCgVtT1+/Fjjs3m7vX//HkZGRiCE4Pr169n6ffIzt2/fxsyZM+lhmr///pteU/bEvn37dtjY2GDPnj0qEQ8Y4j6jRo0aOHLkiMaoDqxeZA+aBOfCzzVF6BIeKqtWrRrCwsIAsD4howjLbc6cOSDkV/Qf5cNoTZs2xeXLlzU+a/r06SCEoGPHjirPjouLw9SpU0EIwbBhw7LvC/3BCN/5VatWoWzZshpt0a1bNxqpQB3MFpknM3WDt2VQUBBKly4NQgi0tbVRpkwZ3Lt3T/R3+D5coVDA0dERBgYGqFixosqB6D8BJmBnMBgMBoPBYDAYDAaDwWAwGAxGtiIUnGzfvh0WFhbQ19cHIQTm5uaoX78+3r9/D+DXQr+6jckfP35QEQvbZEwb4eHh6N+/P90gEXqM1lSGvGfkOXPmQEdHB7q6urh582ZOZTlPkV6BoJubG/Wc1LdvX3z9+jWbcpY3EbYbe/bswaVLl9SmY/UiZ/Hw8KAidjMzM5QpUwb9+/dHhw4dRCGzdXV1cfXqVQCqdoiKioKtrS20tbVx+PBhlcNNSUlJ1DP+xYsXc/YL/kF4eHjQjXBjY2NYWlqiY8eOqF27NhXv8td4T/ZJSUm0nD08PNC9e3dqNxMTE6xYsULFQ2hUVBQ2b95MveLfvXs3x7/r746Hhwdu374t8hCakbHNxYsX0aZNG2q7devWiZ4nl8uxd+9eJmJPAXd3d5iamoIQAj09PXTv3p2OSwHN5cR/zupF9pNa3YiKikKjRo1ACEGZMmXQvn17jBw5Erq6uiCEoG7dujhz5kyKInhG2uHLjB93nTlzhh5KLl68eKoe8/n79u7dC21tbRgYGLDoKdmAsN58//4dhw4dosLo0aNHq02XlJQEX19fxMTE5Ghe/yRkMhmKFCkCQgh69+6tEjWI1YucRbkNF/4+ZswYEEKgo6ODhQsX4tq1a/D398fff/9NDzuzdz1zCOffvGfpwoULw9TUFFWrVkWrVq1w/vx5eHt703Tq+t29e/dCR0cHLVq0QEhIiOj558+fpwc/hRHTGGKEtrh79y5WrlwJa2trWFpaonz58qhXrx6OHTvGbJFDZKRu8AfHgoODUaVKFXootl69enj58iUAzeNWZ2dnGnHl+PHj2fjNsgcmYGcwGAwGg8FgMBgMBoPBYDAYDEa2I9wYf/PmDW7evImtW7fixYsX1PMVIF6MT0hIwNu3b7Fv3z6MGzcOVapUgYWFBVxcXHI0738y586dE4Ws5dEkBOI/f/r0KfXC27p16xzJa15DWMYeHh5ISkpKVSQVHx+PRYsWUQGWTCbL7mzmOdQdflEud1Yvch4fHx907NiReloX/ujp6cHU1BR37tzReP/r16+pyJ33GCesU7du3aLPS00glN/x9fVF9+7d6aECZS9wNWvWpMJbuVxO339PT0+0a9eOCt3NzMxw48YNkedRoSdXPz8/VK9eHYQQbNq0KWe/5B9IRkS0b9++RZMmTaj9unfvTq/FxcXR//MidqlUyjwmasDNzY2K2KtUqYKTJ0+KIp4ow9uL1Yvch+/3v3//jkaNGtHDGvxPnz59cO3aNZpO+V8eoZ2YqD11+DKKiopCzZo16cHks2fPpnifcKz1119/gRCCQoUKiaKzMLKHxMRE7N27FwUKFICWlha2bduW21n6Y3F3d0fTpk3h5uYm+pzVi9+HtWvXUvH6sWPHRAcGAcDGxgYlS5aEr69vLuUw76Dcn3769Am+vr74/v17igcMhNy9e5d6x582bRru37+Pu3fvYvny5fTgzfDhw7PtO+QVlNczvn//jtDQUHz79k00zkkJZousIz11g0/79etXtG7dmrZfDRo0oBHqUjqI+eHDB5ibm4MQghMnTmTH18lWmICdwWAwGAwGg8FgMBgMBoPBYDAYOQK/maJu0Z0XWr18+RKOjo4YNGgQbGxsRGFWCxUqhMqVK2PRokUspHkqJCUlIT4+Hp07dwYhBNWrV4ezszO9pukeAPDy8kKJEiVACIG1tTXOnDkDACplrmxH5hVfPfv27cOYMWPo76mJotzc3GBsbAxCCJYvX642TWobwcwW6smOesHKOu2Ehobi0qVLGDBgAGrUqIGyZcuiVatWWLp0Kdzd3QForh9fvnyBjY0NDAwMcPjwYVG5P3/+HJUrVwYhBKNGjcqR7/Kn8/XrV9y7dw8jR45Ey5Yt0aBBA/Ts2ROOjo5UyCM8IODn54c+ffrQtqlIkSJ49+5dqn+nZ8+eIISgX79+ag+XMDLPnj170LFjR+jr60NfX1/kYV0oVJHL5di3bx/1EP7hw4fcyO5vjbu7O8zMzEAIQY0aNXDkyJEUReysXvw+8O96ZGQkDh8+jOnTp/+vvfsOi+Jq2wB+z+7SRRBRaSJVARELGsGOGgs2bIlGY0tssURjTPe1pBl8o4maYhJbjK+9F+xiRcSCCkhRKYqoKEpvu5zvD7+dgICaqCzo/buuXFl3zgxn5pmZM7PznDNi1qxZYvny5SI7O/uxbUtwcLCYNWuW6Nevnxg/fnxFVvulMHnyZCFJkqhevbqYOXOmSEtLK7ds8Tj897//FZIkCT09PTF9+vRS0+np5efni4yMjKcqm5iYKLp27Sqfg+jf094bl3Ue53GhW2lpaeL1118XSqVSzJ49u8T1UG5urlCr1aJVq1ZCkiS+Ues5edx++rT3y4sXLy7xNiiVSiX/Hjhs2DC5XPFjrqzjj/fn5WMsKt4/OTZycnLEZ599JszNzYUkSaJhw4YiLCzsicsRQoivv/5abncefQtUVaACEREREREREREREdELVFRUBIVCAYVCAQCQJAkAoFarcfLkSaSmpmLjxo1ITEzEqVOn5PlsbW3h7e2N119/HU2bNkXTpk3h6OgIIYS8DCqbQqGAWq1GdHQ0AMDJyQnu7u7ytEdpYxQfH4/Ro0cjOTkZ+vr68PX1Rdu2bQEAenp6AIA7d+7gzJkzOHjwIHJzc9G4cWN06dIFjo6O0Gg0UCqVFbSWlV9cXByWLFmCsLAweHh4YNKkSeXuu9r9WqVSwdDQEBkZGcjPzy+3HMBY/FMv4rjQzsft/WS1atVCr1690KtXL2RkZECtVsPCwkLepx93bjc3N4enpyciIiLw7bffAgCsrKyQmpqKDz/8ELdu3cLrr7+OyZMnA/g7dlS2mjVrws/PD35+figoKEBRUREMDQ3l6UIIefvdv38fS5YsQXBwMDIyMmBpaYmjR4/Czc3tsds5MzMTcXFx8vJ4fLwY7777Ljp37owdO3bgs88+w08//YQHDx5g1apVUKlU8rlJqVRi+PDhqFGjBiwsLODg4KDrqlc67u7uOHbsGNq2bYsLFy7gxx9/hK2tLTp06FDq3MTjonLR7uumpqZ4++23yyyTnZ0NSZJw/PhxXLx4EYcPH8bZs2dx584dAJDbIT8/PwwcOLAiq19lZWdnIzIyEgBgb2+PPn36oEaNGmWWLd7GBwUFYePGjQAAIyMjtG7dGsDDGDzueor3gKWp1WocO3YMKSkpGDp06BO3kb29Pdq1a4d9+/Zh3bp1+OSTT9C4ceMyyzIWj6dSPUy3e3QbvYjjgv6Z69ev4+jRo1AqlWjdurUcK7VaDUNDQ6Snp+P+/fuwsbFBgwYNdFzbl8Pj9tMn3ZNpr5smTJgAY2Nj/Pbbb4iPj0d+fj78/PzQoUMHfPTRRwCAvLw8GBoayvNoj7+0tDRcvHgRtra2cHV15b1gORiLivc0x4Z2GyUmJuLAgQNIT0+Hnp4efvnlFzRv3rzcNlc7X3p6Ok6fPg0AMDExgZmZ2YtZmReICexERERERERERERE9Fxpf0TX/siu/VG+sLAQZ86cwbVr17B582YkJyfLP7IDgI2NDZo1a4Z+/frByckJ7du3h7m5OYyMjEotnwk/T5adnY2srCzo6emhX79+0NPTg1qtlh/gahVP0p04caIcEycnJ8ycORO1a9eWy+7ZswcrV67EunXr5O8UCgXs7e2xY8cONGzY8JV/QFVcjRo10KhRI4SFhWHfvn3o0qVLuQ/JtQ+kzp8/LydTPfrgqfiDK8bi33mex0VRUREkSYIkSfI5KTo6Gnfu3EFRURE8PT1hbGwMY2NjxuL/afdhU1PTUt89rnOHvr4+fv75Z8TExOD8+fMYO3Ys8vLy5DI9e/bEtGnTSnVIKO9hLxOv/t4Genp68rYoHgtt4trZs2exZcsWpKamwsLCAkFBQXBzcys3sU37fXJystwJx8nJqcTy6fnQbk8HBweMHz8elpaWGDNmDFavXg0HBwd8+eWXJWKkVCrRt29fHda48nNzc8OxY8fQsWNH5OXlwdHRscQ+y+Oicirr3iA3NxeFhYU4ePAgbty4ge3btyMxMRFXrlyRy7i7u6NVq1bo0KEDfHx84ODgUOK6lx4vNDQUhw4dAgCMHj0aTZs2LbNc8X08LCwMf/75J0JDQwEAEyZMQJ8+feRy2jgeOHAAiYmJqFatGqysrNC+ffsndnZ7FUVERGDAgAHIzc1FmzZtHts5SXsecnZ2lrflgwcPyi3PWDxeeev+vI+L4orfT7zq2/9xtOcSQ0ND+Z5DCCHf740ZMwbR0dFo1qwZqlevrsuqEh7et2n37ZEjR6Jr164oLCxEZmYm7O3tS8RI2+H27t27uHr1KkJCQnDkyBFcvnwZV65cgUqlQmRkJFxdXXW1OlUaY6Eb2vP6L7/8grCwMADA0qVL0bZt28f+nqGd76effsL27dsBAOPHj4eLi0uJclWhrWACOxERERERERERERE9F48mrN+7dw83b97E2bNncejQIURGRiI8PFwub2NjgyZNmqBfv35wcHBAz549oa+vD2Nj4xLLfTTxk8nrT6eoqAg5OTkoLCzE9evXAaDcJN0rV65g7NixCA0NRV5eHiwtLbF27VrUr19fLrtz507MmTMHZ8+eRbVq1dCnTx/k5OQgMTER586dQ8+ePXHo0CE4OjpW6HpWZpaWlggICMCePXuwa9cu+Pj44IMPPijVKUMrJSUFBw8ehFKphEajgY2NTYnp2gdPjMW/97yOC41GIyf6Xrt2DYcOHcKff/6JqKgopKWlAXiYCNmiRQt88cUXcHV15Sjt+HsfLv4Q9UmJ/dpkanNzcxw6dAiTJk1CdHQ0Lly4gAYNGqBnz56YMmUKatWqVerhbPFE7KNHjyI7Oxvdu3evEg9xX7SyYlH8s3Zf/fbbbxEbG4vq1atjyZIl8Pb2LrcjWfHvf/jhB8TGxkKSJLz++uullk9Pr6xONkDJ7alSqdCzZ09MnjwZgYGB2LZtGwICAuDt7V2RVX0puLm5ITQ0FPn5+XBwcCiR+MHjonJ4tD3VdpzNysrCoUOHEB8fjw0bNiA1NbVEwnrDhg3h7++Pvn37wsXFBU2aNClzlEp2Ons6BQUF0NPTg5GREZo1awag9LYrfvxcuHABS5YskTtfvvXWW5g9e3aJZcbFxeH999/HwYMHUVhYCOBhh84xY8bgu+++Y+L0I/Ly8mBubo7s7GysXr0aU6dOLXUv/aiYmBgAD89nj+s8eOXKFcbiX3iex8Wj7b/2PKdWq5Gfn486deqUucxXnampKRwdHREVFYVDhw7B1dUV1apVQ0FBAcaMGYMNGzbAwsICP//8M2rUqMFtVwlo35SmUqlQp06dUtdTV69eRVZWFnbt2oXIyEgEBwcjJSUFwMPrKCsrKwQEBMDFxQW3bt1i0vQzYCwqnhACqampOHLkCACgV69e6NKlC4Cy7xOKn7NWrlyJL774AgDQunVr9OjRA8Df18racgUFBVCpVPJvWJXtWpcJ7ERERERERERERET0XEiShOzsbHz11Ve4c+cOQkNDcfXqVXmkyZo1a6JNmzbw8/ODu7s7OnToAAMDg1Kv1BZClBhNpjL9qF6VWFlZYcCAAVixYgXi4uLw4MEDmJmZlUocPX/+PAYNGoSrV6+iqKgI5ubm2LNnD7y8vOSHHrGxsfjtt99w9uxZdOnSBe+99x569eoFtVqNuLg4DBs2DGfPnsWOHTswefJkPgTG3w+VevbsialTp2L69OmYMWMGzM3NMXTo0FIJU3fv3sXGjRuxevVqaDQatG/fHm+++Wap5TIWz+Z5HBfFkxGPHz+OqVOnIikpCampqfJIZMbGxoiOjkZ0dDQOHTqEvXv3wsPDo9I9KKwqtJ06zMzMsHTpUmg0Gty5cwcmJiaoWbNmqfKZmZm4cOEC4uPjsWXLFiQmJuL8+fMAgJEjR2Lp0qUVvQpViva8sWzZMhw+fBgGBgYYPXo0OnbsCKDsdrl4u/3LL79g+fLlkCQJAQEBaNSokbxMHgP/TFZWFi5dugRvb2/o6+s/tqypqSn8/Pzw/fffIyIiAmfOnHlsAjtjUb66desCKJkg8iKPC/pntG3wjRs3EBUVhQsXLmDv3r24du0aEhIS5HKenp7o3Lkz3nzzTdjZ2aFTp05lJu0+eizwuHg66enpKCwshJGRESwsLACU3HbFt+upU6ewZMkSrFy5EsDDN6dMnz4denp68v1GSEgIpk6dirCwMFhYWMDR0REajQYXLlzAvHnzIEkS5s6dy2OmGE9PT/Tv3x/z58/HunXr0L59e7Rp06ZUueKdPo4ePSqPUG1nZ1einDZmjMW/9zyPC23yelFRETZs2ICdO3fixIkTKCwsREZGBvr37482bdpg1KhR7FBQjJOTE958803MnDkTn332GYKDg6HRaJCWlobz58+jRo0a+OGHH/Daa69xm+nQo/cG2v1dqVQiMTERd+/exdatW3H9+nXs2bMHGRkZyMvLg0KhQM2aNTFo0CB4eHigQ4cOcHV1LdGhg/4ZxkK3JEnCrVu3cPHiRQBAy5Yty30jUPFz1oYNGzBjxgwAQPXq1dGzZ0+545RSqURBQQEuX76M//3vf7h06RLUajW8vb0xatSoyjfAgiAiIiIiIiIiIiIieo7Gjx8vJEkSBgYGolOnTmLatGli+/btIjk5WeTk5JQqr1arxZ07d0RYWJi4e/euyM3Nlb+nZ7N8+XIhSZKQJEn8+OOP4vr16/K0sLAwsWjRImFqaiqXcXJyEuHh4UIIITQajSgqKhJCCLFy5UqhUCiEg4OD2LNnj7yMgoICIYQQQ4cOFZIkiXHjxlXg2lV+Go1G/vzpp5/K2/mDDz4QO3bsEBqNRmg0GnHgwAHxySefCBMTEyFJkmjYsKHYtm1bqWUIwVg8D896XAjxcHv/9ddfQqFQyOVq1aol5syZIzZt2iTCw8PFzz//LNq1ayckSRKurq7i6tWrOlnfl0lhYaEQQsjnJq3bt2+LkJAQsXjxYtG/f3/h6ekpx0Ubw86dO4sffvhB/Pbbb7qoepU0bdo0uT0/ePBgueWKx2PHjh3itddeE5IkCZVKJX7//fcy5ykoKBC3bt0qcY57NK6vutzcXLFkyRLh5uYm9u7d+1Tz5OTkiObNmwtJksSIESOeapsyFv/Mizwu6PGSkpLE2rVrxezZs0XXrl2Fra1tiXO9u7u7CAgIEL///rvYu3evyM3NLfPeQ9uW0LNJTEwUDRo0ECqVSixZskS+dysqKipxH7dhwwbRt29fOU7dunUTR48eLXHOuXfvnvD19RWSJIlGjRqJqKgokZWVJZKTk8WPP/4olEqlsLS0FMeOHavw9azsrl+/Llq1aiUkSRLt2rUTERER8rZ99H563LhxQpIkoa+vL8aPHy+E+PtcpZ2HsXg2z/O4EEKILVu2iBEjRpQ41xkaGgpJkuT7kI8++kgu/6q338W338cffyyUSqVQKpXytrOxsRFBQUEiPz9fh7V8NT16rinuzp074vTp02LWrFnirbfeEtWrV5f3c0NDQ2FqaiqGDBkiZsyYIc6dOyeSk5NLLUO73LKWTyUxFpXP+fPnhZGRkahZs6YICwsTQpS+Xi2+PTdu3Cjc3NyESqUSkiSJ4cOHlyibnZ0tvv/+e+Ht7V2i/ZAkSdja2oqIiAghROVpMzgCOxERERERERERERE9F+L/R4L5+eefMXDgQNjY2KBBgwYlymg0mhL/TklJwYQJE3D58mXExMSgfv368PT0xK+//gpLS8vKNSJMFaKNxYgRIxAbG4u5c+diypQp2LRpE6ysrCBJEk6ePInU1FTk5+fD2toazZo1w7x58+Dm5lZiZLi8vDysWrUKQggMHDgQXbt2BfAwlnp6egD+HlWuqKiII7oWo1Ao5H34m2++AQDMnTsXCxYswIIFC+Dh4QEA8ijfhYWFcHNzw5gxY9C+fXt5GVqMxbN5XsdFRkYGVq5ciSlTpkAIgdq1a6N58+ZYtGgRHB0d5b/XqFEjdOjQASNHjsTp06excOFCBAYGQqVSMS5PQZQxIqJ2NLjk5GSkp6cjKCgIFy9exNGjR5GUlCSXs7S0RKdOndC5c2c0bNgQfn5+kCQJxsbGj10+PaTRaFBQUIDdu3cDAPr27SuPMv2o4tvx0KFD+PXXXxEWFgYAGDduHN59990Sy719+zZmzpyJyMhIXLp0Ce3bt0e7du3w0UcfcfTQR+Tn5+PIkSOIiYnBH3/8gebNm8ujuZYnPT0dKSkp8ufytiVj8c+9iOPiadtpxuIhPT09vPfee7h//z709PRQq1YtDBw4EK1atULz5s3RvHlzKBQK+ZpIKzMzE5IkQZIkmJiYQKVS8RrpOahRowaaNm2K2NhY/PXXX2jZsiUaNGgAQ0ND+Y1aX3zxBbZv347IyEgAQJ8+ffDRRx/htddeK7H9p0yZglOnTsHBwQFBQUGwtbUFAJiYmKBfv35YsWIFLly4gNTUVJ2sa2VmZ2eHP//8Ex07dsSxY8cwduxYTJ48Ge3atYOVlRXy8vKQnZ2N6dOnY8WKFZAkCdbW1ujSpQsAyOcWbTwYi2fzPI+LWbNmYcuWLbh06RIAwNXVFW5ubujevTvS0tIQHR2N1atXY968eVAoFPj2229f+bai+P333Llz4ePjg+vXryM+Ph6NGzdGp06dSr15gCqGdt/UaDTIzMzEmTNncObMGYSFhSEkJES+flWpVLCwsECPHj3g5OSEgIAAWFhYwMnJqcTytNdG2v/zDY5Pj7GofPT19ZGfn4+8vDzExMSgefPm8m8fWtrtuXr1anzxxRdITk6GRqNBr169sGLFCrlcfn4+Fi1ahAULFiA9PR2NGjXCO++8g8TERJw+fRonTpxA//79ceDAgUpzPmQCOxERERERERERERE9F5IkyQ8L/fz8AJR+Fa02Gb2oqAjBwcGYOnUqLl26BEtLS7i6ukKtVmPz5s2Ijo7GkSNHULNmTSbt/AvFY/HNN99AX18fP/zwA06cOIGioqISZX18fDB48GD0798fNjY2pRJ6FAoFcnJyAADm5uYAgMLCQjk5KDg4GMHBwVAoFOjRowcfUj1CqVSWiIW1tTXWrFmD0NBQREVFlSjr4+ODCRMmoEePHjAzMyu1LMbi2TzLcaGdLz8/H8uWLcO0adMghED9+vXRv39/TJ06tUSnGyEEFAoFXF1d0b59e5w+fRphYWHQ09Pj+ewJtOeg4tspMTER6enp2L59OxISErBnzx6kpaUhLy8PAFCzZk306dMHXl5eaNu2LRo2bIg6deqUOAYe7UDFOJRPoVDAwMBAfmhes2ZNAIBarS7xIL14e3HgwAH88ssvcnLvG2+8gR9++EEum5ubiz179iAwMBChoaHQ09NDYWEh9u7di927dyMlJQULFixgXIoxNjZGq1atsHfvXoSGhuLo0aPo3bt3med2bSwiIiIghAAA1KlTp8xrKMbi33nex0VBQQH09fXl+U6fPo1r167h+PHj0NfXR9OmTVG/fn20bNmSHQr+n5WVFY4dO4adO3eiQ4cOcHR0RK1atUqUKSgokD8fO3YMR48exaZNm6DRaODs7Ix+/fph6NChUCgUTGJ/Rqampvjmm29w6tQpHD9+HKNGjULTpk3h4+ODkJAQXLlyBceOHZPLjxo1CtOnT0f9+vVL7MsZGRmIiIiAsbExfv75Z9ja2pY4royMjKBWqyGEQFpaWoWvZ1Xg7OyMffv2oUuXLjh58iRiYmJgaWmJtm3bIi4uDvfv38fFixehUChgYmKCDz/8EAEBAaWWw1g8u+d1XLz33ntYs2YN0tPTATzs/PTmm2/KnZwB4MGDB/Dx8cGkSZOwePFi+Pr6onfv3hW3spVU8fvvsvZznvt1Jzw8HEOHDkVWVlaJzsc2Njbo27cvmjVrhi5dusDS0hKOjo7lXvsUj+Grfm30bzEWlYcQAvXq1UP37t2xe/dunDt3DgEBATAxMSlRRpIkzJ8/Hx9//DGKiooghIC/vz+2bdsG4GHiuoGBAY4fP45Vq1YhKysL48ePx9ixY9GgQQOo1WpERUXhzTffRHx8PM6cOcMEdiIiIiIiIiIiIiJ6+Tw6WvqjI7ppHyRGRUXh/fffR2RkJJo2bYr//e9/sLKygpmZGYYPH45Vq1bhiy++wMKFC0uNokhPp/iD21mzZqFFixaIjIzEzp07IUkSvL294ejoiLFjx8pJtdqk2+L09PTQuHFjhISEICYmBvfv30eNGjUAACdPnsSSJUtw/fp1eaRjKq14LCZNmoTOnTvjwoUL2LhxIx48eAAXFxfUrVsXU6ZMgbGxcbkP/hiLZ/dvjguNRiPHZPXq1XLyesOGDTFy5Ei8++67qF69OoqKiuRzoLa8SqWS30Rx9uxZxMXFwdXVlQ93H0Oj0SArKwvXrl3Drl27cOXKFezYsQMFBQXIysqCUqmEUqlE79695ZHgrK2tUbdu3TIT1rUPe/k2j6enHanY2dkZERERSElJKZWkW/wNKZs3b8bvv/+OvXv3AgB69+6NwMBAKJVKeb5jx45h5syZiIiIgJubG77++mtkZmYiMTERs2bNwo8//ogGDRpg3LhxOlnnykhPTw9vvPEG9u7di507d+K7776Di4sLPD095TLa0Vy1+/7SpUvlURP9/f1LnGu0CSaMxb/zPI+LwsJCOXn90KFD2L9/PwIDA2FkZCR3VAOAevXqYcSIEZg5cyaT2P+fh4eH/AYb4O/9WttxQ7tdtaNTJiUlQQiBGjVq4NKlS9i6dStu3bqFDz/8kAmMz4GjoyP27t2LgIAAnD9/HufPn8fKlSvlNlhfXx8ODg4YPnw4Pv3001LzCyGQlJSE8PBwAJDv+1QqlXx8Xbt2Dffu3UOtWrVKnP+opAYNGuDw4cOYNGkSzp8/j5iYGMTGxpY4Nho0aID33nsPY8eOBVAy8ZCxeH6e9bgYNWoUVq5cKccuMDAQH374oTxd2wHK3Nwcffv2xebNmxEcHIwLFy4wgf3/Pe66n+d+3WnSpAl8fX0RFBSEzp07o2vXrmjatCkaNWpUqkMa8PDaKyoqCtevX0diYiI8PDzQuHFjmJqalroGo3+Gsag8tG8I0iawL1iwADY2NvD390f9+vWRm5uLbdu24eDBg/JI63p6eujfvz/+97//AXjYodbAwAAAsGbNGkRFRaFjx45477334OLiIt8venl5wcbGBjExMYiPj9fVKpcmiIiIiIiIiIiIiIgqUEFBgWjVqpWQJEm89tpr4t69e0IIIfLy8oQQQqSmpooaNWqI9u3bC41Go8uqvhQe3YaFhYVCrVY/tsyj1q1bJyRJEpIkieHDh4vvv/9eTJ8+XTRt2lRIkiScnZ3F1q1bn3vdXzZFRUXPXIaxeD7+yXGhjcn+/fvlbe/u7i5++OEHkZmZWaJMWfMvXLhQ6OnpCTMzM3Ht2rWn2g9eVTk5OWLixIlCpVIJPT09IUmS0NPTE+bm5qJfv35i2rRp4uTJkyI2NvaJy2L78e9p99H58+cLPT094e7uLs6fP19m2cDAQNGwYUP52Ojbt6+4fPlyiTJ5eXnCz89PSJIkunTpIuLj4+VpmZmZYvLkyfI5jUqLj4+Xt3H79u1FSEiIyMrKKlGmsLBQvPvuu0KSJKFQKERAQIBISkoqtSzG4t97XsdF8bbmq6++Et7e3nI5U1NT4eTkJFq1aiWcnJyEQqEQkiSJadOmvfD1e5msWbNGGBkZCUmSxMCBA8Vff/0l7ty5IzZu3CjMzc2FJEm8VnrOkpKSxJw5c4Sfn5+wt7cX7u7u4rXXXhO///67OHnypFyurLY5IyNDNG3aVFSrVk2sWbOmRJnU1FTRrFkz+ZyVm5tbIetTlWn39TfeeEM0adJE1K9fXzRu3Fj88MMP4tixY3I5xuLFe9rjoqCgQP48adIk+RrY0NBQLFmy5Il/Z+TIkUKSJNG6dWv5NxWiyqb49c/NmzdL3BNrPxcWFsrf3bhxQ/z888/CxMREKJVKIUmSqFatmujQoYO4c+dOqWXS02MsKpfi2/+TTz6R7wtcXV1Fq1athJubm6hevbr8fZMmTcSMGTPkeYrH6tatW8LR0VEoFAqxY8cOefna9jw3N1d4enoKSZLE4sWLK2gNn4wJ7ERERERERERERERUoXbu3ClUKpWwtbUVV65cEUKU/MH97NmzQqlUijp16ojk5GQmIVYSixYtkh+YaP8zMDAQrVu3Fps2bZLLaTQa+QFMWQ+x+GDrb/82kZmxqHiRkZHC0dFRSJIk6tatK+bMmSMyMjKEEI+P4927d0WTJk2EJEnCx8eHyetPITIyUtjb24tevXqJzz//XBw/flzExMSUKFN83718+bLYt2+f+OSTT8Rff/31xOQseno3btyQ99+2bduKrVu3isTERHHz5k2xefNm8eabb5Y4Dw0ZMkTcuHFDnl+7v8+bN09IkiSsrKxEXFycEKJkuz9//nwhSZLw8vISWVlZjFsZYmJihI2NjZAkSTRs2FC8++67Yvv27WLfvn1i3rx5wt/fX05ed3d3F2vWrClzOYzFs3uW46L49nz33XeFvr6+XG7w4MFi2bJl4t69e6KwsFBERkaK+fPny0nsCxYs0NEaVy3nzp2TE3PGjx8v32to/fbbb0KSJDFr1iwd1fDlpU2QSkxMFOnp6fJ1klZ555P8/HwxePBguYPgypUrRVBQkFi1apXw8vKSv7958+Zjl0OlpaWlifv374v09PQS3zMWFedJx0Xxa9rAwEBRu3ZtuQPn0qVL5WmP29ZvvPGGfK/BBHaqzB7dj8vbr69evSref/99+RqoZ8+eYtSoUaJ169ZyAu/9+/croMYvL8aicnm0g2u9evXkbS5JkjA2NhaSJIn3339f7Nmzp8z5hHjYia1OnTpCkiSxatUqIcTfsc3JyRG//fabMDY2Fi4uLiIhIaEC1uzpcPx+IiIiIiIiIiIiIqpQV65cgUajgbW1NWrXrg0A8utmNRoNQkNDIYRAhw4dYGNjo8uqEv5+tfzEiRNRp04dHDhwAFFRUVCpVBg6dCiaNm2KZs2aAQAKCwvl180DQH5+PtLS0nD69GmcO3cOffv2hbe3t65WpdKRJOkflWcsKl5RURE0Gg3WrVuHe/fuAQDatGmDCRMmwNTUFEKIcuOoVquxa9cupKamAgCaNm0KjUYDhULBV9c/hoeHBy5cuABzc/NS04qKiiCEgFKpBABs2LABX375Ja5cuYK8vDwAgLGxMebMmYMPPvgACoXisTGix7O1tcX69evRsWNHHD9+HBcvXpT3X7VajYyMDEiSBEtLS4wYMQLfffddifm12/3mzZsAgDfeeAMuLi7QaDRQqVQQQkCj0eD69esAAE9PT5iYmFTsSlYR9evXR3BwMAYOHIiLFy8iKioKS5cuhVKphEqlQn5+PiRJQqNGjTBx4kQMGjQIAErt/4zFs/u3x4VGo5HPXYMGDcL69eshSRIkScLMmTMxY8YMAH8fNx4eHnBwcMCdO3cQGBiI3bt3Y+TIkTAzM9PNildy2n39woULiImJgZeXF8aMGQNnZ2cAQF5eHgwNDeX9+ty5c2wfXgCFQgF7e/typz1KCAF9fX38/PPPiI6ORnh4OMaNG4e8vDwYGBggPz8fHh4e2LBhA6ytrUscR9rP2uvj4st81eOq3QY1atQoczpjUbGe5rg4cuQItmzZIt83LFy4EKNGjQKAUtu1uMuXLyM6OhoKhQKNGzeGgYHBC1gDoufj0f340X9rzxlr1qzBokWLUK1aNXzxxReYPn26XObNN9/Ehg0bsHTpUkybNo3nmX+JsahclEql3JZ+/vnn6NixI65cuYLQ0FAUFhaibdu2cHBwQJs2beR5ioqK5HZYy8TEBC1atMCuXbtw5swZdOvWDZaWlsjNzcXGjRuxePFi5ObmomvXrrCwsKjo1SwXE9iJiIiIiIiIiIiIqELVrFkTwMMHJDk5OTA1NQXw8AHJyZMn8e2330IIgZYtW+qymvT/FAqF/NB84MCBCAgIgBAChYWFpZLbcnNzkZWVhd27dyMuLg67du1CQkKCnPj7448/4tq1a6hVq5YuVqXKYywqnkKhQH5+PrZv347MzEzY29tj3rx5sLCwKDeZRPt9UlISVqxYgZs3b0JfXx8jR46UO+sATOp5HG2CZvHkKOBhYqd2m69YsUJO7PHz84ObmxssLS2xcOFCfPjhh6hWrRrGjBnDbfyMXF1dERwcjClTpiAqKgrx8fEAHnY8MzQ0xLvvvgs/Pz/07dsXQNlJVrm5uQCAlJQUOYkUeBjPqKgo7N27FwDg4+NT7jLoYSx27tyJxYsX4/DhwwgLC4NGo4FGowEAjBkzBj169EDPnj0BMBYv0j89LgoKCqCvrw8AGDJkCNavXw+lUglra2t88cUXGDNmTJl/x9jYGM2bN4cQAgcOHEB8fDyaNGlSIetYFRUVFWHbtm1Qq9Xw9vaWt5VarZb39TNnzgB42EGA7cPz9W+2pyRJ0Gg0MDc3x+HDh/H+++/j8uXLOHPmDFq0aAE3Nzd89913qFGjRqkkae31QXp6OhISEhATE4NBgwYxrmAsKpMnbQPt9G3btuHUqVMAgC+//BLjxo0DUH47rL2POH78OC5dugQAaNCgwfOsOlGFkyQJR44ckTv1zZw5Ex988AEAIDs7GyYmJpg8eTI2bNiAa9euyfPQ88dYVLzi7aqvry98fX3x9ttvl1u+rLbB2NgYAwYMwK5du7Bw4UJcuXIFzs7OCA8PR3R0NFJTU9G9e3d88MEH8m/xZano36qYwE5EREREREREREREFcra2homJiYICwvDX3/9BX9/f2g0Gpw8eRLffPMNbty4ge7du2PixIm6rir9P4VCIY/orR3VW19fHw8ePEBeXh7279+PpKQkbN68Gbdu3UJKSoo8r4+PD7p27YqAgABYWFjIHRjo32EsKt7u3btx4cIFmJiY4JtvvoGtrW2pxGqt4t9/+umnCA4OhkqlwsyZM9GiRQtoNBo5CbuoqAgFBQWIi4uDlZUVjIyMYGpqyoRR/P3w+9FtrP1+69atcvL6tGnTMHHiRNjb20OSJLRt2xZdunTBr7/+ij59+qB27dp8mP6MnJ2dsWrVKty+fRvHjx9HQUEB7O3t4eLiUiJZqrx9t1GjRgCA8+fPIyQkBL6+vlCr1Th79iw++ugjXL58GS1btsRbb70FoOyH8fSQnZ0dZs+ejVmzZmHv3r3IzMyEqakpHBwc4OXlJe/rjMWL97THRWFhoZy8PmHCBKxZswYKhQIODg74z3/+IyemPBozbXtSv3591KpVC+np6fKbJqg07Wj22mQc7TWSEELuPPbbb7/hhx9+AAB06tRJJ/Wk0rSjjpqZmeG3336DWq1GfHw8XF1dAUA+frTXBKmpqcjIyMDu3bsRERGBw4cPIykpCWq1GmFhYfj+++91ti5VHWOhGwcPHpTPTUOHDsX7778P4PGdyCRJwokTJzBp0iQAD98QpW1PhBByGaKqZsuWLQCAgQMHygnTarVa7rAfGhoKALh79y6KiooA8Hr1RWEsKt6zbD9t0vnw4cORmZmJyZMnY/fu3fJ0e3t7jBw5Ep9++imcnJzkNqas37a07Ud5v3s9b0xgJyIiIiIiIiIiIqIK1alTJ0yaNAlz587F9OnTsWjRImRlZSE3Nxe5ubnw8/PDli1boKenx0ROHdJue+1DEG0iUGJiIo4fP47o6Gjs2LEDaWlpuHHjhjxfmzZt4OfnhwEDBsDa2hre3t4lRp2mf46x0C1tJ4CCggK4uLgAKJ1YDZR8hfPw4cOxYcMGKBQK9OjRA/7+/gD+HkE8Li4Oq1atQlBQEC5fvgxbW1u4ublh7ty5cHd3r7AHhVVRSkoKfvrpJwDA+PHjMWvWLPkhuhACnTt3RuPGjRETE4OsrCzUqVNHl9V9aZibm8Pc3LzU6J7FR2crr71+++23sWrVKoSGhmLkyJFwc3NDdnY2EhISkJycDFdXV2zatAk1a9Yss90v/jf45oKHCYSSJKFPnz4lvtcmrAGMRUV50nEhhJDb7IULF2LNmjUAgNq1a+OLL74oN3kd+LudOXz4MFJTU1/0qlR52v3f2dkZAHD27FlcvHgR9vb2MDc3x4IFC/Dll18CAGbMmIHOnTvrrK5UmvY6V6lUQl9fHw0bNpSnXb9+HTk5OdixYwcSEhKwa9cu3LlzB7m5uVAoFKhevTr8/f3h5uYGd3d35OTkwNjYWIdrU7UxFhVH21ZcvHgRenp6MDAwQLdu3eRt9rjfQS5duoTp06ejoKAAZmZmeP3112FmZlaqbS4oKIBarS4RB7bfVFkJIRAdHQ0AsLCwAPAwYVr7G0ZMTAwOHz4MAPD39+dvhS8QY1H1SJIk31NMnDgRLi4uOHv2LK5duwYzMzMMHjwYDg4Opd7CqL3nSE5ORnh4OM6fP48jR47gq6++qrA3o/JXSiIiIiIiIiIiIiKqMNof07/55hvo6elh5cqVSElJQWFhIZo2bYrWrVvj+++/h56eHhM4dUz7UDs6OhqxsbE4duyYnCydkZEhl2nWrBnatGmDfv36wc7ODj4+PmXGjp0R/j3GQje0yR3aEW8bNmyI1157rcS04rTbdOTIkVi1ahUUCgUaN26MYcOGoXHjxnKZS5cuYdSoUTh37hyEEDA2Nsb169cRFxeHU6dOITg4GO7u7kwuKUd6ejrCw8NhZmaGPn36yAk52n397t27csIUk6ZevCftoxqNBqampggKCkKfPn1w6tQpJCUlAXiYxOvv748//vgDVlZW8tslHj1HSZIkx1SbFPwqHxvlrTtjUXlot4n2/5GRkdi2bRsePHgAAPj8888xfPhwAI9vk+/du4cTJ05AoVCgQYMGqFu37ouvfBWl3dYjRozA8uXLcfbsWQwePBgGBgYwMzPDkSNHAABjx47F0KFDdVlVwt/XUdr9v/ibV9LT03H9+nXs2bMHV65cwc6dO5GTkyMfPyqVCr169YKjoyP69u2LOnXqyB0M6Z9jLHRLCIEdO3agsLAQXl5e8htQHic6OhqzZs1CZGQkAMDLywvvvfee3GEKeJiIuGPHDqxbtw4pKSlo0aIFmjdvjvfff5/tN1VakiShcePGOHDgAHJycpCdnS13VL527Rp+++037Nq1C+7u7vL9Nb0YjEXVpH3Tn0KhQLdu3dCtW7dSZbTTr169ipSUFOzduxfnzp3D6dOncf/+fblceno6Dh8+LMf9RWICOxERERERERERERFVmOKvJ509ezb69euHjIwMZGdnw9PTEzY2NvIP7kxer3hqtRrh4eG4d+8etmzZgri4OISGhiInJwcAYGRkhAYNGsDb2xvt27eHi4uLnNCrjZv286OYMP3PMBa6p03qcHV1BQBcvXoVYWFhaNGihZz4oS0nhEBqaiqmTJmCtWvXQqFQwMnJCe+//z769u0rLzMmJgZvv/02Ll68iJYtW6J3797o1KkTrly5gmXLluHQoUMYO3Ystm3bhho1alT8SlcBFy5cwL1792BrawsPDw9IklRiNLhly5YhLi4OXl5eUKlUTNDRMaVSCbVaDXNzc+zevRu7du1CQkICAKBly5Zo2rQpqlevDgBy4pVCoUBOTg5SUlJw4sQJREVFYevWrWjdujWWLl3KeP5LjIXu7N+/Xx6l8uOPP8aECRMAlJ+8rv3+2LFj2LJlC4qKitCyZUvY2tpWaL2ronr16mHfvn3o27cvEhMTkZOTI7cPc+fOxcCBA+Ho6KjjWr66Hk2SFkIgKysLUVFROHPmDMLCwnD48GHcvHkTarUaSqUSRkZG6NChA5ycnNC/f3/Url271FsPHl0+PRljoXvabW9oaAgAcHNzAwC5E1lZLl++jK+++grBwcHIzMxE3bp1sXr1atSsWVMus3//fvzxxx/YsGGD/N3Vq1exevVqJCQkYMGCBWy/qdJyd3dHUVERVq1aBXt7e3h7eyMxMRGHDx/G9u3boVKpMH36dDRp0kTXVX3pMRZVjxCixO/uxV26dAkPHjzA5s2bkZCQgMOHD8sDYhgaGsLOzg59+/aFt7c3fH19UadOnQpJXgeYwE5EREREREREREREFUypVMoPtMsaqUf7gztVvHXr1uHtt9+WE6BNTU1Rp04d9OjRA15eXmjTpg0cHR2hp6dXIkYFBQXQ19eXv2MHhGfHWFQeDRo0QMOGDREZGYmDBw/C09MTRkZGcuLH/fv3ceLECSxevBj79u2DQqGAp6cn3n//fQwbNgzAw5GP8/PzsWDBAly8eBFt2rTBvHnz0LhxYxgaGqJ58+awtrZGeHg44uPjkZGRwQT2cri6uqJ27drQaDSIiYmBnZ2dnJz4888/45NPPgEATJ8+vdTrsUk3VCoVNBoNTExM8MYbb5Sarn3AHh4ejujoaBw/fhynTp1CfHy8PAqcnp4e1Go1goOD0aFDhwpeg5cHY1HxkpKS8OOPPwIAunTpgg8//BBA+cmd2uvg8+fPY9iwYVCr1fDy8sLkyZMBoESHnbKw0w5Qv3597Nu3D2fOnEF4eDicnZ3h6uqKli1b6rpqr7zc3FyYmJjg4MGDiI+Px969e3H58mVcvnxZ7hhoaWmJzp07o0mTJnj99ddhZWUFd3d3eRnacsU7EmrxHvLpMRaVh4WFBQDg1q1byMvLkxPatbTn9fDwcMyaNQtHjx7FgwcPYGtri927d8POzk5uv48fP47AwEAcPHgQtWvXxoQJE2Bubo6kpCTMnz8fP/74I+zt7TF16lRdrCrRE40YMQJRUVH473//i6+//hpKpVLev+vUqYPZs2djxIgRuq7mK4GxqPy09xNlvUXl2rVruH79OrZs2YL4+HgEBQVBkiQUFhbCxMQE1apVw1tvvQVXV1f4+/ujTp06MDc3L7H8irqvYAI7EREREREREREREVW4xz3QftWTbnRpyJAhOHXqFBQKBZydneHv749atWrBzMyszPJJSUnYs2cPzp07BwDw9PTEkCFDUKNGjScmWNHjMRaVh5ubG95++2188skn+Oyzz5CVlYXWrVvDxsYG9+/fx/z58xEXF4eYmBgolUp07NgR77zzjpwcqu1EoH0Fs76+PkaMGIGmTZtCX19ffgjs6uoKSZKQnJyM27dvo169ejpe88rJ3t4ezs7OCAkJwezZsxETEwOVSoXIyEgsWrQIAPDFF19gyJAhOq4pAX8/VC/ekUY7smhYWBhSUlKwdetWREdHIzQ0VE6CMzU1hYuLC95++220a9cOjRo1gqurKwoKCnS1KlUeY6EbWVlZ8uiG3t7ecqJiecnrkiQhMjISo0ePRlZWFqpXr45OnTrB2dkZAOT2XKPRIDQ0FPHx8VCpVKhXrx58fHzkt4K86tfTtra2sLW1RZ8+fXRdFfp/BQUFGDt2LPbt24e7d+/K31tbW8PHxwddu3ZF8+bN4eXlVSIh91GSJHF072fEWFQO2nN1p06dsHXrViQkJODChQt47bXXSpzDJUlCcHAwJk6ciISEBOTk5MDOzg4bN25Ew4YN5fgUFRVh9erVOHjwIFq2bIn//Oc/6N69OwAgJycHSqUSgYGBOHz4MMaNGwcjIyNdrTpRmbT7cmBgIGrVqoWgoCDExcVBT08PAwYMgJ+fn7xP04vFWFRu2vZD2/4WFhbi1q1biIyMxJEjRxAREYEjR47Ib3CsXr06bGxs4O/vDwcHB/Tu3Rs1atRAnTp1SixX26Zrl19R9xOS0N55EhERERERERERERHRK+txSc7ahxjFkxdWrlyJVatW4dChQyXKNm3aFHv27EGtWrWY0PAvMRaVR/Ht9sknnyAwMBDAwxGITU1NkZubi9zcXAAPkxGnTZuGgIAA+Pr6lpp/y5Yt6N+/P+rWrYvQ0FBYWVlBo9HII2UdOXIEfn5+UKlUCA8Ph4eHhw7WuGqIjY2Fn58fUlJSSk2bNWsW3nvvPVhaWuqgZvToKHBaQgiEhobi9u3b2LhxI5KTkxEcHCxPt7a2Rq1ateDv7w93d3f4+vrC0dFRPs9pH6LzXPb0GIvKYfv27QgICIC5uTmOHDmCRo0alZlgrv0uOjoa48ePR0hICAoKCtCqVSusW7cOtra2ctk9e/Zgw4YNWL58ufydubk5Ro8eje+++67E8ogqk4iICLz99tswNDREQEAAHB0d0a5dO9SuXVs+nxTfd9PS0nDixAlERETA2dkZNjY2aNOmDYDy32JAT4exqDxSUlLQp08fnDlzBu3atcNnn32Ghg0bwtbWFvv27UNoaChmzpwpl3d0dMTu3bvRoEGDEssJCgpCjx49AAAbN25Ev379APydiLp27Vq89dZbqF+/PkJCQvi2J6qUiv/Ocf/+feTn50OlUvHeTgcYi8rt6tWrCAsLQ0xMDA4cOIDo6Gjcu3dPnu7k5AQ/Pz80bNgQ3bt3h5GREezt7eXpQohK8wZUDrdBRERERERERERERERlJkw/OqqP9uHVkiVLEBgYiKSkJHh6emLMmDGwsbHBqlWrsG3bNvTt2xdBQUEwNTWt0HV4WTAWlUfxzgJz586FlZUVNm3ahNDQUKSlpQEAXF1dYWdnh08//RTt2rWDvr4+AJR6GGhjYwMDAwMADxNVateuLccxMjISs2fPBvBw9H0mrz9e/fr1cfToUcyaNQtxcXFITU1Fo0aNMGzYMDlZhyqWNnmt+ChwsbGxiIyMxO7du3H16lWEhITIo0PXrFkTbm5uGDBgABwdHeWH6o++ZUJ7/GkT6CrDA/bKjrGonDIzM5GXlweg9NuGtDGLiIjAe++9h3PnzqGgoAAODg5YuXJlieT19evX47vvvsP58+cBAO3atcPt27cRGxuLefPmQZIkzJ07l8nrVCl5enriyJEjAB6OBlpc8XOMWq1GaGgo3n33XcTExAB4eH1sYGCAL7/8ElOmTCkxQij9c4xF5WFtbY3Vq1ejU6dOOHr0KGJiYqBQKGBjY4Po6GhkZ2cDeHgv0axZMyxZsgTW1talOg5cvnwZANC/f/9SyevAw2RHADAxMZHvSYgqG6VSKZ9PzM3N5fMKzzEVj7Go3FavXo1Zs2bJ//b09ESnTp3QoUMHtGzZEo6OjjA3Ny8Vr6ysLBgYGEClUpUaHENXmMBORERERERERERERERlKv6QQ/vQ4/jx41i6dCmuX7+OoUOHYuLEifD29gYA9OvXDx07dsTx48dx7tw5tG/fXldVf+kwFrqjVCrlh3pTpkzBgAEDcOPGDaSkpKCwsBBt27aFsbExzMzMUPzFx48+1DUzM0PdunVx5coVbNy4EWZmZnByckJoaCjmzJmD4OBgeHt745133gHA0SyfxNnZGUuXLoWenh7y8vKgUqmgp6en62q9shQKBRITE7Fx40YkJiYiJCQEZ8+elafXrl0bjRo1Qo8ePeDk5IQePXrA0NCw1Oifjx5Dun6YXhUxFpVLy5Yt4eHhgatXryIiIgLNmzeHJEklkkUUCgXCwsIwfPhwXLlyBWq1GrVr10ZQUBCcnZ3lN7OcPHkSCxcuRHh4OHr06IF33nkHAQEBSExMRFBQECZOnIilS5eif//+aNGihY7XnKhs2mTpRxOqtIlyALB161a8//77SElJQbNmzdC8eXOYmppi8eLF+OCDD2BkZISxY8cyge4ZMRaVh6urKw4dOoRx48YhNjZWvtfQ6tmzJ/r06YP+/fvD3Ny8zITDjIwMAMDt27eRkZEBExMTOZYxMTE4evQo9PT0MGDAABgbGzMJlSot7X5ZfP/kvqobjEXl9Z///AeGhoawsrKCs7MzvLy8SgxcodFoADyMV1paGqKjo/Hzzz8jMTERJiYmaNKkCT766CNYWFjoPImdCexERERERERERERERPRE2odUO3fuxJkzZ9CiRQtMnjwZTZs2BfBwFJ9q1aqhZcuWCA4ORkJCApOmXxDGouIVH33M1tYWdnZ2ZZZ73MNcNzc3TJs2DePHj8e3336LTZs2wcLCAqdOnQIANG7cGJMmTcJrr70GoOToxkxmL5uenh4kSYKRkRGKiop0XZ1XXmFhIT7++GMUFRVBX18fvr6+8PHxgbe3N9q0aQNTU9NSSdKFhYUoLCxEeno6atSoAUNDQwAP93kmR/x7jEXlYWxsjIYNGyIqKgpLly6Ft7c3PDw85LetxMTE4OTJk3jvvfeQn58PAHBxccHOnTtRv359aDQauey+fftw8uRJtG7dGh9//DHatGkD4OGovN26dYOLi4uc+MgEdqrsynsTwYULFzB16lSkpKSgT58+WLt2rTxadMeOHdGjRw/88ssv8Pf3h52dHc9PzwFjUTm4uLhg7dq1uHr1Kg4cOIDCwkLY2trCxsYGPXr0kMsVFRWVmWjo6ekJfX19XL9+HRcvXkTLli2hVCpx+vRp/PLLL9i/fz+cnZ3RoUMHAExCJSKqqrSdWz/66KNS07TJ6Nrfj27cuIFFixZh/fr1SExMlN8YuG/fPgQFBeHgwYOwtLTU6W9OTGAnIiIiIiIiIiIiIqKnkpqaivXr1wMAxo4dKydMazQaVKtWDUIIhIWFAYCc+EYvBmNR8coafexpaZPfx44dCyEEZs2ahdjYWHn6m2++iREjRsDPzw/6+vryQ8dHHz5qR1asXr26zkfJqgyKx4IJ/rrn4uKCK1eu4Ny5c/Dy8oK9vb38gBz4exQ4AMjPz0dsbCw+/vhjJCUlITExET4+Phg8eDBGjRoFhULBjhvPgLGoPExNTfHtt9/i9OnTOHnyJEaMGIHWrVvDzc0NcXFxOHnyJMLDw6FWq1GrVi00a9YMP/30E5ycnEqc55OTk/Hjjz8CAIYNGyYnr6vVaujp6cHBwQFmZmYAgOzsbN2sLNEzUCgUyMjIwOjRo5GcnIxOnTph06ZNUCgUyM/Ph4GBAbp3745WrVohOjoa+fn5TMB9QRgL3bG0tISlpSVatmxZapr2fqK89rhbt25o0aIFTpw4geHDh6N58+YoKirCpUuXEBsbC3Nzc8ybNw++vr5lzs+2noioatB2bi2L9t5BkiTcuXMHgYGBWLZsGYyMjDBo0CBMmjQJ+vr6+O9//4t169ZhyJAh2Lp1K4yMjCqq+qUwgZ2IiIiIiIiIiIiIiJ6KEAJZWVkAHo4oCvw98k9+fj5++eUXHD16FHXr1kXHjh11WdWXHmNRtUiSJCeFjBs3Dr6+vkhJSUF6ejqqV6+O7t27y0kpwN8PHTMyMpCVlYU9e/bg0qVLOHjwIO7evYudO3dydF2qlBwcHODg4AAA8qj42n1bu1+npaVhw4YN+Prrr3Hjxg3UqlUL1apVw8GDB3Hw4EGkpaXhww8/ZBLVM2IsKg8nJyfs3bsXAQEBCA8PR3h4uDxN20GgZcuW6NWrF0aNGgUrK6tSI+zm5uaioKAApqamcmKjtt0XQmDDhg04c+YMDAwM5E5tRFXNrVu3kJKSAmtra8yfPx8KhQKFhYXyqN+XL19GQkICMjMzkZOTo+PavtwYi8rncZ0EtJ2Yd+zYAX9/f5w6dQrx8fEAAAMDA/j4+ODzzz+XR3LXXhcU76T2aFtf/N6EiIiqDu15PSgoCBs2bICpqSmmTp2Kd999FxYWFgCA//3vf4iNjcXZs2dx/fp11K9fX2f1ZQI7ERERERERERERERE9lWrVqqFZs2Y4ePAgoqKikJWVhWrVqqGwsBB//PEHlixZApVKhVGjRsHc3JwPvV8gxqLqKZ4g0rhxYzRu3LjEdEmScPv2beTn52PXrl1ISEjAtm3bcOvWLXnk9WrVqsHBwQEbN25kAjtVetpEKO25RwgBANi+fTtmzZqF27dvo3fv3pg/fz7Mzc1x9uxZDBkyBB999BGaNGmCzp0766zuLxvGQvfq16+PvXv34vfff8eJEycQGxuLzMxMdO7cGe7u7pgyZQqqVasGAwODMkfBNTMzg4ODAxISEnD+/Hm4u7tDT08PABASEoLVq1dDCIE333wTDg4ObPepSoqOjkZycjJMTU3lDhza/VwIgaNHj+Lu3bto3749HB0ddVnVlx5jUbUolUqo1WqYm5tj7969WLduHRISEnD//n34+/vDxcUFDRo0AFB6pPWUlBTcunUL+/fvR0hICMzNzbFy5Uq2IUREVZT2HP/777/j9u3bGD58uJy8XlRUBLVaDX19fTg6OuL8+fNITU1lAjsREREREREREREREVV+xsbG6NSpE/bt24evvvoKV69eRb169RASEoIzZ86goKAA/fv3x+DBg+UEB3oxGIuqp6yExOzsbCQnJ2P//v24du0atm/fjszMTNy5c0cu0717d9SrVw/9+vWDlZUVPD09K7rqRM+FJEmIj4/HnDlzcPv2bYwaNQoLFy6EsbEx1Go1Xn/9dXz++eeYOnUqLl68yKTpF4ix0I26deti9uzZkCQJaWlpUKvVqF27dqlyZY14b25ujkaNGuHy5csIDAxEfn4+mjVrhkOHDiEoKAhHjhyBh4cHhg0bBhMTk4pYHaLnrkGDBrCzs4Narcbdu3fl77Ozs3HgwAF89NFHKCgoQMeOHWFqaqrDmr78GIuqR6VSQaPRwNTUFO+88w4kSSqzM1N8fDwyMzOxdetWXLt2Dfv27ZPvPfT19VFQUIDBgwejW7duulgNIiJ6DiIjI3Hu3DlUr14dn3zyCSwsLOS3N+nr6yMqKgrHjh0DABgaGuq0rkxgJyIiIiIiIiIiIiKiJ9I+/J4+fTpSU1Px3//+F2vWrJGn29raIiAgAOPHj9fpyD2vAsaiatBoNPKIlVoFBQWIiYnB2bNncfr0aRw8eBDJycnIycmBJElQKpVo164dnJycMHDgQFhbW8PT07PM5BOOrktV0ddff42EhAS89tprWLx4MQwNDeUH6cDDxCkAuHr1KoCyO37Q88FY6JaFhUWJfz/unC6EgJ6eHn799VdcuXIF586dw+TJk2FgYIDMzEwYGBigRYsWmDFjBjp27CjPAzzsrFBW7BhPqoxq1qyJunXrIiQkBJ9//jkGDx4MfX19hIeH488//0RWVhaGDBmCTz75BACvhV4kxqJq0W5/bQyK///GjRtISUnBtm3bkJCQgKCgIBQUFCA7OxtKpRKmpqZ4++234erqil69eqFWrVqoWbOmLleHiIiekRACeXl50Gg0uH37NlxdXeX7vMTERCxYsACpqano06cPvL29dVpXJrATEREREREREREREdETSZIkJ+QGBgbCw8MD4eHhSEpKgrm5OcaNGwdHR0fUqlVL11V96TEWVYM2ef3EiRNISkrCnj17EBUVhUuXLqGgoAAAYGZmhhYtWsDLywtdunSBra0tmjRpUubyHk0MYpIQVUUpKSkAgAEDBsDQ0BAFBQVyovTNmzdx6NAhAJDfNMAE2xeHsdCN8s7djzuna9t9c3NzHDx4EJMnT8aFCxdw48YN1K1bF2PHjkXHjh3h4+MDACViCTyM3b1793D37l1ERkaiX79+jCdVSpaWlli+fDn8/Pxw4sQJnDx5Uu6MAQDDhw/H8uXLAbATxovGWFQN2ntCbRui0Whw7949xMTE4MiRI7h06RL27duHBw8eAHj4Fi8jIyMEBATA0dER/fr1g6WlJezs7Eost3isiYio6rGwsICXlxciIiIQFhYGDw8PWFpaIjIyEr/88gvWr18Pe3t7DBo0SNdVZQI7ERERERERERERERE9HaVSKT8kHzFiBICSI3xSxWEsKq/79+/jzz//xLFjx3Djxg2cPn1anmZhYQEPDw907doVzZs3R+PGjeHs7AwhRInEn6KiIggh5CR4xpReFnl5eQCAu3fvQgghJ9lmZGRg+/bt2LdvH5ydneHr66vLar4SGIuqRdvum5mZYenSpXjw4AEyMjJQvXp1WFpaliirr6+P/Px8hIeH49y5czh79iyOHj2KW7duISsrCyNHjsTSpUt1tCZEj1e/fn0cPXoUs2fPxtWrV3Ht2jV06dIFvr6+GDduHAAmTFcUxqLyebRDq0ajQXZ2No4dO4aoqCgcOXIEERERSEpKksvY2dmhW7du8PDwgL+/P8zNzeHk5PTY5fPeg4ioarOxsUH//v1x8eJFTJ8+Hdu3b4eNjQ2CgoKQkZEBKysrjB49Gr1799Z1VZnATkRERERERERERERET0+bUKvFh9u6w1hUTjVq1MDVq1exefNm1K1bF40aNUJAQACcnJzQqVMn1KlTB3p6eiXmyc/PR2ZmJhITE2FlZQVLS0sYGhrKnRSIqjptBxsvLy8cPnwYx48fx6lTp9CsWTPExsZi9+7dCAwMRGZmJsaPH1/umwjo2TEWVZdSqYRarYZKpYKlpaWcuJ6bmwsjIyMcP34cV69eRVBQEC5evIjo6Gh53ho1asDX1xfNmzeHl5dXqSRIosrE2dkZS5YsgYGBAe7cuQMrKyt5GhOmKxZjUblIkoSioiL8+eefyMvLw9q1a5GYmIjExES5jIODA3r06IH27dujdevWsLe3h62trTy9qKgIAOT25NHlExFR1aZtn2fMmIHs7GwEBgbi2LFj8vQOHTpgwIABGDFiBIyMjHRY04ckwfd+EBERERERERERERERET2z4gmBO3fuxGuvvQY9PT3UqFGjRLnCwkI5if348ePYsGEDtm/fjuTkZNjb28Pb2xs//fQTLC0tmcROL5X4+Hi0b98eN27cQL169VCzZk0kJSUhMzMT+fn5GD16NJYsWaLrar4SGIuqobwE0fz8fBw7dgy3bt3Cpk2bkJycjDNnzsjTHR0dYWdnhy5duqBx48bw8vKCvb19RVad6Jlor6mKHwPseKEbjEXlcuPGjRLn80aNGsHKygp9+vSBi4sLWrRoUereAwCys7Oh0WhQrVo1OY7shEBE9HIq/jvSzp07ERsbK4+8/sYbb6B69eqlOjHpChPYiYiIiIiIiIiIiIiIiJ6TJyWcF0/42b59OyZNmoTr16/D2NgYjo6OyM3NxbVr1+Dh4YEjR46gZs2aTBKil0psbCwGDhyIq1evIicnBwDg4+ODrl27YubMmTqu3auFsah8tOf7R8/7eXl5CAsLQ1xcHDZv3ozk5GRcuHBBnm5vbw9ra2sMGDAATk5OaNeuHapVqwYDA4MSy2enKCKiqi8mJgYnTpyAra0t2rZtC6VSWeJ8r21D1Go14uPjsWzZMhw+fBgpKSnw9fWFv78/hg0bBoBJ7EREL6uqct3PBHYiIiIiIiIiIiIiIiKiCrZ//34MGTIEd+/eRb9+/TBs2DB07twZhYWFmDRpEv766y+MHDkSS5YsqTQjYxE9L7dv38b58+dx48YNWFpaonnz5rCzs9N1tV5JjEXldO/ePcTHxyMsLAzBwcGIiopCZGSkPN3BwQF16tRB3759YW9vjx49ekClUsHIyKjEcpiYSET0anh0pPyCggJs2rQJv/76K44dOwYAMDU1RWZmJgAgMDAQH374oS6rTERExAR2IiIiIiIiIiIiIiIioop069YtjBo1Cnv27MGgQYMwc+ZMNGjQQJ6elpYGd3d3ODo64sSJE1Vi1CwiInp2RUVFmDx5MlatWoXCwkLk5eUBAGrVqgUvLy/4+fnB3d0d7dq1g0qlgpmZ2WOXxeR1IqJXT1FRETZv3ow5c+YgIiICzZo1w5w5c+Dq6oqoqCiMHDkSDx48wLZt29CrVy9dV5eIiF5hHK6BiIiIiIiIiIiIiIiIqAIlJSXh+PHjMDc3x9ChQ+Hi4gLg71c8Z2RkQAiBpKQkZGVlPTZBkYiIXh4KhQLvvPMONm7cCB8fH3h7e6Ndu3Zo1qwZzM3Noa+vX6K8EAL5+fkICgrCnTt3YGZmBkdHR7Rs2RIKhYJJ7ERErxDtKOxpaWlYtmwZIiIi0KtXL8yZMweNGzeGEAKurq749ttvMX78eISGhjKBnYiIdIoJ7EREREREREREREREREQVQJtUcuTIEWRlZaF58+bw9/cHABQWFkJPTw8AsGvXLty9exetWrWCvr6+PB8REb38mjZtimvXrsHY2LjE9xqNBgCgVquhUqmgVquxZs0arF+/Hrt27ZLLGRsb48svv8TUqVOhUCjYhhARvSK05/rly5djz549MDc3x4wZM9C4cWMAD+839PX14ejoCOBhp1oiIiJdYgI7ERERERERERERERERUQXQJpXY2toCeJiEeP36ddStW1dOXl+/fj0+/fRTAMCoUaNgZGSkm8oSEZHOFE9e146irlQqAUBOXl+0aBEWLlyIpKQk2NvbY9CgQSgoKMCSJUswbdo0GBoaYvz48UxeJyJ6xcTGxgIARo8ejebNm0MIASEE9PX1kZ2djfXr1wMALCwsdFlNIiIi8F1RRERERERERERERERERBXIxsYGpqamCA8Px5YtWxAZGYl79+5h8eLFGDt2LLKysjBmzBgMGjRI11UlIiIdUyj+TusQQgAAtm3bhl9//RW3b9/GqFGjsHXrVsydOxfz58/Hjh07oKenh99++w137tzRVbWJiEhHHjx4AAC4efMmCgoKIISAQqFAbm4utm/fjoMHD8LKygqDBw8G8HfbQkREVNGYwE5ERERERERERERERERUgTp06IAJEyYAAKZMmQI/Pz/4+Phg8uTJSE9Px7Bhw/Dee++VGIGXiIhIO5r6li1bEBcXB39/f3z44Ydo0qQJioqKUFBQgI4dO6JFixa4dOmSnMRIRESvDm9vbwAPR2KPiooCAOTm5mLFihX47rvvkJiYiK5du8LJyQkA+KYOIiLSGUmwGxURERERERERERERERFRhSgqKpJH0505cyaWL1+OGzduwMDAAEqlEv/5z38wePBg1K1bV8c1JSKiyuj06dPw8fEBABw8eBB+fn4A/m5f7t+/Dx8fHyQkJODSpUuoX7++LqtLREQVLCEhAX5+fkhMTET9+vVhZWWF27dvIz4+HgUFBejWrRt+/PFHuLq66rqqRET0imMCOxEREREREREREREREVEF0mg0UCqVAIDLly/j1q1bMDExQbVq1eDh4aHj2hERUWV2+PBhdOrUCXZ2djh37hwsLS2hVquhUqmQlZWFb775BnPnzkWTJk0QFhYmtzdERPTqiImJQZ8+fRAfH4/CwkIAgJOTE7p27YqpU6fCxcVFxzUkIiICVLquABEREREREREREREREdGrRKlUyiPluru7w93dXddVIiKiKqJWrVqwtLREXl4eLl26hHbt2kGlUiEzMxMrVqzA2rVrUaNGDUycOBFKpRJCCEiSpOtqExFRBWrQoAEOHTqE48ePIykpCSqVCn369EHNmjVRvXp1XVePiIgIAEdgJyIiIiIiIiIiIiIiIiIiIqoS0tLS0KNHD4SGhqJt27bo3bs33N3d8fvvvyMkJAQPHjzA22+/jZkzZ8LOzk7X1SUiIiIiIioTE9iJiIiIiIiIiIiIiIiIiIiIqojY2Fj4+fkhJSUFAGBgYID8/HxYW1ujT58++OCDD+Di4qLjWhIRka7xLRxERFSZMYGdiIiIiIiIiIiIiIiIiIiIqAq5cuUKvvzyS1y8eBEFBQWwsrLC1KlT4e3tDWtra11Xj4iIiIiI6LGYwE5ERERERERERERERERERERUxRQUFKCwsBAFBQWoUaOGrqtDRERERET01JjATkRERERERERERERERERERFTFCSEgSZKuq0FERERERPRECl1XgIiIiIiIiIiIiIiIiIiIiIieDZPXiYiIiIioqmACOxERERERERERERERERERERERERERERFVCCawExEREREREREREREREREREREREREREVGFYAI7EREREREREREREREREREREREREREREVUIJrATERERERERERERERERERERERERERERUYVgAjsRERERERERERERERERERERERERERERVQgmsBMRERERERERERERERERERERERERERFRhWACOxERERERERERERERERERERERERERERFVCCawExEREREREREREREREREREREREREREVGFYAI7EREREREREREREREREREREREREREREVUIJrATERERERERERERERERERERERERERERUYVgAjsRERERERERERERERERERERERERERERVQiVritARERERERERERERBVLrVZj27Zt2Lt3L0JCQnD79m3cv38fxsbGqFWrFho1aoRWrVphwIABcHR01HV1iYiIiIiIiIiIiIjoJSIJIYSuK0FEREREREREREREFWP79u2YNm0arly58lTle/Togblz58LT0/MF14yIiIiIiIiIiIiIiF4FHIGdiIiIiIiIiIiI6BXx1Vdf4T//+Q+045p06NABPXv2hJeXF2rWrImcnBykpKTg6NGj2LlzJxISErBr1y7Y2dnh119/1XHtiYiIiIiIiIiIiIjoZcAR2ImIiIiIiIiIiIheAcuWLcM777wDAKhTpw7Wrl2LDh06lFteo9Fg7dq1+Oyzz9C9e3cmsBMRERERERERERER0XPBBHYiIiIiIiIiIiKil9z169dRv3595OXloXr16jh79ixcXFyeat4HDx7g2LFj6NWr1wuuJRERERERERERERERvQoUuq4AEREREREREREREb1Y8+fPR15eHgDg66+/furkdQAwNzcvlbyekJAASZIgSRJWrFgBANi8eTP8/f1hY2MDlUpV5ujuO3bswIABA2BnZwcDAwPUrFkTvr6+mDt3LrKyssqtw6xZs+S/9zjBwcFyueDg4FLTO3ToAEmS5LrFxMRgzJgxcHR0hKGhIaytrfHGG2/g1KlTj/07Go0GK1asQNeuXWFlZQV9fX2YmZnB1dUVnTp1wjfffIOoqKjHLoOIiIiIiIiIiIiI6FWl0nUFiIiIiIiIiIiIiOjFEUJg1apVAABTU1OMHDnyuS9/2LBh8t8oS15eHt566y1s2bKlxPdpaWk4deoUTp06hUWLFmHXrl1o0qTJc61feYKCgjBw4EBkZ2fL3926dQsbNmzApk2b8P3332PKlCml5svKyoK/vz+OHTtW4vvCwkJkZGTgypUrOHToEM6dO4eNGze+6NUgIiIiIiIiIiIiIqpymMBORERERERERERE9BKLiIjAvXv3AABt27aFiYnJc13+Dz/8gIsXL6Jt27YYP3486tevjwcPHiAhIUEuM3z4cDl5vXHjxpg2bRrc3d2RlpaGtWvXYsWKFbh58yY6deqEixcvwtbW9rnW8VE3b97EW2+9BZVKhW+++UYekf3w4cP47rvvkJGRgalTp8LBwQEBAQEl5p01a5acvN6zZ08MGTIE9vb2MDQ0xJ07d3D+/Hns3LnziaPFExERERERERERERG9qpjATkRERERERERERPQSu3jxovy5WbNmL2T5w4YNw4oVK8pM2t61axfWr18PAOjUqRN2794NfX19eXqXLl3g6+uLMWPGIC0tDR988AHWrVv33OtZXFxcHMzMzBASEgJ3d3f5e19fX/Tp0wetWrVCRkYGJk6ciB49ekBPT08uo12XAQMGYMOGDaWW3a1bN3z66adIS0t7oetARERERERERERERFRVKXRdASIiIiIiIiIiIiJ6ce7evSt/rlWrVrnlioqKEBERUe5/hYWFZc5nbm6OxYsXlzvi+E8//QQA0NPTw/Lly0skr2uNHj0anTt3BgBs3rwZKSkpT71+/9aMGTNKJK9rNWzYEJ9//jkAIDk5Gdu2bSsx/datWwAejmb/OBYWFs+ppkRERERERERERERELxcmsBMRERERERERERG9xDIzM+XPJiYm5ZbLyMhAo0aNyv0vOTm5zPl69eoFU1PTMqep1WocOXIEwMOR1uvWrVvu3x89erQ8T3Bw8JNW65lIkoThw4eXO33kyJFyQv6BAwdKTLO2tgYArFu3Djk5OS+ukkRERERERERERERELykmsBMRERERERERERG9xIonl2dnZz/35Xt5eZU77dq1a3KSd8uWLR+7nOLTIyIink/lyuHo6AhLS8typ9eqVQsODg4AgEuXLpWYpk18P3nyJBwdHTFx4kRs2bIFqampL6y+REREREREREREREQvEyawExEREREREREREb3EatasKX9+XJK1ubk5hBAl/nvcKOVaNWrUKHdaWlqa/Ll27dqPXY6VlVWZ870IT6oLANSpU6fMusyYMQOjRo2CJEm4c+cOfvrpJ/Tr1w+1a9eGp6cnZs6cidu3b7+QehMRERERERERERERvQyYwE5ERERERERERET0EmvcuLH8+fz58899+Uql8qnKSZL03P/2v/UsddHT08PSpUsRERGBL774Aq1atYK+vj4AIDIyEnPmzIGLiwu2bdv2vKpLRERERERERERERPRSYQI7ERERERERERER0UvM09NTHoX92LFjyMnJqbC/bWFhIX9+0qjkt27dKnM+AFAo/v4pu6ioqNxlZGdnP1W9nmaEdG2ZR+ui5eHhgS+//BInTpxAeno69u/fj5EjR0KpVCIrKwuDBw9GSkrKU9WHiIiIiIiIiIiIiOhVwgR2IiIiIiIiIiIiopeYJEkYOnQoACAjIwMrV66ssL/t5OQEY2NjAEBoaOhjy54+fVr+7OnpWWKaqamp/Pn+/fvlLiM2Nvap6hUfH4979+6VOz01NRUJCQll1qUshoaG6Ny5M5YtW4Z58+YBAHJzc7Fz586nqg8RERERERERERER0auECexEREREREREREREL7kPPvgAhoaGAIBPP/0U8fHxFfJ3VSoV2rdvDwDYv38/bty4UW7ZP/74Q56nQ4cOJaY5OjrKn8+cOVPuMtauXftU9RJC4M8//yx3+ooVKyCEAAB07tz5qZap1alTJ/nz3bt3/9G8RERERERERERERESvAiawExEREREREREREb3k7O3tsXDhQgBAeno62rRpg+PHjz92HiEEHjx48Mx/e8KECQCAgoICvPPOOygsLCxVZtmyZdi3bx8AoF+/frC2ti4xvVWrVlCpVACABQsWyMnlxc2bN6/EKO5P8uWXXyImJqbU95cvX8bXX38NALC2tkafPn3kaWlpadixY0eZf19Lux5AycR7IiIiIiIiIiIiIiJ6SKXrChARERERERERERHRizd69GgkJydj9uzZuHnzJtq2bYuOHTuiV69eaNSoESwsLKDRaHDr1i2cO3cO69evR2RkJABAqVRCX1//X/3dHj16YODAgdiwYQP27dsHHx8ffPDBB3Bzc8P9+/exdu1aLFu2DABgYWGB+fPnl1pG7dq1MXDgQKxZswZ79+5F7969MWHCBNSpUwdJSUlYtWoVNm3ahFatWuHkyZNPrJOLiwtSU1Ph4+ODjz/+WB7xPTg4GHPnzkV6ejoAYNGiRSXWOyMjA71794aDgwP69euHli1bol69elCpVEhJScGOHTvkkeRtbW3Rs2fPf7XNiIiIiIiIiIiIiIheZpJ43FAxRERERERERERERPRS2bJlCz788ENcu3btiWUlSULXrl0xb948eHp6yt8nJCTIo4svX74cI0aMeOxy8vLy8NZbb2HLli3llrGxscGuXbvQpEmTMqffvn0bbdu2RVxcXJnTBw0ahHfffRedO3cGABw+fFhOTNfq0KEDjhw5gvbt22P69Ol44403kJOTU2pZCoUCgYGBmDZtWonvi6/341hbW2PHjh3w9vZ+YlkiIiIiIiIiIiIiolcNR2AnIiIiIiIiIiIieoX07dsXvXr1wpYtW7B3716EhITgzp07ePDgAYyNjVGzZk00atQIvr6+ePPNN58qYftJDA0NsXnzZuzYsQMrVqzAqVOncPfuXZiYmKB+/foICAjAxIkTUa1atXKXUadOHYSGhuK7777D5s2bkZSUBBMTE3h6emLMmDEYMmQIgoODn7pOPXr0wJkzZzBv3jwcOnQIKSkpMDc3R9u2bTFt2jT4+vqWmqdevXo4ffo0du/ejZMnTyIxMRG3b99GVlYWzM3N4eHhgV69emHMmDGoXr36v9lUREREREREREREREQvPY7ATkRERERERERERESvhOIjsP+TZHciIiIiIiIiIiIiInp+FLquABERERERERERERERERERERERERERERG9GpjATkREREREREREREREREREREREREREREQVggnsRERERERERERERERERERERERERERERFQhmMBORERERERERERERERERERERERERERERBWCCexEREREREREREREREREREREREREREREVCEkIYTQdSWIiIiIiIiIiIiIiIiIiIiIiIiIiIiI6OXHEdiJiIiIiIiIiIiIiIiIiIiIiIiIiIiIqEIwgZ2IiIiIiIiIiIiIiIiIiIiIiIiIiIiIKgQT2ImIiIiIiIiIiIiIiIiIiIiIiIiIiIioQjCBnYiIiIiIiIiIiIiIiIiIiIiIiIiIiIgqBBPYiYiIiIiIiIiIiIiIiIiIiIiIiIiIiKhCMIGdiIiIiIiIiIiIiIiIiIiIiIiIiIiIiCoEE9iJiIiIiIiIiIiIiIiIiIiIiIiIiIiIqEIwgZ2IiIiIiIiIiIiIiIiIiIiIiIiIiIiIKsT/ATvgklZg27clAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAC7AAAAPgCAYAAACx8HFwAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdf3zXdb03/sd+wNgAQZ15IKRRiJuhJaRHQRKsPF1HTZyYlav0qqyr0/la4bGwk2mnI8dzwo6dc+ucrI5lHM1CpCssT+eUGHph5bIf1OaPLieSlM1AkH0YsO37hxc7LBhsbGyM3e+322577/V6vl6v5we5tZyPvT5FHR0dHQEAAAAAAAAAAAAAgIOseLAbAAAAAAAAAAAAAABgeBBgBwAAAAAAAAAAAABgQAiwAwAAAAAAAAAAAAAwIATYAQAAAAAAAAAAAAAYEALsAAAAAAAAAAAAAAAMCAF2AAAAAAAAAAAAAAAGhAA7AAAAAAAAAAAAAAADQoAdAAAAAAAAAAAAAIABIcAOAAAAAAAAAAAAAMCAEGAHAAAAAAAAAAAAAGBAlA52AwAAAAAAAAAAAADA4Ovo6MiOHTvS3t4+2K1wCCsuLs6IESNSVFR0QOsF2AEAAAAAAAAAAABgGGtra0tzc3O2bNmSHTt2DHY7DAEjRozI2LFjU1lZmZKSkl6tLero6Og4SH0BAAAAAECS5LLLLstXvvKVJMmTTz6ZqqqqA95r1apVmTdvXpLkE5/4RK677ro+97frlpizzjorq1at6vN+AAAAAABDRVtbW55++um0trZm3LhxGTNmTEpKSg74dm0Obx0dHWlra8sLL7yQ559/PmVlZTnuuON6FWJ3AzsAAAAAwDAyderU/PrXv06S/OIXv8j06dP3Wf/6178+3/ve95IkkyZNytNPP73P+paWlhx55JHZvn17SktLs3HjxowZM6Z/mu+Ff/zHf8ymTZsyfvz4fPCDHxzw8wEAAAAAhorm5ua0trZm8uTJKS8vH+x2GCLGjBmTcePGZd26dWlubs6xxx7b47XFB7EvAAAAAAAOMbtuLk+y35vGt2/fnv/zf/5P59fr16/PE088sc81Dz74YLZv354kOfXUUwclvJ68GGC//vrr84//+I+Dcj4AAAAAwFDQ0dGRLVu2ZNy4ccLr9Fp5eXmOOOKIbNmyJR0dHT1eJ8AOAAAAADCM7B5gv++++/ZZ+8Mf/jCFQqHL2P7W7B6K3/2sL3/5y+no6EhHR0eqqqp63jAAAAAAAAfNjh07smPHjkG7jIShb+zYsZ1/j3pKgB0AAAAAYBiZO3du5/MPfvCDfd6IsiuMPnbs2Jx55pldxva3JukaYAcAAAAA4NDT3t6eJCkpKRnkThiqdv3d2fV3qScE2AEAAAAAhpGJEydm2rRpSZLm5ub84he/6LZ2Vxj9zDPPzOte97ouY3vT0tKSH//4x0mSkSNHZvbs2f3TNAAAAAAAB1VRUdFgt8AQdSB/dwTYAQAAAACGmd1vRu8ukL59+/asWbMmyYu3tp911llJkmeeeSaPPfbYXtc8+OCDnW8R+qd/+qcpLy/vnLvssstSVFSUoqKiNDU17bO///iP/8iFF16YCRMmZNSoUZk8eXJqa2vz3e9+d7+vraqqKkVFRXnqqaeSJE899VTnubt/XHfddfvcZ9u2bfnsZz+bM844I0cffXTKy8szderU/K//9b/y5JNP7rcPAAAAAABg7wTYAQAAAACGmd0D7Pfdd99ea374wx+mUCgkeTHAfvrpp2fkyJH7XLN7GH73M3qqvb0973nPe/LGN74xK1asyG9/+9u0trbm6aefzt13350/+7M/ywc/+MFe79tbTz75ZE477bRceeWVeeihh/KHP/wh27Zty69//ev867/+a0466aR93kQPAAAAAAB0r3SwGwAAAAAAYGDNnTu38/kHP/hBOjo69niLz10B7bFjx2bGjBkpLS3NaaedlgceeCCrVq3Ke9/73j327WuA/UMf+lC++MUvJklKSkpy6aWXZu7cuSkrK8tPf/rTfOlLX8rNN9+cp59+uts9brnllrS0tOSKK67I73//+xxzzDG55ZZb9qirrq7e6/rNmzfn3HPPTUNDQ84555ycf/75OfbYY7Nhw4Z85StfyU9+8pNs3bo1b3nLW9LQ0JAjjzyy168TAAAAAACGMwF2AAAAAIBh5thjj01NTU0aGhryhz/8IT/72c/y6le/ukvNrjD67NmzU1r64o+SX/va13YG2P9YS0tLfvzjHydJRo0alTPOOKNXPT344IP5p3/6pyTJ6NGjc++99+bMM8/snH/b296WD33oQzn77LOzfPnybvc555xzkqTzpvaKiorMnz+/x3088sgjKS0tzTe+8Y0sWLCgy9z73//+nH/++bn33nvzu9/9Lrfeems+/OEP93hvAAAAAICh7DebCtm4dftgt9FnR44emZeOLx/sNvpVVVVVnnrqqdx666257LLLejw3WATYAQAAAACGoXnz5qWhoSHJi2H13QPs27dvz5o1a5J0va39rLPOyg033JDf/va3aWxs7HKL+YMPPpgdO3YkSc4444yUlZX1qp8lS5ako6MjSXLjjTd2Ca/vMmHChNx5552ZMWNG2traerV/b1xzzTV7hNeTpLS0NJ/5zGdy7733Jkm+853vCLADAAAAAMPCbzYVcvanV6V1Z/tgt9JnZaXF+f5Vcw9KiL2joyPLli3L7bffnp/85Cd59tlnU1JSkmOPPTYTJkzIaaedljlz5uR1r3tdjjjiiH4/v7euu+66JMlll12WqqqqATu3eMBOAgAAAADgkDFv3rzO5/vuu6/L3EMPPZRCoZDkxdD6LrNmzeq8jf2P1+z+9e6h955obW3NPffckyQZN25c3v3ud3dbe/LJJ3fesn4wFBcX58orr+x2vrq6OpMmTUqSrF279qD1AQAAAABwKNm4dfthEV5Pktad7QflJvlNmzZl3rx5efOb35wVK1Zk3bp12blzZ8rKyrJu3bo8+OCD+cxnPpPa2tp9vtNof3vFK16RE044IePGjdtj7vrrr8/111+fpqamAesnEWAHAAAAABiWzjrrrBQVFSVJVq9enfb2//4PD6tWrUqSjBkzJq95zWs6x8eMGZOZM2d2qfnjNUnXcHxP/OxnP8v27S/+x4LZs2fv9/b2173udb3avzdOOOGEHHXUUfus2RVg37hx40HrAwAAAACAoeUd73hH7r///pSUlGThwoV57LHH0tramueeey6FQiE/+9nPcuONN+ZVr3rVgPb1ve99L42NjbnwwgsH9Nx9EWAHAAAAABiGjjnmmLzyla9M8mIQ+6c//Wnn3K4w+uzZsztvXN9l143suwfWt27dmocffjhJUl5enj/90z/tVS/PPPNM5/PUqVP3W9+TmgNVWVm535pdAfvW1taD1gcAAAAAAEPH448/nm9961tJkk996lP59Kc/neOPPz7FxS9GtUtLS3PyySfn6quvzk9/+tNccsklg9nuoBNgBwAAAAAYpna/KX1XIL21tTUPPfRQkv8Oq+9u19izzz6bX/3qV0mSBx98MDt27EjyYuh95MiRverjhRde6HyuqKjYb/3o0aN7tX9v7PqPCQAAAAAA0FO7XxJzwQUX7Le+vLy8y9dVVVUpKirKl7/85WzZsiWLFi3KCSeckPLy8lRWVmb+/Pn54Q9/eEC97b73Lpdddlnnu7QmL/73gqKios6PqqqqAzqrp/wkHgAAAABgmJo7d27n83333Zck+eEPf5hCobDH/C5nnnlmSkpKuqzZ/Tb23UPxPTVmzJjO55aWlv3Wb926tddnAAAAAADAQFi/fv0Br924cWNOPfXU/N3f/V2ampoycuTIPPfcc/nmN7+ZWbNm5d/+7d/6pcdx48bl2GOP7fz6yCOPzLHHHtv5ccwxx/TLOd0RYAcAAAAAGKbOOuuszhtWVq9enba2ts4w+ujRo3PqqafuseaII47Iq171qiT9F2B/6Utf2vn8xBNP7Le+JzUAAAAAADBQTj311M6fty9cuDCPPfbYAe1z/fXX59lnn83Xv/71bN26Nc8//3x+9atf5ayzzkp7e3ve+9735ic/+Umf+7355pvz29/+tvPr5cuX57e//W3nx49//OM+n7EvAuwAAAAAAMPU0UcfnZNPPjlJ8vzzz+eRRx7pDKPPmjUrpaWle1131llnJUnuv//+vPDCC3n44YeTvHiT+t5C7/tz8sknp6ysLEny4IMPprW1dZ/13/ve9/a7Z3Hxiz/+7ujo6HU/AAAAAADQG1VVVXn3u9+dJPnFL36R6urqzJgxI3/xF3+Rf/u3f8vatWt79PPq559/Pt/4xjdy8cUXd/6MvqamJt/5zndy/PHHZ+fOnfn4xz9+UF/LQBBgBwAAAAAYxna/Mf3ee+/NQw89lCSZO3dut2t2Bdibm5vz+c9/Pjt27EiSnHnmmd2G3velrKwsf/7nf57kxR/O7+stUNeuXZvvfve7+91zzJgxSZKtW7f2uh8AAAAAAOitz33uc/n4xz+e0aNHp6OjI4888kg+97nP5V3veldOOumk/Mmf/Ek+/OEP53e/+123e8yePTuve93r9hgvLy/PX/3VXyV58Wf5zz///EF7HQNBgB0AAAAAYBjbPaj+T//0TykUCnuM/7E5c+Z0vhXq3//933eO7x6G762FCxd27vmRj3wka9as2aPmd7/7XS655JK0tbXtd78pU6YkSZ577rmsW7fugPsCAAAAAICeKC0tzSc/+cn85je/yVe/+tW8+93vzqte9aqMHDkySfLss8/mM5/5TKZPn54f/ehHe93j7LPP7nb/XXPt7e35yU9+0v8vYAAJsAMAAAAADGOvfe1rU1z84o+Kn3322SRJRUVFTj311G7XHHXUUTnppJO6rEn6FmCfPXt2/vIv/zJJsmXLlrz2ta/N5Zdfni9/+cu544478pGPfCQnnnhifvWrX6W2tna/+73+9a/vfL7wwgvzhS98Id/+9rdz77335t57780TTzxxwL0CAAAAAEB3xo0bl7q6unzhC1/IT3/60zz//PP5z//8z5x//vlJXnx304suuijbtm3bY+1LX/rSbvfdfW73n80PRQLsAAAAAADD2JFHHplXv/rVXcZmzZqVESNG7HPdWWed1eXrI444IjNmzOhTL5/5zGfyrne9K0myc+fOfPnLX87ll1+et73tbfn7v//7/OEPf8iVV17ZGXTfl//5P/9nqqurkyQ/+clPcsUVV+Tcc8/N//gf/yP/43/8jyxdurRPvQIAAAAAQE+MGjUqr3/96/O///f/zjvf+c4kyfr163PvvfcOcmeDR4AdAAAAAGCY++Ob0+fOnbvfNX8cYJ8zZ05KSkr61EdxcXG++MUv5jvf+U7e9KY35SUveUlGjhyZSZMm5cILL8y9996bf/zHf+zRXqNHj85DDz2Ua6+9Nq95zWsybty4zpvmAQAAAABgMFxxxRWdz48++uge87/5zW+6Xbv73Ete8pL+bWyAlQ52AwAAAAAADK5Pf/rT+fSnP92rNRdddFE6Ojp6XP/lL385X/7yl3tU+8Y3vjFvfOMbu52fO3duj84eN25crr/++lx//fX7re3Na1m1alWPawEAAAAAYJcxY8Z0PpeVle0xf99993W7dtdccXFxTjnllH7pp6ioKB0dHb36GXl/cN0MAAAAAAAAAAAAAMABevLJJ/PYY4/tt+4rX/lK5/OMGTP2mH/ggQf2eonKtm3bsmTJkiTJn/3Zn2X8+PEH3OvujjjiiCTJpk2b+mW/nhJgBwAAAAAAAAAAAAA4QL/85S9TU1OTc889N7fddluampo653bs2JFHHnkkl19+eW666aYkyWmnnZYzzzxzj33GjRuXiy66KMuWLcvOnTuTJI2NjTn33HPT2NiYkpKSfPKTn+y3vqdPn54k+fd///e0tLT02777UzpgJwEAAAAAAAAAAAAAHGZGjBiR9vb2fPvb3863v/3tJMnIkSMzZsyYbNy4MR0dHZ21M2bMyN13353i4j3vIf/EJz6Rz3/+87n44otTVlaWUaNG5fnnn0+SFBUV5V/+5V/ymte8pt/6ft/73pcHH3wwd911V/73//7feclLXpLS0tJMmjQpDzzwQL+d88cE2AEAAAAAAAAAAAAADtCf/dmf5fHHH8+3v/3tPPDAA1m7dm3Wr1+fTZs2paKiIhMnTswpp5yS2traXHzxxXsNryfJkUcemR/96EdZvHhx7rrrrjz99NM56qijMnv27CxatChnnHFGv/ZdV1eXJPn85z+fX/ziF9mwYUPa29v79Yy9KerYPdI/hD311FP57Gc/m3vuuSdPP/10ysrK8opXvCJvfvOb8xd/8RepqKjot7P+67/+K0uXLs0DDzyQDRs2pLS0NMcee2xOPvnkvO51r8vb3/72jBkzpt/OAwAAAAAAAAAAAID+tm3btjz55JOZMmVKRo0a1W3dbzYVcvanV6V158EPNx9sZaXF+f5Vc/PS8eWD3UqnqqqqPPXUU7n11ltz2WWXDXY7vdLTv0O7OyxuYP/Wt76Vurq6bN68uXOspaUlDz/8cB5++OF88YtfzD333JOpU6f26ZyNGzfm8ssvzze/+c095jZv3pzHH388d911V84444y8+tWv7vG+7e3teeaZZzJ27NgUFRX1qUcAAAAAAAAAAAAADl8dHR3ZsmVLJk6c2O1N3v3tpePL8/2r5mbj1u0Dct7BdOTokYdUeH04GvIB9kceeSSXXHJJCoVCxowZk0WLFmXevHkpFAr52te+li984Qt57LHHcu655+bhhx/O2LFjD+ic559/Pm94wxtSX1+fJLnwwguzYMGCvOIVr0hJSUmefvrp3H///bnrrrt6vfczzzyT44477oD6AgAAAAAAAAAAAGD4efrppzNp0qQBO++l48sFv+kXQz7AfuWVV6ZQKKS0tDTf/e53c8YZZ3TOnX322Tn++ONz9dVX57HHHsuSJUty3XXXHdA5f/mXf5n6+vqUlZXl61//et70pjd1mX/Na16TCy+8MJ/5zGfS1tbWq713heqffvrpHHHEEQfUH4em6urqbNiwIRMmTEhjY+NgtwMAAACHJf/+DUBP+Z4BQE/4fgFAT/meAcBg2bx5c4477rgDvtQZBtuQDrD/6Ec/yurVq5Mk73rXu7qE13dZuHBhbr311jQ0NOTmm2/Oxz72sYwYMaJX5zzwwAP56le/miT51Kc+tUd4fXdFRUUpLe3dH2tRUVGS5IgjjhBgP8zsemuO4uJi/2wBAADgIPHv3wD0lO8ZAPSE7xcA9JTvGQAMtl35Uxhqige7gb5YsWJF5/Pll1++15ri4uK84x3vSJJs2rQp9913X6/P+ed//uckybhx4/KBD3yg940CAAAAAAAAAAAAAOxFU1NTOjo6ctlllw12KwNiSAfYH3jggSTJ6NGjM3PmzG7rzjrrrM7nBx98sFdnbN++Pd/85jeTJG94wxsyatSoJElbW1uefvrpNDU1Zdu2bb1tHQAAAAAAAAAAAABg2BnSAfaGhoYkydSpU1NaWtptXXV19R5reupnP/tZZ0D9pJNOyubNm/PBD34wlZWVmTx5cqZMmZJx48blDW94Q1atWtX7FwEAAAAAAAAAAAAAMEwM2QD7tm3b0tzcnCSZNGnSPmuPPPLIjB49Okny9NNP9+qcX/3qV53P7e3tec1rXpObb745mzZt6hzfvn17/uu//itnn312brzxxv3u2drams2bN3f5AAAAAAAAAAAAAAA43A3ZAPuWLVs6n8eMGbPf+l0B9hdeeKFX5/zhD3/ofL7xxhvz+OOP541vfGN+9KMfZdu2bXn22WfzL//yLxk3blw6Ojry0Y9+NN/85jf3uefixYszbty4zo/jjjuuVz0BAAAAAAAAAAAAAAxFQzbAvm3bts7nkSNH7re+rKwsSVIoFHp1ztatW7uc+YY3vCErV67MqaeemrKyshxzzDF53/vel5UrV6a4+MU/zkWLFqWjo6PbPRctWpTnn3++86O3t8IDAAAAAAAAAAAAAAxFQzbAPmrUqM7n7du377e+tbU1SVJeXn7A5yQv3sJeUlKyR92ZZ56Z2traJElDQ0N+8YtfdLtnWVlZjjjiiC4fAAAAAAAAAAAAAACHuyEbYB87dmzn8wsvvLDf+l03qY8ZM+aAzznmmGNyyimndFv7Z3/2Z53PP/7xj3t1DgAAAAAAAAAAAADA4W7IBthHjRqVo48+Okmyfv36fdZu3LixM8B+3HHH9eqc3esnTZrU49rf//73vToHAAAAAAAAAAAAAOBwN2QD7Ely4oknJkmeeOKJ7Ny5s9u6xsbGzueamppenfHKV76y87mtrW2ftbvPl5aW9uocAAAAAAAAAAAAAIDD3ZAOsJ955plJkq1bt6a+vr7buvvvv7/zefbs2b0642Uve1kmT56cJGlqakpHR0e3tb/+9a87n1/60pf26hwAAAAAAAAAAAAAgMPdkA6wz58/v/P51ltv3WtNe3t7brvttiTJ+PHjM2/evF6fc9FFFyVJNm/enO9973vd1i1fvrzzeVe4HgAAAAAAAAAAAACAFw3pAPtpp52WOXPmJEm+9KUvZc2aNXvULFmyJA0NDUmSK6+8MiNGjOgyv2rVqhQVFaWoqCiXXXbZXs/54Ac/mFGjRiVJPvzhD2fz5s171CxdujSrVq1Kkpx77rk57rjjDvRlAQAAAAAAAAAAAAAclkoHu4G+uvnmmzN79uwUCoWcc845ueaaazJv3rwUCoV87Wtfyy233JIkmTZtWhYuXHhAZ0yePDmf/OQnc/XVV+cXv/hFTjvttHzkIx/JySefnM2bN2f58uX5l3/5lyTJEUcckc985jP99voAAAAAAAAAAAAAYNBtejppeW6wu+i7iqOT8S6qHkxDPsB+yimn5M4770xdXV02b96ca665Zo+aadOm5Z577snYsWMP+Jy/+qu/yh/+8IfceOONefTRR/M//+f/3KPmJS95SVasWJHjjz/+gM8BAAAAAAAAAAAAgEPKpqeTf56Z7Gwd7E76rrQs+UD9QQ2xt7W15a677srKlSvz0EMP5dlnn01LS0vGjx+fadOmZc6cObn00kszffr0bve4//77c/vtt+cHP/hBNmzYkG3btuWYY47Jq171qpx//vl55zvfmVGjRnW7/rrrrsv111+/x/jIkSNz9NFH56STTsrFF1+cd77znRkxYkS/vO6eKh7Q0w6S888/Pz//+c/zoQ99KNOmTUtFRUXGjx+f17zmNbnxxhvzyCOPZOrUqX0+Z/HixXnwwQfz9re/PVVVVSkrK8u4ceNy6qmn5m/+5m/y2GOP5YwzzuiHVwQAAAAAAAAAAAAAh4iW5w6P8Hry4us4iDfJP/TQQznxxBNzySWX5Ktf/Woef/zxtLS0ZOzYsXnuuefy4IMP5u/+7u9y0kkn5aKLLsr27du7rH/uuedy7rnnZu7cubnlllvS2NiYbdu2ZdSoUVm/fn3uueeevO9978u0adPy/e9/v0c9HXvssZ0fpaWl2bBhQ7773e/mPe95T2bNmpWNGzcejD+Kbg35G9h3ednLXpabbropN910U6/WzZ07Nx0dHT2uP+OMM4TUAQAAAAAAAAAAAIAuvvWtb+Xiiy9Oa2trjj766Fx11VW56KKLcvzxxyd58Wb2Rx55JHfddVc+97nPZfny5WlpacnIkSOTJL/73e9y5pln5oknnkhJSUne//73533ve19OPPHEJMmmTZuyYsWKXHvttXn66afzxje+MV//+tczf/78ffb129/+tsvX69aty6c+9al84QtfyMMPP5z/7//7//LVr361//9AunFY3MAOAAAAAAAAAAAAADBYHn/88dTV1aW1tTUnnnhifvrTn+ajH/1oZ3g9SUpKSvKa17wmixcvzpNPPpkLLrigc66joyNve9vb8sQTT2TEiBG5++6789nPfrYzvJ4k48ePz2WXXZZHHnkkr3rVq7Jjx468853vzK9//ete9Tp58uTccsstOfvss5MkX//61/PCCy/08U+g5wTYAQAAAAAAAAAAAAD64K//+q+zefPmjBo1KnfffXcmTZq0z/qjjjoqK1asyLhx45IkK1euzPe///0kycc+9rGcf/753a49+uij841vfCOjRo3K5s2b84lPfOKAen7jG9+YJNm+fXsef/zxA9rjQAiwAwAAAAAAAAAAAAAcoN/97ndZtmxZkuTSSy/NtGnTery2qKgoSfK5z30uSTJ27NgsXLhwv+uOP/74vPWtb02S3HnnnWlubu5t2+no6Oh8bmtr6/X6AyXADgAAAAAAAAAAAABwgO677760t7cnSS688MJer9+5c2dWr16dJDnnnHMyZsyYHq2rra3tXP+DH/yg1+f+x3/8R5IXQ/RTpkzp9foDJcAOAAAAAAAAAAAAAHCAfvnLX3Y+n3LKKb1e39TUlK1bt/Z6/atf/erO55///Oc9Xrdu3bpcccUV+f73v58kOf/883P00Uf3eH1flQ7YSQAAAAAAAAAAAAAAh5nnnnuu8/moo47q0/reBMkrKyv3uscf+5M/+ZPO5y1btqSlpaXz6+rq6nzuc5/r8Zn9QYAdAAAAAAAAAAAAAGAIa21t7Xbud7/73V7H3/GOd+Tzn/98Ro0adbDa2qviAT0NAAAAAAAAAAAAAOAwsvut6X/4wx/6tH5fN6n/sebm5s7nI488stu6jo6OdHR0pL29Pc8880z+9V//NePHj89tt92Wf/7nf+51v33lBnYAAACAYaClpSWNjY1dxgqFQpqamlJVVZXy8vIuc9XV1amoqBjIFgEAAAAAAGBIeuUrX9n5/Mgjj2TixIm9Wv+yl70so0ePztatW/OTn/ykx+seeeSRzucTTjhhv/VFRUWZMGFC3vve9+aEE07I2WefnauvvjozZszI2Wef3aue+0KAHQAAAGAYaGxszMyZM3tcX19fnxkzZhzEjgAAAAAAAODwMG/evBQXF6e9vT133313zj333F6tHzFiRObMmZN777033/3ud7Nly5aMHTt2v+uWL1/e+Tx37txenTl37ty8/e1vz2233Za//Mu/zM9//vOUlJT0ao8DVTwgpwAAAAAwqKqrq1NfX9/lY+nSpUmSpUuX7jFXXV09yB0DAAAAAADA0HDsscfmoosuSpLcfvvteeyxx3q8tqOjI0ny/ve/P0nywgsv5Kabbtrvuscffzxf+9rXkiRnnnlmXv7yl/e27Vx77bUpKSnJr371q3zlK1/p9foDJcAOAAAAMAxUVFRkxowZXT5qamqSJDU1NXvMVVRUDHLHAAAAAAAAMHR86lOfypgxY1IoFFJbW5vf/OY3+6zfuHFjLrroojz//PNJkvPOO6/zFvW//du/zcqVK7td+9xzz+Xiiy/Otm3bUlRUlE996lMH1PMrXvGKXHLJJUmSv/mbv8mOHTsOaJ/eEmAHAAAAAAAAAAAAAOiDadOm5atf/WpGjhyZX/7yl3n1q1+dG2+8MU888URnTVtbWx555JFce+21efnLX57ly5d3zhUVFeWOO+7Iy1/+8uzYsSMXXnhhrrzyyjQ0NHTWPP/88/nKV76SGTNm5Gc/+1mSF29RP+ussw6470WLFqWoqChNTU350pe+dMD79IYAOwAAAAAAAAAAAABAH82fPz/f//73M3Xq1DQ3N+ejH/1ojj/++JSVleXoo4/OyJEjM2PGjPzN3/xNnn/++bz1rW/N6NGjO9f/yZ/8SR566KGcc8452blzZz772c/mxBNPTHl5eY488siMHz8+l112WdatW5cRI0bk7//+73Pdddf1qefp06fnTW96U5IXb35vbW3t0349IcAOAAAAAAAAAAAAAHSv4uiktGywu+gfpWUvvp6DZPbs2WlsbMwdd9yRSy+9NFOnTs2oUaOyZcuWHHXUUTnzzDPzsY99LA0NDbn99tszYsSILuuPOeaY/Md//Ee+973v5d3vfndOOOGEjBw5Mps2beqsmThxYtauXZu/+qu/6peeP/axjyVJ1q9fn89//vP9sue+lB70EwAAAAAAAAAAAACAoWv8cckH6pOW5wa7k76rOPrF13MQlZSU5C1veUve8pa3HPAeZ599ds4+++wuY3feeWfe+ta35plnnslXv/rV/M3f/E2366+77roe385+6qmnpqOj44B77S0BdgAAAAAAAAAAAABg38Yfd9CD3+zbJZdckg0bNuRDH/pQPvWpT2Xs2LG5+uqrB7utXise7AYAAAAAAAAAAAAAANi/D37wg7nqqquSJB/5yEfyuc99bpA76j0BdgAAAAAAAAAAAACAIeIf/uEf0tHRkY6Ojrz//e8f7HZ6TYAdAAAAAAAAAAAAAIABIcAOAAAAAAAAAAAAAMCAEGAHAAAAAAAAAAAAAGBACLADAAAAAAAAAAAAADAgBNgBAAAAAAAAAAAAABgQAuwAAAAAAAAAAAAAAAwIAXYAAAAAAAAAAAAAAAaEADsAAAAAAAAAAAAAAANCgB0AAAAAAAAAAAAAgAEhwA4AAAAAAAAAAAAAwIAQYAcAAAAAAAAAAAAAYEAIsAMAAAAAAAAAAAAAMCAE2AEAAAAAAAAAAAAAGBClg90AAAAAAAAAAAAAAHBo2/DChmxs3TjYbfTZkWVHZsKYCYPdxrAmwA4AAAAAAAAAAAAAdGvDCxty3orzsr1t+2C30mcjS0Zm5fyVBzXE3tbWlrvuuisrV67MQw89lGeffTYtLS0ZP358pk2bljlz5uTSSy/N9OnTu93j5z//ef793/899913X5566qls3Lgx5eXleelLX5pTTz01tbW1+fM///OMGDGiy7q5c+fm/vvv32O/ioqKvPSlL82sWbPyvve9L6effnq/v+6eEmAHAAAAAAAAAAAAALq1sXXjYRFeT5LtbduzsXXjQQuwP/TQQ3nnO9+Zxx57rHNsxIgRGTt2bJ577rk8+OCDefDBB/N3f/d3qa2tzR133JGRI0d21m7ZsiXve9/7cscdd6SjoyNJUlRUlHHjxqVQKKShoSENDQ257bbb8opXvCL//u//nj/90z/do48RI0bkqKOO6vy6ubk5jz/+eB5//PHcdttt+cQnPpFPfOITB+XPYH+KB+VUAAAAAAAAAAAAAIDDyLe+9a3MnTs3jz32WI4++ugsXrw4jz32WLZv357nnnsu27dvz49//ON89KMfzRFHHJHly5enpaWlc/3GjRtzxhln5Pbbb0+SvOUtb8n999+fbdu2ZePGjdm2bVt+85vf5Itf/GJOPvnk/PrXv86aNWv22susWbPy29/+tvOjpaUl3/3udzN16tR0dHTkuuuuyz333DMgfy5/TIAdAAAAAAAAAAAAAKAPHn/88dTV1aW1tTUnnnhifvrTn+ajH/1ojj/++M6akpKSvOY1r8nixYvz5JNP5oILLuiyx6WXXppf/vKXKS0tzZ133pk77rgjr33ta7vc0D5x4sS8613vyk9/+tN87nOfy6hRo3rU38iRI/OGN7wh3/zmNzv3++d//ud+eOW9VzoopwIAAAAAAAAAAAAAHCb++q//Ops3b86oUaNy9913Z9KkSfusP+qoo7JixYp0dHQkSb7zne/kO9/5TpLk2muvzcUXX7zP9UVFRflf/+t/pb29vVd9nnjiiZk5c2bWrFmTH//4x71a21/cwA4AAAAAAAAAAAAAcIB+97vfZdmyZUlevEV92rRpPV5bVFSU5L9vQx83blw+/OEP93h9cXHv4+C7wvWbN2/u9dr+IMAOAAAAAAAAAAAAAHCA7rvvvs6b0C+88MJer9+5c2d+8IMfJEne8IY3ZPTo0f3a3x9rampK8uIt8INBgB0AAAAAAAAAAAAA4AD98pe/7Hw+5ZRTer3+qaeeygsvvHDA63vjRz/6Uerr65Mkp59++kE9qzsC7AAAAAAAAAAAAAAAB+i5557rfD6QW837ur4nnnnmmXz1q1/NBRdckPb29hQVFeWDH/zgQTlrf0oH5VQAAAAAAAAAAAAAAA6K+++/P0VFRXudGzFiRG666abMnTt3YJv6fwTYAQAAAAAAAAAAAAAO0NFHH935/Ic//CETJ07s0/r+MGLEiM7b3IuKilJeXp6JEydm1qxZefe7351p06b1yzkHQoAdAAAAAAAAAAAAAOAAvfKVr+x8fuSRR3odYH/Zy16WMWPG5IUXXsgjjzzSLz3NmjUrq1at6pe9+lvxYDcAAAAAAAAAAAAAADBUzZs3L8XFL8ay77777l6vLy0tzWtf+9okyX/+539m69at/drfoUaAHQAAAAAAAAAAAADgAB177LG56KKLkiS33357HnvssR6v7ejoSJL8xV/8RZLk+eefz0033dTj9e3t7b3o9NAgwA4AAAAAAAAAAAAA0Aef+tSnMmbMmBQKhdTW1uY3v/nNPus3btyYiy66KM8//3yS5M///M9zzjnnJEk++clPZtmyZfs985ZbbskXvvCFvjc/wATYAQAAAAAAAAAAAAD6YNq0afnqV7+akSNH5pe//GVe/epX58Ybb8wTTzzRWdPW1pZHHnkk1157bV7+8pdn+fLlXfa4/fbbU1NTk507d+bNb35zLr300qxevTo7duzorNmwYUO+8pWvZObMmXnve9+bQqEwYK+xv5QOdgMAAAAAAAAAAAAAAEPd/Pnz8/3vfz+XXXZZnnjiiXz0ox/NRz/60YwcOTJjxozJpk2b0t7eniQpKirKW9/61owePbpz/dFHH52HHnoo73nPe/KNb3wjt99+e26//fYUFRVl/PjxKRQK2bZtW2d9TU1N5syZM+Cvs68E2AEAAAAAAAAAAAAA+sHs2bPT2NiYb3zjG1m5cmV++MMf5tlnn82WLVty1FFHpbq6OmeddVbe/va354QTTthj/RFHHJE777wz11xzTZYuXZpVq1blqaeeysaNG1NeXp4pU6bktNNOy8UXX5w3vvGNKSkpGYRX2TcC7AAAAAAAAAAAAABAt44sOzIjS0Zme9v2wW6lz0aWjMyRZUce1DNKSkrylre8JW95y1sOeI9XvepVedWrXtXrdatWrTrgMweKADsAAAAAAAAAAAAA0K0JYyZk5fyV2di6cbBb6bMjy47MhDETBruNYU2AHQAAAAAAAAAAAADYpwljJgh+0y8E2AEAAAAOQ+vWrUtzc/M+axoaGrp83pfKyspMnjy5X3oDAAAAAAAAhi8BdgAAAIDDzLp161JTfUJaCtt6VF9XV7ffmoryUWlofFSIHQAAAAAAAOgTAXYAAACAw0xzc3NaCtuy9MLy1BxT3G1dYWdHmja1p2p8ccpLi7qta/h9e+ruLqS5uVmAHQAAAAAAAOgTAXYAAACAw1TNMcWZMaFknzWzjxugZgAAAAAAAACSdH8FFwAAAAAAAAAAAAAA9CMBdgAAAAAAAAAAAAAABoQAOwAAAAAAAAAAAAAAA0KAHQAAAAAAAAAAAACGsY6OjsFugSHqQP7uCLADAAAAAAAAAAAAwDBUXPxilLitrW2QO2Go2vV3Z9ffpZ4QYAcAAAAAAAAAAACAYWjEiBEZMWJEXnjhhcFuhSFqy5YtnX+PekqAHQAAAAAAAAAAAACGoaKioowdOzbPP/98CoXCYLfDEFMoFLJ58+aMHTs2RUVFPV5XehB7AgAAAAAAAAAAAAAOYZWVlSkUClm3bl2OOOKIjB07NiUlJb0KJDN8dHR0pK2tLVu2bMnmzZtTVlaWysrKXu0hwA4AAAAAAAAAAAAAw1RJSUmOO+64NDc3Z8uWLdm0adNgt8QQMGLEiIwfPz6VlZUpKSnp1VoBdgAAAAAAAAAAAAAYxkpKSnLsscfmJS95SXbs2JH29vbBbolDWHFxcUaMGHHAt/QLsAMAAAAAAAAAAAAAKSoqysiRIwe7DQ5zxYPdAAAAAAAAAAAAAAAAw4Mb2AEAAADotZaWljQ2NnYZKxQKaWpqSlVVVcrLy7vMVVdXp6KiYiBbBAAAAAAAAA5BAuwAAAAA9FpjY2NmzpzZ4/r6+vrMmDHjIHYEAAAAAAAADAUC7AAAAAD0WnV1derr67uMNTQ0pK6uLkuXLk1NTc0e9QAAAAAAAAAC7AAAAAD0WkVFRbc3qtfU1LhtHQAAAAAAANir4sFuAAAAAAAAAAAAAACA4UGAHQAAAAAAAAAAAACAASHADgAAAAAAAAAAAADAgBBgBwAAAAAAAAAAAABgQAiwAwAAAAAAAAAAAAAwIATYAQAAAAAAAAAAAAAYEALsAAAAAAAAAAAAAAAMCAF2AAAAAAAAAAAAAAAGhAA7AAAAAAAAAAAAAAADQoAdAAAAAAAAAAAAAIABIcAOAAAAAAAAAAAAAMCAKB3sBgAAAADoX4VCIUnS0NzWL/vt2mfXvgDA4Ghra8vq1auzYcOGTJgwIXPmzElJSclgtwUAAAAA0CsC7AAAAACHmaampiRJ3fJt/b7v7Nmz+3VPAKBnli9fnoULF3Z+n0+SqqqqLFmyJLW1tYPXGAAAAABALwmwAwAAABxmqqqqkiRLa0elprLvt7I2NLelbvm2zn0BgIG1fPnyLFiwIOedd17uuOOOTJ8+PWvXrs0NN9yQBQsWZNmyZULsAAAAAMCQIcAOAAAAcJgpLy9PktRUlmTGhL4H2P94XwBg4LS1tWXhwoU577zzsmLFihQXFydJTj/99KxYsSLz58/PVVddlQsuuCAlJf33fR8AAAAA4GApHuwGAAAAAAAA2LvVq1enqakp11xzTWd4fZfi4uIsWrQoTz75ZFavXj1IHQIAAAAA9I4AOwAAAAAAwCFqw4YNSZLp06fvdX7X+K46AAAAAIBDnQA7AAAAAADAIWrChAlJkrVr1+51ftf4rjoAAAAAgEOdADsAAAAAAMAhas6cOamqqsoNN9yQ9vb2LnPt7e1ZvHhxpkyZkjlz5gxShwAAAAAAvSPADgAAAAAAcIgqKSnJkiVLsnLlysyfPz9r1qzJli1bsmbNmsyfPz8rV67Mpz/96ZSUlAx2qwAAAAAAPVI62A0AAAAAAADQvdra2ixbtiwLFy7MrFmzOsenTJmSZcuWpba2dhC7AwAAAADoHQF2AAAAAACAQ1xtbW0uuOCCrF69Ohs2bMiECRMyZ84cN68DAAAAAEOOADsAAAAAAMAQUFJSkrlz5w52GwAAAAAAfSLADgAAAECPNDQ09Gh+f3VJUllZmcmTJ/dLXwAAAAAAAMDQIcAOAAAAwD5teKE9KUrq6up6VN+TulHlo/Jo46NC7AAAAAAAADDMCLADAAAAsE+btnUkHcmkKyalbGJZt3Xt29uzo3lHRlSOSPHI4m7rWp9pzfpb1qe5uVmAHQAAAAAAAIaZwybA/tRTT+Wzn/1s7rnnnjz99NMpKyvLK17xirz5zW/OX/zFX6SiouKA9/7yl7+cyy+/vEe1t956ay677LIDPgsAAADgUFU2sSzlVeX7Lpo2ML0AAAAAAAAAQ9NhEWD/1re+lbq6umzevLlzrKWlJQ8//HAefvjhfPGLX8w999yTqVOnDmKXAAAAAAOr4fft+5wv7OxI06b2VI0vTnlpUbd1T27s6O/WAAAAAAAAgGFqyAfYH3nkkVxyySUpFAoZM2ZMFi1alHnz5qVQKORrX/tavvCFL+Sxxx7Lueeem4cffjhjx47t03n/8R//kYkTJ3Y7P2nSpD7tDwAAANBXlZWVqSgflbq7C4PdCgAAAAAAAEAXQz7AfuWVV6ZQKKS0tDTf/e53c8YZZ3TOnX322Tn++ONz9dVX57HHHsuSJUty3XXX9em8adOmpaqqqm9NAwAAABxEkydPTkPjo2lubt5nXUNDQ+rq6rJ06dLU1NTstw4AAAAAAACgr4Z0gP1HP/pRVq9enSR517ve1SW8vsvChQtz6623pqGhITfffHM+9rGPZcSIEQPdKgAAAMCAmjx5ciZPntyj2pqamsyYMeMgdwQAAAAAAACQFA92A32xYsWKzufLL798rzXFxcV5xzvekSTZtGlT7rvvvoFoDQAAAAAAAAAAAACAPzKkA+wPPPBAkmT06NGZOXNmt3VnnXVW5/ODDz540PsCAAAAAAAAAAAAAGBPQzrA3tDQkCSZOnVqSktLu62rrq7eY82BuvzyyzNx4sSMHDkylZWVOf300/PXf/3X+c1vftOnfQEAAAAAAAAAAAAADndDNsC+bdu2NDc3J0kmTZq0z9ojjzwyo0ePTpI8/fTTfTp31apV2bBhQ3bs2JHnnnsuP/zhD/O3f/u3mTp1aj7/+c/3aW8AAAAAAAAAAAAAgMNZ99eWH+K2bNnS+TxmzJj91o8ePTpbt27NCy+8cEDnvfzlL09tbW3OOOOMHHfccUmS//t//2/uuuuuLFu2LNu2bcv73ve+FBUV5YorrtjnXq2trWltbe38evPmzQfUEwAAAAAAQE+1tLSksbGxy1ihUEhTU1OqqqpSXl7eZa66ujoVFRUD2SIAAAAAMAwM2QD7tm3bOp9Hjhy53/qysrIkL/4gtrcuvPDCvPOd70xRUVGX8VNPPTWXXHJJVq5cmdra2uzYsSMf+tCH8qY3vSl/8id/0u1+ixcvzvXXX9/rPgAAAAAAAA5UY2NjZs6c2eP6+vr6zJgx4yB2BAAAAAAMR0M2wD5q1KjO5+3bt++3fteN5398e0hPjBs3bp/z5513Xq699tp8/OMfT0tLS770pS/lYx/7WLf1ixYtyoc//OHOrzdv3tx5qzsAAAAAAAwmt3Qfvqqrq1NfX99lrKGhIXV1dVm6dGlqamr2qAcAAAAA6G9DNsA+duzYzucXXnhhv/Vbt25NkowZM+ag9HPFFVfk2muvTUdHR+6///59BtjLyso6b4QHAAAAAIBDiVu6D18VFRXd/rOqqanxzxEAAAAAGBBDNsA+atSoHH300Xnuueeyfv36fdZu3LixM8B+sG46f8lLXpKjjz46zc3N+c1vfnNQzgAAAAAAgIPNLd0AAAAAABxMQzbAniQnnnhiVq9enSeeeCI7d+5MaeneX87ub3X6xz9Y709FRUUHbW8AAAAAABgIbukGAAAAAOBgKh7sBvrizDPPTJJs3bp1j9tgdnf//fd3Ps+ePfug9PL73/8+zc3NSZKJEycelDMAAAAAAAAAAAAAAIayIR1gnz9/fufzrbfeutea9vb23HbbbUmS8ePHZ968eQell1tuuSUdHR1JkrPOOuugnAEAAAAAAENdW1tbVq1alTvuuCOrVq1KW1vbYLcEAAAAAMAAGtIB9tNOOy1z5sxJknzpS1/KmjVr9qhZsmRJGhoakiRXXnllRowY0WV+1apVKSoqSlFRUS677LI91jc1NeWRRx7ZZx8rV67MJz/5ySRJeXl5Lr/88gN5OQAAAAAAcFhbvnx5pk6dmnnz5uVtb3tb5s2bl6lTp2b58uWD3RoAAAAAAANkSAfYk+Tmm29OeXl5du7cmXPOOSeLFy/OQw89lPvuuy/vfe97c/XVVydJpk2bloULF/Z6/6ampsyYMSOzZs3K4sWL8+1vfzsPP/xwHn744Xz961/Pm9/85rzpTW/K9u3bkySf/vSn89KXvrRfXyMAAAAAAAx1y5cvz4IFC3LSSSdlzZo12bJlS9asWZOTTjopCxYsEGIHAAAAABgmSge7gb465ZRTcuedd6auri6bN2/ONddcs0fNtGnTcs8992Ts2LEHfM6aNWv2esP7LhUVFfnMZz6TK6644oDPAAAAAACAw1FbW1sWLlyY8847LytWrEhx8Yv365x++ulZsWJF5s+fn6uuuioXXHBBSkpKBrlbAAAAAAAOpiEfYE+S888/Pz//+c9z880355577sn69eszcuTITJ06NRdffHE+8IEPpKKi4oD2njlzZpYuXZo1a9bk4YcfzoYNG9Lc3JydO3fmyCOPzCtf+cq87nWvy7vf/e685CUv6edXBgAAAAAAQ9/q1avT1NSUO+64ozO8vktxcXEWLVqUWbNmZfXq1Zk7d+7gNAkAAAAAwIA4LALsSfKyl70sN910U2666aZerZs7d246Ojq6nR87dmwuvfTSXHrppX1tEQAAAAAAhqUNGzYkSaZPn77X+V3ju+oAAAAAADh8HTYBdgAAAAAA4NA0YcKEJMnatWtz+umn7zG/du3aLnW8qKWlJY2NjV3GCoVCmpqaUlVVlfLy8i5z1dXVB/yOtAAAAAAAA0WAHQAAAAAAOKjmzJmTqqqq3HDDDVmxYkWKi4s759rb27N48eJMmTIlc+bMGcQuDz2NjY2ZOXNmj+vr6+szY8aMg9gRAAAAAEDfCbADAAAAsE+FQiFJ0vpMa7/st2ufXfsCcPgrKSnJkiVLsmDBgsyfPz+LFi3K9OnTs3bt2ixevDgrV67MsmXLUlJSMtitHlKqq6tTX1/fZayhoSF1dXVZunRpampq9qgHAAAAADjUCbADAAAAsE9NTU1JkvW3rO/3fWfPnt2vewJw6Kqtrc2yZcuycOHCzJo1q3N8ypQpWbZsWWprawexu0NTRUVFtzeq19TUuG0dAAAAABiSBNgBAAAA2KeqqqokyaQrJqVsYlmf92t9pjXrb1nfuS8Aw0dtbW0uuOCCrF69Ohs2bMiECRMyZ84cN68DAAAAAAwjAuwAAAAA7FN5eXmSpGxiWcqryvt9XwCGl5KSksydO3ew2wAAAAAAYJAUD3YDAAAAAAAAAAAAAAAMDwLsAAAAAAAAAAAAAAAMCAF2AAAAAAAAAAAAAAAGhAA7AAAAAAAAAAAAAAADQoAdAAAAAAAAAAAAAIABIcAOAAAAAAAAAAAAAMCAEGAHAAAAAAAAAAAAAGBACLADAAAAAAAAAAAAADAgBNgBAAAAAAAAAAAAABgQAuwAAAAAAAAAAAAAAAyI0sFuAAAAAAAAOHy1tLSksbGxy1ihUEhTU1OqqqpSXl7eZa66ujoVFRUD2SIAAAAAAANIgB0AAAAAADhoGhsbM3PmzB7X19fXZ8aMGQexIwAAAAAABpMAOwAAAAAAcNBUV1envr6+y1hDQ0Pq6uqydOnS1NTU7FEPAAAAAMDhS4AdAAAAAAA4aCoqKrq9Ub2mpsZt6wAAAAAAw0zxYDcAAAAAAAAAAAAAAMDwIMAOAAAAAAAAAAAAAMCAEGAHAAAAAAAAAAAAAGBACLADAAAAAAAAAAAAADAgSge7AQAAAICeamlpSWNjY5exQqGQpqamVFVVpby8vMtcdXV1KioqBrJFAAAAAAAAAPZBgB0AAAAYMhobGzNz5swe19fX12fGjBkHsSMAAAAAAAAAekOAHQAAABgyqqurU19f32WsoaEhdXV1Wbp0aWpqavaoBwD2bd26dWlubt5nTUNDQ5fP+1JZWZnJkyf3S28AAAAAABx+BNgBAACAIaOioqLbG9Vramrctg4AvbRu3brUVJ+QlsK2HtXX1dXtt6aifFQaGh8VYgcAAAAAYK8E2AEAAAAAYJhqbm5OS2Fbll5YnppjirutK+zsSNOm9lSNL055aVG3dQ2/b0/d3YU0NzcLsAMAAAAAsFcC7AAAAAAAMMzVHFOcGRNK9lkz+7gBagYAAAAAgMNa99epAAAAAAAAAAAAAABAP3IDOwAAAAA90vpM6z7n27e3Z0fzjoyoHJHikd3fm7C/fQAAAAAAAIDDlwA7AAAAcNC0tLSksbGxy1ihUEhTU1OqqqpSXl7eZa66ujoVFRUD2SI9UFlZmVHlo7L+lvX9tueo8lGprKzst/0A4HCwbt26NDc377OmoaGhy+d9aW1tTVlZWb/tV1lZmcmTJ++3DgAAAABgXwTYAQAAgIOmsbExM2fO7HF9fX19ZsyYcRA74kBMnjw5jzY+2qNAXV1dXZYuXZqampp91grAAUBX69atS031CWkpbOtRfV1d3f6LipJ09Oz8nuw3qnxUHm181PdwAAAAAKBPBNgBAACAg6a6ujr19fVdxvYVcq6urh7I9uiFyZMn9zisVlNT4xcRAKCXmpub01LYlqUXlqfmmOJu6wo7O9K0qT1V44tTXlrUbd23H9+Zj9/XmklXTErZxO5vYW/f3p4dzTsyonJEikd2f27rM61Zf8v6NDc3C7ADAAAAAH0iwA4AAAAcNBUVFd0GmYWcAQD2VHNMcWZMKNlnzezj9r9PQ3NbkqRsYlnKq8r3XTytp90BAAAAAPRd91dpAAAAAAAAAAAAAABAPxJgBwAAAAAAAAAAAABgQAiwAwAAAAAAAAAAAAAwIATYAQAAAAAAAAAAAAAYEALsAAAAAAAAAAAAAAAMCAF2AAAAAAAAAAAAAAAGhAA7AAAAAAAAAAAAAAADonSwGwAAAAAAAAZHoVBIkjQ0t/XLfrv22bUvAAAAAAD8MQF2AAAAAAAYppqampIkdcu39eu+9913X8rLy7udb2ho6PJ5XyorKzN58uR+6w0AAAAAgMElwA4AAAAAAMNUVVVVkmRp7ajUVJb0eb/V63bmg/e25uMf/3g+/vGP77e+rq5uvzWjykfl0cZHhdgBAAAAAA4TAuwAAAAAADBM7bolvaayJDMm9D3A3tDcliSZdMWklE0s67aufXt7djTvyIjKESkeWdxtXeszrVl/y/o0NzcLsPdS686OFz8/09o/+/2/fQqFQr/sBwAAAAAMXwLsAAAAAABAvyqbWJbyqvJ9F00bmF6Gq2e2vBhgX3/L+n7dt6mpKbNnz+7XPQEAAACA4UWAHQAAAAAA4DAzcWxRkv3fht9Tu27Dr6qq6vNeAAAAAMDwJsAOAAAAAAAwyAqFQpKkobmtX/bbdQP7iMoR+78NvxfKy/tvLwAAAABgeBJgBwAAABgGWlpa0tjY2GWsoaGhy+fdVVdXp6KiYkB6AwCSpqamJEnd8m39uu+O5h3JtH7dEgAAAACgTwTYAQAAAIaBxsbGzJw5c69zdXV1e4zV19dnxowZB7stAOD/qaqqSpIsrR2VmsqSPu/37cd35OP3bc+IyhF93gsAAAAAoD8JsAMAAAAMA9XV1amvr+8yVigU0tTUlKqqqpSXl+9RDwAMnF3fi2sqSzJjQt8D7A3NbUmS4pHFfd4LAAAAAKA/CbADAAAAh6x169alubl5nzUNDQ1dPu9LZWVlJk+e3C+9DTUVFRV7vVF99uzZg9ANAAAAAAAAMFwJsAMAAACHpHXr1uWE6hOyrbCtR/V1dXX7rRlVPiqPNj46bEPsAAAAAAAAAINNgB0AAAA4JDU3N2dbYVsmXTEpZRPLuq1r396eHc07MqJyRIpHFndb1/pMa9bfsj7Nzc0C7ABwkLTu7Hjx8zOt/bPf/9unUCj0y34AAAAAAAw+AXYAAADgkFY2sSzlVeX7Lpo2ML0AAPv2zJYXA+zrb1nfr/s2NTVl9uzZ/bonAAAAAACDQ4AdAAAAAADoFxPHFiXJft9Bpad2vYNKVVVVn/cCAAAAAODQIMAOAAAAAAD0i7LSFwPsPXoHlV4oL++/vQAAAAAAGFzFg90AAAAAAAAAAAAAAADDgwA7AAAAAAAAAAAAAAADonSwGwAAAAAAAAZXw+/b9zlf2NmRpk3tqRpfnPLSom7rntzY0d+tAQAAAABwmBFgBwAAAACAYaqysjIV5aNSd3dhsFsBAAAAAGCYEGAHAAAAAIBhavLkyWlofDTNzc37rGtoaEhdXV2WLl2ampqa/dYBAAAAAEB3BNgBAAAAAGAYmzx5ciZPntyj2pqamsyYMeMgdzS8Nfy+fZ/zhZ0dadrUnqrxxSkvLeq27smNHf3dGgAAAABAvxBgBwAAAAAAGGSVlZWpKB+VursLg90KAAAAAMBBJcAOAAAAAAAwyCZPnpyGxkfT3Ny8z7qGhobU1dVl6dKlqamp2W8dAAAAAMChRoAdAAAAAADgEDB58uRMnjy5R7U1NTWZMWPGQe4IAAAAAKD/CbADAAAA0GstLS1pbGzsMtbQ0NDl8+6qq6tTUVExIL0BAAAAAAAAhy4BdgAAAAB6rbGxMTNnztzrXF1d3R5j9fX1bokFAAAAAAAABNgBAAAA6L3q6urU19d3GSsUCmlqakpVVVXKy8v3qAcAAAAAAAAQYAcAAACg1yoqKvZ6o/rs2bMHoRsAAAAAAABgqBBgBwAAAA5JhUIhSdL6TGu/7Ldrn137AgAHz/6+f7dvb8+O5h0ZUTkixSOLD3gfAAAAAACGHgF2AAAAoN+sW7cuzc3N+6xpaGjo8rk79913X5Jk/S3r+6e5/6epqckt4QBwkFRWVmZU+ah+/f49qnxUKisr+22/4cYvEwAAAAAAhxoBdgAAAKBfrFu3LjXVJ6SlsK1H9XV1dT2qm3TFpJRNLOtLa0leDF2tv2V9qqqq+rwXALB3kydPzqONj/boF9rq6uqydOnS1NTU7LO2srIykydP7s82hwW/TAAAAAAAHKoE2AEAAGA/Wlpa0tjY2GWsUCikqakpVVVVKS8v7zJXXV2dioqKgWzxkNDc3JyWwrYsvbA8Ncd0f3tnYWdHmja1p2p8ccpLi7qt+/bjO/Px+1pTNrEs5VXl3db11h//8wIA+tfkyZN7HDivqanJjBkzDnJHw5NfJgAAAAAADlUC7AAAALAfjY2NmTlzZo/r6+vrh3UQq+aY4syYULLPmtnH7X+fhua2fuoIAGB48ssEAAAAAMChSIAdAAAA9qO6ujr19fVdxvZ1U2V1dfVAtgcAAAAAAAAAQ4YAOwAAAOxHRUVFt7dRuqkSAAAAAAAAAHqueLAbAAAAAAAAAAAAAABgeBBgBwAAAAAAAAAAAABgQAiwAwAAAAAAAAAAAAAwIATYAQAAAAAAAAAAAAAYEALsAAAAAAAAAAAAAAAMCAF2AAAAAAAAAAAAAAAGhAA7AAAAAAAAAAAAAAADonSwGwAAAAAOD4VCIUnS0NzWL/s9ubE9SdK+vb1f9gMAAAAAAABg8AmwAwAAAP2iqakpSVK3fFu/7rujeUcyrV+3BAAAAAAAAGCQCLADAAAA/aKqqipJsrR2VGoqS/q837cf35GP37c9IypH9HkvAAAAAAAAAA4NAuwAAABAvygvL0+S1FSWZMaEvgfYG5rbkiTFI4v7vBcAAAAAAAAAhwb/BRgAAAAAAAAAAAAAgAEhwA4AAAAAAAAAAAAAwIAQYAcAAAAAAAAAAAAAYEAIsAMAAAAAAAAAAAAAMCAE2AEAAAAAAAAAAAAAGBClg90AAAAAAAAAAAAAABxMbW1tWb16dTZs2JAJEyZkzpw5KSkpGey2YFgSYAcAAAAOaa3PtO5zvn17e3Y078iIyhEpHtn9m83tbx8AAAAAAAAOT8uXL8/ChQvT1NTUOVZVVZUlS5aktrZ28BqDYUqAHQAAADgkjR9VlBQl629Z3297jioflcrKyn7bDwAAAAAAgEPb8uXLs2DBgpx33nm54447Mn369KxduzY33HBDFixYkGXLlgmxwwATYAcAAAAOSRPGFCcdydKlS1NTU9NtXUNDQ+rq6vZblySVlZWZPHlyf7cKAAAAAADAIaitrS0LFy7MeeedlxUrVqS4+MV38z399NOzYsWKzJ8/P1dddVUuuOCClJSUDHK3MHwIsAMAAACHtJqamsyYMaPf6gAAAAAAABgeVq9enaamptxxxx2d4fVdiouLs2jRosyaNSurV6/O3LlzB6dJGIaK918CAAAAAAAAAAAAAEPLhg0bkiTTp0/f6/yu8V11wMA4bALsTz31VBYuXJjq6uqMHj06Rx11VE499dT8wz/8Q1paWg7KmS0tLXn5y1+eoqKiFBUVpaqq6qCcAwAAAAAAAAAAAEDvTJgwIUmydu3avc7vGt9VBwyMwyLA/q1vfSsnn3xybrrppjz66KNpaWnJxo0b8/DDD+fqq6/OKaeckieeeKLfz7322mvz5JNP9vu+AAAAAAAAAAAAAPTNnDlzUlVVlRtuuCHt7e1d5trb27N48eJMmTIlc+bMGaQOYXga8gH2Rx55JJdcckk2b96cMWPG5G//9m/zf/7P/8n3vve9vOc970mSPPbYYzn33HOzZcuWfj33H//xHzNq1KiMHTu23/YFAAAAAAAAAAAAoO9KSkqyZMmSrFy5MvPnz8+aNWuyZcuWrFmzJvPnz8/KlSvz6U9/OiUlJYPdKgwrQz7AfuWVV6ZQKKS0tDTf/e53c8011+SMM87I2WefnVtuuSV///d/n+TFEPuSJUv65cy2tra85z3vSVtbW6655pocddRR/bIvAAAAAAAAAAAAAP2ntrY2y5Ytyy9+8YvMmjUrRxxxRGbNmpW1a9dm2bJlqa2tHewWYdgpHewG+uJHP/pRVq9enSR517velTPOOGOPmoULF+bWW29NQ0NDbr755nzsYx/LiBEj+nTuzTffnPr6+pxwwgn5yEc+ki996Ut92g8AAAAAAA5XLS0taWxs7DLW0NDQ5fPuqqurU1FRMSC9AQAAADA81NbW5oILLsjq1auzYcOGTJgwIXPmzHHzOgySIR1gX7FiRefz5Zdfvtea4uLivOMd78iiRYuyadOm3HfffTnnnHMO+Mynnnoq1157bZLkX//1XzNy5MgD3gsAAAAAAA53jY2NmTlz5l7n6urq9hirr6/PjBkzDnZbAAAAAAwzJSUlmTt37mC3AWSIB9gfeOCBJMno0aO7/eF3kpx11lmdzw8++GCfAuzvf//7s3Xr1rz97W/3P2QAAACwFw2/b9/nfGFnR5o2tadqfHHKS4sOeB8AYGiorq5OfX19l7FCoZCmpqZUVVWlvLx8j3oAAAAAAA5fQzrAvuutRadOnZrS0u5fyu4/7N7b25H21Ne+9rV8+9vfzpFHHpklS5Yc8D4AAABwOKqsrExF+ajU3V3otz0rykelsrKy3/YDAPavpaUljY2NXcZ2/Wx9bz9jr66uTkVFRbf7VVRU7PVG9dmzZ/exUwAAAAAAhqIhG2Dftm1bmpubkySTJk3aZ+2RRx6Z0aNHZ+vWrXn66acP6LyNGzfmgx/8YJLk7/7u73LMMccc0D5J0tramtbW1s6vN2/efMB7AQAAwKFi8uTJaWh8tPPf17vT0NCQurq6LF26NDU1NfusrayszOTJk/uzTQBgPxobG7t919O6uro9xurr6/caUAcAAAAAgL0ZsgH2LVu2dD6PGTNmv/W7AuwvvPDCAZ33V3/1V/nd736XM844I+95z3sOaI9dFi9enOuvv75PewAAAMChaPLkyT0OnNfU1Ai7AcAhqLq6OvX19V3GCoVCmpqaUlVVlfLy8j3qAQAAAACgp4ZsgH3btm2dzyNHjtxvfVlZWZIXf8jeWz/4wQ/yb//2byktLc2//uu/pqioqNd77G7RokX58Ic/3Pn15s2bc9xxx/VpTwAAAPrPunXrenSL+O6fu+MGcQBgqKmoqNjrL5nNnj17ELoZ3lpaWtLY2NhlbF//P7S6ujoVFRUD0hsAAAAAwIEasgH2UaNGdT5v3759v/Wtra1JssfNMD1Zd8UVV6SjoyNXXnllTj755N41uhdlZWWdgXoAAAAOLevWrcsJ1SdkW2Hb/ouT1NXV7XN+VPmoPNr4qBA7AAC91tjYmJkzZ+51bm//P7S+vt473AAAAAAAh7whG2AfO3Zs5/MLL7yw3/qtW7cmScaMGdOrc/72b/82jz76aI477rhcf/31vWsSAACAIae5uTnbCtsy6YpJKZvY/S8ft29vz47mHRlROSLFI4v3WtP6TGvW37I+zc3NAuwc9tra2rJ69eps2LAhEyZMyJw5c1JSUjLYbQHAkFZdXZ36+vouY4VCIU1NTamqqtrj0p7q6uqBbA8AAAAA4IAM2QD7qFGjcvTRR+e5557L+vXr91m7cePGzgD7cccd16tzbrzxxiTJ61//+nzrW9/aa82uvbdu3Zqvfe1rSZKXvOQlOfvss3t1FgAAAIeOsollKa/az7t4TRuYXuBQt3z58ixcuDBNTU2dY1VVVVmyZElqa2sHrzEAGOIqKir2eqP67NmzB6EbAAAAAID+MWQD7Ely4oknZvXq1XniiSeyc+fOlJbu/eU0NjZ2PtfU1PTqjO3btydJbr311tx66637rG1ubs5b3/rWJMlZZ50lwA4AAAAc9pYvX54FCxbkvPPOyx133JHp06dn7dq1ueGGG7JgwYIsW7ZMiB0AAAAAAADotPf3OB8izjzzzCQv3nz+x2+hubv777+/89mtJAAAAAD9o62tLQsXLsx5552XFStW5PTTT8+YMWNy+umnZ8WKFTnvvPNy1VVXpa2tbbBbBQAAAAAAAA4RQzrAPn/+/M7n7m5Hb29vz2233ZYkGT9+fObNm9erMzo6Ovb78bKXvSxJ8rKXvaxzbNWqVQf0mgAAAACGitWrV6epqSnXXHNNiou7/pipuLg4ixYtypNPPpnVq1cPUocAAAAAAADAoWZIB9hPO+20zJkzJ0nypS99KWvWrNmjZsmSJWloaEiSXHnllRkxYkSX+VWrVqWoqChFRUW57LLLDnrPAAAAAIeLDRs2JEmmT5++1/ld47vqAAAAAAAAAEoHu4G+uvnmmzN79uwUCoWcc845ueaaazJv3rwUCoV87Wtfyy233JIkmTZtWhYuXDjI3QIAAAAcPiZMmJAkWbt2bU4//fQ95teuXdulDgAAAAAAYKC0tLSksbGxy1ihUEhTU1OqqqpSXl7eZa66ujoVFRUD2SIMW0M+wH7KKafkzjvvTF1dXTZv3pxrrrlmj5pp06blnnvuydixYwehQwAAAIDD05w5c1JVVZUbbrghK1asSHHxf7/ZX3t7exYvXpwpU6Z0voMeAAAAAADAQGlsbMzMmTN7XF9fX58ZM2YcxI6AXYZ8gD1Jzj///Pz85z/PzTffnHvuuSfr16/PyJEjM3Xq1Fx88cX5wAc+4LdiAAAAAPpZSUlJlixZkgULFmT+/PlZtGhRpk+fnrVr12bx4sVZuXJlli1blpKSksFuFQDI3m8da2ho6PJ5d24dAwAAAIay6urq1NfXdxlraGhIXV1dli5dmpqamj3qgYFxWATYk+RlL3tZbrrpptx00029Wjd37tx0dHT06eympqY+rQcAAAAYqmpra7Ns2bIsXLgws2bN6hyfMmVKli1bltra2kHsDgDY3b5uHaurq9tjzK1jAAAAwFBWUVHR7c82ampq/NwDBtFhE2AHAAAAYHDU1tbmggsuyOrVq7Nhw4ZMmDAhc+bMcfM6APSztra2Pn2/3dutY4VCIU1NTamqqkp5efke9QAAAAAA/U2AHQAAAIA+Kykpydy5cwe7DQCGgL6GsIer5cuXZ+HChV3eFbaqqipLlizp8TuedHfr2OzZs/urTQAAAACA/Soe7AYAAAAAAIDhYfny5Zk6dWrmzZuXt73tbZk3b16mTp2a5cuXD3Zrh7Tly5dnwYIFOemkk7JmzZps2bIla9asyUknnZQFCxb48wMAAAAAhhQ3sAMAAHDYaWlpSWNjY5exQqGQpqamVFVVpby8vMtcdXV1KioqBrJFAIBhZ1cI+7zzzssdd9yR6dOnZ+3atbnhhhuyYMGCLFu2rMc3iQ8nbW1tWbhwYc4777ysWLEixcUv3k10+umnZ8WKFZk/f36uuuqqXHDBBW6yBwAAAACGBAF2AAAADjuNjY2ZOXNmj+vr6+szY8aMg9gRAMDwJoR94FavXp2mpqbccccdnX9uuxQXF2fRokWZNWtWVq9enblz5w5OkwAAAAAAvSDADgAAwGGnuro69fX1XcYaGhpSV1eXpUuXpqamZo96AAAOHiHsA7dhw4YkyfTp0/c6v2t8Vx0AAAAAwKFOgB0AAIDDTkVFRbc3qtfU1LhtHQBggAlhH7gJEyYkSdauXZvTTz99j/m1a9d2qQMAAAAAONQV778EAAAAAADgwO0ewt4bIezuzZkzJ1VVVbnhhhvS3t7eZa69vT2LFy/OlClTMmfOnEHqEAAAAACgd9zADgAAAAAAHFS7h7BXrFiR4uL/vl9HCHvfSkpKsmTJkixYsCDz58/PokWLMn369KxduzaLFy/OypUrs2zZspSUlAx2qwAcRlpaWtLY2NhlrFAopKmpKVVVVSkvL+8yV11dnYqKioFsEQAAgCFMgB0AAAAAADiohLD7pra2NsuWLcvChQsza9aszvEpU6Zk2bJlqa2tHcTuADgcNTY2ZubMmT2ur6+vz4wZMw5iRwAAABxOBNgBAAAAAICDTgi7b2pra3PBBRdk9erV2bBhQyZMmJA5c+YI/QNwUFRXV6e+vr7LWENDQ+rq6rJ06dLU1NTsUQ8AAAA9JcAOAAAAAAAMCCHsvikpKcncuXP7bb+2tjb/LADYq4qKim5vVK+pqXHbOgAAAH0iwA4AAAAAAAyY/g5hc2CWL1+ehQsXpqmpqXOsqqoqS5YscRs+AAAAAHBQCbADAADAbgqFQpKk9ZnWPu+1a49de9J3LS0taWxs7DLW0NDQ5fPuqqurU1FRMSC9AQAMFcuXL8+CBQty3nnn5Y477sj06dOzdu3a3HDDDVmwYEGWLVsmxA4AAAAAHDQC7AAAALCbXTdQrr9lfb/uOXv27H7bbzhrbGzMzJkz9zpXV1e3x1h9fb23NQcA2E1bW1sWLlyY8847LytWrEhxcXGS5PTTT8+KFSsyf/78XHXVVbngggtSUlIyyN0CAAAAAIcjAXYAAADYTVVVVZJk0hWTUjaxrE97tT7TmvW3rO/ck76rrq5OfX19l7FCoZCmpqZUVVWlvLx8j3oAAP7b6tWr09TUlDvuuKMzvL5LcXFxFi1alFmzZmX16tWZO3fu4DQJAAAAABzWBNgBAABgN7sC0GUTy1JeVb6f6t7tSd9VVFTs9UZ1N9wDAPTMhg0bkiTTp0/f6/yu8V11AAAAAAD9rXj/JQAAAAAAABwOJkyYkCRZu3btXud3je+qAwAAAADob/16A3t7e3t+9atf5f/+3/+bLVu2pK2tbb9r3vGOd/RnCwAAAAAAAHRjzpw5qaqqyg033JAVK1akuPi/7zpqb2/P4sWLM2XKlMyZM2cQuwQAAAAADmf9EmAvFAr51Kc+lS984Qt57rnneryuqKhIgB0AAAAAAGCAlJSUZMmSJVmwYEHmz5+fRYsWZfr06Vm7dm0WL16clStXZtmyZSkpKRnsVgEAAACAw1SfA+yFQiFnn312fvSjH6Wjo6M/egIAAAAAAOAgqa2tzbJly7Jw4cLMmjWrc3zKlClZtmxZamtrB7E7AAAAAOBw1+cA+2c+85n88Ic/TJJMnz49H/jABzJz5swcddRRXd52EgAAAAAAgENDbW1tLrjggqxevTobNmzIhAkTMmfOHDevAwAAAAAHXZ8D7HfeeWeSZNasWfn+97+fkSNH9rkpAAAAAAAADq6SkpLMnTt3sNsA4CBoa2vzS0oAAAAcsvp8Rfqvf/3rFBUV5eqrrxZeBwAAAAAAAIBBtHz58kydOjXz5s3L2972tsybNy9Tp07N8uXLB7s1AAAASNIPAfZdofXJkyf3uRkAAAAAAAAA4MAsX748CxYsyEknnZQ1a9Zky5YtWbNmTU466aQsWLBAiB0AAIBDQmlfN6iurs4Pf/jD/Pa3v+2PfgAAAEjS0tKSxsbGLmOFQiFNTU2pqqpKeXl5l7nq6upUVFQMZIuHlHXr1qW5uXmfNQ0NDV0+768OAAAAYChpa2vLwoULc95552XFihUpLn7xPrvTTz89K1asyPz583PVVVflggsuSElJySB3CwAAwHDW5wD7ZZddloceeijf+MY38sY3vrE/egIAABj2GhsbM3PmzB7X19fXZ8aMGQexo0PXunXrUlN9QloK23pUX1dX16O61mda9znfvr09O5p3ZETliBSP3PsbnO1vDwAAAID+snr16jQ1NeWOO+7oDK/vUlxcnEWLFmXWrFlZvXp15s6dOzhNAgAAQPohwP6e97wnX//613Pbbbfl9a9/fd761rf2R18AAADDWnV1derr67uMNTQ0pK6uLkuXLk1NTc0e9cNVc3NzWgrbsvTC8tQcs/cgeZIUdnakaVN7qsYXp7y0qNu61U/tzAe/25r1t6zvl/5GlY9KZWVlv+wFAAAA0J0NGzYkSaZPn77X+V3ju+oAAABgsPQ4wL5u3bpu5/7pn/4p73nPe1JXV5e77747b3vb23r89vWTJ0/uaQsAAADDRkVFRbc3qtfU1Azb29b3peaY4syYsO+3v559XA8362jd6y8K7G5fv1Cwu8rKSv/uCwAAABx0EyZMSJKsXbs2p59++h7za9eu7VIHAACHmpaWljQ2NnYZKxQKaWpqSlVVVcrLy7vM9TSnChx6ehxgnzJlyn5rOjo6ctddd+Wuu+7q0Z5FRUXZuXNnT1sAAACAAdPTXxTwCwUAAADAoWDOnDmpqqrKDTfckBUrVqS4+L/fqa69vT2LFy/OlClTMmfOnEHsEgAAutfY2JiZM2f2uL6+vt5/p4MhqscB9o6Ojn6tAwAAAAAAAAD6R0lJSZYsWZIFCxZk/vz5WbRoUaZPn561a9dm8eLFWblyZZYtW5aSkn2/gx0AAAyW6urq1NfXdxnb17siV1dXD2R7QD/qcYD91ltvPZh9AAAAAAAAAAB9UFtbm2XLlmXhwoWZNWtW5/iUKVOybNmy1NbWDmJ3AACwbxUVFd3eqO5dkeHw0uMA+zvf+c6D2QcAAABwGGppaUljY2OXsYaGhi6fd1ddXZ2KiooB6Q0AAAAOR7W1tbnggguyevXqbNiwIRMmTMicOXPcvA4AAMAho8cBdgAAAIDeamxszMyZM/c6V1dXt8dYfX292zMAAACgj0pKSjJ37tzBbgMAAAD2qs8B9k9+8pNJkve///2prKzs0ZqNGzfmn/7pn5Ik1157bV9bAAAAAA5R1dXVqa+v7zJWKBTS1NSUqqqqlJeX71EPAAAAAAAAwOGrzwH26667LkVFRVmwYEGPA+x/+MMfOtcJsAMAAMDhq6KiYq83qs+ePXsQugEAAAAAAABgsPU5wA4AAAAAAAAAAAAAg2ndunVpbm7eZ01DQ0OXz/tSWVmZyZMn90tvQFeDEmDfsWNHkmTEiBGDcTwAAAAAAAAAAP8/e/cf3dhd3/n/ZWk8lpQfDBtNQJOJuG7CjESdbxc7CY49Sjyhm54upnaECKdUDXTphtLSpaCB1qFZyGmxzwlr2HS73ZMBNhyOW6dbxTHLJP0BJQliwq+IEqo90iSkUR0zhozSTH5Z9ngkf/8YJEYztizb19ZH0vNxzhx57v34o4/mPVdXuvf9eX8AAACaxMzMjPYH9mshv1BT+2g0umYbl9ulY5ljJLEDW6AuCew/+MEPJEm7d++ux9MDAAAAAAAAAAAAAAAAAACgSeRyOS3kF7T3tr3q2NOxarviqaKWcktq97bLsdOxarvF44uaPTyrXC5HAjuwBdadwP6lL31pxe1f/vKX9fjjj1f93cXFRT399NP63//7f6utrU3XXHPNep8eAAAAAAAAAAAAAACcZX5+XplMpmJbPp9XNpuVZVlyu90V+wKBgDwez3YOEQAAANgWHXs65Lbc1Rvt256xAFjduhPY3/ve96qtra1i2/Lysv74j/+45j6Wl5flcDj0oQ99aL1PDwAAAAAAAAAAAAAAzpLJZNTT01Nz+2Qyqe7u7i0cEQAAAAAAq1t3Art0JgG9lm0r2blzp6655hqNjIzohhtu2MjTAwAAAABQls/nJUnpXMGW/kr9lPoFAAAAAAAwXSAQUDKZrNiWTqcVjUY1MTGhYDB4XnsAAAAAAOpl3QnszzzzTPnn5eVl/cIv/ILa2tr093//93rjG9+46u+1tbXJ5XLpkksukdPp3NhoAQAAAAA4RzablSRFpxZs77e/v9/WPgEAAAAAALaCx+NZtaJ6MBik2joAAAAAwCjrTmB/wxvesOL2PXv2rLoPAAAAAICtYlmWJGki7FLQu/kJ0+lcQdGphXK/AAAAAAAAAAAAAADAPutOYD9XsVi0YxwAAAAAAGyI2+2WJAW9TnX77Fvxq9QvAAAAAAAAAAAAAACwz6YT2IFCoaBEIqG5uTn5fD6FQiE5nfYljaB2xMIsxMMcxMIcxMIcxMIcxMIsxMMcxMIcxMIcxMIsxMMcxMIcxMIcxMIcxMIsxMMcxMIcxMIcxMIcxMIsxMMcxMIcxMIcxMIcxMIsxANALRz1HgAa29TUlK688kodPHhQ7373u3Xw4EFdeeWVmpqaqvfQWg6xMAvxMAexMAexMAexMAexMAvxMAexMAexMAexMAvxMAexMAexMAexMAexMAvxMAexMAexMAexMAexMAvxMAexMAexMAexMAexMAvxAFCrmhPYb7zxRtv/vPWtb93K14YtNjU1pUgkoquuukrf+ta39PLLL+tb3/qWrrrqKkUiEU4624hYmIV4mINYmINYmINYmINYmIV4mINYmINYmINYmIV4mINYmINYmINYmINYmIV4mINYmINYmINYmINYmIV4mINYmINYmINYmINYmIV4AFiPtuXl5eVaGjocDrW1tala87a2toq/l9pW214oFNY14Gb00ksv6TWveY1efPFFXXzxxfUeTk0KhYKuvPJKXXXVVZqenpbD8fO5EMViUcPDw0qlUnrqqadaevmPvXv36sc//rEuu+wyzc7ObslzEAuzEA9zEAtzEAtzEAtzEAuzNFI8vv/976unp0fJZFLd3d11HctW2Ggsyv8ut12gbt/mY/T9uYJ6Dr+65r9zM8ejkY6LZkcsarMd378l4mESYmEOYmEOYlEbrtm2HuJhDmJhDmKxtmb5jmH3tQuuhbT2cbGdiIc5iMXamuWcgdoRC3MQC7NsZTxq/RxaanfFJ6+Q23Jv+LWU5LN5Pf3Jp439/NuIeafA2WquwH799dfr+uuv1w033LDinze+8Y1aXl4uJ6dblqXe3l719vbKsixJP09cf+Mb36gbbrhB119/vf2vCNsikUgom83q9ttvrzjZSGcmO4yMjOiZZ55RIpGo0whbB7EwC/EwB7EwB7EwB7EwB7EwC/EwB7EwB7EwB7EwC/EwB7EwB7EwB7EwB7EwC/EwB7EwB7EwB7EwB7EwC/EwB7EwB7EwB7EwB7EwC/EAsF47am34yCOPrLrvb//2b/Ubv/Ebuvjii/Xxj39cv/VbvyWv11vRJpfL6d5779Xo6KhOnDih//7f/7t+9Vd/dcMDR33Nzc1Jkrq6ulbcX9peaoetQyzMQjzMQSzMQSzMQSzMQSzMQjzMQSzMQSzMQSzMQjzMQSzMQSzMQSzMQSzMQjzMQSzMQSzMQSzMQSzMQjzMQSzMQSzMQSzMQSzMQjwArFfNFdhX8+STT+qWW27R8vKyjh49qo9+9KPnJa9Lktfr1Uc/+lEdPXpUy8vLete73qUnn3xys0+POvH5fJKkVCq14v7S9lI7bB1iYRbiYQ5iYQ5iYQ5iYQ5iYRY74zE/P6/vf//7FX+OHj2qv/zLv9TRo0crts/Pz9v3IpoEx4Y5iIU5iIVZiIc5iIU5iIU5iIU5iIVZiIc5iIU5iIU5iIU5iIVZiIc5iIU5iIU5iIU5iIVZiAeA9WpbXl5e3kwH73//+/W5z31On/rUpzQyMlLT74yNjenjH/+4fvu3f1uHDx/ezNM3hZdeekmvec1r9OKLL+riiy+u93BqUigUdOWVV+qqq67S9PR0xbIfxWJRw8PDSqVSeuqpp+R0Ous40vrau3evfvzjH+uyyy7T7OzsljwHsTAL8TAHsTAHsTAHsTAHsTCLnfH4/ve/r56enpqeN5lMqru7e11jLfW/kd9tBBuNRfnf5bYL1O3b/DHz/bmCeg6/uua/czPHg/cpcxCL2mzH92+JeJiEWJiDWJiDWNSGa7ath3iYg1iYg1isrVm+Y6zn2sXMzIxyuVzVNul0WtFoVBMTEwoGg1Xber1e+f3+dY+5XjguzEI8zEEs1tYs5wzUjliYg1iYZSvjUevn2qNHj+rAgQPae9tedezp2PBrKVk8vqjZw7P65je/qf7+/k33Z7dGzDsFzrZjsx189atfVVtbm2688caaf+fgwYOSpK997WubfXrUwfz8vDKZjH7v935PH/vYx3Tw4EG9+93vltPpVKFQ0F/91V8pkUjorrvu0hNPPKFAICCPx1PvYTclYmEW4mEOYmEOYmEOYmGWxcVFYmEIu4+NQCCgZDJZsW21G3uBQGDLXlcj4n3KHMTCHMTCLOuJx+LiIrHYQhwb5iAW5iAW5iAWZuH8bQ6ODXMQC3OYFIuZmRntD+zXQn6hpvbRaHTNNi63S8cyxxoiid2kWIB4mIRYmINYmINYmINYmMWUeGSzWUnS7GF7JxRls1kjE9iBRrfpCuxut1unTp3SY489pre85S01/c53vvMdXXfddXK5XJqfn9/M0zeFRpsJs56qktLGKks2i62eaUsszEI8zEEszEEszEEszLLVVbpRu+04Nuys0t3MFb83EwsqsNuLc4Y5iEXttqPSFedvc3BsmINYmINY1I5rtq2F87c5ODbMQSxqY9p3DGlrr0uV2q1VqbJ4qqil3JLave1y7HSs2q5UqbJR/v9wXJiFeJiDWNSmWc4ZqA2xMAexMMtWx4MK7CtrtLxT4FybrsC+a9cuPffcc3r00UdrTmB/5JFHJEmvec1rNvv0qINzq0oWCgVNT09rdHRUt99+u4aHhyuW+aCy5NYhFmYhHuYgFuYgFuYgFmY5Ox7Eor44NsxBLMxBLMxBLMyynngQi63FsWEOYmEOYmEOYmEWzt/m4NgwB7Ewh4mx6NjTIbflrt5o35YPY9uZGItWRjzMQSzMQSzMQSzMQSzMYko83O4zn2Vr+ly7gX4B2GvTFdhvueUWxeNx7dq1S9/+9re1b1/1b6xPPvmkent79eKLLyocDutv/uZvNvP0TaEZZsI0a+XBzdqOmbbnIhZmIR7mIBbmIBbmIBbmIBZmsTseVGDfuPVWCZu42a3g7tWrf+VPLyt7sihrl0PuHW2rtkufKCr6QL5lK7CvpJVeq+mIxcrq8f1bIh4mIRbmIBbmIBYr45otiIc5iIU5iMX5muU7xnqvrVzxyStsSfTJZ/N6+pNPN/T/KY4LsxAPcxCL8zXLOQMbRyzMQSzMUo97pK32ubYZ8k7R2jZdgf0jH/mIpqam9OKLL6q3t1f/9b/+V9166636d//u31W0e+GFF/SlL31Jf/Inf6KTJ0/K4XAoFott9ukBAAAAAC3O6/XK43Yp+kDetj49bpe8Xq9t/QEAAAAAAAAAAAAAgDM2ncDe29urT3/604rFYnrxxRcVi8V06NAhdXZ26tJLL1VbW5t++tOf6plnntHy8rJKBd/vuusu9fb2bvoFAAAAAABam9/vVzpzTLlcrmq7dDqtaDSqiYkJBYPBqm29Xq/8fr+dwwQAAAAAAAAAwDiFQkGJREJzc3Py+XwKhUJyOp31HhYAAGhym05gl6QPf/jDsixLv//7v6/jx49reXlZTz/9tP7lX/5FkspJ65Lk8/n0P/7H/1A4HLbjqQEAAACgKczMzNSUgH32YzWtloDt9/trfr3BYNDIZf4AAAAAAAAAANhOU1NTisViymaz5W2WZWl8fJzcLgAAsKVsSWCXpJtvvlmDg4P68pe/rK997Wv653/+Z/3bv/2bJOm1r32trrrqKv3yL/+yhoeH1d7ebtfTAgAAAEDDm5mZ0f7Afi3kF2pqH41G12zjcrt0LHOspZLYAQAAAAAAAABAbaamphSJRDQ4OKjJyUl1dXUplUppdHRUkUhE8XicJHYAW87OIl+1FAEDYA7bEtglqb29XZFIRJFIxM5uAQAAAKCp5XI5LeQXtPe2verY07Fqu+KpopZyS2r3tsux07Fqu8Xji5o9PKtcLkcCOwAAAAAAAAAAqFAoFBSLxTQ4OKjp6Wk5HGfuOfT29mp6elrDw8M6dOiQhoaG5HQ66zxaAM1qZmZGwcB+zdtY5AtA47A1gR0AAAAAsHEdezrkttzVG+3bnrEAAAAAAAAAAIDmlEgklM1mNTk5WU5eL3E4HBoZGVFfX58SiYQGBgbqM0gATS+Xy2k+v6CJm90K7l69eFf+9LKyJ4uydjnk3tG2aruHnjqtOx5e3IqhAtgCJLADAAAAAAAAAAAAAAAAQIuYm5uTJHV1da24v7S91A4AtlJwt0PdvuqrPfRfvnY/6VzBphEB2A6rT1sBAAAAAAAAAAAAAAAAADQVn88nSUqlUivuL20vtQMAALBbzRXYnc4zM1za2tp0+vTp87ZvxLl9AQAAAABgovn5eWUymYpt6XS64vFsgUBAHo9nW8YGAAAAAAAAAMB6hEIhWZal0dFRTU9Py+H4eQ3UYrGosbExdXZ2KhQK1XGUAACgmdWcwL68vLyu7QAAAAAANItMJqOenp4V90Wj0fO2JZNJdXd3b/WwAAAAAAAAAABYN6fTqfHxcUUiEQ0PD2tkZERdXV1KpVIaGxvTkSNHFI/HN1XYFAAAoJqaE9g/8YlPrGs7AAAAAADNIhAIKJlMVmzL5/PKZrOyLEtut/u89gAAAAAAAAAAmCocDisejysWi6mvr6+8vbOzU/F4XOFwuI6jAwAAzY4EdgAAAAAA1uDxeFasqN7f31+H0QAAAAAAAAAAsHnhcFhDQ0NKJBKam5uTz+dTKBSi8jqAhrZ4fLHq/uKpopZyS2r3tsux07HhfgBsTs0J7JJ0zz336Prrr1cwGNyq8QAAAAAAAAAAAAAAAAAAtsD8/LwymUzFtvb2dhWLRbW3t+uJJ56o2BcIBOTxeLZziACwIbtcbVKbNHt41rY+XW6XvF6vbf0B+Ll1JbB/4AMfUFtbm7xerw4cOKDrr79e119/vf79v//3amtr26oxAgAAAAAAAAAAAACAn5mZmVEul6vaJp1OVzyu5gc/+IEk+ypMlvrJ5/O29AcAsFcmk1FPT0/N7ZPJ5IorlJaslBCfz+eVzWZlWZbcbnfFPhLiAWwV34UOaVmamJioWqQ5nU4rGo2u2U6SvF6v/H6/3UMFoHUmsEvS8vKyTpw4oenpaU1PT0uSLr74YvX19ZUT2q+55hrt2LHurgEAAAAAAAAAAAAAQBUzMzMKBvZrPr9QU/toNFpTOzsrVUpSNptVf3+/rX0CADYvEAgomUxWbKuWzBkIBKr2Z3dCPIDWUZrwmM4VbOmv1I9lWTW9zwSDQd6PgDpaV5b5F7/4RSUSCSUSCT355JPl7S+++KL+7u/+Tn/3d38nSXK5XHrLW95STmi/7rrrzptNBwAAAAAAAAAAAAAA1ieXy2k+v6CJm90K7nas2i5/elnZk0VZuxxy71h9RfXpzJL+5BuntPe2verY07Hp8S0eX9Ts4VlZlrXpvgAA9vN4PKsmbG4kmdPuhHgArSObzUqSolO1TcxcT79MpATMt64E9ltvvVW33nqrJOnEiRPlZPZEIqEnnnhChcKZGSz5fF6PPvqoHn30UUlSe3u7uru7ywntBw4c0MUXX2zzSwEAAAAAAAAAAAAAoDUEdzvU7XNWbdN/+dr9lCpVduzpkNuyrzAdRe4AoDXYnRAPoHWUJjxOhF0Keqt/rq1FOldQdGqBiZRAg1hXAvvZdu/erXA4rHA4LEl65ZVX9Nhjj5UT2r/73e9qYeHMzJhTp07pO9/5jr7zne/o05/+tBwOh6666irdcMMN+uxnP2vPKwEAAAAAAAAAAAAAAAAAAIDxShMeg17nmhMzN9IvALNtOIH9XBdeeKFuuukm3XTTTZKkpaUlfe9731MikdA3vvENPfbYY3rxxRclSYVCQT/4wQ/0xBNPkMAOAAAAoOXl83lJZ5ZXtkOpn1K/AAAAAACzzM/PK5PJVGzL5/PKZrOyLOu8m+2BQEAej2c7hwgAAAAAAABsGdsS2M/V3t6uvr4+9fX16Q//8A916tQpffGLX9Rdd92lZ555RsvLy1v11AAAAADQULLZrCRp9vCs7f329/fb2icAAAAAYPMymYx6enpqbp9MJtXd3b2FIwIAAAAAAAC2z5YlsC8uLurb3/62vvGNbyiRSOjb3/62Xn31VUkieR0AAAAAzmJZliRp72171bGnY9P9LR5f1Ozh2XK/AAAAAACzBAIBJZPJim3pdFrRaFQTExMKBoPntQcAAAAAAACahW0J7C+++KKOHj2qRCKhb3zjG0omk1paWpL084R1p9Opq666SgcOHNCBAwcUCoXsenoAAAAAaFilpeE79nTIbbnXaL3+fgEAAAAAZvF4PKtWVA8Gg1RbBwAAAAAAQFPbcAL7T37yEyUSiXLCeiqVKieqlx49Ho+uvfbacsL6ddddp4suusiekQMAAAAAAAAAAAAA0GLy+bwkKZ0r2NLfMy8UJUnFU0Vb+gMAAAAAYC3rSmD/4he/WE5af/rpp8vbSwnrXq9X/f395erq3d3d2rHDtiLvAAAAAAAAAAAAAAC0tGw2K0mKTi3Y2u9SbknaZ2uXAAAAAACsaF3Z5f/pP/0ntbW1lRPWr7jiinJ19QMHDmj//v1bMkgAAAAAAAAAAAAAACBZliVJmgi7FPQ6N93fQ08t6Y6HT6nd277pvgAAAAAAqMWGyqPv2LFD73znOxWJRHTgwAHt3r3b7nEBAAAAAAAAAAAAAIBzuN1uSVLQ61S3b/MJ7OlcQZLk2OnYdF8AAAAAANRiXQnsr33ta/XCCy/o9OnTuu+++3TfffdJkt74xjfqwIEDCoVCOnDggK644ootGSwAAAAAALWYn59XJpOp2JZOpysezxYIBOTxeLZlbAAAAAAAAAAAAAAAtLJ1JbA///zz+n//7/8pkUjoG9/4hhKJhH784x/rySef1JNPPql7771XkvS6171OBw4cKP9585vfrLa2ti15AQAAAAAAnCuTyainp2fFfdFo9LxtyWRS3d3dWz0sAAAAAAAAAAAAAGdJnyhW3Z8/vazsyaKsXQ65d6yeh7pWPwDMsq4Edkn6xV/8Rf3iL/6ifud3fkeSlM1my8nsiURCTz75pH7yk58oHo/r/vvvlyRdeOGF6u3tLVdp7+3tlcvlsveVAAAAAADwM4FAQMlksmJbPp9XNpuVZVnlpbbPbg8AAAAAAAAAAABge3i9XnncLkUfyNvWp8ftktfrta0/AFtn3Qns57IsS5Zl6dZbb5UknThxoiKh/YknntDLL7+sr371q/ra17525kl37NCb3/xmhUIhffrTn97sEAAAAAAAqODxeFasqN7f31+H0QAAAAAAAAAAAAA4m9/vVzpzTLlcrmq7dDqtaDSqiYkJBYPBqm29Xq/8fr+dwwSwRTadwH6u3bt36x3veIfe8Y53SJJefvllHT16VIlEQt/4xjf0+OOPa3FxUd/97nf1ve99jwT2BjAzM1PTSeLsx2o4SWzOWvEgFtuHY8McxMIcxMIcxMIsnL/NwbFhDmJhDmJhDmJhFjvjQSw2h2PDHMTCHMTCHMTCLJy/zcGxYQ5iYQ47Y1FLrDZi8fhi1f3FU0Ut5ZbU7m2XY6djw/3UG8eFWTh/m4NjwxzEwhzEwhzEwix2n79XKkq1kmAwWHNbAOazPYH9XBdddJF+4Rd+QT/+8Y/17LPPKpvN6vjx41peXt7qp4YNZmZmtD8Q1EJ+vqb20Wh0zTYut0fHMmk+BGzAeuJBLLYWx4Y5iIU5iIU5iIVZOH+bg2PDHMTCHMTCHMTCLHbHg1hsHMeGOYiFOYiFOYiFWTh/m4NjwxzEwhxbEQs77XK1SW3S7OFZ2/p0uV3yer229WcXjguzcP42B8eGOYiFOYiFOYiFWTh/A7CL7Qnsy8vL+sEPfqBEIlH+c+LEifPaoDHkcjkt5Od1yWBM7Zdcvmq75dOndPrFn2rHa16nth07V2239Pyzev7IuHK5HCedDaglHsRie3BsmINYmINYmINYmIXztzka4dholSpXjRCLVkEszEEszGJnPIjF5nBsmINYmINYmINYmIXztzk4NsxBLMxhdyzy//K4XkxM2DY+34UOaVmamJhQMBhctV06nVY0Gl2znWRuVVOOC7Nw/jYHx4Y5iIU5iIU5iIVZOH8DsMumE9iXlpb0ne98p5ys/thjj+nll18u7z83Wf2KK65QKBTS9ddfr+uvv36zT49t0n7J5ep4/ZXVG+190/YMBmvHg1hsG44NcxALcxALcxALs3D+Nofdx0atSzpXazc3N6cOV0dLVLk6G+9T5iAW5iAWZiEe5iAW5iAW5iAW5iAWZiEe5iAW5iAW5rArFkvPP2vTiCoFg0F1d3fb1s5kHBdmIR7mIBbmIBbmIBbmIBZmIR4ANmvdCeyvvPKKHnvsMX3jG99QIpHQ9773PS0u/ry639kJ621tberq6tL1119fTlr3+Xz2jBwAAAAA6qjwygtytNW+pPOay+N1dOjIkSNVvzM1Q5UrAAAAAAAA2CN9olh1f/70srIni7J2OeTe0bbhfgAAAAAAsNu6EtivvvpqPfHEEyoWf/4F9uyE9R07dujNb35zOWE9FArpta99rX2jBQAAAABDFBdfUXFZmrjZreBux6rtarlRmD5RVPSBvHw+X8tUuQIAAAAAAMDGODouPFNY4YG8bX16GmA1PwAAAABA81hXAvv3v//9ir+7XC5de+21uv7663X99dfruuuu0wUXXGDrAAEAAADAZMHdDnX7nFXb9F++TYMBAAAAAABA03Ne+NozhRXWWKWP1fzqY35+XplMpmJbPp9XNpuVZVlyu90V+wKBgDwez3YOEQAAAADqbl0J7BdeeKH6+/vLCevXXHONdu7cuVVjAwAAAAAAAAAAAAAAK6h1lT5W89temUxGPT09NbdPJpPEBwAAAEDLWVcC+8mTJ+VwOLZqLAAAAADqjOpAAAAAAACsrVAoKJFIaG5uTj6fT6FQSE5n9dW5AACtIRAIKJlMVmyrVg0/EAhs5/AAAAAAwAjrSmAneR0AAABoblQHAgAAAACguqmpKcViMWWz2fI2y7I0Pj6ucDhcv4EBAIzg8XhWvWa6kWr4FB0BAAAA0IzWlcAOAAAAoLlRHQgAAAAAgNVNTU0pEolocHBQk5OT6urqUiqV0ujoqCKRiOLxOEnsAABbUXQEAAAAQDMigR1V5fN5SdLS88/a0l+pn1K/WB8740EsNodjwxzEwhzEwhzEwiyNdv62uzqQSew+Nk6/+NMz/Z5etqW/VsL7lDmIhTmIhVka7fzdzDg2zEEszEEszEEszLId5+9CoaBYLKbBwUFNT0+XVy7u7e3V9PS0hoeHdejQIQ0NDcnpdFb87szMjHK5XNXnTafTFY/VeL1e+f3+ml/TduLYMAexMAexMEcjxqKZi47w/dscjXhsNCtiYQ5iYQ5iYRbO3wDsQgI7qiotf/n8kXHb++3v77e1z1awFfEgFhvDsWEOYmEOYmEOYmEWzt/m2LJj42RR/Zfb2mXT433KHMTCHMTCLJy/zcGxYQ5iYQ5iYQ5iYZbtOH8nEglls1lNTk6Wk9dLHA6HRkZG1NfXp0QioYGBgfK+mZkZ7Q/s10J+oabnjUaja7ZxuV06ljlmZBI7x4Y5iIU5iIU5GjEWzVx0hO/f5mjEY6NZEQtzEAtzEAuzcP4GYBcS2FGVZVmSpEsGY2q/ZPNZOUvPP6vnj4yX+8X62BkPYrE5HBvmIBbmIBbmIBZm4fxtDruPjfy/PK4XExOydjnWbowKvE+Zg1iYg1iYhfO3OTg2zEEszEEszEEszLId5++5uTlJUldXlwqFghKJhObm5uTz+RQKhdTV1VXRriSXy2khv6C9t+1Vx56OVZ+3eKqopdyS2r3tcuxc/bvm4vFFzR6eVS6XMzKBnWPDHMTCHMTCHMTCLHz/NgfHhjmIhTmIhTmIhVk4fwOwS1MksP/rv/6r/uzP/kwPPvignn32WXV0dOiKK67QLbfcot/7vd+Tx+PZcN/pdFr/+I//qO9973v653/+Zz333HPK5XJyOp163etep2uuuUbvfve79Wu/9mtqa2uz8VWZwe12S5LaL7lcHa+/0vZ+sT5bEQ9isTEcG+YgFuYgFuYgFmbh/G0Ou2NRWtLOvaP5vgdsNd6nzEEszEEszML52xwcG+YgFuYgFuYgFmbZjvO3z+eTJP35n/+57rnnnnLVOenMDfzbbrutot25OvZ0yG2tEd99Gx+vKTg2zEEszEEszEEszML3b3NwbJiDWJiDWJiDWJil0c7f8/PzymQyFdvS6XTF49kCgcCm8k0B1K7hE9i/8pWvKBqN6qWXXipvm5+f1+OPP67HH39cn//85/Xggw/qyis39mb5qU99Sn/5l3+54r5nnnlGzzzzjP7P//k/uuGGG3T//ffrkksu2dDzAAAAAAAAAAAAwFyhUEi7d+/WyMiIBgcHNTk5qa6uLqVSKX3qU5/S7bffrksvvVShUKjeQwUAAAAqrJSkudL+tdpJktfrNXIlIABYSSaTUU9Pz4r7otHoeduSyaS6u7u3elgA1OAJ7P/0T/+kd73rXcrn87rwwgs1MjKigwcPKp/P67777tPnPvc5Pfnkk3rb296mxx9/XBdddNG6n2PHjh16y1veov7+fl111VV6/etfr927d+uFF15QJpPRPffco1QqpUcffVRvf/vb9c1vflMOx+rLOgIAAAAAAAAAAKAxnb0a7/LycvkPAAAAYKLCKy/I0bZykuZKamnn6uhQ/P77V115SCIhHoA5AoGAkslkxbZ8Pq9sNivLss6r/h4IBLZzeEBLa+gE9g996EPK5/PasWOH/uEf/kHXXXdded+NN96oN77xjfrYxz6mJ598UuPj4/rkJz+57uf4/Oc/rx07Vv5n+uVf/mV94AMf0C233KKpqSl961vf0pEjR/Rrv/ZrG31JAAAAAAAAAAAAMFAikdBzzz2nsbEx3XPPPerr6yvv6+zs1OjoqG6//XYlEgkNDAzUb6AAAADAzxQXX1FxWZq42a3g7tULcuZPLyt7sihrl0PuHW2rtkv862n9wT8sanBwsKbnrykh3u3SscwxktgBbAmPx7NiRfX+/v46jAbA2Ro2gf273/2uEomEJOl973tfRfJ6SSwW07333qt0Oq27775bH//4x9Xe3r6u51kteb3E6XTqox/9qKampiSduXhJAjsAAAAAAAAA1Nf8/LwymUzFtrWqK3k8nu0cIoAGMzc3J0n64Ac/qI9+9KNKJBKam5uTz+dTKBTS/Py8br/99nI7AAAAwBTB3Q51+5xV2/RfvnY/6VxBWpb23rZXHXs6Vm1XPFXUUm5J7d52OXaunji/eHxRs4dnlcvlSGAHAKDFNGwC+/T0dPnn3/qt31qxjcPh0K233qqRkRGdPHlSDz/8sG666Sbbx3LRRReVf15YWLC9f6wPN6YAAACwHZYLS5J+drF2k0p95PP5TfcFAACAMzKZjHp6empun0wmV6zGBAAlPp9PkpRKpdTb23telfVUKlXRDgAAAGhWHXs65Lbc1Rvt256xAACAxtSwCezf/OY3JUkXXHBB1ZsQN9xwQ/nno0ePbkkC+3333Vf+ORAI2N4/1ocbUwAAANgOhVf+TZIUnbJvEms2m2W5OgAAAJsEAgElk8mKbel0WtFoVBMTEwoGg+e1B4DVzM/P64ILLtCePXv0h3/4hxofH9fi4mK5eE5HR4f+6I/+SJdddpkuuOACzc/PUzwHAAAAAAAAWEXDJrCn02lJ0pVXXqkdO1Z/GWffdCj9jh1yuZyeeuopff7zn9e9994rSfJ6vfqN3/gN254DG8ONKQAAAGwH54X/TpI0EXYp6K2+7OZa0rmColMLsizLhpEBAABAkjwez6qFK4LBIEUtAKxLJpPRtddeK0k6fvy4rrnmmlXbXnvttRTPAQAAAAAAAKpoyAT2hYUF5XI5SdLevXurtn3ta1+rCy64QK+++qqeffbZTT3vwMCAHn300RX3eb1ePfDAA9q1a9ea/SwuLmpxcbH895deemlT40IlbkwBAABgO7Q52yVJQa9T3b7NJbCXuN1rLLcJAAAAAKiLs4vnfP3rX9dnP/tZHT9+vLz/sssu0x/8wR/oxhtvLLcHAAAAAAAAsLKGTGB/+eWXyz9feOGFa7YvJbC/8sorWzKe//Jf/ovuuOMOeb3emtqPjY3pzjvv3JKxAAAAAAAAAAAAwF5nF8/p7u7Whz/8YX3hC1/Q+9//ft1zzz163/veJ6fTnsnNAAAAWJ9CoaBEIqG5uTn5fD6FQiE+mwEAABiuIRPYFxYWyj/v3LlzzfYdHR2SpHw+v6nnvffee/Xqq69qeXlZJ0+e1OOPP67/9b/+l/78z/9c//Iv/6LPf/7zet3rXrdmPyMjI/rIRz5S/vtLL72kyy+/fFNjAwAAAAAAAAAAwPZwOp26+uqrJUlXX3111QSp0v2pxeOLq7ZZj1I/m73vBQAA0AympqYUi8WUzWbL2yzL0vj4uMLhcP0GBgAAgKoaMoHd5XKVfz516tSa7RcXz1zIc7vdm3rezs7Oir+HQiF94AMf0Dvf+U4dOXJE11xzjR577DHt3bu3aj8dHR3lpPpGsfT8s1X3L58+pdMv/lQ7XvM6te1YfVLBWv2gNtX+HYnF9uLYMAexMAexMAexMAvnb3PYdWycfvGndg+t5fA+ZQ5iYQ5iYRY74kEs7MGxYQ5iYQ5iYQ5iYRYTz9+lZKrZw7O299vf329rn3bi2DAHsTAHsTAHsTCLiefvVtVox8bU1JQikYgGBwc1OTmprq4upVIpjY6OKhKJKB6PN2wSO/cyzNFox0UzIxZm4fwNYLMaMoH9oosuKv/8yiuvrNn+1VdflSRdeOGFto/F5XLp3nvv1Rve8AY9++yz+tjHPqa/+qu/sv156sXr9crl9uj5I+O29elye+T1est/n5+fVyaTqWiTz+eVzWZlWdZ5Ew8CgYA8Ho9t42kkdsfj3FigdttxbKA2xMIcxMIcxMIsnL/NsRXHBjaG9ylzEAtzEAuzcP42B8eGOYiFOYiFOYiFWUw+f1uWJUnae9tedezZfIGjxeOLmj08W+7XNBwb5iAW5qjXPdd0Ol3xeLZWvefKcWEWk8/fraYRj41CoaBYLKbBwUFNT0/L4XBIknp7ezU9Pa3h4WEdOnRIQ0NDVVfLMQ33MszRiMdFsyIWZuH8DcAuDZnA7nK5dMkll+j555/X7Gz1ahUvvPBCOYH98ssv35LxeL1e9ff366tf/aq+/OUva2lpSe3t7VvyXNvN7/frWCatXC5XtV06nVY0GtXExISCwWDVtl6vV36/v/z3TCajnp6emseUTCbV3d1dc/tmUks8NhML1G47jg3UhliYg1iYg1iYhfO3Oew+NkrtsH68T5mDWJiDWJjF7ngQi43j2DAHsTAHsTAHsTCLyefvUqGejj0dclubWy14pX5Nw7FhDmJhjnrfc13pGlar3nPluDCLyefvVtOIx0YikVA2m9Xk5GQ5eb3E4XBoZGREfX19SiQSGhgY2LJx2I17GeZoxOOiWRELs3D+BmCXhkxgl6Q3velNSiQS+tGPfqTTp09rx46VX8rZs8zXOjFtxu7duyWdmdmey+Xk8/m27Lm2m9/vr/kkEQwG132hIxAIKJlMVmyrdgILBALr6r/Z1BqPjcQC67PVxwZqRyzMQSzMQSzMwvnbHBwb5iAW5iAW5iAWZiEe5iAW5iAW5iAW5iAWZiEe5iAW5iAW5qjHPde1Vr2uppkrupt+XMzMzNSUEHb2YzWmJ4WZHo9W0mixmJubkyR1dXWtuL+0vdSukZgci8XTy2cejy/a09/P+snn87b0ZzeTY9FqiIVZiAcAOzRsAvuBAweUSCT06quvKplM6i1vecuK7R599NHyz/39/Vs2nh//+Mflny+88MIte55m5PF4Vj1JcQIDAAAAAAAAAAAAgOpWu+e60XvkVHSvnZ0J53Nzc3pH5B1aXKgtMbSWqsout0vHMseMTmIHNqJUWDKVSqm3t/e8/alUqqId7HH85TMJ7LOHZ23tN5vNbmleFwAAME/DJrAPDw9rbGxMknTvvfeumMBeLBb1pS99SZK0a9cuHTx4cEvGMjs7q29961uSpDe84Q266KKLtuR5sLJWm4EOAABQTaFQUCKR0NzcnHw+n0KhkJxOZ72H1dTSJ4pV9+dPLyt7sihrl0PuHW0b6gMAAAAAAADYTnZXdG9WMzMzCgb2az6/UFP7WhLOJWnvbXvVsadj1f3FU0Ut5ZbU7m2XY6dj1XaLxxc1e3hWuVyOe+BoOqFQSJZlaXR0VNPT03I4fn4sFItFjY2NqbOzU6FQqI6jbD57Ljpzn2Ot96lald6nLMvadF8AmkMzrwQEoFLDJrBfe+21CoVCSiQS+sIXvqD3vOc9uu666yrajI+Pl9+0PvShD6m9vb1i/yOPPFJOan/Pe96jL37xixX7n3zySc3OzurGG29cdRwvvvii3v3ud+vUqVOSpFtvvXWzLw3rMDMzo/2B/Vqw8YIAM9ABAECjmpqaUiwWUzabLW+zLEvj4+MKh8P1G1iT8nq98rhdij5gz7KWHrdLXq/Xlr4AAAAAAACAzbC7onuzyuVyms8vaOJmt4K7V08kr6XIhSQ99NRp3fHwojr2dMhtuVdtJ0nat9FRA83B6XRqfHxckUhEw8PDGhkZUVdXl1KplMbGxnTkyBHF43GK/Nis42fvYTW9T63DuROjWsVKibprTRgjURfNjpWAgNbRsAnsknT33Xerv79f+XxeN910k26//XYdPHhQ+Xxe9913nw4fPixJ2rdvn2Kx2Lr7P378uN761rfql37plzQ8PKyenh69/vWv144dO/STn/xER48e1Re+8AX95Cc/kSR1dXXpj/7oj2x9jagul8tpIb/ADHQAANDypqamFIlENDg4qMnJyfJF2tHRUUUiEcXjcZLYbeb3+5XOHKtpNaBoNKqJiQkFg8FV27ESEAAAAAAAANCYgrsd6vZVT5Ltv3ztftK5gk0jAlpDOBxWPB5XLBZTX19feXtnZyf3RX4mnz9ThMeu95dnXjizomzxFCvL2qFaou5KSNRFK2AlIKB1NHQC+5vf/Gb99V//taLRqF566SXdfvvt57XZt2+fHnzwQV100UUbfp4nnnhCTzzxRNU2b3vb23Tvvfcyy61OmIEOAABaWaFQUCwW0+DgYMUymb29vZqentbw8LAOHTqkoaEhKo3YzO/315x0HgwGuagIAAAAAC1s8fhi1f3rKcYDAGspFApKJBKam5uTz+dTKBTi2iCAutqqStPhcFhDQ0O8562itGpvdGrB1n6Xckvk4dhgpUTdaoWRSNRFK2AlIKB1NHQCuyS9/e1v1w9/+EPdfffdevDBBzU7O6udO3fqyiuv1Dvf+U598IMf3HBSeX9/v/7+7/9eX/va1/T4449rdnZWP/3pTzU/P6+LL75YnZ2d6u3t1a//+q/zBgkAAIC6SSQSymazmpycLCevlzgcDo2MjKivr0+JREIDAwMV+2dmZmqqIH72YzVUEQcAAAAAoJLX65XL7dLs4Vnb+nS5XfJ6vbb1B6C5TE1NKRaLlZMWJcmyLI2Pj1ON2HCLp5fPPNo0WanUT6kCM1BPW1lp2ul0nnf/A2dYliVJmgi7FPRuPqn/oaeWdMfDp9Tubd90X1g9UVeiMBIAoPk1fAK7JL3hDW/QZz7zGX3mM59Z1+8NDAxoeXl51f3t7e266aabdNNNN212iAAAAMCWmZubkyR1dXWtuL+0vdSuZGZmRvsD+7WQr63qRjQaXbONy+3SscwxktgBAAAAAPgZv9+vY5ljNU0gX63S4rmYQA5gNVNTU4pEIhocHNTk5KS6urqUSqU0OjqqSCSieDxOErvBjr98Jn/BzklP0pkKzBTlQ71Rabo+SpXtg16nun2bT2BP5wqSVHXFIACwEysLAc2rKRLY0VjsrPJZSxVQAACAZjY/P6+XX35ZknT//ffrqquuOm/JzR/+8IeSpJdfflnz8/PlFYpyuZwW8gvae9tedezpWPU51rOE+ezhWeVyOW6iAwAAAABwFr/fX/N3ZSotAtioQqGgWCymwcFBTU9Pl1dr7O3t1fT0tIaHh3Xo0CENDQ2R9GOoPRe1SdKa12xrVbpmW6rADNQTlaYBAOvFykJAcyOBHdtqZmZGwcB+zdtY5RMAAKCVZTIZvf/975ckvfe9763a9v3vf7+uvvrq8y4Cd+zpkNtyV3+ifZsZJQAAAAAAAICtlkgklM1mNTk5WU5eL3E4HBoZGVFfX58SiYQGBgbqM0hU1bHjTAJ7Tdds16FUgRkAAKBRsLIQ0PxIYMe2yuVyms8vaOJmt4K7V6/emT+9rOzJoqxdDrl/9iV9JQ89dVp3PLy4FUMFAABoCKUlN7/+9a/rYx/7mEKhkA4ePKg777xTn/jEJ/Twww8rkUjorrvu0o033siSmwAAAAAAAECTmpubkyR1dXWtuL+0vdQOAAAAMBErCwGtgQR21EVwt0Pdvuonj/7L1+4nnSvYNCIAAIDGVFpys7u7W7/wC7+gWCymO++8U5J05513qrOzk9nnAAAAAACs08zMjHK5XNU26XS64rEar9crv99vy9gAYDU+n0+SlEql1Nvbe97+VCpV0Q7A+szPzyuTyVRsy+fzymazsizrvEr3gUBAHo9nO4cIAEBTYGUhoDWQwI6Gtnh6+czjcXuqsJf6yefztvQHAACwncLhsIaGhvSFL3xB73//+3XPPffofe97H7POAQAA0BBIBgFgipmZGQUD+zWfX6ipfTQaXbONx+1SOnOMJHYAWyoUCsmyLI2OjlZUqpSkYrGosbExdXZ2KhQK1XGUQOPKZDLq6empuX0ymVR3d/cWjgioXfpEser+/OllZU8WZe1yyL2jbdV2z7ywbPfQYCOuraBZbOXKQoVCQYlEQnNzc/L5fAqFQtxPB+qEBHY0tOMvn/lgPHt41tZ+s9ms+vv7be0TAABgOzidTl199dWSpKuvvpov2wAAAGgYm00GoVoyALvkcjnN5xc0cbNbwd2OVdvVmuSTPlFU9IG8crkc7ysAtpTT6dT4+LgikYiGh4c1MjKirq4upVIpjY2N6ciRI4rH41wzBDYoEAgomUxWbEun04pGo5qYmFAwGDyvPVBvXq9XHrdL0Qco5NgKmGiDZrFVKwtNTU0pFospm82Wt1mWpfHxcVY0B+qABHY0tD0XnbkgvPe2verY07Hp/haPL2r28Kwsy9p0XwAAAMBmrFQlo1rCFVUyAABAo9tMMsjMzIz2B/ZrwcZqyS63S8eolgy0tOBuh7p91ZM8+y/fpsEAQI3C4bDi8bhisZj6+vrK2zs7OxWPx0nMATbB4/GsmugZDAZJAoWR/H6/0pljNU34Xu3790rtYCYm2qBZbMXKQlNTU4pEIhocHNTk5GR5oufo6KgikQiflYE6IIEdDa3jZxVNOvZ0yG2512hdu3OXzAEAAAC2W7UqGStdHKZKBgAAaHSbSQbJ5XJayC+sWeiieKqopdyS2r3tcuxcvapyqdAF1ZIBAEAjCofDGhwc1F/8xV/o6aef1hVXXKHf/d3f1c6dO+s9NABAHfj9/pq/2zIZo7Ex0QbNwu6VhQqFgmKxmAYHBysS4nt7ezU9Pa3h4WEdOnRIQ0NDrFYEbCMS2AEAAADAQCtVycjn88pms7Is67xJl1TJAAAAqLHQxb7tGQsAAEC9TE1NKRaLKZvNlrfdfffdGh8fp6qkzfL5vCQpnSvY0t8zLxQlnZl4CQAA0MrsXFkokUgom81qcnKyopq7JDkcDo2MjKivr0+JREIDAwN2vQQAayCBHQAAAAAMtFqVjP7+/jqMBgAAAAAAAI1gampKkUhEg4ODmpycLFeqHB0dVSQSWXeyD6orTRKITi3Y2u9SbomJlwCMtnh8ser+9ayABgCrCYfDGhoaUiKR0NzcnHw+n0Kh0LqrpM/NzUmSurq6Vtxf2l5qB2B7kMCObcUMdAAAAHOUPpvZdXGw1E+pXwAAAAAAGpHd9zJK/fB9GcBWKxQKisViGhwc1PT0dLm6ZG9vr6anpzU8PKxDhw5paGho3Uk/WJllWZKkibBLQe/m/00fempJdzx8Su3e9k33BQBbwev1yuV2afbwrG19utwueb1e2/oD0FycTuemq6L7fD5JUiqVUm9v73n7U6lURTsA24MEdmwrZqADAACYo/TZzM6LjKV+qRIOAAAAAGhUW3Uvg+/LALZaIpFQNpvV5ORkOXm9xOFwaGRkRH19fUokEptOAsIZbrdbkhT0OtXt23wCe2nSU7Vqxajd/Py8MplMxbZ8Pq9sNivLssrxKwkEAvJ4PNs5RKDh+P1+HcscUy6Xq9ounU4rGo1qYmJCwWCwaluv1yu/32/nMAGgQigUkmVZGh0drZjoKUnFYlFjY2Pq7OxUKBSq4yiB1kMCO7YVM9ABAADMUfpstve2verY07Hp/haPL2r28Gy5XwAAAAAAGpHd9zLSuYKiUwt8Xwaw5ebm5iRJXV1dK+4vbS+1A5pdJpNRT09Pze2TyaS6u7u3cESwC5MT6svv99eccB4MBjmuANSd0+nU+Pi4IpGIhoeHNTIyoq6uLqVSKY2NjenIkSOKx+OsUgRsMxLYsa2YgQ4AAGCO0mezjj0dclvuNVqvv18AAAAAABqR3fcyzu0XALaKz+eTJKVSKfX29p63P5VKVbQDml0gEFAymazYVq0qdCAQ2M7hYROYnAAAWK9wOKx4PK5YLKa+vr7y9s7OTsXjcYXD4TqODmhNJLADAAAAAAAAAAAAANDgQqGQLMvS6Oiopqen5XD8vAhYsVjU2NiYOjs7FQqF6jhKYPt4PJ5Vk5apCt3YmJwAANiIcDisoaEhJRIJzc3NyefzKRQKUXkdqBMS2NEUFo8vVt1fPFXUUm5J7d72qtXa1+oHAAAAAAAAAAAAAEzkdDo1Pj6uSCSi4eFhjYyMqKurS6lUSmNjYzpy5Iji8TgJOgAaHpMTAAAb5XQ6NTAwUO9hABAJ7Ghwu1xtUps0e3jWtj5dbpe8Xq9t/QEAAKB1zM/PK5PJVGxLp9MVjyWBQEAej2fbxgYAAAAAAIDmFw6HFY/HFYvF1NfXV97e2dmpeDyucDhcx9EBAAAAAHAGCexoaL4LHdKyVlwC6mzVloo6l9frld/vt3uoAAAAaAGZTEY9PT0r7otGoxV/TyaTVIEBAACwST6fl2TfCoulfkr9AmhN6RPFqvvzp5eVPVmUtcsh9462DfcDAHYLh8MaGhpSIpHQ3NycfD6fQqEQldcbCCuQAwAAAGh2JLCjKdS6BBRLRQEAAGArBQIBJZPJim35fF7ZbFaWZcntdle0BQAAgD2y2awke1dqLPXb399va58AzOf1euVxuxR9wL5JLB5WfwWwzZxOpwYGBuo9jJZh16Sn3KvLrEAOAAAAoCWQwA4AAAAANvF4PCtOmCTpCQAAYGtZliVJ2nvbXnXs6dh0f4vHFzV7eLbcL4DW4vf7lc4cUy6Xq9puM6u/zs/PK5PJnNff2Y9nCwQC8ng8tb4EAMA22YpJT66ODsXvv18+n2/VNqxAvj1mZmZq+jxw9mM1xAIAzLXSd7TVilRJfEcDADuQwI66YNlNAAAAc7AcLQAAABpd6SZix54OuS33Gq3X3y+A1uP3+2tOMNvI6q+ZTEY9PT0r7otGo+dtSyaTrDALAAbajklP1bAC+daZmZnR/sB+LeQXamq/0vn7XC63S8cyx0hiBwADVfuOthK+owHA5pHAjm3FspsAAADm8Hq9crldLEcLAAAAAMA2CwQCSiaTFdvWqu4HADDTVk96Qn3kcjkt5BfWXOVpPQVgZg/PKpfLkcAOwDasFGGflb6jVZuAttZ3NCq6A8DaSGDHum1mWct6z0BvNiwxahbiYQ5iYQ5iYQ5iYZZz41GvWPj9fh1r8c9mHBvmIBbmIBbmIBZmWU88iMXW4tgwx2ZjYedN1tL+Vl1diOPCHMTCLCafvz0ez4oJjP39/ds2hu3EsWEOYmEOYmEOYmEW0+JR0ypP+7bs6evKtFi0MmJhDpOuhczNzekdkXdocaG2axjNtlKE3cfFat/RJPtX3VpJo1d0530KwEaQwI512+yylsxAtw9LjJqFeJiDWJiDWJiDWJhltXjUIxat/tmMY8McxMIcxMIcxMIs64kHsdhaHBvm2EwsZmZmFAzs13x+oabnquUmq9rUsqsLcVyYg1iYhfO3OTg2zEEszEEszEEszEI8zEEszEEszGHctRCpZVeKMP24sLuiu+lMjwcAM5HAjnVjWUtzEAuzEA9zEAtzEAtzEAuznBsPYlE/HBvmIBbmIBbmIBZmWU88iMXW4tgwx2ZikcvlNJ9f0MTNbgV3r37zNH96WdmTRVm7HHLvaFu1XfpEUdEH8muuGtSsqwtxXJiDWJiF87c5ODbMQSzMQSzMQSzMspl4bMUqT62MY8McxMIcJl0Leeip07rj4cWWXSnC9OPC7orupjM9HgDMRAI71q3VlrU0GbEwC/EwB7EwB7EwB7Ewy0rxqDUWdl6AlxorKWcrcGyYg1iYg1iYg1iYhXiYg1iYw45YBHc71O1zVm3Tf3ntY6r1BmCz3SjkuDAHsTAL8TAHsTAHsTAHsTAHsTDLRuOxVZWNWxnHhjmIhTlMuhaSzhVqfs5mxHFhFuIBYCNIYAcAAAAaxFZcgPe4XUpnjrV0EjsAAAAAAAAAoLFtVWVjAAAAAFuDBHYAAACgQdh9AT59oqjoA3nlcjkS2AEAAAAAAAAADY/KxgAAAEBjIIEdAAAAaDB2XYAHAAAAAAAAAAAAAAAAthsJ7AAAAAAAAACAbZXP5yXZV9Ww1E+pXwAAAAAAAAAAYC4S2AEAAFB38/PzymQyFdvy+byy2awsy5Lb7a7YFwgE5PF4tnOIAAAAAGyUzWYlSdGpBdv77e/vt7VPAAAAAAAAAABgLxLYUXcrJayl0+mKx7ORsAYAQPPJZDLq6empuX0ymVR3d/cWjggAAADAVrIsS5I0EXYp6HVuur90rqDo1EK5XwAAAACtxe5Vnp55oShJKp4q2tIfAAAAgEoksKPuqiWsRaPR87aRsAYAQPMJBAJKJpMV29LptKLRqCYmJhQMBs9rDwAAAKBxlVZZCnqd6vZtPoH93H4BAAAAtJatWuVpKbck7bO1SwCwxeLp5TOPxxft6e9n/ZQmBAEAsNVIYEfdrZSwls/nlc1mZVnWeTedSFgDAKD5eDyeVSeoBYNBJq8BAAAAAAAAAIBV2b3K00NPLemOh0+p3du+6b4AQLJ/pYjHj5/pZ/bwrC39lWSzWfX399vaZyuYmZlRLper2iadTlc8VuP1euX3+20ZGwCYigR21N1qCWt8GAIAAKhk94WtUj9UUgAAAAAAAAAANDK7V3n6wU9OSzpTgT2/c/PX0KlsDGCrVoq4NHypLvr/Ltp0P4vHFzV7eLY8IQi1m5mZ0f7Afi3ka4ttNBpds43L7dKxzDGS2AE0NRLYAQAAgAaxVRe2qKQAAAAAAAAAAMDPHX95WRKVjTeDasStY35+XplMpmJbtdgGAgF5PJ5tGZtJtmqliAsCF8htuTfdX0lpQhBql8vltJBf0N7b9qpjT8eq7YqnilrKLand2y7HTseq7UqTCXK5HO97AJoaCewAAABAg7D7wlY6V1B0aoFKCgAAAAAAAAAAnGXPRW2StGYyYq1arbLxzMyMgoH9mrexGrHH7VKaasRGymQy6unpWXHfSrFNJpPq7u7e6mEZx+6VIkorLVdLhMb26tjTsfZkgn3bMxYAaAQksAMAAAANwu4LW+f2CwAAADQTKsABAAAA2KiOHWcS2GtKRlyHVrken8vlNJ9f0MTNbgV3r55cmz+9rOzJoqxdDrl/9m++kvSJoqIP5KlGbKhAIKBkMlmxLZ/PK5vNyrKs8/7fBwKB7RweAAAwFAnsaDrcmAIAAAAAAABABTgAduLeAwAAjSF9olh1f60J08+8sGz30FpScLdjzYI8/Zdv02BQZvdnW4/Hs+L36f7+/k2OFAAANDMS2NF0uDEFAAAAAAAAgApwAOzEvQcAAMzm9XrlcbsUfSBf76EAxuOzLSDNzMwol8tVbVNtYsdK7QAA60MCO5oON6YAAAAAAAAAUAEOgJ249wAAgNn8fr/SmWM1JSNGo1FNTEwoGAyu2Q5mqZYkWmuiqXRmwoPf77dtXI2Gz7ZodTMzMwoG9ms+v1BTe84HALA1SGBH0+HGFAAAAAAAAAAAsBP3HgAAMJ/f7685KTkYDFJRuoHMvVKU2mpLIq2ljcvt0rHMsZZNYuezLVpdLpfTfH5BEze7FdztWLVd/vSysieLsnY55N7Rtmq7h546rTseXtyKoQJAUyOBHQAAAAAAAABQF+kTxar7a71RuFY/AAAAALARi8erJyQWTxW1lFtSu7ddjp2rJ0Gu1Q+qO7mwLC1Le2/bq449HSu2WU8sZg/PKpfLtWwCO+rLrmshz7ywbPfQWk5wt0PdPmfVNv2Xr91POlewaUQA0FpIYAcAAAAaDEk+AAAAaHRer1cet0vRB/K29elxu+T1em3rDwAAAEDr8nq9crldmj08a1ufLr6zbFrHng65LffqDfZt31iA9dqKayEww+LpM5MJ7JqsVOonn+f/CoDmRgI7AAAA0CBI8gEAAECz8Pv9SmeOKZfLVW2XTqcVjUY1MTGhYDBYta3X66V6HoBtUygUlEgkNDc3J5/Pp1AoJKezeuU+AADQOPx+v47xnQWAjey+FlJqh/UrJYbbVTn98eNn+rFz0pMkZbNZ9ff329onAJiEBHYAAACgQZDkAwAAgGbi9/tr/iwaDAbV3d29xSMCgNpMTU0pFospm82Wt1mWpfHxcYXD4foNDAAA2IrvLADsthXvK2tV/S6eKmopt6R2b7scOx0b7qeZlL7LRacWbO330vCluuj/u2jT/SweX9Ts4VlZlrX5QQGAwUhgBwAAwKZRdWz7cMEcAAAAAID6mZqaUiQSkcvlqtj+05/+VJFIRPF4nCR2AGhx8/PzymQyFdvS6XTF49kCgYA8Hs+29QcAaA5er1cut8vWqt+uFlm5uZQYPhF2Kejd/D3th55a0h0Pn9IFgQvkttyb7q/E7bavLwAwEQnsAAAA2BSqjjUXboYAAACgWTHxFsBmFQoFfeADH9Dy8rLe+ta36uMf/7i6urqUSqX0qU99SkeOHNEHPvABDQ0N8f4CAC0sk8mop6dnxX3RaPS8bclksmohErv7AwA0B7/fr2Os3LwhpcTwoNepbt/mv7ulcwVJqlrhHgBwPhLYAQAAsGGlqmODg4OanJws37QdHR2l6liD4mYIAAAAmhETbwHY4ZFHHtFzzz2nAwcO6Mtf/rIcjjPJCb29vfryl7+s66+/XkePHtUjjzyit771rXUeLQCgXgKBgJLJZMW2fD6vbDYry7LOq6YaCAS2tT8AQPNg5WYAQCMjgR0AAAAbUigUFIvFNDg4qOnp6YqbttPT0xoeHtahQ4eoOtZguBkCAACAZsPEWwB2eeSRRyRJd955Z/k6SInD4dAnP/lJ/Yf/8B9IYAeAFufxeFZMEOzv7zeiP6ARLZ5ePvN4fHHzff2sj3w+v+m+AAAAsHEksAMAAGBDEomEstmsJicnV7xpOzIyor6+PiUSCQ0MDNRnkFg3boYAAACgmTDxFgAAAAAa3/GXzySwzx6eta3PbDbLvQ8AAIA6IoEdAAAAGzI3NydJ6urqWnF/aXupHQAAAABst7Mn3i4vL+uRRx7R3NycfD6fQqEQE28BrMvAwID+9E//VJ/4xCcUCoV09OjR8ntKf3+/7rzzznI7AACAVlaqbp7OFWzp71ThTAL7nv+0R26/e43W1S0eX9Ts4VlZlmXDyAAAALBRJLADAABgQ3w+nyQplUqpt7f3vP2pVKqi3dlmZmaUy+Wq9p9Opyseq/F6vfL7/Wu2AwAAANBaShNqn376af36r/+6stlseZ9lWfrTP/3TinYAUM3AwIB2796tb37zm3rNa15TTsySJLfbrXw+r0svvZQEdgAA0PJK372iUwu29uvY4ZDb2lwCe4nbbU8/AAAA2BgS2AEAALAhoVBIlmVpdHRU09PTcjgc5X3FYlFjY2Pq7OxUKBSq+L2ZmRntD+zXQr62i5bRaHTNNi63S8cyx0hiBwAAAFChNKH2N3/zNzU4OKjJyUl1dXUplUppdHRUv/mbv1nRDgCqcTqdeu9736tPf/rTWlxcrNh36tQpSdJ73vMeOZ3OegwPAADAGKXq5hNhl4LezX82euipJd3x8Cm1e9s33RcAlKRPFKvuz59eVvZkUdYuh9w72lZt98wLZ1aJWDy+uGobSSqeKmopt6R2b7scOx2rtlurHwBoFiSwAwAAYEOcTqfGx8cViUQ0PDyskZGRciLI2NiYjhw5ong8ft5N21wup4X8gvbetlcdezpW7X89X+BnD88ql8uRwA4AAACgQl9fn3bs2KFLLrlEU1NT2rHjzCXx3t5eTU1Nae/evXr++efV19dX55ECaASFQkF/8zd/o6uvvlrPPfecZmZmyvv27t2r3bt3Kx6Pa2xsjCR2AAAMMD8/r0wmU7Gt2uqvgUBAHo9nW8bW7ErVzYNep7p9m/9clM4VJKnq/SIAqJXX65XH7VL0gfzajWvVJs0enrWtO5fbJa/Xa1t/AGAiEtgBAACwbqWLvpZl6a677tJnP/vZioSPyy67THfddZcsy9L3v//9FS/6duzpWHuZx31bMXoAAAAAreKxxx7T6dOn9dOf/lThcPi8ibc//elPy+0GBgbqO1gAxkskEspms5qcnNQ111yjRCKhubk5+Xw+hUIhffe731VfX58SiQTvKQAAGCCTyainp2fFfSut/ppMJtXd3b3VwwIA1Jnf71c6c0y5XK5qu3Q6rWg0qomJCQWDwaptFxcX1dGxevG29fbn9Xop3gag6ZHADgAAgHWrdtFXkn784x/rox/9aPnvXPQFAAAAUA9zc3OSpImJCf3xH/9xxcTbzs5OTUxMKBqNltsBQDWl94quri45nc7zktS7uroq2gEAgPoKBAJKJpMV2/L5vLLZrCzLKlcJP7s9AKA1+P3+mhPEg8Ggrfe67e4PABoVCewAAABYt5Uu+labMc5FXwAAAAD14PP5JElXXHGFfvSjH61YLfnsdgBQTem9IpVKqbe397z9qVSqoh0AAKgvj8ezYoJgf39/HUYDAAAA4GwksAMAAGDdVrvoKzFjHAAAAIA5QqGQLMvS6OiopqenK6olF4tFjY2NqbOzU6FQqH6DBNAwzn1PcTgc5X28p9RXoVA4b5KS0+ms97AAAAAAAACwCsfaTQAAAAAAAAAAaDxOp1Pj4+M6cuSIhoeH9a1vfUsvv/yyvvWtb2l4eFhHjhzRf/tv/40kRwA14T3FTFNTU7ryyit18OBBvfvd79bBgwd15ZVXampqqt5DAwAAAAAAwCqowA4AAAAAAAAAaFrhcFjxeFyxWEx9fX3l7Z2dnYrH4wqHw3UcHYBGw3uKWaamphSJRDQ4OKjJyUl1dXUplUppdHRUkUikppjMz88rk8lUbMvn88pms7IsS263u2JfIBCQx+Ox/bUAAIC1LR5fXHVf8VRRS7kltXvb5di5ej3Pan0AAABg+5DADgAAgG2Vz+cl2XeBsNRPqd9Ws9JN1nQ6XfF4Nm6yAgAAoBWFw2ENDQ0pkUhobm5OPp9PoVCIKskANoT3FDMUCgXFYjENDg5qenpaDseZRLXe3l5NT09reHhYhw4d0tDQUNXYZDIZ9fT01Py8yWRS3d3dmx4/AACo3S5Xm9QmzR6etaU/l9slr9drS18AAADYGBLYAQAAsK2y2awk+y4ynt1vf3+/rX02gmo3WaPR6HnbuMkKAACAVuV0OjUwMFDvYQBoEryn1F8ikVA2m9Xk5GQ5eb3E4XBoZGREfX19SiQSVWMVCASUTCYrtqXTaUWjUU1MTCgYDJ7XHgAAbC/fhQ5pWSuem0uqnb/P5fV65ff7t2KoAAAAqBEJ7AAAANhWlmVJkvbetlcdezo23d/i8UXNHp4t99tqVrrJutYy1wAAAAAAAI1ubm5OktTV1bXi/tL2UrvVeDyeVSf7B4NBCgEAALAJ6RPFqvvzp5eVPVmUtcsh9462Nfup5dzM+RsAAKAxkMAOAACAbVVKqO7Y0yG35V6j9fr7bTWr3WRtxWr0AAAAGzE/P69MJlOxba0JgR6PZ8v7AgAA1fl8PklSKpVSb2/veftTqVRFOwAAsH28Xq88bpeiD+Rt69Pjdsnr9drWHwAAAOqLBHYAAAAAAAAALSuTyainp6fm9slkctVKbnb2BQAAqguFQrIsS6Ojo5qenpbD4SjvKxaLGhsbU2dnp0KhUB1HCQBAa/L7/UpnjimXy1Vtl06nFY1GNTExoWAwWLWt1+uV3++3c5hA3a1UDCGdTlc8no1iCACAZkICOwAAAAAAAICWFQgElEwmK7ZVu4EeCAS2pS8AAFCd0+nU+Pi4IpGIhoeHNTIyoq6uLqVSKY2NjenIkSOKx+NyOp31HioAAC3J7/fXnHAeDAaZ4I2WVK0YQjQaPW8bxRAaB5MTAGBtJLADAAAAAAAAaFkej2fVG3/rvYFuZ18AAGBt4XBY8XhcsVhMfX195e2dnZ2Kx+MKh8N1HB0AAABQ3UrFEPL5vLLZrCzLktvtPq89GgOTEwBgbSSwAwAAAAAAAADqjspUAICNCIfDGhoaUiKR0NzcnHw+n0KhEJXXAQAAYLzViiH09/dvqD+urZiDyQkAsDYS2AEAQMta6Qv8Wl8a+QIPAAAAAFuDylQAgI1yOp0aGBio9zAAAACAuuLaijnsnpwAAM2IBHYAANCyqn2BXwlf4AEAAABg61CZCgAAAAAAYOO4trJxVK8HgO1HAjsAAHVWKBRY3rZOVvoCn06nFY1GNTExoWAweF57AAAAwDSsLIRmQWUqAAAAACYjuRGA6bi2snFUrweA7UcCOwAAdTQ1NaVYLKZsNlveZlmWxsfHFQ6H6zewFrHaF3hJCgaDfOHcYovHF6vuL54qaim3pHZvuxw7HRvuBwAAoNmxshAAAAAAAFuP5EYAaF5UrweA7UcCOwAAdTI1NaVIJKLBwUFNTk6qq6tLqVRKo6OjikQiisfjJLGjKXm9XrncLs0enrWtT5fbJa/Xa1t/AAAAjYSVhQAAQKthBRoAQD2Q3AgAzYvq9QCw/UhgBwCgDgqFgmKxmAYHBzU9PS2H40x16d7eXk1PT2t4eFiHDh3S0NCQnE5nnUcLSDMzM8rlclXbVFsm81xf/8evq6OjY83+Vku6OpfX65Xf71/zeQEAAJoRKwsBAIBWwwo0AIB6ILkRAAAAsA8J7AAA1EEikVA2m9Xk5GQ5eb3E4XBoZGREfX19SiQSGhgYqM8ggZ+ZmZlRMLBf8/mFmtqvtEzmuTxul9KZYzUlnZN0BQAAAAAAgLOxAg0AAAAAAEBjI4EdAIA6mJubkyR1dXWtuL+0vdQOqKdcLqf5/IImbnYruNuxarv86WVlTxZl7XLIvaNt1XbpE0VFH8grl8tRNR0AAAAAAADrxgo0AAAAAAAAjY0EdgAA6sDn80mSUqmUent7z9ufSqUq2gEmCO52qNvnrNqm//JtGgwAAAAAAAAAAAAAAACAhrR6CU0AALBlQqGQLMvS6OioisVixb5isaixsTF1dnYqFArVaYQAAAAAAAAAAAAAAAAAANiPCuwAANSB0+nU+Pi4IpGIhoeHNTIyoq6uLqVSKY2NjenIkSOKx+NyOqtXuwa2Qz6flySlcwVb+iv1U+oXAAAAAAAA2C4zMzPK5XJV26TT6YrHarxer/x+vy1jAwAAAAAAaBUksAMAsE6FQkGJREJzc3Py+XwKhUIbSjQPh8OKx+OKxWLq6+srb+/s7FQ8Hlc4HLZz2MCGZbNZSVJ0asH2fvv7+23tEwAAAAAAAFjNzMyM9gf2ayFf23WuaDS6ZhuX26VjmWMksQMAAAAAAKwDCewAAKzD1NSUYrFYOaFXkizL0vj4+IYSzsPhsIaGhmxJiAe2imVZkqSJsEtB7+b/b6ZzBUWnFsr9AgAAAAAAANshl8tpIb+gvbftVceejlXbFU8VtZRbUru3XY6djlXbLR5f1OzhWeVyORLYAQAAAAAA1oEEdgAAajQ1NaVIJKLBwUFNTk6qq6tLqVRKo6OjikQiG66a7nQ6NTAwYP+AAZu43W5JUtDrVLfPvskVpX4BAACARjUzM6NcLle1TTqdrnisxuv1kvwGAMA26NjTIbe1xrWpfdszFgAAAADNr1AoUNgQAM5BAjsAADUoFAqKxWIaHBzU9PS0HI4zVXd6e3s1PT2t4eFhHTp0SENDQ3zJADZgfn5emUymYlu1RJ9AICCPx7MtYwMAALDbSp998vm8stmsLMs6b6Ifn33MNDMzo/2B/VrIL9TUPhqNrtnG5XbpWOYYSewAAAAAAABAk5iamlIsFlM2my1vsyxL4+PjGyqSCADNggR2AABqkEgklM1mNTk5WU5eL3E4HBoZGVFfX58SiQTV1LcQiT7NK5PJqKenZ8V9KyX6JJNJdXd3b/WwAAAAtkS1zz4r4bOPmXK5nBbyC9p721517OlYtV3xVFFLuSW1e9vl2OlYtd3i8UXNHp5VLpcjgR0AAAAAAABoAlNTU4pEIhocHNTk5KS6urqUSqU0OjqqSCSieDxOEjuAlkUCOwAANZibm5MkdXV1rbi/tL3UDluDRJ/mFQgElEwmK7atNTkBAACgUa302SedTisajWpiYkLBYPC89jBXx54OuS139Ub7tmcsAAAAAAAAAMxQKBQUi8U0ODio6enpcrHE3t5eTU9Pa3h4WIcOHdLQ0JCcTmedRwsA248EdgAAauDz+SRJqVRKvb295+1PpVIV7bA1SPRpXh6PZ8XJBv39/XUYDQAAwNZa7bOPJAWDQSZhAgAAAAAAAECDSyQSymazmpycLCevlzgcDo2MjKivr0+JREIDAwP1GSQA1BEJ7AAA1CAUCsmyLI2OjlbMjJWkYrGosbExdXZ2KhQK1XGUzY9En/pKnyhW3Z8/vazsyaKsXQ65d7RtuB8AAAAAAAAAAAAAABrZ3NycJKmrq2vF/aXtpXYA0GpIYAcAoAZOp1Pj4+OKRCIaHh7WyMiIurq6lEqlNDY2piNHjigej7OsE5qS1+uVx+1S9IG8bX163C55vV7b+gMAAABqNTMzo1wuV7VNOp2ueKzWBgAAoJXNz88rk8lUbMvn88pms7IsS263u2JfIBCQx+PZziECAAAAdeHz+SRJqVRKvb295+1PpVIV7QCg1ZDADgBAjcLhsOLxuGKxmPr6+srbOzs7FY/HFQ6H6zg6YOv4/X6lM8dqSvKJRqOamJhQMBis2tbr9crv99s5TAAAAGBNMzMzCgb2az6/UFP7aDS6xSMCAABobJlMRj09PTW3TyaTrKQJANi0cydQFQoFTU9PS5Luv/9+FQqFisJjTKACUA+hUEiWZWl0dFTT09NyOBzlfcViUWNjY+rs7FQoFKrjKAGgfkhgBwBgHcLhsIaGhpRIJDQ3Nyefz6dQKETl9QZhV6XFklZKwvb7/TW/1mAwyE0oAAAAGCmXy2k+v6CJm90K7nas2i5/elnZk0VZuxxy72hbsc1DT53WHQ8vbtVQAQDAFsjnz6wwuHjcnnN4qZ9Sv60oEAgomUxWbKtW6CIQCGzn8AAATaraBKrR0VGNjo5WbGMCFYB6cDqdGh8fVyQS0fDwsEZGRtTV1aVUKqWxsTEdOXJE8XicfBMALYsEdgAA1snpdGpgYKDew8A6zczMaH9gvxZsrLTocrt0LHOsZZLYAQAAgGYR3O1Qt6/6jaH+y6v3kc4VbBwRAADYDtlsVpI0e3jW9n77+/tt7bNReDyeVRMCKXQBANgqpQlUX//61/Wxj31MoVBI7373u7Vjxw6dPn1af/VXf6VEIqG77rpLN954IxOoANRNOBxWPB5XLBZTX19feXtnZ6fi8bjC4XAdRwcA9UUCOwAAaAm5XE4L+QXtvW2vOvZ0rNqueKqopdyS2r3tcuxcvSLj4vFFzR6eVS6XI4EdAAAAaEGLp5fPPFLBFQCALWfXyoqLi2fOt2tdI6xV6RqhZVmb7gsAgGY3Pz+vTCZTsa3a+TsQCMjj8azYl8fj0S/90i/pHe94hwYHBzU9PS2H4+f39f7zf/7PGh4e1l/8xV/owx/+MNWNAdRVOBzW0NCQEomE5ubm5PP5FAqFeG8C0PJIYAcAAC2lY0+H3Ja7eqN92zMWAAAAAI3r+MtnEtip4AoAwNaamZlRMLBf8zaurFjTNcJ1cLvt6wsAgGaVyWTU09Oz4r6Vzt/JZLLqSh6JRELZbFaTk5MVyeuS5HA4NDIyor6+PiUSCVbXBlB3TqeT9yIAOAcJ7AAAAAAAAACwTnsuapNEBVcAALZaLpfTfH5BEze7Fdy9+oqJ+dPLyp4sytrlkHtH24ptHnrqtO542J7VUwAAwPoEAgElk8mKbfl8XtlsVpZlnTchLBAIVO1vbm5OktTV1bXi/tL2UjsAAACYhQR2AAAAAAAAAFinjp8lxlHBFQCA7RHc7VC3z1m1Tf/l1ftI5wo2jggAAKyHx+NZsaL6Rlch8/l8kqRUKqXe3t7z9qdSqYp2AAAAMAsJ7AAAAAAAAAAAAABaxuLx6lXYi6eKWsotqd3bLsfO1au+r9UPAADYOqFQSJZlaXR0VNPT03I4fn7OLhaLGhsbU2dnp0KhUB1HCQAAgNWQwA4AAAAAAAAAAACg6e1ytUlt0uzhWdv6dLld8nq9tvUHAABq43Q6NT4+rkgkouHhYY2MjKirq0upVEpjY2M6cuSI4vG4nM7qK7gAAACgPkhgBwAAAAAAAAAAAND0fBc6pGVpYmJCwWBw1XbpdFrRaHTNdpLk9Xrl9/vtHioAAKhBOBxWPB7XRz7yEfX19ZW3W5aleDyucDhcx9EBAACgGhLYAQAAsG7z8/PKZDIV29LpdMXj2QKBgDwez7aMDQAAAFhNPp+XJKVzhU339cwLRUlS8VRx030BAIDtFQwG1d3dbVs7AABQX21tbfUeAgAAANapaRLY//Vf/1V/9md/pgcffFDPPvusOjo6dMUVV+iWW27R7/3e720qYWp+fl5/93d/p69+9at6/PHH9aMf/UivvPKKLr74Yu3bt0+/8iu/ot/5nd/R61//ehtfEQAAgLkymYx6enpW3BeNRs/blkwmudkHAABgk5mZGeVyuaptqk0uPFcrVQ3NZrOSpOjUgm19LuWWpH22dQcAAAAAAGo0NTWlSCSiwcFBTU5OqqurS6lUSqOjo4pEIlRhBwAAMFhTJLB/5StfUTQa1UsvvVTeNj8/r8cff1yPP/64Pv/5z+vBBx/UlVdeue6+f/jDH6q/v1+vvPLKefv+7d/+Td/+9rf17W9/W5/97Gd1+PBhvetd79rUawGA1RQKBSUSCc3Nzcnn8ykUCsnpdNZ7WABaVCAQUDKZrNiWz+eVzWZlWZbcbvd57QEAALB5MzMz2h/Yr4V8bQnYK00uPJfL7dKxzLGWSGK3LEuSNBF2Kejd3Hfqh55a0h0Pn1LxdFH5bH7VdsVTRS3lltTubZdjp2PVdovHFzc1HgAAgGaw0sqPa113ZOVHAGhNhUJBsVhMg4ODmp6elsNx5jt3b2+vpqenNTw8rEOHDmloaIj76gAAAAZq+AT2f/qnf9K73vUu5fN5XXjhhRoZGdHBgweVz+d133336XOf+5yefPJJve1tb9Pjjz+uiy66aF39v/TSS+Xk9f7+fg0ODurqq6/WJZdcohMnTmhqakqf+9zn9NJLL+k3fuM3dPHFF+tXf/VXt+KlAmhhU1NTisVi5Upx0pmb7uPj48wYR1Ozs7JkLZUnUTuPx7NiRfX+/v46jAYAAKB15HI5LeQXtPe2verY07Fqu/UkTc8enlUul2uJBPZSwlPQ61S3b3M3r+deKUpt0vH/fdyOoUk6M5nA6/Xa1h8AAM0gnz8zUSydK2y6r1IfpT5hnmorP66ElR8BoHUlEglls1lNTk6Wk9dLHA6HRkZG1NfXp0QioYGBgfoMEgAAAKtq+AT2D33oQ8rn89qxY4f+4R/+Qdddd11534033qg3vvGN+tjHPqYnn3xS4+Pj+uQnP7mu/h0Oh2655RZ94hOf0Jve9Kbz9t9000361V/9Vd18880qFAr6/d//fT311FNqa2vb7EsDAEkse2YCKr7Ux8zMjIKB/Zq3sbKkZF9Vw1I/3OwCAABAPXTs6ZDbcldvtG97xtKqfBc6pGVpYmJCwWBw1XbpdFrRaHTNdpLk9XpbYiIBAADrUSrsEp2q7TphrX1SiMFMK638WO3zFCs/AkDrmpubkyR1dXWtuL+0vdQOAAAAZmnoBPbvfve7SiQSkqT3ve99FcnrJbFYTPfee6/S6bTuvvtuffzjH1d7e3vNz9HX16e+vr6qbYaGhhQOh3X//ffr6aef1j/90z8x0x+ALVj2zAxUfKmPXC6n+fyCJm52K7h79YqR+dPLyp4sytrlkHvH6hPIPv/9U/pfjy9p9vCsrePkZtcZhUJBiURCc3Nz8vl8CoVCvC8BAAD8DCsLNbdgMFjTd8Ba2wEAgEqWZUmSJsIuBb2bu96UzhUUnVoo9wnzrLbyo8TnKQBAJZ/PJ0lKpVLq7e09b38qlapoBwAAALM0dAL79PR0+eff+q3fWrGNw+HQrbfeqpGREZ08eVIPP/ywbrrpJtvHcvDgQd1///2SpKeffpqLJ2gKJCPWH8uemYGKL/UV3O1Qt6/6e0//5Wv3c/WeM8fQ3tv2qmNPx6bHtXh8UbOHZ7nZpTMrRcRisXI1LOnMjcXx8XFWiAAAAC1vq1YWAgAAaBWlFTCDXuea1wnX2ycAAGhcoVBIlmVpdHS0ohicJBWLRY2Njamzs1OhUKiOowQAAMBqGjqB/Zvf/KYk6YILLqhaGfeGG24o/3z06NEtSWBfXFws/0yCL5oByYhmYNkzM1DxpTl0/Kw6e8eeDrkt+25QtfrNrqmpKUUiEQ0ODmpyclJdXV1KpVIaHR1VJBJRPB7nvAEAAFqa3SsLPfTUad3x8OKq+wEAAAAAAFqB0+nU+Pi4IpGIhoeHNTIyUr5PNTY2piNHjigej5PDAwAAYKiGTmAvLZl85ZVXaseO1V/K2ZVwt2qZ5UcffbT887mVeIFGQzKiOVj2rDnNz88rk8lUbMvn88pms7Is67yE6EAgII/Hs51DBGpSKBQUi8U0ODhYUdmit7dX09PTGh4e1qFDhzQ0NMTFQQAA0PLsWlkonSvYNCIAAAAAAIDGFg6HFY/HFYvF1NfXV97e2dlJXgMAAIDhGjaBfWFhQblcTpK0d+/eqm1f+9rX6oILLtCrr76qZ5991vaxPPHEE3rwwQclSVdddRUJ7GhoJCOahWXPmlMmk6m6csi5kskkVd5hpEQioWw2q8nJyYr3J0lyOBwaGRlRX1+fEomEBgYG6jNIAAAAYAXpE8Wq+2upiL9WHwAAAAAAYOuFw2ENDQ0pkUhobm5OPp9PoVCIfAYAAADDNWwC+8svv1z++cILL1yzfSmB/ZVXXrF1HIuLi/rt3/5tFQpnql996lOfqul3Fhd/vtTzSy+9ZOuYgM0gGdEsLHvWnAKBgJLJZMW2dDqtaDSqiYmJ8yZCnb2SCGCSubk5SVJXV9eK+0vbS+0AAACAevN6vfK4XYo+kLelP4/bJa/Xa0tfAACgOiagAQCA1TidTvIXAAAAGkzDJrAvLCyUf965c+ea7Ts6OiRJ+bw9N6dKPvjBD+rxxx+XJL3nPe/R29/+9jV/Z2xsTHfeeaet4wDsQjKieVj2rPl4PJ5VK6oHg0GqrW+xxeOLVfcXTxW1lFtSu7ddjp2OVdut1U8r8Pl8kqRUKqXe3t7z9qdSqYp2AAAA2LzF08tnHm36PFrqx+5rZqby+/1KZ46VV3ZcTbVJxmfzer3y+/12DxMAAJyFCWgAAAAAAADNp2ET2F0uV/nnU6dOrdm+VPHc7XbbNoaxsTF9/vOflyRdc801+p//83/W9HsjIyP6yEc+Uv77Sy+9pMsvv9y2cQGbQTKimVj2DK2olECTzhVs6S83fybRZ/bwrC39SZKrxW92hUIhWZal0dFRTU9PV6zcUSwWNTY2ps7OToVCoTqOEgAAoLkcf9n+z7WSlM1m1d/fb2ufpvL7/TUnnTPJGACA+mMCGgAAAAAAQPNp2AT2iy66qPzzK6+8smb7V199VZJ04YUX2vL899xzj26//XZJUiAQ0EMPPaQLLrigpt/t6OgoV4QHTEMyorlY9gytJpvNSpKiUwvVG67Tn/zJn+g//sf/uOr+Wm90SdzscjqdGh8fVyQS0fDwsEZGRtTV1aVUKqWxsTEdOXJE8XicyTYAAAA22nNRmyRp72171bFn89eXFo8vavbwrCzL2nRfAAAAW4UJaAAAAAAAAM2lYRPYXS6XLrnkEj3//POana1eceqFF14oJ7DbUel8cnJSv/u7vytJesMb3qCvfvWrLV19Fc2FZERzFQoFKrCjpZQSaCbCLgW9m/+/ns4VFJ1a0MGDB2u6gcWNrtqEw2HF43HFYjH19fWVt3d2dioejyscDtdxdAAAAPVn98pCpQrs7d52uS37Vhq0c9VCAAAAAAAAAAAAoJqGTWCXpDe96U1KJBL60Y9+pNOnT2vHjpVfTiaTKf+8ViXVtfzf//t/deutt6pYLMrn8+kf//EftXfv3k31CZiGZETzTE1NKRaLlStSS2eSe8fHx4kHmlYpgSbodarbZ99kDRJz7BcOhzU0NMQkGwAAgBVs1cpCS7klaZ+tXQIAAAAAAAAAAADboqET2A8cOKBEIqFXX31VyWRSb3nLW1Zs9+ijj5Z/7u/v3/Dz/eM//qNuueUWnT59Wpdccom++tWv6oorrthwf4DJSEY0x9TUlCKRiAYHBzU5OVmuiD86OqpIJMKkAgBGcDqdGhgYqPcwAAAAjGP3ykIPPbWkOx4+pXZv+6b7AgAAAAAAAAAAAOqhoRPYh4eHNTY2Jkm69957V0xgLxaL+tKXviRJ2rVrlw4ePLih53rsscc0NDSkxcVFveY1r9Hf//3f6xd/8Rc3PnigAZCMWH+FQkGxWEyDg4Oanp6Ww+GQJPX29mp6elrDw8M6dOiQhoaGmFwAAAAAAAaye2WhdK4gSXLsdGy6LwAAAAAAAAAAAKAeGjqB/dprr1UoFFIikdAXvvAFvec979F1111X0WZ8fFzpdFqS9KEPfUjt7ZXVqR555JFyUvt73vMeffGLXzzveX7wgx/obW97m1599VVdcMEFevDBB9XT07M1LwoAzpJIJJTNZjU5OVlOXi9xOBwaGRlRX1+fEokEkw0A1FWhUGDVDgAAAAAAAKDJzczMKJfLVW1TujdbeqzG6/XK7/fbMjYAAAAAANA4GjqBXZLuvvtu9ff3K5/P66abbtLtt9+ugwcPKp/P67777tPhw4clSfv27VMsFlt3/08//bR+5Vd+RSdPnpQk/emf/qle85rXKJVKrfo7l156qS699NINvR4AONvc3Jwkqaura8X9pe2ldgBQD1NTU4rFYspms+VtlmVpfHxc4XC4fgMDAAAAAAAAYJuZmRkFA/s1n1+oqX00Gl2zjcftUjpzjCR2AAAAAABaTMMnsL/5zW/WX//1Xysajeqll17S7bfffl6bffv26cEHH9RFF1207v4TiYSee+658t8//OEPr/k7n/jEJ/TJT35y3c8FAOfy+XySpFQqpd7e3vP2lybTlNoBzSh9olh1f/70srIni7J2OeTe0bbhfrAxU1NTikQiGhwc1OTkpLq6upRKpTQ6OqpIJKJ4PE4SOwAAAAAAAIw1Pz+vTCZTsa1aBfFAICCPx7MtYzNNLpfTfH5BEze7FdztWLXdeq7ZRh/IK5fLkcAOAAAAAECLafgEdkl6+9vfrh/+8Ie6++679eCDD2p2dlY7d+7UlVdeqXe+85364Ac/2LIXkgA0tlAoJMuyNDo6qunpaTkcP78gXCwWNTY2ps7OToVCoTqOEtgaXq9XHrdL0QfytvXpcbvk9Xpt66/VFQoFxWIxDQ4OVrxH9fb2anp6WsPDwzp06JCGhobkdDrrPFoAAIDmsnh8ser+4qmilnJLave2y7Fz9eSitfrB+pAABwBA48lkMurp6Vlx30oVxJPJpLq7u7d6WEYL7nao21f9el//5ds0GAAAAAAA0JCaIoFdkt7whjfoM5/5jD7zmc+s6/cGBga0vLy86v73vve9eu9737vJ0QHAxjidTo2PjysSiWh4eFgjIyPl6sZjY2M6cuSI4vE4iaFoSn6/X+nMMeVyuart0um0otGoJiYmFAwGq7b1er1U8rFRIpFQNpvV5ORkxQQbSXI4HBoZGVFfX58SiYQGBgbqM0gAAIAms8vVJrVJs4dnbevTxURP25AABwBA4wkEAkomkxXb8vm8stmsLMuS2+0+rz0AAAAAAAA2p2kS2AGgWYXDYcXjccViMfX19ZW3d3Z2Kh6PKxwO13F0zWlmZqampOmzH6tZXFxUR0eHLf21WgK23++v+fUGg0ESP7bZ3NycJKmrq2vF/aXtpXYAAACtLH2iWHV//vSysieLsnY55N7Rtmq7k3lJy1pzAicTPeuDBDgAABqPx+NZ8bpif39/HUYDAAAAAADQGkhgB4AGEA6HNTQ0pEQiobm5Ofl8PoVCISqvb4GZmRkFA/s1n1+oqf1KFfTO0yZp9cU+1tWfy+3SscwxkktgBJ/PJ0lKpVLq7e09b38qlapoBwAA0Iq8Xq88bpeiD+Rt69PjdikUCtX0vYCJntuLBDgAAAAAAAAAAIC1kcAOAA3C6XRqYGCg3sNoerlcTvP5BU3c7FZwt2PVdrVWR3zoqdO64+FF7b1trzr2rF6FvXiqqKXcktq97XLsXPl5F48vavbwrHK5HAnsMEIoFJJlWRodHdX09LQcjp//3y0WixobG1NnZ6dCoVAdRwkAAFBffr9f6cyxmlZ5omI6AAAAAAAAAAAAWgEJ7ADK5ufnlclkKrattcy1x+PZziG2lPXEg1jYL7jboW5f9Qr3/Zev3U86V5AkdezpkNtyV2+8r9bRAWZwOp0aHx9XJBLR8PCwRkZG1NXVpVQqpbGxMR05ckTxeJzVIgAAQMvz+/01J5xTMR0AAAAAAAAAAADNjgR2AGWZTEY9PT01t08mk9xU30LriQexAFAv4XBY8XhcsVhMfX195e2dnZ2Kx+MKh8N1HB0AAACwtpUmkKfT6YrHszGJHAAAAAAAAAAAYHNIYAdQFggElEwmK7ZVW8I8EAhs5/BaznriQSwA1FM4HNbQ0JASiYTm5ubk8/kUCoWovA4AAICGUG0CeTQaPW8bk8gBAAAAAAAAAAA2hwR2AGUej2fVG7AsYb79iAeARuJ0OjUwMFDvYQAAAADrttIE8nw+r2w2K8uy5Ha7z2sPAADqixVUAAAAAAAAGhsJ7AAAAAAAAABa1moTyPv7++swGgAAUAtWUKmPfD4vSUrnCrb0V+rnBz/4QfV2VSYnnMvr9crv9296bAAAAAAAYGuRwA4AAAAAAAAAAACgYbCCSn1ks1lJUnRqwdZ+3/e+99XUbqXJCedyuV06ljlGEjsAAAAAAIYjgR0AgC20eHr5zOPxxc339bM+SlVuAAAAAAAAAKAVsYJKfViWJUmaCLsU9Do33d9DTy3pjodPac9/2iO3371qu+KpopZyS2r3tsux07Fqu8Xji5o9PKtcLkcCOwAAAAAAhiOBHQCALXT85TMJ7LOHZ23rM5vNciMGAAAAAAAAALCtSpXtg16nun2bT2BP5wpn+vW75bZWT2CXJO3b9NMBAAAAAACDkMAOAMBZStXNSxfON+tU4UwC+1oVZGpRqh5TqnIDAAAAAAAAAAAAAAAAAECjIYEdAICzZLNZSVJ0asHWfh07HGtXkKlRqcoNAAAAAAAAAAAAAAAAAACNhgR2AADOUqpuPhF2Kejd/BKoDz21pDsePqV2b/um+4L95ufnlclkKral0+mKx7MFAgF5PJ5tGRsAAAAAAAAAAAAAAAAANCMS2AEAOEupunnQ61S3b/MJ7OlcQZLk2OnYdF+wXyaTUU9Pz4r7otHoeduSyaS6u7u3elgAAAAAAAAAYKz0iWLV/fnTy8qeLMra5ZB7R9uq7Z55YdnuoQEAAAAAgAZBAjsAtICVqkzn83lls1lZllVO2i6hyjRaRSAQUDKZrNi21rEBAAAAAAAAAK3I6/XK43Yp+kDe1n4Xjy/a2k8+b+/4AAAAAACA/UhgB4AWUK3K9EqoMm2/tS7AF08VtZRbUru3fdVq7XZdxG9kK03GSKfTFY9nW2syhsfjWfH/en9//yZHCgAAAAAAAADNxe/3K505plwuV7VdOp1WNBrVxMSEgsHgqu0eeugh3XHHHZo9PGvrOLPZLNd4AQAAAAAwHAnsANACVqoyXe0CMlWm7bPL1Sa1ybYL8C63S16v15a+GlG1yRjRaPS8bUzGAAAAAAAAAAD7+P1++f3+mtoGg8Gq12dLldL33rZXHXs6Nj22xeOLmj08K8uyNt0XAAAAAADYWiSwA0ALWK3KtLT2BWRsju9Ch7SsNSvN1FqRxuv11nxzoBmtNBkjn88rm83Ksiy53e7z2gMAAADNzu6VigAAAIDtULqe27GnQ27LvUbr9fcLAAAAAADMRQI7AADboNaJAkwoqG61yRgsBwsAAIBWxkpFAAAAAAAAAAAAaCQksAOAIWZmZpTL5aq2qVZB72ytXqXbDukTxar786eXlT1ZlLXLIfeOtg33AwAAAACbxUpFAAAAAAAAAAAAaCQksAOAAWZmZhQM7Nd8fqGm9itV0Dubx+1SOnOMJPYN8Hq98rhdij6Qt61Pj9slr9drW3/4uUKhoEQiobm5Ofl8PoVCITmdznoPCwAAANhWrFQEAAAAAAAAAACARkICOwAYIJfLaT6/oImb3Qrudqzarpaq3+kTRUUfyCuXy5HAvgF+v1/pzLGaquFHo1FNTEwoGAxWbUtF/K0xNTWlWCymbDZb3mZZlsbHxxUOh+s3MAAAAAAAAAAAAAAAAADAqkhgBwCDBHc71O2rXj26//JtGkwL8/v9NSecB4PBFSsdYmtNTU0pEolocHBQk5OT6urqUiqV0ujoqCKRiOLxOEnsAAAAMNb8/LwymUzFtnQ6XfF4tkAgII/Hsy1jAwAAAAAAAAAAALYaCewAAKChFAoFxWIxDQ4Oanp6Wg7HmVULent7NT09reHhYR06dEhDQ0NyOqtPCAEAAADqIZPJqKenZ8V90Wj0vG3JZJKJswAAAAAAAAAAAGgaJLADAICGkkgklM1mNTk5WU5eL3E4HBoZGVFfX58SiYQGBgbqM0gAAACgikAgoGQyWbEtn88rm83Ksiy53e7z2gMAAAAAAAAAAADNggR2oIXNzMwol8tVbVNtCfNzeb1e+f3+VfcXCgUlEgnNzc3J5/MpFApRHRnAus3NzUmSurq6Vtxf2l5qBwAAAJjG4/GsWFG9v7+/DqMBAAAAAAAAAAAAthcJ7ECLmpmZUTCwX/P5hZrar7SE+bk8bpfSmWMrJrFPTU0pFospm82Wt1mWpfHxcYXD4ZrH3azy+bwkKZ0rbLqvUh+lPoFm4/P5JEmpVEq9vb3n7U+lUhXtAAAAAAAAAAAAAAAAAADmIIEdaFG5XE7z+QVN3OxWcLdj1Xb508vKnizK2uWQe0fbqu3SJ4qKPpBXLpc7L4F9ampKkUhEg4ODmpycVFdXl1KplEZHRxWJRBSPx1s+ib2U2B+dqm1CQa19Ur0PzSgUCsmyLI2Ojmp6eloOx8/fw4rFosbGxtTZ2alQKFTHUQIAAAAAAAAAarF4fLHq/uKpopZyS2r3tsuxc/V7Wmv1AwAAAAAAzEECO9Digrsd6vY5q7bpv3zj/RcKBcViMQ0ODur+++/X0aNH9ZWvfEU+n0/333+/3vGOd+jQoUMaGhqS01l9HM3MsixJ0kTYpaB3c/8O6VxB0amFcp9As3E6nRofH1ckEtHw8LBGRkbKE2PGxsZ05MgRxePxln5PAQAAAAAAAADTeb1eudwuzR6eta1Pl9slr9drW38AAAAAAGBrkMAOYEslEglls1m9//3v1759+8qVxqUzSdu33XabvvKVryiRSGhgYKBu46w3t9stSQp6nWtOKKhVNpst97uSdDpd8ViN1+s9r7I+UE/hcFjxeFyxWEx9fX3l7Z2dnazqAAAAAAAAAAANwO/361jmmHK5XNV26XRa0WhUExMTCgaDVdtyPwMAAAAAgMZAAjuALTU3NydJGhkZ0dvf/nZNTk6WKyWPjo7q9ttvr2iHzZt7pSi1SdFotKb2tbRzuV06ljnGRV8YJRwOa2hoSIlEQnNzc/L5fAqFQlReBwAAAAAAAIAG4ff7a773EAwG1d3dvcUjAgAAAAAA24EEdgBb6tJLL5UkHThwQNPT03I4HJKk3t5eTU9P6/rrr9fRo0fL7bB5JxeWpWVp72171bGnY9V2xVNFLeWW1O5tl2OnY9V2i8cXNXt4VrlcjgR2GMfpdLb06g0AAAAAAAAAAAAAAAAA0GhIYAdQV21tbfUeQtPq2NMht+Wu3mjf9oyl0c3PzyuTyVRsS6fTFY9nCwQC8ng82zI2AAAAAAAAAAAAAAAAAAAaCQnsALbUc889J0k6evSohoeHNTIyoq6uLqVSKY2Njeno0aMV7Vpd+kSx6v786WVlTxZl7XLIvWPl5P9nXljeiqG1tEwmo56enhX3RaPR87Ylk8mqy5iSEA8AAAAAAAAAAAAAAAAAaFUksAMtKp/PS5LSuYIt/ZX6KfVb4vP5JEmjo6O655571NfXV97X2dmpT33qU7r99tvL7VqV1+uVx+1S9IH82o2x7QKBgJLJZMW2fD6vbDYry7LkdrvPa1+N3QnxAAAAAAAAAAAAAAAAAAA0ChLYgRaVzWYlSdGpBdv77e/vl3SmyvQFF1ygPXv26G//9m9133336bvf/a4ymYwCgYCuvfZafexjH9Nll12mCy64QPPz8y1bZdrv9yudOaZcLle1XTqdVjQa1cTEhILBYNU2sI/H41kxgbz0f3297E6IBwAAAAAAAAAAAAAAAACgUZDADrQoy7IkSRNhl4Je56b7S+cKik4tlPuVzlSZvvbaayVJx48fV29v76q/f+2117Z8lWm/3y+/319T22AwuOq/VakK/uLxRVvGVern3Or62LhzE+ILhYISiYQcDoeWlpbU29srp3PzxyUAAAAAAAAAAAAAAAAAAKYhgR1oUaUKz0GvU90++xJlz64cfXaV6a9//ev67Gc/q+PHj5f3X3bZZfqDP/gD3XjjjeX22LxSdf3Zw7O297vRiuNY3dTUlGKxWDlu0pkJJuPj4wqHw/UbGAAAAAAAAAAAAID/n737Do+qzv82/v1OAqHXSJMuImAQAUEEEWQtq6Ig4iq7qODafiirSFEsq6tSxK6oi4pdsCCCXSmioFhglR56BCSg9BYIJO/nD545zqQRIOWTcL+ui0uYOTM5c+5dDufMZ84AAAAAyAcMsAPIN5FXmW7VqpUbMGCAGzt2rLvxxhvdmDFj3D//+U+uMp0PwlfBr31DbRdXK+6on2/f+n1u3Qvroq6uj7wxceJE17NnT9e1a1c3fvx4l5CQ4BYuXOiGDx/uevbs6SZMmMAQOwAAAAAAAAAAAAAAAACgWGGAHUCBiYmJcaeddppzzrnTTjuN4fV8Er4KflytOFe6fulDLH34z4u8kZaW5gYOHOi6du3qJk2a5EKhkHPOuXbt2rlJkya57t27u0GDBrlu3brx/xUAAAAAAAAAAAAAAAAAQLERKuwVAADgWDRz5kyXlJTk7rrrrmB4PSwUCrmhQ4e61atXu5kzZxbSGgIAAAAAAAAAAAAAAAAAkPe4AjtwjFvyR3qO96cckEvalu7qVwq50rH+iJ8HQLTk5GTnnHMJCQlZ3h++PbwcAAAAAAAAAADW7NmzxyUmJkbdtmTJkqj/RmrSpIkrU6ZMgawbAAAAAACwiwF24BgVHx/vypQu5Xp/kJJnz1mmdCkXHx+fZ88HFGc1a9Z0zjm3cOFC165du0z3L1y4MGo5AAAAAAAAAACsSUxMdK1bt87yvt69e2e6be7cua5Vq1b5vVoAAAAAAMA4BtiBY1TdunXdksSlbtOmTTkut2TJEte7d2/35ptvuqZNm+a4bHx8vKtbt25eriZQbHXs2NHVr1/fDR8+3E2aNMmFQqHgvvT0dDdixAjXoEED17Fjx0JcSwAAAAAAAAAAstekSRM3d+7cqNtSUlJcUlKSq1+/vitdunSm5QEAAAAAABhgB45hdevWzfXAedOmTbkiRhGzb/2+HO9PT013+zftdyXiS7hQyVC2yx3qeXBkYmJi3GOPPeZ69uzpunfv7oYOHeoSEhLcwoUL3YgRI9zHH3/sJkyY4GJiYgp7VQEAAAAAAAAAyFKZMmWyfP+oQ4cOhbA2AAAAAACgqGCAHQCKmfj4eFeqdCm37oV1efacpUqXcvHx8Xn2fDioR48ebsKECW7gwIGuffv2we0NGjRwEyZMcD169CjEtQMAAAAAAAAAoGDt2bPHJSYmRt22ZMmSqP9GatKkiStTpkyBrBsAAAAAAMg7DLADQDFTt25dtzRxqdu0aVOOyy1ZssT17t3bvfnmm65p06Y5LhsfH5/rq/Xj8PTo0cN169bNzZw50yUnJ7uaNWu6jh07cuV1AAAAAAAAAMAxJzEx0bVu3TrL+3r37p3ptrlz5/INwgAAAAAAFEEMsAOAUYdzlZGMVxipW7durgfOmzZtysndQhYTE+M6d+5c2KsBAAAAAAAAAEChatKkiZs7d27UbSkpKS4pKcnVr1/flS5dOtPyAAAAAACg6GGAHQCMOpyrjHCFEQAAAAAAAAAAUNSVKVMmy/c7OnToUAhrAwAAAAAA8gsD7ABg1OFcZYQrjAAAAAAAAAAAAAAAAAAAgKKAAXYAMIqrjAAAAAAAAAAAAAAAAAAAgOImVNgrAAAAAAAAAAAAAAAAAAAAAAA4NnAFdgB5Zs2aNW7Tpk05LrNkyZKo/+YkPj7e1a1bN0/WDchLaWlpbubMmS45OdnVrFnTdezY0cXExBT2agEAAAAAAAAAAAAAAAAAYB4D7ADyxJo1a9xJTU5ye1P25mr53r17H3KZUqVLuaWJSxli//8YmrZh4sSJbuDAgS4pKSm4rX79+u6xxx5zPXr0KLwVAwAAAAAAAAAAAAAAAACgCGCAHUCe2LRpk9ubstfVvqG2i6sVl+1y6anpbv+m/a5EfAkXKhnKdrl96/e5dS+sc5s2bWKA3TE0bcXEiRNdz549XdeuXd348eNdQkKCW7hwoRs+fLjr2bOnmzBhAj0AAAAAAAAAAAAAAAAAAMgBA+wA8lRcrThXun7pnBdqXDDrUlwwNG1DWlqaGzhwoOvataubNGmSC4UOfgCjXbt2btKkSa579+5u0KBBrlu3blwZHwAAAAAAAAAAAAAAAACAbGR/+WMAQKHLODTdrl07V65cuWBoumvXrm7QoEEuLS2tsFe12Js5c6ZLSkpyd911VzC8HhYKhdzQoUPd6tWr3cyZMwtpDQEAAAAAAAAAAAAAAAAAsI8BdgAwjKFpO5KTk51zziUkJGR5f/j28HIAAAAAAAAAAAAAAAAAACAzBtgBwDCGpu2oWbOmc865hQsXZnl/+PbwcgAAAAAAAAAAAAAAAAAAILPYwl4BAMVDSkqKc865fev35cnzhZ8n/LzHqsih6Xbt2mW6n6HpgtOxY0dXv359N3z4cDdp0qSoK+Knp6e7ESNGuAYNGriOHTsW4loCAAAAAAAAAAAAAAAAAGAbA+wAAnv27HGJiYlRty1ZsiTqv5GaNGniypQp45xzLikpyTnn3LoX1uXpOiUlJbkOHTrk6XMWJQxN2xETE+Mee+wx17NnT9e9e3c3dOhQl5CQ4BYuXOhGjBjhPv74YzdhwgQXExNT2KsKAAAAAAAAAAAAAAAAAIBZDLADCCQmJrrWrVtneV/v3r0z3TZ37lzXqlUr55xz9evXd845V/uG2i6uVtxRr8u+9fvcuhfWBc97rMqroemj+XAC/tSjRw83YcIEN3DgQNe+ffvg9gYNGrgJEya4Hj16FOLaAQAAAAAAAAAAAAAAAABgHwPsAAJNmjRxc+fOjbotJSXFJSUlufr167vSpUtnWj4sfF9crThXun70ckcj4888FuXF0PTRfDgB0Xr06OG6devmZs6c6ZKTk13NmjVdx44dufI6AAAAAAAAAAAAAAAAAAC5wAA7gECZMmWyHFru0KFDIawNIh3t0HTkhxOmT5/unnjiCbd+/frg/lq1arkBAwa4Ll26BMsjezExMa5z586FvRoAAAAAAAAAAAAAAAAAABQ5ocJeAQB2paWluRkzZrjx48e7GTNmuLS0tMJepWNaeGi6V69ernPnzod1xe/whxOSkpLckCFDXOvWrd3s2bPdzp073ezZs13r1q3dkCFDXFJSkmvVqpUrU6ZMPr4SAAAAAAAAAAAAAAAAAABwrGKAHUCWJk6c6Bo1auTOPvts9/e//92dffbZrlGjRm7ixImFvWo4QmlpaW7gwIGua9eubtKkSa5du3auXLlyrl27dm7SpEmua9eubtCgQXxQAQAAAAAAAAAAAAAAAAAA5BsG2AFkMnHiRNezZ0/XvHnzqKt0N2/e3PXs2TPHIfZ96/e5lKSUbH/tXrbbbftum9u9bHeOy+1bv68AX/GxYebMmS4pKcndddddLhSK/us/FAq5oUOHutWrV7uZM2cW0hoCAAAAAAAAAAAAAAAAAIDiLrawVwCALRmv0h0edA5fpbt79+5u0KBBrlu3bi4mJiZ4XHx8vCtVupRb98K6PFuXUqVLufj4+Dx7vmNdcnKyc865hISELO8P3x5eDgAAAAAAAAAAAAAAAAAAIK8xwA4gSvgq3ePHj8/2Kt3t27d3M2fOdJ07dw7uq1u3rluauNRt2rQpx+dfsmSJ6927t3vzzTdd06ZNc1w2Pj7e1a1b94hfC6LVrFnTOefcwoULXbt27TLdv3DhwqjlAAAAAAAAAAAAAAAAAAAA8hoD7ACiHM1VuuvWrZvrgfOmTZu6Vq1aHeFa4kh07NjR1a9f3w0fPjzq6vrOOZeenu5GjBjhGjRo4Dp27FiIawkAAAAAAAAAAAAAAAAAAIqz0KEXAXAsibxKd1a4SnfRFRMT4x577DH38ccfu+7du7vZs2e7nTt3utmzZ7vu3bu7jz/+2D366KMuJiamsFcVAAAAAAAAAAAAAAAAAAAUUwywA4gSeZXu9PT0qPu4SnfR16NHDzdhwgS3YMEC1759e1ehQgXXvn17t3DhQjdhwgTXo0ePwl5FAAAAAAAAAAAAAAAAAABQjMUW9goAsCV8le6ePXu67t27u6FDh7qEhAS3cOFCN2LECPfxxx+7CRMmcJXuIqxHjx6uW7dububMmS45OdnVrFnTdezYkaYAAAAAAAAAAAAAAAAAACDfMcAOIJPwVboHDhzo2rdvH9zeoEEDrtJdTMTExLjOnTsX9moAAAAAAAAAAAAAAAAAAIBjDAPsALLEVboBAAAAAAAAAAAAAAAAAACQ1xhgB5AtrtINAAAAAAAAAAAAAAAAAACAvBQq7BUAAAAAAAAAAAAAAAAAAAAAABwbGGAHAAAAAAAAAAAAAAAAAAAAABQIBtgBAAAAAAAAAAAAAAAAAAAAAAWCAXYAAAAAAAAAAAAAAAAAAAAAQIFggB0AAAAAAAAAAAAAAAAAAAAAUCAYYAcAAAAAAAAAAAAAAAAAAAAAFAgG2AEAAAAAAAAAAAAAAAAAAAAABYIBdgAAAAAAAAAAAAAAAAAAAABAgWCAHQAAAAAAAAAAAAAAAAAAAABQIBhgBwAAAAAAAAAAAAAAAAAAAAAUiNjCXgEAxdeePXtcYmJi1G1LliyJ+m+kJk2auDJlyhTIugEAAAAAAAAAAAAAAAAAAKDgMcAOIN8kJia61q1bZ3lf7969M902d+5c16pVq/xeLQAAAAAAAAAAAAAAAAAAABQSBtgB5JsmTZq4uXPnBn9OS0tz33//vUtMTHRNmjRx7dq1czExMVHLAwAAAAAAAAAAAAAAAAAAoPhigB1AvilTpkxwRfWJEye6gQMHuqSkpOD++vXru8cee8z16NGjkNYQAAAAAAAAAAAAAAAAAAAABSlU2CsAoPibOHGi69mzp2vevLmbPXu227lzp5s9e7Zr3ry569mzp5s4cWJhryIAAAAAAAAAAAAAAAAAAAAKAAPsAPJVWlqaGzhwoOvataubNGmSa9eunStXrpxr166dmzRpkuvatasbNGiQS0tLK+xVBQAAAAAAAAAAAAAAAAAAQD5jgB1Avpo5c6ZLSkpyd911lwuFov/KCYVCbujQoW716tVu5syZhbSGAAAAAAAAAAAAAAAAAAAAKCixhb0CAIq35ORk55xzCQkJLi0tzc2cOdMlJye7mjVruo4dO7qEhISo5QAAAAAAAAAAAAAAAAAAAFB8McAOIF/VrFnTOefc6NGj3ZgxY1xSUlJwX/369d0NN9wQtRwAAAAAAAAAAAAAAAAAAACKr1BhrwCA4q1jx47uuOOOc0OHDnUJCQlu9uzZbufOnW727NkuISHB3XXXXa5atWquY8eOhb2qAAAAAAAAAAAAAAAAAAAAyGcMsAPId9774PeSgl8AAAAAAAAAAAAAAAAAAAA4tjDADiBfzZw50/3+++9uxIgRbuHCha59+/auQoUKrn379m7RokVu+PDh7vfff3czZ84s7FUFAAAAAAAAAAAAAAAAAABAPmOAHUC+Sk5Ods45d8stt7gVK1a4r776yo0bN8599dVXbvny5e6WW26JWg4AAAAAAAAAAAAAAAAAAADFV2xhrwCA4q1mzZrOOecWLlzo2rVr5zp37hx1/8KFC6OWAwAAAAAAAAAAAAAAAAAAQPFVbK7A/uuvv7qBAwe6Jk2auLJly7oqVaq4Nm3auEceecTt2bPnqJ47PT3dLV682L366quuX79+rk2bNi4uLs5575333s2YMSNvXgRQDHXs2NHVr1/fDR8+3KWnp0fdl56e7kaMGOEaNGjgOnbsWEhrCAAAAAAAAAAAAAAAAAAAgIJSLK7A/tFHH7nevXu7HTt2BLft2bPHzZkzx82ZM8e99NJL7pNPPnGNGjU6oud/4403XJ8+ffJobYFjS0xMjHvsscdcz549Xffu3d3QoUNdQkKCW7hwoRsxYoT7+OOP3YQJE1xMTExhryoAAAAAAAAAAAAAAAAAAADyWZG/AvvPP//srrjiCrdjxw5Xrlw5N2zYMPfdd9+5adOmueuvv94559yyZcvcRRdd5Hbu3HlEP0NS8PsSJUq4Vq1auebNm+fJ+gPHgh49ergJEya4BQsWuPbt27sKFSq49u3bu4ULF7oJEya4Hj16FPYqAgAAAAAAAAAAAAAAAAAAoAAU+Suw33rrrS4lJcXFxsa6L7/80p1xxhnBfV26dHEnnniiGzJkiFu2bJl77LHH3P3333/YP6NZs2bu6aefdm3atHGnnnqqK1WqlLv//vvdggUL8vCVAMVbjx49XLdu3dzMmTNdcnKyq1mzpuvYsSNXXgcAAAAAAAAAAAAAAAAAADiGFOkB9h9//NHNnDnTOefcP//5z6jh9bCBAwe6V155xS1ZssQ99dRT7u6773YlSpQ4rJ/Ttm1b17Zt2zxZZ+BYFhMT4zp37lzYqwEAAAAAAAAAAAAAAAAAAIBCEirsFTgakyZNCn7ft2/fLJcJhULu6quvds45t23bNvfVV18VxKoBAAAAAAAAAAAAAAAAAAAAADIo0gPss2bNcs45V7ZsWde6detsl+vUqVPw+2+//Tbf1wsAAAAAAAAAAAAAAAAAAAAAkFmRHmBfsmSJc865Ro0audjY2GyXa9KkSabHAAAAAAAAAAAAAAAAAAAAAAAKVvZT38bt3bvXbdq0yTnnXO3atXNctnLlyq5s2bJu9+7dbu3atQWxejnat2+f27dvX/DnHTt2FOLaAAAAAAAAAAAAAAAAAAAAAEDBKLJXYN+5c2fw+3Llyh1y+bJlyzrnnNu1a1e+rVNujRgxwlWsWDH4VadOncJeJQAAAAAAAAAAAAAAAAAAAADId0V2gH3v3r3B70uWLHnI5ePi4pxzzqWkpOTbOuXW0KFD3fbt24NfFq4KDwAAAAAAAAAAAAAAAAAAAAD5LbawV+BIlSpVKvh9amrqIZfft2+fc8650qVL59s65VZcXFwwUA8AAAAAAAAAAAAAAAAAAAAAx4oiewX28uXLB7/ftWvXIZffvXu3c865cuXK5ds6AQAAAAAAAAAAAAAAAAAAAACyV2QH2EuVKuWqVq3qnHNu3bp1OS67devWYIC9Tp06+b5uAAAAAAAAAAAAAAAAAAAAAIDMiuwAu3PONWvWzDnn3IoVK9yBAweyXS4xMTH4fdOmTfN9vQAAAAAAAAAAAAAAAAAAAAAAmRXpAfYzzzzTOefc7t273dy5c7Nd7uuvvw5+36FDh3xfLwAAAAAAAAAAAAAAAAAAAABAZkV6gL179+7B71955ZUsl0lPT3evv/66c865SpUqubPPPrsgVg0AAAAAAAAAAAAAAAAAAAAAkEGRHmBv27at69ixo3POubFjx7rZs2dnWuaxxx5zS5Yscc45d+utt7oSJUpE3T9jxgznvXfee9enT598X2cAAAAAAAAAAAAAAAAAAAAAOFbFFvYKHK2nnnrKdejQwaWkpLjzzjvP3XXXXe7ss892KSkp7u2333YvvPCCc865xo0bu4EDBx7xz3n11Vej/vzLL78Ev//8889dUlJS8OdGjRq5M88884h/FgAAAAAAAAAAAAAAAAAAAAAUR0V+gL1ly5bunXfecb1793Y7duxwd911V6ZlGjdu7D755BNXvnz5I/45ffv2zfa+hx9+OOrP11xzDQPsAAAAAAAAAAAAAAAAAAAAAJBBqLBXIC9cfPHFbv78+W7AgAGucePGrkyZMq5SpUrutNNOcw8//LD7+eefXaNGjQp7NQEAAAAAAAAAAAAAAAAAAADgmFbkr8AeVq9ePff444+7xx9//LAe17lzZyfpkMvlZhkAAAAAAAAAAAAAAAAAAAAAQPaKxRXYAQAAAAAAAAAAAAAAAAAAAAD2McAOAAAAAAAAAAAAAAAAAAAAACgQDLADAAAAAAAAAAAAAAAAAAAAAAoEA+wAAAAAAAAAAAAAAAAAAAAAgAIRW9grAOckOeec27FjRyGvCfJaenp68F/6AgAAAACQPzj+BgDkFvsMAEBusL8AAOQW+wwAQGEJ73fC86dAUePF/3oL3bp161ydOnUKezUAAAAAAAAAAAAAAAAAAABQRKxdu9bVrl27sFcDOGwMsBuQnp7u1q9f78qXL++894W9Oibs2LHD1alTx61du9ZVqFChsFfnmEYLW+hhBy3soIUdtLCDFrbQww5a2EELO2hhBy1soYcdtLCDFnbQwg5a2EIPO2hhBy3soIUdtLCFHnbQwg5a2EELO2iRNUlu586drlatWi4UChX26gCHLbawVwDOhUIhPgGTjQoVKrDTMYIWttDDDlrYQQs7aGEHLWyhhx20sIMWdtDCDlrYQg87aGEHLeyghR20sIUedtDCDlrYQQs7aGELPeyghR20sIMWdtAis4oVKxb2KgBHjI9dAAAAAAAAAAAAAAAAAAAAAAAKBAPsAAAAAAAAAAAAAAAAAAAAAIACwQA7TIqLi3P33Xefi4uLK+xVOebRwhZ62EELO2hhBy3soIUt9LCDFnbQwg5a2EELW+hhBy3soIUdtLCDFrbQww5a2EELO2hhBy1soYcdtLCDFnbQwg5aAMWTl6TCXgkAAAAAAAAAAAAAAAAAAAAAQPHHFdgBAAAAAAAAAAAAAAAAAAAAAAWCAXYAAAAAAAAAAAAAAAAAAAAAQIFggB0AAAAAAAAAAAAAAAAAAAAAUCAYYAcAAAAAAAAAAAAAAAAAAAAAFAgG2GFeWlpaYa8CAAAAAAAAAAAAAAAAAAAAgDzAADtMS01Ndc8884y77bbbCntVAAAAAAAAAAAAAAAAAAAAAByl2MJeASA7qamp7vXXX3f33nuv2717t0tLS3PPPPNMYa8WAAAAAAAAAAAAAAAAAAAAgCPEFdhhUmpqqnvttdfcgAED3O7du11cXJx79tln3bXXXlvYq3ZMkpTl71HwaGEHLeyghS30sIMWdtDCDlrYQQtb6AEAAAAAAAAAAACgIDHADnPCV14fOHCg2717t6tSpYo7cOCAc84F/0X+yjiw4L3P9HuGGgoGLeyghR20sIUedtDCDlrYQQs7aGELPezIuJ3T09MLaU1ACztoYQctbKGHHbSwgxZ20MIOWthCDztoYQct7KCFHbSwgxa20AMo/mILewWASOHh9dtvv93t2rXLdejQwTVu3Ni988477rjjjnN9+/Z1zh3cQUW+wY68Fd62SUlJbv78+W7RokUuOTnZxcTEuCZNmrjTTjvNNW/e3JUsWdI5R4/8RAs7aGEHLWyhhx20sIMWdtDCDlrYQg8bIrfrzJkz3UknneSqVavmDhw44GJjOWVXkGhhBy3soIUtkT1WrFjhGjVq5EKhkEtLS3MxMTGFvHbHFlrYQQs7aGEHLWyhhx20sIMWdnDMZwct7KCFLfQAjg38vxlmZBxeP+2001y/fv3cs88+6/bs2eNOPPFE17ZtW+ec443zfCTJ7dq1y919993um2++cfPnz4+633vvQqGQu+qqq9yFF17oevbs6bz3DDTkA1rYQQs7aGELPeyghR20sIMWdtDCFnrYELk9p0+f7h566CG3aNEiN2vWLHfiiScW8todW2hhBy3soIUtkT2mTp3qHnroIdemTRv3yCOPMORTwGhhBy3soIUdtLCFHnbQwg5a2MExnx20sIMWttADOIYIMGDfvn168cUXVb58eXnv1bx5c40fP17jxo3TcccdpypVquj777+XJKWlpRXy2hZfu3bt0qRJk9SlSxd574Nf1atXV61atVSnTh01btxY3nuFQiGVL19e9913X/D49PT0wlv5YoYWdtDCDlrYQg87aGEHLeyghR20sIUeNkRuxylTpujiiy9WTEyMvPf6z3/+I4lzHwWFFnbQwg5a2JKxR/fu3YP990cffcS+uQDRwg5a2EELO2hhCz3soIUdtLCDYz47aGEHLWyhB3BsYYAdhS7j8Popp5yit99+W5I0ZMgQee917rnnKjk5uZDXtHjbvn27nn/+ebVs2VLee8XGxqpatWoaMGCAvvvuO23dulU7duzQ9u3bNWbMGF166aUKhULy3uvWW28NnoeDy6NHCztoYQctbKGHHbSwgxZ20MIOWthCDxuyOvkefsP2+uuvD+4Ln4DnRHz+oYUdtLCDFrbk1OOOO+7ItDw98g8t7KCFHbSwgxa20MMOWthBCzs45rODFnbQwhZ6AMceBthRqDIOr7do0ULjx4/X/v37NWPGjGAnNG7cuMJe1WJt9+7devnll9WsWTN571WiRAn16tVLkyZNilou8h8Kq1at0iOPPBIMNNx7770FvdrFEi3soIUdtLCFHnbQwg5a2EELO2hhCz1syHjyvVu3blFXwj/55JNVuXJldejQQffcc0/wQf4DBw4U1ioXW7SwgxZ20MKWnHrExsaqT58+Ou+88/TQQw/pyy+/DJalR96jhR20sIMWdtDCFnrYQQs7aGEHx3x20MIOWthCD+DYxAA7Ck1Ww+vjxo3Ttm3bJEl33HGHQqGQLrvsMu3du1dS5iu98UmqoxPentOnT1fr1q2DQYbbbrtNv/zyS7Bc5M4+ssHevXv11FNPKRQKKS4uTq+//nrBrXwxQws7aGEHLWyhhx20sIMWdtDCDlrYQg87cvqq7CZNmujMM8/UgAEDdPrpp6t69ery3qt169ZatWpVpsfj6NDCDlrYQQtbcuoRHx+vOnXq6LTTTlNsbKy89ypXrpxGjRqV5eNxdGhhBy3soIUdtLCFHnbQwg5a2MExnx20sIMWttADOHYxwI5Ckd2V13fs2CFJWrlypapVqybvvR5++OFDPt+SJUv07LPPqn///vm96sVG5M77oosuCgYZbr75Zi1dujTL5bKSnJysG2+8UaFQSH/729+0detW/mFwmGhhBy3soIUt9LCDFnbQwg5a2EELW+hhR04n36+99lr9+OOPSklJkSRt3bpVU6dOVfv27eW9V6NGjbR169ZCWvPihxZ20MIOWtiSU49evXrpgw8+0B9//KEDBw7ou+++09ChQ4P777vvvsJb8WKIFnbQwg5a2EELW+hhBy3soIUdHPPZQQs7aGELPYBjGwPsKHDZDa/v2rVLkpSSkqL+/fvLe68zzjgjuBJc+Grr4f/u2bNHmzZt0sCBA9W2bdtg58UQ++F56KGH5L1XTEyMLrroIv3000+H/RyTJ09WiRIlFAqFNGXKlHxYy2MDLeyghR20sIUedtDCDlrYQQs7aGELPQpXTiffBw0aFLVs5JXwp0+frjZt2mjAgAFav359ga1vcUYLO2hhBy1syanH7bffnuUHyFJSUnTXXXepZMmSuv3227V9+/aCXOViixZ20MIOWthBC1voYQct7KCFHRzz2UELO2hhCz0AMMCOAnWo4XVJ2rRpk9q3b6+SJUvq6aeflnTwa8sjLVy4UDfeeKNatmwZvBHvvVfp0qWDT2Dh0NLT09WjRw+FQiF57/Xaa68d8XNddtll8t7rxhtv1L59+/JwLY8NtLCDFnbQwhZ62EELO2hhBy3soIUt9ChcOZ18Hzx4cJbLhe3cuVPTpk3T6tWrC2JViz1a2EELO2hhS049hgwZkuVyYYsXL9Zbb70VfG02jg4t7KCFHbSwgxa20MMOWthBCzs45rODFnbQwhZ6AJAYYEcB2rt3r8aOHZvj8Lok3X///fLeq2rVqlqwYEHUfZMnT9aQIUOC5yhdurRq1qypf/zjH6pdu3awI+vbt6+2bdtWkC+vSJo3b16wzXr37h3cfjhfBx/+hNvdd98t770GDBgQXCUfuUcLO2hhBy1soYcdtLCDFnbQwg5a2EKPwpPbN2wjrxqTUeQHBT7//HNt3bpVqampkkSDw0ALO2hhBy1sye0btjn1iPy67IxXHqNH7tHCDlrYQQs7aGELPeyghR20sINjPjtoYQctbKEHgDAG2FEg0tPT9dprrwU7m4zD6+Ed07Jly9S6dWt57zV69GhJBz81NWnSJN1www3y3is2Nlbee11wwQUaPXq03nzzTV177bXBcw8YMEC//fZbob3WomT69OnB9gxv75x2/jmZNGmSrrjiCm3ZsiUvV/GYQQs7aGEHLWyhhx20sIMWdtDCDlrYQo/CN2XKFPXo0eOwT75HCn/Q/4wzztDIkSP1xx9/HNbjcRAt7KCFHbSwZdq0aUf0hm2kW2+9VfXq1dNdd92lb7755rAfj4NoYQct7KCFHbSwhR520MIOWtjBMZ8dtLCDFrbQAwAD7CgwiYmJ8t6rbt26euedd6KuvB4eYB83bpxCoZBatmypt956S1OmTNEZZ5yhSpUqBTurK664Qs8995wOHDigb775RldeeSXD64cpvL3Hjx8v773Kli2rhQsXHtVzrlmzRrt375bEPwIOBy3soIUdKcU1hgABAABJREFUtLCFHnbQwg5a2EELO2hhCz1sSExMVKdOnY7q5HtqaqomTZqkVq1aqUyZMvLeq0uXLlqzZs1hPc+xjhZ20MIOWtgyY8YMdenSRTExMYd1hcpIGzdu1HXXXadQKCTvvU444YTgA2yH8zzHOlrYQQs7aGEHLWyhhx20sIMWdnDMZwct7KCFLfQAIDHAjgK2cuVKvf/++9q5c2em+3799Vc1atRI3nvVrl1bZ599tqpXry7vverUqaOuXbvqww8/DJb/6aef1LVr12BHdvvttzO8fpg+//zzYPt99dVXefKch/NV9PgTLeyghR20sIUedtDCDlrYQQs7aGELPQrfzTfffFhv2Ga3fdeuXasXX3xRzZs3l/de9evXV1JSkiS+DjW3aGEHLeyghR1r165VhQoV5L3XnXfeGdx+JG+0TpgwQVdddVXwb4B///vfwX30ODRa2EELO2hhBy1soYcdtLCDFrZwzGcHLeyghS30AMAAOwpcdjuT//3vfypXrlxwABIeZO/evbvmz5+vDRs2SDq4Y/nmm290ySWXMLx+lH7++efgAHLy5MmS8nYYgU+y5R4t7KCFHbSwhR520MIOWthBCztoYQs9Ck/kSfFJkyYFv89um2Xssn///kzL7Nu3Tz/88IPatWsn771atGih9evX59EaF1+0sIMWdtDCpnnz5um+++4L/pzbHllZt26dhg8fHpw/HzFiRF6t5jGBFnbQwg5a2EELW+hhBy3soEXh45jPDlrYQQtb6AEgjAF2mPLYY4/Je69y5cppyJAhmjVrVtROJz09XV9//bW6d+/O8Hoeufjii+W9V9euXbV58+Y8ec7p06cHv+eTbLlHCztoYQctbKGHHbSwgxZ20MIOWthCj8KT8SR6diffw9tw7dq1ev3119W3b1/16NFDTz31VJZXzv/222918skny3uvW2+9VXv37s3zdS9uaGEHLeyghW2H6vH777/r22+/1RNPPKFnnnlGP//8s7Zs2SLpzzd1d+7cqQcffFDee1WsWDHqDWHkHi3soIUdtLCDFrbQww5a2EGLwsMxnx20sIMWttADgMQAO4yIfMP766+/1jfffJNpmfT0dH3zzTdHNLwe3smlp6dr586debfiRVj4gG/s2LGqWrWq6tatq8mTJx/18MFDDz0k77369++fF6t5TKCFHbSwgxa20MMOWthBCztoYQctbKFH0RDutHTpUp111lmqWrVq1DfTVapUSffff3/UY3bt2qXBgwfLe68zzjhDKSkphbHqxQ4t7KCFHbSwJbwPX7ZsmS644ALVqlUraFGnTh395S9/0bJly6Ies3TpUp199tmKiYnRwIEDJeXtt7Ecq2hhBy3soIUdtLCFHnbQwg5a2MExnx20sIMWttADKP4YYIcZWb2JHv601ZEMr2c8YNm1a5dGjhypzp07q0+fPnm78kXY77//rvPOO0/ee7Vv314LFy484ucKf/LZe6/zzz9fa9euDTpwAHlotLCDFnbQwhZ62EELO2hhBy3soIUt9LAvKSkp+FrTsmXLqn79+rr00kuDq8R47/V///d/wRXIJOmbb74J7vv2228Lce2LF1rYQQs7aGHLihUr1Lp162D7VqlSRTVq1FClSpXkvVe1atU0bdq0qMfccccd8t6rZs2a2rZtG/vsPEILO2hhBy3soIUt9LCDFnbQwg6O+eyghR20sIUeQPHGADvMinwT/HCG1zN+pcjcuXP1+OOPq1mzZlGfwrr66qvz/TUUFStXrtQJJ5wg7706duyoqVOnaseOHZL+/GDBoa7S98ADDwTbtnPnznr33Xe1fv36qMdlfA4OKjOjhR20sIMWttDDDlrYQQs7aGEHLWyhh03h7fX444+rYsWKiouL03XXXae1a9dKkpYsWaJHH3002O7//Oc/lZycLElavHixKlSooJiYGP3000+F9hqKC1rYQQs7aGHP3r171b9/f5UsWVIVKlTQtddeq9WrV+u3337Te++9p44dO8p7r/j4eH344Yfat2+fJGny5MkqWbKkmjRpoj179hTyqygeaGEHLeyghR20sIUedtDCDlrYwDGfHbSwgxa20AM4NjDADpOOdHg90syZMzVq1ChVrlxZZcqUkfc++MSu9161a9fWxo0b8/ulFBmJiYmqXbu2vPc66aSTdNttt2n+/PnBVfBzEv4K+fCvihUrqlKlSqpXr56uvPJKvfXWW8Gy4Q8YRA4yfPTRR8E/IkALS2hhBy1soYcdtLCDFnbQwg5a2EIPu7p16ybvvY4//nitWrUq0/3vvvtusO1vuOEGrV27Vnfeeae892ratKl27txZCGtdPNHCDlrYQQs7du3apVatWsl7r1NPPVW//vpr1P1//PGHLrzwQnnvVbVqVX3++efau3evrr76annv1a5du0Ja8+KHFnbQwg5a2EELW+hhBy3soIUtHPPZQQs7aGELPYDijQF2mHM4w+vhT1uFH7N582bNnz9fffr0Ub169YLH1alTR5dddpkmTpyoBg0ayHuv/v37a+/evQX/Ag1bsWKFunTpEgz8x8XFqXPnzrrppps0derULB8zbNiwYDuXK1dOrVu31nXXXafevXtHXfX+P//5T5aPHz9+vNq0aaNy5cppxYoV+fnyihRa2EELO2hhCz3soIUdtLCDFnbQwhZ62JKenq49e/aoTZs28t7roosuCu7LeDX7SZMmBdu6Y8eOatKkiUKhkAYMGKB9+/Yd8gr6yBkt7KCFHbSwZ/78+SpfvrxiYmL08MMPS8r6g2MXX3yxvPeqUqWK+vXrp0aNGqlMmTJ68sknJR36W1dwaLSwgxZ20MIOWthCDztoYQctbOCYzw5a2EELW+gBHBsYYIdJ6enpmjVrVo7D6+GDGEnatm2bZs6cqb/+9a866aST5L1XyZIlVa5cOd16662aNWuWJOnBBx+U916lS5fWL7/8UuCvqyjYsGGDnnvuOf31r3+V914xMTHq0qVL8PXykSIHGc455xw9++yzUfevXLlSI0eODJZ55plnou7//fffdfbZZwf3v/rqq/n62ooaWthBCztoYQs97KCFHbSwgxZ20MIWetjzr3/9S957NWvWTImJiVH3paenB1fJnzBhQrAtvT/4Yf25c+cWxioXW7SwgxZ20MKOnTt3qmXLlvLe64orrtCuXbui7o88X37RRRcF58G99zr55JO1aNGigl7lYosWdtDCDlrYQQtb6GEHLeyghS0c89lBCztoYQs9gOKNAXaY9N1336lLly7BTuX222/XunXrJP35qdvwp6PGjBmjK6+8UqVKlQqWr1y5sh588EFNmTIleM4lS5aoSZMmiomJ0aBBg6KeA1mbNGmSxo8fr23btkmKPliMHGTo0aOHpk+fHrSJvLL9rl27NGTIEJ1yyin65JNPMv2ML7/8Ut57Pf300/n8aoo2WthBCztoYQs97KCFHbSwgxZ20MIWetjw1ltvBdt61KhR2r17d3Bf+OT7zp07NW7cODVu3DhY9vPPP496nuzOcXDuI/doYQct7KCFHSkpKbr22mvlvVeLFi30ww8/RN0fuR9/8cUXFR8fL++9SpQokembViKvbInDRws7aGEHLeyghS30sIMWdtDCFo757KCFHbSwhR5A8cYAO0xau3atQqGQvPcaNGiQ1qxZE3X/pk2b9OijjwafuI2JiZH3Xu3atdOgQYO0fPnyTM/5wgsvyHuvUCikDz74oIBeSdGU1YFeeKcvRQ8yXHbZZcEV7rN77Pfff685c+YE98+bNy/q/sgr6/MPg2i0sIMWdtDCFnrYQQs7aGEHLeyghS30sOeOO+4Itvl//vMfff/995Kk3bt3a82aNfrnP/8ZfOOc914ffvihpIPbO/KNXUn6448/lJSUpA0bNkTdzrbPHVrYQQs7aGHHypUrVadOHXl/8Cuxv/nmG23dujW4f9OmTRo4cKBOPfXUXPWQDv4bIPLfARI9coMWdtDCDlrYQQtb6GEHLeyghS0c89lBCztoYQs9gOKLAXaYtWDBAg0dOlQbN24Mbvvxxx/1wgsv6MQTT1RsbGyw44mNjVWPHj0kSXv27JEUvWNZsmRJcADUp0+fgn0hxcxDDz0UbPeePXvq22+/De471Cec09PTNX78eLVo0UL/+te/Mj2OfwwcHlrYQQs7aGELPeyghR20sIMWdtDCFnoUrMiT5/fee69KlCgRXFWsVatWatasmSpXrhw08d7r448/lnRwu6ampkqSNm7cqJdfflkXX3yxateurZiYGFWvXl0XX3yxnn76af3xxx+Zfh6i0cIOWthBC5uWLl0aXFGsdu3a6tixo2677Tb16dNHDRs2jPqm0vC3o0T22Lx5s7766ivdeOONuuiii3T66aerS5cuGjt2rGbPnh38HHocGi3soIUdtLCDFrbQww5a2EGLwscxnx20sIMWttADKP4YYIdp4Te5v/rqK40cOVLHHXecypcvL++9qlSponr16kV96vabb76RdHCHEvkpqhdffFEVK1ZUtWrVgquv88b54RsxYsRhDzJEbud33nlHf/nLX4LniDxwxOGhhR20sIMWttDDDlrYQQs7aGEHLWyhR+GIPCk+adIkDR48WGeffbZOOeUU1axZM/jWOe+9PvroI0nRJ9+XL1+uLl26qGbNmvLeq2TJklEn7MuUKaNOnTrp119/zfTzEI0WdtDCDlrYlJSUpNtuu02nnHKKKlWqpLi4OMXFxR3yDduVK1fqsssu0wknnCDvfVS/kiVLqkmTJnr66aeDn0OPQ6OFHbSwgxZ20MIWethBCztoUfg45rODFnbQwhZ6AMUbA+wwb9OmTerQoUPUzqNly5b673//q/nz52vu3Lk699xzg/umTJki6c8dSmpqqtq0aSPvvdq1a6cdO3Yc8mempaUFOyYc9Oijjx72IEPk7e+++67OPvvs4Dmee+65fF/n4ooWdtDCDlrYQg87aGEHLeyghR20sIUehSvjh+z/+OMPPf3002rVqlWwTSO/9jR88n3p0qWqXbt2sEy5cuU0ePBgjRo1SmPHjlWPHj3UsGFDee9Vv359JSUlZfnz8Cda2EELO2hhU2pqqtLS0jR37lzdfffdOvHEE3N8wzYxMVH169cPlomLi1PXrl11zTXX6NJLL1WjRo2C+/79738HP4ceh0YLO2hhBy3soIUt9LCDFnbQovBxzGcHLeyghS30AIovBthRJCxatEixsbHq0KGD7rrrLu3duze4LzU1VVOnTs1yiD0tLU1PPPGEvPeqXLmyPv/88+D27KSlpemnn35Ss2bNdNVVV+XvCytCFixYoFAopPPOO0/fffddcPuhBhnS09MzDTI8//zzwXJpaWmH/Bp6RKOFHbSwgxa20MMOWthBCztoYQctbKGHLd99950aNGiQ5cn38Af2V65cGbxhW7VqVV1yySVasGBB1PNs27ZN06dP1xlnnCHvvVq1aqXk5OQCfz1FGS3soIUdtLAhvH997bXX1LRp0yyHfPbv3y9JWrZsmY4//vjgPHnnzp31008/BfdL0o8//qh77703eJ5Ro0YV/IsqomhhBy3soIUdtLCFHnbQwg5a2MMxnx20sIMWttADKD4YYEeRsWHDBq1ZsyYYPj9w4EBwMLN//35NmzYtyyH2yy+/XN57tW7dWitXrszxZ4SH17t06RI8z80335y/L6wIWbt2rX744Yfgz0dyFb6MgwxZfZiAr2M5NFrYQQs7aGELPeyghR20sIMWdtDCFnrY0qdPH3kf/VXZ4W2/efNmXXrppfLeq0qVKurTp49Wr14t6c/tG7nt586dq1NPPVXeew0aNEj79u0r2BdTxNHCDlrYQQs7Vq5cGeyHP/30U0nRPTZs2KDOnTvLe6/4+Hj16dMnOE8eeY5dknbv3q1Ro0YF7cJ9kTu0sIMWdtDCDlrYQg87aGEHLWzhmM8OWthBC1voARQPDLCjSMrqTfSshtgHDRoU/H7MmDE5Pmd4eD180FOqVCnFxMTIe6/+/fvn10spsvJ6kGHEiBG6884782+FizFa2EELO2hhCz3soIUdtLCDFnbQwhZ6FJ7I7bZo0SJJf558D2//6dOn64QTTpD3XmeffXbwhm123fbt26fnn39elSpV0kknnaTffvstn19F8UALO2hhBy1sWrRokb744gtJf/YIt3rppZdUo0YNee/VrVu34A3b7HqsX79evXv3VokSJXTLLbdEXc0Sh0YLO2hhBy3soIUt9LCDFnbQovBxzGcHLeyghS30AIoXBthRrGQcYg+FQvLe65xzztGGDRskZb0zyji8XrJkSf3973/X3XffHTzHLbfcUtAvp8g50kGGp59+Olju8ccfL9B1Lq5oYQct7KCFLfSwgxZ20MIOWthBC1voUXAyXqU+47mM66+/Xt57xcXF6aeffspymYzWrFmjcuXKqVq1atq7d2/ernAxRgs7aGEHLeyKfLM2rGvXrvLeq1y5clq4cGGwXE7eeecdee/Vrl07vjnlCNHCDlrYQQs7aGELPeyghR20KFwc89lBCztoYQs9gOKDAXYUO3v37tWPP/6o9u3bB8PnQ4YMyXb5rIbXe/fure+//16SNHbs2OB5Bg4cWFAvo8g50kGGJ554QiVKlJD3Xm3atIlaNrw8Dg8t7KCFHbSwhR520MIOWthBCztoYQs97EhPT9f555+vmJgYdevWTWlpaYd8Ezbc79NPP9XOnTslse3zAi3soIUdtLBlw4YNqlmzpkqWLKmhQ4dKyvwmb6Rwi7179+rWW2/V9u3bo27HkaOFHbSwgxZ20MIWethBCztoYQfHfHbQwg5a2EIPoGgJOaAYkeTi4uJcw4YNgz83bdrU3X333cGfI6Wnp7v//e9/bvDgwe7rr792JUqUcH/729/cLbfc4k4//XTnnHNXX321e+6555z33j3++ONu1KhRBfuiigBJznvvnHPuvffec88//7ybMWOGc8655557zt10003OuYPb2znnQqGDf/U89dRTbujQoe7AgQOuZs2arkaNGq5y5cpu1qxZbvny5cGyaWlpBfyKii5a2EELO2hhCz3soIUdtLCDFnbQwhZ62JKamuo2btzo0tPTXXx8vAuFQsE2z0643wUXXODKlSvnDhw4cMjH4NBoYQct7KCFLbt27XIbNmxw+/fvd8cdd5xzzrmYmJhsl/feB+fYn3zySVehQgV34MCBoBGOHC3soIUdtLCDFrbQww5a2EELOzjms4MWdtDCFnoARUyBjssD+Sz8ianPPvtMDRo0UExMjIYMGaLU1NRMn4w61JXXpT8/YbV582YNHjxYoVBILVq0CL5eBH9KT0/XhAkTcn0VvqeeekolS5YMli1dunRwpXvvvRo1aqQnn3wy6vHIHVrYQQs7aGELPeyghR20sIMWdtDCFnrYsW/fPrVv317ee/Xq1euwHx8+1xF51TGuQHZkaGEHLeyghS1r165VlSpVFAqFNG7cOEmHt88Nb/vIx6Snp9PkCNDCDlrYQQs7aGELPeyghR20sINjPjtoYQctbKEHULQwwI5iI3Jn0bt372AoPath8/DweseOHYPlrrrqKn377bdZPp8kffjhh8Eb7S+99FL+vZAiatKkSWrZsmWuBxliY2PlvVfVqlXVt29fzZw5U8uXL9d7772n/v37B8/zn//8pzBeTpFGCztoYQctbKGHHbSwgxZ20MIOWthCD1vC27hp06b65ZdfcvWYjOc5EhMTNW/ePH311VeaMWOG9u3bp3379kniAwWHgxZ20MIOWtjSpUuX4E3b8NdgH0rGHnv27NGWLVu0e/dubdu2Leo+euQeLeyghR20sIMWttDDDlrYQQs7OOazgxZ20MIWegBFBwPsKHZef/314I3wf//735KiPz0bHl7v1KmTvPcKhUJq3bq1li1bFjxH5E4pvNPZunWrjjvuOHnv1bNnz0zLHeuSkpKCAYUxY8YEt+c0yNCiRQuNHj0603Pt3LlTjz76aPDhggkTJhTIayguaGEHLeyghS30sIMWdtDCDlrYQQtb6GHL9OnTVbduXXnvNWzYMKWkpAT3ZXWuItwoLS1N3377rQYPHqyqVauqdOnSwTmUjh076o477lBycrKkP7/lDjmjhR20sIMWNoS39YgRI1SiRAmddNJJmjVr1iEfF+6Rnp6uVatW6eGHH9YZZ5yhKlWqqE6dOjr++OM1dOhQffrpp8Fj6JEzWthBCztoYQctbKGHHbSwgxb2cMxnBy3soIUt9ACKDgbYUaxs375dV111lUqVKqUKFSpo8uTJkqK/Euqnn35S586d5b0P3lT33uvxxx8PnifjJ6UOHDigcePGBV9/fuWVV0Y9Lw6aP3++Xn755eDPOQ0ynHrqqVHLRu7Y09LStHLlSp166qmKiYnRfffdVyDrX5zQwg5a2EELW+hhBy3soIUdtLCDFrbQw5bhw4cH5zSeeuop/f7778F9WX0wf//+/Ro2bJhOO+204HENGzbUaaedptKlSysmJiZol5SUJImT8LlFCztoYQct7Fi3bp1at24t7706d+6s+fPna//+/ZIyn9+O7PHEE08EV7kM/6pWrVpwUZhKlSpp5MiRmR6L7NHCDlrYQQs7aGELPeyghR20sIVjPjtoYQctbKEHUDQwwI5iJfIq6X379o26L+PwesmSJdWrVy/ddNNNwY7n4YcfDpaP3Fn99ttv6tmzZ7Dciy++WGCvqag6nEGG7A4CO3ToIO+9unTpogMHDrDjP0K0sIMWdtDCFnrYQQs7aGEHLeyghS30KDyR23PgwIHBuYrrrrtOkydPjtqO4XMb+/fv1+DBg1W9evVg+bfffltbtmyRJC1btkyPP/64mjdvLu+9GjVqpLVr10Y9BzKjhR20sIMWNi1btizYvm3bttWrr74aXDEsLPIN2yFDhqhWrVpBj7Fjx2rKlCnauHGjnnvuOV1++eXBfffff3/wHPQ4NFrYQQs7aGEHLWyhhx20sIMWhY9jPjtoYQctbKEHULQwwI5iZ8GCBTr11FP13nvvBbdlNbzeu3dvff/990pPT4/61NU999yjrVu3Bo9dsmSJrr766uD+s88+WwsWLCiEV1a0HOkgQ3p6utLS0rRo0SKddNJJio2N1eDBgw/5M5A9WthBCztoYQs97KCFHbSwgxZ20MIWehSuyJPsDzzwgCpVqhR8a9wdd9wRtWxaWppGjhwZ9Yat9z7q6mKSlJKSoh9++EHt2rWT916XXnqptm3bViCvpyijhR20sIMWNi1dujR4o7VKlSqKj4/XtGnTopY5cOCA7r///qg3bCtXrpxpWyclJWnEiBFRg0DIPVrYQQs7aGEHLWyhhx20sIMWhY9jPjtoYQctbKEHUHQwwI5iKTk5OfgUVHbD67Nnzw6W37Vrl+67775gJ9SxY0ddccUVuuiii9SqVavg9hNOOEHPP/98Yb2sImnkyJEqXbp0rgYZIv/84IMPBtv9xhtv1BdffKGxY8dq2rRpWrVqVbAcV+jLPVrYQQs7aGELPeyghR20sIMWdtDCFnoUnshtM3nyZN1888067bTTtGPHDkl/Xvll4cKFOvPMM+W9V0xMjK655ppg2w8dOjR4jvDyn376qWrWrKl69erpp59+KsBXVHTRwg5a2EELm9asWaPbb79djRo1Unx8vHbt2iXpz+07ZcoUtWzZUt57xcXF6eSTT5b3XtWrV9eSJUuilt21a5eGDBki773++te/avPmzVx17DDQwg5a2EELO2hhCz3soIUdtCh8HPPZQQs7aGELPYCigQF2FGv79+/Xd999p3POOSdqeP37778PlgnvYFasWKFzzz036tNUkb9OO+00jR49OtPjkL0tW7YoPj5e3nu1adMm14MML774YtS2r169uuLi4oI/n3TSSXr66aezfS5kRgs7aGEHLWyhhx20sIMWdtDCDlrYQo/CF7lt0tLSgpPy+/fvD26///77g2370ksvSZKefPLJ4La777476jk3bNighIQEee81bNiwAngVxQMt7KCFHbSwae/evUpOTtbevXslRfe45ZZbgm3/xhtv6I8//gguDFO9enUtW7ZM0p9vAn/55ZeKjY1VXFzcYX1rKefWD6KFHbSwgxZ20MIWethBCztoUfgsHPOF+x/rF8GghR20sIUegH0MsKNYS0lJ0cUXXyzvvcqWLZvt8HpYv379gjfLL730Up177rlq0aKFhg8frpkzZwbLZfUV6Dn9+Vi2aNEinXXWWXruueeC23IaZBg7dmzwj4DGjRvrqquu0pw5c7RkyRJ98MEHuvnmm4P777vvvoJ6GcUCLeyghR20sIUedtDCDlrYQQs7aGELPewJn5NIS0vTzp07g2+W69GjR3BiPiUlJceT8H369JH3Xg899FCBr39xQgs7aGEHLWyJ3EcvXLhQFStWlPde/fv3D25ftGhRlsM+0sE3fBMSEhQTE6Pp06fn+LPmz5+vcePGBX/mHHo0WthBCztoYQctbKGHHbSwgxZ2FOQx34IFC3T77bcHHzpgODQaLeyghS30AGxhgB3F3rx581StWjV169ZNP/zwQ3B75IFEamqqpD8/QfWXv/wluC381SFhXPnt8G3bti34fW4HGTp27KiXXnop6lNv0sEejzzySLDc22+/nb8rX8zQwg5a2EELW+hhBy3soIUdtLCDFrbQw64tW7aoatWq8t7rzjvvjLovNTU1y5PwycnJaty4sbz3evjhhwtjtYslWthBCztoYcvPP/+s0qVLKzY2Vq+88oqkP8+hJyYmZjnsM2fOHJUqVUree3366afZPvfixYuDi8f07ds3uJ1hn6zRwg5a2EELO2hhCz3soIUdtLAjP4/5Fi9erP79+8t7rxIlSmjevHmSGA7NDi3soIUt9AAKHwPsOCb89ttvmjNnTvDn7K6Y3qNHD3nv1bRp02CHkdWOI7z85s2btWzZMt1zzz26+eabdcUVV+iKK67QsGHD9PXXX2vXrl359ZKKpNwOMpx11lkaP358cH/Gr3RZvny5Tj75ZHnvNXTo0IJZ+WKGFnbQwg5a2EIPO2hhBy3soIUdtLCFHvbs2bNH9evXV8mSJfXyyy9Lkvbt2xfcn/Ek/JAhQ/Thhx+qRo0aqlq1qr766qtg2YznUviA/+GhhR20sIMWtkyfPl3ee1WuXFk///yzpOjtmHHYZ968eXrrrbdUtmxZNW/eXMnJyVk+7+LFi3XzzTercuXKQcubb745uJ9hn8xoYQct7KCFHbSwhR520MIOWtiRl8d8kcItwlfa996rUqVKXOE4B7Swgxa20AMofAyw45iT3YHD/v371b59e3nvde655yotLS3HNzq+++479ezZUw0aNAh2NpG/QqGQ+vTpw9XispHbQYbIXpG/79ixo7z36tSp0yFbIWe0sIMWdtDCFnrYQQs7aGEHLeyghS30KHxpaWnatm1bcN5i8ODBWS6Xmpqqp556KmhUo0YNeX/wKvkpKSmSottMmzZNa9eulcSJ9tyihR20sIMWtqSnp2vWrFny/uBVwbJ7AzZy2KdKlSpq2LChvPe69NJLtXfv3kzLh9+wrVSpkrz3qlevnkKhkLz3uuWWW6J+Pg6ihR20sIMWdtDCFnrYQQs7aGFHfh3zZWzRuHFjtW3bluHQHNDCDlrYQg/ABgbYgf/vjTfeCHY2zz33XLbLHThwQK+99pri4uKCg5Jy5copPj5e5513nlq3bq02bdrIe6+YmBiVLVtW//nPfwrwldgXuePO7SBDpB9++EG1a9eW91533XVXgaxzcUULO2hhBy1soYcdtLCDFnbQwg5a2EIPG8Lb96GHHpL3XmeccUbw1dgZpaam6oknnghanXjiiVqyZElwX9jnn3+umjVrqmbNmlq9enW+v4bighZ20MIOWthz4MCBYIinf//+2X67aGJios4666ygR+PGjbP80EDGN2wTEhL0+eef67///S/DPodACztoYQct7KCFLfSwgxZ20MKGvDrm279/f7BcVi2mTZumJUuW6Pzzzw+GQxcuXCiJb+YKo4UdtLCFHoANDLDjmBfeId15550qUaKEypYtq+nTp2e57LZt2/Too48GOyTvverXr68333wz+Pqp3bt3a+/evRo7dqx69uwZHLQMGDCgoF5SkfHss88e9iBDampq8I8H771effXVglzlYosWdtDCDlrYQg87aGEHLeyghR20sIUeNkybNk21atWS916jRo2KupJYZIfU1FQNGzZMNWrU0Icffigp+g3bTz75RAkJCSpRooS898GH9XljNvdoYQct7KCFDenp6dq/f78efPBBhUIhnXLKKfrhhx+yXT4xMVHNmzdXmTJlNGXKFEmHfsN26tSpwTIvvfRScN78jjvuyN8XV8TQwg5a2EELO2hhCz3soIUdtLDnaI75Igc7s2oxZcqUoMWKFSt03nnnyXuvBg0aaPny5Zl+xrGOFnbQwhZ6AIWLAXZA0urVq1WtWjV573Xeeedlu1zkV4JUr15dvXr10saNG7NdPikpSY8++mhw0DJ06ND8WP0iJz09Xdu2bQu2S5cuXXI1yCBJL7/8ctDg6quvLqhVLrZoYQct7KCFLfSwgxZ20MIOWthBC1voYc+wYcOC7frUU0/pjz/+CO6LHADdv3+/li9fnunrsj/55BM1b95coVBI1apVU58+ffTbb79FPZ6vPM0dWthBCztoYce6devUsmVLee/VuXNnzZ8/P9h2GfffK1as0Ndff619+/ZF3R5+w7ZixYpRb9hGXi1///79eu6554J/K4wZMyb/X1wRQws7aGEHLeyghS30sIMWdtDClqM95stNi/ByZ5xxhrz3uuyyy7Rly5b8fWFFEC3soIUt9AAKDwPsOKaF3zz/4IMPVLlyZcXExARX58n4xvq7774b7Kzq1Kmj22+/XZs3b5aU+Q2QyIOePXv26JlnngkOWl566aV8f11FxYIFC3TRRRfp1VdfzdUgw6uvvho0OP/887VgwQJJfKVKXqCFHbSwgxa20MMOWthBCztoYQctbKFH4YvcdoMHDw62b79+/fTFF1/k6jk++eQTnXLKKcFVjb33qlq1qo4//niddtppGjRokNavXy+JAdGc0MIOWthBC5uWLVummjVrynuvdu3aady4cfr9998lHfqqYBmvNnbyySdHXW0s0saNG3XFFVcoNjZWPXr00I4dO/Ll9RRltLCDFnbQwg5a2EIPO2hhBy0KX14c8y1evFj9+vULhkJzanHgwAE9/vjj8t6rYcOG+uWXXyRxdWOJFpbQwhZ6AIWPAXZAUs+ePeW9V7ly5YI3yCP973//U5UqVeS9V3x8vG655RZt27ZNUu7eSN+yZYtuv/12hUIhdezYUUuWLMnz11BUbd++/bAHGc4++2x98cUX2X5KOlL4Pnb2h0YLO2hhBy1soYcdtLCDFnbQwg5a2EKPwhc5sPnvf/9bJUqUUCgUUtWqVXXttddq9uzZ2rNnT7BM5Lb89NNP1bx582AwtEGDBjrjjDP0f//3fzr99NN1/PHHy3uvpk2bKikpSRIfOMgJLeyghR20sGnp0qU66aST5L1XjRo1dO655+qLL77I8dtIw2/YlitXTt57nXrqqZo+fbpSUlKyfcyDDz4o771iYmL0448/5sdLKfJoYQct7KCFHbSwhR520MIOWhS+wz3mi5SxRdOmTTVnzpwslw8fK86ZM0clS5aU914PPvhg/ryoIooWdtDCFnoAhYsBdhzztm7dqlNPPVXee11++eVKSUkJ3shIS0tTamqqhgwZotKlS8t7rwsvvFCbNm0K7s+tGTNmqG7duvLe65VXXsmPl1Kk5TRs8Morr0QNMnz66aeZvmZFkmbPnq1Jkybp/vvv19NPP61Zs2Zp7dq1wf28QZU7tLCDFnbQwhZ62EELO2hhBy3soIUt9ChckSfh33jjDV1yySXBNh85cmSwvTMOhiYkJATfKHfRRRdp5cqVwdeabtmyRV9//bXatWsn771atGih5OTkgn1hRRAt7KCFHbSwKSkpSVdffbXq1asn771q1qypl19+Ocv97aJFi9SvXz9VqFAhaHf99dcH92e8+n34OcaMGRMsP3ny5Px9QUUYLeyghR20sIMWttDDDlrYQYvCl9tjvkjhq+CHr2jsvVfdunX122+/SVKWVzaWpC+//DJY/v7778+fF1SE0cIOWthCD6DwMMAO6OCBiPded911V6b7du/erYSEBHnvVatWLa1Zs0bSkb0xPmjQIHnvdcIJJ/CGSS7lZpDhyy+/1MCBA+W9V6lSpYLlS5Uqpb/85S966aWXgmX5quAjRws7aGEHLWyhhx20sIMWdtDCDlrYQo+CE3ke47ffftNnn32mYcOGaffu3ZKit90nn3yi5s2bKxQKqXz58urfv3/U/ZFDpDNmzFDDhg1VsmRJPfHEE5nuR2a0sIMWdtDCpq1bt+qrr77SLbfcottuuy24gljkNly0aFHUG7Y1a9YM9tWPPPJIsFzG8+nr1q3TX//612CfPnXq1IJ5UUUULeyghR20sIMWttDDDlrYQYvCd6hjvsj7w0OhlSpVkvdejRo10gknnCDvvZo0aaLff/9d0p/HieGOGzdu1A033BBc2XjUqFFR9+MgWthBC1voARQOBtiB/2/t2rXBp6AidwyffPJJcLAR/uRTVm+I57QzCe/EZs6cqUqVKun444/XggUL8nL1i6XcDDI89thjatmyZdRyl1xyibp27apq1apl+ak1rsp3+GhhBy3soIUt9LCDFnbQwg5a2EELW+hR8LI7dxG53T/55BOdcsopwUn0fv36BedBsjofsmnTJrVt21bee/Xo0SN/VrwYooUdtLCDFraFrxwWeQWxjEM+zZs31yeffKIHHngg2Ec//PDDmZ5r06ZNGj16dDAUVK9eveBbT3FotLCDFnbQwg5a2EIPO2hhBy0KT3bHfJEtMg6FJiQkaOrUqfr+++916qmnBsOh69ati3qOjRs36vnnn1fdunXlvddxxx2npKSkfH09RRkt7KCFLfQACh4D7MAhjB07Njgo+fjjj7NcJvzm+ObNm4NPXmVl69atatCggS699NJ8Wdfi5Pnnn1dMTEyOgwzDhw9X7dq1gz5Dhw6V9Oc/HL7++mvddtttOR5U4tBoYQct7KCFLfSwgxZ20MIOWthBC1voYUfkwP+nn36q5s2bq0SJEvLeq3PnzjkOhoZP6Pfr10/ee7Vv3147duwomBUvhmhhBy3soEXhi3zzNrLHokWL1K9fv6ghn6lTp2r//v3at2+fHnrooWAffdddd2n+/PlKS0vTvHnzdO+996p+/frBG7avvvpqpudHZrSwgxZ20MIOWthCDztoYQctbIrsktVQ6JQpU4JzgXPmzAmGQxs1aqRXX31VM2fO1IwZM3TjjTcGQ6FVqlTRY489JokWh4MWdtDCFnoA+YsBduAQxowZE3xadv369ZKy/sTV8uXL1axZM912223atm1bpvvT0tK0c+dOvfHGG1G3Zfd8x7Jt27YFB4jnnntuloMMr7/+uho3bhwcLHp/8Gu8Vq5cmem5Ro0aFfwD4PPPPy/Il1Lk0cIOWthBC1voYQct7KCFHbSwgxa20MOOjN9Ad/LJJwfb+7jjjtN3330nKevB0LBNmzbptNNOk/deF1xwQb6vc3FFCztoYQct7Aq/YZtxyCdyf75nzx6NHDkyaHb88cerSZMmKl26tMqVKxfsuwcPHqw1a9YU4qsp2mhhBy3soIUdtLCFHnbQwg5a2LFo0SL1798/xxaSNG/ePLVu3Vree5UuXVree4VCIcXGxsp7r6pVq2rQoEFatWpVIb2Soo8WdtDCFnoA+YMBduAQ3n77bXnvVb58eS1cuDDb5b788svgoCW7IfZI4TdWwm/ErFmzRuPHj8+7FS/i5s2bp0suuUSTJk0Kdvbhgf+dO3fqiiuuCLb3Pffco3POOUfee1WrVk3Lli2LWn79+vXq3r27YmJiNGzYsMJ5QUUYLeyghR20sIUedtDCDlrYQQs7aGELPQpfdoOh1atXV/ny5VWjRg39+uuv2T4+fF5j6dKlwdXG+vTpwxVjjgAt7KCFHbSwKzExUVdffbXi4+Oj3rCN/DrtSGPHjlX58uUVFxcX9cG0+Ph4/ec//9GKFSsK+BUUH7SwgxZ20MIOWthCDztoYQct7NiwYYN69+6tChUq5KrFli1bdMkll6hWrVpRLapXr67HH3+codCjQAs7aGELPYD8wwA7cAgzZsxQbGysYmNjNWXKlByXfeONN4Kdzq233nrIIfbwGzHr169Xv379FAqF9I9//CPP1r2o27VrV5Y7+3fffTfYzvfee68kadmyZerUqVOww8840HDvvfcG/4jYt28fb1YdJlrYQQs7aGELPeyghR20sIMWdtDCFnoUnqwGQ0OhkCpWrKj+/fvrrLPOUps2bbJ9fHgwdP/+/Tr//PODDxf88MMP+b7uxQ0t7KCFHbSwLTk5WfXq1ZP3Xi1btszxDduwWbNmacSIETrzzDN10UUXqVevXvrf//6nXbt2FdBaF0+0sIMWdtDCDlrYQg87aGEHLWwZPHiwvPdKSEjQtGnTsm0Rebw3depUjRo1SnfccYdGjhyZaSA08tgSuUcLO2hhCz2A/MEAO5AL4Tc6unfvrk2bNmW6P3KHEr5iu/det9xyi7Zu3Zrlc4Yf89tvv6lfv36qXbt28Lj58+fny+so6sLb7Pbbbw/+UbB06dLgvsTERHXu3DnTQIMkvfnmm/Leq23btoWy7sUNLeyghR20sIUedtDCDlrYQQs7aGELPQpGdlc1rlixogYPHqw9e/boggsuUMmSJTV37txMjw+fgE9NTVW/fv3kvVepUqV0zTXXaMOGDbn+2aCFJbSwgxZFw7x589ShQwd99tlnOQ75ZLdNw7eHP3CWcTla5B4t7KCFHbSwgxa20MMOWthBi8IXuY2GDx+uTz755JAfJMjpwhWHuqgFTbJHCztoYQs9gPzFADuQg/BO4aWXXlLlypVVv359ffzxx1nuLMK3HThwQFdeeWUwjH7fffdl2nFlHF6vWbNm8EbMRx99lM+vqugKb7e//OUv8t6rU6dOmZbJONCwcuVKSdJVV10l77169OhRkKtcbNHCDlrYQQtb6GEHLeyghR20sIMWttCjYH322WdRg6GDBg0KBj8HDhyoUCikYcOGae/evZkem5qaqhtuuCH4ytQTTjhB06dPz7TcgQMHdODAgWzPi+AgWthBCztoYd/u3bsP+YZtpLS0tGDb7tu3L+q+VatWafHixVq2bJnWr1+f6XHIGS3soIUdtLCDFrbQww5a2EGLwhe5/Q9nO0Ueu6Wmpga/37dvn2bMmKEJEybotdde04QJE7R9+3alpKQc9s841tDCDlrYQg8g/zDADuTChg0bdM4558h7rw4dOkRdIT1yZ7NmzRoNGzZMVapUkfde9evX15gxY4IdTOTyGYfXy5Urx/B6Ll1zzTXy3usf//iHpOidvBQ90FCtWjW98soratGihbz3GjZsmCR29nmFFnbQwg5a2EIPO2hhBy3soIUdtLCFHvnvyy+/VK1atRQXFxcMhkZuswkTJgQfzB8xYoR++uknSdLKlSs1Y8YMdezYMbi/WrVqev/996Oef968eXrvvffUvXt3nXvuubr44ot18803a9q0adqyZYukP6+SfKyjhR20sIMWxVvktn3jjTd0/fXXKy4uTjExMSpXrpzKli2r/v3764MPPsjyMcg7tLCDFnbQwg5a2EIPO2hhBy3siBwsffLJJ9WtW7fgmDD8q23bturfv3/wwQJa5A9a2EELW+gBZI8BdiCXVq5cqYYNGwZXgZszZ07UFX7Wrl2rYcOGqXLlyvLe66STTtJrr72mbdu2BcsczvA6V/rJ3qBBg+S9V+PGjfX7779nuUxiYqI6deok773Kli0r773q1q2b6ZPOR/opORxECztoYQctbKGHHbSwgxZ20MIOWthCj/y3cuXK4MP3d9xxR7BtIrfX3XffHZw8j4+PV7t27VS1alVVr1492O4JCQlRb8RK0ltvvaWmTZuqUqVKmU7C16lTR926ddPatWslcRJeooUltLCDFsVXZMNrr71WNWrUiGpQrlw5ee8VExOjChUqaOTIkcHy9MhbtLCDFnbQwg5a2EIPO2hhBy3siGzRq1cvlS5dOupYsWbNmgqFQsFtp556qpKSkiTRIq/Rwg5a2EIPIGcMsAOHITExUXXq1JH3Xi1bttSzzz6r5ORk7dixI9Pw+iuvvKLt27cHjw2/0XK4w+szZ87UCy+8UDAv0Ljwdvnxxx/VsGFDVapUSePGjct2h52YmKizzjor2OlPnTpV0p87+PA/Evbs2aPFixdLYqAht2hhBy3soIUt9LCDFnbQwg5a2EELW+hRsBITE/Xvf/872Cbh7Ra5je69914dd9xxmYY8a9SooQEDBujbb7+Nes4nnngiarkmTZroggsu0I033qiTTjpJ1apVk/deJ554olavXh31c49ltLCDFnbQoviJ3JaXXHJJMNDjvdctt9yi5557Tt98840efPBBde3aNej073//O3gc+/G8QQs7aGEHLeyghS30sIMWdtDCjsgWF198sbz3KlGihCpWrKj//Oc/+vbbb7V+/Xr9+OOPevDBB3XKKafIe68GDRpozZo1kmiRV2hhBy1soQdwaAywA4dp+fLlOuOMM+S9V+nSpdWoUSP94x//yJfh9R9++EGXX365vPe68cYbC+YFFgHbtm0Ltkv79u21cOHCbJddtGiRzjvvPL3wwgtRn2qLHGQ48cQT5b3XnDlz8n3dixta2EELO2hhCz3soIUdtLCDFnbQwhZ6FLyMA5qRf54xY4b++9//6qabbtLtt9+uRx99VKtXr9bu3bujHvP0008Hb8q2aNFCt99+u7Zv3x60WLdunSZMmKC2bdsGg6O//fabJL6FLhIt7KCFHbQo+iK3Ya9eveS9V6lSpdS+fXu9++67mZb/9ddf9fDDDwfNnn322YJc3WKNFnbQwg5a2EELW+hhBy3soIVNffv2DVp06tRJkydPzrRMSkqK5syZE8z6nHvuudq0aVMhrG3xRgs7aGELPYDsMcAOHIHffvtNd955p1q2bBn1idpmzZrl2fD6999/H7xhH/51xx13FMwLLAJWrVqlhg0bynuvTp066dtvvw3emMr4ptL27duVkpKS6Tl27doVNPTe6/jjj9fWrVt5U+ow0cIOWthBC1voYQct7KCFHbSwgxa20KPwHerKLpH3v//++8F2PuOMM/Tyyy8rNTVV0sFB0/A2T09P1y+//KI2bdrIe6+rr75aO3bsyPTckY3oRQtLaGEHLYqmJ554QqVKlVKJEiXUuXPn4NtTpIPNIj+csGfPHt1///3y3qt58+b6+eefMz0f2//I0cIOWthBCztoYQs97KCFHbSw44033lD16tUVExOjDh06ZGqR0ddff63GjRurXLlyeumllzLdn7EF38qVe7Swgxa20APIGQPswBHas2ePfv31Vw0aNEhdunRRo0aNNHbs2DwbXr/iiiuCN1bKlSsn773++te/Rj3/sW7p0qWqVauWvPdKSEjQf/7zHy1fvjzXj3/uueeiBhnGjx+fj2tbvNHCDlrYQQtb6GEHLeyghR20sIMWttDDlsgBz0hr1qxRp06d5L3XiSeeqBdeeCE4aZ7VCfj09HS9//77qlGjhho0aJDpyvhZnXCPvLo+aGEJLeyghX0pKSm65JJL5L1X5cqV9eGHHwb3ZTews2jRIp1zzjny3uuFF16Iui/cYu3atUpMTJTE12rnFi3soIUdtLCDFrbQww5a2EELW66//vrg/N97770X3J5dix07duiuu+6S917du3fX3r17g/vCLZKSkvTiiy9muh05o4UdtLCFHkDOGGAH8sDu3buVnJysXbt2BbcdzfD6lVdeGey8wo/z3uutt94qmBdUhCxfvlwdOnRQbGysvPeqUqWKnn766eDg7lDuueceee81YcKE4DY+4XxkaGEHLeyghS30sIMWdtDCDlrYQQtb6GHfnDlzVKVKFXnvdc011wSDnDlt599//13nnXeevPdZfsW2JA0ZMkTXXXddvqxzcUULO2hhBy3smDZtWnCe+8EHHwxuP9R+eciQIfLe6+uvv5YU/YGB1atX66qrrtJxxx2nL7/8Mn9WvBiihR20sIMWdtDCFnrYQQs7aGHHihUrVKJECXnv1b9//+D2Q7X49ttvVapUKX366aeSDn4oIXwhydWrV+umm26S917dunXLt3UvbmhhBy1soQdwaAywA0chux1KXg2vDx48WP/3f/+nUCikGjVq6Jdffsm/F1OErV+/Xg8++KDatm0r77369eunrVu35viYyE+fLVq0KPg9gwxHhxZ20MIOWthCDztoYQct7KCFHbSwhR62PfDAA/Leq3bt2lq1apWk3F0pbNKkSbr77ruDP3/xxRdB1wceeEDHHXecvPe69dZb82O1iyVa2EELO2hhx/jx4+W9V7Vq1fT9999LyrlF+L7Nmzdr/vz5kqSdO3fq0Ucf1ZgxY7R792793//9X3Du/dRTT1VKSgr7+lyghR20sIMWdtDCFnrYQQs7aGHHggULFAqF5L3XmDFjJOX+6vUbNmyQdPBilSNHjtS5556rWbNmacCAAapevbq896pVq1awHHJGCztoYQs9gENjgB3IY+EDiaMdXu/Xr59++OEHnXjiiXxqKhdSU1O1efNmTZgwQb///rukQw8mZPxHAQeBeYMWdtDCDlrYQg87aGEHLeyghR20sIUedoWvIFa7dm1t2LDhiLbz9OnTVbNmTdWpU0cDBgxQtWrVFBsbqxNPPFEvv/xyPqx18UQLO2hhBy3sGDNmjLz3Ov7447Vx48bDfnxaWpp++eUXnXTSSfLeq2XLlqpWrZq89zrttNO0dOnSfFjr4okWdtDCDlrYQQtb6GEHLeyghR0LFixQqVKlVL58ec2ePVtS9EUtcuOPP/5Q37595b1X2bJlg2/watmypZYvXy6Jc4q5QQs7aGELPYBDCzkAeUaS89675ORkN2zYMPfBBx+4DRs2uLJly7rx48e7rl27ZlrWOed++OEH9+STT7p33nnHOefcdddd5+677z4XFxfnUlJSXCgUcn/5y1+cc86lpaUV/AsrAkqUKOGqVKniLrvsMnfccce59PR05713Bw4ciFoucvuFQtF/BYZ74OjQwg5a2EELW+hhBy3soIUdtLCDFrbQwx5JzjnnSpUq5ZxzrmbNmq569erOex/clxtpaWmuadOmrlGjRm7dunVu9OjR7o8//nAnnHCCu//++13fvn2jfh4yo4UdtLCDFvaUKVPGOefcpk2b3IYNGw778d5716JFC3f55Zc755z75Zdf3B9//OFat27tJkyY4Bo3bsy581yihR20sIMWdtDCFnrYQQs7aGFHuXLl3IEDB9yuXbvczJkznXPOxcTE5Prxklx8fLzr1auXq169utuzZ4/bunWra9q0qfvqq69co0aNXFpaGucUc4EWdtDCFnoAh8YAO5CHvPduw4YN7s4773Qff/zxEQ2v33jjje6ee+5x1apVc6+//rr77bffXOnSpd3555/vnIvekfHGSPZCoZA7cOCAi42Ndbt373aPP/64c+7g9uOAr2DRwg5a2EELW+hhBy3soIUdtLCDFrbQo/CFz2u0a9fOOXfwDdfPP/886r5DSUtLczExMa5GjRquRYsWrmTJki4tLc3Fxsa6fv36ub///e/OORd8YAFZo4UdtLCDFvacf/75rnnz5u7AgQPuiy++cKmpqbl+bPh8+rp169zGjRtduXLlgm3epk0bV69evWC5nJ4DB9HCDlrYQQs7CrsFotHDDlrYQQsbJLn69eu7q6++2oVCIffDDz+49evXH9bjwy0mTpwY1XHLli3BhTFocWi0sIMWttADyKW8vaA7gOTkZDVp0kTee1WuXFkfffRR1P2RX9vx/fff68orr5T3Xt573XTTTUpKSgqWu+CCCxQKhdS9e3elpqZGff155PO89957euCBB/L5lRUt+/fvlyTt2bNHrVu3lvdeAwYMKOS1OjbRwg5a2EELW+hhBy3soIUdtLCDFrbQw46VK1fq9NNPl/degwcP1s6dO3P1uMhzHA8++KDi4+PlvVfp0qXlvVedOnX066+/Ssr6a1UjH4+DaGEHLeyghR07d+5Unz595L1XmzZtNG/evFw9LnwefM2aNbrxxht13HHHyXuv2rVrB+fVhw4dGiwf7pGenq7t27friy++yPRcxzpa2EELO2hhR0G3QM7oYQct7KCFLW+++aZKlCgh772efPJJpaSkBPdlt2/NrkWTJk2C84zHH3+8Vq1aJenP85BS5mM9jv3+RAs7aGELPYCcMcAO5IP58+erdu3aev/996NuP9TwevhND0maNm1acN+oUaOyfZ6PP/5YCQkJ8t7ruuuuy6dXVDTt2bNHJ5xwQrAdvfe5PoDMSVb/gDhw4ECmg0hONv6JFnbQwg5a2EIPO2hhBy3soIUdtLCFHnY8+eSTQYPRo0drx44dwX1ZnSDPbjC0UaNGGjVqlDp16hS8ibt69WpJ0W/chh//1Vdf6b777sufF1VE0cIOWthBCztWr16tE088Ud57de7cWd9//712794tKev9avi2tWvXRr1he+qpp2rx4sUaO3Zs0Pbf//538Lhwjzlz5sh7ryuvvLIAXl3RQgs7aGEHLewoqBbIHXrYQQs7aFH4IrfzvffeG2y/kSNHatmyZYd8XFYtVq5cqfXr16t9+/by3qt+/fpasWJFlj/zww8/DO471j9sQAs7aGELPYDcYYAdyCcZr+ZzOMPrkvTYY4+pVKlSatCggRYtWhQ8R+TzfPTRR0pISFBcXJy897rwwgvz8RUVPatWrQq28fHHH68JEyYc9XNG7tR3796tt99+W3fffbcuvPBCdevWTY8//ri+/PLLYBkGGg6ihR20sIMWttDDDlrYQQs7aGEHLWyhR+GLHPIcMmRI0OOOO+7QzJkzD/mYyMHQE044QePHj5ckLVmyRB06dAjahgdEIx//3XffKRQKyXuvZ555Jh9eXdFCCztoYQctbEpMTFTNmjXlvVdCQoIeeOABzZkzJ9NyOb1hu3z5ckkHP8wW+QGFe++9N3j8pk2b1LZtW3nvVapUKX3zzTcF8wKLEFrYQQs7aGFHfrZgOPTw0cMOWthBi8IXefw2ePDgYPtdeOGFuu+++6I+vCzlrkV6eroWLlwYfHC5fv362rdvX9TVjSdNmqTmzZurYsWKWTY/FtHCDlrYQg/g0BhgBwrA4Q6vp6SkqE2bNvLe6/TTTw++PiSr4fXY2Fh573XVVVcF9x/rb6BHWrx4sRo2bKhx48YFtx3p9gkPMqSlpem5555Tjx495L0PGoR/xcfH6+677z7qn1fc0MIOWthBC1voYQct7KCFHbSwgxa20KPwRQ7933333cF2ql27tm688cbgCmRSzlc1Dg+Ghi1atCgYEH366aejfta3334bfO1q06ZNNWLECO3bty8/X2aRQAs7aGEHLWxavny5OnfurLJly8p7rwoVKuj3338P7s/NG7bhXqmpqXr44Yflvdf06dMlSXv37tWDDz6oChUqKCYmRpdddpnWrVtXwK+yaKCFHbSwgxZ25HcLHB562EELO2hR+CKP+Z544gmdfPLJwXHfwoULg/ty0yLyuebNm6dOnTpp6tSpUT9v4sSJOvPMM1WqVKlgTierb/Y6FtHCDlrYQg8gZwywAwXohx9+yHF4PbzD+OWXX1SnTh2VLl1ao0ePlnTwgCUs4/D6P/7xj2BHxtd+ZBb5ibUjHSyIPHC88sorg38ohN/E6tixo3r27Kk2bdoEV1caPHhwnqx/cUILO2hhBy1soYcdtLCDFnbQwg5a2EKPwhd5LuK1115T9+7dVaJECd18883B7bkdDI1cbtGiRXrttdeiflbkYGhCQoKeeeYZbd++PT9eVpFECztoYQctbNqwYYNeeuklde3aVZ999llw++EM+YSlpqYqOTk5+HPkVfLj4uL0/fffF8ArKrpoYQct7KCFHfnVIrv3U7Ma7jnWP7QciR520MIOWhS+yG31888/a8yYMcG3m6SnpwfbZ926dbrpppty1UI6eGX8SOGh0JiYGHnvdeWVV2rz5s359bKKJFrYQQtb6AFkjwF2oIDMmTNHF110UbbD65FGjhwZLDdjxoyo+xheP3x5dWX6jRs3qn379kEb7w9+fdcPP/wQ/EMhKSlJzzzzTDDQ8N///veo1784oYUdtLCDFrbQww5a2EELO2hhBy1soYcNkSfQt23bpsWLFwd/jvz60uHDhweDoSeccEK2g6FZyTgY+tRTTwWDocf6m7WRaGEHLeyghV3h7Z+WlhZspw0bNuhf//pXrt+wzeiGG24I9uXPPvusJBrkBi3soIUdtLAjP1pEyrj8m2++qeeeey74M42i0cMOWthBi8KV1faMbPHHH39o4MCBqlatWq5bRN6ecSj08ssv19atW/P+hRQDtLCDFrbQA8gaA+xAAVm3bl3wBsYtt9yS5fB6WlqaUlJSdMEFFygUCql79+5RBxoffvihTj755GB4vXfv3gyv57Pwzn7VqlVq06aNvPcqXbq0Tj75ZL399ttZPmbHjh268cYb5b3XFVdcEfUPDhw5WthBCztoYQs97KCFHbSwgxZ20MIWeuStrLZD5PmKF154QXXr1j2swdDw7bNmzQrOq5x88sl66qmngqvvs/0zo4UdtLCDFvalp6dr//79Gj16tOrVqyfvvVq2bKkVK1ZIyt2Qz4svvhgMhnbv3j14LA4PLeyghR20sCMvWoSfJ9KOHTv04osv6oorrgg6XXfddXm+/sUNPeyghR20sCO8rd9++201atRI3nu1aNHikEOhkdueodC8QQs7aGELPXCsY4AdKEALFizQwIEDtXr16myXWbx4scqUKSPvvW6//fbgdobXC174U9JbtmxR27Zt5b1X2bJldc4552jatGnBclm9CTV69Gh571WqVKkceyN3aGEHLeyghS30sIMWdtDCDlrYQQtb6FGw1q5dq7/+9a/y3qtGjRp66623gvsONRg6c+bMYDC0VatWeuqpp7Rr1y5JnBM5ErSwgxZ20MKOnTt3BvvlunXratmyZZJyN+SzZMkSXXTRRQqFQipZsqReeumlLJfLat/OBw0yo4UdtLCDFnYcTYuMyyxatEjvvPOOWrRooZIlSwZDoaVKlZL3XiNHjsyX11Cc0MMOWthBC1v+8pe/yHuv44477pAfJMhpKLRnz54MhR4lWthBC1vogWMVA+xAAYv8StpI4TczHnnkEXnvVatWLSUmJkqSJk2adFTD64f79VP4c5vt379fZ511lrz3KlOmjC666CLNmjUrWC7jScPU1FRJ0jvvvKNy5cqpatWqWrt2bcGteDFECztoYQctbKGHHbSwgxZ20MIOWthCj4I3ceLE4A3W0aNHB7cfzmBovXr1NGTIEH3//fdKT0/X3r17JTEgerhoYQct7KCFHR9++GEwjPPBBx9IOvQ2DPcYPXp08IbtP//5z+D+yP15+LkOHDigb775Rq+88kqm58FBtLCDFnbQwo4jaZFRYmKinnnmGTVs2FCVK1eW9141a9ZUu3btdPLJJ8v7g9/QNXv27Hx4BcULPeyghR20sGP9+vWKj4+X91733nuvpNwPhbZv316hUIgrGucRWthBC1vogWMZA+yAMRdffLG892rWrJn279+vjz766IiG1zO+yb5x40Z9+umn+bruxU1aWpquv/56ee8VFxenzp07a+bMmcH9OV3x4qabbpL3XhUqVNCaNWsKYnWLNVrYQQs7aGELPeyghR20sIMWdtDCFnoUrMmTJ8t7r+OPP15z586VdOjB0FmzZgWDoeE3ZcuUKaP4+Hi1aNFCN998s3777TdJDIgeDlrYQQs7aGHH0qVLVa9ePZUpU0Yvv/xyrh83d+5clS5dWt57dejQQb/++qukrLf93r17NXjwYLVs2VLee91www15tv7FCS3soIUdtLDjcFuEj+927typdevW6f/+7//Upk2bYD9eqVIldejQQV988YVmzpypXr16KRQKqW/fvkpJSeEDBIdADztoYQct7NizZ48uvPDC4ENk4QtUZJRxKLRDhw7BUGhCQkJwfJcbWX1ADbSwhBa20APHMgbYAUN+/PFHValSRTExMXr11Vf19ddfq2nTpoc1vJ7xwOSXX37Ra6+9phNOOCHTVR2Qs4kTJ6pRo0bB13p9/vnnwX05DTLMnTtXp556qrz3uvjii7Vv3z6+3vEo0cIOWthBC1voYQct7KCFHbSwgxa20KNg/fjjj6pfv76893rssceyXS7yqsbh8yGhUEjHHXecLr/8cvXr109nn322ateuLe+9mjZtqqSkpKjHIme0sIMWdtDCji1btqhr167y3uvss88Ohjxz8ttvvwUXhomPj9eoUaO0b98+SdH79E2bNumrr74KBoFiYmKCN3qfeeaZfHtNRRUt7KCFHbSwIzctMu57f/zxR1177bVKSEiQ9z7Yl99www0aN26cUlJSJElvv/12MDD6+uuvF8jrKeroYQct7KCFLc8991ywzbL6QEHkPvn999/XmWeeGeyHw78eeOAB7dq165A/K/xcX3/9tebNmyeJ4dBItLCDFrbQA8cqBtgBQ1577bXg07PXXXedTjnllODrBHN75XXp4I5m2bJlGjFihBo2bBhc1aFUqVLy3uu2224riJdT5N1www3BTv61114Lbs9qMCHytgceeCB43KhRowpkXYs7WthBCztoYQs97KCFHbSwgxZ20MIWehS84cOH53gSPqvB0BNOOEF9+vTR6tWrg+W2b9+ub7/9Vu3atZP3Xqeeeqo2bNhQUC+jWKCFHbSwgxZ2rFixIvgQwAUXXBC1fSOFm4wbN05169aV915t27bVxo0bMy37008/6cYbbwyet0aNGqpXr56892rZsqU2b96cny+pyKKFHbSwgxZ2ZGyxatUqSZnfR33rrbd00003Be+5eu9VuXJl3XLLLfrggw+ill2+fLlatGgh772uuOKKgnopxQI97KCFHbQofJHn9O64447ggwHPP/98lstkHAq96qqroo4V77//fu3evTvbnxfe/3/11VfBYxYsWJAPr6zooYUdtLCFHjjWMcAOGJCWlqadO3fqnHPOCQbNTzrppGDgPLfD6zt37tSqVavUt29ftWrVKtjR1K5dW/Xq1Qu+0rZfv34F9dKKrNmzZwdvRN18883B7YcaZHj33XeD7X7RRRdp586d2T4OuUMLO2hhBy1soYcdtLCDFnbQwg5a2EKPghV5RbFBgwYF2/CVV17JtEzkYOjJJ5+sUaNGBQM7Gc+JTJkyRXXq1FGpUqX03HPPSaLFodDCDlrYQQubEhMTVbNmTXnvdeGFFwZXKw4LN0lJSVH79u3l/cELw/zvf/+LWm7Tpk164403VKlSJXnvVaFCBV1++eWaNGmSTj31VFWuXFnPP/+8Dhw4wFXys0ELO2hhBy3syNhi//79kqStW7fqrbfe0uWXXy7vfTDg06BBA912221asGBBcCVjSUHDL774QjVq1FCpUqU0ZswYSXyLyuGghx20sIMWhS/yWG3w4MHBcOjvv/8ete0yDoVefvnl2r59uyTpiSeeOORwaPh4b9q0acGy3ntdc801XNn4/6OFHbSwhR44ljHADhixadMmVatWTbGxsQqFQsEbIdkNr2fccXz11Vfq27evGjZsGOzIvPcaMGCAxo8frzvvvFPly5dX8+bNtWzZMkm8YZKTSZMmKSYmRqVKldL48eMlHXqQ4bPPPgs+JHDiiSfq5Zdf5mAxD9DCDlrYQQtb6GEHLeyghR20sIMWttCj4EWexxgwYIC89xo2bJikP99o/eabb4LzGXXr1tWIESOCE/BZ9dm8eXPwAf4rr7zykOuQlpamtWvX5sXLKdJoYQct7KCFTYsWLVKtWrU0ffr0bJcJf6NK6dKldf/99ys1NTW477333lPv3r2DN2QvuOCCYL9/2223yXuvTp06KSkpKd9fS1FHCztoYQct7Fi4cKGOP/54/e9//9PmzZv17rvv6pRTTlGVKlWC7Vu1atXg9xMnTpSkoEd4P56amqpOnToFH1Tbtm1bob2moowedtDCDloUvozDoV999VXU/RmHQv/2t79p69atUcs8+eST2Q6Hho8bI4dCK1WqpL///e9KTk7Ot9dVFNHCDlrYQg8cqxhgB4z49ddfg6+ECl95/R//+EdwMBL+JG7GN0NeffVV3XTTTVGfjKpTp44GDBigL774QtLBN0vatm0bvFmya9eugn1xRVB4p96wYcNs34iK/POXX36p+Ph4ee9Vrlw59evXL8evZEHu0cIOWthBC1voYQct7KCFHbSwgxa20KNwRJ6Enzp1atR9kYOh3ntdcskl2rRpk6SsB0PD50n+/ve/BwM/OUlLS9Ps2bN18sknq3///kf7Uoo8WthBCztoYVP4qpNZXQls4sSJatSokbz3OuWUUzRv3jxJ0o4dO9SvX7/gisZly5bVPffcE3xzypgxY+S9V0xMjGbPnl1wL6aIo4UdtLCDFnakpqZq8uTJqly5cjAQGhsbqzJlymjYsGF69tlng2/C9t4H76Gmp6cH/d566y1VqFBBFStW1FtvvSWJqxofKXrYQQs7aFH4sru68MSJE3McCo18XMbh0F27dmU7FHrFFVdo48aNkv7sFD5WPNbRwg5a2EIPHIsYYAcMWbx4cfCG+NVXXx28+bF3796o5datW6fXX39dF1xwQdTg+hlnnKEbbrhBa9eujbqKQ/iqQfHx8Vq8eLEkrr5+KM8++6y896pcubJWrVqV47KffvqpKleuHHS49NJLg087c8B49GhhBy3soIUt9LCDFnbQwg5a2EELW+hReLI6CT9z5szgw/wxMTEqU6aMFi1aJCnn8xdbt25V06ZN5b3XX//612yXS0tL0/fff6/OnTsHHefMmXP0L6aIo4UdtLCDFvZk9wGzlJQU9e3bN9hmEyZM0N69e/XKK68EV6UsVaqUevfurcmTJweP/+mnn3TaaacpFApp5MiRWf4MKfP/FjifTgtLaGEHLWyZP3++ypcvL+8PXpn41ltv1dy5cyUd3GYzZszQueeeG3T58ssvox5/4403ynuv+vXra/78+YXxEooVethBCztoYc9bb72lDh06qGTJklkOhYZFngOMHA697777JB3eUOiuXbuCDyDgT7Swgxa20APFHQPsgDGLFi3S9ddfH5xsitzBLFy4UOPHj1fjxo2DKzPExcWpXbt2uvfee7Vq1Srt27dP0p9fJ7Vu3Tp17txZoVBI//znP6M+WYXsLVq0SA0bNlSVKlWiTh5GfjAgNTVVr7/+erCDj42N1fnnn68tW7ZIyv6TcTg8tLCDFnbQwhZ62EELO2hhBy3soIUt9LBj5cqVwTZOSEhQjRo11KxZM+3cuTOqR6TwOZNJkyapZs2aCoVCeuCBB6LuCwsPhnbs2DE4Of/f//43uPI+/kQLO2hhBy3sGjt2bNDmX//6l1auXKkLL7wwOG9erVo1vf/++1q/fn3U4x588EGFQiGdccYZ+vnnn3P8GSkpKXrvvfeCPzMgmjVa2EELO2hReBYvXqzrrrtOv/76a/CtWeFjt9TUVE2bNi1qOHTKlCmSpPfffz+47Yknniis1S926GEHLeyghS1PPPFEsF2vvPLKLIdCwyLnbCIfd8011xxyKDRs165duvjii+W914MPPpgvr6moooUdtLCFHijuGGAHjNu/f79Wr16tBx54QM2aNVNcXJy89ypTpkywc3nyySejHhO5c3n++eeD5SZMmFDQq19kbdmyJbjC/VlnnaW5c+dGvSn16aef6vbbbw+2beXKlXX55ZcH/1BgkCHv0MIOWthBC1voYQct7KCFHbSwgxa2FEYPBkqyd/XVV6tWrVp65JFH1KxZM7Vp0ybbZSPf1L300kvl/cErIs+ePTvTshkHQ8uVK6cxY8Zo586d+fZaijpa2EELO2hhz3fffae6desG++iLLrpIFStWlPdeDRo00LXXXqulS5dmetzXX38d7NtHjx4ddV/kfnr79u2aO3eu2rVrF7zRi6zRwg5a2EEL2/bv359pOHTixIm6//77FRsbq1atWmnJkiWSOIYrCPSwgxZ20KLgXX311Tr33HNzHAoNi5zFeeWVV+S9VygUkvdeFStWzHEoVJJGjBgRzPucc845mT7MdqyjhR20sIUeKM4YYAcMS05OVvfu3XXWWWcFByfee5155pkaMGCAzjzzzOC2qVOnSjp4kBI+UElMTFRCQoK89+rbt29hvpQiacWKFapTp46892ratKkuvfRS3XLLLbrwwgtVtWrVYNs3b95cQ4YMCa6MxGBJ3qOFHbSwgxa2FGQPTkjmjBZ2FMbfU+FvI0I0WthRkC0iTzyy/89aYf17KvKE77G+L4ncljNmzNC6devUqVMnVaxYUQsWLMjxsddff30wGHr//fdLit6eDIYeHlrYQQs7aGHT/v37NXToUHnvVbp06WA7e+91/vnn67PPPgu+LSXy30OrVq3S6aefLu+9+vTpE9yecb8+d+5c3Xnnnapfv7689ypRooS89/r666+P+f12RrSwgxZ20KJoyGo4NHx1/BtuuOGwnovtfvToYQct7KBFwYjcz+7ZsyfXjwtfBOPnn38O+pQpUybLodCsziP26tVLXbp00dy5c49m9YsVWthBC1vogWMBA+yAYStWrFBsbGywM+ncubPuuece7d+/X3v37tWsWbOy/Pqo8I5o0qRJqlKlimJjYzVmzBhJhz5AWbRokV555ZV8fV1FybJly9SyZUuVLFky6kME4ROOV155pSZPnqyUlBRJWX86DXmjoFuEH89BfWa0sIMWthR0j8WLF2vevHnse7JACzsKqkVaWpoWLVqknj17aty4cUpKSgru4++sg2hhR0H/HfXGG2/ov//9b9TXz9PiTwXdY9GiRerVq1fUm43Heo+M27Rfv37y3mvUqFHBdg87cOCAtm3bpmuvvVbeH7xyTNeuXfXjjz9mek4GQw8fLeyghR20sCkxMVHly5cP9tnNmjXTkCFDsl1+3759euyxx1SmTBm1aNEieAM28kOXqampGj9+vOrXr68KFSrIe6/q1avrb3/7m7744ouo5+PY70+0sIMWdtCiaNi/f7+mT5+uLl26BMeBTZo0Cc5jZDwXvn37di1fvlyTJ0/W//73P23atCl4Lrb50aOHHbSwgxYF43C3TXj5KVOmBF3Kly+f41Donj17tGHDhqjnWbVq1dGuerFDCztoYQs9UNwxwA4Yt3jxYjVq1EjPPPOMli9fHnVfampqpk/ehk9Ubd68Waeccoq89zrjjDNydQXEpUuX6qqrrpL3Xr169cqX11MUrVu3Tk899ZR69Oih008/XQkJCbrnnnv01ltvRS13rA8dFIT8bJHxU4U7duzQgQMHMn0FD50PooUdtLCloPYZy5Yt0z/+8Q9573XXXXfpu+++y7PnLi5oYUdBtFi8eLG6du0aDApdcskleu211/LkuYsTWthRUH9HzZ49Ww0bNpT3Xh07dtTYsWPz7LmLk4LqsWjRIvXv3z84fr/55pvz7LmLk/Hjxwfb6MEHH9SsWbO0c+dOrV69WqNHj9YFF1wQ/B1z9tln68MPP4x6PIOheYcWdtDCDlrYsXDhQpUrV07XXXdd1PBmVt9Cs2bNGrVo0ULeew0dOlS7d++Oeq5PP/00+HBC+NeJJ56od955R7/++mvUsmvXrtWzzz6b6fZjGS3soIUdtCg63n77bVWrVk3eH7z6/Y4dO4L7wsdpq1at0rXXXqsGDRrIe6/Y2FhdcMEFevHFF4Nl+eazvEEPO2hhBy3sCO/Hp02bFuyTK1WqdMih0E6dOql8+fJavXp1oax3cUQLO2hhCz1QFDHADhQBGb8GJPIEV1ZfH/X5559r6tSpqlChgqpWrap33nlHUs4HJeHh9fDBT2xsrFauXJk/L6iI27t3b9Sf+cRy4cmPFlOnTtWTTz6p9u3bq3Xr1mrWrJkGDhyod999N1iG4ZLMaGEHLWzJjx5paWmaPn262rZtK+8PflXwmWeeqWeeeSZYhh6Z0cKO/GixZcsWPfTQQ+rVq5dKlCihUCikkiVLaujQocEytMiMFnbk5zHG008/rVatWikmJkaxsbG6//77g/tokbX86LFo0SLdcsstwXF7iRIl5L3XLbfcEixDjz/dfffdwbaqWrWqmjdvrvj4eJUtWza4kuVll12mjz/+OOpxDIbmPVrYQQs7aGHHli1bgm8jlaL32ZH71csuu0zeezVr1izqimIHDhzQgAED1KxZs6Bp06ZN1bdvX23evDnTz1u/fr0effTRYNn169fn0ysremhhBy3soEXREP5wQExMjGbPnp3p/g0bNqhHjx7Bt3ZVqVIl+LCa9z7qGJv3C48ePeyghR20sOFIhkJ3796tSy65JFj+2muvzdWFJ5EzWthBC1vogaKKAXagCAifyMruzeyshtjDb4TUq1dPS5cuzfH5w8PrVatWlfdedevW1bfffpvnr6Moi9z2DBUUrvxokZ6eri1btqhfv37Bhzgy/ipVqpTuvPPOPP/ZRRkt7KCFLQWxz0hJSdHs2bODK3+HT0T269cv3392UUILO/KzRcbnmzBhgvr27Ru0uPXWW/PtZxdFtLAjv/+OinxD6scff9SAAQNokYP87JFxeL1Pnz569tlngx4Msf8p8n+39913n2rVqhX178/y5curfPnyevLJJ7Vw4cJMjz3UYOixvn0PBy3soIUdtCiann/+eXnvVblyZU2fPl2SlJycrEmTJqlLly5RDf/+979r8uTJwYfZ9u/fHzzP+vXr9fDDDys+Pl7eH7z6cVJSUqG8pqKKFnbQwg5aFK6pU6eqZs2aCoVCuummmyRl3h9PmTJF1atXV4kSJXTVVVdp8eLFeuedd6Kuiv/QQw8FyzMceuToYQct7KCFDeFtfqRDoWXLltXll1+uH374oXBeQDFCCztoYQs9UJQxwA4UE1kNsXvvo74WKisZh9ePP/54htdRbOT0rQPhf8Dt2bNHn332mc4777yowcPzzz9f11xzjQYNGqS//vWvwe133HFHQa1+sUILO2hhy5F8ZWPGk5OPPPKI6tatq9jYWHnv1bt377xavWMKLew40q8yjTzxvmHDBo0ePTr4e2rEiBF5tXrHFFrYkRctkpOT9cQTTwQt7r777rxavWPOoXpE7h8yDq/37dtXu3btkiS9+OKLDLFnIXL7fvvtt3rjjTc0dOhQDRkyRJMmTco0FCrlbjA0uzdoj/XtnRNa2EELO2hRNIS328qVK3XuuecqNjY2+ADfggUL1KtXLzVq1Ejee8XFxemkk07So48+GvUcka0zDoaefvrpfHtpLtHCDlrYQYvCF25w3333Bcdqb7zxRpbLhq9qX716da1evTq4/ffff9eoUaOCxz///PMFserFEj3soIUdtLAjfKw2ffr0Ix4K7dGjh+bOnVs4L6AYoYUdtLCFHijqGGAHipG9e/dqypQpaty4sUKhkFq2bKlFixZJyvrNDobXURzt2bNHv/zyS/DnrIZLwv9/2LFjh8aOHavTTjtN3nvFxsbq7LPP1rPPPhu1/O+//x4MXpUsWVLjxo3L3xdRTNDCDlrYkpsehxK5X58zZ446duwYfD1kixYttGbNmjxZ1+KOFnbkRQspusfevXs1fPhwhUIhNWnSRN9///1Rr+exgBZ25FWLjM85cuRIhUIhlStXTu++++5RP+ex4kh6LFy4UDfffHNw0vi6667T1q1bo57jpZdeYog9C4e6Gljk9snNYGikadOm6ZlnntEvv/yi3bt35+rnHctoYQct7KCFbZHb/6GHHpL3XvXr19err76q9957T5UqVQr2zWXLltWQIUP09ddfRz0+8jmyGgxdsWJFgb6moooWdtDCDlrY8dNPP6lUqVLy3qtnz57B7RmPxUaPHi3vvapUqZLpPN+ePXv073//W957NWvW7JBXrFy9erV+//33vHsRxQg97KCFHbSw47PPPsuzodC0tLQC+fbg4ooWdtDCFnqgKGOAHSgmwjucb775RnFxcfI++mvhM2J4vWCFv8oxL4ZOkL29e/fq3XffVWxsrP75z3/muOzOnTs1evRoNW/ePBjSve222zR79uxgmciv4Ny0aVPwj7h//etf+fYaigta2EELWw6nR3YiDxK/+eYb/f3vfw+u+H3uuefqf//7HweSuUALO/KiRXZ+/PFH1ahRQ957vfTSS3n63MURLew40hZZ/Z2T8bYVK1YEX0UfHpjm76qcHUmPtWvXqm/fvsFJ444dO2rv3r2SpNTU1GC5jEPs1113Xb68huLqcAdDV61apUsvvVTee5144on617/+peTkZEkcrx8tWthBCztoUbg+/vjjYD98+umnq1+/fipdunTwZm5CQoK++eYbpaSkBI/J+GEBBkPzBi3soIUdtChc+/fvD74pq0aNGnrttdcyLRM+Tt64caOaNWsm773uuusu7dmzJ2q5xYsXB99kOnLkyGz32cuWLVOPHj0UGxvLFfIzoIcdtLCDFrb0799f3ntVrFhRvXr1OuKh0MhzghnxweXcoYUdtLCFHijKGGAHipGNGzfqnHPOkfdeLVu21G+//SYp806E4fXCMX/+fF1zzTVKSkoq7FUplvbu3as333xTDRs2DE78vv7661kum5KSotdff10tWrQIhnSHDx+utWvXBstkNcRz9913B28ibtq0Kd9eS1FHCztoYcvh9MhOZINvv/1WvXr1YmD6CNDCjrxocShnnnmmvPe64ooroj6Eg2i0sCMvWkyePFlTpkwJ/pzx76N7771X3ntVrlxZv/76a56sd3F1ND2eeuoptW3bVmXKlFH58uV1++23B/dF/n/gwIEDGjt2bPD8kVdYRPYOdzA0bMaMGbr00kt1/PHHy3uvVq1aBcfpDIgeGVrYQQs7aFG4Vq1apfPPP19xcXEqWbKkqlatqhIlSsh7rzZt2uiBBx4Izndkd9y2fv16jRw5MjiHfsYZZ2jp0qXB/Rzv5Q4t7KCFHbSwYdmyZfLeq2bNmtq8ebMkac2aNZmGNnft2qVbb7016BP+5uvIY7pHHnlE3nu9+uqrWf6slJQUXXXVVcEx34gRIxgAyoAedtDCDlrYMnjwYJ133nlHdUVj6eBFL/71r3+pV69euv766/X2228H769yzJc7tLCDFrbQA0UVA+xAMRDeQUydOlUnnHCCvPe69tprtWvXrkzLMrxe8NLT05WSkqLq1avLe6+//e1vUQOhyBs7duxQ06ZNgwP5Xr16ad68eVHLhE/azpo1S+3atQuGdB999NHgwD8r4QP8fv36yXuvhISEqCufIBot7KCFLbnpkRMGpvMOLew42haHsm3bNp144ony3qtr1650yQEt7DjaFgsWLAiO995///2o+8JXzxg+fLji4uIUHx+vdevW5en6FzdH22Pp0qV65JFHVLZsWXnv9Y9//CO4L/Jk74EDBzRu3DiNHj1aGzZsyNPXUBzlZjA048n09PT04O+eTZs2acKECWrdurW892rQoEHwYQ7eoD08tLCDFnbQovD98ccfqlevnrz3wbeceO/197//XUuXLg2uSpnd9gwPhlauXFneezVu3FhLly4Nvk0ljB6HRgs7aGEHLexITEzURx99JEn64YcfdPLJJ+utt96SFH3+b8mSJcG3yl1zzTXB7eH9+b59+/Tll18Gt2d1zuPzzz+X916DBg0KvmEF0ehhBy3soEXhizx2Cx/THe5QaPg91Tlz5qhu3brBvj98gZG//OUvWrNmTaafh2i0sIMWttADRR0D7EAx0q1bt2BnM3/+fEnRJ6gYXi9cX3/9tcqUKSPvvS677DKG2PPB/Pn/j72zDo/i+P/4zEUJgYRgIRAIwd3dpTgU6BcrhZa2uHtxd3cvGmhxCdLibsXjBkETEgIhQuRy798f+e2wFw+5y22Sz+t58pTezu7NzvtmR/Y9n3mKkiVLolOnTnB3d9c6JtWFuLg4dO7cWZh0582bh6CgoGSvKR/Ad+/eHZxz1KpVCyEhIWS8SgHSQjmQFsoiJT1SggzTuoe0UA7fqkVySM+2mJgY7Nq1CwULFgTnHMOHD8/wtbM7pIVyyIgWnz59wtChQ8Xk4p9//qkVcSkyMhK9evUC5xxmZmZaUfqIpPkWPeRtQVRUFPbv3w9LS0twzjFx4sRkz0toOiESo9FocO3aNbGrQ2pRjT99+pRk3zYuLg6PHz9GvXr1wDlHo0aNRHQaIm2QFsqBtFAOpIVycHFxEQvIOnTogI0bN6bpvLdv32LJkiViDp1zDhsbG5QuXRoODg747bff8Ndff4n09OI2dUgL5UBaKAfSQjlIY7cRI0aA8/gdruULvaW5jePHj4s5wG3btiU6X0Je5gl3LPX19aUFy6lAeigH0kI5kBaGR+65kcozraZQKX1gYCAcHBzE4rPOnTujcePGKFasGDjncHBwoN230gBpoRxIC2VBehBZGTKwE0Q2Yd++feCcw8LCAiNGjAAQ32BIDQ2Z1w2L1Fm4deuW2AqSTOz64fXr1/Dw8Ej2+NSpU8E5h5GREQYOHJhom7Xk2L17t5gQnj9/vq6ym60hLZQDaaEsUtMjIWSY1h+khXJIqEVay1GeTv7vmJgYHDt2DG3atBHPqaNHj+ouw9kY0kI5JKdFWjT58OEDBg8eLMp88ODBWL9+Pfbt24eff/5ZfD5o0CC95T+7kRE9gPiFAwsWLICpqSkcHBxw/vx5veQzp7Bq1Sox4b5t27ZExtCgoCAcP34cjRs3hoODA/LmzYuBAwdi7969Wuni4uJw6tQpODo6wsLCAuvXrweQdl0J0kJJkBbKgbRQDq6urli3bh28vLzEZym9ZJWMoQUKFADnHMWKFUP9+vUxceJE9OnTB9WrVxf9qLlz54rzKMpx6pAWyoG0UA6khbI4f/48SpUqBWtra2zZsgXR0dEAvu6SEhQUhO7du8PIyAgDBgxI9Xre3t7o3Lkzhg0bpu+sZ0tID+VAWigH0kI5SGOyiIgIdOvWLVlTqJxt27aBc45ChQrh4MGDiIqKwufPn+Hs7Iy6deuCc47q1avjzZs3AKj9TiukhXIgLZQF6UFkJcjAThDZhBcvXiBPnjzgnOPYsWNax8i8rgzkJnZTU1NwztGmTRtaxZyJPH/+HLVq1YJKpULlypVx8eLFNJ338OFDtG3bFkZGRihQoABOnz6t55xmf0gL5UBaKBsyTCsHXWqRMB1pqE1yEx4JTdFqtRpRUVEIDw9HZGQk3rx5gwcPHuDcuXPo0aMHKlasKF7cjhs3TisCNZE2SAvlIDdLe3p6pikCq5+fn9ilS/qzsrIS/27YsCFOnjyp76xnS+R6+Pr6JhtVNyG3b98WZpNFixbpM4s5gvHjx2PVqlWJyj8wMBDz5s2Do6MjOOfIlSuXWKwpRcCXG4OCgoLQvn17cM7x/fffZ/JdZA9IC+VAWigH0kKZpDT2SmgMrVWrFs6cOaMVId/HxwcLFy4U/aklS5ZkRrazJaSFciAtlANpYVg+fvyIAQMGgHOOmjVr4uHDh+KYND8yY8YMEUxMvvAgId7e3lqLx8+dO6f3/Gc3SA/lQFooB9JCWcTExIidt6ysrFI0hQLAhg0bRATjhBH0Hzx4gDp16oBzjm7duiEkJCQzbiHbQFooB9JCWZAeRFaBDOwEkY148uQJhg8frvUZmdeVhdzELq1we/r0qYFzlXM4fvy4GIjPmzdPfJ7SxPC7d+/wxx9/iBeKP/30U6I0kq4BAQFaW62RITF59KUFkX70qUV6I5PmVKToGEDS23sBujNMR0RE6DDn2Y/M1OLRo0dYuXJlkt9BxEcqvnr1Kn7//XcMGzYMffr0QZcuXdCzZ0906dIFTZs2RfPmzdG0aVNUrVoVlSpVQokSJWBqagoLCwstw+7w4cPh6uqa6DuoXqSNzNACoDYjrdy9exetWrXC9u3bAaRcXjExMVi2bBk45+jSpQvMzMyEFj179sTBgwdF2qQi6JMWqXPv3j20bNkSf/31F4C0lVmHDh3AOUfTpk0RHh6eYlp5u0R6fEW+CEaKNgZ8jVbp5OSEkiVLgnMOe3t7rFy5ElOnTkXPnj21diWQm322bt0KIyMjVKlSBR8+fMi8m8nikBbKgbRQDqRF1iShMbRevXrJRkSOiIjAH3/8Ac45ypQpg0ePHqV4bWrD0wdpoRxIC+VAWmQeL1++RO3atcE5R/PmzfHgwQOt9nz27NngnMPc3BxPnjxJ8hre3t7o16+faNenTJmCt2/fZtYtZCtID+VAWigH0kJZDBo0SJg55QsKkuL8+fOizA8cOJDo+JkzZ1CqVCnkyZMHTk5O1EanE9JCOZAWyoL0ILICZGAniGyG/CWJp6cnfvrpJ2FeL1asGJnXFYBkiHv06BEuXbqEmJiYDF9To9HQ9iwpIJXNmDFjwDlHxYoVhdE8pXL79OkTVq1ahdy5c4NzjsaNG4tolwm38rx8+TLs7e3x22+/4ezZs+Jz6rRpo28tEl6Dyj959KGF1AYlNIV+/vxZ6xqkizZSeVy/fh379u1LFKHvxo0b6N27t4jI16ZNGzx69Cjd5fjo0SO0bNkS27Ztw4sXLxJ9P6F/LaR0Li4uaNGiBTjnGDRoUKLjBHD69GkRlfJb/goUKIBKlSph27ZtKUYBoHqROvrSImFb8/HjR8TExCQyZZEW2khGhAYNGqQpCruvry9MTEwwZ84c+Pv74/r167hz547Wi62E45HQ0FCo1Wp8+vRJ63PSQpuYmBiMHTsWnHO0atVKy2iYHJGRkahVqxY456hbt66WDhIJ68b79+8RHh6e6PqkR9LExcWhZs2aYgH/8+fPxbGgoCBs2bJFPJ9+++03BAYGQq1WY9y4ceCco379+joZoxOkhZIgLZQDaaFMEhpD69evD19f3xTPOXz4MIyMjGBqaqo1D5gQqV2PjIzEx48fdZntbAlpoRxIC+VAWmQ+3t7eKFKkCDiPj3A8b948XL58GWvWrBHtdNOmTfH+/XsA2mMzb29v/PTTTyLdtGnT0jR2J5KH9FAOpIVyIC0Mj3z+btu2bbhz547W8cjIyERegvDwcPTq1QsqlQq9e/fGq1evtI5//PhRRMWfPXs2jf3SCGmhHEgLZUF6EFkJMrATRDbFy8sL33//vZjUsrOzw/379w2dLeL/yajZIC1mdTI0JOa3334D5xy1a9cGkHIZhYSEYNOmTcKkW6VKFZw4cSLZc+bMmQOVSgUjIyM4ODhg+fLl4hhpkRhdaZFSREq1Wk2G9jSgr3rx77//okuXLmjSpAlq166NefPmaW1BSFpoI61oLl26NPbv34/IyEgA8UZqXZjX379/j19++UVMSv7444/JRt7N6ehLi4TmdXNzc6HHiBEjEqXL6fj5+cHExAScc5iYmKBBgwbo2LEjfvrpJwwYMAC9e/fG77//jkmTJmHkyJEYO3YslixZglWrVmHv3r3w8vJKdeKd6kXa0IcW8rJ9//499u/fjxo1aqBKlSooVaoUJk+ejOPHjyeZPqdz8uRJODg4oGDBgti9e7fWAmY5Uh/IxcUFVlZW6Nq1a5Lp5BOMly5dwuLFi1GjRg3UqlULVatWxZw5c+Ds7CzSkBZfUavV2LlzJ+zs7FCkSBHs378/VT3evXuHGjVqgHOOFi1aJNoBQj5hfODAAYwaNQrFihVDqVKlUKJECUyYMAFHjhwRaUiPxPj5+cHa2hoWFhaYOXMmAODLly9aaY4ePSqe/QMHDsTTp0/RqlUrcM4xdOhQqNVqKlsdQFooB9JCOZAWyiO9xlCp7G/cuCHGdFu2bEnxO8LDwzF58mTUqVMnVdNpToa0UA6khXIgLQyHp6cnKlasKNpk+TxekSJFsGDBgkTnpGYKpSBU3w7poRxIC+VAWhiehMZPicjISJw9exYPHjxIlG779u0wMjKCubm52NFRXu4PHz5Ejx49cObMGT3mPPtBWigH0kJZkB5EVoEM7ASRTXnz5g2KFy8OzjksLS1p9VM2Qv6SytPTE3v27MGUKVMwdOhQ7Nu3T2uhAr3Q0mb8+PHgnKNSpUqJourKO10vX77E8uXLhUm3XLly2LRpU6Io0gk5duwYevbsCZVKBc45/vjjD3GMtNBGH1q4u7tj+/bt6NGjB9q2bYu6deuibdu22Lp1K27fvi3SkRba6EoLaUGBWq3WivIg/7O1tcWsWbPENUmLr7i5ucHU1BScc1SvXh0HDx7Ev//+ix9//DHD5nUgfiB66NAhtGvXDpxzqFQqFCpUiJ5TSaAPLRKa142NjWFmZoZ69eqJNoNM7Ilxc3MTL2mbNWsGV1fXb7pOcuVJ9SLt6EuLN2/eYNKkSUm2GTY2Npg+fXqy5+ZUQkJC0L9/f7H4LKktH+VltXr1arEoJyoqSuuYvJ1funQpKlSokKQW+fLlIy2SITg4GD169ADn8RHVHz16lCiNfPJ35syZolyXLl2abLoJEyYgT548SeqRO3duek6lgLe3tyirSZMmJZvu5MmTIp20y4SZmZmYtCcyDmmhHEgL5UBaKItXr15h2bJl6YpqDMSPI6ZPnw4TExPY2Njg2rVryaaNi4vDrFmzUKhQIXDOUbVq1USLFgjSQkmQFsqBtDA8/v7+GDlypFiEzHn8bqRz585NNA5LzRQqT5/QSERjurRBeigH0kI5kBbK5K+//gLn8QFzJOTzsFJQnfz588PDwwPA13esQPycuURCf09yZlQiaUgL5UBaKAvSg1AaZGAniGyMi4uLmNyqXr06nJycEpkTiayHWq3G+/fv8dNPP2mtrJb+Spcujblz54r0NKj8WganT59GgQIFULRoUa2JW3kZ3bhxAyNGjICFhQU456hQoQJWrFiBkJCQZK8v78x5enpi1qxZwpA4duzYJL8np6IPLdzc3LB69WpYW1uLCAOSyVReLxYvXpzk9+RU9FUv5C/abWxs4ODggHbt2sHR0VHUi9GjRyf5PTkdDw8P0W6XLVsWDRo00DJMP3z4MEPlpdFo8PnzZ4waNQr58uUTegwePFiHd5E90KUWyZnXe/bsidevX2P//v1kYk8BuXG6ZcuWYqIE0C6j5P6dGlQv0o4utZA+37x5s2gzSpQogerVq6Nnz56oXLkytRkp8PLlS9SpUwecczRv3hxPnjwRk4TyyUFnZ2dUrlwZnHP06tVL6xryslywYAHMzc1FmTdp0gTdu3fH4MGD0aBBA/H5+PHjM+cGsxgvXrxA1apVhR4PHjxI0vSxYsUK8XuvUqVKsv2uMWPGaPVjO3TogBEjRmDixIlo3bq10GPChAmZcn9ZjfDwcLRp0wbGxsb44Ycf8O7dO3FMo9Fojd327t0rytPc3BybN28GQBHHdAVpoRxIC+VAWigHtVotFvqlxxgKAPfu3RML/2rWrJnqfPutW7fAOUfevHlx9uxZXWQ/W0FaKAfSQjmQFsohOjoa4eHhuH79Om7cuIH3798nSpOaKVTO48ePMX78eGzfvh1ubm7ic2rf0wbpoRxIC+VAWiiPP//8E5zHR8I/f/68+FzaufH169eoXbu2mPuOjo5OsnzlptDFixfjxYsXAMgcmh5IC+VAWigL0oNQGmRgJ4hsjru7uzCaVKtWjUzsWZz3799j9+7dqFWrFjjn4kVWuXLlUL16ddja2gqDndw4TcQTGBiIpk2bgvP46KE3btxAeHg4ACA0NBRr1qxBjRo1YGZmJhZ+bNu2DR8/fkz12nLTSWhoKDZu3Cj0WbZsmb5uKcuiKy0OHjyIrl27ikmXokWLol69elizZg02bdqESZMmoVGjRkKLMWPGiHPJBBePLutFSEiIiPRQvnx5zJ07FwEBAQCAJ0+eYMGCBUKLGTNmZOZtZhnc3d2RP39+EWFPMoq6uLhkeIJQ/pufN28e8uTJI9qMOXPmZDTr2Q5daJGceb1Hjx6ibkRHR2P79u1kYk8BeX+2ZcuW8PT01Nm1qV6kD11q8e7dO9jZ2YHz+MjVe/bswadPnwDELyJZsmSJqBezZ8/W1S1kG7y9vbXKb9u2bXj79q04vmvXLjRs2FDsKCGPoC7n4MGDKFasmFZfKSYmRtSNly9fYv369eL4ypUrM+X+shpeXl4oUqQIOOeoUaMGpk6ditu3b8PLywvnzp3DyJEjRX/V3Nxca0caOevWrRPpihUrhoULF2odf/fuHTZs2CD0WLduXSbcXdZj5cqVohzXrFmTaPem8PBwuLi4iOj5pqammD59upaRlF7M6gbSQjmQFsqBtFAOnp6eYl41rcZQT09PMe9RrFgxseOfpIn034QRyG7cuIELFy7oMPfZC9JCOZAWyoG0yBqkxxQaGhqKDRs2iLQNGzbEzp07xXEy+mQc0kM5kBbKgbTIfNzc3NCiRQvxvicoKEgcU6vViI2NxeDBg8ViM8kwKkc+5pN2dLS1tcXLly8z5R6yC6SFciAtlAXpQSgNMrATRA6ATOzZA39/f/zxxx9i6+A8efKgVatW2LlzpzCSPnnyBKtWrSKDSQrIzT7FixdHtWrV0LhxY1SrVk0MyCVT1qVLl4SRNzkkc09Ck+HHjx8xceJEqFQqVK9eHS4uLnq7p6xKRrXYunUrqlSpIn7vbdq0wb59+xJFBff09MSyZctEuuQMQzmZb9Ui4e/+06dPKFeuHDjnGD58uDAiSoSFhWH58uVQqVQoWLAgTp48mWn3mJVwc3ODjY0NOI+PYr9gwQKEhoYCyJihWRpIenp6olKlSkLXypUr49mzZzrJe3ZDF1o8ePAAzZo1g4mJCczNzdGrVy9xDUkTtVqtZWKXR5wm4tGXiZ3qRfrJqBZyY3ThwoVhamqKpUuXIiIiQitdWFgYFi9eDJVKhWLFimlFgSDi8fDwQJkyZcA5R+7cuWFra4umTZuiQYMG4JzD2NgYnHN07NhRnCPvu2o0Gvz+++/i2TNp0iSRTv5C6suXL5gzZw5UKhWaNWuWZCQnIv45It8hy8jICPny5UO+fPnEZ1ZWVhg3bpw4R3oGaTQafPz4Ee3btxd6LF++XKSTG0wiIiIwZcoUqFQqtG/fHqGhobTg6f+Rl8OECRNEuQ8ZMgQHDx6Eq6sr7ty5g0mTJqF+/fpikdrkyZOTNQXdvXsXBw8exOHDh3HkyBF8+vQJ0dHRAMhAmhKkhXIgLZQDaaFMnj9/jufPn6cpraenJ2rWrCleym7evFlr1xWpzCMiIjB+/HgsWrQoyetQu500pIVyIC2UA2mhPOTlkx5TqJxly5ahffv24jx5AAVqv9MH6aEcSAvlQFoogx07dsDExAScc6xevRqRkZFax+U7NT58+FDrmHxedurUqWIH8sKFC+PcuXPiGLXZaYO0UA6khbIgPQglQQZ2gsghkIk9a+Pn54fBgweLqH42NjZYvHhxIlO0RqNBZGQkZsyYAWNjY7Ru3RrBwcEGyrVy8fb2RqNGjURkXflftWrVMGrUKK3J3aSQVhlKLwaBxB2wixcvIleuXOCcY9++fbq/kWzAt2qxfft2lCxZUhh82rVrhwcPHmilkWsTFRUloodaWlri4MGDer+3rIYu6kVgYKAwwru7uwNIPJnl4uKC4sWLi8kyImlcXV2FFtWqVcNff/2VKDJfepB0cHV11TLXVa5cGR4eHgAoekZyZFSLDRs2oHDhwlCpVDAxMcGUKVPEMbkhUTKxS9GSf//9d53eR3YgoXHay8srQ9ejevHtpEeL5F5q+Pv7w8rKCmZmZmJHgoRpHz58KL4nYSRqIp7nz5+jZ8+eYpFrwr+uXbuKBWUJf89eXl4wNzcH5xydOnUSnyf1u798+bIwxN+6dUu/N5WF8ff3x5AhQxItAuSco1WrVlqm9ITl/N9//4m0ffv2FZ8nVYecnZ3BefyOXE+ePNHfDWVB5OW6aNEiFCtWTJRrwYIFxa4qkjH0jz/+gI+Pj9Y1goODcf78ebRq1UosZJPGHfXr18ekSZPEjgfUTiQPaaEcSAvlQFpkXeTG0MKFC2PFihVa5h+5MXTOnDli3mPu3LmJrkW6ZAzSQjmQFsqBtMh8fHx8UjSFJlWO8siV7u7uIlJlQi3I6JN+SA/lQFooB9LCMCTc8VUqvyVLloh3Ds+fP8fAgQOTNIYmNIUWLFgQKpUKjo6OmDFjBnx9ffHx40dhNKV2O3lIC+VAWigL0oNQImRgJ4gcRFIm9tSiSxOG59WrVxg+fDgKFSokXmgdPXpUyzyXcKB44sQJ0Zm4e/duZmc5SxAQEIATJ05g1KhR6Nu3L4YNGwYnJyctA1Zqq8jfvXuHokWLwsnJSetz+XmNGzcG5xz9+/eHRqOhlelJkBYt5B3bQ4cOoWrVqlCpVDAyMgLnHCVKlECxYsXwv//9L9kI60FBQRg8eDCMjIzQu3dvWtyRBGnRQm64DQgIwOXLl7Fnzx44Ozvj0aNHGDNmDDjnuHHjRrLf065dO3DO4eDggLCwMKoXySBvt6tUqYJ9+/YlWv2cFlIy6Sa30IDQJqNa/PvvvxgzZoxY1NSvXz9xTD4prFarsXnzZnDOsWbNGp3eQ3ZBrkWzZs2+ORI71YuMkxYt5O3348ePcejQISxYsABOTk64dOkSBg4cCDMzMzx9+lTrPHnfVupLVa9eHVFRUTTZlQQhISG4du0aBg0ahGbNmqFEiRIYMGAAVqxYIdIk9WLp6dOnyJ07N0xNTTF9+nQASLQVpHyr+cqVK4NzjlOnTunxbrI+4eHhCAgIwIYNGzB//nwsWLAAx44dw7t370Sa5BYJGBkZIU+ePNixYwcA7X6X/Lz379+jZMmSMDc3x507d/R4N1kTefnevXsXe/fuxejRozFy5EhYWlqCcw5TU1NMnjw5kTH0xYsXmDx5stjdQIpCY2trKxZ8SM+kFy9eJPo+QhvSQjmQFsqBtMh6JGUMlRZgAl/LOCIiArNmzYKDgwM45yhUqBBOnz6tdS15X8vPzw8AjTvSA2mhHEgL5UBaZD6+vr74/vvvkzWFynF1dcXjx48RHR2NqKgorWMRERFYsmSJuI40DiTSB+mhHEgL5UBaGBZ52zlx4kRRfjVr1kTXrl3Rtm1b8VnPnj1F2oSm0MKFC4t0nHPxfqlkyZLo168fXr9+neg8QhvSQjmQFsqC9CCUBhnYCSKHITea1KxZE7t370ZERIShs0UkQ0hICGbPno2iRYsK8/r58+eTTS8ZU7y9vWFtbQ3OOU6ePJlZ2c1WpGViVr7y/NChQwC0zUEPHz4UUfOHDh2qt7xmd+RaPHz4EJ06dRLRxTjnsLa2RunSpVGgQAGtKKKvXr0CoD3xfvz4cXDO0aNHj0y/j+yA3ET1559/ag1eOOcoUqQIihcvDgsLC6xYsSJRxPa4uDi8ffsWVapUgUqlQqVKleglSCq4u7sjX7584neb3NbxyUEmXd3xLVrI24SQkBDs3r0befLkAeccv/32mzgm10CtVmc4snh2x8PDQ/RzJk2alO6+LNUL3ZGSFvIyXLx4MapUqaLVZlhbWyN//vwwNzfH5s2btXZOkXj27JmYAGvRokWm3FN2IOEi5eQmB2/fvi302LhxY4rXvHbtmuh/nThxQmd5zYkkF6Xq/PnzQo/Udm86duyYSHv16lV9ZDPLk/A5HhISgt69ewtj6KRJkxIZQ6UI+tIYrkCBApg4cSJOnDgBV1dX3L17F1OmTEHVqlXFRLy/v3+S30d8hbRQDqSFciAtsg7fagy1tbXFxYsXk73u+PHjwTnHpUuX9H4P2QXSQjmQFsqBtDAMb968EeOxmTNnJjKFRkREwNnZGV27dhU7mdWqVQu//fYbnj9/rpX21atX+PXXX6FSqdC5c2faOfsbID2UA2mhHEgLwyOfj12wYAHs7e213m1zztG+fXtcu3YNgPb712nTpgk/j/TOe9iwYdi6dSv69u2LcuXKgXOO0qVLi4XLNOZLHtJCOZAWyoL0IJQEGdgJIgfi7u4ujCAtW7bEx48fDZ0lIgFSZ+HkyZMoW7aseDH1zz//pOm83bt3w9TUFObm5rh586be85tVkZtH5B2mtG59FhQUhOHDh4uO2apVq+Dt7Q0g3tA1Z84c5M6dG5xzTJ06VbeZz2Ykp0XC4wsXLhRR1+3t7dG9e3c8e/YMgYGB8PHxwdGjR4WRrnPnzuJ8eQd8+/btSX4vEU9qWgDAzp07UaZMGaFF2bJlUblyZZQsWRJWVlbgnKNMmTK4dOlSIkPi0aNHhYH3u+++0+u9ZBfc3d3RtGlTrFq1Kl3nkUlX93yrFhJqtRo7duyAhYUFOOdYv359iulJn+Rxd3dHjx49cPDgwXSdR/VC96SmxZIlS2Bubi7ajNq1a6Np06aoUaOGmOAqV64cLly4oLXw6cOHD1izZo3oS/Xu3TuzbilLIm+/0xrN4sOHD6hXrx5UKhXGjBkDIOnfv1qtxvLly5ErVy4ULFgQT5480U2mcwhp7W++evUKVapUgYmJCWbPng3gq5byawQGBmLEiBEwNTVFpUqV8PbtW91nOhuyadMmYQydMmVKImPo58+fMWfOHNjZ2QlTz61btxL1ZSMiInDnzh00aNBALK4JCgpK8bs/fPig8/vJypAWyoG0UA6khTLx8vL6ZmPohQsXtK61a9curF27FkB8QAzppXDDhg1T1YggLZQEaaEcSAvD4uLigvnz52vttAUAUVFR2LZtG2rXrg3OuZgLkf7s7OwSvbPbvXu3OJ5whzoibZAeyoG0UA6kheGRz9FeunQJy5cvR61atdCyZUtMmDABXl5eieZxp02bBhsbG3DOkT9/fqxbtw4ajUbMDUZERODu3buoX78+OOeoX78+3r9/n6n3lRUhLZQDaaEsSA9CKZCBnSByKK6urqhQoQJtN65ApIY9KipKvHDKly8f9u/fn6bzAIioTblz5xZbPRJpQ16OaelIBQUF4ZdffhED94oVK6Jt27aoXLmy2Pq5Zs2a1CnTAXfu3BHbY5cpUwYLFy5EcHBwonT3799H3rx5wTnHxIkTxecJDVnyyOxE2nn8+DGaNWsmXmQMGDAAnp6e0Gg0ePfuHa5cuSJMoRUqVMDq1avx9OlT3Lt3Dxs3bhQDGnt7ezg5OQEgs2ha+PTpk/h3WoxwZNLVH3It5KvNk3oeJcXr16/RsWNHcM7xww8/JNqWk0g7CaNMpwbVC/2RnBZnz55F6dKlRZsxfvx4YVL/8OED7ty5I7QoV64cFi1ahNu3b+Ps2bOYMmWKWJRWrlw53L59GwBppGtGjhwpFstKL6ASlvHZs2dF+926dWtDZDPHMGjQIKGHi4tLouMhISHYunWrWDD4ww8/GCCXWZcxY8Zg+PDhWsZQaQL+6dOn4nlka2sLDw8PAF/7XQnrxY0bN1ChQgWYmZlh3bp1yT6bvL29MWzYMLEogYiHtFAOpIVyIC2Uhbe3N0qWLKkTY6inp6c43rBhQ3DOoVKp0KRJE/z999+Zel9ZEdJCOZAWyoG0UAZyM4/U1rq4uIhy5Jxjw4YN+PvvvzFv3jzUqVNHjPdOnTolzvn8+TPs7e3BOce///5rkHvJDpAeyoG0UA6kheFJOBaTv1MCtN/3TZ06FQULFgTn8VGLEwaMkV/r5MmTKFy4MPLnz49jx44luhaRGNJCOZAWyoL0IJQAGdgJIgcjGabSGqGPyFwmTZokTOhTpkxJ0Rgnb+jXr18vVkyPHj060XEibVy/fh1//vkngNTL7+bNm6hSpQo458JgLf1Vq1YNhw8fRmxsLOnwjcTFxSEuLg7jxo0D5xzW1taYMmWKMJHKy1UypY8ePRrGxsZo0aKFVjRXIuNs2bJF/L5/+eUXrWOSFoGBgeLlupGRkVhQIEXRtbe3x8iRIxNFfiBSJy3GTTLpZg7yMjx8+DB27doFIG1t7ooVK4Qud+/e1Vsecwq0qEM5JNRizpw5oqzHjRunlS6pNoNzDjMzM63/li1bFsuXL0doaGim3kt2QSrnz58/a5W79HuPjY3Fd999J4wPV69eFdsKu7i4YPv27cK8XqxYMTEhSfXl25DKX9oFLaEeUVFRaN26NTjnKFSoEP755x+xxea1a9cwY8YMYV4vW7Ys7t+/r3U+kTTyhavJjat79uwJzjlsbGyEqSeluZLw8HDMmDFDLOhMSgNvb2/88ccfYhHPgQMHMngnWR/SQjmQFsqBtFAmfn5+4JzD2NgYq1at+iZjqEajEWk3b94srqdSqdCsWTOcPHlSKy2RNKSFciAtlANpoVzGjBkj5jdOnDghPler1fDz80O7du1EtMoTJ04gLi4O58+fh4WFBczNzWnHMx1DeigH0kI5kBaGRT42k++oNXXqVBQuXBicc1hYWOCvv/5K8hyJly9fwtbWNtG8O5F2SAvlQFooC9KDMARkYCeIHAxNOimXL1++iAFi+fLl0xwp//z582jUqBE457C0tEy04o1IG+7u7mjatCksLCzw4MGDVNNHR0ejffv2cHBwwK5du1C7dm1899136N+/P1xdXSm6ro6QftsVK1YUEe2Te47JDXOSMZHIGGq1Gmq1Gs2bNwfnHCVLlhRR3+QvzqV/X716FQULFoSdnR1GjBiBPHnywMbGBnXr1sW6devw+vVrg9xHdiI8PBzPnz9HREQEAO0XT2TSzTyuX7+OkiVLIn/+/KJOJIdkTjlw4AAsLS1hbGyMixcvZkY2cwxUL5RBXFwcvnz5gnLlyoFzjipVqghNkmoz/vnnH1hbW6N06dKYNm0aChcujDJlyqBt27ZwdnZGSEiIQe4ju+Dj44MxY8YIs7OEVP5+fn7CNJ07d244OjqiVatWsLOzg4WFhagz7dq1w6tXrwxxC9mKJ0+eoHv37on0kJ5Dvr6+Qg9zc3MUKFAAtWrVQu7cucXCDktLSwwZMgQfPnwwxC1kSVKa/wgJCUG1atXAOUf37t3TXK4PHjxArVq1sHHjRkRHR2t9h7e3NyZNmgRTU1NwztG1a1cEBQVl+D6yA6SFciAtlANpoUw8PT2xfv16vH37Vnz2LcZQAPjjjz9EVGPOtXdRkb8QJpKGtFAOpIVyIC2Uh0ajQffu3cUigM+fP0OtVmvNOanVanTu3FmYQ48cOYJRo0aB8/jd52jOXHeQHsqBtFAOpIVykJf51KlTUaBAATEHu2TJEnEspbFi48aNwTnHr7/+mmpaInlIC+VAWigL0oPITMjAThAEoUCuX78uGv/Fixcnm07ewD98+BD9+vUT50nR14n0ExgYKDpTo0ePFpG+k0LSQIpa9d9//9Gkrh549+4dihQpAmNjYyxduhRA0tHGpC2N5s+fDzMzM1hYWMDT0zNT85rdadu2LTjnqFSpUqItpOS8e/cOlSpVQt68eXHp0iW8efMGL168oIGJjggLC8P69evRuXNn7Nq1C2FhYeKYi4sLmXQzkUePHqF69ergnGPOnDkIDw9P9ZzVq1cnGeWEyBhUL5SHtO1s48aNASRf1v7+/nBwcICtrS0eP36MoKCgFPtfRNqJjY3FmjVrYGRkhE6dOiW7GCA6OhoTJkxAkyZNUL58eRHlWzK2WVtbp2lhJ5EyUVFRmDx5Mjjn+Omnn5L9navVasycORMdOnRA48aNUahQIS09qlWrRos0dcijR49E+7B69eo0nSP1ad3c3PD582etYwmNoekxnOZ0SAvlQFooB9LCsCS1+DK9xtBp06YJY6ijo6PQc8aMGUl+D5E0pIVyIC2UA2mhPLp16yaC8CTcWUVejl26dAHnHHny5BFlvn37dq30Sc2jkxbpg/RQDqSFciAtDE/Cdtja2hpGRkbgnKNWrVpiZ5WU3ls8ffoURYsWBeccM2fO1HuesyukhXIgLZQF6UFkNipGEARBKI6YmBhmZmbGLC0tWZ06dRhjjGk0Gq00ABjnnDHGmKurK9u2bRvbt28fY4yx7t27s8WLFzPGGIuLi8vEnGcPrK2tWefOnZmFhQU7c+YM+++//5JNK+ny9u1bxhhjr169YqampomOE9+ORqNhsbGxLDo6msXFxbE8efIwxhgzMjLSSgeAmZiYsA8fPrC9e/eymJgYZm9vz+zs7AyR7WxLsWLFGGOMffr0iX369CnJNHFxcczW1pYVLlyYRUZGstDQUGZnZ8dKlCjBOOdUL3SARqNhu3fvZs7OzmzNmjXsxIkTjDHGvL29Wc+ePZm7uztjjLFKlSqxQ4cOsfLlyzONRsNUKur+65oyZcqwNm3aMM45O3jwIHv48GGK6f39/dm///7LOOcsX758zN7ePpNymv2heqE8HB0dGWOMBQYGsk+fPiVZ1nFxcSxfvnzM0tKSBQcHs+DgYFagQAFmZWXFGKO+VEZRqVTMxsaG5cqVi7m5ubH79+8nSqNWq5mpqSlbunQpu3btGtu6dSurXLkyy507N4uNjWUqlYodPnyY1axZkwEwwF1kH4yNjZmjoyPLlSsXu3fvHnv06FGiNLGxsczIyIjNmTOHnT59mq1YsYJZWloyMzMzFhsby2xsbNjWrVtZ+fLlSQ8dkS9fPpYvXz6WK1cuVqhQIcZYvA4pIY3Fy5UrJ8YnjDHm4+PDtm3bxlavXs1iY2NZt27d2LZt25iNjY3+biAbQVooB9JCOZAWhkWae4qLi2NGRkYsMjKSLV26lO3evZv5+/uzwoULs3379rFWrVoxxuLnpjQajThv+vTpbOHChYxzzurXr88WL17MNmzYwBhjbP78+WzatGnie6hdTxnSQjmQFsqBtFAezZo1Y2ZmZuzz58/szp07WuUmnxc/evQoK1u2LAsPD2eMMTZy5EjWr18/xli8TvL3f4cOHWKbNm1ijJEW6YX0UA6khXIgLQyL1GYzFt8Ob9y4kX3+/JmVLl2aMcZY/vz5xbgvqbl0qWwfPnwovAnSe1sifZAWyoG0UBakB2EQ9O+RJwiCINLL4cOHxarmx48fJzouX8l2//59DBo0SKx+btOmDf7777/MzG625N27dyLSdOPGjeHq6iqOSSvKY2NjAQBeXl4oXLhwuqJhEemndevW4JxjyJAhiIqK0jomaRIaGorp06cjb9684JyjZ8+eiIyMpKjfOkAqQ2dnZ9jZ2cHa2hoHDx5MVLbS/798+RJ2dnbgnGP+/Plaxwjd4OrqioIFC4rVzkuWLEH58uUpwrQBeP36tdi5o2nTpnB1dU3UVgDAp0+fsGHDBvGMat26taGynG2heqEMpN///v37UahQIRQsWBCnTp1KlE7SwM3NDTY2NuCcY+vWrVrXIDLO+/fv0a5dO3DO0aRJE7i4uIiyTxgVycPDA7Vr14alpSU45zA2Nsbhw4cBkCa6IiAgAK1atRJtxrNnz0RbIX8uRURE4PLlyyJKCecc5ubmuHHjRqK0RMZ4+fIl8uXLB8455s6d+83XoajGGYe0UA6khXIgLZRDREQEJk6ciNKlS6c7qnHDhg1x9OhRkW7VqlWifV+0aFGm30tWh7RQDqSFciAtlMHLly/FPFTTpk3x+PFjfPnyRSuNq6srJk6cKMr4p59+0nr/JB/rnTx5Eg0bNgTnHOPHj8+0+8gukB7KgbRQDqSF4UjYDkvjvPLly2PLli2oUKECevXqlez50tzsnTt3xO6ZzZs3T7TrFpE6pIVyIC2UBelBGAoysBMEQSiQN2/eoEKFClCpVNiwYYMwNCScZDx58iR69uwpBpAtWrTAhQsXaHsuHfH8+XOULVtWDOKvXLmSqHPl5+eHqlWrgnOOYsWK4d69ewbKbfZFo9EgLi4Oc+bMAeccNWrUwNOnT0UHOCYmBgDw4cMHLFu2TEy8mJqakh56ICgoSGtxh5ubm5iskrQICAjAL7/8As45LC0tcezYMQPmOHvj7u6OAgUKJNrKsWrVqnBzcwNABrfMwtfXV2zP3LhxYxw/flzLEPL06VMsX74c1tbWYovOq1evAiCNdA3VC+UQGBiIFi1aCOO0q6ur6KdKbcarV6/QsmVLcM5RqFAh3L5925BZzrb4+fmhZMmS4JyjQYMG2LdvH969eyeO37x5E2vXrkX+/PlFnTEyMoKzs7MBc5198fX1RYkSJcA5R7169bBt2zb4+/uL46dOncL48eNFm2FiYgJ7e3tRP+gZpjukMcWwYcOgUqnQvn17vHz5Mt3XIWNoxiEtlANpoRxIC2URFBQk5gDt7e2/yRgqpY2JicHq1athY2OD6dOnZ+p9ZAdIC+VAWigH0kI5eHh4oHjx4uCco0qVKhgzZgyOHTsGZ2dnjBo1SsyTcM7Rv39/rYBUcp1OnDiBRo0aifZ7xIgRAL6OB2mRedogPZQDaaEcSIvMJyVT6PHjx6FWq1GoUCGULVsWvr6+Im3Csnz48CHq1q0LzjkKFiyIJUuWiHl2Im2QFsqBtFAWpAdhSMjAThAEoUDCwsLQt29fYYJ78uSJWP0sdRzmz5+PatWqiQFku3btcPXqVWr8dYynp6eIeli+fHkMHDgQly5dwqlTp7Bjxw4UKVJETPa2a9dOywhE6JaXL1+iSpUq4JyjWbNmOHnyJEJCQhAWFgYfHx/069cPpUqVEtFCd+zYAYAMPvrAx8dHTG41adIEhw4dQlBQEOLi4vDq1Sv8/PPPsLe3FwMTLy8vQ2c5W+Pu7i4iF5uamsLe3l5MKMqjfxP6x8PDQxgSCxUqhEqVKqF///7o3bs3HBwckDt3bnDOUapUKaxcuRKfPn0ydJazLVQvlIO3tzeKFSsm+rV79+5FQEAAPn78CDc3N7Ro0UIsNKhVqxZev35t6CxnWzw9PVGmTBlwzpE3b17Y2dmhadOmaNGiBczMzGBhYQHOOWxsbFCjRg1hlqaXTfrB09MT5cqVE5HV8+XLh6pVq6JGjRrgnMPMzEwsku3WrZvYmYv6tvrh4MGDMDc3B+ccK1eu1NrxKbU6QMZQ3UJaKAfSQjmQFsrBxcUF5cqVw5kzZ8RnUuAFiZSMofJ0MTExePDgQeZkPBtCWigH0kI5kBbKwdfXF126dEGhQoXE+wpppzPpr1+/fimaQps0aQIjIyPkypULbdq0gZ+fH16/fo2PHz8meQ6RPKSHciAtlANpYRhmzpypZQqVBwDr2bMnVCoVVqxYgcjIyETn3rx5EzVq1ICJiQk45+jSpQuN7TIAaaEcSAtlQXoQhoAM7ARBEApFHiWxdu3aGDp0KPbs2YOhQ4fiu+++0xpA9unTBy4uLmRm0BPe3t6oV68ejI2NxeQu5xy5cuUShpNKlSrh0aNHhs5qtke+oMDGxgalSpVC1apVxRZEkj7r169HRESEobObrfHw8BCGxHz58sHR0RFNmzZFwYIFhRbGxsYiciuZ3/SLm5ubMOtWqFABzs7OZI42ED4+PmjdurWY+JXaDOm/VapUwfr16xEUFGTorGZ7qF4oB3lUn9y5c8POzg7ly5fXeiliYWFB0dczAT8/P/Tu3RsVKlTQGk9If/Xq1cOSJUvE4jMaX+iX58+f45dfftFamCz95c2bF61atcLhw4fFwg7qT+mXGTNmiPJfunQp/Pz8xLHkyj6hMbRbt24IDg5O8RwidUgL5UBaKAfSQjnI55s0Go1WWc6ePTvFqMbJQYtsvw3SQjmQFsqBtFAOHz9+xJMnT7Blyxbs2rVL7BzLOUffvn1TNIU2bdpUvI+SFjhLc4tNmzbF5s2bkzyXSB7SQzmQFsqBtMhc5s+fL8oqoSkUAHbs2CHKc/r06XB2dsbnz5/h7OyMZcuWCUMo5xwtW7ZEQEAAAJq//RZIC+VAWigL0oMwFGRgJwiCUDCenp5ag0V5g29sbIxSpUrRFo6ZxJs3bzB9+nTUq1dPy1hSvHhx9O7dG0+fPgVALwAzAx8fH7Rr104Y2aU/a2tr2Nvb4+TJk6RDJuHj44M2bdrA1tYWnHMYGRmB8/hox3nz5sXp06cNncUchZubG/Lnzw/OOapXr479+/fj8+fPhs5WjiQwMBBOTk7o3r07SpYsCXNzczRo0AD9+/eHr69vkqvSCf1A9UI5+Pj4oEOHDmLxk/RCI1++fKhYsaIwr9NElv4JDQ2Fj48Pli9fjilTpmDUqFFYs2YNjh49CrVaLfpR1J/KHMLDwxEQEIDt27dj+fLlWL58OZycnHD37l1DZy3HIH/uTJw4UYwvOnfujIULFyZ7nre3NyZMmCDG6b179051oVRCExGhDWmhHEgL5UBaKI/kymjr1q2wsrJKkzE0rX1e0iNlSAvlQFooB9JCmUyZMkW04T/++GOaIhpzztG2bVvMnTsX58+fx5IlS/DDDz+I68yePVucR1qkD9JDOZAWyoG00D8eHh6wsbFBoUKFcPz4cfG5vHwnT56s9e7bwcFBay7d3t4evXr1EqZQWhzwbZAWyoG0UBakB2EoOAAwgiAIQrG8fPmS7dixg125coX5+PiwXLlyMUtLS/bbb7+xqlWrsmbNmjHGGNNoNEylUqX7+gAY51z8v0ajYZxzrc8SpsmpxMbGstjYWObs7Myio6NZWFgYa9WqFStcuDCztramcspEPnz4wNzc3NiZM2dYdHQ0i46OZm3btmVVqlRhJUuWNHT2chTv379n169fZ8eOHWMBAQFMo9Gwpk2bsu7du7OqVatSvchkPDw8WNOmTVlwcDArUaIE27RpE2vTps03tQ+Ebvj8+TMLDw9nhQoVYsbGxobOTo6E6oVy+PDhA3vw4AE7cuQI+/jxI1Or1axTp06sSZMmrEyZMt/cnyV0C+mgLOLi4piRkZGhs5HtkZfzypUr2ZYtW5i3tzfLly8fO3z4MGvSpIlWO+7j48O2bt3KVq9ezdRqNStbtixbvnw5K1u2LOOcM5VKxaysrJipqSlTq9XM0tKSmZqasi9fvrBcuXKRrilAWigH0kI5kBbKJzw8nPXp04edOXOGlSpVii1YsID16NGDMZb03KvU13r+/Dl7+fIlu3jxIvv8+TPLlSsXa9asGXN0dGRly5ZljFFfIL2QFsqBtFAOpIVhCQwMZEWKFGGMMfbzzz+zESNGsFq1ajHGtMvv5MmTbPny5ezWrVtMo9GwESNGsLVr12pdKygoiO3evZtNmjSJMcbY2rVr2YgRIzLxbrI+pIdyIC2UA2mRefj6+jIPDw/WsWNHxtjXdlhezvPnz2dOTk7M09NT69wOHTqw77//nvXo0YNZW1tTG5xBSAvlQFooC9KDMARkYCcIgsgCaDQaptFo2MuXL5m1tTVTqVTM2tpa63h6TSYJz9m9ezd7/vw5u3PnDlOpVKx169asUqVKrG3btowxMrETWQf6rRoOtVrNjIyMRPmTFobBw8ODVapUiRUoUICdO3eO1ahRw9BZypEk9/snY6hhoHqhfKjNMBz0XFIWVBcMh3xC/e7du+zp06fMwsKCderUiVlZWYl0Pj4+bNu2bWz16tUsNjaWFShQgIWEhDBTU1OmUqmYWq1mGo2G2djYMGNjYxYZGcny58/PrKysWExMDDt58iRzcHCgupcCpIVyIC2UA2mhbJ48eSLGGDNmzGBz5sxhjKXcz9q+fTvbuXMne/DgAYuJiRGfc85ZtWrV2MCBA9nQoUMZY2QQTQ+khXIgLZQDaWF4XF1d2fr169nPP//M6tevzxhL2RQ6ceJEtmTJEpFOWoDGGGOhoaFszJgxbO/evax58+bswIEDrGDBgoa5sSwK6aEcSAvlQFpkPgnbYXl5e3h4MB8fH/bixQuWP39+VrBgQda6dWsxb0jjNd1CWigH0kJZkB5EZkEGdoIgiCyArk0MUsciNDSUHT16lB05coSdOXOGqVQqptFoGGPxE5H58uVjQ4YMYfPnz9dLPrI6VB6GRV7+UneG9DAMCesC1Q3D8+LFCxYQEMBq165NUb8J4v+heqEMqM0gCELJpDaxntAY+tNPP7GaNWuySZMmMbVazYoUKcLCwsJYVFQUs7CwELtFMcaYkZERi4uLY+bm5szNzY05ODhk0l1lTUgL5UBaKAfSQrkEBgayJk2asLdv37J169axAQMGJDJ0yvWbMmWKMPwULlyY1a9fn5UuXZoFBASw27dvMz8/P8YYYzNnzmSzZ89OdD6RPKSFciAtlANpoQyio6OZmZkZYyx9ptCkFgfMmTOHzZkzh1lZWbH//vuPlSpVKvNuJJtAeigH0kI5kBaGJ7X29Fvb26Tm4GkBWsqQFsqBtFAWpAehD+itPUEQRBYgJVNPSls8JoXUyAcEBLDx48ezW7duMX9/f8YYYwULFmTVq1dnZmZmLCAggN2/f58tXLiQRUdHs2XLlpG5KAFUHoZFXv6khWFJWP6kh+FxcHAgwwFBJIDqhTKgNoMgCCWTcCwtH2/7+vpqGUO7dOnCNm7cyA4dOsTUajUrWbIku3HjBouOjmbh4eHM3NycRUZGsg8fPjBjY2MGgH38+JH5+fkxPz8/apNSgbRQDqSFciAtlIuFhQWrXLky8/HxYTt37mStWrVixYsXF8fl87WTJk1iy5cvZ4wxlitXLjZp0iQ2duxYkfbRo0fs77//ZkuXLmVz585lefLkYePHjydjaBohLZQDaaEcSAtloCtTKGOMmZiYMMbizaYRERGZkPvsB+mhHEgL5UBaGJ6UxnxJHU8L8mtcunSJ+fr6soEDBzIjIyNagJYCpIVyIC2UBelB6AUQBEEQWRaNRiP+7evrK/6tVquTTC99/urVK9SsWROcc/E3f/58XL58WaR98eIF1q1bB5VKBc45Nm3apJ+byEHExcUZOgvE/5NcHSEyH9JCWcTGxho6C8T/Q1ooB9JCOZAWyoH6tcqC+lP6x8PDA5MmTUKuXLnAOUf37t0RHBwMANi+fTs457Czs8OnT58QFxenNVaX/zulz4i0QVooB9JCOZAWysDX1xclSpQA5xytW7eGv79/ojRLliwRc7EFCxYE5xyFCxfG8+fPtdKFhoZi6dKl4JzD3t4ed+7cyaS7yB6QFsqBtFAOpIXyOHToEFq0aAEjIyNwzjFp0iRxLKUx3uPHj1GjRg1wztGuXTtERkZmRnazPaSHciAtlANpkb24efMmevXqBc45+vbta+js5GhIC+VAWigL0iPnQksUCIIgsjDSKrSrV6+y1q1bs4kTJzLGWJKrnaVV0K9evWLNmjVjjx49YpxzVrhwYXbu3Dk2bdo01rx5c5G+RIkS7Oeff2ZDhgxhnHN29erVTLmn7IxKpWIajYadOnWKBQYGGjo7ORppa+xdu3axt2/fGjo7ORrSQlkYGxsztVrNVqxYwV6/fm3o7ORoSAvlQFooB9JCOVC/VllQf0r/eHh4sGXLlrGoqCj2v//9j23bto3lz59fK42JiQnTaDSMsdR3i6LdJ74d0kI5kBbKgbRQBo6Ojuyff/5hNjY27OLFi2zSpEksLCxMHL969Spbu3YtY4yxxo0bs5kzZ7JmzZqx9+/fs/r16zNvb2/GWHwk5Lx587L//e9/rF69euz169fs2bNnBrmnrAppoRxIC+VAWiiL8PBw9ueff7IrV66kK6Lx69ev2cGDB5mPjw9jjLE6deqwXLlyZVq+syukh3IgLZQDaZG9uHfvHps3bx5zdnZmjDF29+5d9uTJEwPnKmdCWigH0kJZkB45HEM76AmCIIiMcf78eTRq1AimpqbgnGPRokWJ0kgREl+9eoUyZcqAc45cuXKhTp06uHfvHoDkoyutX78enHOYmprixYsX+ruRHMKqVatgYmKC77//Hq9evTJ0dnI048ePB+cc3bp1Iy0MDGmhLKSVzT/88APpYWBIC+VAWigH0kI5UL9WWVB/Sv/8+OOPaNGiBT58+ADg664Q0pi5fPnyiI6ONmQWcwykhXIgLZQDaaEc3N3dUalSJUyZMkXr8w0bNsDc3Bycc6xYsQIA4OPjg2bNmokox15eXgC+ztMOGjRIRNWPi4ujXVfSCWmhHEgL5UBaKAc3NzfkyZMHI0aMEJ+lVIavX7/GokWLYGNjA8452rRpI47R7ikZh/RQDqSFciAtsg+BgYGws7MD5xzNmjXDiRMn8OXLF0NnK0dCWigH0kJZkB45GzKwEwRBZGEiIyPRokULsa1juXLl8PDhQ6000oAwICAADRo0AOcc5ubmaNy4MR49eqSVRo70ouvUqVPInTs38uXLRwZ2HfDw4UOh1//+9z8ylxiQu3fvim3vyARnWEgLZXHjxg2xKIr0MCykhXIgLZQDaaEcqF+rLKg/pT/kL2cjIiLEv6Vx9MaNG8E5R+nSpREWFpbp+ctJkBbKgbRQDqSFMgkJCRH/jouLQ3R0NJo0aQLOOZo3b66V1sPDA82bN09kEAWAiRMngnOOX375JdPynt0gLZQDaaEcSAvlEBgYKP6dHlNoo0aNEBQUlOp5RPogPZQDaaEcSIusjxTo0MvLCx07dsTBgwcRFRVl4FzlTEgL5UBaKAvSg1AZOgI8QRAE8e3kypWLbdy4kTHGWKFChdiRI0dYjRo1tNJwzllYWBibM2cOe/ToEWOMsQoVKrC1a9ey6tWrMwBJbg1sbGzMGGPsxIkTLDIykpmYmNAWXxkEAKtRowa7ceMGMzU1ZUeOHGFjxoxhr1+/NnTWchwajYbVrVuXXbt2jZmYmLCjR4+SFgaCtFAWGo2GNWrUiF25coX0MDCkhXIgLZQDaaEcqF+rLKg/pV+MjIyYRqNhjDFmYWEhPpfG0dK22RqNhsXGxjK1Wp35mcwhkBbKgbRQDqSFMsmXLx9jLL7cVSoVA8CioqIYY4w5OjoyxpjQoly5cmzz5s2sWbNm7P3796xJkybszZs3jDHGLl++zBj7qi2ATL2P7ABpoRxIC+VAWiiHQoUKMcYYi4uLE212Qt6+fcv27t3Lli1bxj5+/MgaNGjA9u3bxwoUKMAAJHsekX5ID+VAWigH0iLro1KpmFqtZmXKlGEHDx5k33//PTMzMzN0tnIkpIVyIC2UBelBkIGdIAgii1O+fHnm7e3NLl26xCpVqqR1THqBdefOHXb16lUWHR3N8uTJwzZu3Mhq1KiRrHldOs/Hx4e5ubkxxhirWLEis7CwEMeI9MM5ZxqNhjVs2JBdvnyZGRsbs6NHj7IRI0aQuSSTUalUQosrV64ILYYNGyYm4InMgbRQFpIeDRo00NJjyJAhpEcmQ1ooB9JCOZAWyoH6tcqC+lP6R6VKPIUqjY0ls4+ZmRmzsLAQi8EJ/UBaKAfSQjmQFspF0sbIyIhZW1szzjkrVqyY1jHGEhtEa9asyYYPH86ePXvGChUqxH7++WeD5D87QVooB9JCOZAWyiElU+iePXu0TKFOTk7MwcGBMcaSfL9HZBzSQzmQFsqBtFA+KS0kk8aBFhYWzNTUNLOylGMhLZQDaaEsSA8iOcjAThAEkQ0oVaoUq1ixYqLPpUnGXbt2MXd3d8YYY3v37mX169dP0bwunbdz5052+/ZtxhhjvXv3ZpaWlkm+FCPSjtx4dfXqVcYYYydPnmR//vkni4mJMXDuchZJaeHs7MxOnDhBEckyGdJCWSSlx5kzZ9itW7doEVMmQ1ooB9JCOZAWyoH6tcqC+lOGIzY2ljEWrwGNlw0LaaEcSAvlQFooA2NjY2Zvb88AsDNnzrD3798n0kMyiDZt2pQFBQWx7du3s5iYGNagQQNWvHhxxhgZgHQBaaEcSAvlQFook9RMoUTmQnooB9JCOZAWykHu+5AWMcfFxRkySzmWzNaCdsBJHkPUC9IjeTJTD0kHeg5mHWjGkiAIIptz+/ZtdvLkScYYY0OHDmXt27dnjCU9mQhATExu3bqVLVq0iDHGWMeOHdn3338v0sgJCwtjkZGRWtcgUkZuLrl16xZr27Ytq1WrFq0kNAAJtRg4cCCrXbs2RSQzAKSFspDrcfv2bTZ37lxWu3ZtMjwYANJCOZAWyoG0UA7Ur1UW1J/KXKRnTq5cuRhj8WPhL1++ZHhiXD6mpvF12iAtlANpoRxIC+UglVOPHj1YkSJF2Nu3b9mdO3eSLL9y5cqxLVu2sEaNGrHY2FhWunRpNnHiRGZra5vZ2c6WkBbKgbRQDqSFMnn16hXbt28fmUIVAumhHEgL5UBaKAe5KfTy5ctsxIgRzMvLixkZGVHAl0wmM7UIDw9njNECwuTI7HoREhLCgoKCGOecTNNJkJl6fPz4kW3ZsoW5uroyIyMj0iOrAIIgCCJbc+jQIXDOwTnH3r17k02n0WjEvw8cOABbW1twzlGkSBFs2rQpyXOePn2KcePGYdy4cbh69WqS1yKSJy4uDgAQGhqaoetQeWccSYuIiIgMXYe0yDikhbKQ9IiJifmm8yUdSI+MQ1ooB9JCOZAWyoH6tcpCV/0pAPj06RPWrl2Lffv2ISgoSHxOWn1l27Zt4JyjYsWKiI6OzlDZqNXqNH1GJA1poRxIC+VAWiiHoKAgdOzYEZxzNG7cGC4uLsmmdXd3R8eOHeHs7JyJOcw5kBbKgbRQDqSFclCr1Vi1apV4r9ewYUM8f/7c0NnKsZAeyoG0UA6khTK5du0afvrpJ6GLv7+/Tq8vzTdqNBrxb+m/hDb61sLPzw9TpkxBv3798ODBAzEnT3okRt9aAEBwcDBmzpyJSpUq4eHDhwBoriQ59K2HRqPBsWPHwDmHsbExnj17BoD0yApwgMJkEARBZGfWrVvHRo8ezSpUqMBu377N8ubNq7XCjTHGNBqNiMx0+PBhNnXqVObn58c0Gg0bMmQI27hxI2OMJTrv+PHjrHv37owxxipVqsQGDhzIRo0alWRaInXSU2ZyzRiLX9X56dMn9uHDB2ZpaclKlizJzM3N031dIv0k1OLVq1fs7du37MOHD6xQoULM0dGR2djYMMZIC31DWigLuR5qtZp5enoyLy8v9unTJ1ayZElWqlQpZm9vzxgjPfQNaaEcSAvlQFroF+rXZg+ioqLY4cOHWf/+/RljjA0cOJB17tyZderUiTFGesj5/fff2cmTJ9m7d++YkZHRN10jLi5OnDt8+HBmYWHBli1bxhijsk4PpIVyIC2UA2mhHPz8/FiLFi3Yq1evWOPGjdns2bNZnTp1WJ48eRL1iSIjI5mFhQVjjMpYH5AWyoG0UA6khXLw9PRkFSpUYBUqVGCnT5/WWURjtVrNjI2NE+lJpAzpoRxIC+VAWigLPz8/NmTIEHbx4kUGgJUvX56tXLmStWvXLsPXTtjOh4SEsJiYGGZrayt0Ir2+ok8tGGMsODiYrVu3ji1btoxFRUWxihUrsqZNm7JJkyYxBwcHrbF7TkffWjDG2IcPH9i2bdvYzp07mbe3N8ubNy+7fv06q1KlCmmRgMzQQ/qeX375hd24cYNZWVmx69evs8qVK5MeSidTbPIEQRCEwVizZg0457CxsYGPj0+i4/LIS05OTnB0dISJiQk45/jhhx/EseRWbG7fvh3ff/89VCoVOOeYNm1aktcmdIdci5s3b2LFihUoUaIEChQoABMTE6hUKnTr1g3r168X6UgL/XPs2DGMHz8eVlZWsLCwECtH27Rpg1WrVol0pIX+IS2UxZYtW9C7d2+YmprCyMhIKyrHsmXLRDrSQ/+QFsqBtFAOpIVhoX6tsomJicGuXbvQoEEDcM6hUqlQqlQpzJw5U6TJ6ZF95NFbNm/ejNevX2f4Nzp9+nQULlwYnHP069cvo1nMMZAWyoG0UA6khTLx8PCAvb09OOcoX748Jk6cCG9vb0NnK0dCWigH0kI5kBbK4fnz5zqNSvnmzRusWrUKjx8/BkBjufRCeigH0kI5kBbKYtSoUeCco0GDBnB2dsaXL190dm0PDw+sXr0aHTp0QOnSpVG4cGG0atUKs2bNgp+fHwCKcCxHn1oAwNmzZ7F48WKULl0aZmZm4JyjUqVKcHV1BUBayNGnFsHBwVi0aBHKlCkDzjly584Nzjmsra0p8ncy6LtuSPj6+qJt27akRxaCDOwEQRDZnGfPnsHR0RE2NjY4duyYeFEVGxurlW7t2rXImzevMO507NhRHEtti2AXFxf88ccfwsQ+evRocYwMJvpjyZIlqFSpklhwwDmHubm52BKHc45x48aJ9KSFfoiKisKkSZOQN29eoYWJiQny5s2rpcXYsWPFOaSFfiAtDI9Unmq1Gp6enhg4cKBW2VtZWaFgwYJQqVTiszFjxiQ6n8g4pIVyIC2UA2mhXKhfq1xiYmIQGBiIIUOGCBM75xxDhgwxdNYUgy4nvufPnw+VSiXG5SNHjqTfezogLZQDaaEcSAtl4uPjg1atWiFXrlyi77Ns2TIEBAQYOms5DtJCOZAWyoG0yH68e/cOq1evFuNryRxKGAbSQzmQFsqBtPh25Eb/FStW4O+//0ZUVNQ3X08+xnv79i2cnJyQP39+0S+Q5galvwoVKgjjdE5fdKBrLVLD398fy5YtQ61atcA5R4ECBUiL/0ffWiQ0r+fLlw9nzpxB586dyTSdBJldN4D4MQ2Z2LMOZGAnCILI5nz48AHt27cH5xxNmzbFf//9JzoDGo0Gly9fxsiRI7UGGr169RLnJzS6y5EPYD5+/Ij169eLQcu8efP0d1M5nODgYAwdOlRLs5YtW2LmzJm4efMmdu/ejQkTJggtZs2aZegsZ0vi4uLw8OFD9O7dW0uLbt26YceOHXBzc8PRo0cxffp0ocXcuXMNne1sCWmhDKQ2ITo6GsePH0e7du2EFgULFsSvv/6KS5cu4fXr1/j3338xb948oceCBQsMnPvsBWmhHEgL5UBaKBPq12Yt5s+fjxIlSgjjIumhe168eAEbGxtRvjn9ZZMhIS2UA2mhHEgL3RIQEIDVq1ejYcOGMDU1xcGDBxEWFqaz69PigrRDWigH0kI5kBbZh7CwMMyZM0e04ebm5pg1axZiYmIMnbUcCemhHEgL5UBaZBy5nyMj5kx5+3zr1i2MGDFCRPi2tLRE0aJFMWHCBCxatAi//vqrME7b2dnB09MzQ/eQXdCVFqkhafXlyxc8ePAArVu3BuccVatW1enOCFkZXWshlXlS5nUXFxcA8bsVtGnThkzTSZBZdUMOmdizDmRgJwiCyAH4+PigePHi4JyjYsWK6Nq1KyZPnoyWLVvC0dFRmEXKlCmD8ePHi/NSMq8nRWhoqDD7ODo64sqVK7q+lRyPr68v+vbtKzQrUaIEJk+enChdeHg41q1bB5VKhSJFiuDSpUsGyG32JTY2FpcvX0aHDh2EFg0aNMDKlSsTpY2IiMDq1athZGSEUqVK4e7duwbIcfaFtFAG0qA9KioKu3btQsOGDYUe3bt3x/79+xOdExkZiWXLlsHIyAiVK1cWUQGIjEFaKAfSQjmQFsqE+rVZi7dv32L+/Pki2lKFChWwfft2vUdKyUlIE+fe3t5YuHAhTaQbENJCOZAWyoG00A8ajQYxMTF4+vSpzrbOfv78OV69egWAXsqmB9JCOZAWyoG0yD4sXLgQnHMUKlQIs2bNwosXLwydpRwN6aEcSAvlQFoYHrl5/dy5c+jSpYvYLbNGjRqYOXOmljE6JiYGLi4uaN68OTjn+OGHHxAaGmqIrBMAHj58iMqVK8PY2BizZ89GXFwcLTrXA4GBgVi6dClKliwJzjlsbGzw9OlTAF/7tmSaVhY+Pj5aiwoS6kUoAzKwEwRB5BC8vLxQvXp1sUpW+pOi5/Xv3x8HDhwQ6VNqsCMiIsS/E0bK+O+//1CiRAmoVKokDaTEt+Pv74+ePXsK7Zo3b46dO3eK4/KBiEajgZeXFypUqADOOTZs2GCgXGc/4uLicO3aNXz33XdCiz59+uDs2bMijVqtFnVDo9Hg2bNnsLOzA+ccu3fvNlTWsx2khbKIjo7Gvn37ULt2baHHuHHjtLZ6TNi23L17F3ny5AHnHEeOHMnsLGdbSAvlQFooB9JCWVC/Nmvh7++PmTNnwtLSEpxzVKpUCfv379dpBEYinvQuIif0B2mhHEgL5UBa6B5dRyB+/vw5hg0bhuLFi+P27ds6vXZ2h7RQDqSFciAtshdLlizBqFGj8PLlS0NnhQDpoSRIC+VAWhgOeZt/5swZtGzZEsbGxuCco3Xr1rhw4QLCw8MBaM+hx8XFYd++fTA1NUWpUqXg5+eX6Xkn4omOjkb//v3BOUfjxo0NnZ1sSXR0NFavXg1bW1twzmFmZoZTp06JY/IFA3ITe+7cubXeQxGZj6+vrwiGaGVlhSdPngAgE7uSIAM7QRBEDuL169dYt24dunbtioYNG6JGjRqYMGECjh49qpUupdWYXl5eGDlyJE6ePJlsmi5duoBzjjp16iA6Opq2g8wAkhYRERHo16+fMPl07NhRdIjl6RLSokULcM7RtWvXFNMRqSP9jt3c3NC5c2ehxe+//4779++LdMmVsbSN2qBBg1JMR6QOaaE8NBoNzp07h8aNGws9ZsyYgdevX2ulSQrJkDhz5kwApEdGIS2UA2mhHEgLZUD92qyJv78/Zs+eLczrVapUgZOTE5nXM4D8t0tjZcNCWigH0kI56FsL0ld/eHt7Y/z48WIXTkdHRwQGBho6WzkS0kI5kBbKgbQwHHJjDkXGNTykh3IgLZQDaaEcrl69io4dOwrzeqdOnVI1pb948QI2NjbgnOOvv/7KpJwScqQ6tGbNGnDOYWFhAU9PTwPnKnvy4sUL9OrVC5UrVwbnHPXr18fVq1cBxM+nyOc8fH190apVK3DOMXbsWAoKkMkkNKfv3LlTBDm0tLQUJnZCGRgzgiAIIsdQtGhRNmLECDZixAgWFxfHNBoNMzExSZROpVIleT4A9vTpU7Z+/Xq2fv16dujQIfbDDz8wAIxzzuLi4piRkREzMzNjjDEWExPDOOeMc67X+8quABBaTJ06le3bt48xxli7du3YqFGjWJs2bRKlk5/LOWdqtZoxxpiFhQVjjJEW34hGoxFlvGTJEubs7MwYY2zAgAFs5MiRrGrVqoyxxFoAYIwxFhYWxiIjIxljjFlbWzPGSItvhbRQFpIe79+/Zxs3bmQ3b95kjMU/s0aMGMEKFSok0srLWTrPw8ODffz4kTHGWMGCBRljybdBRMqQFsqBtFAOpIVyoH5t1uTly5ds586dbPny5SwiIoJVrlyZ/fHHH6xLly7M0tLS0NnLksj7ssHBwaxAgQJiHE1kLvrWQn79pP6f+Epm1AupLUnqO4mvZIYWkg5hYWEsT5489AzUIb6+vmzlypWMMcZKlizJBg8eTL9zA0FaKAfSQjmQFpmLvO9jZGQk/j9v3rwGzlnOhPRQDqSFciAtlIefnx/bvXs3+/fff1lcXBzr1KkT2759u9YcelK8ffuWffr0iTHGmLExWRANgTSmDg4OZowx9uXLFxYVFWXILGVLNBoNK1GiBNuxYwe7f/8+W7p0KTt37hz77rvv2KVLl1ijRo2EH4ExxhwdHdmmTZvYuXPnWKdOnah+ZDJS23Lq1Cl25coVtmHDBtHuREREsIkTJ7ITJ04wc3NzA+eUYIwxGhkSBEHkMKROk5GRETMxMdHqRKUG55y1bNmSDRgwgDHGWI8ePdjWrVvZhw8fxDWdnJzY4cOHGWOM1axZM0mDPJE2pA7U5s2b2dq1axljjDVo0IANHjxYy+STlHmHc87Onj3Lbty4wRhjrFq1alrXJNKHNJk+b948tmfPHsYYY926dWODBg0ShmnGEpevtIDD2dmZeXh4MMYYK1u2bJJpibRBWigL+WKCU6dOMcYYGzZsGBs4cGCKk1rSeRcuXGCBgYGMMcbs7e31nNvsDWmhHEgL5UBaKAfq12Y9yLyue+Li4sTzZeTIkaxJkybMw8NDTKYTmYe+tZCbgB89esQY+9q2kNbaZEa9kLcv169fZ97e3kylUrG4uDidXD+7kJnPqAMHDrCffvqJPXv2jBkZGZEWOqJt27Zs9OjRzNjYmI0aNYr9+uuvrECBAobOVo6EtFAOpIVyIC0yh7CwMMYYEwGnJGj8bBhID+WgTy0S9pVpzJcymVkvNBqNzq+ZHZHK6ezZs8zJyYmp1WrWpk0btmHDhhTn0CX9/Pz8mIWFBVOpVCJwGJE5yJ83jx49YidOnGCcc1auXDlmZ2dnwJxlT1QqFQPAcufOzZo3b842b97MunXrxmJjY1m/fv2Yi4tLomdZmTJl2LBhw1jJkiUNlOucQcK29/Xr1+z69eusQ4cObMiQIWz16tUsNjaWxcTEsGrVqrEFCxawpUuXknldSegzvDtBEASRdUi4hUpKBAcH47fffgPnHJxztGnTBgMGDMCIESPEZzY2NtiwYYMec5wz8PLyQqtWrWBkZIR8+fJh48aN4lhK2y4HBARg0KBBMDU1Rb58+fDvv/+meg6RMjdu3EDZsmXBOUfVqlVx9OhRcSylcnV3d0ebNm2gUqlQoUIFeHh4ZEZ2szWkhbI4evQozMzMwDlH27ZtcevWrTSdd+vWLZQuXRqcczRt2pS2htQBpIVyIC2UA2mhHKhfm3Xw9/fH7NmzYWlpCc45qlSpAicnJ4SFhRk6a9mCyZMno0SJEuCcw8TEBEFBQTq5rlQnqG6kHX1pIbFt2zaUK1cO7du3x9GjR8X14+LidPo92QF91wsAuHLlChwdHWFtbY3Hjx8DSN9cWE5B3/UiIiICkydPFls2P3v2DABpkVHkz5Xbt28jICDAgLnJ2ZAWyoG0UA6kRebw7t07zJ49G9OnTxef0djAcGSGHjRXlTYyQwu1Wq31vonqXtJkhha3b9/G7Nmz9Xb97MqjR49gYWEBzjnq1q2L27dvp5heKtfg4GCUK1cOnHNUqlQJUVFRmZHdHIe8L5XU2PnmzZsYNGgQ8uTJA845unbtmpnZy5akde7u3r17qFq1KoyNjTFmzBjExMTQvF8mI3/Ov3v3DocPH0bdunVRtGhR4V3jnKNz586YNWsWIiIiDJhbIjlofwKCIAiCaTQasbXQ33//zRo0aMDs7e2TXe2cP39+NmrUKObi4sLu3bvHrl69ymJiYsRxCwsL1q1bNzZ06NBMyX925tmzZ+z69etMo9GwXr16iTJNbrtr/H9ksatXr7KjR4+y2NhYVrNmTfbdd98xxiiyQ0Z49uwZe/HiBWOMsa5du7Ju3boxxpKPFspY/PZDzs7O7O7duwwAq1KlCitXrlxmZTnbQlooA6m8nzx5IiI0fP/996xBgwapnvv69Wt24MAB9u7dO8YYYzVq1KCtITMAaaEcSAvlQFooD+rXZg0o8rp+OXnyJFu6dKn4/2HDhjEbG5sMXVOqK1KdCAoKYlFRUczX15ep1WpWp04dZmxszCwtLZOtbzkRfWgh5+HDh8zZ2Zn5+PgwLy8v5uLiwurXr88WLlzISpcuzeLi4sQ8TE5HX1rIx4dXrlxh48ePZ+/evWNRUVGsefPm7Pr166xy5cqkhQx91wvG4ucMf//9d/bgwQN28eJF1qRJE9JCB6hUKvGMr1+/vqGzk6MhLZQDaaEcSAv98/btW3bw4EG2fv169uHDB6ZSqdicOXN0Nm6W+lUpzb8TX9G3HlFRUezixYvsjz/+YKNGjWKNGjViFStWZIyl/I4kJ6JvLRiLn9e6evUqmzhxIqtatSrbuXMn1ZckyAwtQkJCWL9+/Zivry8LCQlha9asIS1SAQBTq9Vs8+bN7MuXL6xw4cKsb9++rHr16imewzln4eHhbN68eczPz4/lypWLderUiZmYmNDcUzpI6bepVqvFe43Y2Fitco+KimJqtZrdvn2beXp6st27d7MPHz6wL1++sOrVq7N169YxxrTn3ROOt2n8nTz+/v4sKiqKlStXLtXfc/Xq1VmVKlXYs2fP2L///ssWL17MTExMMjG3ORdJG6muLF++nN28eZOdO3dOpLGxsWE1a9ZkP/74I+vdu7eIuC7//VPdUAiZapcnCIIgFI0UVf3OnTtpTm9tbY2pU6fCwcEBtra26NixI+bOnStWutEKw29Do9EgOjoanTp1AuccNWvWFFGvkotKJX3+9OlT2NnZgXOOMmXK4O7duymeR6ROaGgoatWqBc45mjdvLj5P7fd96tQpFCpUSEQKf/PmTZrOI5KHtFAWAQEBIjpfly5dxOcpRbUIDQ3Fhg0bYGNjA8456tWrhy9fvqR6HpEypIVyIC2UA2mhDKhfqxykfs+nT59EpBH575oir2cOQ4cOBeccU6dOzXBfVH5+YGAgtm/fjtq1a8PW1lZEl6lSpQp+/PFHeHl5AaD6I0eXWiSFq6srnJ2d0aRJEzEWcXBwgIuLCwAai8jRtRbyZ9vly5dRs2ZNqFQqWFhYwNHREZxzWFtbU/TvJNB3vZDw8fFB27ZtSYsMQuWlHEgL5UBaKAd9a0Fj9HjUajXWrVsHlUoFzjlsbW0xcuRIfPz4USfXlvPy5Uu8e/cOr1690uonkBZf0aceEleuXEGVKlXAOYexsTFatmyJrVu3iuOkRzyZoUVcXBwuXryIDh06iDH48OHDxXHSIp7M0AKI12P9+vUwNTUF5xwjRowQx0iL5ImIiBDvXWvWrIm3b9+mek5UVBR27NiB8uXLg3MOGxsbPHz4MBNymz25desW5syZg++//x7t27dHly5d0KpVK9SvXx+NGjVCnTp1ULFiRVSoUAEODg6wsbER7y/kf7Vq1cKNGzcAaP/m5e35H3/8QbvSpYCPjw8GDhyIXr16ic+Se35I5bd3717x3EnrDsDEt5FwnsrPzw/Tp09HkyZNtOpCqVKl0KJFC9y6dUt4QiSobigTMrATBEEQAIDPnz+jdu3a4Jzjp59+QnBwcLJpY2JiAAA7duwA5xxnzpxBaGgo3rx5o9WY08vYjBEVFSUGjB07dkxxOxup3J8/f47ixYuDc45ChQph1qxZ+PTpU2ZlOdvy8eNHsQXawIEDERsbm2rH9erVq8JwVaJECezcuRNqtZomSTIIaaEsXr9+LbbgmjdvHoCUB3URERHYs2ePMPCUL18eV65cSfU8InVIC+VAWigH0kI5UL9WOdy/fx/ff/899u7di8+fP4vPX7x4QeZ1PSN/jpw6dSrDzxX5+U5OTujZs6fWRL2VlRVUKhWMjY2FcdrV1RUAjdV1rUVCEo4zAgIC4OTkhEaNGoFzjsKFC8Pd3T3JtDkNfWiRnHnd0tISw4cPh4uLizCYkHH6K/quF0lBJvZvw8vLCydOnBD/T+VlOPSthfQ8y+ltRVrQpxZJlT9pkjz6rhfR0dGiHwWQFhKenp7gnMPMzAyzZs3Cy5cvdXbtiIgI/PnnnxgwYABKliwJOzs72NraYsCAAfjzzz9FOtLiK/rUAwCCg4Oxc+dODBkyBNbW1sIUPGnSJJGG9IhHn1okZV6Xxt9knE6MvuuFhFqtxvbt20W9IC1S5+rVqzAxMYGpqSmcnJwApNz/iYmJwbFjx9CgQQPx2z9y5Eim5jk78eLFC7Rp00Y8P9LzZ2ZmBs45mjZtioEDBya5KETeF5swYYKYM3zy5Emi40T8PJK5uTk45zh69GiazlmzZo3Q5OLFi8mmS20+lp5RyZPwd3rhwgUsXLgQ+fPnF3XH2NgY1tbWGDx4MK5cuaL17gNIXL5UN5QFGdgJgiAIAPEN9qZNm5A/f344ODjgxIkTqXaili5dCs45Vq9eneT1iIzx4cMHVK1aFUZGRli+fDmAlDu2Pj4+IsqolZUVevToAR8fn8zKbrbm+fPnKFasGIyNjcWkbEq/8YsXLwrDnK2tLSZOnIiAgIDMym62hrRQFk+ePIGlpSVMTExw+PDhFNN+/PgRO3fuROHChYWJasOGDWSM0xGkhXIgLZQDaaEcqF9reKRI+PXq1QPnHNWrV8f+/fsRHR2Nd+/eYdasWWRezwR0NfEtv86MGTPEAk/OOerXr4/ff/8d165dw+XLl7F+/XoRhcbR0RG+vr46yUNWJ7NeQkhjldjYWLi4uKBVq1bgnKNJkyZpimqWE9CXFgnN68OGDUNUVBSAePMEGacTY4j7JxN7+nj+/Ll4sfrbb7/p/Ppyw3ROX+yUGvrWIjQ0FMePH8fNmze16gPNuSdGn1rId5nduXMnlixZkugY8ZXMeEb9888/MDU1xYABA7Q+J+IXD8ybNw8vXrzQyfWio6Px6NEj1K9fH3ny5ElkmpPMoRMnThTnkBZf0bUeEgnb5zNnzmD48OFCj7Fjx4pjpEc8+tAiKfP6mjVrsGPHDjJOp4C+6kVCyMSePq5fvw5jY2PkypUL58+fB5C4nKT/j4qKwsmTJ9GsWTPx258/fz6NHTLI6NGjwTmHkZERrK2t8fvvv2PQoEH4+eefMXr0aEybNg1jx47FtGnTsHLlSixfvhyrV6/GuXPncOvWLTHXAWi3E/JxxPjx48E5F+ZsGn8njZeXFzp27AgTExP0798fr1+/TjatWq1GTEwMhg0bBjMzM5iZmeG///5LlC5hfTp//jy2b9+OBQsWYP78+bh37x7ev38PgIKOpERcXBwuX76MMWPGIG/evOK3nCtXLuTLlw+LFi0SzzCJ1KLnA1Q3lAIZ2AmCIAhBYGAgunbtCs45GjRoILa1lpB3mDw8PNC0aVNwzjFt2rTMzmqOoV27duCco1evXlqRKhNuz3j37l3Y29uDcw5LS0u0bt1adKyIjKNWq8VgfODAgfjy5Ys4Jtfiw4cPOHToEIoUKQLOOQoWLIjff/8dfn5+hsh2toS0UBZfvnwRURbGjx+f7CSJj48PVqxYgYIFC4JzDnt7e8yfP18MyImMQ1ooB9JCOZAWyoL6tcrAzc1N/NarV6+ONWvWYMqUKcKQQOZ15SOfOB85cqSWmWTkyJF48uSJVr2Ki4uDq6sr6tevD845xo0bR7sRGZBLly6haNGiKFCgAA4cOACAXk7pg3PnzqFOnTpQqVTIkycPxo4dK9oeqbwTGqelOTB6OZX5+Pj44LvvvhNaULSrpHnx4gWGDh0qdqgxMjLCtWvXdHLttDyHqN34ij61AOLntDZt2gQbGxtwzjF06FCtiNakxVf0qYXcvP7333+jYcOGYj4yYRpC//VC4tChQ6LvS4bExMTGxurkOm/fvsXmzZvFwnITExOYm5tj1KhRWLx4MVasWIH+/fsLcyi9I0waXemRFAnfhWzcuFHosWLFCr19b1ZFF1rI24WE5vV169YBION0WtBnvZBDWqSdZ8+ewcLCApxzMU8hR3reREREYN++fWJ3Oc45JkyYgFevXmV2lrMN8mf5qFGjRLnu2LHjm64n/20nZdA1NjZG3bp1Ubt2bTLqpoCTkxNy584NzjmWLVum9V5JKidJuydPnsDW1hacc1SrVi1ROUrpgoODcfz4cXTo0EFEzpf+7O3t0bJlS7HLEGmhTVRUFM6cOYPvvvsOpUqV0iq7unXrYtasWXBzc9M6J6UypLqhTMjAThAEQWjx4sULVK5cGZxzNG/eHHfu3EF4eLhWmufPn2P+/PmwtrYG5xxLly41UG6zL9IAY8WKFTAxMUG1atXw8OHDRB0kHx8fbNu2TZh0ra2t0b59ezx69MgAuc6eaDQaaDQazJ49G5xz1KpVC0+ePEmkxX///YcZM2YIQ1CRIkUwdOhQeHl5GSjn2Q/SQnnExMSIwV3dunXx5MmTRBOQFy5cwM8//4x8+fKBc46SJUtiyZIlFHFSx5AWyoG0UA6khTKgfq3ycHd3R4ECBcA5R9GiRUV0kapVq2Lfvn1kXlcw8hdbw4YN05qwX7x4cbJp1Wo1pk6dKp6HmfXCmEhMREQEqlevLhb0ELrn06dPaN++vXghWKpUKdy/fx9AfCRR+QtduYmdc46nT58aKts5npcvX6Jz586JTOy0wOMrgYGBKFOmjNhRY82aNTrZYU6qE2q1Gs+ePcPGjRsxbtw4/PLLL9i5cydu376dKG1OR19aSISHh2PKlCmoUqWKiHJcpEgRzJs3T6QhLeLRd72Ii4vDX3/9JQL5kHE6efRdLyTUajVFONYzfn5+mDVrljBj2draom/fvokWJHz69Anr16+HSqWCtbU1nJ2dDZRjAgAiIyMxffp0qFQq1KlTBx4eHobOUrZErVbjwoULIkgD5xybNm1KNP6WG6dHjhwpjtFzKnNJqMXw4cPFMdIiHo1Ggw8fPqB9+/ZQqVQYP358koFHPnz4gGnTpon+qbTjAz1rMo58jnzMmDFaz5bo6GhxLC4uTut3m9JvODmDbtOmTXH69Gm8efNGPMfIqPsVeZkuWrRIaLF69eok3xd5enqKxZsFCxbEypUrAXwtR+m/vr6+6NevH0qXLi0WBhobG6NWrVooUqQIChUqBM457Ozs4OrqCoDmQhIyc+ZMrfFYp06dMG/ePERHR4uySstzneqGciEDO0EQBJEIT09PrZWCkydPxuPHj/HixQucPn0av/zyi4gAU61aNQQFBRk6y9mWV69eicFg06ZNsW/fPvj4+MDLywu7d+9G27ZtheHKzs4O/fr1SxQ5n9AN/v7+qFChAjiP3+598+bNcHFxwdWrV7Fq1SpUrFhRRD90dHTEjBkz9L4NXk6FtFAWL168QLly5cA5R8OGDbFs2TLcu3cPTk5OmDZtGqysrIQxrlKlStixY0eG2g2aWEyezNSCJk9ShrRQDvSMUg5K6NeSPl9xd3dH/vz5RXREe3t7bN++XevFCKEs5L/fyZMnI1euXOCcw8zMTER7S5gO+DrBfvToURgZGcHGxob6xgYiJiYGANCxY0exmIDQD69evcKsWbNQt25dsUDtypUrABK/9PX19RUR5KQ0ROYg9WMjIyPx4sULDBgwQCw8MDExITNEEjx9+hQVKlTA4sWLdTYfGxsbC39/f3Tt2hVly5bVeinMOYeDgwPmzJkj0lN/Kh59aCFHivK3YcMGtG3bVhivRo8eLdKQFvHoWouE5nVpJ0jOOQYMGEDG6RTQd72QoKi6+uPFixeYOHGiCAzj4OCA1atXa40f5PNQr1+/Fjs9ydsKwjBcuHBB9KWOHj1q6OxkS1xdXbXahT59+ohj0ngP+PqcMjIyAuccv/32myGySyBelz179og2Y8iQIeIYtRlf2bBhg/hdL1++XJg2/fz8cOPGDdStW1fM23LOMXPmTJpb0iFyc+zYsWNFOW/evDndQSjk7fS4ceOEQbdJkyY4efKkOObl5aW1Kx0ZdeORl9+kSZOEFj179sT69evx+PFjnDp1CosWLYKdnR0458iTJw+6dOkCHx8fca5Ujm5ubqhSpYpon83MzDBp0iQcP34cUVFRePXqFU6fPo2WLVuKADMvX77M9PvOCkyePBn169fHgQMH8PHjR/F5Wt+RUt1QNmRgJwiCIJLEy8sL1apVE52y3Llzw8HBAUZGRjAxMQHnHOXLl8dff/2V6OUfoVs8PT3FVo25c+dG/vz5YW9vr/UyqWLFili5ciX8/f0Nnd1sjaenJxwcHITRx8rKCnnz5tXSolatWjh27BiCg4MNnd1sjSG0oGikyePp6QlHR0etNiPhS+/mzZvj8ePHWlutZYQPHz7o5DrZjczQQt7mHzlyBPfu3Uv2eE6GtFAOhnhGPXnyRGv7VNIiHkP0a11dXfHXX3+J/yctvuLm5iYWJpcsWRI7duzQeuFKKJMtW7aIesQ5x4YNG8SxlCbsZ82aBc45TE1N8fz580zIKSFHrk3Dhg3BOUeJEiUQHh5Oi9F0jFSeUVFRePDgAbp27QrOOXLlyoVbt24BSNwW+Pj4iB0/qJ3QL/LyjY6OhqenJ/r374+aNWuCcy6MJSVLlsTmzZtJjyQICQnR2TzHmzdvsGXLFhEkQCr/ypUro27duihWrJj4bOzYsTr5zuyELrVIiPy37+HhgSVLlggtpk2bppfvzMroSouUzOvbt28HADJOp4I+64UcMrHrnsDAQMybN09EAS1VqhQOHjyI0NDQFM8bMGAAOOdo1KgRvnz5Qn1bAyD95sPCwsQO21OmTDFwrrIvGzZsQKdOnWBhYQEzMzMMHTpUHJMbTaXnlBSoQTLAEfon4XPI3d0dnTt3FgsKBg0aZKCcKY+EwRKkfo+dnR2aNWsGW1tbYVxXqVQwNjbGnj178Pnz5wx9b0KNqO3WrYkdAAYOHCjeodevX19rwb5U3vJd6eRG3Zyuh1yL6dOnw8jISPQ5pSCgUmARGxsbtG/fXuwip9FoxPnPnj0T6TmP3zH+ypUrSf7+79+/j4oVKyJXrlzYtGmT+JzQblsDAwO1jn1LGVHdUCZkYCcIgiCS5eXLlxg5cqTY3lr+V7NmTZw+fTrDAxQibfj6+qJr164oVaqU6FBJqzB79eoFPz+/DBmupM4WdbpSx8/PD3369EH58uWFAYRzju+++w5jxoxBeHh4hq6fFg1Ip3j0rYWcmzdvomvXrti2bZtWVAHS4ivPnz/Hr7/+KqLrWlhYwNzcHD/++COWLVum07JydnZGjRo1sGHDBnh7e4vPSY94MkuLNWvWiC3vxowZg9OnT4tjpEU8pIVyyMxn1LJly8A5R48ePbQiXpEW8ei7XyvH09MTo0aNEtESJUiLr7i5uYlI7DVq1MC+ffto0Z4CkX6zrq6uWluVr1ixQqRJziii0WgQEhKCbt26wdjYGPXr19faDprQLxqNRuuZI7URnGtvJU/oD39/f3Tu3Bmcc1SvXl1r/JCQhHoRuiNhpKpjx45h8ODBYiGV9Fe+fHmMHj0aHh4e9KzSM15eXhgzZgyKFSsmXrx36NABhw8fFn0BFxcXrFmzRrysX716tYFznbOQP4+ioqKwfv16qFQqWFtbU2RdPRIXF4e///4bTZo0Ec+mLVu2iOPR0dHJGqfJuJu5kIldN0i/WycnJxFJ1NHRESdPnkxxbB4TE4PY2Fh899134Jyjffv2mZVlIhkePXokDHW08Ey/PH/+HGvWrIGlpSU45+jXr584Ju/3qtVqnDx5EidPnsSXL18MkdUcRcJn/61bt7BmzRoULFgQVlZWWvOQ169fN1AulYf8N7tgwQKtQDDSn6OjI3788Ufcvn1b69znz5/j6dOn6Wp35TtxXblyRevcnN5+68rE7u/vjypVqog53+rVq8PNzQ1AvBlYXs5yo66FhQUFS/x/5Frs3r0b3bt3T1Qvypcvj2nTpsHd3R1A/O9X0snV1RUFChQQZvdGjRrB1dVVpJP/FwC+fPkidmzs1q1bZt1mlkFXi16obigXMrATBEEQKRIREYGXL19i+fLlmDFjBqZMmYINGzbo1BhKpI1Pnz7B09MTW7ZsgZOTE44eParzLYRCQ0Ph6+uL/fv3Y/fu3bhy5QqZdZMgLCwMr169wt9//41///0XV65cQWRkpDj+LVsIJSzbFy9e4MGDB1ixYgVWrlyJ06dPiw50UulzKvrQIiGvX7/G8OHDxYC0b9++OHjwoDhOWnwlMjISwcHBOH/+PB48eIDHjx9rHdeFHr6+vloTBT169MD+/fvFcdIjHn1rERYWhqlTp6Ju3brgPH6bNXt7eyxYsECkIS3iIS2UQ2Y8owBg9OjRsLKygqmpKQoVKoTFixeLY6RFPJnRr/Xw8MCoUaPERDEZGpLH3d1dbBFftWpVHDp0CNHR0YbOFpEES5YsEb/niRMnis9TMq8DwIkTJ4Sxh0zT30ZGFhrHxsYiNjYWs2fPhp2dHVQqFczNzbF7925dZzNHIP+9p+UFrkajwZkzZ1CkSBFYW1tj48aNia5D6IeEdSIuLg47d+7Er7/+Cs652OExX758sLOzw8aNG/HgwYMUr0HoBjc3N/z888+i/S9atCjWrFkjFnhI9UOj0SAiIgJTp06FsbEx2rVrh0+fPhky6zkaf39/NG3aFCqVChMmTDB0drIlGo0Gf/75J+rXry/6XLt27QIQ3+ZIdSMl4zSRucTGxmLr1q1CC3kkZGpDUkf6Tfv5+aFkyZJil6ADBw5ozbEnd154eLiI+P2///0vkfGH0D9SeYeEhGDWrFnIkydPosXOhO6Q/75jYmLg5OQkTOwp7ZBCQcT0R8KyDQsLw7NnzzB8+PBERuwCBQpgzJgxOHnypCGzrEjk8+L//fcf9uzZg5EjR2LatGlYtWoV3rx5I8YB0sLvoKAgDBw4EPny5cPevXvT9fsOCwvD3LlzkT9/frRs2RJ79+4VkZVz+lg9ORP72rVr0/X+Ijg4GNu2bUPTpk3FgmUp0nTCxfs+Pj5o2bIl6tSpQ3PCMuS/xU+fPuHOnTv4888/sXbtWuzZswfBwcFicZI88rq3tzfKlCkjjM9t2rSBp6dnomtKSHNbkt4tW7bU963laKhuKBMysBMEQRDfDA20lcO3DOYS6nfgwAF06tRJvLySVqI3aNAAS5cuTfY8QptvKR+5fh8/fsTGjRtRsWJFrUhkKpUKVatWxcKFCzP0XTkJXZVPZGQkjhw5IqLJqFQqFCpUCJMnTxZpcvqESmYSERGBEydOiJXoUvQx+ctbqhuZw5cvXxAZGYlVq1ahVatW4mXhmDFjRBrSInMgLZTH+fPn8fPPPwst6BmVdnTRpkrmdSmSRtmyZSkqXyq4u7uLvufKlSsNnR0iCVxdXcW2zR06dBBRX1Izrz98+FBrgcKjR49SPI9IjPwF4du3b/H27Vu8e/cOz58/h7u7O3x8fODq6orbt2/j3r17uHfvHk6dOgUnJyds2bIF3bt3R4MGDUTfNWEbnRRStEtdLa7Kjhw8eFAs8k7t9xwVFYVatWqBc47mzZtnRvZyNAn18Pb2xuHDh9G4cWNh8JHPOf3555/w8vJK8RoA1Qtd4ePjg99++020+yVKlMA///yjFfE+YR/p0KFDQreHDx9mdpYJGUOHDhUGrPfv3xs6O9mO2NhYbN++HYUKFYKRkREsLS2xdu1areMSarUaO3bsEJFcV61aZYAc51wSthNLly4V/axBgwYZKFdZk8jISLRv3x6ccxQsWBALFixASEhIsunlbcT48eOFOYsMoYbD398fa9asQbly5YSOvr6+hs5WliatkY4/f/6MKVOmwNjYGJUrV060GJPIPD5//oxHjx6hW7duqFSpktb4u27duhg0aBB8fX212g+aF9EmtfJIah51wIAB4JwjT548OHDgQJrnWq9du4YuXbqIMUbhwoXRpUsXMS7M6WM++f1LbW2JEiXg4eGRpvMlLWNjY+Hh4YEffvgBnHNYWVnh3r17SZ4TEBAgnn05vfzlpLYAKeHxgIAAfP/992LOo1mzZuJ3nVIdi4qKEotoGzduTM8nPUF1Q7mQgZ0gCIIgciDyTu+9e/cwZswYrVXo1tbWyJ8/P0xNTcUkvHzLQTL7pJ3UykquxbFjx/Djjz9qaWFra4sSJUrA2tqatMggGSmruLg4hIaGYvTo0bC2tk4yqg+RPr5FD/k5kZGRGD9+PGxtbYUegwcP1mUWcwy6eI64ublh4cKFQospU6boIGc5D9JCOXyrFvJ23c/PD/PnzxdajB8/XlfZI1JAMq9LpqwGDRogPDwcBw4cIBN7Knh5eWHWrFlUJgrl0qVLsLa2Bucc8+bNS/GFuqShp6cn2rZtCyMjI5iammLo0KG0m1oGmDFjBurVq4dixYrBzs4ORYoUQb58+ZAvXz5YWVnBzMwM5ubmyJ07txjPGRsbay1KLly4sFb0/KRefDx58gR16tTBf//9l2yanM6WLVtQoEABDBs2LNW0UoSkvn37wtjYGKVKldIy6qYVejamHw8PD/z5558oXbq0WEgjzWv069cP69ev13qWpVTGVC90Q2BgIP744w8UKlQInHM4ODjg9u3byaaXNHn8+LF4tv3777+ZlV1CRkxMDABg+vTpUKlUKFCgAN69e2fgXGVfrl+/jhkzZiBXrlzgnKNPnz7imPz5o1arsWHDBjRt2hTXr183RFZzPK9fv8a5c+fQsGFDrWAwU6dONXTWFI/0jL97966Ivt66detEi8qS4+TJk6hRowY45yhdujSePHmiz+zmCKTFekD83Hd0dDS+fPmCjx8/IiQkBO/fv4e/vz98fX3x4MED7N+/H6tWrUL16tVha2sroohu3boVgPYcVVL9LOrfJk10dDQePXqU4i4Ecs6fPy92Ftq8ebOec0cAiccCBw4cQJ8+fZA3b16t96t16tTBtGnT8PbtWxElmepF2knJQCsvp59//lksZkqPif358+e4cuUK2rdvj6JFi4JzDnt7e7i4uKT6/TkB+e983rx5WLlyJT5+/PhN1/Lx8UHbtm3BOUerVq3w5s2bZNPm9HL/VuLi4qDRaLBx40bxey5VqpQIvJCaAf7cuXMoUaIEVCqV6MfS80j/UN1QDmRgJwiCIIhshPQyA0j+ZZ68c3XgwAERXUOKTtmrVy/cuXMHXl5eOH/+PObOnSvMPgsWLND7PWR1pMGEfHIrLVosX75cRITjnKNRo0YYNWoU/Pz88O7dO9y6dQuLFi0SWixevFi/N5INSI8WqSHXavLkybCxsYGpqSk455g1a1aG8plTkPT4/Pmz+Oxb9ZCfN27cOFhYWAgjxOrVqzOW0RyALrWQT6B8+fIFGzZsgEqlQu7cuXHw4MGMZTQHQFooB31pER4eLrTgnGPdunUZy2gOIi392oR4enpqRV6vX7++eAH85csXbN++nUzsRJZl5syZ4JyjWLFiKRrWpN+zj48P+vTpI6K2V6lSRUzC028+/Zw9e1bLiC5/KS59ZmpqCpVKBXNzc1hYWMDc3Bz58+eHg4MDKleujIULF8LZ2VlcM6lnm6urK6pXry7MJ0+fPk02bU5FMgtK9eHq1atpOk+KgJU7d24EBASk+fsko4MEvbDSRnqeSOUSERGB4OBgTJgwQew8IF+g369fPxw7dkzrGqn9vqleZByprP7++28UL14cnHMUL14cN27cSNN5W7ZsgYmJCfLkySMWERCZh1TP3r9/j5o1a4JzjjJlymiNXQjdIH/Gh4WFwcnJCXny5EkUxELel4qLi0NQUBC1D5mA9EyKjY1FZGQkVq5ciVatWok5Wqmdb9u2LXbs2GHg3GYdZs+eLcrvzJkzaTrH1dUVPXv2FOfJdyog0s+bN2+we/duNGrUCN999x2aNGmCSpUqoUaNGqhVqxYcHR3h4OCAMmXKoEiRIrCxsRHjPPmfjY0NVq9enaivK39m7d69GzNnzkzyGBH/fNm/fz/s7e1x+vTpFNNKZRcbG4u6deuCc47+/ftDrVZTuWYCsbGxWLduHfr06aO1eLxw4cKoWLEinJycUlyQQ/Ui48gXI/fr1y/NJvaEEavfv3+Pw4cPo0mTJuCco0iRIiLSeE7XQj7mlc9NSP3OsLAwrTn05IiNjcW2bdtgbGyMIkWK4MKFCwCofHWNWq1G06ZNwTlHrly5cPfuXQDJzyPJP//ll19Ee06Lxr8dqhtZFzKwEwRBEEQ2ITIyEnv37sXy5cvFZwk7V/L/37JlC+rVqyc6wz/88AMOHz6cKJJfZGQkli1bBpVKhSpVqsDd3V2/N5KFkco3JCQEs2fP1jL8J9RCPiiZOXOmiHIiRZG+c+dOIi2+fPkiourWrVsX/v7+erybrE16tEjrtQDgzp07qF+/vojAVKFCBQQFBekm09kYqQzfvXuH/v37a00Gfuu1gPjoJoULFxZ1p02bNt8cgSCnoEstkuLNmzdo1aqVljmUBvpJQ1ooB11rkbCcg4KCMHToUKhUKrRo0QJv377N0PVzAmnp1ybk2bNnGDFihIhQ3bBhQ3FMvsWj3MQ+atQo/dwAQeiBuXPngnOO8uXLJ9vfkUde/+mnn1CgQAHxAtfb2xsAmW8zwogRI4RZvW7duti9ezcOHjyIffv24dixY7hw4QLOnj2LS5cu4b///sODBw/g6uqK0NDQRJHvk9LB1dUVVapUEbuiSf999uwZADLryrl//z7q168PlUqF0aNH48OHDymmv3XrFuzt7WFkZIQWLVokKkt5G/P+/Xs8fvwYI0aMwA8//IDWrVujZ8+e2LlzJ16+fAmAtEgOV1dX/P7778JgK/1Vr14d//vf/+Du7o5Pnz6l+5pULzKG9Pv+9OmTKMsiRYrg+PHjKZ4nf0516NABnHOK+q1DNBqN1rNHbnaLjY0Vv21Jh4CAAMyfP1/MgbRo0SLNkWGJbyc2NhabN29Grly5YGlpiT///NPQWcpxJBwHvn//Hn/88Qdat26ttbDQwcEBDRs2xIULF2jMnUak58sPP/wgniuxsbGpjr39/f0xZMgQrXcZ0rVorJF+4uLisGnTJq2dm5L7ky+kValUMDIygpmZGWrUqIFOnTrh7t27YvchCbmehw8fRrly5cA5x6BBg5JMk9P5/PkzunfvDs45evTogeDg4FTP8ff3F+1zz549k02XlvpBWiQmYbm5urpi27ZtqFWrlghqxDmHpaUlWrRogSNHjuDFixcpXoPqhe5IysRuYmKCO3fupOl8+YJoV1dXtGzZUuwIEhgYqJc8Z3XkgSvGjRsnyim132xISAiKFCkCzjkGDBiQpnOI9CEFWzA1NRXB1tJiXp8zZ454lg0ZMiRT8pqdobqRNSEDO0EQBEFkAyIiInD06FHxknD8+PGJ0sg7Wtu3bxfRqzjnGDlyJHx8fBJFzpK4e/cuLC0twTnH0aNH9XszWZwPHz5g9erVKFOmDDjnmDBhQqI0ci3mzJkDOzs7ocWcOXO0topM2EG+fPmymKg8f/68/m4kG5AWLdLDjRs3ULduXWFer1ixIkJCQgAg0WIDIjFv3rzB2LFjxXam36KHvD6cPXtWbHsumddDQ0MBkB6poQstUmLSpEngnCNfvnx49eqVTq+d3SAtlIMutJC/JE/Yfh86dIgiaKSRtPRrExIXF4cjR46IF4YqlQpLliwRx+XtgmRil6L0jRw5Ui/3QRC65vjx4zAyMkKRIkW0ot9KYzfpufP48WN07twZNjY2wrx+//59AGT0/Fbk5TZq1CjxPN+zZ0+ar5Haiw+5SdfOzg4zZsxAixYtyKybAlu3bhVarFmzRmscLTfuBAYGYurUqWIcnVIbf+XKFfTp0wfFihVLZBjKkycPqlevDldXVwBk0JLj5eWFvn37Infu3KKcTU1NUapUKfzxxx9wd3cX0eLS8xKQ6oXu0Gg0GDZsGDjnsLKywty5c1Nc/C3XafHixeCcw8zMDFOmTEl0nNAvb968wc2bN9G1a1eUKFFCRLa8efNmorQpmbMIbT59+pQmUyIQb4CQgsD8+uuves4ZIZHw93z9+nUsWLBAKwiM1Nft06cPbt68mUhTjUZD9SIFpPKR2tZevXolm07Cz89Pqz/cqVMnMdYgvh1PT08xR2Fqaoo+ffpg9OjRmDp1KhYvXow5c+ZgwYIF2Lp1K7Zs2YINGzbg4MGD+Oeff3Dt2jWEhYWJ/q9cL/m/Dx06hLJly8LExEToRzvTJSYmJgYbNmxAwYIFUbx4cRw9ejTZfr/UB/3vv/9QtGhR0U6k9ty5efMmDh48iGHDhmHEiBHYu3cvbt26lWx6Ip4HDx5g/fr1sLOzEzsQSPVmyJAhcHJyStN1qF7oHvm8648//ojWrVt/87VOnz6N/Pnzo0iRImIXBBp7JyYsLAxdunQB5xxz585NNX10dDTCw8PF+/IePXpkQi5zHhMmTADnHEWLFk1xEYf8N71x40atoHmpLTQnUobqRtaFDOwEQRAEkQ04ceIEHB0dxTZpnTp1SjY699GjR9GwYUMxGJ80aRLCwsJS/Y6qVauCcy4iWdOAMTFxcXFYt24dChYsKCZPhg0bluwLkXXr1qF06dJCi6VLlyZ7bWmiJCoqSpyza9curWPEV9KrRWrcuHED9erVI/P6N6JWqzFp0iSYmZmJF99LlizRMpmkRkrm9bZt24pIfmReSBldaJEc0ouSadOmwdTUFPnz58ebN28yfN3sCmmhHHShxf79+8E5x19//aX1uTzyd9myZcE5F1HFqf1OmvT0axNy9OhRjBgxAubm5uCc46effhLHEprYpQhn06ZN09qClSCUyuPHj1GhQgVwzrFo0aIko65evHgRjo6Oog4ULlwYt2/fBkDPnIwi72OOHTtW9EM3b96cKMphenFxcdEy6a5evRpBQUF4+fIl2rZtS2bdBMh/y9LOBJxzLF68WGwzLvHs2TPMnj1bmKqbNWuGgIAAAInLcc+ePTA3NxfRL21tbVGzZk2MHDkSrVq1QsWKFYVGtJ15YqR6YW1tDXt7e+zYsSORoS095UX1QreEhYWhefPm4JyjatWqePz4cbJp5TqdOnUKdevWFeXt7OycGdnNlgQGBuL69es4fvw49u/fj7/++gs7d+7E2rVrsWrVKixcuBBTp07FxIkTMXDgQHTp0gVt2rRBiRIlhDlLii66c+dOAMmbFKWt6hN+TsQTHByMLVu2iLFbWspIMqMYGxvD19dX31kkZPzzzz+YOnUqzM3NYWFhIRZxmJmZYfbs2Thz5oxWeqoX6ad///7gnKNJkyaIiIjQOiZvXx8+fIhBgwaJ51GLFi1w+vRpKk8d4ebmhvz584NzjlatWsHLyyvd10jNvM45h42NDb7//nvRPyazbmLev3+PTp06gXOO+vXr4+nTp+KYfLcUiXbt2ok2+ty5c1rXkt6jqtVq3L17F2PHjoWpqakYs0tBGBwcHDBnzpxE30PEBwzp06cPatSoobWAyc7ODqNGjUpU5imNC6he6I+k3pN+yxgtNDRUGEl/++03XWQtWxIWFoaJEyeC8/hdSB89epRsWvmOXFLwnrZt22odIzKOWq0WY+7//e9/yaaT+2t27NiBYsWKiWePvB0gvg2qG1kXMrATBEEQRDbAz89PDNoHDBiQaFWn1Mlyd3cX299JkcdiYmJSvLZGo8H9+/eRN29ecM6xadMmvd1HdsDHx0eU7/Tp05N9qXHhwgU0btxY62W7REqd4lOnTolzDh8+rPP8ZyfSqkVqJDSvV6pUiczr34CXl5eW0UeKlp4WyLyuWzKiRXLIy15qZ8zMzODn55fha2dnSAvlkBEtYmNjMWLECHG+ZISQT0bu3btXHN+wYYPO85+dSK1fmxTysg4KCsKff/6JPHnyJIqSKE+nVqvx7NmzFKOPEoTSkKLgSv3bU6dO4e3bt9i5cydGjRqltaV86dKl4e7ubugsZytSMrF/67jA1dUVlSpVEhGaVq1aJQzWAODt7U1m3SSQP8+lF1Occ9SuXRujRo3CggULMGrUKNStW1fUixo1amDv3r2J5kBCQ0O16paFhQUaN26MR48eCS0+f/6M//77D61atRKGLdrOPB65FitWrMCmTZvw/PnzZNOkBaoXuueff/4Rv/GNGzcmm04+9r59+zZ69Oghzps1a1Ym5DR78urVKwwePFjsFvQtfwUKFICjoyP++eefRM8xuW5OTk7gnGPgwIFJHicAZ2dnGBkZoUCBAqkulJXa92XLlokAGS4uLsmml8qayjx9JCyvgIAA3Lt3D127dkXx4sW16kKlSpUwd+5c3Lt3T+uclCIeU71IGqkMdu3ahTx58qBMmTJai88SlqEUzZJzjtatW+PQoUP0m9cxbm5uKFCgADjnaNmypdbizPSUcUom3VmzZkGj0WDPnj1k1k2B58+fiwWszZs3x507dxIt8NBoNOjTpw845zAxMUHLli21Fh5IfdOoqCgsXrwYjRo1SvQ8q127NhwdHYUW48aNy9T7zAq8ePFCq9zq16+P3377DX5+fulaTE71Qv/I2+JvCYIn9XGlnW86deqks7xlRy5cuCB+x9OmTUsyWKE8ON6CBQugUqlgZGSEefPmaR0nMo5arRa72iRnYJfXi82bN6NEiRIwMjIC5xyDBw9OMh2RfqhuZE3IwE4QBEEQ2QQ3NzcMHjwYN27cEJ8l7FzNmjVLDPKHDBkiTJ/JIZ/ElM47dOiQ7jOfzXB3d8ecOXMSRcmQ6zF06FAt84lEcoMS6dzFixeLCZRr167pIffZi+S0SCsUeV23uLu7Y9u2bak+e+QkNK/LX/iSef3bSYsWCScc5S+lpGMJ25mlS5dCpVJBpVKhc+fO+PLlCw30U4G0UA5JaZHWycKgoCAMHz5cPJ8WLlwooh4fPXoU3bp1E8eOHDmil/xnJ5Lq16Zn4latVmPXrl0iQt/KlSv1kU2CyDTkv//JkydrvbwtVqwYOOfihUfp0qXRu3dvvH79WqffS8SjSxO7u7u70C9PnjyYPn26uL68zfbx8RFm3Tx58mhFAMzJyLWYN28eChQoIMbKUkRD6f8bNWqEnTt3JjKdhISEYMaMGULH8uXLY/z48Um+3IqLi8OZM2dQoEAB2Nra0nhchvy3n1zfNK1QvdAPzs7OMDExgbW1NW7duqU1jpCQl+/Dhw/x888/i7rx888/Cx2obUg/79+/F5Ekpf5psWLFYG9vj7x588LOzg4VKlSAg4MDHB0dUbduXdSrVw/169fHwIEDMXXqVFy9ejXJXbXkuu3fvx/W1tZCt2HDhiWZLqdz6dIlFC9eHBYWFlixYkWKuzFpNBqo1Wr88ssv4JzDysoKPj4+SaaTExoaijdv3sDHxwe+vr5a9Ya0SJ6QkBCcPn0azZo1Q4kSJbT6vO3bt8fUqVPx+fPnVMuQ6kX6ePv2rdhto1mzZjh37hxCQkLw8eNHeHp64ueff9bSo1u3bjh37hyZ1/WEu7u7lond09Pzm691+PBhYeDKnz+/1nuoqKgobN++PUmzLrX18Xh6eqJIkSLCbD5kyBCcOXMG586dw9atW7UM6YUKFdJ6dyr1j798+YJff/1VRHblnKNv377YtGkTIiMjER0dDRcXF6xcuVJosWrVKgPdsXJxc3ND48aNMXPmTAQEBAjj+rf8VqleKBNprPHlyxeUKlVKLFaQvwshErNmzRrxbFm/fr3WnIe0u2xMTAycnZ3RsGFDkfb69euGynK2ZtmyZTAyMkKTJk3w8uXLJHftAIBFixbBxsZGPGvku8jSu27dQHUj60EGdoIgCILIRsgn3BMO6M6ePSs6Xx06dMCTJ0/SdM3Hjx+LyZXGjRtneHv0nEJKke0PHDggtOjfvz8+fPgAIPXJ3ps3b8LExIRWnqeT1HYZSA4yr+uHb40Wo8vI6zThFY+8HDIyKfLhwwd4eHhgxIgRWi8F161bp4ts5ghIC+WQnBapReYD4qPE9e3bV5R7/vz5UbVqVVhaWorP5JORRMrI+7VyLdK6CCogIAA9e/YUZoekzIgEkZWQ14PVq1eLbWmlv4IFC6JPnz5wdnZOtLPA7t27tUwmaUFK++TJEyxevBjBwcGiX53T+1LJmdi3bNmSrnGCl5cX6tatK0yNNWrUwIMHD8R3JDTrtm7dWhiL0rMgNDsj1+LkyZMYN24crKysxC4cJUqUwG+//QZXV1fxgko6JzY2FgsWLBD61axZE2vXrhXtT1J9spCQEJQuXTrRQnRCd1C90A9S9GFra+skd+eQG3Ju3LiBfv36aRkVpSj3xLfj4uIiDIkVK1bEjRs3EBkZiaCgINFPjY6OFs8qIGmjlLwOJDTpSuMO+Tb0FD00MaGhoWIHrWrVqiW745PUDrx79w41a9YE5xyFCxdGcHBwkukA4PXr11i9ejUaNWqEfPnywcrKCsbGxujRo4fW7gekxVfi4uIQGhqKNWvW4Pvvv9fq3+bNmxctWrTAli1bEBYWJupESvMmVC++DS8vLxQtWlTMZTg4OKB48eKws7PT0mTs2LFwd3cX5fYthk4q89TRhYl9165doj9lbW2NOXPmiGPyuiQ3644ePVpXt5Bt8PLyQvXq1bXqAedcPFvMzMxQvHhx7NmzR5wjjZsjIyPxww8/wNTUVJy3cuVKBAUFJfqeiIgITJ06FUZGRmjTpg31a5Mg4bzetzxLqF4oE3mbIgV/Mzc3x6JFi7SOE1+Rt7/yRfkzZ87UCggTFRWFTZs2oVmzZiLNggULDJHlHMGZM2fEe7k1a9ZoPcvVajWePn2qFeCQc47ff/9dKw2RMahuZF3IwE4QBEEQ2RD5YE7qqP3xxx8wMzODjY0NtmzZkqYB36tXrzBgwADkzp0bKpUKEyZM+GYzMBGvRWRkJP73v/+Bc46yZcvizJkzaTrXw8NDmFQKFCiA9evXJxkxi9ANGTWvk8E94+gj8ro8EilNen1FXobXrl3D2bNn4ezsjAMHDmDv3r3YvXs31qxZg2XLlmHlypWYPXs2Ro4ciREjRqBnz54oW7YsSpYsqRXlcsKECeKaVNZph7RQJhs3bsSGDRsApFyGGo0GZ8+eFZEUpUVn0l+vXr3g6+sLgKL2pAd5md+/fx/Hjh1L9HlybN68WZT/lStX9JVFgsg05O3E+/fvcefOHZw9exaXLl2Cm5ubVlrpOXP16lXkyZMH5ubm2L9/f7ragocPH4pt0xs0aIDFixeL/lROf44lZ2JftWpVmspG0uHz5884ceIEvvvuO/GSVorsnVArHx8fDB8+XMsARyT+Lb58+RKenp548OBBogVo8rRbtmwRutWuXRs7duxIMZJfbGwsPn36hCpVqoBzrmV2IHQD1Qv98eLFC5QtWxYmJibYtm2bVlR7+fPs77//RpcuXUTd6NixI27cuEHjCB3h5uaG/PnzC0Oit7c3AG3TjjSfpNFotOaWEmog//8DBw4II1358uWxYsUKbN26lcy6KfDy5UvUq1dPLIB59uyZKO+Ec3pdu3ZN1kglr0tr1qxBu3btkjQ40vg8eSIiItC9e3dRxpxzlCxZEk2aNMHVq1fx6tUrrfSpjcklqF6kHx8fH3z33XeJTOsWFhZo3bo1du3apZU+MjISDx48wLt379L8HfKyvnv3LlxcXJI9ntNJaGJP7w6zK1asQMmSJWFkZAQzMzPMnTtXHJM/5ySzrpmZGTjnmDhxos7uIbvw6tUrTJgwAXXq1NGqG7lz50b//v3h7Ows0krvT798+YJevXqJtObm5jhw4ECK33PkyBGRXlrASSQmI88Jqhf6IyO6hIaG4t27d+jbty/y5csHzjlsbGxw8eJFHeYw+yEfx02aNEkrqE7btm3Rpk0blCtXTivQ0ciRI+Hn5weA2lx9MWvWLFHev/76K5YsWYL9+/ejR48eqFGjhjhWvHhxTJkyRZz3reb1hOeRCZ7qRlaFDOwEQRAEkQP4/PkzKlSoAM45mjRpovUyJDmCg4OxbNkyEXmjVKlSCAwMzKwsZ1uCgoJQvHhxcM7RtWvXNHWC/f39MXz4cPGSq0mTJomitlNnOn1ER0fj5cuXYsuohNHGMmJelwZGnz59wqVLl2ib4DQQHBwMd3d3hIeHA9DWQ1eR1x8/fgwrKyv8+OOP4jPSQ5shQ4YI8/O3/BkZGaFatWpaq9ST0ujJkyc4e/ZsiruG5HQyS4ukIC20OXfuHKysrGBlZZWmiFeRkZGoXr06GjdujH///Re9e/fG+PHjsXbtWq106TE3EvF4eXmhVatWMDU1xdOnT1NMK7XXt27dEv2nv//+O8m0VM5EViO532xKURCl3SEsLS1x4MCBNP/unZyc0KNHD+TNmxecc+TKlQuNGzcW0Xtz+kuRpEzsPXv2TMMNEKcAAMwrSURBVPOib/lYzs/PTyx0LlKkCB4+fJjkOVJ/WX4+8ZXkDJ4J68W5c+dEv6ly5crYuHGjMK+nVK6PHj0SJoZ58+bpOPcEQPVCX3z+/FmYqJo0aYLHjx8jMjISQHy/Sa1WY/LkyWLREuccP/zwA+7cuZPjFyzpGl1E1ZVrIo8wXa5cOaxatUrUAzLrpoyPjw/s7e3FQr2dO3fizZs3AICPHz/i7t276NSpEzjnMDExQZMmTXD79m1xvnx+fcCAAVpzV02bNsWwYcNw7tw5bNq0CcOHDxda0A4eiXn69ClsbGxgbGyMX375BRcvXky0o1Bqv1uqF7ohODgYN2/exPz58zFr1iwsWbIEjx8/1ooYrdFooNFocObMGXDO0aZNm0QLDVLj2LFjaNmyJTjnmDJlCi5cuKB1fSIeeZvRuHFjsfAprVy/fh3Tpk2DhYUFOOda8+LysYxarcb69ethY2ODR48e6Sr72YqoqChERkbi6NGj2LNnD5ycnODh4SHeLwFf24Xo6GgMGzZMvF+ytrbGkSNHRLqEv3FJCx8fHxQqVAjGxsa4evVqJtxVzoTqhe6Ryi0yMhKenp5wdXWFi4sLHj58iGvXruHGjRu4evUqjh8/jqNHj+LEiRPYvn075s+fj+nTp6NRo0ZwdHTUer+xZcuWFL9TishP81Jf73/ZsmUoX758su+Mpk+fnmgBrfwZ9i2Eh4cLv0JO10LeF50yZYrWIlZpHkn669mzJ/bu3at1vvx96bewZcsWsTAwp2sBGL5uEOmHDOwEQRAEkQN4+fIlbG1tYWJighUrVgBI2Yj78eNHbNmyRQwYbW1txXaq8sgyyUGTjMnz5MkTWFhYIHfu3Dh48CCAlAcSr1+/xpQpU1CkSBFwzlG0aFE8f/480XmxsbF4+fIltm3bhm3btuHSpUsUbToZoqKisHPnTrRq1Qo7d+7E58+fxbGMmtclPn/+DFtbW3DOMXnyZBEtDiAtEvL+/XtMnz4dzZo1w+7duxEaGiqO6cq8/uTJE60X8cOGDRPHSI943r9//3/snXVcVNn7x58zQyOCiIGBYgeg2N3dXatrrGt3f9U1V9fYtbsLY3Xt7m5UUClJUQwUpWuGz+8Pfvd4hxlC0jjv14sXMPfcO/ee5z4nP+c5KFmyJBhjMDAwgEKhQKFChZArVy7kzp0bRYoUQeHChVG4cGGUKVMGFSpUgIODAxo0aIA2bdpg5MiROHLkiIaoVJeN3N3deRSNCRMm4PLly/yYsEUi2WELHx8fXLx4EaNGjcKkSZNw4MABjfTCFl+QbxU8d+5cDYFUcrRv3x558uTBq1evkp2UknB2dsbhw4cxceJEzJkzB8eOHePCUEDYQo67uzuPejt16lSN+js5tm3bxsv+vXv3ppjW29sbt27dwl9//YXVq1fjwoULGpF7hS0E3yPyMufXX3/lERT379//Ve/08+fPMWzYMD7YX6BAAT4p8rMLG+V5vGvXLi2x1dfw9OlT1KlTB4wx/PLLLymWc6JMSj++vr5o3Lgxj770xx9/ICYmBkDK+RoSEoLffvuN98sfPHiQXbf8UyP8IvPw8fFB8eLFwRhDlSpVMHDgQGzYsAEDBgzgeSz9DB06FJ6enhkq44U9kiczROwAsGfPHh41rly5cli9erXGThJS9FAh1k0eT09P7hdmZmawsbFBhw4dULFiRf65gYEBHBwc+Dgu8CXCrlqtRtu2bTX8Z968eTx6n0RYWBhWr14NhUIBKysrnDt3Lluf83sgMDAQZ8+e1fgsPe+p8IusQVcQHWdnZ41FT2kVsUdFRWHevHl8rFZPTw+lSpXCkiVLtL5PkLgzr7Qg459//uHvc0rI6++wsDDs2bMHZmZmvI6XSLqTszTuLnaX1Sa1heTyhbPr1q3jdYienh4OHTqU6nUAYPny5dynHj58mIl3LwCEX2Q1ISEh6N+/P0qVKgULCwuYmpry3QANDQ35LivSwkBdItJcuXKhVKlS2Lp1K7+urv7IsWPHUKhQIb5Twc8u1pU//+3bt7Fy5UpUqlQJ5cuXh52dHXr37q1zN3hPT0/UqVMHTk5O6ap3w8PDsXLlShQsWJAvNhe2+PL827Ztw4ABA5ArVy7kz58ftra2aNu2LQ4cOMBF/xL+/v7o1asX/v3333TZ4tixY2CMIXfu3Hj69KnWvfys5JRvhIWF4eLFi3j//j0vw0TbNnWEgF0gEAgEgh+chIQEPHv2jHcOk67oTEpwcDDWrl2L0qVLgzEGKysrbNu2DfHx8Vodxbi4OMTExODu3bu4du0a7t+/rxUFQjTIvpCQkIA7d+7wzvixY8dSTO/v74/JkyejSJEifCGBFI1E3uj29/fH0qVLeWR3aVVvs2bNsHLlSo3vFyR2qqUB8ipVqsDJyQlA4ralNWrUyLB4HUgUr0gCVIVCgZo1a2LZsmX8uLDFF0JCQnh54+joyO1x8eLFTBOvy8VWYoIqeZ4/f87F5TY2Nrh69Sr8/Pzg5+eHkJAQhISE4O3btwgPD0dMTAzCwsKSnTTRNbCoVquxe/du7n8KhQJVqlTB4sWLeRphi0Sy0hY3b95E27ZtuWBC+hG20E1kZCSmT58OpVKJChUq4ObNmymmf/v2LapWrQoTExOt6DzyPI2MjMS6deuQO3duPlki/VSrVg1Lly7Ved7PTGRkJGbNmgUDAwOUK1cOV65cSTatlGdSRGTGmM7BSIn9+/fD3t4elpaWGm2pBg0aiPpb8N0jb8f269ePC7FS2748aeTq0NBQXL58mUdKtLW1/eoIgD8quvoK8vr39evXiI+PT7UMiY2NxdSpU8EYQ4kSJb46kqUgZSSbHDt2jPcz2rZtq3MXKF2cP3+e72zn4OCgNeEoSB25Dwi/yBk8PT01FncrlUr+t5GREcqVK6fRDgUSo+pJ0drTityfpH68QJOMitgfPHjAxT96enro2rUrPyaP3pdUrDts2LBMe4YfBR8fH3Tu3BnFihXTiJTIWOLuM+3atcORI0d4erkYWmoX6enpoVChQtixY4fGteVtBD8/P1SvXh0KhUJjvFagTXoFN8IvMoek4s2U0ty+fRsGBgZfLWIPDw/Hmzdv8Ndff6FWrVrcFuPGjdN5Hz87np6eGDduHO7fv5+u8+Pj47FhwwYYGxvDxMQE27dvz9wb/AlJ+n5KvvLy5Uu0atWK1yPy+Vhd77T0mUqlQv/+/fliWV9fX+EDWYzwi8zFycmJv/dSvaBUKvl8q6GhIXLnzg1TU1NYWFggf/78yJcvH4oVK4batWujRYsW2L17t8ZCcV110NmzZ3kbOm/evDwoz88u1k2aV5GRkYiPj0dcXJzWmJVUtvzxxx9gjMHU1PSrdmsEEuvxzZs38zksS0tLYYv/J+nzBwUF4c2bNwgLC+PBEyQku61cuZL3yb/WFkBioIYWLVqAscRdP4SI/QvZ7RuRkZHYvHkzGGOoUaMGduzYgffv3+u8F4EmQsAuEAgEAsFPgEqlQt26dXnEW/nW2NIPkNjAnTdvHmxtbXnnb/ny5VoTsyEhIXBxcUGnTp1QrVo1jU6pkZERBg0alOrAzM9KVFQUqlevDsYStxyXGsdJV2A+ffoUgwYN4lG8CxQogP/++08rL0NDQzF//nyeTl9fnw/USxOREyZM4OmFLRJ59uwZChQowEWbs2bNQrVq1TJFvA4k2vnZs2dcJCQNwovI37p5/vw5t0fVqlUxZcoU5MuXj5ctLVq0yLB4vWjRoli5ciVWrFghROwp4Obmhrx58/JFAx4eHhp5I/cHeWc7rfkXHR2NFy9eYMCAAcn6hiCRrLDF8+fP0axZM5iamvKIDAUKFICenp6YLEyB169fo1GjRmAscSv458+f82NSmSTZwMnJieelfAts4Et+hoSEYPr06RqidWtra5QpUwbm5ubCFinw+vVrNGzYEIwx1K9fX8MWSdtUUuQRxhiaNWumkYfyv1etWqVhC0tLS1hbW8PAwIC3pYQtBN878jqjT58+YIyhUaNGGjs2pRU3NzfUq1cPjCVutZ2W3RB+Znbs2IG6devySK2pRe57/Pgxr6fXr1+f4jmC9NG8eXPeP3j58iWA5CeRpHr+/fv3aNCgAY8Kd/78eQDCNulF+EXO8vLlS8yfPx9NmzZF8eLFUbFiRdSuXRvbtm3juy9KfPr0CcuXL8fw4cM1dqZJK/v370ebNm2wa9cu+Pj48M+F/RKRi9ibN28ODw+Przp/165d6NmzJw9aMnr0aH5MXverVCps3bqVj92+fv06057hR+HDhw84d+4cBg4ciKZNm6JGjRpo2bIlDh48qLG4QF5udejQgedp+fLlcfjwYZ4uuXqlXbt2YIyhY8eOWfo8PzPCL7IP6T2/ffs2n4/o0aMH/P39UzwvaR3w5MkTzJ07l4+FTJ06Ncvu+XtGHrhCepdVKhXevHmTpvO9vb1Ro0YNMMYwcODALLlHATB//nw+vjR//nz+eWptH7n4d8yYMVl9mz8kUpkk/CLnGDVqFH+P27Rpg1OnTuH27du4fPkybt68iadPn+LJkydwcXGBn58fAgICEBgYyHdIkaPLZ86ePct3WZEWpQuxrm7kbdGURLPy3RrTKtSVxOu5c+fmwfeELTRJLh9TssUvv/ySbtE0kFietWzZUtgiFbLSNwDgzZs3GDlyJC8Lixcvjh49evA+pbBH8ggBu0AgEAgEPzgJCQmIjY3FhAkTwBhD9erV8fTpU60G0v3799GlSxfe0ciXLx9Wr16Nt2/faqR78OABxo4dy6OC6+np8clfKYqyQqGAnp4epk+frnEfgkRh89ChQ8EYQ61atfD06VMtgfTFixdRuXJlmJubc1HbsWPHdEbXdXd355HXixUrhsmTJ+P8+fPYtm0bRowYwQd+J06cmF2P+N0gnyg0NzfnUQHs7Ozw4cMHAOkTryd915cvX46yZctyEZxcNC34gtweJiYmvHPXqlUrfPr0CUDGxOtr1qxBcHAwAIitglMhs7YzT0rS/F26dClKlSrF65GxY8dmyvf8SGSWLaS837t3L48wbWdnh5MnT8LLywunTp3CtGnTuF9MmTIlMx/jh8DX15cv8Ktfvz7OnDnDyyYJuWC6du3afCFUUv7++2+erlKlShg7diwCAwPx4cMH3LhxA/Pnz+e2mDNnTjY83feFj48PSpQowW1x+vRpDVuEhIRg//79PI+lBUwqlUqrHNq5c6dGum7dusHV1RV+fn44d+4cZs6cyW0xa9asbH5SgSBzkbdr586dqxUh9Guus2bNGjDGUKZMGQ1BokATT09PXsbs3LkzTedcvnyZn7NmzZosvsOfj8+fP8Pe3h6MMQwYMABxcXHJ9jHki9TatGkDxhIj8Y4fPz7ZOl6QOsIvvg0SEhKgVqvx8uVLhIWF8Z0IJKSJ3Pfv3/Oxvm7dun1VBPxjx47xhYdS337r1q0a9yBI7PNJC/pbtmzJx6NSQp53L1++xPr165ErVy4wxvDrr7/yY/IJeZVKhYMHD8LFxSVzH+AHJDY2FjExMVrjsPL6QhJoKZVKlClTRmOXzZTe7aZNm4KxxB1AhA9kLsIvcga5iF0azx0yZEiaIkwm3aVu/fr1fF5p165dWXbP3ztSvsXGxmLx4sXYs2ePxucpIe1qo6+vDy8vryy9z5+NhIQEBAYGomLFimCMoWnTpmnO48uXL/NgPnZ2dnzHQVFPfD3CL3IGeRtpzJgxvP0vb/unRmq2kovXK1eujBUrVqBZs2ZCrJtOdO3WaGpqiv3796doi6Ti9Xr16uHff/8V0b8zgDyfvsYWuhAi9oyTXt+Q4+/vj/3793M/kXRXUp9DRGLXjRCwCwQCgUDwk+Dv78/FnHXq1MHy5cvh7OyM3bt3Y+7cuTAyMuICHWtra+zdu1dLmHX+/HlUrVoVZmZmfNXg+PHjceXKFXz69AlqtRqHDh3CyJEj+bUmTZrEzxcDLon4+fnxCcCaNWti3rx5uHTpEv7++28ubpd+bGxscOvWrWSvNXv2bDCWuK3gvn37NLZm/vjxo0a0abE9rTbu7u5czKlUKlGkSBEeVUyKqpRepE7Oy5cvudDOyMgIderUga+vb4bv/UdEbg8DAwM4ODjwyKBfs5jgyZMnKF++PPehDRs2aETdiI+P1xCxy6MxiXIqkawSscu5du0aX4CTO3du9O3bV2vRlCBzRezdu3cHYwxly5ZFUFCQxvHw8HCsXLkSCoUCCoUCmzdvzozb/6Hw8PDg72zx4sXRrl07bN++HQsWLMCwYcN43Z0/f3788ccfOuuRc+fO8XTVqlXDtm3btLaOjImJwZo1a6BQKGBtbc0nrgRf8PT0RNGiRXkbqG7duvjjjz8wZMgQtG7dWmNgcPDgwVptWgC4e/cur3NKlCiBuXPnIioqSiNNVFQU1q5dC4VCAQsLC5w6dSqbnlAgyBp0tafS0/Z58eIF7xOuWLEiM27th+TVq1fo1asXDA0N0aVLlxTF/tLkxcGDB3kbddWqVdl1qz8N/v7+fIebTZs2AdDtA/LP5BF2mzdvrhWhWvB1CL/4Nviasv/69eswNDQEYwxdu3ZNs4j948eP2LlzJ3r37s3HHBUKBaZNm5au+/iRcXNzQ6FChTB48OA0RwyV551KpYKTkxMX686ePTvFc8WEuW7S+j7u2rWLj/PlyZMHhw4dStM1Lly4gPz580NPTw8LFy7M8P0KtBF+kTNIeXf16lXY2tqme4FrcHAwunbtyhcdqNVqUU+kwP79+2FiYgJra+tU5xqkBTkLFy6EoaEhjI2Nv3rXD0HquLi48DJH3t5JiXv37qFx48Y8uNLw4cN1BrISpA3hFzmHXCA7fvx4Pja7YcOGdAUKk5NUvL5v3z5ERkbi5cuXQjidAXQJdRljOH78uM70ScXrdevWxZ07d5CQkABfX18hnM4AydniyJEjX30tIWLPOF/rG8nh6emJJk2a8PKLMQZ3d/fMvt0fBiFgFwgEAoHgJ8LT0xPFixfnjSRpC2YpMnSePHlQpUoVuLm5aZ178uRJFClShE8a2tnZ4dGjR3zLeLlIKyQkBOvWreNp//nnn2x7xu8FT09PlCpVittCGqCSIhGXKFECnTp14uJd+fZ3EgkJCTw6QMOGDfkkl3xgNzg4GMOGDYNSqUTz5s3TPBH2M+Hm5qYRkfjEiROZFlHP3d0d1apV41HFO3bsiDt37mTKtX9U5Pawt7fHsWPHdAoPdZGQkIBXr16hUKFCvGzr3bs3X9ghL6dUKhW2bNnCfW7kyJFZ8TjfNVklYo+Li8PZs2d5RBpzc3OMHj1adNxT4GttIdUD8vogJiYGXbp0AWOM75CSdPA4MDAQnTt3hp6eHnr37p3hweUfEW9vbzRq1EgjeoK8LVW4cGEMGjQIHz9+1DhPssW0adNgYGAAAwMDzJkzh4vXk07K+vv7o3bt2mIBWgq8ePECjRo1Qp48ecAY4+1OqVwvXbo0Ro4cyW2RVJCwbt06PrH422+/cfF60nRBQUFo1aoVGGNYsGBB9jycQPCNc//+fS5mFH29lDl8+DCvwxcuXIjo6Gh+LGl97ePjAwcHBzCWuLuWq6trjtzzj0xQUBC3x+LFi1NMGxYWhrZt2/JofFWqVMGJEyey6U5/bIRffD/II+vq6+unWcSetG174sQJDB06lLfXxo0bl2zan5Xg4GAeUAH4eoFBaGgoJk2aBD09PdSoUUPn2K4g46jVavTu3Zv3A6XFUEDqC6JmzZrFz9u7d2+23O+PhvCLbxepvpAEoekdT1q0aBGfK8mKYBo/EtevX0eZMmVgYGCAf/75R2tBvi4GDhzI27bCHzKfU6dO8cAWjx8/BqA9xiSvF5ydndGxY0e+OLx27dp8VxyxqCZ9CL/IWbJCxH727Fm+W3mVKlXg5OTEdQmAEOtmFLldpEVk27dv17JXWFgYNm/ezMfSGzRogFu3bmnMuQpbZAx5nvfo0QOMJe7Om5ZyLCne3t4aizukcRRhi7STVt9IStIdhqZOncp3KbK0tMTu3btFHZ8MQsAuEAgEAsFPhq+vLwYNGsS3zZYi33bq1AmrV6/mW9XKG2Dnz59HsWLFeCc+V65cWLduHa5cucI7IIBmwzc6Ohp//fUXFAoF7OzscO/evex7yO8Ef39/jBo1ClWrVoWpqSmUSiVKliyJgQMH4sSJEwgNDQUAjYgLsbGxiI+PR2RkJIDESUBDQ0OMHTs22e/ZsGEDt/XVq1ez9Jm+V9zc3PgEeuXKleHk5ITw8PAMXdPLywtVq1YFYwy5cuVChw4dNMTrYpI2eeT2cHR0/Gp7LF++HN27d4eRkREYYxg1ahQ/Ji/bVCoVNm3aBMYYChQoAGdn50x9jh8BuXC6WbNmGZ48iouLw/nz51GhQgU+eDJq1CghXk8D6bHF69evERQUhFevXiE8PBwbN24EYwzLli1L9pxp06ZxEbAYtNfNmzdvsHz5cjRp0oSXM4wxNG7cGP/88w9fdJN0ICouLg5169blUfClwfbk6oNff/0VjDG0aNECgBhg1MXbt2+xfv16tGrVCgUKFICenh6sra3Rs2dPHD58mOdxUluo1WouSixatCjevXunM53E2LFjwRhD1apVER8fL2wh+GmR3v2DBw/ySSspgqho22oiz48lS5bwumLNmjUai2WlcsfX1xcDBw7kE7ONGzfOtEW1Ak0GDx4MPT09DBo0CJ8/f+a2kiZeIyIicOfOHTRu3JgLqCpVqoR///2XX0O87+lD+MX3iS4Re4cOHXj7KSXkbaZ3797xXYYYY1i0aFGW3fP3jpRvCQkJ+O+//xAZGZmmSe4TJ05wv9q5c2dW3+ZPyb59+3geT548mX+emn2OHz/Oz+vUqVNW3+YPiZTHwi++bdLbRpLmP7Zu3YpcuXLB2NgYLi4umXlrPxyhoaEYNWoUGGNwcHBIdZeghw8f8rkKW1tbBAYGijZtJnP48GE+h6rLHvL8vnv3Ltq1a8cDZNjZ2eH9+/cAxPhfRhB+kfNkpoj94sWL/Pz8+fNrzGnI2wBy4bSpqamGbkGQOnK7XL16letEJGJjY7F7925uC2tra+zfv58fT84WRkZGePbsWdY/wA+E3BYHDx6En59fuq/l5+fHbWFubs7bVaKOSTup+UZKvHr1CgsWLOAB+0qXLo2dO3emOWDfz4gQsAsEAoFA8BMSHR2NDx8+4MqVK7h3755WZ07eeL1//z6qVasGpVLJJ5nkP+bm5ujXrx8XW8s7925ubqhbty4UCgW2bdsmOv46iIuLQ1RUFJ4+fQp3d3etCOnyxvG5c+fw22+/oWrVqrCzs0OXLl0wbNgw2NjYoEGDBnyAS0LqNF64cIFPMm7ZsiXrH+o7xd3dHfnz5wdjDKVKlcL58+fTvQpWiNczjtwetra2uHr1aqr5Jj/u5+eH1atXc3HVr7/+yo/JyziVSoVjx45pDLgINHF3d0eBAgV4lIu3b9+m6zqSeF2KvC7E619PWm0RGRmJjRs3omTJkrC2tkbevHlRvXp1tGnTBlZWVujTpw/fmQBI9B2pvlm2bBmUSiX09PRw69atbHmu75l79+7h9u3buHHjBuLi4ni9oav+iIiI4FHV27Rpk2w6SUD3+++/8yiXgtR5+fIlvL29+e41ErrqDrVajXbt2oExhho1aiA6OlpnOskv5syZA8YY6tevnzU3LxDkAPJ3Pi1/S3h6eqJw4cJgjMHGxgbPnz/P2hv9jpGX8dICMcYYRowYgQMHDiAuLg4BAQG4evUq6tevj7x58/KIPFL7SPQbMp8dO3ZwW6xatQovX77kx3x8fDB79mxUqlSJT7g2aNAAx44d42mETTKG8IvvE7mIXbJHevqFMTExWLBgARQKBSpXrizEiakwZMgQFChQAA8fPkxT+k+fPqFo0aJgjGH48OEAhL9kFlI+jhkzBkqlEqVLl8aNGzc0jiXHzZs3+WL0kiVLYteuXWk6T6Ab4Rc/HvK2gSQ8ZYzh/v37OXhX3weBgYGoWbMmGEvcoffZs2d83FseFOnly5d8YT5jDNOmTcupW/6hefPmDezs7GBkZITNmzfr3FUZSIwoXbt2bT5vUaFCBR6oRAgLM47wi5wnORH7xo0bv0rE7uHhgRYtWvD5JHt7e17/q9Vqjfrc29sbTZs25YsFpSBwgrSRWtnj4+ODbt268d3RKlasyOe8k9rCx8eHBwQYNWoU34FWkDYyWg/IbXH69GmUKlWK9+FFELevJz32eP36NRYuXMh3Di5btiy2b9+uMScr0EYI2AUCgUAgEHCSiqjevn2LIUOGwNTUlK9ctrGxwdSpUzFjxgz8/vvvPEJAmzZt8PHjRwCaouvFixejUqVKqW4vLNAkaYdv3759UCgU0NPT01hAIP1vY2OD06dPa0RpAoAPHz5g8ODBPL0Q6aaMu7s7DA0NYWtrixs3bqRrQkOI1zMPd3d3KJVKVK1aFd7e3mk6R56/8fHx2Lt3Lx8MnjFjRqrni627dOPu7g7GGJo0aYLo6OivPl+I1zOP5GwhvfsRERGYPn26Rl1hbGwMxhgMDQ3BGEOJEiVw+fJlXmdI7/2LFy94dHxra2uxXXMKpLcsHzZsGBhjqFmzJm836cLHxwfW1tZgjGHMmDHpvc2fguRskVp5PmnSJD5R+Pr162TTBQUFwdHREYwx9OnTJ0P3KhDkNOkpu1QqFWJiYnDjxg2sWbOGl03m5ub47bfftKIhJ/2On73tK5/o+N///qdRP5cpUwZ58+aFUqnkn+XJk4fvmpWZk1aAaOfKkduiVq1a6NGjB7p27Qpzc3PebsqVKxd+//13XLt2jZ+X0fdZsunPLkzJSb8QpB+pDHny5Al8fHwApM8nbty4wbfQ3r17d6be449EUFAQWrVqBcYY+vXrl+LuA5IdPn/+zBeZ9ejRQ+OYIOPExMTAzs4OjDG0atUqTefcu3cPlStXhkKhgEKhwIABAzK84+PPjPCL74eki2Kl/xMSEjSi6cvZv38/ihQpAoVCAXt7+xT76YIveHt7o0iRImCMoXbt2ti9e7dGoKNTp07xsSip/Hrx4gUA4QuZTVhYGHr27AnGGOrWrQsXFxcepAJIFLRt2LABRkZGPFiYnZ0dfH19AQh7ZCbCL3Ke5ETsK1euTFMeS3VFREQEzpw5w+t/Q0PDZBcR+vj4YNq0aThx4kQmPolAskVkZCQuXbqENm3acFvcvHkTgG5bLFu2LNVdEASZh3x+8O3btxg5ciTq1KkDxhJ3FpQH8hFkHUK8nn6EgF0gEAgEAoEWUsfy/PnzXKBQsGBBTJ06Fa6urhpp79+/z7dz7tmzp9Y1APDBZDFhnj5OnjzJJ28NDQ1Rp04d7N69G9u3b8fMmTNRsmRJMMZQvnx5HDt2jG/j/Pr1a6xbt46vrs2TJw/8/f1z+Gm+ffz9/XHhwgWNaAxpRYjXM5/AwEB4eHjwvPvaciQsLAzTpk2Dnp4eKlWqJLasywBBQUGIiIj46vOEeD3zSckWq1at4gPClSpVwtixY+Hh4YGrV69iy5YtKFOmDK8znJycEBAQAABwdXVF9+7deZ1eo0YNvruKIPNYs2YNF35Kgjhp4Z/UdgoKCsL48eORK1cumJmZ4ciRIwBEOyqz2b59OxhjMDMzw4ULFwBAa1HH58+fsXLlShQsWBCMMb5VrbCF4HtEer+fPn2K7du3Y82aNdi4cSNWrFiBWbNmYf78+fjzzz8xZswYDB8+HOPGjUPv3r3RsGFD1KpVC4aGhlzYa2lpiVatWqXYrnr69ClfxPyzC07lz79+/Xo0atRIa2ezfPnywcHBgUcjThq96mv7EfL0Fy9e5KIIYYsvzz9nzhxYWFho2cLExARFihTB/v37NaKzA4l97PT26YKCgtC1a1c8evRI615+RnLaLwTpQ56HGWkPSX3Dvn37al1XkEhsbCyWL18OMzMzlChRAsePH081n6S+hlKp5O1WQeYRHx+PGjVqaARISBpFVG6ju3fvolatWjAyMuILpqRt50V/In0Iv/g2yUgZHhUVhfDwcCxatAgODg5c1Dt58mSd6eW+I+qOL3h4eKBEiRJ8jMPGxgZNmjRBjRo1YGlpydtWDRo0wKFDh7KkDBL2SMTHxwe2trZgLHH3zJEjR2Lbtm0YNmwYjw4tBRtp2rRpigtx0ouwRSLfgl/87Mj7fGPGjAFjDNOnT0/z+fJ32d/fH127dgVjDEWLFsWTJ090nqMr4I8g48jzMiAggNvC1tZWSzciIV/AI8gakpZb9+7dw+DBg3l/W/qxt7dH7969+VygIGsQ4vWMIQTsAoFAIBAIdBIbG8sH5fPnz4+FCxfyqBdSR0XqfJ4+fZpHT9q7dy+/RmrbzwtSJiEhAW/fvkWzZs2gUChgaGiIIUOGaG23FRAQwCMA2djYoF69ehgzZgyqVavGt0i1tLTEpk2bAIhJkq/ha95bIV7PeuTvrrOzM968eZOm886ePcs76ps3b86q2xPoQIjXsxdnZ2deHzs4OGDHjh1aE+pBQUG8zsifPz/KlSuHFi1aIG/evDwSg5WVlU6hkCBtpCZIa9euHc//pAO8/v7++N///gcbGxswlrjFvLQwTfD1pGaLDh06cFskFeK+ffsWGzduRLly5biITuwoJPjeuXr1KvT19bVEol/zU7ZsWUyZMiXFutzV1RU9evSAiYkJHj9+DECIdeXPHxAQgOPHj2P48OEYMGAAxo0bh2PHjuHt27cANNu8ixYtgr6+Pnbv3p3mOlme7vz586hbty5MTU35BK+wxZfnP3XqFBYuXIgaNWqgRYsWGDBgAHbt2oVXr15pnbd3717o6elh165d6RJOz5gxgy8sf/r0qda9/Ixkp1/IOXr0KP7880+4u7tzgYNo82Y9kg3DwsL4otpOnToBEPmfHO/evUPr1q3BGEOdOnW02qtyH3rw4AFv2zLG8N9//2X37f4USHncrVs3jfHZpO/wtWvXYG9vz/vY5cuX5/26n73szyjCL74t5PWzt7c3nJ2d8ejRI9y+fRuXLl3C+fPncezYMezfvx/79+/Hli1bsGTJEixcuBDjx49H/fr1UaVKFTDGuHj9l19+0Xl9aXxLLogT9ccXfHx80L59ez4fJOWn9LtLly44fvy4ho+o1eoMi6rk4/PCHol4enqifPnyvOxJaou6detixowZiIyM5OckJCRkaIeOy5cvY+nSpRrXE+ScXwi+IM/b06dPa5TrXztX/ejRI1SvXh2MMQwdOhTR0dHiXc8h7t27h0qVKkGpVGLcuHGIj48XtshGkvrOvn37MG7cOOjp6WkEZyhUqBBmzZqFJ0+e8HaU0IhkDUK8nnGEgF0gEAgEAoFO7t+/j4IFC0KpVKJXr148YltSEhIS8PLlSz75NHfu3Gy+0x+bFy9ewMrKim91FxUVBeDLQK3U+ff39+eR2IsWLcqjI0ri9TVr1qRZ7CvQROrMqdXqZFeMC/F69rJx40YwxnDp0qUU08nz3d7eXiPCm+ikZxyp/FGpVDp3LBDi9eznv//+48LEkSNHakX2ln67u7ujWLFiYIyhatWqXPSeJ08elClTBs7OzgCEn6QHeeTuy5cvA9Be+BcUFMSjLuXNmxeTJk3C8uXLsXLlStjZ2fFosLlz5xbR1zOAlGfh4eFa25lKtnj79i2aNGnCBep//vkndu/ejQMHDqBt27Z8u2FTU1OsWLFC47oCwffIhAkT+NaxRkZGsLGxQYkSJVCqVCmUKVMGjo6OqFy5MqpUqYLGjRujWbNmaNKkCfr06YNZs2Zh/fr1ePv2rdaCWjkuLi74/fff+YSwpaWlEOv+P2npEyRN06dPH14n7Nu3L9VryI+fPXsW7du357t5CeH0F5KW5bryQ0oj5Wnv3r35LippsUVSPD09+bbnFhYWwhb/T3b4hZyHDx+iffv2vB38999/IygoCICwRVYiz9sVK1bw8aoFCxbk4F19H/j6+vIFlQ0bNsSNGze0JsFv3LiB3377jedr//79c+Zmf2CkcmbFihXQ19dHxYoV4ezsrFX+xMTE4MCBAxrjsvb29nxMVpQzmYPwi2+Pv//+G3Xr1tXoa0h5n9YFtBYWFhg+fLjWzmjAF/F6VFQUihcvrrETsBh3/8KHDx9w5swZDBgwAPXq1YOtrS26d++O5cuXIzIyUiOvVCoVfvnlF/Tr1y/di/Xd3NxQoEAB9OnTh38m7JHIy5cvMWvWLDRs2BA2NjawsrJCixYtsGDBAnh7e/N3OiEhAWq1GjNnzsSoUaO0doBKC+/fv0etWrXAGMOIESP458IWiWS3X7i7u+P8+fMpLnT72dDV/pF/5uHhAbVaneqYa3R0NIYNGwbGGMqUKYPg4OBUvzshISHduzv/bMTExMDT0xNA6nkVHR2Nvn378oWaGVmAI0gbScuRkJAQHDx4EL169YJCoeBjf2ZmZrC1tcWWLVtw//59jXOSjnMJ38gchHg9cxACdoFAIBAIBDpZt24dHzy8ePFiimnDw8N5RIFu3bpl0x3+HJw6dYqvlJUiqCeNpqtSqZCQkICJEydCqVRixIgROHv2LKZMmYLFixfj+fPnOXHrPxRRUVHYtGkTjh07xjviUsdOiNezl48fP/IoC7169eLbLydHQkIC3rx5w0WI3bt3558LMk54eDjmzZuHf//9V2OQSojXc4Zly5ZxsaAkQk86QKxWqxEVFYUuXbqAMYa//voLDx48wObNm3HlyhU+8CsGrdJPZGQkbGxsYG1tzQVRSfnw4QO6devGFw8k/TEyMsKwYcP47jeC9BEdHY0GDRqgZMmSyU4Cvnv3Dp06dUp2El1fXx9t27blQkOB4Htn3Lhx/P2eMmUKXr16hdDQUISEhCA0NBRRUVGIiopCXFwcEhIStPoeQPLtKBcXFwwZMoRfX1pgK8S6upHXtUnzVP7/gAEDeJ8wJbGuLvG6PHK+sEXyJI24lxxptUVyeHt7o2XLlsIWKZDZfpEUDw8PTJw4kUcmK1CgABo3bszHTYQtkiepuEdCqi+AxPEq6ZhcLCKxYcMGFCtWDAqFAvny5eOLNQUp4+npCWtray4Q6dGjBw4cOAAnJyeMHz+e76DJGEOrVq3EjhtZyKtXr+Dg4ADGGBo0aID//vsPXl5e+PjxI7Zt24bff/9dI+pho0aNeOR1XW2q9CDGsxIRfvHt8PnzZ9SrVw+MMV6/WlpaagjTzczMYGxsjPz586NQoUIoWLAgSpcujerVq6NNmzZYvXo1zp49y68pf8/l4nVJpCuEumkjIiIi2WN+fn48cFKXLl2+Wqzr7u4OR0dHYY8UkPLh/fv3CA4O1gqOJB0PCgri86udO3f+aluo1Wps3bqV22LUqFFa3yH4Qlb6hbe3NwoWLAjGGCZOnIgrV67wY8IWuhk/fjxq1arF/08un6R+4pUrV/giqQMHDqSYViJpQDgx76FNbGwsfvnlFzRt2jTVtFI+Hj58GAYGBlAqlakGGxOkn6Q+4enpiaNHj8LBwQEFChTQmMdo3bo1Vq5cqTUnpWucJTQ0FBs2bICHhwcA0UZODinv5HW4PD+FeD3zEAJ2gUAgEAgEOlm5ciUUCgUcHBzw6dMnqNVqrUay1EALCgrikVx79OiRE7f7w3LmzBm+pd2ePXtSTCsNUumygeiQZ4y///4bCoUCFStWhJOTE8LCwgAkdhSFeD17iYuLw5o1a5AvXz4UK1YMR44cSfb9lvL/ypUrvAM/ZsyY7LzdH57x48fziGJOTk58l4hz586hQoUKQryezWzYsAGMMSiVSly/fj3FtHPmzIFSqcSMGTO0jok6I2PcuXMHhQsXhqWlJbZs2aIlVJDXDU+fPsXhw4exaNEi5M6dGwqFAnp6emjYsCFu3bqV3bf+w/H06VM4ODjAyMgIq1evTnYnFQC4du0aDhw4gL///hu5c+eGgYEBGGOwtbXF8ePHs/GuBYKsQT4RMWbMGN42Wr9+Pf9cXj7pasem1LZNKl4fOXIknj17JsS6GUBef/Tr149HUtIl1k1JvD5z5kyEhISI6N8ZQJctcuXKJUTsOcDX+EVyhIaG4syZMyhcuDDfLcLCwgIuLi4ARD9eFym9n/JjMTExPJLl58+f4eHhARcXFyxZsgS//PILH99ijGHIkCFp+m7RN0nkxYsXqFatGo9krKenx9ur0k+7du1w9epVHugiM5Dnv7BFIl5eXrCxseG7m5ibm/OdSaUfBwcHjB07Fh8/fszw90m2lO+OKsqpRHLKLwTaPH/+nO8mV6BAARw+fBgPHjzAw4cP4evrCx8fH7i5ueH169f4+PEj/x0fH6+1q6O8XpGL12vWrMn9TooyKoS62iTXT9CVP7du3eL+07Vr1zSLdd3d3VGpUiUwxmBlZSXskQxfawtpAcjX2EJCpVJhy5YtvJ0lbKFJdvhFQkICnJyc+GIEpVKJqlWrYsmSJcnex8/OrVu3eH29f//+FNNKebdv3z5+ji4Bu7y9euHCBcyZMwe1atVCu3btMG7cOLx48QKA6H8n5cKFCzxfDx8+nGJayRb//PMPP0faiVYXqfUhhF8kjzxvgoKCsHLlSlStWhW5c+fmea9QKNCvXz+N8V1Ad75L1wsPD8fatWtRoEAB6Onp8bEQ4ReayAMZLlq0CM+ePdM4nlHxuvANTYSAXSAQCAQCgU7+/vtvMMZQuHBhvHr1Suu4vFElCRVMTEzg5OSUnbf5wxMWFoZq1aqBMYahQ4ciMjJSK40kxpIi71auXFlnOkH68fb2hrm5Oc/fAwcO4NGjR1ri9bt37/JzfraORXby7t07tGvXDowx1K5dWyMqrhTlTSqjvLy8eBQgKysrHuFNTLxmDp6enjyqkqOjI3bu3ImjR4/yyOt58uTB6NGjhXg9m/Dz80OFChWgUCiwcOHCZMW6ERER6Ny5Mxhj6NSpk/CHTCYsLIxH3qtRowYfAAS+lD3SBG1YWBhu3bqFOnXq8An3SpUq4dSpUzly7z8aERERGDVqFBhjqFatGo+6B3ypLyRbqNVqvH37Fk2aNOEDwHny5MHu3btz6vYFgkxHPhExYcIE/q5v2LAhQ1FBXVxcNCKODh8+HNHR0QAShUVCrJt+5Hb59ddfeR7fvHmTf56SeH369On8mIeHh7BFBkjOFvKoemlFiNgzRlr8IiWkfPb390edOnV4X58xhoCAgCy55x+FzZs3o3///ujcuTNat26NFi1aoE6dOqhRowZq1KiBcuXKoXjx4ihTpgyPjGxqaqohJtXT08OAAQP4NXW99y9evMBff/3F/xfjK4kEBgZi7ty5fIxDys9ChQph3LhxCAwM1OrbrV69+qtFcBLx8fE4e/Ys5s2bxz8TtkjE29sbbdu25bvNSD/m5uYYNGgQLl++zBf4Szg5OaV7hy1J4DVs2DD+mbBFItntFyqVSkRUTAY3NzfkzZuXR7338vLSOJ7cjjfJvcty8boUUd/KygpjxozBggULhFA3g0g2uH37NhfrduvWLdnd6yTc3Nz4ThTW1tb4559/sGzZMmGPDJBeWyRFiNgzTkZtER0dDU9PT75blGQL+Q4Fgi/4+fmhW7du0NfXR58+fdLUF1uyZAmv75Pu5iSvW9auXYtcuXJptNOkcksSoYo5kS94eXmhffv20NfXx4ABA3TqQgDNsmTSpEk8X69du5bi9T9//oyHDx9i0aJFWLBgAWbNmoWbN2/i/fv3AIQtkiM+Ph5v377FmDFjUL9+fY13uUSJEujYsSMuX77Mx2CB5PNSLl5fvXo17O3tNeZAxLiUboKDg/nOHKNHj4abmxsA4M2bN1iwYEGGI68L3/iCELALBAKBQCDQiYuLC2xtbWFhYYGDBw9qNJDkk4UrVqzg0ddLliyJ+/fv58Tt/rBER0dj3LhxXDj96NEjjeNyWzRs2JCLSIWAPfNxd3dHvnz5wFji1rS2trYa4nUReT17kYS6jDE0atQId+7cQXh4uEYaDw8P9OvXjwusHRwceKdPkHnIfaNUqVIoXLgwH/QQkdezl7CwMC7iqV69utbiDomnT5/Czs4OjDF0795dDEplAQEBAXwQsGHDhrh27RrfvUPC29sbf/75Jy/LjIyMULNmTRw9ejSH7vrHJCAgAJUrV+b1xa1bt7Tqi1evXmH37t180aAkeNi2bVsO3bVAkHXIy3xpJ5WMiNidnZ01xOvjxo3T6ovIxbrySZGfaRA+I8jt0qFDB9SuXVvnhMjx48f5Ik/GGObPn8+PSXYXtsgYclt07twZZcuWhaura7qu5e3tjRYtWnARu3Qd0S5LG2n1i6TI3/UTJ07wup8xhvbt22u11wRfWL16NRfhfO2PkZER9PT08Msvv2DNmjX8mrredz8/Px5ld/jw4fxzMc6SSHx8PGJiYnD27FmcOHEC165d04oEJ+XVb7/9lu5IrvHx8bhy5Qrv0whbaBMSEgJ3d3esW7cO69evx4kTJ/Dw4UONNFKZ88cff4Axhi5duqRLOL1//37uT0KQqE12+sW5c+fg4OCAJUuWaIx3CVsk4u7uzkU+TZo0gaenZ7quI9XzkZGRGuL1cePGcWG8EOpmHLlY18jICIwx9OrVCyEhITrTu7m58cjr1tbWWL58Od69ewdA2COjyG1haGgIxhJ3Wg4ODv6q6wgRe8b5Wr+QSJq/S5YsQalSpXhk/dGjR2fZPX/P7N+/ny8oXrx4MWJiYvgxKfiIxPXr11GoUCE+X57cwoJVq1bxdlOXLl0we/ZszJkzB3Xr1gVjDBUqVPjqBSI/A3v27OGLj5cuXaphC7VardGXPnnyJM/jpk2bauymIrfZ58+fceXKFVSpUgVFihTR6CMWKlQITZo0gYeHBwAxFpKUixcvYty4cXzuSPopX748fvnlF7i7u/NyKaVdJeSfS+J1aSGaUqlErVq1RHCFVBg9erTGuPfly5exaNGirxavC99IGSFgFwgEAoFAoJOQkBB06NABjDE0aNAArq6uGp0VABqiK8YYVq5cmUN3+2MTEBCgIdR98OCBlvCqb9++YIzB0NAQkyZNAiAGpLICd3d3HklGoVDAyMgIbdq0gbOzM08j8j378PT0RMGCBfmg0+DBg3HhwgUcPnwY27dvR5kyZfhWavnz58fz588BCIFOVpDUN0xNTTF06FD4+Pjk9K39dPj5+aF06dK8zrh+/To+ffoEIHGA6smTJzxag5mZWapbQgrSj5eXFx9UL1WqFLp27YodO3bg77//xqxZs2Btbc0H6M3MzNC1a1dcuHAhp2/7h8TLy4tHAS1fvjz69++PEydOYM+ePdiwYQOqVKnCbWViYoIaNWro3IZWIPhRyCwR+6dPnzB58mR+fpkyZfiCW5VKpdHmkgunFQoFH4QXpA25XZJGdAWA9+/fY9CgQRoTWlKU19jYWI0+itwWjLF0C4t+VuS2ePnyZbr7fwkJCQgKCkKzZs3AWGLUXrFt89eRml8kRV4m7d+/H7Vr1+Z+0KdPHyFeTwUvLy++ONzY2BjVqlVD7969MXToUAwcOBC///47pkyZgunTp2PmzJn4+++/sXbtWuzYsQPOzs4pRuKV8PPz09iZiDGGkSNH8uNivCXlPEg61nHz5k0YGBh8tVhXEq87OjoKW6STpLa4f/8+z8f0CKeFIDFlssMvgMSdO7p168b9olOnTti1a1ea7uNnIqMidikfk4rXJ06cyKNeAolllfCLjCP5yM2bN2FmZob27dvD399fK93z5881xOurV6/WiNCb1B5ysa6wR9qQ28LExAQVKlTQWoyTFkSdkXHS6hcpcfv2bR4Ey9TUFD179kz3Tiw/IvJ3cdGiRbxftnr1ap0LN27fvo327dvD2NgYjDH8+uuvOvsTR48e5ddasGABPnz4wI+5uLigYsWKMDMzw8mTJ7Pmwb5D5Lb466+/NDQfQUFBWunPnDkDBwcHKBQK6OnpYfr06ToF1Pfv38ekSZM0djzT19dHxYoVUaJECT6fWKhQITF3q4OJEyfyfDM3N4e1tTUWLFigtWA2NZKLvK5UKnHjxg2Eh4drBFcQIvYvyN9HKdgkYwx169bl73XZsmWxbdu2rxKvC9/QjRCwCwQCgUAgSBYfHx/Y2NiAscRIruPHj8eBAwewcuVKtGzZkq8+Z4xh5syZOX27PzRyoa6DgwN+/fVX7Ny5EwsXLkSjRo24HaytrXHq1Kmcvt0fGjc3Nz5pmzdvXsydO5cf+xk6EN8aXl5eqFKlCvcBpVKpFe0tf/78uH37NgBho6xE7hsFCxbE0qVLeX6LwfHsxdPTk4t1S5cujWbNmmH+/Plo3749XxBlYmKC7t27C9FaFvPixQs0bNiQL6bRVVZZW1tjzZo1whZZzIsXL1C7dm3eftUVQdTCwgKTJ0/W2FVFIPhRySwRe2BgIMaNG4fq1auDMQZbW1tcv34dQGK7K6lwul69emCMYfv27aJd9pWkll9BQUGYOXMmj1xctGhRXLlyhZ8rt4WPjw9q164NPT09XLp0KStv+4ckve9u0jZxaGgoJk2axHczMjc3x5MnTzLjFn8a0moLeboDBw5oiNf79u0rxOtp5Pnz53wytXnz5ggICEjXdXT1D+XidUtLS3Tv3l0IrzKAPHro14h1k4rX8+XLhyFDhghbZADJFrdu3Uq3cBoQgsTMIL1+IREVFYV///0XnTt31gjgMG7cOJ5G2CKRjIrY4+LiUKpUKT5+0rJlS/j6+vJjEpJfSGMs8oU2grQj+Ya3tzdfUCknKCiI78KsVCrRs2dPHvVVlz10LXwSpA3JFs+fP8fVq1fTdY2EhASo1WqNOmPo0KEaxwWpk5pfJEd8fDwuXrzI21JmZmYYPny4xk6pgkTkfbSpU6fy/tnAgQOxbds2BAcHw9XVFdu2bUP58uV5dHD5LuTS+6xWqxEfH893Whk8eDAiIiL49RMSEhAaGsp34Jo3b172Puw3jtwWU6ZM4bbo1asX1qxZAy8vL5w+fRqLFy+GiYkJL+ebNm2K6OhoAJrjjGfOnEGLFi24zcqUKYMBAwbg/v37CAkJwYcPH3Dy5Ek0bdoUjDFUqlRJRMXXwdChQ5E/f36sX78+2Z2eUiIl8bq8jnnx4gUPdCFE7JrI80AuYmeMoXjx4ti5c6dW0MmkyOtd4RvJIwTsAoFAIBAIUsTT0xNly5bVEFzp6+vz1YCMaW5NLsg6PD09YWdnp2ELabDdwMAAhQoVwvbt23P6Nn8K3Nzc+KRtlSpVsHfvXjHhnYMEBgZi6tSpXDgl/ZQuXRpt27blUcDF4GzWI/cNR0dH4Rs5iJeXF6pXr86jksjFumZmZujRowcXGAqylrdv32Lnzp3o2bMn7O3tYW5ujnLlyqFLly5YsGBBuraQF6SPoKAgrF27Fu3bt4eNjQ309fWRP39+NGrUCL///jvc3Nw0tjwVCH505IPwEyZM4PXEnj17vur86Oho3L17l+/gZWRkxBcPJm1/BQQE4PTp0xpRsAQZR7JFTEwMHj16hE6dOnFbSItyktri5cuXcHZ2FuVeNqArEu/q1atRqlQpGBoaaoyv/O9//8uhu/xxSSnyer9+/UR/5Stxc3PjosSGDRtyUaJKpeLljPzvtPTDk4rX//rrLwQEBGDHjh1CrJsB5GJdqYxp27atRsRcOUnF6/nz54eTkxPCwsKwdetWYYsMoMsW7du3FyL2HOBr/UIXCQkJmDFjBvLly8dtMXDgwKy65e8WuYi9WbNmXy1inz9/Ptq2bQsjIyMolUpMnDiRH5MvuFWpVNi8eTOv2y9evJhpz/AzkbQMSfr/P//8g65du/KgAPLyJzl7WFlZ4f79+1l74z8gqdkirecGBgZi6NChvJwaMGBApt3jz8LX2kJqS1WuXBmMMeTOnRvDhg0T4vUUkI9LzZgxQ2Mew9raGrly5dKY83N0dOQLmpIGXwgJCUHx4sXBGMPOnTt1fkfTpk2hr6+Pffv2ZfGTfX/I82nmzJnQ09PjC8SsrKy0goc1bNiQi9fl40qHDx9G1apV+VhHnTp1cPbsWXz8+BHAF7up1Wo8fPgQFStWRK5cubB161YAok0LaNpCWqwh8bX5ExYWhsWLF/PAVvr6+jxwgtyH5Ls15s2bF66urun6vh8RuT1Gjx7NfaB58+a4e/cuP6Yrr+SfCd9IGSFgFwgEAoFAkCoBAQGYOnUq6tatC319feTOnRvW1tYYMGAA9u/fn9O391MREBCAiRMn8u0zpShtvXr1wtGjR3P69n4q5IPwVatWxbZt27Q6koLsIy4uDhERETh48CD27t2L7du3w8vLi4sRRITP7EPuG5UrV8bu3bsRFRWV07f1U/Lq1SssWrQIjRs3hpmZGQoWLIhSpUph/fr16dqCVpBxoqKi8P79e636QpRR2c+7d+/g5+fHt0KVbCBsIfjZkA/CjxkzBowx3Lp1K13X8vf3R8eOHcEYg52dHdzd3XWm+9EH3L8F/P39+YKCKlWq4MWLFzl9SwIAd+7cwfz585EvXz4+ES9FLhs3bhwOHDiQ07f4wyHE61lDRiPryvHz8+N2sbS0xJ9//onXr18DSLTf5s2bhVg3A8jFuvKFaknbvEkFV/nz58euXbt4X14SJApbpB9dtlixYoVG9OK0IETsGSetfqELedt55MiRfCdCxhiOHTuWZff8veLu7o78+fODscQdfr9moQCQGJxh2bJlPEplv379+DG5LVQqFZycnLB06dJMu3dBIvJyxdfXF6tWreLt2F9//ZUfS2qPo0ePYvfu3dl6rz8zUv7Hx8cjMjISy5YtQ8uWLXkALOknvVHdBakjxOvpR15+bN68GW3atNF4b6VIxx06dEBoaCgA3W2e4OBgFCtWDAqFAocOHQKg2R9csWIFF8iLxTW6kdtix44d6Nq1q5YtqlatihEjRiAmJgaApnj95MmTqFSpEi97mjdvjrdv3yb7feHh4WjWrBkYY+jevXvWPdh3iPzdzch8xcuXL9GhQwfed6hbty7evHkDQHPhOZAoYm/dujW39c8S+Tst6Bo/l8by0jLXKnwjdYSAXSAQCAQCQZqIi4tDXFwcHjx4gGfPniEoKIh3TgAxQJ6dxMTEICIiAmfPnsWFCxfw4sULfPr0Kadv66fE3d0d1tbWYIyhcePGqW4TJcgZRPmU/bi7uyNfvnxgjKFPnz5icUcOolarkZCQgKdPnyIgIEBEvM0hkovYI8TS2U9ydYKwheBnRj4I7+/vD0DTV1QqVZq3pr1w4QJKlCiBXLlyYcmSJQCEf2UmMTExWlHGdJGQkICTJ0/C2toaFhYWWL9+PQBhi+wgadTpjx8/wsPDA3369EH58uU1Jn7Lli2LMWPGaC0aEds0Zw5CvJ61ZIaI3dvbm++kZm5ujsWLF/PoYxJJxbojRozIrEf4aZB84c6dO5gxY4aWrVQqFc6fP4+KFSuCMYY8efLwgCVyP0pqi+HDh2ffQ/wgyG3x66+/pntXtPj4+GT9QtT1aSM1v0iJz58/499//+UiRTMzM8ycOZPvACnQxN3dHUqlEuXKlUtzHsn7InFxcdi3bx8XTU+ePDnV80VbKnOR2yM+Ph579+7l9pg+fXqq54tyKWtIOr717t07zJo1iwvepDqiWLFiaNCgAS5cuMCjJQsyFyFezzjycjs4OBiXLl3CnDlzMGnSJKxYsQK3bt3ii/50lfEJCQn4/PkzWrRoAcYYRo8erdGvWLt2LfLkyQPGmFjslAryMjsiIgJ37tzBunXrsHz5cuzZsweBgYEai2Ykbty4gYYNG/Lo0q1atUpx/Eoqw8aNG8f7lCIQVtbw/v17rF69GnXr1uX9vWvXrgFItENSEXvdunXRsGFDvtuBIBF52SO9t9KCYg8Pj2TPE76RNoSAXSAQCAQCQZrQtfWvGHj6dhC2yDmePn2KcuXKwc3NLadvRSD4pnBzc0OzZs3EBF4Oo6v+Fos6BAKBQJCUpBOA8vrD1dWVi3pS63dERkaicePGYIyhRo0aKaYXfZivIzIyEmfPnoWfnx+A1PMvKiqK79zVoEGDbLhDgdwm0dHRuHTpEjp06IASJUpoCNfr1auHESNG4M2bN6mKSKTjQoj1dQjxevaQVMTu5eWV5nMTEhKwdu1aMMZgZGQEMzMzTJo0iR+XR/JTqVTYunUrt+GCBQsy9Tl+BiSfkOerhEqlwrp162BiYgIjIyOYm5tjxowZ/Lg8QnhSW6xevTrrb/4HQ7JFREREus6X9+dXrVolFndkgJT8IjkiIiKwb98+ODg4gDEGU1NT/PHHH3wRqEA3gYGBePbsmc4xqrQQGRmJefPmQV9fH2XKlMHt27ez4jZ/Wr7WHuHh4Zg+fTr09fVhb28PFxeXLLozgS6S9gtu3LiBBQsWwMbGRqPPYWlpiV69euHSpUtaCwQFmYcQr2ceaSmLUhsH2bVrF/eBLl26oH///ujduzf/bPjw4XxMRZA8aamv5cdevXqFIUOGwNjYGIwxtGjRgh9PaSzj/fv3fEFzp06dMunuBXIkn4mPj8fz5895VP1cuXLh3r17AHQviJJ2rRVookvEbmZmhoMHD+pML3wj7ShIIBAIBAKBIA0wxjR+ExEpFKIp8a0gbJFz2NnZkaurK5UvX57UanVO345A8M1Qvnx5OnPmDJUoUSKnb+WnRlf9Lf9bIBAIBAIiIqVSqfG/VFc8fPiQOnbsSDNmzCCilPsdKpWKTExMqHHjxqRUKunVq1f08uVLnWkB8Gt9+vSJPDw8KCwsjMLCwoiIKCEhIcPP9CORkJBAp0+fpl9++YXmzp1LRCnbIj4+noyNjalatWqkVCrp3bt39OnTp1S/B0CK/wt0I72vkk02bNhAQ4cOpWbNmtGJEyfIz8+PcufOTZUrV6Zly5bRv//+S2vWrKGCBQuSoaFhste9d+8edejQgVxdXUmpVIr+ZgrI32+1Ws1tceDAAVq5ciXdvXuXiIj69u1La9euJTMzszRfW/hF8pQrV45u3LhBefPmpStXrtDw4cPJ3d09TecyxmjEiBF09epVGj16NKlUKvrnn3/o119/JSIiAwMDUqlURJRYR/Xv3582bdpEdnZ2pK+vn2XP9KMi+YSBgYHWMaVSScOHD6eLFy/ShAkTKD4+nhYuXEj9+vUjIiJ9fX1e/ki22LhxIzVr1ozy5cuXfQ/xgyDZwtTUlIjSXqZINpDaaEeOHCEfHx8yMTEhPT09Wr9+PY0cOTIL7vjHJSW/0EVkZCSdOHGCFi1aRE+fPiUTExOaOHEi/fbbb1SsWLGsvNXvniJFilDFihWJMUYJCQn8PXZ3d6egoKBUzzcxMaFGjRoRY4xevHhBd+7cSfUc0Z9IO5I9XF1d6e3bt6mmz5UrFzVq1IhUKhU9e/aMt7ME2YPUd798+TLNnDmT2rRpQwsWLKDAwEAyMjIiY2NjmjlzJu3Zs4f27dtHTZo0IUtLS17f6Kp3RPs2fahUKrp58yaNHz+eXFxcyMzMjPr06UMjR44kOzu7nL69746kcxYJCQla721y4yDS8X79+tGqVauIMUYnTpygXbt20f79+4mIaM6cOTRhwgQqXrw4EVGy/eu4uLgUj/8MJJ1T0lVGSHU6EdHdu3dp//79FBMTQ/Xq1aMDBw4QY4zUarXWeCPRl7x99+4dbwcUKlQoS57lZ0fyGT09PapQoQItWbKEWrduTZGRkTR58mQKCAjQ8r38+fOTtbV1TtzuN498bG758uU0depUateuHXXo0EEjnfCNr0cvp29AIBAIBAKBQCD43tHTS2xW6+psCAQ/M5JvCAQCgUAg+D559uwZ+fv7U2RkJF28eJGaNWuWbFqp3vf09CS1Wk0xMTHJLppijFF0dDRNnz6drl27Rk+ePKGyZcuSra0tLVu2jMqVK5fsYP7Pyrt37ygkJISuXr1K165do4YNGyabVl9fnwCQt7c3qdVqioiISJMogTFGALQmKxMSEsSi6STI80ShUNCbN2/o8OHDdPr0aTpz5gzPu/z581OBAgVo/vz5VLZsWSpbtiy/hjyvk/Lo0SOaNm0aXbt2jerWrUu3b98me3t74Rc6WL16Nbm7u9PIkSOpYsWKPH8yQ7xOJPwiNcqVK0c3b96kBg0a0OXLl2nXrl20cOHCVBfNSvnXoEEDcnBwIHt7exo5ciTt2bOHTExMaMOGDaSnp8fzXqlU0qBBg6h+/foafiTIOJItateuTXZ2dlSxYkUaNmwYOTk5Ue7cuWnt2rWkVCo1bPHbb79Rq1atqGjRojl9+989KfmKvOxRKpUUExNDhw8fposXL9KOHTtIT0+PVCoVmZubk4GBAdWvXz+7bvunQy5ed3V1JRMTE5owYQINGjRIiNe/EqnuPH78OI0YMYK2bNmSJmFO/fr1qVq1anTnzh06efIkjRkzhpdJyX0PAIqIiCBjY2PeV0mp/fUzs3v3burfvz+dO3eOChYsmGw6Kf+aN29OlSpVIhcXF7py5QoNGTIkTW0jABqLmQUpI+W39Pvdu3cUEBBAixcvpocPH1JgYCBPW65cOerevTt16NCBqlatyj+X+g9J27LXrl0jd3d3GjZsmFZ7V/Al3wBQfHy81mKnzBSvC7/QjTw/Uns3JTG1QqGgUaNGka2tLT179owePHhAFSpUoIYNG1LTpk2JiDTatBIeHh707t07On78OL1+/ZqmTp1Kjo6OWfNg3yHJ5b9CoaB3797RpEmTKDw8nCpWrEiLFy8mCwsLAqCzjk5ISCClUknR0dE0evRoCgoKImtraxo8eHBWP8YPTUhICJmbm6c6XmRjY0O9evWiGzdukKenJ7m6ulKxYsVEHfAVSCJ2pVJJf/31F/9bPl4nfOPrEWoCgUAgEAgEAoEgg4hOnUAgEAgEAoHgR8TR0ZEaNmxI169fp6NHj1KlSpV0RluVD9a/efOGiBJF1MlFtHz69CnNmDGDTp48yQftX716RZ6enuTs7ExXr16l8uXLiwmU/0ehUFCNGjWoVq1adO/ePTp69CjZ29uTpaWlVlpp0tbf35+Cg4OJiMjCwkIrYnFSgcnVq1fp0qVLdPPmTdLT06PcuXNTq1atuEBRCKc1kfLu8ePH9OTJE5o3bx6FhIRQeHg4KRQKSkhIoJ49e1Lnzp2pWbNmGraS3uuUxOtjxoyhu3fvkoGBAUVGRlKDBg3oxo0bZGdnJ2wh4+bNmzR27FgiSixzRo0aRaVLl6aDBw+mS7wu/CJ9lC1bli5fvkzz5s3jgsLUkOezhYUF9enTh2JjY2nMmDG0detWqlSpEg0fPlxrJ0hJvC4WEGQe8nw0MzOjnj17Unh4OI0fP5527NhBVapUod9++03LFpJ4XdTVmU/SesLb25u8vLzozz//JC8vLwoJCSGiRPFcvXr1qFevXtSiRQsqVapUTt72D0ty4nUReT39RERE0I4dOygoKIhWrlxJVapUofz58yebXqVSEWOMoqKiiCgxOq60yEmO5Dvu7u505coVOnr0KL1//57KlClD9evXp9GjRwuhrg4+f/5M69atIyKiLVu2kKOjI1lZWelMK4lEP3z4wMui2NhYfiwpSetrXW1gYQ/dyPPl06dPdO/ePVq6dCn5+vpq7HTWokULqlKlCk2ePJksLCy08lJqq8qvd/fuXVq5ciUdPXqUHj16RJs2bRK+kQSlUkmxsbG0fPlyKlWqFLVq1Ypy5cpFRBkXrwu/yBqkfrhCoaC2bdtS27ZtNY5LeRofH0/BwcH05MkTunLlCj179oxu3bpFMTExPPqxm5sbXb9+nczNzYUdkkHK6wsXLtD79+/JyMiIOnfuTPb29kSku06QFmrExcXR7Nmz6f79+6RUKqlevXoai9mS6+sJv9DNy5cv6cKFC9S2bVsqWLBgin1lPT09atOmDeXLl4/8/Pxo9+7d1L59+2TzVdhCN0kXeMtF6VnpGz8yQsAuEAgEAoFAIBAIBAKBQCAQCAQCLSpXrkx9+/alGzdu0Lp166hUqVI0fPhwMjQ0JKIvW5tKg/Rz5syhK1euEBFR//79NbaclQbwP378SNOmTaMzZ85Q7ty5afPmzZQvXz4KDQ2llStX0tWrV2nUqFH077//Ut68ebP5ib9dqlevTgMGDOBiA1tbWxo6dCi3RXx8POnr6/OJpb///puePHlCREQDBw7UEO7KRbcnT56kc+fO0dq1a7W+8+zZs1S6dGnat28flS9fXghGZcTGxtKUKVPo2LFj9PnzZwoLCyPGGBkYGNCoUaOoRo0a1KNHD55enncpTfIlFa+3bNmSwsLC6MqVK1S/fn0hYk9CvXr1aPjw4bR+/XpavXo1KRQKKlKkCB0+fPirxevCLzJGxYoVad++fTwvJFGhtOOGsbFxiucrlUpq3rw5NWjQgM6fP0+3bt2i4cOHJ5tenuc/++R5WgFAkZGRXHyVHEqlkpo1a0ZVq1alW7du0d27d+m3335LNr3I+8xF/j4HBATQxYsXadmyZfT+/Xv6+PEjT9e7d2+qVq0ajR8/XuvcpOWS8JH0o0u8PnHiRBF5PYMYGxtThw4d6M6dO/T06VO6cuUKdevWTWfbBgDp6emRm5sbeXp6EhHxPkbS95oxRnfu3KHRo0eTm5sbxcTEEBGRq6srHTp0iHx9fWn58uXCH5JgampKv/76K/n6+tLdu3fpxo0b1LFjx2QFawqFgnx8fPjC5QIFChCRtj2ktADI3d2dbt26RV5eXvTp0ydq0KABlS1blmrWrCmE00lIWoYvX76cbty4QUePHuWfmZubU+XKlal3797Uu3dv3s5NSEhIVhgnfX7nzh1avnw5v96WLVvI0NCQVq9eLWyRhFmzZtHSpUvJ3t6e4uLiqHPnzmRsbEw3btygCRMmpEu8Lvwia2GMafWVP336RCqViq5du0bPnj2jq1ev0pMnTygsLIyIEuukokWL8p2h2rdvT0SJi2wFySOVU9euXaPo6GjKlSsX9e3bN9m+hnwBwZYtW+jkyZMUHR1NBgYG9Pvvv/O6RLr2hw8f6Pnz5+Tv708VKlSgIkWKkLW1tRgLSUJ0dDTt3LmTZs+eTePHj6d//vknxfEJtVpNefPmpVKlSpGfnx+FhoaSSqVKdjdtYYvkkZfPSRd7E2WNbyRXL/wQ41IQCAQCgUAgEAgEAoFAIBAIBAKBQEZCQgL/e/78+WCMgTGGv//+Gz4+Plrp586dy9OULFkSR44c0XndwYMHgzGG/Pnz4/HjxxrHzp8/j3z58sHW1hb+/v6Z+TjfNXJbzJs3j+fz4sWL4e7urpH28+fPGDNmDE9Tr1493L17lx9XqVT87z///BMVKlTgaYsWLYpq1aphzJgxaNWqFcqXLw/GGAoVKsS/R34vPzv9+/fneWdvb48hQ4bgwYMHGmnk+Z0azs7OqFevHpRKJYyNjdGvXz98+vQJ79+/R4sWLcAYg4WFBZ4+ffrV1/4RkT//uHHjuC0KFy7M//7111/x+fPnr7qW8IvMQcqT8+fPY968eQAAtVqd6nkLFy4EYwz6+vp49OhRhr5boMn27duxYsUKAGmzxbRp08AYg6mpKTw9PbP69n56pPc2OjoaISEhmDhxIho0aMDLIql869y5M44cOaJhQ3kZJn//XVxcdH4uSCQ1P4iIiMC+fftQqVIl7guzZs0SbdRMIjg4GF26dAFjDDVr1tR4XyWk9/bt27cYPHgw9PX1oaenh0WLFgHQtuG9e/dQvHhxMMZQo0YNjBs3Dps2bcLYsWOhUCh4X0agzfv379G+fXswxlCrVi3e3gS+2EHKbz8/PzRp0gSMMVhaWuLff//VOC4RHx+PV69eoVu3bihbtqxGecYYg62tLebOnav1PQIgKCgIEyZMQOvWrTXyrFixYqhVqxYuXbqEgIAAjXOSyz/557dv30b37t359bp06cJ9Y9SoUale62fD09MTlpaWYIzB0dERu3btwqlTp+Do6AjGGHLnzo1hw4Zp+EtqCL/IXHTV5ZGRkQgODsbOnTsxf/58VK9eHTY2Nhr5XK1aNfz666/Ytm0bXFxc8OHDB53XFfmfOi1btuTlCQDExcVppZHyMz4+Hjt27EC1atW4LbZt26aR9uPHjzh27BhKliwJY2NjMMaQL18+ODo64vnz5xrXEyT2HWbMmAHGGKpWrYr79++nek5gYCBKly4NxhhatGiRbH4KW2SMzPQNXfn84cMHrfGu79keQsAuEAgEAoFAIBAIBAKBQCAQCAQCLeQD35MnT+aD6E2aNMH06dPx33//4c8//0TXrl35MSMjI8yZM0fn9VxdXZEvXz7o6+vjwoUL/DukSUFXV1eYmZmBMcaPCxKR22LKlCk8v6tXr47Ro0djzZo1GDZsGBo3bqyxkGDDhg38vPj4eP73yJEjNSZwf/nlF5w+fRqRkZEAEifBHjx4gKZNm4IxhsaNG+Pdu3fZ98DfMEkXdwwfPhzBwcGIiorSOp5WJPG6np4ejI2N0bdvXz6JnpCQAG9vbz75JUTsX5A//9ixYzXe6fbt2/P3OSWbyK8h/CJzcXZ2BmMMuXLlwqtXr1JMK9lo48aNYIzB2NgYN27c0JlWKg/fvHmDO3fuYPHixdi7dy8uX76sdT1BIufOneOLx4KCglJMK+Xdn3/+ye2XkjArLYI5gW6SCgxcXFwwZswYLoyTfipWrIjOnTvj+fPnWgIrOfI8P378OCpXrozBgwfrPP6zIy/7b9++jfDwcABf8kiXeP2PP/5Is3hd+EXa8Pf3h729PRhjaNSoER48eMDrXMk/Xr9+jblz56JYsWK8HPP19dW61uvXr3lbqV27dnj48CHP78jISPzxxx/Q09ND165ds+8BvzP8/Pz4Ir5GjRrh7t27iIiI0Ejj6+uLQYMGwcrKCowxlCtXDq9fv9a6VlBQELZs2QI7OzswxrhIukKFCqhWrRoKFy4MpVIJxhjGjx+fXY/43eDv749ChQqBMQZDQ0Pkzp0bAwYMwMWLF7XEaimVK0nF6z169OB1y7x58xAXF4ctW7YIEXsKuLu7I1++fGCMoXTp0rwsSo94XfhF1hAVFYW3b99i7969mDdvHhwcHLj/SHlcrVo1dOvWDU5OTnjw4AFiY2M1rpF0oY4gdVQqFdRqNWrVqgXGWLL1q9Tmio2NxYYNG1CjRg1eDv35558aad+/f48lS5Ygb968YIyhTJkysLGxga2tLRhjKFiwoFhYq4Nr167x9tT//vc/hIaG6kwn2UIKHsIYQ69evXSW98IW6SezfUMay42Li0NoaCgWLFiAHj16wMrKCra2tmjUqBFmz54NPz8/jet+bwgBu0AgEAgEAoFAIBAIBAKBQCAQCHQiH/ieO3cuLCwsoKenxyfT5QIra2trzJw5k6dPOvl3/vx5HjkuMDAQQOJEofQdly9fRt68eVG2bFm8efMmG57u+0Jui3nz5iF//vx8gltfX1/DFlWrVsWaNWt4evkE7cCBA/lkrpGRkYbNgC+TIwkJCThz5gwKFiyIIkWKaERy/9nRNSGUXpGHs7MzHBwcoKenB319fXTu3Jkfk0dokovY8+XLhydPnqTr+3405LYYPXo094GhQ4fCw8MjzecKv8h8rl69ihIlSsDIyAgLFy7kokRdSLZYsWIFr2NOnjyplU6qVx4+fIgGDRrwiXfGGMzNzTF58mSeVgivvnDu3DkUK1YMuXLlwrJlyxAdHZ1sWuldnzRpEvT19WFqappsJD95PZ+QkAB3d3f4+fnB29sbMTExGscEX0jaPjpy5AimTp0KIyMjLrQyMjJCwYIFMW3aNDx8+JDnZ1qE0cePH0erVq24b4wcOVJnOgHQrFkzVKxYEU5OTggLCwMAhIeHY+/evemOvC784uvw8vJCwYIFwRhDpUqVMGnSJNy/fx/379/HpUuX0Lp1a767Su7cuXHixAkA2tFxr127BktLSxQrVgwXL17kx6Xf27Zt4/2VT58+Zf+Dfid4enpye1SsWBHDhg3D5cuXcfLkSezduxd2dnYwNzfniyql3VLkbSofHx9MmDABRYsW5elatmyJ/fv3cz97+vQpVqxYwcu85cuX58TjftM8ffoUBQoUwMyZM/l7L/G1Its7d+6gW7duvF6YM2cO9534+PhkRexCzJuIu7s7F3EqFAoYGxvjt99++yrxpvCLzOXu3bv4999/MXv2bNSsWVNjFy7GGOrUqYOuXbti//79uHz5sta7LJVZoi7OOH/99RcYS9z5JCAggOepfKwvOjoac+bMgYODA7fR9OnTudBaSufk5MR3Pfjtt9/w+fNnvHnzBg8fPkTDhg3BGMPAgQMRHR0tbJeE1atX87xdvXo1D7AAJOavlF/BwcF8EU3BggVx7do1ANqLOIQtMk5m+IbUNw8JCcHSpUvRqFEjMMb4WLD8p2zZst91ZHwhYBcIBAKBQCAQCAQCgUAgEAgEAkGyyAUJBw8exNChQ7nYVhoo79+/P3bu3KnzHIm7d+/C2NgYNjY2ePbsmcax+Ph4Ls5t3bp1shGDfnbk+Xrs2DGMHz8epqamMDExgaGhIUxNTTF16lScP3+ep5OL14cNG8YnO4oUKYJVq1bxY7omOF69eoUiRYrwKH2CL8gn6TIyYefu7o5WrVrB2toajDHUqlWLC6/lOxQAiSL2tm3b8gUkoaGhYrIQmn4xZswYXi6NGTNGq6yRkL/vwi+yhvDwcIwfPx6MMdjb2+PmzZs600nv8KtXr1C2bFke4e3t27c60925cwe5cuUCYwzFixdHtWrVULNmTT6JO23atKx9sO+Q0NBQvsNApUqVkl14Ib3vvr6+fHFA5cqVUxS8R0RE4H//+x86duwIIyMj5MmTByYmJujSpQvWrVvH04mySpOQkBCcOXMG/fv3h6GhIW9T5cqVC0WLFsX69etx+/ZtjXOSEyIkFa9L7SnGGF8QIqLqahMUFMSFuJUqVcK///6LN2/e4ODBg1xE8rXidQnhF1+Hl5cXjxzKGIOBgQEMDQ01xDlmZmbYtWuXxuI+4EseTp06FYwxNG/enB+T+8zmzZvBWOLuRXJRl0AbLy8vjZ0gJDvI7WFhYYErV64A0BTGeXp6YtCgQcifPz8Xxy1btowLfeXircjISMyYMQN6enpo2bKlWFigg6SL/9IjSLt69So6deqkFdVVvjuXSqVKVsQuSMTNzY2LOQsUKIBFixZpLZRJDuEXmc/SpUs1hJsODg7o06cP9u7di1u3bgGAVpR1ILH9BXx5/7/XSMXfEqdPn0aePHnAGMOqVas0domIi4vD69ev0bFjR74IROpDf/z4UeM6L1++5H3sESNGaLWR1q5dC8YY6tWrJ9pPMuTlz6xZszTy+MGDB/xYaGgonJ2deXsrV65c+OWXX3TulCZskTlk1Dek8unNmzfo0KEDX2DIGEOVKlUwZMgQrFy5EsOGDUOVKlXAGEORIkW06pbvBSFgFwgEAoFAIBAIBAKBQCAQCAQCQYoknZT18vLCtWvXcOnSJbi6uqaYVsLd3R0lSpTgAkMfHx98+PABrq6uaN26NY8sLYl3v7fB9uwiaf4GBgbi2bNnePbsmZbASi5MmDlzJo8aZ2Njg40bN/JjSSdupbyPi4vj29gKoW7WERoaikOHDqFp06ZgjMHExATXr18HoO0HXl5eaNSoEbZs2ZITt/rNIn+Hx40bxyf2Ro0ahZcvX2qkleep8IusJTAwEHXq1AFjDA0aNICbm5tG1Fzp7zdv3uD333+HqakpGGPo1q0bwsPDta7n6urKxT9dunTBrVu3EBUVhdevX2P16tVQKBTInz9/shHDf2ZevnzJtzFv2LAhnj17plFHSLbw9/dHixYteFk0efJkjcU00u93795hz549qF27toaAyNjYWON/ERVfG5VKhRYtWmhFzmvatCmWLVumVWalJIxLSby+cOFC/PvvvzoFicIWibi7u8PKyoovtBk1ahSPSmlqaoo//vgjTeJ14RcZJyAgACNHjkTlypU18srKygrly5fH1atXUzx/3rx5YIyhffv2iImJ0fCbu3fvonTp0mCMYfbs2Vn8JD8GgYGBmDRpEqpVq6ZhD1tbWzRv3hxubm4ANN9fX19fDBkyhPtU4cKFcerUKURERPA0Sd/3//77j1/74cOH2fNw3xEZLR/i4uLg5OQEIyMjLlj866+/NI5LqFQqbN26lddNCxYsyNB3/4i4ublxoaGjoyP27t3Lo6cnh/CLrGPhwoXYuHEj7t+/r7GQRvot3/XEyckJY8eORZkyZdC+fXtMmjRJSyQqSD9z5szh7+zgwYOxdOlSbN++HYMGDYKtra1GPbJu3TqNPohkr3Xr1oExhmrVqvHj8nQ7duzgAt23b99+lxGmswr5OzxlyhSNOrtbt24YOnQomjZtyncqMDU1Rb169XDnzh2d1xO2yDzS6xtSnr569UojOjtjDGvXruWR1oFE+7u6uvLo7J06dfouFz8JAbtAIBAIBAKBQCAQCAQCgUAgEAjSTEoT6alNsm/cuJEPuleqVAnly5fng/ZWVlZctCufAEm6lW1avudnIa35sHfvXtjY2PCIiWvWrOHHUppsOnXqFI8Ku2HDhgzfr0AbeeQ+Hx8fdOvWDYwx5M2bF87OzjrPSUnw8DMjn7gdPXo0GGNo27Ytj0CVFOEX2YO3tzeKFSsGxhjq1q2L/fv3a0R6e/HiBXr16oVChQpxoeejR480riFFpPztt9/AWOJOHW/evNFI4+/vjzJlyoAxhqNHj2bLs31veHt7o2jRomCMoXbt2ti+fTsX54aGhuLx48eoVasWX0hQvHhxDZGiVN74+Phg1KhRfFGaiYkJypQpg5kzZ2LPnj3YtGkThg4dyoXTM2fOzLFn/lZ5+vQp30mgd+/eWL16tcbxtAhBUhKvL1q0iB/btGmTELGngFzEnjt3bv5Oz507F35+fqmeL/wi84iKisLbt2+xfv16LFu2DPPmzcPFixfx7t07ALrfWemznTt3QqFQoHjx4rh+/TpvK127do0vymnevDlevHgBIH2RrH82YmNjERYWhn379mHXrl3YsGED3NzcuChK3u4KDg7GjBkzUKBAAS5qu3HjRrLXluz27NkzmJmZgTGGM2fOZOnz/MxcuHABU6ZM4Ytp+vbty48ljcS+bt062NvbY/PmzVo7Hgg064zKlStj9+7dye7qIPwia0hOcC7/PLkduuSLyuzs7BAcHAxA1AnpRZ5v//vf/8DYl91/ki5Ga9CgAU6cOJHstSZNmgTGGNq0aaN17ejoaEyYMAGMMQwcODDrHug7Rv7OL1q0CCVLlkzWFp06deI7FehC2CLjZMQ3JFsGBgaiePHiYIxBX18fJUqUwOXLlzW+R6rDExIS4OTkBFNTU5QtW1ZrQfT3gBCwCwQCgUAgEAgEAoFAIBAIBAKBIEuRC07WrVsHa2trmJiYgDGG/Pnzo1atWnj27BmALwP9uiYmP3/+zEUsYpIxbYSEhKB37958gkQeMTq5PJQiI//vf/+DgYEBDA0Nce7cuey65R+KrxUIPn/+nEdO6tmzJz58+JBFd/ZjIi83Nm/ejOPHj+tMJ/wie/Hw8OAidisrK5QoUQK9e/dG69atNbbMNjQ0xKlTpwBo2yE8PBwODg7Q19fHrl27tBY3qdVqHhn/2LFj2fuA3xEeHh58Itzc3ByFChVCmzZtULVqVS7elY5JkezVajXPZw8PD3Tu3JnbzcLCAgsXLtSKEBoeHo5Vq1bxqPiXLl3K9mf91vHw8MCFCxc0IoSmp21z7NgxNG/enNvu77//1rieSqXCli1bhIg9Bdzc3GBpaQnGGIyMjNC5c2feLgWSzyfpc+EXWU9qvhEeHo66deuCMYYSJUqgVatWGDx4MAwNDcEYQ/Xq1XHo0KEURfCCtCPlmdTuOnToEF+UXLhw4VQj5kvnbdmyBfr6+jA1NRW7p2QBcr/59OkTdu7cyYXRQ4cO1ZlOrVbD19cXkZGR2Xqv3xPu7u7Ily8fGGPo3r271q5Bwi+yl6RluPz/YcOGgTEGAwMDzJo1C6dPn4a/vz/69u3LFzuLdz1jyPvfUmTpvHnzwtLSEhUrVkTTpk1x5MgReHt783S66t0tW7bAwMAAjRs3xtu3bzWuf+TIEb7wU75jmkATuS0uXbqEv/76C7a2tihUqBBKly6NmjVrYu/evcIW2UR6fENaOBYUFIQKFSrwRbE1a9bEvXv3ACTfbnVxceE7ruzbty8LnyxrEAJ2gUAgEAgEAoFAIBAIBAKBQCAQZDnyifGHDx/i3LlzWLNmDe7evcsjXwGag/FxcXF49OgRtm7dihEjRqBChQqwtraGq6trtt7798zhw4c1tqyVSE4IJH1+69YtHoW3WbNm2XKvPxryPPbw8IBarU5VJBUTE4PZs2dzAZa7u3tW3+YPh67FL0nzXfhF9uPj44M2bdrwSOvyHyMjI1haWuLixYvJnv/gwQMucpcixsl96vz58/x6qQmEfnZ8fX3RuXNnvqggaRQ4R0dHLrxVqVT8/ff09ETLli250N3Kygpnz57ViDwqj+Tq5+eHSpUqgTGGFStWZO9DfoekR0T76NEj1K9fn9uvc+fO/Fh0dDT/WxKxK5VKETExGZ4/f85F7BUqVMCBAwc0djxJimQv4Rc5j1Tvf/r0CXXr1uWLNaSfHj164PTp0zxd0t8ScjsJUXvqSHkUHh4OR0dHvjD5v//+S/E8eVurY8eOYIwhT548GruzCLKG+Ph4bNmyBcbGxtDT08PatWtz+pa+W9zc3NCgQQM8f/5c43PhF98OS5cu5eL1vXv3aiwYBAB7e3sULVoUvr6+OXSHPw5J69PXr1/D19cXnz59SnGBgZxLly7x6PgTJ07ElStXcOnSJSxYsIAvvBk0aFCWPcOPQtLxjE+fPuH9+/f4+PGjRjsnJYQtMo+v8Q0p7YcPH9CsWTNeftWuXZvvUJfSQswXL14gf/78YIxh//79WfE4WYoQsAsEAoFAIBAIBAKBQCAQCAQCgSBbkCZTdA26S0Kre/fuwcnJCf369YO9vb3GNqt58uRB+fLlMXv2bLGleSqo1WrExMSgXbt2YIyhUqVKcHFx4ceSOwcAvLy8UKRIETDGYGtri0OHDgGAVp4ntaOIiq+brVu3YtiwYfz/1ERRz58/h7m5ORhjWLBggc40qU0EC1voJiv8QuR12nn//j2OHz+OPn36oHLlyihZsiSaNm2KefPmwc3NDUDy/vHu3TvY29vD1NQUu3bt0sj3O3fuoHz58mCMYciQIdnyLN87Hz58wOXLlzF48GA0adIEtWvXRteuXeHk5MSFPPIFAn5+fujRowcvm/Lly4cnT56k+j1du3YFYwy9evXSubhEkHE2b96MNm3awMTEBCYmJhoR1uVCFZVKha1bt/II4S9evMiJ2/2mcXNzg5WVFRhjqFy5Mnbv3p2iiF34xbeD9K6HhYVh165dmDRpEubMmYPt27cjMjIyxbrl6tWrmDNnDrp06YLhw4dn523/EIwZMwaMMeTOnRuzZ89GSEhIsmnldvj777/BGIO+vj4mT56sdVyQdmJjYxEWFpamtAEBAWjZsiUvgwTpR+ob6yrHhV/kLCEhIWjevDmUSiXmzp2r0R6Kjo6GSqVCnTp1wBgTO2plEim9p2ntL69Zs0ZjNyg9PT0+Hvjrr7/ydHKf0+V/on+ePMIW2c/X+EZUVBSmT58OCwsLMMZQsWJFPHjwINXrAMCCBQt4vZN0F6jvAT0SCAQCgUAgEAgEAoFAIBAIBAKBIAtJSEgghUJBCoWCiIgYY0REpFKp6Pbt2xQcHEyHDh2igIAAunv3Lj+vcOHCVLVqVWrevDk5OjqSo6Mj2draEgB+DYFuFAoFqVQq8vDwICKiEiVKUPny5fmxpEg28vPzo99//51ev35NBgYGVLt2bapfvz4REenr6xMR0fv37+nhw4d06dIlio6OpkqVKlGLFi3I1taW1Go1KZXKbHrKb58XL17Qxo0b6cGDB1ShQgUaPXp0su+u9F7r6emRkZERhYWFUWxsbLLpiIQtvpas8AvpPJHfqZMvXz5q3749tW/fnsLCwkilUpGlpSV/p1Mq2y0sLMjOzo6ePXtGf/31FxERFSxYkIKDg2nSpEn09u1bat68OY0ZM4aIvthOoJu8efNS48aNqXHjxhQXF0cJCQlkZGTEjwPg+ffp0yfauHEjXb16lcLCwsjKyoquX79O5cqVSzGfw8PD6cWLF/x6wj+yhsGDB1OzZs3oxIkTNH36dFq7di19/vyZdu/eTXp6erxsUiqV1L9/f8qTJw9ZWlpS8eLFc/rWvznKly9PN27coPr165OLiwutXLmSChcuTI0aNdIqm4RffFtI77qZmRn169dPZ5rIyEhijNHNmzfJ1dWVrly5Qs7OzvT+/XsiIl4PNW7cmLp3756dt//dEhkZSc+fPyciIhsbG+rYsSPlyZNHZ1p5HX/mzBk6dOgQEREZGxtT3bp1iSjRBim1p0QfUBuVSkU3btygN2/eUN++fVPNIxsbG2rQoAGdP3+eDhw4QNOmTaNKlSrpTCtskTJ6eolyu6R5lBV+Ifg6AgMD6fr166RUKqlu3brcViqVioyMjCg0NJQ+ffpEhQoVorJly+bw3f4YpPSeptYnk9pNI0eOJBMTE9q0aRP5+flRbGwsNW7cmBo1akRTpkwhIqKYmBgyMjLi50j+FxISQq6urlS4cGEqXbq06Asmg7BF9pMW35DyKCAggC5evEihoaGkr69P69evp2rVqiVb50rnhYaG0v3794mIyNTUlMzNzbPmYbIQIWAXCAQCgUAgEAgEAoFAIBAIBAJBpiINokuD7NKgfHx8PD18+JB8fX3p8OHD9Pr1az7ITkRUqFAhqlKlCnXp0oVKlChBDRs2JAsLCzI2Nta6vhD8pE5kZCRFRESQvr4+denShfT19UmlUvEJXAm5SHfUqFHcJiVKlKDZs2dT/vz5edqzZ8/Szp076cCBA/wzhUJBNjY2dOLECapYseJPP0ElJ0+ePGRvb08PHjyg8+fPU4sWLZKdJJcmpB4/fszFVEknnuQTV8IW6SMz/SIhIYEYY8QY42WSh4cHvX//nhISEsjOzo5MTEzIxMRE2OL/kd5hMzMzrc9SWtxhYGBA69atI09PT3r8+DENHTqUYmJieJp27drRxIkTtRYkJDfZK4RXX/JAX1+f54XcFpJwzdnZmY4cOULBwcFkaWlJZ86coXLlyiUrbJM+f/36NV+EU6JECY3rCzIHKT+LFy9Ow4cPJysrKxoyZAg5OTlR8eLFaf78+Ro2UiqV1Llz5xy842+fcuXK0Y0bN6hJkyYUExNDtra2Gu+s8ItvE119g+joaIqPj6dLly7Rq1ev6Pjx4xQQEEDe3t48Tfny5alOnTrUqFEjqlWrFhUvXlyj3StImXv37tHly5eJiOj3338nR0dHnenk7/iDBw9o165ddO/ePSIiGjlyJHXs2JGnk+x48eJFCggIoFy5clHBggWpYcOGqS52+xl59uwZdevWjaKjo6levXopLk6SyqGSJUvyvPz8+XOy6YUtUia5Z89sv5Aj70/87PmfElJZYmRkxPscAHh/b8iQIeTh4UFVqlSh3Llz5+StCiix3ya92wMHDqSWLVtSfHw8hYeHk42NjYaNpAW3Hz58IB8fH7pz5w5du3aN3N3dydvbm/T09Oj58+dUunTpnHqc7xphi5xBKtfXr19PDx48ICKirVu3Uv369VMcz5DOW7t2LR0/fpyIiIYPH06lSpXSSPc91BVCwC4QCAQCgUAgEAgEAoFAIBAIBIJMIalg/ePHjxQUFETOzs50+fJlev78OT158oSnL1SoEFWuXJm6dOlCxYsXp3bt2pGBgQGZmJhoXDep8FOI19NGQkICRUVFUXx8PAUGBhIRJSvS9fb2pqFDh9K9e/coJiaGrKysaP/+/VSmTBme9uTJkzRv3jxydnamXLlyUceOHSkqKooCAgLo0aNH1K5dO7p8+TLZ2tpm63N+y1hZWVGnTp3o7NmzdOrUKapVqxZNmDBBa1GGxJs3b+jSpUukVCpJrVZToUKFNI5LE0/CFukns/xCrVZzoa+vry9dvnyZdu3aRW5ubhQSEkJEiULI6tWr08yZM6l06dIiSjt9eYflk6ipCfslMbWFhQVdvnyZRo8eTR4eHuTi4kJly5aldu3a0bhx4yhfvnxak7NyIfb169cpMjKSWrdu/V1M4mY1umwh/1t6V//66y/y8vKi3Llz08aNG6lq1arJLiSTf75ixQry8vIixhg1b95c6/qCtKNrkQ2RZn7q6elRu3btaMyYMbRkyRI6duwYderUiapWrZqdt/pDUK5cObp37x7FxsZS8eLFNYQfwi++DZLWp9LC2YiICLp8+TL5+fnRwYMHKTg4WEOwXrFiRWrTpg117tyZSpUqRZUrV9YZpVIsOksbcXFxpK+vT8bGxlSlShUi0s47uf+4uLjQxo0b+eLLPn360Ny5czWu+eLFCxo7dixdunSJ4uPjiShxQeeQIUNo8eLFQjidhJiYGLKwsKDIyEhycnKi8ePHa/Wlk+Lp6UlEieVZSosHvb29hS3SQWb6RdL6XyrnVCoVxcbGUoECBXRe82fHzMyMbG1tyc3NjS5fvkylS5emXLlyUVxcHA0ZMoQOHjxIlpaWtG7dOsqTJ4/Iu28Aaac0PT09KlCggFZ7ysfHhyIiIujUqVP0/Plzunr1Kr1584aIEttRBQsWpE6dOlGpUqXo7du3QjSdAYQtsh8AFBwcTNeuXSMiovbt21OLFi2ISHc/QV5m7dy5k2bOnElERHXr1qW2bdsS0Ze2spQuLi6O9PT0+BjWt9bWFQJ2gUAgEAgEAoFAIBAIBAKBQCAQZAqMMYqMjKQ///yT3r9/T/fu3SMfHx8eaTJv3rxUr149aty4MZUvX54aNWpEhoaGWltqA9CIJvMtDap/TxQsWJC6detGO3bsoBcvXtDnz5/J3NxcSzj6+PFj6tWrF/n4+FBCQgJZWFjQ2bNnycHBgU96eHl50aZNm8jZ2ZlatGhBI0aMoPbt25NKpaIXL17Qr7/+Ss7OznTixAkaM2aMmASmL5NK7dq1o/Hjx9PkyZPpjz/+IAsLC+rbt6+WYOrDhw906NAhcnJyIrVaTQ0bNqSePXtqXVfYImNkhl/IxYg3b96k8ePH08uXLyk4OJhHIjMxMSEPDw/y8PCgy5cv07lz56hChQrf3ETh94K0qMPc3Jy2bt1KarWa3r9/T6amppQ3b16t9OHh4eTi4kJ+fn505MgRCggIoMePHxMR0cCBA2nr1q3Z/QjfFVK5sW3bNrpy5QoZGhrS77//Tk2aNCEi3fWyvN5ev349bd++nRhj1KlTJ7K3t+fXFD7wdURERNDTp0+patWqZGBgkGJaMzMzaty4Mf3zzz/07NkzevjwYYoCdmGL5ClatCgRaQpEstIvBF+HVAe/evWK3NzcyMXFhc6dO0e+vr7k7+/P09nZ2VGzZs2oZ8+eVKRIEWratKlO0W5SXxB+kTZCQ0MpPj6ejI2NydLSkog0806er3fv3qWNGzfSzp07iShx55TJkyeTvr4+72/cuXOHxo8fTw8ePCBLS0uytbUltVpNLi4utHTpUmKM0aJFi4TPyLCzs6OuXbvSsmXL6MCBA9SwYUOqV6+eVjr5oo/r16/zCNVFihTRSCfZTNgi/WSmX0ji9YSEBDp48CCdPHmSbt26RfHx8RQWFkZdu3alevXq0aBBg8SCAhklSpSgnj170uzZs2n69Ol09epVUqvVFBISQo8fP6Y8efLQihUrqEaNGiLPcpCkfQPpfVcqlRQQEEAfPnygo0ePUmBgIJ09e5bCwsIoJiaGFAoF5c2bl3r16kUVKlSgRo0aUenSpTUWdAi+DmGLnIUxRm/fviVXV1ciIqpZs2ayOwLJy6yDBw/SH3/8QUREuXPnpnbt2vGFU0qlkuLi4sjd3Z327t1LT58+JZVKRVWrVqVBgwZ9ewEWIBAIBAKBQCAQCAQCgUAgEAgEAkEmMnz4cDDGYGhoiKZNm2LixIk4fvw4Xr9+jaioKK30KpUK79+/x4MHD/DhwwdER0fzzwUZY/v27WCMgTGGlStXIjAwkB978OABVq9eDTMzM56mRIkSePLkCQBArVYjISEBALBz504oFAoUL14cZ8+e5deIi4sDAPTt2xeMMQwbNiwbn+7bR61W87//97//8XyeMGECTpw4AbVaDbVajYsXL2LatGkwNTUFYwwVK1bEsWPHtK4BCFtkBhn1CyAxv/fs2QOFQsHT5cuXD/PmzcN///2HJ0+eYN26dWjQoAEYYyhdujR8fHxy5Hl/JOLj4wGAl00S7969w507d7BmzRp07doVdnZ23C6SDZs1a4YVK1Zg06ZNOXHr3yUTJ07k9fmlS5eSTSe3x4kTJ1CjRg0wxqCnp4fNmzfrPCcuLg5v377VKOOS2vVnJzo6Ghs3bkS5cuVw7ty5NJ0TFRWFatWqgTGGAQMGpClPhS2+jqz0C0HKvHz5Evv378fcuXPRsmVLFC5cWKOsL1++PDp16oTNmzfj3LlziI6O1tn3kOoSQcYICAhA2bJloaenh40bN/K+W0JCgkY/7uDBg+jcuTO3U6tWrXD9+nWNMufjx4+oXbs2GGOwt7eHm5sbIiIi8Pr1a6xcuRJKpRJWVla4ceNGtj/nt05gYCDq1KkDxhgaNGiAZ8+e8bxN2p8eNmwYGGMwMDDA8OHDAXwpq6RzhC0yRmb6BQAcOXIEAwYM0CjrjIyMwBjj/ZApU6bw9D97/S3Pv6lTp0KpVEKpVPK8K1SoEM6cOYPY2NgcvMufk6RljZz379/j/v37mDNnDvr06YPcuXPz99zIyAhmZmb45Zdf8Mcff+DRo0d4/fq11jWk6+q6vkATYYtvj8ePH8PY2Bh58+bFgwcPAGi3V+X5eejQIZQrVw56enpgjKF///4aaSMjI/HPP/+gatWqGvUHYwyFCxfGs2fPAHw7dYaIwC4QCAQCgUAgEAgEAoFAIBAIBIJMAf8fCWbdunXUvXt3KlSoEJUtW1YjjVqt1vj/zZs3NHLkSHJ3dydPT08qU6YM2dnZ0YYNG8jKyurbigjzHSHZYsCAAeTl5UWLFi2icePG0X///UcFCxYkxhjdvn2bgoODKTY2lqytralKlSq0dOlSKleunEZkuJiYGNq9ezcBoO7du1PLli2JKNGW+vr6RPQlqlxCQoKI6CpDoVDwd3jhwoVERLRo0SJavnw5LV++nCpUqEBExKN8x8fHU7ly5WjIkCHUsGFDfg0JYYuMkVl+ERYWRjt37qRx48YRAMqfPz9Vq1aNVq9eTba2tvz77O3tqVGjRjRw4EC6f/8+rVq1ipYsWUJ6enrCLmkAOiIiStHgXr9+TaGhoXTmzBlydXWl69ev08uXL3k6Kysratq0KTVr1owqVqxIjRs3JsYYmZiYpHh9QSJqtZri4uLo9OnTRETUuXNnHmU6KfJ8vHz5Mm3YsIEePHhARETDhg2jwYMHa1z33bt3NHv2bHr+/Dk9ffqUGjZsSA0aNKApU6aI6KFJiI2NpWvXrpGnpydt2bKFqlWrxqO5JkdoaCi9efOG/51cXgpbfD1Z4RdpraeFLRLR19enESNG0KdPn0hfX5/y5ctH3bt3pzp16lC1atWoWrVqpFAoeJtIIjw8nBhjxBgjU1NT0tPTE22kTCBPnjzk6OhIXl5etGfPHqpZsyaVLVuWjIyM+I5aM2fOpOPHj9Pz58+JiKhjx440ZcoUqlGjhkb+jxs3ju7evUvFixenM2fOUOHChYmIyNTUlLp06UI7duwgFxcXCg4OzpFn/ZYpUqQI7dq1i5o0aUI3btygoUOH0pgxY6hBgwZUsGBBiomJocjISJo8eTLt2LGDGGNkbW1NLVq0ICLiZYtkD2GLjJGZfjFnzhw6cuQIPX36lIiISpcuTeXKlaPWrVtTSEgIeXh4kJOTEy1dupQUCgX99ddfP31dIe9/L1q0iGrVqkWBgYHk5+dHlSpVoqZNm2rtPCDIHqR3U61WU3h4OD18+JAePnxIDx48oDt37vD2q56eHllaWlLbtm2pRIkS1KlTJ7K0tKQSJUpoXE9qG0m/xQ6OaUfY4tvDwMCAYmNjKSYmhjw9PalatWp87ENCyk8nJyeaOXMmvX79mtRqNbVv35527NjB08XGxtLq1atp+fLlFBoaSvb29vTbb79RQEAA3b9/n27dukVdu3alixcvfjPloRCwCwQCgUAgEAgEAoFAIBAIBAKBIFNgjPHJwsaNGxOR9la0khg9ISGBrl69SuPHj6enT5+SlZUVlS5dmlQqFR0+fJg8PDzo2rVrlDdvXiHaSQdyWyxcuJAMDAxoxYoVdOvWLUpISNBIW6tWLerduzd17dqVChUqpCXoUSgUFBUVRUREFhYWREQUHx/PxUFXr16lq1evkkKhoLZt24pJqiQolUoNW1hbW9O+ffvo3r175ObmppG2Vq1aNHLkSGrbti2Zm5trXUvYImNkxC+k82JjY2nbtm00ceJEAkBlypShrl270vjx4zUW3QAghUJBpUuXpoYNG9L9+/fpwYMHpK+vL8qzVJDKIHk+BQQEUGhoKB0/fpz8/f3p7NmzFBISQjExMURElDdvXurYsSM5ODhQ/fr1qWLFilSgQAENH0i6gErYIXkUCgUZGhrySfO8efMSEZFKpdKYSJfXFxcvXqT169dzcW+PHj1oxYoVPG10dDSdPXuWlixZQvfu3SN9fX2Kj4+nc+fO0enTp+nNmze0fPlyYRcZJiYmVKdOHTp37hzdu3ePrl+/Th06dNBZtku2ePbsGQEgIqICBQrobEMJW6SPzPaLuLg4MjAw4Ofdv3+ffH196ebNm2RgYECOjo5UpkwZqlmzplhQ8P8ULFiQbty4QSdPnqRGjRqRra0t5cuXTyNNXFwc//vGjRt0/fp1+u+//0itVlPJkiWpS5cu1LdvX1IoFELEnkHMzMxo4cKFdPfuXbp58yYNGjSIHB0dqVatWnTnzh3y9vamGzdu8PSDBg2iyZMnU5kyZTTe5bCwMHr27BmZmJjQunXrqHDhwhp+ZWxsTCqVigBQSEhItj/n90DJkiXp/Pnz1KJFC7p9+zZ5enqSlZUV1a9fn168eEGfPn0iV1dXUigUZGpqSpMmTaJOnTppXUfYIuNkll+MGDGC9u3bR6GhoUSUuPipZ8+efJEzEdHnz5+pVq1aNHr0aFqzZg3Vrl2bOnTokH0P+40i73/res9F2Z9zPHnyhPr27UsREREai48LFSpEnTt3pipVqlCLFi3IysqKbG1tk237yG34s7eN0ouwxbcDACpWrBi1bt2aTp8+TY8ePaJOnTqRqampRhrGGC1btoymTp1KCQkJBIDatGlDx44dI6JE4bqhoSHdvHmTdu/eTRERETR8+HAaOnQolS1bllQqFbm5uVHPnj3Jz8+PHj58KATsAoFAIBAIBAKBQCAQCAQCgUAg+PFIGi09aUQ3aSLRzc2Nxo4dS8+fPydHR0fau3cvFSxYkMzNzal///60e/dumjlzJq1atUoriqIgbcgnbufMmUPVq1en58+f08mTJ4kxRlWrViVbW1saOnQoF9VKols5+vr6VKlSJbpz5w55enrSp0+fKE+ePEREdPv2bdq4cSMFBgbySMcCbeS2GD16NDVr1oxcXFzo0KFD9PnzZypVqhQVLVqUxo0bRyYmJslO/AlbZJz0+IVareY2cXJy4uL1ihUr0sCBA2nw4MGUO3duSkhI4GWglF5PT4/vROHs7EwvXryg0qVLi8ndFFCr1RQREUG+vr506tQp8vb2phMnTlBcXBxFRESQUqkkpVJJHTp04JHgrK2tqWjRojoF69Jkr9jNI+1IkYpLlixJz549ozdv3miJdOU7pBw+fJg2b95M586dIyKiDh060JIlS0ipVPLzbty4QbNnz6Znz55RuXLlaMGCBRQeHk4BAQE0Z84cWrlyJZUtW5aGDRuWI8/8LaKvr089evSgc+fO0cmTJ2nx4sVUqlQpsrOz42mkaK7Su79161YeNbFNmzYaZY0kMBG2SB+Z6Rfx8fFcvH758mW6cOECLVmyhIyNjflCNSKiYsWK0YABA2j27NlCxP7/VKhQge9gQ/TlvZYWbkj5KkWnfPnyJQGgPHny0NOnT+no0aP09u1bmjRpkhAwZgK2trZ07tw56tSpEz1+/JgeP35MO3fu5HWwgYEBFS9enPr370//+9//tM4HQC9fvqQnT54QEfF+n56eHvcvX19f+vjxI+XLl0+j/BNoUrZsWbpy5QqNHj2aHj9+TJ6enuTl5aXhG2XLlqURI0bQ0KFDiUhTeChskXlk1C8GDRpEO3fu5LZbsmQJTZo0iR+XFkBZWFhQ586d6fDhw3T16lVycXERAvb/J6V2vyj7c47KlStT7dq16cyZM9SsWTNq2bIlOTo6kr29vdaCNKLEtpebmxsFBgZSQEAAVahQgSpVqkRmZmZabTDB1yFs8e0g7RAkCdiXL19OhQoVojZt2lCZMmUoOjqajh07RpcuXeKR1vX19alr1660d+9eIkpcUGtoaEhERPv27SM3Nzdq0qQJjRgxgkqVKsX7iw4ODlSoUCHy9PQkPz+/nHpkbSAQCAQCgUAgEAgEAoFAIBAIBAJBNhIXF4c6deqAMYYaNWrg48ePAICYmBgAQHBwMPLkyYOGDRtCrVbn5K3+ECTNw/j4eKhUqhTTJOXAgQNgjIExhv79++Off/7B5MmT4ejoCMYYSpYsiaNHj2b6vf9oJCQkZDiNsEXm8DV+IdnkwoULPO/Lly+PFStWIDw8XCONrvNXrVoFfX19mJubw9fXN03vwc9KVFQURo0aBT09Pejr64MxBn19fVhYWKBLly6YOHEibt++DS8vr1SvJeqP9CO9o8uWLYO+vj7Kly+Px48f60y7ZMkSVKxYkftG586d4e7urpEmJiYGjRs3BmMMLVq0gJ+fHz8WHh6OMWPG8DJNoI2fnx/P44YNG+LOnTuIiIjQSBMfH4/BgweDMQaFQoFOnTrh5cuXWtcStkg/meUX8rrmzz//RNWqVXk6MzMzlChRAnXq1EGJEiWgUCjAGMPEiROz/Pl+JPbt2wdjY2MwxtC9e3fs2bMH79+/x6FDh2BhYQHGmGgrZTIvX77EvHnz0LhxY9jY2KB8+fKoUaMGNm/ejNu3b/N0uurmsLAwODo6IleuXNi3b59GmuDgYFSpUoWXWdHR0dnyPN8z0rveo0cPVK5cGWXKlEGlSpWwYsUK3Lhxg6cTtsh60uoXcXFx/O/Ro0fzNrCRkRE2btyY6vcMHDgQjDHUrVuXj6kIBN8a8vZPUFCQRp9Y+js+Pp5/9urVK6xbtw6mpqZQKpVgjCFXrlxo1KgR3r9/r3VNQdoRtvi2kOf/tGnTeL+gdOnSqFOnDsqVK4fcuXPzzytXrow//viDnyO31du3b2FrawuFQoETJ07w60v1eXR0NOzs7MAYw5o1a7LpCVNHCNgFAoFAIBAIBAKBQCAQCAQCgUCQrZw8eRJ6enooXLgwvL29AWgOuDs7O0OpVKJAgQJ4/fq1ECF+I6xevZpPmEg/hoaGqFu3Lv777z+eTq1W8wkYXZNYYmLrC+kVMgtbZD/Pnz+Hra0tGGMoWrQo5s2bh7CwMAAp2/HDhw+oXLkyGGOoVauWEK+ngefPn8PGxgbt27fHjBkzcPPmTXh6emqkkb+77u7uOH/+PKZNm4Y9e/akKs4SpJ1Xr17x97d+/fo4evQoAgICEBQUhMOHD6Nnz54a5dAvv/yCV69e8fOl933p0qVgjKFgwYJ48eIFAM16f9myZWCMwcHBAREREcJuOvD09EShQoXAGEPFihUxePBgHD9+HOfPn8fSpUvRpk0bLl4vX7489u3bp/M6whYZJyN+Ic/PwYMHw8DAgKfr3bs3tm3bho8fPyI+Ph7Pnz/HsmXLuIh9+fLlOfTE3xePHj3iwpzhw4fzvobEpk2bwBjDnDlzcugOf1wkgVRAQABCQ0N5O0kiufIkNjYWvXv35gsEd+7ciTNnzmD37t1wcHDgnwcFBaV4HYE2ISEh+PTpE0JDQzU+F7bIPlLzC3mbdsmSJcifPz9fwLl161Z+LKW87tGjB+9rCAG74Fsm6Xuc3Hvt4+ODsWPH8jZQu3btMGjQINStW5cLeD99+pQNd/zjImzxbZF0gWuxYsV4njPGYGJiAsYYxo4di7Nnz+o8D0hcxFagQAEwxrB7924AX2wbFRWFTZs2wcTEBKVKlYK/v382PFnaEPH7BQKBQCAQCAQCgUAgEAgEAoFAkK14e3uTWq0ma2tryp8/PxER325WrVbTvXv3CAA1atSIChUqlJO3KqAvW8uPGjWKChQoQBcvXiQ3NzfS09Ojvn37kqOjI1WpUoWIiOLj4/l280REsbGxFBISQvfv36dHjx5R586dqWrVqjn1KN8cjLGvSi9skf0kJCSQWq2mAwcO0MePH4mIqF69ejRy5EgyMzMjAMnaUaVS0alTpyg4OJiIiBwdHUmtVpNCoRBb16dAhQoVyMXFhSwsLLSOJSQkEABSKpVERHTw4EGaP38+eXt7U0xMDBERmZiY0Lx582jChAmkUChStJEgZQoXLkz//vsvNWnShG7evEmurq78/VWpVBQWFkaMMbKysqIBAwbQ4sWLNc6X8j0oKIiIiHr06EGlSpUitVpNenp6BIDUajUFBgYSEZGdnR2Zmppm70N+J5QpU4auXr1K3bt3J1dXV3Jzc6OtW7eSUqkkPT09io2NJcYY2dvb06hRo6hXr15ERFrvv7BFxkmvX6jVal529erVi/79919ijBFjjGbPnk1//PEHEX3xmwoVKlDx4sXp/fv3tGTJEjp9+jQNHDiQzM3Nc+bBv3Gkd93FxYU8PT3JwcGBhgwZQiVLliQiopiYGDIyMuLv9aNHj0T9kAUoFAqysbFJ9lhSAJCBgQGtW7eOPDw86MmTJzRs2DCKiYkhQ0NDio2NpQoVKtDBgwfJ2tpaw4+kv6X2sfyaP7tdpTzIkyePzuPCFtlLWvzi2rVrdOTIEd5vWLVqFQ0aNIiISCtf5bi7u5OHhwcpFAqqVKkSGRoaZsETCASZQ9L3OOn/Upmxb98+Wr16NeXKlYtmzpxJkydP5ml69uxJBw8epK1bt9LEiRNFOZNOhC2+LZRKJa9LZ8yYQU2aNCFvb2+6d+8excfHU/369al48eJUr149fk5CQgKvhyVMTU2pevXqdOrUKXr48CG1atWKrKysKDo6mg4dOkRr1qyh6OhoatmyJVlaWmb3YyaLELALBAKBQCAQCAQCgUAgEAgEAoEgW8mbNy8RJU6QREVFkZmZGRElTpDcvn2b/vrrLwJANWvWzMnbFPw/CoWCT5p3796dOnXqRAAoPj5eS9wWHR1NERERdPr0aXrx4gWdOnWK/P39ufB35cqV5OvrS/ny5cuJR/nuEbbIfhQKBcXGxtLx48cpPDycbGxsaOnSpWRpaZmsmET6/OXLl7Rjxw4KCgoiAwMDGjhwIF+sQyREPSkhCTTl4iiiRGGnlOc7duzgwp7GjRtTuXLlyMrKilatWkWTJk2iXLly0ZAhQ0QeZ5DSpUvT1atXady4ceTm5kZ+fn5ElLjwzMjIiAYPHkyNGzemzp07E5FukVV0dDQREb1584aLSIkS7enm5kbnzp0jIqJatWolew1Boi1OnjxJa9asoStXrtCDBw9IrVaTWq0mIqIhQ4ZQ27ZtqV27dkQkbJGVfK1fxMXFkYGBARER/fLLL/Tvv/+SUqkka2trmjlzJg0ZMkTn95iYmFC1atUIAF28eJH8/PyocuXK2fKM3yMJCQl07NgxUqlUVLVqVZ5XKpWKv+sPHz4kosQFAqJ+yFzSk5+MMVKr1WRhYUFXrlyhsWPHkru7Oz18+JCqV69O5cqVo8WLF1OePHm0RNJS+yA0NJT8/f3J09OTevXqJexKwhbfEqnlgXT82LFjdPfuXSIimj9/Pg0bNoyIkq+HpX7EzZs36enTp0REVLZs2cy8dYEg22GM0bVr1/iivtmzZ9OECROIiCgyMpJMTU1pzJgxdPDgQfL19eXnCDIfYYvsR16v1q5dm2rXrk39+vVLNr2uusHExIS6detGp06dolWrVpG3tzeVLFmSnjx5Qh4eHhQcHEytW7emCRMm8LF4XWT3WJUQsAsEAoFAIBAIBAKBQCAQCAQCgSBbsba2JlNTU3rw4AHt2bOH2rRpQ2q1mm7fvk0LFy6kV69eUevWrWnUqFE5fauC/0ehUPCI3lJUbwMDA/r8+TPFxMTQhQsX6OXLl3T48GF6+/YtvXnzhp9bq1YtatmyJXXq1IksLS35AgZB+hC2yH5Onz5NLi4uZGpqSgsXLqTChQtrCasl5J//73//o6tXr5Kenh7Nnj2bqlevTmq1mouwExISKC4ujl68eEEFCxYkY2NjMjMzE4JR+jL5nTSPpc+PHj3KxesTJ06kUaNGkY2NDTHGqH79+tSiRQvasGEDdezYkfLnzy8m0zNIyZIlaffu3fTu3Tu6efMmxcXFkY2NDZUqVUpDLJXcu2tvb09ERI8fP6Y7d+5Q7dq1SaVSkbOzM02ZMoXc3d2pZs2a1KdPHyLSPRkvSKRIkSI0d+5cmjNnDp07d47Cw8PJzMyMihcvTg4ODvxdF7bIetLqF/Hx8Vy8PnLkSNq3bx8pFAoqXrw4zZo1iwtTktpMqk/KlClD+fLlo9DQUL7ThEAbKZq9JMaR2kgA+OKxTZs20YoVK4iIqGnTpjlynwJtpKij5ubmtGnTJlKpVOTn50elS5cmIuL+I7UJgoODKSwsjE6fPk3Pnj2jK1eu0MuXL0mlUtGDBw/on3/+ybFn+d4RtsgZLl26xMumvn370tixY4ko5UVkjDG6desWjR49mogSd4iS6hMAPI1A8L1x5MgRIiLq3r07F0yrVCq+YP/evXtERPThwwdKSEggItFezSqELbKfjOSfJDrv378/hYeH05gxY+j06dP8uI2NDQ0cOJD+97//UYkSJXgdo2tsS6o/khv3ymyEgF0gEAgEAoFAIBAIBAKBQCAQCATZStOmTWn06NG0aNEimjx5Mq1evZoiIiIoOjqaoqOjqXHjxnTkyBHS19cXQs4cRMp7aRJEEgIFBATQzZs3ycPDg06cOEEhISH06tUrfl69evWocePG1K1bN7K2tqaqVatqRJ0WfD3CFjmLtAggLi6OSpUqRUTawmoizS2c+/fvTwcPHiSFQkFt27alNm3aENGXCOIvXryg3bt305kzZ8jd3Z0KFy5M5cqVo0WLFlH58uWzbaLwe+TNmze0du1aIiIaPnw4zZkzh0+iA6BmzZpRpUqVyNPTkyIiIqhAgQI5ebs/DBYWFmRhYaEV3VMenS25+rpfv360e/duunfvHg0cOJDKlStHkZGR5O/vT69fv6bSpUvTf//9R3nz5tVZ78u/Q+xckCggZIxRx44dNT6XBGtEwhbZRWp+AYDX2atWraJ9+/YREVH+/Plp5syZyYrXib7UM1euXKHg4OCsfpTvHun9L1myJBEROTs7k6urK9nY2JCFhQUtX76c5s+fT0REf/zxBzVr1izH7lWgjdTOVSqVZGBgQBUrVuTHAgMDKSoqik6cOEH+/v506tQpev/+PUVHR5NCoaDcuXNTmzZtqFy5clS+fHmKiooiExOTHHya7xthi+xDqitcXV1JX1+fDA0NqVWrVjzPUhoHefr0KU2ePJni4uLI3NycmjdvTubm5lp1c1xcHKlUKg07iPpb8K0CgDw8PIiIyNLSkogSBdPSGIanpydduXKFiIjatGkjxgqzEGGL7w/GGO9TjBo1ikqVKkXOzs7k6+tL5ubm1Lt3bypevLjWLoxSn+P169f05MkTevz4MV27do3+/PPPbNsZVYxSCgQCgUAgEAgEAoFAIBAIBAKBINuQBtMXLlxI+vr6tHPnTnrz5g3Fx8eTo6Mj1a1bl/755x/S19cXAs4cRprU9vDwIC8vL7px4wYXS4eFhfE0VapU+b/27jyuyjrv//j7sKMiiKggiIKggYgmGmDuOmmQ4laTmfuYWbaYrdNU2jJjOrfdbVPO5FLe3eO+Ky654Ia7pKKCIosa4oKKgLKe3x/+zpUomvekHNDX8/Hw0el8r3PxufgerovD9b4+l9q1a6e+ffvKx8dHERER5c4dFyP855gL67CEOywdb5s1a6ZHHnmkzNj1LN/TYcOGadasWbKxsVGLFi00ePBgtWjRwljmwIEDGj58uPbu3Suz2axq1arpxIkTOnr0qLZv366NGzcqKCiIcMktXLp0SQkJCXJ1dVVMTIwRyLG818+dO2cEpghN3Xu/9R4tKSmRi4uLYmNjFRMTo+3btysjI0PStRBvVFSUvvvuO3l6ehp3l7hxH2UymYw5tYSCH+SfjVttO3NReVi+J5b/JiYmasmSJbp48aIk6d1339WQIUMk3f6YfP78eW3dulU2NjZq2rSpGjRocO+Lr6Is3+uhQ4dqxowZ2rNnjwYMGCBHR0e5uroqLi5OkjRq1Cg9++yz1iwV+vX3KMv7//o7r1y6dEknTpzQqlWrdOzYMS1fvlz5+fnGz4+dnZ169uwpPz8/9enTR/Xq1TMuMMT/HXNhXWazWcuWLVNRUZFCQ0ONO6DczpEjRzR+/HglJiZKkkJDQ/XCCy8YF0xJ14KIy5Yt05w5c5SZmak2bdqodevWeuWVVzh+o9IymUxq0aKFfvrpJ+Xn5ysvL8+4UPn48eP65z//qRUrVigoKMj4fI17g7momix3+rOxsVGPHj3Uo0ePm5axjKekpCgzM1OrV6/W3r17tXPnTl24cMFY7tKlS9qwYYMx7/cSAXYAAAAAAAAAQIW5/vakEyZMUN++fZWTk6O8vDyFhISofv36xh/cCa9XvOLiYiUkJOj8+fNatGiRjh49qh07dig/P1+S5OzsrKZNmyosLEwdO3ZUQECAEei1zJvl8Y0ITP/fMBfWZwl1BAYGSpJSUlK0a9cutWnTxgh+WJYzm806e/asXn31Vc2ePVs2Njby9/fXK6+8oj59+hjrTEpK0qBBg7R//36Fh4erV69e6tq1q44dO6bp06dr/fr1GjVqlJYsWaJatWpV/EZXAT///LPOnz8vb29vBQcHy2QylekGN336dB09elShoaGys7MjoGNltra2Ki4ulpubm1auXKkVK1YoLS1NkhQeHq6HH35YNWvWlCQjeGVjY6P8/HxlZmZq69atOnTokBYvXqxHH31U06ZNYz7/Q8yF9axdu9boUvnWW2/pxRdflHTr8Lrl+c2bN2vRokUqLS1VeHi4vL29K7Tuqqhhw4Zas2aN+vTpo/T0dOXn5xvHh4kTJ+rJJ5+Un5+flat8cN0YkjabzcrNzdWhQ4e0e/du7dq1Sxs2bNAvv/yi4uJi2draytnZWZ06dZK/v7/69eununXr3nTXgxvXj9/GXFif5Xvv5OQkSXrooYckybiIrDyHDx/Wxx9/rI0bN+ry5ctq0KCBfvzxR9WuXdtYZu3atfruu+80b94847mUlBT9+OOPSktL02effcbxG5VWUFCQSktLNWvWLPn6+iosLEzp6enasGGDli5dKjs7O73xxhtq2bKltUu97zEXVY/ZbC7zd/frHThwQBcvXtTChQuVlpamDRs2GA0xnJyc5OPjoz59+igsLEyRkZGqV69ehYTXJQLsAAAAAAAAAIAKZmtra5zQLq9Tj+UP7qh4c+bM0aBBg4wAtIuLi+rVq6fo6GiFhoaqXbt28vPzk729fZk5KiwslIODg/EcFyD8fsxF5dG0aVM1a9ZMiYmJWrdunUJCQuTs7GwEPy5cuKCtW7fqq6++0po1a2RjY6OQkBC98sorGjx4sKRrnY8LCgr02Wefaf/+/WrXrp0mT56sFi1ayMnJSa1bt5aXl5cSEhKUmpqqnJwcAuy3EBgYqLp166qkpERJSUny8fExwon/+Mc/9Pbbb0uS3njjjZtujw3rsLOzU0lJiapXr66nnnrqpnHLCfaEhAQdOXJEW7Zs0fbt25Wammp0gbO3t1dxcbE2btyoTp06VfAW3D+Yi4qXkZGhzz//XJL02GOP6fXXX5d063Cn5ffgffv2afDgwSouLlZoaKhefvllSSpzwU55uGhHatKkidasWaPdu3crISFBjRs3VmBgoMLDw61d2gPvypUrql69utatW6fU1FStXr1ahw8f1uHDh40LAz08PNStWze1bNlSf/jDH+Tp6amgoCBjHZblrr+Q0ILPkHeOuag83N3dJUmnT5/W1atXjUC7hWW/npCQoPHjx2vTpk26ePGivL29tXLlSvn4+BjH7y1btmjSpElat26d6tatqxdffFFubm7KyMjQlClT9Pnnn8vX11djx461xqYCv2no0KE6dOiQ/v73v+uTTz6Rra2t8f6uV6+eJkyYoKFDh1q7zAcCc1H5WT5PlHcXlePHj+vEiRNatGiRUlNTFRsbK5PJpKKiIlWvXl01atTQM888o8DAQEVFRalevXpyc3Mrs/6K+lxBgB0AAAAAAAAAUOFud0L7QQ/dWNPAgQO1fft22djYqHHjxoqKilKdOnXk6upa7vIZGRlatWqV9u7dK0kKCQnRwIEDVatWrd8MWOH2mIvK46GHHtKgQYP09ttv689//rNyc3P16KOPqn79+rpw4YKmTJmio0ePKikpSba2turSpYtGjBhhhEMtFxFYbsHs4OCgoUOH6uGHH5aDg4NxEjgwMFAmk0mnTp1SVlaWGjZsaOUtr5x8fX3VuHFjxcfHa8KECUpKSpKdnZ0SExP15ZdfSpL+8pe/aODAgVauFNKvJ9Wvv5DG0ll0165dyszM1OLFi3XkyBHt2LHDCMG5uLgoICBAgwYNUocOHdS8eXMFBgaqsLDQWptS5TEX1pGbm2t0NwwLCzOCircKr5tMJiUmJmrkyJHKzc1VzZo11bVrVzVu3FiSjON5SUmJduzYodTUVNnZ2alhw4aKiIgw7gryoP8+7e3tLW9vb8XExFi7FPx/hYWFGjVqlNasWaNz584Zz3t5eSkiIkLdu3dX69atFRoaWiaQeyOTyUR379+JuagcLPvqrl27avHixUpLS9PPP/+sRx55pMw+3GQyaePGjRozZozS0tKUn58vHx8fzZ8/X82aNTPmp7S0VD/++KPWrVun8PBwvf/++3r88cclSfn5+bK1tdWkSZO0YcMGPf/883J2drbWpgPlsryXJ02apDp16ig2NlZHjx6Vvb29+vfvr86dOxvvadxbzEXlZjl+WI6/RUVFOn36tBITExUXF6eDBw8qLi7OuINjzZo1Vb9+fUVFRalRo0bq1auXatWqpXr16pVZr+WYbll/RX2eMJktnzwBAAAAAAAAAMAD63YhZ8tJjOvDC99//71mzZql9evXl1n24Ycf1qpVq1SnTh0CDf8h5qLyuP779vbbb2vSpEmSrnUgdnFx0ZUrV3TlyhVJ18KI48aNU+/evRUZGXnT6xctWqR+/fqpQYMG2rFjhzw9PVVSUmJ0yoqLi1Pnzp1lZ2enhIQEBQcHW2GLq4bk5GR17txZmZmZN42NHz9eL7zwgjw8PKxQGW7sAmdhNpu1Y8cOZWVlaf78+Tp16pQ2btxojHt5ealOnTqKiopSUFCQIiMj5efnZ+znLCfR2ZfdOeaicli6dKl69+4tNzc3xcXFqXnz5uUGzC3PHTlyRKNHj1Z8fLwKCwvVtm1bzZkzR97e3sayq1at0rx58zRjxgzjOTc3N40cOVKffvppmfUBlcnBgwc1aNAgOTk5qXfv3vLz81OHDh1Ut25dY39y/Xs3OztbW7du1cGDB9W4cWPVr19f7dq1k3TruxjgzjAXlUdmZqZiYmK0e/dudejQQX/+85/VrFkzeXt7a82aNdqxY4c++OADY3k/Pz+tXLlSTZs2LbOe2NhYRUdHS5Lmz5+vvn37Svo1iDp79mw988wzatKkieLj47nbEyql6//OceHCBRUUFMjOzo7PdlbAXFRuKSkp2rVrl5KSkvTTTz/pyJEjOn/+vDHu7++vzp07q1mzZnr88cfl7OwsX19fY9xsNleaO6DSbgMAAAAAAAAAAJQbmL6xq4/l5NXUqVM1adIkZWRkKCQkRM8995zq16+vWbNmacmSJerTp49iY2Pl4uJSodtwv2AuKo/rLxaYOHGiPD09tWDBAu3YsUPZ2dmSpMDAQPn4+Oidd95Rhw4d5ODgIEk3nQysX7++HB0dJV0LqtStW9eYx8TERE2YMEHSte77hNdvr0mTJtq0aZPGjx+vo0eP6uzZs2revLkGDx5shHVQsSzhteu7wCUnJysxMVErV65USkqK4uPjje7QtWvX1kMPPaT+/fvLz8/POKl+410mLD9/lgBdZTjBXtkxF5XT5cuXdfXqVUk3323IMmcHDx7UCy+8oL1796qwsFCNGjXS999/Xya8PnfuXH366afat2+fJKlDhw7KyspScnKyJk+eLJPJpIkTJxJeR6UUEhKiuLg4Sde6gV7v+n1McXGxduzYoT/96U9KSkqSdO33Y0dHR3300Ud69dVXy3QIxf8dc1F5eHl56ccff1TXrl21adMmJSUlycbGRvXr19eRI0eUl5cn6dpniVatWmnq1Kny8vK66cKBw4cPS5L69et3U3hduhZ2lKTq1asbn0mAysbW1tbYn7i5uRn7FfYxFY+5qNx+/PFHjR8/3vj/kJAQde3aVZ06dVJ4eLj8/Pzk5uZ203zl5ubK0dFRdnZ2NzXHsBYC7AAAAAAAAAAAoFzXn+SwnPTYsmWLpk2bphMnTujZZ5/VmDFjFBYWJknq27evunTpoi1btmjv3r3q2LGjtUq/7zAX1mNra2uc1Hv11VfVv39/nTx5UpmZmSoqKlL79u1VrVo1ubq66vobH994UtfV1VUNGjTQsWPHNH/+fLm6usrf3187duzQhx9+qI0bNyosLEwjRoyQRDfL39K4cWNNmzZN9vb2unr1quzs7GRvb2/tsh5YNjY2Sk9P1/z585Wenq74+Hjt2bPHGK9bt66aN2+u6Oho+fv7Kzo6Wk5OTjd1/7zxZ8jaJ9OrIuaicgkPD1dwcLBSUlJ08OBBtW7dWiaTqUxYxMbGRrt27dKQIUN07NgxFRcXq27duoqNjVXjxo2NO7Ns27ZNX3zxhRISEhQdHa0RI0aod+/eSk9PV2xsrMaMGaNp06apX79+atOmjZW3HCifJSx9Y6DKEpSTpMWLF+uVV15RZmamWrVqpdatW8vFxUVfffWVXnvtNTk7O2vUqFEE6H4n5qLyCAwM1Pr16/X8888rOTnZ+Kxh8cQTTygmJkb9+vWTm5tbuYHDnJwcSVJWVpZycnJUvXp1Yy6TkpK0adMm2dvbq3///qpWrRohVFRalvfl9e9P3qvWwVxUXu+//76cnJzk6empxo0bKzQ0tEzjipKSEknX5is7O1tHjhzRP/7xD6Wnp6t69epq2bKl3nzzTbm7u1s9xE6AHQAAAAAAAAAA/CbLSarly5dr9+7datOmjV5++WU9/PDDkq518alRo4bCw8O1ceNGpaWlEZq+R5iLind99zFvb2/5+PiUu9ztTuY+9NBDGjdunEaPHq2//e1vWrBggdzd3bV9+3ZJUosWLfTSSy/pkUcekVS2uzFh9vLZ29vLZDLJ2dlZpaWl1i7ngVdUVKS33npLpaWlcnBwUGRkpCIiIhQWFqZ27drJxcXlppB0UVGRioqKdOnSJdWqVUtOTk6Srr3nCUf855iLyqNatWpq1qyZDh06pGnTpiksLEzBwcHG3VaSkpK0bds2vfDCCyooKJAkBQQEaPny5WrSpIlKSkqMZdesWaNt27bp0Ucf1VtvvaV27dpJutaVt0ePHgoICDCCjwTYUdnd6k4EP//8s8aOHavMzEzFxMRo9uzZRrfoLl26KDo6Wt98842ioqLk4+PD/ukuYC4qh4CAAM2ePVspKSn66aefVFRUJG9vb9WvX1/R0dHGcqWlpeUGDUNCQuTg4KATJ05o//79Cg8Pl62trXbu3KlvvvlGa9euVePGjdWpUydJhFABoKqyXNz65ptv3jRmCaNb/n508uRJffnll5o7d67S09ONOwauWbNGsbGxWrdunTw8PKz6NycC7AAAAAAAAAAA4I6cPXtWc+fOlSSNGjXKCEyXlJSoRo0aMpvN2rVrlyQZwTfcG8xFxSuv+9idsoTfR40aJbPZrPHjxys5OdkY/+Mf/6ihQ4eqc+fOcnBwME463njy0dJZsWbNmlbvklUZXD8XBPytLyAgQMeOHdPevXsVGhoqX19f4wS59GsXOEkqKChQcnKy3nrrLWVkZCg9PV0REREaMGCAhg8fLhsbGy7c+B2Yi8rDxcVFf/vb37Rz505t27ZNQ4cO1aOPPqqHHnpIR48e1bZt25SQkKDi4mLVqVNHrVq10tdffy1/f/8y+/lTp07p888/lyQNHjzYCK8XFxfL3t5ejRo1kqurqyQpLy/POhsL/A42NjbKycnRyJEjderUKXXt2lULFiyQjY2NCgoK5OjoqMcff1xt27bVkSNHVFBQQAD3HmEurMfDw0MeHh4KDw+/aczyeeJWx+MePXqoTZs22rp1q4YMGaLWrVurtLRUBw4cUHJystzc3DR58mRFRkaW+3qO9QBQNVgubi2P5bODyWTSmTNnNGnSJE2fPl3Ozs56+umn9dJLL8nBwUF///vfNWfOHA0cOFCLFy+Ws7NzRZV/EwLsAAAAAAAAAADgjpjNZuXm5kq61lFU+rXzT0FBgb755htt2rRJDRo0UJcuXaxZ6n2PuahaTCaTEQp5/vnnFRkZqczMTF26dEk1a9bU448/boRSpF9POubk5Cg3N1erVq3SgQMHtG7dOp07d07Lly+nuy4qpUaNGqlRo0aSZHTFt7y3Le/r7OxszZs3T5988olOnjypOnXqqEaNGlq3bp3WrVun7Oxsvf7664SofifmovLw9/fX6tWr1bt3byUkJCghIcEYs1wgEB4erp49e2r48OHy9PS8qcPulStXVFhYKBcXFyPYaDnum81mzZs3T7t375ajo6NxURtQ1Zw+fVqZmZny8vLSlClTZGNjo6KiIqPr9+HDh5WWlqbLly8rPz/fytXe35iLyud2FwlYLmJetmyZoqKitH37dqWmpkqSHB0dFRERoXfffdfo5G75veD6i9RuPNZf/9kEAFB1WPbrsbGxmjdvnlxcXDR27Fj96U9/kru7uyTpf//3f5WcnKw9e/boxIkTatKkidXqJcAOAAAAAAAAAADuSI0aNdSqVSutW7dOhw4dUm5urmrUqKGioiJ99913mjp1quzs7DR8+HC5ublx0vseYi6qnusDIi1atFCLFi3KjJtMJmVlZamgoEArVqxQWlqalixZotOnTxud12vUqKFGjRpp/vz5BNhR6VmCUJZ9j9lsliQtXbpU48ePV1ZWlnr16qUpU6bIzc1Ne/bs0cCBA/Xmm2+qZcuW6tatm9Vqv98wF9bXpEkTrV69Wv/617+0detWJScn6/Lly+rWrZuCgoL06quvqkaNGnJ0dCy3C66rq6saNWqktLQ07du3T0FBQbK3t5ckxcfH68cff5TZbNYf//hHNWrUiOM+qqQjR47o1KlTcnFxMS7gsLzPzWazNm3apHPnzqljx47y8/OzZqn3PeaiarG1tVVxcbHc3Ny0evVqzZkzR2lpabpw4YKioqIUEBCgpk2bSrq503pmZqZOnz6ttWvXKj4+Xm5ubvr+++85hgBAFWXZx//rX/9SVlaWhgwZYoTXS0tLVVxcLAcHB/n5+Wnfvn06e/YsAXYAAAAAAAAAAFD5VatWTV27dtWaNWv08ccfKyUlRQ0bNlR8fLx2796twsJC9evXTwMGDDACDrg3mIuqp7xAYl5enk6dOqW1a9fq+PHjWrp0qS5fvqwzZ84Yyzz++ONq2LCh+vbtK09PT4WEhFR06cBdYTKZlJqaqg8//FBZWVkaPny4vvjiC1WrVk3FxcX6wx/+oHfffVdjx47V/v37CU3fQ8yFdTRo0EATJkyQyWRSdna2iouLVbdu3ZuWK6/jvZubm5o3b67Dhw9r0qRJKigoUKtWrbR+/XrFxsYqLi5OwcHBGjx4sKpXr14RmwPcdU2bNpWPj4+Ki4t17tw54/m8vDz99NNPevPNN1VYWKguXbrIxcXFipXe/5iLqsfOzk4lJSVycXHRiBEjZDKZyr2YKTU1VZcvX9bixYt1/PhxrVmzxvjs4eDgoMLCQg0YMEA9evSwxmYAAO6CxMRE7d27VzVr1tTbb78td3d34+5NDg4OOnTokDZv3ixJcnJysmqtBNgBAAAAAAAAAMBvspz8fuONN3T27Fn9/e9/17///W9j3NvbW71799bo0aOt2rnnQcBcVA0lJSVGx0qLwsJCJSUlac+ePdq5c6fWrVunU6dOKT8/XyaTSba2turQoYP8/f315JNPysvLSyEhIeWGT+iui6rok08+UVpamh555BF99dVXcnJyMk6kS9eCU5KUkpIiqfwLP3B3MBfW5e7uXub/b7dPN5vNsre317fffqtjx45p7969evnll+Xo6KjLly/L0dFRbdq00XvvvacuXboYr5GuXaxQ3twxn6iMateurQYNGig+Pl7vvvuuBgwYIAcHByUkJOiHH35Qbm6uBg4cqLffflsSvwvdS8xF1WL5/lvm4Pr/njx5UpmZmVqyZInS0tIUGxurwsJC5eXlydbWVi4uLho0aJACAwPVs2dP1alTR7Vr17bm5gAAfiez2ayrV6+qpKREWVlZCgwMND7npaen67PPPtPZs2cVExOjsLAwq9ZKgB0AAAAAAAAAAPwmk8lkBHInTZqk4OBgJSQkKCMjQ25ubnr++efl5+enOnXqWLvU+x5zUTVYwutbt25VRkaGVq1apUOHDunAgQMqLCyUJLm6uqpNmzYKDQ3VY489Jm9vb7Vs2bLc9d0YDCIkhKooMzNTktS/f385OTmpsLDQCEr/8ssvWr9+vSQZdxogYHvvMBfWcat99+326Zbjvpubm9atW6eXX35ZP//8s06ePKkGDRpo1KhR6tKliyIiIiSpzFxK1+bu/PnzOnfunBITE9W3b1/mE5WSh4eHZsyYoc6dO2vr1q3atm2bcTGGJA0ZMkQzZsyQxEUY9xpzUTVYPhNajiElJSU6f/68kpKSFBcXpwMHDmjNmjW6ePGipGt38XJ2dlbv3r3l5+envn37ysPDQz4+PmXWe/1cAwCqHnd3d4WGhurgwYPatWuXgoOD5eHhocTERH3zzTeaO3eufH199fTTT1u7VALsAAAAAAAAAADgztja2honyYcOHSqpbIdPVBzmovK6cOGCfvjhB23evFknT57Uzp07jTF3d3cFBwere/fuat26tVq0aKHGjRvLbDaXCf6UlpbKbDYbIXjmFPeLq1evSpLOnTsns9lshGxzcnK0dOlSrVmzRo0bN1ZkZKQ1y3wgMBdVi+W47+rqqmnTpunixYvKyclRzZo15eHhUWZZBwcHFRQUKCEhQXv37tWePXu0adMmnT59Wrm5uRo2bJimTZtmpS0Bbq9JkybatGmTJkyYoJSUFB0/flyPPfaYIiMj9fzzz0siMF1RmIvK58YLWktKSpSXl6fNmzfr0KFDiouL08GDB5WRkWEs4+Pjox49eig4OFhRUVFyc3OTv7//bdfPZw8AqNrq16+vfv36af/+/XrjjTe0dOlS1a9fX7GxscrJyZGnp6dGjhypXr16WbtUAuwAAAAAAAAAAODOWQK1Fpzcth7monKqVauWUlJStHDhQjVo0EDNmzdX79695e/vr65du6pevXqyt7cv85qCggJdvnxZ6enp8vT0lIeHh5ycnIyLFICqznKBTWhoqDZs2KAtW7Zo+/btatWqlZKTk7Vy5UpNmjRJly9f1ujRo295JwL8fsxF1WVra6vi4mLZ2dnJw8PDCK5fuXJFzs7O2rJli1JSUhQbG6v9+/fryJEjxmtr1aqlyMhItW7dWqGhoTeFIIHKpHHjxpo6daocHR115swZeXp6GmMEpisWc1G5mEwmlZaW6ocfftDVq1c1e/ZspaenKz093VimUaNGio6OVseOHfXoo4/K19dX3t7exnhpaakkGceTG9cPAKjaLMfn9957T3l5eZo0aZI2b95sjHfq1En9+/fX0KFD5ezsbMVKrzGZue8HAAAAAAAAAAAA8LtdHwhcvny5HnnkEdnb26tWrVpllisqKjJC7Fu2bNG8efO0dOlSnTp1Sr6+vgoLC9PXX38tDw8PQuy4r6Smpqpjx446efKkGjZsqNq1aysjI0OXL19WQUGBRo4cqalTp1q7zAcCc1E13CogWlBQoM2bN+v06dNasGCBTp06pd27dxvjfn5+8vHx0WOPPaYWLVooNDRUvr6+FVk68LtYfqe6/meACy+sg7moXE6ePFlmf968eXN5enoqJiZGAQEBatOmzU2fPSQpLy9PJSUlqlGjhjGPXIQAAPen6/+OtHz5ciUnJxud15966inVrFnzpouYrIUAOwAAAAAAAAAAAHCX/Fbg/PrAz9KlS/XSSy/pxIkTqlatmvz8/HTlyhUdP35cwcHBiouLU+3atQkJ4b6SnJysJ598UikpKcrPz5ckRUREqHv37vrggw+sXN2DhbmofCz7+xv3+1evXtWuXbt09OhRLVy4UKdOndLPP/9sjPv6+srLy0v9+/eXv7+/OnTooBo1asjR0bHM+rkoCgCqvqSkJG3dulXe3t5q3769bG1ty+zvLceQ4uJipaamavr06dqwYYMyMzMVGRmpqKgoDR48WBIhdgC4X1WV3/sJsAMAAAAAAAAAAAAVbO3atRo4cKDOnTunvn37avDgwerWrZuKior00ksv6X/+5380bNgwTZ06tdJ0xgLulqysLO3bt08nT56Uh4eHWrduLR8fH2uX9UBiLiqn8+fPKzU1Vbt27dLGjRt16NAhJSYmGuONGjVSvXr11KdPH/n6+io6Olp2dnZydnYusx6CiQDwYLixU35hYaEWLFigb7/9Vps3b5Ykubi46PLly5KkSZMm6fXXX7dmyQAAEGAHAAAAAAAAAAAAKtLp06c1fPhwrVq1Sk8//bQ++OADNW3a1BjPzs5WUFCQ/Pz8tHXr1irRNQsA8PuVlpbq5Zdf1qxZs1RUVKSrV69KkurUqaPQ0FB17txZQUFB6tChg+zs7OTq6nrbdRFeB4AHT2lpqRYuXKgPP/xQBw8eVKtWrfThhx8qMDBQhw4d0rBhw3Tx4kUtWbJEPXv2tHa5AIAHGO0aAAAAAAAAAAAAgAqUkZGhLVu2yM3NTc8++6wCAgIk/XqL55ycHJnNZmVkZCg3N/e2AUUAwP3DxsZGI0aM0Pz58xUREaGwsDB16NBBrVq1kpubmxwcHMosbzabVVBQoNjYWJ05c0aurq7y8/NTeHi4bGxsCLEDwAPE0oU9Oztb06dP18GDB9WzZ099+OGHatGihcxmswIDA/W3v/1No0eP1o4dOwiwAwCsigA7AAAAAAAAAAAAUAEsoZK4uDjl5uaqdevWioqKkiQVFRXJ3t5ekrRixQqdO3dObdu2lYODg/E6AMD97+GHH9bx48dVrVq1Ms+XlJRIkoqLi2VnZ6fi4mL9+9//1ty5c7VixQpjuWrVqumjjz7S2LFjZWNjwzEEAB4Qln39jBkztGrVKrm5uem9995TixYtJF37vOHg4CA/Pz9J1y6qBQDAmgiwAwAAAAAAAAAAABXAEirx9vaWdC2EeOLECTVo0MAIr8+dO1fvvPOOJGn48OFydna2TrEAAKu5Prxu6aJua2srSUZ4/csvv9QXX3yhjIwM+fr66umnn1ZhYaGmTp2qcePGycnJSaNHjya8DgAPmOTkZEnSyJEj1bp1a5nNZpnNZjk4OCgvL09z586VJLm7u1uzTAAAxL2iAAAAAAAAAAAAgApUv359ubi4KCEhQYsWLVJiYqLOnz+vr776SqNGjVJubq6ee+45Pf3009YuFQBgZTY2v8Y6zGazJGnJkiX69ttvlZWVpeHDh2vx4sWaOHGipkyZomXLlsne3l7//Oc/debMGWuVDQCwkosXL0qSfvnlFxUWFspsNsvGxkZXrlzR0qVLtW7dOnl6emrAgAGSfj22AABQ0QiwAwAAAAAAAAAAABWoU6dOevHFFyVJr776qjp37qyIiAi9/PLLunTpkgYPHqwXXnihTAdeAAAs3dQXLVqko0ePKioqSq+//rpatmyp0tJSFRYWqkuXLmrTpo0OHDhghBgBAA+OsLAwSdc6sR86dEiSdOXKFc2cOVOffvqp0tPT1b17d/n7+0sSd+oAAFiNycxlVAAAAAAAAAAAAECFKC0tNbrpfvDBB5oxY4ZOnjwpR0dH2dra6v3339eAAQPUoEEDK1cKAKiMdu7cqYiICEnSunXr1LlzZ0m/Hl8uXLigiIgIpaWl6cCBA2rSpIk1ywUAVLC0tDR17txZ6enpatKkiTw9PZWVlaXU1FQVFhaqR48e+vzzzxUYGGjtUgEADzgC7AAAAAAAAAAAAEAFKikpka2trSTp8OHDOn36tKpXr64aNWooODjYytUBACqzDRs2qGvXrvLx8dHevXvl4eGh4uJi2dnZKTc3V3/96181ceJEtWzZUrt27TKONwCAB0dSUpJiYmKUmpqqoqIiSZK/v7+6d++usWPHKiAgwMoVAgAg2Vm7AAAAAAAAAAAAAOBBYmtra3TKDQoKUlBQkLVLAgBUEXXq1JGHh4euXr2qAwcOqEOHDrKzs9Ply5c1c+ZMzZ49W7Vq1dKYMWNka2srs9ksk8lk7bIBABWoadOmWr9+vbZs2aKMjAzZ2dkpJiZGtWvXVs2aNa1dHgAAkujADgAAAAAAAAAAAAAAUCVkZ2crOjpaO3bsUPv27dWrVy8FBQXpX//6l+Lj43Xx4kUNGjRIH3zwgXx8fKxdLgAAAACUiwA7AAAAAAAAAAAAAABAFZGcnKzOnTsrMzNTkuTo6KiCggJ5eXkpJiZGr732mgICAqxcJQDA2rgLBwCgMiPADgAAAAAAAAAAAAAAUIUcO3ZMH330kfbv36/CwkJ5enpq7NixCgsLk5eXl7XLAwAAAIDbIsAOAAAAAAAAAAAAAABQxRQWFqqoqEiFhYWqVauWtcsBAAAAgDtGgB0AAAAAAAAAAAAAAKCKM5vNMplM1i4DAAAAAH6TjbULAAAAAAAAAAAAAAAAwO9DeB0AAABAVUGAHQAAAAAAAAAAAAAAAAAAAABQIQiwAwAAAAAAAAAAAAAAAAAAAAAqBAF2AAAAAAAAAAAAAAAAAAAAAECFIMAOAAAAAAAAAAAAAAAAAAAAAKgQBNgBAAAAAAAAAAAAAAAAAAAAABWCADsAAAAAAAAAAAAAAAAAAAAAoEIQYAcAAAAAAAAAAAAAAAAAAAAAVAgC7AAAAAAAAAAAAAAAAAAAAACACkGAHQAAAAAAAAAAAAAAAAAAAABQIQiwAwAAAAAAAAAAAAAAAAAAAAAqBAF2AAAAAAAAAAAAAAAAAAAAAECFsLN2AQAAAAAAAACAilVcXKwlS5Zo9erVio+PV1ZWli5cuKBq1aqpTp06at68udq2bav+/fvLz8/P2uUCAAAAAAAAAID7iMlsNputXQQAAAAAAAAAoGIsXbpU48aN07Fjx+5o+ejoaE2cOFEhISH3uDIAAAAAAAAAAPAgoAM7AAAAAAAAADwgPv74Y73//vuy9DXp1KmTnnjiCYWGhqp27drKz89XZmamNm3apOXLlystLU0rVqyQj4+Pvv32WytXDwAAAAAAAAAA7gd0YAcAAAAAAACAB8D06dM1YsQISVK9evU0e/ZsderU6ZbLl5SUaPbs2frzn/+sxx9/nAA7AAAAAAAAAAC4KwiwAwAAAAAAAMB97sSJE2rSpImuXr2qmjVras+ePQoICLij1168eFGbN29Wz54973GVAAAAAAAAAADgQWBj7QIAAAAAAAAAAPfWlClTdPXqVUnSJ598csfhdUlyc3O7KbyelpYmk8kkk8mkmTNnSpIWLlyoqKgo1a9fX3Z2duV2d1+2bJn69+8vHx8fOTo6qnbt2oqMjNTEiROVm5t7yxrGjx9vfL3b2bhxo7Hcxo0bbxrv1KmTTCaTUVtSUpKee+45+fn5ycnJSV5eXnrqqae0ffv2236dkpISzZw5U927d5enp6ccHBzk6uqqwMBAde3aVX/961916NCh264DAAAAAAAAAIAHlZ21CwAAAAAAAAAA3Dtms1mzZs2SJLm4uGjYsGF3ff2DBw82vkZ5rl69qmeeeUaLFi0q83x2dra2b9+u7du368svv9SKFSvUsmXLu1rfrcTGxurJJ59UXl6e8dzp06c1b948LViwQP/1X/+lV1999abX5ebmKioqSps3by7zfFFRkXJycnTs2DGtX79ee/fu1fz58+/1ZgAAAAAAAAAAUOUQYAcAAAAAAACA+9jBgwd1/vx5SVL79u1VvXr1u7r+//7v/9b+/fvVvn17jR49Wk2aNNHFixeVlpZmLDNkyBAjvN6iRQuNGzdOQUFBys7O1uzZszVz5kz98ssv6tq1q/bv3y9vb++7WuONfvnlFz3zzDOys7PTX//6V6Mj+4YNG/Tpp58qJydHY8eOVaNGjdS7d+8yrx0/frwRXn/iiSc0cOBA+fr6ysnJSWfOnNG+ffu0fPny3+wWDwAAAAAAAADAg4oAOwAAAAAAAADcx/bv3288btWq1T1Z/+DBgzVz5sxyQ9srVqzQ3LlzJUldu3bVypUr5eDgYIw/9thjioyM1HPPPafs7Gy99tprmjNnzl2v83pHjx6Vq6ur4uPjFRQUZDwfGRmpmJgYtW3bVjk5ORozZoyio6Nlb29vLGPZlv79+2vevHk3rbtHjx565513lJ2dfU+3AQAAAAAAAACAqsrG2gUAAAAAAAAAAO6dc+fOGY/r1Klzy+VKS0t18ODBW/4rKioq93Vubm766quvbtlx/Ouvv5Yk2dvba8aMGWXC6xYjR45Ut27dJEkLFy5UZmbmHW/ff+q9994rE163aNasmd59911J0qlTp7RkyZIy46dPn5Z0rZv97bi7u9+lSgEAAAAAAAAAuL8QYAcAAAAAAACA+9jly5eNx9WrV7/lcjk5OWrevPkt/506darc1/Xs2VMuLi7ljhUXFysuLk7StU7rDRo0uOXXHzlypPGajRs3/tZm/S4mk0lDhgy55fiwYcOMQP5PP/1UZszLy0uSNGfOHOXn59+7IgEAAAAAAAAAuE8RYAcAAAAAAACA+9j14fK8vLy7vv7Q0NBbjh0/ftwIeYeHh992PdePHzx48O4Udwt+fn7y8PC45XidOnXUqFEjSdKBAwfKjFmC79u2bZOfn5/GjBmjRYsW6ezZs/esXgAAAAAAAAAA7icE2AEAAAAAAADgPla7dm3j8e1C1m5ubjKbzWX+3a5LuUWtWrVuOZadnW08rlu37m3X4+npWe7r7oXfqkWS6tWrV24t7733noYPHy6TyaQzZ87o66+/Vt++fVW3bl2FhITogw8+UFZW1j2pGwAAAAAAAACA+wEBdgAAAAAAAAC4j7Vo0cJ4vG/fvru+fltb2ztazmQy3fWv/Z/6PbXY29tr2rRpOnjwoP7yl7+obdu2cnBwkCQlJibqww8/VEBAgJYsWXK3ygUAAAAAAAAA4L5CgB0AAAAAAAAA7mMhISFGF/bNmzcrPz+/wr62u7u78fi3upKfPn263NdJko3Nr3/KLi0tveU68vLy7qiuO+mQblnmxlosgoOD9dFHH2nr1q26dOmS1q5dq2HDhsnW1la5ubkaMGCAMjMz76geAAAAAAAAAAAeJATYAQAAAAAAAOA+ZjKZ9Oyzz0qScnJy9P3331fY1/b391e1atUkSTt27Ljtsjt37jQeh4SElBlzcXExHl+4cOGW60hOTr6julJTU3X+/Plbjp89e1ZpaWnl1lIeJycndevWTdOnT9fkyZMlSVeuXNHy5cvvqB4AAAAAAAAAAB4kBNgBAAAAAAAA4D732muvycnJSZL0zjvvKDU1tUK+rp2dnTp27ChJWrt2rU6ePHnLZb/77jvjNZ06dSoz5ufnZzzevXv3Ldcxe/bsO6rLbDbrhx9+uOX4zJkzZTabJUndunW7o3VadO3a1Xh87ty5/9NrAQAAAAAAAAB4EBBgBwAAAAAAAID7nK+vr7744gtJ0qVLl9SuXTtt2bLltq8xm826ePHi7/7aL774oiSpsLBQI0aMUFFR0U3LTJ8+XWvWrJEk9e3bV15eXmXG27ZtKzs7O0nSZ599ZoTLrzd58uQyXdx/y0cffaSkpKSbnj98+LA++eQTSZKXl5diYmKMsezsbC1btqzcr29h2Q6pbPAeAAAAAAAAAABcY2ftAgAAAAAAAAAA997IkSN16tQpTZgwQb/88ovat2+vLl26qGfPnmrevLnc3d1VUlKi06dPa+/evZo7d64SExMlSba2tnJwcPiPvm50dLSefPJJzZs3T2vWrFFERIRee+01PfTQQ7pw4YJmz56t6dOnS5Lc3d01ZcqUm9ZRt25dPfnkk/r3v/+t1atXq1evXnrxxRdVr149ZWRkaNasWVqwYIHatm2rbdu2/WZNAQEBOnv2rCIiIvTWW28ZHd83btyoiRMn6tKlS5KkL7/8ssx25+TkqFevXmrUqJH69u2r8PBwNWzYUHZ2dsrMzNSyZcuMTvLe3t564okn/qPvGQAAAAAAAAAA9zOT+XatYgAAAAAAAAAA95VFixbp9ddf1/Hjx39zWZPJpO7du2vy5MkKCQkxnk9LSzO6i8+YMUNDhw697XquXr2qZ555RosWLbrlMvXr19eKFSvUsmXLcsezsrLUvn17HT16tNzxp59+Wn/605/UrVs3SdKGDRuMYLpFp06dFBcXp44dO+qNN97QU089pfz8/JvWZWNjo0mTJmncuHFlnr9+u2/Hy8tLy5YtU1hY2G8uCwAAAAAAAADAg4YO7AAAAAAAAADwAOnTp4969uypRYsWafXq1YqPj9eZM2d08eJFVatWTbVr11bz5s0VGRmpP/7xj3cU2P4tTk5OWrhwoZYtW6aZM2dq+/btOnfunKpXr64mTZqod+/eGjNmjGrUqHHLddSrV087duzQp59+qoULFyojI0PVq1dXSEiInnvuOQ0cOFAbN26845qio6O1e/duTZ48WevXr1dmZqbc3NzUvn17jRs3TpGRkTe9pmHDhtq5c6dWrlypbdu2KT09XVlZWcrNzZWbm5uCg4PVs2dPPffcc6pZs+Z/8q0CAAAAAAAAAOC+Rwd2AAAAAAAAAMAD4foO7P+XsDsAAAAAAAAAALh7bKxdAAAAAAAAAAAAAAAAAAAAAADgwUCAHQAAAAAAAAAAAAAAAAAAAABQIQiwAwAAAAAAAAAAAAAAAAAAAAAqBAF2AAAAAAAAAAAAAAAAAAAAAECFIMAOAAAAAAAAAAAAAAAAAAAAAKgQJrPZbLZ2EQAAAAAAAAAAAAAAAAAAAACA+x8d2AEAAAAAAAAAAAAAAAAAAAAAFYIAOwAAAAAAAAAAAAAAAAAAAACgQhBgBwAAAAAAAAAAAAAAAAAAAABUCALsAAAAAAAAAAAAAAAAAAAAAIAKQYAdAAAAAAAAAAAAAAAAAAAAAFAhCLADAAAAAAAAAAAAAAAAAAAAACoEAXYAAAAAAAAAAAAAAAAAAAAAQIUgwA4AAAAAAAAAAAAAAAAAAAAAqBD/D3EuFFgLYVyAAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "df = plot_results( \n", + " [mapie_split, mapie_cqr, mapie_ccp], ALPHA, N_TRIALS,\n", + " group_functions, group_names, score_functions, score_names,\n", + " n_train=n_train, n_calib=n_calib, n_test=1994-n_train-n_calib\n", + ")" + ] + }, + { + "cell_type": "markdown", + "id": "eb894e2f", + "metadata": {}, + "source": [ + "#### - The method which is the more adaptative is the one with the most constant coverage.\n", + "#### - Here, the ``CCP`` method is the best one. We can see that the basic ``Split`` method has a strong over-coverage for small target values, and under-coverage for big target values. Moreover, it seems to have a strong bias on the ``'racepctblack'`` and ``'racePctWhite'``.\n", + "#### - The ``CQR`` method is better than the ``Split`` but suffers from the same issues.\n", + "#### $\\to$ We managed, with the ``CCP`` method, to have almost a homogenous coverage on the target value, and a much smaller bias on the ethnicity groups." + ] + }, + { + "cell_type": "markdown", + "id": "d101bb74", + "metadata": {}, + "source": [ + "---" + ] + }, + { + "cell_type": "markdown", + "id": "b2921ce7", + "metadata": {}, + "source": [ + "## 2. Using ``CustomCCP`` calibrator for adaptativity with prior knowledge about the biases we want to avoid\n", + "#### We saw previously, that there was a strong bias on the ethnicity features (with over or under coverage for some values).\n", + "#### $\\to$ We can use this information in the ``CCP`` calibrator, to fix it. Let's use a ``CustomCCP`` calibrator, with those features, to guarantee a homogenous coverage on those.\n", + "We could just add, as custom functions definition, indicatrice functions for each of the 4 groups, for each ethnicity feature. \n", + "\n", + "However, as the coverage seems to be proportional to the ethnicity value, we will also pass the specific ``X`` value." + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "32943795", + "metadata": {}, + "outputs": [], + "source": [ + "calibrator = CustomCCP(\n", + " [ # We add the ethnicity feature value for each of the 4 ethnicity, to make sur there is no bias.\n", + " lambda X, c=c, q1=q1, q2=q2 : X[:, c] * np.logical_and(\n", + " X[:, c] >= np.sort(X_scaled[:, c])[int(len(X_scaled)*q1)],\n", + " X[:,c] <= np.sort(X_scaled[:, c])[int(len(X_scaled)*q2)-1]\n", + " ) \n", + " for c in group_cols\n", + " for (q1, q2) in zip([0, 0.25, 0.5, 0.75], [0.25, 0.5, 0.75, 1])\n", + " ],\n", + " normalized=True,\n", + " bias=True,\n", + " reg_param = 1e-3,\n", + ")\n", + "mapie_ccp = SplitCPRegressor(\n", + " estimator, calibrator, cv=cv, alpha=ALPHA,\n", + " conformity_score=AbsoluteConformityScore(sym=False),\n", + ")" + ] + }, + { + "cell_type": "markdown", + "id": "9638f969", + "metadata": {}, + "source": [ + "### Plotting the result" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "656e48c0", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABxYAAAH5CAYAAACs6ttbAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3wUdfoH8M/2nkpIJ0GpKooVUX8KHgrYQM9yCAIWzobllLPdqeCd5VQUe0MBEbs0EUFFAektofeWAOlts9k27ffHZJeULTNbs+F5v16+Iruzs9/dtMl85nkehSAIAgghhBBCCCGEEEIIIYQQQgghJABlvBdACCGEEEIIIYQQQgghhBBCCOn4KFgkhBBCCCGEEEIIIYQQQgghhARFwSIhhBBCCCGEEEIIIYQQQgghJCgKFgkhhBBCCCGEEEIIIYQQQgghQanjvQBCCCGEEEIIIYQQQgghhJDOiOM4MAwT72UQIplWq4VS6b8ukYJFQgghhBBCCCGEEEIIIYSQCBIEAeXl5aivr4/3UgiRRalUonv37tBqtT7vVwiCIMR4TYQQQgghhBBCCCGEEEIIIZ1WWVkZ6uvr0bVrVxiNRigUingviZCgeJ7HiRMnoNFo0K1bN59ft1SxSAghhBBCCCGEEEIIIYQQEiEcx3lDxfT09HgvhxBZMjIycOLECbAsC41G0+5+/01SCSGEEEIIIYQQQgghhBBCiCyemYpGozHOKyFEPk8LVI7jfN5PwSIhpMOYOXMmFAoFjhw54r1t0KBBGDRoUNzWRAghhBBCCCGEEEIIIaGg9qckEQX7uqVgkRASlu3bt+Pmm29GQUEB9Ho9cnNzcdVVV+Gdd96JyvOdOHECkydPRnFxcVT2TwghhJDEdPDgQdx777047bTToNfrkZSUhEsvvRRvvfUWHA6HdzuGYfD222/jwgsvhMVigdlsxoUXXoh33nkHLMu2229hYSEUCoX3P5PJhIsuugiff/55LF8eIYQQQhKE1GMSjuMwY8YMDBo0CGlpadDpdCgsLMSdd96JTZs2ebfzXITt+U+v16NXr16YOHEiKioq4vESCSGEnOJoxiIhJGRr1qzB4MGD0a1bN0yYMAFZWVkoLS3FunXr8NZbb+Ghhx4K+zl++eWXVv8+ceIEpkyZgsLCQvTv3z/s/RNCCCEk8f3000+45ZZboNPpMHbsWJx11llwu91YtWoV/vnPf2Lnzp34+OOP0dTUhGuvvRYrVqzAddddh/Hjx0OpVGLJkiV4+OGHMX/+fPz444/t2hX1798fjz/+OACgrKwM06dPx7hx4+ByuTBhwoR4vGRCCCGEdEBSj0kcDgduuukmLFmyBJdffjmeeeYZpKWl4ciRI/j2228xa9YslJSUIC8vz7vvF154Ad27d4fT6cSqVavwwQcfYPHixdixYwe1WiSEEBJTFCwSQkL24osvIjk5GRs3bkRKSkqr+yorKyPyHJ5+zoQQQgghvhw+fBh/+9vfUFBQgN9//x3Z2dne+x588EEcOHAAP/30EwDgsccew4oVK/DOO+9g4sSJ3u3uv/9+vPfee5g4cSL++c9/4r333mv1HLm5uRgzZoz33+PHj8dpp52GN998k4JFQgghhACQd0zyz3/+E0uWLMGbb76JRx99tNV+nn/+ebz55pvt9j98+HBccMEFAIB77rkH6enpeOONN7BgwQKMGjUqei+MEEKiZPz48aivr8f8+fMBiCOx+vfvj2nTpoW8z0jsgwRHrVAJISE7ePAgzjzzzHahIgB07drV+/8KhQITJ07EnDlz0Lt3b+j1epx//vlYuXJl0OdoOWNx+fLluPDCCwEAd955p7cNyMyZMyPxcgghhBCSgF599VXYbDZ8+umnrU7gefTo0QOPPPIIjh07hk8//RRXXnllq1DR48EHH8TgwYPx8ccf4/jx4wGfMyMjA3369MHBgwcj9joIIYQQktjkHJN89NFHuOqqq9qFigCgUqkwadKkVtWKvlx55ZUAxECTEEIiafz48d7zrlqtFj169MALL7zgc3REJM2dOxf/+c9/JG27fPlyKBQK1NfXh7wPEjoKFgkhISsoKMDmzZuxY8eOoNuuWLECjz76KMaMGYMXXngBNTU1GDZsmKTHevTt2xcvvPACAODvf/87Zs+ejdmzZ+Pyyy8P+TUQQgghJLH9+OOPOO2003DJJZcE3O7nn38Gx3EYO3as323Gjh0LlmWxZMmSgPtiWRbHjh1DampqSGsmhBBCSOcj55iEZVnccccdYT2f5wKn9PT0sPZDCCG+DBs2DGVlZdi/fz8ef/xxTJ48Ga+99lq77dxud8SeMy0tDRaLJe77IMFRsEgICdmkSZNgt9vRv39/XHLJJXjyySfxyy+/gGGYdtvu2LEDS5YswbPPPosnnngCK1euhCAIeO655yQ/X2ZmJoYPHw4AGDhwIMaMGYMxY8bgtNNOi9hrIoQQQkjisFqtOH78OPr16xd02127dgEAzjnnHL/beO7zbOvBMAyqq6tRXV2NHTt24K677kJ5eTluvvnmMFZPCCGEkM5CzjHJ7t27AUDSti01NDSguroax44dwzfffIMXXngBBoMB1113XUhrJoSQQHQ6HbKyslBQUID7778fQ4YMwcKFCzF+/HiMHDkSL774InJyctC7d28AQGlpKW699VakpKQgLS0NI0aMwJEjR7z74zgOjz32GFJSUpCeno4nnngCgiC0es5Bgwa1quR2uVx48sknkZ+fD51Ohx49euDTTz/FkSNHMHjwYABAamoqFAoFxo8f73MfdXV1GDt2LFJTU2E0GjF8+HDs37/fe//MmTORkpKCpUuXom/fvjCbzd5QlfhHMxYJISG76qqrsHbtWrz88stYunQp1q5di1dffRUZGRmYPn06brjhBu+2AwcOxPnnn+/9d7du3TBixAj8+OOP4DgOKpUqHi+BEEIIIQnMarUCgKQrUhsbG4Nu67nPs63HL7/8goyMjFa33XnnnT6v2CWEEELIqUfOMYmcbVsaMmRIq38XFBRgzpw5yM3NlbUfQkj82O127NmzJ+bP26dPHxiNxrD2YTAYUFNTAwBYtmwZkpKS8OuvvwIQL8QcOnQoBg4ciD///BNqtRr//e9/MWzYMGzbtg1arRZTp07FzJkz8dlnn6Fv376YOnUq5s2b523r7MvYsWOxdu1avP322zjnnHNw+PBhVFdXIz8/Hz/88AP++te/Yu/evUhKSoLBYPC5j/Hjx2P//v1YuHAhkpKS8OSTT+Kaa67Brl27oNFoAIifl9dffx2zZ8+GUqnEmDFjMGnSJMyZMyes96wzo2CREBKWCy+8EHPnzoXb7cbWrVsxb948vPnmm7j55ptRXFyMM844AwDQs2fPdo/t1asX7HY7qqqqkJWVFeulE0IIISTBJSUlAWgfBPriLzRsyXNfy1nRADBgwAD897//Bcdx2LFjB/773/+irq4OWq021KUTQgghpBORc0wiZ9uW3nvvPfTq1QtqtRqZmZno3bs3lEpqRkdIItmzZ0+rwotY2bx5M84777yQHisIApYtW4alS5fioYceQlVVFUwmE6ZPn+79e+iLL74Az/OYPn06FAoFAGDGjBlISUnB8uXLcfXVV2PatGl4+umncdNNNwEAPvzwQyxdutTv8+7btw/ffvstfv31V++FFS271qWlpQEQ/3ZLSUnxuQ9PoLh69Wpvm+o5c+YgPz8f8+fPxy233AJADEY//PBDnH766QCAiRMnesdxEd8oWCSERIRWq8WFF16ICy+8EL169cKdd96J7777Ds8//3y8l0YIIYSQTiopKQk5OTmSZjZ7Lnbatm0b+vfv73Obbdu2AUC7NutdunTx/jE7dOhQ9OnTB9dddx3eeustPPbYY2G8AkIIIYR0BnKOSfr06QMA2L59u99jEl8uuugiXHDBBaEukRDSAfTp0webN2+Oy/PKtWjRIpjNZjAMA57ncfvtt2Py5Ml48MEH0a9fv1YXWW7duhUHDhxoV4ntdDpx8OBBNDQ0oKysDAMGDPDep1arccEFF7Rrh+pRXFwMlUqFK664QvbaPXbv3g21Wt3qedPT09G7d29vW2oAMBqN3lARALKzs1FZWRny854KKFgkhESc50C3ZS/qlr2rPfbt2wej0diutVggnqteCCGEEEIA4LrrrsPHH3+MtWvXYuDAgX63Gz58OFQqFWbPno2xY8f63Obzzz+HVqvFiBEjAj7ntddeiyuuuAIvvfQS7r33XphMprBeAyGEEEISn9xjki+++AJ33HFHDFdICIk3o9EYcuVgrA0ePBgffPABtFotcnJyoFafjJLa/v1js9lw/vnn+2wdKue8b0v+WptGg6clqodCofAbeBIR1csTQkL2xx9/+Pwhu3jxYgDwDu8FgLVr12LLli3ef5eWlmLBggW4+uqrZc1X9Pziqq+vD3HVhBBCCOlMnnjiCZhMJtxzzz2oqKhod//Bgwfx1ltvIS8vD3fffTd+++03fPDBB+22+/DDD/H777/j3nvvRXp6etDnffLJJ1FTU4NPPvkkIq+DEEIIIYlN6jFJfn4+JkyYgF9++QXvvPNOu+14nsfUqVNx7NixWCybEEJ8MplM6NGjB7p169YqVPTlvPPOw/79+9G1a1f06NGj1X/JyclITk5GdnY21q9f730My7IBqzf79esHnuexYsUKn/d7KiY5jvO7j759+4Jl2VbPW1NTg71793o72pDQUMUiISRkDz30EOx2O2688Ub06dMHbrcba9aswTfffIPCwkLceeed3m3POussDB06FA8//DB0Oh3ef/99AMCUKVNkPefpp5+OlJQUfPjhh7BYLDCZTBgwYAC6d+8e0ddGCCGEkMRw+umn48svv8Rtt92Gvn37YuzYsTjrrLO8xyXfffcdxo8fDwB44403sGfPHjzwwANYsmQJhg0bBgBYunQpFixYgCuvvBKvvfaapOcdPnw4zjrrLLzxxht48MEH213lSgghhJBTi5xjkqlTp+LgwYN4+OGHMXfuXFx33XVITU1FSUkJvvvuO+zZswd/+9vf4vuCCCFEotGjR+O1117DiBEj8MILLyAvLw9Hjx7F3Llz8cQTTyAvLw+PPPIIXnnlFfTs2RN9+vTBG2+8EbBwpLCwEOPGjcNdd92Ft99+G+eccw6OHj2KyspK3HrrrSgoKIBCocCiRYtwzTXXwGAwwGw2t9pHz549MWLECEyYMAEfffQRLBYLnnrqKeTm5gbtUkMCo4pFQkjIXn/9dQwePBiLFy/GY489hsceewwbNmzAAw88gPXr17canHvFFVdg2rRpmD17Np577jmkpaXh559/xtlnny3rOTUaDWbNmgWVSoX77rsPo0aN8nvlCiGEEEJODTfccAO2bduGm2++GQsWLMCDDz6Ip556CkeOHMHUqVPx9ttvAxCvuv3tt98wbdo0HD9+HJMmTcIDDzyABQsWYNy4cfj111+h0+kkP++kSZNQWlrqs+UPIYQQQk49Uo9JjEYjfv75Z0yfPh0cx+E///kP7rvvPsycORMDBgzA5s2bkZubG+dXQwgh0hiNRqxcuRLdunXDTTfdhL59++Luu++G0+lEUlISAODxxx/HHXfcgXHjxmHgwIGwWCy48cYbA+73gw8+wM0334wHHngAffr0wYQJE9DU1AQAyM3NxZQpU/DUU08hMzMTEydO9LmPGTNm4Pzzz8d1112HgQMHQhAELF68mC4MDZNCoGaxhJAoUygUePDBB/Huu+/GeymEEEIIIa1YrVZcccUVOHjwIFauXIn+/fvHe0mEEEIIIYSQBOd0OnH48GF0794der0+3sshRJZgX79UsUgIIYQQQgg5ZSUlJeHnn39Gly5dcM011+Do0aPxXhIhhBBCCCGEENJh0YxFQgghhBBCyCktKysLhw4divcyCCGEEEIIIYSQDo8qFgkhhBBCCCGEEEIIIYQQQgghQVHFIiEk6miUKyGEEEIIIYQQQgghhBCS+KhikRBCCCGEEEIIIYQQQgghhBASFAWLhBBCCCGEEEIIIYQQQgghhJCgTrlWqDzP48SJE7BYLFAoFPFeDiGEENIhCIKAxsZG5OTkQKmk646iiY5FCCGEkPboWCR26FiEEEIIaY+ORQiR7pQLFk+cOIH8/Px4L4MQQgjpkEpLS5GXlxfvZXRqdCxCCCGE+EfHItFHxyKEEEKIf3QsQkhwp1ywaLFYAIg/IJKSkuK8GkIIIaRjsFqtyM/P9/6eJNFDxyKEEEJIe3QsEjt0LEI6gxpHDa6ddy36Z/TH21e+Da1KG+8ldRrltnKMXDgSZ2ecjY+v+jgqz/F7ye94ZtUzmDJwCoZ2HxqV5yAd06fbP8UXu77A/efcj2xzdsj7mbVzFnbU7AAArLt9XUTWFqtjESfDwc3xUX2OlrQqJfQaVcyeT47x48ejvr4e8+fPBwAMGjQI/fv3x7Rp00LeZyT2Eczy5csxePBg1NXVISUlJWrPE20KhQLz5s3DyJEjZT/2lAsWPW0+kpKS6ACaEEIIaYPaYUUfHYsQQggh/tGxSPTRsQjpDNwaN1QGFVQGFcwWM/RqfbyX1Gk0KZugMqigNWqj9jPikPMQVAYVdCYd/RyKMl7g8egfj+LOs+7EuV3PjfdysMe+BwVdC5CRlgGTzhTyfjRGDVR2MSyL9NdQNI9FnAyHX3aWo8HJRO052krWa3D1mVmSw8Xx48dj1qxZAACNRoNu3bph7NixeOaZZ6BWRzdOmjt3LjQajaRt/YV7cvYRqksuuQRlZWVITk6W/Ji2IWqiO+WCRUIIIYQQQgghhBBCSOJjeRa8ELvKHxIZRZVF8V7CKcPFufBH6R8oTCqMe7DICzy2Vm3FeV3Pg1FtjOta4sXN8WhwMtCrVdCpoz/H0cWKz+fmeFlVi8OGDcOMGTPgcrmwePFiPPjgg9BoNHj66afbbet2u6HVRqZqPC0trUPsIxitVousrKyoP48vkXy/w0FTSAkhhBBCCCGEEEIIIQmHEzgIEOK9DCIDy7PYU7sn3ss4Zbg5NwDxeyXeDtQfQBPThCxTFjSq6FaUdXQ6tRJGrTrq/4UaXup0OmRlZaGgoAD3338/hgwZgoULFwIQK+9GjhyJF198ETk5OejduzcAscX6rbfeipSUFKSlpWHEiBE4cuSId58cx+Gxxx5DSkoK0tPT8cQTT0AQWv/8HjRoEB599FHvv10uF5588knk5+dDp9OhR48e+PTTT3HkyBEMHjwYAJCamgqFQoHx48f73EddXR3Gjh2L1NRUGI1GDB8+HPv37/feP3PmTKSkpGDp0qXo27cvzGYzhg0bhrKyMr/vz/Lly6FQKFBfXy9pH5MnT8asWbOwYMECKBQKKBQKLF++XNL75uv9fuaZZzBgwIB26zrnnHPwwgsvAAA2btyIq666Cl26dEFycjKuuOIKbNmyxe9rkouCRUIIIYQQQgghhBBCSMKhisXEc6D+AJycM97LOGUwfOxabgZTXFkMpUKJXHNuvJdCZDIYDHC73d5/L1u2DHv37sWvv/6KRYsWgWEYDB06FBaLBX/++SdWr17tDdc8j5s6dSpmzpyJzz77DKtWrUJtbS3mzZsX8HnHjh2Lr776Cm+//TZ2796Njz76CGazGfn5+fjhhx8AAHv37kVZWRneeustn/sYP348Nm3ahIULF2Lt2rUQBAHXXHMNGObk94bdbsfrr7+O2bNnY+XKlSgpKcGkSZNkvUeB9jFp0iTceuut3rCxrKwMl1xyiaT3zdf7PXr0aGzYsAEHDx70brNz505s27YNt99+OwCgsbER48aNw6pVq7Bu3Tr07NkT11xzDRobG2W9Ln+oFSohhBBCCCGEEEIIISThsAIFi4lmW9W2eC/hlMJwYnjStjIsHooqi5BtykaKLiXeSyESCYKAZcuWYenSpXjooYe8t5tMJkyfPt3bkvOLL74Az/OYPn26d0bljBkzkJKSguXLl+Pqq6/GtGnT8PTTT+Omm24CAHz44YdYunSp3+fet28fvv32W/z6668YMmQIAOC0007z3u9pedq1a9dWMxZb2r9/PxYuXIjVq1fjkksuAQDMmTMH+fn5mD9/Pm655RYAAMMw+PDDD3H66acDACZOnOit/JMq0D7MZjMMBgNcLlerFqpS3jeg/fsNiNWJX375JZ599lnv6xowYAB69OgBALjyyitbre/jjz9GSkoKVqxYgeuuu07Wa/OFKhYJIYQQQgghhBBCCCEJh+O5DhGYEOm2VW2DSiF91hsJj5sXq546Qsvgosoi5JhyYNScmvMVE8miRYtgNpuh1+sxfPhw3HbbbZg8ebL3/n79+rUKubZu3YoDBw7AYrHAbDbDbDYjLS0NTqcTBw8eRENDA8rKylq171Sr1bjgggv8rqG4uBgqlQpXXHFFyK9j9+7dUKvVrZ43PT0dvXv3xu7du723GY1GbyAIANnZ2aisrJT1XKHsI9j75tH2/QaA0aNH48svvwQgBsBfffUVRo8e7b2/oqICEyZMQM+ePZGcnIykpCTYbDaUlJTIel3+UMUiIYQQQgghhBBCCCEk4bA8Cx5UsZhItlZtRaYxEyeaTsR7KacEz4zFeAeL1Y5qHLcdR/+u/aFX6eO6FhLc4MGD8cEHH0Cr1SInJwdqdesYyWQytfq3zWbD+eefjzlz5rTbV0ZGRkhrMBgMIT0uFBpN65mfCoVC9kUroexD6vvW9v0GgFGjRuHJJ5/Eli1b4HA4UFpaittuu817/7hx41BTU4O33noLBQUF0Ol0GDhwYKsWq+GgYJEQQgghhBBCCCGEEJJwOIGjVqgJpNHdiKPWo+jftT8FizHiqViMt+LKYgBAnjnP2/KRdFwmk8nbUlOK8847D9988w26du2KpKQkn9tkZ2dj/fr1uPzyywEALMti8+bNOO+883xu369fP/A8jxUrVnhbobbkqeDjOM7vuvr27QuWZbF+/XpvK9Samhrs3bsXZ5xxhuTXFwlarbbdWqW8b/7k5eXhiiuuwJw5c+BwOHDVVVeha9eu3vtXr16N999/H9dccw0AoLS0FNXV1eG/kGbUCpUQQghJMBwvYNX+yB0MEEIIIYTIwjiBP98Emuc2EUJIvLA8S61QE8iO6h0QICDblB3vpYSkvKkcB+oOxHsZsnSUGYtFlUVI0aWgq7Fr8I1Jwhk9ejS6dOmCESNG4M8//8Thw4exfPlyPPzwwzh27BgA4JFHHsErr7yC+fPnY8+ePXjggQdQX1/vd5+FhYUYN24c7rrrLsyfP9+7z2+//RYAUFBQAIVCgUWLFqGqqgo2m63dPnr27IkRI0ZgwoQJWLVqFbZu3YoxY8YgNzcXI0aMiMp7Eej1bNu2DXv37kV1dTUYhpH0vgUyevRofP311/juu+9atUEFxNc+e/Zs7N69G+vXr8fo0aMjWgVKwSIhhBCSYL7ZWIoxn67HtxtL470UQgghhJyKDi4Dlk0Gdv8Y75UQQk5xVLGYWLZXb4dBbUCmMTPeSwnJJ9s+weMrHoedscd7KZJ5WqHG25aKLcgz58Ggjl17y47MxfKwu9mo/+diY/Pz0Wg0YuXKlejWrRtuuukm9O3bF3fffTecTqe3Eu/xxx/HHXfcgXHjxmHgwIGwWCy48cYbA+73gw8+wM0334wHHngAffr0wYQJE9DU1AQAyM3NxZQpU/DUU08hMzMTEydO9LmPGTNm4Pzzz8d1112HgQMHQhAELF68uF3r0mibMGECevfujQsuuAAZGRlYvXq1pPctkJtvvhk1NTWw2+0YOXJkq/s+/fRT1NXV4bzzzsMdd9yBhx9+uFVFY7ioFSohhBCSQARBwIzVhwGIlYuEEEIIITFXsk782EFOVhJCTl0cz8V9dhyRbmvlVuSYchI2XHLzbtQ6a9HoboRRY4z3ciTpCK1QXZwLe2r34Ir8K2BUJ8b7Fi1alRLJeg0anAycrP8WnpGUrNdAq5JeXzZz5syQ7s/KysKsWbP8Pk6tVmPatGmYNm2a322WL1/e6t96vR5vvPEG3njjDZ/bP/vss3j22WcD7iM1NRWff/653+ccP348xo8f3+q2kSNHBqzyHTRoUKv7pewjIyMDv/zyS7t9BXvfAn0+UlJS4HQ6fd537rnnYuPGja1uu/nmm1v9O5xKZgoWCSGEkASy/nAt9le2b+9ACCGEEBIzJWvjvQJCCAFAFYuJRBAEbK/ejr5pfaFT6eK9nJDZ3LYOUwUoRUdY687qnWAFFtmmbKiUqngvJ670GhWuPjMLbi52P7e0KiX0mlP7fSeRR8EiIYQQkkBmrj4CpQKgYkVCCCGExAXrAsq2xnsVhBACAGAFloLFBHHcdhx1rjp0NXaFRhXbFoSRxAosGpnGeC9DMoaP/zzkosoiaFVa5Jpz472UDkGvUVHQRxIezVgkhBBCEsSJegd+3VWB3lmWeC+FEEIIIaeqsq3UApUQ0mHwPB9WKzcSO9urtwNApwiXqh3V8V6CZB2hYrGosgh55jyYteZ4L4UQEiEULBJCCCEJYs76o9CqleiXG3yAMyGEEEJIVHjmKxJCSAfACiw4ITZzykh4tlVtQ5o+DWmGtHgvJWx1zrp4L0GyeFcsCoKA4qpiZJmyTvn5ioR0JhQsEkIIIQnAyXD4cn0Jzu2Wgi6mxJ1HQQghhJAEV7IOUBvivQpCCPFieTbeSyASbK3aihxTTqcIl6hiUbqj1qNocDUg25gNrUob17UQQiKHgkVCCCEkASzaVoY6O4OzcpOpFz8hhBBC4kMQgNJ1QEq3eK+EEEK84h2ckOAYjsGe2j3oauwKQye4OIWCRemKKouggKJTtMAlhJxEwSIhhBDSwQmCgBmrD6NPlgXd001QKBTxXhIhhBBCTkV1hwF7DZCcF++VEEKIV7yDExLc3rq9YHgGXY1doVIm/oWy9a76eC9BMjcf/2Ax05iJVENqXNdBCIksChYJIYSQDq6otB47T1hxTl4y0kzUOoQQQgghcVKyXvyYUhDfdRBCSAsu3hXvJZAgDjccBgBkm7LjvJLIaHA1QBCEeC9DEoaL74zFosoi5Jg7RwtcQshJFCwSQgghHdysNUeQYdahd5YFKiVVKxJCCCEkTkrXAUk5gDEt3ishhBCveAcnJDir2wq1Qg2TxhTvpUREo7sxYWZ7urj4Be8NrgYcsR5BpjETerU+busghEQeBYuEEEJIB1bZ6MRP28pwbrcUdLXQgTghhBBC4ujoWiC5G6ChYxJCSMcRy1aoT6x4Ala3NWbP11k0uhthUBs6RRtUAGhimuLeYlQqho9f8F5cWQwAyDHnQKmgGIIAkydPRmZmJhQKBebPnx/v5UTF5MmT0b9/f++/x48fj5EjR4a1z0jsI9LoO5oQQgjpwL5aXwqVUoGzc5Oh13SOP8IIIYQQkoAc9UD1PrFi0VN1wDjiuiRCCAFiN0Ou1FqKn4/8jCdWPBGT5+tIHlr2EBYcWBDy4xtcDdCr9VApOsfftE1MU8JUysazYrG4qhgWrQWZxsy4rYHIN378eCgUCigUCmi1WvTo0QMvvPACWDa8Kt3du3djypQp+Oijj1BWVobhw4eHvda2IV6g7TyvSa1Wo7CwEP/4xz9gs9nCXkMwb731FmbOnClp2yNHjkChUKC4uDjkfcQKBYuEEEJIB8VwPL5YdxTn5CUjO8UQ7+UQQgghJBhnA/Dzk4DbLv0xHAPwfPTWFCnHNgEQxIpFT9UBBYuEkCj58eCP6DerHxwSfs7EqiKLEcTn4QQuJs/XkRRVFWHFsRUhzxW0uq3QqzpRsMg2xbUSUI5YVvS2tbliM/LMeTBrzXFbAwnNsGHDUFZWhv379+Pxxx/H5MmT8dprr4W0L47jwPM8Dh48CAAYMWIEsrKyoNPpIrnkoM4880yUlZXhyJEj+N///oePP/4Yjz/+uM9t3e7Ifd8kJycjJSUl7vuINAoWCSGEkA5qyY5yVNlcODsvBUl6dbyXQwghhJBg9i0F1n8IHPhV+mO+vBVYPAkI8WRtzJSuA3RJQHJevFdCCDkFfL/vewDA+rL1Qbd1sfGryDqV2Bl7yKFqg6sBOrWu07RCtTP2hGmFKiVY3Fm9E/vr9kf0eRmewc7qncg0ZcKoNkZ03yT6dDodsrKyUFBQgPvvvx9DhgzBwoULAQAulwuTJk1Cbm4uTCYTBgwYgOXLl3sfO3PmTKSkpGDhwoU444wzoNPpcNddd+H6668HACiVSigUCu/206dPR9++faHX69GnTx+8//77rdZy7NgxjBo1CmlpaTCZTLjggguwfv16zJw5E1OmTMHWrVu91YiBqvrUajWysrKQl5eH2267DaNHj/a+Jk/l4/Tp09G9e3fo9WJ3jvr6etxzzz3IyMhAUlISrrzySmzdurXVfl955RVkZmbCYrHg7rvvhtPpbHV/2zamPM/j1VdfRY8ePaDT6dCtWze8+OKLAIDu3bsDAM4991woFAoMGjTI5z5cLhcefvhhdO3aFXq9Hpdddhk2btzovX/58uVQKBRYtmwZLrjgAhiNRlxyySXYu3ev3/dHLjpLSQghhHRQM9ccQY8MM07LMLU66CKEEEJIB3V0tfiRk9gqShCAYxvFqkXW1bFnFx5dC6QUADoz4KiN92oIIacIKUFWogQ8ia6JaQLLs1Ar5Z9Otrqt0Kl0nWbOHsMzaHI3xXsZkkhphfrv1f9GkjYJ06+eDo1KE5Hn3VOzB27ejRxTTqcJlE9lBoMBNTU1AICJEydi165d+Prrr5GTk4N58+Zh2LBh2L59O3r27AkAsNvt+N///ofp06cjPT0d2dnZGDRoEO68806UlZV59ztnzhw899xzePfdd3HuueeiqKgIEyZMgMlkwrhx42Cz2XDFFVcgNzcXCxcuRFZWFrZs2QKe53Hbbbdhx44dWLJkCX777TcAYmWfnNfUsjLxwIED+OGHHzB37lyoVOLX7C233AKDwYCff/4ZycnJ+Oijj/CXv/wF+/btQ1paGr799ltMnjwZ7733Hi677DLMnj0bb7/9Nk477TS/z/v000/jk08+wZtvvonLLrsMZWVl2LNnDwBgw4YNuOiii/Dbb7/hzDPPhFar9bmPJ554Aj/88ANmzZqFgoICvPrqqxg6dCgOHDiAtLQ073b/+te/MHXqVGRkZOC+++7DXXfdhdWrV0t+jwKhYJEQQgjpgHaeaMDmo3W46bxcpJl8H0gQQgghpIM5IvMP9aZqwNUIcG5A6MDtUDkWOLEF6H45oKVgkRDSscRzhtypxM7awfKhzVizuq1I1iZ3mlaoAFDjrIn3EiQJ1rK13lmPA/UH0COlBxycI2LBYlFlETRKDXJMORHZX2dSVlbWKlwDgNTUVHTv3h1OpxO7du1q95jzzjsPALB37140NbUOtQsLC5GWloaqqiqUlpa2us9isXjDvlAIgoBly5Zh6dKleOihh1BSUoIZM2agpKQEOTni53bSpElYsmQJZsyYgZdeegkAwDAM3n//fZxzzjnefXlaeWZlZXlve/755zF16lTcdNNNAMSKvV27duGjjz7CuHHj8OWXX6KqqgobN270BmY9evTwPt5sNnsrEeXYvHkzvvzyS1x55ZXe29xuNz7//HNkZGQAAFatWoUNGzagsrLS27b19ddfx/z58/H999/j73//O6ZNm4a7774bd999NwDgv//9L3777bd2VYsejY2NeOutt/Duu+9i3LhxAIDTTz8dl112GQB4nzs9Pd3va2pqasIHH3yAmTNneudUfvLJJ/j111/x6aef4p///Kd32xdffBFXXHEFAOCpp57CtddeC6fT6a3IDAcFi4QQQkgHNGvNEaQZNTgzKwlqZee4qpMQQogEzgbglW7AmLlAj7/EezVEDnstUCOzjZhn+44eLFbsABi72AZVRacRCCEdS6LMukt0DtYRcrBoc9vQ1dC1UwSLSoUSvMAnTLAYrBXq5srNAJpb3fKRmx9aVFmEHHMOknRJEdtnZ/HRRx9hypQprW4bPXo0vvjiCxw7dgznn39+u8d45puOHz8e69ata3Xf7NmzMWbMGHz77beYOHFiq/uuvvpqLF26VPYaFy1aBLPZDIZhwPM8br/9dkyePBnLly8Hx3Ho1atXq+1dLhfS09O9/9ZqtTj77LMDPkdTUxMOHjyIu+++GxMmTPDezrKst/KwuLgY5557bqsqvFBt374dZrMZHMfB7Xbj2muvxbvvvuu9v6CgwBvsAcDWrVths9lavS4AcDgc3nmRu3fvxn333dfq/oEDB+KPP/7wuYbdu3fD5XLhL38J/e+8gwcPgmEYXHrppd7bNBoNLrroIuzevbvVti0/B9nZ2QCAyspKdOvWLeTn96C/CAghhJAOpq7JjQXFJ3BZzy7omtSBW6IRQgiJvIrmK5Q3fUrBYqIpWRd8m7ZqDogfeRZAB56xWLoeUKqBlMJ4r4QQQtqhGYux4WAdYIXQgsVGdyM0Sk2naIlpVBthY2yosXeOYHFT+SYAgJNzhjxDsy1BEFBUWYSeqT1h1NB8xbbuvfde3HDDDa1uS01NBQDk5eVh8+bNfh87c+ZMnxWLAHDrrbdi4MCBre6zWCwhrXHw4MH44IMPoNVqkZOTA7VajJFsNhtUKhU2b97sbRfqYTabvf9vMBiCjvSx2WwAxGq7AQMGtLrPs2+DwRDS+n3p3bs3Fi5cCLVajZycnHZtRk0mU7v1ZWdnt5of6eGpvpQrkq9HCo3mZAWy5/PB85G5mJGCRUISEM8L+HHbCdxwTg7NXSOkE/pmUyl4QUC/3CQYtIn/hxchhJAE9OrpwPVvAX2vi/dKEkfJWvmPqW6uWOS5jl2xWLIOSOkGGFLivRJCCGmHZizGhpN1hlSxyPEc7KwdBnVsT6hHi1HTHCwmSMVisIreDeUbAIgBZKgVqW2daDqBGmcNLjNeBp1KF5F9dibZ2dne6rG29Hq9t+2pL7179/Z7X0ZGRquKu3CYTKZWLUc9zj33XHAch8rKSvzf//1fWM+RmZmJnJwcHDp0CKNHj/a5zdlnn43p06ejtrbWZ9WiVqsFx0kLxLVarc/X5M95552H8vJyqNVqb3jbVt++fbF+/XqMHTvWe1vbitKWevbsCYPBgGXLluGee+7xuUYAAV/T6aefDq1Wi9WrV6OgoACA2Hp248aNePTRRyW8ssiIa2+1lStX4vrrr0dOjhiOzJ8/P+hjli9fjvPOOw86nQ49evTAzJkzo75OQjqaXWVWPPJ1MX7bXRHvpRBCIozjBXy+5gjOzk1BXgpd2RdtdCxCCCF+2KuBxY/HexWJ5cgqwCCzTVP1PvEjzwJCB65YLFkLJOeL8xVJRNGxCCHho1aoseFgHUGr33yxMWJVUmcJmDRKDTRKDWqdiTFvOFDw3uBqwP66/ehi6AIX54pYsFhUWQQAyDPnRWR/pOPo1asXRo8ejbFjx2Lu3Lk4fPgwNmzYgJdffhk//fST7P1NmTIFL7/8Mt5++23s27cP27dvx4wZM/DGG28AAEaNGoWsrCyMHDkSq1evxqFDh/DDDz9g7Vrxgr7CwkIcPnwYxcXFqK6uhssVuQr2IUOGYODAgRg5ciR++eUXHDlyBGvWrMG//vUvbNokVvo+8sgj+OyzzzBjxgzs27cPzz//PHbu3Ol3n3q9Hk8++SSeeOIJfP755zh48CDWrVuHTz/9FADQtWtXGAwGLFmyBBUVFWhoaGi3D5PJhPvvvx///Oc/sWTJEuzatQsTJkyA3W73znqMhbgGi01NTTjnnHPw3nvvSdr+8OHDuPbaazF48GAUFxfj0UcfxT333BNSn2BCEhnHiycdapvoqjxCOptluytwosGJfnnJSDJEZmg68Y+ORQghhESE2w6UbxOr+uTwVCwKHbhiseEY0FgGJOUA6s5xUrgjoWMRQsIXSthF5OMEsfJQLqvbCgDQqzrPmA+D2oB6V328lyFJoO+PosoiCBBwWvJpYHgmYiF9UUURMgwZSDekB9+YJJwZM2Zg7NixePzxx9G7d2+MHDkSGzduDGlu3z333IPp06djxowZ6NevH6644grMnDkT3bt3ByBW8P3yyy/o2rUrrrnmGvTr1w+vvPKKt1XqX//6VwwbNgyDBw9GRkYGvvrqq4i9ToVCgcWLF+Pyyy/HnXfeiV69euFvf/sbjh49iszMTADAbbfdhmeffRZPPPEEzj//fBw9ehT3339/wP0+++yzePzxx/Hcc8+hb9++uO2221BZWQkAUKvVePvtt/HRRx8hJycHI0aM8LmPV155BX/9619xxx134LzzzsOBAwewdOlSb0vdWIhrK9Thw4dj+PDhkrf/8MMP0b17d0ydOhWAWGq6atUqvPnmmxg6dGi0lklIh+ViOujJB0JIyGauOYLCdCN6dDVDSa2Oo46ORQghhETE8c1i1WFKN6CsWNpjOBaoPyr+P8933IrF0vXix5RCgI5NIo6ORQgJH1Usxk6Dq331TDCeYFHXiS5OMWlMsLltYHgGGmXHviA40PfHpvJNSNYmI9ecCwBocjf53VaOosoi5Jpzab5iggrWCUGj0WDKlCmYMmWKz/vHjx+P8ePHt7t95MiREHwc795+++24/fbb/T5fQUEBvv/+e5/36XQ6v/e1NHnyZEyePFn2/RaLBW+//Tbefvttv4995pln8Mwzz7S67X//+5/3/9u+n0qlEv/617/wr3/9y+f+7rnnnnZtUtvuQ6/XB1zXoEGD2r3X/fv39/n+hyquFYtyrV27FkOGDGl129ChQ72lr764XC5YrdZW/xHSWbhYChYJ6UwOVDZizcEa9M9PQbpJ63e71Yu+huNwUQxXRjzoWIQQQohPJWsBjRFIyZf+mPqjYhipTxFnLKKDBosl6wBzV8DS1XvTl79sxLzddCI/HuhYhJD2WC4y7RtJcFaX/J8fje5GAIBe3XkqFj1zFhmu4/8uDLTGDeUb0M3SDcm6ZABAI9MY9vPZ3DYcrD+ITGNmVOdqHlt3DPVr6qO2f0JIYAkVLJaXl3vLTD0yMzNhtVrhcDh8Publl19GcnKy97/8fBl/6BHSwblYacNpCSGJYeaaI0g2aHBmdjI0qva/ojmOw4f/ex7fTHsOzqNb47BCQscihBBCfDq6GkjtLoaLUtUcED+auwIC23FboZasFSsxtWYIgoDn3/4CoyfPwi8H6UR+PNCxCCHtUcVi7ITS/tMTRpo0pgivJn7MajOamKaE+NrzN2PR5rZhb+1eZJmykKJL8d4Wrm3V28CDR7Y5G0pF5KMHQRDwzUffYOWLK9G4rTGiFViEEOkSKlgMxdNPP42Ghgbvf6WlpfFeEiER4+Y66MkHQohsVieDHzYfx7n5Keia1L5FjL3JhskPjce8Lz7BzROfReqg8bFfJAkJHYsQEiKeB3bOj/cqCAmOY4HSDUBynvxgUaUDjF3EisWOeGLMZQMqdgFJuXBwaox6/H944f0v8fJ9N+D9aztP5UlnR8cipLNLhHCns2hwy2+F2uhuhAIKGNWdpy2mWZs4waK/NRZVFoEHj7ykPG9loae6NBzFlcUwqo3INmWHva+2GDeD1598HR+++CHOvOVM5P09Dwpq005IXMR1xqJcWVlZqKioaHVbRUUFkpKSYDD4Lq3W6XTQ6TpPD29CWnJTK1RCOo0fNh+Dm+NxVm4STLr2v57ffP5xbNu0Fv99/wuYe1yAjb/ui8MqCR2LEBJDq98Elr0AKL4Azrg+3qshxL+KHQBjF9ugKmX8iV29DzBlAGodIHAds2LxxBZxbcn5ePSV6Vj4+3p8/9Yz+OuFOcDS5fFe3SmJjkUIaY/lWQiCQAFDDITSCtXqtkKn0kEt53dkB2fWmmFn7QndCnVTxSZYNBZkG7O98y898zDDsbliM/IseTBrzGHvq61PX/sUv/zwC5564ymU9CrBtuptEX8OQog0CVWxOHDgQCxbtqzVbb/++isGDhwYpxUREl8ULBLSOfC8gJlrjuCsnCR0SzO1uU/8Pr/r0Wfw1peLcOH/XRmPJZJmdCxCSAzZqsSP9UfiugxCgipZCyg1YitUOar3AaYuYrDI8+iQMxZL1oNXGYCUfEyeOBp/fvEq/jr0sniv6pRGxyKEtMfyLPiOeHFGJxTqjEWD2gCVQhWFFcWHWWOGi3PBztrjvZSg/FUsbijbgG5J3WDWmqFXiV0IbEx4rVA5nsP26u3IMmXBoIncfEXPeZFRD4zCm9+8iaE3D43YvgkhoYlrsGiz2VBcXIzi4mIAwOHDh1FcXIySkhIAYruOsWPHere/7777cOjQITzxxBPYs2cP3n//fXz77bf4xz/+EY/lExJ3LgoWCekU/jxQjaM1dpydl4wUo8Z7+4olCzDxtmGwWRuQnVeAwh594rjKzomORQghhITtyGogtQDQJ8t7XM0BwJDWoSsWf1o4D/0/bERlk4Dsrmk4/6ye8V5Sp0PHIoSEjxVY8Oh4P0M7o0ZGfqvMelc9dGodVMrOEyx62rrWOGrivJLAeIEHJ3Dtbrczduyu3Y1sUzaMaiP06uZgMcwZi/vr98PBOpBtzIZGqQn+AAmK1hThrqvuQuWJSiSnJuOsC86KyH5jyROMEpJIgs0vjWsN+qZNmzB48GDvvx977DEAwLhx4zBz5kyUlZV5D6YBoHv37vjpp5/wj3/8A2+99Rby8vIwffp0DB1KVymQUxNVLBLSOXy5/ijyUgzo2dUMpUIBQRAw58M3MevdV/GX6/4KLbWuiho6FiGEEBIWQRArFrP6AToz4Khrv42jXgwdW7boc9kAWyVQmCbe3sFmLAqCgLemTcPjb67F9edmw2hJjfeSOi06FiEkfJ5WqCT6mpgm8AIPpUJ6rYrVZYVepZf1mI7OpBE7DdU6a+O8ksD8VSsWVxWDEzjkmHO8ga9GqQm7YrGosggqhQq5ltyw9uPx01c/4c1/vYlzB54LoynxZnRqtVoolUqcOHECGRkZ0Gq11LKZJARBEFBVVQWFQgGNxvdFAnENFgcNGhTwF//MmTN9PqaoqCiKqyIkcTAcBYuEJDqeF7D2UA3OzU9FulkHt8uJN557HMsW/YBxE5/A6Pv+QQeeUUTHIoQQQsJSewiwVwPJeUDz1f6tNFUDr50OXPUf4NKHT95ec0D8aEoHnNYOVbHIMAweeughfPTRR3jiEi1efuIWKJNkVmMSyehYhJDwUSvU2LEzdnA8B6VKekjY4G6ATqXrVK1QPcFiR69YdHNun7dvKt8Ek8aEXPPJAFCn0qGJaQrr+YoqipBjykGyNrzjBo7j8Mkrn+Cbj77BDWNuwENTHoJak3gzOpVKJbp3746ysjKcOHEi3sshRBaFQoG8vDyoVL5/difedyQhxMtNwSIhCW9vRSOsDha5qXro1CoUbVqL1csW41+vf4hBw0fGe3mEEEKCmZwMnDESuHVWvFdC4qFkLQAFkFLo+35bhfjx4O9+gsVMwG0XZyx2kJPixcXF+PzzzzH93+Nxt3o+kFYY7yURQkhAnMBRsBgjDtYBhmegUUlvc9noboRepe9UrVA9wWK1szrOKwnMX7C4oXwDulnE+YoeerUeDtYhuyK1paLKInRL6gajJrzqwtKDpVgwewEmTp6Im+68KaEvttZqtejWrRtYlgXHtW9LS0hHpdFo/IaKAAWLhCQ0hqNWH4QkuvWHaqBWKmBhGyAIXXHuxZfh86UbkJqeEe+lEUIIkWrXfIB1A2ptvFdCYu3oGiA5FzD7+b3tOaGnbPOnd80BQJcEGFOBhhKxYhHxPbY/duwYsrOzceGFF+LIkSPouvo54GgeYEyL67oIISQYlmchxPln6KnCwTnACqysx1jdVmQZszpVxaKnArPO6aMFegfiqxWqk3ViV80uXJ57OUxqk/d2nUoHJ+eUXZHqUdFUgXJ7OS7MuhA6VWjjXGoqapCclozCXoX4ctWXSO3SOVqxe9pJ+mspSUgi6jzNrQk5BbEcD56ng2dCEtmaQzUwVe3Af+68Fou+/RwAKFQkhJBERJUSp6Yjq4GUAqDFFf+tcM0n9NpWaVTtBUwZgEoHKFTi108c54OtXLkS/fv3x+uvvw4A6Nq1K3B0LZDcTZwdSQghHZQSSqpYjCEn6wTLywsWbW4btCptp5qxqFAoYNQYO3yw6KticVvVNjA8g1xzbqsqUr1KL35+ZQbHHsVVxQCAXHNuSBWGe7fuxb3X3osZb8wAgE4TKhLSWXWen+iEnIJYjq7JIySR8byAxV/PwPZPn8ZZ5w/AX677a7yXRAghhBCpGiuA+iNAUh6gMfjexm/F4n7AmA5o9GLoKPAAH5/2WDNnzsSQIUNw9tlnY8KECeKNtsrm15YDqP28NkII6QCUSiXNWIwhucGiIAhoZBqhU+lkB4srj61EtaPjtho1aUxodDfKDlpjyVewuKliE4xqY6v5ioDYCtXFusCFeDxSVFmENH0aMozyL5Re8dMKPHLLI8jMy8Rf76LzIoQkAgoWCUlgLC+Aj+OVzYSQ0LEsizvuuRfHF7+PC64djf+8OwtGE1UEEEIIIQmjZK34MbUA8HdlvueEXsv2b4IA1BwEDGmASn8ydPQzBylaeJ7H008/jTvvvBPjxo3D0qVLkZbW3Pa0dIP4MbWb/9dGCCEdgEqhAidwEOjcSNR5WmXKCdJcnAssz0Kv0st+vgeXPYgbF9wo+3GxYtaYYWNsPtuNdhRuvv2xha/5ikBzxSLvBCeEFixuqdiCXHMujGrp8xUFQcCcd+dg8v2TcenVl+KNr99AWga1YCckEVCwSEgCY3geHLVCJSQhKRQK7Dl4FF2GTcTdjz8fcCAyIYR0Si6bWBVFSKIqWSu2M03K9r+NtxVqi4pFWwXA2AFTOqBUtggWY3tiUqFQoLS0FK+//jo+/vjj1nN/SteJwaclJ6ZrIoQQuVQKlVixCKpYjDa9Sg8X5/JZBeeP1W0FAOjUoc3cszG2kB4XC2aNGU1MU4cOFtuuzc25sb1qO7LN2TBqWgeABrUBLtYVUgWmg3VgX90+ZBoz2+03mMoTlRj/j/H49zv/hk4f2tcJIST21ME3IYR0VCwnxHMUCyEkBIcPH0ZZWRkuueQSXHjPi7CUNyLFSAO8CSGnoD/fAPb/Atzzq/82koR0ZEdWi9WK/uYrAr5boVbvFz+aujTfp2q9bZSdOHEC+/btw6BBgzB79mzfc5COrg3+2gghpANQKVU0YzFGdGod4D4ZFkrR6G4EILbZ7GwsWgtKG0tlBa2x1nZt26u3w827kWvOhbpNm3aD2gA35w4pWNxRvQOcwCHHlCOp5W1DbQP27diHCy+/EI+++GhIMxkJIfFFFYuEJDCW56kVKiEJZM2aNRgwYAAeffRR8DyPDUfqkJ9mhFlH1/kQQk5BLitgrwGcDfFeCSHyOa1A5c7m+Yom/9t5g8UWnQlqDgAKJWDOFP+tiF2wWFRUhIsuuggPPPAAOI7zfSKPcQLlWwFLLqAN8NoIIaQDUClU4HhqhRoLOpVYTVbvqpf8GG/FoqrzVaIlaZNgZ+0desYi06YbwqbyTTCoDe3mKwKAQWOAi3OF1Aq1uLIYepUe2eYAXRyaHd1/FA/c8ACmPjkVbpebQkVCEhQFi4QkMJajGYuEBLP5aG2H+CNzzpw5GDx4MPr06YPFixfjUHUTapvcyE0xQKehNqiEEBlK1gGTk4GmmnivJHw8A1CFQXDbvgUaK+K9CtLSsY3i125KgdjO1B9frVCr9wPGLierAb0Vi9FtpTZ//nxcdtllyM7OxrJly/y3YS/bKq4lJa91IEoIIR2QZ8biqVyxuLVqK45aj0b9eTxzEkOpWJQzdy9RWLQWOFgHnKwz3kvxq+2MxQ3lG5BvzodFa2m3rV6lh5t3g+XkB6WbKzYj15Lrc78tbVq5CQ/e+CB0Bh2mfTsNWp1W9nMRQjoGChYJSWAsL4BGLBLi3/F6B/76wVr8tL0sruuYNm0axowZg1GjRuHXX39Fly5dsO5QLVQKBQrSOt8fWISQKCv6Qvy444f4riMSeJaCRSkWPAisejPeqwis5iCw75d4ryJ2StYCuiQgOT/wdqxL/NgqWNwntkH1zJvyzliMXsXiZ599hptuugnXXHMNVqxYgezsABUFpesAlU4MTQkhpINTKZsrFnHqnhwZs3gMrpt3XdQr5zxzEq0u6cFig0vsTCF37l4iMDdfIFTrrI3zSvxr2QqVEzhsq9rmc74iILar5QUeds4u6zl4gRf3a8wOGCAvX7QcT457EmedfxbemfsOsvKzZD0PIaRjoWCRkATG8UKHqMTqTHhewNjPNoDh6CRnWzYXiyZXx23x4YvNKa63yuqK6zquvPJKvPbaa5gxYwZ0OvGPsbUHa5CXZkCaia7QI4ScwihYlEYQOn7L2KIvgO/GAbaqeK8kNo6sBlILAV2QGYS+ZizW7AeM6YBn3pTnviieEL788ssxZcoUfPPNNzAag5zcLVknzlfUJ0dtPYQQEikqhQqswJ7SFYseTUxTVPcfSivURncj1Aq1t9qxMzFrxGOAGmfH7SLSsmKxtLEUTs6JHHMONEpNu209czBtLpus5zjccBiNTCOyTFnQqNrv1+PM88/E6AdH48VPX4TJQq3WCUl0FCwSksBYjqeKxQhbsrMcK/dV4YUfd8V7KR3OE99vxaPfFINLoC86Nyv+cRmPq1fLy8tx3333weFw4Oyzz8akSZO8swMEQcC6wzXITzXCRPMVCSGnMo6CRck6cJstAOLnkbGLLUI7O9YNHN8MJOdJCBab25uq1CcfW18KGFIBVfPFRcrozFisqanBvffeC6vVih49euDZZ5+FMlDbVkAMsUvWia+N5isSQhKASqECL/AULMaAJ1iUU7FodVuhV+uh6oSttT3BYq2j41YstpyxeKD+AHQqHfItvrsteMLfRqZR1nMUVxZDAQVyLe3nNjY1NuGNp99AQ10DMrIzcNeku6BSd76vBUJORRQsEpLAxFaoiRPyJAJPpWIihWexUtfE4HCVzVsFmAhcrDh0PNafza1bt+Kiiy7Cjz/+iNLS0nb3H6puQo3NjZxUPfQ0X5EQciqjikXpWBfAJ8B7Vbo+3iuIvrJigHOJbVCVQS4Q8oSFiubf9/VHAYETKxabLzjy3sdHbsbi3r17cfHFF+OHH37AoUOHpD+w9hDgqAWS8k62aiWEkA7M2wqVzo1EnVKhhFallTVj0eq2wqA2QKXofH/3elqhVjuq47wS/1q2Qq20VyLf4nu+ItCiYpGRV7G4pXILsk3ZSNGltLq9vLQcD930EH5f+DtKD7Y/LxKuVH1qxPdJCJGOgkVCEhhHwSKJMauThYvj4r0MyTwVi7G0aNEiXHbZZejSpQs2bNiAXr16tdtm/aFaKBWg+YqEEMKziRGWdQScM/QQtuEY8PuLgK0ysmvy5URR5/+clqyVPoPQUyngCRGr94sfTV1PbuMJJ9nIBIu///47Lr74Ymg0Gqxfvx79+/eX/mBPMJzSLSJrIYSQaFMpVOAEDjw6+e+eDsKgMsgKnhpcDdCpdJ0yWDSoDVBA0bFnLPLuVu99jikHJrXvjgTeikW3vIrFLZVbkG3Ohklzcr87N+/EAyMegNPuxLvz3sVZF5wVwuoD64xfU4QkEgoWCUlgLC+AckUSS1YnE5ewLlSuGK91165dGDFiBIYMGYI///wTubntW4EAwLpDNchLNSLdRJUAhJBTnRDRKq1OjXWLlW6h2PszsPJV4O3+wNr3ohv81ewHZLRIS0ie+YqGlODbtm1vWnNAnK1oyjh5mydYjEAr1KNHj2LYsGG48MILsWbNGpx++unydlCyDkjKAcwZwbclhJAOQKVUQYDQquVjIjnWeAwvrX8JLJcYnYH0aj3sjB0cL+2YxOrqvK1QlQoljBoj6lx18V6KXwzPQN2iu0KOOcfvHERPxaKcitRaZy2ONR5DpjHTG0zW19Rj0uhJyOueh/cXvo/CXoWhvwBCSIdFwSIhCYwqFkmsORkejY7E+YMtVsEi11zFecYZZ+DHH3/EDz/8AJPJ91WAgiBg7aEa5KcaYKb5ioQQIgZmJDjODUg8ideO2yaGWWmnA0ufAT66DDheFNn1eVjLgMay6Oy7I+B5saovOQ/QBpmvCLQPC6v3iaGiRn/ytgjMWOR5HoIgoKCgAAsXLsTixYuRkpIif0cla8VqRZqvSAhJEJ6qpUQNFosqi/DVnq9woOFAvJciiVFthJ21gxWkBaENbrFiUanonKegTRoTrG5rh53x6ebcUCtOnnfIM+f53TaUisXiymIAQK5ZvKia53mkpKfgPx//B69/+TpS0lPkL1oio0bsAOWZdUkIia3O+VOdkFMEy/OgUYAk1ioaXfFegmSeGYvRVFdXh6uvvhofffQRAOCaa66BUun/1+vRGjuqGl3ITTXQfEVCSPxsnA5s/SbeqxCxznivIDGwrtArFt12QGMALrwHuOQRwFYFfHYVUCNj9p4kCgACULoh+KZOK/BGX+DwqgivIcqq9wLOenG+olobfPu2J7o9waLaR7AYYvWuzWbDyJEj8dprrwEAhg0bBrU6hIuXHHXi+iw5gIbatRNCEoMnWHRxifN3qi82t7y5dvFi0BjgZJ1geWnBYqO7sdO2QgXEUMvmtrWaZdiRuDl3q2rRJF2S323VSjWUCiWamCbJ+y+uKkayNhkpihT896H/4rPXPwMAXHD5BdDqJBwnhaGbRWzbfmnOpVF9HkKIbxQsEpLAOF4AT8kiibGqBAoWo9229cCBA7j44otRXFyM3r17S3rM+sM1UNB8RUJIvP30ODDv74Bb+omDqOmgJ2I6HM4d+oxFlw1QacUAq2AgcOHdYuBVtSf09bgaxXCwJWMaoNScnNMXSPV+wHoCOLIy9DXEw9E1gEIJpHaXtn27VqgHAUNq62DRc7I1hOrd0tJSXHbZZVi+fDnOOivM+UXHNokfUwrE10gIIVF0+0+346rvrgp7P57Ays0n9vGEJxi1M3Zc8uUlcLEd8+9uo9oIB+uQFSxqVdrOGyxqzWhimsB0kNb+Da4GrDm+Bt/v+x4sz4rBYvN7n6xNbjUHsS2FQgGdSgc7Y5f8fJsrNqML2wUv3fUSVi1dhZ5n9gz7NRBCEgP1YCMkgXE0Y5HEQYU1cSpLotkKdcWKFbjpppvQpUsXrFu3Dj17SjuAXnuwBnkpBqSbab4iIaQDcDXGv+VhglcYxAzHhNcKVaU9GWApI/Bn4M9Pim1PR38HqJr3p1CKLUIrdoohWaCKvrrD4keX9HZbHULJWiC5G2BKk7Z9y2DR2QDYqwFD2sn3DAh5xuKGDRswYsQI6HQ6rF69Gv369ZP1+HZK1gG6JCDJ94xoQgiJpO3V2wEA5U3lyDJlhbwfTzVWR60Yk8rZ3MFh3oF5aGQa8U7RO5h04aQ4r6o9o8YIJ+uUHKTZGBu0Sm2nnLEIABaNBWW2srgEi3bGjt21u7Gjege2V2/HjuodOG477r1fr9LDxbm8bWiNGiO0qsBVhHqVHnbWDkEQoFAoAm7r5tzYUrwFx986Do2gwVvfv4U+5/QJ/4URQhICBYuEJDCasUjioZIqFiEIAqZMmYJzzjkH33//PdLSpJ1cFAQB6w7V4rQME81XJIRI52wQg5qCS+K9kuigGYvShFOx6LYBal1kq9AcdYD1OOCyipWKHmndgWObxa9bc4b/x9cfFT/KuCo+IhqOA0k5QJCTZX4dXQ2k95A2XxEQW9h61DTPzzJ1ab2NN1iUd1Ly5ZdfRmFhIebPn4/MzExZj/WpZC2QWgjoaFYRIaS1XTW78Nzq5/D9Dd9HfN/hBjKe0CRaweL+uv3omSq9CsvBOqBWqqFRamQ9j4tPjL+zjWojHJy0ikWO59DENEHfskq/k7FoLbCz9qgH2wzHYF/dPm+IuL16O440HAEPHhqlBlmmLGSbsnF2l7OhVWmx4OACNDFNrSoWpdCpdXCwDnAC12o2oy+7anahfHE5zMlmTJs9DV1zuob7MgkhCYTOahKSwHhBnLNIEsvOEw2Y9N1WfPP3gUgyyPtjoyOosSXOCeBIVyzyPI/jx48jPz8fP/zwA8xmMzQa6Z/D0loHyq1O/F/PLtCpqcUYIUSiWdcDZVuBR3cAKfnxXk3kJXiFQcxw7jAqFpuaKxYj/LuHdbZfU9rpwMHfxVmEgYLFuiPiR8YR2TUF4qgH3joHuPEjoN9f5T++vlRs39r9itatTANpWZFb3RwsWtpU5siYsSgIAkpLS9GtWzfMmjULGo0GBoNB2loCrpMBjm8BTrtCemhKCDllvLj+Reyt24tN5ZtwQdYF8V5OK57wwy1E/nhi2dFleHT5o3jpspdw/enXS3rMw78/jDxLHp67+LmgFV8tddTWp22ZNCa4WJekYNHGiHMj9arOHSw6WEdUg8Vv936LVza8AoZnoFQokWnMRKYxE38p+AuyjGKgaNaaYVAboFPpUGGvwIKDCwCIgbWcalG9Sg8n6xSDRT+xgedYpNhajMLxhbj/nPvRNYtCRUJONRQsEpLgXAwFi4nm992V2F3WiL0VjbiwUGIbrQ6k3uEGzwtQKkO80j+GXGyIJ2B9aGpqwtixY7Fp0ybs3bsXqampsvex7nANFAAK042y/sgkhJziGivEjzUHKFg8lXFuQAinFaoGUEY6WHS1X1NqofixZD1QeJn/x9YeEj8yMWyx7qgTw7vaw6E9vmSd+DG1u/SKx5Zf3zUHAH0KoE9qvY3nhF+QikWXy4UJEyZgyZIl2L9/P5KTk6WtQYqKHQDrAJLzW7dp9ae+RPzYUBq5NRBCOq7mRkmeoKgjUTb/bmNkVn0D8M6gM2qMPu8/ZjsGADhQ33xhiISGUUetR6GEEm7eDZ1K+vgLTyvUjs6gNoAVWDgkXBhkdYuzmOW8D4nGorWAF3jUu+rRDd2i8hy7anbBrDHj6sKrkWvORZI2CQa1AXq13lux64/cikW9WmyfyvEc4ONhDMPgkUcewZw5c3DLp7cgPz0fGSkBLiQjhHRaFCwSkuCi1eqRRE9RaT0AJGwbW6uDhZvjoU+AGQmR+v44fvw4brjhBuzduxdfffUV9PrQrrhcd6gGuSkGpJk67x9WhBAiW4JcoR93Yc1YtEexYrFNxYIhRQzPjm8M/Ni6oyf3IQihtyaVw3sSNMTjg6OrAUs2YJZxVX7LVr/VewFTRvtqR0XwisWqqirceOON2LRpE2bOnBnZUBEQg2ClGkgpkLa95/Me6tckIYREiCc0cYfQWv2rPV9h7v65+OraryS166xz1QFAwG0bXA3gQ/g942BjWMEfBk8I2+BqCLpto1ucoxytVqjbq7ajzlWHy/Muj8r+pTBrxCr/WkdtVJ/HoDbg7IyzkaRNCr5xCwzPyK5YrHPV+WxRXF9fj1tvvRV//PEH3n//fcxmZ6Nvcl+YNHGe104IiQvqw0ZIgnNzFCwmmm3H6uO9hLBYnUzEW4xGi5MJ/2RXUVERLrroIlRWVmL16tW4/nppLXB8WXuwBvlpBpqvSAghLVGwKE04MxaZJkCpORlgRWxNLt/BUtppQNU+sQWrz8exQGOZ+P++2qlGiydYDPXirqNrxOBNzgzClhWL1fsBY7qPYFEhhr5+qm12796NAQMGYP/+/Vi+fDn+9re/hbD4IEo3iNWKhpTI75sQQqLI2wqVlx8sVtorUeusRb2rXtL2pY1ilXa6Pt3n/QzHwM7aIYTwe8bJJU7FIgA0MMGDRU/FYrSCxW/2foNXNrwCmzt+lbSeYLHGWRO3NQTi5txBZyW2ZFAb4GJd4Np0pDh06BAuueQSbNy4EUuXLsXQ24aizlWHTGMmtCptpJdNCEkAFCwSkuCc1Ao1oZQ3OFGdQDMKfbE52YSplI1EANrU1ITTTjsNGzZswDnnnBPyfkpr7ShrcCI3xQC9hn79EkKIFwWL0vBM6K1QGbvYCjXiFYtu32FYRh+goQRoqvb9OOvxkxVvnI92qtHC2EN/rL1WrDhMygX8tMzzyRMsCoLYgtWQCqh9dC5Qqv1WLDqdTmRmZmLDhg24+OKLQ1i8BBXbxdmPWhmvjRBCIiDc2YKeVqguTv5+3JxbUntTjxKr2AbaorX4vL/BLYZtoVQshrL+eDCqmysWndIrFqNV0SZAQBPTBDsbxu/3MJm1HT9YDNYutSWD2nCyFWrL/bjdMJvNWL9+Pa688koUVxUDAPLMeZFcLiEkgdCZTUISXCRnyJHo25rg1YoAYHOxCVMpG2rFoiAI+Oabb8CyLC677DKsXLkS2dnZYa1l/eFaKAAUpJtoviIhhLREwaI0PAew8udHARBboSqjECwKnBgMtpXRSwwcT2zx/bj65jaoOov4+W/bTjVawgkWSzeIH1MK5L2PnuDVUSfOMDSl+368QilWcrbw/fffw+Vy4dxzz8WaNWtQUCCxTalcrFuceWnq0r6akhBCoqzSURnW472tUEOoWGR4BoKMZNFTsaiA77/n6p31ABBSxWK4AWuseCsWJbRCtbqsrR4TDXbGDjZWxxE+eELTGoe0YFEQBLxf/D5ONJ6I5rK85LZC9QaLzRd9zZ8/HzabDX369MH69evRq1cvAMCWii3INGYizZAWlXUTQjo+ChYJ6YBeXrwbhU/9BEZCeCNlG9JxJHobVECsArQ5QzyxGWOhVFa63W7cfffd+Nvf/oYlS5YAQESCwHWHapCdokcXM81XJISQVhLkCv0OIdRgjLEDam105hi6fLQfS+0uBmUl63w/pu4oAAVg6ipW9MWsFWoYwWLJGkCfCiTnyHucp2KxsVz8aOziezulyhuwsiyLRx55BLfccgt++OEHAJE5FvGrep/43KbMyIfPhBASZd5gkZMfLMp9jKdi0R/PDMaQgsUIHg9tr9qO1cdXR2x/LXkrFt3SKhb1Kj00Sk1U1gKILWSlzqfkBR7zD8yPaBCpVChhUBu8n/tgmpgmfLD1A3y///uIrSEQN+f2fo9IoVfr4ebccLEu/Pvf/8aNN96I2bNnA2h9LLKlcgtyTDnerwdCyKmH/mogpAP6+M9DAIAdx4MfqCXKrDsiKiqphzKBi9V0avHXRqU1MU4CO2V+f9TU1ODqq6/GnDlz8Pnnn+O6666L2FrWHapBtzQjTLoIz7cihJBEF8KJwFOWxBNnrfC8OMcwWvNvfM01UuuApBygbKvv0LD+qDjLT2sSKxZj1go1hPfP48gqIK0Q0CXJe5zn69tWLs64NGf53k6hAngGVqsVN9xwA9577z28//77uP3220Nfs1SVu8SPSTJDU0II6QA81VihBIuMnxbU/pTaSgPeL6WKz59IBotf7P4Cz615LiqzB7UqLZQKpXd+YiBWtxV6tV5WsBUKqe/7rppdeHb1s/hqz1cRfX6TxgSrywpewixsTwgq92svVG5eZrCo0sPtdOO+sffhpZdewquvvor77ruv1TZWtxWHGw4j05QZtfmZhJCOT/r0VkJIzLF88KvcXDRjMWEIgoAdxxuQmaRHWUNiDGZvy6RTw8W6UdmYGMGiW0ar4JqaGlx88cWor6/H77//jksvvTRi6zhR78CxOgcu6p4Gg4aCRUIIaSVBWn91CO4m+Y/xVOnFMlgEgPSeYmDlbACMbdpk1RwCDGmAxgA468XwMxZCrvh0iCFpr+FiGCqHt2KxDDBl+J9hqFTB1uTApZdeitLSUvz888+46qqrQluvXBU7AGN6+88TIYQkAE9oEkpQIyeM5HjOOzPQn3pXvew1hLKWYHiBR6W9EqXWUvTt0jdi+wXEqjW9Sh/0vQDEwE+v1stqxRkKqdWCnnala0+sxZi+YyLWDcCsMaPR3QiGZ6BTBe5Q5K2ulF/UGhKGY6DUSK8rUvNqHP7fYRwqO4S5c+di5MiR7bbZWrkVAJBjypE1v5EQ0rnQdz8hCc7F0YzFaJtXdAzWCLT+PFpjh9XJIispca/oMuvE61EqrIkRjMoJ3tPS0jBmzBisX78+oqEiAKw/LP4BU5BmoPmKhBDSFlUsShdKxZ0njIxasOgn7MzoDdgqgAYf1R11hwFDqhgssu7YVSy6QwwWj28WW4Wm5IstS+XwzFi01wSeYahUw6xVYPTtt2Pt2rWxCxUBoHy7WElJVQeEkATkCTaiXbFYbi8Puk04waKLj/yFVlurt0Z8n4DYLrOJaQra8rXB1QC9Sh/18Mkz2zKYWmctAGBv3V7YmMhVc5o1ZjQxTWC44F9PnmCRR2wuqnLzblnBrtloRvKAZLw7912foSIAFFcVw6wxI8vkpwsDIeSUQMEiIQmOWqFGl4vl8I9vtmL6ykNh72tr83zFnJToDS6PNpNWPCCtbEyQYFHCDNJPPvkEP/zwAxQKBZ5//nmcdtppEV/HuoO1yE7WI8NCJ+wIIaQdCSdhSLNQgkWmOfhTRylYdPkJFrv0Ej+WbGh/X0MpoE8CNKYYz1gMsRVqyVoxBE0pkP/Ylie6jWk+w7uvFi3HrM02QODw1JNPoG/fyFaXBFW5S6ym1NCcJEJIYlIpVKFVLPKBw8iWwVlpY+A2qABQ55RWOecLwzGSWmkG0jZc3V61Paz9+WNQG2Bn7WCFwLMKrW4rdCpd1FuhSq1Y9ASLlfZKHGk4ErHnN2ubg0UJX4OeYDGUOZyhYDhG0vu/+pfVmP/5fOhVenQZ2gU5vf23R99csRl55jyY5HZxIIR0KhQsEpLg3AxVLEaT51ivzh5+NcW20nqkm7RIMUZvcHm0KZUKGLUq1NgSo7rEHSB45zgOjz/+OP7+979jzZo1UV3HmkPV6JZm9FZ8EkJIh7fsP8Dk5NArvKTwtNCM4EyhTq9DViz6aYVmyQLUBuDY+jbb24GmquaKRWNzsBj4xGTEhNoK9chqILW7GIbK1TI4N6QBqpPHgYIgYPI7X+D2Sa/iz8NO8X0I86SybI46oLFcDBajFT4TQjodN+fGw78/HLNwJBi1Uh1SsBiswswTAulUOpRYS4LuL5xgkeVZcBIr+PvN6oenVj7V7nYn1/oC4AP1ByRV0cllUBvgYBxB9211W6FT66LeClXqjMVaZy0MavFC79UnVkfs+ZO0SWhimyRVzdrZKB5b+8DybMCKUUEQ8M1H3+DZCc+ieE2xt5Wrv/mcDM9gZ/VOZJoyYVTTBUmEnMooWCQkwbm5jnEg39nZ3eEHuEWl9chJ0UOnTuwfvWadGnV2N3gJM0DjzV9Fr81mw4033ohp06bh7bffxtSpU6O2hvIGJ0prHchJ0dN8RUJI4tj2rfjx2MboPcfWr8SPbGJcrNIhhDJj0RMOB5n5EzJ/MxYVSiCtUKyGazlHs775xKwhFVDrxOAtZq1QQ2h7xnPAsQ1Acj6gNYfw+BYnXY3pQHNLdIfThdsffxVT3vsSLz46Dp/8LU98rlgHixW7xI8WamdGCJHu812f44/SPzB9+/R4LwVAc8ViCAEawzMQAgy787TL1Kv1KG0sDTo/L5xWqAzPyApq/yj9I+g2x2zHYHVbQ16TP0aNEQ7WETQIbXQ3QqeMfsWi1GCx2lGNDEMG0vRp2FS+KewKUQ+L1gIH45AULDpC7Z4QIjfvhlrh+wJnxs1g6pNT8eGLH2LUA6Pw3PvPwaARg1d/Xzf76vbByTmRbcqGWkkXThNyKkvss9uEELhYqliMhXCDRZbjsavMikyLHtoEDxYtejWsDhZuCW1G481fxeLf//53LF++HIsWLcJDDz0U1TV45yumG2m+IiEk8cQi8IlVtVpnEErFnSdMU0crWAwQdnbpDdQeAewtKjjqj4ofDWnimngG4CR+DVTsAk4UhbzUkCpwK3aIrzE5r1W1oWQtT3Sbu3r/97FXPsGC39fhu2nP4Jn7boNCqW6uWIzxhVuVuwClGkjy3/KMEELa8lQHhjLXMBqiVbHY1NxOXK/S46j1KFL1qQG3DzdYlFqxKJXVbZVUaSmXUS0Gi2yQY7hGdyO0Km3UZyxKDU9rHDUwaow4PeV07Kvbh0Z/XRdkMmvMYAUWjUzw/cW6YpHhGb8VozOmzsDSH5biyalPYsKTE6BUKqFXiS3b/VUsFlcWQ61QI9ecG7U1E0ISQ2Kf3SaEwM12/KqxzsDJcGFV6B2ossHJ8MhM1kOV4OGSRa+B1ckkxHxPd5vgnePEf7/00ktYs2YNhg8fHvU1rDtYg6wkPbrSfEVCCPFNzonA2kOxD146klCCRc9jfMz2i4hAwWJGb3HGY+Wuk7fVHRGDLFMXMVgUeOntcFe8Csy7L/QWvaG8f0fXiutNLQztOT0nrdV6wJjuPRZ5/sHbsXL2/3DzsMvE+5XqOFUs7gDMmYAuhGpMQgjpIFQKFVield2aNVgY6alYVCgUKLGWIEWXEnD7WFYsBpOsSwYAFFcVS9pezsxBo9oIJ+cMGizaGBt0Kl3Ug0UbYwMnYV5zrbMWBpUBZ6SfgTpXHfbV7YvI85ubOxpUO6qDbutprxsLAgSwPNsuWPQci4y6fxTe/OZNDLtlmPc+bXPrfM/XfltbKrYgx5yDJF0I7eEJIZ0KBYuEJLhEqBrrDFwMDzaMYHFbaQMUAHJTEj9cSjaoYXOxAecXdhQtWwV/++23uPDCC1FXV4fCwkKcddZZMVnD2kM16JZuoPmKhBDiD88CvITfKQ3HgLfPA/Ytif6aOirGGXybtjzBnyZKxyCBWnql9xA/lqw7eVvdEbElqFp/sorSJbHFK88A1hOAU1rLs3ZCCRZPbAGS8sTWraHwVJ+YumLx+r3oP3IiKqrrkJWRhgv69Tq5nVLdvG2Mg/Py7WKw2DxzihBCEpFKKQaLcltbSg0WIQDHbceRpA0cpkhtyemLnBmLUiRrk2FQG7CjekfQbffW7sX186/HpvJNkvZt0pjgZAMHi07WCYZnvBVw0WRn7GCF4N0P6lx10Gv06JUi/v5dc2JNRJ7frBGDRSkzNmMZLHrC1pataIvXFuPuq+5G+bFyWFIsOOuC1udFlAoldCqdt1q3raLKIuSYcmBSm6K3cEJIQqBgkZAE52aoFWosOFkOfBhXDxaX1iMzSY9UY5TakMVQskELmzNxWqEKgoBFs97Fbbfdhr59+8JgiN2Js0qrE0dq7MhNNtB8RUIIaTgONJa3v51jpVVpNZYDEIC6oxFfWsIIpX2W2ybOO4zWjMVAYZ3OAhi7ACc2n6w0rT18cr5i81Xx8HPyyieXFWiqCm2tocyoZJxiC9QwWskKgoC31zlw/aNv4LT8bJgMPk6yKlWxr1gUBKBqD2DKiF7wTAghMaBWqsEKLHhEOFhsbgfZyDTCyTm9VYC+8ALvt32k1LVEauYfACigQI4pB4caDsEVpDPAscZjAICjVmnHWEaNES7OFbCVrKfNqC5ardhbsDP2oG1tBUFAvaseepUeSbokZJuysbl8s6RKx2AsWguAjlex6Pn69gSLx38/jkmjJ6FLVheYLf47FfgLFstsZahyVCHTlBmTzyshpGOjYJGQBMeEUUVHpHOx4VUsFpfWIztFD4M28cOlJL0aTpaHzdnxZ2I5XS7U/PQG5k9/E1OmTMEXX3wBvT52J87WH64FAHSL8HzFI/v3AABsjdJmSRBCSIfw0+PAggfbz9PjGUiq0nLUix9P5UOfkCoW7WKo6Ge+TtgYpxiI+ZN+OlC9H3A1zx2qOwwYUsQ1edqzyg38qveHtNSA1ZVBhfZ7nOEEPPCTE498exCPjx+Jue/8C2aTj4ucvMFiDL/A60vE997UVayYlKG0XDx5WmsN/SQ6IZ2RIAhYVrIs3ss45agUKnA8J7uVaNBWns1BYY2jBgACtkJtdDfKDjbbriWSwSIA5Fvycdx2HFZX4L8bqxziBTtOVtpxhkFtgAABVsb/fj1zD2NRsShl3qONsYHlWRg1RgBAr9ReOFB/IKwqUw+TRqzekxQshnUsIo/nPVEKSpR/U45dH+zCNbddg1dmvQJzcuBg0cE62n09etrq5pg7xlzmmgrx+7KhNvzPISFEPgoWCUlwTAzbUW48Uhuz5+poXCwPjgvtRI+L5bCvohGZFh2MnaBqzaIXTzxVNoZwcjOGBEGArWQX7PvW4O/PT8Nzzz0X0XBPivWHatDVoov4fMUVv/wIALDbIjNsnhByCotliOGsB5xWoO2V2jwbOJhq+fhTncQTfq24m8Rqu2jNN+KCBIsZfcQ2trYq8eutoRTQJQNq7cmKRbnBYs2B0NYaSivUcPA8tlbw+Hwbg+n3X4ZXn5gAlcrPsaBSLX4vxLJi0TP7MilL9kOXrS0GADTaYvyeEtLBfbH7Czz6x6NYcvgUbtsdB96KxSi1QvUEi+n6dL/bhjNf0bOWSAeLBUkFcLAOHKgP/Huz0l4JAHBy0o4zjGoxnAsUysWyYtHBOoJ+Lmud4vksz9r7pvdFI9OInbU7w35+tVINnUon6WugiQ2he0KIPO9J/fF61P5ei97je+MfL/0Dak3gi4n0Kr3PVrdFFUXoYuiCDENG1NYsx+pfVwMAHPbYhbWEkJMoWCQkwcWqHeUfeypxy4drMXP14Zg8X0fjYjlwIZ583V3WCJYXkJWsh1IZ22ArGpL0GgBAlTVwO5V4KikpgZvloe/WD7n3foqLhlwfl3WsOViDbunGiM5XrDhRil1FGyO2P0LIKa6pMnbP5e+ED89CWsVi8Lk1nV5IwaJNDPGiFSyyrubPoR9deomzA49vFD+H7iaxFapCebJiUW7gV3swtLXGsErgWHkNOLcDF+SocPi1K3H3neMCP8AzYzGWwWLFDkBjFGcsylBV24CN2/dFaVGEJDZPxZKntSSJDbVCDY7nIh4setpBVjurYdFavJVpvnjm67WcZydHNCoW88x5AIDiyuKA21XYKwAgaMtUD0PzXF5PVaIvnvsMMZjhK6Vi0fP58QSLPZJ7QKlQYu2JtRFZg0ltQoOrIWjVrD2GFznVVtSCZ3lkFWah12u90O3abpIuttapdXBxrnbv6ebKzcgx5XirPuPJ0eTAppXSZoISQqKDgkVCEhzLC+Bj0A61rEE8kXWk+tS8KtnF8GD50A7ytx9vgEqhQG5y7Gb7RZOlOVjsqBWLS5cuRb9+/fDe++8DAFSmlLiso9rmwqHqJuSmGCLaAvfHr2dBCPFrkRBC2gmnYlFuO0rOT4DIMdLClI5Ssfjp1cCJovg8N+eWVt3ZktsmVgZGqxUq6xIDMX9SCsTQrHQDUHdEvM2QKn5UN1csumS202w4Jv99AGIWLP55lEX/Wyfh1ddeBQB0ze8BJOUGfpCnFWosle8ALNliuCjD9O+WgGFpzjshpONQK9VgeAaCzH7pLM8GfIwnWKy0VyJVlwqtp9LeB0/1nl4dWreaUILRYMxaM5K1ydhZszNg4OWtWJR4AZMnWKoPcGzmCRYDhbGR4uScQUPRGqdYdWrWii1AdWod8sx5KKooChpKSmHSmtDobgy6L3so87JD4DjswKtjXkXl3EooFUqok6Rf7GxQG+DknOBaHN/ZGTsO1B1AlikrJmFxMEt/WAqnvWOekyLkVEHBIiEJjuUE8LFsY3aKcnM8Qs1ySmvtSDVpYG4O5BKdpxVqRWPHq1h8//33ce211+L//u//cNOto4JuLwgCbv5wDd5eFuKspgDWHxJbrRSkGaCMUAtWl9OBn3/4Etn5hRHZHyGEhKzhOPDuBcCen6U/xm/FosQqLXu99OeKptL1wLfj298eKFyLFDaUYLFJnGcY1YrFAGtSqYHkfKB8K1BzSLzN2EX86GmPJrcVqq0itLambdvwRsHnP2/AXz634+yeBbh3/B3ijVJCXUU8KhZ3itWKGuknCFmWwwdfL0Z+Vsdog0YIIYAYLHJCiBWLAU6neELHKnsVUnQpAYNFTxvMUGcKRqMVKiDOWTxiPQJHgN+BVXZxxqKbc0vap6SKRZcVKoUKOmX0W6EGWwsgViwqoIBFa/He1iu1Fw42HPS2SQ2HWWNGE9MUtAo20OchUtb/sh6HXj6ElMwUdBnaBSqZF5fp1Xq4WBe4Fsd326q3gQePHHMOlNE6ppRIEATMnzkf2QXZcV0HIac6ChYJSWBKBcByPGJQsHjKc7N8yK1QT9Q7kGTQQKvuHD9yVUoFjFoVqm3ygkUnw2HSd1tRFYVKR5Zl8fDDD+PBBx/Eww8/jAULFkBrCH5l5K4yKzYdqcOGw7VgItxWeN2hGmRYdMhMitzVfH/8PB+NDXW45MphEdsnIYSExFP5VXdI+mM4P1dwS50r54jCrGe3XQxXZPNVeSntZFxYOLf84MllA1QaIMTWbMHXFCRYBID0nkDtYaB6r1gdZ0gRb1c1n2xkZAaLTVXi504uJnpXtvM8j3+9OQvjXpyDsedosOTDfyEtuflYRMp776lYjNUFg6wLqD0khrwy5l8t/H0dSsuqMPjis6O4OEIIkUetlN8KVRAEyZVqTs6JJF0SNAr/FwvXu+qhU+mgVoY2BoMTuFYVYpHSPbk7TthOBJz/56nmk9sKtcHtf8ZiE9MEvUoPtSpyY0ECCVQ9CYgzFo0aI7TKk+HwGelnwME6sLVya9jPb9FY0MQ0BQ1no9kKVRAEzHl3DqY9Mg1J5ybhrnfvgjpZLftrUq/Si61QhZPfH8WVxTCoDcg2xj/M27J6C44eOIpLr7403ksh5JTWOc5yE3KKUioUYHiqWIwFN8uD40IPFi06NTSqxJ+v6GHRqVHf5JbVhrek1o7vNx/D0h3lEV+PQqHAiRMn8MEHH+CNN96ASqWCmw3+R+WC4hMAAJuLARfhhH7toRp0SzPAFKH5ioIgYMGcz3DR5X9BetesiOyTEELCxsq4yMRfVYDkYLF5xmIkT8js+B6Y/hegSTyhBncT8M2Y0PYVi+Mxzi2/MpKJQcVisDVl9AbsNcCxjYAx7WSQ5an8kPs5dVrlB80c679qNgIUCgWOlVfj9QdH4JPr9dBqNCfDZimVAkq19OrdSKjaK37ekjJlfW2888WPuOz8M5Gf1SWKiyOEEHnUSjVYgQ06366llqGJFEnapICVX/WuehjUBigQ2t/9LC9v/VIVJheC4Rnsqdnj836GY7yho5uXdpGUWqmGRqmB1eW/SlCAAIVCAWWUTz17QrNAwSkA1DhqYFKbWoVshUmFAICtVREIFrUWNLHxr1isKq/CXx/8K/Luy4NCK34tqhXyzkkY1cZ2Mxa3VGxBnjkPJm30W9sGM2/mPHTv3R2n9zk93ksh5JRGwSIhCUylVIDl+Jhd2HwqY3kBrhBnyZRbnTDr1NCqOs+PXItegwYnC7eMKj+HW3z/2AgGeIcPH8aqVaugUqnw3Xff4b777vPe5woSLHK8gPlFx5vXxke0YrG2yY0DlTbkphhhjNB8xV3Fm3Bg93aMGHVXRPZHCImS2sPA5GTg4B/xXklsSJzFA8D/jEWelRbKOZuDRZknAgNiXWL1ZZPYAgwrXwd2/wis/zByzxFJIc1YbBLbkSqjdBzCucXPYSBdeoofj6wS5yt6gkWFQgwX5VQfKjUABKDmoLx1RqlC4ERFDX5fVwyFQoGZrzyGx0ddCYWnBTrXfHJRarAocAjYky+SKneJHy05kh+yY98RLN+wDRNHXxelRRFCIqHWWYt+s/ph0cFF8V5KzKgUKrFiEdL/pmO4wAFQ25AvRZcScPtaZ60YLIY4BoMTuKChVCjyLfkAgK3VvsMzT7UiIL0VKiC2y7QxMmckR4GnerLOVRdwuxpnDYwaY6tgUaPSwKg2osJeEfY6LFoL7Iw96OfQyUW+e0JDbQM2LN8AhUKBR/7zCG6eeDMUCoV3LXIrFg0aA9y821tBy/EctlVtQ5YpyztfM17KS8ux9re1GDluZFzXQQihYJGQhKZSKsBSxWLM2N3yT2TyvICqRhdMOjXUnShYTDKo0ehk5AWLTPOJ0Ah9ua5ZswYDBgzAP/7xDwiC0O4PuGAVixsO16Ky0YVUowZOlotoxeKGw+IfZwVpxojNV5w/51PkFpyG8y8dFJH9EUKi5Phm8eOOufFdR6wwMioW/QWCUqu0HP7bbYXNEzp5TqgxIVxNHotKM46RX7HotovhXbQqFqWEnaYMQGsWKwb1KSdboALi2uQE1MY08WPNAXnrDOVzGkTRroO46NZH8cCU98GyXPuTyZ6vJ0mtUGNcsVixEzCmi0GvRO/O+RHZGWm46SpqPUZIR1ZiLQEA/HL0lzivJHY0Sg1YgZXVClVuZVm6IT3g9nXOOhjV4YUuUluRymFQG9DF0AW7a3b7fH8q7ZXe/5cTLBpUBjQxTa3m8MWDN1h0BgkWHTUwqA1QtfmdbNFaUOesC3u+pVlrBsMzsLkDh62RboV6dP9RPHDDA5j61FS4ne5WxyKeisOQW6E2jzE42HAQTWwTsk3Z0Cj9twOOhQWzF8BoNuKqm66K6zoIIRQsEpLQ1EoFOAoWY8bmkh8s1trdYDgBSYb4HnxFWrJBg0YnCxcTQrAYAXPmzMHgwYPRp08f/Pzzzz6vCg1WYTq/6DjSzVqcnmGGk+EiWkm57lAtupi1yEzWR2R/NVUV+PPXRRhx+11QRqvihBBCQiHnBFi4MxaDzM4JSyjz+tqKVStUXuaJL3eTWOUXtVaoEioWFQog7TTx//XJ4sxHD5VWXjWhPkl8PXGuWJz/2xpcNnoSsjPS8PvMl6FW+wgPva1QJZzQU6rE0DhWwWL5NsCSBWikzYKut9owe+HvuO9v10Cjic28LEIIkcozY1FOK9FgwWLLajy9So8kTVLA7etd9dCr9SG3QgUAp5wLbWTIt+TjqPWoz1CryiF2bdAqtWB4RnLAZtAY4GAdslvKRppWqYVSoQw47xE4WVHaNmRL0ibB6raGHeqatWYArStAfYlkxeKmlZvw4I0PQqvX4q3v3oJWr211v+drXK8Sz0v0Sesjab96tbi9jRW/B4ori6FUKJFrzo3U0kPicrqw+OvFGH7bcBiM0o5fCCHRQ2cnCUlgnlaoER4NR/xocskPxsobxINGi75znYBJMWrR5OJkVSw63ZEJFt966y2MGTMGo0aNwq+//oouXXzP+AnUCtXFcli8owxnZichxaCBi+HBhjhD05c1B6vRLc0Ic4TmK/707efQaLS4esStEdkfIYREjJyTMHygVqgSfp8EmOMTtojMu4lFsMjID54YuxjkSamaCwXPBA8WAaBLb/GjPlUMGj3UuuZwUupxgkKsWqwvkReyRjBYnPHDL7jpoRdxzeUXYsXs/yEn008Vi5xWqCqN+HpidcFg5S7A1FVysDhj7q9gWA5/v3VYlBdGCCHyqZVqcAInr2Kx+We04Of3d8vKszR9GnRqnc/tPOpd9dCpdGEFiy5e+nGVnEDvtOTTUGGvQK2z/XziKnsVlAolTFqTrGBRr9LDyTq9FYufbv8U/171b8lriiS9So9GV2PAbTwzMNsGi8m6ZFjdVlnVmr5YNBYAEoLFCIXHK35agSfHPYkzzzsT7857F1n5We228bQy1Sg1mHrFVAzpNkTSvj1BpOd7oKiyCNmm7KDtgKNt2YJlaGxoxIg7RsR1HYQQEQWLhCQwTyvUaAz4Ju01hdAKtaw5WEzphBWLDoZDk4wqzkhVLP7lL3/Ba6+9hhkzZkCn8//HXaBWqH/sqUKjk0XvLAuSDBq4WB6s3AoQP+rtbuyvsCE3xRCR+YqM242fvp2Nq0bcCpMl8FWyhBASc6yMkzD+KgOkVGlxrFh5Fy2RCJ2iXWmm1IjvodxWqIynFWpkWnP7JKXiM+ssAArAnNH6dpUW4JzyZkeaMgBbhbxAOIKtUC+/sB9eeHgMvnnzKRgNAboTeIJ3KRWLihhWLNprAVul+D6qtEE353ke7325CLcO+z9kZaRFf32EECKTWiEGi/5CQl/kVCwm65KhDfLzssHVIFZ6hfHrVk7o5Obcks8FFSQVgBM4bK/e3u6+KkcVLBqLWLHIMZL3aVAb4GSd3vdx2pZpWHBwASqawp9XKJderUcj0+g3FOUF3ltRqmzTwSFVl4pGd2PYwaJZ01yxaPcfLHJ85OZonnH+GRj94Gi89NlLMFlMPrfxPJdGpYFWpUWSTtr5BE/FYqNbDGu3VGxBjjkHBokXI0WDIAiYN3MeBgwegNzC+FZOEkJEFCwSksBOzliM90pODU3OUCoWHVApFUjuZMFiUnMFZlWj9CsqwwkWy8vLce+998Jut+Oss87CpEmTfLY/bSlQK9T5RceRl2pAYboJBq0KLpYDK6P6MpD1h2shAOiWHpn5in/++hNqqysxYtSd4S+OEEIiTc5JGJ71XY0lpWLRGcX5igDARODq8Whf6KVSS5tn2JIgiIGaOnh4FJYgVQIAgIzewNX/Abr0an27WgewLnmBqTkTaKqS18I2zPC4tsGGvz/7Nhoam3B6t2z8+/5RwduTe1uhSjgOVKqb34MYHNhX7hI/WjIlbb7kz804WFKGiaOvj+KiCCEkdBqVBhwvs2JRTrCoDRwsCoIAq9sKvSq8Vqhy23FKrVrMM+dBqVBia9XWdvdVNFXArDV751RyEn8fG9QGODlnu+2b2CheCBZgLXbG7p0p2JbVZQUv8D5nYCbrk9HENIVdSSilFWrbuZ1y2RvtmPrUVNTX1CMjKwN3TboLKl+t2JuxPAsFFO3mSgaja56FbWNsqHZU40TTCWQaM72VjPGwY9MOHNh5ADeOvzFuayCEtEbBIiEJjGYsxlajS/6VZWUNTiQbNNAFONhLRJ6ZkbKCxRBboW7btg0XXXQRfvzxR5SUlEh+nL9WqFYng9/3VKJvVhJSjBoYNCrwAtAUoVat6w/VIN2kRXZyZK7mW/Dlpzj34v9DQY/eEdkfIYRElJxg0e+MRS54KBfN+YpAhNpkRvl4TKlpboUq4/cV4wAgtJ5pGEmeE1UtTr4GlN4DMKS0vk2lkzansSVLFuCoBVwyAucwKhb3VTpx8Zh/Ye6va3CotFz6Az2tUKW8/0pVcyvUGFQsVuwUg0xLjqTN3/liIS44qycGnEPHIoSQjkmlUElqhXqg7gB21YgXVwSrUGtiTgZkSbokaAJcJOJgHWB51lvpFSq54ZbUIFWj0iDTmIm9tXu9rUs9Ku2VMGvM0Kq0YDlW8j6NaiNcnMtvmBdLRrURdtZ/sFjrElvAGjU+gkVtMjiBQ40rcAvTYLQqLTRKjc92sx7hBIuOKgeeuu0p/PHjHyg9VCrpMQzPQK1UB70ouy1vxaKrEcWVxQCAXHOu7P1E0ryZ85DXPQ8XXH5B3NZACGmNgkVCEphKqWyuWKRgMRbsIQRPx+sdSNKroVV3rh+3SXrxj6pyq/QDY2cIFYs//fQTLr30UqSnp2PDhg3o00fasHHAf7C4ZHs5GI5Hn2wzdGoV9BrxpKjVEZk/iNYerEFBuhFmbfjzFfft3IpdxZswcvTdEVgZIYREAeeWXqnn78QTL6H9o6Ne1rJk81S+eeYphXJsFe1ASKUR30M5FYuewFQVeC5UyDyVkOG0qVXr5FdimrqK73ftEemPCXGNf+wsx8Vv7IFKpcT6b9/EuWecLv3B3opFCccESk8r1Bgc11fsBMxZgM4cdNP9R45jyZ+bMXH09XE9oUgIIYF4ZiwGa+P54bYP8cLaF1q18PSn5YzFYLPl6lx1AMTKuXDIDRbbhoSBdEvqhtLG0laVmIDYCtWkMUGj1MAtuCUHiwaNodWMxXgyaoywM3a/n9Nahxj2+fr8JOuSAQCVTZURWUdDgIue7GxoF7Id23EM659eD4fdgXfmvoN+F/aT9DiWZ8VgUWYVred9amQaUVRZhFRdKroau8ped6RUl1dj5c8rMXLcyODdIgghMUPfjYQkMLVSAY7jEaHRcCQIm4x5gh5l9Q5Y9GpoVJ3rREworVDlBrN79uzBDTfcgCuvvBJ//vkn8vLyZD3e34zFuUXHcXpXM3JTxKsVPXMQG53hzzposDPYU96InGQ9jLrwq1QXfPkZMnPyMOCKq8LeFyGERAXHSAtC+DYtHls+RlIr1LqQlieZJ4Ar3Sh+tIUwHyjagZCnYlHOCTzPSdFIVCz++Sawc37r21SRChZd8oJZc/PJrZoD0h8TQsViaWkphr28DOfnG7H28//i9G7Z8nbgCRZVUoJFtfgexOLAvny72AZVwgnw975chC6pSbjtmsujvy5CCAmRWqkWW6Ei8M9QJ+sEy7Nwca6gwaKnYrFnSk/kmANXeNe76gHEIViU0cWge1J3VDuqUWlvHaBVO6ph0BhOViwGeQ89DGqD+D5ykZkZGA6j2ggH6/AfLDZXESZp288Y9NwWidmQZo0Zje5Gv+sIpWKxuroasx+dDWOWEa//8Dq69+4u+bEsz0KlUMm+MMjTCrXR3YgtFVuQa8712UY2Vn6c8yM0Wg2G3jw0bmsghLRHwSIhCcwzY1HOgHISulAqFsutLpj1GmhUnevHrVqlhEGjQnUUZixynLhdnz59sGjRIsydOxdmc/Ar6tvyVbFYYXVi/aEa9M2yIKW5naunYjESweLGI5Gbr1hfW40/Fs/H9X8bD5Wqc7XSJYR0IrzE1pzek05Cm3+juUorzhWLbU/0hBSUxWDGIgQxhJPKU4mpjEDF4paZwOaZrT93nkpIKTMW/QmlYtGQBiiUQM1+6Y+R0e6W53kIgoD8/Hws/OdgLL6vJ1KSTNKfy8PzXkmdsQjIay8cCp4HqnYDpgxAE/gEuK3JgRlzf8WEW4ZBr4vynE5CSFT1m9UPX+/5Ot7LiBq1Qg0BQtCwkOVZ7/mTYNs2Mo2waC24rfdtKEwqDLhtQ/Ms6HDDFycXnVaoAFCYXAgBQqs5iwzPoN5VD7O6uRWqwIKXeIGLQW2AAAE2VmI79CgyaozedrS+1DnroFQoYda0P6/gDRbtkQkWbYzNb9gqJ1gUBAE8z6NLly647eXbcP5z5yM5PVnWehiegUqpglIh73yUWqmGWqFGnasOe2r3INOUGXZoHirGzeDHL3/E0JuHwpwk/7wQISR6OteZbkJOMermYJGnXDEm5M4IFAQBFVYnTFoV1MrOVbEIABa9GnV2BrzEL0C7K/j7V19fj2HDhuH9998HAAwfPjzkUM1XxeKPW09ApVSgV5YZ6uaw19AcLDZEoBXqusM1SDVqkJ0U/kH3kh++gkKhwPC/3h72vgghJGo4CdWGgBhA+vu3wAcPlaI9Y9Hd5kSPyyp/H9FuheoJp9wy2mh5AlJ1BCoWXTYxQGwZfHlaobrCOKmo1oszFuXMjlSqAGM6UF8ivVJUYsWizWbDjTfeiFdeeQUAMPScnNA7T3hboUo4lvHMqwxyojts9UfF98LcNei6Zi/8HTa7E/ePuja6ayKExMQn2z+J9xKiRt18cUaw6rmWFX7BtrW5bdCpdNCqtFAF+XnpqVi0aC0SVuufS87FQ4Cs+YZZxiyolWpsq9rmva3GIc4VNGnFVqgsL69iERCr2qJJyms0qo1wck6/czNrnbUwqU3Q+OjgoFFpYFAbUOWoCnutZo0ZTUyT/4pFicciTqcTo0ePxjPPPAMAOO3C06DSyj8vwvCMWLEosxUqAOjUOuyr3QdWYJFjygn6PRAtKxavQF1VHUaOHRmX5yeE+EfBIiEJTKVUgOcFycEOCY/DLS94anAwcLE8kvWaTjmTxqJXo8HJwM1J+8MjWMXigQMHMHDgQGzevBlnnHFG2Otzse2fb+6W4+iTZUFWi+BPrxF/FTY4wq8QWOOZr6gPb74ix7JY+PVMXHntjUhKSQt7XYQQEjU8Iy1Q85y88xyytD3xwwY5kRbrisVQgrJot0L1nAyTUXkHxhMsRuAqc7dNDCpbVSx6WqGGNjMIgBgsym3xCojBmLUMkNo2jrGLVY4BHDt2DP/3f/+H33//HWeffba89fjCucXwTkqlgOeEXbQrFit3iR/NWQE3EwQB7875ESP/cjHyszOiuyZCCAmTJ/TwFyx5tAx83HzgbRvdjdApdVApggcq9a56qBQq6FV6Cav1zxXseKgNOa1QVUoVckw52F+33/s+VNnFMM2kMUGtVIvBosQLpfRq8bVaQ7kYS6YTjScC3m/UGMELPBoZ3yFnjbMGRo3R7+fSorGg1lkrqwLU5360lsDBooSKxYqKClx55ZWYN28ezj///LDWw/AM1Aq17IpFQGyHerjhMHQqXdBWwNE0b+Y8nHfpeSjsVRi3NRBCfKNgkZAEpvJWLFKwGAtOhgcnI8QtaxBPdFkM4YVMHVWyQQOrg5UcLNoDBLMrV67EgAEDwHEc1q9fj0GDBoW9vrYViwcqbdhVZkWvLAuS9SevVPRULIYyQ7Mlq5PBnjIrclOMMGnD+5yv+WMpqsqPY8Ttd4W1H0IIiTpOYrDovdrc0wq1zc/cYFfoO+qBEK62loxpE06F1NozBjMWgdAqFjXhnegEz4kBHtPU4nOJ5rBTAYRTraDWN7dClfl72JwFNFVJfz/cTSeDUB82bdqEiy66CLW1tVizZg2uvTYCVXocAyjUEoNFTyvUKFcsVuwCtKaTcyr9+H3dVuw6UIKHxtwQ3fUQQkgEeCoWgwWLXIuLWIK1QrUxNmjVWkmhTL2rHkaNEWopM3UDcPHygkW5QVhBUgGO2Y7B1jyDudIhzltM0iZBq9TKChY9bV+jXbEIALN3zQ54v6d6st5Ph4sahxgser5O2krSJcHqsgb9+gnGorXAztr9VsPa2cDHLDt27MCAAQNw6NAhrFixArfccktY62F5FiplaBWLepUerMAi15wLszY+LUj3bt2LXVt24cY7b4zL8xNCAqNgkZAEdPz4cQAA43KAO8Vbof6xpxKVVnlzCELlYuUFi+XNwWKSIQLtxzqgJL0GNifrs+WoL/4qFgVBwAsvvIBzzjkH69atQ8+ePSOyPifDQdWiBe2C4uMwaFXo3dUMZYvb1Sol1EoFrM7wgsVNR2rBC0B+mqHV/kOx8MvPcOa5F6FH335h7YcQQqKluqYaAGBtbJRXsej9d9uKxSAnchy1gDa8uUUBcRGYsRj1isXmk2Ey5vN4Q7dwg8XmE5Bw29sEgAoxXJRTRdmWWit9VmdLSTmAvUb654qxBwwWX3nlFXTr1g0bNmxAv34R+v3LusTAUErnCk/FYrDvhXCVbwMs2YAm8PfTu3N+xFk9C3DFRXQsQgjpmJps4s//8sPlUCuag8UgVYgt22pKaoWq1EkKFuucdTCq/VfESaGAAk6pVfjN5LRCBYDTkk9DvasexxqPAQCq7dVQKpRI0iaJrVAF+RWLDe4GWWuQI1WXCgBYdHgRGlztn4cXePAC7w05fW0DNFcsqv0Hi8naZFjdVtmtaNuyaC1wcS6/AWKwisU333wTycnJ2LBhAy666KKw1gI0B4sKVUgdtHRqcY52tik77NmhoZo3ax4y8zIx8C8D4/L8hJDAKFgkJAE1NIgHS7zLAQEAI7FirDO6c+ZGDHljRUyey8VysisWlQog1ej/JJYvHC+g8Kmf8MGKg3KXGFMpRg1sLunBorPNjEqe51FSUgKFQoHvv/8eS5YsQVpa5Np+ulgeGk/AJwDzio7jzOwkZFjan1zVa1Swh1mxuP5QLZINGuQkh3fy9vD+3SjesBojR1O1IiGk42psFK9Od7uc4c9YBCS0Qq2LTDtPf9o+P9ME8DKPr2LVClVWsGiDGP7pwntuT2tYxtE+JFZpJc8v9EmtF8NKVmalniVL/DpqKJG2vbt9sCgIAo4ePQoAmDFjBv744w9kZmbKW0cgHNNciSglWGw+2RntGYsVOwFzJqDx//109HgFFv6+HhNHX98p2/kTQjoHh0P83WNrsEmvWBQ4CM2/r4OFcjbGJmm+IiAGiwa1wW9wJYVKoQoajLbFyWwjXpBUAADYWrUVgFixaNFYoFVpoVFpZFUsxmLGokKhQK+UXqh31ePbvd+2uo/lWSw6tAgnmk5A13ycU+eq87mfWmet+PlR+AkWdcloZBqDVrEG46ns88yubMvBOtqFz5VNlRj2yTB8vvNzvPvuu1i1ahW6desW1jo8WJ6FWqkOqWLRoBI/v1mmLGgDXJgVLfU19fj9x98x4o4RUKniM9+REBJY3IPF9957D4WFhdDr9RgwYAA2bNgQcPtp06ahd+/eMBgMyM/Pxz/+8Q84nbGpViKkw2m+stvXLLlTSbgtLKVysTw4GScNyxscSNJroFfLOwjyBHULi47LelysJRs0cDCc5EDOwZz8A6WpqQm33HILLr30UjgcDqSkpECrjezBqpPhoFKJB9D7K204VudAr0yzz/mHeo0STe6Tf2SGYs3BGhSmG2HRh1ehuvCrGUjLyMRlQyLQgo1IQscihISBZyVWLIbbCrUuYBASNtbdOkh0N4UQ8MSoFapLRjUlYwfUupPVcKHytIZlHe2rTcMNFj0nqxiZVaKeGYHV+6Vt77adDGcBuFwujBs3Dueffz7q6+thsVhgMET4ayyUGYsyTyrLwjiBuiOAsYv4deHHB18vhsVkwJgbrozeWkg7dDxCSGg4lvOGf8GCIVZoUbEooRWqRqmR3ApVr9KHVbGoUqpkz1i0c/I6BnQxdIFepcf26u0AgEp7JcxaMzRKDTRKDTiekxwsesK8aLdCzTBm4LTk0/D9vu9bVXRO3TT15EbNuZm/isV6Z/Pnx8/xUIouBU3uJtkVo22ZNWKwWOus9Xm/nbW3CumqbdUYcMsA/Prwr/htx2/Q6XWwWCxhraElhmdCrlj0VKTmmnMjth45fvrqJyigwDV/uyYuz08ICS6uweI333yDxx57DM8//zy2bNmCc845B0OHDkVlZaXP7b/88ks89dRTeP7557F79258+umn+Oabb/DMM8/EeOWEdAyK5qvTpFaMkfC4WR4cJ/2k4fF6B5IMGmhUnfNKb0+L1yqbtD9+PK1Q66orcMUVV2Dp0qV47733In8Sr5mb5aFWir/mVh2oRopRgx5dzVD6OKjWa1RwuDmwIfYVtrlY7DphRU6qIaz5ijZrA35b+B2uu3Us1JrO2UK3o6FjEULCo+BZaZV6npN3nk3bhlPBZto4G6IbLHLu1q043Xb5s+5iVbEop+2ou0msVgzjRKe4n+aKRYE/Wb3oodaK8xdlznk6+fjmgEtu+1lzBgAFUHNA2vYtWqFWNzRhyJAh+Pbbb/HOO+8gJSVF3nNLxbqag0UJx4Kez1E0ZyxW7xW/zi1d/YadDqcLn3y7BHfddBVMxjBb6BLJ6HiEEGDK2inoN6uf7PaeHMt5K9GCtbKUM2OxiWkSKxYl/A6tc9VBr9aHVbGoVqrB8Iysi10dbnkX9igUCuRacnGw/iDcnBsVTRUwa8xQK9VQK9WyWqEqFUroVDrYGFvwjcM0tGAoTjSdwM+HfwYAzNs/D1/s/sJ7v14l/r7yNWOR4zlY3VYYNUa/IXGKPgWswPoNBKXyBIt+KxYZB7RK8Vikrr4O/S7vh6O/HEX3Md3BW3jZX/vBeFuhhlCxmKZPQ5YxC6n61IiuSQqO5bDwi4X4y8i/IDk1OebPTwiRJq7B4htvvIEJEybgzjvvxBlnnIEPP/wQRqMRn332mc/t16xZg0svvRS33347CgsLcfXVV2PUqFFBr+QjpLMSmg86XBQsRp1aqZBdsXiiwYkkvRoaVdyLw6Miubkyr7JRWrDoZDi4Kw7iP3+/ERUVFVi1ahVuuOGGqK3PyfJQN7dCPVbnwJk5SUg3+b46X69RwclwYGUExy1tOlILThDQLdUY1nzFpfO+BsuwuPaWO0LeB5GHjkUICZPkikXPybvmn7NyW6E66wNWWIWNcwMt24kxdvkVi6EGa1J5TlbKqQ50N4nBn5SKuUBcLaoRHG3ajKl04ucv1NevCjFYVGkBfbJYgScF4wBUGuyu4jDggfewb98+/PHHHxg1apS855WDc8tvhRrNYLFip/jR4r/64KufVqDOasMDt18XvXWQduh4hBDg+33fAwD21u6V9TiO5aS3Qm3xu77ltpyPOb92xi65YrHB1QC9OsyKRYUKDM9IDvYAoImVPxO6MKkQx2zH0OBqQLWjGkaNOHtQo9SAF3hZ7UB1Kh2a5HYcCEHf9L7oauyKObvnYFP5Jryw7gVckHmB936FQgGD2uBz3mO9qx4CBG/rVl+StEkAxArOcHhboTp9B4tNbBM0Kg3cVW5Mu3MaqvZW4e637kb/6/vDwTrCbsXaFsuzUCqVIVUsXtv9Wow9YyySdbEP9lb9sgqVJypx47gbY/7chBDp4na22+12Y/PmzRgyZMjJxSiVGDJkCNauXevzMZdccgk2b97sPVg+dOgQFi9ejGuu8V8W7XK5YLVaW/1HSKfRfFDsYihYjDaNSgk3y4GVMW+pvMEJcycOFj0VixVWae1CnAwHnnGjS3YeNmzYgP79+0dxdYCL4aBuUS3aq6sFJp3vK0iNGhUcjLzPb0vrDtUiSa8Oa74iz/NY+NUMXD70eqRldA15P0Q6OhYhJHwKgWsdyPnT9kRJ2/Ak2IkUpzW6MxbbVixCCCHgiXbFYnPrLLeMikVXo/i4cINFd4tqhLbVAGqdWLEY6uv3BMahnJg0dwWsJ4IH04D4vik1cHFA1xQz1q9fj4EDB8p/Tjk4t1iJKOWEnjIGFYsVO8U2qIYUn3cLgoB3vliI4ZdfgB4FOdFbB2klFscjdCxCEonccIVjpAeL/lqh7q9r3VZbEATYGTt0Ei9qsrqt0Kl0kuYx+qNSqsDI/B0QSqjXPbk7mpgmHLEeQZWjCkaN0dsKFQj+HrakV+vhYByyZz3KpVAoMKTbEOyt24uHfn8I+eZ8XJ57eattDGoDGt2N7So+PVWIRo3R7/49wWJFU0VY6/S0w/VX+eipWBQ4AUq9EhNnTMSNw2+EWWOGnbFHvmJRECsWlSGc/ler1MhPyvd+XcTS/FnzcdYFZ6HnWT1j/tyEEOnidra7uroaHMchMzOz1e2ZmZkoLy/3+Zjbb78dL7zwAi677DJoNBqcfvrpGDRoUMB2Hy+//DKSk5O9/+Xn50f0dRASV83ziagVavRp1Uq4OR5ycqcKqxNmnbpVuNWZWJpnFVZaA5/MEwQBX3/9NRxON/R5ffH0u98gOzs76utzt6hYBIDuXfz/ISFWLPLgQmyFuvZgNQrTTd6wNRQbV/2OE6VHMGL03SHvg8hDxyKEhE8pcDJnLHr+3ebEGRPgd4nAi8GWJoptGTmmfUAquxVqjCoWWTkVi7bIBIutKhbrW9/nrVgMM1iUW7EIAJYswFYp6bHfbzwOJ69C/ywV1rx7PwoLC+U/n1yeGYtyKhbZKM5YLN8uvmd+2gqvKdqF4t2H8NCY66O3BtJOLI5H6FiEdGYcd7IVqpSKRaH5QphAAaaDdYAH750jGIibc8PBOgJWxEmhVshrRQqI62xJStBYkFQAANhSsQUNrgaY1CYoFUpomluuy5kzaFAb4OAcrQLbaLko6yJYtBaolWoMLRyKbkndWt1vVBvFcK7NWrzBotr/+QBPVV6FPbxgUaFQwKgxot5V7/P+7cu3Q82occ4Z5+CxWY/hqguuglFjhElrgpN1RrxikRf4kGcsxsuhPYdQvLYYN46nakVCOrqEKqNZvnw5XnrpJbz//vvYsmUL5s6di59++gn/+c9//D7m6aefRkNDg/e/0tLSGK6YkOgSmk94MRwFi9GmVSnhZgXJFW2NTgZ2NweLTu1zpl9noFEpodcoUR1gxqLb7cY999yDUaNGoW6feEV1rA5qXSwPT07YvYsRaX7aoAKAUSu2QmVCaIXa5GKx44QVuakGGMOYr7jgy8/Q88yz0ffs80LeB4k+OhYhpDUlJAaL7SoW285YDBAsekKjaFYs+mrlKbsVapQrFgFAqZEZLDa3Qg2jggJA67mKjjZX4at1zRWfYc5YdIUSLOYA9uqAVZwcx+HRRx/FLZ8ewPdF4tpjdoKN88xYlPBnt+dzxEcxWKzcBZgy/AaL736xCD0LcnD1pXQs0tHJPR6hYxHSmXEs560UdAf5GdqqYjHABUSeuYFSqrU8IVK4waKnYlGQ0QGg7XxDKRVvKboUmDVmrC1bCwGCdy6gp+rTxUsbdQKIFXpO1hn1ikVAfH8m9p+IUb1HoWdqz3bVoUaNEXbW3u7zWucUW7hbtBa/+9aqtNCpdKhyVIW9TpPGhEZXY6vPBc/z+Pe//41Fzy3C8eXHMe6Mcbgs7zKYNCbxMWqTGNBGuGIRQMgzFuNl/qz5SO+ajsuHXx58Y0JIXIV+BjRMXbp0gUqlQkVF66tBKioqkJWV5fMxzz77LO644w7cc889+H/2zjtejquw/mfq9tefumy5yVWSu43BBQyhxRB6MaFDfmBIgimBGDCYGgKhGNNMT7BxMCWYYuPeJEtyUbd61+tl+06f3x93ZnZ2d9qW9/Qk3+/n44/8dmd3yu57e/eee84BgBUrVqBUKuH9738/brjhBrBs4xe2WCyGWGwG+1golKOIqWsASzsWZwOBZ6CUozsWR3JklV8mPvuxEbNJJiZgqqTAMMyGbsHJyUm87nWvw5o1a/CTn/0cN20fmNVjU3QDFZV8wRlMxxEX/CdVkyJHOjRbcCw+dWAaumFiSW8CXIv9iocP7MX6Rx/Ax7/07WNqNeGxDh2LHKfIRSCWPtpH8ZyBhdFkx6JFg9AYQVicSceioTaeRzORowBmPAoVADghWuynjVIEWJHEcbaDYkWq6kqjY5GPkyjUVoXVVjsWAeK+0ySgMAz0LGm4O5/P4y1veQvuuece3PIPg3jb85cCh4ZaO85W0JqIQrVfoyYi6JqiNAmUxomwaMfquhgancSdf3sMX//Eezw/yygzx2yMR+hYhHI84+5YlIPGE/DvWKzHFuyiOBZtYTHOtTdO4RgOqqk2RHkGUVZrxypRH7s0sxRbJrYAAJIicfLZImqzjsVpabrjTjs/FqUXYVHaO6o7yScxLU03OBYnpUlwDBfoWASI8DglTcEwjUi9mn6khTSKahGqoYJneZTLZbzjHe/Ab3/7W5z3rvOw/O+Xg2f5mveW7VhsJoY2KhzLtXU+s0khW8C9v7sXb/7Am8ELR02yoFAoETlqf1lEUcQFF1yA+++/37nNMAzcf//9vl0X5XK5YYDMceQLWDMfvBTKcYM16JC1mV8d9lxH5Fjohhn5Wg9bwmI70ZjHApk4j7ykQqlzzU5NTeHSSy/F1q1bcf/99+N1b3zrrB+b7IpCDfuMSIgc5BY7Ftfum0QmzmNJT+srVP/061+gu7cPV7381S0/B6V56FjkOOSxbwJfWQyMbD3aR3L8EBLLyEUVFutXYNcLjUH7sfv9ZrRj0SMKtd6ZF8ZMR6ECRFhUW3Asth2FWgRiGSJ+eXUsdsKx2IqwmLaiIyd3NdxVKpXw/Oc/H4899hj+/Oc/44MXicTxOZu0EoU6Ux2LY9bfxbS3UHXrb+5GTBTwzte8ZGb2T/GFjkcoz3Xafc/qWjUKNayjUHf1KQc580rWZ1KMDRcWc3IOQHCHX5Rz5Fkemq7BQO3nqWma+M3O36Do6ju2hdSSVvvZGdXtuKx7mSPCdoskBtQWFsPEWTcJPgFJl2qu69EiLaQ9HYtT0hTSQtqJevWjS+xCTs61LZK6hUVFUfDCF74Qf/nLX/Db3/4WJ//DyRA4oUHoS/JJ6KbeIBR3Aq7dxWWzyD133gNN03DNW2kkO4VyLHBUlyxcf/31uPXWW/GLX/wCzz77LD7wgQ+gVCrhXe96FwDg7W9/Oz71qU85219zzTX4/ve/j1//+tfYt28f7r33XnzmM5/BNddc4wyiKZTnEoZGJukk9egP4o53RJ78uSwp0aIpRnISGAC9yeNbWOxKCMhLWoOw2Nvbi7e//e1Yu3YtXvCCFzjOwdlE0YzIDsKEQByLagvu3zV7JrGsP9WWO3XtI/fhir+7BmJsBt04FE/oWOQ4Y4SsvMaRJ4/ucRwPOPFSwRNUkYXF+om+BmExYHW8LTiJqfD9tIquAvWTYuXJ5p6jhcUpTWO7BqPuSykRMa1dB5qUI85EPg7I+dr7+Hh7wqK9Yr+VybSMJSxO7G64K5VK4R//8R+xZs0avPSlLyURsiGTih1HU4hgGMWxyM6wY3F0G3kvdHk7Pf788Hq86oWXoDszg79nFF/oeITyXKZdUcrQDEdoC41CNZqLQo1HSEuwHYt2rGU91/75Wlx2+2WhcaEcwxFRq27otSu7CzetuQk3rr7Ruc0WAeuFqKj9jPMS85z/7xK7ACCy69NNkk9C1uUZifBsFtv1V38sk5VJJIWkc35+dMe6kVfyTZ2/Fxkxg7JahqIrEEURb3vb2/Doo4/iNa95DSpaBTzLewqLAHy7GduBZdhjJhXpiQeewAWXX4C+eX1H+1AoFEoEjqqv+E1vehPGx8fx2c9+FiMjIzj33HNx9913O6XlBw8erFmF9+lPfxoMw+DTn/40jhw5gsHBQVxzzTX40pe+dLROgUI5qpjW6n6lhV44SnOIHPlbVJSjDZiHcxIycR4J8fj+Yt+TEDCUrUCxBLkf//jH6Orqwhvf+EZ85jOfcbY7OsKi7jgWw0iIHEwARaW546woOjYdzuHFZ85DKtbaR+rk+CgO79+Dd/7zv7X0eEp70LEIheKD7SILWWHPMVEdi2Edi0GOxVkQFr2iUMvTAQ/wuC7mLEyq2VGopoFIa0TVMpDs74BjsUAEQCFB3Ivu94UQJwJaq44TliXiWyvCopAExDQwvde56de//jXK5TLe/e534xOf+AS5UVeJa9YjAnRG0ZuIQp1px+LoZhId6xEVnS+W8dTW3XjfG142M/umhELHI5TnMlHFMD80TXOEmjC3mW7qjqsvSIQsqWTsEaU3cVqaBgPG6SqsZ9PEJgDAocIhLOte5vs8PMujrJYbrsdwcRhAbT+w3ZlXqetdbrbnMc7FIVqfjS1FoQqJWetYDCMtpFHRKw3vgcnKJJJ80nG1+tEd68b+3P6240i7xC4cWXcEPzz0Q9zwsRvw4Q9/2LmvolUgsB6ORWHmhEWOOTaiUFVFxZYnt+BdH33X0T4UCoUSkaMeWPyhD30IH/rQhzzve+ihh2p+5nkeN954I2688UbP7SmU5xqGJSzK1LE44wi2sChFmzQcylbQlRCcxx2vdCcFFGUNFVnFxz53A77xjW/gIx/5CN74xjfWbFdpUrDrBIpuIs1HE3YTVv9iodLcZN7TB6ehGSaW9qVa7lfctH4NAGDlBd5RV5SZh45FKBQPbGdXyGQfxyCaEOLexjQ9olFDhEWGnXnHYkMUaoBj0eucZ0oQcsPZsaM6In2VU8rEpdYJYZEXASNBXg/3udrH1E7HJCe2JiwCpDMwNwRTU3DTl76Cz33uc3j3u9+Nd7/73dVt7PjY2XYsOlGoEa6/41icoffRyBYSHevhvnn86a0wDANXXnTOzOybEgk6HqFQarEdZmGORl3TwTAMOIYLFYXcAliQY7GgFAAAcT7csZiTc5EccWGiJ8dw0EytIc50pDQCoBpZ6qZeWGw29jIjZhxB0T7+ZjsWZV0OjaCdDZJ8EpqhNbg4p6QpJIUkODb42vTGelFQC5Cb6bKuwzRNbPrtJuy6eRdWv2o1zI+aNYKwpEtHxbF4LLBj0w7IkoxVl6462odCoVAictSFRQqF0jqGSgY8ikYdizONyFsrAiMKZEO5Crri/PEvLCYEFItFvOvaN+HBe+/Gd77zHc8JkaMWhZqIJvbFLWEx16Sw+MTeSaRjPJb0tB5hunH9aiw9+TT0Dgy2/BwUCoXScWxnV5RoqygTMO7nKY3XiSdM8HMoJeJMm8mOGK8o1FJAx6LXxKU+W45FpVEE9UOtkNeyI8KiK7LUPTnKi+TatbPCnxOD43CDyCyANHUE7772Wtz+v3fiS1/6Uk1kpHPMwFEQFlUiGEZxLNpOija7nTwxDGBiB3DSlZ5dpQ+t24wFg704bdnizu+bQqFQWsR20oXFbOoa+UzkWT58W1N31sEECX0ltQSRFR3RLYhpeRoJPhEqXIUKiywHzdAa+hhHy6MAvN2Isi7XbB+1Y9EmLaQdQbHVjkUTJopaMXzjGcbP9TctT2NBckGkKFTN0JCVs1icaf7zUFM1fOvT38Jfb/8rBl45gJu+f1NDBGlFq3h2Pc6kYzHsvOcKG57YgGQ6idPOPu1oHwqFQonI8T3jTaEc5xhOFCp1LM40tkBYiOhYHM5JSMcFCNyxkWXfKl1xAVP33II1jz2CP/3pT/jwhz/smd9/NHpAFd1oKgoViB51a7N6zyRO7E8i3Ua/4qYn12DVRdStSKFQ5hiOsBhB5IgiCLmFRKNOhGK5YJeWUiIRnCETdgCAp34BHFobvl09hodjUcr6b+8los1GvxAnAobSKIJ6YZpEUOM7IKYpBbJvMWUJi65ztd0cSouOQ4CIlprUWk9lZiE+eude/OGuP+E3v/kN/v3f/71xLOIIi0cjCpVtsmNxBoTF7H4iMqfne/4ePbx+M666aOUx08FEoVBmnn25fXjw4INH9RhEtjlh0eko9NvO0GuEt6Bti2oRMS4Wye01LRFhMSxqM8zVxzNEGPVzLHohaVKNo7PZWNmUkGoQFpt1LAJVh+fRxO64bBAWpWnE+Xjo62N3TdpCbrP87L9+hnvuvAfv+sK7sOANCzCt1Ebqa4YGzdAgMB7CouVYzEm5lvYdRJjgPVfY+MRGrLhoBbiIqVMUCuXoQ4VFCuUYxnYsylp7nQRRKCtkMC/wz80Jh2Y7FkfzEtIx7rh2LOq6jq4Ej54r346v/Oz3ePnLX+677WxHoZqmCUVrQlhswbEoqTo2Hc5iSU8CqVhrg9/piXEc2rsLKy+8rKnHjUrkvHISXVRAoVBmCFuAieLCi7KyvX7yzj1JyLDBAqbtWIwyMfLQl4HV321eoDKNRkEnaHJHUxr3MRvCIm9HoUY4PzsytRNimly0hMU0Eenc7wv7+bU2hEVOtLojm/tc03Ud6FqEGy9n8cjvforXv/713hvaUahezpPJPdX7O41hdSxG+drNMOR3YSaExdGt5N/Mgoa7iqUKntyyC1deTGNQKRRKlT/s+gNueuImZIMW2XQIPzEsxhGnfGhvol51LAZFodoCnNOxGLBtUSHCYpRoUVtYDBNwimqwq892LBqo61gsDfs+RtGV0KjYIJJCsiEKVTaiOxbtqNi8nG/5GDqFV5yoqqsoqkUk+WTo4pnuGImabVZYtN9/b/l/b8E37/gmXvr6lwIAJqXaSH07ttbLBcuxHERORE6ZAWFxJhM/OoSmatjy5BasuoTGoFIoxxLH74w3hfIcQFcVsAyg6jMfhXp4mgyC+lKzvNJ7jiDw5M9lOYJAVlY0FCQNmZgA9jhd+f3IPXfhg2/4O3ByCXzXPCQWnBy4/WxHodq/E3xEYdeOQs03ISw+fXAaqm5iaV8CPNvax+mmJ1cDAFY26VhUDfK+MmgKMoVCmSk6HYVaL1DWOBZ5ItT5oRaJYzFKnGcla4lTLfyBrO/4kwv+kaO6h2twVjoWRe8+SC+UkvWYWPv7VUouYbFSF4VqPb/ShjjHx8j7KGrEK4C/PLweq/7hQxiW4piXYnHhkoDzVHyiUA0D+NGVwINfbuGgI+BEoUbcnuFmJgp1dBt57VKNseuPP70Num7gqotXdn6/FArlmMWAAc3QIOktxlQ3gZ/AZ0dGhjkWDWuhtdNRaHqPAeqfJ0iwLKgFxPhojsWsnA10xDHWh0CYq8/v+EfK/o5FRVdqeiOjOhbt7RJ8wjlHW1hUgsZkddhi3lxwLNpxotNS1Sk4LZP/TwiNMbL12B2Wo6XowuKGJzbg3S95N0YOjSDdncY5F56DtJgGAExWfIRFn1j2BJdAQe38dQxzas4Fdm7eCaksYdXzqLBIoRxLUGGRQjmG0TUVPMtC0WZetBnKkkFQjPNf7bRztIC81PpkyP6JEi776v0wWonBmmFsx2IpgmNxJEe+fGXic38A1yymaeKOW7+NL1z/Ppx4ynIM9GYAAGP54C+crQqLX79nB974gzXYPtLcCkjZjsOJ+ClnOxajRt0CwNq9U0iJHBb3Jps6Njcb16/BkmWnoH9wfsvPQaFQKDNCxzsW68YHbhEuimORj1c76PxQJRKn2WQMWHU/dcKiUgwQC81GEcycjSjUmNUHGeEcHWGxE1GoRbLvmCUs6h7CYr0w2wycSJyvEVwXpmniO7/6C675wOdxytKFyMw/gdwxsdv/Qfax8XXiY2GICMgjm1uLYQ1DVy1BPOKAhOVmxvk6uhnILCTO3zoeXr8Z8wd6cfpJSzq/XwrlGGB/bn+oI+65imZoTUdrNoPt3FIMbyErsmNRtb/7cdB0/2PW6j6ng6JJi0oRIidGcnvl5BziXNzXsWjfXg75nLQ7IuuPf7w87txfj6zLNY7FqB2LtoAV5+LObSzDgmO4lhyLM+G0axYvx+KUNFVzXxAxPgaRFTFeGY+0v3t/cy8+fu3HMTB/AKlMyrk9wSfAgHH2bRPkWASI+FlWyqFCerMcC1GoG5/YiHgyjuXnLD/ah0KhUJqACosUyjGMpqngWAaKPvNC3JFs+Cr0a29di2/du7Plffzn33ZgKCvhDxuGWn6OmYJlAJ5lUFKiC4tdbfTuzUV0VcHG//kS/ueWr+Ht130cn/ra95BKJhHnWYwXgr98tNqxuOFQFuv2T+Hvv/MYvvTnbY5gGIYdDxzVScixDASOaapjcc2eSZw4kGrrdd785BqsvJD2K1IolDmILUZFmdyIFIVa71h0TebZYoqPwwCaTITFsL/pFWuFequToFrdWEcteXcp2jQ4FmcxCrUZx2K9mNYsTlej1bGoSbXXxXZEthMnyseteNng81I1A9f970H8y9d+juvf+Rr87uYbkO4ZJI+f2hPwwEp1P24mrccURxtf/05gC4tREyxmyrE4sgVIz/MVFq+48Gzar0h5znLNH67B+/72vqN9GHMSwzQiC1WtYAuHfo5F+/56QbAeTSP38wwP3dQbokRt9LrPmEDHolKAyIqRHIt5JQ+R9Rch7ecIjUK1Hu8WWjVDg2yNs7wEIsVQaoTIqK9XTiZCYLzuczEsTraeudSxyLEcYlzMOTegKiymhXSk58iIGUxVpnxdrwBgGiZ2/PcO3Pypm/HyN74c//HL/0CmJ+PczzIskkKyxjkJVIVF0SeiPsknUdY6LyxGeQ8fbTau3YhzLjwHvHD8Lc6nUI5n5v5fFwqF4ouuaeBZZlaiUMOERcMwMVmSMVmKPghtwDoNdRY6I1tB5NlIzrthS1jsTR1fwuLk/m0Y3fQIPv7V7+EfP/hRZwIqHecxXVYCB9/tdCyeNi+Ni5b14ieP7cPV33gYq3dPhD5GcYTF6JNkcZ5DIaKwKKk6Nhxqr18xOzWB/bt3YNVFzfUrUigUyqxgi1GRHIsRYtLqXQHuyTyGC3fh8bHwjkVHWGxxXOR2ErAccTAGnX/98c5GFCpvRaFG6VNSLWHRZ2V8ZNQyOVcuBggp8v+ya3LUfq+0I8w5gmnw+23LoSx+uW4St974T/jPT7wHHMcR0S41COQO+QuT9mtbHws7abkcy5Mz07NoKFYUasTxCMt1XqBWK0D2AJAcbBCZS2UJ6zbvpDGolOc8Y+Wxo30Ic5KZdizaolZYFGqY0GVYC63tjsJORKEW1eiORcM0wDKs7wIN+zlCo1CtcY77fCcq1e++jEeutqIrNecV9J3cje2etIVBm2aFRVv8nQvCIkDeU+44UVtYzIgZv4fU0CV2ISfnfF20ADB1eAqH7jmE99zwHnzkyx/xFMNSQgp5JV/z+2Nfcz/H4kwJi15O17mErunYtG4Tzr303KN9KBQKpUmosEihHMNomgqeY6BqRuQBpI1umNCbKGjLloMny4qKBsOMPpA9FonxbCSBbCQvIRXjkBTn9gAuKgcPHoRhGJh32rm46sb/xRUve3XN/V1xAbmKFuicbadjkecYvPXiE/GRF58GwzDx1h+vxb/++hnkKv6DfduxaFj9EKVCNnQ/MYFFRdFgRPi92HgoC0U3sLS39X7FzU8+AaD5fkUKhUKZFWzHYhSxTIkgLNZPkrjjUx3HYpCwGAcQVVhscRLULSzxCSJGBZ3/0YpCNZqMQhXiwduFYYuIvAiIluOt4lqFz3fIsajLvud1+PBhaJqG807qw77PrcB7X3t17Qbp+cR16Bcz5xeFajsWK9ONUbidQFOhGgxOuvpdeHprQFSrzUwIi+PbyXXNzGsQONdseBaapuPKi1Z0dp8UCuW4QDf1Gf1+H9mxGPJ3UbdSbXiWh2b6i6G6Gd2xWFJLkR2LYUTtWLS78GRXEsRIyb9fESDXrsaxGPH1uuaUa3D+vPOxMLWw5naBFQJFtXpYhkWMi4W6MWeLJJ+siROdqkxBZMUGAdWPrlgX8kre8z05PDwMWZbRf0I/rrjlCrz6Xa/2FZPTQhpFpVjzPLZjMebTfZ0SUqholY5HM7MMC8Mw8PYXvh0bntjQ0efuBLu27kKlVMGqS2m/IoVyrEGFRQrlGEa3olA1w2h6cf5X//os3v3z9ZHExSiD05wlPDahVR5ziDwLSTVCr9lITkJXXIAQteBvDvO3v/0NK1aswC233AIAiKV7GrbpSvAoSKrjEvSi3IZj0ebMhd349CvPxMvPXoC/bB7BVf/5EP6w4YjntvaxaBKZJJTLpdDnTwgcKooBLcKb+Im9U0iKHJa01a+4GouWLsPA/IXhG9ehWJe6mcUBFAqF0hR2TFMUYbEVx6JnFGqQsJiAx0L9WirTIRuE4BbGhCQRo4Imd46KY9HqWIwUhWqLae0Ki9ZEKBcnUagAIGVrjwmI9j7wg4v5RqE+9thjOPfcc/HVr34VADCY8Vjpn1kIlCb8xUG1ArB8o+t1cheJKtUVoBg8edsShoqyYmD/kVEcGIrgiGI4IlB3su9xdBv5t2txw10PrduEgd4unHXqCZ3bH4VCOW7QTb0hPrQdVvxiBa75/TXOz3YkpOzT1Syy5P4wocsRFhkeuqH7Cou2YGPHhYYJiwIndKSfzhaXWnEsjpZHfbfnGR6qodYIpn4xsPV0x7rxjrPfgWXdy2qfk+Wh6qpzDaPMBcW4GEpq+Pft2SDJJ1HSSo6wOC1PIyWkIrv2emI9KKiFGnEXAJ566ilceOGF+PSnPw0AELu940xt0kIaJbVU8x6LKix23LHI8JAlGYf2HMLIoRkY67TJhjUbEIvHcPrK04/2oVAolCY59me9KZTnMLqqQeBYaIYJvUllce9ECUPZCg5Oha/OnooQb5p1hMVjW+jYtYusJj+4d1fDfTGeg6zp0EIme2RNB8cy4JqI4ZyLfO9738MrXvEKvOAFL8A73vEOHNi/DyOH9jds1x0XUZC0QGGxougQuPavh8hzeN0FS/Cpl5+B/nQM//rrDbj2x09gaLrWJeF0MTYxKI8LHCqqHkmsW7N3Aif2J9GVaD1ebtOTa7Dy4tZiUMck8vFdVo/t3zcKhTKHsYXFKKvWfSYEa6hf+e3+meHDo1DFCCvNK1Ph2wThFqWEBKBKROzyo36ytUMTQUeGSNf05p0HGu/kmohCVWynYbRV+v7PY02E8iKJQgWASrZ6P8sTca4dYVGIk/dE3Xn98pe/xNVXX40VK1bggx/8IHbt2YO9Qx6R6F0LASnnLy6rZXLt6p0nk7uBHktUm97f+vH7oatQmqksYDnrfdXBz/fRLSQqNt7dcNfD67fgyotW0H5FCoXii2JGc69JmoQVv1iBZ8aeCdxuf36/I7DEObLwRTK8Pz9s4THMwWULixzLYcvkFvx1/1+9t6v73LYFHElv3H+nHIuKrjgdke6ITi/syFQ/x2K94CRwxF3oFhabcZiyDNtwfjxLxMrpHPk8PbDLYyxSR5yPo+JenHUUv6KmhBQqatX1N1GZQFJINiUsFpUiVNdisd/97ne4/PLLsXTpUnz0ox/Frp27MDEcXM+SFtMoqsWmhUVJkzrfsciyUOQ2KotmmI1PkH5FQTy+qoQolOcCVFikUI5hNMuxqOpm045FSdVhInzxPxDerwgAuUrzq/T3jBfx40f3Nv24mWRsjKwmn54cb7gvxrOQNSPyIvJjdYpG13X88z//M6677jp8+MMfxh//+Ed0dXVhenoa2cnGFZPdSQElOTgKtaxoEDvo4Fzal8TH/2453nTREmw8lMWL/ush/PDhPU6MqS1yMk2ssE2IHCQ1mnD8zMEslvQmkBJbW8Gaz05h385nsfLC5mNQZU3HhHysvrsoFMoxg+NYjPB3VI8iLNY7Fl0THJGjUENo27FYJyyaOiDl/bdvcCx2ZiJocpJMVk1mPfbNieS4tAjjLr/4z2ZxolDjrijUOhGXE4kQ2yp1TkzDMHDDDTfgHe94B972trfhnnvuQV9fHyYmJjE25TExm1kAwASm9ng/v1ppFBZ1DcgeBPpOJj9P72v9+L0wdcDUoTZjPozyu9AsI5uB9ALiwnVRrkhYt2kHjUGlUOp4wx/fgB9v+vHRPow5Q1gMqc2eLPn7e+umW0O3tcUvW2DxdSzawmJIIoCmkmO0u+u+/dS3PbdzBDhr7sQWfepjL03TRFkrI9bu5ydQ4+Qrq+VAB6gtftU4Fkuj6I/3NzwXQM5X1dWa18hsU9UTWAGaoaFQIJ+1pUKE5B8+gYpenTOayV7OMFJCqqancLIyiSQfXVjsjnVDMRRk5SxM08RXvvIVvO51r8OrXvUqPPjgg1iwYAFGR0dRygVfly6xC2Wt3BCFyoDx7VhMCSlIutTglmwXgRGgyrOQqtECuq5j8/rNNAaVQjlGocIihXIUWL9/CnvG28+g1zUNPMtA042mnYKyahechwsUQxGExWxA350fb/zBGnzxz89i38TciM0IwxYWw4SnuUiurOIHLuEtCIZhMDIygu9///v45je/CY6rimea0vg69yQElBU9sH+youodj4blWBYvOXMBPvv3Z+GMBRl85a/b8cqbH8W2oZzTsRgYYVdHUrCExRBnwabD5PmX9CbBt3hOm6x+xVUtCItr901BN6mwSKFQZhhHWIziWIzSsRglCjXg768QwXVX7rCwCABSgAvSnqC03V5RrlW72K+LFqHPUCmR7bk2O59t56OY9HYsApZ42cZkJh8j18+aCGQYBkNDQ/jP//xP/PjHP4YoViPHFNVjkju9gPw70Zg4AYCIo5xQKyzmDpH9dS8FWIGIjJ3EmjxuKg2e4cnjOpkAMvYskB5s6Np8YuN2KKqGqy6mwiKF4mb79HZ8+5lvd9w1NNfZMLYBT40+5fz87OSzAPz7DztBWMeiHYUa5lg0dHtuI3jRZ/1r6vcaV7QKDNPwFYCawS0GVrSK4170wsuxOFwaRlesCzEu1hClKrACTJg1jst2OzHteNVmxME4F4fkGgvWd1nOJikhhYpedSxOSVNI8AmnvzKM7hhx94+WRsEwDIaHh/HZz34Wt912GxKJ6lhU04L/PmTEDCpapUFYjHEx3/dp0loAlFcCFrW1AM/xc9axuHvrbpQKJZx76blH+1AoFEoLUGGRQjkKvOEHa3D1Nx6GFuDwioKuqeA5FrphNi0sVlQdMAE2grB4eHpmHIsVlQw4R3JtrHCfRWICB0XTO1p7M1v89unD+Opft+PBHf79Pvv378cjjzwClmVxxx134P/9v//XsI0qN66e60oIMAGMF/xX1pEo1Jn5yOlLxXDdVafi/VecjNG8jNd8bzUO2RG/zToWtfCOxbV7J5EQOJzQRr/ipvVrsGDJCZi3aElTjzNNE/c/OwbuaObLUCiU5wZOFGqUjsUIkxVBUagsH+7Ssrv9gqhMhm/jiTUWcjvubHdXOUBYtD9jrInAZj5zWsZ2T6jhUfZQSmT7NmPcnI5FIUnEOZar7VgESEdiO3AxwFAxNDSE++67DwzD4Kc//Sk+9rGPNcR0KqrWOHGa6CHvI1/HokcU6qS1bWoQSPYBuaHOdhs6TpgmHtNpx2JxHChPAKl51d9pi4fXbUFfdwZnn3ZiZ/ZFoRxnHE3XVT03PHYDVvxiRUf7Duu5dfOt+Nr6rzni1dqRtQCA8Upjkk+nsAUW2fD+HmnHdKpmtCjUMPGoXtTzc0LaYqBfZGUz2M+V4BOh/Xm2q64+CjUjZBDn4iiqxZrPP4EjwmdJqYqX7b5vBY44FpsRKBN8Ys4Iiwk+QeJnretsC4tRuzK7xC5oBQ133303AODb3/42Pv/5z4Nla8dShm4EinVpIQ3DNJCVs85tZbUMgRN848eTPBl7ZuvHWG3CMzxUZW46Fjeu3QgxJuL0VbRfkUI5FqHCIoUSwnhBxrp9bXb2+FBqaqahEU1ViWPRMBHBiFaDrBkwYYKL0KkSybFYnpsDlU4S51komtngWHz1dx/D+3755FE6qmg8tJN8IXx2xHv12+rVq3HxxRfjIx/5CAzD8B3saqoCvW51XlecfAEazfsLxMSxOHMuO4ZhcPGyPrz14qWQNaPqgg2JzXGTFDjIEToWV++ZxIn9SWTirTtANj25pqUY1F1jRRzJVjAQmzsTHRQK5TjFmqyK9He0lShUw8uxGPC3TYggLAaJgEGwHACm1gVoOxaDntOsFxZnw7FovS5KRGGRi1WPr1XkAnFl8jHr30RVbLRpNy6Oj+GZYR0Xv+S1uO6666Bpmu9YxDBN5Ap158+wRCCcPugtDtruTfdzTu0hYmR6EEgNAKXx9noi67Gi6eRmTE8sb72vOrSAaGwr+Tc9v+Guh9dvxhUXndMwWUqhUOYef9zzRwDArqyPK7sDlNUyTNNscMVVojjk28QvCtUmLI7VERZD4i5tscmOC3WLfG5BrqgSp34nhMWyRj6vbAdbkLBoOxbdgudoeRQpIYWkkERZLdeIo7aj095H/Xm0As/yRFhs4nNoLkWh2tjHn5NziPNx59qGkTuUw56b9uAHn/kBxnJjeOzIY7j5mZuxbnhdw7bZiazv86TFNABgyhUdX9bKEFnR91hsx2JOyUU61qgIrDBnHYsbn9iIsy84G2JMDN/Ygz6xDwAwn20c51AolJmHfougUEJ4yTcfxht/uAZjAaLJ0ULXVAhcq1GoZPDtZ1isKDru3Ub69A5NVZAM6ZJrxbEYF8hzFqVjQ5SMCxxkTYded603Hs7h3m2jLV2D2UDWdKzdS1wcu0cbI3hvu+02vOhFL8Lpp5+Oe+65J3CCyQTpB3TTlSCTnGGOxVZjQ5uBt45dteNMmxEWYzxkzYAa4CRWdQNPH5zG4t4EUrHWhMVCLou9O7Zi1UWXNf3Y+58dQ39KxLwU/fimUCgzjONYjKCKtN2xaMc/BkxExaIIi606FkEEO9U1ecpbwmJ9l6Ab+3jZWXQsNhWFWmx06bWCUiT9ivaErZDsuLD4f2v34QU/K2HBYB8efPBB8HzwZ+zolMekW3oeUBz1vjZquTEKdXI3ESOFJPm3MtlZYdFxLDYxwdppx+LoNnLemYU1N0uygic2bqcxqBTKMcZMxrPa0ZFs3WdGWL9hJ1BCFuaERaGahgld10OFRbfjUzd0GKj+rXVfW9tlaAt3Yeim3nDd6p+rS+yCpEmB51LvWNRNHZPSJFJCynE8us/BjmotaVXHYic6FlVDbcp1mOSTNS7LqO9TxkqMmCmHo6RJKGtlJPmk72IlN08+8iQ++vqPghM5nPSpk/CSP7wEH7z/g/jRph/hlg23NPwuBAqLAhEWJ6Xq2LSkliCwgu97ZaYciwIrzEnHoq7r2LR2U1v9it18N7a8cwsWsYs6eGQUCiUqdGaSQgnBduIdnIqwMnyW0TQVPMtCM8ym5x/sDjq/KNQb/7gF7/vlk9h4OIsj2TK6E8H9AlOl5ldAzcuQSSg7EnWuQxyLhq+jLUiQOpo8uX8asmYgLrA4NF2pieC9+eabce211+JNb3oT7rvvPgwMDDj37RotIFtufF2zk7VxOF1x8t4YCxIWZ9ixWI89iWdGieezIMJxsLC46XAOkmpgaW+y5WjXzU+thWmaWHlRc47FqZKCZw5N4/LTBhDn6cc3hUKZYexJjyiTQ1qEyYqgjkXGjkINmAyL0nNU3/vXDCxfKyrZfXRBjkX7vO2V57Mw+eoIi1Eci3IR4DsgLMqWsGg/j5gkDkD34JOPez82Aj//3b14zed+jZedyuOR//kaFi0Knxwancw23phZSFyHXtdG8RAWJ3YCyQEiiqbmk45OtYPOHMthI2lNTPIyXLjI3gyjW0j/ZCxdc/PajTsgKyquvIgKixQKhWALXrbYYxPUCdgpZF0OdLmFCYsAoCpqaCeiW/CqF7/cwpjtWExE6XcG6Yj0EzVtYbEn1gNJlyI5Fm2htaAUYJgGMmLGM0rVjkKtuD672hWCBbaFKFQhAVmTneOXIi7SSVlpFNNSmx3ZPtjPm+DDX8eH//Iw/u0d/4azzz8bb/7um3HGqWfgJctegnef/W4sSS+BaqgN78MojkW3sFjRKhC4AGHRciy641M7Ac/OzY7Ffdv3oZgvtiUs2tjXm0KhzC50ZpJCOYYxNA08x0DTm+9YlFQdpgmwPiu37CjJQ5NlDGUlJ+7SDy8BKowF3XHrsXNv9ZQXcZGDqvsLi3OVR3aNoyvO47R5GYzmpZoI3quvvhpf+9rX8POf/xyxWK3b4J0/W4//uHt7w5eK6cmJmp9FnkWMZzFe9BcWJdUAH6HPs1OougGWAcwmvlglbAdtQGbZE3snERdYLO2N9iXTi03rV2PewsVYsPiEph738M5x8ByL11+wFNwsXksKhfIcp74b0QMjygRSg2OxiShUVqi65YJoZ4U3y9c6LxmOiGVBz2n3HDqOxZmffK12LDbhWGw36lLOWY5F6zyFJDl39/igDcfilRevwOff/TL85g0JJLloi81GJz0ci5mFQGWaHG89Wpm8j+o7FhO9ABcnbketQoTJTmFNDMvNCIssT34PmhzX+zKyGcgsqEb7Wjy0bhN6u9NYefpJndkPhUI55lF1FSbMBtFjJl2SNoqu1LjW7t5/d8MxhAldmqKFxl26RdJ6kUhxjXeKChEW4xEWzWiGBt3Uffsdy9ZYoTvWHS4ssrVRqLbAlBbTSApJSFrt420h1RZCgfaFYFtYdLs5w0jwCci67ETHuqNZg3DiQqWZqR6aksnz2oJdEOdccA6u/dC1+PJPv4x/PP8f8faz345XnPQKnDf/PEfArSdIWEzxRDSddPV/l9VyoGMxzsXBgEHOaxzTBhzDQVHmnrC4Yc0GCDEBZ5171tE+FAqF0iJUWKRQjmE0TYXAsdDN5oVF27HoR0EiA1JFM5CtqE7cpR/ZFmJAF3SRgfp0C27Ho0GM56Do5jEnLD60fRynDKZxQl8SYwUZ+w4ewvvf/36USiWcddZZ+PjHP94QDWIYJkbyEqZLSsPcVnaqcdItHeMxVVJ8v/BJ6uxEodqomgGeZaFHcdFYJKy433xANO+aPZM4sS8V6uANYtOTa5qOQVV1Aw/vHMf5S3twxsJMy/umUCiUptHDhR5DbVdYDIlCFRJVUSuIdoRFTgA0BTXddmISkLy7iQG4hMUm3J3t4jgWS8Hb2dtwYvsdi1LB6le0nkdMWcJi647FqWwB7//Md5DNF3HSkgX4zHuvIYvd1GiTkd7C4gLSTzh9oPE+pWI5Fl0icP6IJSwKpGMRAKb3N3UegViOxYrajLDYwShUQ3e5MmuFxYfXb8blF9B+Rcpzk9noDDwWcRyLdd8L24mpHCmNRHIbKrpS41i8ffvtuGf/PTXHFtbbpyhKqGPRHSPaICy64lhtoS7OhX+22YJkkGNRYAWkhBQ0Q6txF3rBMZxzbNMycdz1xHqQ4lOo6JUa4dCJQlWrY4Io1zsIgRWgmc13LLq3j+pYFFgBMS7WlrB4zsA5SPAJT2HX7jdM+fR0l4tlfOOT38D0xDT65/fj3R99NzieA8uwSPAJXwHQJuuVnmDBsRwSfMJ5DQHLscgKDa5gG4ZhEOfjyCsBY88m4RkeLMvOScfixrUbcdZ5Z0GMt9avSKFQjj70mwSFcgyjayp41nYsRn+caZpQNCNwqGiLKznr3+548CA914Lr0I5CnYgoLJqmiYu/dB92DHduoNUMMZ6FbphOP2WrVErki0oz8SL1/PjRvfjJY/tCtxsrSNgxWsDSvgRO7E+iOLQHL3/Rlbjrrrtw8OBB38dNlRXohvf7KlvnWARIz2K+ovr2CElHIQqV5xhoavT3ZVwgH4mFivfEsN2vuKQ33nK/YjGfw57tW5qOQX1y/zSKsoZXn7cI/Sk68KZQKLOIGf53VFdkwAgRQoKiUFk+WEwRkuHCoia3F2PJCY3uTCFFugR1H8HQFsGYWXQsNtWxWGqM/7QoV4g7M2yiFgC5Bm7noyMsuh2L0YXFnfsO49I3fQS//dvj2HtoxHp8rHrMEfCMQk3PJ/9O7Gq8Ty2T95k9YV4cIe+3ZD+5LTVIbu+ksGi955uKQrVF9jY7sgCQc9Ek4sZ0CYiyomLNhu248qJz2t8HhXKMcSB/ABf/6mL8bMvPjvahzDlUQwXMznYsvulPb8IPN/4w0r7dot/i9GLc8NgN2Dq5FQAiOehURQ3tWHS7/YIci7YYKHLh37vsx3E+45SSWkKMizn9eWFuNJ7lnWPLSlkIrICMkPF2LFpOOrdDUG+z79lxLIaN61zYUaO2CF2OuEhIkRSYZRNTlamW50b+aeU/4d8v+XcMJAYa7rMFyy6xq+G+0SOj+PBrP4wH73oQh/cebmnfQY5FgAiaeTnvjLVsYTHIWZvkkyiqxbbmitxwLAcGDFR5bqWEGYZB+hUvaT8GlUKhHD2osEihHOOwjAnNMJoaeMghoiJQdSzaMaVhjsUgl5cfMSt6cqrkH6HpZrKkYKwg4xO/3dT0vjpBzBKeSnJ7g/XNT60FAOSmW+8SuO/ZUdyx7mBgbCcAPLaLiIAnD6QwtnUNRn71CYipLqxbtw5nnnmm7+PG8taEo4eyOD051nBbV5xHXlKh+DhhJc1ouZOwFVTdhMAx0P0mgz2wo1DzPu7bLUdyKCs6lrTRr7jl6bUwDAMrL2zOsXj/9lGcPJDC808ZjFQ8T6FQKB0jglima0q4w6r+77F7Qo/jidMsyLHoEzHmUGmzn4e1hUW3YzEFqCX/OFh7Rf6sRqH6OBY/103+c08oqv6Oxcef2QYAODQ0Gr5PpWB1LNqOxbQl4rqulRBNWHzwiY249M3Xg2VZrP3fb+L8s08ld3DNCYsjXsJiapCIqJO7G+9TK7VRqPnh6mMAINFDzs/L7dgq1vuhojThPmQ563ehAxOKo2RCHpmFNTev27QDkqzgqotXtr8PCuUYY6g4BADYNrntKB/J3EMziEuNBVszt9BOFGpJLWHD2IZQsavesXj1CVejS+zCHTvuABDNsRhFWHS7L+uFRVlzdSwqRcS4WKhjDah2MwYJiyInOuJbTg0WFgVWqIlC7RK7HGFS1uWa4xYYS1h0CXntRteKnOi8F6JiR8Y6ApoebaHXU489heyhLEYnRts67p5Yj+d35GlpGnEu3hBpu+2ZbfjAqz6AcqmMm393M1Zc3Frf8PR48NgzJaRQUArOuZW1MniWD/w+n+ATKKmljkUQ2/uba47FfTv2IZ/N49znnXu0D4VCobQBFRYplGMczjR9nWV+yCoZ8AWJkbZgNVVSwADoC3FJ5X1cXlGYKqvHRLxonLc6+JT2BnlHDoY7DcMwTWCkIKEcIiw+snMcS3oSMLLD+OYn3ovECSvx5s//DEuXLg183FiBTJZ6faHITjZGoXYnBBQkzVNYNAzikBVmMW5L0XRwLAu9CceiIyz6iORr900hxrNY2hfe0eDHpifXYHDBIixcemLkx+ydKGL/ZBkvPnMeFvY0FzVHoVAobaOroSKHoanhwmK9Y9H9MxPiWHT3+/nRrrBoR6G6T1VMEaHLL1ZMsSfy7CjU9hYeRcJ2T/jFz+aPVP9fKTX2Clrs2NfE6nzbsVgThVqpi0IN7x4+PDKBl7//s7jg7FOx5tffwKknLnI9vlnHosfELMsBiT4ge6DxPatViIDtCItDZJ+2sMiwJBY1f6Rz/YZ6G47FTkShjm4FYpnqOVo8vH4zujMprDqD9itSKJQq7ihUSa9+xrTb2TdUGgrt3FOM2o5FkRPxwXM/WD0GQ+uIsOgWa+qFG/c5F9Ui4lw8tLMRcEWh+iyAKqpFiJzoxHHm5eD0JZ7loVppEXkljy6xCzzHI8EnoJt6rRuQIUKk+/q2K0gJnBCp09KN7ca0X8OwuFeb7Ru3QytoqBiVtiNcvZiUJpEUkjWvTT6bx8ev/TgWnbAI3/u/7+GkNrqGwxyLaSGNklpy3iO2YzFIsE4KSVS0zl0PjuHAgoWqzC3H4sYnNkIQBZx1Pu1XpFCOZaiwSKEc47DQoRnNdSxKWvjEl/10UyUFXQnBEdW8UDQDlTbiQbMlBXKEYzraiDz5k1mU2vxydWBvJw4H+YqGiaK/29MwTDy8YxQn9iexfPlyfPH7v8JZb/88hsqmpxPRzVjB/3m9olB7EgKKsuYZhWq/3/hZjEJVdRM826Rj0elY9H7M6j0TOLE/2Va/4sZ1q7Hywuc15Tq8/9kx9CQEvPq8xbPq+qRQKBQAkfrejFYcizVRqFxIx+IsCIusABj1jsU0idD0jUK1Js7sP+mt9lCpErD+x9EELdYSx6JEoaplIph6LOzZ3kzsl1ysfR4xRdyaETsWDStZY8mCAdz1/Rvxlx/ehN7uur5gx7FYjHRInsIiQGI/CyNVN6mNKgGsWI1CLQwBycFap2WyHyiNkVjdTmA7FJQm3heOsNgJx+Jm4lYUaxdEPbRuM15w/lnguDa7NykUynGFLUgxDIOi629xu9GaY+WxmufzQtUbHYkDiQGcmCGLMVVDDRW6IgmLLpG0wbGoV//2F5QCRE6M5Fi0uxn9HItFtQiRFZEUyN/ibEgftMAK0FzjjrSYhsAK1cfLtY8XObGm07BdIdjuWGymW7NVx+KOTTug5TVIplQTRdspJiuTSPEp8CwP0zRhGAa6errwhVu/gP+6/b/QO9Db1vMHdSwCQEbMoKSWnPeapEngWT5YWOSTKKvltl9Hm7nqWNzwxAacseoMxOKxo30oFAqlDegMJYUyB2GtSY8ovYUsbMdiE8KiJQJGecR4UUZPUkCAroicT3RkVHIV1XFRzmVscbWpCaI6yqUixkeHO3VI2D3u/yVt7Y6D2P7zf8f42j8gLnC46AUvxMKeFIZzUqi4PB4kLE55OBaTIsqyjorHtbFvm01RTNF0Iiw207Fovb4FD8eipht4cv80FvckkG6xX7FULGD3s5ux8qLoMai5ioonD0zjslP7cWK/d+k8hUKhzCh6sLCoGSbMKMJiYMdiiLDIxTzjPGuwhUW+xQkKTiSORTexDHEl+q0ar+8QanXydd8jwJ8/Cux5INr2nBCtT1IpW07D2s9fTdOx68BQ9ONTirWORSFFXiv3Mfhc92Kpgtd++Iv40g9+DQB4yfPPhyB4fI7absKIvUyjUz7CYmYBUBxzuUkttAq5bjaVaSDVXyuIpgeB0mQ00TYKui0sNhuFGi7mR2J0KxFaXW5SRVGx+plnaQwqhUJpwO10K6gF5/9bdU6ZpglZlyHrMg4VDgVuqxqqp5BlC4W6oYcKXaqiOs40P3djkGPRHYVaUApNR6H6ORbtKFTbsZhTwjsW3X2SaYEIi3aUar3jUWTFGrdlu0Iwz/LQDT1aB7NFoi61QI6wQMc0TWzfuB16QYdkSjPqWNRVHV/6ly/hR1/5EQDg/OefDzEe3p8ZRphjMSNkUNKqwmJFq4QLi0ISFb3SVrepG47h5pywaJomNq3dRGNQKZTjACosUihzkDgf/VeTMXTohtnUwuZm3IXjBRldcR58gCjUrrCYlzTIPt18c4lqx2Lr57tr26aOFXEDwN5x78iwPXv24DUvuxrKyC6sOOcc5/ZFPXGM5aXQbsaxvE/EGrwdi11xHibg6aC032+z6VhUdBM8x0BvYkDOsgxEnnX6Rd1sG86jrOhY2pdoWSDd+sw60q940fMiP+bRXeNgALz+giUtC5oUCqWOr58OjGyZ3X3+8tXAVPsx2EeFEJFD1gDDaDMKlbWiUP2WPPGxqtPMj/KUtW14JKcnnGAdk+sYYhkinvl9ltSLYK06Fm1RtNjYYewJKwK6/+e0g1onplls3X0AcjORWIrV1Wi7MWwHnFydePZyLB4emcDlb/s47l+zEeedeUr4fjgxmmAKYHQy6z2e6loElCdrI1V1lby/6q9Foq9WEE3PBypTkY8hFOs9XlabjUI1EG35XwBKifRFJgdqzvHJLbtQkWRc2WKfFIVCmZvsmt6FFb9YgdFShN5cH1RDdWow3A7DVqI1VUPF51Z/rub4wrYPEsSidizarkE/EdK9j3qHnO08BKrxpc1EoQqsd6pNSS1BYAXEuTgYMMgr/lGoDJiG50kKSfAsXxUW6x4f42KQNRmMFZ/QCceiCbOp54lxtYuL3O5PP0YPjyI3lYNW0CCbcs317xRTlSkwRQY3vO0GPPrXR3H6ytM7+vylfClQsOuKdaGiVhyhVdIlCB7jMjdpIY2KVulYxyLHcmDAzKko1P079yM3lcOqS1Yd7UOhUChtQoVFCmUOwiG6yGYaLUSh2u7ACA+ZKMroigvgA/rxcpX2BoElWUOpQwOdb9+3Ez98eE9HnquemCX4FuTWVwHu3LKhQ0dD2DvRKCw++uijuOSSS1CSFFz2kR/geS+40rlvcU8SeUnDRIAjEQBGAoTF/PQkdL32GnRZ8aBj+cbntR2ywmwKi5oBjmWhNeFYBIioX/J4fZ/YOwmRY3FCb+uuwY3rVqNvcD4WnxCtx0EzDDy4YxyrlvbgnMXdLe+XQqG4KE8BxRHgjx+avX3KBWDvQ8Bv3jF7++wAQ8OWo00PFg1lHYAWwWHVEIXq+pnhiChn+HUsRnAhVqaJqBjBXeAJJ1rn6rrNjvysj9W0qRegWnUJ2LFoUrCLwYETADVk0k5XibDFNa7IX795Z3PHpxRrXwPR+ixU3MJi7Wv05OaduPgN/4qpXAGP3/51vPKqi8P3w4n+3ZF1SLKKQslDAMwsJOedO1i9zRaA669FordWbEzNI+fabqyujTUpWApZzFUDy5PfhXYdi+PbAZhELHWJ8g+t24xMKhFN6KVQKMcMf933VwDA73f/vqXHm6ZZI2TURKE2uWhG0iVcd991+L89/+fctisbLCwquuIpHNqijW7ooYtzFUVxHI5+ooz7XBociy4xrKhEFxYdxyIX7Fi0xcGC+7OzjoHEQIOwmBFIdLgtLObk2rGCyImQddlxwXXCsQigKcccy7A14mIUYXH7xu0AAL2gQ4MWGpfbCgd3HcTd19+NkYMj+NZvvoUXXvPCju8jKA41LaShmRoKagGqoUIzNIhMsFMyJaQgaVLnolCZuReFuuGJDeAFHmddQPsVKZRjHSosUihzkKlxstIwrAcPABiTOBb1CNvaSE04FguShnScD3SbZSNEtgZhAhjJdabP5pGd4/j1+oOecZbtErOjUJuZIKpjR4eFxaHpCjRXr6FpmvjiF7+Is885B4PX/ifOOuP0Gqfbgm7iKNg5FjxwH/UQCAGAZVkYhoH89FTN7V1xW1hsnBCsWBFgsxmFquoGiULVmnut4gKHsqI1/O6t2TOJE/qT6E623q+46ck1WHXRZZH7FTcczCJXUXHNqoUYTNPuAQplzrL1D8DnuoGcT2edPRHWiWjDWeSnP/0p+Z+QjkVZM4mQEzbxGOhYtCbu/CaxPMSxBirTRPBqosO2YR96nWNRTJOf/QS/TkWhVrLk35DeJQdOAHQ5eH+2Y89TWAye4K1B18h7wC0cCraw6FrcVCcsfu0nd+KERYNYe8c3sfL0aAtqSBytFNovaFcGjIxPNd6Znk/+ndhdvc0WgOtdAsn+2p9TA+Tf6f3RjjcM6/1clpt1LHagY3F0GwAG6Fpcc/PD6zfjBRecDT6o44BCoTzn0EzNcSsCQF6tuuKajahcP7IeG8Y34LWnvta5bX9+f6DgpRnenX6H9x12jsEIWXytKZoTR+onyrjPJahj0XYZNhOFKjDe3xPLatl5rjgfR0ktBYqkDcJijAiLdsdifZRqjItB0RVHBG3X6WbvXzabm59pVVjU8uR4JyuTTe0vDNM0sfdPexFLxfD9u76PM889s6PPb3+nn/Iai1ikxTQAcm4VK2Y9zLGYFJJQDbWmN7MdWIadc47FjU9sxOkrT0ci2WLKCIVCmTNQYZFCaRLDMHFoKlr/Sxh+YqBpRSUoeoRJSGvgqEbZ1iIsCrVeVOlOBA9+7ChUsQ3haDjbmYGTCeDwdAVTpc6vyLIdi6U2OhZ3bNmA3oHBTh0SxgoyyqoOwzBw8OBBMAyDO+64Azd8539giGmc2J+sibFd0GUJiyP+KyUB/45FXiATlNOTtT2LXQnyJW7U43H2+00McL12GkU3wLFM845FgUNFJS5gG90wsX7/NJb2tt6vWCmVsHPrxqZiUO97dgwn9CVw1fJ5kcVICoVyFNhBXALYec/RPY4Oc8k863M0qPsQlmPR0MKFkPqJLrdj0Vod7+sMjCIslicBa9KtJZwoVBe2M69cN9ll/02udyy2urrcdshFdixafZBBYrUt+vEewuKWnVg42BdtX3bfoDvmzI5CdbsL+DhM08T+KXINf/qlj+DBX3wVC6LuByDipCaFCrSiQCZPR71cAul5ABhg0iWeOiJr3Xg2XTceS1k/Tx+IfsxBWO+nknIUHIujW8n5JKqJB6qq4fFntuHKi2gMKoVCqcV2p9mCV0uORdfXlTcufyMuXHCh8/NoadQRVjz37xOFah+PZmqRolBDHYuufdQLi4quOPsrqSXEuJgTrRqEE4XqIxiVtaqwmOATKKvlQDda/fN0i+TvuMiKYBm2IQpV5EQiLIbEwEbFFhbro2LDiLsi0aMIizs27cDCpQuhFSxhUeqcsCiPy5B0CfPeOg9vu+VtmL94fsee24azFuhMj/unHKQFIixOSVOoWGNG+z3qR5InY6xpqTPpCTxDOh3nimPR7ldcdSmNQaVQjgeosEihNMnn7tqKy7/2IHaPBQszUSj7TDSYGvnQjyQWWoNmpYmOQjlEWKyfAAkTFrNlFQLHtNWhN5TrUJ8NAFU3sXUo4uRcREyTdPAJHNNcpJWL3PQkRg4fjByFGYXJoozJbAFveMMbcNlll6FcLqOnpwer9+fQlxSxpLd2FVhC5JCJ89g77u9YNE3TsysRAASRTCzWC4sxnoPIs4Edi+Isro53HItNlp7HBRaSakBzxfE9O5xHUdawuKf1fsUtz6yDoetYeWE0YfHQVBm7x4t40RnzsaiHruSjUCizzxWLrb+fIaIhcSy2EIXq6Vis+wyxJ8fECIJheQoQEqiZ2WwGXgR0BY2ORVT7Gx2sfdQLoYbRmtPMFi4l/94lE66FX5x1rEECnO2mZGudhJKsYPPO/Tjj5CXRjs2OJvVyLLo+Y2WDwzv/T8IF3zmM6XwJ6VQCiXiTbntOJO+BkElRUbAWM01kvZ8j3l3rOrQFYLcLhE8AiTrHYrIPANNZxyLLh467a7Adi+12LI5sBjILajpHn9q6G6WyhKtovyKFQqmjXmRrpWNxIE5c3y9a+iKsHFzpOOwAYLwyHhh1acIMFKN0Qw8VFhVFCRUC3YKeVxSqLcoV1SJ4lu+4YzHBJ1DRKoExo/WOxS6xCwBxyMW5eMN1jHExyIbsOBY7FYXq1XloGiYMn9j6hOvzxi/a1sYwDOzcvBOnrzodeoEc70Rlop3DBgDomo57vnkPtnxyC3bt3wVWZNHb1dv283phC4tTE+GOxYnKhCOsiyGL5RxnqtyZ+SyWJY7FuSIsHtx9ENMT0zj3eece7UOhUCgdgAqLFEqT7LM67Z4dal9Y9MO0enP8xMKK1ZHICHFnok5uQlh0OhZ9KEi1g+z+ZPDgJ1dRkRRbc3KlYhxYBhjuoLAIkBjJTmA73g7t3gaAuDIrLToWd27ZCACRhcWwKSWWAXKTY/j7l16Nu+++G7fccguSSTIQfXjnOE6el0JXovG1m98Vx5GsBFnzPo+CrPm+nwTR27EIAJkYj6mS0hDtYl8vUZg9152qmS05FhMCh4qq1TgWn9g7CYFjcGJf606YTU+uQW//IJaedGqk7R/YPoZMnMdrz18Mkacf1RQKZfaJ2XNzhhYo9Mg6iWUPFRYbolDrOhYBS9hzscASQFIRnP6VSUtYbBFWIGOq+o5FwENYtNDqJkGjODe9sB2LAZOuiqriqZ2HyA+2CBokwNnPVed82PDsXmiajjNOiigs2vtwOxY5oSoGA5iYzuPF/3Iz7tii4juv6kdvV4t9xHyMXNOQSVGB5yDwHEYnfVbzp+cB+aHq66N6uC5Tg4AQr30cyxNR0i/WuFkMDWB5SM3Ej7Ec+V1q17E4ts06x+rvxMPrNyOVjOP8s6KNRSgUysyx4hcrcPPTNzs/v+GPb8D3N3z/qB1PvbBYUKtzHVGFKjthJcEnGsQTWZdxqHgo8PFBjsZmHYt+BDkWVV2FbpIux7JWron2DMJ29nl1LJqmCUmTnOuRFJIoa+VAV2G9sOi+ll5RqnYUqi2CttvN5zgWPYTFXDaHfVv2eT4uzlU/UxVdCTzHQ3sOoVws44xVZ1Qdi21GoRbzRXzynZ/EM398BkvfuhRiX/WazwQMwyDTm8H0hL+zMGUtxKqJQmVDolAtx2JWznbkODmGm1Mdixuf2AiWY3HOBecc7UOhUCgdgM5WUihzECMkCnWiQm7nuwZgWqvd/EQiL8I6FosuR15C4JAOcSxOlxUkxdbcaAwYpGI8xnyiN1tl23AhtOA9CrpOrlWpQFaMiTyLihpeHu/Fji0bkO7qRu9gcBQHx1rdQR59hW6E7AGM/PJ6jI6O4rHHHsOrX/1qAMCRbAX7JkpY2pvwfF0WdccxmpdQlr3fB2M+/YoAwHIcEsmUt7AY55GraA3vW/v9JnKz6Fg0DHBc8x2LCYGDpBrQ9erru2bPJE7oS6I7RGAPYtP61Vh50fMiRZoWZQ1P7JvE807ux7KBFidnKRQKpVOEOhajCouuv8emWfuzE4Va9/mjyeS+7qXhx1nJEhGl5Y5FOwrVw7FY8RMW6z6nTQMtOc0kl7Do4wSAaSJbcAlkYY5FxXIs1nUfrt+8E6LA4+SlCxsfc3Ct//7dz8MwjhNu+0gFl1x7A3YcGMUD70ji2vMy/scUBm+fV/hn97y+bu8oVID0LJbGqxGoqh0L6zqHZF/DtQEApPqB4hiJmm0XXQVYDrLaTBQq137HYnGMvGdTgzXC8kPrNuH5550FQWhtMSCFQuksf9r7J+f/t09vx/c2fq/pPsNO4UShWp9hBbkqLLYrVNnsmg7u9y3Zf6s90I3w79/ujkXfbVyfL/WuQcVQoBs6JF2CYRqhzjIbWSduQS9RU9IlGKg+V5JPQtKkwNe5PgrV/bNXlGqcj0Mxqh2L7Uah2ufhdYyGaaBS9BaA3Y5FWZcDBWm7X3H5iuUwVRM8+LaiP4cPDuNDr/kQtm/Yjjf955sw7+p5yFq91XYc6UzQ098TGIUqsAJiXAzT8nRkYdEWI6flzkShciwHFuyc6Vjc8MQG0q+YoqlMFMrxABUWKcc03/jbDiz75J8xFiLAHGs4UahayKQCKzjCohK2rYuwjsWCVB109CSF0O7EbFlFXGhdNErHeEyXFBgdEAJtDkyWagTSdtEU8prEeA6ypsOnHjOQHVs2YPnZq0LFJfvubFkNjF3tEgC+ZwGu++YdOO+885zbH905DoYBTh5Mg/XY16KeBCZLCnKS96TZWCH496mnfxDZiUZhsSsuoCCpDU7bahTqbDoWDXAMA63JicFkjIesGlCtiVXDMLF+/xSW9CZb71csl7BjywasuuiySNs/vnsChgm87oIl6IoHf/GgUCiUGSdE5JB1E2wUYdEdhVovHPlFocp5gI/XuONqME3gf14H7HmQuP74uPd2UeBEcg7uiTAhDoABrMmpBjS5VoiLEgnrRcWKu1IrgS5ExRaoOJGIVoGORWuCts7FuX7LTqw642QI9fHkucPAT/8OeOoX3s9X7wa1HACKbmJ+fzfW3f4fuGxpm4IVHyfXNMKk6IKBHu8oVADoWmwJi5a4ajsW3UJiosf7/ZKaB5QnqlGy7WBoAMNDkptxLPLtOxZHt5J/0wucmzRNx2NPbaMxqBTKHCfMlTdTuN1pJaWEvFqN5o4ahepHWkiDYzhfYdEWA4Mci7qphwpmiqKEOhbdgpxqqGBc8el2fKctcIpsNGFR0cl+GY8odue53MKiLgWKbu79MmBqhCivKNUYF4Oqqx2LQrX35xdNq/vMJdVEoRrBUag7Nu3A0pOXIt1FRL84E0dWyba8MNwwDCTTSdzyh1tw0oUkHSqnkLFVRmhjwVMIvYO9gY5FAEjxKeTkHMrWuCLMCWtfx05Foc4lx6Jpmtj4xEace+m5R/tQKBRKh6DCIuWYZt0+soL8qQOdWc0zV7CFxTAXIsPxMLVWHIvBX1jyrijU7oQAIaQ7cbqsIC6wrbYaISXyyJZV6K2odT4M5yRMlzs3eNIUMrAWeRaSVtvBFwXTNLFzywYsP+fc0G3dAuuesdpYNNM0cfvtt8PQNcw/dQVOeud/YtKodbU9tHMcJ/QlMZj2HrQu6k5AN0zsm/CeNBu33KMJH7G4p3/Q07HYlRBQkLRGYVHRIXKsp8g5U6iGCZ5loOVJpEqSi/b7kRQ5SJruvBe3jxSQlzQs6U20HEn67ManoGtapH5FwzDxwPYxnLOoC6uW9LS0PwqFQmkb1TW5FyKWyRqiCYtGBGGxfjGIlLdciD7CoiYBu+8Ddt0LSDlLKGrDsWg/pw3DEgGtkvV+TL24Z7bYsWgLl2oZ0FWY1lc0ts796DjfeBEwFH93IeDt0gOwfvMuXLTitMbts1ZE3chG7+erixL7zTYFFdXEysVJPP7LL2DZCbartI2xnOPEDB9jze/v9o9CzSwgr2NhmPysutybdl9WvKfqlHWTmkfcfvVu1FYwtOYdiwxH3lNNjjNrGN1KxOfuqiv1mWf3oFiu4MqLqLBIoVAacQtVWTmLvFwVFqO4BYNgGAaDiUEcKBzwvN925AVGoRpa6DFEiUJ1i6SaoTliHGA5Fk3d6TCMR1yspBiWsOjxXdcWk2yxMCWkIGlSoFjrFhIzYqbm5ySfREWr1IiscT4O1VDBsuTzrV3HYlAUKgCoPlUjdoQnEB6Fun3jdpy+6nTn5wSbQFEpNi1iP3bPYygVSli8bDFu+cMtOOHUE5z7snIWCT6BmFc6QYfoGegJFxbFFApKAUWVvK/CjkfkRPAM31lhEcyccCwe3ncYU+NTWHXpqqN9KBQKpUNQYZFCmYOYanRh0XBEyGY6FsMci9UBXVc8omOxfuV7E6RiHHIVtWOOxZ6EAM0wseVIPnRb0zQxkgufPFJV27HIQlGNpud7JkaHMTUxhtMjCIsTxeog/uGdVQFPURS8973vxVvf+lYMb34cADCQjmEoV4FqxY/qhonHd09gWX8SGR+H3YJu8iVp54h3T+hYXkaMZ32FtJ7+QUx5OBZ7kwKKsgpVr30dK6oOgWdmV1jUDbAsA3XyII786P1Ynon2JSUhcJA1A5p1Dp3oV9y4bjV6+vpxwinLQ7fddCSHyZKCV65ciHmZmfsSRKFQKIG4O+bChEXdBIsIDiv3ZFFd/Jgj8NSvjrfFQsZnHGJHtWkSEY/a7VgEGuNYxSQ5Dq8xSn0cqamjtShUa7yiSoChQRW6AABprnZST3Y7FjU1+JrbjkWXgyBfLGPHvsO46ByPz6PCkLXRkPe5WtdW13X865d/iDf+/CB+s428jgzDACxbvYatwseIuBxhUnR+XzdG/Cbz0lbk/ORu8q+7YzGWAS54J7DofJ/HziOvhxQ+hgzFikKVlGaiUK3fhXYcQqNbgMxCQKguPHto3SYkEzFceI6HqEyhUJ7z2CKSLd4VFFcUqhHebxjG/NR8jJRGPO+zhawgYdGEGSqYqYpaIxR6UROFaqjgXIkIqq625FiUdRk8y4P1mF51hEVXx6Ksy04voxfu6NO0kK4RS5NCEhW9UnMeIitC0ZXOORa5YGHR17HoGoMpuuJ7HKqiYve23Th9ZVVYjLNxFJRC5ChgwzDwk//8CT7zvs/gnjvvAYAGYXdamkZKSNW8xp2mp78HU+M+cfkWaSGNklpyBOsYG/4dP87Ha34H24Fj545jccOaDaRf8ULar0ihHC9QYZFCmYOY1qSW7NOx6MByjgipNiEsVpToUajpOA8hxKmVl1TEBLZlk0AqxqMgaR1zLNrC2YZD2dBtH945jiu+9iAOTQVHXtmOxbjAQtb0ph2LO7ZsAIBIwuJwtvql6vHdEzAME1NTU3jpS1+K//7v/8YvfvELLD73SgDAvK44xgsyytZruvFwFgVJwwl9ScR8HIe9Vrztrjo3pM1oQUJX3H+1Z0/fgKdjsTshoKToDcK1pNqOxeDz7iSmCXAsC0WWoU0PYWF3tMnmhMhB0QynJ3LN3kks7U2ip51+xSfXYMWF0foV798+ikU9cbz4zPlgZ/OCUSgUipvswer/G8FuRFkDOBjBfX+mWSsW1YsmjI9jUc4TscnPgWALi/a/7QiL9kRevbgpJEn3Yb0YChBhsea8Ijg361Elsk+GBbQKYGgwrWNJs7XHItvjNz5O+iADo1DLROjjqtfuqS27YJomLlrhISzmLXdfabxRXOViAMcjXyzjVR+8Cd/91V347luX4+2r6j4b+dY/K8nj4+HdkRbz+wOiUDOWsDhhxe4pZfIesq/F8pcBgz6LfVIDAMza34FWMVSA5SE34xJwYoHbmAAc3ULEVdfvw8PrNuOy886EKNKIdQqF0ki9oGO7qwDigDPQnrC4OL0Y4+XG749AVVgsh0RQ+0Vz2jTrWFQNtaaTUTVU6KaOgkrGFFGdbpImgWe8HYsljYiUdvxlgk/AhOnswwu3QzEl1CYT2R2N7vOIcTGYMB1RuN1OTPsa+gmLmo8L3x2Fal9LL/bt2AdVVnHGqjOc25JMEiW1FElYlCoSbrruJvzPzf+D93/y/XjNO1/juV1WyiLFp0LfE+3QMxDcsQiQKNaSWkJBLYAFG9qxCJDXuagWOxKNzIKdM47FjWs3Yvk5y5HKpMI3plAoxwRUWKRQ5iC2sKiowUIbw/HQrUm4MBeim7COxaI7CjXOhzrNchUVMZ5r6BXYdDiLvePe4pWbdIyHohsd60QUeRYDaRHPDudDI1P2T5Sg6AZ2jQYfp+1YjPPE0dasCLpjywb0DczDwPyFodsOWQ7KlYu7sW04j/1HRnHppZdi8+bNuP/++/H2t78dwzkJBVnDgq4YJoqKIxY/unMCCYHDsn7/wRrDMBjMxHBwquR5HiM5Cem44KsT9/YPIusThWqawESx1gFaVnQIHIuWlecW4VlAVZqbmLPjXwuSCsMwsW7fFJb2JZCKtbbSUaqUsWPzM5FiUIdzFTw7XMALT5+Hxb20zJxCoRxFmhEWdYBjQhyL9aJc/cSRn5hiOxZZP8divvZfoY2JCltYVOtSDMQ0cf95TXbpSu15h/RRemLHoMa7ibPONVmY4ZSa55PrOxaDBDilaImy1c+v9Vt2IpWM44yTlzRun7cci+VJInC64eMoyxpe8NaP4bGntuLPP/g8rnvpGY3PwcVai4J17adBrPWBRKH69DEJSfK6Te8jP6tlcs38nK9uUoPk32nvyL6m0FWA4SA1JSza7t0WJwANHRjfCaT6Hbeqrut49KmtNAaVQqH4otb9zbFde0C0GNIwFqUXQdK9U4IcYVGfeWHRLVzVOxYVg7jsSpbj3y2UhR0Xz/JgPT5j6nv17LjQoJjL+k5FN7bjsUZYtARQ+7ZOdSz6iXxRhMWgjsXtG7eD5Vicevapzm1JLomyVg50ctr7vv7N12PtA2tx049uwls++BbfxbvT8jQSQqJGPO40PQM9KOQKgaJdWkyjpJVQUksQOTGSgzIhJFBRK5EdnEHMlY5Fu1+RxqBSKMcXVFikHNdMlxQs++Sf8b0Hdx/tQ2kOazAo6yFRqGw1CrW+1y6IMGGxJgo1EbyiyjRNFCQNCaHxz8mrvvs4XvSNh0MjXVNWZOdYIfjLQjMs7U1i/0QpVKy095mXggdtquVYjAkcFL15YdHuV4ziWhvKVhAXWJy7tAd5ScPeAvCOd7wDa9euxeWXXw5NN3BwqowDk2UMZmKoqDpG82QS8KEdYzh5MBXqsFvQHcdoTkbZI55rNC8hHePgd6g9/QPITk/CqHNtdsXJe2W07nUsKxqEWXYsAgDPMlCV5jqSqsKihp1jBeQqKhb3JBFrMer32Y1PQ1UVrLrostBtH9g+hqTI4XXnL255fxQKhdIR3MKiGdaxaIJjzGCRq96h2NCxaE361PfaSXkiVvlFm8nWoiArXgpiB6JQ60WtWMrpPmygE1Godn9jvIecf42wqNaIrbLda8THwgU4DzFt/eZduOCsU8FxHtczb8XfVqYbxVUhhmQigbe/+mqs+fV/4aWXX0CEu3ra7THiY0TADYgBZWDCBBEWK5KMYsknOi81COSOkNdNrTQhLA6Qf6f3Nn/89RgqwPGQm4pCbdOxOLWXOGBT8x1BfsOze5EvlnHVxStbe04KhTLr3H/gftx34L5Z21+9O63esWi2058LYEFyge99Tsei6h+FCkQUFkNEJLfophq10al2FGpZI2Jg1I5FWZOdHrt6bIHWfi47LjSnBAiLrijUerHSdiy6hWA7stV+Ddt1udnXRDa8r7fm85lW41jU/R2LOzbtwEmnn4R4onp9k0wSZbXcIKSZpomKVnGOiRd4vOS1L8G37/w2Ln/Z5YHnYXcszrRjEQCyk1nfbbrELlTUCspqGQIneArQ9SR5IrQ22znpBcuwYBkWqnx0HYtDB4YwMTJBhUUK5TiDCouUjnFoqoyP3LHhaB9GDbZotHrP5FE+kuZIn/cKABHEQo6HYQleUgc7FnOV6qCjJxksLJYUHbphIu4Tu1n/fF6kLWFxsti5VVTLBlIYzkmYLgc/50ieTJ7lQrZzolB5FopmQG9i1aZpmti5dWOkGFQAGJquoCchYGjtn1F59mE8vGMCN9xwA0455RQAwF+3VPspei0BcfdYCbmKik2HczixP+lcUz8W98QxVpBr3Kk24wUZSTEgCrV/EIauI5+t7RPoSlgCca5eWNQhcLPbsQgAPMtCadaxKJL3cb6iYu3eKXBse/2Km55cja6ePpx46umB21UUHav3TOKSk/pwymCm5f1RKBRKR5jeX/3/CI5FAI3xmW7qV1w3dCzaUah1zyEXSLym3+puOwLV7hMU2/j7yfmMdxzHosfkjq56OBabnNCrWBFaiV5y/q5rk+bUmmviCFRcjBxPkJirSkSwrREWd3rHoALEsciw5JrK1X7BO7aouHVdCWA5fOw9r8NZp55A7hA93KGdEBZ1FdD9J9IExoBqMJjf3wMAGPWbzMvMB0pjRGBVStGFRU4kPYzuntFWacWxyLQpLI5uJf9mqgkZD6/fjHhM9H/tKRTKnONfH/pXfOShj9Q4BzvNF5/4Iu7efzeA2ohQ0zRr9qubetti1UBiwLf/0BZ+gjoWASLgBaEqaqgbTDVdjkVdrRF57PhOW0T16kz0PC7Lsei1gNgRKTkiojmORSmaY7H+OZ0oVa0apWo7Fm23X7tRqAzDgGd5X7ecX8eiW4gNikLdvnE7zlhZm3qQ4BJQDMXpIbSZlCZR0SoYf2ocd/7kTgDAa97xGiyP8HmWl/NI8InQ3s12sIXFoJ7FtJiGYijIylmIrBhJWEwJKVS0SkeERft34mg7Fjc8sQEsy2IFTU+gUI4rqLBI6Rgfv3Mjfv/METx1ILi8mBIOK5IBZ5iwyLA8dGtVuRyy7Y6RAo5Y3X3lkI7FfEXFYCaGy08dwGCaDFRHjhwCAIwOH6rZ1hYNg4RFVQ8W4VKWmNOpKFQAOLEvCc0wsW0ouPR6LE++oGTDHIt2FKrYfBTqkYP7UMznIguLh6aKGLnvJ/jJVz+J2PQ+rD8w5bwXTNOsceAOWK/PnvEi1uyZgG6aWNafBBdiD1zck0RF1TGUa/wCN1FUkBL5wChUAA09i1XHYq3ToaLqlmNxdoVFBiaMENdvPfb7OC9pWL1nAif0JUPF9SA2rl+NFRdeCtYvxs9izd5JqLqB1563BN1t7I9CoVA6QtYVAxkilkma9XkYNOFXLxT5dSzWC45KwRKEyP3jU2Qibttuy1HpdCxaE1ExDxddVDgfp38sQxxvXkJPfRSqabQehZros4TFuv24flbsyTw+QhSqA/nsHZ/K4cDQGC5acZr3ZoVhIL0ApF/wMEzTxE0Py3jzbytYc1CBWf+1caaERdMIFNV4xoCiM1gw2AsAGJ306TbKLCJ9kUoZUEtEOI4iLAJAcoBcj1bjSG10FWC5JjsWrYVdrcafjW0DYl1AetC56SGrXzFG+xUplKboxKR+uwRFZrbLHTvuwMcf/jhUQ62JoJR1uUZI1A297ShUjuUwkBjwvI8BA57hQ4XFsJhMVVFDRaT6jkW3EKkZWqQYUalMvuvu2LgDQHgUaoyLOfuxXX2BjkWXsFh/3ZNCY5Sq7Vi0HZ1+gl4z8Azv+/73i0K1RVOAXNv6dCOA9CPu37kfp6+qXXSbZMljJ6VaQ8DB/EFM3DOBOz91Jzav2xz5fWjCRF7JI87FI0WPtkrvABmLTE/49yymrYSH4dJwZMeiLSx2IgrV3t/R7ljcuGYjTj37VKS72hirUyiUOQcVFikdQ7PEo066zp7rhAqLHA9dJQNINSRu9FO/24TP/XErdMMMdSzmJRV9SRGvu2AJFnSTwe/ubZvJv89uqdk2azn9EkHCYsh58Bwb+PhWWGp11G04FFymPWaJYIUQV6VmOd9iPAtVN5z3exR2bt4AAFh+TnjsQ7FYxF+++XEceOh/8f5/+wJe+4FPYc94ESNW7+Ijuybw7EhVLI0LHNIxHvsmSnh45zjmZWJY3BPusFvQTVYUbh+uFV4lVUdR1pCK8/DrROyxhcWJWmExLnAQOAYTdX8DKooOnmMiz+d1CqaF1Zr2+zBXVki/Ym8i1P3phyJL2L7pmUgxqE/sncRp89K4YFlvS/uiUCiUjpJ1LSIKifesOhYDoqfrJ0Z8o1A9HItczBGEtu8jLrJ1m3dZ91vOOqVI+vnaEbZ8HYu2sOjhsqwX94w2olBT/eSxcu1q/RrHortjESaJvIzI+s07AcDbtWaaQHEM6F4KAJBGd+Ntb3sbbnxIxpdeFMNP3n4amPr4VLvP0n1duBiaPn839utXfw3cu2UNKAYwf6APADAy7icsLiTvi9IEERejOhYB4nYsWm7HdjC0FjoW23Qsjmwi5y7QfkUKpV3ajf88VtAMrUbAKNf97dNMrW3HIgDMT873vY9neUhB4wj4R3PaqKoaWjviFg4LSqEmOtWEiYoeLG4CwMToBADg2Q3PkuPSg6NQRa7qUmu2Y7EeW5jMu5IF7P5G+/3absciQF4Pt7vTjZ+w6HYsGqbh2am5a8suGLqBM1bVORYZcl5uYVFVVXzqXz6FkdtH8PJ3vxw3fv/GSLUyABGhdVN3hNiZoru/G0CwYzEjkDSN0fIoBLY5YbFTUajA0XUsmqaJjWtpvyKFcjxChUXKcUWurGLZJ/+MSjNdJnVMlRSM5ZvrZZspFD2CsCiTAbYcInQVJA1lWYOqG5AjdCzGBBZchIFbrkwGnEHCoOaxWq2e7pAux2aJCxwG0zFsHcoHrmwbdzoWg6+J6kShclA0A0YTqzYP7d+NvsH56O7tD932uuuuw8TOp3H1P38dr3vbe7FyaS9U3cRju4mI970Hd+OEumjOwbSI4ZyEh3aM4+SBFDLxcCFsQVccAstg0+Fsze22gzMda3w9TYYFTKMqLNY5FgEgExcwVZJrrnlF0Y9KxyIiuhV/+4sfYvNTTwCovo+3jxQwXVaxqCeBWIui97ObnoaqyFh54fMCt5NVHQcmyzh7UTfmZdp0e1AoFEqrbPkdcO9niZBVGqvebmhAwOe4EzbgMYHk4IhP1gdBvYPREVNck4amSSIshRh8S3/dUahiyr+LMQp+E3liihxXffcTKxDB1O0MMFuIQpWyRNSMdVV/duOa4K0VFkEEs4hs33sIqWQcJy3x6LkqTxEhq4cIi5/4+k/xu9/9Dr95QwL/fnkMDB9vvLZWukbNdRGi9VH5Yk2OBgl6ImNA1Rn0dmXA81xAFKp1npO7qo7FkPSA6mNdbsd2MFQYDAs9ZDwPAD/89V/wt8eerorsrbolR7cC6XmOsLh5535k80UqLFIolEBqhEWt9m+fbrTfsQgAi9KLfO/jWT5UOAx1LLo65NKCtyvKLdRUtEqDyBPW8+h3XBzLeYpeJbWEGBtznJQcy0FgBRQU/1SloE5Ax/HoEiZjdYuqOiECC6zgG6nqJyy6OxaBxvcRABzccxAMw2DZ8mW1j2XJYyfKE85tN910E+7/7f049Z9OxTs//s7QBCA39jVwuyhnAl7g0dXThWm/RU6ovhfHy+NNRaHKuhz6no8CBysKNUJFzD133oPH/vZY2/usZ+TQCMaGxrDqEiosUijHG1RYpBxX3L6eRGN95/7dIVv68/m7tuJDtz0d3m84Q7gFGUUPjtxkOB6qQga/YceruiY1KmrwtgVZg8ixoXGaQDUKNcjVVZLDBZ4ocZP20Ughx29zQl8SByZLKPlEv2q6gawljBZDolAdx6LAwjBJvGdUJkaHMW/h4sBtdEsE+8znbsL8t30NZ1x8JViWwZLeBFIih0d2TeDpg9NYu28KF9W52uZ3xbF9OI/hnISlfclI7k+OZbC4N4Edo4Wa94bt4PR6PU1OAKOrSCSTiCeSDY5FAMjEeOQqWk38bUXVwbPVNZyd+LITBSbCCr/pyXH86Bs34ZF77gJAXl8AePpgFhzTZr/i+tXIdPXgpOVnBm63Z7wE3TRxycl94Dn6sUyhUI4Sd74LePzbwJEnG+8LEDmcj9goHYv2ZEq9g9ErClWTiKgZ5EJ0hMUiICSrokwr+DkW7XjVSt1qdJZvdCy2EoVayZJjt6NFXS4EAECx+lmr1AuLTTjqDo9MYOmCQe/V/oUhAIAe6wOEFD5zzSl49NFH8fqzhOr+GoRF63jd0XV8vPnzd2O/1kqAY5ExoBgMWI7DvL4ejE5kvTdMW86YyT2AUqk5h3sffxqqz8QoAKBrkeV2HPPfJgq6BsMMH0sXimV85Ku34ld3PegS2VsQFpUScRunBhyR9qF1mxETBVxSFztHoVAobtwCRoOw2IGORSBcWAwTUQIdjUw16lFgBVy55ErPzdxiWX0UKuAthoUh6zJ4hvfsZKx3LALE2VdUAz7n/MYjqAplNY5Ftnac1G7HIoDAjkXTMD1jNW3npE298xUAJoYn0DfYB6EumtsWFielSWde5GMf+xhe/83X44yXngHRL64+hJkWFgEShxolClXSpZrI3GdWPwOp4v2eTvJJ6KbekY5VW5ANcyyqiopbPn8L7v7fu9veZz0bntgAhmGw8uKVHX9uwzRw5i1nQjLnhjmEQnmuQWcwKZQ6DkyWkZM0lNtwPbZDwdUzqGpmoDOOFWLQVAUcy4S6G2XNcNYZSiGxqUVJg8izkRZ2ZysqGABJD4ebzVQpfHVUbwRh0RbzdowG9ybanDSQwlBWwlTJe7Jzoqg416SkaDACRFy7YzHGk/MsN9EHOT4yjMH5C33vv/POO3HeeedhcnISXGYA4uAydCXI5CjLMDhjQQabDmdx8wO7Mb8rhrMXddU8fkF3HJJmgGMZnDSQihwRsqw/hYNTFRSk6rmMWQ7OnkTj4N1gibDIMQx6BwY9HYtdCQF5Sa15P0qqDp5lMT5yBACwb9eOSMfXLmaESbmH7/4/GLqOUoF8OWMZBjGexcGpMpb0JdCXau1LDABsWr8mUr/iztECEgKH85b2tLwvCoVC6RjjHn+jAyI3ddP6GxelY9GewGvoWGTIfe7nkKxJMz7ABSdZK/ZNgzi02hEWWc47KtMW0Mp1wiInkPMw66NQm6QyVSss2tGoNsUR538VTScTbo6wGN1ZcXh0AksW+CQn5Ifx110qVnz4FxhSMxjkcrjw/POq93Nio9vPjkJV64TFduDDHYsCY0A1ADAM5g/0+HcsxjLkeCZ3E8ciywMMi7HJLP7uPZ/GfWue8T+OjDVmG9/Z2nnYGBr0CF+3f3/fGlQkGbliqSrgthJ/NrYdgElEVWss+PD6zbh01RmIx1ofz1AolOOfoChU3Wy/YxEAFqb8vw/zLA85aByBaoegFxzPReqQczsWNUNr6GQM63n0IsixWFSLDcJigk+gpJZ8I0ujRKFmlWx1+zoh0jCNtl8vnuUDuxrtnkk3LMPWiItewuL48DgGFw423M4zPERWxDNrnsHZZ5+NvXv3oru7G+oJKnpiPS0Lixkx09LjmqF3MFhYFDnReU0FVgALFrIk42Nv/RhW37va8zF2hGtWzrZ9fAzDQNd0GCHzhWsfWotCroBSoX0xs56NT2zEKWedgkxP51+PA5UD4FIcnqx4LIykUCgzDhUWKZQ6xgtyRwbOrWJ36QGArOmBjkWWF6DKMniWCe0xVPSqsCiHOP6KtmMxShRqRUVC5CB4OK3sx/sJe256Iwg4w7nmViGdNJCCZph4dshbiLRjUDmGQVnRoQVca00l74sYT86zGMGFaTMxOoSB+Y0rNE3TxJe//GW84Q1vwNlnn41kMonhLPky0x2vfkFYuaQHQ1kJD24fwyUn9WN+V+3End2XmBI59DchhJ0ymMJUScFQtjroH8tL4FkGmXijUGxYsW8sw6C331tY7E7wKEpajYNWUg3wHAO5TPaj10fgzRQR9vPAn38PACiXqqtG45bj84S+ZOv9ioqMbRufCo1BBYBnR/JYNpBEb4rGoFIolDlAYQQAg1H3vELAZJ8jnAT1/TU4Fj3+PjN8rUvLdiNyAWKV293XrmMR8I5DFW3HYt2kke1YdLs4TKP5KNTyFBFFbaFOqnMsFkZrfixVZIBvxbE4iSXzBxpuN00T37n1F/j72ys4dekCdPUOAqXJWsGQExodi1bUZk23Zv9yoHsJ/DqaQ7EnJBX/SS2BNaDoDMCwmN/f4x+FyjDEuZc/TK4TJwAMi0KJnFdgN3nGdjvuauEkXBgaIqSg4rY/PQQAyBfLAOfTNxqF0S0AGKCLpGQYhoFH1m+hMagUCiUUt1uw3iWlGzoMtO9YHEw0Cko2Aiv4OuRswoTFKFGPbjHPS1gM63n0PC7D6lj0mDspq2UInFCznwSfQEWt+DoLg4RFgRPAM3xNlCrLsDWP6UR0bVAUKgBUyt4CbIyLOb2VXiLt+Ii3sAgAhccLuP3627FkyRL09vbCNE0cLhxGl9jV4IaMAgMGKXvR1gwS5lgEqkIhz/JgGAZSWYJhGL6xsrbTshPCIsuwkX437v/D/QAwI8Lihic2zHgM6nOlE5dCmWtQYZFCcWGaJiZLclspTu0ylK0OwFQ9uMuP5UWoqhrJsahq1XiuIMeiaZooyaRjMYrzLVtWkBA48B6xqd2WC3GqFL56sD+CqOIWFoPchTZ2F+Ezh7wHenbsZ09SQEXRg7sgTUCWKk5UZqkZx+LoMAYX1K7QNDUVX7/xE7jhhhvwuc99DrfddhsSiQSOWK+/2ylnOxR7EgJWLO5yXJM28zNk0jUvaU1FaS4bIAPtpw9mndvGCjIycR4C59GxaEWhCo+s8wABAABJREFUsiyD3oF5yHoKi6KHsEiiUFVlduMpzJA4naGD+/HsxqeQSKZQKla/nMUt8XhRT7zlfsUdm5+BIktYeVGwsKhoBvZPlnHGgq5IccAUCoUy4xSGgUQPatYgBfw9dYRFNcixWCcsejnKWQ4wXPux+4OiRKECxJ3GtvY328FrRby9/3rBjxWIW1FznYuhtxCFOk1Eupi1iluqG7MUh2t+LJWlqgDXhLOCOBZrhUXNMPHZm2/Dv3z9NnzkBRn8/uv/gnT/AuKidE+u8h49l16TdSe9ALjsn4F4T+TjqoGPICwyBhQDAMNiwUCvfxQqAKQXEGFWKZHXi2FR9okdq0FME6F3ck9Th9+AoUILiUIdnZjGvaufQTqZIMKi41hsIQrV7leMk3Hjll0HMJUr4KqLqbBIoVCCqe9YZFwLRDoVhVofO+pGYIXQKNQwYdFPpHFT71is77trJXpS0RVwDOcZhVrWyg29ekk+ibJWrjkWN0HCImBFqdZFhrsdfbrRvsOUZ/lAYdHLsWgfm+2g9LqW48PjGFjQuMjptz/9LXb9cBdOeckp+OOf/4je3l5MSVMoa2X0xHoi9RLWkxSSENmZd+v3DfZhanwqcBu7Z1FgicjsF4Fq4zgW63u3W4AFGxqDWiqUsPre1UikEigX2+yXrmPk8AhGD4/i3Oed29HnpVAocwMqLFIoLoqyBkk1mp4TiiJyRcXtWFR1M8SxKEJVLMdiiLDoFh6DHIuyZkAzqs68MKbLxLHo1cfYk7CExXL4qusoospIrjqBFiakAkBC5DCQFrFtKO85uB4ryGAA9KdFVNRgxyIAVMolR9TzEha93jelYgHlYqHBsSiP7MLjD96L2267DTfeeKMj4g7nJKRjPJJi1XXRkxSxckk3nndKPxZ01ZaiA8C8TGtOt/ldccR4FhsPZZ3bRvISMnEBAtf4ehqs4EwG9/YPYHpyomGbnoSAkqJBcnVQSqoOgWOgyC2svm8DM8Sx+MCff4dEMoXLrn45SsXqhHFc4MAyaLNfcQ1SmS6cfPrZgdvtnShCN0xcvKzX0/VLoVAos05+CEj01d4WsILfsL9OBK3ytyfPghyLrI9jUWj83Ktu43Ysxtt3LHr2Gtmfh3Uf8va2bnHP1Bu3C0PKElFUTJF9yXUpC8XaRTzFcqW6byXa5I+u6xgaa3Qsbh0z8Nu/rcaPPnAVvv7aE8GJcSA9SMRO93N7ibt+sWTxrsbY1KjYTkzZv3tKZA2oBnlN5g/0+kehAkBmAVAaJ+fCkSjUshRxLJKeB+QOR0o/8MXQQoXFO/7yCDiOxZtecTlyxXL1PayFuwsaGN1MxFTrd+bhdZshCjwuPfeM5p+LQqE8p1D12ijUuCvaOigSs1m6xC6cN3ge+LrPa4EVoBjtCYuRolBdYplmah3pWAyKQi2rZRJ/WReFKulSW8JiSasV7dwCmm627zAVWCHwda+UvBc2JfiE41j0upZ+UaiP/OURrHzPSpzzT+c4s9QHCwcBAD0tLlZKCamG99lMEMWxmLJSKWzHolwJHot02rGoysG/G4/e/SgUWcGL/+HFHXcsbnxiIwBgBV3kRKEcl9BZTArFhd0vZzQxKfT47gmc/O9/wd+2joRvHIHhGmHRQJCJjuEFKIoCnmWh6cFZ+oqrY1EOcCzmJTLoqHfF+ZEtK4gL3sJiOk4GctMRHIu2CBnEULb22kThhL4k9k+WUVIaz3ksLyMd55GK8ZBUA5oe/LpL5bIrCrXxi4CXu3RilDgN7I7F0aFDMA0D8SVn4Rd3PYC3vOUtNdsfma6gJylArBN2P3TVqfi7s+YjITa+Lq266liGwZLeBHaOFh2H4WieCJv1zkdVNwCWB2PYwuIgpibGGp6zKyHAMIFJV/ytpBkQOBaKMsvCYkCMmGmaeODPv8PzX/xy9A0MolysTmImRA7zu+KRXLR+bFy/GivOvwSch/PTzY6RAuICi/NO7G15XxQKhdJR8sONjrMAF4HBRBAW6x2LQcKi/VnqCIsBizw67lhswjluT1a540hNowXHYpYcOycQAc/ujbQpT9Q8Z7EsVUW9AGefm9GJLHTdcByLh4bHoekGVi3g8Nivvor3XdoNxLrIMaQGyetddi0e8oogi9jn3BR27G1AxCvPGFBsYbG/ByNBk3ldi8j1lPNOx2I5ZDLPITOf9Fu24F5xME2oIfPxv/rTg3j55Rdi2eL5xLFov4dDnDte+8LoNvL6WROSD63bhEtWnY5EnEatUyiUYNyiXlkrI87VCoudcCwCxIklsEKNIxKIFoUa5GjkOC7UlQXURqGqugoOdcJiExHj7uPiGM7TVVfWGqNQU0IKFa3ie75hwmKSTzYcZ41j0dSbXuPUcAyc4Ct8Av5RqHEuDt6K9K4/xkqpgmK+6AiLEyMTjhj8pZ98CRe8/gKUtbJzXQ7mibA4EG90OEYhySdnR1gc7EV+Oh/omM0IJJWCZ3mwDBvqWLS7NHNyLnC7IOYl5+GyhZdhQWpB6O/G/X+4HysvWYmTTj8JpWJnhcUNT2zAyWeejO7e7o4+L4VCmRtQYZFCcTGWtyYbmhiIbR8hk1pP7g9epRSVI64oVEULiULlBOJY5Biougk/w52mGzBMMuegGybUAAGtIJEBUVyI9uchW1YRF1hPYdG+xX7OIHqS4TEVtTGx0V6kkwZSGM5VMF1qHEyN5iVk4jzSIg9JDYlCBSBVyk7/npew6CV22sLiwIKFePLxh/D+17wI2x6/BwDQ3dPXsP2RbAVdcR5C3Wp/lmWQiYdPeGoRBVebZf0pHJoqo2AJymN5GakY1+BYLFvCLKNXhcXs1ASMumvWlSCD99E8GSyrugHdMImwKM1yFKrm/+V017ZNOLRvN170ytchle5C2RWF+przFuPqM+dFut5eqIqCbRuexMqLLwvddvtIAcv6UzXRtxQKhXJUKY44UYoOXtGlFqY9KRfUCRelY5HlyXb2uMeOHg3qx3ELi0ECZFT8XHie23q4Bk29+Y5F27HIcuTferFQytVc/1JFqjoI1WhRqIdHiUi4ZMEAHntqK857zYfxk78+BQDo684Ql2osQ84paU3gTe+vPgEfcl06FdzBCQAYQPFxLJomRNYkHYsgwmK5IqPo45xAej45OKUIsCLAMNEdi12Lq27HNgiqQN+1/wjWbdqJa6+5Ct3pVG0UasDvnCfFUfJeSg0CHA/TNPHIk7RfkUKhRMPtWCyppZpOO8MwOiYs+iFw4VGogcKi0Jpjka37zu3VCxiGYii+Ma9ejsWkkISk+TsWw8SwBJ9o6IKseb1Mo33HIiNAR4Bj0UdYdMeP1jsWx0dIAsPgwkHs2LQDH7jmA/j9z38PAEh3p5ERMyipJed1PpA/gG6xG2m767pJknyyoUNzJugdIAuEpwMSFDIiERbtmNgwxyLHcohxMeSU1oVFlmHxljPfghUDKwJ/N6bGpvD040/jxf/wYiTTSaiyGkmkj8qmJzbNeL8ihUI5elBhkUJxMV4kH/BHs/a3XjzTAzsWBaiqCp5loBmmrwjpjg21Iyo9dEAAVREwahRqtqIiznPgA2KvirIaGhebiYevJht2RaG6BbSgZz5pIAVVN7FtON9w34jlzkvHLWExRKwkUah2x2LjQNtL7BwfHQIAPPHgvbjhA9fi7PMuwmkXXem7j6FsBem4AIFvzgkwkCYD+CgRsW5OGUwhW1FxcIoM/CeKMpJio7BZVsj7whYWe/oHYeg6CrnaAXSXJcaN58lgtGK930gU6uwKi0GT3A/86Xfo6R/A+ZdejmQ6U9OxeMpgGlctn9fgGo3Kzq0bIUsVrLwwuF9R1Q3smyhh+fwMeiMI6xQKhTIrVKaAWN2q4oDJPNOeTIviWGQDRBOWJ4KjPXkpF4jQF+QidEdmBkWmRqUZYdGJrHRNrhkGmhpFmiYRUIU4EV2FBBEWrUU7isFYwmL184xEoVrHGdFZcXiECIuPPbUVV7/zUzjntBPxpqtcglNxhPQKsiKQ7Ce3ZQ9W73dF4nmfR4di8hgGEJPAUz8Dvvc84K6PAFt+VxVbrc91O9F/vjWZNzqZ9X6+zILq//PkfRRZWMwsIvstNaYzNIMSMP697U8PIZNK4JoXXoKudBKSrMAJ2AiJBGxgdCv5t4uc87bdBzExnafCIoVCiYQ7ZrReWNTN9jv7whBZMdCxyDFcYFRq1I5Ft2NRN/QG4akVYVHVVV8xsKJVILJiTUxqSkgFRqEGdVECRFisP85Ov14C11oU6stOfBmuWHwFGDANxzg+TITFfdv34V9e/y8YWDCAv3v93zn3Z8QMymrVsXggfwC98d4aN2YzxPn4rDgW+wbIYvHp8XBhUWTIuUgRFlwn+ERDl2YrMAwTKBQ+8McHwHIsrnzllUh1kcV8nepZHBsaw9DBIay6lAqLFMrxSkuzpv/93/+N5z//+Vi0aBEOHDgAAPjWt76F//u//+vowVEos81YfpaFDw9qolANI1iQ43ioigKOZaDpAcKitVzaBOlQBNAQdWlTdByLwQNawzDx5T8/iz1jRcR8HIs2BUmHGuIGZCNEao3kql943AKaacJ38HyC1ZPn7hG0GS/ISMesKFQtPAq1Ui45YlPZ44uLl2NxbOgIxHgct3zlBrzqLe/CF777S4hxf1eFLXY227d34zVn499eejoG0s3FXZ00QFYAPn1gGqpuYLqsIh3jwNa9nraQ6o5CBYDpydrup24r0na0QN7HkjVDxnPsrAuLhqoALIfeq9+Hiuvl0nUdD/71D7jq5f8AjueRTKWhyBJUpTMr8zauX41kKo1TzzgncLu94yVohomLaL9iS9CxCIUyQ5gmkOypvS0oWprhQ7fx7FisjwxjedJn5wiLeSK0BU2wuSdc+Fl2LDpRqO6OxSajUNUKcWlakVcQEtZt5LOzoAlEYHX17RVLUlVsjehYPDQ8Do5l8aEvfB/XXvNC/O0nX0RPmoiFrK4Q8TKWId2IiR7imsseqD5B2HUxOte/hRd9Bjjj78k+n/0/4M53AXf9K7mulnjtjkIFgFG/ONREb/V1sqLlokehWqLk+M5WzsLBLwrVNE386q4H8dqXPB+JeAxdafL+zdvH16xjcWwbiay1jvuhdZsgCDyed+6ZrR46JQJ0LEI5XnCLekW1CJGvjdY0Z3jptcAFR6FyDBfsWGyxY9HtJBRYAZLe3PdV0zShGIrTK1hzH0xIuuS41GwSfAKaobUkYgLEFVjRax/rFt8Ms32HqcC2FoW6KLMIVyy9AiInNpzf2BBZqPPtz3wbl159Kb71m2+hp6/HuT8jZqAYihOhuj+/Hz2xnpaFxQSfmLUoVACBPYu2sGjHxIY5FgFy/CW1FPg6RCXod+O+P9yHS154Cbp6upBKE2GxUz2Ldr8idSxSKMcvTc9kfv/738f111+PV7ziFchms9B18m2pp6cH3/rWtzp9fBTKrGJ3LM4WXnNPoy5xUwtxLDIcD1WVwXMsNMPwncuyhUWYpuNYFHyEQDsSMykGD8IOTpXxo0f3QjNMxPhgYbEka5GjS/0wTdNxlAJApa4z0e/ckyKP/pSIrUO5BvFxvCAjIXJIxzjohum48vyQKmWwDAOBY1D2cCx6PX5ybASiGMOHP/0VXPepL4Lj/a9rXlJRVnR0x/lIQqubhMDhtPmZpgWqgbSIhMBh4+EcJqzrm4o1HmO9Y9ERFicmaraL8SwEjnFeq6pjkYUiz+7vl6FK4HsWoOvCV2PnVPW12bh+NabGR3H1K18LAEimyUC/Um5/RSAAbFq/BudccEngaw0AO0dJv+JFJzVG4lKCoWMRynOWIFdgJ4n1RN4vE6UTrr5jUVerkY82LAeYLmFRypHIT78YK12rPS6xE47FJiKwvcS9ZqNQpSz513YECkniQrRcAgXdEhbdTpKKRK4jK9S6JQM4PDqBZCKG//jYu/CTL/0rRLF6npxsTYTZ8beMJS7mh6pPEBYz24FJL4feZcC5bwWu+ATwsq8CmYVAYZi8Z6z3mGoLi2GORYYFUla0K9esY3E++XdyVytn4eBR8Q0AeGrLLuw6MIS3/v1VAFAVFsvW71GzwuLIZiIqCmRS8OH1m3HROachlQxxm1Jaho5FKHOZZoVAt2hXVsuIsS4HnNG5jkU/RFasiWOtJ4qwqFiLRJmA79FBjkWe5ZsW+2wx1MtlaB+vHQ1qk7QWQrXan5fiU4FRqHoHFvsIbHAUqlQOHo8KrNBwjJOjkxBjIv7xn/8Rn73ls4jV9f/akafjlXGYponDhcPoErtqzq0ZEnzCs/ey0/RYi5yChEX73Oz3QljHIkCcrSW1FNo9GgU/x+KhvYewY9MOvPgfXgwASFpjkU45Fjc+sRHLli9zrhGFQjn+aPqv7M0334xbb70VN9xwAziu+uF54YUXYvPmzR09OAplthnJza6jSq9zIxYsYclGdboRTUfwc8OwxLEosHbHovcXCFlrjEL1cyzaUaiJEMeiuzcx4SNC2qdXUjSoQSUzEciWa89/qq4zMUiAPaEvif0TZZRc19Y0TUyWZKREHukYmWzKSSrKGvkiopiN518pk5VbMZ7zFBHdxyhNjWDrU2swMTaMc86/BK96y7vCThHDWfL+yyTCJzbfddkyXLNyYejrFAbDMFjam8DusSIOT5MvUmlPYZFcOyNO4vH6BuYBaHQsMgyDdIzHVEmBaZo1wqIst7YqsxVYhjgWGWeSuPr+eOBPv8Wipctw+orzAACpDJlMdcehtoqmqtj6zLrQGFSA9Cue2Jek/YotQMcilDmNPYkxw5NwM0p6Xu3PWsBkHscR8aTZjsX6VeScQMQUt2PR7h70Qqn7m91iB08NfBOTV/bx13QsNhmFWsmSf23hTkgQsdSaFCzqAnFlusTLou0S4ITgaw5gOK/hb2s248joJM478xR84r1vaJhw5W1hUXT1aib6SL+gs9FREKdY1nJRut4ndY7F/p4MOI7FaECvEelZRFVYjOpYFNNEpJvY3fShu/ETFn/1p4cwf6AXL7LiwbptYbFkfRdpdiJxdIslLCZhmiYeXr8FV128stXDpkSAjkUocxlb1PJy0nlu74oZLWvlGpfYbESh8iwf6MxiWRaaofkeB8dxUOXq300/Qcm9D82odSzyLA9Zl5s6VztC1us6O8JineMuYaUU5JXGqpYoJIVkTXQt4BGF2qbDNDQK1cexaCNyonMt1YKKJx98EuPD41h6ylK8+2Pvbui2BICMQBb7TklTmJKmUNbK6In1tCwOJjuRZBEBMSYi050JjEJNC2SMGrVjEQB6Yj3IytnQ7tEoKD7JTPf/4X4k00k878Vk7iLdRY6zVOyMY3HDExtw7vPO7chzUSiUuUnTf6H37duH8847r+H2WCyGUqkzf3wolKPF6CxHodb34Q3XCZuabsIwTDy6awKXfuV+jBVq72esKFTbseiXmiq7olAlq5iG93EY5iUVMZ4N7ZdzC50Jn21t8a0sa6FRqGHUX5t6YdFPVAWAkwZTGMpVkC1XH5Mtq1B1E+kY74hzubKKcZmcSwGNk2i2sDiQFrF/suxEnwocuZbT1jEd2bERm265Dj/7xucxPjyEwQWLIp2j3a/ZHQ8XFp9/6gBefe7ilnsA3SwbSOHQdBkHJ8nkaJdH36XzWs47G6puIJFKIZ5IIFsnLAJAJi4gZ11f21nKs5hVxyLPsdA1BQxf+0VOkSU8eu+f8aK/f60zuZpKWQPoQvvC4s5tmyBVylh50WWB26m6gT3jRSyfn0FPggqLzULHIpQ5jd31FyL6zFniPaTnzo3ufy4Cz0HWzRDHoh2Fak2+G1qjYMjyRFCzhcVKLlhYlOtc5vGM//6j0lQUqu1YdAmLhtGcoFyxRT1bWEwSEdF6joLGk/8vTzoPKdouAU4IjELdsGcEF998GNd99ec4ODyOpQsHPbfjpCnyP6n+6o2pAaA8Vf25/v1wtLB+pxSdfH6zLIt5fT0Yncj6PyZtRZpa7ptyhF6j6mPnAfnDaKd9XfZI7NB1Hb/+y8N48yuuAM+T97ftWMwVJQBMc45FXQMmdgHJAYCPY/veQxibzNJ+xRmGjkUocxlbeArr67NxuwUrWqVGqDJMAwY6s1jKdj7WP5/ACjUxpfXwDA/VUH2dk3YUapgo6BbL6qNQeYaHoitNuTOd6+yRrmDfV++4c4RFuTVhMcEniGjn+myKc9W5i05FoQaJk34dizYiS4TF4X3D2HLjFvzwsz/EyOERzFs4z/cxtvg2UZ7AocIhAERca5VkWNpCB+kd7MXUxJTv/YvTi7FiYAXmJ8hipyiOxYHEAHJKrsH52QpejkXTNHHfH+7D5S+73HGP2o7FUr79z7CJkQkc2X+ExqBSKMc5Tc9In3TSSdiwYUPD7XfffTfOPJN2OFCObdxRm62i6gbe9bN12DYcHm2haMHComoY0A0T02UFJVnHzpG6STSWg6Yq4FkGmhGtY1HSbMeiXxSqhrjAhUZx5l2ORb8+xpKsg2WAsqq3HYU6nKsdvNYLi0HfIU4eSEHVTWwbqg7e7djbdJxDQiTH7+UKdSNVyOThuUt7sHO04ByT3Ss4XVZx22234Y7Pvw+JwSX4zC2/wsTYSHRhMVcBwwC9s+xgO3VeGgVJw8bDWTAM0JNs3L/dsQg+DtkSp3v6BzE1MdawbVeCR15SoeiG41gUeQ5KM5N5bcKzDFRFdjkWCU88dC/KxQKu/vvXObfZUajlUvvC4qb1q5FIpnDamcGTefsn7H7Fvo6Iw8816FiEMqexhcUAMW5Ok+hrFNgCRFJR4CBrCBYWbfeVvULdUH2ExbqORS4gClV2/c3mYp1x1bkdi/WOyHo4u2OxXBUZm+1YtKNQRRJfCSFFXHmmy7EIAIUR5yElezKKFYCxZ4H7bgLuvbHmaf/4xz/iBR/9JealOTx06w0YGpvCkgUDnofAy9Pk2sVcwmxqHlBxTZC12G/UcazJNdU1fJ4/0IORgPgxdFljML5JxyJAHIDF0baiXhWP8e8DT2zEyPg0rr3mhdXDtB2LxbLVN9qEsDi1l/z+pecBLIuH128Gx7G47Dz6eTiT0LEIZS7jOBYjdsy5HYsVrQKBrX6HMmF2pOcNqMZ01osl7v15wTEcNEPzFTg5gYNpmjD0YEHNLSzqht7gWFR0pSm3n32dPaNQDZ8oVEvwmpYDPrsCsB/vvoYxvsOOxZDXIywKVeREHHjqAL729q+B5Vl88bYvYmp8CoM+i5yAalzopDSJA3nSWduf6PfdPoyEPR6fBXoHejE17i8sipyI95zzHpzcczKAaI7F/ng/SmoJhbDxaATcbl6b7Ru348j+I04MKgCnY7ETUagb15J+xZWX0PQECuV4pukm2+uvvx7XXXcdJEmCaZpYt24dbr/9dnzlK1/Bj3/845k4Rgpl1pjoQMdiUdLw4I5xnDYvjbNe2R24razVxkuM5CpgUF0XbZq120yV6o6P5aGqCniOgS6bvovknecw4YhCfl18BcuxGNSZaG9nkxC8n6soa+hJipgqKaiE9Be6qXdyAo2i60SdCFwfK+vmhD4y+N5wKIu/O5usXB+3hcWYgKQlLGYrIcKi5Vg874Re/GHDEB7cPoZ3XHYSuhMCJooK7rr9p/jD976Is674e3T/3XWIJ5Io5KYxMH9h4PM655iV0JMQ2o43bZZl/WQA+diuCWRivKfQZTsWDSEBzXKf9vYPNkShAsRxuXeiBEUznOjdGM9ClmdRWOQYaKoChq/9UvTAn3+H5WevwpJlpzi3pdIk/q3cgSjUTetX4+zzLgYvBH8Z2zFaQIxnceEy2q/YCnQsQpnT2Cukj1XHYqKnMRI0QDQUOA6yFuZY9IhCrRcMOQFQSnBGQXI+uGPRLSyKSf/tmqElx2KFiKQMawmCLUShxqwYV9FyLFoTrwXN2kdx1HlI0XYJDC4HRrcCT/2sel0B/PLXv8U7P/hRvOa8AfzypRISAz04MjqBJfN9hEVpCoh31/ZLpgcByeWkiOh4mXGsSF47ChUA5vf3+ncsAqSjESDiM5roWASIKDmyyXk9WkFSG98Pv7rrIZx24iJceM5pzm3dGTIWy5fKRIBvZhJ/dAv51zrXh9ZtxkXnLEc6NXuTqs9F6FiEMpex3XJhApGN7Vg0YULSpBqhCkBHet6CCBNAWYYNdSwC/pGPNjVRqKZWs19bWGzFsegVhWrf5xeF2mrHov14t3hY7zBtN7o27H0TFoU6sX4C67+2HmdccgZS705h/tL5GB8ex+Ar/IVFkRMhsAKmpCkIBQFdYhcyYutpFF1CV/hGHaJ3oDcwChWoFZ+lCAuue+OkR/pI8QhO7T21rePzcize9/v70DfYh/OeX3Xei3ERgih0JAp1w5oNOPHUE9E3OLPzHWWDiKAVc/ZqdygUSpWmhcX3vve9SCQS+PSnP41yuYy3vvWtWLRoEb797W/jzW9+80wcI4UyK8iaXuPCa5eRCLGq9b2BQ1kJmQSPXFkBY00SVRS3sFg3IGA4q2ORjeRYBKqORYFjYXiIcbmKirjARRAWq9cq6dGxaJomyoqGeZkUpkqKExMaBS+RcCQnOc5MAJgu1z5fUBRqUuTRnxKxdSgH0zTBMIwTK9ubFGqiUIOwo1AXdcfRkxTwwPZxvP15y9BlORbnnXERvva1r2Fs2UuwZu8UJseIw2AworB4eLqCroTgRKvOFr1JAakYh70TJSzuiXuKziWZxNOZQtJ5P/kJiz1JEUU5B0UzUFHItjGehTKbwiLLQlOUGsdiIZfFukfux3uv/3TNtsm03SXQnrCoaxq2PL0Ob33/v4Zua/crDqTniAvkGIOORShzGts5d6w6FuNdHo5F/89wnucgaYChKWBNE/BKPDBUS/yy7tMtx2K8G5By5DG2Y9EWceQCieT0jUJ1/c0WEo2dja1QF1cWCMsBYBwXHRiOCIvNOhY5sbpfMUkEacexaJ2Ty7HoRKFe+iFAmq7ub+0PAEPHlS+8Gp///Odxg/afYBkGYyNDUFQNSxZ4r/p3hEX3JGJyADUCaSdE207gdCxWxynz+3uw++CQ/2PmnwOcey3QeyKAJoXFzCIidtvO0haQtdr3Q0WS8bt7H8f173xNTd9lPCaC5znkCiVA5JrrWBzbRl7D1IDVr7gZ73A5ECgzAx2LUOYyrToWbcdefXyn2oyLugUELsSxyHLQTd1fWLR6TlUl+DjrHYvuCFOBFaAYSlOinHOdOf+OxXhdokKci4MB03rHokd3YEPHYpvCYtj7JiwKdf5Z87H89cvxTx/7J/x616+hyApyUzkM+KQn2KSEFLJyFhWtgr54X4MoGxUWLFJCqqXHtkLvQC/279wfefsojsW+OBHkjhSPtHpYDvW/F7qm48G7HsTVr766piMYIHGonYhC3bh2I857XmNceKfZlN8EAMibrf0+USiU9mgpf+3aa6/Frl27UCwWMTIygsOHD+M973lPp4+NQplVbAdbvEOxhBMFBVpIFEe9624oW2no16u48p4m68U5SzzhOcbqWPQRFl3HISm2sOgfhRrjWXAhUahuYTEda/wiUFF1GCbQkxS8j71JjmQrTuQo0CjKBhgWARDX4v7JMkrW+Y8VZCQEDkmx2rGYD4lCtYVFhmGwYlE3Nh7KYue+Q9h423/AUCqIDyzFxz/+cWeiaHJsGAAwEDEK9Ui2jK64t2NwJmEYBif0ki8o6Zjg2b9ZUa3eK5ZD0XIv9vYPIjs50bBtd0JASdYgq7oThRrjOShK9f1ekFTcvu4g3v6TtVi3b7LhOdqFZ4ljkROrX+Qe/dufoOsarnr5P9RsG4snwHJc247F3c9uRqVcwsqLnhe4nWb1K542P+MZO0uJBh2LUOYs9mRMkGPxc93ADy73v1/XmotC9OJ3/wRkDzX/uFhXrXsNAAz/z3DR6ljUVdm/X1CvcygaKvn5pV8Brr6ROMPsjkUbuRASheqaQOA7JCzWOzUDYWp7DhmWnH8zndKVLIlBtY9dSAKGCkYjr71kcOQ+t2PRdgmwLJDsB1IDmFJjeN9tezFd1nDiCSfgM5/5jBNpf3iMfMb6ORY5aZrEoLo7iVN12zKzOy7xxRYWXW+T+QM9wY5FlgXOvMaJRG06ChUAcoebPNAqFdV0ehQB4K4H16JQqtTEoAJkLNaVSlpRqFy1lzQKI5uJW1FIYtf+IxgZn8aVF53T8jFTokPHIpS5iuOki/jZaAuHjsuuLr5TCUol6ABRolBVw79D0XYsekU+unE7FnWzUVhUdbWpPskojkXbYWjDMAzifBxFpdjwmCjUPx9Q64rUDb3tTsxWHIvlYhlf/7evY2p8Cj39PTjlTaeAseacpkZJTGhQFCpAhMWCUsD+/H50x7pbEhYXpRfhxK4TQ8XqtqibLukb7MN0UCx7HVE6FnviPQA6IywqsuL8jgDAU48/hemJ6ZoYVJtUOtV2FOrU2BQO7TmEVZfObL+iYRo4IJHY3PrXhEKhzA5Nf0vct28fdu3aBQBIJpOYN4+U7+7atQv79+/v6MFRKLOJLSymYh2YmAKQrSiekZ4AHCGrXlg8kq0gUy8sumZP6l16YFjougaeZaDrpq+4Jqtux6IVhcp6//rnJRUiz8Lnbgd3FGrcIwq1aAmPtnDSrrA4lK04zkCAxJa6v1h4uS/dnDSQwlC2gqx1DUfzEjJxHjzLgGUZiDyLQiV4EsfuWASA80/swdjBXbjiBZdhePNq6PkJFGSt5pgmRy1hcd6CSOc4nJOQjgkQOBYffssrcGjf7kiP6wQnDZIVfakY5+NY1BxXhO3s7Okf8HQsdiV4GCYwWZJRUUnPpsCxTsfioyMsLvrSfbjh95uxes8kbn5gd9urKuuxOxb5WPWL1wN//h3OvfRy9A3WlsYzDINUuqttx+LG9asRTySw/OzgAfT+yTJU3cSFy3pov2KL0LEI5ZggbBJuZJO/u+3uTwK/uKZ1cVGTgU2/Bm5/S/OPrV/hzbDEsZgfBn77Piuu1LU5TzoWDU3xFxbrOxVtxyLDAPPOJK49VqjrWCwSoc9vQOJ2LPLxzsR1NjuBxQqAJuHZHbuQs8doZhOCUGWq1m1pxehyuusaxzJAuboAp1QnjO3afwTPe/P1+N0zE9g7Yd2nVMcrh8eyAODbscipBUDMAO5J5GSdu3HORKGS81NNt2OxF6MT2chP0Zxj0Rq/uRyjzSJpBmJidfx6258ewkUrluO0ZYsbtu3OpIiwyHBNRqFuBVKDgBDHQ+tIv+Lzzz+75WOmRIOORShzGVsIjBqFajsWbTGs3rGoBCwwaofVQ6uxN7c3krCoG3qN49ANa32nUtXgcZPteLSfh3WNMQSOOBaNJhYIBV1n1VDBgm0QaQEiDhbVYkvfgb2ExY5HoYaIcvUdi6NHRvHh134YD971IA7vPYwYHyPuTyv9YHKEjGPChMW0kEZJLeFw4TC6Y92IcTHc+E834qlHn4p87OcMnIN/WvVP6I31Rn5MsxisAdMVdd470Iv8dB66Fi06PYpjUWAFpIU0hovDLR+njaqoEFxjkfv/cD+WnrwUy1cub9g21ZVqOwp1wxMbAACrLplZYfHZyWdn9PkpFEo4Tc9ovvOd78Tq1asbbl+7di3e+c53duKYKM8hSrIWKgjNFmOdFhbLKiTVe1BqO+/qXXcjOSJ2uZFcg5P67U1rhR3LGNBM03cA6RY4ZUvo8Ys6LUZ0LLrdfbyHEFWULWExQc5nqhj+ZcTeZ0PkK4jolnG9NiVZg6q7hMWQwfNJAymouontw2QicjQnIR3nnWNPCFUnnh+VcnWirrBrPUb+5+NALI0X/dutEAaWoiRrTlQrAEyNDSPT3Yt4ojGupB7TNDGWl5GOc9AVCds3PY3vfvmG0Md1ilMGSRxoMsaB93CzFt3CotVF2TcwD9nJiYYvX12WOD5akCEpOkSeBcMASikH09CRU0w8/5QBfODKU3Dhib3YdDjnCL6dwu5Y5GPk2hdzU9j05Bq86BWv8dw+lU63LSxuenINzorQr7hztACRZ3HxSa2X0T/XoWMRyjFBqx2LagXYeDtQGAYq0Vc/12B/JjYjctmIdZ9ZDEcciyObgM3/C+x7rOZuwXIsGqri30Wn+wiL7uXFHF8VFk0TUIrB0aRyoRo7GxSFeuQpYGiD//O44ZsUFjnBeZ3tTuGmnGblKcttaV0bgUwWcqrLxRDrqnYxwuVYBPDQ2k245E0fAcMwWPvJ83HBCZYoPFadaDk8ngXPc5jX3+N5CAxMQEyT628jJJxjIRvNEWHRmvB2dywuGOxFsVxBqRwtbr0px6KYIv/5TGRHoaKYiIvkfTWVK+AvjzyJa6+5ynPbrnQSuWKpGgscZWJYLgC5Q0RY5GJ4eP1mnH/WqehKh489Ke1BxyKUuYwtBEZ1LNpOPltYrI/v1JpZ7NACYb2GtmNR1mT8fMvPMVoarbmf58l5hkWh2uehW+MVDu05FsMiZ0VOrOnWs4lzcVS0CrQWxmmRhMVm+p49aCYKddsz2/CBV30A5VIZ3/39d7HykpUQORGqXl0I7giLC4KFxYyYwVh5DGWtjG6xGyzD4pG/PoIb3tPcvEhKSHle906hczqgwHG89g32wTRNZIMSFFxEcSwCQE+sBxPSRNsdp4qsQIyJzr4fvftRXP3qq2si2W2S6SRKhfaExY1rN2LpyUvRP39m5zsePfLojD4/hUIJp2lh8ZlnnsHzn//8htsvvfRSbNiwoRPHRHkOcfaN9+CNP1xzVI9h2Sf/jBf8xwMYK8jgGAapWGcGILmKWtNt6CZp7aNeTBktSA3CZtkldhUktUaINa1oKs40Ax2L7uOoqDoEjvWsQAKAgqxB5NnQjsW8y93nta0tLNoi6lQE4eisRaRg+2er99ect2maGCsQIdD9/JpL0ArTp0/sJxMszxwik7RjBRmpGO9EwsYFlrjyAgbhdhTqkQP78Pl/ficGl5+P5e/5L8R7yQplIna6omvHhiP3K06WiMO1O16d1DSbiVNrk2X9lmNR4MF7uEOIsEiOx46T7e0fhKapKOazNdvaztKxPHEsihwLlmGg5Cdw+Lv/iFfOL+E15y3GeSf04tKT+5GrqHjyQIuT5z5wLFvjWNz+9BoIYgwveMkrPbdPpjJtRaHquo7NT63FyguDY1AB0q94Qm8CA+lmIvcobuhYhHJMoMvN9e3Z7LybiGqdnsR79L+IyBZGLFP7M8sBmmtCo1jr3hIjORbrolB1KwrVPRhhBSJMmgY5f5iAEG94Kge5QEQ5wHI2+ozfbn0R8KMrG5yWnjTrWORER+xyhlrNxMVVpi1R1BYWyViF110RVHYPpYUtLA6NTuJl7/sMzj/rVKz59Tdw6jzXROPIRud/D49lsXhef40ro4F4V+Ntib7q/4fFWMwWtmPRJSzOtwTT0clo44imHIsAkJoXvk0AkqY7jsU773kMum7gTS+/wnPbrnSiGoXqdu8GMbad/JueDxPAQ+s246qLV7R1zJRo0LEI5WgwUWmsofAiKKKzHtM0HeHCT1ic6ShUNiRym2M5aIaGbZPb8I2nvoFX/v6VuHXTrY7z0IlCDRAWTdN0tncex9YKi812LDrRsT7jhxgfq4lbtUkKSZS1siN02q9rFEGQY7kGF2SnOxajRqEWsgV84m2fwKITFuF7//c9nHT6SQCIcKoaqiMYT45MIt2VRiLVKIq6yYgZTMvk89ztOAwTnmcbndNhqqbzvu0dJMc6NT4V6fFRHIsA0BvvxbQ0DbnVxYoWqqJCtBY5rblvDSqlCl78Gu8u5lQ6hXKhvSjUjWs2zngM6lRlCtsmt2FACO7tpFAoM0vT3xIZhkGh0Dj5msvloOvNr+a85ZZbsGzZMsTjcVxyySVYt25d4PbZbBbXXXcdFi5ciFgshuXLl+Mvf/lL0/ulzB32TbRfDNwuh6crODJdRjrOhzr1olJSdBR9OvvsPeQqtaJhSdYbHIvuKNSirEN1iU2m9UwMDGiGCd1nACm7XI+yanhGXTr7kDQiBIUJi65z8xQWrSjUhMgjLrCYjhCFGrMiTAqShi/ctc25PVch7k/3tSnLOlQtumMxKfLoS4nYciRnCZUyUmI19jMhcChbvZBeMCyHSqkE0zSx+MST8KXv/wrvufG7OFw0MWm5MUtKrYtycnQYAwsahUWvQx3KksF5JtEZx2yzdCcEvPnCJThjocfkIoCyosMWXUtytWMRAKYnauNQ7Z7Q0byEiqJB4FiwDCBXKjAqeQxkYohbccCnL8hA4Bjct22so+djR6FyMfKleN+zG3HpVS9BKp3x3D6V6UK51LqwuGf7FpSLBawKERY1w8DusSKWz884/aOU5qFjEcqssuk3wP1faF4k1AIcfEFs+DX5N3e4NWHSj/s/T0S2sOesj79iWBJlalOq/XvN8yxkHTB0NaBjsc6xaAuN7jEX54pCtWNOg4Q+uVDtRORi4R2LcoQuo6jComkQRyknkNcZgBNS0YwgLGWJsGhP/DqORdfYON7j9ElyLItiWYJpmlg0vx9/+sHn8Ncf3YTe7rrPtuFNzv8eHs/6xqA6xDw++91xqHPFsWh1LKqmh7AYMQ61KcciUI1DbZGyYiBudZHf/ehTuPrSVVgw2Oe5bXc6hXyxYrmE9Wi//2Nbye9o12LsOTiMobFJXHkRFRZng06PRQA6HqF0Dlvw8nIkeW2r1kWvJ/la17Nqttn7HEKUKFTN1Bw34cLUQnznme/gn5/4ZwCuKNSAjkW3OOVEoboETZETSY9jE24/2QjushRZ0XNhT4JPoKJWHGHxj3v+CAAYK0f7Tlwv/LqFzU44FoNeD4ZlUClVoOs6Mj0ZfOHWL+C/bv8v9A5UhcAYFyPCovV6TY5OhsagAkCXWB2P9CfmbrqP7Vh0hEXr3KP2LMoRFzn1x/uRk3OQ9GgORz/cjsV1D63DGeeegcUekewAkMwk24pCnZ6YxoHdB2ZcWHx86HEIrICLei+a0f1QKJRgmhYWr7jiCnzlK1+pGSzruo6vfOUreMELXtDUc91xxx24/vrrceONN+Lpp5/GqlWr8NKXvhRjY94fpoqi4CUveQn279+PO++8Ezt27MCtt96KxYu9/yBSKM0wlpeRifORBt9RGc4FDwByFRWa5XAbsbbtrutYLKvV37X6+E8wDMCwYE0DuhEQhepyLEqaDoFjfB2LRVmDyHNgm4hC9RIWC5b4lBQ4pEQeuYp/2Xo9ZyzI4I4nD+HB7eRvgX0d3cJiSdFqIl7DhEUAOKEvgf2TZZQVHRNFGSmRdCwCRHiUFN3XsMixDPbveha//58fAwAufP5VOH9ZP0yQzjyAiG+1jsURDM5f1PBc4wo5j+FsdUA5lCXn2Js4emLTi89agBWLuz3vK8kaGOvLmBNzO2AJi3U9i3GBBc8ymCjKKCvEIcuyDCSpseRd4FicNi+N9funqjFyHYBnGWiKAl6sfum6+u9f57t9Mp1GyWNyKCqb1q9BLJ7A8hXnBm53cLIMRTdwwYm9iPFzZKL2GISORSizyrN3AVt/D2QPNvc4XY0eofjQfwDrfwyUJoE991Vvn5yBrt2wVd/1rgGWq3XhFWt/N4hj0YQZJiy6n1dXLBec6zbWFYUqESENHnFfDlKOOBozC4HM/OBzAhoFU89tIgiLdn9h/gjZ3oqb01oRFivZWrel3bGouVaKJ3ocoZVhOew7PIKbbrkNAPDiy86DIHhMZg7XOhZDhcWEx2d/inzGqwbmkLAoWzGoLmHRmsybMcdiV+M4rhkqioF4rPq+uvaaF/rvKp1ErlAi7wdTj+ZYHNlCXJXxLjy8fjNYlsULLqD9irNBJ8ciAB2PUDpLMw5DE2ZN1CILtqFjsV547DRh0Zt2x6I9n3D1CVfjfSveB82KH+etOG9F8T9vd+yoLTK69yuwAjRDa8odF9ZlGeNiYD2mXVNCCpIuOcLi7iwZ79mCYJiDs15YrIlChdG2wy9IWORYDtnJLH7wpR8AAM677DyI8drxkyPSuqJQowiLaZHUs3SJXciI3guC5wIGZ9Q6FvubcyxGjULtT/Qjr+RR0RrnUZpBkZWajsUX/4O3WxEAUplUW1Gom9aSxW0zKSxqhobVQ6uxYnAFBuLUsUihHE2atsb8x3/8B6644gqcfvrpuPzyywHg/7P33WFy3PX579Tte7vX7ySdiiVXWZItyb0BjiGAKSGEEnoLxARTExMILcSEQOg/AtgQiEnoHYMpLnKRZEuy1bt00knX2/adPr8/ZmZ3Znfa7u2dzva8z+PHut2Z2e+U3fnM5/2+74tHHnkEuVwODzzwQEPb+sIXvoC3v/3tePOb3wwA+MY3voF7770X3/nOd3DHHXfULf+d73wHMzMz2Lp1Kxg9w2rFihWN7kKAALaYyPOIh2h4CPUawmjWvQDIcxo5RlOkLXkGQCO7dBR5qUJEGiBoBtCJRSfnTN7OChX1OyrKCnhJQZjxPgiGIpEmiQo5Z/d+hKUQZSkUdFKUpb23vXlFO7JlEXf8fC/uu/2GKulqIt3KNSSen6jOlZ0xHNg7itFsGSVBRixEVYjkCENhpsQjYsMsipkxFI5uh8KXsXLNRZXXU1EWS1IRDOtqw5IgQzIrFidG0dnzl3Xby4hag64kVh9uRrNl0CRh2cfFhJLJCrUsyJAUpapYnLZa8hAEgXiYxkxRQDrKgqEIkAQB3oZYBIANy1L4wY4zGJwq4KI+e2KzUVC6YpFkwpWUjM3XPddx+WgsgZnJccf3vbBnx1ZctH4jWNbd3vTIeB4MReCKlfZqhQD+ENQiARYUZS0XBo021eQGFIsP3an9X+SsZII4t0ZCU6htZhG6LaNRZJSsTRMtYxEexKJgJacUSSNPzCUBxVTJFEOxSLtlLOY0Yu+GD2k2ql7wk7Xjh1gs6deDqmqZjIZi0bj/N2IXx2WBjlV1GYu0ZGroRNKAUMBwXsGP9nEocwouv3i18zYVuS5j8fL1zgo2FQSISLr+jbhu8y4CqUVkhSrWEIsdqQRIkvSvWOQanPWfnBtJUxSqVqgA8PK/uMb5o+JRHDp5BiBj/q1Qx/drqkomjIee2IvLLlqFtkRsTmMO4A+trEWAoB5ZzHj3/e+Goir4+s1fP9dD8Q1DsegXZmIxTIfriL65Zrx5gSIpkATpSIiRBKmRfqb8w3Vd69Atd+Ntb3wbLnvZZQAASXSe3CObajKD0DOTfgzJWMgwP+BlHgQIR8tZlmJtScIoHdUyFh0mIzEk43oOa3MWLcRiC+JUnIheKS9h+tFpSKKEizZcZLuMMR5JkSrK0OmxaVy49kLPz00wGpmYDqcd7WUXAxRKsSgW2TCLWDLmX7Ho0z2hI9wBWZUxUZybu5PACxby9zkuk5zmaoW6e/tuLFmxxDNPcy7YM7kHBbGAF6x4AaYm/dlDBwgQYH7Q8FPixRdfjL179+Jv/uZvMDExgXw+jze84Q04fPgw1q5d63s7giBg165duPnm6kwJkiRx8803Y9s2+8y9X//617j66qtx2223oaenB2vXrsWdd97pajXC8zxyuZzlvwAB7DCpZ+61UrFoqNCckOeqOYyj2TIIAO0xawFVNqm4SoJsUekBAEExIBQJsqo6qvYsxKIgg6bs99EgA/0oqfL6smHGPo+xwEugSQIhmkIizNRlIrqBJIC/u2EVpgsC/vkX+zCa5UAQGpFX2Q9RhmjaL8UHs7iqMw5RVrH1hNYUjJvyLKMshbKo1LlObdu2FWP/834AQKKtDZddZZ2BvH5plQgzk52qqiA7M2VrhZqV6o/vSKaMVJRBiFkkqoAaFIWqJZdBoEZjcbChcJ1iEQASIU2lWqyxQrXD+qUpqCpw/6HW2aFqxKIAktEestJdvWBY54eTWCKBUtGHTZ4NZFnG/icfx/rNzs1CA4fH8hhoj6Ir4ZIbFsATQS0SYEFRzmq/f1SD8/Fkwb9i0cC+HwPdF1f/bnT9+YCR92agnIF5JhOjZyy6EiGKgxVqnWLRIBb17whjtWKzgM8BdFj7zy4jELCM05etJO2HWDQ1MEi2QiQ2rFhUVX0fIlUyl2IBggQlm+6X4TbsOsvj+v8ugZMAlqFx63OvdN7u7CnANLPdS7EoM/EKoWmBrlgsiqgnm88VKsRiFRRFoau9DePTGV+baNgKNe5DDeuCIi8jrNcfDEMjGXe+ptsSMT1jUVfvelnZqSowcRCIdUKlItiyY39gg7qAaFUtAixMPRLUIs1jy9kteGT4Ecxw/tRIiwGNZiKaicMQFbJkDwLzr1gE3FVyNEHbZgeyFIvioSI649p9zi1j0dhHEqRtxiJN0lBUpSFSVpAF0CTtmGPMkIwtschSLGRFhqRItteVlzVsrVVtbcbifCgWDxw4gFOfPwW5oB27619wveP6BinI6Rbmfq1QDcViKpRa1MSiTFozFgGgvbPdN7HoV7GYDmsTv84UzjQ+SBPMVqgA0O5gyQ4A0fjcrFD3bJ//fMVHzj6CpfGluKb/GtjoJQIECLCAaCrMq7+/H3feeeecPnhqagqyLKOnx/qw1tPTg8OHD9uuc/LkSTzwwAP427/9W/zud7/D8ePH8fd///cQRREf//jHbdf5zGc+g09+8pNzGmuA1mAix+GKO+/He29eg/fefP65Hk4dpgo8upOhSn5cK+BlhVrgJQiSgl/tHsa/3XsIiTCNCGst4jmxWhRqVpvWYpqgGBCqDFlRITsQdxYrVD1j0Y4/rZCFPohFww4zzFCOxKLxXjxEYTzHa5mIPuvDpekoXryuD7/cPQJRVtAWZizjUlRgtiya/vZjhaoV4A8f1YgwC7EYosCLMlTaup0vfP7zYDoH0LXyYkzt+G3dNi8fSON3+8cAAJKiIq9bxMr6bMlaK1RZUVGQ64/v2dkykhFGz3xcBI3kGpRMxGJRkCDJKsIMgXRHpy2xmIwwyJUlRFkaNEVAliRIkv2DXkc8hO5ECI8cm8Lf37TaM9/TDyhKUyxyvAAawHlrL3ddPhpLoJhvrsEyePQgCrks1m12z1eUFRXHJwp4zgXdQb5iCxDUIgEWDFxGa/Q32uAwFIuNkDKje4BLX6WpkAB/iqX5BkHpak19LHzWkrnIUBR4WdWtXx3uxbJoVSzKRsaiaRk7YpF1Ixbz2jlxUyLyOeu/IynnZQEtq9ELhmIRumJRz26slFqyzzpSKGrkkZnUIwiADoOWTTPFw234/DYeS5MEbrmoHZ/+8xQkSQbtVKtNHLT8WeZFLO1xJhYlJgHaroGpZyw+cJrE6/3t0fxD4iAoJGq7SD0dqfmzQk0YE8Say6sqCgrKes38kue4EMIAkjGTFarxXXBDfkxTvca6MDg6hTOjk7jpinVNjTNAc2hFLQIsTD0S1CJzR6Nk3bmEQej4hVk5F6bDoGossBtVQDYDN5UeSWqKRSc1Ic2arFAdbuUGmUgQRIV4M+8no1umN3LseJnXiEWHWo+l2LpjWYsDUwfqXvMiFmsVi4zJ7r0VGYt2isWvfvWrIEMkljxvCU79+BTKpbLFXtMMgxQ0LDyzU1l09nlbVsYZjVhMsIk6O97FAlVVK4pFM9Kd6ZYrFtvDGgE4nB9uaIy1EAURFKVdhxeud1eOxpKaFaqqqg2LLrIzWQweGcRr3vWapsfqhdHiKE5kT+BVF7wKfbH6SfwBAgRYWPgiFvfu3Yu1a9eCJEns3bvXddl16+bvYUZRFHR3d+Nb3/oWKIrCxo0bMTw8jM997nOOzbwPf/jDeP/731/5O5fLYdmyZfM2xgDOmMhrN8/dQ5lzOxAHzJYExFhas3xsESYLnOsNucBL4CUFt/9wNwBgWTqiE0saSMKqWOREGYJUQzpRDFS9icVLThmL1XXKogyGJGytUI3cRD92pYYKMuSQx1jgRIRoTakWDzM4OVWsU1t6Yd3SFH65ewRHxvNIRpiK5SpNEpAUFTPFakEm+1AsxkI02qMMdp7WCr5UpNokjrE0OFGBSmtqQz6nKRLu/s5/4/ovPwHmwG/AlUtQFMUyI3GgI4p4iIakKOBEBTNF7RgaJFpnj7XYGc2Wodgc+5FMGckwDZYiFyOvqF2HpoxFQ32a7uxGxoZYbIswODVdRFKgwVAkZMG9eL50SRseH5zBdJFviZqPJkiIIg+S0c4xzbg/mETjCZSKzWUs7t2xDQwbwoWXXua63NBMCbyk4PLlKYQXqTJ1MSOoRQKcM3BZINquEV+NwLAGbYRYpMNAz8XAvsY+al5hKBaNZh6fB6TqbzrDaFaohFsmnCzqmYo6FKk+Y7FihapWrVBdFYt5INbpnv/HZar/njgEpAaclwX8kcfF6eq/qapisTIPzK9dnDG2WrUgEwEla/XjVJ4HwincdWsEFAF885A2vmKZc7a7HD8ARNqBclUB4aZYlJi4/X7HtHVO5RaJWhEARA6SStTNTu/tTPuyQlVVtXHFIhsF2HjTJH+Rl8DQ2m9HNOJeiyTjUU2xSNDV74IbxvVmdKIXW57YB4IgcP2mIF9xPrFYahGg8XokqEWeXWiECFRVtU6xWEuUzYdisdZelaVYwOFjKIKyWGvWwiC4RF50JBYr9qcEWbFFNT/XG2ReWfZvQ28Qi3a9FWObXnmJ+6f3173mlTkZramPSIKEwisgQ5qdbCsVi/ysdi196UtfwoNrHgR1TKu7ysUykil7xwiWrCoWFUWBqqq+FIvJUBJtbBt6oj2ex+1cgZd5gARU0XqPTnelMTvpU7Ho05Y9QkfAkixGCiMW8rhRmDMWQx61SCwegyRKEHmxLjvTC3se1zK+51Ox+OjZRxGlo7h11a1zOiYBAgRoDXx1SDZs2ICxsTF0d3djw4YNIAjCdqYQQRCuVmBmdHZ2gqIojI9bM63Gx8fR29tru05fXx8YhqnMtACAiy66CGNjYxAEAayNzV0oFEIotDhnugRYXFBUIB6iMOnALTQz52u2KEKQFVtrUYYiIMoqsly1ek6EGQuxSFMkeBOxqALIlKxTowjKsEui60lHHVydFSqJXUNa0WP+LhuKxQjj/tNgzjZMx+xv5jlOQki3SU2EaV1t2VyBO10QsKozBka3cA0zWmbjbLF6LMzKTjcsa49iz9ksaJJAPFw9LxGWAifJEHkeU7/8EkZHDqL4+bejra0NBMWA0bPzeK6MSLTazCMJAq/cuBRHx/N47MQ0ZvXzI4naee3qtSoWT03Z+9WPZjmc3xsHQxNwOI3nFGXBRCxyUkUFm+7owsxUvYVpW4RBgZNQEmTQJAGRd39Au2wghfsPT+DxwRm8eF2/67J+QJGAyPMVK1QvxOIJFAvNWaHu3bkNF6/fCDbkToge1fMVr1zZ0dTnPNsR1CIBzgkUWSOwImk07LXjRrQ5oXed1XpxsSgWzTanfMGSN8nSFHhJBeGmsFIMxSJR/ZuKwmKfQNLa+rIIcLrNqZv9LJ/X8u/ciMVypvrv0b3A+c933VX4aVCUzMRiqEIkSsYEJ79WqMbYalQHoCOQSyW8+VccfnLoEN75bgrtrHacQnp9Viy5EYv7gGS/b2JRpmL2+x1Og5NUCPLcVA8thcxBUOq/hz2dKZw8M+a5Osc3qTaKdc2BWJQRYm2sZm3QlohCECXIIEH5USxOHNBySBN92LLjMay/cCVSyXhT4wzgD/NRiwALU48EtcizC42oK2vJOjuVnaC0Xq1ZlqzPh24qPYqgtHHa3JJiF8YqikU/GYtGXiMAMET1Mw0yrxHFoiALoAnnOB0/xOK+yfrZZF6ESYyurwEUrkoszlGwCIZkoMoqRv9vFJlHMhh+/zCWLFkCKkyB1msRruR8nAy1YVkuQ9F7QH4y9xiSwb9c9S/zcr21CiVJ7+fUkODtXe0YOj7kaxt+FYsEQSAVSmGyPDkndZ4oiI7q0lpEdcv2YqHYOLG4fQ/6lvWhu7+74TH6AS/xeHzscWzq2YQVbSvm5TMCBAjQGHxNARkcHERXV1fl3ydPnsTg4GDdfydPnvT9wSzLYuPGjbj//vsrrymKgvvvvx9XX21vJ3fttdfi+PHjljDio0ePoq+vz7aRFyBAo4iHnRtY2VJjs/QokkCmLFryDS2fpdtwTuarBVkiTOvkWVWZx9WsP12wjoOgmIrtllPzhzeRbrwkV5R/ADBjIucMG88o666mMgjIS5e04S8utM+eyXMSWIoESRBIhGiURRl8k4xZSZARD9MV0jXMaP+fLlTH7kSq1sKwQ9VsR6v7GWUoiPkZPHb3J1Ae3IUVf/FGxGLVgt1QvHGlemLw2tWd+Mu1ffqYtCJRkgREYwlEY9YGz+B0PXklyQqmCjwSIQa0Qz7DuYSqqigJulpFVSEpKoqCdg2kO7psrVDTURZFQa4Q2YLg/oC2ujuOEE22LGeRIgmIogCS9k8sigIPwUNZWQtFUbB353ZPG1QAODyWw9J0FD3JIF+xGQS1SIBzAi6LOXVnlAbve10XWPMCFyDTyBMkac17EwoVlR5gWKEChCo5Z0IaVqhG+WEoFmuJRUDbNp/Xswdd6hGhoFuhutw3zYrFMR8yUD+KRTOxSLOVc1SZB+ZXsVjWZ7XXqA6meAav+PYJ/GC/iFdfvQztXT0V1WtIb5wWSi6TdcYPAvFqQ4ckCfR2ph0Xl+iIPbFIkrjpuyX8drCp5Iz5gcjpGYu1VqhpXxmLDasVDfRtqGRONoo8JyMc8tfMM/IXJQX6b4fHb8/Yfs2qlYnioSf2BjaoC4D5qEWAoB4J0Ho0mhNoRogK1RGLterCVqAkWp+r3TL1DGJRrrH2KUklrLxjJU4RpwDoVqgOkFTt+ZUgCNuMRYPY5OQGrFAldytUL2JRVVUcmG7cCrVWsQgACq/9FiiqAgVzm5jGFTic/uJpzDw4gyUvWIIlS5ZU3jNI3LJLLWLOWDR+o/woFgEgRIeQYBPNDn3eYVy3RL+1FvFrhSqJkisBXotUOIUZbsZRresHtRmLbogltR5YqWA/Id4Nu7fvxvqr50+tuHN8J3iZx4tWvQhtobZ5+5wAAQL4h68O9vLly0EQBERRxCc/+UkoioLly5fb/tcI3v/+9+Ouu+7C9773PRw6dAjvete7UCwW8eY3vxkA8IY3vAEf/vCHK8u/613vwszMDG6//XYcPXoU9957L+68807cdtttDX1ugABOSIRbJ6WPh2jkyqKF1DMjZhCLOd7ymkWxSBIQJGtIuZkIBACCZqDqTS0n4s78OicqoE2fYSY+jdzE2pzHWhgE5KVL2nDJEvsbep4TNZtUkkA8RENV69WWjSAeoiuEqGEjOWU6Fk4Ebi1YWtv3RIiuKCABYObMUYz9z/vBFWbR+7f/gfbzN1nWY/QH9HLJPsg6oZPSxvmRRBHtPfWzyk5OFkHVFPpjOQ6KCiRdiO1zCUFSoAkxFBD6DE6DaE93dCEzPVW3TjJMQ1ZUTBcFMBQBgXNXLNIkiQt6E9h1ekYjMecIkiQh8DwI2u/MPO3hpVRozA711LHDyGdnsW6TO7GoKCqOjRewpjse5Cs2iaAWeYbi/n/VybtFigox1SS52GgTILnEap26GPKcKopFg1gsWolFhgIveVihKjVWqHKNghGoEouSoCsWQy75iSoglLRl3GCoAhO9wOxJQPRoFtJ+rFBNE2CoUIVYrGYs+jznxrUVqk5AOnzyDK764hEcm+Tx4BujuHJ1h0a+hrR7FMsYxKLDfvB5TaloUr32dSSd8xgBSHTc0a738WEZRXkR3bMkg1i0oqcjhXEfzbyG8xUNrH8VsPHNAOugEnVBkZMQYnwSizGtUSwosKqEnTC+D4j34PRkEadHJnDj5rUNjy9AY5ivWgQI6pEA9mg2K68RYlGqUdqzJFtvhTofxKJUQyySLsSiXg/UKtkMy09O4UAzNETBeZwVK1RTG5Qmqs/fhmKxLPq3QuVkzt0KlWJcc+qmylOY4WbqXvckFmntfmG2PK0Qi1AsEw4axejQKG5/xe0onShhxQdWoGuzlRCk6KoVqhPMxKKqqAhHw4g5OS08zWBct/QaGkWx2htKd6aRnclC9pjwzjdYi3SEO5DhM3MiFkVBBONzklMsrp2nQq4xN6dcJofBw4NYf+X8EIuqquKR4Uewqm0VNvZsnJfPCBAgQONoSBrDMAx+9rOftezDX/WqV+Hzn/88Pvaxj2HDhg3YvXs37rvvvkpo+dDQEEZHRyvLL1u2DH/4wx+wY8cOrFu3Du95z3tw++2344477mjZmAI8u5FqIbGYCNPIcSI4h9lIMX2ml5E9CWhKQXNeIU2RECTVErFizhUENMWiKhnEon0BaX69VrGYKZsVixJokrC1bjXDUCwaykGnZViaBEUQFSVordqyEcTDVYsRmiRAk4SFqDRnUfpBLERbCFYaMui2Hlz2ts+A7TmvbvmKYrFsP3MrwlIgAMyW9QajKKKj22pdJMoKRjIcErR1rPfuHQVNEuhNLU4lW8k4tqoKSp+hl9HJ5VRHJzLTU3U2UMmI9l3KlkWNIOe9Z35uWJbC0EwZxyeasyQ1gyYBURBA+GkSA4jGDGKxsc/eu3MrGIbFRevdi9szsyVwQb5iSxDUIs8glGaARz4P/PC153okzjBUZV5ZZ05oVLEYq7GsXAzEIklp+2E0rxTdqlSHplhUQUJxz1g0qx8USSOz7BSLEqeRbkzYUbHIEIpG2noRiwZ5174ayJ6tZjc6wVfGomkyDc2arFD11/yeM4P0ZKvEoiTJ6E6G8Mg7unDNMtNko5CmYg3p949i2eGeWtDtQBPViU1Lu1Kuw5Bt7NQWLaSyvWKxM4V8sYyyR7OuacUioOWsujSHnVDgRYR9qgQMxaIoq94Zi7IITB8Hop3Y8tRRAMD1GwNicaHQ6loECOqRAPYYL457L2SDRqxQDdLQIBNZirUo+czLtBK1VqheikUAECT7/VIIxZNYNFuhGjBnGVYyFiX/xCIv86AIypE8dCNLAeDorPb73Rmx1n9exGJEz2c2E8il4yWUT2tjnwsJpSgKYokYzvuX8xC/pN5euxErVEOx2NHb4UqwPp1QUSyGCcv3LN2ZhqqqyM64T5j0a4NqoCPSgSyfrVy/zaARxaJhhdqoYnHvE3uhqio2XLWh0eH5wuncaQwXhnHT0pvQHZ0fq9UAAQI0joblMS972cvwy1/+Eu973/taMoB3v/vdePe732373kMPPVT32tVXX43t27e35LMDBDAjylIIeyj1GkEiTOPsrIrZkojf7z+BWy7uxYpOrXlzYrKIVJQBgXpi0QyaJCDIhlpMw0xRsH5xKRqqXmCLPohFTlTQHqsWdePZ6ufnORFhhgJFuhd9OZ1UCrsQkEVBQoylQZFERZ1Zq7ZsBG01pG+UpZAx2dM6KUOdEAtRoEnggXt/gev/4kW4eN1G9Lz230GGecBU6yl6U0fRremcFIskQSDCUsgUBURYCrIkoqPbqlg8M1uCrKpIMwoyOt8sygq+89gg1i9LYWmq3tJkMaDEG8SiAlIsAehAUX8t3dkFURRQyGWRaEtV1kmGzXkVJEQPxSIArNPVr/cfmsC6pSn3hT1AEgREgdOsgn0gltCJxWJjisU9T2zDhesuRyjsnp90ZDwPmiRw9UrnnKsA/hHUIs8QGDaf0hya/fONskkFlR8F4g3aIfpt7PRfppEIZE1pvmiIRZMVKgCYGp0kSUBUCG9ikSQB2chYlJwVi7IA8O6KxRCh30QpH4pFJgKklwOnHwVyw+7nsPb428FCLIarVqiVjEWfzVcuo61Ps/jJfY/gRTduxtrzV+Cxj90EaXCrVSQbTgLZasaioxWqImkWsonqxKal3Sn7RXWVhsgmbd9flJB4jVisKVN7OjSr1/GpDFYstbfoB+agWGwWJA1elBHymWtk5GbyEgDCg1icPqFde4kePLRjP9ZdsBId6afRuXwGoNW1CBDUIwGsCjS7v/2iEcWiQRpSBAVFVcBQVvtOAgTEebBmb9QKFXAmTFVCBcuyEHkXxaJuhepFLDZy7HhZt0J10Gy47ROgEYtJNokkm8RUuVpfeBKLdD2xOPK9EbRd3YZlf7esKSL40T88ig1Xb8CSFUvwtV98De998L22lqoNWaHKHBRZIxafKTAUi0SYsORxpru0WmRmagbt3e2O63NOk8Mc0BHuACdzKIjNT74Wef8Zi4aytFiw73s5Yc+2PehZ2oPeZfa5wHPFI8OPIMkm8YJVL7B8bwMECHBu0fC3cc2aNfjUpz6Fxx57DBs3brRkkAHAe97znpYNLkCAhUQybLUhnSsSutXASIbDnb87jG9uOYld//IXlfczJRFRlrLkBNYSdTRJQJSUCrlFAJgtiTC3xAiKgeJhhWrOH+RFq2JxPFctCHOchDBDwo5XlPUcR5IkK4pFtyzGAi8hFWFAktU8yeli8w2dZA2xGAvRyPNVNajg0wrVQIhU8f/+9R9x38/+D+yXv4OLr75Zszaq2Yyoh43LIXdiEdCOR44TEWEpTbFYY4V6aqoEkgA6w8Cgftjv3TuK8RyPF6/rQyqyiOzGTDDyFKGqIGQBNEmgyFczFgFgdnrSSixGTLYyFAGu7E0spqIsuhMh7Dg1A0VRQXoQ3G6gCELL2GjQCrWYz3ksWYWiKNi3axte/Ko3ei57eCyPpekIutv8ZT56oVAoAoigzDVW8D9TENQiAVqK39wOXPpKYMV19e8ZqjLASjL6hTxHa2eHmfkLCoICZM5KchQnAVQnSsggNZtvRytUyVuxaEwEkQXNHpeuVyxKej0TpvS6hvZQ+pczWoZhakD7e3QP0L/BfR0vmDMWKcbGCtXnOS9nIFMRfPALP8KXfvBH/Ped78Ob/uovQITioNWa8x5OAUDFUcLRChUA2pZYVJBOisVcqB+b7yrgh18f8DfexQCDWKxBT2cKADA+PetBLDbWzJszSAqcwDesWOQlBaBdrIUBYELP5Er0Y8uOH+JFN14x19E2jEyuiOUAsg02H58pCGqRAPMBQRYqpNFct+MXFYtQQ7FYo7IjCXJBFIshl8lCBrHoRPopqgKGZSCK3opFs3LOjlj0ylg0rC5JgvRWLHoQi4dmDqE31lvn/mNkKDoRKIYVqpnYAgBV1rZTa2/rBkVR8N0vfhf3fPke3Pbx2/DXb/1rEARRIZpr4ccK1UzSKoqC7t5njsLMTIjnhBz6oPV82js1MtErZ7FRK9R0WCMsJ0oTHks6oxnFYjHXILH4+J55s0EtikU8OfEkblx6I5bFl1neKxW18yHwi+CZKUCAZyEaJha//e1vI5VKYdeuXdi1a5flPYIgggI6wNMW8TBjydybK4zMvdGsVnAJcn1RFgvRmDXZeRrKPgM0ReqKRa1ADDEksmURXaZnDZIJQZC0wvFnTw7jZZctrfscs5qPkxSLInEyX/38bFnLRbRTLGamp4DUGrS1d1aIxUjIRbHIy2BpSrNCnaNikSCAdMxaCMVDdIXcApxJ1VrIigq5nMeDX/oEJo7twT/e+RVcd/MLwel2n5JiTy6TuqWmkxUqoJ2/Ii9DlhVIkoiOPiuxODhVRE8yDJauHodvPXwS5/fEsborsWjtQUpCVbEIqEhFmQrZ2N6pPSTMTk9iYNWayjoRXfkqKyoYigTvg1gEgP5UBKPZMkqiXLlumgEBFYosAx6zPQ3EdCvUYgNWqKdPHEF2dgbrNl/jupyiavmK167pQDrqr6D3QqFQABDxRdg+ExHUIgFail3fBZ68B/i4nnHziTbNEvNfJpsjE81oYNa7/fqL4CG5NmMRAPITQLhKLCqgQBMK4JTpI4s6kWisYBCLpnuu2QqVz2tqRNJ6Tx6b1M5HV4IBFPjIWJzRiMVEn7Yfo3t87LAHyqYsJIoFVBkUCVQc2X02X/NTo3jNPdO47+if8bV/eRfe9Ff65DMmCqI2U0tvKhkZi0U3YjHRq6k0dTgpFkEQ2DmiaBafTxdIHAS13gq1t1NXLE5nXFefkxVqMyBo8ILkW7FoEIucpOo2yi6KxfEDQDiFM3kCJ8+M4aYrLm3BgBtDVrdJy+Ybs0t7piCoRQIsZtRmEbouq9caBnlXS2aRBNkQUeUXdRmLbopFh4xFAwqhgAkxrlaotZavQHWfgep+8x5OGlPjmrIwkUpUFYsOWcVuVqgqVBzLHMNl3ZdhsjRpeW9JfAkAIOngKmCnWAQA6LWIXyKY53j8+/v/HQ/99iG844534BVveUXlPZqgIar12yFAIBwNuyoWSYIEQzIQZEGzQu155ikWASDLV21PDcXi7KT7s0OjisX2sFanTZYnEaaai84RBREs668PwYZYMCGmISvUfCaP4weO4+VvenlT4/PC46OPQ1EV3LrqVsRNk+cAoFQKiMUAAc4lGu7aDg4Ozsc4AiwCXPDR3+Nzr1yHl6xfcq6Hck4QYynQJFl5hC8JMubiTGmQIqMZ58IhztLIc9VijaWtBSlNEhBlpdLLizAU8pwEJVRt3FFsuEIc7h+293PnTaQmJ8oWZeaMidjUrFBJW2JxdmoCSAHxRAJ5TgRDuWcxFnkJDEWCIAgwFAGWIi0kqh1qZ+oZSIaZujzHWMh67PxmLE5Oz2Ls+x8ELRTxH9/5CS7deBUAIESTIACIDj0cQle+uSkWY6xGdhZLJUBFnRXq4FQRAx1RMGXNbvPULI+Dozm8evMypGOLU60IoErg6jMW22MsSoIMWVGrisUp6ww6QieUs2VRIxZ9WKECwJJUGMfG8yjxEuIhGlNTU5jOZCHLKwH4typWjYdfnzYZzVih7t2xDTTN4GKPfMWzs2WURRmXL0u3LF8xSZQBFUjQTea+Pc0R1CLPYMyeBuLdFmJkQVA7I1sWgOK0VbEoNtE8FzzWUVX33LbFYBNLknrGYo1i0dTbkAkKgOpMhCq6FapBCClyvc2pxQo1r5OB1t/wkclpoAvojDFAHt7XSXlWy2qkwxrhNnlEIz/JJh0qFFlTUxrQm6BhmjApFr2beeVyGdf94w9xaqKEe7/6T3j+c6+vvsnaZB5GUgA029lwiHVXLMa6LUpOR2Lx6QiJh2SjWOxMJ0GSZIV4dkKzVqhbntiHA8dP4+2vfAEYpoHHZ4oGJ4gI+yQWwyEWLEODExVrrqkdxvYBiT5s2aPdD2/YHOQrLjSCWiTAYkYjdp4GaehGLM6LYlGsyVh0IeE8FYvQFYtuGYu6Pb1hW0oRlCVLkiAI0CTteewmxyaBXiDVkYIgCaBICkStR7exT7TzPhnWlt2RbkyXpx2Xs0OFWKypEw3Fop/zJYkS3v/q9+PEwRP45Dc/iRv+8gbL+5RDzjUARGIR14xFQFMt8jIPVVGfWVaootbrAQGLPWkoHEIsEcPM5Izzymg8YzHJJkGAwCw3iwgX0ex+G5yr3IhiEQBi8VhDVqj7duyDqqrzolhUVAWPDD+CC9MXYm1nUOsECLDY0NBT9fbt2/GRj3wEH/rQh3DffffN15gCnCPwkoJ/++2hcz2Mc4YYS4OmCDw5lMHgVBFjubnZJdEUgQhD1W1HNJF88TCNHFed/VermKRIAqKsVhSLEYZCUZAsTvc0G4aiF5SSbE8yGDahKjTlpJlYnC0KFUIvV5YQou2JxelJgzgikOckLYuxphlayGVw+tghiLICXlIQNhGltZmIdjhxWLN1KhWsBGlbhAFbY1MbD9FVJR207Eg/KCOE+Nrn4Y3//v0KqQhoDxJhhoKk2v8sqgQFiqbBuRCLxpgKuuqto6fqL8+JMsZzHFZ1xkDpMxq3nsqhvy2MC3sToJttci4ADNKW0K8Tg1iUZAXReAIMG8Ls9FTdekldtctQBDjfxGIURUHGSEZbfuj0KZw+cgD/9KaX4uSRg/4HbVjRUf6IPIYNgaaZhqxQ9+7chgsuvQzhiPsMhKPjeVAkgavPa90DVTehEaBx5tlHLAa1yDMcX14HfG3TuR6FBlUBSu7NAU+Ic7QIXBTEIq1nLJrusyXrb75sTPwQHX7rZRsrVEdiUdSIRZqtIwCHx7XzUclYZOp/f4cnZ7Hn6JD2B5fRMgdJSrNDzQ4Bgr8JJMNTNveDcsZK9ujEYoQGpAYyFiORCN54TR+2fmg9nn/d5dY37SzwdGIRAGKRsHPGIgAkeixktZMV6tMSsgBBIerIeIqi0JlOYnzag1hsUrH4jR/+Drd96uvY/Mr3Yse+o77XUwkKsqz4tkIFNNViWZC1fFa3jMXxg0C8C1ueOopL1ixHZ7rN92cEmDuCWiTAfEH2m83sgUasUA0VoEGy1RJ8FEHNC7FYq1j0Y4XqNA4VKhjGg1hUqhamxjZrCUGWZL2JxVFNXRiJRTTFIkHXOQ+NDY0BgC+FWV+sr+614weOAwBGT4zarhPWJxDV2rYaxKKxr26gGRq3vOIWfPmnX64jFQFNseiESCTiaoUKaApUURGh4hlGLEqlSklcmxOa7kx7WqE2qlikSArJUBIqVEyPTuP2W2/H3sf3NrQNQRB8ZywCWs5iI1aoex7fg66+LvQN1F/Lc8XR2aOYKk/huQPPRVe0waz7AAECzDt8d7J/+tOf4tprr8WXv/xl3H333XjRi16Ez3/+8/M5tgABFhTREGXJHsyWmyueDYvIs7NltEUYTBeshal5u8kwjYKJWKwllxiKtCoWWQpFXoLZVZVkw1AkbZuigwWZQSwqigpVhWU/MyVRy3KBplhkaQqkjXpixqRIy5VFhGsISFVVIUsS8tlMReEWoqvvG5mIko0lbGWcvFZkiTUZOIkwDbqGWEyEaZQECare4OM8rFB//7P/w/2//RlynIS2q/8GfctW1C0TZkg4cLNQCRLhSNRVsRgP0ygKEgpFbRmzYvH0dAkqgA3LUpUMy7NZARuXt6M70ZylxUKhajmrHeuuRAglXoKoqCAIAumOTsxOT9atZ+RiMhTh2wq1L6Udi6Pj1dl/kXgcXLmEv/+bW/DtL93pS/2o6sSi6jLT0gyCIBCNJ1Aq+rNCVVUVe3duw7rNV3sue3gsh6WpCHqSi/s8Px0Q1CLPEuTHz/UIqmhwBnkdvBSLXpDmNsmpJSAoq2KRpDUloIn0UI3mkxMRqohW29PazEUAoPRtiBwgFDQr1BprsZFJ7XxQiv45NopFjhcxm9OPezmjKRZJCkivBHKjVhWqCwplm6ZsqeZ6MIhFxpTR7GIX96Mf/Qjf/OY3AQDvv6kDlwx01BOsrM1klXCVNIpHXYhFggSSVkv8Z5ZikavLwjbQ05HC+FTGdfVmFYsAcP6KJaBIEle96v14753fRMGjoQpUaxC/VqiATiyKsqasdVIscjkgdxaIduGhHQdx0+aFt0F9NiOoRQLMJ+wy7ZpBI0RgrWIxXJNfTBJkywhPM2pJmZCLvblBBjrZlCqEt2KxNkuSIuuzERmS8bSRnRqrTq4SFAEUQVVUkAYM8qj2WNYiHUqjPVJvSV7Ma/2EcsH+XmPsQy2BXFEs2liYGtj252348V0/BgC89PUvxQXrLrBdzinfEQDCMXcrVMBqbfuMIhbFEghVu26KkrU3lO5Me1qhNqpYBLTrBNDI4EQqgdtfeTv+847/RCHrr3fRqGIxGo82ZIW6e9tubLhqw7xE+zxy9hF0hDtw88DNjpbDAQIEOHfw/a38zGc+g7e//e3IZrOYnZ3Fpz/9adx5553zObYAAeYdglQt3MOMtbCUnRgmDxyf0G7u2bKIVJSpU+nlTMRiIsxYcgJr78MUSUCUFBiT4KMsrVtQWq1QVUEr6gwipxbGfhpqSbMyMls2EYu8BJayVyxmpics64QYCubFNLJHG2hB3yfWZJUaC1EochLEJo5rPETXKRY1YlGGqpOqvEOnSZZl3PX5T+ELH3s/juzbXSF2Yzb5kGGGguzws6iCQDgSc81YTIRolAUZxUIRBEkilqg2Ak9NF8FQBNYtTVVei7EkLl2SqLPAXWwoCbI2l1NvInfFQyiYSOJ0R5c9sRjRrke6ASvU3mQYBDQyzkAoEsMXf3AfXv+uD+Bn3/0G3vHy5+Kp7Y+6bqdCLPq0QgU0O9RSwZ+SZejkMWSmp7BukzuxqKgqjo4XsLo73rJ8xWczglokwIJjzorFORKLc81obAUMxaJBJDJRzQ7U1GSsEIvf/Utg53fqt1EhFs1WqDX3vkrGYlk7bkx9M254XCP2aEXQlq9pQqqqaqmRwGUBKqxZqrav1MYxMQd3jhqlJmizYlF/Ta4nFlVVxac+9Sm8+tWvxvbt2zWnCC6rWZbWKgLs7F3NxGIsgqJTUyrWBYQSlpf6O59BSjaJh6iYriMTejpT85qxuLS3E4//+Iv4jw++BXf95D5ccus7ce9DT7iuo+g1ZSOKxbZEDGVe0hWLDgSDfg1PSDEcHxrBjecgX/HZjKAWCTCf8KM0azUMEtKJWKQICpIiQXXLfW0CdRmLLlaolfxDvS7K17gPqITqTSyq2v3Z6PnQBF2vWKRYT7XnxEi1LyLIgi1BKeuTnr0Ui32xvoqtaTOoPScGsSg51CI/ufsn+MhbP4L9O/dDccrF1uFqhRqNeBOLpvP5TMpYLIpFi2LRPBlgPhSLQDVnkaIpfOaHn8F7/+29eODXD+CNz30jtty7xTFSCNCuRUXWMkj9Ipbwb4VayBVw/MBxrL+q9TaoGT6D/VP7cVXfVehP9Ld8+wECBJg7fHezjxw5gg9+8IOgdFu5D3zgA8jn85iYmPBYM0CAxQszqRdhWkPunJrSbsCqCqSjTJ3ysVaxyEnOBR1NEhAVtVIwxkKUrtKrFg4UEwLJa4X1iy61tx4QZCuxSJmaeTlOBK8XvkVet0L1mGmU5ySEacpCQBZyVftSg1gMmfLk4iFNzSe4KBadEAtpNrVmxEO0TlJqx0KwUSyWi0V86r1vxU+/9w38/Yc/jXfd8Sm8eF0fYiEKcZvCKsJQkB3yERQQiES9FYtlUUaxVATNMJYHjJNTBfQmw5YsxbU9EfS2LXCOWBMoChJYPYMSALoSYRR4qXI9pTu6kJmqJxbbooYVKunbCpWhSKRjLE5OFi3XOcOw+Nt3vg/f/MUD6OjuwT++9a/xuY/cjlzGvumv6A+EagOO39FYwrcV6t6d20DRNC7ZsNl1uZFMGSVBxoaBFCJsa/IVn80IapGnGYQS8MRd53oUc0PZvTngCSdrUL9YFFaoumLR6KKwUc2q1JQlaJnEsf0b9duQJav6UJUBgsJvH3wcn73rJ/rn6PdHLqP938YSbWRCVyyqgkbK1aj9iiUOMDfZuKxGPpIUkFquvTa6x2OHXeCgWKRIk2KxJmOR4zi87nWvw8c//nF8+tOfxne+8x0Qe38MzJ7S7V5r7g029q4VYlFVEYuE7BWLA1cDSzYCbNzyMttIJuBih8y7KBbT3laoc1AsAgBNU/jAW/4K+3/zX7ho1QBe/M5P4FXv+wzGHPKUFP2ab0ixGIuiwOtWqE5N/IkDAEHiwaNa/X9joFhcUAS1SID5RKuVgeMlbxeICrGo34+itPU+RBLkvBCexRq7eLPCrRYVhZ6DmtBPxqJfxaKX2tOwQgV0YpGgLEoqRVGgyAogO++T8ZzbFe2qO95zgZNiURIlfOHDX8DXP/V1vPqdr8Yn/usTID2iWFytUKP+rFABgACBeCruuuzTCUWxWLk9l6RS5boCgHRXGjNTrc1YBKrEIgCQJImXvv6l+O4D38XFl1+MT7zrE/joWz9qIbzNEATtO9NQxmIDVqgGSb3h6g2+t+8XW4e3giIpvPS8l86JgA8QIMD8wXfHtVQqIZlMVv5mWRbhcLiSJRbg6YWJHIcVd9yLbz184lwP5ZyiYCIWY6HWNF4Gp6o34HSMRZZzJhbjHp9JUwREWYGiSxZjhmLRVNeTTBiiXizQNkpDwKxY1LZjVv/lOAmcnlVY4CSwNAGyZju1ZFqOE8EyVmVjPpup/Nuwdw2ZlHiaOlO2ZEz6RTJM19mzGseO1BUNdgTt1+78Zzy1/RF86mvfw8tf9zYQBIFrV3fi0y9dixWd9QV8lKVgNwse0IjFUCSKcslZfRJjaSgqwElqXaE+OFXCQHsUyTCDhN5fWtpGI8ou/oZfWZD1c6kdm444C1FWUeS16ybVaa9YTEW04pWlSPDlMhjGXzHbmwxjNFu2zc1ctnI1Pv/fP8f7Pvmf2PrAfXjrrdfjgd/+vG6WnqFkVRuwy4jG476tUPfu2IrzL1mPSCzmutyRMS1f8ZoW5is+mxHUIk8z/P4fgd99EBh8+FyPpHkYJFezEOaYsbhYFIvmvDc2rhOL1RrKUx2uiFXrU6NpSlL4zYNP4P9++1D1c4AqmVujRjTPrKcUXlf7WUm5maxJwaCqelZjRLOECCeBUBIY3+e5y44oTcNSJ5jIz0rGompVCdxxxx34+c9/jh//+Mf4yEc+AmL7fwG/eEd1H2snc9kpFtkEeEnL3I5HIygUbWa7r7wBWPdqeyvVZwokEaJiX6f5skIt8y0hWlcu7cXv7/oUvv+5D+GB7Xtw0YveiW//9A91tUhVsdiYFWqRE3X7YYeaefwAEO/BA3tO46LzlqG7I9XsrgRoAkEtEmA+0Wpicaw45rmM2QqVJEgwpPU3y7BCbbliscbVwY1YNNRzTmpClVBBMZR7xqJ+bA3bUtuMRYq1EEV2qLVCJQnSsp1SoQQVKgiJcLRuNAjfdChdIXRbAv3yqVUj3vOVe3DfT+7DP37+H/GOD7/Dk1QEPIjFWARcyV15Z2RmEgQxLxaZ5woWYlGsIRb9KBY5rqG8QwDojHTWvdbV24V/vetf8alvfQpH9h7Bm573Jvz8v38OWbb+hhjfiUY+sxEr1N3bdqOzpxP9y1urKJQVGY+NPIa1nWuxpn1NS7cdIECA1qGhJ6u7774b8Xh1pokkSfjud7+Lzs7qj9x73vOe1o0uwLxhJKsVAU8MzuAdN5x3jkdz7mAmFtsi1hut5GEN4YSTJmKxIxayfAagEXkGPIlFkoQkq4ZGAFGWgiirEJVqUU8yLCTJvXFZq1g0q/9kRcVUQcDSdBQlQbaoDA1MjA4DFFNZPs/VKxvzuUz13/o+R0xWqIZNqJlYVFXV9QHFIC7bIvUPGbVEMG8iFlV9RuWbb/8w/vqN78TK8y+yLJtwsIyNuijKFJAIRaKuVqjG+ZRIFkD1POc5ETNFAau744iyFNp1R5R2h3EsNhQFGSxNwrjKOuPa+ciUBQAxtHd0Y9fUlrr1DGteVrdCDUUiEEV3axkA6E+FsfPUbN13xwBJknjhX/8trrrxL/D1f/8oPvNPf48//+YneM/HPgtAU3XIogCAaIhYjMWTKPqwQlVVFXt3bMMtL3uV57KHx/NYkgo/LZSpTxcEtcjTCJyuZM+cObfjmAvMeXx2SjIvzJVYlLx/M+cdlYxFQ7EYB7JnrFmCpMf9TDEpFg3VA0GhzJuI0wqxmNH+X2PFNmbKrKEVAQiF6zIYZ3MFVH5thbxGYpqJuralwMygluOoT0wyyCBfLa/ilLb/hgUbVd3vSnmjKx1kWQZFUfjoRz+K173uddi0cSPwwKeBhz8HhFMaaW2jyrS9zkgSz/8/Hq99aT/i0UkUnWy06Ge45bbMQ1Ds97G3K40xj2ZeieMRjYQhiHMngAiCwN/e+hy84LqN+MBn78bbPvpl3POrB/CtT/0DztfdaBU9gynE+K/32hI6sagqlhxTC8b2AfEebHnqKJ5z1YY57kmAZhDUIgHmC63IWDSrC50yCc0wyDqKpBCiQnXZeiRBWsiTVqkXG7FC9SIWDcWioc6yQ61ikSTIOsLLjdwEUGf/aWeFauTeuRGLQ/khAEAqnAJQb2naLCqKRd09wfj7b97xN9h842as3bTW97bciMVwNIzsbNbxfcD7WD5dURSLIBQCKlQUxWLFYhcA2rvakZ3OVmpAO/BlHqFwyJUEr0U6nHZ87/oXXI/LrrkMd332Lnz141/Fn3/5Z3zwsx/EqgtXAQAErknFok8r1D2P78G6q9a1nDzeN7UPOSGHW5bfgo5wMEk7QIDFCt/E4sDAAO66y2pn1dvbi3vuuafyN0EQQQEdYE74xK8P4LKBFF66YcmCfJ5FsVijHCsLzRXMJyerN+C2CFPXE7AoFsP+FIvG84VhpVg0KbkoJgRRyLhuR5StisVaW9HRXBmrhThUwDbvb2LkLCKrNgEATuZU5HkRPcmwRdmoKRa1/TEUi2HWrFikURJlCKax33333ch1rAOw0nbc/W1hvOHq5VjdXa8KqyVlDSvU4acewqF7v4PXXPpLdPf0orO713bbdnBTDyogEI3EwLlZoRrEImElFk9Paw9NG5enLQUXvYDZiqqqYmToFJYstz/WbijwmhWq0XXtiGmN0FxZ28d0Zycy05NQVdWyfxf1JXDlynZ0xFmNWAxHLJa5TliajuLPhyYwU3R/EG7v6sZH//NbeN6L/xpf/fQdePtLb8QL3/1vAHk+IAkg6MaI21g8gYmxYc/lzp46gZmpCc98RVVVcXQsjytXtiMdfXqQyIsdQS0SwBOV36AWNGiMHLy5YM4Zi4uAWCRJK4nIxjXC1PQaQXn8xsmSdm4IokoskhTKnGn/KP0ezOuW1DXE4pDJekxTLLbV2YjOZPKoVJBl/dyZsxrTK4DTWzUlo/76/9zzP3h1SoQNxVeP4jQQipmIxWqTRgU0olOWcN999+F973sf/vSnP2Hp0qXobG/X1Ls77gYufLF2XZx4wLJ+BXaKRQDbzip4ZWIpYpGcJ4G2mHH89AhWNzOrXVUBWXBRLKaRK5TA8YJjpmGJ4xANh5DJtU5Z1pFO4rv//n687iXPwd99/KtY99Lb8F//8Hy8OQ7IauMZi8l4FIWci2JRVYGJQ8h3rMeRUyP45Hte36pdCeATQS0SYD7RCsWi2S6Uk73z3MyKRZZk6xR0FEFBVmWs7ViL/VP78dTEU3je8ufNeZyNWKH6USwyLINi1vlZ3dhP43mVIusViyG7CT8mTAxb7SYFWagj4HIZrY4hZGdicYbT7DITrDYTZXhwGGhDQ2STHQwiUVAEnNl9Blv+Ywte+j8vxfnnn98QqQigjmA2w48VqtexPJcYPjWMJSua6zmWpFLlMaMoFuusUBVFQXYmi/audtv1uTKHcCSMQgO1iNkK1Q7xZBzv+7f34eaX3Yz//Kf/xDte+A68+p2vxhve84amFYvFvDexWCqUcHTfUbzwVS/0vW2/eGT4EfTH+nH90uufUYrXAAGeafDd1T516hQGBwdd/zt58uR8jjXAswDf3XoKt/9wd8W6c75RMKkHmRqSpyw2XtSrqorhTLXAsiMTco1YoZIEJEWFrLOTUcYgFk2KRZqtWKE6oWqFqv2frbG+GMtwyBtkoB2xODpcncqvVokmixWqSbFoELZhc8ZimIasqBbF5vCwO4lDEARuWNOFPhu1V+2x40UFn/nMZ/DE3R9Fom8lwtHGlSUxV8UigVAk4pqxGAtp60s1sy3PzJYQoklc1JdoeEytwqN/uhdvufU6TE9652zUoshLYEz2uR26YtHIKE13dEEUhbp8wkSYwVuuXYn+VAScTiz6QV+b1uw9Ouav2L76Obfg7l8/jBe84m/x67v+A5g5rTW9vRrdOoZny8hzIqKxOEo+bKz27tgGkqJwyeVXuC43kuVQFGSsW5Z6WljePh0Q1CIBPGE0MUw2nU1DLGvqMy81nus2WkAsNumg0DIQlG6FaigWY4DEgZCqzUrPiRyKVCUBjZndBImyOfPOaMwZZG6Ncu/0SPX+RSuCbiNqvW/Pmps0ho2tOZOlfZX2evZs5aWhoSH3sZtRnAAY02SnWoUgQeKrv3kKL3rRi7B69Wq0tbVpmYs/fzuw8zvAJa8A1txSVVraNVFJGrKLSiAejaDgYT+2WPHnrU9hzfPfhmOnvCfx1EG3BRZVZytUABh3IV1LZR7RyPw0Om++5jLs+/XX8d43vgx3/+Q+AICgN3gbzVjMl0VnG9TcCMDnsHtUe54I8hUXHkEtEmA+0Qo1oJl84yTv+4WgCCCg2VWyFFtHhpGklrG4qk1TQN0/dL8jwdcIGrFCJQiNpHPKP1SggGZpf1aoRsYiUZ+x6KaaBIDxYeuztKAIdQRc3rBll+BILBowCFODxJEcHHv8wiAW//zTP+MnH/wJwh1hJNNJj7XsMVcr1MWqWDy0+xBed8PrcGTvkabWL4klEPokJ07mLN+x9k6NAHSzQ+XLPEIN1iKGYtFL2Xrp5kvxrd9/C69/z+vx42/9GG97wdsqY2lEsRhPxFHKez/D7N+5H4qsYP1V631v2w8mShM4OnsU1y65Fn2xvpZuO0CAAK3FwsllAgRoAIZ157X//gDO++ff1WWWtApmxSJTQ7Y1o1icKVoL7FS0/uadKVWXoUgCERvrUWMKlGHNyetqPEOxWK4lFl3sJSVZgeGcWiEWaetnjmTLplzE+vGMj561/F3gNStUc+6hOWOxyEsI06SFjDKIwGkPFZpfRFiqynVKIv78jY/jn//5n3HhC9+My9/0cd8klhlRF6JXUQmEIjFbK9Qt9/0Ku7ZuqdizSjVF9HRRQFuEQayBjJ1WY/uWP0GRZZw+3ngBXeIlSy5nMsyAJgkUBO2aSXV0AYBtziJFEiAJAny5jHCDxOLh8ZzHklVEY3Hc9uFP430f+jBO33UbYvy0L8WiJCv47B8O40c7ziAaT6BU9LZC3btzG86/eB2iMfcQ+qNjeZAEcG2QrxggwMLBIHocGk8NgbdRvDUK0X02tyck3plg8INW1E9Gw8yYkc1qxBrFV5smnopFc8aiQZSSFEpmYpEkNcLNIBZZq1uBRbGo8hqxWKtYNGcsGpaq5szB9HLt/6O73cfrhNKUdVym+72sqLjt3hLec/ejeO9734tf/vKXSIQo4AevAQ7+Sss/XP08IN4N8DoB6mBdKhPOxzMeDdtaof72wcfxyz9vbW6/msWlfwMsv9ZRZVmL3z70BABg75HBxj9LtwUWZQdisTMFABifzjhuosTxiIbnT0ERjYTx7x94M+583xsBVGv+RhSLbYkYciUBgKqR0rWYOAgA+OPBDM5fsQS9DoqIAAECPD3RCitU3pTPzMu8Zy9FUiSN4FI1Mogi6hWLkipVSI2zhbO4f+j+OY+zLFlrJFtSz/Q4SBO0K7HIMP6sUA2Vol3GopfKzkwsqlChqEodAZfPaLUIIRF1x3K+oUgKxn48hm999FtY+4K1uOKjVyDe5v7M6gTGpRaJRCN1trAA8ORjT+LPv/wzgMWrWNx+/3YAwIlDJ5pavyyVLcYoWb7qbpLu1AjA2UlnYpErcw0TiyEqBELwp9pjQyze+N434rP/81mcOXmmQqA2QixGE1EUC0XP34492/cg3ZXGslXLfG/bDx4dfhRhKoxbV926aAnqAAECaAgkFAEWNQz133CmjKXpJrKNPGAhFmvsQUtNEIuDU1Y1WyJMgyQAUyQiMiWxbhkndaRBdvK6faihejKsUElCUwmIgjNZJ5gyDSV9ICxd3dcwQ2IixyPPifrfWvGrqipEgQcbCmNidBgUpantFACcqNQRkPlsBtDv+XlOQoihLIpGg3SbLVb3309ouBNIgkCEpVASZAjjxzGy8wHcc8/38fPcisp+Ngp7kleDpliM2ioWP/2BvwMA/HH/KCiCgFzzUDSjE4uhBbQ+NUNVVezaqmUgDp08hsuvvqGh9YuCDIYmK49dJEkgHWVR5LXrNm0iFpetXG27DZ4rg23rxLL3/RSjBRluc9qiLI1EmMaJicatytKd3QAAWRK8G90A9g1nURJklEQZHbEESh4Zi6qqYs+OrXjei/7Kc9uHx/PoT0XQPw+/XQECBHCAYZ9p15BvFAbBRZ9DYlEWAVVGNpdFWyO3kEpeYQssM43Z9kZOE6s1qKjyTHURr4d+c8aiYfNG0FYrVEAbN5/XLFN1Qtewtjw9PFEhaAhAI/UIF2LRUCyypoZaok9bZ3RP5aWNXSJCNAFFEr1nXBZriEWS0UejYryo4n928/jmO67BO/7zPzVi8/9epZGYG/4WGLgKiKS09YzsTYdrSyJDYBX7aycWDaNg08y79V2fBACoh3/ntRetw1rve6EZf3zsSQDA4cGzHkvaQFcEOCsWtWbe+FTGcROl8vwSiwY6UkkgA0i6oqEhxWI8inyZBxCyt0Ie3w/QYfz8iSHcdMVlrRlwgAABFg2ciLNGUEssyqrsqj4TFREUSWFt51rkxTwitHWyCEloisU/3vdHoB1Iskn84NAPcFX/VXMaZx2xaFNLEA8ROHrPUSz54xLQpAuxSPhQLCqylqtoEIskVacodCLDBE4AG2YxPjxeIWhkaPVMrWKxYoXqkrFYC0M5KctzVKyKwMyDM3jVB1+FpS9aisMzh5velJsVajgatiUWP/CaDwAAbn7ZzYuWWNz5yE4AwNDxBhwrTChJJUABVEkFQRNWYrFLJxbdFIscj3Ck8WcLukxDgn9Fq2HFanwnWLYBYjEehSzJEHgBIZe6aff23dhw1YaWWpUKsoDto9txWfdlWNnWeIxPgAABFhaBYjHA0wJyk0SRF4omYpGmrF+HQhM2FLXEIkkQSIStzQRzxiKgEYtOMLIQDeIxzGjkTlnSjgdlEIui81jNtrLGv82KxXiIxnRRQEYfl2G3+tsffQ8vunwFuHIJEyNnEUtoxKLBU4Zpa/FQMCkW85xYp2hM2CgW43Gt2edGjLqBLk5BVRWEllyEl37m53j1a17T1HYMRD2sUNmwuxUqQRC225gtCkhFGYs17ELi1PHDmJ4YA0lRODN4vOH1izWKRQBoj7MoCRJkRbUQi07guBLoRCdINoyJovcDU28yjLOzzTfkRUEA4aAEMWP7Sa0xLisqwtE4ivm868y8kaFTmJ4Yw7rN3vmKR8byWN0VD/IVAwRYSFAtVCwaire5EIs+LMhcIfOAIqNso1CzQJGBr20GhBpVfWF87iSroQo0SA4bxSLp9Xsrm6xQKxmLJMp8LbFIacQiHQFIGj+971FE1r8MY5MzOD0ygSXdJgU4FdJUjibMZm2sUC1EIA0k+4Cpo5VxbOrWjs/U6Bn3fQCA8oxVnUcQOJMnIMoq+hMkBj/YjXc8bzVQmAC++0KNBLr8DcCKa6ukIlC16qbtmzUy6dzEiUcjKBSfflaoZ0YncejEGVAUicMnfRzrWujEtuCQsdjV3gaCIDA+7WKFys2fFaodDCvUcAOOFcl4tOqaYkcsju2HGOnGwVNjuHFzY3lZAQIEWPyoJduagWi67xvEotfyNEFjQ/cGvHjViyu5fwZIgoSsytizR5uUs7ZzLXZP7sap3Kk5jdO8rwQIe2JRIcAP8+iMdGrEokNNo0ABzdCQBOe+iKTqykz9NmKnWLQbw+5tu/H885+P08dOY3x4HN393ZXPBFCXSVnIFjRFm+hthWqA1ieQF6abywCeHp+u/Pv8/zgfz339c+dM9ngqFotl1+fmxUgs5jN5HN59GCRF4syJJmoRVBWLalHb96JU7Q+FI2FEYhFvK9QmJjlRXHO9JEGvtdlwY1aoAFDMOfe+ysUyjuw90nIb1KcmnkJZKuMvV/4lUuFUS7cdIECA1iMgFp9FaMba8+mGI2PaTPWpgjNR9V8PHcfBUW1WUd6U91dLnBRdilIn1BKLAJCKWAuyTA2xmAw7F2yGlSgnGnkABMIMhbI+NIrQ7Mck0Xl/ecldsZgIM8iURGR0G1fDbvXhP/wGgDZrbnzkDGJx7QFD1LcRYmosP0wZizkXxaL53CSTmt9/btoagu4Hu7ZuwcGvvxP5Hb8CAJDRNsyVf45YSEFrIa6CABOO21qhmhEN2RCLJRHpKHvOFIu7HtsCNhTGpmtvaohYnJ2ewODRgygJcoXkNtAZZ1ESZEiygniyDQzDYnbKmVjky2WwEa256+cZp68tjPEc75Ei4AyB5zwVi2VBxp6zGW18koxIPA5JEl2J7j07toIkSay9/ErXbY/lOBR4CeuDfMUAARYWBlHTSsWiT5tHW0gc0PQvGTRiwY8t2pHfa2TZ7z5Y/95ccx6NGetuxCLTgGLRIBYJCqVawpTQFYt0GCAp3LtFs86czRUwNDqJfjOxSDM2ikVTQ66c0bZTS3qmBoDsGe1zACQZ7fgOT2a04bmdrtIMQFdV6I/uOoDLv5HFpx/W7hudcVbb1z9+VMtxvPwNwLKrgFBNxvKV7wQuegmQXGL7Me7Eor0V6mLHHx97EiRJ4tbnXInDJ/0rFgeHJ7D76FAlY1FyIBZpmkJnOuluhbpAikUDxqNXiPFPLLbFYxCNr7xi8ywyvh9DRW17N14R5CsGCPBMQ23uYDOoUyx65DZKiqSp90CCscmVpgjKQk5ekL4ALMXi94O/n9M4zcRie7jdM9+QJmlIqn2PRiVUT8WipEgWxSJJkHXkW8hmws9TW58CAIyPjGNieAKdvZ0AqorFWmIxl8lh9P9GETkRsT2edjDUZNnJrMeS9Ti67yje+eJ3AtAyFumEMwHbCNwUi5FYBIqsuB7vCknbOjHbnPHkY09CURRcd8t1GDrhX7E4fHIYp4+chqqq2nWrAChrhHhRsPYA27vaMTM5Y78haFaozSgWo5NRiINiHRnuBcMemGnAPSGa0GrdYsGZWNy/az9kScaGqzY0NB4vPDXxFJbGl2Jz7+aWbjdAgADzg4BYfJbg9/tGcdHH7sPDR50b/4sZE3l/ijaDKKzNOjSQ40R89r4j+O9HT+nLOxdChs1jIzgxWUBbDZHYVqNWytUQi7XLm0HrxBwvVpuKUZYCrysWSZ1YdCvozIpFY5u0aYZ/W5hGtixitiSAJDRVJAAUdUtIVVEwNTGGaIVY1NZjaxSL+Wy1CM5zIkIUCROviBBNgiIJzJqsYJslFke2/Qr//M7Xon3lWsTXPx+AkSU5N2bRbIXK2zhF05E4OBfFIgDEakgkSVZQ4CV0JUJ1qtiFws7HHsKlG6/C6gsvbYhYFAUexXwOJUG25GUCQFc8hCIvQVRUEASBVEeXO7HIlUFHYo7v12JpOoLpIg+1yduUKAhgI+55Ek+emYWkqLikPwleVBCOatd40cUOde/ObTjvorWIJZKu2z4ylgcR5CsGCLDwMBpCknPGjm8Yijd6LsSiT2LQCboVqieMz7C7D9aqGBsFUaNYpLRsQ8pk/UQxLmSNIgNQq4pFoylI2CgWKVpblgkDBIVsQRt7PBqxUSyG62aqzObMVqhZgInWkY9gE5r6TVeThknt+I5Ma9Zlkupw35H1dfTMxnt25fG8N30YF/eweM+VevOMJLUMydI0kFwK9G+wZjwaCCeBDa8Fkv22HyW5EIuxSBi8ILq6VSxG/OHRXdh86Rpcc9lFOHzyrO/89GKZR7ZQ9lQsAkBPRwpjLrlG506x6F8lkIxHUUlIqFUsyiIwfRy7znJYPdCHJT2dLRppgAAB/CAn+M9/bxatUCyaiUVRER3JOAOCIliUfLUwrFCNeVIMxbSk6c+ZXB0IggDjMSmUIihIsv2+KFDAsN4Zi+bMQ7v8Qztys5jXnv/jiTjGh8fR1ae59ciEboVaYzNbyBZQPlFGu9TuW7Fo2Kvmphu7xmZ3zuL2v769Qnaq+n3H65z7gZt9bjiqEWN2dqgGDMUiQS8eZnHHlh0YWD2ATTdswsjQSEXN54VSoQSuyEFQBC0HVQWgarbAJclaZ6c7067EIl/mG85YBIC20TbgMSDONJaZKeixA41kLMbiWt+mlHd+htizfQ/SnWkMrB5oaDxukBUZxzPHcX76fHRGghonQICnA3zd5XK5nO//AixOHNaVfE8NtSBr5xygUbVl1oEwPDiiXaOi7udpVizWf2bjxdjJySLaY9YbdnvU+neuZmy1xKMZhkqMk6r7HwvR4PX+IUUQICgaouhcEPE1xCJDkZY+XFuERY4TkS1LCDNUhfwq5rVjNT0xBkWWEY9rRIqheozUZSxWr608J4GlCYtikSAIxFgKmVJ1rAmdnMlOV0PQ3SDLMmb+/C0c+8WX8ZJXvwk3vvtzIENaw06U1bkTiybFIqcydU0vMhwDVy5DUZybxIYy04ChUO1rm4OVng0O730SJ48c9FyO58rYt2s7Nl17EwbOW4Op8VGUit4WK6ViobL/nCiDIa0PBF2JMIq8plgEgHRHp6sVKs+VQYf8E4v9qQgUFRBDbb7XMUMQeNBh92zD7SemMdAexQW9CfCSglBUt/xwIBZVVcXeHduwfvM1np9/ZCyP/rYI+tNzICQCWBDUIgF8wbBdUlpALJZnNGJqDnnAmpXpHIlFD6WBJ4pznFRm7L9BchAEwMZBCVVikWVZZ6WfMWu+oljUjwdpk7FoNPnoMECQyOrNvHyxjGy+iP5es2KxviljVSwa58+fanx4Sq8RVQerKU57X2Wi+OgDHN7wowm89sU34U9vX4KOKFkdv7mZ59KUc4OXFSqARaFa3H3oBHbuO+q5nCzL+PO23Xj+tRtx0aplKJTKGJmY9rWeaORN6cSi6EYsdqa9rVAXVLGofSkY2v91kIxHK+vVEYtTxwBFwu/3TQdqxXOEoBZ5dqMVakIv+CUW/2vPf+HS712KglD/XCfU/HZ4KRZFWbTNGzRgWKGacfPAzb7G6faZteSXFwnHkIwjYabAR8aiKls+gyI0laYZdlaoBrHIhllMjk16WqHmso1//0m9B5Ob8r/u5L2TOPnlk7jyOVfiiz/+IgATsWineG8QbsRiRK9FykXn69U4lgQ7v8TiqaOnsG/HPs/lVFXFzkd2YvMNm7F89XIosoKR0yO+PsO4rsp6djqh1yKpcApFqaiRjTrSXWlXK9RmFYuAvcrWC8bYG1EsxhJa36aQd+4b7dm+B+uuWNfSfMUzhTPgZR6XdV+G8FyiKAIECLBg8PWUk0qlfP9YzDlsOECAFsCJMNw/rDXBjOZX3iVHsSTIUBrw1lRVFWdmS7i4L4lB0+u1RGOubP1MN8UiQ1qtUAEtE3E8o/2bJAGZoiGJgqMhAi8ZNqrafjM0AcU00y8ZoVHgJRR5CRRJVHIRiwWtqJ0YHQYARBMJgAd0sSQiNQRaIZetlOVFXgJLU6BqfjeiLI08p+XyUSSBcDgElIHslD9isVwqQi5n0X39q3DbP/8bfrhjCICuMFCUOVuhmi0rOTCVbEsDJKsV0Hy5jEjMniRL1ByXWV09uzTVWoLpu1/9D9AMjU9//fuuy+1/8gkIPIeN194IUZ/BeebkMVxw6WWu681MVs9JSZDB1ti49iRDKPBShWhOd3a5ZyyWy6BC/o9BX5u2rBxKgipN+V7PgMjzYMLOn5ctizg8lsdfb1yKrkRIJxb1mXkOxOLY2SFMjg1j3SZ3YlFVVRwZz+OyZWmko/5nBgZwR1CLBPCFVlqhFiY0tZnP2eZ1IEiNDPGjOHSCXytUN0wdA/rWNb++QfaZVaBsApRYVfCzDA1BBmxjo5VaYtHwc6dR5mscKQwSkA4BJF0hFodGNWeD/q52wODTbJp/lozF0qymfGyYWHQ437ze7GOimCyq+NB1EXz2zveB+N0HAWM3SHLuRDAAmXJupsRj2nvFModUsrFZ663Gnd/8EUYnZ/HI/37OdbldB45jNlvALdddhp6ONADg0Ikznoq7qdlc1UlYV7Y4nh9oisWzY841Q6m8sIpFXlIRDrG+LOANJOPRqhWqVPM7NqFNKPvV7gl85a/m8J0O0DSCWiTAfMMvefng0IMANNvA65deb3nPrFgE4J2xqIi2eYMGKopFEzoiHYjS0Tq1ll80o8ykSRqcaD+pRiEUUDTlTiwqsqcVqhuxODMxA0VW6qxQ7RSLzSI36Z9YlPISOv+yEx/7+sdAViaB6e/NN7EY056zuZLzJCdD/UlQ80ss/vTun+LQ7kP49h+/7brcmZNnMD48jk03bKqo7E4fP40V569wXY/neCj6ZOrK9a7XJulQGmWxDEmRKtdOujPtSlg2q1hsFpWMxQYUi4YVaqlg//3myhwO7zmMv//Y3899gCYcnTkKhmyNIjpAgAALA19P2g8++GDl36dOncIdd9yBN73pTbj66qsBANu2bcP3vvc9fOYzn5mfUQYI0CCcLE73DWd9LQcAJVGukCZ+kCmL4ESlTqGYNhGLiqKiWENmumUsVhSLJivUeIiCUFEsAiJJQxRFOJUJhhUqRRJQZBUMSUIyNfISYRqqCkwVtdeMsq9U0Ari8VEtBycW14lF/bOjbK1iMQNDW1bgJXTEQiBrVG6xEKXZZ8oKKJKqFPI5D8Xi+MgZjJ45jY5lq9H54g+Cnj6pjd1E4omyCnmOzKLZClUlSBRqCGpSz5Uql4qOxGKsJmPRsH5dmnZXzzUKVVVw9tRJz+V2PvYgOrp7sWL1heBKWmE4NHjck1icNhGLnFhPLHYlQhBkBUVeQmc8hHRHF04dO+wwVhU81xixmAzTCDOk5dpvBILAg3FRLD4xOAOSJPDi9f04OpYHJ8qIxDQrVCdicc/OrSAIApdudM9XHM/zyHESLl2arFOwBmgeQS0SwBeMhlCrMhaZKJpODiAZjRh0JZo87lutUCxOH5vb+rUZiwAQSoDOVxVnIZYB70QsGufC2I5OlKqgUCrXEIuUvgwVAkgSOb2hMTSiTVxZ0tMBnNaXZerJt5ms2Qp1VrOxJR0UiDXwUiyOjo5i73EJz78hiW+8OIyjs3pD0tyEJCht/5olo3V4WaECQKF47hWLiqLi6Klhz+X+8OguJONRXLnuQgAaEX345FncfI17LTJqthLTrz9XxWJHCrsOOFu+a4rFhZsBrxGL/hUCANCWMFmh1iqvxw+gTMQwy+Vw4+ZAsXguENQiAeYbjRJuqk0d0ahiUZAFV2KxNmPRwM3Lb8avT/waMca/K42BZolFp32pKBZF5/pPVMQ6xWLtPrsRi+PD2vNxd383UAIIvddRm6OYyzSvWM5OuWcsZmezOLDzAK75i2vQ+6peKCWlSiqitYpFY7+EZQI+9tjHcGXflZV9bsQKdb6hqArODp6FoliPRS12bNkBhmWw/qr1CEfCSKaSOHPijOf2ZyaqtUiFWNRbFB3hDhzNHLUQi+2d7Zh1sWXnuOYVi83AINtpxn9fIhrTMxbz9jFAB3YdgCRKLc9XPDJ7BMsSy9AV7WrpdgMECDB/8PXLcuONN1b+/alPfQpf+MIX8JrXvKby2kte8hJceuml+Na3voU3vvGNrR9lgAANoqCr4mpRSyy65SiWBRlSA/Zl4zmtwZOOWQvLlEmRmOelutI/aduF02BkIfI1VqiqXgBTBACS0vLkHLZhJhZFWQVDkZCEajMqqY9vsibH0rBXnRgdRiKZAs2wABRIipbTGDZZoSqKgkI+WyEWi7yMvjaiTrGYCGuKRUFWEDaReFmXjMWDe3bh4//wRrR39uCfv3KPZVZhwkTKSrLiO6/HCQxFQGvyap9xdraEpcnq+SFYo4B2zllM1BDFsyUBLE0iHW+9cm1seAiyJIFysdjatXULNl5zIwiCQCQWQ1dvv6+cxZnJCQA0FIKCiqp61kBXXHtQyJRFLAe0jMXtj9huSxR4qKoK0qYJ7ASCINCTCOP0THOzYEWBB8U6E5nbTk5jdVcM5/fEMZIpg5eUChHpZIW6d8c2nHfhWsST7vasR/V8xevWBLkArURQiwTwBcM2p2a2flPgMhox1azFD0V7ZyR63bcUce6KxZkT7u/Hu93frygNTc26cBLU7FDlzxDDgJNUtIVsjpXR3DKOo/63bQlmViyaMhZPj0yApil0pZNVYtGmYaURi/rnlLO6YrExYnFUjKGLKUEkqtvfMybj1q/9GqzC4eDbo2DN14Q5E4qktP2zaUw2Aplyvn8ZVqgFl2beQmJiOoNcoYRk3Hkyzx8fewrPu3oDaL12XLNiCQ6f9G7mjU7OoNf4o2KF6qJY7ExjfDrj+H6pzC2oFSonqgg1YD0GAImYSbFY2xge24vBPI2VS7qwrC9oup0LBLVIgPlGqzMWAZ+KRdOk31oYVqi1JOaK5AoAQJRpfAJts8SipxUq70wsSopkIRZtFYsuGYsGsdjV2wWcrFqh0pT1WTyfsX+W9AM3K9ShE0P48Js+DL7M47JrL3M8XwSIlhCLYVKvqUVgy9kt+MXxX4CMkiBmiIasUBcCAi9gamyqYlNrh50P78TaTWsrY1923jIMHR9yXN7AtMm6vWKFqhIAoSl3ixNFy/FOd6aRmck4Ep18mUdoIW3ZeQFsiHWcOGAHhmXAhlhHYnHP43uQTCexfM3yVg0ToiJiMDuI5yx7DlKhVMu2GyBAgPlFw9Npt23bhk2bNtW9vmnTJjzxxBMtGVSAAHNFUZArOYoGSoKEU1PWG2PBxQqVE2WIsn+iaiLPgySAzri1SDBbIebK9YVu0sUK1VAsmnMSzcQVqROLkiTUrlqBsa5B8jEUAVGoPmwYxOZU3r4JOzFyFt39Syt/SwoQZihLfmIxn7OQegVeAkuTdYrFEE1BkBRINcc152CF+uDvfokPvumvsGRgFT5794/qCjOzGkxS1DlboRIEAcr0wHRgxFrYE4w3sRg3xqQf75migESYthCprYIsSRgbdm7MTU2MYfDoIWy69jmV15atXI0zJ/0Qi9o5UXQLvFrFYmdCu86zuiIz3dGF2ekpW3KXK+sFeAPEIjC3XEpREEA7KCTHchyGZkq4ZnUnuuIhJPTvgMpoyzspFvfu2Ip1m672/OzDY3n0JsNYkmqtSjVAFUEtEsARtKFYnHtDBVwOYOZALPpSLHrAi5j0g8xZ9zF4qetIGyvUcBsoU1MwxDLgJYebcCVj0VAsamOxVaSTZsUiVbFCPT0ygWW9XSDNJGFN9ookyRWFo/YBGT2rsTEr1BlJuxcY97/fPPwUrv1OEV0xGlvemgYbTVpXtCgWSZ0InltB4qZYjOsqgYKL/dhC45iLajGbL2Lb7kN4/rWXV167cOVSHB4867ndUfOMf90KVfCwQs3kCuBtrPAkSYYgSgtqhcpJCsJsY43VEMuAMK7z2ozF8YN4fKiEmwK14qJAUIsEmA80ay1qRi2xKHq4OAiKt2JRmeskpxo0rMxUVS1j0YEwU6BUFVkOt+A6YpEkKxaXBrwUi8lUsqLWM6xQGcLaz8lnmycWs5P2isVdj+7CbS+9DQzL4Cs/+0qFHLMDRVCOBGwjEHTVPJEh8I+b/xHvv/z9mLhrAqmZVMUKdbEQiwBw1qWuEHgBu7ftxuYbqxabA6sHMHSiMWKx1gq1I9KBglSwEotdaSiygtysPUk8l4zFZiAKIpgG3RMAIJaMOVqh7tm2B+uvWu+qEG0Up7OnISoiNvVsWvBrJ0CAAM2j4V+BZcuW4a677qp7/e6778ayZctaMqgAAeYKWVEh1BSJh0bzdcSTG7FYFuWGrDXHcxzaYywiNRYDqah2E1dVLdetFq5WqKRhhVptCJrtPymCgEpQkARnYtGsWAQAmiIh8tUCMBaiQQCYLtpvY2J0GN19Syp/i4qKMEPCzBnmsxnLOiVBAkvV/7wYvdla8qk4W5/N95sffhd3fuiduOH5t+I/vvMTpNrr1V9xM7HYAitUAKBRvW7qiUWtGcWVnR/4KmSnTqLNFAW0RRiE6NYVXWYMDznboT65dQsIgsDlV1dzN5atXI0zg962eHXEYs35NAj0gqB9h9o7uyDwnC0px3Pa9UYyjRWIS9PN51IKPAeKtS/YHz85jRBN4sWX9oGmyMp1JBE0GDZkq1gcGx7C+MhZrNvsTiwa+Yqru+IWG+QArUVQiywQPtEG/Oxt53oUjcFoGNU25JsBn9eJxWatUOm5ZyQqLbBCLYwDgvOEGCdUZsITNiRHuA2E6X7JMjQc4q1tMha1/SnZEot6TUQzAEFVCKKh0QkM1Cq0GOs9IpOvyTTic3pWo8vEHhMBPTJV/9v//V8/gJd+4Cu45TwaD99+PpZ0JuszG83KSYKqV5k1AdnFPsywQi2WFxGx6JIl9ODjeyDLCm65zkQsrlrqW7FYQUWx6Ez093Zp+Y3jU/UWZGVOW38hFYtlUWlYsQgAISMj2pyxyGWB/AgeOJLDjVduaM0AA8wJQS0SYD7AS805LhiqRAJEnRVqSXYnK0VZz1h0Uyy2ID/YDL/EopELJ/CCplh0IhYJBSTjXq9JqmTJWKQIqk7haGffaRCLE8MT6F5SVcRViEWTc4EkSq5kmxcKmQKUGtesR//4KP7pDf+ECzdciK/94mvoX97vuo1WnS/KVD/FmBhWplZCOCygnW6vkKucSy2yUFaoBtyIxQO7DoArc9h8g4lYPE8jFr1cr8xWqMZ1S+i1SEe4A4IsWCYEtHe1a+uZaxgdqqqek4zFRvIVDcTiMVvFIs/xOLT7ENZfub4Vw6vg6OxRhKkwLutxt8kPECDA4kLD4U9f/OIX8YpXvAK///3vceWVWs7UE088gWPHjuFnP/tZywcYIECzECVrQXZgJGtR2QFAyVWxqECS/TcDZ0siLuiJ1ym7DKVaiCZtFYu1y5tBEAQYiqiQg4BVpUeRWhagYVtqB4NgNfadoQiIpoxFkiCQCNPIlkXbPLjxkTM478JLKn9LChCnrYrFfC5T+bcCCoqqqRP9YnZqvK6gu+yq6/G2938Uf/OW2xwfcizEoqJZoeayWahzaOKShFqZgXZysgizuFLVZ075UizqljAzRQEdcXZeFIsAMHx6ELje/r2djz2ENRevQ1u6o/LawKo1uPfH93haqE5PTQD9gKwrPZia6zQVYUASqGSGpju0hu/s9CRiCauawyAWQbFAA/3W/lTzxKIoCKDZcN3HqaqK7SdncHFfEgMdWh6IoVgsCTJi8bgtsbh3xzY9X/Eq18+dLPDIlkWsXdpmuT4DtBZBLbKAOPTr1m1r8gjw/64A3vQ7YMW1rduuHVpCLOaA1DKrUq8RUIZicQ7EotyEFSqXBf708erfxUlAbFwBod17VYgqAQaoyVi0/s67Kxb1X+Iagq8s2ixvLEOFLErR0yMTuGnzOuuyrFUVPputEosEVE1x6mVly1WVAdO5Ejjeeq5v3HwpPvV3L8c/d/8JpFoA2Hg9sUibmjWklrE4M5sBSkW0O3+yK2Q3xWJscVmhAsCx086KxT88+iTWLO/HyqUVU1NcdN4AhsenkS+UkHCxUB2dmAHi+h+6AkdSDdv6evR06MTidAYDNXZoJYNYXEjFoqgi3EQzTyMWS1ZL54lDAIC94zL+NVAsLgoEtUiA+QCvNEcsGoRHiA7VKRaLHpOLREV0VSwaVqithG9iMaz9hvIcD4ZkXMdBeTxvS4oEiqAqjukkQULgrPf92rxEACjoE5fGh8ex+pLVldftFItzUSsayM5YVYuXXH4JXnvba/HG298IykePhSRISIqE2ZlZRytLP6BdHB9C4RAIglhUisVhF/eEHVt2IN2VxqqLVlVeW756OcrFMqbGpzR7WwdMT0xXahGDQCRU7SJKh7W6I8tnsTShuXylO7XXZidngQut2xJ5EaqqLiixKAoiWN09IXVNCirjbzJ+NB61vX4OPnkQoiBiw9UbWjlMHJk9goHEADojQZxMgABPJzQ8BfuFL3whjh49iltvvRUzMzOYmZnBrbfeiqNHj+KFL3zhfIwxQICmUKtY3Hc2i762cMUSVFVVFAXnwpQXZYgNKuBSURYsZV+QX7Gi3Vax6AZVVUGTpGVfzGQFSWjEoiQ5szVGPqNBBFIkAVGwzixrizCONqJTE2MWxaJmhUpaiUWTYlFysM50gyjwyGdnIZVymP79VyBwJSxdcR5e9dZ3O5KKABALVQtrSdasUIeGhnD66EHfn10LWm9W0YqA4UzZco2o+mxEzoVYrIxJz/fLlEWkY+z8KRZP2ysWFUXBk9u2YOO1N1leX7ZyDSRJxOjZ07brGfBSLJIkgXSUrRCLKROxWAvDClVt8OGir20OikWBB8nUF+yD00VMFnhcf34nOnRFoWEvXBZlRGMJW9Xl3p3bsHLNRUim0q6fe2QsDwLA9as7XJcLMDcEtcjTFGd0a7iDv5z/z2qFFSpf0K00m7VC9ZGx6AVFakyxOLwL+Npm4Kl7qq/xOaA41fBHG/ffsqDXILI1Y9GMEMvYZyYCJsWiD2LRUDVS1sbe8Pg0BvqrTR8VqFMszpiaeSwpa8fdy4K7bFW2jUxMI8/JeNuvy8iWBCzr68JH3/YSkAShkZBsVMvONKNOsSjj+IlBHDjprOLzgpsVakxvRi0qK1QXxeIfH3sSt5hsUAHNChWApx1qnWKRZFwVxD0dKQD2isXS00ixGDYUi+bv3Ph+yCqBMtWGFUt7WjTCAHNBUIsEmA8ITU5mKukTiEJUqGJhaaAgFuxWqUBURJBkfd6ggXNJLBqWkXyZB107sacW+qOmkwJNUiSQphYoSZAQaiYU2ansDFXj5NikJcNPIeozFueSr2hgamwKIidi+L+HweU4pDvTeMsH3uKLVAQ0paGsyjhy+AhGT482PQ6KcP48kiQRjoZRdpnkZJdXOZ9wUyzufGQnNl23yWLdObB6AAAwdMzdDtWSsSiVNTtd/RJrD2tTyLJClQxO6+4JM1P1ikWO02q3hbRCNRSLoiJi6TuWQljm7zcmlrC3Qt2zfQ+SqSRWXrCyZWPkZR6nc6dxfvv5aAu1tWy7AQIEmH80JadYtmwZ7rzzzlaPJUCAlkKosdjaO5xFTzKEiZzWWOAlxdU6kxMVyA1kLAIaQVer7AI0tSJNEQ0Ti6LAawpDyZ5YpAhABQlFdi70a61QGZLUFYvVQq8tyuDMbLUoNBfjiiyju38pjFJJVLT9MROLhYpikYCsF6BhDyuSWux5YhtO/fKLUFQV+Zl6csoOxrFQFRmSQkNWVQAqirmMp6WFEyhCAVSAUQVM5DkUTOdM1WftuVmhms+PrKjIlUV0xlgwNtawrcDw6UHb148f2ofs7Aw21RKLq7RZlkMnj2PpivMct1slFrX9sSNGO+IsyoJmGVxRLE7VnztDsajWNmM90BFjAVls6lyKgoCQTUP58ZMziIdoPP+S3koGqHHOeElGLJFEqWhPLF554194fu6RsTx6kmEsa481POYAjSGoRZ4l+NxqoGMN8JbfN7ae0tj91hZSWSOv+CabRBXF4hybcY2oDaeOAL3rgXWvArZ+pZr5N+2drVuLCrEoKkgCVpKjIcVijRWqjpLd5C7D4qxGMSDLCpabmnkywYKuWWY2V6iMO0Lq22E8JqhwGcuf2/ccxh0/PIEiJ+F50zWTiMSS5kbgqViUoUJFrliGJMmWt/2ioli0OaQURSEcYlFcTMTiKXti8fjpEZw8M4bnX7fR8voFBrF48gw2X3q+43ZHJ2cBo28l8fWkbg262rVm1Ph0pu69UnnhFYtlUUa4iVyjSnaWWSU8fgCDORJXX3Zxi0YXoBUIapEArQanNPfbbiipaIKus0L1IhYNJR/poDs4lxmLtYpFN/ixQjWTpyRI8JxV3clQzp+hyAp6Tep7GTIogrIQnoZiMTSHSSzHDxzHI197BIXZAoprG1ccUgQFSZGgQoVQFlAulhFn494r1sBNsQgA4WgYnEstQrlZ0c8DhgftFYszkzM4tv8YXvm2V1pe713aC4ZlMHRiCBuv32i7LqBboepCx5JYQogKQSW0As1QLBbF6nmKRCMIR8OYtZnkxOu1yEJboTIsA7HBZ6NYIoZiof762/P4Hlx6xaUtzVc8mTkJWZVxRe8Vnt/zAAECLC409UvwyCOP4HWvex2uueYaDA9rP9733HMPHn300ZYOLkCAuWC2VL1xSoqC4xMFdCWqRINbviIAyKqKolC/zNjYmPa+TaOwI8a6KuxynOiLcDO2IPIcWJqEYCI4zSo9igAUj6+xICmgSKJibUJTBATeWsinI9aul8BbC8TuvqWVf0sKwNKUNntfRz6bAUXTIAgCsj5foRHFIgB89sO3gQxF0PuGL6Cjf7mvdWiKhMKXoEoiZEWBohPFosBjcqw5pQCtF4mMIkCUVQxOVYspWSVA04yrFarZTjbPiVAB9KXmb0aaU8birq1bEInGcNE6a5Hc0dWDaCzumbM4MzkBAFWimK0/n53xEEqCDElWkGhLgaYZW8WiQSwqHg8ntSBJAlR51sHwzB0Cz4GoyXSUFRWPD85g3dI2LDHZrMbDBrGoIBqLo5i3kggTo8MYPXMa6zb5zFfsjlWyVQPMH4Ja5FmC4iQwtNViWekLsqiFG88VjLNNoydIWiM45zrL34ZYHBnVZqAbKiyk9Dyv5dcCG98ILNEVYhFdZT1V85sveJOVxm2+VFEsmppvdsSio2LRxgqVIFHibRocBglJMXWTSgb6qsSiRLJ1ROWMrhKgSBIRUh8M7UEsljOWP//uY18FADz+thguWWajULcjFi2KRbJifSsrCg6ddFfkOYGnkxgrKMhK9vfNeDS8yKxQ7WuuPz72JGiawk1XWK0747EIlvZ24rDH8bEqFjmdcHausxmGRkcqifGpTN1750KxWOKbUyxGIvrvjonMF88+hR1nuLpjGeDcIqhFArQagiw0ReJVLBoJoi6nsSC4E4uCLHhnLOqTZswY1m2wDZUeJ2k9hLzgPSGrLJV9KdoMgq4lxKIsWSxfKYKqED0GvMZkVizKkEGTtMVCNpfJAQASqYTrdpygyiq+9smvQeRErProKnSc17gLTq3C9OQh+36BF9wUi4BGoM0lT7LVGBkagWwz4X7Xo7sAoI48pGgKS1YswdAJ/4rFklSyXCNJNgmKoCzEIgC0d7ZrVqg1MDIpw+Fzo1hsBNF4FMWcdb8ETsCBJw9gw1UbWjhCLV8xSkexrnOd98IBAgRYVGiYWPzZz36G5z//+YhEInjyySfB61lt2Ww2mK0XoGXgRPvu1C1f3IIVd9zrSQoCWtaZgeHZMmRFRU+y2kwocN7bsMtENB4aeRvVWnvMvdjNlkVEXLz/6ZoMSJHnwFAkREcrVAKKS4MF0MgS83ZpkoRYQxy2x6wFdC2x0mMiFhXUKxbzuSwSSW2WeFWx6G+GmpzTCKwly1dhxUtuB5109re3Q2HPH8Cd3g1JUS095OOH9ja0HQOUQSyq2rk/NF59EBMVBeFI1JVYNCsTM/r1szQ9h8a0B8aHz0AU6u0sdj72IDZceR0Y1npuCYLAspWrcWbQWb0i8FwlN9OwQg3bWK90JUIoChJERQVBEEh1dLpaoSoeDyd2iIzsAjN5FI1OiBMFASTNwiz3ODSaQ4GX8LyLupGKVo9LnNW+U4KkIBpP1CkW9+7cBgBYt8k9X3GqIGC2JGJtf5CvON8IapFnIRq1NlWayCa0g5fizQ0ko417zsRi/WzwEydOAACGx3WLU4MATS0Hkv1V0o2JAHQImDlRXXnfT4CvmqwpaxqQBqpWqPr4FdM5CFsbZixDw7E0syMWSRpluxWMpgdJ1+UdWhWLTF1m42yuAJahaxSLHvdf3Qp1NK9dK31d7fh/rz4Pq9sdbjpM2EOxSFvO964mm3kyFUbffxYwDvucmXg0sqisUKczOcza5Er94dEnce1lF9vmKF64aikOnzzjuE1VVa3Eoizox9697u3pTGF82sYK9RwoFkuCgjDbuGQ1EjWIRf07oKrAxGHsG5dx41WXO68YYEER1CKLA3khj9FC83aPiw2CLNhOYPZCWawSPJxsvT/4USySBOmYsVghmGpujft37AcAnDis1RiHZw4DAKa5aXihLJV9ZfA1QixW/Ngc5pVJqrafBkFKkESdYpEiKQuhVjvJqcdkRV0hFk2EbEHPe060NUYsXsRdBHFWhMqriCViuOn2mxBe2hz5VEssnth/wmVpZ1SyIx2OZyQWcbVCNaOWlJ4PiIKIyZH6XsSOLTuw+pLVaO+qT74eOG8AQ8fdicWZiWotUhJLFlUrSZBIhVJ1xGK6K71oFIuiIIJhGUhKY89Sdlaoh/YcgsiLWH/V+lYOEUdmj2BFcgXSEZtJfQECBFjUaJhY/PSnP41vfOMbuOuuu8Aw1R/Ua6+9Fk8++WRLBxfg2QvFwaL0qE7yHBnzngU3na8W1GdmyyAJoN+U2eaHnDRbl7rZphroTLgXf7NFERHWmVwJVcg4rTgVBL6OWGRpEoRemFEkLMRiyGaWHi8poE25jzRF6FaoVaRricVCrvJvhmGR6rA2tliarGRVAkA+O4tEm1YEGMRixCMDQJZlLUMy1Ytoog3XPPcFtpl4Xgiv2AClnIckq7oVqoYTB5sjFhmdWCRVGVGWwrEJE7EoqwhHo65WqGZkK8RiY41pkiTB9l+AbNZdoZPq6ISiKBgbthbDpWIBB5/aiY3X3Gi73rJV7sTizNRE5d8KQYMk6jMWAaA7EUKBlyvfjXRHFzLT9TleFcUiGicWo1OHkM4PIuQzU8KAIPAgaNbyidsHp9EeY3HDGit5TZIEoiwFXlIQSyRQKlgfvvfu2IYVay5EW9p9xujRce136drVna7K5QBzR1CLPMPQCmVhLeQWEYtmxZvfB/KsTpbweY1kajIvqYJGrFDrQACxruqYAOAXfwfETRltDvtVJRYlLTvQbIXKxqGa6w+WAe9kHy9XycLqximU3RSLdAjZvLVJs6yvWovIBFOX2TiTzaNdVwhEKH2fQu621EppBoqqoi9BYmlnEn95wyYkwi73GzZWn/Fnk7FoYNfB5ohF222bEIuGUSwvDLE47ZEX1a3nGtaqFkVRwgPb99TlKxq4cOUy14zFTK4AXjBdIxKnXUMet9eejpS9FaqeaxRdQJVAUZCaUizGovp1a3wfsmfBKGWMCVGsHFjivGKABUVQiywOXPODa3DLz27xpZJ7OkCQhabyDM3EBi83plgUFdFTsaj9w30MxzKaO4IfEqkklXxZHhrEosAJrjalAEDQhOvnGwSq8T4Fqo5YBGAZV20GY09/PbFotpDNZXJgQ2xDVqiqqiIpJnHkfUfQu6wXl117GUKJ5okniqAs5PTx/Y3b4QOmvEmHciMccbdCNWOuxKJoVzOakO7UelG1OYuqqmr5itdvsl1vYPWAq2JRlmRkTDVFUSwiRIYsJHx7uB1lqWw55ulOe2Kxolg8RxmLjcDOCnXP9j2IJ+NYddGqlo2vJJZwNn8WF7RfgDY2yFcMEODphoaJxSNHjuCGG26oe72trQ2ZTKYVYwoQoA6CZN8czGS0m7VdBttUsaYITIaRDFeLxEaJxfsOeM+EjHqo9DJlwVb55QSBK4OlCIimZh1BEDBcKSt8oYt/vSApoE1yL4qst0JNRaxFeqlQfTDr6ltS55/OUmQlnw7QrFDjumJR0u0u3QjUbCaDF77whTi2/U8AgJ7+ZbbZfH7Adq9EbO3zoAIWAvb4oX1Nbc+wQgWAvrYwzs5Wi2VRVhCOxlwVi2ZkSiJokkBHrLEHA0Ul0Pf6/0R2xXNcl1syoBV0w6etjcs9T2yFJInYdK39+stWrsGZk8cdswsNG1RAI4pDNAmKqn/Q1IhFCZJ+3NOdXRZS0gDPaU1xyasb6ACSbHw9UeBB0AxI/XyqBIWnhjK4fCCFvlQ90RtjafCijGgsgWLB2pjYs2Orpw0qABwey6MnGcLyjiBfcb4R1CLPEOiWWRh9qvXbVqS5ZxsCABuvEm+yPUE4M6PNZDZ+Cysknqqv5zNHyBFzXT/eC+THq39vfDOw8U2eqxmW5yVe1OoMc0OCICFT1d9SLWPRYUPGemYikKTcrVDpCHKmWdJd7W2ImpowEsGgVso+ky0gndQyhCKkvh2XTKFisYRXfOir+MRDWlNxzdJOW0LKAjsFpEWxSFoI7V0Hm1MJeGEhrVBnbJSIZqxZ3g+gnljctvsQCqUynn+dA7G4aimOnR6BJNl/T0drLcTEspZb6oHezjTGbOzHKorFhbRCFWSEQ40rFmOxGmJx4iAAINmzIpi4tIgQ1CKLC2fyzgropxOatULNlrUJqTzH1xGLtWqqWkiKBJJ0ViwavQCVdCeHjs4e9TtclEV3xWKU1u63BkHHlTlLlqEdVNp9fLIigyRIKLplOUmQdVaoACzjKpomOTEhBqnOVHV7kEETVsViPpNvSK0oCiI+897P4M+//DMATUGXsbHzbgS1mZjNEosVuCkWfVqhtjqjsxY9S3pA0RTOnrISiycOncDs5Cw237jZdr2B8wYwNTZVp8wzMDM1Y+mZlKRSHcHdEelAWSxDUquFcHtXO2bMrgs6zqVisRkr1FLeelx2b9uNdVesA0W1Lj/zROYEVKi4qu+qBc/lDBAgwNzRMLHY29uL48frb0yPPvooVq1q3ayFAAHcYNzcT50+DUAjEWoxmbe+1psMW8guP1aoZmLx13tGse1EvRrLQHuM9cwVzJZF3xahACAKHFgbItLYDYNvIVwaLbwk11ihEnUZirV5cGZipad/KWpRq4ws5LJItKUAADIo0CThqDDjpkfwlzffhCeeeAKpXi0TKt3Vg6mJuVvY8CYL3eMH9zoSZ26gTMTisnQUY7nqdSTICsKRGLiSP/XIbElAMky7kqx2MMSxVLILgs21baCjuwehcATDpwctr+/a+hB6lw6gf2CF7XoDq9Ygn8vYqgsBYHpSa0CTBAEQZF2mpoGuRBiCpKCo2+SlO7ocrVAZNgSH+QHzAoHnAYqpkO/5SA94ScEL1vba2pTGwzREWUUkFkfJpNidGh/FyNAg1m32JhaPjOdxXlccaQ9L5ABzR1CLPENgEHatIABrIQutUSyGvJtDBw9pTf8zo/rvn5EHaTTAfOQZYuQpYPKQ/XvCHAmkRJ+WVWngvOcAiV7P1SqKRV7U9kW2NiRkukqyuSsW9fNMmX57SQfFomJSLJqaPGYbVMBQLFp/y2ezBbTrzbwIKQN0WLOBtcFwVsL1L3gp/rTzKDb3a/fo/s4Ehsc97NtYm4kjlLMV6u4jpxyJs7lgoa1Qcw4NNwBIxCLo6Uzj2Klhy+t/fOxJdKaTuOzi82zXu+i8ZRBFCSfP2Nd/hg1qZXKboVj0tEJNOygWF94KtcDJCLEMaL0mpn024mJxnRDXvw/c6V3IcirWXhrkKy4mBLVIgPmAoDSnWJwtaBMqju07Bk6yknAlD+cDL8VixRrU4yfs2Owx9wVMqM2qq4WhkmzECpWwmQhrhqiKFptQgqi3QgWsikUzsdjT32OZcF1RLJqcDPLZvO98RSkn4fNv+zwe+t1DWLJCU6N39HRgasy55+QHtVaowyeHfVuWNoJGrFBbQSxOu9RoFE2hf6Afw4PWWmTnwzsRjoSxdtNa2/UGVg8AgKNqcWZcr0V096ayVK4jFjsjnShKRYvVaLoz7Z6xeA4Vi6SNE5UdDMWi0VMTeAEHnzw4LzaoSTaJC9svbOl2AwQIsDBomFh8+9vfjttvvx2PP/44CILAyMgI/vd//xcf/OAH8a53vWs+xhggQB0yJe/ZNrMlq7KgKxGyKAqLQmPEYluEwR0/3wfV4WvTHmU87RpzZcnWrtQJIs+DsSmQQxXFovaeO7FotUKlSAI8V0MsRmozFqvESndfveVSuIZAzWVnkUimAAAyQSPMUJYMRgOTx/dg9/+7DaIkYvv27eheeREAIN3Vi6nxMcd98AtOZ65ohkF2dhqTYyMea9SDNk3JG2iPIs8bRbkKUVIQikR8W6HOFAUkI97XRS3MVrSHdu90XI4kSfQPrKhTLO587CFsuvYmx4fDZStXAwCGBu0f/mYmx0HTDAh9xhhLk7bEYmdce9DL6N81zQq1nljkuTLC4QhEH3bCrYIoCADJIBzSxpiPL8OSVBibV9RnKwBALKRZoUbjCRRNVqh7dxj5iu7E4nSBx0xRCPIVFwhBLRLAE4o0d2KRYrVMvUZRzmj/NxpTfq1MJb6q4jRjTlao0DIXDbITqM8IdEA9sWitm2SmSrKxDAPeqQ9qp1j0skKlWIsV6kCf1cLaXrGYrygWKULV8iVtsn13Dc7iiq8MYWp6Bo/920tw6wXaeVrSmfQmFu0Ui2ZikSArRDlDUyhzgmuOYLOIR8MozjOxaLYhffDxPa7LrlneX6dY/MOjT+IvrrmszvXCwIUrtcllTnaoBrHIGDWUxPsjFjucMxZJkgTLLNw9usBJCIcYrFrWh5uv2YDPfvAtvtZLJmJQVBWqrpKePrgF+ydk3HRFa5t5AeaGoBZ55qOZSapzhaA0l7EoEdV7tKAIoE2Tb0qSex3hlbHoxwpVVdWGVKN2yi87sGHtHivwgqdi0StjUVZkEARRId1IgrQlFp0Ui901k5wUKJpiEY0rFrlhDic+dQITQxP40o++hEsuvwQA0NnbOWdikSKrVqgkpSk0jx+Yo2rRBpFoxL8VapPfJfN6Ox9x7osAwJIVS+qsUHds2YH1V68H6+AeMHCeTiw65CxOT2h1Ia3XDiVRI8TN57wr2oWiWEMsdqUxOz1bUccaMK63hVQsCrwANsxCpbRjed1Lr/O1XiwRgyIrFTL0yJ4j4Dl+fvIV21agPWzfpwkQIMDiRsPE4h133IHXvva1eN7znodCoYAbbrgBb3vb2/B3f/d3+Id/+If5GGOAZyFaUcJnSqIlq7E7GbLad3ISvNyE8ly1qfK8C7sxNF1CObnMdtm2KGtLApqRLYsIeagazRB5zlYFyer5AVRFsehcZPOiAookKr72NEmAr1EsxkKaytCo28zElq1isYYoMysWFd0608698vB930e0ZyX+cP/DuOCCCyrnub2rB9MtUCyWdeVcLKGN5ZiPnMXTx4/gQ29+hUZEwapYXNpetXmjoGpWqJEGrFDLIlJRBuEGyGRAU8kZ2Ll1i+uySwZWYXioqlgcPXsaw6dPYuM1Nzmu079sBUiKcsxZnJmcQLqz+uDEUvbnszOhFegGAa8pFqfqHhx4roxQJAJxHkRJTpAkEaDoCqkuyio2rWhHT9KeJEiEGAiSgkg0jlIxX9mHvTu3YWDVGqQ7umzXM3DEyFdc0xHYlC0AglokgCdaQSwyUd8knAUGiWfcm92IwdrfC9mGbJsrsZjoRTOVlTG0siDpVqg1xCJdJRZdrVDtMhZJCmXBZl+N5iVBWojFesUiXUcazuaqikUAGrFoc/6++PujWNpG44kHf4/1PdXjv6QziZGJafdDFbbJfqlTLCqAqiIZ02qIXT6aeaeHx3HD6z6Egk9LsVgkPO+KxeHxamPzj4+558XVEotTs1nsOnDcMV8RAPq625GIRRyJ19HJGSTj0Wrt3kDG4my2AKHm+ipxPKLh0ILeo0uigjCrXR9/+s6d6Gr3lx2UjEUhyKhkopNTh3EyT+O8VcvnbawBGkdQiyxOfPaJz+LS713aksxFBQtot6JDlMWmFIsyVV2Hl3gLCVeWyq6KsQqx6JGxaBATdpgqN0aGlaWyr4xFg9DxpVj0yFisWKHqx4IECYGrt7m3EIs5k2JxaY9lORkyKNKq9PSrWJy5fwZkmMRH/++juPjyiyuvd/Z0IpfJQZ6D24FZsRiKhMCwDI7u87apnZ2axT/81T8gO5v1XBYAwtGwb8ViM9c0oGVWGvAiFpeuXIphk3sCV+awb8c+x3xFQFNddvV1OSoWpyemQZJk5TosSsW667A70o2CWIBoquHTnWkosoJ8TU61QdI1ksE5V8iSDIZlKsRnot2fojYa1ybTGXaoex7fg1gihtWXrG7Z2PJCHmPFMVzUfhGSoWTLthsgQICFQ8PEIkEQ+MhHPoKZmRns378f27dvx+TkJP71X/91PsYX4FmKoo/8Qy/keQmSqYDub7MSCkVecs07ZCgCuXJ1HD3JMG4835lcSIZpz2ZFnhMbUq8JfBmsjVVB2Jg0aLzlQixyuhWqrJOsFEmCL1sLQIIgkAybZjWaFFtdNorFUI2dqzljUXufBEUSkEQRoiBgbFgr1K566yew9q2fRXtHBxRFxaDYBnl2BO1dvcjMTNfN6PIP3Z5BL8DZcBipji4cO+BNLB54agd2P/EYMjPawxBDaGMgACxpqxKLJKGpP0ORqG9iMVcWkY6yDSsWDaVlNNGGXVsfcl12yfKVFsXirq1bQFIULrvSeSYaw7LoX7YCZ046EItT4+joMhGLNGmrQO3SFYvG9zXV0QWeK9cdH75cRigcgbSAikUAAElZ8kVffGmfoxVxIkyDl2SEYnHIkgSe074je3duw/rN13h+1JGxPLoTIazscM7zCtA6BLVIAE/IYouIxSayPriM9v+KYtGt6VLz22r3eS0hFhuHMRu7xAk6YVarWKz+3rlaoRqKRbMNJEmjVLbJrKSqcgOz/eZADbEogakjFmeyeaTbTL/BdAQgKYiiBEEQMXhWc0b41ls34qF3LUVvT3dVXQqNWOQFEWXePksTIOytcS3EIlWxQqUpCucv7/dFLD6+9wge2XkAp0fqc4rtoFmhzm/G4tCI5kDw3KvW44+PueegGsSiMSnnz1t3Q1VVV2KRIAhcuGoZDp90UCxOzKCvyzR7XeL168PbChUAJmasjdESxy+oDSoACLL23WgUyXgUogxw5SIgCegiMhAjXSCY+ozoAOcOQS2yOPHo8KMAgL2T3s+BXhAcspXnE4LSXMZi7TbMWWWczLmqIEVFtCgca1GxQnXpHjZigwpoGYt+iEWjv8KXeW/Fokd3U1IlkCCraj6SBMfVT9IxW7QWC1YrVDOcrFCTqXqCRJZkiIKI0SFtAnHva3qx6iOr0NHfYVmuq1frNxXyhbpt+IWRsahCBUEQWHHhCl/E4rEDx7B/536cOeFPeRqJ+s9YdCJ7vTAxrNVFl11zGXY9ssu1X7Rk5RKMDI1USNk92/dAFERcceMVrp8xcN6AsxXqxAxSHalKTcyJus2wqRTpjHRCUiSL5XBar0Vqcxb5Mg8mxIAkSaRvTIMnnGNvWgk2xEJQGvs9i8W1CYSGanfP9j1Yu3ltS/MVjd+Nq/uutnyPAgQI8PRBw9/ct7zlLcjn82BZFhdffDGuuOIKxONxFItFvOUt/uxdAgRYCBR4CZzJZisdDdW972ZLGqIpFGoIzldtrlcrXtirNZkMW0gnqNBUkrU2om4QeN5W4Wg4LVYVi85FuSApoEkSkmwQi4DAc8jt+i0wdbJCXCYjDAyCzqJY7Kvf59oxFXIZJNrSlb81hRuBF16+HK+8/hK85zUvQrlYBBOJgaS1sf56zwimlSjKT/wEy5Yt1fd3brPveVOI3+qLLsXRg+7WXUA1T9DY5yipW5ipPEIMhVREO9gUVAiSglA46tsKtcBL6IiFPLM3a2EQi4l0J44f3FchPc14ctvDeOj3v8KS5aswMTpcOXa7HtuCi9ZtRCzhPuNr2crVOONghTo9OY72ruqDE0sRtqR5OsqCJFD5nhiqvtkpqx0qx2nEorjAk35VsqpYpEgCFy9xVgpoxKKCSFT7PpcKBUxPjuPM4PEG8hVjSAX5iguCoBYJ4ImWKBbtFW+eKFszFlVeeyCfzfmYlGL3UD3XjMVwykp++URFschL9laobJVkc1cs6m+Ym5YEibJg0+AI6b/TquqRsUjXWaGaMxYB6OePwrLnvAGpK16Jy17+D5iezSEaohEx6j+DBIZGLAJwJuzYmP1xpM1WqBRganptvHgVdh3wbrYatp9mlaYb4tEwiuX5VSyeGdPu5W99xS04fnrENgvxZ398DPc9sgtrli9BJlfAtK4s+ONjT2LtmuXo7+moW8eMC1ctdSYWJ2driEWuLlfTDj0dKQDA+JTVDrVU1hSLCwGeTuGpURlnsgrCDvZrbmhLxCAq2sSs4tBu0CTQ2b/K/vchwDlDUIssbjRLZJjRily4RtGsYtEMQbZaofISD0mfHGRHBEmqZCEia1Fp+LvwCccyDRKLUtmbKDSB53wQi8b4HE69ocysWKH6USzmnRWLCqFo2ZSwKhbjbfUTTd/+wrfjljW34M03vxmTo5MgGRJUpP6AdvZ2ap/rp2Z0AEVQlmto9drVvojFmQmtFin6rEUiMf9WqM1+lyb0CVcvfPULMTs1i5OHTtYt8/sf/R4Hdh3A0hVLIUsyxvSJZDsf3onu/m4sO8/ecczAwOoBVyvUDlMtU5Y1Qtx8zjsi2vsZIVN5rV2vX2ZrahGuzCEcDoOXeSx58xKcUE+4jq1VYFimkrHoF7GkTiwWipBECft37seGqza0dFxHZo+gPdyO1enWqSADBAiwsGj46eR73/seyuX6YqRcLuN//ud/WjKoAE9PGIomeaFVSQ4ochJOnKhaREZqlEq5suRqS8rSJEo1OYwMRSJ8dgeA6v5GWG27tJ1XpAmipEBSVJ+2mNox1KxQ6wvOsDFp0AexyEuaFapUUSwS4PkyZv/8DcSe/F906IRoKspWavBivmrZYJexGGWrYxJ4Dly5jIRZsUhTyExPQFUUFAt5vOdjn0UkVrVMEyQFn/vDEbSLU5AnjqO7t08b6xyJRc7EXK2+eB2OHdzr6ec/O6UVq4Wc1gwzzqLx/76kdnxIQoUgN6ZYVFSgr63xfK5J3Qo1mkxBVVU8tf1Ry/vHD+2v/HvJ8pVQVRWjZ05DliQ89fgj2HTtTZ6foRGLzlao7SbFIkORlTxPM0iSQCrKoqhb0KY7tQeh2ZqcRc0KNQonMct8QSUoCDrZvHEgje6Ec0MxEWbASwrCMe1BsFTMY99OI1/RXbE4UxQwVRBwSX8bEkG+4oIgqEWegWhasW5F5Te/ZVaozSgW9SaCrr4rF7S/7YiZOtA2v1PSHIlFggBi7nbOdjAmZ5UFPWOx1gqVqSEWPRWLNVaonE2D44YPARe+CIh1umcs1nQ3VVW1ZCwCAOgwprNljE9lUOYEfO1f3oWOdM2km3IGWUVTgS3p1hpDrsSiXVPTQbEIaMTi7sMnIcvuTeKxSe0ayfhs5sWi82+FemZ0Ch2pJF500xWgKBJ/qlEtHjdZn65Z0Q8AOHZKUy3+4dEn8fzrNnp+xoUrl+Hw4BnbWm10cgZ9XdVJa5AF/fvoT7E4Pp2xvL6QikWRSeDybxUxy81FsaiC58s4vvVXAICLLr2s1cMMMEcEtcgzH+eEWFTmTizyMm8hCnmZr6j0MvpvY8Y0sUZSpKoq0QZ+MhaPzh51zGi0AydzvhSLBiHGc7yrqhLQiD43GMRixQrVIWMxRFXvFWaCrzZjEUC9FWqmXrFYzBcxeHgQUIG//5e/R1efc01mEItzVSyar6HzLjkPQ8eHPG1LDWKxkPP32ZFoxLcVatPE4ugEaIbG9S+4HuFIGDse3mF5f9qUjb10pTZZ3bBD3bFlBzbfsNnTVWzZecswfGrY1n52emIa7d3VSU52Fr4GsZgTqpPzDcViLbHIl3mEIqGKGnqhfmPYEGuxavUDQ7FYypdwZO8RcGWu5fmKR2ePYmVyJVKhVEu3GyBAgIWDb2Ixl8shm81CVVXk83nkcrnKf7Ozs/jd736H7u76G22AZw+OHz4AAOAWMkjNBUVBgmhqVIZZ6+We591tSUM0iZLNvtBFjYhqNKHF2FaY8SYejPaKKHCVPEWgqsgziEWD7HHPWJR1YlHR16laoZrtLdtjbOWDi4UcGDaESy67wp5YNO1DPqcpM4yMRQDgxk/in97w4srf1938Qsv6P9l1BqPZMroLx0EQQGe3RizOXbFompl30TpkpqcseYV2mNGJRbNK04wlKY0YNBSLTCQKziexCABL0o3bVhljphkWK9ZcWGeH+qNvf626/eWrAADDQ4M4vO8pFPM5bPRDLK5ajfGRs7bqy5nJcbR3VmdkMg6ZmQDQEWNR4iUoiop2PZfRIGsN8FwZoag/L/9WQiWoykSH7mQIjI2tsIG2CANelBGKak3pYj6HPTu2YtnK1RaS1Q5H9XzF61Z3BvmK84ygFnkGY45NNAM/+clPAACyJLRGsehDIVWHimJRazwQgofK3awEpGvuGSQ9d2IRAOI93svUwLAELfMOxKIpY5FlaI+MRcJqXUpQKNlZjkbbgcteDyT7kc0XwTA0rlh3Pi5Yac17lmuIxTLHgxdEtJtyjY5MSrjytf9U+ft1L3lu/efxOewVBhC6s4TeCzaBIAhnwo51yNykahSLqlWxWCrzjqo8A6M6sdiIYnG+rVDPjE1iWV8n2hIxXLX+wrqcxc9/52eVf68e0InF0yM4eHwIIxPTrjaoBi5ctRSz2QIma2xLAYNYrLFC9ZGx2K3nGI6dQ8WiGeFQk8SiotXFs4cfw3AeWH3++fMwugDNIKhFnj2onfRQ9nk/3rdvHwBgcnTSY8l6SIo0h3gQDXWKRZmvIyt/fvznlr/dbAj9WKEenT2Kroj/SUx+Mxaf1O89XMmbiFSggGEZ54xFVbYoFgmCqGTemWGnWDz/0vNx3sXn1S1LEzRI/cCoqopcJmdRLI6dGcO7X/7uyt8vef1LXPchFo8hEotUcu2aAUVqVqjGYVi9djUURcGJg+7quOkJjaTzq5YMR8MoF8uuE7kJVbtpN0ugTY5Moqu3C6FwCOuvXo+dD1tzFn/67Z9W/t3V3wWGZXB28CwmRiZw+vhpbLrBOV/RwMB5A5BECaM2EwBnJmbQ0V1VLHISZ7k+AKAjrL1fFKvHLRKLIBwJ11mhcmUO4Ui4YkvaCBk/F7As27BiMZrQMhYL+QJ2b9uNSCyC89e2rhaZ5WYxVZ7CxR0XI8kG+YoBAjxd4ZtYTKVSaG9vB0EQOP/885FOpyv/dXZ24i1veQtuu+22+RxrgEWOUk57gOcEp87SwiHCUCjyMjKcXjRKnCVrDQAKnIdikSJRFlpHkhrbcrNfrYXAcWBNHua5sqiPTbd3rCgWnRufmhUqAU6fjUdR9srAdUvasLo7DoIgUMznsG7T1fjS938NhrUWTgRgUV0WshkAsFihUoSCniUDtuPhJAV3PzKITcvbkaYEEADiyTawocaVfXXbNhHBqy++FABw7KB7vkbFCtWk0jRjqU4MkoQKRQXYcMy3Fap5/UZgWKECwMZrbsSurVsqBfvI0Ck8/IdfV95v7+xGJBrD8OmT2PnYg0gkUzj/Eu+ZZAOrzoeqqjh7yvqAIUsSMjNT6DBZoTIkCdKBWeyIsyiJMkRFQTyZAkXTdYpFrlwGcw6IRYUgK1aoXkiEaXCSUiUWiwXs3bEN6zZ526AeHsujMx7Cyq6Y57IB5oagFnkGwyX7pxEMj2i/n6rcAsUiHWrOCrU2Y9GrESm4zAwnaY1QmSsSfdV/+1SPG/edUoVYtJ4jmakhFp1OoSJpSjOCwL4T+v2NoFyyDDVkCyVcfvF5ePzHX0I8Zr2XSrCel1l9dn27qZmnkExFvWYLiQckDpyqnScmFEZ3Rwq84NB4YWL2mdYWxaL1OF124UoA8MxZrFihFvwSixEU51mxODQ6iWV61tMt116O+7fvgaRP4BqdmMF///xPlWVj0TD6uztw7PQw/vDoLoRDLK7fdInnZ1yk25MdtLEgqycWOV+KRZZl0N6WqLdC5bhzQiw2o1hsi8cgyIAg8GBmjmJcioFgovMwurmBg3Y8OWLuNfzTCUEt8uxBLRnHy/7uxzPT+m96pn7ShJ/PNGc7cnLjv/WCLNQrFk37IikSfnDoB5Z13NSAXlaoKlQMZgcryi0/4CQOtEsPw4BBznJlztMKVVZlMCzjaoVKEATyWe25nyIoTyvUQr6AgdUD+Oa930Rbuj5Ww6xY5EocZEm2KBZVVUUsEbP87YXOnk7fqkE7mFWZADCwZgAMy3jaoVaIxQasUBVFgcg7E1ZexGJOzmHNv6/BrDhr+/74yDi6+rVaZNP1m7Bvx74KGVzIFvDr71f7IhRFoX+gH2cHz2LHwztAkiQuv857ktPy1csBAKeOnap7b3piukIsqqSqXWM1BHeSTYImaZSkao+IIAikO9OYnaxRLHJWxeJCgQ01TixWFIuFEvY8vgeXbr4UlIswo1EcndWux2uWXBNMzg4Q4GkM3wzHgw8+iPvvvx+qquKnP/0pHnjggcp/jz76KIaGhvCRj3xkPscaYJGD0G+O5py7hYdWqEUYCpKioiRoYyFsqss8J7lm37E02VL1ZVnfVq0lqxs0xWL9GMNGxqLxlpsVqqxZoRrLkAQBwSakfO2SNrztulVIRRgUiwXEEvZEEEUAlImsyevEYiyRRPHoVqiSiJ6VF+Fz3/257fqTeR6cqODKle2VjCOCINDZ3eu4D35RNlmhdnT3IdXRiaMH3HMWZyrEov2DX79uhUrp1xAViaNc8kcsUgSB7mTjTaypcTOxeBOmxkcxdEIrvH7y3a8jmao2SgmCQP/ASgyfHsSurVtw2dXX+wrUXrH6AhAEgeOH91ten52ZgqqqVitUmjBZoVqLvq54CCVehiSrIEkSqfZOWytUNlqfNTHfUEDWTShwQiJM64pUrYAeGRrE0MljvojFI2N5nNcVRSraeI5SgMYQ1CLPYLTYCohQ5RYRi008QPO6Al4nQQjJoynoRSyKLSCQkiZiEY0dFyfFokQbv+sESJKEqDr83sqirlYkqipFkrS3QjUhVyihLW6dsKEwMRyalFEirfeUmYzWJEwnE/jdURFFQcVFy3vw6P99vrJMXTOP0+77vFqtoZZ0uzRFGR+KRZK0XHdtiRjWLO/3zFk0iMWMT5VALBKGIEoQnEjQFuDMqKZYBDRiMZsvYofelPzyPb+qI8zWLO/HsdMj+ONjT+GGTWsR8UHirR7oRzjEYvdha2ZSscQhXyyjr7tesaioqmcDqqczVW+FWl44K1QzwmzjtUEiFoEoqygVSxgI5zXF8SIkFk8Ry/GmX5ZxhrSfTPhMRVCLPHvghwSaD5gJCknxnrRda3EoKILF2tRshQoAD515CGOlMcs6bhmLXorFAgrgZb6i3PKCChWczIElvX8fjUxIgRO8iUVFJxad3ldlkCAhQ89YJO2tUMNUdbJEqVCyEIO1oIgqsZjTc4YTbQnks3mIgoi+gT589edfrSxvp5CsRWdv55xUqzRBW4hkhmWw6sJVnsRiM1aoAHzbodphSBhCqDeEUc7eZWpyZLJiQbv5hs0QBRF7H9cmjv/qnl9BFK3X/pKVSzB8ahg7H96JC9ZfUGdLa4eOng4k00mcOGCdcK0oCmYmZypWqCqt/R6wFGv5bSAIAu2hdotiEQDSXWn7jEWTYtFNKdxKNJOxSNEUwpEwcrM57N+5H+uvbL0NalekC8uTy1u63QABAiwsfE/DvvHGGwEAg4ODGBgYCGYUBKgDqRe055JYPHPmDIAQIBQBMMg4Tp8HCrwE1sUaMUSTyBdbp74s6YrFWAMZbALP2Y6xU6910yFvK1RBUizKTJokHbMMjbzIUj5na4GqrQ9L3p5hhfrDu76CmT/8DGQkCfbil1kIHVmWQVEUZovaNXL1ee1Y2RnDAdN2Onp64SN9Sof9Q55gskIlCAJr9JxFx62oKmanNBLMSbHYFdceeMKEBCAEMhQDz5Ur++SGRJhGxIf1rRmyLGN6chyG6dulG68Ew4awa+sWJNrS+MMvfoTXvev9+O8vf6ayzpLlK3F431MYPHoQf/mKv/X1OdFYHMtWrsbR/Xvwgpe/pvK6QbS2d/UA+hmhSRIEASiyDIa17k93MowCP13J8Ex3dGF2esqyDM+V0RZZeDWfCgKMT8Vi3LAqo7Uv1/aH/ggAWLfZnVjMlARMFnjcur4PyXATyqYADSGoRZ7BaJEVqgFCkeaugqTDWj5ho9CJpSePjeByltGUVm7gPYhFnwoJV5gViw2izIva5CTVWhMJ0T689ddlvPkd2rYVg1isPZeKWFEsKkYON0mh7GF/ns0X0VbTzFPoCC7+ehEPfvtiy+uGYvGbP/odvvu7EiJ0GG/ZGLb8RuQKJev2dALYQiz2dAA4Yz8gJmIhFiuViK0VarU+2HjJGv+KxQasUAGgWObANqGI84MzY1MY6NOaeZvWrkEqGccfH3sSF68ewH/94F686zUvwn/cXbUgW7OiH1ufOoSTZ8bwb+99g6/PYBgaGy5chZ37rcSrcTz6utLV0yELAEGhWOYRi7or5Ho60hifylheK3Hnxgq1GcUiw9CQVAIzk2O4vJ8E2XMeQC/OyUvf2yPihtcvvCvFuURQizx7oDQ4EceAYW/Y7PpFyX/sBmAlIgFNsSiVJevfJoLy+we/jxXJFTiVO1V5zY3gMN5TKRUEiDoCMYMMAKAr6s8KVVZlKKriywq1++Xd6H5pNwo/KHgSi5IiuROLiqx9X/WvLEVQtsSixQo1V6wot+xAkVTFCtVQQm753RYMnxpGm27NTRAEkqkkcpkccrO5CiHnhM6eTpzOn3Zdxg0kSVqIZECzct2/c7/DGhoMxaLffMcKsVgsV/a1UQwLWh6ik33txOgELr1Cc6IaWD2Arr4u7Hh4B9ZftR4/+87P8IK/fgF+87+/qSy/dOVSPPz7h1HMFfHyN73c1xgIgsAF6y7Akb1HLK/nZnOQJVlTLE5WiUWGZCBLMohQ9bc/HU6jJJYgK3KFpE931hOLfJn//+y9d7jkBnk9fNSn91u2917cdtcFcAeDbQgdg+klkB/5AhhiICGUmBoMCQmdYNNrsKk2xcZgG/eKvevtfW+be6cXdX1/qIykkTTlXu+ulzl+/Oy9dzQaSTMjvXrPe84BFzoxisV+XjMSi+Cxex9Ds97E6eeePmfbo2kadhV3YV1mHdJcgLvIAAMMcNKj5/GIP/7xj/i///u/tr//9Kc/xbe//e052agBesdUhcejh73tA/rF0g/8Bn//3Yc6L2jAVCw2T2DGoiDohSFpNOEqvH8xXxOOr2LRXFeUDSajRLFV3EqCAIZuv1k1b1bSEUOFyPg3WERZdWQpshRhZSz6oV6rIhrzbhLQhDObMT+hF4N//u0vkbn07YiueRZYmnTcZJtqwF1GFt26eQkkws6i38xZDIRRb1aLM54Pu0nt1etPw57tf/WdNq2WS5Ak/XPrl7FoWoCGSWOykdUL6G7sUBNhuifrW0DPJ1QVWzZoOIJNZ52Nh+/9M27+3jfAMAxedNUbHc9ZsGQ59u18Eqqq4qzzLuj6tdZsPB27n3zM8TcnsaiDpQkQBAFVbSdTRxIcaoIM2djmdDaHkocVKs0df2JRAQE6YHjAjrhBCooaBZYL4ZF778L8xcuQGwn+XO4a5CueEAxqkVMQJ6NikZpdI7/aFAGK6UKxGNBApBhAnoPmQ7w3VwD7dbPpY4UKgsANj0rQDNJSNW3UFNdQliJZ6k2LWCQoNDzsx+wo1+pIxn1UWrSz7jk2qQ+0fOcXt+OjF4bw5jNYK6/SJHZmSq7rfLMEABBsc5Y6segDOqQr5gwVgWX9T7usUDUF9gGoszasxKNP7YOieNeUkiRjuqhvW7nWnSNCzGjm+eZBAijK5jHq/dpUrTVQqtSwaFRXLNI0hUvOOQ1/uOdRfOWHv4EgSnj361/seM6qJfOxY+9h8ILYVb6iia2bVltKSBMtYtGmWFREgKRQa/AWseoHXbHokbF4IhSLXH/nERUkhin9czF/2Zq53KQB5giDWuTUh9sKtVuQKjmr53eb5WiiIbUTi5psXIc0XcEoG8NBVI7Cw1MPY1Nuk+M5QaSdRTqajqiE836whBKiTLRrgsAkONxZdV6IrtXvIcuNckciUtEUsCzre+8vazIogoJG6o+TBAmh2U4sclTrWlGv1rtWLJrE3C0/ugVDo0NYtmaZtVwirSvnyh6Zwm7kjGtvN/DaV4rQMxbtZN3qTatxaM+hQMWkmQfYixUqMDvF4rjkP1quKAqmJ6YtxSJBENhy/hY8fNfD+O1Pf4tyoYxXvf1VjucsWLoAE0cmUC1Xu8pXNLH2tLXY+dedjuNpvp9WxqLxFWEoBoqigLQN0ufCOTTlpoPAT+fSbRmLQlNAKBzqWT04WzAc06Zs7gbRRBQP/+VhhCIhrN40d/mK081plIUyNuY2Isoc/z7RAAMMMHfomVj81Kc+hVyu/UI3PDyMT37yk3OyUQP0jnM//Ue85Mv3YKY2B1PtNvx++2TX5BphXBznkozrFyyhb0OF99+WegfFYoimIEhz1+hsiAoYigDXwQp1ZrJlSyIKzcBtNB+iGf+i3E0sMpS/YtFEvVpBNOZtG0GTLWKxXq3gO1/WbcY+882fILrufAAA59rmSsnZ3BlNtDeEciOdm54z05OBj/Ou92vVhs0ozuQxMzXhuXzBtr6ajxWqCda4ASEMgqwbYjEZYcH16EM/NX6s7W9nnns+/vrgPfjlj76FK1/1BsQSzonABYv1m5bs8Kiv0tQLqzeehv27dkASW83dQn5KzwTItM7zZs6nrtJ03nQOxTkIsoq6ochNZYc8rVDp0PG38FK1HhSLBrHYEGVEY3FIooDTtp7X8Xm7JqrIxlgsHzr+Vq9/yxjUIqcg5ihj0QQBbQ6IxT5ICDepRrGdFYuit2IegKFYnANiMdzbNLBpLQrYMhY7QDFvK9zNElXWlXwEAVVrEYsdMxar7VaoXmjyAt5//Y0AgF9++SN4/enG+8boDa+sYYM1U3IdZ1OxiFZNEkgssvq2TLksNkEytv0i2z53Z21YiUZTwK4D7dd3AA7LzlKX9mNRm2LRD5+aeDbW3cgAie7rAhNHJnSidtG8lvrkueedgfse34nPf+tmvPEllzptSgGsWtJ6nQ2rure12rJxFXYfPOZQa5rE4qg9I1MWAJJBvclbxKofRrIeVqi8gEjo+GcB9qNYBAANJNYPEZBVgEj0rzge4OnDoBY59dGvqojS9HsnGf25H/VMLNoUixo0iKpoqegImYCsyg4iI8WlsDaz1rEOMqA12CljsYwyhsJDDkIuCKYNZCeiULLZfXdlhaopoAPcgizForEffopF+3bVqjVEE8HEIkmQUGQFX/rolwAA7//c+5EdyTqGTk1isVL0Hma2oxtiMYggNIlFO1ZvWg1VVbFvxz7P5zRqDfDGsFK3Vqghoxbpl1isCBVUVP/jUcgXoMgKhue1Ilq2PGcLDuw6gO9+4bu48MoLsWCps8ZZuGyh9fP6M5zuFkFYvXk1ivkipidazksmsZgZardCVWQFhK3Hlgvn0JAaFoEP+FuhcmGu67zWuQLLsdb3rhdEY1FIgoSNWzYGfrd6xe7ibhAgcN68Qb7iAAM809EzsXj48GEsW7as7e9LlizB4cOH52SjBugdijEBfqTY/7SQH8xmycXX/wmnf+z3vsuRpmJRnD0ZN9s0A9qwHakI/tvSEBVLDbgwFQbpup6xNAlenrtGZ1NUEGFph42oF/K2fD1J4MEEEIum4JJi/RssgqI6XpOjKYidiMVaFdG4i1g03hSK1HMaAT1Xcdmqdcjkhh1ZdJxxXE0CrFx0TmqRHsegG8WiH0GorxMQFRexuH4zAGD3dm871EJ+CgAwMn+hrxWqCZowJhtZs4DuPMmXjjAI9ahYNBWgdpx13oXgm01IgoCXvv7v2x5fsGQ5AKBc8FZy+mH1htMhSSIO7t1p/a0wPYVkJguKbhWOrPF+qqoC0qVYzMX0G8hyU//+p7NDKExPOZYR+CYo7vgTi4qGQGLejrhhUdyUFEQMtW4nG1RAJxaX56JIH+d8Rcm4I1Zne7J8hmJQi5yCmGPF4pys0y+/eGon8MdPeD8muBokFGs5Ovgi0AqV6c4K1SQv/Qhah8VZhxt4gsTRyVZjpdklsaiZy7iJRUUyXp9oZQaRXRCLtXYrVC+EQxzOWL8SkTCHKy7c1nrAyKTLGc286aJrgIjX3yseHTIWzWPH6gMkRyamXY8T4M0+EkkBrlykMzesBADfnEWTRFsyf7gHxaJei9TqQXU/AZUMAQGuFn44Mq4PCC0abRGLz3v2mVAUFTOlKt735pe1PWfVkvmtV+6hSbRl4yoAwCM2u9iJfBEcyyCVsA3tKCJA0ajVm50Vi9k0JvIuxSJ/ohSL/RGLKkGCJgmUkQC4vy2r0WcKBrXIqQ83OdMtSMMaXNb6IxbdCsReljftVy1iUdHPxzVbnvPpQ6e32ZYGkXadMhZLKCEXznWlQARamZCdiMKZyda9rcRLHYlIVVPBBJxzZU0GCdIihEjCO2NxTWYNzhw+EwzJdFYsGraXFE1h7Wk6Wfvclz63bblkWu+LVNzuCR7ohljMj+d9H6NIqk0tu2zNMjAs45uzaJJoIwtHUO8y79luhdoP9pf3Bz6eH9P3cWh+67N61rPPAkEQmJmawav/4dVtz7ETi1QPA95rNuvOAHY7VDNz0k0shqgQZFl2KBaHIkOoS/U2xWJxuujIyxR4AVyY64vkmw36yVgEdCtUADjtnLnNV9xZ2InR6CgWxHsffhtggAFOLvRMLA4PD+Ovf21v0j/++OPIZrsLax7gmYn903WUmhLGSt6FA2FcROeCjGsEZCN2AxKanpEYQHI2RBkcTeLrrzsL77hwBTiGctiQcjSJucxrFxUVIYZ0qAe9kJ+wE4tCoF2rSRhSrH+jRHIpFilSt6b0gyxJEPhmmxWqKf5kCOCPv/wx/vCLnwAAFi9fhVTGWfyyRhGXSOqT5m7Fohey3SgWA4hFmiQhutSyQ6PzkcpksWfH497rM2w/Fy1b5WuFaq3fuEkjjAYd3wWxmImwXRNbJqYmxhCKOEm45WvWIzcyD5e99CpkbRalJhYs0Zsastxbsbh8zXqQFIXdT7aOTyE/iUzO+Romua165EpaxGJD//5ncsNtVqhCswmKPd4qAQIqiEBi3o54SL8JFWUVkZjeyLST5V4oNyVMVgVsmJ+0rFSPF2Y0fRtr8t/mhN+gFpkDTDwBfDQJHLjr+L+218X16SAW3erBXkH7XFu/+2Lgzv/QCUYAUdI892oAX3IuS7GdFYemFeqz3g2Ekk5bK4rRiblOeODr+r81/+tkCx3OGxRrEUsA0BQlf5LVBs3XClVsZSzalH2drFD1TET/oZSf3HonvvLD3wAANq5agqG0K9/HUBhmU3o906ZY5EsAxUIl7BmLHs28aA7Y+jZgdCMA4KibWATQlFpKTPdnORmPYuWS+b45iyaxuHb5oh4yFjtboc4GRybyIAjCoeBctnAU61Yswqte8BystJGIJlYs7k9Vt2bZAkQjITxkI17H8wXMG8pYBCUBzWGFGg0H1xSjQ2kUylVIUuuz2Gg+czIWAeifJQBUar5Fkg9wcmFQi5z68LPU7ARKNRSLfRKL9SCLdA/YFYsK9PthyhhCJIx7hZrUIhbXZdchTDsHk4MGQjopFjVoSIfSXWUmAt1boU6NtYZVJUHqSrHIMIzvlLqlWDTgRyzmwjm8bv3rkIvk0Kg2AonFIw8cwY+/9mMAwLK1yxBNRNvul4GWbehcWaFaxKLHvnopFhmWwbI1yzoSi4tXLD5uVqj7St7qSRPm+z8yv9WbSGaSWHfGOpx98dlYaQxu2dGLjazjeSM5ZIYybcRiPBkHG9I/p5ZikWShSE7F4lB4CDWp5lA5Z4YyUGTFyt4EdMViKBx6xmQsmp/9086eO2JR1VTsKe3BitQKpLjUnK13gAEGODHomVh89atfjX/6p3/CHXfcAUVRoCgK/vjHP+Jd73oXrrrqqqdjGwc4yaD4SmT0v58MVqgAEOVo1CXvbRUVFaqmq/dIgrCsOYs2pVUny1ITU5M6OdXsQEwBQIiheiMWRT6YmCIAhiICiUVRcROLZKBisVHXC5+Ii1isSRo0TcWx227Af3/0vdhlZPPVKmXEks5mnnns4skUAKBScioWvZAd6kwsmgpDL1Ak0ZaxSBAEVq3fjD07/BSLk4jGE0jnhlCrBL9/jKFYNLOU+EbnSdJsjO3Z2iE/PoYhV64fSZL44o9/i394/797PsdN7HaLUDiCpSvXWu8loCsWs0PDjuVYioSqqlBVFaTLCtUkFmuGVU06OwS+2USz3roh4fmmRcj2CoWJQOnDd5+g9RvbIGLeDtMKVZBVRGMJzFu0pKOt7G4jX/FZK7JWFucAxweDWmQOcOQB/d+dvz5+r2nm4nkRZXNshQqgswVpJzA+bgCy0YSq6df/M6L6v5TcsHL7LHSjWBSruiouuRAgCCe5RDGdiUm+DDz6PQBAodqbysETFOtSLMpzqFhsEYvNAGJRkmQ0mgISUW9C5Tu/uB2ves+ncd9jeh5OsVJDOumypOb038MGmdSWsciXASbqUHPOH87glj16I7hB2uqglZcAqcUAfIhFu2LRgyQ/a8NKf2JxqgCSJLFy8TyUumzmmcRakBXqbHBkfBrzhjJgXLZXf/rOZ/C/H3+X53PCfZJ2FEXhrPUrHTmL4/miI1+RMmswkkat0ezKChUApgol628nTLHI9uloYKhgEsOL+lKdDvD0Y1CLnProV7E4aytUpf+MRVOp5lYs2snKBbH2exw3aafYhsUJgtDJxYDbqlwoB0nSr//1YvC1zFRrsWTw+TE/0RpyksQuiEVVAc3SjmxBx+Oa4siH9CMWAf14kASpKxY9bNk1TcP076bx6w/9Gk8+9CRUVUWtXEMi6R0nY850dWWF6jXk5EJ+PI/KYxUc+dKRtscool2xCOh2qH7EoqnOW7xicaAVanhzGAKjHzPTCpXvc8hpX3kfEqTP8QIwNT6FUCSEmKu+++SNn8SHv/hhz+fYVYS9gCAIPWfx8ZaT08zUDDJ223fj4xemw7pi0dany4VzUDTFQeBncvpzizYHBaEpgAtxxz9jkWUcaspuEY1HwYU4S407F5ioT6Au1bE5txmRweDUAAM849GzxOK6667DwYMHcckll4A2rPJUVcXrX//6QZbAAAAA4SQhFmMcjWLNu2llkp9u0m7GRlwNxbybD3JUJ12+es8x3He0iQef2AkghkNPPQZsXRW4TeEuiMXpyXHAcHAQ+SaYDsQIQ5Eg/VQVMDIWbS9JQIPA+9+smJagbivUSq2J/M3Xo7n3Abz92o/hZYYlZ7VcRNxQJpqkG2dss5n92A2xmBsZBZXQbS5kH/J6Oj8JZDwfAkMRbVaoALBq/Wn47U0/8HxOcTqPTG4Y0XgCjQ7EMEVoIAAQxj52Y4Wa8/kMBWFq4hhyI/PhNjX1UiqamI0v/eqNp2H39pZicSY/iSUrnMHcLE1CMFSu7gnMTJQFSQB1Q2WcyunvYXEmj3A0CkVRIImCbiHbR5RAddnFENPLcfOjR/HC0+aD7vJmgTDUNd0qRiMMBQI6sfisS57flVp510QVmSiLlSMDi7LjjUEt0ge23wz89I3AtQeBSG95e3MGk6jzIvw8GiCzRk8ZRV4j330QArxrEp3mQEhdWKHSnEXejecLSFnbwABiw3v7TNzzP9aPf90/iQt73GQAgGQ7VgSpk2fGJazBi7olawdoBhHSplhUpVbGoqoBIDpaoVYMS1C3FapgDLHceNMfcN27Xod/fcdVIAgChXIVmWTrXCyqJFhX1tO0u5nHlwA2bCnDAD1j8Y6DCoiPVXDXjd413dHJacDVk62JGhQVxro0kNBgr0jO2rASv/7TA0ZWsfM6OjFdxHA2iUwq3oNi0bBC7VMl0AmHx6ewaJ5HdpxB2M01tmxchZtvu9f6XVcsts5TDKEfTY2gUG8KXVih6ts5OV2yVKgnSrEY4vojFrPpFIAGyNhoV8T+AMcfg1rk1IeKPq1QVf3+w4vc6QZ2BWKvy/spFutS6/qSYNvJHJpwnmfc2XAUQUEh/fdnODqMsX36gPTE/gkEFSOmcipEB5/L7XafIi+2lJM+UDSdWPQjdBVVaVuHGDDkJEsy+CbflrEoyzLGvj2G4p+K2PbqbfjYpz4GkiRRKVXaSDA3ym5bdg9khnwaHjbkJ/I4/F/elssUSXmqbVdvWo1bfnyLbsfpuh4WpgrgQhyG5w8HKhZTL03hUOUQAIALcSAIoi8rVFERcax2DCuZlaiI3n2YqWNTGJ4/3NbrSLodKuYIqzevxk033ARN0yy71azLIp8ECYZkoMiKg8TMhfVaoyy03t+0UccUp4tYunopgBOsWOzDfnXbhduQG82B6dd9wQO7i7tBERTOm3/enK1zgAEGOHHoeZyDZVn8+Mc/xs6dO/H9738fN910E/bt24cbbrgBbL8TmQOc1GiKvRXEvKxahcwxH9vUTnjgwAyma51ZCMWjKDYRD9GtCXL3Nkr6TQLnyr+zKxajnLdiUYka5Jei4i/7pnFQ1IvHJjp//jlaz0sxEfJQRdoVi6IodCRGGIoEyfi/tqSoIG0NSdWwy/Sb5jItQd1WqHtv+Rr4Q4/jjNf9K17+hrdbBV61UkbcyFI0VWlh1351ZYU6NAo6phdufh+5malx3+fTFAnJi1jcsBmF6SlMe9iozuQnkckNIxZPoF4LzlgE9M+LRnZPLPqR00HIjx9DbrQ/O7F+sHrDaTi4d6dFNhfyk8i4SEyOIq39dSsWKZJAKsygLuhftnRWL6qLhh2qyOsEAhFAfgdBI2kQqoRbnpjAR36xHXsmO79PAIAeFYskSSDCURBlBS+++q14yWvf2vE5O418xcxxzlccYFCL9IXHdZsm7PndiduGQGLxabBClQWgUdAtXwsHe39+P0MbXlaonaaSxbqu5jSaXY5sOJINtEKlpRpw75dQI2Y54FAZc/x6ZNymWBRlgOqC2DDJRy/FIkkBcFqhNnnBtxYp1/RrjptYvP6GnwEAPvz/XoMP/cOrrVqkWK4hbcvja6hUGxnTZoXaLAF02KFYdGT6sd5T1Ec8co3e9iseX35QtFRmlsLOwFkbVqLe4LH7YHuOsmn7mYpHuyYWTeXd02eFOu3IV3y6sWXjKhw4OoEZg/w1j4kJhtSPp6jqOZ2xaAfFYk5v5k3O6N8lTdN0xeIzyAp1kWn9Fu/s6DHAicGgFjk+uOZP1+DW/beekNfu2wrVUCxKWn+qpKbUo2LRg1h0KxarYusa6DWU6lYDFvLOwWCKoHytUAEgyXZP9pgEB0cFn5PdVqid0NEKVWsnFv0UiwBQN2oRtxXqL274BYp3FTH/TfNxyT9cYtUy1XIViZR/fwrojlikmc41l5k/6IUgxaKqqNi3o92C1CTRookoGrUGFMW/B6iSKlRNBUEQCEfDfVmhHqocgqqpWB5e7rvM1PgUhucN+z7uh3iyv5p4zeY1qJQqmDii940KU4U2YpGlWT3DUnZaoWbD+nL271k61yIWTQhNPWNR6CY/fQ7BsqyVbdoLLnrhRXjLP79lTrdlV2EX5sfmYyTqPzg/wAADPHPQn04cwOrVq/GKV7wCV155JZYsWTKX2zTASYZey2leVqGoGm55YhzP+vQf8dsn/ckgP1z3m6ew5eO3dVxODqUAeNuzxjkask+fUpC9FYsFI3MP8Cb97HjOsgSufd5arJD1iS2tU2YRdItQu2LRq2eZn7RnLPIdiRGWIkEyPupKw/IVNtsDSdQLP5bznhCsVw1i0VAsKrL+3PizX4fRq/8D89ZtsZbd8fjDKM3kEU+mIKuqdZMSchG23RCLTBc34IWpSd/HGIqAJHtM5q3fDADYs73dDrUwrZNo0VgCtUrnIj/C0lCNpiHf7DxJmgj13kzKT4xhaKQ9u6gTvnbTH/HJr/2w5+et3nAaFFnG/t1P6XZyhorTDo6mLGLRKzMiE+NQFxWoqoZ0tqVYBACeN45TF/lcfmCqY/jy1WeCZUh85ne7cONfDnS0XCYMpVG3xCIARFkavN9Jw4VKU8JEhcf6eYnjnq84QAuDWuQZBtPuRva4mX5arFAFYM8f9J/v+ULn5d033B0m6T3hpVjsdCMvVAGKs0ipcXszj2KAgAnjoYk/AiCwm1ztu0xXKB91/Oq0QpW6UiyaSnG4rZYUESD0ESfTClUFCVGSEQ55X/vLhqVrMqZ/ZmSjbnvna64EAFx09mZr2Yee2I1jUzMOxWJToa3jacLbCjUMOOqyzrWc/diYTee7Dys4VNYsMpN2rebM9XoOkJcdqmn7mYxHUa03A5t5JiiKQjjEoe5BLPbbCLfjyHgei+f1TizuvOXr+MWXve3JgrBlo64ONY/PeL6AeTb7MdpQLJpZltEOlqbDNsUiAIiSDFVVT4wVap+KRZCUfg6KDRpvJzsGtcjTiz8c+gOuvevavm1JZwOlz9qE0PSLgEny9QKapNHsyXHBZYXqo1isSsHDmW5i0czcM0GR/sRiVIt2VB/aYaq1OhGL0zbr8a6IRVXxVVZpmuZJLPIBluL1ipNYNO1hL7/6ciz/wHJkLshY1qp7t+/F5LFJxFPBpFY3VqjdwK7mdJOjZsai2xJ22ZploBkau57YBTdM289YXB+wagRY66tUS0gQCoccVqgUbfZKggef9pf3gyVZLIss810mP5bH8ILeicWv3/J1fPhLvdciqzfptbSZs9hmhQqAIzkokgJVUz0Vi3ZlcCQWAcuxDpKe53XFoqAeZ2IxxB53+1UvKKqCPaU9WJlaOchXHGCAUwRddUOvueYaXHfddYhGo7jmmmsCl/385z8/Jxs2wDMXgqRAVjUcmNYvqtvHKnj+xt4UWK8/dwmqTQk3PzbWeWEfJML+TbCWYtHVdMpPAsmNAIBQF4RELET3RFxwNAmqQ9MqPzEGc85NEngwVPDyDEWApFlPAtjMHCRsN0WyqBcx4eElUOLtzYp6TfeFj8biuPN3v8J3vvRZfPbGn4GIZsBGM6CMm5VCfgrves0VAIB4Mu1QtrpJ2XIXVqjdYCY/CXNuW1WdxRxNEp4WqkPzFiCZzmDPjsdx7kXPczxWyE9h1frNiMYTaDbqHZt5YYaCrBJgGNZTsejepl5z90RRQHEmrysW/aMNPLF8zXosX7O+tycBWLZ6HWiawa4nHsWCxUshSWKb7SrHkmjOeCsWASAbZVHlZUiqikQqA5KiLGLRst2lZze5/exVOfxu9fm4/ve78N37DuGJY2VcvW0xzlrqbRVjZixyPXw/YxwNSVahqlrH9273lJGvuHKQr3i8MKhFTkLsvQ2oTgJnXN3d8mZOmNeU7smQsSjzziGIbgYi3NvdlrHIBRKDAHRikeYsS87xfBEwBVlUsGIxVt0PrH4BxCMSMBtXzIpTSWdX5TUFyXksmm6zbnNbfY6XqisWBbFFOJrX67AP6WK3Qr31zgfx7k9+Hbfd+EmnohCAoijY+op3AwCuvHBbaxMVymFxCnhZoRrEYpAEwwNHJ1r7X6s3EY/ZlI0+isVUIoYVi+fh4e178doXXex4bDxfwOY1S5E0MpzMfe+EWCTkqVhs26YeoWmarljsg1hcs3wh1ixf2PPzViyeh2Q8igef3I0Lt23CdLHiUCzSxvFsivq/nTIWOZZBKhHD5EwJANAwGpzPJMUi2AQQn+ernB3gxGBQi5w4eJFCTzf6sQ60o5+MRYZkwPdQv6ia6kksWopFDytUL7QpFqcKgO2WkCIoX1lCTI11JAntUDQFLKkrv4IwNTYFnKH/LPHBpAipkZYVqt9rAs4BIk3TAq1QG8b1OBaP4bH7HsPn3v85fOpbn0I4GkZklX5uNvfhbS94GwBg1YbgaJw5IxZt+ZOVYgVDtms2RerEIul6w1iOxbI1yzxzFk11nkmiBtmhapRO0lKgdMWizQo1kU6gmC+iWqoiFPYnm/eW9mJBbAGidHt+pYmpsSmcc/E5vo/7YXTRKEYX9a72zwxlMDx/GDsf34kLrrhAPyYjTsUiQzEQm/pnxt73idARsBTr+J4RBIH0UNpSLCqKAkmQwIU5FJXOg/dziX4zFucaR2tHISgCzhg6o6dhhAEGGODkRVfE4qOPPmoFMT/66KO+y80m52uAUweirLasrrpZ3sO+ckUuhgXpMLaPVzzViAA6KpYSASoi87kRFwFWyE8BhosHS5Mg0LtiMwgcTQaSEJIooDQzbRGLosB3tkKlSZA06zkPKZrqKzuxKOgN3cjWl6KeHEVDlBGxFeCmFepvfvIdfPuLn8WFL/g7sOFWU4My7KhKhdYEYSyRtDL2CE0BY2yzOcnWTcZiJ/DNBiRbTlW9WkE8mbJ+ZyjS87NEEARWrT/NW7GYn0R2aAQxQ53Z6GCHGmYpSIqKUCTqSSy6t6kX0hkApid0de/QyPyOxOK6085Cdmj29lgsy2H5mvXYvf1xnLZN97l3W6GGaArlAMXiUJzDRIWHrGjgaAqpTM6yFTazGVWCnvX3KcLR+PALN+DFpy/Av9z8BL5y535s2jeN15+7FGmXHSnpyvvsBrEQDVFWoWgayA4K5F0TVaQjDFaPBtvdDDB3GNQiJyG+9zL939XPB6LZ4GWBluWkl2Lx6cga6ZlYFK1cQQBtxJQnykecv/etWGSt4zOeL+AFdzXwvHUpvGdNLJBYBAAs3AaMPdB5W4NQbhGLmqbh6OQMBFmvDRqC1FXGG+k3QKLoGYv2DG7zRz8FmWmF+pPf3oUP//f3cPn5W5CKRzFVcB5fOwlnt0Jt2qxQzVqkzQpVqADhVE+Wt6qqGorFiLVOL2KRJNqvdmdtWImHt+9p+/t4voDLnn0mUkaGUzlAJWBHLBJ2ZCxGIyHUG3z7NvWImVIFTV7AotH2jEU3XnjR2V3btwaBJEls2bgKDz25xyIDHRmLpF7f1Y3BwE7EIgCM5tKYMJp5DUPNcUIUi/0Si2e+FigdAbhBnXEyYVCL/G1htjlostZq5H/0no/iX87+F7Ad8psZkgGv9Fa/2MkMt2IRmk4KdiQWCQ/FoptYdJVFMqXvX0SJdNwvN1iK7UgU58fzSJrNGeiZh36gQFmKRbdSD4BFqlC2nVBkBarqr4StVfUb8ofufgjf+vy3sGnrJiTSCdTE1o06TdCO4WRfxaKxSd1YoXYDu01suVh2EouGYtELqzetxlOPPdX295mpGSxeudjKiKxVa2ap0waVUq31u61QE0mdWHRvk+P5moqD5YM4d/65iDDeLyIKIgr5Aobmdx5yev4rn4+nHm3fp36w5rQ12P3EbjRqDfBNvt0KlWQhNfVrAOFyvMhwGTTkhpXRCOhkpalYNEnsE5WxeDIoFncXd4MhGWydt/VEb8oAAwwwR+iKWLzjjjs8fx7g5MVf9k7jLd9+EDs+9vye1DST1fZmn9ilNaAJQVY9lWN+qPKyr0KICKAiHjtSClxvPECxaFqhhlhndVycngJWGq9NEOAY0lI3zgYm0erOHnTDnvEI6IpFu3Wq6qGoYykSBO39VbaINlsRYVqhkmwEIEhUeCexWCkWQBAkvv3Fz+K1/3ANXvf/3odio/V8c3NMAhIAEskU6oYSgdQ0a5tNtVq1CyvUTpiedFrqVkpFB4lHUyRkRfX8tKzasBm/u/lHjr81G3U06jWkc8OW7at9n7wQYSnIqopUNoeJo+1h6eY2sUIJIh31zen0Q35Cb+wOjcwD9gXfdPz3D37T07qDsHrjaXjy4ft1Yh1AZqhlOUJoChiaRNOwfiXp9n0ajnOoC7L1vU9nh2xWqAaxSFKgSRVz8HXC5kUp/Pydz8I37z6A//7jXnzo50/iJWcswCVrW9vNhPQGLeuxvX6IcTSKdVG36uvwNDNfMR2ZuyDzAYIxqEVOYjRmuiMWTXgRi1J3ZEpPkMXebJjdSsouyDTMuKwtm65BGprrImPRUCwak88T00X8dq+MPJfCe0JJz+eP0DpJNpPchGx6CYDZEostgrRYaaDJC/i7H0l4y5kMmoKk590ajwuiAk96xu9YKxJAkg7FoqiYikVvoqdgkIAf+q/v4D1veDE+e+1bQFFUG7FoJ+GcVqik9f41mvr72m6FWjGUot0PoOQLZUi2xuZMqYKlC22dV4OM1hV2zrr2rA0rcd2Xf+RwN1BVFRPTRYzm0laepEmqdsJINoX9R1v50dlU3CAWXdvUI8x8zW4Ui7/8ykf6fh03tmxche//6g7LCtiRsWhYoTZEk1jsPOU+kk1h0iQWjc9AJHT8p+P7ViwyEWBozdxuzACzxqAWOXnxdGSWzVaxaJJ8T+SfwM/2/AwNuYH/OP8/Ap/DkIyDdGDJzoRdXbYRi4YyjyZoq43CUqxD1ej5uq5reFvGItmuWOQ5nQDl5N6HNjoRi7IkozhddBCLdstPoel8v0noikWKoTzbR+ZxUW2DyEFqRQCoGrXI/37mf3HFVVfg3Z94N2iGRm3KRixStMM21C/fz7QG7VaxGAkYEBJ4wbEe9zotYrG9FMHqTatx609uhcAL4Gwq/sJUAZnhjEOxGPYZ4tFIzSIW07k0xg+3+jSJdMJzm+yYqE+AV3hsym0CXfOutU0b3G4yFt9//fs7LtMt1mxagx9+5YeYmdTdKdxWqCzFWp89d054JqQTi4qmWER9OtdSLJqfAS7Ezfrc0itOFsXirsIuLIwvxFD4+OV4DzDAAE8vjq+XxADHDf/x253gJRX3HfCxq+oBforBffkafrd9ou3vgmEl2At4uXcLtPv3B6vg4lyQYlEFRRLgXGrAmWlnhl8nIjAIqmLLNTQaaBwT/JUrTDqtXyWRd0y8NmrtZBNLk1aenBuCweJocqspaVqhkoYlnZvPPXJwHzRNxQc+8yW84R+vBUmSmKm3Cp8Ype+LmcUIALFECnVB318CKkhjmxt1vRgvF73fq8PUfCTf9u2uPi/5iXHAOKaq2ECl7CQr/axQAWDV+s0o5Cd1q1sDxWmd+NIzFvUbgFoluNCPsjQkWcMZ55yPB+663VJBJFJ6wVk1tinCTwOVCSzO+Ft7eGFqQn//cyO9WQfPFqs3nI7D+/dg7PABAHBYoZKqAoogwFuKxfbv1XAihJogQzZu1HRiUb8ZMMllFRR6FHAGgqZIvP2CFbj1Xc/G2csy+NGDR/CJW55CQdQ/e0xYP/a9KBbjIRqCoisWg1DlJYyXeaybl+grR3OAAZ6x+GhS/3+2GW5ezT+pR3VhN+hVsSgZE9eZFcDIBp106oSZfc7f26xQWRCdiEWhZigWfTIWlfZGwKhBLFbY0UCrRKmLvD4AQKk1LHNkSr+W7ZpRce0f9PdKVlvFwrFp72tlJ8UiL9mGnExi0SdjcfdBfdDmqx/9R3z+g3/vqZYHnCScqVhUNaAhU5Z6sFLXG34OK1RNMyxoI22KRcrlumDHUVveE+ChgvSxQgWAszasQq3RtPYNAArlKmRZ0TMWjSZiqdIdsfi8Z52J3939iJU/mU0lrHXOBkcMe7V+MhZngy0bVuHoxDQee2o/AHhaodYMd4xuFIsjuVTLCvUEKRYJggDDDHKYBxjgeKAszI0SzI7ZqooUTc9iM0lPqZMDAQziwlYnsRTbcd/sakQV+v2Y3QaTozg0ZH9ikQDRZptZmHIRix6KRc04NxMdnF5UD1chhmSsfEKg/Zpbmiq1/c1OLM6MuTIgQUHR/DMWTVJFU1rr7GSvOnZIvzd/2/vfhvd+5r2gPc7nNEE7bEP9FIumrWqz3oQodP5cuXMd7Zh21SJtxCJJWUSqG2s2rYGqqNj3VKt+FQURlVLFYYVaK/vbJ5lWqACw5fwtePTeRy3VokksVt31kQ37y/tBgMCZw2f6LjM1rg8895OxOBus2bwG9Wodj9//OAC0KRYZ0tsKFQCy4SyaUtNB4KVzaRTzel1tEpKhcOi4E4sng2JRVmXsL+/HqtQqpEPpzk8YYIABnhHo6k7npS99adcrvOmmm/remAHmHvbcu25hl+4H4WcPH8V37zuErUszyERbjSFR6U2xCOgEWKQ39wzcu3868PF4QMNfkBWEaBKUK7+wkJ+CPb1Hzwrs7QJsEm6l6XEAGxyPhTs0FwpTTqJWliSHtUajUmp7DkuRIGnvfRWN52qqDPPrbhKLBMNCI2CRgBPHDmNodAGisThGFyzGJVe+zFrPTK1V+LQUi61iMZ5MYcb4rJGaaikWm/UaciPzUJzJezboDux+FucAAQAASURBVNCL9X9n6lgx1DryikfW1vTkGFShjuIdN6L62C2oXHFG23HgZcVzQnH1hs0AgD3bH0f2Qj1nsWCQjNncMChD8dlRschRmK4JOPs5l+KXP/gm9u/agRVrNyCeTKFSKrSRnb26IOUnxpBIZcCFOzfMesWRQgPf/MsBXPPcVUi4GrmrN5wGVVXxwJ23I5ZIguVaE/2kJoMkYFm/kl5WqDEOvKSiISnIAkhnczh2+CCAlhWqAhIMSaA5p+bCwOJMFN9+8zb8/NFj+MQtT+FnM1Ektr0UNK/fbPZCLCZCjG6F2uH8tceYUj1vxSBf8XhiUIucRGgWgYh3vmlXkEXAbT31tCgWmwDnY0nlhXoeyK4A2KhOEHWjZJt2WVs2XQp9OtRuZXrwbv3f5CL9X7Gm2x16EossoEodWnbtkGUFNICpUh0LOiyrKAqoylHr96MGsUjTlEVaiSpgVhrFmneYoy+xqMoAQUKw1aSmYjES4hw5gUfG8xjNpRGLhJFNxfH2qy4P3Ha7DWcmpdcR/3YPh41rR3G+QfJV600sGMni2OQMGk1ed/ZSREBTWrmfNiwYyeLwWB7FSntTTbdBbaFNBWl8ZryIxTPXrwAAPLx9L9Yu19/78amWOs+uWMz4KB7suPKibfj3L/8A9zy6A+dv3WQ9p43s7BFHxvNgGBrD2dSs1tMrtmzUc6l+dcf9oCgSQ5mWSoU2FItVQT+u0a4Ui2ls36sT5i3F4vElFjmWGVhinmIY1CJ/W+iGCAyCDNmX4PEDQzJtBMDR2lGfpXU0pAYIlYBGapZK0m5tylFcYG4jRVJtJMnM1IyDbAzKWOwEodE+UMZSrHOAutpwWG8WJvXrI2Vzn7ErDJsVZy1CgYKsyoj4DFtZxKJsIxYF7/d3ZnIGsWQMbIgFzdB4zTtf47drYEjGskwF/BWLjVoDudEcpiemu1ItRuNRiBDRrLbXXHlbDjbQTiySBAkNmkX82rFs7TLQDI3dT+zG+jPWA4ClqMsOZxGL67VUvVrHEHysTG1WqOdeci6+ct1X8OhfHsV5zz3PUloGWb7uK+3DcGQY82LzcBjtLlAAkB/T93F4/vElFldvXg0AuPe2ewG0E4ssxUKoGP00Vx8gF85hT2mPg1jMDGXaFYthDqJ8/BWLJ5pYPFg5CEmVcNbIWT1bJw8wwAAnL7oqDZLJpPV/IpHA7bffjoceesh6/OGHH8btt9+OZDIZsJYBesFkhbfUP8cbktJd41/VNFR5GRNlZ5HaTWPeDaFHu1VZUfHo4VL7Ntlab/HAjEUVHE2BshWziqJY9o0m+lEsakaRJfHtxXuIdhYftbqzkVrIj1u2nCZE23oa1fYCjaFJED72Y9ZxVeyKRX19BKM3V0iCwCP33ol3vOxS/OzbX0W9VkU8lXKsZ6befjNgVyzGEyk0HIpFY5laDaMLFkOR5cD8Qsn1WVfE9tcz1XyVB34GTWyi4rJXZSgCss9nd3jeQiRSGezZ0cpZNNWpmaGRlhVqNbgZF2VpiIqKdWeejXAkivv+/AcAQDyVAUCgWi4FPr8TpsaPYWh0/qzW4Yf7DxRwtNjE9mPt+7h05RqwXAiP3HcXMjln8U5qCkiSQLNRB0EQnpY1Q3H9s1Ru6AVyOjuEkssKVQE5p4pFOwiCwEvOXIjbrrkAm9IK0he9GXRSz5/sxQo1HmLASwo6nb52TVSRCjNYO2+Qe3Q8MahFTiGYpI4dsjdZNSt4Wa4GoTLWeRk3pnc7f+fLkOxzezQLwj5QoWnA7dfpP49s0v8V67oykTQzFm3XN+PGm+29HNFX3SGPGgCmZ4pApWVjdXSqBIoiMZprTRMLtkZc0aPJBQA0YzQJNr7M+YCVsdhqtJjrC9uInnse2YGzXvZP+NiXvo9yrY50F+Sa3Qo1ndCXf2iKRomdZ5F8lVoDyxbq1wRLtWiqU5n2QZ5EVG+K1ert+3lkfNqhQGtXLOqPeRGL6WQcyxeN4uEnW2S0+V47iMUuMwvP2rASI7k0fv0n3QbXtAedrWLx8HgeC0dybU3mpxtLFgwjl07gtnsfw0g27Xh9xsj3rlqKxS6IxZzNCvUEKRZD3KBxdqphUIs887C3uBebvr2pL0XjXFih+mXd+YGl2Dal5NFqMLFYl+ogFMJ6TQAONSBHcYFWsRRBtakOZ6acikCapEFQ/Q1KeCkWWZJ1bGNpuuR4vDipn7/tCkS+yVtkZ9M15EQSuhUqzdKeA81eVqiy0O4IsfuJ3XjHC9+Br33ya6hX64glYm3L2EGTTsViIuV9f9ioNTBvke5KVHEPJXmANa4fkthOBtnzFb3WZx1Xj7eL5VgsW7MMu59o1a/me50ZzoANsWA4xrFPbqhki1hctHwRFi5biHtv14k489odpFjcV9qHpYmlSLD+99KTY5NIpBIIhXu3MJdVGVWxv1ookUpg/pL5ePjuhxGKhNosaRmSsYhyd500HBlGXaw7slXTuTRKM7r69kQqFgn6xA857S7uBkdxOHPEX6k6wAADPPPQ1R3jjTfeaP0/MjKCV77ylThw4ABuuukm3HTTTdi/fz+uuuoq5HK5p3t7/2Zw9idvx6u/fp/v408cLXfMGOwXckCAtRcOzTiLDlHpnVis+0yL+eHgTMOTjKwqeuEZImTEAqxQFVUDx5CO/MJKqdCWYRjpt5MHQBTaiUV7liEAFKadRGZhcryNWBKEVtFc9yAWOYoE4WFPCbSIRdU2EaVKxoSV0ay87ebv4YNvfzXWn3YWrnjF61CvVhCNOpt5dsWitS0uxWLdUCIQhmJRFAVIooDRhfpUvpsItKObj9z05Biyw6PW7+7cRpoifZWyBEFg1frN2L29RSwW8lNgWA6xRNJGLAbfcEY5CpKsgqIYbHnWhbjfIBabz/8olrz/V76Wr90iP/H0EYtPjun7Nllt/1xSNI2V6zZCFHhkbDaoAEBoMkiCAN9sgCS9vw+5mEEsNvUiOpVrZSyaVqiSRoBxTfUVZ/L47c0/nDUhayIVYXHBIv1zTXL6TQDHdF9EJ0I0hC4GI3ZOVLEsF0W6V5n1ALPCoBY5hSALgFuZfjJYoVYnOy/jhtsKlS9Dgm3Yh3IRGftuB44Y9Z15ejKJRYIEL4goVWotQsKwYw2YlQqEnczzQ378sK6aHN4ALD4XR2ZqmD+cBWVrmNgNMAo+xKKVJedWs6p6xiIvSpaS36xPwsZ+fv9Xd+CiN3wA65Yvwnve8BKUq3WL4AuC3Qo1k/Ru/unEon5ts4hAs8FKt79GkMLs6OQ0Fo60zjH+ikXv55+1YSUe3t7K5TTVqaNDaYQ4FhzLdG2FSpIkrrhgq0Usmtvdtk094sh4HotGj/95lCAIbNm4CrwgYt6Q0yLLzFis8no+ZTeE3Ug2hZmSbjUbpFgslKr49s23WSTkXKLvfMUBTloMapFnHm7aqytHb9rTu4J0tgof0wq1F7BkO7F4rHbMZ2kdTbkJUtGvPxaxaPMtDdGhQGKRJmnHtU/TtPaMRaL/vogXsUiTtGNgtTzjvA8vTBQQiUUcVugCL7SIxaq3YpFhOlihBigWH7n9Ebzr5e9CbiSHq995NeqVemDWIaATwfVKZyvUeq2O0UV6L6Nc6ExyB9Ui+fG8g8B0qwPN98pLsQgAqzeudhCLpu2tqc6LxWOoebg2mLArFgHgnEvOwX233+cgdP3I07JQRlEoYnVmNaKMf2xMfiyPofn9WbLfO3YvPnn/JzvmivphzeY1EAWxTa0I6J9bkyB0KxaHI8OoS3WH0jmdS0MSJdTKNfB8S7HoVkPXKjX84aY/tJHGcwGWYx1k54nCrsIuLI4vRi48uD4OMMCphJ5HUW+44Qa8733vc1zgKYrCNddcgxtuuGFON+5vHUdL/tP7L/zi3Xjxl/7Sl9VpJ3SrWDRxqOC8YEt9KBbHK701/3ZPVhHyyCssqkZuINSOFogsTVo2oIBONLkxG2JR8iIWXWRnueC01CpMjWPIla9nVyzytVLbOlmatCbk3RBN8tVGLJpWqBpBoXDv/+Ebn/oXvOiqN+K6L30X0XgC9VoF0XgCRwoNXP/7XRBlBdM1AVHa+Z7aFYuRWNyWsaiBIgg063oxOrpAtzutlNpJNxr6c7rJ2JyecB4bN1HJUmSb8tGOVRs2OxSLhfwkMrkhEAQBluXAsFxHK9QopysWVU3Dtgsuxc6/PuJQuU7PzC7TND8xhuF5nUzreke5KeFoUT+fzNS8bypXbzgNgDNfEdAzFk0rVC8bVADIxfUGX9W4OUtnh9Bs1NFs1CE0myAIPf/S/Eoe3r0dH3vXW/Dqi8/A5z70Htz8vW/Meh/doFj9XMD5bLMXEmEGghR8/qoJMsZKTaybl0AyPGgYnigMapGTDD02zTwVi5K95pkjxwapR8VidbzzMnbIAlBxNfuECkQHsdgiQAhAVytmVgCsrfEk1XUCkiAxYVOw2Z8f7ptY7Hx9rYwb5OiSc4FnvQtHZxoO8gxwKhZLNe+ajfWze1dMK1QZZulmZkCHOAYT00W89p8/i9dceSH+cMMnkE0nUK42kIx3QSzaJuq9FI6iKIEXRCxboDfz2kg3D8ViEI5OTGPhaKvR1ItiEdBzFh/ZsQ+qMVE1ni8glYhZRFkyHnWQpZ1wxQVb8dS+I9h3uPXZnbUV6sQ0FvfZzJstTDtUe74i0MpYLDclxCKhruxFR7JpaJqGfKGMhlFL24nFvzyyA6++5jOYf/5r8cYPfh6f/sZP52o3LIQGxOIpjUEtcurDz67w1gO34sN/+XDH5/etWHSpmY5UjgQ+pyE3HMQiTdIOBWKICgVboRKUw/a0Vq61kW6Uz4BpN/DMWKQYx2uWp53kWHGyiCFX1q/IixZh6kcsUj6OU2bUimofTrcd5vwteXz5PV/G2Redjf/8yX8iO5JFvVq3Mgf94FYs+lqhVm2KxS6sUIOQn8gjN69Vp3llLAKARvoQi5tW4+Dug1Zm5czUDEiKRNKwII/Gox0Vi/bomnMuPgfTk9PYaxuc8tvHJ6efBABsG9kWeC2fGpvCyPwR38eD0JSbqEk17C/v7+v5azavAdBugwroikXesPBvy1gMZaFCRUVs7XvaGJQqThcdikVzaCF/LI9PvvuTePmWl+OT7/4kbvz8jX1tcxAYjpm1rfNsISoiDlUOYXV6NZLcQNE/wACnEnomFmVZxs6dO9v+vnPnTusmeYDjh/Hy3FuH9WrBenjGSSyKiha4Dq/yZqzUG7G4a7KKxZngIq9T04GjSUc+mpm5Z4dbYdgLvIjFsIsMbSMW8xPIjbgVi6311Cvt020sTQI+5EmLWGwVEqaSUqNZqHwdb3v/dXjnv3yilTNYrSISi+OnDx/FzokqnhqvYqYuIu5SftlJOJIkUTOJRcM6s1FzEotlD2KR0/Rq3k2QKx6Fz9TEmEPN5yYqGYoIzPZcvX4zZqYmMGO8z4XpKYc6LxZPdGeFKqtQNeDs51wKTdPw4F1/tB6vzVJ5l3ft41zhqXH9vVqYDqPYkDwJWJNYzAzZrFCZEFQQumKx0fC9ocxEWBAAGoZFmWmnWpqZhsA3wYXCEGUNDKV//u/93c0YO3wAb//nj+LsCy51HMO5AmVY/bI9+K/GQjpxHERQ75msQgNw3orMIF/xBGJQi5xkKB7obXlF9FAs2moJj5zdvhAwne+JWo+KxeoE2qoat2KRbhEZZ2abwPhjwLILWmpFTdVJVSOf0FSwWYqtWWaQiF0oFpv5Q/oPoRQAQ5U36mym8HYrVJ+MRV91liZbVqjmvJa5vkgoBEVR8On3vgk3fPI9YI11lGt1yxo0CHYr1Hi0nSSsGnampmJx2t3oCsjg9Dp2upqv1ejsJWMR0BWLtUYTuw/qhPTEdNGhzkvFo4596oTnnncGGIbGbwzVIjB7K1T3Ph5P+BOL+nm93JQQ7dIWbdQ4rhPTRUuxGA5x1rX7P/73//D4rv34xLvfgFe+4Dm49c6HfNfVLwaKxVMbg1rk1IefYvHaO6/FzXtv7kj49Uss2kkADRqOVINfpyk1QagtK1SGZJzEIh1qU0HaQRGUo3fitkEFnJmNvcKTWCQZp2Kx0JlYFHihRSzW2olF0wrVq+Ekafox1aTWg4zSOkcrNQVXvO0KfPjLH7bsN/2sUO3HkiVZZ8aih2JRlmQIvIDhBcMgSTIwf9AN1cOlKz+Wx/C81j27V8YiAE8rVEDPEVRkBfue0gfLClMFZHIZiyiLJYIViyAAXmn1qDZv24xILGLZoQLeikVREXHrgVuxJr0GK9Mr/dcPYGp8qm/FoolDlUN9Pc8kFjPD7XnyNElDaAj6QInr+GbDeu1cEVr7njHqmUK+4MxYNIYHtt+zHTse2YHX/dPr8PxXPh8P3PGAp5XvbMBy7cMKxxv7y/uhaAq2jm4FQw5qowEGOJXQM7H4pje9CW95y1vw+c9/HnfffTfuvvtufO5zn8Nb3/pWvOlNb3o6tnGAAExVe2yadYEgcsYLY6Vm28Wv7qGkNNU9Vb69QB8r9kaQ7p2qYWG6c2MhqO/P0iQogsC/v/st+Om3vmJl7tkRnpUVavs+0ZSbWHRbobYTS6aVJAA0qqW2dXI0CcJHsWhajSm2nKmZyXEwDAuQNHIXvh4veOUbHc9p1KuIxhPgDZWDIKsoNkTEXb1NNwlnKRY1FRRBWFapowtNxWK7xRSn6dtlkpK0YV3y4O9vblt2enLcQbpWyh5WqB0UiwCwZ/vjAHSFqp1YjMYTqHWwQo3ZFIvp3BDWbjrDylkEgGq5fR+7RaNeQ61SxvDo3CsWnxwrYzjO4awlaczUROu9tWP1xtMBAJlc65gQbAQqyYAkiEDFIk2RSEYY1EX9fUxn9ZuA4kwePN9EKByGqKiIG1Yyr33fx/HVm27HS177Vpz/vBdi15OPteWbzhYkGwJJwGF33AlxQ1HcEP0b8bsmq0iEaKybP5i0O5EY1CInKWpTwN7bOy/nqVjsz64o+HV6rJEaM3oGYrdwEaqEKgGq7KtYBAAMrQVGN7Z+F/WJ8K/9+iH82xe+YyMWM97P7xHdKBaV8hgAAojq0+9exBIvtq6vRQ9LbSCARFEk3eZVlGAKCY4V9NomEuYwfziL97/tFY6mZqXWQDLWBbFoU/d5DZRVjCzrBSNZMAzdTgRy7Q3DzWuWAQCu+8oP2x7TSVe7FapbsajvoB+xeOZ6vZFm2qGO5wsOEi0Zj6JUDWjmuRCPRXDh1k2WHarnNvUARVFwdHIai+adGGJx68bVANqJRYbUAJJGzVAsdoORbAoAMDlTRIMXwDI0aJpCLp3ENz/xbtzzw89h+6+/ive++aV49RUXYNeBow7l51xgkLF4amNQi5z66GSFWpGClWdzoVisS3UcrQVnLDblZitjUVNAE05rU47iIKgBGYukTix+9RNfxRf+7QuexOKsFIuqCsUVOeO2QnVnLBYmChieP+z4G8/zls1nwzWEQ4KErMqgGRqaB7NoKuwUW11kt18decUIXvL/vcShQqvXvBWLVdm4zmo6KWtX93llAjaMWiSWiCGeinelWEwZ17Adf9nR1mvLT+QdpKtfxqKfFeryNctB0ZRlhzozNeMg0aLxaDCxCDgUsAzLYOv5W53Eosc+3nn0TlSlKl619lWYHwsepp46NmWRp1967Et4Mv9k4PJeGK+P9/z9A4BVG1eBIAhPxSJLsWg2mqDo9u+DSSxWpVYdljbyygv5gqVYZDnWyvy88u+vxHf//F1c/Y9X43kvfR4K+YJD+TkXYFnWsgI+Udhd3I0IHcFpQ6ed0O0YYIAB5h49E4vXX389rr32Wnzuc5/D+eefj/PPPx+f//zn8c///M/47Gc/+3Rs4wDHGUFqHS/ka0Jb3qFXY960Ji03WwW6KuoFSa/KS0FWsTDltMjysoWNBAzWsRQJkgTu+sNv8PXPfgzF6TwSKWcjIzpLxaJ7WpVyNb3KRWfRXi5MY2jUaYUq2KxQmx7EF0OT0HwKfUuxKOk3J8LYLvzy+9+AoihQ4d2Eq1eriMbiaBhFtygrkBQNmZC/YhEA6oZajVObIEkCzYZejGZyw+BCYR9i0VAsGq9FGVmRB554CA/f82fbMWiiUio4jk2bFSrtn7EIACPzFyGeTFt2qLoVautmJRqLd1QsRjgKgqxaBObZFzzXsZ2zIRbz47p6YWhed4pFUQ5W1pnQNA3bxypYOxrH5gVJzNQFNDy+KwuXrsB5Fz8fm7eeC0BXLhMkCQKazQrV/5KRibKoCwpUTUMqqzddizN5CE1dsSjJqqUeHFm03PrsbX32xdA0DQ/95U9d7Xe3IGgWNEWiC7c0C/GQ3hRvBjTid05UsXyQr3jCMahFTlJ842Lgey8FysENMChSe7iu5KoD5kK12KsVarOkk57dojoOMBHwRjOPkvXGkeijWAQALHk2ELNZO4n6tfKX9+3Bx7/yI0xMF8EwNDKmldYsiUVZUdFoBrtCkI08EEoCdAiaprWRZ4DTsrxjxqIbassKlaUIPD6h4P9961H9tQnSsxYpV+s9W6F6wVQsJuNRZFNxJ+lGh/VsSxdGjSbQ/iMT+Nnv7rb+rmmaboUalLHYgVjMpOJYtnAUDz+5B4AXsRjpuE9uXHnhNvz5wSesfZ1NxuLEdBGKop6QjEUAmD+SxauvuACXnOvReKIY1JoCYh7KVC8Mm8TidAkNXkDE1ux988ueh3PPWGd99i4553QwDD3nqsWBYvHUxqAWOfUx22a8AsUiELoFR3EOQlPVVEzWgx0V3BmLNEk71FRhOtxZsQgCP/7aj/Hzb/+8LV8R0InAvqG1E4cMyTiu/20Zi5MFDLmGnBxWqBVvxSJlDIa7yTjzvVQNK3ZhXMD3rv8eAEDhFe++SKWzFSpJko6MRa/1NGp6fRiNRZFIJ7pSLHI26+5bf3Kr47H8uItYdFuhmsSijxUqG2KxbM0yi1gsTBUcJFonK1TAqVgE9JzFXY/vQtHIK3aTnU25id8d/B3OGDoD5y8430Equ9GsN1Gr1CzF4s7CTvzvk/8buD1emGxMBmaL+iEaj+LyV12OLedvaXuMJVk0603QdPv3IRvSj2FdbB27aDwKhmNQnC6Cb/IgCAKaLWJo3rJ51mdm45aNiMQiuP+O+3ve5iCwHNt1Xux3d3wXP9390zlXTe4s7MTSxFKkQ+nOCw8wwADPKPRMLJIkiWuvvRbHjh1DqVRCqVTCsWPHcO211zryBQZ45kL0sFsIwkxNbCP1arx/AV1qSFAtAkj/d6om9HTxYikSizPOhtO+fPtUVYT2ZxVMxaIJM3PPjtkoFjVNa7PrdKunyjNOK1QAGHIp1hxWqD6KRfiEqYuKmSUgoP7UnZj4wQcQjSeQzg2BcDc7zdeoVRCNxa33tGYQhrmI8zXaFIsGmcyq+vY2DMViJBZHIpVGpdh+g8IYliRuIic9NA/Xf+jdqBrWotOTEwCAzMh8LHn/rxE77TKUXetjKZ1Y9PsUEQSBVRs2Y/d2g1icnnTkCUYTyY4ZixGWgqYBokHonXPhc639BIBapRT4/CBMTYwBQNcZi9/8ywH87137oXb43hwtNlHlZZy5JI3185NQNWCi3N5kpigKH/ufb1mWqOYAAKGpIEkCfLMBMuCGMhfl0JAUyIqGREq3UinO5FtWqIoKzmOyL50bwuoNp+GBO2/rar+7BUmzoEmijcwPQiyk759fdm1DlHGs2MTa0UG+4onGoBY5SVE3rmnFg8HLaUq7YtGd/TNLYlEDAfRq+yOU9dzEblEZB6LD+msBII0miwgbGegmBkc3WuSTvrDefKiJ+rl8PF/ASDbVslo2iC+rbCr0nhczNtV+/bWDE2aAcAqgWBTLNTSaQptisSF2tkJlmQDFIklCkGTcc0TGs2+sIxaiEQ2HQPkMrJRrDSRi3RCLwUrXitHMS8QiyKYSTitUNuKbUQ3oxNTbP/JFjBvHb7pYgSjJWGTLNWqzViVMYtF/m87asNKmWCw6iMVUPNaTFSoAXHHhNoiSjL88sgMAUJiFYvHIuP4dXuxSiRxP/OBz78f5Wze1P0DSqDfFrhWLIY5FMh7VFYtNwZGv6EY8FsH5WzbiN39+wHeZfhDiBrXCqYxBLXJi8Hj+cWyf3n5cXqvbZrwf+lIskk4SoCSUIGv+BKeiKhBVsaVYhAKKdGYmdiIWacKZyViYKiDiugZTPv2GbjE96ex7uBWL7ozFynTF2wrV2A7elfdsEo6kMcjqtl81CV5VVlHbUcO+6/ZZr0+FvPetXq23HQc7CBAgCbIjCWcSi5F4BIlUoqeMRYqm8MWPfhHjhqJe5EWUZkqOY+O2kTX3y0+xCOg5i36KxVgy1nGfBFe9fPZFZwMAHrv3MQBA1VWLPDTxEBRNwWvWvQbDkeAaY2psCgD6zli01tOYQoXvb9jqff/xPpxz8Tltf2cpFnyT9yQWI0wEYTqMuuwkmjO5jJWxyIU53/MKwzI46zln4b4/3tfXNvuBYbvLWKyIFTw08RAOlQ+1EcezQVNu4mj1KNZk1gzyFQcY4BREz8QioOcJ3HbbbfjhD39oTVeMjY2hVuveuseOL33pS1i6dClCoRDOPvtsPPBAdzd1P/rRj0AQBF784hf39boDeKPS7K6ANptcpYbYRgwFWQmWm1KbwrFYlyyyphssyUaQjDhv1vdOeRCLTACxSDkzFmfykw5rTEAnkmYDkxAz0UYsFtqJxdyIU7Eo8k0QBl3W8MhY5GgKms/El2BM5O186G5M//I/EF37bJx36RUIxVKey6uqima9hmgsYZErpsXpcNRZPJkknGkX4lbB1Y3zQSQaQyKVaSNZgdYgpZvIueQ17wDfbOB/Pv5BAEB+QlfzxXO6mi+8YlubOpCmCChKMMm2ev1m7NnxV8iShFJhBmmXYrFW7UQs6seAN47rirUbkR0etR6vziJjMT8xpltuDI12Xhi6pfDhYtNTfWjH9rEKaJLAhauHsGJYn7gc60IhbBKLtMJbVqhBTZKhOIe6IENWVVAUhWQ6i+K0boXKhcOQFBUhn7zDbedfgof+8ico8txZdJA0p3/felAsxgwrVD/F4p6pGjQA567M9mSxOsDTg0Et8gyHmzh0E4t9WBc5nk5QgNwjschXelcsRlsT3qZi0Zmx6CIWo65miqB/XqtCi1h02EAaxOQ9Y8Y5Z9etvdm1Ajg22W5pZkdMqxqKRRZHjcafW7FoPy8W/RSLBrHYtnmqnrF4x/1P4J9uFXDpchr/8ndrEQ0giMrVes9WqF6wiMVoBLlUwqnmYyK+g1kA8LWP/SNomsJb/+0L0DQNR8Z1y+7ZKBYBnVh89Kl9UFUV4/mCpZAEdMViL1aoALBi8TysW7EIvCAa2zQLYnFC38cTpVgMBGkoFiPdKRYB3Q61pVj0JxYB4PLzt+CO+//aUeHbC0LswN3gVMegFjn+eO0tr8VVv7nKYcX4dGG2xKIKtWdikaEYh1Jyphl8DTdtU92KRTtRyFFcYMYaSZJtGYtuG8hZKRYBTE+4iEVXZmNppuT4XdM0R8YeQRCOjEUvK1QAIFnjOLisV81jeuDhAzj4uYMILwvj8jdcDiZgAMQvY9HaJuO/TiSc+Xg0FkUyk+wpY3HrFVuRzCTx6Ws+DUVRkDeu03ZisVapOfbXzNsM6vau3rQaB3cfhMiLesZij1aobmvddC6NdWesg2jUIpVSxSEceHz6cZw3/zxsHd3qqeq0Y2pcJxbdVri9QtVUHKj0mAPfAQzJoFlvgmK868c0l0Zdqjv2PZ1L64pFnkcoHApUUZ590dnY8ciONrJ4Nug2Y/GhiYegQoWi9T4QEYS9pb3QoOHseWfP+jwywAADnHzomVg8dOgQNm3ahL/7u7/DO9/5TuTz+oXtM5/5DN73vvf1vAE//vGPcc011+AjH/kIHnnkEZx22mm47LLLMDU1Ffi8gwcP4n3vex+e85zn9Pyaz0T8x2934o6dwcdkrlBs9FZA87KKvCvrsSr4EwSyqkGQnYVeqSG2kY1BWJgOWySACS9iMRpALDIUCdKhWJxCZshZvIR9CoZuMTPlzGqhSedXzp2xCMAzY5E2iMVmrb3AYGnSl1gUFRU0SWBo/iKkLnwjsldcA1mSwEa8C+RmvQZN0xCNxy2itybIoEkC6bDzNUzFYjyZgqZpbeRgo14FSZIIhSO6YjHAJtQkpExEk1n8f//6Kdxxy82445afIz+pH0f7++O2QmVI0rEOL6xavxkzUxPYv1uf6s/a1heNJ9DoQCya1rhmZhVBEDjngudaj9dmQSxOjR9FZmjEypnsBqWG2DE/64mxMpZmIxhNhjEU4xDlKMzUOxeWJrHIKXUQBMB3sEI1iUXJIHfT2SFDsdgAF45B1QDO5/u07fxLUauU8dTjD3fcrq5BM6BJwvEd74S4oVj0OxftmqgiHqKxfl5iTjZxgP4xqEVOAbRlLDaDH+919QRlkIQ9kHBCpZ3gDEJ1HAi3SCHSeK5I2AgMykVmuOoA0wq1apyW3Qo2k5hkzacdvg+Y7i175dhk+xCTHWmaB9g4QLE4OuFNLDaELohFw/bR3cyDKgEEgWULR/Duc1j87JVhqBqBsE/+nKqqqNabSHawHwM6W6GaxGI8Gm63QmVCgYrFXDqJb378Xbjlzw/i6z++1ZN0rdabEEVb3Ux0RyxW6008umMf6g0e84ZsxGIs2rNiEdDtUE0UK7U2K/5ucXgsj2gkhFRAI/WEgaRRawqIeuRX+WEkl8LkTKmjYhEALr9gKwRRwh33/3W2W2phYIV6amNQi5xYlITS0/4aJ4JYZEnW8ZyZ5oyDJHTDJClMMkmBnrFof0qIDgVuh2mFar2mS8EGtBOBvcJULJrqSzfBUJlpvw+3W6EyIQZCs6VYbFbbrVABgGCN4yB7E4vZhVkMXTmEpdcsBQBwnP+1oV4NtkIlQIAgOhOLlmIxFkEi3ZtikeEYfODzH8ATDz6Bn3z9J57EoqZpqJVbvTBTrdlJsajICvbu2IvCtIcVaqWDYtGDHDv3knOtnxVZsfYbAEJUCK9d+9qurDCnjk2BIAjkZjHkxFEcGJLpmE/aKyxi0WfgOhvOoik3HSrjdC6NYr6lWAwi+c6+8GxomoYH73xw7raZZbo6l903rislBUXo2cI5CLsLuxFn41iXWTdn6xxggAFOHvRMLL7rXe/Cli1bUCwWEQ63JkZf8pKX4Pbbb+95Az7/+c/jbW97G970pjdh/fr1+OpXv4pIJIIbbrjB9zmKouDqq6/Gxz72MSxfvrzn13wm4st/2oc3fetBK9vNRI0PVvj0Y41d7lKxaMehGWfhUefb18ELreLDbreqqQoqTRl8B4LEjuE4B8ZFcuyaaJ/Q9lIsmmaZHON8fnF6CpmcU7E4GytUAJiZcuYhdFIsRmJxRKLOZo7A81aDquGRschRLWLR/n5PTU3h6x+/FoTURCQaRfLsl4MgCIgCDzYa99zeumVf2iJOKryERJgB6zrepmIxlkhBlFUorg9bo1ZFOBoDQRBIpNJt1qV21AQZsktteNEVL8EFz38R/vu69+PA7h2IJ9PguFYzSeCbEPjWDQVDkYaK1v/Ga9WGzQCA+/+s227aFarRWNzafz+Ynwd71tTZNmKxUav0rbrLT4y1kcqdICkaZur+E2+CrGDvVA3r5yeRibIgCAJLs1EU6iKUgDxKACi5zgPNRh2kT5YnAIwkOON91L/bqdwQitN6xiIb0T9vfkT9mo2nI5XJ4v67er+G+IGgGD1jsQfJokks+tlB75yoYlk2imwsuDk5wNOPQS1yCsCdW+S2IPWzQs3v1sm1DtAISie0XNcm0z66zcISAKSGpSDsCkIFiNgUi4qhWCRshJlbseiGQSyaVqgT+aKDaDKJyZCZx6IpwEO95cx0skIdCSlAKIFaU8YjO/aCokjHNoRDHBq2gbFizZt85YzhG8lGLBaLRbzlR+OYrsmIhEO45lwWJEGgIci+CrJag4emad1lLBpNKz8Cp1JrgCAIRCMhwwrVVkfREactrQeuuHAb3vaK5+Oaz3wD9z++CwxDW9l9JgrlVu1gXj58BPoAgDPXrwQA/ObPetPImbEY7ajC9IKdWNQ0DaUODUE/HJnIY9HoUEc1wQkBxaDWELq2QgWAkWwaE9NFXbHYgVhcs2whli8axS1z2MwL+ZDnA5waGNQipz5mSywCCCT0vFRhjCv7d5qfRoL1H2o0LSntikXKdW3j3ENOLlAE5TjvF/PFNsWie529YsZwTzAJPjex6FYsAk7yjOEYCLwAGsYgaEOALLVqE1OxSBj9H/uQU61Ww3XvvQ5SUQLLsRh5yQgIioDIiwj5DKuoqopGrdGRWCQJsqO6zyQeI7EIkulkV8Qirer7SakUTjv7NLzy71+JGz93Ix675zEAaLOJtasgVbMYCbiUr1i7AhRN4cE7H4SqqD1nLHpZ655zidM6tFKsWL23SxZfgo1DGwPXaWJqbAqZoQxopn8ymyRILEkswWR9Espc5LYbpRpDMWg2mqA8Il4APWexITUcquP0UBqFfAF8k0coFAq0Jc6N5rBq46o5zVlkObZjXuzR6lGM18exILZAJxbn4pgZ2FXchWWJZciEMp0XHmCAAZ5x6JlYvOuuu/ChD30IrMvaZenSpTh27FhP6xJFEQ8//DAuvfTS1gaRJC699FLce++9vs/793//dwwPD+Mtb3lLx9cQBAGVSsXx/zMZcgcyYC5QanRvA8YZnZPDM87p6rqHPePu3butn+0kotYoosJL4DtYOtqRjrTfqO+Z6o5YNBVV7ry3wvQkMrm5VSxO2xSLJNEuVHATi+lhwwbVKIRJkoIg8KAIvThsVMttWZQsQ0IzvsqqUQA8+eST2LZtG/567x3QatOQ7KSuwIMNeU+im2RhNG4jFpsSUmEGjKtLZmYLxpMpz/e7UashYhCYuhWqv2KxysuQXKQ5QRB45ZvfiVqljL8+eK+DdDNvfOzrpI1AIy3gpmd0wWLEEync/+c/AHASi7F4EjUPq1k7opxJLLa29Yxznu1YJkiZGYT8xFjX+Yp2TFT8icXdkzUoqoZnr8yBNd6/FUMxFOpim2rYDfeAAd9sgAy0Qg2Bl1TLLi+T0xWLPN8iFkM+RD1Jktjy7IvwwJ1zRyyConXFYg9XuTBDgSRaVrd2NEUFRwoNrJs3yFc8GTCoRU4BtFmhus5lfpOyX9oK3HAZ0CwFrl4jSD3bz9XQK5f18/z+oxNeTwNqk95/90O4NU1NyjxAMVDsU/3ujEU3TMWizQrVbo1pZiyGKKDMa0B2FbD9ZssivRscmwq2UQszgMrGEd/ycvzbF76LeUMZxyR2mGMd1/kGL0EQ25utJrknG9eXvXv34pxzzsHPt9dxYLoJXhRhznQ1RAVhH5WAqULsygrVWDaT9B6YqtQaiEfDIEkSuXTCQ7HYuc679q0vR6Mp4A/3PIoFw1nLAt6EfZ3dDMll0wksXTCCX/9JtzicZ1OFpOLRvkjB885Yj1QiZtnLtlm0dokj43ksdjUrTxqQNOo9WqGO5tKYnDYyFjtYoRIEgcvP34pb/vxQT7nvQRgoFk9tDGqRUx+dmvHdIEj540WmsaTz8zTTnEEqlPJdh6kcs4hFTVcs2jMWQ3TwQIanYnHISQLMVrFoKu3MrDeGdJ4fhYaAZqM1NByKhhw2pGyIdVihAkDVNthjZSwyzozFI0eO4NnPfjZu++VtECdFKLZ6RhREsCHvOq1ZbxpOTgHEotadFaqp3AtHw0imk13ZXI7URzD23TEMSfo1+ap3XAVJlHD/Hfcjnowj7LoW2slKxahFNNL/WsaGWCxdvRT33a4P6zkyFhMxCLwAOWBg2ot0X7FuBYbmDSFk1CL2bbp40cWIsd25IUyNT2F4weyzntdm1mKiMYGm3DkGphM0Sj+WFEGBb3hnLALAUGQIDdlJLGaGnBmLQcQioNuhPvCnB9odQPoEwzIdX/P+8fsRoSO4aOFF4BV+zhSLVbGK8fo41mbWIsENXJ8GGOBURM/Eoqqqnie4o0ePIh73vqn3w/T0NBRFwciIUyU2MjKCiQnvhs/dd9+Nb37zm/jGN77R1Wt86lOfQjKZtP5ftGhRT9v4t4hiD8RijNOb94cKTmKxFmCFCsChstLqJciqhula59e9eK1eYNAu9ZyiajhSaIJVnEVDcMai8zG+2XxaMxZZigTlmgCvVUqQpVZRljWIRc1osDIcB5HnQRuKRUUSwTedx5qlSKgwLT9k3HrrrTjvvPOQTCbxrv/5KWKjyyBLrWMr8DzosF4gN+tOMta0N43aVJNlXkYmyjoUonaLrXgiibpHpma9XkU0pq8nkUq3ZSLaUeElT5WYqZDLT45jaLSVPUkZdqF2YpEymqwaSUPzGc8jCAKrNmzGricfA0mSSGVaDeFoPNFRsWhaoUpyq0gPhZ2Kin5zFvtRLALATM2fWNx+rIxEiMYZi1PW31aPxDBdE9qsa91wnweajUZgxmIupt+UlQ0r5ZYVahNsWP8cBBH1255zKfbv2o7pyXHfZXoCpVuh9qK5IAgCEZaG6EG67pmqQgNwzorMIF/xJMCgFjkF4M4/VASnutBt5eie+C/sC16/j2KxI3olFuOtxgclN/TcPvuZpxOxKNQAEDBd6CdnSk4rVIIESBohs38x/3SgNok41X2t1skKFQCqaqvpuGjUSSyFQyzqLoeMGY9pe9a4NsuKgj//+c84++yzAQD3vSOHrSuHIIiSVXvVBAXhEIuHntyDv+5y5t+YZGEi1lmxaFqdppPezapKvWGtJ+vOWKSDrVBNUEb9c3Ri2mGDag452dfpp3h346wNK/HgE/rAnVuxyAsiRKk3lQxNU3jryy/DRdt0Zwa7irIXHJmYxqJ5J2G+ImBYofK9KRZNK9QuFIsAcPkFW3Dw2CR27j8ymy21EArI7hrgmY9BLXLqYy6IxV4HFdyKxZnmTLBi0cMK1a0uDFEdiEWSastYdFuhzlaxaGYsmoSUV9ZaMd+6t0+POC0zGY6ByIuWFSrgJK4swtFYraIoeOCBB7Bt2zaUSiV88aYvIro26iAWhaYAzufaYOUidrBlJwnSQRx6oVFrIBKLgCRJJNKJjgpHQFdDFm4vYCSqnxPMSJL8eL5NrQg4j4UqdbZCBXQ71J2P7wQAh2LRJHTdOZZ2eBFVBEHgytdciTOfdaa+TeXWNtFU98R0fiyP4XmzJxY35jaiJJSQb7bHD/UMoxUWokO6YtGnrzEUHkJNqjkVi2bGYkPPWOyGWKwUK9j1+K7Zbzd0xWKQ+lpRFTw4+SA25TZhYXwhREWck3MfoOcrAsC5888F6RPfNMAAAzyz0fM3+3nPex7+67/+y/qdIAjUajV85CMfweWXXz6X29aGarWK173udfjGN76BXK67m94PfvCDKJfL1v9HjszNjeKpjF6tUBMhBmPlFqFHQJ9ED8J4uUWGqI2S8bfOk0RrRuLIRNpv0qdqIhRNQ1h1Fj8R2iiQPWoq1sOnqi1jcRbEIgFgJt+6ESQIwtNaqlRsKQkyFrGoFxs0G9IVi7YdqLqUfxzdIhbzRw/iRS96ES644ALcfffdiKRHQJGEg7wUeR5MyLtZ56dYzERZMDYypVmvWfv0Dx+4DnUPIrlZryES02+qk+lsoBUqL6meqkcTxekp5EZapBtFtROLpq2eGkpBig75ajlWrd9sbZOdKIvG4hAFHoriX0SZRLOo+DcOg5SZftA0DVPjxzA82rtisRCQl/jEWBmrhmPI2aw7V4/EwUtqoIUqAJQavVmhmq9R5lvEYmlGt0I1iewgov6s8y4ASZJzp1okKdCuHNVuEONohyLVxO7JGmIcjY3zk3OzfQPMCoNa5BSA6JruVkSnitE9Kdt0nVvdmYwuaCSlKxbRY9ZcpYfhhlAKCLXOCaTCA0xYJwNNdLqJFusAzVnXLFVVHQo2AADFtIjF5CIg1luzpZMVKgBM8a3z88JRp/1ZOMS1DRB5KeJMddax6Spe8IIX4LTTTsO9996LVRkABAVBlGD2YeqCjHCIxb2PPdW2HtMKtFPGopnFCADf+fR7PZep1psWsZhLJ1CtN6GYpDXFWZmI3WBiuoiFI63vvDnkZlcsNru09T9rg26HGuJYB4Fq2r/2k7P42Wvfgq9+7B/btqkXHB7PtxHLJw1IWrdC9WncemEkm8Z0sYJKrdFRsQgAF27bjBDH4jd/mhs71IFi8dTGoBY59TEXVqheWXRBcCsWO1qhuhWLRsaive/QyQqVJEiHwrFeqbdZoXoRgb3AtEI1rTHdikUAKE63ar3MiLMWYljGqVgknGSatf3GZjYrTVx22WVYunQp7r//fixesxgA2hSLXIjD5M8moUqqY5u6IRYJOBWLn/rWpzyXM4lFAEhmZncvWcgXHMSipQ601WXWPna4DV69abX1c9rmlmHuc6PeG7EIAK9/1+vxof/+kL5NPWRJ2jE1NoWh+bOvRdZm1gIADpQPdFiyCxjHkqVYNOvNYMWi1HAcn3QuDUmUMDM10zFjEQDWnbEOiVQC9/2xc/RDN2A4PWOR8ql5dxR2oC7VcdHiizAc0e8xGnLvdagXdhV2Ic2lsSq9ak7WN8AAA5x86Lk6uP766/H85z8f69evB8/zeM1rXoM9e/Ygl8vhhz/8YU/ryuVyoCgKk5PO6fDJyUmMjo62Lb9v3z4cPHgQL3zhC62/mcopmqaxa9curFixwvEcjuMCA5kHaEe5GTyd4rZQjIdpTFdFaxqPoQg0PBRsdkyUW/k8mkEsjpVaTUKtB4svfX16QR1SGyijVQQnOb0CoASPbEIPYjE7NAI81Spo3bmCvYBmOYdi0Q+lmdYEVXpY/9yrkgAKABuOQmg2QcVax8NttcnSpP49IEgkcqO49dZbcdFFF4GiKAiyApoiIImt4y0KPCI+xGKjphOG0VgCgG7hI6saRhIcKKr1ntarepH4ia/+AIuWrcTDh/Rt0mxN4UatarNCTUMUvDOZTBQCiC5N0zA04qFYLBcAGISjOVVFklCJMOqCjJDHJFksoRfzbnWq+Xee99/OiKVYnFtisVIqQBT4vhSLpYYESVHbMkcLdRGTFQFXbJrnsO5cMaxPII6VeKwe8b9JtQ8YyJIESRQ6WKHq59mqoWpJZYfQqNdQKRexhNNvToIUi4lUGutO24IH7rodl7/itb7LdQ3SsELtkViMcjQkRYWqaiBtZPpTExUsy0WRiQ7ykk4GDGqRUwBSHYBtGl0RnarEgEyibqBnLMq9KxarPRCL0SGAbr2vlNwAwjHAdd7RCBKE3/6INcc6AKeCDQBAMghRTX1XCAJY+Vzgse93tYksTeHYZLAVqqRoOFZtbbOdPAOASIhD1TVsMlOqYr6LAGVoCqqmIRvn8Otf/xrPec5zwDCM/j6QJHhBsKxQ64KCSKiloNA0rWVzbkz+d8pYrBo2ZT/+zw/grI3eDYtKrYFE1FQs6jUJLwiIAvpx7+EaoWmaQ7FIkfrAmJ1k5cXuPremwnLeUMbR/E3F9b+XO9iq+SGb0q/r/VihCqKEyekiFp2sVqgUjVqDR9QnD8sLI7kUNE3D4fEpLO3CVi0c4nDxOafhljsfxPve8rLZbC0AIMQOaoZTGYNa5NSHrMqztkYW3FbvHcC6nA6qYrUrYpFS9fssU7Fov7Z0ZYXquh5mh7OA7dI/G2KRpEhLsWjCi+wszhStDmV61KVYDDF6Rh30fSEoAuVSGcmF+j28RThSgKZqoDkav/jFL7B161aEw2E8fvBxAC5ikRfBhTnkf5VH/ld5DO1uXf+6JRY1TUOj1sB7P/1enHb2aZ7L1Wt1RA1790RqdnaQmqYhZ9QisQ0xUGUKJEmiUqyAoikostKVFSoAxA0beYZjwNoygS3FYq0B+FzGJFWCqqmeKrRQJASGZXRisbOrfdv+TY1NYXj+7BWLI5ERJLkkxmpjs14XSACaTvw368EZixo0VMSKpTZNG7nlE0cmsGL9io6KRYqisOWCLbjvj/fhze9786w3neVYSIoEmqQ9Vfb3j9+PofAQzpt/HiYb+jWoIc4RsVjcheXJ5UhxqTlZ3wADDHDyoWfWZNGiRXj88cfxr//6r3jPe96DM844A5/+9Kfx6KOPYni4t5M/y7I466yzHOHmqqri9ttvx7nnntu2/Nq1a/HEE0/gscces/5/0YtehIsuugiPPfbYwM5jjlDlgyfzDk47LzKJEINiQ4QZ/8hQZEfF4kSlRSKqjTIIAMdsxKLQpZWUifGqgBhHg4OT0DQtCymhvcHiRXKkXRmLXgpDrcuimuFCmJnq3KAsTreIxeywTiyZikUmEocgNFuKRZJqI67ERhVTP/0oKg/cBFmWcOmll1pKPEFWQZOkU7Eo8KC4VrPO/li9VgFJUaBDzmnwhWlnc8+0DDWVjSaRrNkKkHq9hnDUKKCTzhsDL3TK9rSTbhRFgaScx4Kw7BoIaBTb0dLXrU6NGupKgfcvokIMCQLBisUgy1c/PPmInrO0cNmKDku2o9iQIHhkAm4f079XF64echBkizMRUCSBfAfr4YqNWDTtd4MUi5koCwKwVC3prH5jNjV+DJTxeTKJWT9sO/8SPHLvnRDF3m7AvaARFGiK6KVnDACIcRREWYViayLwkp6vuGY0PshXPEkwqEVOAbhvWBXJqVJ0ZzD2iL6IRTYK1Ka6Xz6S1e00DViKRfeIuMdUvgWh2kYsOjIWAYBiEbafPldc3PUmcgyFsamZwMbosaqGSdvAl5tYCodYVAU3seisq+oNHh/54vfxb38UIMsqLr74Yp1U1DRj8EdXLHK0aYWqKxZNlGy2YKZar1PGYjdZjGbGItAi3cSGoeajeyd9FtmtUAGkElGHOlDoUrFoYt6Q8702VZqlPonFEMciEub6skK955EdAIA1y3p3Tzge0EChwQu9WaFmUwB0JWY3ikUAuPz8Lbjr4e0WwT0bDBSLpzYGtcipD1mVex54dqOpdHZlssOtWAQQmE1mKRbVlmLRnZnYSbHoXh5AmxXqbInFarkKgW/d47ntWQmScFihuhWLLMc6rFBJhmyzQlUlFb//8u8x+ZNJKIqC888/H+GwXgOYmXGK4CIWbVaopXzJ+tkiFhPBxKJQFzpmMTZqDYRj+nYk0rPPmTNJt0X/bxEiWyJIpBMoF8sWOWhaoXabCeJWp1qKxYDroEkseoEgCCRSCYeKslvseXIPBF7AouWzP4cRBIEN2Q2YbEx2JPOCIKmS3hdUdXVvs+FPLOaM7PWy2BI2ZHL6Z3lybBJcmOtKxXzORedgz5N7LKXvbMCwumLRKye1LtXx5PSTOHP4TIxGRxFn9J5Yr+ctLxT5Iqab01iXXRc4HDHAAAM8s9FTdSBJEtauXYtf//rXuPrqq3H11VfPegOuueYavOENb8CWLVuwbds2/Nd//Rfq9Tre9KY3AQBe//rXY8GCBfjUpz6FUCiEjRs3Op6fSqUAoO3vA/SPuqhADiBO3EiEaOycEBEyam6aIiFICtSAJtZUxXYx1RREORqTlf7JhImygOE4B7XaPYsQdpEcoXAYEVu2oB+UiF4YSB2OEcuFUS4WOpIkxZk8AP1CmzEUixaxGIpB5HmYvBBBUqiUCkBa387piTF87p/fBnF8DImzXwbFFbAtyKphhdraBoFvgmJaxGFpJo90fAkAXYkYjcbbiKolmQgqtgFaU7FoknF1QQFHk2jaistGrYphgwxMpF3qCxs0SQDBcJbSzQ85h5qPQCKZ0olFY1c02Wh6GkzSwZkGVg7755tkXYpFkyQVmjzg07MiCAJhlvJ978PRmKEo7Uyk2vGzb38N60/fimWr1vX0PEBXevKSjFjI+Xl+cqyC+akQlg05P9MMRWJhKoyCcRPkRZ6rquZ4PyxiMUCxyFAkEmHGssU1iUVFlkGx+psUZoNnWbY95xLc+IVP4clHHsCZ5zwncNlO0EgKDEV67l8Q4iEGMzUBiqpZln17p2pQNeDc5Zm2fNcBjj8GtcgpArfFTicr1B6hEX1YoXIJoDkDT/90L4RTup2mAVJu6CQh6TxPaBQDwq+JIFYd6wBaZIgFitHPRya3x3Y//s0yNERJxkypAj+zvGNVDZNsi8iyq/IAIMxxqDXbFYsm8oUyzn/ttXhq/2Fc82IKkt3ZwuYmIIitdVSbMoZHWs3TY5MzSBuT8+VqHSRJItqBQLKIxYBmXqXWcFihAoDCG9veKf/SA+5j485t5EVJt7/tUnHrVqe2rFD7IxYBIJOM92WF+vlv3YyNq5bgvDPW9/3aTydko0Mai/RmhQoAsuxUyAbh8gu24h+v+wpuu+dRvPR5z+p9Q20IcQPF4qmKQS3ytwFZlS1Cql8IstBRMWiHW7EIAGnO/95SUASwJGsRg16KRa912kES7fdMmeGMaWAEAL42it3AzAe0qxY511BVIp3QrVANkyKvjEW7FSrBEA5iUagIOPg/ByEcFDDyuhEoLpctMzPOrViMR1v9gvxEHqOL9H6MSSzG4sH9ITOHMIiArFdbisXZWqECwNC8IWiaBjJEAqSugqwUK2A5XU1n7mMnxaKJNmLR2JdGtQH4tHEkxZ9YBIB4Kt6XFepP//enGFk4gq3nb+35uV44feh0PDz5MOpSveP3wA+W6ljTLXf5Bu+vWAzrx7ImtgbmTJtZRVbAhTiIigiGZAKtlrdesBUEQeCBPz+AF7zyBX1ttwmWYyEqoudwwMOTD0PVVLxg2QsQpsOIs4a7hxzsNtYN9hT3AACeteBZPfdkBhhggGcOeuqQMgwTaBPYD171qlfh+uuvx4c//GGcfvrpeOyxx/Db3/7WCi4/fPgwxsd7sKX6G8d0dfZKn4YgQ1a7n8xLhBlIigaF0ZshDEWAl9RAkcBMXYRie41kmAnMiuuE8QqPbIztyfbQrVjM5Ea6vODpy3Q6Qgyn30AU8joj16x7qCZjcYNYNLZhxFQs6u8jHY5CcFmImio9/uh2/OcH/wGKLGP0dZ9DeOnpbfmAgqSCJglINnJTVyy2bm7M7QN0JWIkFmvLCFqYcSsWnVmMdVFuO55uK1Q/aLKAMEOhygfftNmtUAEgnso48iY1awpNf386ZXZmcj7EohD8vBBD+Spq48k0quVS4PPd2PXEo3ji4fvw8je+w/qbeWOodvgeshQJUdEw7VIfqqqGp8YrWDOaQDbWXkAvH4qiUBch+uxHVZAdn+9mQ7+xogKIRUBXLTZEfajAJBYB2IjF4OevWLsBmaERPHrvnYHLdQONIMGQZM+KxXiIhqCojsGIXZNVRFkKmxcO8hVPBgxqkVMEnopF2zlp1opFsnfFYigJ8OXunxNKOkhEUlMMBaOrvPZQH1hwKRZz6QRYt8rJoxGyq65fXxUyWIXAGdfmIDvUaZ7GZLFFRLkz9sIhFs0AxeLbP/I/yBfL+MFnr8UL1zBOmyXFeB5JgRdb16qqIDsUZPYcyHKtjkQs0rEmK3dhmWonFk3FIgSj2ROkJPVBO7HoJPF4Qeycq2mDm1icrRWqvk0JFHokFnfuP4Jf/+kBXPPGl5y0zR9JNYnF3qxQTURC3SkWly0cxZplC3HbvY/1snmeGCgWT10MapG/DcyJFWqPGYvu7EGaoJEOBRCLsgCWchKLNEE7FIgkQXoqIU1QpFOxyLBMm2XnbBSLhDElPT3ZIhbd25PMJp0Zi6MuxWSI9iUW+WM8fnXdryBMCnjFp16B5NYkVNcgsEksinyrFjGtUE3Y1WG1Sg0kSVoZhp77pRGWqi+IgGzUGogYtcpsrVABYGh0CLImg6D045pI68QiY1xzZGPQt1vFoludau5LYMaiKgaS7ol0AtUea5H8eB53/OoOvPzNL/cl7nrF6cOnQ1AEHK0e7XsdvGKc61WdmFZVFRTdrvIFWsRiXWrVcbFkzHpvQuEQRFX0zBi1I5VNYc1pa/DQXQ/1vd0mWJbVFYse3+H7x+/H8uRyrM/qQ2UxVn/vez1veWFXcReGwkNYklgy63UNMMAAJy96ll68853vxGc+8xnIcrC6qBf84z/+Iw4dOgRBEHD//ffj7LPPth7705/+hG9961u+z/3Wt76Fn//853O2LQMADUnpqMazIxHSL4pKSG+6MxQJQVYDFYvlhuQgNdIRpqMVZhBm6hLSEdYtEggE48pYdGfuzRYmsWjmLKoefuaJdA6lQqvAzgwZikXJJBbjEPgW0cWGIxZxVbn/JowuWoov//gWMNmFAICxI4cc6zczFmVbM08UeBCMnVhs5UDWqxVEYwk0bZN8MY5G3KWGq1cNK1RDsVgTZIRcpFGjXkMkphcmiZS/YhEAUhGmzWbNjZyLWEwk0yiXWsW/6lIsTtec5LUF40/tVqh6kc83gonFCEtBVjTPm8xYItVzxuL/ffurmL9oKc67+PnW38zP8USFD/wemaThRMXZ2DhYqKMhKti2LO1pP7pyOIaZugjeh1gsu7K0eINYJDt8wXIxnViUFQ3JTNZanmD1G7ZIQMYioCtCV6xZj4N7dwUu1w00kKApAmQ/xKKkOj47OyeqWJqLIh0d5NKcLBjUIicYHvbiva+j5vy9kxWqpgBy93WCrljskVgMpwxiscsaiPVQxXvk9mlBE9JC1UEctuUrAp7E4pSoX8e1Dl0jjtGvAUHEYllhMVVsvR9u8iwS4tBothoMsQiLQrm1fC6dxP0//k+ctnYZAGDHviOtJ5vT2ATVplgMc3ZisbV95WoDyVhwvqK+XBdWqPUWsZhKREGSJEjT3onpnqAy4SZds6kEposVMMZx5kUR6EHV4X6/zW3t1woVADLJWM+Kxf/81s8xOpTGa154Ud+v+3TDLE17yVgMhzjrmHZrhQoAp69bju17DnVesANC3IBYPJUxqEVOfciaHKjK6ga9Kn/czf90KB1oZSooOrFoLwe8cu+C1FpuxWLGlf8LzE6xaA6n2hWLlCtiI5lLOqxQLcWice5nIywEXrD2jYtxltVm4Y4CGI7Big+vwOgGvZ+y76l9jvXLmgwChFOxKIiO3FE78Vmv1hHpYsipWdVrik5WqKZikaKpQHVjNxieP+yw9nRbocpmTA3Rn2KRoimEIqFgK9QOisV+rFB/dsPPEIqEcPlVl/f0vCBszG0EAQKHKv1f083vMKEREJvGcacBhmLavmscxSHKRB3EIkEQlmqRC3MQZAEM1bk+WLl+JQ7uPtj3dptgORai2q5YnKhP4HD1MM6Zdw6GInp9a1qhzpZY1DQNu4u7sTy5PFBxPcAAAzzz0fPY0YMPPojbb78dv//977Fp0yZEo86L4k033TRnGzfAiUHTIAaCHrcjYZBOSigFQFcsCrLi28sjFBEVXoJgs6dIR1jsmap5P6FLZGMsDvSwPOUqEtO5IZ8l+wNrWC7pOYveeTXJTA7FmWnA4DTDhhWraYVKhyIQ+IJ1nxCKxDF+5BAWnA7krnwv/uGcNIaGcgD0wvmOW38BfPgt1vpFWQVJEJCkVuEp8E2QTOvGojjdUiw26lVE4wmHYjEVYRByEUJmFmMorDdr6oLcRhrpxKJemESiMdC0f/GUijCoCf435fFECuFIFLA1yhKptJPEkyXY76gmKzyaotJmEWpmIGZybmLRKKKE4EydiGGFqmgaaNdnKJ5M6Va1wTyqheLUOO78/a/xD+//d081oKoBdV5G3CfXLx1hMVnhMeNS++4Yq4CjSTxrhbfx3drRBEoNCVVe8swMLBkFs2YoYE3FYpAVKgDkYhyeGq9AVlWwLI1EOoPSzDRImgOptJP5Xli8fDXu/dPvOy7XCSpBgqZIz0nCICTCDARZsYhFQVJwaKaOl5yxAKmTKF+R5ViAB7hQ95ZwpxIGtcgJxizVhAAAyUWcqCKg2hoU7hvaZkkn/bqEnrEooGtbUwAIpYHpvUCsSwIi5DF1TocAwnU9C2oeiHUHcdiWrwj0ZdlpgqV1O7QgYrGBMCYLrWPr3oZwiEXe9ngqwuHgsdZQ0v986B2YN5zB0XHdgeEXf7wff2c+aDopEISDWKw0JUfGol2xWKk1Au1NTXRjhVqtNy1iiSRJZJIxMCqvj1b2YCkLADRNYTjrVK5nU3HsPzKBEMtAkmR9H0nSaoT6QTSafqOujEWaphCNhGatWJwpVbBonp/5rRP5Qhnf+cXt+NA/XHVSK+xEWf8ux6K9XfdGsilUao2uFYsAsG75Ivzxvsd7eh0vnMzHcy5g5pcmOuShnqoY1CKnPmR1DohFpTdikSAIsKROBABAkksGkoKmFSpp0wx4ZSaG6BBqkne/hSSc90zpofZaZDbEIkESiMQiOrEYb72mHalsCsUpj4xF43pKR3TFormfXJTD5Jjexxi9ahTPkp6Fe8P3whA0Ys9f9zjWr6gKSIK0SDcAEJoCWFstYlcsNmqNjgQggZZisROxGLENTCXTs3PByY3mHMRPMp3EgZ0HLGJRERWARUcZiTkonfEYaovFY6jX/GsRURWDicV0Avt37geD7q6DYlPEr3/4a1z56isdx2q2iLNxLIwvxER9AqqmepLunWANB2iA0NCPu0qpCJNhz/WluTQacsPxeulcGlNjUwiFQxAUoaNiEQCWrFyC3/3sd1AUpaNzVBBYjgWv8G2vef/4/eAoDs9f+nyLdGQoBizFzppYnG5OoySUsDG3EVHm6a0RzOGA2RyjAQYYoH/0fFZNpVJ42ctehssuuwzz589HMpl0/D/AMx9NUYGk+hcJR4tO4oVjKIRoskUsksGKRUpuotKUHHaSmSiLcjNYsdYJQ902Ag24lUzuzL3ZgqIYcKEwZqYmHX9Xbcc2kc45rFBN2IlF0bBCVSUBQqWAO265GUKzAZKLgGYYsLbMN1l2HkNBVkFTLitUngdB2wroKbtisYpoLN5OLLqsKPTlEtYEX12QEeFay6iqima9hqhhhaoHePtPKqUjrJXN54Xc6Ly2v7mJRdWWIwlNtwcteqhgZ6anALQrVCmaRigcgdAMViyGGZ1Y9Pp4x3q0Qv3TL3+ESDSGy158lePvdmJ//4x/QU+RBIbjIRQbokNB+cSxMpblohhJeE/1rxjWCexjJe99tb6LRg4VbxyTTsXacJxDXVQgGdtv2aHSHBiKbCPzvbB4+SpMHD1kfe77hQYCLEVg4wK98X/mou4m5RIhBoKkwhQs7s3r+Yrblp1c+YrnnHMOAGDxslUneEtODAa1yCkAqYMVqtsqFQD4UuvnDkpEnViUu1cfAkAko2cemhB8VF9rjUlq0uOc6JGjFKxYrAF0u2Lx8Z0H8PD2vcY6+ycWCUK3g7QrAt2Q6SgmZ0rW77Trmh/mODQF/XoqKhrGKxJ+ftt9KJT142OSJ54kiqlYJGnwgp1YdCoWj021VALlWj3Q3rS1XAMURQYq0Sq1BhLR1rqyqQRChLEddG+Nq/nDmbbroE7iVa195wWpKytU83jP82jeJmNRy+a1H2RTceu96QZf+eFvQBAE3vGquVMIPB0QjNK0FytUABgxiPJeFIvrVixCvlDGTB/5UHaE2FM7Y/GqKy7Av77heXjZFZec6E05IRjUIqc+ZFWG1suAkgf6ySqzq5mSbBfEos0KFfC2LQ1SPboVi24FG9CuMOwV2ZGsQxHoJmSSOacVajhuDJEYLQI6TFs2ppqioba/hofvehgzEzMgaRIhU83us5myKoMiKEi2ISdREMGF/BWLQWQhYFihdpGx2Kg1HOtKpPu3Q40moojEIg7ix8xYNO02JbPe6nDrbZKibitUQCdKm3X/voiodCAWU71ZoT56x6PgGzxe+qaXdv2cbrEptwkTjYm+yTJrOEBrWemqlAqWYj2/a9lwFk2pCcU2iGlXLIqKGGhNbGLxqsWQBAkTRyY6LhsEhmXarFBVTcUDEw9gQ3YDFicXO5aP0tFWrmSf2F3cDQIEzpt33tNusb98+XIAOuE+wAADHH/0rFi88cYbn47tGKBLiIraph6ba/CSU7Hozls84EF0ZKIsxsQUAF2xWBf9FYuU3ERVkCFITmLRnevXCyhCt2Hs6TkuZnGurFBNP39JFJAdHsX01DhgE8c1aq0CK57O4tD2dlsGM2ORYiMQeB5ErYjJH18PqV7GyrUbwYUjAPTXYW0qMHdIuSiroAinFaosS3qT0vhT0ZGxWEFueJ5DlZqNcgixzsK/XqsgGm9ZwNVFBfPDrePPNxvQNM1SYAI6Eeh3W5YKM9gx7p9h4bZBBYBkKoNKqWjNwCkyD0C/oSAVESrN4cB0DYtc+ZBmpqRphdoQZdx/oIALVw8hlkiC55uBJ8YoR6PUkPT8Q9dXMZ5MYfzQPniY43nikTt/h5e96vUIuyac7YToU+MVnLYw5buORZkwSg0JkqKBpQk0RQUHpnWFXTrq/Z1YPqS/3lTF+0a33JQQYSnUa/rnwFIsdrihHEmEUONlyMZ3IJ0dwgE8BdCMYUvaBbG4YjVUVcWxQwewbPW6jsv7QTWsULNRDk989HmBKmw74iEavE2xuHuyhghL4YxFqb635elAP9OWpxIGtcgpgLaMRdlphepWNNKsU7EoBrsctIjFHjMWZQFQRJ0gtBOZdmRXAYwPKcWEAbi2LaCZB6muv66BeUZz577Hd9qe3zs5YV5Pm6KMBcNZXbFo6xMqitK6hLExTE77W0SFQyyavICZhoqX/aSJiZKCFUsWIJN0Xu1YxuPqaWYsEqRDsdgMylisOslAP5SrdSRjUd+GhaZpqNQalqoK0Ek3hjDIIqq326CFI+0Ni1xaVweGDJWAnrHYuU4fz+v762V9m0pEUar07+KRScZ7skL94S1/xltffhmys2h0Hg/wpmIx0rtiEeg+YxEA1q/Qm2xP7T+CZ5+1oafXs8P8XJyqIAgCH//7K9vsn/9WMKhFTn3MhWKxKQcPrXqBJVnUoddBMTYWqG4SFT2vTUZrSLdXYpFy3dR6EYuzyViUJRm5kZzDCrWNWMzoVqhJ6DWRdW03iUUjY1FsiDj034dQO1RDdjiL7GgWKOnqQZqkocL7/VI0XbHoIBZ5sUVIoj1jMdqFGrterYOkSMd6vJYJ22qRZDppvb+9YsiwZDetUAkQSGaSqJQqGHnVCFLpFCS+u4H9glF7eb3fsWQM9Yr3NhIqAUEROluhFivIdGnl9OTdT+LCKy/E8Pzhzgv3iDOGz8BvD/wWJb6EcKx3tx9rOEABJCMyRiEUsBTreU+eDWexv7QfsiZbik1TBRwKhVBUil1ZoS5dtRQAcHjvYSxY6u2A1g1YjrXOEyZ2FXahIlZw4cIL26xKY2zMUqT223PYVdiF0egoFiT63+5ecbJmhA8wwKmOrs8SqqriM5/5DJ71rGdh69at+MAHPoBmB2XPAHMP1Sszbo7Byyokm5pQcJFVh2YabduRi3HW5H6njEVKakJSNJRseT3pyOxuvIdiLMIeWXJBoEgCii330G2N2S8mx/Rg6Fq5iNzIqJWxaKJaKVk/J/0Ui2bGYiiMSqmAJ274IJTqNFacdQEo2rmfTmLRWUSKigqKIiCJLuWebUKqYCcWPRSLuRjrUEXqy1WsTEIAaIgKojbFokmemhmLAJBI+xeVqQiLSlPybUwMj7YXJPFUGlWHYrG1j6QqgqVIHCu1E2fm/poK1cePlvH9+w9jf76OaCwOkQ8+r0VYCqJhhepGr4pFAPi7q9/S9reCYW06FOdwcKZuEXVeWJqNolAXre/pzokKVA24YPUQGB+FXSLEIBtlMV1vV3QCQKkhIca1Pmd8l1aoQ3EOTUkBb3x+TMWiRjJgKBJkF4GHi5frCrzD+3d3XLYTzNeMhxhfktWNeIiBpGgQjHPDU+MVLM1GBvmKJwkGtcgpBLdiUXUrFl3vqyzqdqhu/Poa4KNJQHIu35di0XBe6MVytQ29KhbFusMq1UvBFkhM+mBiugQAKNd5LBjJ4ZhLsViuto4/E007FItuREIcStU6zvlmAzvyKl64ZSkoj8zdQMUiQTuJRVFC2Ea6ODMW611boQYtV2/w0DTNskIF9DxICz02SRfNa7fMN9WB5r7rVqizIxZnr1hM9KRYlGUF73nDi/t+veOFpmQSi70qFlMAelMsrlq6ACRJ4il7XmgfONWtUP9WMahF/nagaMpxt0IFnIrFGBMLbO6btor2PD0v29IQ5X/udKsRvRRs/Vihmoo3SZCQG20nFu1D0clcEjWvoRqTWIzQaNQa+M3HfoPGngZWPG9Fm9s9QzK+75esym1WqKIggg2xiKyMYOTlI70rFqErFmPxWOCQkz1jEZidYtEk3twZi5IogTyLxMK3LIQgCF0RQjNG7eVFLEbjUTTq3rUIpVIQFRGK5i8MSKQT3u+nDxRFwSvf9squl+8Fpw2dBhVq3zmL5neYKlMWaasQCjiSA02015JD4SHUpTpktfVZcygW1e4Ui0PzhhCOhnFo7+wynxlOVyzaicX7J+5Hmkvj/IXnt312Y0ysoyI1CJqmYXdpN1akVgzyFQcY4G8AXROLn/jEJ/Av//IviMViWLBgAb7whS/gne9859O5bQOcICiqhpqt4OIl5wXlaLHheBzQCQUTNEVCVFpWgm6QxtTeeKlFLKYis7vxzkQZcAH5bZqHDwRJEBZhAswdsTgxdtj6OTs0ipm8k1isV1u2SolMDuViuz2ZaYVKsSGIogAuNYzR138euflLnLmCgIP0u+jyFzseE2QVNEFCFJ1WBprt5qHgUiy6MxYXpMJtxUa9VnUoFhuijChHW0e5bhCLf60n8Lvt+v4nkv7EYjrCQNWMRrAHvBSLiVQGtWqr+SsLguNdXj4UxWSFt5RnJlas3QgAYDn95qpkqAMrvIRoPAGBD775i3I0JFmFl1twPJlGtVxof8AHZ55/GXLDo21/L9b1gvWyDSM4NNPwtHTdPVnDrskqlg9FUWiIFpm3fayCdITBxgXBFkxLc1EU6yIkD9Ky2BCRCLW+k81GHSwX6jgFljPOA+Wmfn5IZXV1h0bSOsnXxRRZIpVGKpvD4f17Oi7bCW5CvBuYhCovKhBkBYdmGlgzmpj1OWqAucGgFjmFILnOtYrkzG6UO1ihmnji//R/jz3i+LNFLPZiYRZO6f82Z0EsMu2T0J2IRdV2o++ZsdiHFereQ2PWz/OHM21WqKVqq9mTzOR0pZ0PwiEOgiBhJErg/rdGsW5xFjOldotIU7F42bPPaP3RlrHI24acVFVD2KYgs2dA6laoXRCLtUagZWrFIOfsxGI2ZVNZ9mjr5qVYzKYSUBQV9ab+eebF7hSL65YvAqArHt1IxiOzzFiMo1JrQJL9G352vOjis7FqFpPwxwsmsRgNUIV4YSRrWKH2oFjkWAYrFo3iqX2HOy8cgBA3qB1ORQxqkacXF/74Qjw08dCJ3gwAhhVqL84HHuiHWLSrC8N0sMJKUAQwFINaqnVd91Qs0v7nQHceoztzL0yF+1IsHjt4zPo5N5JzKAJJgkTNVoukDHV5G4wyguRISIIEJsxgxb+tQG5VDhVXLcKQjE7maMCKTSucqzGIRclmyy42dSvU5R9ajqErh5Afbw1816v1jhmL1nIBNQvf5KGqKiK2emU2GYumYlFQbVaorlqiyTe7IhbnL54PABhZ2O7cFUQskgoJURUdVp9uJNIJaJrWtZXw0vVLsXrT6q6W7RWr0qvAUiyO1PobFjIVi4RMQDDEEbIm+yoWhyPDvsSimbEYZG9sgiAILF6xeNbEIsuxOrFoDCyIioi/5v+KM0fOxLxYe58tzsYhKEIgcRyE8fo46lIdm7ObEfFzeBlggAFOGXTddf3Od76DL3/5y/jd736Hn//85/jVr36F73//+468uAF0vPrr92HpB37j2bA/WWAq2CqlkufjpUar4HJTARMVoY3osBOLDEVA7JCxCADj5dZk52wVi+lwew4gAFQE/T2QI+3NIIok0Ki3itm5skKdPHbU+tlTsVhuNSwT6Zznd4iMplHf8Sd9ml7TsOF1HwMdzyEcTzpUegAcqrR0xrmfoqyCItGmWNRsTUw7sdio1RCNJdCwEceLs+3FQL3WUiyqqgZeUpEMt9ZpHtf78yR++vBRNEUlMGMxZbz/mk+Tzy9j0X6jJ0m8w952/bwEJiq8w9YVAN573efx/T+0blbNPMG6qCAaT0CW/bMeASDK0gZx7qFYTKTAN5tQA4psoBUwffGLr/Z8vNAQEeUoXLh6CJKiYce4U3lQNSblRFnFglQYsqIhX9WL3CeOlbF6JI5sB4XdyuGYrnSU2j9/paaERNimWGw2EI50LgrNnNNSU/+8mYpFhaDAUgQ8BC6eWLx8FQ7tm71iMWjYwA/xkL7fDUHB/nwdiqZh29K0r/pzgOOLQS3yNEJs6Mq/e/6n87IdznFdQW46z6Oq2wrVQ/3hZ00KOJ8L6Dl3quJhhapfJzy/0aZiUZW8Hu0OXjfQfopDDYDUgKi2rn1uBZuqqn1Zoe493CIWF4xkHcQdABTLrfpnJBdsU0WSBCRFwV1vimBZmkQmHkKhXG07tObwyXz75LuVsUg5FIuAk+iZmC5aLhKVWgPJWPdWqH6o1L2Ixf5VAgs9sltMotK0Hu02Y/HT730TDtx2o2d2cSoeQ2kWxGLG2KZCBztUU8H33qchz+jpQENSwTA02B5VgJYVag+KRQBYt2IxdgwUiwN4YFCLPL2Y4WfwsXs/1vZ3e5P+6YCX7aOsyb7Wmt2in6wyu5opxsYClmwpFhW6VQd5kYBBikWSJB331W4Fm9SQ+lIsHj1g64uM5jA95VQs1my1SDLnQ7YpQOXhCjRVgyiKuPzDl4ObzyEUDUESJfCNFnHLUiwUTYEmaEjPd/YeTCtUWWp9jiRRAme7NvAN3soddOciekIDatVacL6imcE4R4rFoXlOK1RAtx11vGaz0dX79cq3vxLfu/N7bc8HgFgiZm27G6Sq1zlBpHncPsgVgFBI/1ye96Lzulq+H9AkjdWp1ZisTwaSoX6w56SanzdJkxCiQ57Zo0PhITTkhuO7b5L1XJiDpEhdKRYBYPHKxTi8d3ZDTmbGoqlY3F3cDUmVcNnSyzyJvzgb1xWpfd7v7S7uBkVQOGf+ObPa7gEGGOCZga47pYcPH8bll19u/X7ppZeCIAiMjY0FPOtvE/fu15s3uya6tyE63tizR1cDHdjzlOfjJRtxGGadF0tF1bDLRXQ4FIskAUlRfaf7vIjFMEv1pS4yEQ/RnjaLlqOrR5OHJAhH3qGZuWei35vDyWOtC39ueB5mppzEYs1mhZrItDepZEmCcHQHpn91PcpH90EQeKtZF4knUauWHbYEQeSJqKggSQKy5LyhUWyFZr1atjIRzezEhkHG0SSBJRkPYrHaUiyay9qJxWbdaXshyEqgFWraVIP5TEJ6WaG6iUpJFEFTrc/ApoVJzNREx2cZ0JWKw/MXWr+bJLogKQ57Vz9EOcqXWIwn09a2BGHTpk0AgAXLvafyZmoCkmEG6+cnkYow2Dvl/L79ceeU9fP8tD7FOlkVMFXlMVMXccailIMY9MKakTimayKaUvtNeqUpOd/PRh3hSOeJzZxBLNYEfZ2mClgFBYYiQXXpe794+ao5USwysyEWJQW7JqsIMxTOWDKw8DhZMKhFnkY0DOLpqV93XnY2VqEmZB4z060GExS3FarbKlX2fl1zYkFwNgQ10tsKVTMm9odCHuQhF+uKFAoE236u1PxUAqoIaCoaSuvc6CYWaw0eCFAZ+GHPoZZKYMFwFvmC89gVK3Zisf0cpyiKZae5Y+9hNHnBqkXSsTAURUW51gX5ZWUsEm3EYjjUaqooimptY7namBMr1Kphwea0Qu2/mbfIk1jU1ycZ19JurVBZlsFSD4UAoCsWJY9rc7cwyc5OdqhbN63GU7d8Dc/ZsrHv1zqeqItqzzaoADA6ZCoWe3vuuhWL8NT+WSoW2VM7Y/FvFYNa5MRgtsrBTrDbYJpQ1NlboQpKH8SibaCok7JJkHVi0e4s40V2BCkfSZAOgs5NLDZqjb4Ui25i0a4WJEGiartOeRGLmqZh6t4pHP6fwzj616PQNM16P0JR/ZxerbTWwZCMbl/Lq5BJZz6mpOrkqOSqRTiXmt38HNQrdcTiwaQuAaKjYtFU/c2ZYnF+O7HoXp8kSl0pFimK8s3u62SFCjgJNzesberwtV26ZCkAYPWZT49a0cTmoc2YaEyg4eWI0gH2nNRmowmSJCGpki9Znw3r35+K2FLUmsRiKByCqIhdKRYBYMnKJTi099Cszn8sx0JWZItYPFY7hiXxJdg8tNlzeVOx2O+5b1dhF+bH5nuqIQcYYIBTD113T2RZtqZJTDAMA0maxVT3KQ63BeMzCaVm8Pv612POBpVJKAC6YlFSNMg++0+oEliKxFTVSb4kfawGNQ04MF3Hf/5hN77y530oNNq3Lc71NkFHQO9FNmxWqMm0s4Dmm/1Ni5sZiwCQHR6B4Mrsq1ZsikUXsVivlPHBt78atSduQ/byd2No3TYItsyOUEy3lLATd2wQsSiroEgSouC8oVFdX/1CfgoC34Qiy4jE4miKCpZmI/jia87A8qH2gtquWKwb6sa07f2r15zNLFnVAhWLiRADkkBbQ3fBkmW47CVXYc2mM9qf4yYWBQGMTRK3bl4CGoD908Hvo0k8CrKuWOyEGEcbitz2x+LJlL4tYvANJNlBujdTF5EKs4iwFM5dnsXBmYZldcpLCm63E4vJEEhCJyO3H6uAJIAL1gx1tC1dNRKDrGqYqLhscjUNFV62VKSAnrEY6oJYzMb059QNYnHF2o0YXbAIGsWApUl0EbEIAFi8fDWOHtzvyEDtB/0oFk0rVEFWsHOiiiXZSEf15wDHD4Na5BSCLDiVj5oC2HOC3RmMYs07Y3GN0dzd/VvHnzWC0klFn2nbBWGxRXqZIEjAUAY0hYDP1I6ft2+fCS9lgZ9i0Zhkbsj+xGK5Wu8rY3HvoXHr5/ke2TkOYnHIWYvU6k285B8/bhFzl553hoMUTMX072BXOX6mwoRk2uxW7cQiAIxNFaBpGsq1uoMM9MOsrVC7xILhLN7y8ufh/K2b2h5zKyB5oTsr1CB0Q6oGIZN0qij9QBAE1hqWrM8E1AUVsUiwJaAXNq1eioWjOU/FaRDWLV+Ew2N51Or9Z+cNFIunJga1yN8OZE2eNbFoJ4C6RbekA6ATl27Szyv3LeSRAW2CIihLqQcAmRFnLdKsNmevWHTZiZOEk1h0q/hEXsTH/7+PY+qhKYy8fASrLl0FAJbikA3rx8iuerSIxaYKhVAciitZlUEQhIPcBNqJRdOutVatIdKhFiFAoF7pQCx2qVjkCR4L/35h299NRONRvPDqF2LLc7YAcBLWbcdOELsiFoMQTUShSN41NKno67YTbm7EjVqkWytUP5iEWi/fCS+cOXwmykIZ+Ua+88Iu2PeTr/MIx8KQNRkhJphYLIutvt/iFYsxNG8Io4tG9YzFbonFVUtQr9RRmOo+bscNU7FoP09sm7cNw2HvKKgEm+jbClXVVOwt7cXK5EqkuFS/mzzAAAM8g9D12JGmaXjjG99oWfgBAM/zeMc73oFotHWRvOmmm+Z2Cwc4ISh5kHcm4iEaO8cqWD7cet9z0daF0bQMdFtQutdRqDsJjVSYsewcTRvZXZN6sfmJW55ChPUoZlUFIKk2VWUnsLSunrIrFt1kT6NaAQyrCQCIdvkaE8eOwLxEZ4fbp3Tq1TJgrGpkuHUxV4UGPvq2l6BeLmLkqo8jtGgjCGUMgtCaBIvG9ckvnbiLWfviB1FWQXtYoaoECdhsXaanxsGF9WZNNKYrFsMMhXOX5zwJ33q1gkhMLxZNYjFjI18aLmJRUTUkkmnAp8dFkgSyUQ75mvMzEY5E8b6P/5fnc9yZjaIggI60mrPLchFwNImxcnBDyMwD5GUVsS6IxahBLHoNDsQMxaIoCCCDBxwDUaiLWDUSQ4ihcPHaYdz65ATGyzyW5aK4a8+0RTICeqbp/GQYhYaI8TKPhekIFmc7NyVXDevv39FiA5tseYwNUYGiag4VcrPRQCgcaXcUdIGhSCRCNOqCvn3L16zHd3//IK7//S4wFOGwqg3C4uWrIIkCJo72rhSIRCMA9BvMvohFQ7FYFxUcnK7jis3zBvmKJxEGtcgpAoICFKFNTQj75LMXcdcstv8tu1L/d8fNwEX/Yv3Zyuz1UQrQJACx3spVNBFKAkIFP7vjEbx2wwu8t3/sUe+/AwDVfr7wzVg09rcqtE6usaiTOClValhkf36Xjb09tozFBSPtxGLJZvmWzmRAUSQUo/Z6zmv/GfsOj+MVz38OfvrbuxDmnNufjuvb2Im4AmBTLJIeVqjOhsyxyRmsXb4Qsqx0rVhMRLsgFqMuK9R2UUogWJbB/3783Z6PuYlKXhDRte+3D1KzJBZNstMrB/OZjJog95yvCADLF83DkT99p+fnrVuhk667bI3xbpGIRUAQxKysdwc4eTGoRf52cKIUi1wPA0WmFaodvSoWCZJA3eZCkM46B3gb1YbnOjvh6IGjVn5jzjXcQZO0TgoaXxmGZVpklKLh+rddjyM7j2Dr67eieXETTFPfx6pSBUiAiOnrrZQrgHGqZSkWqqpC5VUopOLIlZNV2VuxGOYAW9tqemJad3IKyFg098lULI4uHPU9BuZxtZOUiXQCcH0sHo88jtR5Kewq7sKmeZvQpJtY9elVqKp6rUVRFK751DXW8nbCOhwNg2ZarV1J6M+61o5Ywr+ZYSoWg0jz2di92iGq+msEEePdwFTnHagcwPLU8p6e61YshpP6dylCe9eguZD+Wa+KNne04Qx+cv9PAADiPrHr7/jilYsBoK+cxXA0DIIgkMqmIOdlB5n5gqUvsL4bbiTYBHiF74tYPFo9Cl7hcfrw6bN+zwYYYIBnBromFt/whje0/e21r33tnG7MACcPyi77SDuRkYtxOFRoOMgLjmkVLoxhR9kIIBaTYaaNvLTnLLpJm1dtWYjVI3Fc9xuXdauiW06Z6qwm9HWIWnAhRZEECBex6EbT/VgXnAjfbDjUarmR9iKzWikDRq0ejkQRMgg9kovgwhe+Cs+/4kX4yJ/1STmCYqEqCjTjhiZsEovVCgCdtAyykJUUXZsoy85jrcBJLM5MTVp5eNF4As1JBekI47AWtaNeqyJqEIsNg0TK2MjlRr0GlmsVEpKiIpnO+BKLgG6n6yYWg2CqA63XkATQtmYeTZJYORzDRJmHomq+pFbFyCsUZLUrxWKENYnF9ptMS7EoCehX46ZpGkoNCdkoB44mccFq/X3ZPlbGonQYv9s+gU0Lknj8qG0CLhvBVJXHkUITF64ZQjbaeQJuJMEhE2UxXnZamJiZk6OJ1vtnWqFKqoowSwd+FbIxDnVRhqppII3vpSjrGZxedsVeWLxcn0jtxw517dp1wL0PAgA4j9zVTohzeoG9P1+HrGrYujQzyFc8iTCoRU4RUDQgi+25iPbJZ9FjKMSLWDTBV4C7/8v61SIWA2yafInFsjNXbdehCYSEApb4r6kFr8abz427qVi0E4tulGsNIGk7pyc62wqpqor9RydgDiB5EYvFStVq5pEkieFMCuN5fRr6zS99Hi46ezM2rl4K4IP4+W33OJ6bMYnFYhfElZWxSBvEYutY2BWLJElibGrGIgO7ylisBVuhmuuK28jaXLp3YjEI4RCHcIhDk9ffS0GUThrFYqFctX4+FVDllb6sUPuFqeZ8an/vOYvrVy7GgdtuwJIFc5PfPsDJhUEt8rcDRVWCLQg7ibE03YKzV9VWL+osUW0nKbwUi0FEBgnSoVi0k1QA0Kz1r1hcBP1cmhnKOBx1CBC6YtF2yUsb1tUEReBZf/csnHvduSgMFfCDnT8Ayej3Y7IsAwxAG7EftVLNIhYtxaKgW6HaiRFZlUESpLcVqsGphuNhTE9OQxREKLLiq0Q0LTAZlQkkIAFYx9VOLCYzSWDcuZyZ5VmT9AHZYqgILsehOONd+9pJPYIgHDmJkjh7YjFIhWlmLAaR5izHIhQJQdM0i4jtB3VRf3OCiPFuMBodRZpLY6zWu2W1g1isNxFOBROLmbA+AF+XvZ2zJFXqmnRbsGQBaIbui1gcnj+MH/zlBxhdOAppUrLOAQQILEst831egkuAl/m+MhZ3F3eDJmlsm7et5+cOMMAAz0x0TSzeeOONT+d2DHASgSYJS8Vl4vEjJevnXIzFjrEKRB+bQtOOsiH658OkIgyKLmIxE/VXBQ3FQ1jiocIihSpUJgST/2oS+gWa7/Kj3XBlAdpRLveeITV2+KDj98xQe0OhVi5ZxCIAsKEwDn/h1aCiSbz29vuNXDiDWKT1Y2LmPYZjNmLRGCKjSL1Uc9+uaJoGUVZBeATOy2qruAuFI5iZmsC8hfo0VDSWQPOIgnnJkCcZp2kqGrWqRcKZikW7qqtRqyISa025NUUFiVQGCBCgjSQ47Bj3fxwAzHsRNZoFw7KIRFuvIQqCRWqb2LQgidufmkJTVCwlmh2CpEAwgjh5SUE21rkBF+UoaID1PDsisQQIgoAoiH0Ti3VRgaioGE2GQBAEhhMhLM9FsT9fx30HZlBqSnjPmQsdxOLyoSju2ad/Zs5ZnkWI6XwjQRAENsxPYKzUhCirlvLVJBbnJVvFLt9sIByJQpBUcDEqUHmYjbKW6pGkWsSiboXa3U1FbmQeItEYDu/fDcDboiNov0z0QyyGGBIUSWDPVBUhhsSWpYN8xZMJg1rkFAHJAIqINhm0PVfRy16JL3mvj40B6aXAY98Dp+nXshaxGGBBVhkDkq5sGTfRCODOx/Zg8zClE4sBDUaVZEB6NHI0XytUnfQs8wHEYrUOZHqzfzoynrfUhwCQSsQQdll9FW0qAQBg2dY18v973Yscy4YNVY6ikaAItT/FIkmBdxOLNiXkaC6NsakCyoZlWHeKxc5WqBzLgLXZUT4dCrJsKo6jE3pzje8yYzEIsyUWaZpCIhbBTOlUJBZn11jsBYlYBAtGsnhqX+/EIoABqXgKY1CL/O1A1mSL8PFCvhlsq0iBgqiIPeejcWRvd5Ju5ZGXujCIyCAJJ7HoRqPae8ZitVRFuVC2iEWaoZF2ZTrXyjVgvm27KQr53+QxdMUQLnj5BViWXIb7xu4DABCMfo+nGvUNyZKgaMphp8pRHCRVshSLdmJE0ZT/n733DpMcL6+Fj7JUuTpP93RPnt2d3dkMu+RkgjEOBAPXgH1t4xy4NvZ19r1cg+8FHPCHM5hkbLCxjW1yMHGJu8AuG2dmJ8fOFVXK+v74SSrlkrp7ZnZmdXh4drpKpVKpVNKr97znHEIsxlmhOvxPY7KB1cVV9B1Xh63IWOx3ExSLI/oeXSG9xgqTen6F4JYoFlM+u6dYtNJtfmtbUHO5RGsSiZcVFEXhwPgBnOmdyZVxCACKORxSVAcqRKdPUubiv3eO5lDja5DDefEgwwqmbSbmM4bBsCQH89SjG8t8dtW0fivUXfVdGBPHEl9T4SowbXNDautH1h7BfGUek9Lk6IULFChwVaCQYTxGcP+Z/CTWxYLEMZ6Ky8U9J4eTUhMVAX3NxGInwV7MIRMGCZ7sANAo8ZH3GNtAjhnlWKWNypNLQhyxqC2dgHL2EVhq/ozFMyeOBv7meYEo9XzodcmEv21b+Ic//7/orK/BVrowVs9A4Bh0/PmWjq2J5ZC4QStUAoqiYpWFhkVmI6mYSSPDd2/TnJzGytJ5b53lahWKTqxQ45RamqrAtu1hxqJqgqaG2XSAQyyWh82srqKnZiwCwLb66GZRTyU3ErbT+K359q2mqmBD23vrQgMrPdXLUQyj7TsGNcMKbHMSJIe0iyMWGYZBpdbA6PHVZKz3ybZubwz3x9P2TeDEah8fu/8C9k9X8Oxrg2TbXicHU2Bp3LErqkxJws3zDZxvK+j7brDcfNVtDR+x6CgWVcOEwNKpxOJEVYCsGZ6dMQBopuXZD2cBRVGY37V3Q4pFP0Qu/yWOoiiUeQZ91cSOsXJAiVugQIEtAs1GMxaBIJmoxykWW8nrXHgSoPXwnDqZ6B1lhQoAWD4UfUwcMUzQW0x8yqIF8tnCSLRCJdvWUpKblq1uP/n1CTh84mzgb4qiMDsVrEVaTqPLtm288R0fxsmzS0hCSXKIRee2QeI5CDyXzWrTyVi0wEDXgwNnfrJzbnocZ5dW0HYsw0aRa5ZtodOTUa+kKBb7ciSrcSMZi6Mw4WvmkYzFzd1eZVFrjsJ4o5a7kf1YR3ugX1LFIkDsUDeiWCxQoMBjFysDIlvPolwy7c1ZodKgCdGVcx0Cm5NYDFmh8nS0bkhVLI4gFjeSsXjmRNRGejzkoNBz8p5t28bH3vMxHD90HPKjMuyYyBGXWDSdvogNG7VGLUAs8gxPvjPFgkVbMOxh3aFberJi0UFzqomVCyvodcl2pRGG3mfo9tIzFnsyOJ4D7xumqjfqicu76PDpNVaY9KmPDdd50RWLTsbiqPzQrbBD7esOMbtJYhEAbpm6BRf6FzyyMitUY7ivB/0BxKo4cpuaYhOyIUd++y4Zm+fz7Ni7AyeP5FcsujAtEzZs7xxAU3RqBmeVJ7XyIO5eLAWGZeBY+xj2NveiOep+qkCBAlcNCmLxMYBjyz18/5/fhT/46EMX7T0MR/GWpccg8Qz6arD5c/eJYVjwRIVckI4shqaonAZhlozFZolDTzEij20WbpagESoYI3B2RJwVKi1VYesqtEG+ggMAzp46HnnMzVk0u04QeKcFS1Ow/OE/xEff/zfYuffawPIBJSdDCkJXsciwPESp5FihDsHFED2aQ3zFEou++mZ8cgarS4veOkvlKga6ibIQr0zTBk4AedWxQtUMSBwTUIfJcg/lStVTEPZUR7GYgtnG6GZRO3TM1OrDgkXXYhSL2xuwARxfjSeJ286+LvMMNMOC5LNCTfqtlB0CVUkgzsMWrXmx5pCgC2PDYvPZ106hoxhY7qr4wZtnMdsIkrC7HGKRooDxSvYG9K0LTciaiXOt4RReW9YhsDRq4vD3OJD7EEtlaIYFkWNSCcKpqoC+asIwhztQMy0IORSLALFD3TSxuIGMRWD4He+frqAhFcRigQJbDoYDLC09YzHOwlRNabJIDWDhTlxTIdd1271hNlKIxZVHYtbj2HAl2TYtx7zGgcmIAM2gPyDb3pHJe8dlLOqGBdOZZF6TkxuO7Q0Qi/58RRdzU8Fm3nqnB8Ww8ZoPK/i9v/wX3HRtsiWSqyw0bCdTiCLEVR7FYlxJWPI182anxhzFIrlep2UnAkBPJkNOaQRktz+IEIsXQ8HnV0Gqmh5PLudAw5drtFFycKy+iaDnxyjasnFJFYsAcN3uhQ0rFgsUKPDYxPk+kYplIReyZixatgU5JhvaJRbzWKGatpkrYxGIWqeyNOsRaEqP1CRpCimaoj1lXRzkXn7F4pmYfNrJmaCKqdvuwjZsnHvvObzn/74H+27Yh4VfWgAVN8TqtBpcxaJFWag1akT16IBjOPKdKRZMJqhYTLVCddCYamBlcWWoMkxxRQAA2ETNOYpYLIVqEV5Mr+t0U4fMJxO9wAjFoqaD3mTecyWljqBtGjTokYrF6hbUXO7vdCvy+m6euhmqqeJMN192sl+xOJAHEKrkmCnzyd/7uDgO2ZBhWMH+lUvGSlz2embHvh0bViwChFQHsme3usSibKQfg2Gc7JyEbum4ffr2XIrQAgUKXNkoiMXLhG+dHBJ1q45C6fRavhN3HnzpITK9fnyRKA81ZwpMZaMXwxLPoO/rAFm2jW/7FIt1iYXA0jixGtpe56LpEotpGYsNiYdqWKA434SYL2NxIxaGAKAMyFSN3G3FPm/oToNLJcVBWLFoWTaYcoM8l5K/mIQzJ46iFLLTnJiewbl3/RLa//mHAEjG4vp//S2UE/fi1976Thy4+fbA8us+dZ3t5CNYPtvZWqMZUCwCiFUWeoq6UDHDMCx0Xz5gc3Iaq8sXvHWK5Qo0wwooEP3wiEVHsdhTDYgcE1BNyr0eSuWKR9DImolKLX0yL4tisaX47EwsO0BWalpUsbhvqgKeoXG2FT9t5dp+zjUkqIYF0adYVPrx33+JJ8dmErE4Spk5Cmt9DTQFzPisSO/YPQ6OobBjrITvvWFbhPDd5dgEK7qVi7w7uJ18JyfXhjeSrYGGssAGclMHgz5EiewjiWNSsxKnqgJ6alCxqBsWeIbOnLEIAAu792+eWOQ31tx1j/0n7BrzLGILFCiweSwtE8sw1aIBQ48Si/5cxThiURnh7nDwld4/h4rFlKbH6tHoY44ivpp07x2ncnRgMQJAM1hzCLdzKw4RGrIos20bi62eN9CzNkiulzZCLB4+cRY7ZoPNu3DO4nq7h9/9nIp/eUjHB/7vL+K5T741cX2ustC0h+fw8UY1o2LRyTE2o01Vf8bi7NR4yAo1vZnnEpCjrFDDxCLHbY70i4NfBbnVisWzS6sb3Katt3y93GjJOsqljRrNbwzX7ZnHo6fOQTeS4x0KFChwZWGxQ5wHlEFKBrMDG7bXlE/Dp09+Gs/71+ehHapTaNAwLCOXYtGyrdxN+YhikeE9NWB3ldQkaSpIhmYg97dYsXjsDMYmg4PFEzMTgb+77S6WP7aM9S+v42ff+LN42gueFk8qguQuAoBpkJrJsi3UmjV0fUNOPD1ULJq0GVAsGpZBvo+Qe0KAWJxsYHUpuxWqaZAMzkoteTm5J6Oc4q4Qh3P9c7CpdDI6Qiw2ttYK1U+WakqolrYJMaab6b+NrVQsho/xjeD68etBgcKpbj6Szr+vlb4CzolwSlMdTkgTGOiDRGIxj2JxYe8COS5TyP80uOewrORshSPH8yAuliIFh9cPQ2AE3DqdfE9RoECBqw9Fx/Qy4P1fP4mX/tXX8PH7Rxirx8CIsYXIguVlYnH1iDPF3lPJejriTGTZEs9C9ikWT6/J6PiUYgLLRBRTBGSdXAYr1LpELsaUr/niz+jboLOpB12NvwiePHrY+ZejWAyRR13VAOVkEiQRi7Rzw+CqBN1vxAZw9uRxzMzNB5Yfn5yBvnwcnK3BNAz0Om00nv4azLz6Lbjtad+D5niw+bfWHxZuFhVULAJArTGGfi/YzGND2wIMFYsI3Qzxogjd1+Abm5zG6tIi5F4XUqkMw6JgA6hK8cWbqpCCxlUs9lUDJT5MLHZRqlRRdki4gW6OnJrzE2lJ8CsWDcsKkHhxGYssQ2PfdAUXOgrMmN9Oa6CDoSnM1EWohgmxNLwp6KzG28KVHLIqzgrVxtYQi1WR9UhZABA5Bv/r+w/gp56+C/Nj0SI0i9ozDhMVAdNVAefawxvrlqyjJrLgfSStIg88xaLEp9+kTFVFyJoZ2D+aaWXKffRjYc8+yL2up0LeCMQNDihUBJbkK+5IV9kWKFAgH7761a8CAFa6mkP4hc6j/ml/UwN81z7YNqCOGPipTqGtO797T7GYlrF4FtBDjUWHWJypJFyzlpLdJUyaB6jhubvnNGLCGYunzi3BsmzwlAEwPNr95G1s92SAza9Y3LtjNvDYrE+xaBgm1js9/M7TBHz5x8t45QuehOnxRuL6XAJQDxCLNay1sygWyXVbMaLXYFHwE4tjOLe0io7T2AwTgmF4BGSaFWpPHql83Ar4STxlCxSLfhXm/YdPbHCbrp5sRRctWb8MisV5GIaJR0/lv2crUKDAYxNHz5GhovZatiga3RhNLLaVNtpqGw+tBWsEV9WVSCwm3KrEWZmmIaxE4qjhfbymarHL+Ak5juIgd1OIxd4gv2LxxBls37098JjfCtU0TPTaPYw/fxy7f3M3nvPDz4lkMPphM6SOCFihNmvodoIZi65i0aItGGaQWKTsaJMpQiwuDgmcUVaopm6OXK7f649WPoZwsjPa9jJsQ1pvDoe4NVVLtbrMAv9nclWvfkisFJvB98njn8R7H3xvZJs2CpdY3ApU+Armq/M43z+fmew3LTMwXKAMFPBOVMooYrGv9wPkNjAkKfNaoQLAyUc3ZofqEsBZcx1rPKlr/UrNLDi0dggL1QVMSBOjFy5QoMBVg4JYvAw456inji7lt9rUDAvf8qkHM7/OJlVrS4tTtgUJwDLPBEjBB891EB4cm28m39i76rkkRRcQJBFd+K0XNwtdjb8IHnn4u4G/B/1goeLPN+x34282aEdF4eY6tkCKrj4EnD15FNOzQWJxYpqQt5qm4qde/Cx02utgyk3wU7sBAI3x4IV3ve9XLJJ9aflsPKr1RoT05FkKtmVBNodflEss2qEpa16QYPjUZIRYvABlIEOUSt53X01SLCrk+B0qFk1IPBMgovr9LkrlSqZjwcV0bfQUemsQViz6rVA1cDHk5cG5OhbbaizR3RnoqAgM6iUOim6hVBk2BztrScQi+S3pMUSladmo1jdHLK72VNQlDkIoH/DVd+7Eq+/cGatO9Ss181jtAMD1czUsdlSozv5pyRqqofdXBn0IpQpsDD9/EiaqpNB21aC2bUM37fzE4u59zntvXMnNsxubUJhtSLh+Ww0TOWxlCxQokB0GaIc4TMlYNNSgotEYRBWOMXiw4xAq7rIJGYs9nQK6i0EyEwDEBgBgppJw/lhMJhYtmgd816HewLmeh5QH336INDV5ygRYAd1Bsl1rq9PbkGIxTCy6isVPPWrgwPf/HJbXWmhKFJ4wR87N0xONxPW5lqW6NdwnY/VKNitUZ1I75LAPkecCA0dzU+NYXmtjvd2DKPBgmPRrRqfnKhvTicVq+eITUX4Sj1ihbk4l4LdCfWiD1lcXw/L1cmO9r12WjEUAOBRj6VegQIErE30rH1ERR54k4VjrWOBvxmZgmEbi/Rk9Ht+Oy6tYjFihMsP7eNsZKA6TCkceHDrDJCkWLZXUUnJX3pBicfuuILHoKhb7h/r4qef+FNaW1sCIDEr7CMmSSizSDrHo9K5M20S1UQ1kLHIMB8M2YA9sgAJ6xrDfFiZ4XAiSj1icbkDXdCydJ30AccQ1x92WVCvUroxSziGnU51TGHVLn2aFamjGphWLpUrJ63dZZrT+llgpNj/0Y8c/hnsW70FLbaG6BUNOXS2/i1gabpi4AYv9RShxzigxCO/nQX8Atkx+XyUu+XudKk2hp/ciikWXpEyzUQ1jfs88KIrC6Q1as7uWtZkVizypQ/Oc+zRTw4nOCexr7kNd2DyhXKBAgSsHBbF4hUHRTfzv/3ww9+t6NimYOjodIJUAYKUXvGCUBTZgY3r/2XZAoagaFnY61ot6TJFBUwBDU1D15AZgPUYNl8cmcRQ0Nf4i+OhD9wMAWOfiGrYUbfuJxYxWqLaTw6TpBlprqxFicXySEItyr4fd+65DvxNUGzYngorFVb9i0Vl3ULHYjGYsMjQstY81jfHyeDzC2DQC0/O8VIKfExubnIGqDNDrtkFRlJeN2UhSLHoZi6R47WsGSjwbILdcK1RXeaoYWYjF0YVOazAszMLEoqYpEcUiANy60MBKT0UrRhGyLmuoCByaJWLNK/gUi4OQKtSFqyTUYo5v07IDuY8bwWpfQ6PEb9wOWMtutQMAN883cb41QE8j+7Y9MFCXuCFRbNsYyH1wErkxKI8gFicrorMesr9ddazE5bvcbNu+AxzHw7byfR4/hJxkpos/+uGb8Ac/dAPGK5fWcq1AgccLDJsh2XsRK9SQYtE2459LgXtNxoiMxbMyC8gr0dxGkdwMxxKLtg2sJFuhEsVilFgMZyx++6FHAZB6CayITj+5udHuyrmIRdOycPzMBeyLIRb/4psaXviPMvbvnEOnH3R2mB5Pvna5Vqj++RySsZjdCjU8YCQJwRrDVVSeX17zGllpaPdcK9QRisURysetQECxuAVWqJWSmGkfZN2mqwVrfe2SKxanxhto1ivkey1QoMBVgdzEopW9uX6kFYxxoEFDt/XAvXwYcVm6eTMW/aQhBSpWXRi2Qj3ywHBbWYqF3IvWWYd+9RCO/O4RGLKRSwFnw8bZE2djicX1u9Zx4i0nMDk7iYEcrEWakynEIhVULMZlLPoViwDQ04bPmZYZMcqgaAqszyK9MdkAAKxcWCHPj7gWG84A90jFYs5a5GTnJCQ1/XoXViz6iUVN0zZNLNI0DbEyPK5MMyRG4MrQzSix6EIxlC2xQs2ShZoHt07fimV5GW01m2I5TEAqsgJWJMdMGlE3IU1AMZXI612yTmKz1zOiJGJ6+7SnPs4Lzwo1o2KxzJVBgYocY2k41j4G0zbxxJknbolt7UZAYev6yQUKFMiOgli8wvDpBxdx/9lsF0E/NJCL38CiIYeaO2EFZJlnAg2gB862sT1kfbowToojv0WqHzxDe8qq4yvR4r3EM559ZxyETeaaJVmhPvrwA7jwD7+B3V2iXAxbobZ8xGLejEXFIaKmfVaouqbhi5/6TwCAIEr4lf/zxzDN4D5Ls0I1PWLRl7FYb3pZki54hoKlyugYDBSH8HKtKC1TA8UOL+68kyNo6aSoGZucBgCsLpG8CdnJHYgjfwFAG/RB0zSkEimgZdWMfJ9yvxvImlR1C9YIG99qBsVqK2CF6lMHUpRjhRqjWNzegA3g+Gr0OGzJOmoSi2aJw0AzwYmlwA2EqkSPI1exp5lRsjRMdm4E67KOsRIPMScR97rn7MWT94znthG+ZaEBxbBwdp181o6ioyFx3m/QtiyYhgFWJN93RUy3wXEVi10nD9NVzo6yUA2DYVnM7diV6zVhbPQ8IvEMDszWI1mWBQoU2BoYoAnhFFEs+m6+jZCiUcvXCHQzipMyFs/2WaKmWzsefMKZPuZjBlWgdlJzHq2QdZnuWkLT8YpFAADDpxOLvXwZi+udAUzTwt6FIbFoGCb+6RNfxi9+QsHr7uDx72//HS+j0EWaYlFyLEv9isXxRhXdfobsFVMHKDpiH+7PVwSIFSoAnMuYKehlLKY06zr9S0UshjIWN2mFStN0YLuXVlub2qarBatdFWXp0ioWKYrCdbvnRy9YoECBxxzCSiEXPSsfUTEqR86Pxf5igCikQacqFoHodpqWmVux6Cc4KOd/YYSb/YcfOOz9m6XZ2Pw2s29CPaNC6SmgKAp2yNbcohyHpNDn01Ud/W4/QCxaloUvfuyLOPvOs2g8pYE3vvuNETJzbCI5hsKwDfACPyQWbQvVRjWgtPRnLAJBUsqwo1aovMgH7v0bUw0AwMriSuJ2+GE6dWpcxiK1m4JaUyH35FxWqKZtYlFeRFVLv467KjQXkYzFTbonAEC5PCRMz4cswUtsKVaxmLRNG4WfHN4K3DR5EyxYON45Pnph+OxAndPAoD8ALdLgaT6VQHPtQMMEpkvW5SEWgaEd6kbgnmMkLtt70hSNElfKrOoESL6ixEq4afKmDW3jZjBfJXXa3sbeS/7eBQoUKIjFKw5/86WjuHl7w/tbi8l5GwVZDTbyvvposIlTFlmPnAKAxY4ayb+bi81YHEJgadQk0lj5+P3nA5mNALlRr6YQFGwMQZQHuha9CJqmiaOPPAD1zIOYr5NiPWyF2g4Qixkm8X0YOCTl9OywgD526EE8dO89AACpVMKgHy2MwsRiSx5ug2lF7SdqjWjBzTE0bH2Arsmi7yjPNOc1tqmDYoZFDyeRwtd2cqeaDrG4skSKRfe7T8xYHMgoVapQDQuvfd89uNBRUBGCmXyDfi9ALCqGueF8UD86yvDYNUzb2xcURUPX4onFfVMV8AztEWd+tAc66iKHRomHapiwAAjS8NgeZnIOIbA0aAqBnEoXummiWm9s4JMRWLaNtqxjvJJfsfgrz70Gf/mqW7E9xaY4DjfONQAAJ1b7UHWSjThZFbybLMPJFaEFckNU5tMbpuNlMg3bV4PHYV5iEQDmHTvUjULaoGKxQIECFxeGzRBSL9z0033n6YhiMXT9FNIbLq6VeJIV6tm+cy5beiT4RNp0RjtkhxhSFJhU/HUzSbEIgFihymmKxX5sxqJuO8MfoYn0lQ5psO1d2OY9dvjEWXz6rm/hr75PxJ88X4Si6jBDjhNpGYscx4KmaWi+616SIs6wbDB+uzHLACjGs9t2IQnBzzQ3TRowZxezEosyaJpGJcXqtNsfXHLFoqrpwCZVAgDQ2GTO4phDLA6uIqVdZ2BccitUYGiHWqBAgasDskWuk1njI9LsAMNqw+XBcmB5GjQM24AVlsqlrN+GnYtYZGk2oFBkwKQq7cx1cj32KxYZmsEgZVjIIx1DH6NfIo/36WBPZdAl6/ITi0tnl/DFj30RM6+YweyPz4LlWPQ6wdqukTLkZFomeJH3+iKmbaLaDNaCIiPCsIxYxaJhGrBD/Qg+VIvUJ4hrhatYTMK6Rgbz9XHH1jJGsUg9hcLqtlXIPRnllDzoMFaVVdiwMW6Mpy6XpljUNX3TikUAAaXlsUeCNr9lrgzN0mDa0WFrb5saNe+72Ci2MmMRIOSTwAg42z2baXmPXHOJRXkAWqDBMVyqindcIt9fJ+SM4n5veTIWAWBh7wIaT22A+UEGa4O1XK913zOrYhEg328eK9RDa4ews7YTTXFzQ/YFChS48lAQi1cYeqqBJ+0dFhlrMfaOYfjJMgC40A4Wjd890w4QlCWe9cgAF+FMxTgCxw+BG06nWzbwD9+MBg03pIuXX2bGhKyfPXksktcWtjttycP9GbYbHQWl30VzfBJSqQyjvQjbsnDNwVvwV//yGW+ZbqcVeI0NoDE2zFi0bDvwfblkXECxGKOI4xgKtq5iYLPoOq93rWhtI6RYLFWdx0mh0JyYAjBULLpWqImKRUVGuVINHHsVkQ1Y2fYdK1QXA82EsQlLS4CoARXflORAM4NWqKoaa4XKMjT2TldwoavADN1MtBUdjRKxQrVsYKCbEIRhwXXscDRLi6IoSBwDLcbeVdEtj+xMs7xJQmegw7TtgPVwHjRKfG77tHqJw2xDxIW24h3/flta97fEOMTiKMUiz9Koij6C2zkPlEYQknFY2CSxyG1S+VygQIGLA9MpPyl/piJFBxWLlha0Sg1nIY6AR7gZ8XXSksISAmglOkCSiPYZokZLsD4KKxa9bXHsx870GJxfWsOFZZ9TBCOkKhZb3XjF4r8tzuM992rQpOBw0kpbhiQKmJ0aw+m2Bd20cWDvAg598h342dvJetY70SGniWZyHgpFUSiJAvwmFbGKOIrCoRULTWsNcK+BJskcVLRgXebmNrpo1isQeA7nlrM1S9q9PmqVUuo1L8kK9ejAab5t0rLURUCxuAUZi0DQ4nUjxKK7TWvtrc0mulzQnEG7NCL5YuG63QuX/D0LFChw8eBm7VlMtnu1sDLMj5baCvy9MljBwFfbMGAI0ZVyX+gponzgE+qJOAi0ECA4KFCgU9p8tmlD7sk4c2w4LMXTfKxi0YVHAI5ONwEAT+E4u2MWekuHpVmYmZ/B+7/8fkx87wQoioLckyP7RZREnPqLU+h8qxNRdBmWAUESvFxDCxYqjaBSkGeCisWONuznmHbUCtWfrwgALMeiOdHE6oghp1WVPG/DJk5OMdcmSiLXrX43nxXqirIClmIxbuUjFuu+Ok5X9VzWtUnwb/fxR4IKv1FWqAAhO9c+twajZ6AhNDa0DX1ja4lFlmaxv7kfF+QLnuI0DQPT+T07u1sdqKB4ChzNxVoOu3AVi109WId5eYdcvkGpHXt3oLSnBGYvgzff/WY8uJI9Hsu1Qg3bIaehzJVHKlJdDIwBTndP45qxa4p8xQIFHocouq6XAF8/too7/+9/jbSCzIKn7J3AvslhAbXcGy1PP7MebMYdXQ5enI+t9LAmD6dRSiFlUbPEYbqe70aeZ2iP2KoKLN5914lh5p+DeunSem+7+Yo0M/x8EStUeeNWqHKvg7kdu3H4u/fg3Lt/Gev3fx4AMLdjt7dMrxO0QjAsG5Xa8OLbVQyYvslH3bLBcjz8PG81hljkGRqWocIGhWOO9axHDutaULEoOopFnRQ1giihWm9idekCAEKuUQAqQnyhpA5klCs1DHzqAz8JaZkmdE1FuVL1iLyBZkZIvbwIE+QdRUe9OVRvaqoKPoFIOjhXx2JHDWyzYVmQVRNjZd47FmXVhCAOj/UThx+JrAuI5pC66KmGp1i0YqxSR2HNIfbmMxCLj77pe/G+n3giJrcgB/CG2ToudFQs98j7z/oUyqZO9jvFk22qCKN/t2NlHn3VhGXbHrE4KpsxDgu79+d+jQuGolLtlgsUKHD5YNjkfBAgFhkuSCya+iatUJnhemJg2QDKE8B6NiskAEDnLFCZSiSOTCqpwUDORYsDOqhWBBwr1GSVQDuBWFQsFj/+Hwowtie4ibKKvQvb8I37j+C2v+3jr79J1u1mGALxxCI7QiUviXxQsZiQm3PfooUxew1wJ8wtQrRFFIshK1SKojA7NZ5DsdhPtUEFHGKxHF3m7Rduww1/Xwbq22NelR9+UpZYoW4FsTjc7g0pFuuEWOynqGGvJLhGKoVisUCBApuF6bBjJp3tXi0tZ+x4K1hDtNRWwH6TBg3DSrdCjVt/HsUiz/ABEokGPXLQ9OhDRwNqS4EVYjMWXSQpFpNgGiamZqdw8shJHH3DUSx9ZAkA0BhreMuE1YouOnd3cOrtpzBTngk8rlt6wArVhIlqaMhJYIWAYrGrDfs5hmVEtj+sWASA8enxWMWi37J2TXWGoGxCvoX3t23bgHM7L/fk1AzGMFaVVUyWJiHQ6ff4Llnkoj4WJBa3RLFYHq1YHGWFaus2bNPGVGkq9/vbtg0552BhFtw4eSMu9C9ANkav21UsUjrlHXsUT4Gn+VTytiE0QIGKbL9mamBpFlyCy0kSFvaSISdr3cJcZQ5/892/wceOfSw2ozWMvBmLAFDlqlBNNRP5erR1FDZs3DFzRyrZWqBAgasTBbF4EeEqut7wkYdwoa3g7hP5JOtxuG5bFTUfibPYGS1PP70WbFg9uhQkzBTdwndOtby/w8Ti/FgpNykgcIxHbN2+s4lzbQWfPxZsCjYuMbF45OHvYmb7AkRpWCCFrVBbm7BChW3Dsiz83Zt+HcLstahd92QAJCsHAJ763O9DrxNcp2FagUJ0PaRA1U0LvCDCXj0BAKAQn+HHsTTgZDc+ukSKdM2fsegjFlmRfH5XsQgA41PTXp6grBkQWDpRlaoOZJSrNU/ZCAAN3zFpOISlVK5g4HSCZH3zVqjrcnDf9FQjsC90XUvc5lvmG1jpqgFFalcxYAOYqgqoOSo8WTMhOsSiWK7i+JGHY9d34/YGTq7JXqPUzfLzb1M4SzML3HPG9rHRU40sQ+Pp+ydzKxTjcMtCA+fbAyx2SeE84xsk8KxQnQm3LOeC8TIPWTdgWjZUpwC/1IpFhqaKjMQCBS4XEkhA3nJuzp0GG+UnEmke8F2XiBWqr1mh9QH/pK06YviHoogiLaUhiOo2oHs++fkw2meA8hQQk10EJCsW/fj2Q49irF4F49QGYPnUrMJ2VyYZhTlmVUSBwwt++g24doLGq2+ONhFaKaqEJEgiH3ANSMrwu2/RRBPtYRal6VihasFrohQzpDI7NYaBks12qd2TA6q+MDTdgKJqqCYp3Bh+01mILvz7YqusUOuObdrs1PgGFYubzzV6LEEzHcVi6TIoFgtisUCBqxImk+3CmpYz9mj70UBj37RNnO6c9v6mbUIsppEv68p65DGByT44GrZkpG06QniElYGHHzgMzncdpkAFsgpdMFUG4oKIQX9ASJUctUilVsHrXvY6cA0OE8+diDzf7+SrRQzLAC/6iEXbRLkerAM4mkvNWIxYoYrxxKIaqkUW+4v49S/+Oi70ySC2p1i0bZRr0VpkYAxA0STrUu7JsYrGJKwoK9he2e6Ry3HHn2mZEQvSSn0oPtgyK1RnyIkTOBw/FCTRK3wFmjmCWEwYQssK1VRTrVY3ilunbkVH62BJXhq5rN8K1VXL2qw90gqVpVnUhXpEcamaKjg6/bVx2LGPZCzaqo2/eM5f4EW7X4RPnvgk/vLevxxJvrqkuJjguBIH9/vNsv8PrR1ClaviuvHrMq+/QIECVw8KYvEiIqzQ6mv5iQY/ttVFTJSDReZyd3QDJqxYPLE6/JvR+2BoCl97dDiVFc5Q21YTA6SAkMFeUGRpT6E425Cwc7yETxwNFkXN0sWzQo3Dow/dj33XHfT+NnTdI9NcdHzEYtgmNQ22ZUI+/FU8dO/deOJzfwBTL/t90OWhmq5aa2Db9h3ohaxQjVBO35ocJhZtcIIAs0UanxzHxGYs8gwF2DYYWDi6TApoTyGqqaB8+UycSIrfALE4OZwIHOgmBI4GG2MrCgCa0ke5Ug2o/5rl4foNzfGNr1Sh6CYkjoGs5lMsxrlthklXWTNQq/sVi0oisXjj9gZsACdWhsd+21GnztQlVEVHsagbXsZibXwKxw/HE4vPv34a51oKzrbI8eOS8bLfnnUDPOpaXwNLU5isbl6FmAc3zzehmzYOX+iBpSk0faS/YZDzlu0cQxVpdCN2oiqgr5rQTctnhbqBjMVde0YvlACWoUBvAelaoMDjHkb2fA0PCU2Gpn4OAFCiyPmc0sOKRT+xGKNYZHOSCjSbTizW5oDe6KaCh/ZZoBS1pnq4RxonBhMdCtH1YO337YeO4tbrfec2hktVLPbkAQzDDNiQJsG2bdx1ysDd9x/By1/wFHzmNSU0peh1cb0drxJIgyQInhMFYCcSV/ddMMFTBrB0iDzgKBaV0H4IW6ECwNx0uu2XH+1uP6DqC8Mlay9FxmK9Wgbj1B9bpVhsOI3Kg/t34sFHT3qN1KxIIn6vVLjHf1m69IrFHbNTkGKO1wIFClx58KtvslqhpuWMneycDFifAsCJzgnv365iMS1j0SWr/OCY7APYYeUU5fzPj7A68MgDR7Dn2mEtQlM05G6UnJh80SS2/wxR98tdGbaZ7Qa391APRx8+ijuedQd2/eYusLXo/WM3p1V3nGIxzgrVsAzABCiLCmYsWkZk+4XQuZ0ChYnpKAm6pqzBsA0cXif2+WsaEQzYth2rRnRzAW3LhqqouRSLA3OAXfVd4OjkYyDOnpfxuXIZurGlVqhiRcTZE2ehDIb9vAo3mniq1jdXi/iJ4a3EdWOEADvbG52zqJiKR/S7+Z4WY4GnebCJTiUEY+IYBvogQL7qpg6O5nITv7VGzSPCOYbDHz7tD/G7d/wujneO4813vxlnOmcSX+uqovMooWt8LTOxe2j9EHbVd2FMjPYpCxQocPWjIBavEMw2RCyMRW0WVnpqxGI0jNNrwSLxXGvg5d1Rton5poTvnB5adIYJgPGqkFv5I3BMILfxB2+eRT/UFHNVbtRFksurygASR7abNhQcefh+7D1wo/e83A8WKrZto6MMiUVF7sM0MpLBFA3b0PCCl/4IXvjfXweKZgA2euHudtoBq83wd7fe1yL7WijVYOjkhkbRLc9q0w+epUExHMq0gdNrMixraEFpGSpoblg0MwJ5f9cKFSCKRReyZkJgGbB0dsXiuI8k1jWyreVyBapuYbzMQzOtABE5CqYdPd7CpOtAMyGWhg1DTVMTicV90xVwDIUzreGNn6tOnW1IqDnEoqpb3vdTG5vC+uoyWmtRpfFzrpsGBeC+M+R3U3ZsYxXdRLW+8cDqtb6GusRB2gAJtxncMFcDBeDQYhcVgYXIDd/fchSLtlOIiiPs8gBguiqirxowzOFxKHH5P5MgSuDFjTURGZpCwSsWKLAJbEB1PQq8Ra4Phpex6KtPGC5IApo64L+Z1WWAy0kS0RwhtpJQmwMGUaVAHCZKFKC2gfIkwopF2XTObzHnnNVW0Kng2w89ilsP7PX+tigO8iCdvO305EzEIkVRUAzgpc97Cv72f/88BDb+JBhnhToKJUmA7BKLtuVZbYZx36KzzPl7yX9NnSguI4rFaI3kt2sdBWKFmtyo6ziWbpeCWKQoCmP1KkSB37qMxcqQWJQHKo6djjaeU1+fo4l5JcBVy14OK1SapnHNrrlL/r4FChTYevgz90Ahk41gmhXquf45rClrzurI/463h8ouGjQMO12xGEcsjiIs/OAZPkBSxFmhtlZbgb+PPHAE+24YOsNQoNDvRRWEwowAyhk27nV6oKxsN1eWZuG2p96G3//L3wctxN+f93IOORm2AV7ihxmLthVRC/I0yVgEBTAWE1ByxWUshhWLNEXHEoth8thvhVqpViLLu4SYu615MhYB4ODkwVRXorRj0gUV00/JC3e7pYoEy7Jw8vBJ77kyV4ZqqqnHNpOhb5AGl6DdasxUZkCDjmSkxkExFC/z1Dv2GItYECf0y1yMiWOQDTlgo6uYyoYUiwBRAfvximtfgXc//90QGAF/8u0/wdfOfS32dbqlg6XYXOeVKl8d+f0CQE/r4Xz/fJGvWKDA4xgFsXiFIVz8rvU1KFr6yf6kT6EoUiaWuyp037TWtTNVT+UGRC0L/TaXWSGwNPwCtRtm66iw7gOkyHFz+Sjp4tg1tddWITlNNWP9HPrdTkCxOJCDxayiW9BNG7ZvknGUanHp3Bm0TzwAiqJQuu4ZeMmrf8p7zo4hTHudFsrV4efthjqFa30NVZEN9Ca5UhWGk3Mn6wZqMcQVz9AAw6LCGFjsqJB10yN0TF0F5yMzGScrzzaGBenE1Dbv3wPNhMgxKYrFAUohxWKj7Fe4OR7u5Qo008KEo77rDrI3qeNu8db6WqBJKutmoODWVDUxU49jaOybqmKxo3hZp+2BDgrAZFVA1ZFIqoaPWBwnOQAnHo3mLI6VeVw/V8OjSz2Ylu2RbQPdQqkcvbnIitUeIRbFDZBwm0FV5DA/VkJPNVAR2YAq2T32LJoFn2KR68dUTUBPNWBYtmeJXIqToYIoT9Nu6qu1BnghfyORpQvFYoECm0Iei9CM4CzSmPEyFnWfk0GEWNRCisUewOU8FzBsOkFa24as8vI9Y865rzyFgTa6oeNieW04uKUZJk6dW8atB4YqAdUcfZ5q9/qpxOKF5TV85WGiBn3OLgb/48d+KLUhtd7poSTlU2BJAg9Fd4fSkonFCz0bA1sALpBca5gasULVs1mhZkW3P0glzy6lYhEA9u+cw/zMBHTdGOZ7bgLuZzu4fyeA/DmLo5pdVxpUj1i89FaoAPD022/A/MzkZXnvAgWuZpzunMbB9x7Evx/599yv9avRsmJdDQ4TGfbo+9M4dZj3esvAAysPACCkVJWv4kzvjJepyIBcD9JUj3HEYpaoi/UW+SwczQUUijSiVqjt1WEtYls2Thw5ESAWbcuGEpPJy08Pibd+t5+qWOy0Onj4G8Ttp3pTFS/9yZemXouyEovu/tdNolh0VWOmbYLhGYg+JburyKIYCozFYGAOvPtM0zIj28+FahGGYjAe456gmMN9Y9u2p0C1ka5YdImocsogVBgUKFw7dm3qMmnHk4eMeZhpcDMWxYoIiqJw7NAwZ7HMlaFbeoA022pcLGKRozlMlCbQUlojlx0YAwisAArDjEWLJsTiKKJuQpqIEIuuFSqzgSG08alxsFzwPQ9OHsQ/v+ifcevUrfjHR/4R73/o/ZFcRN3SwdJsLjIzq2LxSOsIAOBJ2560JSrZAgUKXHkofvlXONZlDcoIxeKZ9eGEVYk2sNLXoPlec922GmSf+kzk6ACxVU0gBNIQJkYoisJTZsljmkQaR3XHbpEq5Z9sybJNrfVV799yhxTee33EotwLFrNtR8Fm9lveY/2UnMWzRx7AL77ye3Hqv/4BtkVIrtmFnd7zNs3CMIMVXa/TQbU2/LydUKdwta+hLgYLXFYqQ3fIHUW3UanVQYcINJ6hQDEcaoyB5Z4KWTOgGhZYmiLEojAsZmmHWLRCGYsuZM2EyNGJJB2AiGLRb2vrWqEyIiHYpmsOsaimqEYyYK2vocoPT1n+93ffN430OjhXw2JHgewQop2BjhLPeP+nKUIuuxmL5XoTvCDixJEosQgAz71uGsdX+ljvq54yTjPMTWUervY1NEqXnlgEgINz5LisiRwE33ShYeigKAoWGPAMnUm9PFUVIGsmFB/B7VcsGpaFbxxbxR99+hB++YP34lMPLiaua8f+67CwN79fP5txWwsUKJCAdrKlDjLciMeBt0ljJl6xyBN1mwvLCGUsygC3ASvUVMXibL71UQxQmxmpMPRjeX3YzOs6ynu/YnGQhVjs9tFLCFk8dPwMnvjyX8Eff/jbUA0bFEVh/850dVWr00ezlm8IRhIFDNxBNtsEyzKJxN4a1QDWjhJrW9OxQtWMQINRisk1msuhWASQaoV6KRSL968Or2ufffcf4nd/7r8BAIyMio40uFao0+MNTDRrG8pZvJog6w6xmCOnaivxtt/+Gbzn//3qZXnvAgWuZhzvEHXf184TpY2rDPPbiSYhnF2WBWEiIdyAj4OaYglPgcJ3lr7j/V0X6liWlz2VD+3UO2nrWBoELdmzbBMAXLhACEmOCdoqxlmhttZa3r8t04JlWth/w37vMVWObp9pmeAmhn2JXrcH07n/Dg+F9hf7+IUf/AV89K8/CnNA7ofnd6fn0/Y6vUzZg99a/BYAQo5wAueRdQaIEtRvt+kRi6xDLOoDjzw2LAOWEezNhBWLDMVgYiaqWPTnHAZUr0BsxqJLenuKxZR6JYwpaQoNoZG6zKVWLNIMjW0L23DskSGxWHJcRNIySDcLl1iUckYhPNp6FFWuGvkd+DFXmUNX60JPu0+AQyzSpJ/lP/Z4hh9JpE1Kk+jr/QixmOW1cdh/435Mz09HHm+IDfztc/8Wr73htbh78W689Z63Ym0wdN3aCLFYF+pQDCWSzxrG4bXDaApN7B/bn7pcgQIFrl4UxOIVjp5qoiUnFxa2beNsawDauZiVaNLoXxsMLxB7JisBy0CKogLERjhzMQukmBzGmTJ5zGTIVJlnhSo1cq8/C9prQ2LRMHRMTG9Dc2I4bRy2Qm0NyH40+8NJxn53WDge+vbQWqD/8Jfxvv/9c9g2vxPXvvI3ifUpELA5Bc0GlKEAUSxWag3vPeSQNdi6TIglPzip7KnGBroJmqYhlYNKAZ6lQbEcqoyBrmJgpatCMyywDAVD18AGFItk//sVi+NTvoxFzYDEMWBTSLpypeoRdAAg+Y4R17bVJTBnauT9ZHVz02xrfQ01cXhcKroJy3dTYxg6GCp5ivLmhSaWe6qXrdiSNUedx4CiKFQEFqphehmLNE1jx579OPHoodj1Pf+GGWimhfvPDY8R1bAC25QXLVnDWJnPlGO61bhloQGAKIl53/ubhg5BlKAYVmZicaJCiu+2opPjkKYCpO+H7jmDd9x1HLJmYrLC476zLc+eOYyN3hKxhRVqgQKbQxqxOMIWJwm85RCLrmLRSFMshqxQtT7A5lQs0lyQrAxDqOVbZ2UK4PMRcn7FIgBUyxL2LAxdAmRj9Imq1enDuXTh37/w7cBzP/qbf4zxRhV//fPP9lT9k2PpA1vrnV5+YlHgPacCyvn+k3L81qhxoH0aULsBxaLoUwaUYojFPFaoANKtUPsOsVi+OMQi9YYO3vjNYW0lCjzKjgrU2AKVgPvZKIrCwf07C2LRIbXLOZW2W4XNDI0VKFAgOz506EMXdf0RxWIGtVWaYnFCmsDDaw97RGKdr2NlsOKt1yMWUxRmq4PVgN1glkwzP8K2ilmsUBmWwa5rdnl/x6kV19V10L57wl6nB83pO33pP740fPzhHr725q+BZmj85B/+JBiJ1Hgz22eQhl6nlymDz7MVtU1wIjfMWLRNQiz6ahHXshIssUJVTMUjak07qlgMZywyNBNrheonz5bl5cBzcYpFd5sNx62hXCnjRPsEDq3F9xX8mC3PosanO3plIRaR7zCKhd/Cdfe1u3H8kaHNb5kln9uv5txq9PQeOJqDwAiplpyWbXlk9+nuaTy89jCeOf/M1My/ucoc2lp75L50FYvAMGPRgAGBFkbmJE6VptDTe4HzjGZqkWGArQBN03jdba/D2575NnS1Lt5y91vw8CpREOsmIRbzvGeFr0A11ZHnSDdfcRQZXqBAgasXBbF4GWBugniIw+n1aNC2i55qYKCb4Ewy/VeiyYXhQt+vUGSwvRGcAvLnLIbVcVkgZsiIc3PpqPLGM+nS4FcsAkG1IgDIjs2pMHcd2Ma2oWKxN5zu8ROLf/+W34Lc76H90F1Y+c8349o7noW3vutD4MqkgceF7BptmoUeUix2O21Ua3VPFamEuk/rfR3NMh9gU1ix4k0KuU09v50qQKxQKYZDhSHf79HlPjTTAkvTMDQNLD/cNppzMjN9RM745HDyaaCbhFgcqVgcFhn+ZXVNA03TsJyJwdk6ee9+hoxFzlGvnOtGl12XddR9SlVFt2Baod9Syo3YjdvrsG3g+ErfW19NHJJoZYGFoluBTL+d+66NtUIFgGumq5iqCnjkQtcz0lN0M7pNGWGYFrqKgamqmMludKvhEouNEhcgNi3ThFQqQzFMcCyVely48IhFWYdmWuAYCgxFYbom4Jb5Bp6+bxJvfulBvP8n78Cr7tyBEyt9tPrZrQWzoLBCLVBgk2ifTn5ug8QiZ4UVi77MGoYPEou2CRg+UlDvA2xOUoFhifIxCRQFVKKTv4koT+W2Y11eC06233LdnoByr59BzN/u9TFwrCB/9v++F6vrHRw9Raxqn3jwGnz5/W/FVGPY/BlFgqx3emjkJBZLkuBZibsYb8Q3vtboCZJd2T5D9j9NMhYFfkgsxmcsZrdCBdJzBC9JxmLoeHQ/n74VxKJP3VAQi0SxKAocGObSOzoUKFDg0mBgDPB3D/zdRX2PiGIxA4nnVzQZloE/uedPvL8nS5M41TnlEYc1oYaW2oLpsDq0Ta73aeRLW21ns7ZMQJhYpGzKIzS99wgNOe3cvzOg1lN60e1bGawE/u53+rCdWuS9f/heLF9Yxtr9azjxRydQW6jhLz78FxjbNryOhy0bw+i1e4HMuCTbS39OIl/iPQLJhg3d1BMVi6zFEmLR+Y4Ny4Bt2oEaLE6xGGeF6s9YDO+XLMRiqVrC509/Hh86/KFU9SoA7KjsGKnQu1RWqH4L113X7opYoQIXWbGo9SGxEsbEMfT0XqKa98++/Wf4zS//JizbwidPfBJ1oY6X7H0JxJThwR21HWir7ZGKRcVQIDACQPmIRZsoFkfZmY5L49BMDbLPoUUzNfA0v+XEootnLTwLH/y+D2K2Mou/uu+v8PFjH4dmarkVi1W+Cht2JF/Uj5bawvJgGQfGD6DKjx4SKFCgwNWJgli8DPjCI2TKaT1FaZgHp1aTT/YrPfIevJNrJNHkYnyhH6w0rpkOXgikDMRgGoQMQc1u058uNyLP8VtArPgViwCw70CIWOwTYnHm1W/F3M+8Ay1ZB8dQsH2ZT/6MxX57He/84z9Aafs1aDzzx/FDv/SGQPabVAk22OKIxX63g3Kt7qkFlQDZRqE90DFeDha4rDBsLqm6BcuyUa7EKBYZDhWKFEZHl3tQdRMsTcHQVTC+dVAsHyGHJqaH6glFtyDxTKoyrVyuBuxz/USYoWuQyhWoDmk6XReJzeiILFAAqCrECubeJR1nW76wdctGV9HRlIY3KIMYEo9KsY7ZP10Fx1A42ya/hdZAR01iPWKxKrLQTBOCb1/t3n8AZ44fjV0fRVF45jWTOLbc87ZDMWLIzoxoDXTYAGYb+fMEtwIHttUhcQzmx6TIMIFYKkPVLQgsnWnQwMvVVB3FIkODpkl+6wd++k78fz9yC17xhAUsjJfwghtmoJt2QPm5FWAZuiAWCxTYDNKIxQ3CrUUs0ACokGIxRCwCgK+ZBK0PMDmJRZpLJxYBoJo+UR9AaRzIace0vNYGnBv5VdnGrdfvDTzfVUdfM9pdGc7sEzTdxC+/6a8xM0mGst72Wz8dsIdsVEZfQ1rdjSgWo/s+WbHoNBbP3+cpFhVNz0As5lMsppGGnZ4MiqJQLl26a6rofKatUCw2qsPv58ZrduHRU+cj9vqPJ6iGjcol/C4LFChw6fHPh/4ZbbU9esFNIK9ikaGYgKLpbd9+G9730Pu8v6dL01hVVj2yqS7UYdomZIbUL1msUDtaJ5sCLQEszQYGihgwIxWL/nxFABj0o/0kP4HGC3wgY1EQBfzJb/4JqruqmHzRJG7/pdtRqeerK3qdXuA1SQSGn1hkpSBZqVhKPLHIEStU1RgqrkzbhGmY4Hy1CB+qRWiKRmO8ASbUy3KJIQoUlgchxWKMe4Jnher0ekrlEmzYUAxlJCm4q7Zr5IBYmorWw1ZkLPqGnPZcuwfry+sesXspiMWu1oXESpgtz6KjdhI/97H2MciGjENrh/Dd5e/iWdufhV2NXbHLupivzkM2ZHTVbupyiqlAZEXPVpXlWGiWBpEVRxJ1ExJRv/rPa5pFiMWLmUc4X5vHP37fP+L5O5+PT5z4BI62j0YGEEahypHflZ8UDePIOslXfPLsk4t8xQIFHscofv2XAYeXyMVrowSEHxSAk6vJ+QIrPVK4CI5ikaFsNEscVgfBSuPAbJAUK22aWMxzaEULp62IRmtHFIs3Bv6W+8H9ttbXUBFYwKcodRWLZr+Fbbv24yP/9F4oNov6HS+NFHyuPWnFzQGkaPRC9p/dTiuQsajoplec0aU6TNvGTD3YOGHFYUGnGBYMy0Y5RGIKLA0wLDjKQolncGy5B8WzQtU9+1MAACdEFHHN8Unv8wx0ExI/SrEYJhaHyxq6hlK56mUg1iQOdYnDQM9nhfrur5zwmmgdRYdlA5OV4Y3AQDdhhAPkUybOOIbG3qkKLrQVWJaNzkBHXRrajlZFDpoRVCzu2n8dDCN5nS+4fgbrso6lLimoB5oJY4O/6zVHsbcwdhHVFSmQeAaf+h9Px6vu2BF9rlSGopvg2fTjwoVLjvdVE6phgfNZqIocg5ovR/Sa6SomKzwOLXYjeR2bgauSLFCgwAbROrXlq3SJRQAOkRgiFsMNvgCxKOcm9UjG4ohrT337yNWMic65pDRGLFtdZJgYX15vA6yA13x4gNd+ZIBbD+wJPN8ZQSyKAo92lygWW4qNg3vm8I8f/QI+85V7AQBM6Ho+UU+/hjzUq2F9QxmLUSIwSbHYohokj/L8fcSK1rVC5YfriLNCrZSlXArDesqy3f4A1bJ0SS0sXWJR34L63q/GPLh/JyzLGplzczVDMYBK6fLkKxYoUODiQzM1vPP+d+LGyRtHL7wJrCv5iUXdZ6ne03p4+TUv9/6eKk0BAB5cfRAAPAtLWSD1CwPSU0kjDjtaZ0sVi0DUucCfsQggkK8IAGo/+v5+y89StYR+tw/YgKmYmN8/j69/7uvoDDqYfvE06FAtIlVHn6977WxWqJaPIXNtVr3tNtQAOcnRTtQOS4G1Waim6ikWTcuEbdgBMlGQhIgKjqZpjIcGnVzyjKZoLMlLgey+2IxFV7FokOPLzZJUTMXLfAxj3CDvOSVNxT7vh3s8WWpyXRC2fd0ISj47+V3XBom6EkueG0VybqYO6+k9lNgStle3o621A7/FONx17i5UuApetv9lXgZkErZXSf0fJorDUAwFIjPsD4kl0SMWR8ElFv25nJqpZVI7bhYiK+Lnbvo5AISgDQ8gjELFiX5IUyweWjuESWkSO+s7N7WtBQoUuLJREIuXAVvphFoRWJxrpSkWVYgcDdZXwExWBbS04EVl71SwwVRKyVUcK0ebQQACH0zgLv+hFbZCjSgWe12I0rDgaA10VH1Wm7wgoNftQFs+gfN//3qsXjiD/dfflEh+iA7ZJ/hItrWQvWOv00bFRyzK2lB1x9ZI4THfDBZBblYhMLT/LFeC3xfHUKAYDjaAyYqAsy0Fim6CoSkYmgqWHyoNKIYDywS/f4Zl0RyfdN7DRFlILzzKlZpHHAII5DHaNtk+V41ZFTk0SjwGmoldj/4r8IW3e8dQa20l9n1efF0NJ1Zl/Od95wAA685+3FYbfg5C4oWK6RHF5g1zdSx2FPQ1kkXZLHEeyVoTWUKC+VSou/Zdl7q+J++dAM/S6Kumt00bHRhwj5W5xuUhFgFgYbyEHePRmyOpVIJqZFcsihyDisCirxpQDTOV5KMoCk/fP4njy33P6ncrwNAUisG5AgU2gdbWKxZdK1QAAMuD8k/wM3z0HO4nFk01wYbUTrZmZRLqFT9qcyMXuW7SOZkI6Zk3cXAzFt//XR2yDtx6IKhYbA3SyaJ6tYxWt4fj6xae9/cy7j96Fk+97XqstuJV3pP1ZHvQXe8U8Q+rB0nGYk5lQZzCcCyhIWhTNFDdBiwfIorFjFaoQD7VYpoVqmVZmUnKh46e2hLLVM8K1dgKYnG4Pdfv3fG4z/hTDBsVqVAsFihwteLLZ7+MrtbFrVO3XtT3WVPWAn+PskJlaCZAnPzgnh/E7dO3e3/X+BokVvKy86p8FTRFQ+aDisU0K9S+3g+oglg63UI0jPDytPM/P9qrQSVoWLEo96OqpEV50ft3qVpCr9MDU2Nw/E3Hceg7h3DbU2+DpsSTSlIlA7GYMWPRjwixaKqpVqj+jDjTJsRiQLEo8rGKrLAdqvv90RSN5cEyGnzDey7NChU2ySl07VdVU00kx/rnydD7KAtZdz0AYKV4r28JseirjeZ2zgVIWZe4G6W2DZPOedDTeyhzZeys7URbbceSXH4r0/uX78fT5p6Gvc29keXCmKuQ+n91sJq6nGqqAWtaqSrBsi1IzOhjfFwix5Hf5tclFi+lws+0zNwZi661aRKxaNs2Dq0fwu76bjSFixNtVaBAgSsDRdv1MQiXkDnfjhagYc6iKrJY7iVfzFd6GsZKfMAScKYWvTF3iURbIUVQWUi+6CTZC9J9clGmKApiBivUi43OevDGwW/3CRAr1JLPUrQt66j6lFSlSg2HH7gXF97/66B5Cb/xV/+K3/3jv428D++oASv1aDZQSw4Tiy1UqkNi0a9wY6qEWNzeDBYpjBAkFg3LSsxYhA1M1wQsdRT0VAMsTZPMQ18z1qYdMi30NY5PzQAMD8sGakJ6QVuu1jwSSGTpgGIRAEqVqvd8TWTRkDgougXW6KOsrkHkGBx95EEcO/RgJJsSAPaNC3jJLXP49MOLeHSpizVnP87UhsVsXzMiJJ5tpE+d3jrfxHJPxYW2AtO2MVkdEpVVkYOqW2hOElu8cn0MzYlJ1JvJmU8ix+CJO4fPD/ToNmXFWl+DyNFolrnRC19iiFLJs0LNolgEyACCq1jkmXRC8nkHZrDa13BsJVl9nRdcYYVaoMDm0D235avk7aBCkTLDxGLYCjV0M8v5ro+808j51nuDBKQfTIbmXHXbyEUOTDo1jVRPXzAGK+tBAvCaXUGF5PrAQklKtnitV0p48Mgp/N7nVViw8Y33/C7++U9/K7qc09ian0rbRgoQalhv99BIIeXiIInZrVABAM0Fono1lHgrVEexuDA7GXhZnpzFNGIRyJavePTUebzjQ5/C63/8JZnfNwmil7G4+Wberu0zeOnznoIb9u1AuSRi93wOy96rEIqJS2prW6BAgUsL1VRx89TNF135sq6sg7GHfQrDzKBYtHTcMH4D9jf3g2VYj7wCSN9jvjqPrk4cqWiKRkNoQBEcIsolFlPsIm3YWO4PVVNhwsGvlooDSwVrHQpUZBilvR4kFveE3BMGvXQr1FK1hLPHz+Lkn5yEKZv4lXf/Cn7/L38/8hpXmVebHD2IFc5YzAJGGEEs0kNikbEYolh0FImmbcLUTXBC0Ao1jjiZmJ4I/O0pFkFjdbCKJjckUuKIxb42vKcthWoRj3T0YXVxFXd/8W7yGTNkCWum5qkzk7AVxGK9SWrKUrUEhmGwY9/Q2ci1Qs1ky7pB9PU+ylwZC7UF2LAj+ZZAkBgUWREvv+bl3ralYVwch8AIaGvp9suKqUDy3X+ITi91lCISABpCAzRFB4lFy1EsXqSMxTgYtgGO5nINqblWqElq6pXBClpqCwfGD2Ta3wUKFLh6URCLlxijrP5s28bv/8cDic+HFVpVicNqL9k6Y6WnolHi4L+GbKsnF6e2UwSVUxSLSaDgBGlbZqoVqh1jfXox0AplLIYvpHK/h1J5WMx2FB11aVigCaKE//rov0GcvwEzr3oLxqZnsW1+h6c4pB37Al6UvOXD6PisUHVdhzIYBBSLfdXwchjZ6gQYmsJ0Ldi88ysWZSdXsBSyQuVZChTLwQKwrS5hpadB1kjGoq5roH2KRZthwdEUXvqKV+Ham5/oPT4+NQPKea+alF6oln3EYYlnItaqpXIVim6BYyjwLEMUi7oZUOv+3Z++EbXGGHg+vqH6xh+6AVMVAe/56kksdVWwNIWm5AuZ1y0vx9H7bIZb2Mb/zg5ur8O2gQedPD8/yV6TWCiG6RGdvCCCoijs3HtN6r54/vXT3r9lzYRubkx1t9bXUBM5iNzlJ+XDEEtlKAb5XWcl68YrPAaa4RwHdKot6VP3TYClKTxwdutyVTia3hJL5QIFHpdQ2sCIzJGNgLeDRCLlJxLZOCvUULPHbzvkNt5aJwOLuKca07JJxuIoZCAWPeRUEQCOFaoPbGjwak22UC0nNyfKJQH/+umvYK5G4zOvLmPfwgy2TY3hlS98hvM82SdVp5k3URvd6Gh1+7kVi3HkZ5IVKgCguZuQ01ofoBmomgHR18xzrVBPfu69sB/5uPf43HQOxeII4rCWsl9d/M7b3oupsTpe96M/mPl9k+BaoWpboFgUBR7/8v/9Dmad/XFw/85Nr/NKxdkejUfXrCJjsUCBqxy3TN6COp99gGcj2W7ryjp4DO8ne0aU5PGDoZiRdqm7asQi0nbuPyekCWgiqW8oixQlo1Rd5+Xzic9RI3onEcWiTUfIyXDGohSyllb7KniBR+XGCqq3VGHZFtaUNU8RJ0oivvGFb4Ab47Dn9/dgdt8sao0apuaIbadL1glOHnO5MZpoCGcsZgEjBmsozdSSFYs2C83UPOtRwzIiVqi8xAcyHF1MzASJRZd8VC0ViqlgUhwORVWq0c/QN1KIRS16zL3nT98Dls1eY2YiFvXN1yK009MTSuR73X3tbu85gRFAU/Sm8kFHoa/3UebL2FEjhOYoYvEps0/B/rH9kWXiQFEUZsozaKttWAnOJ5ZtQTM1lNnh8Sw2SC0iZYhncAcNwopFkRmdz7iVMCxCLG5EsZhELB5ePwwKFJ46+9THvatGgQKPdxTE4iVGnArRj/d//ST++Z4zmddXE1m05GT7x5WeiprEBRWL9dEXwcoIxVocXIsHTVUgxCgWW06OkC6NbhqxIaLKVcR17v53APDy2iKv00gj1OisRDIWw5B7QWKxqxhoSBxs24Jt26g1x/CEpz4Lky/5XdDCsCCcmJ4FMCQW09BThjci/S5pLlbrjeHzqgHDsjH9qjdj7Lk/i6rIQvTZX1AAGJ/acKA7GYvVoEqAo2lQNAPbJsTxQDex2FGIFaqugmGHBbRFMeBYGuHr//jUDJCVWKzWPGVtSWAjKraSY4UqOJl84xUuQCx+++tfxt13fR63PfkZiGyIuw6BxRt+8Hpc6Cj4zql11EQWAhdcNpxhaY8obPdPV8EyFA4tkuNktjH8LTQkHopuRcj/HXuvTV3ncw8QFQFDUbBsoK9tjFh0hwAei8SiVCpDMywIXLaMRYBY8vY1E6pugh9hoVoWWNyy0MDxlb5HtG8WLEMVisUCBTaK9tmL/x5hYpERYqxQw8Ti6PqFdSa9B6oezENMQqy96tbBtUJNwmrfQK2c/LkmGnU85dbr8BM3s2hKw3Paf3uRQyzmtIdUNR0DRUWzls9+LM66NF2xuJMQxWvHAIqGquuX1AoVGK1YvPv+w/inj38J/+eXXxOryMwL9/NpxtZnIT6eicVf+2odb/mKhkoGorjAJYZlAfd+INmOukCBjHBzuvI0qAfGINCwz4KW2gKH4bWoq6UPUTH0aGJxT4Oo/1xyYqo0BZsh95NuBl6aFSoAXOhfSN/wtG3MQBa01lqpA+6D3gDlahk7f3UndrxuB5bkJeiWDnVRhW3ZqDar2HNgDxZ+cQFsfdircBVtnJjfcSdrxqIftBDsEemWjkpj2M/xiEWOKBZN2/QIaE+xyMcrFv0Ebjhj0SVX3Ky82dKs91w4Y9G0zIAKMkwsho/Zc8fO4eMf/Die8vynJH7uMFRTBTeixrUuQi3iJxYpioLESiNzDzcK27YhGzLqfB3bKttAUzRaWiuynEs2ioyI5y4818s5zYK5yhy6Wjdgp+qH+727eYMAIFZJ3Z1VpTcmjkE2ZE85q1t6pnzGrYRpm0SxmEPgITACWIpNHOA4tH4I06VpzGWIlChQoMDVjYJYvISwLODRpeSpuMOLXfzvjzyEp+xJbqqEbRarIoeumlzsrvY0VEU2wN1MVUc3T8qbIRYHcmzGoscXZJjOSSIv1j/3Tpx884uw0IxvLjAqKfYYvY/2+ioGPbK/mRg7NLnfC1ihDnQTZUpF5xv/CvnhL6FUqUGQJFCbCFbuKgYsp4jvdkhz0a9Y7KkGNMOCuP16AEBd5AL7jmNoUNzw+1INC6phRqxQOZbsL9MGph0V3vHlPliGgq5qoLhhA8+mWHA0jc5AR9dHfO7Ysx+VcaK+q6XcHFAUBbFU9mx54/IYS+UKZIdQYmgKY2UBsmbCsm3YtoV3/vEf4LqbbsOOEWpAl/hb7+uolzjwDmFNOQWOf/tB0bCMdGKRZ2nsnax4v8Pp+nDf1iUOim5G7IZ3jiAWZ+oirpmpehamfjI5D9ZkDc0SD/ExkE8ahlQqQzUsiM73mQWTVQF9zSBWqBle9z0HpnFyVcZqirVzHrCFFWqBAhtHO8OA02YDo1kBlP9GnhWA8I29FmoY8qGbeDVaU7nEoqxkJBYvMlZbHWh6fMPCsCm0ZD1CgPXl4U18vVoGz3HQrK05n613yD5r1LbCCjVNsejYZfUWAYqGomYjFg/sWcBEM1tTaBSxWE0hbG3bxv9867tw/b4d+LEfek6m9xsFT7G4BfZjYWwJsagPgMUHN7+eSw3n0K+URg8WFLjEOPFlYOlB4MF/v9xbUuAKxWyZEDQ3T92cixBw8a3Fb+Vavq21wdvD689IYtGxQk2Dq6ZyMVMaWlcbA3JfmEa+0BSNxf5i4vOjwIR6FeF8RQDQVR2DfnxWGgAM5EGAADvbOwtLt3D+/eex/B/LKFfLoCgKFLd191a6po+0QnXJGBdhK9RUxaJF+j89vQfbtmHZFizdAs/7FIu+jEU/2bNj/w5UahVQzv2rSwy3VdLP2V4Z2tqHrVDDmY1SqBYJW6/+25/9G6bmpnDbU26L7oAEqKbq2b4m4WIQi7uu3RX4u8SWLppiUTEVWLaFulAHR3OYlCbRVqLDessDYiP8szf9LO6cuzPXeyxUF9DW2omfwSXVXFtQABCcXmpWYnFcHMfAGMCwDZiWSfIZMwxKbjU4moucK9JAURRKXCnW6ta2bRxeP4w9jT1FvmKBAgUKYvFSI41YPLEqY/dEGc+4ZjJxmZATKmpiOgFoWDYaIfXZRGU0sShtQDXlEnDqoJ9qhboVSFM/AYBQqqLXaUNVHT/8GK96ud8NKBb11gW8/3d+DMb6eXBjcyhVquj3hjcb+gasrfqaAcNpMPVdYtHJWDTlNiwb6CrDG416SLHGMRQoNlg0dhUD5bAVqqPwNOwhcdwa6J5ikfJlQZigwbEUvnp0Fat9zct4/IFX/nf8wu/9EQCgUUpuxvKCBH+d+qRd0TykUrmKgWZAdDL5xso8ZM2AbQMP3/ctHHnou/jp1/9+5qnUrmqgIfEQHOUq7RR5PXW47yiGg6Ul2wK7ODhXhw1AYGnUxOF+qYosVMOCEVLM7dyXTn4CwDt+9Da87jn7yDZtkFhsyTrGynys2vdyQ5RK0AwLEs9k/s6mqyJ6quFlLKZZoQLAc6+bhmHZuP9sawu2GOAZqrBCLfD4gtoF5LXg30uPbGxd7dPAqAn4E1/Ot84wEcnwoPw3qwwHhLOOwvZUQugmPoYkca1G+4qWzQrVgbVZojQGDE3BNK1IzqIL1WLQkZWAFeq5xVU84zX/0/u7Xi2h3etD3gJLKwBoOcRiM2euUW7FolAFxAb5N01D1Q2IvmZeErH46h94Fh78yF+N3B6KolKJQyBdsfjQo6fwhW9+F29+/Y9nyjPKApdYDNu0bwW2hFh89LPA594ItE5vfl2XAXnVuQUuAVzC5SIpVgpc/XBVVxIjbchO7xvnv5F5WdM20df74OxhbRCXd+cHS7MjFYvhrLXJ0rCXoys6KFCJdoIAUOEqHjmyEYStUJNUSWE7VD8GvSCxeObCGZx46wnIh2VIuySUqiX0u/2ktJENY5RiMUzSUXzwsxm2gVp92BcJZywChDx27VBN3QxaoQpDK1R/duZTnvsUfOCrHwDDMJ4dJkAUrxIrBUjwMLEYViSGnx+YQWLx3s/fi5/89Z8Ey2Uf7FdNdaQVqkcs5hOFpmL3NbsDf5e4EnRbj7USHaXSHQV3P46JpNc0W5kl6sLQ9WZZXsbu+m68eN+LvWWzYqG2gJbSgmrE/z5dYtGvWOQr5DjJSixOlCbQ1/swLMM7D1wuYjGv/WqFq0A11Yja+UL/Avp6HzdO3Jgpa7JAgQJXNwpi8RLjyFL6VNwLb5jBzrHsU+TVDLYTDSnYvMmiOCr7psGyNuc9xaIyuOx2jmKJ7MNeJ9mCTO71UKqQIkE58zAu/P3rYZs66k99FfiZvShXa5C7w2agltOikTY19BTDe11YsWjK5O/2YHizMlbiA6Qsz9IRYrGnGJjfSSxXpmfIlKdLLFo2BYFjUJdIYco4GYsUOzxOLIr2lgdIziMAMCwL07m5q6YQ1rxU8vIVf/bpu/Hzz9obWaZUqWCgmRA4xlEsEptRVSNF+ZOe9XzccNsdie8RhmnZaJZ4T7HoEovudgAAxbCwEopCP3ZOkGOjIrDgffvatX9V9OD3vGMP8emXysm/y4WxMp5zHVF7ynp+K1RVNyFrJqaqQmZF4KWEUCpDMy1IOW54pmoCZNUkuZUsDXrE1WbXRBmzDRGHl3ojs2izgGWox+S+LFDgouEz/wv44I8ArnL7r58K/OUdQG8p/7rapwEpZQLVtoHP/yH5d3NntnVGbE0FUP7mABOXsehrKFE0EL55vfDdyNu4xKKs6mSdlxEVp/5KskPVbAadvhIgwJ748v+BRV/zr1GtoN2V8ZmjBv7mW1oi4WtwpJ7R6HTyZX2DxGJcxuK1u+fx8u99Gg7sWYh/UX2e/JciGYt+xWJJiv9uaJpGdYSFKUDUiPSIC0sSsWg6ddkznnAQL3zGE0a+V1a4n+9iEIt7F2YxNd7IrOaMxeqjAOzY382VgCJjsUCBAmF87dzXMi/rEhX+jMWOGj/444KhiJ1mHkxKQ2JRG2hgaTZW9eOiLtSxrqzneg8/wgQTZScQi2stAIAdo6qXe7JHLCrnFLzrp98F/YKO5jObqN5cRblaRr+z9cTiqIzFcP4hHXL20U3dy0OcXZiNZCwChDx2yWFLtwJWqIIkeOSln5ClKMpTU/pJ4XVlHU2hCZ4aHkNJGYq2EwMUfn4QqocXrlvAs3/g2Ql7IB6qqQaI0DA4nvPyMVEGuvrW5KaPTY2Bpmkvc9G1QnV/I/57+FGE/Ci4pP+4SNzc5qvzRF0Y+i0tD5YxLo1DZPLXCPPVeRi2gXU1/vfnkqN+IplzBvBLbDZCbVKahKzLMCzDUz9faitUgAxx5MlYBAihqplahDg+vH4YNEXjztl8CtECBQpcnSiIxUuMI4vRqbjxMikKnrl/AvtnqqlqPDtUzVUENjCT1o+xRY1TKEpMelVY4ocEAsdkO0zciW9NGQSIq8sBsUQKwV6nlbiM3O9Bcpbr3P1v4Mbn8Xf/+imwVVK8lCu1gGIxL1ijj65ieAo4l+Ss1hoAAKtPtq2rDIuj8TIf2Hc8EyUW+5rhWbhKEilo/FaoADDpeL+zNA1dDSkWbSrwnfqzgBSN/DvNClXwEYvTdRFTtWhhVKpUMdCJdSbL0GiWyPt/8ytfBAD85P/47cT1J2G8woNziECPWPTlGVIs7ykW045u1x6zKrIBEtclU2U9+BuSHJJ69/7rUrfPVXkONpCxeL5DPs/25mPT5ot3fidlIXsxOlERYAPoDHQIGRSLFEXhGfuncGy5H8nO3Ag4mi6CxAs8vqC0iIWpaxPkqpJWjuRf1/pJQGokP7/4IHDqawCX45wVbt4xIStUhkfk7O1vvnAlIDSVj/MxxOJjyAp1JLFoMejKakB5Nzs1jm/+89u8v13F4rfOW/iNz6pAKX4ae1DdhR/6oIzlcrp999AKNQOxqPWB5UMAAEmI1pLlkoh/+tPfwngS2eWSzhQNRdMyWaFmxSgbVCCZWPzHj34BAPCWX/+JLb1O8M7wjbYBh4tRYFkGxz7zLvzwC5628ZWsHSX/XT+5NRt1iVFYoRYoUMCPvt7HkVb2GieWWNRGEItOxuLiuUWsnFtJXG5KmvL+7VdN6YpOiMUUu8g6X0dbS89jTsMoYpF1Im7aq22s37WO038ZVa0P+gOUHPeE9c+vAzzw1Dc/Ffw42VdJisUG3QAAVOmNyeJGWaGGFYthYlEzNbBO36ox1vD2RUCxqHY9S1VTi2YshsnLMPwZcy21hTFxDAJLaiKKoiJDTp4K1nlZhFg0BgEC7mW/8rKRg1JhjFIscsKQWKQYCmuDtcRl84CiKFQaFew7SJyaylwZujVULAaO402WQn0nDmFMIr+nheoCWmor8FuybAvryjqmpKkNkXVzFZIPuCzHK4bjFIucE3+TVXU4KU2ip/egm/ows5HNN9y3FeCY/IrFKl+FZmqR4YpD64cwW5nFtvK2rdzEAgUKXKEoiMVLjKPLUWJRcNR9zRQbxHMtBWuyFslYZGjKU1oBwF2PBi+KZYFBJUZ91hDSGykl3mfHmbHQoZzl1IEMmqbAMZevqS+USHHbabcSl+n3OrAdb9mJ7/tVbHvlH2DfjuHFsVSppioeXbg8cLg3xRoDdBTdm1zvddtgWBZiiRSXpky2racOL9TjVT7Q5OJYGgjlQ8oxxJX7HZnOjcR0jRS7DA3ouhZYh2lTAaVex2fFKusGeIb2jsk48GLJI8/qUnxBWy5XoegmRI4BS1NoOqQbI5HvZVS2Yhy21X3Fom2hLDAY+NSFFMtD19TMuV81iQvsB1f9O9DilQajmo8Sx4BjqAgxmQVfOLSEisDiCTvz2XdcKnCSQyzy2RWLE44lr27a4NlseYfPPzCN9kCPPU/mRdaBiAIFripo/WhO4UbQPg2I9eTnH/gXQho1g5ZIrio9FkqoeRfOWAxPXlM04M+h4aQYYvHeyNt4xKJ6+YnFsphOLKoWjXZPDjSYvvC+/4dtU8NrQb1SRqvjs9VKaQr8xyFjmG2YAHddmRSLJ+4CPv8mQF6FJG6ACBx3jg+KhqoZnlUosAXEYgZVY60cv8xamwyNPfHG/LVIGiiKgijwUDbgXJAF5ZKYu/noQe0C/RXyO2ufBozNWZRdDlTKhWKxQIECQxxZjycVV1biCUBXSeYnFvvhLOcQWIpYoR59+ChOPHwieTlffeLPMVMHhABKUyw2xebIrMfUbRxhhcoJpBZqrbVw9p1noZ6LOvwoPcXrDM68Yga3/J9bML9j3nu+VC1BVdTIkLtESbHbkBUjrVB9pB9N0UCorNMtPVBDURQFlmaDxKLe9YiRiBWqyEesS8PwE4uqqWKyNDlURsbYznrrSyAWFVMJEDUH7jyQ+v5x0EwtXbEocDB9tciZXobs9Bxw+yJlrhxQtJ3pDt/HtZ/dKDzFokCG/hdqCxgYg8BvpaN1YNgG5qpzuUkzYEgsttRW7POuYrHKD49TRiLHVTmc+56AydIkdEuHbMgeKXo57EMFenQcVhiuFar/eLVsC0fWj2BvfS8abuRBgQIFHtcoOq+XEF1Fx7ocbfit9khxZyXwIUtdckE7stiLtfYbKw+Lis8fWkZ3MHwPYh8Z/ZrHRtyb+4nFrD0Mt4jWFNenPv/h1b3vU1j5+NvAbtLCUCq7isX4Zp6h61hdWsRnP/IhWKoMmpdQkSSI7LAoDmcsJmGbUxc0Q7Udq8uwbKAt6xj7ufdD3347KtUaKIqCMHsNytc9HRxDoa8Ni67xcvCCzzN0JCMqrmHFu4pFp7idrZMin6Eo6FqQWDTs4HfT8h2TA80E7+QiJkGQyp5iMZzf6aJUqWCgmxB5YoXadI5RWtq4hVdYzVeXuKAVKstDUx1iMQO3WJe4wH5w80o32hCkKAp1iYtYqY5Ce6Dja8fW8NS9E9g9demn17KAETeiWBz+IESOGZmLCgB37hmHwNJ46Fz69HAWFMRigccltD4QnorPaeEFAGifBYTQ+drffFt+BNj5NIT7KWY4I9GPsGKRFUPEYuh6QnOA7iM/OAnwNetgGWQ7QmCd335f1S67FWpJ5EDTNJbX42uRnkHj6Jkl/Mun7hq+JpQjV6+WoagphG1OrHd64Dg21to0Asskx9PaiXhi0TKA77wfUBKGQRoOyUnRUDU9aIW6EaLSh80oFi8mLiaxuCmsHSP/3fMcQizKG7fdu1y4qhWLhgI8+GHg/H2Xe0sKFLhicHj9MCakicjj3W78/btL+AgYXv9GWURmyViMAw03IoZYoYZz4fxoCunEYhKBRK2QIsxPZAIAbQfvgWiaRqVWScxYtE0bJ4+cxDc+9w1oyxoolkKX6gb2rZcTuNUZi76s5jiSzq9Y5GgO8PGXFCgYlhEhOzmaA8VRYC3HClXreRaUpmZ6RCsACKIQUUWGEc4KnCnPDInUmNvbnt4jajZns8LEomqoue11wxhFLPICD9M3jL5VisUwymwZmpVALKbdE2RAX++DozlIjjuKpy705ZGuyGSIYEc1faguCSWuhIbQSCYWXcUiN+zRsBILGjQEJhtR51q5trX2ZSUW046XJLiKRb8V6pnuGSimgpunbr4sWZEFChR47KHovF5CnG+TC5NL2jx8vouf/ftv4Qf+/CsAgDPrg9jX/e0Xj3n/jhNjjfuIxZWeho/ef977u1HiYhvsYyMVi6OnznY5WXWuhaSnWHSIRSGG0ByFtU++Hf37P+s1BjcKlhfAcTx6MYpF27LwkX96Lwxdw7Ne+GLQArmwV8Rg5l65Woemjp7oTlYskv2wJjshzbe/BBXHBtVFXeLQ9ykWJ0O2tTxLw/ZNALI0FatYdAky3VEszjjqPoamiIrPtw7TGhKRQEixqJkQORpsitqUl4aKxWoCsSiVK1B0E5JDUrpWqJshFueawQKsIfFQfPuCFUvQdRVZ73jqEheyQt18NlJN4nI3FD9/aAk0Bbz8CdtTLWgvJxiBFI1ZMl1d+C2Ys54LRI7BNTNVLHVVGNbmMqrSjuECBa5amCqghWqJEdP4Edgm0FsEhNAUed+nAGjsAGZuzLfeCLEogPJndoRveBk+qKpiQ8Ti8qEoiQp4TR5Z0SODOZcaFIDxRjVWsbg+sPBj/7SMnqzgB559J05+7j04/+X3R5Zr1LLnbmdBu9tHs1bJZwFqDFASYybSekvAIx8Fjn42/nWVGfId2DYUVb/kVqh+i9mLjg+8Evjkb0LgOag5B4wuCdaOAawAHPxhQghntUhePfqYUTeWpatUsXj2W8DHXg9895+A+z4Yf14rUKBABIfXD2OhOsz4HZXR3tN7oCk6qFgcoVZjKGZDyqsqSA2lDTRwNJdKTjbERiDHLww/qeEHdZ6CnTSZHkJ9rI52TC1iDkyc/LOTaK+1ccuTbgE/SfaNZmkekQMA5Vo2YtH9HCqV/HlccDwHQUwnZ/yKRY7mAF8ZyFJswIbTBc/woFgKtE2DAoWuNrRCNVQjaIUq5rNCBYCdtZ3ev+NqqZ5GiEWXKI1YoZqDTecPaqaWqkDj+KBicV1d9/bBViKcwXeyO7RaV63Rx0Aa+nofEiuBcwYPt1e3AwiSpCsDcm+ys75zw++zrbwtcIz4MTAG4GguQMrRAg2O4cBS2VS6LkHfUTuecvlyEHJZiVA/6nydKBZ9++bw+mGwFIs7tt2xlZtXoECBKxgFsXgJcb6tgKJIVhwAfPPEGu4708LBOUK2hG1OAWClp+Lvv56ehTJVHV4kxso8PvjNU17NVxO52Kb+uHNvTifcvMYpI8P4nRdeh99+4bWYdwgft7DyFIspdpoBGBfnBro+No5OKGPx2KGHoAxk9B0l48HbhoHD4cw9N8dwo3CJxbZPQVqtBa3lGiUesk+xGLat5Rg60Eh17T/DN05dhazjQYXYp007uYd0DLGomRZ4n+WuX2EnayZElkn9/gWpBNkpVGsxNrsAsUJVDQsiz4BlaNQlDhQAprQxYpGlqcBxDhDS3E/icWJ5qFhMgbu/myUucDPgEuSKsfGiu5GTWNRNG59/ZAm3LTRxcK6x4fe92KB58hsvC9ltbkSOQdlRPkt8dqXjvqkKVvvaphuzfvK8QIHHFZRNKpEGLUIuhu1tZB+xuPOpQHUm53ZFFYsBRIhFLkhocCLgv4lfP5H6dsQKdWPWXFuJybF6hFg8fPwMvv8DMh5d1cGxDJ5++w1YmJ3CzGTUDrte2VpiEQAaDilnWDZOtiyAGnGONrV0K9Tu+fjHaRo48IPA+B6oug7RTyxuVrGYxQr1UisW109A5PMPGMXC1AhZuVV5iKtHgdp2YPvt5Lfn5i2OwuffCHzrfVuzDZtEpXSFE4unvxG855FXgS//MfCltwJSE9j3fKBzhpyDCxQoEEFY5bUoL2K2Muv9rY+wgu/pPZTYUkDhNzAGEWLKD47hNkTI1Chyz6trJGMxbdvqQor1/AYQp/xrjDciisULZy7g2JuOQT4io1wt46Y7bwo87yfQPHJsBLHYMUitp9KjSaVyaHAqrDwEgL4xJH7DikWGYiJWqO5yFEuBAgWe4SEbskcOm1rUCnWUYnFgBAf2dtd9MQAJisUSO6w/4jIWN61YtNIVi4IgwPD1mJbl5YjyMg/ivhsg3Qo1TMjmRVfrosSWvCzJptCEyIoBdeGKsoIKV0FDaGz4fbZXtxM1YYxdsWIqEBgBjK9OpgQKHM1ltqYfl4hisa/3PeLdf3xcKmwkg7Im1KAYQeveQ+uHsL26HZPS5FZuXoECBa5gFMTiJcT59gATZQF7JsnU2VP3TeDnnrEb33PddOJr3vGlY/BzPHED5pM+wuXgXB3fPdPGqTVSIFVFNtbWsuwUZbwStEWgxHxk2u6JSsRqVRs4isWMqkNbzammyIh6czxihWrbNiiKxnO+/2UAguRhXeIgcDQoXgItloEEiwLTIDcG3/rcf+DbX/sSWmvxOQ6sqYCmhqQfQFSQ/uK3WeICCsRwtiHP0LB8fvEVgYWqG7BCBbTp/Kk5Y3wTFd45bogVqu0rhgzLDhCoA1/ROXByEdNyNQWp7Fmm8gmZoK5i0SWiGJpCVWRB5zy+XFRFFmJo3zRLfMAKlRVKhFgcccez3CUF3VjIdlZ0MhI3Q2g1S3wuK9T7zrQgayZecttcwDr0sQaaI4VoHitUYGjTLGUdMgBwzUwVKz01QLhvBDyTb1uvNLziCST3ZM/U1pMOBa5wyJu0O3IJRCnU6OqvDv9d3ZY/vzCiWIwhEsN/+4efWDGoWFw/AZQnowSlu7mPAcUiAEw267FWqFNlCn/7ijnohplKgCUp87p90uh654c+hU/f9W08cix7fk6zTupQ7g+62PlnPUAcMfRjqOkKw/4KkGTzdvBlwL7nRaxQuYT6ISsutxXqNeM0eDpab4gC57k6bAqudekDH9r8ugBCJDZ3AuUJYNtNQPsUkMWmzNSB9WMXbQgwD65oK9TeEnDXnxJ1r2UCj3wc+NivAksPA7f/BPCKfwCe/utkf8dYPBcoUCCe3JivDnMAR6kP+3ofJa4UIN4GxiCVOGRpdmOKRcpRLFJEsZhGLIZJkc2q2eKIxfpYHa21VuAxmqbBSAx2/95u6JoeIcB2N4YEWqlKnguTeKYzkPvwVx7GN7/wTaxciO+LxBFwlQxZzwHFIsPBpobv7yoWwyQdTxPFom3bEBgBfb0/VCxqBnjeRywKfIQ4DMNPyPE0j8nSkFBJUiz6rS5jicVNqgc1U4PApigWBQ6mzxVrVVlFW4235U8DT5N9lXRMVrgKNEuDaZvo6/0A6Tdqv45CTyf70SUWKYrCttI2dLSOR2Quy8toCI1NKQAXqgtoq0ObUj8GxgA8wwcyRCmOEIvMqKE8BzW+BpZi0Tf6QyvUy0EsMqKnsjwwni3Xs8bXApmghmXgWOsY9jX2FfmKBQoU8FAQi1uAw4tdHF4c+uK7TfSHzwebaOfbCiYqPErO8xNlHrONUmoW4Xu/dgJP2DmcYGdjCB+/5eA101VwLO3l5pV5Nt3uKlyfb0EekWeFym388DKNbAV1muVJfWwcvXYbtm1jcOYhaKqCPddeD0EaFh5uFiMwzNwr7X0ihJm9oPj4AqW9Tpq2H/nb/4ffeO3L8bmP/RsAQO4Fv28bJDOx6yvqqvU6NJ/V5nhFCBCLYoik5Tkalu9nWnUUi1ZI3co7to+WU7WzNI0XXD+DXeMlaJoK29eMNS07QNLJmumtb6AZEHkaTJoVqihhoJsQUrIY+VIFlk2IUBd1iQMtbYxYrEtchFgcK/OBfceKEsmTHKFYXHKIxfFytOFcEdhNKRab5WDu4yh88/garpmp4sl7JvLZ0l1qOMRiJYdiESDHN5CPWNw3XYVu2t73tFFc7RmL82MlPPIHL8BzD+RUjRW4+rFZtcvAUTyWQpOofsXiRs5XYcVi2JIn1gpVDS4fIBZPAtXZxG2RFS0/+RmCnvF6kFaLTI7V0Wq3Yf+vGl58LYNuT8b+XdvxLy8voeacU9MsO+vV+ObDF775XQDA77ztvXj+a38XL/mlNwIAjpw4N3J7mxmaeQGYOqQ0u7L+EpDWQGK4iBXqZq95l5VYtAx8+2fKeN72aBNb4NjHXsbioEV+15PXAHwZWHgS0DoNqKNzxAGKZK5uVgm9BbiiFYtth/hfPwF8+neA7/w9MHsr8NK/A77nDcDUtcDsLcTyefXRy7qpBQpcKZgpzQRUMyOJRa1PFIs+QkA11VTikKXYDZFAbsairungGT6VLAwrFsMKSl1LV2KGkaRY9FuhdlodTM1OYddv74I4K0JTtQABVmJLaIrN4d9OLWL2gvti+QLJu7vvc/fhN370N/CBv/4A2WY1uM1UTAxPuT76Ou7/Tnmah81EicWIYpHhPGJRZEUohuIpxQwlaoU6MAYB4igMv/KuKTZR5obbHUss6r3AMmFiUdbl1MzNLNAsLdXakuO5oWLRIqT86e7pkeu1bRunOqe8v111r2rE35eXuTJUU4VlWwG1oruNm0FPI/uR8w0JzlXn0NE6HlG/PFjGuDi+ITWei4XaArpaN9YSVzGIYtF/fNisDY7JTixSFIWG2ICsyR6xKHKXvp4RWAEMzeCuV96F1x58babXVPgKdEv3jtdTnVPQLA23Tt+6IWvVAgUKXJ24ujuvlwjP+9Mv4Xl/+iWvkfCy24j/9zvvOo6z68ML1Pm2grEKn0rahGHbwK07hkVdXG7YuE/pxLM0nuBbPq/CKA5MzuaPq1i0VPJfuZN/OuqH7tyH1//3F49cTu6RpogdU/A3muPoddtY+9RfoPPtj+Orn/skAHJxl/s9AECpNCz6GiU+mO0opBe7v/nuz+J9n/wGrrnhFgDDz93VSHHbK81iqiag7yusK7W6ZyMKkHzMvjq80QhnS4pskFisiaRhFY4BdFWjtu9G4sW3zOHJe8ZgGkZA9QgAoo/07akmdJOscKCbkNjRikVZJZapSTl2bm6l3yq1XuI2bIXaKPERonqiwmOgmV5PmRFK0DQFoxSLS13FW2cYRBG6ccXiWFnIpVToaya+/6Zt2FZ/jE/hs6Sgz0ssupmheaxQ9zqK7nOtzU05co8DK1SRYyKK8QIFIK+OXmYU+DIghMin/vLm1hmTsRhAHLHob7ywQtCyc/0EUJlC7Bg8HMWij1iMyzkchdr3vxFPe9Wvj1zuxNlFAEBvEG2iTI7V0Wm18PpPKfjwIyY+8LEvAgD+z9dYfPocqTNSFYsJVqhuI+3b//Z2HP/su/HbP/MKAMBSSJEQh0Y1P7FYSiUWVwAlff+qmg5xI7mK8irwlbcBetBS67JaofZXUOIoiEy0XhB5LuAE8ZiAq36cd/Jwdj0N0HrZbVYtHVi6/Cq6yqXMzNxqdBzC//iXyLH87N8DXvIOYP/zh4phhgXmbgVaJ5MVwBcLhgYc/Tzwif8J/NNrgA//HPDxXwf+6/8Ad70NuOddwP3/Ahz5NHDq68Dig4ScHvG7L1Dgz7/z5zj43oObVi/FYb42jwo/vJ719F7q8j29B5EVA2SQYiippN9GFYsuNFULWKGuLUddJQRGSG3Sv+a21+AXfugXIo/be2xQviHflUfJAJixHt3exlgDrZWW9/fHP/hxx8lp+Ho/AdYUmwEVWKIVqvP3C37qBfjg1z6I57/0+QCGSkYXFE1FCNMsikU/scjRHCwM18FQDHQzqlh0rVABotJSDMUjdAzNCFihgibkcpqCzE8sjoljQXVcTAna1/skF9N5rhwahLJhByxe88KyLRiWkarS4wV+SO4aAE3RuNC/MHLdZ3pn8NZ73or7lu8LPK6YSuwQXZkrw7AMGJaBM70zARIwiYzMir7RR5ktexmLQFRduDpYxbg0vinF4vbKdtiwvbxGPwbGIGKFarM2eIYHTWW/Bx8XxyEbMhRDAUdzqUT2xYLIEDKzLtSxq74r02uqHBEFuHbBh9cPQ2AE3DZ928XZyAIFClyRKDqSW4jVPrnAcQwFgaWh6CZe98F7vYvwWl/DWInPRdQ9cdcYdowNC524l46FCJLnHhhaq5b5+IuW5DzMphQ1RmcJnbv/HXSGvEU/VIdg66yQzJ3zx/M3I370F34d9cZQqVmT0lUHcYWOVKrA7Cyhd/9nUbv5+Xjm9/6Q99zAIRb50lBB1ywF30Msp6vrWI7DtvkdmJgOKoZWZKe4pWhM10T0fIrFSq0B2ff3REVAT02+WRFYBqY93P81kVinmqHPO+FYTo7TQyKboijYjm2rjTCxOCyOeqoO3XQVixYkPj1jkZdKkHUDIkfHKmgBgOJIcVcVhvt0rMSDHmW3loBmiYPIRhWLfc3wfk8sLzoZixbSyEXD+azhPEv3MXUzisWQte0ozDZEvOCGbZkyTS8nbJoDTUWtekfBtWku5yAW5xoSRJbGSm9zU45Xu2KxQIFEDLZAWSQ2o0RfP8HeKisiisUYItEPlg9ZoQrBIkjvp+Y8yooeyBd+6OipxGWT8Ic/+VzMTY+PXM6tQQwzSjTVKyUcv9DC276h4edv5/DTr/heAMCnTrI4KpOm2kasUF1wLIOd26dx2/V7R26nC9cKNTNGZSzCJiRDClQ9qFjMjPP3ESJjLajiyqRYLGckFrvngQf+daTjgQePZI9eu0WBwyClrrssWDtG7P0nryV/b38CAApYOZR9HatHLsqm5UFZuoIUi2vHSUbmirPf3H1dGgde+Q/Ak38RaMxHb+x2Pg1YPxUdxLhY6K8A934A+I+fB775t+Q4uf7FwI6nAM0dxE66v0x+h4c/CXzrPYTo/9wfAJ/4deB+x6p3sEkL7gJXLT567KMAECEqtgIzpRmvWQ6QTLY0KKYCiZEChIBiKiOtUDdjW2moBnh6qFg8fTT+Wlnjk++Rf/R//ii2LWwLPKYYCuydwWvW2iL5HZrOELMGUkPRdRrlWhnL54cDYq/4mVcMiVhnk8q+QaZxMUjW6NAhpqjGKYbC9Nw0rt91PQCAbYfus+loBmY4YzEO/vzDcN6lq1gM3/bzjGOFCkexaA6JRVM1A4pFlzQsJUTghLdhQpoI7Jc4xaJsyKhwFU856ids3cdGHatpcNVjaWRawArVBraVt2FJXkrNEwWAdced4FjrWOBxxVBiX+vut4ExwOnO6YBN7GYVi7Iuo8wHFYsL1QW01BYUQ8HAGEA2ZGwrb9sUUTdXnQNASMowFEOByIiBXFaLscDTfK73HJfGMTAGUEwFLM3mIiW3ChuxX63yDrHoqDkfWXsE89V5TEgTW7ptBQoUuLJx6UclrmJY1vBiW5c4PG3fBP7122cDy4xXBCx1sgcZ37rQQFUcXkzpUBODZ+iIym17c3jRCD/noiFQ6N3/WewUkxuQZ//qJwAAHPPGzNsLAJpKJhKZEYVLGn74x38eAPDa990DAIFMQBdp1mOmpuLLn/0obEPD9CvfFMyGwlDpSAklAGTadrISnBQUSjkbbw5WB8OCd6Ym4qFzw+ZApVpD3zfJPlbmPFIvDjxLw/90XWIx0M2IFaqrTJ2mg0QxyRxEQPUIACUf0dNVDOjWULFY4plEi1MAEKQSZI1kMcYtxzAsdIcMrUnDU0yzzG/YCnW8IkSUWY0SD7IbyL6geRGapoKS18DbWqKS629ecxve89UT2DEevZmpienfxyiMlUnuI0VnI9Ked2AG25uP/Ql8iyY2wWnHRRymauQ3VcqhdKRpCgvjJaz2tchxngdZM14LFLjqoLQ2vw6pEc1A7C1tbp3h7YooFsMZi0KQWIyzaq9uiz7mQFb1Tdu7/8rLngzM3UYIgg1AN228/z8/D9208fEfkSJDJJ2ek4edosRiWQblkoi+nL12HIXcVqi2AWZUbm37bOJTlmVB1w1CLOYVYrkWklawpkwjFiucDY5O368BnP8uIUjmbiM5hKOQ8lsQONY3YLTxa9iWYvVRoL6d/K4BQKwDE/uIMs62gCwNrvVT5Pe4BZEJG8UVZYW69DD57+lvOPva6dxPHQC23578ut3PAL74/wghuTB6qGFDsG2S43joE8DZe8i5d/sdwI2vIGrW2hxRT5oG+c5NjSgoTY1YHsvrhGzsrwDfeR9w5u6otXWBAiFsNlMuDuPSeIDY6WnpikUAEFnRsykFMlih0mxEEZcHuqqTbMAR14O6UMfyIN4Z4oWveSHGpDH80ud+yXvsHx7+h5HvPaBJT4au0fjEOz8B0xx+DoqivDw8a51cX0uVEkAewoQ0EbCXXFFWUMniduB8HZQZrHcomoJu6gFlZiXDkFMgY5HmPEtTgBCLPbOXmLEIEJVWV+t6JJeu6OB8g89ufmKFqwSUiX741bZTpSnwvutgmFjULR2qqQby5yRfLSKyIgbGYKRtbxpUi+yDNKKI4zkMlOF276rvwrHWMaimmkpIuoTn8mA5QCRqlgbDNsAgWAu6lq+KoeBU9xR21nbiXO+c91havy4Ntm2jr/dR5+sBEm6+Ng/TNrGmrHnf3Y7ajg29h4vp0jQYignkQ7pQTAVNoellEwKARVuQaCkXOTghTeBE+wQU01EsUpe+DS9x+XtOriJ8YAygmRpOdE7g+TueH8mFLVCgwOMbRed1C+CWE184RIpB02mGb6tLuN1nSwoA05V8N147xoKNk4gdZHVjN/jLAxuVg8/B2li24N480AakUGKQrQi3Nnijcero4cTnGF7ATbc/GWxjBuLCwcjz/T4pmmjfdNpMPdiwoGkGopR/smdtMCzCZhsiOsqwi1atNQKKtmaMHacfIkfD8JErNZE0rMyMhIuukSLaJRaNLlGcSNywmOmqhmfjqxomygKbqlLlxTIGmgmJj7dCZXneyxn0K03HyjwYaWOKxW21aDPJ3XfurmB4krFIWQYoy0xUAe4YL+P3X3QAeyajNzPVGBVjHrj2qrSYTqA+cdcYXnXHAn74tu0Q2M3bFV9MUBQFw6bAsTTonLbIU1XyvSUpp5Owd7KCtb4GNez5mwNcYRFa4PGKrbCmE2sxisX8Vqj+JlZku0YpFhk+nVgUqkBlGkmQFS2gWAQArJ9E+b9+CwBw49jmLJpcnF1MVnJyDIXnPuUWlFjge/dF1XousTjKsjPJDnWjaGRQCQSQxZaxt5io+FOdfKgNWaG6eXOhYbU0K9QPvHCA33iaCD6vQnL9RLbl+snEosizjxnF4u55R9G7dowQpqIvx2vhTkLaatFMoQjEBiEhB5fX9rJSeuwPYsXCtoHeaAs6ACR3keGBleR7nA3Dszv9DeC/3gCsHwNueBnwI/8C/PC7gVteRVSKjHPeZFiALxFCujIJ1OeA8b3A/BOAa18I3PajwM2vIsvyW3uOKlAgC/hQXZBE1ti++2aBFQKEgGqoQyvUmNschmI2RYrqih5QXCUhnLOYhp7Wwzvuf0fwsU4yqUrRFO589p2Rx9cUonA0dPL5/cq6qdJUZLvDlp65QEcVbFnW5yf1wlmVDBholhYhr3iGB8UNMxZVU/UISV3RA1ao7vorXDLJqRgKeJq8JkJihY4Z9xgM5FP69qtL6sXl+WWFq75MU1kGrFAB7Gvsw9JgaSSh6RKLS/JShGiN+x24xGJX62J5sIyF2oL3nGqqMG0TU9umRnyiKAbGADbsyO9irjJUF7rWpbsa2Ww9k8DSLKZKU2hr7cix5CoW/epEgzIi9qijMClNoq/3ybGU00Z1qxA+X2aBa4WqmiqOt4/DtE08YeYJAXvaAgUKFCg6r1uAp+0nUvD3fe2kl1Xn4r8/aVh81CUOtVL2k3Bd4iIWoGF7vyRbVbZ7PnXdbr/eikzLZJ8q0lQF7fWoZYBrhco6HvilHDaIefDde74WeWz92HfRve/TAIBnv+gloBIueoN+n1iFssPnXdtGF6Zlo1zNT4R5Vqgg5LKfSKzU6pB9isVmOf0CL7AMNN8xVRVZmJaNgZ6taaXrrmKRHCdmjyhUSz6C2raBlqzDsCzopo1ygrpscoJYWzQmZ0gWI8fEWqFyHA/FySn0241OVPIrFsfLAiSOwTUz0dc1Qr8lhhegqdkUHXG2JcBoy91RaDivv/bOZ2PXgRuTlyvxeOMP3YADsxsjWi8lGI6DaliOOjofsTjbEEEBqIj5zgH7Z6pY6amZj/M4FFaoBR63UDsRdVdu8NUokSfnt0K99z5ifbbW7kWJRTY0MEKzCHRo2FDGYrgxV5sD+FJi1dJXgxmLd+Je4O23gj/ycQBAk98a9cQXv3l/5LGvH1nG//cNcv199Q88C0mno26fNLSqIyw769WtyQo0neMit2LRGGFnxZUAeTlIBPvgEosC5/8OM9abLsFy9m4AwESzhr07ZnHdnoX45ZU2rmlamK6w+X8H3YzkT3cx8SmR5yA/RojFo595F+xvv5+cEyavA/zT6jufRgjSLJ958lrAVIHlHNapW4gSa0FgqRF2vI9h5Bn24ERg5kZC5KbkvuVCfwW4z2d3ypeAp74e+NH/BL7/bcDupwPlifi8jQIFriD0jX6sQuqb3/ym9+8S47OlNCmP/AAAqhQzMJtRsZikSNQ13SOl0tAUmiOXcfGpE5+CZVuwfS47D9zzQGS5s/efxfJHyVDY97z4eyLPtxwnCdc61U+AzZSjVvNZrEuTQNEUumrQ/nOUYtG27aAVKs0FiEWWYqGZWlSxyPCo3FKBwioesehZoWrxVqj+rM4wFFPBXGUOT9r2JNw4Qe7vJYlcT+lQL8RVzY4JY97n9hOZrsrQVdttBB6xmKJY5Pkgsbi3sReGZXhqwiR0NOK0tTxY9v7tIk7Z627DmR5xl7h+/HrvuYExgGmZeOErX4j6eHbiHBgStONSULk/W5kFAKyr61gZrICneUxKk5HX58VsZRYdrRPJW1VMcgz5SUQTJniGD9ijjsJkaRI9vYeBMQBHc7leu1Xw20ZnhWuFqhgKDq8fhsRKuGnqpq3etAIFClzhKDqvWwDXK/3IUg8f/+55T+1VFVmIPItnXkMudpNVIZBtNwpxgqs4S9A4BFQCOWD2smdk/Nv73oFf++8viTyuO7YLbEixWOXJB2JSJqV2/MZHMfWKN2V6fz+xaFkW3vknb8TZb3wM2uJRAECjmWwhJPe6kMoVKD5FVEUINi1Vw0JlA8SiX7E4HVLaVepBxeJYArE447yOZ2kvExAgikUA6KrZvl/XCtVdBcWR95NC5OG6rGHgbFctQbU3MTHhfIYxoljkEhSL3FCxWPcRdc2SAFqsZLPccjBTF/HV33wWnrKXvPfYGCnS5xZ2RUhZmhWgq5tToNQ3SSy625QlZ5GiqESC87EEhuGg6BYEls6dBfn0fZP4i1fdgj2T+Qjla6arkDUTa/28nnlDWoJ7jOdWFihw0aDJm29Ii/XouXoDGYuao5rXdB1QuwiI7cNWqxQVVBgyQpBYDC9fmQG4Ell3DEjG4vCcLlA6sP/5aN/0M9k/QHn0lPUX7x4282zbxpv++oN428cfwTfPWrBtG5PN5GZKp08aZqMsHhtZ7McyoN11JunzEoumlk7SNRaIPag+iH1aUclxEMhYHLRGv6/ua7yduxewDNSrZRx56/OwZ3uCWtVROPI5lfIAyGfIYtvlKBZ/4Ck3RJ4SOIaQ2o8VrJGaGPN3BB9fcNQryw+PXkdzJxkEWM2gojtzD/Cd90cUppvBXzy9gzc8S8rtmvCYQSfZJjgWO58KrJ8ElI1ncMG2iR3rl/8E+Mgvk3zE2VuBH3g78CP/DDzrt4Hp6wulYYGrCj2tFyEGAEDxDZ767T0pk4JmaR5Rg0pUleUSi6Pu2fodcn21QkPmlmllUgr5FW6j8OWzX8YdM3cAvre67+vDDEvbtvGv7/pXfPEvvwj5qAzbstEYb0TW4+bpxSkW44jFSt7aIQRXIZl1fZqlBew444hF0zZjrVAB4IFtD0BipQCxaJs2eH74fbjEokugxGFgDFAX6vijZ/4RbpwixKK7Djo0OeYSYm7WIMsFaxGGZiAyYkCJmQSVcvo4dPDzuerLMlcGBQo3Pj06zMwJHPTBsBbZVSeqvrPd9OtRW21DZERYtoXT3WAeaJpi8XT3NGiKxnXj1+Htz347ALJv02yG0+Dmf46JY4HHJVbCmDiGttrGsryMhtDwtmEzmK/Oo6N2Iqpa1SDWsX4iULf13KrDCWkCpm2iq3XB0dxlUSyK4YHODCg7NYJqqji0dgg7azsj30mBAgUKFMTiFuAVT5jHa560gMkKj7/+0lGvJzHukAzbG5L3t7hJe76k3Lgk5L0Ht83sF/9+r4NTxx+FaQRf4yoWGQQLa1e4mEYsAoC08yaoRjoxY9s2vns3IRYtTcE//9Fv4J/f9ReYueXZGHvuzwIA6mMpxGK/i3Kl6inrgKjNrGZYuRWLpmVDNoZNqZl6UAVZqdbQ902yV0U2lqz5xOueht954XXYVhdhWDYoZxrOtersZ5yGH1qhkvegnEwrKURwdxQ91r40CYruWKHGbDvLC1B0EzQVfJ9miQNFM6CFfMVfsyx4hJ07FVitN9AMKRZpToCmby4kvC5uUrHobJP/uLrSwXIcFN0Ez9KJCukk0DSFFx6cjdgMj8LeKXKjeXY9v03ME3YSm9m901vTiC9Q4IqD1gesTRIbUgwZNsg+eBQLtQMdvnNsXCaX32WADWUshm+IyxMAK3g1V7sXnP4OKxb/vXsTcP1LYY/tyb7NGU55X7ybKBZVw8bv/cPX8btvex9educC/v7FIiiKwuRYCrHYk1EtS5GJ9zC2SrHoWq82M+QaBWCqQJpiY2w3MFgn/4/B0Ao15zXWT8jIqyQLcfkQ8OC/AXf/bfxrVo4AIFmHuTFYBUwNPGXg9U/igST7O8cW+Ma9c5GnRJ4NOFNkhrwKHPlMNmIzCf/xC8C/vjb42NoxgK+QnD8/6vPESrh1cvR6aQaYvYUsm2aLa9vAve8HTty1NZbMAGCZONA0MFVhkr+Pxzo66QqRCHY/A9B6wPrx/O8Vtjtdc+xO/9uHHLvTVwftTgsUuIogGzL0EfWP3z6SNsi1t6+R3gRFUYEMPwBeFho1wrXFcoZv2svRc19eK1QrNMgTJjsqfAU3T90ceOy+bxBi0TZsPPCRB/Dn//vPce33XIuFX1oARVMesTj90mlwE2R7VhXiPOUSi/4swDiyZlNWqCAqs8D66unrC9uFcgwX+H5dFVlY/ecSuRZtQWIlaJbmvc427aAVqjkABQplNnlbFIOo1kRGHPlduoSYq0ANE4sAITGzEIttmhxLXSE4ZOKSpBInodqoYuf1OyOv5XguoFis8BVMl6axNFhKzT3sal3srO0ETdE43ws6oOkx13/393SmewYT4gTGxDE8c/6Z+LEDPwbZkGOJ/izwFItitJ+3rbwNHa2D5cEyxsSx1MzIrFioLqCltoZDBiD9RsVUAr8FmqGhW3puK1T3c6wr60TtmOO1W4WNKBY5miM5pXoXp7unsb+5P5dtc4ECBR4fKIjFLcBT901g/3QVL7hhGx4+38XdJ4LNNzcjr1HichGDg24n8pirjnzHa27Db7/w2ojirSaR4oU5SSw/8hIBeWGZJpYXgzfMmqNYpHMEnYcLnHC9oxvBB86ePIa1FTIxvv65d+LofV/HG97+XpQXbgBFURBKZdRTFIvKYACpVPbINADgQxNnqmGhXMmntFrrBwv/sGIxnLFIU1SEIAOIVeZPPX23Z89KOUoNV02YtWmla2pAAeKuR/SRqAxFoasYUDRyE9MYQSzasKHoFsoCGzu9SaxQTQgsHbCj9MjBnHaoSZA4BpzvJo/m+MxWqEnYvBUq+Yz+4+pKB8OyUAyHWLxEKsAd42XQFLDcy08USzyDN734IG7bUUzTFXicQu8nWlKmwk/ihCfn9UGiGi0z1C40+BosYQUiECQWGT5IkLIhIlJsBP48sRhsWCmqHrj+GTZNLABTMFDyqd4vrHVx6Dixf/r9z6v47H2n8YE//g089/pJUBSFkshjvJE8oCQP1JE2qABQ30gzz/nsX7sQU2PkVUCaWjqx2NhJ/ptAUnlWqHkzD8NKr6P/NVQxJtmzOtap/EaIxd4yoA+wU2jjj54notx6JLqMoQBqspJM4iiils2DM3cDn/ifwD1/B5z9Vs6N9kFeJYSU7LsPWXmUkIhSI7gsRQHbbwdap4PK0CTsejpR0anRexMPF+4n1qo0s3WKxd4ieAbgHuN51KnonEWmKQUX259IFON5rGcjdqcSsTv9McfudM8zCrvTApcVWexENwtZz0As+uwjKZP8Hrr68JweJhZdpRLFZfvtrJ4lZJ2/t8GG855j0BAa3r+7a8FrjGuv6eLJs0/2suYAQJVVHPouOV8sf2IZp+85jV9786/h2udfC4qmQNEUBFGAWBIx+f2TWPhlYiXuEn2mYUIsiWCY9PPsZolFN7/PW98Ia1XXBtUldzmag2Eb3jCW+7gWqnn9ClGREaGZ2vB7tRCxQhUYIfU7Uk0VIitm+h77eh80RaMmkNqPibl21fhaLitUmZcDx5P7edPIUF7goQ2C+2Vfcx9WBisRotqPrt5FU2xivjqPpcFSQDHqt6V14ZJuiqlgtjLrWcqOS+Po6/0N55PGZVW62F7dThSLg2WMS+MbUuKFMV+bh2IqaKvDwQBvP8cQiyIr5lYsAkBba4OnLxOxuMH9VObKONo6CgsW7th2R6bfQYECBR5fKIjFLcRtCw1MVHg8eC54073UJYVMTeRyWR/KveRp3+fdsA0/84y93vqW//Mt6D/0RZQc6yf2zLdx8s0vis2m22pcOHMq8LemuBmL2QuJTitdCdEKFUbfvefr3mdvPO3V+Mk3/R2e9KznobVKpsjFUgWVWvo0TalSheInFkOkr2HlVywudoJFYlUrlC4BAAD320lEQVTkAqq9Sq2OXkhtmGSHCgwVf67SsOpYmA4yWG0CgKapoHw5kjTnKBZ9uZf1EoeuYkB2phVHkWumZcO0bU89GQbLEytUnmUCRFSz5BKLW5MrSFFUwLqUYnnP+nWjSPpMWcGzNCSOgWltQnHwGAPL8tAMC0Lo+7yY4Fka880SVnpqjtTXAgUKAAB0GcjhPuDhy388/Hc5NJiTYIP6j5+7H1++99Fs61d70OwRikX/JDgrhjIWQzfhIVXl8fNRtZydQSXgx7mlfKrML98/JNJ+62kC/u6XnoNXft8zcOYC2V/jtRI4jk1VJNYqGYjFygaaeRQN6g0d/NPxaC2UpFicr1G4fTZmWw013Qq1vh2gGKAbr8xSNkostn3E4txtRLHo2JDGwrKAVWL9KeSIHvAwWAso7SpaTJZibzl1FVWBQm+QkVg0NODud5LfXsWxncua85gGt4Fv28D6MWBsFyDE1F47ngq0z2RTI+9+JiFVl1PsUA9/kvx3Ky2+HHL5iiYW26eBymhbZQ9CBZi6HmidSP/dpdqdfqiwOy3wmIK1hfbISRgYg5HEot/ykjbJucqfJRcmFl3ygGIzEovnCLG4CvJfboIDZYx+rZ9YXF+KV/+7mKvMBUiCY/cdg2VaEAQBE8+bwJ2vvRPf99++D2tOTcM5bgF1x0GBdgaM3YxFACiH6oyLoVgMZ/aNskJ1FYsuWcXTPHRT98i6JMWi4Ksv3f3kkpq2YXv7AyDk6iiSSDEVlNhSJiKpp/cgsZJHbsYpFmtCDaqRvWfR43sB8tQlBv3q2zA4nosQi9ePX48leQmDlEHBntZDTajhwNgBLMlLgd+Dq8b0w0+SzVfnUeHId9UUm1BNNfJ7yoqe3gPP8LGfcaG6gHVlHR21g6nSVKYM01HYXtkOgGRLunCPK3/+JsMy0EwtN0nnZkVatpXbRnUrwFDMhgnBMlfGoryIClfBgfEDW7xlBQoUuBpQEItbCJqm8P03zkYeP98mF+/NkhZpkB/+ElY+8lYvm88Fx2zdV3zunT+Hc+/6JU8V6eLC2SCxOLRCzU4sriymN1LCn+OzH/kXsBwPc9AFU25gZud+AEN1KECNtBYLE4the1DNtFCu5pP6h4lFAJio+gK7K1X0Q2rD8UpMc9WB6BGLQ6UhS1MYZLTa1DUNFBMk3wCg5Ctyx0oc+prhEZ6j7EA1J5cyKYuR5XjIGlEssr7vwFVmMltELAJAXRruW4rlPevXjWKzikWyjqtriovhWC9jkR3xm9pK7J6sYK2vpfbUChQoEAN9kN8KtXUKOPLp4d/hG2Y5nljU9GwEJmWZgKkGFYtMzPnWn0PE8Om2i6HMouMXWpFFFCPfaMLZxXw5kn//mXvBsQzWVRoNkcL1C+POekhD0R3GmGgmX/dqldEWTo0RU/2piCFwkzIWT/1KFXf/VIWo3vwwVMA28M2zpGaywo0ehic5i9140m9ohZqz+dP25fvseQ7577HPJy/fOUNsWwHw7Aavxb73LOtrUQuNNGITQI2nIGfJWBysA5/6LeDYF4CDPwy84v2EWPc1ejeN/jKxRp46AHAxTbDp6wkJmYXMnLuNfM8rCcRibwk49514AtOPzjng478WJI3T0CaK4ItOLH7jb4Az37446+6cA6rb8r1m55OJQjSk8AEwtDv9pN/u9KWF3WmBxz0GxmCk9aLfDtAl/PyKwH4ossUjFnMqFt1sOUZiYGeoRfyE59pi+rBHmJS452P3gKZpCLYAWqAxtkBcW1aXyLZQTi3SGGt4rzEtM0D0lUJDTi5BFHgsr416CD2tFyB+w+sLf3euQs7dFo4hGYturqGnWDRSFItOPesq0WwrZIVqDCAyycSiZVvQTC1zjl9PI8Sia5nKxAw51YV6JitUFyYd/K48K9QUC1Be4AMZiwAhFmVDxpIcX8fopg7FVNAUmrhx8kYsyUuB34NrGewHRVHedlw7dq23H90cvrBKNSt6Wg8SI8Vazy7UFtA3+rBhY746n0u4kQSXWFwZDO8D3O/I/9tkBRY2bJSYfBEFFa7iEaA8zQcyG9NwrHUMZ7pncr1XHFiaBb3B1r/7+XfVdxX5igUKFIhFQSxuMZ60exxjZR6WbcPluHqK41ufMD3tqgzDzxuHv3TxNnQD0FdPQ18+DiF0c3/hbDDY2TIN6JqGitVH/+EvoeQETvMCKexMI9pwWVk6H3nMjzDhc/89X8PUtjnQoUYJP7MXANCz45tXtm2j8cNvgrT/SSiVKgHLSjaUnWCYdm4r1AsdJWJ2NF0dbiPDMAErVACYzEIscuTzUBSFmshlttrUQ4pFl2T0qzPHKwL6iuHlNlZHkGuqRyzGL8dyPAYOsehXuDU8xeLWqWj9NrIUs3krVD/57xKoedGQNj8191gCw3JQDRMCx+AS8orYP13BSl+FtZm8qQIFHo/QB+mEXBy+9MfBv8NkVH91U5tEOVO/up9YjGviBDIWeSCtQRi2Qr0QnfDvqdFrJedcV42YqQWXEMyCv7xbw0e+dgjTE03cto1c61iLkFr9QfBaNJFih5rJCnUjisUUjFRJhr9vR7H4Dw9aoN7QgTW2P/qaqesSCegNW6G2fc0UsQZc9yJCoiRh5QhA0ViUqY1ZoQJAZ1iPlsw2+ex+9JaIzWxCI6vCA70sVqhnv0XUeM/9A+AF/w+YPgDUZoFBa3M5i364+2r+jvjn3d9gFiURKwDbbnJUdDG/yyOfIcvseXb6ek5+lXyv930g2+dskXsMdoRF36agK4SwvuedhIjdEjifzdQIiTx7M/l71zOyvXz3swjJ3PLdYwXsTv8G4Px2p39W2J0WeNxDMZSILWYYrI9w9xSLPovnC/3goIWXsZhRsbh2PkoK2vroc52f2BpFLPqx/pV13P2Ju1FtVMGUg+dJl1h04eYsAkQ9aPt8YaQMQ05bYYXqz+kLW6HaIZ8aV7HoknocTTIWI8RiyNpToIc1rMSQz+USc7ZpB6xQVVOFxEqJxKKruIsjWuPQ1boosSWPEGNjhpyaQjMXsQgAJztDhwzVVMFSbIBADYMTOGhycL9cO3YtACQSVa4l8Lg0jusnrodpmzjbHQ4BxVmhAkPl5MGJg95jrgLXbzOcBz29hxJXiiUWXRIQIGTXVqAhNrBQXcCJzglPXe0qFmvcsIanRXKcSFy+XEeKojxb16yKRcu28K4H3oX3PfS+2HzLPGDpdPeUNLjH/jXNa1Djt04gUKBAgasHBbG4xaBpCj965w7cuL3hkSrPu57YG3nTNKG6dK4p4fsOzuCJO4ce4iff/CIwx7+25dtHXYQmfZhYBICB3AcPAyv/+RZMVhy1nUSKDl2Jkj8rF9KJxdWeGlGjvfZXfy9AmpnmsIGogxTWlVrw4rfW18BN7QZbn0GpUoGSYilKFIv5Lp4X2goaQvALnqkHyU851Oh0cxTj4GYhUr5sqXqJS91uPzRVBRUqOjmGAutTgE5WBXRVolhkaAolPr154xJuLlHoB0XTqNQaGOgmxFAGIs/SsFQZTGnrCpJm2a9YZKFpm7NC9ZOl61mtzEJoxGRmXslgWc6xQr20isVrt1XRGRhXVV5lgQKXBIaSL2Oxvwzc+35ioeci3Kzop9s/jgLtNFA0ewTZE1Ysppkhh6Z9j8cRizEED+Nc/9SYrOIzGRSLhmHitz6r4Bc+TmqZN77uNZirknUydvx1I12xmCVjMd9ktIvXP4nHhBDdptzNBUMBbBOSO+VfiplYnj6YqHxTVHI85iIWTZ0cd/5j4smvS3/NyhGgMg3NZtGs+po+D38EeOBf0l9LMUBpPHCsl43VKNHUW3JI7SRi0cZA1WGOKrdtmxB7+55HyCCAWMoqrfyK4yS0TgJ8FRjbvTXr2/k0oqJTQjmLhkryL+fvBCrT6es4ew/5Ts99x7OtTYWjIA0oFk/cBTzysZwbn4Kec9wO1sixslkYKnD/Pw//DQDTNwK/fQ64/SeyrWPhTgAUsPQQsTu96099dqe3AN9f2J0WePxhlBrRghWx2wzDbwfoZix29OFrFvtBC2zbOZnTbLbrpqtY9MOMGXJKQ2upNXIZy7Kw+OFFnH3HWVCg8OpffDXYkJuQ4vRcbJp8BtcKFRjmK9rOJHzYCjUOlbz5zD7Yto2O1gkoFqVyOjkjGzJ4mve+M47mYMP2VIBJxGKcYtE7LkyA54fPa6YGiZUSVW+KEbXDTENf76PMlcExHFiWjSVsG2IjN7F4qjt0CNNMjRBFFA3ZkGNJJ47noMrBvshMeQZVrorFQYzNO4bK3SlpCtc0rwEFCmf7Q2IxaZtLbAkT0gQmShPeYy6JFlYAZ0VP6wUIWj+2VwmxSIPGfGV+Q+uPw7MXno1jrWPeoIH73VcFn32yQM4D/qzWrHDVfjzDe8duGg6tHUJba+NC/0Jk4CEvOJrbsGLRJROfNPukzErLAgUKPL5QEIsXATfM1fHy27d7+W9P2j2Ot738ZtwwS07Kz7tuBhLHYLYxLDRefMt2HNzeCKznYsSZ2RmmWO2c5GM4YxEAlMFwosklWN2CTVOjRckoxSIAHD/ysPdviqJw0xOeFHh+0UdwGg6xWK01AsucWhtuV6lcgZxCWmiGlVuxuNRV0ZSCP6swsRgmSqZrycRiOGMRABpSHsWiFiBfAYClaTC+42CqKqCrGBho2cgjzwo1RtnYbI5h4ZqDUHQTIkdHMvmsQQe0WMt9jCVhzE9uMtzmrVB9xOJaT4O1gazEq41YZBxiUWTpi3JOSsLeSfLbW+1tjiwuUOBxCTk9nyeABz9MmtLbnzh8LEwsyitRe9QcoJxmhI7g+dGmQjeovvdVrXwlahyx2B9osBIIIDXGxnWkYpEV8eipc/jgAxr+6vvI/njWHTcFFlle8+djk2tIGrFYLY2eeq4nqARSz8mWiT96nojvmUnO684MQwEsEyUp5RiYuQGU3sdUObpRnhUqn0PR3z0PwAbqvqbR3C3R5Wwb+Na7gfXjxKazuQvbZ2dw+7ULw2Uu3A+c+jrJH01DbTs51p1pdc5SgV6oPu0tEgISAKxoLVbhyOfNXD746/LmDkIsGhlrmZUjgJyibDF1oiLkN0ZMo7dESE7RaUbvfibZh6tHgsud/ApRSt/4cqKiS4K8BqyfINavfBl4+D/TVYuW5RwHIWLx9DeB+z+U/tnzwHkPzN4GPPpfRGG4URgq8KW3DAlF978zDvkXzq9NgtQEJvYRovO/3kBIWM/u9D3Ara8p7E4LPGaRlqeomRr+9Ft/uuXrdbGuJP9+WbBeHhwwVCz6yY/z/eA5X5fJ9SurFeraueh5ydLyueCMylgEgKVzS1j/wjpmXjED27Zx61NvDTyvKiqYCvmsluQMBfsUi+5+srvkHDyK5AM2qVg0Cbnnz9yjaTo1g6+v9SGyotdD8kgmh2OZE+YAIEKsCb6+iZu36JJFYStU1VQhcVIi6eKRS1y2nlBP7xFikeawe+9u7Lo+qqhr8s1E9V8SLvQvwHRqDs3UwDGcdyzfs3hPZHle4EkJ6rvEUhSFvc29WJFXYrNIXfJ1qjSFElfC9ur2gG2quy8in0dsYmdtZ2AfNQVCLOb9nC76ep8oFmNiEyalSbA0i7pQR3kLh2pesOsFUEwFD64+CMBHKvvUqi6xmNUa148JiRCv/mM6DV8//3VUuAps2Hho9aHc7+eHS0RvBOOlcUI2j12zqW0oUKDA1YuCWLxICJMzFZH1VGIVkcXb/9stuHWhGffSyw5VyTdBtXguXrGYBC1m/StLyVM4RnsRpmlg//XD5t2u/QdQrTcCy508Osx98RSL4WUCxGIVgxTln25aKFeyq+ssUFjraxiXgo3S2XqwUJdDKol0xSJZF835iMUSn5lY1HTVsz+1nUYVx1ABS8uJigBZM6HoJigKI+0u/3/2zjtMkqu8+qdy5zg57czmKO0q54AiQgIhBCKIIDBBAmQTDSaDSQZj488EA8YEEwyYaEAEgYiSQDlr4+zu5DzTuSt9f9yq7spdPdOzsX7Ps89Od1dVV6eqW++557wVmVycJF16CVIUNGGRsf0O5NIS6HAccquERaNjkWYhVlYmQhmjUKfzFZSl5t1yxn063qFpGqFwFBVJQURgW9LDwC/rOsiA3W8/0YCAAAPlJgruqgIMXgAkDD3ArMXqwgwgLH+mes2xaBUWrTORDQWEQpMz/IcnFmyTVvLFMmQ4z66V5OaiUA8vKqhQYWxe248HXhvH687gMdiVxkBPh2m5J/cdwhk95Dm7WRIBtVLHYsqhmHdJegLyexNgDDFVTqxLSK6Rsne9PILv3OgjzkkqA4pYdyw60bEVALC9wz6IWFYUqh6DanXb7XwJ+b+kfceLM8DuXxBBKDcGtG8CRdGW85VKnIeNBLtkLxHTVMN3b/6geZnCVN1haITRe1gTh6akUPB03DqRXktELY9Ca43ZfcCv3w/87uPNRx/75eCfSN/HTc8it/vOJDGw00/Xl1FV4Ok7gPbN5DjixdgDAChg6w3A2a8Fxu73jrYtTNW+u9GQ8bunku/k6P3Lelk2lsYBLgJc9l5AKgGP/e/ytqOLitO7ge03kvvKC0SYjbY3v73TX0Eici94cxB3GnDc8MVHvoiX3/FyR+ECAP79oX/Hlx/7Mn6yr3l3sOwwmcPKQmXB9TEBgsmxCBD3UL6arzn3rM4gPU7SbxTqwtQCxKr5tTfrWJyfdBcWxQURlVIFXX1dWP+R9Wh7ZhsiyQgGNw6alju831Cf0YZBxh6L8+V50vNNO91EfCQjxFz6M/tCIVGncyXz+NRLCC6ImrCoTRDTRSZGe0HtIXJctX7X9F52gNmxSIECVNiiUCNsxNWJpcdhJoWk4+NG7h2/F+OFccS4GDiaA0VRjtfOCSHhSyTXERQB44XxmmOwLJdJnz5NWJRV2RYBXBNPLcOQLZktmCpNOYqEej9EXQDbnN5sEhZLsnON8GMXfgy37bzN1IswykXB0mzTzkydvJivvY9WGJpBZ6QT2XDWs89ks2zNbEU2lMVTc09BVdXaZ6+/LpZla1GoyxEWs2EysSjkY6JmUSzikZlHcE73ORhMDGLf4r6mvjNWWIpdttvw9Ttfj/ee9160h5cxjgkICDgpCITF44i12dARuY7MLzU3u312asIWQVn2EBZl0V7YmZ10diyWhh/C+H/djt/8z5dM959icSsCwKH9BmFRdXYsDs/U9ysSi6HsIdBVJAWhJhyLZXBQAfQmzAOgboNjUZIViJZ8rGzUXVgUtChURqgPmjJRzlMQNSJWKqB58vyqVnhiGbOTMKtF1S74jP6sNuixCBAxKMwxDo7FHJhwAnLDjDB/6PsOAKBXHoUas0TIWPth+iHjEBF7vNLR2YWBzTsgKSrCDSJyW02EZ9HpIboHBAQ4oPdGLC00t17vmcQhAzhHGeanAJ8xUE5Qkt5j0SIsWp2RhlnmS2Vy/F0oq/ifx0QiaHiQL1Uxu2COQMsXS1CaGOq6CYt/Pizh9C8U8N4v/BgAkA6Tc9vFpxLRa6lCzmkSxeHJfYehnbpBU+T+7IqjUKP4nxvDUN+XALSoqjVhMp5hF4c9112blEgPOQcuHmTx/G0cUMk33AdUywiHPM5vmSGoDI8dHfZzxbKiUJdGNYeXRcTr1VwZekTp3AHyvx7DOnCO8/Yq+cYRwYleoDgL1hhpmzOMT1WViOyxDvu6WsEzwpLPfFnDnPQgeV2VHGpRqw69QFEtAn/6NBHDFg6SvoWtRlWB4T+QmM020r8cfARo3wIsjdXdmjNPA4uHiPiY6PXe5uj9xGXXsRE473aADQNP/MjdtaiJywqfwBlb1tgfH3+kNf0ol8bI96x9IxGuh/9A7msGo6h4wZuAnS8m9+engGjH8o6f574eeOkPgUvfFcSdBhw3TBQm8PjM45gqTDk+XhKJ0OAlKK0Er+3yFG9yLAJAiAmhIBZAadesM+UZ0ySlSo5cW/oVFlVFxdSY+bWLTbbXcOuxWDpYwr4P7MMPP/VDAAAbJeOi9aett0WcH9prTpSSFRnJrCEKtTxPBBPtZfmJQrX2RGwGXbids0x88xKCC1IBETZSE+d0wZDVJjcLjED6Llom15iiUBlSBymIBVCqJlBahMUoF62Jl1Z0YaxRFKqkSPjmk98EQIQoq4BtxI9IaSQtp7FQWaiJfBW5Ao7mTEJR0ZLIwAnO463tbduxUFnAQnnB9liumkOICdV6Jm5v347ZUn1cXJbKjuJ+T6wHZ3adadofiqKQ5JO133uzFMViTZx04rq11+GsrrNaKixSFIVL+i/B/sX9KIgFlKUyWJqtuV43bNyAsGYY0N+jZuiIkLGj/p304sGpByErMq4euhoX91+M4aXhmvC7HFbiWEwJKVzcd/GyXnNAQMDJwTEhLH7mM5/B4OAgQqEQzj77bPzlL39xXfaLX/wiLrzwQqTTaaTTaVx++eWey58oHPz4tfjDu64Bx6z+R5ZbWmhqeVVVMTVmbgLt5Vh0wsmx+NPvfB1T33kv+O6NuOA5LzE9dsrp9sKR0bFYBQ1JURBPmgdu1ihULzdUVVIQjjYjLJJBbH/SPJDrSNQHD05CVVussWOR4evbyER533PgxWoVXIgMAoyORWMUqv78S00IixxDQeDchaa6Y9EuLNLhOKRlRIw6YezzqNIMxGqlaYOAEY6hETL00BhbaH4wnD6BHIsMQ0PWThPRIywsAsBQ+wpmxgYENMkJMRbRYwj9RATqgkm8G0gNkH5vgNY/zkJhmogYy4TWhMUqzMdHL8fionZOUlWgLPk7sB8YMfeNyRdLro5FpxLS6JS9x+I3f/JbPOOrRWxqo/G2m68yPXaRJiw+rq0m0wKe2GePh/eMQvURP5aMR3HBgPY6dCHNuh1pFur7Elgjmx8fiMlAxbvnlK+efmIBYcFjsgfNANl1xLFoEcOW5VhcOAxEO03fCUd0x9viYSJUdZ3ivJwiaoKdB8k+ACraWTJWLLMpEn2qOz6reeKUM8az6mjfZT3MgTgWmySlbTc3WRf684bv9LdeSNyBf/0CUFkErvwQ0L4JePrnrq7UZbNwiIhray8hwphOx2agOEveBwDYfxeJht1xg3csp1QBJh4DuneS7YUSwFmvIS7G+WHndRZHADYEOpoF59TfbOYp8j6slNwYEOsiwt1l7yPHwkcb9OQ0IlWA33+iLiqecysgaL/50jyQ6Fm+4zuSCeJOTzJOhLGIqIgYXho+Ks+t9w50ggdvEyoERjC5qhbKC6aefRWtJYPfKFQAmDhsrmtIpeaOz07C4h9/+Ufs//B+sEkWV7/matNj63atsy0/vGcY4nT93F5VqibH4mx51iRwrXoUqjYsWLQcs72E4KJYJP0PrY5FoT6uCzEhu2PRICwyNAOWZomwqG3HuH5VriLGx1yFxVoUKu9dE5otzULRXmRKSHkum+SbFxYB4MAiGd9V5Ap4hjcJRcZeiADA8uR7bk3y2JLZAsDcs1FnqbqECBepvX872nZANRRWKnIFsup/0nVKSKEkl5pugaOoCopSESkh5SqGvX7X6/HGXW9sudh19eDVWKouYffCbpQlzRmqCaYsy0JSyW95Oc+rO/78iKH3jN+DweQgdrTtwOUDl6MklbB7fnfD9dxYSY/FgICAgEYc9aPL//zP/+DNb34z3ve+9+GBBx7AqaeeiquuugpTU86z3O666y686EUvwm9/+1vcfffd6O/vx5VXXonRUe8oqBMBycHptxoUlhoUoAywWv++CUN/Q8DcY7ERFE1jZqI+I1xVFXzpk+/Hv37gbYjveiY6nv9+m8C34wy7sHjIGIWqMpBlFTGDY3GhWMVSuT6wj8Tino7FsigjFPFfCCiBA8dQ6IiZi2DGHouOwmLcXYjSeyzSvNGx6F+4qlYr4DS3o+5Y5BhzRJjumMxV/F30VGUFAmsXDY1URAURngFtWUZVRIBmoLQoCjVt6Geo9+pSVxATAZhdi6PLERY1sVNukXh6tNEdqlH+yBe2NnYGwmLAkeGEGYvUhMUGvQKBusMr0dO4B1txZkVuGUouATQH2eIUsDkWDbcXi+Sc5NDO15XhUbOwWChVapMjamhFoh2dDGTZfE4em5qDooliqqrifV/4MV7ytk/gpu0cfv3SCNpS5mOS7lg04iws2otIeqHFl2PRxzJxmRTnOmEWRzkaRHRbKWIRkXADF3n7Fk1YNBf5KqIIhqHBsk1MUFkaJfG8DjFYJmb3kv/Li0SYi2Tcl230u9Acd508GcMWwj1E5NOdAHnteJC1F3F1YT6sORaXNYEqpfWFLM7Uhf6lUXOE6wNfIf0id90MbH0OcbMtDLfetXjwj2QywZZnmzPyO7aSiQa6C6GSJzGf8W7n7ehMPka+F+uvADhtXHzB35HerW6uxcVDxB3qFN/FhYlQPPbwsl5eDVUlkyziXQCn9UA8+1Zg5N76d8uLmqj4dF1UNH0HVSJYBzP9A3xwwoxFgBUVwZcLBcrTAceBswkVITZkioVcrC6a+v6Vc+Qx2mlyg9M+0BQmRizCYtn7GruYN9dNSvkSSoX6NegvvvoLvPfV70V8Rxxr37kWyXbzmGL96ett2zy4+6DJQVaVq6YeiwuVBaSEVE1Qi/gYZ8TiK7guU0mfQr2Pn46nsCiZhUXdscgY2s6EubBJCAbqvRhVmpxXBEYwCYsKY64VJPj65C9r3KQeh2nss+fEVKn+G82EPcYhaN6xGFbCyIQyNfHQ2mMRAA4tmseeurAIFSZxcDA5CJ7mMVG0T+pfqiyZ4keNPfUoUChJpeaExVAKZancdIRnQSxAhYqU00RHA41cpMvh9K7TEeNieGLmCZSlcs0Vq6N/1yJs8+d0PWK2kSg5VZzC8NIwzuk6B+2Rduxo24EYF8PuuRUIiwxnczUHBAQEtIqjfnT51Kc+hVe/+tW45ZZbsHXrVnz+859HJBLBl7/8Zcflv/GNb+C2227Dzp07sXnzZnzpS1+Coii48847j/Cen7jkmohCzXZ0gmYYTIyaBzOlorewaOzjSNMMcksLhvsoFPM5vP4fPozMFbeCMgyKu/pI0SWVMUdjqaqKQ/v3gOPqRUlJUU19GI1uRYD0WKxI7gMdEoXqv8diCTwyUd7m5OvQ4hwpirL1VwS8ozM5hgZNmXssNiMsitUKWEF3LEq1bRojSqMCA4GlkS/7cyxWJBkhjgbLOAuLikrEx6jgX4ja1OXfGWrE5FjULhSbnRVnJWbY76lc89GqKU3s9BtXe6wjan3IrDGxR4Llfi8CAprlhBmL6MKiQ8TRiijMAMu4iNahpZK2b5bJJrRVWKyf6+YL5Pgb8hk/logKOGAp5uULJShWx6IW4yQwwMy8scBFQZJkTM0ukFsUhcV8CR9508vxleeEIBj2g9HSI9b22ItHT+47jKSlV1Fbyj6WkKUqKPjssbiSvkYAsDDi/XgjJx8AiCXvHosA0LUD29oZW+RouSI251ZUZCJ8J/u9HYuqCswbHJrZ9c6OW51ig+g9IQZEsujkSSGxEOknIlpJGxcXpuvP40KI0YVF76dyJNZFIn9Llv20/p77zwbOeT0RsLY8G2jbSFyLOiudvKUqwPCfiLswPWh+rH0zEeetMYeNejWM3EecjQNn1+8LJYEzX00iUhfsgjwWR8jEB8pBWEz0ke2NP7Sy11vNEZE0PVh3Bl70VoCPA0/91HvbUrWBqKjRtinoiRjgixNmLAJg77wPYb7FhNiQzREHABKtXQPDfj4Js+GaeKQqKnLVnKlfXSnX3CTTVEcK44fNLV6qBe/J4bNT9kkv0xPTtb/L+TJedNuL0P/6ftBCvXynC2W9G+0x1Af3HkR7V70nWlEsIpkxR6GmhXTtth83op8+jF50RDuQE83jDWs0qhE9DlOfEK0LPIyWoiPLMkJMCJLFsa877lQtjj7EhFCWy7UoVJkyX6Mn+WRNfBsrmGOwy1IZHM2ZXJBOGHsRZkNZz2WbdSxSoLA9ux0ThQlU5ApxLNLmWN/x4ripBmIUFo2wNIuh5BCmi9M2wW+pqgmL2rgrwSfQHSWThiJcBCWpZHuvvUgL6WUJizMlMkFuID7Q1HqtgKM5nNdzHvYv7kdezENgBNP7rL+W5fRYrAmLDa6n7h2/FwIj4JlDz6xF3p7VfRaGl4aX3WcxcCwGBASsJkf16FKtVnH//ffj8ssvr91H0zQuv/xy3H333b62USwWIYoiMhnnmUGVSgVLS0umfwHe5JuIQmUYFu2d3ZgYsQqL3lGoc9P1wRfNkJP1048+hNKBB0BRFN74vk/i+pe8yrbepdc8F1299giqpZlJlIoFhKP1k7ykqKYei4fmighxNJQKERgj0Whjx2LUfzFPBoP2mGCK0gRQi6+V50ccHYtsg3hbgWVAGYTFZLgZx2IVbEh3LDpHoVIUhbaY4BkLa9qmpCDE2vsn6uhCVPwICFFmx6ImLDr1I2oCXUATWBozuUrt9fhFFzuX05/xWKSqC4tHIQp1Q0cgLAasPifWWIQiDqByi7dfmgP4xtE9blBSieyXpbju5ViczTWX0jDYmcKBkUmwan29fLHsGoUKEIeilYefOoD/200m2vzLm16Ad772JpPLHwB4jpwnrPfnilWMTs4ikzQLiU5RqGOvBx56XbQehfqtFwI/eF3t8Y9dLuB/XxAGFNlXXKonefvMdBMOPXNsSGWEQ2Qs4qq1dG5HXKAQkxdMd1eqIkK8y9jlJ39LXruxR1J+ElBlIpi5xJMBIM6+qmG82bm97oZzourjd5Fdjw5dWAz3AFDrUZ35SfI9dupDqsFrDgmfQyozNA3Ee0iPVOObPP2UeblL3wVkNLcsRQGXvNMssDbqJdmI6afJb37D5XahrF1zMDQSq42oCok87dpB3I1GLvg78hr2/dZ8v6IAS+NAor/u3jRCUcD6y4GpJ/31CHVjSRMA2jfX7+OjpJdnaQGQXSaYSVWtp+LT5DW4iYoAed0BAQ04scYiJGqxGRGiFQiMgELVXoMQWS21x0FYDDEGx6JM+swZHYylxeaExUx3pnlh0aG/88E9B7F4HxFJX/HmV+DVf//qWh9InRhInYK21BIUWcHIgRG0ddUnYk+XpmuORYqjUJSKaIu01cQoP1GoK3U8dUe7ka+aj9dewmJJKiHCRWxRqLq4WilXEOEi9ihU2iws6j3yoJL3qgrz52EUWJ32QWAEz56JgEVYDHsLiwIr1PfJJ7s6d2GiMFETvgVGMLlvJwuTNYEcAGjOfcL1pswmTJemTd9zAMiJOcT5eO39A4DNGXJujHGxph2LmVAGRbFYi4j1iy4sDiWHmlqvVVw9dDWmS9M4lDsEgRVMzl8AYCjG5GL0y8b0RlzUdxE2pDa4LqOoCu4dvxfbstuwJlnvLX1Z/2WYKE54/l68WEmPxYCAgIBGHNWjy8zMDGRZRmen+QK9s7MTExMNiiAaf//3f4+enh7TINzIRz/6USSTydq//n6HvigBJvK55i4yunoHTI5FTgij3EBYnJ2ux5XR2sn6/bffgvk7vwRVkW3FukZMHSY9dsKG6FJJVpDKkgE1y/EYni2gOxmCPnUrHI3VYh6dKIsK+FBzs5E6EiEInP1nJZdyqB5+FAUHx2IjBI4GZSi2GsW0RojVSq0/oyqRQTfP0LBeF3Qk/A9uq5KCEMeAc7m4qIhHTlg0ujcV7XC23JlcOokQeX/7MxFM5yue4rMT+ufTqj6SRxv9NxILNT+AXinrO8jvOZjnH7CanHBjES7cuKdes1QLK4pCpaUywAqNhUW2fi6ay5sLHo0Y6krjwMgkkjIp0K1r40mPRSe3k8b4tP0C/ea3fwJv+FkZZUlteiyyb5xsL2uJTG3POM9OP6WTQcJYzCsvEFFYFvGa03gMJGmgkjMX85YjGuWnSGSjX5yKwVIF4RD5vKqiS8JBB+ndk1YXTHdXqh6ORb2H4JIhuk//u5EgY+03ueZ87+X9ODPbtyDMkPN+MdRNRK1FTUTLT5Heh5x7AVaoORaXOQZI9ZFYV2OhdHZf/e/1VwAD55h/S1uvN7soSwvLe26d4T8S5+fGq+1Ou9QaEk9bmHRc1ZG5A+Q1rbmAuBSNhFPA0MXA1OPm72hhirwHbe4FOGy9nvxmJh/xvy9W9F6zumCqk+wn++z0e7OJire5i4psWOvdGRDgzYk2FpksTqIo+W+NolqtVcsgxIRQEN2FRVa1X5uG2XA9+lQBZFXGTLkeKV5eam4sku3Nmnosshxb69PohpNj8V/e9S8Y+9oY5JJ7XUR34Fn7Ay5OL0KWZLR31ydyzJZma3GnXIacj7uj3bVI+GhsBf0TfdIT60Guaj4Pu/bEpEgMqTGmVBdzaJ6MiarVKkKsvceiLtrpUaghltRCKIUCx3OmnpoAkLSel0Acnb86+KuasMh4jCUBIuzpZATvKFTAHL/qh9M6ToOoiDi0dAhVuWrq/QeQ35vxvdVdnU4/qx1tOzBTmrF9FvlqngiLhrH59rbtAIhDr1nHYjacRVEqLsuxGGEjSIfcBd/V5Pye88HRHMYL446isu4ibJYIF8G/XvqvOK3rNNdlds/vxmJ1ERf3XWwSvC/suxAUqGX3rrV+XwICAgJayXE9beFjH/sYvv3tb+MHP/gBQiHnGcrvfOc7sbi4WPt3+HAL+syc4DTjWARIPOmkoceiEI74cCzWB1+FPfcCABKpNDpf9BFT9KlfJg/thxAKQwjViz0VSUEkRhxPsVQbDs4W0Z+uRw+wobjnJUxZkiE3eY3TkwyBY9z3v1iVm05DCrEMKFbv2ycj3UyPxUoFjD57X3MkWKNQAaAz4THD30JFUhDiaTAuUah6vGzyCAhRiRAHmgIYmoKiXVSpKxT0dGFxKBvBbL6KXIO+GFZSHtG2xyO6YzN8FByLmSiPZJiz9eoMCDiWOObGIlxkZQ4e1+2uoMeiVNKcZP4di9NNugSGutOmHosRnkW+WK5NOnHCKCz+VHMphgQef3xl1HcEq5F9o7OgKAopSx8iniPnlUzCLkjZolA1d1c63Jrj3nSZIY5FsYn3c+Qv9b/1WdlSGRHNsVgsuxRJEz0AgBBlfrxcqTaOQjU6FhdHiTMwtcZ9eQCY2w8ImrM92g6kG8RmVXLk/fWic1vtT4XmyD7kJ4mDMD9J4jc9+uNwWsTaskMLUmuIWGZ8PxYOArJEeg3GO00CPADidLzknfXbObNbpilkifRw7D291nPSBMOS97kw0/i91Bm9n3ye669wjgTd8QLSB9TY01AXl7tPdd9u35lEAB190N9+OJEbJ2KnVRhMDZDPQbIIi82IigDpESkE/aIDVp9jbSwyU5qxudOcGM2P1pZfKQIroCgVbSKlSJPjKeOQYGCKQtUu/I0iUWGp0JTTJ9OTMQmLDM/U+jS6YRQW80/mAYq4Dte+e62pn6Bf5seJWGeMQl2oLNQESt352B/vr103rzTm1A99sT4sVutRtaqqOkbXAgATIa/bGBuqC4sUT/a/Uq4gwkYgymZhkbNEqIcY7fegAhzP2Zx6TtGkvz38W/x4348xV57z5VicLtWja/30/mu2z+LW7FYwFINDuUOoKlXwDG/6XsqqjENL9Yn+XsLi5sxmKKqCkXw9eUBWZBSlItKhtGm727NEWIxxMYiKiLLoX2jPhDLLEhani9NICan653aEiXARnNF5BgDy3WEpi7Bo6W/ZDBzNebod7xm/B5lQBhf3XWyaUJAOpbE5s9kmojfzvEEUakBAwGpxVI8ubW1tYBgGk5PmWa+Tk5Po6uryXPeTn/wkPvaxj+GXv/wlTjnlFNflBEFAIpEw/QvwJrfov8ciYHcs8qEwyiXvGYpzM+Qzzz10Byb/71/AsCyuuP4mMNGU53oFJgZ648W2+6dH9qN/aL2pXmEUhFRWwHxRxLr2+kCPFrwjP1QVTbvV1rV7F16LVRkhrrmBiMDRtR5DYrVa6+HnB1GsghVCYGmqdpHFszRoS2GnqwlhsSorCHs4FqsSec+ORE8+mqaQCHEQWLomAqsrdSyGyX6vyUahAhiZb664nQwfeWffaqI7Fo+EA9WJde1R8GwwEA5YPU64sQgXARxm7K98uytwLMplgAnZIg1VaxSUoRg0vejf6QAQx+Lw6GStiBISWBRK3lGourD47cdEXP8/JYQEHi+85iL0JVyOOQ3OL/vG5zDY24kyT4SGBcl8bnWSCuMRh2Le/t95Pk8z7F/iiPOq2ETRdvhPQFU791EUEbLkSk0crFTdChsuE46qIkLW/ozWSWT7DD3BFg8TQSbUIA57di/ptQcAmXXe/RUB4ryVG0wW6thsub2VCIpSmTgWo+2ejkVdWBSbnZmmkx4iPRb1Qmn7JtJ/sOZCdhGct91AYlQBe//DRhidghMPk+PH5mcRN6ET2Q1AcdYuurkxeh+JGk32OD+++RoyqeCwQdBeHCHfu7RHFBrNABuvAqafBCrLPOYtjWmfqeX4lhoAxKLZ5Wrqqfh3jUVFAIh3Az6KzAEBJ9pYRFREX+4aPULSrWBeFOtjgUYChcAIzi5JSv/PfvwMsSGTYxEAxvP1yRn5xXxTIkK2N4u56blaBCXLsaiUvB2Lc1os+9JDSxj+5DCEsIDzrzofQkdzcZk685PzSKQSNYciQIRFayxmT6wHitZCxE8U6krpjnXX32uQmFG3z52Jkvc8ZTiv64IhpU38EqsiomzUHoVqmbSmOxahAJzg4Fi0iHyKquCByQdq+9jIsViRKlgyRK1bhU0nmhUWQ2wI61LrMJ4fJ45Fhq8JXhzNgaVYjOTqQqGqpSc4TbjemN4IChTG8vV+knmRTAKwxrhuzW4FR3PoiHSYlvNDOpSGoiq297sR06VpZEIZhD3GWqvNVUNXASDvu9Xpx9P8qsSKzpfn8dDUQzi943R0x7ptj1/Ud9Gyt80xXBCFGhAQsGoc1aMLz/M4/fTTTQ3G9Ybj5557rut6//RP/4QPfehDuOOOO3DGGWcciV09qcjnmhMWO3v7sTA3C0VzxPGhxo7F2Sly0RQa3InsRTejp38QC3OG2BEXQe/hxLngznohZiyRIlOH92NgrTkuKVeuDzLFCBkkndpXH8RRPvpFFZqccr6xy/sCrVCREGbdB6ZO4k2IZaAy9ftTHj0WGUuPBbFaBc0JJocix9iFxZ6Uf2FRVYEw595jUXcsJo6QwPbxG0/BVdu6IGtxMMoKeyzqwmB/JgIKwNhicxE4bu/L8YruWIwJR0dY/MgNO3DL+YNNC/IBAX454cYifMTcd65VhOzF8Vfs5HHhmsbHBtJjUUAzjsX5XLHulvPBYFcKlaoIWTsHRHgO+WIJikcxSO+xePEaBu+/WMCpm4YwPecRI9tAnNs7Ooet6/pRocn4oqA2LgomYpaxSCUPjD+EktiaOO19Oe091PsE+qE4Azz54/ptLgKIlaajYXUco1CFBOmjpzP8RyLYAERYjHc3jt+dPwBkhsi2uk+1x2zadiQHKA3EMGOvPUUBenYCuQnymyrNArEu4r5zgcVKhcVBoJon/wCgcwcRuIxuPidoGnjlL8jffnusxrvJb+6ezwC/+zgw9jBw4A+kh+SQfRJfjY6tQGGaiK2NKMwQYbT/TOL2dEKI2eNQFw6T/Wjk9tt+IxE5p59ovC9OLI2R57F+13S3ZkFzodRExaf8i4oAkOxdUYx0wMnDiTQWCTPkvLZ7bnfDZRfKCwDco1D3LjQ49hkIMSGTEOmHCBdBVY881oXFQl1YLCwVGrrVjGR6yHFBrGjxqxyLUsFbWJmZJGOLyPoI2q9tx6Zdm7A421w9xkhuLoc1G9aYhly5as4kwIXZsCmO80hEoXZHzWLJQmXBddmasCikavfRoMFSLBS6PnYIc2FULed1Y49AgLxWAERYtEShCoxgEyKHl4ZrzsqKXEGIDXl+B4xuRQCujjRZkWvitldfRzdOaTsFE8UJVGUSAauPyTiaw9rUWkwU605ZmdZqWA4/qwgXQW+sF1OlqZrYrMeitofMfZBToRT+97r/xXXrrgMA5KUmhEXtNfpxLhuZLc2iLdxW/9yOAs/ofwYoUAizYZuozNFcU8cEv/zy4C/B0Rxu3HgjIg7JGJcNXLbsbXN0ICwGBASsHkf96PLmN78ZX/ziF/HVr34VTz75JG699VYUCgXccsstAICXvexleOc76/E+H//4x/Ge97wHX/7ylzE4OIiJiQlMTEwgn1+F2K+TlPxScwPZ7l4SPSVWyaCuURSqUi3h97/4CfJLi+BSXUiffT3au3sxO+k/ummxZJ6ZNjWyHwPrNpruy1Xqyyh8DDxDY3NPfQAtU40HBEVDT8R8pXEkZmeDXoWFioSQQw9GHdZBlBI4GjAMXniWRsRnLGW1UrYJizxrj0LtSjY3cIvwjOO+AnVhMX6EevJdta0LZw1lDI7FlRVjdWExxNLoSYUx3SC+xosV7soxQVVSwdIUOObonC42dyVw7Sk9R+35A04OTqixCBdtLvbSL41EGw9891g0CouLeZODsRFDXaSAIWmTIUICh3zR3bG4WFbx07v+gqnZBXTHabz7IgH93e0YnTKIh00ImwCwWKhg6/oGcZwW4lFL8WD0rwCAn+5pviezE6MFjryvS2Noi1AQ/Awf1pwP7Ps1oPffYcOAXPF/UrO4SsrVKgTeYcyVq8+WR7Qd+MsXiFiVmyB96bycXpUlIvZ1bAFu/SNw9uvsLkindRo5FqOGolplkQiWUgmYeopEyqcGnOM8NViVbL8iLbfHovb9yWuuw7aNZAw483TjddMDQO8ZWpSqj+9P23rgtnuAM19NIkF/91Hg8D1A31lAwj5bvkbHFuKCLdl7lNoYe4A4lTde4/35nHITcSnqAqouLjcSFtdeQr4nI/c13hcrqkLe53iPPd5W74tY1CIKH/mf5kVFgPS+DPoaBfjkRBmLJIQEOJrDvsV9DZf1EpcAYM/8Ht/PK7ACiTVt4vAbYgw9+lQS+WgUigpLBU+3mvW6M9tDJlBUtboIwzOewqJclvHQnx/C1NgU2BiLzud2ItudxcyE/5QBJ1F2zQZzlPhCZaEuoIL0+BMMqRFh6ySnVcAqLBpjUa3owqK1zx7P8LXeiQDp/WeNQvV0LFqExRBjFw11tyJA3IiNHIu661bHTVgsy2WEmBBoml5W/8DTO0/HXHkOVaVaf00a29u2Y7JYdzuLDHlP3FrEbExvxExppuYg1YXFjmiHbdmh1BA2pMkE/maEe/01NtNrtSpXkRNz6Ix2ekaGrjbpUBq3n3Y7Lui9wPb9sMbQtoL58jzuHrsb5/Weh21t2xyX2ZzZjLSQXtYkP57mlz05MCAgIKARR71Se9NNN+GTn/wk3vve92Lnzp146KGHcMcdd9Qalx86dAjj43XB6XOf+xyq1SpuvPFGdHd31/598pOfPFov4YSjkbAoiebBW1cfKYJUq2RgwoXDrsJideYQlv7yfUxNjGJqfLR2f1tHF2am3BvTN5r5LYsi1liERavbsCspmNx+ZbGxs61o2Mbvdk/VnBBOMFAQbeDqKlTlpnvVhTnGJCwC/uM2xWoVDCeYRECeoWDVBDvjzUWtRAXWte9dVSvqJo5gdKagR2Uy7IrVPKPTcmNnDDN5n1FfDkgrdE8eC1RlBRxDg3WJvg0IOBE4ocYifJQ4nFoJK3j2lWsUiUhJJU00tJw3LLPKwRqExSVvYXEpby7UDXVrwqIWxx0RWOQLJSgOwuK+OQXXfquE0alZHBipjz16O7MYnaz3OvKKvHRj67rmhMVI2HL+PXQ30LYJM8XWzEyRVRBxIz+J6bfF8fQbfMQy7nwJEad3/5Lc5sLkM17m+bVSFRHiHdIW5g7U/774HcQ9dvfnALnaWJApa2PVvrNIX8Ls2sY7Ul40x346YS28dJL+Qph4mPyfXe+5Oq2SMbKkqGiquq2jC4u6O5YVSN/HhUPu6xjJrgOKc4Dsc1JUdh1wzT8Bb7gfuOFLwJZnA7te4u2ya9PG2wsj7svojNxPPp+2Dd7LbXomwAgkDlVViNDpJi6LZSL6UxQ5Zqy/nIh+zU6oKM4Biki+O9YxTqIHAFX/nhVngPQa4IxX+hMV04NA16lA/9nN7VPASc2JMhahQCEbypp6vrnRSFjcPd/Y9agjMALpn9dE/dwq0CT4BObL87XbhUWzY9EqMC1Om+smqY4UWI6FqEWGszyLUrF+bDKKgOKciAMfOYC56TmMDtfrIunOdFPCohNOwqIxhjQpJE3C4qo7FimgLdxm6le3WFl0FWh0YdEaGSowAlSq/h5G2Ihvx6KqqOB53iwsWtyIqqriwakHa+tUFH+ORWM/QDdBrCSVyLYoFpmQz8kpBk5pr8cc665gnV0duzBbqo9fq7T2nrgMQ7a3bcd0cbom+ulRru3hdsfldedoM7GmyxEW9dcwEG9uLL0a/M2Ov8HzNz7fdj/P8MvuseiG7la8aeNNrjG5FEXhGQPPMDmN/cKxJ1arnoCAgGOLo5NtZ+ENb3gD3vCGNzg+dtddd5luDw8Pr/4OneQ0ikI9PLwXQxu21G5n2jvBcTyqlQoQA4RQFGUHYfGpB+7GxNffASYUQVdXB9Zu2grcS2YYt3V048F7/gC/bcNLDhGla9ZtBEb2124XKzJgOIf2pSOmqNGy1DjmVO8vBwAHZor4xeOTrstGaRERpxn5BooVybfbUMcpAjIZ5jDuI6JTrFZBsTxYg9uLZ2nbjKXOJnosAt5uxIqkgGMo8B6Rr61G78FHWd0vy8D4Hdnak8Dd+2c9lvZGXK5j4RiDZ2lbzS0g4ETjhBmL8KvgWORjtgkuJhr0dKOgEtGAMk9MsjkWDcWYhVweYNwvnh/dN4rze+tiRSwsoC2dgCSTc3tY4JCfKUOmzCOLPz28By/8UgHJEIWObBJnn7oZ0FIUezuzGJmYgWnw0CRb1vVDPnDQ9/K2GcQLh4BzbgXwcFPPy4A41HjKYWzTsaXWv25NiiYRn14H9XgncOqLgQe/Rm5zYUCpggKLs3ubP7c7RqECJMpUp3cXcMYtwH1fJrc73fuE1RDiDYW+OhSgSIZehe7MKVFkaG0cm+ghUatT2pck4y1g0gr5HEQZ4JYzBIh3kd9aqV7YxpoLgAe/7k+nbNsIPPFjIr41gxADTnk+sOPGxgKyLhLm3ScEAiDu06nHgS3PMTtB3Z5/7cXA5ONEYJarmlvT4fuWnyARsbogsOP5wBM/JOJizy7v5zGS0wSa9i32xxgOiGbrwqKORwyuiVg78Mo7PN2tJwTrnkH+79pxdPfjBOJEGYt0RDowUZhoKPIZRTwnnp734dbWCDEhqFBBCf5/d9a4xaSQxGKl/rsv5OrCIi3Yz5uju0eBrfXbNEOjo6cDYlUk0Z0ci1whhzhIz+CZbiIY3nfffdj3wX2gGAqhSAi7ztsF/IZso7OrE3PTc+gGcfhJavMJBms2rMEo6mKlqIim9zolpCCwdWExFGmuFuAXvS8mJVCgKRptkTbyvQARO+NcvOZcnCnVxVQmyoCmaMQ48+QSgRVQpuvntygXhaSY3x9rj8PaZyzbeyyG2bBJNJwoTmCpuoTzes7Dn8f+XIsd9RIWJwuTyIQyGCuMOT6/Tlkq17a1HMeiUXCyRmWe0naKSbSuylWwHOs6btia3YqKXMF4YRyZUAa5ag48zSPmkhQR42JgKKYpYVHf31IT1yT6d2AwMeh7ndXE2l8RIMJ1K4XFXDWHu8fuxiX9l7i6FXX+4ex/wPDiMJJ8cykyVrE9ICAgoJUEpeIAG40ci/ueetx0m6ZpdPT0QdQci3wojHLJPICYGhvBlz/8ZoT6t6H7sldiad4cn9TW2YXZaXfRzorkEOvQ0z9oul20iI9r26ImUa/k0sfRSMUgLJ67NoufPTYO2WUWd4xuLBoWqnJD8dGKU3RqKuKv6FmtlkGxnCn6VHAQ/HRh0ampvRPxkPvrrEoKBNY9KnU10F8T1YLZWAmDaLqtJ+nL2eqGeAI4FgGADxyLAQHHD3xE633WwokNjYTFJR9R5py9aGUTFo2OxQZRqA/tPmy7b7C3s+ZYDPEsCiVzFOr03CKuf+u/45ROGr98aRQz8zlTjFlvRxY5Y2TZMnpVbmnSsWiDDQHbnotz+xic0cM0Fm80uqrDAIDz4qNEnDF+/t07fW+nxuXvq//NhQGpgo2RBdzzN1Fwi8NNbapccREWjY5FALjqo/W/U32NN5zoA0I+Z27rY7di48lCk4pe8FOIMNS+mazHx4CIdzGQ0pwT0nJP/zRDIkBLC/X71l5MBFHVR9/vto0kutXH63SEorxFZ4C8l/Eu0j/R6zgz8SgRczdc4fj7t7HjJmBpBDj4Z3K700GskiXy2hK9dZFv/WXk79H7Gz+Hkdw4iWnNrnN+PN5LhEWl+aI+AHIsXobr+bgivQb4+4PAluuO9p4EHGN0RbswXZquFcDdBIn5iruwqKoq9s7777FYE8r8zlQGTE4zgPSUM0Z0FnPFmogQ2xaDbDkOjz49arpNg0ZXXxeqFXIuYDkW5ZJhogcF/Hr3r3HVVVeBy3BY9951KBVKpmU6ujtMY5NcJef/BWkMbhi03WeM7MyEMibHogwf55dlUBDJOEqtkNfTFemqPbZQWUBCqJ/Dv7/n+/jPR/8TbJoFE2Uc+x8KjGCKQnXqRWeLQtU+Y0VWwPKsyUEXZsMmh+H+hf2IcTGc3nE6ACLQRdmoZ/TlZHES2TCJwE0JKfcoVKlcEzKX02PRSIQ1v+7B5KDpvqpSBS/wri1iNmU2AQBGc+T7m6vmEOWirgIURVFI8AniCPYJR3OIcbGmxMiZ8gxYikVvrNf3OkeaVkehPjD5ADiawws2vsDVrWh87o2Zja7itet6gbAYEBCwigSV4gAbucUFz8f3PfWY7b6u3gHIWj8X3tJjUVVVdPT04TXv+39ov+HdEOIpLC3M1XoyAkBbZw8UuT6glV3y4N3IdvWDYc1Fz7Iom9r8nNqfMjkDKqJi6zVohKbMcak3ndmPEMtAcZl1nWCkhn3gSqLctGMx7OBYTEf8DQ7EahU0w4OjKVDaRRHP2l9zmGcQaxDjaiQZcn9+WVEhOPRxdKJUlZtJq3FFaKljsT5Q29QVX9G2pAYRvscLgWMxIOA4gouQKEG1hRMb+Kh3v8OlUffHdBycPqr1QtdwDM8VSlCNxRnFXPR6aI9dWBzq64SiFVHCAod8kUShKqoKWVHRnkniB594A+64OYJslIEoSphdqDvY+rraLDvYfKEtEWuioulE9y4gsw6ndmnnfp/iZlw2FGd/8yHwv3grAIBnVOImsvQgaki0rf55aMIip7khuZzPWE6NSlVESLB81qoKLAyb7+NCwOv+COy6GQj7KLqlB4mb0A96j9CStzsGAGYUsiwvae+97saKZNwjgbUiEyVXwLHM8oVFAEj2kz6JOv1nw3e2ny6SLY15L7dSsutJPKiXu3HkfuJU7DvT3zY3a3Goe39F/ncS/ApT5NiWXVd3A3JhYO2lwNST2qQKnyyNAeGMe//YZC9QyRH3ZIA74RT5FxBgoDPSCVERa441N2eil2Nxtjzr2YfPii4gUU1MbrVGoWaETK3fnA6tul8Eje+xT6zq7u+GorUGYXm21mNRVVWosoqPPfwxfPN738TQO4bAJsn196whhr2921xrmC5Po1naDOMZtkyewxg72xHpMIkjSivHjAZ096daJucKY5/FhcoCUnyqdvv5G5+PPfN7sPHjG9F+bbtN9AM0V6olCtWKUTAFDJ+xDFsUqtGxqKgK9i/ux7bstprgKauyo3hpZLo0jY5IB/7utL/D3+76W1fRqSyXEeEioCm6Fi26XMKWSSs0RdfEQoCImBzPuc79aQu3IRPK1PoyLlYXEeWinoJVQmhOWASIa9EaVevFdHEaSSFpe33HEgIjeDpYm6UoFXF+7/kN3YoroVkhMiAgIKAZglJxgI1yqWjro2hk/9NP2O7T+ywCgBAiwmK1QgYev7vjxwCA9aecAYpmwIfIQGF+pj5rrq2zC0bEJoXFjgF7NFVRlE0C5bYec+GgJMr13nwOhDkGFUNcakxg8Y/P3W5bjtZGbCmucdGuVJUa9mG04hSFmo76FxbBcmAYChRH1nGLKG2LC74Tm5Jh79cgsHRDx2KhIuH3e6axtScBwcGV2Qw1YbEFjsXedBgsTSEe5jCYjYJvIBZ7obbSMXQUIZ9ncLoICDgu8OqNtly4iLdjMTdO4jW9YAXbXV5RqAAgmRL7zcfTh/fY+7sN9dXHEhGBQ75YRl6k8fzvlvCNP5Ko9At2btB6DZNz1PhUPUGht9MiLDZJb9vKJqMAANZdCkSytrttkalGFAkpmcRH3VXdDjznM1BTQwCAizqL9T6BzRLT3k9Oc8FqHwGvNNfD0zEKtTTnHNnbtQO47v8RJ1QjOrf6c8IBdQHSRxSqrF0eUdC+03q8phB3d6DRDBFipQpCAocDCwpmK8uMykpZhMVwqt7XsBFp8rk3iideMe2biWPRTXxXFWDsfvLdizWIQdXho8DaS4iYF+sg77cVPb60wxJfuuNGMsFhdp/vl4ClMbJvbsfM1AD5HBr0kA0ICKhzcOkgJooT6Ih0AKg71oz934x49Vhspr8iYBeU/GCNQk2FUjaHFaW4n39Hd9snVnUN1MciLEd6LKqiitEvjWLsq2OYKc3gDtwBmq9fW80ZxiLZTjIGKB0i+zFXMic9+cE4ZqBlGmkhbXqvl+sIC4Wbi0zVe/fVnjdef97FyiJSoVTt9uVrLscPr/8h8k/kQQs0Qow9glRgBCh0fbxp/fwAuztL/16osgpO4EziWISN1J5jqbqEklTC+b3nm7ZrjWM1UpErKEkl9MZ68aodr8KNm250XE5WZIiKiBhLtmV83cshytrPW6e2n1r7W1RET8ciAGxIb8BsaRZVuYqlyhJiXMzVbQkAST6Jst/+zRrNCqjTpWlkQhnHz/VYodWOxRAT8uyt2AoCx2JAQMBqElSKV4E7fvAtvP/2W472bqwIrz6L+556zDZI6erpr/3NhyPI55bw0+9+HQDQP2SeccwJZEA6axQWO7qxEtr77cJiqSpBQX3gaY0PLVWlWm8+JyI8a4vBvPaUHttyCZBBf5ZtFJVEoSwqSISaExadHI5Zn8JitVoBaBYsTYPSirqCJpR973Xn4u8u24D2OLm/I+7/YizZwDEpcExDx+LPHhuHKCt4xXmDaI81fyFoRP8c2dAKnSIAelNh/O5tl+CsoQwYmsJQ2yo3sz8O4FkazIneJygg4ERhNWb5chGb6GciP0niF71wcix6RKECQFVxF2Ye3Tdaiz3VGeztrP0dFlgsFYp4xX8+jF/slbCl13zBrp+jxqfrbomejoz3a9DX1SPDLKLK+h5/63uy7jJzXzbNaegpLE5belDtuhnii74HAGBpEPHEQaz0DR8DpAp0ZZFTKk2tXq5W7cLigofr0TiR5YxXkv9TDkJj31n+d4Jmibi4jEg5dGnCrCK7OxYBIp6rCpJhDq//WRmf39O1vN9jeq19P9ec629dPgLEOoFi84XopujYShyLbqLb/EHyGgYvcncEOnHqTeT/eDfpu2glN0GORVbheePVRNg9/Fd/zzP2ILB4GIh1ewuLpYXAsRgQ0AT3TtwLgIg5HM1hLk+ORcb+eUaswpORPfN7miqIW92HvtaxRqE6CSEe4QWTBydrjkSdLsMkJ4ZjIFZEDH9iGIv3LiIxlMA1Q9fg14d+bVpndqouvMZTcXACB3GGnP+9xFcnYmn7sbMn1mN6r/tiPuLGHfAcizhg7FcJmAXNXDWHbMg8NumKdqFymIwxwlwYLGURFtnGUahWMVIXqRRJsTkWI1zE9BxxLo4Lei4wvU63voNG1ia9+y/rglycJxNmVupYjHL289bOjp21v0WZCItec5y3ZrZiqjiFslRGrppDjI/ZYmSNOInujWi2l+RMaQaZcGZZv+UjhcAILemxSFEUeJrHJf2XYGvb1sYrrIDlTLoICAgI8EsgLK4C//zuN+FPd/78aO/GivDqs7g4P4fZKXOvnq6+fqhacSG/OI/FuVnIEhHa1m02z5TnBTK4mzP0VExmsmBX4DbrdBAWi1UZsiGKMm4R9Eqi4u1Y5BlUZfuVRMch0lm9LrT4c6VRQhgqgES4udfp5FjM+HYsVkAxHDiGAqUVbHnNHXjGYAZ/d8VGJLX96UoIvmNJjXGhjvvM0mA9nH7zhSrufHIKF25owzlrs01fpFjReyy2QlgEgN50BG2a2LmpuwUOlOMcgaXBMIGwGBBwXOBQbFj5NsPEkeVGYRqoNnCx+REWLbcrHi6BckXE7mGzU2Cory4sTixWUC5XMZsX8cdXRnHmOrMbseZYnK4LMOGQgEyy8TGf16uMlt5r63pXIN7pCJbPz08UqlNvOavLvG2TfRmd4T8AosfnV3MskvEOL5eaitolUaiWccP8MBEsG9G+EfiHcSIcWXHrjedGtB2o5JtbB6j/pkJJm/htQivcZKIMPnipgC+cewj4/SeAx78PjD/i/7kzg/b7hi7xv7+ZIeIIXaVoOwBA+yay/aKzWICJR8lxY/0zmtvuxquJ0Jdd7/z9yI0Rkdz6mBADBi8Epp9o7DBcGgN+93ESi5vsdTw2ASCRtIoIeEQ1BgQEODNfmUd7uB1FkHPLbNnZsegVwfn03NNoj/h0PANgKKbpgj/P8KAMV8BOriFVcr/WV1UV+5/ab7qvu78+YboyT0SyykQFQ+8YQuaMDK5Yc4VJiOIF3iQsUhSF9s76654rz0FWPNRNC5ku+ySn/ni/SeTrjHballkNrMKxMQpVhWq6bSXMhm0RjiEm1NCxaK0r6CJVzbFocN1F2ahp+W1t29AR7TCtH+cajwvXpbzHI7ogFxfswuJy6iBOEbA72up9iStKpaGwuL1tO3JiDjOlGeTFPBJ8wlPITwvppqNQMyH/E+5UqJgvk+OGVfA/lgixoRXXrgDSg/Ib13wDrzv1davmVuyJ9eDsrrOP6Z6VAQEBxz+BsBjgiJewCAD7nn7cdLurdwBqlQw0Dj75EAAVz3rByxzX5XgBDMuaxEmappFp73BcHiCD9gN7nnR9vKPfPJijoaJYkVExXKtEeYuwWJVrgpQTJArVfrFDK032KdLX02ZEJ5sUFo2OxcNzZFDaTI9FlWbA0hQozuxYtNKTivgeJKUaRKGGOMYzCvVnj02AZ2ncct4Qsit0KwKoRalyQmuERSPbe3z2bzqBEVjvzzMgIOAYgm/9cRB8FJ5Z2aV5c3SjEw6zyu09Fs3nx7Lsfdx52FLMG+qtuwR++zjpSfQff3MGdnbZz/UUBaSTMYxNmYudvZ3u4qCqqnh6/4hrnaYljkVrZKwWI2frUWhk9H5U0OBc2rXDdtd4Thvj7L4D+MHr3NflI1psqe5YLAJyo5SGOpWqCIGzjH0WDwMJewqE6/M7CXp+nXCVHMAJxMlXXYawqDva1pznvZz22aXDLE7tpMFQKoleffxHwF0fAb7/N8CPXk/ExtH73LeTGrDfV3tuH+fi7HqgOGsTvluKHs1adBYLMPEI0L4FSDRZzOKjwKvvAs59o/NkhsUxEpPq5DLc/jzihJ0/4P0cxrjU7Hr3Y1tS2/d88/3NAgICiPtMZ648h6rF/dtILNs9vxttYf8R5RRFOQoujdYxunmcnGRewiLN0tj3hDmC2SgsTj1EEpq2vHsLIusjtee8ZVs93SrbkTX1WATMPRJnSjM2p9jo8CgW5hYc9yndbXeJDSQGTM7HRn0D3YglfUwIMmB1W1qFxJ64+zggykZt7sMQ27jHohVdpNIdi6YoVG3MrIvLZ3WdZRN5Gok+MS7WUEDTP78ET+oKYTYMRVQw9t9jy3KPRhzG+h2RjpoDtCpXwfIs1KoKuGj3mzObAQCHcodQEAtICSkwHpMI06E0SlKpqVYvzQiL+WoesiqjP9bfEuFutWhlTOvm7OaGovRKCLEhfO6Kz+HKwStX7TkCAgICAmExwJGch7AYjSew7ymzsNjR0wdxgQiFpz/rpQDgPjChKGTaOjA3be7/0tbpPrD86Msvw2uuv9T18WyPuQgTohUUqlItypSRyqANwgjLciiJMkIevf3CPIOqg7C4XChN9PLbH1HHybFojXV1o1qpQKVZsAwNWivKCQ7bA4BXnDeI2y5dhwjvLRqyNOW6jdo+8+5RqHzHEO47OI8rt3bh1IFU4xfhA70PItMix6KRLd2BsChwdM3dExAQcIyzGlGojfo2qgow16CY7+A+auRYLHnoIgNdGTxkERYHetoxvEDO27dfTRx6EatTzkBPRxbj0/OQFRV7SwlAVdFnKOZZnU8bX/6v2HzNa2CdAh7SYj439PosoGjOv7Kk2rZlQ+tDmIo7fwaCtATkJzHOD3pvp/tU211C2yBmI+uBl/8E2HaD+7pcBIAKniLvLScVmoqHLFe0HotGZ8rSqHO8aTMIPs7PsggsHAYy64hQtJwo1GQv8KYngbM9xFegLixGyBhpf04AXv5/wO0PAC/+LnDR24HeM0i85tST7o5NJ2Ex3glc9l5grftYuEbbJqCwysJitJ28/05uo/IS6YXYf9byInjbNwJdLrFg+Qkg3uV8TNp8DUAxjeNQ5wwiQIdH/FhCK/aWAsdiQMBy6InVr+0XKgu2/my5qvfx+MDigaaECYDEZzaLMXYxxIRMfeYoioJSda8HdA12Ye8Te033pdvTEOfIROTNzyHiTThj7+UIkP6NmY6MybEIAG3d9bHIXHnO5Pz78A0fxs0X3Yxq2XweFsLkHNTWbxdj1yTWIC/WJ9Ys1xHW3mV2kC7FyH6JlPPEa2sUqlFsBoiT0g1rTClA9tsYhern89Y/X0VSwAosRMMkcb1/YkekA93Rblzabz/HNopCzYQyDYVaXcxM8kSkpCgKck4GG2M940fdcBNUbz/tdkTYCKpyFRzPoXSwBMzXI1iN9MX7EGbDGF4ahgq1oYifFtJNR6Fao2690EXoweRgU89xpDmWY1qd4GjO5vwNCAgIaCWBsBjgiNWxqCj1AfXaTVux3+BYrJRL+OxH3o3FP34DSqUAIU5myZWK7vFdmbYOzM5Mmu5r6+xyWRrYes6l+Mjnv2m7PxonRSWWN8/UD9EKFBUoucwwZDkeZVF2FO10IjyDithKYZEUQTI+3YY6Tvs4mI2CYyhbvKsVsVoBaAYcTdeiUN3iX7uSIbz2onUNY1YFjgbnEXMKELenm8ON5sNIRzi8/NwBJBpEqvpFdyyyq+BY3NRFBuInc49BgaUDx2JAwPECzdoEuhXTSFgEgJk93o9zdkedql2clyTt+GLYb4qiUBTdRbdTN/Th4afqYmZVlPCGD30O136ziMm8gmSUPF+x4i6udLenMT49h6kikJd5QJHNjkVL5NNlu9bhJ597n207HVlSKEpEfRYbNJfXE9NK4zR10Tt2Kl46DNAcpmNbvLfTtd12VyYZQzYZA7p3Ajf8R/2BsKWQqxXuQjR5L3k535SwSKJQebNbsJID2jb43kYN/TuSHgI4H+/3wkHSC7PnNBJtWXHv5+VJsocIWp77Rr5zqbBh3MZHgGQfsPFK4BnvAl78P8Brfw/c/iBwy8+Ii9JKvNvZrXfhW4Dtz228r20bALmyuoIYRQEZl55ScgWgaGDjM+2RvCtB0l5Tst/u7AWAcBoYOAeYerzWm9SRWYMI4CTi6kTbST/HRm7sgIAAR4zC4mJlERXJ3J93vuJ9jKoq1aaECYC43JrF6FikKKrmKgOASCziKSz2bOzBvifrkxUUWcFnPvAZjPzHCKrTVXD6ta6HOTPbkcXclLkvri7gifMiVKg4nDtce2xo5xA++IUPgrNMnEpnSQ0mlrILYVYBT3A6hi6DfIyc12XK+QVaHYtGAY6jOaQF9x58ETZim6huFXX8OBY5mgMFCoqogI2Yayf69+WmzTfhy1d9GQMJ+znBSZQz0h5ub+his0ahAoCUl8DEGc84YDfcxMgbNtyAC/suREWukO+HNn/NKSKYpmisS67DwaWDAIC2SANhMZRGWS43tb/N9FjURWinz+BYYjnHmICAgIATmUBYDLBBMwzyuUXQ4UQtPvPw/nrBcN3m7TXHoixLeOsrbsA9v/sVwpvOAy1EQfNkYOUpLLZ3mnosAkBbh3vG/vW3vQdnXmjv0xIKR7R9Nn+VQ1r2vltRkqIp4lhsEIValvz3M2gEpUVWNBuF6igstkXxh7dfip0D3oM1UaxCpRiwhv54vEdfSV/7w7q7EWvLcM49FkNriGPi2af2YHN367Lk9Uhbhm/9DLKOeAgfvWEHLtnsv8fHiUaIY0yO34CAgGOcZUZcuW+vwUU0RQNz+72Xoe0TYVTNFfDInFDfjkYqEUW+Yj6Hj07W+7nt3NBfcyzOlVRc9fdfw9d//Bt84FIBnTEaYS06NF9xL4B0t2dqPRZjrAgoIno7DEVMwVxM+vybno1rLz0b1jjKdIIU8ZIxn+egRVIgfHzKxxjDq/chgHh5BMiuh8w3OKd69Vi0Yp3ZrH2fQgzZX1bK15yUfqhUNcdiyZKG0XuG/33S0aM1e3b5W352L3Gx9Z9JolfLS777STdEVchneeD3pBemVqhNCh7jLIoi/QCTfSSeVnBwQtAMEHMRMf1McsposVr5Ke/lVkq7x3cqPdR8D8xG6K8nu959mW3PI/07Fw87P67IRGzWcXr/dWiaOEWt39uAgABfdEXqx7FcNYeCaK4NWEUnJzojzfUCXE7Ep1WsMkZfRpNRyFXzuTq/VJ8k07epD/uf3A9VVSGXZPzHm/4DP/jqD5C9Mgu+nQerJQFRkvuxO9uZtTsWO4nIUxmtgKZoTBTqLWRe/N4X48KrLwRtmbiRzJD9jmXsxzVr3GYretjlfUSLW3ssGknwCUdB7trrrwXg7BS0flZ+Yin1uFtFUsBEzHUV43P0xfscBTvd1ehGR7TDt7CY4OqitZyXwcQYSMtIF7A6OY0k+AQRFvnGNafN2c2YKZGxdXvIu9ahxwRX5IrnckaaERYXKguIcbGaq/NYZbkxwgEBAQEnKoGweIIQ3f4MtN/wnpZsKxZPIr+0iP7bv4n+v/sOVFXF4w/WY4XWbd6G0YP7MTk2gpnJcUxNjOFTX/shuCS5eGAEf8Li7JR/x6IbvWuGyHNa8/d1YdFjnFb2EYVabqFjkdYci35jTHXc9rErGfZ0F8qyDFmSoFBm96CXS9MPAkebhEonooLzYJdNkD6aV2/vQphf2X6Y9kkTS1l+FSIAAbzorAGcs9Z/j48TjUgLP6uAgIAjgB+HYTOEGxQGQklSzHdBpRhnB5b+uMN96UQM+Yq5mPenB56o/b1zYz8mZ+axZ0bCOV8q4NHhSdz5Xx/BjVvIOTasFfPyFXfnUnd7BmOaSyDKSERY7DQc611EHMtuYdt6EumZifk8By2OAAAOLlpeef85xK1mpFrwjLRklSrQe1pjMdnk7vPfH4esS15XWHMsUoB7bz0HytUqcSwanV+MAHRsAQYvILcdZtN74jdFYGYPeU+jHcRxqMrIRlogLaoKsPvnwM/eBtzzWeKk1MTORLgFl1dJ93i4hqQHiUjfxGe0LDo8XLI9u0gvxFaSH2/8vNueQ74bh//i/PjiSN3NSHONfzcJLT53GY6SgICTnWy4PlFHhWoSxwBgoYEbOM7FkbE66BvQSARywiqyGfssxhIxSGXzOfiJB+tjkd6NvSiXyihMFLD/w/ux76F9+OhXPorMZrLfcY5MUFJl9/OuV49FRVLQGenEdKlxr9ehjaQukupI2R5rC7eZRDNj3KsXz7ruWQi5pDHcN+nRKxikL7VX3G1CSDg6JzsHiZjs9FlaPyu/PTVDbAiyKIO2nJ8biUQ8zTeMKh2ID4CmvM/7ZakMhmJM0a1ynkShymrzE9mtorKRJJ9EWSrXRG0vtmbqceCNHIt6fG8zeDlSrSxUFpAOpZcVZ3wkCYTFgICAADOBsHgMsLQwjyu2deHR++9Z9jbanvVmRDacjfHF5nLPnYjFE8gvLgAAKJr0GXzswb+AjqbAxLJYt2kbVFXF6MH9YFgW//7tn2PjtlPBaBkftOZyLJfcZ9lnnRyLHj0Wm0VgSAGg7NFsvSIpnuJWlGdRFlvoWBSiEFgavIdL0gkvV6UXYpXMJlNhji4Nr1BYJDGn3oeOmIuwqNMWa038ik6tx+IqOBYD0LDvZkBAwDEG3/xFb7lKoi1HZhzcOY22F0qR3mcuKEyoaeEoFY9hydJk0SgsnrqBzL5XFBmdMQr3fu6NuPCM7WC1c2ZYOw/ly+6iXE9H3bEYpUVAltDX1Th2rVjTKpcpUC0QN5WiD1F0oaNjq71HplgA5Aaz2Tdd02TkZLPCouZYpA3iSmHGZWGYnKeA0bG4UL8z0Q2EU8Arfgrcdq+3WLQSZvcCmUEifmuibU+8hQ78y94PvOL/gFffCVz8DgBAwsux6BeviM5GsDwQ77FF+bacdo/PbOPVznGlKyE3AbChumvViWgb0Hs6MPm48+/G2F8x3une51In0QtUFgNhMSBgGVjFlrH8mOl2I8die6TdFFPqh2ijhAUHrC44o7AYTUQhWcYij933WO3v3o3keCSKIpgIg7d85S046+KzEKG086agbdsjnTnbmcXSgtnZ195dd4/1xnprrrLlQlEUuqPdptt+2Lx5M9LtzuLQ3eN3e65bEAuesZkpIeXonFzSIsudPkurM5BjOE/3no7ACFBEBZRgft2NnIY8w4N1SNwwsi7V2J1fkkq2bUk5admORadoU52kkERFrvgSFo3vsdGp67bdZmnGsbhUXUImlGmJm3Y1CaJQAwICAswEwuIxwKF9uwEAf/7NHSveVslFCJufJbPcijlSMNRLSorDRXcskUQ+Zx7cPv7AX9D/hv9G721fwZ4nHwPNMBg7PIxsexfau4ggGI+SgRmlFRLKHo7FbHsnFubMA2SjY1FWmix6WRAoFTQFlD10wbIoI8IzuPmcAbz6wqFanKZOhGdQkVpTSGA5Dkw4jhDHgGvg9rOyXGefqBWJFVCm51ypsBjimIaOxUSD3o+thqbJa6QDYXFViAqBYzEg4LhiGYW12Xly3j885SAsNiiqIJwCCtOIcNq54ZB5opTKCgDNYHpuAQAwOW+Oz6pazrWyoiKdjGHBWMyjWfzx/rqw+NcnhhGLhDCYpPD7V0SwrpfMtGYZRvufDHGt4qSR7vYMypUqVBWIMiIgWxyLjVhuL0trTGNJ662U7LMvW8kDintFUqEYoHPb8vZj6glg/CE0FBq1NAA9ChWA775zsixDkmQiLBrXSQ0AghYJ1rHZ09G6bKp5ID9JYmCFeK1HYk+8RZc/qTXAhW8CBi8k/QbjnQBFIy60QLjMDB3d9f3g1CMzux7oOoW4aFtNbhyItDV2ZG+7gQiIuTH7Y7N76+J9eoiIsF6k1gDlQFgMCGgFo/lR0+1GPRazoaxJ9Gsk8AD+HIu5ReKiW5oh4x5dXFIU8js3iiGxZAxiyXwOfuyvdWFx/0P7kenIAElg6J1D6BgiTu1onBynZK2tilefxkyH3ZWpOxYBEtE5XWzsWGxEb8xjUkaTzJRmbEKxlcWqd4x0Wkg7ugH1+FSnz9JJaLYKw05cv/56zN05B9oy8aeR01BgBE8RDwAGE4MNn78klSAwgkkElYsymCizLMei1z7F+BgqcgVMEzWkCBtp6Mxsxn1YW0f7LVE+JuIpqoK2cJuvz/NoEjgWAwICAswEwuJR4LEH/oIrtnXVxL4jQbVCZi3PjpNi1tICKWJNjxywLRtLppBbWqjdnp+dxtjhYaiyhLlffgb/8t43I9veifzSomm2m8BrgxHtIt07CrUDqmouZBl7LIryyi7gKQCJMGeLK6svQEGUVcQEFv94/Q6861lbbb0H3QS9jRs3AgBY3n9BMRyJQgWFEGd2D/rBK67Vi6rmWFRg7nfINClsWiGORe9txIXm4l5bAcfQNbdsQGsJolADAo4zGrlwACwsLJD/8z6SDhoKi2lz7OKf/hX4xgsQZ0gxTqEFgGJQKpMJLwc18bKo3Z5ZNI8XRIVEoS4UqrX78qUqHn56P2RFxVt/WcaL3vMldLalISmqaSyi94PV71sqVeFGdzsp5qmqCpZSgWrO3GNxhVBOgp2qAEvm4mrtvUutsS9fydUdjQa6s0SUE7Nblxc5WTIUdBv1S9SKribHYtlf37lKlex7iOfMz5le1/rIXit638/+c0g8ZozEq7XUsWiEogAughjfgu2nVygMevUhbBXpQRInaizMnvZS4MXfcf4ur5TcOBBrb+yg3nY9+Z0d/qv9sdm9QOd24LzbgbNf2/g50wPEadvINRwQEOCIkifnDZ7mMVawOBYNk00WphZgJRPKgKfr19t+XHbGnnmyIuNXB3+FQoiMMXRxo1Qk57zFaXIe0+M0Fa3+YHUsVor1nnKyKOPJB5+EqqqY+uEUvvSWLxERkSb7p/ef47U+z1JVghASPIXFNocJTVnDWKQ31ouq4j6W8ctAfAVOeAtPzz2NKBdFD00mmMfS9nGn7jx0IxPOOIrFuiAZdRgjGEUnPWbVjxC1vW07SodLQJOlAoERGgracT7u+ThgEBaN25LJd8bL1emGlyAa5+NQodr6SXoR5aKm35oTCT7hSyA0EmEjJHbX52rd0W5fEwiOJstxRQcEBAScyATC4lHg3t//GgAwvOfpZa2/HEFS0RyAizMkflQX9WQnx2I8gfxSvWD05EPkwnzqu+9D/pFf4TXv+ieccuZ59ifR6mcUQwYDjXosWsl2NNecvRGpMOfqWKS02cpuvQABIBl2Fsee/ZzrAQBys/2AQMTKRqKcFauT0nGZ2sVL/cJHrAmLVC0qFAAYv32JXCCvwfvQkQwf+QEhzwbC4mpxNITigICAFSA0FhbHJ0h06diMe/+bGoxD4SdnOMeHUuY+gJufBRz4PbbHiJCkMsSxWCiT85LuWLROMNLhaCCViGIuXz+n3XsgB1lWcMN3SviXe6r4t7e8EFedfxqe8+0SvveUYhNTOZYBx7FYKnj3WDRRXEAm1bhA1IiETF73esGhx11hBpAtBcKi5lhMO/TVq+QAuWK7e32UvP/C2vOWJ9DtvbP+d6OiFsMBjFBzLEpMGKgsAS6fX6UqGf4m779gFRbbN/rvk7hcZveR6Myu7eQ2wwHhzOoJiwARFrkWbH8lUagAcWkCq+u0oxkgvcYWfYtEt+MxY8XkJkmcbcP40h7impx8DFAMFwJylfRYzG4ALv8AsOW6xs+Z6AOgkjjUgICAplGr5DwR42OYLk5DNUy4mSvP1f6ePmSvb7SF2xqKiZWy+fxodBO998/vxZvvenPtNg9yvbw4T37PVW3ikTUO09pjsWqY5DS6ZxTlUhkj/zGCqR9O4drXX4sLr76w9nhBtNc/QpEQZNfZzmYRUYfl6sfQVjkN/Tjr/LJ3YS9ObT8V3W1kYriTsLjY4LjZEXaeFKULkgk+YXvMybHYKM4UIG5UWZKhcmpDB6L1+Rot7+f5i1IRITYEpkXpDF77pAuddMR/qTfGxRo6FhmaaVpUoyiq9jmqPmL41yRWYVJSi/Hb1zMgICDgZCEQFo9DvvJvH296naIWbbo0694DSSeeSCGfqw8EH/7Ln8EwLKqT+9F504dwyXU3Yd1mErulKPZBskwxoGnau8diR5ftPl5obexBOsq7C4tarFfcI7KzP+M8aLjzSSLOfvlPw3jDNx/A3dgMAJDUxj+nCMeY3IONBDqARI82XCZEXs/iXP2iTI9ClQGTG5NpUti0EvEhjsZdRNnVhGdo0I0irQKWhZcAHxAQcAziw7HYFLT9mP6Pn/t2/UY4ZX6wYytw5YdqNxU2DFAMZubI2GJuye6Q0yPIAICmiGNxNl8v5v3uwT1gaBq/PSDhJy8K440veAZ2bV2HPx2W8YqfSETgsBCLhHBoUURFUlFS7ccxm7BYnvfdd8gL3anYw+Xsws7iiH2F4iwRwMIObklVBkoOs/6r2hgr2m5/rBGKBOz9dXPr8FGENceiyKeI4GnpC6S/d1ML9ahbs7C4UF845SCitprZPUCynzhqdWIdDlGoKoAWCXB8BBF+ZXH+AEjMKMOb973Z9QHfztJl038O6Wu42ohloJojgivjY4y57bnEnZg39HOfP0h+j72n+e9JqscTlwJhMSBgJcS4GOYr85ANtYO58pxnEndnpPGk4+984Tum28b+ZxtSG3DzlpsRP2yeMDQ/ZY5gNQpD1UrV1EsumoyiYpjktO+BfaAoCkv3L6H/9f248lVXYsO2eix0UbTXP8LRMGSP/iyJdMIkJFqJ83FkQva41GbpT7TuvFuRK7hyzZWe7rLF6qKn6Gbs+WhEj0J1Wldw6N3rR9gTtbGIyqkmAa1RFGqIDTV00PmJxixJJYSYxtvyi5dAGec0YTHchLDIx4izsAFOYm8jUqEUKFCmcb4bQ8kjEOO+QsLWXugBAQEBJzmBsHicsffJR/Hz//1G0+sV8sSRsDgzZXtscszc6yeWSJoci7sffwhDG7eg66WfRGjgFADAus1k9vfEqKVPEABJVhGKRCHKKjpf/DHMz9ln7KcybaA9Luq/d/8IfvXEpOvjtX2b1FwPDo9lozzKDslFNM1gw+kXAAASHk6smIuYkq+Qjb7k7AFcs6MbgkouNvJKYwEwzJt7LPrpn9hMj8XF2frnW61ojkWVMgmL9IqFRbbhNmJHuMciQMRTKnAsrgpeAnxAQMAxiNGxKDg78OhmerpYCiF7Rmbx6a//qH5HKAlbzlGyD5/aTYpYMhsm7iZN5OiI2s8hj+05aLqdTsQws1Su3b73sX3YvK4ff3plFNdsIOfunZvXAgAKxTKciEXCOLSgIPmxHPaXU7bHo5EQEjFDQaiaty2zYoxiGkD6KzICpsssnn/pTnJfYYa8h5zLBKuSg/NxJYw+4K9H4o7nkf8pBhBiNcdiVcgA5SXHiFYAmJyrC6HlihaFKvDm5zwSPWrm9pPeh0bhO96FW8/g8dBro8APbwO+ewtw/1dc3ZdNw0URYVvgWIx1ALc/DGy8annrZ8lvA8vo3dQU1/0bcO2/AIZC/KqgxwVnN/pbfvsNpDfp4b/U75vbR77LvWf4f96k5hSqekf6BQQEeBPjY1ioLJj6yS1UFmouQifiLuOX2vpTC/jmZ75Zu63IiknkOb3rdJzVdZZNzJmdNp9TjVGaTz30lEk8iSaiKOXqk6EOPHoAPWt6MPTOISTPJMe99dvq0dMlyT5xKhwJ16JQ9Z6LOrRCg6IoR9eikQ0ph562TdIXs/dxjiai2HZu832ae6I9OKvrLM9lFiuLng63nliP4/16nKyTCBdi7OMkPw6yqha9rzCKyfXYih6LTvtkpSyVEWbDph6Ly4WjOV+ORSrkfywS5+INHYsAEQmbRXcAix79wgESl9weXsZkuSMIR3O+BNiAgICAk4lAWDzO+OxH34OBtfWBpSyvvGDwyF/vNt2OxZPILy4i/+ivkXvoDhx46jFcfcOLwGXqMRzrNm113Z4oKwhHoui48CaE+rfjWz/9jW0ZhmGQyrjPcC5UJHzvAYdZ/S441YOyMcFRcAxHoggnyXPHPSI7G7m0zhnK4lM37cTZcf+zmCM868ulaCTE+l9+wSAci9VKLYrK5FhcoRvDj8jkFiO7mggsDZoNBnqrQYQPhMWAgOMKk2jjfMzfVH4AALCo+hB4LMWdt3z+5+gxuP1yZdnuWkR90o9K8wBFoytEikWbsjRUVYWiFXceGJfxu788alo3lYhhZqmI7z0h4hf7JNz96F68+FmXYEdnvZiybYN3ZFIsEkJfVxsqMvCp//654zIm12LVPcJ92Yw/bL69cBiIdaA9k8SWQc2NUZgmzjS3PkHlRUDQCp1WoXI57Pmlvx54l78feOMDQN8ZAB+v9VgUhSwRCV2KRBOz9Xhdk2PR6J4Tmp/13hTlBRLX2rkNMM4uj5NCZl+CAvrPAjZd09rn5aOItGookuwB4vaED3/rtq6XlicMQ8TbJse2TVOcIf93bPa3fHoQaN+sxaFqLonZfeT9bMZhGUqSqOFWCc8BAScpMS6GpcqSTVjkVPcDZiPB5sf/9mOEo/Xj++KMXchySiGYn6k7FmVJNgmLD9/7sMkNFolHIFdl5B7OYerHUzjw0AFcePWFiKytj5161tQFsqLk7FjURbLCQsEUA6/QClRVRabD25G4JbvF83E/9MbtkaqdPZ3oW2cXHN2YL5P37qzus9AZ9XaULlQWPPsPNupN6CSeLTcKVXcsSoxk2kajnoFujkW9l+e65DpfSRetdCzyDN+wxyLgT1jU40kTQsLXviX55icR6W7bRsJiKpTy5f48mjR67wMCAgJORoKj4nHGo/ffg1vfUY8Xm51qHG1arZp7D1Qr5pn9j9x/j+l2NBFHbmkBsz/7V1Sn9kOSRGzbZZ6Rlky7z6oTZRWhcASSTAYqC9MTOLD7SdtyTn0Wdf71hTvx6zdfDGlxCtWZQ67LedEec591VZFIkSHhIYDFBJ9OwSaEupjQfI9FP1GoOouzU7WLFVGsgtLiooQWRqE2EhZpCgg3sc+tgmdpUD5m2gU0j5t7NyAg4BjF2HPPyZk2+UTtT7lBjHe+qtrOcz+5+2l88u1/U7t9cHIBiNp75UQ0h5tKc7aJPrMLS1AZAfyHlvDhP1Tx+/seMz2eikexZ0bG879bwvCCglyhjPNPM0xqkioIh7xd6rFIGIUSGfMs5Yv48wNP2JYxCYuVVXAsTppfFxYP1cStGsVZIJxxFxareSKCAcD4Qyvfp+mngA1X+Fs2u458nwyORTGUJVGoorNTdHYxXxMUK6LmWGQpwBgRt9pClB45O3Cu+f4EKayO51XitHv+l+v9CFsRUcZHEWJWsa+hX4w9Dk8EUUwske9hM0Lr1ucAM7uBotYmYHYvERxDTRZG485xfQEBAf6JcTGU5TLyhmSAxcqip7Bojb2ULPHb9/3sPrzq7a+q3Z4bm/MlTOQW6pNfJkYmTALmI/c+Ylo2Go+ifLiMg/96EKUDJSxOL2L7GdtNyxhTmApiwbaf4UgYkiFG6S931Z3UKq1CUqWGjsVt2eZdhVZ0QU2tLP+csFglE4TO7T63ocNtsbLoGZ3pFGvaiJDDOMnrM6/109RaxEi05EuIND6fk+Cm39ce8eewK8tlhLgWCYs07x2Fqgu2Pt7eXJX8FvxGnKZDzcezZ0NZUKBQtfYXt5ARMk19NkcDgRZa4joNaC36xItT2k85ynsSEHByEgiLR4BCbgl/utN5pnyznHPJlTj9vItrt60xpk5MjY+abo8fNseNGR2LqiLjFz8gfZPSl74KmStuRTgaw9BG/7PkJFmBEI5AEuuDh29+4V9ty2XaSRFSpuwXFDGBw1BbFJXxpyHnZhyfZ7HkPeupLeY+mqrKivY87gMDnjXHlraCWIhrOoq0GWFRqlYwO00iZKuVCiit56DA1Lex0vZRjdyIAsuAY478oUVgGVCBY3FViPgV2QMCAo4NjD0WH/8BAJj6GuE3H8JKuOiUQTzvqvNrt4cnFhwL/pd1kJntKlRMz5nd/XuGxwAAoqbB/P6+x2oTYyqSii997xcYy6v4wCUCXnMaB5ZlcOYOQxSYjyjPaDiEfLGMZ28i5/oPfe5btmW62w1FErEAOPSOXhHTT9cENQoAcuNAyuIOKM0DkazZWafDR4mIp8+wn3gUyNlj7ZuCjwKnvLC5dYS6Y7HKpwGo9XhKC4oK7D88DgAoV8hYMMZ4F5RaTmkeCKWIMGokSURdhgKwGrPO+SjCzDEm5EnOAvBxR6S9uQjd7TcCchUYuY8Ik7kJoG1j8z1oE85xfQEBAf7RHV6TRXKdqqgK8tW8q7CoVlRb5KBqmSTRt7kPVz//6trtubG5hjGFlbJ5wvXo8KhJzHjs/scgiUQEVCUVd37vTpQPltF2VRsG3kic4FZh0UhBLNicWaFICGKxft/X/+3rptciKVJDx+KmzCbPx5tByfmf/PLQ1EOkF6aFhgIuRXolejnc/ESIWmnWsTh6gNTBqpW6sOi0DTeibLQlDrWyVG7ZtniG94xC5RkePM0DPsois2UyjtPjShuRFpoXFgcSA4hwEUiqQ48iA9lw1lE4PpYIHIvHJulQGne/6G5cu/bao70rAQEnJcFR8QjwwTf9Dd5/+y0t2dZr3/5+022nHocAIG66Amv+/v+Qr0iYGDE7/kYO7jfdHjt0ADOa8zF3/09q7sLEWc8FRVFYv/00MIx/YaEqKwiFo5C0Werbzr0Mv7vjx5gYNe9Htp0UIRWKgeSjmbOVPZM5z8czXsKi5lhsJJK1yqmlP18i1LzwZXQYhkKNZ3GNDu8DQKJQa45Frr6N5ToWwzw5XLR7vK8AEOLoFbsilwNxLB4bwuJ3XnsOXnPh2obv1fEAz9BHRSgOCAhYAUbH4u5fALlJPPooiRotHH4MePpnGJebLw7ofPr115iin4Yn5+0uPAAcTQpnCmgcGDEnLOweHgVUFSNvimFjlsbU7AKe2k/GNO+7q4o/3v842iLAey8WQFEUTt+6DpGwveDw3G1h/OiFYUC2FyxikRB2pQv40Qsj+K9XnYo7/nA/Hn36gGmZHqNLQCya4z3zKxPwqioLFGdAz5FxV1dEJn0J2wx94qQqcSTGOkkfSiuhlOak1IqQchXY+6sV7RfWnA+0rW+8nBEhAf3UnugeIn+4CIuA9vmiHoUaUe19p1ad1IDdnRYjY892hz6fLUGIQTgWHItGVqN36NEg1gHwTQiL7RtJTOvEoyQGFSrQe3rzbtlkf3PLBwQE2NAdUfvGyHXqoZFDUKCAV51db8qs/ThqLeg/763PM9Uo5sbtApiVyZFJ0+3D+w+bxIxysYzdj+4GAMzcMYO/3PkXCH0Cul7YBYqm0DnYiWTGLpYxLNmPXDVHhEXtlK1CRTgargmL8Wwcj9//OB740wO1dSVFQlund0TzQHz1460nC/X3Rh/jPTJDHJxF0R7xaqUgFvCrHBmfSCkJuWrOsydfMwKfjlGM7B4gbnKvPo6HtXGlHoUqUmJTrrhWRHPKqgxRET33sxn8iFtRLgqP9qU1ZrUe3kmffZIzYW8B3IkXbn4h/uWSf8GmtLc43hHpIILoMQzPeLtFA44eMT62rB6gAQEBKyeoFh8BFubcCy/N0rdmren21JhzH0KljczQ3j+dtwl6owZhkdEcbQ/f+ycAQOrCm/HmD37KtPymU85wfI7IxvOQufqNUCyzB0VZRSgSgag5FjfsOhfZjq6aE1JHdywCqMWmNsPTDYTFbNR9YFKVFHAMBZ71Hhi0SliUFPL6Vtp7kBcazOKiKYwMk89XrBqiUA2ux+X2WFzfEcd/veIMnDnkPaAMcUzTfSR10mlS6A7HnHsu6J/Hxk774wJLOxdljwJnDWXxD8/aguyJICyydNPxvQEBAUcZYyGksgTc/2VUtNnawpPfBZJ92Csv34Wzc705GvDg5AKQsMcFshQ596kUhwOWYt6eg6NgxBx6EzQ+epkAhqHx23tIAeudF/D4xifeXjtfvXwnj/N3OfdWO6WTwbM3ccDYA7bHYpEwYjR53RdvymDTUB8+843/My1j67HoIFAul8NKB8AI4KbJ6+qJaoXS7p31hbSiDlIu4kU4RYQhVSGuxb6zgEN3k9vLZccLSE/HZjAIdOkezTlace4xHeJZm7AYOhrCYnadXVjUnLVtEfdxSmH9dQCA1MAyouf4OHjqGBMWW/idPqrEu4FmC7NbriOu4YlHAYY3//b84qcfaUBAgCcxLgYKFMoccVAvFBYAAJwfW5WGtaC/7jSzI92PsDiuuel1RodHTcJiKBLCg3c/CADIXpHFOz77DrCJej1g7U5zLaaGdqm0VF2CKIlgZLKvEiSEI2FU8sQpGY6GsemUTfj6v329tqofx6KjmKGVT/ItmDxSkkr4wiNfqN22imD7F/ZbVzFxeOkwPnLvR7CgLAAAlIgCWZXRHnaPCl2OO80Yn9rd31hYHDlAamU1YVEVm3reGNekw92BspYa0KinpJXubvL6rN8NP4JsjI9B4RqPRXSnot+IU7/ORiMczWFH+46GIm1/vN9Xv8qjSSO3aEBAQMDJSCAsHicMrt+EG176Gtv9Ew2iUFUAkxZXoy48AQAfCiHb0YX/9+F3QsrNgokksXHHLtPyG0853XHbfNcGRLdcjPmCOd6qIikQwlGImmORYTjc9KrX46lHzEW/rKHHoig3X4R5eqKBY9EgLFoHKRVJAc80FkxiDfoJNks6srqOukQqi9FDBmFRj0I1CKjNRrEauXRzJ/rS3oNCgV2+Y3HzZlI4jkScLxBCHIO/vuty/M2F9ou6EEubewoFtASepVf0nQkICDgKGKP+MmuBB74OCuQ8yxYmgLWXQm3BLGyd4YkF4rizwOjCIs1ieNQsLOrCk876gW78/T9/GfvnFSRDFC4+aweKYn3S0fnbGxT3R+4jz6WS4xWlyohFQyhrfXUoisI/vPYm/OGBx02rmaJQK3mzY3GFSGCAwfPBzu+t38mGgPRQ/XZRK4SmB80r33IHcO4biVuqaoho3fRMoDizMhda/5nNryMY+u/wEeKKLTsLi52ZeC3qti4sFlCrvB4puncC1iQDH/3ynvXKv4f8tgMYuPilzT+nEAdPtzhOd7k020vwWCe9pvlx3o7nA1IJ2HcniTSNNO+2QGr1nUIBASc6NEUTYUWrPpUVIrZ49Vh04nDOvfYxN+YsLKqGLs8TlvSEw/sPm1xwa9avwdc//XWUR8ugBRo7z98JVaqvv2HnBnghKiIWq4tgJHLtLUNGOBpGYaQAAEgoCdx8+814+J6Ha+tUpErDHotOKHvJuO6O4TuwVFnyvZ61LqJAwbee+latfyIAUJbz9f7F/Z498kbyI8iGsrg0dikAQOXIe9YRsfffdnsOPzjFp0ZY9/FsTViskLFIFdWmHIuxZqOzHViusLhxI0m36BkgEwH1iN1GvS0BTRD1cbp83amvwwfO+wB2dexqvDCWJyw2Ym1qLZ6z/jk4vdO55ngsEWJCQRRqQEBAgIXgqHiMkn3Wm4G4vUhnxSoaOmF0LAqRaE14UlUVuT1/wezUBBRFAR0iYk44ah70rN/mPtCg+RDmiuZBpigrEEJhyFK9OPfM573Etm7GICzqUaF+KYkyxhbtPWNkkEE8Q6kmx2IoYh5wViQFAss0FMDiy4gu9SITWd14h2S2syYcV6tlUFoBJsTWf+r0Ks8EC/Ot701ppD0uYFOXfWDOswzUFjREDzAjBI7FgIDjD9Zwruk9A1gaxamJBQCAFG4Duk5taX+54cmFBsKi2bFIURT2HByr3b5jr4Tdw2MQJRltEXK8ScWjKBmMVuefaogPdWL6SaBaQFUTFhm5hGg4BFGsizwvvvYSdGZSptV0x2JRokkvQ6XF7q4tzwZjiBdDrAMIGc5hepyoNW5xzbnAVf9IBMdKri4stm0EOvz3vXbEIba2ITbnX7ersNiVSdSEY73HIi/lzRG9qw4FDJxjvzvq7p4wwkQzzcVu6vAxcDhGHIJvegJ4zmftfSaPV9qdXcuedG4HEn1EiE8PLk9sTfY2v05AQIANoyhRVsl1vAD/6S6KquDdf3y36+NuwmIlRtyCJZQwfmgcXEZL9OkRMHpgtNaXcfGeRex5fA9EUQSbJNeUnMCBNVxfDu4cbLif85X5mrAo0iJC4RAqC2QfBFXA+Vecj7Vb6pNkF6uLvoTF+T/Nm26rRTLGKkklfO7hz9l6O7rR3m0+Dz449SCennsaL9r8Itd1JooT2Luw13Z/b5wcHzenN+OfL/5nbEuZnf490ZX3qM2EyDiNoihHt6Efx6LeY7GqVpuKN9UjfFdCWS63ZFt6r3Q/fQ7jfByKj1h2nuFxw4Yb0Bfva7gssDrCosAI+OB5H8TOjp0t33Yr4RkeES5iOh4EBAQEBATC4jFLbPszoJ7zMtfHM1fehuwzb/cnLBp6LOrCkyxJmP35p5F74g847xlXo1TIg+bIQC0cNQ96Qi7uMZ3pnLkJelVSIITNAzYhFMZl1z0PAFApkYx+o2OxUG1udvf4gnOkVoEiM9CijIy0KQrVLozwXGPBJN5ix2IyurqOxVRbR62HplitgtGiU41RqKkVxrE2Isw1FmxXA4GjgSCaouUILL3qYnRAQMAqkhoAEj0QtH6Hha5zgERXS59ieGIe4OzFnloUKsOaeiwmIjz2HByDKEn425+X8cUHRFx3yVmoVEUkBHK84TgWQqi+zc5sA0GgMA1MPYmKQoa2jFRGLGLeJ5Zl8OoXPwcAkBfJcnqPxdkKDcgVrZ+hT+RK42U2XWO+negxO0pLcyS6NpxyXj/RS+Js9ehTigLOeYP/fXRiObHhIUtBLN5NBE8HOjNxWxQqK+YAobnZ+isi0VOLPTXh5HhjWxhbLhxDwqIQA3a9xP27dbzR1mBygRMUBWy5lvzdvnl54nbSX8E1ICDAG2PcYkkh1/JuPRad+N/d/4sHpuyx5zpzE3NQFLuYogssMmRMHJ4AEyfnQCErYHJ0EpVyBZP/O4nJ703izIvOhCIrYGP1c0UkVK9rdAy4O/B0FioLoGUyxpAoCeFoGExMExopERRF4WW3v8y0fLazsbAoL8mojJvHHaqi4rWnvBYThQn85vBvGm4DqPeDBICxApnkddnAZXjJFvtEcJ0wG3Z877ui5Dx7Sf8l2JDZYHNzeTkW/fLhCz6MV21/FQaTg44xoF4OxJH9I1BVFdVqFaABSZUQZf2fB9zEQN056SeWtCSR77rfPoZudEY78cadb8QLNr2g4bJxPg6ZaX16wmr1sKMp+ph3Ar7rnHfhpVtfuqzeoAEBAQEnMsf20ftkx+PkGt91DWKnXImp8VHIsvegYWLsMHRdINHWibnpSUwc2ofi039C6rRn4g3v+ohpeZVmEIn6j32Yc4lCtXLGeZcAAIq5BQBmx+JcwUdxzsDoQgnJsL04VKHIxQkFgGO8v94hH5GdK+2JaCW96o7FDowfGoYsSRCrVXCaCzXE1d+L1daIwivosbgSQiwD5RgfkB6PkJ6ZgbAYEHDcQlHA5utqN0U+CTQx29bP/JqZxSLyBfceeipoDI9OgufIxhLREArFMh548gC++nAVrz6Nw1c//hZbPFc64W8sslhWiTg3eh9EXVhUyohF7MWmZ19+IQBg/wK53a31rpnMa8VIFxfesol3Am2b6reTA2ZhsTBDXFRuPX9inYBUJnGOOqc0Liq1HKsomOwHyguOi3Zm4hifnkMuX6wLi9XFIycs0iyQXQ80KoDp7tSbvg5sebazENksfBQMZLDBcKS1hNNAtPmoQADAaS8j34U1FyxvEJzQHIvBJKuAgBWhO88A4lgMs2Hn3oEufPHRL+LsrrNdH5dFGXNT3n0WJ0YmEE+ScxEv8FAUBU888ATmfjOHzOUZfOA/PgBeMF+vh8P1sYQCbxcYTdHIV/O1mE8JRFi0cuEzL6z9na/mkcqmarf9Og911qXW4d3nuDs5/fCyrS+riYRO7Gzfiafnnm5qm2EmjGgTkzmyIedjfISL4O9O/zusTa4FS7O2HndeDsRyqYyZyRmIVRFMmKzXjHPQLQq1J9aD565/Lp697tkNt7HcKFQnXnPqa/CMgWc0XC7BJyBTqyAsao7FY10EXA3WJtfikv5LAsdiQEBAgIWT74xwgiFJIuamJ10fr5SLWJidQTROZkgJPBkoqzSL3td9GZH+rWjv6kF3f713kaKoteX9sFAyD34lRQUftg/wGF3o0wYi6Ww9hmO+6J7Z78TYQhlD2ZVFaoV8CGCJFjsWw9zqOuqS2Q5IkojJsRFUKxWwAvkc+CNY4QrzR8+xqJ6Eg9zVhmdpMKsYbRsQEHAEGLyw8TIu+P35Hxybcn1MUVUcHJtCXCuuFWWt95AkYv/fxnH1ehapRAw7tWgwXWBMxQ3nebHouv2qrAKD5wNTT+JggQh0lCo5CouM5byv79PooiYyleatqzQNr0W86fHs2Pys+oPtGwHjPhRniGjCucy412PxjYKnMer2SIkdRlGwNEecsJLzpLCuDCna7Tk4hnJVBMsyoMqLR67n37WfAs56tbkvpBP6/qcHibjYtWPlz60VOKNccN5sKbFOwCPuzpPObcDtDwJDyzwOsgIQziC4bA4IWBlG4aislBFhI6Cb+F2lhBTO6XaIuDZg7aFoZfzweE1YVCskVaFYKGLDxzcgfX4aQkjA1tO2mtaJhvwfe5J8Erlq3c0vUiJCEfvEIZqmoSra80tF0CuclPu8jc+r/V2U3MdLbqxJevexvnTgUixUFpraZpSP+nJ3PfKyR/CVq7+CDWnv/pU61m026pk4sn8E1UoVdIS8x/EmJjl5iYEfPP+DuHLwyobb8IxCXaWhQkJIQKRa1zNcRxcWl9MfMyAgICDgxCS4QjoK7HvqMQBAfmmhJdvzikOdnyBRVLFEEqXhh/DwD/8DADA9PgYmXB8o7Ti9PkiXVRXxhP/iz1JJhKKopvuYkH12V5glAxBZG/xxPA9Vi/ZaKjcXGzWTr2BzV+PZZlHeXcgLcY0Fk2S4tQ7DRi7KlZLKkriRkYP7IIoVsHoUKntkIkIZmkJUYI+Kwy3EMlCDQ1rLCbEMmGCWfkDA8Y0p/pH8nqfniFA1n7f3K26M/ZgwPOo+yWl6sYCqSIS+uw9LePm3ybL7RyaRCde3ddEZ2+srqSrSScNYQmkw83rTtUB+EktVvcdiGTEf53BdxBzThcVmolBd6JFIBP2MmiJ3bKk7RtF1qnnh4iwRLdziOGMOwiIAbNeKiI3Es1ZhLMSJZc94yM4MWXb38CgqVRECzxF34ypFaNlYewl5zxsVaqXlfPcboLkbYnxw3mwZQhxIDy2v56VOJLOySNhET+BYDAhYIZlw3bFYUksIs2EUFgsAgMJCoeH6lw5cijUJbwFsYmSiJthZkSoSluaXEE/GUTpYwt5/2wuGZTB6YNQUfXrKWafU11EkRKP+hcVUKIW8mIei1TgkSOBdxiL6fhbExq/dD6e2k/GF3Gi8tAy2ZLa4OgrdiHNx8Iy/cdjpnaf7dsFZtxlh3c8NNEPj8P7Dro5FYzyvkU3pTdjZvrMlPRZLUgk0RdsE0PRFaXAZDlW5uQn2fkjwCYhq64VFnuERYkInpWMxICAgIMCZ4IxwFHj8wb8CAPK5pZZsb3J8xPWxuUkiLJbGnsbUd9+HTN86xBMpTGmCo84pZ5xb+1uSVcSS/oXFxZKIqmyOBaEdZvbpl+OKYVClimS2eK5JYVEFcM468+A2V7YPnsx9Fs2E2MYRj4llRKHqFx9CyD57jl1l51c0mQbHCxgZ3o9qtQpO6wlhjEJdTT5x46m4flcv6KMhLHI05GD2XMsJ8Y0jgwMCAo597psj5yZVix3br83qzxWbiyJ3gmMZHBybIs5BB8Zmyez9Px8UcelXixjKcFjT04H9h8dNy118psExpkhIJ5qIjVpzHsBFcGaGjK1YMY+o4H9SzUxJJYkKVYOwWPSOVHMjqpJtqPo5qcPgfkhZiqKleSDaBrjNuNeFRWs/Q4/oLwBgGPLaea5Fke62KNRe10UjIR7tmWRNWAzxPFBeIs7MY4lVKObpPfxiq5t8f3Lxgq8DF73dHCF8pEkPtrYXZ0DASUhaqJ8D9CjUiUNkLFLxMRYZTAyCY9zPaZFkhDgWXdJKdfGyNF7CgY8cABtjMbBuAIf3mydpn3pOfQKQpEiINdEiJiWkUBALUEHGQ1VUXYXF2n5JhZoQeaxCUzSuGryqqXXifBw8TV473cLJ1c04Frv7uzFyYARiRQQXJ9+dJF+vc8U45892U2YTPn/F5zGQGFjx/palMgRGsH13uQy5fc/4PSt+DisJPoGqugpjHACvPfW1OKPzjFXZdkBAQEDA8UcgLB4Fivlc44V8EkumMeHhWJwdPwyKonHoDz9A7NSrcO5L3oL+tesxPW4RFs+sC4uirCDWRBTqYklEVbIIix55+gobgmRprJ4vS1BU54KkEzGBxbYe8wyysQX7zPOMl7DoI7JzOVGo7e0k4nX9lu22x1a79yBNUehdM4TRg/shVipgOOJYDB2hKNRLN3fg0k0rb9K+HHiWgaIGAlgroaA5FgNhMSDguEe2HB8nplcQ+WlxDg10JDE8OgnJpS42OkXEvvf+fBwv2MbhKy/uxZZ1/dg/YnY5XnjGNsMOV81RqI1gBWD95RiMkUIKI+URC/kX1WQFxFFnFBYf+TYwu8//PgDA0qj9PqPTKWQQ6GSRRLzGOtzddeE0QHPm/fIBx5LXvnmtu7OwKazOyIS7sAgAGwd7sefgKMqVKrJRFlBE8jpPdLTxbzRwLLaORBfQd9rRdQxe/THgwrfVPt+AgIDmMfVYVIiwODM+43v9Ro65THcGE4cnABfDXn6enEcf/O8HEdsew8bbN2Jw4yBGh83nbWMUalWuIhbzLyymhTRy1RxklexEFVUIYe9JCSWxBElpbpL10eCGDTc0tXxSSNZEwGzHMnvkOmAVFr16LPat7cPogVFUK1XwcVIX8huFGuWi4OiVT87ShUWWcq4rPTbzGKpSa0XAOB+HAgXUKoxFXrX9VXjuhue2fLsBAQEBAccngbB4DKP6iLFId/Z6R6FOjiIciWLtJTcic8WtoBkGvQNDKJdLpuW6euuzsXIVCbEmolDniyLKkowLrrimdh/Nu88ck7kIJIuroVCRIMr+Z+oNtUVtouHYYsm2XNZDWAxzdEPHYryJoqQVyiEiglumY1FoQhjsW7MOIwf3o1qtgOGJsMiucgTrsYDABo7FVvO2qzbjqm1dRyXaNiAgYHUplFYQA8ma+wWt6Ux5RqGOz+cRDvF40zN68NXrQ+BZGhvW9Noci21pw9hDFs1RqH7Y8YL6Lop5xJqdHBRtA6qGSLJwBvjtR5rbxsh97o8xvNl1pcebpjxmxFMU2S+rY9EnLUsQsBbifAiLumOxL6l9DvHu1uzLsUwQhXpikuoHtl4XuBYDAlaA0VkmQ4bACE0Ji43IdGcwOToJJedcUygsFUAzNLZdsw39r+8HIzDoG+rDyH5z+lMoXB/j5MU8ErHGcZjyAVK3SYVSWKou4fRLTwdAeixyDRKQCmLhqAuLfgS0TZlNTW0zJaRqLj2qhRNDbMKiFoXq9Bz9Q/04fIBEoerCYoI7QhHyGkWpSIRF2nlMOlmcxIPTD7b0OfXekHr8ayuhKAoMfWTa7AQEBAQEHPuc+GrDcchv/u/7AABZrguL6vP+GXuSp9mWzXT2YnLMLixK+TmU9t+P+clRbDplF3p3XlwbbPUOrrMtbxyIFSsS4omU7/2VFRVz+Sr6B9fXtyfYm5QbsYqIuYoE0SVCzYlNnTEkLYP0sQW7sNgWcy8ARAWu4SB3OY5FL5Yr8IU4/4O3vsG1GB3eB1GsghFCYGkKzCo7JY8FBI4mjpOgB07LuH5XL553el9LLwYDAgKODNd+q4Q790sk3nMZ/N9v73V/0FJcH+xMYXh0Ct96XDu3a66eqYKCHz8tYnRmCds3rMHrLuqqHU82DvZCFD0mUEkVpBMGEc6lIGNiw+WmmwmuyUJdpI04CHUue0/zLrvDf7Hfp08US/S6CIuD3tuMtgNH281gFRaFmP0+A0RYHEO5UkVPUhvDNBAjTwi07348iEINCAgIMGG9ngixIeSXvN34D939kO/tZ3oymByxT3KSChIW/7qIwnwBPWt6cMZNZ4DSJt30DfVhZtJd3Fyqkp6MjVDHVSiSgpSQgqiIYBLkvKeoiqewqFbUY0JYdBO9VkJbuK3l2wTI9wYAwhwRqtsj7bh68GpsTG+0Ldu3tg9jB8dQKpXAxTgwFFNb70hRkkoIMSFXMa472o0/j/0ZitK6ONyasBgJBMCAgICAgNXlxFcbjjEKDfoq7n3yUXzqfW9xfGwp2mcT5JIdPbYo1KceeQDjP/gY5n/zJcyOj6C71zwTvm/NkPc+VmVE483N5JrKmfsiUGwjYbEuIqrVEpZKIqQmHIvbe5M2kc4oLAphMmDMODS50WNYo3zjAfRKHItOLNf51UyPxN7BtZgaH0VhaREMJ4ClKZwMhjOeoUk3i2AGXUBAQADu2Cfj8q8XgZ5dtsdE0V7AUrWiUkmm8fT+EbzkbZ/w/VyDvR0YHp3Enjnt3J4exKNPH8CVX13CG39exuHpRQz1dWGOJjFoc3IMG9b0eG+0tIBUwhA7KBbcl9XhwiYBMkkV7cto50OGcpjMFOswOxaFBPDKX9gWY9wmCVULwNx+THP9AICwoI1B9IIhHzNHntaExQZxpXqfxaOJ07gu1uW6+MbBXiws5TEyOYPumPaa4+7LH5c4OU01YTGIEA8ICAjwJsR41wsmRyfx/lvf73t72Z4sJkYnTPeNHBjBU//8FMa+Noal6SV095ud831D3uffXDXnS1jU0ftIzlfqcfOMR79ntaAiL+YhyqLv59BpFC8qhMgksFb2N9ya3dp4IY2u6Oqc83XHoqq10WFpFh+78GM4v+d827J9Q32QJRmH9h4CG2U9nYOrRVkuQ2Ddn/fKwSuxf3E/hnPDLXvOOEe+s3QkKPcGBAQEBKwuwZnmCHNw/x7Xxxbn5/D+22/BwNoNrstY2xBmOntN/RLv/+3P8JZX3AA2lkXniz6C+akxdPWZCx+9a+yORSMlUUI86S8KVc6TQfN8yZwLT3HeUUEVyeDGLC4gV5FQ8nIuWOhN2WeajS+Wa4WctRvJoNcpClUXNWOhxgJUIty6gSfP0OCOhGNxzTqoqorhfbtBswIYmgJ9EjjOBO09opjWisEBAQEBJxp7D43Z7lP4BN7z2zL+7ZEwrn/Dh9DTRD+cwb5uTM8t4r0XkuPwz35+B8570VuRDlH44y1RTM4XMNTXBRHknCyCxcahBu614gzSCf/FvBrrr6j9GYNdWFS1uK8E7yQsdtp7GcY78ZWHqnh8qj5GScZc+vnM7QUAtJ/+HADAmadYZs9bT8WVHBEbrf0LrRwLgpzTOCLhLg5vHCSf76O7D6IrRhHBN5xxXf644w33AZe8035/0IMvICAgwBWmXL+mVQruk4pVVcV7Xv0ehCLu4qOimtfP9GQgVsRa6tOe+/bgtmffBlDA2nevRbVatQuLDfoQV6QKYk3EsqdCKQDAUqU+mVzm3Wscal6FqIgoSD4mT1m46vlXgfZIJeroIYkLyYz/FjfrU+vRHm53jUZ16xPoRHd0deLP9UhdvY8lADA0U4tdNdK/lkz0OvD0ATARxrPX4WpRkkoIM2HX572w90KkhTTumyBR+knB/+flRkxLxwgciwEBAQEBq00gLB5hDu3f7frYr370HVTKJbz/01/2vb10Zy9EkYh6uYd/iS+8/3acf9kz0Xndm8FE0yjlF039EwGgd8DbsVgWFcR8RqEqYgnxEIvFomWWHeudAWVcXi0uQFWBBes2HHjG5nbQlD1KpSopWCpL6E6aLz4yUXeBMy4cWcciz9LLnsEebkJY7NUcqaPD+0BzmrB4Esyc1/tQUmwgLAYEBAR48eQ+597M//j7Kn50z36MTc3iR595j/sGLLOuB1P14eR3Hhdx3d9/Ec8451T85OYE+pM0RFHGUK/ZdTfQ3e69k6V5cxSqVHFf1ohB2IlS9oh0nYwg22drxTotvQzJuVNUgLxh/hRlFR91ZvYC6UEgPaCt3ejcqwKhJHFaenGs9iZMuhdk1w2Qfd49PIrOKIiAynm7U44r2jYAg3Z3BGgGatCHLyAgIMARrly/TitMuotp1XIVh/Yewj9+8R9r91mjJBfKC6bbmW4yeUVVVOQezuEzt30GG7ZvwOa3bIbQSY7LXf3miTqJVAKJlPvknrJcbsqxmOAToCkauWp9LFGlq65tJXRxdbG66Ps5dLxExeXyg+f8AF+/5uvojK48KaE94j7Oazw+ckd3LFqFZSfautrACzxG9o+AiTJHx7EolRFiQ67Py9Ecbtp8E8oy6X2e4FfeA1LfRiAsBgQEBASsNoGweIQ5vM/dsQgA7/mXL6Gjp0EkloFMZ33Gf3hwJ2547dvxzn/6LGiDuNLZ229aJxz1nk1dFhXEE/5nSmWjPBbLIpRaHAUFlfEWFo0OR7W4AACYK1Zdlq7Ds7Sj2KevuyZrdhFktShUx4n2DRqpA0C8hT0WV2IaFJoQFlOZNkTjCSiKAorjwTL0yRGFqguLDb57AQEBASckoZS5f58HT+53FhZ1vvnJt2OjVzyYJRZzsCtd+/uiNQw+cMtV+P7/exdifP3kM2gRFhmGMUedWikvIm10CSyj/5CguAuLKUGxbzPeae6xaKWSB/70affHywtAz2mNHYgAQGnn9XDaOWbUSOJYFRYdokA1wiEBAz3tUBQF7SGVvCdGwY1fhhsVANo3k/87ty1v/SMAxbk4WgMCAgJOcthK/dp6YWTBc9m3feJtWL9tvevj06Vp021dWASAyPoIrnzllfj41z4ONlJ/zq4+ewKAl2uxLNmFRdU6KckATdHIhrLIi/UJSEW5CD7kfH2qFsi2jA7Ho01vrDX9kOMu5/k7b7wTn7r4UzXnYbPo63l9Djo0TaNvqA+KooAO0wix7r0OV4uyXEaYDYOh3J/35i031wTTVhBmw6ApGhRzEhSBAgICAgKOKoGweIQ56OBYDEVIYe3cS6/CKWec29T2OEGLgijnwSY7cMVNr7LNiLP2WAQAnncfuJRFCdG4u7CYr5gLcW0xgfRIVMjgTmBpqA0iJnKl+jZ0YXGpVHcsSk02r54vVEEBGMyai5S6g3Fzl31gm/DhRlxudGmrCWs9FlU0HkBTFIW+NWsBADTDaT0WT/xBZeBYDAgIOKm58kPAGa/0tegTew/Z7hN4cuzctXUdnnXJWbX7G591gIjAgqIoTOQVdMVovPWFF4NhGIyUyDl4sqBiqM8++93pvhqVJaTiK4iV5KKgqznwnPN4hKEAKJakhGiH67Jn9zHAff8JjD/i/bwbrwL8RHLrToNIprGweCz0WHSiQW9IPQ41G5aBUAIwTvwR/EfLmUj2Am/dA+x4wfLWPxJwQRxqQEBAgBPh+bqYNLNvxnU5mqFx2XMu89zWbGnW5FqjWRosx0KcF8FEGVz6kkvBWsYA3QPdqKgkAUEWSJRm76C7kFaSSgjHzAJYoUHP545Ih8mxWJbKEATn2ouaV31t83jETSjriHbg8sHLXV2cjQhpYyY/jkWg3keTDtFHxbFYkSqIsBFPQTMpJHHt2msBrMzNqUNRFKJsMBYJCAgICFh9jg3V5CTikEOPxUQyBQB49otuaWpb1ZlD+MI7bwFFUZCXpgAAj97zW9MynBBCKttmW7e9y70vTkVSEEu4z7ZfLJkLcW0xAQtFsSYGChwDUaVAewyejOKkWsmDYyjkyvX7ymJzwuJcsYpUhLPFm+oDM4G170ushW7E1UbvsSjJfkq8QN+g1keT5cHS1IrckscL+mccOBYDAgICvHFyLIYEcux852vMgk2pQUr5vjkFF/zdl0ABOLRIzlHfvYuIb0W5Psxc02sXx9b1ezjxKjmk403MZl+wiKWRDFDN1wRTR2TLi4s5x3a9cpd2XunZBTzvP+0LHPwT+Z8NA31n+NxhfT/bfAiLBodFo9jUIwGjjZ8S3q4GXVjMCAqJfG1VRGisA0j1N17uaMEHjsWAgIAAJ4yOxak9U67LpQ1JCG5MFidRlkh8pDgn4tOv+jRkWYY4R87tf/3pX23rdPd3QwGpM+jCot6Hz4mSVEI4YT7vLlQWPPerM9JpciyWpJK7Y7GigqVZ0/LLFdyONfhVuiYPMc3FquuOVCpEIcy69zpcDRRVQVWpIuqj//KbTn8Tbtt5GxJ+Ui98EPOZYhIQEBAQELASAmHxCFIplzAxYncJNEIS7VW90v77MfH1t4IPRbBm3SbwHcShdtcPvmFaLt3Z6zg4be92LwZVRAURD8eibVtxAYslEaJUdyzKigqOdx9M5kyuRxVtMQG5cuMei27MF6roiIdqcZh+aFXM6bZtWwEAA2s3tmR7TuiOQ3+yItCrORYphgXLUGBOkAsUL+qOxUBYDAgICLAyUtR60oDFU/tHfK+nn3cUhySBPxyUcPaXCpBlFWfu2IizeskEj8/+8M+2ZZ0EviGHSLIalRzS0SaO59a+h+EMUF5CiPc411uFxWiDvo8XvAnYdLXleYuAPmu+fTMRvZoh3lV3L7qhb5MCkFrjuMiWzVsAANvWOT/ui/PfBGTWAW5RnoKW/qAX9do2kEhXF/ehLiymOclf5OuJgo8CYkBAQMBJgcslKA8eo3tHEQr7Py/QoE3xlzOlGcyX51E6UMK+D+5DYaGAnefsRGQdOYf94bt/sMVlJtIG0YYCJEWqOxYd5kQXxAJYS81gseLdD7EnZp7AXZbKEEIuE2tUICNkUDTEsOvCF8Mwq9JHcTXp66snGfD0KgmLTY4lasIxD89eh6tBVSbtetxiYY0khSRuPfVWdMdaE38fDdITAgICAgKOAMfXSOU4Z2R4v2lwK1YruOvnP8Q7XvNCAMD+px93XO/XP/mu6fbU+Cim/vdDCPVvw+s/9c26Ow3AE3/9A0YPHqjdznQ6x1Q1ciyGIj5632gXCtkoD0UFZoskVkRgaVQlBSzn7hIoVCRT3GlHQrBFrDbDXLGKrmSzwmJrIjPb2kghspm+lKtN7TvBcGBp+uSKQmWOHydqQEBAwJHiqwfa0fepHA6W4yiVK7WYUVlR8INf/RnPeu37AAB/uM95LPKDX5nFwpn5RTzzG0Wc0knjnn9/Dbaur8eu3/P4QTzw+N7a7YFO5/PjWk9hcQlhrvG5Kyy4FK4iGaC84C0sSpYejI2ERcDeMPmx79X/Hji7Lr4Z0e/b9lz7Yyn3PoU1fIiVySR5j9szKxiLXPF+4DV3Adl1zo/rhTFV1p60D3j9X4F1lzouvnGwFzQFJDgJiGSBI9zX6KgRCIsBAQEBBO2UKanm63wOHBZnFtHRQ85vqqri7jvvxnte/R4AQCln75FMUzQe+OMDtdsqVDw18RSGPzkMLsPhTV99E9ZtqZ+/Jg9M4uF7HjbvjuUcXpJKtajM8EAYFblierwgFiDr5zwNJ8eiUTjsjpqFoZJUchcWAWTCGRQle3/nrRduxa6LdtX3nafAtR/Zlh8/v+HnuO3U22xiqRuhUF30a2XPQCPNblf/fMGT3oNHUljUv09+hMVWczSeMyAgICDg5CMQFo8gegyq7ib7f//4Tnz4ra/DwizpLzA/O21bRxJFfPMLnwYAqIoMVVXR0d2Lzps+iPYb3o1QJIbO3rp4GI4l8X/f+WrtdqbL2ZnYqTkWndyMZUkGK7jPBNPF0WtufCmSmXa0xcngbi5PZmSFOAaiooDl3GepFatyLdYzEoujKxFGviK7Lt+IsqigPx0G20RPxGOlf+Jq0LtmiPxBE8fiySEs6lGogbAYEBAQYIfCaE7Fk+PE2dfVngEA3PngAdzwxn/E2NQcAGBiZs62pqIo+OBnv0X+VlXIsoK2dBI/f0kEd9wcQSYRwaAh6rS3LYHPffuntdsD7S7CYr+HsFhaAGV1FDrwuhdeg3jUYcyiRaF6phNoPZ4BIB4Nk6hOJ2HQjcIMsPuO+u02l+QCigLeMwuc/Tr7Yy4ORBOsQKJEW9B3pyEhjwgu/b0x9qZsW0dclw5sWNOLtggFmoJr/8oTkkBYDAgICCC4dTchCaZo7yETeubG5vAPt/wDJkYmAACyaK8LqKqKr/7rV2t/CxAwI8+g5+U9GHrHEPgUj05D7+bOoU788Gs/rN0ORexjhdnSbF14AnDnwTtNj+fFfM11puMkLF77kmvBMORa1Og4i7ARVOQKeLdJUADawm2OwqKV7GVZ0CyN7+7+Ln66/6eYKZEaEk2Zaxqq74yjxvTF+3DrzlvRFra31mkE56ff9DJo1rGof74qryLCRWzv12qiC4sJvjXxplYoUHj2umc7PhYIiwEBAQEBR4ITV1k5Bjm0fzfS2XZs2r4TALBh6yn4z5/8AR/896+6rvObn34f44cPQqkUMfW/H8S3/uNTAIDQwCmgtJnfXb31vgBnXnUDfvH9b0PV3IDpThdhsZfMkE9k7IWesihDVtwHpLqzMJZIQghHkI3yoAAsaI2YBJaGKCngXIRFViohX5Egygo4PoSrnvdSdCdDK4pCBYCNXc3lyLP0iSu26eI1aJb0WDwJfukCdxK8yICAgIAV8uT+w4iEBbT3kfPEbIXBwz/6DO762sdc1/nxb+7BI08fQFFU8YLvlvC2T/03AODCNSx4hpxLjcLia689A9/4yV0QJa1/kYuw2N1Oeii1pxyEGLkCVJYavp5kPIoQ5yAeholw2hP3ONeX5mrPf+vzLyP3RbINn7PGvjtJxOfQJY2XZVgHwYkCkj57BTZyUya18Z6LyNcSdNHRIRbXicHeTvQl9X6MrYn2Oi4I+hoFBAQEmLD2tZOWJFAUhbWb1tbu+/z/fR5f/PkXXbfx8N0P49G/PgpFVDD6pVHM/vcsxovj4LIcaJ5GSSqhyzBh6YLnX4A//uKPUHOkrhF26FF8cOkgIrEIVK328YfRP5iEQ1mVURALpnXmy/O27YQjYVBabaEzUh8PRbkoynLZtccioAmLol1YLIpF5Ko52/1r4mtw56E7ceehO6FCRU+0p7Ydfb2jTYxbvfNgs47FZCaJWCoGsECMPbLnZ11YTAqrk2z14EsfxO2n3e74WCAsBgQEBAQcCYJK/CoyOz1pun1o/x4MrN2Ajh4ya+rVb3kvBtZu8NzGN/7jX3H6eRdj4r/fisroU9hy6hm2ZTq660Wpc5/1QuSWFlApk2mAmS7nKFS9zEY7uLvKouIpLM4WzLP2OIZGW4zHQlEXFhlUZRUM6+wSYOUycmUJoqyCZmhwPI/eVAhLpeVHoQLAlu7mZoKxzIkrLEZjcWw59XRw4ShY5uSIQuVPYAdqQEBAQLNEtb5FB7TZ/zpP7juMTUN9yCU3Yefn83je827EKZuGPLf1wc9+C+ft2oKLv1LAz/dKuOj0LbZl1vTUJyr9zTVnQJQkTM0uAAD6XaJQdVwTBIqznut5EiHCYlfUY+Z+mQiXPMsgoseURZuYlb9wCNh1MxBrfiY/AEBIAIJPd1sjx1/v6cCLvg1sdZ653hJ0x6LqT1hkWQZXna4VjZPuvb1POAJhMSAg4CSFsjjr9XSksX1jpvtLcyV09ncimiDnwA1nbsCmUzZ5bvtrn/4a1m1Zh+FPDGPx3kVsPXsrJgoTkJZIDaEsldHVWxcWz3rWWeA4DmMPk+dORO21golCfYwk3SOhLJfxs/0/My1j7ak4X7ELi0a6ovV9iHJRlKUyOMHdvdcR6UBezNvuny5NY6I4Ybv/VTtehR9f/2NwNNnmWIG8vv44qQktVr17QK4m7REyCWprduuqPUezwiJFUdh1KYmUPdJi22o7FhmacX1NSf7YadMTEBAQEHDiElTiW0AyzONl59aLcpdddyMA4BP/8LdQDLO6dWGxGcYOHcDTjz0MVaqi++ZPYttZF9qWMToW23rW4Izz671u3HoselGqmh2LomwuIOkCopGeVLjmZBRYGqLsHoVKhEURFakecdKdCqMq+ytUORHhGbTHmovFYE5gxyIA/Ns3f4poMgOOpsGcBMJi4FgMCAg4melesw7UmbfUbv/NjVcBAF7y1k9AMpxvn9x3CFvWknHDw5OKr76CDz6xD3sOjmE8p+KPt0Rx/TPOtC0z2FsXvrqzcdxwxXm1225RqA1ZibCoORY7Ix5jCwcnQFORne2bgV0vA6hlRnBH0gBrd1A4Eu9CwyjUTc8EenZ5L7MSBEuPRR985NbryR+xVXRSHmsIgbAYEBBwcsJ8hsETtz2B9jAZW4Sj5Bz3X+/8L1TL9cnJ+Yk81qx3jwKXJ+znmUfufQTzM/OojFcw9PdDePbzn42CWAAtkGvAilxBl6F3czgexuXPvbx2O9lhH4tMlaYgKaSGoS6puHHDjbhv8j7TMjnRPFawCo1WsqF68kGEizQWFsMdKFQLro870Rfvw/rUetN9utC4WFmsta450ujC8mr1VwSaj0IFgNs/Rlx98Wbi7ltArccid+Tdg6vlkgwICAgICDASVOJXgVSGDCbv//Nd+MHX63EeIwf2YWBdc8Jipr0TQxs2o+ul/wyuzTkuq7PHLB4++0X1wqJbj0WKJh+9k95UFmWTyKf3QtSZyVcgWUTA/kyk9rfA0ahKCljOeQDNyiUoKkwOxa5E8wNEI+1xAVGhucIeS5/4X39JVsEylOPnfKIROBYDAgJOZiYmzCkJyThxAdz7yNP4x899q3b/noNj2LKuHyG1DPV9CfBy48isrrY01vR04C+vjmJXNwPkp2zL9HaaXXuvf/G1tb/7tWJeniKCS4omz0nrYxG3J/aKQhXLwOxeYPiPgFPsFxcGuAiygoewWLE7BBDrtN/nxhmvBDLebk9PIlnSP9EP1ojTPk3cDTdZOEo0P+Gshl6QE0v+1ykvEPH0CBfzjipB/FhAQMBJykN/fQhKUakJS7pjcXJ4El/8eL0uUpwuYs36NQiDCI9spX4d/9grHoN0lz3JKJlNIpFOYN171yGyIYLB5CAAINRH6ggVuYJY0jyx4zkvfU7t70Sb3TU2VZxCSSrV9vX20263iWJW0a+RsMho7WoA4lgsSSXvKNRIGxRLM8olH1HwbsyX5yEqK2sxcywTYpqvG+mf8Wo5B90QFRE0aES4SOOFW0wQhRoQEBAQcCQIKvGrQJUOof/MK3DDS1+D//yXD2P/048DACRJxMDajQ3XV1UV4jyJtHj3P38BH/vS/4CJuBeOonHzAOmsiy6r/R2OOa+nOyf7N51if34AxWp9lqBkibyazlVQsjRUX2MQFkMs4ykschKJaV0o1mctdq5QWOxKhBAVmMYLGmjWsZiMrE4D8tVEUlRwJ0kUKol8JX+396ygcBoQEBBwgtDdnsF7bn0hPvS5b+NPDzxRu3/L2n6sxSEAwEDhIcd1VVXF3jly/v+vj74Jv/v6x9ET14aNDlGYLGs+B194xvba3+kYKRx2qESQ3MBNAKqCtjQZo+xY6+BmC2dqUaWO3P3/gF++G1g87L5MrBMZ3iNmvZoHFIsrwo+wqM+WTw0AdHNjDxORNiKA+qFzu1lEPP3lwK1/BtZc4P/53jkC3PAfy99nvdiqNBFdX5onDj7Gvah6wqE5Fvs700d5RwICAgKODa5743X43n9+D7sf3Q0AkPMy1mxYgwwy2PfBfcjMZUzLG8W9yiRxfb3hg2/Av//g38G3k/NJnI+jO9oNNkFEybJUtjn11m+ru/rCMfv5dqGygDmt3/JlN1yGOB/Ha055Te1xlmZRkOrCoqiIKMtl3687ykVRlIpgLROgRUUEzdJg+phab0Qjo/lR389hRVblmlPuRETwOyHLQFmrP6WEVIv3pjE8w9fcpEcSXVhMLjc1JCAgICAgwAeBsNhCpsfJAPCRjitAP+NvcdNtb0e/Jfq0URRqpVzCR972Okx87S1QKkXsOP1s8HxzgyeGqReMKDdBSbubc9l2sVovGrGU+WsyW6iaREEAWNNW7xEkcDQqsgKGdYtCJTPGlir1mXQrFRZ7UiGEueYKZWyTwuLxKM1JigKWpnCCp77W4FnyXU23n0SRawEBAQEGntxvLka9+9YX4ZxTN2FusR7ltWXdgOc2qlURr37Pp7Hz83lM5BVcdcHpiIQN52kvwU/DOP7gWBqQqjhdfgAAEKJEk8sw4hQRFu8yOxYlSyHvrNcC130aoDzO/fFuxFgPEUwsANZZ/XGjsOgSJdaKmecXvR3Y/Ky6SNmInS8GXvEzs/DZua253oVCHBg0CJFvfhJ43pd8xeEum9I86SW5jOiy4xaejIl72lJHdz8CAgICjjBtbUQk2/3wbtP9F7/4Ypx58ZmYnSIR53JerkWhlvaXkAqlbNuSZRmf+cBnsPdde1GZquD8q89HNG7uS7wtu632d1kuQ3aI6g5FyPmH481jDUom45SDuYOgaRrZLpI6dfPWm2vLJPkkiobxSkH0F1mqO+OibBSiIoIJmccqfxj5AwCA6Wi9sNjMfh6P9ER7wNN8Uy5A3bF4NFx8AiOApZcZmb8CasJiNhAWAwICAgJWj0BYbAEXXnwJAOD7X/2s6f7FKoV/+Kf6fZFoDNkOd8GjXCzirbc8D3f/9pfIXP0GMKGo67KNCEV8zoB3oVCpD8oZxq5KHZw1x2D1pevPJ+iORdYtCpUUB/Pl+nPwLI20D0fgTK6KxZI92qM/E3EXUV3w61hMho8/p6KOKKvgWOqkcCwC5LsXEBAQcDLy/Oc9FwDwkS/9wHQ/yzL4xifebrpv/UC34zZ+9MIwBKWEq/7mPfjaj36Dzz4rhK4YXY8yy2tOxZG/+Nqn3k5SpBM4FnjyR+YHc5MOaxhI9ACVHBDSCiLDfwKMToR1lwKnvwLgPfrZJXpcH6rIFIlClS3CYzM9FlfCma8CTnuZcya9ExQFZNcBvM9Cmu4QXHeZ+zKJHmDH81fmumxEaYF8hi6TzU5IvL6TAQEBAScwNzzvBgDAdz77HdP9NE3jHf/8jtptKSdhzfo1kCCh79Y+VOi6wy55bhIyI+Pdr3o3vv+V76PrhV0QOgTHa/3TOk+r/V2UipCtKQQA+rW+0kLMPKGalVmEmBAmChOm+43usqSQRFGqC4tFS/S6WyxqV5TUfHTxiwrX970oFnHH8B2128aejDorFRatr2m16IqQ15kQvCNG16XWtew5B5OD+M6138HO9p2+16lFoXJHNgoVIA5LZjXHWS4cjb6OAQEBAQEnH4Gw2AJiMSIA/vL738LM5LjpsTXrN2Hzjl0A8P/bu+8wqeqrD+Df6b1sb2ynd5e6WFBEsaFERQUV7BExr2LEYAVFRY1JNLHEEqO+dvOqMaJExRgFjY0ihKII0vsubN9p9/3j7vQ+e6fszvfzPDzsztx75zeX1Tl7zz3noKK2f8Tk1/Klb+HA3t343QtvwzDgWCjCJOZi071EUrst/B3+CrkMe5v8E4vlOT4zFpVyOF0C5AHVkAaTGNyYLRZYdCq0dPonCAtMwdWTMpkC2orhWLHlEG57ex2+3d4Yck0VOfFVDyjlMqhinMn30U0nYP6pA/zmSHbXqMocnDWsBBplcv8TFCsW5ZBnScmiKkQSnIgoG2g04mfoKx+sxI8/+1+QqupThF+cMgGA2B5VrQ6OLxSdRzAoX45Pv1qDdT/8jOV/vR+zRvgng9ytUbHzK6Ap9otWSnsTsOHvaBd8PucPboq8k7lMrIx0312+ZzWwZ03MrwkAsAS3xdZ0vfdmp0qsiHT6d2CAMUWJRSD2pGIi5HLg9n3AsTck7zXCadgKrHoR+GQx0PAToLN626hmA3XiNwYSEfVk7s5J33zyDX5c/6Pfc7mFuZgwWYxFnC1OGC1GNKAB1nFWNCgbPNsVnV+E7Tu2Y90367Dk+SXImywm3lwh2rD7Jpfa7e1wCCGuYQR81Bpk4v+jlQ4l+uX0w4G24LnRbjmaHE9SCgBa7P6zmXc17wq5nzvhZlCJr+Xymff80faPPDMQFUoFtEqtZ7tox41VpPckpV/0+wVuG3cbRheNDrvNiotW4KbRN0n6urU5tSg3l8e8fYejAwqZAlpV6rsnaBXatFYsEhERJRMTixIYOmw4Tr3gMmi0Orzx3BNBz5/6i4sARG+DajCa8NhrH2DA0JHJWGZc2h3BgbtbqUWL/U2dfg3CSizeIE2j6vqxCuh/X1giXuA7YcrZKDBq0Nbpf0ehbztUdytW/YAJkCmU+PFAM8pzg6swh5R2tRnRxBesaVWKmCsWC01azJ3Ut9vtWn3935wJeGj6cGjjbN8aL4dT8LQHzQbZ9F6JiHwNGTwIc847CUV5Vtz/1OtBz0+fIrbAHNa/KvQBBBcUchny9HJ89cYf/GYk+lr6Q9dNQevejHlt5n1fACoD1mjGeh9s/DnyTpZywF0JUFontvxc+3LMrwkAsAZfdDJ0tXTNLSoXKyKdAV0QDL4tyXr4zSoqXWoTpYBYrbf3ezH5DIgVk0OnB8WEvRoTi0SUpfr3749J501CcUUx/veP/xv0fPXwagBAXq6YLGyG2Kbd4dM9QCaXQa6X409v/QljJ44NOoavgbkDPV+32lvhcDmgVEa+LqCUic/LXXIMyRsSObGoy/FrK9pmb4NW4b0msKdljydJ6MtdsegmqMUrJ52yTny681PUl9QDAIr6iO3NczTembwOlwMH2ruXGGzsCH0zdjLMGDgDg/IGhX3eorH4taxNh3ZHe9pakmqVWigite1PEndiUdbTY1kiIspovAovgTsW3o1L5i3E2RdfiaVvBgfQ7tZdgYlFQRCw/L3/g61TbP0x8bSzUVAcvm1XPNSa7l3A6bT7J/1824+W5+pxqLkTTpc3taj0qf7TuttRhmt7JZOhwKRBa0BVpG9yMmDuOv5wwUg8M2tM0KFyDYm11oo1qZhMerU3sHW3kpV6XQ6XkPSqyEzCVqhElK0WzP81nlgwC7dcNhX/++4n2LYrdEXhoNrgZNsbH3yGlqajqMmR44NLjKgN0yoVAA60CsCgqcCu/0Rdk8kgfrapOw4BIy6CQ++T5Dq6E3B2hNkTYrWhrRVwOcRWnaOvBI7GeQe/yRtT6Zz+7crkOot47M6AeZGpaoXaG8lkwHVfAFd+DFy1HJj1LnDBi8AxM5NbnZlp2AqViLLU3OvnYu79czF9znR8vuxz2O3+SbeDOAgAyBsoJhZb4K0AXPHPFThy+AhUOSpUXl2J6gHVEV/L5rRBpfB2YGi1t8LmtAXdE2S2dN2IbAm+6WN4wXA0djZCCDNTOU+b55dYbLW3wujz//idzTvR0N4QtJ+h6wYTdyLLpRZv2j6gPAC1Qo1LBolzHOUy8ff0PJ23HeqBtgMhqzPj0djZGNMxXjjtBdx33H3QZFBXgVmDZwEA1ArpWqh7EouyNCQWFVq/9rqpwopFIiJKhezJOKTAWTOuCHmH3KH94sW9ipr+fo+//dIzeOA3c7Huuy8BIO4ZgZGU9KlMeF+9WoEOu38guuWAN+jvk6PDvqYOdIapanQnsgR5+GCwyKJBS0DFYpk1fKtRuUwWMon48PQRmDSgEKXW7s2U9FubWQysFSm8CLbiN5Ow7MbjUSFhu1VBEOB0CTG3fO0N1Fn0XomIQrnmvJORZzXj5fc+9Xu8qUWcCzSoxptYdLoEPPGvHbhw3gP4x9L3AQAl+uD5REEGngloLEEPKxX+N3cMqe5KUBoLxcRg14WVBljFJGF7V1LvyA7A0em3r2c+ok2sZkDhIGDgWdHXFuoYAIrafxTn/bnprOLfgRcENUwKhdV3svi3X1VnAGslUD4ayK0Wt0tD27G0Y8UiEWW5E885EcXlxWhv9R+f4nKJ1w/ySsVEWpPQBEEQsPWLrbjz6jux9NWlABK7LuIQHGizt0Fv9P99umZQDQDAkh8ct0SrpMvV5gYlFn0TNg7BgY0NG4P2c1eJ6ZQ6yCCDS+G9bnJS+UkYVjDMb/t8nfdztbvzEa0aKxo7GuFwhR9t41ZXVIeza8/2JDgzwfwx8/HJ9E8wIGeAZMdsc7SlrWJRp9SlZcaiu70uKxaJiCiZMieC6AWMZiumXXxV0OPbt/4AwFux6K5Q/Prz5bjpnt+jrv5ElF71JByy1N/JFIpJq0R7QMXilgPNnq8rcvVwuAQcaA5daeCuGnNFCNyKzVo0d/jfwVhijf/iU5FZi+cuH4MR5da49w3nq9smY9mNx4dsvZpMA4vNkiaXHV0VpdnUHtTThpeIKEvpdRrcfMW5sNv9Lyht3LoTgLdisc3mwHlvtOP1r/fi0dt+ieuHtcX+IkotcML8oIfVKv/Pfdm+78Uv6mYB+X09j++XFYrVggf+Kz7g7AT+djmwbIF3Z09iseuCnkwOnPn72Nfoewy3lY8C7vlL7sRo25Hw+6vD3OwzcmZ86+gtBp4B3LgOqJmU7pVkNndikdfyiChLKVVKzLxuJgILAVubxc90d2LxqP0odj21C9tWbsOV86/EzLnhP1+dQvQbn5rtzbDkBicQw6k0V/q1Ng2Uo83xe91Weyusaqvn+3xtPrYc2RK24lEOOQwqAxwKb0w2c+DMoGqyQp+ODrtbd8OsNsf8HtzO638eAGB8yXgc7jgcskVrT1GgL5A0GdfuaIdWmZ5Zh1qlNi2Vkkq5UkxsZ1PHCCIiSjlehZfYubOuDnps/27xYl5xnwq0t7Xi43ffAABcfdOdOP28mdjbDqjyyvGTqspvP6VKuvYPNpl4LKcQPbAwa1WwBVQj/uhXsSheaNvf5F9dUN7VztOd3JGrxSBdrQtO0ImJRYdfy9NinxmGyjS3KpU6yQcAx/WNcId/Etid4r9hNrVCzaYkKhFROHMuOhN5Vv+LUv0dmyAsNKO2wACbzY4bnv8Wy7c5sOS8/vifmVOgbd0Z8ljycJ+FY6/xfh3Yv9zzeFcsYSoV25l2aZDlisnJhp/8j2co8H5vCmjHaiwCTEWhXyccvfdz16k0AAc3AmteER/Qdl14tDeH2LFLuNZVU+4DLnsfqJwQ33p6A2sFYMiLvl0287TJ48U8IspeU86fAnnA72ZtXd0TLEUWuFwurP3dWjR914ShZw/FJb+6JOj373hbgjbZmqJv5EMhV6CvtW/Y531nHwJiYtHi07FhUN4g/Nz0s9iCNQyz2uyZJamX69E/t3/QNgU6b/yzu2U3ivRxxjsAyoxl+PaSb3FK5SnodHbiSOeRuI/RW7lboaajclCv1KfldQFv1SIREVGy8Cq8xCw5wRdbqvuLw6wVCgV0egOqBo1A0YwlqBkwFABQUSsGl2V9h/ofKz/+gDIcRU4ZAMBlEgeJt3W1Id3REFyhYNIq0eHw3plnd7qws8HbxqTApEGhSeM3d9H9OOBNZMlUYkJRawi+467QrIXDJXiq6gCg2GfGokaVubPyDF2zEePJfW5afBpuOyP8UPNkcDjFc6vN4HMpNQ1boRIRwWjQ4d5fXYiJQ7wVe5MqxM91a/s2qNUqTK3rgy+uMGBC3xxgz5qwx9JpwiTXFD53X//4IeCMXknQr5/YuaGmsg9QMhJo3OF98vQHgcuXiV/LVWJLUk0358PIvZ8JivLRYvJyy8fiA0o1oDIAHS1hdkbktqhVx3qTk0S+PBWLTCwSUfZSa9Se+YZu5q6bnsz5ZnQ4O2A5wYLqW6tRNMD/ukdOSQ7a7G14cu2TnsfCVQX68m1bGk5+sXjTkdEifsYPyQ/fDjVH659YbHO0+c1DHJI3BEc7j2JPy56wx7BoLGhzitdccvW50CqDKyQL9N7E4v7W/Sg1lAZtEwuNQuNJlB5oO5DQMXoTu8uO9YfWY3/bfuiUurRUDhrDzF2OVCkr2WurjGyFSkREScWr8Ckw/75HccPCh/CP118AAPQ7dx60FcOwxSUGpYqui3MaffQ7ihxOF5yu6EF1IKNRvDjX2dVu1dZVzdbYZocQUGlg0anR6TNjcfeRdjh9tpEBGFAcfLHPXdXgboXqrpgLpdAUPCC8yNwz5vA8eP5wTB/VB5X5sd8BplUpUC7h/MRA7iSn74+GO2mrUWZPMJnJCWkiolS61vo5Xp24A+gQ794fUN0Hf9tgx5PvrQIA3HTuWAwrUqC2LBfY+ZXYajSEmD5B9q8HPr0fcEZuu1VcJF44LCnIBSrrgdaAi16KgAs+xuJYXt3f2K7OEfoQVXWnPQCUjBC/bj8izgC0RUgsxvr6/U4R/9blRN6OsoNC3VWhmz3xFxFRKDqDeKOxO6FT1b8Kzd83Y9Xbq3Co/RByjs2BvkaP8sHlfvu1K9rx0DcP4eejP3sfjHIJRAYZ2u3tkTcCYDCKv8O7ZzEOzx8uvqYjeF+rxhr0mG/b0vqyeqjkKmw5siXs61k0lqiVl74zFtscbaiyVkXcPpJyUznkMjkaOhqib9zL3fr5rXjq+6egkClQV1QHlSL1o4eMqtCJxTemvoGZA2eiyCBdMUEgk9rEVqhERJRUTCwmmcvlwnOP3I9H774FWzeLs4QKi8XqQb0p/jvdHS4Bn/1wMO79jrSL7TkCqwwBoMPuH+ha9Sp0+MxY3HG4Laid5tDS8Gt3t6MMbKfqq9AUnEQ0a1N/B1kiLDoVfjt9BIaWZU6lglGjhF6t8Pw7A76tUHvGeZVCNrV9JSKKqHmf+HfTbgiCgCUfbMf0N9ux+qf9EAQBpVaxRXpJrgnYs8qbcEvE8b8GDv2AqFf9fFUdH30bUwKJxYrxwIKd3mSfL7kCOP958etDPwDGwsiJxVgNOx+4YS1Qc2L3j0XJd/0q4KTbAUt59G0TIZMBKj2YWCQi8hIEAd+//T22/2E79m7ai33uOAVAaa1/hZ7dZYdMJsNvxv4m5uMb1Ua0OeKYF93FXbEYqupQr9RDrfAfT+NbTahRaDCyYCQaOxvDHj9UcjKQb2IRAIbkhq+ijEalUKHEUMLEIoD6knrcNf4uPH/a8/jl8F9CFa7FfRKFm5dZbanGreNuRZmxLGmvHTjLk4iISGq8Cp9Ene1tWDzvarz+l8dwzfyF+J87H+z2MZs77Hh7ze649zvcIiacGlvtQZWEh1v9ZyVadEq/ZOP2w60oy/HOSWyzOTG8j5hUa+0Mbn0mkwFapdxTFekKMXup0Bxcseh7N5UiyTMWx1bnJvX4qSaTyVCZq0djmw2urkpFdytU98zLbJBN75WIKBadHZ2YveB3uP2dbVg0UYOXbpkqft7u+qZrgybA0QnUnpz4i5SNAi54Mb59+oyJvo0lwYstWjOg7IozDAHzjXVW8W+ZTJzbaIveNi0mOVWAviu2cM+KdL8WZZb8WmDiLcE/G1JS6ZlXJCLq4nQ48eidj2LlEyuRd2oeLlhyARrt4ZNxALB4wmKcXXt2zK9hUpkSSixWmasAIGQiTq1QB81ZLDX6J0FPLD8RQPh5kIHtVEPxTSyq5CrUWmuj7hNJpbkyprawvVmOJgcPnvAgpg+YjmpLNfSq5HWPiiSdyb0ifRH0yvS8byIiyg68Cp9E//fnB/Htyn9h0R+fx/TL5kjShuCTTQc8CSMAQW1Mw3G3xbQ5XX5tTgFg075mv+9z9Gq/isWdje2oLfBv4TC41Ow5Xig6tQIWnXhH2I8HgqsBtCoFjJrwlXQGdfJaWm64Z0rK5x2mQnW+AY1tdnR2VYraXeLf2iyq4nO34SUiItHdf12GNz74HK9cNRgLT9SIsYjLCTRsFTc49ANgKATKRkc91piBfTDz9PrQTw48I76Fac2APkpix1IR+/HUYdqTmyLMKTKVAJ3N4Z9PVM1E4OS7gQGnS39s6hlYsUhE5LH8f5fjvVfew8R5E1EyowRyhRwH2g6EnTN3Xr/zMKFsQlC1YCQmtQntjvaYr4+4KeSRf3/M03pbqytkCr8Zi4A3sRhOLIlF3+Rlvi4fZk3oKrdY1VhqurV/b5GuZKKvWCpWk2X+mPm4efTNYec8EhERdVf2ZBxSSHA6AABTL78Bj7z0D0yYNEWyY/9nWwMmDfQO9+6M0G7ULbBisN3u8Pv+58P+d7NZ9Wq0+SQWOx0uDAto+1meEzlI06kVnqrDLQdasL8peGZBgSn8LwrJrFjUq5WojmM+Yk/Rt9CIwy02dDrEfzt3Zao2i+YOZlMSlYgoEnvXTUgLZhyPz1/+LWaM9Znhsn+99+vWQ0DpMYDB50KZIADbPhO/dnlbqKuV8thm2W79FLDHUDVQHqVq0dIn+jGiMUeoejSViBWbyXD8jUDlhOQcmzKfmolFIiJX17WKE2eciEfeeASDzxjsee5g28GISTd5mNnP4ZjUJr8Zi9HmGsbKN5FoVBuhVfonQyvMkW+CiiWx5JvcLDGUhJ3LF6u+1r7d2p+kk86knkltwqjiUWlpAUtERNkhI67CP/7446iqqoJWq8W4cePw9ddfR9z+zTffxMCBA6HVajFs2DC8//77KVppdCuXf4A9f5kDR/MhmKy5qB2YeH/8UCxaFa48rtrzfVNH8MzEQIFzFQ82+7c+3dXY7lehaNYp4XR5k5EyGTA+oHWoPEriT69W+rVcXfbf/UHbFBhD36FIiaktNKKl0+H59/a0Qs2iKr6YLngTEYXQm2KRj1auwsDHmvFTgwtmgxZjhvX332D7l/7f9zvFv+Lv84eB/zwR/wu7LwLuWQO8+z/Rt482Z9EcodowVpGOYS4RE6Cu4LbuIRkKu78eyg5qI/OKRBS33hSLrPt6HVbdvAoduzpwxHUEQ0cP9Xv+UMehoNmC3WFUG9HqaEUfk3hT0ic7PoHdGf1aSTS+azSrzdAogke6KOXhOzHFW7FWZirzq7QzqOK/IbraUh19I0qJcDMWiYiIeoO0JxZff/113HTTTVi4cCFWrVqFESNGYMqUKThw4EDI7b/44gvMmDEDV155JVavXo1p06Zh2rRpWL9+fcjtU0UQBLz1wpO4+4YroC6ohlzrvTPprVW7cNWL36LN5ohwhNj8oq4MQ8usnu9DzTgMdKjFP5G4PyCxuOdIOxpbbZ7v3S1M3YpMWpRYdYiHTqWAresOxaFlZnzzc4NnzqNbsYWJxVi528YqIyR03VWYe492APC2v1Ups+fKloYVi0SUgN4SiwDAk298iNOvuQv98+QoMIT4/7/gAnZ9DRQM9D5WdYL/Ngc2AeOujf/F3RfbzvoDUDIi+vYV7raqYT6nIiUFrQEVAvaO0NuV1YXeHgCMXYlCR3BXhZBU8cVClMUMBYCSPy9EFLveFIv8651/4dczf428ojworUpsObLF73mHy4FmWzMKdaFv2OlwhPlMj8CkMqHV3ooSQwkA4Oemn/H0uqfhDLh5aHfLbgBiW9NYFOi93aLCJRbdcxpDsWgsYZ8Lpdpc7VetKUvgLhUmFjODDLKMaMdKRESULGm/Cv/73/8eV199NS6//HIMHjwYf/7zn6HX6/Hcc8+F3P7RRx/Faaedhvnz52PQoEFYvHgx6urq8Nhjj6V45V42mw1/uX8BXnjkPlx09f8gf9oCyFVaT+XYut1HAQA/Hez+AO1ja/Og85k/2BpDsvJQQEIvMNHoEoBN+70zhgITi9X5elj18bVPMGgUnjZspw0phsMp4OON/lWLxWYmFmN13y+G4oLRfVAVoYWr+7mDXf++nlaoPahi0d22ValI7H9N2dT2lYik0xtiEafTiRt/9wquu+85zJ15Fv4xwwCzRgYEtOxC489ilV7NRPH7goGAudh/u2lPACfdnvhiDPnA7PcAXVeLs8A1uLnblJaODPO8O7EY4jMh8IKgEOZGK3f7J0WIOMZYHHofSp4ZrwOTF3l/Nnqrsx4BTroNSKDShIiyU2+IRVwuF175wyt4ZP4jOHnayZj16CwojWJisdnmvd7QZBPbkLurC93au270WX84/uSoe8aiw+WAQqbA5UMuxw8NP+Cz3Z95tlm1fxU+3/05AKDSXBn1mEq50i/5adVYQyYWZbLwyb94E4tD84ZG3yiKWOY6UvJplVqo5bHPCSUiIupp0ppYtNls+O677zB58mTPY3K5HJMnT8aXX34Zcp8vv/zSb3sAmDJlStjtOzs70dTU5PdHaps2bsA3//oAN9zzCK644VbIwswDiHeQuC+lXIbRlTkoz/W/QNHS4QiaoRgoMJHY2GrzrKXQpIFFp8K2Q96kp1nrf/FtQJHJUzEHAHp19OSNXq30VCxa9WqcM7IU32xv9Num0BwclFNoJq0KD50/AkPLwv9iYtaqkKNXoaGr+tTdCrUnJdsWnj0YUwYXobogsQtxrFgkonj1llhk69ZteGHpSjx+2xV49PZroVR0XeRyxyS7vxP/PrBBrKZy34FfNgrQWgBF14WP8vHAoLMBbTdbN8nl0VuderYN00JMaxWrIOVy/1atUjEWhX581rvAGQ8DOqv0r5ntBpwGHDev91d/GguA6uMBRfj2eEREbr0lFtmzZw8+fO1DzJ4/G7f89hYoun4PbbG3YO3BtZ7t3InFKkuV3/4H2rqqM0Nc3jjaeTTia5vUJvG1bC0AgJGFI3H7eO9NUhsaNuD5/z7vaS0ay9w5pVzpN2PRqrHGPa8u3lao+Xrp2sNSemkV2ohtcomIiHq6tF6FP3ToEJxOJ4qK/C/sFBUVYd++fSH32bdvX1zbL1myBBaLxfOnvLxcmsX7GD5iJH7/1ueYNPV8yY/tZtapoFUp/OYWAkBzhyPosUCHfFqfKuQyHGm3e9pkymTAMRVW7D7ibQMWWLE4qNQc8S68UIwaJWw+67pxcv+gbQq7KhY77NIMVg/F3R500sDsmItUmWdAY6sNDqcLdpd4XjU9qBWqWavCU7NGo64isbssmVgkonj1llikX7++2PrOQ7juwlODn7S3eb8+skNMJroTdRpT8PbyDPl/qUwG6HPF5Gi4qke3RBKP+rzgykdArOYce3XoKkciIiKJ9ZZYpE+fPnjsw8dw7jXneq4fKGVKFOuL8f3B7z3bNXU2QSVXocjgv/79rWKHo1DXHpbvWB7xtd2JxWa7tzLyggEX4JTKUwAAPzb+iFFFozCvbl7M70cpV/rNWMzV5sZ9XSTexKJRZYy+UQwqTCFawCOx1qqUGK1SC4W859zkTUREFK8MuXKUPLfeeiuOHj3q+bNz586kvI7BHF+LC6kcbbd7KgPDOeCTWCwya9DQavNUswHAsX3zsbvRm1g0ByQWiy3x31UeWNVYnqvHhFrxbj93IrTQJFYsNnXEP1TdqI3tzi+1Uo4f7j0dF42V/henTFSTb0Bjmx2dDhccTgEyJN5WtCfS9KC2r0SUPVIVi+SYQyTX7G3Aujf9HxtwBqDsIV0Dqo4DLBXe6sH/WQuc9mDk+YuxksvFxCUREVEvl6pYxGgJSIzJgDHFY/DjkR897VCbbE2waqzQyf2vM+xv8x+d4mvtobXY1bwr7PMmlZhYbPO9mQpAP2s/AEBdYR3uGH8HKsyhE27h5Gm9FYu52vhjBr0yvhl7Bok6NNRYakI+NnPQTEmOT9HplDpWLBIRUa+W1oxDfn4+FAoF9u/3DyD379+P4uLQc2+Ki4vj2l6j0cBsNvv96U2OtNmiJhYP+8xYLDJp0dBqQ6fPPhNq8zwVjIDYOlOl8N7JZtXFf8e+QRMcQF07UQxufzogticp6qpYbO6IPicykCqOZJlaKYdenR0BXd9CIw63dKLD7oTd6YJCLoMiUypPUkCjyp73SkTS6DWxyA/LgF3fBD/ecgD44Z/e79UmMVnXHYEXSaJVE3bHL54GJt/lrazMrQLGX+tt1TriotBripWhoNtLJCIi6o7eEosIggCnK3jm8eji0XC6nPjv4f8CEBOLOdocaAJuctrbujfssbUKLf7x0z/CPm9UiwnNNod/YtFdwXhi+YmotdbG9kZ8+LZCLTOVxb1/vBWOoWY4JqLaWh302N+n/R2XD7lckuNTdDqlDopQnTGIiIh6ibRehVer1Rg1ahSWL/e2tXC5XFi+fDnq6+tD7lNfX++3PQB89NFHYbfv7TocLjS1h0/MuVwCjrTbYOqq8Csya+ESgIM+VYwDi80wBFQYmnzmLMZaHejLGCKxmGsQg2T3SEh3xWJzAhWLFFpNgREdDpenKlUpl0ER5y8zPZk6i6oziUgavSYW2bQU2BFirtKWj8SWn25lowBT6IuOMXPPY3Qzh7nQ5k4GdmfOnFweuTrxjIeAX60CSutCP2/tqkwIN0/RGMO5mL8VOPsx77GIiIgk1FtikafXPY1HVz+K3S27/R7P1eZieMFw2F3i7/2dzk7ka/OhDbgxKVLF4iWDLsGGhg1hn1cr1NApdWi1t3bjHQTTq7wVh4W6yONV5LLM+V20r7UvAARVzMWb6PQ1IHdAt9aUbXRKXdwzOYmIiHqStEc+N910E5555hm88MIL2LhxI+bMmYPW1lZcfrl4J9WsWbNw6623era/4YYbsGzZMvzud7/Dpk2bsGjRInz77be4/vrr0/UW4tbUVaHndIWYSp6AA80dYZ9r6XTAJQAFRjGJV2gW/z7Y4t1HIZfhmICZdmafZGIioWeoxGIgd1VjS2dwYrQ7AW82qykQW6fsbeqA3eWCQiFDNp1KViwSUSJ6XSxibweErs4ETXuAUVd4n6s+IbF5hL4CE4vhnP4QMPxCsZVpMuXVAqowVZOV9cCM18X2r6GYwiQcfRnygLpLAY00c4+IiIgC9YZY5HD7YRy1HcVf1v8FGw9v9Hvu3L7n+n1fZCjyS7o4XU4caj8U9thn156NPsY+EV/fqrEGtUKVkk4V/4iYdHHPWHQnGKVw5/g78eypz2JI3hDJjpkMw/KHYfaQ2Wldw9SaqRhbPJaJRSIi6tXS3h/ywgsvxMGDB3HXXXdh3759GDlyJJYtW+YZRL5jxw7IfVo5TpgwAa+88gruuOMO3HbbbejXrx/eeecdDB06NF1vIW7/3XMUANDaGdwmJBENbbawz7nnF5Zaddh6qBW5ejXUCjkaWv33ObZvHlZs8QbyvhWLidBrYm/5IITIrwZWUPYk6UyKVuTqIQNwuKUTgAxKuRxyefZkFjljkYgS0atikb3fA2te8X5fMgIYOQPY/Q3w0yeAJUx1oTvZGGrmYOM2IMenpVa4BNvUR4CP7gQUKu925z4dfq3uisb8JN8BP+C08M+ZJJjVSERE1E29JRbJ1+XDorbg6e+f9ptnOKV6ChZ+udDzfbmp3O/35oaOBriE8CNeZDIZ5o+Zjxv+dUPYbXK1udjbuley9pOB1X6JHtekNnnmS6aalFWUMpkM40rGSXa8ZHnlzFeib5Rks4bMQqezEyoFE4tERNR7pT2xCADXX3992DvrPv3006DHpk+fjunTpyd5VcnT2CZd60+1Qo6j7eGP566OLLGId/LLZECfHB0O+LRCBYD62nwAmz3fWyLMVdSoogfU+h6cGOyuqjw9cvQqTBuZ+ouVWpUCRRZxjqZJo4JSLkMm5RVr8g3Yeqg1aclOtZIVi0SUmF4RizT+DHz5GJDXDygfC2z7NzD6KsBaCUSb2aPPBc5+HDD6tPmauAD44o/AJ/cCJ/wm+uuPuAgYfE7413InL92tz9R64Nc/AK0Hox9bKu5kZuWx4t/mktS9NhERUQS9IRbRKDRYWL8Qf1r9J3yz3zv72aDy75ZQY6nx+z5SG1S3k8pPivh8rjbEzVHdIIuxd5NaHrmTg0VtSVtikYKNLxmPnc07oY61A0eCpJqXSURElKkyIrFIicszqiMmFpvb7TBqlH6Jvqqu5I6voaX+w9sjJRbdsxEDHd+vAN9ub4RcBujV2fujJZPJsPquUyGEKsVMgao8PRrb7FAp5FDIZZBnUC/UT24+EZv2NaE6r5tt+MLQMLFIRNlKny+2Ax12PjB2DpBTCexZBRQPE+cUxqLuEv/vT7oVGDUbeP5M4NMlgFwBWHyeP+1BYPsKQOsTQ0RqEzbkF8DGd8V2rG6mouB2pJVJnA+lUAG37gI6uy7whZu9SERERAnRqXR46pSnUPeS//zjPG0eDnccBgD0Mfm3Nd3fth8qucozhzGUaJ2B8nR5EZ/vLpPaFPLx357wWzz4zYMo0BWEfN6qsWJXyy5J1+I7+5Hi88ypz+Bg20EU6EP/exEREVFseBU+A+1rEucfhqpstDn924PkGdWeqsRQmjocsOpVUCm8/9S1BcFJHWXX80VdSUOLPv6WDTdM7oeP5p2A0VW5MGRxYtEtXS1Ra/INaGi1odPh6qpYzJzEIgAMLDYnrWKRrVCJKGudei9wxUfAKYuBokFiNWDVcYDWEnr7Ib8Q/+4zNvJxzaXAlR8BORWArcX/ufHXAhe+BJiKY1ujTAZMfx7od0r4bW7fB5zxcGzHS5TGJL4vgIlFIiKiJFApVCgz+rdf1yq985CNav+26vta93W74jBfl9+t/aMJ11a03FyOx05+DIPyBgEA6grFhGq+XlyPVWuVfC2/m/g7nNfvPJQY2HkhEUwqEhERdR8TiynmcIafGwAA7TYnHvtkS9jnXS7/Krh8gwZNEVuh2pFrUEOp8CZy+hWGvtPOV44+sbYQ/YpMsOrVcc1YjIUik/p5Zri+hSY0tNrQbndCqZBnVCvUZHO3Qs2wXCoRUfIp1UDxkPCJRGXX57p7PpA+F7jjIDBoavRjG/KBy/8JlNYBuTWAOsyMRSmodEBBkmcu+vJUS/KDg4iIKBkCE3J6pR5ahdbvsX2t+8JW/AHB8w5DibR/Kk0sn4ilv1iK+hKxA4NVY5X8NfJ0eVg0YRH65fST/NhEREREsWBiMYVcArA/YLahL0EQ8OyKrWhss8V8zDyjOuL2TR125Bs1UPq0QavKj96GMieBikVf3Z2xqNcEDErvyo797dp6TB1egnxj6MTnuXXiXZFDAlq7ZpOaAgMcLgGHmjszsmIxmdytULPnHRMRxejM3wN9J4stUt2Uam/CMRp9DnDlh8CQ84Dc6uSsMR3cFYthqhCIiIioe1yC/83Vudpc6JT+rdMPtB1Aob4Q4URLLBbqC5Grk3bGYndUmCtQZBBjDIsmzE1fRGGcXXs2ZJBheMHwdC+FiIgoLParTLG9R9vDPrd211EAwJXHVeMvK7aF3KbDHtAK1aAJesxXa6cTxWatX8VfdQyJRbO2e4nFZLVCHV2Vi9FV4X9hKDRpsfne07IqmRaoJl+sJDnY0onqfENWnQvOWCQiCsOQD1zyf907hkIF9D9VmvVkCpVOrMCMdQ4lERERxSWwYjFfl+/XFrXD2YE2RxvKTeVhjyELc+vovLp5eG/re9Ar9cjTJnfGYqKYWKR4mdQmrJm1Jt3LICIiiohXUVJs79GOiM9PGliAK46LvRIgXOWer/Ic/7sBY9nHrEtvxWJ3aJQKv5mS2aYsRwelXAa7U4BKIc+qa6Ualfhzlz2pVCIi6rZJdwI1J6V7FURERD3ar+p+hTkj5qDCVAEAOL//+QAAjULjt12BrsAv2Xik8wgAoNZaG/drXjHsCrxy5iuoslRlbGIxVCvUMmMZLhxwYdJe010RGnjuqeeQy+Rh53oSERFlAlYsptieI8EVi7KuijKVQoZfn9ofZVZd0Dbh5BmjB4pV+QZs2tcc9HqRWHwSi+oEqsAMGv5opYtCLkNZjg7bD7dlXStUtTuhnEXvmYiIumn8tYAgRN+OiIiIwsrV5uKcvud4vr9q2FU4s/pMT4tSd9Vhkb7Ib78jHUcAAH2tfcMeWyELf+Oyu/oxV+vtbGRUJXEedJzclZjFhmLPYx+c+wEEJC/2GJA7AGfVnIXJFZOT9hpERESU3Xj7S4rtORJcseieZ3jZhCoMKo7cJsPh8m97atYqvckUAIdb/Gc4ygBU5OqDjtMnJ3Ly0qzzJgYTqf7TKOWQM7eTNlV5YrtbpVyeVYlFlSJckxwiIqIIsuizkoiIKFVKjCWeqrm6ojoAQLGx2G+bxs5GWNQWWLXWsMdRK9QRvwcAs8bsqfCKNK+xu1Ty+Lo7aRVi4tO3clEmkyVUjZavy4952yXHL8HJlSfH/RpEREREsWBiMYVcgoD9TeFboepUCsjDZOMaWm34756jQY/LZDKUWLzzCTbsbYLgc9e9SaeEKcS8xGhzFn0rFrWq+NuaymSyhPbriWoKxHNZYMqcNiO1XWtSKWVZda1UJpNBrZQzuUhERERERJRB9ErxhufAW0GPdB5Bvi7f83woKoX/NQ2DKvh6hlwmD9l21New/GEAgFFFo2JZckj/vuDfuHvC3Z6Wr6mQzEQpERERUSLYrzKFmjsccLj821202Rz4948HAQBNHfaQ+2050AIAaGyzh2xjWpajw/aGNgDAxn3NONjsrVrM0amhVQfnj2sLjPj8x0Nh12rp5oxFQEyUttmcce3zztwJ+OlAK/Q9KCl50oBCvHr1OOTH0JY2VfoWiq1fsq1iEeiqsM2ut0xERERERNQj2V12FOgLoFeFTiyWGkuDHjMoQ98onaPJwdHO4Buy3YxqI76++Gs4XfFdp/Bl0phwbr9zE94/ER+f/zG+2vsVaiw1KX1dIiIionCYWEyhxlYbAMCqU+FIux2fbzmIz7cchN0pJht3h2iTCgDvrt3j+VoIMQPIt62pw+nC51sOer7PNaqhC5Gki1axaFBH/9FYNHUwnlv5M8pDtFoFAL1agcOtUQ/jV1E3sjwHI8tzou+UYeprY29Jkgo1BWJiUaWQQZFlPWlZsUhERERERJRZzqg5A69tfi1oxiIAlBpKPS1DfX198dfY3LA5qP2oUR16hmKONgfbm7ZHXIdOGXksTCaSyWQYXzo+3csgIiIi8mBiMYUa2mxQKWSoyjdgzc4jsDsFTBlchH5FJjz2ry0hkyFbD7Zgw96miMetzPMmCUeUW/Ht9iOeZGK+UROyJWn/IhMAoMQSOqgO15LV12XHVuPCMRXQqkJ31NXHkJwcVGLG1OElUbej+NR0JY5ViuybdalRyoPa6xAREREREVH6HFN4DD678DPPzEVf1ZbqkN2ZdEodRhaOjPk14plB2BP0tvdDREREvQdnLCaRK6DtaWObDflGDYaVWQAAN03uj4cvGIGJAwrCHuPdtXuQZ/AOJlcrgv/JfCsGT+pfiIPNndjR1Rq10KgRW0MG0Kndicfgoefx0KkVIX8B8H2NSD644XjMObG2W2ugYAUmDYwaJUxaZdh/n94q1M87ERERERERpVeONidky9P+Of09X3fnJtE8XV7C+2YitaJ712uIiIiIkoUVixJ4+J+bseVACy4aUw4AqMrT4+fDbfhuRyPqKr1tPRtb7SgyazzJQZkMMGkjzzJcv6cJF4+rwMtf7QCAkG0tfVuhDiwxoU+ODrsa2wEARZbgdiLxSrTizRBDYhFA1iW+UkEmk+H5y8fAFaJ1bm+nUcrBHykiIiIiIqLMp1FoUGwoBgAMyh2EaX2nhd129uDZONxxGAZV6NEuBbrwN23HalH9IthddijlvFxGREREFA4jJQm8+KXYw3/q8FLo1UrUFhjx8+E2fPNzA0ZX+SQW22wYWW6FShl71iPXoMaFY8o9iUVNiLamvolFuUyGi8dV4MFlmwEARebgNiPxSnRGn14j3Y+XnJmiuI2uyk33EtJCo2TFIhERERERUU+Qr833JArfmPpGxG1vHnNzxOenVE3BvtZ9QTMZ43Fe//MS3peIiIgoWzCxKKFOhxOAWImYq1chx6DGy//Z4UnMdTpcqMrXx5UkO21IMfoVmiJuU2D0Tx7OHFvpSSzm6EK3zqjumsF3THlOyOcB4K6pg+FwuqBRxlZ5GMigSWy/UHyTp0SR1BYa4RIEzlkkIiIiIiLKcAX6gpDtURPRx9QHt467lb8LEhERESUZE4sS6rCLiUVBAGRyGead0h83v7kWHXaXZ5uBxWb8sL855mNeNLbcb1ahMqB6MNeoDmolatF7786Th6k2tOhUWLvwVE8yNJQrjq2OeZ2hGNTS/XixYJFi9YcLRmLP0faYZnwSERERERFR+hQbiqFTSncjsVzGDjZEREREycaISwKVueLddV9sPQwAELrm2mmVCtx55mDPdnIZ0K/QGNex+wZsbwhoL1poCt3qNJYWqBadCoWm7s9gDMe9Vqs+8TYkJJ0/XjQSd5w5KOhnqLeRy2XokyPNHa9EREREREQkPXdVYYWpIqPnGY4rHoeh+UOhVoTuBkVERESUjZhYlECfrsTimh1H0Nxh93vu4vGVnq9zDGqYdbEn2UosWugDqv60qtj+yYrNiSUMiyzSJRqNXQksldx/zaw+TI+zR5bhquNroFLwP3siIiIiIiJKn3JTOa4bcR0m9pmY7qVE9OyUZ/HkyU8iV5ub7qUQERERZYzMvS2shyk0aXCwuRMfbdzvaT9aUyDOMbzrrMG4570NKDRpul0tFphojCaeJN671x+LhlZbnCsKL/C9Dik1I0evwlnDSyV7DSIiIiIiIiLqWWQyGeaMnJPuZcTEqrWmewlEREREGYWJRQk8dUkdvt7WgJf+swMrtxzGiD4WAN7EmlopVoiVWHQwaLo3903TdaxZ4yux60h7UKLRXRyoTKAqbXgfa7fWFsgQMONOJpNh9V2nSvoaRERERERERERERERElBpMLErAqFVh0qAiFFu0OOOPK7BqRyM0Km9SrbnDAQAos2ihUXYvseh2z7ShsDlcnqSlWimHzeFCrkGcrfiHC0bitrfXId8YfdZisujU0rxXIiIiIiIiIiIiIiIiSj8mFiU0uNSCif0L8O8fDvolFrccaAEAlHfNYpSKO6kIAF8umIR31+5BRddrVOTp8dJV4yR9Pa1Kjg67K+b2qoY427YSERERERERERERERFR5mLmR2K/PrU//v3DQb/Hth4SE4tlVl1cx1LKYx+QmGfU4PJjq+M6frw2LT4d63cfjfl9mLTij5cijvcR6C+zR2PV9kbkGNQJH4OIiIiIiIiIiIiIiIi6j4lFiQ3vY0V9TR62N7TC5nD5PedbxeirMk+sMhxYbPI8duawEkyozZNsXaVWLQDArFV16zhDyywxbzu6KheLpg5G30JDwq938qAinDyoKOH9iYiIiIiIiIgylVahxbiScZBDHn1jIiIiogzAxGISPD7zGHy59TByu6rsHptZh/uWbkBJV3KvxCL+7a7oKzRp8c3tk9Fhd3qPcXGdpGu6cEwFOh0ujKrMkfS4kSjkMlyW5CpKIiIiIiIiIqJEyZB4lyUpfHXxV2joaIBK0b0bwYmIiIhShYnFJMg1anDm8FLP92VWHZ64eJTn+0vGV+JImx19crwzFwtMmqSva1Z9VdJfg4iIiIiIiIioJyg3lWP6gOlpXYNcJke+Lt/z/cMnPIzNjZth0cTeMSrdBuQOAABMqpiU5pUQERFRKmRdYlEQBABAU1NTWtcxe0xRXOtwdbZ5treFaalKRESUKPfnkftzkpInU2IRIiKiTMJYJHWyJRbpaOmAs92J9pb2sO/11ZNfhQAhaeeipbkFznYnOls7Y36N+rx61OfVw9nuRFN7z/k3+uycz+CCq9f/XBFR78VYhCh2MiHL/kvZtWsXysvL070MIiKijLRz50706dMn3cvo1RiLEBERhcdYJPkYixAREYXHWIQouqxLLLpcLuzZswcmkwkymTR99JuamlBeXo6dO3fCbDZLcsxsxXMpHZ5L6fBcSofnUhrJOI+CIKC5uRmlpaWQy+WSHJNCYyyS2XgupcNzKR2eS+nwXEqDsUjPxlgks/FcSofnUjo8l9LhuZSO1OeSsQhR7LKuFapcLk/aHQdms5kfCBLhuZQOz6V0eC6lw3MpDanPo8XSc+a49GSMRXoGnkvp8FxKh+dSOjyX0mAs0jMxFukZeC6lw3MpHZ5L6fBcSkfKc8lYhCg2TL0TERERERERERERERERUVRMLBIRERERERERERERERFRVEwsSkCj0WDhwoXQaDTpXkqPx3MpHZ5L6fBcSofnUho8jxSIPxPS4bmUDs+ldHgupcNzKQ2eRwrEnwnp8FxKh+dSOjyX0uG5lA7PJVH6yARBENK9CCIiIiIiIiIiIiIiIiLKbKxYJCIiIiIiIiIiIiIiIqKomFgkIiIiIiIiIiIiIiIioqiYWCQiIiIiIiIiIiIiIiKiqJhYJCIiIiIiIiIiIiIiIqKomFiM0eOPP46qqipotVqMGzcOX3/9dcTt33zzTQwcOBBarRbDhg3D+++/n6KVZr54zuUzzzyD448/Hjk5OcjJycHkyZOjnvtsEu/Ppdtrr70GmUyGadOmJXeBPUi85/LIkSOYO3cuSkpKoNFo0L9/f/53jvjP4yOPPIIBAwZAp9OhvLwc8+bNQ0dHR4pWm7k+++wzTJ06FaWlpZDJZHjnnXei7vPpp5+irq4OGo0Gffv2xfPPP5/0dVJqMRaRDmMR6TAWkQ5jEWkwFpEGYxEKhbGIdBiLSIexiHQYi0iH8Uj3MRYhynACRfXaa68JarVaeO6554T//ve/wtVXXy1YrVZh//79IbdfuXKloFAohIceekjYsGGDcMcddwgqlUpYt25dileeeeI9lzNnzhQef/xxYfXq1cLGjRuFyy67TLBYLMKuXbtSvPLME++5dNu2bZtQVlYmHH/88cI555yTmsVmuHjPZWdnpzB69GjhjDPOEFasWCFs27ZN+PTTT4U1a9akeOWZJd7z+PLLLwsajUZ4+eWXhW3btgn//Oc/hZKSEmHevHkpXnnmef/994Xbb79deOuttwQAwttvvx1x+61btwp6vV646aabhA0bNgh/+tOfBIVCISxbtiw1C6akYywiHcYi0mEsIh3GItJgLCIdxiIUiLGIdBiLSIexiHQYi0iH8Yg0GIsQZTYmFmMwduxYYe7cuZ7vnU6nUFpaKixZsiTk9hdccIFw5pln+j02btw44Ze//GVS19kTxHsuAzkcDsFkMgkvvPBCspbYYyRyLh0OhzBhwgTh2WefFWbPns0Auku85/LJJ58UampqBJvNlqol9gjxnse5c+cKkyZN8nvspptuEo499tikrrOniSWAvuWWW4QhQ4b4PXbhhRcKU6ZMSeLKKJUYi0iHsYh0GItIh7GINBiLJAdjERIExiJSYiwiHcYi0mEsIh3GI9JjLEKUedgKNQqbzYbvvvsOkydP9jwml8sxefJkfPnllyH3+fLLL/22B4ApU6aE3T5bJHIuA7W1tcFutyM3NzdZy+wREj2X99xzDwoLC3HllVemYpk9QiLn8t1330V9fT3mzp2LoqIiDB06FPfffz+cTmeqlp1xEjmPEyZMwHfffedpCbJ161a8//77OOOMM1Ky5t6Enzu9G2MR6TAWkQ5jEekwFpEGY5H04udO78ZYRDqMRaTDWEQ6jEWkw3gkffi5Q5RaynQvINMdOnQITqcTRUVFfo8XFRVh06ZNIffZt29fyO337duXtHX2BImcy0C/+c1vUFpaGvRBkW0SOZcrVqzAX/7yF6xZsyYFK+w5EjmXW7duxSeffIKLL74Y77//PrZs2YLrrrsOdrsdCxcuTMWyM04i53HmzJk4dOgQjjvuOAiCAIfDgWuvvRa33XZbKpbcq4T73GlqakJ7ezt0Ol2aVkZSYCwiHcYi0mEsIh3GItJgLJJejEV6N8Yi0mEsIh3GItJhLCIdxiPpw1iEKLVYsUg9xgMPPIDXXnsNb7/9NrRabbqX06M0Nzfj0ksvxTPPPIP8/Px0L6fHc7lcKCwsxNNPP41Ro0bhwgsvxO23344///nP6V5aj/Lpp5/i/vvvxxNPPIFVq1bhrbfewtKlS7F48eJ0L42IKCTGIoljLCItxiLSYCxCRD0NY5HEMRaRFmMR6TAeIaKeiBWLUeTn50OhUGD//v1+j+/fvx/FxcUh9ykuLo5r+2yRyLl0e/jhh/HAAw/g448/xvDhw5O5zB4h3nP5008/4eeff8bUqVM9j7lcLgCAUqnE5s2bUVtbm9xFZ6hEfi5LSkqgUqmgUCg8jw0aNAj79u2DzWaDWq1O6pozUSLn8c4778Sll16Kq666CgAwbNgwtLa24pprrsHtt98OuZz3vsQq3OeO2WzmXXm9AGMR6TAWkQ5jEekwFpEGY5H0YizSuzEWkQ5jEekwFpEOYxHpMB5JH8YiRKnF/zNFoVarMWrUKCxfvtzzmMvlwvLly1FfXx9yn/r6er/tAeCjjz4Ku322SORcAsBDDz2ExYsXY9myZRg9enQqlprx4j2XAwcOxLp167BmzRrPn7PPPhsnnXQS1qxZg/Ly8lQuP6Mk8nN57LHHYsuWLZ5fQgDghx9+QElJSdYGz4mcx7a2tqAA2f1LiSAIyVtsL8TPnd6NsYh0GItIh7GIdBiLSIOxSHrxc6d3YywiHcYi0mEsIh3GItJhPJI+/NwhSjGBonrttdcEjUYjPP/888KGDRuEa665RrBarcK+ffsEQRCESy+9VFiwYIFn+5UrVwpKpVJ4+OGHhY0bNwoLFy4UVCqVsG7dunS9hYwR77l84IEHBLVaLfztb38T9u7d6/nT3NycrreQMeI9l4Fmz54tnHPOOSlabWaL91zu2LFDMJlMwvXXXy9s3rxZeO+994TCwkLh3nvvTddbyAjxnseFCxcKJpNJePXVV4WtW7cKH374oVBbWytccMEF6XoLGaO5uVlYvXq1sHr1agGA8Pvf/15YvXq1sH37dkEQBGHBggXCpZde6tl+69atgl6vF+bPny9s3LhRePzxxwWFQiEsW7YsXW+BJMZYRDqMRaTDWEQ6jEWkwVhEOoxFKBBjEekwFpEOYxHpMBaRDuMRaTAWIcpsTCzG6E9/+pNQUVEhqNVqYezYscJ//vMfz3MTJ04UZs+e7bf9G2+8IfTv319Qq9XCkCFDhKVLl6Z4xZkrnnNZWVkpAAj6s3DhwtQvPAPF+3PpiwG0v3jP5RdffCGMGzdO0Gg0Qk1NjXDfffcJDocjxavOPPGcR7vdLixatEiora0VtFqtUF5eLlx33XVCY2Nj6heeYf71r3+F/H+f+/zNnj1bmDhxYtA+I0eOFNRqtVBTUyP89a9/Tfm6KbkYi0iHsYh0GItIh7GINBiLSIOxCIXCWEQ6jEWkw1hEOoxFpMN4pPsYixBlNpkgsKaaiIiIiIiIiIiIiIiIiCLjjEUiIiIiIiIiIiIiIiIiioqJRSIiIiIiIiIiIiIiIiKKiolFIiIiIiIiIiIiIiIiIoqKiUUiIiIiIiIiIiIiIiIiioqJRSIiIiIiIiIiIiIiIiKKiolFIiIiIiIiIiIiIiIiIoqKiUUiIiIiIiIiIiIiIiIiioqJRSIiIiIiIiIiIiIiIiKKiolFIuqxZDIZ3nnnnXQvg4iIiLIUYxEiIiJKJ8YiRESUDkwsEmUpmUwW8c+iRYtStpYTTzzR87parRaDBw/GE088EXW/vXv34vTTT0/BComIiEhqjEWIiIgonRiLEBERJUaZ7gUQUXrs3bvX8/Xrr7+Ou+66C5s3b/Y8ZjQaPV8LggCn0wmlMnn/y7j66qtxzz33oK2tDS+++CLmzp2LnJwczJgxI2hbm80GtVqN4uLipK2HiIiIkouxCBEREaUTYxEiIqLEsGKRKEsVFxd7/lgsFshkMs/3mzZtgslkwgcffIBRo0ZBo9FgxYoVuOyyyzBt2jS/49x444048cQTPd+7XC4sWbIE1dXV0Ol0GDFiBP72t79FXY9er0dxcTFqamqwaNEi9OvXD++++y4A8c6966+/HjfeeCPy8/MxZcoUAMEtP3bt2oUZM2YgNzcXBoMBo0ePxldffeV5/u9//zvq6uqg1WpRU1ODu+++Gw6HI/GTSERERAljLMJYhIiIKJ0YizAWISKixLBikYjCWrBgAR5++GHU1NQgJycnpn2WLFmCl156CX/+85/Rr18/fPbZZ7jkkktQUFCAiRMnxvzaOp0ONpvN8/0LL7yAOXPmYOXKlSG3b2lpwcSJE1FWVoZ3330XxcXFWLVqFVwuFwDg888/x6xZs/DHP/4Rxx9/PH766Sdcc801AICFCxfGvC4iIiJKHcYiRERElE6MRYiIiIIxsUhEYd1zzz045ZRTYt6+s7MT999/Pz7++GPU19cDAGpqarBixQo89dRTMQXQTqcTr776Kr7//ntPgAsA/fr1w0MPPRR2v1deeQUHDx7EN998g9zcXABA3759Pc/ffffdWLBgAWbPnu1Z1+LFi3HLLbcwgCYiIspQjEWIiIgonRiLEBERBWNikYjCGj16dFzbb9myBW1tbUFBt81mwzHHHBNx3yeeeALPPvssbDYbFAoF5s2bhzlz5nieHzVqVMT916xZg2OOOcYTPAdau3YtVq5cifvuu8/zmNPpREdHB9ra2qDX66O9PSIiIkoxxiJERESUToxFiIiIgjGxSERhGQwGv+/lcjkEQfB7zG63e75uaWkBACxduhRlZWV+22k0moivdfHFF+P222+HTqdDSUkJ5HL/EbCBawmk0+kiPt/S0oK7774b5557btBzWq024r5ERESUHoxFiIiIKJ0YixAREQVjYpGIYlZQUID169f7PbZmzRqoVCoAwODBg6HRaLBjx4645gYAgMVi8WvREa/hw4fj2WefRUNDQ8i78+rq6rB58+ZuvQYRERGlF2MRIiIiSifGIkREREwsElEcJk2ahN/+9rd48cUXUV9fj5deegnr16/3tPMwmUy4+eabMW/ePLhcLhx33HE4evQoVq5cCbPZ7OnjnwwzZszA/fffj2nTpmHJkiUoKSnB6tWrUVpaivr6etx1110466yzUFFRgfPPPx9yuRxr167F+vXrce+99yZtXURERCQdxiJERESUToxFiIiIAHn0TYiIRFOmTMGdd96JW265BWPGjEFzczNmzZrlt83ixYtx5513YsmSJRg0aBBOO+00LF26FNXV1Uldm1qtxocffojCwkKcccYZGDZsGB544AEoFArP2t977z18+OGHGDNmDMaPH48//OEPqKysTOq6iIiISDqMRYiIiCidGIsQEREBMiGwMTgRERERERERERERERERUQBWLBIRERERERERERERERFRVEwsEhEREREREREREREREVFUTCwSERERERERERERERERUVRMLBIRERERERERERERERFRVEwsEhEREREREREREREREVFUTCwSERERERERERERERERUVRMLBIRERERERERERERERFRVEwsEhEREREREREREREREVFUTCwSERERERERERERERERUVRMLBIRERERERERERERERFRVEwsEhEREREREREREREREVFU/w/BlSNUgXTkDAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "100%|██████████| 50/50 [07:53<00:00, 9.48s/it]\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAC7AAAAPgCAYAAACx8HFwAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzde1yb9f3//ycJp6TUHkhtqS2ms9qkY3O2urEik3bTuYkDKU6dWa1nP5s70jmZTuvHrd0J99H5c85NrYrFfaSUTTxuWhU7nSvqHC6pdRrTWqwGS0+EY/L7g2/yKYWEACEk8Ljfbr01XNfrel3vcEyu6/V+vVMCgUBAAAAAAAAAAAAAAAAAAAAAAACMMcN4DwAAAAAAAAAAAAAAAAAAAAAAMDlQwA4AAAAAAAAAAAAAAAAAAAAAiAsK2AEAAAAAAAAAAAAAAAAAAAAAcUEBOwAAAAAAAAAAAAAAAAAAAAAgLihgBwAAAAAAAAAAAAAAAAAAAADEBQXsAAAAAAAAAAAAAAAAAAAAAIC4oIAdAAAAAAAAAAAAAAAAAAAAABAXFLADAAAAAAAAAAAAAAAAAAAAAOKCAnYAAAAAAAAAAAAAAAAAAAAAQFxQwA4AAAAAAAAAAAAAAAAAAAAAiIvU8R4AAAAAAAAAAAAAAAAAAAAAgPEXCATU3d0tv98/3kNBAjMYDEpLS1NKSsqIjqeAHQAAAAAAAAAAAAAAAAAAAJjEent75fV6deDAAXV3d4/3cJAE0tLSNHXqVFksFhmNxmEdmxIIBAJjNC4AAAAAAAAAAAAAAAAAAAAACay3t1c7d+5UZ2enpk2bpqysLBmNxhF318bEFggE1Nvbq4MHD2rfvn3KyMjQ/Pnzh1XETgE7AAAAAAAAACSoQ4cOafPmzXr66af1j3/8Qx9++KH27t0rk8kki8WiT33qUzr11FN13nnnae7cueM9XAAAAAAAAABAEtqzZ4/a2tqUm5srk8k03sNBEvH5fPJ4PJo+fbpmz54d9XEUsAMAAAAAAABAgunt7dWvf/1r/fznP5fX6x0y3mAw6Nxzz9VPf/pTHXfccXEYIQAAAAAAAABgIggEAvrPf/6jrKwszZkzZ7yHgyTU0tKiQ4cO6bjjjou6a3/qGI8JAAAAAAAAADAMbW1tOv/88/Xkk0+Gti1cuFBnnnmm7Ha7LBaLDh06pN27d+vZZ5/V888/r66uLv3xj39UR0eH6uvrx2/wAAAAAAAAAICk0t3dre7ubmVlZY33UJCkpk6dqra2NnV3dys9PT2qYyhgBwAAAAAAAIAE0dPTo6985StqbGyUJM2ePVu33367Vq5cOWjXkuuuu05er1e/+tWv9Jvf/CbewwUAAAAAAAAAJDm/3y9JMhqN4zwSJKvg907weykahrEaDAAAAAAAAABgeH70ox+Fitdzc3P10ksvqby8POKSmxaLRT/72c/08ssv6+Mf/3i8hgoAAAAAAAAAmEAiXYcGIhnJ9w4F7AAAAAAAAACQAHbv3q3bbrtNUt/F3gcffFBWqzXq4z/+8Y/rpz/96aD7fD6fbr/9dp1++unKyclRenq6srOzdcopp+j666/X7t27Bz2ura1NmZmZSklJ0XHHHRfVOPbs2aO0tDSlpKQoLy8vbNy+fftUVVWlL3zhC5o7d64yMjI0c+ZMLV26VJWVlXrvvfcinmf16tVKSUlRSkqK3G63JKm+vl5lZWU69thjlZGR0W+fJAUCAW3dulU33HCDTj/9dM2bN0+ZmZkymUyaN2+evvKVr+iee+5RV1dXVM9Vkh555BF95StfUU5OjjIzM5Wbm6vy8nI9/fTTkqRnn302NM61a9dGlW/VqlVauHChpk6dKrPZrAULFsjhcOivf/1r1OMCAAAAAAAAACBRpY73AAAAAAAAAAAA0h133KHOzk5J0plnnqlTTz01Jnn/8Y9/aOXKldq5c2e/7R999JE++ugjbdu2Tb/+9a/1m9/8Rpdcckm/mOnTp+vss89WbW2t3n77bb3wwgtDjqumpkY9PT2SpFWrVg0a8/DDD+uqq67SRx991G97V1eX9u7dq1deeUX/8z//ozvvvFMXXXTRkM+xq6tL5eXl2rRpU8S4Sy+9VPfee++g+9577z299957euSRR/TLX/5Sf/7zn3X88ceHzdXT06PVq1frwQcf7Ld9586d2rlzpzZt2qSKigoVFxcPOf7gceedd55efPHFAfvcbrfcbrcefPBBrVy5Uvfff7/MZnNUeQEAAAAAAAAASDQUsAMAAAAAAABAAnjiiSdCj6Mp2o7G66+/ruXLl+vQoUOSpMWLF+vrX/+6FixYoI8++kj19fV66qmn1N7erksvvVSBQECXXnppvxwXXXSRamtrJUkPPPDAkAXs999/vyTJYDDI4XAM2P/73/9eV155pQKBgNLT01VSUqLPfe5zmj17tg4ePKgXXnhBGzduVEdHh1avXq309HRdcMEFEc/53e9+V48//riOPfZYrVq1SjabTR0dHXr55ZeVkZERimtvb1d6erpOPfVUfeYzn9HChQt11FFHqbOzU2+99Zbq6ur0+uuvy+Vy6Utf+pJeeeUVHXXUUYOe86qrrgoVr6empsrhcOi0005TRkaGXn/9dd19992qqqoaMHFgMDt37tRnPvMZtbS0SJJOOukklZaWauHChTIYDNq+fbvuv/9+vf3229q0aZMOHTqkxx57jCV9AQAAAAAAAABJKSUQCATGexAAAAAAAAAAMJkdOnRIRx11lPx+v6S+guZ58+aNKqff79eJJ56o5uZmSdJll12m3/72t0pN7d/X5O6779bll1+uQCAgs9msN954Q1arNbS/p6dHxxxzjD744ANNnz5d77//fr+i8MO98cYbysvLkySdfvrpeuqpp/rtf/3113XKKaeoq6tLxx9/vP785z/LZrMNyON0OvWFL3xBu3fv1tSpU+V2uzVz5sx+MatXr9Z9990X+ri0tFQ1NTXKzMwM+zl5/vnn9YlPfEIzZswYdH8gENDPf/5zVVZWSpJuvvlmXX/99QPitmzZohUrVkiSjjrqKD311FP6zGc+0y/G6/XqC1/4gv75z3+Gtt14441au3btgHMWFBToxRdflNFo1G9/+1tdfvnlA87Z2dmp1atX66GHHpLUNxHgsssuC/tcAQAAAAAAACAaHR0deuedd7RgwYKI11cl6b02n/Ye6orTyMbOjCnpOma6abyHEVNWq1Xvvvuu7r33Xq1evTrqfbEwnO+hIDqwAwAAAAAAAMA4e//990PF6xkZGaMuXpekRx99NFS8/slPflJ33nmnjEbjgLhLL71U27Zt05133qn29nbdeuut+vWvfx3an5qaqgsuuEC33nqr2tra9Oc//1nnnnvuoOd84IEHQo9XrVo1YP/atWvV1dWlzMxMPfbYY1q4cOGgeex2uzZs2KAzzjhDBw4c0O9//3v98Ic/DPtcjznmGD3wwANDXhj/3Oc+F3F/SkqKrr32Wj366KN64YUXdN999w1awH745+eXv/zlgOJ1SbJYLHrooYf0iU98Qj09PWHP+cgjj+jFF1+U1Pf5Gax4Xer7vrjvvvv00ksvye12q6qqigJ2AAAAAAAAAHHzXptPK371rDp7/OM9lFHLSDXomTVFY1LEHggEVFtbq40bN+qVV17RBx98IKPRqNmzZysnJ0ef/vSnVVhYqM9//vNhVwCNp2DTldWrV/drbjPWDHE7EwAAAAAAAABgUK2traHH06dPj0nOurq60OOKiopBi9eDrr32WqWkpAw4Luiiiy4KPT68SP1wfr9fDz74oCQpKytLZWVl/fa3tbXpT3/6kyTpnHPOCVu8HnT66acrJydHkvTkk09GjL3kkkuUlZUVMWY4Tj31VEnSW2+91e9rI/V1knniiSck9X2tInWrsdls+tKXvhTxXMEu8hkZGfr2t78dMTY9PV0XXHCBJMnlcsnj8USMBwAAAAAAAIBY2Xuoa0IUr0tSZ49/TDrJt7W1afny5frqV7+q+vp6eTwe9fT0KCMjQx6PR1u3btWvf/1rlZWVDXotfqwcd9xxWrRokaZNmzZg30033aSbbrpJbrc7buOR6MAOAAAAAAAAAOMuEAjEPOff//730OMzzjgjYuyxxx4rm80mp9Mpj8ejlpaWUPG4JJ100knKy8tTc3OznnjiCX344YeaNWtWvxxbtmzRrl27JEkrV66U2Wzut3/r1q39uszX19cP+RymTp2qlpYW/fvf/44YV1hYOGSuoJ6eHtXV1am+vl6vvfaadu/erQMHDoTGdqRdu3YpOzs79PE///lPdXd3S5IKCgqUnp4e8XzLly/XI488Enb/888/L0maPXu2nnnmmSHHv3fv3tDjf//738rNzR3yGAAAAAAAAADA2Fu1apWee+45GY1Gffe739WVV16p4447TgaDQT09Pfr3v/+tJ554Qhs3bozruJ5++um4ni8aFLADAAAAAAAAwDg7vEC6ra0tJjlbWlok9RWBz5kzZ8j4E044QU6nM3Ts4QXsUt+F92uuuUbd3d2qqakZ0C388M7sq1atGpD/8O4tGzZs0IYNG6J9Kvroo48i7p83b15UebZv366ysrIhC+IPt3///n4f7969O/T4uOOOG/L4j33sY2H3HTp0SF6vV5Lk8Xh0zjnnRD0uaejPCwAAAAAAAAAgPnbs2BFqZvKTn/xE1157bb/9qamp+uQnP6lPfvKTuuaaa+Tz+cZjmAnDMN4DAAAAAAAAAIDJbs6cOTIY+i7XdnZ2hjqZj8aBAwckSVOmTIkqPisra8Cxh3M4HDIajZL6F6tLUnt7uzZt2iRJys3N1fLlywccP5rC/GDH83BMJtOQOfbt26cVK1aEitfnzp2ryy+/XLfccosefPBBbdq0SZs3b9bmzZt13nnnhY7r7e3tl+fQoUOhx0d2mR9MpM//aCcrdHXFfolbAAAAAAAAAMDwvfbaa6HHJSUlQ8YfeV3barUqJSVFGzZs0IEDB1RZWalFixbJZDLJYrGotLS038qrw3F47qDVq1crJSUl9PHy5cuVkpIS+me1Wkd0rmjRgR0AAAAAAAAAxllWVpZOOukkNTU1SZK2bt3ar4h6JKZOnaq2trZ+BdeRHDx4sN+xR8rJydEXvvAFPfnkk9q2bZucTqfsdrskafPmzaHjHQ5Hv4veQYcXyN9222361re+NaznM1q33357qHv6hRdeqHvuuUfp6emDxm7dujVsnsML0tvb24c8b6TP/+GfkyVLloS+/gAAAAAAAACA5LVr167Q9fPh2rt3r0455RRt375d6enpyszMVGtrq/70pz/pkUce0e9//3tdcsklox7jtGnTNHv2bO3Zs0eSNGPGjH7XzGfNmjXqc0RCB3YAAAAAAAAASABf/OIXQ4/vu+++UefLycmR1NdNPXgBOpI333wz9Hju3LmDxqxatSr0+P777x/08eExh5s3b17o8c6dO4ccT6w99dRTkvqWaf3Nb34Ttnhdkt55552w+w7/3PznP/8Z8rxvv/122H3Tpk0LFbHHous+AAAAAAAAAGB8nHLKKaHmLhUVFf2uuQ/HTTfdpA8++ED/+7//q0OHDmnfvn3697//rdNOO01+v19XXnmlXnnllVGP99Zbb9X7778f+riurk7vv/9+6N8//vGPUZ8jEgrYAQAAAAAAACABfOMb31BGRoYk6YknnojYBTwan/nMZ0KPg8Xb4Xg8HrlcLklSbm6u5syZM2jcOeeco6OOOkqS9OCDDyoQCKilpUVPP/20JOnTn/60Fi1aNOixhYWFoYv3TzzxxPCeTAwEL8RnZ2drxowZYeM6Ojr07LPPht1/4oknKi0tTZL0t7/9TV1dXRHPu2XLloj7TzvtNEnSBx98QAd2AAAAAAAAAEhSVqtVl112mSTpX//6l2w2m5YsWaJvfvObuueee9Tc3KxAIDBknn379unhhx/Wueeeq9TUVEmS3W7X448/ruOPP149PT368Y9/PKbPJR4oYAcAAAAAAACABHDMMcfo6quvliQFAgF97Wtf07vvvhv18U6nU9ddd13o45UrV4YeV1VVqbe3N+yxP//5z0MXzg8/7kgmk0nl5eWS+rqob9myRRs3bgzlDtd9XZKOPvpofelLX5LUd/G+pqYmimcVO1OmTJHUVyi+f//+sHG33nqrWltbw+7PzMwMdcvfu3evNmzYEDbW5XLp8ccfjziuiy66KPT4+uuvj+oGBgAAAAAAAAAg8dxxxx368Y9/rClTpigQCOjVV1/VHXfcoUsvvVSf+MQnNGfOHH3/+9+PuGpqQUGBPv/5zw/YbjKZ9IMf/EBSX5OYffv2jdnziAcK2AEAAAAAAAAgQaxfv14FBQWS+rqi5+fna9OmTRGLmj/66CNdf/31OuWUU/TGG2+Etn/5y1/WJz7xCUnSP//5T/3Xf/2Xenp6Bhy/YcMG3XnnnZIks9ms73znOxHHeHiR+v3336/7779fkpSenq7zzz8/4rE//elPlZ6eLkm67LLLhixi/+ijj3TLLbfor3/9a8S4aJxyyimS+iYHHF7of7iampqoOtd873vfCz3+wQ9+oL///e8DYrxer84///xBP+eHKy8vD3XLf+KJJ7Rq1SodPHgwbHxvb6+eeOIJ/eQnPxlynAAAAAAAAACA+ElNTdV///d/67333tMDDzygyy67TCeeeGLouvgHH3ygX//618rLy9PLL788aI4VK1aEzR/c5/f79corr8T+CcRR6ngPAAAAAAAAAADQJy0tTX/+85913nnn6a9//avef/99lZeX6/jjj9eZZ56pxYsXKzs7W4cOHdLu3bvV2NioZ599Vh0dHQNyGQwGVVdXa9myZTp06JB+//vf68UXX9TXv/51Wa1WffTRR/rTn/6kJ554InTMbbfdpmOPPTbiGD/3uc/JarXK7XarpqZGXV1dkvoK5rOzsyMe+6lPfUq/+93vdOmll6q9vV1f+9rX9Itf/EJnn322jj/+eJlMJu3bt09vvfWWXn75ZT3//PPq6enRAw88MILPZn9XX3217rnnHvX09Oj222/XK6+8ovLych1zzDHas2eP/vSnP+npp59WVlaWvvKVr2jTpk1hc61YsUKXXnqp7r77bu3fv1+FhYVyOBz63Oc+p4yMDL3++uu6++679eGHH+qrX/2q/vd//1dS39fkSCkpKdq0aZM++9nPaufOnaqurtajjz6qc889V0uXLtXMmTPV0dGh3bt365///Kf+8pe/6MMPP9TnP/95XX/99aP+vAAAAAAAAAAAYmvatGlyOBxyOBySpI6ODr3wwgu67bbb9Mgjj8jr9WrlypXasWOHMjMz+x17zDHHhM17+L4PPvhgbAYfJxSwAwAAAAAAAEACmTlzpp544gn96le/0i9/+Uu1trZqx44d2rFjR9hjjEajLrjgAt188839tn/yk5/Uli1bVFZWpl27dqm5uVk//OEPBxxvNpt122236dJLLx1yfCkpKfr617+um2++OVS8LvXvzB7J6tWrlZOTo0suuUS7d+/Wa6+9ptdeey1sfEZGhiwWS1S5I/nEJz6h3/3ud7ryyivV09Ojv/3tb/rb3/7WLyY7O1sbN27U3/72t4gF7JJ05513yufzaePGjeru7ta9996re++9t19MRUWFzjzzzFAB+9SpUwfNdcwxx2jbtm1avXq1Hn/8ce3du1d33XVXxPPPmzdvqKcMAAAAAAAAAEgAmZmZ+sIXvqAvfOELWr16te677z7t2rVLTzzxhEpLS8d7eONiYLsXAAAAAAAAAMC4MhqN+uEPfyi326377rtPq1at0uLFi2WxWJSamqqjjjpKxx13nMrKyvQ///M/2rVrlx544AFZrdYBuU455RS9+eabuu222/T5z39es2fPVlpammbMmKGlS5fqRz/6kXbs2BFV8XrQkcXq2dnZOuuss6I+/otf/KLefvtt3XPPPSovL9eCBQuUlZWl1NRUzZgxQyeddJJWr16t+++/X++//77OPPPMqHNHcskll+jvf/+7LrzwQs2bN09paWmaOXOmPvWpT+nHP/6xXn/9dZ1xxhlR5UpNTdWDDz6oP//5zyouLtbRRx+t9PR0zZs3TytXrtRf//pX/epXv1Jra2vomJkzZ4bNd/TRR+uxxx7Tiy++qKuvvlqf+tSnlJ2dLaPRqClTpui4445TcXGxfvazn6m5uVkbNmwY7acDAAAAAAAAABBnV1xxRejx9u3bB+x/7733wh57+L6jjz46tgOLMzqwAwAAAAAAAECCysrK0qpVq6Lubh6OyWTSt771LX3rW9+KybgWLlyoQCAwqhwZGRm6+OKLdfHFF4/o+A0bNoyoiHvJkiWqrq6OGLN27VqtXbs2qnxnn322zj777LD7X3755dDjE088cch8+fn5ys/Pj+rcAAAAAAAAAIDkkpWVFXqckZExYP+WLVvCHhvcZzAYdNJJJ8VkPCkpKQoEAqO+5j9cdGAHAAAAAAAAAGAM7Nu3Tw888IAkadasWcrLyxvnEQEAAAAAAAAAxsI777yjN998c8i4++67L/R4yZIlA/a/8MILevbZZwds7+joUFVVlaS+VU6nT58+4rEe7qijjpIktbW1xSRftChgBwAAAAAAAABgmN555x29++67Yfe3tbXp3HPP1YcffihJuuyyy5SayqKoAAAAAAAAADARvfHGG7Lb7TrrrLN0//33y+12h/Z1d3fr1Vdf1cUXX6xbbrlFkvTpT39ap5566oA806ZN08qVK1VbW6uenh5Jksvl0llnnSWXyyWj0aj//u//jtm4g41XHnzwQbW3t8cs71C4Wg4AAAAAAAAAwDA1NTXp/PPPV0FBgU477TQtXLhQU6ZM0d69e9XU1KSHHnoo1LFm4cKFuu6668Z3wAAAAAAAAACAMZOWlia/36/HHntMjz32mCQpPT1dWVlZ2rt3rwKBQCh2yZIl2rx5swyGgX3Ib7zxRv3ud7/Tueeeq4yMDGVmZmrfvn2SpJSUFP32t7/VySefHLNxX3XVVdq6das2bdqkP//5zzr66KOVmpqqefPm6YUXXojZeY5EATsAAAAAAAAAACPQ29ur559/Xs8//3zYmJNOOkl/+tOfNGXKlDiODAAAAAAAAAAQT1/84he1Y8cOPfbYY3rhhRfU3NysXbt2qa2tTWazWXPnztVJJ52ksrIynXvuuYMWr0vSjBkz9PLLL2v9+vXatGmTdu7cqZkzZ6qgoECVlZX67Gc/G9NxOxwOSdLvfvc7/etf/1JLS4v8fn9MzzGYlMDhJf0AAAAAAAAAAGBIBw4c0MMPP6y//OUveuONN+T1evXRRx/JaDTq6KOP1imnnKKVK1dGvBEBAAAAAAAAAOOto6ND77zzjhYsWKDMzMywce+1+bTiV8+qs2fsi5vHWkaqQc+sKdIx003jPZQQq9Wqd999V/fee69Wr1493sMZlmi/hw5HB/YE4Pf7tXv3bk2dOlUpKSnjPRwAAAAAAAAAQBTKy8tVXl4eMebgwYNxGg0AAAAAAACAySIQCOjAgQOaO3du3BpoHDPdpGfWFGnvoa64nG8szZiSnlDF65MRBewJYPfu3Zo/f/54DwMAAAAAAAAAAAAAAAAAAABJYufOnZo3b17cznfMdBOF34gJCtgTwNSpUyX1/SI56qijxnk0iCWbzaaWlhbl5OTI5XKN93AAAAAAAJiQeP8NAIgWfzMAANHg7wUAIFr8zQAAjJf9+/dr/vz5ofpTINlQwJ4AUlJSJElHHXUUBewTTHBpDoPBwNcWAAAAAIAxwvtvAEC0+JsBAIgGfy8AANHibwYAYLwF60+BZEMBOwAAAAAAAAAAAAAAAAAAAACME7fbPd5DiCvDeA8AAAAAAAAAAAAAAAAAAAAAADA5UMAOAAAAAAAAAAAAAAAAAAAAAIgLCtgBAAAAAAAAAAAAAAAAAAAAAHFBATsAAAAAAAAAAAAAAAAAAAAAIC4oYAcAAAAAAAAAAAAAAAAAAAAAxAUF7AAAAAAAAAAAAAAAAAAAAACAuKCAHQAAAAAAAAAAAAAAAAAAAAAQFxSwAwAAAAAAAAAAAAAAAAAAAADiggJ2AAAAAAAAAAAAAAAAAAAAAEBcUMAOAAAAAAAAAAAAAAAAAAAAAIgLCtgBAAAAAAAAAAAAAAAAAAAAAHFBATsAAAAAAAAAAAAAAAAAAAAAIC5Sx3sAAAAAAAAAAAAAAAAAAAAAABJc206pvXW8RzF65mxp+vzxHsWkRgE7AAAAAAAAAAAAAAAAAAAAgPDadkq3L5V6Osd7JKOXmiFd3TSmRey9vb3atGmTGhoa9NJLL+mDDz5Qe3u7pk+frhNOOEGFhYW68MILlZeXFzbHc889p40bN+r5559XS0uLOjo6NGvWLJ144ok6++yzddFFFykzMzPs8WvXrtVNN900YHt6erqys7P1iU98Queee64uuugipaWlxeR5R4sCdgAAAAAAAAAAAAAAAAAAAADhtbdOjOJ1qe95tLeOWQH7Sy+9pIsuukhvvvlmaFtaWpqmTp2q1tZWbd26VVu3btXPfvYzlZWVqaamRunp6aHY1tZWrVq1So899lhoW0ZGhjIzM7Vr1y7t2rVLjz76qH76059qw4YNWrFixZBjmj17dujxgQMH1NLSopaWFj311FP63e9+p6eeekozZsyI0WdgaIa4nQkAAAAAAAAAAAAAAAAAAAAAJqhHHnlERUVFevPNN5Wdna3169frzTffVFdXl1pbW9XV1aV//OMfuvbaa3XUUUeprq5O7e3toeP37Nmj/Px8PfbYYzIajfrWt76lN954Qx0dHWpra9PevXt17733av78+dq5c6fOPPNM1dfXDzmu999/P/Tv0KFDevfdd3X55ZdLkrZt26Zvf/vbY/UpGVRSF7B/8MEHamho0A033KAvfelLslgsSklJUUpKilavXj0m56ypqdEZZ5yhOXPmKDMzU8cee6wcDodefPHFMTkfAAAAAAAAAAAAAAAAAAAAgMS2Y8cOORwOdXZ2avHixXrttdd07bXX6vjjjw/FGI1GnXzyyVq/fr3eeecdlZSUhPYFAgF97Wtf01tvvaW0tDRt3rxZt912mxYvXhyKmT59ulavXq1XX31VJ554orq7u3XRRRfpP//5z7DGmpubq7vuuivUvf1///d/dfDgwVF+BqKXGrczjYHD29mPNZ/Pp/Ly8n7t+CXJ4/HowQcfVE1NjW644QbdeOONcRsTAAAAAAAAAAAAAAAAAAAAgPF3/fXXa//+/crMzNTmzZs1b968iPEzZ85UfX29AoGAJKmhoUHPPPOMJOm6667T2WefHfbY7OxsPfzww/rkJz+p/fv368Ybb1R1dfWwx3zmmWfqmWeeUVdXl3bs2KGTTjpp2DlGIqk7sB8uNzdXZ5xxxpjlv+SSS0LF68uXL1d9fb1efvll3X333TruuOPk9/u1du1a3XXXXWM2BgAAAAAAAAAAAAAAAAAAAACJZc+ePaqtrZUkXXjhhTrhhBOiPjYlJUWSdMcdd0iSpk6dqoqKiiGPO/7443XBBRdIkv74xz/K6/UOd9ih4nlJ6u3tHfbxI5XUBew33HCDHnnkEb3//vt699139bvf/W5MzvPMM8/ooYcekiSdffbZ+stf/qKSkhKdcsopuuSSS/TSSy8pNzdXkvTDH/5Qe/fuHZNxAAAAAAAAAAAAAAAAAAAAAEgsW7Zskd/vlySdc845wz6+p6dHjY2NkqQzzjhDWVlZUR1XVlYWOv75558f9nmffPJJSX1F9AsWLBj28SOV1AXsN910k4qLizV79uwxPc+vfvUrSVJqaqruuOMOGY3GfvstFot+/vOfS5La2tr0hz/8YUzHAwAAAAAAAAAAAAAAAAAAACAxvPHGG6HHJ5100rCPd7vdOnTo0LCP/9SnPhV6/Prrr0d9nMfj0RVXXKFnnnlGUl+D7+zs7KiPH63UuJ0pSR04cEBPP/20JOkLX/iC5s2bN2hcWVmZjjrqKO3fv1+bN2/WD37wg3gOEwAAAAAAAAAAAAAAAAAAAMA4aG1tDT2eOXPmqI4fTiG5xWIZNMeR5syZE3p84MABtbe3hz622Wy64447oj5nLCR1B/Z4+Mc//qGuri5J0mmnnRY2Lj09Xfn5+aFjuru74zI+AAAAAAAAAAAAAAAAAAAAAJNbZ2dn2H179uwJ/Tu8eH3VqlV69dVXdcwxx8RjiCEUsA/h3//+d+ixzWaLGBvc39PTox07dozpuAAAAAAAAAAAAAAAAAAAAACMv8O7pn/00UejOj5SJ/Ujeb3e0OMZM2aEjQsEAgoEAvL7/dq9e7fuvPNOTZ8+Xffff79uv/32YY93tFLjfsYks2vXrtDjefPmRYydP39+6PHOnTu1ePHiQeM6Ozv7zXLYv3//KEcJIBG0t7fL5XL12+bz+eR2u2W1WmUymfrts9lsMpvN8RzipMHXAgAAAAAAAAAAAAAAAAAQLx//+MdDj1999VXNnTt3WMcfe+yxmjJlig4dOqRXXnkl6uNeffXV0ONFixYNGZ+SkqKcnBxdeeWVWrRokVasWKFrrrlGS5Ys0YoVK4Y15tGggH0IBw4cCD3OysqKGDtlypTQ44MHD4aNW79+vW666abRDw5AQnG5XFq6dGnU8U1NTVqyZMkYjmjy4msBAAAAAAAAAAAAAAAAAIiX5cuXy2AwyO/3a/PmzTrrrLOGdXxaWpoKCwv1xBNP6KmnntKBAwc0derUIY+rq6sLPS4qKhrWOYuKivT1r39d999/v771rW/p9ddfl9FoHFaOkTLE5SxJrKOjI/Q4PT09YmxGRkbosc/nCxtXWVmpffv2hf7t3Llz9AMFMO5sNpuampr6/auurpYkVVdXD9hns9nGecQTF18LAAAAAAAAAAAAAAAAAEC8zJ49WytXrpQkbdy4UW+++WbUxwYCAUnSN77xDUl9TbRvueWWIY/bsWOHHnroIUnSqaeeqo997GPDHbZuuOEGGY1G/fvf/9Z999037ONHig7sQ8jMzAw97urqihjb2dkZemwymcLGZWRk9Ct2BzAxmM3msF287XY7Hb7jiK8FAAAAAAAAAAAAAAAAACCefvKTn+jxxx/XwYMHVVZWpieffFLHHHNM2Pi9e/fqsssu0913363p06eruLhYRUVFevbZZ/XTn/5US5cuVXFx8aDHtra26txzz1VHR4dSUlL0k5/8ZERjPu6443Teeedp48aNuvnmm/X1r39daWlpI8o1HHRgH8Lh7fcPHjwYMfbQoUOhx1lZWWM2JgAAAAAAAAAAAAAAAAAAAACJ44QTTtADDzyg9PR0vfHGG/rUpz6ln//853rrrbdCMb29vXr11Vd1ww036GMf+5jq6upC+1JSUlRTU6OPfexj6u7u1jnnnKPvfOc7cjqdoZh9+/bpvvvu05IlS/TPf/5TUl8X9dNOO23E466srFRKSorcbrfuvvvuEecZDgrYhzBv3rzQ4127dkWM3blzZ+jx/Pnzx2xMAAAAAAAAAAAAAAAAAAAAABJLaWmpnnnmGS1cuFBer1fXXnutjj/+eGVkZCg7O1vp6elasmSJbr75Zu3bt08XXHCBpkyZEjp+zpw5eumll3TGGWeop6dHt912mxYvXiyTyaQZM2Zo+vTpWr16tTwej9LS0vSLX/xCa9euHdWY8/Ly9JWvfEWS9NOf/lSdnZ2jyhcNCtiHsHjx4tBjl8sVMTa4PzU1Vccff/yYjgsAAAAAAAAAAAAAAAAAAACIC3O2lJox3qOIjdSMvuczRgoKCuRyuVRTU6MLL7xQCxcuVGZmpg4cOKCZM2fq1FNP1XXXXSen06mNGzcqLS2t3/GzZs3Sk08+qaefflqXXXaZFi1apPT0dLW1tYVi5s6dq+bmZv3gBz+IyZivu+46SX3Nvn/3u9/FJGckqWN+hiR3yimnKD09XV1dXXruued07bXXDhrX1dWll156KXTMkd9MAAAAAAAAAAAAAAAAAAAAQFKaPl+6uklqbx3vkYyeObvv+Ywho9Go888/X+eff/6Ic6xYsUIrVqzot+2Pf/yjLrjgAu3evVsPPPCAbr755rDHr127Nuru7KeccooCgcCIxzpcFLAPYerUqfr85z+vxx9/XH/961+1a9cuzZs3b0BcXV2d9u/fL0k655xz4j1MAAAAAAAAAAAAAIiovb19wKrTPp9PbrdbVqtVJpOp3z6bzSaz2RzPIQIAAAAAEtn0+WNe+I3IzjvvPLW0tOh73/uefvKTn2jq1Km65pprxntYwzbpC9g3bNigiy++WJJ04403DjrTYM2aNXr88cfV09Ojb37zm6qrq5PRaAzt93q9+uEPfyhJmj59ui677LK4jB0AAAAAAAAAAAAAouVyubR06dKo45uamrRkyZIxHBEAAAAAABiu7373u3rvvff0q1/9Sj/84Q+VlZWlb3zjG+M9rGFJ6gL2F154QW+99VboY6/XG3r81ltvacOGDf3iV69ePaLzrFixQueff74eeugh/fnPf9bpp5+u7373u5o7d67+9a9/6ac//ak8Ho8k6ec//7lmzJgxovMAABITHWkAAAAAAAAAABOBzWZTU1NTv21Op1MOh0PV1dWy2+0D4gEAAAAAQOL55S9/qV/+8pfjPYwRS+oC9j/84Q+67777Bt23detWbd26td+2kRawS9I999yj/fv367HHHtOWLVu0ZcuWfvsNBoN+/OMf64orrhjxOYDhoqgWiA860gAAAAAAAAAAJgKz2Rz2+rXdbufaNgAAAAAAiIukLmCPJ5PJpEcffVQbN27Uhg0b9M9//lNtbW2aPXu2CgsLdfXVV+uzn/3seA8TkwxFtUB80JEGAAAAAAAAAAAAAAAAAIDYSOoC9g0bNmjDhg2jyrF69ephdWb/2te+pq997WujOicQKxTVAvFBRxoAAAAAAAAAAAAAAAAAAGIjqQvYgcmOoloAAAAAAAAAAAAAAAAAAAAkE8N4DwAAAAAAAAAAAAAAAAAAAAAAMDnQgR0ARsjj8cjr9UaMcTqd/f6PxGKxKDc3NyZjAwAAAAAAAAAAAAAAAAAASEQUsAPACHg8Hi2y2dXha48q3uFwDBmTaTJru8tJETsAAAAAAAAAAAAAAAAAAJiwKGAHgBHwer3q8LUru7hCadnzw8YFerrUs2+PUqfNVkpqeti47tadam2oktfrpYAdAAAAAAAAAAAAAAAAAABMWBSwA8AopGXPV8achZGD5i2Oz2AAAAAAAAAAAAAAAAAAAAASHAXsAAAAAAAAwBDa29vlcrn6bfP5fHK73bJarTKZTKHtNptNZrM53kMEAAAAAAAAAAAAkgIF7AAAAAAAAMAQXC6Xli5dGlVsU1OTlixZMsYjAgAAAAAAAAAAAJITBewAAAAAAADAEGw2m5qamvptczqdcjgcqq6ult1u7xcLAAAAAAAAAAAAYHAUsANJxuPxyOv1ht3vdDr7/R+JxWJRbm5uzMYGjJehfi4kfjYAAAAAjI7ZbA7bVd1ut9NxHQAAAAAAAAAAAIgSBexAEvF4PFpks6vD1z5krMPhGDIm02TWdpeTQl0kteH8XEj8bMRbe3u7XC5Xv20+n09ut1tWq1Umk6nfPpvNJrPZHM8hAgAAAAAAAAAAAAAAAIhCy8EW7e3cO97DGLUZGTOUk5Uz3sOY1ChgB5KI1+tVh69d2cUVSsueP2hMoKdLPfv2KHXabKWkpofN1d26U60NVfJ6vRTpIqlF83Mh8bMxXlwul5YuXRp1fFNTU8TOlRTEAwAAAAAAAAAAAAAAAPHXcrBFxfXF6urtGu+hjFq6MV0NpQ1jWsTe29urTZs2qaGhQS+99JI++OADtbe3a/r06TrhhBNUWFioCy+8UHl5eWFzvP7663rwwQe1ZcsWvfvuu9q7d69MJpOOOeYYnXLKKSorK9OXv/xlpaWl9TuuqKhIzz333IB8ZrNZxxxzjJYtW6arrrpK+fn5MX/e0aKAHUhCadnzlTFnYfiAeYvjN5hJyufzSeordo6FYJ5gXgzfkD8XEj8b48Bms6mpqanfNqfTKYfDoerqatnt9gHxkcS6IB4AAAAAAAAAJjKPxyOv1xsxxul09vs/EovFQvMXAAAAAJik9nbunRDF65LU1dulvZ17x6yA/aWXXtJFF12kN998M7QtLS1NU6dOVWtrq7Zu3aqtW7fqZz/7mcrKylRTU6P09P9rynrgwAFdddVVqqmpUSAQkCSlpKRo2rRp8vl8cjqdcjqduv/++3XcccfpwQcf1Gc+85kB40hLS9PMmTNDH3u9Xu3YsUM7duzQ/fffrxtvvFE33njjmHwOhkIBOwCMgNvtliS1NlTFPG9BQUFMcwLjyWw2hy0gt9vtwy4uj3VBPAAAAAAAAABMVB6PR4tsdnX42qOKdzgcQ8Zkmsza7nJSxA4AAAAAQBiPPPKIzj33XHV2dio7O1tr1qzRypUrdfzxx0vq68z+6quvatOmTbrjjjtUV1en9vb2UAH73r17VVhYqDfeeEMpKSk6//zz9V//9V/Kz88PxezevVuPP/64brvtNr3++ut68cUXBy1gX7ZsmZ599tnQx11dXXruuef0jW98Q2+99ZbWrl2rk08+WWedddbYf2KOQAE7AIyA1WqVJGUXVygte/6o83W37lRrQ1UoL4DBxbogHgAAAAAAAAAmKq/Xqw5f+5D3MgI9XerZt0ep02YrJTU9bFzwXobX66WAHQAAAACAQezYsUMOh0OdnZ1avHixnnzySc2bN69fjNFo1Mknn6yTTz5ZP/jBD3TJJZf023/hhRfqjTfeUGpqqjZu3Khzzz13wHnmzp2rSy+9VJdcconuvPNOpaSkRDW+9PR0nX766frTn/6kk046SV1dXbr99tspYAeAZGEymSRJadnzlTFnYczzAkCy6e3tVWNjo1paWpSTk6PCwkIZjcbxHhYAAAAAAAAw6UV1L2Pe4vgMBgAAAACACez666/X/v37lZmZqc2bNw8oXj/SzJkzVV9fr0AgIEl6/PHH9fjjj0uSbrjhhkGL1w+XkpKi//qv/5Lf7x/WOBcvXqylS5fqxRdf1D/+8Y9hHRsrFLADAABgVOrq6lRRUSG32x3aZrVaVVVVpbKysvEbGAAAAAAAABJCe3u7XC5Xv20+n09ut1tWq3VAcxebzSaz2RzPIQIAAAAAAIzKnj17VFtbK6mvi/oJJ5wQ9bHBDuq33367JGnatGn6/ve/H/XxBoNhGCPtEyyu379//7CPjQUK2AEAADBidXV1Ki8vV3FxsWpqapSXl6fm5matW7dO5eXlqq2tpYgdAAAAAABgknO5XFq6dGnU8U1NTVqyZMkYjggAAAAAACC2tmzZEuqEfs455wz7+J6eHj3//POSpNNPP11TpkyJ6fiOFGxUOXPmzDE9TzgUsAMAkprP55MkdbfujEm+YJ5gXgDh9fb2qqKiQsXFxaqvrw/N5szPz1d9fb1KS0u1Zs0alZSUyGg0jvNoAQAAAAAAMF5sNpuampr6bXM6nXI4HKqurpbdbh8QDwAAAAAAkEzeeOON0OOTTjpp2Me/++67Onjw4IiPH46XX345dK0mPz9/TM8VDgXsAJCghrOk6mReTjU4E6y1oSrmeQsKCmKaE5hoGhsb5Xa7VVNTM2ApIoPBoMrKSi1btkyNjY0qKioan0ECAAAAAABg3JnN5rAd1e12O93WAQAAAABA0mttbQ09HklX89EeH43du3fr6aef1jXXXCO/36+UlBR997vfHZNzDYUCdgBIUMNZUnUyL6dqtVolSdnFFUrLnj/qfN2tO9XaUBXKCyC8lpYWSVJeXt6g+4Pbg3EAAAAAAAAA4ocVTAEAAAAAmNyee+45paSkDLovLS1Nt9xyy7g1paSAHQBGYaiLvoGeLvXs26PUabOVkpo+rDzDWVJ1Mi+nGuxEn5Y9XxlzFsY8L4DwcnJyJEnNzc2DLifU3NzcLw4AAAAAAABA/LCCKQAAAAAA8ZOdnR16/NFHH2nu3LmjOj4W0tLSQt3cU1JSZDKZNHfuXC1btkyXXXaZTjjhhJicZyQoYAeAEbBYLMo0mWN60TfTZJbFYgl9zJKqABJdYWGhrFar1q1bp/r6ehkMhtA+v9+v9evXa8GCBSosLBzHUQIAAAAAAACTEyuYAgAAAAAQPx//+MdDj1999dVhF7Afe+yxysrK0sGDB/Xqq6/GZEzLli3Ts88+G5NcsUYBOwCMQG5urra7nPJ6vRHjwnVMH4zFYlFubm4shwkAIe3t7XK5XP22+Xw+ud1uWa3WAasO2Gw2mc3miDmNRqOqqqpUXl6u0tJSVVZWKi8vT83NzVq/fr0aGhpUW1sro9EY8+cDAAAw1jweT1Tv+Q7/Pxze7wEAAGA8sIIpAAAAAADxs3z5chkMBvn9fm3evFlnnXXWsI5PTU3V5z73OT322GP6y1/+okOHDmnKlCljNNrxRwE7AIxQbm5u1AUIdEwHMN5cLpeWLl0adXxTU1NUv7fKyspUW1uriooKLVu2LLR9wYIFqq2tVVlZ2YjGCwAAMJ48Ho8W2ezq8LVHFe9wOCLuzzSZtd3lpIgdAAAAAAAAAABggpo9e7ZWrlyphx9+WBs3btQ111yjE044IapjA4GAUlJS9M1vflOPPfaY9u3bp1tuuUU//vGPozre7/fLYDCMZvhxRwE7gJCx6M4LJKuhOihG22lRotsiEoPNZlNTU1O/bZFWibDZbFHnLisrU0lJiRobG9XS0qKcnBwVFhbSeR0AACQtr9erDl+7sosrlJY9P2xcoKdLPfv2KHXabKWkpg8a0926U60NVfJ6vbwvAAAAAAAAAAAAmMB+8pOf6PHHH9fBgwdVVlamJ598Usccc0zY+L179+qyyy7T3XffrenTp+vLX/6yzjjjDD311FP67//+b9ntdpWXl0c851133aVAIKArr7wy1k9nTFHADiQRn88nqe/m92gFcwRzSmPXnRdIJr0H98qQMnQHxaBo4symTDld2ylWwbgym81hf2fHYpUIo9GooqKiUeUAAABINGnZ85UxZ2HkoHmL4zMYhDABHwAAAAAAAAAAJKITTjhBDzzwgM477zy98cYb+tSnPqU1a9Zo5cqVWriw755Tb2+vXn/9dW3evFm/+c1v1NbWprvvvjuUY+PGjSosLJTT6dRXv/pVXXDBBbrqqquUn5+vtLQ0SVJLS4ueeuop3XbbbXrllVf061//elye72hQwA4kEbfbLUlqbaiKac6CggJJY9udF0gW/s6D8gek6nNMss8Kv6yKrycgd5tf1ukGmVJTwsY5P/TLsdlHt0UAAAAAiBEm4AMAAAAAAAAAgERVWlqqZ555RqtXr9Zbb72la6+9Vtdee63S09OVlZWltrY2+f1+SVJKSoouuOACTZkyJXR8dna2XnrpJV1++eV6+OGHtXHjRm3cuFEpKSmaPn26fD6fOjo6QvF2u12FhYVxf56jRQE7kESsVqskDbmEeTSCS5gHc0pj350XSCb2WQYtyTFGjCkY3Y8hAAAAAGAEmIAPAACQOFgdBwAAAACAgQoKCuRyufTwww+roaFBf//73/XBBx/owIEDmjlzpmw2m0477TR9/etf16JFiwYcf9RRR+mPf/yjfvSjH6m6ulrPPvus3n33Xe3du1cmk0kLFizQpz/9aZ177rk688wzZTRGrnNLRBSwA0kkeJEvqiXMh5kTAAAAAAAgGTABHwAAIHGwOg4AAAAATB4zMmYo3Ziurt6u8R7KqKUb0zUjY8aYnsNoNOr888/X+eefP+IcJ554ok488cRhH/fss8+O+JzxQgE7AAAAho3OSgAAAAAAAEBy6G7dGXF/oKdLPfv2KHXabKWkpg8rD6vjAAAAAMDkkZOVo4bSBu3t3DveQxm1GRkzlJOVM97DmNQoYAcAAMCw0VkpcfX29qqxsVEtLS3KyclRYWFhUi4VlayGM7mDiR0AkLh8Pp+koQt9ohHMEcwJAAAAxIvFYlGmyazWhqqY5cw0mWWxWEIfszoOAAAAAEwuOVk5FH4jJihgBwAAwLDRWSkx1dXVqaKiQm63O7TNarWqqqpKZWVl4zewSWQ4kzuY2AEAiSv4tzSWhT5ut1sFBQUxywcAAAAMJTc3V9tdTnm93ohxka7rHclisSg3NzeWwwQAAAAAAJMQBewAACBheTyeqG6uHP5/JNxciR06KyWeuro6lZeXq7i4WDU1NcrLy1Nzc7PWrVun8vJy1dbWUsQeB8OZ3MHEDgBIXFarVZKUXVyhtOz5o8rV3bpTrQ1VoZwAAABAPOXm5kZ9TZTregAAAAAAIF4oYAcATAjdrTsj7g/0dKln3x6lTputlNT0sHE9+/bEemgYIY/HI7ttkdp9HVHFOxyOIWPMpkw5XdspYseE09vbq4qKChUXF6u+vl4Gg0GSlJ+fr/r6epWWlmrNmjUqKSmR0Wgc59FObEzuAICJwWQySZLSsucrY87CmOYEAAAAAAAAAAAAJjsK2AFgEmhvb5fL5eq3zefzye12y2q1DiiksNlsMpvN8RziiFksFmWazGptqBrvoUCx7ZjudDrV7utQ9Tkm2WcZwsb5egJyt/llnW6QKTUlfL4P/XJs9snr9VLAjgmnsbFRbrdbNTU1oeL1IIPBoMrKSi1btkyNjY0qKioan0ECAAAAAAAAAAAAwBjo7e1VY2OjWlpalJOTo8LCQhp7AUCCo4AdACYBl8ulpUuXRh3f1NSUNB1ic3Nztd3ljKpo2uFwqLq6Wna7PWzca6+9pksvvVROb29MxhfM4/P5YpIvkXk8Hi2y2dXha48qPpqO6ZJkn2XQkpzIbywL5keVCpiwWlpaJEl5eXmD7g9uD8YBAAAAAAAAAAAAwERQV1eniooKud3u0Dar1aqqqiqVlZWN38AAABFRwA4Ak4DNZlNTU1O/bZEKum02WzyHN2q5ublRd9S22+0Ri/ODXcEddR0xGVuQ2+1WQUGBpInbEd/r9arD167s4gqlZYevKA/0dKln3x6lTputlNT0sHG+t7dpX2P1WAwVmHBycnIkSc3NzcrPzx+wv7m5uV8cAAAAAAAAAAAAACS7uro6lZeXq7i4WDU1NcrLy1Nzc7PWrVun8vJy1dbWUsQOAAmKAnYgCXW37gy7L9rC0Eg5MPGYzeawRdtDFXRPNlarVZJUXZYpu2X0y0k5vb1y1HWE8koTuyO+JKVlz1fGnIWRg+YtHjIPv6eA6BUWFspqtWrdunWqr6+XwWAI7fP7/Vq/fr0WLFigwsLCcRwlAAAAAAAAAAAAAMRGb2+vKioqVFxc3O8eaX5+vurr61VaWqo1a9aopKRERuPo6z8AALFFATuQRCwWizJNZrU2VMUkX6bJLIvFEpNcwEQR7H5utxi1JCd2b2AO76o+0TviA4g/o9GoqqoqlZeXq7S0VJWVlaHuAuvXr1dDQ4Nqa2u5MAMAQIKYqKsyAQAAAAAAAEC8NDY2yu12q6ampl+DL0kyGAyqrKzUsmXL1NjYqKKiovEZJJBkAoHAeA8BSWok3zsUsANJJDc3V9tdTnm93rAxkYpgj2SxWJSbmxvrYQIYAh3xAYyFsrIy1dbWqqKiQsuWLQttX7BgAUvjAQAwQkOtChTNKmiD5ZjoqzIBAAAAAAAAwFhraWmRJOXl5Q26P7g9GAcgvOAkkN7e3nEeCZJV8HvnyAlFkVDADiSZ3NzcqIrOKYJNPh6PJ+LkBKlvgsLh/4fD5AQAmJzKyspUUlKixsZGtbS0KCcnR4WFhXReBwBgmMZ6BTRWZQIAAAAAAACA0cnJyZEkNTc3Kz8/f8D+5ubmfnEAwktLS1NaWpoOHjyorKys8R4OktCBAwdC30fRooAdwJhhSfToeTwe2W2L1O7riCre4XBE3G82Zcrp2k4ROwBMQkajkSXwAAAYpWhWQJOiXwXtyEnGrMoEAAAmulg2bJFo2gIAAABgoMLCQlmtVq1bt0719fX9uv76/X6tX79eCxYsUGFh4TiOEkgOKSkpmjp1qtra2jRt2rQBdX1AJD6fT/v379f06dOVkpIS9XEUsAMYMyyJHj2v16t2X4eqzzHJPiv8Mhq+noDcbX5ZpxtkSh38l73zQ78cm33yer1c0AcAAACAEYp2BTSJonMAAIDDeTweLbLZ1eFrjyp+qIYtUt+KNttdTq55AwAAAAgxGo2qqqpSeXm5SktLVVlZqby8PDU3N2v9+vVqaGhQbW0tq1UDUbJYLPL5fPJ4PDrqqKM0depUGY3GYRUkY/IIBALq7e3VgQMHtH//fmVkZPRbjTgaFLADGDMsiT589lkGLcmJ/MK5YH6cBgMMk8/nkyR1t+6MSb6efXv68vYEYpIPSCRHrlLCCiUAAAAAAGCi8Hq96vC1K7u4QmnZ4S9oB3q61LNvj1KnzVZKanrYuO7WnWptqKJpCwAAAIABysrKVFtbq4qKCi1btiy0fcGCBaqtrVVZWdk4jg5ILkajUfPnz5fX69WBAwfU1tY23kNCEkhLS9P06dNlsViGPWGIAnYAY4Yl0YHJxe12S5JaG6pim7fNz8QNTDjDWaVkMq9QAgAAAAAAklda9nxlzFkYOWje4vgMBgAAAMCEVVZWppKSEjU2NqqlpUU5OTkqLCyk8zowAkajUbNnz9bRRx+t7u5u+f3+8R4SEpjBYFBaWtqIu/RTwA4AAGLCarVK0pCdlaLle3ub9jVWyzrdMOpcSHxHdiSXJnZX8iNXKWGFEgAAAAAAgOhNtmtJAAAAACIzGo0qKioa72EAE0ZKSorS08OvlgbEAgXsAAAgJoI3haLqrBSF7tadfXlTRzZLD8llOB3JpeTvSh5ulRJWKAEAAAAAABjaZLuWBAAAAAAAMNFQwA4AY6S3t1fbtm2TJG3btk0nnngiyxMBQBhHdiSX6EoOAAAAAACAwXEtCQAAAAAAILlRwA4AMXL4kqXPPPOMbrnlFrW0tEiSrrzySq1du1bf//73tWLFCkksWQoAhwvXkVyiKzkAAAAAAAD641oSAAAAAABAcqOAHQBiZKglS1taWvSDH/wg9DFLlgIAAAAAMDSPxyOv1xsxxul09vs/EovFotzc3JiMDQAAAAAAAAAAAMNHATsAxIjNZtPLL7+sL37xi9q7d68KCwt14YUXKjU1VT09PXrwwQfV2NiomTNn6oknnmDJUgAAAAAAhuDxeLTIZleHrz2qeIfDMWRMpsms7S4nRewAAAAAAAAAAADjhAJ2AIgRs9ms/fv3a+/evTr11FP17LPPymAwhPZffvnl+tznPqetW7dq//79MpvN4zhaAACAia29vV0ul6vfNp/PJ7fbLavVKpPJ1G+fzWbj9RkAJCCv16sOX7uyiyuUlj0/bFygp0s9+/YoddpspaSmh43rbt2p1oYqeb1eCtgBAAAAAAAAAADGyYQoYH/33Xd122236dFHH9XOnTuVkZGh4447Tl/96lf1zW9+MyZFCO+8845uu+02/eUvf9G7774rv9+vuXPn6vTTT9c3v/lNffzjH4/BMwGQ7J599llJ0k033dSveF2SDAaD1q5dq9NPP13PPvusPv/5z4/DCIHkEejtliQ5vb0xyRfM4/P5YpIPAJDYXC6Xli5dGnV8U1OTlixZMoYjAgCMRlr2fGXMWRg5aN7i+AwGAAAAAAAAAAAAo5L0BeyPPPKIHA6H9u/fH9rW3t6ubdu2adu2bfrDH/6gRx99VAsXDnGDK4K77rpL3/rWt9TV1dVv+1tvvaW33npLd999t6qqqnT11VeP+BwAgNgZrOOq0+ns9//h6LiamHoPfiRJctR1xDSv2+1WQUFBTHMCABKPzWZTU1NTv21Op1MOh0PV1dWy2+0D4gEAAAAAoxdsINHdujMm+YJ5aEwBAAAAAAAwcSR1Afurr76q8847Tz6fT1lZWaqsrNTy5cvl8/n00EMP6fe//73efPNNnXXWWdq2bZumTp067HM89NBDuvLKKyVJ06ZNU0VFhVasWKGMjAy9+uqr+sUvfqG33npL3/72t3X00Ufrq1/9aqyfJoAkUlRUpJ/85Ce68cYbVVRU1K8Lu9/v10033RSKw9iJ1HHV4XAM2EbH1cRkzJopSaouy5TdYhx1Pqe3V466Dlmt1lHnAgAkPrPZHPbvu91u528/ACBksEnQPp9PbrdbVqtVJpOp3z4mQQMAEJnb7ZYktTZUxTwvjSkAAAAAAAAmhqQuYP/Od74jn8+n1NRUPfXUU/rsZz8b2rdixQodf/zxuuaaa/Tmm2+qqqpKa9euHVb+9vZ2fec735EkZWVl6YUXXlBeXl5o/8knn6zzzjtPp556qv71r3/p29/+tr785S8rKysrJs8PQPIpKirSrFmz9MILL6ikpEQ/+tGPlJeXp+bmZq1bt04vvPCCjj766AEF7MHOMU5v76jHEMwxmbvRDNZxdajiA8TOUJ2VAj1d6tm3R6nTZislNT1sXLADu91i1JKc0RewBx359QeSHQVXAAAAoxNpEvRgmAQNAEBkwQYS2cUVSsueP+p83a071dpQRWOKGBntCqYej0derzfiOSLlO5LFYlFubu6QcQAAAAAAYGJJ2gL2l19+WY2NjZKkSy+9tF/xelBFRYXuvfdeOZ1O3XrrrbruuuuUlpYW9Tkee+wxffDBB5L6iuUPL14POuqoo3TLLbfo9NNP1549e7RhwwZdffXVI3xWAJKd0WjUnXfeqZUrV+rpp59WQ0NDaF/wAu9vf/tbGY39i3GDHWkcdR0xG8tk7kYTruPqZP18xIvFYlGmyRzzzkoAIqPgCgAAYHQGmwTtdDrlcDhUXV0tu90+IB4AAIQXnEyflj1fGXMWxjwvRmc0K5h6PB7ZbYvU7ovuXsZg+Y5kNmXK6dpOETsAAAAAAJNM0haw19fXhx5ffPHFg8YYDAatWrVKlZWVamtr05YtW3TGGWdEfY5t27aFHn/pS18KG1dUVKTMzEx1dHSotraWAnZgkisrK9OmTZv0/e9/X++++25o+9FHH62qqiqVlZUNOCbYOaa6LFN2y+g6TTu9vXLUddCNBnGXm5ur7S5nVN13whWCDBYHIDIKrgAAAEYn3CRoSbLb7Uz+AwAAE8poVjD1er1q93Wo+hyT7LMMYc/h6wnI3eaXdbpBptSUsHHOD/1ybPbJ6/VSwA4AAAAAwCSTtAXsL7zwgiRpypQpETtOnnbaaaHHW7duHVYBe2tra+jx7Nmzw8alpqZq5syZ2r17t1588UX19PQoNTVpP7UAYqCsrEwlJSVqbGxUS0uLcnJyVFhYOKDzelDwgrDdYtSSnNEVsB+ZE4in3NzcqG80UAgCxAYFVwAAAAAAAIhWLFYwtc8yDHkvo2D+sIcGAAAAAAAmkaStsnY6nZKkhQsXRiwWP7wrQPCYaGVlZYUe79u3L2xcIBDQ/v37JUldXV1666236GwJQEajUUVFReM9DAAAAAAAAAAAgEH19vZG3YwHAAAAAAAgVpKygL2jo0Ner1eSNG/evIixM2bM0JQpU3To0CHt3LlzWOex2+2hx88991zYTu+vvvqqDh48GPrY4/FQwA4AQBJob2+Xy+Xqt22o5XLNZnM8hwgAAIAEMdhrx2CzhCObJvC6EQAAAMmgrq5OFRUVcrvdoW1Wq1VVVVUqKysbv4EBAAAAAIAJLykL2A8cOBB6fHiX9HCCBeyHF5lH40tf+pJSU1PV09OjW265RatWrZLFYukX4/f7dd1114Ud32A6OzvV2dkZ+jjYvR0AAMSXy+UKO0FtME1NTYMurwtg8vJ4PKHJteGEK248ksViUW5ubszGBgCIrUivHR0OR7+Ped0IAACARFdXV6fy8nIVFxerpqZGeXl5am5u1rp161ReXq7a2lqK2AEAAAAAwJhJygL2jo6O0OP09PQh4zMyMiT1dVQdjvnz5+uqq67S7bffrvfee08FBQX6xS9+oeXLlys9PV2vvfaa1q5dqyeffFLp6enq6uqK6jzr16/XTTfdNKyxAADiy/mhP+J+X09A7ja/rNMNMqWmjDgPxpfNZlNTU1O/bU6nUw6HQ9XV1f1WYwnGA0CQx+OR3bZI7b6OoYM1sLjxSGZTppyu7RSxA0CCGuy1Y7jVe4583RjLCU8Sk54AAAAwOr29vaqoqFBxcbHq6+tlMBgkSfn5+aqvr1dpaanWrFmjkpISGY3GcR4tAAAAAACYiJKygD0zMzP0OFg0Hkmw2/nhNxKj9atf/Upvv/22HnvsMb355psqLS0dEHPyySfrlFNO0W9/+1tJ0tSpUyPmrKys1Pe///3Qx/v379f8+fOHPTYAQOxZLBaZTZlybB7epKdIzKbMASt4IDGYzeawnTHtdntSd82kSAoYe16vV+2+DlWfY5J9liFsXDSTnpwf+uXY7JPX6+VnDQASVLjXjgUFBRGPi/WEJ2lyTXoKNorobt0Zk3zBPMNtdAEAADCRNDY2yu12q6amJlS8HmQwGFRZWally5apsbFRRUVF4zNIAAAAAAAwoSVlAfvhBeIHDx4cMv7QoUOSpKysrGGfKyMjQ4888ojuuece/X//3/+nf/7znwoEApKko48+Wpdffrmuv/56fe973wsdM2PGjCFzBrvCA+OJ4kZgoNzcXDld26P62QjXpftI/Gwg3jwejxbZ7OrwtUcVH02RVKbJrO0uJ9/LwCDsswxakhO5G1kB81UBYNKK5YQnafJNenK73ZKk1oaqmOcdavIBAAAYnaEmoAV6utSzb49Sp81WSmr4FZdjNZEN/6elpUWSlJeXN+j+4PZgHAAAAPq0t7fL5XL12xZulUapb6VGs9kczyECAJA0krKAPTMzU9nZ2WptbdWuXbsixu7duzdUwD7SLucGg0GXXXaZLrvsMh04cEB79uyR2WzWnDlzQl0JduzYEYpfvHjxiM4DxBMd4IDwcnNzo/4+TvYu3ZiYvF6vOnztyi6uUFp2+Nc/w7lJ2NpQNWmKpAAAAMYCE55Gxmq1StKQr22jFXxtG8wLAABiz2KxKNNkjukEtEyTmVUuYygnJ0eS1NzcrPz8/AH7m5ub+8UBAACgj8vl0tKlS6OOb2pqop4AAIAwkrKAXeorEm9sbNRbb72lnp4epaYO/lQOn/U2VIfcaEydOrVfB3hJ6u3t1WuvvSZJ+tjHPsYFNCQFOsABwMSXlj1fGXMWRg6ax8Q7AAAAJK5g16qoXtuOIC8AAIi93NxcbXc5WeUygRUWFspqtWrdunWqr68PNeySJL/fr/Xr12vBggUqLCwcx1ECAMYbnaaBgWw2m5qamvpti/S61mazxXN4AAAklaQtYD/11FPV2NioQ4cOqampSZ/5zGcGjXvuuedCj8dqWeAtW7aotbVVknTeeeeNyTmAsUIHOAAAAAAAAAAAEEuscpnYjEajqqqqVF5ertLSUlVWViovL0/Nzc1av369GhoaVFtbK6Mx8v0jAMDERqdpYCCz2Rz2+5zXtQAADE/SFrCXlpZq/fr1kqR777130AJ2v9+v+++/X5I0ffp0LV++PObjCAQCWrt2rSQpLS1Nl19+eczPAQDAZOb80B9x/3BWigAAAAAAAAAASGVlZaqtrVVFRYWWLVsW2r5gwQLV1taqrKxsHEcHAEgEdJoGAADAWEraAvZPf/rTKiwsVGNjo+6++25ddNFF+uxnP9svpqqqSk6nU5L0ne98R2lpaf32P/vss6Gi9osuukgbNmwYcJ7W1lZlZWUpIyNjwL7e3l59+9vf1tatWyVJlZWVWrBgQSyeHgAAk57FYpHZlCnHZl/McppNmbJYLDHLBwAAAAAAAADJqqysTCUlJWpsbFRLS4tycnJUWFhI53UA46q9vV0ul6vfNp/PJ7fbLavVKpPJ1G+fzWaT2WyO5xAnDTpNAwAAYCwlbQG7JN16660qKCiQz+fTGWecoR/96Edavny5fD6fHnroId11112SpBNOOEEVFRUjOseWLVt09dVX6/zzz9dpp52m3NxcdXR06PXXX9ddd92l1157TZL0pS99Sdddd12snhoAAJNebm6unK7t8nq9EeMidXo4ksViiXrpYgAAAAAAAACY6IxGo4qKisZ7GAAQ4nK5tHTp0qjjm5qaKKQGhomJIgAAIBEkdQH7SSedpD/+8Y9yOBzav3+/fvSjHw2IOeGEE/Too49q6tSpIz7Pnj17dOutt+rWW28dsC8lJUUXX3yx7rjjDqWnp4/4HAAgSc4P/RH3+3oCcrf5ZZ1ukCk1ZUQ5gGSSm5sbdcE5nR7GXnBlm6H2DxUnMZkAAAAAAAAAAAAMZLPZ1NTU1G9bpGZGNpstbC6KdIHBMVEEAAAkgqQuYJeks88+W6+//rpuvfVWPfroo9q1a5fS09O1cOFCnXvuubr66qtH9QajsLBQv/zlL/XMM8/I5XJpz549MhgMmjt3rpYvX66LL75Yn/nMZ2L4jABMRhaLRWZTphybfTHJZzZlymKxxCQXAPQe3CtDiuRwOKKKjybObMqU07WdInaMO25gAAAAAACQ+DweT1QrNR7+fzg0VgCAxGY2m8MWyg63mRFFuomF6/GJI5YTRQAAAEYq6QvYJenYY4/VLbfcoltuuWVYxxUVFSkQCESMmT17ttasWaM1a9aMZogAEFFubq6cru1RXYAP96bxcFyABxBL/s6D8gek6nNMss8yhI2LZpUIqW+lCMdmn7xeL7+rMO64gQEAGGs+X99EZae3Nyb5gnmCeQEAACY6j8cju22R2n0dUcUP1VyBxgojx2tbAMmGIt3EwvX4xBHLiSIYHSZ2AAAmswlRwA4AE0Fubm7UF8yHetPo8Xj0yiuvRMwRbTcaiYJ4AH3sswxakmOMGFMwP06DAWKEGxgAgLHmdrslSY666AquhpO3oKAgpjkBAAASkdfrVbuvIybNFWisMDrxeG1LEReAWKJIN7FwPR4YiIkdAIDJjAJ2AJhgPB6PFtkWqSNG3WgkKdOUqe10pAGASWGy3STkBgYAYKxZrVZJUnVZpuyWyJMBo+H09spR1xHKCwAAMFnQXGH8xeO1LUVcmAgm2zVWIFpcjwcGYmIHAGAyo4AdACYYr9erDl+H5l0xTxlzM8LG+bv86vZ2K82SJkN6+K41nbs7teuuXXSkAYBJgpuEAADEVrAwwW4xDllwNZK8AAAAQLzE47UtRVyYCLjGCow9JopgomBix8jxewAAkh8F7AAwQWXMzZDJOkRBwwnxGQsAIHlwkxAYHBdCAWB8dbfujLg/0NOlnn17lDpttlJS00ecBwAAAOOLIi5MBFxjBcYeE0UA8HsAAJIfBexAEhusiMbpdPb7/3AU0QAAgKFwkzB6Pp9PUt9y16MVzBHMicTDhVAAGB8Wi0WZJrNaG6piljPTZJbFYolZPgAAAAA4HNdYgbHHRBEA/B4AgORHATuQxCIV0TgcjgHbKKIBgMkhWAAbq+6SPfv29OXtCcQkHzBRuN1uSZKjriOmOQsKCmKWD7HDhVAAGB+5ubna7nLK6/VGjIv0O/lIFotFubm5sRwmAAAYAg15AABALDFRJLGwginGA78HACD5UcAOJLEji2h6e3v10ksvyeVyyWazKT8/X0ajsV88AGDiCxbVxrJLpSS52/wqmB/TlJOGx+OJWHQV6YbtkSi4ShxWq1WSVF2WKbvFGDl4CE5vrxx1HaGcSDxcCAWA8ZObmxv16x9+JwMAkJhoyAMAADBxsYIpAAAYCQrYgSR2eBFNXV2dKioqQkWLUl9RVVVVlcrKysZphACA8RAsgM0urlBa9ugrzn1vb9O+xmpZpxtGnWsy8ng8WmSzq8PXPmTsYDdsj5RpMmu7y0kRewIIdgyxW4xakjO6AvYjcwIAAAAAMJEMtqrVUF05AQAAkBxYwRQAAIwEBezABFBXV6fy8nIVFxerpqZGeXl5am5u1rp161ReXq7a2lqK2AFgEgne8EvLnq+MOQtHna+7dWdf3tSUUeeajLxerzp87REnFAR6utSzb49Sp81WSmp62FzdrTvV2lAlr9dLATsAAAAAAEga4Va1KigoGIfRAIhGe3u7XC5Xv21DTTwxm83xHCIAIEGwgikAABgJCtiBJNfb26uKigoVFxervr5eBkNfd9z8/HzV19ertLRUa9asUUlJiYzG2HQGBQAAwzfkhIJ5i6PO5XQ6o9o/VJwkWSwWiuEBAAAAAAAA9ONyubR06dKo45uamihQBAAASYvJewAQfxSwA0musbFRbrdbNTU1oeL1IIPBoMrKSi1btkyNjY0qKioan0ECk5zH45HX640YE22xabIVmg72Ji/Sc+VNHhBZ78G9MqRIDocjqvho4symTDld25PqdwuAyY2LyAAAAABiifcYwOBsNpuampr6bXM6nXI4HKqurpbdbh8QDwAAkKyYvAcA8UcBO5DkWlpaJEl5eXmD7g9uD8YBiC+Px6NFtkXq8HVEFT9UsWmmKVPbk6jQNNKbvMGeK2/yElOgt1uS5PT2xiRfMI/P54tJvsnE33lQ/oBUfY5J9lmGsHG+noDcbX5ZpxtkSk0JG+f80C/HZp+8Xm/S/F4BAC4iAwAAAIgl3mMAgzObzWG/1+12Oz8HAABgQmHyHgDEHwXsQJLLycmRJDU3Nys/P3/A/ubm5n5xQcGiQYoRgbHl9XrV4evQvCvmKWNuRtg4f5df3d5upVnSZEgfvCi1c3endt21K6kKTQ9/k/fMM8/o17/+tXbv3h3aP3fuXH3ve9/TihUrQvFIPL0HP5IkOeqim4gRLbfbrYKCgpjmnCzsswxakmOMGFMwP06DAYA44yIyAAAAgFjiPQYAAAAAJu8BQPxRwA4kucLCQlmtVq1bt0719fUyGP6v8NXv92v9+vVasGCBCgsL+x3ndrslUYwIxEvG3AyZrKbIQSfEZyzxFHyTV1dXp2uuuUbFxcXatGmT8vLy1NzcrHXr1umaa65RbW2tysrKxnw8Ho9HXq83YozT6ez3fyQWiyVpJhOMhjFrpiSpuixTdkvkouloOL29ctR1yGq1jjoXAGDy4SIygNGK5fuCyfKeAACAiYz3GAASXXt7u1wuV79tPp9PbrdbVqtVJlP/+082m01mszmeQwQAAACAYaOAHUhyRqNRVVVVKi8vV2lpqSorK0OFoevXr1dDQ4Nqa2tlNPYvOAwWDVKMCGCs9fb2qqKiQsXFxf0m2uTn56u+vl6lpaVas2aNSkpKBvyuiiWPx6NFtkXq8EU3ccfhcAwZk2nK1HbX9glfsJJiTJMk2S3GIbt+D8eRF9UB9MeNKQAAYs/j8chuW6T2GL0vMJsy5ZwE7wkAAAAO5/zQH3G/rycgd5tf1ukGmVJTRpwHQB+Xy6WlS5dGHd/U1MTkGwAAAAAJjwJ2YAIoKytTbW2tKioqtGzZstD2BQsWhO1qHCx4ohgRwFhrbGyU2+1WTU1Nv1UiJMlgMKiyslLLli1TY2OjioqKxmwcXq9XHb4OzbtinjLmZoSN83f51e3tVpolTYZ0Q9i4zt2d2nXXLnm9XopVAIwJbkwBABB7Xq9X7b4OVZ9jkn1W+Nf70RRdOT/0y7HZx3sCAEmFibIARsNischsypRjsy9mOc2mTFkslpjlAyYim82mpqamftucTqccDoeqq6tlt9sHxAMAAABAoqOAHZggysrKVFJSosbGRrW0tCgnJ0eFhYVj2s0Yicnn67tw3Lm7Myb5gnmCeYHhamlpkSTl5eUNuj+4PRg31jLmZshkHWKyzQlxGQoARMSNqeHxeDzyer0RY5xOZ7//I7FYLBQjAkgaFCMOn32WYcgJ/QXz4zQYAIgjJsoCGI3c3Fw5Xdujev8d7vrFkXj/jUSQ6O+pzGZz2L/Hdrudv9UAAAAAkhIF7MAEYjQax7R7MZKD2+2WJO26a1fM8xYUFMQ0JyaHnJwcSVJzc7Py8/MH7G9ubu4XBwDow42p6Hk8Htlti9Tu64gq3uFwDBljNmXK6drOTXQASYFiRABAtJgoC2C0cnNzo36vzPULJAveUwEAAABA/FHADgATjNVqlSTNu2KeMuZmjDpf5+5O7bprVygvMFyFhYWyWq1at26d6uvrZTAYQvv8fr/Wr1+vBQsWqLCwcBxHCQBIZl6vV+2+DlWfY5J9liFsnK8nIHebX9bpBplSU8LGOT/0y7HZJ6/XSwE7gKRAMSImikTvfAlMBEyUBQBgIN5TIVq8ZwEAAABihwJ2AJhgghdGMuZmyGQ1DRE9/LzAcBmNRlVVVam8vFylpaWqrKxUXl6empubtX79ejU0NKi2tlZGo3G8hwoASHL2WQYtyYn896RgfpwGAwBxRDEixkusizfofAkAAIDxwHsqRGuiv2fxeDzyer0RY5xOZ7//I7FYLDQIATBpMekJAIZGATsAABhzZWVlqq2tVUVFhZYtWxbavmDBAtXW1qqsrGwcRwcAAAAAsTHZbkzFuniDzpcAAAAAEtlEfs/i8Xi0yGZXh689qniHwzFkTKbJrO0uJ0XsMTDZrjdMZEwUGblk+9xN9ElPyYTfoUDiooAdmEB6e3vV2NiolpYW5eTkqLCwkI7GABJGWVmZSkpK+D0FAACAScn5oT/ifl9PQO42v6zTDTKlpow4D8bXZLsxFeviDTpfTlzcKAQAAMBEMJHfs3i9XnX42pVdXKG07PDLWAZ6utSzb49Sp81WSmp62Lju1p1qbaiS1+udNMW1Y2myXW+YqDwej+y2RWr3dUQVH81EEbMpU07X9gn/c5aMk2wm8qSnZMPvUCBxUcAOTBB1dXWqqKiQ2+0ObbNaraqqqqKzMYCEYTQaVVRUNN7DAAAAAOLGYrHIbMqUY7MvZjnNpkxZLJaY5UPsTLYbUxO5eAOxxY1CAAAAIDmkZc9XxpyFkYPmLY7PYBAy2a43TFRer1ftvg5Vn2OSfZYhbNxwGl04NvsmxUSRZJxkw3WzxMHvUCBxUcAOTAB1dXUqLy9XcXGxampqlJeXp+bmZq1bt07l5eWqra2liB0AkHCGWrotkZZ4AwAAGKnc3Fw5XdujWt423AXzI/HaJ3FxYwoYHDcKAQAAAGDkuN4wsdhnGbQkJ/Iq5QXha7QnNSbZYCT4HQokLgrYgSTX29uriooKFRcXq76+XgZD3yzN/Px81dfXq7S0VGvWrFFJSYmMxsgvgAFgrPX29qqxsVEtLS3KyclRYWEhv5smoZaDfikluqXbpGiXeMvU9kmwPB4AAEhOubm5Ub9O4YI5gImIG4UAAIy99vZ2uVyuftt8Pp/cbresVqtMJlO/fTabTWazOZ5DBAAAAAAghAJ2IMk1NjbK7XarpqYmVLweZDAYVFlZqWXLlqmxsVFFRUXjM0gAUN9qERUVFXK73aFtVqtVVVVVrBIxybR1BKSANO+KecqYmxE2zt/lV7e3W2mWNBnSwy+j17m7U7vu2jUplscL9HZLkpze3pjkC+bx+XwxyQcAAAAAAABgfLhcLi1dujTq+KamJiaRAQAAAADGDQXsQJJraWmRJOXl5Q26P7g9GAdg+AbrWuJ0Ovv9fzi6lgxUV1en8vJyFRcXq6amRnl5eWpubta6detUXl6u2tpaitgnoYy5GTJZTZGDTojPWMZSsDi8u3XnqHN1vb9DkuSo6xh1rsO53W4VFBTENOdk4vzQH3G/rycgd5tf1ukGmVJTRpRjMqBLGAAAAAAAwMjZbDY1NTX12+Z0OuVwOFRdXS273T4gHgAARObxeOT1eiPGRKodGCwOAAD0oYAd445CldHJycmRJDU3Nys/P3/A/ubm5n5xYy3aF+TRvDC3WCwTvpMukkOkriUOh2PANrqW9Nfb26uKigoVFxervr4+tFpEfn6+6uvrVVpaqjVr1qikpERGo3GcRwvEXnDVgdaGqpjlvHl5ur58fNqo8zi9vXLUdchqtY5+UJOQxWKR2ZQpx+bYdLA3mzJlsVhikisZ0SUMAAAAADCYYHOAWKxIx2p0mMjMZnPYayV2u53rKAAwicWyCFuaPLUcHo9Hi2x2dfjao4ofrHYAAACERwE7xh2FKqNTWFgoq9WqdevW9SsMlSS/36/169drwYIFKiwsHNNxtBz0SynRvyCPJi7TlKntru2T4o0PEttgXUuGmmiD/9PY2Ci3262ampp+v6MkyWAwqLKyUsuWLVNjY6OKiorGZ5CISiy6TEvSO3sDsR5aQgsWh2cXVygte/6ocvne3qZ9jdVaviBVS3JiN+HjyN9jiE5ubq6cru1RXfQN1+nqcJPlgm84dAkDAAAAAAwm2BwglivSsRodAACYLDwej+y2RWr3RfdaKppaDrMpU85JUMvh9XrV4Wsf8h5foKdLPfv2KHXabKWkpoeNC97nAwAAfShgx7ijUGV0jEajqqqqVF5ertLSUlVWViovL0/Nzc1av369GhoaVFtbO+Zdjds6AlJAmnfFPGXMzQgb5+/yq9vbrTRLmgzphrBxnbs7teuuXfJ6vRP+TQ8SX7iuJdzgiE5LS4skKS8vb9D9we3BOCQeQ0aWDCmKWZfpySZYHJ6WPV8ZcxaOKld3686+nBEmCCCysegyEu3kSjpdRUaXMAAAAADAYILNAarLMmW3jO5eB6vRAUDiieU128neJAQYjNfrVbuvQ9XnmGSfFb5GI9pGVc4P/XJs9k2qWo6o7vHNWzxknuB9PgAA0IcCdgxbe3u7XC5Xv21DdSI2m81h81GoMnplZWWqra1VRUWFli1bFtq+YMEC1dbWqqysLG5jyZibIZN1iC6uJ8RnLAASQ05OjiSpublZ+fn5A/Y3Nzf3i0PiMWbNkD+gIbtHR9tlOhgHxNtYLPWYaTJru8s5aS7SAgCQ7Hy+vkmZTm/vqHMFcwRzAgCAsRG872S3GGO2Ih2r0QGIpbFomjFZrjfG+pot12uB8OyzDEO+lioY3ULCAAAAw0IBO4bN5XJp6dKlUcc3NTVRhB4HZWVlKikpUWNjo1paWpSTk6PCwsIx77wOILJgIUPn7s5R5wrmSLbiiMLCQlmtVq1bt0719fUyGP5vZr/f79f69eu1YMECFRYWjuMoEY1oJ5YxAQ2JKtZLPXa37lRrQ9Wk6jICAECyc7vdkiRHXXTLZkebkxW6AAAAgMnJ4/HIblukdl907zGiaZphNmXK6do+Ka45xvKabfB6bWNj45BNdg7/P5LJNJkAAAAAiDcK2DFsNptNTU1N/bZF6rhqs9niObxJzWg0qqioaLyHgRgZbLWDcBdUhlrpAOMnWByx665dMc2ZTMURRqNRVVVVKi8vV2lpqSorK5WXl6fm5matX79eDQ0Nqq2tZcINgLiJ1VKPAAAg+VitVklSdVmm7JbRvQdxenvlqOsI5QQAJJ7hrCjLNVYAwEh4vV61+zpUfY5J9lmGsHG+noDcbX5ZpxtkSk0JG+f80C/HZt+ka5oRi2u2vQf3ypAS3SQBickEAAAAwHijgB3DZjabw3ZVpeMqEDuRVjs48oIKKx0krmAhw7wr5iljbsaocnXu7tSuu3YlZXFEWVmZamtrVVFRoWXLloW2L1iwQLW1tSorKxvzMcSyG/7heZKtIz4AAAAwmQULFe0W45DLZg83JwAg8QxnRVmusQIARsM+yzDke4yC8A3GEQP+zoPyB8RkAgAAACBJUMAOAAlqsNUOInUHQmIKfp0y5mbIZI1NUUOyFkeUlZWppKREjY2NamlpUU5OjgoLC+PWeX0suuEH8yZqR/zu1p0R90ez5GY0eQAAAAAAABLRcFaU5RorAAATA5MJACSqQG+3pL5V/WIhmIeGawCAZEUBOwAkqHCrHSRqoSwQDaPRqKKionE5dyy74UuJ3RHfYrEo02RWa0NVzHJmmsyyWCwxywcAAAAAADDWWFEWAAAAQKLoPfiRJMlR1xHTvInccA0AgEgoYAcAAJPCWHTDPzxvIsnNzdV2l1NerzdiXLiOY4OxWCwskQkAAICE0N7eLpfL1W+b0+ns9//hbDabzGZzXMYGAAAAAACQSILduen6Pf6MWTMlSdVlmbJbRr9KudPbK0ddR0I2XAMAIBoUsAMAAExAubm5URec03Es+Tg/9Efc7+sJyN3ml3W6QabUlBHnAQAASEQul0tLly4ddJ/D4Riwrampide7AICEM9iELJ/PJ7fbLavVOqBpAhOygImvt7dXjY2NamlpUU5OjgoLC2U0jr64DQAwubndbkl0/R6JYJF+d+vOmOQLdmC3TjdoSU7s/sYnYsM1AACiQQE7AAAAkCQMGVkypEiOzbHramE2ZcpiscQsHwAAwFiz2Wxqamrqt22ogj8AABJNpAlZg2FCFjCx1dXVqaKiIlRkKElWq1VVVVUqKysbv4EBAJJesDs3Xb+HL/h3ubWhKrZ52/wqmB/TlCETdaJsrCcTBPOwkgAAjC8K2AEAAIAkYcyaIX9Aqq6ult1uDxvndDrlcDiGjJMki8USdbd+AACARGA2mwct4JvoXb+A8URHWCD2BpuQFen9PBOykKgGK5JyOp39/j9cshRJxVNdXZ3Ky8tVXFysmpoa5eXlqbm5WevWrVN5eblqa2spYgcw5pKhONTj8cjr9YbdH+nvz5Em072RYMGy3WKk6/cwBYv0s4srlJY9+opz39vbtK+xWtbphlHnCmeiTpQds8kEk2AlAQBIZBSwAwAAAEnGbrdHdTEp2jgAAABgIpqoXcfijY6wwNgINyFL4v08kkukIimHwzFgW7IUScVLb2+vKioqVFxcrPr6ehkMfQVt+fn5qq+vV2lpqdasWaOSkhImj8XQUEWwUvSFsNEUygLJINGLQz0ejxbZFqnD1zFk7GB/f46UacrUdtf2SVPEjpEJXjdIy56vjDkLR50vOLHDlJoy6lzhTNSJsrGeTNDdulOtDVWTYiUBAEhkFLADAAAAAAAAACacidp1LJ7oCAsAGMpgRVJDTRjD/2lsbJTb7VZNTU2oeD3IYDCosrJSy5YtU2Njo4qKisZnkBNMXxGsXR2+9qjioymEBSaCsSoO7ezs1CuvvBI2bjiTRTp8HZp3xTxlzM0YNMbf5Ve3t1tpljQZ0sN3uO7c3aldd+2S1+ulgB0TzkSdKBvryQRBbrc74moCrOwAAGOLAnYAAAAAAAAAwIQzUbuOxQsdYQEA0QhXJBWLbruTQUtLiyQpLy9v0P3B7cE4jJ7X61WHr33IIt1AT5d69u1R6rTZSklNDxvne3ub9jVWj8VQJwWfzyfp/7oSj0bPvj19OXsCo841GcW6OLT34F4ZUqRLL700qvhoJ4tkzM2QyRq+2FQnRJUGwCQX/B0V7e+eaOLMpkw5WdkhJlhVEZg8KGAHAAAAAAAAAEw4E7XrWLzQERZAonF+6I+439cTkLvNL+t0g0ypKSPKAcRbTk6OJKm5uVn5+fkD9jc3N/eLQ+xEVaQ7b/GQeWJReD2Zud1uSVJrQ1Xscrb5VTD6BuIYJX/nQfkDUvU5Jtlnhe+GHs3fb0l6bEePfrylcyyGCmASivXvKOeHfjk2+1jZIUZGu6qix+OR1+uNeAzd9YHEQAE7JhxmYQEAAACTS7BTk9PbG5N8wTzBvAAAAJMRHWEBJAqLxSKzKVOOzbF5j2Y2ZcpiscQkFzBahYWFslqtWrduXb8VTyTJ7/dr/fr1WrBggQoLC8dxlMDYsVqtkjRkR/xoBLvhW6eHL0RE/NlnGbQkJ/KKTdFMOIjVtV8AOFysfkchtkazqqLH49Ei2yJ1+DqiOlc03fUzTZnaTnd9YExQwI4JZ7SzsAAAAIDxQDeAkQt2anLURXcxajh5WfIcAABMVnSETQw0bAGk3NxcOV3bo3rPHK6g4XCT6f0yEp/RaFRVVZXKy8tVWlqqyspK5eXlqbm5WevXr1dDQ4Nqa2tlNEYurAKSVfC1TFQd8YcQ7IYfqUMuAABIfKNZVdHr9arD16F5V8xTxtyMsHH+Lr+6vd1Ks6TJkB5+8lvn7k7tumsX3fWBMUIBOyac0czCAgAktsFu2kYq5uSmLYBkQTeA0Ql2aqouy5TdMvobuk5vrxx1HaG8AACgDxPuJhc6wiYGGrYAfXJzc6P+mzFUQQOQaMrKylRbW6uKigotW7YstH3BggWqra1VWVnZOI4OAAAASD4ZczNkspoiB50Qn7EACI8Cdkw4o5mFBUwknbs7I+4fzmxCIFFEumk7WDEnN20BJAu6AYxOsFOT3WIccqnHkeQFAADBCXd2dfjao4qPbsKdWdtdzknxeiUZ0RE2MdCwBQAmh7KyMpWUlKixsVEtLS3KyclRYWEhf2cBAJiAnB/6I+739QTkbvPLOt0QcVWJofIAAJDoKGDHkOisBCQXi8WiTFOmdt21K2Y5M02ZslgsMcsHjNRgN22HWjYbSBTB5UsHE+jpUs++PUqdNlspqekjyoGJgW4AAAAgUfVNuGtXdnGF0rLnh40bzmvb1oaqSTPhLlnREXb80bAFiD3ueyFRGY1GFRUVjfcwAADAGDFkZMmQIjk2+2KW00wtBwAgiVHAjojGorNSRkamNm2qVU5OTtgYLgwCI5ebm6vtru1RXYAP16npSPycIVGEu2lbUFAwDqMBotM3scis1oaqmOTLNJm5EDVCPl/fBcFYTQQI5gnmBQAAmAzSsucrY87CyEHzFsdnMIibQCDQ72O/P3KXN4pDEwdfC6C/vvtei9Th64gqProVRTK13bWdnw1gkgr0dkuSnN7emOQL5uGaIzC5xfJ1fDSv8xEfxqwZ8gc0ZI0GtRxIRu3t7XK5XP22DdWM0Gw2x3OIABIQBeyIKNadlTp2vaH9z/xexcXFUZ0/mguDZlOmnFwYHLFYLU30zt5A2H2Iv9zc3Kh/JujUFB+duzsj7vd3+dXt7VaaJU2GdMOIcgBITH0Ti5wRLzRyISo+3G63JMVsMsHheZlIAwAAgImorq5O5eXlKi4u1kMPPaS8vDw1Nzdr3bp1Ki8vH7QLO8WhiYOvRWxxM35i6Lvv1aF5V8xTxtyMsHHRXK+V+q7Z7rprFyuKYEJg0tPI9B78SJLkqIvu7220uOY4fEwmwEQxFo0mMTpDNUYa7krL0dZoUMuBZOJyubR06dKo45uamvj+BkABO6ITq85K3a07+2YTnmOSfVb4C37RFk07P/TLsdnHhcERsFgsMpsyY7o0EYCB+jovZ2rXXbtiki+TJcCApBTtxCIuRI0tq9UqSUNOzoxWd+tOtTZUhfICABCtwQrgIhWCHFkAR2HJ6MViQv9QOYBk19vbq4qKChUXF6u+vl4GQ9/13Pz8fNXX16u0tFRr1qxRSUmJjEZj6DiKQxMHX4vY4mb8xJIxN0Mmqyly0AnxGctkx2vbxMCkp5EzZs2UJFWXZcpuMQ4RPTSnt1eOug6uOY4AkwkwUcS60aTv7W3a11g9FkOd8GK9yrLESsuYuGw2m5qamvpti9TEzWazxXN4ABIUBewYF/ZZBi3JifwGvmD0NUWIIDc3V07X9qguCkbTETYYB6C/vs7LsftZ4+L76MWiG340eQAknmA3vKgmZ44gLwAA0YpUADfYe+vDC+AoLBmdWE/oNzPJGBNYY2Oj3G63ampqQsXrQQaDQZWVlVq2bJkaGxtVVFQ04HiKQxMHX4vY4GY8EHu8tk0cTHoauRRjmiTJbjEOef97OLjmOHxMJsBEE8tGk1JsJvNHk2ciiWaVZYmVlpMRq3bEntlsDjuJmyZuAMKZMAXs7777rm677TY9+uij2rlzpzIyMnTcccfpq1/9qr75zW/GZJlGt9ut3/72t/rrX/+q//znPzp06JCmTp0qm82mM888U1dddZWOPvroGDwbID6i7QYr8WICGA1+1hJDrLvhS3TEx8RAlysgvKG+56P92eDnAsCRBiuA8/l8crvdslqtAwoVDi+Ao7BkdGI9oZ/f8ZjIWlpaJEl5eXmD7g9uD8YBEx0344HY47Vt4mHSE5IZkwmAwRkysmRIUcwm80uTa0I/9/onJlbtAIDEMCEK2B955BE5HA7t378/tK29vV3btm3Ttm3b9Ic//EGPPvqoFi4ceZfFBx54QFdeeeWAmVJ79+7Viy++qBdffFG33nqrHnroIZ1++ukjPg8AAIheb2+vGhsb1dLSopycHBUWFvZbtvxwse6GL1GsguRHlytgcC0H/VJKdN/z0tBx/FwAOFK4Arjh3NygsGTkYnnj0ePx6JVXXomYg8mAkcVqwpg0OT9/YyknJ0eS1NzcrPz8/AH7m5ub+8UBADBSvLYFkMh4z4JkZ8yaIX9AQ9775B4pJhNW7QCAxJD0BeyvvvqqzjvvPPl8PmVlZamyslLLly+Xz+fTQw89pN///vd68803ddZZZ2nbtm2aOnXqsM+xdetWrV69Wn6/XwaDQRdddJFKSko0d+5ceTwe3XfffXrkkUf00UcfqaSkRM3NzfrYxz42Bs82+bEECwAgVurq6lRRUSG32x3aZrVaVVVVpbKyskGPYYY80B9droDBtXUEpIBi8rPBzwUATFxMBhyd3oN7+zrAxWjCmNTXAc45ST5/8VBYWCir1ap169apvr5eBsP/vd7x+/1av369FixYoMLCwnEcJQAAADA2Yt3kQppc7/liXRvyzl6/pL5rshiZaO99co80ubDS8siM1aodbrc74sodfC0AoL+kL2D/zne+I5/Pp9TUVD311FP67Gc/G9q3YsUKHX/88brmmmv05ptvqqqqSmvXrh32OdavXy+/v+9F8G9+8xt94xvfCO075ZRTtHLlSlVUVOiWW26Rz+fTLbfcottvv33Uz20iYgkWAEAs1NXVqby8XMXFxaqpqVFeXp6am5u1bt06lZeXq7a2NmwRO8ZfcOJZ5+7OmOQL5mFC28jR5QoYHD8bAIBImAw4Ov7Og30d4M4xyT4r/OfF1xOQu80v63SDTKkpYeOcH/rl2OybNJ+/eDAajaqqqlJ5eblKS0tVWVkZev+9fv16NTQ0qLa2NuxKaAAAAIkoeB25u3VnTPL17NvTl7cnEJN8SByxbHIhJc97vqF+NgI9XerZt0ep02YrJTU9bFzX+zskxb42pNvbzTVZ4P+huULiYNITAIxMUhewv/zyy2psbJQkXXrppf2K14MqKip07733yul06tZbb9V1112ntLS0YZ3nb3/7myQpOzu7X/H64W644QbdcsstkqQXX3xxWPknE5ZgAQCMVm9vryoqKlRcXNyvA1x+fr7q6+tVWlqqNWvWqKSkhJvoCSrYNX/XXbtinpcJbQAweu3t7XK5XP22+Xw+ud1uWa3WAd1DbDabzGZzPIcIAAmFCU+jY59lGLLTVcH8OA0GA5SVlam2tlYVFRVatmxZaPuCBQuYPA4AwCjx/nt8BK9PtzZUxTZvmz+mr1uH6sxKB9f4mSzv+SwWizJN5pj/bMSqNuSxHd368ZYupVmGV+8DTGSTsblCrCbZBCegxcpknfQEAKOV1AXs9fX1occXX3zxoDEGg0GrVq1SZWWl2tratGXLFp1xxhnDOk9XV5ekvovy4UybNk0Wi0VerzcUj4HGagmWSMuvID7opjv2ent71djYqJaWFuXk5KiwsJDiXExKjY2Ncrvdqqmp6bd8udT3d7+yslLLli1TY2OjioqKxmeQiCg48WyoN/DRCr6BZ0IbAMSGy+XS0qVLo45vampiSVkAmAToVDl5lZWVqaSkhOtSAADE2Gjff3s8Hnm93ojHRFvkHE0R9EQRvI6cXVyhtOzRV5z73t6mfY3Vsk4PX4Q2HHRwxXjJzc3Vdpczqt8rDodD1dXVstvtQ8bFqjbE6e2VpIgFn8BkNRkm2ozVJJtYmwxfCwCIpaQuYH/hhRckSVOmTIn45v60004LPd66deuwC9gXLVqkV155Re+8807YmP3794deyC9atGhY+YGJgG66Y6uurk4VFRWhz7PUd4GtqqqKTleYdFpaWiRJeXl5g+4Pbg/GIfEEJ55F9QZ+BHkBAKNjs9nU1NTUb1ukG1M2my2ewwMAjJNk6VSJsWE0GpkkDgBAjI3m/bfH45Hdtkjtvo6ozhVtMfRkELyOnJY9XxlzFo46X3CCpyk1ZdS5JDq4Ynzl5uZG/X1it9vj2tSi8/9Nfo5FQz2a6QHJZ6wm2QAAxldSF7AHZ4IvXLhQqanhn8rhb+ZHMnv8qquu0hVXXKHW1lbdeeeduuqqqwbE3Hzzzf3iR8TrlTpj0706VlL37pVFUnbHQaW37xt1vozOdqVISvUFpEP+0Y/PF5BFfePUhx+Gj/t/z2OouFib2durzv/3fzzPG0vRfu4WTp+u6ZLmrspRxuwYdNPd06nd97do4fTpSfu5i5WGhgZddcklOuOMM/TwHXfIZrPJ5XLpf/7nf3TVypVKv+ceFRcXDzvveP1cYHB8PaKXazLJIsnV2KiTTz55wH7XP/4hy/+LG8nncjJ9LWL9XKPNF4ybeahXmft7Rn1e06Fe7YvivImMr0V8xPq1bVfHQfUoNq9FJ9vXIlrD/V6O1fuMjM5AzL4eyfi1MEtaMr9/JWHwc/yJOXP0ySP26dChvn/jaDL9/cbgJsL772jxNyM++Ps9UPDaz8zTv6G0mXNHnc/nfk37/16rhRkpk+I64WSS6D8bE+FvBu/5RieWvwfG6/38/8/evce3Vd/3H39L8lVJCMGCYEiMPEKQwJQSczE2Kk5b6AUHG2HoALVAL7BRGAMFVkPpRsts2mLSbL08RqGh4GJohXFbp+062gKiDYRo3NRJ4Sqc/OIlKJCrZceW/fsjk4jx3T62JOv1fDx4WD7nc77nowhLOud8zueLkfH5nXnS+fWYjc+L6Rx/73r9dVljPfrpZwu0vGj04uVY/6C27BnQ0sPMYxZYP/lWv5r+fCAtXwujpfv178R5qeKFOSo4Infs4KPHvybbsz+uHqXnayF98Hoctm2zcnv2jRo32H9A/XveVc5hR8qUkzdijOXdd2bktciGv4vJSNU52+h7B8cwsqHe1ldflZZPvxWy0Z8ZfV1dOlySddtrY/5dTJTlvW06/P/Gnc3j5Wz6bst1vtlRUliokg9/P/qQMb9LjRDHZ8bMSsXxd7b9XWjv3lRnAEyLaXBwMCPnaO3p6UneHX3BBReoo6NjzPj58+dr//79qqio0IYNGya1r3g8ri9+8Yt66KGHZDab9cUvflEXXnihiouL1dnZqYcffljt7e2SpNtvv1133XXXpMbfs2ePFi5cqN2SDpvUljOvW1J4BsZ16OBJGQAAAAAAAAAAAAAAAGA0M1G7kq51K/8tqXwGxg1Imr2e+QCA2bBH0kJJu3fv1mGHpVvlKTC+jO3AvveQu0fmz58/bvy8efO0f/9+7ds3+bsTLRaLfvrTn2rVqlVqbGzU/fffr/vvv39IzMqVK3Xbbbfpk5/85Ljj9fb2qveQTut79uyZdE6zJSy+GAMAAAAAAAAAAAAAACA1rMqeGhOHDtbUzMS4AAAA6SRjC9h7enqSj/PyRp4i6lD5+Qenz4rFYlPaXygU0kMPPaRXX311xPUbNmzQAw88IKfTqWOPPXbMsZqamnTnnXdOKY/ZxhdjAAAAAAAAAAAAAAAAYOZlU7E+AADIbhlbwF5QUJB8fODAgXHjEx3PCwsLJ70vv9+vVatWaffu3TruuON011136bzzztMRRxyh7du361e/+pXuuOMOPfroo3rmmWf0+9//XieffPKo4zU0NOjmm29O/r5nzx4tXbp00nnNBr4YAwAAAAAAAAAAAAAAAAAAADBKxhawL1iwIPl4375948bv379fkjR//vxJ7ae3t1eXXXaZdu/eraOPPlrPPfecjj766OT6JUuW6LrrrtO5556r008/Xdu2bdOVV16pTZs2jTpmfn5+siP8EG++KR3yvNLBK6+8ok988pNa/Lm7lHdU6bTH2x9+Vu/914/0h89b9ZHF5mmP5wv16e/X96r0FrsKlhaMv8E4erb06O3vRvSHJ5/URz7ykWmP95GPfERd//u/Kj76aL3yyivTHi8VEv8PjPdvkohL19ciU8XjcZ155plyOp166KGHZDZ/8HczMDCgL3zhCwqHw3r++edlsVgmNfZEX1vMDl6P9JFNr4XRz5XPjKnjtZgdRn+3PbDjbW1/7OsT/nceKy7bXouJmuz/y+l4nJFtr4XRtm7dqrMrz1ZPT69hYxYU5GvDXzZoyZIlho2J1JsLx98TxWfG7ODze7h0P0/4yvYBfeLhbkO+m2F6nt+4UZ+uqdExXyhW/uIRzoNPUu/2Xm17qEu/6+jQWWeeOe3x5sJnBsd802Pk+0CqjucxMj6/M086vx6p+ryYC+dCpPT+2zD6e23s7Rf1Xsc9GjAgt0Nlw2sxGan4/E7n96hUmgvvU+leF5LO1zIOjeNv4wNc50sfc+E9Spobr4XE5/es2LtXOv74VGcBTFnGFrAXFBSoqKhIO3fu1NatW8eMff/995MF7JPtdP673/1O/+///T9J0g033DCkeP1QJ598sjwej+6//34FAgG9/PLLOvXUUye1L9ls0mGHTW6bGda/aJGiknIK5ivfunDa4+3Lt2qnpP5CkzRv+l8AevNNikpaOM+iwsOm/79zbJ5FUR183jryyGmP957l4Hj5Fosh46VC4v+B8f5NEnHp+lpkKouk27/3PdXX12vPV76ihoYGlZWVKRgMqqmpSR3/9V/y+XyyjPLeNJaJvraYHbwe6SObXgujnyufGVPHazE7jP5u21swf1L/zmPFZdtrMVGT/X85HY8zsu21GEl3d7fC4fCQZbFYTJFIRHa7fdhMaQ6HQ1arVZK0Y8sWbe3p1ZJrlij/mNEL4AYODKgv2qdcW67MeaP/P9C7rVdb79uqHYODWpLBrweGmwvH3xPFZ8bs4PN7uHQ/T9hfOGjYdzNMzxu7dmmXpF0PdRk+7lmcs5XEMd90Gfk+kKrjeYyMz+/Mk86vR6o+L+bCuRApvf82DD9HWLREOyS1tLTI6XSOGhcKheTxeCYclw2vxWSk4vM7nd+jUmkuvE+le11IOl/LODSOv40PcJ0vfcyF9yhpbrwWEp/fs2KkJspABsnYAnZJOumkk+T3+/XGG2+ov79fOTkjP51DL5SPdTA4klAolHy8YsWKMWPLy8t1//33J/c56QJ2ABiB2+2Wz+eT1+tVZWVlcnlpaal8Pp/cbncKswMAAIcaqVA3cUxx6LGFNLRIF5jLwuGwysvLJxwfCASGHX/nH5OvQnvhKFv8n+VTyQ4AABjNbrdL0rg3oE1U4ga0xLgAMB2xWEzSwfcWIyTGSYwLIHs5nc5x6wkmEwcAAAAAc11GF7Cfc8458vv92r9/vwKBgM4666wR455++unk46qqqknt49Ci+P7+/jFj+/r6RtwOAKbL7XartrZWfr9fXV1dKi4ulsvlksViSXVqAADgEGMV6no8niG/j1SkC8xFDodDgUBgyLKxuo45HI7ZTA8AABgsMbvKhG5Am8K4mDgKdYHhIpGIJGnrfWPP7jyVcSd7DRIAAAAAACCbZXSVdV1dnZqamiRJ69atG7GAfWBgQA899JAk6fDDD9fKlSsntY/S0tLkY7/fr5qamlFjDy2UP3Q7ADCCxWJRdXV1qtMAAABjGKlQNxaLKRKJyG63Dym6oUgX2cJqtY56swZdxwAgew3GDzYDCUXjhoyXGIfCWuADFOoCwzFLBAAAAAAAQHrI6AL2M888Uy6XS36/Xw888ICuvPJKnX322UNimpubFQqFJEk33nijcnNzh6x/6qmnkkXtV155pR588MEh6z/xiU/IarWqu7tbP/rRj+TxeHTKKacMy+W3v/2tnnjiCUnSscceq49+9KMGPUsAAAAAmWK0Ql2KOwAARqGbLuaK+L73JEmeth5Dx6WwFvgAhbrAcMwSASChb+eWMdcP9h9Q/+7tylm4WKacvCmPAwAAAAAYWUYXsEvS2rVrVVVVpVgspvPPP1+33XabVq5cqVgspkcffVT33XefJGn58uXyer2THv/www/X1772NX3jG9/Q3r17VVlZqRtuuEHnnXeeFi1apO3bt+uXv/ylfvzjH2tgYECSdPfdd8tsNhv6POea0LsDY66P9Q8qsmtA9sPNKswxjRr39vuDRqcGAACQNSiAAwAg89BNF3OFZf4RkqQWd4GcNsu0xwtF4/K09VBYCxyCQl0A6Y5zU0gFm82mgkKrdnY0GzZmQaFVNpvNsPEAAAAAIBtkfAH7aaedpscee0wej0d79uzRbbfdNixm+fLlWr9+vRYsWDClfXz961/Xe++9p7Vr12rfvn1qampSU1PTsLjc3Fw1NjbK4/FMaT/ZwJw/X2aT5HmCE0cAAMwl8XhcmzZtkiRt2rRJp556qiyW6RehYGZRAAcAQOahmy7mCpPl4EyZTptFK4qNO3agsBaAUTo7OxWNRseMScwAnPg5FpvNppKSEkNyg9Td3a1wODxk2Vivh8PhkNVqnZXcMHGcm5q6RJF+KBo3ZLy33z/YfGzgwNhNyOaCkpISbQ6HJvQe7/F41NLSIqfTOWYs7/EAAAAAMHkZX8AuSatWrdIrr7yitWvXav369dq6davy8vK0bNkyXXLJJbr++uundVLKZDJpzZo18ng8uv/++/Xss8/qnXfeUXd3t+bPn69ly5bp3HPP1bXXXqvly5cb+MzSh1FTqA307tPAoMY90J/oCYGXXnpJX/rSl+jMAADALDv0IuEf//hHrVmzRtu2bZMkXXvttbrzzjt100036eMf/7gkLhKmq2wtgGN6YABAJqObLlLNqO9S/bu3G50aABims7NTTseJ6o71TCh+Io2NrIUFCoU3U+BokHA4rPLy8hHXjfR6BAIBrVixYqbTwiRl67kpIySK/z1tE3ufmqi+aJ80Ny93D1FSUjLh92On08n7R5ZilggA6Y73KQBAppsTBeySdNxxx+nee+/VvffeO6ntqqurNTg4OKHY8vLyUU+GzVUzNYWay+Wa0EmB8U4IJLpo0JkBGBvdaAAYbayLhJK0bds23XLLLcnfuUiYnrKtAI7pgQEAgJGy7SLhTHyXAoB0FY1G1R3rUctFhXIeaR41LtY/qMiuAdkPN6swxzRqXOjdAXmeiCkajVLAbhCHw6FAIDBkWSwWUyQSkd1uH3ZuwuFwzGZ6mKBsOzdlpESRfou7QE7b9GezaQ8f0Lee6dNA/4Bikel/H03377bARDBLBIB0x/vU9IXeHXv2mYke8739/sRqDwEAQ82ZAnbMjHSfQo3ODMDE0I0GgNEcDoc2btyouro6LVu2TM3Nzert7U1eJMzPz5fX69Wbb76pJ554gouEM4iblCYunb/bZlsBHAAAc0G2XSQ0+rtUIs5oI30HHmn9eHGSsecxAcyOzs7OCb1PHfpzrBjnkWatKB67MLRq6cTz4z3KOFardcRz2On4GQrMhESRvtNmGfd9aiJ+8/rBgqxtP9k27bEOla7fbYGJoBbBGBSHAjOH96mps9lsshYWyPME19EAIJUoYMe40nkKNTozABNDNxoARrNardq/f7+2bdumxx9/XKeddpr8fr/MZrP6+vpUUVGhu+++W5WVldq/f3/WFkzPBm5Smpx0/W6bbQVwM4WLIQCA2ZSNFwnT9buUJHXtG5BMI38HHslE4goKC7Q5vDmrC0SBTNLZ2akTHU71xLonFD8TN9GMhvcoAOnumAUHz5Nk03dbYDzUIkwPxaHAzON9aupKSkoUCm82rFHDSy+9pC996Us0qpoio25Gn8h6AOmFAnYAyAJ0owEwE7q6uiRJb775pi677LJkAa50sJjnrrvuGhKHmcFNSnNDNhbAGYmLIQCAVOAiYXrZ1TMoDY7/fWrgwID6on3KteXKnGceNS7xfSoajVIcCmSIaDSqnli3imq8yi0avS36YP8B9e/erpyFi2XKyRsxJvbWJu32txiWG+9RANJd/v/d6M93WwBGMbo4dKZm8QKQvYxs1JAomqZR1eR1dnbK6ThR3bGeCcVP9LOAmwmAzEABOwAAAKakuLhY0sGDxFWrVqm1tVVlZWUKBoNqbGxMHjwm4jAzuElpbqAAbnrSuVMGJ7YAAJhdE/o+tXx2cgGQGrlFS5V/9LKxg5acNObqvp1bDMzoA7xHAQCAbJLOs3gBU9Xd3a1wODxk2VidoR0OBzNVZwEaVU1dNBpVd6xHLRcVynnk6DdyT3SW5fv/+4B+tKmPmwmADEEBOwAAAKaksrJSOTk5KioqUltbm3JyDn61rKioUFtbm5YsWaKdO3eqsrIyxZkCyAbp3imDE1sAAAAAAAAAgIka76bKicwsNNo4FGFPXTgcVnl5+YjrRuoMHQgEuDkjC9CoavqcR5q1otgyZkzV6JOtJZ1+zMEieG4mADIDBewAAACYkr/85S/q7+/Xjh075Ha71dDQkOzA3tTUpB07dmhwcFB/+ctfVF1dnep0AWDCjOyUwYktAAAAAAAAAMBE2Ww2FRRatbOj2bAxCwqtstlsyd8pwp46h8OhQCAwZFksFlMkEpHdbh9WcOxwOGYzPSDr5f9fd3ZuJgAyAwXsAAzVu613zPUDBwbUF+1Tri1X5rzRp34ZbxwAQOp1dXVJkh5++GF9/etfH9JpvbS0VA8//LA8Hk8yDgAyxUx0yuDEFgAAAAAAAABgPCUlJdocDikajY4ZFwqF5PF41NLSIqfTOWaszWYbMoMpRdhTZ7VaRyzmn+oMrHTDBwBkMwrYARji4F3ABdp631bDxiwoLBhyFzAAIL0UFxdLko4//ni98cYb8vv96urqUnFxsVwulzZu3Dgk7sO46QkAAAAAAAAAgA/EYjFJxp33ToyTGBdAZigpKRlScD4Wp9M56e7oRhdhY+rohg8AyGYUsAMwxMG7gDfP6F3AAID04nK5ZLfb1djYqPb2dlVXVyfXDQwMqKmpSaWlpXK5XEO246YnAAAAAAAAAACGi0QikmTo+fPEuBSmYi4Y6+YOGiMhE9ENHwCQzShgB2CYmb4LGACQXiwWi5qbm1VfX6+6ujo1NDSorKxMwWBQTU1N6ujokM/nk8ViGbIdNz0BkKTOzs4JvQ8c+nMsvA8AAAAAAIBsE3p3YMz1sf5BRXYNyH64WYU5plHj3n5/0OjUMEV2u12StOSaJco/Jn/a4/Vu69XW+7YmxwUyldHNkWiMNHXMFGEsuuEDALIZBewAAACYMrfbLZ/PJ6/Xq8rKyuTy0tJS+Xw+ud3uEbfjpicgu3V2dupEh1M9se4JxY80TeaHFRRatTkcoogdAAAAAADMeTabTdbCAnmeyM5iv7ks0Wk3/5h8FdoLx4me/LhApppIcyQaI80OZooAAABGoYAdAIBZ1t3drXA4PGTZWB1mHQ6HrFbrrOQGTIXb7VZtba38fr+6urpUXFwsl8s1rPM6ACREo1H1xLpVVONVbtHSUeMG+w+of/d25SxcLFNO3qhxfTu3aGdHs6LRKBcdAAAADDDSuYvxpjD/8LmL8brxDRwYUF+0T7m2XJnzzKPGGdXVD5iMwXifJCkUjRsy3tvvH+yQPHBg7E7JADBRJSUlChk4y2UiDgDS2USbI9EYafLi8fiEr/MxUwQAADAKBewAAMyycDis8vLyEdeNdII4EAhwkgVpz2KxqLq6OtVpAMgwuUVLlX/0srGDlpw0O8kAAAAgaaxzFyM59NyFzWZTQWGBod34CgoLZLPZDBsPGE9833uSJE9bj6Hj9kX7pOWGDgkgizHLJQDACG1tbfJ6vcnO6tLBIvXm5uYRZ1pmpggARorFDs4oxA3kQHaigB1zAt18AGQSh8OhQCAwZNl4XcyA6aLzPwAAAIB0FHp37ItJsf5BRXYNyH64WYU5plHj3n5/0OjUstpI5y7G6uB66LmLkpISbTawI6x0sCiemXYwmyzzj5AktbgL5LRNf4a537zepzv+dEC5ttxpjwUAAAAYpa2tTfX19aqpqVFra6vKysoUDAbV2Nio+vp6+Xy+EYvYAcAoiZtnuIEcyE4UsCOj0c0HQCayWq0jdjqpqqpKQTbIFnT+BwAAAJBObDabrIUF8jwRS3UqGMFo5y6kiXVwpSMsMp3JcrDQ3GmzaEXx9AvYX/rffkkHL6DH8qb/vpdoxpPoVAcAAABMVjwel9frVU1Njdrb22U2H2wGWVFRofb2dtXV1Wn16tWqra2VxTL978SA0WjgNjfY7XZJ3EAOZCsK2JHR6OYDAMDE0Pk/vXz4hAonUwAAAJBtSkpKFDLwvF4iDgDS0ba9B2eJMLIZj3SwUx1NMQAAADAVfr9fkUhEra2tyeL1BLPZrIaGBlVWVsrv96u6ujo1SQJjoIHb3JCoUzDqBvJQNC5JMueZx4kEkA4oYEfGo5sPAADjo/N/ehnthAonUwAAAJBNOK8HIFscs8AkSVpyzRLlH5M/7fF6t/Vq631bk53qAAAAgMnq6uqSJJWVlY24PrE8EYf0lZihaTQDBwbUF+1Tri13zKLe8cZJNzRwA4DMRwE7AAAAMMs+fEKFkykAAADA9MRiMUnGXWxNjJMYFwCmIz/nYAF7/jH5KrQXjhM9cR8+hwAAAABMVHFxsSQpGAyqoqJi2PpgMDgkDunHZrOpoLDA0JmeCgoLZLPZDBtvJtHADQAyHwXsAAAAwCwb6YQKJ1MAYDiKEQEAExWJRCTJ0Iu2iXH5rg4AAIzQ2dmpaDQ6ZkwoFBrycyw2m23Cs9kAAPBhLpdLdrtdjY2Nam9vl9n8QWfugYEBNTU1qbS0VC6XK4VZYiwlJSXaHN48oe8XHo9HLS0tcjqdY8by/QIAMJsoYAcAAACANJGt0zwCo6EYEQAwUXa7XZK05Jolyj8mf9rj9W7r1db7tibHBTIZxxkAkHqdnZ060eFUT6x7QvEej2fcmIJCqzaHQxSZGaC7u1vhcHjIsrFuJnA4HLJarTOaE5/fAGaaxWJRc3Oz6uvrVVdXp4aGBpWVlSkYDKqpqUkdHR3y+XyyWCypThVjKCkpmfB3AafTOWLHcmAqjLo5cyI3bgKYuyhgBwAAAIAUy/ZpHoHRUIwIjI5iBmCowsJCSVL+MfkqtBcaPi6QiTjOAID0EY1G1RPrVlGNV7lFS0eNG+w/oP7d25WzcLFMOXmjxvXt3KKdHc2KRqMUsBsgHA6rvLx8xHUj3UwQCARmrACQz28As8ntdsvn88nr9aqysjK5vLS0VD6fT263O4XZAUhXM3FzJoDsRAE7Ui4d72gHAAAAZhPTPAIjoxgRGI5iBgDARGXbcUYsFpN0sKhzuvp3bz84Zv/gtMcCgEPlFi1V/tHLxg5actLsJIMkh8OhQCAwZFksFlMkEpHdbh92HsHhcMxYLtn2+Q0g9dxut2pra+X3+9XV1aXi4mK5XC46rwMYlZE3Z8be2qTd/paZShVAmqOAHSmXTne0AwAAAKnCNI8AgImgmAEAMBnZdJwRiUQkSTs7mo0bc9eAqka/Fg8AmCOsVuuIn4FVVVUpyCa7Pr8BpAeLxaLq6upUpwEgwxhxc6YRN6EDyFwUsCPl0umOdgAAAAAAgHRHMUN66d3WO+b6gQMD6ov2KdeWK3OeecrjpCNmVgSQTux2uySN2wFuIhId4OyHj/6+DQAAAAAA0lM2n7MFMgkF7Ei5dLujHQAAAAAAABiPzWZTQWGBtt631bAxCwoLZLPZDBtvpjGzIoB0kmiGM6EOcONIdIArzDFNOy+kJ4oZAAAAABiN44zUO7zAJJmU1edsgUxCATsAAAAAAAAATFJJSYk2hzcrGo2OGRcKheTxeNTS0iKn0zlmrM1mm3B3/XTAzIqA8To7Oyf0vnLoz7Fk2vsKMNO4AQ0AAACA0TjOSB/F883SoMY9FzuXz9kCmYQCdgAAAAAAAABZq7u7W+FweMiysYpDHQ6HrFarpINF7BO9eOF0Oudc93FmVgSM1dnZKafjRHXHeiYUP9JMBx9mLSxQKLyZC63A/+EGNAAAJm46x8uY++g0DXyA44z0M9FzsXPxnC2QSShgBwAAAAAAAJC1wuGwysvLR1w3UnFoIBDgogaAGRGNRtUd61HLRYVyHjl6gUesf1CRXQOyH25WYY5p1LjQuwPyPBFTNBrlojdwiGy/AQ0YC8WIwHDZ/HfB8TJGQqdpYGQcZwDA5FHADgAAAAAAACBrORwOBQKBIctisZgikYjsdrsKCwuHxQPATHIeadaKYsuYMVVLZykZAEDGmE6nZIoRMVfxdzE9Rh8v09F9bqDTNAAAMAoF7Jg0DioAAAAAAAAwV1it1hE7HlVVVaUgGwAAgOyTDd2NY7GYJKlv5xZDxkuMkxhXml6nZIoRMVfxdzE9Rh8v09F97qDTNOYi6uEAYPZRwI5J46ACAABgbsmGi4QAAAAAAABIL9nU3TgSiUiSdnY0Gz5uopB0up2SKUZEujCygJC/i/TCDGgA0hn1cAAw+yhgx6RxUAEAADA3ZNNFQgAAAAAAAKSXbOpubLfbJUlFNV7lFi2d9nh9O7doZ0dzclyJmYUwdxhZQMjfRXrh9QCQzqiHA4DZRwE7Jo2DCgAAgLkhmy4SAgAAAAAAIP1kS3fjRMFTbtFS5R+9zPBxkV6M7CCejSggBACkAvVwADD7KGAHAAAAsli2XCQEAAAAAAAAgNlgZAfxbEQBIQAAAJAdKGAHAABZiy4oAAAAADC39G7rHXP9wIEB9UX7lGvLlTnPPOVxAAAAgNHQQRwAAAAAxkcBOwAAyFp0QQEAAAAA48Tjcfn9fnV1dam4uFgul0sWi2VW9m2z2VRQWKCt9201bMyCwgLZbDbDxgMAAEB2oIM4AAAAAIyPAnYAAJC16IICABiLER1c6d4KAMgWbW1t8nq9ikQiyWV2u13Nzc1yu90zvv+SkhJtDm9WNBodMy4UCsnj8ailpUVOp3PMWJvNppKSEiPTTFudnZ0T+rc79OdYsunfDpgMZokAAAAAAAAADqKAHQAAZC26oAAARmJ0B1e6twIA5rq2tjbV19erpqZGra2tKisrUzAYVGNjo+rr6+Xz+WatiH2iRdNOp5MZtv5PZ2ennI4T1R3rmVD8SDOWfZi1sECh8GaK2JESfTu3jLl+sP+A+ndvV87CxTLl5I0Y0797u6E5HV5gkkxilggAAAAAAADg/1DADgAAAACYc7q7uxUOh4csG6trqMPhkNVqlWR8B1c6kAIA5rJ4PC6v16uamhq1t7fLbD7YMbiiokLt7e2qq6vT6tWrVVtbK4vFkuJsMZJoNKruWI9aLiqU88jROz7H+gcV2TUg++FmFeaYRo0LvTsgzxMxRaNRvgNhVh28EdWqnR3NqU5lmOL5ZmlQ4x47MEsEAAAAAAAAsgUF7AAAAACAWRWLxSSN3xlxohLjJMaVpHA4rPLy8hHjR+oaGggEhnRhpYMrAAAT4/f7FYlE1NraqsHBQT311FPq6upScXGxXC6XGhoaVFlZKb/fr+rq6lSnizE4jzRrRfHYNxlULZ2lZIApOHgjasiQG1ETMUab6LEDxxgAAAAAgHRl5HW+xAxosf7BaY8FIPNQwA4AAAAga02nSzemLhKJSJLhnREjkYiqqqokHXytAoHAkPWxWEyRSER2u12FhYVD1jkcDkNzAQAgW3R1dUmS3nzzTV122WXJz3lJstvtuuuuu4bEAcBM4kZUAAAAzEVcywCQTmbiOl9k1wCNE4AsRAE7AAAAgKw13S7dmBq73S5JKqrxKrdo+mej+nZu0c6O5uS4kmS1Wkd8rRIF7gAAwBjFxcWSpM9//vOqqalRa2urysrKFAwG1djYqM9//vND4gAAAAAAwORwLQNAOjHyOl/srU3a7W9Rb5/0313x0eP6BxXZNSD74WYV5phGjQu9OzCtfADMLgrYAQAAAGQtunSnRuLfNbdoqfKPXmb4uAAAYPZUVlYqJydHRUVFamtrU07OwVPOFRUVamtr05IlS7Rz505VVlamOFMAmLzxLnxzAR0AAACzgWsZANKJkdf54vvel9kkfenXPUakJkmyFhbIZrMZNh6AmUMBOwAAAICsRZduAACA6fnLX/6i/v5+bd++XW63Ww0NDckO7E1NTdq+fXsyrrq6OrXJAsAE2Ww2WQsL5HkiZtiYXEAHIB2cRW4sg/0H1L97u3IWLpYpJ2/K4wAA5hauZQCYqyzzF2lgUGppaZHT6Rw1LhQKyePxjBsnHTymLykpMTpVADOAAnYAAAAAAAAAwJR0dXVJOniR6etf//qQTuulpaVqaWmRx+NJxgFAJigpKVEovFnRaHTMOC6gA5gom82mgkKrdnY0GzZmQaF1zBtj4vG4/H6/urq6VFxcLJfLJYvFYtj+AQAAAKM4nc4Rb9SZahyAzEABOwAAAAAAAABgSoqLiyVJxx9/vN54441hRVIbN24cEgdgdLHYwW7foWjckPES4yTGxeSUlJRMuOCcC+gAxlNSUqLN4dCs3RjT1tYmr9erSCSSXGa329Xc3Cy32z3p/AEAAAAAMBoF7AAAAAAAAACAKXG5XLLb7WpsbFR7e7uqq6uT6wYGBtTU1KTS0lK5XK7UJQlkiESRoaetx/Bxq6qqDB0TADB5s3VjTFtbm+rr61VTU6PW1laVlZUpGAyqsbFR9fX18vl8FLEDAAAAAFKOAnYAAAAAAABMWnd3t8Lh8JBlsVhMkUhEdrtdhYWFQ9Y5HA5ZrdbZTBHALLBYLGpublZ9fb3q6urU0NCQLJJqampSR0eHfD6fLBZLqlMF0p7dbpcktbgL5LRN/28mFI3L09aTHBcAMPfF43F5vV7V1NSovb1dZrNZklRRUaH29nbV1dVp9erVqq2t5fvZGOLx+LCZhfj3AozH3xoAAEB2o4AdAAAAAAAAkxYOh1VeXj7h+EAgMOUOggDSm9vtls/nk9frVWVlZXJ5aWkpHT4haeSbnkKh0JCfh8rWm54SN385bRatKDaucOfDN5UBAOYuv9+vSCSi1tbWZPF6gtlsVkNDgyorK+X3+4fMnIMPtLW1yev1JmdGkQ7eZNbc3Mz3WsBA0/1b4xgDAAAg81HADgAAAAAAgElzOBwKBAJDloVCIXk8HrW0tMjpdA6LBzB3ud1u1dbW0j0PIxrrpiePxzNsGTc9AQAwNV1dXZKksrKyEdcnlifiMFRbW5vq6+tVU1Oj1tbW5MxCjY2Nqq+v5+ZMwCBG/K1xjAEAAJD5KGAHAAAAAADApFmt1lEv/DmdTi4KAlnIYrHQyRMjGummp1gspkgkIrvdPqxDODc9AQAwNcXFxZKkYDCoM844Y9jNhcFgcEgcPhCPx+X1elVTU6P29vZkB/uKigq1t7errq5Oq1evVm1tLTdpAtNg1N8axxgAAACZjwJ2AAAAAAAAAACyVCwWkySFonFDxkuMkxhXGv2mp6qqKkP2CQAADnK5XLLb7brhhhv07rvv6p133kmuO+6443TkkUeqtLRULpcrhVmmJ7/fr0gkotbW1mRBbYLZbFZDQ4MqKyvl9/u5aROYBqP+1jjGAAAAyHwUsGPO6e7uVjgcHrIsFAoN+Xkoh8Mhq9U6K7kBAAAAwFzX2dmpaDQ6ZsxYx2gjxfVu6x0zbuDAgPqifcq15cqcZx41brxxAADIRpFIRJLkaesxfFyKRwAAmF0Wi0WXXHKJvvvd72rx4sW67777VFNTo46ODt1xxx3atGmTbrnlFjqIj6Crq0uSVFZWNuL6xPJEHICp4W8NAAAACRSwY84Jh8MqLy8fcZ3H4xm2LBAIMK35/6H4HwAAAMB0dHZ2yuk4Ud2xiRXAjXSMNoxJ2nrf1mlm9oGCwgLZbDbDxgMAINPZ7XZJUou7QE7b9IvZQtG4PG09yXEBAMDsicfj+sUvfqHTTz9d0WhU11xzTXJdaWmpTj/9dPl8PjU1NVHE/iHFxcWSpGAwqIqKimHrg8HgkDgAU8PfGgAAABLmTAH7O++8o3/7t3/T+vXrtWXLFuXn5+v444/XpZdeqq9+9atTLrKNRCIqLS2d1DbHHXdcsmsNZp/D4VAgEBiyLBaLKRKJyG63q7CwcFg8DqL4HwAAAMB0RKNRdcd61HJRoZxHjt4JPdY/qMiuAdkPN6swxzRqXOjdAXmeiKmlpUVOp3P0uFBIHo9n3DhJstlsKikpGf/JAACQJRLnS502i1YUG1fI9uHzsAAAYOb5/X5FIhG1trbqjDPOkN/vV1dXl4qLi+VyubRx40ZVVlbK7/eruro61emmFZfLJbvdrsbGRrW3t8ts/uC8xsDAgJqamlRaWiqXy5XCLIHMx98aAAAAEuZEAfuvf/1reTwe7dmzJ7msu7tbmzZt0qZNm3T//fdr/fr1WrZs2azkc+KJJ87KfjAyq9U6YlE109WOj+J/AAAAAEZwHmketwCuaukkxnM6J3Tz7ETjAAAAAACYi7q6uiRJZWVlslgsw4rUy8rKhsThAxaLRc3Nzaqvr1ddXZ0aGhpUVlamYDCopqYmdXR0yOfz0bkemCb+1gAAAJCQ8QXsL774oj73uc8pFotp/vz5amho0MqVKxWLxfToo4/qxz/+sV577TVdcMEF2rRpkxYsWDCp8Y899li9+uqr48Y1NTXpkUcekSRdeeWVU3ouQKpR/A8AAAAAAAAAAABkpuLiYklSMBhURUXFsPXBYHBIHIZyu93y+Xzyer2qrKxMLi8tLZXP55Pb7U5hdsDcwd8aAAAApDlQwH7jjTcqFospJydHv//973X22Wcn13384x/XCSecoFtvvVWvvfaampub9S//8i+TGj83Nzd5J/po4vG4nnrqKUnSggULdNFFF032aQAAAAAAAAAAAAAAMGUul0t2u12NjY1qb2+X2WxOrhsYGFBTU5NKS0vlcrlSmGV6c7vdqq2tld/vV1dXl4qLi+VyuegGDRiMvzUAAABkdAH7xo0b5ff7JUlf+tKXhhSvJ3i9Xq1bt06hUEhr167V7bffrtzcXEPzePLJJ7Vt2zZJUn19vQoLCw0dHwAAAAAAABhNd3e3wuHwkGWhUGjIz0M5HA5ZrdZZyQ0AAADA7LFYLGpublZ9fb3q6urU0NCgsrIyBYNBNTU1qaOjQz6fjwLRcVgsFlVXV6c6DWDO428NAAAgu2V0AXt7e3vy8dVXXz1ijNls1he+8AU1NDRo165d+tOf/qTzzz/f0Dweeuih5OMrr7zS0LEBAAAAAACAsYTDYZWXl4+4zuPxDFsWCAS0YsWKmU4LmDRuxgAAAJg+t9stn88nr9erysrK5PLS0lL5fD653e4UZgcAmIs4ngcAAFOR0QXszz77rCRp3rx5o16kk6Rzzz03+fjPf/6zoQXse/fuTRbS2+12fexjHzNsbAAAAAAAAGA8DodDgUBgyLJYLKZIJCK73T5stkCHwzGb6QETxs0YAAAAxnC73aqtrZXf71dXV5eKi4vlcrnovA4AmBEczwMAgKnI6AL2xF16y5YtU07O6E/l0ItyI93ZNx0+n0/d3d2SpM9//vMymUyGjg8AAAAAAACMxWq1jnjRr6qqKgXZAFPHzRgAAADGsVgsqq6uTnUaAIAswPE8AACYiowtYO/p6VE0GpUkLVmyZMzYRYsWad68edq/f7+2bNliaB4PPfRQ8vEXvvCFCW3T29ur3t7e5O979uwxNCcAAAAAAAAAyDTcjAEAAAAAQObheB4AAExFxhaw7927N/l4/vz548YnCtj37dtnWA6dnZ16+umnJUmVlZVatmzZhLZramrSnXfeaVgeAAAAAAAAAAAAAAAAAAAAs6Fv59iNhAf7D6h/93blLFwsU07elMYAMLdlbAF7T09P8nFe3shvcIfKz8+XdHCKGqO0tLRocHBQ0sS7r0tSQ0ODbr755uTve/bs0dKlSw3LCwAAAAAAAAAAZKbQuwNjro/1Dyqya0D2w80qzDFNeRwAAAAAAIDJstlsKii0amdHsyHjFRRaZbPZDBkLQGaZsQL2rVu36n//93/V3d2tM844Q4WFhYaOX1BQkHx84MCBceN7e3slydA8Hn74YUkHi+M/97nPTXi7/Pz8ZEE9AADAXBCPx+X3+9XV1aXi4mK5XC5ZLJZUpwUAAAAAQMaw2WyyFhbI84RxjXishQVcBAYAAAAAAIYpKSnR5nBI0Wh0zLhQKCSPx6OWlhY5nc5R42w2m0pKSoxOE0AGMLSAfe/evfrOd76jBx98UNu2bUsuf/XVV3XSSSclf3/00UfV1tamhQsX6sc//vGU9rVgwYLk43379o0bv3//fknS/Pnzp7S/D9u4caPC4bAk6cILL9Thhx9uyLgAAACZpq2tTV6vV5FIJLnMbrerublZbrc7dYkBAAAAAJBBSkpKFApvNuwCsMRFYADA1HV3dyevhyeEQqEhPw/lcDhktVpnJTcAADAyPr8xW0pKSiZ8vsHpdGrFihUznBGATGRYAfvrr7+uz372s3rrrbc0ODiYXG4yDZ++sqKiQh6PR4ODg7ryyit1zjnnTHp/BQUFKioq0s6dO7V169YxY99///1kAfvSpUsnva+RPPTQQ8nHX/jCFwwZEwAAINO0tbWpvr5eNTU1am1tVVlZmYLBoBobG1VfXy+fz0cROwAAAAAAE8QFYGD2UeSTXrLp9Uj35xoOh1VeXj7iOo/HM2xZIBDgcwkAgBTj8xsAkEkMKWDv6enRBRdcoDfffFPz5s3TV7/6VX3sYx9TTU3NiPF2u10rV67UH//4R/3qV7+aUgG7JJ100kny+/1644031N/fr5yckZ/OoQf+43UjmYi+vj49+uijkqSjjjpKn/70p6c9JgAAQKaJx+Pyer2qqalRe3u7zGazpIM3K7a3t6uurk6rV69WbW2tLBZLirMFAAAAAAAAhqPIJ71k0+uR7s/V4XAoEAgMWRaLxRSJRGS321VYWDgsHpjr0v3GEwDg8xsAkEkMKWD/0Y9+pDfeeEPz5s2T3+/XRz/60XG3+cxnPqM//OEP2rBhw5T3e84558jv92v//v0KBAI666yzRox7+umnk4+rqqqmvL+E9evXa+fOnZKkyy+/fNTCeSDbcQAPAHOb3+9XJBJRa2trsng9wWw2q6GhQZWVlfL7/aqurk5NkgAAAAAAAMAYKPJJL9n0eqT7c7VarSMWzBtxvR2TwzXX9JHuN54AAJ/fAIBMYkjldVtbm0wmk2688cYJFa9L0qmnnipJev3116e837q6OjU1NUmS1q1bN2IB+8DAgB566CFJ0uGHH66VK1dOeX8JifEk6corr5z2eMBcxQE8AMxtXV1dkqSysrIR1yeWJ+IA4MP6dm4Zc/1g/wH1796unIWLZcrJm/I4AAAAAACMhiKf9JJNr0c2PVdMD9dc00e633gCAAAAZBJDCtgTd/Wef/75E96mqKhIkrRr164p7/fMM8+Uy+WS3+/XAw88oCuvvFJnn332kJjm5uZkfjfeeKNyc3OHrH/qqaeSRe1XXnmlHnzwwTH3+d5772n9+vWSpFNOOWXCBftANuIAHgDmtuLiYklSMBhURUXFsPXBYHBIHAAk2Gw2FRRatbOj2bAxCwqtstlsho0HAACQbULvDoy5PtY/qMiuAdkPN6swxzTlcQAcRDddAMBEcc01fXDjCQAAAGAcQwrY9+3bJ0maP3/+hLfp7e2VpGEF5ZO1du1aVVVVKRaL6fzzz9dtt92mlStXKhaL6dFHH9V9990nSVq+fLm8Xu+09iVJjz76qA4cOCCJ7uvAeDiAB4C5zeVyyW63q7GxUe3t7TKbzcl1AwMDampqUmlpqVwuVwqzBJCOSkpKtDkcUjQaHTMuFArJ4/GopaVFTqdzzFibzaaSkhIj0wQAAMgKNptN1sICeZ6IGTamtbCAmwuBcdBNFwAwUVxzBQAAADAXGVLAXlRUpP/93/9VJBKZ8Mmzv/71r5Kko48+elr7Pu200/TYY4/J4/Foz549uu2224bFLF++XOvXr9eCBQumtS9JeuihhyRJFotFV1xxxbTHAwAAyFQWi0XNzc2qr69XXV2dGhoaVFZWpmAwqKamJnV0dMjn88lisaQ6VQBpqKSkZMIF506nk0INAACAGVJSUqJQeDM3F2YJun6nD7rpAgAAAMDcxfE3AIzPkAL2FStW6De/+Y2eeeYZud3uCW3z0EMPyWQy6eyzz572/letWqVXXnlFa9eu1fr167V161bl5eVp2bJluuSSS3T99dcb8gb/+uuv6/nnn5cknXfeedMuvgcAAMh0brdbPp9PXq9XlZWVyeWlpaXy+XwT/m4IAAAAAEgdbi7MHnT9Th900wUAAACAuYvjbwAYnyEF7PX19Vq/fr3uu+8+3XzzzeOe6P7e976nZ555RiaTSZdddpkRKei4447Tvffeq3vvvXdS21VXV2twcHBCsSeccMKEYwEAALKF2+1WbW2t/H6/urq6VFxcLJfLRed1AAAAAADSDF2/AQAAAACYeRx/A8D4DClg//znP681a9bolVdeUXV1tX7wgx/o05/+dHK9yWTS4OCgNm3apO9973t69NFHZTKZ5HK59JnPfMaIFAAAAJBCFotF1dXVU96eKdQAAAAAAJh5dP2eOs5dAAAAAAAmiuPvqeP4G8gehhSwm81m/epXv9I555yjSCSimpoaWa1WmUwmSQe7nO/du1e9vb2SpMHBQR1//PH6+c9/bsTuAQAAkOGYQg0AAAAAAKQzzl0AAAAAADDzOP4GsochBeySVFJSopdeekk33HCDfv7zn2v//v3Jde+++27ysclk0qWXXqof/ehHWrRokVG7BwAAQAZjCrX0wR3tAAAAAAAMx7kLAAAAAABmHsffQPYwrIBdko444gj97Gc/U2Njo9avX69NmzZpx44disfjKioq0mmnnaZVq1Zp+fLlRu4WAAAAGY4p1NIHd7QDAAAAADAc5y4AzLQDBw7ohz/8od58800df/zxuu6665SXl5fqtAAAAIBZxfE3kD0MLWBPOO6443TdddfNxNAAAAAAZhB3tAOYjlgsJkkKReOGjJcYJzEuAAAAMBmTmWWMGcYApNKtt96qNWvWqL+/P7nslltu0U033aTvfOc7KcwMAAAAAICZMSMF7AAAAAAyE3e0A5iOSCQiSfK09Rg+Lu9DAAAAmKzJzDLGDGMAUuXWW2/Vd7/7XS1evFh33XWXampq1NHRoa9//ev67ne/K0kUsQMAAAAA5hwK2AEAAAAAyGKdnZ2KRqNjxozWpfLDent7JUkt7gI5bZZp5xaKxuVp65Hdbp/2WAAAIH3E43H5/X51dXWpuLhYLpdLFsv0vzsAHzaZWcaYYQxAKhw4cEBr1qzR4sWLtXXrVuXkHLx8/+Uvf1lXXXWVlixZojVr1uiuu+5SXl5eirMFAGBiOOYDAAATYUgB+zPPPDPpbUwmkwoKCrRw4ULZ7XYOuAEAAAAAmGWdnZ060eFUT6x7QvEf7lI5GqfNohXFxl2QOLSwCAAAZLa2tjZ5vd7kzC2SZLfb1dzcLLfbnbrEMCcxyxiAdPfDH/5Q/f39uuuuu5LF6wk5OTn65je/qWuvvVY//OEP9Y//+I+pSRIAgEngmA9Auunu7lY4HB6ybKzGTQ6HQ1ardVZyA7KdIQXs1dXVMplMU08iJ0cf/ehHddVVV+nLX/6ycnNzjUgLAAAAAACMIRqNqifWraIar3KLlo4aN9h/QP27tytn4WKZcka/AT321ibt9rfMRKoAAGAOaGtrU319vWpqatTa2qqysjIFg0E1Njaqvr5ePp+PggYAQFZ58803JUk1NTUjrk8sT8QBAJDOOOYDkI7C4bDKy8tHXDdS46ZAIDDizfAAjGdIAbskDQ4OTnnbvr4+vfDCC9q0aZN+9KMfqaOjQyUlJUalBgAAAAAAxpBbtFT5Ry8bO2jJSeOO07dzi0EZAUBmoptPeuH1SC/xeFxer1c1NTVqb2+X2WyWJFVUVKi9vV11dXVavXq1amtrmVoeAJA1jj/+eElSR0eHvvzlLw9b39HRMSQOAIB0xTEfgHTlcDgUCASGLIvFYopEIrLb7cNmAXY4HLOZHpDVDClg/9Of/qS+vj7dcccdev7553XMMcfokksu0emnn64jjzxSkvTuu+9q06ZN+sUvfqFt27bprLPO0p133qlYLKZgMKjHHntMwWBQwWBQn/3sZ/XSSy8NmyYNAAAAAAAAANIV3XzSC69HevH7/YpEImptbU0WMiSYzWY1NDSosrJSfr9f1dXVqUkSAIBZdt111+mWW27R17/+dV111VVDro/39/frG9/4hnJycnTdddelMEukm3g8Lr/fr66uLhUXF8vlclEMCiDlOOYDkK6sVuuI5/yqqqpSkA2AQxlSIX7uuefqwgsv1MaNG3XDDTfo29/+tgoKCobFXXHFFbr77ru1evVq/eAHP9D3vvc9/eY3v1Ftba1uv/123XHHHfrXf/1XhUIhrVu3Tl/5yleMSA8AAAAAAAAAZhzdfNILr0d66erqkiSVlZWNuD6xPBEHAEA2yMvL00033aTvfve7WrJkib75zW+qpqZGHR0d+sY3vqHt27frlltuUV5eXqpTRZpoa2uT1+tVJBJJLrPb7Wpubpbb7U5dYgCyHsd8AABgsgwpYF+3bp06Ojp0wQUXaO3atWPG5ufn69///d/19ttv67e//a3uu+8+XXPNNZKkb33rW3r22Wf19NNPq62tjQJ2AAAAAAAAABmDbj7phdcjvRQXF0uSgsGgKioqhq0PBoND4gAAyBbf+c53JElr1qzRtddem1yek5OjW265JbkeaGtrU319vWpqatTa2qqysjIFg0E1Njaqvr5ePp+PInYAKcMxHwAAmCzz+CHj+8lPfiKTyZQsRJ+Ia6+9VoODg/rpT386ZPlVV10lSXr55ZeNSA0AAAAAAAAAAKSYy+WS3W5XY2OjBgYGhqwbGBhQU1OTSktL5XK5UpQhAACp853vfEf79+/XmjVrdP3112vNmjXav38/xetIisfj8nq9qqmpUXt7uyoqKjR//nxVVFSovb1dNTU1Wr16teLxeKpTBZClOOYDAACTZUgH9lAoJElasmTJhLdJxIbD4SHLnU6nJOm9994zIjUAAAAAyEjd3d3DjpcSx16Jn4dyOByyWq2zkhsAAAAwWRaLRc3Nzaqvr1ddXZ0aGhqSXUObmprU0dEhn88ni8WS6lQBAEiJvLw8/eM//mOq00Ca8vv9ikQiam1tldk8tE+h2WxWQ0ODKisr5ff7VV1dnZokAWQ1jvkAAMBkGVLA3tPTI0naunWrTjvttAlts3XrVklSb2/vkOW5ubmSROEFAABAFovH4/L7/erq6lJxcbFcLhcntJB1wuGwysvLR1zn8XiGLQsEAlqxYsVMpwUAAABMmdvtls/nk9frVWVlZXJ5aWmpfD6f3G53CrMDAABIX11dXZKksrKyEdcnlifiACAVOOYDAACTYUgB+/HHH69gMKj7779fq1atmtA2P/7xj5PbHmrbtm2SpCOPPNKI1AAAAJBh2tra5PV6FYlEksvsdruam5s5sYWs4nA4FAgEhiyLxWKKRCKy2+0qLCwcFg8AAACkO7fbrdraWm5aBgAAmITi4mJJUjAYVEVFxbD1wWBwSBwApArHfAAAYKIMKWCvr6/Xq6++qo6ODq1evVpNTU3JTuof1tfXp6997Wvq6OiQyWTSJZdcMmT9n//8Z0nSsmXLjEgNAAAAGaStrU319fWqqalRa2trcmrBxsZG1dfX050BWcVqtY7YUb2qqioF2QAAAADGsVgsqq6uTnUaAAAAGcPlcslut6uxsVHt7e0ym83JdQMDA2pqalJpaalcLlcKswSAgzjmAwAAE2FIAfvq1av18MMP64033tCaNWv0i1/8QpdcconKy8uTndTfffddBQIB/eIXv9DWrVslHey+7vV6k+PE43E98sgjMplMOv/8841IDQAAABkiHo/L6/WqpqZmyAn4iooKtbe3q66uTqtXr1ZtbS1dGgAAAAAAAAAAWcNisai5uVn19fWqq6tTQ0NDsgFMU1OTOjo65PP5OHcOAAAAIGMYUsBeWFioP/7xj7rgggv06quvasuWLVqzZs2IsYODg5KksrIyrV+/fsi091u3btXVV18t6WBXdwAAAGQPv9+vSCSi1tbWId1jJMlsNquhoUGVlZXy+/10bQAAAACAQ3R3dyscDg9ZFovFFIlEZLfbh5yHlySHwyGr1TqbKQIAAGCa3G63fD6fvF6vKisrk8tLS0uZvRQAAKTUSOemQqHQkJ+H4twUAMmgAnZJWrJkiQKBgH7wgx/oP/7jP4a9ISUsX75c1157ra6//nrl5uYOWXfcccfpn//5n41KCQAAABmkq6tL0sEbHUeSWJ6IAwAAAAAcFA6HVV5ePuH4QCCgFStWzGBGAABgsuLxuPx+v7q6ulRcXCyXy0U3bQzjdrtVW1vL/ysAACCtjHVuyuPxDFvGuSkAkoEF7JKUk5OjG2+8UTfeeKO2bdumYDCo999/X5K0aNEinXzyyTr22GON3CUAAADmiOLiYklSMBhURUXFsPXBYHBIHAAAAADgIIfDoUAgMGRZKBSSx+NRS0uLnE7nsHgAAJA+2tra5PV6FYlEksvsdruam5vpqo1hLBYLs5QCAIC0MtK5qfFmBwQAQwvYD3XMMcfomGOOmanhAQAAMMe4XC7Z7XY1Njaqvb1dZrM5uW5gYEBNTU0qLS2Vy+VKYZZA6tCFCwAAAKOxWq2jdq1yOp10tAIAII21tbWpvr5eNTU1am1tVVlZmYLBoBobG1VfXy+fz0cROwAAANLaaOemqqqqUpANgExhHj8EAAAAmHkWi0XNzc3q6OhQXV2dNmzYoL1792rDhg2qq6tTR0eH7rnnHgp2kZXa2tq0bNkyrVy5UpdffrlWrlypZcuWqa2tLdWpAQAAAAAAYIri8bi8Xq9qamrU3t6uiooKzZ8/XxUVFWpvb1dNTY1Wr16teDye6lQBAAAAADDUjHVgBwAAACbL7XbL5/PJ6/WqsrIyuby0tJROQ8hadOECAAAAMkd3d7fC4fCQZeNNmW21WmczRQBAGvH7/YpEImptbR0yI6Ukmc1mNTQ0qLKyUn6/X9XV1alJEgAAAACAGWB4AfvevXv15JNP6uWXX1Y0GlUsFtPg4OCo8SaTSQ888IDRaQBIQ/F4XH6/X11dXSouLpbL5aKLLgBgGLfbrdraWj4zAA3vwpW4kJnowlVXV6fVq1ertraWvxEAAAAgDYTDYZWXl084PhAIjDjFNgAgO3R1dUmSysrKRlyfWJ6IAwAAAABgrjCsgH1gYEDf+ta31NzcrP37909om8HBQQrYgSzR1tYmr9erSCSSXGa329Xc3EzHUADAMBaLhY5CgOjCBQAAYCSaK2A2OBwOBQKBIctCoZA8Ho9aWlrkdDqHxQMAsldxcbEkKRgMqqKiYtj6YDA4JA4AAAAAgLnCsAL2q666Sj/72c80ODgoi8WioqIi7dixQyaTSUuWLNH777+vffv2STrYdd1mszEtJpAl2traVF9fr5qaGrW2tqqsrEzBYFCNjY2qr6+Xz+ejiB0AAGAEdOECAAAwBs0VMFusVuuoHdWdTifd1gEAQ7hcLtntdjU2Ng6ZfU862ECuqalJpaWlcrlcKcwSAAAAAADjmccPGd9//ud/qqWlRdLBQvYdO3boySefTK5/5513tGfPHoVCIf3DP/yDzGazFi1apN/+9rd6++23jUgBQJqKx+Pyer2qqalRe3u7KioqNH/+fFVUVKi9vV01NTVavXq14vF4qlMFAABIO4d24RoJXbgAAADGl2iucMopp2jDhg3au3evNmzYoFNOOUX19fVqa2tLdYpZJx6P66mnnlJra6ueeuopzg0CALKWxWJRc3OzOjo6VFdXN+S7Sl1dnTo6OnTPPfcwawwAAAAAYM4xpAP7unXrJEknn3yyfvKTn0iStm3bNizuxBNP1Pe+9z194hOfkNvt1mc/+1m9+OKLWrhwoRFpAEhDfr9fkUhEra2tQ7pGSJLZbFZDQ4MqKyvl9/tVXV2dmiQBAADSFF240kd3d7fC4fCQZaFQaMjPQzkcDmYdmyG8FgCAyfhwc4XE96lEc4W6ujqtXr1atbW1FIbNErrhp5d4PC6/36+uri4VFxfL5XLxtwAAs8ztdsvn88nr9aqysjK5vLS0lFmMAQAAAABzliEF7M8995xMJpO++tWvTih+1apVuvLKK7Vu3Tr927/9m+644w4j0gCQhrq6uiRJZWVlI65PLE/EAQAA4AOJLlz19fWqq6tTQ0ODysrKFAwG1dTUpI6ODvl8PgpMZkE4HFZ5efmI6zwez7BlgUBAK1asmOm0shKvBQBgMmiukF4S3fBramrU2tqa/G7b2Nio+vp6ivRmGTcTAED6cLvdqq2t5aYiAAAAAEDWMKSAfceOHZKk5cuXJ5cdejDd29ur/Pz8IdvU19frJz/5iZ544gkK2IE5rLi4WJIUDAZVUVExbH0wGBwSBwAAgKHowpUeHA6HAoHAkGWxWEyRSER2u12FhYXD4jEzeC0AAJNBc4X0QTf8qZmp2We4mQAA0o/FYuGGOgAAAABA1jCkgD3hiCOOSD5esGBB8vGOHTu0dOnSIbFHHXWUJA3p7AFg7nG5XLLb7WpsbBxyYUqSBgYG1NTUpNLSUrlcrhRmCQAAkN7owpV6Vqt1xC7eVVVVKcgmu/FaAAAmg+YK6YNu+FMzE7PPcDMBAAAAAAAAgFQzpIB98eLF6uzs1HvvvTdkWV5envr6+vTKK68MK2B/5513JEk9PT1GpAAgTVksFjU3N6u+vl51dXVqaGhIdvNpampSR0eHfD4fF0IAAADGQRcuAKnW2dmpaDQ6ZsxYHWE/zGazqaSkxJDcAGA0NFdIH3TDn5qZmH2GmwkAAAAAAAAApJohBeynnHKKOjs79T//8z9auXLlwYFzcnTaaadp48aNWrdunS644IIh2/zoRz+SJB133HFGpAAgjbndbvl8Pnm9XlVWViaXl5aWMhUtAAAAMAeF3h0Yc32sf1CRXQOyH25WYY5pyuNg9nR2dupEx4nqiU2sEcFIHWE/rKCwQJvDmyliBzCjaK6QPuiGPzUzMfsMNxMAAAAAAAAASDVDCtirq6vV0dGhJ598Ul/96leTyz0ej55//nk98cQTuvLKK3XppZdq//79+ulPf6onn3xSJpNJtbW1RqQAIM253W7V1tbK7/erq6tLxcXFcrlcXBwEAAAA5hBz/nyZTZLniZhhY1oLC2Sz2QwbD1MTjUbVE+vRkmuWKP+Y/FHjBg4MqC/ap1xbrsx55lHjerf1aut9WxWNRilgBzDjaK6QHuiGnz64mQAAAAAAAABAqhlSwH7RRRdp9erV+t3vfqft27dr8eLFkqRrr71W69at03//93+rpaVFLS0tQ7YrKSnRP/3TPxmRAoAMYLFYmHIWAAAAmMMs8xdpYFBqaWmR0+kcNS4UCsnj8YwbJ0k2m40C5zSSf0y+Cu2FYwctn51cAGAyaK6QenTDTx/cTAAAAAAAAAAg1QwpYC8tLdVbb72leDyuww477IPBc3L0X//1X/qHf/gH/fznP1dfX58kyWQy6YILLtCPfvQjLVq0yIgUAAAAAABAmnA6nVqxYoVhcQAAGIHmCqlHN/z0wM0EAAAAAAAAAFLNkAJ2SbLb7SMuX7RokR5++GH98Ic/1Ouvv67+/n4tW7ZMRxxxhFG7BgAAAAAAAAAAGYBu+OmBmwkAAAAAAAAApJJhBezjWbBgAV3VAAAAAAAAAADIcnTDTw/cTAAAAAAAAAAgVQwpYDebzTKbzWpsbNStt95qxJAAAAAAAAAAAACYQdxMAAAAAAAAACAVzEYMkpeXp8HBQblcLiOGAwAAAAAAAAAAAAAAAAAAAADMQYYUsB9zzDGSpJwcQxq6AwAAAAAAAAAAAAAAAAAAAADmIEMK2D/2sY9JkgKBgBHDAQAAAAAAAAAAAAAAAAAAAADmIEMK2G+44QZZLBbdc8892rNnjxFDAgAAAAAAAAAAAAAAAAAAAADmGEMK2MvLy/Xv//7veuedd3TuuefqL3/5ixHDAgAAAAAAAAAAAAAAAAAAAADmkBwjBvniF78oSTrxxBP18ssvy+VyaenSpfrIRz6iRYsWyWKxjLqtyWTSAw88YEQaAAAAAAAAAABgmrq7uxUOh5O/x+Nxtbe3S5Ief/xxxePxIef9HQ6HrFbrbKcJAAAAAAAAAMhQhhSwP/jggzKZTJIOFqQPDg6qs7NTW7ZsGXO7wcFBCtgBAAAAAAAAAEgj4XBY5eXlI65rbGxUY2PjkGWBQEArVqyYjdQAAAAAAAAAAHOAIQXsJSUlyQJ2AAAAAAAAAACQuRwOhwKBgP74xz/q1ltvlcvl0uWXX66cnBz19/frkUcekd/v13e+8x19/OMfl8PhSHXKAAAAAAAAAIAMYkgBeyQSMWIYAAAAAAAAAACQYlarVaeeeqouvvhi1dTUqL29XWazObn+K1/5iurq6vTDH/5QN910kywWSwqzBQAAAAAAAABkGkMK2AEAAAAAQOaJxWKSpL6dWwwZLzFOYlwAAJC5/H6/IpGIWltbhxSvS5LZbFZDQ4MqKyvl9/tVXV2dmiQBAAAAAAAAABmJAnYAAAAAALJUYka1nR3Nho9bVVVl6JgAAGB2dXV1SZLKyspGXJ9YnogDAAAAAAAAAGCiZqyAfWBgQO+99566u7t17LHHMoUoAAAAAABpxm63S5KKarzKLVo67fH6dm7Rzo7m5LgAACBzFRcXS5KCwaAqKiqGrQ8Gg0PiAAAAAAAAAACYKEML2OPxuB588EE9+OCDeuGFF9TX1yeTyaRXXnlFJ510UjKuo6NDzzzzjBYuXKjbb7/dkH2/8847+rd/+zetX79eW7ZsUX5+vo4//nhdeuml+upXvyqr1WrIfiTpySefVEtLi5599ll1dXUpJydHixcv1kc+8hF94hOf0Oc//3nNnz/fsP0BAAAAADATCgsLJUm5RUuVf/Qyw8cFAACZy+VyyW63q7GxUe3t7TKbzcl1AwMDampqUmlpqVwuVwqzBAAAAAAAAABkIsMK2Hfs2KG6ujo9//zzGhwcHDPWbrfrwgsvlMlk0gUXXKCPfvSj09r3r3/9a3k8Hu3Zsye5rLu7W5s2bdKmTZt0//33a/369Vq2bHoX499//31dffXV+uUvfzls3Z49e/T666/r8ccf19lnnz3t5wQAAAAAAAAAQKpYLBY1Nzervr5edXV1amhoUFlZmYLBoJqamtTR0SGfz8fsqwAAAAAAAACASTOPHzK+eDyuVatW6bnnnpPJZNKll16q73//+6PGl5WV6ayzzpIkPfHEE9Pa94svvqjPfe5z2rNnj+bPn69//dd/1V/+8hf94Q9/0Fe+8hVJ0muvvaYLLrhAe/funfJ+du/erfPOOy9ZvH7RRRfpZz/7mZ577jm98MILamtr04033qglS5ZM6/kAAAAAAAAAAJAO3G63fD6fXn31VVVWVuqwww5TZWWlgsGgfD6f3G53qlMEAAAAAAAAAGQgQzqw//SnP9ULL7yg3Nxc/epXv9KnPvUpSdL1118/6jYXXnihnn/+eT377LPT2veNN96oWCymnJwc/f73v9fZZ5+dXPfxj39cJ5xwgm699Va99tpram5u1r/8y79MaT833HCDAoGA8vPz9fOf/1wXXnjhkPWnn366LrroIq1Zs0bxeHw6TwkAAAAAAAAAgLTgdrtVW1srv9+vrq4uFRcXy+Vy0XkdAAAAAAAAADBlhhSwt7a2ymQy6dprr00Wr4/ntNNOkyRt3rx5yvvduHGj/H6/JOlLX/rSkOL1BK/Xq3Xr1ikUCmnt2rW6/fbblZubO6n9PPvss3r44YclSXfdddew4vVDmUwm5eQY8s8KAAAAAAAAAEDKWSwWVVdXpzqNtNTZ2aloNDpmTCgUGvJzLDabTSUlJYbkBgAAAAAAAADpypBK61deeUWSxizs/rCjjjpKkrRz584p77e9vT35+Oqrrx4xxmw26wtf+IIaGhq0a9cu/elPf9L5558/qf18//vflyQtXLhwzK7yAAAAAAAAAAAgO3R2dupEh1M9se4JxXs8nnFjCgqt2hwOUcQOAAAAAAAAYE4zpIB9165dkqSioqIJbxOPxyVpWtOMPvvss5KkefPmqby8fNS4c889N/n4z3/+86QK2A8cOKBf/vKXkqTzzjtPBQUFkg7mv23bNsXjcR199NHJ5QAAAAAAAAAAYO6LRqPqiXWrqMar3KKlo8YN9h9Q/+7tylm4WKacvFHj+nZu0c6OZkWjUQrYAQAAAAAAAMxphhSwH3HEEdqxY4e2bNmi0047bULbvP7665KkI488csr7TUy3uWzZMuXkjP5UHA7HsG0m6uWXX1ZPT48k6ZRTTtGePXv0jW98Qz/96U+Thft5eXn62Mc+pttvv51pVAEAAAAAAAAAM6qzs1PRaHTMmMS58ImcE7fZbBRMT0Nu0VLlH71s7KAlJ81OMgAAAAAAAACQAQwpYD/55JO1Y8cOvfDCC7rwwgsntM1jjz0mk8mkM844Y0r77OnpSZ6gX7JkyZixixYt0rx587R//35t2bJlUvv5n//5n+TjgYEBnX766cni+4QDBw7oySef1B/+8Ac1NTXpn/7pnya1DwAAAAAAAAAAJqKzs1MnOpzqiXVPKN7j8YwbU1Bo1eZwiCJ2AAAAAAAAAMCsMKSAva6uTn/84x/1/e9/XzfffLMWLVo0ZrzP59Ovf/1rmUwmXXzxxVPa5969e5OP58+fP258ooB93759k9rPe++9l3z87W9/Wz09Pfr0pz+tb37zm/rIRz6iPXv26PHHH9fXvvY17d69W1/72tfkcDhUW1s76pi9vb3q7e1N/r5nz55J5QQAAAAAADBZ3d3dCofDQ5bFYjFFIhHZ7XYVFhYOWedwOGS1WpNxktS7rVdGSIyTGBcAMHHRaFQ9sW4V1XiVW7R01LjB/gPq371dOQsXy5STN2pc384t2tnRrGg0SgE7AAAAAAAAAGBWGFLA/pWvfEX33HOPtmzZovPPP18//elPddJJw6fD3LFjh9auXavvfve7MplMKisr06WXXjqlffb09CQf5+WNfvI9IT8/X9LkL4zu379/yD7PO+88dXR0yGKxSJKOPPJI/d3f/Z3Kysp07rnnamBgQA0NDbrwwgtlMplGHLOpqUl33nnnpPIAAAAAAACYjnA4rPLy8gnHBwIBrVixQpIUiUQkSVvv22poTpFIRFVVVYaOCQDZIrdoqfKPXjZ20JLh5+kBAAAAAAAAAEg1QwrY8/Pz9ctf/lLV1dUKBAI65ZRTdOKJJybXezwe7du3T2+99ZYGBwc1ODiooqIiPf7446MWeY+noKAg+fjAgQPjxic6nn+4m9hk9iMd7MKeKF4/1DnnnCO32y2fz6dQKKRXX31VH/nIR0Ycs6GhQTfffHPy9z179mjp0tE75QAAAADAXDdSZ+hQKDTk56EO7QwNYGIcDocCgcCQZaFQSB6PRy0tLXI6ncPiE+x2uyRpyTVLlH9M/rRz6d3Wq633bU2OCwAAAAAAAAAAACB7GFLALkmnnnqqXnjhBV155ZXasGHDkMKDl19+WYODg8nfzzzzTD3yyCP6m7/5mynvb8GCBcnH+/btGzc+0Ul9/vz5U97PkUceqdNOO23U2E996lPy+XySpBdeeGHUAvb8/PxkR3gAAAAAwNidoT0ez7Blh3aGBjAxVqt11L8bp9M55t9UoiFA/jH5KrRPrjnAWCbbaAAAAAAAAAAAAABA5jOsgF2Sli1bpj//+c969tln9atf/UqbNm3Sjh07FI/HVVRUpNNOO00XXnihzjvvvGnvq6CgQEVFRdq5c6e2bh17+ur3338/WcA+2U7nh8YvWbJkwrHvvvvupPYDAAAAANlspM7QsVhMkUhEdrt9WJHroZ2hAQAAAAAAAAAAAABA5jC0gD3hnHPO0TnnnDMTQw9x0kknye/364033lB/f79yckZ+Ood2g//wdNjjOfnkk5OP4/H4mLGHrh8tFwAAAADAcKN1hq6qqkpBNgAAAAAAAAAAAAAAYKaYU53AdCSK5Pfv3z+sU9+hnn766eTjyRY/HHfccSopKZEkRSIRDQ4Ojhr75ptvJh8fe+yxk9oPAAAAAAAAAAAAAAAAAAAAAMx1hhSw/+3f/q06OjrU399vxHATVldXl3y8bt26EWMGBgb00EMPSZIOP/xwrVy5ctL7ufjiiyVJe/bs0R/+8IdR49ra2pKPZ6MDPQAAAAAAAAAAAAAAAAAAAABkEkMK2H/+85+rtrZWRx99tK677jo9++yzRgw7rjPPPFMul0uS9MADD2jDhg3DYpqbmxUKhSRJN954o3Jzc4esf+qpp2QymWQymXTVVVeNuJ9//Md/VEFBgSTp5ptv1p49e4bFtLS06KmnnpIkXXDBBVq6dOlUnxYAAAAAAAAAAAAAAAAAAAAAzEmGFLAvWLBAg4ODeu+99/Qf//EfOvfcc1VaWqrbb79df/3rX43YxajWrl2rwsJC9ff36/zzz1dTU5Oee+45/elPf9K1116rW2+9VZK0fPlyeb3eKe2jpKRE3/zmNyVJr776qs4880ytW7dOgUBAf/rTn3TDDTcki98PO+wwrVmzxpDnBgAAAAAAAAAAAAAAAAAAAABzSY4Rg+zYsUMdHR165JFH9Jvf/Ea9vb165513dPfdd+vuu+/WKaecIo/Ho7/927/VkiVLjNhl0mmnnabHHntMHo9He/bs0W233TYsZvny5Vq/fr0WLFgw5f3ccssteu+99/Ttb39bmzdv1he/+MVhMUcddZTa29t1wgknTHk/AAAAAAAAAAAAAAAAAAAAADBXGdKBPT8/XxdffLEef/xxbd++Xffff78+/vGPy2QyaXBwUK+88or+6Z/+SXa7XStXrtQDDzyg3bt3G7FrSdKqVav0yiuv6KabbtLy5ctltVp1+OGH6/TTT9e3v/1tvfjii1q2bNm099PU1KQ///nP+vznPy+73a78/HwtXLhQZ5xxhr71rW/ptdde09lnn23AMwIAAAAAAAAAAAAAAAAAAACAuceQDuyHOuyww/TFL35RX/ziF9XV1aVHH31UjzzyiAKBgAYHB/XMM8/omWee0fXXX6/PfOYz8ng8crvd097vcccdp3vvvVf33nvvpLarrq7W4ODghOPPPvtsitQBAAAAAAAAAMhysVhMktS3c4sh4yXGSYwLAAAAAAAAAHOV4QXshyouLtZNN92km266Sa+//rpaWlr06KOP6vXXX1dvb6/a29v1q1/9Sv39/TOZBgAAAAAAAAAAgKEikYgkaWdHs+HjVlVVGTomAAAAAAAAAKSTGS1gP9QJJ5ygO++8U3feeaceffRRXXfdddq1a9ekup8DAAAAAAAAAACkA7vdLkkqqvEqt2jptMfr27lFOzuak+MCAAAAAAAAwFw1awXs7777rh577DH97Gc/08aNG2drtwAAAAAAAAAAAIYrLCyUJOUWLVX+0csMHxcAAAAAAAAA5qoZLWDfv3+/2tra9Mgjj+gPf/iD4vF4suO6yWRSVVWVrrjiiplMAQAAAAAAAAAAAAAAAAAAAACQJgwvYO/v79dvf/tbPfLII/r1r3+tWCwmScnC9ZNOOklXXHGFLr/8ch133HFG7x4AAAAAAAAAAAAAAAAAAAAAkKYMK2D3+/362c9+Jp/Pp/fff1/SB0Xrxx57rC677DJdccUVOvXUU43aJQAAAAAAAAAAAAAAAAAAAAAggxhSwH7cccdp69atkj4oWl+4cKHq6+t1xRVX6Nxzz5XJZDJiVwAAAAAAAAAAAAAAAAAAAACADGVIAfuWLVskSfn5+brgggt0xRVX6IILLlBeXp4RwwMAAAAAAAAAAAAAAAAAAAAA5gBDCthXrlypK664QhdffLEWLlxoxJAAAAAAAAAAAAAAAAAAAAAAgDnGkAL2P/zhD0YMAwAAAAAAAAAAAAAAAAAAAACYw8ypTgAAAAAAAAAAAAAAAAAAAAAAkB0M6cD+YYFAQE8++aSCwaDee+89SdIRRxyhsrIyffKTn1R5eflM7BYAAAAAAAAAAAAAAAAAAAAAkMYMLWB/9dVXdc0112jjxo2jxtx2220666yz9B//8R865ZRTjNw9AAAAAACYgr6dW8ZcP9h/QP27tytn4WKZcvImNU53d7fC4fCQZaFQaMjPQzkcDlmt1omkDQAAAAAAAAAAAADIQIYVsD/55JNatWqVDhw4oMHBQUlSbm6uioqKJEk7d+5UX1+fJOm5557TmWeeqY6ODn3iE58wKgUAAAAAADAJNptNBYVW7exoNmzMgkKrbDZb8vdwODzqTGwej2fYskAgoBUrVhiWDwAAc00sFpM0/g1oE5UYJzEuAAAAAAAAAAAzzZAC9mg0qksuuUS9vb0ym8360pe+pK985Ss67bTTlJNzcBfxeFwvvviifvzjH+snP/mJent7dckll+j1119PFrkDAAAAAIDZU1JSos3hkKLR6JhxoVBIHo9HLS0tcjqdY8babDaVlJQkf3c4HAoEAkNiYrGYIpGI7Ha7CgsLh6xzOByTfBaYTb3besdcP3BgQH3RPuXacmXOM095HADA6CKRiCQZegNaYtyqqipDxwQAAAAAAAAAYCSGFLCvXbtWu3fvVl5enn75y1/qU5/61LAYi8Wi008/XaeffrouvvhirVq1Srt379batWv1zW9+04g0AAAAAADAJJWUlAwpOB+L0+mcdHd0q9U64jYUyGWWg936C7T1vq2GjVlQWDCkWz8AYGLsdrskqajGq9yipdMer2/nFu3saE6OCwAAAAAAAADATDOkgH39+vUymUy6/vrrRyxe/7Dzzz9fN9xwg+69916tX7+eAnYAAAAAAIA0drBb/+YZ7dYPAJiYxOwluUVLlX/0MsPHBQAAAAAAAABgphlSwP72229Lki688MIJb3PhhRfq3nvv1VtvvWVECgAAAAAAAJhBM92tHwCATNW3c8uY6wf7D6h/93blLFwsU07elMcBAAAAAAAAgLnCkAL2np4eSdK8efMmvE0itre314gUAAAAAAAAAAAAZo3NZlNBoVU7O5oNG7Og0CqbzWbYeAAAAAAAAACQjgwpYD/66KPV2dmpF198UeXl5RPa5sUXX5QkLV682IgUAAAAAAAAAAAAZk1JSYk2h0OKRqNjxoVCIXk8HrW0tMjpdI4Za7PZJjzjCQAAAAAAAABkKkMK2F0ul1paWnT33Xfr0ksv1WGHHTZm/N69e/Xtb39bJpNJLpfLiBQAAAAAAAAAAABmVUlJyYQLzp1Op1asWDHDGQEAAAAAAABA+jMbMci1114rSXr77bf1sY99TJs2bRo1dtOmTTr33HP15ptvDtkWAAAAAAAAAAAAAAAAAAAAADC3GdKBvaqqStddd51++MMf6tVXX9VZZ52lk08+WWeddZaOOuoomUwmbd++Xc8//7z++te/Jre77rrrVFVVZUQKAAAAAAAAAAAAAAAAAAAAAIA0Z0gBuyT9+7//u6xWq+69914NDAwoGAwOKVaXpMHBQUmS2WzW6tWrdffddxu1ewAAAAAAAAAAAAAAAAAAAABAmjMbNZDJZNJ3vvMdvfTSS/r7v/97nXDCCRocHBzy3wknnKC///u/10svvaRvf/vbMplMRu0eAAAAAAAAAAAAAAAAAAAAAJDmDOvAnlBWVqYf/OAHkqQDBw7o/ffflyQtWrRIeXl5Ru8OAAAAAAAAAAAAAAAAAAAAAJAhDC9gP1ReXp4WL148k7sAAAAAAAAAAAAAAAAAAAAAAGQI81Q2+u1vf6sVK1ZoxYoVeuSRRya17SOPPJLc9sknn5zK7gEAAAAAAAAAAAAAAAAAAAAAGWjSBeyDg4O66aab9PLLL+vII4/U5ZdfPqntL7vsMtlsNr300kvyer2T3T0AAAAAAAAAAAAAAAAAAAAAIENNuoD9j3/8o1577TWZzWatWbNm0js0mUz63ve+J4vFomAwqKeffnrSYwAAAAAAAAAAAAAAAAAAAAAAMs+kC9gff/xxSdJ5552nk046aUo7Pemkk/SpT31KkuTz+aY0BgAAAAAAAAAAAAAAAAAAAAAgs0y6gH3jxo0ymUxatWrVtHZcU1OjwcFBPffcc9MaBwAAAAAAAAAAAAAAAAAAAACQGSZdwP7OO+9Ikk488cRp7Xj58uWSpEgkMq1xAAAAAAAAAAAAAAAAAAAAAACZYdIF7Lt375YkHXHEEdPacWL7PXv2TGscAAAAAAAAAAAAAAAAAAAAAEBmmHQB+2GHHSZJ2rVr17R2nNh+wYIF0xoHAAAAAAAAAAAAAAAAAAAAAJAZJl3AfuSRR0qS/ud//mdaOw6FQpKko446alrjAAAAAAAAAAAAAAAAAAAAAAAyw6QL2M8880wNDg7q17/+9bR2/Mtf/lImk0lnnHHGtMYBAAAAAAAAAAAAAAAAAAAAAGSGSRewf+Yzn5Ek/f73v9ezzz47pZ0+88wz+v3vfz9kPAAAAAAAAAAAAAAAAAAAAADA3JYz2Q0uvvhi2e12RSIRXXLJJXrmmWd0wgknTHj71157TZdeeqlMJpPsdrvq6+snmwIAAAAAAAAAAFmtb+eWMdcP9h9Q/+7tylm4WKacvCmPAwAAAAAAAACA0SZdwJ6bm6t77rlH9fX12rFjh8rLy/Wtb31LX/7ylzVv3rxRt9u3b5/uv/9+feMb39C+fftkMpnU3NysnJxJpwAAAAAAAAAAQFay2WwqKLRqZ0ezYWMWFFpls9kMGw8AAAAAAAAAgLFMqXrc7Xbrzjvv1D//8z9r//79uvnmm3XHHXfI5XKpvLxcRx11lObNm6f9+/dr+/bt+u///m/5/X7t379fg4ODkqQ777xTdXV1Rj4XAAAAAAAAAADmtJKSEm0OhxSNRseMC4VC8ng8amlpkdPpHDPWZrOppKTEyDQBAAAAAAAAABjVlNuf33HHHVqyZIluuOEGdXd3a9++ffrd736n3/3udyPGJwrXrVarvv/97+uqq66a6q4BAAAAAAAAAMhaJSUlEy44dzqdWrFixQxnBAAAAAAAAADAxJmns/HVV1+t1157TTfffLNsNpsGBwdH/c9ms8nr9eq1116jeB0AAAAAAAAAAAAAAAAAAAAAstCUO7AnHHPMMbrnnnt0zz336K9//atefvll7dy5U3v37tWCBQtUVFSkU089VSeffLIR+QIAAAAAAAAAAAAAAAAAAAAAMtS0C9gPdfLJJ1OoDgAAAAAAAAAAAAAAAAAAAAAYkTnVCQAAAAAAAAAAAAAAAAAAAAAAsgMF7AAAAAAAAAAAAAAAAAAAAACAWUEBOwAAAAAAAAAAAAAAAAAAAABgVlDADgAAAAAAAAAAAAAAAAAAAACYFRSwAwAAAAAAAAAAAAAAAAAAAABmBQXsAAAAAAAAAAAAAAAAAAAAAIBZQQE7AAAAAAAAAAAAAAAAAAAAAGBWUMAOAAAAAAAAAAAAAAAAAAAAAJgVc6aA/Z133pHX65XD4dC8efN0xBFH6IwzztB3v/tddXd3T2vsBx98UCaTaUL/Pfjgg8Y8IQAAAAAAAAAAAAAAAAAAAACYY3JSnYARfv3rX8vj8WjPnj3JZd3d3dq0aZM2bdqk+++/X+vXr9eyZctSmCUAAAAAAAAAAAAAAAAAAAAAZLeML2B/8cUX9bnPfU6xWEzz589XQ0ODVq5cqVgspkcffVQ//vGP9dprr+mCCy7Qpk2btGDBgmnt7z//8z91zDHHjLp+yZIl0xofAAAAAAAAAAAAAAAAAAAAAOaqjC9gv/HGGxWLxZSTk6Pf//73Ovvss5PrPv7xj+uEE07Qrbfeqtdee03Nzc36l3/5l2ntb/ny5bLb7dNLGgAAAAAAAAAAAAAAAAAAAACyUEYXsG/cuFF+v1+S9KUvfWlI8XqC1+vVunXrFAqFtHbtWt1+++3Kzc2d7VQBAAAAAADmlO7uboXD4SHLQqHQkJ+Hcjgcslqts5IbAAAAAAAAAAAAgPSV0QXs7e3tycdXX331iDFms1lf+MIX1NDQoF27dulPf/qTzj///FnKEAAAAAAAwBjxeFx+v19dXV0qLi6Wy+WSxWJJWT7hcFjl5eUjrvN4PMOWBQIBrVixYqbTAgAAAAAAAAAAAJDmMrqA/dlnn5UkzZs3b9QLppJ07rnnJh//+c9/poAdAAAAAABklLa2Nnm9XkUikeQyu92u5uZmud3ulOTkcDgUCASGLIvFYopEIrLb7SosLBwWDwAAAAAAAAAAAAAZXcCemI562bJlyskZ/akceoF0pCmsJ+Pqq6/W5s2bFY1Gddhhh2nZsmX65Cc/qb//+7/XscceO62xAQAAAAAAPqytrU319fWqqalRa2urysrKFAwG1djYqPr6evl8vpQUsVut1hE7qldVVc16LgAApIvu7m6Fw+EhyxLXJUa6PuFwOGS1WmclNwAAAAAAAABIFxlbwN7T06NoNCpJWrJkyZixixYt0rx587R//35t2bJlWvt96qmnko937typnTt36vnnn1dzc7O+973v6dprr53W+AAAAAAAAAnxeFxer1c1NTVqb2+X2WyWJFVUVKi9vV11dXVavXq1amtrZbFYUpwtAAAIh8Ojzhjr8XiGLQsEAiPeEAYAAAAAAAAAc1nGFrDv3bs3+Xj+/PnjxicK2Pft2zel/f3N3/yN3G63zj77bC1dulSS9NZbb+nxxx+Xz+dTT0+P/u7v/k4mk0nXXHPNmGP19vaqt7c3+fuePXumlBMAAAAAAJjb/H6/IpGIWltbk8XrCWazWQ0NDaqsrJTf71d1dXVqkgQAAEkOh0OBQGDIslgspkgkIrvdrsLCwmHxAAAAAAAAAJBtMraAvaenJ/k4Ly9v3Pj8/HxJB08UT9ZFF12kK6+8UiaTacjyM844Q5/73OfU0dEht9utvr4+3XTTTbrwwgt19NFHjzpeU1OT7rzzzknnAQAAAAAAsktXV5ckqaysbMT1ieWJOAAAkFpWq3XEjupVVVUpyAYAAAAAAAAA0pN5/JD0VFBQkHx84MCBceMTHc8/3N1kIhYuXDiseP1QNTU1+sY3viFJ6u7u1gMPPDDmeA0NDdq9e3fyvy1btkw6JwAAAAAAMPcVFxdLkoLB4IjrE8sTcQAAAAAAAAAAAACQ7jK2gH3BggXJx/v27Rs3fv/+/ZKk+fPnz0g+11xzTbLI/emnnx4zNj8/X4cddtiQ/wAAAAAAAD7M5XLJbrersbFRAwMDQ9YNDAyoqalJpaWlcrlcKcoQAAAAAAAAAAAAACYnYwvYCwoKVFRUJEnaunXrmLHvv/9+soB96dKlM5LPUUcdlczn//2//zcj+wAAAAAAANnFYrGoublZHR0dqqur04YNG7R3715t2LBBdXV16ujo0D333COLxZLqVAEAAAAAAAAAAABgQjK2gF2STjrpJEnSG2+8of7+/lHjwuFw8rHT6ZyxfBId2AEAAAAAAIzidrvl8/n06quvqrKyUocddpgqKysVDAbl8/nkdrtTnSIAAAAAAAAAAAAATFhOqhOYjnPOOUd+v1/79+9XIBDQWWedNWLc008/nXxcVVU1I7m8++67ikajkqRjjjlmRvYBAAAAAACyk9vtVm1trfx+v7q6ulRcXCyXy0XndQAA0lw8HufzGwAAAAAAAAA+JKM7sNfV1SUfr1u3bsSYgYEBPfTQQ5Kkww8/XCtXrpyRXO677z4NDg5Kks4999wZ2QcAAAAAAMheFotF1dXVuuyyy1RdXU3xGwAAaa6trU3Lli3TypUrdfnll2vlypVatmyZ2traUp0aAAAAAAAAAKRURhewn3nmmXK5XJKkBx54QBs2bBgW09zcrFAoJEm68cYblZubO2T9U089JZPJJJPJpKuuumrY9pFIRC+++OKYeXR0dOib3/ymJKmwsFBXX331VJ4OAAAAAAAAAACYA9ra2lRfX69TTjlFGzZs0N69e7Vhwwadcsopqq+vp4gdAAAAAAAAQFbLSXUC07V27VpVVVUpFovp/PPP12233aaVK1cqFovp0Ucf1X333SdJWr58ubxe76THj0QiWrlypc4++2ytWrVKp556qo466ihJ0ltvvSWfzyefz5fsvn7PPffo2GOPNe4JAgAAAAAAAACAjBGPx+X1elVTU6P29naZzQd7CVVUVKi9vV11dXVavXq1amtrmVEFAAAAAAAAQFbK+AL20047TY899pg8Ho/27Nmj2267bVjM8uXLtX79ei1YsGDK+9mwYcOIHd4TrFar1qxZo2uuuWbK+wAAAAAAAAAAAJnN7/crEomotbU1WbyeYDab1dDQoMrKSvn9flVXV6cmSQAAAAAAAABIoYwvYJekVatW6ZVXXtHatWu1fv16bd26VXl5eVq2bJkuueQSXX/99bJarVMau7y8XC0tLdqwYYM2bdqkrq4uRaNR9ff3a9GiRTr55JP1iU98Ql/+8peTndkBAAAAAAAAAEB26urqkiSVlZWNuD6xPBEHAAAAAAAAANlmThSwS9Jxxx2ne++9V/fee++ktquurtbg4OCo6xcsWKArrrhCV1xxxXRTBAAAAAAAAAAAc1xxcbEkKRgMqqKiYtj6YDA4JA4AAAAAAAAAso15/BAAAAAAAAAAAABMhMvlkt1uV2NjowYGBoasGxgYUFNTk0pLS+VyuVKUIQAAAAAAAACkFgXsAAAAAAAAAAAABrFYLGpublZHR4fq6uq0YcMG7d27Vxs2bFBdXZ06Ojp0zz33yGKxpDpVAAAAAAAAAEiJnFQnAAAAAAAAAAAAMJe43W75fD55vV5VVlYml5eWlsrn88ntdqcwOwAAAAAAAABILQrYAQAAAAAAAAAADOZ2u1VbWyu/36+uri4VFxfL5XLReR0AAAAAAABA1jOnOgEAAAAAAAAAAAAAAAAAAAAAQHaggB0AAAAAAAAAAMBgbW1tWrZsmVauXKnLL79cK1eu1LJly9TW1pbq1AAAAAAAAAAgpShgBwAAAAAAAAAAMFBbW5vq6+t1yimnaMOGDdq7d682bNigU045RfX19RSxAwAAAAAAAMhqOalOAAAAAAAAAMbr7OxUNBodMyYUCg35ORabzaaSkhJDcgMAYC6Lx+Pyer2qqalRe3u7zOaDvYQqKirU3t6uuro6rV69WrW1tbJYLCnOFgAAAAAAAABmHwXsAAAAAAAgqbu7W+FweMiysYqcHQ6HrFbrrOSGievs7JTTcaK6Yz0Tivd4POPGWAsLFApvpogdAIBx+P1+RSIRtba2JovXE8xmsxoaGlRZWSm/36/q6urUJAkAAAAAAAAAKUQBOwAAAAAASAqHwyovLx9x3UhFzoFAQCtWrJjptDBJ0WhU3bEetVxUKOeR5lHjYv2DiuwakP1wswpzTKPGhd4dkOeJmKLRKAXsAACMo6urS5JUVlY24vrE8kQcAAAAAAAAAGQbCtgBAAAAAECSw+FQIBAYsiwWiykSichut6uwsHBYPGbGSN3wx3stPtwN33mkWSuKLWPup2qpMfkCAICDiouLJUnBYFAVFRXD1geDwSFxAAAAAAAAAJBtKGAHAAAAAABJVqt1xI7qVVVVKcgmu43VDX8kdMMHACA9uFwu2e12NTY2qr29XWbzB7OhDAwMqKmpSaWlpXK5XCnMEgAAAAAAAABShwJ2AAAAAACANDRSN/xQKCSPx6OWlhY5nc5h8QAAIPUsFouam5tVX1+vuro6NTQ0qKysTMFgUE1NTero6JDP55PFMvYsKQAAAAAAAAAwV1HADgAAAAAAkIZG64YvSU6nk27rAACkMbfbLZ/PJ6/Xq8rKyuTy0tJS+Xw+ud3uFGYHAAAAAAAAAKlFATsAAAAAAAAAAIDB3G63amtr5ff71dXVpeLiYrlcLjqvAwAAAAAAAMh6FLADAAAAAAAAAADMAIvFourq6lSnAQAAAAAAAABpxZzqBAAAAAAAAAAAAAAAAAAAAAAA2YECdgAAAAAAAAAAAAAAAAAAAADArKCAHQAAAAAAAAAAAAAAAAAAAAAwKyhgBwAAAAAAAAAAAAAAAAAAAADMCgrYAQAAAAAAAAAAAAAAAAAAAAD/n707D4+izBo2fp5OQljCvkZBQAKCgooIsphhUXEcUDDioA4iOjooyovIouAoKCK4gOK4jAruiguDoOCoCIIBQYVRNhNZBAmyCbImISHJ+f7g6zJNdki6T5L7d11chlR1dXXd7ztNdZ+uDgoG2AEAAAAAAAAAAAAAAAAAAAAAQcEAOwAAAAAAAAAAAAAAAAAAAAAgKBhgBwAAAAAAAAAAAAAAAAAAAAAEBQPsAAAAAAAAAAAAAAAAAAAAAICgYIAdAAAAAAAAAAAAAAAAAAAAABAUDLADAAAAAAAAAAAAAAAAAAAAAIKCAXYAAAAAAAAAAAAAAAAAAAAAQFCEh3oHAAAAAAAAAAAAyqLMzEyJj4+XnTt3SnR0tMTGxkpYWFiodwsAAAAAAAAAQoorsAMAAAAAAAAAABSz2bNnS0xMjHTv3l1uuOEG6d69u8TExMjs2bNDvWsAAAAAAAAAEFIMsAMAAAAAAAAAABSj2bNnS79+/aRNmzayfPlyOXz4sCxfvlzatGkj/fr1Y4gdAAAAAAAAQLnGADsAAAAAAAAAAEAxyczMlBEjRkjv3r1lzpw50rFjR4mKipKOHTvKnDlzpHfv3jJy5EjJzMwM9a4CAAAAAAAAQEgwwA4AAAAAAAAAAFBM4uPjZevWrTJ27Fjx+QLfhvH5fDJmzBjZsmWLxMfHh2gPAQAAAAAAACC0GGAHAAAAAAAAAAAoJjt37hQRkdatW+e63P97/3oAAAAAAAAAUN4wwA4AAAAAAAAAAFBMoqOjRURk3bp1uS73/96/HgAAAAAAAACUN+Gh3gEAAAAAAAAAAHDyUlJSJDExMeB3CQkJAf/NrmXLllK5cuWg7Ft5FBsbK02aNJFHH31U5syZIz7fH9cSysrKkkmTJknTpk0lNjY2hHsJAAAAAAAAAKHDADsAAAAAAAAAAKVYYmKitGvXLtdlAwYMyPG7VatWyQUXXFDSu1VuhYWFyZQpU6Rfv37St29fGTNmjLRu3VrWrVsnkyZNknnz5smsWbMkLCws1LsKAAAAAAAAACHBADsAAAAAAAAAAKVYy5YtZdWqVQG/S01Nla1bt0qTJk2kUqVKOdZHyYqLi5NZs2bJiBEjpHPnzt7vmzZtKrNmzZK4uLgQ7h0AAAAAAAAAhBYD7AAAAAAAAAAAlGKVK1fO9YrqXbp0CcHewC8uLk769Okj8fHxsnPnTomOjpbY2FiuvA4AAAAAAACg3GOAHQAAAAAAAKcsMzOTAT0AAE4QFhYm3bp1C/VuAAAAAAAAAIApvlDvAAAAAAAAAEq32bNnS7NmzaR79+5yww03SPfu3aVZs2Yye/bsUO8aAAAAAAAAAAAAAGMYYAcAAAAAAMBJmz17tlxzzTWyZ8+egN/v2bNHrrnmGobYAQAAAAAAAAAAAARggB0AAAAAAAAnJTMzU26//XYREbnkkktk+fLlcvjwYVm+fLlccsklIiJyxx13SGZmZih3EwAAAAAAAAAAAIAhDLADAAAAAADgpCxevFh+++03ufjii2Xu3LnSsWNHiYqKko4dO8rcuXPl4osvlj179sjixYtDvasAAAAAAAAAAAAAjGCAHQAAAAAAACfFP5j+0EMPic8X+DKTz+eTcePGBawHAAAAAAAAAAAAAOGh3gEAAAAAAAAAAFB8MjMzJT4+Xnbu3CnR0dESGxsrYWFhod4tAAAAAAAAAABEhCuwAwAAAAAA4CR169ZNRETGjRsnWVlZAcuysrJk/PjxAesBAEre7NmzJSYmRrp37y433HCDdO/eXWJiYmT27Nmh3jUAAAAAAAAAAESEAXYAAAAAAACcpG7dukm9evVk6dKl0qdPH1m+fLkcPnxYli9fLn369JFly5ZJvXr1GGAHgCCZPXu29OvXT9q0aRPwv8lt2rSRfv36McQOAAAAAAAAADAhPNQ7AAAAAAAAgNIpLCxMXnjhBenXr58sXLhQ5s2b5y2rXLmyOOfkhRdekLCwsBDuJQCUD5mZmTJixAjp3bu3zJkzR3y+49ev6dixo8yZM0f69u0rI0eOlD59+vC/ywAAAAAAAACAkOIK7AAAAAAAADhpcXFxMmvWLKlfv37A7+vXry+zZs2SuLi4EO0ZAJQv8fHxsnXrVhk7dqw3vO7n8/lkzJgxsmXLFomPjw/RHgIAAAAAAAAAcBxXYAcAAAAAAMApiYuLkz59+kh8fLzs3LlToqOjJTY2liv8AkAQ7dy5U0REWrdunety/+/96wEAAAAAAAAAECoMsAMAAAAAAOCUhYWFSbdu3UK9GwBQbkVHR4uIyLp166Rjx445lq9bty5gPQAAAAAAAAAAQsVX8CoAAAAAAAAAAMCy2NhYadKkiTz66KOSlZUVsCwrK0smTZokTZs2ldjY2BDtIQAAAAAAAAAAxzHADgAAAAAAAABAKRcWFiZTpkyRefPmSd++fWX58uVy+PBhWb58ufTt21fmzZsnTz75pISFhYV6VwEAAAAAAAAA5VyZGWD/5ZdfZMSIEdKyZUupUqWK1KpVS9q3by9PPPGEpKSklMh9pqSkyJlnninOOXHOSZMmTUrkfgAAAAAAAAAAKEhcXJzMmjVL1q5dK507d5Zq1apJ586dZd26dTJr1iyJi4sL9S4CAAAAAAAAACDhod6B4vDxxx/LgAED5NChQ97vUlJSZOXKlbJy5UqZPn26zJ8/X2JiYor1fh988EHZsmVLsW4TAAAAAADgVKWmpoqISMLezGLZnn87/u0CAOyKi4uTPn36SHx8vOzcuVOio6MlNjaWK68DAAAAAAAAAMwo9QPs33//vfTv319SU1MlKipKxowZI927d5fU1FR599135eWXX5YNGzZIr169ZOXKlVK1atViu9+nn35aKlasKBEREXL48OFi2S4AAAAAAMCp2rp1q4iIDJh9tNi326VLl2LdJgCg+IWFhUm3bt1CvRsAAAAAAAAAAOSq1A+wDxs2TFJTUyU8PFw+//xz6dSpk7esR48e0rx5cxk9erRs2LBBpkyZIuPHjz/l+8zMzJTbbrtNMjMzZdy4cTJjxgwG2AEAAAAAgBlNmjQREZG34ipKqzqnfsXdhL2ZMmD2UW+7AAAAAAAAAAAAAHCySvUA+7fffivx8fEiIvL3v/89YHjdb8SIEfLqq69KQkKCTJs2Te6//36JiIg4pfudNm2arFq1Ss466yy59957ZcaMGae0PQAAAAAAgOJUqVIlERFpVSdMLog+9QH2E7cLAAAAAAAAAAAAACfLF+odOBVz5szxfr755ptzXcfn88nAgQNFROTAgQPy5ZdfntJ9/vLLL/Lggw+KiMi///1vqVChwiltDwAAAAAAAAAAAAAAAAAAAADKi1I9wL506VIREalSpYq0a9cuz/W6du3q/bxs2bJTus8hQ4ZIcnKy3HjjjdKtW7dT2hYAAAAAAAAAAAAAAAAAAAAAlCeleoA9ISFBRERiYmIkPDw8z/VatmyZ4zYn491335VPPvlEatasKVOmTDnp7QAAAAAAAAAAAAAAAAAAAABAeZT31LdxR48elb1794qISMOGDfNdt2bNmlKlShVJTk6WpKSkk7q//fv3y9133y0iIpMnT5a6deue1HZERNLS0iQtLc37+6FDh056WwAAAAAAABZkZmZKfHy87Ny5U6KjoyU2NlbCwsJCvVsAAAAAAAAAAAAAjCm1V2A/fPiw93NUVFSB61epUkVERI4cOXJS9zdq1CjZvXu3dOrUSW677baT2obfpEmTpHr16t6fRo0andL2AAAAAAAAQmn27NkSExMj3bt3lxtuuEG6d+8uMTExMnv27FDvGgAAAAAAAAAAAABjSvUV2P0qVKhQ4PqRkZEiIpKamlrk+/rqq6/klVdekfDwcPn3v/8tzrkibyO7MWPGyD333OP9/dChQwyxAwAAAABQzm3bts37trm8JCQkBPy3oPWCYfbs2dKvXz/p3bu3zJw5U1q3bi3r1q2TRx99VPr16yezZs2SuLi4oO0PAAAAAAAAAAAAANtK7QB7xYoVvZ/T09MLXD8tLU1ERCpVqlSk+0lLS5N//OMfoqoybNgwOffcc4u2o7mIjIz0BuoBAAAAAAC2bdsmZ7VsJUdTUwq1/oABA0p4jwonMzNTRowYIb1795Y5c+aIz3f8y/46duwoc+bMkb59+8rIkSOlT58+EhYWFuK9BQAAAAAAAAAAAGBBqR1gr1q1qvfzkSNHClw/OTlZRESioqKKdD8TJ06Un376SRo1aiQPPfRQ0XYSAAAAAACgEPbu3StHU1Okdu8RElE7729p04x0yTi4W8Kr1xcXnvc30qX+vFIOxr9VErsaID4+XrZu3SozZ870htf9fD6fjBkzRjp37izx8fHSrVu3Et8fAAAAAAAAAAAAAPaV2gH2ihUrSu3atWXfvn2yffv2fNfdv3+/N8DeqFHebwLn5rHHHhMRkUsvvVQ+/vjjXNfxbzs5OVneffddERGpV6+e9OjRo0j3BQAAAAAAyreI2o0kskFM/is1PLvA7Rzbl1RMe5S/nTt3iohI69atc13u/71/PQAAAAAAAAAAAAAotQPsIiJnn322xMfHy6ZNmyQjI0PCw3N/OImJid7PrVq1KtJ9pKeni4jIq6++Kq+++mq+6+7du1euv/56ERHp2rUrA+wAAAAAAKBMi46OFhGRdevWSceOHXMsX7duXcB6AAAAAAAAAAAAAOAreBW7Lr74YhE5fuXzVatW5bnekiVLvJ+7dOlS4vsFAAAAAABQHsTGxkqTJk3k0UcflaysrIBlWVlZMmnSJGnatKnExsaGaA8BAAAAAAAAAAAAWFOqB9j79u3r/ZzX1dGzsrLkjTfeEBGRGjVqSPfu3Yt0H6pa4J/GjRuLiEjjxo293y1evPikHhMAAAAAAEBpERYWJlOmTJF58+ZJ3759Zfny5XL48GFZvny59O3bV+bNmydPPvmkhIWFhXpXAQAAAAAAAAAAABhRqgfYO3To4F3Ba8aMGbJ8+fIc60yZMkUSEhJERGTYsGESERERsHzx4sXinBPnnAwaNKjE9xkAAAAAAKAsiYuLk1mzZsnatWulc+fOUq1aNencubOsW7dOZs2aJXFxcaHeRQAAAAAAAAAAAACGhId6B07VtGnTpEuXLpKamio9e/aUsWPHSvfu3SU1NVXeffddeemll0REpEWLFjJixIgQ7y0AAAAAAEDZExcXJ3369JH4+HjZuXOnREdHS2xsLFdeBwAAAAAAAAAAAJBDqR9gb9u2rbz33nsyYMAAOXTokIwdOzbHOi1atJD58+dL1apVQ7CHAAAAAAAAZV9YWJh069Yt1LsBAAAAAAAAAAAAwDhfqHegOFx55ZWyZs0aGT58uLRo0UIqV64sNWrUkAsvvFAee+wx+f777yUmJibUuwkAAAAAAAAAAAAAAAAAAAAA5VqpvwK7X+PGjWXq1KkyderUIt2uW7duoqqndN9bt249pdsDAAAAAAAAAAAAAAAAAAAAQHlQJq7ADgAAAAAAAAAAAAAAAAAAAACwjwF2AAAAAAAAAAAAAAAAAAAAAEBQMMAOAAAAAAAAAAAAAAAAAAAAAAgKBtgBAAAAAAAAAAAAAAAAAAAAAEHBADsAAAAAAAAAAAAAAAAAAAAAICgYYAcAAAAAAAAAAAAAAAAAAAAABAUD7AAAAAAAAAAAAAAAlv+wMgABAABJREFUAAAAAACAoGCAHQAAAAAAAAAAAAAAAAAAAAAQFAywAwAAAAAAAAAAAAAAAAAAAACCggF2AAAAAAAAAAAAAAAAAAAAAEBQMMAOAAAAAAAAAAAAAAAAAAAAAAgKBtgBAAAAAAAAAAAAAAAAAAAAAEHBADsAAAAAAAAAAAAAAAAAAAAAICgYYAcAAAAAAAAAAAAAAAAAAAAABEV4qHcAAAAAAAAAJSPht6x8l6dmqGw9kCVNavikUrg76e0AAAAAAAAAAAAAQGExwA4AAAAAAFDG+CKjxOdEBnyYWmzbrFypotSpU6fYtgcAAAAAAAAAAACgfGKAHQAAAAAAoIwJi6opWSry1ltvSatWrfJcLyEhQQYMGFDgeiIiderUkTPOOKO4dxUAAAAAAAAAAABAOcMAOwAAAAAAQBnVqlUrueCCC4ptPQAAAAAAAAAAAAA4VQywAwAAAAAAhFhqaqqIiBzbl1Qs2/Nvx79dAAAAAAAAAAAAALCCAXYAAAAAAIAQ27p1q4iI7Js3pdi326VLl2LdJgAAAAAAAAAAAACcCgbYAQAAAAAAQqxJkyYiIlK79wiJqN3olLd3bF+S7Js3xdsuAAAAAAAAAAAAAFjBADsAAAAAAECIVapUSUREImo3ksgGMcW+XQAAAAAAAAAAAACwwhfqHQAAAAAAAAAAAAAAAAAAAAAAlA8MsAMAAAAAAAAAAAAAAAAAAAAAgoIBdgAAAAAAAAAAAAAAAAAAAABAUDDADgAAAAAAAAAAAAAAAAAAAAAICgbYAQAAAAAAAAAAAAAAAAAAAABBwQA7AAAAAAAAAAAAAAAAAAAAACAoGGAHAAAAAAAAAAAAAAAAAAAAAAQFA+wAAAAAAAAAAAAAAAAAAAAAgKBggB0AAAAAAAAAAAAAAAAAAAAAEBQMsAMAAAAAAAAAAAAAAAAAAAAAgoIBdgAAAAAAAAAAAAAAAAAAAABAUDDADgAAAAAAAAAAAAAAAAAAAAAICgbYAQAAAAAAAAAAAAAAAAAAAABBwQA7AAAAAAAAAAAAAAAAAAAAACAoGGAHAAAAAAAAAAAAAAAAAAAAAAQFA+wAAAAAAAAAAAAAAAAAAAAAgKBggB0AAAAAAAAAAAAAAAAAAAAAEBQMsAMAAAAAAAAAAAAAAAAAAAAAgiI81DsAAAAAAACA447tS8p3uWakS8bB3RJevb648AonvR0AAAAAAAAAAAAACBUG2AEAAAAAAEKsTp06UrFSZdk3b0qxbbNipcpSp06dYtseAAAAAAAAAAAAABQHBtgBAAAAAABC7IwzzpCfEhNk7969+a6XkJAgAwYMkLfeektatWqV77p16tSRM844ozh3EwAAAAAAAAAAAABOGQPsAAAAAAAABpxxxhmFHjhv1aqVXHDBBSW8RwAAAAAAAAAAAABQ/Hyh3gEAAAAAAAAAAAAAAAAAAAAAQPnAADsAAAAAAAAAAAAAAAAAAAAAICgYYAcAAAAAAAAAAAAAAAAAAAAABAUD7AAAAAAAAAAAAAAAAAAAAACAoGCAHQAAAAAAAAAAAAAAAAAAAAAQFAywAwAAAAAAAAAAAAAAAAAAAACCggF2AAAAAAAAAAAAAAAAAAAAAEBQMMAOAAAAAAAAAAAAAAAAAAAAAAgKBtgBAAAAAAAAAAAAAAAAAAAAAEFRJgbYf/nlFxkxYoS0bNlSqlSpIrVq1ZL27dvLE088ISkpKae07YSEBHn22WflpptukgsuuEAaNmwoFStWlCpVqsiZZ54p/fv3l7lz54qqFtOjAQAAAAAAAAAAAAAAAAAAAICyKTzUO3CqPv74YxkwYIAcOnTI+11KSoqsXLlSVq5cKdOnT5f58+dLTEzMSW1/4sSJ8vbbb+e6bMuWLbJlyxZ5//33pWvXrvKf//xHateufVL3AwAAAAAAAAAAAAAAAAAAAABlXakeYP/++++lf//+kpqaKlFRUTJmzBjp3r27pKamyrvvvisvv/yybNiwQXr16iUrV66UqlWrFvk+wsPD5aKLLpIuXbpImzZtpEGDBlK3bl3Zv3+/JCYmyosvvijr1q2TJUuWyJVXXilLly4Vn69MXNgeAAAAAAAAAAAAAAAAAAAAAIpVqR5gHzZsmKSmpkp4eLh8/vnn0qlTJ29Zjx49pHnz5jJ69GjZsGGDTJkyRcaPH1/k+5g+fbqEh+d+mC699FK544475K9//avMnj1bli9fLvPmzZOrrrrqZB8SAAAAAAAAAAAAAAAAAAAAAJRZpfZS4d9++63Ex8eLiMjf//73gOF1vxEjRkirVq1ERGTatGly7NixIt9PXsPrfmFhYTJq1Cjv7/59AgAAAAAAAAAAAAAAAAAAAAAEKrUD7HPmzPF+vvnmm3Ndx+fzycCBA0VE5MCBA/Lll1+WyL5UrVrV+/no0aMlch8AAAAAAAAAAAAAAAAAAAAAUNqV2gH2pUuXiohIlSpVpF27dnmu17VrV+/nZcuWlci+vPvuu97PLVu2LJH7AAAAAAAAAAAAAAAAAAAAAIDSLjzUO3CyEhISREQkJiZGwsPzfhjZB8r9tykOe/fulY0bN8r06dPl1VdfFRGROnXqyN/+9rdiuw8AAAAAAAAAAAAAAAAAAAAAKEtK5QD70aNHZe/evSIi0rBhw3zXrVmzplSpUkWSk5MlKSnplO63W7dusmTJklyX1alTRz788EOpUaNGgdtJS0uTtLQ07++HDh06pf0CAAAAAAAAAAAAAAAAAAAAgNLAF+odOBmHDx/2fo6Kiipw/SpVqoiIyJEjR0pkf/7v//5PEhIS5OKLLy7U+pMmTZLq1at7fxo1alQi+wUAAAAAAAAAAAAAAAAAAAAAlpTKAfajR496P1eoUKHA9SMjI0VEJDU19ZTu99VXX5W1a9fKmjVr5KuvvpKpU6dK8+bN5dlnn5Wbb75Zdu/eXajtjBkzRg4ePOj9OdUrwwMAAAAAAAAAAAAAAAAAAABAaRAe6h04GRUrVvR+Tk9PL3D9tLQ0ERGpVKnSKd1v06ZNA/4eGxsrd9xxh1x77bUyb948ad++vXz99dfSsGHDfLcTGRnpDdUDAAAAAAAAAAAAAAAAAAAAQHlRKq/AXrVqVe/nI0eOFLh+cnKyiIhERUUV+75UrFhRXn31ValcubIkJSXJ6NGji/0+AAAAAAAAAAAAAAAAAAAAAKAsKJUD7BUrVpTatWuLiMj27dvzXXf//v3eAHujRo1KZH/q1KkjXbp0ERGRuXPnyrFjx0rkfgAAAAAAAAAAAAAAAAAAAACgNCuVA+wiImeffbaIiGzatEkyMjLyXC8xMdH7uVWrViW2P3Xr1hURkZSUFNm7d2+J3Q8AAAAAAAAAAAAAAAAAAAAAlFaldoD94osvFhGR5ORkWbVqVZ7rLVmyxPvZf5X0kvDrr796P0dFRZXY/QAAAAAAAAAAAAAAAAAAAABAaVVqB9j79u3r/fzqq6/muk5WVpa88cYbIiJSo0YN6d69e4nsy/bt22X58uUiItK4cWOpWrVqidwPAAAAAAAAAAAAAAAAAAAAAJRmpXaAvUOHDhIbGysiIjNmzPAGyLObMmWKJCQkiIjIsGHDJCIiImD54sWLxTknzjkZNGhQjttv2LBBFi1alO9+HDx4UG644QZJT08XEZGBAweezMMBAAAAAAAAAAAAAAAAAAAAgDIvPNQ7cCqmTZsmXbp0kdTUVOnZs6eMHTtWunfvLqmpqfLuu+/KSy+9JCIiLVq0kBEjRhR5+zt27JBLLrlEzjvvPOnbt6+0a9dOGjRoIOHh4bJr1y5ZtmyZzJgxQ3bt2iUiIq1bt5b77ruvWB8jAAAAAAAAAAAAAAAAAAAAAJQVpXqAvW3btvLee+/JgAED5NChQzJ27Ngc67Ro0ULmz58vVatWPen7Wb16taxevTrfdXr16iWvvvqqVK5c+aTvBwAAAAAAAAAAAAAAAAAAAADKslI9wC4icuWVV8qaNWtk2rRpMn/+fNm+fbtUqFBBYmJi5Nprr5W77rrrpIfKu3TpIp999pl88cUXsnLlStm+fbvs3r1bUlJSpFq1atK0aVPp2LGjXH/99dKlS5difmQAAAAAAAAAAAAAAAAAAAAAULaU+gF2EZHGjRvL1KlTZerUqUW6Xbdu3URV81weEREhPXv2lJ49e57qLgIAAAAAAAAAAAAAAAAAAABAuecL9Q4AAAAAAAAAAAAAAAAAAAAAAMoHBtgBAAAAAAAAAAAAAAAAAAAAAEHBADsAAAAAAAAAAAAAAAAAAAAAICgYYAcAAAAAAAAAAAAAAAAAAAAABEV4qHcAAAAAAAAAJS8lJUUSExMDfpeQkBDw3+xatmwplStXDsq+AQAAAAAAAAAAACg/GGAHAAAAAAAoBxITE6Vdu3a5LhswYECO361atUouuOCCkt4tAAAAAAAAAAAAAOUMA+wAAAAAAADlQMuWLWXVqlUBv0tNTZWtW7dKkyZNpFKlSjnWBwAAAAAAAAAAAIDixgA7AAAAAABAOVC5cuVcr6jepUuXEOwNAAAAAAAAAAAAgPLKF+odAAAAAAAAAAAAAAAAAAAAAACUDwywAwAAAAAAAAAAAAAAAAAAAACCggF2AAAAAAAAAAAAAAAAAAAAAEBQMMAOAAAAAAAAAAAAAAAAAAAAAAgKBtgBAAAAAAAAAAAAAAAAAAAAAEHBADsAAAAAAAAAAAAAAAAAAAAAICgYYAcAAAAAAAAAAAAAAAAAAAAABAUD7AAAAAAAAAAAAAAAAAAAAACAoGCAHQAAAAAAAAAAAAAAAAAAAAAQFAywAwAAAAAAAAAAAAAAAAAAAACCggF2AAAAAAAAAAAAAAAAAAAAAEBQMMAOAAAAAAAAAAAAAAAAAAAAAAgKBtgBAAAAAAAAAAAAAAAAAAAAAEHBADsAAAAAAAAAAAAAAAAAAAAAICgYYAcAAAAAAAAAAAAAAAAAAAAABAUD7AAAAAAAAAAAAAAAAAAAAACAoGCAHQAAAAAAAAAAAAAAAAAAAAAQFAywAwAAAAAAAAAAAAAAAAAAAACCggF2AAAAAAAAAAAAAAAAAAAAAEBQMMAOAAAAAAAAAAAAAAAAAAAAAAgKBtgBAAAAAAAAAAAAAAAAAAAAAEHBADsAAAAAAAAAAAAAAAAAAAAAICgYYAcAAAAAAAAAAAAAAAAAAAAABAUD7AAAAAAAAAAAAAAAAAAAAACAoGCAHQAAAAAAAAAAAAAAAAAAAAAQFAywAwAAAAAAAAAAAAAAAAAAAACCggF2AAAAAAAAAAAAAAAAAAAAAEBQMMAOAAAAAAAAAAAAAAAAAAAAAAgKBtgBAAAAAAAAAAAAAAAAAAAAAEHBADsAAAAAAAAAAAAAAAAAAAAAICgYYAcAAAAAAAAAAAAAAAAAAAAABEV4qHcAAAAAAAAAOaWkpEhiYmLA7xISEgL+m13Lli2lcuXKQdk3AAAAAAAAAAAAADhZDLADAAAAAAAYlJiYKO3atct12YABA3L8btWqVXLBBReU9G4BAAAAAAAAAAAAwClhgB0AAAAAAMCgli1byqpVqwJ+l5qaKlu3bpUmTZpIpUqVcqwPAAAAAAAAAAAAANYxwA4AAAAAAGBQ5cqVc72iepcuXUKwNwAAAAAAAAAAAABQPHyh3gEAAAAAAAAAAAAAAAAAAAAAQPnAADsAAAAAAAAAAAAAAAAAAAAAICgYYAcAAAAAAAAAAAAAAAAAAAAABAUD7AAAAAAAAAAAAAAAAAAAAACAoGCAHQAAAAAAAAAAAAAAAAAAAAAQFAywAwAAAAAAAAAAAAAAAAAAAACCggF2AAAAAAAAAAAAAAAAAAAAAEBQMMAOAAAAAAAAAAAAAAAAAAAAAAgKBtgBAAAAAAAAAAAAAAAAAAAAAEHBADsAAAAAAAAAAAAAAAAAAAAAICjKzAD7L7/8IiNGjJCWLVtKlSpVpFatWtK+fXt54oknJCUl5ZS2nZKSIrNnz5Y77rhD2rdvLzVr1pSIiAipXbu2dOrUScaPHy+7du0qpkcCAAAAAAAAAAAAAAAAAAAAAGVTeKh3oDh8/PHHMmDAADl06JD3u5SUFFm5cqWsXLlSpk+fLvPnz5eYmJgib3vNmjXSpUsXOXLkSI5lv//+u6xYsUJWrFghTz31lLz00kvSv3//U3osAAAAAAAAAAAAAAAAAAAAAFBWlforsH///ffSv39/OXTokERFRcnEiRPl66+/loULF8ptt90mIiIbNmyQXr16yeHDh4u8/UOHDnnD6126dJFJkybJggUL5H//+5989tlnMnjwYPH5fHLo0CH529/+Jv/973+L9fEBAAAAAAAAAAAAAAAAAAAAQFlR6q/APmzYMElNTZXw8HD5/PPPpVOnTt6yHj16SPPmzWX06NGyYcMGmTJliowfP75I2/f5fPLXv/5Vxo0bJ2effXaO5T179pQrrrhCrr76asnMzJShQ4fKxo0bxTl3qg8NAAAAAAAAAAAAAAAAAAAAAMqUUn0F9m+//Vbi4+NFROTvf/97wPC634gRI6RVq1YiIjJt2jQ5duxYke6jc+fO8t577+U6vO7Xp08fiYuLExGRzZs3y/fff1+k+wAAAAAAAAAAAAAAAAAAAACA8qBUD7DPmTPH+/nmm2/OdR2fzycDBw4UEZEDBw7Il19+WSL70r17d+/nzZs3l8h9AAAAAAAAAAAAAAAAAAAAAEBpVqoH2JcuXSoiIlWqVJF27drluV7Xrl29n5ctW1Yi+5KWlub9HBYWViL3AQAAAAAAAAAAAAAAAAAAAAClWakeYE9ISBARkZiYGAkPD89zvZYtW+a4TXFbsmSJ93OrVq1K5D4AAAAAAAAAAAAAAAAAAAAAoDQrtQPsR48elb1794qISMOGDfNdt2bNmlKlShUREUlKSir2fVm9erXMnz9fRETatGnDADsAAAAAAAAAAAAAAAAAAAAA5CLvy5Ybd/jwYe/nqKioAtevUqWKJCcny5EjR4p1P9LS0uTWW2+VzMxMERGZOHFioW6Tlpbm/f3QoUPFuk8AAAAAAAAAAAAAAAAAAAAAYFGpvgK7X4UKFQpcPzIyUkREUlNTi3U/7rrrLlm5cqWIiNx0001y5ZVXFnibSZMmSfXq1b0/jRo1KtZ9AgAAAAAAAAAAAAAAAAAAAACLSu0Ae8WKFb2f09PTC1zff8XzSpUqFds+TJo0SaZPny4iIu3bt5fnnnuuULcbM2aMHDx40PuTlJRUbPsEAAAAAAAAAAAAAAAAAAAAAFaFh3oHTlbVqlW9n48cOVLg+snJySIiEhUVVSz3/+KLL8rYsWNFRKRly5byySefSJUqVQp128jISO+K8AAAAAAAAAAAAAAAAAAAAABQXpTqK7DXrl1bRES2b9+e77r79+/3BtgbNWp0yvc9c+ZMGTJkiIiING7cWBYsWCB16tQ55e0CAAAAAAAAAAAAAAAAAAAAQFlWagfYRUTOPvtsERHZtGmTZGRk5LleYmKi93OrVq1O6T4/+ugjGThwoGRlZUl0dLQsXLhQGjZseErbBAAAAAAAAAAAAAAAAAAAAIDyIDzUO3AqLr74YomPj5fk5GRZtWqVXHTRRbmut2TJEu/nLl26nPT9LVy4UP76179KRkaG1K5dWxYsWCDNmjU76e35qaqIiBw6dOiUtwVbsrKyvP/SFwAAAACAksH5NwCgsHjOAAAUBs8XAIDC4jkDABAq/ucd//wpUNo4LcX/1/vtt996Q+uDBw+Wf//73znWycrKktatW0tCQoLUqFFD9uzZIxEREUW+r6+//lp69uwpycnJUr16dVm4cKG0a9fulB+DiMj27dulUaNGxbItAAAAAAAAAAAAAAAAAAAAlH1JSUnSsGHDUO8GUGSl+grsHTp0kNjYWImPj5cZM2bITTfdJJ06dQpYZ8qUKZKQkCAiIsOGDcsxvL548WLp3r27iIjcdNNN8tprr+W4nx9++EF69eolycnJUqVKFZk/f36xDa+LiJx22mmSlJQkVatWFedcsW23NDt06JA0atRIkpKSpFq1aqHenXKNFrbQww5a2EELO2hhBy1soYcdtLCDFnbQwg5a2EIPO2hhBy3soIUdtLCFHnbQwg5a2EELO2hhCz3soIUdtLCDFnbQIneqKocPH5bTTjst1LsCnJRSPcAuIjJt2jTp0qWLpKamSs+ePWXs2LHSvXt3SU1NlXfffVdeeuklERFp0aKFjBgxosjb37x5s1x++eVy4MABERF55JFHpHr16rJu3bo8b1OvXj2pV69eoe/D5/PxCZg8VKtWjScdI2hhCz3soIUdtLCDFnbQwhZ62EELO2hhBy3soIUt9LCDFnbQwg5a2EELW+hhBy3soIUdtLCDFrbQww5a2EELO2hhBy1yql69eqh3AThppX6AvW3btvLee+/JgAED5NChQzJ27Ngc67Ro0ULmz58vVatWLfL24+PjZc+ePd7fhw8fXuBtxo0bJ+PHjy/yfQEAAAAAAAAAAAAAAAAAAABAWeYL9Q4UhyuvvFLWrFkjw4cPlxYtWkjlypWlRo0acuGFF8pjjz0m33//vcTExIR6NwEAAAAAAAAAAAAAAAAAAACgXCv1V2D3a9y4sUydOlWmTp1apNt169ZNVDXP5YMGDZJBgwad4t6hqCIjI2XcuHESGRkZ6l0p92hhCz3soIUdtLCDFnbQwhZ62EELO2hhBy3soIUt9LCDFnbQwg5a2EELW+hhBy3soIUdtLCDFrbQww5a2EELO2hhBy2AsslpftPbAAAAAAAAAAAAAAAAAAAAAAAUE1+odwAAAAAAAAAAAAAAAAAAAAAAUD4wwA4AAAAAAAAAAAAAAAAAAAAACAoG2AEAAAAAAAAAAAAAAAAAAAAAQcEAOwAAAAAAAAAAAAAAAAAAAAAgKBhgh3mZmZmh3gUAAAAAAAAAAAAAAAAAAAAAxYABdpiWnp4u//rXv+Tuu+8O9a4AAAAAAAAAAAAAAAAAAAAAOEXhod4BIC/p6enyxhtvyAMPPCDJycmSmZkp//rXv0K9WwAAAAAAAAAAAAAAAAAAAABOEldgh0np6eny+uuvy/DhwyU5OVkiIyPlueeek1tuuSXUu1YuqWquPyP4aGEHLeyghS30sIMWdtDCDlrYQQtb6AEAAAAAAAAAAAAgmBhghzn+K6+PGDFCkpOTpVatWpKRkSEi4v0XJevEgQXnXI6fGWoIDlrYQQs7aGELPeyghR20sIMWdtDCFnrYceJxzsrKCtGegBZ20MIOWthCDztoYQct7KCFHbSwhR520MIOWthBCztoYQctbKEHUPaFh3oHgOz8w+v33HOPHDlyRLp06SItWrSQ9957T+rWrSs333yziBx/gsr+BjuKl//Ybt26VdasWSPr16+XnTt3SlhYmLRs2VIuvPBCadOmjVSoUEFE6FGSaGEHLeyghS30sIMWdtDCDlrYQQtb6GFD9uMaHx8vZ511ltSrV08yMjIkPJyX7IKJFnbQwg5a2JK9x6ZNmyQmJkZ8Pp9kZmZKWFhYiPeufKGFHbSwgxZ20MIWethBCztoYQfnfHbQwg5a2EIPoHzg/5thxonD6xdeeKEMGTJEnnvuOUlJSZHmzZtLhw4dRER447wEqaocOXJE7r//fvnqq69kzZo1Acudc+Lz+eTGG2+Uv/zlL9KvXz9xzjHQUAJoYQct7KCFLfSwgxZ20MIOWthBC1voYUP247lo0SJ55JFHZP369bJ06VJp3rx5iPeufKGFHbSwgxa2ZO/xxRdfyCOPPCLt27eXJ554giGfIKOFHbSwgxZ20MIWethBCztoYQfnfHbQwg5a2EIPoBxRwIC0tDR9+eWXtWrVquqc0zZt2ujMmTP1nXfe0bp162qtWrV0xYoVqqqamZkZ4r0tu44cOaJz5szRHj16qHPO+1O/fn097bTTtFGjRtqiRQt1zqnP59OqVavquHHjvNtnZWWFbufLGFrYQQs7aGELPeyghR20sIMWdtDCFnrYkP04LliwQK+88koNCwtT55w+9NBDqsprH8FCCztoYQctbDmxR9++fb3n748//pjn5iCihR20sIMWdtDCFnrYQQs7aGEH53x20MIOWthCD6B8YYAdIXfi8Pq5556r7777rqqqjh49Wp1zetlll+nOnTtDvKdl28GDB/WFF17Qtm3bqnNOw8PDtV69ejp8+HD9+uuvdf/+/Xro0CE9ePCgvvjii3r11Verz+dT55wOGzbM2w4nl6eOFnbQwg5a2EIPO2hhBy3soIUdtLCFHjbk9uK7/w3b2267zVvmfwGeF+JLDi3soIUdtLAlvx733ntvjvXpUXJoYQct7KCFHbSwhR520MIOWtjBOZ8dtLCDFrbQAyh/GGBHSJ04vH7eeefpzJkz9dixY7p48WLvSeidd94J9a6WacnJyfrKK6/o2Wefrc45jYiI0Ouvv17nzJkTsF72fyj8/PPP+sQTT3gDDQ888ECwd7tMooUdtLCDFrbQww5a2EELO2hhBy1soYcNJ7743qdPn4Ar4Z9zzjlas2ZN7dKli/7zn//0PsifkZERql0us2hhBy3soIUt+fUIDw/XQYMGac+ePfWRRx7Rzz//3FuXHsWPFnbQwg5a2EELW+hhBy3soIUdnPPZQQs7aGELPYDyiQF2hExuw+vvvPOOHjhwQFVV7733XvX5fHrNNdfo0aNHVTXnld74JNWp8R/PRYsWabt27bxBhrvvvlt/+OEHb73sT/bZGxw9elSnTZumPp9PIyMj9Y033gjezpcxtLCDFnbQwhZ62EELO2hhBy3soIUt9LAjv6/KbtmypV588cU6fPhwveiii7R+/frqnNN27drpzz//nOP2ODW0sIMWdtDClvx61KlTRxs1aqQXXnihhoeHq3NOo6Ki9PHHH8/19jg1tLCDFnbQwg5a2EIPO2hhBy3s4JzPDlrYQQtb6AGUXwywIyTyuvL6oUOHVFV18+bNWq9ePXXO6WOPPVbg9hISEvS5557ToUOHlvSulxnZn7x79erlDTLceeed+tNPP+W6Xm527typgwcPVp/Pp3/96191//79/MOgiGhhBy3soIUt9LCDFnbQwg5a2EELW+hhR34vvt9yyy367bffampqqqqq7t+/X7/44gvt3LmzOuc0JiZG9+/fH6I9L3toYQct7KCFLfn1uP766/XDDz/U3377TTMyMvTrr7/WMWPGeMvHjRsXuh0vg2hhBy3soIUdtLCFHnbQwg5a2ME5nx20sIMWttADKN8YYEfQ5TW8fuTIEVVVTU1N1aFDh6pzTjt16uRdCc5/tXX/f1NSUnTv3r06YsQI7dChg/fkxRB70TzyyCPqnNOwsDDt1auXfvfdd0Xexty5czUiIkJ9Pp8uWLCgBPayfKCFHbSwgxa20MMOWthBCztoYQctbKFHaOX34vvIkSMD1s1+JfxFixZp+/btdfjw4bpjx46g7W9ZRgs7aGEHLWzJr8c999yT6wfIUlNTdezYsVqhQgW955579ODBg8Hc5TKLFnbQwg5a2EELW+hhBy3soIUdnPPZQQs7aGELPQAwwI6gKmh4XVV179692rlzZ61QoYI+88wzqnr8a8uzW7dunQ4ePFjbtm3rvRHvnNNKlSp5n8BCwbKysjQuLk59Pp865/T1118/6W1dc8016pzTwYMHa1paWjHuZflACztoYQctbKGHHbSwgxZ20MIOWthCj9DK78X3UaNG5bqe3+HDh3XhwoW6ZcuWYOxqmUcLO2hhBy1sya/H6NGjc13P78cff9S3337b+9psnBpa2EELO2hhBy1soYcdtLCDFnZwzmcHLeyghS30AKDKADuC6OjRozpjxox8h9dVVcePH6/OOa1du7auXbs2YNncuXN19OjR3jYqVaqk0dHR+re//U0bNmzoPZHdfPPNeuDAgWA+vFJp9erV3jEbMGCA9/uifB28/xNu999/vzrndPjw4d5V8lF4tLCDFnbQwhZ62EELO2hhBy3soIUt9Aidwr5hm/2qMSfK/kGBTz/9VPfv36/p6emqqjQoAlrYQQs7aGFLYd+wza9H9q/LPvHKY/QoPFrYQQs7aGEHLWyhhx20sIMWdnDOZwct7KCFLfQA4McAO4IiKytLX3/9de/J5sThdf8T04YNG7Rdu3bqnNNnn31WVY9/amrOnDn6j3/8Q51zGh4ers45veKKK/TZZ5/Vt956S2+55RZv28OHD9dff/01ZI+1NFm0aJF3PP3HO78n//zMmTNH+/fvr7///ntx7mK5QQs7aGEHLWyhhx20sIMWdtDCDlrYQo/QW7BggcbFxRX5xffs/B/079Spk06ePFl/++23It0ex9HCDlrYQQtbFi5ceFJv2GY3bNgwbdy4sY4dO1a/+uqrIt8ex9HCDlrYQQs7aGELPeyghR20sINzPjtoYQctbKEHAAbYETSJiYnqnNMzzjhD33vvvYArr/sH2N955x31+Xzatm1bffvtt3XBggXaqVMnrVGjhvdk1b9/f33++ec1IyNDv/rqK73uuusYXi8i//GeOXOmOue0SpUqum7dulPa5rZt2zQ5OVlV+UdAUdDCDlrYQQtb6GEHLeyghR20sIMWttDDhsTERO3atespvfienp6uc+bM0QsuuEArV66szjnt0aOHbtu2rUjbKe9oYQct7KCFLYsXL9YePXpoWFhYka5Qmd3u3bv11ltvVZ/Pp845bdasmfcBtqJsp7yjhR20sIMWdtDCFnrYQQs7aGEH53x20MIOWthCDwCqDLAjyDZv3qz/+c9/9PDhwzmW/fLLLxoTE6POOW3YsKF2795d69evr845bdSokfbu3Vs/+ugjb/3vvvtOe/fu7T2R3XPPPQyvF9Gnn37qHb8vv/yyWLZZlK+ixx9oYQct7KCFLfSwgxZ20MIOWthBC1voEXp33nlnkd6wzev4JiUl6csvv6xt2rRR55w2adJEt27dqqp8HWph0cIOWthBCzuSkpK0WrVq6pzT++67z/v9ybzROmvWLL3xxhu9fwM8+OCD3jJ6FIwWdtDCDlrYQQtb6GEHLeyghS2c89lBCztoYQs9ADDAjqDL68nkf//7n0ZFRXknIP5B9r59++qaNWt0165dqnr8ieWrr77Sq666iuH1U/T99997J5Bz585V1eIdRuCTbIVHCztoYQctbKGHHbSwgxZ20MIOWthCj9DJ/qL4nDlzvJ/zOmYndjl27FiOddLS0vSbb77Rjh07qnNOzzvvPN2xY0cx7XHZRQs7aGEHLWxavXq1jhs3zvt7YXvkZvv27froo496r59PmjSpuHazXKCFHbSwgxZ20MIWethBCztoEXqc89lBCztoYQs9APgxwA5TpkyZos45jYqK0tGjR+vSpUsDnnSysrJ0yZIl2rdvX4bXi8mVV16pzjnt3bu37tu3r1i2uWjRIu9nPslWeLSwgxZ20MIWethBCztoYQct7KCFLfQInRNfRM/rxXf/MUxKStI33nhDb775Zo2Li9Np06bleuX8ZcuW6TnnnKPOOR02bJgePXq02Pe9rKGFHbSwgxa2FdRjz549umzZMn3qqaf0X//6l37//ff6+++/q+ofb+oePnxYJ0yYoM45rV69esAbwig8WthBCztoYQctbKGHHbSwgxahwzmfHbSwgxa20AOAKgPsMCL7G95LlizRr776Ksc6WVlZ+tVXX53U8Lr/SS4rK0sPHz5cfDteivlP+GbMmKG1a9fWM844Q+fOnXvKwwePPPKIOud06NChxbGb5QIt7KCFHbSwhR520MIOWthBCztoYQs9Sgd/p59++kn/9Kc/ae3atQO+ma5GjRo6fvz4gNscOXJER40apc457dSpk6ampoZi18scWthBCztoYYv/OXzDhg16xRVX6Gmnnea1aNSokV5yySW6YcOGgNv89NNP2r17dw0LC9MRI0aoavF+G0t5RQs7aGEHLeyghS30sIMWdtDCDs757KCFHbSwhR5A2ccAO8zI7U10/6etTmZ4/cQTliNHjujkyZO1W7duOmjQoOLd+VJsz5492rNnT3XOaefOnXXdunUnvS3/J5+dc3r55ZdrUlKS14ETyILRwg5a2EELW+hhBy3soIUdtLCDFrbQw76tW7d6X2tapUoVbdKkiV599dXeVWKcc3rHHXd4VyBTVf3qq6+8ZcuWLQvh3pcttLCDFnbQwpZNmzZpu3btvONbq1YtbdCggdaoUUOdc1qvXj1duHBhwG3uvfdedc5pdHS0HjhwgOfsYkILO2hhBy3soIUt9LCDFnbQwg7O+eyghR20sIUeQNnGADvMyv4meFGG10/8SpFVq1bp1KlT9eyzzw74FNbAgQNL/DGUFps3b9ZmzZqpc05jY2P1iy++0EOHDqnqHx8sKOgqfQ8//LB3bLt166bvv/++7tixI+B2J26Dk8qcaGEHLeyghS30sIMWdtDCDlrYQQtb6GGT/3hNnTpVq1evrpGRkXrrrbdqUlKSqqomJCTok08+6R33v//977pz505VVf3xxx+1WrVqGhYWpt99913IHkNZQQs7aGEHLew5evSoDh06VCtUqKDVqlXTW265Rbds2aK//vqrfvDBBxobG6vOOa1Tp45+9NFHmpaWpqqqc+fO1QoVKmjLli01JSUlxI+ibKCFHbSwgxZ20MIWethBCztoYQPnfHbQwg5a2EIPoHxggB0mnezwenbx8fH6+OOPa82aNbVy5crqnPM+seuc04YNG+ru3btL+qGUGomJidqwYUN1zulZZ52ld999t65Zs8a7Cn5+/F8h7/9TvXp1rVGjhjZu3Fivu+46ffvtt711/R8wyD7I8PHHH3v/iAAtLKGFHbSwhR520MIOWthBCztoYQs97OrTp4865/T000/Xn3/+Ocfy999/3zv2//jHPzQpKUnvu+8+dc5pq1at9PDhwyHY67KJFnbQwg5a2HHkyBG94IIL1Dmn559/vv7yyy8By3/77Tf9y1/+os45rV27tn766ad69OhRHThwoDrntGPHjiHa87KHFnbQwg5a2EELW+hhBy3soIUtnPPZQQs7aGELPYCyjQF2mFOU4XX/p638t9m3b5+uWbNGBw0apI0bN/Zu16hRI73mmmt09uzZ2rRpU3XO6dChQ/Xo0aPBf4CGbdq0SXv06OEN/EdGRmq3bt309ttv1y+++CLX20ycONE7zlFRUdquXTu99dZbdcCAAQFXvX/ooYdyvf3MmTO1ffv2GhUVpZs2bSrJh1eq0MIOWthBC1voYQct7KCFHbSwgxa20MOWrKwsTUlJ0fbt26tzTnv16uUtO/Fq9nPmzPGOdWxsrLZs2VJ9Pp8OHz5c09LSCryCPvJHCztoYQct7FmzZo1WrVpVw8LC9LHHHlPV3D84duWVV6pzTmvVqqVDhgzRmJgYrVy5sj799NOqWvC3rqBgtLCDFnbQwg5a2EIPO2hhBy1s4JzPDlrYQQtb6AGUDwyww6SsrCxdunRpvsPr/pMYVdUDBw5ofHy8/vnPf9azzjpLnXNaoUIFjYqK0mHDhunSpUtVVXXChAnqnNNKlSrpDz/8EPTHVRrs2rVLn3/+ef3zn/+szjkNCwvTHj16eF8vn132QYZLL71Un3vuuYDlmzdv1smTJ3vr/Otf/wpYvmfPHu3evbu3/LXXXivRx1ba0MIOWthBC1voYQct7KCFHbSwgxa20MOe//u//1PnnJ599tmamJgYsCwrK8u7Sv6sWbO8Y+nc8Q/rr1q1KhS7XGbRwg5a2EELOw4fPqxt27ZV55z2799fjxw5ErA8++vlvXr18l4Hd87pOeeco+vXrw/2LpdZtLCDFnbQwg5a2EIPO2hhBy1s4ZzPDlrYQQtb6AGUbQyww6Svv/5ae/To4T2p3HPPPbp9+3ZV/eNTt/5PR7344ot63XXXacWKFb31a9asqRMmTNAFCxZ420xISNCWLVtqWFiYjhw5MmAbyN2cOXN05syZeuDAAVUNPFnMPsgQFxenixYt8tpkv7L9kSNHdPTo0Xruuefq/Pnzc9zH559/rs45feaZZ0r40ZRutLCDFnbQwhZ62EELO2hhBy3soIUt9LDh7bff9o71448/rsnJyd4y/4vvhw8f1nfeeUdbtGjhrfvpp58GbCev1zh47aPwaGEHLeyghR2pqal6yy23qHNOzzvvPP3mm28Clmd/Hn/55Ze1Tp066pzTiIiIHN+0kv3Klig6WthBCztoYQctbKGHHbSwgxa2cM5nBy3soIUt9ADKNgbYYVJSUpL6fD51zunIkSN127ZtAcv37t2rTz75pPeJ27CwMHXOaceOHXXkyJG6cePGHNt86aWX1DmnPp9PP/zwwyA9ktIptxM9/5O+auAgwzXXXONd4T6v265YsUJXrlzpLV+9enXA8uxX1ucfBoFoYQct7KCFLfSwgxZ20MIOWthBC1voYc+9997rHfOHHnpIV6xYoaqqycnJum3bNv373//ufeOcc04/+ugjVT1+vLO/sauq+ttvv+nWrVt1165dAb/n2BcOLeyghR20sGPz5s3aqFEjde74V2J/9dVXun//fm/53r17dcSIEXr++ecXqofq8X8DZP93gCo9CoMWdtDCDlrYQQtb6GEHLeyghS2c89lBCztoYQs9gLKLAXaYtXbtWh0zZozu3r3b+923336rL730kjZv3lzDw8O9J57w8HCNi4tTVdWUlBRVDXxiSUhI8E6ABg0aFNwHUsY88sgj3nHv16+fLlu2zFtW0Cecs7KydObMmXreeefp//3f/+W4Hf8YKBpa2EELO2hhCz3soIUdtLCDFnbQwhZ6BFf2F88feOABjYiI8K4qdsEFF+jZZ5+tNWvW9Jo453TevHmqevy4pqenq6rq7t279ZVXXtErr7xSGzZsqGFhYVq/fn298sor9ZlnntHffvstx/0hEC3soIUdtLDpp59+8q4o1rBhQ42NjdW7775bBw0apGeeeWbAN5X6vx0le499+/bpl19+qYMHD9ZevXrpRRddpD169NAZM2bo8uXLvfuhR8FoYQct7KCFHbSwhR520MIOWoQe53x20MIOWthCD6DsY4Adpvnf5P7yyy918uTJWrduXa1atao657RWrVrauHHjgE/dfvXVV6p6/Akl+6eoXn75Za1evbrWq1fPu/o6b5wX3aRJk4o8yJD9OL/33nt6ySWXeNvIfuKIoqGFHbSwgxa20MMOWthBCztoYQctbKFHaGR/UXzOnDk6atQo7d69u5577rkaHR3tfeucc04//vhjVQ188X3jxo3ao0cPjY6OVuecVqhQIeAF+8qVK2vXrl31l19+yXF/CEQLO2hhBy1s2rp1q95999167rnnao0aNTQyMlIjIyMLfMN28+bNes0112izZs3UORfQr0KFCtqyZUt95plnvPuhR8FoYQct7KCFHbSwhR520MIOWoQe53x20MIOWthCD6BsY4Ad5u3du1e7dOkS8OTRtm1b/fe//61r1qzRVatW6WWXXeYtW7Bggar+8YSSnp6u7du3V+ecduzYUQ8dOlTgfWZmZnpPTDjuySefLPIgQ/bfv//++9q9e3dvG88//3yJ73NZRQs7aGEHLWyhhx20sIMWdtDCDlrYQo/QOvFD9r/99ps+88wzesEFF3jHNPvXnvpffP/pp5+0YcOG3jpRUVE6atQoffzxx3XGjBkaFxenZ555pjrntEmTJrp169Zc7w9/oIUdtLCDFjalp6drZmamrlq1Su+//35t3rx5vm/YJiYmapMmTbx1IiMjtXfv3nrTTTfp1VdfrTExMd6yBx980LsfehSMFnbQwg5a2EELW+hhBy3soEXocc5nBy3soIUt9ADKLgbYUSqsX79ew8PDtUuXLjp27Fg9evSotyw9PV2/+OKLXIfYMzMz9amnnlLnnNasWVM//fRT7/d5yczM1O+++07PPvtsvfHGG0v2gZUia9euVZ/Ppz179tSvv/7a+31BgwxZWVk5BhleeOEFb73MzMwCv4YegWhhBy3soIUt9LCDFnbQwg5a2EELW+hhy9dff61NmzbN9cV3/wf2N2/e7L1hW7t2bb3qqqt07dq1Ads5cOCALlq0SDt16qTOOb3gggt0586dQX88pRkt7KCFHbSwwf/8+vrrr2urVq1yHfI5duyYqqpu2LBBTz/9dO918m7duul3333nLVdV/fbbb/WBBx7wtvP4448H/0GVUrSwgxZ20MIOWthCDztoYQct7OGczw5a2EELW+gBlB0MsKPU2LVrl27bts0bPs/IyPBOZo4dO6YLFy7MdYj92muvVeectmvXTjdv3pzvffiH13v06OFt58477yzZB1aKJCUl6TfffOP9/WSuwnfiIENuHybg61gKRgs7aGEHLWyhhx20sIMWdtDCDlrYQg9bBg0apM4FflW2/9jv27dPr776anXOaa1atXTQoEG6ZcsWVf3j+GY/9qtWrdLzzz9fnXM6cuRITUtLC+6DKeVoYQct7KCFHZs3b/aehz/55BNVDeyxa9cu7datmzrntE6dOjpo0CDvdfLsr7GrqiYnJ+vjjz/utfP3ReHQwg5a2EELO2hhCz3soIUdtLCFcz47aGEHLWyhB1A2MMCOUim3N9FzG2IfOXKk9/OLL76Y7zb9w+v+k56KFStqWFiYOud06NChJfVQSq3iHmSYNGmS3nfffSW3w2UYLeyghR20sIUedtDCDlrYQQs7aGELPUIn+3Fbv369qv7x4rv/+C9atEibNWumzjnt3r2794ZtXt3S0tL0hRde0Bo1auhZZ52lv/76awk/irKBFnbQwg5a2LR+/Xr97LPPVPWPHv5W06dP1wYNGqhzTvv06eO9YZtXjx07duiAAQM0IiJC77rrroCrWaJgtLCDFnbQwg5a2EIPO2hhBy1Cj3M+O2hhBy1soQdQtjDAjjLlxCF2n8+nzjm99NJLddeuXaqa+5PRicPrFSpU0BtuuEHvv/9+bxt33XVXsB9OqXOygwzPPPOMt97UqVODus9lFS3soIUdtLCFHnbQwg5a2EELO2hhCz2C58Sr1J/4WsZtt92mzjmNjIzU7777Ltd1TrRt2zaNiorSevXq6dGjR4t3h8swWthBCztoYVf2N2v9evfurc45jYqK0nXr1nnr5ee9995T55x27NiRb045SbSwgxZ20MIOWthCDztoYQctQotzPjtoYQctbKEHUHYwwI4y5+jRo/rtt99q586dveHz0aNH57l+bsPrAwYM0BUrVqiq6owZM7ztjBgxIlgPo9Q52UGGp556SiMiItQ5p+3btw9Y178+ioYWdtDCDlrYQg87aGEHLeyghR20sIUedmRlZenll1+uYWFh2qdPH83MzCzwTVh/v08++UQPHz6sqhz74kALO2hhBy1s2bVrl0ZHR2uFChV0zJgxqprzTd7s/C2OHj2qw4YN04MHDwb8HiePFnbQwg5a2EELW+hhBy3soIUdnPPZQQs7aGELPYDSxSdAGaKqEhkZKWeeeab391atWsn999/v/T27rKws+d///iejRo2SJUuWSEREhPz1r3+Vu+66Sy666CIRERk4cKA8//zz4pyTqVOnyuOPPx7cB1UKqKo450RE5IMPPpAXXnhBFi9eLCIizz//vNx+++0icvx4i4j4fMf/p2fatGkyZswYycjIkOjoaGnQoIHUrFlTli5dKhs3bvTWzczMDPIjKr1oYQct7KCFLfSwgxZ20MIOWthBC1voYUt6errs3r1bsrKypE6dOuLz+bxjnhd/vyuuuEKioqIkIyOjwNugYLSwgxZ20MKWI0eOyK5du+TYsWNSt25dEREJCwvLc33nnPca+9NPPy3VqlWTjIwMrxFOHi3soIUdtLCDFrbQww5a2EELOzjns4MWdtDCFnoApUxQx+WBEub/xNR///tfbdq0qYaFheno0aM1PT09xyejCrryuuofn7Dat2+fjho1Sn0+n5533nne14vgD1lZWTpr1qxCX4Vv2rRpWqFCBW/dSpUqeVe6d85pTEyMPv300wG3R+HQwg5a2EELW+hhBy3soIUdtLCDFrbQw460tDTt3LmzOuf0+uuvL/Lt/a91ZL/qGFcgOzm0sIMWdtDClqSkJK1Vq5b6fD595513VLVoz7n+Y5/9NllZWTQ5CbSwgxZ20MIOWthCDztoYQct7OCczw5a2EELW+gBlC4MsKPMyP5kMWDAAG8oPbdhc//wemxsrLfejTfeqMuWLct1e6qqH330kfdG+/Tp00vugZRSc+bM0bZt2xZ6kCE8PFydc1q7dm29+eabNT4+Xjdu3KgffPCBDh061NvOQw89FIqHU6rRwg5a2EELW+hhBy3soIUdtLCDFrbQwxb/MW7VqpX+8MMPhbrNia9zJCYm6urVq/XLL7/UxYsXa1pamqalpakqHygoClrYQQs7aGFLjx49vDdt/V+DXZATe6SkpOjvv/+uycnJeuDAgYBl9Cg8WthBCztoYQctbKGHHbSwgxZ2cM5nBy3soIUt9ABKDwbYUea88cYb3hvhDz74oKoGfnrWP7zetWtXdc6pz+fTdu3a6YYNG7xtZH9S8j/p7N+/X+vWravOOe3Xr1+O9cq7rVu3egMKL774ovf7/AYZzjvvPH322WdzbOvw4cP65JNPeh8umDVrVlAeQ1lBCztoYQctbKGHHbSwgxZ20MIOWthCD1sWLVqkZ5xxhjrndOLEiZqamuoty+21Cn+jzMxMXbZsmY4aNUpr166tlSpV8l5DiY2N1XvvvVd37typqn98yx3yRws7aGEHLWzwH+tJkyZpRESEnnXWWbp06dICb+fvkZWVpT///LM+9thj2qlTJ61Vq5Y2atRITz/9dB0zZox+8skn3m3okT9a2EELO2hhBy1soYcdtLCDFvZwzmcHLeyghS30AEoPBthRphw8eFBvvPFGrVixolarVk3nzp2rqoFfCfXdd99pt27d1DnnvanunNOpU6d62znxk1IZGRn6zjvveF9/ft111wVsF8etWbNGX3nlFe/v+Q0ynH/++QHrZn9iz8zM1M2bN+v555+vYWFhOm7cuKDsf1lCCztoYQctbKGHHbSwgxZ20MIOWthCD1seffRR7zWNadOm6Z49e7xluX0w/9ixYzpx4kS98MILvdudeeaZeuGFF2qlSpU0LCzMa7d161ZV5UX4wqKFHbSwgxZ2bN++Xdu1a6fOOe3WrZuuWbNGjx07pqo5X9/O3uOpp57yrnLp/1OvXj3vojA1atTQyZMn57gt8kYLO2hhBy3soIUt9LCDFnbQwhbO+eyghR20sIUeQOnAADvKlOxXSb/55psDlp04vF6hQgW9/vrr9fbbb/eeeB577DFv/exPVr/++qv269fPW+/ll18O2mMqrYoyyJDXSWCXLl3UOac9evTQjIwMnvhPEi3soIUdtLCFHnbQwg5a2EELO2hhCz1CJ/vxHDFihPdaxa233qpz584NOI7+1zaOHTumo0aN0vr163vrv/vuu/r777+rquqGDRt06tSp2qZNG3XOaUxMjCYlJQVsAznRwg5a2EELmzZs2OAd3w4dOuhrr73mXTHML/sbtqNHj9bTTjvN6zFjxgxdsGCB7t69W59//nm99tprvWXjx4/3tkGPgtHCDlrYQQs7aGELPeyghR20CD3O+eyghR20sIUeQOnCADvKnLVr1+r555+vH3zwgfe73IbXBwwYoCtWrNCsrKyAT13985//1P3793u3TUhI0IEDB3rLu3fvrmvXrg3BIytdTnaQISsrSzMzM3X9+vV61llnaXh4uI4aNarA+0DeaGEHLeyghS30sIMWdtDCDlrYQQtb6BFa2V9kf/jhh7VGjRret8bde++9AetmZmbq5MmTA96wdc4FXF1MVTU1NVW/+eYb7dixozrn9Oqrr9YDBw4E5fGUZrSwgxZ20MKmn376yXujtVatWlqnTh1duHBhwDoZGRk6fvz4gDdsa9asmeNYb926VSdNmhQwCITCo4UdtLCDFnbQwhZ62EELO2gRepzz2UELO2hhCz2A0oMBdpRJO3fu9D4Fldfw+vLly731jxw5ouPGjfOehGJjY7V///7aq1cvveCCC7zfN2vWTF944YVQPaxSafLkyVqpUqVCDTJk//uECRO84z548GD97LPPdMaMGbpw4UL9+eefvfW4Ql/h0cIOWthBC1voYQct7KCFHbSwgxa20CN0sh+buXPn6p133qkXXnihHjp0SFX/uPLLunXr9OKLL1bnnIaFhelNN93kHfsxY8Z42/Cv/8knn2h0dLQ2btxYv/vuuyA+otKLFnbQwg5a2LRt2za95557NCYmRuvUqaNHjhxR1T+O74IFC7Rt27bqnNPIyEg955xz1Dmn9evX14SEhIB1jxw5oqNHj1bnnP75z3/Wffv2cdWxIqCFHbSwgxZ20MIWethBCztoEXqc89lBCztoYQs9gNKBAXaUaceOHdOvv/5aL7300oDh9RUrVnjr+J9gNm3apJdddlnAp6my/7nwwgv12WefzXE75O3333/XOnXqqHNO27dvX+hBhpdffjng2NevX18jIyO9v5911ln6zDPP5Lkt5EQLO2hhBy1soYcdtLCDFnbQwg5a2EKP0Mt+bDIzM70X5Y8dO+b9fvz48d6xnT59uqqqPv30097v7r///oBt7tq1S1u3bq3OOZ04cWIQHkXZQAs7aGEHLWw6evSo7ty5U48ePaqqgT3uuusu79i/+eab+ttvv3kXhqlfv75u2LBBVf94E/jzzz/X8PBwjYyMLNK3lvLa+nG0sIMWdtDCDlrYQg87aGEHLULPwjmfv395vwgGLeyghS30AOxjgB1lWmpqql555ZXqnNMqVarkObzuN2TIEO/N8quvvlovu+wyPe+88/TRRx/V+Ph4b73cvgI9v7+XZ+vXr9c//elP+vzzz3u/y2+QYcaMGd4/Alq0aKE33nijrly5UhMSEvTDDz/UO++801s+bty4YD2MMoEWdtDCDlrYQg87aGEHLeyghR20sIUe9vhfk8jMzNTDhw973ywXFxfnvTCfmpqa74vwgwYNUuecPvLII0Hf/7KEFnbQwg5a2JL9OXrdunVavXp1dc7p0KFDvd+vX78+12Ef1eNv+LZu3VrDwsJ00aJF+d7XmjVr9J133vH+zmvogWhhBy3soIUdtLCFHnbQwg5a2BHMc761a9fqPffc433ogOHQQLSwgxa20AOwhQF2lHmrV6/WevXqaZ8+ffSbb77xfp/9RCI9PV1V//gE1SWXXOL9zv/VIX5c+a3oDhw44P1c2EGG2NhYnT59esCn3lSP93jiiSe89d59992S3fkyhhZ20MIOWthCDztoYQct7KCFHbSwhR52/f7771q7dm11zul9990XsCw9PT3XF+F37typLVq0UOecPvbYY6HY7TKJFnbQwg5a2PL9999rpUqVNDw8XF999VVV/eM19MTExFyHfVauXKkVK1ZU55x+8skneW77xx9/9C4ec/PNN3u/Z9gnd7SwgxZ20MIOWthCDztoYQct7CjJc74ff/xRhw4dqs45jYiI0NWrV6sqw6F5oYUdtLCFHkDoMcCOcuHXX3/VlStXen/P64rpcXFx6pzTVq1aeU8YuT1x+Nfft2+fbtiwQf/5z3/qnXfeqf3799f+/fvrxIkTdcmSJXrkyJGSekilUmEHGf70pz/pzJkzveUnfqXLxo0b9ZxzzlHnnI4ZMyY4O1/G0MIOWthBC1voYQct7KCFHbSwgxa20MOelJQUbdKkiVaoUEFfeeUVVVVNS0vzlp/4Ivzo0aP1o48+0gYNGmjt2rX1yy+/9NY98bUUPuBfNLSwgxZ20MKWRYsWqXNOa9asqd9//72qBh7HE4d9Vq9erW+//bZWqVJF27Rpozt37sx1uz/++KPeeeedWrNmTa/lnXfe6S1n2CcnWthBCztoYQctbKGHHbSwgxZ2FOc5X3b+Fv4r7TvntEaNGlzhOB+0sIMWttADCD0G2FHu5HXicOzYMe3cubM65/Syyy7TzMzMfN/o+Prrr7Vfv37atGlT78km+x+fz6eDBg3ianF5KOwgQ/Ze2X+OjY1V55x27dq1wFbIHy3soIUdtLCFHnbQwg5a2EELO2hhCz1CLzMzUw8cOOC9bjFq1Khc10tPT9dp06Z5jRo0aKDOHb9KfmpqqqoGtlm4cKEmJSWpKi+0FxYt7KCFHbSwJSsrS5cuXarOHb8qWF5vwGYf9qlVq5aeeeaZ6pzTq6++Wo8ePZpjff8btjVq1FDnnDZu3Fh9Pp865/Suu+4KuH8cRws7aGEHLeyghS30sIMWdtDCjpI65zuxRYsWLbRDhw4Mh+aDFnbQwhZ6ADYwwA78f2+++ab3ZPP888/nuV5GRoa+/vrrGhkZ6Z2UREVFaZ06dbRnz57arl07bd++vTrnNCwsTKtUqaIPPfRQEB+JfdmfuAs7yJDdN998ow0bNlTnnI4dOzYo+1xW0cIOWthBC1voYQct7KCFHbSwgxa20MMG//F95JFH1DmnnTp18r4a+0Tp6en61FNPea2aN2+uCQkJ3jK/Tz/9VKOjozU6Olq3bNlS4o+hrKCFHbSwgxb2ZGRkeEM8Q4cOzfPbRRMTE/VPf/qT16NFixa5fmjgxDdsW7durZ9++qn++9//ZtinALSwgxZ20MIOWthCDztoYQctbCiuc75jx4556+XWYuHChZqQkKCXX365Nxy6bt06VeWbufxoYQctbKEHYAMD7Cj3/E9I9913n0ZERGiVKlV00aJFua574MABffLJJ70nJOecNmnSRN966y3v66eSk5P16NGjOmPGDO3Xr5930jJ8+PBgPaRS47nnnivyIEN6err3jwfnnL722mvB3OUyixZ20MIOWthCDztoYQct7KCFHbSwhR42LFy4UE877TR1zunjjz8ecCWx7B3S09N14sSJ2qBBA/3oo49UNfAN2/nz52vr1q01IiJCnXPeh/V5Y7bwaGEHLeyghQ1ZWVl67NgxnTBhgvp8Pj333HP1m2++yXP9xMREbdOmjVauXFkXLFigqgW/YfvFF19460yfPt173fzee+8t2QdXytDCDlrYQQs7aGELPeyghR20sOdUzvmyD3bm1mLBggVei02bNmnPnj3VOadNmzbVjRs35riP8o4WdtDCFnoAocUAO6CqW7Zs0Xr16qlzTnv27Jnnetm/EqR+/fp6/fXX6+7du/Ncf+vWrfrkk096Jy1jxowpid0vdbKysvTAgQPecenRo0ehBhlUVV955RWvwcCBA4O1y2UWLeyghR20sIUedtDCDlrYQQs7aGELPeyZOHGid1ynTZumv/32m7cs+wDosWPHdOPGjTm+Lnv+/Pnapk0b9fl8Wq9ePR00aJD++uuvAbfnK08LhxZ20MIOWtixfft2bdu2rTrntFu3brpmzRrv2J34/L1p0yZdsmSJpqWlBfze/4Zt9erVA96wzX61/GPHjunzzz/v/VvhxRdfLPkHV8rQwg5a2EELO2hhCz3soIUdtLDlVM/5CtPCv16nTp3UOafXXHON/v777yX7wEohWthBC1voAYQOA+wo1/xvnn/44Ydas2ZNDQsL867Oc+Ib6++//773ZNWoUSO95557dN++faqa8w2Q7Cc9KSkp+q9//cs7aZk+fXqJP67SYu3atdqrVy997bXXCjXI8Nprr3kNLr/8cl27dq2q8pUqxYEWdtDCDlrYQg87aGEHLeyghR20sIUeoZf92I0aNco7vkOGDNHPPvusUNuYP3++nnvuud5VjZ1zWrt2bT399NP1wgsv1JEjR+qOHTtUlQHR/NDCDlrYQQubNmzYoNHR0eqc044dO+o777yje/bsUdWCrwp24tXGzjnnnICrjWW3e/du7d+/v4aHh2tcXJweOnSoRB5PaUYLO2hhBy3soIUt9LCDFnbQIvSK45zvxx9/1CFDhnhDofm1yMjI0KlTp6pzTs8880z94YcfVJWrG6vSwhJa2EIPIPQYYAdUtV+/fuqc06ioKO8N8uz+97//aa1atdQ5p3Xq1NG77rpLDxw4oKqFeyP9999/13vuuUd9Pp/GxsZqQkJCsT+G0urgwYNFHmTo3r27fvbZZ3l+Sjo7/zKe7AtGCztoYQctbKGHHbSwgxZ20MIOWthCj9DLPrD54IMPakREhPp8Pq1du7becsstunz5ck1JSfHWyX4sP/nkE23Tpo03GNq0aVPt1KmT3nHHHXrRRRfp6aefrs45bdWqlW7dulVV+cBBfmhhBy3soIVNP/30k5511lnqnNMGDRroZZddpp999lm+30bqf8M2KipKnXN6/vnn66JFizQ1NTXP20yYMEGdcxoWFqbffvttSTyUUo8WdtDCDlrYQQtb6GEHLeygRegV9ZwvuxNbtGrVSleuXJnr+v5zxZUrV2qFChXUOacTJkwomQdVStHCDlrYQg8gtBhgR7m3f/9+Pf/889U5p9dee62mpqZ6b2RkZmZqenq6jh49WitVqqTOOf3LX/6ie/fu9ZYX1uLFi/WMM85Q55y++uqrJfFQSrX8hg1effXVgEGGTz75JMfXrKiqLl++XOfMmaPjx4/XZ555RpcuXapJSUnect6gKhxa2EELO2hhCz3soIUdtLCDFnbQwhZ6hFb2F+HffPNNveqqq7xjPnnyZO94nzgY2rp1a+8b5Xr16qWbN2/2vtb0999/1yVLlmjHjh3VOafnnXee7ty5M7gPrBSihR20sIMWNm3dulUHDhyojRs3VuecRkdH6yuvvJLr8+369et1yJAhWq1aNa/dbbfd5i0/8er3/m28+OKL3vpz584t2QdUitHCDlrYQQs7aGELPeyghR20CL3CnvNl578Kvv+Kxs45PeOMM/TXX39VVc31ysaqqp9//rm3/vjx40vmAZVitLCDFrbQAwgdBtgBPX4i4pzTsWPH5liWnJysrVu3Vuecnnbaabpt2zZVPbk3xkeOHKnOOW3WrBlvmBRSYQYZPv/8cx0xYoQ657RixYre+hUrVtRLLrlEp0+f7q3LVwWfPFrYQQs7aGELPeyghR20sIMWdtDCFnoET/bXMX799Vf973//qxMnTtTk5GRVDTx28+fP1zZt2qjP59OqVavq0KFDA5ZnHyJdvHixnnnmmVqhQgV96qmncixHTrSwgxZ20MKm/fv365dffql33XWX3n333d4VxLIfw/Xr1we8YRsdHe09Vz/xxBPeeie+nr59+3b985//7D2nf/HFF8F5UKUULeyghR20sIMWttDDDlrYQYvQK+icL/ty/1BojRo11DmnMTEx2qxZM3XOacuWLXXPnj2q+sd5or/j7t279R//+Id3ZePHH388YDmOo4UdtLCFHkBoMMAO/H9JSUnep6CyPzHMnz/fO9nwf/IptzfE83sy8T+JxcfHa40aNfT000/XtWvXFuful0mFGWSYMmWKtm3bNmC9q666Snv37q316tXL9VNrXJWv6GhhBy3soIUt9LCDFnbQwg5a2EELW+gRfHm9dpH9uM+fP1/PPfdc70X0IUOGeK+D5PZ6yN69e7VDhw7qnNO4uLiS2fEyiBZ20MIOWtjmv3JY9iuInTjk06ZNG50/f74+/PDD3nP0Y489lmNbe/fu1WeffdYbCmrcuLH3racoGC3soIUdtLCDFrbQww5a2EGL0MnrnC97ixOHQlu3bq1ffPGFrlixQs8//3xvOHT79u0B29i9e7e+8MILesYZZ6hzTuvWratbt24t0cdTmtHCDlrYQg8g+BhgBwowY8YM76Rk3rx5ua7jf3N837593ievcrN//35t2rSpXn311SWyr2XJCy+8oGFhYfkOMjz66KPasGFDr8+YMWNU9Y9/OCxZskTvvvvufE8qUTBa2EELO2hhCz3soIUdtLCDFnbQwhZ62JF94P+TTz7RNm3aaEREhDrntFu3bvkOhvpf0B8yZIg657Rz58566NCh4Ox4GUQLO2hhBy1CL/ubt9l7rF+/XocMGRIw5PPFF1/osWPHNC0tTR955BHvOXrs2LG6Zs0azczM1NWrV+sDDzygTZo08d6wfe2113JsHznRwg5a2EELO2hhCz3soIUdtLApe5fchkIXLFjgvRa4cuVKbzg0JiZGX3vtNY2Pj9fFixfr4MGDvaHQWrVq6ZQpU1SVFkVBCztoYQs9gJLFADtQgBdffNH7tOyOHTtUNfdPXG3cuFHPPvtsvfvuu/XAgQM5lmdmZurhw4f1zTffDPhdXtsrzw4cOOCdIF522WW5DjK88cYb2qJFC+9k0bnjX+O1efPmHNt6/PHHvX8AfPrpp8F8KKUeLeyghR20sIUedtDCDlrYQQs7aGELPew48RvozjnnHO94161bV7/++mtVzX0w1G/v3r164YUXqnNOr7jiihLf57KKFnbQwg5a2OV/w/bEIZ/sz+cpKSk6efJkr9npp5+uLVu21EqVKmlUVJT33D1q1Cjdtm1bCB9N6UYLO2hhBy3soIUt9LCDFnbQwo7169fr0KFD822hqrp69Wpt166dOue0UqVK6pxTn8+n4eHh6pzT2rVr68iRI/Xnn38O0SMp/WhhBy1soQdQMhhgBwrw7rvvqnNOq1atquvWrctzvc8//9w7aclriD07/xsr/jditm3bpjNnziy+HS/lVq9erVdddZXOmTPHe7L3D/wfPnxY+/fv7x3vf/7zn3rppZeqc07r1aunGzZsCFh/x44d2rdvXw0LC9OJEyeG5gGVYrSwgxZ20MIWethBCztoYQct7KCFLfQIvbwGQ+vXr69Vq1bVBg0a6C+//JLn7f2va/z000/e1cYGDRrEFWNOAi3soIUdtLArMTFRBw4cqHXq1Al4wzb712lnN2PGDK1atapGRkYGfDCtTp06+tBDD+mmTZuC/AjKDlrYQQs7aGEHLWyhhx20sIMWduzatUsHDBig1apVK1SL33//Xa+66io97bTTAlrUr19fp06dylDoKaCFHbSwhR5AyWGAHSjA4sWLNTw8XMPDw3XBggX5rvvmm296TzrDhg0rcIjd/0bMjh07dMiQIerz+fRvf/tbse17aXfkyJFcn+zff/997zg/8MADqqq6YcMG7dq1q/eEf+JAwwMPPOD9IyItLY03q4qIFnbQwg5a2EIPO2hhBy3soIUdtLCFHqGT22Coz+fT6tWr69ChQ/VPf/qTtm/fPs/b+wdDjx07ppdffrn34YJvvvmmxPe9rKGFHbSwgxa27dy5Uxs3bqzOOW3btm2+b9j6LV26VCdNmqQXX3yx9urVS6+//nr93//+p0eOHAnSXpdNtLCDFnbQwg5a2EIPO2hhBy1sGTVqlDrntHXr1rpw4cI8W2Q/3/viiy/08ccf13vvvVcnT56cYyA0+7klCo8WdtDCFnoAJYMBdqAQ/G909O3bV/fu3ZtjefYnFP8V251zetddd+n+/ftz3ab/Nr/++qsOGTJEGzZs6N1uzZo1JfI4Sjv/Mbvnnnu8fxT89NNP3rLExETt1q1bjoEGVdW33npLnXPaoUOHkOx7WUMLO2hhBy1soYcdtLCDFnbQwg5a2EKP4MjrqsbVq1fXUaNGaUpKil5xxRVaoUIFXbVqVY7b+1+AT09P1yFDhqhzTitWrKg33XST7tq1q9D3DVpYQgs7aFE6rF69Wrt06aL//e9/8x3yyeuY+n/v/8DZievRovBoYQct7KCFHbSwhR520MIOWoRe9mP06KOP6vz58wv8IEF+F64o6KIWNMkbLeyghS30AEoWA+xAPvxPCtOnT9eaNWtqkyZNdN68ebk+Wfh/l5GRodddd503jD5u3LgcT1wnDq9HR0d7b8R8/PHHJfyoSi//cbvkkkvUOaddu3bNsc6JAw2bN29WVdUbb7xRnXMaFxcXzF0us2hhBy3soIUt9LCDFnbQwg5a2EELW+gRXP/9738DBkNHjhzpDX6OGDFCfT6fTpw4UY8ePZrjtunp6fqPf/zD+8rUZs2a6aJFi3Ksl5GRoRkZGXm+LoLjaGEHLeyghX3JyckFvmGbXWZmpnds09LSApb9/PPP+uOPP+qGDRt0x44dOW6H/NHCDlrYQQs7aGELPeyghR20CL3sx78oxyn7uVt6err3c1pami5evFhnzZqlr7/+us6aNUsPHjyoqampRb6P8oYWdtDCFnoAJYcBdqAQdu3apZdeeqk657RLly4BV0jP/mSzbds2nThxotaqVUudc9qkSRN98cUXvSeY7OufOLweFRXF8Hoh3XTTTeqc07/97W+qGvgkrxo40FCvXj199dVX9bzzzlPnnE6cOFFVebIvLrSwgxZ20MIWethBCztoYQct7KCFLfQoeZ9//rmedtppGhkZ6Q2GZj9ms2bN8j6YP2nSJP3uu+9UVXXz5s26ePFijY2N9ZbXq1dP//Of/wRsf/Xq1frBBx9o37599bLLLtMrr7xS77zzTl24cKH+/vvvqvrHVZLLO1rYQQs7aFG2ZT+2b775pt52220aGRmpYWFhGhUVpVWqVNGhQ4fqhx9+mOttUHxoYQct7KCFHbSwhR520MIOWtiRfbD06aef1j59+njnhP4/HTp00KFDh3ofLKBFyaCFHbSwhR5A3hhgBwpp8+bNeuaZZ3pXgVu5cmXAFX6SkpJ04sSJWrNmTXXO6VlnnaWvv/66HjhwwFunKMPrXOknbyNHjlTnnLZo0UL37NmT6zqJiYnatWtXdc5plSpV1DmnZ5xxRo5POp/sp+RwHC3soIUdtLCFHnbQwg5a2EELO2hhCz1K3ubNm70P3997773escl+vO6//37vxfM6depox44dtXbt2lq/fn3vuLdu3TrgjVhV1bfffltbtWqlNWrUyPEifKNGjbRPnz6alJSkqrwIr0oLS2hhBy3KruwNb7nlFm3QoEFAg6ioKHXOaVhYmFarVk0nT57srU+P4kULO2hhBy3soIUt9LCDFnbQwo7sLa6//nqtVKlSwLlidHS0+nw+73fnn3++bt26VVVpUdxoYQctbKEHkD8G2IEiSExM1EaNGqlzTtu2bavPPfec7ty5Uw8dOpRjeP3VV1/VgwcPerf1v9FS1OH1+Ph4femll4LzAI3zH5dvv/1WzzzzTK1Ro4a+8847eT5hJyYm6p/+9CfvSf+LL75Q1T+e4P3/SEhJSdEff/xRVRloKCxa2EELO2hhCz3soIUdtLCDFnbQwhZ6BFdiYqI++OCD3jHxH7fsx+iBBx7QunXr5hjybNCggQ4fPlyXLVsWsM2nnnoqYL2WLVvqFVdcoYMHD9azzjpL69Wrp845bd68uW7ZsiXgfsszWthBCztoUfZkP5ZXXXWVN9DjnNO77rpLn3/+ef3qq690woQJ2rt3b6/Tgw8+6N2O5/HiQQs7aGEHLeyghS30sIMWdtDCjuwtrrzySnXOaUREhFavXl0feughXbZsme7YsUO//fZbnTBhgp577rnqnNOmTZvqtm3bVJUWxYUWdtDCFnoABWOAHSiijRs3aqdOndQ5p5UqVdKYmBj929/+ViLD6998841ee+216pzTwYMHB+cBlgIHDhzwjkvnzp113bp1ea67fv167dmzp7700ksBn2rLPsjQvHlzdc7pypUrS3zfyxpa2EELO2hhCz3soIUdtLCDFnbQwhZ6BN+JA5rZ/7548WL997//rbfffrvec889+uSTT+qWLVs0OTk54DbPPPOM96bseeedp/fcc48ePHjQa7F9+3adNWuWdujQwRsc/fXXX1WVb6HLjhZ20MIOWpR+2Y/h9ddfr845rVixonbu3Fnff//9HOv/8ssv+thjj3nNnnvuuWDubplGCztoYQct7KCFLfSwgxZ20MKmm2++2WvRtWtXnTt3bo51UlNTdeXKld6sz2WXXaZ79+4Nwd6WbbSwgxa20APIGwPswEn49ddf9b777tO2bdsGfKL27LPPLrbh9RUrVnhv2Pv/3HvvvcF5gKXAzz//rGeeeaY657Rr1666bNky742pE99UOnjwoKampubYxpEjR7yGzjk9/fTTdf/+/bwpVUS0sIMWdtDCFnrYQQs7aGEHLeyghS30CL2CruySffl//vMf7zh36tRJX3nlFU1PT1fV44Om/mOelZWlP/zwg7Zv316dczpw4EA9dOhQjm1nb0QvWlhCCztoUTo99dRTWrFiRY2IiNBu3bp5356ierxZ9g8npKSk6Pjx49U5p23atNHvv/8+x/Y4/iePFnbQwg5a2EELW+hhBy3soIUdb775ptavX1/DwsK0S5cuOVqcaMmSJdqiRQuNiorS6dOn51h+Ygu+lavwaGEHLWyhB5A/BtiBk5SSkqK//PKLjhw5Unv06KExMTE6Y8aMYhte79+/v/fGSlRUlDrn9M9//nPA9su7n376SU877TR1zmnr1q31oYce0o0bNxb69s8//3zAIMPMmTNLcG/LNlrYQQs7aGELPeyghR20sIMWdtDCFnrYkn3AM7tt27Zp165d1TmnzZs315deesl70Ty3F+CzsrL0P//5jzZo0ECbNm2a48r4ub3gnv3q+qCFJbSwgxb2paam6lVXXaXOOa1Zs6Z+9NFH3rK8BnbWr1+vl156qTrn9KWXXgpY5m+RlJSkiYmJqsrXahcWLeyghR20sIMWttDDDlrYQQtbbrvtNu/1vw8++MD7fV4tDh06pGPHjlXnnPbt21ePHj3qLfO32Lp1q7788ss5fo/80cIOWthCDyB/DLADxSA5OVl37typR44c8X53KsPr1113nffk5b+dc07ffvvt4DygUmTjxo3apUsXDQ8PV+ec1qpVS5955hnv5K4g//znP9U5p7NmzfJ+xyecTw4t7KCFHbSwhR520MIOWthBCztoYQs97Fu5cqXWqlVLnXN60003eYOc+R3nPXv2aM+ePdU5l+tXbKuqjh49Wm+99dYS2eeyihZ20MIOWtixcOFC73XuCRMmeL8v6Hl59OjR6pzTJUuWqGrgBwa2bNmiN954o9atW1c///zzktnxMogWdtDCDlrYQQtb6GEHLeyghR2bNm3SiIgIdc7p0KFDvd8X1GLZsmVasWJF/eSTT1T1+IcS/BeS3LJli95+++3qnNM+ffqU2L6XNbSwgxa20AMoGAPswCnI6wmluIbXR40apXfccYf6fD5t0KCB/vDDDyX3YEqxHTt26IQJE7RDhw7qnNMhQ4bo/v37871N9k+frV+/3vuZQYZTQws7aGEHLWyhhx20sIMWdtDCDlrYQg/bHn74YXXOacOGDfXnn39W1cJdKWzOnDl6//33e3//7LPPvK4PP/yw1q1bV51zOmzYsJLY7TKJFnbQwg5a2DFz5kx1zmm9evV0xYoVqpp/C/+yffv26Zo1a1RV9fDhw/rkk0/qiy++qMnJyXrHHXd4r72ff/75mpqaynN9IdDCDlrYQQs7aGELPeyghR20sGPt2rXq8/nUOacvvviiqhb+6vW7du1S1eMXq5w8ebJedtllunTpUh0+fLjWr19fnXN62mmneeshf7Swgxa20AMoGAPsQDHzn0ic6vD6kCFD9JtvvtHmzZvzqalCSE9P13379umsWbN0z549qlrwYMKJ/yjgJLB40MIOWthBC1voYQct7KCFHbSwgxa20MMu/xXEGjZsqLt27Tqp47xo0SKNjo7WRo0a6fDhw7VevXoaHh6uzZs311deeaUE9rpsooUdtLCDFna8+OKL6pzT008/XXfv3l3k22dmZuoPP/ygZ511ljrntG3btlqvXj11zumFF16oP/30UwnsddlECztoYQct7KCFLfSwgxZ20MKOtWvXasWKFbVq1aq6fPlyVQ28qEVh/Pbbb3rzzTerc06rVKnifYNX27ZtdePGjarKa4qFQQs7aGELPYCC+QRAsVFVcc7Jzp07ZeLEifLhhx/Krl27pEqVKjJz5kzp3bt3jnVFRL755ht5+umn5b333hMRkVtvvVXGjRsnkZGRkpqaKj6fTy655BIREcnMzAz+AysFIiIipFatWnLNNddI3bp1JSsrS5xzkpGREbBe9uPn8wX+T6C/B04NLeyghR20sIUedtDCDlrYQQs7aGELPexRVRERqVixooiIREdHS/369cU55y0rjMzMTGnVqpXExMTI9u3b5dlnn5XffvtNmjVrJuPHj5ebb7454P6QEy3soIUdtLCncuXKIiKyd+9e2bVrV5Fv75yT8847T6699loREfnhhx/kt99+k3bt2smsWbOkRYsWvHZeSLSwgxZ20MIOWthCDztoYQct7IiKipKMjAw5cuSIxMfHi4hIWFhYoW+vqlKnTh25/vrrpX79+pKSkiL79++XVq1ayZdffikxMTGSmZnJa4qFQAs7aGELPYCCMcAOFCPnnOzatUvuu+8+mTdv3kkNrw8ePFj++c9/Sr169eSNN96QX3/9VSpVqiSXX365iAQ+kfHGSN58Pp9kZGRIeHi4JCcny9SpU0Xk+PHjhC+4aGEHLeyghS30sIMWdtDCDlrYQQtb6BF6/tc1OnbsKCLH33D99NNPA5YVJDMzU8LCwqRBgwZy3nnnSYUKFSQzM1PCw8NlyJAhcsMNN4iIeB9YQO5oYQct7KCFPZdffrm0adNGMjIy5LPPPpP09PRC39b/evr27dtl9+7dEhUV5R3z9u3bS+PGjb318tsGjqOFHbSwgxZ2hLoFAtHDDlrYQQsbVFWaNGkiAwcOFJ/PJ998843s2LGjSLf3t5g9e3ZAx99//927MAYtCkYLO2hhCz2AQireC7oD2Llzp7Zs2VKdc1qzZk39+OOPA5Zn/9qOFStW6HXXXafOOXXO6e23365bt2711rviiivU5/Np3759NT09PeDrz7Nv54MPPtCHH364hB9Z6XLs2DFVVU1JSdF27dqpc06HDx8e4r0qn2hhBy3soIUt9LCDFnbQwg5a2EELW+hhx+bNm/Wiiy5S55yOGjVKDx8+XKjbZX+NY8KECVqnTh11zmmlSpXUOaeNGjXSX375RVVz/1rV7LfHcbSwgxZ20MKOw4cP66BBg9Q5p+3bt9fVq1cX6nb+18G3bdumgwcP1rp166pzThs2bOi9rj5mzBhvfX+PrKwsPXjwoH722Wc5tlXe0cIOWthBCzuC3QL5o4cdtLCDFra89dZbGhERoc45ffrppzU1NdVbltdza14tWrZs6b3OePrpp+vPP/+sqn+8Dqma81yPc78/0MIOWthCDyB/DLADJWDNmjXasGFD/c9//hPw+4KG1/1veqiqLly40Fv2+OOP57mdefPmaevWrdU5p7feemsJPaLSKSUlRZs1a+YdR+dcoU8g85PbPyAyMjJynETyYuMfaGEHLeyghS30sIMWdtDCDlrYQQtb6GHH008/7TV49tln9dChQ96y3F4gz2swNCYmRh9//HHt2rWr9ybuli1bVDXwjVv/7b/88ksdN25cyTyoUooWdtDCDlrYsWXLFm3evLk657Rbt266YsUKTU5OVtXcn1f9v0tKSgp4w/b888/XH3/8UWfMmOG1ffDBB73b+XusXLlSnXN63XXXBeHRlS60sIMWdtDCjmC1QOHQww5a2EGL0Mt+nB944AHv+E2ePFk3bNhQ4O1ya7F582bdsWOHdu7cWZ1z2qRJE920aVOu9/nRRx95y8r7hw1oYQctbKEHUDgMsAMl5MSr+RRleF1VdcqUKVqxYkVt2rSprl+/3ttG9u18/PHH2rp1a42MjFTnnP7lL38pwUdU+vz888/eMT799NN11qxZp7zN7E/qycnJ+u677+r999+vf/nLX7RPnz46depU/fzzz711GGg4jhZ20MIOWthCDztoYQct7KCFHbSwhR6hl33Ic/To0V6Pe++9V+Pj4wu8TfbB0GbNmunMmTNVVTUhIUG7dOnitfUPiGa//ddff60+n0+dc/qvf/2rBB5d6UILO2hhBy1sSkxM1OjoaHXOaevWrfXhhx/WlStX5lgvvzdsN27cqKrHP8yW/QMKDzzwgHf7vXv3aocOHdQ5pxUrVtSvvvoqOA+wFKGFHbSwgxZ2lGQLhkOLjh520MIOWoRe9vO3UaNGecfvL3/5i44bNy7gw8uqhWuRlZWl69at8z643KRJE01LSwu4uvGcOXO0TZs2Wr169Vybl0e0sIMWttADKBgD7EAQFHV4PTU1Vdu3b6/OOb3ooou8rw/JbXg9PDxcnXN64403esvL+xvo2f3444965pln6jvvvOP97mSPj3+QITMzU59//nmNi4tT55zXwP+nTp06ev/995/y/ZU1tLCDFnbQwhZ62EELO2hhBy3soIUt9Ai97EP/999/v3ecGjZsqIMHD/auQKaa/1WN/YOhfuvXr/cGRJ955pmA+1q2bJn3tautWrXSSZMmaVpaWkk+zFKBFnbQwg5a2LRx40bt1q2bVqlSRZ1zWq1aNd2zZ4+3vDBv2Pp7paen62OPPabOOV20aJGqqh49elQnTJig1apV07CwML3mmmt0+/btQX6UpQMt7KCFHbSwo6RboGjoYQct7KBF6GU/53vqqaf0nHPO8c771q1b5y0rTIvs21q9erV27dpVv/jii4D7mz17tl588cVasWLF/8feeYdFcfx/fOaoIipgN6KIvffeezdqYktiEhM19hJb7L1r1IgtaqxoosYe4zf2XhI7IB0ULCjY6HDc+/cHvx3v6MqV4fi8nodHuZ1dZud1u7Mz+5kZEaeT1speuRFyIQ/kQi7IB0FkDAWwE4QRuXHjRobB60qFcffuXTg7OyNPnjxwc3MDkNxgUUgZvP7ll1+KioyW/UiN9oi1jw0s0G449u/fXzwoKC+xmjdvjs8//xz169cXsytNmjRJL/k3J8iFPJALeSAXckE+5IFcyAO5kAdyIQ/kQi7Ih+nR7ovYsWMHevbsCSsrK4wcOVJ8ntXAUO10np6e2LFjh87f0g4MrVatGtauXYu3b98a4rRyJORCHsiFPJALOXn+/Dm2bNmCbt264e+//xaff0iQj0JCQgKePXsmfteeJd/GxgbXr183whnlXMiFPJALeSAX8mAoF+m9T00ruCe3D1rWhnzIA7mQB3JherTL6s6dO9i0aZNY3USj0YjyCQ0NxbBhw7LkAkieGV8bJSjUwsICnHP0798fERERhjqtHAm5kAdyIRfkgyDShwLYCcJI/Pfff+jatWu6wevaLFmyRKQ7f/68zjYKXv9w9DUzfVhYGJo0aSLccJ68fNeNGzfEg0JwcDDWrl0rAho2btyY7fybE+RCHsiFPJALuSAf8kAu5IFcyAO5kAdyIRfkQw60O9DfvHkDLy8v8bv28qWLFi0SgaFly5ZNNzA0LVIGhq5Zs0YEhub2l7XakAt5IBfyQC7kRSn/pKQkUU7Pnz/HmDFjsvzCNiVDhw4Vdfm6desAkIOsQC7kgVzIA7mQB0O40CZl+t27d2P9+vXid3KkC/mQB3IhD+TCtKRVntouXr58iQkTJqBIkSJZdqH9ecqg0D59+uD169f6PxEzgFzIA7mQC/JBEGlDAewEYSRCQ0PFC4xRo0alGbyelJSE2NhYdO7cGSqVCj179tRpaBw9ehRVq1YVwetfffUVBa8bGKWyDwwMRP369cE5R548eVC1alX8/vvvae7z7t07/PDDD+Cco1+/fjoPHMTHQy7kgVzIA7mQC/IhD+RCHsiFPJALeSAXckE+9Eta5aDdX/Hrr7+iVKlSHxQYqnx++fJl0a9StWpVrFmzRsy+T+WfGnIhD+RCHsiF/Gg0GiQmJsLNzQ2lS5cG5xy1a9eGv78/gKwF+WzevFkEhvbs2VPsS3wY5EIeyIU8kAt50IcL5TjavHv3Dps3b0a/fv2Ep8GDB+s9/+YG+ZAHciEP5EIelLL+/fffUa5cOXDOUbNmzUyDQrXLnoJC9QO5kAdyIRfkg8jtUAA7QRiRBw8eYMKECQgKCko3jZeXF+zs7MA5x48//ig+p+B146OMkn716hUaNGgAzjny5s2Ldu3a4cyZMyJdWi+h3NzcwDmHra1thr6JrEEu5IFcyAO5kAvyIQ/kQh7IhTyQC3kgF3JBPoxLSEgIOnXqBM45ihUrBnd3d7Ets8DQS5cuicDQOnXqYM2aNYiKigJAfSIfA7mQB3IhD+RCHiIjI0W9XKpUKfj6+gLIWpDPw4cP0bVrV6hUKlhbW2PLli1ppkurbqeBBqkhF/JALuSBXMhDdlykTOPp6Yk//vgDNWvWhLW1tQgKtbW1BeccS5YsMcg5mBPkQx7IhTyQC7lo27YtOOcoXLhwpgMJMgoK/fzzzykoNJuQC3kgF3JBPojcCgWwE4SR0V6SVhvlZcby5cvBOUeJEiXg7e0NADh8+HC2gtc/dPkp4n2ZJSYmokWLFuCcw87ODl27dsXly5dFupSdhgkJCQCAP/74A/b29ihYsCBCQkKMl3EzhFzIA7mQB3IhF+RDHsiFPJALeSAX8kAu5IJ8GJ+DBw+KF6xubm7i8w8JDC1dujQmT56M69evQ6PRIC4uDgAFiH4o5EIeyIU8kAt5OHr0qAjGOXToEIDMy1Dx4ebmJl7Yfv/992K7dn2uHEutVuPixYvYtm1bquMQyZALeSAX8kAu5OFjXKTE29sba9euhaurKxwdHcE5R/HixdGoUSNUrVoVnCev0HXt2jUDnIF5QT7kgVzIA7mQh6dPn6JQoULgnGPmzJkAsh4U2qRJE6hUKprRWE+QC3kgF3JBPojcDAWwE4RkdO/eHZxzVKlSBYmJiTh27NhHBa+nfMkeFhaGEydOGDTv5kZSUhKGDBkCzjlsbGzQqlUrXLp0SWzPaMaLYcOGgXOO/Pnz4/Hjx8bIrllDLuSBXMgDuZAL8iEP5EIeyIU8kAt5IBdyQT6My5EjR8A5xyeffIJbt24ByDww9PLlyyIwVHkpa2dnh0KFCqFmzZoYOXIknjx5AoACRD8EciEP5EIeyIU8+Pj4oHTp0rCzs8Nvv/2W5f1u3bqFPHnygHOOpk2b4tGjRwDSLvu4uDhMmjQJtWvXBuccQ4cO1Vv+zQlyIQ/kQh7IhTx8qAulfRcZGYnQ0FAMHz4c9evXF/W4g4MDmjZtiv/973+4dOkSBgwYAJVKhUGDBiE2NpYGEGQC+ZAHciEP5EIeYmJi0KVLFzGITJmgIiUpg0KbNm0qgkKrVasm2ndZIa0BagS5kAlyIRfkg8jNUAA7QUjEzZs34eTkBAsLC2zfvh0XLlxA5cqVPyh4PWXD5O7du9ixYwfKli2balYHImMOHjyIcuXKiWW9Tp48KbZlFMhw69Yt1KpVC5xzdO/eHfHx8bS8YzYhF/JALuSBXMgF+ZAHciEP5EIeyIU8kAu5IB/G5ebNm3BxcQHnHCtXrkw3nfasxkp/iEqlQuHChdGnTx+MGDECrVu3RsmSJcE5R+XKlREcHKyzL5Ex5EIeyIU8kAt5ePXqFbp16wbOOVq3bi2CPDPiyZMnYmKYQoUKYdmyZYiPjwegW6eHh4fj3LlzIhDIwsJCvOhdu3atwc4pp0Iu5IFcyAO5kIesuEhZ9968eRPfffcdqlWrBs65qMuHDh2KPXv2IDY2FgDw+++/i4DRnTt3GuV8cjrkQx7IhTyQC7lYv369KLO0BhRo18l//vknmjVrJuph5WfevHmIiorK9G8px7pw4QLu3bsHgIJDtSEX8kAu5IJ8ELkVCmAnCInYsWOHGD07ePBg1KhRQywnmNWZ14HkisbX1xeLFy+Gq6urmNXB1tYWnHOMGzfOGKeT4xk6dKio5Hfs2CE+TyswQfuzefPmif2WLVtmlLyaO+RCHsiFPJALuSAf8kAu5IFcyAO5kAdyIRfkw/gsWrQow074tAJDy5Yti2+//RZBQUEi3du3b3HlyhU0atQInHPUqlULz58/N9ZpmAXkQh7IhTyQC3nw9/cXgwA6d+6sU77aKE727NmDUqVKgXOOBg0aICwsLFXaf//9Fz/88IM4brFixVC6dGlwzlG7dm1EREQY8pRyLORCHsiFPJALeUjpIjAwEEDq96ju7u4YNmyYeOfKOYejoyNGjRqFQ4cO6aT18/NDzZo1wTlHv379jHUqZgH5kAdyIQ/kwvRo9+lNmTJFDAzYsGFDmmlSBoUOHDhQp604Z84cREdHp/v3lPr/3LlzYp8HDx4Y4MxyHuRCHsiFXJAPIrdDAewEIQFJSUmIjIxEu3btRKB5xYoVRcB5VoPXIyMjERgYiEGDBqFOnTqioilZsiRKly4tlrQdMWKEsU4tx3Lt2jXxImrkyJHi88wCGfbt2yfKvWvXroiMjEx3PyJrkAt5IBfyQC7kgnzIA7mQB3IhD+RCHsiFXJAP46I9o9jEiRNFGW7bti1VGu3A0KpVq2LZsmUiYCdln8ipU6fg7OwMW1tbrF+/HgC5yAxyIQ/kQh7IhZx4e3ujePHi4JyjS5cuYrZiBcVJbGwsmjRpAs6TJ4a5ffu2Trrw8HDs2rULDg4O4Jwjf/786NOnDw4fPoxatWrB0dERGzZsgFqtplny04FcyAO5kAdyIQ8pXSQmJgIAXr9+DXd3d/Tp0weccxHgU6ZMGYwbNw4PHjwQMxkDEA7/97//oVixYrC1tcWmTZsA0CoqHwL5kAdyIQ/kwvRot9UmTZokgkNfvHihU3Ypg0L79OmDt2/fAgBWrVqVaXCo0t47c+aMSMs5xzfffEMzG/8/5EIeyIVckA8iN0MB7AQhCeHh4ShSpAgsLS2hUqnEi5D0gtdTVhznzp3DoEGD4OrqKioyzjnGjx+PvXv34qeffkK+fPlQvXp1+Pr6AqAXJhlx+PBhWFhYwNbWFnv37gWQeSDD33//LQYJlC9fHr/99hs1FvUAuZAHciEP5EIuyIc8kAt5IBfyQC7kgVzIBfkwPtr9GOPHjwfnHAsXLgTw/kXrxYsXRX9GqVKlsHjxYtEBn5afiIgIMYC/f//+meYhKSkJISEh+jidHA25kAdyIQ/kQk48PT1RokQJnD17Nt00yooqefLkwZw5c5CQkCC27d+/H1999ZV4Idu5c2dR748bNw6cc7Rs2RLBwcEGP5ecDrmQB3IhD+RCHjw8PPDJJ5/g9u3biIiIwL59+1CjRg04OTmJ8i1YsKD4/8GDBwFA+FDq8YSEBLRs2VIMVHvz5o3JziknQz7kgVzIA7kwPSmDQ8+dO6ezPWVQaN++ffH69WudNKtXr043OFRpN2oHhTo4OOCLL77As2fPDHZeORFyIQ/kQi7IB5FboQB2gpCER48eiSWhlJnXv/zyS9EYUUbipnwZsn37dgwbNkxnZJSzszPGjx+P//3vfwCSX5Y0aNBAvCyJiooy7snlQJRK3dXVNd0XUdq///PPPyhUqBA457C3t8eIESMyXJKFyDrkQh7IhTyQC7kgH/JALuSBXMgDuZAHciEX5MM0aHfCnz59WmebdmAo5xw9evRAeHg4gLQDQ5V+ki+++EIE/GREUlISrl27hqpVq2L06NHZPZUcD7mQB3IhD+RCTpRZJ9OaCezgwYMoV64cOOeoUaMG7t27BwB49+4dRowYIWY0zps3L2bMmCFWTtm0aRM457CwsMC1a9eMdzI5HHIhD+RCHsiFPCQkJODIkSNwdHQUAaGWlpaws7PDwoULsW7dOrESNudcvEPVaDTCn7u7O/Lnz48CBQrA3d0dAM1q/LGQD3kgF/JALkxPerMLHzx4MMOgUO39UgaHRkVFpRsU2q9fP4SFhQF470lpK+Z2yIU8kAu5IB9EboQC2AlCIry8vMQL8a+//lq8/IiLi9NJFxoaip07d6Jz5846geuNGzfG0KFDERISojOLgzJrUKFCheDl5QWAZl/PjHXr1oFzDkdHRwQGBmaY9sSJE3B0dBQeevXqJUY7U4Mx+5ALeSAX8kAu5IJ8yAO5kAdyIQ/kQh7IhVyQD9ORVif8pUuXxGB+CwsL2NnZwdPTE0DG/RevX79G5cqVwTlHp06d0k2XlJSE69evo1WrVsLjf//9l/2TyeGQC3kgF/JALuQjvQFmsbGxGDRokCizAwcOIC4uDtu2bROzUtra2uKrr77CkSNHxP7//vsv6tWrB5VKhSVLlqT5N4DU3wXqTycXMkEu5IFcyMX9+/eRL18+cJ48M/HYsWNx69YtAMlldv78ebRv3154+eeff3T2/+GHH8A5h4uLC+7fv2+KUzAryIc8kAt5IBfy4e7ujqZNm8La2jrNoFAF7T5A7eDQ2bNnA/iwoNCoqCgxAIF4D7mQB3IhF+SDMHcogJ0gJMPT0xNDhgwRnU3aFYyHhwf27t2LChUqiJkZbGxs0KhRI8ycOROBgYGIj48H8H45qdDQULRq1QoqlQrff/+9zsgqIn08PT3h6uoKJycnnc5D7YEBCQkJ2Llzp6jgLS0t0bFjR7x69QpA+iPjiA+DXMgDuZAHciEX5EMeyIU8kAt5IBfyQC7kgnzIQ0BAgCjjatWqoVixYqhSpQoiIyN1fGij9JkcPnwYxYsXh0qlwrx583S2KSiBoc2bNxed8xs3bhQz7xPvIRfyQC7kgVzIy9atW4WbMWPGICAgAF26dBH95kWKFMGff/6Jp0+f6uw3f/58qFQqNG7cGHfu3Mnwb8TGxmL//v3idwoQTRtyIQ/kQh7Ihenw8vLC4MGD8ejRI7FqltJ2S0hIwJkzZ3SCQ0+dOgUA+PPPP8Vnq1atMlX2zQ7yIQ/kQh7IhVysWrVKlGv//v3TDApV0I6z0d7vm2++yTQoVCEqKgrdu3cH5xzz5883yDnlVMiFPJALuSAfhLlDAewEITmJiYkICgrCvHnzUKVKFdjY2IBzDjs7O1G5rF69Wmcf7cplw4YNIt2BAweMnf0cy6tXr8QM9y1atMCtW7d0XkqdOHECP/74oyhbR0dH9OnTRzwoUCCD/iAX8kAu5IFcyAX5kAdyIQ/kQh7IhTyQC7kwhQ8KKEmfr7/+GiVKlMDy5ctRpUoV1K9fP9202i91e/XqBc6TZ0S+du1aqrQpA0Pt7e2xadMmREZGGuxccjrkQh7IhTyQC/m4evUqSpUqJerorl27okCBAuCco0yZMvjuu+/g4+OTar8LFy6Iut3NzU1nm3Y9/fbtW9y6dQuNGjUSL3qJtCEX8kAu5IFcyE1iYmKq4NCDBw9izpw5sLS0RJ06dfDw4UMA1IYzBuRDHsiFPJAL4/P111+jffv2GQaFKmjH4mzbtg2cc6hUKnDOUaBAgQyDQgFg8eLFIt6nXbt2qQaz5XbIhTyQC7kgH4Q5QwHsBCExz549Q8+ePdGiRQvROOGco1mzZhg/fjyaNWsmPjt9+jSA5EaK0lDx9vZGtWrVwDnHoEGDTHkqORJ/f384OzuDc47KlSujV69eGDVqFLp06YKCBQuKsq9evTomT54sZkaiwBL9Qy7kgVzIA7mQC2P6oA7JjCEX8mCK+5SyGhGhC7mQB2O60O54pPo/bUz1PKXd4Zvb6xLtsjx//jxCQ0PRsmVLFChQAA8ePMhw3yFDhojA0Dlz5gDQLU8KDP0wyIU8kAt5IBdykpiYiKlTp4Jzjjx58ohy5pyjY8eO+Pvvv8VqKdrPQ4GBgWjYsCE45/j222/F5ynr9Vu3buGnn36Ci4sLOOewsrIC5xwXLlzI9fV2SsiFPJALeSAXOYO0gkOV2fGHDh36Qceics8+5EMeyIU8kAvjoF3PxsTEZHk/ZRKMO3fuCD92dnZpBoWm1Y84YMAAtGnTBrdu3cpO9s0KciEP5EIuyAeRG6AAdoKQGH9/f1haWorKpFWrVpgxYwYSExMRFxeHy5cvp7l8lFIRHT58GE5OTrC0tMSmTZsAZN5A8fT0xLZt2wx6XjkJX19f1K5dG9bW1jqDCJQOx/79++PIkSOIjY0FkPboNEI/GNuFsj816lNDLuSBXMiFsX14eXnh3r17VPekAbmQB2O5SEpKgqenJz7//HPs2bMHwcHBYhvds5IhF/Jg7HvUrl27sHHjRp3l58nFe4ztw9PTEwMGDNB52ZjbfaQs0xEjRoBzjmXLlolyV1Cr1Xjz5g2+++47cJ48c0y3bt1w8+bNVMekwNAPh1zIA7mQB3IhJ97e3siXL5+os6tUqYLJkyenmz4+Ph4rV66EnZ0datasKV7Aag+6TEhIwN69e+Hi4oL8+fODc46iRYuib9+++N///qdzPGr7vYdcyAO5kAdykTNITEzE2bNn0aZNG9EOrFSpkujHSNkX/vbtW/j5+eHIkSO4ffs2wsPDxbGozLMP+ZAHciEP5MI4fGjZKOlPnTolvOTLly/DoNCYmBg8f/5c5ziBgYHZzbrZQS7kgVzIBfkgzB0KYCcIyfHy8kK5cuWwdu1a+Pn56WxLSEhINfJW6aiKiIhAjRo1wDlH48aNszQDoo+PDwYOHAjOOQYMGGCQ88mJhIaGYs2aNejduzcaNmyIatWqYcaMGXB3d9dJl9uDDoyBIV2kHFX47t07qNXqVEvwkOdkyIU8kAu5MFad4evriy+//BKcc0ybNg1Xr17V27HNBXIhD8Zw4eXlhW7duolAoR49emDHjh16ObY5QS7kwVj3qGvXrsHV1RWcczRv3hxbt27V27HNCWP58PT0xOjRo0X7feTIkXo7tjmxd+9eUUbz58/H5cuXERkZiaCgILi5uaFz587iHtO6dWscPXpUZ38KDNUf5EIeyIU8kAt58PDwgL29PQYPHqwTvJnWKjSPHz9GzZo1wTnH1KlTER0drXOsEydOiMEJyk/58uXxxx9/4NGjRzppQ0JCsG7dulSf52bIhTyQC3kgFzmH33//HUWKFAHnybPfv3v3TmxT2mmBgYH47rvvUKZMGXDOYWlpic6dO2Pz5s0iLa18ph/IhzyQC3kgF/Kg1ONnzpwRdbKDg0OmQaEtW7ZEvnz5EBQUZJJ8myPkQh7IhVyQDyInQgHsBJEDSLkMiHYHV1rLR508eRKnT59G/vz5UbBgQfzxxx8AMm6UKMHrSuPH0tISAQEBhjmhHE5cXJzO7zRi2XQYwsXp06exevVqNGnSBHXr1kWVKlUwYcIE7Nu3T6Sh4JLUkAt5IBdyYQgfSUlJOHv2LBo0aADOk5cKbtasGdauXSvSkI/UkAt5MISLV69eYcGCBRgwYACsrKygUqlgbW2NqVOnijTkIjXkQh4M2cb45ZdfUKdOHVhYWMDS0hJz5swR28hF2hjCh6enJ0aNGiXa7VZWVuCcY9SoUSIN+XjP9OnTRVkVLFgQ1atXR6FChZA3b14xk+Vnn32G48eP6+xHgaH6h1zIA7mQB3IhD69evRKrkQK6dbZ2vfrZZ5+Bc44qVarozCimVqsxfvx4VKlSRTitXLkyBg0ahIiIiFR/7+nTp1ixYoVI+/TpUwOdWc6DXMgDuZAHcpEzUAYHWFhY4Nq1a6m2P3/+HL179xardjk5OYnBapxznTY2vS/MPuRDHsiFPJALOfiYoNDo6Gj06NFDpP/uu++yNPEkkTHkQh7IhVyQDyKnQgHsBJEDUDqy0nuZnVYQu/IipHTp0vDx8cnw+ErwesGCBcE5R6lSpXDlyhW9n0dORrvsKajAtBjChUajwatXrzBixAgxiCPlj62tLX766Se9/+2cDLmQB3IhF8aoM2JjY3Ht2jUx87fSETlixAiD/+2cBLmQB0O6SHm8AwcOYNCgQcLF2LFjDfa3cyLkQh4MfY/SfiF18+ZNjB8/nlxkgCF9pAxe//bbb7Fu3Trhg4LY36P9vZ09ezZKlCih8/yZL18+5MuXD6tXr4aHh0eqfTMLDM3t5fshkAt5IBfyQC5yJhs2bADnHI6Ojjh79iwA4NmzZzh8+DDatGmj4/CLL77AkSNHxGC2xMREcZynT59i6dKlKFSoEDhPnv04ODjYJOeUUyEX8kAu5IFcmJbTp0+jePHiUKlUGDZsGIDU9fGpU6dQtGhRWFlZYeDAgfDy8sIff/yhMyv+ggULRHoKDv14yIc8kAt5IBdyoJT5xwaF5s2bF3369MGNGzdMcwJmBLmQB3IhF+SDyMlQADtBmAlpBbFzznWWhUqLlMHrn3zyCQWvE2ZDRqsOKA9wMTEx+Pvvv9GhQwedwMOOHTvim2++wcSJE9GpUyfx+ZQpU4yVfbOCXMgDuZCLj1myMWXn5PLly1GqVClYWlqCc46vvvpKX9nLVZALefjYpUy1O96fP38ONzc3cZ9avHixvrKXqyAX8qAPF8+ePcOqVauEi+nTp+sre7mOzHxo1w8pg9cHDRqEqKgoAMDmzZspiD0NtMv3ypUr2LVrF6ZOnYrJkyfj8OHDqYJCgawFhqb3gja3l3dGkAt5IBfyQC5yBkq5BQQEoH379rC0tBQD+B48eIABAwagXLly4JzDxsYGFStWxIoVK3SOoe06ZWBow4YNafXSLEIu5IFcyAO5MD2Kg9mzZ4u22q5du9JMq8xqX7RoUQQFBYnPX7x4gWXLlon9N2zYYIysmyXkQx7IhTyQC3lQ2mpnz5796KDQ3r1749atW6Y5ATOCXMgDuZAL8kHkdCiAnSDMiLi4OJw6dQoVKlSASqVC7dq14enpCSDtlx0UvE6YIzExMbh79674Pa3gEuV6ePfuHbZu3Yp69eqBcw5LS0u0bt0a69at00n/4sULEXhlbW2NPXv2GPYkzARyIQ/kQi6y4iMztOv1//77D82bNxfLQ9asWROPHz/WS17NHXIhD/pwAej6iIuLw6JFi6BSqVCpUiVcv3492/nMDZALedCXi5THXLJkCVQqFezt7bFv375sHzO38DE+PDw8MHLkSNFpPHjwYLx+/VrnGFu2bKEg9jTIbDYw7fLJSmCoNmfOnMHatWtx9+5dREdHZ+nv5WbIhTyQC3kgF3KjXf4LFiwA5xwuLi7Yvn079u/fDwcHB1E3582bF5MnT8aFCxd09tc+RlqBof7+/kY9p5wKuZAHciEP5EIe/v33X9ja2oJzjs8//1x8nrIt5ubmBs45nJycUvXzxcTEYNasWeCco0qVKpnOWBkUFIQXL17o7yTMCPIhD+RCHsiFPPz99996CwpNSkoyyurB5gq5kAdyIRfkg8jJUAA7QZgJSoVz8eJF2NjYgHPdZeFTQsHrxkVZylEfQSdE+sTFxWHfvn2wtLTE999/n2HayMhIuLm5oXr16iJId9y4cbh27ZpIo70EZ3h4uHiIGzNmjMHOwVwgF/JALuTiQ3ykh3Yj8eLFi/jiiy/EjN/t27fH7du3qSGZBciFPOjDRXrcvHkTxYoVA+ccW7Zs0euxzRFyIQ8f6yKte07Kz/z9/cVS9ErANN2rMuZjfISEhGDQoEGi07h58+aIi4sDACQkJIh0KYPYBw8ebJBzMFc+NDA0MDAQvXr1Aucc5cuXx5gxY/Ds2TMA1F7PLuRCHsiFPJAL03L8+HFRDzds2BAjRoxAnjx5xMvcatWq4eLFi4iNjRX7pBwsQIGh+oFcyAO5kAdyYVoSExPFSlnFihXDjh07UqVR2slhYWGoUqUKOOeYNm0aYmJidNJ5eXmJlUyXLFmSbp3t6+uL3r17w9LSkmbITwH5kAdyIQ/kQi5Gjx4NzjkKFCiAAQMGfHRQqHafYEpo4HLWIBfyQC7kgnwQORkKYCcIMyIsLAzt2rUD5xy1a9fGkydPAKSuRCh43TTcv38f33zzDYKDg02dFbMkLi4Ou3fvhqurq+j43blzZ5ppY2NjsXPnTtSsWVME6S5atAghISEiTVpBPNOnTxcvEcPDww12LjkdciEP5EIuPsRHemg7uHLlCgYMGEAB0x8BuZAHfbjIjGbNmoFzjn79+ukMwiF0IRfyoA8XR44cwalTp8TvKe9HM2fOBOccjo6OePTokV7yba5kx8eaNWvQoEED2NnZIV++fPjxxx/FNu1rQK1WY+vWreL42jMsEunzoYGhCufPn0evXr3wySefgHOOOnXqiHY6BYh+HORCHsiFPJAL0xIYGIiOHTvCxsYG1tbWKFiwIKysrMA5R/369TFv3jzR35Feu+3p06dYsmSJ6ENv3LgxfHx8xHZq72UNciEP5EIeyIUc+Pr6gnOO4sWLIyIiAgDw+PHjVEGbUVFRGDt2rPCjrHyt3aZbvnw5OOfYvn17mn8rNjYWAwcOFG2+xYsXUwBQCsiHPJALeSAXcjFp0iR06NAhWzMaA8mTXowZMwYDBgzAkCFD8Pvvv4v3q9TmyxrkQh7IhVyQDyKnQgHsBGEGKBXE6dOnUbZsWXDO8d133yEqKipVWgpeNz4ajQaxsbEoWrQoOOfo27evTkAooR/evXuHypUri4b8gAEDcO/ePZ00Sqft5cuX0ahRIxGku2LFCtHwTwulgT9ixAhwzlGtWjWdmU8IXciFPJALuciKj4yggGn9QS7kIbsuMuPNmzcoX748OOfo1q0beckAciEP2XXx4MED0d77888/dbYps2csWrQINjY2KFSoEEJDQ/Waf3Mjuz58fHywfPly5M2bF5xzfPnll2KbdmevWq3Gnj174ObmhufPn+v1HMyRrASGpuxM12g04t4THh6OAwcOoG7duuCco0yZMmIwB72g/TDIhTyQC3kgF6bn5cuXKF26NDjnYpUTzjm++OIL+Pj4iFkp0ytPJTDU0dERnHNUqFABPj4+YjUVBfKROeRCHsiFPJALefD29saxY8cAADdu3EDVqlXh7u4OQLf/7+HDh2JVuW+++UZ8rtTn8fHx+Oeff8TnafV5nDx5EpxzTJw4UaywQuhCPuSBXMgDuTA92m03pU33oUGhyjvV//77D6VKlRJ1vzLBSNu2bfH48eNUf4/QhVzIA7mQC/JB5HQogJ0gzIhPP/1UVDb3798HoNtBRcHrpuXChQuws7MD5xyfffYZBbEbgPv376NMmTLo1q0bHj58qLNNuRaSkpLQvXt3EaQ7f/58vHz5Mt1jajfge/fuDc456tati1evXlHgVQaQC3kgF3KRkY+MoIBp/UMu5OFjXaSHcm9LSEjA9u3bUbhwYXDOMXLkyGwf29whF/KQHRdv3rzB8OHDRefib7/9pjPjUkxMDPr16wfOOWxsbHRm6SPS5mN8aNcFcXFx2LNnD+zt7cE5x6RJk9LdL2XQCZEajUaDixcvilUdMpvV+M2bN2k+2yYlJeHu3bto2LAhOOdo2rSpmJ2GyBrkQh7IhTyQC3nw8PAQA8i6dOmC9evXZ2m/p0+fYunSpaIPnXMOJycnlCtXDi4uLvj+++/x+++/i/T04jZzyIU8kAt5IBfyoLTdRo0aBc6TV7jWHuit9G0cPnxY9AFu3rw51f4K2mWecsXSgIAAGrCcCeRDHsiFPJAL06Mdc6OUZ1aDQpX0YWFhcHFxEYPPunfvjmbNmqFkyZLgnMPFxYVW38oC5EIeyIVckA8iJ0MB7ARhJuzevRucc9jZ2WHUqFEAkisMpaKh4HXTojwsXL16VSwFSUHshiE0NBTe3t7pbp82bRo457CwsMCQIUNSLbOWHjt27BAdwgsWLNBXds0aciEP5EIuMvOREgqYNhzkQh5SushqOWqn0/5/QkICDh06hA4dOoj71MGDB/WXYTOGXMhDei6y4iQiIgI//PCDKPMffvgBbm5u2L17N7755hvx+dChQw2Wf3MjOz6A5IEDCxcuhLW1NVxcXHDq1CmD5DO3sGrVKtHhvnnz5lSBoS9fvsThw4fRrFkzuLi4IH/+/BgyZAh27dqlky4pKQnHjh2Dq6sr7Ozs4ObmBiDrXglyIRPkQh7IhTx4enpi7dq18PX1FZ9l9JJVCQwtVKgQOOcoWbIkGjVqhEmTJmHAgAGoVauWeI6aN2+e2I9mOc4cciEP5EIeyIVcnDp1CmXLloWDgwM2bdqE+Ph4AO9XSXn58iV69+4NCwsLDBo0KNPj+fn5oXv37hgxYoShs26WkA95IBfyQC7kQWmTRUdHo1evXukGhWqzefNmcM5RpEgR7Nu3D3FxcXj37h2OHz+OBg0agHOOWrVq4cmTJwCo/s4q5EIeyIVckA8iJ0EB7ARhJgQHByNfvnzgnOPQoUM62yh4XQ60g9itra3BOUeHDh1oFLMRCQoKQt26daFSqVCtWjWcOXMmS/vdvn0bHTt2hIWFBQoVKoS//vrLwDk1f8iFPJALuaGAaXnQp4uU6cihLul1eKQMilar1YiLi0NUVBRiYmLw5MkT3Lp1CydPnkSfPn1QpUoV8eL2xx9/1JmBmsga5EIetIOlfXx8sjQDa2BgoFilS/kpUKCA+H+TJk1w9OhRQ2fdLNH2ERAQkO6suim5du2aCDZZvHixIbOYK5gwYQJWrVqVqvzDwsIwf/58uLq6gnOOPHnyiMGaygz42oFBL1++ROfOncE5x6effmrkszAPyIU8kAt5IBdyklHbK2VgaN26dXHixAmdGfL9/f2xaNEi8Ty1dOlSY2TbLCEX8kAu5IFcmJbXr19j0KBB4JyjTp06uH37ttim9I/MnDlTTCamPfAgJX5+fjqDx0+ePGnw/Jsb5EMeyIU8kAu5SEhIECtvFShQIMOgUABYt26dmME45Qz6t27dQv369cE5R69evfDq1StjnILZQC7kgVzIBfkgcgoUwE4QZsS9e/cwcuRInc8oeF0utIPYlRFu9+/fN3Gucg+HDx8WDfH58+eLzzPqGH727Bl++ukn8ULxq6++SpVG8fr8+XOdpdYoIDF9DOWC+HAM6eJDZybNrSizYwBpL+8F6C9gOjo6Wo85Nz+M6eLOnTv4+eef0/wbRPJMxRcuXMDgwYMxYsQIDBgwAD169EDfvn3Ro0cPtGjRAq1atUKLFi1Qo0YNVK1aFaVLl4a1tTXs7Ox0AnZHjhwJT0/PVH+DrousYQwXANUZWeXGjRto27YttmzZAiDj8kpISMDy5cvBOUePHj1gY2MjXPTt2xf79u0TadOaQZ9cZM7NmzfRpk0b/P777wCyVmZdunQB5xwtWrRAVFRUhmm16yXy8R7tQTDKbGPA+9kq3d3dUaZMGXDO4ezsjJ9//hnTpk1D3759dVYl0A72+fXXX2FhYYHq1asjIiLCeCeTwyEX8kAu5IFc5ExSBoY2bNgw3RmRo6Oj8dNPP4FzjvLly+POnTsZHpvq8A+DXMgDuZAHcmE8Hj9+jHr16oFzjlatWuHWrVs69fmcOXPAOYetrS3u3buX5jH8/PwwcOBAUa9PnToVT58+NdYpmBXkQx7IhTyQC7kYOnSoCObUHlCQFqdOnRJlvnfv3lTbT5w4gbJlyyJfvnxwd3enOvoDIRfyQC7kgnwQOQEKYCcIM0P7JYmPjw+++uorEbxesmRJCl6XACUg7s6dOzh79iwSEhKyfUyNRkPLs2SAUjbjxo0D5xxVqlQRgeYZldubN2+watUq5M2bF5xzNGvWTMx2mXIpz3PnzsHZ2Rnff/89/v77b/E5PbTpYmgXKY9B5Z8+hnCh1EEpg0LfvXuncwzyootSHpcuXcLu3btTzdB3+fJl9O/fX8zI16FDB9y5c+eDy/HOnTto06YNNm/ejODg4FR/nzC8CyWdh4cHWrduDc45hg4dmmo7Afz1119iVsqP+SlUqBCqVq2KzZs3ZzgLAF0XmWMoFynrmtevXyMhISFVUBa50EUJRGjcuHGWZmEPCAiAlZUV5s6di0ePHuHSpUu4fv26zoutlO2Rt2/fQq1W482bNzqfkwtdEhISMH78eHDO0bZtW51Aw/SIiYlB3bp1wTlHgwYNdDwopLw2Xrx4gaioqFTHJx9pk5SUhDp16ogB/EFBQWLby5cvsWnTJnF/+v777xEWFga1Wo0ff/wRnHM0atRIL210glzIBLmQB3IhJykDQxs1aoSAgIAM9zlw4AAsLCxgbW2t0w+YEqVej4mJwevXr/WZbbOEXMgDuZAHcmF8/Pz8ULx4cXCePMPx/Pnzce7cOaxZs0bU0y1atMCLFy8A6LbN/Pz88NVXX4l006dPz1LbnUgf8iEP5EIeyIXp0e6/27x5M65fv66zPSYmJlUsQVRUFPr16weVSoX+/fsjJCREZ/vr16/FrPhz5syhtl8WIRfyQC7kgnwQOQkKYCcIM8XX1xeffvqp6NQqUaIE/v33X1Nni/h/shtskJVgdQpoSM33338Pzjnq1asHIOMyevXqFTZs2CCCdKtXr44jR46ku8/cuXOhUqlgYWEBFxcXrFixQmwjF6nRl4uMZqRUq9UU0J4FDHVd/PPPP+jRoweaN2+OevXqYf78+TpLEJILXZQRzeXKlcOePXsQExMDIDmQWh/B6y9evMC3334rOiW/+OKLdGfeze0YykXK4HVbW1vhY9SoUanS5XYCAwNhZWUFzjmsrKzQuHFjdO3aFV999RUGDRqE/v37Y/DgwZg8eTJGjx6N8ePHY+nSpVi1ahV27doFX1/fTDve6brIGoZwoV22L168wJ49e1C7dm1Ur14dZcuWxZQpU3D48OE00+d2jh49ChcXFxQuXBg7duzQGcCsjfIM5OHhgQIFCqBnz55pptPuYDx79iyWLFmC2rVro27duqhRowbmzp2L48ePizTk4j1qtRrbtm1DiRIlULx4cezZsydTH8+ePUPt2rXBOUfr1q1TrQCh3WG8d+9ejBkzBiVLlkTZsmVRunRpTJw4EX/++adIQz5SExgYCAcHB9jZ2WHWrFkAgNjYWJ00Bw8eFPf+IUOG4P79+2jbti045xg+fDjUajWVrR4gF/JALuSBXMjHhwaGKmV/+fJl0abbtGlThn8jKioKU6ZMQf369TMNOs3NkAt5IBfyQC5Mh4+PD6pUqSLqZO1+vOLFi2PhwoWp9sksKJQmofp4yIc8kAt5IBemJ2Xgp0JMTAz+/vtv3Lp1K1W6LVu2wMLCAra2tmJFR+1yv337Nvr06YMTJ04YMOfmB7mQB3IhF+SDyClQADtBmClPnjxBqVKlwDmHvb09jX4yI7RfUvn4+GDnzp2YOnUqhg8fjt27d+sMVKAXWrpMmDABnHNUrVo11ay62g9djx8/xooVK0SQbsWKFbFhw4ZUs0in5NChQ+jbty9UKhU45/jpp5/ENnKhiyFcPHz4EFu2bEGfPn3QsWNHNGjQAB07dsSvv/6Ka9euiXTkQhd9uVAGFKjVap1ZHrR/ihUrhtmzZ4tjkov3eHl5wdraGpxz1KpVC/v27cM///yDL774ItvB60ByQ3T//v3o1KkTOOdQqVQoUqQI3afSwBAuUgavW1pawsbGBg0bNhR1BgWxp8bLy0u8pG3ZsiU8PT0/6jjplSddF1nHUC6ePHmCyZMnp1lnODk5YcaMGenum1t59eoVvv76azH4LK0lH7XLavXq1WJQTlxcnM427Xp+2bJlqFy5cpouHB0dyUU6hIeHo0+fPuA8eUb1O3fupEqj3fk7a9YsUa7Lli1LN93EiRORL1++NH3kzZuX7lMZ4OfnJ8pq8uTJ6aY7evSoSKesMmFjYyM67YnsQy7kgVzIA7mQi5CQECxfvvyDZjUGktsRM2bMgJWVFZycnHDx4sV00yYlJWH27NkoUqQIOOeoUaNGqkELBLmQCXIhD+TC9Dx69AijR48Wg5A5T16NdN68eanaYZkFhWqnTxlIRG26rEE+5IFcyAO5kJPff/8dnCdPmKOg3Q+rTKpTsGBBeHt7A3j/jhVI7jNXSBnfk14wKpE25EIeyIVckA9CNiiAnSDMGA8PD9G5VatWLbi7u6cKTiRyHmq1Gi9evMBXX32lM7Ja+SlXrhzmzZsn0lOj8n0Z/PXXXyhUqBA++eQTnY5b7TK6fPkyRo0aBTs7O3DOUblyZaxcuRKvXr1K9/jaD3M+Pj6YPXu2CEgcP358mn8nt2IIF15eXli9ejUcHBzEDANKkKn2dbFkyZI0/05uxVDXhfaLdicnJ7i4uKBTp05wdXUV18XYsWPT/Du5HW9vb1FvV6hQAY0bN9YJmL59+3a2ykuj0eDdu3cYM2YMHB0dhY8ffvhBj2dhHujTRXrB63379kVoaCj27NlDQewZoB043aZNG9FRAuiWUXr/zwy6LrKOPl0on2/cuFHUGaVLl0atWrXQt29fVKtWjeqMDHj8+DHq168PzjlatWqFe/fuiU5C7c7B48ePo1q1auCco1+/fjrH0C7LhQsXwtbWVpR58+bN0bt3b/zwww9o3Lix+HzChAnGOcEcRnBwMGrUqCF83Lp1K82gj5UrV4rve/Xq1dN97ho3bpzOc2yXLl0watQoTJo0Ce3atRM+Jk6caJTzy2lERUWhQ4cOsLS0xGeffYZnz56JbRqNRqfttmvXLlGetra22LhxIwCacUxfkAt5IBfyQC7kQa1Wi4F+HxIYCgA3b94UA//q1KmTaX/71atXwTlH/vz58ffff+sj+2YFuZAHciEP5EIe4uPjERUVhUuXLuHy5ct48eJFqjSZBYVqc/fuXUyYMAFbtmyBl5eX+Jzq96xBPuSBXMgDuZCP3377DZwnz4R/6tQp8bmycmNoaCjq1asn+r7j4+PTLF/toNAlS5YgODgYAAWHfgjkQh7IhVyQD0I2KICdIMychw8fikCTmjVrUhB7DufFixfYsWMH6tatC865eJFVsWJF1KpVC8WKFRMBdtqB00QyYWFhaNGiBThPnj308uXLiIqKAgC8ffsWa9asQe3atWFjYyMGfmzevBmvX7/O9NjaQSdv377F+vXrhZ/ly5cb6pRyLPpysW/fPvTs2VN0unzyySdo2LAh1qxZgw0bNmDy5Mlo2rSpcDFu3DixLwXBJaPP6+LVq1dipodKlSph3rx5eP78OQDg3r17WLhwoXAxc+ZMY55mjuHhw4coWLCgmGFPCRT18PDIdgeh9nd+/vz5yJcvn6gz5s6dm92smx36cJFe8HqfPn3EtREfH48tW7ZQEHsGaD/PtmnTBj4+Pno7Nl0XH4Y+XTx79gwlSpQA58kzV+/cuRNv3rwBkDyIZOnSpeK6mDNnjr5OwWzw8/PTKb/Nmzfj6dOnYvv27dvRpEkTsaKE9gzq2uzbtw8lS5bUeVZKSEgQ18bjx4/h5uYmtv/8889GOb+chq+vL4oXLw7OOWrXro1p06bh2rVr8PX1xcmTJzF69GjxvGpra6uzIo02a9euFelKliyJRYsW6Wx/9uwZ1q1bJ3ysXbvWCGeX8/j5559FOa5ZsybV6k1RUVHw8PAQs+dbW1tjxowZOoGk9GJWP5ALeSAX8kAu5MHHx0f0q2Y1MNTHx0f0e5QsWVKs+Kc4Uf5NOQPZ5cuXcfr0aT3m3rwgF/JALuSBXOQMPiQo9O3bt1i3bp1I26RJE2zbtk1sp0Cf7EM+5IFcyAO5MD5eXl5o3bq1eN/z8uVLsU2tViMxMRE//PCDGGymBIxqo93mU1Z0LFasGB4/fmyUczAXyIU8kAu5IB+EbFAAO0HkAiiI3Tx49OgRfvrpJ7F0cL58+dC2bVts27ZNBJLeu3cPq1atogCTDNAO9ilVqhRq1qyJZs2aoWbNmqJBrgRlnT17VgTypocS3JMyyPD169eYNGkSVCoVatWqBQ8PD4OdU04luy5+/fVXVK9eXXzfO3TogN27d6eaFdzHxwfLly8X6dILGMrNfKyLlN/7N2/eoGLFiuCcY+TIkSIQUSEyMhIrVqyASqVC4cKFcfToUaOdY07Cy8sLTk5O4Dx5FvuFCxfi7du3ALIX0Kw0JH18fFC1alXhtVq1anjw4IFe8m5u6MPFrVu30LJlS1hZWcHW1hb9+vUTx1CcqNVqnSB27RmniWQMFcRO18WHk10X2oHRRYsWhbW1NZYtW4bo6GiddJGRkViyZAlUKhVKliypMwsEkYy3tzfKly8Pzjny5s2LYsWKoUWLFmjcuDE457C0tATnHF27dhX7aD+7ajQaDB48WNx7Jk+eLNJpv5CKjY3F3LlzoVKp0LJlyzRnciKS7yPaK2RZWFjA0dERjo6O4rMCBQrgxx9/FPso9yCNRoPXr1+jc+fOwseKFStEOu0Ak+joaEydOhUqlQqdO3fG27dvacDT/6NdDhMnThTlPmzYMOzbtw+enp64fv06Jk+ejEaNGolBalOmTEk3KOjGjRvYt28fDhw4gD///BNv3rxBfHw8AAogzQhyIQ/kQh7IhZwEBQUhKCgoS2l9fHxQp04d8VJ248aNOquuKGUeHR2NCRMmYPHixWkeh+rttCEX8kAu5IFcyId2+XxIUKg2y5cvR+fOncV+2hMoUP39YZAPeSAX8kAu5GDr1q2wsrIC5xyrV69GTEyMznbtlRpv376ts027X3batGliBfKiRYvi5MmTYhvV2VmDXMgDuZAL8kHIBAWwE0QugYLYczaBgYH44YcfxKx+Tk5OWLJkSaqgaI1Gg5iYGMycOROWlpZo164dwsPDTZRrefHz80PTpk3FzLraPzVr1sSYMWN0OnfTQhllqLwYBFI/gJ05cwZ58uQB5xy7d+/W/4mYAR/rYsuWLShTpowI8OnUqRNu3bqlk0bbTVxcnJg91N7eHvv27TP4ueU09HFdhIWFiUD4hw8fAkjdmeXh4YFSpUqJzjIibTw9PYWLmjVr4vfff081M9+HoHjw9PTUCa6rVq0avL29AdDsGemRXRfr1q1D0aJFoVKpYGVlhalTp4pt2gGJShC7Mlvy4MGD9Xoe5kDKwGlfX99sHY+ui4/nQ1yk91Lj0aNHKFCgAGxsbMSKBCnT3r59W/ydlDNRE8kEBQWhb9++YpBryp+ePXuKAWUpv8++vr6wtbUF5xzdunUTn6f1vT937pwIiL969aphTyoH8+jRIwwbNizVIEDOOdq2basTlJ6ynP/77z+R9ssvvxSfp3UNHT9+HJwnr8h17949w51QDkS7XBcvXoySJUuKci1cuLBYVUUJDP3pp5/g7++vc4zw8HCcOnUKbdu2FQPZlHZHo0aNMHnyZLHiAdUT6UMu5IFcyAO5yLloB4YWLVoUK1eu1An+0Q4MnTt3ruj3mDdvXqpjkZfsQS7kgVzIA7kwPv7+/hkGhaZVjtozVz58+FDMVJnSBQX6fDjkQx7IhTyQC9OQcsVXpfyWLl0q3jkEBQVhyJAhaQaGpgwKLVy4MFQqFVxdXTFz5kwEBATg9evXItCU6u30IRfyQC7kgnwQMkIB7ASRi0griD2z2aUJ0xMSEoKRI0eiSJEi4oXWwYMHdYLnUjYUjxw5Ih4mbty4Yews5wieP3+OI0eOYMyYMfjyyy8xYsQIuLu76wRgZTaK/NmzZ/jkk0/g7u6u87n2fs2aNQPnHF9//TU0Gg2NTE+DrLjQfrDdv38/atSoAZVKBQsLC3DOUbp0aZQsWRKff/55ujOsv3z5Ej/88AMsLCzQv39/GtyRBllxoR1w+/z5c5w7dw47d+7E8ePHcefOHYwbNw6cc1y+fDndv9OpUydwzuHi4oLIyEi6LtJBu96uXr06du/enWr0c1bIKEg3vYEGhC7ZdfHPP/9g3LhxYlDTwIEDxTbtTmG1Wo2NGzeCc441a9bo9RzMBW0XLVu2/OiZ2Om6yD5ZcaFdf9+9exf79+/HwoUL4e7ujrNnz2LIkCGwsbHB/fv3dfbTfrZVnqVq1aqFuLg46uxKg1evXuHixYsYOnQoWrZsidKlS2PQoEFYuXKlSJPWi6X79+8jb968sLa2xowZMwAg1VKQ2kvNV6tWDZxzHDt2zIBnk/OJiorC8+fPsW7dOixYsAALFy7EoUOH8OzZM5EmvUECFhYWyJcvH7Zu3QpA97lLe78XL16gTJkysLW1xfXr1w14NjkT7fK9ceMGdu3ahbFjx2L06NGwt7cH5xzW1taYMmVKqsDQ4OBgTJkyRaxuoMxCU6xYMTHgQ7knBQcHp/p7hC7kQh7IhTyQi5xHWoGhygBM4H0ZR0dHY/bs2XBxcQHnHEWKFMFff/2lcyztZ63AwEAA1O74EMiFPJALeSAXxicgIACffvppukGh2nh6euLu3buIj49HXFyczrbo6GgsXbpUHEdpBxIfBvmQB3IhD+TCtGjXnZMmTRLlV6dOHfTs2RMdO3YUn/Xt21ekTRkUWrRoUZGOcy7eL5UpUwYDBw5EaGhoqv0IXciFPJALuSAfhGxQADtB5DK0A03q1KmDHTt2IDo62tTZItLh1atXmDNnDj755BMRvH7q1Kl00yuBKX5+fnBwcADnHEePHjVWds2KrHTMao88379/PwDd4KDbt2+LWfOHDx9usLyaO9oubt++jW7duonZxTjncHBwQLly5VCoUCGdWURDQkIA6Ha8Hz58GJxz9OnTx+jnYQ5oB1H99ttvOo0XzjmKFy+OUqVKwc7ODitXrkw1Y3tSUhKePn2K6tWrQ6VSoWrVqvQSJBMePnwIR0dH8b1Nb+n49KAgXf3xMS6064RXr15hx44dyJcvHzjn+P7778U2bQdqtTrbM4ubO97e3uI5Z/LkyR/8LEvXhf7IyIV2GS5ZsgTVq1fXqTMcHBxQsGBB2NraYuPGjTorpyg8ePBAdIC1bt3aKOdkDqQcpJxe5+C1a9eEj/Xr12d4zIsXL4rnryNHjugtr7mR9GapOnXqlPCR2epNhw4dEmkvXLhgiGzmeFLex1+9eoX+/fuLwNDJkyenCgxVZtBX2nCFChXCpEmTcOTIEXh6euLGjRuYOnUqatSoITriHz16lObfI95DLuSBXMgDucg5fGxgaLFixXDmzJl0jzthwgRwznH27FmDn4O5QC7kgVzIA7kwDU+ePBHtsVmzZqUKCo2Ojsbx48fRs2dPsZJZ3bp18f333yMoKEgnbUhICL777juoVCp0796dVs7+CMiHPJALeSAXpke7P3bhwoVwdnbWebfNOUfnzp1x8eJFALrvX6dPny7ieZR33iNGjMCvv/6KL7/8EhUrVgTnHOXKlRMDl6nNlz7kQh7IhVyQD0ImKICdIHIhDx8+FIEgbdq0wevXr02dJSIFysPC0aNHUaFCBfFi6n//+1+W9tuxYwesra1ha2uLK1euGDy/ORXt4BHtB6asLn328uVLjBw5UjyYrVq1Cn5+fgCSA7rmzp2LvHnzgnOOadOm6TfzZkZ6LlJuX7RokZh13dnZGb1798aDBw8QFhYGf39/HDx4UATSde/eXeyv/QC+ZcuWNP8ukUxmLgBg27ZtKF++vHBRoUIFVKtWDWXKlEGBAgXAOUf58uVx9uzZVAGJBw8eFAG87du3N+i5mAsPHz5EixYtsGrVqg/aj4J09c/HulBQq9XYunUr7OzswDmHm5tbhunJT/o8fPgQffr0wb59+z5oP7ou9E9mLpYuXQpbW1tRZ9SrVw8tWrRA7dq1RQdXxYoVcfr0aZ2BTxEREVizZo14lurfv7+xTilHol1/Z3U2i4iICDRs2BAqlQrjxo0DkPb3X61WY8WKFciTJw8KFy6Me/fu6SfTuYSsPm+GhISgevXqsLKywpw5cwC8d6l9jLCwMIwaNQrW1taoWrUqnj59qv9MmyEbNmwQgaFTp05NFRj67t07zJ07FyVKlBBBPVevXk31LBsdHY3r16+jcePGYnDNy5cvM/zbERERej+fnAy5kAdyIQ/kQk58fX0/OjD09OnTOsfavn07fvnlFwDJE2IoL4WbNGmSqSOCXMgEuZAHcmFaPDw8sGDBAp2VtgAgLi4OmzdvRr169cA5F30hyk+JEiVSvbPbsWOH2J5yhToia5APeSAX8kAuTI92H+3Zs2exYsUK1K1bF23atMHEiRPh6+ubqh93+vTpcHJyAuccBQsWxNq1a6HRaETfYHR0NG7cuIFGjRqBc45GjRrhxYsXRj2vnAi5kAdyIRfkg5AFCmAniFyKp6cnKleuTMuNS4hSscfFxYkXTo6OjtizZ0+W9gMgZm3KmzevWOqRyBra5ZiVB6mXL1/i22+/FQ33KlWqoGPHjqhWrZpY+rlOnTr0UKYHrl+/LpbHLl++PBYtWoTw8PBU6f7991/kz58fnHNMmjRJfJ4yIEt7ZnYi69y9exctW7YULzIGDRoEHx8faDQaPHv2DOfPnxdBoZUrV8bq1atx//593Lx5E+vXrxcNGmdnZ7i7uwOgYNGs8ObNG/H/rATCUZCu4dB2oT3aPK37UVqEhoaia9eu4Jzjs88+S7UsJ5F1Us4ynRl0XRiO9Fz8/fffKFeunKgzJkyYIILUIyIicP36deGiYsWKWLx4Ma5du4a///4bU6dOFYPSKlasiGvXrgEgR/pm9OjRYrCs8gIqZRn//fffov5u166dKbKZaxg6dKjw4eHhkWr7q1ev8Ouvv4oBg5999pkJcplzGTduHEaOHKkTGKp0wN+/f1/cj4oVKwZvb28A75+7Ul4Xly9fRuXKlWFjY4O1a9eme2/y8/PDiBEjxKAEIhlyIQ/kQh7IhVz4+fmhTJkyegkM9fHxEdubNGkCzjlUKhWaN2+OP/74w6jnlRMhF/JALuSBXMiBdjCPUtd6eHiIcuScY926dfjjjz8wf/581K9fX7T3jh07JvZ59+4dnJ2dwTnHP//8Y5JzMQfIhzyQC3kgF6YnZVtM+50SoPu+b9q0aShcuDA4T561OOWEMdrHOnr0KIoWLYqCBQvi0KFDqY5FpIZcyAO5kAvyQcgABbATRC5GCZjK6gx9hHGZPHmyCEKfOnVqhoFx2hW9m5ubGDE9duzYVNuJrHHp0iX89ttvADIvvytXrqB69ergnIsAa+WnZs2aOHDgABITE8nDR5KUlISkpCT8+OOP4JzDwcEBU6dOFUGk2uWqBKWPHTsWlpaWaN26tc5srkT22bRpk/h+f/vttzrbFBdhYWHi5bqFhYUYUKDMouvs7IzRo0enmvmByJysBG5SkK5x0C7DAwcOYPv27QCyVueuXLlSeLlx44bB8phboEEd8pDSxdy5c0VZ//jjjzrp0qozOOewsbHR+bdChQpYsWIF3r59a9RzMReUcn737p1OuSvf98TERLRv314EPly4cEEsK+zh4YEtW7aI4PWSJUuKDkm6Xj4OpfyVVdBS+oiLi0O7du3AOUeRIkXwv//9TyyxefHiRcycOVMEr1eoUAH//vuvzv5E2mgPXE2vXd23b19wzuHk5CSCejLqK4mKisLMmTPFgM60HPj5+eGnn34Sg3j27t2bzTPJ+ZALeSAX8kAu5CQwMBCcc1haWmLVqlUfFRiq0WhE2o0bN4rjqVQqtGzZEkePHtVJS6QNuZAHciEP5EJexo0bJ/o3jhw5Ij5Xq9UIDAxEp06dxGyVR44cQVJSEk6dOgU7OzvY2trSimd6hnzIA7mQB3JhWrTbZtorak2bNg1FixYF5xx2dnb4/fff09xH4fHjxyhWrFiqfnci65ALeSAXckE+CFNAAewEkYuhTid5iY2NFQ3ESpUqZXmm/FOnTqFp06bgnMPe3j7ViDciazx8+BAtWrSAnZ0dbt26lWn6+Ph4dO7cGS4uLti+fTvq1auH9u3b4+uvv4anpyfNrqsnlO92lSpVxIz26d3HtAPmlMBEInuo1Wqo1Wq0atUKnHOUKVNGzPqm/eJc+f+FCxdQuHBhlChRAqNGjUK+fPng5OSEBg0aYO3atQgNDTXJeZgTUVFRCAoKQnR0NADdF08UpGs8Ll26hDJlyqBgwYLimkgPJThl7969sLe3h6WlJc6cOWOMbOYa6LqQg6SkJMTGxqJixYrgnKN69erCSVp1xv/+9z84ODigXLlymD59OooWLYry5cujY8eOOH78OF69emWS8zAX/P39MW7cOBHsrKCUf2BgoAiazps3L1xdXdG2bVuUKFECdnZ24prp1KkTQkJCTHEKZsW9e/fQu3fvVD6U+1BAQIDwYWtri0KFCqFu3brImzevGNhhb2+PYcOGISIiwhSnkCPJqP/j1atXqFmzJjjn6N27d5bL9datW6hbty7Wr1+P+Ph4nb/h5+eHyZMnw9raGpxz9OzZEy9fvsz2eZgD5EIeyIU8kAs58fHxgZubG54+fSo++5jAUAD46aefxKzGnOuuoqL9QphIG3IhD+RCHsiFfGg0GvTu3VsMAnj37h3UarVOn5NarUb37t1FcOiff/6JMWPGgPPk1eeoz1x/kA95IBfyQC7kQbvMp02bhkKFCok+2KVLl4ptGbUVmzVrBs45vvvuu0zTEulDLuSBXMgF+SCMCQWwEwRBSMilS5dE5b9kyZJ002lX8Ldv38bAgQPFfsrs68SHExYWJh6mxo4dK2b6TgvFgTJr1X///Uedugbg2bNnKF68OCwtLbFs2TIAac82pixptGDBAtjY2MDOzg4+Pj5Gzau507FjR3DOUbVq1VRLSGnz7NkzVK1aFfnz58fZs2fx5MkTBAcHU8NET0RGRsLNzQ3du3fH9u3bERkZKbZ5eHhQkK4RuXPnDmrVqgXOOebOnYuoqKhM91m9enWas5wQ2YOuC/lQlp1t1qwZgPTL+tGjR3BxcUGxYsVw9+5dvHz5MsPnLyLrJCYmYs2aNbCwsEC3bt3SHQwQHx+PiRMnonnz5qhUqZKY5VsJbHNwcMjSwE4iY+Li4jBlyhRwzvHVV1+l+z1Xq9WYNWsWunTpgmbNmqFIkSI6PmrWrEmDNPXInTt3RP2wevXqLO2jPNN6eXnh3bt3OttSBoZ+SMBpbodcyAO5kAdyYVrSGnz5oYGh06dPF4Ghrq6uwufMmTPT/DtE2pALeSAX8kAu5KNXr15iEp6UK6tol2OPHj3AOUe+fPlEmW/ZskUnfVr96OTiwyAf8kAu5IFcmJ6U9bCDgwMsLCzAOUfdunXFyioZvbe4f/8+PvnkE3DOMWvWLIPn2VwhF/JALuSCfBDGRsUIgiAI6UhISGA2NjbM3t6e1a9fnzHGmEaj0UkDgHHOGWOMeXp6ss2bN7Pdu3czxhjr3bs3W7JkCWOMsaSkJCPm3DxwcHBg3bt3Z3Z2duzEiRPsv//+Szet4uXp06eMMcZCQkKYtbV1qu3Ex6PRaFhiYiKLj49nSUlJLF++fIwxxiwsLHTSAWBWVlYsIiKC7dq1iyUkJDBnZ2dWokQJU2TbbClZsiRjjLE3b96wN2/epJkmKSmJFStWjBUtWpTFxMSwt2/fshIlSrDSpUszzjldF3pAo9GwHTt2sOPHj7M1a9awI0eOMMYY8/PzY3379mUPHz5kjDFWtWpVtn//flapUiWm0WiYSkWP//qmfPnyrEOHDoxzzvbt28du376dYfpHjx6xf/75h3HOmaOjI3N2djZSTs0fui7kw9XVlTHGWFhYGHvz5k2aZZ2UlMQcHR2Zvb09Cw8PZ+Hh4axQoUKsQIECjDF6lsouKpWKOTk5sTx58jAvLy/277//pkqjVquZtbU1W7ZsGbt48SL79ddfWbVq1VjevHlZYmIiU6lU7MCBA6xOnToMgAnOwnywtLRkrq6uLE+ePOzmzZvszp07qdIkJiYyCwsLNnfuXPbXX3+xlStXMnt7e2ZjY8MSExOZk5MT+/XXX1mlSpXIh55wdHRkjo6OLE+ePKxIkSKMsWQPGaG0xStWrCjaJ4wx5u/vzzZv3sxWr17NEhMTWa9evdjmzZuZk5OT4U7AjCAX8kAu5IFcmBal7ykpKYlZWFiwmJgYtmzZMrZjxw726NEjVrRoUbZ7927Wtm1bxlhy35RGoxH7zZgxgy1atIhxzlmjRo3YkiVL2Lp16xhjjC1YsIBNnz5d/B2q1zOGXMgDuZAHciEfLVu2ZDY2Nuzdu3fs+vXrOuWm3S9+8OBBVqFCBRYVFcUYY2z06NFs4MCBjLFkT9rv//bv3882bNjAGCMXHwr5kAdyIQ/kwrQodTZjyfXw+vXr2bt371i5cuUYY4wVLFhQtPvS6ktXyvb27dsiNkF5b0t8GORCHsiFXJAPwiQYPkaeIAiC+FAOHDggRjXfvXs31XbtkWz//vsvhg4dKkY/d+jQAf/9958xs2uWPHv2TMw03axZM3h6eoptyojyxMREAICvry+KFi36QbNhER9Ou3btwDnHsGHDEBcXp7NNcfL27VvMmDED+fPnB+ccffv2RUxMDM36rQeUMjx+/DhKlCgBBwcH7Nu3L1XZKr8/fvwYJUqUAOccCxYs0NlG6AdPT08ULlxYjHZeunQpKlWqRDNMm4DQ0FCxckeLFi3g6emZqq4AgDdv3mDdunXiHtWuXTtTZdlsoetCDpTv/549e1CkSBEULlwYx44dS5VOceDl5QUnJydwzvHrr7/qHIPIPi9evECnTp3AOUfz5s3h4eEhyj7lrEje3t6oV68e7O3twTmHpaUlDhw4AICc6Ivnz5+jbdu2os548OCBqCu070vR0dE4d+6cmKWEcw5bW1tcvnw5VVoiezx+/BiOjo7gnGPevHkffRya1Tj7kAt5IBfyQC7kITo6GpMmTUK5cuU+eFbjJk2a4ODBgyLdqlWrRP2+ePFio59LTodcyAO5kAdyIQePHz8W/VAtWrTA3bt3ERsbq5PG09MTkyZNEmX81Vdf6bx/0m7rHT16FE2aNAHnHBMmTDDaeZgL5EMeyIU8kAvTkbIeVtp5lSpVwqZNm1C5cmX069cv3f2Vvtnr16+L1TNbtWqVatUtInPIhTyQC7kgH4SpoAB2giAICXny5AkqV64MlUqFdevWiYCGlJ2MR48eRd++fUUDsnXr1jh9+jQtz6UngoKCUKFCBdGIP3/+fKqHq8DAQNSoUQOcc5QsWRI3b940UW7NF41Gg6SkJMydOxecc9SuXRv3798XD8AJCQkAgIiICCxfvlx0vFhbW5MPA/Dy5UudwR1eXl6is0px8fz5c3z77bfgnMPe3h6HDh0yYY7Nm4cPH6JQoUKplnKsUaMGvLy8AFCAm7EICAgQyzM3a9YMhw8f1gkIuX//PlasWAEHBwexROeFCxcAkCN9Q9eFPISFhaF169YicNrT01M8pyp1RkhICNq0aQPOOYoUKYJr166ZMstmS2BgIMqUKQPOORo3bozdu3fj2bNnYvuVK1fwyy+/oGDBguKasbCwwPHjx02Ya/MlICAApUuXBuccDRs2xObNm/Ho0SOx/dixY5gwYYKoM6ysrODs7CyuD7qH6Q+lTTFixAioVCp07twZjx8//uDjUGBo9iEX8kAu5IFcyMXLly9FH6Czs/NHBYYqaRMSErB69Wo4OTlhxowZRj0Pc4BcyAO5kAdyIQ/e3t4oVaoUOOeoXr06xo0bh0OHDuH48eMYM2aM6CfhnOPrr7/WmZBK29ORI0fQtGlTUX+PGjUKwPv2IA0yzxrkQx7IhTyQC+OTUVDo4cOHoVarUaRIEVSoUAEBAQEibcqyvH37Nho0aADOOQoXLoylS5eKfnYia5ALeSAXckE+CFNCAewEQRASEhkZiS+//FIEwd27d0+MflYeHBYsWICaNWuKBmSnTp1w4cIFqvz1jI+Pj5j1sFKlShgyZAjOnj2LY8eOYevWrShevLjo7O3UqZNOIBChXx4/fozq1auDc46WLVvi6NGjePXqFSIjI+Hv74+BAweibNmyYrbQrVu3AqAAH0Pg7+8vOreaN2+O/fv34+XLl0hKSkJISAi++eYbODs7i4aJr6+vqbNs1jx8+FDMXGxtbQ1nZ2fRoag9+zdheLy9vUVAYpEiRVC1alV8/fXX6N+/P1xcXJA3b15wzlG2bFn8/PPPePPmjamzbLbQdSEPfn5+KFmypHiu3bVrF54/f47Xr1/Dy8sLrVu3FgMN6tati9DQUFNn2Wzx8fFB+fLlwTlH/vz5UaJECbRo0QKtW7eGjY0N7OzswDmHk5MTateuLYKl6WWTYfDx8UHFihXFzOqOjo6oUaMGateuDc45bGxsxCDZXr16iZW56NnWMOzbtw+2trbgnOPnn3/WWfEps2uAAkP1C7mQB3IhD+RCHjw8PFCxYkWcOHFCfKZMvKCQUWCodrqEhATcunXLOBk3Q8iFPJALeSAX8hAQEIAePXqgSJEi4n2FstKZ8jNw4MAMg0KbN28OCwsL5MmTBx06dEBgYCBCQ0Px+vXrNPch0od8yAO5kAdyYRpmzZqlExSqPQFY3759oVKpsHLlSsTExKTa98qVK6hduzasrKzAOUePHj2obZcNyIU8kAu5IB+EKaAAdoIgCEnRniWxXr16GD58OHbu3Inhw4ejffv2Og3IAQMGwMPDg4IZDISfnx8aNmwIS0tL0bnLOUeePHlEwEnVqlVx584dU2fV7NEeUODk5ISyZcuiRo0aYgkixY+bmxuio6NNnV2zxtvbWwQkOjo6wtXVFS1atEDhwoWFC0tLSzFzKwW/GRYvLy8RrFu5cmUcP36cgqNNhL+/P9q1ayc6fpU6Q/m3evXqcHNzw8uXL02dVbOHrgt50J7VJ2/evChRogQqVaqk81LEzs6OZl83AoGBgejfvz8qV66s055Qfho2bIilS5eKwWfUvjAsQUFB+Pbbb3UGJis/+fPnR9u2bXHgwAExsIOepwzLzJkzRfkvW7YMgYGBYlt6ZZ8yMLRXr14IDw/PcB8ic8iFPJALeSAX8qDd36TRaHTKcs6cORnOapweNMj24yAX8kAu5IFcyMPr169x7949bNq0Cdu3bxcrx3LO8eWXX2YYFNqiRQvxPkoZ4Kz0LbZo0QIbN25Mc18ifciHPJALeSAXxmXBggWirFIGhQLA1q1bRXnOmDEDx48fx7t373D8+HEsX75cBIRyztGmTRs8f/4cAPXffgzkQh7IhVyQD8JUUAA7QRCExPj4+Og0FrUrfEtLS5QtW5aWcDQST548wYwZM9CwYUOdwJJSpUqhf//+uH//PgB6AWgM/P390alTJxHIrvw4ODjA2dkZR48eJQ9Gwt/fHx06dECxYsXAOYeFhQU4T57tOH/+/Pjrr79MncVchZeXFwoWLAjOOWrVqoU9e/bg3bt3ps5WriQsLAzu7u7o3bs3ypQpA1tbWzRu3Bhff/01AgIC0hyVThgGui7kwd/fH126dBGDn5QXGo6OjqhSpYoIXqeOLMPz9u1b+Pv7Y8WKFZg6dSrGjBmDNWvW4ODBg1Cr1eI5ip6njENUVBSeP3+OLVu2YMWKFVixYgXc3d1x48YNU2ct16B935k0aZJoX3Tv3h2LFi1Kdz8/Pz9MnDhRtNP79++f6UCplEFEhC7kQh7IhTyQC/lIr4x+/fVXFChQIEuBoVl95iUfGUMu5IFcyAO5kJOpU6eKOvyLL77I0ozGnHN07NgR8+bNw6lTp7B06VJ89tln4jhz5swR+5GLD4N8yAO5kAdyYXi8vb3h5OSEIkWK4PDhw+Jz7fKdMmWKzrtvFxcXnb50Z2dn9OvXTwSF0uCAj4NcyAO5kAvyQZgKDgCMIAiCkJbHjx+zrVu3svPnzzN/f3+WJ08eZm9vz77//ntWo0YN1rJlS8YYYxqNhqlUqg8+PgDGORe/azQaxjnX+SxlmtxKYmIiS0xMZMePH2fx8fEsMjKStW3blhUtWpQ5ODhQORmRiIgI5uXlxU6cOMHi4+NZfHw869ixI6tevTorU6aMqbOXq3jx4gW7dOkSO3ToEHv+/DnTaDSsRYsWrHfv3qxGjRp0XRgZb29v1qJFCxYeHs5Kly7NNmzYwDp06PBR9QOhH969e8eioqJYkSJFmKWlpamzkyuh60IeIiIi2K1bt9iff/7JXr9+zdRqNevWrRtr3rw5K1++/Ec/zxL6hTzIRVJSErOwsDB1Nswe7XL++eef2aZNm5ifnx9zdHRkBw4cYM2bN9epx/39/dmvv/7KVq9ezdRqNatQoQJbsWIFq1ChAuOcM5VKxQoUKMCsra2ZWq1m9vb2zNramsXGxrI8efKQ1wwgF/JALuSBXMhPVFQUGzBgADtx4gQrW7YsW7hwIevTpw9jLO2+V+VZKygoiD1+/JidOXOGvXv3juXJk4e1bNmSubq6sgoVKjDG6FngQyEX8kAu5IFcmJawsDBWvHhxxhhj33zzDRs1ahSrW7cuY0y3/I4ePcpWrFjBrl69yjQaDRs1ahT75ZdfdI718uVLtmPHDjZ58mTGGGO//PILGzVqlBHPJudDPuSBXMgDuTAeAQEBzNvbm3Xt2pUx9r4e1i7nBQsWMHd3d+bj46Ozb5cuXdinn37K+vTpwxwcHKgOzibkQh7IhVyQD8IUUAA7QRBEDkCj0TCNRsMeP37MHBwcmEqlYg4ODjrbPzTIJOU+O3bsYEFBQez69etMpVKxdu3asapVq7KOHTsyxiiIncg50HfVdKjVamZhYSHKn1yYBm9vb1a1alVWqFAhdvLkSVa7dm1TZylXkt73nwJDTQNdF/JDdYbpoPuSXNC1YDq0O9Rv3LjB7t+/z+zs7Fi3bt1YgQIFRDp/f3+2efNmtnr1apaYmMgKFSrEXr16xaytrZlKpWJqtZppNBrm5OTELC0tWUxMDCtYsCArUKAAS0hIYEePHmUuLi507WUAuZAHciEP5EJu7t27J9oYM2fOZHPnzmWMZfyctWXLFrZt2zZ269YtlpCQID7nnLOaNWuyIUOGsOHDhzPGKED0QyAX8kAu5IFcmB5PT0/m5ubGvvnmG9aoUSPGWMZBoZMmTWJLly4V6ZQBaIwx9vbtWzZu3Di2a9cu1qpVK7Z3715WuHBh05xYDoV8yAO5kAdyYXxS1sPa5e3t7c38/f1ZcHAwK1iwICtcuDBr166d6Dek9pp+IRfyQC7kgnwQxoIC2AmCIHIA+g5iUB4s3r59yw4ePMj+/PNPduLECaZSqZhGo2GMJXdEOjo6smHDhrEFCxYYJB85HSoP06Jd/srjDPkwDSmvBbo2TE9wcDB7/vw5q1evHs36TRD/D10XckB1BkEQMpNZx3rKwNCvvvqK1alTh02ePJmp1WpWvHhxFhkZyeLi4pidnZ1YLYoxxiwsLFhSUhKztbVlXl5ezMXFxUhnlTMhF/JALuSBXMhLWFgYa968OXv69Clbu3YtGzRoUKqATm1/U6dOFQE/RYsWZY0aNWLlypVjz58/Z9euXWOBgYGMMcZmzZrF5syZk2p/In3IhTyQC3kgF3IQHx/PbGxsGGMfFhSa1uCAuXPnsrlz57ICBQqw//77j5UtW9Z4J2ImkA95IBfyQC5MT2b16cfWt2n1wdMAtIwhF/JALuSCfBCGgN7aEwRB5AAyCurJaInHtFAq+efPn7MJEyawq1evskePHjHGGCtcuDCrVasWs7GxYc+fP2f//vsvW7RoEYuPj2fLly+n4KIUUHmYFu3yJxemJWX5kw/T4+LiQgEHBJECui7kgOoMgiBkJmVbWru9HRAQoBMY2qNHD7Z+/Xq2f/9+plarWZkyZdjly5dZfHw8i4qKYra2tiwmJoZFREQwS0tLBoC9fv2aBQYGssDAQKqTMoFcyAO5kAdyIS92dnasWrVqzN/fn23bto21bduWlSpVSmzX7q+dPHkyW7FiBWOMsTx58rDJkyez8ePHi7R37txhf/zxB1u2bBmbN28ey5cvH5swYQIFhmYRciEP5EIeyIUc6CsolDHGrKysGGPJwabR0dFGyL35QT7kgVzIA7kwPRm1+dLanhW0j3H27FkWEBDAhgwZwiwsLGgAWgaQC3kgF3JBPgiDAIIgCCLHotFoxP8DAgLE/9VqdZrplc9DQkJQp04dcM7Fz4IFC3Du3DmRNjg4GGvXroVKpQLnHBs2bDDMSeQikpKSTJ0F4v9J7xohjA+5kIvExERTZ4H4f8iFPJALeSAX8kDPtXJBz1OGx9vbG5MnT0aePHnAOUfv3r0RHh4OANiyZQs45yhRogTevHmDpKQknba69v8z+ozIGuRCHsiFPJALOQgICEDp0qXBOUe7du3w6NGjVGmWLl0q+mILFy4MzjmKFi2KoKAgnXRv377FsmXLwDmHs7Mzrl+/bqSzMA/IhTyQC3kgF/Kxf/9+tG7dGhYWFuCcY/LkyWJbRm28u3fvonbt2uCco1OnToiJiTFGds0e8iEP5EIeyIV5ceXKFfTr1w+cc3z55Zemzk6uhlzIA7mQC/KRe6EhCgRBEDkYZRTahQsXWLt27dikSZMYYyzN0c7KKOiQkBDWsmVLdufOHcY5Z0WLFmUnT55k06dPZ61atRLpS5cuzb755hs2bNgwxjlnFy5cMMo5mTMqlYppNBp27NgxFhYWZurs5GqUpbG3b9/Onj59aurs5GrIhVxYWloytVrNVq5cyUJDQ02dnVwNuZAHciEP5EIe6LlWLuh5yvB4e3uz5cuXs7i4OPb555+zzZs3s4IFC+qksbKyYhqNhjGW+WpRtPrEx0Mu5IFcyAO5kANXV1f2v//9jzk5ObEzZ86wyZMns8jISLH9woUL7JdffmGMMdasWTM2a9Ys1rJlS/bixQvWqFEj5ufnxxhLngk5f/787PPPP2cNGzZkoaGh7MGDByY5p5wKuZAHciEP5EIuoqKi2G+//cbOnz//QTMah4aGsn379jF/f3/GGGP169dnefLkMVq+zRXyIQ/kQh7IhXlx8+ZNNn/+fHb8+HHGGGM3btxg9+7dM3GucifkQh7IhVyQj1yOqSPoCYIgiOxx6tQpNG3aFNbW1uCcY/HixanSKDMkhoSEoHz58uCcI0+ePKhfvz5u3rwJIP3Zldzc3MA5h7W1NYKDgw13IrmEVatWwcrKCp9++ilCQkJMnZ1czYQJE8A5R69evciFiSEXcqGMbP7ss8/Ih4khF/JALuSBXMgDPdfKBT1PGZ4vvvgCrVu3RkREBID3q0IobeZKlSohPj7elFnMNZALeSAX8kAu5OHhw4eoWrUqpk6dqvP5unXrYGtrC845Vq5cCQDw9/dHy5YtxSzHvr6+AN730w4dOlTMqp+UlESrrnwg5EIeyIU8kAt58PLyQr58+TBq1CjxWUZlGBoaisWLF8PJyQmcc3To0EFso9VTsg/5kAdyIQ/kwnwICwtDiRIlwDlHy5YtceTIEcTGxpo6W7kSciEP5EIuyEfuhgLYCYIgcjAxMTFo3bq1WNaxYsWKuH37tk4apUH4/PlzNG7cGJxz2NraolmzZrhz545OGm2UF13Hjh1D3rx54ejoSAHseuD27dvC1+eff07BJSbkxo0bYtk7CoIzLeRCLi5fviwGRZEP00Iu5IFcyAO5kAd6rpULep4yHNovZ6Ojo8X/lXb0+vXrwTlHuXLlEBkZafT85SbIhTyQC3kgF3Ly6tUr8f+kpCTEx8ejefPm4JyjVatWOmm9vb3RqlWrVAGiADBp0iRwzvHtt98aLe/mBrmQB3IhD+RCHsLCwsT/PyQotGnTpnj58mWm+xEfBvmQB3IhD+Qi56NMdOjr64uuXbti3759iIuLM3GucifkQh7IhVyQD0Jl6hngCYIgiI8nT548bP369YwxxooUKcL+/PNPVrt2bZ00nHMWGRnJ5s6dy+7cucMYY6xy5crsl19+YbVq1WIA0lwa2NLSkjHG2JEjR1hMTAyzsrKiJb6yCQBWu3ZtdvnyZWZtbc3+/PNPNm7cOBYaGmrqrOU6NBoNa9CgAbt48SKzsrJiBw8eJBcmglzIhUajYU2bNmXnz58nHyaGXMgDuZAHciEP9FwrF/Q8ZVgsLCyYRqNhjDFmZ2cnPlfa0cqy2RqNhiUmJjK1Wm38TOYSyIU8kAt5IBdy4ujoyBhLLneVSsUAsLi4OMYYY66urowxJlxUrFiRbdy4kbVs2ZK9ePGCNW/enD158oQxxti5c+cYY+/dAjDqeZgD5EIeyIU8kAt5KFKkCGOMsaSkJFFnp+Tp06ds165dbPny5ez169escePGbPfu3axQoUIMQLr7ER8O+ZAHciEP5CLno1KpmFqtZuXLl2f79u1jn376KbOxsTF1tnIl5EIeyIVckA+CAtgJgiByOJUqVWJ+fn7s7NmzrGrVqjrblBdY169fZxcuXGDx8fEsX758bP369ax27drpBq8r+/n7+zMvLy/GGGNVqlRhdnZ2Yhvx4XDOmUajYU2aNGHnzp1jlpaW7ODBg2zUqFEUXGJkVCqVcHH+/HnhYsSIEaIDnjAO5EIuFB+NGzfW8TFs2DDyYWTIhTyQC3kgF/JAz7VyQc9ThkelSt2FqrSNlWAfGxsbZmdnJwaDE4aBXMgDuZAHciEvihsLCwvm4ODAOOesZMmSOtsYSx0gWqdOHTZy5Ej24MEDVqRIEfbNN9+YJP/mBLmQB3IhD+RCHjIKCt25c6dOUKi7uztzcXFhjLE03+8R2Yd8yAO5kAdyIT8ZDSRT2oF2dnbM2traWFnKtZALeSAXckE+iPSgAHaCIAgzoGzZsqxKlSqpPlc6Gbdv384ePnzIGGNs165drFGjRhkGryv7bdu2jV27do0xxlj//v2Zvb19mi/FiKyjHXh14cIFxhhjR48eZb/99htLSEgwce5yF2m5OH78ODty5AjNSGZkyIVcpOXjxIkT7OrVqzSIyciQC3kgF/JALuSBnmvlgp6nTEdiYiJjLNkBtZdNC7mQB3IhD+RCDiwtLZmzszMDwE6cOMFevHiRyocSINqiRQv28uVLtmXLFpaQkMAaN27MSpUqxRijACB9QC7kgVzIA7mQk8yCQgnjQj7kgVzIA7mQB+24D2UQc1JSkimzlGsxtgtaASd9THFdkI/0MaYPxQPdB3MO1GNJEARh5ly7do0dPXqUMcbY8OHDWefOnRljaXcmAhAdk7/++itbvHgxY4yxrl27sk8//VSk0SYyMpLFxMToHIPIGO3gkqtXr7KOHTuyunXr0khCE5DSxZAhQ1i9evVoRjITQC7kQtvHtWvX2Lx581i9evUo4MEEkAt5IBfyQC7kgZ5r5YKep4yLcs/JkycPYyy5LRwbG5vtjnHtNjW1r7MGuZAHciEP5EIelHLq06cPK168OHv69Cm7fv16muVXsWJFtmnTJta0aVOWmJjIypUrxyZNmsSKFStm7GybJeRCHsiFPJALOQkJCWG7d++moFBJIB/yQC7kgVzIg3ZQ6Llz59ioUaOYr68vs7CwoAlfjIwxXURFRTHGaABhehj7unj16hV7+fIl45xT0HQaGNPH69ev2aZNm5inpyezsLAgHzkFEARBEGbN/v37wTkH5xy7du1KN51GoxH/37t3L4oVKwbOOYoXL44NGzakuc/9+/fx448/4scff8SFCxfSPBaRPklJSQCAt2/fZus4VN7ZR3ERHR2dreOQi+xDLuRC8ZGQkPBR+yseyEf2IRfyQC7kgVzIAz3XyoW+nqcA4M2bN/jll1+we/duvHz5UnxOrt6zefNmcM5RpUoVxMfHZ6ts1Gp1lj4j0oZcyAO5kAdyIQ8vX75E165dwTlHs2bN4OHhkW7ahw8fomvXrjh+/LgRc5h7IBfyQC7kgVzIg1qtxqpVq8R7vSZNmiAoKMjU2cq1kA95IBfyQC7k5OLFi/jqq6+El0ePHun1+Ep/o0ajEf9X/iV0MbSLwMBATJ06FQMHDsStW7dEnzz5SI2hXQBAeHg4Zs2ahapVq+L27dsAqK8kPQztQ6PR4NChQ+Ccw9LSEg8ePABAPnICHKBpMgiCIMyZtWvXsrFjx7LKlSuza9eusfz58+uMcGOMMY1GI2ZmOnDgAJs2bRoLDAxkGo2GDRs2jK1fv54xxlLtd/jwYda7d2/GGGNVq1ZlQ4YMYWPGjEkzLZE5H1Jm2s4YSx7V+ebNGxYREcHs7e1ZmTJlmK2t7Qcfl/hwUroICQlhT58+ZREREaxIkSLM1dWVOTk5McbIhaEhF3Kh7UOtVjMfHx/m6+vL3rx5w8qUKcPKli3LnJ2dGWPkw9CQC3kgF/JALgwLPdeaB3FxcezAgQPs66+/ZowxNmTIENa9e3fWrVs3xhj50Gbw4MHs6NGj7NmzZ8zCwuKjjpGUlCT2HTlyJLOzs2PLly9njFFZfwjkQh7IhTyQC3kIDAxkrVu3ZiEhIaxZs2Zszpw5rH79+ixfvnypnoliYmKYnZ0dY4zK2BCQC3kgF/JALuTBx8eHVa5cmVWuXJn99ddfepvRWK1WM0tLy1Q+iYwhH/JALuSBXMhFYGAgGzZsGDtz5gwDwCpVqsR+/vln1qlTp2wfO2U9/+rVK5aQkMCKFSsmPJGv9xjSBWOMhYeHs7Vr17Lly5ezuLg4VqVKFdaiRQs2efJk5uLiotN2z+0Y2gVjjEVERLDNmzezbdu2MT8/P5Y/f3526dIlVr16dXKRAmP4UP7Ot99+yy5fvswKFCjALl26xKpVq0Y+ZMcoYfIEQRCEyVizZg0453BycoK/v3+q7dozL7m7u8PV1RVWVlbgnOOzzz4T29IbsbllyxZ8+umnUKlU4Jxj+vTpaR6b0B/aLq5cuYKVK1eidOnSKFSoEKysrKBSqdCrVy+4ubmJdOTC8Bw6dAgTJkxAgQIFYGdnJ0aOdujQAatWrRLpyIXhIRdysWnTJvTv3x/W1tawsLDQmZVj+fLlIh35MDzkQh7IhTyQC9NCz7Vyk5CQgO3bt6Nx48bgnEOlUqFs2bKYNWuWSJPbZ/bRnr1l48aNCA0NzfZ3dMaMGShatCg45xg4cGB2s5hrIBfyQC7kgVzIibe3N5ydncE5R6VKlTBp0iT4+fmZOlu5EnIhD+RCHsiFPAQFBel1VsonT55g1apVuHv3LgBqy30o5EMeyIU8kAu5GDNmDDjnaNy4MY4fP47Y2Fi9Hdvb2xurV69Gly5dUK5cORQtWhRt27bF7NmzERgYCIBmONbGkC4A4O+//8aSJUtQrlw52NjYgHOOqlWrwtPTEwC50MaQLsLDw7F48WKUL18enHPkzZsXnHM4ODjQzN/pYOhrQyEgIAAdO3YkHzkICmAnCIIwcx48eABXV1c4OTnh0KFD4kVVYmKiTrpffvkF+fPnF4E7Xbt2FdsyWyLYw8MDP/30kwhiHzt2rNhGASaGY+nSpahataoYcMA5h62trVgSh3OOH3/8UaQnF4YhLi4OkydPRv78+YULKysr5M+fX8fF+PHjxT7kwjCQC9OjlKdarYaPjw+GDBmiU/YFChRA4cKFoVKpxGfjxo1LtT+RfciFPJALeSAX8kLPtfKSkJCAsLAwDBs2TASxc84xbNgwU2dNGvTZ8b1gwQKoVCrRLh89ejR93z8AciEP5EIeyIWc+Pv7o23btsiTJ4949lm+fDmeP39u6qzlOsiFPJALeSAX5sezZ8+wevVq0b5WgkMJ00A+5IFcyAO5+Hi0A/1XrlyJP/74A3FxcR99PO023tOnT+Hu7o6CBQuK5wKlb1D5qVy5sgiczu2DDvTtIjMePXqE5cuXo27duuCco1ChQuTi/zG0i5TB646Ojjhx4gS6d+9OQdNpYOxrA0hu01AQe86BAtgJgiDMnIiICHTu3Bmcc7Ro0QL//fefeBjQaDQ4d+4cRo8erdPQ6Nevn9g/ZaC7NtoNmNevX8PNzU00WubPn2+4k8rlhIeHY/jw4TrO2rRpg1mzZuHKlSvYsWMHJk6cKFzMnj3b1Fk2S5KSknD79m30799fx0WvXr2wdetWeHl54eDBg5gxY4ZwMW/ePFNn2ywhF3Kg1Anx8fE4fPgwOnXqJFwULlwY3333Hc6ePYvQ0FD8888/mD9/vvCxcOFCE+fevCAX8kAu5IFcyAk91+YsFixYgNKlS4vARfKhf4KDg+Hk5CTKN7e/bDIl5EIeyIU8kAv98vz5c6xevRpNmjSBtbU19u3bh8jISL0dnwYXZB1yIQ/kQh7IhfkQGRmJuXPnijrc1tYWs2fPRkJCgqmzlishH/JALuSBXGQf7XiO7ARnatfPV69exahRo8QM3/b29vjkk08wceJELF68GN99950InC5RogR8fHyydQ7mgr5cZIbiKjY2Frdu3UK7du3AOUeNGjX0ujJCTkbfLpQyTyt43cPDA0DyagUdOnSgoOk0MNa1oQ0FseccKICdIAgiF+Dv749SpUqBc44qVaqgZ8+emDJlCtq0aQNXV1cRLFK+fHlMmDBB7JdR8HpavH37VgT7uLq64vz58/o+lVxPQEAAvvzyS+GsdOnSmDJlSqp0UVFRWLt2LVQqFYoXL46zZ8+aILfmS2JiIs6dO4cuXboIF40bN8bPP/+cKm10dDRWr14NCwsLlC1bFjdu3DBBjs0XciEHSqM9Li4O27dvR5MmTYSP3r17Y8+ePan2iYmJwfLly2FhYYFq1aqJWQGI7EEu5IFcyAO5kBN6rs1ZPH36FAsWLBCzLVWuXBlbtmwx+EwpuQml49zPzw+LFi2ijnQTQi7kgVzIA7kwDBqNBgkJCbh//77els4OCgpCSEgIAHop+yGQC3kgF/JALsyHRYsWgXOOIkWKYPbs2QgODjZ1lnI15EMeyIU8kAvTox28fvLkSfTo0UOsllm7dm3MmjVLJzA6ISEBHh4eaNWqFTjn+Oyzz/D27VtTZJ0AcPv2bVSrVg2WlpaYM2cOkpKSaNC5AQgLC8OyZctQpkwZcM7h5OSE+/fvA3j/bEtB03Lh7++vM6ggpS9CDiiAnSAIIpfg6+uLWrVqiVGyyo8ye97XX3+NvXv3ivQZVdjR0dHi/ylnyvjvv/9QunRpqFSqNANIiY/n0aNH6Nu3r3DXqlUrbNu2TWzXbohoNBr4+vqicuXK4Jxj3bp1Jsq1+ZGUlISLFy+iffv2wsWAAQPw999/izRqtVpcGxqNBg8ePECJEiXAOceOHTtMlXWzg1zIRXx8PHbv3o169eoJHz/++KPOUo8p65YbN24gX7584Jzjzz//NHaWzRZyIQ/kQh7IhVzQc23O4tGjR5g1axbs7e3BOUfVqlWxZ88evc7ASCTzoYPICcNBLuSBXMgDudA/+p6BOCgoCCNGjECpUqVw7do1vR7b3CEX8kAu5IFcmBdLly7FmDFj8PjxY1NnhQD5kAlyIQ/kwnRo1/knTpxAmzZtYGlpCc452rVrh9OnTyMqKgqAbh96UlISdu/eDWtra5QtWxaBgYFGzzuRTHx8PL7++mtwztGsWTNTZ8csiY+Px+rVq1GsWDFwzmFjY4Njx46JbdoDBrSD2PPmzavzHoowPgEBAWIyxAIFCuDevXsAKIhdJiiAnSAIIhcRGhqKtWvXomfPnmjSpAlq166NiRMn4uDBgzrpMhqN6evri9GjR+Po0aPppunRowc456hfvz7i4+NpOchsoLiIjo7GwIEDRZBP165dxQOxdrqUtG7dGpxz9OzZM8N0ROYo32MvLy90795duBg8eDD+/fdfkS69MlaWURs6dGiG6YjMIRfyodFocPLkSTRr1kz4mDlzJkJDQ3XSpIUSkDhr1iwA5CO7kAt5IBfyQC7kgJ5rcyaPHj3CnDlzRPB69erV4e7uTsHr2UD7u0ttZdNCLuSBXMiDoV2QX8Ph5+eHCRMmiFU4XV1dERYWZups5UrIhTyQC3kgF6ZDOzCHZsY1PeRDHsiFPJALebhw4QK6du0qgte7deuWaVB6cHAwnJycwDnH77//bqScEtoo19CaNWvAOYednR18fHxMnCvzJDg4GP369UO1atXAOUejRo1w4cIFAMn9Kdp9HgEBAWjbti045xg/fjxNCmBkUganb9u2TUxyaG9vL4LYCTmwZARBEESu4ZNPPmGjRo1io0aNYklJSUyj0TArK6tU6VQqVZr7A2D3799nbm5uzM3Nje3fv5999tlnDADjnLOkpCRmYWHBbGxsGGOMJSQkMM4545wb9LzMFQDCxbRp09ju3bsZY4x16tSJjRkzhnXo0CFVOu19OedMrVYzxhizs7NjjDFy8ZFoNBpRxkuXLmXHjx9njDE2aNAgNnr0aFajRg3GWGoXABhjjEVGRrKYmBjGGGMODg6MMXLxsZALuVB8vHjxgq1fv55duXKFMZZ8zxo1ahQrUqSISKtdzsp+3t7e7PXr14wxxgoXLswYS78OIjKGXMgDuZAHciEP9FybM3n8+DHbtm0bW7FiBYuOjmbVqlVjP/30E+vRowezt7c3dfZyJNrPsuHh4axQoUKiHU0YF0O70D5+Wr8T7zHGdaHUJWn9TeI9xnCheIiMjGT58uWje6AeCQgIYD///DNjjLEyZcqwH374gb7nJoJcyAO5kAdyYVy0n30sLCzE7/nz5zdxznIn5EMeyIU8kAv5CAwMZDt27GD//PMPS0pKYt26dWNbtmzR6UNPi6dPn7I3b94wxhiztKQQRFOgtKnDw8MZY4zFxsayuLg4U2bJLNFoNKx06dJs69at7N9//2XLli1jJ0+eZO3bt2dnz55lTZs2FfEIjDHm6urKNmzYwE6ePMm6detG14eRUeqWY8eOsfPnz7N169aJeic6OppNmjSJHTlyhNna2po4pwRjjFHLkCAIIpehPDRZWFgwKysrnYeozOCcszZt2rBBgwYxxhjr06cP+/XXX1lERIQ4pru7Oztw4ABjjLE6deqkGSBPZA3lAWrjxo3sl19+YYwx1rhxY/bDDz/oBPmkFbzDOWd///03u3z5MmOMsZo1a+ock/gwlM70+fPns507dzLGGOvVqxcbOnSoCJhmLHX5KgM4jh8/zry9vRljjFWoUCHNtETWIBdyoT2Y4NixY4wxxkaMGMGGDBmSYaeWst/p06dZWFgYY4wxZ2dnA+fWvCEX8kAu5IFcyAM91+Y8KHhd/yQlJYn7y+jRo1nz5s2Zt7e36EwnjIehXWgHAd+5c4cx9r5uIde6GOO60K5fLl26xPz8/JhKpWJJSUl6Ob65YMx71N69e9lXX33FHjx4wCwsLMiFnujYsSMbO3Yss7S0ZGPGjGHfffcdK1SokKmzlSshF/JALuSBXBiHyMhIxhgTE04pUPvZNJAPeTCki5TPytTmyxhjXhcajUbvxzRHlHL6+++/mbu7O1Or1axDhw5s3bp1GfahK/4CAwOZnZ0dU6lUYuIwwjho32/u3LnDjhw5wjjnrGLFiqxEiRImzJl5olKpGACWN29e1qpVK7Zx40bWq1cvlpiYyAYOHMg8PDxS3cvKly/PRowYwcqUKWOiXOcOUta9oaGh7NKlS6xLly5s2LBhbPXq1SwxMZElJCSwmjVrsoULF7Jly5ZR8LpMGHJ6d4IgCCLnkHIJlYwIDw/H999/D845OOfo0KEDBg0ahFGjRonPnJycsG7dOgPmOHfg6+uLtm3bwsLCAo6Ojli/fr3YltGyy8+fP8fQoUNhbW0NR0dH/PPPP5nuQ2TM5cuXUaFCBXDOUaNGDRw8eFBsy6hcHz58iA4dOkClUqFy5crw9vY2RnbNGnIhFwcPHoSNjQ045+jYsSOuXr2apf2uXr2KcuXKgXOOFi1a0NKQeoBcyAO5kAdyIQ/0XJtzePToEebMmQN7e3twzlG9enW4u7sjMjLS1FkzC6ZMmYLSpUuDcw4rKyu8fPlSL8dVrgm6NrKOoVwobN68GRUrVkTnzp1x8OBBcfykpCS9/h1zwNDXBQCcP38erq6ucHBwwN27dwF8WF9YbsHQ10V0dDSmTJkilmx+8OABAHKRXbTvK9euXcPz589NmJvcDbmQB3IhD+TCODx79gxz5szBjBkzxGfUNjAdxvBBfVVZwxgu1Gq1zvsmuvbSxhgurl27hjlz5hjs+ObKnTt3YGdnB845GjRogGvXrmWYXinX8PBwVKxYEZxzVK1aFXFxccbIbq5D+1kqrbbzlStXMHToUOTLlw+cc/Ts2dOY2TNLstp3d/PmTdSoUQOWlpYYN24cEhISqN/PyGjf5589e4YDBw6gQYMG+OSTT0TsGucc3bt3x+zZsxEdHW3C3BLpQesTEARBEEyj0Yilhf744w/WuHFj5uzsnO5o54IFC7IxY8YwDw8PdvPmTXbhwgWWkJAgttvZ2bFevXqx4cOHGyX/5syDBw/YpUuXmEajYf369RNlmt5y1/j/mcUuXLjADh48yBITE1mdOnVY+/btGWM0s0N2ePDgAQsODmaMMdazZ0/Wq1cvxlj6s4Uylrz80PHjx9mNGzcYAFa9enVWsWJFY2XZbCEXcqCU971798QMDZ9++ilr3LhxpvuGhoayvXv3smfPnjHGGKtduzYtDZkNyIU8kAt5IBfyQc+1OQOaed2wHD16lC1btkz8PmLECObk5JStYyrXinJNvHz5ksXFxbGAgACmVqtZ/fr1maWlJbO3t0/3esuNGMKFNrdv32bHjx9n/v7+zNfXl3l4eLBGjRqxRYsWsXLlyrGkpCTRD5PbMZQL7fbh+fPn2YQJE9izZ89YXFwca9WqFbt06RKrVq0audDC0NcFY8l9hoMHD2a3bt1iZ86cYc2bNycXekClUol7fKNGjUydnVwNuZAHciEP5MLwPH36lO3bt4+5ubmxiIgIplKp2Ny5c/XWblaeqzLqfyfeY2gfcXFx7MyZM+ynn35iY8aMYU2bNmVVqlRhjGX8jiQ3YmgXjCX3a124cIFNmjSJ1ahRg23bto2ulzQwhotXr16xgQMHsoCAAPbq1Su2Zs0acpEJAJharWYbN25ksbGxrGjRouzLL79ktWrVynAfzjmLiopi8+fPZ4GBgSxPnjysW7duzMrKivqePoCMvptqtVq810hMTNQp97i4OKZWq9m1a9eYj48P27FjB4uIiGCxsbGsVq1abO3atYwx3X73lO1tan+nz6NHj1hcXByrWLFipt/nWrVqserVq7MHDx6wf/75hy1ZsoRZWVkZMbe5F8WNcq2sWLGCXblyhZ08eVKkcXJyYnXq1GFffPEF69+/v5hxXfv7T9eGJBg1XJ4gCIKQGmVW9evXr2c5vYODA6ZNmwYXFxcUK1YMXbt2xbx588RINxph+HFoNBrEx8ejW7du4JyjTp06Ytar9GalUj6/f/8+SpQoAc45ypcvjxs3bmS4H5E5b9++Rd26dcE5R6tWrcTnmX2/jx07hiJFioiZwp88eZKl/Yj0IRdy8fz5czE7X48ePcTnGc1q8fbtW6xbtw5OTk7gnKNhw4aIjY3NdD8iY8iFPJALeSAXckDPtfKgPPe8efNGzDSi/b2mmdeNw/Dhw8E5x7Rp07L9LKq9f1hYGLZs2YJ69eqhWLFiYnaZ6tWr44svvoCvry8Aun600aeLtPD09MTx48fRvHlz0RZxcXGBh4cHAGqLaKNvF9r3tnPnzqFOnTpQqVSws7ODq6srOOdwcHCg2b/TwNDXhYK/vz86duxILrIJlZc8kAt5IBfyYGgX1EZPRq1WY+3atVCpVOCco1ixYhg9ejRev36tl2Nr8/jxYzx79gwhISE6zwnk4j2G9KFw/vx5VK9eHZxzWFpaok2bNvj111/FdvKRjDFcJCUl4cyZM+jSpYtog48cOVJsJxfJGMMFkOzDzc0N1tbW4Jxj1KhRYhu5SJ/o6Gjx3rVOnTp4+vRppvvExcVh69atqFSpEjjncHJywu3bt42QW/Pk6tWrmDt3Lj799FN07twZPXr0QNu2bdGoUSM0bdoU9evXR5UqVVC5cmW4uLjAyclJvL/Q/qlbty4uX74MQPc7r12f//TTT7QqXQb4+/tjyJAh6Nevn/gsvfuHUn67du0S952srgBMfBwp+6kCAwMxY8YMNG/eXOdaKFu2LFq3bo2rV6+KmBAFujbkhALYCYIgCADAu3fvUK9ePXDO8dVXXyE8PDzdtAkJCQCArVu3gnOOEydO4O3bt3jy5IlOZU4vY7NHXFycaDB27do1w+VslHIPCgpCqVKlwDlHkSJFMHv2bLx588ZYWTZbXr9+LZZAGzJkCBITEzN9cL1w4YIIuCpdujS2bdsGtVpNnSTZhFzIRWhoqFiCa/78+QAybtRFR0dj586dIoCnUqVKOH/+fKb7EZlDLuSBXMgDuZAHeq6Vh3///Reffvopdu3ahXfv3onPg4ODKXjdwGjfR44dO5bt+4r2/u7u7ujbt69OR32BAgWgUqlgaWkpAqc9PT0BUFtd3y5SkrKd8fz5c7i7u6Np06bgnKNo0aJ4+PBhmmlzG4ZwkV7wur29PUaOHAkPDw8RYEKB0+8x9HWRFhTE/nH4+vriyJEj4ncqL9NhaBfK/Sy31xVZwZAu0ip/cpI+hr4u4uPjxXMUQC4UfHx8wDmHjY0NZs+ejcePH+vt2NHR0fjtt98waNAglClTBiVKlECxYsUwaNAg/PbbbyIduXiPIX0AQHh4OLZt24Zhw4bBwcFBBAVPnjxZpCEfyRjSRVrB60r7mwKnU2Po60JBrVZjy5Yt4rogF5lz4cIFWFlZwdraGu7u7gAyfv5JSEjAoUOH0LhxY/Hd//PPP42aZ3MiODgYHTp0EPePD/mxsbEB5xwtWrTAkCFD0hwUov0sNnHiRNFneO/evVTbieR+JFtbW3DOcfDgwSzts2bNGuHkzJkz6abLrD+W7lHpk/J7evr0aSxatAgFCxYU146lpSUcHBzwww8/4Pz58zrvPoDU5UvXhlxQADtBEAQBILnC3rBhAwoWLAgXFxccOXIk04eoZcuWgXOO1atXp3k8IntERESgRo0asLCwwIoVKwBk/GDr7+8vZhktUKAA+vTpA39/f2Nl16wJCgpCyZIlYWlpKTplM/qOnzlzRgTMFStWDJMmTcLz58+NlV2zhlzIxb1792Bvbw8rKyscOHAgw7SvX7/Gtm3bULRoURFEtW7dOgqM0xPkQh7IhTyQC3mg51rTo8yE37BhQ3DOUatWLezZswfx8fF49uwZZs+eTcHrRkBfHd/ax5k5c6YY4Mk5R6NGjTB48GBcvHgR586dg5ubm5iFxtXVFQEBAXrJQ07HWC8hlLZKYmIiPDw80LZtW3DO0bx58yzNapYbMJSLlMHrI0aMQFxcHIDk4AkKnE6NKc6fgtg/jKCgIPFi9fvvv9f78bUDpnP7YKfMMLSLt2/f4vDhw7hy5YrO9UB97qkxpAvtVWa3bduGpUuXptpGvMcY96j//e9/sLa2xqBBg3Q+J5IHD8yfPx/BwcF6OV58fDzu3LmDRo0aIV++fKmC5pTg0EmTJol9yMV79O1DIWX9fOLECYwcOVL4GD9+vNhGPpIxhIu0gtfXrFmDrVu3UuB0BhjqukgJBbF/GJcuXYKlpSXy5MmDU6dOAUhdTsrvcXFxOHr0KFq2bCm++wsWLKC2QzYZO3YsOOewsLCAg4MDBg8ejKFDh+Kbb77B2LFjMX36dIwfPx7Tp0/Hzz//jBUrVmD16tU4efIkrl69Kvo6AN16QrsdMWHCBHDORXA2tb/TxtfXF127doWVlRW+/vprhIaGpptWrVYjISEBI0aMgI2NDWxsbPDff/+lSpfyejp16hS2bNmChQsXYsGCBbh58yZevHgBgCYdyYikpCScO3cO48aNQ/78+cV3OU+ePHB0dMTixYvFPUwhs9nzAbo2ZIEC2AmCIAhBWFgYevbsCc45GjduLJa1VtB+YPL29kaLFi3AOcf06dONndVcQ6dOncA5R79+/XRmqky5POONGzfg7OwMzjns7e3Rrl078WBFZB+1Wi0a40OGDEFsbKzYpu0iIiIC+/fvR/HixcE5R+HChTF48GAEBgaaIttmCbmQi9jYWDHLwoQJE9LtJPH398fKlStRuHBhcM7h7OyMBQsWiAY5kX3IhTyQC3kgF3JBz7Vy4OXlJb7rtWrVwpo1azB16lQRkEDB6/Kj3XE+evRonWCS0aNH4969ezrXVVJSEjw9PdGoUSNwzvHjjz/SakQm5OzZs/jkk09QqFAh7N27FwC9nDIEJ0+eRP369aFSqZAvXz6MHz9e1D1KeacMnFb6wOjllPHx9/dH+/bthQua7SptgoODMXz4cLFCjYWFBS5evKiXY2flPkT1xnsM6QJI7tPasGEDnJycwDnH8OHDdWa0JhfvMaQL7eD1P/74A02aNBH9kSnTEIa/LhT2798vnn0pIDE1iYmJejnO06dPsXHjRjGw3MrKCra2thgzZgyWLFmClStX4uuvvxbBofSOMG305SMtUr4LWb9+vfCxcuVKg/3dnIo+XGjXCymD19euXQuAAqezgiGvC23IRdZ58OAB7OzswDkX/RTaKPeb6Oho7N69W6wuxznHxIkTERISYuwsmw3a9/IxY8aIct26detHHU/7u51WgK6lpSUaNGiAevXqUaBuBri7uyNv3rzgnGP58uU675WUclLc3bt3D8WKFQPnHDVr1kxVjkq68PBwHD58GF26dBEz5ys/zs7OaNOmjVhliFzoEhcXhxMnTqB9+/YoW7asTtk1aNAAs2fPhpeXl84+GZUhXRtyQgHsBEEQhA7BwcGoVq0aOOdo1aoVrl+/jqioKJ00QUFBWLBgARwcHMA5x7Jly0yUW/NFaWCsXLkSVlZWqFmzJm7fvp3qAcnf3x+bN28WQboODg7o3Lkz7ty5Y4JcmycajQYajQZz5swB5xx169bFvXv3Urn477//MHPmTBEQVLx4cQwfPhy+vr4myrn5QS7kIyEhQTTuGjRogHv37qXqgDx9+jS++eYbODo6gnOOMmXKYOnSpTTjpJ4hF/JALuSBXMgBPdfKx8OHD1GoUCFwzvHJJ5+I2UVq1KiB3bt3U/C6xGi/2BoxYoROh/2SJUvSTatWqzFt2jRxPzTWC2MiNdHR0ahVq5YY0EPonzdv3qBz587ihWDZsmXx77//AkieSVT7ha52EDvnHPfv3zdVtnM9jx8/Rvfu3VMFsdMAj/eEhYWhfPnyYkWNNWvW6GWFOeWaUKvVePDgAdavX48ff/wR3377LbZt24Zr166lSpvbMZQLhaioKEydOhXVq1cXsxwXL14c8+fPF2nIRTKGvi6SkpLw+++/i4l8KHA6fQx9XSio1Wqa4djABAYGYvbs2SIYq1ixYvjyyy9TDUh48+YN3NzcoFKp4ODggOPHj5soxwQAxMTEYMaMGVCpVKhfvz68vb1NnSWzRK1W4/Tp02KSBs45NmzYkKr9rR04PXr0aLGN7lPGJaWLkSNHim3kIhmNRoOIiAh07twZKpUKEyZMSHPikYiICEyfPl08nyorPtC9Jvto95GPGzdO594SHx8vtiUlJel8bzP6DqcXoNuiRQv89ddfePLkibiPUaDue7TLdPHixcLF6tWr03xf5OPjIwZvFi5cGD///DOA9+Wo/BsQEICBAweiXLlyYmCgpaUl6tati+LFi6NIkSLgnKNEiRLw9PQEQH0hKZk1a5ZOe6xbt26YP38+4uPjRVll5b5O14a8UAA7QRAEkQofHx+dkYJTpkzB3bt3ERwcjL/++gvffvutmAGmZs2aePnypamzbLaEhISIxmCLFi2we/du+Pv7w9fXFzt27EDHjh1FwFWJEiUwcODAVDPnE/rh0aNHqFy5MjhPXu5948aN8PDwwIULF7Bq1SpUqVJFzH7o6uqKmTNnGnwZvNwKuZCL4OBgVKxYEZxzNGnSBMuXL8fNmzfh7u6O6dOno0CBAiIwrmrVqti6dWu26g3qWEwfY7qgzpOMIRfyQPcoeZDhuZb8vOfhw4coWLCgmB3R2dkZW7Zs0XkxQsiF9vd3ypQpyJMnDzjnsLGxEbO9pUwHvO9gP3jwICwsLODk5ETPxiYiISEBANC1a1cxmIAwDCEhIZg9ezYaNGggBqidP38eQOqXvgEBAWIGOSUNYRyU59iYmBgEBwdj0KBBYuCBlZUVBUOkwf3791G5cmUsWbJEb/2xiYmJePToEXr27IkKFSrovBTmnMPFxQVz584V6el5KhlDuNBGmeVv3bp16Nixowi8Gjt2rEhDLpLRt4uUwevKSpCccwwaNIgCpzPA0NeFAs2qaziCg4MxadIkMTGMi4sLVq9erdN+0O6HCg0NFSs9adcVhGk4ffq0eJY6ePCgqbNjlnh6eurUCwMGDBDblPYe8P4+ZWFhAc45vv/+e1Nkl0Cyl507d4o6Y9iwYWIb1RnvWbdunfher1ixQgRtBgYG4vLly2jQoIHot+WcY9asWdS3pEe0g2PHjx8vynnjxo0fPAmFdj39448/igDd5s2b4+jRo2Kbr6+vzqp0FKibjHb5TZ48Wbjo27cv3NzccPfuXRw7dgyLFy9GiRIlwDlHvnz50KNHD/j7+4t9lXL08vJC9erVRf1sY2ODyZMn4/Dhw4iLi0NISAj++usvtGnTRkww8/jxY6Ofd05gypQpaNSoEfbu3YvXr1+Lz7P6jpSuDbmhAHaCIAgiTXx9fVGzZk3xUJY3b164uLjAwsICVlZW4JyjUqVK+P3331O9/CP0i4+Pj1iqMW/evChYsCCcnZ11XiZVqVIFP//8Mx49emTq7Jo1Pj4+cHFxEYE+BQoUQP78+XVc1K1bF4cOHUJ4eLips2vWmMIFzUaaPj4+PnB1ddWpM1K+9G7VqhXu3r2rs9RadoiIiNDLccwNY7jQrvP//PNP3Lx5M93tuRlyIQ+muEfdu3dPZ/lUcpGMKZ5rPT098fvvv4vfycV7vLy8xMDkMmXKYOvWrTovXAk52bRpk7iOOOdYt26d2JZRh/3s2bPBOYe1tTWCgoKMkFNCG203TZo0AeccpUuXRlRUFA1G0zNKecbFxeHWrVvo2bMnOOfIkycPrl69CiB1XeDv7y9W/KB6wrBol298fDx8fHzw9ddfo06dOuCci8CSMmXKYOPGjeQjDV69eqW3fo4nT55g06ZNYpIApfyrVauGBg0aoGTJkuKz8ePH6+VvmhP6dJES7e++t7c3li5dKlxMnz7dIH8zJ6MvFxkFr2/ZsgUAKHA6Ewx5XWhDQez6JywsDPPnzxezgJYtWxb79u3D27dvM9xv0KBB4JyjadOmiI2NpWdbE6B85yMjI8UK21OnTjVxrsyXdevWoVu3brCzs4ONjQ2GDx8utmkHmir3KWWiBiUAjjA8Ke9DDx8+RPfu3cWAgqFDh5ooZ/KRcrIE5bmnRIkSaNmyJYoVKyYC11UqFSwtLbFz5068e/cuW383pSOqu/UbxA4AQ4YMEe/QGzVqpDNgXylv7VXptAN1c7sPbRczZsyAhYWFeOZUJgFVJhZxcnJC586dxSpyGo1G7P/gwQORnvPkFePPnz+f5vf/33//RZUqVZAnTx5s2LBBfE7o1q1hYWE62z6mjOjakBMKYCcIgiDS5fHjxxg9erRY3lr7p06dOvjrr7+y3UAhskZAQAB69uyJsmXLigcqZRRmv379EBgYmK2AK+Vhix66MicwMBADBgxApUqVRAAI5xzt27fHuHHjEBUVla3jZ8UBeUrG0C60uXLlCnr27InNmzfrzCpALt4TFBSE7777Tsyua2dnB1tbW3zxxRdYvny5Xsvq+PHjqF27NtatWwc/Pz/xOflIxlgu1qxZI5a8GzduHP766y+xjVwkQy7kwZj3qOXLl4Nzjj59+ujMeEUukjH0c602Pj4+GDNmjJgtUYFcvMfLy0vMxF67dm3s3r2bBu1JiPKd9fT01FmqfOXKlSJNeoEiGo0Gr169Qq9evWBpaYlGjRrpLAdNGBaNRqNzz1HqCM51l5InDMejR4/QvXt3cM5Rq1YtnfZDSlL6IvRHypmqDh06hB9++EEMpFJ+KlWqhLFjx8Lb25vuVQbG19cX48aNQ8mSJcWL9y5duuDAgQPiWcDDwwNr1qwRL+tXr15t4lznLrTvR3FxcXBzc4NKpYKDgwPNrGtAkpKS8Mcff6B58+bi3rRp0yaxPT4+Pt3AaQrcNS4UxK4flO+tu7u7mEnU1dUVR48ezbBtnpCQgMTERLRv3x6cc3Tu3NlYWSbS4Zlq4e0AAPFtSURBVM6dOyKgjgaeGZagoCCsWbMG9vb24Jxj4MCBYpv2c69arcbRo0dx9OhRxMbGmiKruYqU9/6rV69izZo1KFy4MAoUKKDTD3np0iUT5VI+tL+zCxcu1JkIRvlxdXXFF198gWvXrunsGxQUhPv3739Qvau9Etf58+d19s3t9be+gtgfPXqE6tWriz7fWrVqwcvLC0ByMLB2OWsH6trZ2dFkif+PtosdO3agd+/eqa6LSpUqYfr06Xj48CGA5O+v4snT0xOFChUSwe5NmzaFp6enSKf9LwDExsaKFRt79eplrNPMMehr0AtdG/JCAewEQRBEhkRHR+Px48dYsWIFZs6cialTp2LdunV6DQwlssabN2/g4+ODTZs2wd3dHQcPHtT7EkJv375FQEAA9uzZgx07duD8+fMUrJsGkZGRCAkJwR9//IF//vkH58+fR0xMjNj+MUsIpSzb4OBg3Lp1CytXrsTPP/+Mv/76SzxAp5U+t2IIFykJDQ3FyJEjRYP0yy+/xL59+8R2cvGemJgYhIeH49SpU7h16xbu3r2rs10fPgICAnQ6Cvr06YM9e/aI7eQjGUO7iIyMxLRp09CgQQNwnrzMmrOzMxYuXCjSkItkyIU8GOMeBQBjx45FgQIFYG1tjSJFimDJkiViG7lIxhjPtd7e3hgzZozoKKaAhvR5+PChWCK+Ro0a2L9/P+Lj402dLSINli5dKr7PkyZNEp9nFLwOAEeOHBGBPRQ0/XFkZ6BxYmIiEhMTMWfOHJQoUQIqlQq2trbYsWOHvrOZK9D+vmflBa5Go8GJEydQvHhxODg4YP369amOQxiGlNdEUlIStm3bhu+++w6cc7HCo6OjI0qUKIH169fj1q1bGR6D0A9eXl745ptvRP3/ySefYM2aNWKAh3J9aDQaREdHY9q0abC0tESnTp3w5s0bU2Y9V/Po0SO0aNECKpUKEydONHV2zBKNRoPffvsNjRo1Es9c27dvB5Bc5yjXRkaB04RxSUxMxK+//ipcaM+ETHVI5ijf6cDAQJQpU0asErR3716dPvb09ouKihIzfn/++eepAn8Iw6OU96tXrzB79mzky5cv1WBnQn9of78TEhLg7u4ugtgzWiGFJhEzHCnLNjIyEg8ePMDIkSNTBWIXKlQI48aNw9GjR02ZZSnR7hf/77//sHPnTowePRrTp0/HqlWr8OTJE9EOUAZ+v3z5EkOGDIGjoyN27dr1Qd/vyMhIzJs3DwULFkSbNm2wa9cuMbNybm+rpxfE/ssvv3zQ+4vw8HBs3rwZLVq0EAOWlZmmUw7e9/f3R5s2bVC/fn3qE9ZC+7v45s0bXL9+Hb/99ht++eUX7Ny5E+Hh4WJwkvbM635+fihfvrwIfO7QoQN8fHxSHVNB6dtSfLdp08bQp5aroWtDTiiAnSAIgvhoqKEtDx/TmEvpb+/evejWrZt4eaWMRG/cuDGWLVuW7n6ELh9TPtr+Xr9+jfXr16NKlSo6M5GpVCrUqFEDixYtytbfyk3oq3xiYmLw559/itlkVCoVihQpgilTpog0ub1DxZhER0fjyJEjYiS6MvuY9stbujaMQ2xsLGJiYvB/7J11WBZLG8ZneOkQREQxULAV7O7u7u5jix1HPXZ3d3uwj92B3aKCkpIGIChKI7xwf3/w7bj7Bh0K87suruNhZ5fZefaZvOeZDRs2oEWLFmyxcPLkySwNt0X2wG3x+3Hz5k0MGTKE2YLXUaknM9pUQbwuRNIoW7Ysj8qXAm5ubqzvuX79+pzODkcFLi4u7Njm9u3bs6gvKYnXX716Jdmg8Pr162Tv4ygjXiAMCAhAQEAAAgMD4evrCzc3N3h5ecHFxQVPnjzB8+fP8fz5c1y8eBH29vbYtWsXunfvjnr16rG+q2IbrQoh2mVmba7KjZw8eZJt8k7pe46NjUWNGjVAKUXTpk2zI3t5GkV7vH//HqdPn0bDhg2ZwEc857R//354enom+wyA+0Vm4eXlhREjRrB2v0SJErh+/bok4r1iH+nUqVPMbq9evcruLHNEjB07lgmwgoODczo7uY74+Hjs3bsX5ubmkMlkMDQ0xObNmyXXBeRyOfbt28ciuW7YsCEHcpx3UWwnVq9ezfpZo0aNyqFc/ZlER0ejXbt2oJSiYMGCWLZsGUJDQ9WmF7cR06ZNY+IsLgjNOfz9/bFp0yaUK1eO2dHb2zuns/VHk9pIx+Hh4fj777+hqakJGxsbpc2YnOwjPDwcr1+/Rrdu3VCpUiXJ+Lt27doYNWoUvL29Je0HnxeRklJ5qJpHHTZsGCilMDIywrFjx1I913r//n107tyZjTEKFSqEzp07s3FhXh/zid9faGtLlCgBd3f3VN0v2DI+Ph7u7u7o0aMHKKUwNjbG8+fPVd4TFBTE6r68Xv5iUtqApHg9KCgIXbp0YXMeTZo0Yd91cj4WGxvLNtE2bNiQ109ZBPeN3xcuYOdwOBwOJw8i7vQ+f/4ckydPluxCNzExQYECBaCtrc0m4cVHDnKxT+pJqazEtjh79iz69+8vsUXhwoVRokQJmJiYcFtkkIyUVUJCAsLCwjBp0iSYmJiojOrDSRvpsYf4nujoaEybNg2FCxdm9hg9enRmZjHPkBn1iKurK5YvX85s8ffff2dCzvIe3Ba/D+m1hbhd9/HxwdKlS5ktpk2bllnZ4ySDIF4XRFn16tVDZGQkjh07xkXsKeDp6YkFCxbwMvlNcXBwgImJCSilWLJkSbIL6oINPTw80KZNG8hkMmhra2Ps2LH8NLUM8M8//6BOnTooVqwYihQpAgsLC+TPnx/58+eHsbExdHR0oKurCwMDAzae09TUlGxKLlSokCR6vqqFDycnJ9SqVQsvX75Umyavs2vXLpiZmWHcuHEpphUiJA0YMACampooVaqURKibWnjdmHbc3d2xf/9+lC5dmm2kEeY1Bg0ahK1bt0rqsuTKmPtF5vDlyxfMnj0b5ubmoJSiZMmSePLkidr0gk3evHnD6rYbN25kV3Y5IuLi4gAA8+bNg4aGBszMzBAYGJjDucq9PHjwAP/88w/09PRAKUW/fv3YNXH9I5fLsW3bNjRu3BgPHjzIiazmeT59+oRr166hfv36kmAwc+bMyems/fYIdfyzZ89Y9PWWLVsqbSpTx4ULF1CtWjVQSlG6dGk4OTllZXbzBMJmPSBp7vvnz5+IiYnB9+/fERoaiuDgYPj7+8Pb2xuOjo44evQoNmzYgKpVq6Jw4cIsiuju3bsBSOeoVPWzeP9WNT9//sTr16+TPYVAzM2bN9nJQjt37szi3HEA5bHAsWPH0K9fP+TLl0+yvlqrVi3MnTsXAQEBLEoy94vUk5yAVlxOQ4YMYZuZ0iJi9/X1xd27d9GuXTsULVoUlFIUL14c7969S/Hv5wXE3/mSJUuwfv16fP/+PV3P8vLyQps2bUApRYsWLfD582e1afN6uaeXhIQEJCYmYvv27ex7LlWqFAu8kJIA/tq1ayhRogQ0NDRYP5bXR1kP943fBy5g53A4HA4nFyEsZgDqF/PEnatjx46x6BpCdMo+ffrg6dOn8PT0xM2bN7F48WIm9lm2bFmWv8OfjjCYEE9upcYWa9euZRHhKKVo0KAB7Ozs4OPjg8DAQDx+/BgrVqxgtli5cmXWvkguIC22SAmxrWbNmgVTU1Noa2uDUooFCxZkKJ95BcEe4eHh7HfptYf4vqlTp0JfX58JITZu3JixjOYBMtMW4gmUmJgYbNu2DRoaGjAwMMDJkyczltE8ALfF70NW2SIyMpLZglKKLVu2ZCyjeYjU9GsV8fDwkERer1u3LlsAjomJwd69e7mInfPHMn/+fFBKUaxYsWQFa8L37OXlhX79+rGo7ba2tmwSnn/zaefq1asSIbp4UVz4nba2NjQ0NKCrqwt9fX3o6uqiQIECKFmyJGxsbLB8+XJcunSJPVNV3ebi4oKqVasy8Ymzs7PatHkVQSwo+MO9e/dSdZ8QAcvAwABBQUGp/nuC0EGAL1hJEeoToVyioqLw9etXTJ8+nZ08IN6gP2jQIJw9e1byjJS+b+4XGUcoqxMnTsDS0hKUUlhaWuLhw4epum/Xrl3Q0tKCkZER20TAyT4EPwsODkb16tVBKUWZMmUkYxdO5iCu4yMiImBvbw8jIyOlIBbivlRCQgJCQkJ4+5ANCHVSfHw8oqOjsX79erRo0YLN0QrtfJs2bbBv374czu2fw8KFC1n5XblyJVX3uLi4oHfv3uw+8UkFnLTz+fNnHDp0CA0aNECrVq3QqFEjVKpUCdWqVUONGjVgbW2NkiVLokyZMrCwsICpqSkb54l/TE1NsXHjRqW+rrjOOnToEObPn6/yGiepfjl69CiKFy+Oy5cvJ5tWKLv4+HjUrl0blFIMHjwYcrmcl2s2EB8fjy1btqBfv36SzeOFChVCxYoVYW9vn+yGHO4XGUe8GXnQoEGpFrErRqwODg7G6dOn0ahRI1BKYWFhwSKN53VbiMe84rkJod8ZEREhmUNXR3x8PPbs2QNNTU1YWFjg1q1bAHj5ZjZyuRyNGzcGpRR6enp49uwZAPXzSOLfDx06lLXnfNN4+uG+8efCBewcDofD4eQSoqOjceTIEaxdu5b9TrFzJf7/Xbt2oU6dOqwz3KNHD5w+fVopkl90dDTWrFkDDQ0N2Nraws3NLWtf5A9GKN/Q0FAsXLhQIvhXtIV4UDJ//nwW5USIIv306VMlW8TExLCourVr14a/v38Wvs2fTVpskdpnAcDTp09Rt25dFoGpQoUKCAkJyZxM52KEMgwMDMTgwYMlk4HpfRaQFN2kUKFCzHdat26d7ggEeYXMtIUqPn/+jBYtWkjEoXygrxpui9+HzLaFYjmHhIRg7Nix0NDQQLNmzRAQEJCh5+cFUtOvVeTt27eYMGECi1Bdv359dk18xKNYxG5nZ5c1L8DhZAGLFy8GpRTly5dX298RR14fOHAgzMzM2ALu+/fvAXDxbUaYMGECE6vXrl0bhw4dwsmTJ/Hvv//i7NmzuHXrFq5evQoHBwe8fPkSjo6OcHFxQVhYmFLke1V2cHFxga2tLTsVTfjv27dvAXCxrpgXL16gbt260NDQwKRJk/Dt27dk0z9+/BjFixeHTCZDs2bNlMpS3MYEBwfjzZs3mDBhAnr06IGWLVuid+/eOHDgAD58+ACA20IdLi4uGDlyJBPYCj9Vq1ZFz5494ebmhh8/fqT5mdwvMobwff/48YOVpYWFBc6dO5fsfeJ6qn379qCU8qjfmUhiYqKk7hGL3eLj49m3LdghKCgIS5cuZXMgzZo1S3VkWE76iY+Px86dO6GnpwdDQ0Ps378/p7OU51AcBwYHB2P27Nlo2bKlZGNhyZIlUb9+fdy6dYuPuVOJUL/06NGD1Svx8fEpjr39/f0xZswYyVqG8Cw+1kg7CQkJ2LFjh+TkJnU/4o20GhoakMlk0NHRQbVq1dCxY0c8e/aMnT4kILbn6dOnUa5cOVBKMWrUKJVp8jrh4eHo3r07KKXo1asXvn79muI9/v7+rH3u3bu32nSp8Q9uC2UUy83FxQV79uxBjRo1WFAjSikMDQ3RrFkz/Pfff/Dz80v2GdwvMg9VInYtLS08ffo0VfeLN0S7uLigefPm7ESQL1++ZEme/3TEgSumTp3KyimlbzY0NBQWFhaglGLYsGGpuoeTNoRgC9ra2izYWmrE64sWLWJ12ZgxY7Ilr7kZ7ht/JlzAzuFwOBxOLiAqKgpnzpxhi4TTpk1TSiPuaO3du5dFr6KUYuLEifDy8lKKnCXw7NkzGBoaglKKM2fOZO3L/OF8+/YNGzduRJkyZUApxfTp05XSiG2xaNEiFClShNli0aJFkqMiFTvId+7cYROVN2/ezLoXyQWkxhZp4eHDh6hduzYTr1esWBGhoaEAoLTZgKPM58+fMWXKFHacaXrsIfaHq1evsmPPBfF6WFgYAG6PlMgMWyTHzJkzQSlF/vz58fHjx0x9dm6D2+L3ITNsIV4kV2y/T506xSNopJLU9GsVSUhIwH///ccWDDU0NLBq1Sp2XdwuCCJ2IUrfxIkTs+Q9OJzM5ty5c5DJZLCwsJBEvxXGbkK98+bNG3Tq1AmmpqZMvP7ixQsAXOiZXsTlZmdnx+rzw4cPp/oZKS18iEW6RYoUwT///INmzZpxsW4y7N69m9li06ZNknG0WLjz5csXzJkzh42jk2vj7969i379+qFYsWJKgiEjIyNUrVoVLi4uALhAS4ynpycGDBgAAwMDVs7a2tooVaoUZs+eDTc3NxYtLi2LgNwvMo/ExESMGzcOlFIYGxtj8eLFyW7+Fttp5cqVoJRCR0cHf//9t9J1Ttby+fNnPHr0CF27dkWJEiVYZMtHjx4ppU1OnMWR8uPHj1SJEoEkAYQQBGb48OFZnDOOgOL3/ODBAyxbtkwSBEbo6/br1w+PHj1SsmliYiL3i2QQykdoW/v06aM2nYCPj4+kP9yxY0c21uCkHw8PDzZHoa2tjX79+mHSpEmYM2cOVq5ciUWLFmHZsmXYvXs3du3ahW3btuHkyZO4fv067t+/j4iICNb/FdtL/O9Tp06hbNmy0NLSYvbjJ9MpExcXh23btqFgwYKwtLTEmTNn1Pb7hT7oy5cvUbRoUdZOpFTvPHr0CCdPnsS4ceMwYcIEHDlyBI8fP1abnpOEo6Mjtm7diiJFirATCAS/GTNmDOzt7VP1HO4XmY943rV///5o2bJlup91+fJlFChQABYWFuwUBD72ViYiIgKdO3cGpRSLFy9OMf3Pnz8RGRnJ1st79eqVDbnMe0yfPh2UUhQtWjTZTRzib3r79u2SoHkpbTTnJA/3jT8XLmDncDgcDicXcP78eVhbW7Nj0jp27Kg2OveZM2dQv359NhifOXMmIiIiUvwblStXBqWURbLmA0ZlEhISsGXLFhQsWJBNnowbN07tgsiWLVtQunRpZovVq1erfbYwURIbG8vuOXjwoOQa5xdptUVKPHz4EHXq1OHi9XQil8sxc+ZM6OjosIXvVatWSUQmKZGceL1NmzYskh8XLyRPZthCHcJCydy5c6GtrY0CBQrg8+fPGX5uboXb4vchM2xx9OhRUEpx/Phxye/Fkb/Lli0LSimLKs7bb9WkpV+ryJkzZzBhwgTo6uqCUoqBAweya4oidiHC2dy5cyVHsHI4vytv3rxBhQoVQCnFihUrVEZdvX37NqytrZkPFCpUCE+ePAHA65yMIu5jTpkyhfVDd+7cqRTlMK28e/dOItLduHEjQkJC8OHDB7Rp04aLdRUQf8vCyQSUUqxcuZIdMy7w9u1bLFy4kImqmzRpgqCgIADK5Xj48GHo6uqy6JeFCxdG9erVMXHiRLRo0QIVK1ZkNuLHmSsj+IWJiQmKFy+Offv2KQna0lJe3C8yl4iICDRt2hSUUlSuXBlv3rxRm1Zsp4sXL6J27dqsvC9dupQd2c2VfPnyBQ8ePMC5c+dw9OhRHD9+HAcOHMDmzZuxYcMGLF++HHPmzMGMGTPw119/oXPnzmjdujVKlCjBxFlCdNEDBw4AUC9SFI6qV/w9J4mvX79i165dbOyWmjISxCiamprw9vbO6ixyRFy/fh1z5syBrq4u9PX12SYOHR0dLFy4EFeuXJGk536RdgYPHgxKKRo1aoSoqCjJNXH7+urVK4waNYrVR82aNcPly5d5eWYSrq6uKFCgACilaNGiBTw9PdP8jJTE65RSmJqaokuXLqx/zMW6ygQHB6Njx46glKJu3bpwdnZm18SnpQi0bduWtdHXrl2TPEtYR5XL5Xj27BmmTJkCbW1tNmYXgjCULFkSixYtUvo7nKSAIf369UO1atUkG5iKFCkCOzs7pTJPblzA/SLrULVOmp4xWlhYGBOSjhgxIjOyliuJiIjAjBkzQGnSKaSvX79Wm1Z8IpcQvKdNmzaSa5yMI5fL2Zi7Z8+eatOJ9TX79u1DsWLFWN0jbgc46YP7xp8LF7BzOBwOh5ML8PHxYYP2YcOGKe3qFDpZbm5u7Pg7IfJYXFxcss9OTEzEixcvkC9fPlBKsWPHjix7j9yAl5cXK9958+apXdS4desWGjZsKFlsF0iuU3zx4kV2z+nTpzM9/7mJ1NoiJRTF65UqVeLi9XTg6ekpEfoI0dJTAxevZy4ZsYU6xGUvtDM6Ojrw8fHJ8LNzM9wWvw8ZsUV8fDwmTJjA7heEEOLJyCNHjrDr27Zty/T85yZS6teqQlzWISEh2L9/P4yMjJSiJIrTyeVyvH37NtnooxzO74YQBVfo3168eBEBAQE4cOAA7OzsJEfKly5dGm5ubjmd5VxFciL29I4LXFxcUKlSJRahacOGDUxgDQDv37/nYl0ViOtzYWGKUoqaNWvCzs4Oy5Ytg52dHWrXrs38olq1ajhy5IjSHEhYWJjEt/T19dGwYUO8fv2a2SI8PBwvX75EixYtmGCLH2eehNgW69atw44dO+Dr66s2TWrgfpH5XL9+nX3j27dvV5tOPPZ+8uQJevXqxe5bsGBBNuQ0d/Lx40eMHj2anRaUnh8zMzNYW1vj+vXrSvWY2G729vaglOKvv/5SeZ0DXLp0CTKZDGZmZilulBXa9zVr1rAAGe/evVObXihrXuZpQ7G8goKC8Pz5c3Tt2hWWlpYSX6hUqRIWL16M58+fS+5JLuIx9wvVCGVw8OBBGBkZoUyZMpLNZ4plKESzpJSiZcuWOHXqFP/mMxlXV1eYmZmBUormzZtLNmempYyTE+kuWLAAiYmJOHz4MBfrJoOvry/bwNq0aVM8ffpUaYNHYmIi+vXrB0optLS00Lx5c8nGA6FvGhsbi5UrV6JBgwZK9VnNmjVhbW3NbDF16tRsfc8/AT8/P0m51a1bFyNGjICPj0+aNpNzv8h6xG1xeoLgCX1c4eSbjh07ZlreciO3bt1i3/HcuXNVBisUB8dbtmwZNDQ0IJPJsGTJEsl1TsaRy+XsVBt1AnaxX+zcuRMlSpSATCYDpRSjR49WmY6Tdrhv/JlwATuHw+FwOLkEV1dXjB49Gg8fPmS/U+xcLViwgA3yx4wZw0Sf6hBPYgr3nTp1KvMzn8twc3PDokWLlKJkiO0xduxYifhEQN2gRLh35cqVbALl/v37WZD73IU6W6QWHnk9c3Fzc8OePXtSrHvEKIrXxQu+XLyeflJjC8UJR/GilHBNsZ1ZvXo1NDQ0oKGhgU6dOiEmJoYP9FOA2+L3QZUtUjtZGBISgvHjx7P6afny5Szq8ZkzZ9CtWzd27b///suS/OcmVPVr0zJxK5fLcfDgQRahb/369VmRTQ4n2xB//7NmzZIs3hYrVgyUUrbgUbp0afTt2xefPn3K1L/LSSIzRexubm7MfkZGRpg3bx57vrjN9vLyYmJdIyMjSQTAvIzYFkuWLIGZmRkbKwsRDYX/b9CgAQ4cOKAkOgkNDcU///zD7Fi+fHlMmzZN5eJWQkICrly5AjMzMxQuXJiPx0WIv311fdPUwv0ia7h06RK0tLRgYmKCx48fS8YRAuLyffXqFYYMGcJ8Y8iQIcwOvG1IO8HBwSySpNA/LVasGIoXL458+fKhSJEiqFChAkqWLAlra2vUrl0bderUQd26dfHXX39hzpw5uHfvnspTtcR2O3r0KExMTJjdxo0bpzJdXsfBwQGWlpbQ19fHunXrkj2NKTExEXK5HEOHDgWlFMbGxvDy8lKZTkxYWBg+f/4MLy8veHt7S/yG20I9oaGhuHz5Mpo0aYISJUpI+rzt2rXDnDlzEB4enmIZcr9IGwEBAey0jSZNmuDatWsIDQ3F9+/f4eHhgSFDhkjs0a1bN1y7do2L17MINzc3iYjdw8Mj3c86ffo0E3AVKFBAsg4VGxuLvXv3qhTr8rY+CQ8PD1hYWDCx+ZgxY3DlyhVcu3YNu3fvlgjSzc3NJWunQv84JiYGw4cPZ5FdKaUYMGAAduzYgejoaPz8+RPv3r3D+vXrmS02bNiQQ2/8++Lq6oqGDRti/vz5CAoKYsL19Hyr3C9+T4SxRkxMDEqVKsU2K4jXQjjKbNq0idUtW7dulcx5CKfLxsXF4dKlS6hfvz5L++DBg5zKcq5mzZo1kMlkaNSoET58+KDy1A4AWLFiBUxNTVldIz5Flq91Zw7cN/48uICdw+FwOJxchHjCXXFAd/XqVdb5at++PZycnFL1zDdv3rDJlYYNG2b4ePS8QnKR7Y8dO8ZsMXjwYHz79g1AypO9jx49gpaWFt95nkZSOmVAHVy8njWkN1pMZkZe5xNeSYjLISOTIt++fYO7uzsmTJggWRTcsmVLZmQzT8Bt8fugzhYpReYDkqLEDRgwgJV7gQIFULlyZRgaGrLfiScjOckj7teKbZHaTVBBQUHo3bs3EzuoEiNyOH8SYj/YuHEjO5ZW+ClYsCD69euHS5cuKZ0scOjQIYnIJDUIaZ2cnLBy5Up8/fqV9avzel9KnYh9165daRoneHp6onbt2kzUWK1aNTg6OrK/oSjWbdmyJRMWpWVDaG5GbIsLFy5g6tSpMDY2ZqdwlChRAiNGjICLiwtboBLuiY+Px7Jly5j9qlevjs2bN7P2R1WfLDQ0FKVLl1baiM7JPLhfZA1C9GETExOVp3OIBTkPHz7EoEGDJEJFIco9J/28e/eOCRIrVqyIhw8fIjo6GiEhIayf+vPnT1ZXAaqFUmIfUBTpCuMO8TH0PHqoMmFhYewErSpVqqg98UloBwIDA1G9enVQSlGoUCF8/fpVZToA+PTpEzZu3IgGDRogf/78MDY2hqamJnr16iU5/YDb4hcJCQkICwvDpk2b0KVLF0n/Nl++fGjWrBl27dqFiIgI5hPJzZtwv0gfnp6eKFq0KJvLKFmyJCwtLVGkSBGJTaZMmQI3NzdWbukRdPIyT5nMELEfPHiQ9adMTEywaNEidk3sS2Kx7qRJkzLrFXINnp6eqFq1qsQPKKWsbtHR0YGlpSUOHz7M7hHGzdHR0ejRowe0tbXZfevXr0dISIjS34mKisKcOXMgk8nQunVr3q9VgeK8XnrqEu4XvyfiNkUI/qarq4sVK1ZIrnN+IW5/xZvy58+fLwkIExsbix07dqBJkyYszbJly3Iiy3mCK1eusHW5TZs2SepyuVwOZ2dnSYBDSilGjhwpScPJGNw3/ly4gJ3D4XA4nFyIeDAndNRmz54NHR0dmJqaYteuXaka8H38+BHDhg2DgYEBNDQ0MH369HSLgTlJtoiOjkbPnj1BKUXZsmVx5cqVVN3r7u7ORCpmZmbYunWryohZnMwho+J1LnDPOFkReV0ciZRPev1CXIb379/H1atXcenSJRw7dgxHjhzBoUOHsGnTJqxZswbr16/HwoULMXHiREyYMAG9e/dG2bJlYWVlJYlyOX36dPZMXtaph9vi92T79u3Ytm0bgOTLMDExEVevXmWRFIVNZ8JPnz594O3tDYBH7UkL4jJ/8eIFzp49q/R7dezcuZOV/927d7MqixxOtiFuJ4KDg/H06VNcvXoVDg4OcHV1laQV6pl79+7ByMgIurq6OHr0aJraglevXrFj0+vVq4eVK1ey/lRer8fUidg3bNiQqrIR7BAeHo7z58+jVatWbJFWiOytaCsvLy+MHz9eIoDjKH+LHz58gIeHBxwdHZU2oInT7tq1i9mtZs2a2LdvX7KR/OLj4/Hjxw/Y2tqCUioRO3AyB+4XWYefnx/Kli0LLS0t7NmzRxLVXlyfnThxAp07d2a+0aFDBzx8+JCPIzIJV1dXFChQgAkS379/D0Aq2hHmkxITEyVzS4o2EP//sWPHmJCufPnyWLduHXbv3s3Fusnw4cMH1KlTh22Aefv2LStvxTm9rl27qhVSiX1p06ZNaNu2rUqBIx+fqycqKgrdu3dnZUwphZWVFRo1aoR79+7h48ePkvQpjckFuF+kHS8vL7Rq1UpJtK6vr4+WLVvi4MGDkvTR0dFwdHREYGBgqv+GuKyfPXuGd+/eqb2e11EUsaf1hNl169bBysoKMpkMOjo6WLx4MbsmrucEsa6Ojg4opZgxY0amvUNu4ePHj5g+fTpq1aol8Q0DAwMMHjwYly5dYmmF9dOYmBj06dOHpdXV1cWxY8eS/Tv//fcfSy9s4OQok5F6gvtF1pERu4SFhSEwMBADBgxA/vz5QSmFqakpbt++nYk5zH2Ix3EzZ86UBNVp06YNWrdujXLlykkCHU2cOBE+Pj4AeJubVSxYsICV9/Dhw7Fq1SocPXoUvXr1QrVq1dg1S0tL/P333+y+9IrXFe/jInjuG38qXMDO4XA4HE4eIDw8HBUqVAClFI0aNZIshqjj69evWLNmDYu8UapUKXz58iW7spxrCQkJgaWlJSil6Nq1a6o6wf7+/hg/fjxb5GrUqJFS1HbemU4bP3/+xIcPH9iRUYrRxjIiXhcGRj9+/ICDgwM/JjgVfP36FW5uboiMjAQgtUdmRV5/8+YNjI2N0b9/f/Y7bg8pY8aMYeLn9PzIZDJUqVJFsktdlY2cnJxw9erVZE8Nyetkly1UwW0h5dq1azA2NoaxsXGqIl5FR0ejatWqaNiwIW7cuIG+ffti2rRp2Lx5syRdWsSNnCQ8PT3RokULaGtrw9nZOdm0Qnv9+PFj1n86ceKEyrS8nDl/Guq+2eSiIAqnQxgaGuLYsWOp/u7t7e3Rq1cv5MuXD5RS6OnpoWHDhix6b15fFFElYu/du3eqN32Lx3I+Pj5so7OFhQVevXql8h6hvyy+n/MLdQJPRb+4du0a6zfZ2Nhg+/btTLyeXLm+fv2aiRiWLFmSybnnANwvsorw8HAmomrUqBHevHmD6OhoAEn9JrlcjlmzZrFNS5RS9OjRA0+fPs3zG5Yym8yIqiu2iTjCdLly5bBhwwbmB1ysmzxeXl4oXrw426h34MABfP78GQDw/ft3PHv2DB07dgSlFFpaWmjUqBGePHnC7hfPrw8bNkwyd9W4cWOMGzcO165dw44dOzB+/HhmC36ChzLOzs4wNTWFpqYmhg4ditu3byudKJTSd8v9InP4+vUrHj16hKVLl2LBggVYtWoV3rx5I4kYnZiYiMTERFy5cgWUUrRu3Vppo0FKnD17Fs2bNwelFH///Tdu3boleT4nCXGb0bBhQ7bxKbU8ePAAc+fOhb6+Piilknlx8VhGLpdj69atMDU1xevXrzMr+7mK2NhYREdH48yZMzh8+DDs7e3h7u7O1peAX+3Cz58/MW7cOLa+ZGJigv/++4+lU/zGBVt4eXnB3NwcmpqauHfvXja8Vd6E+0XmI5RbdHQ0PDw84OLignfv3uHVq1e4f/8+Hj58iHv37uHcuXM4c+YMzp8/j71792Lp0qWYN28eGjRoAGtra8n6xq5du5L9m0JEfj4v9ev916xZg/Lly6tdM5o3b57SBlpxHZYeIiMjmV4hr9tC3Bf9+++/JZtYhXkk4ad37944cuSI5H7xeml62LVrF9sYmNdtAeS8b3DSDhewczgcDoeTB/jw4QMKFy4MLS0trFu3DkDyQtzv379j165dbMBYuHBhdpyqOLKMOvgko3qcnJygr68PAwMDnDx5EkDyA4lPnz7h77//hoWFBSilKFq0KHx9fZXui4+Px4cPH7Bnzx7s2bMHDg4OPNq0GmJjY3HgwAG0aNECBw4cQHh4OLuWUfG6QHh4OAoXLgxKKWbNmsWixQHcFooEBwdj3rx5aNKkCQ4dOoSwsDB2LbPE605OTpKF+HHjxrFr3B5JBAcHo1SpUqCUQltbGxoaGihSpAgMDQ2RL18+FCtWDEWLFkXRokVRtmxZVKxYEZUrV0bjxo3Rvn17jB8/HmfPnpWISlXZyM3NjUXRmDp1KhwcHNg1boskssMW3t7euHXrFiZMmIDp06fjxIkTkvTcFr8QHxW8aNEiiUBKHZ06dUL+/Pnx6dMntYtSAo6Ojjhz5gymTZuGhQsX4vz580wYCnBbiHFzc2NRb2fNmiVpv9Wxf/9+VvcfPXo02bReXl549OgRVqxYgS1btuDmzZuSyL3cFpw/EXGdM3jwYBZB8fjx42n6pl1cXDBmzBg22V+oUCG2KJLXhY3iMj58+LCS2CotvH37FvXr1welFAMGDEi2nuN1Uvrx8fFBs2bNWPSlf/75B7GxsQCSL9fQ0FCMGDGCjctfvHiRXVnO03C/yDy8vb1RsmRJUEpRvXp1DBs2DDt37sTQoUNZGQs/o0ePhoeHR4bqeG4P9WSGiB0A/v33XxY1rnz58tiyZYvkJAkheigX66rHw8OD+YWRkREsLS3RuXNnVKpUif1eW1sblStXZvO4wK8IuwkJCejQoYPEfxYvXsyi9wmEh4djy5Yt0NDQgJmZGa5fv56t7/kn8PHjR1y7dk3yu/R8p9wvsgZVQXQcHR0lm55SK2KPjo7G4sWL2VytpqYmSpcujdWrVyv9PU7SybzChox169ax7zk5xO13eHg4/v33XxgZGbE2XkDxJGdh3p2fLqtMShvJxRtnt2/fztoQTU1NnD59OsXnAMCGDRuYT718+TITc88BuF9kNaGhoRgyZAhKly4NExMTGBgYsNMAdXR02CkrwsZAVSJSQ0NDlC5dGvv27WPPVTUeOX/+PIoUKcJOKsjrYl3x+z9+/BibNm1ClSpVUKFCBdjY2KBfv34qT4P38PBA/fr1YW9vn652NyIiAps2bULhwoXZZnNui1/vv3//fgwdOhSGhoYwNzeHlZUVOnTogBMnTjDRv4Cfnx/69u2LkydPpssW58+fB6UU+fLlw9u3b5XyklfJKd8IDw/HrVu3EBwczOow3rdNGS5g53A4HA4nl5OYmIh3796xwaHijk5FQkJCsG3bNpQpUwaUUpiZmWH//v2Ij49XGijGxcUhNjYWT58+xb179/D8+XOlKBC8Q/aLxMREPHnyhA3Gz58/n2x6Pz8/zJgxA8WKFWMbCYRoJOJOt5+fH9asWcMiuwu7elu2bIlNmzZJ/j4naVAtTJBXr14d9vb2AJKOLa1du3aGxetAknhFEKBqaGigTp06WL9+PbvObfGL0NBQVt9Uq1aN2ePWrVuZJl4Xi634ApV6XFxcmLjc0tISd+/eha+vL3x9fREaGorQ0FAEBQUhIiICsbGxCA8PV7toompiMSEhAUeOHGH+p6GhgerVq2PVqlUsDbdFEllpi4cPH6JDhw5MMCH8cFuoJioqCnPmzIFMJkPFihXx8OHDZNMHBQWhRo0a0NfXV4rOIy7TqKgobN++Hfny5WOLJcJPzZo1sWbNGpX35WWioqIwf/58aGtro3z58rhz547atEKZCRGRKaUqJyMFjh8/DltbW5iamkr6Uo0bN+btN+ePR9yPHTRoEBNipXR8uWLk6rCwMDg4OLBIiVZWVmmOAJhbUTVWELe/nz9/Rnx8fIp1yM+fPzFr1ixQSmFtbZ3mSJac5BFscv78eTbO6NChg8pToFRx48YNdrJd5cqVlRYcOSkj9gHuFzmDh4eHZHO3TCZj/9bV1UX58uUl/VAgKaqeEK09tYj9SRjHc6RkVMT+4sULJv7R1NREjx492DVx9D5Fse6YMWMy7R1yC97e3ujWrRtKlCghiZRIadLpMx07dsTZs2dZerEYWugXaWpqokiRIjh48KDk2eI+gq+vL2rVqgUNDQ3JfC1HmfQKbrhfZA6K4s3k0jx+/Bja2tppFrFHREQgMDAQK1asQN26dZktJk+erDIfeR0PDw9MnjwZz58/T9f98fHx2LlzJ/T09KCvr48DBw5kbgbzIIrfp+ArHz58QNu2bVk7Il6PVfVNC7+Ty+UYMmQI2yzr4+PDfSCL4X6Rudjb27PvXmgXZDIZW2/V0dFBvnz5YGBgABMTE5ibm6NgwYIoUaIE6tWrh9atW+PIkSOSjeKq2qBr166xPnSBAgVYUJ68LtZVLKuoqCjEx8cjLi5Oac5KqFv++ecfUEphYGCQptMagaR2fM+ePWwNy9TUlNvi/yi+f0BAAAIDAxEeHs6CJwgIdtu0aRMbk6fVFkBSoIbWrVuD0qRTP7iI/RfZ7RtRUVHYs2cPKKWoXbs2Dh48iODgYJV54UjhAnYOh8PhcPIAcrkcDRo0YBFvxUdjCz9AUgd38eLFsLKyYoO/DRs2KC3MhoaGwsnJCV27dkXNmjUlg1JdXV0MHz48xYmZvEp0dDRq1aoFSpOOHBc6x4o7MN++fYvhw4ezKN6FChXCf//9p1SWYWFhWLJkCUunpaXFJuqFhcipU6ey9NwWSbx79w6FChVios358+ejZs2amSJeB5Ls/O7dOyYSEibheeRv1bi4uDB71KhRAzNnzkTBggVZ3dK6desMi9eLFy+OTZs2YePGjVzEngyurq4oUKAA2zTg7u4uKRuxP4gH26ktv5iYGLx//x5Dhw5V6xucJLLCFi4uLmjZsiUMDAxYRIZChQpBU1OTLxYmw+fPn9G0aVNQmnQUvIuLC7sm1EmCDezt7VlZio/ABn6VZ2hoKObMmSMRrVtYWKBs2bIwNjbmtkiGz58/o0mTJqCUolGjRhJbKPaphMgjlFK0bNlSUobif2/evFliC1NTU1hYWEBbW5v1pbgtOH864jajf//+oJSiadOmkhObUourqysaNmwISpOO2k7NaQh5mYMHD6JBgwYsUmtKkftev37N2ukdO3Ykew8nfbRq1YqNDz58+ABA/SKS0M4HBwejcePGLCrcjRs3AHDbpBfuFznLhw8fsGTJErRo0QIlS5ZEpUqVUK9ePezfv5+dvijw/ft3bNiwAWPHjpWcTJNajh8/jvbt2+Pw4cPw9vZmv+f2S0IsYm/VqhXc3d3TdP/hw4fRp08fFrRk4sSJ7Jq47ZfL5di3bx+bu/38+XOmvUNu4evXr7h+/TqGDRuGFi1aoHbt2mjTpg1OnTol2Vwgrrc6d+7MyrRChQo4c+YMS6euXenYsSMopejSpUuWvk9ehvtF9iF8548fP2brEb1794afn1+y9ym2AW/evMGiRYvYXMisWbOyLM9/MuLAFcK3LJfLERgYmKr7vby8ULt2bVBKMWzYsCzJIwdYsmQJm19asmQJ+31KfR+x+NfOzi6rs5krEeok7hc5x4QJE9h33L59e1y+fBmPHz+Gg4MDHj58iLdv3+LNmzdwcnKCr68v/P398fHjR3ZCihhVPnPt2jV2yoqwKZ2LdVUj7osmJ5oVn9aYWqGuIF7Ply8fC77HbSFFXTkmZ4sBAwakWzQNJNVnbdq04bZIgaz0DQAIDAzE+PHjWV1YsmRJ9O7dm40puT3UwwXsHA6Hw+HkchITE/Hz509MnToVlFLUqlULb9++VeogPX/+HN27d2cDjYIFC2LLli0ICgqSpHvx4gUmTZrEooJramqyxV8hirKGhgY0NTUxZ84cST44ScLm0aNHg1KKunXr4u3bt0oC6Vu3bqFq1aowNjZmorbz58+rjK7r5ubGIq+XKFECM2bMwI0bN7B//36MGzeOTfxOmzYtu17xj0G8UGhsbMyiAtjY2ODr168A0ideV/zWN2zYgHLlyjERnFg0zfmF2B76+vpscNe2bVt8//4dQMbE61u3bkVISAgA8KOCUyCzjjNXRLF816xZg9KlS7N2ZNKkSZnyd3ITmWULoeyPHj3KIkzb2Njg0qVL8PT0xOXLlzF79mzmFzNnzszM18gV+Pj4sA1+jRo1wtWrV1ndJCAWTNerV49thFJk7dq1LF2VKlUwadIkfPz4EV+/fsWDBw+wZMkSZouFCxdmw9v9WXh7e8Pa2prZ4sqVKxJbhIaG4vjx46yMhQ1McrlcqR46dOiQJF3Pnj3h7OwMX19fXL9+HfPmzWO2mD9/fja/KYeTuYj7tYsWLVKKEJqW52zduhWUUpQtW1YiSORI8fDwYHXMoUOHUnWPg4MDu2fr1q1ZnMO8x48fP2BrawtKKYYOHYq4uDi1YwzxJrX27duD0qRIvFOmTFHbxnNShvvF70FiYiISEhLw4cMHhIeHs5MIBISF3ODgYDbX17NnzzRFwD9//jzbeCiM7fft2yfJAydpzCds6G/Tpg2bj0oOcdl9+PABO3bsgKGhISilGDx4MLsmXpCXy+U4deoUnJycMvcFciE/f/5EbGys0jysuL0QBFoymQxly5aVnLKZ3LfdokULUJp0Agj3gcyF+0XOIBaxC/O5o0aNSlWEScVT6nbs2MHWlQ4fPpxlef7TEcrt58+fWLVqFf7991/J75NDONVGS0sLnp6eWZrPvEZiYiI+fvyISpUqgVKKFi1apLqMHRwcWDAfGxsbduIgbyfSDveLnEHcR7Kzs2P9f3HfPyVSspVYvF61alVs3LgRLVu25GLddKLqtEYDAwMcP348WVsoitcbNmyIkydP8ujfGUBcTmmxhSq4iD3jpNc3xPj5+eH48ePMTwTdlTDm4JHYVcMF7BwOh8Ph5BH8/PyYmLN+/frYsGEDHB0dceTIESxatAi6urpMoGNhYYGjR48qCbNu3LiBGjVqwMjIiO0anDJlCu7cuYPv378jISEBp0+fxvjx49mzpk+fzu7nEy5J+Pr6sgXAOnXqYPHixbh9+zbWrl3LxO3Cj6WlJR49eqT2WQsWLAClSccKHjt2THI087dv3yTRpvnxtMq4ubkxMadMJkOxYsVYVDEhqlJ6EQY5Hz58YEI7XV1d1K9fHz4+PhnOe25EbA9tbW1UrlyZRQZNy2aCN2/eoEKFCsyHdu7cKYm6ER8fLxGxi6Mx8XoqiawSsYu5d+8e24CTL18+DBw4UGnTFCdzRey9evUCpRTlypVDQECA5HpERAQ2bdoEDQ0NaGhoYM+ePZmR/VyFu7s7+2ZLliyJjh074sCBA1i2bBnGjBnD2m5zc3P8888/KtuR69evs3Q1a9bE/v37lY6OjI2NxdatW6GhoQELCwu2cMX5hYeHB4oXL876QA0aNMA///yDUaNGoV27dpKJwZEjRyr1aQHg6dOnrM2xtrbGokWLEB0dLUkTHR2Nbdu2QUNDAyYmJrh8+XI2vSGHkzWo6k+lp+/z/v17NibcuHFjZmQtV/Lp0yf07dsXOjo66N69e7Jif2Hx4tSpU6yPunnz5uzKap7Bz8+PnXCze/duAKp9QPw7cYTdVq1aKUWo5qQN7he/B2mp++/fvw8dHR1QStGjR49Ui9i/ffuGQ4cOoV+/fmzOUUNDA7Nnz05XPnIzrq6uKFKkCEaOHJnqiKHispPL5bC3t2di3QULFiR7L18wV01qv8fDhw+zeb78+fPj9OnTqXrGzZs3YW5uDk1NTSxfvjzD+eUow/0iZxDK7u7du7Cyskr3BteQkBD06NGDbTpISEjg7UQyHD9+HPr6+rCwsEhxrUHYkLN8+XLo6OhAT08vzad+cFLGycmJ1Tni/k5yPHv2DM2aNWPBlcaOHasykBUndXC/yDnEAtkpU6awudmdO3emK1CYGEXx+rFjxxAVFYUPHz5w4XQGUCXUpZTiwoULKtMritcbNGiAJ0+eIDExET4+Plw4nQHU2eLs2bNpfhYXsWectPqGOjw8PNC8eXNWf1FK4ebmltnZzTVwATuHw+FwOHkIDw8PlCxZknWShCOYhcjQ+fPnR/Xq1eHq6qp076VLl1CsWDG2aGhjY4NXr16xI+PFIq3Q0FBs376dpV23bl22veOfgoeHB0qXLs1sIUxQCZGIra2t0bVrVybeFR9/J5CYmMiiAzRp0oQtcokndkNCQjBmzBjIZDK0atUq1QtheQlXV1dJROKLFy9mWkQ9Nzc31KxZk0UV79KlC548eZIpz86tiO1ha2uL8+fPqxQeqiIxMRGfPn1CkSJFWN3Wr18/trFDXE/J5XLs3buX+dz48eOz4nX+aLJKxB4XF4dr166xiDTGxsaYOHEiH7gnQ1ptIbQD4vYgNjYW3bt3B6WUnZCiOHn88eNHdOvWDZqamujXr1+GJ5dzI15eXmjatKkkeoK4L1W0aFEMHz4c3759k9wn2GL27NnQ1taGtrY2Fi5cyMTriouyfn5+qFevHt+Algzv379H06ZNkT9/flBKWb9TqNfLlCmD8ePHM1soChK2b9/OFhZHjBjBxOuK6QICAtC2bVtQSrFs2bLseTkO5zfn+fPnTMzIx3rJc+bMGdaGL1++HDExMeyaYnvt7e2NypUrg9Kk07WcnZ1zJM+5mYCAAGaPVatWJZs2PDwcHTp0YNH4qlevjosXL2ZTTnM33C/+HMSRdbW0tFItYlfs2168eBGjR49m/bXJkyerTZtXCQkJYQEVgLQLDMLCwjB9+nRoamqidu3aKud2ORknISEB/fr1Y+NAYTMUkPKGqPnz57P7jh49mi35zW1wv/h9EdoLQRCa3vmklStXsrWSrAimkZu4f/8+ypYtC21tbaxbt05pQ74qhg0bxvq23B8yn8uXL7PAFq9fvwagPMckbhccHR3RpUsXtjm8Xr167FQcvqkmfXC/yFmyQsR+7do1dlp59erVYW9vz3QJABfrZhSxXYRNZAcOHFCyV3h4OPbs2cPm0hs3boxHjx5J1ly5LTKGuMx79+4NSpNO501NPaaIl5eXZHOHMI/CbZF6UusbiiieMDRr1ix2SpGpqSmOHDnC23g1cAE7h8PhcDh5DB8fHwwfPpwdmy1Evu3atSu2bNnCjqoVd8Bu3LiBEiVKsEG8oaEhtm/fjjt37rABCCDt+MbExGDFihXQ0NCAjY0Nnj17ln0v+Yfg5+eHCRMmoEaNGjAwMIBMJkOpUqUwbNgwXLx4EWFhYQAgibjw8+dPxMfHIyoqCkDSIqCOjg4mTZqk9u/s3LmT2fru3btZ+k5/Kq6urmwBvWrVqrC3t0dERESGnunp6YkaNWqAUgpDQ0N07txZIl7ni7TqEdujWrVqabbHhg0b0KtXL+jq6oJSigkTJrBr4rpNLpdj9+7doJSiUKFCcHR0zNT3yA2IhdMtW7bM8OJRXFwcbty4gYoVK7LJkwkTJnDxeipIjy0+f/6MgIAAfPr0CREREdi1axcopVi/fr3ae2bPns1EwHzSXjWBgYHYsGEDmjdvzuoZSimaNWuGdevWsU03ihNRcXFxaNCgAYuCL0y2q2sPBg8eDEopWrduDYBPMKoiKCgIO3bsQNu2bVGoUCFoamrCwsICffr0wZkzZ1gZK9oiISGBiRKLFy+OL1++qEwnMGnSJFBKUaNGDcTHx3NbcPIswrd/6tQptmglRBDlfVsp4vJYvXo1ayu2bt0q2Swr1Ds+Pj4YNmwYW5ht1qxZpm2q5UgZOXIkNDU1MXz4cPz48YPZSlh4jYyMxJMnT9CsWTMmoKpSpQpOnjzJnsG/9/TB/eLPRJWIvXPnzqz/lBziPtOXL1/YKUOUUqxcuTLL8vynI5RbYmIi/vvvP0RFRaVqkfvixYvMrw4dOpTV2cyTHDt2jJXxjBkz2O9Tss+FCxfYfV27ds3qbOZKhDLmfvF7k94+krD+sW/fPhgaGkJPTw9OTk6ZmbVcR1hYGCZMmABKKSpXrpziKUEvX75kaxVWVlb4+PEj79NmMmfOnGFrqKrsIS7vp0+fomPHjixAho2NDYKDgwHw+b+MwP0i58lMEfutW7fY/ebm5pI1DXEfQCycNjAwkOgWOCkjtsvdu3eZTkTg58+fOHLkCLOFhYUFjh8/zq6rs4Wuri7evXuX9S+QixDb4tSpU/D19U33s3x9fZktjI2NWb+KtzGpJyXfSI5Pnz5h2bJlLGBfmTJlcOjQoVQH7MuLcAE7h8PhcDh5kJiYGHz9+hV37tzBs2fPlAZz4s7r8+fPUbNmTchkMrbIJP4xNjbGoEGDmNhaPLh3dXVFgwYNoKGhgf379/OBvwri4uIQHR2Nt2/fws3NTSlCurhzfP36dYwYMQI1atSAjY0NunfvjjFjxsDS0hKNGzdmE1wCwqDx5s2bbJFx7969Wf9Sfyhubm4wNzcHpRSlS5fGjRs30r0LlovXM47YHlZWVrh7926K5Sa+7uvriy1btjBx1eDBg9k1cR0nl8tx/vx5yYQLR4qbmxsKFSrEolwEBQWl6zmCeF2IvM7F62kntbaIiorCrl27UKpUKVhYWKBAgQKoVasW2rdvDzMzM/Tv35+dTAAk+Y7Q3qxfvx4ymQyampp49OhRtrzXn8yzZ8/w+PFjPHjwAHFxcazdUNV+REZGsqjq7du3V5tOEND99ddfLMolJ2U+fPgALy8vdnqNgKq2IyEhAR07dgSlFLVr10ZMTIzKdIJfLFy4EJRSNGrUKGsyz+HkAOJvPjX/FvDw8EDRokVBKYWlpSVcXFyyNqN/MOI6XtggRinFuHHjcOLECcTFxcHf3x93795Fo0aNUKBAARaRR+gf8XFD5nPw4EFmi82bN+PDhw/smre3NxYsWIAqVaqwBdfGjRvj/PnzLA23ScbgfvFnIhaxC/ZIz7gwNjYWy5Ytg4aGBqpWrcrFiSkwatQoFCpUCC9fvkxV+u/fv6N48eKglGLs2LEAuL9kFkI52tnZQSaToUyZMnjw4IHkmjoePnzINqOXKlUKhw8fTtV9HNVwv8h9iPsGgvCUUornz5/nYK7+DD5+/Ig6deqA0qQTet+9e8fmvcVBkT58+MA25lNKMXv27JzKcq4mMDAQNjY20NXVxZ49e1SeqgwkRZSuV68eW7eoWLEiC1TChYUZh/tFzqNOxL5r1640idjd3d3RunVrtp5ka2vL2v+EhARJe+7l5YUWLVqwzYJCEDhO6kip7vH29kbPnj3Z6WiVKlVia96KtvD29mYBASZMmMBOoOWkjoy2A2JbXLlyBaVLl2ZjeB7ELe2kxx6fP3/G8uXL2cnB5cqVw4EDByRrshxluICdw+FwOBwOQ1FEFRQUhFGjRsHAwIDtXLa0tMSsWbMwd+5c/PXXXyxCQPv27fHt2zcAUtH1qlWrUKVKlRSPF+ZIURzwHTt2DBoaGtDU1JRsIBD+39LSEleuXJFEaQKAr1+/YuTIkSw9F+kmj5ubG3R0dGBlZYUHDx6ka0GDi9czDzc3N8hkMtSoUQNeXl6pukdcvvHx8Th69CibDJ47d26K9/Oju1Tj5uYGSimaN2+OmJiYNN/PxeuZhzpbCN9+ZGQk5syZI2kr9PT0QCmFjo4OKKWwtraGg4MDazOE7/79+/csOr6FhQU/rjkZ0luXjxkzBpRS1KlTh/WbVOHt7Q0LCwtQSmFnZ5febOYJ1Nkipfp8+vTpbKHw8+fPatMFBASgWrVqoJSif//+Gcorh5PTpKfuksvliI2NxYMHD7B161ZWNxkbG2PEiBFK0ZAV/0Ze7/uKFzr+/vtvSftctmxZFChQADKZjP0uf/787NSszFy0Ang/V4zYFnXr1kXv3r3Ro0cPGBsbs36ToaEh/vrrL9y7d4/dl9HvWbBpXhem5KRfcNKPUIe8efMG3t7eANLnEw8ePGBHaB85ciRT85ibCAgIQNu2bUEpxaBBg5I9fUCww48fP9gms969e0uucTJObGwsbGxsQClF27ZtU3XPs2fPULVqVWhoaEBDQwNDhw7N8ImPeRnuF38Oiptihf9PTEyURNMXc/z4cRQrVgwaGhqwtbVNdpzO+YWXlxeKFSsGSinq1auHI0eOSAIdXb58mc1FCfXX+/fvAXBfyGzCw8PRp08fUErRoEEDODk5sSAVQJKgbefOndDV1WXBwmxsbODj4wOA2yMz4X6R86gTsW/atClVZSy0FZGRkbh69Spr/3V0dNRuIvT29sbs2bNx8eLFTHwTjmCLqKgo3L59G+3bt2e2ePjwIQDVtli/fn2KpyBwMg/x+mBQUBDGjx+P+vXrg9KkkwXFgXw4WQcXr6cfLmDncDgcDoejhDCwvHHjBhMoFC5cGLNmzYKzs7Mk7fPnz9lxzn369FF6BgA2mcwXzNPHpUuX2OKtjo4O6tevjyNHjuDAgQOYN28eSpUqBUopKlSogPPnz7NjnD9//ozt27ez3bX58+eHn59fDr/N74+fnx9u3rwpicaQWrh4PfP5+PEj3N3dWdmltR4JDw/H7NmzoampiSpVqvAj6zJAQEAAIiMj03wfF69nPsnZYvPmzWxCuEqVKpg0aRLc3d1x9+5d7N27F2XLlmVthr29Pfz9/QEAzs7O6NWrF2vTa9euzU5X4WQeW7duZcJPQRAnbPwT+k4BAQGYMmUKDA0NYWRkhLNnzwLg/ajM5sCBA6CUwsjICDdv3gQApU0dP378wKZNm1C4cGFQStlRtdwWnD8R4ft++/YtDhw4gK1bt2LXrl3YuHEj5s+fjyVLlmDp0qWws7PD2LFjMXnyZPTr1w9NmjRB3bp1oaOjw4S9pqamaNu2bbL9qrdv37JNzHldcCp+/x07dqBp06ZKJ5sVLFgQlStXZtGIFaNXpXUcIU5/69YtJorgtvj1/gsXLoSJiYmSLfT19VGsWDEcP35cEp0dSBpjp3dMFxAQgB49euDVq1dKecmL5LRfcNKHuAwz0h8SxoYDBw5Uei4niZ8/f2LDhg0wMjKCtbU1Lly4kGI5CWMNmUzG+q2czCM+Ph61a9eWBEhQjCIqttHTp09Rt25d6Orqsg1TwrHzfDyRPrhf/J5kpA6Pjo5GREQEVq5cicqVKzNR74wZM1SmF/sObzt+4e7uDmtrazbHYWlpiebNm6N27dowNTVlfavGjRvj9OnTWVIHcXsk4e3tDSsrK1CadHrm+PHjsX//fowZM4ZFhxaCjbRo0SLZjTjphdsiid/BL/I64jGfnZ0dKKWYM2dOqu8Xf8t+fn7o0aMHKKUoXrw43rx5o/IeVQF/OBlHXJb+/v7MFlZWVkq6EQHxBh5O1qBYbz179gwjR45k423hx9bWFv369WNrgZysgYvXMwYXsHM4HA6Hw1HJz58/2aS8ubk5li9fzqJeCAMVYfB55coVFj3p6NGj7BkpHT/PSZ7ExEQEBQWhZcuW0NDQgI6ODkaNGqV03Ja/vz+LAGRpaYmGDRvCzs4ONWvWZEekmpqaYvfu3QD4IklaSMt3y8XrWY/423V0dERgYGCq7rt27RobqO/ZsyerssdRARevZy+Ojo6sPa5cuTIOHjyotKAeEBDA2gxzc3OUL18erVu3RoECBVgkBjMzM5VCIU7qSEmQ1rFjR1b+ihO8fn5++Pvvv2FpaQlKk46YFzamcdJOSrbo3Lkzs4WiEDcoKAi7du1C+fLlmYiOnyjE+dO5e/cutLS0lESiafkpV64cZs6cmWxb7uzsjN69e0NfXx+vX78GwMW64vf39/fHhQsXMHbsWAwdOhSTJ0/G+fPnERQUBEDa5125ciW0tLRw5MiRVLfJ4nQ3btxAgwYNYGBgwBZ4uS1+vf/ly5exfPly1K5dG61bt8bQoUNx+PBhfPr0Sem+o0ePQlNTE4cPH06XcHru3LlsY/nbt2+V8pIXyU6/EHPu3DksXboUbm5uTODA+7xZj2DD8PBwtqm2a9euAHj5q+PLly9o164dKKWoX7++Un9V7EMvXrxgfVtKKf7777/szm6eQCjjnj17SuZnFb/he/fuwdbWlo2xK1SowMZ1eb3uzyjcL34vxO2zl5cXHB0d8erVKzx+/Bi3b9/GjRs3cP78eRw/fhzHjx/H3r17sXr1aixfvhxTpkxBo0aNUL16dVBKmXh9wIABKp8vzG+JBXG8/fiFt7c3OnXqxNaDhPIU/tu9e3dcuHBB4iMJCQkZFlWJ5+e5PZLw8PBAhQoVWN2jaIsGDRpg7ty5iIqKYvckJiZm6IQOBwcHrFmzRvI8Ts75BecX4rK9cuWKpF5P61r1q1evUKtWLVBKMXr0aMTExPBvPYd49uwZqlSpAplMhsmTJyM+Pp7bIhtR9J1jx45h8uTJ0NTUlARnKFKkCObPn483b96wfhTXiGQNXLyecbiAncPhcDgcjkqeP3+OwoULQyaToW/fviximyKJiYn48OEDW3xatGhRNuc0d/P+/XuYmZmxo+6io6MB/JqoFQb/fn5+LBJ78eLFWXREQby+devWVIt9OVKEwVxCQoLaHeNcvJ697Nq1C5RS3L59O9l04nK3tbWVRHjjg/SMI9Q/crlc5YkFXLye/fz3339MmDh+/HilyN7Cf93c3FCiRAlQSlGjRg0mes+fPz/Kli0LR0dHANxP0oM4creDgwMA5Y1/AQEBLOpSgQIFMH36dGzYsAGbNm2CjY0NiwabL18+Hn09AwhlFhERoXScqWCLoKAgNG/enAnUly5diiNHjuDEiRPo0KEDO27YwMAAGzdulDyXw/kTmTp1Kjs6VldXF5aWlrC2tkbp0qVRtmxZVKtWDVWrVkX16tXRrFkztGzZEs2bN0f//v0xf/587NixA0FBQUobasU4OTnhr7/+YgvCpqamXKz7f1IzJlBM079/f9YmHDt2LMVniK9fu3YNnTp1Yqd5ceH0LxTrclXlIaQRyrRfv37sFJXU2EIRDw8Pduy5iYkJt8X/yQ6/EPPy5Ut06tSJ9YPXrl2LgIAAANwWWYm4bDdu3Mjmq5YtW5aDufoz8PHxYRsqmzRpggcPHigtgj948AAjRoxg5TpkyJCcyWwuRqhnNm7cCC0tLVSqVAmOjo5K9U9sbCxOnDghmZe1tbVlc7K8nskcuF/8fqxduxYNGjSQjDWEsk/tBloTExOMHTtW6WQ04Jd4PTo6GiVLlpScBMzn3X/x9etXXL16FUOHDkXDhg1hZWWFXr16YcOGDYiKipKUlVwux4ABAzBo0KB0b9Z3dXVFoUKF0L9/f/Y7bo8kPnz4gPnz56NJkyawtLSEmZkZWrdujWXLlsHLy4t904mJiUhISMC8efMwYcIEpROgUkNwcDDq1q0LSinGjRvHfs9tkUR2+4Wbmxtu3LiR7Ea3vIaq/o/4d+7u7khISEhxzjUmJgZjxowBpRRly5ZFSEhIin87MTEx3ac75zViY2Ph4eEBIOWyiomJwcCBA9lGzYxswOGkDsV6JDQ0FKdOnULfvn2hoaHB5v6MjIxgZWWFvXv34vnz55J7FOe5uG9kDly8njlwATuHw+FwOByVbN++nU0e3rp1K9m0ERERLKJAz549symHeYPLly+znbJCBHXFaLpyuRyJiYmYNm0aZDIZxo0bh2vXrmHmzJlYtWoVXFxcciLruYro6Gjs3r0b58+fZwNxYWDHxevZy7dv31iUhb59+7Ljl9WRmJiIwMBAJkLs1asX+z0n40RERGDx4sU4efKkZJKKi9dzhvXr1zOxoCBCV5wgTkhIQHR0NLp37w5KKVasWIEXL15gz549uHPnDpv45ZNW6ScqKgqWlpawsLBggihFvn79ip49e7LNA4o/urq6GDNmDDv9hpM+YmJi0LhxY5QqVUrtIuCXL1/QtWtXtYvoWlpa6NChAxMacjh/OpMnT2bf98yZM/Hp0yeEhYUhNDQUYWFhiI6ORnR0NOLi4pCYmKg09gDU96OcnJwwatQo9nxhgy0X66pG3NYqlqn4/4cOHcrGhMmJdVWJ18WR87kt1KMYcU8dqbWFOry8vNCmTRtui2TIbL9QxN3dHdOmTWORyQoVKoRmzZqxeRNuC/UoinsEhPYCSJqvEq6JxSICO3fuRIkSJaChoYGCBQuyzZqc5PHw8ICFhQUTiPTu3RsnTpyAvb09pkyZwk7QpJSibdu2/MSNLOTTp0+oXLkyKKVo3Lgx/vvvP3h6euLbt2/Yv38//vrrL0nUw6ZNm7LI66r6VOmBz2clwf3i9+HHjx9o2LAhKKWsfTU1NZUI042MjKCnpwdzc3MUKVIEhQsXRpkyZVCrVi20b98eW7ZswbVr19gzxd+5WLwuiHS5UDd1REZGqr3m6+vLAid17949zWJdNzc3VKtWjdsjGYRyCA4ORkhIiFJwJOF6QEAAW1/t1q1bmm2RkJCAffv2MVtMmDBB6W9wfpGVfuHl5YXChQuDUopp06bhzp077Bq3hWqmTJmCunXrsv9XV07COPHOnTtsk9SJEyeSTSugGBCOr3so8/PnTwwYMAAtWrRIMa1QjmfOnIG2tjZkMlmKwcY46UfRJzw8PHDu3DlUrlwZhQoVkqxjtGvXDps2bVJak1I1zxIWFoadO3fC3d0dAO8jq0MoO3EbLi5PLl7PPLiAncPhcDgcjko2bdoEDQ0NVK5cGd+/f0dCQoJSJ1nooAUEBLBIrr17986J7OZarl69yo60+/fff5NNK0xSqbIBH5BnjLVr10JDQwOVKlWCvb09wsPDASQNFLl4PXuJi4vD1q1bUbBgQZQoUQJnz55V+30L5X/nzh02gLezs8vO7OZ6pkyZwiKK2dvbs1Mirl+/jooVK3Lxejazc+dOUEohk8lw//79ZNMuXLgQMpkMc+fOVbrG24yM8eTJExQtWhSmpqbYu3evklBB3Da8ffsWZ86cwcqVK5EvXz5oaGhAU1MTTZo0waNHj7I767mOt2/fonLlytDV1cWWLVvUnqQCAPfu3cOJEyewdu1a5MuXD9ra2qCUwsrKChcuXMjGXHM4WYN4IcLOzo71jXbs2MF+L66fVPVjk+vbKorXx48fj3fv3nGxbgYQtx+DBg1ikZRUiXWTE6/PmzcPoaGhPPp3BlBlC0NDQy5izwHS4hfqCAsLw9WrV1G0aFF2WoSJiQmcnJwA8HG8KpL7PsXXYmNjWSTLHz9+wN3dHU5OTli9ejUGDBjA5rcopRg1alSq/jYfmyTx/v171KxZk0Uy1tTUZP1V4adjx464e/cuC3SRGYjLn9siCU9PT1haWrLTTYyNjdnJpMJP5cqVMWnSJHz79i3Df0+wpfh0VF5PJZFTfsFRxsXFhZ0mV6hQIZw5cwYvXrzAy5cv4ePjA29vb7i6uuLz58/49u0b+298fLzSqY7idkUsXq9Tpw7zOyHKKBfqKqNunKCqfB49esT8p0ePHqkW67q5uaFKlSqglMLMzIzbQw1ptYWwASQtthCQy+XYu3cv62dxW0jJDr9ITEyEvb0924wgk8lQo0YNrF69Wm0+8jqPHj1i7fXx48eTTSuU3bFjx9g9qgTs4v7qzZs3sXDhQtStWxcdO3bE5MmT8f79ewB8/K3IzZs3WbmeOXMm2bSCLdatW8fuEU6iVUVKYwjuF+oRl01AQAA2bdqEGjVqIF++fKzsNTQ0MGjQIMn8LqC63IXnRUREYNu2bShUqBA0NTXZXAj3CyniQIYrV67Eu3fvJNczKl7nviGFC9g5HA6Hw+GoZO3ataCUomjRovj06ZPSdXGnShAq6Ovrw97ePjuzmesJDw9HzZo1QSnF6NGjERUVpZRGEGMJkXerVq2qMh0n/Xh5ecHY2JiV74kTJ/Dq1Ssl8frTp0/ZPXltYJGdfPnyBR07dgSlFPXq1ZNExRWivAl1lKenJ4sCZGZmxiK88YXXzMHDw4NFVapWrRoOHTqEc+fOscjr+fPnx8SJE7l4PZvw9fVFxYoVoaGhgeXLl6sV60ZGRqJbt26glKJr167cHzKZ8PBwFnmvdu3abAIQ+FX3CAu04eHhePToEerXr88W3KtUqYLLly/nSN5zG5GRkZgwYQIopahZsyaLugf8ai8EWyQkJCAoKAjNmzdnE8D58+fHkSNHcir7HE6mI16ImDp1KvvWd+7cmaGooE5OTpKIo2PHjkVMTAyAJGERF+umH7FdBg8ezMr44cOH7PfJidfnzJnDrrm7u3NbZAB1thBH1UstXMSeMVLjF8khlLOfnx/q16/PxvqUUvj7+2dJnnMLe/bswZAhQ9CtWze0a9cOrVu3Rv369VG7dm3Url0b5cuXR8mSJVG2bFkWGdnAwEAiJtXU1MTQoUPZM1V99+/fv8eKFSvY//P5lSQ+fvyIRYsWsTkOoTyLFCmCyZMn4+PHj0pjuy1btqRZBCcQHx+Pa9euYfHixex33BZJeHl5oUOHDuy0GeHH2NgYw4cPh4ODA9vgL2Bvb5/uE7YEgdeYMWPY77gtkshuv5DL5TyiohpcXV1RoEABFvXe09NTcl3diTfqvmWxeF2IqG9mZgY7OzssW7aMC3UziGCDx48fM7Fuz5491Z5eJ+Dq6spOorCwsMC6deuwfv16bo8MkF5bKMJF7Bkno7aIiYmBh4cHOy1KsIX4hALOL3x9fdGzZ09oaWmhf//+qRqLrV69mrX3iqc5iduWbdu2wdDQUNJPE+otQYTK10R+4enpiU6dOkFLSwtDhw5VqQsBpHXJ9OnTWbneu3cv2ef/+PEDL1++xMqVK7Fs2TLMnz8fDx8+RHBwMABuC3XEx8cjKCgIdnZ2aNSokeRbtra2RpcuXeDg4MDmYAH1ZSkWr2/ZsgW2traSNRA+L6WakJAQdjLHxIkT4erqCgAIDAzEsmXLMhx5nfvGL7iAncPhcDgcjkqcnJxgZWUFExMTnDp1StJBEi8Wbty4kUVfL1WqFJ4/f54T2c21xMTEYPLkyUw4/erVK8l1sS2aNGnCRKRcwJ75uLm5oWDBgqA06WhaKysriXidR17PXgShLqUUTZs2xZMnTxARESFJ4+7ujkGDBjGBdeXKldmgj5N5iH2jdOnSKFq0KJv04JHXs5fw8HAm4qlVq5bS5g6Bt2/fwsbGBpRS9OrVi09KZQH+/v5sErBJkya4d+8eO71DwMvLC0uXLmV1ma6uLurUqYNz587lUK5zJ/7+/qhatSprLx49eqTUXnz69AlHjhxhmwYFwcP+/ftzKNccTtYhrvOFk1QyImJ3dHSUiNcnT56sNBYRi3XFiyJ5aRI+I4jt0rlzZ9SrV0/lgsiFCxfYJk9KKZYsWcKuCXbntsgYYlt069YN5cqVg7Ozc7qe5eXlhdatWzMRu/Ac3i9LHan1C0XE3/rFixdZ208pRadOnZT6a5xfbNmyhYlw0vqjq6sLTU1NDBgwAFu3bmXPVPW9+/r6sii7Y8eOZb/n8yxJxMfHIzY2FteuXcPFixdx7949pUhwQlmNGDEi3ZFc4+PjcefOHTam4bZQJjQ0FG5ubti+fTt27NiBixcv4uXLl5I0Qp3zzz//gFKK7t27p0s4ffz4ceZPXJCoTHb6xfXr11G5cmWsXr1aMt/FbZGEm5sbE/k0b94cHh4e6XqO0M5HRUVJxOuTJ09mwngu1M04YrGurq4uKKXo27cvQkNDVaZ3dXVlkdctLCywYcMGfPnyBQC3R0YR20JHRweUJp20HBISkqbncBF7xkmrXwgolu/q1atRunRpFll/4sSJWZbnP5njx4+zDcWrVq1CbGwsuyYEHxG4f/8+ihQpwtbL1W0s2Lx5M+s3de/eHQsWLMDChQvRoEEDUEpRsWLFNG8QyQv8+++/bPPxmjVrJLZISEiQjKUvXbrEyrhFixaS01TENvvx4wfu3LmD6tWro1ixYpIxYpEiRdC8eXO4u7sD4HMhity6dQuTJ09ma0fCT4UKFTBgwAC4ubmxeim5UyXEvxfE68JGNJlMhrp16/LgCikwceJEyby3g4MDVq5cmWbxOveN5OECdg6Hw+FwOCoJDQ1F586dQSlF48aN4ezsLBmsAJCIriil2LRpUw7lNnfj7+8vEeq+ePFCSXg1cOBAUEqho6OD6dOnA+ATUlmBm5sbiySjoaEBXV1dtG/fHo6OjiwNL/fsw8PDA4ULF2aTTiNHjsTNmzdx5swZHDhwAGXLlmVHqZmbm8PFxQUAF+hkBYq+YWBggNGjR8Pb2zuns5bn8PX1RZkyZVibcf/+fXz//h1A0gTVmzdvWLQGIyOjFI+E5KQfT09PNqleunRp9OjRAwcPHsTatWsxf/58WFhYsAl6IyMj9OjRAzdv3szpbOdKPD09WRTQChUqYMiQIbh48SL+/fdf7Ny5E9WrV2e20tfXR+3atVUeQ8vh5BYyS8T+/ft3zJgxg91ftmxZtuFWLpdL+lxi4bSGhgabhOekDrFdFCO6AkBwcDCGDx8uWdASorz+/PlTMkYR24JSmm5hUV5FbIsPHz6ke/yXmJiIgIAAtGzZEpQmRe3lxzanjZT8QhFxnXT8+HHUq1eP+UH//v25eD0FPD092eZwPT091KxZE/369cPo0aMxbNgw/PXXX5g5cybmzJmDefPmYe3atdi2bRsOHjwIR0fHZCPxCvj6+kpOJqKUYvz48ew6n29JvgwU5zoePnwIbW3tNIt1BfF6tWrVuC3SiaItnj9/zsoxPcJpLkhMnuzwCyDp5I6ePXsyv+jatSsOHz6cqnzkJTIqYhfKUVG8Pm3aNBb1Ekiqq7hfZBzBRx4+fAgjIyN06tQJfn5+SulcXFwk4vUtW7ZIIvQq2kMs1uX2SB1iW+jr66NixYpKm3FSA28zMk5q/SI5Hj9+zIJgGRgYoE+fPuk+iSU3Iv4WV65cycZlW7ZsUblx4/Hjx+jUqRP09PRAKcXgwYNVjifOnTvHnrVs2TJ8/fqVXXNyckKlSpVgZGSES5cuZc2L/YGIbbFixQqJ5iMgIEAp/dWrV1G5cmVoaGhAU1MTc+bMUSmgfv78OaZPny458UxLSwuVKlWCtbU1W08sUqQIX7tVwbRp01i5GRsbw8LCAsuWLVPaMJsS6iKvy2QyPHjwABEREZLgClzE/gvx9ygEm6SUokGDBuy7LleuHPbv358m8Tr3DdVwATuHw+FwOBy1eHt7w9LSEpQmRXKdMmUKTpw4gU2bNqFNmzZs9zmlFPPmzcvp7OZqxELdypUrY/DgwTh06BCWL1+Opk2bMjtYWFjg8uXLOZ3dXI2rqytbtC1QoAAWLVrEruWFAcTvhqenJ6pXr858QCaTKUV7Mzc3x+PHjwFwG2UlYt8oXLgw1qxZw8qbT45nLx4eHkysW6ZMGbRs2RJLlixBp06d2IYofX199OrVi4vWspj379+jSZMmbDONqrrKwsICW7du5bbIYt6/f4969eqx/quqCKImJiaYMWOG5FQVDie3klki9o8fP2Ly5MmoVasWKKWwsrLC/fv3AST1uxSF0w0bNgSlFAcOHOD9sjSSUnkFBARg3rx5LHJx8eLFcefOHXav2Bbe3t6oV68eNDU1cfv27azMdq4kvd+uYp84LCwM06dPZ6cZGRsb482bN5mRxTxDam0hTnfixAmJeH3gwIFcvJ5KXFxc2GJqq1at4O/vn67nqBofisXrpqam6NWrFxdeZQBx9NC0iHUVxesFCxbEqFGjuC0ygGCLR48epVs4DXBBYmaQXr8QiI6OxsmTJ9GtWzdJAIfJkyezNNwWSWRUxB4XF4fSpUuz+ZM2bdrAx8eHXRMQ/EKYYxFvtOGkHsE3vLy82IZKMQEBAewUZplMhj59+rCor6rsoWrjEyd1CLZwcXHB3bt30/WMxMREJCQkSNqM0aNHS65zUiYlv1BHfHw8bt26xfpSRkZGGDt2rOSkVE4S4jHarFmz2Phs2LBh2L9/P0JCQuDs7Iz9+/ejQoUKLDq4+BRy4XtOSEhAfHw8O2ll5MiRiIyMZM9PTExEWFgYO4Fr8eLF2fuyvzliW8ycOZPZom/fvti6dSs8PT1x5coVrFq1Cvr6+qyeb9GiBWJiYgBI5xmvXr2K1q1bM5uVLVsWQ4cOxfPnzxEaGoqvX7/i0qVLaNGiBSilqFKlCo+Kr4LRo0fD3NwcO3bsUHvSU3IkJ14XtzHv379ngS64iF2KuAzEInZKKUqWLIlDhw4pBZ1URNzuct9QDxewczgcDofDSRYPDw+UK1dOIrjS0tJiuwEplR5Nzsk6PDw8YGNjI7GFMNmura2NIkWK4MCBAzmdzTyBq6srW7StXr06jh49yhe8c5CPHz9i1qxZTDgl/JQpUwYdOnRgUcD55GzWI/aNatWqcd/IQTw9PVGrVi0WlUQs1jUyMkLv3r2ZwJCTtQQFBeHQoUPo06cPbG1tYWxsjPLly6N79+5YtmxZuo6Q56SPgIAAbNu2DZ06dYKlpSW0tLRgbm6Opk2b4q+//oKrq6vkyFMOJ7cjnoSfOnUqayf+/fffNN0fExODp0+fshO8dHV12eZBxf6Xv78/rly5IomCxck4gi1iY2Px6tUrdO3aldlC2JSjaIsPHz7A0dGR13vZgKpIvFu2bEHp0qWho6MjmV/5+++/cyiXuZfkIq8PGjSIj1fSiKurKxMlNmnShIkS5XI5q2fE/07NOFxRvL5ixQr4+/vj4MGDXKybAcRiXaGO6dChgyRirhhF8bq5uTns7e0RHh6Offv2cVtkAFW26NSpExex5wBp9QtVJCYmYu7cuShYsCCzxbBhw7Iqy38sYhF7y5Yt0yxiX7JkCTp06ABdXV3IZDJMmzaNXRNvuJXL5dizZw9r22/dupVp75CXUKxDFP9/3bp16NGjBwsKIK5/1NnDzMwMz58/z9qM50JSskVq7/348SNGjx7N6qmhQ4dmWh7zCmm1hdCXqlq1KiilyJcvH8aMGcPF68kgnpeaO3euZB3DwsIChoaGkjW/atWqsQ1NisEXQkNDUbJkSVBKcejQIZV/o0WLFtDS0sKxY8ey+M3+PMTlNG/ePGhqarINYmZmZkrBw5o0acLE6+J5pTNnzqBGjRpsrqN+/fq4du0avn37BuCX3RISEvDy5UtUqlQJhoaG2LdvHwDepwWkthA2awiktXzCw8OxatUqFthKS0uLBU4Q+5D4tMYCBQrA2dk5XX8vNyK2x8SJE5kPtGrVCk+fPmXXVJWV+HfcN5KHC9g5HA6Hw+GkiL+/P2bNmoUGDRpAS0sL+fLlg4WFBYYOHYrjx4/ndPbyFP7+/pg2bRo7PlOI0ta3b1+cO3cup7OXpxBPwteoUQP79+9XGkhyso+4uDhERkbi1KlTOHr0KA4cOABPT08mRuARPrMPsW9UrVoVR44cQXR0dE5nK0/y6dMnrFy5Es2aNYORkREKFy6M0qVLY8eOHek6gpaTcaKjoxEcHKzUXvA6Kvv58uULfH192VGogg24LTh5DfEkvJ2dHSilePToUbqe5efnhy5duoBSChsbG7i5ualMl9sn3H8H/Pz82IaC6tWr4/379zmdJQ6AJ0+eYMmSJShYsCBbiBcil02ePBknTpzI6SzmOrh4PWvIaGRdMb6+vswupqamWLp0KT5//gwgyX579uzhYt0MIBbrijeqKfZ5FQVX5ubmOHz4MBvLC4JEbov0o8oWGzdulEQvTg1cxJ5xUusXqhD3ncePH89OIqSU4vz581mW5z8VNzc3mJubg9KkE37TslEASArOsH79ehalctCgQeya2BZyuRz29vZYs2ZNpuWdk4S4XvHx8cHmzZtZP3bw4MHsmqI9zp07hyNHjmRrXvMyQvnHx8cjKioK69evR5s2bVgALOEnvVHdOSnDxevpR1x/7NmzB+3bt5d8t0Kk486dOyMsLAyA6j5PSEgISpQoAQ0NDZw+fRqAdDy4ceNGJpDnm2tUI7bFwYMH0aNHDyVb1KhRA+PGjUNsbCwAqXj90qVLqFKlCqt7WrVqhaCgILV/LyIiAi1btgSlFL169cq6F/sDEX+7GVmv+PDhAzp37szGDg0aNEBgYCAA6cZzIEnE3q5dO2brvBL5OzWomj8X5vJSs9bKfSNluICdw+FwOBxOqoiLi0NcXBxevHiBd+/eISAggA1OAD5Bnp3ExsYiMjIS165dw82bN/H+/Xt8//49p7OVJ3Fzc4OFhQUopWjWrFmKx0RxcgZeP2U/bm5uKFiwICil6N+/P9/ckYMkJCQgMTERb9++hb+/P494m0Ooi9jDxdLZj7o2gduCk5cRT8L7+fkBkPqKXC5P9dG0N2/ehLW1NQwNDbF69WoA3L8yk9jYWKUoY6pITEzEpUuXYGFhARMTE+zYsQMAt0V2oBh1+tu3b3B3d0f//v1RoUIFycJvuXLlYGdnp7RphB/TnDlw8XrWkhkidi8vL3aSmrGxMVatWsWijwkoinXHjRuXWa+QZxB84cmTJ5g7d66SreRyOW7cuIFKlSqBUor8+fOzgCViP1K0xdixY7PvJXIJYlsMHjw43aeixcfHq/UL3tanjpT8Ijl+/PiBkydPMpGikZER5s2bx06A5Ehxc3ODTCZD+fLlU11G4rFIXFwcjh07xkTTM2bMSPF+3pfKXMT2iI+Px9GjR5k95syZk+L9vF7KGhTnt758+YL58+czwZvQRpQoUQKNGzfGzZs3WbRkTubCxesZR1xvh4SE4Pbt21i4cCGmT5+OjRs34tGjR2zTn6o6PjExET9+/EDr1q1BKcXEiRMl44pt27Yhf/78oJTyzU4pIK6zIyMj8eTJE2zfvh0bNmzAv//+i48fP0o2zQg8ePAATZo0YdGl27Ztm+z8lVCHTZ48mY0peSCsrCE4OBhbtmxBgwYN2Hjv3r17AJLsoChib9CgAZo0acJOO+AkIa57hO9W2FDs7u6u9j7uG6mDC9g5HA6Hw+GkClVH//KJp98Hbouc4+3btyhfvjxcXV1zOisczm+Fq6srWrZsyRfwchhV7Tff1MHhcDgcRRQXAMXth7OzMxP1pDTuiIqKQrNmzUApRe3atZNNz8cwaSMqKgrXrl2Dr68vgJTLLzo6mp3c1bhx42zIIUdsk5iYGNy+fRudO3eGtbW1RLjesGFDjBs3DoGBgSmKSITrXIiVNrh4PXtQFLF7enqm+t7ExERs27YNlFLo6urCyMgI06dPZ9fFkfzkcjn27dvHbLhs2bJMfY+8gOAT4nIVkMvl2L59O/T19aGrqwtjY2PMnTuXXRdHCFe0xZYtW7I+87kMwRaRkZHpul88nt+8eTPf3JEBkvMLdURGRuLYsWOoXLkyKKUwMDDAP//8wzaBclTz8eNHvHv3TuUcVWqIiorC4sWLoaWlhbJly+Lx48dZkc08S1rtERERgTlz5kBLSwu2trZwcnLKopxxVKE4Lnjw4AGWLVsGS0tLyZjD1NQUffv2xe3bt5U2CHIyDy5ezzxSUxelNA9y+PBh5gPdu3fHkCFD0K9fP/a7sWPHsjkVjnpS016Lr3369AmjRo2Cnp4eKKVo3bo1u57cXEZwcDDb0Ny1a9dMyj1HjOAz8fHxcHFxYVH1DQ0N8ezZMwCqN0QJp9ZypKgSsRsZGeHUqVMq03PfSD0ahMPhcDgcDicVUEol/yWEEA0N3pX4XeC2yDlsbGyIs7MzqVChAklISMjp7HA4vw0VKlQgV69eJdbW1jmdlTyNqvZb/G8Oh8PhcAghRCaTSf5faCtevnxJunTpQubOnUsISX7cIZfLib6+PmnWrBmRyWTk06dP5MOHDyrTAmDP+v79O3F3dyfh4eEkPDycEEJIYmJiht8pN5GYmEiuXLlCBgwYQBYtWkQISd4W8fHxRE9Pj9SsWZPIZDLy5csX8v379xT/DoBk/5+jGuF7FWyyc+dOMnr0aNKyZUty8eJF4uvrS/Lly0eqVq1K1q9fT06ePEm2bt1KChcuTHR0dNQ+99mzZ6Rz587E2dmZyGQyPt5MBvH3nZCQwGxx4sQJsmnTJvL06VNCCCEDBw4k27ZtI0ZGRql+NvcL9ZQvX548ePCAFChQgNy5c4eMHTuWuLm5pepeSikZN24cuXv3Lpk4cSKRy+Vk3bp1ZPDgwYQQQrS1tYlcLieEJLVRQ4YMIbt37yY2NjZES0sry94ptyL4hLa2ttI1mUxGxo4dS27dukWmTp1K4uPjyfLly8mgQYMIIYRoaWmx+kewxa5du0jLli1JwYIFs+8lcgmCLQwMDAghqa9TBBsIfbSzZ88Sb29voq+vTzQ1NcmOHTvI+PHjsyDHuZfk/EIVUVFR5OLFi2TlypXk7du3RF9fn0ybNo2MGDGClChRIiuz+sdTrFgxUqlSJUIpJYmJiew7dnNzIwEBASner6+vT5o2bUoopeT9+/fkyZMnKd7DxxOpR7CHs7MzCQoKSjG9oaEhadq0KZHL5eTdu3esn8XJHoSxu4ODA5k3bx5p3749WbZsGfn48SPR1dUlenp6ZN68eeTff/8lx44dI82bNyempqasvVHV7vD+bfqQy+Xk4cOHZMqUKcTJyYkYGRmR/v37k/HjxxMbG5uczt4fh+KaRWJiotJ3q24eRLg+aNAgsnnzZkIpJRcvXiSHDx8mx48fJ4QQsnDhQjJ16lRSsmRJQghRO76Oi4tL9npeQHFNSVUdIbTphBDy9OlTcvz4cRIbG0saNmxITpw4QSilJCEhQWm+kZBfZfvlyxfWDyhSpEiWvEteR/AZTU1NUrFiRbJ69WrSrl07EhUVRWbMmEH8/f2VfM/c3JxYWFjkRHZ/e8Rzcxs2bCCzZs0iHTt2JJ07d5ak476RdjRzOgMcDofD4XA4HM6fjqZmUrda1WCDw8nLCL7B4XA4HA7nz+Tdu3fEz8+PREVFkVu3bpGWLVuqTSu0+x4eHiQhIYHExsaq3TRFKSUxMTFkzpw55N69e+TNmzekXLlyxMrKiqxfv56UL19e7WR+XuXLly8kNDSU3L17l9y7d480adJEbVotLS0CgHh5eZGEhAQSGRmZKlECpZQAUFqsTExM5JumFRCXiYaGBgkMDCRnzpwhV65cIVevXmVlZ25uTgoVKkSWLFlCypUrR8qVK8eeIS5rRV69ekVmz55N7t27Rxo0aEAeP35MbG1tuV+oYMuWLcTNzY2MHz+eVKpUiZVPZojXCeF+kRLly5cnDx8+JI0bNyYODg7k8OHDZPny5SlumhXKr3HjxqRy5crE1taWjB8/nvz7779EX1+f7Ny5k2hqarKyl8lkZPjw4aRRo0YSP+JkHMEW9erVIzY2NqRSpUpkzJgxxN7enuTLl49s27aNyGQyiS1GjBhB2rZtS4oXL57T2f/jSc5XxHWPTCYjsbGx5MyZM+TWrVvk4MGDRFNTk8jlcmJsbEy0tbVJo0aNsivbeQ6xeN3Z2Zno6+uTqVOnkuHDh3PxehoR2s4LFy6QcePGkb1796ZKmNOoUSNSs2ZN8uTJE3Lp0iViZ2fH6iR1fwcAiYyMJHp6emysklz/Ky9z5MgRMmTIEHL9+nVSuHBhtemE8mvVqhWpUqUKcXJyInfu3CGjRo1KVd8IgGQzMyd5hPIW/vvlyxfi7+9PVq1aRV6+fEk+fvzI0pYvX5706tWLdO7cmdSoUYP9Xhg/KPZl7927R9zc3MiYMWOU+rucX+UGgMTHxyttdspM8Tr3C9WIyyOlb1MQU2toaJAJEyYQKysr8u7dO/LixQtSsWJF0qRJE9KiRQtCCJH0aQXc3d3Jly9fyIULF8jnz5/JrFmzSLVq1bLmxf5A1JW/hoYG+fLlC5k+fTqJiIgglSpVIqtWrSImJiYEgMo2OjExkchkMhITE0MmTpxIAgICiIWFBRk5cmRWv0auJjQ0lBgbG6c4X2RpaUn69u1LHjx4QDw8PIizszMpUaIEbwPSgCBil8lkZMWKFezf4vk67htph6sJOBwOh8PhcDicDMIHdRwOh8PhcDic3Ei1atVIkyZNyP3798m5c+dIlSpVVEZbFU/WBwYGEkKSRNTqIlq+ffuWzJ07l1y6dIlN2n/69Il4eHgQR0dHcvfuXVKhQgW+gPJ/NDQ0SO3atUndunXJs2fPyLlz54itrS0xNTVVSiss2vr5+ZGQkBBCCCEmJiZKEYsVBSZ3794lt2/fJg8fPiSampokX758pG3btkygyIXTUoSye/36NXnz5g1ZvHgxCQ0NJREREURDQ4MkJiaSPn36kG7dupGWLVtKbCV818mJ1+3s7MjTp0+JtrY2iYqKIo0bNyYPHjwgNjY23BYiHj58SCZNmkQISapzJkyYQMqUKUNOnTqVLvE694v0Ua5cOeLg4EAWL17MBIUpIS5nExMT0r9/f/Lz509iZ2dH9u3bR6pUqULGjh2rdBKkIF7nGwgyD3E5GhkZkT59+pCIiAgyZcoUcvDgQVK9enUyYsQIJVsI4nXeVmc+iu2El5cX8fT0JEuXLiWenp4kNDSUEJIknmvYsCHp27cvad26NSldunROZjvXok68ziOvp5/IyEhy8OBBEhAQQDZt2kSqV69OzM3N1aaXy+WEUkqio6MJIUnRcYVNTmIE33FzcyN37twh586dI8HBwaRs2bKkUaNGZOLEiVyoq4IfP36Q7du3E0II2bt3L6lWrRoxMzNTmVYQiX79+pXVRT9//mTXFFFsr1X1gbk9VCMul+/fv5Nnz56RNWvWEB8fH8lJZ61btybVq1cnM2bMICYmJkplKfRVxc97+vQp2bRpEzl37hx59eoV2b17N/cNBWQyGfn58yfZsGEDKV26NGnbti0xNDQkhGRcvM79ImsQxuEaGhqkQ4cOpEOHDpLrQpnGx8eTkJAQ8ubNG3Lnzh3y7t078ujRIxIbG8uiH7u6upL79+8TY2Njbgc1CGV98+ZNEhwcTHR1dUm3bt2Ira0tIUR1myBs1IiLiyMLFiwgz58/JzKZjDRs2FCymU3dWI/7hWo+fPhAbt68STp06EAKFy6c7FhZU1OTtG/fnhQsWJD4+vqSI0eOkE6dOqktV24L1Shu8BaL0rPSN3IzXMDO4XA4HA6Hw+FwOBwOh8PhcDgcJapWrUoGDhxIHjx4QLZv305Kly5Nxo4dS3R0dAghv442FSbpFy5cSO7cuUMIIWTIkCGSI2eFCfxv376R2bNnk6tXr5J8+fKRPXv2kIIFC5KwsDCyadMmcvfuXTJhwgRy8uRJUqBAgWx+49+XWrVqkaFDhzKxgZWVFRk9ejSzRXx8PNHS0mILS2vXriVv3rwhhBAybNgwiXBXLLq9dOkSuX79Otm2bZvS37x27RopU6YMOXbsGKlQoQIXjIr4+fMnmTlzJjl//jz58eMHCQ8PJ5RSoq2tTSZMmEBq165NevfuzdKLyy65RT5F8XqbNm1IeHg4uXPnDmnUqBEXsSvQsGFDMnbsWLJjxw6yZcsWoqGhQYoVK0bOnDmTZvE694uMUalSJXLs2DFWFoKoUDhxQ09PL9n7ZTIZadWqFWncuDG5ceMGefToERk7dqza9OIyz+uL56kFAImKimLiK3XIZDLSsmVLUqNGDfLo0SPy9OlTMmLECLXpedlnLuLv2d/fn9y6dYusX7+eBAcHk2/fvrF0/fr1IzVr1iRTpkxRulexXuI+kn5UidenTZvGI69nED09PdK5c2fy5MkT8vbtW3Lnzh3Ss2dPlX0bAERTU5O4uroSDw8PQghhYwzF75pSSp48eUImTpxIXF1dSWxsLCGEEGdnZ3L69Gni4+NDNmzYwP1BAQMDAzJ48GDi4+NDnj59Sh48eEC6dOmiVrCmoaFBvL292cblQoUKEUKU7SGkBUDc3NzIo0ePiKenJ/n+/Ttp3LgxKVeuHKlTpw4XTiugWIdv2LCBPHjwgJw7d479ztjYmFStWpX069eP9OvXj/VzExMT1QrjhN8/efKEbNiwgT1v7969REdHh2zZsoXbQoH58+eTNWvWEFtbWxIXF0e6detG9PT0yIMHD8jUqVPTJV7nfpG1UEqVxsrfv38ncrmc3Lt3j7x7947cvXuXvHnzhoSHhxNCktqk4sWLs5OhOnXqRAhJ2mTLUY9QT927d4/ExMQQQ0NDMnDgQLVjDfEGgr1795JLly6RmJgYoq2tTf766y/WlgjP/vr1K3FxcSF+fn6kYsWKpFixYsTCwoLPhSgQExNDDh06RBYsWECmTJlC1q1bl+z8REJCAilQoAApXbo08fX1JWFhYUQul6s9TZvbQj3i+llxszchWeMb6tqFXDEvBQ6Hw+FwOBwOh8PhcDgcDofD4XBEJCYmsn8vWbIElFJQSrF27Vp4e3srpV+0aBFLU6pUKZw9e1blc0eOHAlKKczNzfH69WvJtRs3bqBgwYKwsrKCn59fZr7OH43YFosXL2blvGrVKri5uUnS/vjxA3Z2dixNw4YN8fTpU3ZdLpezfy9duhQVK1ZkaYsXL46aNWvCzs4Obdu2RYUKFUApRZEiRdjfEeclrzNkyBBWdra2thg1ahRevHghSSMu75RwdHREw4YNIZPJoKenh0GDBuH79+8IDg5G69atQSmFiYkJ3r59m+Zn50bE7z958mRmi6JFi7J/Dx48GD9+/EjTs7hfZA5Cmdy4cQOLFy8GACQkJKR43/Lly0EphZaWFl69epWhv82RcuDAAWzcuBFA6mwxe/ZsUEphYGAADw+PrM5enkf4bmNiYhAaGopp06ahcePGrC4S6rdu3brh7NmzEhuK6zDx9+/k5KTy95wkUvKDyMhIHDt2DFWqVGG+MH/+fN5HzSRCQkLQvXt3UEpRp04dyfcqIHy3QUFBGDlyJLS0tKCpqYmVK1cCULbhs2fPULJkSVBKUbt2bUyePBm7d+/GpEmToKGhwcYyHGWCg4PRqVMnUEpRt25d1t8EftlBKG9fX180b94clFKYmpri5MmTkusC8fHx+PTpE3r27Ily5cpJ6jNKKaysrLBo0SKlv8MBAgICMHXqVLRr105SZiVKlEDdunVx+/Zt+Pv7S+5RV37i3z9+/Bi9evViz+vevTvzjQkTJqT4rLyGh4cHTE1NQSlFtWrVcPjwYVy+fBnVqlUDpRT58uXDmDFjJP6SEtwvMhdVbXlUVBRCQkJw6NAhLFmyBLVq1YKlpaWknGvWrInBgwdj//79cHJywtevX1U+l5d/yrRp04bVJwAQFxenlEYoz/j4eBw8eBA1a9Zktti/f78k7bdv33D+/HmUKlUKenp6oJSiYMGCqFatGlxcXCTP4ySNHebOnQtKKWrUqIHnz5+neM/Hjx9RpkwZUErRunVrteXJbZExMtM3VJXz169flea7/mR7cAE7h8PhcDgcDofD4XA4HA6Hw+FwlBBPfM+YMYNNojdv3hxz5szBf//9h6VLl6JHjx7smq6uLhYuXKjyec7OzihYsCC0tLRw8+ZN9jeERUFnZ2cYGRmBUsquc5IQ22LmzJmsvGvVqoWJEydi69atGDNmDJo1aybZSLBz5052X3x8PPv3+PHjJQu4AwYMwJUrVxAVFQUgaRHsxYsXaNGiBSilaNasGb58+ZJ9L/wbo7i5Y+zYsQgJCUF0dLTS9dQiiNc1NTWhp6eHgQMHskX0xMREeHl5scUvLmL/hfj9J02aJPmmO3XqxL7n5Gwifgb3i8zF0dERlFIYGhri06dPyaYVbLRr1y5QSqGnp4cHDx6oTCvUh4GBgXjy5AlWrVqFo0ePwsHBQel5nCSuX7/ONo8FBAQkm1You6VLlzL7JSfMSo1gjqMaRYGBk5MT7OzsmDBO+KlUqRK6desGFxcXJYGVGHGZX7hwAVWrVsXIkSNVXs/riOv+x48fIyIiAsCvMlIlXv/nn39SLV7nfpE6/Pz8YGtrC0opmjZtihcvXrA2V/CPz58/Y9GiRShRogSrx3x8fJSe9fnzZ9ZX6tixI16+fMnKOyoqCv/88w80NTXRo0eP7HvBPwxfX1+2ia9p06Z4+vQpIiMjJWl8fHwwfPhwmJmZgVKK8uXL4/Pnz0rPCggIwN69e2FjYwNKKRNJV6xYETVr1kTRokUhk8lAKcWUKVOy6xX/GPz8/FCkSBFQSqGjo4N8+fJh6NChuHXrlpJYLbl6RVG83rt3b9a2LF68GHFxcdi7dy8XsSeDm5sbChYsCEopypQpw+qi9IjXuV9kDdHR0QgKCsLRo0exePFiVK5cmfmPUMY1a9ZEz549YW9vjxcvXuDnz5+SZyhu1OGkjFwuR0JCAurWrQtKqdr2Vehz/fz5Ezt37kTt2rVZPbR06VJJ2uDgYKxevRoFChQApRRly5aFpaUlrKysQClF4cKF+cZaFdy7d4/1p/7++2+EhYWpTCfYQggeQilF3759Vdb33BbpJ7N9Q5jLjYuLQ1hYGJYtW4bevXvDzMwMVlZWaNq0KRYsWABfX1/Jc/80uICdw+FwOBwOh8PhcDgcDofD4XA4KhFPfC9atAgmJibQ1NRki+ligZWFhQXmzZvH0isu/t24cYNFjvv48SOApIVC4W84ODigQIECKFeuHAIDA7Ph7f4sxLZYvHgxzM3N2QK3lpaWxBY1atTA1q1bWXrxAu2wYcPYYq6urq7EZsCvxZHExERcvXoVhQsXRrFixSSR3PM6qhaE0ivycHR0ROXKlaGpqQktLS1069aNXRNHaBKL2AsWLIg3b96k6+/lNsS2mDhxIvOB0aNHw93dPdX3cr/IfO7evQtra2vo6upi+fLlTJSoCsEWGzduZG3MpUuXlNIJ7crLly/RuHFjtvBOKYWxsTFmzJjB0nLh1S+uX7+OEiVKwNDQEOvXr0dMTIzatMK3Pn36dGhpacHAwEBtJD9xO5+YmAg3Nzf4+vrCy8sLsbGxkmucXyj2j86ePYtZs2ZBV1eXCa10dXVRuHBhzJ49Gy9fvmTlmRph9IULF9C2bVvmG+PHj1eZjgO0bNkSlSpVgr29PcLDwwEAEREROHr0aLojr3O/SBuenp4oXLgwKKWoUqUKpk+fjufPn+P58+e4ffs22rVrx05XyZcvHy5evAhAOTruvXv3YGpqihIlSuDWrVvsuvDf/fv3s/HK9+/fs/9F/xA8PDyYPSpVqoQxY8bAwcEBly5dwtGjR2FjYwNjY2O2qVI4LUXcp/L29sbUqVNRvHhxlq5NmzY4fvw487O3b99i48aNrM7bsGFDTrzub83bt29RqFAhzJs3j333AmkV2T558gQ9e/Zk7cLChQuZ78THx6sVsXMxbxJubm5MxKmhoQE9PT2MGDEiTeJN7heZy9OnT3Hy5EksWLAAderUkZzCRSlF/fr10aNHDxw/fhwODg5K37JQZ/G2OOOsWLEClCadfOLv78/KVDzXFxMTg4ULF6Jy5crMRnPmzGFCayGdvb09O/VgxIgR+PHjBwIDA/Hy5Us0adIElFIMGzYMMTEx3HYKbNmyhZXtli1bWIAFIKl8hfIKCQlhm2gKFy6Me/fuAVDexMFtkXEywzeEsXloaCjWrFmDpk2bglLK5oLFP+XKlfujI+NzATuHw+FwOBwOh8PhcDgcDofD4XDUIhYknDp1CqNHj2ZiW2GifMiQITh06JDKewSePn0KPT09WFpa4t27d5Jr8fHxTJzbrl07tRGD8jricj1//jymTJkCAwMD6OvrQ0dHBwYGBpg1axZu3LjB0onF62PGjGGLHcWKFcPmzZvZNVULHJ8+fUKxYsVYlD7OL8SLdBlZsHNzc0Pbtm1hYWEBSinq1q3LhNfiEwqAJBF7hw4d2AaSsLAwvlgIqV/Y2dmxesnOzk6prhEQf+/cL7KGiIgITJkyBZRS2Nra4uHDhyrTCd/wp0+fUK5cORbhLSgoSGW6J0+ewNDQEJRSlCxZEjVr1kSdOnXYIu7s2bOz9sX+QMLCwtgJA1WqVFG78UL43n18fNjmgKpVqyYreI+MjMTff/+NLl26QFdXF/nz54e+vj66d++O7du3s3S8rpISGhqKq1evYsiQIdDR0WF9KkNDQxQvXhw7duzA48ePJfeoEyIoiteF/hSllG0I4VF1lQkICGBC3CpVquDkyZMIDAzEqVOnmIgkreJ1Ae4XacPT05NFDqWUQltbGzo6OhJxjpGREQ4fPizZ3Af8KsNZs2aBUopWrVqxa2Kf2bNnDyhNOr1ILOriKOPp6Sk5CUKwg9geJiYmuHPnDgCpMM7DwwPDhw+Hubk5E8etX7+eCX3F4q2oqCjMnTsXmpqaaNOmDd9YoALFzX/pEaTdvXsXXbt2VYrqKj6dSy6XqxWxc5JwdXVlYs5ChQph5cqVShtl1MH9IvNZs2aNRLhZuXJl9O/fH0ePHsWjR48AQCnKOpDU/wJ+ff9/aqTi34krV64gf/78oJRi8+bNklMi4uLi8PnzZ3Tp0oVtAhHG0N++fZM858OHD2yMPW7cOKU+0rZt20ApRcOGDXn/SYS4/pk/f76kjF+8eMGuhYWFwdHRkfW3DA0NMWDAAJUnpXFbZA4Z9Q2hfgoMDETnzp3ZBkNKKapXr45Ro0Zh06ZNGDNmDKpXrw5KKYoVK6bUtvwpcAE7h8PhcDgcDofD4XA4HA6Hw+FwkkVxUdbT0xP37t3D7du34ezsnGxaATc3N1hbWzOBobe3N75+/QpnZ2e0a9eORZYWxLt/2mR7dqFYvh8/fsS7d+/w7t07JYGVWJgwb948FjXO0tISu3btYtcUF26Fso+Li2PH2HKhbtYRFhaG06dPo0WLFqCUQl9fH/fv3weg7Aeenp5o2rQp9u7dmxNZ/W0Rf8OTJ09mC3sTJkzAhw8fJGnFZcr9Imv5+PEj6tevD0opGjduDFdXV0nUXOHfgYGB+Ouvv2BgYABKKXr27ImIiAil5zk7OzPxT/fu3fHo0SNER0fj8+fP2LJlCzQ0NGBubq42Ynhe5sOHD+wY8yZNmuDdu3eSNkKwhZ+fH1q3bs3qohkzZkg20wj//fLlC/7991/Uq1dPIiDS09OT/D+Piq+MXC5H69atlSLntWjRAuvXr1eqs5ITxiUnXl++fDlOnjypUpDIbZGEm5sbzMzM2EabCRMmsKiUBgYG+Oeff1IlXud+kXH8/f0xfvx4VK1aVVJWZmZmqFChAu7evZvs/YsXLwalFJ06dUJsbKzEb54+fYoyZcqAUooFCxZk8ZvkDj5+/Ijp06ejZs2aEntYWVmhVatWcHV1BSD9fn18fDBq1CjmU0WLFsXly5cRGRnJ0ih+7//99x979suXL7Pn5f4gMlo/xMXFwd7eHrq6ukywuGLFCsl1Ablcjn379rG2admyZRn627kRV1dXJjSsVq0ajh49yqKnq4P7RdaxfPly7Nq1C8+fP5dspBH+Kz71xN7eHpMmTULZsmXRqVMnTJ8+XUkkykk/CxcuZN/syJEjsWbNGhw4cADDhw+HlZWVpB3Zvn27ZAwi2Gv79u2glKJmzZrsujjdwYMHmUA3KCjoj4wwnVWIv+GZM2dK2uyePXti9OjRaNGiBTupwMDAAA0bNsSTJ09UPo/bIvNIr28IZfrp0ydJdHZKKbZt28YirQNJ9nd2dmbR2bt27fpHbn7iAnYOh8PhcDgcDofD4XA4HA6Hw+GkmuQW0lNaZN+1axebdK9SpQoqVKjAJu3NzMyYaFe8AKJ4lG1q/k5eIbXlcPToUVhaWrKIiVu3bmXXkltsunz5MosKu3Pnzgznl6OMOHKft7c3evbsCUopChQoAEdHR5X3JCd4yMuIF24nTpwISik6dOjAIlApwv0ie/Dy8kKJEiVAKUWDBg1w/PhxSaS39+/fo2/fvihSpAgTer569UryDCEi5YgRI0Bp0kkdgYGBkjR+fn4oW7YsKKU4d+5ctrzbn4aXlxeKFy8OSinq1auHAwcOMHFuWFgYXr9+jbp167KNBCVLlpSIFIX6xtvbGxMmTGCb0vT19VG2bFnMmzcP//77L3bv3o3Ro0cz4fS8efNy7J1/V96+fctOEujXrx+2bNkiuZ4aIUhy4vWVK1eya7t37+Yi9mQQi9jz5cvHvulFixbB19c3xfu5X2Qe0dHRCAoKwo4dO7B+/XosXrwYt27dwpcvXwCo/maF3x06dAgaGhooWbIk7t+/z/pK9+7dY5tyWrVqhffv3wNIXyTrvMbPnz8RHh6OY8eO4fDhw9i5cydcXV2ZKErc7woJCcHcuXNRqFAhJmp78OCB2mcLdnv37h2MjIxAKcXVq1ez9H3yMjdv3sTMmTPZZpqBAweya4qR2Ldv3w5bW1vs2bNH6cQDjrTNqFq1Ko4cOaL2VAfuF1mDOsG5+PfqTugSbyqzsbFBSEgIAN4mpBdxuf3999+g9NfpP4qb0Ro3boyLFy+qfdb06dNBKUX79u2Vnh0TE4OpU6eCUophw4Zl3Qv9wYi/+ZUrV6JUqVJqbdG1a1d2UoEquC0yTkZ8Q7Dlx48fUbJkSVBKoaWlBWtrazg4OEj+jtCGJyYmwt7eHgYGBihXrpzShug/AS5g53A4HA6Hw+FwOBwOh8PhcDgcTpYiFpxs374dFhYW0NfXB6UU5ubmqFu3Lt69ewfg10S/qoXJHz9+MBELX2RMHaGhoejXrx9bIBFHjFZXhkJk5L///hva2trQ0dHB9evXsyvLuYq0CgRdXFxY5KQ+ffrg69evWZSz3Im43tizZw8uXLigMh33i+zF3d2didjNzMxgbW2Nfv36oV27dpIjs3V0dHD58mUAynaIiIhA5cqVoaWlhcOHDyttbkpISGCR8c+fP5+9L/gH4e7uzhbCjY2NUaRIEbRv3x41atRg4l3hmhDJPiEhgZWzu7s7unXrxuxmYmKC5cuXK0UIjYiIwObNm1lU/Nu3b2f7u/7uuLu74+bNm5IIoenp25w/fx6tWrVitlu7dq3keXK5HHv37uUi9mRwdXWFqakpKKXQ1dVFt27dWL8UUF9Owu+5X2Q9KflGREQEGjRoAEoprK2t0bZtW4wcORI6OjqglKJWrVo4ffp0siJ4TuoRykzod50+fZptSi5atGiKEfOF+/bu3QstLS0YGBjw01OyALHffP/+HYcOHWLC6NGjR6tMl5CQAB8fH0RFRWVrXv8k3NzcULBgQVBK0atXL6VTg7hfZC+Kdbj4/8eMGQNKKbS1tTF//nxcuXIFfn5+GDhwINvszL/1jCEefwuRpQsUKABTU1NUqlQJLVq0wNmzZ+Hl5cXSqWp39+7dC21tbTRr1gxBQUGS5589e5Zt/BSfmMaRIrbF7du3sWLFClhZWaFIkSIoU6YM6tSpg6NHj3JbZBPp8Q1h41hAQAAqVqzINsXWqVMHz549A6C+3+rk5MROXDl27FgWvlnWwAXsHA6Hw+FwOBwOh8PhcDgcDofDyXLEC+MvX77E9evXsXXrVjx9+pRFvgKkk/FxcXF49eoV9u3bh3HjxqFixYqwsLCAs7Nztub9T+bMmTOSI2sF1AmBhN8/evSIReFt2bJltuQ1tyEuY3d3dyQkJKQokoqNjcWCBQuYAMvNzS2rs5nrULX5RbHcuV9kP97e3mjfvj2LtC7+0dXVhampKW7duqX2/hcvXjCRuxAxTuxTN27cYM9LSSCU1/Hx8UG3bt3YpgLFKHDVqlVjwlu5XM6+fw8PD7Rp04YJ3c3MzHDt2jVJ5FFxJFdfX19UqVIFlFJs3Lgxe1/yDyQ9ItpXr16hUaNGzH7dunVj12JiYti/BRG7TCbjERPV4OLiwkTsFStWxIkTJyQnnigi2Iv7Rc4jtPvfv39HgwYN2GYN4ad37964cuUKS6f4XwGxnbioPWWEMoqIiEC1atXYxuT//vsv2fvEfa0uXbqAUor8+fNLTmfhZA3x8fHYu3cv9PT0oKmpiW3btuV0lv5YXF1d0bhxY7i4uEh+z/3i92HNmjVMvH706FHJhkEAsLW1RfHixeHj45NDOcw9KLannz9/ho+PD75//57sBgMxt2/fZtHxp02bhjt37uD27dtYtmwZ23gzfPjwLHuH3ILifMb3798RHByMb9++Sfo5ycFtkXmkxTeEtF+/fkXLli1Z/VWvXj12Ql1yGzHfv38Pc3NzUEpx/PjxrHidLIUL2DkcDofD4XA4HA6Hw+FwOBwOh5MtCIspqibdBaHVs2fPYG9vj0GDBsHW1lZyzGr+/PlRoUIFLFiwgB9pngIJCQmIjY1Fx44dQSlFlSpV4OTkxK6puwcAPD09UaxYMVBKYWVlhdOnTwOAUpkr2pFHxVfNvn37MGbMGPb/KYmiXFxcYGxsDEopli1bpjJNSgvB3BaqyQq/4GWdeoKDg3HhwgX0798fVatWRalSpdCiRQssXrwYrq6uANT7x5cvX2BrawsDAwMcPnxYUu5PnjxBhQoVQCnFqFGjsuVd/nS+fv0KBwcHjBw5Es2bN0e9evXQo0cP2NvbMyGPeIOAr68vevfuzeqmggUL4s2bNyn+nR49eoBSir59+6rcXMLJOHv27EH79u2hr68PfX19SYR1sVBFLpdj3759LEL4+/fvcyK7vzWurq4wMzMDpRRVq1bFkSNHkhWxc7/4fRC+9fDwcBw+fBjTp0/HwoULceDAAURFRSXbtty9excLFy5E9+7dMXbs2OzMdq7Azs4OlFLky5cPCxYsQGhoqNq0YjusXbsWlFJoaWlhxowZStc5qefnz58IDw9PVVp/f3+0adOG1UGc9COMjVXV49wvcpbQ0FC0atUKMpkMixYtkvSHYmJiIJfLUb9+fVBK+YlamURy32lqx8tbt26VnAalqanJ5gMHDx7M0ol9TpX/8fG5ergtsp+0+EZ0dDTmzJkDExMTUEpRqVIlvHjxIsXnAMCyZctYu6N4CtSfgCbhcDgcDofD4XA4HA6Hw+FwOBwOJwtJTEwkGhoaRENDgxBCCKWUEEKIXC4njx8/JiEhIeT06dPE39+fPH36lN1XtGhRUqNGDdKqVStSrVo1Uq1aNWJlZUUAsGdwVKOhoUHkcjlxd3cnhBBibW1NKlSowK4pItjI19eX/PXXX+Tz589EW1ub1KtXjzRq1IgQQoiWlhYhhJDg4GDy8uVLcvv2bRITE0OqVKlCWrduTaysrEhCQgKRyWTZ9Ja/P+/fvye7du0iL168IBUrViQTJ05U++0K37WmpibR1dUl4eHh5OfPn2rTEcJtkVaywi+E+3h5p0zBggVJp06dSKdOnUh4eDiRy+XE1NSUfdPJ1e0mJibExsaGvHv3jqxYsYIQQkjhwoVJSEgImT59OgkKCiKtWrUidnZ2hJBftuOopkCBAqRZs2akWbNmJC4ujiQmJhJdXV12HQArv+/fv5Ndu3aRu3fvkvDwcGJmZkbu379Pypcvn2w5R0REkPfv37Pncf/IGkaOHElatmxJLl68SObMmUO2bdtGfvz4QY4cOUI0NTVZ3SSTyciQIUNI/vz5iampKSlZsmROZ/23o0KFCuTBgwekUaNGxMnJiWzatIkULVqUNG3aVKlu4n7xeyF860ZGRmTQoEEq00RFRRFKKXn48CFxdnYmd+7cIY6OjiQ4OJgQQlg71KxZM9KrV6/szP4fS1RUFHFxcSGEEGJpaUm6dOlC8ufPrzKtuI2/evUqOX36NCGEED09PdKgQQNCSJINkutP8TGgMnK5nDx48IAEBgaSgQMHplhGlpaWpHHjxuTGjRvkxIkTZPbs2aRKlSoq03JbJI+mZpLcTrGMssIvOGnj48eP5P79+0Qmk5EGDRowW8nlcqKrq0vCwsLI9+/fSZEiRUi5cuVyOLe5g+S+05TGZEK/afz48URfX5/s3r2b+Pr6kp8/f5JmzZqRpk2bkpkzZxJCCImNjSW6urrsHsH/QkNDibOzMylatCgpU6YMHwuqgdsi+0mNbwhl5O/vT27dukXCwsKIlpYW2bFjB6lZs6baNle4LywsjDx//pwQQoiBgQExNjbOmpfJQriAncPhcDgcDofD4XA4HA6Hw+FwOJmKMIkuTLILk/Lx8fHk5cuXxMfHh5w5c4Z8/vyZTbITQkiRIkVI9erVSffu3Ym1tTVp0qQJMTExIXp6ekrP54KflImKiiKRkZFES0uLdO/enWhpaRG5XM4WcAXEIt0JEyYwm1hbW5MFCxYQc3NzlvbatWvk0KFD5MSJE+x3GhoaxNLSkly8eJFUqlQpzy9QicmfPz+xtbUlL168IDdu3CCtW7dWu0guLEi9fv2aiakUF57EC1fcFukjM/0iMTGRUEoJpZTVSe7u7iQ4OJgkJiYSGxsboq+vT/T19bkt/o/wDRsZGSn9LrnNHdra2mT79u3Ew8ODvH79mowePZrExsayNB07diTTpk1T2pCgbrGXC69+lYGWlhYrC7EtBOGao6MjOXv2LAkJCSGmpqbk6tWrpHz58mqFbcLvP3/+zDbhWFtbS57PyRyE8ixZsiQZO3YsMTMzI6NGjSL29vakZMmSZMmSJRIbyWQy0q1btxzM8e9P+fLlyYMHD0jz5s1JbGwssbKyknyz3C9+T1SNDWJiYkh8fDy5ffs2+fTpE7lw4QLx9/cnXl5eLE2FChVI/fr1SdOmTUndunVJyZIlJf1eTvI8e/aMODg4EEII+euvv0i1atVUphN/4y9evCCHDx8mz549I4QQMn78eNKlSxeWTrDjrVu3iL+/PzE0NCSFCxcmTZo0SXGzW17k3bt3pGfPniQmJoY0bNgw2c1JQj1UqlQpVpY/fvxQm57bInnUvXtm+4UY8Xgir5d/cgh1ia6uLhtzAGDjvVGjRhF3d3dSvXp1ki9fvpzMKockjduEb3vYsGGkTZs2JD4+nkRERBBLS0uJjYQNt1+/fiXe3t7kyZMn5N69e8TNzY14eXkRTU1N4uLiQsqUKZNTr/NHw22RMwj1+o4dO8iLFy8IIYTs27ePNGrUKNn5DOG+bdu2kQsXLhBCCBk7diwpXbq0JN2f0FZwATuHw+FwOBwOh8PhcDgcDofD4XAyBUXB+rdv30hAQABxdHQkDg4OxMXFhbx584alL1KkCKlatSrp3r07KVmyJOnYsSPR1tYm+vr6kucqCj+5eD11JCYmkujoaBIfH08+fvxICCFqRbpeXl5k9OjR5NmzZyQ2NpaYmZmR48ePk7Jly7K0ly5dIosXLyaOjo7E0NCQdOnShURHRxN/f3/y6tUr0rFjR+Lg4ECsrKyy9T1/Z8zMzEjXrl3JtWvXyOXLl0ndunXJ1KlTlTZlCAQGBpLbt28TmUxGEhISSJEiRSTXhYUnbov0k1l+kZCQwIS+Pj4+xMHBgRw+fJi4urqS0NBQQkiSELJWrVpk3rx5pEyZMjxKO/n1DYsXUVMS9gtiahMTE+Lg4EAmTpxI3N3diZOTEylXrhzp2LEjmTx5MilYsKDS4qxYiH3//n0SFRVF2rVr90cs4mY1qmwh/rfwra5YsYJ4enqSfPnykV27dpEaNWqo3Ugm/v3GjRuJp6cnoZSSVq1aKT2fk3pUbbIhRFqempqapGPHjsTOzo6sXr2anD9/nnTt2pXUqFEjO7OaKyhfvjx59uwZ+fnzJylZsqRE+MH94vdAsT0VNs5GRkYSBwcH4uvrS06dOkVCQkIkgvVKlSqR9u3bk27dupHSpUuTqlWrqoxSyTedpY64uDiipaVF9PT0SPXq1QkhymUn9h8nJyeya9cutvmyf//+ZNGiRZJnvn//nkyaNIncvn2bxMfHE0KSNnSOGjWKrFq1igunFYiNjSUmJiYkKiqK2NvbkylTpiiNpRXx8PAghCTVZ8ltHvTy8uK2SAeZ6ReK7b9Qz8nlcvLz509SqFAhlc/M6xgZGRErKyvi6upKHBwcSJkyZYihoSGJi4sjo0aNIqdOnSKmpqZk+/btJH/+/LzsfgOEk9I0NTVJoUKFlPpT3t7eJDIykly+fJm4uLiQu3fvksDAQEJIUj+qcOHCpGvXrqR06dIkKCiIi6YzALdF9gOAhISEkHv37hFCCOnUqRNp3bo1IUT1OEFcZx06dIjMmzePEEJIgwYNSIcOHQghv/rKQrq4uDiiqanJ5rB+t74uF7BzOBwOh8PhcDgcDofD4XA4HA4nU6CUkqioKLJ06VISHBxMnj17Rry9vVmkyQIFCpCGDRuSZs2akQoVKpCmTZsSHR0dpSO1AUiiyfxOk+p/EoULFyY9e/YkBw8eJO/fvyc/fvwgxsbGSsLR169fk759+xJvb2+SmJhITExMyLVr10jlypXZooenpyfZvXs3cXR0JK1btybjxo0jnTp1InK5nLx//54MHjyYODo6kosXLxI7Ozu+CEx+LSp17NiRTJkyhcyYMYP8888/xMTEhAwcOFBJMPX161dy+vRpYm9vTxISEkiTJk1Inz59lJ7LbZExMsMvxGLEhw8fkilTppAPHz6QkJAQFolMX1+fuLu7E3d3d+Lg4ECuX79OKlas+NstFP4pCJs6jI2Nyb59+0hCQgIJDg4mBgYGpECBAkrpIyIiiJOTE/H19SVnz54l/v7+5PXr14QQQoYNG0b27duX3a/wRyHUG/v37yd37twhOjo65K+//iLNmzcnhKhul8Xt9o4dO8iBAwcIpZR07dqV2NrasmdyH0gbkZGR5O3bt6RGjRpEW1s72bRGRkakWbNmZN26deTdu3fk5cuXyQrYuS3UU7x4cUKIVCCSlX7BSRtCG/zp0yfi6upKnJycyPXr14mPjw/x8/Nj6WxsbEjLli1Jnz59SLFixUiLFi1UinYVfYH7ReoICwsj8fHxRE9Pj5iamhJCpGUnLtenT5+SXbt2kUOHDhFCkk5OmTFjBtHS0mLjjSdPnpApU6aQFy9eEFNTU2JlZUUSEhKIk5MTWbNmDaGUkpUrV3KfEWFjY0N69OhB1q9fT06cOEGaNGlCGjZsqJROvOnj/v37LEJ1sWLFJOkEm3FbpJ/M9AtBvJ6YmEhOnTpFLl26RB49ekTi4+NJeHg46dGjB2nYsCEZPnw431AgwtramvTp0+d/7d13WBTn2gbwe3aXLoIIShPpCiKoqICxIR4LxF6i0dgSe48x5SRGY5rBE03UFJNoNMZj7wW7WBGxoAIKFooiYkEFpCy7vN8ffjsBQeOJyoLev+vKlXVndnhnnik7O/e8g+nTp+Pf//43IiMjodVqkZWVhdOnT6NGjRr47rvv0Lx5cy4zPXr03EC3viuVSqSmpuL27dvYuHEjrl69ih07diA7OxsFBQVQKBSoWbMm+vXrB29vb7Rt2xYeHh6lbuig/w1roV+SJOHGjRs4e/YsACAgIOCxTwQquc9as2YNpk2bBgCoXr06Xn/9dfnGKaVSCbVajfPnz+O///0vzp07B41GA39/fwwbNqzydbAgiIiIiIiIiIiIiIieo9GjRwtJkoSRkZEICQkRU6ZMEZs3bxbp6ekiLy+vzPgajUbcvHlTxMTEiNu3b4v8/Hz5fXo2v//+u5AkSUiSJL7//ntx9epVeVhMTIyYP3++MDc3l8dxdXUVsbGxQgghtFqtKC4uFkIIsXTpUqFQKISzs7PYsWOHPA21Wi2EEGLgwIFCkiQxatSoCpy7yk+r1cqvP/roI3k5v/vuu2LLli1Cq9UKrVYr9uzZIz788ENhZmYmJEkSDRo0EJs2bSozDSFYi+fhWbcLIR4u7z///FMoFAp5PBsbGzFz5kyxbt06ERsbK3788UfRunVrIUmS8PDwEJcvX9bL/L5MioqKhBBC3jfpZGZmiqioKLFgwQLRq1cv4ePjI9dFV8P27duL7777Tvzyyy/6aHqVNGXKFPl4vnfv3seOV7IeW7ZsEc2bNxeSJAmVSiV+/fXXcj+jVqvFjRs3Su3jHq3rqy4/P18sXLhQ1K9fX+zcufOpPpOXlyeaNm0qJEkSQ4YMeaplylr8b17kdkFPlpaWJlauXCk+++wz0bFjR+Hg4FBqX+/l5SW6d+8ufv31V7Fz506Rn59f7rmH7lhCzyY1NVXUq1dPqFQqsXDhQvncrbi4uNR53Jo1a0SPHj3kOnXq1EkcPHiw1D7nzp07IigoSEiSJBo2bCgSEhJEbm6uSE9PF99//71QKpXC2tpaHDp0qMLns7K7evWqaNGihZAkSbRu3VrExcXJy/bR8+lRo0YJSZKEoaGhGD16tBDir32V7jOsxbN5ntuFEEJs2LBBDBkypNS+ztjYWEiSJJ+HvP/++/L4r/rxu+Ty++CDD4RSqRRKpVJedvb29iIiIkIUFhbqsZWvpkf3NSXdvHlTHD9+XMyYMUO8+eabonr16vJ6bmxsLMzNzcWAAQPEtGnTxKlTp0R6enqZaeimW970qTTWovI5ffq0MDExETVr1hQxMTFCiLLfV0suz7Vr14r69esLlUolJEkSgwcPLjXugwcPxLfffiv8/f1LHT8kSRIODg4iLi5OCFF5jhnsgZ2IiIiIiIiIiIiIngvx/z3B/Pjjj+jTpw/s7e1Rr169UuNotdpS/87IyMDYsWNx/vx5JCYmwtPTEz4+Pvj5559hbW1duXqEqUJ0tRgyZAiSkpIwa9YsTJo0CevWrYOtrS0kScLRo0dx69YtFBYWws7ODk2aNMHs2bNRv379Uj3DFRQUYNmyZRBCoE+fPujYsSOAh7U0MDAA8FevcsXFxezRtQSFQiGvw1999RUAYNasWZg7dy7mzp0Lb29vAJB7+S4qKkL9+vUxYsQItGnTRp6GDmvxbJ7XdpGdnY2lS5di0qRJEEKgVq1aaNq0KebPnw8XFxf57zVs2BBt27bF0KFDcfz4ccybNw/h4eFQqVSsy1MQ5fSIqOsNLj09Hffv30dERATOnj2LgwcPIi0tTR7P2toaISEhaN++PRo0aIDg4GBIkgRTU9MnTp8e0mq1UKvV2L59OwCgR48eci/Tjyq5HPft24eff/4ZMTExAIBRo0bhnXfeKTXdzMxMTJ8+HfHx8Th37hzatGmD1q1b4/3332fvoY8oLCzEgQMHkJiYiN9++w1NmzaVe3N9nPv37yMjI0N+/bhlyVr8717EdvG0x2nW4iEDAwOMGTMGd+/ehYGBAWxsbNCnTx+0aNECTZs2RdOmTaFQKOTvRDo5OTmQJAmSJMHMzAwqlYrfkZ6DGjVqoHHjxkhKSsKff/6JgIAA1KtXD8bGxvITtT755BNs3rwZ8fHxAIBu3brh/fffR/PmzUst/0mTJuHYsWNwdnZGREQEHBwcAABmZmbo2bMnlixZgjNnzuDWrVt6mdfKzNHREX/88QfatWuHQ4cOYeTIkZgwYQJat24NW1tbFBQU4MGDB5g6dSqWLFkCSZJgZ2eHDh06AIC8b9HVg7V4Ns9zu5gxYwY2bNiAc+fOAQA8PDxQv359dO7cGVlZWbhw4QKWL1+O2bNnQ6FQ4Ouvv37ljxUlz79nzZqFwMBAXL16FcnJyfDz80NISEiZJw9QxdCtm1qtFjk5OThx4gROnDiBmJgYREVFyd9fVSoVrKysEBYWBldXV3Tv3h1WVlZwdXUtNT3ddyPd//kEx6fHWlQ+hoaGKCwsREFBARITE9G0aVP5tw8d3fJcvnw5PvnkE6Snp0Or1aJLly5YsmSJPF5hYSHmz5+PuXPn4v79+2jYsCHefvttpKam4vjx4zhy5Ah69eqFPXv2VJr9IQPsRERERERERERERPRcSJIkXywMDg4GUPZRtLowenFxMSIjIzF58mScO3cO1tbW8PDwgEajwfr163HhwgUcOHAANWvWZGjnHyhZi6+++gqGhob47rvvcOTIERQXF5caNzAwEP3790evXr1gb29fJtCjUCiQl5cHALC0tAQAFBUVyeGgyMhIREZGQqFQICwsjBepHqFUKkvVws7ODitWrEB0dDQSEhJKjRsYGIixY8ciLCwMFhYWZabFWjybZ9kudJ8rLCzE4sWLMWXKFAgh4OnpiV69emHy5MmlbroRQkChUMDDwwNt2rTB8ePHERMTAwMDA+7P/oZuH1RyOaWmpuL+/fvYvHkzUlJSsGPHDmRlZaGgoAAAULNmTXTr1g2+vr5o1aoVGjRogNq1a5faBh69gYp1eDyFQgEjIyP5onnNmjUBABqNptSF9JLHiz179uCnn36Sw719+/bFd999J4+bn5+PHTt2IDw8HNHR0TAwMEBRURF27tyJ7du3IyMjA3PnzmVdSjA1NUWLFi2wc+dOREdH4+DBg+jatWu5+3ZdLeLi4iCEAADUrl273O9QrMU/87y3C7VaDUNDQ/lzx48fx5UrV3D48GEYGhqicePG8PT0REBAAG8o+H+2trY4dOgQtm7dirZt28LFxQU2NjalxlGr1fLrQ4cO4eDBg1i3bh20Wi3c3NzQs2dPDBw4EAqFgiH2Z2Rubo6vvvoKx44dw+HDhzFs2DA0btwYgYGBiIqKwqVLl3Do0CF5/GHDhmHq1Knw9PQstS5nZ2cjLi4Opqam+PHHH+Hg4FBquzIxMYFGo4EQAllZWRU+n1WBm5sbdu3ahQ4dOuDo0aNITEyEtbU1WrVqhYsXL+Lu3bs4e/YsFAoFzMzM8N5776F79+5lpsNaPLvntV2MGTMGK1aswP379wE8vPnpjTfekG9yBoB79+4hMDAQ48ePx4IFCxAUFISuXbtW3MxWUiXPv8tbz7nv15/Y2FgMHDgQubm5pW4+tre3R48ePdCkSRN06NAB1tbWcHFxeex3n5I1fNW/G/1TrEXlIYRA3bp10blzZ2zfvh2nTp1C9+7dYWZmVmocSZIwZ84cfPDBByguLoYQAqGhodi0aROAh8F1IyMjHD58GMuWLUNubi5Gjx6NkSNHol69etBoNEhISMAbb7yB5ORknDhxggF2IiIiIiIiIiIiInr5PNpb+qM9uukuJCYkJGDixImIj49H48aN8d///he2trawsLDA4MGDsWzZMnzyySeYN29emV4U6emUvHA7Y8YMNGvWDPHx8di6dSskSYK/vz9cXFwwcuRIOVSrC92WZGBgAD8/P0RFRSExMRF3795FjRo1AABHjx7FwoULcfXqVbmnYyqrZC3Gjx+P9u3b48yZM1i7di3u3bsHd3d31KlTB5MmTYKpqeljL/yxFs/un2wXWq1Wrsny5cvl8HqDBg0wdOhQvPPOO6hevTqKi4vlfaBufJVKJT+J4uTJk7h48SI8PDx4cfcJtFotcnNzceXKFWzbtg2XLl3Cli1boFarkZubC6VSCaVSia5du8o9wdnZ2aFOnTrlBtZ1F3v5NI+np+up2M3NDXFxccjIyCgT0i35hJT169fj119/xc6dOwEAXbt2RXh4OJRKpfy5Q4cOYfr06YiLi0P9+vXx5ZdfIicnB6mpqZgxYwa+//571KtXD6NGjdLLPFdGBgYG6Nu3L3bu3ImtW7fim2++gbu7O3x8fORxdL256tb9RYsWyb0mhoaGltrX6AImrMU/8zy3i6KiIjm8vm/fPuzevRvh4eEwMTGRb1QDgLp162LIkCGYPn06Q+z/z9vbW36CDfDXeq27cUO3XHW9U6alpUEIgRo1auDcuXPYuHEjbty4gffee48BxufAxcUFO3fuRPfu3XH69GmcPn0aS5culY/BhoaGcHZ2xuDBg/HRRx+V+bwQAmlpaYiNjQUA+bxPpVLJ29eVK1dw584d2NjYlNr/UWn16tXD/v37MX78eJw+fRqJiYlISkoqtW3Uq1cPY8aMwciRIwGUDh6yFs/Ps24Xw4YNw9KlS+XahYeH47333pOH626AsrS0RI8ePbB+/XpERkbizJkzDLD/vyd97+e+X38aNWqEoKAgREREoH379ujYsSMaN26Mhg0blrkhDXj43SshIQFXr15FamoqvL294efnB3Nz8zLfweh/w1pUHronBOkC7HPnzoW9vT1CQ0Ph6emJ/Px8bNq0CXv37pV7WjcwMECvXr3w3//+F8DDG2qNjIwAACtWrEBCQgLatWuHMWPGwN3dXT5f9PX1hb29PRITE5GcnKyvWS5LEBERERERERERERFVILVaLVq0aCEkSRLNmzcXd+7cEUIIUVBQIIQQ4tatW6JGjRqiTZs2QqvV6rOpL4VHl2FRUZHQaDRPHOdRq1atEpIkCUmSxODBg8W3334rpk6dKho3biwkSRJubm5i48aNz73tL5vi4uJnHoe1eD7+l+1CV5Pdu3fLy97Ly0t89913Iicnp9Q45X1+3rx5wsDAQFhYWIgrV6481XrwqsrLyxPjxo0TKpVKGBgYCEmShIGBgbC0tBQ9e/YUU6ZMEUePHhVJSUl/Oy0eP/453To6Z84cYWBgILy8vMTp06fLHTc8PFw0aNBA3jZ69Oghzp8/X2qcgoICERwcLCRJEh06dBDJycnysJycHDFhwgR5n0ZlJScny8u4TZs2IioqSuTm5pYap6ioSLzzzjtCkiShUChE9+7dRVpaWplpsRb/3PPaLkoea7744gvh7+8vj2dubi5cXV1FixYthKurq1AoFEKSJDFlypQXPn8vkxUrVggTExMhSZLo06eP+PPPP8XNmzfF2rVrhaWlpZAkid+VnrO0tDQxc+ZMERwcLJycnISXl5do3ry5+PXXX8XRo0fl8co7NmdnZ4vGjRuLatWqiRUrVpQa59atW6JJkybyPis/P79C5qcq063rffv2FY0aNRKenp7Cz89PfPfdd+LQoUPyeKzFi/e024VarZZfjx8/Xv4ObGxsLBYuXPi3f2fo0KFCkiTx2muvyb+pEFU2Jb//XL9+vdQ5se51UVGR/N61a9fEjz/+KMzMzIRSqRSSJIlq1aqJtm3bips3b5aZJj091qJyKbn8P/zwQ/m8wMPDQ7Ro0ULUr19fVK9eXX6/UaNGYtq0afJnStbqxo0bwsXFRSgUCrFlyxZ5+rrjeX5+vvDx8RGSJIkFCxZU0Bz+PQbYiYiIiIiIiIiIiKhCbd26VahUKuHg4CAuXbokhCj9g/vJkyeFUqkUtWvXFunp6QwhVhLz58+XL5jo/jMyMhKvvfaaWLdunTyeVquVL8CUdxGLF7b+8k+DzKxFxYuPjxcuLi5CkiRRp04dMXPmTJGdnS2EeHIdb9++LRo1aiQkSRKBgYEMrz+F+Ph44eTkJLp06SI+/vhjcfjwYZGYmFhqnJLr7vnz58WuXbvEhx9+KP7888+/DWfR07t27Zq8/rZq1Ups3LhRpKamiuvXr4v169eLN954o9R+aMCAAeLatWvy53Xr++zZs4UkScLW1lZcvHhRCFH6uD9nzhwhSZLw9fUVubm5rFs5EhMThb29vZAkSTRo0EC88847YvPmzWLXrl1i9uzZIjQ0VA6ve3l5iRUrVpQ7Hdbi2T3LdlFyeb7zzjvC0NBQHq9///5i8eLF4s6dO6KoqEjEx8eLOXPmyCH2uXPn6mmOq5ZTp07JwZzRo0fL5xo6v/zyi5AkScyYMUNPLXx56QJSqamp4v79+/L3JJ3H7U8KCwtF//795RsEly5dKiIiIsSyZcuEr6+v/P7169efOB0qKysrS9y9e1fcv3+/1PusRcX5u+2i5Hfa8PBwUatWLfkGzkWLFsnDnrSs+/btK59rMMBOldmj6/Hj1uvLly+LiRMnyt+BXn/9dTFs2DDx2muvyQHeu3fvVkCLX16sReXy6A2udevWlZe5JEnC1NRUSJIkJk6cKHbs2FHu54R4eBNb7dq1hSRJYtmyZUKIv2qbl5cnfvnlF2Fqairc3d1FSkpKBczZ02H//URERERERERERERUoS5dugStVgs7OzvUqlULAOTHzWq1WkRHR0MIgbZt28Le3l6fTSX89Wj5cePGoXbt2tizZw8SEhKgUqkwcOBANG7cGE2aNAEAFBUVyY+bB4DCwkJkZWXh+PHjOHXqFHr06AF/f399zUqlI0nS/zQ+a1HxiouLodVqsWrVKty5cwcA0LJlS4wdOxbm5uYQQjy2jhqNBtu2bcOtW7cAAI0bN4ZWq4VCoeCj65/A29sbZ86cgaWlZZlhxcXFEEJAqVQCANasWYPPP/8cly5dQkFBAQDA1NQUM2fOxLvvvguFQvHEGtGTOTg4YPXq1WjXrh0OHz6Ms2fPyuuvRqNBdnY2JEmCtbU1hgwZgm+++abU53XL/fr16wCAvn37wt3dHVqtFiqVCkIIaLVaXL16FQDg4+MDMzOzip3JKsLT0xORkZHo06cPzp49i4SEBCxatAhKpRIqlQqFhYWQJAkNGzbEuHHj0K9fPwAos/6zFs/un24XWq1W3nf169cPq1evhiRJkCQJ06dPx7Rp0wD8td14e3vD2dkZN2/eRHh4OLZv346hQ4fCwsJCPzNeyenW9TNnziAxMRG+vr4YMWIE3NzcAAAFBQUwNjaW1+tTp07x+PACKBQKODk5PXbYo4QQMDQ0xI8//ogLFy4gNjYWo0aNQkFBAYyMjFBYWAhvb2+sWbMGdnZ2pbYj3Wvd9+OS03zV66pbBjVq1Ch3OGtRsZ5muzhw4AA2bNggnzfMmzcPw4YNA4Ayy7Wk8+fP48KFC1AoFPDz84ORkdELmAOi5+PR9fjRf+v2GStWrMD8+fNRrVo1fPLJJ5g6dao8zhtvvIE1a9Zg0aJFmDJlCvcz/xBrUbkolUr5WPrxxx+jXbt2uHTpEqKjo1FUVIRWrVrB2dkZLVu2lD9TXFwsH4d1zMzM0KxZM2zbtg0nTpxAp06dYG1tjfz8fKxduxYLFixAfn4+OnbsCCsrq4qezcdigJ2IiIiIiIiIiIiIKlTNmjUBPLxAkpeXB3NzcwAPL5AcPXoUX3/9NYQQCAgI0Gcz6f8pFAr5onmfPn3QvXt3CCFQVFRUJtyWn5+P3NxcbN++HRcvXsS2bduQkpIiB3+///57XLlyBTY2NvqYlSqPtah4CoUChYWF2Lx5M3JycuDk5ITZs2fDysrqsWES3ftpaWlYsmQJrl+/DkNDQwwdOlS+WQdgqOdJdAHNkuEo4GGwU7fMlyxZIgd7goODUb9+fVhbW2PevHl47733UK1aNYwYMYLL+Bl5eHggMjISkyZNQkJCApKTkwE8vPHM2NgY77zzDoKDg9GjRw8A5Yes8vPzAQAZGRlyiBR4WM+EhATs3LkTABAYGPjYadDDWmzduhULFizA/v37ERMTA61WC61WCwAYMWIEwsLC8PrrrwNgLV6k/3W7UKvVMDQ0BAAMGDAAq1evhlKphJ2dHT755BOMGDGi3L9jamqKpk2bQgiBPXv2IDk5GY0aNaqQeayKiouLsWnTJmg0Gvj7+8vLSqPRyOv6iRMnADy8QYDHh+frnyxPSZKg1WphaWmJ/fv3Y+LEiTh//jxOnDiBZs2aoX79+vjmm29Qo0aNMiFp3feD+/fvIyUlBYmJiejXrx/rCtaiMvm7ZaAbvmnTJhw7dgwA8Pnnn2PUqFEAHn8c1p1HHD58GOfOnQMA1KtX73k2najCSZKEAwcOyDf1TZ8+He+++y4A4MGDBzAzM8OECROwZs0aXLlyRf4MPX+sRcUreVwNCgpCUFAQ3nrrrceOX96xwdTUFL1798a2bdswb948XLp0CW5uboiNjcWFCxdw69YtdO7cGe+++678W3x5Kvq3KgbYiYiIiIiIiIiIiKhC2dnZwczMDDExMfjzzz8RGhoKrVaLo0eP4quvvsK1a9fQuXNnjBs3Tt9Npf+nUCjkHr11vXobGhri3r17KCgowO7du5GWlob169fjxo0byMjIkD8bGBiIjh07onv37rCyspJvYKB/hrWoeNu3b8eZM2dgZmaGr776Cg4ODmWC1Tol3//oo48QGRkJlUqF6dOno1mzZtBqtXIIu7i4GGq1GhcvXoStrS1MTExgbm7OwCj+uvj96DLWvb9x40Y5vD5lyhSMGzcOTk5OkCQJrVq1QocOHfDzzz+jW7duqFWrFi+mPyM3NzcsW7YMmZmZOHz4MNRqNZycnODu7l4qLPW4dbdhw4YAgNOnTyMqKgpBQUHQaDQ4efIk3n//fZw/fx4BAQF48803AZR/MZ4ecnR0xGeffYYZM2Zg586dyMnJgbm5OZydneHr6yuv66zFi/e020VRUZEcXh87dixWrFgBhUIBZ2dnfPrpp3Iw5dGa6Y4nnp6esLGxwf379+UnTVBZut7sdWEc3XckIYR889gvv/yC7777DgAQEhKil3ZSWbpeRy0sLPDLL79Ao9EgOTkZHh4eACBvP7rvBLdu3UJ2dja2b9+OuLg47N+/H2lpadBoNIiJicG3336rt3mp6lgL/di7d6+8bxo4cCAmTpwI4Mk3kUmShCNHjmD8+PEAHj4hSnc8EULI4xBVNRs2bAAA9OnTRw5MazQa+Yb96OhoAMDt27dRXFwMgN9XXxTWouI9y/LThc4HDx6MnJwcTJgwAdu3b5eHOzk5YejQofjoo4/g6uoqH2PK+21Ld/x43O9ezxsD7ERERERERERERERUoUJCQjB+/HjMmjULU6dOxfz585Gbm4v8/Hzk5+cjODgYGzZsgIGBAYOceqRb9rqLILogUGpqKg4fPowLFy5gy5YtyMrKwrVr1+TPtWzZEsHBwejduzfs7Ozg7+9fqtdp+t+xFvqluwlArVbD3d0dQNlgNVD6Ec6DBw/GmjVroFAoEBYWhtDQUAB/9SB+8eJFLFu2DBERETh//jwcHBxQv359zJo1C15eXhV2obAqysjIwA8//AAAGD16NGbMmCFfRBdCoH379vDz80NiYiJyc3NRu3ZtfTb3pWFpaQlLS8syvXuW7J3tccfrt956C8uWLUN0dDSGDh2K+vXr48GDB0hJSUF6ejo8PDywbt061KxZs9zjfsm/wScXPAwQSpKEbt26lXpfF1gDWIuK8nfbhRBCPmbPmzcPK1asAADUqlULn3zyyWPD68Bfx5n9+/fj1q1bL3pWqjzd+u/m5gYAOHnyJM6ePQsnJydYWlpi7ty5+PzzzwEA06ZNQ/v27fXWVipL9z1XqVTC0NAQDRo0kIddvXoVeXl52LJlC1JSUrBt2zbcvHkT+fn5UCgUqF69OkJDQ1G/fn14eXkhLy8Ppqamepybqo21qDi6Y8XZs2dhYGAAIyMjdOrUSV5mT/od5Ny5c5g6dSrUajUsLCzwr3/9CxYWFmWOzWq1GhqNplQdePymykoIgQsXLgAArKysADwMTOt+w0hMTMT+/fsBAKGhofyt8AViLaoeSZLkc4px48bB3d0dJ0+exJUrV2BhYYH+/fvD2dm5zFMYdecc6enpiI2NxenTp3HgwAF88cUXFfZkVP5KSUREREREREREREQVRvdj+ldffQUDAwMsXboUGRkZKCoqQuPGjfHaa6/h22+/hYGBAQOceqa7qH3hwgUkJSXh0KFDclg6OztbHqdJkyZo2bIlevbsCUdHRwQGBpZbO96M8M+xFvqhC3foerxt0KABmjdvXmpYSbplOnToUCxbtgwKhQJ+fn4YNGgQ/Pz85HHOnTuHYcOG4dSpUxBCwNTUFFevXsXFixdx7NgxREZGwsvLi+GSx7h//z5iY2NhYWGBbt26yYEc3bp++/ZtOTDF0NSL93frqFarhbm5OSIiItCtWzccO3YMaWlpAB6GeENDQ/Hbb7/B1tZWfrrEo/soSZLkmupCwa/ytvG4eWctKg/dMtH9Pz4+Hps2bcK9e/cAAB9//DEGDx4M4MnH5Dt37uDIkSNQKBSoV68e6tSp8+IbX0XplvWQIUPw+++/4+TJk+jfvz+MjIxgYWGBAwcOAABGjhyJgQMH6rOphL++R+nW/5JPXrl//z6uXr2KHTt24NKlS9i6dSvy8vLk7UelUqFLly5wcXFBjx49ULt2bfkGQ/rfsRb6JYTAli1bUFRUBF9fX/kJKE9y4cIFzJgxA/Hx8QAAX19fjBkzRr5hCngYRNyyZQtWrVqFjIwMNGvWDE2bNsXEiRN5/KZKS5Ik+Pn5Yc+ePcjLy8ODBw/kG5WvXLmCX375Bdu2bYOXl5d8fk0vBmtRNeme9KdQKNCpUyd06tSpzDi64ZcvX0ZGRgZ27tyJU6dO4fjx47h796483v3797F//3657i8SA+xEREREREREREREVGFKPp70s88+Q8+ePZGdnY0HDx7Ax8cH9vb28g/uDK9XPI1Gg9jYWNy5cwcbNmzAxYsXER0djby8PACAiYkJ6tWrB39/f7Rp0wbu7u5yoFdXN93rRzEw/b9hLfRPF+rw8PAAAFy+fBkxMTFo1qyZHPzQjSeEwK1btzBp0iSsXLkSCoUCrq6umDhxInr06CFPMzExEW+99RbOnj2LgIAAdO3aFSEhIbh06RIWL16Mffv2YeTIkdi0aRNq1KhR8TNdBZw5cwZ37tyBg4MDvL29IUlSqd7gFi9ejIsXL8LX1xcqlYoBHT1TKpXQaDSwtLTE9u3bsW3bNqSkpAAAAgIC0LhxY1SvXh0A5OCVQqFAXl4eMjIycOTIESQkJGDjxo147bXXsGjRItbzH2It9Gf37t1yL5UffPABxo4dC+Dx4XXd+4cOHcKGDRtQXFyMgIAAODg4VGi7q6K6deti165d6NGjB1JTU5GXlycfH2bNmoU+ffrAxcVFz618dT0akhZCIDc3FwkJCThx4gRiYmKwf/9+XL9+HRqNBkqlEiYmJmjbti1cXV3Rq1cv1KpVq8xTDx6dPv091kL/dMve2NgYAFC/fn0AkG8iK8/58+fxxRdfIDIyEjk5OahTpw6WL1+OmjVryuPs3r0bv/32G9asWSO/d/nyZSxfvhwpKSmYO3cuj99UaXl5eaG4uBjLli2Dk5MT/P39kZqaiv3792Pz5s1QqVSYOnUqGjVqpO+mvvRYi6pHCFHqd/eSzp07h3v37mH9+vVISUnB/v375Q4xjI2N4ejoiB49esDf3x9BQUGoXbt2hYTXAQbYiYiIiIiIiIiIiKiCKZVK+YJ2eT316H5wp4q3atUqvPXWW3IA2tzcHLVr10ZYWBh8fX3RsmVLuLi4wMDAoFSN1Go1DA0N5fd4A8KzYy0qj3r16qFBgwaIj4/H3r174ePjAxMTEzn4cffuXRw5cgQLFizArl27oFAo4OPjg4kTJ2LQoEEAHvZ8XFhYiLlz5+Ls2bNo2bIlZs+eDT8/PxgbG6Np06aws7NDbGwskpOTkZ2dzQD7Y3h4eKBWrVrQarVITEyEo6OjHE788ccf8eGHHwIApk6dWubx2KQfKpUKWq0WZmZm6Nu3b5nhugvssbGxuHDhAg4fPoxjx44hOTlZ7gXOwMAAGo0GkZGRaNu2bQXPwcuDtah4aWlp+P777wEAHTp0wHvvvQfg8eFO3ffg06dPY9CgQdBoNPD19cWECRMAoNQNO+XhTTuAp6cndu3ahRMnTiA2NhZubm7w8PBAQECAvpv2ysvPz4eZmRn27t2L5ORk7Ny5E+fPn8f58+flGwOtra3Rvn17NGrUCP/6179ga2sLLy8veRq68UreSKjDc8inx1pUHlZWVgCAGzduoKCgQA606+j267GxsZgxYwYOHjyIe/fuwcHBAdu3b4ejo6N8/D58+DDCw8Oxd+9e1KpVC2PHjoWlpSXS0tIwZ84cfP/993BycsLkyZP1MatEf2vIkCFISEjAf/7zH3z55ZdQKpXy+l27dm189tlnGDJkiL6b+UpgLSo/3flEeU9RuXLlCq5evYoNGzYgOTkZERERkCQJRUVFMDMzQ7Vq1fDmm2/Cw8MDoaGhqF27NiwtLUtNv6LOKxhgJyIiIiIiIiIiIqIK96QL2q966EafBgwYgGPHjkGhUMDNzQ2hoaGwsbGBhYVFueOnpaVhx44dOHXqFADAx8cHAwYMQI0aNf42YEVPxlpUHvXr18dbb72FDz/8EP/+97+Rm5uL1157Dfb29rh79y7mzJmDixcvIjExEUqlEu3atcPbb78th0N1NxHoHsFsaGiIIUOGoHHjxjA0NJQvAnt4eECSJKSnpyMzMxN169bV85xXTk5OTnBzc0NUVBQ+++wzJCYmQqVSIT4+HvPnzwcAfPLJJxgwYICeW0rAXxfVS95Io+tZNCYmBhkZGdi4cSMuXLiA6OhoOQRnbm4Od3d3vPXWW2jdujUaNmwIDw8PqNVqfc1Klcda6Edubq7cu6G/v78cVHxceF2SJMTHx2P48OHIzc1F9erVERISAjc3NwCQj+darRbR0dFITk6GSqVC3bp1ERgYKD8V5FX/Pu3g4AAHBwd069ZN302h/6dWqzFy5Ejs2rULt2/flt+3s7NDYGAgOnbsiKZNm8LX17dUIPdRkiSxd+9nxFpUDrp9dUhICDZu3IiUlBScOXMGzZs3L7UPlyQJkZGRGDduHFJSUpCXlwdHR0esXbsWDRo0kOtTXFyM5cuXY+/evQgICMCnn36Kzp07AwDy8vKgVCoRHh6O/fv3Y9SoUTAxMdHXrBOVS7cuh4eHw8bGBhEREbh48SIMDAzQu3dvBAcHy+s0vVisReWmO37ojr9FRUW4ceMG4uPjceDAAcTFxeHAgQPyExyrV68Oe3t7hIaGwtnZGV27dkWNGjVQu3btUtPVHdN106+o8wlJ6M48iYiIiIiIiIiIiIjolfWkkLPuIkbJ8MLSpUuxbNky7Nu3r9S4jRs3xo4dO2BjY8NAwz/EWlQeJZfbhx9+iPDwcAAPeyA2NzdHfn4+8vPzATwMI06ZMgXdu3dHUFBQmc9v2LABvXr1Qp06dRAdHQ1bW1totVq5p6wDBw4gODgYKpUKsbGx8Pb21sMcVw1JSUkIDg5GRkZGmWEzZszAmDFjYG1trYeW0aO9wOkIIRAdHY3MzEysXbsW6enpiIyMlIfb2dnBxsYGoaGh8PLyQlBQEFxcXOT9nO4iOvdlT4+1qBw2b96M7t27w9LSEgcOHEDDhg3LDZjr3rtw4QJGjx6NqKgoqNVqtGjRAqtWrYKDg4M87o4dO7BmzRr8/vvv8nuWlpYYPnw4vvnmm1LTI6pM4uLi8NZbb8HY2Bjdu3eHi4sLWrdujVq1asn7k5LrblZWFo4cOYK4uDi4ubnB3t4eLVu2BPD4pxjQ02EtKo+MjAx069YNJ06cQOvWrfHvf/8bDRo0gIODA3bt2oXo6GhMnz5dHt/FxQXbt29HvXr1Sk0nIiICYWFhAIC1a9eiZ8+eAP4Koq5cuRJvvvkmPD09ERUVxac9UaVU8neOu3fvorCwECqViud2esBaVG6XL19GTEwMEhMTsWfPHly4cAF37tyRh7u6uiI4OBgNGjRA586dYWJiAicnJ3m4EKLSPAGV3W0QEREREREREREREVG5gelHe/XRXbxauHAhwsPDkZaWBh8fH4wYMQL29vZYtmwZNm3ahB49eiAiIgLm5uYVOg8vC9ai8ih5s8CsWbNga2uLdevWITo6GllZWQAADw8PODo64qOPPkLr1q1haGgIAGUuBtrb28PIyAjAw6BKrVq15DrGx8fjs88+A/Cw932G15/M09MTBw8exIwZM3Dx4kXcunULDRs2xKBBg+SwDlUsXXitZC9wSUlJiI+Px/bt23H58mVERUXJvUPXrFkT9evXR+/eveHi4iJfVH/0KRO67U8XoKsMF9grO9aicsrJyUFBQQGAsk8b0tUsLi4OY8aMwalTp6BWq+Hs7IylS5eWCq+vXr0a33zzDU6fPg0AaN26NTIzM5GUlITZs2dDkiTMmjWL4XWqlHx8fHDgwAEAD3sDLankPkaj0SA6OhrvvPMOEhMTATz8fmxkZITPP/8ckyZNKtVDKP3vWIvKw87ODsuXL0dISAgOHjyIxMREKBQK2Nvb48KFC3jw4AGAh+cSTZo0wcKFC2FnZ1fmxoHz588DAHr16lUmvA48DDsCgJmZmXxOQlTZKJVKeX9iaWkp71e4j6l4rEXltnz5csyYMUP+t4+PD0JCQtC2bVsEBATAxcUFlpaWZeqVm5sLIyMjqFSqMp1j6AsD7EREREREREREREREVK6SFzl0Fz0OHz6MRYsW4erVqxg4cCDGjRsHf39/AEDPnj3Rrl07HD58GKdOnUKbNm301fSXDmuhP0qlUr6oN2nSJPTu3RvXrl1DRkYGioqK0KpVK5iamsLCwgIlH3z86EVdCwsL1KlTB5cuXcLatWthYWEBV1dXREdHY+bMmYiMjIS/vz/efvttAOzN8u+4ublh0aJFMDAwQEFBAVQqFQwMDPTdrFeWQqFAamoq1q5di9TUVERFReHkyZPy8Fq1aqFhw4YICwuDq6srwsLCYGxsXKb3z0e3IX1fTK+KWIvKJSAgAN7e3rh8+TLi4uLQtGlTSJJUKiyiUCgQExODwYMH49KlS9BoNKhVqxYiIiLg5uYmP5nl6NGjmDdvHmJjYxEWFoa3334b3bt3R2pqKiIiIjBu3DgsWrQIvXr1QrNmzfQ850Tl04WlHw1U6YJyALBx40ZMnDgRGRkZaNKkCZo2bQpzc3MsWLAA7777LkxMTDBy5EgG6J4Ra1F5eHh4YN++fRg1ahSSkpLkcw2d119/Hd26dUOvXr1gaWlZbuAwOzsbAJCZmYns7GyYmZnJtUxMTMTBgwdhYGCA3r17w9TUlCFUqrR062XJ9ZPrqn6wFpXXp59+CmNjY9ja2sLNzQ2+vr6lOq7QarUAHtYrKysLFy5cwI8//ojU1FSYmZmhUaNGeP/992FlZaX3EDsD7ERERERERERERERE9Ld0F6m2bt2KEydOoFmzZpgwYQIaN24M4GEvPtWqVUNAQAAiIyORkpLC0PQLwlpUvJK9jzk4OMDR0bHc8Z50Mbd+/fqYMmUKRo8eja+//hrr1q2DlZUVjh07BgDw8/PD+PHj0bx5cwClezdmmL18BgYGkCQJJiYmKC4u1ndzXnlFRUX44IMPUFxcDENDQwQFBSEwMBD+/v5o2bIlzM3Ny4Ski4qKUFRUhPv376NGjRowNjYG8HCdZzjin2MtKg9TU1M0aNAACQkJWLRoEfz9/eHt7S0/bSUxMRFHjx7FmDFjUFhYCABwd3fH1q1b4enpCa1WK4+7a9cuHD16FK+99ho++OADtGzZEsDDXnk7deoEd3d3OfjIADtVdo97EsGZM2cwefJkZGRkoFu3bli5cqXcW3S7du0QFhaGn376CaGhoXB0dOT+6TlgLSoHd3d3rFy5EpcvX8aePXtQVFQEBwcH2NvbIywsTB6vuLi43KChj48PDA0NcfXqVZw9exYBAQFQKpU4fvw4fvrpJ+zevRtubm5o27YtAIZQiYiqKt3Nre+//36ZYbowuu73o2vXrmH+/PlYvXo1UlNT5ScG7tq1CxEREdi7dy+sra31+psTA+xERERERERERERERPRUbt26hdWrVwMARo4cKQemtVotqlWrBiEEYmJiAEAOvtGLwVpUvPJ6H3tauvD7yJEjIYTAjBkzkJSUJA9/4403MGTIEAQHB8PQ0FC+6PjoxUddz4rVq1fXey9ZlUHJWjDgr3/u7u64dOkSTp06BV9fXzg5OckXyIG/eoEDgMLCQiQlJeGDDz5AWloaUlNTERgYiP79+2PYsGFQKBS8ceMZsBaVh7m5Ob7++mscP34cR48exZAhQ/Daa6+hfv36uHjxIo4ePYrY2FhoNBrY2NigSZMm+OGHH+Dq6lpqP5+eno7vv/8eADBo0CA5vK7RaGBgYABnZ2dYWFgAAB48eKCfmSV6BgqFAtnZ2Rg+fDjS09MREhKCdevWQaFQoLCwEEZGRujcuTNatGiBCxcuoLCwkAHcF4S10B9ra2tYW1sjICCgzDDd+cTjjsedOnVCs2bNcOTIEQwePBhNmzZFcXExzp07h6SkJFhaWmL27NkICgoq9/M81hMRVQ26m1vLozt3kCQJN2/eRHh4OBYvXgwTExP069cP48ePh6GhIf7zn/9g1apVGDBgADZu3AgTE5OKan4ZDLATEREREREREREREdFTEUIgNzcXwMMeRYG/ev4pLCzETz/9hIMHD6JOnTpo166dPpv60mMtqhZJkuRQyKhRoxAUFISMjAzcv38f1atXR+fOneVQCvDXRcfs7Gzk5uZix44dOHfuHPbu3Yvbt29j69at7F2XKiVnZ2c4OzsDgNwrvm7d1q3XWVlZWLNmDb788ktcu3YNNjY2qFatGvbu3Yu9e/ciKysL7733HkNUz4i1qDxcXV2xc+dOdO/eHbGxsYiNjZWH6W4QCAgIQJcuXTBs2DDY2tqW6WE3Pz8farUa5ubmcrBRd9wXQmDNmjU4ceIEjIyM5JvaiKqaGzduICMjA3Z2dpgzZw4UCgWKiorkXr/Pnz+PlJQU5OTkIC8vT8+tfbmxFpXPk24S0N3EvGXLFoSGhuLYsWNITk4GABgZGSEwMBAff/yx3JO77ntByZvUHj3Wlzw3ISKiqkO3X4+IiMCaNWtgbm6OyZMn45133oGVlRUA4L///S+SkpJw8uRJXL16FZ6ennprLwPsRERERERERERERET0VKpVq4YmTZpg7969SEhIQG5uLqpVq4aioiL89ttvWLhwIVQqFYYNGwZLS0te9H6BWIuqp2RAxM/PD35+fqWGS5KEzMxMFBYWYtu2bUhJScGmTZtw48YNuef1atWqwdnZGWvXrmWAnSo9XRBKt+8RQgAANm/ejBkzZiAzMxNdu3bFnDlzYGlpiZMnT2LAgAF4//330ahRI7Rv315vbX/ZsBb65+npiZ07d+LXX3/FkSNHkJSUhJycHLRv3x5eXl6YNGkSqlWrBiMjo3J7wbWwsICzszNSUlJw+vRpeHl5wcDAAAAQFRWF5cuXQwiBN954A87OzjzuU5V04cIFpKenw9zcXL6BQ7eeCyFw8OBB3L59G23atIGLi4s+m/rSYy2qFqVSCY1GA0tLS+zcuROrVq1CSkoK7t69i9DQULi7u6NevXoAyva0npGRgRs3bmD37t2IioqCpaUlli5dymMIEVEVpdvH//rrr8jMzMTgwYPl8HpxcTE0Gg0MDQ3h4uKC06dP49atWwywExERERERERERERFR5WdqaoqQkBDs2rULX3zxBS5fvoy6desiKioKJ06cgFqtRq9evdC/f3854EAvBmtR9ZQXSHzw4AHS09Oxe/duXLlyBZs3b0ZOTg5u3rwpj9O5c2fUrVsXPXv2hK2tLXx8fCq66UTPhSRJSE5OxsyZM5GZmYlhw4Zh3rx5MDU1hUajwb/+9S98/PHHmDx5Ms6ePcvQ9AvEWuhHnTp18Nlnn0GSJGRlZUGj0aBWrVplxiuvx3tLS0s0bNgQ58+fR3h4OAoLC9GkSRPs27cPEREROHDgALy9vTFo0CCYmZlVxOwQPXf16tWDo6MjNBoNbt++Lb//4MED7NmzB++//z7UajXatWsHc3NzPbb05cdaVD0qlQparRbm5uZ4++23IUlSuTczJScnIycnBxs3bsSVK1ewa9cu+dzD0NAQarUa/fv3R6dOnfQxG0RE9BzEx8fj1KlTqF69Oj788ENYWVnJT28yNDREQkICDh06BAAwNjbWa1sZYCciIiIiIiIiIiIior+lu/g9depU3Lp1C//5z3+wYsUKebiDgwO6d++O0aNH67XnnlcBa1E1aLVaucdKHbVajcTERJw8eRLHjx/H3r17kZ6ejry8PEiSBKVSidatW8PV1RV9+vSBnZ0dfHx8yg2fsHddqoq+/PJLpKSkoHnz5liwYAGMjY3lC+nAw+AUAFy+fBlA+Td+0PPBWuiXlZVVqX8/aZ8uhICBgQF+/vlnXLp0CadOncKECRNgZGSEnJwcGBkZoVmzZpg2bRratWsnfwZ4eLNCebVjPakyqlmzJurUqYOoqCh8/PHH6N+/PwwNDREbG4s//vgDubm5GDBgAD788EMA/C70IrEWVYtu+etqUPL/165dQ0ZGBjZt2oSUlBRERERArVbjwYMHUCqVMDc3x1tvvQUPDw906dIFNjY2qFmzpj5nh4iInpEQAgUFBdBqtcjMzISHh4d8npeamoq5c+fi1q1b6NatG/z9/fXaVgbYiYiIiIiIiIiIiIjob0mSJAdyw8PD4e3tjdjYWKSlpcHS0hKjRo2Ci4sLbGxs9N3Ulx5rUTXowutHjhxBWloaduzYgYSEBJw7dw5qtRoAYGFhgWbNmsHX1xcdOnSAg4MDGjVqVO70Hg0GMSREVVFGRgYAoHfv3jA2NoZarZaD0tevX8e+ffsAQH7SAAO2Lw5roR+P23c/aZ+uO+5bWlpi7969mDBhAs6cOYNr166hTp06GDlyJNq1a4fAwEAAKFVL4GHt7ty5g9u3byM+Ph49e/ZkPalSsra2xu+//47g4GAcOXIER48elW/GAIDBgwfj999/B8CbMF401qJq0J0T6o4hWq0Wd+7cQWJiIg4cOIBz585h165duHfvHoCHT/EyMTFB9+7d4eLigp49e8La2hqOjo6lpluy1kREVPVYWVnB19cXcXFxiImJgbe3N6ytrREfH4+ffvoJq1evhpOTE/r166fvpjLATkRERERERERERERET0epVMoXyYcMGQKgdA+fVHFYi8rr7t27+OOPP3Do0CFcu3YNx48fl4dZWVnB29sbHTt2RNOmTeHn5wc3NzcIIUoFf4qLiyGEkEPwrCm9LAoKCgAAt2/fhhBCDtlmZ2dj8+bN2LVrF9zc3BAUFKTPZr4SWIuqRXfct7CwwKJFi3Dv3j1kZ2ejevXqsLa2LjWuoaEhCgsLERsbi1OnTuHkyZM4ePAgbty4gdzcXAwdOhSLFi3S05wQPZmnpycOHjyIzz77DJcvX8aVK1fQoUMHBAUFYdSoUQAYmK4orEXl8+gNrVqtFg8ePMChQ4eQkJCAAwcOIC4uDmlpafI4jo6O6NSpE7y9vREaGgpLS0u4uro+cfo89yAiqtrs7e3Rq1cvnD17FlOnTsXmzZthb2+PiIgIZGdnw9bWFsOHD0fXrl313VQG2ImIiIiIiIiIiIiI6OnpArU6vLitP6xF5VSjRg1cvnwZ69evR506ddCwYUN0794drq6uCAkJQe3atWFgYFDqM4WFhcjJyUFqaipsbW1hbW0NY2Nj+SYFoqpOd4ONr68v9u/fj8OHD+PYsWNo0qQJkpKSsH37doSHhyMnJwejR49+7JMI6NmxFlWXUqmERqOBSqWCtbW1HFzPz8+HiYkJDh8+jMuXLyMiIgJnz57FhQsX5M/WqFEDQUFBaNq0KXx9fcuEIIkqEzc3NyxcuBBGRka4efMmbG1t5WEMTFcs1qJykSQJxcXF+OOPP1BQUICVK1ciNTUVqamp8jjOzs4ICwtDmzZt8Nprr8HJyQkODg7y8OLiYgCQjyePTp+IiKo23fF52rRpePDgAcLDw3Ho0CF5eNu2bdG7d28MGTIEJiYmemzpQ5Lgcz+IiIiIiIiIiIiIiIiInlnJQODWrVvRvHlzGBgYoEaNGqXGKyoqkkPshw8fxpo1a7B582akp6fDyckJ/v7++OGHH2Btbc0QO71UkpOT0aZNG1y7dg1169ZFzZo1kZaWhpycHBQWFmL48OFYuHChvpv5SmAtqobHBUQLCwtx6NAh3LhxA+vWrUN6ejpOnDghD3dxcYGjoyM6dOgAPz8/+Pr6wsnJqSKbTvRMdN+pSm4DvPFCP1iLyuXatWul9ucNGzaEra0tunXrBnd3dzRr1qzMuQcAPHjwAFqtFtWqVZPryJsQiIheTiV/R9q6dSuSkpLkntf79u2L6tWrl7mJSV8YYCciIiIiIiIiIiIiIiJ6Tv4ucF4y8LN582aMHz8eV69ehampKVxcXJCfn48rV67A29sbBw4cQM2aNRkSopdKUlIS+vTpg8uXLyMvLw8AEBgYiI4dO2L69Ol6bt2rhbWofHT7+0f3+wUFBYiJicHFixexfv16pKen48yZM/JwJycn2NnZoXfv3nB1dUXr1q1RrVo1GBkZlZo+b4oiIqr6EhMTceTIETg4OKBVq1ZQKpWl9ve6Y4hGo0FycjIWL16M/fv3IyMjA0FBQQgNDcWgQYMAMMRORPSyqirf+xlgJyIiIiIiIiIiIiIiIqpgu3fvxoABA3D79m307NkTgwYNQvv27VFUVITx48fjzz//xNChQ7Fw4cJK0zMW0fOSmZmJ06dP49q1a7C2tkbTpk3h6Oio72a9kliLyunOnTtITk5GTEwMIiMjkZCQgPj4eHm4s7MzateujR49esDJyQlhYWFQqVQwMTEpNR0GE4mIXg2P9pSvVquxbt06/Pzzzzh06BAAwNzcHDk5OQCA8PBwvPfee/psMhEREQPsRERERERERERERERERBXpxo0bGDZsGHbs2IF+/fph+vTpqFevnjw8KysLXl5ecHFxwZEjR6pEr1lERPTsiouLMWHCBCxbtgxFRUUoKCgAANjY2MDX1xfBwcHw8vJC69atoVKpYGFh8cRpMbxORPTqKS4uxvr16zFz5kzExcWhSZMmmDlzJjw8PJCQkIChQ4fi3r172LRpE7p06aLv5hIR0SuM3TUQERERERERERERERERVaC0tDQcPnwYlpaWGDhwINzd3QH89Yjn7OxsCCGQlpaG3NzcJwYUiYjo5aFQKPD2229j7dq1CAwMhL+/P1q3bo0mTZrA0tIShoaGpcYXQqCwsBARERG4efMmLCws4OLigoCAACgUCobYiYheIbpe2LOysrB48WLExcWhS5cumDlzJvz8/CCEgIeHB77++muMHj0a0dHRDLATEZFeMcBOREREREREREREREREVAF0oZIDBw4gNzcXTZs2RWhoKACgqKgIBgYGAIBt27bh9u3baNGiBQwNDeXPERHRy69x48a4cuUKTE1NS72v1WoBABqNBiqVChqNBitWrMDq1auxbds2eTxTU1N8/vnnmDx5MhQKBY8hRESvCN2+/vfff8eOHTtgaWmJadOmwc/PD8DD8w1DQ0O4uLgAeHhTLRERkT4xwE5ERERERERERERERERUAXShEgcHBwAPQ4hXr15FnTp15PD66tWr8dFHHwEAhg0bBhMTE/00loiI9KZkeF3Xi7pSqQQAObw+f/58zJs3D2lpaXByckK/fv2gVquxcOFCTJkyBcbGxhg9ejTD60REr5ikpCQAwPDhw9G0aVMIISCEgKGhIR48eIDVq1cDAKysrPTZTCIiIvBZUUREREREREREREREREQVyN7eHubm5oiNjcWGDRsQHx+PO3fuYMGCBRg5ciRyc3MxYsQI9OvXT99NJSIiPVMo/op1CCEAAJs2bcLPP/+MzMxMDBs2DBs3bsSsWbMwZ84cbNmyBQYGBvjll19w8+ZNfTWbiIj05N69ewCA69evQ61WQwgBhUKB/Px8bN68GXv37oWtrS369+8P4K9jCxERUUVjgJ2IiIiIiIiIiIiIiIioArVt2xZjx44FAEyaNAnBwcEIDAzEhAkTcP/+fQwaNAhjxowp1QMvERGRrjf1DRs24OLFiwgNDcV7772HRo0aobi4GGq1Gu3atUOzZs1w7tw5OcRIRESvDn9/fwAPe2JPSEgAAOTn52PJkiX45ptvkJqaio4dO8LV1RUA+KQOIiLSG0nwNioiIiIiIiIiIiIiIiKiClFcXCz3pjt9+nT8/vvvuHbtGoyMjKBUKvHpp5+if//+qFOnjp5bSkREldHx48cRGBgIANi7dy+Cg4MB/HV8uXv3LgIDA5GSkoJz587B09NTn80lIqIKlpKSguDgYKSmpsLT0xO2trbIzMxEcnIy1Go1OnXqhO+//x4eHh76bioREb3iGGAnIiIiIiIiIiIiIiIiqkBarRZKpRIAcP78edy4cQNmZmaoVq0avL299dw6IiKqzPbv34+QkBA4Ojri1KlTsLa2hkajgUqlQm5uLr766ivMmjULjRo1QkxMjHy8ISKiV0diYiK6deuG5ORkFBUVAQBcXV3RsWNHTJ48Ge7u7npuIREREaDSdwOIiIiIiIiIiIiIiIiIXiVKpVLuKdfLywteXl76bhIREVURNjY2sLa2RkFBAc6dO4fWrVtDpVIhJycHS5YswcqVK1GjRg2MGzcOSqUSQghIkqTvZhMRUQWqV68e9u3bh8OHDyMtLQ0qlQrdunVDzZo1Ub16dX03j4iICAB7YCciIiIiIiIiIiIiIiIiIiKqErKyshAWFobo6Gi0atUKXbt2hZeXF3799VdERUXh3r17eOuttzB9+nQ4Ojrqu7lERERERETlYoCdiIiIiIiIiIiIiIiIiIiIqIpISkpCcHAwMjIyAABGRkYoLCyEnZ0dunXrhnfffRfu7u56biUREekbn8JBRESVGQPsRERERERERERERERERERERFXIpUuX8Pnnn+Ps2bNQq9WwtbXF5MmT4e/vDzs7O303j4iIiIiI6IkYYCciIiIiIiIiIiIiIiIiIiKqYtRqNYqKiqBWq1GjRg19N4eIiIiIiOipMcBOREREREREREREREREREREVMUJISBJkr6bQURERERE9LcU+m4AERERERERERERERERERERET0bhteJiIiIiKiqYICdiIiIiIiIiIiIiIiIiIiIiIiIiIiIiCoEA+xEREREREREREREREREREREREREREREVCEYYCciIiIiIiIiIiIiIiIiIiIiIiIiIiKiCsEAOxERERERERERERERERERERERERERERFVCAbYiYiIiIiIiIiIiIiIiIiIiIiIiIiIiKhCMMBORERERERERERERERERERERERERERERBWCAXYiIiIiIiIiIiIiIiIiIiIiIiIiIiIiqhAMsBMRERERERERERERERERERERERERERFRhWCAnYiIiIiIiIiIiIiIiIiIiIiIiIiIiIgqBAPsRERERERERERERERERERERERERERERFQhGGAnIiIiIiIiIiIiIiIiIiIiIiIiIiIiogqh0ncDiIiIiIiIiIiIiKhiaTQabNq0CTt37kRUVBQyMzNx9+5dmJqawsbGBg0bNkSLFi3Qu3dvuLi46Lu5RERERERERERERET0EpGEEELfjSAiIiIiIiIiIiKiirF582ZMmTIFly5deqrxw8LCMGvWLPj4+LzglhERERERERERERER0auAPbATERERERERERERvSK++OILfPrpp9D1a9K2bVu8/vrr8PX1Rc2aNZGXl4eMjAwcPHgQW7duRUpKCrZt2wZHR0f8/PPPem49ERERERERERERERG9DNgDOxEREREREREREdErYPHixXj77bcBALVr18bKlSvRtm3bx46v1WqxcuVK/Pvf/0bnzp0ZYCciIiIiIiIiIiIioueCAXYiIiIiIiIiIiKil9zVq1fh6emJgoICVK9eHSdPnoS7u/tTffbevXs4dOgQunTp8oJbSURERERERERERERErwKFvhtARERERERERERERC/WnDlzUFBQAAD48ssvnzq8DgCWlpZlwuspKSmQJAmSJGHJkiUAgPXr1yM0NBT29vZQqVTl9u6+ZcsW9O7dG46OjjAyMkLNmjURFBSEWbNmITc397FtmDFjhvz3niQyMlIeLzIysszwtm3bQpIkuW2JiYkYMWIEXFxcYGxsDDs7O/Tt2xfHjh174t/RarVYsmQJOnbsCFtbWxgaGsLCwgIeHh4ICQnBV199hYSEhCdOg4iIiIiIiIiIiIjoVaXSdwOIiIiIiIiIiIiI6MURQmDZsmUAAHNzcwwdOvS5T3/QoEHy3yhPQUEB3nzzTWzYsKHU+1lZWTh27BiOHTuG+fPnY9u2bWjUqNFzbd/jREREoE+fPnjw4IH83o0bN7BmzRqsW7cO3377LSZNmlTmc7m5uQgNDcWhQ4dKvV9UVITs7GxcunQJ+/btw6lTp7B27doXPRtERERERERERERERFUOA+xEREREREREREREL7G4uDjcuXMHANCqVSuYmZk91+l/9913OHv2LFq1aoXRo0fD09MT9+7dQ0pKijzO4MGD5fC6n58fpkyZAi8vL2RlZWHlypVYsmQJrl+/jpCQEJw9exYODg7PtY2Pun79Ot58802oVCp89dVXco/s+/fvxzfffIPs7GxMnjwZzs7O6N69e6nPzpgxQw6vv/766xgwYACcnJxgbGyMmzdv4vTp09i6devf9hZPRERERERERERERPSqYoCdiIiIiIiIiIiI6CV29uxZ+XWTJk1eyPQHDRqEJUuWlBva3rZtG1avXg0ACAkJwfbt22FoaCgP79ChA4KCgjBixAhkZWXh3XffxapVq557O0u6ePEiLCwsEBUVBS8vL/n9oKAgdOvWDS1atEB2djbGjRuHsLAwGBgYyOPo5qV3795Ys2ZNmWl36tQJH330EbKysl7oPBARERERERERERERVVUKfTeAiIiIiIiIiIiIiF6c27dvy69tbGweO15xcTHi4uIe+19RUVG5n7O0tMSCBQse2+P4Dz/8AAAwMDDA77//Xiq8rjN8+HC0b98eALB+/XpkZGQ89fz9U9OmTSsVXtdp0KABPv74YwBAeno6Nm3aVGr4jRs3ADzszf5JrKysnlNLiYiIiIiIiIiIiIheLgywExEREREREREREb3EcnJy5NdmZmaPHS87OxsNGzZ87H/p6enlfq5Lly4wNzcvd5hGo8GBAwcAPOxpvU6dOo/9+8OHD5c/ExkZ+Xez9UwkScLgwYMfO3zo0KFyIH/Pnj2lhtnZ2QEAVq1ahby8vBfXSCIiIiIiIiIiIiKilxQD7EREREREREREREQvsZLh8gcPHjz36fv6+j522JUrV+SQd0BAwBOnU3J4XFzc82ncY7i4uMDa2vqxw21sbODs7AwAOHfuXKlhuuD70aNH4eLignHjxmHDhg24devWC2svEREREREREREREdHLhAF2IiIiIiIiIiIiopdYzZo15ddPCllbWlpCCFHqvyf1Uq5To0aNxw7LysqSX9eqVeuJ07G1tS33cy/C37UFAGrXrl1uW6ZNm4Zhw4ZBkiTcvHkTP/zwA3r27IlatWrBx8cH06dPR2Zm5gtpNxERERERERERERHRy4ABdiIiIiIiIiIiIqKXmJ+fn/z69OnTz336SqXyqcaTJOm5/+1/6lnaYmBggEWLFiEuLg6ffPIJWrRoAUNDQwBAfHw8Zs6cCXd3d2zatOl5NZeIiIiIiIiIiIiI6KXCADsRERERERERERHRS8zHx0fuhf3QoUPIy8ursL9tZWUlv/67Xslv3LhR7ucAQKH466fs4uLix07jwYMHT9Wup+khXTfOo23R8fb2xueff44jR47g/v372L17N4YOHQqlUonc3Fz0798fGRkZT9UeIiIiIiIiIiIiIqJXCQPsRERERERERERERC8xSZIwcOBAAEB2djaWLl1aYX/b1dUVpqamAIDo6Ognjnv8+HH5tY+PT6lh5ubm8uu7d+8+dhpJSUlP1a7k5GTcuXPnscNv3bqFlJSUcttSHmNjY7Rv3x6LFy/G7NmzAQD5+fnYunXrU7WHiIiIiIiIiIiIiOhVwgA7ERERERERERER0Uvu3XffhbGxMQDgo48+QnJycoX8XZVKhTZt2gAAdu/ejWvXrj123N9++03+TNu2bUsNc3FxkV+fOHHisdNYuXLlU7VLCIE//vjjscOXLFkCIQQAoH379k81TZ2QkBD59e3bt/+nzxIRERERERERERERvQoYYCciIiIiIiIiIiJ6yTk5OWHevHkAgPv376Nly5Y4fPjwEz8jhMC9e/ee+W+PHTsWAKBWq/H222+jqKiozDiLFy/Grl27AAA9e/aEnZ1dqeEtWrSASqUCAMydO1cOl5c0e/bsUr24/53PP/8ciYmJZd4/f/48vvzySwCAnZ0dunXrJg/LysrCli1byv37Orr5AEoH74mIiIiIiIiIiIiI6CGVvhtARERERERERERERC/e8OHDkZ6ejs8++wzXr19Hq1at0K5dO3Tp0gUNGzaElZUVtFotbty4gVOnTmH16tWIj48HACiVShgaGv6jvxsWFoY+ffpgzZo12LVrFwIDA/Huu++ifv36uHv3LlauXInFixcDAKysrDBnzpwy06hVqxb69OmDFStWYOfOnejatSvGjh2L2rVrIy0tDcuWLcO6devQokULHD169G/b5O7ujlu3biEwMBAffPCB3ON7ZGQkZs2ahfv37wMA5s+fX2q+s7Oz0bVrVzg7O6Nnz54ICAhA3bp1oVKpkJGRgS1btsg9yTs4OOD111//R8uMiIiIiIiIiIiIiOhlJokndRVDRERERERERERERC+VDRs24L333sOVK1f+dlxJktCxY0fMnj0bPj4+8vspKSly7+K///47hgwZ8sTpFBQU4M0338SGDRseO469vT22bduGRo0alTs8MzMTrVq1wsWLF8sd3q9fP7zzzjto3749AGD//v1yMF2nbdu2OHDgANq0aYOpU6eib9++yMvLKzMthUKB8PBwTJkypdT7Jef7Sezs7LBlyxb4+/v/7bhERERERERERERERK8a9sBORERERERERERE9Arp0aMHunTpgg0bNmDnzp2IiorCzZs3ce/ePZiamqJmzZpo2LAhgoKC8MYbbzxVYPvvGBsbY/369diyZQuWLFmCY8eO4fbt2zAzM4Onpye6d++OcePGoVq1ao+dRu3atREdHY1vvvkG69evR1paGszMzODj44MRI0ZgwIABiIyMfOo2hYWF4cSJE5g9ezb27duHjIwMWFpaolWrVpgyZQqCgoLKfKZu3bo4fvw4tm/fjqNHjyI1NRWZmZnIzc2FpaUlvL290aVLF4wYMQLVq1f/J4uKiIiIiIiIiIiIiOilxx7YiYiIiIiIiIiIiOiVULIH9v8l7E5ERERERERERERERM+PQt8NICIiIiIiIiIiIiIiIiIiIiIiIiIiIqJXAwPsRERERERERERERERERERERERERERERFQhGGAnIiIiIiIiIiIiIiIiIiIiIiIiIiIiogrBADsRERERERERERERERERERERERERERERVQgG2ImIiIiIiIiIiIiIiIiIiIiIiIiIiIioQkhCCKHvRhARERERERERERERERERERERERERERHRy489sBMRERERERERERERERERERERERERERFRhWCAnYiIiIiIiIiIiIiIiIiIiIiIiIiIiIgqBAPsRERERERERERERERERERERERERERERFQhGGAnIiIiIiIiIiIiIiIiIiIiIiIiIiIiogrBADsRERERERERERERERERERERERERERERVQgG2ImIiIiIiIiIiIiIiIiIiIiIiIiIiIioQjDATkREREREREREREREREREREREREREREQVggF2IiIiIiIiIiIiIiIiIiIiIiIiIiIiIqoQ/wd2hSHLOrkH7AAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAC7AAAAPgCAYAAACx8HFwAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdf3jXdb0//vt+wH4AAjr1gDhnB3EzrIQ0BQmw8vQ56lEJT79W2imt06mPFZ1O2jmmZXE8J+x4zrk6ZXU042SeEPETWvk5KTY5arnsB7WJdpxIkjYCQTYGbPv+4Zd9nDDY2NgY3G7XtWuvvV6P5+P5eCu1y3Hf813Q2dnZGQAAAAAAAAAAAAAA2M8Kh3oAAAAAAAAAAAAAAAAODQLsAAAAAAAAAAAAAAAMCgF2AAAAAAAAAAAAAAAGhQA7AAAAAAAAAAAAAACDQoAdAAAAAAAAAAAAAIBBIcAOAAAAAAAAAAAAAMCgEGAHAAAAAAAAAAAAAGBQCLADAAAAAAAAAAAAADAoBNgBAAAAAAAAAAAAABgUAuwAAAAAAAAAAAAAAAyK4qEeAAAAAAAAAAAAAAAYep2dndm+fXs6OjqGehQOYIWFhRkxYkQKCgr2ab0AOwAAAAAAAAAAAAAcwtrb29Pc3JzNmzdn+/btQz0Ow8CIESMyZsyYVFRUpKioqE9rCzo7Ozv301wAAAAAAJAkueSSS/KNb3wjSfLkk0+mqqpqn3utWLEic+fOTZJ8+tOfztVXX93v+XaeEjN79uysWLGi3/0AAAAAAIaL9vb2PP3002lra8vYsWMzevToFBUV7fPp2hzcOjs7097enhdeeCHPP/98SkpKcuyxx/YpxO4EdgAAAACAQ8jkyZPzm9/8Jknyy1/+MlOnTt1j/Rvf+Mb88Ic/TJJMmjQpTz/99B7rW1paMn78+Gzbti3FxcXZsGFDRo8ePTDD98E//dM/ZePGjRk3blw+8pGPDPr+AAAAAADDRXNzc9ra2lJZWZmysrKhHodhYvTo0Rk7dmzWrFmT5ubmHH300b1eW7gf5wIAAAAA4ACz8+TyJHs9aXzbtm357//+766v165dmyeeeGKPa1auXJlt27YlSU499dQhCa8nLwbYr7nmmvzTP/3TkOwPAAAAADAcdHZ2ZvPmzRk7dqzwOn1WVlaWww47LJs3b05nZ2ev1wmwAwAAAAAcQl4aYL/vvvv2WPvwww+ntbW12729rXlpKP6le918883p7OxMZ2dnqqqqej8wAAAAAAD7zfbt27N9+/YhO4yE4W/MmDFdf456S4AdAAAAAOAQMmfOnK7rH/3oR3s8EWVnGH3MmDE588wzu93b25qke4AdAAAAAIADT0dHR5KkqKhoiCdhuNr5Z2fnn6XeEGAHAAAAADiETJw4MVOmTEmSNDc355e//GWPtTvD6GeeeWbe8IY3dLu3Oy0tLfnJT36SJBk5cmRmzpw5MEMDAAAAALBfFRQUDPUIDFP78mdHgB0AAAAA4BDz0pPRewqkb9u2LQ8++GCSF09tnz17dpLkmWeeyerVq3e7ZuXKlV1vEfq6170uZWVlXc8uueSSFBQUpKCgIE1NTXuc7wc/+EEuvPDCTJgwIaWlpamsrMy8efNyzz337PW1VVVVpaCgIE899VSS5Kmnnura96UfV1999R77bN26Nf/8z/+cM844I0cccUTKysoyefLk/OVf/mWefPLJvc4BAAAAAADsngA7AAAAAMAh5qUB9vvuu2+3NQ8//HBaW1uTvBhgP/300zNy5Mg9rnlpGP6le/RWR0dHLr300rz5zW/OsmXL8rvf/S5tbW15+umnc8cdd+RP/uRP8pGPfKTPffvqySefzGmnnZbLL788Dz30UP7whz9k69at+c1vfpMvf/nLOfnkk/d4Ej0AAAAAANCz4qEeAAAAAACAwTVnzpyu6x/96Efp7Ozc5S0+dwa0x4wZk2nTpqW4uDinnXZaHnjggaxYsSLvf//7d+nb3wD7Rz/60Xzta19LkhQVFeWd73xn5syZk5KSkvzsZz/L17/+9dxwww15+umne+xx4403pqWlJZdddll+//vf58gjj8yNN964S111dfVu12/atCnnnHNOGhoacvbZZ+e8887L0UcfnXXr1uUb3/hGfvrTn2bLli1529veloaGhowfP77PrxMAAAAAAA5lAuwAAAAAAIeYo48+OjU1NWloaMgf/vCH/PznP89rXvOabjU7w+gzZ85McfGLP0p+/etf3xVgf7mWlpb85Cc/SZKUlpbmjDPO6NNMK1euzL/8y78kSUaNGpXvf//7OfPMM7uev+Md78hHP/rRnHXWWVm6dGmPfc4+++wk6Tqpvby8PBdccEGv53j00UdTXFyc73znO5k/f363Zx/84Adz3nnn5fvf/36effbZ3HTTTfnYxz7W694AAAAAAMPZbze2ZsOWbUM9Rr+NHzUyx4wrG+oxBlRVVVWeeuqp3HTTTbnkkkt6/WyoCLADAAAAAByC5s6dm4aGhiQvhtVfGmDftm1bHnzwwSTdT2ufPXt2Pv/5z+d3v/tdGhsbu51ivnLlymzfvj1JcsYZZ6SkpKRP8yxatCidnZ1Jkuuuu65beH2nCRMm5Lbbbsu0adPS3t7ep/59ceWVV+4SXk+S4uLifPGLX8z3v//9JMn3vvc9AXYAAAAA4JDw242tOesLK9K2o2OoR+m3kuLC3PvxOfslxN7Z2ZklS5bkW9/6Vn7605/mueeeS1FRUY4++uhMmDAhp512WmbNmpU3vOENOeywwwZ8/766+uqrkySXXHJJqqqqBm3fwkHbCQAAAACAA8bcuXO7ru+7775uzx566KG0trYmeTG0vtOMGTO6TmN/+ZqXfv3S0HtvtLW15a677kqSjB07Nu973/t6rH3Vq17Vdcr6/lBYWJjLL7+8x+fV1dWZNGlSkmTVqlX7bQ4AAAAAgAPJhi3bDorwepK07ejYLyfJb9y4MXPnzs2f//mfZ9myZVmzZk127NiRkpKSrFmzJitXrswXv/jFzJs3b4/vNDrQ/viP/zgnnnhixo4du8uza665Jtdcc02ampoGbZ5EgB0AAAAA4JA0e/bsFBQUJEnq6urS0fH//uJhxYoVSZLRo0fnta99bdf90aNHZ/r06d1qXr4m6R6O742f//zn2bbtxb8smDlz5l5Pb3/DG97Qp/59ceKJJ+bwww/fY83OAPuGDRv22xwAAAAAAAwv7373u3P//fenqKgoCxYsyOrVq9PW1pb169entbU1P//5z3Pdddfl1a9+9aDO9cMf/jCNjY258MILB3XfPRFgBwAAAAA4BB155JF55StfmeTFIPbPfvazrmc7w+gzZ87sOnF9p50nsr80sL5ly5Y88sgjSZKysrK87nWv69MszzzzTNf15MmT91rfm5p9VVFRsdeanQH7tra2/TYHAAAAAADDx+OPP57vfve7SZJrr702X/jCF3LCCSeksPDFqHZxcXFe9apX5ROf+ER+9rOf5a1vfetQjjvkBNgBAAAAAA5RLz0pfWcgva2tLQ899FCS/xdWf6md95577rn8+te/TpKsXLky27dvT/Ji6H3kyJF9muOFF17oui4vL99r/ahRo/rUvy92/mUCAAAAAAD01ksPiTn//PP3Wl9WVtbt66qqqhQUFOTmm2/O5s2bc8UVV+TEE09MWVlZKioqcsEFF+Thhx/ep9le2nunSy65pOtdWpMX/76goKCg66Oqqmqf9uotP4kHAAAAADhEzZkzp+v6vvvuS5I8/PDDaW1t3eX5TmeeeWaKioq6rXnpaewvDcX31ujRo7uuW1pa9lq/ZcuWPu8BAAAAAACDYe3atfu8dsOGDTn11FPz93//92lqasrIkSOzfv363HnnnZkxY0b+/d//fUBmHDt2bI4++uiur8ePH5+jjz666+PII48ckH16IsAOAAAAAHCImj17dtcJK3V1dWlvb+8Ko48aNSqnnnrqLmsOO+ywvPrVr04ycAH2Y445puv6iSee2Gt9b2oAAAAAAGCwnHrqqV0/b1+wYEFWr169T32uueaaPPfcc/nP//zPbNmyJc8//3x+/etfZ/bs2eno6Mj73//+/PSnP+33vDfccEN+97vfdX29dOnS/O53v+v6+MlPftLvPfZEgB0AAAAA4BB1xBFH5FWvelWS5Pnnn8+jjz7aFUafMWNGiouLd7tu9uzZSZL7778/L7zwQh555JEkL56kvrvQ+9686lWvSklJSZJk5cqVaWtr22P9D3/4w732LCx88cffnZ2dfZ4HAAAAAAD6oqqqKu973/uSJL/85S9TXV2dadOm5a/+6q/y7//+71m1alWvfl79/PPP5zvf+U4uuuiirp/R19TU5Hvf+15OOOGE7NixI3/3d3+3X1/LYBBgBwAAAAA4hL30xPTvf//7eeihh5Ikc+bM6XHNzgB7c3NzvvKVr2T79u1JkjPPPLPH0PuelJSU5E//9E+TvPjD+T29BeqqVatyzz337LXn6NGjkyRbtmzp8zwAAAAAANBXX/rSl/J3f/d3GTVqVDo7O/Poo4/mS1/6Ut773vfm5JNPzh/90R/lYx/7WJ599tkee8ycOTNveMMbdrlfVlaWv/7rv07y4s/yn3/++f32OgaDADsAAAAAwCHspUH1f/mXf0lra+su919u1qxZXW+F+g//8A9d918ahu+rBQsWdPX8m7/5mzz44IO71Dz77LN561vfmvb29r32O/7445Mk69evz5o1a/Z5LgAAAAAA6I3i4uJ85jOfyW9/+9t885vfzPve9768+tWvzsiRI5Mkzz33XL74xS9m6tSp+fGPf7zbHmeddVaP/Xc+6+joyE9/+tOBfwGDSIAdAAAAAOAQ9vrXvz6FhS/+qPi5555LkpSXl+fUU0/tcc3hhx+ek08+uduapH8B9pkzZ+bDH/5wkmTz5s15/etfn/e85z25+eabc+utt+Zv/uZvctJJJ+XXv/515s2bt9d+b3zjG7uuL7zwwnz1q1/N3Xffne9///v5/ve/nyeeeGKfZwUAAAAAgJ6MHTs2tbW1+epXv5qf/exnef755/N//+//zXnnnZfkxXc3fctb3pKtW7fusvaYY47pse9Ln730Z/PDkQA7AAAAAMAhbPz48XnNa17T7d6MGTMyYsSIPa6bPXt2t68PO+ywTJs2rV+zfPGLX8x73/veJMmOHTty88035z3veU/e8Y535B/+4R/yhz/8IZdffnlX0H1P/uIv/iLV1dVJkp/+9Ke57LLLcs455+R//a//lf/1v/5XFi9e3K9ZAQAAAACgN0pLS/PGN74x/+f//J9cfPHFSZK1a9fm+9///hBPNnQE2AEAAAAADnEvPzl9zpw5e13z8gD7rFmzUlRU1K85CgsL87WvfS3f+9738md/9mc56qijMnLkyEyaNCkXXnhhvv/97+ef/umfetVr1KhReeihh3LVVVflta99bcaOHdt10jwAAAAAAAyFyy67rOv6scce2+X5b3/72x7XvvTZUUcdNbCDDbLioR4AAAAAAICh9YUvfCFf+MIX+rTmLW95Szo7O3tdf/PNN+fmm2/uVe2b3/zmvPnNb+7x+Zw5c3q199ixY3PNNdfkmmuu2WttX17LihUrel0LAAAAAAA7jR49uuu6pKRkl+f33Xdfj2t3PissLMwpp5wyIPMUFBSks7OzTz8jHwiOmwEAAAAAAAAAAAAA2EdPPvlkVq9evde6b3zjG13X06ZN2+X5Aw88sNtDVLZu3ZpFixYlSf7kT/4k48aN2+dZX+qwww5LkmzcuHFA+vWWADsAAAAAAAAAAAAAwD761a9+lZqampxzzjm55ZZb0tTU1PVs+/btefTRR/Oe97wn119/fZLktNNOy5lnnrlLn7Fjx+Ytb3lLlixZkh07diRJGhsbc84556SxsTFFRUX5zGc+M2BzT506NUnyH//xH2lpaRmwvntTPGg7AQAAAAAAAAAAAAAcZEaMGJGOjo7cfffdufvuu5MkI0eOzOjRo7Nhw4Z0dnZ21U6bNi133HFHCgt3PYf805/+dL7yla/koosuSklJSUpLS/P8888nSQoKCvJv//Zvee1rXztgc3/gAx/IypUrc/vtt+f//J//k6OOOirFxcWZNGlSHnjggQHb5+UE2AEAAAAAAAAAAAAA9tGf/Mmf5PHHH8/dd9+dBx54IKtWrcratWuzcePGlJeXZ+LEiTnllFMyb968XHTRRbsNryfJ+PHj8+Mf/zgLFy7M7bffnqeffjqHH354Zs6cmSuuuCJnnHHGgM5dW1ubJPnKV76SX/7yl1m3bl06OjoGdI/dKeh8aaQfAAAAAAAAAAAAADgkbN26NU8++WSOP/74lJaW9lj3242tOesLK9K2Y/+Hm/e3kuLC3PvxOTlmXNlQj9KlqqoqTz31VG666aZccsklQz1On/T2z9BLOYH9ANDR0ZFnnnkmY8aMSUFBwVCPAwAAAAAAAAAAAMABqrOzM5s3b87EiRN7PMl7oB0zriz3fnxONmzZNij77U/jR408oMLrhyIB9gPAM888k2OPPXaoxwAAAAAAAAAAAABgmHj66aczadKkQdvvmHFlgt8MCAH2A8CYMWOSvPh/JIcddtgQT8NAqq6uzrp16zJhwoQ0NjYO9TgAAABwUPLf3wD0lu8ZAPSG7xcA9JbvGQAMlU2bNuXYY4/typ/CcCPAfgAoKChIkhx22GEC7AeZnW/NUVhY6N8tAAAA7Cf++xuA3vI9A4De8P0CgN7yPQOAobYzfwrDjQA7AAAAAAAAAAAAAMAQaWpqGuoRBlXhUA8AAAAAAAAAAAAAAMChQYAdAAAAAAAAAAAAAIBBIcAOAAAAAAAAAAAAAMCgEGAHAAAAAAAAAAAAAGBQCLADAAAAAAAAAAAAADAoBNgBAAAAAAAAAAAAABgUAuwAAAAAAAAAAAAAAAwKAXYAAAAAAAAAAAAAAAaFADsAAAAAAAAAAAAAAINCgB0AAAAAAAAAAAAAgEEhwA4AAAAAAAAAAAAAwKAQYAcAAAAAAAAAAAAAYFAUD/UAAAAAAAAAAAAAAMABbuPTScv6oZ6i/8qPSMYdO9RTHNIE2AEAAAAAAAAAAACAnm18OvnX6cmOtqGepP+KS5IP1e/XEHt7e3tuv/32LF++PA899FCee+65tLS0ZNy4cZkyZUpmzZqVd77znZk6dWqPPe6///5861vfyo9+9KOsW7cuW7duzZFHHplXv/rVOe+883LxxRentLS0x/VXX311rrnmml3ujxw5MkcccUROPvnkXHTRRbn44oszYsSIAXndvSXADgAAAAAAAAAAAAD0rGX9wRFeT158HS3r91uA/aGHHsrFF1+c1atXd90bMWJExowZk/Xr12flypVZuXJl/v7v/z7z5s3LrbfempEjR3bVrl+/Pu9+97tz9913d90rKSlJaWlp1q5dm7Vr1+auu+7K5z73udx8880566yz9jrT0Ucf3XW9efPmrFu3LuvWrcs999yTr3zlK7nnnnsyfvz4AfonsHeFg7YTAAAAAAAAAAAAAMBB6rvf/W7mzJmT1atX54gjjsjChQuzevXqbNu2LevXr8+2bdvyk5/8JJ/85Cdz2GGHZenSpWlpaela/+yzz+b000/P3XffnaKionz4wx/Or371q2zdujUbN27Mhg0bctNNN+XYY4/N008/nTe/+c1ZtmzZXuf63e9+1/WxZcuWPPXUU7n00kuTJI888kj+9//+3/vrH8luCbADAAAAAAAAAAAAAPTD448/ntra2rS1teWkk07Kz372s3zyk5/MCSec0FVTVFSU1772tVm4cGGefPLJnH/++V3POjs78453vCNPPPFERowYkTvuuCP//M//nJNOOqmrZty4cbnkkkvy6KOP5tWvfnW2b9+eiy++OL/5zW/6NGtlZWVuvPHGrtPb//M//zMvvPBCP/8J9N5BE2B/6qmnsmDBglRXV2fUqFE5/PDDc+qpp+Yf//Efu/1mwkD4r//6r1xyySWZPHlyRo0albFjx2bKlCmZP39+/u3f/m1Q/wUCAAAAAAAAAAAAAEPrb//2b7Np06aUlpbmjjvuyKRJk/ZYf/jhh2fZsmUZO3ZskmT58uW59957kySf+tSnct555/W49ogjjsh3vvOdlJaWZtOmTfn0pz+9TzO/+c1vTpJs27Ytjz/++D712BcHRYD9u9/9bl71qlfl+uuvz2OPPZaWlpZs2LAhjzzySD7xiU/klFNOyRNPPNHvfTZs2JALLrggb3rTm/KNb3wjv/nNb9LS0pJNmzbl8ccfz+23354PfvCDA7IXAAAAAAAAAAAAAHDge/bZZ7NkyZIkyTvf+c5MmTKl12sLCgqSJF/60peSJGPGjMmCBQv2uu6EE07I29/+9iTJbbfdlubm5r6Onc7Ozq7r9vb2Pq/fV8M+wP7oo4/mrW99azZt2pTRo0fnc5/7XP77v/87P/zhD3PppZcmSVavXp1zzjknmzdv3ud9nn/++bzpTW/KnXfemSS58MIL8x//8R956KGH8pOf/CRLly7N5ZdfvtfflgAAAAAAAAAAAAAADh733XdfOjo6kryYMe6rHTt2pK6uLkly9tlnZ/To0b1aN2/evK71P/rRj/q87w9+8IMkL4bojz/++D6v31fFg7bTfnL55ZentbU1xcXFueeee3LGGWd0PTvrrLNywgkn5BOf+ERWr16dRYsW5eqrr96nfT784Q+nvr4+JSUl+c///M/82Z/9Wbfnr33ta3PhhRfmi1/84qD+BgIAAAAAAAwn7e3tqaury7p16zJhwoTMmjUrRUVFQz0WAAAAAMA++9WvftV1fcopp/R5fVNTU7Zs2dLn9a95zWu6rn/xi190Bdr3Zs2aNbn22mtz7733JknOO++8HHHEEb0fuJ+G9QnsP/7xj7t+2+C9731vt/D6TgsWLEhNTU2S5IYbbsj27dv7vM8DDzyQb37zm0mSa6+9dpfw+ksVFBSkuHjY/14AAAAAAAAMuKVLl2by5MmZO3du3vGOd2Tu3LmZPHlyli5dOtSjAQAAAADss/Xr13ddH3744f1a35cgeUVFxW57vNwf/dEfdX2MGjUqxx13XL761a8mSaqrq/OlL32pzzP3x7AOsC9btqzr+j3vec9uawoLC/Pud787SbJx48bcd999fd7nX//1X5MkY8eOzYc+9KG+DwoAAAAAAIe4pUuXZv78+Tn55JPz4IMPZvPmzXnwwQdz8sknZ/78+ULsAAAAAAD90NbW1uOzZ599tuujpaWl6/673/3uPProoznmmGMGY8QuwzrA/sADDyRJRo0alenTp/dYN3v27K7rlStX9mmPbdu25c4770ySvOlNb0ppaWmSF9/i9Omnn05TU1O2bt3a19EBAAAAAOCQ0d7engULFuTcc8/NsmXLcvrpp2f06NE5/fTTs2zZspx77rn5+Mc/nvb29qEeFQAAAACgz156avof/vCHfq3f00nqL9fc3Nx1PX78+B7rOjs709nZmY6OjjzzzDP58pe/nHHjxuWWW27pOuh7MA3rAHtDQ0OSZPLkySkuLu6xrrq6epc1vfXzn/+8K6B+8sknZ9OmTfnIRz6SioqKVFZW5vjjj8/YsWPzpje9KStWrOj7iwAAAAAAgINcXV1dmpqacuWVV6awsPtfTRQWFuaKK67Ik08+mbq6uiGaEAAAAABg373yla/sun700Uf7vP64447LqFGjkiQ//elPe73upXudeOKJe60vKCjIhAkT8v73vz933HFHCgoK8olPfCL33ntvn2fuj2EbYN+6dWvXbw1MmjRpj7Xjx4/v+pf69NNP92mfX//6113XHR0dee1rX5sbbrghGzdu7Lq/bdu2/Nd//VfOOuusXHfddXvt2dbWlk2bNnX7AAAAAACAg9W6deuSJFOnTt3t8533d9YBAAAAAAwnc+fO7Tq844477ujz+hEjRmTWrFlJknvuuSebN2/u1bqlS5d2Xc+ZM6dPe86ZMyfvete70tnZmQ9/+MOD+g6ZwzbA/tJ/MaNHj95r/c4A+wsvvNCnfV56jP91112Xxx9/PG9+85vz4x//OFu3bs1zzz2Xf/u3f8vYsWPT2dmZT37yk7nzzjv32HPhwoUZO3Zs18exxx7bp5kAAAAAAGA4mTBhQpJk1apVu32+8/7OOgAAAACA4eToo4/OW97yliTJt771raxevbrXazs7O5MkH/zgB5O8mHW+/vrr97ru8ccfz7e//e0kyZlnnplXvOIVfR07V111VYqKivLrX/863/jGN/q8fl8N2wD71q1bu65Hjhy51/qSkpIkSWtra5/22bJlS7c93/SmN2X58uU59dRTU1JSkiOPPDIf+MAHsnz58q7fnLjiiiu6/jDtzhVXXJHnn3++66Ovp8IDAAAAAMBwMmvWrFRVVeXzn/98Ojo6uj3r6OjIwoULc/zxx3edMAQAAAAAMNxce+21GT16dFpbWzNv3rz89re/3WP9hg0b8pa3vCXPP/98kuTcc8/tOkX9c5/7XJYvX97j2vXr1+eiiy7K1q1bU1BQkGuvvXafZv7jP/7jvPWtb02SfPazn8327dv3qU9fDdsAe2lpadf1tm3b9lrf1taWJCkrK9vnfZIXT2EvKirape7MM8/MvHnzkiQNDQ355S9/2WPPkpKSHHbYYd0+AAAAAADgYFVUVJRFixZl+fLlueCCC/Lggw9m8+bNefDBB3PBBRdk+fLl+cIXvrDbn78DAAAAAAwHU6ZMyTe/+c2MHDkyv/rVr/Ka17wm1113XZ544omumvb29jz66KO56qqr8opXvCJLly7telZQUJBbb701r3jFK7J9+/ZceOGFufzyy9PQ0NBV8/zzz+cb3/hGpk2blp///OdJXjxFffbs2fs89xVXXJGCgoI0NTXl61//+j736YthG2AfM2ZM1/ULL7yw1/qdJ6mPHj16n/c58sgjc8opp/RY+yd/8idd1z/5yU/6tA8AAAAAABzM5s2blyVLluSXv/xlZsyYkcMOOywzZszIqlWrsmTJkq5DYgAAAAAAhqsLLrgg9957byZPnpzm5uZ88pOfzAknnJCSkpIcccQRGTlyZKZNm5bPfvazef755/P2t789o0aN6lr/R3/0R3nooYdy9tlnZ8eOHfnnf/7nnHTSSSkrK8v48eMzbty4XHLJJVmzZk1GjBiRf/iHf8jVV1/dr5mnTp2aP/uzP0vy4snvOw8N35+K9/sO+0lpaWmOOOKIrF+/PmvXrt1j7YYNG7oC7Mcee2yf9nlp/aRJk3pd+/vf/75P+wAAAAAAwMFu3rx5Of/881NXV5d169ZlwoQJmTVrlpPXAQAAAOBAV35EUlyS7Nj/4eb9rrjkxdezn8ycOTONjY35zne+k+XLl+fhhx/Oc889l82bN+fwww9PdXV1Zs+enXe961058cQTd1l/5JFH5gc/+EHuvffe3HrrrV0/T924cWNXzcSJE3PfffdlypQpAzLzpz71qdx5551Zu3ZtvvKVr+R//+//PSB9ezJsA+xJctJJJ6Wuri5PPPFEduzYkeLi3b+cxsbGruuampo+7fHKV76y67q9vX2PtS993tMsAAAAAABwKCsqKsqcOXOGegwAAAAAoC/GHZt8qD5pWT/Uk/Rf+REvvp79qKioKG9729vytre9bZ97nHXWWTnrrLO63bvtttvy9re/Pc8880y++c1v5rOf/WyP66+++upen85+6qmnprOzc59n7athnbI+88wzU1dXly1btqS+vj6ve93rdlt3//33d13PnDmzT3scd9xxqayszJo1a9LU1JTOzs4UFBTstvY3v/lN1/UxxxzTp30AAAAAAAAAAAAA4IA17tj9Hvxmz9761rdm3bp1+ehHP5prr702Y8aMySc+8YmhHqvPCod6gP644IILuq5vuumm3dZ0dHTklltuSZKMGzcuc+fO7fM+b3nLW5IkmzZtyg9/+MMe65YuXdp1feaZZ/Z5HwAAAAAAAAAAAACAnnzkIx/Jxz/+8STJ3/zN3+RLX/rSEE/Ud8M6wH7aaadl1qxZSZKvf/3refDBB3epWbRoURoaGpIkl19+eUaMGNHt+YoVK1JQUJCCgoJccsklu93nIx/5SEpLS5MkH/vYx7Jp06ZdahYvXpwVK1YkSc4555wce6zfMAEAAAAAAAAAAAAABtY//uM/prOzM52dnfngBz841OP02bAOsCfJDTfckLKysuzYsSNnn312Fi5cmIceeij33Xdf3v/+93cdiz9lypQsWLBgn/aorKzMZz7zmSTJL3/5y5x22mm56aabUl9fn/vuuy8f/vCHu8Lvhx12WL74xS8OyGsDAAAAAAAAAAAAADiYFA/1AP11yimn5LbbbkttbW02bdqUK6+8cpeaKVOm5K677sqYMWP2eZ+//uu/zh/+8Idcd911eeyxx/IXf/EXu9QcddRRWbZsWU444YR93gcAAAAAAAAAAAAA4GA17E9gT5Lzzjsvv/jFL/LRj340U6ZMSXl5ecaNG5fXvva1ue666/Loo49m8uTJ/d5n4cKFWblyZd71rnelqqoqJSUlGTt2bE499dR89rOfzerVq3PGGWcMwCsCAAAAAAAAAAAAADj4DPsT2Hc67rjjcv311+f666/v07o5c+aks7Oz1/VnnHGGkDoAAAAAAAAAAAAAwD44KE5gBwAAAAAAAAAAAADgwCfADgAAAAAAAAAAAADAoBBgBwAAAAAAAAAAAABgUAiwAwAAAAAAAAAAAAAwKATYAQAAAAAAAAAAAAAYFALsAAAAAAAAAAAAAAAMCgF2AAAAAAAAAAAAAAAGhQA7AAAAAAAAAAAAAACDQoAdAAAAAAAAAAAAAIBBUTzUAwAAAACw/7W0tKSxsbHbvdbW1jQ1NaWqqiplZWXdnlVXV6e8vHwwRwQAAAAAAOAAtu6FddnQtmGox+i38SXjM2H0hKEe45AmwA4AAABwCGhsbMz06dN7XV9fX59p06btx4kAAAAAAAAYLta9sC7nLjs329q3DfUo/TayaGSWX7B8v4bY29vbc/vtt2f58uV56KGH8txzz6WlpSXjxo3LlClTMmvWrLzzne/M1KlTe+zxi1/8Iv/xH/+R++67L0899VQ2bNiQsrKyHHPMMTn11FMzb968/Omf/mlGjBjRbd2cOXNy//3379KvvLw8xxxzTGbMmJEPfOADOf300wf8dfeWADsAAADAIaC6ujr19fXd7jU0NKS2tjaLFy9OTU3NLvUAAAAAAACQJBvaNhwU4fUk2da+LRvaNuy3APtDDz2Uiy++OKtXr+66N2LEiIwZMybr16/PypUrs3Llyvz93/995s2bl1tvvTUjR47sqt28eXM+8IEP5NZbb01nZ2eSpKCgIGPHjk1ra2saGhrS0NCQW265JX/8x3+c//iP/8jrXve6XeYYMWJEDj/88K6vm5ub8/jjj+fxxx/PLbfckk9/+tP59Kc/vV/+GexN4ZDsCgAAAMCgKi8vz7Rp07p97Ayt19TU7PKsvLx8iCcGAAAAAACA4eW73/1u5syZk9WrV+eII47IwoULs3r16mzbti3r16/Ptm3b8pOf/CSf/OQnc9hhh2Xp0qVpaWnpWr9hw4acccYZ+da3vpUkedvb3pb7778/W7duzYYNG7J169b89re/zde+9rW86lWvym9+85s8+OCDu51lxowZ+d3vftf10dLSknvuuSeTJ09OZ2dnrr766tx1112D8s/l5QTYAQAAAAAAAAAAAAD64fHHH09tbW3a2tpy0kkn5Wc/+1k++clP5oQTTuiqKSoqymtf+9osXLgwTz75ZM4///xuPd75znfmV7/6VYqLi3Pbbbfl1ltvzetf//puJ7RPnDgx733ve/Ozn/0sX/rSl1JaWtqr+UaOHJk3velNufPOO7v6/eu//usAvPK+Kx6SXQEAAAAAAAAAAAAADhJ/+7d/m02bNqW0tDR33HFHJk2atMf6ww8/PMuWLUtnZ2eS5Hvf+16+973vJUmuuuqqXHTRRXtcX1BQkL/8y79MR0dHn+Y86aSTMn369Dz44IP5yU9+0qe1A8UJ7AAAAAAAAAAAAAAA++jZZ5/NkiVLkrx4ivqUKVN6vbagoCDJ/zsNfezYsfnYxz7W6/WFhX2Pg+8M12/atKnPaweCADsAAAAAAAAAAAAAwD667777uk5Cv/DCC/u8fseOHfnRj36UJHnTm96UUaNGDeh8L9fU1JTkxVPgh4IAOwAAAAAAAAAAAADAPvrVr37VdX3KKaf0ef1TTz2VF154YZ/X98WPf/zj1NfXJ0lOP/30/bpXTwTYAQAAAAAAAAAAAAD20fr167uu9+VU8/6u741nnnkm3/zmN3P++eeno6MjBQUF+chHPrJf9tqb4iHZFQAAAAAAAAAAAACA/eL+++9PQUHBbp+NGDEi119/febMmTO4Q/3/BNgBAAAAAAAAAAAAAPbREUcc0XX9hz/8IRMnTuzX+oEwYsSIrtPcCwoKUlZWlokTJ2bGjBl53/velylTpgzIPvtCgB0AAAAAAOAQ0NLSksbGxm73Wltb09TUlKqqqpSVlXV7Vl1dnfLy8sEcEQAAAACGpVe+8pVd148++mifA+zHHXdcRo8enRdeeCGPPvrogMw0Y8aMrFixYkB6DTQBdgAAAAAAgENAY2Njpk+f3uv6+vr6TJs2bT9OBAAAAAAHh7lz56awsDAdHR254447cs455/RpfXFxcV7/+tfn7rvvzv/9v/83W7ZsyahRo/bTtEOvcKgHAAAAAAAAYP+rrq5OfX19t4/FixcnSRYvXrzLs+rq6iGeGAAAAACGh6OPPjpvectbkiTf+ta3snr16l6v7ezsTJL81V/9VZLk+eefz/XXX9/r9R0dHX2Y9MAgwA4AAAAAAHAIKC8vz7Rp07p91NTUJElqamp2eVZeXj7EEwMAAADA8HHttddm9OjRaW1tzbx58/Lb3/52j/UbNmzIW97yljz//PNJkj/90z/N2WefnST5zGc+kyVLlux1zxtvvDFf/epX+z/8IBNgBwAAAAAAAAAAAADohylTpuSb3/xmRo4cmV/96ld5zWtek+uuuy5PPPFEV017e3seffTRXHXVVXnFK16RpUuXduvxrW99KzU1NdmxY0f+/M//PO985ztTV1eX7du3d9WsW7cu3/jGNzJ9+vS8//3vT2tr66C9xoFSPNQDAAAAAAAAAAAAAAAMdxdccEHuvffeXHLJJXniiSfyyU9+Mp/85CczcuTIjB49Ohs3bkxHR0eSpKCgIG9/+9szatSorvVHHHFEHnrooVx66aX5zne+k29961v51re+lYKCgowbNy6tra3ZunVrV31NTU1mzZo16K+zvwTYAQAAAOizlpaWNDY2drvX2tqapqamVFVVpaysrNuz6urqlJeXD+aIAAAAAAAAMOhmzpyZxsbGfOc738ny5cvz8MMP57nnnsvmzZtz+OGHp7q6OrNnz8673vWunHjiibusP+yww3LbbbflyiuvzOLFi7NixYo89dRT2bBhQ8rKynL88cfntNNOy0UXXZQ3v/nNKSoqGoJX2T8C7AAAAAD0WWNjY6ZPn97r+vr6+kybNm0/TgQAAAAAAMD+Mr5kfEYWjcy29m1DPUq/jSwamfEl4/frHkVFRXnb296Wt73tbfvc49WvfnVe/epX93ndihUr9nnPwSLADgAAAECfVVdXp76+vtu9hoaG1NbWZvHixampqdmlHgAAAAAAgOFpwugJWX7B8mxo2zDUo/Tb+JLxmTB6wlCPcUgTYAcAAACgz8rLy3s8Ub2mpsZp6wAAAAAAAAeZCaMnCH4zIATYAQAAAACA/aalpSWNjY3d7rW2tqapqSlVVVUpKyvr9qy6ujrl5eWDOSIAAAAAAINIgB0AAAAAANhvGhsbM3369F7X19fXeycPAAAAAICDmAA7AAAAAACw31RXV6e+vr7bvYaGhtTW1mbx4sWpqanZpR4AAAAAgIOXADsAAAAAALDflJeX93iiek1NjdPWAQAAAAAOMYVDPQAAAAAAAAAAAAAAAIcGAXYAAAAAAAAAAAAAAAaFADsAAAAAAAAAAAAAAINCgB0AAAAAAAAAAAAADmGdnZ1DPQLD1L782RFgBwAAAAAAAAAAAIBDUGHhi1Hi9vb2IZ6E4Wrnn52df5Z6Q4AdAAAAAAAAAAAAAA5BI0aMyIgRI/LCCy8M9SgMU5s3b+76c9RbAuwAAAAAAAAAAAAAcAgqKCjImDFj8vzzz6e1tXWox2GYaW1tzaZNmzJmzJgUFBT0el3xfpwJAAAAAAAAAAAAADiAVVRUpLW1NWvWrMlhhx2WMWPGpKioqE+BZA4dnZ2daW9vz+bNm7Np06aUlJSkoqKiTz0E2AEAAAAAAAAAAADgEFVUVJRjjz02zc3N2bx5czZu3DjUIzEMjBgxIuPGjUtFRUWKior6tFaAHQAAAAAAAAAAAAAOYUVFRTn66KNz1FFHZfv27eno6BjqkTiAFRYWZsSIEft8Sr8AOwAAAAAAAAAAAACQgoKCjBw5cqjH4CBXONQDAAAAAAAAAAAAAABwaBBgBwAAAAAAAAAAAABgUAiwAwAAAAAAAAAAAAAwKATYAQAAAAAAAAAAAAAYFALsAAAAAAAAAAAAAAAMCgF2AAAAAAAAAAAAAAAGhQA7AAAAAAAAAAAAAACDQoAdAAAAAAAAAAAAAIBBUTzUAwAAAAAw8NasWZPm5uY91jQ0NHT7vCcVFRWprKwckNkAAAAAAACAQ5cAOwAAAMBBZs2aNampPjEtrVt7VV9bW7vXmvKy0jQ0PibEDgAAAAAAAPSLADsAAADAQaa5uTktrVuz+MKy1BxZ2GNd647ONG3sSNW4wpQVF/RY1/D7jtTe0Zrm5mYBdgAAAAAAAKBfBNgBAAAADlI1RxZm2oSiPdbMPHaQhgEAAAAAAABI0vMRXAAAAAAAAAAAAAAAMIAE2AEAAAAAAAAAAAAAGBQC7AAAAAAAAAAAAAAADAoBdgAAAAAAAAAAAAAABoUAOwAAAAAAAAAAAAAAg0KAHQAAAAAAAAAAAACAQSHADgAAAAAAAAAAAADAoBBgBwAAAAAAAAAAAABgUAiwAwAAAAAAAAAAAAAwKATYAQAAAAAAAAAAAAAYFALsAAAAAAAAAAAAAAAMiuKhHgAAAAAAADh4rFmzJs3NzXusaWho6PZ5TyoqKlJZWTkgswEAAAAAMPQE2AEAAAAAgAGxZs2anFh9Yra2bu1VfW1t7V5rSstK81jjY0LsAAAAAAAHCQF2AAAAAABgQDQ3N2dr69ZMumxSSiaW9FjXsa0j25u3Z0TFiBSOLOyxru2Ztqy9cW2am5sF2AEAAAAADhIC7AAAAAAAwIAqmViSsqqyPRdNGZxZAAAAAAA4sPR8rAkAAAAAAAAAAAAAAAwgAXYAAAAAAAAAAAAAAAaFADsAAAAAAAAAAAAAAINCgB0AAAAAAAAAAAAAgEEhwA4AAAAAAAAAAAAAwKAQYAcAAAAAAAAAAAAAYFAIsAMAAAAAAAAAAAAAMCiKh3oAAAAAAAAABt6aNWvS3Ny8x5qGhoZun/ekoqIilZWVAzIbAAAAAHDoEmAHAAAAAAA4yKxZsyYnVp+Yra1be1VfW1u715rSstI81viYEDsAAAAA0C8C7AAAAAAAAAeZ5ubmbG3dmkmXTUrJxJIe6zq2dWR78/aMqBiRwpGFPda1PdOWtTeuTXNzswA7AAAAANAvAuwAAAAAAAAHqZKJJSmrKttz0ZTBmQUAAAAAIEl6PkoDAAAAAAAAAAAAAAAGkBPYAQAAAA4yra2tSZKG5vYB6bezz86+AAAAAAAAAPtKgB0AAADgINPU1JQkqV26dcD7zpw5c0B7AgC9197enrq6uqxbty4TJkzIrFmzUlRUNNRjAQAAAAD0iQA7AAAAwEGmqqoqSbJ4XmlqKvofamtobk/t0q1dfQGAwbd06dIsWLCg6xfVkhe/5y9atCjz5s0busEAAAAAAPpIgB0AAADgIFNWVpYkqakoyrQJA3cq686+AMDgWrp0aebPn59zzz03t956a6ZOnZpVq1bl85//fObPn58lS5YIsQMAAAAAw0bhUA8AAAAAAADA7rW3t2fBggU599xzs2zZspx++ukZPXp0Tj/99CxbtiznnntuPv7xj6e9vX2oRwUAAAAA6BUBdgAAAAAAgANUXV1dmpqacuWVV6awsPtf6xQWFuaKK67Ik08+mbq6uiGaEAAAAACgbwTYAQAAAAAADlDr1q1LkkydOnW3z3fe31kHAAAAAHCgE2AHAAAAAAA4QE2YMCFJsmrVqt0+33l/Zx0AAAAAwIGueKgHAAAAAGB4aGho6NXzvdUlSUVFRSorKwdkLgAOHK2trUmStmfaBqTfzj47+x6KZs2alaqqqnz+85/PsmXLUlj4/84m6ujoyMKFC3P88cdn1qxZQzglAAAAAEDvCbADAAAAsEfrXuhICpLa2tpe1femrrSsNI81PibEDnCQaWpqSpKsvXHtgPedOXPmgPYcLoqKirJo0aLMnz8/F1xwQa644opMnTo1q1atysKFC7N8+fIsWbIkRUVFQz0qAAAAAECvCLADAAAAsEcbt3YmncmkyyalZGJJj3Ud2zqyvXl7RlSMSOHIwh7r2p5py9ob16a5uVmAHeAgU1VVlWTv3zN6a+f3jJ19D1Xz5s3LkiVLsmDBgsyYMaPr/vHHH58lS5Zk3rx5QzgdAAAAAEDfCLADAAAA0CslE0tSVlW256IpgzMLAAemsrIXv0/06nvGPvQ9lM2bNy/nn39+6urqsm7dukyYMCGzZs1y8joAAAAAMOwIsAMAAAAAAAwDRUVFmTNnzlCPAQAAAADQLz2/lzMAAAAAAAAAAAAAAAwgAXYAAAAAAAAAAAAAAAaFADsAAAAAAAAAAAAAAIPioAmwP/XUU1mwYEGqq6szatSoHH744Tn11FPzj//4j2lpaelX75tvvjkFBQW9+rj55psH5gUBAAAAAAAAAAAAABxkiod6gIHw3e9+N7W1tdm0aVPXvZaWljzyyCN55JFH8rWvfS133XVXJk+ePIRTAgAAAAyuht937PF5647ONG3sSNW4wpQVF/RY9+SGzoEeDQAAAAAAADhEDfsA+6OPPpq3vvWtaW1tzejRo3PFFVdk7ty5aW1tzbe//e189atfzerVq3POOefkkUceyZgxY/q13w9+8INMnDixx+eTJk3qV38AAACA/qqoqEh5WWlq72gd6lEAAAAAAAAAuhn2AfbLL788ra2tKS4uzj333JMzzjij69lZZ52VE044IZ/4xCeyevXqLFq0KFdffXW/9psyZUqqqqr6NzQAAADAflRZWZmGxsfS3Ny8x7qGhobU1tZm8eLFqamp2WsdAAAAAAAAQH8N6wD7j3/849TV1SVJ3vve93YLr++0YMGC3HTTTWloaMgNN9yQT33qUxkxYsRgjwoAAAAwqCorK1NZWdmr2pqamkybNm0/TwQAAAAAAACQFA71AP2xbNmyruv3vOc9u60pLCzMu9/97iTJxo0bc9999w3GaAAAAAAAAAAAAAAAvMywDrA/8MADSZJRo0Zl+vTpPdbNnj2763rlypX7fS4AAAAAAAAAAAAAAHY1rAPsDQ0NSZLJkyenuLi4x7rq6upd1uyr97znPZk4cWJGjhyZioqKnH766fnbv/3b/Pa3v+1XXwAAAAAAAAAAAACAg92wDbBv3bo1zc3NSZJJkybtsXb8+PEZNWpUkuTpp5/u174rVqzIunXrsn379qxfvz4PP/xwPve5z2Xy5Mn5yle+0q/eAAAAAAAAAAAAAAAHs56PLT/Abd68uet69OjRe60fNWpUtmzZkhdeeGGf9nvFK16RefPm5Ywzzsixxx6bJPmf//mf3H777VmyZEm2bt2aD3zgAykoKMhll122x15tbW1pa2vr+nrTpk37NBMAAAAAAAAAAAAAwHAybAPsW7du7boeOXLkXutLSkqSJK2trX3e68ILL8zFF1+cgoKCbvdPPfXUvPWtb83y5cszb968bN++PR/96EfzZ3/2Z/mjP/qjHvstXLgw11xzTZ/nAAAAAAAAAAAAAAAYzoZtgL20tLTretu2bXut33nieVlZWZ/3Gjt27B6fn3vuubnqqqvyd3/3d2lpacnXv/71fOpTn+qx/oorrsjHPvaxrq83bdrUdao7AAAAAAAMpZaWljQ2Nna719ramqamplRVVe3yc/bq6uqUl5cP5ogAAAAAAAxjwzbAPmbMmK7rF154Ya/1W7ZsSZKMHj16v8xz2WWX5aqrrkpnZ2fuv//+PQbYS0pKuk6EBwAAAACAA0ljY2OmT5/e6/r6+vpMmzat2722Z9r2uKZjW0e2N2/PiIoRKRxZ2GPd3voAAAAAADD8DNsAe2lpaY444oisX78+a9eu3WPthg0bugLs++uk86OOOipHHHFEmpub89vf/na/7AEAAACHOifCAsD+V11dnfr6+m73GhoaUltbm8WLF6empmaX+p0qKipSWlaatTfu+ef2fVFaVpqKiooB63eoaG1tTTJwvwSws8/OvgAAAAAA+2rYBtiT5KSTTkpdXV2eeOKJ7NixI8XFu385L/2L7Zf/YH0gFRQU7LfeAAAAwMCcCAsA7Fl5eXmP3z9ramr2+L21srIyjzU+lubm5j3usadA/MtVVFSksrJy74PTTVNTU5IM6C8T7Ow7c+bMAe0JAAAAABxahnWA/cwzz0xdXV22bNmS+vr6vO51r9tt3f333991vb9+qPr73/++6wfyEydO3C97AAAAwKGuPyfCAgCDo7KysteB870F4tl3VVVVSZJJl01KycSSfvdre6Yta29c29UXAAAAAGBfDesA+wUXXJCFCxcmSW666abdBtg7Ojpyyy23JEnGjRuXuXPn7pdZbrzxxnR2diZJZs+evV/2AAAAgENdf06EZd+1trYmeTG4NhB29tnZFwAYeGVlZUmSkoklKasqG/C+AAAAAAD7algH2E877bTMmjUrdXV1+frXv56LL744Z5xxRreaRYsWpaGhIUly+eWXZ8SIEd2er1ixoivUfvHFF+fmm2/u9rypqSkbNmzIKaec0uMcy5cvz2c+85kkL/7g9j3veU9/XxoAAADAAaOpqSlJsvbGtQPed3+9Wx4AAAAAAABwYBrWAfYkueGGGzJz5sy0trbm7LPPzpVXXpm5c+emtbU13/72t3PjjTcmSaZMmZIFCxb0uX9TU1Pmzp2bM844I+edd15e/epX56ijjkqS/M///E+WLFmSJUuWdJ2+/oUvfCHHHHPMwL1AAAAAgCFWVVWVJJl02aSUTCzpd7+2Z9qy9sa1XX0BAAAAAACAQ8ewD7Cfcsopue2221JbW5tNmzblyiuv3KVmypQpueuuuzJmzJh93ufBBx/Mgw8+2OPz8vLyfPGLX8xll122z3sAAAAAHIjKysqSJCUTS1JWVTbgfQEAAAAAAIBDx7APsCfJeeedl1/84he54YYbctddd2Xt2rUZOXJkJk+enIsuuigf+tCHUl5evk+9p0+fnsWLF+fBBx/MI488knXr1qW5uTk7duzI+PHj88pXvjJveMMb8r73va/rZHYAAAAAAAAAAAAAAHZ1UATYk+S4447L9ddfn+uvv75P6+bMmZPOzs4en48ZMybvfOc78853vrO/IwIAAAAAAAAAAAAAHNIOmgA7AAAAAADAwaSlpSWNjY3d7rW2tqapqSlVVVUpKyvr9qy6unqf35EWAAAAAGCwCLADAAAAAAAcgBobGzN9+vRe19fX12fatGn7cSIAAAAAgP4TYAcAAAAAADgAVVdXp76+vtu9hoaG1NbWZvHixampqdmlHgAAAADgQCfADgAAAAAAcAAqLy/v8UT1mpoap60DAAAAAMNS4VAPAAAAAAAAAAAAAADAoUGAHQAAAAAAAAAAAACAQSHADgAAAAAAAAAAAADAoBBgBwAAAAAAAAAAAABgUBQP9QAAAAAAAADsH23PtO3xece2jmxv3p4RFSNSOLLnc4/21gcAAAAAoLcE2AEAAAAAAA4yFRUVKS0rzdob1w5Yz9Ky0lRUVAxYPwAAAADg0CTADgAAAAAAcJCprKzMY42Ppbm5eY91DQ0Nqa2tzeLFi1NTU7PH2oqKilRWVg7kmAAAAADAIUiAHQAAAAAA4CBUWVnZ68B5TU1Npk2btp8nAgAAAABICod6AAAAAAAAAAAAAAAADg0C7AAAAAAAAAAAAAAADAoBdgAAAAAAAAAAAAAABkXxUA8AAAAAwPDQ9kzbHp93bOvI9ubtGVExIoUjez43YW99AAAAAAAAgIOXADsAAAAAe1RRUZHSstKsvXHtgPUsLStNRUXFgPUDAAAAAAAAhgcBdgAAAAD2qLKyMo81Ppbm5uY91jU0NKS2tjaLFy9OTU3NHmsrKipSWVk5kGMCAAAAAAAAw4AAOwAAAAB7VVlZ2evAeU1NTaZNm7afJwIAAAAAAACGo8KhHgAAAAAAAAAAAAAAgEODADsAAAAAAAAAAAAAAINCgB0AAAAAAAAAAAAAgEEhwA4AAAAAAAAAAAAAwKAQYAcAAAAAAAAAAAAAYFAIsAMAAAAAAAAAAAAAMCgE2AEAAAAAAAAAAAAAGBQC7AAAAAAAAAAAAAAADIrioR4AAAAAAAAYOmvWrElzc/MeaxoaGrp93pOKiopUVlYOyGwAAAAAABx8BNgBAAAAAOAQtWbNmtRUn5iW1q29qq+trd1rTXlZaRoaHxNiBwAAAABgtwTYAQAAAADgENXc3JyW1q1ZfGFZao4s7LGudUdnmjZ2pGpcYcqKC3qsa/h9R2rvaE1zc7MAOwAAAAAAuyXADgAAAAAAh7iaIwszbULRHmtmHjtIwwAAAAAAcFDr+TgVAAAAAAAAAAAAAAAYQE5gBwAAAPablpaWNDY2drvX2tqapqamVFVVpaysrNuz6urqlJeXD+aIAAAHjDVr1qS5uXmPNQ0NDd0+70lFRUUqKysHZDYAAAAAgIEiwA4AAADsN42NjZk+fXqv6+vr6zNt2rT9OBEAwIFpzZo1qak+MS2tW3tVX1tbu9ea8rLSNDQ+JsQOAAAAABxQBNgBAACA/aa6ujr19fXd7jU0NKS2tjaLFy9OTU3NLvUAAIei5ubmtLRuzeILy1JzZGGPda07OtO0sSNV4wpTVlzQY13D7ztSe0drmpubBdgBAAAAgAOKADsAAACw35SXl/d4onpNTY3T1gEAXqbmyMJMm1C0x5qZxw7SMAAAAAAA+0HPR3gAAAAAAAAAAAAAAMAAEmAHAAAAAAAAAAAAAGBQCLADAAAAAAAAAAAAADAoBNgBAAAAAAAAAAAAABgUAuwAAAAAAAAAAAAAAAwKAXYAAAAAAAAAAAAAAAaFADsAAAAAAAAAAAAAAIOieKgHAAAAAAAAhkZra2uSpKG5fUD67eyzsy8AAAAAALycADsAAAAAAByimpqakiS1S7cOeN+ZM2cOaE8AAAAAAA4OAuwAAADAAWvNmjVpbm7eY01DQ0O3z3tSUVGRysrKAZkNAA4GVVVVSZLF80pTU1HU734Nze2pXbq1qy8AAAAAALycADsAAABwQFqzZk1OrD4xW1t7dyJsbW3tXmtKy0rzWONjQuwA8P8rKytLktRUFGXahP4H2F/eFwAAAAAAXk6AHQAAADggNTc3Z2vr1ky6bFJKJpb0WNexrSPbm7dnRMWIFI4s7LGu7Zm2rL1xbZqbmwXYAQAAAAAAAIaIADsAAABwQCuZWJKyqr2c4jplcGYBAAAAAAAAoH96PpYMAAAAAAAAAAAAAAAGkBPYAQAAAA4BLS0taWxs7HavoaGh2+eXqq6uTnl5+aDMBgAkra2tSZKG5vYB6bezz86+AAAAAAAHCgF2AAAAgENAY2Njpk+fvttntbW1u9yrr6/PtGnT9vdYABwC/BJV7zQ1NSVJapduHfC+M2fOHNCeAAAAAAD9IcAOAAAAcAiorq5OfX19t3utra1pampKVVVVysrKdqkHgIHgl6h6p6qqKkmyeF5paiqK+t2vobk9tUu3dvUFAAAAADhQCLADAAAAHALKy8t3GwZ0IisA+5tfouqdnf8caiqKMm1C/wPsL+8LAAAAAHCgEGAHAAAAAAD2G79EBQAAAADASxUO9QAAAAAAAAAAAAAAABwaBNgBAAAAAAAAAAAAABgUAuwAAAAAAAAAAAAAAAwKAXYAAAAAAAAAAAAAAAaFADsAAAAAAAAAAAAAAIOieKgHAAAAgANdS0tLGhsbu91rbW1NU1NTqqqqUlZW1u1ZdXV1ysvLB3NEAAAAAAAAABgWBNgBAABgLxobGzN9+vRe19fX12fatGn7cSIAgIHV8PuOPT5v3dGZpo0dqRpXmLLign3uAwAAAAAAAuwAAACwF9XV1amvr+92r6GhIbW1tVm8eHFqamp2qQcAGA4qKipSXlaa2jtaB6xneVlpKioqBqwfAAAAAAAHFwF2AAAA2Ivy8vIeT1Svqalx2joAMGxVVlamofGxNDc377FuT7+893IVFRWprKwcyDEBAAAAADiICLADAAAA0GctLS1pbGzsdq+hoaHb55eqrq5OeXn5oMwGQN9UVlb2OnDul/cAAAAAAOgvAXYAAAAA+qyxsTHTp0/f7bPa2tpd7tXX1ws8AkAvNPy+Y4/PW3d0pmljR6rGFaasuGCf+wAAAAAADBUBdgAAAAD6rLq6OvX19d3utba2pqmpKVVVVSkrK9ulHgDoWUVFRcrLSlN7R+uA9SwvK01FRcWA9QMAAAAAGAgC7AAAAAD0WXl5+W5PVJ85c+YQTAMAw19lZWUaGh9Lc3PzHusaGhpSW1ubxYsXp6amZo+1FRUVqaysHMgxAQAAAAD6TYAdAAAAAADgAFBZWdnrwHlNTc1uf5kMAAAAAOBAJ8AOAAAAHJBaW1uTJG3PtA1Iv519dvYFADjUtLS0pLGxsdu9hoaGbp9fqrq6OuXl5YMyGwAAAABw6BBgBwAAAA5ITU1NSZK1N64d8L4zZ84c0J4AAMNBY2Njpk+fvttntbW1u9yrr693yjsAAAAAMOAE2AEAAIADUlVVVZJk0mWTUjKxpN/92p5py9ob13b1BQA41FRXV6e+vr7bvdbW1jQ1NaWqqiplZWW71AMAAAAADDQBdgAAAOCAtDNAVTKxJGVVZXup7ntfAIBDTXl5+W5PVPfuNAAAAADAYCoc6gEAAAAAAAAAAAAAADg0OIEdAAAAGDBr1qxJc3PzHmsaGhq6fd5bHQAAAAAAAAAHDwF2AAAAYECsWbMmNdUnpqV1a6/qa2tr9/NEAAAAAAAAABxoBNgBAACAAdHc3JyW1q1ZfGFZao4s7LGudUdnmjZ2pGpcYcqKC3qsu/vxHfm7+9r2x6gAAAAAAAAADBEBdgAAAGBA1RxZmGkTivZYM/PYvfdpaG4foIkAAAAAAAAAOFD0fBwaAAAAAAAAAAAAAAAMIAF2AAAAAAAAAAAAAAAGhQA7AAAAAAAAAAAAAACDQoAdAAAAAAAAAAAAAIBBIcAOAAAAAAAAAAAAAMCgEGAHAAAAAAAAAAAAAGBQCLADAAAAAAAAAAAAADAoBNgBAAAAAAAAAAAAABgUxUM9AAAAAHBwaG1tTZI0NLcPSL8nN3QkSTq2dQxIPwAAAAAAAACGngA7AAAAMCCampqSJLVLtw5o3+3N25MpA9oSAAAA6IP29vbU1dVl3bp1mTBhQmbNmpWioqKhHgsAAIBhSoAdAAAAGBBVVVVJksXzSlNT0f+/xL778e35u/u2ZUTFiH73AgAAAPbN0qVLs2DBgq5fXE9e/BnAokWLMm/evKEbDAAAgGFLgB0AAAAYEGVlZUmSmoqiTJvQ/wB7Q3N7khdPYG8d2dpjXce2jmxv3p4RFSNSOLKwx7q2Z9r6PRMAAAAcSpYuXZr58+entLS02/1nn3028+fPz5IlS4TYAQAA6DMBdgAAAOCANK60IClI1t64dsB6lpaVpqKiYsD6AQAAwMGqvb09f/mXf5nOzs684Q1vyKc+9alMnTo1q1atyuc+97ksX748f/mXf5nzzz8/RUX9/0V2AAAADh0C7AAAAMABacLowqQzWbx4cWpqanqsa2hoSG1t7V7rkqSioiKVlZUDPSoAAAAcdFasWJHnnnsuZ555Zu68884UFr74rmenn3567rzzzrz+9a/PypUrs2LFirzhDW8Y4mkBAGBXLS0taWxs7HavtbU1TU1Nqaqq6np34Z2qq6tTXl4+mCPCIUuAHQAAADig1dTUZNq0aQNWBwAAAOzdihUrkiTXXHNNV3h9p8LCwlx99dV505veJMAOAMABq7GxMdOnT+91fX19vb9rgkEiwA4AAAAAAAAAAADAQaW6ujr19fXd7u3pnX2rq6sHczw4pAmwAwAAANBv7e3tqaury7p16zJhwoTMmjUrRUVFQz0WAAAA+2jOnDm59tpr8+lPfzpz5szpdgp7R0dHrrnmmq46AAA4EJWXl/d4orp39oWhVbj3EgAAAADo2dKlSzN58uTMnTs373jHOzJ37txMnjw5S5cuHerRAAAA2Edz5szJkUcemQceeCDnn39+HnzwwWzevDkPPvhgzj///DzwwAM56qijBNgBAADoMwF2AAAAAPbZ0qVLM3/+/Jx88sndwgwnn3xy5s+fL8QOAAAwTBUVFeXLX/5ykuSHP/xhZsyYkcMOOywzZszIvffemyT5t3/7N+++BQAAQJ8JsAMAAACwT9rb27NgwYKce+65WbZsWU4//fSMHj06p59+epYtW5Zzzz03H//4x9Pe3j7UowIAALAP5s2bl9tvvz1HHXVUt/tHHXVUbr/99sybN2+IJgMAAGA4Kx7qAQAAAAAYnurq6tLU1JRbb701hYXdz0koLCzMFVdckRkzZqSurs5bygMAAAxT8+bNy/nnn5+6urqsW7cuEyZMyKxZs5y8DgAAwD4TYAcAAICXWbNmTZqbm/dY09DQ0O1zTyoqKlJZWTlgs8GBZN26dUmSqVOn7vb5zvs76wAAABieioqK/GIyAAAAA0aAHQAAAF5izZo1ObH6xGxt3dqr+tra2j0+Ly0rzWONjwmxc1CaMGFCkmTVqlU5/fTTd3m+atWqbnUAAAAAAAAAB02A/amnnso///M/56677srTTz+dkpKS/PEf/3H+/M//PH/1V3+V8vLyAd+zpaUlU6dOzZNPPpkkOe6449LU1DTg+wAAADB4mpubs7V1ayZdNiklE0t6rOvY1pHtzdszomJECkcW7ram7Zm2rL1xbZqbmwXYOSjNmjUrVVVV+fznP59ly5alsPD//W+ho6MjCxcuzPHHH59Zs2YN4ZQAAAAAAADAgeSgCLB/97vfTW1tbTZt2tR1r6WlJY888kgeeeSRfO1rX8tdd92VyZMnD+i+V111VVd4HQAAgINLycSSlFWV7bloyuDMAgeqoqKiLFq0KPPnz88FF1yQK664IlOnTs2qVauycOHCLF++PEuWLElRUdFQjwoAAAAAAAAcIHZ/RNww8uijj+atb31rNm3alNGjR+dzn/tc/vu//zs//OEPc+mllyZJVq9enXPOOSebN28e0H3/6Z/+KaWlpRkzZsyA9QUAAAAYTubNm5clS5bkl7/8ZWbMmJHDDjssM2bMyKpVq7JkyZLMmzdvqEcEAAAAAAAADiDD/gT2yy+/PK2trSkuLs4999yTM844o+vZWWedlRNOOCGf+MQnsnr16ixatChXX311v/dsb2/PpZdemvb29nz605/O17/+9QENxwMAAAAMJ/Pmzcv555+furq6rFu3LhMmTMisWbOcvA4AAAAAAADsYlifwP7jH/84dXV1SZL3vve93cLrOy1YsCA1NTVJkhtuuCHbt2/v97433HBD6uvrc+KJJ+Zv/uZv+t0PAAAAYLgrKirKnDlz8va3vz1z5swRXgcAAAAAAAB2a1gH2JctW9Z1/Z73vGe3NYWFhXn3u9+dJNm4cWPuu+++fu351FNP5aqrrkqSfPnLX87IkSP71Q8AAAAAAAAAAAAA4FBRPNQD9McDDzyQJBk1alSmT5/eY93s2bO7rleuXJmzzz57n/f84Ac/mC1btuRd73pX5syZs899AAAA4GDV8PuOPT5v3dGZpo0dqRpXmLLign3uAwAAAAAAAMDwM6wD7A0NDUmSyZMnp7i455dSXV29y5p98e1vfzt33313xo8fn0WLFu1zHwAAADgYVVRUpLysNLV3tA5Yz/Ky0lRUVAxYPwAAAAAAAACG1rANsG/dujXNzc1JkkmTJu2xdvz48Rk1alS2bNmSp59+ep/227BhQz7ykY8kSf7+7/8+Rx555D71AQAAgINVZWVlGhof6/rv9Z40NDSktrY2ixcvTk1NzR5rKyoqUllZOZBjAgB70dLSksbGxm73dh4Os7tDYqqrq1NeXj4oswEAAAAAMPwN2wD75s2bu65Hjx691/qdAfYXXnhhn/b767/+6zz77LM544wzcumll+5Tj53a2trS1tbW9fWmTZv61Q8AAAAOFJWVlb0OnNfU1GTatGn7eSIAoK8aGxszffr03T6rra3d5V59fb3v6QAAAAAA9NqwDbBv3bq163rkyJF7rS8pKUmStLb2/W3Mf/SjH+Xf//3fU1xcnC9/+cspKCjoc4+XWrhwYa655pp+9QAAAAAAgP2huro69fX13e61tramqakpVVVVKSsr26We/cNp+AAAAADAwWjYBthLS0u7rrdt27bX+p0nnr/8B+u9WXfZZZels7Mzl19+eV71qlf1bdDduOKKK/Kxj32s6+tNmzbl2GOP7XdfAAAAAADor/Ly8t2eqD5z5swhmObQ5jR8AAAAAOBgNGwD7GPGjOm6fuGFF/Zav2XLliTJ6NGj+7TP5z73uTz22GM59thjB+zU9JKSkq4T4QEAAAAAAHbHafgAAAAAwMFo2AbYS0tLc8QRR2T9+vVZu3btHms3bNjQFWDv60nn1113XZLkjW98Y7773e/utmZn7y1btuTb3/52kuSoo47KWWed1ae9AAAAAAAAdnIaPgAAAABwMBq2AfYkOemkk1JXV5cnnngiO3bsSHHx7l9OY2Nj13VNTU2f9ti2bVuS5KabbspNN920x9rm5ua8/e1vT5LMnj1bgB0AAGAYam1tTZK0PdPW7147e+zsCQAAADActLS0dPt79mTv7wJSXl4+mCMCAAAwjA3rAPuZZ56Zurq6bNmyJfX19Xnd616327r777+/69qpJAAAAOxJU1NTkmTtjXt+t6++9vTfowAAAMBw0djYmOnTp/e6vr6+frfvGgIAAAC7M6AB9o6Ojvz617/O//zP/2Tz5s1pb2/f65p3v/vd+7zfBRdckIULFyZ58YT03QXYOzo6cssttyRJxo0bl7lz5/Zpj87Ozr3WVFVV5amnnspxxx3XFXQAAABgeKqqqkqSTLpsUkomlvSrV9szbVl749qungAAAADDQXV1derr67vda2hoSG1tbRYvXrzLO59XV1cP5ngAAAAMcwMSYG9tbc21116br371q1m/fn2v1xUUFPQrwH7aaadl1qxZqaury9e//vVcfPHFOeOMM7rVLFq0KA0NDUmSyy+/PCNGjOj2fMWKFV2h9osvvjg333zzPs8DAADA8LfzLbBLJpakrKpsL9V96wkAAAAwHJSXl/d4onpNTY3T1gEAAOiXfgfYW1tbc9ZZZ+XHP/5xr04rH2g33HBDZs6cmdbW1px99tm58sorM3fu3LS2tubb3/52brzxxiTJlClTsmDBgkGfDwAAAAAAAAAAAACAF/U7wP7FL34xDz/8cJJk6tSp+dCHPpTp06fn8MMPT2FhYb8H3JtTTjklt912W2pra7Np06ZceeWVu9RMmTIld911V8aMGbPf5wEAAAAAAAAAAAAAYPf6HWC/7bbbkiQzZszIvffem5EjR/Z7qL4677zz8otf/CI33HBD7rrrrqxduzYjR47M5MmTc9FFF+VDH/pQysvLB30uAAAAAAAAAAAAAAD+n34H2H/zm9+koKAgn/jEJ4YkvL7Tcccdl+uvvz7XX399n9bNmTMnnZ2d/dq7qampX+sBAAAAAAAAAAAAAA4F/Q6wjxw5Mq2tramsrByIeQAAAAB61NLSksbGxm73Ghoaun1+qerqau/KBgAcNNrb21NXV5d169ZlwoQJmTVrVoqKioZ6LAAAAACAPul3gL26ujoPP/xwfve73w3EPAAAAAA9amxszPTp03f7rLa2dpd79fX1mTZt2v4eCwBgv1u6dGkWLFjQ7V1hq6qqsmjRosybN2/oBgMAAAAA6KN+B9gvueSSPPTQQ/nOd76TN7/5zQMxEwAAAMBuVVdXp76+vtu91tbWNDU1paqqKmVlZbvUAwAMd0uXLs38+fNz7rnn5tZbb83UqVOzatWqfP7zn8/8+fOzZMkSIXYAAAAAYNjod4D90ksvzX/+53/mlltuyRvf+Ma8/e1vH4i5AAAAYJ+1tLSksbGx2729hZzLy8sHc0T2UXl5+W5PVJ85c+YQTAMAsP+1t7dnwYIFOffcc7Ns2bIUFhYmSU4//fQsW7YsF1xwQT7+8Y/n/PPPT1FR0RBPCwAAAACwd70OsK9Zs6bHZ//yL/+SSy+9NLW1tbnjjjvyjne8o9d/+V9ZWdnbEQAAAKBXGhsbM3369F7X19fX7zYUDQAAQ62uri5NTU259dZbu8LrOxUWFuaKK67IjBkzUldXlzlz5gzNkAAAAAAAfdDrAPvxxx+/15rOzs7cfvvtuf3223vVs6CgIDt27OjtCAAAANAr1dXVqa+v73avoaEhtbW1Wbx4cWpqanapBwCAA9G6deuSJFOnTt3t8533d9YBAAAAABzoeh1g7+zsHNA6AAAA2F/Ky8t7PFG9pqbGaesAAAwbEyZMSJKsWrUqp59++i7PV61a1a0OAAAAAOBA1+sA+0033bQ/5wAAAAAAAOBlZs2alaqqqnz+85/PsmXLUlhY2PWso6MjCxcuzPHHH59Zs2YN4ZQAAAAAAL3X6wD7xRdfvD/nAAAAAAAA4GWKioqyaNGizJ8/PxdccEGuuOKKTJ06NatWrcrChQuzfPnyLFmyJEVFRUM9KgAAAABAr/Q6wA4AAAAAAMDgmzdvXpYsWZIFCxZkxowZXfePP/74LFmyJPPmzRvC6QAAAAAODGvWrElzc/MeaxoaGrp93pOKiopUVlYOyGxAd/0OsH/mM59Jknzwgx9MRUVFr9Zs2LAh//Iv/5Ikueqqq/o7AgAAAAAAwEFt3rx5Of/881NXV5d169ZlwoQJmTVrlpPXAQAAAPJieP3E6hOztXVrr+pra2v3WlNaVprHGh8TYof9oN8B9quvvjoFBQWZP39+rwPsf/jDH7rWCbADAAAAAADsXVFRUebMmTPUYwAAAAAccJqbm7O1dWsmXTYpJRNLeqzr2NaR7c3bM6JiRApHFvZY1/ZMW9beuDbNzc0C7LAf9DvADgAAAAAAAAAAAABDrWRiScqqyvZcNGVwZgF61vOvj+xH27dvT5KMGDFiKLYHAAAAAAAAAAAAAGAIDEmA/Wc/+1mS5MgjjxyK7QEAAAAAAAAAAAAAGALFfV1wyy237Pb+nXfemUceeWSPa9va2vKb3/wm//7v/56CgoKceuqpfd0eAAAAAAAAAAAAAIBhqs8B9ksuuSQFBQXd7nV2duZv//Zve92js7MzhYWFufzyy/u6PQAAAAyKtmfa9vi8Y1tHtjdvz4iKESkcufs3ONtbDwAAAAAAAAA41PQ5wJ68GEDvzb3dGTlyZE499dRcccUVmT179r5sDwAAAPtNRUVFSstKs/bGtQPSr7SsNBUVFQPSCwAAAAAAAACGuz4H2J988smu687OzrziFa9IQUFBfvCDH+SEE07ocV1BQUFKS0tzxBFHpKioaN+mBQAAgP2ssrIyjzU+lubm5j3WNTQ0pLa2NosXL05NTU2PdRUVFamsrBzoMQEAAAAAAABgWOpzgP24447b7f2JEyf2+AwAAACGk8rKyl6HzmtqajJt2rT9PBEAAAAAAAAAHBz6HGB/uY6OjoGYAwAAAAAAAAAAAACAg1zhUA8AAAAAAAAAAAAAAMChod8nsAMAADDwWlpa0tjY2O1ea2trmpqaUlVVlbKysm7PqqurU15ePpgjAgAAAHCAam9vT11dXdatW5cJEyZk1qxZKSoqGuqxAAAAIEkfAuxnnXXWgG9eUFCQH/7whwPeFwAAYLhrbGzM9OnTe11fX1+fadOm7ceJAAAAABgOli5dmgULFqSpqanrXlVVVRYtWpR58+YN3WAAAADw/+t1gH3FihUpKChIZ2dnjzUFBQXdvt5Z29v7AAAAvKi6ujr19fXd7jU0NKS2tjaLFy9OTU3NLvUAAAAAHNqWLl2a+fPn59xzz82tt96aqVOnZtWqVfn85z+f+fPnZ8mSJULsAAAADLleB9hf//rX7zFw/swzz+Txxx9P8mIwvaqqKkcffXT+P/buP7qxu77z/8vSeGwpCQkbDaBhoshNmJHAObvYCRh7FJxsT7ospnYUA6dUhfawJ7QLXRY00DqUL3Ba7F3AsHS7Z0+mcMLp8eJ0VzjuMgFafgQiEiiMaEO1R5oEGlUxY8hcmskvyR6P5O8fUymjsSTL9rX1kfR8nJNjz73v+fjjeef6Wrrvz/sjSb/4xS+UyWS0vr6urq4uveIVr9DBgwd3OHUAAAAAaF9ut7tmR/VgMEi3dQAAAAAAAFQoFAqKRqMaGxvT4uKiHA6HJGloaEiLi4uamJjQsWPHND4+LqfT2eTZAgAAAAA62ZY6sNfy1a9+Vb/5m7+pF73oRfrQhz6k3/md35HH46mIsSxL99xzj6anp3XmzBn9t//23/SGN7xh2xMHAAAAAKAkm83Ksqy6MalUquJjPR6PRz6fz5a5AQAAAAAA7IV4PK5MJqP5+fly8XqJw+HQ1NSUhoeHFY/HNTo62pxJAgAAALskn89LklZPr9oyXmmc0rgA7NVwAXstjz76qN7ylrdo3759euihh/SqV72qapzH49EHPvABvfGNb9TIyIje+ta36uTJkzp8+PBOpwAAAAAA6GDZbFbBwBHl8isNxUcikU1j3K5epdKnKGIHAAAAAAAtY3l5WZLU399f9XzpeCkOAAAAaCeZTEaStHR8yfZxR0ZGbB0TgA0F7LOzs3r++ef18Y9/vGbx+sVe+cpX6oMf/KA+9KEP6VOf+pSOHz++0ykAAAAAADqYZVnK5Vc0d7tLwQOOmnH58+vKnC3Kf5VDrn1dNeNSZ4qK3JeXZVkUsAMAAAAAgJbh9XolSclkUkNDQxvOJ5PJijgAAACgnfj9fknSoTsPqedgz47HWz29qqXjS+VxAdhrxwXsX//619XV1aVbb7214b9zyy23SJK+8Y1v7PTLAwAAAAAgSQoecGjA66wbM3LNHk0GAAAAAABgj4VCIfn9fk1PT2txcVEOxwsL/YvFomZmZtTX16dQKNTEWQIAAAC15XI5pdPpimP5fF6ZTEZ+v18ul6viXCAQkNvtlqTyuZ6DPXL5K+N24tKvCcAeOy5g3872Yl1dFzrd/fznP9/plwcAAAAAAAAAAAAAoOM5nU7Nzs5qcnJSExMTmpqaUn9/v5LJpGZmZnTixAnFYjE5nfUbAAAAAADNkk6nNTg42HB8IpHQwMDALs4IwG7ZcQH7VVddpSeffFLf+c539NrXvrahv/Ptb39bknTllVfu9MsDAAAAAAAAAAAAAABJ4XBYsVhM0WhUw8PD5eN9fX2KxWIKh8NNnB0AAABQXyAQUCKRqDiWSqUUiUQ0NzenYDC4IR5Aa9pxAXsoFFIsFtN/+S//RRMTEzp8+HDd+EcffVT/9b/+V3V1deno0aM7/fIAAAAAAAAAAAAAAOBfhMNhjY+PKx6Pa3l5WV6vV6FQqG7n9Ww2K8uy6o6bSqUqPtbj8Xjk8/m2NnEAAAB0PLfbXbOjejAYpNs60EZ2XMD+/ve/XwsLC3r66ac1NDSk/+//+//09re/Xf/qX/2ririnnnpKf/EXf6E//uM/1tmzZ+VwOBSNRnf65QEAAAAAgMFyuZzS6XTFsXoPvAOBgNxu957MDQAAAACAduV0OjU6OtpQbDab1ZHAEa3kVxqKj0Qim8b0unp1Kn2KInYAAAAAQFU7LmAfGhrSJz/5SUWjUT399NOKRqM6duyY+vr69JKXvERdXV36xS9+occff1zr6+taX1+XJH3iE5/Q0NDQjr8BAAAAAABgrnQ6rcHBwarnqj3wTiQSdM8AAAAAAGAPWZallfyKDt15SD0He2rGFc8VtWatqdvTLcd+R8241dOrWjq+JMuyKGAHAAAAAFS14wJ2SXrf+94nv9+v3//939fp06e1vr6un/70p/rHf/xHSSoXrUuS1+vVf//v/13hcNiOLw0AAAAAAAwWCASUSCQqjuXzeWUyGfn9frlcrg3xAAAAAABg7/Uc7JHL76ofdHhv5gIAAAAAaG+2FLBL0u23366xsTH91V/9lb7xjW/oH/7hH/TP//zPkqQXv/jFuuGGG/Srv/qrmpiYUHd3t11fFgAAAAAAGMztdlftqD4yMtKE2QAAAAAAAAAAAAAAms22AnZJ6u7u1uTkpCYnJ+0cFgAAAAAAAAAAAAAAAAAAAADQBhzNngAAAAAAAAAAAAAAAAAAAAAAoDNQwA4AAAAAAAAAAAAAAAAAAAAA2BP7mj0BAAAAAAAAAAAAAACwfblcTul0uuJYPp9XJpOR3++Xy+WqOBcIBOR2u/dyigAAAAAAlDVcwO50OiVJXV1dOn/+/Ibj23HpWAAAAAAAAAAAAEC7o9AUgN3S6bQGBwcbjk8kEhoYGNjFGQEAAAAAUFvDBezr6+tbOg4AAAAAwF7I5/OSpJRVsGW80jilcQEAAADAbhSaArBbIBBQIpGoOJZKpRSJRDQ3N6dgMLghHgAAAACAZmm4gP0jH/nIlo4DAAAAALAXMpmMJCmysGL7uCMjI7aOCQAAAAAShaYA7Od2u2sudAkGgyyCAQAAAAAYhQJ2AAAAAEBL8/v9kqS5cK+CHueOx0tZBUUWVsrjAgAAAIDdKDQFAABAuyoUCorH41peXpbX61UoFJLTufP37gEAQHtpuIBdku6++27dfPPNG7o+AAAAAADQLC6XS5IU9Dg14LXvTfDSuAAAAAAAAAAAYHMLCwuKRqPlnVOlC01oZmdnFQ6HmzcxAABgnC0VsP/e7/2eurq65PF4dPToUd188826+eab9W/+zb9RV1fXbs0RhmPlpDnIhVnIhznIhTnIhTnIhTnIhVnIhznIhTnIhTnIhVnIhznIhTnIhTnIhTnIhVnIhznIhTnIhTnIhTnIhVnIhznIhTlMzcXCwoImJyc1Njam+fl59ff3K5lManp6WpOTk4rFYm1XxG5qLjoRuTAL+QDQiC0VsEvS+vq6zpw5o8XFRS0uLkqSXvSiF2l4eLhc0H7TTTdp374tD40WxMpJc5ALs5APc5ALc5ALc5ALc5ALs5APc5ALc5ALc5ALs5APc5ALc5ALc5ALc5ALs5APc5ALc5ALczQ7F/l8XpK0enrVlvFK45TGbSXNzgUqkQ9zkAtzmJqLQqGgaDSqsbExLS4uyuFwSJKGhoa0uLioiYkJHTt2TOPj421TxGpqLjoRuTAL+QDQKMdWgr/whS/one98pw4fPqz19fXyf08//bS+9rWv6a677tLRo0d15ZVX6tZbb9VHP/pRfetb32rJF6bYXGnl5A033KDvfe97evbZZ/W9731PN9xwgyYnJ7WwsNDsKXYMcmEW8mEOcmEOcmEOcmEOcmEW8mEOcmEOcmEOcmEW8mEOcmEOcmEOcmEOcmEW8mEOcmEOcmEOE3JRKi5aOr6kn370pzv+b+n4UsW4rcKEXOAF5MMc5MIcJuciHo8rk8norrvu0vr6ur797W9rfn5e3/72t7W+vq6pqSk9/vjjisfjTZujnUzORachF2YhHwC2omt9fX19O3/xzJkzisfj5f8eeeQRFQqFFwbu6ip/3t3drYGBgXKH9qNHj+pFL3rRzmffJp555hldeeWVevrpp1vm36VQKOj666/XDTfcULFyUpKKxaImJiaUTCb12GOPtc3Kye04dOiQfvazn+nlL3+5lpaWduVrkAuzkA9zkAtzkAtzkAtzkAuztFI+fvSjH2lwcFCJREIDAwNNnctu2G4uyv8ud16mAe/Oc/Sj5YIGjz+/6b9zO+ejla6LdkcuGrMXr78l8mEScmEOcmEOctEY3rPtPK2Uj3Z+jSG1Vi7aHbnYXLu8xmj058pDDz2ko0eP6tCdh9RzsGdb38vFVk+vaun4kr773e9qZGRkx+PtBZOvi1wup3Q6XXEsn88rk8nI7/fL5XJVnAsEAnK73Xs5RduZnI9OQy421y73jJ2an5/X2972Ns3NzemP/uiPNnRe/pM/+RNFIhF98Ytf1G/8xm/s+fzsZHouOgm5MMtu5qPR32tLcdd99Dq5/K6acY3KZ/L66Ud/auzr9FasOwUutqUO7Bc7cOCAwuGwPvOZz+jkyZN66qmn9LWvfU0f+tCHdPPNN6unp6fcof3cuXP627/9W33yk5/Um970Jl199dUaGBjQ+973Pju/F+yhi1dOXnyzkSSHw9F2KydNRi7MQj7MQS7MQS7MQS7MQS7MQj7MYXIucrmcfvSjH1X8l0qlJEmpVGrDuVwut+dztJPJueg05MIs5MMc5MIc5MIc5MIc5MIs5MMc5MIc5MIcpuSiVADdc7BHLr9rx/+ViuAvLaw2mSm5qCadTmtwcLDiv6NHjyoSiejo0aMbzl1a7N6KTM5HpyEX5jA9F16vV5L0W7/1W1U7L//Wb/1WRVwrMz0XnYRcmIV8ANiqfXYNdPnll+u2227TbbfdJklaW1vTD3/4Q8XjcT344IN6+OGH9fTTT0u6sNrm7//+7/XII4/oM5/5jF1TwB5aXl6WJPX391c9XzpeisPuIRdmIR/mIBfmIBfmIBfmIBdmIR/mMDkXpQeF1UQikQ3HTO3E0CiTc9FpyIVZyIc5yIU5yIU5yIU5yIVZyIc5yIU5yIU5yIU5TM5FIBBQIpGoOJZKpRSJRDQ3N6dgMLghvtWZnI9OQy7MYXouhoeHtW/fPl199dVaWFjQvn0XStKGhoa0sLCgQ4cO6Ze//KWGh4ebMj87mZ6LTkIuzGJSPlZPr9Y9XzxX1Jq1pm5Ptxz7a/eA3mwcADtjWwH7pbq7uzU8PKzh4WH9wR/8gc6dO6cvfOEL+sQnPqHHH39c6+vru/WlsQdKKyKTyaSGhoY2nE8mkxVx2D3kwizkwxzkwhzkwhzkwhzkwix25mMr2/m2w1a+djP52qj2oHCzrZpbmcm56DTkwizkwxzkwhzkwhzkwhzkwizkwxzkwhzkwhzkwhwm58LtdtdslBAMBlu6iUItJuej05ALc5iei4cffljnz5/XL37xC4XDYU1NTam/v1/JZFIzMzP6xS9+UY4bHR1tyhztYnouOgm5MIsJ+fB4POp19Wrp+JJtY/a6euXxeGwbD8ALutZ3qZJ8dXVV3//+9/Xggw8qHo/r+9//vp5//nlJKhevd3V1qVAo7MaXbynPPPOMrrzySj399NN60Yte1OzpNKRQKOj666/XDTfcoMXFxYptP4rFoiYmJpRMJvXYY4/J6XQ2cabNdejQIf3sZz/Ty1/+ci0t2XdjvBi5MAv5MAe5MAe5MAe5MAe5MIud+fjRj35Us0v3pbbTobs0fqt3965lu7ko/7vceZkGvDu/Zn60XNDg8efb9t+5EfycMge5aMxevP6WyIdJyIU5yIU5yEVjeM+287RSPnjNZ04u2h252Fy7vMZo9OdKKe66j14nl99VM65R+UxeP/3oT1vq51mrXRfcM8zKRzsjF5trl3vGTs3Pz+ttb3ub5ubm9Ed/9EfKZDLlc319ffrjP/5jRSIRffGLX9Rv/MZv7Pn87GR6LjoJuTDLbuZjK7/7ZLNZWZZVN6bebjaX8ng88vl8W5rvXmnFulPgYrZ1YH/66af10EMPKR6P68EHH1QikdDa2pqkFwrWnU6nbrjhBh09elRHjx5VKBSy68tjD5W6Sr773e/WBz/4Qd1yyy1629veJqfTqUKhoC9+8YuKx+P6xCc+oUceeYTOkruIXJiFfJiDXJiDXJiDXJhldXWVXBjC7mtjK9v5tnqHbrvxc8oc5MIc5MIsW8nH6uoqudhFXBvmIBfmIBfmIBdm4f5tDq4Nc5ALc5ALc5ALs5APc5ALc7RCLkodla+77jr95Cc/UTwe1/Lysrxer0KhkH7wgx9UxLWqVshFpyAXZjEpHz6fr+GC83bdzQZoFdvuwP7zn/9c8Xi8XLCeTCbLheqlj263W695zWvKBeuve93rdMUVV9g3+zbRaithttJVUtpeZ8l2sdsrbcmFWciHOciFOciFOciFWXa7SzcatxfXhp3dkNq5s9JOckEHdntxzzAHuWjcXnS64v5tDq4Nc5ALc5CLxvGebWdptfs3r/le0I7/BqYgF40x7TWGtLvvS3V6B/ZWvC64Z7ygHf8NTEEuGtMu94yd6pRO2K2Qi05BLsyy2/mw+3efdvldqtXqToFLbakD+xe+8IVy0fpPf/rT8vFSwbrH49HIyEi5u/rAwID27bOtyTsMcWlXyUKhoMXFRU1PT+uuu+7SxMRExS+bdJbcPeTCLOTDHOTCHOTCHOTCLBfng1w0F9eGOciFOciFOciFWbaSD3Kxu7g2zEEuzEEuzEEuzML92xxcG+YgF+YgF+YgF2YhH+YgF+ZohVw4nU7Nzs5qcnJSExMTmpqaUn9/v5LJpGZmZnTixAnFYrGWLl6XWiMXnYJcmIV8ANiOLXVgdzgc6urqKhesX3fddeXu6kePHtWRI0d2baLtrB1WwrTLqiS77cVK20uRC7OQD3OQC3OQC3OQC3OQC7OYvIK/0/5f2WqXsLnbXQoecNSMy59fV+ZsUf6rHHLt66oZlzpTVOS+fMf8Ozei0/7fMxm5qK4Zr78l8mEScmEOcmEOclEd79nC5HyYPLfd0Gnfr8nIxUbt8hqDDuzbZ/p1Yfr87NZp36/JyMVG7XLPsMvCwoKi0agymUz5WF9fnz71qU8pHA43b2K7yNRcdCJyYRaTn5G2y/8r7VB3is62rfbo+/bt05vf/GZNTk7q6NGjOnDggN3zAgAAAACgIR6PR25XryL35W0b0+3qlcfjsW08AAAAAAAAAADaXTgc1vj4uOLxuJaXl+X1ehUKhVq+8zoAALDflgrYX/ziF+upp57S+fPnde+99+ree++VJL3iFa/Q0aNHFQqFdPToUV133XW7MlkAAAAAe6tQKPAmI4zn8/mUSp+SZVl141KplCKRiObm5hQMBuvGejwe+Xw+O6cJAAAAAAAAAIBx7H4W5HQ6NTo6at8EAQBAW9pSAfsvf/lL/b//9/8Uj8f14IMPKh6P62c/+5keffRRPfroo7rnnnskSS996Ut19OjR8n+vfvWr1dVVe3t2AAAAAOapts2j3+/X7Oxs227z2EzZbLahAuyLP9bTaQXYPp+v4e83GAy29HaAAAAAAAAAAADYgWdBAACgWbZUwC5Jr3rVq/SqV71Kv/u7vytJymQy5WL2eDyuRx99VD//+c8Vi8X0pS99SZJ0+eWXa2hoqNylfWhoSL29vfZ+JwAAAABss7CwoMnJSY2NjWl+fl79/f1KJpOanp7W5OSkYrEYb1zaKJvN6kjgiFbyKw3FRyKRTWN6Xb06lT7VUUXsAAAAAAAAAACgMTwLAmACmnwBnWvLBeyX8vv98vv9evvb3y5JOnPmTEVB+yOPPKJnn31WX//61/WNb3zjwhfdt0+vfvWrFQqF9MlPfnKnUwAAAABgo0KhoGg0qrGxMS0uLsrhcEiShoaGtLi4qImJCR07dkzj4+M72kISL7AsSyv5FR2685B6DvbUjCueK2rNWlO3p1uO/Y6acaunV7V0fEmWZfEGDQAAwL+we0t0AAAAAABaFc+CAJggm80qGDiinI1NvtyuXqVo8gW0hB0XsF/qwIEDuuOOO3THHXdIkp599lk99NBDisfjevDBB3Xy5Emtrq7qBz/4gX74wx9SwA4AAAAYJh6PK5PJaH5+vvyGZYnD4dDU1JSGh4cVj8c1OjranEm2qZ6DPXL5XfWDDu/NXAAAANoJW6IDAAAAAPACngUBMIFlWcrlVzR3u0vBA7Wbd+XPrytztij/VQ659nXVjEudKSpyX54mX0CLsL2A/VJXXHGFfuVXfkU/+9nP9MQTTyiTyej06dNaX1/f7S8NAAAAYBuWl5clSf39/VXPl46X4gAAAACTsSU6AAAAAACVeBYEwCTBAw4NeOvv9jByzR5NBsCesb2AfX19XX//93+veDxe/u/MmTMbYgAAAACYyev1SpKSyaSGhoY2nE8mkxVxAAAAgKnYEh0AAAAA2l+hUFA8Htfy8rK8Xq9CoRCv8TbBsyAAANBsOy5gX1tb09/+7d+Wi9UffvhhPfvss+XzlxarX3fddQqFQrr55pt188037/TLAwAAALBZKBSS3+/X9PR0RZGPJBWLRc3MzKivr0+hUKiJswQAAAA2x5boAAAAANDeFhYWFI1Glclkysf8fr9mZ2fZbasOO58F5XI5pdPpimP5fF6ZTEZ+v18ul6viXCAQkNvttucbAQAALWvLBezPPfecHn74YT344IOKx+P64Q9/qNXV1fL5iwvWu7q61N/fr5tvvrlctM7KPAAAAMBsTqdTs7Ozmpyc1MTEhKamptTf369kMqmZmRmdOHFCsViM7iUAAAAwHluiAwAAAED7WlhY0OTkpMbGxjQ/P19+ljE9Pa3JyUnFYjGK2Guw81lQOp3W4OBgw187kUhoYGBgJ9MHAABtYEsF7DfeeKMeeeQRFYvF8rGLC9b37dunV7/61eWC9VAopBe/+MX2zRYAAADAngiHw4rFYnr/+9+v4eHh8nG/388bvgAAAGgZbIkOAAAAAO2pUCgoGo1qbGysooP40NCQFhcXNTExoWPHjml8fJyGPDWUngVFo9GKZ0F9fX1behYUCASUSCQqjqVSKUUiEc3NzSkYDG6IBwAA2FIB+49+9KOKP/f29uo1r3mNbr75Zt1888163etep8suu8zWCQIAAABonq6urmZPAQAAANg2O7dEBwAAaHerp1frni+eK2rNWlO3p1uO/Y6acZuNAwB2iMfjymQymp+fr3itJ0kOh0NTU1MaHh5WPB7X6OhocybZAsLhsMbHxxWPx7W8vCyv16tQKLSlon+3212zo3owGKTbOgAAqGpLBeyXX365RkZGygXrN910k/bv379bcwMAAADQJGy7CQAAgHZg55boAAAA7crj8ajX1aul40u2jdnr6pXH47FtPAC41PLysiSpv7+/6vnS8VIcXpDL5ZROpyuOdXd3q1gsqru7W4888kjFuUAgILfbvZdTBAAAHWBLBexnz57dsGoRAAAAQHth200AAAC0E7u2RAcAADBJNpuVZVl1Y1KpVMXHer71zW+pp6dn0/EikYjm5uYUDAbrxno8Hvl8vk2/LgBsl9frlSQlk0kNDQ1tOJ9MJivi8IJ0Oq3BwcGG4xOJBF3UAQCA7bZUwE7xOgAAAND+2HYTAAAA7caOLdEBAABMkc1mFQwcUS6/0lB8JBLZNMbt6lUqfaqhovNgMEghI4CmC4VC8vv9mp6ermjGI0nFYlEzMzPq6+tTKBRq4izNFAgElEgkKo7VW6QUCAT2cnoAOkg+n5ckpayCLeOVximNC8BsWypgBwAAAND+2HYTAAAA7cjpdLIAEwAAtAXLspTLr2judpeCB2o3ocufX1fmbFH+qxxy7euqGZc6U1Tkvrwsy6JrOoCW4XQ6NTs7q8nJSU1MTGhqakr9/f1KJpOamZnRiRMnFIvFWLhchdvtrrkQiUVKAPZSJpORJEUWGluYuZVxR0ZGbB0TgP0oYEfbyeVySqfTFcfy+bwymYz8fr9cLlfFuUAgILfbvZdTBAAAMBrbbgIAAKAd8D4hAABod8EDDg146xdmjlyzR5MBgCYIh8OKxWKKRqMaHh4uH+/r61MsFlM4HG7i7AAAm/H7/ZKkuXCvgp6dLzhKWQVFFlbK4wIwGwXsaDvpdFqDg4MNxycSCVaPAgAAXIRtNwEAANAOeJ8QAAAAANpfOBzW+Pi44vG4lpeX5fV6FQqF6LwOAC2g1GAi6HFuujBzO+MCMBsF7Gg7gUBAiUSi4lgqlVIkEtHc3JyCweCGeAAAALyAbTf3Xj6flyStnl61ZbzSOKVxAQAAOhHvEwIAAABAZ3A6nRodHW32NAAAALAFFLCj7bjd7pqdkoLBIF2UAAAAGsC2m3srk8lIkpaOL9k+7sjIiK1jAgAAtAreJwQAAAAAAAAAwEwUsAMAAACoim03947f75ckHbrzkHoO9ux4vNXTq1o6vlQeFwAAAAAAAAAAAAAAwBQUsAMAAACoiW0394bL5ZIk9Rzskcvvsn1cAAAAAEBzZbNZWZZVNyaVSlV8rMfj8cjn89kyNwAAAAAAAGCvUcAOAAAAoKZCoUAHdgAAAAAAdiCbzepI4IhW8isNxUcikU1jel29OpU+RRE70KHy+bwkKWUVbBmvNE5pXAAAAAAAdhsF7AAAAACqWlhYUDQaVSaTKR/z+/2anZ1VOBxu3sQAAAAAAGghlmVpJb+iQ3ceUs/BnppxxXNFrVlr6vZ0y7HfUTNu9fSqlo4vybIsCtiBDlV6vy6y0NjCmK2MOzIyYuuYAAAAAABUQwE7AAAAgA0WFhY0OTmpsbExzc/Pq7+/X8lkUtPT05qcnFQsFqOIHQAAAACALeg52COX31U/6PDezAVAa/P7/ZKkuXCvgp6d75aYsgqKLKyUxwUAAAAAYLdRwA4AAACgQqFQUDQa1djYmBYXF+VwXOj6NjQ0pMXFRU1MTOjYsWMaHx+X07nzB2QAAAAAAAAAGudyXVgME/Q4NeC17/250rgAAAAAAOw2CtgBAAAAVIjH48pkMpqfny8Xr5c4HA5NTU1peHhY8Xhco6OjzZkksIlcLqd0Ol1xLJVKVXy8WCAQkNvt3pO5AQAAAAAAALVks1lZllU3pt77XJfyeDzy+Xy2zA0AAAAA7EIBOwAAAIAKy8vLkqT+/v6q50vHS3GAidLptAYHB6uei0QiG44lEgkNDAzs9rQAAAAAAACAmrLZrI4Ejmglv9JQfLX3uS7V6+rVqfQpitgBAICxUmeKdc/nz68rc7Yo/1UOufZ1bXscAGahgB0AAABABa/XK0lKJpMaGhracD6ZTFbEASYKBAJKJBIVx/L5vDKZjPx+/4YtsQOBwF5ODwAAAAAAANjAsiyt5Fd06M5D6jnYUzOueK6oNWtN3Z5uOfY7asatnl7V0vElWZZFATsAADCOx+OR29WryH1528Z0u3rl8XhsGw/A7qGAHQAAAECFUCgkv9+v6elpLS4uyuF44QFIsVjUzMyM+vr6FAqFmjhLoD632121o/rIyEgTZgMAAAAAAAA0rudgj1x+V/2gw3szFwAAgN3i8/mUSp+SZVl141KplCKRiObm5hQMBuvGejweFu4BLYICdmwqm802dJO4+GM93CR2ZrN8kIu9w7VhDnJhDnJhDnJhlla7fzudTs3OzmpyclITExOamppSf3+/ksmkZmZmdOLECcViMTmdzl2dx27g2jAHuTAHuTAHuTCLnfkgFzvDtWEOcmEOcmEOcmEW7t/m4NowB7kwh525aCRXqI3rwizcv83BtWEOcmEOcmEOcmEWu+/f1ZpSVRMMBhuOBWA+CthRVzab1ZFAUCv5XEPxkUhk05hel1un0il+CdiGreSDXOwurg1zkAtzkAtzkAuztOr9OxwOKxaLKRqNanh4uHy8r69PsVhM4XB4V7/+buDaMAe5MAe5MAe5MIvd+SAX28e1YQ5yYQ5yYQ5yYRbu3+bg2jAHuTDHbuQC28N1YRbu3+bg2jAHuTAHuTAHuTAL928AdqGAHXVZlqWVfE5Xj0XVffU1NePWz5/T+ad/oX1XvlRd+/bXjFv75RP65YlZWZbFTWcbGskHudgbXBvmIBfmIBfmIBdmaeX7dzgc1vj4uOLxuJaXl+X1ehUKhVqy87rEtWEScmEOcmEOcmEWO/NBLnaGa8Mc5MIc5MIc5MIs3L/NwbVhDnJhDrtzkf/Hk3o6PrcbU217XBdm4f5tDq4Nc5ALc5ALc5ALs7Ta/TuXyymdTlccq9cdPhAIyO1278pcAFSigB0N6b76GvW87Pr6QYdeuTeTweb5IBd7hmvDHOTCHOTCHOTCLK16/3Y6nRodHW32NGzFtWEOcmEOcmEOcmEW8mEOcmEOcmEOcmEOcmEW8mEOcmEOcmEOu3Kx9ssnbJpR5+K6MAv5MAe5MAe5MAe5MAe5MEur5COdTmtwcLDquWrd4ROJhAYGBnZ7WgBEATsAAAAA7Ei1lfnVzteL22wMAAAAAAAA4FKpM8W65/Pn15U5W5T/Kodc+7q2PQ4AAADQqgKBgBKJRMWxfD6vTCYjv98vl8u1IR7A3qCAHQAAAEBZtS3UNnsB36lbqBWee0qOruor86tpNA4AAAAA0F7y+bwkafX0qi3jlcYpjQug8zh6Lr/wvtR99v0ccLt65fF4bBsPAAAAMIHb7a7aUX1kZKQJswFwMQrYAQAAAJTV20Ktmk7eQq24+pyK69Lc7S4FDzhqxjXS6eorj53Xhx+wp5ABAAAAAGCWTCYjSVo6vmT7uDxwBzqT8/IXX3hfam5OwWCwZlwqlVIkEtk0TpI8Ho98Pp/dU+1INAkBAAAAgM1RwA4AAACgrNoWavUedLGFmhQ84NCA11k3ZuSa+mOkrIKNMwIAAAAAmMTv90uSDt15SD0He3Y83urpVS0dXyqPC6BzBYPBhppLNBoHe9AkBNh9LBQBGlMoFBSPx7W8vCyv16tQKCSns/4zLQAA9goF7AAAAADKam2hJvGgCwAAAACAkq0UgpQKqHoO9sjld1WN2Y5LC7MAAGagSQiw+1goAmxuYWFB0Wi0vCOUdGFx7ezsrMLhcPMmBgDAv6CAHQAAAAAMsXp6te754rmi1qw1dXu65djv2PY4AAAAAIDtoxAEAFAPTUKA3cdCEaC+hYUFTU5OamxsTPPz8+rv71cymdT09LQmJycVi8V47QIAaDoK2AEAAACgya7q7ZK6pKXjS7aN2evqlcfjsW08AAAAAACFIAAAACZgoQhQW6FQUDQa1djYmBYXF+VwXGiINDQ0pMXFRU1MTOjYsWMaHx+vuYsUAAB7gQJ21JXP5yVJa798wpbxSuOUxsXW2JkPcrEzXBvmIBfmIBfmIBdm4f5tDruvjfNP/+LCuOfXdzyW93KHtK6qnWEuVq+DzKU8Ho98Pt+O57Yb+DllDnJhDnJhFu7f5uDaMAe5MAe5MAe5MMte3L8pBGkM14Y5yIU5yIU5yIVZeP1tDq4Nc7RCLrLZrCzLqhuTSqUqPtZj6vOMVshFNfF4XJlMRvPz8+XXLCUOh0NTU1MaHh5WPB7X6Ojors7FLq2ai3bF/RuAXShgR12l7S9/eWLW9nFHRkZsHbMT7EY+yMX2cG2Yg1yYg1yYg1yYhfu3OXbt2jhb1Mg19ozVaGeYVu8gw88pc5ALc5ALs3D/NgfXhjnIhTnIhTnIhVn24v7djoUgu4Frwxzkwhzkwhzkwiy8/jYH14Y5TM9FNpvVkcARreRXGoqPRCKbxvS6enUqfcq4InbTc1HL8vKyJKm/v7/q+dLxUlwraNVctCvu3wDsQgE76vL7/ZKkq8ei6r5651U5a798Qr88MVseF1tjZz7Ixc5wbZiDXJiDXJiDXJiF+7c57L428v94Uk/H5+S/yrF5MCrwc8oc5MIc5MIs3L/NwbVhDnJhDnJhDnJhlr24f19cCFIoFBSPx7W8vCyv16tQKNSShSC7gWvDHOTCHOTCHOTCLLz+NgfXhjlMz4VlWVrJr+jQnYfUc7CnZlzxXFFr1pq6Pd1y7K/9HGX19KqWji/JsizjCthNz0UtXq9XkpRMJjU0NLThfDKZrIhrBa2ai3bF/RuAXdqigP2f/umf9Kd/+qe6//779cQTT6inp0fXXXed3vKWt+jd73633G73tsdOpVL65je/qR/+8If6h3/4Bz355JOyLEtOp1MvfelLddNNN+ltb3ubfv3Xf11dXV02fldmcLlckqTuq69Rz8uut31cbM1u5INcbA/XhjnIhTnIhTnIhVm4f5vD7lyUtrRz7Wu/1wG7jZ9T5iAX5iAXZuH+bQ6uDXOQC3OQC3OQC7Psxf27VODxZ3/2Z7r77rvLXeekCw/w77zzzoq4TsW1YQ5yYQ5yYQ5yYRZef5uDa8McrZKLnoM9cvk3GfOwrV9yz7VKLi4VCoXk9/s1PT2txcXFit2jisWiZmZm1NfXp1AotKvzsFOr5qJdcf8GYJeWL2D/8pe/rEgkomeeeaZ8LJfL6eTJkzp58qQ+97nP6f7779f112/vh+XHP/5x/a//9b+qnnv88cf1+OOP63//7/+t17/+9frSl76kq6++eltfBwAAAAAAAAAAAOYKhUI6cOCApqamNDY2pvn5efX39yuZTOrjH/+47rrrLr3kJS9pqUIQAAAAdIZUKtXQ+UbjYC6n06nZ2VlNTk5qYmJCU1NT5dctMzMzOnHihGKxmJxOZ7OnCgDocC1dwP53f/d3eutb36p8Pq/LL79cU1NTuuWWW5TP53Xvvffqz//8z/Xoo4/qjW98o06ePKkrrrhiy19j3759eu1rX6uRkRHdcMMNetnLXqYDBw7oqaeeUjqd1t13361kMqnvfOc7etOb3qTvfve7FSvXAAAAAAAAAAAA0B4u3o13fX29/B8AAABgosJzT8nRJUUikYbiG42D2cLhsGKxmKLRqIaHh8vH+/r6FIvFFA6Hmzg7AAAuaOkC9ve+973K5/Pat2+f/uZv/kave93ryuduvfVWveIVr9AHP/hBPfroo5qdndVHP/rRLX+Nz33uc9q3r/o/06/+6q/q937v9/SWt7xFCwsL+t73vqcTJ07o13/917f7LQEAAAAAAAAAAMBA8XhcTz75pGZmZnT33XdvKASZnp7WXXfdpXg8rtHR0eZNFAAAAPgXxdXnVFyX5m53KXigdkPO/Pl1Zc4W5b/KIde+rppxX3nsvD78wOpuTBU2C4fDGh8fVzwe1/Lysrxer0KhEJ3XAQDGaNkC9h/84AeKx+OSpHe+850Vxesl0WhU99xzj1KplD772c/qQx/6kLq7u7f0dWoVr5c4nU594AMf0MLCgqQLb15SwL63stmsLMuqG9PoVkeS5PF45PP5bJkbAAAAAAAAAABoD8vLy5Kk97znPfrABz6woRAkl8vprrvuKscBALBV+XxekrR62p7i0NI4pXEBdK7gAYcGvPULl0eu2XyclFWwaUbYC06nk8W1AABjtWwB++LiYvnz3/md36ka43A49Pa3v11TU1M6e/asHnjgAd122222z+WKK64of76ysmL7+Kgtm83qSOCIVvKN/bs3stVRr6tXp9KnKGIHAABAXeuFNUn2vFlbGoMHSQAAAABgLq/XK0lKJpMaGhraUAiSTCYr4gAA2KpMJiNJWjq+ZPu4IyMjto7ZiXK5nNLpdMWxfD6vTCYjv98vl8tVcS4QCMjtdu/lFAEAhuCeAQCba9kC9u9+97uSpMsuu0yDg4M1417/+teXP3/ooYd2pYD93nvvLX8eCARsHx+1WZallfyKDt15SD0He2rGFc8VtWatqdvTLcf+2lsirZ5e1dLxJVmWRQE7AAAA6io898+SpMiCfYtYeZAEAAAAAGbK5XK67LLLdPDgQf3BH/yBZmdntbq6Wi4+6Onp0R/+4R/q5S9/uS677DLlcjmKDwAAW+b3+yVp0+ffjSo9/y6Ni51Jp9N161MulUgkNDAwsIszAgCYinsGAGyuZQvYU6mUJOn666/Xvn21v42LC8pLf8cOlmXpscce0+c+9zndc889kiSPx6Pf/M3ftO1roHE9B3vk8rvqBx3em7kAAACgMzgv/1eSpLlwr4Ke+ttubiZlFRRZWOFBEgAAAAAYKp1O6zWveY0k6fTp07rppptqxr7mNa+h+AAAsC2lbqwNPf/exrjYmUAgoEQiUXEslUopEolobm5OwWBwQzwAoDNxzwCAzbVkAfvKyoosy5IkHTp0qG7si1/8Yl122WV6/vnn9cQTT+zo646Ojuo73/lO1XMej0f33Xefrrrqqk3HWV1d1erqavnPzzzzzI7mBQAAAGDvdTm7JUlBj1MD3p0VsJfwIAkAAAAAzHRx8cG3vvUtfeYzn9Hp06fL51/+8pfrP//n/6xbb721HH+p1dOrG45dbCu7yQIAgL3ndrtrLlALBoMsXgMAlHHPAIDNtWQB+7PPPlv+/PLLL980vlTA/txzz+3KfP7Tf/pP+vCHPyyPx9NQ/MzMjD72sY/tylwAAAAAAAAAAABgr4uLDwYGBvS+971Pn//85/Wud71Ld999t975znfK6ay+uNnj8ajX1aul40u2zafX1dvwcykAAAAAAADANC1ZwL6yslL+fP/+/ZvG9/T0SJLy+fyOvu4999yj559/Xuvr6zp79qxOnjyp//k//6f+7M/+TP/4j/+oz33uc3rpS1+66ThTU1N6//vfX/7zM888o2uuuWZHcwMAAAAAAAAAAMDecDqduvHGGyVJN954Y83idUny+Xw6lT5V3l24lnrbyV/K4/HI5/NtfeIAAAAAAACAAVqygL23t7f8+blz5zaNX129sJWiy+Xa0dft6+ur+HMoFNLv/d7v6c1vfrNOnDihm266SQ8//LAOHTpUd5yenp5yUX2rWPvlE3XPr58/p/NP/0L7rnypuvbVXlSw2ThoTL1/R3Kxt7g2zEEuzEEuzEEuzML92xx2XRvnn/6F3VPrOPycMge5MAe5MIsd+SAX9uDaMAe5MAe5MAe5MIup92+fz9dwwXm7bCfPtWEOcmGOVspFLpdTOp2uOJZKpSo+XiwQCMjtdu/6vOzSSrnoBKbevzsR14Y5eJZhDq4Lc5ALs3D/BrBTLVnAfsUVV5Q/f+655zaNf/755yVJl19+ue1z6e3t1T333KNrr71WTzzxhD74wQ/qi1/8ou1fp1kubGvp1i9PzNo2Zq/LXbGtZbU3P/L5vDKZjPx+/4aFB6325oed7M7HpblA4/bi2kBjyIU5yIU5yIVZTL9/Z7PZhjrAXfyxHpM7wO3GtYHt4eeUOciFOciFWUy/f3cSrg1zkAtzkAtzkAuzcP82B9eGOciFOZr1zHUnBefpdFqDg4NVz0UikQ3HEolESyy+4bowC/dvc3BtmINnGebgujAHuTAL928AdmnJAvbe3l5dffXV+uUvf6mlpaW6sU899VS5gP2aa67Zlfl4PB6NjIzo61//uv7qr/5Ka2tr6u7u3pWvtdcubGuZ2tVtLeu9+VHNxW9+5PN5SdLq6dWG/349pXFK45qmkXywxeje2ItrA40hF+YgF+YgF2Yx+f6dzWZ1JHBEK/mVhuKrPZi6VK+rV6fSp4z8/8Xua6MUh63j55Q5yIU5yIVZ7M4Hudg+rg1zkAtzkAtzkAuzcP82B9eGOciFOZr9zHU7BeeBQECJRKLi2GZNyFoB14VZuH+bg2vDHDzLMAfXhTnIhVm4fwOwS0sWsEvSK1/5SsXjcf3kJz/R+fPntW9f9W/l4lXmm92YduLAgQOSLqxstyxLXq93177WXtvtbS2rvflR7wZ28ZsfmUxGkrR0vP5Chq3KZDIaGRmxdUy7NJqPdtli1GSduOWrqciFOciFOciFWUy9f1uWpZX8ig7deUg9B3tqxhXPFbVmranb0y3HfkfNuNXTq1o6viTLsox9k4FrwxzkwhzkwhzkwizkwxzkwhzkwhzkwhzkwizkwxzkwhzkwhzNeOa6k4Jzt9tddQ6mPkPdCq4Ls5APc5ALc5ici9Xz6xc+dlCjSVNz0WnIhVnIBwA7tGwB+9GjRxWPx/X8888rkUjota99bdW473znO+XPd/PF9M9+9rPy55dffvmufZ12VOvND2nzG5jf75ekTYuuGlUquiqNCwAA0Al6DvbI5XfVDzq8N3MBAAAAAAAAsHXtXHAOADDH6WcvFLB3UqNJAACwO1q2gH1iYkIzMzOSpHvuuadqAXuxWNRf/MVfSJKuuuoq3XLLLbsyl6WlJX3ve9+TJF177bW64oorduXrYKNSp4CGiq62MS4AAECrKRQKisfjWl5eltfrVSgUktPpbPa0AAAAgF2XzWYb2rr44o/1sH0xAAAAGmHn76GN/J4KAM108IouSTSaBLB7crmc0ul0xbF6v0sFAgG53e49mRsAe7VsAftrXvMahUIhxeNxff7zn9c73vEOve51r6uImZ2dLf/Qeu9736vu7u6K89/+9rfLRe3veMc79IUvfKHi/KOPPqqlpSXdeuutNefx9NNP621ve5vOnTsnSXr729++028NAAAA2JaFhQVFo1FlMpnyMb/fr9nZWYXD4eZNrM2lzhTrns+fX1fmbFH+qxxy7eva1hgAAACoL5vN6kjgiFbyKw3FRyKRTWN6Xb06lT5FETsAAABqymazCgaOKGfj76EAYLKef3nOQaNJe1Qr1M3n88pkMvL7/Rv+XSjURSdIp9MaHByseq7a71KJRKLqTkQAzNeyBeyS9NnPflYjIyPK5/O67bbbdNddd+mWW25RPp/Xvffeq+PHj0uSDh8+rGg0uuXxT58+rX/7b/+t/vW//teamJjQ4OCgXvayl2nfvn36+c9/roceekif//zn9fOf/1yS1N/frz/8wz+09XsEAAAAGrGwsKDJyUmNjY1pfn5e/f39SiaTmp6e1uTkpGKxGEXsNvN4PHK7ehW5L2/LeG5Xrzwejy1jAQAAdBrLsrSSX9m0A1zxXFFr1pq6Pd1y7HfUjCt1gLMsiwJ2AAAA1GRZlnL5Fc3d7lLwQO3fLxtpciFJX3nsvD78wOpuTBVAh8rnLzzDSFkFW8Z7/KkLDXmK52jMY4d6hbrVUKiLThAIBJRIJCqObbawA0BraukC9le/+tX6y7/8S0UiET3zzDO66667NsQcPnxY999/v6644optf51HHnlEjzzySN2YN77xjbrnnntY5QYAAIA9VygUFI1GNTY2psXFRTkcFx6UDA0NaXFxURMTEzp27JjGx8fldDqbPNv24fP5lEqfamh74Egkorm5OQWDwZpxHo+H4igAAIAdaqgD3OG9mQsAAEAzFQoFxeNxLS8vy+v1KhQK8d7gLgoecGjAW//fd+Sazcexq8AUMBGdppujtGtvZKGxnSIatWat8fraBtUKdes9V6JQF53A7XZXXagxMjLShNkA2E0tXcAuSW9605v04x//WJ/97Gd1//33a2lpSfv379f111+vN7/5zXrPe96z7V9oR0ZG9Nd//df6xje+oZMnT2ppaUm/+MUvlMvl9KIXvUh9fX0aGhrSb/zGb/ADEgAAAE0Tj8eVyWQ0Pz9fLl4vcTgcmpqa0vDwsOLxuEZHR5szyTbl8/kaLjoPBoN0xQAAAAAAAMCuW1hYUDQaLRctSpLf79fs7Cy7NAJoGjpNN4ff75ckzYV7FfTsfCHTVx5b04cfOKduT/eOx0LtQl2J50oAgPbX8gXsknTttdfq05/+tD796U9v6e+Njo5qfX295vnu7m7ddtttuu2223Y6RQAAAGDXLC8vS5L6+/urni8dL8UBAAAAAAAAaE8LCwuanJzU2NiY5ufn1d/fr2QyqenpaU1OTioWi1HE3gJWT6/WPV88V9SataZuT7cc+x014zYbB9hLdJpujlJn+6DHuelOEY0o7RRR72cPmoedDtCO2FkIaF9tUcCO1pLNZmVZVt2YVCpV8XGzOAAAgE6Vy+X07LPPSpK+9KUv6YYbbtjwRtSPf/xjSdKzzz6rXC7HG1EAAAAAAABAGyoUCopGoxobG9Pi4mJ5t8ahoSEtLi5qYmJCx44d0/j4OEU/hrqqt0vqkpaOL9k2Zq+rVx6Px7bxgO2i0zSw+9jpAO2GnYWA9kYBO/ZUNptVMHBEufxKQ/GRSGSXZwQAANDa0um03vWud0mSfvu3f7tu7Lve9S7deOON5Tei8vm8JPu68JTGKY0LAAAAAAAAYO/E43FlMhnNz8+Xi9dLHA6HpqamNDw8rHg8rtHR0eZMEnV5L3dI66rajfpi9bpWX8rj8cjn89k9VQCAgdjpAO2EnYWA9kcBO/aUZVnK5Vc0d7tLwQO1txPKn19X5mxR/qsccu3rqhn3lcfO68MPsO0ZAADoXKU3or71rW/pgx/8oEKhkG655RZ97GMf00c+8hE98MADisfj+sQnPqFbb7214o2o0kp1O7v5lMYdGRmxdUwAAAAAAAAA9S0vL0uS+vv7q54vHS/FwVyNdqOmazUA4GLsdIB2wc5CQGeggB1NETzg0IC3/s1j5JrNx0lZBZtmBAAA0JpKb0QNDAzoV37lVxSNRvWxj31MkvSxj31MfX19NVef+/1+SdKhOw+p52DPjueyenpVS8eXyuMCAAAAANCqstmsLMuqG5NKpSo+1kP3WwB7wev1SpKSyaSGhoY2nE8mkxVxAAAAgInYWQjoDBSwAwAAAG0iHA5rfHxcn//85/Wud71Ld999t975znfWXHXucrkkST0He+Tyu2ybR2lcAAAAAABaUTabVTBwRLn8SkPxkUhk0xi3q1ep9CmK2AHsqlAoJL/fr+np6YpOlZJULBY1MzOjvr4+hUKhJs4SANAMqTPFuufz59eVOVuU/yqHXPu6asY9/tS6pAtNjeopnitqzVpTt6dbjv2OmnGbjQOgM7GzENAZKGBHW+AXYwAAgAucTqduvPFGSdKNN97IlmkAAABoGblcTul0uuJYPp9XJpOR3+/fsFAyEAjI7Xbv5RQBdAjLspTLr2judpeCB2o/U2i0yCd1pqjIfXlZlkUBO4Bd5XQ6NTs7q8nJSU1MTGhqakr9/f1KJpOamZnRiRMnFIvFeM8QADqIx+OR29WryH15+wbtkpaOL9k2XK+rVx6Px7bxALQ+dhYCOgMF7GhpV/V28YsxAAAAAAAA0AbS6bQGBwcbjk8kEhoYGNjFGQHodMEDDg146xd5jlyzR5MBgAaFw2HFYjFFo1ENDw+Xj/f19SkWiykcDjdxdgCAvebz+ZRKn5JlWXXjUqmUIpGI5ubmFAwG68aurq6qp6fHtvE8Hg8LPQFUYGchoDNQwI6W5r3cIa1r0194+cUYAAAAraZaB9JUKlXx8WJ0IAUAAK0uEAgokUhUHKv3vl4gENjL6QEAALSMcDis8fFxxeNxLS8vy+v1KhQK0XkdADqUz+druA4mGAzauljc7vEAdAZ2FgI6AwXsaAuN/sLLL8YAAABoFfU6kEYikQ3H6EAKAABandvtrvn7DO/rAQAAwET5fF6SlLIKtoxXGqc0LoAXZLPZul3E6zWAuRSNDQHAfOwsBLQ/CtgBAACADrd6erXu+eK5otasNXV7uuXY76gZt9k42JpqHUjz+bwymYz8fr9cLteGeAAAgE5VKvCx63fS0jgUDgEAgFa0sLCgaDSqTCZTPub3+zU7O0uhj81K/8aRhRXbxx0ZGbF1TKCVZbNZHQkc0Up+82utWgOYS/W6enUqfYoidgAwHDsLAe2NAnYAAACgQ3k8HvW6erV0fMm2MXtdvfJ4PLaN18lqdSDlwRUAAMBGpcIhO3+3LY3L719A56GbLoBWtrCwoMnJSY2NjWl+fl79/f1KJpOanp7W5OQk3Spt5vf7JUlz4V4FPTsvpEpZBUUWVsrjArjAsiyt5Fd06M5D6jnYUzVmK814lo4vybIsCtgBoAU4nU6Njo42exoAdgEF7NhTvOkLAABgDp/Pp1PpU3W33JQubLcZiUQ0NzenYDBYN5ZtNwEAANAMpQKfesUMW1EqaKBwCOhMdNMF0KoKhYKi0ajGxsa0uLgoh+NCAefQ0JAWFxc1MTGhY8eOaXx8nK6VNintkhj0ODXgte/f9NLdF7E9uVxO6XS64thmu1y63e69nCK2qOdgj1z+OtfH4b2bCwAAAHaGAnbsKd70BQAAMIvP52u44DwYDFbtCA4AAAA0W6nwZNNihm2OC6Cz7EU33WoFdalUquLjxSioA9CIeDyuTCaj+fn5cvF6icPh0NTUlIaHhxWPx+liiY6QTqc1ODjYcHwikeA9cAAAAGCPUMCOPcUWagAAoBq6oAAAAAAAAFPsRTfdegV1kUhkwzEK6gA0Ynl5WZLU399f9XzpeCkOaHeBQECJRKLiWL0dRwOBQMWfs9lsQzuYXvyxHnYwBQAAAF5AATv2FFuoAQCAauiCAgAAAAAAOkm1grrNFvMDwGa8Xq8kKZlMamhoaMP5ZDJZEQe0O7fbXfNZwmY7jmazWR0JHNFKvrHd5astQLtUr6tXp9KnKGIHAAAARAE7AAAADLDTLigAAAAAAACtpFZB3cjISBNmA6BdhEIh+f1+TU9Pa3FxUQ6Ho3yuWCxqZmZGfX19CoVCTZwl0Bosy9JKfkWH7jyknoM9NeOK54pas9bU7emWY7+jZtzq6VUtHV+SZVkUsAMAAACigB0AAAAG2EkXFMAkuVxO6XS64litLWQDgYDcbveezQ0AAAAAAADtzel0anZ2VpOTk5qYmNDU1JT6+/uVTCY1MzOjEydOKBaLyem0b6dsoN31HOyRy7/JjvCH92YuAAAAQDuhgB0AAAAAbJJOpzU4OFj13KVbyCYSCRZnAAAAAIDBUmeKdc/nz68rc7Yo/1UOufZ1bXscALBTOBxWLBZTNBrV8PBw+XhfX59isZjC4XATZwcAAAAAwAUUsAMAAACATQKBgBKJRMWxfD6vTCYjv98vl8tVEQsAAAAAMI/H45Hb1avIfXnbxnS7euXxeGwbDwDqCYfDGh8fVzwe1/Lysrxer0KhEJ3XdxGLngAAzZDNZmVZVt2YWjsFV+PxeOTz+WyZGwAAm6GAHQAAAABs4na7q3ZVHxkZacJsAAAAAADb4fP5lEqfaqgQJBKJaG5uTsFgsG4shSAA9prT6dTo6Gizp9H2WPQEAGiWbDarI4EjWsmvNBR/6U7B1fS6enUqfaojX7vkcjml0+mKY7WaVEkXGlW53e69nCIAtB0K2NEUrEAHAAAAAAAAAACm8vl8DRdtBIPBqouZAQDtj0VPAIBmsSxLK/kVHbrzkHoO9tSMK54ras1aU7enW479jppxq6dXtXR8SZZldeR9KJ1Oa3BwsOH4RCLB60AA2CEK2LGnWIEOAAAAAAAAAAAAAGgXLHoCADRTz8Eeufyu+kGH92YurSwQCCiRSFQcq7cALRAIVPw5m802tKDt4o/1sKANQCeggB1bVm3LlHo32Iu3TGEFur12kgvYj3yYg1yYg1yYg1yY5dJ8kIvm4dowB7kwB7kwB7kwy1byQS52F9eGOXaaCzsf7DXy4K+dcV2Yg1yYhfu3Obg2zEEuzEEuzEEuzEI+zEEuzEEuzEEuzGF3Ltxud81FZpstQMtmszoSOKKV/EojU1ckEtk0ptfVq1PpUy1TE8e1AWA7KGDHltXbMqXaDfbSLVNYgW6fneYC9iIf5iAX5iAX5iAXZqmVD3Kx97g2zEEuzEEuzEEuzLKVfJCL3cW1YY6d5CKbzSoYOKKcjQ/2OhnXhTnIhVm4f5uDa8Mc5MIc5MIc5MIs5MMc5MIc5MIcO80Fi/ntY9J1YVmWVvIrOnTnIfUc7KkZVzxX1Jq1pm5Ptxz7HTXjVk+vaun4kizLapkCdpPyAaB1UMCOLau2ZUo+n1cmk5Hf75fL5doQv5c6aUWX6bnoNOTDHOTCHOTCHOTCLJfmg1w0D9eGOciFOciFOciFWbaSD3Kxu7g2zLGTXFiWpVx+RXO3uxQ8UPuBXf78ujJni/Jf5ZBrX1fNuK88dl4ffmBVq6dX6855Kw8KWwnXhTnIhVm4f5uDa8Mc5MIc5MIc5MIs5MMcJuUin89Lsue1WmmM0pitwKRcdLqd5ILF/PYy8broOdgjl99VP+jwrk+jKUzMBwDzUcCOLau1ZcrIyEgTZrNRJ63oMj0XnYZ8mINcmINcmINcmKVaPhrNhZ2dGSTJ4/G0zMr93cC1YQ5yYQ5yYQ5yYRbyYQ5yYQ47chE84NCA11k3ZuSazcdZfq4odUlLx5ca/tqb6XX1yuPx2DbebuK6MAe5MAv5MAe5MAe5MAe5MAe5MMtO8kFnY3uZdG1kMhlJ9r7my2QyLXOdm5SLTreTXOzWYv5OxXVhFvIBYDsoYEfbYUUXAABoV7vRmcHt6lUqfaqji9gBAADQ+ryXO6R1aW5uTsFgsGZcKpVSJBLZNE5isScAAADQSnars7FduzO1Ytdvk/j9fknSoTsPqedgz47GWj29qqXjS+Uxgb1m12L+lFWwaUYAADQHBexoO6zoAgAA7cruzgypM0VF7svLsqxyYU4ul1M6na6Mq9ORJhAIyO12b+fbAQAAAGwXDAYb2m2x0TgAAAAArcHu988/96Nz+p8n12zt+C21Vtdvk5QaFfYc7JHL79okemtjAq1q9fz6hY8stAEAtCgK2AEAAIAWY1dnhmrS6bQGBwernqvWkSaRSFD4AwAAAAAAAAAwgl3vn9948EIRvB0dvyW6fgOw3+lnLxSws9AGANCqKGAHAAAAUBYIBJRIJCqO5fN5ZTIZ+f3+DR1JAoHAXk4PAAAAAAAAAIBd1/Mv3dnt7Pgt0fUbgH0OXnHh5xQLbQAArYoCdgAAAABlbre7akd1Oi0AAADATqXtqFNWwZbxSuOwzTUAAAAAAOgELLQBALQ6CtgBAAAAAAAAAHsqk8lIkiILK7aPy+JLAAAAoPPYvUj28aeKkqTiuaIt4wEAAACoRAE7mi6XyymdTlccS6VSFR8vFggE5Ha792RuAABgd2SzWVmWVTem3u8Dl/J4PPL5fLbMDQAAAMDuK21HPRfuVdDj3PF4KaugyMIK21wDAAAAHWq3FsmuWWvSYVuHBAAAACAK2GGAdDqtwcHBqucikciGY4lEQgMDA7s9LQAAsEuy2ayOBI5oJd/Ym8jVfh+4VK+rV6fSpyhiBwAAAFpEaTvqoMepAe/OC9gvHRcAAABAZ7F7kexXHlvThx84p25P947HAgCJnSIAALgUBexoukAgoEQiUXEsn88rk8nI7/dveOgUCAT2cnoAAMBmlmVpJb+iQ3ceUs/BnppxxXNFrVlr6vZ0y7HfUTNu9fSqlo4vybKsti9gt/uNrdI4pXEBAAAAAAAAAGhFdi+SLb1/Xu/5BABsBTtFAABQiQJ2NJ3b7a7aUX1kZKQJswEAAHul52CPXP5NuiPyZkuF3XpjK5PJ8LsXAAAAAAAAAAAAsEvYKQIAgEoUsAMAAAAtwu43tlJWQZGFlfK4AAAAAAAAAAAAdshms7Isq25MKpWq+LhZHMyUy+WUTqcrjtXLbSAQkNvt3pO5mYSdItpXabfr1dOrtoxXGoddtAG0OwrYAQAAgBZh9xtbl44LAAAAAAAAAACwU9lsVsHAEeXyje0oG4lEdnlG2E3pdFqDg4NVz1XLbSKR0MDAwG5PC9gzpV20l44v2T4uu2gDaGcUsAMAAAAAAAAAAAAAAACwhWVZyuVXNHe7S8EDtbtD58+vK3O2KP9VDrn2ddWM+8pj5/XhB+zpbAz7O6YHAgElEomKY/l8XplMRn6/f0MjpUAgsN2pA0Yq7XZ96M5D6jnYs+PxVk+vaun4ErtoA2h7FLADAAAAAAAAAAAAddhd5AMAAHZH6kyx7vlGC6Yff2rd7ql1pOABx6Y7yo5cs/k4Kasg6UJRZy3Fc0WtWWvq9nTLsb920Xy9MTqF3R3T3W531fN0jobJstmsLMuqG1PvNd/FSh3Yew72yOW3b+drdtEG0O4oYAcAAAAAAAAAAADqsLvIBwAA2Mvj8cjt6lXkvnyzp4JdcFVvl9QlLR1fsmW8XlevPB6PLWO1Ijqmt5fNFmWwuGOjbDarYOCIcvmVhuKrveYDAOwcBewAAAAAAAAAAABAHRT5AABgNp/Pp1T6VEPddCORiObm5hQMBjeNozDUDN7LHdK66uat0dxKFxY8+Hy+3ZhqS6Bjenuwe2GH1DmLOyzLUi6/ornbXQoeqP2zu9FdO77y2Hl9+AF+zgPAVlHADgAAAKCmQqGgeDyu5eVleb1ehUIhOZ31t/sEAAAAGpU6U6x7vtEHhZuNAwA7RZEPAADm8/l8DRclB4PBuruleDwe9bp6KQw1zGZ5azQGaCa73gs5m9emCzskFnfUEzzg0IC3/nPPkWs2HydlFWyaEQB0FgrYAQAAsKfy+Qvbd9rVbaQ0TmncTrBXRT4LCwuKRqPKZDLlY36/X7OzswqHw1uaMwAAAHAxj8cjt6tXkfvs+z3eTTEIAAAAAJv4fD6dsrGju9R5haEAKu3WeyGhUKihny0s7gAAmIYCdgAAAOypUjG0nV1LSuO2e9ezvSzyWVhY0OTkpMbGxjQ/P6/+/n4lk0lNT09rcnJSsViMInYAAABsm8/nU4piEAAtjB3LAABof3Z2dAcA3gsxR6kxml2d0x9/6kLTsOI5dggEgK2ggB0AAAB7yu/3S5IO3XlIPQd7djze6ulVLR1fKo/bzvbqja1CoaBoNKqxsTEtLi7K4XBIkoaGhrS4uKiJiQkdO3ZM4+PjPJwHAADAtlEMAqBVsWMZAAAAgO3gvRAzlF7LRRZWbB13zVqTDts6JAC0NQrYAQBAx8rlckqn0xXH8vm8MpmM/H6/XC5XxblAICC3272XU2xLpX/XnoM9cvldm0Rvfdx2txdvbMXjcWUyGc3Pz5eL10scDoempqY0PDyseDyu0dHRLY8PAAAAAECrKu1Y9sY3vlEf+MAH5HK5lM/n9dWvfpUdywAAkqo/e0ilUhUfL8azBwAA9lapMdpcuFdBz86bdX3lsTV9+IFz6vZ073gsAOgkFLADAICOlU6nNTg42HB8IpFglXsNbJvdXpaXlyVJ/f39Vc+XjpfiAAAAUB2/JwNAeyntWDY4OKh/+Id/0IkTJ8rnrr32Wg0ODrJjGQCg7rOHSCSy4RjPHgAA2FulxmhBj1MD3p2/dktZBUmSY79jk0gAwMUoYAcAAB0rEAgokUhUHEulUopEIpqbm1MwGNwQj43YNrv9eL1eSVIymdRNN920oegqmUxWxAEAAGAjfk8GgPZT2rEsk8noTW96k+6991719/crmUxqenpaX/7yl8tx7FgGAJ2r2rOHzXZ/BQAAAIBOQwE7AADoWG63u2ZXk2AwSMeTBpS2zR4bG9P8/HzFQ1u2zW5doVBIfr9fv//7v68zZ87on/7pn8rnrr32Wh04cEB9fX0KhUJNnCUAAIC5+D0ZANrTz372M0nSG97wBi0uLsrhuNBdb2hoSIuLixobG9NXv/rVchwAoDPVevYwMjLShNkAAIC9snp6te754rmi1qw1dXu663Zr32wcAGgXFLADAABgW0rbZo+NjVV9aDsxMcG22S3K6XTqzW9+sz75yU/qpS99qY4fP66xsTGdOHFCH/7wh3Xy5El94AMfIK8AAABVXPx78pe+9CU99NBD+vKXvyyv16svfelLuuOOO/g9GQBa1JkzZyRJ4XC4/D5IicPh0MTEhL761a+W4wAAsEMul1M6na44lkqlKj5eLBAIyO1278ncAACAdFVvl9QlLR1fsm3MXlevPB6PbeMBgIkoYAcAAMC2lLbNnp+fr/rQdmpqSsPDw2yb3YIKhYL+z//5P7rxxhtlWZbuvPPO8rm+vj7deOONisVimpmZoegKAADgEqXfk9/1rnfp8OHDymQy5XN+v1933nmnvvzlL/N7MgC0oAMHDki6sNPGO97xDj300ENaXl6W1+vVyMiIFhcXK+IAALBDOp3W4OBg1XORSGTDsUQiwQ6zaLp8Pi9JSlkFW8YrjVMaFwBM4r3cIa1Lc3NzCgaDNeNSqZQikcimcZLk8Xjk8/nsnioAGIUCdgAAAGzL8vKyJKm/v7/q+dLxUhxax8WLE2666SbF4/HyA/lQKKQf/OAHLE4AAACoofT771133aWxsTHNz8+rv79fyWRS09PT+tCHPlQRBwBoHS9/+cslSV/72td05ZVXVhRQuVwuraysVMQBAGCHQCCgRCJRcSyfzyuTycjv98vlcm2IB5qttJg7srBi+7gjIyO2jgkAdgkGgw0tIms0DgDaHQXsAAAA2Bav1ytJSiaTGhoa2nA+mUxWxKF1XLw4wel0bihSZ3ECAABAbS95yUskqdyJt7Rb0dDQkBYXF/X6179e3/3ud8txAIDWEQqFdODAAZ05c2bDua6uLq2vr+slL3mJQqFQE2YHAGhXbre7apEbRbwwmd/vlyTNhXsV9Ox8J9eUVVBkYaU8LgAAAFofBewAAADYllAoJL/fr+np6YrCHEkqFouamZlRX18fD21bEIsTAAAAds/6+nqzpwAA2IGuri5J0q233qo3vOENcrlcyufz+upXv6r777+/ybMDAAAXy+VySqfTFcdSqVTFx4sFAgG53e49mVu7K+0MEPQ4NeDdeQH7peMCgB1SZ4p1z+fPrytztij/VQ659nVtexwAQHUUsAMAAGDLSm/6vvvd79YHP/hB3XLLLXrb294mp9OpQqGgL37xi4rH4/rEJz6hRx55hDd9WwyLEwAAALbvySeflCR997vf1cTEhKamptTf369kMqmZmRk99NBDFXEAgNYRj8f15JNPamZmRnfffXdFwXpfX5+mp6d11113KR6Pb9jNDAAA7L10Oq3BwcGq5yKRyIZjiUSiard7AEB78Xg8crt6Fbkvb9uYblevPB6PbeMBQCeggB0AAABbdumbvg8++KAefPDBDXEf+MAHJPGmb6txOp2anZ3V5ORk1aKrEydOKBaLyem0r2sKAABAuyjtUlMqbhweHi6fu7i4kd1sAKD1LC8vS5Le85736AMf+IDi8biWl5fl9XoVCoWUy+V01113leMAAEBzBQIBJRKJimP5fF6ZTEZ+v39DN+9AILCX0wMANInP51MqfUqWZdWNS6VSikQimpubUzAYrBvr8Xjk8/nsnCYAtD0K2AEAALBll77pWygUtLi4WC7GmZiYqChu5k3f1hMOhxWLxRSNRjcUXcViMYXD4SbODgAAwFyl3WwefvhhPfroo3rooYfKxY0jIyO644472M0GAFpUafFRMpnU0NDQhi7ryWSyIg4AADSX2+2u2lxnZGSkCbMBAJjE5/M1XHAeDAZp1gYAu4ACdgAAAGxZtTd9nU6npqendccdd/ACvk2Ew2GNj49v6ChH53UAAIDaLt7N5o477tDU1JTGxsaUTCZ1xx13sJsNALSw0iKl6elpLS4uyuFwlM8Vi0XNzMywSAkAAAAAAABoAAXsAAAAAGpyOp0bOsoBAACgPnazAYD2dPEipYmJCU1NTam/v1/JZFIzMzMsUmqiQqHAAnwAAAAAAIAWQgE7AAAAmmL19Grd88VzRa1Za+r2dMux31EzbrNxAAAAgGZgNxsAaE8sUjLPwsKCotGoMplM+Zjf79fs7Cz5AAAAAAAAMBQF7AAAANhTHo9Hva5eLR1fsm3MXlevPB6PbeO1klwup3Q6XXEslUpVfLxYIBCQ2+3ek7kBAAB0OnazAYD2xCIlcywsLGhyclJjY2Oan58vd8Sfnp7W5OQkiwoAAAAAAAAMRQE7AAAA9pTP59Op9ClZllU3LpVKKRKJaG5uTsFgsG6sx+ORz+ezc5otI51Oa3BwsOq5SCSy4VgikdDAwMBuTwsAAAAAgLbGIqXmKxQKikajGhsb0+LiohyOCzv4DQ0NaXFxURMTEzp27JjGx8dZXAAAAAAAAGAYCtgBAACw53w+X8MF58FgkILrOgKBgBKJRMWxfD6vTCYjv98vl8u1IR4AAAAAAKDVxeNxZTIZzc/Pl4vXSxwOh6ampjQ8PKx4PF53sUG13e02e2+F3e0AAAAAAAB2hgJ2AAAAoIW53e6qBf4jIyNNmA0AAEDroWgNAIDWtLy8LEnq7++ver50vBRXS73d7aphdzsAABqXOlOsez5/fl2Zs0X5r3LIta9r2+MAAACg9VDADgAAAAAAAKBjUbQGAEBr8nq9kqRkMqmhoaEN55PJZEVcLdV2t0ulUopEIpqbm1MwGNwQDwAA6vN4PHK7ehW5L2/bmG5Xrzwej23jAQAAoLkoYAcAAAAAAADQsShaa1/VuuunUqmKjxejuz4AtJZQKCS/36/p6WktLi7K4XCUzxWLRc3MzKivr0+hUKjuOLV2t5OkYDDIwjUAALbB5/MplT4ly7LqxtV7/X0pj8cjn89n5zSBpuO9CwBAJ6OAHQAAAAAAAEDHomitfdXrrh+JRDYco7s+ALQWp9Op2dlZTU5OamJiQlNTU+rv71cymdTMzIxOnDihWCwmp9PZ7KkCANCRfD5fwwXnvP5Gp+K9CwBAJ6OAHQAAAAAAAADQdHZ3HavWXT+fzyuTycjv98vlcm2IBwC0lnA4rFgspmg0quHh4fLxvr4+xWIxhcPhJs4OAAAAqI/3LgAAnYwCdgAAAAAAAABA09nddaxWd/2RkZHtTxIAYJxwOKzx8XHF43EtLy/L6/UqFArReR0AAADGs/u9C7ubA2D7yAUAbI4CdgAAAAAAAABA09F1DACwXU6nU6Ojo82eBgAAANBUdjcH6CR2F5yTCwDYHAXsAAAAAAAAAICmo2M6AAAAAADA9tEcYPvsLjgnFwCwOQrYAQAAAAAAAAAAAAAAAABoYTQH2D67C87JBQBsjgJ2AAAAAAAAAAAAAAAAAADQkSg4B4C9RwE7AADoGNlsVpZl1Y1JpVIVH+vxeDzy+Xy2zA0AAABA68vlckqn0xXHNuvU5Ha793KKHa1QKCgej2t5eVler1ehUEhOp7PZ0wIAbAP3XAAAAAAAgNZGATsAAOgI2WxWRwJHtJJfaSg+EolsGtPr6tWp9KmOKGKn+B8AAADYXDqd1uDgYMPxiUSiamcn2G9hYUHRaFSZTKZ8zO/3a3Z2VuFwuHkTAwBsC/dcAAAAAACA1kYBOwAA6AiWZWklv6JDdx5Sz8GemnHFc0WtWWvq9nTLsd9RM2719KqWji/Jsqy2L8TOZrMKBo4oZ2Pxv9vVq1SHFP8DAACgcwQCASUSiYpjqVRKkUhEc3NzCgaDG+Kx+xYWFjQ5OamxsTHNz8+rv79fyWRS09PTmpycVCwWo4gdAFoM91wAAAAAAIDWRgE7AADoKD0He+Tyu+oHHd6bubQKy7KUy69o7naXggdqF/Xnz68rc7Yo/1UOufZ11YxLnSkqcl++I4r/AQAA0FncbnfN7q7BYJDOr01QKBQUjUY1NjamxcVFORwXXtMMDQ1pcXFRExMTOnbsmMbHx+V0Ops8WwBAo7jnAgAAAAAAtDYK2AEAANCQ4AGHBrz1CzpGrtmjyQAAAABAA+LxuDKZjObn58vF6yUOh0NTU1MaHh5WPB7X6OhocyYJAAAAoCXkcjml0+mKY6lUquLjxQKBgNxu957MDQAAAGg1FLADAACgrnw+L0lKWQVbxiuNUxoXAAAAAHbL8vKyJKm/v7/q+dLxUhwAAAAA1JJOpzU4OFj1XCQS2XAskUiwKwgAAABQAwXsAAAAqCuTyUiSIgsrto87MjJi65gAAAAAcDGv1ytJSiaTGhoa2nA+mUxWxAEAAABALYFAQIlEouJYPp9XJpOR3++Xy+XaEA8AAACgOgrYAQDYokKhoHg8ruXlZXm9XoVCITmdzmZPC9g1fr9fkjQX7lXQs/P/11NWQZGFlfK4AAAAALBbQqGQ/H6/pqentbi4KIfDUT5XLBY1MzOjvr4+hUKhJs4SAAAAQCtwu91VO6rTrGfv5XI5pdPpimOpVKri48UCgYDcbveezA0AAACNoYAdAIAtWFhYUDQaLXekli4U987OziocDjdvYthUPp+XJK2eXrVlvNI4pXHbWaljSNDj1IDXvsUal3YiAQAAAAC7OZ1Ozc7OanJyUhMTE5qamlJ/f7+SyaRmZmZ04sQJxWIxFqYDAAAAQAtJp9MaHBysei4SiWw4lkgkqi4+AAAAQPNQwA4AQIMWFhY0OTmpsbExzc/Plx94T09Pa3JyUrFYjCJ2g5UWHSwdX7J9XDprAAAAAIC5wuGwYrGYotGohoeHy8f7+vp4LQ8AAAAALSgQCCiRSFQcy+fzymQy8vv9G5ooBQKBvZweAAAAGkABOwAADSgUCopGoxobG6vYcnxoaEiLi4uamJjQsWPHND4+Ttc2Q/n9fknSoTsPqedgz47HWz29qqXjS+VxAQAAgEZV2+Z6s4esbHMN7Ew4HNb4+Lji8biWl5fl9XoVCoV4DQ8AAAAALcjtdlftqE7TKQAAgNZBATsAAA2Ix+PKZDKan58vF6+XOBwOTU1NaXh4WPF4XKOjo82ZZAfYSaFP6VzPwR65/JVxO3Hp1wQAAAA2U2+b62rY5hqwh9Pp5DU7AAAAAAAAAAAGoIAdAIAGLC8vS5L6+/urni8dL8Vhd1DoAwAAgHZQbZvrVCqlSCSiubk5BYPBDfEAAAAAAAAAAABAu6CAHQCABni9XklSMpnU0NDQhvPJZLIiDruDQh8AAAC0g1rbXEtSMBhkESYAAMAuymazsiyrbkwqlar4WI/H45HP57NlbgAAAAAAAJ2CAnYAABoQCoXk9/s1PT2txcVFORyO8rlisaiZmRn19fUpFAptOlYul1M6na44ls/nlclk5Pf75XK5Ks4FAgG53W57vpEWR6FPc6XOFOuez59fV+ZsUf6rHHLt69r2OAAAAAAAAMBuyGazOhI4opX8SkPxkUhk05heV69OpU9RxA4AAAAAALAFFLADANAAp9Op2dlZTU5OamJiQlNTU+rv71cymdTMzIxOnDihWCwmp9O56VjpdFqDg4MNf+1EIkFhNprK4/HI7epV5L68bWO6Xb3yeDy2jQcAAAA0ys6uq3RcBQCgtViWpZX8ig7deUg9B3tqxhXPFbVmranb0y3HfkfNuNXTq1o6viTLsjr2dwIatgAAAAAAgO2ggB0AgAaFw2HFYjFFo1ENDw+Xj/f19SkWiykcDjc0TiAQUCKRqDiWSqUUiUQ0NzenYDC4IR5oJp/Pp1T6VENFPrX+P74UhT4AAABohmw2q2DgiHI2dV11u3qVouMqAAAtp+dgj1x+V/2gw3szl1ZHwxYAAAAAALAdFLADALAF4XBY4+PjisfjWl5eltfrVSgUaqjzeonb7a75Bn0wGOTNexjJ5/M1XJTD/8cAAAAwlWVZyuVXNHe7S8EDtbup5s+vK3O2KP9VDrn2dVWNSZ0pKnJfvqM7rgIAANCwBQAAAAAAbAcF7AAAbJHT6dTo6GizpwEAAAAA2KbgAYcGvPUXIo9cs0eTAQAAm8pmsw3tDnjxx3oxsA8NWwAAjcrlckqn0xXH6t2/A4GA3G73nswNAAAAe48CdgAAAAAAAAAAAABGymazCgaOKJdfaSg+Eons8owAAMB2pNNpDQ4OVj1X7f6dSCRYCAUAANDGKGAHAAAdZfX0at3zxXNFrVlr6vZ0y7Hfse1xAAAAAHSGzTq5NtINtsTj8cjn89kyLwAA2oVlWcrlVzR3u0vBA7Xfr8ufX1fmbFH+qxxy7euqGvOVx87rww/wvh4AAM0QCASUSCQqjuXzeWUyGfn9frlcrg3xAAAAaF8UsAMAgI7g8XjU6+rV0vEl28bsdfXK4/HYNl4nY9tIAAAAtJrl54pSV+NdXhuJ63X16lT6FEXsAABUETzg0IDXWTdm5Jr6Y6Ssgo0zAgAAW+F2u6t2VB8ZGWnCbAAAANBsFLADAICO4PP5dCp9SpZl1Y1LpVKKRCKam5tTMBisG0t3RPuwbSQAAABazdmVdWldOnTnIfUc7KkZt5VdnpaOL8myLF5nAAAAAAAAAACAtkYBOwAA6Bg+n6/hQpBgMEiB9B5i20gAAAC0qp6DPXL5XfWDDu/NXAAAAAAAAAAAAFoBBewAAABoOraNBAAAAAAAAAAAAAAAADpD7T1rAQAAAAAAAAAAAAAAAAAAAACwER3YAQAAsGW5XE7pdLriWCqVqvh4sUAgILfbvSdzAwAAAGrJ5/OSpJRV2PFYjz9VlCQVzxV3PBYAAAAAAAAAAEAnaZsC9n/6p3/Sn/7pn+r+++/XE088oZ6eHl133XV6y1veone/+907KpjK5XL62te+pq9//es6efKkfvKTn+i5557Ti170Ih0+fFi/9mu/pt/93d/Vy172Mhu/I6D9FAoFxeNxLS8vy+v1KhQKyel0NntaAIBtSKfTGhwcrHouEolsOJZIJDQwMLDb0wIAAADqymQykqTIwoptY65Za9Jh24YDAAAAAAAAAABoe21RwP7lL39ZkUhEzzzzTPlYLpfTyZMndfLkSX3uc5/T/fffr+uvv37LY//4xz/WyMiInnvuuQ3n/vmf/1nf//739f3vf1+f+cxndPz4cb31rW/d0fcCtKuFhQVFo9Hyg2JJ8vv9mp2dVTgcbt7EWggLAACYJBAIKJFIVBzL5/PKZDLy+/1yuVwb4gEAAIBm8/v9kqS5cK+Cnp29pv7KY2v68APn1O3ptmFmAACgFnZQAQAAAAAAaD8tX8D+d3/3d3rrW9+qfD6vyy+/XFNTU7rllluUz+d177336s///M/16KOP6o1vfKNOnjypK664YkvjP/PMM+Xi9ZGREY2NjenGG2/U1VdfrTNnzmhhYUF//ud/rmeeeUa/+Zu/qRe96EV6wxvesBvfKtCyFhYWNDk5qbGxMc3Pz6u/v1/JZFLT09OanJxULBajiH0TLABAp8pms7Isq25MKpWq+FiPx+ORz+ezZW6dzu12V+2oPjIy0oTZAAAAAI0pLbQMepwa8O6sgL1UROfY79jxvAAAQG27sYPK8+nnbbmHr55elfRCkT0AAAAAAAAa0/IF7O9973uVz+e1b98+/c3f/I1e97rXlc/deuutesUrXqEPfvCDevTRRzU7O6uPfvSjWxrf4XDoLW95iz7ykY/ola985Ybzt912m97whjfo9ttvV6FQ0O///u/rscceU1dX106/NaAtFAoFRaNRjY2NaXFxUQ7HhTeEh4aGtLi4qImJCR07dkzj4+N0E6+BBQDNl8vllE6nK45t1mna7Xbv5RTbUjabVTBwRLl8Yw+mIpHIpjFuV69S6VMUsQMAAAAAAAAtws4dVD73o1X9z5Pn9eTCk3py4UkbZndBJpOhsQMAAAAAAMAWtHQB+w9+8APF43FJ0jvf+c6K4vWSaDSqe+65R6lUSp/97Gf1oQ99SN3djW/rOzw8rOHh4box4+PjCofD+tKXvqSf/vSn+ru/+7uqHUmBVlMoFBSPx7W8vCyv16tQKLTlIvN4PK5MJqP5+fly8XqJw+HQ1NSUhoeHFY/HNTo6auPs2wMLAMyQTqc1ODjYcHwikeA+YAPLspTLr2judpeCB2p3Q8qfX1fmbFH+qxxy7au9gCx1pqjIfXlZlkUB+y6w454BAADQrthZqD2tnl+/8PFfOq/ueDw6uAIAUJWdO6jceNAp6bwO3XlIPQd7djy31dOrWjq+VC6yBwAAAAAAQGNauoB9cXGx/Pnv/M7vVI1xOBx6+9vfrqmpKZ09e1YPPPCAbrvtNtvncsstt+hLX/qSJOmnP/0phYtoeQsLC4pGo+WtOaULXU5mZ2e31O17eXlZktTf31/1fOl4KQ6VWABghkAgoEQiUXEslUopEolobm5OwWBwQzzsEzzg2PTB1Mg1ezQZVGXXPQMAAKAdsbNQ+zr97IUC9qXjS7aOSwdXAAB2T8+/NMDoOdgjl9+1SXTjLt2lEwAAAAAAAPW1dAH7d7/7XUnSZZddVrcz7utf//ry5w899NCuFLCvrr7QaYluo2h1CwsLmpyc1NjYmObn59Xf369kMqnp6WlNTk4qFos1XJDo9XolSclkUkNDQxvOJ5PJijhUYgGAGdxud82FScFgkEVL6Gh23jMAAADaETsLta+DV1zIEx1cAQAAAAAAAAAAtqalC9hLWypff/312rev9rdycSfcRrZh3o7vfOc75c8v7cQLtJJCoaBoNKqxsTEtLi6Wu34PDQ1pcXFRExMTOnbsmMbHxxtarBEKheT3+zU9PV0xniQVi0XNzMyor69PoVBo176nVsYCAAAms/ueAQAA0M52c2ehXC6ndDpdcSyfzyuTycjv92/oCBoIBOR2u7f3xVBGB1cAAAAAAAAAAIDtadkC9pWVFVmWJUk6dOhQ3dgXv/jFuuyyy/T888/riSeesH0ujzzyiO6//35J0g033EABO1paPB5XJpPR/Px8RbG5JDkcDk1NTWl4eFjxeFyjo6Objud0OjU7O6vJyUmNj4/r3/27fyeXy6V8Pq+vfe1ruv/++xWLxShsrIEFAABMZvc9AwAAANuTTqfr7k54qUQi0fE7SaXOFOueb6Qj/uNPre/G1AAAAAAAAAAAANpeyxawP/vss+XPL7/88k3jSwXszz33nK3zWF1d1X/4D/9BhUJBkvTxj3+8ob+zurpa/vMzzzxj65yAnVheXpYk9ff3Vz1fOl6Ka0Q4HNaxY8f0mc98RidOnCgf37dvn44dO6ZwOLyDGbe3ixcATExMaGpqSv39/Uomk5qZmdGJEycaWgBANz4Au2E37hkAAADYukAgoEQiUXEslUopEolobm5uQ7OFi3cr7DQej0duV68i9+WbPRUAALBFLEADAAAAAABoHy1bwL6yslL+fP/+/ZvG9/T0SLpQsGmn97znPTp58qQk6R3veIfe9KY3bfp3ZmZm9LGPfczWeQB28Xq9kqRkMqmhoaEN55PJZEVcIxYWFvSpT31Kb3zjG/WGN7yh3IH9q1/9qj71qU9paGiIIvY6wuGwYrGYotGohoeHy8f7+voUi8Ua+rejGx+A3bAb9wwAAABsndvtrvkaLhgM8vruIj6fT6n0qfLOjrXUWwBwaQwAANhdLEADAAAAAABoPy1bwN7b21v+/Ny5c5vGlzqeX9pleCdmZmb0uc99TpJ000036X/8j//R0N+bmprS+9///vKfn3nmGV1zzTW2zQvYiVAoJL/fr+npaS0uLsrhcJTPFYtFzczMqK+vT6FQqKHxCoWCotGoxsbGNoz3u7/7u5qYmNCxY8c0Pj6+aRfxThYOhzU+Pq54PK7l5WV5vV6FQqGG/83oxodWVFp0lrIKtoxXGsfuxWydzO57BgAAALAXfD6ffD5fQ7EsAAAAoPlYgAYAAAAAANB+WraA/Yorrih//txzz20a//zzz0uSLr/8clu+/t1336277rpL0oVCz6985Su67LLLGvq7PT095Y7wgGmcTqdmZ2c1OTmpiYkJTU1Nqb+/X8lkUjMzMzpx4oRisVjDhdPxeFyZTEbz8/MVhY2S5HA4NDU1peHhYcXjcY2Oju7CdwSJbnxoTZlMRpIUWVipH7iNcUdGRmwds1PZfc8AAAAAAAAAqmEBGgAAAAAAQHtp2QL23t5eXX311frlL3+ppaWlurFPPfVUuYDdjk7n8/Pz+o//8T9Kkq699lp9/etfl8fj2fG4gCnC4bBisZii0aiGh4fLx/v6+hSLxRQOhxsea3l5WZLU399f9XzpeCkO1S0sLCgajZYLeiXJ7/drdnZ2S/lAc2Sz2Ya6A138sRaPx9Pwg5pW5/f7JUlz4V4FPTsvgE5ZBUUWVsrjwh523jMAAADaETsLAQAAAAAAAAAAAJVatoBdkl75ylcqHo/rJz/5ic6fP699+6p/O+l0uvx5rS0DG/V//+//1dvf/nYVi0V5vV5985vf1KFDh3Y0JmCicDis8fFxxeNxLS8vy+v1KhQKbbmLrtfrlSQlk0kNDQ1tOJ9MJivisNHCwoImJyc1Njam+fn5cnfj6elpTU5OUiBquGw2qyOBI1rJN9ZFfLPta3tdvTqVPtURRewul0uSFPQ4NeC1r4N3aVzYx657BgAAQDtiZ6H2t3p6te754rmi1qw1dXu65djvqBm32TgAAAAAAAAAAADtoqUL2I8ePap4PK7nn39eiURCr33ta6vGfec73yl/vpMHe9/85jf1lre8RefPn9fVV1+tr3/967ruuuu2PR5gOqfTqdHR0R2NEQqF5Pf7NT09rcXFRTkcLzyoLRaLmpmZUV9fn0Kh0A5n254KhYKi0ajGxsYq/v2Ghoa0uLioiYkJHTt2TOPj4xSKGsqyLK3kV3TozkPqOdhTM66RgobV06taOr4ky7I6ooAdrcWOewYAAEA7Ymeh9uXxeNTr6tXS8fq7Q25Fr6uXnR4BAAAAAAAAAEDba+kC9omJCc3MzEiS7rnnnqoF7MViUX/xF38hSbrqqqt0yy23bOtrPfzwwxofH9fq6qquvPJK/fVf/7Ve9apXbX/yQIdwOp2anZ3V5OSkJiYmNDU1Ve4gPjMzoxMnTigWi1F8XUM8Hlcmk9H8/HxF8b8kORwOTU1NaXh4WPF4nMJRw/Uc7JHLv0nn78N7MxcAAAAAe4edhdqXz+fTqfQpWZZVNy6VSikSiWhubm7T3SE9Hg8LlgEAgNGy2WxDv/9c/LEefv8BAAAAAKAztXQB+2te8xqFQiHF43F9/vOf1zve8Q697nWvq4iZnZ0tvzny3ve+V93d3RXnv/3tb5eL2t/xjnfoC1/4woav8/d///d64xvfqOeff16XXXaZ7r//fg0ODu7ONwW0oXA4rFgspmg0quHh4fLxvr4+xWIxhcPhJs7ObMvLy5Kk/v7+qudLx0txANAshUJB8Xhcy8vL8nq9CoVCLE4CAABA2/P5fA0XXAWDQQ0MDOzyjAAAAHZPNptVMHBEufxKQ/GRSGTTGLerV6n0KYrYAQAAAADoMC1dwC5Jn/3sZzUyMqJ8Pq/bbrtNd911l2655Rbl83nde++9On78uCTp8OHDikajWx7/pz/9qX7t135NZ8+elST9yZ/8ia688kolk8maf+clL3mJXvKSl2zr+wHaVTgc1vj4OMWNW+T1eiVJyWRSQ0NDG86XfhaV4gCgGRYWFhSNRpXJZMrH/H6/ZmdnWaQEAAAAAAAAtAnLspTLr2judpeCBxw14/Ln15U5W5T/Kodc+7pqxqXOFBW5Ly/LsihgBwAAAACgw7R8AfurX/1q/eVf/qUikYieeeYZ3XXXXRtiDh8+rPvvv19XXHHFlsePx+N68skny39+3/vet+nf+chHPqKPfvSjW/5aQLtzOp0aHR1t9jRaSigUkt/v1/T0tBYXF+VwvPCGcLFY1MzMjPr6+hQKhZo4S2B3pc4U657fysMQ2G9hYUGTk5MaGxvT/Py8+vv7lUwmNT09rcnJSXbaAAAAAAAAANpM8IBDA976DYpGrtmjyQAAAAAAgJbU8gXskvSmN71JP/7xj/XZz35W999/v5aWlrR//35df/31evOb36z3vOc9crvdzZ4m0HFyuZzS6XTFsXw+r0wmI7/fL5fLVXEuEAhwrV7C6XRqdnZWk5OTmpiY0NTUVLk4dGZmRidOnFAsFqOTPdqSx+OR29WryH1528Z0u3rl8XjKf672cyqVSlV8vBg/pyoVCgVFo1GNjY1VLLIZGhrS4uKiJiYmdOzYMY2Pj/NzCgAAAAAAAMZYPb1a93zxXFFr1pq6Pd1y7K/daXyzcQAAAAAAAFBdWxSwS9K1116rT3/60/r0pz+9pb83Ojqq9fX1mud/+7d/W7/927+9w9kBnSmdTmtwcLDh+EQioYGBgV2cUWsKh8OKxWKKRqMaHh4uH+/r66OzMdqaz+dTKn1KlmXVjUulUopEIpqbm1MwGKwb6/F4KrairfdzKhKJbDjGz6lK8XhcmUxG8/PzFTtESJLD4dDU1JSGh4cVj8fZgQMAAAAAAABN5/F41Ovq1dLxJdvG7L2kaQYAAAAAAAA21zYF7ADMEwgElEgkKo7VKzQNBAJ7Ob2WEg6HNT4+rng8ruXlZXm9XoVCIToa75JsNttQ0fTFHzeLw/b4fL6KgvN6gsHglovLq/2c2mynCLxgeXlZktTf31/1fOl4KQ4AAKCTpc4U657Pn19X5mxR/qsccu3r2vY4AAAAqM3n8+nULjfNAAAAAAAAwOYoYAewa9xud81i0u0UmnY6p9NJB+M9kM1mFQwcUS6/0lB8tS7daB21fk6NjIw0YTatx+v1SpKSyaSGhoY2nE8mkxVxAAAAncjj8cjt6lXkvrxtY7rp8gkAALBtu900AwAAAAAAAJujgB0A2pCdHcSlzuogY1mWcvkVzd3uUvCAo2Zco90RF9Nr+uMHz2n19OqO51YaI5+3r/AF2IlQKCS/36/p6WktLi7K4XjhmikWi5qZmVFfX59CoVATZwkAANBcPp9PKbp8AgAAAAAAAAAAAGUUsAMoy+VySqfTFcfy+bwymYz8fr9cLlfFuUAgILfbvZdT7ChbycfFuchmszoSOKIVGzuI97p6dSp9qqMKJIIHHBrwOuvGjFyz+ThfeWxNkrR0fMmOaUmSMpkMHcJhBKfTqdnZWU1OTmpiYkJTU1Pq7+9XMpnUzMyMTpw4oVgsJqez/rUEAADQ7ujyCQAAADSGZ1UAAAAAAHQGCtgBlKXTaQ0ODjYcn0gkeKi+i7aSj4tzYVmWVvIrOnTnIfUc7Kn5d4rnilqz1tTt6ZZjf+1O46unV7V0fEmWZXVUAbtdDl5xoTv7ZvloRCkXfr/fhpkB9giHw4rFYopGoxoeHi4f7+vrUywWUzgcbuLsAAAAgM1VK5Kqt2sZRVIAAAC7h2dVAAAAAAB0BgrYAZQFAgElEomKY/W2MA8EAns5vY6zlXxUy0XPwR65/K4NxysctmWqqKNn34UC9oby0aBLO8wAzRYOhzU+Pq54PK7l5WV5vV6FQiE6rwMAAKAl1CuSqrZrGUVSAAAAu4dnVQAAAAAAdAYK2AGUud3umg9g2cJ875EPAK3E6XRqdHS02dMAAAAAtqxakVQ+n1cmk5Hf79+wiJgiKQAAmo8dVNoXz0YAAAAAAOgMFLADAAAAAAAA6Fi1iqRGRkaaMBsAANAIdlBpjnw+L0lKWQVbxiuNUxoXAAAAAAB0DgrYAQAAAAAAgBaSzWZlWVbdmHodSC/l8Xjk8/lsmRsAAMBeYAeV5shkMpKkyMKK7eOyeBAAAAAAgM5CATsAAAAAAADQIrLZrI4Ejmgl31jRULUOpJfqdfXqVPoURewAAKBlsINKc/j9fknSXLhXQY9zx+OlrIIiCyvlcQEAAAAAQOeggB0AgD2wenq17vniuaLWrDV1e7rl2O/Y1hgAAAAA2p9lWVrJr+jQnYfUc7CnZlwjrzGkC68zlo4vybIsCtgBAABQV6mzfdDj1IB35wXsl44LAAAAAAA6BwXsAABcJJ/PS7rQ+cUOVm5dkrR0fMmW8XpdvfJ4PLaMBQAAAKB19Rzskcu/SaHP4b2ZCwAAAAAAAAAAALAVFLADAHCRTCYjSYosrNg67h//8R/r3//7f1/zfCqVUiQS0dzcnILBYM04j8dDV0QAAAAAAAAAAAAAAAAAQMuigB0A2kypg/jq6VVbxiuNUxq33fn9fknSXLhXQc/Ot0BNWQVFFlZ0yy23aGBgYNP4YDDYUBwAAAAAwDy5XE7pdLriWCqVqvh4sUAgILfbvSdzAwAAAAAAAAAAMAUF7ADQZkodxJeOL9k+7sjIiK1jmsjlckmSgh6nBrw7L2C/dFwAAAAAQPtKp9MaHBysei4SiWw4lkgkWMQMAABaTupMse75/Pl1Zc4W5b/KIde+rm2PAwAAAAAA2hcF7ADQZkodxA/deUg9B3t2PN7q6VUtHV8qjwsAAAAAAKoLBAJKJBIVx/L5vDKZjPx+/4bFzYFAYC+nBwAAsCMej0duV68i99m3Y6vb1SuPx2PbeAAAAAAAoDVQwA4Abab0MLznYI9cfvu6ftNBHCbI5XJKp9MVx1KpVMXHiwUCAbnd7j2ZGwAAAAC43e6qHdU7YUczAADQ/nw+n1LpU7Isq25cKpVSJBLR3NycgsFg3ViPxyOfz2fnNAEAAAAAQAuggB0AALSMdDqtwcHBqucikciGY4lEomrxCAAAAAAAAABg63w+X8MF58FgkPdnAQAAAABAVRSwA7BNNpttqOvGxR/roesGgEsFAgElEomKY/l8XplMRn6/f8NOAYFAYC+nBwAAAAAAAAAAAAAAAADYBAXsAGyRzWZ1JHBEK/mVhuKrdUq+VK+rV6fSpyhiB1DmdrurduwZGRlpwmwAAAAAAAAAAAAAAAAAAFtFATsAW1iWpZX8ig7deUg9B3tqxhXPFbVmranb0y3HfkfNuNXTq1o6viTLsjqmgN2uDvaNdLfH5lJninXP58+vK3O2KP9VDrn2dW17HAAAAAAAAAAAAAAAAAAAOgkF7ABs1XOwRy6/q37Q4b2ZSyvJZrMKBo4oZ2MHe2yPx+OR29WryH1528Z0u3rl8XhsGw8vKBQKisfjWl5eltfrVSgUktPpbPa0AAAAgF2Tz194rbJ6etWW8UrjlMYFAAAAAAAAAAAAdhsF7ABgAMuylMuvaO52l4IHanemb6Tr91ceO68PP2BPIUMn8vl8SqVPNdQNPxKJaG5uTsFgsG6sx+PpmJ0E9tLCwoKi0agymUz5mN/v1+zsrMLhcPMmBgAAAOyi0u+/S8eXbB93ZGTE1jHBolsAAAAAAAAAAIBqKGAHAIMEDzg04K3/IHvkmvpjpKyCpM278RXPFbVmranb0y3H/tpF83Z19WslPp+v4YLzYDCogYGBXZ4RLrWwsKDJyUmNjY1pfn5e/f39SiaTmp6e1uTkpGKxGEXsAID/n737jo6qzv8/fj+TQEjoEGlSAqICgjRRBFFkLauiYMRVdrHg2r4gq0hRLGtBitgVdVGxCxbEYFeKCCqioNJDj3SkSklCIHn9/uA315l0IOWd5Pk4x6PM3Jncuc9dbu6d99wBALOSk5O9xMTEsNuWLVsW9u9QzZo182JiYjzPO/yhTc/zvPo31/ei6kUd87oc2HTA2/DSBv95UXD40C0AAAAAAAAAAED2GGAHgFKmWgXnea5gr8ZXIbqCFxsbW2DPBxyL9PR0b9CgQV737t29hIQELxA4/AGMjh07egkJCV7Pnj29wYMHez169ODKhgAAADApMTHRa9++fbb39enTJ8tt8+fP9z84Gx0d7Xme50XVi/Ki46ILbJ2Cz4uCwYduAQAAAAAAAAAAcsYAO1CGrVu3ztu+fXuuy+R2BbhQv/32m+d5BXe17uDzpKSkFMjzlSV1KwU8T5739ttve82bN89xuWXLlnl9+vTJcznP87zY2Nh8X5EcKGyzZ8/2kpKSvIkTJ/rD60GBQMAbNmyY16lTJ2/27Nle165di2clAQAAgFw0a9bMmz9/fthtKSkpXlJSkhcXF5dlmLxZs2ZFuXo4RnzoFgAAAAAAAAAAIHcMsANl1Lp167zmzU72klNS87V8dleAy05BXvXb8zwvKSnJ69y5c4E+Z1nRvHlz/wp9BbEcYMXmzZs9z/O8li1bZnt/8PbgcgAAAIA1MTEx2R6HcfxbOvChWwAAgPwryIsteR4X5AEAAAAAoKRggB0oo7Zv3+4lp6R6b18e7TU/LpDjcimH5CXtzvDiqgW86EiX43IJiQe94bPSvPo31/ei6kUd8/od2HTA2/DSBi8uLu6Yn6skCF5pftn29GN+ruBzcPV6lFZ169b1PM/zFi9e7HXs2DHL/YsXLw5bDgAAAACKEh+6BQAAyJ9169Z5Jzc72UstwIstVYiu4C1PXM4QOwAAAAAAxjHADpRxzY8LeO3q5v511Z0b5P08waHpqHpRXnRcdB5L51/mr00vrZKSkjzP87w+k/N3kja/z8nV+1AadenSxYuLi/NGjhzpJSQkhF3RMCMjwxs1apTXuHFjr0uXLsW4lgAAAADKKj50CwAAkD/bt2/3UlNS87w4UkZahndw+0GvXGw5L1A+54syBS+OtH37dgbYAQAAAAAwjgF2ADAgeKX5t+MreM1jc/9AQV6WbU/3+kxOLTNXr0fZExER4T3xxBNer169vJ49e3rDhg3zWrZs6S1evNgbNWqU9+mnn3qTJk3yIiKO7f9LAAAAAHA0+NAtAADAkcnXxZFOKpp1AQAAAAAARYMBdgAwIHil+eaxEXleEf9InxMojeLj471JkyZ5gwYN8jp16uTf3rhxY2/SpElefHx8Ma4dAAAAgLKMD90CAAAAAAAAAADkjgF2AABQIsXHx3s9evTwZs+e7W3evNmrW7eu16VLF4ZAAAAAABQ7PnQLAAAAAAAAAACQMwbYAQBAiRUREeF17dq1uFcDAAAAKHIHNh3I9f6MtAzv4PaDXrnYcl6gfOConwdHjw/dAgBQMiQnJ3uJiYlhty1btizs36GaNWvmxcTEFMm6AQAAAAAAlFYMsAMAkAfewAAAAABgRWxsrFchuoK34aUNBfacFaIreLGxsQX2fPgLH7oFAMC+xMREr3379tne16dPnyy3zZ8/32vXrl1hrxYAAAAAAECpxgA7gALFFeCOzbJtGbnen3JIXtLuDC+uWsCLjnRH9Rw4cryBAQAAAMCKhg0bessTl3vbt2/Pdblly5Z5ffr08d5++22vefPmuS4bGxvrNWzYsCBXEwAAoMRo1qyZN3/+/LDbUlJSvKSkJC8uLs6Ljo7OsjwAAAAAAACODQPsQBmVkpLieZ7nLdueXiDPtz1Znud5XAHuKMXGxnox0RW8Ph+lFMjzxZShbVcUCvoNDK7oDgAAAOBYNGzYMN8D582bN+cDtgAAALmIiYnJ9velzp07F8PaAAAAAAAAlA0MsANlVFJSkud5ntdncmqBPu/w4cO9iy++OMf7uQJc9ho2bOgtK8Ar6JWlbVcUCvoNDK7oDgAAAAAAAAAAAAAAAAAoqxhgB8qouLg4z/M87+34Cl7z2Ihjfr5l29O9PpNTvXPPPTdfg7ZcAS4rrqBXdoRe0X3GjBneU0895W3atMm/v169et7AgQO9bt26+csDAAAAAAAAAAAAAAAAAFAaMMAOlFHR0dGe53le89gIr13dYx9gz/y8AHIWvKL75MmTvaFDh3rdu3f3PvzwQ69ly5be4sWLvZEjR3pDhw71Jk2a5MXHxxf36gIAAAAAAAAAAAAAAAAAUGACxb0CAACURenp6d6gQYO87t27ewkJCV7Hjh29SpUqeR07dvQSEhK87t27e4MHD/bS09OLe1UBAAAAAAAAAAAAAAAAACgwDLADAFAMZs+e7SUlJXn33HOPFwiE744DgYA3bNgwb+3atd7s2bOLaQ0BAAAAAAAAAAAAAAAAACh4kcW9AgAAlEWbN2/2PM/zWrZsme39wduDywEAAAAAAAAAUJqkpKR4nud5BzYdKJDnCz5P8HkBAAAAAIBdDLADZdyybRm53p9ySF7S7gwvrlrAi450R/08AMLVrVvX8zzPW7x4sdexY8cs9y9evDhsOQAAAAAAAAAArElOTvYSExPDblu2bFnYv0M1a9bMi4mJ8TzP85KSkjzP87wNL20o0HVKSkryOnfuXKDPCQAAAAAAChYD7EAZFRsb68VEV/D6fFRwV6GIia7gxcbGFtjzAaVZly5dvLi4OG/kyJFeQkKCFwgE/PsyMjK8UaNGeY0bN/a6dOlSjGsJAAAAAAAAAEDOEhMTvfbt22d7X58+fbLcNn/+fK9du3ae53leXFyc53meV//m+l5UvahjXpcDmw54G17a4D8vAAAAAACwiwF2oIxq2LChtyxxubd9+/Zcl1u2bJnXp08f7+233/aaN2+e67KxsbFew4YNC3I1gVIrIiLCe+KJJ7xevXp5PXv29IYNG+a1bNnSW7x4sTdq1Cjv008/9SZNmuRFREQU96oCAAAAAAAAAJCtZs2aefPnzw+7LSUlxUtKSvLi4uK86OjoLMsHBe+LqhflRceFL3csMv9MAAAAAABgDwPsQBnWsGHDfA+cN2/e3L8iBoCCER8f702aNMkbNGiQ16lTJ//2xo0be5MmTfLi4+OLce0AAAAAAAAAAMhdTExMtu8fde7cuRjWBgAAAAAAlBQMsAMAUIzi4+O9Hj16eLNnz/Y2b97s1a1b1+vSpQtXXgcAAAAAAAAAAAAAAAAAlEoMsAMAUMwiIiK8rl27FvdqAAAAAAAAAAAAAAAAAABQ6BhgBwCjkpOTvcTExLDbli1bFvbvoGbNmnkxMTFFtm4AAAAAAAAAAAAF4cCmA7nen5GW4R3cftArF1vOC5QPHPXzAAAAAAAAOxhgBwCjEhMTvfbt22d7X58+fcL+PH/+fK9du3Y5PteRDMN7HgPxAAAAAAAAAACgcMXGxnoVoit4G17aUGDPWSG6ghcbG1tgzwcAAAAAAAoHA+wAYFSzZs28+fPnh92WkpLiJSUleXFxcV50dHTYsrk5kmF4z8t7IB4AAAAAAAAAAOBYNGzY0FueuNzbvn17rsstW7bM69Onj/f22297zZs3z3XZ2NhYr2HDhgW5mgAAAAAAoBAwwA4ARsXExGQ7RN65c+cjfq4jGYYPLg8AAAAAAAAAAFCYGjZsmO+B8+bNm3PxHQAAAAAASgkG2AGgDCjIYXgAAAAAAAAAAAAAAAAAAICjxQA7AABHKD093Zs9e7a3efNmr27dul6XLl28iIiI4l4tAAAAAAAAAAAAAAAAAADMY4AdAEoIhqZtmDx5sjdo0CAvKSnJvy0uLs574oknvPj4+OJbMQAAAAAAAAAAAAAAAAAASgAG2AEUmuTkZC8xMTHstmXLloX9O1SzZs28mJiYIlm3koahaRsmT57s9erVy+vevbs3ceJEr2XLlt7ixYu9kSNHer169fImTZpEDwAAAAAAAAAAAAAAAAAAcsEAO4BCk5iY6LVv3z7b+/r06ZPltvnz53vt2rUr7NUqcRiatiE9Pd0bNGiQ1717dy8hIcELBAKe53lex44dvYSEBK9nz57e4MGDvR49enBlfAAAAAAAAAAAAAAAAAAAcsAAO4BC06xZM2/+/Plht6WkpHhJSUleXFycFx0dnWV5hGNo2o7Zs2d7SUlJ3sSJE/0OQYFAwBs2bJjXqVMnb/bs2V7Xrl2LZyUBAAAAAAAAAAAAAAAAADCOAXYAhSYmJibbK6p37ty5GNamZGJo2o7Nmzd7nud5LVu2zPb+4O3B5QAAAACgqCQnJ3uJiYlhty1btizs36GaNWvmxcTEFMm6AQAAAAAAAAAAAJkxwA4AhjE0bUfdunU9z/O8xYsXex07dsxy/+LFi8OWAwAAAICikpiY6LVv3z7b+/r06ZPltvnz52f7gXMAAAAAAAAAAACgKDDADgCGMTRtR5cuXby4uDhv5MiRXkJCQtgV8TMyMrxRo0Z5jRs39rp06VKMawkAAACgLGrWrJk3f/78sNtSUlK8pKQkLy4uzouOjs6yPAAAAAAAAAAAAFBcGGAH4OMrx+1haNqOiIgI74knnvB69erl9ezZ0xs2bJjXsmVLb/Hixd6oUaO8Tz/91Js0aZIXERFR3KsKAAAAoIyJiYnJ9orqnTt3Loa1AQAAAAAAAAAAAHLHADsAH185bg9D07bEx8d7kyZN8gYNGuR16tTJv71x48bepEmTvPj4+GJcOwAAAAAAAAAAAAAAAAAA7GOAHYCvsL9yPD093Zs9e7a3efNmr27dul6XLl0YvM4HhqZtiY+P93r06MH/lgEAAAAAAAAAAAAAAAAAOAoMsAPwFeZXjk+ePNkbNGiQl5SU5N8WFxfnPfHEEwxg5wND07ZERER4Xbt2Le7VAAAAAAAAAAAAAAAAAACgxAkU9woAsCs9Pd2bOXOmN3HiRG/mzJleenr6UT3P5MmTvV69enmtWrXy5syZ4+3du9ebM2eO16pVK69Xr17e5MmTC3jNS6fg0HTv3r29rl27MrwOAAAAAAAAAAAAAAAAAABKHAbYAWRr8uTJXtOmTb1zzz3X++c//+mde+65XtOmTY942Dw9Pd0bNGiQ1717dy8hIcHr2LGjV6lSJa9jx45eQkKC1717d2/w4MFHPRwPAAAAAAAAAAAAAAAAAACAkoMBdgBZFOQV02fPnu0lJSV599xzjxcIhP+VEwgEvGHDhnlr1671Zs+eXdAvAwAAAAAAAAAAAAAAAAAAAMYwwA4gTEFfMX3z5s2e53ley5Yts70/eHtwOQAAAAAAAAAAAAAAAAAAAJReDLADCFPQV0yvW7eu53met3jx4mzvD94eXA4AAAAAAAAAAAAAAAAAAAClFwPsAMIU9BXTu3Tp4sXFxXkjR470MjIywu7LyMjwRo0a5TVu3Njr0qXLMaw1AAAAAAAAAAAAAAAAAAAASgIG2AGEKegrpkdERHhPPPGE9+mnn3o9e/b05syZ4+3du9ebM2eO17NnT+/TTz/1Hn/8cS8iIqJgXgAAAAAAAAAAAAAAAAAAAADMiizuFQBgS+gV0xMSErxA4K/PuRztFdPj4+O9SZMmeYMGDfI6derk3964cWNv0qRJXnx8fIG+BgAAAAAAAAAAAJQ8ycnJXmJiYthty5YtC/t3qGbNmnkxMTFFsm4AAAAAAKDgMMAOIEzwium9evXyevbs6Q0bNsxr2bKlt3jxYm/UqFHep59+6k2aNOmIr5geHx/v9ejRw5s9e7a3efNmr27dul6XLl248joAAAAAAAAAAAA8z/O8xMREr3379tne16dPnyy3zZ8/32vXrl1hrxYAAAAAAChgDLADyKKwrpgeERHhde3atYDWEgAAAAAAAAAAAKVJs2bNvPnz54fdlpKS4iUlJXlxcXFedHR0luUBAAAAAEDJwwA7gGxxxXQAAAAAAAAAAAAUpZiYmGyvqN65c+diWBsAAAAAAFBYGGAHkCOumA4AAAAAAAAAAAAAAAAAAICCFCjuFQAAAAAAAAAAAAAAAAAAAAAAlA0MsAMAAAAAAAAAAAAAAAAAAAAAigQD7AAAAAAAAAAAAAAAAAAAAACAIsEAOwAAAAAAAAAAAAAAAAAAAACgSDDADgAAAAAAAAAAAAAAAAAAAAAoEgywAwAAAAAAAAAAAAAAAAAAAACKBAPsAAAAAAAAAAAAAAAAAAAAAIAiwQA7AAAAAAAAAAAAAAAAAAAAAKBIMMAOAAAAAAAAAAAAAAAAAAAAACgSDLADAAAAAAAAAAAAAAAAAAAAAIoEA+wAAAAAAAAAAAAAAAAAAAAAgCLBADsAAAAAAAAAAAAAAAAAAAAAoEgwwA4AAAAAAAAAAAAAAAAAAAAAKBIMsAMAAAAAAAAAAAAAAAAAAAAAigQD7AAAAAAAAAAAAAAAAAAAAACAIsEAOwAAAAAAAAAAAAAAAAAAAACgSDDADgAAAAAAAAAAAAAAAAAAAAAoEgywAwAAAAAAAAAAAAAAAAAAAACKBAPsAAAAAAAAAAAAAAAAAAAAAIAiwQA7AAAAAAAAAAAAAAAAAAAAAKBIMMAOAAAAAAAAAAAAAAAAAAAAACgSDLADAAAAAAAAAAAAAAAAAAAAAIoEA+wAAAAAAAAAAAAAAAAAAAAAgCLBADsAAAAAAAAAAAAAAAAAAAAAoEhEFvcKwPMkeZ7neXv27CnmNUFBy8jI8P9NXwAAAAAACgfH3wCA/GKfAQDID/YXAID8Yp8BACguwf1OcP4UKGmc+F9vsduwYYPXoEGD4l4NAAAAAAAAAAAAAAAAAAAAlBDr16/36tevX9yrARwxBtgNyMjI8DZt2uRVrlzZc84V9+qYsGfPHq9Bgwbe+vXrvSpVqhT36pRptLCFHnbQwg5a2EELO2hhCz3soIUdtLCDFnbQwhZ62EELO2hhBy3soIUt9LCDFnbQwg5a2EELW+hhBy3soIUdtLCDFtmT5O3du9erV6+eFwgEint1gCMWWdwrAM8LBAJ8AiYHVapUYadjBC1soYcdtLCDFnbQwg5a2EIPO2hhBy3soIUdtLCFHnbQwg5a2EELO2hhCz3soIUdtLCDFnbQwhZ62EELO2hhBy3soEVWVatWLe5VAI4aH7sAAAAAAAAAAAAAAAAAAAAAABQJBtgBAAAAAAAAAAAAAAAAAAAAAEWCAXaYFBUV5T3wwANeVFRUca9KmUcLW+hhBy3soIUdtLCDFrbQww5a2EELO2hhBy1soYcdtLCDFnbQwg5a2EIPO2hhBy3soIUdtLCFHnbQwg5a2EELO2gBlE5Okop7JQAAAAAAAAAAAAAAAAAAAAAApR9XYAcAAAAAAAAAAAAAAAAAAAAAFAkG2AEAAAAAAAAAAAAAAAAAAAAARYIBdgAAAAAAAAAAAAAAAAAAAABAkWCAHQAAAAAAAAAAAAAAAAAAAABQJBhgh3np6enFvQoAAAAAAAAAAAAAAAAAAAAACgAD7DAtLS3Ne+6557w77rijuFcFAAAAAAAAAAAAAAAAAAAAwDGKLO4VAHKSlpbmvfnmm97999/v7d+/30tPT/eee+654l4tAAAAAAAAAAAAAAAAAAAAAEeJK7DDpLS0NO+NN97wBg4c6O3fv9+Liorynn/+ee+GG24o7lUrkyRl+98oerSwgxZ20MIWethBCztoYQct7KCFLfQAAAAAAAAAAAAAUJQYYIc5wSuvDxo0yNu/f79Xo0YN79ChQ57nef6/UbgyDyw457L8N0MNRYMWdtDCDlrYQg87aGEHLeyghR20sIUedmTezhkZGcW0JqCFHbSwgxa20MMOWthBCztoYQctbKGHHbSwgxZ20MIOWthBC1voAZR+kcW9AkCo4PD6nXfe6e3bt8/r3Lmzd9JJJ3nvvfeed9xxx3l9+/b1PO/wDir0DXYUrOC2TUpK8hYuXOgtWbLE27x5sxcREeE1a9bMO+2007xWrVp55cuX9zyPHoWJFnbQwg5a2EIPO2hhBy3soIUdtLCFHjaEbtfZs2d7J598slerVi3v0KFDXmQkp+yKEi3soIUdtLAltMeqVau8pk2beoFAwEtPT/ciIiKKee3KFlrYQQs7aGEHLWyhhx20sIMWdnDMZwct7KCFLfQAygb+3wwzMg+vn3baaV6/fv28559/3ktOTvZOPPFE7/TTT/c8z+ON80Ikydu3b5937733erNmzfIWLlwYdr9zzgsEAt4111zjXXzxxV6vXr085xwDDYWAFnbQwg5a2EIPO2hhBy3soIUdtLCFHjaEbs8ZM2Z4jzzyiLdkyRLvu+++80488cRiXruyhRZ20MIOWtgS2mPatGneI4884nXo0MF77LHHGPIpYrSwgxZ20MIOWthCDztoYQct7OCYzw5a2EELW+gBlCECDDhw4IBefvllVa5cWc45tWrVShMnTtSECRN03HHHqUaNGvrxxx8lSenp6cW8tqXXvn37lJCQoG7dusk55/9Tu3Zt1atXTw0aNNBJJ50k55wCgYAqV66sBx54wH98RkZG8a18KUMLO2hhBy1soYcdtLCDFnbQwg5a2EIPG0K349SpU3XppZcqIiJCzjk99NBDkjj3UVRoYQct7KCFLZl79OzZ099/f/LJJ+ybixAt7KCFHbSwgxa20MMOWthBCzs45rODFnbQwhZ6AGULA+wodpmH10899VS9++67kqShQ4fKOafzzz9fmzdvLuY1Ld3+/PNPvfjii2rbtq2cc4qMjFStWrU0cOBA/fDDD9q1a5f27NmjP//8U+PGjdPll1+uQCAg55xuv/12/3k4uDx2tLCDFnbQwhZ62EELO2hhBy3soIUt9LAhu5PvwTdsb7rpJv++4Al4TsQXHlrYQQs7aGFLbj3uuuuuLMvTo/DQwg5a2EELO2hhCz3soIUdtLCDYz47aGEHLWyhB1D2MMCOYpV5eL1169aaOHGiDh48qJkzZ/o7oQkTJhT3qpZq+/fv16uvvqoWLVrIOady5cqpd+/eSkhICFsu9BeFNWvW6LHHHvMHGu6///6iXu1SiRZ20MIOWthCDztoYQct7KCFHbSwhR42ZD753qNHj7Ar4Z9yyimqXr26OnfurPvuu8//IP+hQ4eKa5VLLVrYQQs7aGFLbj0iIyN1/fXX64ILLtAjjzyir7/+2l+WHgWPFnbQwg5a2EELW+hhBy3soIUdHPPZQQs7aGELPYCyiQF2FJvshtcnTJig3bt3S5LuuusuBQIBXXHFFUpNTZWU9UpvfJLq2AS354wZM9S+fXt/kOGOO+7Qb7/95i8XurMPbZCamqpnnnlGgUBAUVFRevPNN4tu5UsZWthBCztoYQs97KCFHbSwgxZ20MIWetiR21dlN2vWTGeddZYGDhyoM844Q7Vr15ZzTu3bt9eaNWuyPB7HhhZ20MIOWtiSW4/Y2Fg1aNBAp512miIjI+WcU6VKlTRmzJhsH49jQws7aGEHLeyghS30sIMWdtDCDo757KCFHbSwhR5A2cUAO4pFTlde37NnjyRp9erVqlWrlpxzevTRR/N8vmXLlun555/XgAEDCnvVS43Qnfcll1ziDzL0799fy5cvz3a57GzevFm33HKLAoGA/vGPf2jXrl38YnCEaGEHLeyghS30sIMWdtDCDlrYQQtb6GFHbiffb7jhBv30009KSUmRJO3atUvTpk1Tp06d5JxT06ZNtWvXrmJa89KHFnbQwg5a2JJbj969e+ujjz7Stm3bdOjQIf3www8aNmyYf/8DDzxQfCteCtHCDlrYQQs7aGELPeyghR20sINjPjtoYQctbKEHULYxwI4il9Pw+r59+yRJKSkpGjBggJxzOvPMM/0rwQWvth78d3JysrZv365Bgwbp9NNP93deDLEfmUceeUTOOUVEROiSSy7Rzz//fMTPMWXKFJUrV06BQEBTp04thLUsG2hhBy3soIUt9LCDFnbQwg5a2EELW+hRvHI7+T548OCwZUOvhD9jxgx16NBBAwcO1KZNm4psfUszWthBCztoYUtuPe68885sP0CWkpKie+65R+XLl9edd96pP//8syhXudSihR20sIMWdtDCFnrYQQs7aGEHx3x20MIOWthCDwAMsKNI5TW8Lknbt29Xp06dVL58eT377LOSDn9teajFixfrlltuUdu2bf034p1zio6O9j+BhbxlZGQoPj5egUBAzjm98cYbR/1cV1xxhZxzuuWWW3TgwIECXMuygRZ20MIOWthCDztoYQct7KCFHbSwhR7FK7eT70OGDMl2uaC9e/dq+vTpWrt2bVGsaqlHCztoYQctbMmtx9ChQ7NdLmjp0qV65513/K/NxrGhhR20sIMWdtDCFnrYQQs7aGEHx3x20MIOWthCDwASA+woQqmpqRo/fnyuw+uS9OCDD8o5p5o1a2rRokVh902ZMkVDhw71nyM6Olp169bVv/71L9WvX9/fkfXt21e7d+8uypdXIi1YsMDfZn369PFvP5Kvgw9+wu3ee++Vc04DBw70r5KP/KOFHbSwgxa20MMOWthBCztoYQctbKFH8cnvG7ahV43JLPSDAl9++aV27dqltLQ0SaLBEaCFHbSwgxa25PcN29x6hH5dduYrj9Ej/2hhBy3soIUdtLCFHnbQwg5a2MExnx20sIMWttADQBAD7CgSGRkZeuONN/ydTebh9eCOacWKFWrfvr2ccxo7dqykw5+aSkhI0M033yznnCIjI+Wc00UXXaSxY8fq7bff1g033OA/98CBA7Vx48Zie60lyYwZM/ztGdzeue38c5OQkKCrrrpKO3fuLMhVLDNoYQct7KCFLfSwgxZ20MIOWthBC1voUfymTp2q+Pj4Iz75Hir4Qf8zzzxTo0eP1rZt247o8TiMFnbQwg5a2DJ9+vSjesM21O23365GjRrpnnvu0axZs4748TiMFnbQwg5a2EELW+hhBy3soIUdHPPZQQs7aGELPQAwwI4ik5iYKOecGjZsqPfeey/syuvBAfYJEyYoEAiobdu2eueddzR16lSdeeaZqlatmr+zuuqqq/TCCy/o0KFDmjVrlq6++mqG149QcHtPnDhRzjlVrFhRixcvPqbnXLdunfbv3y+JXwKOBC3soIUdtLCFHnbQwg5a2EELO2hhCz1sSExM1DnnnHNMJ9/T0tKUkJCgdu3aKSYmRs45devWTevWrTui5ynraGEHLeyghS0zZ85Ut27dFBERcURXqAy1detW3XjjjQoEAnLO6YQTTvA/wHYkz1PW0cIOWthBCztoYQs97KCFHbSwg2M+O2hhBy1soQcAiQF2FLHVq1frww8/1N69e7Pc9/vvv6tp06Zyzql+/fo699xzVbt2bTnn1KBBA3Xv3l0ff/yxv/zPP/+s7t27+zuyO++8k+H1I/Tll1/62++bb74pkOc8kq+ix19oYQct7KCFLfSwgxZ20MIOWthBC1voUfz69+9/RG/Y5rR9169fr5dfflmtWrWSc05xcXFKSkqSxNeh5hct7KCFHbSwY/369apSpYqcc7r77rv924/mjdZJkybpmmuu8X8H+O9//+vfR4+80cIOWthBCztoYQs97KCFHbSwhWM+O2hhBy1soQcABthR5HLamfzyyy+qVKmSfwASHGTv2bOnFi5cqC1btkg6vGOZNWuWLrvsMobXj9Gvv/7qH0BOmTJFUsEOI/BJtvyjhR20sIMWttDDDlrYQQs7aGEHLWyhR/EJPSmekJDg/3dO2yxzl4MHD2ZZ5sCBA5o7d646duwo55xat26tTZs2FdAal160sIMWdtDCpgULFuiBBx7w/5zfHtnZsGGDRo4c6Z8/HzVqVEGtZplACztoYQct7KCFLfSwgxZ20KL4ccxnBy3soIUt9AAQxAA7THniiSfknFOlSpU0dOhQfffdd2E7nYyMDH377bfq2bMnw+sF5NJLL5VzTt27d9eOHTsK5DlnzJjh/zefZMs/WthBCztoYQs97KCFHbSwgxZ20MIWehSfzCfRczr5HtyG69ev15tvvqm+ffsqPj5ezzzzTLZXzv/+++91yimnyDmn22+/XampqQW+7qUNLeyghR20sC2vHn/88Ye+//57PfXUU3ruuef066+/aufOnZL+elN37969Gj58uJxzqlq1atgbwsg/WthBCztoYQctbKGHHbSwgxbFh2M+O2hhBy1soQcAiQF2GBH6hve3336rWbNmZVkmIyNDs2bNOqrh9eBOLiMjQ3v37i24FS/Bggd848ePV82aNdWwYUNNmTLlmIcPHnnkETnnNGDAgIJYzTKBFnbQwg5a2EIPO2hhBy3soIUdtLCFHiVDsNPy5ct19tlnq2bNmmHfTFetWjU9+OCDYY/Zt2+fhgwZIueczjzzTKWkpBTHqpc6tLCDFnbQwpbgPnzFihW66KKLVK9ePb9FgwYN9Le//U0rVqwIe8zy5ct17rnnKiIiQoMGDZJUsN/GUlbRwg5a2EELO2hhCz3soIUdtLCDYz47aGEHLWyhB1D6McAOM7J7Ez34aaujGV7PfMCyb98+jR49Wl27dtX1119fsCtfgv3xxx+64IIL5JxTp06dtHjx4qN+ruAnn51zuvDCC7V+/Xq/AweQeaOFHbSwgxa20MMOWthBCztoYQctbKGHfUlJSf7XmlasWFFxcXG6/PLL/avEOOf0f//3f/4VyCRpFPp9tQABAABJREFU1qxZ/n3ff/99Ma596UILO2hhBy1sWbVqldq3b+9v3xo1aqhOnTqqVq2anHOqVauWpk+fHvaYu+66S8451a1bV7t372afXUBoYQct7KCFHbSwhR520MIOWtjBMZ8dtLCDFrbQAyjdGGCHWaFvgh/J8HrmrxSZP3++nnzySbVo0SLsU1jXXnttob+GkmL16tU64YQT5JxTly5dNG3aNO3Zs0fSXx8syOsqfQ8//LC/bbt27ar3339fmzZtCntc5ufgoDIrWthBCztoYQs97KCFHbSwgxZ20MIWetgU3F5PPvmkqlatqqioKN14441av369JGnZsmV6/PHH/e3+73//W5s3b5YkLV26VFWqVFFERIR+/vnnYnsNpQUt7KCFHbSwJzU1VQMGDFD58uVVpUoV3XDDDVq7dq02btyoDz74QF26dJFzTrGxsfr444914MABSdKUKVNUvnx5NWvWTMnJycX8KkoHWthBCztoYQctbKGHHbSwgxY2cMxnBy3soIUt9ADKBgbYYdLRDq+Hmj17tsaMGaPq1asrJiZGzjn/E7vOOdWvX19bt24t7JdSYiQmJqp+/fpyzunkk0/WHXfcoYULF/pXwc9N8Cvkg/9UrVpV1apVU6NGjXT11VfrnXfe8ZcNfsAgdJDhk08+8X+JAC0soYUdtLCFHnbQwg5a2EELO2hhCz3s6tGjh5xzOv7447VmzZos97///vv+tr/55pu1fv163X333XLOqXnz5tq7d28xrHXpRAs7aGEHLezYt2+f2rVrJ+ec2rRpo99//z3s/m3btuniiy+Wc041a9bUl19+qdTUVF177bVyzqljx47FtOalDy3soIUdtLCDFrbQww5a2EELWzjms4MWdtDCFnoApRsD7DDnSIbXg5+2Cj5mx44dWrhwoa6//no1atTIf1yDBg10xRVXaPLkyWrcuLGccxowYIBSU1OL/gUatmrVKnXr1s0f+I+KilLXrl116623atq0adk+ZsSIEf52rlSpktq3b68bb7xRffr0Cbvq/UMPPZTt4ydOnKgOHTqoUqVKWrVqVWG+vBKFFnbQwg5a2EIPO2hhBy3soIUdtLCFHrZkZGQoOTlZHTp0kHNOl1xyiX9f5qvZJyQk+Nu6S5cuatasmQKBgAYOHKgDBw7keQV95I4WdtDCDlrYs3DhQlWuXFkRERF69NFHJWX/wbFLL71UzjnVqFFD/fr1U9OmTRUTE6Onn35aUt7fuoK80cIOWthBCztoYQs97KCFHbSwgWM+O2hhBy1soQdQNjDADpMyMjL03Xff5Tq8HjyIkaTdu3dr9uzZ+vvf/66TTz5ZzjmVL19elSpV0u23367vvvtOkjR8+HA55xQdHa3ffvutyF9XSbBlyxa98MIL+vvf/y7nnCIiItStWzf/6+VDhQ4ynHfeeXr++efD7l+9erVGjx7tL/Pcc8+F3f/HH3/o3HPP9e9//fXXC/W1lTS0sIMWdtDCFnrYQQs7aGEHLeyghS30sOc///mPnHNq0aKFEhMTw+7LyMjwr5I/adIkf1s6d/jD+vPnzy+OVS61aGEHLeyghR179+5V27Zt5ZzTVVddpX379oXdH3q+/JJLLvHPgzvndMopp2jJkiVFvcqlFi3soIUdtLCDFrbQww5a2EELWzjms4MWdtDCFnoApRsD7DDphx9+ULdu3fydyp133qkNGzZI+utTt8FPR40bN05XX321KlSo4C9fvXp1DR8+XFOnTvWfc9myZWrWrJkiIiI0ePDgsOdA9hISEjRx4kTt3r1bUvjBYuggQ3x8vGbMmOG3Cb2y/b59+zR06FCdeuqp+uyzz7L8jK+//lrOOT377LOF/GpKNlrYQQs7aGELPeyghR20sIMWdtDCFnrY8M477/jbesyYMdq/f79/X/Dk+969ezVhwgSddNJJ/rJffvll2PPkdI6Dcx/5Rws7aGEHLexISUnRDTfcIOecWrdurblz54bdH7off/nllxUbGyvnnMqVK5flm1ZCr2yJI0cLO2hhBy3soIUt9LCDFnbQwhaO+eyghR20sIUeQOnGADtMWr9+vQKBgJxzGjx4sNatWxd2//bt2/X444/7n7iNiIiQc04dO3bU4MGDtXLlyizP+dJLL8k5p0AgoI8++qiIXknJlN2BXnCnL4UPMlxxxRX+Fe5zeuyPP/6oefPm+fcvWLAg7P7QK+vzi0E4WthBCztoYQs97KCFHbSwgxZ20MIWethz1113+dv8oYce0o8//ihJ2r9/v9atW6d///vf/jfOOef08ccfSzq8vUPf2JWkbdu2KSkpSVu2bAm7nW2fP7SwgxZ20MKO1atXq0GDBnLu8Fdiz5o1S7t27fLv3759uwYNGqQ2bdrkq4d0+HeA0N8DJHrkBy3soIUdtLCDFrbQww5a2EELWzjms4MWdtDCFnoApRcD7DBr0aJFGjZsmLZu3erf9tNPP+mll17SiSeeqMjISH/HExkZqfj4eElScnKypPAdy7Jly/wDoOuvv75oX0gp88gjj/jbvVevXvr+++/9+/L6hHNGRoYmTpyo1q1b6z//+U+Wx/HLwJGhhR20sIMWttDDDlrYQQs7aGEHLWyhR9EKPXl+//33q1y5cv5Vxdq1a6cWLVqoevXqfhPnnD799FNJh7drWlqaJGnr1q169dVXdemll6p+/fqKiIhQ7dq1demll+rZZ5/Vtm3bsvw8hKOFHbSwgxY2LV++3L+iWP369dWlSxfdcccduv7669WkSZOwbyoNfjtKaI8dO3bom2++0S233KJLLrlEZ5xxhrp166bx48drzpw5/s+hR95oYQct7KCFHbSwhR520MIOWhQ/jvnsoIUdtLCFHkDpxwA7TAu+yf3NN99o9OjROu6441S5cmU551SjRg01atQo7FO3s2bNknR4hxL6KaqXX35ZVatWVa1atfyrr/PG+ZEbNWrUEQ8yhG7n9957T3/729/85wg9cMSRoYUdtLCDFrbQww5a2EELO2hhBy1soUfxCD0pnpCQoCFDhujcc8/Vqaeeqrp16/rfOuec0yeffCIp/OT7ypUr1a1bN9WtW1fOOZUvXz7shH1MTIzOOecc/f7771l+HsLRwg5a2EELm5KSknTHHXfo1FNPVbVq1RQVFaWoqKg837BdvXq1rrjiCp1wwglyzoX1K1++vJo1a6Znn33W/zn0yBst7KCFHbSwgxa20MMOWthBi+LHMZ8dtLCDFrbQAyjdGGCHedu3b1fnzp3Ddh5t27bV//73Py1cuFDz58/X+eef7983depUSX/tUNLS0tShQwc559SxY0ft2bMnz5+Znp7u75hw2OOPP37Egwyht7///vs699xz/ed44YUXCn2dSyta2EELO2hhCz3soIUdtLCDFnbQwhZ6FK/MH7Lftm2bnn32WbVr187fpqFfexo8+b58+XLVr1/fX6ZSpUoaMmSIxowZo/Hjxys+Pl5NmjSRc05xcXFKSkrK9ufhL7SwgxZ20MKmtLQ0paena/78+br33nt14okn5vqGbWJiouLi4vxloqKi1L17d1133XW6/PLL1bRpU/++//73v/7PoUfeaGEHLeyghR20sIUedtDCDloUP4757KCFHbSwhR5A6cUAO0qEJUuWKDIyUp07d9Y999yj1NRU/760tDRNmzYt2yH29PR0PfXUU3LOqXr16vryyy/923OSnp6un3/+WS1atNA111xTuC+sBFm0aJECgYAuuOAC/fDDD/7teQ0yZGRkZBlkePHFF/3l0tPT8/waeoSjhR20sIMWttDDDlrYQQs7aGEHLWyhhy0//PCDGjdunO3J9+AH9levXu2/YVuzZk1ddtllWrRoUdjz7N69WzNmzNCZZ54p55zatWunzZs3F/nrKcloYQct7KCFDcH96xtvvKHmzZtnO+Rz8OBBSdKKFSt0/PHH++fJu3btqp9//tm/X5J++ukn3X///f7zjBkzpuhfVAlFCztoYQct7KCFLfSwgxZ20MIejvnsoIUdtLCFHkDpwQA7SowtW7Zo3bp1/vD5oUOH/IOZgwcPavr06dkOsV955ZVyzql9+/ZavXp1rj8jOLzerVs3/3n69+9fuC+sBFm/fr3mzp3r//lorsKXeZAhuw8T8HUseaOFHbSwgxa20MMOWthBCztoYQctbKGHLddff72cC/+q7OC237Fjhy6//HI551SjRg1df/31Wrt2raS/tm/otp8/f77atGkj55wGDx6sAwcOFO2LKeFoYQct7KCFHatXr/b3w59//rmk8B5btmxR165d5ZxTbGysrr/+ev88eeg5dknav3+/xowZ47cL9kX+0MIOWthBCztoYQs97KCFHbSwhWM+O2hhBy1soQdQOjDAjhIpuzfRsxtiHzx4sP/f48aNy/U5g8PrwYOeChUqKCIiQs45DRgwoLBeSolV0IMMo0aN0t133114K1yK0cIOWthBC1voYQct7KCFHbSwgxa20KP4hG63JUuWSPrr5Htw+8+YMUMnnHCCnHM699xz/Tdsc+p24MABvfjii6pWrZpOPvlkbdy4sZBfRelACztoYQctbFqyZIm++uorSX/1CLZ65ZVXVKdOHTnn1KNHD/8N25x6bNq0SX369FG5cuV02223hV3NEnmjhR20sIMWdtDCFnrYQQs7aFH8OOazgxZ20MIWegClCwPsKFUyD7EHAgE553Teeedpy5YtkrLfGWUeXi9fvrz++c9/6t577/Wf47bbbivql1PiHO0gw7PPPusv9+STTxbpOpdWtLCDFnbQwhZ62EELO2hhBy3soIUt9Cg6ma9Sn/lcxk033STnnKKiovTzzz9nu0xm69atU6VKlVSrVi2lpqYW7AqXYrSwgxZ20MKu0Ddrg7p37y7nnCpVqqTFixf7y+Xmvffek3NOHTt25JtTjhIt7KCFHbSwgxa20MMOWthBi+LFMZ8dtLCDFrbQAyg9GGBHqZOamqqffvpJnTp18ofPhw4dmuPy2Q2v9+nTRz/++KMkafz48f7zDBo0qKheRolztIMMTz31lMqVKyfnnDp06BC2bHB5HBla2EELO2hhCz3soIUdtLCDFnbQwhZ62JGRkaELL7xQERER6tGjh9LT0/N8EzbY7/PPP9fevXslse0LAi3soIUdtLBly5Ytqlu3rsqXL69hw4ZJyvomb6hgi9TUVN1+++36888/w27H0aOFHbSwgxZ20MIWethBCztoYQfHfHbQwg5a2EIPoGQJeEApIsmLiorymjRp4v+5efPm3r333uv/OVRGRob3yy+/eEOGDPG+/fZbr1y5ct4//vEP77bbbvPOOOMMz/M879prr/VeeOEFzznnPfnkk96YMWOK9kWVAJI855zneZ73wQcfeC+++KI3c+ZMz/M874UXXvBuvfVWz/MOb2/P87xA4PBfPc8884w3bNgw79ChQ17dunW9OnXqeNWrV/e+++47b+XKlf6y6enpRfyKSi5a2EELO2hhCz3soIUdtLCDFnbQwhZ62JKWluZt3brVy8jI8GJjY71AIOBv85wE+1100UVepUqVvEOHDuX5GOSNFnbQwg5a2LJv3z5vy5Yt3sGDB73jjjvO8zzPi4iIyHF555x/jv3pp5/2qlSp4h06dMhvhKNHCztoYQct7KCFLfSwgxZ20MIOjvnsoIUdtLCFHkAJU6Tj8kAhC35i6osvvlDjxo0VERGhoUOHKi0tLcsno/K68rr01yesduzYoSFDhigQCKh169b+14vgLxkZGZo0aVK+r8L3zDPPqHz58v6y0dHR/pXunXNq2rSpnn766bDHI39oYQct7KCFLfSwgxZ20MIOWthBC1voYceBAwfUqVMnOefUu3fvI3588FxH6FXHuALZ0aGFHbSwgxa2rF+/XjVq1FAgENCECRMkHdk+N7jtQx+TkZFBk6NACztoYQct7KCFLfSwgxZ20MIOjvnsoIUdtLCFHkDJwgA7So3QnUWfPn38ofTshs2Dw+tdunTxl7vmmmv0/fffZ/t8kvTxxx/7b7S/8sorhfdCSqiEhAS1bds234MMkZGRcs6pZs2a6tu3r2bPnq2VK1fqgw8+0IABA/zneeihh4rj5ZRotLCDFnbQwhZ62EELO2hhBy3soIUt9LAluI2bN2+u3377LV+PyXyeIzExUQsWLNA333yjmTNn6sCBAzpw4IAkPlBwJGhhBy3soIUt3bp189+0DX4Ndl4y90hOTtbOnTu1f/9+7d69O+w+euQfLeyghR20sIMWttDDDlrYQQs7OOazgxZ20MIWegAlBwPsKHXefPNN/43w//73v5LCPz0bHF4/55xz5JxTIBBQ+/bttWLFCv85QndKwZ3Orl27dNxxx8k5p169emVZrqxLSkryBxTGjRvn357bIEPr1q01duzYLM+1d+9ePf744/6HCyZNmlQkr6G0oIUdtLCDFrbQww5a2EELO2hhBy1soYctM2bMUMOGDeWc04gRI5SSkuLfl925imCj9PR0ff/99xoyZIhq1qyp6Oho/xxKly5ddNddd2nz5s2S/vqWO+SOFnbQwg5a2BDc1qNGjVK5cuV08skn67vvvsvzccEeGRkZWrNmjR599FGdeeaZqlGjhho0aKDjjz9ew4YN0+eff+4/hh65o4UdtLCDFnbQwhZ62EELO2hhD8d8dtDCDlrYQg+g5GCAHaXKn3/+qWuuuUYVKlRQlSpVNGXKFEnhXwn1888/q2vXrnLO+W+qO+f05JNP+s+T+ZNShw4d0oQJE/yvP7/66qvDnheHLVy4UK+++qr/59wGGdq0aRO2bOiOPT09XatXr1abNm0UERGhBx54oEjWvzShhR20sIMWttDDDlrYQQs7aGEHLWyhhy0jR470z2k888wz+uOPP/z7svtg/sGDBzVixAiddtpp/uOaNGmi0047TdHR0YqIiPDbJSUlSeIkfH7Rwg5a2EELOzZs2KD27dvLOaeuXbtq4cKFOnjwoKSs57dDezz11FP+VS6D/9SqVcu/KEy1atU0evToLI9FzmhhBy3soIUdtLCFHnbQwg5a2MIxnx20sIMWttADKBkYYEepEnqV9L59+4bdl3l4vXz58urdu7duvfVWf8fz6KOP+suH7qw2btyoXr16+cu9/PLLRfaaSqojGWTI6SCwc+fOcs6pW7duOnToEDv+o0QLO2hhBy1soYcdtLCDFnbQwg5a2EKP4hO6PQcNGuSfq7jxxhs1ZcqUsO0YPLdx8OBBDRkyRLVr1/aXf/fdd7Vz505J0ooVK/Tkk0+qVatWcs6padOmWr9+fdhzICta2EELO2hh04oVK/zte/rpp+v111/3rxgWFPqG7dChQ1WvXj2/x/jx4zV16lRt3bpVL7zwgq688kr/vgcffNB/DnrkjRZ20MIOWthBC1voYQct7KBF8eOYzw5a2EELW+gBlCwMsKPUWbRokdq0aaMPPvjAvy274fU+ffroxx9/VEZGRtinru677z7t2rXLf+yyZct07bXX+vefe+65WrRoUTG8spLlaAcZMjIylJ6eriVLlujkk09WZGSkhgwZkufPQM5oYQct7KCFLfSwgxZ20MIOWthBC1voUbxCT7I//PDDqlatmv+tcXfddVfYsunp6Ro9enTYG7bOubCri0lSSkqK5s6dq44dO8o5p8svv1y7d+8uktdTktHCDlrYQQubli9f7r/RWqNGDcXGxmr69Olhyxw6dEgPPvhg2Bu21atXz7Ktk5KSNGrUqLBBIOQfLeyghR20sIMWttDDDlrYQYvixzGfHbSwgxa20AMoORhgR6m0efNm/1NQOQ2vz5kzx19+3759euCBB/ydUJcuXXTVVVfpkksuUbt27fzbTzjhBL344ovF9bJKpNGjRys6Ojpfgwyhfx4+fLi/3W+55RZ99dVXGj9+vKZPn641a9b4y3GFvvyjhR20sIMWttDDDlrYQQs7aGEHLWyhR/EJ3TZTpkxR//79ddppp2nPnj2S/rryy+LFi3XWWWfJOaeIiAhdd911/rYfNmyY/xzB5T///HPVrVtXjRo10s8//1yEr6jkooUdtLCDFjatW7dOd955p5o2barY2Fjt27dP0l/bd+rUqWrbtq2cc4qKitIpp5wi55xq166tZcuWhS27b98+DR06VM45/f3vf9eOHTu46tgRoIUdtLCDFnbQwhZ62EELO2hR/Djms4MWdtDCFnoAJQMD7CjVDh48qB9++EHnnXde2PD6jz/+6C8T3MGsWrVK559/ftinqUL/Oe200zR27Ngsj0POdu7cqdjYWDnn1KFDh3wPMrz88sth27527dqKiory/3zyySfr2WefzfG5kBUt7KCFHbSwhR520MIOWthBCztoYQs9il/otklPT/dPyh88eNC//cEHH/S37SuvvCJJevrpp/3b7r333rDn3LJli1q2bCnnnEaMGFEEr6J0oIUdtLCDFjalpqZq8+bNSk1NlRTe47bbbvO3/VtvvaVt27b5F4apXbu2VqxYIemvN4G//vprRUZGKioq6oi+tZRz64fRwg5a2EELO2hhCz3soIUdtCh+Fo75gv3L+kUwaGEHLWyhB2AfA+wo1VJSUnTppZfKOaeKFSvmOLwe1K9fP//N8ssvv1znn3++WrdurZEjR2r27Nn+ctl9BXpufy7LlixZorPPPlsvvPCCf1tugwzjx4/3fwk46aSTdM0112jevHlatmyZPvroI/Xv39+//4EHHiiql1Eq0MIOWthBC1voYQct7KCFHbSwgxa20MOe4DmJ9PR07d271/9mufj4eP/EfEpKSq4n4a+//no55/TII48U+fqXJrSwgxZ20MKW0H304sWLVbVqVTnnNGDAAP/2JUuWZDvsIx1+w7dly5aKiIjQjBkzcv1ZCxcu1IQJE/w/cw49HC3soIUdtLCDFrbQww5a2EELO4rymG/RokW68847/Q8dMBwajhZ20MIWegC2MMCOUm/BggWqVauWevTooblz5/q3hx5IpKWlSfrrE1R/+9vf/NuCXx0SxJXfjtzu3bv9/87vIEOXLl30yiuvhH3qTTrc47HHHvOXe/fddwt35UsZWthBCztoYQs97KCFHbSwgxZ20MIWeti1c+dO1axZU8453X333WH3paWlZXsSfvPmzTrppJPknNOjjz5aHKtdKtHCDlrYQQtbfv31V0VHRysyMlKvvfaapL/OoScmJmY77DNv3jxVqFBBzjl9/vnnOT730qVL/YvH9O3b17+dYZ/s0cIOWthBCztoYQs97KCFHbSwozCP+ZYuXaoBAwbIOady5cppwYIFkhgOzQkt7KCFLfQAih8D7CgTNm7cqHnz5vl/zumK6fHx8XLOqXnz5v4OI7sdR3D5HTt2aMWKFbrvvvvUv39/XXXVVbrqqqs0YsQIffvtt9q3b19hvaQSKb+DDGeffbYmTpzo35/5K11WrlypU045Rc45DRs2rGhWvpShhR20sIMWttDDDlrYQQs7aGEHLWyhhz3JycmKi4tT+fLl9eqrr0qSDhw44N+f+ST80KFD9fHHH6tOnTqqWbOmvvnmG3/ZzOdS+ID/kaGFHbSwgxa2zJgxQ845Va9eXb/++quk8O2YedhnwYIFeuedd1SxYkW1atVKmzdvzvZ5ly5dqv79+6t69ep+y/79+/v3M+yTFS3soIUdtLCDFrbQww5a2EELOwrymC9UsEXwSvvOOVWrVo0rHOeCFnbQwhZ6AMWPAXaUOTkdOBw8eFCdOnWSc07nn3++0tPTc32j44cfflCvXr3UuHFjf2cT+k8gEND111/P1eJykN9BhtBeof/dpUsXOed0zjnn5NkKuaOFHbSwgxa20MMOWthBCztoYQctbKFH8UtPT9fu3bv98xZDhgzJdrm0tDQ988wzfqM6derIucNXyU9JSZEU3mb69Olav369JE605xct7KCFHbSwJSMjQ999952cO3xVsJzegA0d9qlRo4aaNGki55wuv/xypaamZlk++IZttWrV5JxTo0aNFAgE5JzTbbfdFvbzcRgt7KCFHbSwgxa20MMOWthBCzsK65gvc4uTTjpJp59+OsOhuaCFHbSwhR6ADQywA//fW2+95e9sXnjhhRyXO3TokN544w1FRUX5ByWVKlVSbGysLrjgArVv314dOnSQc04RERGqWLGiHnrooSJ8JfaF7rjzO8gQau7cuapfv76cc7rnnnuKZJ1LK1rYQQs7aGELPeyghR20sIMWdtDCFnrYENy+jzzyiJxzOvPMM/2vxs4sLS1NTz31lN/qxBNP1LJly/z7gr788kvVrVtXdevW1dq1awv9NZQWtLCDFnbQwp5Dhw75QzwDBgzI8dtFExMTdfbZZ/s9TjrppGw/NJD5DduWLVvqyy+/1P/+9z+GffJACztoYQct7KCFLfSwgxZ20MKGgjrmO3jwoL9cdi2mT5+uZcuW6cILL/SHQxcvXiyJb+YKooUdtLCFHoANDLCjzAvukO6++26VK1dOFStW1IwZM7Jddvfu3Xr88cf9HZJzTnFxcXr77bf9r5/av3+/UlNTNX78ePXq1cs/aBk4cGBRvaQS4/nnnz/iQYa0tDT/lwfnnF5//fWiXOVSixZ20MIOWthCDztoYQct7KCFHbSwhR42TJ8+XfXq1ZNzTmPGjAm7klhoh7S0NI0YMUJ16tTRxx9/LCn8DdvPPvtMLVu2VLly5eSc8z+szxuz+UcLO2hhBy1syMjI0MGDBzV8+HAFAgGdeuqpmjt3bo7LJyYmqlWrVoqJidHUqVMl5f2G7bRp0/xlXnnlFf+8+V133VW4L66EoYUdtLCDFnbQwhZ62EELO2hhz7Ec84UOdmbXYurUqX6LVatW6YILLpBzTo0bN9bKlSuz/IyyjhZ20MIWegDFiwF2QNLatWtVq1YtOed0wQUX5Lhc6FeC1K5dW71799bWrVtzXD4pKUmPP/64f9AybNiwwlj9EicjI0O7d+/2t0u3bt3yNcggSa+++qrf4Nprry2qVS61aGEHLeyghS30sIMWdtDCDlrYQQtb6GHPiBEj/O36zDPPaNu2bf59oQOgBw8e1MqVK7N8XfZnn32mVq1aKRAIqFatWrr++uu1cePGsMfzlaf5Qws7aGEHLezYsGGD2rZtK+ecunbtqoULF/rbLvP+e9WqVfr222914MCBsNuDb9hWrVo17A3b0KvlHzx4UC+88IL/u8K4ceMK/8WVMLSwgxZ20MIOWthCDztoYQctbDnWY778tAgud+aZZ8o5pyuuuEI7d+4s3BdWAtHCDlrYQg+g+DDAjjIt+Ob5Rx99pOrVqysiIsK/Ok/mN9bff/99f2fVoEED3XnnndqxY4ekrG+AhB70JCcn67nnnvMPWl555ZVCf10lxaJFi3TJJZfo9ddfz9cgw+uvv+43uPDCC7Vo0SJJfKVKQaCFHbSwgxa20MMOWthBCztoYQctbKFH8QvddkOGDPG3b79+/fTVV1/l6zk+++wznXrqqf5VjZ1zqlmzpo4//niddtppGjx4sDZt2iSJAdHc0MIOWthBC5tWrFihunXryjmnjh07asKECfrjjz8k5X1VsMxXGzvllFPCrjYWauvWrbrqqqsUGRmp+Ph47dmzp1BeT0lGCztoYQct7KCFLfSwgxZ20KL4FcQx39KlS9WvXz9/KDS3FocOHdKTTz4p55yaNGmi3377TRJXN5ZoYQktbKEHUPwYYAck9erVS845VapUyX+DPNQvv/yiGjVqyDmn2NhY3Xbbbdq9e7ek/L2RvnPnTt15550KBALq0qWLli1bVuCvoaT6888/j3iQ4dxzz9VXX32V46ekQwXvY2efN1rYQQs7aGELPeyghR20sIMWdtDCFnoUv9CBzf/+978qV66cAoGAatasqRtuuEFz5sxRcnKyv0zotvz888/VqlUrfzC0cePGOvPMM/V///d/OuOMM3T88cfLOafmzZsrKSlJEh84yA0t7KCFHbSwafny5Tr55JPlnFOdOnV0/vnn66uvvsr120iDb9hWqlRJzjm1adNGM2bMUEpKSo6PGT58uJxzioiI0E8//VQYL6XEo4UdtLCDFnbQwhZ62EELO2hR/I70mC9U5hbNmzfXvHnzsl0+eKw4b948lS9fXs45DR8+vHBeVAlFCztoYQs9gOLFADvKvF27dqlNmzZyzunKK69USkqK/0ZGenq60tLSNHToUEVHR8s5p4svvljbt2/378+vmTNnqmHDhnLO6bXXXiuMl1Ki5TZs8Nprr4UNMnz++edZvmZFkubMmaOEhAQ9+OCDevbZZ/Xdd99p/fr1/v28QZU/tLCDFnbQwhZ62EELO2hhBy3soIUt9CheoSfh33rrLV122WX+Nh89erS/vTMPhrZs2dL/RrlLLrlEq1ev9r/WdOfOnfr222/VsWNHOefUunVrbd68uWhfWAlECztoYQctbEpKStK1116rRo0ayTmnunXr6tVXX812f7tkyRL169dPVapU8dvddNNN/v2Zr34ffI5x48b5y0+ZMqVwX1AJRgs7aGEHLeyghS30sIMWdtCi+OX3mC9U8Cr4wSsaO+fUsGFDbdy4UZKyvbKxJH399df+8g8++GDhvKASjBZ20MIWegDFhwF2QIcPRJxzuueee7Lct3//frVs2VLOOdWrV0/r1q2TdHRvjA8ePFjOOZ1wwgm8YZJP+Rlk+PrrrzVo0CA551ShQgV/+QoVKuhvf/ubXnnlFX9Zvir46NHCDlrYQQtb6GEHLeyghR20sIMWttCj6ISex9i4caO++OILjRgxQvv375cUvu0+++wztWrVSoFAQJUrV9aAAQPC7g8dIp05c6aaNGmi8uXL66mnnspyP7KihR20sIMWNu3atUvffPONbrvtNt1xxx3+FcRCt+GSJUvC3rCtW7euv69+7LHH/OUyn0/fsGGD/v73v/v79GnTphXNiyqhaGEHLeyghR20sIUedtDCDloUv7yO+ULvDw6FVqtWTc45NW3aVCeccIKcc2rWrJn++OMPSX8dJwY7bt26VTfffLN/ZeMxY8aE3Y/DaGEHLWyhB1A8GGAH/r/169f7n4IK3TF89tln/sFG8JNP2b0hntvOJLgTmz17tqpVq6bjjz9eixYtKsjVL5XyM8jwxBNPqG3btmHLXXbZZerevbtq1aqV7afWuCrfkaOFHbSwgxa20MMOWthBCztoYQctbKFH0cvp3EXodv/ss8906qmn+ifR+/Xr558Hye58yPbt23X66afLOaf4+PjCWfFSiBZ20MIOWtgWvHJY6BXEMg/5tGrVSp999pkefvhhfx/96KOPZnmu7du3a+zYsf5QUKNGjfxvPUXeaGEHLeyghR20sIUedtDCDloUn5yO+UJbZB4KbdmypaZNm6Yff/xRbdq08YdDN2zYEPYcW7du1YsvvqiGDRvKOafjjjtOSUlJhfp6SjJa2EELW+gBFD0G2IE8jB8/3j8o+fTTT7NdJvjm+I4dO/xPXmVn165daty4sS6//PJCWdfS5MUXX1RERESugwwjR45U/fr1/T7Dhg2T9NcvDt9++63uuOOOXA8qkTda2EELO2hhCz3soIUdtLCDFnbQwhZ62BE68P/555+rVatWKleunJxz6tq1a66DocET+v369ZNzTp06ddKePXuKZsVLIVrYQQs7aFH8Qt+8De2xZMkS9evXL2zIZ9q0aTp48KAOHDigRx55xN9H33PPPVq4cKHS09O1YMEC3X///YqLi/PfsH399dezPD+yooUdtLCDFnbQwhZ62EELO2hhU2iX7IZCp06d6p8LnDdvnj8c2rRpU73++uuaPXu2Zs6cqVtuucUfCq1Ro4aeeOIJSbQ4ErSwgxa20AMoXAywA3kYN26c/2nZTZs2Scr+E1crV65UixYtdMcdd2j37t1Z7k9PT9fevXv11ltvhd2W0/OVZbt37/YPEM8///xsBxnefPNNnXTSSf7BonOHv8Zr9erVWZ5rzJgx/i8AX375ZVG+lBKPFnbQwg5a2EIPO2hhBy3soIUdtLCFHnZk/ga6U045xd/exx13nH744QdJ2Q+GBm3fvl2nnXaanHO66KKLCn2dSyta2EELO2hhV/AN28xDPqH78+TkZI0ePdpvdvzxx6tZs2aKjo5WpUqV/H33kCFDtG7dumJ8NSUbLeyghR20sIMWttDDDlrYQQs7lixZogEDBuTaQpIWLFig9u3byzmn6OhoOecUCAQUGRkp55xq1qypwYMHa82aNcX0Sko+WthBC1voARQOBtiBPLz77rtyzqly5cpavHhxjst9/fXX/kFLTkPsoYJvrATfiFm3bp0mTpxYcCtewi1YsECXXXaZEhIS/J19cOB/7969uuqqq/ztfd999+m8886Tc061atXSihUrwpbftGmTevbsqYiICI0YMaJ4XlAJRgs7aGEHLWyhhx20sIMWdtDCDlrYQo/il9NgaO3atVW5cmXVqVNHv//+e46PD57XWL58uX+1seuvv54rxhwFWthBCztoYVdiYqKuvfZaxcbGhr1hG/p12qHGjx+vypUrKyoqKuyDabGxsXrooYe0atWqIn4FpQct7KCFHbSwgxa20MMOWthBCzu2bNmiPn36qEqVKvlqsXPnTl122WWqV69eWIvatWvrySefZCj0GNDCDlrYQg+g8DDADuRh5syZioyMVGRkpKZOnZrrsm+99Za/07n99tvzHGIPvhGzadMm9evXT4FAQP/6178KbN1Lun379mW7s3///ff97Xz//fdLklasWKFzzjnH3+FnHmi4//77/V8iDhw4wJtVR4gWdtDCDlrYQg87aGEHLeyghR20sIUexSe7wdBAIKCqVatqwIABOvvss9WhQ4ccHx8cDD148KAuvPBC/8MFc+fOLfR1L21oYQct7KCFbZs3b1ajRo3knFPbtm1zfcM26LvvvtOoUaN01lln6ZJLLlHv3r31yy+/aN++fUW01qUTLeyghR20sIMWttDDDlrYQQtbhgwZIuecWrZsqenTp+fYIvR4b9q0aRozZozuuusujR49OstAaOixJfKPFnbQwhZ6AIWDAXYgH4JvdPTs2VPbt2/Pcn/oDiV4xXbnnG677Tbt2rUr2+cMPmbjxo3q16+f6tev7z9u4cKFhfI6SrrgNrvzzjv9XwqWL1/u35eYmKiuXbtmGWiQpLffflvOOZ1++unFsu6lDS3soIUdtLCFHnbQwg5a2EELO2hhCz2KRk5XNa5ataqGDBmi5ORkXXTRRSpfvrzmz5+f5fHBE/BpaWnq16+fnHOqUKGCrrvuOm3ZsiXfPxu0sIQWdtCiZFiwYIE6d+6sL774Itchn5y2afD24AfOMi9Hi/yjhR20sIMWdtDCFnrYQQs7aFH8QrfRyJEj9dlnn+X5QYLcLlyR10UtaJIzWthBC1voARQuBtiBXAR3Cq+88oqqV6+uuLg4ffrpp9nuLIK3HTp0SFdffbU/jP7AAw9k2XFlHl6vW7eu/0bMJ598UsivquQKbre//e1vcs7pnHPOybJM5oGG1atXS5KuueYaOecUHx9flKtcatHCDlrYQQtb6GEHLeyghR20sIMWttCjaH3xxRdhg6GDBw/2Bz8HDRqkQCCgESNGKDU1Nctj09LSdPPNN/tfmXrCCSdoxowZWZY7dOiQDh06lON5ERxGCztoYQct7Nu/f3+eb9iGSk9P97ftgQMHwu5bs2aNli5dqhUrVmjTpk1ZHofc0cIOWthBCztoYQs97KCFHbQofqHb/0i2U+ixW1pamv/fBw4c0MyZMzVp0iS98cYbmjRpkv7880+lpKQc8c8oa2hhBy1soQdQeBhgB/Jhy5YtOu+88+ScU+fOncOukB66s1m3bp1GjBihGjVqyDmnuLg4jRs3zt/BhC6feXi9UqVKDK/n03XXXSfnnP71r39JCt/JS+EDDbVq1dJrr72m1q1byzmnESNGSGJnX1BoYQct7KCFLfSwgxZ20MIOWthBC1voUfi+/vpr1atXT1FRUf5gaOg2mzRpkv/B/FGjRunnn3+WJK1evVozZ85Uly5d/Ptr1aqlDz/8MOz5FyxYoA8++EA9e/bU+eefr0svvVT9+/fX9OnTtXPnTkl/XSW5rKOFHbSwgxalW+i2feutt3TTTTcpKipKERERqlSpkipWrKgBAwboo48+yvYxKDi0sIMWdtDCDlrYQg87aGEHLewIHSx9+umn1aNHD/+YMPjP6aefrgEDBvgfLKBF4aCFHbSwhR5AzhhgB/Jp9erVatKkiX8VuHnz5oVd4Wf9+vUaMWKEqlevLuecTj75ZL3xxhvavXu3v8yRDK9zpZ+cDR48WM45nXTSSfrjjz+yXSYxMVHnnHOOnHOqWLGinHNq2LBhlk86H+2n5HAYLeyghR20sIUedtDCDlrYQQs7aGELPQrf6tWr/Q/f33XXXf62Cd1e9957r3/yPDY2Vh07dlTNmjVVu3Ztf7u3bNky7I1YSXrnnXfUvHlzVatWLctJ+AYNGqhHjx5av369JE7CS7SwhBZ20KL0Cm14ww03qE6dOmENKlWqJOecIiIiVKVKFY0ePdpfnh4FixZ20MIOWthBC1voYQct7KCFHaEtevfurejo6LBjxbp16yoQCPi3tWnTRklJSZJoUdBoYQctbKEHkDsG2IEjkJiYqAYNGsg5p7Zt2+r555/X5s2btWfPnizD66+99pr+/PNP/7HBN1qOdHh99uzZeumll4rmBRoX3C4//fSTmjRpomrVqmnChAk57rATExN19tln+zv9adOmSfprBx/8JSE5OVlLly6VxEBDftHCDlrYQQtb6GEHLeyghR20sIMWttCjaCUmJuq///2vv02C2y10G91///067rjjsgx51qlTRwMHDtT3338f9pxPPfVU2HLNmjXTRRddpFtuuUUnn3yyatWqJeecTjzxRK1duzbs55ZltLCDFnbQovQJ3ZaXXXaZP9DjnNNtt92mF154QbNmzdLw4cPVvXt3v9N///tf/3HsxwsGLeyghR20sIMWttDDDlrYQQs7Qltceumlcs6pXLlyqlq1qh566CF9//332rRpk3766ScNHz5cp556qpxzaty4sdatWyeJFgWFFnbQwhZ6AHljgB04QitXrtSZZ54p55yio6PVtGlT/etf/yqU4fW5c+fqyiuvlHNOt9xyS9G8wBJg9+7d/nbp1KmTFi9enOOyS5Ys0QUXXKCXXnop7FNtoYMMJ554opxzmjdvXqGve2lDCztoYQctbKGHHbSwgxZ20MIOWthCj6KXeUAz9M8zZ87U//73P916662688479fjjj2vt2rXav39/2GOeffZZ/03Z1q1b684779Sff/7pt9iwYYMmTZqk008/3R8c3bhxoyS+hS4ULeyghR20KPlCt2Hv3r3lnFOFChXUqVMnvf/++1mW//333/Xoo4/6zZ5//vmiXN1SjRZ20MIOWthBC1voYQct7KCFTX379vVbnHPOOZoyZUqWZVJSUjRv3jx/1uf888/X9u3bi2FtSzda2EELW+gB5IwBduAobNy4UXfffbfatm0b9onaFi1aFNjw+o8//ui/YR/856677iqaF1gCrFmzRk2aNJFzTuecc46+//57/42pzG8q/fnnn0pJScnyHPv27fMbOud0/PHHa9euXbwpdYRoYQct7KCFLfSwgxZ20MIOWthBC1voUfzyurJL6P0ffvihv53PPPNMvfrqq0pLS5N0eNA0uM0zMjL022+/qUOHDnLO6dprr9WePXuyPHdoI3rRwhJa2EGLkumpp55ShQoVVK5cOXXt2tX/9hTpcLPQDyckJyfrwQcflHNOrVq10q+//prl+dj+R48WdtDCDlrYQQtb6GEHLeyghR1vvfWWateurYiICHXu3DlLi8y+/fZbnXTSSapUqZJeeeWVLPdnbsG3cuUfLeyghS30AHLHADtwlJKTk/X7779r8ODB6tatm5o2barx48cX2PD6VVdd5b+xUqlSJTnn9Pe//z3s+cu65cuXq169enLOqWXLlnrooYe0cuXKfD/+hRdeCBtkmDhxYiGubelGCztoYQctbKGHHbSwgxZ20MIOWthCD1tCBzxDrVu3Tuecc46cczrxxBP10ksv+SfNszsBn5GRoQ8//FB16tRR48aNs1wZP7sT7qFX1wctLKGFHbSwLyUlRZdddpmcc6pevbo+/vhj/76cBnaWLFmi8847T845vfTSS2H3BVusX79eiYmJkvha7fyihR20sIMWdtDCFnrYQQs7aGHLTTfd5J//++CDD/zbc2qxZ88e3XPPPXLOqWfPnkpNTfXvC7ZISkrSyy+/nOV25I4WdtDCFnoAuWOAHSgA+/fv1+bNm7Vv3z7/tmMZXr/66qv9nVfwcc45vfPOO0XzgkqQlStXqnPnzoqMjJRzTjVq1NCzzz7rH9zl5b777pNzTpMmTfJv4xPOR4cWdtDCDlrYQg87aGEHLeyghR20sIUe9s2bN081atSQc07XXXedP8iZ23b+448/dMEFF8g5l+1XbEvS0KFDdeONNxbKOpdWtLCDFnbQwo7p06f757mHDx/u357Xfnno0KFyzunbb7+VFP6BgbVr1+qaa67Rcccdp6+//rpwVrwUooUdtLCDFnbQwhZ62EELO2hhx6pVq1SuXDk55zRgwAD/9rxafP/996pQoYI+//xzSYc/lBC8kOTatWt16623yjmnHj16FNq6lza0sIMWttADyBsD7MAxyGmHUlDD60OGDNH//d//KRAIqE6dOvrtt98K78WUYJs2bdLw4cN1+umnyzmnfv36adeuXbk+JvTTZ0uWLPH/m0GGY0MLO2hhBy1soYcdtLCDFnbQwg5a2EIP2x5++GE551S/fn2tWbNGUv6uFJaQkKB7773X//NXX33ld3344Yd13HHHyTmn22+/vTBWu1SihR20sIMWdkycOFHOOdWqVUs//vijpNxbBO/bsWOHFi5cKEnau3evHn/8cY0bN0779+/X//3f//nn3tu0aaOUlBT29flACztoYQct7KCFLfSwgxZ20MKORYsWKRAIyDmncePGScr/1eu3bNki6fDFKkePHq3zzz9f3333nQYOHKjatWvLOad69er5yyF3tLCDFrbQA8gbA+xAAQseSBzr8Hq/fv00d+5cnXjiiXxqKh/S0tK0Y8cOTZo0SX/88YekvAcTMv9SwEFgwaCFHbSwgxa20MMOWthBCztoYQctbKGHXcEriNWvX19btmw5qu08Y8YM1a1bVw0aNNDAgQNVq1YtRUZG6sQTT9Srr75aCGtdOtHCDlrYQQs7xo0bJ+ecjj/+eG3duvWIH5+enq7ffvtNJ598spxzatu2rWrVqiXnnE477TQtX768ENa6dKKFHbSwgxZ20MIWethBCztoYceiRYtUoUIFVa5cWXPmzJEUflGL/Ni2bZv69u0r55wqVqzof4NX27ZttXLlSkmcU8wPWthBC1voAeQt4AEoMJI855y3efNmb8SIEd5HH33kbdmyxatYsaI3ceJEr3v37lmW9TzPmzt3rvf000977733nud5nnfjjTd6DzzwgBcVFeWlpKR4gUDA+9vf/uZ5nuelp6cX/QsrAcqVK+fVqFHDu+KKK7zjjjvOy8jI8Jxz3qFDh8KWC91+gUD4X4HBHjg2tLCDFnbQwhZ62EELO2hhBy3soIUt9LBHkud5nlehQgXP8zyvbt26Xu3atT3nnH9ffqSnp3vNmzf3mjZt6m3YsMEbO3ast23bNu+EE07wHnzwQa9v375hPw9Z0cIOWthBC3tiYmI8z/O87du3e1u2bDnixzvnvNatW3tXXnml53me99tvv3nbtm3z2rdv702aNMk76aSTOHeeT7SwgxZ20MIOWthCDztoYQct7KhUqZJ36NAhb9++fd7s2bM9z/O8iIiIfD9ekhcbG+v17t3bq127tpecnOzt2rXLa968uffNN994TZs29dLT0zmnmA+0sIMWttADyBsD7EABcs55W7Zs8e6++27v008/Parh9VtuucW77777vFq1anlvvvmmt3HjRi86Otq78MILPc8L35HxxkjOAoGAd+jQIS8yMtLbv3+/9+STT3qed3j7ccBXtGhhBy3soIUt9LCDFnbQwg5a2EELW+hR/ILnNTp27Oh53uE3XL/88suw+/KSnp7uRUREeHXq1PFat27tlS9f3ktPT/ciIyO9fv36ef/85z89z/P8Dywge7SwgxZ20MKeCy+80GvVqpV36NAh76uvvvLS0tLy/djg+fQNGzZ4W7du9SpVquRv8w4dOniNGjXyl8vtOXAYLeyghR20sKO4WyAcPeyghR20sEGSFxcX51177bVeIBDw5s6d623atOmIHh9sMXny5LCOO3fu9C+MQYu80cIOWthCDyCfCvaC7gA2b96sZs2ayTmn6tWr65NPPgm7P/RrO3788UddffXVcs7JOadbb71VSUlJ/nIXXXSRAoGAevbsqbS0tLCvPw99ng8++EAPP/xwIb+ykuXgwYOSpOTkZLVv317OOQ0cOLCY16psooUdtLCDFrbQww5a2EELO2hhBy1soYcdq1ev1hlnnCHnnIYMGaK9e/fm63Gh5ziGDx+u2NhYOecUHR0t55waNGig33//XVL2X6sa+ngcRgs7aGEHLezYu3evrr/+ejnn1KFDBy1YsCBfjwueB1+3bp1uueUWHXfccXLOqX79+v559WHDhvnLB3tkZGTozz//1FdffZXluco6WthBCztoYUdRt0Du6GEHLeyghS1vv/22ypUrJ+ecnn76aaWkpPj35bRvzalFs2bN/POMxx9/vNasWSPpr/OQUtZjPY79/kILO2hhCz2A3DHADhSChQsXqn79+vrwww/Dbs9reD34pockTZ8+3b9vzJgxOT7Pp59+qpYtW8o5pxtvvLGQXlHJlJycrBNOOMHfjs65fB9A5ia7XyAOHTqU5SCSk41/oYUdtLCDFrbQww5a2EELO2hhBy1soYcdTz/9tN9g7Nix2rNnj39fdifIcxoMbdq0qcaMGaNzzjnHfxN37dq1ksLfuA0+/ptvvtEDDzxQOC+qhKKFHbSwgxZ2rF27VieeeKKcc+ratat+/PFH7d+/X1L2+9XgbevXrw97w7ZNmzZaunSpxo8f77f973//6z8u2GPevHlyzunqq68ugldXstDCDlrYQQs7iqoF8ocedtDCDloUv9DtfP/99/vbb/To0VqxYkWej8uuxerVq7Vp0yZ16tRJzjnFxcVp1apV2f7Mjz/+2L+vrH/YgBZ20MIWegD5wwA7UEgyX83nSIbXJemJJ55QhQoV1LhxYy1ZssR/jtDn+eSTT9SyZUtFRUXJOaeLL764EF9RybNmzRp/Gx9//PGaNGnSMT9n6E59//79evfdd3Xvvffq4osvVo8ePfTkk0/q66+/9pdhoOEwWthBCztoYQs97KCFHbSwgxZ20MIWehS/0CHPoUOH+j3uuusuzZ49O8/HhA6GnnDCCZo4caIkadmyZercubPfNjggGvr4H374QYFAQM45Pffcc4Xw6koWWthBCztoYVNiYqLq1q0r55xatmyphx9+WPPmzcuyXG5v2K5cuVLS4Q+zhX5A4f777/cfv337dp1++ulyzqlChQqaNWtW0bzAEoQWdtDCDlrYUZgtGA49cvSwgxZ20KL4hR6/DRkyxN9+F198sR544IGwDy9L+WuRkZGhxYsX+x9cjouL04EDB8KubpyQkKBWrVqpatWq2TYvi2hhBy1soQeQNwbYgSJwpMPrKSkp6tChg5xzOuOMM/yvD8lueD0yMlLOOV1zzTX+/WX9DfRQS5cuVZMmTTRhwgT/tqPdPsFBhvT0dL3wwguKj4+Xc85vEPwnNjZW99577zH/vNKGFnbQwg5a2EIPO2hhBy3soIUdtLCFHsUvdOj/3nvv9bdT/fr1dcstt/hXIJNyv6pxcDA0aMmSJf6A6LPPPhv2s77//nv/a1ebN2+uUaNG6cCBA4X5MksEWthBCztoYdPKlSvVtWtXVaxYUc45ValSRX/88Yd/f37esA32SktL06OPPirnnGbMmCFJSk1N1fDhw1WlShVFREToiiuu0IYNG4r4VZYMtLCDFnbQwo7CboEjQw87aGEHLYpf6DHfU089pVNOOcU/7lu8eLF/X35ahD7XggULdM4552jatGlhP2/y5Mk666yzVKFCBX9OJ7tv9iqLaGEHLWyhB5A7BtiBIjR37txch9eDO4zffvtNDRo0UHR0tMaOHSvp8AFLUObh9X/961/+joyv/cgq9BNrRztYEHrgePXVV/u/KATfxOrSpYt69eqlDh06+FdXGjJkSIGsf2lCCztoYQctbKGHHbSwgxZ20MIOWthCj+IXei7ijTfeUM+ePVWuXDn179/fvz2/g6Ghyy1ZskRvvPFG2M8KHQxt2bKlnnvuOf3555+F8bJKJFrYQQs7aGHTli1b9Morr6h79+764osv/NuPZMgnKC0tTZs3b/b/HHqV/KioKP34449F8IpKLlrYQQs7aGFHYbXI6f3U7IZ7yvqHlkPRww5a2EGL4he6rX799VeNGzfO/3aTjIwMf/ts2LBBt956a75aSIevjB8qOBQaEREh55yuvvpq7dixo7BeVolECztoYQs9gJwxwA4UkXnz5umSSy7JcXg91OjRo/3lZs6cGXYfw+tHrqCuTL9161Z16tTJb+Pc4a/vmjt3rv+LQlJSkp577jl/oOF///vfMa9/aUILO2hhBy1soYcdtLCDFnbQwg5a2EIPG0JPoO/evVtLly71/xz69aUjR470B0NPOOGEHAdDs5N5MPSZZ57xB0PL+pu1oWhhBy3soIVdwe2fnp7ub6ctW7boP//5T77fsM3s5ptv9vflzz//vCQa5Act7KCFHbSwozBahMq8/Ntvv60XXnjB/zONwtHDDlrYQYvild32DG2xbds2DRo0SLVq1cp3i9DbMw+FXnnlldq1a1fBv5BSgBZ20MIWegDZY4AdKCIbNmzw38C47bbbsh1eT09PV0pKii666CIFAgH17Nkz7EDj448/1imnnOIPr/fp04fh9UIW3NmvWbNGHTp0kHNO0dHROuWUU/Tuu+9m+5g9e/bolltukXNOV111VdgvHDh6tLCDFnbQwhZ62EELO2hhBy3soIUt9ChY2W2H0PMVL730kho2bHhEg6HB27/77jv/vMopp5yiZ555xr/6Pts/K1rYQQs7aGFfRkaGDh48qLFjx6pRo0Zyzqlt27ZatWqVpPwN+bz88sv+YGjPnj39x+LI0MIOWthBCzsKokXweULt2bNHL7/8sq666iq/04033ljg61/a0MMOWthBCzuC2/rdd99V06ZN5ZxT69at8xwKDd32DIUWDFrYQQtb6IGyjgF2oAgtWrRIgwYN0tq1a3NcZunSpYqJiZFzTnfeead/O8PrRS/4KemdO3fq9NNPl3NOFStW1Hnnnafp06f7y2X3JtTYsWPlnFOFChVy7Y38oYUdtLCDFrbQww5a2EELO2hhBy1soUfRWr9+vf7+97/LOac6deronXfe8e/LazB09uzZ/mBou3bt9Mwzz2jfvn2SOCdyNGhhBy3soIUde/fu9ffLDRs21IoVKyTlb8hn2bJluuSSSxQIBFS+fHm98sor2S6X3b6dDxpkRQs7aGEHLew4lhaZl1myZInee+89tW7dWuXLl/eHQitUqCDnnEaPHl0or6E0oYcdtLCDFrb87W9/k3NOxx13XJ4fJMhtKLRXr14MhR4jWthBC1vogbKKAXagiIV+JW2o4JsZjz32mJxzqlevnhITEyVJCQkJxzS8fqRfP4W/ttnBgwd19tlnyzmnmJgYXXLJJfruu+/85TKfNExLS5Mkvffee6pUqZJq1qyp9evXF92Kl0K0sIMWdtDCFnrYQQs7aGEHLeyghS30KHqTJ0/232AdO3asf/uRDIY2atRIQ4cO1Y8//qiMjAylpqZKYkD0SNHCDlrYQQs7Pv74Y38Y56OPPpKU9zYM9hg7dqz/hu2///1v//7Q/XnwuQ4dOqRZs2bptddey/I8OIwWdtDCDlrYcTQtMktMTNRzzz2nJk2aqHr16nLOqW7duurYsaNOOeUUOXf4G7rmzJlTCK+gdKGHHbSwgxZ2bNq0SbGxsXLO6f7775eU/6HQTp06KRAIcEXjAkILO2hhCz1QljHADhhz6aWXyjmnFi1a6ODBg/rkk0+Oang985vsW7du1eeff16o617apKen66abbpJzTlFRUeratatmz57t35/bFS9uvfVWOedUpUoVrVu3rihWt1SjhR20sIMWttDDDlrYQQs7aGEHLWyhR9GaMmWKnHM6/vjjNX/+fEl5D4Z+9913/mBo8E3ZmJgYxcbGqnXr1urfv782btwoiQHRI0ELO2hhBy3sWL58uRo1aqSYmBi9+uqr+X7c/PnzFR0dLeecOnfurN9//11S9ts+NTVVQ4YMUdu2beWc080331xg61+a0MIOWthBCzuOtEXw+G7v3r3asGGD/u///k8dOnTw9+PVqlVT586d9dVXX2n27Nnq3bu3AoGA+vbtq5SUFD5AkAd62EELO2hhR3Jysi6++GL/Q2TBC1RklnkotHPnzv5QaMuWLf3ju/zI7gNqoIUltLCFHijLGGAHDPnpp59Uo0YNRURE6PXXX9e3336r5s2bH9HweuYDk99++01vvPGGTjjhhCxXdUDuJk+erKZNm/pf6/Xll1/69+U2yDB//ny1adNGzjldeumlOnDgAF/veIxoYQct7KCFLfSwgxZ20MIOWthBC1voUbR++uknxcXFyTmnJ554IsflQq9qHDwfEggEdNxxx+nKK69Uv379dO6556p+/fpyzql58+ZKSkoKeyxyRws7aGEHLezYuXOnunfvLueczj33XH/IMzcbN270LwwTGxurMWPG6MCBA5LC9+nbt2/XN9984w8CRURE+G/0Pvfcc4X2mkoqWthBCztoYUd+WmTe9/7000+64YYb1LJlSznn/H35zTffrAkTJiglJUWS9O677/oDo2+++WaRvJ6Sjh520MIOWtjywgsv+Nssuw8UhO6TP/zwQ5111ln+fjj4z8MPP6x9+/bl+bOCz/Xtt99qwYIFkhgODUULO2hhCz1QVjHADhjyxhtv+J+evfHGG3Xqqaf6XyeY3yuvS4d3NCtWrNCoUaPUpEkT/6oOFSpUkHNOd9xxR1G8nBLv5ptv9nfyb7zxhn97doMJobc9/PDD/uPGjBlTJOta2tHCDlrYQQtb6GEHLeyghR20sIMWttCj6I0cOTLXk/DZDYaecMIJuv7667V27Vp/uT///FPff/+9OnbsKOec2rRpoy1bthTVyygVaGEHLeyghR2rVq3yPwRw0UUXhW3fUMEmEyZMUMOGDeWc0+mnn66tW7dmWfbnn3/WLbfc4j9vnTp11KhRIznn1LZtW+3YsaMwX1KJRQs7aGEHLezI3GLNmjWSsr6P+s477+jWW2/133N1zql69eq67bbb9NFHH4Utu3LlSrVu3VrOOV111VVF9VJKBXrYQQs7aFH8Qs/p3XXXXf4HA1588cVsl8k8FHrNNdeEHSs++OCD2r9/f44/L7j//+abb/zHLFq0qBBeWclDCztoYQs9UNYxwA4YkJ6err179+q8887zB81PPvlkf+A8v8Pre/fu1Zo1a9S3b1+1a9fO39HUr19fjRo18r/Stl+/fkX10kqsOXPm+G9E9e/f3789r0GG999/39/ul1xyifbu3Zvj45A/tLCDFnbQwhZ62EELO2hhBy3soIUt9ChaoVcUGzx4sL8NX3vttSzLhA6GnnLKKRozZow/sJP5nMjUqVPVoEEDVahQQS+88IIkWuSFFnbQwg5a2JSYmKi6devKOaeLL77Yv1pxULBJSkqKOnXqJOcOXxjml19+CVtu+/bteuutt1StWjU551SlShVdeeWVSkhIUJs2bVS9enW9+OKLOnToEFfJzwEt7KCFHbSwI3OLgwcPSpJ27dqld955R1deeaWcc/6AT+PGjXXHHXdo0aJF/pWMJfkNv/rqK9WpU0cVKlTQuHHjJPEtKkeCHnbQwg5aFL/QY7UhQ4b4w6F//PFH2LbLPBR65ZVX6s8//5QkPfXUU3kOhwaP96ZPn+4v65zTddddx5WN/z9a2EELW+iBsowBdsCI7du3q1atWoqMjFQgEPDfCMlpeD3zjuObb75R37591aRJE39H5pzTwIEDNXHiRN19992qXLmyWrVqpRUrVkjiDZPcJCQkKCIiQhUqVNDEiRMl5T3I8MUXX/gfEjjxxBP16quvcrBYAGhhBy3soIUt9LCDFnbQwg5a2EELW+hR9ELPYwwcOFDOOY0YMULSX2+0zpo1yz+f0bBhQ40aNco/AZ9dnx07dvgf4L/66qvzXIf09HStX7++IF5OiUYLO2hhBy1sWrJkierVq6cZM2bkuEzwG1Wio6P14IMPKi0tzb/vgw8+UJ8+ffw3ZC+66CJ/v3/HHXfIOadzzjlHSUlJhf5aSjpa2EELO2hhx+LFi3X88cfrl19+0Y4dO/T+++/r1FNPVY0aNfztW7NmTf+/J0+eLEl+j+B+PC0tTeecc47/QbXdu3cX22sqyehhBy3soEXxyzwc+s0334Tdn3ko9B//+Id27doVtszTTz+d43Bo8LgxdCi0WrVq+uc//6nNmzcX2usqiWhhBy1soQfKKgbYASN+//13/yuhglde/9e//uUfjAQ/iZv5zZDXX39dt956a9gnoxo0aKCBAwfqq6++knT4zZLTTz/df7Nk3759RfviSqDgTr1JkyY5vhEV+uevv/5asbGxcs6pUqVK6tevX65fyYL8o4UdtLCDFrbQww5a2EELO2hhBy1soUfxCD0JP23atLD7QgdDnXO67LLLtH37dknZD4YGz5P885//9Ad+cpOenq45c+bolFNO0YABA471pZR4tLCDFnbQwqbgVSezuxLY5MmT1bRpUznndOqpp2rBggWSpD179qhfv37+FY0rVqyo++67z//mlHHjxsk5p4iICM2ZM6foXkwJRws7aGEHLexIS0vTlClTVL16dX8gNDIyUjExMRoxYoSef/55/5uwnXP+e6gZGRl+v3feeUdVqlRR1apV9c4770jiqsZHix520MIOWhS/nK4uPHny5FyHQkMfl3k4dN++fTkOhV511VXaunWrpL86BY8Vyzpa2EELW+iBsogBdsCQpUuX+m+IX3vttf6bH6mpqWHLbdiwQW+++aYuuuiisMH1M888UzfffLPWr18fdhWH4FWDYmNjtXTpUklcfT0vzz//vJxzql69utasWZPrsp9//rmqV6/ud7j88sv9TztzwHjsaGEHLeyghS30sIMWdtDCDlrYQQtb6FF8sjsJP3v2bP/D/BEREYqJidGSJUsk5X7+YteuXWrevLmcc/r73/+e43Lp6en68ccf1bVrV7/jvHnzjv3FlHC0sIMWdtDCnpw+YJaSkqK+ffv622zSpElKTU3Va6+95l+VskKFCurTp4+mTJniP/7nn3/WaaedpkAgoNGjR2f7M6Ss/1vgfDotLKGFHbSwZeHChapcubKcO3xl4ttvv13z58+XdHibzZw5U+eff77f5euvvw57/C233CLnnOLi4rRw4cLieAmlCj3soIUdtLDnnXfeUefOnVW+fPlsh0KDQs8Bhg6HPvDAA5KObCh03759/gcQ8Bda2EELW+iB0o4BdsCYJUuW6KabbvJPNoXuYBYvXqyJEyfqpJNO8q/MEBUVpY4dO+r+++/XmjVrdODAAUl/fZ3Uhg0b1LVrVwUCAf373/8O+2QVcrZkyRI1adJENWrUCDt5GPrBgLS0NL355pv+Dj4yMlIXXnihdu7cKSnnT8bhyNDCDlrYQQtb6GEHLeyghR20sIMWttDDjtWrV/vbuGXLlqpTp45atGihvXv3hvUIFTxnkpCQoLp16yoQCOjhhx8Ouy8oOBjapUsX/+T8//73P//K+/gLLeyghR20sGv8+PF+m//85z9avXq1Lr74Yv+8ea1atfThhx9q06ZNYY8bPny4AoGAzjzzTP3666+5/oyUlBR98MEH/p8ZEM0eLeyghR20KD5Lly7VjTfeqN9//93/1qzgsVtaWpqmT58eNhw6depUSdKHH37o3/bUU08V1+qXOvSwgxZ20MKWp556yt+uV199dbZDoUGhczahj7vuuuvyHAoN2rdvny699FI55zR8+PBCeU0lFS3soIUt9EBpxwA7YNzBgwe1du1aPfzww2rRooWioqLknFNMTIy/c3n66afDHhO6c3nxxRf95SZNmlTUq19i7dy507/C/dlnn6358+eHvSn1+eef68477/S3bfXq1XXllVf6vygwyFBwaGEHLeyghS30sIMWdtDCDlrYQQtbiqMHAyU5u/baa1WvXj099thjatGihTp06JDjsqFv6l5++eVy7vAVkefMmZNl2cyDoZUqVdK4ceO0d+/eQnstJR0t7KCFHbSw54cfflDDhg39ffQll1yiqlWryjmnxo0b64YbbtDy5cuzPO7bb7/19+1jx44Nuy90P/3nn39q/vz56tixo/9GL7JHCztoYQctbDt48GCW4dDJkyfrwQcfVGRkpNq1a6dly5ZJ4hiuKNDDDlrYQYuid+211+r888/PdSg0KHQW57XXXpNzToFAQM45Va1aNdehUEkaNWqUP+9z3nnnZfkwW1lHCztoYQs9UJoxwA4YtnnzZvXs2VNnn322f3DinNNZZ52lgQMH6qyzzvJvmzZtmqTDBynBA5XExES1bNlSzjn17du3OF9KibRq1So1aNBAzjk1b95cl19+uW677TZdfPHFqlmzpr/tW7VqpaFDh/pXRmKwpODRwg5a2EELW4qyByckc0cLO4rj76ngtxEhHC3sKMoWoSce2f9nr7h+nwo94VvW9yWh23LmzJnasGGDzjnnHFWtWlWLFi3K9bE33XSTPxj64IMPSgrfngyGHhla2EELO2hh08GDBzVs2DA55xQdHe1vZ+ecLrzwQn3xxRf+t6WE/j60Zs0anXHGGXLO6frrr/dvz7xfnz9/vu6++27FxcXJOady5crJOadvv/22zO+3M6OFHbSwgxYlQ3bDocGr4998881H9Fxs92NHDztoYQctikbofjY5OTnfjwteBOPXX3/1+8TExGQ7FJrdecTevXurW7dumj9//rGsfqlCCztoYQs9UBYwwA4YtmrVKkVGRvo7k65du+q+++7TwYMHlZqaqu+++y7br48K7ogSEhJUo0YNRUZGaty4cZLyPkBZsmSJXnvttUJ9XSXJihUr1LZtW5UvXz7sQwTBE45XX321pkyZopSUFEnZfzoNBaOoWwQfz0F9VrSwgxa2FHWPpUuXasGCBex7skELO4qqRXp6upYsWaJevXppwoQJSkpK8u/j76zDaGFHUf8d9dZbb+l///tf2NfP0+IvRd1jyZIl6t27d9ibjWW9R+Zt2q9fPznnNGbMGH+7Bx06dEi7d+/WDTfcIOcOXzmme/fu+umnn7I8J4OhR44WdtDCDlrYlJiYqMqVK/v77BYtWmjo0KE5Ln/gwAE98cQTiomJUevWrf03YEM/dJmWlqaJEycqLi5OVapUkXNOtWvX1j/+8Q999dVXYc/Hsd9faGEHLeygRclw8OBBzZgxQ926dfOPA5s1a+afx8h8LvzPP//UypUrNWXKFP3yyy/avn27/1xs82NHDztoYQctisaRbpvg8lOnTvW7VK5cOdeh0OTkZG3ZsiXsedasWXOsq17q0MIOWthCD5R2DLADxi1dulRNmzbVc889p5UrV4bdl5aWluWTt8ETVTt27NCpp54q55zOPPPMfF0Bcfny5brmmmvknFPv3r0L5fWURBs2bNAzzzyj+Ph4nXHGGWrZsqXuu+8+vfPOO2HLlfWhg6JQmC0yf6pwz549OnToUJav4KHzYbSwgxa2FNU+Y8WKFfrXv/4l55zuuece/fDDDwX23KUFLewoihZLly5V9+7d/UGhyy67TG+88UaBPHdpQgs7iurvqDlz5qhJkyZyzqlLly4aP358gT13aVJUPZYsWaIBAwb4x+/9+/cvsOcuTSZOnOhvo+HDh+u7777T3r17tXbtWo0dO1YXXXSR/3fMueeeq48//jjs8QyGFhxa2EELO2hhx+LFi1WpUiXdeOONYcOb2X0Lzbp169S6dWs55zRs2DDt378/7Lk+//xz/8MJwX9OPPFEvffee/r999/Dll2/fr2ef/75LLeXZbSwgxZ20KLkePfdd1WrVi05d/jq93v27PHvCx6nrVmzRjfccIMaN24s55wiIyN10UUX6eWXX/aX5ZvPCgY97KCFHbSwI7gfnz59ur9PrlatWp5Doeecc44qV66stWvXFst6l0a0sIMWttADJRED7EAJkPlrQEJPcGX39VFffvmlpk2bpipVqqhmzZp67733JOV+UBIcXg8e/ERGRmr16tWF84JKuNTU1LA/84nl4lMYLaZNm6ann35anTp1Uvv27dWiRQsNGjRI77//vr8MwyVZ0cIOWthSGD3S09M1Y8YMnX766XLu8FcFn3XWWXruuef8ZeiRFS3sKIwWO3fu1COPPKLevXurXLlyCgQCKl++vIYNG+YvQ4usaGFHYR5jPPvss2rXrp0iIiIUGRmpBx980L+PFtkrjB5LlizRbbfd5h+3lytXTs453Xbbbf4y9PjLvffe62+rmjVrqlWrVoqNjVXFihX9K1leccUV+vTTT8Mex2BowaOFHbSwgxZ27Ny50/82Uil8nx26X73iiivknFOLFi3Crih26NAhDRw4UC1atPCbNm/eXH379tWOHTuy/LxNmzbp8ccf95fdtGlTIb2ykocWdtDCDlqUDMEPB0RERGjOnDlZ7t+yZYvi4+P9b+2qUaOG/2E151zYMTbvFx47ethBCztoYcPRDIXu379fl112mb/8DTfckK8LTyJ3tLCDFrbQAyUVA+xACRA8kZXTm9nZDbEH3whp1KiRli9fnuvzB4fXa9asKeecGjZsqO+//77AX0dJFrrtGSooXoXRIiMjQzt37lS/fv38D3Fk/qdChQq6++67C/xnl2S0sIMWthTFPiMlJUVz5szxr/wdPBHZr1+/Qv/ZJQkt7CjMFpmfb9KkSerbt6/f4vbbby+0n10S0cKOwv47KvQNqZ9++kkDBw6kRS4Ks0fm4fXrr79ezz//vN+DIfa/hP7v9oEHHlC9evXCfv+sXLmyKleurKefflqLFy/O8ti8BkPL+vY9ErSwgxZ20KJkevHFF+WcU/Xq1TVjxgxJ0ubNm5WQkKBu3bqFNfznP/+pKVOm+B9mO3jwoP88mzZt0qOPPqrY2Fg5d/jqx0lJScXymkoqWthBCztoUbymTZumunXrKhAI6NZbb5WUdX88depU1a5dW+XKldM111yjpUuX6r333gu7Kv4jjzziL89w6NGjhx20sIMWNgS3+dEOhVasWFFXXnml5s6dWzwvoBShhR20sIUeKMkYYAdKieyG2J1zYV8LlZ3Mw+vHH388w+soNXL71oHgL3DJycn64osvdMEFF4QNHl544YW67rrrNHjwYP3973/3b7/rrruKavVLFVrYQQtbjuYrGzOfnHzsscfUsGFDRUZGyjmnPn36FNTqlSm0sONov8o09MT7li1bNHbsWP/vqVGjRhXU6pUptLCjIFps3rxZTz31lN/i3nvvLajVK3Py6hG6f8g8vN63b1/t27dPkvTyyy8zxJ6N0O37/fff66233tKwYcM0dOhQJSQkZBkKlfI3GJrTG7RlfXvnhhZ20MIOWpQMwe22evVqnX/++YqMjPQ/wLdo0SL17t1bTZs2lXNOUVFROvnkk/X444+HPUdo68yDoWeccQbfXppPtLCDFnbQovgFGzzwwAP+sdpbb72V7bLBq9rXrl1ba9eu9W//448/NGbMGP/xL774YlGseqlEDztoYQct7Ageq82YMeOoh0Lj4+M1f/784nkBpQgt7KCFLfRASccAO1CKpKamaurUqTrppJMUCATUtm1bLVmyRFL2b3YwvI7SKDk5Wb/99pv/5+yGS4L/f9izZ4/Gjx+v0047Tc45RUZG6txzz9Xzzz8ftvwff/zhD16VL19eEyZMKNwXUUrQwg5a2JKfHnkJ3a/PmzdPXbp08b8esnXr1lq3bl2BrGtpRws7CqKFFN4jNTVVI0eOVCAQULNmzfTjjz8e83qWBbSwo6BaZH7O0aNHKxAIqFKlSnr//feP+TnLiqPpsXjxYvXv398/aXzjjTdq165dYc/xyiuvMMSejbyuBha6ffIzGBpq+vTpeu655/Tbb79p//79+fp5ZRkt7KCFHbSwLXT7P/LII3LOKS4uTq+//ro++OADVatWzd83V6xYUUOHDtW3334b9vjQ58huMHTVqlVF+ppKKlrYQQs7aGHHzz//rAoVKsg5p169evm3Zz4WGzt2rJxzqlGjRpbzfMnJyfrvf/8r55xatGiR5xUr165dqz/++KPgXkQpQg87aGEHLez44osvCmwoND09vUi+Pbi0ooUdtLCFHijJGGAHSongDmfWrFmKioqSc+FfC58Zw+tFK/hVjgUxdIKcpaam6v3331dkZKT+/e9/57rs3r17NXbsWLVq1cof0r3jjjs0Z84cf5nQr+Dcvn27/0vcf/7zn0J7DaUFLeyghS1H0iMnoQeJs2bN0j//+U//it/nn3++fvnlFw4k84EWdhREi5z89NNPqlOnjpxzeuWVVwr0uUsjWthxtC2y+zsn822rVq3yv4o+ODDN31W5O5oe69evV9++ff2Txl26dFFqaqokKS0tzV8u8xD7jTfeWCivobQ60sHQNWvW6PLLL5dzTieeeKL+85//aPPmzZI4Xj9WtLCDFnbQonh9+umn/n74jDPOUL9+/RQdHe2/mduyZUvNmjVLKSkp/mMyf1iAwdCCQQs7aGEHLYrXwYMH/W/KqlOnjt54440sywSPk7du3aoWLVrIOad77rlHycnJYcstXbrU/ybT0aNH57jPXrFiheLj4xUZGckV8jOhhx20sIMWtgwYMEDOOVWtWlW9e/c+6qHQ0HOCmfHB5fyhhR20sIUeKMkYYAdKka1bt+q8886Tc05t27bVxo0bJWXdiTC8XjwWLlyo6667TklJScW9KqVSamqq3n77bTVp0sQ/8fvmm29mu2xKSorefPNNtW7d2h/SHTlypNavX+8vk90Qz7333uu/ibh9+/ZCey0lHS3soIUtR9IjJ6ENvv/+e/Xu3ZuB6aNACzsKokVezjrrLDnndNVVV4V9CAfhaGFHQbSYMmWKpk6d6v85899H999/v5xzql69un7//fcCWe/S6lh6PPPMMzr99NMVExOjypUr68477/TvC/3/wKFDhzR+/Hj/+UOvsIicHelgaNDMmTN1+eWX6/jjj5dzTu3atfOP0xkQPTq0sIMWdtCieK1Zs0YXXnihoqKiVL58edWsWVPlypWTc04dOnTQww8/7J/vyOm4bdOmTRo9erR/Dv3MM8/U8uXL/fs53ssfWthBCztoYcOKFSvknFPdunW1Y8cOSdK6deuyDG3u27dPt99+u98n+M3Xocd0jz32mJxzev3117P9WSkpKbrmmmv8Y75Ro0YxAJQJPeyghR20sGXIkCG64IILjumKxtLhi1785z//Ue/evXXTTTfp3Xff9d9f5Zgvf2hhBy1soQdKKgbYgVIguIOYNm2aTjjhBDnndMMNN2jfvn1ZlmV4vehlZGQoJSVFtWvXlnNO//jHP8IGQlEw9uzZo+bNm/sH8r1799aCBQvClgmetP3uu+/UsWNHf0j38ccf9w/8sxM8wO/Xr5+cc2rZsmXYlU8QjhZ20MKW/PTIDQPTBYcWdhxri7zs3r1bJ554opxz6t69O11yQQs7jrXFokWL/OO9Dz/8MOy+4NUzRo4cqaioKMXGxmrDhg0Fuv6lzbH2WL58uR577DFVrFhRzjn961//8u8LPdl76NAhTZgwQWPHjtWWLVsK9DWURvkZDM18Mj0jI8P/u2f79u2aNGmS2rdvL+ecGjdu7H+Ygzdojwwt7KCFHbQoftu2bVOjRo3knPO/5cQ5p3/+859avny5f1XKnLZncDC0evXqcs7ppJNO0vLly/1vUwmiR95oYQct7KCFHYmJifrkk08kSXPnztUpp5yid955R1L4+b9ly5b53yp33XXX+bcH9+cHDhzQ119/7d+e3TmPL7/8Us45DR482P+GFYSjhx20sIMWxS/02C14THekQ6HB91TnzZunhg0b+vv+4AVG/va3v2ndunVZfh7C0cIOWthCD5R0DLADpUiPHj38nc3ChQslhZ+gYni9eH377beKiYmRc05XXHEFQ+yFYOHChWrcuLG6d++uZcuWhd0X/P9Cenq6Lr30Un9Id/jw4dq2bVuOzxl6AB8fHy/nnNq3b6+dO3cyeJULWthBC1ty65EbBqYLHi3sONoWOQn+3ZaWlqbXX39dxx13nJxz6t+//zE/d2lHCzuOpcXu3bv1f//3f/7JxVdffTXsikvJycm66qqr5JxTVFRU2FX6kL2j6RG6L0hNTdWECRNUqVIlOec0ZMiQHB+XeegEWWVkZGjWrFn+tzrkdVXj3bt3Z/u7bXp6un777TedccYZcs6pc+fO/tVpkD+0sIMWdtDCjsWLF/sfILv44ov1wgsv5OtxmzZt0qOPPuqfQ3fOqUaNGmratKni4uL073//W++++66/PG/c5o0WdtDCDlrYETx2u+222+Tc4W+4Dv2gd/DcRkJCgn8O8OWXX87y+KDQbZ75G0tXr17NB5bzQA87aGEHLYpf6MxNcHvmdyg0uPzWrVsVFxfnf/js0ksv1VlnnaX69evLOae4uDi+fSsfaGEHLWyhB0oyBtiBUuLtt9+Wc04xMTG67bbbJB3eYQR3NAyvF6/gLws//PCD/1WQDLEXjg0bNigxMTHH+++55x455xQREaGbbropy9es5eSNN97wTwg/8sgjBbW6pRot7KCFLXn1yIyB6cJDCzsyt8jvdgxdLvS/09LS9NFHH+mCCy7w/56aPHlywa1wKUYLO3JqkZ8mO3bs0C233OJv81tuuUVjx47V22+/reuuu86//eabby609S9tjqWHdPiDAyNGjFD58uUVFxenqVOnFsp6lhVPPfWUf8L95ZdfzjIYum3bNiUkJOiss85SXFycqlSpoptuuklvvfVW2HLp6en65JNP1KRJE8XExGjs2LGS8t8VtLCEFnbQwo4lS5boueee04oVK/zbcnuTNTgYGhsbK+ec6tevr44dO2rIkCHq3bu32rRp4/8e9fDDD/uP4yrHeaOFHbSwgxa2TJ06VSeccIKqVaumcePG6cCBA5L++paUbdu2KT4+XhEREerbt2+ez7dy5Updeuml6tevX2GveqlEDztoYQct7Agek+3fv1+XX355jkOhoV5++WU551SrVi29//77Sk1N1Z49e/Tpp5/q9NNPl3NObdq00caNGyWx/84vWthBC1vogZKEAXaglEhKSlLlypXlnNNHH30Udh/D6zaEDrGXL19ezjldcMEFfIq5CK1du1bt27dXIBBQy5YtNX369Hw97pdfftGFF16oiIgIxcbG6rPPPivkNS39aGEHLWxjYNqOgmyReTkahsvphEfmoehDhw4pNTVV+/btU3JysjZu3Kj58+fryy+/1JVXXqkWLVr4b9zeeeedYVegRv7Qwo7QYenly5fn6wqsa9as8b+lK/hP1apV/f/u1KmTPv7448Je9VIptMfq1atzvKpuZnPmzPGHTUaNGlWYq1gmDBo0SE899VSW7b9161YNHz5cTZo0kXNO0dHR/oc1g1fADx0M2rZtmy666CI559SjR48ifhWlAy3soIUdtLApt2OvzIOh7du31+effx52hfxVq1Zp5MiR/u9Tjz76aFGsdqlECztoYQctiteuXbvUt29fOefUrl07/fLLL/59wfMj999/v38xsdAPHmS2cuXKsA+Pf/nll4W+/qUNPeyghR20sCUtLc3/5q2qVavmOhQqSc8//7x/BePMV9CfP3++OnToIOecLr/8cu3cubMoXkKpQQs7aGELPVBSMMAOlCILFixQ//79w25jeN2W0CH24CfcFi5cWMxrVXYkJCT4B+LDhw/3b8/txPDmzZt19913+28o9unTJ8sywa5btmwJ+6o1BhJzVlgtcOQKs8WRXpm0rApeHUPK/uu9pIIbmN6/f38BrnnpU5Qtfv31Vz355JPZ/gwcvlLxt99+qxtvvFH9+vVT7969ddlll+kf//iHLrvsMp199tnq2rWrzj77bJ166qk65ZRT1KhRI5UvX14xMTFhA7v9+/fXkiVLsvwM/n+RP0XRQmKfkV9z5879f+yddXgUx//HZy5KSCAJFgJBgru7S5EiRb5YKbS0heJQtLi7prhroEULBGmhuFM8ThQNJASiRC73/v2R3w578ZC73Cb5vJ4nT+nt7N7svG92ZN/zGbRr1w7bt28HkHZ5xcXFYcWKFeCco3v37jAzMxNa9O3bF4cOHRJpU4qgT1qkz927d9G2bVv88ccfADJWZl9//TU452jZsiUiIyPTTCtvl0iPz8gXwUjRxoDP0SqdnZ1RtmxZcM7h4OCA1atXY/r06ejbt6/WrgRys8/WrVthZGSEGjVq4P3799l3Mzkc0kI5kBbKgbTImSQ1hjZq1CjViMhRUVH47bffwDlHhQoV8PDhwzSvTW145iAtlANpoRxIi+zj+fPnqF+/PjjnaN26Ne7fv6/Vns+dOxecc5ibm+Px48cpXuPZs2cYNGiQaNenTZuG169fZ9ct5CpID+VAWigH0kJZDBs2TJg55QsKUuL8+fOizA8ePJjs+JkzZ1CuXDlYWVnB2dmZ2uhMQlooB9JCWZAeRE6ADOwEkcuQvyTx8vLCd999J8zrJUuWJPO6ApAMcQ8fPsTFixcRFxeX5WtqNBraniUNpLIZP348OOeoWrWqMJqnVW4fP37EmjVrkD9/fnDO0bx5cxHtMulWnpcuXYKDgwN++uknnD17VnxOnTZt9K1F0mtQ+aeOPrSQ2qCkptDw8HCta5Au2kjlce3aNezfvz9ZhL7r16+jf//+IiJfhw4d8PDhw0yX48OHD9G2bVts27YNAQEByb6f0L8WUjpXV1e0adMGnHMMGzYs2XECOH36tIhK+SV/hQsXRrVq1bBt27Y0owBQvUgffWmRtK358OED4uLikpmySAttJCNCkyZNMhSF3dfXFyYmJpg3bx4CAwNx7do13L59W+vFVtLxSFhYGNRqNT5+/Kj1OWmhTVxcHH799VdwztGuXTsto2FqREdHo169euCco2HDhlo6SCStG+/evUNkZGSy65MeKZOQkIC6deuKBfz+/v7iWHBwMLZs2SKeTz/99BPevn0LtVqNCRMmgHOOxo0b62SMTpAWSoK0UA6khTJJagxt3LgxfH190zznyJEjMDIygqmpqdY8YFKkdj06OhofPnzQZbZzJaSFciAtlANpkf08e/YMxYsXB+eJEY4XLFiAS5cuwcnJSbTTLVu2xLt37wBoj82ePXuG7777TqSbMWNGhsbuROqQHsqBtFAOpIXhkc/fbdu2Dbdv39Y6Hh0dncxLEBkZiX79+kGlUqF///548eKF1vEPHz6IqPhz586lsV8GIS2UA2mhLEgPIidBBnaCyKV4e3vjm2++EZNa9vb2uHfvnqGzRfw/WTUbZMSsToaG5Pz000/gnKN+/foA0i6j0NBQbNq0SZh0a9SogRMnTqR6zrx586BSqWBkZIQyZcpg5cqV4hhpkRxdaZFWREq1Wk2G9gygr3rxzz//oHv37mjRogXq16+PBQsWaG1BSFpoI61oLl++PA4cOIDo6GgAiUZqXZjX3717hx9++EFMSn777bepRt7N6+hLi6TmdXNzc6HH6NGjk6XL6/j5+cHExAScc5iYmKBJkybo0qULvvvuOwwZMgT9+/fHzz//jClTpmDMmDH49ddfsWzZMqxZswb79u2Dt7d3uhPvVC8yhj60kJftu3fvcODAAdSpUwc1atRAuXLlMHXqVPz1118pps/rnDx5EmXKlEGRIkWwZ88erQXMcqQ+kKurKwoWLIgePXqkmE4+wXjx4kUsXboUderUQb169VCzZk3MmzcPLi4uIg1p8Rm1Wo1du3bB3t4exYsXx4EDB9LV482bN6hTpw4452jTpk2yHSDkE8YHDx7E2LFjUbJkSZQrVw6lS5fGpEmTcPToUZGG9EiOn58frK2tYWFhgdmzZwMAPn36pJXm2LFj4tk/dOhQPHnyBO3atQPnHCNGjIBaraay1QGkhXIgLZQDaaE8MmsMlcr++vXrYky3ZcuWNL8jMjISU6dORYMGDdI1neZlSAvlQFooB9LCcHh5eaFq1aqiTZbP4xUvXhyLFi1Kdk56plAKQvXlkB7KgbRQDqSF4Ulq/JSIjo7G2bNncf/+/WTptm/fDiMjI5ibm4sdHeXl/uDBA/Tp0wdnzpzRY85zH6SFciAtlAXpQeQUyMBOELmUV69eoVSpUuCcw9LSklY/5SLkL6m8vLywd+9eTJs2DSNGjMD+/fu1FirQCy1tJk6cCM45qlWrliyqrrzT9fz5c6xcuVKYdCtVqoRNmzYliyKdlOPHj6Nv375QqVTgnOO3334Tx0gLbfShhYeHB7Zv344+ffqgY8eOaNiwITp27IitW7fi1q1bIh1poY2utJAWFKjVaq0oD/I/Ozs7zJkzR1yTtPiMu7s7TE1NwTlH7dq1cejQIfzzzz/49ttvs2xeBxIHoocPH0anTp3AOYdKpULRokXpOZUC+tAiqXnd2NgYZmZmaNSokWgzyMSeHHd3d/GStlWrVnBzc/ui66RWnlQvMo6+tHj16hWmTJmSYptha2uLmTNnpnpuXiU0NBSDBw8Wi89S2vJRXlZr164Vi3JiYmK0jsnb+eXLl6NKlSopamFjY0NapEJISAj69OkDzhMjqj98+DBZGvnk7+zZs0W5Ll++PNV0kyZNgpWVVYp65M+fn55TafDs2TNRVlOmTEk13cmTJ0U6aZcJMzMzMWlPZB3SQjmQFsqBtFAWL168wIoVKzIV1RhIHEfMnDkTJiYmsLW1xdWrV1NNm5CQgDlz5qBo0aLgnKNmzZrJFi0QpIWSIC2UA2lheAIDAzFmzBixCJnzxN1I58+fn2wclp4pVJ4+qZGIxnQZg/RQDqSFciAtlMkff/wBzhMD5kjI52GloDqFChWCp6cngM/vWIHEOXOJpP6e1MyoRMqQFsqBtFAWpAehNMjAThC5GFdXVzG5Vbt2bTg7OyczJxI5D7VajXfv3uG7777TWlkt/ZUvXx7z588X6WlQ+bkMTp8+jcKFC6NEiRJaE7fyMrp+/TpGjx4NCwsLcM5RpUoVrFq1CqGhoaleX96Z8/Lywpw5c4Qh8ddff03xe/Iq+tDC3d0da9euhbW1tYgwIJlM5fVi6dKlKX5PXkVf9UL+ot3W1hZlypRBp06d4OjoKOrFuHHjUvyevI6np6dotytWrIgmTZpoGaYfPHiQpfLSaDQIDw/H2LFjYWNjI/T45ZdfdHgXuQNdapGaeb1v3754+fIlDhw4QCb2NJAbp9u2bSsmSgDtMkrt3+lB9SLj6FIL6fPNmzeLNqN06dKoXbs2+vbti+rVq1ObkQbPnz9HgwYNwDlH69at8fjxYzFJKJ8cdHFxQfXq1cE5R79+/bSuIS/LRYsWwdzcXJR5ixYt0KtXL/zyyy9o0qSJ+HzixInZc4M5jICAANSsWVPocf/+/RRNH6tWrRK/9xo1aqTa7xo/frxWP/brr7/G6NGjMXnyZLRv317oMWnSpGy5v5xGZGQkOnToAGNjY/Tu3Rtv3rwRxzQajdbYbd++faI8zc3NsXnzZgAUcUxXkBbKgbRQDqSFclCr1WKhX2aMoQBw9+5dsfCvbt266c6337x5E5xzFChQAGfPntVF9nMVpIVyIC2UA2mhHGJjYxEZGYlr167h+vXrePfuXbI06ZlC5Tx69AgTJ07E9u3b4e7uLj6n9j1jkB7KgbRQDqSF8ti5cyc4T4yEf/78efG5tHPjy5cvUb9+fTH3HRsbm2L5yk2hS5cuRUBAAAAyh2YG0kI5kBbKgvQglAYZ2Akil+Ph4SGMJrVq1SITew7n3bt32LNnD+rVqwfOuXiRValSJdSuXRt2dnbCYCc3ThOJvH37Fi1btgTnidFDr1+/jsjISABAWFgYnJycUKdOHZiZmYmFH9u2bcOHDx/SvbbcdBIWFoaNGzcKfVasWKGvW8qx6EqLQ4cOoUePHmLSpUSJEmjUqBGcnJywadMmTJkyBc2aNRNajB8/XpxLJrhEdFkvQkNDRaSHypUrY/78+QgKCgIAPH78GIsWLRJazJo1KztvM8fg4eGBQoUKiQh7klHU1dU1yxOE8t/8ggULYGVlJdqMefPmZTXruQ5daJGaeb1Pnz6ibsTGxmL79u1kYk8DeX+2bdu28PLy0tm1qV5kDl1q8ebNG9jb24PzxMjVe/fuxcePHwEkLiJZtmyZqBdz587V1S3kGp49e6ZVftu2bcPr16/F8d27d6Np06ZiRwl5BHU5hw4dQsmSJbX6SnFxcaJuPH/+HOvXrxfHV69enS33l9Pw9vZG8eLFwTlHnTp1MH36dNy6dQve3t44d+4cxowZI/qr5ubmWjvSyFm3bp1IV7JkSSxevFjr+Js3b7Bhwwahx7p167Lh7nIeq1evFuXo5OSUbPemyMhIuLq6iuj5pqammDlzppaRlF7M6gbSQjmQFsqBtFAOXl5eYl41o8ZQLy8vMe9RsmRJseOfpIn036QRyK5fv44LFy7oMPe5C9JCOZAWyoG0yBlkxhQaFhaGDRs2iLRNmzbFrl27xHEy+mQd0kM5kBbKgbTIftzd3dGmTRvxvic4OFgcU6vViI+Pxy+//CIWm0mGUTnyMZ+0o6OdnR2eP3+eLfeQWyAtlANpoSxID0JpkIGdIPIAZGLPHQQGBuK3334TWwdbWVmhXbt22LVrlzCSPn78GGvWrCGDSRrIzT6lSpVCrVq10Lx5c9SqVUsMyCVT1sWLF4WRNzUkc09Sk+GHDx8wefJkqFQq1K5dG66urnq7p5xKVrXYunUratSoIX7vHTp0wP79+5NFBffy8sKKFStEutQMQ3mZL9Ui6e/+48ePqFSpEjjnGDVqlDAiSkRERGDlypVQqVQoUqQITp48mW33mJNwd3eHra0tOE+MYr9o0SKEhYUByJqhWRpIenl5oVq1akLX6tWr4+nTpzrJe25DF1rcv38frVq1gomJCczNzdGvXz9xDUkTtVqtZWKXR5wmEtGXiZ3qRebJqhZyY3SxYsVgamqK5cuXIyoqSitdREQEli5dCpVKhZIlS2pFgSAS8fT0RIUKFcA5R/78+WFnZ4eWLVuiSZMm4JzD2NgYnHN06dJFnCPvu2o0Gvz888/i2TNlyhSRTv5C6tOnT5g3bx5UKhVatWqVYiQnIvE5It8hy8jICDY2NrCxsRGfFSxYEBMmTBDnSM8gjUaDDx8+oHPnzkKPlStXinRyg0lUVBSmTZsGlUqFzp07IywsjBY8/T/ycpg0aZIo9+HDh+PQoUNwc3PD7du3MWXKFDRu3FgsUps6dWqqpqA7d+7g0KFDOHLkCI4ePYqPHz8iNjYWABlI04K0UA6khXIgLZSJv78//P39M5TWy8sLdevWFS9lN2/erLXrilTmUVFRmDhxIpYsWZLidajdThnSQjmQFsqBtFAe8vLJjClUzooVK9C5c2dxnjyAArXfmYP0UA6khXIgLZTBjh07YGJiAs451q5di+joaK3j8p0aHzx4oHVMPi87ffp0sQN5sWLFcO7cOXGM2uyMQVooB9JCWZAehJIgAztB5BHIxJ6z8fPzwy+//CKi+tna2mLp0qXJTNEajQbR0dGYNWsWjI2N0b59e4SEhBgo18rl2bNnaNasmYisK/+rVasWxo4dqzW5mxLSKkPpxSCQvAP277//Il++fOCcY//+/bq/kVzAl2qxfft2lC1bVhh8OnXqhPv372ulkWsTExMjoodaWlri0KFDer+3nIYu6sXbt2+FEd7DwwNA8sksV1dXlCpVSkyWESnj5uYmtKhVqxb++OOPZJH5MoOkg5ubm5a5rnr16vD09ARA0TNSI6tabNiwAcWKFYNKpYKJiQmmTZsmjskNiZKJXYqW/PPPP+v0PnIDSY3T3t7eWboe1YsvJzNapPZSIzAwEAULFoSZmZnYkSBp2gcPHojvSRqJmkjE398fffv2FYtck/716NFDLChL+nv29vaGubk5OOfo2rWr+Dyl3/2lS5eEIf7mzZv6vakcTGBgIIYPH55sESDnHO3atdMypSct5//++0+kHThwoPg8pTrk4uICzhN35Hr8+LH+bigHIi/XJUuWoGTJkqJcixQpInZVkYyhv/32G3x8fLSuERISgvPnz6Ndu3ZiIZs07mjcuDGmTJkidjygdiJ1SAvlQFooB9Ii5yI3hhYrVgyrVq3SMv/IjaHz5s0T8x7z589Pdi3SJWuQFsqBtFAOpEX24+Pjk6YpNKVylEeu9PDwEJEqk2pBRp/MQ3ooB9JCOZAWhiHpjq9S+S1btky8c/D398fQoUNTNIYmNYUWKVIEKpUKjo6OmDVrFnx9ffHhwwdhNKV2O3VIC+VAWigL0oNQImRgJ4g8REom9vSiSxOG58WLFxg1ahSKFi0qXmgdO3ZMyzyXdKB44sQJ0Zm4c+dOdmc5RxAUFIQTJ05g7NixGDhwIEaOHAlnZ2ctA1Z6q8jfvHmDEiVKwNnZWetz+XnNmzcH5xyDBw+GRqOhlekpkBEt5B3bw4cPo2bNmlCpVDAyMgLnHKVLl0bJkiXxv//9L9UI68HBwfjll19gZGSE/v370+KOFMiIFnLDbVBQEC5duoS9e/fCxcUFDx8+xPjx48E5x/Xr11P9nk6dOoFzjjJlyiAiIoLqRSrI2+0aNWpg//79yVY/Z4S0TLqpLTQgtMmqFv/88w/Gjx8vFjUNGjRIHJNPCqvVamzevBmcczg5Oen0HnILci1atWr1xZHYqV5knYxoIW+/Hz16hMOHD2PRokVwdnbGxYsXMXToUJiZmeHJkyda58n7tlJfqnbt2oiJiaHJrhQIDQ3F1atXMWzYMLRq1QqlS5fGkCFDsGrVKpEmpRdLT548Qf78+WFqaoqZM2cCQLKtIOVbzVevXh2cc5w6dUqPd5PziYyMRFBQEDZs2ICFCxdi0aJFOH78ON68eSPSpLZIwMjICFZWVtixYwcA7X6X/Lx3796hbNmyMDc3x+3bt/V4NzkTefneuXMH+/btw7hx4zBmzBhYWlqCcw5TU1NMnTo1mTE0ICAAU6dOFbsbSFFo7OzsxIIP6ZkUEBCQ7PsIbUgL5UBaKAfSIueRkjFUWoAJfC7jqKgozJkzB2XKlAHnHEWLFsXp06e1riXva/n5+QGgcUdmIC2UA2mhHEiL7MfX1xfffPNNqqZQOW5ubnj06BFiY2MRExOjdSwqKgrLli0T15HGgUTmID2UA2mhHEgLwyJvOydPnizKr27duujRowc6duwoPuvbt69Im9QUWqxYMZGOcy7eL5UtWxaDBg3Cy5cvk51HaENaKAfSQlmQHoTSIAM7QeQx5EaTunXrYs+ePYiKijJ0tohUCA0Nxdy5c1GiRAlhXj9//nyq6SVjyrNnz2BtbQ3OOU6ePJld2c1VZGRiVr7y/PDhwwC0zUEPHjwQUfNHjBiht7zmduRaPHjwAF27dhXRxTjnsLa2Rvny5VG4cGGtKKIvXrwAoD3x/tdff4Fzjj59+mT7feQG5CaqnTt3ag1eOOcoXrw4SpUqBQsLC6xatSpZxPaEhAS8fv0aNWrUgEqlQrVq1eglSDp4eHjAxsZG/G5T2zo+Ncikqzu+RAt5mxAaGoo9e/bAysoKnHP89NNP4phcA7VaneXI4rkdT09P0c+ZMmVKpvuyVC90R1payMtw6dKlqFGjhlabYW1tjUKFCsHc3BybN2/W2jlF4unTp2ICrE2bNtlyT7mBpIuUU5scvHXrltBj48aNaV7z6tWrov914sQJneU1L5JalKrz588LPdLbven48eMi7ZUrV/SRzRxP0ud4aGgo+vfvL4yhU6ZMSWYMlSLoS2O4woULY/LkyThx4gTc3Nxw584dTJs2DTVr1hQT8YGBgSl+H/EZ0kI5kBbKgbTIOXypMdTOzg7//vtvqtedOHEiOOe4ePGi3u8ht0BaKAfSQjmQFobh1atXYjw2e/bsZKbQqKgouLi4oEePHmIns3r16uGnn36Cv7+/VtoXL17gxx9/hEqlQrdu3Wjn7C+A9FAOpIVyIC0Mj3w+dtGiRXBwcNB6t805R+fOnXH16lUA2u9fZ8yYIfw80jvvkSNHYuvWrRg4cCAqVaoEzjnKly8vFi7TmC91SAvlQFooC9KDUBJkYCeIPIiHh4cwgrRt2xYfPnwwdJaIJEidhZMnT6JixYrixdTff/+dofP27NkDU1NTmJub48aNG3rPb05Fbh6Rd5gyuvVZcHAwRo0aJTpma9aswbNnzwAkGrrmzZuH/Pnzg3OO6dOn6zbzuYzUtEh6fPHixSLquoODA3r16oWnT5/i7du38PHxwbFjx4SRrlu3buJ8eQd8+/btKX4vkUh6WgDArl27UKFCBaFFxYoVUb16dZQtWxYFCxYE5xwVKlTAxYsXkxkSjx07Jgy8X331lV7vJbfg4eGBli1bYs2aNZk6j0y6uudLtZBQq9XYsWMHLCwswDnH+vXr00xP+qSOh4cH+vTpg0OHDmXqPKoXuic9LZYtWwZzc3PRZtSvXx8tW7ZEnTp1xARXpUqVcOHCBa2FT+/fv4eTk5PoS/Xv3z+7bilHIm+/MxrN4v3792jUqBFUKhXGjx8PIOXfv1qtxsqVK5EvXz4UKVIEjx8/1k2m8wgZ7W++ePECNWrUgImJCebOnQvgs5bya7x9+xajR4+GqakpqlWrhtevX+s+07mQTZs2CWPotGnTkhlDw8PDMW/ePNjb2wtTz82bN5P1ZaOionD79m00adJELK4JDg5O87vfv3+v8/vJyZAWyoG0UA6khTLx9vb+YmPohQsXtK61e/du/P777wASA2JIL4WbNm2arkYEaaEkSAvlQFoYFldXVyxcuFBrpy0AiImJwbZt21C/fn1wzsVciPRnb2+f7J3dnj17xPGkO9QRGYP0UA6khXIgLQyPfI724sWLWLlyJerVq4e2bdti0qRJ8Pb2TjaPO2PGDNja2oJzjkKFCmHdunXQaDRibjAqKgp37txB48aNwTlH48aN8e7du2y9r5wIaaEcSAtlQXoQSoEM7ASRR3Fzc0OVKlVou3EFIjXsMTEx4oWTjY0NDhw4kKHzAIioTfnz5xdbPRIZQ16OGelIBQcH44cffhAD96pVq6Jjx46oXr262Pq5bt261CnTAbdv3xbbY1eoUAGLFy9GSEhIsnT37t1DgQIFwDnH5MmTxedJDVnyyOxExnn06BFatWolXmQMGTIEXl5e0Gg0ePPmDS5fvixMoVWqVMHatWvx5MkT3L17Fxs3bhQDGgcHBzg7OwMgs2hG+Pjxo/h3RoxwZNLVH3It5KvNU3oepcTLly/RpUsXcM7Ru3fvZNtyEhknaZTp9KB6oT9S0+Ls2bMoX768aDMmTpwoTOrv37/H7du3hRaVKlXCkiVLcOvWLZw9exbTpk0Ti9IqVaqEW7duASCNdM2YMWPEYlnpBVTSMj579qxov9u3b2+IbOYZhg0bJvRwdXVNdjw0NBRbt24VCwZ79+5tgFzmXMaPH49Ro0ZpGUOlCfgnT56I55GdnR08PT0BfO53Ja0X169fR5UqVWBmZoZ169al+mx69uwZRo4cKRYlEImQFsqBtFAOpIWyePbsGcqWLasTY6iXl5c43rRpU3DOoVKp0KJFC/z555/Zel85EdJCOZAWyoG0UAZyM4/U1rq6uopy5Jxjw4YN+PPPP7FgwQI0aNBAjPdOnTolzgkPD4eDgwM45/jnn38Mci+5AdJDOZAWyoG0MDxJx2Lyd0qA9vu+6dOno0iRIuA8MWpx0oAx8mudPHkSxYoVQ6FChXD8+PFk1yKSQ1ooB9JCWZAehBIgAztB5GEkw1RGI/QR2cuUKVOECX3atGlpGuPkDf369evFiulx48YlO05kjGvXrmHnzp0A0i+/GzduoEaNGuCcC4O19FerVi0cOXIE8fHxpMMXkpCQgISEBEyYMAGcc1hbW2PatGnCRCovV8mUPm7cOBgbG6NNmzZa0VyJrLNlyxbx+/7hhx+0jklavH37VrxcNzIyEgsKpCi6Dg4OGDNmTLLID0T6ZMS4SSbd7EFehkeOHMHu3bsBZKzNXbVqldDlzp07estjXoEWdSiHpFrMmzdPlPWECRO00qXUZnDOYWZmpvXfihUrYuXKlQgLC8vWe8ktSOUcHh6uVe7S7z0+Ph5fffWVMD5cuXJFbCvs6uqK7du3C/N6yZIlxYQk1ZcvQyp/aRe0pHrExMSgffv24JyjaNGi+Pvvv8UWm1evXsWsWbOEeb1ixYq4d++e1vlEysgXrqY2ru7bty8457C1tRWmnrTmSiIjIzFr1iyxoDMlDZ49e4bffvtNLOI5ePBgFu8k50NaKAfSQjmQFsrEz88PnHMYGxtjzZo1X2QM1Wg0Iu3mzZvF9VQqFVq1aoWTJ09qpSVShrRQDqSFciAtlMv48ePF/MaJEyfE52q1Gn5+fujUqZOIVnnixAkkJCTg/PnzsLCwgLm5Oe14pmNID+VAWigH0sKwyMdm8h21pk+fjmLFioFzDgsLC/zxxx8pniPx/Plz2NnZJZt3JzIOaaEcSAtlQXoQhoAM7ASRh6FJJ+Xy6dMnMUCsXLlyhiPlnz9/Hs2aNQPnHJaWlslWvBEZw8PDAy1btoSFhQXu37+fbvrY2Fh07twZZcqUwe7du1G/fn189dVXGDx4MNzc3Ci6ro6QfttVq1YVEe1Te47JDXOSMZHIGmq1Gmq1Gq1btwbnHGXLlhVR3+QvzqV/X7lyBUWKFIG9vT1Gjx4NKysr2NraomHDhli3bh1evnxpkPvITURGRsLf3x9RUVEAtF88kUk3+7h27RrKli2LQoUKiTqRGpI55eDBg7C0tISxsTH+/fff7MhmnoHqhTJISEjAp0+fUKlSJXDOUaNGDaFJSm3G33//DWtra5QvXx4zZsxAsWLFUKFCBXTs2BEuLi4IDQ01yH3kFnx8fDB+/HhhdpaQyt/Pz0+YpvPnzw9HR0e0a9cO9vb2sLCwEHWmU6dOePHihSFuIVfx+PFj9OrVK5ke0nPI19dX6GFubo7ChQujXr16yJ8/v1jYYWlpieHDh+P9+/eGuIUcSVrzH6GhoahVqxY45+jVq1eGy/X+/fuoV68eNm7ciNjYWK3vePbsGaZMmQJTU1NwztGjRw8EBwdn+T5yA6SFciAtlANpoUy8vLywfv16vH79Wnz2JcZQAPjtt99EVGPOtXdRkb8QJlKGtFAOpIVyIC2Uh0ajQa9evcQigPDwcKjVaq05J7VajW7duglz6NGjRzF27Fhwnrj7HM2Z6w7SQzmQFsqBtFAO8jKfPn06ChcuLOZgly1bJo6lNVZs3rw5OOf48ccf001LpA5poRxIC2VBehDZCRnYCYIgFMi1a9dE47906dJU08kb+AcPHmDQoEHiPCn6OpF53r59KzpT48aNE5G+U0LSQIpa9d9//9Gkrh548+YNihcvDmNjYyxfvhxAytHGpC2NFi5cCDMzM1hYWMDLyytb85rb6dixIzjnqFatWrItpOS8efMG1apVQ4ECBXDx4kW8evUKAQEBNDDREREREVi/fj26deuG3bt3IyIiQhxzdXUlk2428vDhQ9SuXRucc8ybNw+RkZHpnrN27doUo5wQWYPqhfKQtp1t3rw5gNTLOjAwEGXKlIGdnR0ePXqE4ODgNPtfRMaJj4+Hk5MTjIyM0LVr11QXA8TGxmLSpElo0aIFKleuLKJ8S8Y2a2vrDC3sJNImJiYGU6dOBecc3333Xaq/c7VajdmzZ+Prr79G8+bNUbRoUS09atWqRYs0dcjDhw9F+7B27doMnSP1ad3d3REeHq51LKkxNDOG07wOaaEcSAvlQFoYlpQWX2bWGDpjxgxhDHV0dBR6zpo1K8XvIVKGtFAOpIVyIC2UR8+ePUUQnqQ7q8jLsXv37uCcw8rKSpT59u3btdKnNI9OWmQO0kM5kBbKgbQwPEnbYWtraxgZGYFzjnr16omdVdJ6b/HkyROUKFECnHPMnj1b73nOrZAWyoG0UBakB5HdqBhBEAShOOLi4piZmRmztLRkDRo0YIwxptFotNIAYJxzxhhjbm5ubNu2bWz//v2MMcZ69erFli5dyhhjLCEhIRtznjuwtrZm3bp1YxYWFuzMmTPsv//+SzWtpMvr168ZY4y9ePGCmZqaJjtOfDkajYbFx8ez2NhYlpCQwKysrBhjjBkZGWmlA8BMTEzY+/fv2b59+1hcXBxzcHBg9vb2hsh2rqVkyZKMMcY+fvzIPn78mGKahIQEZmdnx4oVK8aio6NZWFgYs7e3Z6VLl2acc6oXOkCj0bA9e/YwFxcX5uTkxE6cOMEYY+zZs2esb9++zMPDgzHGWLVq1djhw4dZ5cqVmUajYSoVdf91TYUKFViHDh0Y55wdOnSIPXjwIM30gYGB7J9//mGcc2ZjY8McHByyKae5H6oXysPR0ZExxtjbt2/Zx48fUyzrhIQEZmNjwywtLVlISAgLCQlhhQsXZgULFmSMUV8qq6hUKmZra8vy5cvH3N3d2b1795KlUavVzNTUlC1fvpxdvXqVbd26lVWvXp3lz5+fxcfHM5VKxY4cOcLq1q3LABjgLnIPxsbGzNHRkeXLl4/dvXuXPXz4MFma+Ph4ZmRkxObNm8dOnz7NVq1axSwtLZmZmRmLj49ntra2bOvWraxy5cqkh46wsbFhNjY2LF++fKxo0aKMsUQd0kIai1eqVEmMTxhjzMfHh23bto2tXbuWxcfHs549e7Jt27YxW1tb/d1ALoK0UA6khXIgLQyLNPeUkJDAjIyMWHR0NFu+fDnbs2cPCwwMZMWKFWP79+9n7dq1Y4wlzk1pNBpx3syZM9nixYsZ55w1btyYLV26lG3YsIExxtjChQvZjBkzxPdQu542pIVyIC2UA2mhPFq1asXMzMxYeHg4u337tla5yefFjx07xipWrMgiIyMZY4yNGTOGDRo0iDGWqJP8/d/hw4fZpk2bGGOkRWYhPZQDaaEcSAvDIrXZjCW2wxs3bmTh4eGsfPnyjDHGChUqJMZ9Kc2lS2X74MED4U2Q3tsSmYO0UA6khbIgPQiDoH+PPEEQBJFZjhw5IlY1P3r0KNlx+Uq2e/fuYdiwYWL1c4cOHfDff/9lZ3ZzJW/evBGRpps3bw43NzdxTFpRHh8fDwDw9vZGsWLFMhUNi8g87du3B+ccw4cPR0xMjNYxSZOwsDDMnDkTBQoUAOccffv2RXR0NEX91gFSGbq4uMDe3h7W1tY4dOhQsrKV/v/58+ewt7cH5xwLFy7UOkboBjc3NxQpUkSsdl62bBkqV65MEaYNwMuXL8XOHS1btoSbm1uytgIAPn78iA0bNohnVPv27Q2V5VwL1QtlIP3+Dxw4gKJFi6JIkSI4depUsnSSBu7u7rC1tQXnHFu3btW6BpF13r17h06dOoFzjhYtWsDV1VWUfdKoSJ6enqhfvz4sLS3BOYexsTGOHDkCgDTRFUFBQWjXrp1oM54+fSraCvlzKSoqCpcuXRJRSjjnMDc3x/Xr15OlJbLG8+fPYWNjA8455s+f/8XXoajGWYe0UA6khXIgLZRDVFQUJk+ejPLly2c6qnHTpk1x7NgxkW7NmjWifV+yZEm230tOh7RQDqSFciAtlMHz58/FPFTLli3x6NEjfPr0SSuNm5sbJk+eLMr4u+++03r/JB/rnTx5Ek2bNgXnHBMnTsy2+8gtkB7KgbRQDqSF4UjaDkvjvMqVK2PLli2oUqUK+vXrl+r50tzs7du3xe6ZrVu3TrbrFpE+pIVyIC2UBelBGAoysBMEQSiQV69eoUqVKlCpVNiwYYMwNCSdZDx58iT69u0rBpBt2rTBhQsXaHsuHeHv74+KFSuKQfzly5eTda78/PxQs2ZNcM5RsmRJ3L1710C5zb1oNBokJCRg3rx54JyjTp06ePLkiegAx8XFAQDev3+PFStWiIkXU1NT0kMPBAcHay3ucHd3F5NVkhZBQUH44YcfwDmHpaUljh8/bsAc5248PDxQuHDhZFs51qxZE+7u7gDI4JZd+Pr6iu2Zmzdvjr/++kvLEPLkyROsXLkS1tbWYovOK1euACCNdA3VC+Xw9u1btGnTRhin3dzcRD9VajNevHiBtm3bgnOOokWL4tatW4bMcq7Fz88PZcuWBeccTZo0wf79+/HmzRtx/MaNG/j9999RqFAhUWeMjIzg4uJiwFznXnx9fVG6dGlwztGoUSNs27YNgYGB4vipU6cwceJE0WaYmJjAwcFB1A96hukOaUwxcuRIqFQqdO7cGc+fP8/0dcgYmnVIC+VAWigH0kJZBAcHizlABweHLzKGSmnj4uKwdu1a2NraYubMmdl6H7kB0kI5kBbKgbRQDp6enihVqhQ456hRowbGjx+P48ePw8XFBWPHjhXzJJxzDB48WCsglVynEydOoFmzZqL9Hj16NIDP40FaZJ4xSA/lQFooB9Ii+0nLFPrXX39BrVajaNGiqFixInx9fUXapGX54MEDNGzYEJxzFClSBMuWLRPz7ETGIC2UA2mhLEgPwpCQgZ0gCEKBREREYODAgcIE9/jxY7H6Weo4LFy4ELVq1RIDyE6dOuHKlSvU+OsYLy8vEfWwcuXKGDp0KC5evIhTp05hx44dKF68uJjs7dSpk5YRiNAtz58/R40aNcA5R6tWrXDy5EmEhoYiIiICPj4+GDRoEMqVKyeihe7YsQMAGXz0gY+Pj5jcatGiBQ4fPozg4GAkJCTgxYsX+P777+Hg4CAGJt7e3obOcq7Gw8NDRC42NTWFg4ODmFCUR/8m9I+np6cwJBYtWhTVqlXD4MGD0b9/f5QpUwb58+cH5xzlypXD6tWr8fHjR0NnOddC9UI5PHv2DCVLlhT92n379iEoKAgfPnyAu7s72rRpIxYa1KtXDy9fvjR0lnMtXl5eqFChAjjnKFCgAOzt7dGyZUu0adMGZmZmsLCwAOcctra2qFOnjjBL08sm/eDl5YVKlSqJyOo2NjaoWbMm6tSpA845zMzMxCLZnj17ip25qG+rHw4dOgRzc3NwzrF69WqtHZ/SqwNkDNUtpIVyIC2UA2mhHFxdXVGpUiWcOXNGfCYFXpBIyxgqTxcXF4f79+9nT8ZzIaSFciAtlANpoRx8fX3RvXt3FC1aVLyvkHY6k/4GDRqUpim0RYsWMDIyQr58+dChQwf4+fnh5cuX+PDhQ4rnEKlDeigH0kI5kBaGYfbs2VqmUHkAsL59+0KlUmHVqlWIjo5Odu6NGzdQp04dmJiYgHOO7t2709guC5AWyoG0UBakB2EIyMBOEAShUORREuvXr48RI0Zg7969GDFiBL766iutAeSAAQPg6upKZgY98ezZMzRq1AjGxsZicpdzjnz58gnDSbVq1fDw4UNDZzXXI19QYGtri3LlyqFmzZpiCyJJn/Xr1yMqKsrQ2c3VeHp6CkOijY0NHB0d0bJlSxQpUkRoYWxsLCK3kvlNv7i7uwuzbpUqVeDi4kLmaAPh4+OD9u3bi4lfqc2Q/lujRg2sX78ewcHBhs5qrofqhXKQR/XJnz8/7O3tUblyZa2XIhYWFhR9PRvw8/ND//79UaVKFa3xhPTXqFEjLFu2TCw+o/GFfvH398cPP/ygtTBZ+itQoADatWuHI0eOiIUd1J/SL7NmzRLlv3z5cvj5+YljqZV9UmNoz549ERISkuY5RPqQFsqBtFAOpIVykM83aTQarbKcO3dumlGNU4MW2X4ZpIVyIC2UA2mhHD58+IDHjx9jy5Yt2L17t9g5lnOOgQMHpmkKbdmypXgfJS1wluYWW7Zsic2bN6d4LpE6pIdyIC2UA2mRvSxcuFCUVVJTKADs2LFDlOfMmTPh4uKC8PBwuLi4YMWKFcIQyjlH27ZtERQUBIDmb78E0kI5kBbKgvQgDAUZ2AmCIBSMl5eX1mBR3uAbGxujXLlytIVjNvHq1SvMnDkTjRo10jKWlCpVCv3798eTJ08A0AvA7MDHxwedOnUSRnbpz9raGg4ODjh58iTpkE34+PigQ4cOsLOzA+ccRkZG4Dwx2nGBAgVw+vRpQ2cxT+Hu7o5ChQqBc47atWvjwIEDCA8PN3S28iRv376Fs7MzevXqhbJly8Lc3BxNmjTB4MGD4evrm+KqdEI/UL1QDj4+Pvj666/F4ifphYaNjQ2qVq0qzOs0kaV/wsLC4OPjg5UrV2LatGkYO3YsnJyccOzYMajVatGPov5U9hAZGYmgoCBs374dK1euxMqVK+Hs7Iw7d+4YOmt5BvlzZ/LkyWJ80a1bNyxevDjV8549e4ZJkyaJcXr//v3TXSiV1EREaENaKAfSQjmQFsojtTLaunUrChYsmCFjaEb7vKRH2pAWyoG0UA6khTKZNm2aaMO//fbbDEU05pyjY8eOmD9/Ps6fP49ly5ahd+/e4jpz584V55EWmYP0UA6khXIgLfSPp6cnbG1tUbRoUfz111/ic3n5Tp06Vevdd5kyZbTm0h0cHNCvXz9hCqXFAV8GaaEcSAtlQXoQhoIDACMIgiAUy/Pnz9mOHTvY5cuXmY+PD8uXLx+ztLRkP/30E6tZsyZr1aoVY4wxjUbDVCpVpq8PgHHOxf9rNBrGOdf6LGmavEp8fDyLj49nLi4uLDY2lkVERLB27dqxYsWKMWtrayqnbOT9+/fM3d2dnTlzhsXGxrLY2FjWsWNHVqNGDVa2bFlDZy9P8e7dO3bt2jV2/PhxFhQUxDQaDWvZsiXr1asXq1mzJtWLbMbT05O1bNmShYSEsNKlS7NNmzaxDh06fFH7QOiG8PBwFhkZyYoWLcqMjY0NnZ08CdUL5fD+/Xt2//59dvToUfbhwwemVqtZ165dWYsWLViFChW+uD9L6BbSQVkkJCQwIyMjQ2cj1yMv59WrV7MtW7awZ8+eMRsbG3bkyBHWokULrXbcx8eHbd26la1du5ap1WpWsWJFtnLlSlaxYkXGOWcqlYoVLFiQmZqaMrVazSwtLZmpqSn79OkTy5cvH+maBqSFciAtlANpoXwiIyPZgAED2JkzZ1i5cuXYokWLWJ8+fRhjKc+9Sn0tf39/9vz5c/bvv/+y8PBwli9fPtaqVSvm6OjIKlasyBijvkBmIS2UA2mhHEgLw/L27VtWvHhxxhhj33//PRs9ejSrV68eY0y7/E6ePMlWrlzJbt68yTQaDRs9ejT7/fffta4VHBzM9uzZw6ZMmcIYY+z3339no0ePzsa7yfmQHsqBtFAOpEX24evryzw9PVmXLl0YY5/bYXk5L1y4kDk7OzMvLy+tc7/++mv2zTffsD59+jBra2tqg7MIaaEcSAtlQXoQhoAM7ARBEDkAjUbDNBoNe/78ObO2tmYqlYpZW1trHc+sySTpOXv27GH+/v7s9u3bTKVSsfbt27Nq1aqxjh07MsbIxE7kHOi3ajjUajUzMjIS5U9aGAZPT09WrVo1VrhwYXbu3DlWp04dQ2cpT5La75+MoYaB6oXyoTbDcNBzSVlQXTAc8gn1O3fusCdPnjALCwvWtWtXVrBgQZHOx8eHbdu2ja1du5bFx8ezwoULs9DQUGZqaspUKhVTq9VMo9EwW1tbZmxszKKjo1mhQoVYwYIFWVxcHDt58iQrU6YM1b00IC2UA2mhHEgLZfP48WMxxpg1axabN28eYyztftb27dvZrl272P3791lcXJz4nHPOatWqxYYOHcpGjBjBGCODaGYgLZQDaaEcSAvD4+bmxtavX8++//571rhxY8ZY2qbQyZMns2XLlol00gI0xhgLCwtj48ePZ/v27WOtW7dmBw8eZEWKFDHMjeVQSA/lQFooB9Ii+0naDsvL29PTk/n4+LCAgABWqFAhVqRIEda+fXsxb0jjNd1CWigH0kJZkB5EdkEGdoIgiByArk0MUsciLCyMHTt2jB09epSdOXOGqVQqptFoGGOJE5E2NjZs+PDhbOHChXrJR06HysOwyMtf6s6QHoYhaV2gumF4AgICWFBQEKtfvz5F/SaI/4fqhTKgNoMgCCWT3sR6UmPod999x+rWrcumTJnC1Go1K168OIuIiGAxMTHMwsJC7BbFGGNGRkYsISGBmZubM3d3d1amTJlsuqucCWmhHEgL5UBaKJe3b9+yFi1asNevX7N169axIUOGJDN0yvWbNm2aMPwUK1aMNW7cmJUvX54FBQWxW7duMT8/P8YYY7Nnz2Zz585Ndj6ROqSFciAtlANpoQxiY2OZmZkZYyxzptCUFgfMmzePzZs3jxUsWJD9999/rFy5ctl3I7kE0kM5kBbKgbQwPOm1p1/a3qY0B08L0NKGtFAOpIWyID0IfUBv7QmCIHIAaZl60triMSWkRj4oKIhNnDiR3bx5kwUGBjLGGCtSpAirXbs2MzMzY0FBQezevXts8eLFLDY2lq1YsYLMRUmg8jAs8vInLQxL0vInPQxPmTJlyHBAEEmgeqEMqM0gCELJJB1Ly8fbvr6+WsbQ7t27s40bN7LDhw8ztVrNypYty65fv85iY2NZZGQkMzc3Z9HR0ez9+/fM2NiYAWAfPnxgfn5+zM/Pj9qkdCAtlANpoRxIC+ViYWHBqlevznx8fNiuXbtYu3btWKlSpcRx+XztlClT2MqVKxljjOXLl49NmTKF/frrryLtw4cP2Z9//smWL1/O5s+fz6ysrNjEiRPJGJpBSAvlQFooB9JCGejKFMoYYyYmJoyxRLNpVFRUNuQ+90F6KAfSQjmQFoYnrTFfSsczgvwaFy9eZL6+vmzo0KHMyMiIFqClAWmhHEgLZUF6EHoBBEEQRI5Fo9GIf/v6+op/q9XqFNNLn7948QJ169YF51z8LVy4EJcuXRJpAwICsG7dOqhUKnDOsWnTJv3cRB4iISHB0Fkg/p/U6giR/ZAWyiI+Pt7QWSD+H9JCOZAWyoG0UA7Ur1UW1J/SP56enpgyZQry5csHzjl69eqFkJAQAMD27dvBOYe9vT0+fvyIhIQErbG6/N9pfUZkDNJCOZAWyoG0UAa+vr4oXbo0OOdo3749AgMDk6VZtmyZmIstUqQIOOcoVqwY/P39tdKFhYVh+fLl4JzDwcEBt2/fzqa7yB2QFsqBtFAOpIXyOHz4MNq0aQMjIyNwzjFlyhRxLK0x3qNHj1CnTh1wztGpUydER0dnR3ZzPaSHciAtlANpkbu4ceMG+vXrB845Bg4caOjs5GlIC+VAWigL0iPvQksUCIIgcjDSKrQrV66w9u3bs8mTJzPGWIqrnaVV0C9evGCtWrViDx8+ZJxzVqxYMXbu3Dk2Y8YM1rp1a5G+dOnS7Pvvv2fDhw9nnHN25cqVbLmn3IxKpWIajYadOnWKvX371tDZydNIW2Pv3r2bvX792tDZydOQFsrC2NiYqdVqtmrVKvby5UtDZydPQ1ooB9JCOZAWyoH6tcqC+lP6x9PTk61YsYLFxMSw//3vf2zbtm2sUKFCWmlMTEyYRqNhjKW/WxTtPvHlkBbKgbRQDqSFMnB0dGR///03s7W1Zf/++y+bMmUKi4iIEMevXLnCfv/9d8YYY82bN2ezZ89mrVq1Yu/evWONGzdmz549Y4wlRkIuUKAA+9///scaNWrEXr58yZ4+fWqQe8qpkBbKgbRQDqSFsoiMjGQ7d+5kly9fzlRE45cvX7JDhw4xHx8fxhhjDRo0YPny5cu2fOdWSA/lQFooB9Iid3H37l22YMEC5uLiwhhj7M6dO+zx48cGzlXehLRQDqSFsiA98jiGdtATBEEQWeP8+fNo1qwZTE1NwTnHkiVLkqWRIiS+ePECFSpUAOcc+fLlQ4MGDXD37l0AqUdXWr9+PTjnMDU1RUBAgP5uJI+wZs0amJiY4JtvvsGLFy8MnZ08zcSJE8E5R8+ePUkLA0NaKAtpZXPv3r1JDwNDWigH0kI5kBbKgfq1yoL6U/rn22+/RZs2bfD+/XsAn3eFkMbMlStXRmxsrCGzmGcgLZQDaaEcSAvl4OHhgWrVqmHatGlan2/YsAHm5ubgnGPVqlUAAB8fH7Rq1UpEOfb29gbweZ522LBhIqp+QkIC7bqSSUgL5UBaKAfSQjm4u7vDysoKo0ePFp+lVYYvX77EkiVLYGtrC845OnToII7R7ilZh/RQDqSFciAtcg9v376Fvb09OOdo1aoVTpw4gU+fPhk6W3kS0kI5kBbKgvTI25CBnSAIIgcTHR2NNm3aiG0dK1WqhAcPHmilkQaEQUFBaNKkCTjnMDc3R/PmzfHw4UOtNHKkF12nTp1C/vz5YWNjQwZ2HfDgwQOh1//+9z8ylxiQO3fuiG3vyARnWEgLZXH9+nWxKIr0MCykhXIgLZQDaaEcqF+rLKg/pT/kL2ejoqLEv6Vx9MaNG8E5R/ny5REREZHt+ctLkBbKgbRQDqSFMgkNDRX/TkhIQGxsLFq0aAHOOVq3bq2V1tPTE61bt05mEAWAyZMng3OOH374IdvyntsgLZQDaaEcSAvl8PbtW/HvzJhCmzVrhuDg4HTPIzIH6aEcSAvlQFrkfKRAh97e3ujSpQsOHTqEmJgYA+cqb0JaKAfSQlmQHoTK0BHgCYIgiC8nX758bOPGjYwxxooWLcqOHj3K6tSpo5WGc84iIiLYvHnz2MOHDxljjFWpUoX9/vvvrHbt2gxAilsDGxsbM8YYO3HiBIuOjmYmJia0xVcWAcDq1KnDrl+/zkxNTdnRo0fZ+PHj2cuXLw2dtTyHRqNhDRs2ZFevXmUmJibs2LFjpIWBIC2UhUajYc2aNWOXL18mPQwMaaEcSAvlQFooB+rXKgvqT+kXIyMjptFoGGOMWVhYiM+lcbS0bbZGo2Hx8fFMrVZnfybzCKSFciAtlANpoUxsbGwYY4nlrlKpGAAWExPDGGPM0dGRMcaEFpUqVWKbN29mrVq1Yu/evWMtWrRgr169YowxdunSJcbYZ20BZOt95AZIC+VAWigH0kI5FC1alDHGWEJCgmizk/L69Wu2b98+tmLFCvbhwwfWpEkTtn//fla4cGEGINXziMxDeigH0kI5kBY5H5VKxdRqNatQoQI7dOgQ++abb5iZmZmhs5UnIS2UA2mhLEgPggzsBEEQOZzKlSuzZ8+esYsXL7Jq1appHZNeYN2+fZtduXKFxcbGMisrK7Zx40ZWp06dVM3r0nk+Pj7M3d2dMcZY1apVmYWFhThGZB7OOdNoNKxp06bs0qVLzNjYmB07doyNHj2azCXZjEqlElpcvnxZaDFy5EgxAU9kD6SFspD0aNKkiZYew4cPJz2yGdJCOZAWyoG0UA7Ur1UW1J/SPypV8ilUaWwsmX3MzMyYhYWFWAxO6AfSQjmQFsqBtFAukjZGRkbM2tqacc5ZyZIltY4xltwgWrduXTZq1Cj29OlTVrRoUfb9998bJP+5CdJCOZAWyoG0UA5pmUL37t2rZQp1dnZmZcqUYYyxFN/vEVmH9FAOpIVyIC2UT1oLyaRxoIWFBTM1Nc2uLOVZSAvlQFooC9KDSA0ysBMEQeQCypUrx6pWrZrsc2mScffu3czDw4Mxxti+fftY48aN0zSvS+ft2rWL3bp1izHGWP/+/ZmlpWWKL8WIjCM3Xl25coUxxtjJkyfZzp07WVxcnIFzl7dISQsXFxd24sQJikiWzZAWyiIlPc6cOcNu3rxJi5iyGdJCOZAWyoG0UA7Ur1UW1J8yHPHx8YyxRA1ovGxYSAvlQFooB9JCGRgbGzMHBwcGgJ05c4a9e/cumR6SQbRly5YsODiYbd++ncXFxbEmTZqwUqVKMcbIAKQLSAvlQFooB9JCmaRnCiWyF9JDOZAWyoG0UA5y34e0iDkhIcGQWcqzZLcWtANO6hiiXpAeqZOdekg60HMw50AzlgRBELmcW7dusZMnTzLGGBsxYgTr3LkzYyzlyUQAYmJy69atbMmSJYwxxrp06cK++eYbkUZOREQEi46O1roGkTZyc8nNmzdZx44dWb169WgloQFIqsXQoUNZ/fr1KSKZASAtlIVcj1u3brH58+ez+vXrk+HBAJAWyoG0UA6khXKgfq2yoP5U9iI9c/Lly8cYSxwLf/r0KcsT4/IxNY2vMwZpoRxIC+VAWigHqZz69OnDihcvzl6/fs1u376dYvlVqlSJbdmyhTVr1ozFx8ez8uXLs8mTJzM7O7vsznauhLRQDqSFciAtlMmLFy/Y/v37yRSqEEgP5UBaKAfSQjnITaGXLl1io0ePZt7e3szIyIgCvmQz2alFZGQkY4wWEKZGdteL0NBQFhwczDjnZJpOgezU48OHD2zLli3Mzc2NGRkZkR45BRAEQRC5msOHD4NzDs459u3bl2o6jUYj/n3w4EHY2dmBc47ixYtj06ZNKZ7z5MkTTJgwARMmTMCVK1dSvBaROgkJCQCAsLCwLF2HyjvrSFpERUVl6TqkRdYhLZSFpEdcXNwXnS/pQHpkHdJCOZAWyoG0UA7Ur1UWuupPAcDHjx/x+++/Y//+/QgODhafk1af2bZtGzjnqFq1KmJjY7NUNmq1OkOfESlDWigH0kI5kBbKITg4GF26dAHnHM2bN4erq2uqaT08PNClSxe4uLhkYw7zDqSFciAtlANpoRzUajXWrFkj3us1bdoU/v7+hs5WnoX0UA6khXIgLZTJ1atX8d133wldAgMDdXp9ab5Ro9GIf0v/JbTRtxZ+fn6YNm0aBg0ahPv374s5edIjOfrWAgBCQkIwe/ZsVKtWDQ8ePABAcyWpoW89NBoNjh8/Ds45jI2N8fTpUwCkR06AAxQmgyAIIjezbt06Nm7cOFalShV269YtVqBAAa0VbowxptFoRGSmI0eOsOnTpzM/Pz+m0WjY8OHD2caNGxljLNl5f/31F+vVqxdjjLFq1aqxoUOHsrFjx6aYlkifzJSZXDPGEld1fvz4kb1//55ZWlqysmXLMnNz80xfl8g8SbV48eIFe/36NXv//j0rWrQoc3R0ZLa2towx0kLfkBbKQq6HWq1mXl5ezNvbm338+JGVLVuWlStXjjk4ODDGSA99Q1ooB9JCOZAW+oX6tbmDmJgYduTIETZ48GDGGGNDhw5l3bp1Y127dmWMkR5yfv75Z3by5En25s0bZmRk9EXXSEhIEOeOGjWKWVhYsBUrVjDGqKwzA2mhHEgL5UBaKAc/Pz/Wpk0b9uLFC9a8eXM2d+5c1qBBA2ZlZZWsTxQdHc0sLCwYY1TG+oC0UA6khXIgLZSDl5cXq1KlCqtSpQo7ffq0ziIaq9VqZmxsnExPIm1ID+VAWigH0kJZ+Pn5seHDh7N///2XAWCVK1dmq1evZp06dcrytZO286GhoSwuLo7Z2dkJnUivz+hTC8YYCwkJYevWrWMrVqxgMTExrGrVqqxly5ZsypQprEyZMlpj97yOvrVgjLH379+zbdu2sV27drFnz56xAgUKsGvXrrEaNWqQFknIDj2k7/nhhx/Y9evXWcGCBdm1a9dY9erVSQ+lky02eYIgCMJgODk5gXMOW1tb+Pj4JDsuj7zk7OwMR0dHmJiYgHOO3r17i2Oprdjcvn07vvnmG6hUKnDOMWPGjBSvTegOuRY3btzAqlWrULp0aRQuXBgmJiZQqVTo2bMn1q9fL9KRFvrn+PHjmDhxIgoWLAgLCwuxcrRDhw5Ys2aNSEda6B/SQlls2bIF/fv3h6mpKYyMjLSicqxYsUKkIz30D2mhHEgL5UBaGBbq1yqbuLg47N69G02aNAHnHCqVCuXKlcPs2bNFmrwe2UcevWXz5s14+fJlln+jM2fORLFixcA5x6BBg7KaxTwDaaEcSAvlQFooE09PTzg4OIBzjsqVK2Py5Ml49uyZobOVJyEtlANpoRxIC+Xg7++v06iUr169wpo1a/Do0SMANJbLLKSHciAtlANpoSzGjh0LzjmaNGkCFxcXfPr0SWfX9vT0xNq1a/H111+jfPnyKFasGNq1a4c5c+bAz88PAEU4lqNPLQDg7NmzWLp0KcqXLw8zMzNwzlGtWjW4ubkBIC3k6FOLkJAQLFmyBBUqVADnHPnz5wfnHNbW1hT5OxX0XTckfH190bFjR9IjB0EGdoIgiFzO06dP4ejoCFtbWxw/fly8qIqPj9dK9/vvv6NAgQLCuNOlSxdxLL0tgl1dXfHbb78JE/u4cePEMTKY6I9ly5ahWrVqYsEB5xzm5uZiSxzOOSZMmCDSkxb6ISYmBlOmTEGBAgWEFiYmJihQoICWFr/++qs4h7TQD6SF4ZHKU61Ww8vLC0OHDtUq+4IFC6JIkSJQqVTis/Hjxyc7n8g6pIVyIC2UA2mhXKhfq1zi4uLw9u1bDB8+XJjYOecYPny4obOmGHQ58b1w4UKoVCoxLh8zZgz93jMBaaEcSAvlQFooEx8fH7Rr1w758uUTfZ8VK1YgKCjI0FnLc5AWyoG0UA6kRe7jzZs3WLt2rRhfS+ZQwjCQHsqBtFAOpMWXIzf6r1q1Cn/++SdiYmK++HryMd7r16/h7OyMQoUKiX6BNDco/VWpUkUYp/P6ogNda5EegYGBWLFiBerVqwfOOQoXLkxa/D/61iKped3GxgZnzpxBt27dyDSdAtldN4DEMQ2Z2HMOZGAnCILI5bx//x6dO3cG5xwtW7bEf//9JzoDGo0Gly5dwpgxY7QGGv369RPnJzW6y5EPYD58+ID169eLQcuCBQv0d1N5nJCQEIwYMUJLs7Zt22L27Nm4ceMG9uzZg0mTJgkt5syZY+gs50oSEhLw4MED9O/fX0uLnj17YseOHXB3d8exY8cwc+ZMocX8+fMNne1cCWmhDKQ2ITY2Fn/99Rc6deoktChSpAh+/PFHXLx4ES9fvsQ///yDBQsWCD0WLVpk4NznLkgL5UBaKAfSQplQvzZnsXDhQpQuXVoYF0kP3RMQEABbW1tRvnn9ZZMhIS2UA2mhHEgL3RIUFIS1a9eiadOmMDU1xaFDhxAREaGz69PigoxDWigH0kI5kBa5h4iICMybN0+04ebm5pgzZw7i4uIMnbU8CemhHEgL5UBaZB25nyMr5kx5+3zz5k2MHj1aRPi2tLREiRIlMGnSJCxZsgQ//vijME7b29vDy8srS/eQW9CVFukhafXp0yfcv38f7du3B+ccNWvW1OnOCDkZXWshlXlK5nVXV1cAibsVdOjQgUzTKZBddUMOmdhzDmRgJwiCyAP4+PigVKlS4JyjatWq6NGjB6ZOnYq2bdvC0dFRmEUqVKiAiRMnivPSMq+nRFhYmDD7ODo64vLly7q+lTyPr68vBg4cKDQrXbo0pk6dmixdZGQk1q1bB5VKheLFi+PixYsGyG3uJT4+HpcuXcLXX38ttGjSpAlWr16dLG1UVBTWrl0LIyMjlCtXDnfu3DFAjnMvpIUykAbtMTEx2L17N5o2bSr06NWrFw4cOJDsnOjoaKxYsQJGRkaoXr26iApAZA3SQjmQFsqBtFAm1K/NWbx+/RoLFy4U0ZaqVKmC7du36z1SSl5Cmjh/9uwZFi9eTBPpBoS0UA6khXIgLfSDRqNBXFwcnjx5orOts/39/fHixQsA9FI2M5AWyoG0UA6kRe5h8eLF4JyjaNGimDNnDgICAgydpTwN6aEcSAvlQFoYHrl5/dy5c+jevbvYLbNOnTqYPXu2ljE6Li4Orq6uaN26NTjn6N27N8LCwgyRdQLAgwcPUL16dRgbG2Pu3LlISEigRed64O3bt1i+fDnKli0LzjlsbW3x5MkTAJ/7tmSaVhY+Pj5aiwqS6kUoAzKwEwRB5BG8vb1Ru3ZtsUpW+pOi5w0ePBgHDx4U6dNqsKOiosS/k0bK+O+//1C6dGmoVKoUDaTElxMYGIi+ffsK7Vq3bo1du3aJ4/KBiEajgbe3N6pUqQLOOTZs2GCgXOc+EhIScPXqVXz11VdCiwEDBuDs2bMijVqtFnVDo9Hg6dOnsLe3B+cce/bsMVTWcx2khbKIjY3F/v37Ub9+faHHhAkTtLZ6TNq23LlzB1ZWVuCc4+jRo9md5VwLaaEcSAvlQFooC+rX5iwCAwMxe/ZsWFpagnOOatWq4cCBAzqNwEgkktlF5IT+IC2UA2mhHEgL3aPrCMT+/v4YOXIkSpUqhVu3bun02rkd0kI5kBbKgbTIXSxbtgxjx47F8+fPDZ0VAqSHkiAtlANpYTjkbf6ZM2fQtm1bGBsbg3OO9u3b48KFC4iMjASgPYeekJCA/fv3w9TUFOXKlYOfn1+2551IJDY2FoMHDwbnHM2bNzd0dnIlsbGxWLt2Lezs7MA5h5mZGU6dOiWOyRcMyE3s+fPn13oPRWQ/vr6+IhhiwYIF8fjxYwBkYlcSZGAnCILIQ7x8+RLr1q1Djx490LRpU9SpUweTJk3CsWPHtNKltRrT29sbY8aMwcmTJ1NN0717d3DO0aBBA8TGxtJ2kFlA0iIqKgqDBg0SJp8uXbqIDrE8XVLatGkDzjl69OiRZjoifaTfsbu7O7p16ya0+Pnnn3Hv3j2RLrUylrZRGzZsWJrpiPQhLZSHRqPBuXPn0Lx5c6HHrFmz8PLlS600KSEZEmfPng2A9MgqpIVyIC2UA2mhDKhfmzMJDAzE3LlzhXm9Ro0acHZ2JvN6FpD/dmmsbFhIC+VAWigHfWtB+uqPZ8+eYeLEiWIXTkdHR7x9+9bQ2cqTkBbKgbRQDqSF4ZAbcygyruEhPZQDaaEcSAvlcOXKFXTp0kWY17t27ZquKT0gIAC2trbgnOOPP/7IppwScqQ65OTkBM45LCws4OXlZeBc5U4CAgLQr18/VK9eHZxzNG7cGFeuXAGQOJ8in/Pw9fVFu3btwDnHr7/+SkEBspmk5vRdu3aJIIeWlpbCxE4oA2NGEARB5BlKlCjBRo8ezUaPHs0SEhKYRqNhJiYmydKpVKoUzwfAnjx5wtavX8/Wr1/PDh8+zHr37s0AMM45S0hIYEZGRszMzIwxxlhcXBzjnDPOuV7vK7cCQGgxffp0tn//fsYYY506dWJjx45lHTp0SJZOfi7nnKnVasYYYxYWFowxRlp8IRqNRpTxsmXLmIuLC2OMsSFDhrAxY8awmjVrMsaSawGAMcZYREQEi46OZowxZm1tzRgjLb4U0kJZSHq8e/eObdy4kd24cYMxlvjMGj16NCtatKhIKy9n6TxPT0/24cMHxhhjRYoUYYyl3gYRaUNaKAfSQjmQFsqB+rU5k+fPn7Ndu3axlStXsqioKFa9enX222+/se7duzNLS0tDZy9HIu/LhoSEsMKFC4txNJG96FsL+fVT+n/iM9lRL6S2JKXvJD6THVpIOkRERDArKyt6BuoQX19ftnr1asYYY2XLlmW//PIL/c4NBGmhHEgL5UBaZC/yvo+RkZH4/wIFChg4Z3kT0kM5kBbKgbRQHn5+fmzPnj3sn3/+YQkJCaxr165s+/btWnPoKfH69Wv28eNHxhhjxsZkQTQE0pg6JCSEMcbYp0+fWExMjCGzlCvRaDSsdOnSbMeOHezevXts+fLl7Ny5c+yrr75iFy9eZM2aNRN+BMYYc3R0ZJs2bWLnzp1jXbt2pfqRzUhty6lTp9jly5fZhg0bRLsTFRXFJk+ezE6cOMHMzc0NnFOCMcZoZEgQBJHHkDpNRkZGzMTERKsTlR6cc9a2bVs2ZMgQxhhjffr0YVu3bmXv378X13R2dmZHjhxhjDFWt27dFA3yRMaQOlCbN29mv//+O2OMsSZNmrBffvlFy+STknmHc87Onj3Lrl+/zhhjrFatWlrXJDKHNJm+YMECtnfvXsYYYz179mTDhg0ThmnGkpevtIDDxcWFeXp6MsYYq1ixYoppiYxBWigL+WKCU6dOMcYYGzlyJBs6dGiak1rSeRcuXGBv375ljDHm4OCg59zmbkgL5UBaKAfSQjlQvzbnQeZ13ZOQkCCeL2PGjGEtWrRgnp6eYjKdyD70rYXcBPzw4UPG2Oe2hbTWJjvqhbx9uXbtGnv27BlTqVQsISFBJ9fPLWTnM+rgwYPsu+++Y0+fPmVGRkakhY7o2LEjGzduHDM2NmZjx45lP/74IytcuLChs5UnIS2UA2mhHEiL7CEiIoIxxkTAKQkaPxsG0kM56FOLpH1lGvOlTXbWC41Go/Nr5kakcjp79ixzdnZmarWadejQgW3YsCHNOXRJPz8/P2ZhYcFUKpUIHEZkD/LnzcOHD9mJEycY55xVqlSJ2dvbGzBnuROVSsUAsPz587PWrVuzzZs3s549e7L4+Hg2aNAg5urqmuxZVqFCBTZy5EhWtmxZA+U6b5C07X358iW7du0a+/rrr9nw4cPZ2rVrWXx8PIuLi2O1atViixYtYsuXLyfzupLQZ3h3giAIIueQdAuVtAgJCcFPP/0Ezjk45+jQoQOGDBmC0aNHi89sbW2xYcMGPeY4b+Dt7Y127drByMgINjY22LhxoziW1rbLQUFBGDZsGExNTWFjY4N//vkn3XOItLl+/ToqVqwIzjlq1qyJY8eOiWNplauHhwc6dOgAlUqFKlWqwNPTMzuym6shLZTFsWPHYGZmBs45OnbsiJs3b2bovJs3b6J8+fLgnKNly5a0NaQOIC2UA2mhHEgL5UD92pxDYGAg5s6dC0tLS3DOUaNGDTg7OyMiIsLQWcsVTJ06FaVLlwbnHCYmJggODtbJdaU6QXUj4+hLC4lt27ahUqVK6Ny5M44dOyaun5CQoNPvyQ3ou14AwOXLl+Ho6Ahra2s8evQIQObmwvIK+q4XUVFRmDp1qtiy+enTpwBIi6wif67cunULQUFBBsxN3oa0UA6khXIgLbKHN2/eYO7cuZg5c6b4jMYGhiM79KC5qoyRHVqo1Wqt901U91ImO7S4desW5s6dq7fr51YePnwICwsLcM7RsGFD3Lp1K830UrmGhISgUqVK4JyjWrVqiImJyY7s5jnkfamUxs43btzAsGHDYGVlBc45evTokZ3Zy5VkdO7u7t27qFmzJoyNjTF+/HjExcXRvF82I3/Ov3nzBkeOHEHDhg1RokQJ4V3jnKNbt26YM2cOoqKiDJhbIjVofwKCIAiCaTQasbXQn3/+yZo0acIcHBxSXe1cqFAhNnbsWObq6sru3r3Lrly5wuLi4sRxCwsL1rNnTzZixIhsyX9u5unTp+zatWtMo9Gwfv36iTJNbbtr/H9ksStXrrBjx46x+Ph4VrduXfbVV18xxiiyQ1Z4+vQpCwgIYIwx1qNHD9azZ0/GWOrRQhlL3H7IxcWF3blzhwFgNWrUYJUqVcquLOdaSAtlIJX348ePRYSGb775hjVp0iTdc1++fMkOHjzI3rx5wxhjrE6dOrQ1ZBYgLZQDaaEcSAvlQf3anAFFXtcvJ0+eZMuXLxf/P3LkSGZra5ula0p1RaoTwcHBLCYmhvn6+jK1Ws0aNGjAjI2NmaWlZar1LS+iDy3kPHjwgLm4uDAfHx/m7e3NXF1dWePGjdnixYtZ+fLlWUJCgpiHyevoSwv5+PDy5cts4sSJ7M2bNywmJoa1bt2aXbt2jVWvXp20kKHvesFY4pzhzz//zO7fv8/+/fdf1qJFC9JCB6hUKvGMb9y4saGzk6chLZQDaaEcSAv98/r1a3bo0CG2fv169v79e6ZSqdi8efN0Nm6W+lVpzb8Tn9G3HjExMezff/9lv/32Gxs7dixr1qwZq1q1KmMs7XckeRF9a8FY4rzWlStX2OTJk1nNmjXZrl27qL6kQHZoERoaygYNGsR8fX1ZaGgoc3JyIi3SAQBTq9Vs8+bN7NOnT6xYsWJs4MCBrHbt2mmewzlnkZGRbMGCBczPz4/ly5ePde3alZmYmNDcUyZI67epVqvFe434+Hitco+JiWFqtZrdunWLeXl5sT179rD379+zT58+sdq1a7N169YxxrTn3ZOOt2n8nTqBgYEsJiaGVapUKd3fc+3atVmNGjXY06dP2T///MOWLl3KTExMsjG3eRdJG6murFy5kt24cYOdO3dOpLG1tWV169Zl3377Levfv7+IuC7//VPdUAjZapcnCIIgFI0UVf327dsZTm9tbY3p06ejTJkysLOzQ5cuXTB//nyx0o1WGH4ZGo0GsbGx6Nq1KzjnqFu3roh6lVpUKunzJ0+ewN7eHpxzVKhQAXfu3EnzPCJ9wsLCUK9ePXDO0bp1a/F5er/vU6dOoWjRoiJS+KtXrzJ0HpE6pIWyCAoKEtH5unfvLj5PK6pFWFgYNmzYAFtbW3DO0ahRI3z69Cnd84i0IS2UA2mhHEgLZUD9WuUg9Xs+fvwoIo3If9cUeT17GDFiBDjnmD59epb7ovLz3759i+3bt6N+/fqws7MT0WVq1KiBb7/9Ft7e3gCo/sjRpRYp4ebmBhcXF7Ro0UKMRcqUKQNXV1cANBaRo2st5M+2S5cuoW7dulCpVLCwsICjoyM457C2tqbo3ymg73oh4ePjg44dO5IWWYTKSzmQFsqBtFAO+taCxuiJqNVqrFu3DiqVCpxz2NnZYcyYMfjw4YNOri3n+fPnePPmDV68eKHVTyAtPqNPPSQuX76MGjVqgHMOY2NjtG3bFlu3bhXHSY9EskOLhIQE/Pvvv/j666/FGHzUqFHiOGmRSHZoASTqsX79epiamoJzjtGjR4tjpEXqREVFifeudevWxevXr9M9JyYmBjt27EDlypXBOYetrS0ePHiQDbnNndy8eRPz5s3DN998g86dO6N79+5o164dGjdujGbNmqFBgwaoWrUqqlSpgjJlysDW1la8v5D/1atXD9evXweg/ZuXt+e//fYb7UqXBj4+Phg6dCj69esnPkvt+SGV3759+8RzJ6M7ABNfRtJ5Kj8/P8ycORMtWrTQqgvlypVDmzZtcPPmTeEJkaC6oUzIwE4QBEEAAMLDw1G/fn1wzvHdd98hJCQk1bRxcXEAgB07doBzjjNnziAsLAyvXr3SaszpZWzWiImJEQPGLl26pLmdjVTu/v7+KFWqFDjnKFq0KObMmYOPHz9mV5ZzLR8+fBBboA0dOhTx8fHpdlyvXLkiDFelS5fGrl27oFaraZIki5AWyuLly5diC64FCxYASHtQFxUVhb179woDT+XKlXH58uV0zyPSh7RQDqSFciAtlAP1a5XDvXv38M0332Dfvn0IDw8XnwcEBJB5Xc/InyOnTp3K8nNFfr6zszP69u2rNVFfsGBBqFQqGBsbC+O0m5sbABqr61qLpCQdZwQFBcHZ2RnNmjUD5xzFihWDh4dHimnzGvrQIjXzuqWlJUaNGgVXV1dhMCHj9Gf0XS9SgkzsX4a3tzdOnDgh/p/Ky3DoWwvpeZbX24qMoE8tUip/0iR19F0vYmNjRT8KIC0kvLy8wDmHmZkZ5syZg+fPn+vs2lFRUdi5cyeGDBmCsmXLwt7eHnZ2dhgyZAh27twp0pEWn9GnHgAQEhKCXbt2Yfjw4bC2tham4ClTpog0pEci+tQiJfO6NP4m43Ry9F0vJNRqNbZv3y7qBWmRPleuXIGJiQlMTU3h7OwMIO3+T1xcHI4fP44mTZqI3/7Ro0ezNc+5iYCAAHTo0EE8PzLzZ2ZmBs45WrZsiaFDh6a4KETeF5s0aZKYM3z8+HGy40TiPJK5uTk45zh27FiGznFychKa/Pvvv6mmS28+lp5RqZP0d3rhwgUsXrwYhQoVEnXH2NgY1tbW+OWXX3D58mWtdx9A8vKluqEsyMBOEARBAEhssDdt2oRChQqhTJkyOHHiRLqdqOXLl4NzjrVr16Z4PSJrvH//HjVr1oSRkRFWrlwJIO2OrY+Pj4gyWrBgQfTp0wc+Pj7Zld1cjb+/P0qWLAljY2MxKZvWb/zff/8Vhjk7OztMnjwZQUFB2ZXdXA1poSweP34MS0tLmJiY4MiRI2mm/fDhA3bt2oVixYoJE9WGDRvIGKcjSAvlQFooB9JCOVC/1vBIkfAbNWoEzjlq166NAwcOIDY2Fm/evMGcOXPIvJ4N6GriW36dWbNmiQWenHM0btwYP//8M65evYpLly5h/fr1IgqNo6MjfH19dZKHnE52vYSQxirx8fFwdXVFu3btwDlHixYtMhTVLC+gLy2SmtdHjhyJmJgYAInmCTJOJ8cQ908m9szh7+8vXqz+9NNPOr++3DCd1xc7pYe+tQgLC8Nff/2FGzduaNUHmnNPjj61kO8yu2vXLixbtizZMeIz2fGM+vvvv2FqaoohQ4ZofU4kLh5YsGABAgICdHK92NhYPHz4EI0bN4aVlVUy05xkDp08ebI4h7T4jK71kEjaPp85cwajRo0Sevz666/iGOmRiD60SMm87uTkhB07dpBxOg30VS+SQib2zHHt2jUYGxsjX758OH/+PIDk5ST9f0xMDE6ePIlWrVqJ3/7ChQtp7JBFxo0bB845jIyMYG1tjZ9//hnDhg3D999/j3HjxmHGjBn49ddfMWPGDKxevRorV67E2rVrce7cOdy8eVPMdQDa7YR8HDFx4kRwzoU5m8bfKePt7Y0uXbrAxMQEgwcPxsuXL1NNq1arERcXh5EjR8LMzAxmZmb477//kqVLWp/Onz+P7du3Y9GiRVi4cCHu3r2Ld+/eAaCgI2mRkJCAS5cuYfz48ShQoID4LefLlw82NjZYsmSJeIZJpBc9H6C6oRTIwE4QBEEI3r59ix49eoBzjiZNmohtrSXkHSZPT0+0bNkSnHPMmDEju7OaZ+jUqRM45+jXr59WpMqk2zPeuXMHDg4O4JzD0tIS7du3Fx0rIuuo1WoxGB86dCg+ffokjsm1eP/+PQ4fPozixYuDc44iRYrg559/hp+fnyGynSshLZTFp0+fRJSFiRMnpjpJ4uPjg1WrVqFIkSLgnMPBwQELFy4UA3Ii65AWyoG0UA6khbKgfq0ycHd3F7/12rVrw8nJCdOmTROGBDKvKx/5xPmYMWO0zCRjxozB48ePtepVQkIC3Nzc0LhxY3DOMWHCBNqNyIBcvHgRJUqUQOHChXHw4EEA9HJKH5w7dw4NGjSASqWClZUVfv31V9H2SOWd1DgtzYHRy6nsx8fHB1999ZXQgqJdpUxAQABGjBghdqgxMjLC1atXdXLtjDyHqN34jD61ABLntDZt2gRbW1twzjFixAitiNakxWf0qYXcvP7nn3+iadOmYj4yaRpC//VC4vDhw6LvS4bE5MTHx+vkOq9fv8bmzZvFwnITExOYm5tj7NixWLp0KVatWoXBgwcLcyi9I0wZXemREknfhWzcuFHosWrVKr19b05FF1rI24Wk5vV169YBION0RtBnvZBDWmScp0+fwsLCApxzMU8hR3reREVFYf/+/WJ3Oc45Jk2ahBcvXmR3lnMN8mf52LFjRbnu2LHji64n/22nZNA1NjZGw4YNUb9+fTLqpoGzszPy588PzjlWrFih9V5JKidJu8ePH8POzg6cc9SqVStZOUrpQkJC8Ndff+Hrr78WkfOlPwcHB7Rt21bsMkRaaBMTE4MzZ87gq6++Qrly5bTKrmHDhpgzZw7c3d21zkmrDKluKBMysBMEQRBaBAQEoHr16uCco3Xr1rh9+zYiIyO10vj7+2PhwoWwtrYG5xzLly83UG5zL9IAY9WqVTAxMUGtWrXw4MGDZB0kHx8fbNu2TZh0ra2t0blzZzx8+NAAuc6daDQaaDQazJ07F5xz1KtXD48fP06mxX///YdZs2YJQ1Dx4sUxYsQIeHt7GyjnuQ/SQnnExcWJwV3Dhg3x+PHjZBOQFy5cwPfffw8bGxtwzlG2bFksW7aMIk7qGNJCOZAWyoG0UAbUr1UeHh4eKFy4MDjnKFGihIguUrNmTezfv5/M6wpG/mJr5MiRWhP2S5cuTTWtWq3G9OnTxfMwu14YE8mJiopC7dq1xYIeQvd8/PgRnTt3Fi8Ey5Urh3v37gFIjCQqf6ErN7FzzvHkyRNDZTvP8/z5c3Tr1i2ZiZ0WeHzm7du3qFChgthRw8nJSSc7zEl1Qq1W4+nTp9i4cSMmTJiAH374Abt27cKtW7eSpc3r6EsLicjISEybNg01atQQUY6LFy+OBQsWiDSkRSL6rhcJCQn4448/RCAfMk6njr7rhYRaraYIx3rGz88Pc+bMEWYsOzs7DBw4MNmChI8fP2L9+vVQqVSwtraGi4uLgXJMAEB0dDRmzpwJlUqFBg0awNPT09BZypWo1WpcuHBBBGngnGPTpk3Jxt9y4/SYMWPEMXpOZS9JtRg1apQ4RlokotFo8P79e3Tu3BkqlQoTJ05MMfDI+/fvMWPGDNE/lXZ8oGdN1pHPkY8fP17r2RIbGyuOJSQkaP1u0/oNp2bQbdmyJU6fPo1Xr16J5xgZdT8jL9MlS5YILdauXZvi+yIvLy+xeLNIkSJYvXo1gM/lKP3X19cXgwYNQvny5cXCQGNjY9SrVw/FixdH0aJFwTmHvb093NzcANBcSFJmz56tNR7r2rUrFixYgNjYWFFWGXmuU91QLmRgJwiCIJLh5eWltVJw6tSpePToEQICAnD69Gn88MMPIgJMrVq1EBwcbOgs51pevHghBoMtW7bE/v374ePjA29vb+zZswcdO3YUhit7e3sMGjQoWeR8QjcEBgaiSpUq4Dxxu/fNmzfD1dUVV65cwZo1a1C1alUR/dDR0RGzZs3S+zZ4eRXSQlkEBASgUqVK4JyjadOmWLFiBe7evQtnZ2fMmDEDBQsWFMa4atWqYceOHVlqN2hiMXWyUwuaPEkb0kI50DNKOSihX0v6fMbDwwOFChUS0REdHBywfft2rRcjhLKQ/36nTp2KfPnygXMOMzMzEe0taTrg8wT7sWPHYGRkBFtbW+obG4i4uDgAQJcuXcRiAkI/vHjxAnPmzEHDhg3FArXLly8DSP7S19fXV0SQk9IQ2YPUj42OjkZAQACGDBkiFh6YmJiQGSIFnjx5gipVqmDp0qU6m4+Nj49HYGAgevTogYoVK2q9FOaco0yZMpg3b55IT/2pRPShhRwpyt+GDRvQsWNHYbwaN26cSENaJKJrLZKa16WdIDnnGDJkCBmn00Df9UKCourqj4CAAEyePFkEhilTpgzWrl2rNX6Qz0O9fPlS7PQkbysIw3DhwgXRlzp27Jihs5MrcXNz02oXBgwYII5J4z3g83PKyMgInHP89NNPhsgugURd9u7dK9qM4cOHi2PUZnxmw4YN4ne9cuVKYdr08/PD9evX0bBhQzFvyznH7NmzaW5Jh8jNsb/++qso582bN2c6CIW8nZ4wYYIw6LZo0QInT54Ux7y9vbV2pSOjbiLy8psyZYrQom/fvli/fj0ePXqEU6dOYcmSJbC3twfnHFZWVujevTt8fHzEuVI5uru7o0aNGqJ9NjMzw5QpU/DXX38hJiYGL168wOnTp9G2bVsRYOb58+fZft85galTp6Jx48Y4ePAgPnz4ID7P6DtSqhvKhgzsBEEQRIp4e3ujVq1aolOWP39+lClTBkZGRjAxMQHnHJUrV8Yff/yR7OUfoVu8vLzEVo358+dHoUKF4ODgoPUyqWrVqli9ejUCAwMNnd1cjZeXF8qUKSOMPgULFkSBAgW0tKhXrx6OHz+OkJAQQ2c3V2MILSgaaep4eXnB0dFRq81I+tK7devWePTokdZWa1nh/fv3OrlObiM7tJC3+UePHsXdu3dTPZ6XIS2UgyGeUY8fP9baPpW0SMQQ/Vo3Nzf88ccf4v9Ji8+4u7uLhclly5bFjh07tF64Espky5Ytoh5xzrFhwwZxLK0J+zlz5oBzDlNTU/j7+2dDTgk5cm2aNm0KzjlKly6NyMhIWoymY6TyjImJwf3799GjRw9wzpEvXz7cvHkTQPK2wMfHR+z4Qe2EfpGXb2xsLLy8vDB48GDUrVsXnHNhLClbtiw2b95MeqRAaGiozuY5Xr16hS1btoggAVL5V69eHQ0bNkTJkiXFZ7/++qtOvjM3oUstkiL/7Xt6emLZsmVCixkzZujlO3MyutIiLfP69u3bAYCM0+mgz3ohh0zsuuft27dYsGCBiAJarlw5HDp0CGFhYWmeN2TIEHDO0axZM3z69In6tgZA+s1HRESIHbanTZtm4FzlXjZs2ICuXbvCwsICZmZmGDFihDgmN5pKzykpUINkgCP0T9LnkIeHB7p16yYWFAwbNsxAOVMeSYMlSP0ee3t7tGrVCnZ2dsK4rlKpYGxsjL179yI8PDxL35tUI2q7dWtiB4ChQ4eKd+iNGzfWWrAvlbd8Vzq5UTev6yHXYubMmTAyMhJ9TikIqBRYxNbWFp07dxa7yGk0GnH+06dPRXrOE3eMv3z5coq//3v37qFq1arIly8fNm3aJD4ntNvWt2/fah37kjKiuqFMyMBOEARBpMrz588xZswYsb21/K9u3bo4ffp0lgcoRMbw9fVFjx49UK5cOdGhklZh9uvXD35+flkyXEmdLep0pY+fnx8GDBiAypUrCwMI5xxfffUVxo8fj8jIyCxdPyMakE6J6FsLOTdu3ECPHj2wbds2ragCpMVn/P398eOPP4rouhYWFjA3N8e3336LFStW6LSsXFxcUKdOHWzYsAHPnj0Tn5MeiWSXFk5OTmLLu/Hjx+P06dPiGGmRCGmhHLLzGbVixQpwztGnTx+tiFekRSL67tfK8fLywtixY0W0RAnS4jPu7u4iEnudOnWwf/9+WrSnQKTfrJubm9ZW5atWrRJpUjOKaDQahIaGomfPnjA2Nkbjxo21toMm9ItGo9F65khtBOfaW8kT+iMwMBDdunUD5xy1a9fWGj8kJalehO5IGqnq+PHj+OWXX8RCKumvcuXKGDduHDw9PelZpWe8vb0xfvx4lCxZUrx4//rrr3HkyBHRF3B1dYWTk5N4Wb927VoD5zpvIX8excTEYP369VCpVLC2tqbIunokISEBf/75J1q0aCGeTVu2bBHHY2NjUzVOk3E3eyETu26QfrfOzs4ikqijoyNOnjyZ5tg8Li4O8fHx+Oqrr8A5R+fOnbMry0QqPHz4UBjqaOGZfvH394eTkxMsLS3BOcegQYPEMXm/V61W4+TJkzh58iQ+ffpkiKzmKZI++2/evAknJycUKVIEBQsW1JqHvHbtmoFyqTzkv9lFixZpBYKR/hwdHfHtt9/i1q1bWuf6+/vjyZMnmWp35TtxXb58WevcvN5+68rEHhgYiBo1aog539q1a8Pd3R1AohlYXs5yo66FhQUFS/x/5Frs2bMHvXr1SlYvKleujBkzZsDDwwNA4u9X0snNzQ2FCxcWZvdmzZrBzc1NpJP/FwA+ffokdmzs2bNndt1mjkFXi16obigXMrATBEEQaRIVFYXnz59j5cqVmDVrFqZNm4YNGzbo1BhKZIyPHz/Cy8sLW7ZsgbOzM44dO6bzLYTCwsLg6+uLAwcOYM+ePbh8+TKZdVMgIiICL168wJ9//ol//vkHly9fRnR0tDj+JVsIJS3bgIAA3L9/H6tWrcLq1atx+vRp0YFOKX1eRR9aJOXly5cYNWqUGJAOHDgQhw4dEsdJi89ER0cjJCQE58+fx/379/Ho0SOt47rQw9fXV2uioE+fPjhw4IA4Tnokom8tIiIiMH36dDRs2BCcJ26z5uDggEWLFok0pEUipIVyyI5nFACMGzcOBQsWhKmpKYoWLYqlS5eKY6RFItnRr/X09MTYsWPFRDEZGlLHw8NDbBFfs2ZNHD58GLGxsYbOFpECy5YtE7/nyZMni8/TMq8DwIkTJ4Sxh0zTX0ZWFhrHx8cjPj4ec+fOhb29PVQqFczNzbFnzx5dZzNPIP+9Z+QFrkajwZkzZ1C8eHFYW1tj48aNya5D6IekdSIhIQG7du3Cjz/+CM652OHRxsYG9vb22LhxI+7fv5/mNQjd4O7uju+//160/yVKlICTk5NY4CHVD41Gg6ioKEyfPh3Gxsbo1KkTPn78aMis52kCAwPRsmVLqFQqTJo0ydDZyZVoNBrs3LkTjRs3Fn2u3bt3A0hsc6S6kZZxmshe4uPjsXXrVqGFPBIytSHpI/2m/fz8ULZsWbFL0MGDB7Xm2FM7LzIyUkT8/t///pfM+EPoH6m8Q0NDMWfOHFhZWSVb7EzoDvnvOy4uDs7OzsLEntYOKRRETH8kLduIiAg8ffoUo0aNSmbELly4MMaPH4+TJ08aMsuKRD4v/t9//2Hv3r0YM2YMZsyYgTVr1uDVq1diHCAt/A4ODsbQoUNhY2ODffv2Zer3HRERgfnz56NQoUJo27Yt9u3bJyIr5/Wxemom9t9//z1T7y9CQkKwbds2tGzZUixYliJNJ1287+Pjg7Zt26JBgwY0JyxD/lv8+PEjbt++jZ07d+L333/H3r17ERISIhYnySOvP3v2DBUqVBDG5w4dOsDLyyvZNSWkuS1J77Zt2+r71vI0VDeUCRnYCYIgiC+GBtrK4UsGc0n1O3jwILp27SpeXkkr0Zs0aYLly5eneh6hzZeUj1y/Dx8+YOPGjahatapWJDKVSoWaNWti8eLFWfquvISuyic6OhpHjx4V0WRUKhWKFi2KqVOnijR5fUIlO4mKisKJEyfESnQp+pj85S3Vjezh06dPiI6Oxpo1a9CuXTvxsnD8+PEiDWmRPZAWyuP8+fP4/vvvhRb0jMo4umhTJfO6FEmjYsWKFJUvHTw8PETfc/Xq1YbODpECbm5uYtvmr7/+WkR9Sc+8/uDBA60FCg8fPkzzPCI58heEr1+/xuvXr/HmzRv4+/vDw8MDPj4+cHNzw61bt3D37l3cvXsXp06dgrOzM7Zs2YJevXqhSZMmou+atI1OCSnapa4WV+VGDh06JBZ5p/d7jomJQb169cA5R+vWrbMje3mapHo8e/YMR44cQfPmzYXBRz7ntHPnTnh7e6d5DYDqha7w8fHBTz/9JNr90qVL4++//9aKeJ+0j3T48GGh24MHD7I7y4SMESNGCAPWu3fvDJ2dXEd8fDy2b9+OokWLwsjICJaWlvj999+1jkuo1Wrs2LFDRHJds2aNAXKcd0naTixfvlz0s4YNG2agXOVMoqOj0blzZ3DOUaRIESxatAihoaGpppe3ERMnThTmLDKEGo7AwEA4OTmhUqVKQkdfX19DZytHk9FIx+Hh4Zg2bRqMjY1RvXr1ZIsxiewjPDwcDx8+RM+ePVGtWjWt8XfDhg0xbNgw+Pr6arUfNC+iTXrlkdI86pAhQ8A5h5WVFQ4ePJjhudarV6+ie/fuYoxRrFgxdO/eXYwL8/qYT37/UltbunRpeHp6Zuh8Scv4+Hh4enqid+/e4JyjYMGCuHv3bornBAUFiWdfXi9/OektQEp6PCgoCN98842Y82jVqpX4XadVx2JiYsQi2ubNm9PzSU9Q3VAuZGAnCIIgiDyIvNN79+5djB8/XmsVurW1NQoVKgRTU1MxCS/fcpDMPhknvbKSa3H8+HF8++23WlrY2dmhdOnSsLa2Ji2ySFbKKiEhAWFhYRg3bhysra1TjOpDZI4v0UN+TnR0NCZOnAg7Ozuhxy+//KLLLOYZdPEccXd3x+LFi4UW06ZN00HO8h6khXL4Ui3k7bqfnx8WLlwotJg4caKuskekgWRel0xZTZo0QWRkJA4ePEgm9nTw9vbGnDlzqEwUysWLF2FtbQ3OORYsWJDmC3VJQy8vL3Ts2BFGRkYwNTXFiBEjaDe1LDBr1iw0atQIJUuWhL29PYoXLw4bGxvY2NigYMGCMDMzg7m5OfLnzy/Gc8bGxlqLkosVK6YVPT+lFx+PHz9GgwYN8N9//6WaJq+zZcsWFC5cGCNHjkw3rRQhaeDAgTA2Nka5cuW0jLoZhZ6NmcfT0xM7d+5E+fLlxUIaaV5j0KBBWL9+vdazLK0ypnqhG96+fYvffvsNRYsWBeccZcqUwa1bt1JNL2ny6NEj8Wz7559/siu7hIy4uDgAwMyZM6FSqVC4cGG8efPGwLnKvVy7dg2zZs1Cvnz5wDnHgAEDxDH580etVmPDhg1o2bIlrl27Zois5nlevnyJc+fOoWnTplrBYKZPn27orCke6Rl/584dEX29ffv2yRaVpcbJkydRp04dcM5Rvnx5PH78WJ/ZzRNIi/WAxLnv2NhYfPr0CR8+fEBoaCjevXuHwMBA+Pr64v79+zhw4ADWrFmD2rVrw87OTkQR3bp1KwDtOaqU+lnUv02Z2NhYPHz4MM1dCOScP39e7Cy0efNmPeeOAJKPBQ4ePIgBAwagQIECWu9XGzRogBkzZuD169ciSjLVi4yTloFWXk7ff/+9WMyUGRO7v78/Ll++jM6dO6NEiRLgnMPBwQGurq7pfn9eQP47X7BgAVavXo0PHz580bV8fHzQsWNHcM7Rrl07vHr1KtW0eb3cv5SEhARoNBps3LhR/J7LlSsnAi+kZ4A/d+4cSpcuDZVKJfqx9DzSP1Q3lAMZ2AmCIAgiFyG9zABSf5kn71wdPHhQRNeQolP269cPt2/fhre3N86fP4/58+cLs8+iRYv0fg85HWkwIZ/cyogWK1euFBHhOOdo1qwZxo4dCz8/P7x58wY3b97EkiVLhBZLly7V743kAjKjRXrItZo6dSpsbW1hamoKzjnmzJmTpXzmFSQ9wsPDxWdfqof8vAkTJsDCwkIYIdauXZu1jOYBdKmFfALl06dP2LBhA1QqFfLnz49Dhw5lLaN5ANJCOehLi8jISKEF5xzr1q3LWkbzEBnp1ybFy8tLK/J648aNxQvgT58+Yfv27WRiJ3Iss2fPBuccJUuWTNOwJv2efXx8MGDAABG1vUaNGmISnn7zmefs2bNaRnT5S3HpM1NTU6hUKpibm8PCwgLm5uYoVKgQypQpg+rVq2Px4sVwcXER10zp2ebm5obatWsL88mTJ09STZtXkcyCUn24cuVKhs6TImDlz58fQUFBGf4+yeggQS+stJGeJ1K5REVFISQkBJMmTRI7D8gX6A8aNAjHjx/XukZ6v2+qF1lHKqs///wTpUqVAuccpUqVwvXr1zN03pYtW2BiYgIrKyuxiIDIPqR69u7dO9StWxecc1SoUEFr7ELoBvkzPiIiAs7OzrCyskoWxELel0pISEBwcDC1D9mA9EyKj49HdHQ0Vq9ejXbt2ok5Wqmd79ixI3bs2GHg3OYc5s6dK8rvzJkzGTrHzc0Nffv2FefJdyogMs+rV6+wZ88eNGvWDF999RVatGiBatWqoU6dOqhXrx4cHR1RpkwZVKhQAcWLF4etra0Y58n/bG1tsXbt2mR9Xfkza8+ePZg9e3aKx4jE58uBAwfg4OCA06dPp5lWKrv4+Hg0bNgQnHMMHjwYarWayjUbiI+Px7p16zBgwACtxePFihVD1apV4ezsnOaCHKoXWUe+GHnQoEEZNrEnjVj97t07HDlyBC1atADnHMWLFxeRxvO6FvIxr3xuQup3RkREaM2hp0Z8fDy2bdsGY2NjFC9eHBcuXABA5atr1Go1WrZsCc458uXLhzt37gBIfR5J/vkPP/wg2nNaNP7lUN3IuZCBnSAIgiByCdHR0di3bx9WrlwpPkvauZL//5YtW9CoUSPRGe7duzeOHDmSLJJfdHQ0VqxYAZVKhRo1asDDw0O/N5KDkco3NDQUc+fO1TL8J9VCPiiZPXu2iHIiRZG+fft2Mi0+ffokouo2bNgQgYGBerybnE1mtMjotQDg9u3baNy4sYjAVKVKFQQHB+sm07kYqQzfvHmDwYMHa00Gfum1gMToJsWKFRN1p0OHDl8cgSCvoEstUuLVq1do166dljmUBvopQ1ooB11rkbScg4ODMWLECKhUKrRp0wavX7/O0vXzAhnp1ybl6dOnGD16tIhQ3bRpU3FMvsWj3MQ+duxY/dwAQeiB+fPng3OOypUrp9rfkUde/+6771C4cGHxAvfZs2cAyHybFUaPHi3M6g0bNsSePXtw6NAh7N+/H8ePH8eFCxdw9uxZXLx4Ef/99x/u378PNzc3hIWFJYt8n5IObm5uqFGjhtgVTfrv06dPAZBZV869e/fQuHFjqFQqjBs3Du/fv08z/c2bN+Hg4AAjIyO0adMmWVnK25h3797h0aNHGD16NHr37o327dujb9++2LVrF54/fw6AtEgNNzc3/Pzzz8JgK/3Vrl0b//vf/+Dh4YGPHz9m+ppUL7KG9Pv++PGjKMvixYvjr7/+SvM8+XPq66+/Buecon7rEI1Go/XskZvd4uPjxW9b0iEoKAgLFy4UcyBt2rTJcGRY4suJj4/H5s2bkS9fPlhaWmLnzp2GzlKeI+k48N27d/jtt9/Qvn17rYWFZcqUQdOmTXHhwgUac2cQ6fnSu3dv8VyJj49Pd+wdGBiI4cOHa73LkK5FY43Mk5CQgE2bNmnt3JTan3whrUqlgpGREczMzFCnTh107doVd+7cEbsPScj1PHLkCCpVqgTOOYYNG5ZimrxOeHg4evXqBc45+vTpg5CQkHTPCQwMFO1z3759U02XkfpBWiQnabm5ublh27ZtqFevnghqxDmHpaUl2rRpg6NHjyIgICDNa1C90B0pmdhNTExw+/btDJ0vXxDt5uaGtm3bih1B3r59q5c853TkgSsmTJggyim932xoaCiKFy8OzjmGDBmSoXOIzCEFWzA1NRXB1jJiXp83b554lg0fPjxb8pqbobqRMyEDO0EQBEHkAqKionDs2DHxknDixInJ0sg7Wtu3bxfRqzjnGDNmDHx8fJJFzpK4c+cOLC0twTnHsWPH9HszOZz3799j7dq1qFChAjjnmDRpUrI0ci3mzZsHe3t7ocW8efO0topM2kG+dOmSmKg8f/68/m4kF5ARLTLD9evX0bBhQ2Fer1q1KkJDQwEg2WIDIjmvXr3Cr7/+KrYz/RI95PXh7NmzYttzybweFhYGgPRID11okRZTpkwB5xw2NjZ48eKFTq+d2yAtlIMutJC/JE/afh8+fJgiaGSQjPRrk5KQkICjR4+KF4YqlQrLli0Tx+XtgmRil6L0jRkzRi/3QRC65q+//oKRkRGKFy+uFf1WGrtJz51Hjx6hW7dusLW1Feb1e/fuASCj55ciL7exY8eK5/nevXszfI30XnzITbr29vaYNWsW2rRpQ2bdNNi6davQwsnJSWscLTfuvH37FtOnTxfj6LTa+MuXL2PAgAEoWbJkMsOQlZUVateuDTc3NwBk0JLj7e2NgQMHIn/+/KKcTU1NUa5cOfz222/w8PAQ0eIy8xKQ6oXu0Gg0GDlyJDjnKFiwIObPn5/m4m+5TkuXLgXnHGZmZpg2bVqy44R+efXqFW7cuIEePXqgdOnSIrLljRs3kqVNy5xFaPPx48cMmRKBRAOEFATmxx9/1HPOCImkv+dr165h0aJFWkFgpL7ugAEDcOPGjWSaajQaqhdpIJWP1Lb269cv1XQSfn5+Wv3hrl27irEG8eV4eXmJOQpTU1MMGDAA48aNw/Tp07F06VLMmzcPixYtwtatW7FlyxZs2LABhw4dwt9//42rV68iIiJC9H/lesn/ffjwYVSsWBEmJiZCP9qZLjlxcXHYsGEDihQpglKlSuHYsWOp9vulPuh///2HEiVKiHYivefOjRs3cOjQIYwcORKjR4/Gvn37cPPmzVTTE4ncv38f69evh729vdiBQKo3w4cPh7Ozc4auQ/VC98jnXb/99lu0b9/+i691+vRpFCpUCMWLFxe7INDYOzkRERHo3r07OOeYP39+uuljY2MRGRkp3pf36dMnG3KZ95g0aRI45yhRokSaizjkv+mNGzdqBc1Lb6E5kTZUN3IuZGAnCIIgiFzAiRMn4OjoKLZJ69q1a6rRuY8dO4amTZuKwfiUKVMQERGR7nfUrFkTnHMRyZoGjMlJSEjAunXrUKRIETF5MnLkyFRfiKxbtw7ly5cXWixfvjzVa0sTJTExMeKc3bt3ax0jPpNZLdLj+vXraNSoEZnXvxC1Wo0pU6bAzMxMvPhetmyZlskkPdIyr3fs2FFE8iPzQtroQovUkF6UzJgxA6ampihUqBBevXqV5evmVkgL5aALLQ4cOADOOf744w+tz+WRvytWrAjOuYgqTu13ymSmX5uUY8eOYfTo0TA3NwfnHN999504ltTELkU4mzFjhtYWrAShVB49eoQqVaqAc44lS5akGHX133//haOjo6gDxYoVw61btwDQMyeryPuYv/76q+iHbt68OVmUw8zi6uqqZdJdu3YtgoOD8fz5c3Ts2JHMukmQ/5alnQk451i6dKnYZlzi6dOnmDt3rjBVt2rVCkFBQQCSl+PevXthbm4uol/a2dmhbt26GDNmDNq1a4eqVasKjWg78+RI9cLa2hoODg7YsWNHMkNbZsqL6oVuiYiIQOvWrcE5R82aNfHo0aNU08p1OnXqFBo2bCjK28XFJTuymyt5+/Ytrl27hr/++gsHDhzAH3/8gV27duH333/HmjVrsHjxYkyfPh2TJ0/G0KFD0b17d3To0AGlS5cW5iwpuuiuXbsApG5SlLaqT/o5kUhISAi2bNkixm4ZKSPJjGJsbAxfX199Z5GQ8ffff2P69OkwNzeHhYWFWMRhZmaGuXPn4syZM1rpqV5knsGDB4NzjhYtWiAqKkrrmLx9ffDgAYYNGyaeR23atMHp06epPHWEu7s7ChUqBM452rVrB29v70xfIz3zOucctra2+Oabb0T/mMy6yXn37h26du0KzjkaN26MJ0+eiGPy3VIkOnXqJNroc+fOaV1Leo+qVqtx584d/PrrrzA1NRVjdikIQ5kyZTBv3rxk30MkBgwZMGAA6tSpo7WAyd7eHmPHjk1W5mmNC6he6I+U3pN+yRgtLCxMGEl/+uknXWQtVxIREYHJkyeD88RdSB8+fJhqWvmOXFLwno4dO2odI7KOWq0WY+7//e9/qaaT+2t27NiBkiVLimePvB0gvgyqGzkXMrATBEEQRC7Az89PDNqHDBmSbFWn1Mny8PAQ299Jkcfi4uLSvLZGo8G9e/dQoEABcM6xadMmvd1HbsDHx0eU78yZM1N9qXHhwgU0b95c62W7RFqd4lOnTolzjhw5ovP85yYyqkV6JDWvV6tWjczrX4C3t7eW0UeKlp4RyLyuW7KiRWrIy15qZ8zMzODn55fla+dmSAvlkBUt4uPjMXr0aHG+ZISQT0bu27dPHN+wYYPO85+bSK9fmxLysg4ODsbOnTthZWWVLEqiPJ1arcbTp0/TjD5KEEpDioIr9W9PnTqF169fY9euXRg7dqzWlvLly5eHh4eHobOcq0jLxP6l4wI3NzdUq1ZNRGhas2aNMFgDwLNnz8ismwLy57n0Yopzjvr162Ps2LFYtGgRxo4di4YNG4p6UadOHezbty/ZHEhYWJhW3bKwsEDz5s3x8OFDoUV4eDj+++8/tGvXThi2aDvzRORarFq1Cps2bYK/v3+qaTIC1Qvd8/fff4vf+MaNG1NNJx9737p1C3369BHnzZkzJxtymjt58eIFfvnlF7Fb0Jf8FS5cGI6Ojvj777+TPcfkujk7O4NzjqFDh6Z4nABcXFxgZGSEwoULp7tQVmrfV6xYIQJkuLq6pppeKmsq88yRtLyCgoJw9+5d9OjRA6VKldKqC9WqVcP8+fNx9+5drXPSinhM9SJlpDLYvXs3rKysUKFCBa3FZ0nLUIpmyTlH+/btcfjwYfrN6xh3d3cULlwYnHO0bdtWa3FmZso4LZPunDlzoNFosHfvXjLrpoG/v79YwNq6dWvcvn072QIPjUaDAQMGgHMOExMTtG3bVmvhgdQ3jYmJwdKlS9GsWbNkz7P69evD0dFRaDFhwoRsvc+cQEBAgFa5NW7cGD/99BP8/PwytZic6oX+kbfFXxIET+rjSjvfdO3aVWd5y41cuHBB/I5nzJiRYrBCeXC8RYsWQaVSwcjICAsWLNA6TmQdtVotdrVJzcAurxebN29G6dKlYWRkBM45fvnllxTTEZmH6kbOhAzsBEEQBJFLcHd3xy+//ILr16+Lz5J2rubMmSMG+cOHDxemz9SQT2JK5x0+fFj3mc9leHh4YN68ecmiZMj1GDFihJb5RCK1QYl07tKlS8UEytWrV/WQ+9xFalpkFIq8rls8PDywbdu2dJ89cpKa1+UvfMm8/uVkRIukE47yl1LSsaTtzPLly6FSqaBSqdCtWzd8+vSJBvrpQFooh5S0yOhkYXBwMEaNGiWeT4sXLxZRj48dO4aePXuKY0ePHtVL/nMTKfVrMzNxq1arsXv3bhGhb/Xq1frIJkFkG/Lf/9SpU7Ve3pYsWRKcc/HCo3z58ujfvz9evnyp0+8lEtGlid3Dw0PoZ2VlhZkzZ4rry9tsHx8fYda1srLSigCYl5FrsWDBAhQuXFiMlaWIhtL/N2vWDLt27UpmOgkNDcWsWbOEjpUrV8bEiRNTfLmVkJCAM2fOoHDhwrCzs6PxuAz5bz+1vmlGoXqhH1xcXGBiYgJra2vcvHlTaxwhIS/fBw8e4Pvvvxd14/vvvxc6UNuQed69eyciSUr905IlS8LBwQEFChSAvb09qlSpgjJlysDR0RENGzZEo0aN0LhxYwwdOhTTp0/HlStXUtxVS67bgQMHYG1tLXQbOXJkiunyOhcvXkSpUqVgYWGBVatWpbkbk0ajgVqtxg8//ADOOQoWLAgfH58U08kJCwvDq1ev4OPjA19fX616Q1qkTmhoKE6fPo1WrVqhdOnSWn3ezp07Y/r06QgPD0+3DKleZI7Xr1+L3TZatWqFc+fOITQ0FB8+fICXlxe+//57LT169uyJc+fOkXldT3h4eGiZ2L28vL74WkeOHBEGrkKFCmm9h4qJicH27dtTNOtSW5+Il5cXihcvLszmw4cPx5kzZ3Du3Dls3bpVy5BetGhRrXenUv/406dP+PHHH0VkV845Bg4ciE2bNiE6OhqxsbFwdXXF6tWrhRZr1qwx0B0rF3d3dzRv3hyzZ89GUFCQMK5/yW+V6oUykcYanz59Qrly5cRiBfm7ECI5Tk5O4tmyfv16rTkPaXfZuLg4uLi4oGnTpiLttWvXDJXlXM2KFStgZGSEFi1a4Pnz5ynu2gEAS5Ysga2trXjWyHeRpXfduoHqRs6DDOwEQRAEkYuQT7gnHdCdPXtWdL6+/vprPH78OEPXfPTokZhcad68eZa3R88rpBXZ/uDBg0KLwYMH4/379wDSn+y9ceMGTExMaOV5Jklvl4HUIPO6fvjSaDG6jLxOE16JyMshK5Mi79+/h6enJ0aPHq31UnDdunW6yGaegLRQDqlpkV5kPiAxStzAgQNFuRcqVAg1a9aEpaWl+Ew+GUmkjbxfK9cio4uggoKC0LdvX2F2SMmMSBA5CXk9WLt2rdiWVvorUqQIBgwYABcXl2Q7C+zZs0fLZJIRpLSPHz/G0qVLERISIvrVeb0vlZqJfcuWLZkaJ3h7e6Nhw4bC1FinTh3cv39ffEdSs2779u2FsSgzC0JzM3ItTp48iQkTJqBgwYJiF47SpUvjp59+gpubm3hBJZ0THx+PRYsWCf3q1q2L33//XbQ/KfXJQkNDUb58+WQL0QndQfVCP0jRh62trVPcnUNuyLl+/ToGDRqkZVSUotwTX46rq6swJFatWhXXr19HdHQ0goODRT81NjZWPKuAlI1S8jqQ1KQrjTvk29BT9NDkhIWFiR20atWqleqOT1I78ObNG9StWxeccxQrVgwhISEppgOAly9fYu3atWjWrBlsbGxQsGBBGBsbo0+fPlq7H5AWn0lISEBYWBicnJzwzTffaPVvCxQogDZt2mDLli2IiIgQdSKteROqF1+Gt7c3SpQoIeYyypQpg1KlSsHe3l5Lk19//RUeHh6i3L7E0Ellnj66MLHv3r1b9Kesra0xb948cUxel+Rm3XHjxunqFnIN3t7eqF27tlY94JyLZ4uZmRlKlSqFvXv3inOkcXN0dDR69+4NU1NTcd7q1asRHByc7HuioqIwffp0GBkZoUOHDtSvTYGk83pf8iyheqFM5G2KFPzN3NwcS5Ys0TpOfEbe/soX5c+ePVsrIExMTAw2bdqEVq1aiTSLFi0yRJbzBGfOnBHv5ZycnLSe5Wq1Gk+ePNEKcMg5x88//6yVhsgaVDdyLmRgJwiCIIhciHwwJ3XUfvvtN5iZmcHW1hZbtmzJ0IDvxYsXGDJkCPLnzw+VSoVJkyZ9sRmYSNQiOjoa//vf/8A5R8WKFXHmzJkMnevp6SlMKoULF8b69etTjJhF6IasmtfJ4J519BF5XR6JlCa9PiMvw6tXr+Ls2bNwcXHBwYMHsW/fPuzZswdOTk5YsWIFVq9ejblz52LMmDEYPXo0+vbti4oVK6Js2bJaUS4nTZokrkllnXFIC2WyceNGbNiwAUDaZajRaHD27FkRSVFadCb99evXD76+vgAoak9mkJf5vXv3cPz48WSfp8bmzZtF+V++fFlfWSSIbEPeTrx79w63b9/G2bNncfHiRbi7u2ullZ4zV65cgZWVFczNzXHgwIFMtQUPHjwQ26Y3adIES5cuFf2pvP4cS83EvmbNmgyVjaRDeHg4Tpw4ga+++kq8pJUieyfVysfHB6NGjdIywBHJf4vPnz+Hl5cX7t+/n2wBmjztli1bhG7169fHjh070ozkFx8fj48fP6JGjRrgnGuZHQjdQPVCfwQEBKBixYowMTHBtm3btKLay59nf/75J7p37y7qRpcuXXD9+nUaR+gId3d3FCpUSBgSnz17BkDbtCPNJ2k0Gq25paQayP//4MGDwkhXuXJlrFq1Clu3biWzbho8f/4cjRo1Egtgnj59Kso76Zxejx49UjVSyeuSk5MTOnXqlKLBkcbnqRMVFYVevXqJMuaco2zZsmjRogWuXLmCFy9eaKVPb0wuQfUi8/j4+OCrr75KZlq3sLBA+/btsXv3bq300dHRuH//Pt68eZPh75CX9Z07d+Dq6prq8bxOUhN7ZneYXbVqFcqWLQsjIyOYmZlh/vz54pj8OSeZdc3MzMA5x+TJk3V2D7mFFy9eYNKkSWjQoIFW3cifPz8GDx4MFxcXkVZ6f/rp0yf069dPpDU3N8fBgwfT/J6jR4+K9NICTiI5WXlOUL3QH1nRJSwsDG/evMHAgQNhY2MDzjlsbW3x77//6jCHuQ/5OG7KlClaQXU6duyIDh06oFKlSlqBjsaMGQM/Pz8A1Obqizlz5ojy/vHHH7Fs2TIcOHAAffr0QZ06dcSxUqVKYdq0aeK8LzWvJz2PTPBUN3IqZGAnCIIgiDxAeHg4qlSpAs45WrRoofUyJDVCQkKwYsUKEXmjXLlyePv2bXZlOdcSHByMUqVKgXOOHj16ZKgTHBgYiFGjRomXXC1atEgWtZ0605kjNjYWz58/F1tGJY02lhXzujQw+vjxIy5evEjbBGeAkJAQeHh4IDIyEoC2HrqKvP7o0SMULFgQ3377rfiM9NBm+PDhwvz8JX9GRkaoVauW1ir1lDR6/Pgxzp49m+auIXmd7NIiJUgLbc6dO4eCBQuiYMGCGYp4FR0djdq1a6N58+b4559/0L9/f0ycOBG///67VrrMmBuJRLy9vdGuXTuYmpriyZMnaaaV2uubN2+K/tOff/6ZYloqZyKnkdpvNq0oiNLuEJaWljh48GCGf/fOzs7o06cPChQoAM458uXLh+bNm4vovXn9pUhKJva+fftmeNG3fCzn5+cnFjoXL14cDx48SPEcqb8sP5/4TGoGz6T14ty5c6LfVL16dWzcuFGY19Mq14cPHwoTw4IFC3ScewKgeqEvwsPDhYmqRYsWePToEaKjowEk9pvUajWmTp0qFi1xztG7d2/cvn07zy9Y0jW6iKor10QeYbpSpUpYs2aNqAdk1k0bHx8fODg4iIV6u3btwqtXrwAAHz58wJ07d9C1a1dwzmFiYoIWLVrg1q1b4nz5/PqQIUO05q5atmyJkSNH4ty5c9i0aRNGjRoltKAdPJLz5MkT2NrawtjYGD/88AP+/fffZDsKpfe7pXqhG0JCQnDjxg0sXLgQc+bMwbJly/Do0SOtiNEajQYajQZnzpwB5xwdOnRIttAgPY4fP462bduCc45p06bhwoULWtcnEpG3Gc2bNxcLnzLKtWvXMGPGDFhYWIBzrjUvLh/LqNVqrF+/Hra2tnj48KGusp+riImJQXR0NI4dO4a9e/fC2dkZnp6e4v0S8LldiI2NxciRI8X7JWtraxw9elSkS/obl7Tw8fFB0aJFYWxsjCtXrmTDXeVNqF7oHqncoqOj4eXlBTc3N7i6uuLBgwe4evUqrl+/jitXruCvv/7CsWPHcOLECWzfvh0LFy7EzJkz0axZMzg6Omq939iyZUua3ylF5Kd5qc/3v2LFClSuXDnVd0YzZ85MtoBW/gz7EiIjI4VfIa9rIe+LTps2TWsRqzSPJP317dsX+/bt0zpf/r70S9iyZYtYGJjXtQAMXzeIzEMGdoIgCILIAzx//hx2dnYwMTHBqlWrAKRtxP3w4QO2bNkiBox2dnZiO1V5ZJnUoEnG1Hn8+DEsLCyQP39+HDp0CEDaA4mXL19i2rRpKF68ODjnKFGiBPz9/ZOdFx8fj+fPn2Pbtm3Ytm0bLl68SNGmUyEmJga7du1Cu3btsGvXLoSHh4tjWTWvS4SHh8POzg6cc0ydOlVEiwNIi6S8e/cOM2fORKtWrbBnzx6EhYWJY7oyrz9+/FjrRfzIkSPFMdIjkXfv3qFcuXLgnMPU1BQqlQr29vawtLREgQIFULJkSZQoUQIlSpRAxYoVUbVqVdSsWRMtW7bE119/jVGjRuH48eNaptKUNPLw8BBRNCZMmICLFy+KY6RFItmhha+vLy5cuIDRo0dj0qRJ+PPPP7XSkxafkW8VPG/ePC2DVGp069YNNjY2ePnyZaovpSTu37+PY8eOYeLEiZg7dy5OnDghjKEAaSHHw8NDRL2dOnWqVvudGjt37hTP/gMHDqSZ1sfHBzdu3MCSJUuwbt06nD9/XityL2lB5ETkz5zBgweLCIp//PFHpn7Tbm5uGD58uJjsL1asmHgpkteNjfIy3rt3bzKzVWZ4+vQpmjZtCs45Bg4cmOZzjp5JX46fnx/atGkjoi/NmjULMTExANIu19DQUPz0009iXH7v3r3synKehuqF7vD19UWZMmXAOUfdunUxZMgQbN68GT/88IMoY+nvl19+gZeXV5ae8aRH6ujCxA4A+/fvF1HjKleujHXr1mntJCFFDyWzbup4eXmJemFlZYVSpUqhe/fuqFatmqiisdYAAMeaSURBVPjc1NQUNWvWFPO4wOcIuwkJCejSpYtW/Zk/f76I3icRHh6OdevWQaVSoXDhwvj777+z9T5zAi9evMC5c+e0PvuS3ynVC/2QUhCd+/fvay16yqiJPTo6GvPnzxdztcbGxihfvjyWL1+e7PuIxJ15pQUZq1atEr/ntJC33+Hh4di/fz+srKxEGy+RdCdnad6ddpdNTnoLyeULZzdu3CjaEGNjYxw5ciTd6wDAmjVrRJ3677//dJh7AqB6oW9CQ0Px/fffo3z58rC2tkb+/PnFboBmZmZilxVpYWBKJlJLS0uUL18eO3bsENdNaTxy4sQJ2Nvbi50K8rpZV37/N2/ehJOTE2rVqoUqVaqgevXqGDBgQIq7wXt5eaFp06Zwdnb+onY3IiICTk5OsLOzE4vNSYvP979z50788MMPsLS0RNGiRVG2bFl06dIFf/75pzD9SwQEBKB///44dOjQF2lx4sQJcM5RoEABPH36NFle8iqGqhvh4eG4cOEC3r17J55h1LdNHzKwEwRBEEQuR6PRwNXVVQwOk67oTEpwcDA2bNiAChUqgHOOwoULY+fOnYiPj082UIyLi0NMTAxu376NK1eu4O7du8miQFCH7DMajQa3bt0Sg/ETJ06kmT4gIACTJ09GyZIlxUICKRqJvNMdEBCAFStWiMju0qre9u3bw8nJSev7icRBtTRBXrduXTg7OwNI3La0YcOGWTavA4nmFcmAqlKp0KhRI6xevVocJy0+ExoaKp43derUEXpcuHBBZ+Z1udmKXlCljpubmzCXlypVCpcvX4a/vz/8/f0RGhqK0NBQBAUFISIiAjExMQgPD0/1pUlKE4sJCQnYt2+fqH8qlQp169bFsmXLRBrSIhF9anH9+nV06dJFGCakP9IiZaKiojB9+nQYGRmhatWquH79eprpg4KCUK9ePVhYWCSLziMv06ioKGzcuBEFChQQL0ukv/r162PFihUpnpeXiYqKwuzZs2FqaorKlSvj0qVLqaaVykyKiMw5T3EyUuKPP/5AjRo1YGtrq9WXatmyJbXfRI5H3o8dNGiQMGKlt3150sjVYWFhuHjxooiUWLZs2UxHAMytpDRWkLe/r169Qnx8fLrPkNjYWEydOhWcczg6OmY6kiWRNpImJ06cEOOMLl26pLgLVEr8888/Yme7mjVrJnvhSKSPvA5QvTAMXl5eWou7jYyMxL/Nzc1RuXJlrX4okBhVT4rWnlHk9UkaxxPaZNXEfu/ePWH+MTY2Ru/evcUxefS+pGbd4cOH6+wecgu+vr7o2bMnSpcurRUpkfPE3We6du2K48ePi/RyM7TULzI2Noa9vT12796tdW15H8Hf3x8NGjSASqXSmq8lkvOlhhuqF7ohqXkzrTQ3b96Eqalppk3sERERePPmDZYsWYLGjRv/H3tnHRdV9v7x58zQiCAqioFiIUqI2N3dratrrGt3rd/VXWt1jV27O9ZaXbtbsRuUblBQseia4fP7g989zjBDSBrn/XrxAuaee+fe89zn5Oc8h9ti0qRJWu/je8fb2xuTJk3C/fv3s3V+cnIyNm7cCENDQxgZGWHHjh25e4PfIWnfT8lXQkJC0K5dO16PqM7Hanunpc8UCgUGDx7MF8sGBAQIH8hjhF/kLnv37uXvvVQvyOVyPt+qr6+PwoULw9jYGGZmZrCwsEDx4sVRrlw51K9fH23atMGePXvUFoprq4POnTvH29BFixblQXm+d7Fu2ryKjY1FcnIykpKSNMaspLLlt99+A2MMxsbGn7VbI5Baj2/ZsoXPYZmbmwtb/D9pnz8sLAzh4eGIioriwRMkJLutWrWK98k/1xZAaqCGNm3agLHUXT+EiP0T+e0bsbGx2LJlCxhjqFOnDnbu3Ik3b95ovReBOkLALhAIBALBd4BCoUDDhg15xFvVrbGlHyC1gTt//nxYW1vzzt+KFSs0Jmbfv38PV1dXdOvWDbVq1VLrlBoYGGDYsGGZDsx8r8TFxaF27dpgLHXLcalxnHYF5rNnzzBs2DAexbtEiRL477//NPIyMjISCxYs4Ol0dXX5QL00ETllyhSeXtgilefPn6NEiRJctPn777+jVq1auSJeB1Lt/Pz5cy4SkgbhReRv7bi7u3N7ODs7Y8aMGShevDgvW9q0aZNj8XrZsmWxatUqrFy5UojYM8DDwwNFixbliwa8vLzU8kbVH1Q721nNv/j4ePj6+mLIkCHp+oYglbywhbu7O1q1agVjY2MekaFEiRLQ0dERk4UZ8PLlSzRr1gyMpW4F7+7uzo9JZZJkg7179/K8VN0CG/iUn+/fv8evv/6qJlq3tLRElSpVYGpqKmyRAS9fvkTTpk3BGEPjxo3VbJG2TSVFHmGMoVWrVmp5qPr36tWr1Wxhbm4OS0tL6Onp8baUsIXga0e1zhgwYAAYY2jWrJnajk1ZxcPDA40aNQJjqVttZ2U3hO+ZnTt3omHDhjxSa2aR+548ecLr6Q0bNmR4jiB7tG7dmvcPQkJCAKQ/iSTV82/evEGTJk14VLgLFy4AELbJLsIvCpaQkBAsWLAALVu2RPny5VG9enXUr18f27dv57svSnz48AErVqzA6NGj1XamySoHDhxAhw4dsHv3bvj7+/PPhf1SURWxt27dGl5eXp91/u7du9G3b18etGT8+PH8mGrdr1AosG3bNj52+/Lly1x7hm+Ft2/f4vz58xg6dChatmyJOnXqoG3btjh06JDa4gLVcqtLly48T21tbXHkyBGeLr16pVOnTmCMoWvXrnn6PN8zwi/yD+k9v337Np+P6NOnD4KCgjI8L20d8PTpU8ybN4+Phfzyyy95ds9fM6qBK6R3WaFQIDw8PEvn+/n5oU6dOmCMYejQoXlyjwJgwYIFfHxpwYIF/PPM2j6q4t8JEybk9W1+k0hlkvCLgmPcuHH8Pe7QoQNOnz6N27dv48qVK7h58yaePXuGp0+fwtXVFYGBgQgODkZoaCjfIUUVbT5z7tw5vsuKtChdiHW1o9oWzUg0q7pbY1aFupJ4vXDhwjz4nrCFOunlY0a2+OGHH7ItmgZSy7O2bdsKW2RCXvoGAISHh2Ps2LG8LCxfvjz69OnD+5TCHukjBOwCgUAgEHzjpKSkIDExEVOmTAFjDLVr18azZ880Gkj3799Hjx49eEejePHiWLNmDV69eqWW7sGDB5g4cSKPCq6jo8Mnf6UoyjKZDDo6Ovj111/V7kOQKmweOXIkGGOoV68enj17piGQvnTpEmrUqAFTU1Muajt+/LjW6Lqenp488nq5cuUwffp0XLhwAdu3b8eYMWP4wO/UqVPz6xG/GlQnCk1NTXlUADs7O7x9+xZA9sTrad/1FStWwMbGhovgVEXTgk+o2sPIyIh37tq1a4cPHz4AyJl4fe3atYiIiAAAsVVwJuTWduZpSZu/y5YtQ6VKlXg9MnHixFz5nm+J3LKFlPf79u3jEabt7Oxw6tQp+Pj44PTp05g5cyb3ixkzZuTmY3wTBAQE8AV+jRs3xtmzZ3nZJKEqmK5fvz5fCJWWv/76i6dzdHTExIkTERoairdv38LFxQULFizgtpg7d24+PN3Xhb+/PypUqMBtcebMGTVbvH//HgcOHOB5LC1gUigUGuXQrl271NL16tULbm5uCAwMxPnz5zF79mxui99//z2fn1QgyF1U27Xz5s3TiBD6OddZu3YtGGOoUqWKmiBRoI63tzcvY3bt2pWlc65cucLPWbt2bR7f4ffHx48fYW9vD8YYhgwZgqSkpHT7GKqL1Dp06ADGUiPxTp48Od06XpA5wi++DFJSUqBUKhESEoKoqCi+E4GENJH75s0bPtbXq1evz4qAf/z4cb7wUOrbb9u2Te0eBKl9PmlBf9u2bfl4VEao5l1ISAg2bNiAQoUKgTGGH3/8kR9TnZBXKBQ4dOgQXF1dc/cBvkESExORkJCgMQ6rWl9IAi25XI4qVaqo7bKZ0bvdsmVLMJa6A4jwgdxF+EXBoCpil8ZzR4wYkaUIk2l3qduwYQOfV9q9e3ee3fPXjpRviYmJWLJkCf755x+1zzNC2tVGV1cXPj4+eXqf3xspKSkIDQ1F9erVwRhDy5Yts5zHV65c4cF87Ozs+I6Dop74fIRfFAyqbaQJEybw9r9q2z8zMrOVqni9Ro0aWLlyJVq1aiXEutlE226NxsbGOHDgQIa2SCteb9SoEf79918R/TsHqObT59hCG0LEnnOy6xuqBAUF4cCBA9xPJN2V1OcQkdi1IwTsAoFAIBB8JwQFBXExZ4MGDbBixQo8evQIe/bswbx582BgYMAFOpaWlti3b5+GMOvChQtwdnaGiYkJXzU4efJkXL16FR8+fIBSqcThw4cxduxYfq1p06bx88WASyqBgYF8ArBu3bqYP38+Ll++jL/++ouL26UfKysr3Lp1K91rzZkzB4ylbiu4f/9+ta2Z3717pxZtWmxPq4mnpycXc8rlcpQpU4ZHFZOiKmUXqZMTEhLChXYGBgZo0KABAgICcnzv3yKq9tDT04ODgwOPDPo5iwmePn0KW1tb7kMbN25Ui7qRnJysJmJXjcYkyqlU8krErsr169f5ApzChQtj4MCBGoumBLkrYu/duzcYY7CxsUFYWJja8ejoaKxatQoymQwymQxbtmzJjdv/pvDy8uLvbPny5dGpUyfs2LEDCxcuxKhRo3jdbWFhgd9++01rPXL+/HmerlatWti+fbvG1pEJCQlYu3YtZDIZLC0t+cSV4BPe3t4oW7YsbwM1bNgQv/32G0aMGIH27durDQwOHz5co00LAHfv3uV1ToUKFTBv3jzExcWppYmLi8O6desgk8lgZmaG06dP59MTCgR5g7b2VHbaPr6+vrxPuHLlyty4tW+SFy9eoF+/ftDX10ePHj0yFPtLkxeHDh3ibdTVq1fn161+NwQFBfEdbjZv3gxAuw+ofqYaYbd169YaEaoFn4fwiy+Dzyn7b9y4AX19fTDG0LNnzyyL2N+9e4ddu3ahf//+fMxRJpNh5syZ2bqPbxkPDw+UKlUKw4cPz3LEUNW8UygU2Lt3LxfrzpkzJ8NzxYS5drL6Pu7evZuP8xUpUgSHDx/O0jUuXrwICwsL6OjoYNGiRTm+X4Emwi8KBinvrl27Bmtr62wvcI2IiEDPnj35ogOlUinqiQw4cOAAjIyMYGlpmelcg7QgZ9GiRdDX14ehoeFn7/ohyBxXV1de5qi2dzLi3r17aN68OQ+uNHr0aK2BrARZQ/hFwaEqkJ08eTIfm924cWO2AoWpkla8vn//fsTGxiIkJEQIp3OANqEuYwwnTpzQmj6teL1hw4a4c+cOUlJSEBAQIITTOSA9Wxw9evSzryVE7Dnnc30jPby9vdGiRQtefjHG4Onpmdu3+80gBOwCgUAgEHxHeHt7o3z58ryRJG3BLEWGLlKkCGrWrAkPDw+Nc0+dOoUyZcrwSUM7Ozs8fvyYbxmvKtJ6//491q9fz9P+/fff+faMXwve3t6oVKkSt4U0QCVFIq5QoQK6devGxbuq299JpKSk8OgATZs25ZNcqgO7ERERGDVqFORyOVq3bp3libDvCQ8PD7WIxCdPnsy1iHqenp6oVasWjyretWtX3LlzJ1eu/a2iag97e3scP35cq/BQGykpKXjx4gVKlSrFy7b+/fvzhR2q5ZRCocDWrVu5z40dOzYvHuerJq9E7ElJSTh37hyPSGNqaorx48eLjnsGfK4tpHpAtT5ISEhAjx49wBjjO6SkHTwODQ1F9+7doaOjg/79++d4cPlbxM/PD82aNVOLnqDalipdujSGDRuGd+/eqZ0n2WLmzJnQ09ODnp4e5s6dy8XraSdlg4KCUL9+fbEALQN8fX3RrFkzFClSBIwx3u6UyvXKlStj7Nix3BZpBQnr16/nE4s//fQTF6+nTRcWFoZ27dqBMYaFCxfmz8MJBF849+/f52JG0dfLmCNHjvA6fNGiRYiPj+fH0tbX/v7+cHBwAGOpu2u5ubkVyD1/y4SFhXF7LFmyJMO0UVFR6NixI4/GV7NmTZw8eTKf7vTbRvjF14NqZF1dXd0si9jTtm1PnjyJkSNH8vbapEmT0k37vRIREcEDKgCfLzCIjIzEtGnToKOjgzp16mgd2xXkHKVSif79+/N+oLQYCsh8QdTvv//Oz9u3b1++3O+3hvCLLxepvpAEodkdT1q8eDGfK8mLYBrfEjdu3ECVKlWgp6eHv//+W2NBvjaGDh3K27bCH3Kf06dP88AWT548AaA5xqRaLzx69Ahdu3bli8Pr16/Pd8URi2qyh/CLgiUvROznzp3ju5XXrFkTe/fu5boEQIh1c4qqXaRFZDt27NCwV1RUFLZs2cLH0ps0aYJbt26pzbkKW+QM1Tzv06cPGEvdnTcr5Vha/Pz81BZ3SOMowhZZJ6u+kZa0Owz98ssvfJcic3Nz7NmzR9Tx6SAE7AKBQCAQfGcEBARg2LBhfNtsKfJtt27dsGbNGr5VrWoD7MKFCyhXrhzvxBcqVAjr16/H1atXeQcEUG/4xsfH488//4RMJoOdnR3u3buXfw/5lRAUFIRx48bB2dkZxsbGkMvlqFixIoYOHYqTJ08iMjISANQiLiQmJiI5ORmxsbEAUicB9fX1MXHixHS/Z+PGjdzW165dy9Nn+lrx8PDgE+g1atTA3r17ER0dnaNr+vj4wNnZGYwxFCpUCF26dFETr4tJ2vRRtYeTk9Nn22PFihXo3bs3DAwMwBjDuHHj+DHVsk2hUGDz5s1gjKFEiRJ49OhRrj7Ht4CqcLpVq1Y5njxKSkrChQsXUK1aNT54Mm7cOCFezwLZscXLly8RFhaGFy9eIDo6Gps2bQJjDMuXL0/3nJkzZ3IRsBi01054eDhWrFiBFi1a8HKGMYbmzZvj77//5otu0g5EJSUloWHDhjwKvjTYnl598OOPP4IxhjZt2gAQA4zaePXqFTZs2IB27dqhRIkS0NHRgaWlJfr27YsjR47wPE5rC6VSyUWJZcuWxevXr7Wmk5g4cSIYY3B2dkZycrKwheC7RXr3Dx06xCetpAiiom2rjmp+LF26lNcVa9euVVssK5U7AQEBGDp0KJ+Ybd68ea4tqhWoM3z4cOjo6GDYsGH4+PEjt5U08RoTE4M7d+6gefPmXEDl6OiIf//9l19DvO/ZQ/jF14k2EXuXLl14+ykjVNtMr1+/5rsMMcawePHiPLvnrx0p31JSUvDff/8hNjY2S5PcJ0+e5H61a9euvL7N75L9+/fzPJ4+fTr/PDP7nDhxgp/XrVu3vL7NbxIpj4VffNlkt40kzX9s27YNhQoVgqGhIVxdXXPz1r45IiMjMW7cODDG4ODgkOkuQQ8fPuRzFdbW1ggNDRVt2lzmyJEjfA5Vmz1U8/vu3bvo1KkTD5BhZ2eHN2/eABDjfzlB+EXBk5si9kuXLvHzLSws1OY0VNsAqsJpY2NjNd2CIHNU7XLt2jWuE5FITEzEnj17uC0sLS1x4MABfjw9WxgYGOD58+d5/wDfEKq2OHToEAIDA7N9rcDAQG4LU1NT3q4SdUzWycw3MuLFixdYuHAhD9hXuXJl7Nq1K8sB+75HhIBdIBAIBILvkPj4eLx9+xZXr17FvXv3NDpzqo3X+/fvo1atWpDL5XySSfXH1NQUgwYN4mJr1c69h4cHGjZsCJlMhu3bt4uOvxaSkpIQFxeHZ8+ewdPTUyNCumrj+Pz58/jpp5/g7OwMOzs79OjRA6NGjYKVlRWaNGnCB7gkpE7jxYsX+STj1q1b8/6hvlI8PT1hYWEBxhgqVaqECxcuZHsVrBCv5xxVe1hbW+PatWuZ5pvq8cDAQKxZs4aLq3788Ud+TLWMUygUOH78uNqAi0AdT09PlChRgke5ePXqVbauI4nXpcjrQrz++WTVFrGxsdi0aRMqVqwIS0tLFC1aFLVr10aHDh1QrFgxDBgwgO9MAKT6jlTfLF++HHK5HDo6Orh161a+PNfXzL1793D79m24uLggKSmJ1xva6o+YmBgeVb1Dhw7pppMEdD///DOPcinInJCQEPj5+fHdayS01R1KpRKdOnUCYwx16tRBfHy81nSSX8ydOxeMMTRu3Dhvbl4gKABU3/ms/C3h7e2N0qVLgzEGKysruLu75+2NfsWolvHSAjHGGMaMGYODBw8iKSkJwcHBuHbtGho3boyiRYvyiDxS+0j0G3KfnTt3clusXr0aISEh/Ji/vz/mzJkDR0dHPuHapEkTHD9+nKcRNskZwi++TlRF7JI9stMvTEhIwMKFCyGTyVCjRg0hTsyEESNGoESJEnj48GGW0n/48AFly5YFYwyjR48GIPwlt5DyccKECZDL5ahcuTJcXFzUjqXHzZs3+WL0ihUrYvfu3Vk6T6Ad4RffHqptA0l4yhjD/fv3C/Cuvg5CQ0NRt25dMJa6Q+/z58/5uLdqUKSQkBC+MJ8xhpkzZxbULX/ThIeHw87ODgYGBtiyZYvWXZWB1IjS9evX5/MW1apV44FKhLAw5wi/KHjSE7Fv2rTps0TsXl5eaNOmDZ9Psre35/W/UqlUq8/9/PzQsmVLvlhQCgInyBqZlT3+/v7o1asX3x2tevXqfM47rS38/f15QIBx48bxHWgFWSOn9YCqLc6cOYNKlSrxPrwI4vb5ZMceL1++xKJFi/jOwTY2NtixY4fanKxAEyFgFwgEAoFAwEkronr16hVGjBgBY2NjvnLZysoKv/zyC2bNmoWff/6ZRwjo0KED3r17B0BddL1kyRI4Ojpmur2wQJ20Hb79+/dDJpNBR0dHbQGB9L+VlRXOnDmjFqUJAN6+fYvhw4fz9EKkmzGenp7Q19eHtbU1XFxcsjWhIcTruYenpyfkcjmcnZ3h5+eXpXNU8zc5ORn79u3jg8GzZs3K9HyxdZd2PD09wRhDixYtEB8f/9nnC/F67pGeLaR3PyYmBr/++qtaXWFoaAjGGPT19cEYQ4UKFXDlyhVeZ0jvva+vL4+Ob2lpKbZrzoDsluWjRo0CYwx169bl7SZt+Pv7w9LSEowxTJgwIbu3+V2Qni0yK8+nTZvGJwpfvnyZbrqwsDA4OTmBMYYBAwbk6F4FgoImO2WXQqFAQkICXFxcsHbtWl42mZqa4qefftKIhpz2O773tq/qRMf//vc/tfq5SpUqKFq0KORyOf+sSJEifNes3Jy0AkQ7VxVVW9SrVw99+vRBz549YWpqyttNhQoVws8//4zr16/z83L6Pks2/d6FKQXpF4LsI5UhT58+hb+/P4Ds+YSLiwvfQnvPnj25eo/fEmFhYWjXrh0YYxg0aFCGuw9Idvj48SNfZNanTx+1Y4Kck5CQADs7OzDG0K5duyydc+/ePdSoUQMymQwymQxDhgzJ8Y6P3zPCL74e0i6Klf5PSUlRi6avyoEDB1CmTBnIZDLY29tn2E8XfMLPzw9lypQBYwz169fHnj171AIdnT59mo9FSeWXr68vAOELuU1UVBT69u0LxhgaNmwIV1dXHqQCSBW0bdy4EQYGBjxYmJ2dHQICAgAIe+Qmwi8KnvRE7KtWrcpSHkt1RUxMDM6ePcvrf319/XQXEfr7+2PmzJk4efJkLj6JQLJFbGwsLl++jA4dOnBb3Lx5E4B2WyxfvjzTXRAEuYfq/OCrV68wduxYNGjQAIyl7iyoGshHkHcI8Xr2EQJ2gUAgEAgEGkgdywsXLnCBQsmSJfHLL7/Azc1NLe39+/f5ds59+/bVuAYAPpgsJsyzx6lTp/jkrb6+Pho0aIA9e/Zgx44dmD17NipWrAjGGGxtbXH8+HG+jfPLly+xfv16vrq2SJEiCAoKKuCn+fIJCgrCxYsX1aIxZBUhXs99QkND4eXlxfPuc8uRqKgozJw5Ezo6OnB0dBRb1uWAsLAwxMTEfPZ5Qrye+2Rki9WrV/MBYUdHR0ycOBFeXl64du0atm7diipVqvA6Y+/evQgODgYAuLm5oXfv3rxOr1OnDt9dRZB7rF27lgs/JUGctPBPajuFhYVh8uTJKFSoEExMTHD06FEAoh2V2+zYsQOMMZiYmODixYsAoLGo4+PHj1i1ahVKliwJxhjfqlbYQvA1Ir3fz549w44dO7B27Vps2rQJK1euxO+//44FCxbgjz/+wIQJEzB69GhMmjQJ/fv3R9OmTVGvXj3o6+tzYa+5uTnatWuXYbvq2bNnfBHz9y44VX3+DRs2oFmzZho7mxUvXhwODg48GnHa6FWf249QTX/p0iUuihC2+PT8c+fOhZmZmYYtjIyMUKZMGRw4cEAtOjuQ2sfObp8uLCwMPXv2xOPHjzXu5XukoP1CkD1U8zAn7SGpbzhw4ECN6wpSSUxMxIoVK2BiYoIKFSrgxIkTmeaT1NeQy+W83SrIPZKTk1GnTh21AAlpo4iq2uju3buoV68eDAwM+IIpadt50Z/IHsIvvkxyUobHxcUhOjoaixcvhoODAxf1Tp8+XWt6Vd8RdccnvLy8UKFCBT7GYWVlhRYtWqBOnTowNzfnbasmTZrg8OHDeVIGCXuk4u/vD2trazCWunvm2LFjsX37dowaNYpHh5aCjbRs2TLDhTjZRdgilS/BL753VPt8EyZMAGMMv/76a5bPV32Xg4KC0LNnTzDGULZsWTx9+lTrOdoC/ghyjmpeBgcHc1tYW1tr6EYkVBfwCPKGtOXWvXv3MHz4cN7fln7s7e3Rv39/PhcoyBuEeD1nCAG7QCAQCAQCrSQmJvJBeQsLCyxatIhHvZA6KlLn88yZMzx60r59+/g1Mtt+XpAxKSkpePXqFVq1agWZTAZ9fX2MGDFCY7ut4OBgHgHIysoKjRo1woQJE1CrVi2+Raq5uTk2b94MQEySfA6f894K8Xreo/ruPnr0COHh4Vk679y5c7yjvmXLlry6PYEWhHg9f3n06BGvjx0cHLBz506NCfWwsDBeZ1hYWKBq1apo06YNihYtyiMxFCtWTKtQSJA1MhOkderUied/2gHeoKAg/O9//4OVlRUYS91iXlqYJvh8MrNFly5duC3SCnFfvXqFTZs2oWrVqlxEJ3YUEnztXLt2Dbq6uhoi0c/5sbGxwYwZMzKsy93c3NCnTx8YGRnhyZMnAIRYV/X5g4ODceLECYwePRpDhgzBpEmTcPz4cbx69QqAept38eLF0NXVxZ49e7JcJ6umu3DhAho2bAhjY2M+wSts8en5T58+jUWLFqFOnTpo06YNhgwZgt27d+PFixca5+3btw86OjrYvXt3toTTs2bN4gvLnz17pnEv3yP56ReqHDt2DH/88Qc8PT25wEG0efMeyYZRUVF8UW23bt0AiPxPj9evX6N9+/ZgjKFBgwYa7VVVH3rw4AFv2zLG8N9//+X37X4XSHncq1cvtfHZtO/w9evXYW9vz/vYtra2vF/3vZf9OUX4xZeFav3s5+eHR48e4fHjx7h9+zYuX76MCxcu4Pjx4zhw4AAOHDiArVu3YunSpVi0aBEmT56Mxo0bo2bNmmCMcfH6Dz/8oPX60viWqiBO1B+f8Pf3R+fOnfl8kJSf0u8ePXrgxIkTaj6iVCpzLKpSHZ8X9kjF29sbtra2vOxJa4uGDRti1qxZiI2N5eekpKTkaIeOK1euYNmyZWrXExScXwg+oZq3Z86cUSvXP3eu+vHjx6hduzYYYxg5ciTi4+PFu15A3Lt3D46OjpDL5Zg0aRKSk5OFLfKRtL6zf/9+TJo0CTo6OmrBGUqVKoXff/8dT58+5e0ooRHJG4R4PecIAbtAIBAIBAKt3L9/HyVLloRcLke/fv14xLa0pKSkICQkhE8+zZs3L5/v9NvG19cXxYoV41vdxcXFAfg0UCt1/oOCgngk9rJly/LoiJJ4fe3atVkW+wrUkTpzSqUy3RXjQryev2zatAmMMVy+fDnDdKr5bm9vrxbhTXTSc45U/igUCq07Fgjxev7z33//cWHi2LFjNSJ7S789PT1Rrlw5MMbg7OzMRe9FihRBlSpV8OjRIwDCT7KDauTuK1euANBc+BcWFsajLhUtWhTTpk3DihUrsGrVKtjZ2fFosIULFxbR13OAlGfR0dEa25lKtnj16hVatGjBBep//PEH9uzZg4MHD6Jjx458u2FjY2OsXLlS7boCwdfIlClT+NaxBgYGsLKyQoUKFVCpUiVUqVIFTk5OqFGjBmrWrInmzZujVatWaNGiBQYMGIDff/8dGzZswKtXrzQW1Kri6uqKn3/+mU8Im5ubC7Hu/5OVPkHaNAMGDOB1wv79+zO9hurxc+fOoXPnznw3LyGc/kTaslxbfkhppDzt378/30UlK7ZIi7e3N9/23MzMTNji/8kPv1Dl4cOH6Ny5M28H//XXXwgLCwMgbJGXqObtypUr+XjVwoULC/Cuvg4CAgL4gsqmTZvCxcVFYxLcxcUFP/30E8/XwYMHF8zNfsNI5czKlSuhq6uL6tWr49GjRxrlT0JCAg4ePKg2Lmtvb8/HZEU5kzsIv/jy+Ouvv9CwYUO1voaU91ldQGtmZobRo0dr7IwGfBKvx8XFoXz58mo7AYtx90+8ffsWZ8+exZAhQ9CoUSNYW1ujd+/eWLFiBWJjY9XySqFQ4IcffsCgQYOyvVjfw8MDJUqUwIABA/hnwh6phISE4Pfff0fTpk1hZWWFYsWKoU2bNli4cCH8/Pz4O52SkgKlUonZs2dj3LhxGjtAZYU3b96gXr16YIxhzJgx/HNhi1Ty2y88PT1x4cKFDBe6fW9oa/+ofubl5QWlUpnpmGt8fDxGjRoFxhiqVKmCiIiITL87JSUl27s7f28kJCTA29sbQOZ5FR8fj4EDB/KFmjlZgCPIGmnLkffv3+PQoUPo168fZDIZH/szMTGBtbU1tm7divv376udk3acS/hG7iDE67mDELALBAKBQCDQyvr16/ng4aVLlzJMGx0dzSMK9OrVK5/u8Pvg9OnTfKWsFEE9bTRdhUKBlJQUTJ06FXK5HGPGjMG5c+cwY8YMLFmyBO7u7gVx698UcXFx2Lx5M44fP8474lLHTojX85d3797xKAv9+vXj2y+nR0pKCsLDw7kIsXfv3vxzQc6Jjo7G/Pnz8e+//6oNUgnxesGwfPlyLhaUROhpB4iVSiXi4uLQo0cPMMbw559/4sGDB9iyZQuuXr3KB37FoFX2iY2NhZWVFSwtLbkgKi1v375Fr169+OKBtD8GBgYYNWoU3/1GkD3i4+PRpEkTVKxYMd1JwNevX6Nbt27pTqLr6uqiY8eOXGgoEHztTJo0ib/fM2bMwIsXLxAZGYn3798jMjIScXFxiIuLQ1JSElJSUjT6HkD67ShXV1eMGDGCX19aYCvEutpRrWvT5qnq/0OGDOF9wozEutrE66qR84Ut0idtxL30yKot0sPPzw9t27YVtsiA3PaLtHh5eWHq1Kk8MlmJEiXQvHlzPm4ibJE+acU9ElJ9AaSOV0nHVMUiEhs3bkS5cuUgk8lQvHhxvlhTkDHe3t6wtLTkApE+ffrg4MGD2Lt3LyZPnsx30GSMoV27dmLHjTzkxYsXcHBwAGMMTZo0wX///QcfHx+8e/cO27dvx88//6wW9bBZs2Y88rq2NlV2EONZqQi/+HL4+PEjGjVqBMYYr1/Nzc3VhOkmJiYwNDSEhYUFSpUqhZIlS6Jy5cqoXbs2OnTogDVr1uDcuXP8mqrvuap4XRLpCqFu1oiJiUn3WGBgIA+c1KNHj88W63p6esLJyUnYIwOkfHjz5g0iIiI0giNJx8PCwvj8avfu3T/bFkqlEtu2beO2GDdunMZ3CD6Rl37h5+eHkiVLgjGGqVOn4urVq/yYsIV2Jk+ejHr16vH/08snqZ949epVvkjq4MGDGaaVSBsQTsx7aJKYmIgffvgBLVu2zDStlI9HjhyBnp4e5HJ5psHGBNknrU94e3vj2LFjcHBwQIkSJdTmMdq3b49Vq1ZpzElpG2eJjIzExo0b4eXlBUC0kdNDyjvVOlw1P4V4PfcQAnaBQCAQCARaWbVqFWQyGRwcHPDhwwcolUqNRrLUQAsLC+ORXPv06VMQt/vNcvbsWb6l3T///JNhWmmQSpsNRIc8Z/z111+QyWSoXr069u7di6ioKACpHUUhXs9fkpKSsHbtWhQvXhzlypXD0aNH032/pfy/evUq78BPmDAhP2/3m2fy5Mk8otjevXv5LhHnz59HtWrVhHg9n9m4cSMYY5DL5bhx40aGaefOnQu5XI5Zs2ZpHBN1Rs64c+cOSpcuDXNzc2zdulVDqKBaNzx79gxHjhzB4sWLUbhwYchkMujo6KBp06a4detWft/6N8ezZ8/g4OAAAwMDrFmzJt2dVADg+vXrOHjwIP766y8ULlwYenp6YIzB2toaJ06cyMe7FgjyBtWJiAkTJvC20YYNG/jnquWTtnZsRm3btOL1sWPH4vnz50KsmwNU649BgwbxSEraxLoZiddnz56N9+/fi+jfOUCbLQoVKiRE7AXA5/hFekRGRuLs2bMoXbo03y3CzMwMrq6uAEQ/XhsZvZ+qxxISEngky48fP8LLywuurq5YunQpfvjhBz6+xRjDiBEjsvTdom+Siq+vL2rVqsUjGevo6PD2qvTTqVMnXLt2jQe6yA1U81/YIhUfHx9YWVnx3U1MTU35zqTSj4ODAyZOnIh3797l+PskW6rujirKqVQKyi8Emri7u/Pd5EqUKIEjR47gwYMHePjwIQICAuDv7w8PDw+8fPkS796947+Tk5M1dnVUrVdUxet169blfidFGRVCXU3S6ydoy59bt25x/+nZs2eWxbqenp5wdHQEYwzFihUT9kiHz7WFtADkc2whoVAosHXrVt7OErZQJz/8IiUlBXv37uWLEeRyOZydnbF06dJ07+N759atW7y+PnDgQIZppbzbv38/P0ebgF21vXrx4kXMnTsX9erVQ6dOnTBp0iT4+voCEP3vtFy8eJHn65EjRzJMK9ni77//5udIO9FqI7M+hPCL9FHNm7CwMKxatQrOzs4oXLgwz3uZTIZBgwapje8C2vNdul50dDTWrVuHEiVKQEdHh4+FCL9QRzWQ4eLFi/H8+XO14zkVrwvfUEcI2AUCgUAgEGjlr7/+AmMMpUuXxosXLzSOqzaqJKGCkZER9u7dm5+3+c0TFRWFWrVqgTGGkSNHIjY2ViONJMaSIu/WqFFDazpB9vHz84OpqSnP34MHD+Lx48ca4vW7d+/yc763jkV+8vr1a3Tq1AmMMdSvX18tKq4U5U0qo3x8fHgUoGLFivEIb2LiNXfw9vbmUZWcnJywa9cuHDt2jEdeL1KkCMaPHy/E6/lEYGAgqlWrBplMhkWLFqUr1o2JiUH37t3BGEO3bt2EP+QyUVFRPPJenTp1+AAg8KnskSZoo6KicOvWLTRo0IBPuDs6OuL06dMFcu/fGjExMRg3bhwYY6hVqxaPugd8qi8kWyiVSrx69QotWrTgA8BFihTBnj17Cur2BYJcR3UiYsqUKfxd37hxY46igrq6uqpFHB09ejTi4+MBpAqLhFg3+6ja5ccff+R5fPPmTf55RuL1X3/9lR/z8vIStsgB6dlCNapeVhEi9pyRFb/ICCmfg4KC0KBBA97XZ4whODg4T+75W2HLli0YPHgwunfvjvbt26NNmzZo0KAB6tSpgzp16qBq1aooX748qlSpwiMjGxsbq4lJdXR0MGTIEH5Nbe+9r68v/vzzT/6/GF9JJTQ0FPPmzeNjHFJ+lipVCpMmTUJoaKhG327NmjWfLYKTSE5Oxrlz5zB//nz+mbBFKn5+fujYsSPfbUb6MTU1xbBhw3DlyhW+wF9i79692d5hSxJ4jRo1in8mbJFKfvuFQqEQERXTwcPDA0WLFuVR7318fNSOp7fjTXrvsqp4XYqoX6xYMUyYMAELFy4UQt0cItng9u3bXKzbq1evdHevk/Dw8OA7UVhaWuLvv//G8uXLhT1yQHZtkRYhYs85ObVFfHw8vL29+W5Rki1UdygQfCIwMBC9evWCrq4uBgwYkKW+2NKlS3l9n3Y3J9W6Zd26dShUqJBaO00qtyQRqpgT+YSPjw86d+4MXV1dDBkyRKsuBFAvS6ZNm8bz9fr16xle/+PHj3j48CEWL16MhQsX4vfff8fNmzfx5s0bAMIW6ZGcnIxXr15hwoQJaNy4sdq7XKFCBXTt2hVXrlzhY7BA+nmpKl5fs2YN7O3t1eZAxLiUdiIiIvjOHOPHj4eHhwcAIDw8HAsXLsxx5HXhG58QAnaBQCAQCARacXV1hbW1NczMzHDo0CG1BpLqZOHKlSt59PWKFSvi/v37BXG73yzx8fGYNGkSF04/fvxY7biqLZo2bcpFpELAnvt4enqiePHiYCx1a1pra2s18bqIvJ6/SEJdxhiaNWuGO3fuIDo6Wi2Nl5cXBg0axAXWDg4OvNMnyD1UfaNSpUooXbo0H/QQkdfzl6ioKC7iqV27tsbiDolnz57Bzs4OjDH07t1bDErlAcHBwXwQsGnTprh+/TrfvUPCz88Pf/zxBy/LDAwMULduXRw7dqyA7vrbJDg4GDVq1OD1xa1btzTqixcvXmDPnj180aAkeNi+fXsB3bVAkHeolvnSTio5EbE/evRITbw+adIkjb6IqlhXdVLkexqEzwmqdunSpQvq16+vdULkxIkTfJEnYwwLFizgxyS7C1vkDFVbdO/eHTY2NnBzc8vWtfz8/NCmTRsuYpeuI9plWSOrfpEW1Xf95MmTvO5njKFz584a7TXBJ9asWcNFOJ/7Y2BgAB0dHfzwww9Yu3Ytv6a29z0wMJBH2R09ejT/XIyzpJKcnIyEhAScO3cOJ0+exPXr1zUiwUl59dNPP2U7kmtycjKuXr3K+zTCFpq8f/8enp6eWL9+PTZs2ICTJ0/i4cOHammkMue3334DYww9evTIlnD6wIED3J+EIFGT/PSL8+fPw8HBAUuXLlUb7xK2SMXT05OLfFq0aAFvb+9sXUeq52NjY9XE65MmTeLCeCHUzTmqYl0DAwMwxtCvXz+8f/9ea3oPDw8eed3S0hIrVqzA69evAQh75BRVW+jr64Ox1J2WIyIiPus6QsSecz7XLyTS5u/SpUtRqVIlHll//PjxeXbPXzMHDhzgC4qXLFmChIQEfkwKPiJx48YNlCpVis+Xp7ewYPXq1bzd1KNHD8yZMwdz585Fw4YNwRhDtWrVPnuByPfAP//8wxcfL1u2TM0WSqVSrS996tQpnsctW7ZU201F1WYfP37E1atXUbNmTZQpU0atj1iqVCm0aNECXl5eAMRYSFouXbqESZMm8bkj6cfW1hY//PADPD09ebmU0a4Sqp9L4nVpIZpcLke9evVEcIVMGD9+vNq495UrV7B48eLPFq8L38gYIWAXCAQCgUCglffv36NLly5gjKFJkyZwc3NT66wAUBNdMcawatWqArrbb5vg4GA1oe6DBw80hFcDBw4EYwz6+vqYNm0aADEglRd4enrySDIymQwGBgbo0KEDHj16xNOIfM8/vL29UbJkST7oNHz4cFy8eBFHjhzBjh07UKVKFb6VmoWFBdzd3QEIgU5ekNY3jI2NMXLkSPj7+xf0rX13BAYGonLlyrzOuHHjBj58+AAgdYDq6dOnPFqDiYlJpltCCrKPj48PH1SvVKkSevbsiZ07d+Kvv/7C77//DktLSz5Ab2Jigp49e+LixYsFfdvfJD4+PjwKqK2tLQYPHoyTJ0/in3/+wcaNG1GzZk1uKyMjI9SpU0frNrQCwbdCbonYP3z4gOnTp/Pzq1SpwhfcKhQKtTaXqnBaJpPxQXhB1lC1S9qIrgDw5s0bDBs2TG1CS4rympiYqNZHUbUFYyzbwqLvFVVbhISEZLv/l5KSgrCwMLRq1QqMpUbtFds2fx6Z+UVaVMukAwcOoH79+twPBgwYIMTrmeDj48MXhxsaGqJWrVro378/Ro4ciaFDh+Lnn3/GjBkz8Ouvv2L27Nn466+/sG7dOuzcuROPHj3KMBKvRGBgoNrORIwxjB07lh8X4y0Z50HasY6bN29CT0/vs8W6knjdyclJ2CKbpLXF/fv3eT5mRzgtBIkZkx9+AaTu3NGrVy/uF926dcPu3buzdB/fEzkVsUv5mFa8PnXqVB71Ekgtq4Rf5BzJR27evAkTExN07twZQUFBGunc3d3VxOtr1qxRi9Cb1h6qYl1hj6yhagsjIyNUq1ZNYzFOVhB1Rs7Jql9kxO3bt3kQLGNjY/Tt2zfbO7F8i6i+i4sXL+b9sjVr1mhduHH79m107twZhoaGYIzhxx9/1NqfOHbsGL/WwoUL8fbtW37M1dUV1atXh4mJCU6dOpU3D/YVomqLP//8U03zERYWppH+7NmzcHBwgEwmg46ODn799VetAur79+9j2rRpajue6erqonr16qhQoQKfTyxVqpSYu9XC1KlTeb6ZmprC0tISCxcu1FgwmxnpRV6Xy+VwcXFBdHS0WnAFIWL/hOr7KAWbZIyhYcOG/L22sbHB9u3bP0u8LnxDO0LALhAIBAKBIF38/f1hZWUFxlIjuU6ePBkHDx7EqlWr0LZtW776nDGG2bNnF/TtftOoCnUdHBzw448/YteuXVi0aBGaNWvG7WBpaYnTp08X9O1+03h4ePBJ26JFi2LevHn82PfQgfjS8PHxQc2aNbkPyOVyjWhvFhYWuH37NgBho7xE1TdKliyJZcuW8fwWg+P5i7e3NxfrVq5cGa1atcKCBQvQuXNnviDKyMgIvXv3FqK1PMbX1xdNmzbli2m0lVWWlpZYu3atsEUe4+vri/r16/P2q7YIomZmZpg+fbrarioCwbdKbonYQ0NDMWnSJNSuXRuMMVhbW+PGjRsAUttdaYXTjRo1AmMMO3bsEO2yzySz/AoLC8Ps2bN55OKyZcvi6tWr/FxVW/j7+6N+/frQ0dHB5cuX8/K2v0my++6mbRNHRkZi2rRpfDcjU1NTPH36NDdu8bshq7ZQTXfw4EE18frAgQOFeD2LuLu788nU1q1bIzg4OFvX0dY/VBWvm5ubo3fv3kJ4lQNUo4d+jlg3rXi9ePHiGDFihLBFDpBscevWrWwLpwEhSMwNsusXEnFxcfj333/RvXt3tQAOkyZN4mmELVLJqYg9KSkJlSpV4uMnbdu2RUBAAD8mIfmFNMaiutBGkHUk3/Dz8+MLKlUJCwvjuzDL5XL07duXR33VZg9tC58EWUOyhbu7O65du5ata6SkpECpVKrVGSNHjlQ7LsiczPwiPZKTk3Hp0iXeljIxMcHo0aPVdkoVpKLaR/vll194/2zo0KHYvn07IiIi4Obmhu3bt8PW1pZHB1fdhVx6n5VKJZKTk/lOK8OHD0dMTAy/fkpKCiIjI/kOXPPnz8/fh/3CUbXFjBkzuC369euHtWvXwsfHB2fOnMGSJUtgZGTEy/mWLVsiPj4egPo449mzZ9GmTRtusypVqmDIkCG4f/8+3r9/j7dv3+LUqVNo2bIlGGNwdHQUUfG1MHLkSFhYWGDDhg3p7vSUERmJ11XrGF9fXx7oQojY1VHNA1URO2MM5cuXx65duzSCTqZFtd4VvpE+QsAuEAgEAoEgQ7y9vWFjY6MmuNLV1eWrARlT35pckHd4e3vDzs5OzRbSYLuenh5KlSqFHTt2FPRtfhd4eHjwSduaNWti3759YsK7AAkNDcUvv/zChVPST+XKldGxY0ceBVwMzuY9qr7h5OQkfKMA8fHxQe3atXlUElWxromJCfr06cMFhoK85dWrV9i1axf69u0Le3t7mJqaomrVqujRowcWLlyYrS3kBdkjLCwM69atQ+fOnWFlZQVdXV1YWFigWbNm+Pnnn+Hh4aG25alA8K2jOgg/ZcoUXk/8888/n3V+fHw87t69y3fwMjAw4IsH07a/goODcebMGbUoWIKcI9kiISEBjx8/Rrdu3bgtpEU5aW0REhKCR48eiXIvH9AWiXfNmjWoVKkS9PX11cZX/ve//xXQXX67ZBR5fdCgQaK/8pl4eHhwUWLTpk25KFGhUPByRvXvrPTD04rX//zzTwQHB2Pnzp1CrJsDVMW6UhnTsWNHtYi5qqQVr1tYWGDv3r2IiorCtm3bhC1ygDZbdO7cWYjYC4DP9QttpKSkYNasWShevDi3xdChQ/Pqlr9aVEXsrVq1+mwR+4IFC9CxY0cYGBhALpdj6tSp/JjqgluFQoEtW7bwuv3SpUu59gzfE2nLkLT///333+jZsycPCqBa/qRnj2LFiuH+/ft5e+PfIJnZIqvnhoaGYuTIkbycGjJkSK7d4/fC59pCakvVqFEDjDEULlwYo0aNEuL1DFAdl5o1a5baPIalpSUKFSqkNufn5OTEFzSlDb7w/v17lC9fHowx7Nq1S+t3tGzZErq6uti/f38eP9nXh2o+zZ49Gzo6OnyBWLFixTSChzVt2pSL11XHlY4cOQJnZ2c+1tGgQQOcO3cO7969A/DJbkqlEg8fPkT16tVRqFAhbNu2DYBo0wLqtpAWa0h8bv5ERUVhyZIlPLCVrq4uD5yg6kOquzUWLVoUbm5u2fq+bxFVe4wfP577QOvWrXH37l1+TFteqX4mfCNjhIBdIBAIBAJBpgQHB+OXX35Bw4YNoauri8KFC8PS0hJDhgzBgQMHCvr2viuCg4MxdepUvn2mFKWtX79+OHbsWEHf3neF6iC8s7Mztm/frtGRFOQfSUlJiImJwaFDh7Bv3z7s2LEDPj4+XIwgInzmH6q+UaNGDezZswdxcXEFfVvfJS9evMDixYvRvHlzmJiYoGTJkqhUqRI2bNiQrS1oBTknLi4Ob9680agvRBmV/7x+/RqBgYF8K1TJBsIWgu8N1UH4CRMmgDGGW7duZetaQUFB6Nq1KxhjsLOzg6enp9Z03/qA+5dAUFAQX1BQs2ZN+Pr6FvQtCQDcuXMHCxYsQPHixflEvBS5bNKkSTh48GBB3+I3hxCv5w05jayrSmBgILeLubk5/vjjD7x8+RJAqv22bNkixLo5QFWsq7pQLW2bN63gysLCArt37+Z9eUmQKGyRfbTZYuXKlWrRi7OCELHnnKz6hTZU285jx47lOxEyxnD8+PE8u+evFU9PT1hYWICx1B1+P2ehAJAanGH58uU8SuWgQYP4MVVbKBQK7N27F8uWLcu1exekolquBAQEYPXq1bwd++OPP/Jjae1x7Ngx7NmzJ1/v9XtGyv/k5GTExsZi+fLlaNu2LQ+AJf1kN6q7IHOEeD37qJYfW7ZsQYcOHdTeWynScZcuXRAZGQlAe5snIiIC5cqVg0wmw+HDhwGo9wdXrlzJBfJicY12VG2xc+dO9OzZU8MWzs7OGDNmDBISEgCoi9dPnToFR0dHXva0bt0ar169Svf7oqOj0apVKzDG0Lt377x7sK8Q1Xc3J/MVISEh6NKlC+87NGzYEOHh4QDUF54DqSL29u3bc1t/L5G/s4K28XNpLC8rc63CNzJHCNgFAoFAIBBkiaSkJCQlJeHBgwd4/vw5wsLCeOcEEAPk+UlCQgJiYmJw7tw5XLx4Eb6+vvjw4UNB39Z3iaenJywtLcEYQ/PmzTPdJkpQMIjyKf/x9PRE8eLFwRjDgAEDxOKOAkSpVCIlJQXPnj1DcHCwiHhbQKQXsUeIpfOf9OoEYQvB94zqIHxQUBAAdV9RKBRZ3pr24sWLqFChAgoVKoSlS5cCEP6VmyQkJGhEGdNGSkoKTp06BUtLS5iZmWHDhg0AhC3yg7RRp9+9ewcvLy8MGDAAtra2ahO/NjY2mDBhgsaiEbFNc+4gxOt5S26I2P38/PhOaqampliyZAmPPiaRVqw7ZsyY3HqE7wbJF+7cuYNZs2Zp2EqhUODChQuoXr06GGMoUqQID1ii6kdpbTF69Oj8e4hvBFVb/Pjjj9neFS05OTldvxB1fdbIzC8y4uPHj/j333+5SNHExASzZ8/mO0AK1PH09IRcLkfVqlWznEeqfZGkpCTs37+fi6anT5+e6fmiLZW7qNojOTkZ+/bt4/b49ddfMz1flEt5Q9rxrdevX+P333/ngjepjihXrhyaNGmCixcv8mjJgtxFiNdzjmq5HRERgcuXL2Pu3LmYNm0aVq5ciVu3bvFFf9rK+JSUFHz8+BFt2rQBYwzjx49X61esW7cORYoUAWNMLHbKBNUyOyYmBnfu3MH69euxYsUK/PPPPwgNDVVbNCPh4uKCpk2b8ujS7dq1y3D8SirDJk2axPuUIhBW3vDmzRusWbMGDRs25P2969evA0i1Q1oRe8OGDdG0aVO+24EgFdWyR3pvpQXFXl5e6Z4nfCNrCAG7QCAQCASCLKFt618x8PTlIGxRcDx79gxVq1aFh4dHQd+KQPBF4eHhgVatWokJvAJGW/0tFnUIBAKBIC1pJwBV6w83Nzcu6sms3xEbG4vmzZuDMYY6depkmF70YT6P2NhYnDt3DoGBgQAyz7+4uDi+c1eTJk3y4Q4FqjaJj4/H5cuX0aVLF1SoUEFNuN6oUSOMGTMG4eHhmYpIpONCiPV5CPF6/pBWxO7j45Plc1NSUrBu3TowxmBgYAATExNMmzaNH1eN5KdQKLBt2zZuw4ULF+bqc3wPSD6hmq8SCoUC69evh5GREQwMDGBqaopZs2bx46oRwtPaYs2aNXl/898Yki1iYmKydb5qf3716tVicUcOyMgv0iMmJgb79++Hg4MDGGMwNjbGb7/9xheBCrQTGhqK58+fax2jygqxsbGYP38+dHV1UaVKFdy+fTsvbvO75XPtER0djV9//RW6urqwt7eHq6trHt2ZQBtp+wUuLi5YuHAhrKys1Poc5ubm6NevHy5fvqyxQFCQewjxeu6RlbIos3GQ3bt3cx/o0aMHBg8ejP79+/PPRo8ezcdUBOmTlfpa9diLFy8wYsQIGBoagjGGNm3a8OMZjWW8efOGL2ju1q1bLt29QBXJZ5KTk+Hu7s6j6hcqVAj37t0DoH1BlLRrrUAdbSJ2ExMTHDp0SGt64RtZR0YCgUAgEAgEWYAxpvabiEgmE02JLwVhi4LDzs6O3NzcyNbWlpRKZUHfjkDwxWBra0tnz56lChUqFPStfNdoq79V/xYIBAKBgIhILper/S/VFQ8fPqSuXbvSrFmziCjjfodCoSAjIyNq3rw5yeVyevHiBYWEhGhNC4Bf68OHD+Tl5UVRUVEUFRVFREQpKSk5fqZviZSUFDpz5gz98MMPNG/ePCLK2BbJyclkaGhItWrVIrlcTq9fv6YPHz5k+j0AMvxfoB3pfZVssnHjRho5ciS1atWKTp48SYGBgVS4cGGqUaMGLV++nP79919au3YtlSxZkvT19dO97r1796hLly7k5uZGcrlc9DczQPX9ViqV3BYHDx6kVatW0d27d4mIaODAgbRu3ToyMTHJ8rWFX6RP1apVycXFhYoWLUpXr16l0aNHk6enZ5bOZYzRmDFj6Nq1azR+/HhSKBT0999/048//khERHp6eqRQKIgotY4aPHgwbd68mezs7EhXVzfPnulbRfIJPT09jWNyuZxGjx5Nly5doilTplBycjItWrSIBg0aREREurq6vPyRbLFp0yZq1aoVFS9ePP8e4htBsoWxsTERZb1MkWwgtdGOHj1K/v7+ZGRkRDo6OrRhwwYaO3ZsHtzxt0tGfqGN2NhYOnnyJC1evJiePXtGRkZGNHXqVPrpp5+oXLlyeXmrXz1lypSh6tWrE2OMUlJS+Hvs6elJYWFhmZ5vZGREzZo1I8YY+fr60p07dzI9R/Qnso5kDzc3N3r16lWm6QsVKkTNmjUjhUJBz58/5+0sQf4g9d2vXLlCs2fPpg4dOtDChQspNDSUDAwMyNDQkGbPnk3//PMP7d+/n1q0aEHm5ua8vtFW74j2bfZQKBR08+ZNmjx5Mrm6upKJiQkNGDCAxo4dS3Z2dgV9e18daecsUlJSNN7b9MZBpOODBg2i1atXE2OMTp48Sbt376YDBw4QEdHcuXNpypQpVL58eSKidPvXSUlJGR7/Hkg7p6StjJDqdCKiu3fv0oEDByghIYEaNWpEBw8eJMYYKZVKjfFGok95+/r1a94OKFWqVJ48y/eO5DM6OjpUrVo1Wrp0KbVv355iY2Np+vTpFBwcrOF7FhYWZGlpWRC3+8WjOja3YsUK+uWXX6hTp07UpUsXtXTCNz4fnYK+AYFAIBAIBAKB4GtHRye1Wa2tsyEQfM9IviEQCAQCgeDr5Pnz5xQUFESxsbF06dIlatWqVbpppXrf29ublEolJSQkpLtoijFG8fHx9Ouvv9L169fp6dOnZGNjQ9bW1rR8+XKqWrVquoP53yuvX7+m9+/f07Vr1+j69evUtGnTdNPq6uoSAPLz8yOlUkkxMTFZEiUwxgiAxmRlSkqKWDSdBtU8kclkFB4eTkeOHKEzZ87Q2bNned5ZWFhQiRIlaMGCBWRjY0M2Njb8Gqp5nZbHjx/TzJkz6fr169SwYUO6ffs22dvbC7/Qwpo1a8jT05PGjh1L1atX5/mTG+J1IuEXmVG1alW6efMmNWnShK5cuUK7d++mRYsWZbpoVsq/Jk2akIODA9nb29PYsWPpn3/+ISMjI9q4cSPp6OjwvJfL5TRs2DBq3Lixmh8Jco5ki/r165OdnR1Vr16dRo0aRXv37qXChQvTunXrSC6Xq9nip59+onbt2lHZsmUL+va/ejLyFdWyRy6XU0JCAh05coQuXbpEO3fuJB0dHVIoFGRqakp6enrUuHHj/Lrt7w5V8bqbmxsZGRnRlClTaNiwYUK8/plIdeeJEydozJgxtHXr1iwJcxo3bky1atWiO3fu0KlTp2jChAm8TErvewBQTEwMGRoa8r5KRu2v75k9e/bQ4MGD6fz581SyZMl000n517p1a3J0dCRXV1e6evUqjRgxIkttIwBqi5kFGSPlt/T79evXFBwcTEuWLKGHDx9SaGgoT1u1alXq3bs3denShZydnfnnUv8hbVv2+vXr5OnpSaNGjdJo7wo+5RsASk5O1ljslJvideEX2lHNj8zeTUlMLZPJaNy4cWRtbU3Pnz+nBw8eULVq1ahp06bUsmVLIiK1Nq2El5cXvX79mk6cOEEvX76kX375hZycnPLmwb5C0st/mUxGr1+/pmnTplF0dDRVr16dlixZQmZmZgRAax2dkpJCcrmc4uPjafz48RQWFkaWlpY0fPjwvH6Mb5r379+TqalppuNFVlZW1K9fP3JxcSFvb29yc3OjcuXKiTrgM5BE7HK5nP7880/+t+p4nfCNz0eoCQQCgUAgEAgEghwiOnUCgUAgEAgEgm8RJycnatq0Kd24cYOOHTtGjo6OWqOtqg7Wh4eHE1GqiDq9iJbPnj2jWbNm0alTp/ig/YsXL8jb25sePXpE165dI1tbWzGB8v/IZDKqU6cO1atXj+7du0fHjh0je3t7Mjc310grTdoGBQVRREQEERGZmZlpRCxOKzC5du0aXb58mW7evEk6OjpUuHBhateuHRcoCuG0OlLePXnyhJ4+fUrz58+n9+/fU3R0NMlkMkpJSaG+fftS9+7dqVWrVmq2kt7rjMTrEyZMoLt375Kenh7FxsZSkyZNyMXFhezs7IQtVLh58yZNnDiRiFLLnHHjxlHlypXp0KFD2RKvC7/IHjY2NnTlyhWaP38+FxRmhmo+m5mZ0YABAygxMZEmTJhA27ZtI0dHRxo9erTGTpCSeF0sIMg9VPPRxMSE+vbtS9HR0TR58mTauXMn1axZk3766ScNW0jidVFX5z5p6wk/Pz/y8fGhP/74g3x8fOj9+/dElCqea9SoEfXr14/atGlDlSpVKsjb/mZJT7wuIq9nn5iYGNq5cyeFhYXRqlWrqGbNmmRhYZFueoVCQYwxiouLI6LU6LjSIidVJN/x9PSkq1ev0rFjx+jNmzdUpUoVaty4MY0fP14IdbXw8eNHWr9+PRERbd26lZycnKhYsWJa00oi0bdv3/KyKDExkR9LS9r6WlsbWNhDO6r58uHDB7p37x4tW7aMAgIC1HY6a9OmDdWsWZOmT59OZmZmGnkptVVVr3f37l1atWoVHTt2jB4/fkybN28WvpEGuVxOiYmJtGLFCqpUqRK1a9eOChUqREQ5F68Lv8gbpH64TCajjh07UseOHdWOS3manJxMERER9PTpU7p69So9f/6cbt26RQkJCTz6sYeHB924cYNMTU2FHdJByuuLFy/SmzdvyMDAgLp370729vZEpL1OkBZqJCUl0Zw5c+j+/fskl8upUaNGaovZ0uvrCb/QTkhICF28eJE6duxIJUuWzLCvrKOjQx06dKDixYtTYGAg7dmzhzp37pxuvgpbaCftAm9VUXpe+sa3jBCwCwQCgUAgEAgEAoFAIBAIBAKBQIMaNWrQwIEDycXFhdavX0+VKlWi0aNHk76+PhF92tpUGqSfO3cuXb16lYiIBg8erLblrDSA/+7dO5o5cyadPXuWChcuTFu2bKHixYtTZGQkrVq1iq5du0bjxo2jf//9l4oWLZrPT/zlUrt2bRoyZAgXG1hbW9PIkSO5LZKTk0lXV5dPLP3111/09OlTIiIaOnSomnBXVXR76tQpOn/+PK1bt07jO8+dO0eVK1em/fv3k62trRCMqpCYmEgzZsyg48eP08ePHykqKooYY6Snp0fjxo2jOnXqUJ8+fXh61bzLaJIvrXi9bdu2FBUVRVevXqXGjRsLEXsaGjVqRKNHj6YNGzbQmjVrSCaTUZkyZejIkSOfLV4XfpEzqlevTvv37+d5IYkKpR03DA0NMzxfLpdT69atqUmTJnThwgW6desWjR49Ot30qnn+vU+eZxUAFBsby8VX6SGXy6lVq1bk7OxMt27dort379JPP/2UbnqR97mL6vscHBxMly5douXLl9ObN2/o3bt3PF3//v2pVq1aNHnyZI1z05ZLwkeyjzbx+tSpU0Xk9RxiaGhIXbp0oTt37tCzZ8/o6tWr1KtXL61tGwCko6NDHh4e5O3tTUTE+xhp32vGGN25c4fGjx9PHh4elJCQQEREbm5udPjwYQoICKAVK1YIf0iDsbEx/fjjjxQQEEB3794lFxcX6tq1a7qCNZlMRv7+/nzhcokSJYhI0x5SWgDk6elJt27dIh8fH/rw4QM1adKEbGxsqG7dukI4nYa0ZfiKFSvIxcWFjh07xj8zNTWlGjVqUP/+/al///68nZuSkpKuME76/M6dO7RixQp+va1bt5K+vj6tWbNG2CINv//+Oy1btozs7e0pKSmJunfvToaGhuTi4kJTpkzJlnhd+EXewhjT6Ct/+PCBFAoFXb9+nZ4/f07Xrl2jp0+fUlRUFBGl1klly5blO0N17tyZiFIX2QrSRyqnrl+/TvHx8VSoUCEaOHBgun0N1QUEW7dupVOnTlF8fDzp6enRzz//zOsS6dpv374ld3d3CgoKomrVqlGZMmXI0tJSjIWkIT4+nnbt2kVz5syhyZMn099//53h+IRSqaSiRYtSpUqVKDAwkCIjI0mhUKS7m7awRfqols9pF3sT5Y1vpFcvfBPjUhAIBAKBQCAQCAQCgUAgEAgEAoFAhZSUFP73ggULwBgDYwx//fUX/P39NdLPmzePp6lYsSKOHj2q9brDhw8HYwwWFhZ48uSJ2rELFy6gePHisLa2RlBQUG4+zleNqi3mz5/P83nJkiXw9PRUS/vx40dMmDCBp2nUqBHu3r3LjysUCv73H3/8gWrVqvG0ZcuWRa1atTBhwgS0a9cOtra2YIyhVKlS/HtU7+V7Z/DgwTzv7O3tMWLECDx48EAtjWp+Z8ajR4/QqFEjyOVyGBoaYtCgQfjw4QPevHmDNm3agDEGMzMzPHv27LOv/S2i+vyTJk3itihdujT/+8cff8THjx8/61rCL3IHKU8uXLiA+fPnAwCUSmWm5y1atAiMMejq6uLx48c5+m6BOjt27MDKlSsBZM0WM2fOBGMMxsbG8Pb2zuvb++6R3tv4+Hi8f/8eU6dORZMmTXhZJJVv3bt3x9GjR9VsqFqGqb7/rq6uWj8XpJKZH8TExGD//v1wdHTkvvD777+LNmouERERgR49eoAxhrp166q9rxLSe/vq1SsMHz4curq60NHRweLFiwFo2vDevXsoX748GGOoU6cOJk2ahM2bN2PixImQyWS8LyPQ5M2bN+jcuTMYY6hXrx5vbwKf7CDld2BgIFq0aAHGGMzNzfHvv/+qHZdITk7Gixcv0KtXL9jY2KiVZ4wxWFtbY968eRrfIwDCwsIwZcoUtG/fXi3PypUrh3r16uHy5csIDg5WOye9/FP9/Pbt2+jduze/Xo8ePbhvjBs3LtNrfW94e3vD3NwcjDE4OTlh9+7dOH36NJycnMAYQ+HChTFq1Cg1f8kM4Re5i7a6PDY2FhEREdi1axcWLFiA2rVrw8rKSi2fa9WqhR9//BHbt2+Hq6sr3r59q/W6Iv8zp23btrw8AYCkpCSNNFJ+JicnY+fOnahVqxa3xfbt29XSvnv3DsePH0fFihVhaGgIxhiKFy8OJycnuLu7q11PkNp3mDVrFhhjcHZ2xv379zM9JzQ0FJUrVwZjDG3atEk3P4UtckZu+oa2fH779q3GeNfXbA8hYBcIBAKBQCAQCAQCgUAgEAgEAoEGqgPf06dP54PoLVq0wK+//or//vsPf/zxB3r27MmPGRgYYO7cuVqv5+bmhuLFi0NXVxcXL17k3yFNCrq5ucHExASMMX5ckIqqLWbMmMHzu3bt2hg/fjzWrl2LUaNGoXnz5moLCTZu3MjPS05O5n+PHTtWbQL3hx9+wJkzZxAbGwsgdRLswYMHaNmyJRhjaN68OV6/fp1/D/wFk3Zxx+jRoxEREYG4uDiN41lFEq/r6OjA0NAQAwcO5JPoKSkp8PPz45NfQsT+CdXnnzhxoto73blzZ/4+Z2QT1WsIv8hdHj16BMYYChUqhBcvXmSYVrLRpk2bwBiDoaEhXFxctKaVysPw8HDcuXMHS5Yswb59+3DlyhWN6wlSOX/+PF88FhYWlmFaKe/++OMPbr+MhFlZEcwJtJNWYODq6ooJEyZwYZz0U716dXTv3h3u7u4aAitVVPP8xIkTqFGjBoYPH671+PeOatl/+/ZtREdHA/iUR9rE67/99luWxevCL7JGUFAQ7O3twRhDs2bN8ODBA17nSv7x8uVLzJs3D+XKlePlWEBAgMa1Xr58ydtKnTp1wsOHD3l+x8bG4rfffoOOjg569uyZfw/4lREYGMgX8TVr1gx3795FTEyMWpqAgAAMGzYMxYoVA2MMVatWxcuXLzWuFRYWhq1bt8LOzg6MMS6SrlatGmrVqoXSpUtDLpeDMYbJkyfn1yN+NQQFBaFUqVJgjEFfXx+FCxfGkCFDcOnSJQ2xWkblSlrxep8+fXjdMn/+fCQlJWHr1q1CxJ4Bnp6eKF68OBhjqFy5Mi+LsiNeF36RN8TFxeHVq1fYt28f5s+fDwcHB+4/Uh7XqlULvXr1wt69e/HgwQMkJiaqXSPtQh1B5igUCiiVStSrVw+MsXTrV6nNlZiYiI0bN6JOnTq8HPrjjz/U0r558wZLly5F0aJFwRhDlSpVYGVlBWtrazDGULJkSbGwVgvXr1/n7an//e9/iIyM1JpOsoUUPIQxhn79+mkt74Utsk9u+4Y0lpuUlITIyEgsXLgQffr0QbFixWBtbY1mzZphzpw5CAwMVLvu14YQsAsEAoFAIBAIBAKBQCAQCAQCgUArqgPf8+bNg5mZGXR0dPhkuqrAytLSErNnz+bp007+XbhwgUeOCw0NBZA6USh9x5UrV1C0aFHY2NggPDw8H57u60LVFvPnz4eFhQWf4NbV1VWzhbOzM9auXcvTq07QDh06lE/mGhgYqNkM+DQ5kpKSgrNnz6JkyZIoU6aMWiT37x1tE0LZFXk8evQIDg4O0NHRga6uLrp3786PqUZoUhWxFy9eHE+fPs3W931rqNpi/Pjx3AdGjhwJLy+vLJ8r/CL3uXbtGipUqAADAwMsWrSIixK1Idli5cqVvI45deqURjqpXnn48CGaNGnCJ94ZYzA1NcX06dN5WiG8+sT58+dRrlw5FCpUCMuXL0d8fHy6aaV3fdq0adDV1YWxsXG6kfxU6/mUlBR4enoiMDAQfn5+SEhIUDsm+ETa9tHRo0fxyy+/wMDAgAutDAwMULJkScycORMPHz7k+ZkVYfSJEyfQrl077htjx47Vmk4AtGrVCtWrV8fevXsRFRUFAIiOjsa+ffuyHXld+MXn4ePjg5IlS4IxBkdHR0ybNg3379/H/fv3cfnyZbRv357vrlK4cGGcPHkSgGZ03OvXr8Pc3BzlypXDpUuX+HHp9/bt23l/5cOHD/n/oF8J3t7e3B7Vq1fHqFGjcOXKFZw6dQr79u2DnZ0dTE1N+aJKabcU1TaVv78/pkyZgrJly/J0bdu2xYEDB7ifPXv2DCtXruRl3ooVKwricb9onj17hhIlSmD27Nn8vZf4XJHtnTt30KtXL14vzJ07l/tOcnJyuiJ2IeZNxdPTk4s4ZTIZDA0N8dNPP32WeFP4Re5y9+5d/Pvvv5gzZw7q1q2rtgsXYwwNGjRAz549ceDAAVy5ckXjXZbKLFEX55w///wTjKXufBIcHMzzVHWsLz4+HnPnzoWDgwO30a+//sqF1lK6vXv38l0PfvrpJ3z8+BHh4eF4+PAhmjZtCsYYhg4divj4eGG7NKxZs4bn7Zo1a3iABSA1f6X8ioiI4ItoSpYsievXrwPQXMQhbJFzcsM3pL75+/fvsWzZMjRr1gyMMT4WrPpjY2PzVUfGFwJ2gUAgEAgEAoFAIBAIBAKBQCAQpIuqIOHQoUMYOXIkF9tKA+WDBw/Grl27tJ4jcffuXRgaGsLKygrPnz9XO5acnMzFue3bt083YtD3jmq+Hj9+HJMnT4axsTGMjIygr68PY2Nj/PLLL7hw4QJPpypeHzVqFJ/sKFOmDFavXs2PaZvgePHiBcqUKcOj9Ak+oTpJl5MJO09PT7Rr1w6WlpZgjKFevXpceK26QwGQKmLv2LEjX0ASGRkpJguh7hcTJkzg5dKECRM0yhoJ1fdd+EXeEB0djcmTJ4MxBnt7e9y8eVNrOukdfvHiBWxsbHiEt1evXmlNd+fOHRQqVAiMMZQvXx61atVC3bp1+STuzJkz8/bBvkIiIyP5DgOOjo7pLryQ3veAgAC+OKBGjRoZCt5jYmLwv//9D127doWBgQGKFCkCIyMj9OjRA+vXr+fpRFmlzvv373H27FkMHjwY+vr6vE1VqFAhlC1bFhs2bMDt27fVzklPiJBWvC61pxhjfEGIiKqrSVhYGBfiOjo64t9//0V4eDgOHTrERSSfK16XEH7xefj4+PDIoYwx6OnpQV9fX02cY2Jigt27d6st7gM+5eEvv/wCxhhat27Nj6n6zJYtW8BY6u5FqqIugSY+Pj5qO0FIdlC1h5mZGa5evQpAXRjn7e2NYcOGwcLCgovjli9fzoW+quKt2NhYzJo1Czo6Omjbtq1YWKCFtIv/siNIu3btGrp166YR1VV1dy6FQpGuiF2QioeHBxdzlihRAosXL9ZYKJMewi9yn2XLlqkJNx0cHDBgwADs27cPt27dAgCNKOtAavsL+PT+f62Rir8kzpw5gyJFioAxhtWrV6vtEpGUlISXL1+ia9eufBGI1Id+9+6d2nVCQkJ4H3vMmDEabaR169aBMYZGjRqJ9pMKquXP77//rpbHDx484MciIyPx6NEj3t4qVKgQfvjhB607pQlb5A459Q2pfAoPD0eXLl34AkPGGGrWrIkRI0Zg1apVGDVqFGrWrAnGGMqUKaNRt3wtCAG7QCAQCAQCgUAgEAgEAoFAIBAIMiTtpKyPjw+uX7+Oy5cvw83NLcO0Ep6enqhQoQIXGPr7++Pt27dwc3ND+/bteWRpSbz7tQ225xdp8zc0NBTPnz/H8+fPNQRWqsKE2bNn86hxVlZW2LRpEz+WduJWyvukpCS+ja0Q6uYdkZGROHz4MFq2bAnGGIyMjHDjxg0Amn7g4+ODZs2aYevWrQVxq18squ/wpEmT+MTeuHHjEBISopZWNU+FX+QtoaGhaNCgARhjaNKkCTw8PNSi5kp/h4eH4+eff4axsTEYY+jVqxeio6M1rufm5sbFPz169MCtW7cQFxeHly9fYs2aNZDJZLCwsEg3Yvj3TEhICN/GvGnTpnj+/LlaHSHZIigoCG3atOFl0fTp09UW00i/X79+jX/++Qf169dXExAZGhqq/S+i4muiUCjQpk0bjch5LVu2xPLlyzXKrIyEcRmJ1xctWoR///1XqyBR2CIVT09PFCtWjC+0GTduHI9KaWxsjN9++y1L4nXhFzknODgYY8eORY0aNdTyqlixYrC1tcW1a9cyPH/+/PlgjKFz585ISEhQ85u7d++icuXKYIxhzpw5efwk3wahoaGYNm0aatWqpWYPa2trtG7dGh4eHgDU39+AgACMGDGC+1Tp0qVx+vRpxMTE8DRp3/f//vuPX/vhw4f583BfETktH5KSkrB3714YGBhwweKff/6pdlxCoVBg27ZtvG5auHBhjr77W8TDw4MLDZ2cnLBv3z4ePT09hF/kHYsWLcKmTZtw//59tYU00m/VXU/27t2LiRMnokqVKujcuTOmTZumIRIVZJ+5c+fyd3b48OFYtmwZduzYgWHDhsHa2lqtHlm/fr1aH0Sy1/r168EYQ61atfhx1XQ7d+7kAt1Xr159lRGm8wrVd3jGjBlqdXavXr0wcuRItGzZku9UYGxsjEaNGuHOnTtarydskXtk1zekPH3x4oVadHbGGNatW8cjrQOp9ndzc+PR2bt16/ZVLn4SAnaBQCAQCAQCgUAgEAgEAoFAIBBkmYwm0jObZN+0aRMfdHd0dIStrS0ftC9WrBgX7apOgKTdyjYr3/O9kNV82LdvH6ysrHjExLVr1/JjGU02nT59mkeF3bhxY47vV6CJauQ+f39/9OrVC4wxFC1aFI8ePdJ6TkaCh+8Z1Ynb8ePHgzGGjh078ghUaRF+kT/4+fmhXLlyYIyhYcOGOHDggFqkN19fX/Tr1w+lSpXiQs/Hjx+rXUOKSPnTTz+BsdSdOsLDw9XSBAUFoUqVKmCM4dixY/nybF8bfn5+KFu2LBhjqF+/Pnbs2MHFuZGRkXjy5Anq1avHFxKUL19eTaQolTf+/v4YN24cX5RmZGSEKlWqYPbs2fjnn3+wefNmjBw5kgunZ8+eXWDP/KXy7NkzvpNA//79sWbNGrXjWRGCZCReX7x4MT+2efNmIWLPAFURe+HChfk7PW/ePAQGBmZ6vvCL3CMuLg6vXr3Chg0bsHz5csyfPx+XLl3C69evAWh/Z6XPdu3aBZlMhvLly+PGjRu8rXT9+nW+KKd169bw9fUFkL1I1t8biYmJiIqKwv79+7F7925s3LgRHh4eXBSl2u6KiIjArFmzUKJECS5qc3FxSffakt2eP38OExMTMMZw9uzZPH2e75mLFy9ixowZfDHNwIED+bG0kdjXr18Pe3t7bNmyRWPHA4F6nVGjRg3s2bMn3V0dhF/kDekJzlU/T2+HLtVFZXZ2doiIiAAg6oTsoppv//vf/8DYp91/0i5Ga9KkCU6ePJnutaZNmwbGGDp06KBx7fj4eEyZMgWMMQwdOjTvHugrRvWdX7x4MSpWrJiuLbp168Z3KtCGsEXOyYlvSLYMDQ1F+fLlwRiDrq4uKlSogCtXrqh9j1SHp6SkYO/evTA2NoaNjY3GguivASFgFwgEAoFAIBAIBAKBQCAQCAQCQZ6iKjhZv349LC0tYWRkBMYYLCwsUK9ePTx//hzAp4F+bROTHz9+5CIWMcmYNd6/f4/+/fvzCRLViNHp5aEUGfl///sf9PT0oK+vj/Pnz+fXLX9TfK5A0N3dnUdO6tu3L96+fZtHd/ZtolpubNmyBSdOnNCaTvhF/uLl5cVF7MWKFUOFChXQv39/tG/fXm3LbH19fZw+fRqAph2io6Ph4OAAXV1d7N69W2Nxk1Kp5JHxjx8/nr8P+BXh5eXFJ8JNTU1RqlQpdOjQAc7Ozly8Kx2TItkrlUqez15eXujevTu3m5mZGRYtWqQRITQ6OhqrV6/mUfEvX76c78/6pePl5YWLFy+qRQjNTtvm+PHjaN26NbfdX3/9pXY9hUKBrVu3ChF7Bnh4eMDc3ByMMRgYGKB79+68XQqkn0/S58Iv8p7MfCM6OhoNGzYEYwwVKlRAu3btMHz4cOjr64Mxhtq1a+Pw4cMZiuAFWUfKM6nddfjwYb4ouXTp0plGzJfO27p1K3R1dWFsbCx2T8kDVP3mw4cP2LVrFxdGjxw5Ums6pVKJgIAAxMbG5uu9fk14enqiePHiYIyhd+/eGrsGCb/IX9KW4ar/jxo1Cowx6Onp4ffff8eZM2cQFBSEgQMH8sXO4l3PGar9bymydNGiRWFubo7q1aujZcuWOHr0KPz8/Hg6bfXu1q1boaenh+bNm+PVq1dq1z969Chf+Km6Y5pAHVVbXL58GX/++Sesra1RqlQpVK5cGXXr1sW+ffuELfKJ7PiGtHAsLCwM1apV44ti69ati3v37gFIv93q6urKd1zZv39/Hj5Z3iAE7AKBQCAQCAQCgUAgEAgEAoFAIMhzVCfGHz58iPPnz2Pt2rW4e/cuj3wFqA/GJyUl4fHjx9i2bRvGjBmDatWqwdLSEm5ubvl6718zR44cUduyViI9IZD0+a1bt3gU3latWuXLvX5rqOaxl5cXlEplpiKphIQEzJkzhwuwPD098/o2vzm0LX5Jm+/CL/Iff39/dOjQgUdaV/0xMDCAubk5Ll26lO75Dx484CJ3KWKcqk9duHCBXy8zgdD3TkBAALp3784XFaSNAufk5MSFtwqFgr//3t7eaNu2LRe6FytWDOfOnVOLPKoayTUwMBCOjo5gjGHlypX5+5BfIdkR0T5+/BiNGzfm9uvevTs/Fh8fz/+WROxyuVxETEwHd3d3LmKvVq0aDh48qLbjSVokewm/KHikev/Dhw9o2LAhX6wh/fTp0wdnzpzh6dL+llC1kxC1Z46UR9HR0XBycuILk//7778Mz1Nta3Xt2hWMMRQpUkRtdxZB3pCcnIytW7fC0NAQOjo6WLduXUHf0leLh4cHmjRpAnd3d7XPhV98OSxbtoyL1/ft26e2YBAA7O3tUbZsWQQEBBTQHX47pK1PX758iYCAAHz48CHDBQaqXL58mUfHnzp1Kq5evYrLly9j4cKFfOHNsGHD8uwZvhXSjmd8+PABb968wbt379TaORkhbJF7fI5vSGnfvn2LVq1a8fKrfv36fIe6jBZi+vr6wsLCAowxHDhwIC8eJ08RAnaBQCAQCAQCgUAgEAgEAoFAIBDkC9JkirZBd0lode/ePezduxeDBg2Cvb292jarRYoUga2tLebMmSO2NM8EpVKJhIQEdOrUCYwxODo6wtXVlR9L7xwA8PHxQZkyZcAYg7W1NQ4fPgwAGnme1o4iKr52tm3bhlGjRvH/MxNFubu7w9TUFIwxLFy4UGuazCaChS20kxd+IfI667x58wYnTpzAgAEDUKNGDVSsWBEtW7bE/Pnz4eHhASB9/3j9+jXs7e1hbGyM3bt3q+X7nTt3YGtrC8YYRowYkS/P8rXz9u1bXLlyBcOHD0eLFi1Qv3599OzZE3v37uVCHtUFAoGBgejTpw8vm4oXL46nT59m+j09e/YEYwz9+vXTurhEkHO2bNmCDh06wMjICEZGRmoR1lWFKgqFAtu2beMRwn19fQvidr9oPDw8UKxYMTDGUKNGDezZsydDEbvwiy8H6V2PiorC7t27MW3aNMydOxc7duxAbGxshnXLtWvXMHfuXPTo0QOjR4/Oz9v+JpgwYQIYYyhcuDDmzJmD9+/fp5tW1Q5//fUXGGPQ1dXF9OnTNY4Lsk5iYiKioqKylDY4OBht27blZZAg+0h9Y23luPCLguX9+/do3bo15HI55s2bp9Yeio+Ph0KhQIMGDcAYEztq5RIZvadZ7S+vXbtWbTcoHR0dPh74448/8nSqPqfN/0T/PH2ELfKfz/GNuLg4/PrrrzAzMwNjDNWrV8eDBw8yvQ4ALFy4kNc7aXeB+hrQIYFAIBAIBAKBQCAQCAQCgUAgEAjykJSUFJLJZCSTyYiIiDFGREQKhYJu375NERERdPjwYQoODqa7d+/y80qXLk3Ozs7UunVrcnJyIicnJ7K2tiYA/BoC7chkMlIoFOTl5UVERBUqVCBbW1t+LC2SjQIDA+nnn3+mly9fkp6eHtWvX58aN25MRES6urpERPTmzRt6+PAhXb58meLj48nR0ZHatGlD1tbWpFQqSS6X59NTfvn4+vrSpk2b6MGDB1StWjUaP358uu+u9F7r6OiQgYEBRUVFUWJiYrrpiIQtPpe88AvpPJHfmVO8eHHq3Lkzde7cmaKiokihUJC5uTl/pzMq283MzMjOzo6eP39Of/75JxERlSxZkiIiImjatGn06tUrat26NU2YMIGIPtlOoJ2iRYtS8+bNqXnz5pSUlEQpKSlkYGDAjwPg+ffhwwfatGkTXbt2jaKioqhYsWJ048YNqlq1aob5HB0dTb6+vvx6wj/yhuHDh1OrVq3o5MmT9Ouvv9K6devo48ePtGfPHtLR0eFlk1wup8GDB1ORIkXI3NycypcvX9C3/sVha2tLLi4u1LhxY3J1daVVq1ZR6dKlqVmzZhplk/CLLwvpXTcxMaFBgwZpTRMbG0uMMbp58ya5ubnR1atX6dGjR/TmzRsiIl4PNW/enHr37p2ft//VEhsbS+7u7kREZGVlRV27dqUiRYpoTatax589e5YOHz5MRESGhobUsGFDIkq1QUbtKdEH1EShUJCLiwuFh4fTwIEDM80jKysratKkCV24cIEOHjxIM2fOJEdHR61phS0yRkcnVW6XNo/ywi8En0doaCjduHGD5HI5NWzYkNtKoVCQgYEBRUZG0ocPH6hUqVJkY2NTwHf7bZDRe5pZn0xqN40dO5aMjIxo8+bNFBgYSImJidS8eXNq1qwZzZgxg4iIEhISyMDAgJ8j+d/79+/Jzc2NSpcuTZUrVxZ9wXQQtsh/suIbUh4FBwfTpUuXKDIyknR1dWnDhg1Uq1atdOtc6bzIyEi6f/8+EREZGxuTqalp3jxMHiIE7AKBQCAQCAQCgUAgEAgEAoFAIMhVpEF0aZBdGpRPTk6mhw8fUkBAAB05coRevnzJB9mJiEqVKkU1a9akHj16UIUKFahp06ZkZmZGhoaGGtcXgp/MiY2NpZiYGNLV1aUePXqQrq4uKRQKPoEroSrSHTduHLdJhQoVaM6cOWRhYcHTnjt3jnbt2kUHDx7kn8lkMrKysqKTJ09S9erVv/sJKlWKFClC9vb29ODBA7pw4QK1adMm3UlyaULqyZMnXEyVduJJdeJK2CJ75KZfpKSkEGOMGGO8TPLy8qI3b95QSkoK2dnZkZGRERkZGQlb/D/SO2xiYqLxWUaLO/T09Gj9+vXk7e1NT548oZEjR1JCQgJP06lTJ5o6darGgoT0JnuF8OpTHujq6vK8ULWFJFx79OgRHT16lCIiIsjc3JzOnj1LVatWTVfYJn3+8uVLvginQoUKatcX5A5SfpYvX55Gjx5NxYoVoxEjRtDevXupfPnytGDBAjUbyeVy6t69ewHe8ZdP1apVycXFhVq0aEEJCQlkbW2t9s4Kv/gy0dY3iI+Pp+TkZLp8+TK9ePGCTpw4QcHBweTn58fT2NraUoMGDahZs2ZUr149Kl++vFq7V5Ax9+7doytXrhAR0c8//0xOTk5a06m+4w8ePKDdu3fTvXv3iIho7Nix1LVrV55OsuOlS5coODiYChUqRCVLlqSmTZtmutjte+T58+fUq1cvio+Pp0aNGmW4OEkqhypWrMjz8uPHj+mmF7bImPSePbf9QhXV/sT3nv8ZIZUlBgYGvM8BgPf3RowYQV5eXlSzZk0qXLhwQd6qgFL7bdK7PXToUGrbti0lJydTdHQ0WVlZqdlIWnD79u1b8vf3pzt37tD169fJ09OT/Pz8SEdHh9zd3aly5coF9ThfNcIWBYNUrm/YsIEePHhARETbtm2jxo0bZzieIZ23bt06OnHiBBERjR49mipVqqSW7muoK4SAXSAQCAQCgUAgEAgEAoFAIBAIBLlCWsH6u3fvKCwsjB49ekRXrlwhd3d3evr0KU9fqlQpqlGjBvXo0YPKly9PnTp1Ij09PTIyMlK7blrhpxCvZ42UlBSKi4uj5ORkCg0NJSJKV6Tr5+dHI0eOpHv37lFCQgIVK1aMDhw4QFWqVOFpT506RfPnz6dHjx5RoUKFqGvXrhQXF0fBwcH0+PFj6tSpE125coWsra3z9Tm/ZIoVK0bdunWjc+fO0enTp6levXo0ZcoUjUUZEuHh4XT58mWSy+WkVCqpVKlSaseliSdhi+yTW36hVCq50DcgIICuXLlCu3fvJg8PD3r//j0RpQoha9euTbNnz6bKlSuLKO306R1WnUTNTNgvianNzMzoypUrNH78ePLy8iJXV1eysbGhTp060aRJk6h48eIak7OqQuwbN25QbGwstW/f/quYxM1rtNlC9W/pXf3zzz/Jx8eHChcuTJs2bSJnZ+d0F5Kpfr5y5Ury8fEhxhi1bt1a4/qCrKNtkQ2Ren7q6OhQp06daMKECbR06VI6fvw4devWjZydnfPzVr8JqlatSvfu3aPExEQqX768mvBD+MWXQdr6VFo4GxMTQ1euXKHAwEA6dOgQRUREqAnWq1evTh06dKDu3btTpUqVqEaNGlqjVIpFZ1kjKSmJdHV1ydDQkGrWrElEmnmn6j+urq60adMmvvhywIABNG/ePLVr+vr60sSJE+ny5cuUnJxMRKkLOkeMGEFLliwRwuk0JCQkkJmZGcXGxtLevXtp8uTJGn3ptHh7exNRanmW0eJBPz8/YYtskJt+kbb+l8o5hUJBiYmJVKJECa3X/N4xMTEha2tr8vDwoCtXrlDlypWpUKFClJSURCNGjKBDhw6Rubk5rV+/nooUKSLy7gtA2ilNR0eHSpQoodGe8vf3p5iYGDp9+jS5u7vTtWvXKDw8nIhS21ElS5akbt26UaVKlejVq1dCNJ0DhC3yHwAUERFB169fJyKizp07U5s2bYhIez9BtczatWsXzZ49m4iIGjZsSB07diSiT21lKV1SUhLp6OjwMawvra0rBOwCgUAgEAgEAoFAIBAIBAKBQCDIFRhjFBsbS3/88Qe9efOG7t27R/7+/jzSZNGiRalRo0bUvHlzsrW1pWbNmpG+vr7GltoA1KLJfEmD6l8TJUuWpF69etHOnTvJ19eXPn78SKamphrC0SdPnlC/fv3I39+fUlJSyMzMjM6dO0cODg580sPHx4c2b95Mjx49ojZt2tCYMWOoc+fOpFAoyNfXl3788Ud69OgRnTx5kiZMmCAmgenTpFKnTp1o8uTJNH36dPrtt9/IzMyMBg4cqCGYevv2LR0+fJj27t1LSqWSmjZtSn379tW4rrBFzsgNv1AVI968eZMmT55MISEhFBERwSORGRkZkZeXF3l5edGVK1fo/PnzVK1atS9uovBrQVrUYWpqStu2bSOlUklv3rwhY2NjKlq0qEb66OhocnV1pcDAQDp69CgFBwfTkydPiIho6NChtG3btvx+hK8KqdzYvn07Xb16lfT19ennn3+mFi1aEJH2elm13t6wYQPt2LGDGGPUrVs3sre359cUPvB5xMTE0LNnz8jZ2Zn09PQyTGtiYkLNmzenv//+m54/f04PHz7MUMAubJE+ZcuWJSJ1gUhe+oXg85Dq4BcvXpCHhwe5urrS+fPnKSAggIKCgng6Ozs7atWqFfXt25fKlClDLVu21CraTesLwi+yRmRkJCUnJ5OhoSGZm5sTkXreqebr3bt3adOmTbRr1y4iSt05Zfr06aSrq8v7G3fu3KHJkyfTgwcPyNzcnKytrUmpVJKrqystW7aMGGO0ePFi4TMq2NnZUc+ePWn58uV08OBBatq0KTVq1Egjneqijxs3bvAI1WXKlFFLJ9lM2CL75KZfSOL1lJQUOnToEJ06dYpu3bpFycnJFBUVRT179qRGjRrRsGHDxIICFSpUqEB9+/alOXPm0K+//krXrl0jpVJJ79+/pydPnlCRIkVo5cqVVKdOHZFnBUjavoH0vsvlcgoODqa3b9/SsWPHKDQ0lM6dO0dRUVGUkJBAMpmMihYtSv369aNq1apRs2bNqHLlymoLOgSfh7BFwcIYo1evXpGbmxsREdWtWzfdHYFUy6xDhw7Rb7/9RkREhQsXpk6dOvGFU3K5nJKSksjT05P27dtHz549I4VCQc7OzjRs2LAvL8ACBAKBQCAQCAQCgUAgEAgEAoFAIMhFRo8eDcYY9PX10bJlS0ydOhUnTpzAy5cvERcXp5FeoVDgzZs3ePDgAd6+fYv4+Hj+uSBn7NixA4wxMMawatUqhIaG8mMPHjzAmjVrYGJiwtNUqFABT58+BQAolUqkpKQAAHbt2gWZTIby5cvj3Llz/BpJSUkAgIEDB4IxhlGjRuXj0335KJVK/vf//vc/ns9TpkzByZMnoVQqoVQqcenSJcycORPGxsZgjKF69eo4fvy4xjUAYYvcIKd+AaTm9z///AOZTMbTFS9eHPPnz8d///2Hp0+fYv369WjSpAkYY6hcuTL8/f0L5Hm/JZKTkwGAl00Sr1+/xp07d7B27Vr07NkTdnZ23C6SDVu1aoWVK1di8+bNBXHrXyVTp07l9fnly5fTTadqj5MnT6JOnTpgjEFHRwdbtmzRek5SUhJevXqlVsaltev3Tnx8PDZt2oSqVavi/PnzWTonLi4OtWrVAmMMQ4YMyVKeClt8HnnpF4KMCQkJwYEDBzBv3jy0bdsWpUuXVivrbW1t0a1bN2zZsgXnz59HfHy81r6HVJcIckZwcDBsbGygo6ODTZs28b5bSkqKWj/u0KFD6N69O7dTu3btcOPGDbUy5927d6hfvz4YY7C3t4eHhwdiYmLw8uVLrFq1CnK5HMWKFYOLi0u+P+eXTmhoKBo0aADGGJo0aYLnz5/zvE3bnx41ahQYY9DT08Po0aMBfCqrpHOELXJGbvoFABw9ehRDhgxRK+sMDAzAGOP9kBkzZvD033v9rZp/v/zyC+RyOeRyOc+7UqVK4ezZs0hMTCzAu/w+SVvWqPLmzRvcv38fc+fOxYABA1C4cGH+nhsYGMDExAQ//PADfvvtNzx+/BgvX77UuIZ0XW3XF6gjbPHl8eTJExgaGqJo0aJ48OABAM32qmp+Hj58GFWrVoWOjg4YYxg8eLBa2tjYWPz9999wdnZWqz8YYyhdujSeP38O4MupM0QEdoFAIBAIBAKBQCAQCAQCgUAgEOQK+P9IMOvXr6fevXtTqVKlyMbGRi2NUqlU+z88PJzGjh1Lnp6e5O3tTVWqVCE7OzvauHEjFStW7MuKCPMVIdliyJAh5OPjQ4sXL6ZJkybRf//9RyVLliTGGN2+fZsiIiIoMTGRLC0tqWbNmrRs2TKqWrWqWmS4hIQE2rNnDwGg3r17U9u2bYko1Za6urpE9CmqXEpKiojoqoJMJuPv8KJFi4iIaPHixbRixQpasWIFVatWjYiIR/lOTk6mqlWr0ogRI6hp06b8GhLCFjkjt/wiKiqKdu3aRZMmTSIAZGFhQbVq1aI1a9aQtbU1/z57e3tq1qwZDR06lO7fv0+rV6+mpUuXko6OjrBLFoCWiIhSNLiXL19SZGQknT17ltzc3OjGjRsUEhLC0xUrVoxatmxJrVq1ourVq1Pz5s2JMUZGRkYZXl+QilKppKSkJDpz5gwREXXv3p1HmU6Laj5euXKFNm7cSA8ePCAiolGjRtHw4cPVrvv69WuaM2cOubu707Nnz6hp06bUpEkTmjFjhogemobExES6fv06eXt709atW6lWrVo8mmt6REZGUnh4OP87vbwUtvh88sIvslpPC1ukoqurS2PGjKEPHz6Qrq4uFS9enHr37k0NGjSgWrVqUa1atUgmk/E2kUR0dDQxxogxRsbGxqSjoyPaSLlAkSJFyMnJiXx8fOiff/6hunXrko2NDRkYGPAdtWbPnk0nTpwgd3d3IiLq2rUrzZgxg+rUqaOW/5MmTaK7d+9S+fLl6ezZs1S6dGkiIjI2NqYePXrQzp07ydXVlSIiIgrkWb9kypQpQ7t376YWLVqQi4sLjRw5kiZMmEBNmjShkiVLUkJCAsXGxtL06dNp586dxBgjS0tLatOmDRERL1skewhb5Izc9Iu5c+fS0aNH6dmzZ0REVLlyZapatSq1b9+e3r9/T15eXrR3715atmwZyWQy+vPPP7/7ukK1/7148WKqV68ehYaGUmBgIDk6OlLLli01dh4Q5A/Su6lUKik6OpoePnxIDx8+pAcPHtCdO3d4+1VHR4fMzc2pY8eOVKFCBerWrRuZm5tThQoV1K4ntY2k32IHx6wjbPHloaenR4mJiZSQkEDe3t5Uq1YtPvYhIeXn3r17afbs2fTy5UtSKpXUuXNn2rlzJ0+XmJhIa9asoRUrVlBkZCTZ29vTTz/9RMHBwXT//n26desW9ezZky5duvTFlIdCwC4QCAQCgUAgEAgEAoFAIBAIBIJcgTHGJwubN29ORJpb0Upi9JSUFLp27RpNnjyZnj17RsWKFaPKlSuTQqGgI0eOkJeXF12/fp2KFi0qRDvZQNUWixYtIj09PVq5ciXdunWLUlJS1NLWq1eP+vfvTz179qRSpUppCHpkMhnFxcUREZGZmRkRESUnJ3Nx0LVr1+jatWskk8moY8eOYpIqDXK5XM0WlpaWtH//frp37x55eHiopa1Xrx6NHTuWOnbsSKamphrXErbIGTnxC+m8xMRE2r59O02dOpUAUJUqVahnz540efJktUU3AEgmk1HlypWpadOmdP/+fXrw4AHp6uqK8iwTpDJINZ+Cg4MpMjKSTpw4QUFBQXTu3Dl6//49JSQkEBFR0aJFqWvXruTg4ECNGzem6tWrU4kSJdR8IO0CKmGH9JHJZKSvr88nzYsWLUpERAqFQm0iXbW+uHTpEm3YsIGLe/v06UMrV67kaePj4+ncuXO0dOlSunfvHunq6lJycjKdP3+ezpw5Q+Hh4bRixQphFxWMjIyoQYMGdP78ebp37x7duHGDunTporVsl2zx/PlzAkBERCVKlNDahhK2yB657RdJSUmkp6fHz7t//z4FBATQzZs3SU9Pj5ycnKhKlSpUt25dsaDg/ylZsiS5uLjQqVOnqFmzZmRtbU3FixdXS5OUlMT/dnFxoRs3btB///1HSqWSKlasSD169KCBAweSTCYTIvYcYmJiQosWLaK7d+/SzZs3adiwYeTk5ET16tWjO3fukJ+fH7m4uPD0w4YNo+nTp1OVKlXU3uWoqCh6/vw5GRkZ0fr166l06dJqfmVoaEgKhYIA0Pv37/P9Ob8GKlasSBcuXKA2bdrQ7du3ydvbm4oVK0aNGzcmX19f+vDhA7m5uZFMJiNjY2OaNm0adevWTeM6whY5J7f8YsyYMbR//36KjIwkotTFT3379uWLnImIPn78SPXq1aPx48fT2rVrqX79+tSlS5f8e9gvFNX+t7b3XJT9BcfTp09p4MCBFBMTo7b4uFSpUtS9e3eqWbMmtWnThooVK0bW1tbptn1Ubfi9t42yi7DFlwMAKleuHLVv357OnDlDjx8/pm7dupGxsbFaGsYYLV++nH755RdKSUkhANShQwc6fvw4EaUK1/X19enmzZu0Z88eiomJodGjR9PIkSPJxsaGFAoFeXh4UN++fSkwMJAePnwoBOwCgUAgEAgEAoFAIBAIBAKBQCD49kgbLT1tRDdpItHDw4MmTpxI7u7u5OTkRPv27aOSJUuSqakpDR48mPbs2UOzZ8+m1atXa0RRFGQN1YnbuXPnUu3atcnd3Z1OnTpFjDFydnYma2trGjlyJBfVSqJbVXR1dcnR0ZHu3LlD3t7e9OHDBypSpAgREd2+fZs2bdpEoaGhPNKxQBNVW4wfP55atWpFrq6udPjwYfr48SNVqlSJypYtS5MmTSIjI6N0J/6ELXJOdvxCqVRym+zdu5eL16tXr05Dhw6l4cOHU+HChSklJYWXgVJ6HR0dvhPFo0ePyNfXlypXriwmdzNAqVRSTEwMBQQE0OnTp8nPz49OnjxJSUlJFBMTQ3K5nORyOXXp0oVHgrO0tKSyZctqFaxLk71iN4+sI0UqrlixIj1//pzCw8M1RLqqO6QcOXKEtmzZQufPnycioi5dutDSpUtJLpfz81xcXGjOnDn0/Plzqlq1Ki1cuJCio6MpODiY5s6dS6tWrSIbGxsaNWpUgTzzl4iuri716dOHzp8/T6dOnaIlS5ZQpUqVyM7OjqeRorlK7/62bdt41MQOHTqolTWSwETYInvkpl8kJydz8fqVK1fo4sWLtHTpUjI0NOQL1YiIypUrR0OGDKE5c+YIEfv/U61aNb6DDdGn91pauCHlqxSdMiQkhABQkSJF6NmzZ3Ts2DF69eoVTZs2TQgYcwFra2s6f/48devWjZ48eUJPnjyhXbt28TpYT0+PypcvT4MHD6b//e9/GucDoJCQEHr69CkREe/36ejocP8KCAigd+/eUfHixdXKP4E6NjY2dPXqVRo/fjw9efKEvL29ycfHR803bGxsaMyYMTRy5EgiUhceClvkHjn1i2HDhtGuXbu47ZYuXUrTpk3jx6UFUGZmZtS9e3c6cuQIXbt2jVxdXYWA/f/JqN0vyv6Co0aNGlS/fn06e/YstWrVitq2bUtOTk5kb2+vsSCNKLXt5eHhQaGhoRQcHEzVqlUjR0dHMjEx0WiDCT4PYYsvB2mHIEnAvmLFCipVqhR16NCBqlSpQvHx8XT8+HG6fPkyj7Suq6tLPXv2pH379hFR6oJafX19IiLav38/eXh4UIsWLWjMmDFUqVIl3l90cHCgUqVKkbe3NwUGBhbUI2sCgUAgEAgEAoFAIBAIBAKBQCAQCPKRpKQkNGjQAIwx1KlTB+/evQMAJCQkAAAiIiJQpEgRNG3aFEqlsiBv9ZsgbR4mJydDoVBkmCYtBw8eBGMMjDEMHjwYf//9N6ZPnw4nJycwxlCxYkUcO3Ys1+/9WyMlJSXHaYQtcofP8QvJJhcvXuR5b2tri5UrVyI6OlotjbbzV69eDV1dXZiamiIgICBL78H3SlxcHMaNGwcdHR3o6uqCMQZdXV2YmZmhR48emDp1Km7fvg0fH59MryXqj+wjvaPLly+Hrq4ubG1t8eTJE61ply5diurVq3Pf6N69Ozw9PdXSJCQkoHnz5mCMoU2bNggMDOTHoqOjMWHCBF6mCTQJDAzkedy0aVPcuXMHMTExammSk5MxfPhwMMYgk8nQrVs3hISEaFxL2CL75JZfqNY1f/zxB5ydnXk6ExMTVKhQAQ0aNECFChUgk8nAGMPUqVPz/Pm+Jfbv3w9DQ0MwxtC7d2/8888/ePPmDQ4fPgwzMzMwxkRbKZcJCQnB/Pnz0bx5c1hZWcHW1hZ16tTBli1bcPv2bZ5OW90cFRUFJycnFCpUCPv371dLExERgZo1a/IyKz4+Pl+e52tGetf79OmDGjVqoEqVKnB0dMTKlSvh4uLC0wlb5D1Z9YukpCT+9/jx43kb2MDAAJs2bcr0e4YOHQrGGBo2bMjHVASCLw3V9k9YWJhan1j6Ozk5mX/24sULrF+/HsbGxpDL5WCMoVChQmjWrBnevHmjcU1B1hG2+LJQzf+ZM2fyfkHlypXRoEEDVK1aFYULF+af16hRA7/99hs/R9VWr169grW1NWQyGU6ePMmvL9Xn8fHxsLOzA2MMa9euzacnzBwhYBcIBAKBQCAQCAQCgUAgEAgEAkG+curUKejo6KB06dLw8/MDoD7g/ujRI8jlcpQoUQIvX74UIsQvhDVr1vAJE+lHX18fDRs2xH///cfTKZVKPgGjbRJLTGx9IrtCZmGL/Mfd3R3W1tZgjKFs2bKYP38+oqKiAGRsx7dv36JGjRpgjKFevXpCvJ4F3N3dYWVlhc6dO2PWrFm4efMmvL291dKovruenp64cOECZs6ciX/++SdTcZYg67x48YK/v40bN8axY8cQHByMsLAwHDlyBH379lUrh3744Qe8ePGCny+978uWLQNjDCVLloSvry8A9Xp/+fLlYIzBwcEBMTExwm5a8Pb2RqlSpcAYQ/Xq1TF8+HCcOHECFy5cwLJly9ChQwcuXre1tcX+/fu1XkfYIufkxC9U83P48OHQ09Pj6fr374/t27fj3bt3SE5Ohru7O5YvX85F7CtWrCigJ/66ePz4MRfmjB49mvc1JDZv3gzGGObOnVtAd/jtIgmkgoODERkZydtJEumVJ4mJiejfvz9fILhr1y6cPXsWe/bsgYODA/88LCwsw+sINHn//j0+fPiAyMhItc+FLfKPzPxCtU27dOlSWFhY8AWc27Zt48cyyus+ffrwvoYQsAu+ZNK+x+m91/7+/pg4cSJvA3Xq1AnDhg1Dw4YNuYD3w4cP+XDH3y7CFl8WaRe4litXjuc5YwxGRkZgjGHixIk4d+6c1vOA1EVsJUqUAGMMe/bsAfDJtnFxcdi8eTOMjIxQqVIlBAUF5cOTZQ0Rv18gEAgEAoFAIBAIBAKBQCAQCAT5ip+fHymVSrK0tCQLCwsiIr7drFKppHv37hEAatasGZUqVaogb1VAn7aWHzduHJUoUYIuXbpEHh4epKOjQwMHDiQnJyeqWbMmERElJyfz7eaJiBITE+n9+/d0//59evz4MXXv3p2cnZ0L6lG+OBhjn5Ve2CL/SUlJIaVSSQcPHqR3794REVGjRo1o7NixZGJiQgDStaNCoaDTp09TREQEERE5OTmRUqkkmUwmtq7PgGrVqpGrqyuZmZlpHEtJSSEAJJfLiYjo0KFDtGDBAvLz86OEhAQiIjIyMqL58+fTlClTSCaTZWgjQcaULl2a/v33X2rRogXdvHmT3Nzc+PurUCgoKiqKGGNUrFgxGjJkCC1ZskTtfCnfw8LCiIioT58+VKlSJVIqlaSjo0MASKlUUmhoKBER2dnZkbGxcf4+5FdClSpV6Nq1a9S7d29yc3MjDw8P2rZtG8nlctLR0aHExERijJG9vT2NGzeO+vXrR0Sk8f4LW+Sc7PqFUqnkZVe/fv3o33//JcYYMcZozpw59NtvvxHRJ7+pVq0alS9fnt68eUNLly6lM2fO0NChQ8nU1LRgHvwLR3rXXV1dydvbmxwcHGjEiBFUsWJFIiJKSEggAwMD/l4/fvxY1A95gEwmIysrq3SPpQUA6enp0fr168nLy4uePn1Ko0aNooSEBNLX16fExESqVq0aHTp0iCwtLdX8SPpbah+rXvN7t6uUB0WKFNF6XNgif8mKX1y/fp2OHj3K+w2rV6+mYcOGERFp5Ksqnp6e5OXlRTKZjBwdHUlfXz8PnkAgyB3Svsdp/5fKjP3799OaNWuoUKFCNHv2bJo+fTpP07dvXzp06BBt27aNpk6dKsqZbCJs8WUhl8t5XTpr1ixq0aIF+fn50b179yg5OZkaN25M5cuXp0aNGvFzUlJSeD0sYWxsTLVr16bTp0/Tw4cPqV27dlSsWDGKj4+nw4cP09q1ayk+Pp7atm1L5ubm+f2Y6SIE7AKBQCAQCAQCgUAgEAgEAoFAIMhXihYtSkSpEyRxcXFkYmJCRKkTJLdv36Y///yTAFDdunUL8jYF/49MJuOT5r1796Zu3boRAEpOTtYQt8XHx1NMTAydOXOGfH196fTp0xQUFMSFv6tWraKAgAAqXrx4QTzKV4+wRf4jk8koMTGRTpw4QdHR0WRlZUXLli0jc3PzdMUk0uchISG0c+dOCgsLIz09PRo6dChfrEMkRD0ZIQk0VcVRRKnCTinPd+7cyYU9zZs3p6pVq1KxYsVo9erVNG3aNCpUqBCNGDFC5HEOqVy5Ml27do0mTZpEHh4eFBgYSESpC88MDAxo+PDh1Lx5c+revTsRaRdZxcfHExFReHg4F5ESpdrTw8ODzp8/T0RE9erVS/caglRbnDp1itauXUtXr16lBw8ekFKpJKVSSUREI0aMoI4dO1KnTp2ISNgiL/lcv0hKSiI9PT0iIvrhhx/o33//JblcTpaWljR79mwaMWKE1u8xMjKiWrVqEQC6dOkSBQYGUo0aNfLlGb9GUlJS6Pjx46RQKMjZ2ZnnlUKh4O/6w4cPiSh1gYCoH3KX7OQnY4yUSiWZmZnR1atXaeLEieTp6UkPHz6k2rVrU9WqVWnJkiVUpEgRDZG01D6IjIykoKAg8vb2pn79+gm7krDFl0RmeSAdP378ON29e5eIiBYsWECjRo0iovTrYakfcfPmTXr27BkREdnY2OTmrQsE+Q5jjK5fv84X9c2ZM4emTJlCRESxsbFkbGxMEyZMoEOHDlFAQAA/R5D7CFvkP6r1av369al+/fo0aNCgdNNrqxuMjIyoV69edPr0aVq9ejX5+flRxYoV6enTp+Tl5UURERHUvn17mjJlCh+L10Z+j1UJAbtAIBAIBAKBQCAQCAQCgUAgEAjyFUtLSzI2NqYHDx7QP//8Qx06dCClUkm3b9+mRYsW0YsXL6h9+/Y0bty4gr5Vwf8jk8l4RG8pqreenh59/PiREhIS6OLFixQSEkJHjhyhV69eUXh4OD+3Xr161LZtW+rWrRuZm5vzBQyC7CFskf+cOXOGXF1dydjYmBYtWkSlS5fWEFZLqH7+v//9j65du0Y6Ojo0Z84cql27NimVSi7CTklJoaSkJPL19aWSJUuSoaEhmZiYCMEofZr8TpvH0ufHjh3j4vWpU6fSuHHjyMrKihhj1LhxY2rTpg1t3LiRunbtShYWFmIyPYdUrFiR9uzZQ69fv6abN29SUlISWVlZUaVKldTEUum9u/b29kRE9OTJE7pz5w7Vr1+fFAoFPXr0iGbMmEGenp5Ut25dGjBgABFpn4wXpFKmTBmaN28ezZ07l86fP0/R0dFkYmJC5cuXJwcHB/6uC1vkPVn1i+TkZC5eHzt2LO3fv59kMhmVL1+efv/9dy5MSWszqT6pUqUKFS9enCIjI/lOEwJNpGj2khhHaiMB4IvHNm/eTCtXriQiopYtWxbIfQo0kaKOmpqa0ubNm0mhUFBgYCBVrlyZiIj7j9QmiIiIoKioKDpz5gw9f/6crl69SiEhIaRQKOjBgwf0999/F9izfO0IWxQMly9f5mXTwIEDaeLEiUSU8SIyxhjdunWLxo8fT0SpO0RJ9QkAnkYg+No4evQoERH17t2bC6YVCgVfsH/v3j0iInr79i2lpKQQkWiv5hXCFvlPTvJPEp0PHjyYoqOjacKECXTmzBl+3MrKioYOHUr/+9//qEKFCryO0Ta2JdUf6Y175TZCwC4QCAQCgUAgEAgEAoFAIBAIBIJ8pWXLljR+/HhavHgxTZ8+ndasWUMxMTEUHx9P8fHx1Lx5czp69Cjp6uoKIWcBIuW9NAkiCYGCg4Pp5s2b5OXlRSdPnqT379/Tixcv+HmNGjWi5s2bU69evcjS0pKcnZ3Vok4LPh9hi4JFWgSQlJRElSpVIiJNYTWR+hbOgwcPpkOHDpFMJqOOHTtShw4diOhTBHFfX1/as2cPnT17ljw9Pal06dJUtWpVWrx4Mdna2ubbROHXSHh4OK1bt46IiEaPHk1z587lk+gAqFWrVuTo6Eje3t4UExNDJUqUKMjb/WYwMzMjMzMzjeieqtHZ0quvBw0aRHv27KF79+7R0KFDqWrVqhQbG0tBQUH08uVLqly5Mv33339UtGhRrfW+6neInQtSBYSMMeratava55JgjUjYIr/IzC8A8Dp79erVtH//fiIisrCwoNmzZ6crXif6VM9cvXqVIiIi8vpRvnqk979ixYpERPTo0SNyc3MjKysrMjMzoxUrVtCCBQuIiOi3336jVq1aFdi9CjSR2rlyuZz09PSoevXq/FhoaCjFxcXRyZMnKSgoiE6fPk1v3ryh+Ph4kslkVLhwYerQoQNVrVqVbG1tKS4ujoyMjArwab5uhC3yD6mucHNzI11dXdLX16d27drxPMtoHOTZs2c0ffp0SkpKIlNTU2rdujWZmppq1M1JSUmkUCjU7CDqb8GXCgDy8vIiIiJzc3MiShVMS2MY3t7edPXqVSIi6tChgxgrzEOELb4+GGO8TzFu3DiqVKkSPXr0iAICAsjU1JT69+9P5cuX19iFUepzvHz5kp4+fUpPnjyh69ev0x9//JFvO6OKUUqBQCAQCAQCgUAgEAgEAoFAIBDkG9Jg+qJFi0hXV5d27dpF4eHhlJycTE5OTtSwYUP6+++/SVdXVwg4CxhpUtvLy4t8fHzIxcWFi6WjoqJ4mpo1a1KjRo2oR48eVKZMGapXr55W24nFCNlH2KJgkMQdUsTb6tWrU506ddSOqSLl6dChQ2nPnj0kk8nI0dGRfvzxR3J0dORpnj17RsOGDaPHjx8TADIyMqLQ0FDy9fWlu3fv0rVr18jW1laIS9IhMjKSnj59SqamptS1a1cuyJHe9bdv33LBlBBN5T2ZvaNKpZJMTEzo7Nmz1LVrV7p79y6FhIQQUaqIt0OHDrR161YqWbIk310ibRnFGOM2lUTB37NvpPfswhZfDlKeSL/d3d3p+PHj9PHjRyIimjVrFg0ePJiIMq6T3717R7du3SKZTEY2NjZUtmzZvL/5rxQpr4cMGUI7duygR48eUf/+/UlfX59MTU3p+vXrREQ0cuRIGjhwYEHeqoA+taOk919155XIyEgKDQ2lc+fOkZ+fH506dYri4uK4/+jo6FDnzp3J2tqaunfvTiVKlOALDAWfj7BFwQKATp48ScnJyeTg4MB3QMkILy8vmjt3Lrm7uxMRkYODA40ZM4YvmCJKFSKePHmSDh48SOHh4VS7dm2qVasWTZw4UdTfgi8Wxhg5OjrSpUuXKC4ujmJjY/lC5YCAANq8eTOdPn2abG1tef9akDcIW3ydSDv9yWQyateuHbVr104jjXTc39+fwsPD6fz58/T48WO6f/8+ffjwgaeLjIykq1evcrvnJULALhAIBAKBQCAQCAQCgUAgEAgEgnxDdXvSefPmUY8ePSgqKopiY2PJzs6OSpUqxQfchXg9/1EoFPT06VN69+4dHT16lHx9fenevXsUFxdHRESGhoZkY2NDzs7O1LRpU6pUqRIX9Ep2k/5OixBMfx7CFgWPJOqoXLkyERH5+/vTgwcPqHbt2lz4IaUDQBERETRp0iQ6cOAAyWQyqlChAk2cOJG6d+/Or+nt7U2DBg0iNzc3qlu3LnXp0oVatmxJfn5+tH37drpy5QqNHDmSjh8/TkWKFMn/h/4KcHV1pXfv3lHp0qWpWrVqxBhTiwa3fft28vX1JQcHB9LR0RECnQJGLpeTQqEgMzMzOnPmDJ0+fZqCgoKIiKhu3brk5OREhQsXJiLiwiuZTEZxcXEUHh5Ot27dIg8PDzp27Bg1bNiQtm3bJuyZTYQtCo6LFy/yKJW//PILjR07lojSF69Ln7u4uNDRo0cpJSWF6tatS6VLl87X+/4aKVeuHF24cIG6d+9OwcHBFBcXx+uHxYsXU+/evcna2rqA7/L7Ja1IGgDFxMSQh4cHPXz4kB48eEBXr16lsLAwUigUJJfLydDQkJo1a0YVKlSgnj17koWFhcauB2mvL8gcYYuCR8p7AwMDIiKqWrUqERFfRKYNT09P+uOPP+jatWsUHR1NZcuWpb1791LRokV5mosXL9LWrVvp0KFD/DN/f3/au3cvBQUF0YoVK0T9LfhisbW1pZSUFNqzZw9ZWVmRs7MzBQcH09WrV+nEiROko6ND06dPpxo1ahT0rX7zCFt8fQBQG3dX5dmzZ/Tx40c6cuQIBQUF0dWrV3lADAMDAypTpgx1796dnJ2dqX79+lSiRIl8Ea8TCQG7QCAQCAQCgUAgEAgEAoFAIBAI8hm5XM4ntLVF6pEG3AX5z8GDB2nQoEFcAG1iYkIlSpSgjh07koODAzVq1Iisra1JV1dXzUZJSUmkp6fHPxMLEHKOsMWXg42NDVWvXp3c3d3p/9q787Cq6r3//6/NrIIggjKJIENpiOaQYDl7UiGH1EqzHFOzzJPZ3CmHTmXabXfTKe+OQ3X3zZxnFMNZEUdSUMGBQQlwQEVQ5v37w9/eSaJ5n5QN+Hxcl1e7/Vl77ffys12LzXqt94qJiVFISIhq1aplDn5cuHBBO3bs0Jdffqno6GhZWVkpJCREf//73zV06FBJ1zofFxYW6tNPP9XBgwf1yCOPaObMmWrRooUcHBzUpk0beXp6Kj4+XikpKcrNzSXAfhNBQUFq0KCBSktLlZSUJB8fH3M48V//+pfefPNNSdJrr712w+2xYRk2NjYqLS1VnTp19OSTT94wbjrBHh8fr6NHj2r79u3atWuXUlJSzF3gbG1tVVJSos2bN6tz586VvAU1B3NR+dLT0/XZZ59Jkh599FG9+uqrkm4e7jT9HHzgwAENHTpUJSUlCg0N1YQJEySp3AU7FeGiHSk4OFjR0dHau3ev4uPjFRAQoKCgILVr187Spd3zrl69qjp16igmJkYpKSlav369jhw5oiNHjpgvDHRzc1P37t3VsmVL/e1vf5OHh4eaNm1qXodpuesvJDThO+TtYy6qDldXV0lSVlaWCgoKzIF2E9N+PT4+XlOmTNHWrVt18eJFeXt7a+3atfLx8TEfv7dv364ZM2YoJiZGDRo00IsvvigXFxelp6dr1qxZ+uyzz+Tr66uJEydaYlOBPzV8+HAdPnxYn3zyiT744ANZW1ubP98NGzbU1KlTNXz4cEuXeU9gLqo+0/eJiu6icvLkSZ06dUrLli1TSkqKoqKiZDAYVFxcrDp16sjR0VFPP/20goKCFBERoYYNG8rFxaXc+ivrewUBdgAAAAAAAABApbvVCe17PXRjSUOGDNGuXbtkZWWlgIAARUREyN3dXc7OzhUun56ernXr1mn//v2SpJCQEA0ZMkT16tX704AVbo25qDruv/9+Pfvss3rzzTf19ttvKy8vTw8//LC8vLx04cIFzZo1S8eOHVNSUpKsra3VtWtXjRo1yhwONV1EYLoFs52dnYYPH64HH3xQdnZ25pPAQUFBMhgMysjIUHZ2tho3bmzhLa+afH19FRAQoNjYWE2dOlVJSUmysbFRYmKivvjiC0nSP/7xDw0ZMsTClUL6/aT69RfSmDqL7tmzR5mZmVq+fLmOHj2quLg4cwjOyclJgYGBevbZZ9WxY0c1b95cQUFBKioqstSmVHvMhWXk5eWZuxu2bt3aHFS8WXjdYDAoMTFRo0ePVl5enurWratu3bopICBAkszH89LSUsXFxSklJUU2NjZq3LixwsLCzHcFudd/nvb29pa3t7f69u1r6VLw/ysqKtLYsWMVHR2tc+fOmZ/39PRUWFiYevTooTZt2ig0NLRcIPePDAYD3b3/IuaiajDtq7t166bly5crNTVVv/76qx566KFy+3CDwaDNmzdr/PjxSk1N1ZUrV+Tj46PFixfrgQceMM9PWVmZfvzxR8XExKhdu3Z677331KtXL0nSlStXZG1trRkzZmjTpk16/vnnVatWLUttOlAh02d5xowZcnd3V1RUlI4dOyZbW1sNHDhQXbp0MX+mcXcxF1Wb6fhhOv4WFxcrKytLiYmJ2rJlixISErRlyxbzHRzr1q0rLy8vRUREyM/PT3369FG9evXUsGHDcus1HdNN66+s7xMGo+mbJwAAAAAAAAAAuGfdKuRsOolxfXjhu+++0w8//KCNGzeWW/bBBx/UunXr5O7uTqDhP8RcVB3X/729+eabmjFjhqRrHYidnJx09epVXb16VdK1MOKkSZPUr18/hYeH3/D6ZcuWacCAAWrUqJHi4uLk4eGh0tJSc6esLVu2qEuXLrKxsVF8fLyaNWtmgS2uHpKTk9WlSxdlZmbeMDZlyhS98MILcnNzs0Bl+GMXOBOj0ai4uDhlZ2dr8eLFysjI0ObNm83jnp6ecnd3V0REhJo2barw8HD5+/ub93Omk+jsy24fc1E1rFy5Uv369ZOLi4u2bNmi5s2bVxgwNz139OhRjRs3TrGxsSoqKlL79u31888/y9vb27zsunXrtGjRIs2bN8/8nIuLi0aPHq2PP/643PqAqiQhIUHPPvusHBwc1K9fP/n7+6tjx45q0KCBeX9y/Wc3JydHO3bsUEJCggICAuTl5aVHHnlE0s3vYoDbw1xUHZmZmerbt6/27t2rjh076u2339YDDzwgb29vRUdHKy4uTpMnTzYv7+/vr7Vr1+q+++4rt56oqChFRkZKkhYvXqz+/ftL+j2IumDBAj399NMKDg5WbGwsd3tClXT97zkuXLigwsJC2djY8N3OApiLqu3EiRPas2ePkpKS9Msvv+jo0aM6f/68ebxJkybq0qWLHnjgAfXq1Uu1atWSr6+vedxoNFaZO6DSbgMAAAAAAAAAAFQYmP5jVx/TyavZs2drxowZSk9PV0hIiMaMGSMvLy/98MMPWrFihR5//HFFRUXJycmpUrehpmAuqo7rLxaYPn26PDw8tGTJEsXFxSknJ0eSFBQUJB8fH7311lvq2LGj7OzsJOmGk4FeXl6yt7eXdC2o0qBBA/M8JiYmaurUqZKudd8nvH5rwcHB2rp1q6ZMmaJjx47p7Nmzat68uYYOHWoO66BymcJr13eBS05OVmJiotauXasTJ04oNjbW3B26fv36uv/++zVw4ED5+/ubT6r/8S4Tpn9/pgBdVTjBXtUxF1XT5cuXVVBQIOnGuw2Z5iwhIUEvvPCC9u/fr6KiIvn5+em7774rF15fuHChPv74Yx04cECS1LFjR2VnZys5OVkzZ86UwWDQ9OnTCa+jSgoJCdGWLVskXesGer3r9zElJSWKi4vTc889p6SkJEnXfj62t7fX+++/r5dffrlch1D83zEXVYenp6d+/PFHdevWTVu3blVSUpKsrKzk5eWlo0ePKj8/X9K17xKtWrXS7Nmz5enpecOFA0eOHJEkDRgw4IbwunQt7ChJderUMX8nAaoaa2tr8/7ExcXFvF9hH1P5mIuq7ccff9SUKVPM/x8SEqJu3bqpc+fOateunfz9/eXi4nLDfOXl5cne3l42NjY3NMewFALsAAAAAAAAAACgQtef5DCd9Ni+fbvmzJmjU6dO6ZlnntH48ePVunVrSVL//v3VtWtXbd++Xfv371enTp0sVXqNw1xYjrW1tfmk3ssvv6yBAwfq9OnTyszMVHFxsTp06KDatWvL2dlZ19/4+I8ndZ2dndWoUSMdP35cixcvlrOzs5o0aaK4uDhNmzZNmzdvVuvWrTVq1ChJdLP8MwEBAZozZ45sbW1VUFAgGxsb2draWrqse5aVlZXS0tK0ePFipaWlKTY2Vvv27TOPN2jQQM2bN1dkZKSaNGmiyMhIOTg43ND984//hix9Mr06Yi6qlnbt2qlZs2Y6ceKEEhIS1KZNGxkMhnJhESsrK+3Zs0fDhg3T8ePHVVJSogYNGigqKkoBAQHmO7Ps3LlTn3/+ueLj4xUZGalRo0apX79+SktLU1RUlMaPH685c+ZowIABatu2rYW3HKiYKSz9x0CVKSgnScuXL9ff//53ZWZmqlWrVmrTpo2cnJz05Zdf6pVXXlGtWrU0duxYAnR/EXNRdQQFBWnjxo16/vnnlZycbP6uYfLYY4+pb9++GjBggFxcXCoMHObm5kqSsrOzlZubqzp16pjnMikpSVu3bpWtra0GDhyo2rVrE0JFlWX6XF7/+eSzahnMRdX13nvvycHBQR4eHgoICFBoaGi5xhWlpaWSrs1XTk6Ojh49qn/9619KS0tTnTp11LJlS73++utydXW1eIidADsAAAAAAAAAAPhTppNUq1ev1t69e9W2bVtNmDBBDz74oKRrXXwcHR3Vrl07bd68WampqYSm7xLmovJd333M29tbPj4+FS53q5O5999/vyZNmqRx48bpo48+0pIlS+Tq6qpdu3ZJklq0aKGXXnpJDz30kKTy3Y0Js1fM1tZWBoNBtWrVUllZmaXLuecVFxfrjTfeUFlZmezs7BQeHq6wsDC1bt1ajzzyiJycnG4ISRcXF6u4uFiXLl1SvXr15ODgIOnaZ55wxH+Ouag6ateurQceeECHDx/WnDlz1Lp1azVr1sx8t5WkpCTt3LlTL7zwggoLCyVJgYGBWr16tYKDg1VaWmpeNjo6Wjt37tTDDz+sN954Q4888oika115e/bsqcDAQHPwkQA7qrqb3Yng119/1cSJE5WZmam+fftqwYIF5m7RXbt2VWRkpL7++mtFRETIx8eH/dMdwFxUDYGBgVqwYIFOnDihX375RcXFxfL29paXl5ciIyPNy5WVlVUYNAwJCZGdnZ1OnTqlgwcPql27drK2ttbu3bv19ddfa8OGDQoICFDnzp0lEUIFgOrKdHHr66+/fsOYKYxu+v3R6dOn9cUXX2jhwoVKS0sz3zEwOjpaUVFRiomJkZubm0V/50SAHQAAAAAAAAAA3JazZ89q4cKFkqSxY8eaA9OlpaVydHSU0WjUnj17JMkcfMPdwVxUvoq6j90uU/h97NixMhqNmjJlipKTk83jTz31lIYPH64uXbrIzs7OfNLxjycfTZ0V69ata/EuWVXB9XNBwN/yAgMDdfz4ce3fv1+hoaHy9fU1nyCXfu8CJ0mFhYVKTk7WG2+8ofT0dKWlpSksLEyDBw/WyJEjZWVlxYUbfwFzUXU4OTnpo48+0u7du7Vz504NHz5cDz/8sO6//34dO3ZMO3fuVHx8vEpKSuTu7q5WrVrpq6++UpMmTcrt5zMyMvTZZ59JkoYOHWoOr5eUlMjW1lZ+fn5ydnaWJOXn51tmY4G/wMrKSrm5uRo9erQyMjLUrVs3LVmyRFZWViosLJS9vb169eql9u3b6+jRoyosLCSAe5cwF5bj5uYmNzc3tWvX7oYx0/eJmx2Pe/bsqbZt22rHjh0aNmyY2rRpo7KyMh06dEjJyclycXHRzJkzFR4eXuHrOdYDQPVguri1IqbvDgaDQWfOnNGMGTM0d+5c1apVS4MGDdJLL70kOzs7ffLJJ/r55581ZMgQLV++XLVq1aqs8m9AgB0AAAAAAAAAANwWo9GovLw8Sdc6ikq/d/4pLCzU119/ra1bt6pRo0bq2rWrJUut8ZiL6sVgMJhDIc8//7zCw8OVmZmpS5cuqW7duurVq5c5lCL9ftIxNzdXeXl5WrdunQ4dOqSYmBidO3dOq1evprsuqiQ/Pz/5+flJkrkrvumzbfpc5+TkaNGiRfrggw90+vRpubu7y9HRUTExMYqJiVFOTo5effVVQlR/EXNRdTRp0kTr169Xv379FB8fr/j4ePOY6QKBdu3aqXfv3ho5cqQ8PDxu6LB79epVFRUVycnJyRxsNB33jUajFi1apL1798re3t58URtQ3WRlZSkzM1Oenp6aNWuWrKysVFxcbO76feTIEaWmpury5cu6cuWKhaut2ZiLqudWFwmYLmJetWqVIiIitGvXLqWkpEiS7O3tFRYWpnfeecfcyd30c8H1F6n98Vh//XcTAED1YdqvR0VFadGiRXJyctLEiRP13HPPydXVVZL0//7f/1NycrL27dunU6dOKTg42GL1EmAHAAAAAAAAAAC3xdHRUa1atVJMTIwOHz6svLw8OTo6qri4WP/+9781e/Zs2djYaOTIkXJxceGk913EXFQ/1wdEWrRooRYtWpQbNxgMys7OVmFhodasWaPU1FStWLFCWVlZ5s7rjo6O8vPz0+LFiwmwo8ozBaFM+x6j0ShJWrlypaZMmaLs7Gz16dNHs2bNkouLi/bt26chQ4bo9ddfV8uWLdW9e3eL1V7TMBeWFxwcrPXr1+vbb7/Vjh07lJycrMuXL6t79+5q2rSpXn75ZTk6Osre3r7CLrjOzs7y8/NTamqqDhw4oKZNm8rW1laSFBsbqx9//FFGo1FPPfWU/Pz8OO6jWjp69KgyMjLk5ORkvoDD9Dk3Go3aunWrzp07p06dOsnf39+SpdZ4zEX1Ym1trZKSErm4uGj9+vX6+eeflZqaqgsXLigiIkKBgYG67777JN3YaT0zM1NZWVnasGGDYmNj5eLiou+++45jCABUU6Z9/Lfffqvs7GwNGzbMHF4vKytTSUmJ7Ozs5O/vrwMHDujs2bME2AEAAAAAAAAAQNVXu3ZtdevWTdHR0frnP/+pEydOqHHjxoqNjdXevXtVVFSkAQMGaPDgweaAA+4O5qL6qSiQmJ+fr4yMDG3YsEEnT57UypUrdfnyZZ05c8a8TK9evdS4cWP1799fHh4eCgkJqezSgTvCYDAoJSVF06ZNU3Z2tkaOHKnPP/9ctWvXVklJif72t7/pnXfe0cSJE3Xw4EFC03cRc2EZjRo10tSpU2UwGJSTk6OSkhI1aNDghuUq6njv4uKi5s2b68iRI5oxY4YKCwvVqlUrbdy4UVFRUdqyZYuaNWumoUOHqk6dOpWxOcAdd99998nHx0clJSU6d+6c+fn8/Hz98ssvev3111VUVKSuXbvKycnJgpXWfMxF9WNjY6PS0lI5OTlp1KhRMhgMFV7MlJKSosuXL2v58uU6efKkoqOjzd897OzsVFRUpMGDB6tnz56W2AwAwB2QmJio/fv3q27dunrzzTfl6upqvnuTnZ2dDh8+rG3btkmSHBwcLForAXYAAAAAAAAAAPCnTCe/X3vtNZ09e1affPKJfvrpJ/O4t7e3+vXrp3Hjxlm0c8+9gLmoHkpLS80dK02KioqUlJSkffv2affu3YqJiVFGRoauXLkig8Ega2trdezYUU2aNNETTzwhT09PhYSEVBg+obsuqqMPPvhAqampeuihh/Tll1/KwcHBfCJduhackqQTJ05IqvjCD9wZzIVlubq6lvv/W+3TjUajbG1t9c033+j48ePav3+/JkyYIHt7e12+fFn29vZq27at3n33XXXt2tX8GunaxQoVzR3ziaqofv36atSokWJjY/XOO+9o8ODBsrOzU3x8vL7//nvl5eVpyJAhevPNNyXxs9DdxFxUL6a/f9McXP/f06dPKzMzUytWrFBqaqqioqJUVFSk/Px8WVtby8nJSc8++6yCgoLUu3dvubu7q379+pbcHADAX2Q0GlVQUKDS0lJlZ2crKCjI/D0vLS1Nn376qc6ePau+ffuqdevWFq2VADsAAAAAAAAAAPhTBoPBHMidMWOGmjVrpvj4eKWnp8vFxUXPP/+8/P395e7ubulSazzmonowhdd37Nih9PR0rVu3TocPH9ahQ4dUVFQkSXJ2dlbbtm0VGhqqRx99VN7e3mrZsmWF6/tjMIiQEKqjzMxMSdLAgQPl4OCgoqIic1D6t99+08aNGyXJfKcBArZ3D3NhGTfbd99qn2467ru4uCgmJkYTJkzQr7/+qtOnT6tRo0YaO3asunbtqrCwMEkqN5fStbk7f/68zp07p8TERPXv35/5RJXk5uamefPmqUuXLtqxY4d27txpvhhDkoYNG6Z58+ZJ4iKMu425qB5M3wlNx5DS0lKdP39eSUlJ2rJliw4dOqTo6GhdvHhR0rW7eNWqVUv9+vWTv7+/+vfvLzc3N/n4+JRb7/VzDQCoflxdXRUaGqqEhATt2bNHzZo1k5ubmxITE/X1119r4cKF8vX11aBBgyxdKgF2AAAAAAAAAABwe6ytrc0nyYcPHy6pfIdPVB7mouq6cOGCvv/+e23btk2nT5/W7t27zWOurq5q1qyZevTooTZt2qhFixYKCAiQ0WgsF/wpKyuT0Wg0h+CZU9QUBQUFkqRz587JaDSaQ7a5ublauXKloqOjFRAQoPDwcEuWeU9gLqoX03Hf2dlZc+bM0cWLF5Wbm6u6devKzc2t3LJ2dnYqLCxUfHy89u/fr3379mnr1q3KyspSXl6eRowYoTlz5lhoS4BbCw4O1tatWzV16lSdOHFCJ0+e1KOPPqrw8HA9//zzkghMVxbmour54wWtpaWlys/P17Zt23T48GFt2bJFCQkJSk9PNy/j4+Ojnj17qlmzZoqIiJCLi4uaNGlyy/Xz3QMAqjcvLy8NGDBABw8e1GuvvaaVK1fKy8tLUVFRys3NlYeHh0aPHq0+ffpYulQC7AAAAAAAAAAA4PaZArUmnNy2HOaiaqpXr55OnDihpUuXqlGjRmrevLn69eunJk2aqFu3bmrYsKFsbW3LvaawsFCXL19WWlqaPDw85ObmJgcHB/NFCkB1Z7rAJjQ0VJs2bdL27du1a9cutWrVSsnJyVq7dq1mzJihy5cva9y4cTe9EwH+Ouai+rK2tlZJSYlsbGzk5uZmDq5fvXpVtWrV0vbt23XixAlFRUXp4MGDOnr0qPm19erVU3h4uNq0aaPQ0NAbQpBAVRIQEKDZs2fL3t5eZ86ckYeHh3mMwHTlYi6qFoPBoLKyMn3//fcqKCjQggULlJaWprS0NPMyfn5+ioyMVKdOnfTwww/L19dX3t7e5vGysjJJMh9P/rh+AED1Zjo+v/vuu8rPz9eMGTO0bds283jnzp01cOBADR8+XLVq1bJgpdcYjNz3AwAAAAAAAAAAAPjLrg8Erl69Wg899JBsbW1Vr169cssVFxebQ+zbt2/XokWLtHLlSmVkZMjX11etW7fWV199JTc3N0LsqFFSUlLUqVMnnT59Wo0bN1b9+vWVnp6uy5cvq7CwUKNHj9bs2bMtXeY9gbmoHm4WEC0sLNS2bduUlZWlJUuWKCMjQ3v37jWP+/v7y8fHR48++qhatGih0NBQ+fr6VmbpwF9i+pnq+n8DXHhhGcxF1XL69Oly+/PmzZvLw8NDffv2VWBgoNq2bXvDdw9Jys/PV2lpqRwdHc3zyEUIAFAzXf97pNWrVys5Odncef3JJ59U3bp1b7iIyVIIsAMAAAAAAAAAAAB3yJ8Fzq8P/KxcuVIvvfSSTp06pdq1a8vf319Xr17VyZMn1axZM23ZskX169cnJIQaJTk5WU888YROnDihK1euSJLCwsLUo0cPTZ482cLV3VuYi6rHtL//436/oKBAe/bs0bFjx7R06VJlZGTo119/NY/7+vrK09NTAwcOVJMmTdSxY0c5OjrK3t6+3Pq5KAoAqr+kpCTt2LFD3t7e6tChg6ytrcvt703HkJKSEqWkpGju3LnatGmTMjMzFR4eroiICA0dOlQSIXYAqKmqy8/9BNgBAAAAAAAAAACASrZhwwYNGTJE586dU//+/TV06FB1795dxcXFeumll/S///u/GjFihGbPnl1lOmMBd0p2drYOHDig06dPy83NTW3atJGPj4+ly7onMRdV0/nz55WSkqI9e/Zo8+bNOnz4sBITE83jfn5+atiwoR5//HH5+voqMjJSNjY2qlWrVrn1EEwEgHvDHzvlFxUVacmSJfrmm2+0bds2SZKTk5MuX74sSZoxY4ZeffVVS5YMAAABdgAAAAAAAAAAAKAyZWVlaeTIkVq3bp0GDRqkyZMn67777jOP5+TkqGnTpvL399eOHTuqRdcsAMBfV1ZWpgkTJuiHH35QcXGxCgoKJEnu7u4KDQ1Vly5d1LRpU3Xs2FE2NjZydna+5boIrwPAvaesrExLly7VtGnTlJCQoFatWmnatGkKCgrS4cOHNWLECF28eFErVqxQ7969LV0uAOAeRrsGAAAAAAAAAAAAoBKlp6dr+/btcnFx0TPPPKPAwEBJv9/iOTc3V0ajUenp6crLy7tlQBEAUHNYWVlp1KhRWrx4scLCwtS6dWt17NhRrVq1kouLi+zs7MotbzQaVVhYqKioKJ05c0bOzs7y9/dXu3btZGVlRYgdAO4hpi7sOTk5mjt3rhISEtS7d29NmzZNLVq0kNFoVFBQkD766CONGzdOcXFxBNgBABZFgB0AAAAAAAAAAACoBKZQyZYtW5SXl6c2bdooIiJCklRcXCxbW1tJ0po1a3Tu3Dm1b99ednZ25tcBAGq+Bx98UCdPnlTt2rXLPV9aWipJKikpkY2NjUpKSvTTTz9p4cKFWrNmjXm52rVr6/3339fEiRNlZWXFMQQA7hGmff28efO0bt06ubi46N1331WLFi0kXfu+YWdnJ39/f0nXLqoFAMCSCLADAAAAAAAAAAAAlcAUKvH29pZ0LYR46tQpNWrUyBxeX7hwod566y1J0siRI1WrVi3LFAsAsJjrw+umLurW1taSZA6vf/HFF/r888+Vnp4uX19fDRo0SEVFRZo9e7YmTZokBwcHjRs3jvA6ANxjkpOTJUmjR49WmzZtZDQaZTQaZWdnp/z8fC1cuFCS5OrqaskyAQAQ94oCAAAAAAAAAAAAKpGXl5ecnJwUHx+vZcuWKTExUefPn9eXX36psWPHKi8vT2PGjNGgQYMsXSoAwMKsrH6PdRiNRknSihUr9M033yg7O1sjR47U8uXLNX36dM2aNUurVq2Sra2t/ud//kdnzpyxVNkAAAu5ePGiJOm3335TUVGRjEajrKysdPXqVa1cuVIxMTHy8PDQ4MGDJf1+bAEAoLIRYAcAAAAAAAAAAAAqUefOnfXiiy9Kkl5++WV16dJFYWFhmjBhgi5duqShQ4fqhRdeKNeBFwAAUzf1ZcuW6dixY4qIiNCrr76qli1bqqysTEVFReratavatm2rQ4cOmUOMAIB7R+vWrSVd68R++PBhSdLVq1c1f/58ffzxx0pLS1OPHj3UpEkTSeJOHQAAizEYuYwKAAAAAAAAAAAAqBRlZWXmbrqTJ0/WvHnzdPr0adnb28va2lrvvfeeBg8erEaNGlm4UgBAVbR7926FhYVJkmJiYtSlSxdJvx9fLly4oLCwMKWmpurQoUMKDg62ZLkAgEqWmpqqLl26KC0tTcHBwfLw8FB2drZSUlJUVFSknj176rPPPlNQUJClSwUA3OMIsAMAAAAAAAAAAACVqLS0VNbW1pKkI0eOKCsrS3Xq1JGjo6OaNWtm4eoAAFXZpk2b1K1bN/n4+Gj//v1yc3NTSUmJbGxslJeXpw8//FDTp09Xy5YttWfPHvPxBgBw70hKSlLfvn2VkpKi4uJiSVKTJk3Uo0cPTZw4UYGBgRauEAAAycbSBQAAAAAAAAAAAAD3Emtra3On3KZNm6pp06aWLgkAUE24u7vLzc1NBQUFOnTokDp27CgbGxtdvnxZ8+fP14IFC1SvXj2NHz9e1tbWMhqNMhgMli4bAFCJ7rvvPm3cuFHbt29Xenq6bGxs1LdvX9WvX19169a1dHkAAEiiAzsAAAAAAAAAAAAAAEC1kJOTo8jISMXFxalDhw7q06ePmjZtqm+//VaxsbG6ePGinn32WU2ePFk+Pj6WLhcAAAAAKkSAHQAAAAAAAAAAAAAAoJpITk5Wly5dlJmZKUmyt7dXYWGhPD091bdvX73yyisKDAy0cJUAAEvjLhwAgKqMADsAAAAAAAAAAAAAAEA1cvz4cb3//vs6ePCgioqK5OHhoYkTJ6p169by9PS0dHkAAAAAcEsE2AEAAAAAAAAAAAAAAKqZoqIiFRcXq6ioSPXq1bN0OQAAAABw2wiwAwAAAAAAAAAAAAAAVHNGo1EGg8HSZQAAAADAn7KydAEAAAAAAAAAAAAAAAD4awivAwAAAKguCLADAAAAAAAAAAAAAAAAAAAAACoFAXYAAAAAAAAAAAAAAAAAAAAAQKUgwA4AAAAAAAAAAAAAAAAAAAAAqBQE2AEAAAAAAAAAAAAAAAAAAAAAlYIAOwAAAAAAAAAAAAAAAAAAAACgUhBgBwAAAAAAAAAAAAAAAAAAAABUCgLsAAAAAAAAAAAAAAAAAAAAAIBKQYAdAAAAAAAAAAAAAAAAAAAAAFApCLADAAAAAAAAAAAAAAAAAAAAACoFAXYAAAAAAAAAAAAAAAAAAAAAQKUgwA4AAAAAAAAAAAAAAAAAAAAAqBQ2li4AAAAAAAAAAFC5SkpKtGLFCq1fv16xsbHKzs7WhQsXVLt2bbm7u6t58+Zq3769Bg4cKH9/f0uXCwAAAAAAAAAAahCD0Wg0WroIAAAAAAAAAEDlWLlypSZNmqTjx4/f1vKRkZGaPn26QkJC7nJlAAAAAAAAAADgXkAHdgAAAAAAAAC4R/zzn//Ue++9J1Nfk86dO+uxxx5TaGio6tevrytXrigzM1Nbt27V6tWrlZqaqjVr1sjHx0fffPONhasHAAAAAAAAAAA1AR3YAQAAAAAAAOAeMHfuXI0aNUqS1LBhQy1YsECdO3e+6fKlpaVasGCB3n77bfXq1YsAOwAAAAAAAAAAuCMIsAMAAAAAAABADXfq1CkFBweroKBAdevW1b59+xQYGHhbr7148aK2bdum3r173+UqAQAAAAAAAADAvcDK0gUAAAAAAAAAAO6uWbNmqaCgQJL0wQcf3HZ4XZJcXFxuCK+npqbKYDDIYDBo/vz5kqSlS5cqIiJCXl5esrGxqbC7+6pVqzRw4ED5+PjI3t5e9evXV3h4uKZPn668vLyb1jBlyhTz+93K5s2bzctt3rz5hvHOnTvLYDCYa0tKStKYMWPk7+8vBwcHeXp66sknn9SuXbtu+T6lpaWaP3++evToIQ8PD9nZ2cnZ2VlBQUHq1q2bPvzwQx0+fPiW6wAAAAAAAAAA4F5lY+kCAAAAAAAAAAB3j9Fo1A8//CBJcnJy0ogRI+74+ocOHWp+j4oUFBTo6aef1rJly8o9n5OTo127dmnXrl364osvtGbNGrVs2fKO1nczUVFReuKJJ5Sfn29+LisrS4sWLdKSJUv0X//1X3r55ZdveF1eXp4iIiK0bdu2cs8XFxcrNzdXx48f18aNG7V//34tXrz4bm8GAAAAAAAAAADVDgF2AAAAAAAAAKjBEhISdP78eUlShw4dVKdOnTu6/v/+7//WwYMH1aFDB40bN07BwcG6ePGiUlNTzcsMGzbMHF5v0aKFJk2apKZNmyonJ0cLFizQ/Pnz9dtvv6lbt246ePCgvL2972iNf/Tbb7/p6aeflo2NjT788ENzR/ZNmzbp448/Vm5uriZOnCg/Pz/169ev3GunTJliDq8/9thjGjJkiHx9feXg4KAzZ87owIEDWr169Z92iwcAAAAAAAAA4F5FgB0AAAAAAAAAarCDBw+aH7dq1equrH/o0KGaP39+haHtNWvWaOHChZKkbt26ae3atbKzszOPP/roowoPD9eYMWOUk5OjV155RT///PMdr/N6x44dk7Ozs2JjY9W0aVPz8+Hh4erbt6/at2+v3NxcjR8/XpGRkbK1tTUvY9qWgQMHatGiRTesu2fPnnrrrbeUk5NzV7cBAAAAAAAAAIDqysrSBQAAAAAAAAAA7p5z586ZH7u7u990ubKyMiUkJNz0T3FxcYWvc3Fx0ZdffnnTjuNfffWVJMnW1lbz5s0rF143GT16tLp37y5JWrp0qTIzM297+/5T7777brnwuskDDzygd955R5KUkZGhFStWlBvPysqSdK2b/a24urreoUoBAAAAAAAAAKhZCLADAAAAAAAAQA12+fJl8+M6dercdLnc3Fw1b978pn8yMjIqfF3v3r3l5ORU4VhJSYm2bNki6Vqn9UaNGt30/UePHm1+zebNm/9ss/4Sg8GgYcOG3XR8xIgR5kD+L7/8Um7M09NTkvTzzz/rypUrd69IAAAAAAAAAABqKALsAAAAAAAAAFCDXR8uz8/Pv+PrDw0NvenYyZMnzSHvdu3a3XI9148nJCTcmeJuwt/fX25ubjcdd3d3l5+fnyTp0KFD5cZMwfedO3fK399f48eP17Jly3T27Nm7Vi8AAAAAAAAAADUJAXYAAAAAAAAAqMHq169vfnyrkLWLi4uMRmO5P7fqUm5Sr169m47l5OSYHzdo0OCW6/Hw8KjwdXfDn9UiSQ0bNqywlnfffVcjR46UwWDQmTNn9NVXX6l///5q0KCBQkJCNHnyZGVnZ9+VugEAAAAAAAAAqAkIsAMAAAAAAABADdaiRQvz4wMHDtzx9VtbW9/WcgaD4Y6/93/qr9Ria2urOXPmKCEhQf/4xz/Uvn172dnZSZISExM1bdo0BQYGasWKFXeqXAAAAAAAAAAAahQC7AAAAAAAAABQg4WEhJi7sG/btk1XrlyptPd2dXU1P/6zruRZWVkVvk6SrKx+/1V2WVnZTdeRn59/W3XdTod00zJ/rMWkWbNmev/997Vjxw5dunRJGzZs0IgRI2Rtba28vDwNHjxYmZmZt1UPAAAAAAAAAAD3EgLsAAAAAAAAAFCDGQwGPfPMM5Kk3Nxcfffdd5X23k2aNFHt2rUlSXFxcbdcdvfu3ebHISEh5cacnJzMjy9cuHDTdSQnJ99WXSkpKTp//vxNx8+ePavU1NQKa6mIg4ODunfvrrlz52rmzJmSpKtXr2r16tW3VQ8AAAAAAAAAAPcSAuwAAAAAAAAAUMO98sorcnBwkCS99dZbSklJqZT3tbGxUadOnSRJGzZs0OnTp2+67L///W/zazp37lxuzN/f3/x47969N13HggULbqsuo9Go77///qbj8+fPl9FolCR17979ttZp0q1bN/Pjc+fO/Z9eCwAAAAAAAADAvYAAOwAAAAAAAADUcL6+vvr8888lSZcuXdIjjzyi7du33/I1RqNRFy9e/Mvv/eKLL0qSioqKNGrUKBUXF9+wzNy5cxUdHS1J6t+/vzw9PcuNt2/fXjY2NpKkTz/91Bwuv97MmTPLdXH/M++//76SkpJueP7IkSP64IMPJEmenp7q27eveSwnJ0erVq2q8P1NTNshlQ/eAwAAAAAAAACAa2wsXQAAAAAAAAAA4O4bPXq0MjIyNHXqVP3222/q0KGDunbtqt69e6t58+ZydXVVaWmpsrKytH//fi1cuFCJiYmSJGtra9nZ2f1H7xsZGaknnnhCixYtUnR0tMLCwvTKK6/o/vvv14ULF7RgwQLNnTtXkuTq6qpZs2bdsI4GDRroiSee0E8//aT169erT58+evHFF9WwYUOlp6frhx9+0JIlS9S+fXvt3LnzT2sKDAzU2bNnFRYWpjfeeMPc8X3z5s2aPn26Ll26JEn64osvym13bm6u+vTpIz8/P/Xv31/t2rVT48aNZWNjo8zMTK1atcrcSd7b21uPPfbYf/R3BgAAAAAAAABATWYw3qpVDAAAAAAAAACgRlm2bJleffVVnTx58k+XNRgM6tGjh2bOnKmQkBDz86mpqebu4vPmzdPw4cNvuZ6CggI9/fTTWrZs2U2X8fLy0po1a9SyZcsKx7Ozs9WhQwcdO3aswvFBgwbpueeeU/fu3SVJmzZtMgfTTTp37qwtW7aoU6dOeu211/Tkk0/qypUrN6zLyspKM2bM0KRJk8o9f/1234qnp6dWrVql1q1b/+myAAAAAAAAAADca+jADgAAAAAAAAD3kMcff1y9e/fWsmXLtH79esXGxurMmTO6ePGiateurfr166t58+YKDw/XU089dVuB7T/j4OCgpUuXatWqVZo/f7527dqlc+fOqU6dOgoODla/fv00fvx4OTo63nQdDRs2VFxcnD7++GMtXbpU6enpqlOnjkJCQjRmzBgNGTJEmzdvvu2aIiMjtXfvXs2cOVMbN25UZmamXFxc1KFDB02aNEnh4eE3vKZx48bavXu31q5dq507dyotLU3Z2dnKy8uTi4uLmjVrpt69e2vMmDGqW7fuf/JXBQAAAAAAAABAjUcHdgAAAAAAAADAPeH6Duz/l7A7AAAAAAAAAAC4c6wsXQAAAAAAAAAAAAAAAAAAAAAA4N5AgB0AAAAAAAAAAAAAAAAAAAAAUCkIsAMAAAAAAAAAAAAAAAAAAAAAKgUBdgAAAAAAAAAAAAAAAAAAAABApSDADgAAAAAAAAAAAAAAAAAAAACoFAaj0Wi0dBEAAAAAAAAAAAAAAAAAAAAAgJqPDuwAAAAAAAAAAAAAAAAAAAAAgEpBgB0AAAAAAAAAAAAAAAAAAAAAUCkIsAMAAAAAAAAAAAAAAAAAAAAAKgUBdgAAAAAAAAAAAAAAAAAAAABApSDADgAAAAAAAAAAAAAAAAAAAACoFATYAQAAAAAAAAAAAAAAAAAAAACVggA7AAAAAAAAAAAAAAAAAAAAAKBSEGAHAAAAAAAAAAAAAAAAAAAAAFSK/w/B9tHvRAGdjAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "df = plot_results( \n", + " [mapie_split, mapie_cqr, mapie_ccp], ALPHA, N_TRIALS,\n", + " group_functions, group_names, score_functions, score_names,\n", + " n_train=n_train, n_calib=n_calib, n_test=1994-n_train-n_calib\n", + ")" + ] + }, + { + "cell_type": "markdown", + "id": "e2098fd1", + "metadata": {}, + "source": [ + "#### 1) As we expected, the coverage is now homogenous on the ethnicity groups. To achieve it, the prediction intervals are now even wider than before for previously under-covered samples, and smaller on previously over-covered samples. \n", + "##### $\\to$ The ``CCP`` method can guarantee a homogenous coverage on groups of interest (thus remove bias), by giving to the calibrator those groups, using ``CustomCCP`` calibrators.\n", + "#### 2) It turned out that, over all the dataset features, the 4 ethnicity features we identified were the ones with the biggest bias.\n", + "##### $\\to$ Fixing this bias, almost fixed the non-homogeneity of the coverage, on the target value.\n", + "#### 3) Next steps: the only issue to achieve an almost perfect adaptativity, is to fix the under-coverage for the biggest 10% target crime values. One idea may be to combine the two approachs we used, or add a new column to the calibrator, with the ``y_pred`` value (example: adding ``Polynomial(degree=1, variable=\"y_pred\")``)." + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.18" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} From cb80f3b4cc0fa95c81ca8d3e6e02c49c8125f65a Mon Sep 17 00:00:00 2001 From: Damien Bouet Date: Mon, 17 Jun 2024 18:34:55 +0200 Subject: [PATCH 063/165] ADD: ccp_tutorial notebook in readthedocs --- doc/index.rst | 1 + .../plot_gibbs2023_simulations.py | 2 +- .../4-tutorials/plot_ccp_tutorial.py | 513 ++++++++++++++++++ 3 files changed, 515 insertions(+), 1 deletion(-) create mode 100644 examples/regression/4-tutorials/plot_ccp_tutorial.py diff --git a/doc/index.rst b/doc/index.rst index b5450722b..9e597b491 100644 --- a/doc/index.rst +++ b/doc/index.rst @@ -18,6 +18,7 @@ examples_regression/4-tutorials/plot_main-tutorial-regression examples_regression/4-tutorials/plot_cqr_tutorial examples_regression/4-tutorials/plot_ts-tutorial + examples_regression/4-tutorials/plot_ccp_tutorial examples_regression/index notebooks_regression diff --git a/examples/regression/3-scientific-articles/plot_gibbs2023_simulations.py b/examples/regression/3-scientific-articles/plot_gibbs2023_simulations.py index 2e89c5323..401c936c7 100644 --- a/examples/regression/3-scientific-articles/plot_gibbs2023_simulations.py +++ b/examples/regression/3-scientific-articles/plot_gibbs2023_simulations.py @@ -364,6 +364,6 @@ def plot_results(X_test, y_test, n_trials=10, # to the split method with symetrical PI. Let's compare it to the split CP with # unsymetrical PI, to have a fair comparison. -plot_results(X_test, y_test, 50, experiment="Groups") +plot_results(X_test, y_test, 50, experiment="Groups", split_sym=False) plot_results(X_test, y_test, 50, experiment="Shifts", split_sym=False) diff --git a/examples/regression/4-tutorials/plot_ccp_tutorial.py b/examples/regression/4-tutorials/plot_ccp_tutorial.py new file mode 100644 index 000000000..2a60782e0 --- /dev/null +++ b/examples/regression/4-tutorials/plot_ccp_tutorial.py @@ -0,0 +1,513 @@ +""" +==================================================== +Tutorial for conditionnal conformal predictions (CCP) +==================================================== + +We will use a synthetic toy dataset for the tutorial of the CCP method, and +its comparison with the other methods available in MAPIE. The CCP method +implements the method described in the Gibbs et al. (2023) paper [1]. + +In this tutorial, the estimator will be :class:`~sklearn.pipeline.Pipeline` +with :class:`~sklearn.preprocessing.PolynomialFeatures` and +:class:`~sklearn.linear_model.LinearRegression` (or +:class:`~sklearn.linear_model.QuantileRegressor` for CQR). + +We will compare the different available calibrators ( +:class:`~mapie.calibrators.CustomCCP`, :class:`~mapie.calibrators.GaussianCCP` +and :class:`~mapie.calibrators.PolynomialCCP`) of the CCP method (using +:class:`~mapie.regression.SplitCPRegressor`), with the +standard split-conformal method, the CV+ method ( +:class:`~mapie.regression.MapieRegressor` with, respectively, +``method="base", cv='split'`` and ``method="plus", cv=5``), and CQR +(:class:`~mapie.regression.MapieRegressor`) + +Recall that the ``alpha`` is `1 - target coverage`. + +[1] Isaac Gibbs, John J. Cherian, Emmanuel J. Candès (2023). +Conformal Prediction With Conditional Guarantees +""" + +import warnings + +import matplotlib.colors as mcolors +import matplotlib.pyplot as plt +import numpy as np +from mapie.calibrators import CustomCCP, GaussianCCP, PolynomialCCP +from mapie.calibrators.ccp import CCPCalibrator +from mapie.regression import (MapieQuantileRegressor, MapieRegressor, + SplitCPRegressor) +import seaborn as sns +from scipy.stats import norm +from sklearn.linear_model import LinearRegression, QuantileRegressor +from sklearn.pipeline import Pipeline +from sklearn.preprocessing import PolynomialFeatures + +warnings.filterwarnings("ignore") + +random_state = 1 +np.random.seed(random_state) + +ALPHA = 0.1 + +############################################################################## +# 1. Data generation +# -------------------------------------------------------------------------- +# Let's start by creating some synthetic data with different domains and +# distributions to evaluate the adaptativity of the methods: +# - baseline distribution of ``x*sin(x)`` +# - Add noise : +# - between -1 and 0: uniform distribution of the points around the baseline +# - between 0 and 5: normal distribution with a noise value which +# increase with ``x`` + + +def x_sinx(x): + """One-dimensional x*sin(x) function.""" + return x*np.sin(x) + + +def get_1d_data_with_heteroscedastic_noise( + funct, min_x, max_x, n_samples, noise, power +): + """ + Generate 1D noisy data uniformely from the given function + and standard deviation for the noise. + """ + X = np.linspace(min_x, max_x, n_samples) + np.random.shuffle(X) + y = ( + funct(X) + + (np.random.normal(0, noise, len(X)) * ((X)/max_x)**power*max_x) + + (np.random.uniform(-noise*3, noise*3, len(X))) * (X < 0) + ) + true_pi = np.hstack([x_sinx(X).reshape(-1, 1)]*2) + true_pi[X < 0, 0] += noise*3*(1-ALPHA) + true_pi[X < 0, 1] -= noise*3*(1-ALPHA) + true_pi[X >= 0, 0] += norm.ppf(1 - ALPHA/2) * noise * ( + (X[X >= 0])/max_x**power*max_x) + true_pi[X >= 0, 1] -= norm.ppf(1 - ALPHA/2) * noise * ( + (X[X >= 0])/max_x**power*max_x) + return X.reshape(-1, 1), y, true_pi + + +def generate_data(n_train=10000, n_test=4000, noise=0.8, power=2): + X, y, true_pi = get_1d_data_with_heteroscedastic_noise( + x_sinx, -1, 5, n_train + n_test, noise, power) + indexes = list(range(len(X))) + train_indexes = np.random.choice(indexes, n_train) + indexes = list(set(indexes) - set(train_indexes)) + test_indexes = np.random.choice(indexes, n_test) + return (X[train_indexes, :], y[train_indexes], + X[test_indexes, :], y[test_indexes], + true_pi[train_indexes, :], true_pi[test_indexes, :]) + + +X_train, y_train, X_test, y_test, train_pi, test_pi = generate_data() + + +############################################################################## +# Let's visualize the data and its distribution + +plt.scatter(X_train, y_train, color="C0", alpha=0.5, s=3, + label="Training data") +sort_order = np.argsort(X_train[:, 0]) +x_sorted = X_train[sort_order, :] +plt.plot(x_sorted, train_pi[sort_order, 0], "k--", + label=f"True interval (alpha={ALPHA})") +plt.plot(x_sorted, train_pi[sort_order, 1], "k--", linestyle='--') +plt.plot(x_sorted, x_sinx(x_sorted), "k-", label="baseline") +plt.xlabel("x") +plt.ylabel("y") +plt.title("Data") +plt.legend() +plt.show() + + +############################################################################## +# 2. Model: Polynomial regression +# -------------------------------------------------------------------------- + +polynomial_degree = 4 +quantile_estimator = Pipeline([ + ("poly", PolynomialFeatures(degree=polynomial_degree)), + ("linear", QuantileRegressor(solver="highs", alpha=0)) +]) +estimator = Pipeline([ + ("poly", PolynomialFeatures(degree=polynomial_degree)), + ("linear", LinearRegression()) +]) + + +############################################################################## +# 3. Creation of Mapie instances +# -------------------------------------------------------------------------- +# We are going to test different methods : ``CV+``, ``CQR`` and ``CCP`` +# (with default parameters) + +############################################################################## +# Basic Split-conformal: + +mapie_split = MapieRegressor(estimator, method="base", cv="split", + random_state=random_state) +mapie_split.fit(X_train, y_train) +y_pred_split, y_pi_split = mapie_split.predict(X_test, alpha=ALPHA) + +############################################################################## +# CV+: + +mapie_cv = MapieRegressor(estimator, method='plus', cv=5) +mapie_cv.fit(X_train, y_train) +y_pred_cv, y_pi_cv = mapie_cv.predict(X_test, alpha=ALPHA) + +############################################################################## +# CQR: + +mapie_cqr = MapieQuantileRegressor(quantile_estimator, alpha=ALPHA) +mapie_cqr.fit(X_train, y_train) +y_pred_cqr, y_pi_cqr = mapie_cqr.predict(X_test) + +############################################################################## +# CCP: + +mapie_ccp = SplitCPRegressor(estimator, alpha=ALPHA, cv="split") +mapie_ccp.fit(X_train, y_train) +y_pred_ccp, y_pi_ccp = mapie_ccp.predict(X_test) + + +############################################################################## +# 4. Plotting function +# -------------------------------------------------------------------------- + +def plot_subplot(ax, X, y, mapie, y_pred, upper_pi, lower_pi, color_rgb, + show_transform=False, ax_transform=None): + sort_order = np.argsort(X[:, 0]) + lw = 1 + color = mcolors.rgb2hex(color_rgb) + x_test_sorted = X[sort_order] + y_test_sorted = y[sort_order] + y_pred_sorted = y_pred[sort_order] + upper_pi_sorted = upper_pi[sort_order] + lower_pi_sorted = lower_pi[sort_order] + + # Plot test data + ax.scatter(x_test_sorted[:, 0], y_test_sorted, s=1, alpha=0.3, + color='darkblue', label="Test Data") + # Plot prediction + ax.plot(x_test_sorted[:, 0], y_pred_sorted, lw=lw, + color='black', label="Prediction") + # Plot prediction interval + ax.fill_between(x_test_sorted[:, 0], upper_pi_sorted, lower_pi_sorted, + color=color, alpha=0.3, label="Prediction interval") + # Plot upper and lower prediction intervals + ax.plot(x_test_sorted[:, 0], upper_pi_sorted, lw=lw, color=color) + ax.plot(x_test_sorted[:, 0], lower_pi_sorted, lw=lw, color=color) + # Plot true prediction interval + ax.plot(x_test_sorted[:, 0], test_pi[sort_order, 0], "--k", + lw=lw*1.5, label='True PI') + ax.plot(x_test_sorted[:, 0], test_pi[sort_order, 1], "--k", lw=lw*1.5) + + if ( + show_transform and isinstance(mapie, SplitCPRegressor) + and isinstance(mapie.calibrator_, CCPCalibrator) + ): + for calibrator in (list(mapie.calibrator_.functions_) + + [mapie.calibrator_]): + if isinstance(calibrator, CCPCalibrator): + if isinstance(calibrator, GaussianCCP): + sigmas = np.log(calibrator.sigmas_[:, 0]) + else: + sigmas = np.zeros(calibrator.n_out) + for i, loc in enumerate(sigmas): + ax_transform.plot( + x_test_sorted[:, 0], + calibrator.transform(x_test_sorted)[:, i], + lw=lw, color=color + ) + + +def need_transform(mapie): + if ( + not isinstance(mapie, SplitCPRegressor) + or not isinstance(mapie.calibrator_, CCPCalibrator) + ): + return False + for calibrator in list(mapie.calibrator_.functions_) + [mapie.calibrator_]: + if isinstance(calibrator, CCPCalibrator): + if isinstance(calibrator, GaussianCCP): + return True + return False + + +def plot_figure(mapies, y_preds, y_pis, titles, show_transform=False): + cp = list(sns.color_palette())*10 + ncols = min(3, len(titles)) + nrows = int(np.ceil(len(titles) / ncols)) + ax_need_transform = np.zeros((nrows, ncols)) + if show_transform: + for i, mapie in enumerate(mapies): + ax_need_transform[i//ncols, i % ncols] = need_transform(mapie) + row_need_transform = np.max(ax_need_transform, axis=1) + height_ratio = np.array([ + item for x in row_need_transform + for item in ([3] if x == 0 else [3, 1]) + ]) + fig, axes = plt.subplots(nrows=nrows + int(sum(row_need_transform)), + ncols=ncols, figsize=(ncols*4, nrows*5), + height_ratios=height_ratio) + + for ax in axes[np.where(height_ratio == 1)[0]-1, :].flatten(): + ax.tick_params(axis='x', which='both', bottom=False, + top=False, labelbottom=False) + + transform_axes = np.full((nrows, ncols), None) + transform_axes[row_need_transform == 1, :] = axes[height_ratio == 1, :] + transform_axes = transform_axes.flatten() + main_axes = axes[height_ratio == 3, :].flatten() + else: + fig, axes = plt.subplots(nrows=nrows, ncols=ncols, + figsize=(ncols*4, nrows*4)) + main_axes = axes.flatten() + transform_axes = np.full(main_axes.shape, None) + + for i, (m_ax, t_ax, mapie, y_pred, y_pi, title) in enumerate( + zip(main_axes, transform_axes, mapies, y_preds, y_pis, titles) + ): + lower_bound = y_pi[:, 0, 0] + upper_bound = y_pi[:, 1, 0] + + plot_subplot( + m_ax, X_test, y_test, mapie, y_pred, upper_bound, lower_bound, + cp[i], show_transform=ax_need_transform.flatten()[i], + ax_transform=t_ax + ) + m_ax.set_title(title) + if i % 3 == 0: + m_ax.set_ylabel('Y') + if t_ax is not None: + t_ax.set_title("Transformation") + if i >= len(titles) - ncols: + t_ax.set_xlabel('X') + else: + m_ax.set_xlabel('X') + m_ax.legend() + + fig.tight_layout() + plt.show() + + +def plot_widths(titles, y_pis): + sort_order = np.argsort(X_test[:, 0]) + cp = list(sns.color_palette())*10 + plt.figure(figsize=(8, 6)) + for i, (title, pi) in enumerate(zip(titles, y_pis)): + plt.plot(X_test[sort_order, 0], + (pi[sort_order, 1, 0] - pi[sort_order, 0, 0]), + lw=2, color=mcolors.rgb2hex(cp[i]), label=title) + + plt.title("Prediction interval width") + plt.xlabel("X") + plt.ylabel("Width") + plt.legend(fontsize=14) + plt.tight_layout() + plt.show() + + +############################################################################## +# 5. Experiments: +# -------------------------------------------------------------------------- +############################################################################## +# 5.1. Default ``CCPCalibrator`: +# -------------------------------------------------------------------------- + +mapies = [mapie_split, mapie_cv, mapie_cqr, mapie_ccp] +y_preds = [y_pred_split, y_pred_cv, y_pred_cqr, y_pred_ccp] +y_pis = [y_pi_split, y_pi_cv, y_pi_cqr, y_pi_ccp] +titles = ["Basic Split (new implementation)", "CV+", "CQR", "CCP (default)"] + +plot_figure(mapies, y_preds, y_pis, titles) +plot_widths(titles, y_pis) + +############################################################################## +# 5.2. How to improve the results? +# -------------------------------------------------------------------------- + +# The CCP method is based on a function $\phi : X \to \phi(X) \in \R^d$ + +# This vector $\phi(X)$ constitute features that should be able to represente +# the distribuion of the conformity scores, which is here (by default) the +# absolute residual: $\lvert y_{true} - y_{pred} \rvert$ +# #### Examples of basic $\phi$: +# - $\phi : X \to 1$, will try to estimate the absolute residual with a +# constant, and will results in a prediction interval of constant width +# (like the basic split CP) +# - $\phi : X \to (1, X)$, will result in a prediction interval of width +# equal to: a constant + a value proportional to the value of $X$ (it seems +# a good idea here, as the uncertainty increase with $X$) +# - $\phi : X \to (1, X^3)$, will result in a prediction interval of width +# equal to: a constant + a value proportional to the value of $X^3$ (it seems +# a good idea here, as the uncertainty increase with $X$) +# - $\phi : X \to y_{pred}$, will result in a prediction interval of width +# proportional to the prediction (It is sometime the case, when the +# uncertainty is proportionnal to the value). +# Note that using $\phi : X \to y_{pred}$ is somewhat similar to +# using a standard Split CP (``method="base"`` in ``MapieRegressor``) +# with a ``GammaConformityScore``. + +# Using custom definition: +# Note: calibrator1_bis is equivalent to calibrator1, as bias=True +# adds a column of ones + +calibrator1 = CustomCCP([lambda X: np.ones(len(X))]) +calibrator1_bis = CustomCCP(bias=True) +calibrator2 = CustomCCP([lambda X: X], bias=True) +calibrator3 = CustomCCP([lambda X: X**3], bias=True) + +############################################################################## +# Using ``PolynomialCCP``: +# degree=1 is equivalent to degree=[0, 1] +# Warning, degree=2 is equivalent to degree=[0, 1, 2] + +calibrator1 = PolynomialCCP(0) +calibrator2 = PolynomialCCP(1) +calibrator3 = PolynomialCCP([0, 3]) + +############################################################################## +# Note: adding '0' in the 'degree' argument list is equivalent to having +# bias=True, as X^0=1 + +# ================== CCP 1 ================== +mapie_ccp_1 = SplitCPRegressor(estimator, calibrator=calibrator1, alpha=ALPHA, + random_state=random_state) +mapie_ccp_1.fit(X_train, y_train) +y_pred_ccp_1, y_pi_ccp_1 = mapie_ccp_1.predict(X_test) + +# ================== CCP 2 ================== +mapie_ccp_2 = SplitCPRegressor(estimator, calibrator=calibrator2, alpha=ALPHA, + random_state=random_state) +mapie_ccp_2.fit(X_train, y_train) +y_pred_ccp_2, y_pi_ccp_2 = mapie_ccp_2.predict(X_test) + +# ================== CCP 3 ================== +mapie_ccp_3 = SplitCPRegressor(estimator, calibrator=calibrator3, alpha=ALPHA, + random_state=random_state) +mapie_ccp_3.fit(X_train, y_train) +y_pred_ccp_3, y_pi_ccp_3 = mapie_ccp_3.predict(X_test) + +mapies = [mapie_split, mapie_cv, mapie_cqr, + mapie_ccp_1, mapie_ccp_2, mapie_ccp_3] +y_preds = [y_pred_split, y_pred_cv, y_pred_cqr, + y_pred_ccp_1, y_pred_ccp_2, y_pred_ccp_3] +y_pis = [y_pi_split, y_pi_cv, y_pi_cqr, + y_pi_ccp_1, y_pi_ccp_2, y_pi_ccp_3] +titles = ["Basic Split", "CV+", "CQR", + "CCP (1)", "CCP (1, X)", "CCP (1, X**3)"] + +plot_figure(mapies, y_preds, y_pis, titles) +plot_widths(titles, y_pis) + +############################################################################## +# Note: The small width different between ``Basic Split`` and ``CCP 1`` +# is just because of the variance induced by the finite number of calibration +# and test points. The two values would both converge toward the same width +# if we would reproduce the experiment many times and average the results. + + +############################################################################## +# 5.3. Improve the performances using what we know about the data +# -------------------------------------------------------------------------- +# To improve the results, we need to analyse the data and the conformity +# scores we chose (here, the absolute residuals). +# 1. We can see that the residuals increase with X for X > 0. +# 2. For X < 0, the points seem uniformly distributed +# around the base distribution. + +calibrator1 = CustomCCP([lambda X: X < 0, lambda X: X >= 0]) +calibrator2 = CustomCCP( + [lambda X: X < 0, (lambda X: X >= 0)*PolynomialCCP(1)] +) +calibrator3 = CustomCCP( + [ + (lambda X: X < 0)*PolynomialCCP(5), + (lambda X: X >= 0)*PolynomialCCP(5) + ] +) + +# ================== CCP 1 ================== +mapie_ccp_1 = SplitCPRegressor(estimator, calibrator=calibrator1, alpha=ALPHA, + random_state=random_state) +mapie_ccp_1.fit(X_train, y_train) +y_pred_ccp_1, y_pi_ccp_1 = mapie_ccp_1.predict(X_test) + +# ================== CCP 2 ================== +mapie_ccp_2 = SplitCPRegressor(estimator, calibrator=calibrator2, alpha=ALPHA, + random_state=random_state) +mapie_ccp_2.fit(X_train, y_train) +y_pred_ccp_2, y_pi_ccp_2 = mapie_ccp_2.predict(X_test) + +# ================== CCP 3 ================== +mapie_ccp_3 = SplitCPRegressor(estimator, calibrator=calibrator3, alpha=ALPHA, + random_state=random_state) +mapie_ccp_3.fit(X_train, y_train) +y_pred_ccp_3, y_pi_ccp_3 = mapie_ccp_3.predict(X_test) + +mapies = [mapie_split, mapie_cv, mapie_cqr, + mapie_ccp_1, mapie_ccp_2, mapie_ccp_3] +y_preds = [y_pred_split, y_pred_cv, y_pred_cqr, + y_pred_ccp_1, y_pred_ccp_2, y_pred_ccp_3] +y_pis = [y_pi_split, y_pi_cv, y_pi_cqr, y_pi_ccp_1, y_pi_ccp_2, y_pi_ccp_3] +titles = ["Basic Split", "CV+", "CQR", "CCP 2 groups, 1 and 1", + "CCP 2 groups, 1 and X", "CCP 2 groups, polynomials"] + +plot_figure(mapies, y_preds, y_pis, titles) +plot_widths(titles, y_pis) + +############################################################################## +# 5.4. Improve the performances without prior knowledge: ``GaussianCCP`` +# -------------------------------------------------------------------------- +# We can use ``GaussianCCP`` calibrators, if we don't have prior information +# about the data. It will sample points (are use the points given by the user), +# and only consider the calibration conformity scores of points next to a +# sample, to estimate the prediction interval of this sample. In this way, +# assuming wehave enough points, and the correct standard deviation value, +# we will getan overall good adaptativity. + +calibrator_gauss1 = GaussianCCP(np.arange(-1, 6).reshape(-1, 1), 1) +calibrator_gauss2 = GaussianCCP(30, 0.05, random_sigma=True, normalized=True) +calibrator_gauss3 = GaussianCCP(30, 0.25, random_sigma=True, normalized=True, + reg_param=1e-3) + +# ================== CCP 1 ================== +mapie_ccp_1 = SplitCPRegressor(estimator, calibrator=calibrator_gauss1, + alpha=ALPHA, random_state=random_state) +mapie_ccp_1.fit(X_train, y_train) +y_pred_ccp_1, y_pi_ccp_1 = mapie_ccp_1.predict(X_test) + +# ================== CCP 2 ================== +mapie_ccp_2 = SplitCPRegressor(estimator, calibrator=calibrator_gauss2, + alpha=ALPHA, random_state=random_state) +mapie_ccp_2.fit(X_train, y_train) +y_pred_ccp_2, y_pi_ccp_2 = mapie_ccp_2.predict(X_test) + +# ================== CCP 3 ================== +mapie_ccp_3 = SplitCPRegressor(estimator, calibrator=calibrator_gauss3, + alpha=ALPHA, random_state=random_state) +mapie_ccp_3.fit(X_train, y_train) +y_pred_ccp_3, y_pi_ccp_3 = mapie_ccp_3.predict(X_test) + +mapies = [mapie_split, mapie_cv, mapie_cqr, mapie_ccp_1, + mapie_ccp_2, mapie_ccp_3] +y_preds = [y_pred_split, y_pred_cv, y_pred_cqr, y_pred_ccp_1, + y_pred_ccp_2, y_pred_ccp_3] +y_pis = [y_pi_split, y_pi_cv, y_pi_cqr, y_pi_ccp_1, y_pi_ccp_2, y_pi_ccp_3] +titles = ["Basic Split", "CV+", "CQR", "CCP, 5 points, s=1 (under-fit)", + "CCP, 30 points, s=0.05 (over-fit)", + "CCP, 30 points, s=0.25 (good calibrator)"] + +plot_figure(mapies, y_preds, y_pis, titles, show_transform=True) +plot_widths(titles, y_pis) + +############################################################################## +# #### Using gaussian distances from randomly sampled points is a good solution +# to have an overall good adaptativity. +# #### $\to$ We just need to find the good standard deviation parameters +# to have a good trade-off between adaptativity and overfitting. From f1e3be4dfdffb5dfe9caf885a1bb2e478d4c8d15 Mon Sep 17 00:00:00 2001 From: Damien Bouet Date: Mon, 17 Jun 2024 18:57:46 +0200 Subject: [PATCH 064/165] UPD: ccp tuto --- .../4-tutorials/plot_ccp_tutorial.py | 79 +++++++++---------- 1 file changed, 38 insertions(+), 41 deletions(-) diff --git a/examples/regression/4-tutorials/plot_ccp_tutorial.py b/examples/regression/4-tutorials/plot_ccp_tutorial.py index 2a60782e0..b57572bd3 100644 --- a/examples/regression/4-tutorials/plot_ccp_tutorial.py +++ b/examples/regression/4-tutorials/plot_ccp_tutorial.py @@ -58,7 +58,7 @@ # - Add noise : # - between -1 and 0: uniform distribution of the points around the baseline # - between 0 and 5: normal distribution with a noise value which -# increase with ``x`` +# increase with ``x`` def x_sinx(x): @@ -84,9 +84,9 @@ def get_1d_data_with_heteroscedastic_noise( true_pi[X < 0, 0] += noise*3*(1-ALPHA) true_pi[X < 0, 1] -= noise*3*(1-ALPHA) true_pi[X >= 0, 0] += norm.ppf(1 - ALPHA/2) * noise * ( - (X[X >= 0])/max_x**power*max_x) + ((X[X >= 0])/max_x)**power*max_x) true_pi[X >= 0, 1] -= norm.ppf(1 - ALPHA/2) * noise * ( - (X[X >= 0])/max_x**power*max_x) + ((X[X >= 0])/max_x)**power*max_x) return X.reshape(-1, 1), y, true_pi @@ -144,31 +144,23 @@ def generate_data(n_train=10000, n_test=4000, noise=0.8, power=2): # We are going to test different methods : ``CV+``, ``CQR`` and ``CCP`` # (with default parameters) -############################################################################## -# Basic Split-conformal: - +# ================== Basic Split-conformal ================== mapie_split = MapieRegressor(estimator, method="base", cv="split", random_state=random_state) mapie_split.fit(X_train, y_train) y_pred_split, y_pi_split = mapie_split.predict(X_test, alpha=ALPHA) -############################################################################## -# CV+: - +# ================== CV+ ================== mapie_cv = MapieRegressor(estimator, method='plus', cv=5) mapie_cv.fit(X_train, y_train) y_pred_cv, y_pi_cv = mapie_cv.predict(X_test, alpha=ALPHA) -############################################################################## -# CQR: - +# ================== CQR ================== mapie_cqr = MapieQuantileRegressor(quantile_estimator, alpha=ALPHA) mapie_cqr.fit(X_train, y_train) y_pred_cqr, y_pi_cqr = mapie_cqr.predict(X_test) -############################################################################## -# CCP: - +# ================== CCP ================== mapie_ccp = SplitCPRegressor(estimator, alpha=ALPHA, cv="split") mapie_ccp.fit(X_train, y_train) y_pred_ccp, y_pi_ccp = mapie_ccp.predict(X_test) @@ -315,8 +307,9 @@ def plot_widths(titles, y_pis): ############################################################################## # 5. Experiments: # -------------------------------------------------------------------------- + ############################################################################## -# 5.1. Default ``CCPCalibrator`: +# 5.1. Default :class:`~mapie.calibrators.GaussianCCP`: # -------------------------------------------------------------------------- mapies = [mapie_split, mapie_cv, mapie_cqr, mapie_ccp] @@ -330,29 +323,30 @@ def plot_widths(titles, y_pis): ############################################################################## # 5.2. How to improve the results? # -------------------------------------------------------------------------- - -# The CCP method is based on a function $\phi : X \to \phi(X) \in \R^d$ - -# This vector $\phi(X)$ constitute features that should be able to represente -# the distribuion of the conformity scores, which is here (by default) the -# absolute residual: $\lvert y_{true} - y_{pred} \rvert$ -# #### Examples of basic $\phi$: -# - $\phi : X \to 1$, will try to estimate the absolute residual with a -# constant, and will results in a prediction interval of constant width -# (like the basic split CP) -# - $\phi : X \to (1, X)$, will result in a prediction interval of width -# equal to: a constant + a value proportional to the value of $X$ (it seems -# a good idea here, as the uncertainty increase with $X$) -# - $\phi : X \to (1, X^3)$, will result in a prediction interval of width -# equal to: a constant + a value proportional to the value of $X^3$ (it seems -# a good idea here, as the uncertainty increase with $X$) -# - $\phi : X \to y_{pred}$, will result in a prediction interval of width -# proportional to the prediction (It is sometime the case, when the -# uncertainty is proportionnal to the value). -# Note that using $\phi : X \to y_{pred}$ is somewhat similar to +# The CCP method is based on a function :math:`\phi : X \to \phi(X) \in \R^d` +# This vector :math:`\phi(X)` constitute features that should be able to +# represente the distribuion of the conformity scores, +# which is here (by default) the +# absolute residual: :math:`\lvert y_{true} - y_{pred} \rvert` +# +# Examples of basic :math:`\phi`: +# - :math:`\phi : X \to 1`, will try to estimate the absolute residual with a +# constant, and will results in a prediction interval of constant width +# (like the basic split CP) +# - :math:`\phi : X \to (1, X)`, will result in a prediction interval of width +# equal to: a constant + a value proportional to the value of $X$ (it seems +# a good idea here, as the uncertainty increase with $X$) +# - :math:`\phi : X \to (1, X^3)`, will result in a prediction +# interval of width equal to: a constant +# + a value proportional to the value of $X^3$ (it seems +# a good idea here, as the uncertainty increase with $X$) +# - :math:`\phi : X \to y_{pred}`, will result in a prediction interval of +# width proportional to the prediction (It is sometime the case, when the +# uncertainty is proportionnal to the value). +# +# Note that using :math:`\phi : X \to y_{pred}` is somewhat similar to # using a standard Split CP (``method="base"`` in ``MapieRegressor``) -# with a ``GammaConformityScore``. - +# with a :class:`~mapie.conformity_scores.GammaConformityScore``. # Using custom definition: # Note: calibrator1_bis is equivalent to calibrator1, as bias=True # adds a column of ones @@ -365,6 +359,7 @@ def plot_widths(titles, y_pis): ############################################################################## # Using ``PolynomialCCP``: # degree=1 is equivalent to degree=[0, 1] +# # Warning, degree=2 is equivalent to degree=[0, 1, 2] calibrator1 = PolynomialCCP(0) @@ -413,7 +408,7 @@ def plot_widths(titles, y_pis): ############################################################################## -# 5.3. Improve the performances using what we know about the data +# 5.3. Improve the performances using what we know about the data # -------------------------------------------------------------------------- # To improve the results, we need to analyse the data and the conformity # scores we chose (here, the absolute residuals). @@ -462,9 +457,11 @@ def plot_widths(titles, y_pis): plot_widths(titles, y_pis) ############################################################################## -# 5.4. Improve the performances without prior knowledge: ``GaussianCCP`` +# 5.4. Improve the performances without prior knowledge: +# :class:`~mapie.calibrators.GaussianCCP` # -------------------------------------------------------------------------- -# We can use ``GaussianCCP`` calibrators, if we don't have prior information +# We can use :class:`~mapie.calibrators.GaussianCCP` calibrators, +# if we don't have prior information # about the data. It will sample points (are use the points given by the user), # and only consider the calibration conformity scores of points next to a # sample, to estimate the prediction interval of this sample. In this way, From 950f02d325b9487b5728c9023f145262cfab387f Mon Sep 17 00:00:00 2001 From: Damien Bouet Date: Tue, 18 Jun 2024 09:38:08 +0200 Subject: [PATCH 065/165] FIX: remove seaborn import --- examples/regression/4-tutorials/plot_ccp_tutorial.py | 9 ++++----- 1 file changed, 4 insertions(+), 5 deletions(-) diff --git a/examples/regression/4-tutorials/plot_ccp_tutorial.py b/examples/regression/4-tutorials/plot_ccp_tutorial.py index b57572bd3..e132d3908 100644 --- a/examples/regression/4-tutorials/plot_ccp_tutorial.py +++ b/examples/regression/4-tutorials/plot_ccp_tutorial.py @@ -36,7 +36,6 @@ from mapie.calibrators.ccp import CCPCalibrator from mapie.regression import (MapieQuantileRegressor, MapieRegressor, SplitCPRegressor) -import seaborn as sns from scipy.stats import norm from sklearn.linear_model import LinearRegression, QuantileRegressor from sklearn.pipeline import Pipeline @@ -231,7 +230,7 @@ def need_transform(mapie): def plot_figure(mapies, y_preds, y_pis, titles, show_transform=False): - cp = list(sns.color_palette())*10 + cp = plt.get_cmap('tab10').colors ncols = min(3, len(titles)) nrows = int(np.ceil(len(titles) / ncols)) ax_need_transform = np.zeros((nrows, ncols)) @@ -289,7 +288,7 @@ def plot_figure(mapies, y_preds, y_pis, titles, show_transform=False): def plot_widths(titles, y_pis): sort_order = np.argsort(X_test[:, 0]) - cp = list(sns.color_palette())*10 + cp = plt.get_cmap('tab10').colors plt.figure(figsize=(8, 6)) for i, (title, pi) in enumerate(zip(titles, y_pis)): plt.plot(X_test[sort_order, 0], @@ -367,8 +366,8 @@ def plot_widths(titles, y_pis): calibrator3 = PolynomialCCP([0, 3]) ############################################################################## -# Note: adding '0' in the 'degree' argument list is equivalent to having -# bias=True, as X^0=1 +# Note: adding ``0`` in the ``degree`` argument list is equivalent to having +# ``bias=True``, as :math:`X^0=1` # ================== CCP 1 ================== mapie_ccp_1 = SplitCPRegressor(estimator, calibrator=calibrator1, alpha=ALPHA, From a7a3297b81bf39f9f15bc240a7ecb0f1aec391e1 Mon Sep 17 00:00:00 2001 From: Damien Bouet Date: Tue, 18 Jun 2024 15:41:32 +0200 Subject: [PATCH 066/165] FIX: isort imports --- .../plot_gibbs2023_simulations.py | 14 +++++++++----- .../regression/4-tutorials/plot_ccp_tutorial.py | 9 +++++---- mapie/calibrators/__init__.py | 2 +- mapie/calibrators/base.py | 3 ++- mapie/calibrators/ccp/__init__.py | 2 +- mapie/calibrators/ccp/base.py | 16 +++++++++------- mapie/calibrators/ccp/custom.py | 4 +++- mapie/calibrators/ccp/gaussian.py | 6 ++++-- mapie/calibrators/ccp/polynomial.py | 3 ++- mapie/calibrators/ccp/utils.py | 5 +++-- mapie/calibrators/standard.py | 6 ++++-- mapie/classification.py | 8 +++----- mapie/futur/split/base.py | 15 ++++++++------- mapie/futur/split/regression.py | 7 ++++--- mapie/regression/__init__.py | 3 ++- mapie/tests/test_ccp_calibrator.py | 9 +++++---- mapie/tests/test_futur_regression.py | 4 ++-- mapie/tests/test_standard_calibrator.py | 3 ++- mapie/utils.py | 8 ++++---- 19 files changed, 73 insertions(+), 54 deletions(-) diff --git a/examples/regression/3-scientific-articles/plot_gibbs2023_simulations.py b/examples/regression/3-scientific-articles/plot_gibbs2023_simulations.py index 401c936c7..f3a6305d2 100644 --- a/examples/regression/3-scientific-articles/plot_gibbs2023_simulations.py +++ b/examples/regression/3-scientific-articles/plot_gibbs2023_simulations.py @@ -32,14 +32,15 @@ import matplotlib.pyplot as plt import numpy as np import pandas as pd -from mapie.conformity_scores import AbsoluteConformityScore -from mapie.regression import SplitCPRegressor, MapieRegressor -from mapie.calibrators.ccp import CustomCCP, GaussianCCP from scipy.stats import norm from sklearn.linear_model import LinearRegression from sklearn.pipeline import Pipeline from sklearn.preprocessing import PolynomialFeatures +from mapie.calibrators.ccp import CustomCCP, GaussianCCP +from mapie.conformity_scores import AbsoluteConformityScore +from mapie.regression import MapieRegressor, SplitCPRegressor + warnings.filterwarnings("ignore") random_state = 1 @@ -144,10 +145,13 @@ def f(x): # :class:`~mapie.regression.MapieRegressor` and # :class:`~mapie.regression.MapieCCPRegressor` to compute prediction intervals # with the basic Split CP method and the paper CCP method. -# The coverages will be computed on 500 different dataset generation, to have -# a good idea of the true value. Indeed, the empirical coverage of a single +# The coverages was computed, in the paper, on 500 different dataset +# generations, to have a good idea of the true value. +# Indeed, the empirical coverage of a single # experiment is stochastic, because of the finite number of calibration and # test samples. +# We will only compute 50 trials, because of the documentation +# computational power limitations. ALPHA = 0.1 diff --git a/examples/regression/4-tutorials/plot_ccp_tutorial.py b/examples/regression/4-tutorials/plot_ccp_tutorial.py index e132d3908..13c85a731 100644 --- a/examples/regression/4-tutorials/plot_ccp_tutorial.py +++ b/examples/regression/4-tutorials/plot_ccp_tutorial.py @@ -32,15 +32,16 @@ import matplotlib.colors as mcolors import matplotlib.pyplot as plt import numpy as np -from mapie.calibrators import CustomCCP, GaussianCCP, PolynomialCCP -from mapie.calibrators.ccp import CCPCalibrator -from mapie.regression import (MapieQuantileRegressor, MapieRegressor, - SplitCPRegressor) from scipy.stats import norm from sklearn.linear_model import LinearRegression, QuantileRegressor from sklearn.pipeline import Pipeline from sklearn.preprocessing import PolynomialFeatures +from mapie.calibrators import CustomCCP, GaussianCCP, PolynomialCCP +from mapie.calibrators.ccp import CCPCalibrator +from mapie.regression import (MapieQuantileRegressor, MapieRegressor, + SplitCPRegressor) + warnings.filterwarnings("ignore") random_state = 1 diff --git a/mapie/calibrators/__init__.py b/mapie/calibrators/__init__.py index 5845e53fb..ffe2ba325 100644 --- a/mapie/calibrators/__init__.py +++ b/mapie/calibrators/__init__.py @@ -1,6 +1,6 @@ from .base import BaseCalibrator +from .ccp import CustomCCP, GaussianCCP, PolynomialCCP from .standard import StandardCalibrator -from .ccp import CustomCCP, PolynomialCCP, GaussianCCP __all__ = [ "BaseCalibrator", diff --git a/mapie/calibrators/base.py b/mapie/calibrators/base.py index 6aa20b8d5..a3ac6bf48 100644 --- a/mapie/calibrators/base.py +++ b/mapie/calibrators/base.py @@ -3,9 +3,10 @@ from abc import ABCMeta, abstractmethod from typing import List, Optional -from mapie._typing import ArrayLike, NDArray from sklearn.base import BaseEstimator +from mapie._typing import ArrayLike, NDArray + class BaseCalibrator(BaseEstimator, metaclass=ABCMeta): """ diff --git a/mapie/calibrators/ccp/__init__.py b/mapie/calibrators/ccp/__init__.py index 270583dfc..c543da274 100644 --- a/mapie/calibrators/ccp/__init__.py +++ b/mapie/calibrators/ccp/__init__.py @@ -1,7 +1,7 @@ from .base import CCPCalibrator from .custom import CustomCCP -from .polynomial import PolynomialCCP from .gaussian import GaussianCCP, check_calibrator +from .polynomial import PolynomialCCP __all__ = [ "CCPCalibrator", diff --git a/mapie/calibrators/ccp/base.py b/mapie/calibrators/ccp/base.py index 7dcb8d1d1..dd429225b 100644 --- a/mapie/calibrators/ccp/base.py +++ b/mapie/calibrators/ccp/base.py @@ -1,20 +1,22 @@ from __future__ import annotations +import warnings from abc import ABCMeta, abstractmethod from typing import Callable, Iterable, List, Optional, Tuple, Union, cast -import warnings + +import numpy as np +from scipy.optimize import minimize, OptimizeResult +from sklearn.base import clone +from sklearn.utils import _safe_indexing +from sklearn.utils.validation import _num_samples, check_is_fitted from mapie._typing import ArrayLike, NDArray from mapie.calibrators import BaseCalibrator from mapie.calibrators.ccp.utils import (calibrator_optim_objective, check_multiplier, compile_functions_warnings_errors, - concatenate_functions) -import numpy as np -from sklearn.base import clone -from sklearn.utils import _safe_indexing -from sklearn.utils.validation import _num_samples, check_is_fitted -from scipy.optimize import minimize + concatenate_functions, + check_required_arguments) class CCPCalibrator(BaseCalibrator, metaclass=ABCMeta): diff --git a/mapie/calibrators/ccp/custom.py b/mapie/calibrators/ccp/custom.py index 688b3593f..2f5522538 100644 --- a/mapie/calibrators/ccp/custom.py +++ b/mapie/calibrators/ccp/custom.py @@ -2,11 +2,13 @@ from typing import Callable, Iterable, List, Optional, Union +from sklearn.utils import _safe_indexing + from mapie._typing import ArrayLike + from .base import CCPCalibrator from .utils import (check_multiplier, compile_functions_warnings_errors, format_functions) -from sklearn.utils import _safe_indexing class CustomCCP(CCPCalibrator): diff --git a/mapie/calibrators/ccp/gaussian.py b/mapie/calibrators/ccp/gaussian.py index 7be294a4e..d5bdf1082 100644 --- a/mapie/calibrators/ccp/gaussian.py +++ b/mapie/calibrators/ccp/gaussian.py @@ -3,12 +3,14 @@ from typing import Callable, List, Optional, Tuple, Union import numpy as np +from sklearn.utils import _safe_indexing +from sklearn.utils.validation import _num_samples + from mapie._typing import ArrayLike from mapie.calibrators import BaseCalibrator from mapie.calibrators.ccp import CCPCalibrator + from .utils import compute_sigma, format_functions, sample_points -from sklearn.utils import _safe_indexing -from sklearn.utils.validation import _num_samples class GaussianCCP(CCPCalibrator): diff --git a/mapie/calibrators/ccp/polynomial.py b/mapie/calibrators/ccp/polynomial.py index 9ce3e6ee0..0264ca0f4 100644 --- a/mapie/calibrators/ccp/polynomial.py +++ b/mapie/calibrators/ccp/polynomial.py @@ -1,8 +1,9 @@ from __future__ import annotations -from typing import Callable, Optional, Tuple, Union, List +from typing import Callable, List, Optional, Tuple, Union from mapie._typing import ArrayLike + from .base import CCPCalibrator from .utils import format_functions diff --git a/mapie/calibrators/ccp/utils.py b/mapie/calibrators/ccp/utils.py index f1de426a5..802090421 100644 --- a/mapie/calibrators/ccp/utils.py +++ b/mapie/calibrators/ccp/utils.py @@ -1,14 +1,15 @@ from __future__ import annotations import inspect -from typing import Callable, Dict, Iterable, List, Optional, Tuple, Union, cast import warnings +from typing import Callable, Dict, Iterable, List, Optional, Tuple, Union, cast import numpy as np -from mapie._typing import ArrayLike, NDArray from sklearn.utils import _safe_indexing from sklearn.utils.validation import _num_samples +from mapie._typing import ArrayLike, NDArray + def format_functions( functions: Optional[Union[Callable, Iterable[Callable]]], diff --git a/mapie/calibrators/standard.py b/mapie/calibrators/standard.py index 98c0af9e6..b248fdfe8 100644 --- a/mapie/calibrators/standard.py +++ b/mapie/calibrators/standard.py @@ -1,12 +1,14 @@ from __future__ import annotations -from typing import List +from typing import List, cast import numpy as np +from sklearn.utils.validation import _num_samples + from mapie._typing import ArrayLike, NDArray from mapie.calibrators import BaseCalibrator +from .ccp.utils import check_required_arguments from mapie.conformity_scores import ConformityScore -from sklearn.utils.validation import _num_samples class StandardCalibrator(BaseCalibrator): diff --git a/mapie/classification.py b/mapie/classification.py index bf13945c1..8d72af59e 100644 --- a/mapie/classification.py +++ b/mapie/classification.py @@ -14,6 +14,9 @@ from sklearn.utils.validation import (_check_y, _num_samples, check_is_fitted, indexable) +from mapie.conformity_scores.utils_classification_conformity_scores import \ + get_true_label_position + from ._machine_precision import EPSILON from ._typing import ArrayLike, NDArray from .metrics import classification_mean_width_score @@ -23,11 +26,6 @@ compute_quantiles, fit_estimator, fix_number_of_classes) -from mapie.conformity_scores.utils_classification_conformity_scores import ( - get_true_label_position, -) - - class MapieClassifier(BaseEstimator, ClassifierMixin): """ Prediction sets for classification. diff --git a/mapie/futur/split/base.py b/mapie/futur/split/base.py index 6e3c4ac46..451c1cf7b 100644 --- a/mapie/futur/split/base.py +++ b/mapie/futur/split/base.py @@ -1,22 +1,23 @@ from __future__ import annotations -from abc import ABCMeta, abstractmethod -from typing import Any, Callable, Dict, List, Optional, Tuple, Union, cast import inspect import warnings +from abc import ABCMeta, abstractmethod +from typing import Any, Callable, Dict, List, Optional, Tuple, Union, cast import numpy as np -from mapie._typing import ArrayLike, NDArray -from mapie.calibrators import BaseCalibrator -from mapie.calibrators.ccp import CCPCalibrator -from mapie.conformity_scores import ConformityScore -from mapie.utils import _sample_non_null_weight, fit_estimator from sklearn.base import BaseEstimator, ClassifierMixin, RegressorMixin from sklearn.model_selection import (BaseCrossValidator, BaseShuffleSplit, PredefinedSplit, ShuffleSplit) from sklearn.pipeline import Pipeline from sklearn.utils.validation import _num_samples, check_is_fitted +from mapie._typing import ArrayLike, NDArray +from mapie.calibrators import BaseCalibrator +from mapie.calibrators.ccp import CCPCalibrator +from mapie.conformity_scores import ConformityScore +from mapie.utils import _sample_non_null_weight, fit_estimator + class SplitCP(BaseEstimator, metaclass=ABCMeta): """ diff --git a/mapie/futur/split/regression.py b/mapie/futur/split/regression.py index 283df1bbe..d2d112bc7 100644 --- a/mapie/futur/split/regression.py +++ b/mapie/futur/split/regression.py @@ -3,15 +3,16 @@ from typing import List, Optional, Tuple, Union import numpy as np +from sklearn.base import RegressorMixin +from sklearn.model_selection import BaseCrossValidator, BaseShuffleSplit +from sklearn.pipeline import Pipeline + from mapie._typing import ArrayLike, NDArray from mapie.calibrators.ccp import check_calibrator from mapie.conformity_scores import ConformityScore from mapie.futur.split.base import BaseCalibrator, SplitCP from mapie.utils import (check_conformity_score, check_estimator_regression, check_lower_upper_bounds) -from sklearn.base import RegressorMixin -from sklearn.model_selection import BaseCrossValidator, BaseShuffleSplit -from sklearn.pipeline import Pipeline class SplitCPRegressor(SplitCP): diff --git a/mapie/regression/__init__.py b/mapie/regression/__init__.py index 6e262b200..debfd4663 100644 --- a/mapie/regression/__init__.py +++ b/mapie/regression/__init__.py @@ -1,6 +1,7 @@ +from mapie.futur.split import SplitCPRegressor + from .quantile_regression import MapieQuantileRegressor from .regression import MapieRegressor -from mapie.futur.split import SplitCPRegressor from .time_series_regression import MapieTimeSeriesRegressor __all__ = [ diff --git a/mapie/tests/test_ccp_calibrator.py b/mapie/tests/test_ccp_calibrator.py index 8617eb484..1b90244b8 100644 --- a/mapie/tests/test_ccp_calibrator.py +++ b/mapie/tests/test_ccp_calibrator.py @@ -1,14 +1,15 @@ from __future__ import annotations -from typing import Any, List, Dict +from typing import Any, Dict, List import numpy as np import pytest from sklearn.base import clone -from sklearn.utils.validation import check_is_fitted from sklearn.datasets import make_regression -from mapie.calibrators.ccp import (CustomCCP, GaussianCCP, PolynomialCCP, - CCPCalibrator) +from sklearn.utils.validation import check_is_fitted + +from mapie.calibrators.ccp import (CCPCalibrator, CustomCCP, GaussianCCP, + PolynomialCCP) from mapie.regression import SplitCPRegressor random_state = 1 diff --git a/mapie/tests/test_futur_regression.py b/mapie/tests/test_futur_regression.py index 1cdc49d15..616a0e69a 100644 --- a/mapie/tests/test_futur_regression.py +++ b/mapie/tests/test_futur_regression.py @@ -19,13 +19,13 @@ from sklearn.pipeline import make_pipeline from mapie._typing import NDArray +from mapie.calibrators.ccp import (CCPCalibrator, CustomCCP, GaussianCCP, + PolynomialCCP) from mapie.conformity_scores import (AbsoluteConformityScore, ConformityScore, GammaConformityScore, ResidualNormalisedScore) from mapie.metrics import regression_coverage_score from mapie.regression import SplitCPRegressor -from mapie.calibrators.ccp import (CCPCalibrator, CustomCCP, GaussianCCP, - PolynomialCCP) random_state = 1 np.random.seed(random_state) diff --git a/mapie/tests/test_standard_calibrator.py b/mapie/tests/test_standard_calibrator.py index 86130a00a..b365b5737 100644 --- a/mapie/tests/test_standard_calibrator.py +++ b/mapie/tests/test_standard_calibrator.py @@ -3,9 +3,10 @@ import numpy as np import pytest from sklearn.datasets import make_regression + from mapie.calibrators import StandardCalibrator -from mapie.regression import SplitCPRegressor from mapie.conformity_scores import AbsoluteConformityScore +from mapie.regression import SplitCPRegressor random_state = 1 np.random.seed(random_state) diff --git a/mapie/utils.py b/mapie/utils.py index 1cc93b16b..51cf54b21 100644 --- a/mapie/utils.py +++ b/mapie/utils.py @@ -4,16 +4,16 @@ import numpy as np from sklearn.base import ClassifierMixin, RegressorMixin -from sklearn.linear_model import LogisticRegression, LinearRegression +from sklearn.linear_model import LinearRegression, LogisticRegression from sklearn.model_selection import (BaseCrossValidator, BaseShuffleSplit, KFold, LeaveOneOut, ShuffleSplit, train_test_split) from sklearn.pipeline import Pipeline from sklearn.utils import _safe_indexing from sklearn.utils.multiclass import type_of_target -from sklearn.utils.validation import (_check_sample_weight, _num_features, - _check_y, check_is_fitted, _num_samples, - column_or_1d, indexable) +from sklearn.utils.validation import (_check_sample_weight, _check_y, + _num_features, _num_samples, + check_is_fitted, column_or_1d, indexable) from ._compatibility import np_quantile from ._typing import ArrayLike, NDArray From cc412095bab0df2e5dcb73f59a6b6a63aec22d27 Mon Sep 17 00:00:00 2001 From: Damien Bouet Date: Tue, 18 Jun 2024 15:45:32 +0200 Subject: [PATCH 067/165] UPD: ccp tutorial --- .../4-tutorials/plot_ccp_tutorial.py | 142 +++++++++++++----- 1 file changed, 105 insertions(+), 37 deletions(-) diff --git a/examples/regression/4-tutorials/plot_ccp_tutorial.py b/examples/regression/4-tutorials/plot_ccp_tutorial.py index 13c85a731..ace5a0802 100644 --- a/examples/regression/4-tutorials/plot_ccp_tutorial.py +++ b/examples/regression/4-tutorials/plot_ccp_tutorial.py @@ -54,11 +54,11 @@ # -------------------------------------------------------------------------- # Let's start by creating some synthetic data with different domains and # distributions to evaluate the adaptativity of the methods: -# - baseline distribution of ``x*sin(x)`` -# - Add noise : -# - between -1 and 0: uniform distribution of the points around the baseline -# - between 0 and 5: normal distribution with a noise value which -# increase with ``x`` +# - baseline distribution of ``x*sin(x)`` +# - Add noise : +# - between -1 and 0: uniform distribution of the points around the baseline +# - between 0 and 5: normal distribution with a noise value which +# increase with ``x`` def x_sinx(x): @@ -261,6 +261,11 @@ def plot_figure(mapies, y_preds, y_pis, titles, show_transform=False): main_axes = axes.flatten() transform_axes = np.full(main_axes.shape, None) + for i in range(len(mapies), len(main_axes)): + fig.delaxes(main_axes[i]) + if transform_axes[i] is not None: + fig.delaxes(transform_axes[i]) + for i, (m_ax, t_ax, mapie, y_pred, y_pi, title) in enumerate( zip(main_axes, transform_axes, mapies, y_preds, y_pis, titles) ): @@ -287,19 +292,77 @@ def plot_figure(mapies, y_preds, y_pis, titles, show_transform=False): plt.show() -def plot_widths(titles, y_pis): +def compute_conditional_coverage(X_test, y_test, y_pis, bins_width=0.5): + """ + Computes the conditional coverage based on the prediction intervals. + """ + bin_edges = np.arange(np.min(X_test), np.max(X_test) + bins_width, + bins_width) + coverage = np.zeros(len(bin_edges) - 1) + + for i in range(len(bin_edges) - 1): + in_bin = np.logical_and(X_test[:, 0] >= bin_edges[i], + X_test[:, 0] < bin_edges[i + 1]) + coverage[i] = np.mean(np.logical_and( + y_test[in_bin] >= y_pis[in_bin, 0, 0], + y_test[in_bin] <= y_pis[in_bin, 1, 0] + )) + + bin_centers = (bin_edges[:-1] + bin_edges[1:]) / 2 + return bin_centers, coverage + + +def plot_evaluation(titles, y_pis, X_test, y_test): sort_order = np.argsort(X_test[:, 0]) cp = plt.get_cmap('tab10').colors - plt.figure(figsize=(8, 6)) - for i, (title, pi) in enumerate(zip(titles, y_pis)): - plt.plot(X_test[sort_order, 0], - (pi[sort_order, 1, 0] - pi[sort_order, 0, 0]), - lw=2, color=mcolors.rgb2hex(cp[i]), label=title) - - plt.title("Prediction interval width") - plt.xlabel("X") - plt.ylabel("Width") - plt.legend(fontsize=14) + + # Determine the number of rows needed + num_plots = len(titles) + num_rows = (num_plots + 2) // 3 + + fig, axs = plt.subplots(nrows=num_rows, ncols=3, figsize=(12, 4*num_rows)) + for ax in axs[:, 2]: # To add a blank column on the right + fig.delaxes(ax) + axs = axs[:, :2].flatten() # Flatten to make indexing easier + + cov_lim = [1, 0] + width_lim = [np.inf, 0] + for i in range(num_rows): + for j, pi in enumerate(y_pis[3*i: 3*(i+1)]): + c = mcolors.rgb2hex(cp[i*3+j]) + # Conditionnal coverage + bin_centers, coverage = compute_conditional_coverage(X_test, + y_test, pi) + axs[i * 2].axhline(y=1-ALPHA, color='black', linestyle="--") + axs[i * 2].plot(bin_centers, coverage, lw=2, color=c) + cov_lim[0] = min(cov_lim[0], min(coverage)) + cov_lim[1] = max(cov_lim[1], max(coverage)) + # Interval width + width = pi[sort_order, 1, 0] - pi[sort_order, 0, 0] + axs[i * 2 + 1].plot( + X_test[sort_order, 0], + width, + lw=2, color=c, label=titles[i*3+j] + ) + width_lim[0] = min(width_lim[0], min(width)) + width_lim[1] = max(width_lim[1], max(width)) + axs[i * 2 + 1].legend(fontsize=10) + axs[i * 2 + 1].set_title("Prediction Interval Width") + axs[i * 2 + 1].set_xlabel("X") + axs[i * 2 + 1].set_ylabel("Width") + axs[i * 2].legend([f"alpha={ALPHA}"], fontsize=10) + axs[i * 2].set_title("Conditional Coverage") + axs[i * 2].set_xlabel("X (bins of 0.5 width)") + axs[i * 2].set_ylabel("Coverage") + + # Remove unused subplots + for j in range(num_plots * 2, len(axs)): + fig.delaxes(axs[j]) + + for ax_cov, ax_width in zip(axs[::2], axs[1::2]): + ax_cov.set_ylim([cov_lim[0]*0.95, cov_lim[1]*1.05]) + ax_width.set_ylim([width_lim[0]*0.95, width_lim[1]*1.05]) + plt.tight_layout() plt.show() @@ -315,10 +378,11 @@ def plot_widths(titles, y_pis): mapies = [mapie_split, mapie_cv, mapie_cqr, mapie_ccp] y_preds = [y_pred_split, y_pred_cv, y_pred_cqr, y_pred_ccp] y_pis = [y_pi_split, y_pi_cv, y_pi_cqr, y_pi_ccp] -titles = ["Basic Split (new implementation)", "CV+", "CQR", "CCP (default)"] +titles = ["Basic Split", "CV+", "CQR", "CCP (default)"] plot_figure(mapies, y_preds, y_pis, titles) -plot_widths(titles, y_pis) +plot_evaluation(titles, y_pis, X_test, y_test) + ############################################################################## # 5.2. How to improve the results? @@ -334,12 +398,12 @@ def plot_widths(titles, y_pis): # constant, and will results in a prediction interval of constant width # (like the basic split CP) # - :math:`\phi : X \to (1, X)`, will result in a prediction interval of width -# equal to: a constant + a value proportional to the value of $X$ (it seems -# a good idea here, as the uncertainty increase with $X$) +# equal to: a constant + a value proportional to the value of :math:`X` +# (it seems a good idea here, as the uncertainty increase with :math:`X`) # - :math:`\phi : X \to (1, X^3)`, will result in a prediction # interval of width equal to: a constant -# + a value proportional to the value of $X^3$ (it seems -# a good idea here, as the uncertainty increase with $X$) +# + a value proportional to the value of :math:`X^3` (it seems +# a good idea here, as the uncertainty increase with :math:`X`) # - :math:`\phi : X \to y_{pred}`, will result in a prediction interval of # width proportional to the prediction (It is sometime the case, when the # uncertainty is proportionnal to the value). @@ -347,9 +411,8 @@ def plot_widths(titles, y_pis): # Note that using :math:`\phi : X \to y_{pred}` is somewhat similar to # using a standard Split CP (``method="base"`` in ``MapieRegressor``) # with a :class:`~mapie.conformity_scores.GammaConformityScore``. +# # Using custom definition: -# Note: calibrator1_bis is equivalent to calibrator1, as bias=True -# adds a column of ones calibrator1 = CustomCCP([lambda X: np.ones(len(X))]) calibrator1_bis = CustomCCP(bias=True) @@ -357,18 +420,23 @@ def plot_widths(titles, y_pis): calibrator3 = CustomCCP([lambda X: X**3], bias=True) ############################################################################## -# Using ``PolynomialCCP``: -# degree=1 is equivalent to degree=[0, 1] -# -# Warning, degree=2 is equivalent to degree=[0, 1, 2] +# Note: +# - ``calibrator1_bis`` is equivalent to ``calibrator1``, as ``bias=True`` +# adds a column of ones + +############################################################################## +# Using :class:`~mapie.calibrators.PolynomialCCP`: calibrator1 = PolynomialCCP(0) calibrator2 = PolynomialCCP(1) calibrator3 = PolynomialCCP([0, 3]) ############################################################################## -# Note: adding ``0`` in the ``degree`` argument list is equivalent to having -# ``bias=True``, as :math:`X^0=1` +# Note: +# - adding ``0`` in the ``degree`` argument list is equivalent to having +# ``bias=True``, as :math:`X^0=1` +# - degree=1 is equivalent to degree=[0, 1] +# - Warning, degree=2 is equivalent to degree=[0, 1, 2] # ================== CCP 1 ================== mapie_ccp_1 = SplitCPRegressor(estimator, calibrator=calibrator1, alpha=ALPHA, @@ -398,7 +466,7 @@ def plot_widths(titles, y_pis): "CCP (1)", "CCP (1, X)", "CCP (1, X**3)"] plot_figure(mapies, y_preds, y_pis, titles) -plot_widths(titles, y_pis) +plot_evaluation(titles, y_pis, X_test, y_test) ############################################################################## # Note: The small width different between ``Basic Split`` and ``CCP 1`` @@ -454,11 +522,10 @@ def plot_widths(titles, y_pis): "CCP 2 groups, 1 and X", "CCP 2 groups, polynomials"] plot_figure(mapies, y_preds, y_pis, titles) -plot_widths(titles, y_pis) +plot_evaluation(titles, y_pis, X_test, y_test) ############################################################################## -# 5.4. Improve the performances without prior knowledge: -# :class:`~mapie.calibrators.GaussianCCP` +# 5.4. Improve the performances without prior knowledge # -------------------------------------------------------------------------- # We can use :class:`~mapie.calibrators.GaussianCCP` calibrators, # if we don't have prior information @@ -501,10 +568,11 @@ def plot_widths(titles, y_pis): "CCP, 30 points, s=0.25 (good calibrator)"] plot_figure(mapies, y_preds, y_pis, titles, show_transform=True) -plot_widths(titles, y_pis) +plot_evaluation(titles, y_pis, X_test, y_test) ############################################################################## -# #### Using gaussian distances from randomly sampled points is a good solution +# Using gaussian distances from randomly sampled points is a good solution # to have an overall good adaptativity. -# #### $\to$ We just need to find the good standard deviation parameters +# +# :math:`\to` We just need to find the good standard deviation parameters # to have a good trade-off between adaptativity and overfitting. From 3cfdba130ec4c47a97308f903de0276b4af2ce10 Mon Sep 17 00:00:00 2001 From: Damien Bouet Date: Tue, 18 Jun 2024 15:46:16 +0200 Subject: [PATCH 068/165] UPD: remove multipliers from CCPCalibrator init and remove assert --- .../plot_gibbs2023_simulations.py | 2 +- mapie/calibrators/ccp/base.py | 103 +++++++++--------- mapie/calibrators/ccp/custom.py | 18 +-- mapie/calibrators/ccp/gaussian.py | 16 +-- mapie/calibrators/ccp/polynomial.py | 14 +-- mapie/calibrators/ccp/utils.py | 18 +++ mapie/calibrators/standard.py | 3 +- 7 files changed, 83 insertions(+), 91 deletions(-) diff --git a/examples/regression/3-scientific-articles/plot_gibbs2023_simulations.py b/examples/regression/3-scientific-articles/plot_gibbs2023_simulations.py index f3a6305d2..b7781df5c 100644 --- a/examples/regression/3-scientific-articles/plot_gibbs2023_simulations.py +++ b/examples/regression/3-scientific-articles/plot_gibbs2023_simulations.py @@ -151,7 +151,7 @@ def f(x): # experiment is stochastic, because of the finite number of calibration and # test samples. # We will only compute 50 trials, because of the documentation -# computational power limitations. +# computational power limitations. ALPHA = 0.1 diff --git a/mapie/calibrators/ccp/base.py b/mapie/calibrators/ccp/base.py index dd429225b..228683048 100644 --- a/mapie/calibrators/ccp/base.py +++ b/mapie/calibrators/ccp/base.py @@ -83,16 +83,6 @@ class CCPCalibrator(BaseCalibrator, metaclass=ABCMeta): By default ``None``. - multipliers: Optional[List[Callable]] - List of function which take any arguments of ``X, y_pred, z`` - and return an array of shape ``(n_samples, 1)``. - The result of ``calibrator.transform(X, y_pred, z)`` will be multiply - by the result of each function of ``multipliers``. - - Note: When you multiply a ``CCPCalibrator`` with a function, it create - a new instance of ``CCPCalibrator`` (with the same arguments), but - add the function to the ``multipliers`` list. - reg_param: Optional[float] Constant that multiplies the L2 term, controlling regularization strength. ``alpha`` must be a non-negative @@ -142,16 +132,16 @@ def __init__( bias: bool = False, normalized: bool = False, init_value: Optional[ArrayLike] = None, - multipliers: Optional[List[Callable]] = None, reg_param: Optional[float] = None, ) -> None: self.functions = functions self.bias = bias self.normalized = normalized self.init_value = init_value - self.multipliers = multipliers self.reg_param = reg_param + self._multipliers: Optional[List[Callable]] = None + @abstractmethod def _check_fit_parameters( self, @@ -205,6 +195,26 @@ def _check_init_value( else: return init_value + def _check_optimization_success( + self, *optimization_results: OptimizeResult + ) -> None: + """ + _summary_ + + Parameters + ---------- + *optimization_resutls: OptimizeResult + Scipy optimization outputs + """ + for res in optimization_results: + if not res.success: + warnings.warn( + "WARNING: The optimization process for the upper bound " + f"failed with the following error: \n" + f"{res.message}\n" + "The returned prediction interval may be inaccurate." + ) + def fit_params( self, X: ArrayLike, @@ -237,7 +247,7 @@ def fit_params( # Fit the calibrator self._check_fit_parameters(X, y_pred, z) # Do some checks - check_multiplier(self.multipliers, X, y_pred, z) + check_multiplier(self._multipliers, X, y_pred, z) result = self.transform(X, y_pred, z) self.n_in = len(_safe_indexing(X, 0)) self.n_out = len(_safe_indexing(result, 0)) @@ -290,7 +300,8 @@ def fit( Can be any of : ``method, jac, hess, hessp, bounds, constraints, tol, callback, options`` """ - assert self.alpha is not None + check_required_arguments(self.alpha) + self.alpha = cast(float, self.alpha) n_calib = _num_samples(X_calib) if self.sym: @@ -315,7 +326,7 @@ def fit( not_nan_index = np.where(~np.isnan(conformity_scores_calib))[0] # Some conf. score values may be nan (ex: with ResidualNormalisedScore) - optimal_beta_up = minimize( + optimal_beta_up = cast(OptimizeResult, minimize( calibrator_optim_objective, self.init_value_, args=( cs_features[not_nan_index, :], @@ -325,10 +336,10 @@ def fit( self.reg_param, ), **optim_kwargs, - ) + )) if not self.sym: - optimal_beta_low = minimize( + optimal_beta_low = cast(OptimizeResult, minimize( calibrator_optim_objective, self.init_value_, args=( cs_features[not_nan_index, :], @@ -338,25 +349,11 @@ def fit( self.reg_param, ), **optim_kwargs, - ) + )) else: optimal_beta_low = optimal_beta_up - if not optimal_beta_up.success: - warnings.warn( - "WARNING: The optimization process for the upper bound " - f"failed with the following error: \n" - f"{optimal_beta_low.message}\n" - "The returned prediction interval may be inaccurate." - ) - if (not self.sym - and not optimal_beta_low.success): - warnings.warn( - "WARNING: The optimization process for the lower bound " - f"failed with the following error: \n" - f"{optimal_beta_low.message}\n" - "The returned prediction interval may be inaccurate." - ) + self._check_optimization_success(optimal_beta_up, optimal_beta_low) self.beta_up_ = cast(Tuple[NDArray, bool], (optimal_beta_up.x, optimal_beta_up.success)) @@ -366,6 +363,18 @@ def fit( return self + def _check_unconsistent_features(self, cs_features: NDArray) -> None: + """ + Check if the ``cs_features`` array has rows full of zeros. + """ + if np.any(np.all(cs_features == 0, axis=1)): + warnings.warn("WARNING: At least one row of the transformation " + "calibrator.transform(X, y_pred, z) is full of " + "zeros. It will result in a prediction interval of " + "zero width. Consider changing the `CCPCalibrator` " + "definintion.\nFix: Use `bias=True` " + "in the `CCPCalibrator` definition.") + def transform( self, X: Optional[ArrayLike] = None, @@ -397,22 +406,18 @@ def transform( params_mapping = {"X": X, "y_pred": y_pred, "z": z} cs_features = concatenate_functions(self.functions_, params_mapping, - self.multipliers) + self._multipliers) if self.normalized: - norm = np.linalg.norm(cs_features, axis=1).reshape(-1, 1) + norm = cast(NDArray, + np.linalg.norm(cs_features, axis=1)).reshape(-1, 1) cs_features[(abs(norm) == 0)[:, 0], :] = np.ones( cs_features.shape[1]) norm[abs(norm) == 0] = 1 cs_features /= norm - if np.any(np.all(cs_features == 0, axis=1)): - warnings.warn("WARNING: At least one row of the transformation " - "calibrator.transform(X, y_pred, z) is full of " - "zeros. It will result in a prediction interval of " - "zero width. Consider changing the `CCPCalibrator` " - "definintion.\nFix: Use `bias=True` " - "in the `CCPCalibrator` definition.") + self._check_unconsistent_features(cs_features) + return cs_features def predict( @@ -443,7 +448,7 @@ def predict( NDArray Transformation """ - assert y_pred is not None + check_required_arguments(y_pred) cs_features = self.transform(X, y_pred, z) @@ -475,18 +480,18 @@ def __mul__(self, funct: Optional[Callable]) -> CCPCalibrator: Returns ------- CCPCalibrator - self, with ``funct`` append in the ``multipliers`` argument list. + self, with ``funct`` append in the ``_multipliers`` argument list. """ if funct is None: return self else: compile_functions_warnings_errors([funct]) - new_phi = cast(CCPCalibrator, clone(self)) - if new_phi.multipliers is None: - new_phi.multipliers = [funct] + new_calibrator = cast(CCPCalibrator, clone(self)) + if new_calibrator._multipliers is None: + new_calibrator._multipliers = [funct] else: - new_phi.multipliers.append(funct) - return new_phi + new_calibrator._multipliers.append(funct) + return new_calibrator def __rmul__(self, other) -> CCPCalibrator: """ diff --git a/mapie/calibrators/ccp/custom.py b/mapie/calibrators/ccp/custom.py index 2f5522538..5e805d26d 100644 --- a/mapie/calibrators/ccp/custom.py +++ b/mapie/calibrators/ccp/custom.py @@ -80,16 +80,6 @@ class CustomCCP(CCPCalibrator): By default ``None``. - multipliers: Optional[List[Callable]] - List of function which take any arguments of ``X, y_pred, z`` - and return an array of shape ``(n_samples, 1)``. - The result of ``calibrator.transform(X, y_pred, z)`` will be multiply - by the result of each function of ``multipliers``. - - Note: When you multiply a ``CCPCalibrator`` with a function, it create - a new instance of ``CCPCalibrator`` (with the same arguments), but - add the function to the ``multipliers`` list. - reg_param: Optional[float] Constant that multiplies the L2 term, controlling regularization strength. ``alpha`` must be a non-negative @@ -154,11 +144,9 @@ def __init__( bias: bool = False, normalized: bool = False, init_value: Optional[ArrayLike] = None, - multipliers: Optional[List[Callable]] = None, reg_param: Optional[float] = None, ) -> None: - super().__init__(functions, bias, normalized, init_value, - multipliers, reg_param) + super().__init__(functions, bias, normalized, init_value, reg_param) def _check_fit_parameters( self, @@ -217,13 +205,13 @@ def fit_params( By default ``None`` """ - check_multiplier(self.multipliers, X, y_pred, z) + check_multiplier(self._multipliers, X, y_pred, z) self._check_fit_parameters(X, y_pred, z) for phi in self.functions_: if isinstance(phi, CCPCalibrator): phi.fit_params(X, y_pred, z) - check_multiplier(phi.multipliers, X, y_pred, z) + check_multiplier(phi._multipliers, X, y_pred, z) self.is_fitted_ = True result = self.transform(X, y_pred, z) diff --git a/mapie/calibrators/ccp/gaussian.py b/mapie/calibrators/ccp/gaussian.py index d5bdf1082..7cebf950e 100644 --- a/mapie/calibrators/ccp/gaussian.py +++ b/mapie/calibrators/ccp/gaussian.py @@ -90,7 +90,7 @@ class GaussianCCP(CCPCalibrator): Note: This is a default suggestion of randomization, which allow to have in the same time wide and narrow gaussians - (with a gigger range of multipliers for huge amount of points). + (with a bigger range of multipliers for huge amount of points). You can use fully custom sigma values, buy passing to the ``points`` argument, a different sigma value for each point. @@ -134,16 +134,6 @@ class GaussianCCP(CCPCalibrator): By default ``None``. - multipliers: Optional[List[Callable]] - List of function which take any arguments of ``X, y_pred, z`` - and return an array of shape ``(n_samples, 1)``. - The result of ``calibrator.transform(X, y_pred, z)`` will be multiply - by the result of each function of ``multipliers``. - - Note: When you multiply a ``CCPCalibrator`` with a function, it create - a new instance of ``CCPCalibrator`` (with the same arguments), but - add the function to the ``multipliers`` list. - reg_param: Optional[float] Constant that multiplies the L2 term, controlling regularization strength. ``alpha`` must be a non-negative @@ -210,7 +200,6 @@ def __init__( bias: bool = False, normalized: bool = True, init_value: Optional[ArrayLike] = None, - multipliers: Optional[List[Callable]] = None, reg_param: Optional[float] = None, ) -> None: self.points = points @@ -219,9 +208,10 @@ def __init__( self.bias = bias self.normalized = normalized self.init_value = init_value - self.multipliers = multipliers self.reg_param = reg_param + self._multipliers: Optional[List[Callable]] = None + def _check_random_sigma(self) -> bool: """ Check ``random_sigma`` diff --git a/mapie/calibrators/ccp/polynomial.py b/mapie/calibrators/ccp/polynomial.py index 0264ca0f4..1e55673e9 100644 --- a/mapie/calibrators/ccp/polynomial.py +++ b/mapie/calibrators/ccp/polynomial.py @@ -86,16 +86,6 @@ class PolynomialCCP(CCPCalibrator): By default ``None``. - multipliers: Optional[List[Callable]] - List of function which take any arguments of ``X, y_pred, z`` - and return an array of shape ``(n_samples, 1)``. - The result of ``calibrator.transform(X, y_pred, z)`` will be multiply - by the result of each function of ``multipliers``. - - Note: When you multiply a ``CCPCalibrator`` with a function, it create - a new instance of ``CCPCalibrator`` (with the same arguments), but - add the function to the ``multipliers`` list. - reg_param: Optional[float] Constant that multiplies the L2 term, controlling regularization strength. ``alpha`` must be a non-negative @@ -156,7 +146,6 @@ def __init__( bias: bool = False, normalized: bool = False, init_value: Optional[ArrayLike] = None, - multipliers: Optional[List[Callable]] = None, reg_param: Optional[float] = None, ) -> None: self.degree = degree @@ -164,9 +153,10 @@ def __init__( self.bias = bias self.normalized = normalized self.init_value = init_value - self.multipliers = multipliers self.reg_param = reg_param + self._multipliers: Optional[List[Callable]] = None + def _convert_degree( self, degree: Optional[Union[int, List[int]]], bias: bool ) -> Tuple[List[int], bool]: diff --git a/mapie/calibrators/ccp/utils.py b/mapie/calibrators/ccp/utils.py index 802090421..3922eda71 100644 --- a/mapie/calibrators/ccp/utils.py +++ b/mapie/calibrators/ccp/utils.py @@ -533,3 +533,21 @@ def calibrator_optim_objective( y_true=conformity_scores, y_pred=calibrator_preds.dot(beta), alpha=q, sample_weight=sample_weight, ) + reg_val + + +def check_required_arguments(*args) -> None: + """ + Calibrators based on ``BaseCalibrator`` class, can have custom required + arguments in the ``fit`` and ``predict`` methods. They need to be defined + with default value, to match de ``BaseCalibrator`` class signature. + However, if the argument value is None, we raise an error (as the argument + is actually required). + + Raises + ------ + ValueError + If one of the passed argument is ``None``. + """ + if any(arg is None for arg in args): + raise ValueError("One of the required arguments is None." + "Fix the calibrator method definition.") diff --git a/mapie/calibrators/standard.py b/mapie/calibrators/standard.py index b248fdfe8..9b8be9edb 100644 --- a/mapie/calibrators/standard.py +++ b/mapie/calibrators/standard.py @@ -59,7 +59,8 @@ def fit( optim_kwargs: Dict Other argument, used in sklear.optimize.minimize """ - assert self.alpha is not None + check_required_arguments(self.alpha) + self.alpha = cast(float, self.alpha) if self.sym: alpha_ref = 1-self.alpha From ef8e37859e22a5ae90c71ba9c1e9f61a3e46f5af Mon Sep 17 00:00:00 2001 From: Damien Bouet Date: Tue, 18 Jun 2024 15:48:10 +0200 Subject: [PATCH 069/165] DEL: ccp notebook moved in the doc, not usefull anymore --- notebooks/ccp_regression_demo.ipynb | 771 ---------------------------- 1 file changed, 771 deletions(-) delete mode 100644 notebooks/ccp_regression_demo.ipynb diff --git a/notebooks/ccp_regression_demo.ipynb b/notebooks/ccp_regression_demo.ipynb deleted file mode 100644 index a0e4cfdf6..000000000 --- a/notebooks/ccp_regression_demo.ipynb +++ /dev/null @@ -1,771 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "id": "84586a93", - "metadata": {}, - "source": [ - "# Using ``SplitCPRegressor`` to get adaptative prediction intervals" - ] - }, - { - "cell_type": "markdown", - "id": "7d3cf90e", - "metadata": {}, - "source": [ - "[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/scikit-learn-contrib/MAPIE/blob/master/notebooks/regression/exoplanets.ipynb)" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "id": "15c8f6a0", - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Requirement already satisfied: mapie in /Users/damien.brouet/Documents/Repo Mapie/MAPIE (0.8.3)\n", - "Requirement already satisfied: scikit-learn in /opt/miniconda3/envs/mapie_env/lib/python3.8/site-packages (from mapie) (1.3.2)\n", - "Requirement already satisfied: scipy in /opt/miniconda3/envs/mapie_env/lib/python3.8/site-packages (from mapie) (1.10.1)\n", - "Requirement already satisfied: numpy>=1.21 in /opt/miniconda3/envs/mapie_env/lib/python3.8/site-packages (from mapie) (1.22.3)\n", - "Requirement already satisfied: packaging in /opt/miniconda3/envs/mapie_env/lib/python3.8/site-packages (from mapie) (23.2)\n", - "Requirement already satisfied: joblib>=1.1.1 in /opt/miniconda3/envs/mapie_env/lib/python3.8/site-packages (from scikit-learn->mapie) (1.3.2)\n", - "Requirement already satisfied: threadpoolctl>=2.0.0 in /opt/miniconda3/envs/mapie_env/lib/python3.8/site-packages (from scikit-learn->mapie) (3.3.0)\n" - ] - } - ], - "source": [ - "install_mapie = True\n", - "if install_mapie:\n", - " !pip install mapie" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "id": "c5438c1b", - "metadata": {}, - "outputs": [], - "source": [ - "import warnings\n", - "\n", - "import matplotlib.colors as mcolors\n", - "import matplotlib.pyplot as plt\n", - "import numpy as np\n", - "from mapie.calibrators import CustomCCP, GaussianCCP, PolynomialCCP\n", - "from mapie.calibrators.ccp import CCPCalibrator\n", - "from mapie.conformity_scores import AbsoluteConformityScore\n", - "from mapie.regression import MapieQuantileRegressor, MapieRegressor, SplitCPRegressor\n", - "import seaborn as sns\n", - "from scipy.stats import norm\n", - "from sklearn.linear_model import LinearRegression, QuantileRegressor\n", - "from sklearn.model_selection import PredefinedSplit, ShuffleSplit\n", - "from sklearn.pipeline import Pipeline\n", - "from sklearn.preprocessing import PolynomialFeatures\n", - "\n", - "warnings.filterwarnings(\"ignore\")\n", - "\n", - "random_state = 1\n", - "np.random.seed(random_state)\n" - ] - }, - { - "cell_type": "markdown", - "id": "69c9e9b0", - "metadata": {}, - "source": [ - "## 1. Data generation" - ] - }, - { - "cell_type": "markdown", - "id": "7999c773", - "metadata": {}, - "source": [ - "Let's start by creating some synthetic data with different domains and distributions to evaluate the adaptativity of the methods\n", - "\n", - "- baseline distribution of ``x*sin(x)``\n", - "- Add noise :\n", - " - between -1 and 0: uniform distribution of the points around the baseline\n", - " - between 0 and 5: normal distribution with a noise value which increase with ``x``" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "id": "6aa6ee6d", - "metadata": {}, - "outputs": [], - "source": [ - "ALPHA = 0.1" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "id": "8184e7fe", - "metadata": {}, - "outputs": [], - "source": [ - "def x_sinx(x):\n", - " \"\"\"One-dimensional x*sin(x) function.\"\"\"\n", - " return x*np.sin(x)\n", - "\n", - "def get_1d_data_with_heteroscedastic_noise(\n", - " funct, min_x, max_x, n_samples, noise, power\n", - "):\n", - " \"\"\"\n", - " Generate 1D noisy data uniformely from the given function\n", - " and standard deviation for the noise.\n", - " \"\"\"\n", - " # np.random.seed(59)\n", - " X = np.linspace(min_x, max_x, n_samples)\n", - " np.random.shuffle(X)\n", - "\n", - " y = (\n", - " funct(X) +\n", - " (np.random.normal(0, noise, len(X)) * ((X)/max_x)**power*max_x)+\n", - " (np.random.uniform(-noise*3, noise*3, len(X))) * (X<0)\n", - " )\n", - "\n", - " true_pi = np.hstack([x_sinx(X).reshape(-1, 1)]*2)\n", - " true_pi[X<0,0] += noise*3*(1-ALPHA) \n", - " true_pi[X<0,1] -= noise*3*(1-ALPHA)\n", - " true_pi[X>=0,0] += norm.ppf(1 - ALPHA/2)* noise * ((X[X>=0])/max_x)**power*max_x\n", - " true_pi[X>=0,1] -= norm.ppf(1 - ALPHA/2)* noise * ((X[X>=0])/max_x)**power*max_x\n", - "\n", - " return X.reshape(-1, 1), y, true_pi\n", - "\n", - "\n", - "def generate_data(n_train=10000, n_test=4000, noise=0.8, power=2):\n", - " X, y, true_pi = get_1d_data_with_heteroscedastic_noise(x_sinx, -1, 5, n_train + n_test, noise, power)\n", - " indexes = list(range(len(X)))\n", - " train_indexes = np.random.choice(indexes, n_train)\n", - " indexes = list(set(indexes) - set(train_indexes))\n", - " test_indexes = np.random.choice(indexes, n_test)\n", - " \n", - " return X[train_indexes,:], y[train_indexes], X[test_indexes,:], y[test_indexes], true_pi[train_indexes,:], true_pi[test_indexes,:]" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "id": "fe89b2d3", - "metadata": {}, - "outputs": [], - "source": [ - "X_train, y_train, X_test, y_test, train_pi, test_pi = generate_data()" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "id": "afb83741", - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAksAAAHHCAYAAACvJxw8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd5xdZZ3/3+ece24v0/tkUia9ERISCJggIE3A7qKoC7qui+Lqqujq6irL/nTXrugilgVXxYJ0BEINgQRI72Vqptc7t9dz7jm/P87MzUwyMykEMoTn/XrlNZm595zznFue5/N8q2SapolAIBAIBAKBYFzkMz0AgUAgEAgEgqmMEEsCgUAgEAgEkyDEkkAgEAgEAsEkCLEkEAgEAoFAMAlCLAkEAoFAIBBMghBLAoFAIBAIBJMgxJJAIBAIBALBJAixJBAIBAKBQDAJQiwJBAKBQCAQTIIQSwKBQCAQCASTIMSSQCA4K7nnnnuQJCn/z+l0UlVVxRVXXMFPf/pTYrHYKZ1306ZNfOtb3yIcDp/eAQsEgimLEEsCgeCs5j/+4z/43e9+x5133slnP/tZAD7/+c+zePFidu/efdLn27RpE7fddpsQSwLBWwjbmR6AQCAQvJ5cddVVrFixIv/7V7/6VZ577jmuueYarrvuOg4cOIDL5TqDIxQIBFMdYVkSCARvOS655BK+8Y1v0NbWxu9//3sAdu/ezY033sjMmTNxOp1UVFTw8Y9/nGAwmD/uW9/6FrfeeisAM2bMyLv4Dh8+DMDdd9/NJZdcQllZGQ6HgwULFnDnnXe+4fcnEAhOL8KyJBAI3pJ89KMf5Wtf+xpPPfUUn/zkJ3n66adpaWnhpptuoqKign379vHLX/6Sffv28corryBJEu9973tpaGjgj3/8Iz/60Y8oKSkBoLS0FIA777yThQsXct1112Gz2Xj00Uf59Kc/jWEYfOYznzmTtysQCF4Dkmma5pkehEAgEJxu7rnnHm666Sa2bNkyxg03moKCAmbOnMn27dtJpVLHuOP+9Kc/8aEPfYgNGzbwtre9DYDvf//73HrrrbS2tjJ9+vQxzx/vHFdeeSWNjY00NzefvpsTCARvKMINJxAI3rJ4vd58VtxokZNOpxkcHOT8888HYPv27Sd0vtHniEQiDA4OsnbtWlpaWohEIqdx5AKB4I1EiCWBQPCWJR6P4/P5ABgaGuJzn/sc5eXluFwuSktLmTFjBsAJC52NGzdy2WWX4fF4KCgooLS0lK997WsndQ6BQDD1EDFLAoHgLUlnZyeRSIT6+noAPvjBD7Jp0yZuvfVWzjnnHLxeL4ZhcOWVV2IYxnHP19zczKWXXsq8efP44Q9/SG1tLXa7nccff5wf/ehHJ3QOgUAwNRFiSSAQvCX53e9+B8AVV1xBKBTi2Wef5bbbbuPf//3f889pbGw85jhJksY936OPPkomk+GRRx5h2rRp+b8///zzp3nkAoHgjUa44QQCwVuO5557jttvv50ZM2Zwww03oCgKAEfnu/z4xz8+5liPxwNwTFHK8c4RiUS4++67T+PIBQLBmUBYlgQCwVnNE088wcGDB9F1nb6+Pp577jmefvpp6urqeOSRR3A6nTidTtasWcN3v/tdNE2jurqap556itbW1mPOt3z5cgD+7d/+jeuvvx5VVbn22mu5/PLLsdvtXHvttXzqU58iHo/zq1/9irKyMnp6et7o2xYIBKcRIZYEAsFZzYhbzW63U1RUxOLFi/nxj3/MTTfdlA/uBrj33nv57Gc/y89//nNM0+Tyyy/niSeeoKqqasz5zjvvPG6//XZ+8Ytf8OSTT2IYBq2trcydO5e//vWvfP3rX+dLX/oSFRUV3HzzzZSWlvLxj3/8Db1ngUBwehF1lgQCgUAgEAgmQcQsCQQCgUAgEEyCEEsCgUAgEAgEkyDEkkAgEAgEAsEkCLEkEAgEAoFAMAlCLAkEAoFAIBBMghBLAoFAIBAIBJMg6iydBgzDoLu7G5/PN2ErBIFAIBAIBFML0zSJxWJUVVUhyxPbj4RYOg10d3dTW1t7pochEAgEAoHgFOjo6KCmpmbCx4VYOg2MVAHu6OjA7/ef4dEIBAKBQCA4EaLRKLW1tWOq+Y+HEEungRHXm9/vF2JJIBAIBII3GccLoREB3gKBQCAQCASTIMSSQCAQCAQCwSQIsSQQCAQCgUAwCUIsCQQCgUAgEEyCEEsCgUAgEAgEkyDEkkAgEAgEAsEkCLEkEAgEAoFAMAlCLAkEAoFAIBBMghBLAoFAIBAIBJMgxJJAIBAIBALBJAixJBAIBAKBQDAJQiwJBAKBQCAQTIIQSwKBQCAQnCVEkhr7uiNEktqZHspZhe1MD0AgEAgEAsFrJ5LUuPOFJtqCSeqK3dy8tp6AWz3TwzorEJYlgUAgEAjOAjrDSdqCSSr8TtqCSTrDyTM9pLMGIZYEAoFAIDgLqClwU1fspjeapq7YTU2B+0wP6axBuOEEAoFAIDgLCLhVbl5bT2c4SU2BW7jgTiNCLAkEAoFAcJYQcKsE3IEzPYyzDuGGEwgEAoFAIJgEIZYEAoFAMCXpCCZ5ZFcXHUERqCw4swg3nEAgEAimHB3BJJ/903Z6ImkqA07uuP5caotFwLLgzCAsSwKBQCCYcuzoDNETSVPsttMTSbOjM3SmhyR4CyPEkkAgEAimHMtqCqkMOAkms1QGnCyrKTzTQxK8hRFuOIFAIBBMOWqL3dxx/bns6AyxrKZQuOAEZxQhlgQCgUAwJaktdguRJJgSCDecQCAQCAQCwSQIsSQQCAQCgeCEiSQ19nVHiCS1Mz2UNwzhhhMIBAKBQHBCRJIad77QRFswSV2xm5vX1r8l2qqcVZalb33rW0iSNObfvHnzJj3mvvvuY968eTidThYvXszjjz/+Bo1WIBAIBG8GRHHMI3SGk7QFk1T4nbQFk3SG3xqvyVkllgAWLlxIT09P/t9LL7004XM3bdrEhz70IT7xiU+wY8cO3v3ud/Pud7+bvXv3voEjFggEAsFUZaQ45v/72wE++6ftb3nBVFPgpq7YTW80TV2xm5qCt0YA/lnnhrPZbFRUVJzQc3/yk59w5ZVXcuuttwJw++238/TTT/Ozn/2MX/ziF6/nMAUCgUDwJmC84phv5Qy9gFvl5rX1dIaT1BS43xIuODgLLUuNjY1UVVUxc+ZMbrjhBtrb2yd87ssvv8xll1025m9XXHEFL7/88qTXyGQyRKPRMf8EAoFAcPYhimMeS8CtsrAq8JYRSnCWWZZWrVrFPffcw9y5c+np6eG2227jbW97G3v37sXn8x3z/N7eXsrLy8f8rby8nN7e3kmv853vfIfbbrvttI5dIBAIBFMPURxTAGeZWLrqqqvy/1+yZAmrVq2irq6Ov/zlL3ziE584bdf56le/yhe+8IX879FolNra2tN2foFAIBAcn0hSe0PcQaI4puCsEktHU1BQwJw5c2hqahr38YqKCvr6+sb8ra+v77gxTw6HA4fDcdrGKRAIBIKT462awi44M5x1MUujicfjNDc3U1lZOe7jF1xwAc8+++yYvz399NNccMEFb8TwBAKBQHCKvFVT2AVnhrNKLH3pS1/ihRde4PDhw2zatIn3vOc9KIrChz70IQA+9rGP8dWvfjX//M997nM8+eST/OAHP+DgwYN861vfYuvWrdxyyy1n6hYEAoFAcAK8VVPYBWeGs8oN19nZyYc+9CGCwSClpaVcdNFFvPLKK5SWlgLQ3t6OLB/Rh6tXr+bee+/l61//Ol/72teYPXs2Dz30EIsWLTpTtyAQCASCE2Aqp7C/UbFUgjcOyTRN80wP4s1ONBolEAgQiUTw+/1nejgCgUBwRnkriwURS/Xm4kTX77PKsiQQCASCM8tbXSyMF0sVcAfO9LAEr5GzKmZJIBAIBGN5ozvEv9UDr0Us1dmJsCwJBALBWcqZsPKMiIWRa77VxMJUjqUSnDpCLAkEAsFZyplwCb0WsXC2xDoF3KpwvZ1lCLEkEAgEZylnyspzKmLhrR7rJJjaCLEkEAgEZylvJpeQCIwWTGVEgLdAIBC8STiVYO0z1SH+ZMcqAqPPPB3BJI/s6qIj+NYKyj8RhGVJIBAI3gS8GdxUHcEkOzpD1Jd4eWR390mN9c1kBTudTJU4rY5gks/+aTs9kTSVASd3XH+uaB48CiGWBAKBYApy9CI61d1UoxfbgEulMuBkZon3pMb6VguMPlEB/EYIqh2dIXoiaYrddnoiaXZ0hoRYGoUQSwKBQDDFGG8Rneop+aMX28FEhmlFrlN2qU0Va8vrzYkI4OMJqtf6Wo1YA8u9TioDzrxlaVlN4Wu+v7MJIZYEAoFgijHeIrqwKjCl3VTLagrzi21VgYsvXDYXU+KUygdMdXfj6eJEBPBkguq1vlZHu96+euV8+uJpltUUCqvSUQixJBAIBJNwJqwcEy2iU9lNVVvs5o7rz2VHZ2jMYjsS6H2ir9/xrC0jlpCjrzFVReRknEic1mSC6rW6Zo92vfXF01y3tPq03NvZhhBLAoFAMAFnyspxosHOU00k1Ba7x1gkTuX1m0wcjBeE7Hepb2pL1PEE8GSfhdfqmh1tDRzP9TbVPl9nEiGWBAKBYALOZFC1tTi5h3urHbtYTSREpsoCF0lqvNDYT1N/nNpC96QxOaPHO5k4GC8IeVapd0oHvp8OJhJUrzWDcCJrILy13KEnghBLAoFAMAF+h4qqSOzvibKg0v+6B1WPFg7ApIvV+A1r3VNigRtZaJv64wzGMwDUl3mPef0mWpAnEgfLagop8zrojqSoCrhYVlOI36VO6cD315vX6po92ho4wlTPvnyjEWJJIBAIxiGS1Pjfja3s7AijGyazSk//Ijw6/uZod9LFc8smXazGc8FMJKDeaEvTyDhqC63X7Lpzqlg7u+yY65/sgux3qSyu8SPLEgurfPhdk1uiBKfOVM++fKMRYkkgEAjGoTOcpKEvhgSoskxbMDWpG8nvUIlmtBNesI+Ov7nlktljhIMEk8bu7OgMcd2SqqMyzsYucH7HmYnnGb3QlvnspDI5ointmGuf7ILcGU4SSuqcO62Q3mg6/35M5cD3NytTRYROFbeyEEsCgUAwDjUFbuaU++iOpACJOeUTu5FG3E0lXgf1Zd4TEiVHx98EY5kxwmFehZ95Ff5jForxgpxHHjt6gTtTrpSRcWxpG+InTzfw7MEB/ril/Ziq0JMtyOMtksLa8cZypkXoVIqbEmJJIBAIxiHgVvn8ZXO4clEFJjC/wj+hG8ltV+iJpKkrmjiQeYSJigCunlXClYsqjxEIR59nRGQFnCodQ0k2Ng9yffG0MeM+cswRcVHhdxJL60SSx1p4Xg8CbpVkVqc/npm0KvR4C/JksUxTwdohGMt45RxOB1MpbkqIJYFAIJiAgFtl1cziCR8fsXQ09cepDDhJZHNjApmPXkROpAjg8RaDkSDn5sEEqiyxuzPMVYsqxxUOI+LiYG+UJ/f28NtNhyfcoY9YciQTmgbjp2XhO15q+kRMtkieaWvHW43jCaHXs6fcVLIkCrEkEAgEkzBZzMRoS8fRMUvjLSInWgRwsmvWFrv5/Dvm8NNnG5ld5iU0/NyJBETAreJ12uiNZiYt9PiT5xroCadp7I9hAuV+J1+4dA7LpxedsgVnstT0yRhvkXy9rBdvZk41Xu5EOREh9Hr2lJtKlkQhlgQCgWACTiRmYiJLx3iLyESWlpMpGQCwoq6IC2YVj7vj3t8VYX1jPxfPLmNBtTWuyXbokaTGT55r4MXGQVRFIpzUqPQ7aRlI8JPnG7lgZvFr6kc2UWr6ZBy9SEZT2utmvZiKnMjr+1ri5U6UExFCp2o9PFGmiiVRiCWBQPCWZyKrxYHeKHs6I3mhcTIxE/UlXgIulYFEhuoCV/7coy0tsbTGD586RHc4RSKbo67YzdrZJTR1D1HsgH0NvfwxO0j7QIi1C+q4YvVSwFpALinXCPplZlZ4iMVitA9JJDMGn/3TdiIpjXs2HuaeG1eyoDow6Q69M5xkIJbB57AxmMjgUBVC6SyqIjGn1DfmviNJLe/S641mXteg29GL5AuN/a+b9WKqcaJBzacSL3eynIgQOlXr4ZsNIZamOPu7Iqzb18vMMi8Xzzm2TslkO5CpknIpEExlJnI1RJIa6/b20h1J0R1Jc/GckhOOmYgkNR7Z3U1VwEVtkZtPXjiD9p4+Wg4OEBropq2tjQcPNLG+T8W24DIk4LLZBXzzfWvJphJjzvX74Z//M+c8Nj33dN5a9Pa3XUAymRzzXMXuBNWJt24xvOdfWd/Yz4LqAD//+c/xeDxI3lIe0D0smjWDnkSWi2eX4XeqRFIawWSGnAEzSzwUuFVKvU7iWT1fguCVliDr9vbS0BejO5LmgplFJ7w4j4jR+hLvKTXXfb2tF1OJEw1qPl683OnA71K55ZLZBGMZVs8qmVAInYr18M2GEEtTmP1dEf7+7s0EE1kUWeKqhRXc/u7F+Ulmsh3IVEq5FAimEkdbkSZyNXSGk/RG06yeWczhYJIrh4OoJ9uEpNNpIpEIgzknTf1xnGaaP3/94/xuoBstkzpmLJ7ZK5m19ApiGZ2mIQ3TyI15XFFVTMWOrNgx7N68+AEoLi5GURTi8TimaQKQy6Yhm0ZLJ3DbbSyvLWJ/V4Rbv/JVUonYkRNLMjZ/Ka7iSt55+SUEzvsgXruNvmiGREan1OfgAytq8Dpt+B0qf9jcxp7OCN2RFCumWSJp6+EQK6YXHndxHhGj3WHr/udX+plf6T+pOWmyJr1v1g3hRGM/nst09DETxcudrvGNXkOuXFR5Ws77ZkWIpSnMwzu7aXn2XnJaBteslTwjGVQGXHzk/Lr8ZD7RDmQqpVwKBGeK42Wj3XH9uRNaLUYvWotrAlQFXDy6o4u/7uhEyxmUOE3WFiXpaNzLtm3b2Lp1Kw0NDVx77bXc8Zt7GYxn6A5niA/2og8LJZe/iKraaTgCpeQ8xcTctaS0HMUeO7dcUs/3tu2ksrQQt9uNy+Vi/aFBPv+XnWS0HAVulYtnl+Xvrb29HYBwIstPn9rLoc5B2nuHiMQiZHNQ5Lbzqxeb2XJ4CLX+AuToANlwL1pkAAwdPdJHLNLHzm1+3nnJR9nfE8XvUtn03RtpLC/Ht3sNy85dTr+jhg3dBrNLfHRH0rQMxsnoORJZnT2dkXGLTY5mRIx6HTa6hgXTeHPS8YTP6WjSO1WYbOwTuUwnLqfw+szrZ3oNmWpCWIilKUpHMMm6vT1Etj5KLh4ksvGPDHiL+K+/nccDK9by+2/8A5JiR8vlaBmMM/+ovlUT7U6m2gdQIHi9OJFstKcP9uFRFf7uvFpkpDGuhqN37ne+0MQju7pJpLP03PMvZAZauWPYojOazs5OuiIpHDaZc6cVUvz5H1JVWU7OVUw4Cw6bQm8kzfxKHwPRNFVFLj6ycjqrZhUfM/47nm9EVSS8djv/+e7FeavSaAo8dm5aM4+fr2/g1R4N3e0DoH0oweFggpwJFdd8jpxhYpNltJxONjqEGevHnujnn991HtdcMse6Zncv2/rbaO9v48d7NuevIbsDvFg1mwsuuZoL3/dhOra0U+l30h/PjIkfGm9+GRGj3eEUAZf1t/EsJicrfM70Yv5aON7YR4ugEcHvttve0Ps9k2n7U1EIC7E0RXnmQB+Hg3EK1nyUVNNmUod3kIsPEd25jq0717Ho/75F5YorCbzjZoo9Dj49PKmPdCcPuFVuWFmX31WPuA+m2gdQIDhZTjSF/HjZaMUelT9vbqcjlESVZd65pCLvajBNk6amJp555hlefPFFeoNhfNd+DS1nIEsKpqKCaeIuLKWobh5x7zTsFfV4quq5+f0X8OjObvpjGXojGZYuWcE/rZlF02CcR3Z2U+iyc6AnysbmIA6bjNel8nxDP/Mq/fmSAzs6QwzGs/RE0lT4nASTWRKaPu59Wj3sWnhybx+6ceTvpgmGCaoskdVN7DaZueVeHHaFtbPncbAvyruX1nDpgnIAvvHOhezpqOCqB58m1t3Mi5te4akNm4h0NWMkI8SbtpJdPJ8Cj0qJ18FAOE5k05+Izn4fnRUuuhLmuIHfo11oE8UsnYrwmUo1eE6WEx37aMFf5nWwuMZPbzT9htzvG5W2P57AnopCWIilKcpQMguygnfxZXgXX4YDjWT7PuKNm0k3byYd6iWqyaiZHKlskh8+tZemdb9j5ZpL+X+ffA+KovCHzW20BZPs747mP/TH+wAKy5NgKnMidV9GPsP1Jd68MCr1OfCqNvwuNb9wB2NZfvZ8I4okkc0Z7Gzu5bd/2suWF9fz1FPr6O/uyJ9TURQ+/eF/40APmBJUXvd5ZlSWIXsLGYinUVKWSjGAO9c343OpzCv3sbUtRFswyf9uauXjq2dQX+ZlR3sYAFWRSGR0NN3gQE+UFxr7qS/x8rWH9tAVTuG12/A6bPTG0lQNZ9ONh9XDLo5LVYikdExABlwOBYdNYVqhk2zOxGO3saAqwP7uKL97pQ3NMOgYSjGn3Jd/DV9qCdEUCVBQuopv/ff1zH61nUe2Hybe04Iz1EJm2jzueqGFIo+dtwXC/Oip3/HRp36HYrNRNHMJrhnLWPP2yzhszBozvxwvAPho8SCZ8MiurkkF8VSqwXOynOjYRwv+/niGpTWFLKoJnPL9nuz8/nqn7U+0gZ+KQliIpSlKsduOjDX5ArjdLmaufBvxpedTU+gi1t3Gnv4kJtYOsmnXVrY//Bu2P/wb7v3PIpatvpho0XxWXXQxbZD/gtQVuznQE0VVJKSjPAjC8iSYSow3sR+v7ktHMMn3njpIXyTNgio/3373YnZ3h9nTEeW+7Z1sbhvi5rX1XLe0mo5gkge2d9I8GMeuyLQ++H0+9/Iz+XNJso3AjEWUzl7Geeev5ppz6jgYbCaazuIsmktnOIU2kDxm3IVulaGkxquHh0hlc3SEknSEEnQMJfnCZXOZXuyhJ5JG0w1ihs6e7jAu1cYD27owTWgdjCNLMl3hJEUeB4VuO/PK/fhd6oQ1lOaUe+mOpCnzmbgdNj66qo4SvwOPauNQf5TltUU839DPwZ4YB3qjRNM6TptMRyg5JqC9qT9ObzTNnq4IAB84t9YK8nbOx2VXuGtDM8VuO4PxDK05g7lvu5aeg9uIDnQz0LAdGrbz+3W/wR0o5ryf3cnCj3zghN/fEfEgmfC1h/ZMKIhfbQ7y+L5url5YxapZxSe0mHcEk2xsGaDM43xNRTZPJyciRI6Op5ssI+14Qmgqzu8TbeCnohA+q8TSd77zHR544AEOHjyIy+Vi9erV/Pd//zdz586d8Jh77rmHm266aczfHA4H6XT69R7upFw6v5zfv9pGy2ACw4RoSselZolndOaW+7BPm8k0Z5zeaAa7Tcbh8TF95Tvo3PMy0dAQL/ztAQB2/O7/UVo3h2vu+h9q3raGhZV+nt7fRyyt8bWH9nDH9edaz+sM4TnKJ36gN4rPaZsyH1bBW4eJJvbJUsgjSY3vPXWQZw70Y5MleqIZrlhUyeLqAp7c04eJye72EHf8+QkaNz/HK88/ya9//1e6jTqKfQ72l76P/+psQqtcjHvGuSjVizBUFzqwK6ewtSNC80CcnAkSWUxAlUEzwCaDYYBLlemOZMjmctgkGZ9LJZTIgAQ72sN845G9/PiD53BRfRFP7+9HkcBrV0lkdTqHErSHUhiGiUEOr10hnNKQJNjWHuLJvd384OkGIimNu15oYc3sYj6yagY+pw2fy8YHzq3mgR1dBJMZ7nn5MJ9eO4ufPddEOJnlqYI+vv3uxfhd/ezuCuOwSWR0gzK7Y0xAu9uu0BNOUe63Yoz+7aE9hJJZqgIuvv7OBfnXvsBtxx+YzTW3/AcHemPIsV72vLqBZMt2go3bSUaC7ByS8n3oXnrpJXbu3Mm73vUuamtrJw1WfmRXF13hFD67FRA+WhC/2hzkpns2k9IM7tvSyd03rhwT6zWeYOgIJrn53m20DCRQFYlrFlfx5SvnndScNp5IPVFeS+XxE61hdCJC6Ey6tk4l82+qFKMc4awSSy+88AKf+cxnOO+889B1na997Wtcfvnl7N+/H4/HM+Fxfr+fQ4cO5X+XJOmNGO6k1Ba7+ciqOr7/9CEMwyCjm/RGMkgSvNo6xMoZRcws9RJJ61QEnFRNP4cPXLGWTU399DXsZNerG0i37iDb18xAWwNdKZkfP9PA9o4QTTtfwRXtJDV9KX/eUsQDO3qIpjVKvA6qAk6SWZ2ZJR7W7e3N+8enwi5E8NZhoon96MXD71LZ1x2hpsCyjPRFMyiYZHSDrJ5DAqKJLC9uWM/gng0kGl4hFw/mr/PXBx6k7uIPYmJy3hXv4xerr+U/H99PKJHNx/8YQDyb4y9bO8kNW2NHjLIjQmlhlZ9Sn4PqgJM/bukEA1KmgZ7IYJiQM8Bpg6FElqbBOO86p4bmgSTBeIaOUBJNN4mmj1ip7BJIMtiQUGQJMHlqbx+DsSwOG0RSOo/u7mPdvn5siklWB7sCmBI6EE7ofPPRfeQMk4BTpTOUZH1jPzUBNw5FRrfJFLlVvnnNwjELsNeh4FAV4hmdQpedrnAKmyzRPBjncDCRf+3LvU7u3tTKU/v70A2D2sIyrvrA3zOU+BC94QQ12Xa0grr8+/arX/2K//u//+Ozn/0sy5cvZ/WlV9FXtIQF8xccs3DXl3iRgK6IFRBeX+LNj+/xfd2kNAO7IpHSDB7f150XSxMJhh2dIbrDKRQJsrrB3p7ISQmF/V0Rbrxn8zGFPk+E19I3bbTIGq8lzmhORAidKdfWqWT+TUXOKrH05JNPjvn9nnvuoaysjG3btrFmzZoJj5MkiYqKitd7eCfNpfPLuX/YTWCTwcCk3OdkMJ7lUG+MeEanwK0SjGeYVeJlIJ5mMJkjVjSHwrUzYe2NGMkISt8+HuuwEcv0s6Q6wIbdT9O++zkAvvrrAGrNApy1ixiqXcxAzSyqizxcvbCCB3Z0UeSxs7szzG9eamFpbQEr6iY2YYt4J8HpYrKJfST+5ehJ+LolVRS5VXQD9JyJQ5HpbNzHR69/P6nwQP54ye7CNXMFgbnn84yxgORzTQD4nDJaDrScgWlacT+jqx4lMzqWbAFFsoo3VhY6ef+yWsoDTmIZnd9tOkw2d8S/rQ0LLocC2ZxJLmeAYZ1jWpGL5oE4hmkyKi4bgKwJ2VQORYLaQjfTiz08e7AXA0iNivPO5kyyw4O0xJ11bQnI6CYyEE5peJ02Ht3RTetQkoxmYAJ+p8q9W9qpDDhZUB2gM5wklNS5eE4pbcEkq+uL2dsdIZszsCsyBmY+SPuR3d10hpJkdYOaQhfhlMbauWXMKPEMB3kXjXnfLrzwQlpaWti4cSPbtm1j27ZtABTWzOK8S95JxXX/lb8nU4IFlQFMTCQkzFF716sXVnHflk5SmoFLlbl6YVV+3oml9XEFw7KaQqoKXLQMJLDbZBZVBk5KKKxv7CeS0nCrNiIpbUytq+Nxqn3TTlZknYgQOlPC5GQy/6YyZ5VYOppIxPK7FxUVTfq8eDxOXV0dhmFw7rnn8u1vf5uFCxe+EUOclNpiN//9viU8vLOb7e1B9vXE6Y9lsMkS/bE02Zy1wyzxqpiY9MeyLJ9WwIuNAzhtEtmcicsfoKT6EuaU+9jWHmYwnuXCi9bS4dY5uHML2WQEveFlUg0vA9Dv8uG49Q88vKuH/T0xUpqOLEtsbwthtymsnlXMv129YEyq8MHeKPGMzrMHemkLpphT7uXzl809bgE/gWAiTmRiHz0JN/XH+d9Nrezdf4BQezfO2kW0h1LsiZaRSUSRHB7cc1bjmbsaZ905SDbrfKNrZUfTlmRRJMiZ4FAkcsPCR5GgutBNbzRJzrQWJ0mWkJDY0REm06qzrztGbySFTWZMVhpAZljQhFI6t96/i/oyL4lMjqxuIOcl2LHkTOiNpplV5kHLgcJYAXc8DEA2QZYkOiNp0tqRgXWG0/RE0nQMJfnNx87D71DxOBT6YxkW1wS4bkk1XaEk+7pjVPod/ObFViJpjUK3ncqAk3kVfjqGUoSSWWqL3Fw4HE8zr8I/5n17ZEcXL9mWcOtP/8Rfq2z85f6H+Pk999K4fROhzmYOb36aYv9P8uPySRrzKq02K16Hwrp9PUgmLKgOsGpWMXffuDIfszSv0p8XzBV+JxV+x5hssUhSI5rR+O57l7C7O3xKMUsXzy7jno2HiaQ0Aq6xta6Ox6lWHj9ZkXWiQmi0MHmj5ubXYtGaSuuHZJrjFAo5CzAMg+uuu45wOMxLL7004fNefvllGhsbWbJkCZFIhO9///ts2LCBffv2UVNTM+4xmUyGTCaT/z0ajVp++EgEv99/2u5hZOe8oz3MgZ4oOT1HxjBRZYmUbubjJZbW+Cn1OSlwq/SE03RHUiypDtA8mOCdiyqsFOZohgq/gysXVTKvwkpRbu4J8+H/+gONu7aQat9DpusAzsJKVt/6G0ygPZik896vYepZXNVzcFTOxVc7n4rqGq5eVMW7llVz37ZO1jf0k87mSGR0Am47NkXmO+9dzPwKPz9+poGGvhhzyn18/jKrlstIEGfTYPwYP/yI+DKB+cPjHI3oPH72ciIBqqMfH/l+NLT30vTyU+x+/iEi7QdRS6dT9fGfATCrxEOs4xD9ajnYVGQsWXIik54C1JW4mF3mI5XNsbsrQmTYrKPI4HOq1BS4sCsSvbEMEhLhlEZW1/PWnonwqDIGUDgcLO112IilNXKjXH8j2BWJD51Xy+9fbSd3grO10yaT1o18koht+Mb1o45XAJ/bxpWLKlCQ6YulKXCrfO6SOXnr3YHeKHc+38wrrYN4HTYkCc6pLUBVFDx2meoCN1csrGBBdSD/Ho1UlF5/sJ/vPdUAWNaun/zdOcwq9/Kz55oIyBleXb+Oq5fVcevNHwcgkUhQUVHB4qXncM7ad7KJ2aQkFwGXOq77a193hJ8910SF30lvNM2Nq6fjHY6zBKsh8UhCyxcum3vS8UYjvNExS6/FfXcivNHB3qciet6oMUajUQKBwHHX77PWsvSZz3yGvXv3TiqUAC644AIuuOCC/O+rV69m/vz53HXXXdx+++3jHvOd73yH22677bSOdzxGds4OVSKZ1cG0dpqGYeb3og6bjMMmU1/m5bolVezuirD+YD97u6PUFLioKnQzt9yP22k7RnyUBDxctnYNRTMXU+S28/5zKtmwq4G2jEJLMElW08h0HcDUs2S6DgDQB7S4C9hWNYdfzlvJ9DXvJa3lSGVzJLUcDk3Hq6hIwLbDQzy1vxdJgs5QkjKvnQN9MQbjGQ71xtByJjWFLu76yAr8LpWDvVEe3tnFxqZBdMNk7ZwSPrJqOnu6IhT7HFT5nfksmYBL5YIZRayYXsSacXrmCd5cHG9iPPrxaxZV8MDfnuTVJx/g6SceRcsOb15kBZu/FENLI6tOMloOW8UsCrUcOdNE0020nIFugM+hAJDScsdYgsASGe3BFIPxLFndID2sNGTJshzZZIn+eIb6Ei+GmUbGxGGTKPG6iac1YmkNEwktZx4jzlKagVOV8btspLQcsiwxu9zHO5dUMRBJ86etbaSH3W2yJFFX6mFOmZfGgfi4Yx2NTYIZJR4a+2LopiVSynwO+mMZHBJkRh2fA2Ipncd39yBJEpfPryCe0emKpPLtM3xOSyD5nCrRVJaKgItPXjQLU8LqFdcfJ5PrBuB/N7UyGMsSTmVx2xU2twzlr2UCf93RwR3XLx/uaWaw/B3v4frhgphgbV7j8Tgvb3yJlze+hKSoBOZdQHzRJTx7sOYYoXK01WLeqDluX3eEAz1R9ndHiaY12odS/OZj5x2zOTuRRXxBdeCUhdaJ9E07ehyvd3PaUwn2fi2C8VRcbVOt1tJZKZZuueUWHnvsMTZs2DChdWgiVFVl2bJlNDU1Tficr371q3zhC1/I/z5iWTrd1BS4KXSrbGwazBeYM7EmaUmGyoCTCp+T2uF4jfu2dbKjPcSB3igZ3aRlIMHWtiH8LpVL5pZTvdY15gvZGU4ylMxy/oxiOkJJnjo4yIsdOZLZKB6HjGpTqLzpDqT+BsyBJoZa95Pua8FIhkk1baZPkrEtuYpczsQwTfru+xZDxZWsWHYOHft1nuyUGEpo2GQJE4lfb2ollTXw2hWCCQ0ZaOiL8bPnG0lpObpCKdqGkqSyOoYJzx7o5+XmIfpiaVRZZkG1P19/pqEvTkNfnHs3t/PuZdXctHrGuJYqwZuDkbR1j12hqT9+zMQ4euI80BPlp7d9mZ5XH8s/7iqfwbTzr4b6i5Bdfis+yIDeWAbDsMSK1yFT7LGCsHd1hTEBn9PGh86bxgM7uhhMZMeMycSyxETTY81ExrDyiac1ltQU4FQly6Wm6XidKqFklrSWw6YoLKjy0TKQxCZDLK2jGyZ2RSKpGdhtCpIEM4vdVBe5iaQ0DvVG2dkRRhrlmkvrBm6bwuwKH82DCSayi0mA3SZhGiYZzchbp2yKhIwl8HQsl6KqWDYnw5TIGSaFLjsDiSwNAzHOrS0Yk9xxXl0RSU2nOuDEY7dRU+ji+YZ+3j63jN5oOu8G/eEzh9jTFcXnsBFNaxR77MdYsi6eXZYvmPvtx/dxoCfGnS808pUrFxBwq1x22WV0dHTwpz/9iV/95m4aDu4nvG8D4X0b+Oaz/0PNb+7mPdddnT/fZO6nmgI3qiIRTWt4HDbCyewx1canQir9RON4PZvTnqxr7LUEub9RY3y9OavEkmmafPazn+XBBx9k/fr1zJgx46TPkcvl2LNnD1dfffWEz3E4HDgcjtcy1BMi4FZZUlPAun29zCjx0BtJo+UMJBlkrAmwtshNImO5CNY39DOUyJIZnqFMIJk1yOqZ4XTcJDZFpsCt8vHVM4hldLwOhe0dIUq8Dhr6Y2h6DkWWSGYMJCTUompsJdUsqXk33aEUPaE42b5mMt0N2AvKKPXY6Y1mMOODpFu3kW6Fp7c+xtO/su7B5vSiFlVRtOTt1K39AJpmEEtlyEUHkH3F5AyFx3Z3kzPApSoks9aC4lIV0rpBImtlAMYzOns6IvidNvqjR8o6aAa82DDAjvYwsYz+upisBaeHyXbxfofKYDzDnuEeYr95qZm/W17HqlnFaJrGtvVPEsiV0BstsAKwpy1H3vk83oUX84mP30SzWUZPJE1GN8joVrZU2jDQjSOrdSxjUOGXaRlK4LIrxNI66WyOv+7oQDmFDNiUbrL5cAg4Il9U3SCRzVkB4qpJPKOzcnoh0bROsUdlf49lWXUiYWLS2BfHJlviaXa5l75IGgk4eji/ffkwP/jAOfSEk2xpixwzFrsioUomOazvREvwSDSWljPpimSOOcayXFlW6oF4mlKvk39YPYOygJN7Nh2mwu9kT2eEP25uI5HJ4VQVFlb6mVNuxROZkF/MCtwqA7EMZV7HsCvPTiJzrC/ygZ1dvGNBBYf6Y2xqHiKbM2gfSlJf5ud959ZYBQlravjSl77EF7/4RR546kV+8ovfsPW5RwkN9vNCn8wlw+UIGhsbKSgooLS0dFyLQ8Ct8oXL5tI+lCKczB5T2PP1sFycisvteOM4nXE7o891MsHeryXI/VSZaplyZ5VY+sxnPsO9997Lww8/jM/no7e3F4BAIIDL5QLgYx/7GNXV1XznO98B4D/+4z84//zzqa+vJxwO873vfY+2tjb+4R/+4Yzdx2iWVAco9joYjGcocKvMrfDTHU7RGUrRPpRiINbDlYsq6QmliKX1YyZ9E2vy1DI51jcMUlfkIp7R2dg0SKXfQXsohZ4z6RxKYldkTElCAbxOG/FsDr9qLSr7OiJkTJBsdhzV8ymasZDKgItoWsPnUkjqXirf9SWc0U4KMj10tjYz0NuFno6jdzdQufwC7DYFnwvsqQTr7/w4SDKKtxDVX4riL8XmKSRQUIhavQD7rKU4VRvJdIZgfz+oTnTVSTJr4+K5JbzYGMxnGsUzOSJpnWmF7pPKOBG8cRxvFx/NWKUrPKqNl1uDtAwkePDFvSyJb2XLuvvp6enmX754Kzd++iv8eUs79unnUnPL75BsdkqmT+dfzp/Bo3u6eKlxkGAsS9tQ4pgMM4CmgYSVzYblgvKoMpGkVaDxRBj5dplH/Rwhlc3lLU8pzaAnkmJZbQHvX1HLS42DVBfqVBc6CSV09nZFMADdMGnoi1HqVa3ebbqBosigHREbOcPkldYhXOrYBUORwG1X+JfL5tA0EOfFhgE6wmNrxB0dPq4oEgpG/u8mVubcQCLDhqYB/vmSOXkRlNZ0YqkcsgTJbA7NMIatSQ4k4IaVdUQzGn6Hyh82t9HUH2dupY8PnFvL9vYhfv58I/GsdXW3DbqH6yalMta5ZAlSWZ0HtnfSH0uP+VxIksT7rlhD9eyFfOW+jxJu3cuOkIMn9nVz1cIqvvjFL/Lkk0/y7ne/m09+8pNceumlyPLY93FBdYDffOy8cQXM6bZcnGqc0WTjOJ3Wr/HOtbDqxATPawlyP9WxjoikEx3j681ZJZbuvPNOAC6++OIxf7/77ru58cYbAatT9+gvVCgU4pOf/CS9vb0UFhayfPlyNm3axIIFC96oYU9IJKlx37YOVFlC0w1SQE84RYnHzoHeGACJrMGB3ijr9veRzOgoioQqgddlQ9MNHDaZYPJIrnHbUAp1OFsnnNTQcwZFHgfBRIaFVX4KPHbeVl/KqhlFfOWBXYSTGrIEmaNWhUTWwO9UuXRuGc83DtBrmhSseAdLqgto6I9TEE1TYGgU6kPcMFfl3EXzCDkq+dEzDbR2dSPJNkxDJxcLkosFoeugdc9A2UUfoGj2uayeWcy+Q03sunNU0VBJptPhQnU60VDxL72cGVffyEAiQ1ckxbQi9wlnnAhefzqCSZ490Ed3NEVDb5wZJZ5xd881BW7qy7z8bVcXiZYdxHb8jVTTZg6bluQpKC5Bcfm5b1sHe7siSLICshVz9GrrEJfOq6DI7aAq4KJjKIl+nEjoERmSGFbcCe04gUDDeOwK8Umit492O6WyBod6Y9SX+2joi1FX7OZwMEHbUHyMmMuZsKllCI/dig8q9TnRc9Z9SJJELK3xw6cbyBzVHy5nQiyT48l9vXxq7SwymkHnjq4x4shth2TWEk2qTeIf3zaTZw/2c6g3lg8YN0xrrC80DPD+5bX5Hf3mliG2t0fysU/XLqlmfpWfdXt7uWfT4TEL+OimwyOtli6ZV0HzQIK2YAwDmRKvg6FYlvmVfmaVeGkfSqLYZeZV+Ca07kiArCj4ZiwmnMry4PYumvui9Pb1o2ka9913H/fddx/Tp0/nE5/4BDfeeOOY8IvaYjd+lxV2MFIkE06/5eJUywSMN46R+KDaAvdps369FkvaguoA99y48pRjlk6GqeIePZqzSiydSGLf+vXrx/z+ox/9iB/96Eev04heGwd6o6xvGCSW0khkc1YG20CMhv4jzzGxdmt6zsCpKsgSFPhUsjmTSr8LpyoTTI412+sG2G0yWs7AabNShU1gT2eUigInvdEUlQEnb59bZrm30hp9sbHxHADbO8Ls7orgVEGRFYbiGpuaB5Flq2yB06aScVUx/bxFXLS0mkd2dRFJa3iq6pnx5QewZ2M4MiF6urrQogPkkhHMVBR75VxSWZ0DvTGq3SayYsPIDS8SpoGWTqClLTeDT84Qy2pkgx3kUjHS6qzX6d0QnCwdwSSf+v1WGvpimCb5Ca+6wMWerjDxlE5fPJ3f8f/Tmln86ovX039gd/4cjtpF+JddTdXSNWzxuUk2DFDoslulMXQTWYLDg0luvPsVsjnwOGQUWT5GtLhViZxJ3kUNViD00c87HpMJpaOtTmBdb1dHhPZgEs0waRmIk83liKSOPY9ugJazgs0X+hzWd9omE0pqhJIaWd1kImfhgZ4Iv3yh2WpN4rIRTenI0nD/uewRt7xNlnixaZBvXrOQ5w7187fd3XSH0xjD41cVGZMjAbmvtgTHWNFMTHxOWz5W6egWFQF3gH3dEfZ0RkhpOi7Vxr9fu4BEWudAX5SHd3bzk+caKfbY+epV8xmIZ9jdGSaU1Ca07syr8HPxnDK2d4SQkChy22kNprn7wXVo/a385je/4fe//z2HDx/mG9/4Bt/85jf5l3/5F77//e8Dxy+KeKri42j32ImUCZjIpWb93yqserBH57N/2k4kpeFz2vKxYa/V+vVaLWknE+R+qlnLHcEkj+7p4kBPlJkl3ikR2D3CWSWWzjasidEKCLXJEqGExjhhABjDmTk5E6YXe/j6OxewvyfKfdvaaR0VuwDgUgBJxq7KlPvdLKr08cDOHus8gKbrvNo6ZGXfIfG22aU09MXI6GHC407wJvEMWKGjVhzHyHKR0U28TjlfgXdZTSFVAReN/XEkSaa6qoqkVobHO31MOrddkTBMkEyT2tnzOdwX4Y+vNLNuVzuzCmzktDQdAyGi8SQFxeW4i9w8+7tfE23YjPmeL7Kjc4Vww00BdnSG6AqnME2rf2EyrVPksfFKa5An9vWQzuYwI92UVk/ne+8/h1Wzillz4WraWptxL3g73nOuwl5aB0BMg1goSbHHzlAqy/wKH/t6YmRzJrG0nrfSWLWSxlqJbMP+ptFCSeHEhNLo/ozHfa5kWWiOFmG6CQMJDbDqoqnKxOdIaiZeu0xK06kKOAmntHxguDk8FlWWkCVzzFyQ1gyaBuKYmKyoK2RWqZfBWIYHd3aPOb+eM2gLJmkNJnjX0ir++Grbkf6TDonldYVUB1zs647gd6g8tKNzzPHP7u/lHfMrJl10e8NptraFyOoGdptMPK1z6YJy+uMZ2gbj6DkIJTX+75XD/PT6c7lqUeWk1p2AW+Xzl81h2+EhfvhsA9s7wlQGnPgdKrXnnMMdd9zBd7/7Xe6//35+9atfsWHDBmbOnJk/vqGrn937G5g7u/64i++JxgeNJ8COl8E2mWgb/VgwkSGc1PDYbcTSOpUFTq5YWPmarV9vVAzQqbojR47rDqfyf5tf6T/jgd0jCLE0hRnZUTX0xVhd76Q/mmFD0+CYGAS/Q0G1ybx3WQ0zSz35wnB98TTBhPWFi6Z0itwq0bSG3W6jOuDi/efVUuK28+NnG8ZcM5zUKfTIhOJZqovc7O+Jktb0cYXS8Qi4bMwt99EbSecz1f7nhuU8faCPdXu7OdQXx8QYsxjZZCteyq3aWFJbQG80w6H+GOsbQ7TF4XBMR5ZVSjw1xBUdm6oyw+fCqSpEh68p3HBnhqN3k8tqCqkucHGoN4aBVW163d5+MrpGpnU7g688RLptJ6Ebvsu/5Ex+/ffn4Tr/g8wrvZyEYR9jockNq+n+WBafXaYtlCKbsywtxxMzugn6UcroRD7NLpslfsbboByNqkC510F/Ikt2EhVmwqQ1mGSgyGOneSBJMmuVO5ABWbZc69UFVpygbpj0RzN5N5pmQDChoUgQT+usnFnM9548eExMVSYHRlrjmf29tPbHiI26uenFXv5pzax87FHHUJJDffExxx8OprjzhUZml/s5b3oRc8p8Y+qiAfzyxWYyujFcRdzgly82s2J6EWCiGUfer86hFC809INkbaSOXryPFi7lBU4q/E5mlnhIZnNEM1r+uS6Xi4985COsveq9PPrSVi5eeqQcwaZ1j/DHL32a6gXncdE1H6Tk6jnjiqKTcf9M1o5nImEwmRtsJBtUla3MSrddIanpBFwqVy6oZMFpitt5I6plT+SOPJ4QHTmuxONgMJFh1cwiblg5fUq44ECIpSnNyI5qJA7gJ882YFcsF5cCeJw2MnqOigIXHz2/Lv8l7Qgmae6LgWnQHdas3lYZnWKPg6W1BUTSGg09Uf5rZ9cxE7tmwEAsSyytU+C2c3gwfowL7uidsypb5nvNMNGHa8o4bTI2xWok+sNnGxiIZagMOPnqlfNJZ3Ps740TS4+Nv/A7FKqL3HxwRS3twQS90Qx1xW6CsUzeQmGYYORMwqksKc0ko+eItQxSU+imH/jwyjphVToDjN5NlvocfOHSOSyfXsT337+Ubz28l63tYWQ9Re/2Z4ltewRtaNjiIclkuw/SV7uAh3Z1krV5mVamcKjPiqcZr2J1LGtA1jglN9rxUBUJCROHKhFLH//kNtnq+2ZXFOs78BoGZJPBqdoodNtpDx0J0jYAOxJVBS6+9/6lNA7E2d8VZSCW5m97e8ZYzHIm9MfS7OmwFh6HTULPmaiKRKHbTkrTyegm29rDtIWSY8TUzGIPpgRtwSQeu0JXKMXR1BW7eHBHNw5bL7WFbuZW+NjWHgIkLp5TwtvqS0lrufw85bBZve06w0kkJOyKTFa3NkjBRIbbH9uPJEGJ18H7l9fyjvnlx7SyqfA7uWJRBdUBF/Vllmumvsx7TCD0iOVpIJblqc4m7rjeT22xm/bWJiRJomv/Fv68fwt/+8V/UnPeFcxZ8y4uOG9ZXhQd6I2ypzOSt5qNZ4EaXXTzZF1ak7nB/A6Vvkia5sE4qixzwcxi5lT4uHK42OepMJEgfL0tS+O5IzuCSX7yXAPhpEZ9mXdcITr6uKoCF9curp4yQgmEWJryjOwEXmkJ0hNJc8ncMhoH4kwvdqMbZr4y7WihNBInkhvuQeW0WdWCp5d6SGo5mvrjbD08dMwO16FYk61bVUhpORr74+NWDHbbFRLZ3HD3dZhT7mNpbYDZ5X5SmRzPHuxFkSWmFXtYWBlge9sQHoeN9qEkt96/i6F4dtzYj4xucG5tIZfNK6exL0Z/Is2FM0sBK86loT+GBCiyREYbjsMwrOaYIx/kQs/U+XK9lRjZFRY4VVoGEvzk+UbOrS2gN5Jhe2sfwQ1/ILZrHWbGcgtLDg/+JZfjXX4NtkD5sNvVKmuh5QwK3Co720OkdXPc9iFw+oUSWGn2pmmSyWqYuoZp6Jg5HXIappHLB5aP/Czxu0nZVNx2hcF4+oQqg4+Hzy5TWeCi2Gtnb1dszGMyUOl3Uupz0BtJc9f6ZpoG4xNasLrCaX77cttwGQ7LrX35gkrsNokn9/aS0Q3cqoJbteUrfQO82DzIR86fPlwwMk51oYvm/ng+uLvAZbPcaznLndc+lCSjGxjD6X/b20Ps6owQjFs1lgzTpK7YzZKaAmoK3PgdKrPLvLQNJckZJjNLPezrjlLqddDQF+MnzzTwyK4u7rj+XKIZjbZgkiK3yvqGfhr6YiyuCeSz78azCL3cYmVR1ha4xlg0fvCDH/DP//zP3PnLX/Pzu35FPNjHwWf/wsFn/8LLMxdx5XPPM6M0wLq9vXRHUnRH0lw8pyQvZkYLpJHA9bpi97hjmYzJ3GAN/TESmmVRctpsxDI6VyyqOGWL0nhWMuANCZw+2h0JcNtje9ndGaHM7wQYV4i+3oU4XytCLL0JiCS1/Bd5ZAd3UX0pG5r6uXph1Zidx2O7umgeiJMzjqQM64aBS1W4qL6EtGawrzt6TKDo6hlFXL9yGv/5+H4iw403S7xW13FlePcMVuf0Iq+DVCiJ3SaR1kxqCt3cvHY2XZEU6/b2Uuhx5Gs5jTQK7Q6nUBWZcC5LkcdOIps6ZmEp9ztYNbOI7z11kJ0dYRRZ5lBPjM9fNpdvXruQbz+xn2AiSzCWAQWMYb1VVeBC9lh1r87S7j1TnpFdYftQElWRmFPqY0vrEAf7YmiSjWTDJsxMAlthJf7l1+FffCmm/chkqCpwoDeC3aYQcKkkM3reoqTIEm67lO/ddiqYOY1cfAg9FiQXGyQXC6LHg5iJEHoqjpGOY2SGf6bjRz5cx6ETQJKQVBey04PssP4pngIUbzGKrwjFW4zNV4wtUI7iK7GE1lFIioRhmuzrjuZdY8rwF7jQoxLL6tgUmYO9MVoG45NasAzDJJbR8Tus6b084OLD509DAloHEwwlLctxIqNjk6zz2CRIZnI8d6ifGaVuVtYVURFwcttj+9jdGcEwTSJpq1isLFkWaMM0mVniZXd3GAyTtmCSeEZHlWXqSjzcesVcKgLOvDAIuFX+54blbGoeZFdniK6wVYk/krbiI0u8DtqHknz3qQN8ZKUl2vZ0RgCJYo+dl5uDnDe9iBV1RXSGk8CR4rptwSRzSn0cHkzQH09T6nPiUW08squLZTWF1NXVcfkNt/CguYpw03biu9aRbNqMwxtgRqnVRLg3mqbeNkTEWcncYZfiaNHhcSiEkxq1hW4O9ER5dE/XSVs/xnODdQST/PjpBnrCKXKmidNrY0659zXF6ozn8gPesIrYo5td3/63fezqjFhu9GiaeRW+Ce/t9SzE+VoRYulNwMgXefXMYg4Hk8yr8PPVB3cTSWk8saeXe25cSSyt87tX21h/oDdvlpewTPt2m4xqk3m1dYjqAicFLpVIMpsXU2VeO1+/ZgELqgPUl3l5aGcX6xsGaA+l0HIGdUUueiIZ9JyBQ7URcKkMxhXiw5P68w39SEj0RFME41nmVnhpHUjwiw3NBONZXKpCdYHVYT2tGfTrGSr9TlRVojuUsgpS2mVml/t4eFc3W1uHyJkmBS4729tD/NeT+xmIZemNZnDbFUwst4dNNllQ5ef26xbx1Q3WR1mIpdef8Uz5I7vCFw51cd9f7ueP//kIgWv/Fd2wrDCFb/8EyAquWStQJPmYOCPdgJebhyjz2XGqNtqGkvmCkhndPKH31TRy6OFetKEu9FA3Wqgbfcj6mYsOcGId4cZDshrvypZCN43cWDFlmpjZJLlskhwDk59KUVELK7EVVaMWVlM+bRZy2Uzm1s1jZ3sMbdQQFdmq4x1OaUiSxMGuKHs6w5jGsfcxElwOlsXNoyooioTbbuPcaQVIQFXAxXkzimjqjwMmoXiWhMtOUrdinzyqwuN7egglslQXurhiQTmHBxN47DaCCat9SXK4jpRblakqcDIQT1PktpMzDWJDWatKuGHQ2BfjYE+UFXVjm9bWFrv5u+JpXLmokoO9UXqjabqHkjy6u4feWJpoSmPd3j5ebRnijuvP5e1zy7hvawdP7+9DM0x+8NRBzqktzGfP3by2Pu/e2tMZobbQ6tWXM+Dzf9mJqkhMK7I+m4dDCXQkXDOX45q5nAIzwbevmZXPRAvkwvz3Fz6At6yWtovfzd53fYBrVs3PC4yOkFV8s2UwzoGeKAd6ojy1r+81F8Hd0RmiP56httDNQDzDe5dX8YkLZ70mq89ELr/JXIevte/mePNCZzhJOKlR7nfSF02zpCbA5y6Zc9x7GzmXU0twYM92rrnmmpMez+lGiKU3ASNtT/Z2R5ldZu3YQwkNj10hktL43SuHeXhnN8mjasUUeWxkcyZu1UZK18E02dcd48OrprGpeZD+aJqBeJZphR4e2d1NdaGbBdUBmgbjPLyrG7/TRlc4RaHbSzCZRUImmc2R0nKsrCviuYYBVAmyusn6hn4CLpWhRIaBeBpVkemPZVg1o4j2oQSHeuN5c7+Mgcdp7dKcqmKllbtsdIWSdEcyGKZp9ZtTdA71ZdjfHUWSJGoL3UTSGqU+B0Vuu7V7vXwetcVupOFinEIsvb5Ekho/fuYQDX1x6ordnD+z2Aq2DQX59a9/ScPzDxAJWrUtjBkbcC94O7oJ7jlH+i+OfEpVWUIbXuEN07JUWJWmj602rR1l6MmlYmgDrWT7D6MNHCbb34o22IapH1viIo+iYvMVD1t8irF5i1G8RcguH7LTe+Sfw4tkdyIpNiRFHdcSZJommAY2UyebTmFkEta/tPXTTIYw40HMxBCZaJBsdBA93Ac5DW2wHW2wnRQQfdU6X6Pdia2kDnt5PY7KOThqF2IGynHYZFRFIqWZdI2qXB9wKaQ1q6hjzjDHuNRtMiiyiYTE7DIv8bTOt584wKLKADesmsburggeVeGFxn56YhnKvHaqC93MLvPw561WjaZDffExwd0Om0Ry+CI2GWwKHA5a7jRFlnAoMtlRPvucCT95tpGucJKvXGnVrDt6IX3+UH++ye0XL5/LQ7s6Wbe3D4/dqhK9rWOIT188m9bBBM8f6h9ecDPs646yqMrPns4IB3ujzKvwU1fs5s+b24lldCRJQpWtzEK7ItEZskTA9EIPHrsVYqBIEl+97nyuXjnNej3dKktcYRwOJ/G+djb/+ads/evP2XjZVVSvuppw1RLmVQb4+IUz86ntJR7HaSmCOzpWp67YzQfOnfaa3WMTufxG18IabZ07lQy20eKoK5TkB880kMuZzKv05V18I/XTwEpcCDhVusOpSc8dSWr81xP7WffIXzn44M8wtTS7d+9m9uzZr+k1ea0IsTSFGVH65V6r7UBnOEVnKDkcw2ESTusEXAqdoTQpzRiT5myTwTAl9JzBQCaDTZbY1DKETZZ4cHsXX3/nAn71UjNd4TRdkSS2Tilvlh358naHUwRcKqZpYBgSWT2H22HDpcpcNKeETa1B0sMCLaMbBBMZJMBrt+FUZQzTpCeSZmaJj4HYYP6+TCyrVySlYRommmnVr7HFrHEGXHZ8TpUFlT5ebBzEpdqIZ3RSmmXiL/M6mFHmzXdGB7jiuvfjrZlD7exFb+Rb9JZjpABqIq2zvT3EH598ieCrDxPfvz4vVGzeIgqWvxNb3bnjxryNoI1jIRkPU8+S7m0m23OITPchMj0N5CJ94z5XsjmwFVWhFlZhKxz+Ofy77C7Ii+rXiiRJICkgKdi9DnKegvxjTmU4rk63hEShx85gPIum6+jRAeRIF5mhblIDnWgDrWj9LRjZNNnuQ2S7DxHf8TcAFG8RztqFOGoW4qxbiq2oJj/+eDqHIkHqKBPdSA+4WNogJWc52BcjnNAwTJOW/jiN/TH6ohlMrJZCAZdKdYGL61dO46HtHRPa3lRZwlTIZyoVuOx0hNJWwVrdxDBzuOwyWf1I02DTsDZnB3ujPH+of9hC4+Ci2aUc6onx3IE++uMZUtkc7UMpvnLFPF5tGTqmSvSFs0r4Q8BFdyRFud/B7DIfm1qC5Ay4Z2MrhR6VrYfDRNI6XrtCLJMjl7PcmFrOxG23MmT9LpVrl1SztyfCosoAVy6qHHOPH/7g+1iz9u187ts/56W//YX+5r2sX/cYrHsMd2EZ/q/fgf+yuVy7uJqn9vVNWk/pZHi9YnXGc/mNWNGOjl062YKao92ThW4bm1tDdISS+JxHLEojtbduXlvPk3u7+eaj+8loBk/s7eXuG1eyalbxMefsDCd5actufv6vXyDWtBWAGXPmk06njxnDG40QS1OU0UrfYbMsOgVulc5QCq9dQRnOBMoZMJS0duIj82apR2VGiYcDvTGyukHOBIcEmm5S4XfQH8+wrWOIVNbqYzWU0IimNDYc6rdql4z68npUG798sRmbLOFxWNl3A/Esm1uGqCpw0j/cj8vtsJHM5Cjz2bEpCrIMi6sCTC91U+V38WprkBE3iFuFZEZHVWQSuSNbYt2AIo/K9BI3Cyr9XLmwkt2dEYLDDU77Y9Z9JrM6PdE0K+oKub64jv1dER6M1BKqLOeXB0wWL01OWb/3m522wQS9w0UMtXAv3b/6TP4xe0U9vhXvwjPvIiTFmjRPxc6nx4JkOvaS6dpPpruBbH8rGPoxz7MFylHLZmAvnYFaNh176XRshZVI0om1LjkdWAkRkhXDk7N6s6Vzww9gxQ8lMlaqvyQrqAUVUFCBu245I59QnyphRnvpaz1o9V3sOkCmp5FcfIjEgRdJHHgRACVQjmvGubhmrsBZt4Sc3XXMeBy2I6UJNAP6I2lyBjhUaw7Z3RkGJNx2mf5oBp/TRsdQkt5wip7oxAvSzBIPbaEUSV2nwK3ic6mo0Uw+uBsTcjmJxVU+DvbF0XImdlWhxKPy0I4u2oYSTC/28OzBAcvVl7ReE8OEgFMhnMyS0PRxq0T7XSpzK3xkdIP6Uj8Lqn20DsZIaQabDw/hVBUWVwU4HEwQz+SwyRJOVUKRZVx2hU+vnZUXIl++ct4Ya8vRrqOa8iL+9zv/SudX/ploVwt3/vJX/OVP96KlYui+CjrDSRZWBfj0YpVBqZC3LZjxmueaSFIjmtFYO9xk+Hh0BJNsbBmgzONk+fSiY445njttvHimEymoOdE5treHCCYyeB02YmkNRZHGuPgCbpX9vVEymtWzMaUZPL6ve4xYiiQ1fvT4Dh66+2fsWfdHjJyOpKiUrPkw//Gf32Dx4jNfbFiIpSnKaKXfF0/jtaskMjoFLhXNyKEPp1VbzSol/C4Fl6qg50wKvQ5cdtuwa8M6Xw5QZKuEQF2xh4tnl7GtLYyeM7DLVn+1X2xo4dHdPbx/RQ3vmFfB2tllfOPhPTT0xTFNEy1niaL55T6eOdiHbpCvAQNW5ssnL5pBsd9JKqNz14stvHp4CKdNxmm3LEaxVBYkhb54FpcqU+KxMZiwFsKA08Z33rOEioIjQaFfesccbn9iP/G0gTGsBiNpnUha57ZH9+NWbfxhcxuHBxP4ht2GojfcayOS1MbUzhmZjLsHwtz70GMYWIUi1YIKnNOXITvc+Fa8C0f1/FOy3OjRQdIde8i07yHdsRc91H3Mc2R3AY6quTiq5mKvnIOjcjayw/Oa7vN0YRomhjF+7SbDhETmOIHpsozmq8CzoBzPgrXWcVqabE8DBdFmeg5sJ9q2h1ykj/jOJ4jvfAJkG866JbjnXoR7zvkoLisgucDtIJMzSGV0UrqZ75+Y0qzvuZYzyZkmGd3AaYNERietGTT0x6zgbaxNlyKBy34kLvFgX5w1s0tYUO23MlQluG9rOzs6wvRGMpimiWGaVBe6+dD5dTy2s4dgIsNLTUF0w8SmSESSGrF0llTWsMoKKJYb1oB8k9vaYvcxqfIHeqNsa7fmqmcP9rKpZQBFlkllc5T5HGg5g1hG522zSzgcTLCwMkBvNEUim8OhSPzwGauWXInXkZ/bRoTSeNlheYtM1TIWLPwJc679FNt37GR2TWleBNz62X/k4MGDXHPNNXzkIx/h6quvPqXm6ifb2qMjmOTme7fRMpBAVSQuX1DO+5bX5r+nJ+JOqylwU+F30tAXY065Lz/Xnox1a3RM1MIqH4Zh0htLU1fs4YuXHRuTdPXCKu7b0klKM3CpMlcvrBrzeOtAhB/e/B5ig9Z3v3jeKsov/0dmzprN2rljLYBnCiGWpiijlX5toZuvXjmfvniacq+TJ/b28OetHWSGZ8K+SBpVUUhpBqlsDodNoSEdw26T0HKQy4FdkVlVX8RlCyryhSs/fN40NhzqZ2Qu99oVGvpi/GBdAw9s7+If3zaT7W1hMlqOlGZgU8CJbJUUGD7GAJyyzNxyP0VuO+sbB6krdlPuc9I1bJaNZXT8TjsZ3cDvdjCUyOK120hqOu9eVotsQjpnsHpWCXPKfXRFUkdiEUq9qNKxdZRtklW1+CfPNRBJ6eQifQz0xpk+rVYUpXwNWDFJDaxv6Gck8/LCCvjpz37OU/f/gWwmTfU//S+K13qNyz7wrXFjeiYjl4yQPryT1OGdZDr2oId7j3qGhL18Jo6ahTiq5+GomoviLzttLrTTzfHqtU5kXZMAj8PaqBz9HJvqpHzBci6bdzVb20Mc6gySbt9NqmUb6Zat6JE+0q3bSbduZ2jdz3DVLSUw/0LKL70KxelnIJGhfWispUgfVRDSxDJ+2YaLwmZzllDyOpVh95ydlsEjMUs5w2QgnuXVlhC72iPMrfTzgeXTeP+Kafx202FeaQnid9poDyXZ3RnGZpNQFInMsIUtp5tE0iPVyK1zZnImM0o8fPSCabxjXsW4C3QkqXF4MDFsodNJZA0SWesENgn6gSsWWoKhOuDKF9QMp3TCySx2m0w4qVHmt8oT/PjpRh7Z2T2mPMFk2WEBt8pnL1tA54rpeVERCoUwDINsNssDDzzAAw88QGFhIR/84Af5yEc+wurVq49p6DsRJ9uvbUdniI6hJIZhkjZyrG8YoDucZnFN4CTdaeZRP08uE+3omKhoSst7ItY3WjGLo0XvqlnF3H3jSh7f183VC6tYNauYXC6HLMtIksSM0gArr3gP2557jHf907/y5U98KF/IeKpsfIVYmqKM58ce2YV0hlNU+J0MJrKU+xw4bTKmBOlsjo5simzOwKZIzK/wsbMjgmkaFHocfOEdc1lQHSCS1NjXHWFXR3hM/ZruiNUjzmbkaOmPs7UtRCyjoeUMTKDY7SCl63gcCsqo2jdJ3WDr4RCKDEtqAgTjaZCsSrTRlE6hR+Wb1ywkoel4VFs+k8/vVAknNPpiaRLZHL2RDL/a0EIkraPIcPGcMj5+4QwWVxfwYtOg1S1+OIUvZw5n+ckymCZ9z/6GxMGNzL7py/hd73zj37CzhA0N/Tx3sI9kNkesYz933fswt+16AXPYrGcrqESP9OXF0okIJTOnk+k+SGp4cc/2NjNGQkgy9vJZOGsX4Zi2GGfNAmSn9/W4vTyqDKPzIU60wOW0IhedQ6kTboFy9HVGU+pTMUyJeObYoHQDGIhr/GlrJy5VQrE7cdevxF2/0rLihDqJH3qZxMGX0PpbSB3eQerwDh5e9wsCc1dRu+oqzJJFSMqRKV6WyVtnAfQcGKPWdBOYXebl9nct5s/b2mnoPyKWDBMa+2LkcgYZAzY0DvLg9k5+e9NKPvv2ehr7YnQMJdBC0NyfwK5KSKMKlEiArhvDf7NeaLsCHzi3hvctqz2myW0kqfFCQz/3b+9Eyxn4nbbhFkxHcNplbIrE8umFnD/TcuncvLaeFxr7uX9bJw5FpjuawuOwuhiARJn3SFD22tll42aHHe2aOzr2p7CwkJde3c6/3/M3XvjbA7S+uo5QsJ+77rqLu+66i1tuuYU77rhjzFgnKgZ5sv3ayr1OslqO9HCfQJskjSmieSLuNCu7OsOcch+90fQplxAY/boE3CqxtMbf372ZcErjVxta+Me3zeSaJdV5sbNqVjGrZhWj6zp//OMf+dZtt/Hl277L+6+9ioBb5Q8//Q49sW8xo9SKdXo9m/WeCkIsTWGOVvoju5DaQjfJrE6Z32HVoFFtbG4LEhve4sYzOoUuy5JjYgWjhpJZeqJpqguPBPd1h8fWOhr5f1oHVTZwKRIFLjsORSaU0ggls6g2mXgmx8IqP3s6o4A1sZtYi8KOjgiqIg1n8cj4HDJ1RR4qCpwsHC6wdk/Aiksoctu5a0MraU0nktLxqAqHB+NIsozXobC9fYhoWqM1GM+nRrvtCudOK6SqwMXsMi/fe+oQKc3ANIcDXzO5KdN4carSEUyyqXmQYp+D84ZTuyNJjfUN/Xzrkb30tTUTfOKnZHsO5Y9x1S3Bu+JduGauOCGBpIV6SLduJ3V4B+m2XZjZsdWg1dLpuGaci3PaYhw1C5Edb+zuUTdgfrmXrkgawzCIZyeXPx67zHfes4Rl0wq5b1sHj+/ppmkgedzr5Awo9tgIJsYu9F6HxAUzS9jaFpr0eBMrq2s0fqdCsqiWwAW1BC74oFUioWkTsQMvkeppInJgI5EDG1E8BXgWvB3vkstRS2qPKexpMFY8OWwSl80vp7rQTZnXOc44xp4glMjy0+caWDmjhIDTxqDdhpbSMQyDaMoSSLLEcNKGysIqP68eDqNnrNfCblNoGYzz42cO5av1jxRP/O8nD/DQji5SmkHAZWNBlZ9L5tbyixdb8qVRNN1keokrX7gWrEV77ewy9ndHaeqPM6PUw4UzixlKZnlkdw9DiWxeRIyXMTZe5fARF9dowdMZTpL11/KeT32F7r+7hZWOXl568kHuv/9+Lrvssvx49uzZw09/9j8wYxVy5XxmlPmPaeQ7UYbaaEau3ToUx+NUKZAhmTWYU+Ed04T4RNxpr7Wh7kQ8ua+XYCKLZEIoqfOz55tZt/9IaYVIJMKvf/1rfvrTn9Le3g7Af3znuwz4Z3Pz2nrKi3yUF/lOy1heD4RYehNwdIn9pv44yWwOj93GQDwDRoZEOoc0ummcbKX/ZnTDStHWDQZimbzgsssywXhm3OrIVhySRFMwyYX1RTQPJJhhQDSrM6fUx9b2IQZjVt2VkUrcI5cdSc31OlXCySyyLJHWczy5tycfPD7SvfrVliCGYWCYlsWoeSBOQjMwTINoWqc/lmFPV9Sq7jx8jbRuoBkGH7mgjnV7e8keNfhwMovfIap4T8RIhfeWgQR2m8w1Syr4yKrp/GZjC9vawoSSOoq3EG2gFRQbngUX419xHfaymZOe1zRyZDr3kWzaTKpp8zFxR7LLj3PGMksgTV+GzVv0et4mMH6rFDgSl9MVSVnlLExzTL/F8fjMxfWsnVvGj585xHMHB0jrOj6HlaU52XEOm0xNoYcCp0Zz8Ii48qgqn1ozi9VdEe7d3MZgLEtXZPKMH5tkCZqaQmuxjg0X6VQLq1DPez9lF11Ppq+VwZ1PEd/7PFoiTHTLg0S3PIizbgm+c6/BVb/qGLErYYlBj93Gk/t6OdATY0fH8UWcbsKzB/pZf2iQyoADu2KZqUZ0pzrc8iRnmESSWQ70xbl57Uz6Yxk2twSpK/awuzOCz6Ewr/JIKQCv08aOjlBenIWHrUIff9ssqgpd/Hx9MzUFLgYTWT71tpnHCIIRAXKgN8q6vb2sbxykwu/kn9bOIp3NsXo4DGHkuaM3VqN7tD13sI/93RFqi918fPUMHtndPaZ694jgmFHq4/1rl/GJv7uOO++8E0WxXt9IUuNnv/4/fv3LXwC/wB0oonbJhdjb38f7rr2aOPZRlqZjM9TG61lX5LZTEXAyEMswo9TDV66YjylxTM2zyVxXr1dD3aoCJ/IoC22By0ZPJM2Dz22k+aXHuPvuu4nFrOr0RcUlzLr4/Vz6/htf9wKZpwshlqY4R6dozinz43eoPHuoj6F4hsODCaoCDktQSNY/RZYYjKXzNYwyOROnTWJGsYeaAjceu41Hdneh6yayDJU+Oz1H9X/DNDnYHeXdV80jmzMZiGXIGAaHh+L0RdMYhhUwbpPApkhkdRNZsiw7igyVPgezS31sbwuyrzvL/u4Y6/b18ZuPnZf/IlcFXPidKtFwCp9LRZHAltbz9Vp0Y6QEwpGFzBhu8eJ3WPU6JEmyWtoPx7M4bfKYBpuCsWxqHqRlIEE2Z6DlDNa/spMHf3473R1tTL/hdgAUl5+Sd/0rjsrZKJ6J47+MdJxUyzaSzZtJN2/FGG5lAoCs4Kieb4mjGediL5/5hmapwcTNcg2s1j4Om0Jay+WrUsuS9Zk7WvysnlnIDedPpzOcZH9PlGA8Q1bP4bLbKHLbCCaPzdQDKwO1wK0SjGeIpq0mt7nhIOqUnmN9Yz/XLq5mY9MgB3uix70fw4TqIg8fWz2dX7/YSiydGPN4LKNDQS3+iz+B721/T7p1G7mDzxHc/zLptt2k23aj+ErxLbsK79IrUIYXJ69DwWGTGEhkCSaz7O6MHjeLcUSIagZohkF3JI3XYRvjnhz5HueG3ebd4TR/3trBL25YjpbL8ehua7PjUmU6wimcqo2Hd3Zy2bwK5KN6DMwp9RBwq1y5qIqDvfF8TN329hBr5lhZZPu7ImMy6XxOGx2hZF74jLRMObpkwGj8DpXBeIaOoSSabuBQFQ43DhJKakhAbaElkKIZbQKLkGWRG5m3+/xzWXbZezj46nMkI0McevFRvvjio9z6aYXy2Uu58Rs/4ivvueC4TXZHHuuNpvnCpXOIa/priuc53Q11I0mNQ71xyv1OYilteJNs4HWo3PX/vsT+XdsBWLBgAV/4whe45j0f5O5XO0+7dev1RIilKc7IF8VjV/jb7l6ekPuQJUikNStFGTg8lEbGEi4lPieFbpW0btAXTSMBdpuEaRpsbB6kqsCFarNEh91miRzVplDusyNJkMrmiGdyZHPQF0uztytMIpNjZomXQ31R9ndH85Yowxhp/qlQ4rMRTWdxKDY0I8elC8tJZw02Ng/kd+3doRQbWwaYEfHmay0Vee0ktRyRVBafU+XoGF7dsArgycMTrlNVKPM56YpY2S4Xzy5lQ9MA8vBxZT7Hm+KLd6Zw2hUwc8QObiK2/TFa2vfkHxtoa8xbkNz1K8c9Xgv1kGraTKr5VdId+8ZUspZdflyzzsNVvxLXcJbc68nxrEHjUei2gQnJbI5wUsvHE8lAdaGbygIHuzojJIfNIxIwp8zLA9s72dsdRtNzJLJWQHY2rWObIOZcAmaWeemPZwhGjxXvsiTx6K4eXmkeYktrkMxRys42HF80WnzYFKth9RN7e7ArMj67bDUVHu/6is2yItWvwrmmn9jOJ4nvfJJcbIDwhv8jvPGPeJe8g5Lz38ucRfNoGojnazQBuGwSqeG+fKZxxNVuk6yfVjHMI9fL5UzCybH36bBZLVxGFxQNp7Ksb+ynptCNphvYZIildZw2mUK3nY1NQ7QFh314o7DbraUq4Fa5YlEFDX0x6ord9EYta3lXCG68ZzORlMY9Gw9zz40r8TuPCB89Z3Le9OMHUUczGiVeB5V+Jzs6wgTjGSoLXORyJiU+O73RNIVulT2dEfwOq+jieBahEQvVtAXnUlK/lG//4KdsfXUTHTs38szT62hpPESoq4mg7shbeHpeeYR98SwrLriQ6sDi/JiOdpuNVy7gTNMZTtLS3om/9UVaXnqGf/2vn3H/gSjxrIZ90eVcXVfHP3/6U1x++eX5RI3Xw7r1eiLE0hQmktSIp3VMw+T5g/2ktRzlw8Uijy5UbVes+i49kTShZJYl1QHKfU52doTI6AayJLGhYYANjQMYhkHOsApbKhL83Xm1HOqN8eS+XquR6PA5dQP+uq2TAo+d9qEEJV7HMdd1qRLvWlbFmvqyfOD26IJyv3vlMKGkjgSUB5xsOxzirhdaMAyYX+nDZbdcGWU+Jy5VZuX0Iu7f3ok+3NtuWqGLioATn9PG5sMh5lX4CCU1BqJptFyOUEqjMuBC9zuJA4uq/W+KL94bSUcwySO7u3hlbxMvPPoXul9+lFw8aD0oybhmr8K//FrU0hnHHGsaOTLdhyyB1LQZLdg+5nG1eJoljupX4qiae9KZccfDZbNi6MYTRbJkuXrSoyKzlWHr6niNdwGiKR1FAruqkBpV9toADg8lGUqmx7h2TeD3r3bkXQuKZFlVJMWqKu5SjxUsElbz2jVzSvnLto4xj3lUmUKPnaFElpaBGAd6xjbNBfA7FLK5HEe3wsvm4EBPFNO0grVtJ5AdaAI2fxmFaz5GwerrMZo3MvjqI6R7GonveJz4zicxz7uUwKr3obtr8seldBNVhjWzS3n1cIi0pmOaVhXmAo+dZEanN5rON+suHP5bUrPiJB2KRKnXQVd4rGtR0ww2NgbxOW2oNpmsboUPFPscDMQzuFSF6cVumvoNvA6FdDZHwK3y7qVHUs3nV/hZXBPIiwfJhDs3NBFKZPE6VCIpjfWN/aydU0bApeIp99E2lKQnYmWNTbaZGqk43RZMcsm8MuIZnWQ2R32ZlxtW1tHQH+MHTx1i3b5e/hBw8bl3zBnXIjRioeqJpCn1OXixKcSQaxZVVyzkrlu+xu/WbWHX/gPopmUlD7hVtj/6Wzra23jxt/CHfy9jzZo1rFq1ihUrVvCRc5cQySnHNBA+k2IjnU6zceNG/vzQ4zz51NN0NO5lZIHY98qzZDzLKfc6CS64lE+98xauWFp9TA2oqe56G40QS1OUETPujrYQ29pDefEQTmZRZBk9N3YmHb1DzugGM0u9XDa/nM/cO0TOtNozuB0KzQMJSj32I4mjJnjsNqaXujFME7cqkRgOKFUkCCZ1gkkdGVg+zeo3NZpCj5N/uHAW0YzG7DIfKU3HpdryfvTL5pez9XCIUr+D9y2r4d4t7aSyOWJpnZdbsiys8rO4yk9Df4KUZrVSWVpTQHsoSVYzqC/34nHYGIxncKoyh4MJSrx27lzfzGAig8+psnJGId3Dqbql3pOvdXI2s78rwj/8dgvd0QyJgy8x+PQ9AMjuAN6lV+I750ps/tIxxxjZFOnWHSSbXiXVvAUjNcpFJMk4ahfhrl+Fq34lauHrWwNFlqxCh21DCSLpseaXMp/Vb2qEcp+Dj62u40B3jMf29BwZMkfElvVdAHTjGOEPjNusd3SWXM6EIreNnAEJUx9XKAGoNpnppR5cNoUQR9x0IxnlumGMaVEymng2N+7YwHLFOYZjgRbV+NneGRkjJEeuP97hNtWOuvDtyHMuJtOxh8grfyXdup22zU/D5qdxzlxOwerrcVTPxybD/Co/8axOqcdOMGkJwMW1BVw4q5j/Wd+UF6QK1qamwG232oD47Picdl5tDR4zDlmWiaY0bIrEhbOK6QylMAyTUr+DgEvF51Dpi6VJZnPUFbtx2hS+fMW8fBbviDgYsUpIJnztoT10DCUxgXhGo9Bj5+LZZfiGhVNPJE2Z18FNF83IJzRMxNHxPDC2Tcum5kEOBxMokkTzYJzOYcF2tDtpxEJVV+SmN5rmcDDB9GI36xv62d4+xKFBhUzRAjY0DvKTZw/x1Svn8Q+f+DgvvPACmzZtor+/n7/+9a/89a9/BWDFihVs2bIFsDY/d/3xIQYlH6avnBmlvuPWZzoVRr/eXodMJpPB7bbub+PGjVx22WXHVNYumDafFRdfyQevu5r+rZExWXlH14D69rsXHxNvNZURYmmKMuJ+G0pazSlHUpt9ThU9kQVZwiZBfamHgVia/rg1IeewJq/Z5V5ebOi33GzDx7YPJa2O7pqRz1SRJAlDMrlwZim/3tBKQjvifhjdqsIAdnSGcasKqiLhUiUK3Q6++76l1Ba76QgmSWR1q8aHx5oo+wrTxDM5Lp5bRkcoycbmQYbiGYLxLDnTRNFhd2eEBRV+Sj0qZX4nkZRGgcdOZzhFqdfBjvawZRYvcFJf5qXE66B5IEFvNEW5z0kwmWX59ELKPvpBelYvYc2F57/B79TUoyOYZOOhDg6++CQP7u4jUnshAO7Z5+OafT7uuRfimXuR1Rx2GD06QKppM8mmV0m374bcqAXe4cE5cwXu+pW4Zi5/3dP6RyPLMrZMhJuXuHhsWyfb20LIkmUprbEH6O0KoVbOQXW4KHKrzPKZLFvgYldjhoGMjZKAB69DoWUwmY+hMYGaQieGIdE2vMiOxqEwxi02WmwpEtzy9tncv72DfT3xMcfJkiWkJElm7ZwSZCRyQIXPzkDcKvOxYkYRhwfjx1hcRjNeFxirEa6TYCJLZjjO58tXzad1MM63Ht1LWrc2SgA2G4zOsh8RUDnTKoQuSRLOaUtwTltCtq+ZyCt/JXloI+mWbfS2bMM16zxK195At2s+LtVKIrGKTkrsaAux/XCQ0KjiUjmgcTCOjOV2k+Kg58xjrHs2CSr9TvrjGeZW+vjcJXOIZjT8DpVoRssLjft3dPLLF5qt85FlX2+UqgIXd77QxL7uKAur/Pmsud1d1oJc7rNihVbXF3PzmnoWVAfY1x3JC5ZENkdlwHlCi3LArdIVgv9Z34TfqXLd0qr8ccU+B6osk80Z2BWZmmI37zm35hgLz2gL1YJKPyDR0BfLvxuWtd+qX7W7M0pvPMu///u/W49lMmzZsoUXX3yRrVu3snXrVlasWAFY3+1P/+5lHvvCR8E0UGwq/vJaHp9bz4LZM6itrWXVqlX5jDzTNBkaGiIQCGCzHbvcm6aZd4tlMhk2b95Mb28vLW2dPP7KXtoPt5Dsbyfc18mXv/xlbr/dimusr68nnU4TKCnDqFyEf+a5SNWLOG/hLMr9Liprp3FHvTrGivTIrq58DajucIofPnMIVVEmLMZ5pi1nRyPE0hSlpsBNmcfGzrQ16+nDGWH90TS6YXX9NiWJcr+Tg0dN2pIE977aQX/UqgczMvkORNMsqgrgdaokMlkSWYPaIjfvmFdBNKNxzrQCesIpq46Tz5qYU8NmdbBcG16HDd3QWDOnlK9csSBf/2lHZwiHIlPkVmkdiHPHs41UF7pZWl1AbzRNgVslnNRYWBUgkhrEME3iGYNcNsee7gilXgetQ0kcisznLp2NKltuw6RmVedNZHSWTy9Ey5ksrfEjA/3xDJUBp5U6PPN6dnSGqHuLFqSMJDU6QgmeeGYD37vjToJ71mNk0yi+Uqr/6XwkWUFSbJS99+uANUlmeptINb1Kqmkz2b7mMeezFVbimrUS9+xVOKoXjKnXc1po20q4qwkjGSGXjGIkwxip4f+nE9Tc8jtkh5tEJscLj/6MB3esO+YUIw6u+lvuRna5SWoGt/+/77DpoXvyz2l3e7B7/Gg2D4bdS8kVNxMoq8FtV2k+3IYWiSIHypHt1mIrAS6HjZLhZq4uVWEwbiU/KFjteA71xdh/tFAC3j63jA+vmobHYWN+hZ9oSuOPW9rpCqeYUeLhnNoAiayBy37819KKP7STyhqU+hzYFJkPnleL2ybz+L4erl5Yiddlo9TnxOdUSce1fHzTiFByKlDgtudFYjStU+JW6Y0fSeawl8+i9F1fQQt1k9l6P8GdT5Nq3kJ78xYG56wmcNGHsZdOR8Gq/p3AGNdqpUgS8UwOCZNY2qqZdjRel41in4MFfj9rZpfSFUnhd9jyCyrAwd4om1uCRFLD7VAMk19taGZT4wCbD4fQcgatgwmGElkkSaLQrVLmtVo41Ra5+fLl8/NBz6MFS32ZNy/GjtcOZH9XhI/+76sEE1ZQ9yM7u/j131uJKefVFfHOJRXs7ohQU+Rmbplvwh5sR1uoDvZGeXJvD4f6YjhVmYxuYJMlltT4iad0/md9Yz44/aKLLuKiiy7Kn0/XrTd1R2eIju4+fJUziPd3kNOzhLpaeLGrhRefs55700035cVSNBqlpKQEsESyoigoioLNZkPXdT72sY/xy1/+EoBIJMKaNWvGeXctdu7cmf9/eXk5jY2NZJwl3PTbLYSTWWyyjEu1jSljMPr1rS/xEnCpDCQyFLrtaDmT2sLx48hOtrL5G4EQS1OUgFvlpV/9O02HWqhb9jbiZUtI+2rIGRImlqWn2u9ky+HwmKwfGZhW6KY3kiJ1VKv2TA4aB+JkdQNVkfDabSyrKSCW1mjuj9MbTeO22yh020npBi67gmGaY2JCuqPWJPhy8xCxtJb/UO/uDLOjM0x2+LmqYtIfTbP4fD+LqwvoDaf5n/VNJLJWT7hoygoGNUyrEnc4mSWtGwzlTP7fEwd53znVSJJlPbO6qhu865xqKgLOfMXYkVpBsbTG1x7ac1Ids88GRrJ//GaGn/36bvY99yDx3tb847aiGnxLL7eCsGXFakjbtttyrzVtPhK3BJZ7rXoervqVuOtXjWnaeqIYWgZHso9Ib6dV+yfcix4dIBcbQI8Fqb3l98g2FRMI73+RyO5nJzlXGtnhRpHBcPpwBoopLfCRyJpkDRNVUTAlCVWRmVFRhN3nYWlNgL+9kMPpdJFOW3WdUskEqeSRrLFin5uAz4Vdgd5XHib8suXmsAXKKKiczspzFlNQPZ3zz13GE71OmoKZIy48rEKRD+7sOkYwfPT8aayZU8aGxn6uXliVL2b47Xcvzndj9zntvH9FBZIJn/r91uGU+PFx2RWuW1LNs4f6cNtlZFnmmf29NPXHMUyTgz0xZhR72d8TITZsBpOxLGCqbG2ubDYZmywTz2bRcyYuVUZRJJy2sXFeAM7CKuZc/6/krvwY+x77DUO7nyfZsIlkw8t4FqylcO3H8JeUo+fMY4LRParVykjT08SzVqzTMeVIJKsJ75o5JbQOJPnRMw1ouklGz6EbJnZFYlltIbGMTmcoRbHHTlc4bWUQGgYtwWR+3srqBp1DSc6bUUxHKMl7z63BZVfynQlGGC9F/kRcQesb+4kMz08mjGmhZJ1zNj95roGBWIafPNcwpqH3aI4WUatmFjOvwk9nOEk8pbOpeZCZZV4qfE4++6ftY4LTj3Y7joxtWU0h0+um4fjMLyh12/i7BW7cyX6GBnro6Oigo6ODiy++OH/Njt5RDcxNE13X0XWdTGa4z2bySDmL4uJi5syZQ1lZGZ6CEjrSdjxlNSxaMJ/Pv3cti+aO7c9WX29Z90b6+S2vLcLrso1bLyqS1HhkdzdVARe1RW7+8aKZPN/QP2E23MlWNn8jEGJpiqJpGlteep5YLMZgy14AFH8p7vqVeOpX8q5rL6eiKMDdG1uxK1bwZ1XAgdtuI5TMUupz0h1Okjuq7Xt0OO5DN0zimSx/3trBY3t6iKX1fJbLJy6czr7uCAf7YmgTlDWOpvV8EGVbMElGy+WFEkAsk6OiwCoYF0tr/OsDuwkmssgS+J0qHodKeHhCsskS2ZyVgadIEE/rPLy7yzqRBC6bwpLqAnZ1hqj0V+a/gK3BBOsbBtByOdo6u/HLOh0p11nbG25k8oyndL63bj/b2q0U7+ATPyW++ykAJJsD97wL8S69Akf1AoxUlMSBFy0LUut2TO2I+0dSnVZj1vpVuGatyKeST4ZpmuTiQbT+VrRgJ74V1+WDuoeevIPE/vUTHqvHg1YjWcA5fRmKzYbHX4TiDpBzesmpPgxnANnpxeEO4HIoJDI5yi65Cd/Vn+TiuWVjXDd/2NyW72QPEr3RNNff8lVuvu83+JwKkUiEYDBIW1cfv39hLy2dvSxaOps1cyr4+QvNVskAhwcjk0CP9DMY6efxg5sBuBf4+YMv8BAKnaEk4e5WME2cZXXkDHlMDadSr40yv5NP37udrG5w35ZO7vjQuVQUOIlndOyKTEWhlfbtc9pYWBXgro+s4AdPHWJXR8hqwguoChS57QRcdmqL3PzulcOkdauv2qwSN267YiVQOFWGElk89vRwb8gjjFTWV20SlX4XrcFEPgh7RokLv8vOzFIvLzYFxxxX4XfQFU4ScJUw7X234ljxPiIv/YFkwyYS+9eTPLQRx8UfoOCCD2BgR8IqEHvp3FL29MQIxjOU+l3YUxlCwwU43aqM266g5UwWVfvpCKV4al8fvdGUlUhimETTer40yDMH+njHgnLAapY9UstpMK6xuKoAVZbojaSpKXRQW+SmZTBOJKWxsXmQ+jIvV41TEuBowTK6HUj7UJIv37+LYq+D+ZVHikVePLuM37zYSjBhzU+lPvuYSthdkRQdQ0liKZ2DvVaA/jfeuXCM5WMi69Xo8Yw0kv2f9Y1EUhpu1ZYPTh9dPHi0ZWW8zg6jGbluR9BqJi75SvjHe16hQNHpCcf5+/NrqS/1kMvlUBSFgoKCI58dReHQoUN5QekJpyhw2/nSB88ZJd5ix7jFRurmwcQWoRHxM6PEQ280jddlmzQb7vUqnPlaEGJpiqKqKvv37+evDz7CPX+6n92bXyIXHSC2/W/Etv+NOx/+L869YA1awQKkaedSWFzG7e9azLMH+9jXHaUy4KTQrdAeSjEYP5LSK2NNqCMB4RKW8BnBMOGeTYet3lHDtZTG6+2gSFDstucLZR7ojox53ARuubgev0vl1xubCSWzKMNZSpphkNWPxE3pw41IR+KkZKx04oBLpdSrcu60Il5oHOCl5gH+tLmDe25cSeNAnOcO9DOvwkcya9L3zP+yc+s6Frzrn1j2+StO63txpokkNTYc6uePW9rZs2cP7Vuexj33QhyVswHwLrmcTG8TvqVX4J6/BiMZJtm0mfALvyXTddDK/R5G8Rbhql+Fu34VzrolSDb7pNfWQj1kuvaT7W9F628l2986JuDbNfv8fJC3vbAKze2jum4GurechKMER6AM01OC7C/F5rPcAYoEzvkXM23lFYSSWQzDxKHIeBwKQwnNyuCyScwscdMfy5LNGVQEXISHu7OPVIKfLBAXrLYUhYWFZNylKIftnDNbIZHNEUxlSWk5pl/xD0TW3oiZiqBEuiHShS3ajRHqYqC7gyFbMYoSxGlXSLxyH9H9LyC7/PhnLOHqd1xKm6MOf9VMzqkt4LHd3WSGP9NJzeD7Tx1keomXQrcNVZFoHUxQ4rO+Lx3BJPdt7yCh6RjSka+XhESR2861y6o40BUjpZt591dnKE1/LIvDJhFMZDFM6ImmrVpnw8dXFbgwgM6hFLphWinzo767jf1x5pT5uGZJJS+3BMc8NpDIks2ZhFM6qgT20jpK3/M1Mr1NRNb/L6m23TQ/ey/OzU+w/H3/yJXv+RBLppWwtzvKQMMgZV4HwaRlwRrZMmV0g0vnl+J3Omjqj6EbJiUeO/t7ouRyZr7cR97Nb0JDf5yltQG2t4UIJ/V87bj6Mh8VARfbO0KkNYOhhAaSicduy9c+2nCon8aBOPVlXisTbhy3TbnXidNmtUFJZXMc7I0RcKXzn5+A21r4v/u+pfzrA7tJZfUxbtNIUmPd3l7ag0lCSY1pxW7Cw5uYERE0WTPbSFLjQG8UCZg3XBn84tll3LPx8JhM4sksKxMVnRzvujUFbmaU+a3YqVlFrFhQP+53ZbQVa0RQlnis97RpMD6heDuaicY9nviZrNZTwK1yw8q6vCg80y44EGJpSlNTU8Pl772B34XrqTn/06Tb9wzHmGxBiwd5df06wIrlWLh0GQ/GrqQ3sJBli5fSGkwQzxrkDKtWil2RsNusIpUpLYdTMdFN8tWzRxugcgb4nTbCaT1fS0XiSO0XJCvQ/BcbWjjYG+cDy2vwOVR+8swhRicHbWsPsr83SlNfAlWRSWuWGd2jKmh6Dq9dtpp46gYeh41YWsdlV5AliURWJ5jQSGR0trYNEUpq+BzWzutPWzv42+5uhhIaLYNx1s4uYVqxmx7gXUur39RWpaNN7x3BJJ/+1TNsfOoR4vueR+tvAcDIJPJiyVZSR8FFN5Bq3Ubkt58nF+kbc061bKaVvTZ7FfbyWeO613LJSF4QeRZdkrcyxfc8TfTlv4x9siSjFtWglkwbI8Sq3/5h6q//FAnNZCiRJZ7RcdgkVFlicFS7D9MEn9OGS5UJGiZeh42UplNd4MnHCWV0g4XVAT45o4Snh3vVjY47gWOtBhNNvCNp3HuGF5HltUU8VdBHVzjFTK+LmsJiMvp0ZpV6cdhkWgYTHOiJcv/2LvScwYJKP+ECL2mnm2wqSnj/S9y7/yUASsrKUS9+B44LP56vDC4BQ4ks1QU5NjZFKfGoxLI5TEz+d2MLwUSWTc1B4ml9TA0ic/j7uLklRMtwX7aRh62q9jmcNmW41piDcCpLeZGLgViWhVU+PA47LzYNIElW4+ysZoyp0O+ySQQTGTY2Bzm3toDdXWEUoMDrIJ7O4bCZxDM5HHYZCUv0OCvqWfrPPybZvIXdD/ycSG87G+/5b7Y89kemXf0p1GnnoBlWfTaHKpEcZenKmdDUn2DZNJUij4PeaJrdXREk0yTgVtH0HAGnSl8sY7kNZZhR7Oaf1szifze28siubnTDpMhtZ1GVn4d3d5PVDbpCSYYSGVRFpshjx2VXcKs2vv7wXmIZHZsssWZ2Cd+8dtGYuaAjmOQ7Tx4gkdWRTcmqZQuEhutDjf5sJTQdWZaYVuQhmMjmrdWd4SQdoSR+l0ooqRFLa9QWusYcO1EzW6tJ9SHWNwwCJhfPKePzl81hQXUg78oaiVl6tTnIUCJDJJVlSU3BCVlWxrvudUurj9lUHC16wGovMxI8/5FVdcf0lztRt9hEFqHxYrj2dUcmFGxA3nL8avMQi2v9XDiz9IzO7UIsTWEiSY0fPNNAJKkhq07cs87DPes8zMtNzMFWEk2bcffuorNhD/t27WDfrh0APFFYysxlF1I8ZyXnLFlJU1SlyGunrsjNYDyDXZHRciZOVaZjKMW8Ci+D8SybDw8B1qSd1HK4VBktZ+C220hpOT6wrBrVLrOzPUI4qWEYJhubBnn6QC9FbpWaYjctw/2yJEAyJdqCSeaUW/1+phW58Tlt3Lu5A92w0qeXVPkJp3W6wikKPXZmlXhIZHUO9cZw2RUyeo5Sj53eaIaklsPvtNHYG7N2llgLwaaWIQaGF5e0NkE+9puA0SbsgANeXvcgW557gtThnUdEiWzDOXM5atlMolsesrrQd+wZk72GYsNZuxj3bCu93+YvG3MdPT5EpmPvKGtRC7n4UP5xtWQarpnLASiqWwA9SyiorWfG7AUsO/ccLl+9gpZwlj9v6WQokUHTDRQJ0jmTnmgW3TApGy7h8I4FZYQTGs8c6EMbLmK6vK6QL1w2l/5Ymtse20csreN12lhQGaChL2Et2KpMKK7zp60d1BW7uGFVXX4nfrJZMiNp3NOK3CSzObwu2xhXht+lHjVJH2ZfdxSPXaE3qnGwN8aSD/8rz9z/B/pa9/PQ355i3TPPcnDXVgb7+zi0bzczL1DyFiKjcxexqtls1gwkySpq2RmJML/CR0NfHN0wcSgSQd3AaZPI6CYuu4xTVbDZZGJpjVAyw2ijblIbrpCfzaEqEkOJLCYmzQMJdANePRxiaXUAp2pVJTdNk0KvSrnfSUt/gpRukMia5Ewd0zTZ0RnBNK1ij599+2zuerGF1kHruxvPGqjDG6PldQXYbDKO+aup+vh85M1/I7Lxj2QH22n6v3/DPWc1pZd9EgKlxFJjjdBuVWZ2mY993TFsktWkt3kgQSSVJZzUsNskJBlcdolsDt5WX4JmmPzfK4fJ6Ab/tGYmSBJXLqygutDNC00DRNMabrtCIqtT5HZQ4LJx2YIy7tvSmbeQZ3MmLzQOcNtj+/jBB87Jf0ZGxESZ1ypqq8gSpinhUCSuXFQxJs5mooa0NQVuCtwqe7o0ZpZ48LlUrlxUOeZzONGxneEk+7ujpLNWl4OGvtgYa9aIK2t/V4TP/mk74aSGx2Hjc5fMOaHP+UTXHb2p2NcdOUb09EbS/G13D9mcweHBBJfOLx+3ifuJuMUma6Uy0tZlJND96H6Ao0Xc2+da4R1eu43H9nTzxL4ephV1nNF4VCGWpjCd4STp7P9n77zD7Krr/P867fY6vU+SmfSeQAKEXiMCsio27HV1cXXZVVdXLLsqqy4u2HUVXVYQFBFRKUIglIRASG+TKZne7tzezz3t98e5czOTQtnfrqI77+fhyUNyy7n3nvM9n+/n8y4GLodEVjVQRFuNllF1zLoFtLUvps7/PmoiERjeQ0PyME9v3UIuMcXBx++Hx+/nSUGguXMFCy+/nPM3X8FRXz0jKY0l5XyjacnuQ4fG6JrMUOt1MpktsKolxJXLG/nGY90k8xouWWRhQ4BLl9ZzW7GHJ3siWCYMxm0i7UiiiM9ph3waJjQEXSxtChDvizGcyLOyJciHL+jk4YPjmJaJUxExDLhmTQsb5ldVSLDza7wsavDx46f7SRZKeJwSPo+Da1Y3YVoWz/ZF2Tcan0WwLekmZjlI9+meyKz08j8n7B2MsOXwBJPpAqmiyegv/wMjHQHA0bAQR0MnlqGjDu0n0fvcrOdKwXrcC9bjXrAeV9sqRIcbU81Tmhqg0Ps8rnlrUaqaASge20XsodtOen851ICjbgHNNSFURcSpSNRvvIjL3/MWLMFi87LGWUng16xq5oH9o9z13BBTGRWvU6Yp6CRbMonlS7SE3Vy6tIF7d41w5YomDo6neOPaZt521rzK79NR6+P+fSM8eTTKo0cmkUWBjkY/CHBgLIksioylilyzpuWkoNOXq5IRLACLVEFjaWPglEqdmbvk6bHIZKaIKAisaQ2hyCIFE1oWrebobgP5qnOYd1EBc/wQHodUJimDXswzcPcXAGhddTbepRcSD19AY9BFrmSwqN5HLFuiazyNUBYvyJJAyGWPQ0fiefIlY5aT/TRxe1rVqhkWqRnFsSyAqlvsGkraj7fA55H5yAWd1ASc/Ocz/QzE82SKGpphsnMgjmbaFgkFzWBrd4SpzGwrA9OyvaJiuRKJgt3hLRkigfVX41t+EcltPyez67fku7cz1L+b8Ka3EDjzdYiigkMWuWxZPZpu8OyxGLIokFU18iUTSbRVWUG3HcidLOjU+t1oukUir9ETyfBkmVfpkkW+9oZV9Eaz+F0KH7t4ESXdpHsyw7GpHLGsalsVlDde01l09ncET3VP8fDBMVaUOzMzi4m2sIf5NR4G4wUW1nnpnsjyVHe0ck6dyA0CeGDfKJ01Ps5oD9M/lcOlSKxsCbKkITDruzsdryjgVMiXDFJFDVmwu/enyrGcJph7HTL5ks6u4XiF3/RieCk+E5y683NgJIVmWsiigGba0VaXLK1/SbI8nJqbdbrx2vS1e2AkxViqyNkLqioFGzCriLOA9moPzx6LoRkWDX7XrC7dnwJzxdKrGAGnUlaPCSiSgEuRaAy5+Nt1rSQKGhYWdzw7iMdfhbbkIq676IO8//MW8Z593HHvbzi08xkSI32M9hzgJz0H+Ml3bsHl8bJ8/TmoZ53HsaprOH/DKgRBYNOCWtqqhhlNFnBIEiIiA/E8n71yGV968DCpgsYtjx7l+f443ZEMuaKOMTOyHMASWdES5Ix5YcYSKt9/qh/TtJhXbRtejibynNNRQ0eNj7FUgaZqd+Wi/MZ1ayo7jqe6o6xpDdEUcrO6JURO06n3ufj7X+5jPF2qREzIoi1ZdsgiU+U7SckwXxXKiRfDNG9hKlXkQPcxdm97nOcef5Dx/m6aP/JTW6ZvaLg7zkSLDmAWc5Qm+yhN9Bx/EUnG1bICd8cZuBesR/CEKI0cojTRR/bAY2iRfvTkROXhVZf9daVYcjR04mxchFI3H0fdAvvP2nm2+kyAK9a3cN/eMfJ5jVRBYyiWxRJEHu+a4ntvW3988Xcr9Edztu+PQ0KWRBbU+XnvOfPpjWYrXZudA3EGY3kuW1Y/q1ACmxzaG83ym73jVHudjCQLyJJIe7WHfcNJphkt07XDK1XJDMfyfOb+A4yVyaqfumLJSxZXlgBLGwNohlnm/VgsLY8An+yJMJ4q2p0hS6JpyQY0w6TW52A8LVOYjOCoakKdGmRoz1Ow5ykGf+Pl6mvfwCVveSer1izkw3ftIVXugiii3b0xTLsrGp8sIWDNMqycDsi2OHXEy7SuYnqUbmCTor/84BH+6cqlLG700zWZrQgoph3GS4aFIsETXVOoJwhBTAtM02QyW0TVTKwyp1AEcPmouuQD+FZeSuLR71EcOUx860/JHNhC1WUfZsEZ57C2LcSPnuknmddQJLszBmAYIGKr4KZfL6fqnLWgmsaAm73DycoxFHWTf/7dISRJpDHo4tOblwKgagaGaeGQRbKqzgP7xohmShgzDKpE7KLyrueHaJpRBJ1YAO0ZSeBTZH65e+Skc2qaGzTNBRpLFjBMC1W36Q3NITf/tMo+phNHSqfiFaVVjfqgi7qAk8PjGeJ5jTufHzyp4L9wYR23PzNwUhrCy0GmqDGSyNNZc2ovtHRBY361lzPmVVUMOjd11NBR47XX5KCbTR01p3zuiUXQi3GzToXpa3detYexVIHBWH6Wo/rMIm5pQ4ClDQE2tFfxjS228nBmt+xPgbli6VWM6fGBxyGzezCOUxLJqiZLm4MIFnz2/oOkCzqpgs0NuWvHIBlVJ+iuouOqj3D+229ky+6jRI++QKrnBRI9uyjmU+x6+lF2Pf0oP/n65/BX1XLuuedx9eZLeUvHan437GcgliPolhmM5Qm4ZTTDxLQgpxps7Z6sqN5OWF8JexysagmxqaOWb27pwTQtSrrB9mMxth+Lcf+eUX767g189/r1p9yN+FwyE2mVKo/C9mMxhuN5nuqZosbnRDNMprJ21p1ugVMEj1Omzu9kXVuI2x+UyQCabpxyt/anxvTo6MG9I3z7Fw+R7H6BQt/zaJH+WY+LP/o99OQ4xZEjYMzO2pLDTTjbVqJUtSBICs7GhTibFgNQHD7I1H1fOul9JX8Njrr5SD57Z+qUQKybT9t7/x3BsiXqhZKObtpk+/m1Pvxuh+347hDJlczymAjGZkiowV78knmNxoCLyUyRlS2hiox6ZgfqpTKgZu74O2q8/O0lC1lU5+f2bf10T2ZYVO+v7N5fqUrmVGTVmcd2KrSEPCxttEmxi5f62byisTICnD7WkUQBtyKi6gYtYQ//9NplPNcf51e7PSy5/H6OdR9B6t/Oc4/9luGhQe658w7uufMO/vozXyGhrKu8l4XAuZ11dE2m6ZrIoBsmJwpQDcvusuiGiSge756AXRSc11nD4YkUU1ntpOd97ZEuvnjNCvYMpRiM58p5jgLtNfb3ViyZjCSOy8cF7PFZTjMpmWCo5qzrPOgW0TQT1QBn3Xw63vNvGN1P0vu7H6DFhpm8+zN4Bzfzrdj7SZouFFmoFErTsLMq7cy4gm6yoiXEJy5fwtFIhv/aMUC+rD6xjXgt6somhrc8dpTBmO3FJghgWhaKJJItK+dMC7wOkXzJxMQuDCNplRVNQXojWZ7siXDBwjquWd08q0PZEHBWQmpPdU5Nn0M+p8xQPI8ggEuWSORL7B9N8cD+sZfV6Zz2fTowksKliHTWek9Z8DeHPVy4qI49wwnmV3vxu05+vVN1dA6Ppk7Kx2sOeyrXXrqgnVTcTHdYv/qGVRXO1Mvt3JyOm3U6zLx2L1xUxxUrGljacDye6lTrxMXL6llY73/RbtkfC3PF0qsYLSEPrWEPOwfiKLKESxGRRDgyluKWR7vJziBT6obFZEalNeRmKmcbtPVO5dCdQQKrLkZadAEe3UCL9FPo34M+tIfs0CEy8SkeeuA+HnrgPsCOwXC1LOdo20rO2nQu53WcQ8jtIFWwFwnNsCqKNUmgIvsVgLdsaOPtZ80DYFG9j6F4nnRRQzcsPIrIVKbEP//+EJ977XI6an0E3KeWix4YSaHpFkXNYDhZIOi2xy9KWZpnmRYGAomCTqKg0xvJVfK8PIpEWj05uPSPjcOjKe7fO0pJM0gVdXYOxBhJqqSe/QXJp+6Y9VjB4cHSVTANsvuOmy9K3irk6mZElw9L19GT4+T2P1rhL/nPeF2lWHLUzUepW4Cjbj6Ouvm46ubjaZiP6AnikEUUScBZXuDDXpmGoIuaMq8o6FbYtKAaSxDY1FFDpqhx/96RyvhVFu0bb3vIPWtnN734AxVH5pfjN3MiTjc++Pili05aPF+ME3EqnI7H8WJ4sfeYeaz1PheT2WLlmJvDHiYzRQZjeTasX8OHb3wjAfc32bZtGz/84Q/59a9/zXvf+iYGt4zSPZlBnRygtj5Ea5WbX+4eRjPMShdpGhJ2jl2VR0EU4cz2Kh48OEGxrLzrqPVSG3TyltY2vvVE34kfBc2w6ItmWFjvI6tqmBacvaCK685ooyno5t/+0EV/zPahkgT7XFANe12R4aTCzbJEzumsYSqn0h72sqmzGrdjFf+6dBPHHvoxk8//lmPPPoy8fwfVl30Ia9G5OCShIiZxSALLGm0ekyDYppN6+f3ObK/i2rVNPNcXR5IE3rtpPne/MMx4qkjI40ARRWr9TiLpIi1hD27F/n/dtBhOFHApNhezzu+kUNJwKRL5suLNsCwe2DvG4bF05bed7lBOpIu865x5+F3yKc+p6XNorLwWqbpdQDYF3dT6nTzZPfWyOp3T59WRiTSPHJw4bXE2ksyTLJSQBYGdg3G+8uAR/vUNq2aNvk7V0Zke301bEDx8eJySblUKuXnV3tMSz6cLvnRBpzn88riAr+Tamt4szqR+nM5qIV3QeLInUrmuWqs9FV7hn5JiIVjW6VKI5vBykU6nCQaDpFIpAoHASz/hZWJaPXF4PE2moGNa9uJiYdEzlZ/1WJcsUu1V0EyLppCbT29eyk+3D/BM7xT5kjGrqLHVMgKFoooxcZTs4EGM0UPkho/YN+0ZEB0uGjuW425eRKmqE2/LYlRHCEGAkEehqGkUNZto3V7l5mfvO8u2tt8zyhd+d5CiapA/YcUNuEVWNIWo8Tm5dnXzrBTtVF7jye4IX/ztIVIFzVZOuWVaQx4W1HoZiOcpqAbdkdkOyvnDTyJEe7j8itfw7U+8509yQT2wZ5TvPNnL1FSE4cN7KA7upzi4j+A5b8JZvxB1oseOFOnePktFNg1BcaLUzsO3/CJc7asRHF5Gv/vOkx4nugM46ubjWbwJ/9orAfum6nWJmJYF2O7ATUEXn7tqOTlNZ21LmExR4xuPHUUzLJY2Bk67cMFxw8v1rVXkVJ1IrnhKNcqrLZLgVHgpx+b/SZzq+3iuL8aDh8a4eEGIC1a0MhzLs+XIJF//u3dwZNd2lp11MeKqqwjNX0VJLzvWl+dwbgnWtFUhigKL6n04RJH/3DGAQxLJawa1fhemZbGkwU/PRIbxtDprTBdyyXTUeCkaBkGPgzef2caFM2T1d+8c5OYHj+CUJXIlDSyBYrmz45IFBElE0wxUw+48NvhdfOnaFWRKOsciWa5Y3oDfpfCRO3cxlirgjB+j+95/IzZiF26BRRs5712fIisFaa2xibv7hpM8cmiCom4hAE5F5MJFtbxn03yagm5GU4VyvIubo5EMsYzKyuYgD+wfozeSJeRRuG5dK3c+P8i+4SSGab9GtVch4FZY2xrm9m39CNjUhdeva+bweJrWsJ3T9u5z5gGcRDKeef6eSpW6vS+K22F7ikVzJdqrPCyq81dUWy+XQ3eifUDXeJoHD41x5fImljQGODKR5kdPH2PrUZuv6HFI3PqmtVy8rJ7hWJ4fbevj9/snqPM5ieZU3r1pHlevbOaZvim++lAX+ZJByKNw02uX8eDBCRoCLobLFIhf7x6pJB9MF1mHxlJ8+/HeSuF4w8WdFXuOl8LLubZejGeYymvsHIxz26PdTGSK+B0yiiyQLOiVYwy4lf9VN++Xe/+e6yy9ijGSzNM9mbXHYEBfNIde7onPlAQHXNOdAgceh8SNly7GEiBdtKtwt2ITUKWyscn6tiraql3c/swAQstKQi0rAagyNNTxHtThgxSHDqCOdWGWCowe2QVHdlWOyxmsxd28GKt9CVqwFbOqHYe/mkShxKNHJlFLOt/e2kuudHJBAJAumBydyLBLTbJzIM7m5Y18/NJFFdfjQskgXzIqZnqCBVU+B2/d2I7fJTORLPKRu3ahzijC6tdcxKKGa/mbzYv/KDft4VieHz99jCd6JknEk0T2PkVurIvi6BH02Oyk+diDt9ku2idCdgAW6GW3YE1Fcgfwr7vK/n/Lwtm2Etlfg1I7H0fdPBy18xG9IQRBQADefEYzrVU+frNvlKmMimmYqLqJ32UrGHOazjWrmytvect1a19WcTNTnfNieKmu0asBp/Ol+d/A9PcxHMvzZE8ETGy/Hs02q/yJ28PGjmreemYT/xX2c9iyOPTsFnh2C+H2pbzmnTew7pyL+eEzx1B1i4IBOwfjfObKpdR4nfzDvXspGVDUDSQBEjmVlpCHg2NJkjm9siHyuyXOnl/DobG0rXzDHn/V+JxcuOg4B2ZVU4gan4vxZAHTssUSDlmwuTmGhaHZ7xNySVT7XJy1oBqvU+Yff72fVDnO5aYrl1EfdLGg1kuuFObz73qCz33py+y8/8eku5/jwX9+O9UXvof02VeRLgfbehwSJcM2pNQ0k6d7phhPFVnXFgbsTlE0q1Ljc9JZ52Nlc3AW12YkmSc2HUMjCtT4HFx/VjudNT7+4d59JPO2X1dLyI1Llqj324VAlcfBnc8Nki8ZtIY9vOucebNGQam8dlq11s7BOOPJIrIkUOtzsbM/Tnu1h2tWNVU4ei+nUJo5/ts1EOfWLd1oBtyzc4QrltVTMizyJQ1ZFJBFAd2ESK5Y6SiNJPLkVYMJyyZlb+uJ8dD+CVJFHY8i0VHr45NXLGFJY4BD42l6I1miWZXtfVFWtgRY3RLmnBlu5/8/BpAnXlun2iycjmc4/V082xejdyqDS5EZSuQRBYH55S7YnpEEHbW+V4Wb919ksfSd73yHr3/960xMTLB69Wq+9a1vsWHDhtM+/pe//CU33XQTAwMDLFy4kK9+9atceeWVf8QjPjWyBZ3dQ7YJm1j2QnKIUDKhxuugPuhm4/wqGoNutvVFKzunafv+RfV+xlIFFEni7AVVXLK0vpJbtWsgzo+eHpj1foKk4G5ZhqtlGcGz34RlGmixYRzxPs70xDm0bxddhw+jpqZQU1Mky14zMN3tmMdnH12IGW5DCLegVNkjJIcAmjUjjBQq7riJfIk9Qwl+vXuERK5EwbC9V0zruLldomDLnadSRQaiBps6avju29bz1YePMJ7Oo2oWTofE4gYfSxv+5zp7YBdFP3u2nz8cmWQ8kSU9OYI2NYDgcOOoW4AWHUQd7SK1/eenfxHTQFCcOOo7cNR3ktn3MOgl+7/p78RXjVI3D2frisrfCYJAw1tvRgCW1vvojWbRDLtQPmtBNTdctJCNHdU8sG+UVMHmDk1kbJdoo9xhPLE1/udQ3Py5Y+aYxDBN8pqJUxIoaCY/2zHIruE461ureMNnvsnk0qdIP38/Iy88QmLwCHf9y99wcM06zDVvhvrlgL0puveFEawTiN+NAScGkCxotgP/jJaSQxJpr3GzrW8KC/va0w2L0UShIpHfNRDnF7uGkcq+TCYWRf24E//0Vke37P98LhmHLLCtLzpr3NMTzczKYAsGPKy79gO0r7+IB779edSxo0Qf+Q65rqcR3vwpsnIIEwtFFOyCDMiVTA6PpciqOjU+Bw0BFwdSRdqqPBwZT/N4lz1immm2OL2+gcCyxgAXLKyrEPDFsgHuaLLAfzzTR0PQzTWrGtk3kmLPcJI6n5N0oYSJScApz7p57+yPMxTPc/aCagZjeY5MpLl31zBbj06RVXVKmokkwTkLqnm2L8bO/jg+l8yewcQsftupMF04hD0Kj3dNEc0WKRl2gVvUTPYMJ7lkST35kj0OS+RLNJWTEGZaH0xYRVY0BzAMqPE56JpI45AkHLJtQYFAZey1ZyTBA3vHKveHFS1BAm5lFin9lYy2T4fp72+6+zc9lj9dMTb9XSys89EXyZJVdfxOBd00mcqptFV5KiKRV4Ob919csXTPPfdw44038v3vf5+NGzdy6623csUVV3D06FHq6k5WFWzfvp23vvWt3HzzzVx11VXcddddXHvttezevZsVK1ac4h3+eNjWF6WgmXa0Qtk8smSCUxZ459nz6JrMcCyaI6va3iPDiTytYTfZstLm45cuYvOKBiyYtXsCe6ciSyeTRWe28AVRora1E2neQpatbuSLX2vj2HiM32x5hkeeeJr0aC/5iWNosRHMQpri4H7GB/fP+gyiJ0iooY1wYxs1TfNoaGtnQvcxbvjBE6SoifROZfnaI0cqRNBpl/GZiGRUPvubg5QMkxqfgy9cvYK3bWjne0/2YpkGqWSakVGTTKaFoKfqFX3Pz/XF+PYTPezsj1FWLWNZFrmup9Emem0/otgwRiZ2/BsSxFOO0k4FKVBP84d+WIkFESQZRAmluhWlugWlqgXReXwBcEoC6+eFafS78Lkl3nxGO5YAX3/4KBYWAgKf2Ly40iqfJYmu8vDpzUtncWnm8MfF9E3N75QZTxWQRdv7xyHB071TPHJ4HFkUWdoYwFPXhvuqv2X56z7IvLEnuOPHP2D/3t2cu/bKSlDwNI1JFGYbyBqWxZrWKsaSedx5kdFksTJrd4giXeN2DuR0t0mRRJrDbgJOhVsf6+bhQ+NMZUrIglU578Eukk64/NANk4V1PibSKmvbwjaPsKzW2ryskeawXXxFckUEC7xOiUiwhc733sLkjt8Q23oHhcH97L3tA1Rf+iHcyy/GITErNkYzbesEpyTiVnTqfE4mU0VkUSCSLhJ0K4wlC2zvi7KiJch161tY0uCn2u+sKLvWtoSp9jpIFTTEMqfSLUsMxvL8eu8YqmZS5XUwmsqTU032Dqd46MAEP333BiwBjoynGYjlSOQ1Hj8a4ZrVjQhg8/cUkVjW/j5NA57qiVU2sV5FpHsiQ/dklvZqT1noUnPS9TeTl6mbtoddrlSqdP7WttrB40sbA3zqiiWzVKUeh2x/Jxn7O9ENi3zJQCmINAXdpIo6ogjzqr2zOmPXb2jn8Fi6UmwEnKcea73YJurljNtHknl6I1kmU0UOjKbIqQYXLK5h04LaUxZjM4uozSvqmcpoCAI0h9wnmVD+TxRz/7/4i+Msbdy4kTPPPJNvf/vbgC1/bW1t5aMf/Sj/+I//eNLj3/zmN5PL5fjd735X+buzzjqLNWvW8P3vf/9lvef/Fmfp7ucH+cyvD1b8VXwOuyUbciu01Xjpj+ao8jhI5DSqfQ7aqz1Ue+2LaWZlf6oTfTiW58N37aJ/KothWtT4nCQLKoWSVVmMHZKA1ymhaiYuh4QkCDhlEd2wmMqqlcdZeolSdAg9cgw10k9pahA9PjLL6PCUkGQUfw1yoAbRX4vkDSO6A4juAJKn/Kc7gOz20lZXRaRgUjLsIGG/S2ZBjYe+SA5VN4g8/F3Sex4kuOlthM592ynfzrIsu/CJj2KkJtGS4xjpKEY+iZlPgSDgqO/AyMYwMvHZQbOngiihhJtRatooDh/EzCdBkJCCdSjhRuRQA3KwAaW6GU/nxpOe3hJ0EfbKmKZAumjzsxbU+3j3WfNm8bjgpVO4/5i8nDm8OIZjeT70s510T9q8uqagmzPmh3BKEvftGcUhSWRVnbVtQQIuBxsWhLl6pe08PzU1xb98/TaKy65GNSyePRZHG9pHa0Mt5559JvuGUwzF86xtDWFY8KYzW/nJtn7GkgUkQSCnamiGhW7aZbUkgGZaNARcrGoJ8rcXL6Q3muXOHUP0RTJEcy8thhCBsFdmSUOw4pc2msjPCk8VLCoWDQCddT5bQGDB070RUhMjJB/6dxIDhwHwLDqbqitumJVHKAB1fgfzqr28fl0L+0YS9EVyxLIlhhJ5dMPCpUh01nrwuW3Poukx3TT/LuBU2DuU4L+eG6QvkiVd1BBFW9xw0eJa9o+mCLgUYjmViVQRv1Mhr+l87NKFXL9hHn//yz083RPFU444+cfNS9i8orHiD7RrMFEh159o5SCJcNGiWnYOJJAlgaagm49ftogz2k++lo9MpPnt3jG2H4tSLHOM/uHyJZwxr+qkCJ+ZOYhhj0yNz8W+kSQLanwMJ/Jcs6aJtS1hdg/bzu8L6nw8PIOrNP3v0/zEkWT+FXGUXq63WSqv8S+/P8TTPdHyRqGIQxZor/ae1lZgmrM0zUvLqPqszf0fY137P8lZKpVK7Nq1i09/+tOVvxNFkUsvvZRnn332lM959tlnufHGG2f93RVXXMH9999/2vdRVbWS2gz2l/2/gfk1Pqq9DqbKs/lsyUIEJjIlprIl3IrEsVwWw4K8phPPqVR5HAiCwIFRO6vtYxcvOiUBsbXaw/fetp5tfVEeOzLJzoE4qm7vkpRyMvm7N80nXdT47b5x3LJIJKMSdCuUymqQaYfh+pCPgncx0vzFpApGZRFpDwicU63xxM59OHKTjA/1Q3qC8bFRsokoGDpacgJthh/Q6TBU/lOQHQiKC1FxMuhyoZlgWAJ6xk7XTm27i9S2u2Y8U0B0ebF0DUsvcbJLzWwU0lMv+u+C7ET0BFGqW6h7w00Ikr1olKYGbJ8iX3WlgzQNGVjR4sfjUMipOiGv7fczkxP0Uju3l2qV/zF5OXN4cbRWe7hufRu3PtZNrc9JpqRz4eJ6Omt8bOmKkMyXcCsibkVmSaOf6zfMO35jGCvx1x/7BA/sH+PASIo6j8S+h77JQGwCx1Vv4Nr330h3bS2D8QLLm/w0BGxVY3uVh5FkgaGYhWbqSAKohoWiCIimbRFR5XXwy13DDCcKJPKlSszHqTDTPXza6WpTRzXFctzIsubgrLwwzTAYSxbwOWVGkwWUckpAZ52XBw+amIFGAtfdjGfP/Yw+/l/ku5+lOHKE9td9jKYV5+JwSGSKGiXdpD7gor3Gy9buKeqDLromMzhE0A07WWD/WAa/S8IpS7SXx3Sfvf8gyUKJnKrTHHbTEHRhGCY+l0wkrdJe66NkWKxvq2LvcIKsanffcyU7g3K6OPnAuR10T2bJqho1Phcrm4Ozrr2+ySz/9JuDFDUdSbAjU1TDQhFAEkW6I1k006LW76QvmuObW3o4u6N6VoER9CictaCapQ0BuibSJ3X+Z44EB2N5vE6JZF6rjNEuWRpiLFVgOGGPPS9YWEe6oPGTbf0VtVvII3NoNIlpQiKnsaclwccvneZzvjKO0sv1Ngt6jhuHbu+LUdQMHJI8y3LkxHUuXdD49uM95fGik5UtARJ5vcIF+8z9B162j9P/Nv6iiqVoNIphGNTX18/6+/r6erq6uk75nImJiVM+fmLi9Dfwm2++mS9+8Yv//wf8EljSEKCtylspluD4AmZYdvSBgF2YFFQD0wTDKpEvGbRX2wGPe0YSDMbyVHkU9gwleejgOK9Z0Ui6YP+b1yHRM5lB0010w0Ium9Y1hjy8aX0bY8kCD+wdZypbQpZEHJKIgIBYMiociayqEfI68TkkZEkjkSshiQIpTeKJuIN8y0YUj8IlVwZ4onuKGs2kUTB4x6oAZibGll2HyUTHGRidQMulMQtpjPz0nyms0nHln6WXsPQSZgEyL6tGtTCL2Rf5dwFEEUFSEN1+gmddh+SrRvJVUYoOIshOZG8IyV+D5KtCVJynfBVH7TwkYEmTnw+d18HB8RRuWWRla7gyInixgujlcInm+EZ/Prh0aT2/2Tc6S1bdWu2pZIBNd2Rmqq1mysG/cu1KLlpcx33PdhFZspaebQ+x5Xe/4omHf0vdOa+n9ry3YpoWb98oV/hCq5pDzK/28OyxOJZpoRp2YLWowIrGIIMx+zpqDLroKuqYL7JvMIGwW0Y3Taq8ThL5Et98vBfTsrh751BlbDV9Ez0WzRLyOEjmS3idMpF0kbVtIWIZFX36jUQJ38Y3cv7aTTz7039Bmxqk/+dfxHPhNdz8tW9w04O95FSdZ4/FuH5jO+3VHnYPximUjFl0AQHIqwZVHgfRbImheI6pTAndtP3gTMtCD7rJlAxGyjfhK1c04HXK7BtO8lSPRlPAzYiZp8HvpCHo4Z6dw+w4FrVjoGRbEFPrc/LA/rGKlD7oCRJwKnz4gg6SeY1LltRxLJblu0/0UtBMGoIu3rGxjZ/tGGIkWUAUoL3Kc9oCI+hR2Ljg1M7cMwuU4USekEdhIl2kIeDkmZ4oybxGqBw2G/QoFa5WyKVwbCpT3kTar5XIq0SzKpsW1tIYdNES8lQsDE5OiTwZr4QA3lrt4W0b2xlNFDAti5yq0+R1EM2UOHwKT6qZXk1jqQKiKLCuLcxgzO5cvhIfp/9t/EUVS38sfPrTn57VjUqn07S2tv6Pv0/Qo/DJKxbzoZ+9QKpgtydnchYEQBSpjMb8LpmzFlTxwmCCgMteRNe2hHns0CS/PzBeIXg+dniCsWSRWL6Ep+xFImBzIkIeheVNIT61eTEBt8Jtj3cjiVDjdxL2OLhuXQstZWuAXYMJpnJFdNMinlVxBt1Ylj3GMwyLUkGnVhIJuBXCHgcWFmpZllyyJLZNCnziinOhYQn90RxLDZPGgJMDo2lS+RKT5SLRskwuXRjk3RubOTI8xc+39VDrsoinsqxoCvCLF4ZJPP9rin07Ueo6cDYuRFCcCIoLyR2wHa5lB4KsYFkWotODIDtPGSg7E9NBtSeixiuhSDJvXN/C5pWNp0y9v2Zt80nPmyt2/u/gdN5Rp1MZ7hlJMBTPIQkiQ/EcvdEsFyys4/VnL+Gvzv4vHnziGb75lc+TOraPiafuJrH/cQpXfpie8+efFFBauQla8N0ne+mL5Ng/luScBTWous6jhyft/LjTHLtHFlENk8uXN3B0MsNIokC+ZNjGpdghwffsHGZZU4CwR57FsdkxEOee54eIZFT2DqcIepRZoypFFEj7Wmh6562kt/2MxI77OLT1Aa6/ajfBK/+eqvalJAslth2bssnJQwkAfMpxc0tRhNawh7+71O6aJwt2HqFp2v8Wzdo+c41BFwtqvBwZz3DnjkFUw8RbHq+NJPNkiwY9xTy90Ty1Pgc9k1lyJR3dtB26lzX4ZxU6Jxa0165pYlVLiB+8/YwKt6i12sPK5hBffaSLvkiOvSMp1rQGX5ZR7szN1MwCZeaYMVvUuW1LN7mizlSmyFiqQGv18SiXoXgeSxDKFiI2VMOiZBg8sHcUzbAqXZt7dw2TzGuzXv90G7lTdbWn7UWmw3+nsbQhwJnzq/C5ZDTdJJZT+cFTfdy9c6j8m/gq3+tMvmVT0M3yJn/Ff+rChXX84dDkK/JI+9/EX1SxVFNTgyRJTE7OTl2fnJykoaHhlM9paGh4RY8HcDqdOJ2n7jD8T2NjRzU/ePsZfOWhwwzGcui6SdGwMMqOy20hD1U+B7V+Z4WvtL49zDVrmjmzvYrRRJ4ne6ZIFXQEwLSKPNNjFzghj8JYTsWlSGimSbXPQWPQxYcv6mBZc5AdZRdtn9MmVhqGyWA8x1+ta2FxnZ9P/Wof46kiJiALFk5Fwlk2mJteIIuagUMWWVjnY0GNl0cPRyrF3mA0y78/2s2SBj8jCduILZJ2sKY1xMGxVKVYEgSRoiXz450xLEtk8eIljKdVNiz3c82aFsY8Xey3Moz6qnF3nnlKftDLRZVb5Dc3XPDf2sHMFUJzmIlXMhr1KjLpgu2kLgkwEstz6+BRJtIqigh/6HcQfOOXcPY+R2LLD1GTEXrv+iLiuy8muKYFOO7UfFa5W3FoLIXHIXP+ohoGY3muXtPEYDTHE0enCDvscOqZUARwKhIlwyZBr2kLcW5nDduORXnwwDi5ooFh2QG7v9o9wkOHbEn+xy5bVOme9kazJAsa9eUsL1W3N0CTaZUqn0zY4yKnaiRkhcAF78Gx4Eyiv7uFTGSEzB2fIHfBO6k+668YTxYZTRVwKRJBt0K6aAe5XrW6kSqPk43zq7h9ez/90RyyKCFYGo6ygarXKVPrc+B3OeiezFQ+37FIloagi1qfk4Fo7viY0bJVuT6ngm7aKj3dtOiazHDBwrpKETqzCzKaLHDLY9226nAGvSGV1+iNZlEkkbMWVPHssRh9Uzn+/t69fOi8DhpCrlMWJNOeeruHkkiiwKeuWHLKAmXL4Ul2DSZQdTtY+c4dAyxpCFSK823Hpniya4otXRFKhv2YsFdhTUu4YpfQG8nyjceOcmA0bZt6Gha3Pd5NTjVOy0k6caN3KrfwmQXThYvrWN4YYPuxKN2RbMUTqq3KfZIZ5w0XLySWUTmno2ZWqHXQo7xk1t0fE39RxZLD4WD9+vVs2bKFa6+9FrAJ3lu2bOGGG2445XPOPvtstmzZwsc//vHK3z366KOcffbZf4QjfnnwuWWcsm3jXzJs3lKNT6FkmCxp9PGalU0USgbzqr38cre9W3hhIM6Z7VVs7YlQKBk4JVumm9esCh8hmtMQgOWNXvaPpYnn7OIk4JRJ5TUeOTjBWLLAeKqIbtrS1mPRXCX40LAs3OUdn2HBRKqAxyFXXl+RYGVzEFW3fZWGE3lqfA5yqkG2ZFDQbfVJQTPKoZgwFM/THHbzpjPb+MHWPnIlDVkUSeV1JjI50gVbMeFWJDTDZHVziGqvg7q1l9G4/jIuXFRX8Wyawxz+XHA0kkYUBDwKFHWLe14YRhRFzl5QxTM9UVTdth8QF57F5ssvpf/xu3AXY1x92fmnJeBOdyd6I1kaQy6ag26ag25aqzyMJAoooq1Am0bAI+OSJUIehaBb4ftbjyGKcEZ7mLYqL8cm0+TL+b3ZkoHfJRHJquRLeuV6m+l2DXYR4pRE2qo96KZFQTNm0QpcrStofM+3SDz8TXJHt5N44nb80cNEmr6AQCtLG23CrSIJ3HjpYpY12x2e3x4YZTxpx9j0x3IEPQodNT50y85s64nkeO+5dZzXWcPXHz3K3qEEqgnpSM52pJ/xuQXApUisbQsxnrS7NYphki3q7BtNki5os6JuxlNFwh4HhmHREHZVolTWtoS58/lBusYzjKUKJJwyWBZ9kSyqbrJveBfr28MsrvefZDFwZCJtd1HSRUwLPvSzF7jr/WfRUo4rAbtQ+MHTfRVrB8uCronsrCy7t1S385rlTTzZHeHQWJp5NR4W1PhoCror3NWQR2Eqo1LncxLJqNQHXBVO1Mv1MTrRLXxrT4RlzUGe64vZxre6wUjS3pQXSwYRoCXsrngAThdKM8/bzSsaTyrKXk1czL+oYgngxhtv5F3vehdnnHEGGzZs4NZbbyWXy/Ge97wHgHe+8500Nzdz8803A/Cxj32MCy64gFtuuYXXvva13H333bzwwgv88Ic//FN+jAqGY3l2HovTH8tVCiULKJRM6oMuDo1lODTejaobBN0KTUE3zSEXB0ZSdE2kKwnqybxmZ1lpZmVHJQu2m/fhiQyGSUX59vDhcTZ11DKRLlLrdzKcsBPJU0WdQslAsGD/WJLWsJehWAHNVDFNi2RBJ1nQcUoCTSE3Z82v4sBoioagiwNjadaGQ0woKqp+fKUyZvgvZYo6iixQLBm0V3lY1x5m73ACWRRIFjTSBa0cnmkQ9kj0R3P826PdiKJtonfOgmom0sVXfZDuHOZwIqav00S+hCzavkFdkxn6prI0h23VkmZYKJLAUNpEXX0d4YCT4VietKpxpG+IJ3/wWdZf97dcvbqJoCdIuqBRH3AxEM2RnBHaOr1b9yoyt23pZjieBxHcDhkBgUimxEiiiGlZeBwyx6I53ri2hd8fGGfnYKJyzLG8RmeNj4JqcPsz/bRXe2gMuLhmTTPdE2ke2DtaDusV+cAZLewaTFIo6QwnCrM+u+LyUf9Xn8HVt5Xu33yboQM7uO+m63ld63/y4csuryjC0qrG4dHULNVdY9BFldfB+rawrQJ2KjzZPYVmmvzoqWO8//wFSIAiS6glA5HjZr7TaAo4OXthDR+7eBHALIfsqYxa4crMHK121vgqjuLRrMoDe8d4qnuKaKZENKeSzJdoDDqpMV2MpezuYEm3OTxbu6N0T2YrysLpUWVes3lkAna48IlxJRctrkMRRZyySFE3kUWBVS2BkzhEQY/CNWuauWbNbCrAhy/opGsiTUbV2dYTRZHyLG60g6+nuUQNAReZok6qTP4/Hcdy+nydGfZ7eDTFX9+5i2ReQ5YELNOiOezGME0uW1bHRy5YOKvwOTSWYjCWxyGKPN4VYXlDgKtPQV94teAvrlh685vfzNTUFJ/73OeYmJhgzZo1PPzwwxUS99DQEKJ43EXknHPO4a677uKzn/0sn/nMZ1i4cCH333//n9xjCY7L+4djeUq6WfEkUURoDrvoj+bRyjOtedW2gVlj0MX2YzFA4OGD47x30wJueu0ytvVFOTyWYv/o8ba0YdkFk1Zu1+ZUA1kSuG/XGNGMSkN5oZ3JOVB1k0/et5+pjEqt38nHL+nkjh1DHBo/zrbWDHsH+bsD4xQ0g4FYniqvg/FUAaciIhaPc4WcErx9YxsPHxzn8HiGQsmgZyrLL3eOkMirCILAxvnVjKVsh+FUoYRLFilqBlLZ4Tar6qiFPM8eyXDFqrY/mWnZHOYwE68kCmZZc5CfvnsDDx8eZ2AqTyxX4oz2MJmizpHxDGGPgmaY+F0Kk5mifW3G8vxsxwBORWLXr77H4MEXGDr8btpSN/KRGz/NJ+4/zHDcltxftqy+0jVY3hSsxFw0hz2saA6yrTeGbppYWDhlkYBLYTCep2SUMGMWT3RHaAw6ccl2lI4oQFPARcmw+NLvD1PQDBRRxOUQkSURSTjOMTJMEwuBRfV+frlr+KTPfuWqRta1h1jecBZPv+EKvvu5v6W/+whvuPYqPviRv+VLX/4K333KDlWWRZGRRB6/SyFT1LlgUR3RbJFnjyUAC1kUbU5TwM7pu2vHoN2tMc2K79JMeGR43wUdvGFtS+U3ev+mDvYNp07JlZkumlJ5jQsX1zGv2stjRyap8zvpi2RxOSSmMir1fheKJPGWDY0MxfPkVB23Mr3uWcyrnt3FWdIQYF1rmK3dU3YgsFOmOehma3e0okKzgJUt9iawqJm88YxmrlzR9LK66NNxLftGEiTyOg0BJx84b0Glu9Uc9lScy/9z+wANARdgnTYOZvp8nclZ+u7WHnKqjkMWKOkWLkVkKqMiiQJDsQKZ4mz1ZUvIg9ch88D+UXTD4ou/P0xHne9lJQf8KfAXVywB3HDDDacdu23duvWkv7vuuuu47rrr/peP6pVj27Epjk3ZxUpRN1HK7WPNhL4pO0Hc75RIqwZTWZXOOh9XLm/grp3DLKzzMZwocNvj3YwnixV/kGnY3ikKmmEhSwLpgoZbkfA7JQzLpG8qx99dtpjzOmv4wm8PMZYq4HfJlAyTiVSBsNvBZLqIJUJj0MmR8eNKPUWGbFFHM02csp3Mni3p5EsGmml7lNR4FRRZ5OOXLGLzikYOj6fpjmQwLYjnNB7rmuCyJQ1EsirjqSLzqj1Es7Y0uCHo5PXrmjk6nmX7sSglwyT31O30PPd71t/4GYLXnfEn+LXmMIfjeLneNDMxLce/9bGjxHIlVN0kkbdHVqIgIAgCC+t8xHMlW9lmwQ+f7rd5Omddz/kueOrh33DrN/6NX973a4KbP0bLwlUMJ/P0RLKc3VE9ayMxc0y3ujXIpo4aojmVPYNJ+qM5PIrI/BovY+kiIbdCsqBx5cp6RuJFdNOgpcrL1qN29qRhgW6aFHWTGp9CtDxqE7FJ11VeB5s6a9jZH+PQeKay+arxKnzkgg78LoUP/uwFRhMGbe+5Fe1332dk26/54Xe/ydann6bq6k/iCNahmxa6YVVCbTcvbyCj6vRN2YrfdFGn1u8ini9hGCbPDySQAFkWOGdBFc/0Hfd+EwVY2BDkrLK3Ubpgd68EC65Z3Yxa0llYHgPOdLueHVnios7vqBSbZ7SH2Ti/inzJsNfjFU2sbg5VFJCWwClDdNMFjUhGxeOUMQyTBTUeuiYyFS+k9moPSxsCLG0IvGJzxmli+szCeSKt4nPJs+wMfC6ZibS9SZ7mei2q9592NLesOYjfpbBnJIHfpcyaYoQ8Ch84dwG/3T/GRLrIC4NxPv6Lvfz4nWdWukvpgkZGLWGaFgGnTKZ4fJz3asRfZLH0l4I6rwtFssdSAnYGEqZVaSW7yqqVKq/COza001nnY0d/nHRRY9dQkpXNAZJ5jYKmzyqUAIIemYuX1HFkIkMkXWRetZd51V529MfQTQuPo0TAKXPWgmoagq5KAGud38lUxiZfBlwK8ayGZlrMr/UyWCFNCiiyiGDYXSZFlnBKEuliqZIXJwpw0eK6ypz6YxcvYudAgmTe5kPpJuwfTdJZ7+P161oolgy2dE1R63cylVURAZ/L3sHabrb269b6/zjE+znM4cXwcr1pTvW8ibTKono/w4k89QEXkUwJhyzaJo+CwMqWAPtHUmi6nd9mAXnRwwc/9XU+9J538PG/vYHRgT7Gfvh3JC+8nsVXvJO3bGhlQY1v1nsFy9Lz2x7vZiqj8l/PDZLIlojnVDTTwrSgazJLa8hNNFviyITtyuyQRBpDbgZjuYqD9TQEYCp7vIPgkAWCboVEzl5Pzl1Ui25aHJ3MYmGP9m/fNsD8Wg/dExksCzJFkM59H3X1y4k+eCvdB/Yg932IJW/+RwKLNtBe7SmrayGt6mRVnbyqMxDL0Rh08akrlvCNx7o5NGZ3u3VA1y2OziB7A2WTXYFP3rcfqdxZr/Y66I/lMC0LURDorPNVzC9bw242r2jEAvaPJFE1k1ShxOVLG3iyO4plWewcTPDpK5awoN5XKWiCnuBJarETC549IwkiWZVan6Oci1fi4UOTfOC8+bzxjJZZj30559FMM8dpYnrY42AkUaBrIs25C2tP6sDPVOAtqvdjZ/TZHKdTqflOVAd+6y3rZnWbmsMedg/HORbN4nPIJPOlykhz+rlDcXu9z2kGYY9dcL1aMVcsvYqxfl4Vly+r54mjU+RUHcM8ntnkkgW+cPUy4oUS61ureGDfGA9t7aVQMjirPLZ63Zpmdg7EOTBi4JgRbeKSBT543gLetnFexW+ps8bH95/qQxIFRMEed92+vZ+bXrucZc3BSgDreKrIsak8kmjnLj24fwxBEAi5FTI+B5IAIFLlVVjS4Kcp7GYwWuDZ/iglw6qM9EwLnuuPMZqwbyKZokYsO1udkyhoHBpLkSpofPSihXgdNk9JEATueWGEoFtGFAQCLplkOSTY7Zg7pefwp8d/N5z0VJLx0VQBAdsJfLrz8fFf7KU/avuHGSb4PTLrW6t4orCMq754F7vvvoV9W3/P2ON34HAo/FR5B61VHjrrfLOCX9OqRk61+Y77R5IUSibFGQHVqm6SKxl01nnYNRhHNyx0wyCaVQm6ZLsr4JLIqwZORbRjTjLHiyXNsJjMlPju1l4eOzzJ569eztM9UxXjWsO02D+axCHNLroA3AvPovHdt8GWbzDac4iDP/kMG659L6vf+VGmcgYNASePHJygezJDqqixqilIuqjRPZmmLzK7MFIkqA+4iee0yvv4XXaO2t7hJGAr4FIFjVShRI3fRTRTJJErEcuVaAy42NodZf+IbfZ7cDRFybBwKyKXLq1HEkWSedvC4NGuST7RFq4Qs0/lsXZiwTNT+m8YFkNlnuhXHz7KHe/ZQLDp5QtWhmN5PnLnLkaSeaq9Tj79mqXU+Zz0RbM4ZJGWsKfizzQTJ1oEpAsatz3ePYvvNjMB4kfb+hhJ5KnzuSo+SNesbp5VGN546WKG4gWS5Yy76ZHmdAHX4HcBsKmzmg+f3/mq7SrBXLH0qkbQo/CG9a2MJYtUex3sGkoQcClIInzwvA46yruXXQNxfndgDFUzMIFj0SxLGgJMZYtcs6qJq1c3MZEs8s3HeyiUDM6cV8UFi+p46NAYdV4XFyysYySZJ18yqPU5GU7kqfO7iGZKPNkTqTjEHhhNsmsgQTyvkioTrlVNx+NUeM858+mN2GMxTbeIZFSmsvbsfn6Nh7BboaAaaGVrARFQNaPSdt3aE6GkG8ii3VVyKyKabhDwOxlNFrhr5xBORUISBZqDbjKqRskwiOdLWBaVzpKqmaf/Qucwhz8S/rvhpKd63qnUQLe+aQ23PNZNMldCLivFfG7ZLs4a63C+74usPfsifv6T72Mu3Uz3ZJaGgHNWKG2dz8kHz1tAQ8DJcKJAldfJWCl/kpdbIq8iIOCQRXSzbEZrWcSyJbKqnQLrkAQag27etqGNLz90pKI2m34d3YShRJ4HD43hc8g273CapNwcornKW1GpCYKdGWcJ4K1pYMMnfsAjP/k648/+hufvvx19/Cjf+P7tpPHyo239zAt7GUkUODyRRhZF7np+GFWfXXlVe520Vnm4aHEtv3xhhEX1PgbiBQ6OpcvhxPZGLl8y8DpkipqOLIpMZlREAQZieUq6QX+sRCpvF1xeh+1SnsprLG/0sa03Ro1XIZpVZ0nxr9/QfsoUBZjdAfrWW9bxo2193P3cEGo5ME/VTR48NMbGjlObV54K2/ui9E5l0E1IFXLc8ewg7z9/Abc/08/COh/J8gY54FZe1CJgJJknpxoVldxTRyMcGE8hWBZP90aJZErkVYMIRVrCnlP6IC1rDvLjd555kvx/ujgcSeTxOWXevmHeq7pQgrli6VWPpQ0BVrbY7ruXL6tn84rGigz0oUMTtFd78LtkVM1EFkUMy2JxnZ8d/TEePTJBU8jNt96yjuXLgpXcIcGCT963n2NTORRJ4KqVTfz1BR20ht1MZYplzyYHyUKJB/aOsaMvyoGRNKOpAoZpsbwpwEDUJhxGczoNosTSpgCXLq1nVUuQvmiO+/eMUON1MpIsMJEuVo5tab2P7kgWAQh7HZW26/S8O54tIQm2VFhAJKVqVHudFEsGTSEXo4kCKVUj7HFQ1Ay8Trm8M5aIYLfl5zCHVwP+uyakL+d5y5qDfOO6NbOUYgHn7HR289zX0GguQhJEdAuGEwXyux9A67yQ6lCIvmiOH23rZ11bmPeft4CAU+aWR4/ybF+MgmYHxioiOGWJte1V5EoGu4eSNPhd9EezjOdVZNHuFM+r8SILAjV+JxcurOXJ7ilOqFfAMnm2N4YkiaxuCVLUDS5YVMt169vIFDXufWGYaK5End9ZHuepVHmdpEsW8666Aat+CZMPfpPdz23jDZefx8K3/BPJ4EL6IlnWtYdRNdvVe0d/DJHjAb2KYBtVPtMzhdch8ZqVjUyki6xpddA1niGv6nbX3QJZEtg4v4ZFDT6eOxZDFgUGYjkAdNMiW9TxOmXSRR1Vt/2ozumoYTRZwASmsiUM0yKnGixvCjBYLoZONZKdHkWNJQuEPA5ufdMarlzexEMHJohkbM6XSxbLk4PRl+01VO13IgkiqmkgC5AtafgdMgvrfUxl7I3uA3vHODyWflEu3cwup9ch87nfHqpE5IjAglovAK9d1cD7N3Wc9thOlP+n8hpp1Z4W/PPvDpErGdz88JE/eZzJS2GuWHqVY5pXMLMyn5ZcNgRsjw9FFFEk2wCy3u+iayLFUDyH1zk7lydd0OibytI3kWWgTBwv6SY7B+KYllV2hC3ikERcDgkXEiG3wlNHo8TzKm5FIl/SOTKWnhUiGfYqNM/w8Qh7ZOr9LiJZlWqvXdQAOCQRj1Nm08Iagk6FdW0hMqotU51WV9yza4iusQz1QRexbIlNC6tZ31rFzQ8foSdSIORRuGhRHcsa/Xz/6X5EQcAwLNJlTlbI7fhT/VRzmMMfFdM5XzOJ5DOdmEcTee7bPUqqoFHlkpk39gQ/+fmt+Orvo/WN/4RS087COh8T6SJ+l0xzyMPypiC7BhM4ZNG2AVEkLltWx8JaH1uOTFLjc1Dtd6CZbvKaQb5k4FZEhuMFNMPk5gePUBdw4nVKpIpG5VjDXglNtws2RRK5+vwOprJFDo9n+PofusACl0NiVTDIW85s5Tf7x1jeFCBV0Am4ZYYSBdxLzmNxy0IGfvElYpEBYt/+OxovfieeDa9H1y2WNQYYThTwyjIJjm+aNAuwbE7SobEUn79mBX6XHf77qV/tRxAEFAlELLwOiaORNFeuauCpnil6p2zFsc9poRkmDllAECw6a7xcsqye161uwhJgPFUk6FaI51SiuRKpok4yr3HxklrWtoQ5PJY+aSS7ZyRRNvu1GIzl+PKDR0gVNXTTIuyRWdcS5nVrm7l9e/8rykc7s72KzSvqebI7iksRWVIf4OneKZJ5DUUS8DpkvA6J3kiWXQNxspp+ykJsZpfzkUPjs9RsJjCZUemo9b5ooXQiZpLjS4ZJXjOo8zlfFXEmL4W5YulVjuFYvjI3nt4JzKz4pw3GavwuhuN54nmNeL4EFmQKOvNqvKxtCVd2MSOJAtmiTkm3d45uRWQonudYNIth2rN9URARyFIfcLBrMEFetcd7ec1egGRRwClBybCjVv7h8iW218t4Gt0wiaSLvP/8BQgCdNb4+OWuEbonMzQG3WRVjf2jKeJZlUcOT1DtdbB5RSMfv3QRy5qD3BheUrmYFtX7CXsc3L93tLyQyYylCty3d4RIppazF4QZjBVor/bwwl4fA/CSESZzmMNfEk4kkqdVrZIgH/QEueM9xwm3XfskHrjzP4hNDtH3o49x+Qc/S660mfZqDwGnwvee7OXIeBpBEMipOtVehXnVXi5YWMc3HjvKvpEU9QEX6YJOW7UXt0NGkeyx+B07hrCA8bSKYVo4ZBERO1LFKQssqPZzeDyFKAqoukHfVJZYrsRkpshwPE9Rs21LxmQJaKWzzseR8TSKJHD9hnYuXVrPN7f0kPS2seyvv0n8D99jYMdDjG/5KcHRo/A3X2LzioVkVZ1/um//Kb8rE7tgEizom8riU2Tqgy48ikR3JAOChSJJgFAhddf4HOwdThHJFmkMuEkWbdXwwno/r1vdxFi6yEgsT2PQyUAsh2XZm8KASybkVdi8opHW8uht10CcSK44y+Qy5HHQP5XFqUhMpIvEcyoiArmSgSBBXtdfcT5a0KNw01UreGM59sYC/nP7AK1hD8eiWaayKr1TWaq9Dv7tD0eJlS1nvvWWdSc5aE93OQULfrZjiHjOLpg8isDK5iCfvXLpKQNyT4XhWJ6fPTfIk91TrGgKUMgahD2Oyvv/qeNMXgpzxdKrGKm8TbB7uidaUXlN+6RMd5s6a3x841HbWE43QTft3Zydyi3ywfPmk1Y1DozYviFOSSCmm4TcMqpmsLgxwKHRFG5FIqPa+U+mZTKaLDKZLtqxKqIdcTCNgm7yrnPmM54ucNmSBhpCLrIFnUNjKRI5DUkUeKZnir+9eBFpVeO9m+xjyBR1vv5wF9FMscwTsBfXhw6OsaTBh9sps7YlXDFPu3PHADfdP4Bu2n5QigyqDqpu8NiRST5z5VLO6qihs8bHkSeWsXDTazhmhEnltTkH7zn8n8BLEcmns+iGY3nu6HfS9v5vId73Naa6dvK7b32WN7ytm89/81vEVI3BWB63LOGUROprfdQHnHZEUdekTWy2YDJdZEGNlyuXN+JxySxtCHDzg4dn5czlSjrza3zMr/Uxlbbl8ACNQbc9rrLg2b4oTkViMm2bX+omCIJFSTMYSuZxigJd42lyJYOxZJEfvP0MfvLuDfz2wCjPHYsz/x+/xsP3rWHnXbeQ6nqWR//1fbxv3b08NCpR0A1OBZcs4pQFPnbPHjTTpDHoRhFgz4itmpMEaApJbJhXxaaOGo5OZNjaHcGtiDhkBbdDIlfScUoiuwbj/M3PdxPL2gG+86q93HBxJ08eneLQWArTgvawh/5YlqagG4BvPtHDeKrI3cHhSofoU1cs4eO/2IuqGSTzJfxO20fL77JtXeq8ropr+CspKIIepRJ7k8prlXNk+j6ypMFP31SOiXShEk2zrS/KQCx3Sm7VsuYgP3vvRn607RgHR9KsbgmRLelYwuwNfWed75SjveFYng/97AW6J20D5NF4jqvXNPPJKxbPytV7NWOuWHoVYySZJ5nXqPY46I9miWZUtnZFCDgV7nx+kN5IFlkU6JrInORKq+kmTUE3+0fSPHokgiwK+J0yE6kiggCJgm7/ncPOXkoVNByyYBOvdZvsOM2VNk94bbcsklV14lmNf3v0KC1hNx6HREm3HYYt4Mh45qS8oXRBI1nQKoXSNCbSJW564BB+p0y1z8mtb1qDzyWzfyRV+Vy6BWL5eQJ21Mq9u0eQy8TS6jNey/WXXTfn4D2H/1M4FSH8VLv8ivqotg75+n/hgqE/8Ksf/Tu/uusOjh05wB0//yWKCL87NIlpQbKg8Z6z25lX6+M/nj5GXcBFJF1kaaMfpyzynSd78TkUPnJhB8emsrOOqWSYdNR6mUjZ0SEl3VaN3XBRJ/fvHSNbduoXBZAkEadoUdQNNAMQLe7ZOcJYMl+59o9OZLj3hSEuX9nI1SubmUqXODyeZu2lb+C6yzfx9U98iMnRAV576fmsetunaV5xPoVSZtY6Iwngd8mMp1VyqoFTFhnUM2SLx8s8w7I75Wtbw/z2wChL6n3sH0nhVAQEBK5e08hjhyPs7I8T9ChEMyolw8QhiUymi3idMv905TK+/ocuBmM5th+LsqM/xt2hYa5d3XxShwjgqd4IiiRQ43OTU3XeemYru4YTaIbF0sYA6+dV2Zlvfcc3zDM9n17pOWJ3EHs4NJaho8aLCIyni3gdEoJlvajdxbLmIJ+/asWssW/AqfCVBw+zvS9GfcBFoWRw5/MDXL2yeVbxs2ckwWiygGVRMQet8TlpDnte9cTuacwVS69itIQ8tIbd7BtOkFNNcqrK1//QzbbeKRyyTDSnMhTLo2rGrJwnqZydlsxrdE2kUQ2TiVQRTTcwLJvIKACmaXF4PMNHLuqgqBssrgtw7+4RnumZIqOeencGgCBwdDxNXzRHqqCTLmgsqPEglN3AJVGg2utguCx/nr7wwM4HKqg6YyeEeJZ0i6JkMBjL8Y3HjvL5q1ZQ7XMwED8ejVDtc5EqqKiahVMS6J1MgyDQO5GhOeQiX9JZ1RKac/Cew/8pzCSEn84Mc2auWX3Aw8LN7+LK8AK2fv8mDh48SHJqHJ8zgGXZpG5VN9k7kmLzyiY662x/piUNfi5YWMvXHuliMlVEM2HfSILmkPukY9raPcW8ai+maeFzyqi6TtEw2NRZzdbuKJpukFV1dMNE1Y4XLJoJY4n8LBsBw4Jf7hnl0ESG1rCHTLHEUCzPkfEUhz0eXv/F/+Ker91IvHcvO398E03nv4WN132Y3miebNFAFGFhrY+lTQG2HIkgC7bJ78xkgmn0TKb5u3v22ko8h4ws2Qq5oFuh1jufsWQBVTeJ5+womamMim7aG9NpKwbNsAh7HBwZT1PjdzEYz7F/LEH1jJFTvc9VpkXkKZYMREGgJexmXXsVVT4n1X4nZ7ZXlY8pw/a+KKmCRixXQhIEQh6FT12x5CULjef6Yjx4aIwrlzexsaOa4VieAyNpOxHBtPjAeQv4t0ePkivp/Oy5IVa2BE8yzJzGdBE+kxf3wmCcbb1R8po9Wp1MF+mOZPjDoclZ/Kq1LWGaQ266J20vLadDYv9Iiu892fuyDFtfDZgrll7FCHoU1rWFuWfn0Ky/75rIsrY9zFRGpTHgYiRZQNUNFElAxG5p227ZFi5FYiRZQBEFEqpBlddBUStR5jySLmrsHU7yL69bSdCjsKjez89Cbv7jmX5mNpSUsqRfxA7H1Azbf8Uh2/N9RZZY0RQELLKqjtshMZQoEMnGOGdBDZmiTnPQzdLGAJphkiyUKnEIYKvfSrpNsMyXDMZSBWp9LgRSlQVNkQTqA24mM0VKmllW21ioWPROpphM5rjhgo4/iwtvDnP438DpzDBn5pp5HTL37hrhzE0XEmq8gzO8cc4991zUw5P8as9IJdE+V1aWzuxcHZlIUyxfe6IIWVXHKUsE3XaupG5YtAQ9RLJFFAk8Tpl8ySDkdrB5WSPNYQ9XrGjk2d4oP985RGvYw3A8N/tDnFDFCEBe1fE6JA6Pp0nkSpiWhWZYlAyD3qxC01u/jPDoj4ntuI+xp+5mW6SPS2/4Mg01dewcTBLJqYwfjdgdrPJrWwjIgoVe3jx6HYKt2sWwOZ+qjkOAmqCLkm7wVG+EWK5Ee5WHaE7lHRvbaan2EMuozKv2VmgR7dUe9o8kkUWRSKoIAjx5NEp9wMWHzu/gsqX1bOuLMhy3fZBA5bWrGrhyeRM3P3ykMnL79Oal3Pn8IDsH4iTyGl6HRLqgYSFgWhajiT385N0bTju+eq4vxnt++jwFzeTu54f56/MWEPI6iZQtXSJZlV3DcVTdpM5n//+qlhArW4Inda5OV4RPZVR0i4oVhGlZ1HpPJmy3Vnv4wdvPYMuRScbSBbonssyv8b4iw9Y/NcSXfsgc/lQYjuX5wdPHKinT02gNu3jdqiZqfQ6CHpnXrKhndUuIoFumPugGyx5TWabFOR3VdNR4SRVK5SiREj6HWPnhBQFi2RIjyTypvMbt247x+wPjnOhW5HcptlsvIIsimqEjYLet59V4ufHSxaxsCRJwO1hY7ydd1GgMOgm4ZDKqxn9uH+DO5we5fkM75y6swedSaAm6cEhw8ZJabnnjahqDLiTJLr6yqs54uohcPlBZABOLdFEj7FYwLMoGmDbiD3+T/V+6mm/cduv/zo8xhzn8GWCaw3Sq7kBrtYdrVjdzRntV5TErFnfwnuvfSiqvsXMwToM+RXbrj7lgQRjNtMo3MoXlTUGCHoWlDQEuWFSDW5GwTFtQcWQiTbZoIJRb1sOJPLmSya7BFPmSQb3PwQWLamgOeypcmjeub6Up5CZV1Ah5HJX1SAQ2zKtiVXMAr8zx4HDNoG8qRyJfIlUokSsZKJLtW6BIAjV+N3WXfYCW138KUXER6drJvTe9kwP791PUDHyKTKZgr1lgrx1F3d5MLm3wcfNfraCzPkDhBJ+2kgVTGRVREDi/s47GoItkUaO1ysMlS+u5dGk953TU8KXfH+amXx/kPT/dybKGAG/Z0MbatjALau2unM8pE8uVqPHbat2tRyNohsVIskBjwM37N3UwmS1WRnVjyQLfeOwo23qjpAsaJc0kltPQTNvCQCrbIfz2wCipvEYqbxv4DsfytpFvXuPBQ2MUNBNZsKkVP3imnzt2DBByK5UO15XLm2gMuir/v6mjpiIQmH6d4VieO58foGs8M6sIB9jUUUNHjRenItFR66W1ynNawnZrtYd3nzufv7lwIUsa/aftYB0eTfHdrT0cHk39f18P/5OY6yy9irFnJMFURqU17GEgnkcQoN7v5H3ndvClBw+TzGt4nTJ/f9kSmkJubnu8m/5ojniuRKlkUNRM7twxSNDjwLQEWsMuEoUSdT4nA7E8iihglSW707vGLV1TxPOzAw9XNfnJlnQ0wyaAS6JFQbPHeJJgccGiGppC7soONFvQ+ejdu0kVNDwOCZcs0xB00hvJ0jOZwaXIOGWJ0aTtTDySKDCczFPrc7DcHyCvGUxlVBbW+eiLZDFKBoossqIxxGgyz3i6iFMRUUTwOCRUHeJlYlVHre8U3+Qc5vB/Ay9mhjmTy3TiYw6NpTg2meLAf36OxMQQDyYGePdN3yRbTqCfmSF201UrWNYc5L5dI3gUid1DSUwLirqtlBVFMMoxLJphoZkWyYI+q4Mw3en6xa4hfrC1r7I5q/Y5+Ngli8ipOt/Z2sP+0TS+cnhvslAindfwuWT8TokLF9Xx2wNjxHIlfC6ZD2yaT+frV/LzDWu572t/hxof5/Gvf4il1/0D2uLzkUQBv0uhlC1hlLkzPpdEldfJytYQ82t8/PuWo+w4lpj1nfocEn6nwr27hnnvOfNBZBYheVtflJ5IlqJukirqfOb+A/z4nWeWc9VyiIJAJKPSWeujs8bHbY93s2c4SWPAhSjB5pWNjKUKdNb4KqPSgEuhqNmKvP5KjNRxCALIkshzx+JMpVVAYDiRJ5pV8TgkPA6JS5fU41ZE8uUC0CEKjCULrG8Lc+3qZpxOqeLDN9OaZmYXqcrjYN9o0s4BtSwyRZ1VLYFKgdNa7eG716+vPB84yYDydOdo10T6pDHo4dEU7/7p86QKGj96up8PbJrPVaubXxXk77li6VWMtS1hqj0ORhJ5Am6JpqCHtW1BeqMZUgUNr0MmX9LZNRynKWTvGC/orOW/dvTz/KBdlY+lVRoCTpyySK6k0xh0E3LbpmqpQomGoJu/v3QRQY+CgO2qXTLsLDpRgLBHpmhYJPIatT57V+V2SOQSRRTRVsb9/Llhnj0W5x0b27AQKJQMdNPC77SdcAdiWfaPJFBkkX1l8mK2qGNa4JBgKJbjJ88MoJkmk+kSYY/CY0cmCXsUQh4HRd0uqnwuka++YRW/2TvKgwfGMUyLpc1B3nZmG596yseuQ9A4x1eaw/9xnMrU8lRjlOkOQipvK1Wbq/xsfOvHefz7NxHp3sOPP/UOhm+8lVXLFs2KSGmt9vCGta0Mx/I8fHCi4rlmArU+O7NtKqvaGysBNNMk5FFO6iC0VnuIZlVKMyqBRL7ET7f3k9cMDNMi6JLRDLsD1Bb2sDuTxDCxY0pGEnZWnSyQLepYosWCOh+ffftmquoa+c2tn2Zk/3YO3vUV1l/Zz4Vv/FtyOvjbZMbTBabSJWRZoNrnYCJZ5EsPHmEwOnskKIt2KHiioNMXzbGla5J/e+Ma0qrdcUmrGl5Fwppx2y+WDLb3RVnc6OPwuJt1bWEG43k+eslCLAGSeds9fTJjF0X37Bzm3l3DrGwKsaolxPkLZcaSRXYNJdF0kxXNQfoiWVJFHRG7UFrfHsYhSyyo8VVCb2t8DvYk7LiUgmYwFC/wr69fxZM9EZ4/FieSVQm4FHTT5Nf7RsvmlKN85dqVdNT6CLjtgnjmKHf3sO0FVet1MpTIk1G18q89+3ecWcy8WGEzXbAHnApPHI2c5A/2yOFxUgUNpyQSz2l858k+Hjky+aowrJwrll7tKCsHBBNWNAVJ5HXOXlBD0K2QzGs4ZImiavKhn73AZLpIfcBFwDWbszOWKrK8KcDy5iBVHoW+qRyGYeGs9/G61c30RbLsH0uCCVlVsyMHsEniHqfCkvoAiVyJ0ZSd9P3RCzv50u+PkC3LTUJuhb7JDF/87WEQBOr9TnKqXokcyJZsN1pb0mvM/GhoBjhkykaYor0rcsq0hj3sHk6QKmooooBumuweTjH/aITbtw+glRmg0WwEr0OivcrDLuZ8luYwh1PhdFymmUVUQ8DJF254J59764W8/tprmBgb4Df//B5SN3ydx7s6SRW0WcaIm1c0sn8kRaFkkCrqSIJ9I79ocT0ddV5+v38cWRQIex00B938as8wly1pqNz0hmN5+iZzJx3rgVE7DzKj2pu2aq/CmtYQPZEcsmSvBZ11ATJFDZciUtRMgm6ZsYTKtx/vpb3aw6euOYMPXvpbvnvLzfzgtn9j14M/p7+ni8/9+w95/VnLAHhg/yjbe2PEsiW+8NuDjCWLszo4LlmkIeC0xTHl9aZkwBd+d5CVzSFSBa0SsHteZw1bu6cwTLtYHU3mOTSeRtVt48WzO6orhO1pwnx90EkiVyKa1SiUdB46NA7YI7tFdT4W1Hg4PJZBEQXOXlDDM31TqLodx3L5sgaG4nkm0kUW1fuY7ix5Hbbi2eeSmcoUebRrgg+f38n7Ni2ohKErksBALE+N146SuuWxbhySWCmiZ9pRrGgMYpgWY8kCiiTQHvYwnPjv8YxmnmuKJDCZLtJR66M3kq0op31OCb9LJpnXyr+9g+F4nu19Ud5c3faK3u9/GnPF0qsYe0YSHHrsF7gw0FvXcTTi5ZyOGs5fVMfNDplP3ruXVFHn+0/2Vkh23ZMZWsJupLI3ki3ltzg8kWbvcBKHLGKYFs0hN5mSwS1/OEqioGGVVXJ6WQ3jdIi8bUMrlyxpIKvqjCYLOBUBhyRR0Gxy9zTGU0UUWcSyLBRRYCqjlouWE5uss2EBAZfEmpYgw0kVwzTpqPES9jrsRaDOx1AsR6ZcdE2minz/yb7KwgX2brZvKoeatwuyuWJpDnM4GafzY5pZRE2k7Zvs8jPX8sRTz3DJ5isZ6z3Mw1//CO2v/yRLzrqM8VSRx45MUu130FnjY36tl2PRHB6HSMClUON3cfWaJs5aUM0b1rWyczDO1x/u4rEjk2DBj546xr+/aS1LGgN85aEj7B5OIEKlSBEFmyOklq9xC9vGYDRVIOSRcSoiUxmVombSVuWxsyAFuHBRLYfGbbVcbyTL9r4o7TVeLnrbR3k86uPYvV8l3rOHz7zzGro+/228DQt4snuKrKpT53cSSauVfokIhL0ya1qqyJZ0SrrFWLpY+S5LZU+D8VSR9ioPE2mV95/fwaaOGp4biLFhfjU7BxK0hu3v+Jo1TVywsK4yypwp479ty1GOTU1R0DR0AwIumZyqMxjPoxk2Yb61ykOuZHDTlUv5xa4RJlJF7tgxxNkLqnjXOfNoDrrpmcwQyRV565ltfPWRLqYyRTIFnYcOTPBsX5w73rOhEoYuWPCZ+w8wkrCFP9mCzrJyNMu0j9/MMW3XeJp7dg2xfzjF/rEUjUEXAecrF9FMn2thj8K23hi6aRLJlFjZHCCZ12gN2zy6z1+1nANjSR4/MsVYqoAiiuwbSbB5ReOfVLwzVyy9irGmOcTUtnspJCYByLa0U/faq3jSvJq9ej3Jgj5LYpvXTCTB5u3U+Z1UeZ1E0kUOjdsBkwXNRNVNDAsGY3kMy8IwrVmvIWGr3urdDs6aV0NT0M3t2/qJ5+25+IWLani8a3JWGaTIUOVRSBXt42kN2y6/49pse4CZEAFRFJBEkWhOY+O8MLuHksRzGg1BN+86pxmAY1M5eiNZCmWH31RhdvabBGSLGtGUvZjNFUtzmMPJOB2X6XRF1JKOdu7//R+48q/eSPTwDiZ3PEB4+XnU+138fOcQsaxKU9DNZ1+7jJJusm84WQ6ztuiPZlnaECDoUciXdCbSRUzTLojGUir/cO9e3rqhna6JtO3hVt5XuWUR07IjRdQZi5IkCkymVXxlZZ0kChydzDCZLhJ0yZQMixcGk0xlVfIlnUxB57tbexFFkfVtQTrPvAgh0ED/3V8gHx/nPz5xPW1/9Q84Os+uiF5kScTnsqOTmqs8uBSJY7EcZy+oAstCN02msiVk0R4BaoZJY9BFrmTQWecj4JT5zf4xxlNFRhNFVrYEGU7k8TgkvA6ZdGG299V0NtzeYbuLZmKPLAvlvMu2KjfVXieHxjMMJwrUB5w2WVsSkSUB07Q9kQBu39bP1u4IIHD2gjAfvaiTX+8dZevRKSTsz/fw4XFuvGxJpRv06c1L+cSv9pFVNXqnMqRVjXWtYbIFne9u7WF9axU+t0zXeJqbHjjIVMY2KN4wLwyCQFqdzWt9OZg+1w6MpBBFOGdeDWOpAq9b08zOgTi9kSwhj8Ka1jBXr2lmw/xJvrWlh4V1PhJ5/U+umpsrll7FaAw6+PSnPsm9v76fQ7t2EBkZ5Mc/+A4//sF3kF1ePCsuJXzJB2Y9RwASORW/W2F1c5Cnixo+p0wqryGVU70lwfZRkUR7ITJmLEwuRaTK52BtaxV37RxCMwyyRZP1bWHGU0V7/h6b3Tov6jY3SgLeflYb7z+vgwf2jfLtx3sxDJPSCQ0mtyLic0qkCjp+l8yxqRxHxzMY2NEIsiTwxjNaaAl5WNUSZCpbgnwJSRSQymNJC2gOOGkIu1lS7+fukl1EzRVLc5jDqXEqLtOLEcLHCzD/LV8g/Owvca99DVetbqTO7+Lbj/ciCNA7laU/luNfXreShw+O8c+/PcJoSuXQ2EF2DcS56aoVFX+drmLGDqoVIJJWuX1bP6pmIEkCWBYioMgC+SJkDLtzIwC1fgeaYdIcdON3yximRX80R8ClkCpqNIfdHB5PU9AMkoUSDklAEu01QNNNuiYyNAZdWIuWoHzwWwz84svk+vfSf8+XqD3vrYTPextt1T5SWY1YvkS110Gtz0Wtz8lEKsqhsTRD8RyJvL2+WNjO3K9b3Uy134nfKeN3ytyza4iheI6Qy8FEpshf1beQVXX2DafYO5zC5xTxuxwsawzw8TJH9N5dQxXytq0sFrhkWT1v3zCPJ7ptPs+5nVXEc1r5dZL4nDKabqKZFo1BO3C4ezKDadob3ye7o/RN5cG0/e4M00KWBBbW+Gf97pPZoh0E7HbSH8uhaiaabvDwofGKPcHiBj/ZosZYsmAXiKbFREZlQY2X8VTxZRtjTvOUBAvmV3tZ2hhg71CSibRdVJ7RXsWiOn/FBfz7T/bRWeejyudgXVv4tKq5PzbmiqVXMRRF4aZP3cjr3/E+vvrAHg6/sI3+3U+R6XkeLZtEFq2KGaVl6KRfuJ/wwjMZ8nSQUU12DyZpDLlxSAJ+l8ySBh8jySLpok5RMzANC9OycEq2sqIh6ObtG9tprfZw9/NDjCYLDERzSKJANKty5rwqfvD0MSZSBRQREOwTqFCeyBnAs/0x1rdX8e+PdVcceBsCDhJ5DU238DglvE4ZWRDwuyCZK2FhYWB3m0q67dN0YDRJwKnw3k0LWNzoxyvLIMD3tvYxni5S7XXw5WtX8kR3xDZ/W7CMBdVuOjo6/iS/1Rzm8OeKmUXUcCxfUTOtbQnTVOVFOPctNAZdvH9TB9v7pkgeehpX50YUh4JXkQh6FPYOp8iVA7N1E3Yci1dGOj94+xn8bMcgP9sxQFE3bWNcLAIumRaPgw3tVTzRHWE4Xqh0rCXs9SRb1HEqIn63zKqWENesauL27f1MZVR8Bfv2FfY4iOfszvdEWsXvlCmUDAolnaKuk8zrrGwOMJEusvhdNzP+6I8Y3/Yrpp7+OWZskLZ3fJaxjIllwWRWZUG9jxeG4siiiCxSCQKf/mwI9lhoMFagMejk6ESW0VSBdMHuaoW9Dmq8DmLZEmChanZeZtijEckU2byiAb9T5ifbBypdfQuoD7r55OV21prfJfPw4XHckkxfJALYBZUg2CadmmFydCKL3ymzqN7PWKqAZtqThUxBYyqn2nEuksDa1jDnL66rfIZUXsPjkKnzORkqq6wbgi7GEnkK+jRV3eLIWNoOHBYFsqqB3yVR7XGwezDBrsEEFyyq4VObl71owTTNU+oaz3B43PbMaw65+cq1K7EEKgVX10Sa8WSRGp+D3+4fo6QbOGU7xPnd58xjSblT+afEXLH0Z4CWkIe66hBHF2xk7dJNRNMFxHg/K+Y3Mq+jjXtfGCU+tJ/k1p+S3PpThoP1uBesxz1/Hc7lZ6BJTkREhhMqn9i8hN1DcX6zd4y8qqMZ9sK0ujXMZ69cyrLmIM/1xRhJ5BmO55DF46GQTWEnT/eq1PlcmBZs6qzGpyj8/IXhyrEaJty7Z3hW/Eo0Y3s8CQJYpp3YHS+U6PR5iWRU0nmNSK5kq15kgUS2xL8/2sNP3ANUex0ossjSxgAfvqCTNa3hk6SpDx0Yx1hxNd6wmxUb1v2Rf505zOEvA9Nh2zMT7mfKygNuhe98+1tM/PoWvB1nsvCt/8TvDo5RF3CRKc4ejztlcZa8/OKldfz+wDi5kkamoJMpGmiKxYWLwyxrCvDb/aMAFf7SdHlS5XVQMkzOXVjD1SubSasaHytnTgacCmlVQ7DgG48dZf9Iimqfk2xRx+uUbS8mUSRT1IikizSHPWQKOguv+Rtq2hdx6Be3EDu8nR23fYTANZ/BVdWEYVoogkCdz0l9wEVPJEvY7aBQphQEnBIXL6nlzueHEBHonsygmxYhj0K2qLOg1ktDwE19wEVj0M3RiTS6ZSJLArJk7zAtYGtPhKJm4JAESoZFa8jFxy9dBMCWI5Pc8ocuBmIFZFGwO2OAgEC6oJHI21YJY6kC9+wa4s3r29i8ooGMqvPA3lGe64/T4HdR5XNw0aI6XE6xEt47k2S9siXAlSsa+e2BUSbL5pIzhwAmdrdPlCR8fpkqr+1AnsyXUA2TLUemuGZNupJBdypM85QsLFIFjeagm/FUkd5olmtWN1fOuzufG2QonufweNo2WBYFSoZJTyRHVtV5sifyJ8+PmyuW/gwQ9Ch87OJFZIs6z/REyZVMBF87Y5aXfzyjDcOALZljiCvOYfLoC+ipSTJ7HiSz50EivxZxNi+h6oJ342lbxmOHJrh2bQtbu6ZI5W0pKgKkihq90SyZos4N5YBIE/AoFrIksq41zOZljTzVHWUsaV/E6YKO3ynTXuVmJFnAJUtsnF/FWfOr2d4bm5XrBoAFBc1k52AChyySymn4XQp53WBRnY9IRqVQMhhLF2kKuOiNZOkTIOSxjdymd6rTF0wqr/Efz/TZxFSHzFiy8LJSuecwhzmcjOn8uJn5ZdfM8Lg5NJbCXduKqDjJ9e3kyE8/Q+wNn+Pp7ij/cPliHj08gWrY3e7PXLlsVk5dJFXEwsIhSciSQUetF5cisbIlwNf/0EUir1dSBcC+MZlAuqjTXmWPYKZv8ovq/ZVw7mzBtk65ZlUzFgLJnEZRM+io8TKRLlIoGfhcMted2camjhr2DCd49liUwfDVrF25jLu/8nGyEwPk77iR+td9En/nepJ5jbxucKR7qhJlsrrZRVrVWFIfYFtflFhZxOJzivicMpmiRsijUB9wsaTRj98pc3g8SaaoIwh2wVMXcLKsMcDShgABp8xPtw2QzJcIumQW1Hq5b/cIPymPJ/umciiSUFavibxn03wA7ts9TKaokynqiILA7/aPs284VVEoLp4xzqr3u7h3zwhTGZW7g8N85dqV7B9NsWcwQUedj0Re45o1YRY1+nnwwDgPHhjHicV00pXfJfEPly3mhaFEmYDt5lg0x6FREwvb5mEqdZz4fmIm4XAsz4HRJFUeB4VyZEympNMcclc8mabD4ncci6GbNjfMVj/bBXd7lYdbH+0mklVnKTH/FJgrlv5M0Frt4aLFdTzdE7UXFQuG4nkOjKb45OYlvO2sNjJ/+2a+/vt9vLDtaZI9L1AY2IMWH0UdOYykONBN+N2BCX7/2FbOqiqQk+eTU8LIkkBB1fnVrhEKmkEiX6osWqIo8O5N89k4r4reaJZPb17KruE4jx2aIFvUGYjluenq5UQzKrV+J2e0VxH0KBwcTfIfzwycpIcTRQi6ZWRRJFsyiOZKOGSRsWSBkmFS47PlrFNZFQQqC5EiCZWd6vRFmS3qaIaF36WQKWq0V3tfdir3HOYwh9mYzo8bSxYIeWy120wEnAorz7oA0fktHrv1RtSRw0ze9Y9Yb/pnBhMt3PHejbNyyKa7GL2RLBPpIkKZye11ykxlVZpCbo5N5ckUddvpv6jjc8nYkUkGLllgaYOf1ioPdz43RNd4GqcisH8kwY5jUTwOmSPjaTTDRJFEVjYHaQ67WNLgZ6DMq8yWdBRZZFU5Q+32bf2MJe28yc66Ds775H+w5/abiPcfYvwXX0C84gMUX/M2jDJFoSnoJp4v4XXJnLOgmq3dU2SLOrpp2SkJWLRX+wh5HXzw3AX43DItIQ9P9kQYT6mYloVuWCTyJd559jxev66lMvb86bs38PDhcQ6NZTg4msLvlEmWjXztKBcLjyKyqiXIa1Y0MprIc/u2fkxMnJKIIFrU+1yzokVaqz3c9NrljCTtQuWxrkmqPQ5GkwW++kgXA9E8yXyJ8bTKuZ1VPHJwgomy4aQiiWiAVxJoDrmo9bsYiOdndfL+67lBdvTFEMu77OnR68zfOuRROKMtzG2P96DqJk0hNzdesoiGoGuWVxfAkYk0w7E8XqfMaKKAxyEhKgIdIS+Xr6jHrcg8NxCfVcDPFUtzeEmc01FDXcBJfzRfiRqp9jtnqSuaa0KMrdpEeOlZ1PiceEpx9j63DbFuAWDv3KZeeIifH9wCQFV9E4H5q0jVLSHWsZrmtvm4FYmMaiBCef6v89G79zCZKlLjd3LhwloOj2dQy2nifofMpRvqK8eZymscjWRPOn6XLNAccjOZVikZOpZpoVlgmQbF8rGNJgvMq/Zy5YpGHuuaIJotUe1z8rrVzXSNp9nSFeHYVAYEgZBbRtct6gNOpn79FbbsfYoHPd/lQx/60P/6bzGHOfylobXaw1euXVnx43lg/1gloiSV17jz+UGSeY3la8/kNT/9NX//vjdTmhpg8s5P0Hn1AyxpDFSKBTg+gvE6JKYyKmtbQ4ynisiSQEvITTRbQtUNfE6ZrKpT7XNwwaJa+qM5huJ5zl5QTSxXYjieRxIFCiWddNFeJ45MZHHKdp6kW5EoaAaaaaIZFhctrePpnghHJlI0ulxkSjo7BuL0TmQYiOao8TntjLdqD4rUhOOG23j+Z18jtucPjD78A4oTfSx+w99jWTCazDO/2seKxiADMZuW4HVKpIs6bllEN03yZXHJg4fGePP6NoIehc4aHz6nRKLsF1QoGewZTvD6dS2AvUZaApzTUcvhsQxVXgcTqYKtnCuW7GgpC0RB4HXlcdXt2/uJZu0gccMwEUWBiUyBtqrZm8Tp+0HAqXB3cJjxVJGwx0G2qAMWAbdC2KOwuiXM1u4pGgIuhhN5zumoLhsgyzgkuZLdNh2a+70nezk6kSbgVtBNi5aQm00dNZXfujeSZTJVZPdQnPv3jNpZomW9TVbTWdYcZFmzfZ96YN8onTU+Hjk4wViqSK6kU+V1opkG9X47aWJ7b4x51V5q/U47B/UUESp/TMwVS39GaK328J23ruNLvz9MIl9ibVuoYnQ2vZhFsyqFcrXvkAU+cPFGti3q4N5dI5WxmLNxIVZqnMLYUeKTY8Qnx4CHGQYO+2v42t1beGYgi6rbpnC/2j1iKyyAbCzPHbHB8ohORDctdg3H2dhRXTmOJ3siaIZJldc2zpRFgZDHQb5Uoi+aP+lzTQdbtoXdpAoab9vYzmVL6wn7HORVg7Fkgbt3DrNrKGH7qgCNARfJgoZh2btKRQTTPDEUYA5zmMMrgSWAIkm0hm3zyp2DcfIlHY9DZjCWr3jhXHLxmfzkVw/xoetfTz46yg3XX8Phb99PUldOMjfsjWRpDLrQTYt1bSFA4Fg0S08kQ08kQ7XPyRvWtXDtGrsoePjQBM3RHLFcqUKgnswUkSSR0oxrXNNtpZeqGzgVEbci0xBwsq0nykA0X+5e6wRcCj988hjxbBHNhExRx6VI7B9JU+NViBUtVr/1H+lp7GTk4R8Q2/sY+6PDLH77FxG8VXzowg4uXFRH10Sahw+O0z2ZpaCZGJaJpkJPJIthwr7hJA8dmOBbb1nHE90RmoJuYtkSJcPE55JJle0DusZ1bnnsKIoosqjeT53fQc9kFo9DZl1bmJ5IhlS+XAwaJruG4/jctlGjxyGRyNnK5unO11euXXnKbsus8GRF5o4dA0Qyqk2raAtxTkcN/bEcg7E8nXW+WeT5ZKFEfxRq/A4CTqVS+C4odxs3Lqji6pXHR7QtIQ8hj8KB0RSKKFZC103L3tRPFzkzeXFBt0LYrZAr2WPFxqDM2sZq4jmVgmbSXu0hni9x4yWLyGr6HGdpDq8My5qDfO/tZ5wk9Z0+mRVJpKAZNJd3br/ZP0oiW0IUBGTRQjeh5oyr0Ndfha4WKI52URw+gDp0EHW8G8Hp4dnhLJ+8YjH37Brkv774UQy9hFnTiaNpMc7GRVBWzuQ1kxqfgwsX1pHKaxyZSPPIwQmORbNEsyU6ar0Igp3kLUsCT3ZHT/mZpmWzuZLO/Fov7VUe3nfHTpL5EiGPg8agi6JmoGpmZaw3bRInizZlcjohfc46YA5z+O9jpu9S2CNzW5kvUudzsrIlMFvGvWIxb/z8j3noa39D69lXMZSBRfWuU5obChaVEUzArXDn8wO2itXrJJYvsaIliN+l8NG7dzOWLGBZ0FbloWRYVPucLKj1MhLPczSSJVsm1TSHXSyq8zOcLLC0wc/bNrYD8NPtA9T5XER8Kp01Pp7pm6pI/8G+gRdLBofH0gRcMsubAxwcTeNZexXt1a2M/upmsiNH2f+dj7D8HV8klu1k10Acj0vmvZsWVEjl9+wa4rf7xrBMSBR0nLJIqmAH2I4mirgcEi6HRJXDQUk3qfU7yRZ0PnDHTtKqgUOyj+ea1U0MxgrMq/YQz2u8++x5/OsjR8mpOiGPwuK6AAdGk9T7XWQKOpG0Ssmwu/oBt4IlzFYxnip65KN372Y0WSDgUvj4xQs5f3HdSbYR04q0eeXnyJIdzTIdgD59XixtDHD9hnmz1GnTvFqwjyVT1NEME48i8cHzOipRKjN5cdGcikMSyKn2GLagGaxsDlLU7Q1yIq/RXu1h/byqP7kSDuaKpT9LnMovZXqROzKeJuhWyKo6IY8DzbBoCXvpjqTJlT0iDewFQ3S4cc9fi3v+WgBMrYhUiKNqBn93zx4mUjli3buwdBW6X6i8lxxqwNG4mLrF6/n8526kOWy3aA+MpBhO5HFIIpGMSo0vyGevXMrPnhtgW1/8tJ9HkQQuX9bAOZ01rGoO8o3HjjIQzeFSJKYyRUIeBVkUbLM6fTYLyjBBFi0ckl0kzRVLc5jDfw/TXMDpnK6dx+I8cmiSGq+TSFZldUuYFS3BGZs0D0s72nB84T9pqQkB1kmeONOP+9rDXRwcT7GiMc4nNy/h6pXN/OHQZEV5t7YlXLmROiSRiXSRBbVeUgXb/HAknqe5ysNHLlrIcwNx3JJI0Otge1+UTR01DCfyTGaKNs/KgkcOT1AyTHonM2gnNJwt7DXQIQkUNPtGLQi2/5zVtJKVH/k2XT/7PPmJfvb94Eb+NTKIe8WlhNwOLl5Sy8cvXUzQo/B+Vwf7hlMMxfMV77qQV+H8zjq+9UQPo2UhTHuVl8aQi49dvIhvP9FDulzslQy7GDmno4auiTTdk1kW1fvYvLKJlS0htvZEWFwX4FtP9DCeKlLrd/LGtS3ohsFwsoBuWjSF3GQLOn93z16S+VIlGHdmwTT9vVa57QIlX548HBpL0RLyEHAqPHxwnJ0DMcZSRcZSBZbUB4jnS3TWHh/Fnc6Paxoz+VLZgs6WoxP0T+XY1hdlMlPkwxd0Vnhx46kiTSE3H71oIV99pItYTsXnkLm/nFlX53Py8csWVTiwrwbMFUt/IZi5S5jexXXW+PjZc4P8fv84Bc3CBHwOkWzp1OMqxeFiXuNCknmNyYyKiUjD9V9FG+/GnTxGbOAw+cgQenICPTmB7IU1bWGe7InQM5lh908+R0oOY4TaUKpb2V9q58BoEwdG0kTKnSCHyKzgTAH4q7XNFfXMobEU+ZIBWKSLuu3nZFm0Vnu5fmM7X37oMJPpUuX5FuBxykyVHWWLJ66Mc5jDHF4SJwbtXr+hne5IGt2wGE7m6ajxcU5Hzayb8ImdCYDDg2P80w3v5/L6r7JunW3jsWsgzu8OjFHSTQaiOS5ZUsfFy+pPSrsHOwuseyKDYcGh0RTNYQ/pQolkwXYCr/Y6ee+m+dz5/CBbjkzSE8mwdyiBW5G4p2SQK+kUdZOSbufFTWZKs+JU7PdQSBc0DMPC45LYMK+a5/oT5DUTWQTLW8c7vnIHe+74Ms9vfZiee/+N8GA3rms+TPdktuIkHXArfPTihfa4sj9OXzTLkno/Uzl7xNRe5SFZ0HjD+hYuWGj7HB0aTc363le1BMpdl+lNnv3nNL/ngX2jlU7MVEbFFKyKrUKNz8l161r5j2f6GIzlTqsIXtsSps7npC+aRRFFtvXG2NYXJV8yqPM7OTCSYixVoGRYrGsNklUNLCwiGZVIpsiFi+pmOY9Pny+nKpymH5PKa/xy9zD7R9PU+ZzAcTXzib97Y9DFLY91M5bMMxgr0BJyE8mq5Er6q6ZQgrli6S8KM0/mZWX1x6qWEI8cmqAp6GY4USBfMhGApoCTZFFjfVuYg+MpLMsmXf7V+mYeOzxJslAiVQBXYyeNHUtZ0RxkaWOApWGJnz/0ONZkLxtWL+e2x7uJZkqMj4/S9eyjs45nFHj/D+oQQk00rL4AYdFlmECNV6HdZ3IgaiAKIofH0hUfkGxBZzJVZDp6TjPtQN+calAXdLGutYqHDk3Meh9rWh4IJAol5jCHObwynBi0u2ckQSKvc9myenoiWT56ycJT8kVO7HLf8c1/5YnHH+OSSy7hkUceYcOGDQzE86iaiSzaUvhIzt44ZYoaI4l8RXXXWu3hjetb+ffHjuJ3yKRLOqpuki4aqLpJsqCzfyTJL3cNs6MvRl8kQ6ay89IwLAvdtFjdHGI8WbAjksoZmaJgryOKJNBZ60MSBXoiWTTD5D+eOUZTyI3XKZEvGaxrC/FPV63Ad939vOFDf88Td32HxM4H6I4Pc8EXbqMl5KkUl/tHkqQLGl6HwpntYbYfizGZsd2xFcn2h5vOhTs0liLgUXCUieleRUSRRZ46GikH4vqZSBdnxXrM7MQ0Bl3MC3up8Tlpq/KQLxlMZosvqQhurfbwscsW8a0tPTQF3Ozoj9qu6GEPE6ki46kCYY+DgViOXUMJfE4FSYT1bSF6Ilk2LayZVbScWFh/+ILOk4qakWSeZF6j1u8kklFZ3Oif5bs181yyBDtIfXljkLFEkVhOpbXK86pTNs8VS3/h2NRRw91VHsZTdjDturYQu4aTpAoaC+v9fPmvVgHMMp4bjuUrCpSFdX5uvHQxPrdcCWAcc3Tg7VzM86KT/u4p6gIuqgJ+/vqfbmay/yiPb3+BbGQYI58iG49APIK7oYOWtQoXLqrlmoUeLly/BNHhwh2qYzxQw3ufWMiC1hYe6s2iVXXibFkKgGWZ9A1PsnndPAQgXdQIOKVKKxtss8tpVHlcf8yvdw5z+IvAiRlx/4+9Mw+Pq6DX/+fMzJkts2aZ7EvTJm3She6ForSFIgWkooAioCC44RVluYp4ceX+5OKCuIFeZVEpooBC2ZdCC7TQFrqke7YmTTJJJjPJrGeWc2bO74+TDEl3EG4Rz+d5fGTSmXPOnKSdN9/lfedUedntj9IdkjhlclF+keRY3HbbbezcuZNXX32V5cuX8/fVT9E+7MqbL9YXF3BqfQm7+yJccd8mIkmZ+9Z3cd8VC2mudHPypEJsopGQlMFuNmITDShZzZlayeYYiqf5+5Y+gvEUqYNa8sOSTE2hHVWAj86soMgpsr4tRErJ5gXB9HI3UkZh70CMaEqrRkeSCvF0llmV7ny7bOzD/B+//zm//fAifnDD1YQ7tvLXmz/LJTP+geibREtvmC0HwqTkHBaTgbSSBQSqvXZ6RpKc2VSaD3/d3Rfh2d39VLjtzK+FiKTQOyLxl009PNnSz7KppQxEU3jtIjt6I7gsYl5U3LSiKW/J4LSaUIFoUmFauTP/fQJtnOH65VMn+NCNVX8W1BYyt8bLc7sHiKUUbGYjgagWXyWgiRvRYEAYzcpLyVn84TSiSWB9W5AF49phBwvrw2W2VXnsVHttxFIyZRVumitc+V+Ij/azd2ZzKRUeGyuml73v/PJ0sfQBZ/xGxFjZ83DDgON/MFfMKKd1MJ4fOHTYTEyv0ErC/nASWVHpjkn0Dku4bCKBaIppjSV8/ZKvsWpTN84zoohGgSvn+TAmBnnwudd5rFsTOq+0B1nk1P7C5DIpEoEDEDjAC+1b8ud3L/pEXiwJ8RDrf/w51gM/MJkwWmyoRjM5owXBZKZ4znJuvOVmnh38EN2VLhrqa/7vbq6OzgeEw2XEHWtG5XC4XC6efvppzjvvPNauXcvHV57LR/7z13xk+kzaAnG+Nlqh+tGTexhOZLCL2pbY2rYATqvI2rYAk4ocgMru/ij9kRRW0aiFx6oqoWgSBMMh5xWAkycV8s2zpuVjNKJJmRd2B2gPxMnmVJxmkY5gnO6QREbJ5qvXVpMBkxFObSg67ODyjV/+DB/98FzOP/982tvbOfmUxXzx2/+D3zqDlJzTIqeUHGVuC80VLl7rDAECeweirJhRPkEYOq0i3zizkU1dI+wZiCKoEErI5HI5LpxXxR3Pt7Jmb4AHNx/gVxdrbcxbn9lDfyTF+tYQSUUhlpaxiyKfOVmLpjq4FbqxM0Q8rfBq2xAD0XS++nPWjDJ290dwW0WGEmlmVbn52ukNtA/FeXBzD7v8YaLJLA6rdn/tZiML6rz5alc0KbK1d4QpxY78lqPHLuKyHOlnQ0DJqmzrDbO9L8zqbf7DmkqO/ayNLQi1BeJksm/ZVrxf0MXSvwEHlz0Pfnww08pczKxyH5JEPqfKi8duZn8wgdEoYB79B2xOlSdvXDa2XjoQTeEu9CJ4vbTYJXLFEqIgEJZkek01vNHeT2fXAV7dvhd3NsZIwM9gYIjnt7YhljZgQLM+qPWqdI9el6IoKEpswrW61QQzqjx86tc/fbdvm47OvxUHt9QOt0hypFmV8TgcDp544gnOPvtsXnnlFZ76yVf56I13csq8ucyvLaQnJLGuNUA2B9G0gsdmYqrPxdUPvEnfiFbRLnFayKpQ7rQyFE/jspgIJlIkFBibQKryWDEZDdQU2jl3ZhkrZlRMuKa9A1GGExlyqkpWhb5IkiLZgpzNMRb3ZgQsZoFKj51pPtch7yUiybzRPcxQwsmfHn2Bz15+Ge1vvsqvvvt1PIs+jvu0K5DR1to27h/hW2dNzf+7ORBNs3cgylM7/YQlWfNQSmb4+7Y+UnIWVX1rluqFPYNUe7UkBJf1rdmjnmGJtsE4XqtIRzCR3waOJtP88IldNJY6qS6y5+eE7nihlbWtATJKDqPBwIemFOWrP01lLprL3ez2R5hS6uBjJ1Vy+wv7GEnIDEZToGpRLFI6x5QSO/PqPAyPbqQJKhOicG5a0UQwnp6wLTfmx+S2a1YDA9EUDqtmKjwWc3IkU0m3XcRpNTEQTVE2mt6wri2Qb2G+H9DFks4hHOm3yuoiO3d8cja3PbuXjkACgwFmV3v4xkemUV2k9fHHl/IFFa792zYODCcRgLSi4rFp/xDc9WqUYDyD2zOV7qRM8YyFzPU5+NKNhfzvKx2oqkphgYUCcwVD33sSj5gjEI5y1aJyapxG/ueJ7UTiCUorqxkMH38Cto7OvxPHI27ezrEON6ty8DkikkxvROGBhx7lkx//KK+99hrbV/2In35pY95ZOpRII44ue1hFI3sHo3QOJTAK2pLGR2cUYhLCDMa00OzCApEDI8kJ12MRjZzZXJq/jp6QxDM7+1FHk9TsZiMmw1tVKKtooMprgzAEYtr5jQaBk+uKKHZYeWhLL5u6hye8r9ue2cOTLf3IOZUKt5WZl/838YK7GHj5r4Q3/oPMYCdFK2/E7fEiZRT6okkaS5209IaxiAYeeqMXf0TCZNCsUQosWnpBXZGVlt5o/tokOcsL+4aIpxXCkhadQg7ueXU/iUyWRCY74b0bgEQmO0F8vNwa4MW9g2SUHCajZpipZcC587/wghZfhary/cd3MhhNa67pqookZ/HYTGRV+PTCGj4+tyr/fdUcyd+KwnmzZ5hEOku1V6sw/eLFVhLp7CEeW1u7w1hMRsIprUV6tDmk8b5cwXia1dv87PZHDzsTdSL4wIilrq4ubrnlFl588UUGBgaoqKjgsssu47/+678wm81HfN3SpUtZt27dhK996Utf4re//e17fcnvaw73WyVog+O/vHiuVkKGCWnQB4usdW0BwlIGl8VENK1QU2jjCx+uZ11rkAKzkR2jxmT9kRS1hZrIOu+kCv73MwvY3D3ML55vpT+aJKmAlDVicRTRlytk/3AWoWwalRYTsqJy9/r9E/6R09HROb5B3ONld1+Ev755gPbBBI2lzny1AuyHbNGt2tSdf/zgI6v5+le+wH997xb+8kYP3SGJQrsZq2gklJOxmgSUnEpfKImqqqSVHGbRyLzaQj65oCbvJu5zWugZTjIQTaMCXrvmFzS7xktvWKJvBG58pIX2obh2DKNAfUkBU8scRNMZBFVANBmY5CvgK8umcPOjO+iPppFzKq93DjOj0j3hfbntbnrDErv8UTJZbTg9lMhQ6XUz+ewvQtEkBp+4A6lrO8qfrkO44L8onTSNKcVOVr3ezZ7+CNkc7DCFOXlSMTMqXTRVuDhnegXP7BpgfUcQ0QhKVqsuWUxGsjkVVdWkXlrOatEqox5E0YOCikWjQJX3rYy13X0RfvDELoYT2hxWudvK0sYSTm8qxWnRPua1ao/Wlnt+9yBhSTO3jKcUZle7GYrLhKUMdV4bZzSVTvgMOHjQfGmDj2hSoTskYTcb6RlO5m0GxrbeVs6q4MW9AYxGLbbqphVNR+1ojH1+rGsLsHqbn2qv/YgzUSeCD4xY2rt3L7lcjt/97ndMmTKFnTt38oUvfIFEIsFPf3r0Fs0XvvAFfvjDH+Yf2+3vr8Gy9xtuu3jEpOmD/4JVeGz4w0kmFRdwxydnU+m10xWS8q6+oP3FTmSyTPE58r+dShll1AzPij+bxG0TWVhXhD+i+Yv4XFb6w0ksopG6ovfXXyodnfcDxzOIeyTGV4v6RiSuuG9T3o0fyFcrDj7H83sHea0zRGOJJjxiqsg//vEPdvkjdO9sp8xlpW84zjXLpnDn2g4SmSw+p5k3e0ZQVc3/yGIy8HL70GjumEB9cQGdwTj1JQ7sFhMOi4lvn93EtHJXXqjJ2Sy94SQ5VSU32qsajKa5cH4N3gJt7b7EackPbz+6tYcndgxiEzUT33haYUvPCBUuK8/uHEBQocprZ3qFi86hBGklS7nHxleWTOHVjiH+lj0De0kN/of/m9Swn/77v8llt/ycX6810zmkOXpbTQKJdI7X9oeoKy7g86dOJpaS6QzGMBuEfGyIzWTkprObeGRrL62DMUSDZolS5bXhtolEkjJeu4iiZIlntGH3k6rcfH/lDFw2bcvu2d39xFJasHkio/DhxmKuXjJlgnC9dGEtBWYDr7YFMQgqLptp1Dnbyg1nTuOx7b3s8seYXuHMm0iOcfDsK8CkogKay1283hlkx0E2A6DZ10SSMuVOGyEpw2A8NeGYh5udHYuKAZXOYJymcte4qtiJ5QMjllasWMGKFSvyj+vr69m3bx933XXXMcWS3W6nrKzs/cRwRgAArpdJREFUvb7EfzsON1wO5KtPLouYD2gc3++Gib/JVBXaOanSw7CUobHUAQj0jEjUFxfgsJjyffX3y18qHZ33AwdvuB3v34+DK1Jmk0AkKWM1GZEyCqUu67gq1UTH74c399A1LNEVTPDRmRX5c45dy6svreH1VT/hgodWc8XiSagCCCr89uUOih1m/OEUuZzKMzv7eaNrGJtoQs7m6I+kCEsZfC4rJU4LDptpglDrDMZxWUXiKQWDAKqqBfam0lmuHD3P2L8za3YP8tzugDafI+c0gZFSCMST7OyL5Aes77tiIZctquW1jhDBRBoBeOjNA6xrDRKMZxC8NRR/5nYST/+MkdbN/OibV+NbfAHepVegoG3/GY0CdtFILKmwvmOI37zUzkAkjctmYkqJg5NqvJS7rMyp8TLF56BvZCuhRIYqj42L5lWzYnoZa9sCLG3w0TYU5zcvtjOtzImcU4mmFVaPfp8cFiMFFiOxlOb6/dlFdfkZ0rwdRM8I61qDoxUlgbpiOzMq3dx41jT6oyl2+WM0+ByMSMohwnq8sAEmRJaUu62cUl9Id0jirBllh/03/OBct56QxFdWvYk/kqTCbePOS+fhsom82TXM7WtaCURTeOxmbjxr2vumW/CBEUuHIxKJUFh47JXXVatWcf/991NWVsZ5553Hd77znaNWl9LpNOl0Ov84Go0e8bn/7hxumPxILb6DXzdeaLls4oSNj8P99/vlL5WOzvuBd7rRdnC16JzpZTgsJkIJLRR2lz+SXwMff46dvRHW7B2i2mNjKJFmZvXEFv2XPlzPn2/8NCH/AT6x8mwaP387tdVV3LSiiXK3di6TUQCDSjyZI6OkMItGPtSghbVaRpMBppW95dkzJtSqPJo9itWsBXuXuKx0DsX59dp2ntrVz48/MStfZekZTpDOqpgEUFRoKCmgL5pCQNASAUxqfkOvymtHkrNUe+wMxlK09Ebz1bUcINocVH36eyxoe5znHvgdgQ2PEO1rp+Lj32L5nMls64kgmrRFmHte7aJvJIUKjEgy8YzCo1t6kdUcj23v41cXz+XeKxYe8svlmGdepVdLaBgTsVJKYUdvhLoiO4OxNPNqvHQPa9EvA5EUOQHKXNa8q3p7IE40JWMza6IqllY4pbiA/kiK7z++k6FYhq5ggnNnlU8Q1hs7Qnzjke1IGYUqr52Pza6cEFlSU2hjRJKZWeWmqeytIfkj/bIMsL4jSEdQm1HrCCZ4fs8ggViK1zpDdAbilDgthKUM7cF4/v2faD6wYqm9vZ1f/epXx6wqXXLJJdTW1lJRUUFLSws33ngj+/bt4+9///sRX3Prrbfygx/84N2+ZJ2DOFhoTdzUOfx/6+jovMXx/GJyMAdXpE6b6uOqcJI7X2rXPsSSMus7h5iZ9kxwdnZZRP6y+QD9kRQ1hXZOrS+ZcFyvw8ILzz7N3EWnMNDTTfsfv41w1U8ZjE/iVxfPZUNHkM1dIbb2hIklJUwmASWbI56SUQGXTWRquZOvn96YF2FXL5nC3oEo6zuGCEsZqj12BmIphhNpMtkcosGAP5xkbVsgLwCH4xmso9FJdtHAFadO4jcvtbMvqv0CnFbAazeytMFHLKVlvgXiKUpdVsrdVnb7FcxGbdYKwCCYKD/jSpa4a3n5Dz8k1b2dA/dey377/2B21ZBIa8fol7TjC2iZlh1DCVKy1lbrzMX4w/oOPn/qZFaeVDnhvo1VdaYUO1g21YcKVLpt3LO+k+6QROtgjFnVHkBgfq2X9e0hNnUNYxAETqkv5IrFdUwrc9E3IvGXTQcIxTXjXpvJyL7BGM/sHGQgmsJsEhAEzch47P72hCS++ch2eoaTWEwGekckVJV8xchrN2veUXVeljQeurl2pM3rEqcF0aAFBZuNBgQBukMSdYV29vij+Ed9scYMS98PCKqqqsd+2onjW9/6FrfddttRn7Nnzx6mTZuWf9zX18eSJUtYunQpf/jDH97W+V588UXOOOMM2tvbmTx58mGfc7jKUnV1NZFIBJfr0PVTHR0dnX8lDt5wG58WX+K05NviBw+OHynQdfxxn3h1K1d98lzSkSCe2iZeW7eW8hJvvjW/LxDj9uf20R/RZlyUbC6fg/ari+fQXOnOX5/LIrJqUzd7+qPs6dcq/MUFFjLZHF2hBCDQUOrgZxeexOoWf14ALqgt5OX2AOdMr2DR5CJufWoPd7/aicVkICXnuGxRLZ//cD3XPLiF3pEkNtHAnGovkpxFVVXaA3EGoylUBArtIsum+dg3EGNbSwsH/noLSrgfwWSh4RPXk5v8IQQBCiwmpLSM3Wyi0mNlXyBBNqvFUJkM4LGbqfJOzHYbu+/+sLYJ2FTuoqncxbKpPu5c205Lb4SIJOOymTh5UiGxdJbOYJx4SkEeDdv9/sdm8LHZmgBbva2PX6xpQ1AhllGoK7KzbzCGlM6SyarUFtq4/6qT8+dfvb2PHz6+m1hKJqOolLks3H35ApxWkYffOMC9r3WTkrN47GLeWPR4f75ue2YPu/xRple48vNVO3ojHBhOUF1oRzQa+OaKaUyveG9/GY5Go7jd7mN+fr/vK0s33HADV1xxxVGfU19fn/9vv9/PsmXLWLx4Mf/7v//7ts+3aNEigKOKJYvFgsViedvH1tHR0flX4OCK1PiWikM08dCW3sMOjrtsIpNLHIcMCMP4WSgjn/3+//KX711JuHsPX77i05xx7c/wx95aPf/dZfN5fEcfj2/vpyuYwGQQGBlty4wFd3eHJAosRsKSTP1oBeKkKg8eu5l1rQEmFRXgj6W44YxGmivdVHrtEwTg/LpCesMSEUnmYydV8Lc3eogmZVw2kU8tqM4H0PocFgZjKTqH4tT7HAxGUjisIhlFRRBUBEHQWoFeG6H6RnJX/JzBx35Mcv8WWv92K87ZZ+Nb/kVyopFpZS5WTC+nsczJTf9oISzJGAQBi2jA57DQH0mxoSPIjLQ2QD92DQ6Lid4RiXhKoT0QZ+lULWsuLGlVt3BS4ZW2EDef18TL+4K8tC9AJpsjreT40ZN7KHNaWTS5iCWNPnb3R9nRG6Ewl+Pjsyu5/YVWJLI4rSa++9Hph+TKVXltHBhWMZs0+4R7NuznysWTeG73YD6/MyxpbcvjEUtjQvfqJVMmzKpevWQKL7cGeHhLDyC8r4a74V9ALJWUlFBSUnLsJ6JVlJYtW8a8efO49957MRgOdXo9Ftu2bQOgvLz8bb9WR0dH54PKWEslIsls6h4+ZHD8WFYF42ehBqjh93/5O1/41ErWrX2RdNl9rPj0Fyasnl+6sI7OgBa9pORUaj3aqvzYcRxmE3v6o1R7tbmc+uICYimF3f1RIkmZYoeFD08pZl6dNrd6cBDsbc/szm9/feykKtRRi8ix/x8bUPaHk7hsInJWZeP+YXwOC01lDt48EAFUFtcXM6vSxU+ebyUsZcDioPJT32Nk/V8JvfIXYtueJjPQTsMlNxO0VPC3LT0sbfTxq4vn8mbPMFN9Ln71UltemG3vHWFt6xC1RXZWzqqg3G2ld0TCZDDQPSyRVVUq3TYunFPFho5g3mBTkrVYl2+f00QglmJbTxjQPKW+8ch2Vo1WjMZW+sNShns2dDGpqABruRElq5KQFSLSW7EkYyL58R19vNoWJJZUeKUtyP6hOHsG44CW3+kwG1g6GhZ8NI72MxJNyty9fj/+cPKQ4e530y/snfK+F0vHS19fH0uXLqW2tpaf/vSnDA0N5f9sbNOtr6+PM844gz/96U8sXLiQjo4OHnjgAc455xyKiopoaWnhuuuu47TTTmPWrFkn6q3o6OjovG850uD4sawKDp6FOnvJLFavXs0f/7yKhk9cRW84dcjWntNqYmqpE4fVxI1nTcNlE+mLJBENAk/v6ieXU8nlVK4/aypOi4k717YjoEV1rJxdcYgD9NiHbnsgzpMtA2SyOfYPxRmMppHSWVxWzbZkbVuA82ZWcmZTGRs6gqTkLMF4hrnVHuScykXza7hwPiTSCg6LifUdQ8RSMg6z5olktZiZfNYVOKqb6P3Hj0kPtLH7zv+g5KM3UDh1Ievbh5hT46HKa6ex1MmPzp+pDZR77Dy9cyB/D1WBvFhZ3xai2GEmkckSTcucNtXHrAo3b/ZEAG0WqtJto7rIzi0fm8FVf9rMQCSNxWQgkVHyBpbtwThhKUOBxcRwIkNNoQ0QiCQPNYKMSDLRtMx5Mytp6Ymwqy9KmcuKPzzRBmBhvRdVYILQOhxH+xkZq6IVF1gIjRvufjf9wv4ZPjBi6fnnn6e9vZ329naqqqom/NnYWJYsy+zbtw9JkgAwm8288MIL3HHHHSQSCaqrq7ngggu4+eab/8+vX0dHR+f9wrFmjw43OH4sq4LDiaxly5axbNmyvIipdNuISBnWtQVwiFr8xawqDwPRFLG0wl3r2mkPxNnbHyUlZ3FaTAQTaaSMQoXLym5/lHBSxmPT/HoOFkpjH7rajE4WoyAgyVltE89gIJGR8djNTPW5+NKf36BrWAJVZUljCcNShmhKYWaVm2mjW193rWtnR2+EcFLGJhpJylkKLCYmFdtZ2lCCv8HHk75aOv/632T6Wxl8+AckT/kkiQ9dyncf24nZZKDUaWVmlZsRSWYomp6wwTZ2ny5dWJc3gRzzowMocVkRjZpYKiqwUDvajmyudHPHJ+fwjUe2k8golLttOEQTEUnOD037w5p/3Rc+NJnBeGqCEeTegSgq8OzOgXzAb3sgTlLO0hdJUmg3I6D5QZlNWgbcz59vZYrPcVQxM/Yzsqdfyw8Vxk1Mz6nyUuK04A8nqRitIkYkmVUbu3h+1yDTK1wn1E/vAyOWrrjiimPONtXV1TF+nr26uvoQ924dHR2df2fGD3OXu62HDT89HMdjVXCk7Ty3XaTAXMCnL/8826NWPCdfgM9l5aRKT144qJB3jE4pWRwWE5Kcpdalefis7wgSS8kIqIxIGV5qHZowQzO+qrE/mKDSo63cW0wC0ytcuG0iRkFlTnUh23vDtAZiKKPhbRu7hjl7ejnnza7Ir8evawuwuXOYHf1hMgpYjAKTS+zsGUjQ0htltz/K9csbKSgspeyS2xh56W5iW54g+trfyPj3op73DeqqK/BHkhgMAnNrtNDayxfX4bSaJtzDw93bXf4ISk6locTJQCzFwkmFNJW5Jgjd3146j2d29+MfSfPQll5eaR+iurCAwgIzHpuIxy4SzyhI6Sw+pyWfzfbMzn5aB+P4I0kW1xexvTdC70gS0SiQUXIUWIyc1VzKzv4IPoeZfYPauv/YfT6SmHHbxQltwG8/uiMfGLy+c4j6ogKMBoEZ5drrv/VIC8/uGiAHdIcSnD+n8oTNMX1gxJKOjo6Ozj/PWDtkLAfsSOGnh+OdWBWM8eDD/+DhB/4IQJXoIjf3TC472cXMSs8EX6X2QJwqr50Cswmb2cD1y6dSXWTH3mNEyal5gfO3zQdYOasif+3jK1/Typ1cvWQyv3hxHx0BiTe6R5AyCrGUwpaeCEUFZnKjxxEAt9XE6U0+nFYT0aSc38DbOxgjM5pEks6q7B5I5N+PkoPXO4eRcyqCSaTwzC9jqWwi9MyvSHW34L/v66jn38iUkxbQ4HPSMyLhsYv5VhocWuEbf2+1qoyKp0CkudKlhZkn5bzQ9Tks+UD0A8MJXFYTr7QNYTBAPJkFAdw2kR8/s4dwUsHnsPDxuZW0DcbpHk5QV1SAP5Kia3R4vXtYQsnmsIpGaosKEASBk+uLGIql8WU5xAPrSHNGY87eLotI51CCh97s4eW2IQ4MS2RzKh9pKmNYyrBmzyBr9g7kw4azKhQWmPWZJR0dHR2dE8/RnJff0/Oe9hGmnnkx+55/kN7Hbsfi9DLrcwtprnjLKmAs3f5wrv+lLisuq8iIJGMUNOPHDR1BPlVUA0yszrgsIus7h+gbSSMaDSTSMmkly1jjIZHJUuqyEkqkMZu0rLpX24YYiKbzG3hum6i1ktDaUQdjFGBquZO9g1HKXWZCiQzVp36EA2X19P/jVuTgAXpX3YQjfBXRC69CNGjHXbWpW9sUGxU+vSNJCsxGfnzBSSyarMVM9YQkbnykhd5wkqICMzef04zLJrJqUxf+cJLiAku+YlVXZOf1jhA9B18fkFayDETSVHps9EWS/PyFNtJyNm+8ubSxmLnVXoJSBrNRoHs4SbnLSk1RATMqXMyp9rJqUzftgfgED6yjzRnNqfLitol0BOIIAjz0Rg+SrFBSYMUfTdE6FOOU+iISmWw+ugbAIMDME2hQqYslHR0dHZ08R3Nefi+p8tg596pvEBgYYGTHWrr/+t/sumQxld7FEzx5blzRdPjqggrlHhtSJouSy6EC23tHWDGjfEI7ayz8d+uBEcLJDHbRgCAIeGxmAnHNP6/CY+Nzp9aRzuSoKrLjsJj444YuylzWfAVoKJbGbDLgtBqRMloirsEo4LQacVlFrls+lTk1XjZ3DdMfSdFc4ebKxZP45t9lyj5zO8PP/YbErpfY+8Tv6d25kcaLv82KBU35uZyOoTi9I0niKZlQPJPfaHPZRB56s4f2oTgmg0BfOMmj2/3ISpbOoFbZCibSVLhtTK9wsb0vkq/OHHS7cFtFlFyOgVgKoyAQTmtD6iklS0Opg4vmVfPtR3fkK1Ufn1vJXWs7eHFfgAKLid9eOo+rl0xhc/cwodhb3oMHD3LvGYjmW4sum0hJgYVOIY7dbGJY0kwy+yJJ6ooL+PqyBhpKndy1rh2LAc1V3QDLm8o4rfHYG3fvFbpY0tHR0dGZwJGcl99LokmZ6VVeLrj2//HkT79O/543+OpnP8VP/7yaJ1tGyGRzdA7FcVpMXHZy3YTr290X4ZoHt+SrSiUOCwvqCg+bc7ZnQPMZqvba6R2WGJZkAIqdFs6bVUEqmyWRVni5NUhtkZ2Pz60impQpsBhpHYxhNAosqC1EFVSSGYVsDuRslukVHhpKHaTkHDazkTk1mtD80fkzeWZ3Pw0lToYSGSwmA85CJ5aVN5BumEfvk78m3tVCyy+/iOOKmznp1DO4/7VuTqkvosBsJBTXXiNlFNZ3DtEVlNi8f5js6CagCrzSOkRKyXFKvWaTsKi+kPNmVuKyifxjSy8/HtyDpGhlGgGYVGTDaTPROSSRkrNYTEZcVhOqCtG0QlGByDnTK1jbFshXqgLxNFt7RogktdibsCRz+wv7+N5Hp/PrF9voCyfxrt/PHZ+cTZV3fGagyAMbu5FGw9KXTvVhMgl47GbNagHwFoiAwFdOm8zpzaXs8kfoCycxm0VSWZkSl5VrTj8xW3Bj6GJJR0dHR+c95Vg+OeOHyn0OC7/941/4r6suYOeOFr71pctwfPp2jEYj8XSWBzYfYGPX8ITB87VtAc3gEZWUAsNShtf3hygqMDMQTuVdoHtCEg9s7ObAsERXKEGl144kxylxWDTTy1CCVCaLP5LKh8PuGYiydl+A/nCKnf4IaSXH9p4wi+uL6QwmiEgyBoOAaDSyvXeE3uEkiqrypw3dTK9woWRV9gVi5HL9WEUDORWiKQWzychpKy/izUkz6HzoR8R6W3n5zm/Ssuk8XEs+x9+39vG106fw1zd68rlsvgIr6/YFmVbmZDCa1kKDgcZSB5u6hmnpCbNgUhGXLqzL3+ePz63ilY4ga/cGMIzOKS2fXs7rnUHi6Sxmk0BSyUIKLWcukmR+nZfHtvfSN2oREEykqfDYOHNaGev2BbUYGNGA0SCwti1AXzhJLqfSHUrwsxdauf2i2fkomlUbu9m4fzg/AL5sqo+mchdyNkdHQJtfSssqHrsJn9sKaFVG0SgQT8mIJoFkRjnhOXG6WNLR0dHRedcZn2k2PmrkcKvl44fKA/E0wbSR6392D//vq5cx76Jr2GMSSWayGAQodVgPGTxf2uDj9y/vH3XEBqtoYCiWYSiW4Zq/bOHeKxYyrdzFj57axasdwxgEMAgCLqtIlcdGIJ7GazeTymRxWU30juToGIpTXWgnkVbyIb9SRkE0GMgoOXb3R8goKiaDgZSSozecJJFSSClZjAbYH0qwP5RAAEocZnJANKUyt9rNLn8Uo1GgNRCjoKSKist+QuCl+xjZ+A/CbzxOonsHJStv5OmdBfz20nm0B+NMKXYQTSt5a4GT64sodJgYCKfZ1hMhKsnEkjJVXtuEe+u2i1yysEaLg8mpJDJZNrQHGUlkEA2QVlQKRANFDjPhVAYEgY2dw6gqnNlcCuUuFtUXsrTBx+oWP9Wjw961RXZmVXlY2uDj0a1+ukMJnFaRbFbNG4s6rCakTBafw5IfAJ9W5mJamYt1bQH+/mYfgWiKwViK2dWevCWDtjVXyUt7h5BlFSWrUCCeWLmiiyUdHR0dnXeV8ZUit02kwm1jUnHBEX1yxg+VF9nNPPxmD6FEhklf/A1WbwEfcVjY1R8hlckRTWteSONDVpsr3fz20nnc9uxeBiMpwkktBkQ0QFLO8dQuPwOxFC+3BUnJObIq1BbaQIAvfrienoiUd9LeNxhDNAjISo6hWJpX24KUuSzsD2Zx20QS6Sxmk4HmcjcbOodIKjkMaNUzJZtDUclv5JkEUFQYScqYDAIWk4FwUsZpE5lV6ebVjiCJlEJaNeJeehXm6lkMPXUH8lAX/X+8Fud5XyJ8ThNzqrz84sVWwpJMtdfGOdPL+N9XOvFHkxgFAbPBQFLOkQPW7BtibWuAj82unCBYz2ouY1PXMGo8Q7XXxlAshcFowEQO0WSgzGXFkTExMBqQ2zuSZO9AlA81lHDpwjp6wxItvWE6gloA8IHhJMsafTRXurll5Qx+9PQeknKWSo8tvxFX5bEzxad9nw4OQV7S4GO3P4rJKOS3+SY4vkckDAYBq1Egk1XZF4hyRnPpe/Yzeyx0saSjo6Oj87Y5WmttfKVoKJGmutA+wWjxYMYPlYfiGe5a247DYmIkqVBbLJDIZJnhTBHb9TLyzJUoOVjd4qfS+9a5F00u4sazpnH/61281hkkkdGiOKwmA6dN8fGn17tIyjkEVdtUs5tNVHvtbOkZYSCapnMogcWoVY1CKYVALE1NoZ1QLM2XTpvMhfOrEVR4vSuEQRWoKrITSqTY5Y+RyGRJjSoku0lbc5ezmlCymARqCgtQcjliKU3oNfhc7BmIkpa1OaKxpS/r5AVUfO5XhJ78Ocmurez7xy+5tGMTS7/wHXZHzfgcWiurxGXBH02SSGnnNRsFcmjzSNmcSmcgTk9I4iur3sQfSVLqtHL54loOjEgE42nWd4QwCgKqqlLmsjIUT2M1G7GajaTlHP5IErPJQJXXzqULa/OD8dmcSlrOYTEKpOUsb/YM47Sa+OWLbXQMxVGyKkaDQDQpj9pIiFy6sPawywLH8uVa2uDjvvVdRJIyXrt4XHEq7yW6WNLR0dHReVscK4JifKWo0mPjhuWNqAJHzfYaGyrf3RfhLqBvnMO0KidYedo5DA0FOOWSJGd96qpDqlRjQ97DiQzZHJQ5zERSCl/4cD1lHivJjIJ91GW7ptDOV5ZOpnc4yeodfqrcNoYyCqoASTmLyQA5VTPBNJsM/O8rndx56TxcNpHAaEuxe1iizG1jT39sgn2ApGgCyWk1gqCyaFIR2ZzKTn+UcpfWIstkswho6/Bmo4GUks3fB7uniMLP/j8Cmx4n+OI9dLW8zqpvformC77O4LQlTCopoNJjxy4aGY7LWEwCZpOAyWBAzubw2EXOmq7FtHQE4xiA1kCM377cyXAig3lUEM6tceeFnns0+Lip3MUn5lZxz6v7KXdZ6R1J8vyeQS6YW4XbLnL98ql8edWbJNIKHrvIVJ+La/+2jc6hOEoOCsxGBqNvtUgjo1YI3SEpH6MCTBBIbrubnpDEurbABEHVXOnmvisWsrYtwLzqwuOKU3kv0cWSjo6Ojs7b4lg5cP+M/YAqaB/aYzhsJqZPruHGG7/Jf/7nf/LaX+7A5C7ljBXnTqhSrW0LEEnK2Efz2WKZLFPLnayYUUZ7IM7+oEQmm6PAYuK65Y283DbE49v6SGVhX3+MaeVObjhzKrc+vYe+cBIVyOVyVHm1maatvSOUOq3s6I1QV6RVyi6aW0VYyrC+PURW1So7NtGAaDRQWGCmKyTx4t4AbpvI7GqPZlFgFwlLMrOq3MRSCqJRIDaUyIutjKJy8fwaEtO/SMvCD7Plz/+P0P5dbL///1E1Zz2RK7/NPa9KNPocoGrD2VVeG9csa2BfIMq86kJiaYXekSQgkMlqQsxrExmMprGatHZgNgfnzirjpCovMyvdeTELsLEzxBMt/UgZhZ+/0Ep7IMqNK5pZNLmIVVctYm1bgKUNPtqDcUakDA6ziXBKQc7mmFRSwJRiB7v8EeIpZcLPyd6BKC/tC0wQ2WN+Uv5wEqdV5NozGvIWAaoA582szAsuPRtOR0dHR+dfhmPlwME7tx+o8thpKncdcuzrr7+ePfvauPv3v2PDH77HtMl1sHxq/nXj2zZFBSJXfmgSyxp9rNp4gFfah4ilFMrcVlJylo6hOGv2BkiNFnRygJJTKfNYufeKhazvCCKoKvdvPEAgnqbcbaXUYWXVxm56R5L4I0mWNvpoKHXisZspsBjJZsFoVFlQV0QgmmZ/UBNAdtFEPK0wo8LNR2aU4bKI+Q//06eVMLXMxW1P72EkqVmBq8BgLInDIuLHS9HF/4O48WEG195P79a1rLpxG6Vnf4Wi6R/mpnObCMdlRlIZyt1W5tcVcscLrazZOzi6HQgOi0iJ04zLZqa+pIACs5Fqr40FdUUsnlxMdZE9P9vksoi4bCLFDgsqYDEZkJUsr7aFOL1pmOVNpTRXuvNbaU6rqBlahpPUF9i5YH41yxpL8gP9ZS7LhKy7scia8SK7YyiOP5wkk83RFUxwy5O7ObNzGLNJoGckCajIWZX6YoeeDaejo6Oj86/D8eTAvdvHFgSBa27+fzy3cQc9LRtYdct/cNGHmzlz4UxgYttmaYM2ePzi7kGe2OEnmVFQcpo3UJnbSpnHeojtttcmEk8puCwiM6vcVHnsLJ5Skh+Q/uWLbbzWEcJtEzEIArNrPETTMlImS01RAT3DCZxWMx87qZI5NV4eb/Fz96udxFIKdrORMo81/36uXjKFda0B2gNxJhUVsGhSEc/sHgQ0A8ZFdUU8ut1PNqdiNBopWHQR06YuZP8jPyEV6ML/yI+I7jiZvVNv4+n9aSJJmUe39vGdc5rZ3R9FSmtVHpdNpMxt5evLGgDoHpYodJjZdiDM2tYh9ocSrJxVMcF4cmaVi75wCqvJQDSZRc6pBGJpbn9uHwALagvz35PDVRB3+SN5QTQQTXHhvCoSGYU5VV5cNjEvsgvMJp7d1c9JlV48djOdQ/H8luLO/ghWowEpk2UwlsJjNyMaDRNChP+vEdTxybI674hoNIrb7SYSieByuY79Ah0dHR2dt0VEktkzEOWxTe38/pufIdTTRnPzdDZsWE9UEQ/b8ntwczfff2w3clbbgPPaTNQU2ZlR4SGWyvDCniHkXJYyl5VFk4oJJzME42mKHRaqvXZObShGAFr7Y9y5rp1EOksOLTS3sdTJbRfMYnWLn82dIbb1RsipWhvu3isWsmhyERs7Qvz42b30h5NYzCaWNhZz7fKpvNE1zHV/24aUUbCZTfy/j80gmEizaf8wF82rZn5dIbc9s4cnW/rJZHPYzUZt+DyToXftAwRe/StqVsFid+A+7XLKFp6LpKhcsrCGLd0jtA/FyOag1GVheVMZF82rygui8duJA9EUpQ4zD2/to6jATDgp56tOncE4dtHIa50hih1afEqDz8kpk4sO2wobG/gfq5xt7hxmOJmmvsiBWTRS5rIwrcxF51Act03kng1dRKQMFpORZY3FvHFghJGkgsVk4CPNpaSVXN6fqbjAwifmVbKkwfeut+CO9/Nbryzp6Ojo6LwvOfgDWKtYFHDPAw/zpYtW4HQ66Owf4QdrevNZduPNKicVOsipufw8kSRnCUTTbEgF+c45zaycU0UolqbYaeHhN3spMBvZNiKh5lT2+KM8vbOfREYbxo6ns/lilLtA84NqD8a5eskU+sISW3oimI0CSTnHo9t7cdhMIIBVNCKaDORyKq2Dcd7oHua/Ht1BNKW13WIphR8+uYvvnjudqaVOuocTBONpLltUyxlNpQzF0qCq/PG1LgwOC8v+4z/xffmz/OWnN7P1zc0EnvkNkZ0v4TvnGvYHCyl0mFnq9RGIpvjkghpWzCjn6V1+DgxLlBRYGJYy+e1Es1Hgka29xNM54mktgy6TVdndH6G53MVF86rpj6boGZYQDQbKXVZe6wgxv66Q5U2lE75P4wf+6wrt/P7lTrIq7A8mWdJQxLO7w9z/+gGyqopoEFByKqoK8UyWx3cOIhpgZqUL0WTkgnnVVLptebuEKT7HeyKU3g66WNLR0dHRed8x/gN4LLzWLhpZ3x5izulTePzp5xCcxewLZfI2BQebVQ7GU1jNBoSMSiarYhAETEYDIGC3mji5vih/rs1dw+zojZBIZ9nlj4Ig4LIa85Em41swqUyW+pICLRTWLnLZwjrW7A6QlHNYTAb8Iyl+/MxerYrjseKPaMPWjaUOhmLp/Dbc2DFHEjLXP7Qtfx6LESaXOPnPj0xlUlEBX171JmFJxiIa8NhErjh3Eddf9Brf/dHPuO2/v0e6dze9d1/DS60Xcu5n/wMEEwvqi1gxoxyAHT1RsjmVnnCS+pICbljeSCyt8ONn9hBP5zACWaDaayMp50ZtEAQqvXZuWtHEY9v6GIwmea0zhJzL8YvnW5nqc+bv88ED/7v7I3mBqgK7/FGyqjYXBpDOqhhgQmadnIOWvijnz66iqcyF2y5y5eJJ+bbqiRRKAIa3+4LLL7+cl19++b24Fh0dHR0dHWDiB3BYkkFVeWbXAO1DcX7w+C4ebJX5w2t9tPSG8Tks9Ha1Ue625jexIpJMqcOKokAmq2I2CSyuL6Sm0M7SxmKayt5quYzNEdUU2pCVHEYDqKqaN5c0CBOvzWMzcdOKprxYWDS5iHuvWMjFC6tYNKmQPQNRdvujvNYZIq3k+M45zdz6iZlcu3wqp04upqawAKfNiFF4S1Ao4wRZToXOYIJfvNTG7S/sI56SMZsE0nKOcDKDyyLiD6fZ7FhE5efvxDZ5PmpWoXftgzxy0yepj23ny6dNxm0X6Q1LDEsZPtJURn1JARfOqaLSa8dhNWERjZhNBrKA2SiQVWE4kUZKK7QOxnije5hbn9nDmn0BWgNxBAEq3Db8kSTP7x3M3+exgf+xQe4L51RjMmjvxyDAJ+ZUMqvSrd1XwGrShKPXbuKgW0uF14LbLtITkrjxkRbufmU/Nz7SQk9Ietd/xt4Ob7uyFIlEWL58ObW1tXzuc5/j8ssvp7Ky8r24Nh0dHR2df1PGb9xN8TnI5WBdWxCnRbMGaOmNcuqUYvojSTx7/8GTv72DL/7hfla3FOXbQZOKCrBbTHjtAumsykemlzNjdHh7rFIx1uobCKd4dGuv5sCdhQLRyMXzq9npjzAQTbE/KOXFjH8kxQ+e2MXvLps/QTA5bCZ+/nwrLqtIz4hEudvGYDQ1oYrltotvGXDGMty5th1QCSVkVPUtwWQ2GWgsceKPJHFYTaM5bgYcZhOrNnVTV2wnLGUo9FVguPB7CAfeZGTN7wkO9vHNr1zF3++/j2/+8H+YP3s2tUV22gNxTAaBVzuCDMRSXLqwlklFDlp6wmQNUFwg4g8nSWSyxAIJukMJ5td4xsXQpHBaTfgjKUwGgYc397ChPcgUn4Orl0w5rPnkHS+2YjMZWdsWpMRh4dTJJYSTaQosJmZVeVg5q4LHtvVx/8Zu5KyKxy6yolmrhq3vCNIRTGAUoCOYYH1HkIuLav6vfvwO4W2LpUcffZShoSH+/Oc/88c//pHvfe97LF++nKuuuoqPfexjiOKJLZXp6Ojo6Pzrc/BWXN+IxKPbeokkZTw2kVlVLgaiKeqKC+jIJlFVlW9e80XO/fbvmTFzFt0hifl1hVR5bfRHUlR5bflV+THGWn3tgTjbe0cY3d4HoMJrRc6pmE1GJpU4OGOajwff6CGWypIF2gMxNnQE+dS4D3CXRcRjFyl1WVGBjJJlIJLmvg1dJNIK80c3ycZsFSKSzIFhidbBGMUOM2UuG0lZZu9AHJdVJJ5RmFnl5munN/DULj/tgwkaS510hyQW1hZS6rTSG05SV1TA9Rd/nmk//ipfuekHvPTX/+X1Da9wwUdOY+GKC/nNT35Ec4WL1dv8+JwWtnaPUFdUwOTSAsyikUqPnb5wEinzljmmkoVkNps3F63y2vn0/Gr+vPEABWYj+0MJppQ6JoQNjzefnFzqoL7Ywf5ggt4RiVxOpa64gG+f04zDasoL1uZKNx+bXTlhixGgxGlBNAhksjnMRkM+iPdE8Y5mlkpKSrj++uu5/vrr2bJlC/feey+f+cxncDgcXHbZZXzlK1+hoaHh3b5WHR0dHZ1/I8YcnrX/nmgNUOm154WUffkv2d/Rxpo1a3jhFzdg/959NNVXs6C28LDmmGPVpNioaaLdbERK5yace0FtIT0jEsFEmqFYmgKzkRkVLl7rHMm3zRIZhV3+CIIKLf4wO3qihCWZco+VixdUc//GA4wk0rzcOkRLb5izmsu4dvlbGWhuu8i1yxvz72Nvf5TP3bdJm30SDfzgvGZWzKjAbReZVu6aMETdUOpkZpUbg0FgeoWL0xp99IYlKpZdypyKRex57E4S+zaw8am/8uG1T/DFr3wNU9PZvNwaI5yUaXtmL03lLkpdVoYTGSo9NgaiKSKjg+cFFoHzT6rijKll3P96NwVWE8VOKyajwP5QgmxOpW0gxpxaLwKH+idVeex47CLRlIzdbGQwlmaKz8G00Xmk8Yz3bhpjfm0h584qZ5c/yvQKF/NrC9+Dn7Dj558a8O7v7+f555/n+eefx2g0cs4557Bjxw6am5v58Y9/zHXXXfduXaeOjo6Ozr85B3+ojjcnfOihh1i0aBFtbW203PddfvLcC7jtItGkPOEY4wfHy1xWylwWekaS1BTZORCSyCg5yj02HFYTu/qjDESSlLtsSJksdUUFbO4awYDm+/TYNj+rt/npDSdRcjlUFT7SVEY8rVDislLqsrC3P4pRELTYkcEYvWEJsOe3/KJpOV9leWqXn6SsZb2l5Ry7B6J8amHt6HudWGnrDUuMSDJza7wMRFP54/VHUkRMXqouupmcfxexl//IQPtOfvHTW7E4f0vJaZ/GPP1M4oLI650hPtxQzOWLazm1voTV2/u4/flWsioYDUb6Iyl+/OxeWgfjqMAT2/3UFNnwOSzsD8bxR1RMvREuW1R7iEmp2y7y9dMbiacUXm0PoWRzHBiW8rlxx8JtF7lxRdN74uX1TnjbYkmWZVavXs29997Lc889x6xZs7j22mu55JJL8h4F//jHP7jyyit1saSjo6Oj857yVqCvg8cff5yTTz6ZbW9s5BvX/ge3/OxOvvbXrRNsBaJpeYJp4hWL63BYTbgsIvsCMdr6YzyytZd71u9HVaHAYsRpM+GxiWzoCKKqoAA2k8C+gSgIkJZVfA4zI1KGV9qH+NCUIirdNhwWIzazCSktYzQYaCx1Ek8qXP/8NlKZLImMQrHDkp/7OWd6BQ9t7iUp57CJBs6ZXjHhvY6vtMGhLuq9YYkSh4VoUiYqZaiZPp//+I+L+fs/HuHh3/0UaaiX3ifvxPjKw7hPvhD3rDNpD8QpcVjxh5P86sV2sqNDU5Gkwh9f62J/6K0olngmS+tgAlVVyalQ6zQzEEuxti3ApQtr88IPYJc/QpXHzrKpPjZ3DVPpthNKZDSncJt4XCJo4vs9sbxtsVReXk4ul+PTn/40mzZtYvbs2Yc8Z9myZXg8nnfh8nR0dHR0/h14S/QcfxXhcIG+f/vb3zj77LP505/+xLQlK+mPuHFbRXqGJdZ3BDl7RvkEkTG+LVRdZEfKKAzF0ozZNSs5aPQ52dEXoS+cQkDbVhMMAqIgkFFyCAIEExlyKgzF0qxrDfLhRh8jksLp00roCMT5+NwqZlW6ufZv2+gOJTT/JaOBmkJ7vnU1tlX31C4/50yvYNHkoiO+97FK056BaH6jzGURCcbTBGJpciq0BxJ885EWVKGB4st/TaLlOSIb/oISDTD83J1ENvyVxOIL+bExh9VmHbUM0FCBfQMRMspbpgkmAQRUCh1mhhMZQlIam2hkU+cI0aSieU6NSNz+wr7RiJIC5tZ4KffYGIql89uK479nK2dV0B6MHzFD8J38XLwXvG2x9POf/5yLLroIq9V6xOd4PB7279//T12Yjo6Ojs6/B4cTPcfzwXi4QN8zzzyTX//61zgcDpacfTYbVr1JRzCBaBBo6Q1z9ozyo0a1zKnyUum1sm8wTi6n+eu83DpESErnfZAEwGYyYDQYsIoqJoMB0QQ9wynsZhNhKcMzO/rxFoiMSDJzar3MqnTz1zcPEIyncFhMxFIKHreIlMlOiPGYVu7CYTMdEutxONGwtz/K7S/sQzQYmFnlZnq5i8FoilE7I3JonkaiAQSjicL551K58CxmxLfw+J/uIjYcIPDc73hxw0OUn/Ix1GnLMY5WcgpMIMkqdlEgJauYRQOTigoIJdKoQGOpkw81FLGrL4bbZqI9EGdz9zA/fmYv3aEEDouJzqE4rYNxTqr0MLPaxaRCB2vbAuztj1HpsbJ5/zBP7+gnnJSp9NgmbBdGJJm9A1Ge2dnPQDR9QkN04R2Ipc985jPvxXXo6Ojo6PybcjjRczztlzF7gfZAHI9dxGXRPkhPO+/TrG0LEEvJXHtmI79c00aDz8HIqOCYXuE+5PjjxcjvLlvAn1/v5pW2ISo8Vlr6IlhNRiJo22IqmjP3Nz8yDZvVxPq2IK2DMYKxDMmMAgJs6hqmwm3j62c2UuGy8u1Hd9A7kiSVyWE1G6grLuCWlTNAeMsu4EiiMSLJ3PFCK62DMRpLnVy7vJG+EWmCWaWSzbGnP0JKyU0wvDSgVcEMqorBIFDt8/JfX76OS6+4km/9v1+y77k/k4kE6Hn+XoSXVlHQvBT3/JVMmTMLOavSFUrgtBo5s9nHRfNrcFpM+UoQwDUPbqG1M4bXbqatP0ZYylBgMRFNyRgNAnVFdoalDL4CK7c+s4e+cBJVhY6hOImMwnBCmymLJWM8/MYBrjtrWv4+bD0QpndE4pT6ohMaogu6g7eOjo6OzglmvKfS2PzN8eC2i1y6sDYfi7FqUzfLGn1c8+AWhhMZfvlCO1+aX8j+v/0/vBffwLRJlROOfbg4lTGR8h/LpmAwQHsgTqXHhtkoIMk5UrJCgdlEdaGd+lIH0yvcTPU5Wd85xPKmUl7fH+SNrhG8djMHhiV6hiWkjJIPqg0A584q41PzaoillQmVk2VTfYcVjXsHoqxtDZDLqfgjSVbMKOPNA8Mk0krerDKRUTAaRcpdVoZiaQRBpbHUhckgsGhyIZVuO6qgMqvCw+oWP90hiY9e/Bkuu/xyVv/jEVrX/JWhrr3EW54j3vIcyYa5fP3qL/Lp5csoL3FPCNAFeHxHH5UeO+7RAOKwlGG7P4LPZSUQTVFTWMDcGg+DsTQeu0jXsIQ/nMRpMRFKpCksMFPiNDOciABaFeyhrX1cOL+GaFqmPRAnlpQZkWQ2dIY4q7nshIXogi6WdHR0dHROMAdver2dVks0LZNIZ6n2amLrqV1+hhMZlBwouRzfvvaLpLpbMCTDXPmnR/KvG++xBCpKFiYVF+RFyvQKd95ocUqxA1WAeFLh9692IGdVmspdVHk0r6R71neytjUIqMyv9VLssNAxFAcEHtrcw/fOm06520rviJa/dtoUH6tb/OzojeCPpJhX42FHb4T5dYUTRKPLIrKxM8Su/gi5HGRzIOdyxNIKU30uzCYDKTmL22biix+ezD0b9hPPKJS6rcyt8RBPZ6ktsnPVqZPzFap1bQHaA3GqvZrj9sdm15EzfIquJR+lY8cbbHrifqJ7X2O4bQvfu/7LuFxuLr30EjxXXsmUplm80jbED57YRTSpYDcbOanKTSyt4HNZUbI5rj+jkbisMKfKSywlc/sL+xiKpdmtRsmMbsQ5rNrrhmIZCsxGEpksogHScpatvSMsafDhsYvs6ItQV2THaTFx1oyyf62ZJR0dHR0dnXebd7r5dHBValmjj79u6kXJacPKhWdeTeiBb7D9jdf54pe/zOU3/g9fWdpAb1iiPRBnIJpiMJrCazdjMgr5+aHIaKVqQkusQvM7Gj9U3RuWaB2Mk8upgIo/nGJJo4+BSIpih4WQlGH3QJTZlS66gwkiqRy3PbuXcreVuiI7XaEEa/YM4rCKrG8LcuWpk4imZVwWkV+saWNdawCzUaDAKhJJZlBz8OcN+xmIppGzOYwGgZMnFeFzWyl2WKgptCNlslwwrxrnOPPH8eIwGE8D5H2PppW5WNsaYKvzQwjlTfT39TCw6WmiLS8QjQS46667uOuuuyiqqMXZ9CEy1Quwl08mklQJJ2UWTSrMz17NqyvMn+8XL7ayoy+Kz2EhnMiQkXMYBAFFgbpiBxfM8/KJSCU3P7aTlJzFaBCYUuwgmpRpLneTSCnIOZUpPseEeJoTgS6WdHR0dHT+ZTlcVer75zVz82O7yOZU3GW1XH7rnfzPtVew7+XHeaKmkZWzv5M3TdzeG8ZmMoKqsnhyMRfMrcJt1yo6O3q1ysbB8zJjbtW1RXYuXVhLY6kDfyQFaIPP58+uYFNXiP5ICrdN5O5XOvFHtMFri1EgQAqnxcROf4R4SiGRUTAIAvuDCaJpmekVbtbsGeTpnf1ImSwGASoMAtmcVn15rXOYnKoiGg2oqPTHtC29KT4He/qjAASiKZrK3gqgHZsLq/ZqrayVsytY0uAjmpRZ3dLHPa/uJ55WcFhMLJ3TzGseH4UrP8++ba+R3fsSgy2vEPJ3E/J3A6swuUspaDyZofmLufYrF+MrnBgj0xuWCEsyJU4LgViaKo+NnKplxSXlLE+09BFLySyd6mNOjQcBkDIKj23z83L7EIFYCrto5MrFk2iqPPH2AbpY0tHR0dH5l+bgqtTFi2qZVOzIr+BPK3expWUnz979Y1574A6eWnYypy1dxkVzq3mja4TeES2k9eE3ezizqRSAZ3b244+k8EeSLG305edlDh5Gj6ZlVkwvJ6lkmVPlZfHkYqJpmWuWNbBmzyB7B6J0DsXzG2rprIo5qzIQTSFlsqRkBafVRDyjYDQK+fN0D0uk5CwqkB21JHBZRZScismgbailczlMRoHG0QqR02Lihd2D9IWTbDsQ5txZZdy4ohm3XTwka29MKF3z4BbaBuMkMllcVhPxtEK5x0bVaFvTOXkup5+zgnA0SmDXa+ze8Dz+nRtQIoNENj/Ga5sf4yN/uJkPnXoqp59+OosWLWLhwoVUeQqY4nMAMK3MydnTy/nmI9vzA92yrNIeiLNsqo+mchd7+qN0hST2DsRJpLV7MRyX+fmaNubUeGgqd/1rbcPp6Ojo6Oi831k0uSjvUxSRZE4+7zPs27WTrtef4tvXXMW8r93JwllN2EQDRoOAySgwGE2xtXeEySUOBqJpTqkvpDskTZiXqfLYKXNZ85tp8aTCNQ9uIZKUWbM7wJLGYYbiafb0R5GzKko2h91sJJrSKkRFBWZKXVZiozEgGSWHklOp8tq5YVwUSm2hHdFoIDu63SYaBRpKnXQG40STCmYjeAoslLqsXDCvGrddZF1bnBEpg0GAlJKjpSeSr4gdrgK3ri2QHzzvGh1ELywwc/7sCs6fXcFtz+6lIxBnhz/KKfVeqnznUjRrGTklxaaX15Dcv5XQvjfIhAdZu3Yta9euzd//qVOn0jxzNvbSWhrmn0R8MEW1y4iKSlrOMZLMMNvuybcBV23qYk9/FJ/TQmdKIaOomI2QkrUNRH0b7l2krq6O7u7uCV+79dZb+da3vnXE16RSKW644QYefPBB0uk0Z511FnfeeSelpaXv9eXq6Ojo6Pwf0BuWGIylOefLN3NfTztqJkUum2MwmqauyI4/nELO5ahw25hT5cVlE/NVmJlV7kPmZdKKQjytkFYU1ncEiSRl7KKJcFKmpTdCucdKJClrLuGRFC6riZMq7Zw1o5yljT4eerOXta0BTAhUeW2YTAZmV3qo9L617TW/tpCPNJfy/J5BVFWlrsjB105vYH1HkHWtAWRFZSiRpsRpptJtAzSPqFKXlX2DMVAhmlYQxhy5D+PTNKfKmw/KrSuyUV/s4JJFtTRXutnlj2A3m1jSWEJXSOKkKi9rW4doLHWyP2hg8sLlRGYuYYHLwg0L3ex841XWr1/Pxo0b6ejoYN++fezbtw+AVePuncnuwuwqoriklLYpVfzncx4KCgrIGsxEdg/Sm0xjElTkTIaYFCObjPF4Jo6QSXDdK68AJ0YsCaqqqsd+2r8GdXV1XHXVVXzhC1/If83pdFJQUHDE11x99dU8+eST3Hfffbjdbr761a9iMBhYv379cZ83Go3idruJRCL5yBcdHR0dnRNHT0jKB+i6bCJ3rWtnR2+Etu4eBKMZu9PF0kYfV546iX2BGKFYmsWTiw8J2z14O+/1zhA3/X0HGTlLJpvjisV13Lehi3BSxmU1sWyqb1xlKUdsNJjWazfzx88tpNJr55kdfjZ2D1PttvP6/hCpbJaMrHJmcykXzauecA2bu4cJxdLMrHSzusWfH9C2m40E4xkq3DamlTvzLarHt/bxvcd3kZQVQODM5lK+8ZFphw6rj76nnpDE83sHeXhzD0OJNG6ryDVnNDC32jvhNZcurJ3weOWsClr6IpQ4Lcw/yFYgGAzy0NMv8ccnXiY1dAB/dzuJwQNIifg/9T3dsGkLpyyY808d42CO9/P7A1VZAk0clZWVHddzI5EId999Nw888ACnn346APfeey9NTU28/vrrnHzyye/lpero6OjovIuMCRxBhW8/umNCJtzKWRW8uDdAzurBYxP5+ukNnDbVR3jIz/Km2kOOdaTtPAGQlSyBeBo5q3Lvhv00lznpC6eZVGznylMnoQogqHDXy+08u3OQArNm0vjM7n78I2lWt/ShZFWcFhNJOUtmNJCtMxjnpb0B7rx0HtVFmkhbPjpDtcsfoTskUeq0EEspLKgtZFd/NG+ZMNaiKnFbsYhGEhkFs9HAYERrLR7J9LO6yE6xw8xQIo2SVekMJvj+6p3UFxfwlaUNnHdSRV4wjm/jAaxu8bOudYhX24ZYMaM8Hx1TXFzMJRecT6R4Rl5cffm0yfT0B/j6vS/i9/uxK1HOm+ahJzDCPzZ3kM1oA/IV3gKKXXbimRzmAhcmm5PailKSBhsm74nr+HzgxNL//M//cMstt1BTU8Mll1zCddddh8l0+Lf55ptvIssyy5cvz39t2rRp1NTU8Nprr+liSUdHR+dfhPHu13I2iz+cpLjAQv+oWACIJGV8o+v8OUHlnt/9mm9+85s88sgjrFy58rjOM63MRanTQm9Y+3APxmU2do1QW1RAS1+En73Qyvc/Op3qIjtXnzaF1zuGGZEyOC0mKl02ntk5iJJVMQrkq05jjtuqqtIbTvL4jj4uXVg3oVozNiu1tjUACAzFU3mvpDKXhXhKISLJVLpteG0iI4k0AiqTfQXMqfKy2x89ounnnCovXruZ/cEEBiAsKbx5IMIND23jZxfNpmPorey2MZE1Jt68dpG1rUFaB+PMrHLnq1aHm5F6OSGQKKig/qQ6QlKGpjMb2L+jH7ctlL8WWYDiSjceVSUQTeGwmykotHOSz0FjRck7++F4F/hAiaWvfe1rzJ07l8LCQjZs2MBNN91Ef38/t99++2GfPzAwgNlsPiT0t7S0lIGBgSOeJ51Ok06n84+j0ei7cv06Ojo6OhNbaIcLVz0c47fUOoNxPHYzISlDuduaj+YYm88pd1uZW13I8x0dKIrCZZddxuuvv05zc/MxzxNNygRHN7rGyKkqA5EkZpORHb1hfvFiK985dzqVXjun1BfxSnsQu9lIS1+UaaUuukIJlKxKgcVARsmR1maYEQQBo0FgY+dwPph2TDC57SJnzSijdTBGudtKdyjJlR+aRIHFxOPb/PxyTRuNpU7OmlFGhddGidNM70iSk+u11uLRTD+ri+zc8cnZ3PbMPrYcGCY2ekGRpMK3/9ECgoDPYeHrZzbmnbzHtut29EbI5nK4rFo+3Piq1cHVufEzUiVOCzt6oiRS2Yk3WAWjUaB/JEWp00qhw8zyZh+TihzH9XPwXvG+F0vf+ta3uO222476nD179jBt2jSuv/76/NdmzZqF2WzmS1/6ErfeeisWi+Vdu6Zbb72VH/zgB+/a8XR0dHR0NHpCEtc8uGVCC+14BNP41fimchc3njXtkDT7X108d4II+/nPf87OnTtZt24dH/vYx9i0aRNer/eo59naO0JSVnCaDcQyOUQD1Bc7KHKYaQ/EKXVaCUsyewaiBGIpBmMpXFYR0HLWvnZGA6dOLuTVjiG290TpCycRAJ/TzIoZZXSFJOqLHYfd/moqc1FXVMDa1gACAo9t6+PMplJebhsiKWc5MCzx4SnFmAR4Zf8IAvD7lzuZUqI5kB/NHb250s0vPz2HW5/azV/f6AXAaNA8kcpdNjqCcX61po1TJhflRdzVS6awuXuYXzzfypaeMOVuaz6f73BUF9nz3wOHaOKhLb3MqvIQSyl0jNoreB1mvrJkCk/v6icsyVR7bezrj7NuX/CEhum+78XSDTfcwBVXXHHU59TX1x/264sWLUJRFLq6upg6deohf15WVkYmkyEcDk+oLg0ODh517ummm26aIMyi0SjV1dVHfyM6Ojo6Osdka+8I/ZEURXZzvoV2PGLpcG2f5oPMDKuL7BOOJYoiDz30EAsWLKC9vZ2LL76Yp556CqPReMTzzKnyUuGxaW0+p4mL5ldx3qxKAH7xYitDMW34+vFtfgZjKRIZrXJiMAg0ljqpcNt4aV+AAyMpBqIp1FGjxpSco7ncjc1sOmpGXiwtazlwgsDrnSEGItpxlKyKaBTYOxBlfUeItJLDAPSGk9z+wj5EozE/mN0ejOcjXMYLqL4RiTV7A9r1CrCg1kM8ncMfSSIaDDT4Joo4t12k3G2l1G2lymtjWJLxR5JH/X6NfQ8iksym7mEtbkbQvn92s5HawgLKPFa+c+50esMS8ZTCfRu63nbI8rvN+14slZSUUFLyzvqU27Ztw2Aw4PP5Dvvn8+bNQxRF1qxZwwUXXADAvn37OHDgAKeccsoRj2uxWN7VSpWOjo6Ojsb4Vs34Ftrx8E4iU0pKSnj00UdZvHgxzz33HDfddBM//vGPj/j88dWRg9uEXz+9kV+82ErPsMSOWITF9ZrP02Una22kaWWufLuwscRJZyBONpdFEKDSa2Xx5GJWzCg/YrusNywhZbIUFVjoHdHcuMOSTHZ0QFzOqrzaPqRFhwiamaXRoH3d5xTZvH+Y53cPMpzIkFFyTC0tYGF9cb5as7YtQDQl47aaSMhZFk4q5sJ51WzoCLK9d4QRScln1u3yR6jy2BFUkLM59vYnEE0GntnZnx/0HmunHk6YjYnbdW0BHnmzF4vRQCCeptxjnSASK9y2dxSy/G7zvhdLx8trr73Gxo0bWbZsGU6nk9dee43rrruOyy67LF9W7evr44wzzuBPf/oTCxcuxO12c9VVV3H99ddTWFiIy+Ximmuu4ZRTTtGHu3V0dHROAEcTI2Mcaa3/nTJ79mzuvfdeLr74Yn7yk59w/vnns3jx4qNe4+GuayzUd3KJg0AsQ9eoT9PZ0yvGXedb7cKVJ1VS6bFhtRg5c1pp/phHEnxVHjtTfI58JlyF24bVbKR3OI6kzYrTFZRwWE1EkwoOi5HvnjudrT0jrG0NkkjLRJIKaUXLzdvhj2IyGljXFmBJg4+lDT7ufVWzQfDYRM6aXkZ1kZ1PFdXkRZzLIuYtBLx2kR29EXrDSeRsjtOn+hiIptk7ECWWVvjF860MxFKgQk2RnVmVHq4dZ7zptossafCx2x+lPRBnarmTr5/eCJAf1q8tsrOgtpCkrLCs0XdCWnDwARJLFouFBx98kO9///uk02kmTZrEddddN6FdJssy+/btQ5Kk/Nd+/vOfYzAYuOCCCyaYUuro6OjonBiOJEZg4tbbuznD8qlPfYqdO3fi8/loPml+vnLydo49fm5qaWNxfp0+mpRZ1xbIi7+jDVsfiTGBeOnCWqJpGUGF9mCcUoeVlp4wUiSF2SSQymZp8DkJJ2VOqnKzZKqPUreV1sE4NtHO2tah/DHlLPQMJ1m9zc9uf5RLF9aypLGYlt4os6pcE0wyteu0s64tQHsgTrXXzpYDI/gjSUocFg4MS2zrDbOwrohndvaz5UCYjmCcogIzfWGt3TicyLBiRhmLRituY8e9dGEtL+wdZMz1cc9AlB29EWqL7GztDrNqYzdpOcvTOwa474qFh7RX/y/4wIiluXPn8vrrrx/1OXV1dRzswWm1WvnNb37Db37zm/fy8nR0dHR03gUOzmZ7N2dYbrnlln9KjI198I+vih1uYB2gYyiOyyIe89iR0WHxZ3cOMBBNTTCIbA/EAZVyt5V4WkbKZLGLJuxmE9Mr3AxEU/SGJZwWE0oux4aOEQyCgICKQQC7xURNoT3v1bS1d4REJsepU4rzrx27txFJ5o4X9rG7P0oik0XJaueVs1kCsQwImjXDtp4RKr02GnwO9gcTDCcymAwColEgreSIpZVD3t9v13XwxA4/clbloTd7mFHhwh9J0juSJKUoxFJZLCYDYSnD2raALpZ0dHR0dHSOxvjqzXsxwzImxjxGmb/d9RNWNN3G7Lrjm5uNSHK+RbXbH+XqJVMOGVhfs2eQR7f3Hde235hw29EbwR9Jsri+KC9q2gNxBiMpBka37ZxWEYtoZGalB9Ek0DOiBeYKKvznw9tpHYihqOAQBexmEx9uLObMaWWsbumjdTCG1Wzkzf0jFJhNeVE2/t7uGYiytjVILqeSUbJkszm8BWZmV3tRUXl+9yA+h5VgIk2d0U44KVPptYGqIisqCVlBNAisbwvm7QfG7vfO/ggZJYfJINA3ksRsMrC4void/VGyipFIUiYt5/DYTSxtOPwM8nuNLpZ0dHR0dP5lONzW2zvhSF5OVR47NYU27rjmcgKdu/ilz8Q9f/jf4zrm4apeBw+s5wT1uLf9xo5XW2THH0lp1gRuK6hgNxsJxNOUuqxYjAYUq4m6QjtvdI9Q5rIyqaSAlbMqeGZ3Px1DCXKjTZW4rOIVBc4/qYpfvdRG70iSjJJFSmfJAV67yPc/Op3Tpk6cDxIAUJGzWYKJDMF4GrfdjGg0cM70Mja0hwjE01R5bVy/fCrtwTirt/mp9trZ3R+hQDExo9zFQDTFMzv97B6IctoUHwVWE40+B52BOGklR02hjRnlboalDHOrvYCK225GyeW4fvnUE1JVAl0s6ejo6Oj8i/FOtt7g6HEobw1Xi3xlaQPu732Xr15xMffe/XsWLZjHl770pWMe/0hVr2tOb2AolubUycUArN7mP65tv/HHO6Xey0hCYXtPmG09ESYV2Zlc7MBsMjCp2E5GUVnbGmBEknFbRYZiae7ZsJ89/VGyuVz+mEUFItPKXOwLROkfDfntDmXIqiAaIJpS6IlIh4jQaWValt76jiAjkozVZCKWkpGVHPdvPEAio2A3m7hpRROVXjuxtEK118ZANEVzuQsQGIimMBsFvvf4btJyjvtfO0BdkZ0Gn4vCAjMjiQxGg4FF9YUIKiTkLLMq3cf0iPq/QBdLOjo6OjofWMYE0vgtrkw2R184Scm4OJTx1R23XeQrn/0kA/v3ccv3v8s111zDjBkzOPXUU496jiqP/ZD8tPHzT2fPKMdtF4+57Tf+mGMD3fGUwi/XtJHNqUSSMoFoCq9dZMGkQq48tZ6+SJL2oRgum0gokaHEZaFtMEbPiEQ2ByYjVDhtTPYV0FTuYmmDj+d2DeIPJ3HZTMRTClkViuzihFbX+Arctcsb+VBDMXc838pgLEWtq4APNZTwx9e68DmshKQM+4fjvNQayFfYLl9cR1OZFlDbG5a4//Uu0nIOowCKCl0hCX8khdlkoMxto2ckyZ1rOxhOaCkZFR4bPzp/Jr1hCThxgkkXSzo6Ojo6H0jGD2sXWIyjjtB29gcTeA8Th3Lwa20LLqB+4ct0bnqBT3ziAt588w2qqqomPG93X4TbX9iHnFVpKndx9ZIpTK+YmJ928DD60bb9QBMoP3luL4PRNM3lLq5drq3TN5Y66RyKk1ayiEYBk9FAKJ4hmpZpKnMxp8ZLeyBOg8+B2WhgR1+EaDKLABgEgU8vrGFenRcBqPS+ZdEwpdhB21CczkCcs6aX0VzpJiLJvNE9zB3Pt2r+R24rPzp/JmVuK7ddMCu/ibehfQiTAIF4iiqvHV+BlXX7gpS5rAxEUzitpnFWAW6WTyvj71v6SCtaX9BsFFBVcFlNhBJpRIOA22pifzBO5aj553hTTd3BW0dHR0dH511k/AxRz4iExy4yEE0xrdzJN8+aekgcysGvPTCc5OIbfsTv/rObQE8bH//4x3n55ZcJSipbe0codVj5zuqddIcSOK1vDSyPtQjHt9HGh92OPS+eVHizZ5ilDb78LM7uvgjfeWwnu/xRzEaBgUgqv25/0bwq9g1GUXKq5tAtCDSWOvItqrGqViyl8IdXOrEYDYAW0ptTVYoLRNbuC0zY9Ft5kuY+Pn4WaExkvtYRoiOYoOowomXlrAptcHwwhqpCmcvCTSuamFbuYlP38GEH8COSzObuYWZXeRiRZFJylkRGocJt4+Zzm3nzwDCvtgdRsjncNpF4WsFjNyNnVaq9uoO3jo6Ojo7Ou854sTLF58i3tI4Uh3Kk1175g99w9zc+zeDgIJt3tHH7Zm3ex2IyEE8rOMza/I5oFCaIgzEBM7b6PxbbASr7BmNsOxBGyanct76L+65YiNMqcu3ftmnO3iqoqoCSy6GiCY17NuynYyhBicOCzWzkogVVEwwvx2a5IpKM3WxkeFSYGQCP1YwqCMdluzAmMht8DrqCCUKJNEUOywTRsrYtQN9IMu+NFE9nGYynWGQvOuIA/thxm0dtDS6aW0VcVvKVvVuf0dqCHruZWz8+i4SsMKXYweoWv+7graOjo6Oj817wz2zOHfzaC5qfZNKkSbzeL9MfCeA0mxiIpXBbTcg5ldqiAq5fPhW3XTzEYdxp1dbxy1xWWgdjAKTlHEk5h9OircavbQtQ5bUznMhgGJ3nUVWVU+qLaCpzsWcgSs+wRGGBmWA8zSyvm1PrSw77ntx2kY/NrmRz1wixpIycU2koczCr0k1XKJEXHvGkwp1r2yZUtgBcFjHftjx3VjmzqjzMqnRPEC2FNjOCALnRSJVKjy0veo40gH/wAPy8urcsBFaP2ikUF1gISRkSspKvelV67e+qY/s7QRdLOjo6OjofWN7J5tx4sTM2f7Ro0SIA5hgliuxm9vYFMYgWylxWPr+oluVNpfmA2INNLas89rxQqisqwGwS2DcYwyYaSCk5PKND1U6riNsmjho5gttu5uyZ5QA88Ho3rYNxzEYDTquInFVZtan7iDM882sLWTG9lJbeKKFEmrSc46E3e7jy1HptYDypcM2DW4gk5Xxla2xWadWmbsKSjGdUMI61KcdEy0A4xVf/soWkrG3ZTSq2c95J5Yfcu/HCccxxfOWsClRBE2S9YYloUqQvkkRQocRpYSiWPmSO7J1uP76b6GJJR0dHR0dnlONx8M61raPnz79g4Vd/SSxtochpzguKw3ktaa2j0YFmkzBBsBw8s3TtGQ3c8uRuRIOAWTTisJh4uTXAM7sGkLOa83aB1YhdNPLi3gDTy1ycN6dywvWPnfPa5VN5epefu17qJBjPsLY1yFkzyjm5vog717YRScrYRVO+stVc6X7LlNMm0jYYZ18gNsFWAez8dl07KTmHMPquukJJ/vDqfp7aMcDMKhcjkkKZy8qpDcWsbwvSGYyzpz9KToXCAjO3rJzBw2/0srs/SiyVISIpZHI55tcUctnJNZxaX3LUAfgTgS6WdHR0dHT+7TiSKWVvWGJPfxQB2NMfnTDX0xOS+I9Vm3hl9SqUWIit99zM6d/8LXOqvKzZPcij23s5c1oZtUV22gNx7GYjg+EUsZTC/qCEySiwPygRTctvVawmF024rtMafZx7IEzrYIzGUifTylys7xgim1MxGkDJwWAkRdeQBAL84MndTPY58lWhg4XepCIHBgPkRl0phdHzzKsuxG42EU/JOKwm5lUXAlqrzGs38WTLAHIuxy+eb2WqzzmhajYYSeWvBcAggNdu5sCIhIrKSVUe1rYG2HJghOFEBrPJwHAig1000h1K8ONn9xKMZ8goWYYTGbKqSi4Hr7QPcdG8qvedUAJdLOno6Ojo/JtxuLy2sQ9oQdVEUiQp47aJCOPiRLf2jjAYV1h41X/z6s++SHJwP/KLd/Lcgsnc+vRelBw8vWOA//7YDPzhJNt7IuzoizCzws1Of5hYSsFpNdEZiB9x/sZtF7l2eeMEr6bJJU48dpFIUkY0gGgUSACiANHDVIW8dpGt3SM8vbOfWZVuZla68zYE08pcRCSZl1oDNPgK6BlJUuMt4KXWANPKXbjtIidVeXl21yBlLjuBeDrvQzV2/OkVHgCKCizMqHSzers2yyQaDWRVRjPrBMpdVvb0R8lktZsYS2cpLBBRsjmUXA6T0YBgEMjKKiajQDanEkikgEPbeScaXSzp6Ojo6PxbcXBe23hTyvZgHNDMEBNphfZgPN8ieyu6xMPJX/hvXv/1tTz35GPsTnsxzrsQAa3a8tSufrJZbV0/k8mxqz9KNqdS5rQSiKf5w/r97OqPHnHeaPxW21ilaNnUEoocVrZ2j7CjL4xh9Fzj89JcFhHRKPBya5BYSubXL7bjtYsUOsxUF9q4aF5V3lqgOyRR5rbRPZykzG2ZsB23eHIx1YX2Q1zGJ24XOvOD31sOjNA3kqTUaaHUaeXsGWXsHYiy5UAYAbCaBLJZFavZSF2hnanlLoYTGUakDHNrPGzvjRBJZqj02jm1vuSfCjN+r9DFko6Ojo7OvxUH57WNHyaeU+WlwmOjP5KiYtyGF0B1kX2c+/Zi7i6T+cGN19K75o+UuGuwT1mIyQAXzqnm9f1BdvZFkHM5XDaRMreNwWgK0WigpMBMeyB+TM+g8fNPA9EUH65w8fCbPaQVFYMBppa5+O65zTRXuvPmmEOxNGkli8NiIpvL4Y8kqS8pIDxqPZBIZylzWSlzWegMJrCLRloDMeZUe/OVrInv0zthZunqJVPyZpVr9gZwWkwkM1kMBgF/NElzpYsVM8pZMaOcl/cFuH1NKwORFHaLkTObfZwzo4JX2odQcirVhXa+frpmuDn+XEcy8zyR6GJJR0dHR+ffiiOJgWP92difj33tuq9+hSdf2sAbz/yN8JM/5cwfPciVZy3kjOZSBAE27h+h2mvDZDRwyYIaukYSPPxGLzv8UcrdVlyWQ20Gxj8+eNW+MxAnnlZwWU0k5CxnNJWwaHIRPSGJa/+2je5QAptoBFQEAayikWKHhUQmi8cu5h3MxzyO+iMphuJplKyKgNbSG6vgjH+fB19jIqMQiKe1ylw0iclgwGUVyaGycnZl/n3sGohSU2inptDOJ+ZWsbTRp23TRdP4nFo1qy+S5OT6IqqL7PSEJFZv72NKseOwGXsnEl0s6ejo6Oj823G0yJFjxZGMZ8Xnb+JARytNc0/m11/4CF6HhZ6QxO9e6aQ/kiIYT/PRmRXMqyuk1GNlQ3uIKT4HUiaLP5LM59XVFtm5dGHthMdXL5kyweupb0TiL5sPEEnKeO0iK5q1df2tvSOEpQxWk5FwUkE0grfAypdOm4TPYcVuNVHptk04tt1qoj+SIptTEY0C/nCKP6zv4POnTs4fc06VF5dNPKQlNr4yV+WxM6nYQfdwgukVLhbUaoPiY1Wx+mIHA9EUU3yO/DZdmcvC2tYgoPLszgGaylxEk/KEObIfnT/zfRGgO4YulnR0dHR0dN4BvWGJYDLLl/7nXoakLP5oCq/DwtbeEYZiaao9NoYSaWZWu/JCYYrPkXcUV2FCu2lr78gh7afpFe58C8ptd3PfFQt5Znc/DSVOKr2aoBtrHXYOJTAKUOW2k0jLvLBncEKm2sEhv9MrXHQFE6SVHEpO5cmWfjbvHwZVyOfmffX0hsNe01j1jRz88bUuUFUsJkP+3oxt1W05MML0Cmf+nG67yIoZ5bQOxqkrstMzIrGuLYCUzk6YI2sPxvOmlO8HdLGko6Ojo6PzDhhrk+3o1WaT4kmFZDJJ/9Z1lLtr6I+kqCnUhpbhUFdw0DLVNJsAB3OqvOz2R4/afqr02skoKk/tHMgPibtsIl89vYG2gSirW/oZTmQOm6k2XngB3LiiiVMmFfHkTj+bukbwOaz0jSS184zObYVi6QktMZdFZJc/QpXHzpRiB5fevZGwJGMVDRRYTbzRPUwio1DqsLKjN4o/kiSXUye0+KaVuZhZ5aY9ECcYT7N6mx+f00KR3cxA7NBZsfcDuljS0dHR0dE5AkdbYXfbRZY1+vjr5h4SaYWr//Q6sYf/i/bd27nz7j9T+aFl+Q/91dv7mFPlJZaSWdcWYGmDb7QyNOZ8JOCyHTue5WDTy70DUV4aF477swtPoj0YP+5MtV0DUZJyDpNBIJhIU+m1ks2SFy2LJxezYkY5vWEJl0XknvWdtA7GaSx14LKKJNIKZpNASs6RSCnc8Xwrg7EURkEgk81R6rQyGEvx+I4+Ll1YN7rpp73PdW0BVm/zU+3VKky1xQWIooEZ5W5cthPfehuPLpZ0dHR0dD5wvBs+Pcezwv5mzzBSRsEuGgmnFXK+abB7O/95zZfYsGED4M3P4nhsIsF4mnha4b71XXznnGYGoikaS50MRFPsHYjisJryUSBw6LUfPPStwgQTzfNOqjjuTLXxc0UAi+oLWdrgY9XGA+zsj+RFy5iVweudIda2BsnlVPyRFF88bVJ+cNxjFzltqo+/bj5ANqsykspgNZsIxNMYBNjYOUw0qeTvodsusqTBl6+kjR1nbrWXgWjqfbEBNx5dLOno6OjofKB4t3x6DhddcvAH+NIGH/et72JEkjEZBc668gYeDXbRu3Mj559/Prfcuzo/i3NgWCKlZHFaNIPJtmAsL3zKXFae2dlPz0iSYDxNscPCFJ/jkGs/uJXXNyId0UTzWJlq44VXU7mLSxfW0RuWGJYyzCh30RVKsHcgyqJ6zWVcq4GpjEW3lDqs/Ne5zXQG4pw1vQynVeTZXQN0hxK47Wbqi+00VbjoCmqCrDsksWcgitNqospjJ5qUKXVacVpNVHvtbD0QZiCaet9swI1HF0s6Ojo6Oh8ojkfkHA8HV3EO9wHeXPnW0LV/JE0io/C57/ycP3/rMrr2d3LXd6+h9MLv0x9LU+QwE00pSBkFt03bZhur/sRSCn/c0EWB2ciO0VmnI137eBG0ru3IJprHw7KpPlSgqeytIfQyl5W1rQFA4Jmd/Uwb/TOnxUSNt4BwMk2F284LewcYkRRqi+xUerXq1R2fnM3tL+xDzqqjAuytDb8yl4Vndw4wEE3htZvYdiDC/lCCbE6lxGlhZqWbT86rZl5d4ftiA248uljS0dHR0flAcTwi53g4uIpzpA/w5kp3Pptt7LmfbH6Mk08+mQ2vrOO8mlU0L/sCggDFDgsVXgun1pegjo4rTa/QXjuWKVfutiJlskzxOY557Ucz0TwaB1ffmspc+fd81owyWge1qtdANE1vWCKaFPn2ozvoGZHI5QAE9g4qnFJfmBd1YKd9KI7NZESWZRbUFlI9WtnrDUvEUwr3beiizGXVXL/D2jC5nFUJxdNs6hrWcurqCo/rPfxfooslHR0dHZ0PFMcrcsY41hD3wZWdIz1//HPdM2bw8zv/wBcv/zTPPvoQ8yevYOlJDQxLMqdOrpowlD3Wahu7ZpdFZF8gRiiWnrBFdjiOZaJ5OHb3Rfjzxi72+GNMr3AdUsFqGt1WGy8217UF6I+kcFtE+iJJHBYT0ZRMd0hiZpUbl0Xklid28ei2vnzA7uv7h/nTlYtYNLkoH98ytv3X4CsgJWfpGIqjApmsis9iomd0aH2s9fd+QRdLOjo6OjofOI41rzPG251vOt7nRySZfbZp1H3sWmpnnYxaUEjXqLA42F9pTKiMXXNPSOLXL7bRH0nxl80HJgT9jrFm9yCPbu/l/JOqOKO59JgiaUzgxZMK//GXLYTiGQQBhuJpPtJcdkgFa3qZC7NJ4KRKL+vaApQ6rJS7rfSFkxRYTAwn0syrKeTC+VU0lbnoDUu09EbyQgkgnVV5apefRZPHCx+tnOa0mvnKsin85sU2+sJJEpkc/nCSXI4Jrb/3C7pY0tHR0dH5t2J8Zag3LNEeiGM3G992XtvR5qF6wxJhSWb6GZ9gKJZmUbWbSxfVUuG24Y8kKXNZjjjMfLSgX9CE0pfufwMlB0/vGOB3l83njObSo77fMYE3nEgTljKYDFoQr9EgcNaMsrwwiUgyNz68nZdah1BVFYMgYBUNVHvt3HxuM7sGIjy4qYdALI3QHyaRLgO01ue0MicdQ3Gyo0PmogFOm+KbcE/Gb/+VuazUFNnpHpZwWYwk5Sy1hbZ86+/9tA1nOPZTdHR0dHR0PhiMCYdfv9jOXevaEVQIxtNs3D9MMJ7GZTl6NWNsHupYW1tVHs2tu8xl5cMNxXzjI9Po2voKy1es4O51rYDA5YvrDluZGosTGXPRPngO6dHtvSg57QNcyWmPj8Z4gWcyGLSQXRVEo0BjqZNKty3/3JdbA7ywZ5C0kiOTVUkpOZIZhdZAjBf3BigQTUSSMqLRwN6BOD9YvYu71rUTTcoUOSzMqHRRX2KnrtDO3Bovm7uHiUjyYe/dtDIX1y+fSm1RAWbRiLfAjMlk0LfhdHR0dHR0TiQHV4bag3GKHRZqC+0kMlmiafmorz/eeSi3XeTShbVvZayZZL70+SuJhEdwPHg7hstuxGk1HfH1K2dXIqiwvOnQFtv5J1Xx9I4BlByYDNrjozF+4H1mlZuvnd7Amr0BOodiAKza1J0XbW1DsXxlaAw5B6qq8uj2Pj48pQjRINAbTgFwYCTJax0hmitcDERTzK0ppHVQO25jqfOQNuPB985td3P3ZxewtXeEKcWO91Ue3Hh0saSjo6Oj82/DmHBoD8Tx2EWmFDsm5LUdT0XjeOahIpLMqk3dtAfivNw6xNdPb+Tue//ERZ9YyZbnHqa6oZmqC24+5DVvdA9zx/OtBOJpyt1WFk0qzMeLjAmIM5pL+d1l8yfMLB3reg8WKQ6biV+/2H5IO3FFczkPbDzASFxGNAk0+px0BhOAitlooD+SxmU3Qfit44cSaaYUOyiwGOkZkWgsdQACA9EUBWYjz+4cQFC1rcExe4LxpptjwcVj7VGAntGsvOMdWn+vEVRVVY/9NJ2jEY1GcbvdRCIRXC7Xib4cHR0dHZ2j0BOS+MWLrYQlmSk+B5curCWalt/VisYuf4SfP9/KQDTFUCzNhxuK+c6507njZz/h+9/9L0wmE2vWrOG0004D3moPvtYRoi0Qp8pjI5zMMKvKPSEM93iv72gbfhFJZu9AlGd29jMQTR9y7I0dIW5/YR8mg9YSG5Zk9vijGAwCSxuLmVrq5KZ/7GRMPHz33CYC8XR+9uv8kyppKHWytWeEW57YTTSlGWbed8VCKr127nhhXz4y5drlU3Hbxfz739sfQ87mCMbShFMy5W7rYQfc3y2O9/Nbryzp6Ojo6PxbEU3LJNJZqr1aayqalple8e4OE1d57HjsIjv6IvgcFsKj4uW7N9/E3t07ePDBB7nwwgt54403qKmpybcHG3wOuoIJQok0LptI30jqsOv9R+JYQmj8sHeh3cySqcVMKnSwri2Qr+I4bCYKCyyUuawMRFNcsbgOASaYV9rNJh7e2sOFc6qZXOrg1y+243NaWN8eontYYm61F6fNSDQlYx+dc1rbFmBuTSFr9g4hKzl6RpKcNaOck+uL6A1L7O2PsaM3TDiptULrigoOO+B+IvjADHivXbsWQRAO+7/Nmzcf8XVLly495Plf/vKX/w+vXEdHR0fn/5LjHdL+Z3DbRb5+eiMfbiim1G3Nt/gEQeDuu+9m9uzZDA0N8fGPfxxJkvLXlMhkOXdWOVd9aBJmo0D3sMTzuwfx2sVjXueYEPrlmjbWtgbx2sVxhpEaY6Ks0C6yoTPIXzb28OVVb/LDx3dxzYNb6AlJh9yfpjIXi+qLOLm+KC+6Vs6p5E9XnszKOZX553cMxQknM4Tiada2Bqh023DbRCRZcyxf2uAjkVaISBnCyQwRKUMireS/J6oKI0kZQYCsSr4VebxGm+8lH5jK0uLFi+nv75/wte985zusWbOG+fPnH/W1X/jCF/jhD3+Yf2y3n/j+qI6Ojo7Oe8PbNa0c4+3O0VQX2fnOudMPOY/dbufRRx9l/vz5LFq0CJPJhN088ZrWtQUIJxWqPDZCiTSzqjzHvM4xIVRXZMcfSeYHuseLrDFhs6M3Qi4HQ7EUI5KMw2ykd0R7fytPqnxb92fsfj6ytYcDoSSaNblAbbGD+65YyNq2AEsbfDRXuomlFTx2Mxkli8loYCiWJiJpxpufmFfJm93DKLkcVtHIpxdWccbUMtZ3BCkJWJhfe+JiUD4wYslsNlNWVpZ/LMsyjz32GNdccw2CIBz1tXa7fcJrdXR0dHQ+2ByvaeUYPSGJax7cQn8k9bbmaI50ntraWlpaWigvLz/sc8fsA/ojKaoL7Zw6ufioc0gwcettaaOPs2aUjct8e+scVy+Zwt6BKKs2dvNqexCjARKZLKLJwJRixzHPc+R7lMRsElByKqfUe/PnHp9VN63MxenTfGw5MMxwIsPq7X10hRJcvWQKSxt9rJxdzi5/jOkVTs4/qYobH2mhI5hANAicO6ucG1c0nRDB9IERSwezevVqQqEQn/vc54753FWrVnH//fdTVlbGeeedx3e+852jVpfS6TTpdDr/OBqNvivXrKOjo6Pz/uRYRpHvhPFCSZZltm3bxoIFCwCtKvWj82fmqzIum3hM5/C3Y2uwqL6ICrcNKbOTLQfC2M1GagsLiKYVVq9rz28LXjS3msF46pjVtDHDyQ9NKaYrJLF8WtmEjbfx575oXhUv7h1kMJomKWuW3+vaAixp8HHjimY2dw8TiqV5vWsYfySJUYBMNscuf/SEmVV+YMXS3XffzVlnnUVV1dH9Jy655BJqa2upqKigpaWFG2+8kX379vH3v//9iK+59dZb+cEPfvBuX7KOjo6OzvuU8ZUen8OC3WzKt4/eCeOrN8Zcmo9//OO8+uqrrFu3joULFxKRZFa3+LUB9KTC0qm+43IOfzsVs+oiO9/76IwJm4EC0B6IMxhJsa1nhDV7AohGgQqP7ZBq2vi25PiqVmOpk1fah+gZSeIZnd0a/7r2YJyknMVpMRFNZugbSbJ6m5/d/igrZ1Xko16K7GaKHBZ6R5KYjQamV7hOmFnl+14sfetb3+K222476nP27NnDtGnT8o97e3t59tln+dvf/nbM43/xi1/M//fMmTMpLy/njDPOoKOjg8mTJx/2NTfddBPXX399/nE0GqW6uvqY59LR0dHR+ddkLLB2Q0eQ7b0jPPJmL290Db+tdf4xDs6X++KHJmG1WkmlUqxcuZLNmzcTNbomiCMB8mJk/FD6O22ZjX9f4+eqgPwWn000MhhNU+m15atpLptIb1hCUOHGR1rwR5JUuG3ceem8fFUrllL4wyudDEZS7OiLAPCdc6fnr29OlZcKjw1/OEmZ20aV157fTHx21wA9wxLFBRZCUoYvnzYZm9lIiVOfWToqN9xwA1dcccVRn1NfXz/h8b333ktRURErV6582+dbtGgRAO3t7UcUSxaLBYvF8raPraOjo6Pzr0t1kZ0ZaTdrW4eOWeE5Gge7iPfH0jzwwAN86EMfoqWlhfPOO48nn3sJr93ElgMjTK9wMq3MxbTRwFqXRRMs0aTIqk3dxx0CfCQOrkZ9/fRGAPrDKdJKjkRaocJjY0qxIy/ypHSW9qEYJoOBjmCcDR1BPrWwhmhSZEdvBFQVfyRJqdOat00YO8eY8Bxz7R6roJW5rPSFJZSsSk9YYnKx47AO5ieC971YKikpoaSk5Lifr6oq9957L5/97GcRxbf/Q7Nt2zZgYi9ZR0dHR0cHJg5Rv1PbgcMdw2kXWb16NQsXLmT79u1cecVnET/yn/TH0uRyKtGkPCoa7HnBUmAxEpbkfFXmWMLtSNt8B399fLVJULW22ZwqL9G0nBc1LX1hjIIBJac5exc5LfkheH84STanYjIaSGQ0P6uD79PYeQAqvfZ8ReqPG7o4s7mUtkCca85omODsfSJjUN73Yunt8uKLL7J//34+//nPH/JnfX19nHHGGfzpT39i4cKFdHR08MADD3DOOedQVFRES0sL1113HaeddhqzZs06AVevo6Ojo/N+5p3aDhztGKA5fleVVPDYY4+xdOlSnnv6CcrjdmZ/4j8IxNP5gfLxVameEQmPXTwuv6iekMQX73+DvpEklV4bP7vwJFQBBBW+/eiOQ7b8xseSLGnw5V22x0TerEoPk4rstAUSTK9wsqC2kHVtAfzhJKJBICzJLKj1giBw1owy3HaR3X2RCTYC4++H2+6ecPxTJhexoLbwkJblO62e/bN84MTS3XffzeLFiyfMMI0hyzL79u1DkjSDLrPZzAsvvMAdd9xBIpGgurqaCy64gJtvvvmQ1+ro6Ojo6MDbtx042jEOFQPzuOeee7j00ksZ2vwE/ad8nNqaqrwx4/iq1NuJanl+7wBtg3FUVaVtMMZ/P7ULt82CnM3iDycpLrBM2PI7kkg5WOSNF41Tih0ADMUzmAwCqgCzqtw0lbnY3Rfhivs2EUnK3Le+Kx99MjFU91AhurEzxI7eCHVFx1c9e6/4wImlBx544Ih/VldXx/govOrqatatW/d/cVk6Ojo6OjqHcPD8Um9Y4pJLLmFoaIja6Qvwm0pY2uDLt6zeaWXLoI4FlqA5ZSdkppa66QzG8djNhKTMBLfsw13XWKVp/HnHCxdVgKZyFwIgZ1U+tbA6X5VatSlAJPlW9MmzuwZIZ3OHiLHxQjQiyTyzsx9/JIU/kmRpo++EbcN9YOJOdHR0dHR0/tU4UvTKFV/4CntlLzt6o6xu8RNOZPKvcdvFfJbdLn+EiCQf8zxnNJXSWOrEYTUxxedgTo2HgWiKpnIXd3xyNv91btMEa4CDr8tl0Xyefv58K7c8uYuekHTIOVwWkRKnBZPRwMwqd14oASxt8E2IPqn3OdjTH0XKKOzpj06IZBlD825Kc0p9IRVuW76ddyL4wFWWdHR0dHR0/hUYG1w+XCttfGXn9Q0bePDmy3nh2acoLi7Ov/ZYszzjB6Ori+z87rL5+UHuMQuAsXOOnyGCQytYvWGJ9kCcgejh7QAiksyqTd2EJRmPXeTShbXA6CyWx05zpZv7rljIo9v6sIoGhuMZdvkjxFKaeBJUDrn2eErJ59s1lv7/9u48Lqp6/QP4ZwaGYYbZ2PdFhBR3BVGsrmuReg27ZVlWkN0sc8nMUu/PXDKXrpZrV7tZkoZpddPMNVxQc8UFQ0EURQFZZZkBZoYZZs7vD5oTAzPDoMAM9rxfr3nlnDnLc44Sz3yX5ytGhI+k1f8OrEXJEiGEENLOGic7E6KDkVmkAAf1S4IYWnZyShQ4lbgEpfk5iIuLw6FDhyAQCEx2kzXsEjOVTDWcgQagRWN/AmRCtv6Sl4jfpByAIZ5A1/rWqAK5qklZA7EzD6duleFWaQ0YhgHDMPCROEOl1SH7XjWbsMmVWqw+dB0ZhQpUKDXgOXBRW6drnQd/nyhZIoQQ8pfQ0oVw21LDZCe7pBorfr2Gy3ly1On1GPKIFz54qivbsjOxx07EDh+MU6dOIT4+Htu3b2eTKcOyJBI+z+z5zSVTlsY9mUq2DPWXDNW+A2R/TuuX8HlG5RAYoMn1b5ZWo6BS9ceYJj0cuFxU1dYhyE3IjpUCgPN3ynEwowhanR4VNRq4uTjh9K06XCtSYECoe5v8fTSHkiVCCCEPvftdCLetNJzVJhPykFNajQqlBlqdHinXS/B0Hz8MCHWvnzEn64ZVX27FmxOexQ8//IDg4GCsWLECE6KD2aVKks7dMeqKs5RMGVpurhdX4RFvMWaMeIQtDdCw2y2zsL6lyzCmqLuftEm1708OZOL3vEoEuAkxfVg4GA7Yzwz35yNxRpW6DmEeIniK+LheXA0GgIsTF/98LBRjevmxfxdypRY/p91FpVILMPWD0TkcAOCgUU9du6JkiRBCyEOvLRbCfRANxwRJ+Dys+PUaMouqwXPgwpHLZRMDtoWn1g/PzPgY36+YjZUrVyIkJARDnnkZNbU6o6KUChUPW8/k4GZJDZ7o5o171bVNkqnj10uwN70APC4HBXIVnurhAz+pAGuOXEdpVS08xXyM7O6LzEIF5Cqt0ZiihrPVDmcW45ffC6HS1OFacRUA4JNne0Oh0uJSfgWe7uWHqto6HLhSiG9O3UawuxBP9/bHxmPZkAl4UOv0CHATGP095FcqodToEOImRKFCDW8pH15iPrr5SmjMEiGEENKWGi6E23CKvC01TDzef7K+NmCxQm2UGDTsTkOv4Zj2wTys+/fHmD59On7u3AXB7v5s1xeHAV79+ixy/pipdvR6KfoGyNArUGaUTK0+fANl1Ro4cDnwlvBRXVuHNUeu49j1UjAMwOUAueVK6BnAU8SHQqXF2dvlTQaBl1bVQlunr2/9AZBfocKF2+VYe/QG+5ynDgtHkaKW7Y57LjIAnb1EKJSr4f/HEiqGQeBSIQ8BMiHCvOrrNXXzl2Bcv0AUV6vRN8DVZjPhAEqWCCGE/AU0XI/MHsYsNRboLsTiuJ5NxhE1XhrlrfkfQlVeBLlcjhFDHsPjegf2mGM3SlAgV7Hn1DNApVpjVJbg2I0SVKm1kDg7olpTh1BPF7jwHVGp1ELqzENeRf0gbR6XC2dHLgoq1QCATcdvopuPBH4yAfsMH+3sgVBPIW6VKuHkyEWvAClKatRGLXj5fyzLkldRX0QzKtjN5Lpwpgpfchjg61M5qFRqkVGgsFn1boCSJUIIIX8RjWeD2RtTlcFNFaHcsGEDuFwuqtQ6Nqk4dqME3iJneLrwkS+vT3A4ACZEB2NAZ3f22L4BrvCTCVBQqUIniQizYyPg71rfmqPV6cHlcuAnFcBP5oxbpdXQ/xHHXXkt3t1xCTIXJ5TVaNhxX1+83B8nb96Dp5iPqGA3KFRabJfmoVCuhpeIj+slCqNyAobCk4HuQlwtkLOtZun5cnx26BpeiAz6owVLiMV7r+LEjXvwEtUvXG+r6t0AJUuEEEKIXWk8U61xEuXo6MiOZcq4W4mjP34Nj36x8PH2grOTA5wdOdDUMRDyOdj9ewGe6PZnMUdzLWwNx08parVIz5fj14xiOHKAOgZw5AKK2jrUaHXwlwpwt1KFX9LvYkJ0CMZHB7GxSYU8rBvfD4euFaNQrkRWUTVCPUQoUqhxV64yqidlaDVLz5fjUm4FUm+XY3daITZOiIRI4Ih7VRqI+Y4orlKji6/YZtW7AUqWCCGEELth7cKxhrFMF3/8HPkHkyDPPAnNhKVw5Avg7uKEAnktpM58k4PZTbWwNU7IOAwgE/BQpdJCp2PgAMBPJoAjl4PS6lpwAJy7VQGFqs5kjD+n3UVB5Z9dgqEeLjh4pYjtEpw8OAwAMKSLF0qqaqHR6cHl1Jcl+PfBa1gc1wOVKg0Uai1kQidMHNTJpmOWaLkTQgghpJ3IlVqLS5SYXpOtKUOrTOfH/g4HgRhVuZko2bkMviJH1OoYCHhcqHW6+xrMLldqsfv3AkidHSER8DC8qye6+ksxJ7Yrvng5Cq89GoJuvlL4y+q7z64VKYyON8w89HCp7z4bEOqGp3r4okihZu/rWpECG45lY9OJW7iaLwfAgeaPupPZJVU4llUKDxEfA0PdEeQmBMNp0S20OmpZIoQQQtqBpVYjc8UdzXU9GcYyjenth/G9fsJrLzyNe9fOQXD6v5j3fyvhKxGys8haOk7LkLB18ZWgXFUHlVaPmFB3RIa4QSrkYUJ0CEoVGvyaUQSlRoekM7kQ8x2Rfa8afQNcjWYe+skEGNPTHxIBz6juU1VtHe6UKSF0ckClWotHfETIKKgCA0Cu1mH7+Vw8GuaBigYFMG2JkiVCCCGkHZirqm1q6ZPGa8WZYug66/70CNR9sw2vTRiHXf/7HsEBvli1ahU4nPtrjmk4A2/IIx54qocvuvpIjGIROTuiWKGGTg/su1KAy/mVUNfp2IHfhnFR3iJnnLx5DxyGgZjPA4/LRaVSi5M37sFHwkdehQq+Umc4cDlwduSitk5fPz5KXYdeATL0DJA2+xzaAyVLhBBCSDtoXAbA0FrSOIlS1GrR3c/6WV95ZUp8X+QOv6dnIu+nf2PNmjXw9vbG3Llz7ytOUzPwDAyJ3a8ZxajTo34AuB64V12LYDchO0bq6d7+AIC3ky7gRkk1NLr6JMiZ54jYbj4oUqiRMCgEImdHSPi8+rXkzuTiSFYxdHoGATIBHu3sYTezFylZIoQQQtqBuSTEXBJlrVM37+FGSRUcw/8G12EVqDy2GVKvgAeO1dQ0fUNi18NXgvxyJfQMA5nAEd5iZ5QpNUZjpC7lV6BArgIDBvo/li2p1epw+W4lHu3sbtRaFeguRFcfCeLu+KG0qtauEiWAkiVCCCGk3VhbS6kl3MV8cDgc6MFA2j8O3j1iEBA1zOz+zS2ia0nDxO7p3r7wlwkR290HYmce9vx+FxUqDarU9YPX+wa4wk8qwI2SanA5DMDUd9+J+Y6orwJl7G6FElnFCgwJ9zJaK+5+Y21NlCwRQgghNiYV8qBQ8XDsRkmLB2X3D3bDExHeSM4sBsMAYZ3D2Nad3Nxc3Lx5E0OHDgVgfWmChhonLKYSu4y7cmw+dRtylRa7LhUgMSEa3fyl+M+ESHbM0l25Gr/ny9HJwwVFCrVRkcmMu3IkJJ6DXKVF4snbSEyIhtiZxy4UHOYlogrehBBCyF9ZXpkS07ZfZNdUWze+X5OEKeOuHCk3SjAk3MtonTapkIfFY3sirq8/Sqtq0ctfCkWtFlev38KoJ4aitLQUBw4cgEfn3thxIRfZxTV4xFtsNMjcnIbJlY+Ezw72bjymKuVGCeQqLYQ8R8hVWhy8WgSGU98SZSha2ThRa9jdeCCjEBVKLVx4DpCrtDiQUYiCSjVV8CaEEEJIPUNtIsOaao0LSZpqeWmcMA2P8DZKSPwljojo1gO5B/Zh5KjRCH55Cercw+DIre8CM8w0s8QwRslVyEPK9Xu4XlyNngHSJq08Q8K98PVvOais0YLP4yKrSIHrJdVGrVeGVqlrRQowDa4hV2pRUFELDqe+SribixPCPcTIKKiCp5iPkqpam1fwpqKUhBBCiA00LFBpqE3UeJC0QeOWm5QbJSbP2XBm3V1FHZZ+/jWGDRsGZU01sr75Fzhld1CnZxDm7WJVt1bDMUo6vR4SZ0dkl1Q3KZbp7ypE/2B3ODhwoNUxOHWzDC5ODkaFNTPuyvHVyZv48UIevjl1GxuOZbNdfDWaOozs5oswLxEWjO6Gv3XxQpiXCD4SZzwe7oF3hj1CY5YIIYSQvxJTY4dMrdlmMCTcC4kn68cESQU8DAn3MnnexjPrOvu44eeff8bjQ0cg7fxZ3Nw6BxH//AwvRD6Ka4UK7LtagFHd/TCgs7vJ8xlag/ZdKcB/jmYj9U4FfCX1BScbjlnKr1SiQKECl8OBA5cDjU6PGyXViPljEV9Dy1iFUgMOOBjZw4dNpBrGPKyrF/7WxeuBB723NkqWCCGEkHZmqkBldz+p2YHd3fylSEyINjlmqSHTSQYPKYcO4tG/DcHV39NQvGMeMuN648OjpVBp9fghNR+bE6LNJkwKlRabT95GsaIWzjwHlCs12PxbDs7fLmdbpyR8HvwkAuSUVqNOD4R6iDBteDj6B9dX/U4692fLWHVtHTKLqjCsq5fFQePmyhfYAiVLhBBCSDu7n9pK3fylZpOkhkyWJ5BKcezIIQwZMgR6Bth3vRwqrR5ODhyotHrsu1pgNlm6lF+BCqUGYmdHKNR14Dty2djru9iESDp3B1q9Ho929kT/UFc80dXHKPFr2DLm6sLDtKFh6OwpMpr9Zy+JkSmULBFCCCHtzBbdTO7u7vjfz/uwNTUfGff04HIqoflj0d1R3f3MHtc3wBX+MgHuVqoQ7CZEn0ApKpRa+EicUaWuw7UiBe6UKRHoKkSRQo0BndybtJA1bhkTO/Oanf1nTyhZIoQQQmygNbqZWlq0UessQaHaEbV6NcQCR2iupeCdF0ZDJHCEXKk1eY5Ad6HReCqJgIdrRQocuFKIb07dho+EDx+JM4oUaoutZA1bxnZfvmtx9p+9oWSJEEII6YDup8BkgEwImZCH9LtyOOScQeZ3yzHr4Nf4+9yN6N29q8lzyJVaKGq1GBzuxX4mcnZEkaKWTZLiB4VA7OxoddLWN8AVXiI+CuQq+EkFTWb/2RtKlgghhJAOyNQg8eZaqqRCHt4Z9ggAoFA0AHcOd0ZZ3k3sWfomMHcD8nv7GZ3DXFHKAJkQPhI+rhdX4RFvESIarPNmDYmAh54BUnC5HHT3k0AisO1st+ZQnSVCCCGkAzIMEs+rUMKF7wAJ37qEI9BdiA9Hd8e/notB8q+H4B0cjuqKUuxd9haUxbmQK7U4klGM7al3kHqnHHfKlGD0DHalFWDpvkxsOJYNhUqLP9d3q/9vw7pRzcmvVKJCqUW/IFdU/NGVaM+oZYkQQgjpgKRCHiZEB7PrpyWdu2P1+mnseCk/KU4eS8GokU/ieuZVjHpyOJ6evR7na6TQ6hiEuAkR5CbAoWslqNMDKo0CIr4jLvlVoEihxiPeYhQp1MgsUiAlq8TqLsH7mQ1oS9SyRAghhHRQilotamp1CHQVGlXLbonOwX44eTwF/fr1w717pdjy4UTUlJfAgQMUVanB4dS3HPEdOKitY1Cn16NvgCuC3YXsoG4OYNQlmFmksNjKZJgNOHVYmNlxUta2UrWHDpMsLVmyBIMGDYJQKIRMJjO5T25uLkaPHg2hUAgvLy+8//77qKurs3je8vJyTJgwARKJBDKZDK+//jqqq6vb4A4IIYSQ1mVooWluJpopDRMSDw8PHDlyBIMeexzRo8bDxc0LOgbwkwnwXGQg3FycoGcYiJwdMOnxzgj8o/XIkOx09ZGwXYI8Bw5+SSvA+iPZ7JImpkiFPHT3k5pMlDYcy2aPz7grx+7Ld5FXZruuug7TDafRaDBu3DjExMTgq6++avK5TqfD6NGj4ePjg1OnTqGwsBCvvvoqeDweli5dava8EyZMQGFhIZKTk6HVavHaa69h0qRJ2LZtW1veDiGEEPLADC00F26Xo6RGjbsVSuRXotlZaSZn0kmlOHIoGao6Di7eqUBJjRoxIe4I9hRhHb8fPjuUBUcuF6l3yhEV4tak9IGhSzCvXIn0KjkGhbqzrV0KFa/JUi7myh40HLieWajAkWv11b9tWY+pwyRLixYtAgAkJiaa/PzXX39FRkYGDh06BG9vb/Tp0weLFy/G7NmzsXDhQjg5OTU5JjMzEwcOHEBqaiqioqIAAOvWrcOoUaOwcuVK+PmZL9JFCCGEtIW8MqXZNeJMUai0WHv0Bu5WqsAB0M1Xiq6+YovjhszNpOPz+eDzgWHdvKFSqTBq1CiMHz8ej40ZDzcXvsWZd4Yuwc6eIpRUaXC7TImeAVJwGDQpQCkR8LDhWDayS6oh+2OGnuFeG45n4jlwUKnUwMOFb9N6TB2mG645p0+fRs+ePeHt7c1ui42NhUKhwNWrV80eI5PJ2EQJAEaMGAEul4uzZ8+avVZtbS0UCoXRixBCCHlQeWVKTNt+EUv2ZmLa9otWdT1dyq9AoVwNsZMj5CotGDDNjl+ypvtuy5YtSElJwVtvvYWtn69EkJvA4v6Gc1YotRjyiAemDw/H5MFhyL5X3aQAZX6lEtkl1SiWq3Hixj2sOXKd7a5rOJ5p5ogu8JMJUKbUwFfqbLN6TB2mZak5RUVFRokSAPZ9UVGR2WO8vIxXbnZ0dISbm5vZYwBg2bJlbEsXIYQQ0loMiU9LKlsbCjzmVyohceaBA06z45esWW5l0qRJyMvLw5IlS/DJ0o/x0su5eP/jT9HJs+k4I0vn7BvgCl+pM9uyFOYhQpW6DkInB5RU18JTzEflH11yjVur/F2Nq4fbqsq3TZOlOXPm4JNPPrG4T2ZmJrp27dpOEVln7ty5mDlzJvteoVAgMDDQhhERQgh5GDROLKxpSakv8CgBl8tBuJcLxkUFoasVRSKbW26Fw+Hg448/RmBgIN5++21s+3YLSosL8dWW75Bfabpat6lzNlwuJcxDhN2/F+BOmRKuQh4GdHKDUqNDmJeITe5Mjad6urd/s8+hLdk0WXrvvfeQkJBgcZ/Q0FCrzuXj44Nz584ZbSsuLmY/M3dMSUmJ0ba6ujqUl5ebPQbAH326fKviIoQQQqzVeB02a1pS6gs81qFfkCuKFGqInB1bdWHeN998EwEBAXjhhReQnJyM6EGPYsSMVegeHmJ1XadAdyEC3YW4WiBnx0qZWyblfiqTtzWbJkuenp7w9PRslXPFxMRgyZIlKCkpYbvWkpOTIZFI0K1bN7PHVFZW4sKFC4iMjAQAHDlyBHq9HgMGDGiVuAghhJCWMCQW1mqPAo+jR4/GsWPHEDtyFCpKiyDj6e8rkWkcq6llUuyxYCWHYRjG1kFYIzc3F+Xl5di9ezdWrFiBEydOAADCwsIgEomg0+nQp08f+Pn54d///jeKiorwyiuv4J///CdbOuDcuXN49dVXcfjwYfj71zfpjRw5EsXFxdi4cSNbOiAqKqpFpQMUCgWkUinkcjkkEknr3zwhhBBiQeNp+Ib3HAbIvlfdauN9fs+8gY0HLoDxDLd68d7G8QGwOFbK1P20FWt/f3eYZCkhIQHffPNNk+1Hjx7FkCFDAAB37tzB5MmTkZKSAhcXF8THx2P58uVwdKxvQEtJScHQoUORk5ODkJAQAPVFKadOnYpffvkFXC4Xzz77LNauXQuRSGR1bJQsEUIIsReGMT+ZhQpkFtbP1vaTCVqtRlHDROZkSjJOnz6NRYsWgcs1PcHe1BikuxVKpNwowZBwL3Tzt10X20OXLNkzSpYIIYTYi6sFcqw/kg2lpg5nbpXBXyZAjUaH/xsd0exA6Za06JSWliIsLAwKhQJxcXFYtvoL3JDXNWnFMsTj4uSAGyXViOvjh43HbkKu0kIq4CExIdpmCZO1v78fmjpLhBBCCPlzzA8ASAU8VNfWWTWzrvEyI82ty+bp6YlPVq6CE5+Pn3/+GQMGDcKH3yQ3qQ8VIBPCVeiI5Ixi3CipwhfHbqGiRgMhr74uVMqNEgtXsQ8PTZ0lQgghhBjXO2rJmKWWzkKTK7WoDIjB6Dlf4OCaWagqvIWr/5kC5TMzcemxTuz1pEIeege44uDVYvhIhCitqYWzkyOU2jpIBTwMCfcyew17QckSIYQQ0o7aY/Byw3pH1nZxtWQWWl6ZEr+k30VmoQK9+0XBYd5mHPrPPFTeuozs7R9jp+ge/v7F5+ByucgrU0Kp0cFbwkdZjRZBbkJMGxqOrBKFzccsWYuSpXai1+uh0WhsHQYhfxk8Hg8ODg62DoMQIyYXsG3D2V4tYU1Vb+DPJVkKKlXstshunfHhkcNY/NFC/Pj1erjwHdhEybAunLvQCW8O7ownunoj0F2I4d28TZ7fHlGy1A40Gg1ycnKg1+ttHQohfykymQw+Pj7gcDi2DoUQAPZZcLGh5qp6A38uyeLhwse9mloMCHXDmJ7+UNRqsWndZ3j75X9g0KBB7L75pRXwkklRptTAQ+RksyVLHgQlS22MYRgUFhbCwcEBgYGBZqdWEkJaD8MwUCqVbIV+X19fG0dESD17LLjYUg2XZPGTCTAk3AtJ5+40aC17DHx+fatUL18Jcr6dhxwXdwx4+X2Lg8zbq7bS/aBkqY3V1dVBqVTCz88PQmHH+6EgpKMSCAQAwFb1py45Yg+s7eqyZ42XZFHUas22luVfvwz57avQ6XRIW30dNyK3IHDYsCbntOfuSYBKB7Q5nU4HAHBycrJxJIT89Ri+oGi1lqdAE9KepEIeuvtJ7SoZaKlAdyGe7u2PwD9ax4LdhShSqJu0lj322GM4efIkwsLCUFhwF8OHD8f06dNRVVVldD5T3ZP2hJKldkJjJghpf/RzR0jbM7SWTR0WZrJFaMCAAUhLS8Nbb70FAFi3bh26d++OvXv3svtYSrjsAVXwbgWWKoCq1Wrk5OSgU6dOcHZ2tlGEhPw10c8fIfYlOTkZb775JnJychAZGYlz586xY3ltMWaJKngTuxMSEoLVq1dbvX9KSgo4HA4qKyvbLCZzEhMTIZPJ2v26hBDSkcmVWlwtkJut/v3EE08gPT0ds2bNwqZNm9hESa1Ww8WJY7fdk5QskSY4HI7F18KFC+/rvKmpqZg0aZLV+w8aNAiFhYWQSu1nWq0lLU0GCSGko2guCTLsY81yKS4uLlixYgX69OnDblu0aBH69OmDw4cPt3borYJmw5EmCgsL2T/v2LED8+fPR1ZWFrtNJBKxf2YYBjqdDo6Ozf9T8vT0bFEcTk5O8PHxadExhBBCWpe1M9WuFSmQni9HyB+lEaytIaVWq7FlyxYUFBRgxIgRGDt2LJYtW4auXbu2xe3cF2pZIk34+PiwL6lUCg6Hw76/du0axGIx9u/fj8jISPD5fPz222+4efMm4uLi4O3tDZFIhP79++PQoUNG523c8sLhcLBp0yY888wzEAqFCA8Px+7du9nPG3fDGbrGDh48iIiICIhEIjz11FNGyV1dXR2mT58OmUwGd3d3zJ49G/Hx8Rg7dqzFe05MTERQUBCEQiGeeeYZlJWVGX3e3P0NGTIEd+7cwbvvvsu2wAFAWVkZXnzxRfj7+0MoFKJnz5747rvvWvLXQQghNmXNTDW5UosDVwpRIFfj1K0y+EicwWGA3ZfvGi2qa4qzszPS09Mxbdo0ODg4YNeuXejevTvGPv8SLmdcb6vbahFKlsh9mTNnDpYvX47MzEz06tUL1dXVGDVqFA4fPoxLly7hqaeewpgxY5Cbm2vxPIsWLcLzzz+P33//HaNGjcKECRNQXl5udn+lUomVK1di69atOH78OHJzczFr1iz2808++QRJSUnYvHkzTp48CYVCgV27dlmM4ezZs3j99dcxdepUpKWlYejQofj444+N9mnu/n766ScEBATgo48+QmFhIZvAqdVqREZGYu/evbhy5QomTZqEV155BefOnbMYEyGEPIi8MqVViYo1rJmpll+pRJGiFjGhbvCTCtA3SIZ/7UrHkr2ZmLb9YrNxuLm5Ye3atbh8+TJG/X0M9Ho9fv7hO0T27o7NW5Ie+B4eGEMemFwuZwAwcrm8yWcqlYrJyMhgVCrVA1+nskbDXLlbyVTWaB74XNbavHkzI5VK2fdHjx5lADC7du1q9tju3bsz69atY98HBwczq1atYt8DYObNm8e+r66uZgAw+/fvN7pWRUUFGwsAJjs7mz3m888/Z7y9vdn33t7ezIoVK9j3dXV1TFBQEBMXF2c2zhdffJEZNWqU0bYXXnjB6L7v5/7MGT16NPPee+81ux95cK3580dIR5F7r4aJW3+CiV6SzMStP8Hk3qt54HM29/unskbDLNuXwby19TyzbF8G893ZO0z0kmRm5KpjTPSSZObntHyrr3XlbiXzzMJEJrRPDOPA4zNHLmQ+cPzmWPr93RCNWeog7K26aVRUlNH76upqLFy4EHv37kVhYSHq6uqgUqmabVnq1asX+2cXFxdIJBJ2iQpThEIhOnfuzL739fVl95fL5SguLkZ0dDT7uYODAyIjIy2uy5eZmYlnnnnGaFtMTAwOHDjwwPen0+mwdOlSfP/997h79y40Gg1qa2upmjsh5L5YM73esHabu9AJhXI1LuVXmFyPraVT9avVdcgsUiDCR9Jk/8aVyRUqLban5qJQroav1NniMieNBciEiI6OhnfnHhBry9Gva+fmD2pjlCx1EPa2+KKLi4vR+1mzZiE5ORkrV65EWFgYBAIBnnvuOWg0Govn4fGMf+A4HI7FxMbU/kw7lAq73/tbsWIF1qxZg9WrV6Nnz55wcXHBjBkzmj2OEEIas/ZLc8O128wlKi35Ai5XarH60HWkXC8BwMGQRzwwY0QXkwmT4feSVMgzWhKlJYvn2uOSMJQsdRD2vvjiyZMnkZCQwLbQVFdX4/bt2+0ag1Qqhbe3N1JTU/G3v/0NQH3LzsWLF42mqDYWERGBs2fPGm07c+aM0Xtr7s/JyYld3qbhcXFxcXj55ZcBAHq9HtevX0e3bt3u5xYJIX9h1n5pbrx2m6lEpSVfwPMrlbheXAW9vv6L6fXiaqu+sAe6C61OkvLKlEbxNky87AElSx2EPWbaDYWHh+Onn37CmDFjwOFw8OGHH1psIWor06ZNw7JlyxAWFoauXbti3bp1qKiosLjsxfTp0/Hoo49i5cqViIuLw8GDB4264ADr7i8kJATHjx/H+PHjwefz4eHhgfDwcPz44484deoUXF1d8dlnn6G4uJiSJUJIi7XkS3NziUpLzhUgE+IRbzEK5CoAHDziLWrVL+x5ZUpM236RbQlbN75fi1qi2gMlSx2IvWXaDX322WeYOHEiBg0aBA8PD8yePRsKhaLd45g9ezaKiorw6quvwsHBAZMmTUJsbKzFFecHDhyIL7/8EgsWLMD8+fMxYsQIzJs3D4sXL2b3seb+PvroI7z55pvo3LkzamtrwTAM5s2bh1u3biE2NhZCoRCTJk3C2LFjIZfL2+wZEEIeTq35pbkl55IKeZj4aCd09RHDXcxH/2C3Vv3CbmqMlUTAs6vGAVobrhXQ2nD2S6/XIyIiAs8//7xR8kP+Gujnj5AH19YTjPLKlHg76QIK5Cr4SQX45Nle2P17QbtMaLJ2bThqWSIPlTt37uDXX3/F4MGDUVtbi/Xr1yMnJwcvvfSSrUMjhJAOqa0nGEkEPPQMkIDL5aC7nxhVtXV2NaEJoKKU5CHD5XKRmJiI/v3749FHH0V6ejoOHTqEiIgIW4dGCCEdkjVFKR9EfqUSFco69AtyRYWyDgzQpte7H9SyRB4qgYGBOHnypK3DIISQh0ZbTzBqPNg8wkeCCB+JXY1ZomSJEEIIIRa15QQjc8mYVCiFXKnF1QK5zZMmSpYIIYQQYlOmkjF7WrmCxiwRQgghxO6YGlhuK5QsEUIIIR1cXpkSuy/fRV6Z7RKK1tbWA8tbgrrhCCGEkA6svStgt3QB3vtlTytXdJiWpSVLlmDQoEEQCoWQyWRNPr98+TJefPFFBAYGQiAQICIiAmvWrGn2vCEhIeBwOEav5cuXt8EdkPsREhKC1atX2zqMB5KQkICxY8c2u98rr7yCpUuXWn3elJQUcDgcVFZWWn3MwoULLa6T15Fs3LgRY8aMsXUYhNicqQrYbcUwjmj9kWxsOJYNuVLbZtcC6hOm7n5Sm8+I6zDJkkajwbhx4zB58mSTn1+4cAFeXl749ttvcfXqVfzf//0f5s6di/Xr1zd77o8++giFhYXsa9q0aa0dfofSOHls/Fq4cGG7xZKamopJkyZZvf/9JBD24PLly9i3bx+mT59u61DaREpKCvr16wc+n4+wsDAkJiZa3F+tViMhIQE9e/aEo6OjyWRz4sSJuHjxIk6cONE2QRPSQfQNcIWv1BllSg18pc7oG+DaZteyp3FE7anDdMMtWrQIAMz+T3bixIlG70NDQ3H69Gn89NNPmDp1qsVzi8Vi+Pj4tEqcD4PCwkL2zzt27MD8+fORlZXFbhOJROyfGYaBTqeDo2Pb/FPy9PRsk/M2p63vq7F169Zh3LhxRs/2YZGTk4PRo0fjrbfeQlJSEg4fPox//vOf8PX1RWxsrMljdDodBAIBpk+fjv/9738m93FycsJLL72EtWvX4vHHH2/LWyDErgW6C7FufD9cyq9A3wDXNu2Ca8kCvA+TDtOydD/kcjnc3Nya3W/58uVwd3dH3759sWLFCtTV1bVDdPbLx8eHfUmlUnA4HPb9tWvXIBaLsX//fkRGRoLP5+O3334z2dU0Y8YMDBkyhH2v1+uxbNkydOrUCQKBAL1798aPP/5oMZbG3XAcDgebNm3CM888A6FQiPDwcOzevRsAcPv2bQwdOhQA4OrqCg6Hg4SEBKuubWiRanhfX3/9NTgcDq5du2YU06pVq9C5c2cA9b/UX3/9dfa8Xbp0sar7tyGdTocff/yxSZfS1q1bERUVxSbzL730EkpKSsyeJzExETKZDLt27UJ4eDicnZ0RGxuLvLy8Jvtu3boVISEhkEqlGD9+PKqqqtjPDhw4gMceewwymQzu7u74+9//jps3b7bonhrauHEjOnXqhE8//RQRERGYOnUqnnvuOaxatcrsMS4uLtiwYQPeeOMNi19kxowZg927d0OlUt13fIQ8DALdhXi6t3+bJkrAn+OIpg4Ls+lU/vb20CZLp06dwo4dO5rtwpk+fTq2b9+Oo0eP4s0338TSpUvxwQcfWDymtrYWCoXC6NVSNTU1Zl9qtdrqfRv/kjC3X2ubM2cOli9fjszMTPTq1cuqY5YtW4YtW7Zg48aNuHr1Kt599128/PLLOHbsWIuuvWjRIjz//PP4/fffMWrUKEyYMAHl5eUIDAxkWyGysrJQWFjIJi7WXrvhfT333HOIiopCUlKS0T5JSUnsWnN6vR4BAQH44YcfkJGRgfnz5+Nf//oXvv/+e6vv5/fff4dcLkdUVJTRdq1Wi8WLF+Py5cvYtWsXbt++zSZ/5iiVSixZsgRbtmzByZMnUVlZifHjxxvtc/PmTezatQt79uzBnj17cOzYMaNxejU1NZg5cybOnz+Pw4cPg8vl4plnnoFer2f36d69O0QikdnXyJEj2X1Pnz6NESNGGMUQGxuL06dPW/2MzImKikJdXR3Onj37wOcihFinrccRGQpRtvV4qBZhbGj27NkMAIuvzMxMo2M2b97MSKVSi+dNT09nPDw8mMWLF7c4pq+++opxdHRk1Gq12X0WLFhgMla5XN5kX5VKxWRkZDAqlcpou6V7HjVqlNG+QqHQ7L6DBw822tfDw8Pkfver8fM+evQoA4DZtWuX0X7x8fFMXFyc0bZ33nmHjU+tVjNCoZA5deqU0T6vv/468+KLL5q9fnBwMLNq1Sr2PQBm3rx57Pvq6moGALN//36j+CoqKth9rLm2uftatWoV07lzZ/Z9VlaWyX+XDU2ZMoV59tln2femnk1DO3fuZBwcHBi9Xm92H4ZhmNTUVAYAU1VVZfJeN2/ezABgzpw5wx6TmZnJAGDOnj3LMEz9v12hUMgoFAp2n/fff58ZMGCA2euWlpYyAJj09HR22+3bt5kbN26YfeXn57P7hoeHM0uXLjU65969exkAjFKptHjPDNP883N1dWUSExNNfmbu548QYp8qazTMsn0ZzFtbzzPL9mUwlTWaNr2eXC43+/u7IZuOWXrvvfea/aYcGhraonNmZGRg+PDhmDRpEubNm9fimAYMGIC6ujrcvn0bXbp0MbnP3LlzMXPmTPa9QqFAYGBgi6/VkTVuBWlOdnY2lEolnnjiCaPtGo0Gffv2bdG5GrZkubi4QCKRWOyeasm1G9/X+PHjMWvWLJw5cwYDBw5EUlIS+vXrh65du7L7fP755/j666+Rm5sLlUoFjUbTohlnKpUKfD4fHA7HaPuFCxewcOFCXL58GRUVFWzLTm5uLrp162byXI6Ojujfvz/7vmvXrpDJZMjMzER0dDSA+q5NsVjM7uPr62v0/G7cuIH58+fj7NmzuHfvntF1e/ToAQAIDg62+v7amkAggFL51xhkSsjDztQA8rZaZqUlbJoseXp6tuoA3qtXr2LYsGGIj4/HkiVL7uscaWlp4HK58PLyMrsPn88Hn8+/3zABANXV1WY/c3BwMHpvKRHgco17Um/fvv1AcVnLxcWlSRwMwxht02r/bEI13O/evXvh7+9vtF9LnyWPZ9z0y+FwjLqIGmvJtRvfl4+PD4YNG4Zt27Zh4MCB2LZtm9GMzO3bt2PWrFn49NNPERMTA7FYjBUrVrSoW8jDwwNKpRIajQZOTk4A6rvCYmNjERsbi6SkJHh6eiI3NxexsbHQaDRWn9uU5p7fmDFjEBwcjC+//BJ+fn7Q6/Xo0aOH0XW7d++OO3fumL3G448/jv379wOof4bFxcVGnxcXF0MikUAgEDzQvQBAeXm5zSYCEEJal70OIO8ws+Fyc3NRXl6O3Nxc6HQ6pKWlAQDCwsIgEolw5coVDBs2DLGxsZg5cyaKiooA1Ccehv+Rnjt3Dq+++ioOHz4Mf39/nD59GmfPnsXQoUMhFotx+vRpdiyLq2vbTb0Emv5StsW+rcnT0xNXrlwx2paWlsb+Yu7WrRv4fD5yc3MxePDgNovDkGzodDp224Nee8KECfjggw/w4osv4tatW0ZjgE6ePIlBgwbh7bffZre1dDC0oRUqIyOD/fO1a9dQVlaG5cuXs62W58+fb/ZcdXV1OH/+PNuKlJWVhcrKSkRERFgVS1lZGbKysvDll1+yM8x+++23Jvvt27fPKBlurGESFBMTg3379hl9npycjJiYGKtisuTmzZtQq9Utbp0khNgneypE2VCHSZbmz5+Pb775hn1v+J/j0aNHMWTIEPz4448oLS3Ft99+i2+//ZbdLzg4mG1tUSqVyMrKYv8nz+fzsX37dixcuBC1tbXo1KkT3n33XaMuNmKdYcOGYcWKFdiyZQtiYmLw7bff4sqVK+zfk1gsxqxZs/Duu+9Cr9fjscceg1wux8mTJyGRSBAfH98qcQQHB4PD4WDPnj0YNWoUBALBA1/7H//4ByZPnozJkydj6NCh8PPzYz8LDw/Hli1bcPDgQXTq1Albt25FamoqOnXqZHXMnp6e6NevH3777Tc2WQoKCoKTkxPWrVuHt956C1euXMHixYubPRePx8O0adOwdu1aODo6YurUqRg4cCCbPDXH1dUV7u7u+O9//wtfX1/k5uZizpw5TfZrSTfcW2+9hfXr1+ODDz7AxIkTceTIEXz//ffYu3cvu8/69euxc+dOHD58mN2WkZEBjUaD8vJyVFVVsV+QGnZxnjhxAqGhoezsREJIx2dqUV2ba9ORU38RlgaIdfQBpuYGeDccQG0wf/58xtvbm5FKpcy7777LTJ061WgAul6vZ1avXs106dKF4fF4jKenJxMbG8scO3bM7PVNDfDeuXOn0T5SqZTZvHkz+/6jjz5ifHx8GA6Hw8THx1t1bUv3xTAM8/zzzzMAmK+//tpou1qtZhISEhipVMrIZDJm8uTJzJw5c5jevXuz+zQ3QJlhGOY///kPM3DgQKNt27ZtY0JCQhg+n8/ExMQwu3fvZgAwly5dMhmz4e/qf//7HxMaGsrw+XxmxIgRzJ07d9hzLliwwCg2hqkfxB4cHMy+T05OZiIiIhg+n8/06tWLSUlJMfncW+Lo0aNMnz59GCcnJyY0NNTo78sQV8MYGKb+7x7NTFZ48sknmWXLlpm9bkf/+SOEtC1rB3hzGKbRQBPSYgqFAlKpFHK5HBKJxOgztVqNnJwcdOrUCc7OzjaKkNg7lUqFLl26YMeOHffdPZWYmIgZM2Z0uOrl98swRvH69euQSk1/C6WfP0LsV16Zsl0KaVpi6fd3Qx2mG46Qh5lAIMCWLVtw7949W4fSYRQWFmLLli1mEyVCiP1q78V/HxQlS4TYiYbVzknzGhe6JITYnlyptWpwtqnFf+05WXpoK3gT8leTkJDwl+mCI4TYH7lSiw3HsrH+SDY2HMu2WIG7PRf/bQ3UskQIIYSQB9aSgpLtufhva6BkiRBCCCEPrKUFJQPdhXafJBlQskQIIYSQB2avBSVbAyVLhBBCCGkVdllQshXQAG9CCCGE2CW5UourBXKLg8XbA7UsEUIIIcTuGGbXGcZATR4cZrOuPWpZIiYNGTIEM2bMsNn1ExISMHbsWLuJhxBCSPsyNbvOVqhliXQIP/30E3i8h2ewICGEEMtaOruuLVGyRDoENzc3W4dACCGkHdnT7DrqhiNm1dXVYerUqZBKpfDw8MCHH34Iw7rLW7duRVRUFMRiMXx8fPDSSy+hpKSEPbaiogITJkyAp6cnBAIBwsPDsXnzZvbzvLw8PP/885DJZHBzc0NcXBxu375tNpbG3XAhISFYunQpJk6cCLFYjKCgIPz3v/81Oqal1yCEEPLgWnNQtlTIQ3c/qc3LEFCy1M4YhkFNTY1NXoZEx1rffPMNHB0dce7cOaxZswafffYZNm3aBADQarVYvHgxLl++jF27duH27dtISEhgj/3www+RkZGB/fv3IzMzExs2bICHhwd7bGxsLMRiMU6cOIGTJ09CJBLhqaeegkajsTq+Tz/9FFFRUbh06RLefvttTJ48GVlZWa16DUIIIdZryZInHQl1w7UzpVIJkUhkk2tXV1fDxcXF6v0DAwOxatUqcDgcdOnSBenp6Vi1ahXeeOMNTJw4kd0vNDQUa9euRf/+/VFdXQ2RSITc3Fz07dsXUVFRAOpbggx27NgBvV6PTZs2gcPhAAA2b94MmUyGlJQUPPnkk1bFN2rUKLz99tsAgNmzZ2PVqlU4evQounTp0mrXIISQvwJrF8BtTkuWPOlIqGWJmDVw4EA20QCAmJgY3LhxAzqdDhcuXMCYMWMQFBQEsViMwYMHAwByc3MBAJMnT8b27dvRp08ffPDBBzh16hR7nsuXLyM7OxtisRgikQgikQhubm5Qq9W4efOm1fH16tWL/TOHw4GPjw/bFdha1yCEkIdda7YGGQZlFynUNh+U3ZqoZamdCYVCVFdX2+zarUGtViM2NhaxsbFISkqCp6cncnNzERsby3ZxjRw5Enfu3MG+ffuQnJyM4cOHY8qUKVi5ciWqq6sRGRmJpKSkJuf29PS0Oo7Gs+M4HA70ej0AtNo1CCHkYdearUH2NCi7NVGy1M44HE6LusJs6ezZs0bvz5w5g/DwcFy7dg1lZWVYvnw5AgMDAQDnz59vcrynpyfi4+MRHx+Pxx9/HO+//z5WrlyJfv36YceOHfDy8oJEImmT2NvjGoQQ8jBojSn6eWVKXMqvQN8AVwS6Cx+KrreGqBuOmJWbm4uZM2ciKysL3333HdatW4d33nkHQUFBcHJywrp163Dr1i3s3r0bixcvNjp2/vz5+Pnnn5GdnY2rV69iz549iIiIAABMmDABHh4eiIuLw4kTJ5CTk4OUlBRMnz4d+fn5rRJ7e1yDEEIeBobWoKnDwu6rSnZemRLTtl/Ekr2ZmLb9IvLKbFc8sq1QskTMevXVV6FSqRAdHY0pU6bgnXfewaRJk+Dp6YnExET88MMP6NatG5YvX46VK1caHevk5IS5c+eiV69e+Nvf/gYHBwds374dQH134PHjxxEUFIR//OMfiIiIwOuvvw61Wt1qrUDtcQ1CCHlYPMgU/Uv5FSiUq+EudEKhXI1L+RVtEKFtcZiWzicnTSgUCkilUsjl8ia/iNVqNXJyctCpUyc4OzvbKEJC/pro54+QtmdoWSqUq+Erdca68f0Q6N4xBnZb+v3dEI1ZIoQQQsh9C3QXYt34fkZjlh42lCwRQggh5IEEugsfyiTJgMYsEUIIIYRYQMkSIYQQQogFlCwRQgghhFhAyVI7oUmHhLQ/+rkjhLQGSpbamIODAwDQSveE2IBSWV8cr/HSOIQQ0hI0G66NOTo6QigUorS0FDweD1wu5aeEtDWGYaBUKlFSUgKZTMZ+aSGEkPtByVIb43A48PX1RU5ODu7cuWPrcAj5S5HJZPDx8bF1GISQDq7DJEtLlizB3r17kZaWBicnJ1RWVjbZh8PhNNn23XffYfz48WbPW15ejmnTpuGXX34Bl8vFs88+izVr1kAkErVa7E5OTggPD6euOELaEY/HoxYlQkir6DDJkkajwbhx4xATE4OvvvrK7H6bN2/GU089xb6XyWQWzzthwgQUFhYiOTkZWq0Wr732GiZNmoRt27a1VugAAC6XS8stEEIIIR1Qh0mWFi1aBABITEy0uF9Lmt0zMzNx4MABpKamIioqCgCwbt06jBo1CitXroSfn98DxUwIIYSQju+hG208ZcoUeHh4IDo6Gl9//bXFqcOnT5+GTCZjEyUAGDFiBLhcLs6ePWv2uNraWigUCqMXIYQQQh5OHaZlyRofffQRhg0bBqFQiF9//RVvv/02qqurMX36dJP7FxUVwcvLy2ibo6Mj3NzcUFRUZPY6y5YtY1u6CCGEEPJws2myNGfOHHzyyScW98nMzETXrl2tOt+HH37I/rlv376oqanBihUrzCZL92vu3LmYOXMm+14ulyMoKIhamAghhJAOxPB7u7kCtjZNlt577z0kJCRY3Cc0NPS+zz9gwAAsXrwYtbW14PP5TT738fFBSUmJ0ba6ujqUl5dbHPfE5/ONzmd42IGBgfcdKyGEEEJso6qqClKp1OznNk2WPD094enp2WbnT0tLg6urq8lECQBiYmJQWVmJCxcuIDIyEgBw5MgR6PV6DBgwwOrr+Pn5IS8vD2Kx2GT5gvulUCgQGBiIvLw8SCSSVjvvw4ieVcvQ87IePSvr0bOyHj0r67Xls2IYBlVVVc1O6OowY5Zyc3NRXl6O3Nxc6HQ6pKWlAQDCwsIgEonwyy+/oLi4GAMHDoSzszOSk5OxdOlSzJo1iz3HuXPn8Oqrr+Lw4cPw9/dHREQEnnrqKbzxxhvYuHEjtFotpk6divHjx7doJhyXy0VAQEBr3zJLIpHQD5OV6Fm1DD0v69Gzsh49K+vRs7JeWz0rSy1KBh0mWZo/fz6++eYb9n3fvn0BAEePHsWQIUPA4/Hw+eef49133wXDMAgLC8Nnn32GN954gz1GqVQiKysLWq2W3ZaUlISpU6di+PDhbFHKtWvXtt+NEUIIIcSucRhalttuKRQKSKVSyOVy+ubRDHpWLUPPy3r0rKxHz8p69KysZw/P6qGrs/Qw4fP5WLBggdkxV+RP9Kxahp6X9ehZWY+elfXoWVnPHp4VtSwRQgghhFhALUuEEEIIIRZQskQIIYQQYgElS4QQQgghFlCyRAghhBBiASVLHcSSJUswaNAgCIVCyGQyW4djdz7//HOEhITA2dkZAwYMwLlz52wdkl06fvw4xowZAz8/P3A4HOzatcvWIdmlZcuWoX///hCLxfDy8sLYsWORlZVl67Ds1oYNG9CrVy+2aGBMTAz2799v67Ds3vLly8HhcDBjxgxbh2KXFi5cCA6HY/Sydq3Y1kbJUgeh0Wgwbtw4TJ482dah2J0dO3Zg5syZWLBgAS5evIjevXsjNja2ybp/BKipqUHv3r3x+eef2zoUu3bs2DFMmTIFZ86cQXJyMrRaLZ588knU1NTYOjS7FBAQgOXLl+PChQs4f/48hg0bhri4OFy9etXWodmt1NRUfPHFF+jVq5etQ7Fr3bt3R2FhIfv67bffbBMIQzqUzZs3M1Kp1NZh2JXo6GhmypQp7HudTsf4+fkxy5Yts2FU9g8As3PnTluH0SGUlJQwAJhjx47ZOpQOw9XVldm0aZOtw7BLVVVVTHh4OJOcnMwMHjyYeeedd2wdkl1asGAB07t3b1uHwTAMw1DLEunQNBoNLly4gBEjRrDbuFwuRowYgdOnT9swMvIwkcvlAAA3NzcbR2L/dDodtm/fjpqaGsTExNg6HLs0ZcoUjB492uj/W8S0GzduwM/PD6GhoZgwYQJyc3NtEkeHWRuOEFPu3bsHnU4Hb29vo+3e3t64du2ajaIiDxO9Xo8ZM2bg0UcfRY8ePWwdjt1KT09HTEwM1Go1RCIRdu7ciW7dutk6LLuzfft2XLx4EampqbYOxe4NGDAAiYmJ6NKlCwoLC7Fo0SI8/vjjuHLlCsRicbvGQi1LNjRnzpwmg9cav+gXPiG2NWXKFFy5cgXbt2+3dSh2rUuXLkhLS8PZs2cxefJkxMfHIyMjw9Zh2ZW8vDy88847SEpKgrOzs63DsXsjR47EuHHj0KtXL8TGxmLfvn2orKzE999/3+6xUMuSDb333ntISEiwuE9oaGj7BNNBeXh4wMHBAcXFxUbbi4uL4ePjY6OoyMNi6tSp2LNnD44fP46AgABbh2PXnJycEBYWBgCIjIxEamoq1qxZgy+++MLGkdmPCxcuoKSkBP369WO36XQ6HD9+HOvXr0dtbS0cHBxsGKF9k8lkeOSRR5Cdnd3u16ZkyYY8PT3h6elp6zA6NCcnJ0RGRuLw4cMYO3YsgPpuk8OHD2Pq1Km2DY50WAzDYNq0adi5cydSUlLQqVMnW4fU4ej1etTW1to6DLsyfPhwpKenG2177bXX0LVrV8yePZsSpWZUV1fj5s2beOWVV9r92pQsdRC5ubkoLy9Hbm4udDod0tLSAABhYWEQiUS2Dc7GZs6cifj4eERFRSE6OhqrV69GTU0NXnvtNVuHZneqq6uNvpXl5OQgLS0Nbm5uCAoKsmFk9mXKlCnYtm0bfv75Z4jFYhQVFQEApFIpBAKBjaOzP3PnzsXIkSMRFBSEqqoqbNu2DSkpKTh48KCtQ7MrYrG4ybg3FxcXuLu703g4E2bNmoUxY8YgODgYBQUFWLBgARwcHPDiiy+2fzC2no5HrBMfH88AaPI6evSorUOzC+vWrWOCgoIYJycnJjo6mjlz5oytQ7JLR48eNfnvKD4+3tah2RVTzwgAs3nzZluHZpcmTpzIBAcHM05OToynpyczfPhw5tdff7V1WB0ClQ4w74UXXmB8fX0ZJycnxt/fn3nhhReY7Oxsm8TCYRiGaf8UjRBCCCGkY6DZcIQQQgghFlCyRAghhBBiASVLhBBCCCEWULJECCGEEGIBJUuEEEIIIRZQskQIIYQQYgElS4QQQgghFlCyRAghhBBiASVLhBBCCCEWULJECCGEEGIBJUuEENJIaWkpfHx8sHTpUnbbqVOn4OTkhMOHD9swMkKILdDacIQQYsK+ffswduxYnDp1Cl26dEGfPn0QFxeHzz77zNahEULaGSVLhBBixpQpU3Do0CFERUUhPT0dqamp4PP5tg6LENLOKFkihBAzVCoVevTogby8PFy4cAE9e/a0dUiEEBugMUuEEGLGzZs3UVBQAL1ej9u3b9s6HEKIjVDLEiGEmKDRaBAdHY0+ffqgS5cuWL16NdLT0+Hl5WXr0Agh7YySJUIIMeH999/Hjz/+iMuXL0MkEmHw4MGQSqXYs2ePrUMjhLQz6oYjhJBGUlJSsHr1amzduhUSiQRcLhdbt27FiRMnsGHDBluHRwhpZ9SyRAghhBBiAbUsEUIIIYRYQMkSIYQQQogFlCwRQgghhFhAyRIhhBBCiAWULBFCCCGEWEDJEiGEEEKIBZQsEUIIIYRYQMkSIYQQQogFlCwRQgghhFhAyRIhhBBCiAWULBFCCCGEWEDJEiGEEEKIBf8Pkl2wYQQqGaYAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "plt.scatter(X_train, y_train, color=\"C0\", alpha=0.5, s=3, label=\"Training data\")\n", - "sort_order = np.argsort(X_train[:,0])\n", - "x_sorted = X_train[sort_order,:]\n", - "plt.plot(x_sorted, train_pi[sort_order,0], \"k--\", label=f\"True interval (alpha={ALPHA})\")\n", - "plt.plot(x_sorted, train_pi[sort_order,1], \"k--\", linestyle='--')\n", - "plt.plot(x_sorted, x_sinx(x_sorted), \"k-\", label=\"baseline\")\n", - "plt.xlabel(\"x\")\n", - "plt.ylabel(\"y\")\n", - "plt.title(\"Data\")\n", - "plt.legend()\n", - "plt.show()" - ] - }, - { - "cell_type": "markdown", - "id": "1e2bccb6", - "metadata": {}, - "source": [ - "## Models : Polynomial regression" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "id": "7ea39c6a", - "metadata": {}, - "outputs": [], - "source": [ - "polynomial_degree = 4\n", - "quantile_estimator = Pipeline(\n", - " [\n", - " (\"poly\", PolynomialFeatures(degree=polynomial_degree)),\n", - " (\"linear\", QuantileRegressor(\n", - " solver=\"highs\",\n", - " alpha=0,\n", - " ))\n", - " ]\n", - ")\n", - "estimator = Pipeline(\n", - " [\n", - " (\"poly\", PolynomialFeatures(degree=polynomial_degree)),\n", - " (\"linear\", LinearRegression())\n", - " ]\n", - ")" - ] - }, - { - "cell_type": "markdown", - "id": "89be07c8", - "metadata": {}, - "source": [ - "## Creation of Mapie instances" - ] - }, - { - "cell_type": "markdown", - "id": "3205e010", - "metadata": {}, - "source": [ - "We are going to test different methods : ``CV+``, ``CQR`` and ``CCP`` (with default parameters)" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "id": "f0d94476", - "metadata": {}, - "outputs": [], - "source": [ - "cv = ShuffleSplit(n_splits=1, test_size=0.3, random_state=random_state)\n", - "train_index, _ = list(cv.split(X_train))[0]\n", - "test_fold = np.ones(len(X_train))\n", - "test_fold[train_index] = -1\n", - "\n", - "pred_cv = PredefinedSplit(test_fold)\n", - "\n", - "# # ================== Basic Split ==================\n", - "mapie_split = MapieRegressor(estimator, method=\"base\", cv=pred_cv)\n", - "mapie_split.fit(X_train, y_train)\n", - "y_pred_split, y_pi_split = mapie_split.predict(X_test, alpha=ALPHA)\n", - "\n", - "# ================== CV + ==================\n", - "# MapieRegressor defaults to method='plus' and cv=5\n", - "mapie_cv = MapieRegressor(estimator, cv=pred_cv)\n", - "mapie_cv.fit(X_train, y_train)\n", - "y_pred_cv, y_pi_cv = mapie_cv.predict(X_test, alpha=ALPHA)\n", - "\n", - "# ================== CQR ==================\n", - "mapie_cqr = MapieQuantileRegressor(quantile_estimator, alpha=ALPHA)\n", - "mapie_cqr.fit(X_train, y_train)\n", - "y_pred_cqr, y_pi_cqr = mapie_cqr.predict(X_test)\n", - "\n", - "# ================== CCP ==================\n", - "mapie_ccp = SplitCPRegressor(estimator, alpha=ALPHA, cv=pred_cv)\n", - "mapie_ccp.fit(X_train, y_train)\n", - "y_pred_ccp, y_pi_ccp = mapie_ccp.predict(X_test)" - ] - }, - { - "cell_type": "markdown", - "id": "32023225", - "metadata": {}, - "source": [ - "## Prediction intervals plotting and adaptativity comparison" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "id": "9c26d26e", - "metadata": {}, - "outputs": [], - "source": [ - "\n", - "def plot_subplot(ax, X, y, mapie, y_pred, upper_pi, lower_pi, color_rgb, show_transform=False, ax_transform = None):\n", - " sort_order = np.argsort(X[:, 0])\n", - " lw = 1\n", - " color = mcolors.rgb2hex(color_rgb)\n", - " x_test_sorted = X[sort_order]\n", - " y_test_sorted = y[sort_order]\n", - " y_pred_sorted = y_pred[sort_order]\n", - " upper_pi_sorted = upper_pi[sort_order]\n", - " lower_pi_sorted = lower_pi[sort_order]\n", - "\n", - " # Plot test data\n", - " ax.scatter(x_test_sorted[:, 0], y_test_sorted, s=1, alpha=0.3, color='darkblue', label=\"Test Data\")\n", - "\n", - " # Plot prediction\n", - " ax.plot(x_test_sorted[:, 0], y_pred_sorted, lw=lw, color='black', label=\"Prediction\")\n", - "\n", - " # Plot prediction interval\n", - " ax.fill_between(x_test_sorted[:, 0], upper_pi_sorted, lower_pi_sorted, color=color, alpha=0.3, label=\"Prediction interval\")\n", - "\n", - " # Plot upper and lower prediction intervals\n", - " ax.plot(x_test_sorted[:, 0], upper_pi_sorted, lw=lw, color=color)\n", - " ax.plot(x_test_sorted[:, 0], lower_pi_sorted, lw=lw, color=color)\n", - "\n", - " # Plot true prediction interval\n", - " ax.plot(x_test_sorted[:, 0], test_pi[sort_order, 0], \"--k\", lw=lw*1.5, label='True PI')\n", - " ax.plot(x_test_sorted[:, 0], test_pi[sort_order, 1], \"--k\", lw=lw*1.5)\n", - "\n", - " if show_transform and isinstance(mapie, SplitCPRegressor) and isinstance(mapie.calibrator_, CCPCalibrator):\n", - " for calibrator in list(mapie.calibrator_.functions_) + [mapie.calibrator_]:\n", - " if isinstance(calibrator, CCPCalibrator):\n", - " if isinstance(calibrator, GaussianCCP):\n", - " sigmas = np.log(calibrator.sigmas_[:, 0])\n", - " else:\n", - " sigmas = np.zeros(calibrator.n_out)\n", - " for i, loc in enumerate(sigmas):\n", - " ax_transform.plot(x_test_sorted[:, 0], calibrator.transform(x_test_sorted)[:, i], lw=lw,\n", - " color=color)\n", - "\n", - "def need_transform(mapie):\n", - " if not isinstance(mapie, SplitCPRegressor) or not isinstance(mapie.calibrator_, CCPCalibrator):\n", - " return False\n", - " for calibrator in list(mapie.calibrator_.functions_) + [mapie.calibrator_]:\n", - " if isinstance(calibrator, CCPCalibrator):\n", - " if isinstance(calibrator, GaussianCCP):\n", - " return True\n", - " return False\n", - "\n", - "def plot_figure(mapies, y_preds, y_pis, titles, show_transform=False):\n", - " cp = list(sns.color_palette())*10\n", - " ncols = min(3, len(titles))\n", - " nrows = int(np.ceil(len(titles) / ncols))\n", - " ax_need_transform = np.zeros((nrows, ncols))\n", - " if show_transform: \n", - " for i, mapie in enumerate(mapies):\n", - " ax_need_transform[i//ncols, i%ncols] = need_transform(mapie)\n", - " row_need_transform = np.max(ax_need_transform, axis=1)\n", - " height_ratio = np.array([item for x in row_need_transform for item in ([3] if x == 0 else [3, 1])])\n", - " fig, axes = plt.subplots(nrows=nrows + int(sum(row_need_transform)), ncols=ncols, figsize=(ncols*4, nrows*5), height_ratios=height_ratio)\n", - "\n", - " for ax in axes[np.where(height_ratio == 1)[0]-1, :].flatten():\n", - " ax.tick_params(axis='x', which='both', bottom=False, top=False, labelbottom=False)\n", - "\n", - " transform_axes = np.full((nrows, ncols), None)\n", - " transform_axes[row_need_transform==1, :] = axes[height_ratio==1, :]\n", - " transform_axes = transform_axes.flatten()\n", - " main_axes = axes[height_ratio==3, :].flatten()\n", - " else:\n", - " fig, axes = plt.subplots(nrows=nrows, ncols=ncols, figsize=(ncols*4, nrows*4))\n", - " main_axes = axes.flatten()\n", - " transform_axes = np.full(main_axes.shape, None)\n", - "\n", - " for i, (m_ax, t_ax, mapie, y_pred, y_pi, title) in enumerate(zip(main_axes, transform_axes, mapies, y_preds, y_pis, titles)):\n", - " lower_bound = y_pi[:, 0, 0]\n", - " upper_bound = y_pi[:, 1, 0]\n", - "\n", - " plot_subplot(m_ax, X_test, y_test, mapie, y_pred, upper_bound, lower_bound, cp[i], show_transform=ax_need_transform.flatten()[i], ax_transform=t_ax)\n", - " m_ax.set_title(title)\n", - " if i % 3 == 0:\n", - " m_ax.set_ylabel('Y')\n", - " if t_ax is not None:\n", - " t_ax.set_title(\"Transformation\")\n", - " if i >= len(titles) - ncols:\n", - " t_ax.set_xlabel('X')\n", - " else:\n", - " m_ax.set_xlabel('X')\n", - " m_ax.legend()\n", - "\n", - " fig.tight_layout()\n", - " plt.show()\n", - "\n", - "def plot_widths(titles, y_pis):\n", - " sort_order = np.argsort(X_test[:, 0])\n", - " cp = list(sns.color_palette())*10\n", - " plt.figure(figsize=(8, 6))\n", - " for i, (title, pi) in enumerate(zip(titles, y_pis)):\n", - " plt.plot(X_test[sort_order, 0], (pi[sort_order, 1, 0] - pi[sort_order, 0, 0]), lw=2, color=mcolors.rgb2hex(cp[i]), label=title)\n", - "\n", - " plt.title(\"Prediction interval width\")\n", - " plt.xlabel(\"X\")\n", - " plt.ylabel(\"Width\")\n", - " plt.legend(fontsize=14)\n", - " plt.tight_layout()\n", - " plt.show()" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "id": "f6572d17", - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABKUAAAMWCAYAAAAgRDUeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3xb9b3/8Ze2ZNny3nsltrOcRcgOSSAQdlpWoRBWGaWUW1pa2nsL9N4fvRRKW7jMllHCHmEGCFmQxEnIdIZjJ45n4iVv2bIsWdL5/SFbsWMnhJDYSfx5PvAjWD6SvpKPz1vnc75DpSiKghBCCCGEEEIIIYQQg0g91A0QQgghhBBCCCGEEMOPFKWEEEIIIYQQQgghxKCTopQQQgghhBBCCCGEGHRSlBJCCCGEEEIIIYQQg06KUkIIIYQQQgghhBBi0ElRSgghhBBCCCGEEEIMOilKCSGEEEIIIYQQQohBJ0UpIYQQQgghhBBCCDHopCglhBBCCCGEEEIIIQadFKWGqfLyclQqFa+++upQN2VAA7Xv4YcfRqVS/eDH3rx5M3q9noqKih/8WINhqH9Xc+bMYc6cOUPy3GeawXivfve73zFlypRT+hxCCCGEEEIIMRikKDXEXn31VVQqVZ+vqKgozjvvPL744ouhbt5xq6+v55e//CVZWVmYTCaioqI455xz+O1vf0t7e/spe95HH32Ujz766Hvd5w9/+APXXXcdycnJp6ZR4rR2IvtMb3v37uXhhx+mvLz8pLXp+7jvvvvYuXMnn3zyyZA8vxDixJSUlHDHHXeQlpaG0WjEYrEwffp0/vGPf5CXl4dKpeI///M/j3r/4uJiVCoVv/rVrwax1UIIIU6mY2WBw+Hwb9fV1cVTTz3F5MmTCQoKIjAwkMmTJ/P000/jdrv7PW5KSkqf80mz2cw555zDa6+9NpgvT4gTolIURRnqRgxnr776KjfffDN/+tOfSE1NRVEU6urqePXVVykoKODTTz/lkksuOenPqygKTqcTnU6HRqP5QY/V1NTE+PHjsdls3HLLLWRlZdHY2MiuXbv47LPP2LVrFykpKd/rMcvLy0lNTeWVV15h8eLFALjdbtxuN0aj0b9dYGAgP/7xj4+7F1F+fj7jx49nw4YNTJ069Xu1aaiczN/Viejp+fP1118P+nOfCt93nznS+++/z1VXXcWaNWv69YpyuVwA6PX6H9jKY7vmmmuoqalh7dq1p/R5hBAnx7Jly7jqqqswGAzceOONjB49GpfLxfr16/nggw9YvHgx69atw+VyUVJSMuBjPPLIIzz88MNs27aNCRMmDPIrEEII8UMdTxa8+OKL2O12Lr74Yr755hsuueQSLrzwQtRqNV9++SWffPIJc+fO5dNPPyUgIMD/2CkpKYSGhnL//fcDUFNTw7/+9S/279/Piy++yO233z5UL1uI76Qd6gYIn4suuohJkyb5v7/11luJjo7mrbfeOiVFKZVK1ae480O89NJLVFZWkpeXx7Rp0/r8zGaznbQTdK1Wi1b7w3bZV155haSkJM4999yT0qbBcDJ/V+LUOtXFqB5XX301V111FaWlpaSlpQ3KcwohTkxZWRnXXnstycnJrF69mtjYWP/Pfv7zn3PgwAGWLVtGUlIS//Vf/8WmTZsGzKi33nqLrKysYxakUlJSWLx4MQ8//PCpeClCCCFO0PFmAcCvfvUrvvnmG55++mnuuece/3Z33XUXzzzzDPfccw+/+c1veOaZZ/o8R3x8PDfccIP/+8WLF5OWlsbf/vY3KUqJ05oM3ztNhYSEYDKZ+hVhnnjiCaZNm0Z4eDgmk4mJEyfy/vvv97v/ihUrmDFjBiEhIQQGBjJy5Eh+//vf+39+tHmKioqKuPrqq4mMjMRkMjFy5Ej+8Ic/HLOtJSUlaDSaAT9EWyyWPgWVOXPmMHr0aLZt28a0adMwmUykpqby/PPPf+d7cuScUiqVCrvdzr///W9/V9WeXlVH89FHHzF37tx+c1OlpKRwySWXsH79es455xyMRiNpaWkDdnltaWnhvvvuIzExEYPBQEZGBo899hher9e/zYQJE1i0aFGf+40ZMwaVSsWuXbv8t73zzjuoVCoKCwuP2uaBfleLFy8mMDCQyspKLrnkEgIDA4mPj/eH0+7du5k7dy5ms5nk5GTefPPNPo/ZM2x07dq13HHHHYSHh2OxWLjxxhtpbm4+5nsI4HQ6eeihh8jIyMBgMJCYmMgDDzyA0+nss51KpeKee+7hvffeIycnB5PJxNSpU9m9ezcAL7zwAhkZGRiNRubMmTPgkLhvv/2WCy+8kODgYAICApg9ezZ5eXl9tunZNw4cOMDixYsJCQkhODiYm2++mY6Ojj7tOdo+U1FRwd13383IkSMxmUyEh4dz1VVX9WnTq6++ylVXXQXAeeed53+Mnl5kA80pZbVa/UVmo9HIuHHj+Pe//91nm57f8RNPPMGLL75Ieno6BoOByZMns2XLln7vyfz58wH4+OOPB/4FCSFOG3/5y19ob2/npZde6nMS0iMjI4Nf/vKXXH/99QD9jtcA27ZtY9++ff5thBBCnFmONwsOHTrESy+9xNy5c/sUpHr8/Oc/57zzzuPFF1+kqqrqmM8ZGRlJVlbWUXvgCnG6kKLUaaK1tZWGhgbq6+spKCjgrrvuor29vU+1G+Af//gH48eP509/+hOPPvooWq2Wq666yl9ZBygoKOCSSy7B6XTypz/9ib/+9a9cdtll/U7kj7Rr1y6mTJnC6tWruf322/nHP/7BFVdcwaeffnrM+yUnJ+PxeFiyZMlxvdbm5mYWLlzIxIkT+ctf/kJCQgJ33XUXL7/88nHdv8eSJUswGAzMnDmTJUuWsGTJEu64446jbl9VVUVlZeVRrzIfOHCAH//4x5x//vn89a9/JTQ0lMWLF1NQUODfpqOjg9mzZ/P6669z44038tRTTzF9+nQefPDBPvN8zJw5k/Xr1/u/b2pqoqCgALVazbp16/y3r1u3jsjISLKzs7/XawfweDxcdNFFJCYm8pe//IWUlBTuueceXn31VS688EImTZrEY489RlBQEDfeeCNlZWX9HuOee+6hsLCQhx9+mBtvvJE33niDK664gmON6vV6vVx22WU88cQTXHrppTz99NNcccUV/O1vf+Oaa67pt/26deu4//77uemmm3j44YcpLCzkkksu4ZlnnuGpp57i7rvv5je/+Q0bN27klltu6XPf1atXM2vWLGw2Gw899BCPPvooLS0tzJ07l82bN/d7rquvvpq2tjb+/Oc/c/XVV/Pqq6/yyCOP+H9+rH1my5YtbNiwgWuvvZannnqKO++8k1WrVjFnzhx/YWvWrFnce++9APz+97/3P8bRfn8Oh4M5c+awZMkSrr/+eh5//HGCg4NZvHgx//jHP/pt/+abb/L4449zxx138D//8z+Ul5ezaNEiurq6+mwXHBxMenr6d/5NCyGG3qeffkpaWlq/nsRHSk1NZdq0abz77rt4PJ4+P+spVP3kJz85Ze0UQghx6hxvFnzxxRd4PB5uvPHGo25z44034na7+fLLL4/5WG63m0OHDhEaGnpCbRZi0ChiSL3yyisK0O/LYDAor776ar/tOzo6+nzvcrmU0aNHK3PnzvXf9re//U0BlPr6+qM+b1lZmQIor7zyiv+2WbNmKUFBQUpFRUWfbb1e7zFfQ21trRIZGakASlZWlnLnnXcqb775ptLS0tJv29mzZyuA8te//tV/m9PpVHJzc5WoqCjF5XIdtX0PPfSQcuQuazablZtuuumY7euxcuVKBVA+/fTTfj9LTk5WAGXt2rX+26xWq2IwGJT777/ff9t///d/K2azWdm/f3+f+//ud79TNBqNUllZqSiKorz33nsKoOzdu1dRFEX55JNPFIPBoFx22WXKNddc47/f2LFjlSuvvPKY7R7ovbjpppsUQHn00Uf9tzU3Nysmk0lRqVTK22+/7b+9qKhIAZSHHnrIf1vPfjdx4kT/e64oivKXv/xFAZSPP/7Yf9vs2bOV2bNn+79fsmSJolarlXXr1vVp5/PPP68ASl5env+2nn25rKzMf9sLL7ygAEpMTIxis9n8tz/44IMK4N/W6/UqmZmZyoIFC/rsgx0dHUpqaqpy/vnn+2/r2TduueWWPm268sorlfDw8D63HW2fOfJvS1EUZePGjQqgvPbaa/7ben63a9as6bf9ke/V3//+dwVQXn/9df9tLpdLmTp1qhIYGOh//T2/4/DwcKWpqcm/7ccff3zUffaCCy5QsrOz+90uhDh9tLa2KoBy+eWXH9f2zzzzjAIoy5cv99/m8XiU+Ph4ZerUqd95/+Tk5D7HeiGEEEPv+2TBfffdpwDKjh07jrrN9u3bFUD51a9+5b8tOTlZueCCC5T6+nqlvr5e2b17t/LTn/5UAZSf//znJ+FVCHHqSE+p08QzzzzDihUrWLFiBa+//jrnnXcet912G0uXLu2znclk8v9/c3Mzra2tzJw5k+3bt/tvDwkJAXxDe3oPKTuW+vp61q5dyy233EJSUlKfnx051O1I0dHR7Ny5kzvvvJPm5maef/55fvKTnxAVFcV///d/9+t1o9Vq+/Ro0uv13HHHHVitVrZt23Zc7T0RjY2NAEe9WpCTk8PMmTP930dGRjJy5EhKS0v9t7333nvMnDmT0NBQGhoa/F/z58/H4/H4J57ueZye79etW8fkyZM5//zz/T2lWlpa2LNnT5/n/L5uu+02//+HhIQwcuRIzGYzV199tf/2kSNHEhIS0ud19PjZz36GTqfzf3/XXXeh1Wr5/PPPj/qc7733HtnZ2WRlZfV5D+bOnQvAmjVr+mw/b968PhPdT5kyBYAf/ehHBAUF9bu9p535+fkUFxfzk5/8hMbGRv/z2O125s2bx9q1a/vt33feeWef72fOnEljYyM2m+2or6dH77+trq4uGhsbycjIICQkpM/f1/fx+eefExMTw3XXXee/TafTce+999Le3s4333zTZ/trrrmmz/7Zs28M9Lvr2QeFEKevnmNP72PdsVxzzTXodLo+Q/i++eYbqqqq+g3dczqdfY7BDQ0NeL1eOjo6+t0uhBBi6HyfLGhra/vObXt+1rNtj6+++orIyEgiIyMZM2YMS5Ys4eabb+bxxx8/0aYLMSikKHWaOOecc5g/fz7z58/n+uuvZ9myZeTk5HDPPff4V/QC+Oyzzzj33HMxGo2EhYURGRnJc889R2trq3+ba665hunTp3PbbbcRHR3Ntddey7vvvnvMAlXPSe/o0aNPqP2xsbE899xz1NTUsG/fPp566ikiIyP54x//yEsvvdRn27i4OMxmc5/bRowYATDgnEIn25FFsh5HFuPAd+Lfe46l4uJivvzyS/8Bv+erZ44fq9UK+Ap1mZmZ/gLUunXrmDlzJrNmzaK6uprS0lLy8vLwer0nXJQyGo1ERkb2uS04OJiEhIR+hcTg4OAB54rKzMzs831gYCCxsbHH/D0UFxdTUFDQ7z3o+R32vAc9jnxfg4ODAUhMTBzw9p52FhcXA3DTTTf1e65//etfOJ3OPvv9QM/VU+A5nnmyHA4Hf/zjH/1zhUVERBAZGUlLS0u/5zleFRUVZGZmolb3PdT2DPerqKg44fYrivKdBWMhxNCyWCxA/xOHowkPD2fBggV8+OGHdHZ2Ar6he1qtts/FBvBNfH7ksfHgwYM8/vjj/W4XQggxdL5PFhyt4NRbz8+ioqL63D5lyhRWrFjBl19+yRNPPEFISAjNzc2DthCPECdKVt87TanVas477zz+8Y9/UFxczKhRo1i3bh2XXXYZs2bN4tlnnyU2NhadTscrr7zS56qqyWRi7dq1rFmzhmXLlvHll1/yzjvvMHfuXL766is0Gs0pa7dKpWLEiBGMGDGCiy++mMzMTN54440+PXqGSnh4OHD0AsXR3pfeRSyv18v555/PAw88MOC2PYUZgBkzZrBq1SocDgfbtm3jj3/8I6NHjyYkJIR169ZRWFhIYGAg48ePP6HXc7T2Hs/r+CG8Xi9jxozhySefHPDnRxabTrSdPUXUxx9/nNzc3AG3DQwM/F6PeSy/+MUveOWVV7jvvvuYOnUqwcHBqFQqrr322uPucfhDfZ/2Nzc3ExERcaqbJIT4ASwWC3FxcezZs+e473PDDTfw2Wef8dlnn3HZZZfxwQcfcMEFF/QrLi1YsIAVK1b0u+8FF1xwzLlIhBBCDK7vkwU5OTmAb67fo33+7Vk06cgVmCMiIvwXyhcsWEBWVhaXXHIJ//jHP/rMfSvE6UaKUqcxt9sNQHt7OwAffPABRqOR5cuXYzAY/Nu98sor/e6rVquZN28e8+bN48knn+TRRx/lD3/4A2vWrPEfrHrrOah9nw/O3yUtLY3Q0FBqamr63F5dXY3dbu/TW2r//v0AfYZ5HY/v01MkKysLYMAJv49Xeno67e3tA76HR5o5cyavvPIKb7/9Nh6Ph2nTpqFWq5kxY4a/KDVt2rRTWiT8LsXFxZx33nn+79vb26mpqWHhwoVHvU96ejo7d+5k3rx5p7SnTnp6OuAL8uN5v4/X0dr8/vvvc9NNN/HXv/7Vf1tnZyctLS3Hdf+BJCcns2vXLrxeb5/eUkVFRf6fn6iysjLGjRt3wvcXQgyOSy65hBdffJGNGzcyderU79z+sssuIygoiDfffBOdTkdzc/OAq+7Fxsb2W8GpZ+XYk3nMFEII8cMdbxZcdNFFaDQalixZctQLDK+99hp6vZ7LL7/8mM958cUXM3v2bB599FHuuOOOfiNVhDhdyPC901RXVxdfffUVer3eP9RHo9GgUqn6rMpTXl7ORx991Oe+TU1N/R6vp9LudDoHfL7IyEhmzZrFyy+/TGVlZZ+ffVcvk2+//Ra73d7v9s2bN9PY2MjIkSP73O52u3nhhRf837tcLl544QUiIyOZOHHiMZ/rSGazuV/R4Gji4+NJTExk69at3+s5erv66qvZuHEjy5cv7/ezlpYWfyERDs8H9NhjjzF27Fj/8LSZM2eyatUqtm7d+oPmkzoZXnzxxT4ruz333HO43W4uuuiio97n6quvpqqqin/+85/9fuZwOAbcF07ExIkTSU9P54knnvAXZnurr68/occ92j6j0Wj67etPP/10v1WwegL9ePa7hQsXUltbyzvvvOO/ze128/TTTxMYGMjs2bO//wvAt1pnSUnJd67gIoQYeg888ABms5nbbruNurq6fj8vKSnpsxqnyWTiyiuv5PPPP+e5557DbDZ/54mHEEKI09vxZkFCQgK33norK1eu5Lnnnuu33fPPP8/q1au54447/KNAjuW3v/0tjY2NA35uF+J0IT2lThNffPGFv/eE1WrlzTffpLi4mN/97nf+ccgXX3wxTz75JBdeeCE/+clPsFqtPPPMM2RkZPi7cQL86U9/Yu3atVx88cUkJydjtVp59tlnSUhIYMaMGUdtw1NPPcWMGTOYMGECP/vZz0hNTaW8vJxly5aRn59/1PstWbKEN954gyuvvJKJEyei1+spLCzk5Zdfxmg08vvf/77P9nFxcTz22GOUl5czYsQI3nnnHfLz83nxxRf7TLp9PCZOnMjKlSt58skniYuLIzU11T9h9kAuv/xyPvzwwxOej+c3v/kNn3zyCZdccgmLFy9m4sSJ2O12du/ezfvvv095ebl/SFVGRgYxMTHs27ePX/ziF/7HmDVrFr/97W8Bhrwo5XK5mDdvHldffTX79u3j2WefZcaMGVx22WVHvc9Pf/pT3n33Xe68807WrFnD9OnT8Xg8FBUV8e6777J8+XImTZr0g9umVqv517/+xUUXXcSoUaO4+eabiY+Pp6qqijVr1mCxWPj000+/9+MebZ+55JJLWLJkCcHBweTk5LBx40ZWrlzZL/Bzc3PRaDQ89thjtLa2YjAYmDt3br9x/eCbSP6FF15g8eLFbNu2jZSUFN5//33y8vL4+9//ftyTHx9p5cqVKIoiJ6pCnAHS09N58803ueaaa8jOzubGG29k9OjRuFwuNmzYwHvvvcfixYv73OeGG27gtddeY/ny5Vx//fVydVsIIc5w3ycLnnzySYqKirj77rv58ssvufDCCwFYvnw5H3/8MXPnzj3uycsvuugiRo8ezZNPPsnPf/7z732uJcSgGJpF/0SPV155RQH6fBmNRiU3N1d57rnnFK/X22f7l156ScnMzFQMBoOSlZWlvPLKK8pDDz2k9P5Vrlq1Srn88suVuLg4Ra/XK3Fxccp1112n7N+/379NzxL0r7zySp/H37Nnj3LllVcqISEhitFoVEaOHKn813/91zFfw65du5Tf/OY3yoQJE5SwsDBFq9UqsbGxylVXXaVs3769z7azZ89WRo0apWzdulWZOnWqYjQaleTkZOX//u//+mw3UPuOfJ2KoihFRUXKrFmzFJPJpADKTTfddMy29iyhum7duj63JycnKxdffHG/7WfPnq3Mnj27z21tbW3Kgw8+qGRkZCh6vV6JiIhQpk2bpjzxxBOKy+Xqs+1VV12lAMo777zjv83lcikBAQGKXq9XHA7HMdurKAO/FzfddJNiNpsHbO+oUaP63X7k6+vZ77755hvlZz/7mRIaGqoEBgYq119/vdLY2Pid74HL5VIee+wxZdSoUYrBYFBCQ0OViRMnKo888ojS2trq344BlqHteT2PP/54n9vXrFmjAMp7773X5/YdO3YoixYtUsLDwxWDwaAkJycrV199tbJq1Sr/Nj37Rn19fZ/79rzOsrIy/21H22eam5uVm2++WYmIiFACAwOVBQsWKEVFRUpycnK//eqf//ynkpaWpmg0GgVQ1qxZc9T3qq6uzv+4er1eGTNmTL+/u6O9Jz3v4ZFLvF9zzTXKjBkz+m0rhDh97d+/X7n99tuVlJQURa/XK0FBQcr06dOVp59+Wuns7OyzrdvtVmJjYxVA+fzzz4/7OZKTk/sdL4QQQpw+jjcLXC6X8ve//12ZOHGiEhAQ4D9PvOmmmxSPx9PvcY92LqMoivLqq68OeN4nxOlCpSgnafZjIY7DnDlzaGhoOKlzV31f8+bNIy4ujiVLlgxZG4baq6++ys0338yWLVtOSq8mMXhqa2tJTU3l7bfflp5SQgghhBDDgM1mY/bs2ZSUlLB27dqjToIuxJlI5pQSw86jjz7KO++8Q0VFxVA3RYjv7e9//ztjxoyRgpQQQgghxDBhsVj44osviIiIYOHChXIeI84qMqeUGHamTJmCy+Ua6mYIcUL+93//d6ibIIQQQgghBllMTAylpaVD3QwhTjrpKSWEEEIIIYQQQgghBp3MKSWEEEIIIYQQQgghBp30lBJCCCGEEEIIIYQQg06KUkIIIYQQQgghhBBi0MlE50fwer1UV1cTFBSESqUa6uYIIcRpQ1EU2traiIuLQ60+e69pSA4IIcTAJAeEEGJ4OxU5IEWpI1RXV5OYmDjUzRBCiNPWwYMHSUhIGOpmnDKSA0IIcWySA0IIMbydzByQotQRgoKCAN+bbLFYhrg1Qghx+rDZbCQmJvqPk2cryQEhhBiY5IAQQgxvpyIHpCh1hJ4uuhaLRUJICCEGcLYPZZAcEEKIY5McEEKI4e1k5sDZOxhcCCGEEEIIIYQQQpy2pCglhBBCCCGEEEIIIQadFKWEEEIIIYQQQgghxKCTopQQQgghhBBCCCGEGHRSlBJCCCGEEEIIIYQQg06KUkIIIYQQQgghhBBi0ElRSgghhBBCCCGEEEIMOilKCSGEEEIIIYQQQohBJ0UpIYQQQgghhBBCCDHopCglhBBCCCGEEEIIIQadFKWEEEIIIYQQQgghxKCTopQQQgyRiopWPv+8lIqK1qFuihBCiCEgOSCEEMOb5ABoh7oBQggxXBUUNLJxYzUAycnBQ9waIYQQg01yQAghhjfJASlKCSHEkBk1KrzPv0IIIYYXyQEhhBjeJAekKCWEEEMmOTl42F4REUIIITkghBDDneSAzCklhBBCCCGEEEIIIYaAFKWEEEIIIYQQQgghxKCTopQQQgghhBBCCCGEGHRSlBJCCCGEEEIIIYQQg06KUkIIIYQQQgghhBBi0ElRSgghhBBCCCGEEEIMOilKCSGEEEIIIYQQQohBJ0UpIYQQQgghhBBCCDHopCglhBBCCCGEEEIIIQadFKWEEEIIIYQQQgghxKCTopQQQgghhBBCCCGEGHRSlBJCCCGEEEIIIYQQg06KUkIIIYQQQgghhBBi0ElRSgghhBBCCCGEEEIMOilKCSGEEEIIIYQQQohBJ0UpIYQQQgghhBBCCDHopCglhBBCCCGEEEIIIQadFKWEEEIIIYQQQgghxKCTopQQQgghhBBCCCGEGHRSlBJCCCGEEEIIIYQQg06KUkIIIYQQQgghhBBi0ElRSgghhBBCCCGEEEIMOilKCSGEEEIIIYQQQohBJ0UpIYQQQgghhBBCCDHopCglhBBCCCGEEEIIIQadFKWEEGKQ5eUd4pFH8sjLOzTUTRFCCDFEJAuEEGJ4kxzw0Q51A4QQYrhZubKClSsrAZg+PWGIWyOEEGIoSBYIIcTwJjngI0UpIYQYZPPnJ/f5VwghxPAjWSCEEMOb5ICPFKWEEGKQTZ+eMKyvhgghhJAsEEKI4U5ywEfmlBJCCCGEEEIIIYQQg06KUkIIIYQQQgghhBBi0ElRSgghznIVFa18/nkpFRWtQ90UIYQQQ0ByQAghhrfTOQdkTikhhDjLFRQ0snFjNQDJycFD3BohhBCDTXJACCGGt9M5B6QoJYQQZ7lRo8L7/CuEEGJ4kRwQQojh7XTOASlKCSHEWS45Ofi0uyIihBBi8EgOCCHE8HY654DMKSWEEEIIIYQQQgghBt1ZVZR6+OGHUalUfb6ysrKGullCCCEGieSAEEIMb5IDQghxZjnrhu+NGjWKlStX+r/Xas+6lyiEEOIYJAeEEGJ4kxwQQogzx1l3hNZqtcTExAx1M4QQQgwRyQEhhBjeJAeEEOLMcVYN3wMoLi4mLi6OtLQ0rr/+eiorK4e6SUIIIQaR5IAQQgxvkgNCCHHmOKt6Sk2ZMoVXX32VkSNHUlNTwyOPPMLMmTPZs2cPQUFBA97H6XTidDr939tstsFqrhBCiJNMckAIIYY3yQEhhDizqBRFUYa6EadKS0sLycnJPPnkk9x6660DbvPwww/zyCOP9Lu9tbUVi8VyqpsohBBnDJvNRnBw8Bl1fJQcEEKIk0dyQAghhrdTkQNn3fC93kJCQhgxYgQHDhw46jYPPvggra2t/q+DBw8OYguFEEKcSpIDQggxvA12DngV7wnfVwghhqOzuijV3t5OSUkJsbGxR93GYDBgsVj6fAlxNsrLO8Qjj+SRl3doqJsixKCRHBCiL8kCMdwMZg4ctB3kR5/8iD31e060uUKccpID4nRzVhWlfv3rX/PNN99QXl7Ohg0buPLKK9FoNFx33XVD3TQhhtzKlRWsXFnJypUVQ90UIU4ZyQEhjk2yQJzthjIHos3RdLg7+O2639Lp7jzlzyfEiZAcEKebs2qi80OHDnHdddfR2NhIZGQkM2bMYNOmTURGRg5104QYcvPnJ/f591SpqGiloKCRUaPCSU4OPqXPJcSRJAeEOLbByALJATGUhjIH9Bo9t425jT9t/BPP5j/Lryb96pQ/pxDfl+SAON2cVUWpt99+e6ibIARer0Kj3UWj3Ulju8v3/+1ObA43dpebDpcHh8uNo8uDVwG1ClQqFRqVCo1aRaBBS5BRi8WkI8ioJdxsICbYSLTFQGSgAa3mxDo4Tp+ewPTpCT/oteXlHWLlygrmz08+6mMVFDSycWM1wLALoeN5f8SpJTkgTgteLziawF7f66sBHC3gskOXvfvfDlAUUKlApfZ9qTWgDwJjsO/LEATmCAiKg6AY35dGd8JN+6FZIDnw3SQLhtZQ58DYiLGMCR/DG4VvsDB1IVnhWUPaHiGOJDlw6kkOfD9nVVFKiMHi9Socanawr66N8gY7FY12yhrtHGp2UN3ioMvTd1FLrVpFgF6DTqNGr1Wj06jQqtWoVL7zEQUFRQGvAi63F6fbQ2eXl063h97rY6qAMLOexLAA0iLMjIgOJCMqiJExQSSEmlCpVKf0dfd09wWOeoAdNSq8z7/DyfG8P0KIs4SiQOtBqNsLTSXQVOb7t7kCWg+Bx9l3e7UWdGbQ6kGt8xWWNDoOB4ECKKB4weMCtxO6OsHt8N3mp4KAMAhJgvAMiMyGyJEQlQ1hab7HO4UkB76bZIGYkziHcls5D218iDcXvolGrRnqJglx0kgOfDfJge9HilJCfAeX20thjY38gy0UVNsorLFxoL4dh8sDgEGrJsysJ9ikI8ZiZER0IMEmHQF6LYEGLSEmHSa9Bq1ajUbt6w2lVoEKFd3/AaAAitJTnFLweBXcXi82h5sWRxctHS7anG5sji6aO7rYWNrIZ7tqcHl8JytBRi05sRbGJYYwISmUc1LDCDPrT+p7cTzdfZOTg4flFREYvCGSQohB5umCugKo2ga1u6B2N9TvA1e77+caPQSEgykUgqJ9RSJjCOgDfT2djCGgD/AVodQaUGm6e0ap6BcEeLuLVF7wesDrBqcNOprA0QydrdBp8/XEqtwEhZ9Cz9w1hiCIGgXxEyHxHEia6mvPSSQ58N0kC4RBa+DqkVfz0p6XeHnPy9w+9vahbpIQJ43kwHeTHPh+VIqiKN+92fBhs9kIDg6mtbX1e628YW3r5PEv9/HHS3MIMp54t3ox9GpbO9lS3kR+ZTNbK5oprGnD5fGiUat8Q+iCDESYDUQE6YkKMhIZqMeo06LXqjFo1ehOcHjd9+H2enG5vXR2ebC2OTnY1EFVayd1tk5qWztp63QDkBZhZkpaODMzIpiWEU5IwMktUonh5USPj2eaE36djmZY/ns4/3/APDyvDJ412urg4CY4uAUOfusrRLk7fcWkoBgIjPYNqTNHQVCs73udEbTGwz2hTnGPJbxucLugywF2KzSX+3potdWArRo6W3zbhaZC8nRInwupsyBQ5lcTJ05y4Lvta9rHpppNJFuS+eeuf7KveR+vX/S6DOMTQpwVTkUOSE+pk8Rqc/LZrhp2V7XywV3TMBvkrT1TNLQ72VTaSN6BBvIONFLZ1AFAuFlPfKiJ2SMjiQsxkhBiwmL09XoyajWo1af4hOMYtGo1Wr2aAL2WMLOBrBjfAcHt8eLo8lDd2sm+WhsVjR18uaeGtzZXolbBmPhgLsiJ4cIxMaRHBg56uz/4YB9LlxazaFEmP/rRyEF//qHUM+FjcLCe1laXTPx4NrI3QNHnvt4rt63yDbESZ4aOJihfD2VrofRraCz23W4Kg5BESDsPguMhJAWMFl+vJ20AqIdwEWO1FvRaX1vM4b7he+ArVnV1+ApTdYXQVArFyyH/dUAFMWMg62LIuRwis0598ewIwzkHwJcFa9YcBBTOOy9JcuAsd3329fy/b/8fD65/kHcufge9Vi4OCiE5IDlwJKmcnCSj44O5d24Gf12xnxtf+pY3bjsXo17Gj5+OnG4Pm8uaWFNkZV1xA8VW3/CLqCADKeEBTEwOISksgKggI2aDlgDd0Bagvg+tRk2QRs1Io46R0UEoioKjy8PBpg72VNsotrbzt5X7efyrfSSEmrhwdAxXT0pkRHTQoLRv6dJi1q49BDDsQqhnwketVoXb7eugKiF0lonIhHkPwfIH4d+Xwi1f+oZTidOPp8tXPCz+CkpW+4bmofh6PoWlQdx4Xw8jS4xvCJ4uwDfs7kyg1oLBApEWX9FJUXy9qVoPQs1OqC+CdX+Fr/8MljjIugTG3wAxYwelQDWccwB8WbB8eRmKAlFRZsmBs1yALoDrs67nuV3P8bftf+O35/x2qJskxJCTHJAcOJIUpU6iiSmhXDo2lk921XDLv7fw6s2T0WvPkA+xZzmrrZM1+6ysLLSSd6CBDpeHkAAd6ZFmLhsXS0pEALGWAMwGDSad5pRPGD5YVCoVAXotI2MsjIyx4PEqNLY7Wb6tioJDNl7bUM6/1pWRFmHmivHx/GhiAvEhplPWnkWLMvv8O5z0TPTYu6eUOAvF5cLoH8Pud+G1y+HGT8FgHupWCfD1ZCteAfu/8BWinG2+1e3CM2HUIghLgeBEXyFRFzDoPYhOGZXK15sqcqTvy+uFjkZqtq/FXbWbuG2vo9n8IoSm+Pbd8df7CnOnyHDOAfBlwYIFqYAiOTBM5ETkMC1uGm8WvcmcxDlMiZ0y1E0SAhi6FeIkByQHjiRzSh3hh4yR3FzWyO5DrRxqdvDvjeVMSg7j3zdPxiRD+Qadoijsr2vn8901rCyso6DahkoFyWEBpEaYSY0wkxIegMWoJ8CgQX22nHwcp7feLiQ/v56sseEk5Eaw61ALxdZ2PF6FSSmh3DQthQWjYk7K/Fg9w9ZkuNqpMZjvr8wlchyqtkN5HjgaYcP/QXQO3PSZb8iXGHwNxbD3I9j3he93g+IbgheR4Vu5LizNNwm5IdA38fgw8tZbheTvtDJlnIlFk1p8k7hbC30r/8VPgsm3wehFoDX84OeSHDi1JAdOvpM1p1SPLm8Xf/72z6hUKj649ANCjCEnucVCfH+PPJLHypWVzJ+fxEMPTT+lzyU5cGqd6Tkg1ZJTYHpGBBq1ilc3lHPNPzfxxq1TCDLJ5OenWk8hatmuaj7dVUNZgx2TTkNmdCCXjYsjI8pMdJARi0k3KJORn85yx0X6/83OjmBedhT1bU42ljayo7KZe97cQViAjkUTElg8PYWE0IATfq6eYWswdMPVjhy7PlRXhk6F0+H9FQNInALTtbDhKXjpfLhpGQRGDHWrhoeGYij4CPZ8APWFvsnHI0dCzhW+fy1xvkLUMJ/bZVyuLweyciMhMwIy5kN7A1Ssh0Ob4aM74cvfwpir4Ny7ITz9hJ/rdDhOSQ6IoaRT67hl9C08ue1JHlj7AM/Pfx71UM5JJwSDu0Lc6XCckhw4fUlR6hQ5Ny0cvVbNv9aVsei5DSy59Rxigk/dsKjhqk8hamcNZY2+QlRWTBBXTUxgRFQgYYEGggzaM2ZeqMGQnR1BdvbhE2S1SkW0xcgVufFcPCaWvTWtrD/QyJJNFbyUV8Z5I6P4xdwMxieFfu/n6umWOpTdU48cu75yZQUrV1YCnHYh9H2vdJwO7684ioSJMOvXsP5JeGke3PAhhJ+6YVHDWkMxFHzYXYgq8hWionJg3HUQme1bcc5gOXPmhRoEOdkR5PTKAVRqCIry9Y7KuQzq9kLJGtjxBmx5CdJmw8xfQ8qM7z208XQ4TkkOiKGWEJTAosxFvLPvHV7Y9QJ35d411E0Sw9z06QmDdvw7HY5TkgOnLylKnUITkkK5Z66GF9aWcMnT63l58WTGJoQMdbPOeMcsRKUkkBUdRHigAbPh7JkbajDpNGpiDXrOCTQzb1o4e5ra+ba0iSuf3cDY+GDuOi+dBTkxx13kS04OHvKK/ZFj1wfzytD31ftKR8/3xwqk0+H9FccQMwbm/N43sfQ/z4Nr3/Cd1Isf7miFqLHX+t53c+SwHJZ3Uqi1EDsWqyadas1BMtmKue5b+PclEDUKZtznm4dLc3wfI0+H45TkgDgdzIifwYHmA7yw6wXGR43n3Lhzh7pJQhzTyRoWdjocpyQHTl8yp9QRTsacUsnhfSe1rWlx8PSaA9g6u/jrVeO4eGzcyWzysHC0oXkjYwLJjAoiKyaIiEADAfqzsxBlrbdTWdlGUlIQUZEDT5p8PNscr63baikqaiIrK4xJE2NwuNysP9BIXkkDh5odJIaauHdeJosmJKAZRj3QBmO8du/n6AmkqVPjWLhw6HvYyFwix6FnTqmIjL63t1th7ePQXgsX/w0m/PTkNXg48Q/Ne7+7EGXwFUkiR0L0GF+PKH3g2TNJeS9Wa69jfNRRcuA4tvk+tm7tlQXjQqB8nW+S+OYy3zDIGffDxJtAM3ymKJAckBz4LgPNKdWby+PiL1v+Qpe3i3cueYcYc8zJaLIYBo7n+HOyj1Gff156Wh2DTgeSAzKn1BkpNsTEgxdl8ezXJdzz5g42lzfxXxfnoB3m8xp9F38hancNn+6s7lOIumpigr8QZR4GE8lXVrZRVNTU5/sji0+9t2lscJC/s94/Z9T3lZQU1Odfk17L+TnRnJcVyfaKFlYV1fGb93fxj1XF/HIYFacGe7z20briymSRZ6DAKDj/EVj/d/jkHqjcCJf87aRMIn3W6zdHVHchatx1ED0aAqNBbz4rC1G9HTUHogbOgYZGBzvz6xmXG9l3mN730CcLdEbIPB/S50L1dtj3JXx+P6x7AmbeDxMXD4vilOSA+KH0Gj0/G/Mzntj2BPesuofXF76OUWsc6maJM8Dx9J7pvc2hQ20/eM6kM31Y2KkgOXDynf1n84OsrKyFDSsq+xUDgow67r9gBO9uPcSSjRVsLW/mhZ9O/EETSJ+NjlaIyooJ4scTE8iODiI8yID5LO0RdTS9Twx6n3T0Lkr13mbVqkp25tdjt3dh73B/795TUZHmftsXFjb4C12/XZBF/qEWlhfU8pv3d/HUqmJ+OX8Ei8bH9xvWdzYdMAcjmHsH3cKFaQO+Z8cbhmfTe38mKStvYdOKwv7FAF0AzP4t7H4Pdr0Nh7bANW9A5Iiha+zpqqcQVfCBb0U4rRGisn2FqKhRvrmP9EFnfSGqt6PmQNTRcyB/py8HOuzuE+o9FRVl7nOfvYUN3YWuVHLm/gFqdkHhJ/D5r2Hdk7451CYu7jd319l0LJIcEMejrKyFDXs7yM0d+OJglDmKm3Ju4sXdL/L7db/nyfOeHIJWijNN7+PP0Y4Bvbd59dU9rFxZSUuLk9ZW1wkdB44cFnaik4OfTcciyYGTT4pSJ9m+/c2U7fJ9UDwyhLRqNT85J4mR0UG8/m0FF/xtLQ9elMUN5yYPqwLLkRRFoai2jS921/DZ7hpK6/sWokZGBxIRaCDQoB2279NARaKek4+BtskdF0l9fQeVlTbq6ztISQlm3rykAQtThYUN5G2oJjzMyPQZ8UctRtXXd1BdZQd8+/aEpFByE0PIr2xh+d5afv3eTl74poQ/XJxNqtHQr8spnJmrQfQ2GOO1jyfoBtpmoMA5m977M8n+4mbyd3YA9O+hotbAuGshMgs2vwgvzIQ5D8K0e2G4r8RUvx/2fgwFS8G6t9ccUddBdI6vR9QwniPqyAIRDJADvbYZl3uUHBigMLW3sIENedWEhRuZMT2+3zY9xaj6+g6qqn05kJMdAXG5EDv2cHFq2a9gw9NwwX9TYZpJwd4myYETIDlw5tu/v5nSnb5j1dF6rI+KGMVlaZfxUclHPJv/LHfn3j2YTRRnoIGOP0ceJ3pvM39+MpWVNgoKGqistDF2bCSLF48e8FiQl3eI99/fT3x8IFddNbLfNj3FqMpKG/v3twDfPTn4QEPQetp4JpMcOPmkKHWSVFS0smlTDbGxgVjUGnLHRR5124nJoSSHB/D6pgr+6+MCPs6v5m9X55IYPnx6TSmKQkG1jS/21LBsVw3ljR0E6DWMjPatmpcZ1V2IMmpRD9NCFAw8T9SRBaqBtsnOjmBFd3CoXXtprfFgLdMRGa7B0WGny+UEwBIShspyATt21GGxGGir30ZcrA5zoIWwiEgiYuLYvqOe3buaiIs3My43ss++rVapmJDsK05tKW9i2e4aFr+yhYxgEyPbfR/GjjxgngnV+qF0PEE30DY9gZOXV0V5eSuLFmUyaZJvngrpcj14amrb0eu1ZGaEMC736DlAXC4seBS2vgwrH/JN2L3oRd/cSMOFovjmhSr4yPf6G/b1LURFZfuGPRotw7YQBQPPE3VkgWqgbXKyI1i5wpcDLV01FNXA9rJthIXraO/opNPpAsBk1DMq+hx/DhxqqiA0Qk1wkJno8BASYiLYsb2OXbsbiY8zkzsusu++rVIfLk5VbffN9/XODQSbR1NpuxmYKznwPUkOnNmqa9ow6LVkZFjIPVYOAPOS51Ftr+b5nc8TFxjHFRlXDE4jxRnnyOPmkceAgY6r06cn8PLLuykoaMBkqqS11UNt7QqSk420t7fjcDgAUKlUBAZewVdflRMRYaKraz/x8V6Cg4OJiooiISGB5ctLWbOmmhEjQpg/P+m4JgfvXQyRHPh+hlsOSFHqJCkoaGTPnnqCkgO57trs79w+ItDAvfMyWVfcwMf5Vcx98mtunJrCr84fcdbOkaQoCrurWvl8dy3LdlVzsNmBWa8hK9bClNQw0iMDCQ80EDTMC1G9HW2oHoDX62V3/l4+/zgPa3UZenUjne01mAIC+d9/vg2AWq2ioeR1DubXDvj4kTEJ/Nf/XY/d3oXBoOGrNx6itrKwzzZqjRaTOYy2pFR+8fZH/t5q7bZW7J0aDh5sJykpiClp4UxIDmHNvnq+3F1LicdNR1U9k2b0nZTvTKjWn4l6gubFF3eybVsd4FvuVt7jwVVa0kqnw01ubtR3z+NjCoEZ/wHl62Hnm/DcVBh/E8x/yPezs5GiQF0B7P3IV4hqPOAb1hg9CnKvh4iRvsnKDcHSc6zb0YbqgS9Xt+SX8vZH2yivqsWjaaexrQmPx8vGd3zDgdRqFdsqNnJoW3W/xwawBAawccnF/hz4+wcvsb2oqM82GrWa4MAgkuOiyHv7L5iMvrnQWmztOB34cyAqYRLE5kLpGoL2fMydmvvpqDmfgKlPkiw5cMpJDpweSkpacTjdTMqNOq55Pa/Pvp4WZwuPbHyEMEMYsxJnDUIrxZnmaMdNRVHIy9vNs89+QUVFKUFBLTgctTQ0NFBQUACARqOmvf1LVq3ayapVAz/++vX30drqIiBAy4cf/j+2bPmqz8/VajVmcxgtLck89tiXRET49u3W1laamrwUFjb3KzD1LkQdWUCRHDg1ztQcODurH0Ng1KhwPv76S9a8vZrm4nnMWXAecXGh/p8P1JtFrVIxe0Qk4xKCWbqjin9vKGfp9kP8Ym4m15+bhEGrOdrTnTGcbg+bSptYubeOlYV11LR2EmjQkh0bxPSMCNIjAgkL1A/bQtR3rZh35ITjPf50361s27iWjva2fvexhEZirbdz/vxkIiMD2GeZhdvZhCnATKdLg61NhcGgp6tLIT7RN9dBdnYEW7fVsjkqi8AgC2o6aWqw0lRfh9fjxm6z0tEe1Gf45O/v/AmVpaWERGWSNWY85y2YSfbYCVyQE8OM9AiW7alh7f4GZj/+NXefl86ds9PRadQnNA6799UU+O5lUYeT3u/NwoVpOBxdmM06/3K3YnBZW8t5ZcVqzmnoJCp6BkmJvXJgoJXRVCpInenrZbL7Pch/3Teh94xfwpS7QH8W9KD1dEFFHuxfDkXLoKXCNzF51CjI/alvTi1zxLAtRH3XinlHy4Fbfv83Ply5kRZbe7/7mAx6tmypYdKkGCIjAyByHLXNcQSZTbhdKuxtCiajjq4uL7ExFnKyI8jJjmDr1lriw+LQjdbgVXVR29BMtbURj8dLk60VrU7lL0gBXHf/Y2zYXkRydDyTx4zg8gUTOHdcFlGZ56NJmQmFnxBQ/BX83ySYdo9vTjWtQXLgJJMcOL14nDXkL/0Ez4RGoiLnkJR8eD8f6O9drVLzszE/4+/b/86v1/6af13wL8ZGjh2q5oshcDy9hgY6bt533328/vrrNDY2Dnifjz8uZOHCNJKSLFRWzqO6OpagoCDsdhWNjV5MJhNOp4e4ODPTpycwfXoCn39eyoYNyUyYMBOt1kldXR1VVVW43W7a2hooLm4jNPTwZ5u77rqLjz/+lKioEUyefA7XXXcBU6ZMIS4u7pi9fSQHTq4zPQdUiqIoQ92I08kPWeLwgksXseKzDwEwBgQy7bwLmDbvQs6ZMY+CorbDyypPHHjp19L6dj7Kr6awxkaYWc9tM1O5aVoKAfozq3bY0O5kdZGVlXvrWFfcgKPLQ7hZT2Z0IKnhZjIiAwk164f10LyeeZqMBg32DveA+0VzQz35m/PYtPZrDpZX8vDTS/yFq9/dfi3bNnyNTm8gOiGD5PRMMrNG4lLCaesMZdqsyQPuZ2+9XcjO/HoyMkMIDzPR2ORg+rQ4srMjBiyQ1dS0sndPOUZdG4FmNeMmT8Nab6eiwsaf751HW2tTv+dIGzmKaXMXcNM9D1Df1sm72w6RX9lCYlgA/33FKGaPiOqz/fFMmNh7OVrghJZFPVu7CQ/mUr2yFPh3u+vGH/P8kg8AMBkMXDxnMlfOn8rFc86heF+vHJh0lCXAm8ph97tQkw8GC5x7F5x7t28I25mkowmKV8C+L+DACnC1gynMNzwxPBMiMsEc6XuNw7AQBYfnaTIYNXTY3QPuFw3NrXz97W4+/3obO/aW8uU//x/R0YEAXPur/+Wdz9ei12lJi48nJyORsVnJjExNwN1hROkMJDs7vN9jvvVWIfk768nMCCE3NwqXy0NFhY1xuZFEhJv6nTB7PB4K9lWzY/dBAoJUXLVwqv/E+prf/YHSQzX9XltORhILpk/gr7+7HZWjCfLf9K04GRQDF/0Fsi/ts73kwA8jOXDy/ZDXecd/3MGLf38RAJ1ezzlzJjNjwQymzp9KcYnjqDnQ5mzjye1P0uXt4tUFr5IRmnHSXo84PfUc+8xmHa2trgH/hpubm/nmm2/4+OMv2bBhE599toLMTN+w0Lvuuovnn38enU5HQkIGo0ZlM2HCaEaOHInVGkB9fSjTpyf2ecyOrg4eeWwV674tY+RYM2MmWbA5bZRV1ZORFURgsIbqWhvhkQYCLRo8igcUsFa0UlncgEnjZdbCc2lv9dBUo/DKH/+XAwX7+r22ESNGMG/ePJ5++mk0mu/uaCE58MOc6TlwZlU7TnNXXPtTbF1aCjatpr21kdXLlrJ62VK0Oj1jJs1g0W3/2+9K55GTTN83P5OiWhsrCup4fPk+nl59gEvHxXHL9FRGxgQd5ZmHVofLzeayJjaUNLJ2fz1FtW2ogOTwAKZlhJMabiYh1ESISY/ZMLxWzTua/J31/uJQbm4USUlBKIrCgcLdbPr6KzZ9vYL9BTv73Gd3/gHmnT8OgFvue5Cf/fqPJKePQKPVYq23k7e+msZDNhJTgvrtZz2Sky1UV7WTkxNORYWNA8UtmM06srMjBpxMvaraQY1VR1ZWBuO6i1yVlW3s29fMA09+SUhAA0W7d7B/Tz5Fu3dwsOwApfsKiIqNB0Dp9DAlKJCu5i+pcqZy40t25mVH8z+XjyYu1ATAypUVrFxZCRx9wsSBrqYceWXlu8LsbO0mLEv1nl5uWLSQrqZqPt1QhLW5mfeXr+f95evRajXMGD+ah26/fcC/zw0bqtiwsZppU+OYNus3UL8Pij6DtX+B9X+DnMt9Pafixw/BqzoOXQ6o3ARl30DJGqjdBYoXQlMgeRqEpUNoKgSEgH74Tlbe2878+j7FoZ4c2LO/nE/XbObTNd/y7a599L52+PXGfVxzxUQAfn/HNfz2tqsYlZGEXq/DarWzPq+aphoHOTnh6PWaAfe1cbmR2O1dhIUb+6zSB3Ddddn9emtpNBpcHTo0XSGkRoUBh4cUvv4/j6APdLBlz34279rP5t372Xugkr0HKgkL9vWutbYbqdRfxbdNRmbYCxj79vWoUmfDpX+H8HRAcuCHkhw4vZx/yfnsqy5h19e7aLbWk/dVHnlf5aFWq8meMJpFd9014N/m7m02DFtnYR/9Fbd8dQuvLHiF9JD0IXgFYrD0HPsmTYrm/PNTGDUqHEVR2LdvH59++imffvopeXl5eL1e/30++mgNv/nN1QDce++93HrrrYwZMwaDwUDBgYO8/tkmPttfSfRIN/bYZj5S2njz81YaHA00dTbhcDsgEUiErcBWW/cDh0N+vQZdsxa1So2mSoO6Wo1apUZRFJxdXXRFeVCrFbZu24Db60ZBwfArLelV6ThKHTjKHDhKHXQe6mT//v3UOevQ/liL0RMMLRbs+2qYc+5ULphxAcHG4AHfC5AcOBFneg5IUeokmjRtFtWeZHIm30mwsZqVyz5j/86vcXXU0dxYx7nnJlFY2MCqVZV427eSPXY0q9d2UXygBaNBQ2lpKwsXppKTHUGYRsMWvYFKl4tlu2p4Z8tBRkQHcvGYWC4dF0daZOCQvc6WDhc7Drawo6KZDaWN5Fe24PYqhJh0pEaYuXRsLBmRgURZjAQZtRh1Z/4wxB/qyF5IPZOF546LJDzCd2X6taf/xPIP/t3nfhnZY8gcPZmI+LGMyIr33x4SlUFlZRuBzU6iIrXkra/is89KUKlVREYG9Cku9fTKyh0XiV6vITrGjF6v6dOGI/XcJznZQlZWWJ8PT72HkkRFJpE1doL/9QUHOakuzSco5PCJy9ZNe1n24v8AEBydyMcpE1m5eioP3nwld8zO8E+UeKwJE4/s/jtQiHxXmPU+WB/rKskPvYJyovc/0fsNxgog4vhNn5xLnP0i5k78EZrAdt78ZB3r8/Npam+k9FANs2emUljUyKpVlVgd5YwZmUiQPpw1ayopLGykvLyVkFADOdlZEDmCpgN78exfSVjRF2h2vQPhGb4C1ZirfCv4DVWR39ECVdvg0FYoXwsHN4PH5RuCF5EB2Zf7ekQFx4ExGHSmoWnnaeTIYTs9k4X37qH0+Mvv8sSr7/W53+jMZKaMzWFEQhqTcw8fJ2NCo6isbKOlxUVUlI71eb4cUKtUmM06rrvu8PyWPb2yxuVGkpMdQYfdTVFRE5WVbX3a0Vvv+xw5hLBPDkQlMHF0JovmzvHlUjDsLSvBoNcBvhzYsv0g9z79EV5FISkyiEvTv+aKrycw54bfoD3vd5IDP/B+kgOnlzHjxzDnp5cyYsIiIix2li/9mr1bttHZWkflgXJmz81k//5mVq2qRN1ZQWJKNFpzNGvWVHLgQCdx7TOxT17LTz+7idcvfQ1NS/hZ2bNjODryb7z3sW/69AQqKlq5884/8mL35+YeWVlZTJo0nYSEccy/YBIHmg9woPUA2+v2srumkPbyehpcdbR3tUMoEAp7O/VEBIZi7jIToA0g0BOOxxbG6KhwEmPCqD3opK7GRWp8BMGmAA7stzMqO4LMjHBUqFCpVBw40MzegkZyRoUTGmKkqrqduDgzYeFG6uvbqaxuISRKjWGcl053Jw0tNuqabYCdmqKDdLo6KWsto6ndhq2jlYL/3sWzrr+hDdESNiGMzBmZTJw5kZzIHCKnhnOu1sTc2YlHff/OpBw40ccYrjkgRamTbN/+ZvZtqyc+LoQLfvxLjJGLcDuriYtRU1jYwNIPiykvq6dy04N4vW6M5khCY3PRRo6jsjKb/J2BZGdHcOhgO60H7UzJCuP6acl8W9bI7iob/7fmAH9bWUxSWADnpoUxa0Qk56SEERlkOOk9kBRFoaHdxf66NvbVtrGnupVtFc1UNPqWOg80aEkKD2B+dhRJYQHEhZiwGHUEGrSo1dIbqrfeE9VGRgSgdh+kpfxDAibfQGWlhaKiJiLixqA3mIhJmcj0uRdw5bVXEhoRSWFhAytWVvDhRxWcPx/CI0ysWlWJzeZbQS8q0kxjUycqlQqzWY/RoMFab/cXpnp6ZdntXaSmBBMbE+Avjh1tAs4VKyvYmW9lXG4U116bRWXl4bmrek6qALZuqyUpKcj/+rKywph94eX+bZOSgsjf7CI2ZTLWQ/m01h2EuoM0ffsRv/jwL/zPmDn8z/2/YPHiXAoKGqmoaB3wgPrBB/tYurSYRYsy+dGPBl6d7LtOanofrHu6uPbc3tsPvYJyovc/W6/cDEf7i5vZurWNuPhA7vzRleRETaats4WQCCgsauTDpcWUl7fwxrcv4nA5CQ4MYmzaSExKNHpHEjvz632TpKvUlLZGUNR8AaMyFjI+9ABU58PGZ2DdXyE4AVJmQvpcX28kS/ypKVLZG8G6F6yFULMTDn7rm6AcxTc3VGgKZJzv+zck2TfU0BAEarkg0VufHIgMwEUr+VUbyRg9g47uHEiLTcGg15GTnMFl86Zw+3VziY+OYG9hAytXVPDZJxXMPx8iwo/IgSgzTY2dqPAVpAxGDVar3d/rqadXlt3eRYfdTYBZ67/gEBVlHnBS/pUrKsjfaaW+voNrr83y3967uAawdWv/HFh0wXT/9klJQXy7o4sxaVnsO1hCZX0bz9TDM5sg6v0/csWYv3PVPf/LQw/dRkVFK59/Xjrgh3HJAXEm2b+/maKtCvHxgcy/6kcYYqbg6Wwl3OJi//5mli4tpqLCxqG853G0tWIMCCQ+M5uQmHSMXRm4NszEOW0dN395M4tNj1C6xXfKJvvFme3Iv/HQUBtu95e4XHOBBAoKGvF6U9FotKSkTOCCS+Zx3rXjaQ5oJm//DlbWf8iy7f9Cyff1nNJ5TeicQUQGhTE+ejz7dzuoLHJh8FiYlJvMlKxEYqIs6NQ6PnjvAId2NuHKCCFIHUVMmBa7we3PgTm5/du7aXUZO3c2YqvTcO21WbSqNYTog/C2gd3qZnyab76iyso20pKC0Ha00VLmy4Fbb43B4/Xg9rqptraw8qsCGjM7aSgppaulC+tqK9bVVjYHbsYyKZjgWRYC0gJYXaYnrDyO7PCRTEudxJjIMYwIGYFOozujcuBEH2O45oAUpU6i2lo7Ho+CWq2iq8tLS4uTlNQQ2tsCCAjSkb+zHkeHB7W3nYT0idRU5NNpr6fmwApqDqxApdbgrB6PRXcLxpCJmAO0tLZ04rJ3sWBULGMjgigoaaZFrVDrcLG6yMq7Ww8BEGLSkRkdRE5sECkRZuJDTMQEG7EYdQQZtQQZdei1vu6XXgW8ikJ7pxtbZxc2h5vmDhc1rQ6qmh0canFQ0dhBibWdFkcXADqNimiLkfgQE+MSgn2PbzESaNRh1mvQamQoxpF691BKSgqipaGGLatf4ek/fEz1wXIATAFmFl53DwBxsRejCRxDwZ5WTBGRdCkBbN1WS36+lfx8Kyp8JzKZmaHYbC6cTg8bNlRxsNJGTk44ZrMOo0HDzl31LP+qnPG5UVy5KJPccb6hGh0dXRwoaWbixBi2batj3dpDzJyVwEUXpvVpa0+hSgFaWjpZ8tpe1BoVASYt27bVoVKruHBBColJFv8J1tEm4gVo7QgnIutXzL/aQmpcLRtXf8mGNcuxtzVSvfEDfrsknUur9UTXuVEUxX8ArqhoZc2ag4DCRx8d6LOCxEB6Jmg8Hsfq4noi3V97h+SJLrt6pne7FT41te143EfkQHIwbe0mggJ17Myvx+Hw4MZJTloGe8sP0NrexrpdWwHfssw7GjJo9lzIOVnjcbk8aDQqDMFhMHIh1pCZ1JZWkqrbT5CjHEpWw863fE9uCIaoLIge7etRFZIIljgwhvjmbjJaQGvwrYCneH1frnZfr6fOVnA0ga0aWg5CayU0l0P9fuho8D2+WgtBsRCcCDFjISQeLAm+ApQ+EDS6IXjHT29H9jZqaG7hw7UrufGhdRSWHATA3tHJH++8CYC4uASMPEJRoY2R0ZHoVCa2bj2cA6gGzoHKg4dzwGDUsGtnPV8tLyd3fBSLrsz0D9nr6Ohi27ZaJk6Mob6+gw+W7mfWzAQuuiitX28qABRfDry2ZC8atQpTgC8H1CoVCy5MISnx+HLAYdMxd+Ql3HdNGOEJnXy8eiMfrdyEtcXGi5sayQ2/l/mWPRRyOxu+9T1ecnKw/4pxcLCep5/ewf79zYDkgDi9Vde09TsfSE4Opr3dRGCgjvzuHNCouohLTaW6ZB8OezslO7fAzi2oVCoi4pOYwLk0z6rk2c7fMTXg5wQHpwBn75w4Z7OeIWWjR0eQk2Ng48a3ePDBd9m1axcApaWlTJo+CWdsCZbzrUzLuIKWoCrWmT9l3b5P0WNE22mhrU4LHcmMSEgkMzaRsr0u3J0q1F4d2vhQ5sYFUtFlw2jUsHNHPeu/KCA3N4pFizKZkBuDw+7tlwNLl+5nZncOWK12du9uABTGjPH1nlW6c2DJkr2o1Spmzkzgq6/K2LWrgbFjI7jggtSj5oBGrUGj1mDWBmJrDCIm+xouui6ckUmd5K3IY+0Xa2lpaKHx6wayYycxf8G5FFSUU91iZZt3C99YV+DFiwYNMfokGvZYaLSF4fyigUWLRgzYIeN0yYEf/WjkCT3GcM0BKUqdROXlNhobHQRbDCSnWHzFgA63fxLRkBADFosOtSaJC297lonjw9i1ZSOfLf2MPVvXYms6RMnerRTsmk3ciCw6O93szt/Pyg/XE586niZ7NEGWQGbOTGDRlEQ6nB6qWxyUNLRTZ+ukos7O7vJmXCpf4en7UgEWk44Qkw6LSce4xGDCAw1EBhqIshgI1Gsx6TUYdZphO0H595G/s5787TWU7f2Gttpv2Lbha//cIAajibScGXh0vrkCeiYlnzTRg1arJ3dcJJWVbaxbV0Vzs4OUFAtGgxajQYPL5cFi0VNf76agoIH9+5q48soRXHdtNhs2VlGydD/t9i42b65l4qQYJk2Mwd7hZtu2OiwWPUlJQSz9YD8HDrTQ1uYC4PNlpbg9vrZlZ0f4V+6rr++gvNxGfFwgm76tobGhE4Dde+qZPsM3nLCn19VAqwfu3lVPc3Mn4eFGJp+TTHb2RGaefzEul5OVy75g1bJPCM+dxapDTVg0ava9+yy//e1abrppMWlps1i+vBxFgVGjIn7wChI9H+IqK1tZt66KRYsyB/wwdyLdX5cuLWbtWl+B+FjLrh7rg+SZ3u1W+JSWtNLY1IklOIiUZAvjciPpsPfNgSCLjkR1BLfffB8TJ0WxflsBr7z3DV9vyaeqvo78omI254/EQjKdnW4qqxt5/5svGZWaAQ4LocFmZs6cyqQZl4OrA9qqfXNQtdXSXncI5eAHmFXtqBX3ib0IYzCYQn3/xo7zTUhujvJNUm0I9K0IqAuQeaGOw878erbn17FtXwHF1r0s+3oznu65QQx6HZNzRhEbnATgL2RMOScBo95XHDoyBwxGLQZj/xzYt787B67LZsOGKpYe2I+9OwcmTYxh0qQYOux9c+CDpfs5UHw4B5Z9XorH7cuBnOwI5p/fNwfi4gP5dlM1DY2+3ll7dtczY3qvHIgyD7h64K7d9bR058A5k+PJyY7g0rlTeO4hN+9/sYk3Pl7FzHMC8Wx7jdnaT/miZCr3vLmT2267lczM89i1qw2tVkV4uIkRI5AcEKe9kpJWGpscBAeHkpxsITc3EvsROZCSYiEhIRDt5Js5d0oUbnstn7y9hp0bt9NUc4j6QxW0HBzJiJrLKAz7jNUhT7DhoTcYl3whtbURRESEcc01WQPuL8czYbQYXCtWlPP++5/x7rub2b9/PW6376K/RqshZlQS+aF7mf7WdBQUjBojwYkRRNjiSA2Mw+QO40C+m/YmhVh0GPVGUgkj3Gum3WSjvr2DffuaOFjmYNKkGObN82XKF1+UUVfXQUdHFZMm+XLAfkQOLF26n+LiFtpsvhxYt+4QbreXyMgAgoONnH9EDsTHB7Jrl5VNm2oB2LOnkdtu860Ueawc2L378PnApMm+BZbOmXMO9z5yL19/uYmvlq7i3KkLqF5vIDc5A/eu9eQt+4xZi2ZiHh1FlbMeu64Fd1IJgZk72adaw+x3XmZc1DjOiTmHc2LOISMkA81x9NAe7Bz4vlkwXHNAilInUUqKhayRYYTptYwZG0lUpBlrvZ1VqyqprbVTXdWO1dpBS4uTzz4tITTEwOSZc0nOmkJlZRsVB0rY8e1a0kfNIDk9jIOVNnZv2sHeDa+ydc2rgJqg0CSaSifw7epsJk2dTGLaSCKdKlJCg6jf2IDWamf8uAimz02iucNFZ5cHp9uLs8uLR1FQoaKjw4Wt1YVKUWhrdpKaHExGcjAhZj0mnQadRo1eq8agVaOTHlAnLHdcJO4uJ+899VccHb7hbwZLNiPHL+RHN/yYvA31NLXjHxpXWdmGOUBLZmYo4REmwoHm5k4qKtqYODGKadPiKSpqoqLChs3moqWlE8ULOr0Gm83JqlUVbPrW191Tp9OQnhGMOUDL1m21mAO0ZKSH4Ov/BDNnJdDW5iIiwsS6tYdoaekkJMTon18qOzuC8AgTeeurCQjQMX1aHLt21ftfW2OjrzjVM2QD6FeUKixsYNO3vlWZzp0S12eooF5vYOGVV7Dwyit46+1CGioacKcE8Omy9+hqPMgDD2zFbA5kwoQLmDnzCm6/fSYpKSE/6PfR0x123bpDlJS0AEe/2v599ZwkfdfJ0nDtkjucpKUHo6sJI1YXy9gxkURFmbFaD+dAVXV3DjQ7+fSzEkJCDcybmsuY9EwqK9vYX17Nqg35TMvNISsrjMqDNr7ZXs7Sr1ew9OsVqFARFRrJN/tHMGJFMudNHcWo9GSsdgsBQVqWryumqa6ZyeODuWxemG8VPJcdPJ3gdoLXDSo17fYuWm0uurxa6lsgNjGchOQoCAjzFZ3UOtAaQasHjX6o39Yz1rjcSDxeD79+9p/UNfp6+UQFxTJn/BTuumE+W75tQHH5jv89+0p1tZ3IKBMR4SYIh+ZmBxUVNiZOjB4wB7wK6HW+HFi5qoJvNx3OgYz0YALMWrZurSXArCU9I4SeHJg183AOrF13iJbmTkJCjf65pXKyI4gIN7E+z5cD06YPnAOTJsVgtdr9w/h6n5DsLWzg202+HJhyblyfYYI6nZbrLpvBdZfN4K23Cvl6fyI/GbGBrXlvU3bQwx/+8B8YDEamTbuQK6+8jptvnsCYMZE/6NgpOSAGQ3p6MFlNYYQSw5gBcqC6up3AQB3V1e0cOtRGR0cX9947kbg0Xw4cqqhl+/ptjBidQdaIFAIPXsXKAy9TsGo521gOgMUST13dFD7+OIcFC2aSkzOG0lIHwcF6nn0239+r8FhFqZ6TYoejiz17GqSIdQrNm5fE08++QVO9r2BhTDITdl4wlskWjNpQdI5QMvVJTMzMRN8ZTFOdl9DUQJwdKsyhWnbVFnGwoo2JE8MGzAGtVkNwsIHaWjuffFJCaqoFs1mHWg2Bgb4ClNVqp7XVSVSUCYvFl+szZybQZnMREWli3bpDVFW1ExkZwIQJUf7jeXi4ibzuHJg+PY5nn8n3vy6DwVcEOlYOFBY2sKk7B849t+/5gEarYd4l05l3yXTeequQnd2LbhRu3oT14CHe/8dbaHVaRk2exIyFc4kekYYl1kOTqoqDbQcpbi5m3aF1eBQPAdoAcqNymRE/g5nxM0m2JA/Yk+p0yIHe7QDJApCi1EkVE2PmnHNiSQ4//IdYWdmGzebC61FQa1QkJVtA1UZbexcrVlb4h0xNmhhDUlIQyRnp/p4nSUlBuNrHYVIvZG/+tzjaG2lrLmfTqnIAPnoVbv71s3j1WWg0KprrSuisKyds8lRSQ9LJivEt0dizMltTk4Pp0+KwezWs29JE4d4GHJ1uDJPd/HhmyuC/YWcZr9fLtryv2fj1V/ziP/9MeISJ7JwYLrr6FjxuF+rAadQ2mMjMDCU0NIgJ49XYbE4KCxtZvryMgAAdMTFmPN09liZNjCEiwkhFRSsNDQ7MAVpiY8zYbE4OtnRSUmIDxUtEhIm8vCpKSluwWAyEhBhBpSI1NYQvvyxj2zYrEydGMXNWItu21WGtd5A7LpIrrsgEFFxdXv8khtXVvg9LY8b6rtDbO7rIzY0iOzuCiy9J5YsvyvG4vXR1eflwaTFlZS00NnYya3YiP71hFHB4Uvf8fCuNjZ3ExwUyZmzf+Up6T/zeUwgbNTqcb371NOu++hDHnpXYG6tYt24p69YtZenSLO69917uuuuuo77/39WdvacbbHy8maVLi3G7PeTlHTopH8B+9KORxxVoJ6tL7tFeq3TpH3qxMYHEToqBiBT/bT054PEqaNQqkpMsqGijva2LlSsq/EOmJk3y5cCIlDj/h7qkpCBaOjOxeaezYcdeGlqbqWu28vEaK7Cex/8N/+/nd5AUmolGo6LS2khpzSEyJuTSEZRKQNThya57r/Cn12tYt7eKvYUNdDrcTJ4cw70zJg7+G3aWURSFr7/dxZvLvua5h+7xF3auLTmfVnsbWTGjsTfryMwMJSrSwvgJGn8O5OdbCQs3UnKgBQUICTYyaVIMEREmDh1qw9HppqXVSYDZ99Gt5WAnJSWtKCj+HCgt6c6BUCMq+ufArJm+HKi3OhiXezgHulxeCvY2MirncA6MHePLgQ67LwdysiO45GJfDrg9vhxY+mExra1OqqvaiYkN5Pz5yf4T8N45EBcfyNgxR+RAr7mpxuVGspMx1I6dyev3f8LSz7/i5XwPe62drFnzEWvWfERaWhp33XUX999//1Hn0JQckBw4HcTFBjF5cizJlsNz2vjPB7y+YX0Wi4HWVicqlW9o1FtvFZLbKwcSkmP65IDW+WM+mtOCdW8tLqsLm62K5cuXAkt58UW4++4/ERZ2HlqtisbGatrbdxEQYKa9vZ3AwMOLI/UeXmQy6XjnnX2sX3+Q9vYuKittUpQ6CRRFYePGjTz/z+e59nfXsrlxM2ur1mG82Ev4oQhip6ZiDIohJTSeUG0MtAUQGhKE0qZjzetNREX55omt0rTg8ShkZYX5c6Cz001rqxNzdw4cPOg7H1CrISrKRE1NO+vXt2Ay6YiONhEWZiQrK4yvv65k+fIKoqMDGDMmEqu1FavVQW5uJFdc2X0+4PKyd28jOTnhgIrdu+sZM8a379rth88HZs6Kp/2LcjweLyaTlqVLi7HZnFRVtRMbG8j8o+RAfHwgY46RA7ndF0RycyOZMum3fPr2V+SvXUv5vhJ2btjEzg2biIqL4pKfXMJPfv4T38qwHhctnS0caDlARVsFB9sO8sSWJ/jLlr8Qpg9navy5zEqYxdS4qYQaQ4HTIwd6t+OHZMGpnqh9MElR6hSy1ttpbXGSkR5MXFwg1dV2QGHSpBgqKmzU13ewM99XEe5Zga2nIOWf42fSNK756WVs2VrD9q378ToqqK0spKZyL/XV+5gy8xx27XZw8JCN5qr1lOS/z7Nb/86zD4ElNJygkGgCLdG0tAcQEL0Qs1nHvHlJ2FvraGk4iIKOTrsOW0sTOr0BnU6PRqs96ZOmn22s9XZ27/KNuU5PN7Ju+VI+f/ffNNRWADB2yvl4NOls324lJvYyrHUd1FS209DQhtXaQXFxM+Nzo7BY9OTlVVFdY8ccoAMFuro8VFe1cbDSxqRJMXS5vKg1Kuwdbmw2F19/fZCWVifOTjd6vQaLxcD27XV43GBrdZKZEUxJiY2iokZKS1tpa3exb38z19+QQ3FxMzabk/yd9f6gmzQxhosuTGPrtlrWrKkEBYJDjJgDtGg0KswBWqz1dtLSQnnssSQ++aSEHTvqKD7QQnVVO06Xm8pKm/+96ZnsNjzMxOTJMeSOi+zXi2r3rnq2b7cyYUIU8+al+K+ajB0dxfwpOby28XqqinYQW7eRog1fUVRUxPr1649ZlPquKw69u8PW1XWwcmUlK1dWDOoHsJ42HGsy3+OxZs1Bli8vY8GCVBYvPnx/uepy+rFa7bS0OknPOHoO5HdfGexZga3nRKRnjp9zc7O45boZbN1ay6at5bR0NrCvopz9lRWUVB1k/ozRHCr3cuigjQN1xXy2ZQWfbPmExQ9DeHAQkaFhpCVG09asJkbvm7D6xp/m0NTWQlV9LSo0tNoDaGy2YdDrMOh1aLUayYHvYLXa2dU990ZGpoX3v1rL828vo+RQFQDTx41h4awprFpVSXLQaDo0XVSWtGNr7fDnQO54Xw5s2VxLTW07Wq2G6CgTBoOGDRuqcLk8JCRaCAjQERZupLbGTlOTgwMlLbS2OOl09sqBbXW4PdBqc5KRGUxJSas/B9rbXOzf18wN1x/OgZ35vXJgUgwXXZTG1q2+HOgpigWYfTkQYNZitfbPgQPFLdTUtuNyegkw6/zziPTkQFi4LwfG5Ub2G9Kxa/fhHJg/L+VwL6pRd3D/pPP41aYX2FJUycuH0nhrQwWlpaWsXr2aX//610f9nUgOSA6cjnp6qGQckQPJyRYSEy2+84HuHDhyAZrCwgby8+vJzc3myqtf4fm819ndsBFzeQSxZVkcKi+mqqqICy+cyb59BgoLG2hr201R0TM88MAzPPAAhISEEhYWS3p6ChUVGlpbfRcgHn10Ju3tjTQ0lOL16rDbLTQ2NmIwGDAYDGjlfOA79Z7/dMrUcF5+7zlee+VlrKW+v8HV6tWkzU9H0xpOzqiL0CSGUbbXhb1dgyo0iP1ON+npGuZfm8iSJXvZtq0OrVZFRkYIQUF6OjrchIcbSezOgfBwIzU1djQaFfv2NbF/fzMejxeNRo3b7cVqddDVpdDV5SIwUAuocDrdfPJJCe3tviGDP/1pJPn59b7zgWPkAEBwsBFzdw6Yj5YDB1qorW3H6fRiHiAHwrtzIHeAHNi9e+DzAYBf/teNwI0U7ynmi3e/YOWHK7FWW9m0ehM/vfenAOg1eqLMUUSZo5jGNFweF+u27mdH1R5UEc18W/sty8qWoUJFekg6cxLmMD9lPhdelI1apR6yHIDDx+eCgsY+338fR8uBnsc9k7JAilInWVOzg/ryNv+wpppaO1lZYWRnR2DvcLNuXRVej5eFC1MByNtQjdvt5dVX9mC1djB9ejxXXjnCv2Ia+AIqOdmCSjWS1pZkgqImcekNYUycEI1KpWLz1kKqq+wEhUSSmD6GhtoyHPZ2bM2N2Jobgb0A5CRfTEiIgahIM6qOr2ne9xoAK/bBiiWHX8OIUeN46s1laLSyexxNZWUb67/ZQeXeZdSVrcbZaQdApw8gOWcBxaVqjIF2amvtHKpqw+uFxkYHHfYuNBoVDoeHri4vKckWbDYXKNDp7KKkpBm3W6G93YXV2sG112Xz0xtz/Ceq+flW6uo6cDrdGAwaAoP0RESamHxONBs31qDVqCkqasbe0YVzv4ewMAMGvYbRo8N9J0bJFvR6DfX1HewtaCQt7fBByhygJTTUSHiY0b//ejwK9g439u55TbweLzmjfJPphoQY2L2rnnZ7F+edl0RhYQN5G6oxGDTExZr9H7yqq9sJjzAdUZhSgQoOHGghP38LU6fFMW2qb26S7FgLf7w0h3digsg7MIpzzrudWeoiLjt/tv/ee/fu5dZbb+Wuu+7i6quvxmg0MmpUOHl5Vbz44k4cjq4Br1T0XDUYPdoXesdafvxoTsaVhxMNip55IlwuD77pyfpOHjdcJ0c83TS1OCgtP7wiWW2NLwdysiPosPtywOM9nAMb8nw58Mqrh3Ng0ZUj/CumgW8ole+DXgotrTGkRKTxy+vDmDgxGoCSoiKqqu2EB1sYm5lBRU0Nre12GlvbaGxto6jcVzC/duoIkhIDiYoy06KU8UXhUgA+L4Q//vvwa8hOT2TbB09hMhoG7407w1RWtrF67T427N3MjtKd2Oy+HDDo9JybM4HmOh3r86ooKGigs9ODSg31VgedTg/2ji4cDjddXV6SUyx0dHSheKGtzYnX60Wn01BeYaOtzUVycjC5uVH+/WnDhqo+ORAUqCcywsQ550SzcWM1Go2GoqJmOuxd7He2EBZmQH+UHCjY2zcHAsy+HAgL75sDHXY3lfY2/747KudwDuzaXY+9vYsLL0ylodHBqlWVhIQY0GhUxEQH0OFwU13dTkS46YgTEhUqDufAtKlxTJvmywEiRqC68M+cE/MG5xxYyZNzk3lbdQWZU8733/vgwYMsWrSIO+64g+uuuw6z2Sw5gOTA6aKp2UH9/sM5UFPT63ygOwe8vXIgrzsHliwpoLLSRkCAjpkzEygubu5TsPrxyB8Rpolhk+VLanP2cUfkg9xx2YUAbN++gf37WwgJCWXUqMlUV5fQ3NxES0szLS3NlJb6zgdSU0eRkxNGcnIwSUll2GyPAfDOO76vHikpKWzfvp3Q0NBBfOfOLHm79vHvTW9TXLycunv3427zzeWo0qmJHp9CTsRsUhpyKNjehtZgRK1T01BZQ1eXm7aWFgwGLVqtmuXLy6mv70Cths5O39xjOp2Gri4PQL8cMJu1rF5did3ehU6nIiBAh1arZtaseL74ogyPR6GlxUlXl5eCgib0eg2BgTB+vK8g1ed84IgcMHfnQPgROWC3u7F354DX6/UvrhESYmD37nrau3Og8YgciI4OwNGdA+ED5ABAcXH3+UDvHOiWOTqTzNGZ3Pn7O/nmi28IDjvcVluLjQdueIAFVy3ggkUXYA4yMyY1ler9KioLbcyZE03iBChsKqTMVsaSwiX8a8+/sOhCSFfnMmLkOcxRJTB/3tmVA3DmZYFUHU6y2toOGivagf4rECQlBeH1eKmqbid/Zz3XXZuNvcPNmjWVlJa24HR5aWzyzdGQOy6Sg5U2Cgsb2bCximlT4/1zVAWH+AoUPVcveoY/5Y77OdnZD1Fnbado7yGc9npqqw7RYatjw/oCmlu1FBe3cNGFEBUVhCUkDGenA5fTiaJ4/a9hf8FOGuvriIrte1AY7nqvUNdQXUje0rv971t4dDKhCQvIzL0Arc5EZVUHXV0N2Gwu1BpISrIQGKihpMRGVKSJpCQLnU7fZIMtLU7f6nYGHS0tTnR6DU6nl5YWFy6Xx//8jQ0OrNYOutwe3/ZmHeFhJlJTLNx261ieenob+flWtFo1Xi8kJAQydWocVmsHO/Lr8XoaSE6xkJRkYevWOuztXej0avR6DeYAbXfvKS+JSRZ/Aam1xUlrSydxcYH+fTcuPpDrrvUNCbrowjR/+956u5AdO+qwWAxkZ4dj73CzfUedv+dV76LUmLERBIcYWL68jAMHWvxX+3t6Cpp0WhZPS2V8Yiiv5pXxmnMk+5e18efwFlJSQnjuuefYtGkTmzZt4le/+hW33HILd955J+XlrWzbVofZrBvwZKTn4D91ahwPPTS938+Px8m48nCiQbFyZQUrV1YyaVI0N944qt/9h+vkiKebutoOisoHXokmKSkIj9dLdVU7O/Prue66bDrsh3PA5fTS1D1Xz7jcSCoPdufAhiqmTYv3d4kPCe6bAz3zAI3LzSEn+1bq6topKKqjxd5K+SErjW3NrFlbjOLSU1vrACA2OoiIUAsdnU46O114lcMfagpLDlJcUc3YkamD86adIXr3jmpobeSxd5/C250DsRERjE0az5zxkwkwmLDWdlB7sIbGxk70OjVZWWF0dXk4dKid6OgAkpJ8Q+x376qnzupAp1VhNGhwONyYTFqcToW9hY2YArRMmBhFZWUbAWYt7e1duLs8aNS+nqxh4SZSUi3cdttYnnpq4BwA+PbbajZtqiU+IZDRoyLYurWW9nY3ep3af/ytrm6nqbmTlFSL/8ShpdVJS6svB3r23fi4QK67rjsHLuqVA28Vkr+znshIEzHRZt+S94fa/D2vep+MjB0TQUjw4Rzo6f3rn49Eq4dJN0PCZLR5z7PY+TTfrq2nInE0ySmh/POf/2Tr1q1s3bqVX//619x0003cddddkgOSA6eF2toOGot9x4YBzwe8Xqqq2snvzgF7dw5UVLTS1eVlxIgwkpKCMJu1HDwiB66NuoCR5Um8V/Ymz7c+iLKrnDvG3uEvsM6fP5Pp0/9ERUUrmzeX43BYKS2tRKtt4Y03NlBXZ/bPD5eeHkpkZCR2u53OTide7+HPneXl5ezatYvZs2cjfDrdnXy+ey0f7VxBOflYWw+y/6X9KN2LRASEBhKVNZGRE2dgMobQUOdg1yE7jY0uAgK8TJoUQ3S0Gau1o08ObNpUjdXqQKtVYTL1zYHCwkYCArRM7M4Bs1nLN98coq3NiUajIijIQFiYkZyccK68cgTt7V3+HOjo6CI5OYjERAsGg4aCgno2baolISGQUaMi2LmzHru9i85ONw5HF2PGRFJd3U5zcyepvXKgtdVJa3cO9Oy7ccfIgZ3dORDdKwfA1/Oqdw6MGRNBcK8c6DwyB3opKbNR0RhNOEasVjtRUWa+fO9L9u3ax75d+3jxzy9y/pXnc/mNl2O1dnDgQAtGo5bZ0yeTFpKGV/HS6mylqKmIjQd2UmDfyg7t1+hSddS0T6CycB7zk+cTGRB5XPvC6ZwDPW06k7JAilInWUxMAJEmvf/kGg5PZB0VaWbhwlTyNlRjNGiw1ttJSgpiwvhoYmLM1FS309HRRWFhA9nZEXz+eRllpS289WYhoSEGsrMjBlzlLDs7ok93xz27G9m4sZmY2GAuu3IClZVt7CrdTVOTg06Hr+vm7ff/F7ff/1/+YWglpU10OTtJSfQwddoIgsPOjKrqqdJ7zqOoSDOKorD+m92UlPsm9EtPH4klPJHwqDhmX/xTNKaRrF9fQ02tG5erlcaGDlxdHjQaNaGhRqKjzQQF6bHZusgdH01ubhRvv1VIS4sTp8uDXqempaUTd5eCRtOF2wM2m5O9extxdLj5+utKHJ0eamra8XoUTCYdSUkWdDo1NpuLDRur6HS4SUgIIj4uEKvVQWycGYtFz/Ll5TQ0OggM1OPocPPtpmpaW53o9VpaWpx88MF+1Gpf0SstLcT/oSkq0kxwiK/rbXCIkYULU/1FOYAvvixl1apKMjNCuHJRpm+1SXuXv6cVwITx0YDSZ4nw3u/teeclYTRoiYoO8C8n27N/W+vtdFk7GWFXsaPNxUYV/OytHbxxzzT+8z//k9jYWJ5//nkOHjzI448/zhNPPEFu7kzS02dz+eWzBvy9noyrBifjMU40KA5/4JTJSE9n0TEBZBnD+nyo8udAlC8HNuRVYzBqsFp9OTB+gi8Hqmt8ObC3sIGc7hwoLW3hzbcKCQk1kJMdMeDqNjnZEX0mkd69p5GNG63Expi54YqZVFa20VQSQVOTA0enLwd+f+c1/P7OawDfhNSffnYARfGSPtLIjKkpRIadOR9mToXec11ERflyYNO2Mvbt6UABEuIDSYtLJNBs5KeXLCDOksj6vBoarW5qXC00NDrocvlyQB9qJCBAR1pqCF0uL+NzfTnwxZdlNDd34nR68Hqhq0uF261g07rocnlwODzs39fC2LF2vv66kk6HLwc83t45oPHlwIYqHJ2+HIiL9+VAXKwvBzZurPENt3Z6aWzsZNO31bS2ONEbDudAZJSJ6io7ajX0XL2OijITEuzLgZBgXw70zIEG8MUXvhzIyAxh0ZWZ/tt7rsIHmLVERgVwZA70NmFCNAajluioXjnQvX9brXYqD0Wwp/kmsts/Zmr0mzS/txtuf5tf/vKXBAcH89xzz1FSUsJTTz3FU089xejR55KSMofLL5854PNJDojBEBMTQKQm5Jg5kJdXjbFXDkzozoGamnZ0OjWNjQ7/+UBpz/lAqO98YHxKFlkJD/LOvnd4Nv9ZNlRt4C+z/8JD0w8XWtesOcjSpSWkp4dy330/Jjk5mOXL4ygvr6G6ugOAe+65h3vuuQfw9b5YvrwEoxEOHapi6tRUpk4d3nMNlpe3sHrXDlrD9rHbvpl8az72OjvG4GAM9gjSdNNpTXej9iicd8UlBEZmkpdXS2O9FpfLRmNjB67uHNDp1DidHrKywlCpILc7B77skwMquro8uN0KWq3v4rTD4WFfrxxwdOeA0+nBZNKRnByETuc7P9mwwTd8PCsrDIC2NheJiRZSUy1s3FhDVa8c+PbbahwODwEmLQ0NDj78sJhdu+qpGiAHgrtzILg7B3xDSo/IgYwQFi3K9N/ekwNms5ao48gBo9G33YA50D03Vc/F78REX8Fs4TUL0Wq1fLLkEyoOVPDpG5/y6RufkjxyBGEpE5k86fC8mmqVmlBjKFPjppKuHcuBigZUYU1UeUoobS3lfzf/L3/e/GeywrK4IOUCLkq9iPjAo3fQkBw4uaQodZKFhZpIzug70XnPHxfQPY4crPUd5K2vptPpJjnZQnZ2OM3NnRQVNfnGDEeYiIoOwBxowO1RyN9Z7y88HVkwOVJ1TTtlZS20tTuprPR19czKDqOywkZmZlifbXuGGKanhREcYiApKYiwAR5zuOn5vXk8bgq2rODdl5+h+uBBpi/6FxoN7NrVwNV3v0h4RDA1tR3s2enrFdXS6qTL5cHV5cHjAZPR16W2Z4WjtNQQ1Gr45JMDuLo8qDWgVoHT6UWrA61OhTlAj6PTjUajoqnRQXiYkebmTtraulC8CgFmHaNGRWDQazhU1caqVRWEhZs4WNlGV5eX+LhAMjJDqK21U1ZuIy7e9/tMSrbQ2ekmOMRAcIgBj1uhpaXTv0xxW5sLr7eFxgaHf79KSgry95ZKSor095Cy1tv5fFmp72pKUycTJ8UwaWIM2dkRFBY2sGpVJbnjIomLM5O/s54DB1r8+2zvv4mMjJCjDifs2S7QoCOpToUSqKbM5mDeE1/z5DXj+P3vf89vf/tbli1bxl//+hRr165ix461REYWcvnlfxjw93oyrhoM5ZWH6dMTzprwOZuFhZgIy4jxf3+0HKi3dvh7v5SXtRIWbsRk1PpzICLcRHRUAIGBvr/Xnfn1/sLTkQWTI9VU+3Kgve1wDmRnhVFR2T8HADrsbkIsvhV5Zk9NGvAxh5ue35vX6yVv504e+9d77N5XwaO3PYBBZ6ShwcEjP7ubqIggams62LnLlwOtLU5cXR66XL4cMJr65kBq2uEcaLe7UKlUqFXQ1QU6rYJWq8IcoKNTrcLt9hIdbaK8rJX6egcOhxuvomAO8OWA3qCh6pCNVavaCQ8zUXnQRleXQlx8IJkZvhwoL7MRbNETGxuI2+3ruWEyaf0XNvbubcLt9lDf4MDW6iQgQEuA6fDHw6SkIH9vqaSkSP+VcavVzrLPS/29qyZN9C05npMd4Z8PbVyuLwd25vfNgagos//9jYk1M2d24oDDCXu20RgCWFl3MW0dpcxSrcL7zLmEX/Z37r//fv7jP/6DFStW8MQTf2f16q/Ys2cTZvNuLrzwwQF/r5IDYjCEhZpITv7uHLB254Bvvp4O0tNDqKxso7S0sXsOIRNR3Tng9ijk5x8+H2hr8jKqYwHx8amssn7BZR9exl25d3FTzk1o1BqKi5vYudNKU5ODgoJkkpODmTUrnuZmB7Nm9T/Zbm11oSga4uJCyM1NZNSocPT64bf6anNnM5tqNrGuah1rStfRrrSgbtIQUGKi7pM6avfWctF99xNgiMLtVHHlrbmERwZRU9PBrt0N2Nq6zwe6PLi6c8B0RA6k9coBe3cOaDTQ1aWgUoFaDQEBOtS9cqCsVw4oikJAdw4YDBoOHeo+HwgzUV/vwOXykJgYREiIkbY2F2VlNiwD5MCIEWYCA3W+odkehb17m2hv7yIszEBZWau/o0RSUpC/t9SROfD5slKqa3y9qyZN8uVAz/lAT/EqLs5M/jFyIDbWzOzuHDhyOGHPNgaDhri4QMLDTbS2dnb3lgpk0c2LuHLxlezctJO3X3yfLV9vomLffg6VlPCf/+/HA/6OD1/cSwbG0+Xtos5ex876nRQ3F/PMjmf4x/Z/kB6czvzk+SxMW0hacFqfx5AcOLmkKHUS1dbafV3tR9LnpL7n38rKNrbvqKPe2oFXgbLSFlxdCtVV7UTH+LYPDjb4PlhWtqFSqVhwQQqdTje54yL9xajWlk5qan1XOBobHP7eKz2TpddUt+P2KBgMWn/h6tprs/wHgR49E7HHxgQwZmzEgAWu4SomWsfGlSv427+W0Gj1Ld+q0Rpoay7hYKWB+nrfykVjxkYCDdjbXZgDdXR0dFFWZkPV5UGtApNJh1oFzc2+LrZqjYo1qytpbe3CYFCj0ajwdo+Y8bghONxAaKiBlhYnXq9vAsCifU1kZITS1NSJrdWJKUBHZ6cblQq8XmhrdxMc4gsYp9PN3sIm5sxOIChIj8fjZfq0BIJDDGzYUMWBA82EhRqJjQ1k504rDoeb2DgzERFGyko9OJ1uPv+8jPIKG3sLGpk6LY7gEIN/1b5585KIivSFSHiEiS63l/HdY9x79J4PDWBnfj3VVe0EBunJz7cSHmYkNiagT4GqrtZOfb1v2fOeuaV6Jlo3GrSkJAej0aiI6vJQrvJw+2vb+MmUJB66dBSXXXYZWu1oRo/eTG3tKiZPTsdg8M2D4/V6+Y//+A+uvvpqpk2bdtZP2Hnk+PaeMec9V1IURaGmpoa4uLihbupZq6a2nZaiRsJHxPoLO0fmwI7tdVjrO1C8vg+dTqfHf/UvNtZMcLCBsPDDOXDBghScnW7G5Ub6i1EtrZ3U1vhyoKHR4S8A9EyWXl3TjsfdKweiBs4B6DsZ+9gx/SciHa6iY4x8/PUe/vjKcsqqfMtZazVa9pSUMjIhk/p6B5GRAYwd48uBdruLQPPhHOhS+eaRMpm0qNTQ3NyJRqNCo1axenUlrbYuAs1aTCYttjZf7zW3B8KDDQQEaHG53EREBGC3u9m9u56Oji70Og0Gg4YAk7ZPDrS3dRES7DvuOZ1uCvc2MntOoj8HckZFMG1aPBs2VJGfb0WlVnHl3GTefLOAhvoOAgN1xMcFYrd34VUUNmz09agt2NvItKlxhAQb/Kv2zZuX5D+ZiAg34e7ykju+bw70ng8NfLlQVd1OUKAvB1JSLcTFBZKVFUZLq++CXG1drxzonlOkZ6J1g1FLcnIw9ZoJfOZO5XzDZwR9cCvsX4760n+wYMECPJ5MsrK2Y7WuJjMzDIvFNyxGURQeeOABLrroIs477zzJAUWhurqa+HiZouFUUBSFN17+AEeiDlNGxFFzYPv2OurrO/D2yoEDB1qorm6ns7MLrVZFeK8cWLAghc5ON7m9cqC1tZOamg6yskayKCSBZQc/4m/b/say0mXcmfobtmyp9fWECdD5e3P87GfjmD49oV/vjoqK1u6iWDDnnZd4Rg37+aG6vF3sqt9FXlUe66vWU9RUhIJCdEA0yYEp1KxpZN9nO6kr9w3VUqnV1O6tJjYzkvr6DiIjfSvaBQe3odf7ji9ut5dDh9pRqTyo1d3nA71yQN2dAzZbF+buHOiZiFxR8PU0DdDicnn65YCuOwdMpiPOB9rcBAd7cbk8tLe7qK21k54egtPpwePxMurIHFCpmDYtnjff3EtzcyeBgTqiogJ9x1yDhh076qiubsNsLmPq1DiCu3PAekQO9JwP5B55PpBf758PDWDnznqqq9sJ7M6B1F450NqdA3UD5EDPROvG7hzQaFTU1HQQHNzm//tSqVTkTs3FrYshdfJCmsp3EBSgEBZ1+CLcy0+8zKiJo5g8ezJqX1cwP51aR0JQAglBCXi8HhodjeTX57OveR8v73mZF3a9QEJQAvOT5rMwdSFZYVmndZZ8Vw4AVFVVnVY5IEWpk6i83EZ5uY1Ik95f4DlyuF1Geih1dR20NDvRG9SEBBvIGRVOZGQA5gAt9g43SUlBNDY4fJPDxQTg6HBTVNREY1MnHo+XjPRQsrJ8Q0NWrapky5ZaduZbcXsUIsJNBJh1xMUFMj436qjtAF/l+UBJCxbL4asg/3ziT3R2Ovjp3fcTEtZ3BZCz0YaNVWzcUM3UaXGEhhhYtmwP5Xs+o2rf57TbfFe09KZgIpIXYI6aS0hkPFOnxVFRYSM52dLdFVvBHKgnKspMcXET5gANjvYm3C4bjtZOimtaUDxtmE1u1KouGhtseD0uXIoL38R0KlCp0WjUtNn1NJbq8CoG1BoTbo8BlS4IozqRqdOzKT+kpb7et/x2SPckhCgKHrdCSIgBnU6Nvd3J8q/KmT49nrjYYHq6y27bqsHp9AWVwaim0+nrHuxyKSQlBRMdbaahwUFdnZ2ioiZabU6KD7Rw4405WCx6bDYnlZVtvkJovpVxYyO5++7cfvtVSIgBt8eLrdXZXbTzdeGtqLCxY3sdHR1dTDk3zr/CX1ZWGGlpwVRU2PxDAwHsHW48HsXXTTfJ4v/7uDTBzLrKFt7aXMm3pY08d8PE7g9X5zBq1EV9Pkh99dVX/iEdY8aM4e677+b6668nKGjg7sOD4VQu0Xrk+PaeMecAaWkabrnlFvbt20d+fr7/hE2cXKUlrdjKbdiNhz8sHTncLj3DlwPNzU7yd1pJTrIwcmQYCYlBZGWF0WH35UBDo6PPZNFFRU00NfpyID2jfw7k77TicSuER5gwB/hyIHd81FHb0WPX7gZ2bK9j/IRooqLMPPTU6zS22PjNrT8iOT56cN64IbRhQxUbNlb7ii+hBj5btp+8gi1s2rcZa1MzACaDkdzk8WTFjGNkQizTpvbPgUDz4RwIMGtptdvocDpw4GF/dTtOTyc6oxfUHuob2uhyu/EqHlApKIoKFSp0OjXmDj2uYlCjw6g3oFHp0KsNGLSBxESEkjMiloZ63/LbvsloTSiA29OTAxra2118tdyXA7Fxh3Ng67bDOVBa2kyd1dF9AqQeMAdsrU4OFPfPgYZGXw6MHdedA1H9c8Dj9tJqc3YX7Q7nwPYddezIr+PcKXFkZ4cTFxdISLDRnwM9QwDB14OvJweSEi0EmLV02ENxJPyOIOsXULAUDm6Gq15l1Kg0YAKjRp3f59i6efNmnnjiCZ544gmysrK46667uPHGGwkJCTm1O9YxDFUOZGWZuOOOO1i/fj27d+8mMvL45k4Rx6+oqIhHf/dHkiaMIep3Dxz1+JvROwfyrSQnW8jICCEnJxyHww0ojOn+22ltdWKzOTEaNb7zge4cyOiTA83YtoxHnxhNycg9/KrpdgzTs4myTeOCC1L8+9nRenf0XsUrOTmYxx57jIMHD/Lzn/+c7Ozsftuf6Q62HWRD1QbWV61nc+1mOtwdqN0GYvQJTDDPxFZioHFHOcu++pz2Zt/5gFZvIDJ9ApbEycRmJjD1iBzoKchUVXVQV9dOYKAOp9ON16ugVkNVVTsej5fmJhNBFgOdnb5J0e12N06nm55pHY1GNXFxZurqOujsdKPTqWlq6sTr9aIoKsLCtCQnW6ir6+iVA0ZA6T5e6tFofMMA8/KqfOcDvXOg+3zAbvflgNXa4S+EJSUFM3p0JK2tTvbsqfddBGtxsm9fE4sXj+57PtCdA+OOkQNut5fWVidjjzwf2FFHfn4dU3rlQHCvHMjtlQP2XjmQmGjBbNZi7/6cdCTfbWkk/Xhcn/ZUHqhkyVO+Vb3ikuK49IZLuejqi/pMmt5Do9YQZY7iAvMFzE+eT3NnM7vqd1HUVMTbRW/zasGrRAdEMzdpLhenXcyYiDGoVep+j/NdhioHxoyx8Itf/IKPP/6Y3bt3k5iYeFKf+0RJUeokSkmxUNHmOOp42ahIM4lJQcRXBBEaaiAoSI/BoPEXpPI2VONxe/29ScrLbWzIq0KrVdPV5SE01EjOqAjGjI2gseHwygbxcYEUFjVht3fR1eUlPT2YnJxwLBY91nr7UXtAJSUFUVzcTG2t3T/c6qO3XsPV2c7YaT9m9tyzvyj15Zdl7OsuwGRnh7Nz2wFqd70OQEhEHGljFxGdeh62NnA5PYSGGfjk4wMoiofqynJK9xXSaD2Iq8OKWmmko60Ot6MeRfEFTWfPE6l0dOrMaDQGVCo9ileLSq1DUVSAgkYDWlR0tnvwuDtRPA68HgeKxwEoFNdA8QYAFXpTCAZzDB3mOGyhCYRGJOF2RmMwRpKaFsyOHVaa6ztYvaoCS7ABc4COTd/W0GZzonjB0emlsLAJxeu7+jB3bgJpaaEkJQWxe1c9X3xRhqvLDYrvintPsSh/Z71/QvQDxS2YcyMH3LdaWpw4HF2UV9iYOCnGP+QvIyOE0tJWbDYXlZU2VCqVbwnaib7u7T09pHq4XB7qau2kpQX7t+lxTXQQOXGW/8/eece3VZ/7/629hy1L3jN24hGPDBJsJ5A0YSRAWS2Fsgotbene0JbeQu8tbW+5vZ2sFkqhJVAgYYdAAglZZDtx4gw7nvGSPLT3+P1xJFnyCKGlwO0vz+uVlyPpSDrn6HvO+/s83+f5PDy+s5tLf7eNH11SzQ2r09NqAYqLi7n11ltZs2YNra2t3H777Xz729+lpuZCvvrVL3HjjSv+0aHzD9t7EUZ87rnjrF3bzlVXVUwr2DvZJte3r1xZTCwWw+/fSXX1pdjtdpRKJbt372blypX/5JGctemsbJYBu0uPaSYOWDQUFeroyU/nwIIFOag1UqETX0TgQKZJ4MD2Hf1IpSJCoSgZGUpqqrOoq81K63SWl6/l2NEEByLMmmWc4EBcEHRmixFD0LHbuKmH+/+2nhHHOEvqF/x/EZR67bUujh0XAjBVVSb2HjjFS/vfIBaLYs4wsqyuiYUV8/C6YwSCUTIzFLzwoqC/1XlqiI7eU/QODXNq2EYw5sbhceD0O4ikCAYDiEUSlDIlMqkMiUhKLCpGKhZadiebjUjFjLndeH0BwtEg4WiIYDgQ/4WALmAPaFUajOoMMnWZWIxZ5JsthP0G9EojZaVGDhywYrN52fRmDwa9ArVGxq53BnG6AkRj4PdF2LLlFIFAFK1OxsUXlyY5cKhV4EAoKDhJgUAoGSw62GJDrZFysMVGe4edBs30mXUJDvR0O1m4ICdZ6jEjBxbGOdA0lQNDw3EOLEznADmfgpw62PUAPHIBxR/7EcWrvgaTVq/NZjO33347TzzxBMeOHePrX/86d9xxJ9XVK/nyl2/n1ltX/WMD55+wD4MD0EJ19VVYrVZkMhnbtm3jyiuv/OcO5KxNsaqqKu746Y+5987/YPtLaznnnC9P2cZi0VBYqCN/EgcaGixoNFLa2kYJh6N0dTlpbs5jYMDN5s29SKWCLlFGhpLq6ixqa7PSOp0V5Os4esSMr2UxlqX9BAtPIv7CCQ6J+jjYbqG+ouQ0ex4jFoORES+vvtrJ73//Z06dOk5GRgP/+Z//94NSjoCDXYO72Dmwk+0D2xn0DCIRSSjQFbAweyF7N/rpaxWjy89BXp5Lz55eWp5/mWgkhFyloercZRTULMbtFREMRsnIUPDiix1ADIcjgMsVxO0O0tvrQqWSEonEUKmEDCivNxzvhCeU5jkdHkLecTI1AYYdY4SDfiLRIJFQELEoisQgwxGU4B71EgpGCMmlhMMiRGIpEpmUUacCWchEhsmIUi9HIpECcoqK9IyP+xGJRJSWGpIcePPNHvR6BRqNjHfeGcTlChCLgc8XTXJAp5Nx8cUlE/5Aqw2bzcepU05isRgeTygZLGppsaHRSJPleJp340CPk4UL/zkODM/EgUk20+KbSqPiE5/9BOufWc9A7wAP3fsQj/zyUUpr53HFTZez6srGaTOfxCIxJpWJ5UXLOb/wfJwBJ60jrRwdO8qLJ19kzbE1mJTC66tLVzPfMh+JWHJGY/KD5gCAUnmcmpprOXXqFGKxmDfffJObb775jPb3X21ng1L/Ahsd8cXrwcdpOWBj6XkFrLq4LFkuV1KsQ6+Xo1LL6OlxJh39AweG8fvCKJRS5s/PxuUMYLcHUCqlqNWCWGiifGrTpt5kucaNN1WzYUM3vb1OZFIxA/0eQsFo/OIaSXbrmxxAsJg1GI0Kdmzvx+kIABCJCBPfo20jnP+xD/rMfTCWqslFcJDA+G6Gh1cK59lQiCb7ImTqYjLzz8URkpIrliAOdzPQ3sKxXV14xnuIBgchJpwzRArEsiwUGgsqQx0SSxbBqAGJVI9ErscfVKHTa6mvt3Cy006GUQmA0xnEHwjjdocw6BVYslUMD/vIzFCgVEkRiUR0dzsIB5z4PKOEA+NIcGIyBtAoxhkd7qHvyHa6QkLoSyrX0ZFRhlheSCiaz3hwFh6PUVgxGROjVEiSAdORER8iEViyNUQiQqmcxayhtg727RtmdMxPdo6cwgI94XBUCJhGoni84ZRuj9OvsBYX6+ns1FJUpKeoSJfWtfCqK8tpOWhDIoG+Xndazfjk36anxzmlpC91u8CQj9vPLeGl48Pc9cJhdnSO8D+frEcln7itVVVV8cgjj3Dffffxl7/8hQceeIATJ06wZ89abrppLbW1B2hoaPinx9R7sfcijLh2bTtvvy2Uj54JhCavgGZledi8+S62bNkCwKxZNTz44COsXLn4H9n1s/YebGR0ggMHWmyct7SAVavKkqVyxSUCB9QqgQMJR//AgWF8/jBKhcABpyuAfTyAUiVwwGJWJ9PmN23qTV5bN904wQGpTEz/gIdgaIIDiW59003WQsEo4+N+rFYvJzvsya6fJ06Mf8Bn7YOzVE0uX8RJx8gRMozzUSqlZGgN1ObNR6PQU11QjUQkRSaR4YlYOdDezgs7Bxkat+EKjhGOCuUWEpEUtUyHTqknz1jEbIUeuUiNUq5GHJUjiirIMKipr7fQedKOMWOCA3q9HOuwF68vjNEgRyIRSrvVGhkGvYLOLjvjDhdOnwtv0E04FkBjjCJW+DhlHWb70RP4WgQOKOVKcozZGJVZyKMZZAaz8biFsTYmFaNQChxQyCXYRnwQi5GZoSASEUrlLBYNdbUCB8ZG/eTkyCkoFDiwY7vAAa8nnNLt8cw4kKoxdeVV5RxsETjQ2zcNB6wzcGCSoyJsl0HR/B9h6forbPwP6N4KV/8JVMbkdmVlZdx///384he/4K9//Sv3338/hw8fZv/+l/jsZ19i1qzNH3h3sQ+SA/n5YXbt+imvvfYaAEVFFdx//x+55JKzHdX+Vbby0lXsPLqXFx57lphIRX5NIy0tNpamcMDhCFAS54AqzoGEo3/gwDB+fxiFQopGI6O314nXG0GlAqVSinkSBw4etFFfb+bGFA7IxvIY6ZuFeO5xDma8yc3b32T+/mXc3vBFzpkzdRz5/WFBg67bgcMRxG4PArBtW/8HffreFwtFQrTYWpJBqGOjx4gSxawyU6IvYXHuYvSRbDw2GRWGbNoG38HV9g62WBbdEifhqJzM8mYCIQkZRXX4VUrkSjWZShE9PQ527RpkcNCLSAQuV4iMDCVHj44SCsVQysMoxB48QTvucRsB1zjhgIto0EMs5MYZ58ZkE0nkIJIQHBEjFosRiSUQgwgRwqEQsUiEWFTIohs/nv5emUKJXGNEpjKgyzBhPWEgItITDeoYH4/idofR6+VIpWKUcQ7I5RJGRnzEYjEy4hzQxDlQWwtHjoxx6hRkZanIzxe0qLbHOeDxhJPZTA1nyIFUjamrriqnJc6Bvn+aAzPPbxJmzjXz5R9/mc9+77O8+eKbPP+X52k/3E77/t38cv9u9Jr/ZMlFS047psQiMUalkaUFS1mSvwRX0MWR0SO0jbaxoXsDz554FoPcwPmF53NJ6SWck3sOMrFsxs/7IDlQWiqmtfV/ee655wDIySni979/mKuvvuhdP+uDsrNBqffJhoaGuPf7X8ey4FbsGh2RSIxd7wxgtQqaH6suLkuKikskIjxDXiQSEZFILOnoezwhIuEoEqmY5qY88vO1bH37FGazinA4Rk21KRlYSg0MWMwabryhBiAZAEh0PHDY/VO6msGE8//GG90MDLiJxmJcc80cnpRJiYRgzhzjB3j2Pjiz2oSssM5j+xnueJGjB7YAYkbU1QwPCemrUdUygt4OPIf/RjTQRee2PmKxEIgkSBR5iOR5SDXzMFpKEUlz8QY0qNUyjEYFw1YvEUASA51eQX2dUG++9Dyhfrevz0UgGCEzQ0V9gwWjUcHWt0+h1yuIRKMoFMIq9uioD71ewRWXV7Dh9W78QSVyRQEZRiVyhZj8Ij3Nl+l5e8sphgcHINiPKHIKn6OT0Ng2IiE7AEFVPpLsucSk5eTNW0xdfSG79wyh08mxWNQYjYqk/lOiu2OmSYVIBAq5lMIiPadOufD7IpRXGAkGI7S3j9NQb07r+JhqcrmE4mIDlZWZaQFUgOuuraKqKos1Tx2lf8DNzh0DlJcb6eiw89ZbvcikYmRyCTk5GoqLhfKy6YJfCS2qSjL52scqePXwEC8dHOCi/q08eMN8qvPS4ZaRkcE3vvENvv71r/Pb3z7NQw89SCQySn19fXKbxx9/nNLSUpYsWfIvrRN/L8KIV11Vkfb3TCyRDpyXJ6KxcR5+vw+VSs31138Di+UCgsGz5Rr/KhsfH+dz3/4JNy2oIKrTE4nEeGdXCgdWCRwYGhQ4MOSZ4EDC0fd4QoQjUaQSMU3NeVRXm3jrrV4ikRgisYjqGlNy4pUaGLBYNNx4o8CBRAAgwYGEZg+QNmlLTObeeKObnh4nAX+Y1ZfMQrlWhtMHs8r/PTVFrFaBA63tnezp2MWm3fuIEcOsycVq9RKOQLZyDmPeYbYcfht7wIb9bRvhaBgRYvRKI1pZBtnaIvKzsjFpzQQ9EiQSMXqDAoc9QKI0OyNTRVGhFqczxIoVRYDAASHzVkVDvYX6BjMb3+ilp9eBVCrG7QqiUEhxu4KIRSJWr57F6xu6idlkGBQmjBlKjAYFixZl09XtpL19HNuYHWdwDE94jGHHEO3Dx/EE3AAYlBmUZBdjlGfT1FDDwvm5nOywI5WKBTFdjTyp/5To7mjKFDggV0gpKhQ44PNHqCif4EB9gzmt42OqpXEgJYAKcN11VVRXZbFmzVEG+t3s2JnOAalMjFyWzoHpgl8TwtGZWJq/ASdeg4NPwQON8MnHofCctO11Oh233347X/ziF3nggXU88MAD2O0nWbJkwhF56qmnMJvNLF++fIrmyPtp/2oOgMCCffv6+MxnluByOZDL5XzqU1+moOAyRKKPRrnGv6udPOnAUjuP+vN9vPjnJ8hvGCekEn6/BAcG4xzwpHAg4eh7PCHC4ShSqZiGBnPyOohEYojFImpSOJAaGEjlgBAA0FOcX4dXYqfFvZ393rf57Dtv0tzXxPVV19OU10Rfr4sjR0Z55JFWDh8eweMJcs89S3jiCRVuNzQ15X4IZ/C9WyAS4PDIYfYN72PP0B5arC34I360Mi0l+hIuLLmQQl0h2epstHIt7rEYb77ZR2/HSV468VcOvL2DWCyKVZOD1ZpNNApibR1EYNweIRD0094+jtcbwukMxhMyI4S941hPdnDKPYx3bIhIYBxXyJvcL5FMjVxlxJCZgURRQHVdETqjkcNtXuRqNSazkdmV2SxcVMCmTafo6XEgk4lxuYKoVDJ8vhB6vYJFi3LZsKEbm80D0TA6TQy1IsysUgV9XTb6e4fxOMbw+Zx4HScIee3xABaIpErkmizE2XlEZRYq66uYt6iAkycdSQ5oNPKk/lNVnANqtTSZoV1RkSn4A/4I5SkcaGg4Q38gJYAKAgeq4hzo73ezcxIHZDIxskkcmC74ldpA4Ez0MJUqJas/tZpV16ziteff4fnHX8Ta086i8xclt9m2YRsyuYyFSxcikU6f9SQSidAr9DTmNXJu7rm4gi6Ojx/nyOgR3j71Ni+efBGtTMvS/KWsKl1FU34TCoki7TM+KA4cPDjEbbctx2odRCKRcNVVt1FWdjUq1dQKkw/Tzgal3icbGBjg0J6NmAb7+MaPHyIUkSKXi5KZUjAhcpjQxgkGI8lMqaqqrCnd9eQyMdU1WeTmaJKd8RKWun2qTX7eavMkM6VSrbfXxb59w9jtARCBTiujqkro4OD3Qmnpv58zcuSIlT/94Sm6WtfiGTsWf1aERFNNwHGAsH+QqO84sZBVeEVqQqIuQ6FfiFhZSlSSj1gsQyoTEYvFCIpESGIiZDJQq6W4XAKkdFo52dkaSksNlJcbqa0TAod/euQQwVCEjEwlTU255OVp8XjDXHrZLPbuHcJu9zNnTiYVFRn097sxZSppXpKH2xNk81u9yOQSnI4AVluY0RE/J06M4/WFUWqyyCwooKTkQqLRGAMDLrpO9hLyHEcaPol9cD/hwAa2ddxP+zu1qE3zqGw4jxs+sywplF9crGfTph6czgAKhYSSEj3huE6VxSy0ca2tMye1awb6BWcnoYEGJFcqUsf53n1DU4JLR4+OYIsL64olInp7XezcMUBb2yg6rYzCIj0d7XYsZnWy9C812yrRBQSEa0okEnFJbS4VFg2PbOvmyvt38B+XVnP9ucVTxoBIJOLrX7+Wr3/9WkKhUDL45PV6+cpXvoLL5aKsrIybbrqJG2+8kbKyD+eGnQgsLVyYc0YrIgnzer3JdODGxjyWL7+C9vZuvvCFH5OVlQ/E/qnWtWft9Ga1Wnnn4F56e47yyE9/jDgmQy4XJTOlYIIDgjbOBAfUGinVVVlTuuslOlTu2zeMXi9P6vMAadun2uTnrVZPMlMq1SY4IGTZyORiVq4oxvDfCqzjUFz076c7dqTNxn33v85bLdvoGelJPm/R5DPs7MPhP8yIdwB30A6ASqrBpMmmJmcROqkJnTwLqUSKUiEmGhXKXaIBESJRFKVSSjAQQSQCrU6RxoGEgPyf/nSIUDBCZsYEB7yeMAsXZgNCR9T8PG2SA5kmJUua8/C4g7y1uRe5TILDGcA+7sPlDuB0hgj4Q2hVWooLzJSU6IlGwesJsvdgLwPj/ThDw3Rbe3D4WtjSvoHyHcWU55Zz0ZKFrFo1l1AomtRF2TgDB8zxdt51tRMc6B8QOOD1zMwBtUbK3r1DU4JLbSkckIgFDuzYKXBAq5NRVKinvcOO2aJOlnykZltVT+IAIhHMWQVZs2Hn7+DPq2DFj6BpajmfSCTiS1+6ii996SpCoRASieB0hMNhvvGNbzA8PExhYSE33ngjN910E3OmySr5IOyf4YBKpeLIkVEOHLBTX38ZfX1tfOELd5ObW8pZDvzrbdYsA+1BPed9/zYel0fZtfEVZi3+OEuXfhxI8Qfi2jhJf0AzyR+YgQO1KRw4M38gnzprCW1dpxhQHeL42FFu33g72epsqmLNuPdUMDwsXM9KpYTVq8uwWDT09EBj40ezMYor6KLV1so+qxCEOjxymFA0hFKipEhfxLm55wrC1doCdHIdGpkmrazq/odfZMvzL+KxnUw+J9UVgkhMJF55HUmpwA6HYwz2DuAd6yPsHiTitRL1j0EsghcQK41IVFloM4uQqjOIivUYzBZy8zMpKTFQUWGkNs6BNWuO0mUbQKGQsPDcPCorM/FM4kBeCgdMJiXNzXm43UE2b+5FJlPjdAZwOyJET6lw+uREdNlkWKRkZakoKdETCUcZGRrm2KEOAi4botA4Y33thH272XbkZfa9qEdvKWROfQ2rVi7CaM6mt9c1xR+orMyMH3+U8nJjcvwl/YE4Bzyn4YBmEgdSg0tGo4JQXJi9t9fFzjgHdDoZhYV6OjrsWFI4kJptNdkfeC8mEolYdWUjq65sJBwKI5UJIZFYLMZD9z7Eqa5TZJozueCqC7jw6gspnVM644J1IkB1Ts45LMxeiCfk4cT4CdpG29g9tJv13etRSpQ05zezqnQVS/OXopapz2g//1EO+P1+5HI5R46MsmePjbq6Kzh69G2+8IV7KCycw0eRA2eDUu+TzZ8/n1//+Sm+etMn+PtDd3D3b/7MwgU5XPPJiTrsyWLj69a1c+iQDaVCmhaQ2rSpF6czkCZobjFrOHp0JKn9NDnwlExdnKZEbzrdn6IiHS0tVgx6BTqdguxsLX965BDRuKxFLKG2929ie3ft57+++UU8DkHkTSSSIFHmEAmHiHgOE/EcRiTLRqyqRJJ5OWJlOSKpHrVaQiwGwVCEWFjoiBGLgVQiIRKJotHIkMkkjI/7iUSj6PVK6urNLI07oMeOjWEwCuLgR9tG8HnD5OdpWbGihL37hoRW1xIRvT1ORsf8zJunxO8TKJjINLroohK0Gjnbd/RjtXqIRUEkjmHMUCCViZkzO5O6uiyCoSj79w9jylLjdObiUZvQaJaRl6/l5Ikuwu4jSGJt9B15iq6Wv9C6eRZLL7yUj11yJSMOCdu39zM8JLQoDoVj+P1h+vvdNDfl0XLQxuiIj4Z6MwP9boKhCK++2oVWN5GWmlipWLggh44OO2ufO4Fer2DlBcXJ4BIIXZgG+j2UVxiTnToam/LwB8IUFenRamR0dNiBWNp7Jmd0TR7Xs7P1fHFxMY/v6uWHzx9mR+co932iLlnON1lQUCab2HeXy8UnPvEJnnnmGTo7O7n77ru5++67mTdvHldffTXXXnsts2bNej+G4mktsY9Wq4eTJx3Au9eZAwwODvLrX/+ahx56iCeffInGxnxqakz89re/5cQJZ/zz7ESjMd54o+eMa9LP2nuzOXPmsPGp+1n+ic/xnf/9La/98T9ZuDCHa65J4cAkvYO1cQ4olNK0gFSCA5DetSmhIzU5S+V0KewzaSwkOKA3KMjMVDNndib3/c8eAgEBBP9uHNh94CRXf/VnnBqJd1BChEGVQTgcwerpx+rpRy3Tk6XOoyJzPiZ1DkqpBq1G0H3y+UJEogIDwpEYMpmYUDBCRoYgND46KnRUNBgU1NdZ0jhgNAji4G1HR/D6wuTla1m5ooS9eyc40NPrZGxU4IDPn8IBi8ABjVbOju0CB8IRIAa5OWqGh72UlBhY/rFCQkGBA1qdnMKcLFQyDRp1DYWFOo62DzDs7scVG2BL6zZe27uJ0oIcrr6wmU9fuoywR8yB7cMMDQscCIei+P0R+vvdNDXncbDFxsio0Hm2f8BNKChwQKedhgMLBQ48t1bgwAUri5NOBQjd+foHPFSUT3CgqTGPgF/ggEY7lQOpHf0SGV1TxrVpFtZ5dyHd/0cy3/gP6N4GVz8CSsEZOh0H3G43V1xxBU8//TR9fX3ce++93HvvvcydO5err76aT33qUx+I4PM/ygGbzcbvf/97fv/737N27VpqahoAWLnyJ7jdUWw271kOfECWl6ujGhPFejP3/vEH/OYuDS/97UWiV1UAZVPGbtIfUErTAlIzcSChIzU5S+XdOTAHmIM/7E8GdHaMv0xwbhBDgQFTVyUVei3X3fB8snwvmnAMPkQLRAIcGzvG4ZHDtI60csh2iD5XHwBamZYiXRHnFZxHriaXPG2eEISSapBJppZOHTvcw8+/eS89x08kn1Nb5iDOnIdMa0EkEhEJxYhFI0S8w0Q8g0Q9g3h8g0RDPgDEShNidTZKczUKfTYxmQlztnCNjo4KzSO0ailVNeakls+xY2MYDII4eHv7GIFAmKwsJYWFejye8AQHepyMJfyBaTig1crZnuBA3C8pKtIxOOjBZFKydGkBSqWU/fuHyS7IxeVXMTrqQ62WUVioo7N9mIh3iEy1A7+9nx0vr+XtdX8nKyeLhUsX4hmuwOo2MTou/O6ZmUp8vjBjY8J90++PMDrqo6HBzMCAm2CcA9rTcGBtnAMrJ3EABN0pmVyCVisX/IHGPPxxDmin4UBqR7+qmTjA6a+Fya8lAlIAAX+ARcsW4bQ7GbON8fRDT/P0Q09TWFbI0lVLWX7Zcsqry2caqohEIrRyLfOz5zPPMg9v2MtJ+0mOjB6hdaSVTb2bkIvlLM5dzKrSVSwrXIZOPjWg9o9ywG6388ADD/Cb3/yGBx98kHnzlgOwcuX3cLu//ZHmwNmg1PtoDeecy5fvfYjf33kbd3/jC3z85p9QWiZEmKcLGo2O+XA4AoyOCTe5RECqu9uBXCYhL0+TBpvJjnkiGOWw+xkcElJFpwtATRe0spg1lJboGR/zk5Gp5NjRUUZb/YSETE9i0X8PZyRx7J0dTryuQUCMICobIRLyIFZVI864BIlqNiKpccr7vd4ISpWESHjiORGg18uxO4RVhOISA6Ju8HnD1NeZqas147D7CYaiSaHuHTv66TvlRiwGiVQoCQgGI5w4MUYkEiUWEwQRR0Z89PY4cbmDtLWNIBaLWbGiiMIiHabjKlyuAJFwlOwcDdnZGhz2IOFwFINRyZbNfbS1jaJSScnL0wIa/L4wgUCEBedUYrMVsfS825hbo+et1zbSe2I7Lz31GGse/g3mvHLKa1eSlbWYkTElblcAny/CwICb7fEspoF+NzfeVM2NN1WzaVMvQ0MeoSNSfKLksAdw2P1YbR527higP55NNXn1IlGqaspUJsekxaxJ6kZZbR4K4/Xnqe9J/TuTjQ77KPWKyLHo2XB4iMP9Dh66cQGVOfrTCgpmZ2fz6KOP8rvf/Y5169bx8MOPsn372xw4cIADBw4gEon4wQ9+AEAgEEAikSCVvv+3z8Q+zpplpLEx77SrGJFIhDfeeINHHnmEF154gVBI0Ch4880XuO+++5LblZdn0dPjwGIZ5eGHD7Jv3zBwZjXpZ+2927y5lbz6yy9w4bcf5JLP38N/3n47s8uF33G6CdLYqMCBsdE4B6wTHJDJJUmdn8R7UsugqquykpMru8PP0GCcA2c4QbNYNJSU6hkb9zN/voVd7wzS1jaKzyuMpei/Cwfix97e5cDmGEWECJFIRDQWxR/ykaXOZ1ZmAyZ1LmrZ1Mmh2xNGpZQQSfPNhG57jnAArU7GvIZsNm7sJhiMUldvprbOjN3hJxSMJoW6W1qs9Pe7iUWFxhkQbw/f52Lf3kFGbF6kUoEDPb1O3K50DhQV6jhuEjgQDkfJz9dRWmrgyJFRlCopRoOSzVvSOWAyqfD5wwQCUc49pwybLYfzll5OzdwM1r2+hwMnjvDYuje479HnKMrJobl2PuWWOXgcUlzuYJIDO7YLHOgfcHPTjdXcdOP0HLA7AtgdfqxWDzt2zsyBRKlqpkmZHJMWiyapF2K1eigqTOfAu+lYJax3MMwxx+UszS6juPMVuL8RrnkcChaclgNGo5EHH3yQX//617z44os89NCjvP32mxw+fJjDhw/j8Xj45S9/CUAoFCIWiyGXy6d8/z9r74UD0WiUzZs38+ijj/Lcc8/h9wtZj48//jiPPHJ+2jGe5cCHYyMjPpqv+BQ+f5j7vncfI1YXNU3L0u7Fo3EOjE7DAblcktT5SeVAqmOeuMc5HH4Gz5AD5+Sew4KcBdj9dp7Z8RYdtBNpaGGPaBexQgkD24RF3MO2wyzxLyFTmfkvP1fhaJg+Vx8d9g7h33gHJ8ZP0OfqIxKLIBVJydHkkKPJocZUQ44mh1x1Llq5FpVMdVr9nsSxj4+FGRkeRSSWoLLUoMlfQExqIBiMEHCNEHH1EnafIuLuh2gIxDIk6mykmbWoMvKJSC2IpEIZllQqwmCQ43KF0OlkNDRks23bKXy+MAUFOrKyVDgcfoLBaFKou6XFyrFjY0SjUFwsTt7j+vpc7N07yMhICgd6nLgn+wOFOkyTOLByZTE74/dbvz9CZ6djCgf8cQ40nzeL0dE8ior0LFyYzfiYB/dIDx2HDrPrrT30PvMaYokEc2E5ClMFAe9sAmE5MpmY9vZxgsEoHk+IhgYLq1eX0tJim+oPOAI44hzYeRoOgKA7NTDgprExb1oOFE7iwLvpWCXsdGV9p3tNqVLy1Xu+yhd/+EV2vbWLF//2Cge276Ovs48n//Ak9lE73/3v7wLCPDwSiiBXTs8BkUiERqahzlxHbVYtvrCPLmcXR0aOcNJ+kh9s+wFSsZQFlgVcXHoxywuXY1IJ9/v3woFYLMaOHTt45JFH+Pvf/47HIywsPfHEE1xxxRX/ZzhwNij1PltYMYe5532XPW/9ghPHbVzzhZ9ROss8ra5Tc1MeGo0smSrZ1e3A5Qoil0nQ6mR4vOG0z57smPf2uti6tR+vN0hRkT4ZEJgcmEq7+MwarDYPrYdGcDqD5ORqGB/3ozco8PrCSaHzj8LKyD9qI8ODPP+3Rzi8fxfZRfPYs3UTrjEhPVesLEaum4dIXUNMkp+WiimVQXiS9qBMLkIuExOJRAkFhXOjUEhQqSWMjgndKCRiEdnZQgBIp5cDMQaHvAwPebDZfLS1jTIy4kcqFWM2q2huyksGbnp6XETCEXJyNMwqMyKWiMjKUuFyBTl2bAyfL8ymTb00N+UTjUaprDQRjcSw2eKrHgV6Rsd8aNTSZLaRyxnA7Q5RXS3cwN55Z4Djx0eF2uxcDXKZhPbefETqa7n+W1/Admo/O998iXfeeJRY9CG0prloLMsQK+fidASonWsmP0+bLLVbuCCHFSuKpgQ6DUZXMjOsusYkrKTMM9Pb66Kjw54sD5HLJZgylXR02NHr5axYIbw/tURvcrc9U5aKiooMTFmqGX/3RCOB/DwttXVmlkUiPLK9i8t/v517Pl5D4xkICmo0Gm644QYyM5vYtKmNcPgwJ05s4eqrr05u8/e//52vfvWrrFixggsvvJClS5dSWVn5nvRHtm8/xcaNPaxcWUxzc0Hy+VTRw5lWRLxeL3feeSfr1q3j1KlTyeebmpq44447uPTSS9O2T80MuPHGajQa2XuuST9r7800aLl+2af48+tPcv337uXer3yZOeXmaSdBTc0THNi4qYfuLoEDMrkEnVaG15POgcmO+WQOJAIC7zYJs1o9HGoVOJCbo6G7y4lKLXQKSsSi/i9zYHhknAfWvMLLm3dzTtVcXtmylz6bcL0YlCZydSXkaArRyLLSOCCTklycSZhcJpQ2RiJRgqEEB6So1RLGxqKMjvjRaGVU12TRfsJOKBQFYgwNehkanuCA1xtGrZIhkYopKNQnnaSxUR/dPU6CgSjZOQoyMpRTOPD21lNcduksnK4AJaVGZDIxNpuPQCDCosW5jI36UGukyWwjp2tmDuTmaDCb1XitBnIlC3j0h5eybX8rr7+zi2ffeoNQ+FUKMguZnV2DRVWCwxlgbq2ZvHxtstRu4cJJHIiPN6PBlcwMq6kWODCvYXoOZJomOLAyzoHUEr3JXZaqq7LIMqno7XXN2FEy0UggJ1eNqvZSkCyAHb+HP18EK+6mpvoG4PQcUCqVXHPNNWi1C5k37zix2BE6OrZyzTXXJLfZsGED1113HcuXL+eiiy5i6dKl1NTUJEsBz8T+GQ6Ew2HuuOMO1q5dS3d3d/L5BQsWcMcdd3DVVVelbX+WAx+O7djRz9NPHyMUirJy5cfJyNTy2H0PUXdeJzd8/ZbkGG5unuQPxDkgl0vQamV4JnFgsmM+xR84Qw6M2Hy0trqwOGtReWbjdrgZjfUxEOglJuoC4KGDD7FGuoYsVRaFukKKdEWUGErI1+aTocwgQ5FBhjIDnVyHTCxDIpKk3VPD0TDBSBB/xI89YMfutzPuH2c8MI7Na+OU+xSnXKfod/dj89mIxjuRamQazCozJpWJcmM5OWohGKWVa1FJVSilSsSi08+7nHYnL//tZba+tpWbf/BDdr4zzPCwG135xahQIxaJcAydJOLqI+LuIxb2gUiCVJuHPPscpLpCxCozIpEYmUyESiXF5wsTinNAKhUhFgt6YCMjfrRaGTU1Zo4dG0UqFWMyKRkc9DI8iQMKhRSpVEx1dVbydxkdFYJQgUCUnOzpObB16ykuvXQWLleA0hQO9PQ4aWzMY+fOAYqL9RQX6/H7w7im4UB7+xgKhRS/P4JUKmZoyIvXK6Oo5HyWfnoJfV2D9J9oxdbdxvC+V4CXURgLMZXUsWDeMtRaDUqlRNB1rcyclgOGOAcMBhfVcQ40zMCB4WEP0WgMn2/CAUst0ZvMgaqqLExnwAGHI0BurnraQNiZlPzJ5DKWXLQEpamcyvMHiLq66Tt6kI9dNtEFrG1fG9+94bvUn1vPOeedQ/259ZRVlk2rQyUSiVDL1NSYaqgx1eAL+zjlOsXm47s43HeSXUP38JOdP6Eio4JlBcuoLDyHxbEcaueaZ+RALBbjRz/6Ec888wwnTkxk/s2dO5fvfe97XHvttWnbf9Q5cDYo9T7boUM2bO5ysqu/znDbb3nhz9/j3gf/AvEyvFRL1Hvv3TfE9u39STFpo1FB25HRZAekydsnrKhIRzQSZXTUj1IhTXZZEv7FklpGqRff0aMjrF3XjnXYi9msRiSGgQE3c+ZkolHLEEfvobbORNGsj84gPVPbuXUn9//8Xoa695JI9Tx2uBVN5jxklqVI1DWIJNrk9glkymQiotEYUqlEyKCa5JCYTCoQiRgb8yJCRGVVJkfbRonGA3ihcAy3O4RSIcHlCtLV7UShEMr78vI1mDKVuFwhFszPZvXq0uRvLpaIKS7WodXIqKgQSjVTNZrWrW2nvcNOfp6GXbsHkUlFlJUZKS7W09PjTI4TsUTEwIAHg1HBbbfVsXlzL2++2UfrIStOVwi73U8kDJFwhJERH4cOWWlvHycSidHRPk52dgHirFsxKD6Jb2wPPuc23Ed/h1SRgUW1GovpZvR6CwODblparEkNtNSS0uJiPcNDXvz+MDabl7Yjo5gtaiIRIY03EaAb6HeTnaPB7w/Hf4CJiUvLQRs7dgzQesjGjTdWp431xESqr9eFPxCeVmg90UggN0eTBOTti0v4y65e7lzbyuX1eVyel8ljjx1OOgGTSzkSJjgF1dTULKW4+M6073n77bdxOBysXbuWtWvXAsIK++LFi2lsbORrX/saGRkZae+Z/D0bN/awcaOwCplwRnp6HDz88CGOHBnhxhurKS424HK5OHjwIAMDA0mHSKVS8cILL3Dq1CkyMzO54YYbuOWWW2bsIpiaGXD11XM+Misi/87W2jpCcFzPqrlXsL71Bf7joT+w/k/3JMuxUy2h/7R3r8CBhJi00ajgSNtUDkzWiyoq0hGJChxQKKdyIKFllMqBtqMjrFvbzrBV4IBYNMGByioTV8o+QU2tiXMbKv/FZ+r9t7d2tvGtn/6ZgyfbkuWHB491U5xVSn3OeZjVhSilU7UcZFKIRklyIJxy2mOIMJlUiICxMR+IRFRVZtLWNkokCpFIFL1egSlTxfHoWFwTUJXkQH6ehkyTkkjER3NzPiWleupqzcn7WqZJRV2dGY87RGNjHmbzxER67bp2OtrtzGsws2PnAG5XCJNJRVNjXpIDR9pGkYgFDhgN6Rw41GrF5RQ4EI5AOCJwoLNznCNHbPgDEXq6najVaiqNSylVL6JnrJNexzHePPoaKrmKZfJFrDRYaGiwADGCwQhr1hxNBo7aUjgwNDzBgSNto1jMExxIBOj6B9zkZAscEAgwwYGDLQIHDrUKHJismZZwviPRKKtXl077+tCgJ6mDsrdLi6b02+R0PkHG6z+keM52BvLufg8cmENNTRPFxd9J+563334bt9vNSy+9xEsvvQQIQuqLFi2isbGRr3zlK2RnZ6e950w4ALB+fSdPPXWca6+dwxe/OA+Px0NraysdHR3ccIMQVJNKpbzxxht0d3ej1+u57rrruPXWWznnnHOm1T05y4EPx3buHGBgwINEAmNjAW6/63aUGj2P/++feEkbpqH++8jksgl/IM6BhJi00aigbRoOTOsPxDmgnIYDtdNw4OjREdaubcca54BKJaW/34/JVEgBhYjnljHnWhVLL8vBGrZi89lwBBzsHtrNa92vEYgEpj1mESKkYilikZhQJESU6Rc3RAhlTka5Eb1CT5mhjDpzHUaFEbPKTIYyA4VEgVKqRCFRvGsAKtVadh/n9z99nM5Du4nFJ/UvPfU6Yl05h/cdIWTvJuzsIuobAUSI1RZkmTXIDIVItblIZXLC4Sip6zLRaIxMsxzUYTw4kOh8aLPDuENOTNIgMk2YXfqdBCqDiGaFGRfDFimItBJiJjGSmIwuqYKYX0lxoZpsfRaGQisHujwMdYgwmdTU1ZlxT8eBte10dNhpaDCzc+cArjgHGlM4sHPnAGKxCJ8vjGESB1pbrTjjHIhEhExPny+Mzxfi8GEbHk+I1lZbUlg9QgXigllk5vuRBfvw2o4zcPBV/n50I+csP5ei6oUoMooFn0AjZeHCnHR/IIUDbW2jmFM4kAjQDQy4hQV9f8LpSvEH4hxobZ3qD8AEB6JxDkzrD6RyYO9QUr8tETybXAI7U7mf8BvkUVQ0B4slPdh/cPdBAv4AuzfvZvfm3QAo1Uoq6yupnl/Nx2/4ONn56RxI/Z4KSwV7u8LEWvOobRCTv9BDl6OLx9sexx95GJFfyayhem5bfhXzM+dzquMUra2t3HLLLcIZE4nYunUrJ06cQKPRcM0113DrrbfS3Nz8f5IDZ4NS77PV1ZlRhaGw6FJOdRbw5t9/yC/v/Aw/+d1fCMVg776hpNB5IsukqEjH/HnZOJ0B9Ho5Xd0prS8b86d8R2o53urVpWzfMUBfn4v2DjtzZhvxeMK4PSFARG1deungpk299PY68fvCeL1hMjIUqJRSCgt0VFZmsn2HAlOmErsjjMWsmHqAHzELh8M8/7c/sfbxh7ENDUy8INGhzjoPc+nl6I1aOtodp/kUQawWEDqghIUHIpHwuKRET0mJgY4OO+XlRoaH7YQCY4hFMjJNeubPt7D97VYC9hb6xyOEQ0H8vgAuVwC1Rkm/SYMms4baefMZtwf42U+3MHiqi+raYi74RCXD1iBOZ4CBAXcykAjwhS80ALBpUw+bN/eiVAmraD5vGItZRVe3k+4eJzqtDKczwGBcD6qv143LFWTIHRKcLBmoVBKUSgl+f5juniAgIhqN4vGG6OpyIBKDTKpAnbUEed75ZJvsuIc3c2L/89yzcw3G3MUUVF6OXCMIfyeE+l9+6STj9gAajQxiMYxGJQ57gP4BN/l5WqFUzxumrMyQtjKiUUsZGPAAsWR2X0O9mdZDNlzuEC0HbVMmXAAtLVY62u14PKG0ayh1m9SOkwBlXhHZZh0vtw7y1qEh1HuFsdDcXMAzz5zgpZc6uOyycr7znYlOTafriPHggw9y22238frrr7Nx40b27NmD3W5nw4YNbNiwgW984xvJbX/5y1/y/PMbGB6WotVm0dw8h8WLi5FIfBQVuVi5cmly24cf/hsPP7wel2uUXbv8fPObI/T1CZoJBoOBT3ziE0KLYJGIn/3sZ2i1Wi688EKUSuVpxvZ7azl71t4fq63NYigko6iwhEXn5PPLNX/kE9+8h5cfvBsQJkgJofPEBKioSMe8+RMc6O6auQUypE9sVq8uZcf2Afr6nHS025k9R+CAxy1woK42vXQwwQGff4IDSpWUgkKBA8btCjJNSlzOMCrlR58D0WiUh59+jV8+8iydp4aSz8vECmZlVbJoViM52Qba2sZm/pCU+ZtEIixUxCDOhtgUDgwNufAE3EQBk0lPXp6Go8cHGPAdQxKC3p0ivD7h3q7VyDFlasg15nHeormoVTL++EgLJ3pO0TA3n+V15ej1cpzOADK5OG1S/MU4B/buHeLkSSdanYyaahNeXxizRUV3l5OebuF5pzPA0KDAgd4+gQOeIUEHSyZN58Du3cNEo8K583qFcgyBA1LKTLOpzKtCnxXmxPARtrfu5bUvv82s7Fnc/PFVlOUUs3fvMP0DbuzjAV56+SRuV4ijR0cZHfORkaHC7ggw0O8mL19LfYMZr2cqB9SaFA7EV7zrG8wcarXhdoU42GKbEnRKBGEH+oWSwtRrKPF64m8i6Cd0Nruc87JLKepYT+XxfTz8zmfZyD/OgZ///Odcd911bNiwgY0bN7Jr1y5cLhebNm1i06ZNfO5zn0tu+8ADD/D4489gs0nRaLJobq5k8eJixGIfhYVOli1rTG77yiuv8POfP8rAwCCtrT5+8Qt7MhNKJpNx9dVXo1IJGcN33303sViMVatWoVafXjT3LAc+HGtszMPhCKDVymhuFgTDb/nm9RizMvjDj/+XL10xxHXf/Bpz6wuTHJifwoGu98iB7XEOtLfbmRPngDvOgdoZOOCPc6C01IDJpEStllFSYiA7W4PJpCRfkc+8wnkABCNBgpEggUgAV9CFK+jCE/LgDXsJRAJEohGisSgRIsRiMSQiCVKRFLFYjEwsQyVVoZKq0Mg0aGVa5BI5UrEUuUSOTCxDJpb9w92PY7EY+7ft55lHnmHXm7uSz4tVJuS6fA7u3EfIsZagzwMSJVJ9MXLLQqS6IkRSYR4ljS9OiMUiZOowsmwn0iwXUpMTudlNzOgDEagBUUxE1K8kOhAjGpAilekpUucwespH5+YOwoEIEpGISDhAIBRCphQhV4uQFynR16s5IergSG8Qf68fiUaCUZuJdkEWxkAODnmM2oK5Exz4YgMwwQGdTkZ1tQmfL4zFoqKry0l3t/C80xlgMM6BvjgHhobi/kAKB8RiaGsTtK1CoQjRaAy/P0I0KizWS6ViFAodZWVN5OdfyKxiGYff2cGmdRvZ/toWVDojxuL5WAeXML5iNi+/fBJXnANjcQ44HAH6+93k52vjXSWn8Qem4UBDg5nWVhsuV4iWFtuUoFMiCNvf72b79oG0YFPi9cTfdA4I/p3FopmiTbV9+wC7dw+yaFEuV145kZgxk2YVwPVfvp7mC5rZs2UP+7bt48j+I3icHlp2ttCys4Xlly5PBqXeWPsGzz/xCi6fHJVOT3VdEXMqLUSdITKkPs6ds4S6sjwi0QhbN2/l4Yefx+MbpDvUwSvff5zQSCgprWVaYOJjlR9DK9dyxx13cPvtt3PJJZeg051e7P2jzoGzQan30YaGPMhkYm68qTruKFdxySVV3Pn567npkhVccO29ZFrK0i6MRPezhnozBqOCY8fGMGWq0DTIptXPSRVCB0FU2uMNs3NHPw5nEK1WRmVlZnxiGptSupfQ82lttWGz+pBI4PxlRTQvycdi1uDxCmJ7vb2uafWpPgoWi8Xo7jjG+nVrefPFv+MYH46/IkKmnY3I8HEkyjJigNMVQywJzfhZIjGoVDKiUaHNbiAQQ6EQo9ZICfuH8YzsZdfrLo6o3HhdVrY8PUzA5wKgoPZ28vPK8PvCBD39tGx5YNrv6AYK596CSldGZ6eDA3v2M97+C46+DesekKBQZyFVmtFn5FG/cC5XfOoySisEIcAdO/t5Z9cA0ViM8TEfe/cOEwiEIQbl5RmUFOsRS0To9YqkDlNjUx4OZ4CuTjtuT4jsbA0LFuTQ3eUgEo1RXWWkqFDH8LAgfh0KxRAB+fk6auZmYcpUUlmZybFjixkauo1tr6/F1vUq4wN3Ys6vRRy6knD4XEZHA1itXqQyCWIRRGOQk6uhutpET49zSjbT5ACrxxtm375hrDYfK1YUUVWVxY03Vie7Ae7dN5TWyUOjlmLKVNEltbNjRz9Hjoxw6SWzkuV/CW2qo0dHsNqEksZEuV9RkY7zQmH+uKWTkQU6VJWC6G1/v0tYue93nXbMTV7hXrRoEYsWLeKuu+4iHA7T2trKzp07OXbsGAbDhBPz+uuvs2PHpuTjgwfh/vsnPvevf/128v97977KyMgrAAxN+NXk5ubS1NSEw+FIZmB9+tOfPu3+ptp7aTl71v55GxxyI5dJuOnG6vhEpoorL69k5Wd+SM0lX+Hbn7qF8oLiNA6MjPqSJUtGgyKZPdOgkU2rnzNZAHfhwhy8njA7dvbjdExwQAhUx6aUbCT0fFpbbVhtAgeWnV/EkuZ8LBYNXk8KB86gxfKHZcc7T/Hn597kyZc30TdsSz6fpcmh3LiALI3gBHrdMfz6MBJJejelhIlF03NAp5Mz6hync7Sdrg37kKmCjLnsWJ8axxXXbFgyexkmUxHHjo1xvHOADQfemHF/l1QuIS+zgM5OBzv3nuSVI0/x+GYQ/0GEXq1HrzJgyTTROL+cz3xyKfNrBDHVHTv6eeutXrzeULwNt51AIEwMgQPFJXokYoEDCR2mpsY8nI4AnZ1CED/JgW4HkUiMsll6cnI1cQ6MEwqBOAr5BVrm1pjJNCU4UMPQ0MU88/rb7Du5hx89/DuqS0uZba4nM6uWt97qxTrsJSNDiUYrY3jYg0opTWZyTRbkn+xYez0CB2xWgQPVcQ4kroeE050I4qo1UsrKjIyP+ZIcuOTSWcnyv4QDkVrGl+hwqCz6OIgXoNnyG/547i/pniMFmv9hDsybN4958+Zx5513EolEOHLkCDt37mTfvn0UFhYm3/fmm2/yzjtvJR8fOgQPpEwXHnjgC8n/P/fcc/T0CBm4Y2PCP+G4LDQ2NjI2NkZ+vnAOJ5fonc7OcuCDtYFBF21HR1lQPoef/GRJ8vkdO/rZuXMAi6WYVZ/9Opue/CP/8807ufX736Z6flWyZMkQ54DJpEKjkU2rnzMdBzyeMDt39uNI4cDQDBxoSOGAkLni4sorZ2MwKNKc+VQOyCVy5BI5WrRJ7ZuPglmtHva9c4L//spERqNUbSIaFRH1jeL3jSJRmcgrn8+ILxuJJgfRpMwriTqIocKJ1DKOLG8MsdEjNO4MS/D1SBl5yYnIIUIdkhB0eHGNjuNxOwEw56ymctENLJQX03nyJG++dNOM+5pXeCG1Y7cgkkXYsmsvtrZfCy+IQGZQILNIkVtkPJ+joHRBKc2NzdRl1dHXKmbz5j683hCBwAQHIO4PlOgRxzmQ0GFKiIafODGOwxEgK0vNokW5Exwo05Ob5EDcHxBBbq6GhoZsTEkOjNN9ykePYxayWVmUqZ1kiLs4sPVthtq2cHDTXKSmWnJKytDGOaBUSpOZXJMF+SdzwBPngNU6yR+IXw8JDiSynTRxDoylcODSS1P8gRQOJMr48vK0aR0CJ5fATtZ1O91YSw3uls4ppXROKdd8/hqi0Si9Hb0c2X+Eo/uPUjhrggMHdx2kbd/B5OMTu9I/9zO3nSeMQ7GEI9uOMLjjIJNNrpOjnqXmO699B1WLigpjBYtzF7Ng7gIC0gA6Th+U+qhz4GxQ6n207m4hUm1WCYJnwqCtYMFFv2THyz/m1ce+yg1f/28aGpcnszw2bepNipdLJLBlcx+WbBU3XD81XTHxmU5nEIlEjMPuZ/1rnezfP0xBoZ4MT4gVK4pYsCA7ecGMjviQSERo1MJPnUj5Xf9aJ5s29VJRbmTFiqJkAOrg9icZOGVlfv1ngZwp3/9h2bDVzYvPbWPXpr9iHzqIY9yGXKEhp/RcvH5AWY8sYzlSRUZS+wkgFI5itXqn/cxY1I84fIqQw4Y0ZiXgHUSZtRKxuhqVSko4MoZ18Dk8wOik94rEEvQ6EWNjAaFr3oLZOIeWo1Qp8fpiuN1RNBo5YnEUERFqFtZRPc+CSi3DdkrLoT4jkZCLaCSCzz0M7mFcI4fpb3+dwgJ9Mii1eeMRWnZuQGuqRizPJRSOsXBhNnm5GmrrzDQvyUvLhLPaPMjlEs4/r4CMDBVebxCdTi5oEyjEOJ0hiuItWXv7XKjVUlyuEBKpCLVGyvCwB4VCgilLhT9go6cnQFTVjKJwEZLQIYhuY89rP+HEniJqm28gy1xHTY2ZvFwtEBNu+t5w2piayYqKdLS3jzM0JEysEiCqqspi06Zutm/rZ/58C05niN17BsnN1aJQSBge8jI+HiAYEHRbID170OMVtNEGBjx4vGE0amnytbsvr+GPWzu5/0Avo9IYV1xVgdGoSHZHmWwJzQ+NRobDIXSimXxDl0qlSedkst11110sWHAhu3YdQ68PIJF48Xon/kUikaRg+tVXf5zy8mJycnLIy8ujqqqKqqqqKaWA0+3fZE2Ss/bhWedJB85uJx6l4OAKY8/E5y++lfuff4KfPvEAP7n9c1y+oimZ5ZEqXi6RwOYtfWRbVFx/w9TypcRnJjhgd/hZv17gQGGBDk9GeAoHRkYFDqg1wlhLlACuXy9woLwizoG44/H6nm0cPzlIWeVFfJQ4YLV6eGrdfp7ZuJGOwZMMjYyhlCuYWzIbny+GQZpDsWEuOqVuUivvKD29zmkDUuFoiEDMjnXUThAXTr+dkow55OlK0evlSHUSXmh9Z9r9kYjFSGXCglRenpZFC4s50NOASikn26LFOuxneNiLSBTDYJTRXF/J/PkW1CoZPcOn0J7U4g/5CEci2D0O7B4HvSO97D1xAGOmNBmU2rSlk5fe3kphVhF6RSbhUJSFC3PIzdNQV2tmSXNe2iTZahU4cN7503BALnCguEjgQF+vE7VKhjsSis8VZNgdAfLzhUDO2KiPnh4POcpZnFdcjD14irFoO8/vfp4d7Vu5rOljmLJKODfe1vxgiy25Ap46pmay6TiQGJ+pTncgEGFw0JPkwNCQl/FxP4FgCgdSnIVEGV9OriYZzOrtdUFRPpZLfw47/0D5sZ/As0f45JU//Kc5IJFIqKuro66ubsr7v/nNb1Jevphdu45jMPgRi9M5kKrdtmLFCpRKJTk5OeTm5lJZWUlVVRVZWVPvA5P37ywHPjp28qSDnh4nZkkqB3Ts3DnA4cMjlJcbueiihTSfP4cH77mPB370ExavvpKwpgaI+wNb+rBYVNxwwxn4AykcKCjQkTENByBdgDrpDyQ4UG6ktjZrQkz9+Q2cPNzN7OIL+ChxAIQx/9rzu8nSe7nuC1ey8Y1uuk/0odRlEPD6iEX8hH12JNoCFFlzkepLkKv1eEQipJKEjxBDnu1CVTKKonCYqH+EQL8f14EIoZejqPNKUUgbyYgUUSgLcvLN70+7L2KxBKVMSne7j8EyP0uaZ3Po4MV4PDEKC40MDwfo6nIhkcTIyVFQW9vEyhU16HRyPENO3jyZSSTiIhwOEbIHCNkDeOPyQDq/js0Fm9nQvQH8UoZPelHLqxAHKwgn/IE8DbW1Zppn4MBtt9WxffsA27adQqORpXMg4Q/0ulCppETiHDAYFDjiHPB4woyO+ujosDM05CYcBk84g0s/1cj8Cz/O1lc20dP6Dr7Og0SsJSy8+RMU5JdQUmr8pziQGJ+pHNDrFQwNebHZPOh08jgHAgRPwwGBG5pkMKu3V7gmJ5fAJnTdZhJQT+hcKZWSpMbb5OMSi8WUzC6hZHYJl1x7Sdprl336MjJzizl6pA+VLIAo4ifgD+Dz+gj4AojEExmCdYvqCPgCZJozybRkUjSriOKKYnQZOjxhD6dcpzhpP0mfu4+17Wt5vO1xAJRhAxX6SlZUNjI3ay7lxvKPVPD43exsUOp9NI1GSjAQpq/XmdYR72MX1uML3kvn3t/yl199jQNNn+aWr303mbkEQveBNU8eZWTEi9MZnFK+lLDUEqXBIS9tR0YYHPIwtyaLe+5uTm6XCAj09rqIRGJTRNPNZjUNDRahzWh8W6vNw+vrnmTMeoqrr//k+3+C3qMlMqI2rHuKV559Gr/HLrwgkpFd/TUCzCGkUqIuCREMCqUWqQEpENJwY6k14cFBwuOvEg30EgtZAfCkbJ9jmIPPNwePJ4RGaaa4aiX5hYW4/RqiogzObaqmoqqUfQccRCMxAsEIpkwlzUsaqaiZy7FjY2jUMkbHfHi9IRQKCQsW5CSFu48eHaF+8RJu/vyVzJmTydiIlaG+HgZP9TDQ101Px3Gq502UD2RoerD3/A17D0hkWjSZtRjkyyktXgWk/86Jv8eOjZGbo2Hp0nz6ep0cOTIqTMy9IUZHfezfP8zQoIeBATcqlZSyWQZysjW4PSHa2kYZHHBTVWVKjs2CQg3btvYTiy2gpv5iKsscvPPGX9j24r2Yc0s5t/5rLFt2DRKJhE2beth/YJj587KTKxYJO3p0hO07BjBlKsnO0bB37xB+XxilSpoGIuGYRAQCEbq6nXi9ofhKhwa9Xo7FokYkElFYpIt3GZw4boddWDHMzVEDsWTKrtMZpL19nBUrivjWBbNZd6CfZ/b2cTDbzh+/upDCzOlLHxKaHwsXZnPBBSXTprzOpEcCcP7553P++edP+9mT3/v5z39+yvNOp5jTxKRm1CQ5ax+elc0ycKxDSkuLld4+Z1Ko/MKPzSbou4n1B9bzg98/yJbdh/n5d25JZi6BwIEn10xwYLryJZjgQKLj3pG2EYYGPdTMzeKeeyZW5RMTpgQHJoump3Egvq3V6uGJFzZxrLuHaz9+7vt/gv4BO955ir88v5EH17zGuEtYmRYhYnnlRWRIC1GrFZQowvgDws1+cvApGoXURoLekIvjI3txBkZwBe1Tvs+gyiRDWoTV5iM7V09lXhWWzEyyMzORizWc31zOsqZyuruE1soD/W4UCgkXfayK6vKvJQVgg8EIL718Er1ewQUri5OCrW1HR2iaV8ntt9xPVaWJ4ZFxOvuG6Dw1RGffEEc6ejhv4dzk/qiMbvb0bGNPDyhkCgozi/FI5nFdocD81N858ffYsTFycgUO9PYJHMjNSefA4FAKB8oMZOdo8LhDHDk8wuioj5rqrGTGXmGBhq3b+lGrS1hVdw7Fs8X8fdMGHnnlGfLMWeRVfpLLyldRXZXFxk09bN/ez7z52ckMpoS1HR1hx/YBMk1KcrIFDvj8YVTKSRywCNqAQ0NeItEokUg0nQPZakRiEUWFUzlgdwgcyMmdmQOW874Hbc/DkbU0DR6k6UtPgnn6e+g/y4Gmpiaampqm/ezEe3fu7KSmxsT111/P9ddfn/aZHo+M08SkznLgI2izZhnY3itwoK/PmXRiGxuF7M3CQi07dvQD8O3/uZvNzz3L2j8/Q8HsIyxfejuvvDY04Q9MU74EKf5AvONeW9sIg4Me5s7AAUgXoE48PxMH3nzxLToOHWbJivp/wRn6x8ztcLPmTy+x9rEX8TuGADGbXt2Fx9pFNOQBiQKpvhSpYZZQlieZ6MYXiwkLFIo8B+rZwyiy+7G9fArbS34CQ34mS1/JR6pw+0rwKGVk1GaRmXkumZm5mM25hMMGLrtsAR//+AL27XOyf/8wJ06Mo1ZLWbq0kszMP7Bz5wCNjXn4fCF+97sDZGWpuPXWWlavFmQwtm8/xeLFdfzwhwdpasrHZrPR2dlJV1cXJ0+epK2tjauuvoolFy9h1+AufvP4nzi88WXgBGKFGE2JGSmLKbxsNTAzB0AIuIyO+ujudqDTyaf6A4MTHMjJ0eB2hzgc50B1dVYyY6+gQMM77wwCsHv3ECtXFvPZb9+ISnUz+7fu5Z3X1vPwT+6jqLyIuvMuIKwsY+E5+dP6Ay0pCxidnePs2zeMXi8kdUzHgWg0Sm2tmYEBNy6XUAGTna1GLBZROA0HQPDLhXu/UNKYyFB3OAIYDOn6UZODVJMtUe5XXm6kocEyrUj6TLpUAHPq5zCnfmYNJ6vVw969QoXI0ouXsvTipWmvnex2URSVY7EYMCgM1GTVEIlG8IQ8DHoGeXHrHvpdg3TGOjnWsp9QVDhHermeUkMpFcYKyo3l5GnzyNPmkavNRS/Xz7g/H4adDUq9j+bxhHG6gnSMBZk/PztN1DYz04i35hsodC9zaMcaft7Xyg/vux+PX9DdaTloQ6eTY8xQkpmhwGhUTClfSmTDJDJiDEYXJpOS/fuHsWSrsdo8aeWAVVVZaNTSZKbUjp1CCUBRkZ6sLBU9PQ5isVjyc3t7XcmOErEPqetSIhD15itreeOFZxi1DqVvIFIg0S3G4S1CJBETCASnfkbELQSdgn1EA73IdLVI9eeiUEhQaBUM9O1NbqvUmjGYSsktnEVuYRljnjxG7EqkEhG5eTlcdeXqZObO/v1WsnItRFFit1shBgWFQmZO6kpUIjqfuMFq1NLkb7l9xwAHDgzj8YSoqsoiy5JDliWHuQsWT3s+5i8spfvo+bQd2I3f58Y5vJOdr+xk1/r/pqhiPpff9F1UusJkADR1HyxmDQ67H78/zPCwh4oKI0qFFEu2mlAoyuiYH7FY6P7xuc/Wsf61TrzeMBXlxjStppaDNpYszef4sXEqKowsXVZHcUUDV32mi1fW/IE//Oc3+fuffkvenE+QN2spo6P+ZDp5qrUctHHgwDB6vYIsk4ojbSOIgMamfDQaoQ6+9ZAgzOl0BsjJ1RCJRFHIJRgNCnJy1Jgy1ZxzTg6jY34ikSgebzhtXCc6HyYcwuEhD9VxB8LpDCTLUj+xoJByi5bHd/aw6jdbue+TdVw8N3fKPidWzmdage7pcfDYY4cZGRHSfadLiz2dszJTe/IjR0ZZv76LPXsG+cxn5s6Ybpu6f2fto2G5OVoOBcO0d9ipIH3ykpmpYdmcizDrcti4902u+no3T/3qDsQRITB1sEXgQIZRSUZmnAN7p+FASmq60TDBgWyLGqvVk1YOWF2VhTo+MVNrpMlSsGk5EJ8ABgJCVCcajc14nP9qO955ijWvbOaxdRvpGbCmvSYWScjXzUISzCIYFREMTuVAMBLAGRjB4R/BGRwlS51NaUYNCoUErUzNm10dyW31Kh0mrZk5ZQVUzSog4jYQcCrQ6+XU1po5Z/7nqG8QJsP791spzbPgGI8yPOTFoFfgcgYZHPJMy4GSYgN6vRy1Rpr8LXdsn+BAdVUWOeZMcsyZNM2vnvZcLJiXx6rzFrJt3xFcHh8dwyfoePUEf17/DHPLZ/HN66+hwJzP0OA0HLBosDv8BFI4oFBKybYIHBgbTeHA5+pYv76TUPgU8xrMlJVlJDPtDrbYWLokn2PHBQ4sO7+IytJivnnzJ/jDmnV88xcP8MtHn2VJVTPnzKlndDQwLQcOtkxwwJSlou3ICIiE8u4EBw61TnBAp5MRiUSJAQajwIFMk8CBsVGBA15POG1cJzofJjgwNOyhpnoSBywamHsVZM2GXQ/AQ+fDpb+Ghmun7PNZDpy192p5uToCwTCdHXaYxAG5XEJLi5WWFisikRAU+tSXbyWzYDbP/OEhfv2dOymcdzEGQxkmkzKNA4n7fuJes3BhDlarB0MKByxxDoyO+pLlT4mMk0Qpk83m5ac/3XlaDnjji9kfdhfWcCjMni17ePbPL9GyYw/RtG5EUVzWbmTGChSGMiSavLSyvFgkQMRnQyTpI8op1JUisq/MJOqVE+zKxr79cHJbhcKAUlnE7NmVVFXNoa8vg/5+LVlZKhobizj//PtYubKY9vZxXnutm8LCEvr7o3R1OTGb1YyO+jl5cuI6B0G758iRUWprzWRlKTEY5Lz6qhCAfvbZE7z+ejd2e4Dm5gIsFgsWi4Vzz526GHR5+eXkXJLDPfsjbN26FbfTjev4MPuPv8j+51/EXJ7PFdffRHbxbAZn4EBpqZ7ubseEP6CUYrFM4w/EORAOn6IhhQOJ8fSxjxXR1jZGcbGgpejxhDGbNdz4xdXc+MXVPPXYZp5/7FlefvQRZCo93sGLWdr8WeRKefJ4EgGehNj5rncGsNq8FBbqqajIEPyBaTgwPOxFJhNTWKglN1eLVitjNM4BzyQOJBgciQjNqKxWL9XVJsxmNQ6HP62U9UwstdxvuuDV5HLamboCzhS0mlxem2qtrSPs3z/M/PnpC/4SsQS9Qo9eoefS2SYOtFipKTCQX6ZgwD3AkGeIUf8oY74xtpzawrqOdURiE6t2KqmKBdkL+MOKP7ynRgL/KjsblHofraRET+WcTDLlUlRqKe3t40lR88EhDyM2H3XnXkv9oka2v/RTvnvzKsrn30rNotW43WFMJhXnnCNoRNntAUZH/fT1uujstCOWiFi6tCAZKEgtjTp3cS4dJx1s2tSLzebl+PExPB4hQvrqq10EQ8IA7Oy0JzNhSkuNDAy4GR/zMzjgJhSOUlFhTAoMfpBBqVgsRteJo7z9+ktsff1lejvbkUhlRMITWlASVSlibSMS7TmIxOnCzrGIj7DzLaKBPmKBXmLhdDFbpVKBWr2U6moTd95xCT/8ehejzixKZ9dw5dXzaDlow+kMUD4rA4NRMUWIHqC2zozBqEze5OfPyya1XC01YJhqqXX5AKZMZbxL0+nFqRNWWtXIhddWsOKTIVSSfo61vM22ja8x0HuSnhN76egMUlsvorIyE4M2QJbJkgxa7t03RF6elowMJf0DbsrK4NvfPidZ6nb06ChtbaPJfRkZ8eH3hVBrZMnjSATRVCoZMrmEvl43rYds8cBPKV+75yG2v7WDp/74aw5u/iUn9j9HTeOt6PVFaSV1qXpmpkwlSpUUhzMgOBReoV2tzxumq9vB4IAHpVISF/sMsn1HP4FAhL5eN8FgLLnSodcLugdPPN5GR4cdpULKRReVYDC6kiVRgk6Im9ISAxazKm1lo6EwA1UUHt/dxxf/up9bmkr44SVVSCUTN+bm5oLTrjwfOTLKyIifrCzVjMKBMzkcMLPooMEgZ2zMx7Ztffz5z4e57bZafvhDYaV9cqnGTE7STA7QWfvX2+yKDMbQYDQqaG8fT+rhDA16sNm8XLCwifMX1fDQS0+y7DPf4cL5K1jdtASPO5LkgNczwYHePoEDEnGcA5YJ3YSELT43l5MdM3MgFEznwMDgBAfGxv0MDLoJhwQOiMXCNfBBB6WOdfbx7IZtPPPaNg4d70ImlRIKTzggRqWJfN1sCvQVyCTpAuyRaJgu+2Ec/hEcgRG8oXR9ILEkQo26gepqEz/8YSOir1gJupU0zptD/dwCQXMvEmVWeQZGg2KKED1AlkmF0aBMu4+oNVLMFiEjJzVgmGqTOZBpEjiQaTozDiw/t55sQz779w8h0bg50n2cta/v5GhnL4fa2+np8lBgFjig0kUxmZRJ53XvXoEDxgwlA/0CB77z7XOSk+MEBxL7MjLii5fLRZOZXS++eDLJAblMQm+fm0OttmTg5/67vsHVyy7kpw+u4e9vP8+mA9v4eOOF6HSFUybhCT2zTJMSlVKK05HOAa8vTHeXg4HBdA7s2C5woLdveg48/oTAAYVS4IDRMJUDJaUGzJZ0DpAzF9v8H6DY9yD6578APdvgkl+BdMKBOsuBs/aP2OzZGejCcoqL9TgcAVpb/QBs3dpPf7+brCwVBQW6pKjzgD2DC279LjtefJqO7c9RUDGH0rprkhwAQffm1Ve7EKewIPV+c+65uXSchgNisYi6OjNbt56iu9vJYCoHxvxIpeJkJ7dgfHEi9iEuTgD86b7HefqBJ9KeE0m1SDPnIMuYg1hpmvBdYlGC1n1EvDai/mGi/vQmR1GvEZX0YqpVi3j6kev4VOt/0NMjpbn5HJqaqjl0yEY4HGXBghwsFjUGgxyHI5h2DRUUCPey1OvVYJDHX48lt53uOk+9D+TnCwGv/HwtZ2KLFy/mh99/mNcXdFJU5OZE1xaefGYNp070YWvv563QWupYwvw5zRj1UTIzFFM4kJGhpL8/xR+YxAHTGXIgGo3h8YQYGHAng2CJ7zp0Qoyi+BKqK87H0bOLrS88y3XbN7Hsyiu4+pbLyMszJAM8xcV6fL4wZbMMRGMx9Hp58rmuLgeDkziwPc6BkhI9IpEIvz+S7g/EOSAE3Caui5YWa5IDZrOgL2WYxPLTBYzg3TOpEuW0iX2ZaZuZAk+pQcRUs1o9dHU5OHlynCNHRhkd9XLNNYLESyLjLBEoS92/LFUWdeY64f0941iKZWiNYux+OyP+ERxBBw6/A6PCiDPgxKg0znhsH5SdDUq9j5aTo2HRolyKTRrWPHU0qRW1YkURAX+YQCDK8LCPa689j49f1cSvfvxDjmz/DeMDO5i/4muM2ZX0nRJTU21KBjtaWqzJTmaTB+q6te3sfGeA/Hwt2dkaOtq9KBTiZNCj5aCN/gE3SoUEpzMQX0EUJtZqjQyZXHA8Dh0aweUMMD4eINGCKMa/FkKxWIyTxw7z1vrneeOFZxkfGUauVJNb0oSu+CICYRXR4UeR6BYj0S5CJLNAxE7Ud5xooA+RxIDUIKQ2ZpiUDHa/DCn7LFFY0BhLkWlKKCirJ7com8amPCQSCTd/+RvJbDKPN5y8idTWZc2ogzQ54DQ5FTXVJgdjElZUpKOoSJcUJD8T6+11sf/AMMRg+cfmcNu3z+e2b/+I9S/vYtubO8jOy0vu9x2fu4bhgVNccf2tZBUvo7snSGVlJqtXlyaPN/VYiop0VFWZUrIwnIzbA/T2OpPH4fWGkUrE6PUyJBIxYokIEJwfjVrKpk29DA1lUHPeDxjobsXa/iR7N9zFcOdLXH3Ldzk1rEuWS5iyVMnVwt5eF7NnZzI85GGg30OP2UlFRQaRSIzcPA2lJXpq67LYtKmXQCCCTiujsSkvrXNfR8c4f/zjIXJzNcytyaKxKS/td0oEwbzeEIdabeTkTP3NXCMBZvvFmDM1PLajm/294zx0wwJyjKrkNpMn9qmPU52JmSb9Mzkcp3MYHI4gmZkq+vvdjI8HeOqp40ln5ExKNU7nAJ11VP71VlpipHRhOWvWHE1qRa1YUYQ/kMqBOq69ah5fuvthXtj5KsdOHeWGC67C75Jzqk9MdY0pKdDc0mJNdjKbfO9Yu66dd3ZOcKC9Y4IDmSYlB1tsQnmZMp0DpiwVGrUMuWyCA06XwAHRB8iBto5ennplC4+t28SpYRtymYz5s2tYVrGKaFDN7v7XyNfNIl9fgV6RiT/sZcw3jDMwgkQsoyyjFoAMg5I3OlsIRycWM7QKPdnGbLI0FqpLS6kuy6YpXj5z15evSWaTeT3h5MS2LkVTZbJNdgAT/5+uxPJ07aWLinRJQfIztYMtNlpbx2ioN/Nf37iZ//rGzbzwaivrXtvD7JLC5H5f84172X3oBF+5/jLmlzcw0BdIciBxvKnHMh0H7OMpHLAKHJBIJzggEU9wQK1JcEDENUuu5kRvL9vb3+bPrz/J7vbd3HHrp/GOqZIcyDJN5cDQsIf+AQ/mngkO5OVqKCnVU1c7wQGtTkZTY15a575UDtTMzaKpMS/td0oEwbzeEK2HpudAz7CE4+5r+FjWO+S2PAn9e+HapyCzZGKbsxw4a+/RSkuNLKsvZu/eIbZvF0r15s/PZnTEh90ewGBQ0NSUj8mk4tixccbG/ORUm1h+7a207NhL995XWfe7e/nYVZew9NLLkkHWRDez1PvH2rXtvJPqD6RwwGRS0tJiS74PYuh0CvLytNTXm8nKUuH3h5HJxAwNedixvZ/RMT/+RFAq9sEEpSLhCG+/vpuNL2ymoNhCf7+L3ZvfIeQSmhmJZFqkxtnIsuoQiaVEfTbCzi5wdqHIFmQvVCopvvEDRHwTWrJSowJ1Rjby6GxK8uczW7GUq66oQC/Xc9dd30kGdx2OIOGwlawsFcuXF854XUwOOCX+/14Cw4n7RnV11nvqhLZxYw9vvtnPypVF/OK/fsEv/usXPPrY2zz89z+iywtzUryXLs9+/H/yM7xvmCtuuoLC6kWcGopM+APxIAacngPj03BAmsIBcQoHNPFM4L4+Jz5fGJVKSm5BHmLFxZx3+aUc3fEGax96lDeeeYEbv3YjS1cto6IiI8kBs1lDNEqy02TSH8gVMrxqUzig08lojHMg0bmvvT3FH5iblSyTTRyfJq6n6fWG2Lr1FDk5milaV6cLGCVsMtdTH0/OTJvOThd4Ol0GVSLby+MJs/Xt/mRQanIHwemst9dF+3EnElEmpXlmzGozFQjdBfuH7LT19NLbZ8dYYZz2/R+knQ1Kvc82Nu7D1u1CIgGxGIxGBRazhtWXlLFpUy8KhZj1r3bR1JTHVbfew8vPnsPJ/Q+y/rHPYim7FGndJzAY86mqyuLo0RHGRn1otTKqa0zJOuGE093eYY+LbnooLTXisAfxB8JotTKyczRkGIWV5OJiPT5vGKczwLmLhRKlwSEvTU35goPf7wYgP09LT3KF/P3PlIrFYpw4cpDX1q5h6+sv4xifJB+ubMAauhqkIBJHkWZeTix4itDI00QDfRB1JzcVKUqRGpZiMMi5+ea5PBO+Cl9ARXl1LWpDKTKFhoqKDOz2wJQucKnRZKtNUJSaHED6Z2xyx8PJAa338j1FRbpkVlbqTWzB4rmYc4uT++3zeGg/cgiX084f7r0LpVrLgqWXs3Del6ismpV2/KlBs4TWFcDy5UUoFVIKi7T86ZFDeL0hIpEYRUV6gvF2sSXF+mQQbO++IUFw0OpFLBYxq3I+UtUs+ju2YR14nt/cdQ0VdRcze+GN9PYKwkj79g3T3j5OQ72Z3BwNsVgMmVyMUiEEmxYsyE77LRKBNKNRkdbRz+MN09pqYzyuIXXRRaXJ82O1eeJlgDEUCgnHjo6i1shRxwXPJwcK+3pdhIZ9rJqdxdsDdi76zVZ+c20Dy+ZYAHjrrT42bOjiootK+cxnDGkT/dWry951Qj9Tt4szWTlXKERs2NDDtddO1KGfSanGdA5QYnJktXo4edIx7feetffHxuw+OruH0jlg0XDJ6gkOvLpe4MB3b7qePG0Zr+x9hXv+8mvmly5gxfzzaTLkJ4MdnZ3jBEMRMjMUExyIT1w62u044ho6paVG7I4gAb/AgZxsDcaMCQ54fQIHFp8rcGBoUOCAWiOlf0C4v+blaxEfFIJS/yoOtJ7o5tHnXufp9VsZsqVntmap8jGHzyEmAhRQY27EERjhqG03zsAIgchEZxyNzEBZRi0GvZzP3DKX8NoVOMZDWPQWsg05FOZnJjkwuQtcQkwbhAkhnH4y+V5t8gR3poDWmVoimJTajbFxYRn5FnNyv0OhMDsOHKV/eJTv/vIRVAo5q5c0cWftJ6muKk07/sklQAlbvrwIhVJKUaGWP/0pnQOhoMCB4hJ9Mgi2d6/AAavNi0Qsom7OLAzKLA6pj3FsZA83/egnNNXO49LFF0zhQH2DmZxcgQNymRiFUgg2JTmQElhK/ZvaqbK11YZ9fBoOWD3xMkCBA0ePjaJRyyY4MClQ2Nvn4pVTi7lgbjnFg3+HB5vhigeg+uPAWQ6ctfduY+M+bCeGsNm8BIMRiooE5zoYjEz4A3EO6PUy1GoZgUAEk0mJLrucc676GjLPIba+9Ao7N2yicdVqvNI55ORoaWzMS2NBx2R/wBHEH+dAdraGjDgHEsEIs9lJZWUGzc359Pa6KC42oNHI6Oy0o9PLEUvEhPtkuPnXBqXGR8bZ+/Ze3nplK3vf3kMo4J94USxHqi9GWdxALCYiFhgj4rPi63iGWGhCDVYkVaHIb8DUMEJO8xDiV3WIQpnodGVkBpqpyKyjqb4C67B/SgluapZhT49wPbyfgdrJ1/dMAa0ztemu+xXL68mx3EN1dSZBg5VHDj3Cb1p+Q8Aa4NH7HkUqe5yGJc3MnX0dVVVz0v2B03BAqZRSOA0HgnEOlJTok8L4e/cOsW/fMCMjgj9QUKBleMiD1ealW2/k+//7A5756052vvoi99/9vzz3yN+Z03QJlfMbaGgwkxvngEwmRqkUgk2TOTC5W15qp8rDh23xxIqpHGhN5cDRUTSamTnQ1+eipcWKRiOdNsgzuYwulfMLF+a8K9eny6SGM8ugkslEHNhvZel5E50LJ5+T6Wy6QFjidx9zuOgZcXBMOU5dRclp9/2DsH/LoNQf/vAHfvnLXzI0NER9fT2/+93vWLRo0Qfy3R3tdrqPjBEMRolGwR53mlddXIbZrGb9q114fSEgRm2dma7u81DqZ2Pvf4Wu1nW4ht5mdtHXqau9iZaDNk6csAuT+EM2RGJRmoD0ihVFAFSUG2luyqPloI19e4fw+sL09DhpaoxHUg/acDoCtLbayMhQsWxZYVLvqrfXRWmZkfoGORazih3Pv7/le8FggIO7d/DO5tfZ/NorOMetUzcSaxDJ84jE5EgST4nFBMfWEQuPp26IVJVHfnElFXPnE1bkCJCvy6L2N/9Nb69wM+lot1PfoGbVxWXvun/Tldz9szZTJPy9WiJ4NF0G1+T9dnnh2/e9Ss/RjWx84Qn6OtvZvuFv7H7rWVZd/Wk+9dmvYMkVbmSpouBO5wCjYz6am/JoasynqTGfNU8dFVJ0lVIWLMyhod7M2nUd9PW6yM6e+N6iIh05cUFxnU5OaYme4hIdLfoVNDV9mlPHX+OlJ/9A99EtGBXf5IIrb6C9XY7TGcDjDWMwKhgc8mA2q+nucdHZ6WD16tJk+WFvrwuNWkpFRUbydwUhqFhUpGPxuXn09jopKtKnBQFTs8uCoSheX5iiYj3lszJw2P1YbZ60Mlh/ICyMGY2MO1bN4ZFtXdzy2B5uP38W37lwDhBDmJMJE7OZVrzfq53ucxITl9Wry7jvvvTX3q2UJPX9qZaYHM2aZaSxMe+f3v+Pun2oHOhwsKXVN5UDqwQOvLq+C59X4EBdrZnurhosumwODxzgzZatHB9qQ2X5BNU1H0etUnL48ChWq5eDB22EQrEJsWaLJsmB8gojTc15HGyxsXffED5vnANNAgcOtthwOGfmQFmpkYZ6OWaLCl4RjuP9Kt8LhcK8vfcwL2/ezd9f3caAbWTKNlKxHJ08AwlyUn2gE6P7cQVTA1cijKoMSvLyqasooyIrm+JiA3W1WTy94mtYrR4ef6KNgXia/qpVZ8CBGSaK/4y9bxxIcRquu64q7bXJ+z0+HuCpn/2UPcdaeOyFDRw63sVzmzbzwpat3HzFCn7whU9RVigEJFNFwZ3OAcZGfTQ159HUlE9TUz5r1ggcUKqkLFyQQ32DmXVrO+jti3PAMj0HSkr1lBTr0OsV3NF0Mfs7D/KrvzzDvmNHcIs/wRevuRS9XuCA1xPGaFAwNChwoKc7hQMpq9BqjcCBLJMqrVPlihVFnLt4Gg7ENXEO7B+ON0CJ4vOGKS7SM6s8A3u8+1hqGWzAL+jAaTQ5FF/2E9j5e/j7jbDoC3DRvZzlwP9N+zA5MDTkpbclQE+PA78/QlmZEYtFk+TA+vVdeOMcqK0109XlpLvbgdcbZtGinLim3QK++L1P8+QfnmTtY2tBLKOgejGzZ11Je2cg6RwnOVBupLk5j5YWm9BEwJfOgUT3sO5uJy0tQgZSc7MwN3Q4/Gi1cvLytFgsKv5yVBAJ/1csThw+PMxdN38Lh21gymsiqQaRMgP1rMsRiQSvwNv+LBFP+rYydQaZhbkYqhXIL94J8jBmbTk3//BuaqTncv/PO+no9FBeXcjtX1zwrvs0U+D4n7H36z6RmnH14x83p72Wvt9GvlTyA6p+dwlP7/5v3n72LbydXva+tYX9W7ay/OPLufGrN1JcIQS1kv5AnAOjoz6ap+OAUsrChTk0NJhZu7aDvmk40N4+jtcbIjtbyG5KaFAtXVrA6KgPhd7C1V/+CtlGD3/7zaO8/fTDnNhTie5rt5JTVMhgnAPdM3BAE+eAKc6BgykcWHwaDuzfL4zzYDCKzxemuFhPeXlGsgtlKgf8/jAdHXY0GtkMmUextL/vF+dP9zkJzi9cmAO3pr/2biWFqe9PtcTvbsmVU1JioHLOaToqfYD2bxeUevrpp/nWt77Fgw8+yOLFi/n1r3/NRRddxPHjx7FYLB/MTsSEgSWVipOZHiA819SURyIgZTFrUCgkDAyHUWpXs+rmSxjtfoY//+9/8OLf7mfpqpvQ6apwuUS4PSF0WjkQSzrsCxZkpwVeTFkqlAopo2O+5PcmNIEi4ShOZwitVpYW5Bgd8aHXy2moN2PKUiGTCQAYG59IfX0v5vN4OLRvJ5vXP8+ebdtwjFshFkUkNSHW1ILIDTEviJRAFGJBiHqI+duJBAch61MAiMSgMZ9L0O8hJivAlF3O9Td/jPkLC09bYqdRS4WWnvUzR43/1Xamga6ZyvwSlho5Tzw+3bZd3X4q532ca2/9HPu2b+bJh3/D4f27eHHNnympqOSyT90MpHdw3L1nEIcjkLwBW20ewuEoOq0ciVSEzSaMg+oqE253EJczyP/8zx4Ki7REIkL2hcUsOCSJMb1sWZHQLWN4OVXnVxAYeZ6/3f9T3njhKVZd+130+tlo1FJMWUKJnEYt5dX+LvoH3Mmuk62HRth/YJiMDCVKpRRTpgpNgyytBPHGG2qmnMfE8c2fl43TGcDtCZGdraa5KQ+PNyx0nTGmZ0slPrOh3kyuQcV3L5zDmj19PLD5JHu6x/jh+RUIZa0xenocaROA07XifrfyiMRzR46Mpj1+v2zy959Jicm/i334HBAK3xIcSM1uSeVAXa0Zi0XgwNCgnwLVXP7z1sXs793JPQ88zu+eXMe3b7kKiTwbmUyMyaRMOvSHWkcwGuIcSAm8ZJlUKJRSxkZ9ye9NCGuHIxMcSC1TGxkVOFDfYBberxCmBuP2iayk92Jen5/t+4/y1KtbWL9lP8OjY0RjUZRSDRZNIQqJl0DEi0QkA2JEYmHC0SDj/mEcgRFqs5cmRTdLTLNwByxopSZKcvL4/C3NLFqQf9oSu8mlah+GnWmg6910LGbkwAzbdne6WVq3iG/cchlbdrfy04eeYuOOFh559nVmFeby/S8IjE3cL+0OP3t2T3CgOi6IHA5H0erkSCUTHKiqFjjgdAW573/2UFNtQiaXoFBKqK3LSpab1tWakxzIG5rNZ5Z9jo6x/fz3I0/zxAsb+fp115JnKEatkZJlEjig1kjpf7WLgX53suvkodYRDuyf4ACkZ01ZLBpuvLFmynlMHN+8+QIHPG6BA03NeXg9AgeMhvRV8rRsLG0WfOwuaHkS9vwR+nazculDQClnOfB/xz5sDuTkqLHrhWCtySRJy2ZI8wdSONDX58Jm86JWS2luTtznNHzl7q8wGqlgz8bXGTi6k999Zxs55XUoosvQ6WRTOGAyqVAqpYyO+pLfuz3OgexsNSMjXgKBCKOj/uS96ujREaxWYfvE+0EIVv0jFvQH6W7v5uTRk7z56m7aDnYi0ZfjH+8h5OqHSOJzRcKkPy7AHAt7iLk9EI2ARPBJNJYKAm4jIoWZzNwCLr1lDmM5RzjubEMuETPfMp8ryq9gfvZ8LGoLYpEY8Rezktflh2VnGuh6t/tEasZV4vHptj3ZIuar5/+W+78v4vt/+z6v/ulVXC0uNj2/CXOOmS/84AtAegfH3bsn+QNxDuh0ciQpHKiOc8DlEvyB6moTcrkEpVJCXZwDHk+Y2hQObN8+EA/2mCmvmc1nfvgDDu7YzUuP/Y1ffesOVl55MU2XXkF2XiavvtpFf7872XUykZ2UyoHUDKF348D8OAfccQ40N+fhiXPAMIkD75Z5VFtrJuEPJAJaifdP1ndKtXfj/OTOie/3Itnk70+cn9wCJSKtl4LCj0YXvn+7oNSvfvUrbrvtNm655RYAHnzwQV555RUeffRR7rzzzn/595dXGCm1aKcNHljMGmrrJgYdwPi4n1AwSjgcpW9Aw6rL7+Kqm77Kmj/+jhcevw+5QoWlZBkVzZ+iqq48qeOTUPef3G3vyisr0r4zIawdCIQJhqJkZqro7XXR0WGnp8eJUiEhEonh8YapMmu48Ru/oqN9BIWufMZjDAWDyOQTIqA//8EP2LH5DXzOIYiFpmwvz/8BYkVBXJSuh1igC2ITMBJJTYjkuYjlueTlKSgrMxEMRmls/DEqtYydOwZojGfyvJudSdT4o2KTy/wm2+QuTme6rVgs5pylH2PhkuUc3L2dZ594FHPx8mR3xi1v7qdpSQ21dWaczlBaEFNoveoBkQiHXdCXUatllJYYqK42sX37AB53kPYOOxIJeDzZNDRY0oI9iX1VKCTk5ptp/OSPsQ1cx9MP/SeP3fcFSqqXYzHdSVVVfXL8VteYyMvXpgQTYzjsAVyuIPMaLDQvEfSijh4dYc1TR5NB1NQyxIS4e1GRjhUritm7b4hjx8ZoaLAkA26p5yphk8eMw+6nRq7APDeHDSdsfObvB2iMyJGOh7FYNGmTgNPpeiQmEVarF4tl+gnEW2/18tpr3Vx8cQmf+Uzt+6rz8W5p4//O9qFzoNyIOMs87QTEYtFQVzuVA8GQwIHBUyFuveQavnnT1fz84Wf5j98+gUQsoa50LivKV7FiRRGHWkeSwtzAlG57V03iQEJYOxAIEwpO5YBCKXDA6wljqdLwky99jqPHbczKKZ3xGIPBEHL5RLvtr93zCE+v38qoY4xILDxl+8b8S8lU5yASiXgn9CoBr5dICi9UUi06RQZaeQbGDAkFeRlotXK+3ngLapWMHTsHaGoUVnDfzVJL8z7q9m46FjNy4F22FYlELFtcx7LFdezY38Yv/vgcTdWLkt0ZX3/zKEuayqirFTiQGsRMcECECLtjggMlpRMccLuDDA16kMnEqDUyVl1cmgz4JCzBgYI8I9dcfQM3XbGSex74C9/59W+ZP7uGHxlupLqqLjl+a6pN5OdpU4KJQutulytIwzxL2vWU0OzMMqVwIN6JLNGpbOUKQc8nwYFEwC31XCVs8pixjgbpjV5IRXURho415D6/Elnw27wzOvcsB/6P2IfNgcwMFStWZE3rjFosGmqn4UAozoGjR0cpLTUktykq0nHBqrlojZnMqzfSfWgXLz/5Muv+8L9seCKDxSuXsmDpIux+I/PnZ0/vD8Q5EA7HkMkkaLVyTCYlO3b0C/5AnAMeT5iqKg2f+OKtHGsbJn92yYzHGAqGkKVw4P6fPc4bz2/GMWJNK7FL2mgvEk0e8qw6wp5+ou5+IJYMSIlkWsTKTMTKTDKMEvIKM9Fq5TQ2zkOlkrG5pRVx9XF2RP+OIWDg0rJLubL8SmZnzsagSB/XZ5JN+FGx05XxQnrG1XvZttho4KkvP0XrNa3cseYOtv9tOz1zBznY047cm8HWt46xcFEhtXEOpAYxk/4AIhwpHCidxIHBOAc0GhkXX1yaDPgkLMEBs1lFcbGe3l4Xx4+Po7HM5qqv38Vo117eem4dW9dvZv7KS2m6+ALy8rQpgaEJDsybxIGWlgk9pckBqQQHVkziQNVpODDZH5gumGS1enE6AxgMykli6jPrO6VmpBkM0wenWltt7N9vZf58CytWaN41kPVebCY5gWAkyIjvH0tC+VfYv1VQKhgMsm/fPr7//e8nnxOLxaxcuZKdO3dO+55AIEAgMNG22Ol0/lP7kJmhQmVIB01C36a2zjwluFBYoKM3z4lUKkKrVeB0BrDaZJQt+DIrr7qd3W89xztvruXx+16moqaOsurzQdVAfnFZUvRwz54hOjvtnDvgRqWWpWnvNC/Jp7BIj83mpe3IKJZsNceOjTE85KHjpFAa2Nycn7wwB20qNm4O8vLfPk8sOECMCMSiQBiiIUAAhzznS0QDXUR97UT97ac9JyLZRGcMqb6RWKgCkTwPtT6f2nnVWEeiSCQizjknl4suKgHSs4LOJBj1f9HeLe1zpm5+qTaTPhSASCSiYfESwtJyjh0bQyqTc/yYjZf/cgcbnozxrbt/yhVXrE7+NkKU30pOjobyWUbcnpCgb5CpZHDIg3XYi0gk6OOUlRkZtnoxZSqnHEdqJpZIJEIul9B43iJyi/7K0b3rWfeX/+FXd1zJUPcdiLRLOHRwlPoGM9ddO1GaUltnFoQ5B9xJsc29+4aSZXx9vU7s9gB6vYKVFxSnBcMS527y/pxpBlsCmJWVmXznwjn8/o12Xgt4KAUkb3RhMMiTE53p6vsTDoXBIKexMQ+r1XOaCYQI4fQLv8G7TTbOxCZ//797ecZk+0hwwKgirNelcSChb1NXa54yQSgo1JHXm84BmzXChfUX8rkrL+P5t97m2Tc289mf/Be1T5XQOLeeHE0pc0oLkhxoOWjDZvNysMWG0ahI01Fa0pxPUaGgBdHWNorXG2LfviFc7hAnO6ZyYGwYdm118vs1v2LcZyUaixIjSjQWJRqLEI07EAtzV+IMjjPqHWTUN7UMI9UUMk3yXlOgr0CvMKGTZ2A2mFg8r4zxkQgKpYQLVpZgNqundL87k2DU/0V7Vw7M0M0v1WbSBUlY0/xqfvTZTI4dG0OjcnH8xCg/f/xRgo/5+O2PPs/1VyxP/jZtKRyYVW7E4xY4kGlSMjToYdga50CGgvIKI1arj9wcTdo+pf7f7pjgwLLGSkrzvs+2gwf42Z/+xrV3/Ig726+lPKs2KeKeWqJYVytwYKDfTcAf58BegQPtHXZ6+yY4cMHK4mS5Ruq1NYUDZ5jB1tvr4tjxcaisYuHKu/Ft+jWfjv2YDNllbHzj5rMc+IjbR4EDky1V36Z2Gg4UFuro6XEik01wIHURWi6XkJ2tQW/Uceu3bqB26Qpef3EX/cf2sXfTZt5a+yJShZoNs6ooq66mvHYOYkUG8+YJjnhzcz6FkzhgtXrp7HRgs/lQqyX4/ZFkB7ZTQzHe2u7i5b/+mrCrF4gSi0WFDKZYwjeIoZ59LcQiRPyjBAa2QyQw/QkAVLOuRKorBEBsP0lEZUGszEShNVE6p5RQRMi4WRnngEYjxeMJIzM7ece+gcHKwxhlRj5R9AmumXMNxfpi1DL1+/o7fRj2bmV+M3XzS7XUYPbq1ell67XmWl7+6sv8V8EjvDT+Fx45+TuyPHPY99he1v1uhC/d9Xkuv+6SZOfdNH+g3Ig7zgGTScngoAdrnAMZRgXl5UZsNh85p+GAI4UDiecTv61m8cdZcP4S/va7x9nx4rMc3/sOP3ngzmRgpzbOgf5+N/5JHOjosNPX5+TVV7uwWNRJjgHvHwcmlQM6nUECgcgU7anpsqxSSw8rKzNxOPynWVgSpf09E+H1d7PJ3//Plhn+q+3fKig1MjJCJBIhOzs77fns7GyOHTs27Xt+9rOfcc8997xv+zA27mPr+l56exzUN1gYH/dz6NAIGrUUEFFbJwzexMBIBI00aikeb5i+XicnO+zk5Gqon19B/fwfsPLKL9LVto3db7/KWy/+iWDAR17RLGwnlpCVX4fJmIXXI2H/fitisQibTSi5qKrKSjrie/cNodW5GB/3o1bLKCzScvToKF5fGOuwN+msH9hvJRaDaKAHoq5pjxEgOPQHEGsRq8oRyXKIRZyIpEZE0iwhCCUxIJKZEEvNqNRqFAoZmSYlNdU3YbGohVr5eLnXdPZ+6zx9FO296FnNtO10GVSTywJTb8ausR5EsSBu+yg/+cZnOXfZhXz1h/diySug5aAtrsdl5sorZyc/a8OGbnp7nVRUGJPZTN09Tmw2L0qVNLlvVpuHdevakxpVwaCMnh4HsZgg0r7onDwWnfNZymqW8tRD/81jv/4xZZXzKKr7PH29CtatO0Hzkvzk561eXcr2HQMoFRK2b+uno8OOXi/HbFZhs3mSbWgnwyYYjCSzqSYH6k5nqTpWiZu3JVPNV5aWsmbPKdpFXvrHXajf6Eo6I9OtxCUcisbGPFavLqOnx5FcIYf0icPy5YVYLOopE5J/xoE4cmSU9eu7yMpS8pnPzP3/ZlU8YR8JDth9PPXqcXp6HTTUT3BArRE4UFebzoFE0CgRiOntc9Jx0k5ujoYF9UUsqL+BWy6/lH3H23hp807+tn4DHp+fkvxsNh+dR3lBCYUlWUQCMVoO2hCLISEDUl2VlTYB8/rCbN7ci0opo6LCwNG2UXy+MMNWb3Kb/QesRCIw7rPhC7unHF/C9g5uRCZWkKHKRifPxBd2o5SqUcv0qGU6lFI1KqkWtUxPhkaPSiXDlKnkkpoLkxxIlDD+/2rvRc/qvYikzpSuX1Skw+6xE4oGGHc5ufF79/HYuo088OMvU1GSz8EWG+0ddhrqzVyV4IA1nQOJbKaebic9PU7y87Vp+7Vt+4RG1WQOnHNOLueck8uCymrufXgN//ngX6ksLWb1glX09ilYu+4ES+JlS4lSzB3bB1AoJWzb/h45sOYo9Q3maQN1M1mqjlVyEq/X4D33Trz7n2AVL1HgaGPDGz85y4GPsH0kODDuY+sLx+npcdDQYCEQiLB//zDRKDidwaSWU9IfiAeNEs56X5+TkyftU5z9RKczrVbGRZefS9FXL8BkUrJ+3TtsemkrXYdb2fLsfrY8G0MqV/FqUTGLllRRVF5EYWkhedkmxixS3tltR6WSU1EhjA2bzcPwsI+2tlFWrSrjwH4r4XCMiHeQWGhmf8B74qn4/0QgloFIjEiiRCQ3IFaZEMt0iOU6xAoDMq0ZrU5GZqaS6uqVwrwyXu41XUZIn6uPLZ2vcOTkEYwKI9fOuTYZjJJL5FN35v+ovZcMxvfSNGFy1uXNC66hpvVc9iqe46XjzxJgiIDHz6++/yuef+IV7vrNHZTOETr0dXTYqa9P8QcmcSCRzdTd7aS3dyoHtm+f0KiazIHUe/LevUP0DYRZddPN5FUu4MDrz/HlK77Cyisv4qt3347Fohf8ge0DKJUStsc5oNNNcGB42Ed5uTFN5BwmONDwD3JgcjAn8TcREEvVnpquUifB5srKzGQmbyJTavJ35eVpMBiKZlzo/0est9fFvn3D6PXyKd0GP4r2bxWU+kfs+9//Pt/61reSj51OJ4WFhf/w5w0NeentcTA65hdaao758XqCSKVCDep0ndhSHzvsfhQKCaUl+jQxZol0OV3DZcjMNzG7eAiX7RC7tm7BOvAXANTaDMx5s8grnoNMnIk4UMHxVj8avQGNVkdujhydTsbwkBu/N0gkIkevC6GSe/A53Xz5c+9QXBBBFe4nZD0BIgkgIZEZBSKQ6BHJshErShDrGpHIs9Oi0iB0B5g9x8g3v3nO/xeBpQ/bprtpna77n+WCxfQNPsEba/+E9eSLvLP5dVp2beOWr91J7Xyhy1CqHldvr4u2tlEcjgBlZcZkNtOrr3YxOOSh7cgoqy4uw2rz8NRTx9m3bxiZTIRGI6RzDwy4cbtD5OVqMRiFgE8wpOCqW+9CGv00j/36R7z93NfIKLyUvr7Lk+KGiZt7QgfK7w8LQ1AqJjtHgyVbjVwxjlYjY3TEl3aca546mizteC+lnGnwSAlmFeXp+e7Hq1izpYu3GWN9zMsne8eZVzRVGPC5547zxBNtaW3CUycQPT0OHnvsMCMjQuB4ctemf6a0oqfHwTPPnODoUUFEemQkxpEjo//fOSP/iL3fHBge8tLT62VsVODA2LgfjzeFA9N0Ykt9bHcIHCgp1aeJcEolEpz9emrNS7AU++ke6WLD1hb+2PcaAAathvysHMoLCzGoDeT7vew+JMao02CI/4vFooSCUWSyCGPjfjQ6EMnD2BxDXPvZv5BbKGU4ZOPQcDcQQ4SYGBNCt3KJCq3MiEGZFc94ypzCAYVCjNms5sYbqv9tM5w+SvauHJjU/W+lpZJffe1OHl23np0ntrNpZwu1H/8SP/rSdVzStAxI7/I3hQPXTXBgaNDDkbgTa7UmODCULOeACQ7k5mkxGoSATzAg4js3X8c3bl3F9371ML969iHqCudxbm9zkgOJkrpEWaDfH0YESCVicrI1ZFvUKOTjaLQyRkZ9ace5Zs3RpCD6eynlnOxEJMySmwmrv0b/9jLm9K2lSvYV6NRB2flTPuPdOABTS/bOcuDDt3+FP9DT42As7g9Eo+DxhABRmpZTwiY/dsQ5UDqJA3v3DvHGGz24XAEuvXRWUg/KFcrk83d+DoDdO3vxjvdzsu0EEa+N/dv28+JfXyQSjiQ/XySWIlMoeUcpRyyWEhNJCAYjDLwTZuvfxISCIbwud7K0bsJEIFEikqoRK41ItEVINTmIlRmIxBNuZYIDN/wDHOhz9fFK5yscGT1ChiKDT1d+mmvnXEuhvhCp+P9713Vamy6YPX35bi1XU8t1DVdxV+5d7HluD9bnbHS2Hee2VbfxqS98ikUXrQbSs35Ox4HBQU8ymDnBgRn8gTwtBoNrIlMqJfDj94exOm5E23uAzS9v5p1N2/nKj7/MhVf/P/bOPK7t+v7jzxwkIQlJIBDuAIW2QEtLW1oFWq+2U2vVeV/zvjanc4fOqdNtOp26Ted+Op3XPOax6by1Hq1Va6naC0qBttAWQgmQEEgCuSDA749vviEJ0MO1Wl1ej0cXB8k3+Ybv9/v8vt+f9/v1/l64LdDvF+wB5HJpyGxdjULRF2KOPOpcefHFpklb6vamSTkQOkc1mpB/8V58K2tqOli92oLZrJu0Qstm84SrIefNy5jwvb6KbDYPa9daaW8Xqj3d7tFx0wYPR32nzuzU1FRkMhnd3d1RP+/u7iYjY+IMqVKpRKlUHrTPkJGhpro6B0evj9JSI91dXtr3uElOFsphIyd/TaSsLC02u4+sLG3Uz83mJPrdAbpsQZSJBZSUVDBddhryHa1kpTnQKntoqtvCji2f4e7r4vP3Jy+fjZW4ZrQDCfrkFLLSUsgtqKKoZCb5U4vJL5pOZm4+Mplsr9uJa+/al7H5V9HeWvwma/UrmppOwrnXkZ5yMW8+excNm7/kkXtvp3jW69z1yPPoDGPJFo1aTmamhsxMTVSyqrIqK/xoswsX1ZaWPkaGhzGkjXlDbd1qZ8+eAV5/o5msLC2KBBnapATh4jvvOCqPquLBu+7mw9eeZMD+Jb3dl9La6uK880uoqhxrJxIrCcVH0UC6rtYeNkcX91Gl65X0yAABAABJREFUlFM01bBXs/vIqihxe5HfW+zfSiqRsHRGOskyGWtsLs56dB2/PGE6Vy6aEhWQv/pqMxs3dqPRJEy6ktXT4yc1NfGgt1M0NDh4660W7HYfxx+fz9Kl+ej1Ct59d1f4vQ6WT8nhrMOBA+kZaqqrU+h1CBzo6vaypz2CAxETXyZSVpYWu21iDrj7A9i6/CQqdSwsOY505tDU3Ik21YdE5eGL2mbqWrbR3dvLc+8PfqXPbzToSE3RsWTeDOaWFDJzaj4zp+VRZM5CLo9z4L/VwfSKgL23+E3W6je10MgPzzqFm9OXc/8/X+DDms38+i/P8vJ7n7HisTvINKWEX6PWjHEgMllVVZkVfhRvrlta+hgeHiEtTR1+rsiBN14XOJCgkJGkDXGgopzF1X/lxnue5eGXXmeXvYXKzmNpbXVx/nklVFWNcUCsJIxs7ZTLpdTW2cPm6OI+KlVyphYZ9mp2H1kVJW4vigOxfyeJhIRpx9FMDtP7XoDnvg9H3QhH/wpCbS+wbw4Iim7ZO1iaiAMzZhij2vlcrsE4BybQoYgHFi5MwhHigM8XJD9fR1+fH6NRtV8csE3Cgf7+AB0dHt57bzdtbW6am/toa3Nht3upqMigp2+Yysq5/OgXJ0dUYiQyOjhAr62X3S1WGuvb8Xu9qJRg3ePC5w3Q2xfA5x9Fm6Jmzmw9UqmU/Gn55E7JRZesIz07HV2ybtxCxMGSxW3hnd3v0OhoJFmZzA9KfsA5088hNykXmfS7xZ6D6R0He2/xm6jVb0+DlvvnPsXf5Y/y9rwX6XqhE+emPl54+AXWrFjDPc/cQ1beWCJHE8GByGRMZYgDleM4MExa2pg3VDgeCHFAoZChDXNAOCfLy9Ow273sTJhPUmYJ7l2ruefn9/CfZ97lp3f9lOLilKhklieCA3V19rA5OgjXd5VKTlGRYa/Jo8iqKM/+cABhkIA4CXAyrVsnmLurVPJJz3OxHVCnUx7U1jqLpT9sXD93ruD9G7kv4r4KRucH7W3/a32nklIKhYJ58+axatUqvv/97wPCKNNVq1Zx7bXXfi2fISU5EVUx1NYJmdxccxKqRBnvvbeboaER3O5BiotToszJbXYPaz+z4uj1YUxRhY3HITqRsfzkQtbVWBkeHqGu1o7PH0SmSCazYLqw8p1xJHNmpHLBD4p5560t2LusTMlXkZOVgKffzdDQEFKpBCQSBgaGGPDIyJuSjsUyxJatHo5dUsYbT1xNa/M2rr31D8w5cuHX8p39r2hfZuUHS5GJqsjjJzLzL1Y8HbPkdf79zD94/m9/YCiYwNsrrMwpHw5f1Ldt66Wz08OC+RlRqwxVldlUVWaHE1JdXR6Kigyo1WlUV2WFnzs6Am53AJ83SJJWQZpJjU6nRKOWh03Jb7zjDornLOEfD9yKreEu+u0nsHbNlVRVZo/bF9GfDXNS1NQ88fdvvrmTtlYXefl6jKmJEyafIv2nZDIJw8PCaNeKeRnh9xJN0iP/VhZLP70WDycVGan3+7n73W18sauXB8+bgzY0rez006dGPcZqfycf7W2a02SaMcPIyScX0dHRz/Tpyaxf34lGk4DLNZaY+G99Sr4NOiw4YEikuNhAXa1wHTfnJpGoGs+BSHNym80TbntKMarCxuMQncQ4eXkhNesEDtTW2fH7hkhMUFNWkM/g0AhDGWZmzEzlwh+U8NpbjbR39mDOU5OZo8LV78EfGEImkyIBBgaG8HlGKSxIxdoeoLHBxYlLpvOnfz3Bmg0N3PXTizjj+DgHDrYOhlfEvhSZqIo8fqI4EFrpPv7Y3/PI8+9z64NPIZPKsNuG+HhVU/jYFDkwf0FGVNWRODZcDEQiOVBVnRV+7siowAGvN4g2SYEpTeCAOtSGZDYn8ZfbLmNR+Vxu/NPfeb/hdXbbysjKSaSqKnvcvoj+bGaSoqfmhX7/5ps7aW1zkZ+nJ9WYOGHyKdJ/KooDFRnh9xLNcSP/ThZLP9talQSm/ph5I+/CJ/dCWw2c/SyohUTevjgAjGvZm0gHiwNiImrdOityuYRgUNjXOAcOrYR4QENtiAN6vZLBweGo46q4OCVqYpdY4eBw+DCGOOCZgAPLlxeyLsSBujo7Pl+Q0dC0+nXrrGzdKlTKFRUZInypMqioyCY7P5uyBWWcEvFZxW3v2tVHba2dRYty+OzlJ6lZWcMN991AxVEVh/S7srgtvLPrHRp7G0lWfbeTUaIOhnfcvhRbqS8mwSLf+4+n/ppLe07n5sKbqf2oFvs/exgZhR4nfFLTFD42w/HAgph4YC8cqK6OiAciOCC03oXigQgOlJSk4vEE8XiC9PcnYDB+n2F1Ie07V3Hjuddy9S1Xs/z85fT0+ML+bJA0zs9J5IA4KdUYwYHI5NN/xYF9MDwyWTeZIpNfk21nb1P99rbdBQsycTh8ZGdraW7uC+935L4GR5Mwlxw+59d3KikF8POf/5yLL76YiooKFixYwF/+8hc8Hk94+sahVFeXh8YmBx3bnbQ0O7F2DJCeoaGxoYdOqwepFBy9fj5c2UZtrY12ixuPN4jL6efL9eMzmgD1W+zU1HSSmaXhlFMKqarMZsV7u3jvvVaUCimF5SaWLsmjtc1NZ5cHrTaBhq0OgiNa8opmcsxi814TIE1NPexst7LwaBWFhSl4vUIAe4gWQf6ndTD6gw9UkRfOid5fKpVSNOskTrp0Cg5HgC11DiQSKXlmFX6vF0evH7c7QHNzX9inKfKiKGb5k5IUFOTrwj5hYgIpLU2Nyx0gPV3DkiV5YZPD8CQKZwC9oR9jRiGVJ/+Rhi9ewrrtZepWNtNy8qMUlcyMeq9Nm7thFPQGFRXzMsJJ3Q0bu2i3uGlqdOByD+LzBTGmJOIPBHG7BSPc4eFR2i39OHp9KJUysjI1gpdBKFkVqYm+q8ifVaWq+bCxmzfrrBx9z0dUDSs59/hCzjhjOmecMX3Sv8f+tmVMNM1pf0aL33DDfAB+97u1rFxpoaIiPbxSLup/wfD2m+RAZ9cAzm0OarZ5aW5x0mEdICNdQ0NjD1arB6kMeh1+Vn4ocMDS7sbrCeJ0+Vk/wcoWwJZ6gQNZmSEOVGWzYsUu3ntvNwqljPJCE0uW5tHW6qarU+BA/dYeJMNKZhYV7NNLoLGph74OK0uPyaSoKCVsrHuoVsP/1/V1s2BfHJBIJCwoLufOy3+OOU9LQ30vtXV2hoJBkgyj9DoiOPDiWLIqcvsiB/ILdGGfMDGBlJaWiNulnZQDTlcAg76fTGMaPzz5Ej78ci0fb/2YR9/t5tjvpVA5pyTqvTZv6mYUMOhVVFRkhJO6GzZ0YWl309jkwO0SOJBiTCTgj+aApb2fXofAgcwsgQNisipSe+NArjkJ0n4EadOg9gUG/zKffw7+kulLT9onB2D/WHCwOABwySUCSyMrpb7r+iY5YO3sF+KBehctLU6s1gHS0zU0hjggk4HD4efDEAfa2914PEFcLv+EFQ4gTOeqqekkcxwHWlEqpRQWmli6NI/WVjednR40mgTq6+37VYlhMmlwOHy43UPMn59Bfr6Ot/oEm4FDyYGoZJQymQtLLuTs4rPJ1X53k1GiDoZ33IEoMhEV+96lqaX8a/m/+LH/VmqmrUDrNbBhm4UddYOMjIxg0AzhiOFAbJIkKh4o0FEWwYH6EAdce+GAOJlucHAYhUJo/UxNTSQt7UjmXH8Cmz58gwdueYDVb63m+Asvob5JuE/RhzgQWSH15ps7qa+34/EE8XqDGI2J+GM40N7ejyPEgawQBzwHyIHY50YmkMRk3d60Py16E03121e1tcmkCU/fjGxhXLzYDBBVKQXx6XuHTOeccw52u53bb7+drq4uysvLee+998aZHR4Ktba6aW11k5GSiKY8gbw8HQqFDIVCgscbRKuVY0xR0evwCavUniFhGo46IVwSGVllIkiC1zdEV6dYJdLDpk3dOJ0B5DLIyU2its6OSikjPV2N2z0ISJg3Lz2qTaypqYfaurGpTGJyobbOzubN3eh0SvyBYXw+YUXG5f5qbR9xTa4DMTY/WIrKwk/y/sJzShgcHA5Pbnz03t/w+ccf8IPr7mXhwoLwVC+PZwir1YM4TVLcvsvpp2WnC5vdx+LF5qgE0qWXlk1oON7U5GDFe7vRahNI0iqQJ8g5/syrKcr7AU/c90uuPfcETrvoOsoXXUBBQTJmcxJz56QDoxN6p/j9QdRqOcHhURITE3D0+hgeHkWnU1I+O41t2/pYW9OBsy9AmimRkhJj+Fxrauph1SpL+LyY6LuK/dnxMzIoTNPy4HvbeWtkkO4V2xkdHWXVKssBrWxHSgw4Zs4UPlfkNKcDWVWLnAYV+Tm+yyvjkfomObBrpwt3q5sUYwrlmmgOeD1DaLXC0AdHrw8k4BkQOKDWjHEgsspEkASfd4jOLrFKZIwDMrmE3Jwk6mrtKFWTcCB009LY1ENdrZ28PB1eXxBxGmBd7RgHAv5h+vuF67+7P86BQ6H/xiviqyh2NXai9xaek4/ZnESPQwhGP6xbxU8f+pS7rr2KhQtzsNu91NZFc2BW2RgHnC4/O1tc2G1jHBATSJdeWjah0WxTk4P3Vggc0CYpSJDJuOy0E/ndL5fz8z8+wsILbuTH553CuUtOpKhQ8B2ZM3ffHBgOjpCYmECvY4wDs8sFDtSs7aCvL4ApxAHxXGsMcUBMuk30XY37WdESMBbife9+Lhr5FR9/2MDa0RtZeZhx4L/xqfq26pvkwM6dLtra3KQbs0NtnBHxgCcUDxhV9Pb6kEiEqtVt23rRRHAgsspEkASvd4iuLnGKX0Q8IIecnCRqa+2oQhwQruPjOSAGznl5utA9/2h4wlk4HvAP43QKQf/AwNBB/37a3G28u+tdGnsbSVGl/E9URsXq6z4nYyv1Y99bJVdxe+Xt/GvjXN7wPcLW4ZcpWHAMtrrtXP771zj/+h+ycOFUIR4IcSCyjU6jkTNvXjoul5+WFhe2CA5s2iS00e6NAytCHEhKUiCVSsjI0EQtqM2c9SOyps3m9cef5IGf3cSxZ55JxXHHjUsMWSz9dHV5GB0FjSYBtToBRwQHysvT8HiCfPRRG1u22DEaE7nwwhnj44FQ0m2/OBBSZAJJ/P8HUuEUKTHxlJenA8b7e+1vtXVkFVns5x4cHqTHF09KHVJde+21X1t5bqTy83W09fuYN92IKU1DzboOPvm4HVO6mvnzM5DJhORUZpYWmUxK6QyjUEni9JOSkkhxccq4A1ec1ieUKI6yabMNnzdIXl4SqamJ+H1B1qzZQ3FxSjhgL5uVOi6gFj0XIqcylZSkYjAoSUxMID9PR/nsNP4jEUoXbXb/of2y4vpatD+JsMjnVFVm4/N62Fa/iT6HnYfvuIJLr7+Zxcedw5Z6ByqljJoaK17fEG73ILmigZ85CZvdh9sdCGfvIxNIsR5NpjQNtm4v3V0D9MhlmExqcnK0mNISGULHojP/QtH2V/jPPx5k9Yp3uej6e1h2ciVls6B+Sw9rP+sAQKdTkJWlRaNOoLfXR5pJTYpxlIwMwQMrsmWvts5OIDCMIVlJfp5OGOeqFsa5rq2xsmlTNx7P0LhzcG9eYEUmLZfNyeZftZ18GfRz07uNjK4TQPFVgpHVq9t5//3dHH98Ab/5TXXU72bMMGKzebHZPOGS5Mk00TSo/zV9UxyYUqjH2a/DOC0Lk0lDY1MPNWuteL1DlJYa0emUeD1BsjIFDswoFTjgdI1xINaYWZzWJ3Jg8yYbPl+QvDwdqamJ+PxjHBAD9lllqeNuVkQPtg7rAKMjo+FqE5EDefk6ZpenIZUJK+OOnjgHvgvanyRY5HNMJg1Tiww8+Ppj9LkGuOau+7n1h+dwzpIT2VrvQKkSOODzChww5wocMJOE3RbNgcgEUuzqrsmkodvmpatrALlcismkISdHS5opEQYTuPaUy9lYtp6HXnyV1z/8gj9cfzUXnLGAWWWwpb6Hz9ZGc0CtEThgSlNjTEkkI0PwwIps2aurFTiQnKwkL1/ggFojp7QklZq1YxyIPQf3ujKdXEDnzF+SuPUZlvAMrSs3smnND4A4B75pfVMcKCzU0zyoY15BVrhaZO1aK83NTvLzdWRkaIRKhRAHSkMccLn2Eg/EcGBTmAOheCCCA3ND513ZBBwQA2erdYCREeGeXx/JgTwd5eVprAjlhnp799+jdl9qdbfy7q53aeptIlmVzAXFF3B28dmYk8xxA/NDrP1JguXl6fll3gVc7FnCLz75BbXD7+Pe4sbn8fHk3Q9w+qWnc+wZZ7K1wYlKJWPjxm4GBgajkkiQhC2GA3NjFhJir6e2MAci4gFTIi0tznCCyOMJMqLM5vo/3sPGD9/ktaefZ0dtLf2XX056lklYVC9PY3BwGIkEcnK0JCTIhHgg9PrI63dNTQcymRSZTCLEA5pQPLB2L/HAPiqUIhNAE1U4HYj2NjnPbE7C5Qrgcvn36U030VTAw1XxK8BBVEaGhsRmWbjiYl2Nla0NPRQFhDGVYiWKSinHm6TA6QyQn6ej3TKE3y+YOIuKDIQXL84L/8ztHsLR6wtXVL32WjN9zgDJySr0BqE819Hji6r6ADAYlEilUDTVEIbOho1ddHQMIJdJ0emVlJSkkpgowwVkpB/eDv1xHTr1e+CSG59i5Sv3seb913jygbs4cvN6fnn3X/ENJuDo9dNp9eDo9Ye9zyrmZYRXRAYHh1m1yhJeGYSJ/bQqq7Lo7PLg7PPR2+tHpZLTstPJQP8QdruPrOxTWXzuDDZ8+Cceuv1cggO/JXPqCWza3I3D4Sc4NEyCQsaSxWb8gSDWDo9gcB4qd4/0otqwsWtstWF2WjhJK45zNaYkotcrMaZEmxaKnlludyDcahibnJpTlkH5zHRWNtl4deMeRiuSkGarvuK3PxryhRgd95u8PD0mk7BKbjJFT1M62IaZcX11ZWZo8atk4YoLsQpJlSinYl4GeXk62trcKFVykrwCB/LydVjaBQ6oNREciLgBWiJywCZwoNfhC1dUvfpaM84+gQMG/VibxspVbYjVLCaTJswBc66WFKMatzuA0+Wno2MAmVyKXqektCSVpCRhWo7JpP7av7+4Dg/19QW4/6c/58k3X+Wp197nrkf/xbrabbzwp18iGVHQ6/Bj7fTQ6/CHvc8qKg6AAyZxISSLrk4PfWEOyNjZ4qR/QOBAQdYsbrkgk2c+eIVLbr+Tjr6LOGZWNZs3CRwYCg6jSJCxeImZgD9Ih9XD1KIIDkR4UW3YMMYB8dysrRM4UFqSSopR4EBKjHlt5IQksdUwNigpKcuFmbfCrtVkb/gnL1T9jq05twDRSaX9U5wD33ZlZSaRuFsWFVB/+WUnvb0+pk1LCXNApZLjDXEgP19He4gDmkk4sDiGAw6HL1xR9dprzfSFOKCP4MCqEAfKYjiQm6vFGOKAK8QBuVyKPhQPJKcoaQdSUyc3c95ftbpaeXe3kIxKUaVwfvH5nDX9LPJ0eSRIE/7r7cd1cJWuSefpE57mtlW/561rXmHKW4Xsen0nr/7jVZpqm/jN336DJEHLqlUWvN4hRkZGw0moiThQXp6G0ZiIxdIPjGdBZWUWnTEcaGlxMhDigN3uRa1OwGhUMXV6GtWLfoIxdzrP3f8wj9x8K8WLTmU4cQoezxAaTQL9/UMhg3PTuGu1eD5VVGSQlqbGbvfS0uIciwdCHIg1MY/kgNhqOI4DEQmgvr4AVutAmDkHKrM5iebmvvD3GjupU68XvkO9vn/C/TtYg1S+TsWTUgdZ23f0sXuLcKJFTiirmJfBho1d4fJBf2AYtzvA2hor25ocABTk68MH89rPrHy5vpMF8zPDfaGmNA255iQ83iE83iA2uwedTsGSxWbc7kFWr7Ywd046tlCrFYxlZzs6BnC5A4yMwHnnloSNnI0RrYZ//3stvaGyfYk07iXyvyqLpZ9du32ceP7tVFQt5KG7buHzjz/g2nNO4I6Hn+WUUwrHmYfDWMXViy81UVdrD3uqwcT911WV2XR3eXn//d0MD48yOjKCTqekrCyNtjY3druXvoFMTrniMZxt/+b/fn8zc6tXsfCkGwkWGmjf04/LKZSnR5qex64ITGTwLkp8XfXCLHIjJm5Evlb0Y4DRSY3qJRIJORIZOY4ROnUSnmzpYuCVLfzu1Bk8/eQWXnppO9Om6fF4hjn99KmT+o0ce6ywGjKZx4DF4mLNmj1kZ4+9/6OPbuaBBzaSlKTg2mvncskl+nhw8g1rR3MftXVCSfTs8jQ8niFSjCoWVmdjsfSHORDwCxyoWWtl504nMrkwPjnVmIjJpOGztVbWf9nJ/AWZnC5ywKTBnJuE1zOE1xPEZhM4sHjJGAfmzE3HoFdGee+YTBo6OgZwuwK43UOcfXZe2MAzxZgYbjV89O+1dHQIN47SOAf+Z2Wx9LNrZz8/OuMcli4s54rbHuSjz+uYd8ZPeOPh28MciDQPh7GKqxdfbApX5YmLXBNyoCqbru4xDoyMjo7jgN+t5s4rrmdr13pu+tM/OKpiA9ecfgGFRQb2tPfjdAkciDQ9j610msjgXZT4uoXVWZhzD4ADsTf8EgmNg7NY23kuJya/zxHtt8HLm+GU/+PRfzQfcg48/HAtqamJHHNMbthDKs6Bb047dvSxq06Yyrh4sTlsPFxdnYXHExyLB0IcWBvigDzEAWOIA2vXWvnyy04WLIiIB0wacnOTwi1UIgeWRHBg7tx09HpluHVKH8EB1wQcMBoTw2Pu//3vJlpa+oD/Lh6ITUadN/08zpp+Fvm6fBJk8WTU4Sy5VM6ioYuw2pPY+v2XKCksoe2xNpo2N3H1SVdzx9/vYPHiwnHm4RDNAbFaaOrU5Em9DauqsumO4MDoBBwQEkdp4evu0lMXojPlsOKZp6lf+RLG/Floqy8LX88na5uLZUGkDxRAdXUWuf8NBxBaANetsyKVSsKLMgArVuxizZo9ZGVpCARGqKzMmtR3ymTShJN7E/nB2e1eGht7MBrHFsFXrNjFu+/sIkmnoKwsLewh9W1JUsWTUgdZ06clo5PKwsFxVaVwsNnsHlzOAJkZ6nBLnsXST7vFHfHqsVUxR68Plysg+I5EyGxOwuUM4HL6qXf66ezyUlycEvHy0XFTyQCMKSp0OiXGFFV4O+KjKU3Dho1dfPllJ0PBYeHz2uJtG/+rijw25ldcwLQZs/jdTy/H2t7KLVefx9PvrsM0gUeUKPG4E1fI9+ZnpdMlkJ2dhN6gYEapMWyUXlWZHfZBK5+dRsmFf2Be1TH8+baf0dZ8MTf94SGqF84Jr8R8uLJtws8iwMaGMUUVdVE3pobGuYZWAMMthaGqKvEzx4JTbxCSceLKY6I6IezDVVtnx9E+QF6WlrT5Rv6zaQ/rdvUw9EkPDZu6aWzsQRma0jdZMCKWV69du4enn946zpNkzZoOdu50smZNBz/84Rza2lw8/HAtu3e70OtViNeQr2OqS1yTa9rUZHrRhIPjyFH1TleAjEx1uCXPYunH0u7G2pmATErUqlivQ+CAuFggymxOwukSqpyc9X66Osc4MBr634m8d1KMAgdSjBNwwKRhwwaBA4FBgQM98fa9/1lFHhsVFUczu7iAM35yF0072znhytvYvfIfE3qDiBIDgygOTNJGKHLAoFdQOsMYruyrqsoO+6DNLk/jwpLLWFo1h4tu+jPX/vFunrrrZ5xbPTPMgZq1VpRKGVbrQDixC4JXVG2tjRRjNAdSQ2O9U0Mr4uLnE6uqxM8cywGDXkjGRVYi9jh81NXasdu9tFoScA+fxdXVO9Fuewss62j69Dw2bTIcUg7s3Omkv3+QmTNTaWgQFjvjHPjmNG1aMklBRdjLRUwo2WwerNYeMjPV4ZY8i6Wf9nY3nZ0JSGM44AhxwDEBB8QWnvp6P50RHBA0OmHrlDHEAeMkHAD428O1BAICB75K+95u127e3f0u23q3kaJK4dzp53LmtDMp0BegkCkOeHtxfTOaMcPIOZzGpXnHcI/2ViRZElyPuejY3sFNF9/ESzUv7ZUDke1sYuXRZCwIxwN6BTNmGMOVfVVV2eMSRyBcr08+dQbLT7mP/zz9Nk/e+wj/+tOd7Fx2HubpxVitA+HELkR7qRUXp0ScD6F44AA5oNcLybjISkSHw0dtiAMdHQNkZ2ujmLNmzR527nRisbhJSBCSVXszQxfP/0iPK1GNjQ46Oz00Njo48cQpAKxaZcHaOUDSgJK8PF24Mu1QT/s9WIonpQ6yCgoMHFMx/gCzWPrp7PJQXJwSFZw3NTlQaxKYOjWZwaER/vzn9ZTOMGJMSWTu3HSqq8aPkrTZvbjdAUxpGmQyCRq1HI1ai83uIytLGw64+5yB8MS06oXZY/4/IbVb+qmttVFdlRUeHxlwno5GPUx2rvnQfEFxHfaKTSAVlZTx0Esr+P3Pr+LcK39CgmLvNxTG1ERMaWp8XqF8VvRXW73agtmso2JeerjCqmxWGnqDakK/ptg+6KrjjmfazI+47+bruOmKszhq2SVc9tNf8smnXdTW2pAAaWnqqNfU1tlpaXaiKU+L2n7s9D/x/WPbDGO/CzGBK5q4S6US7HbhRjG2WuuIThfPfm6hp0xDQUou8xNV+Dwjex0TLipy6hLAK6/sIDtby6JFwrVF3EZDg4OcnCQGB4dZujSPY48Vztuve6pLXNEqyDdQUFE07ucWSz9dnSEOmKI5IJPC3Lnp9PT4eP/93djtXlKMAgeqqsdzwG4TOJBmEjig1shRa7TYbQIHAAyhEeRiK+HC6uyw/0/4M7ULHKiqHuPAHucC5KogpUW5h+DbievboNigoaTQzLqX7uf8G+7j0tOWotXsvaUn1ZhImkmN1xfiQOgm//33W7FY3Mydm05amhqzOYlZZWkY9KoJV3Ijk7oAS6rmsOXNh7nslr9wyjW/46ylx/HHX15GzWfdbN7cDRIhASNWB4Lgpdbc4qQ8YpUdxjgQ25IX21oS+12ICdzISsTm5j5q6+xkZ2mYPz+D2eVpaEuOhKL58MVj/GXOAyxKPYaPZJfh8kgPCQcAzj13OnPmZPzPTVw9HFVQYOCY2Xnjfm6x9NM5CQekIQ4oFDKamhzU1trQ6RIoLDRQWjr+72gLccAU4oBGI0ej0WKL4IA+ggPl5WlUV2eTG8OB9hAHxFbARUdl02OpIFE+k6kzxrNsMu107mTF7hVs79uOUWXk3Onncvq005min4JSpjyQry+uw0CRPlRzCv/FdauvY9PPN6F9UcvJJ56MPmXvyW4hKaQOJ4gqKjKw2Tw891zDOA6UlaWhn4QDe/NFstu95JfN50//msldP7mblc8+ROq0aiqWnhSuDoRoE/LIatnY6X8HyoHISsTm5j7q6uxkhTggJqRFLVokLC5EVkrtS7Hm6WvXWjEaVeHrQeQ2iooM9PX5mDkzjXnzMiacGHg4K56UOkSKNUeeqGzdYumnrtZGX58fs1lHY4ODrQ09OBw+SmekUl5uijoJRX+bri4PMpmExqaecHuFKS2R4eFRPN4gHks/a9Z0sGtnH4RGuZ53bkmUx86qVRY2bujC6wui0SRw3rklXH11OfMqMti2rReZ0vA1fVPfPY2MjtLvD9LvH6LfH8QdevQODhMYGiYQHCEQHGEwOMwoQuuXFOFPJZVIUClkJCbIUIcek1QJJKsTMKgV6BLlyKXSr32f9MlG7nvqlajRwHtad5KZk4dMHu2FtmqVhZZmwQRRb1BhStOwrsYqZPWtAwQCw/T1+Zk7J53Fi/PCSavnnm2ksiorXF0Yuc2x0tMM7nn8X/zl9/fx3sv/R0vjF1z28z9RXm7C7wuiUsqw2T3hYz0yURS5HbHicHeri+Fhwfl/svM0VpEm7pGVUrHQLMnUc3aRif/UWunOVtJq0vDAObMpyzZM2l430dSllSvb+OCDVlJTE7nppiN4/vk54efPmGHkuuvmhoMOcXX8f3HS0uGo2N7+yThQWydwID1dg9MVELwUPEPMKBU4EBmUi74GIgeaGsc4kGYSOOD1BLF4BA7s3NWHhBAHziuJ8thZtcrCho1d+LwhDpxXwg+vLqdinsCBZE3y1/VVffc0OgKBfvC7we+CgDv0bwCCAQj6hcfhAIyOCgCQSAAJSKSQkAgJalBohP9W6kCdAonJoEoG2dd/+6ZP0vD2o7+N4sBOSyc5GakoFWOtOOKx1dwicEBMEFks/Xz+hRVnX4C+vgDp6WrmzE1nyeI8TCYNNTUdPPtcI1UTtDREn0t63vjb7fzqnhd54PmX2NS0nT/f8GPmzEknODyCXCaN8maLbOuL3JZaIycjU0Pr7ggOTHKexiq2ElF8v3Gtg6nTaMz7GQn1L3BG7iecadgFpz0KedPjHPgf0X5zoNaG0ylwoLzcxMqVbbhcAQoLDaSna6LagADq6+20tDhRKqX09PjG4oEQBzyeIB7PBPHARBzY0IUvFA+UlKRy9tklTJkitFtpU1LYm0ZHR9nRt4P3Wt+jxdkSTkadNvU0puinoJJ/VY/NuA4n6VV6nvzek/ym5je8efGb2NPtBIeDyGVyuvZ0oU/Rk6geW6wQj62WEAf0ERz44gsrfREcmDs3FA+EOPDcc40TtrZN5JcU2Y5368O/57H7nqX+kxVs9HexqPJGQKjkiqzaityWRiMnM1PD7q/IgchKRNELbqLWwaamHpzOABdeWBod20/iATXR9L3ICZlnnDGNX/xiStR7nH76VCoqMsLtlOK+HO4VUqLiSalDJNE1v7bWRkG+jrJZaVTEtDyZzUmYQwebMSUxnPUUp/LFngj1W4Sqj8ws4eBqbXWjUspCVVPqqHLEkeERgsOjJBsUUW18kYktc54OtToh6vf7cxLGJSSeHAODdDh9dLv92PsDdPf76RkYpNczyPBItEGpXCpBlSBDIZOQIJeSIBP+SSVCPDLKKCMjwnbFpFUgOExgaGSc1alWKSdNqyBdryJLn0iWIZFsQyKpWkVUsHCwFbnttp07+NmFpzJjznxu/dOjqBIFQ2SLpZ/WVjcud4D8grFR4ZVVWfgDQcxmHVpNAn29fiLbVVevttDY6MAfCEa1vFos/bicflp2umhu7hMmUKRp+MGPrmNKyXz+/ejN3HvDmXzv7BuZOn0xLS3O0KQK4RwpKUnFmCqYK1q32OnsEnx+KuZloDeMefvE+mLtTaY0TXj7IKxMWCz9UckwUdsaenGt7yUpXYldKefUh9ZybFYKlVoNbbuE1t3IoEFsu6uszIqauuR0BsjO1o5b8Y4MOt59d1e8VeMwUyQH8gt0zCpLG1fqbjYnkWcWOJBiHOOAOJUv9lq8pV6o+sjKHOOAUiULVU1Fc2B4ZITh4CiGZEU4IIfoxFaeWeBA5O/jHNhPjY6CtwecFujvgv5uGOgCjw08DhiJGaUulYM8EeQKkCYIj7IEQAqMCttjFEaHITgYSlyFklejI9HbUmhBkwa6LNDnhP7lgjY9HHweCkVyoHVPN4suuJHiKTm89tBt6JPGgoTWVjduV4CC/LSo4+nII7KwWNwYUxNxuweZiAMBfzAqGIk8XiPHhP/i8lOZUzyN2x95jLNuuJ0fnXkmR806gp07XVitA+HkkFhtJbZjOF1jLa8GvXI8B/ZzWuGSxdHPiWwFjFRdvZuamrnMysjiopIvUfxjGZa0M/g08Ufs2C20yMY58N1VVDxQoKNsMg6I8YAxMVy16nD4KC01hltgRdlsHnbvFu4hhoZGcTgEc2ihaiomHhgJxQPJiqj2pygOiPHAAXBgdHSUpt4m3tv9HrvduzElmrig+AJOLTqVAn1BPBn1HVSCLIG7F91Nvj6fhzc/TK+/l3OyzuGX5/4SXYqOe56+J1w9FY4HXAHyYzhwhMgBYyL9/RNzwL+fHIjcrsPh48gTl5MzdRofvfAUv//hDdz211uoXFIZXjgWOeByjbW86v8LDiyegAOxJukgVDzV1Fipr7dz4YWlYeN38XOI2xM1mQ+ixzOEMaYVPfLziBVc35aWvUjFk1KHSKJrfkuzk75ef7hiJFYzSlPHeelMLgmqRFl4QlhpqZHSUiM+bxAxSxs52Ux8jMzIWiz9dHV5GRke5YTj88dlcnus21AyRJK67L/7Ar5DCg6PYOnzstvuob3XS3ufj06Xn8FQRl0hk2JQJ5CiUTA9PYl0nZIsfSLpOiUZ+kRStUqSVDIUchlymQSZVIJMIkEqkQiL46EqhlFGGRkVElPDI6MER0YZCg7j8AzR6fTR5fJjdYmPfiwOLxvb+hgaFi7miQkyclMSyTdqKEzTMC09iSTVoTGS7La2E/D7+PzjD7jpinO48+Fn0RmSMZuTUCRIGRkZFUZ8h3yaFAoZp582FY9XmDIZ2Upqs3tIkEtJ0iowm8emVIg3cjKZBJfTT/OOXlRKOcXFySGvqdn8+I6X+Pu9t/L2c79jyswvKZhzGTAWNEVOzysqTI66UYv1VfuqiizxFf+/3e6lscFBrlmLUinD2TpARYaWgTQ1q/b0UjPSS6kb9I0K9HoFLtcgM2YYJ2y729+x3vvTshc3QP96JXKgucVJb58/qqUoUqUzUsd56UwuCYkqWXhCmMgBry+CAxGTzcTH0gk4MDwyyvEn5I83he7uwMcgCpX2v/sCvksaCYKzHRzN0NcKfW3g7hCSRiAkmdQpoDZCWjEUZIA+G5KyQJcBmnRQGUCeIDxXKgepTKiKgrFE0mgoOTU6IiSnhoeEf94ecFuhv1P4HG6r8P7OdujYICSuQEh6GXIhpQhSp4KpBBINh+Qrae+yM+D1sfqLLRx94U2seOwOMk3CNTZBEcGBUOuexdLPvIp0SkqM4wzSbTYP8gQp2qRoDgBsqe+hZaeTocFhHA4fHs8QpaVG2trczC7P56nf/ppf/vFJ/vrSS6zb3MjJC5YRxYHQe4vJqIxMTRQLINpP56toMg40NDow5woc+GK3EXn6hSzL+oIc22ssG15Nd+/VNDYeG+fAd0iDw4M8UvcIU/RCFUM4Hmhx0tfnj2opitSMGalRXjqiB9VEEgdmZGZqUCplpKerhXhgAg6I7T2VlZPEAyOjnHDC+HjAbe9EMexFKY8OsEdGR9hi38IHbR/Q3t9OhiaDi0ov4pTCU8jT5cWTUf8DumrWVZiTzPx67a/568d/pd/dj9Vi5brTr+O+5+4jI1doHVNMwoGKEAdiDdJtNg8JCVKSJuCAeLx2dAzQ2TkQxQGxTW7VKgt1dXaSkkwsPO+ntK1/g1suu4UzrziT0y6/AGunP5wEyvwaOdDY6CA3xAGbzcvatVbKy01s3NhNICBUNLW3u6O+j4mSwntrY4zU/iws2mwedrX1ok0fgoKvtLsHXfGk1EGSrd/P3z7eyYJ8od1BqKYwY0pTA6No1PIoA2WY3GdqMpXNSkVvUOIKGZyXl5vCU/22betFb+gPb0ehkJGeocHnDfLaa804en1UV2WhUcvxegfxeYNYrZ7wwS2aSr/y0CW4++w8+p9VFBbPODRf1mGuPu8gzd0D7OoZoMU2wJ4+H8GRUWRSCWlaBRl6FWU5eqala5mZpSc3RY1WJScxQUaiQoZSLtv3mxyA8lOBvOg2mqHhEbyDw3gDQVodXhqsLrbscdFs62fdLgcfNAo9zuk6JdNMSczI1lGcoUOrPDin/IJFi7n3iX9z248vpLF2PT+78BT+8NhLmDKzWbasIGxQDmMXaZlMItxEZWjQG8a8BSyWfvQGFRXzE8nK1IQrjsQbObc7wFBwFK8viKPXR21dMDxdcvFiMxdffw9bPn+LD1/5E/29zUwx34XNnhr2iHK7BwkEhtnd6qK01Bg2/tufqqj9UeTFX9zXxoYeOjoGcDh8zJ6dRmOjg/QUDadXZvHvD3ex1ednowFaWrr4os5GhkG4iVu2bAorVuzivvu+5Nxzp/PDH87ZyzsLigwwli2bMunv8vL0vPzydt56aycnn1zIDTcs+K/3Pa4Y+frgk3shcy4wNj0lzSRwQK2RRxlnwuQ+U5NpVlkqBr0yHGCXl5uoqMgIr4wZIsYDKxQyMtI1eH1BXn2tmV6Hj6rqLCEh4B3E5xM4ICalRFPp2566n53tHax+5h6OOWLWofmuDnf5nNCzHXqawb4dnK1CckgiBY1JqFDKKBMSUJnlkFIASq3QcpegBrny4FYsGaeM/9lwEIY8Qkug0wKddWDdBPZtYKmBHe8Kz9OYhORU5mxInwGqg5OIWFQxk0+eu48Tr7qdum27qDrvF7z/xJ1MK8hh2bKCsEE5jOdARqYGgz6aAwa9ivkViWRmCcHL2PkwilIpQ69TYLV66OwSBgaIfn6LF5u549rL+GTjLB548XmsfV2Ycq5gli01yhtErUnA7w/idgfIytKEWyb2ZtS7v5qIAw2N4zmgN+qRVFzCR6sKmTX8FjeY7qam/X2e23IZcr3wOeIc+Har29NNfU89azrWcM70c1iQsSBU1RGKBybhwEQ+U5NJPN7EADuWA/oYDqSna/D5QvFAaAKgRiNnZGSEwcFhamvtYVNo0RB65TMPsqtxO3c8dgeLTlhEIBjg887PWd2+GoffQY42h8tnXs7yKcvJ1eXGPaP+x3RCwQmkqFK4fvX1TPv1NNr+3Eb7rnauPe1a7n3uXgpLCoV4IMKgfFw8kKlBH8MBvV5FRUUiWTEcMJuTyMhQ43B4cTr9dHV5cEVwoKQkNfw+4oAN9Zkzef9fb/Ha0y/y+epNVH7/IjLNWV8rBxon4IBYDSkkq714PEMEAsM4HH7B3mSuicWL89m4sZtXX93BokU5YTPzvSmyFTB2f2LbBNeu7eCLDR3MWKDi/Hn/9a4fFMWTUgdJNneA9199ide2fshZp5/O0cefRGZOHosXa6KqNWBsnPyBtEhE+uFgTkJvEKbNPPHkFpRKGVmZGgYHh8PG5uI2N27oYs2aPSQoZGhChuojw+D3B9nd6sJm9wDw7ru76bAOMDQoZGwPZRvY4Sa3b4jt3f00dbpp6uzHPiD8nQyJCeSmqFk+y8Acs4Hy3GRSk5RolXK0Sjmyb3BceoJMij5Rij4xgUxDIpWFwqro0PAIbt8QLbYB1rb0sL61j61WF2taepAAeUY1c8wG5plTyND/d6tZM+cu4IHn3uDmq87DsquZ6y9Yzj2P/4uSkmlRmXzxWNSo5Xi8QVxOPx9+2Ba+QFfMS2fevPRwslVMroqJXXGykujdBEL5qkopw9HjQ29QcsFVl/L9sxdz648u4x/3XYzbcTtXXHdZ+L1ra220NDtxOQOkZwjn32QJqZp1HayrsVJZlRVuzZuomirynIxtzTUaVaz5dA86nZKsTK2wIqSWY7H0s3hOJkV7+tnk6KdVP8gmHcxXSCkpFXwbXnppe9g4cV/BSFubizvuWMfWrXbOOms6Z501PSr4iJ3C19ExQE+Pj46OgX3/geM6cHl6ePXdVdy35k1OO+10TjvhGKYV5LBksSZceh7mgOkrcCDipsJMEgZ9iANPCBzIzApx4MUmZpePccDp8vPhh604HH4cvT4WH5fH8Aj4/EFad7uw2cY4YO0YwOcT2s7+lzhAYABsjdC9Fbq2Qr9w3qDSgyEPSk6F7HmQuwC0JlAmCT5P0oO7CHFAkslBphc+oz4b8iqFnw8PCV5WjmbY9YmQoOpuhN2fABJIzoPsCsg9Qmj7+y/+znNKC6l58U987/Jfs9PSSfX5N/D+E79n7oyiqAo88VgUK6SEY3KMA/MqBA6IydbI5KpohK7WyLFaPcAo6sQEGhsdKFUyehw+DHol111yAhedfSTLr76T6+67j7bu87nrxnOizoOdLX309vkJ+IcZDlUZT5QEqKnpoGadlarKGA7EPHdvQYDRqOLTNQIHMrO04Qoxi6Wf7PIKtu4pwtG3knmGdczV/5w10vOZVnIbEOfAt1m5ulx+rPkxV95yJX+e9Wcqv1fJD5f+kMWL8w46ByAJfQwHsiI4UB7BAVcEB3p7fRx3XB5arYKeHi8tLU5MJjVlZaF4oGOAgYFBAHzDPt7c+SafdXyGP+hnesp0Liq9iOPMx5GdlE2C9NBU5Md1+GtB5gKeOeEZrl55Nbm35KJ8UElHSwfXn3k9dz91N7OOmDVxPBCqCHLFcKAixAEx2RqZXBUX+UwmNW53AJ1OQWKIAyqVjKamHjyeYLitD2DDhi7Sph7Jj++ezr8efIi3HrmX5ZddjleSS1+fH/9+cEBspf5vOLAmxIGsEAc0IQ4IFV5j++N2D9LX50es9BWn9QH7TErZbB7efHMnbW0u8vL0VFdnhauuJjJudzj89LsDuFyHz31ePCl1kDQzW09+fz2ft27lyfu38uT9dzBl+gyqF59ActYCXC49er0yCjhi4B1r8hxrkg5jrUzNzX3k5eloa3MLpeENPSTIpZx22jQaGx1s2tSNxzPEFZfPwtHjY3OtncHBEbRJSspnp2FMTaSqKouGxh46rR7qt/SgNyiRyqRkZ2lplQsHp+QbTLgcag0Nj7Cju5/6PS4aO91YXUL7RYpGQZFJyynlmSwsTKUgTYtBnUCSKuEbTUAdiBJkUoxaJUatkiOmGBkdHcXtD9LU6eajpm4+a3HwVl0nr222YtQomGs2sLAojezkvU9Smkz5RcU8+M+3uPlqITF1wyWncf+zb5BbUDRp0kZM0u5pd9PX60erSSDXrCMrSxuexCdKPEfEFkBjqvA5NZoEbHYv/sAYUAYHdUxfdBcdDU/yr0dvYcDRxI9+dQcV8zKECZWaBPLydHR3eamttaFRy8OwjPys62qsbG3oAYQVxshpfJGKvMA7enzU1tnDqzPzQom2yPNYrGgsLk7hhKUFnADU73Lwn81WPvf4uOaNLfzhtDLOPVcYEy4+7k0NDQ62brXT2emho8PDyy/v4K23Wjj55CJuuGH+uFaOM8+chsGgZMmS8ROB4joISp3KqwPz+MLyAV88+AK/evAFSgpzOW1JFdOzp+F1JY7nQMgDINbkeTJDz8k4IE+YgANXzKLH4aO21s3I8AijI6N4BoYwm5OoqsqisaEHa6eHLfU9GPRKZFIpWdlaFAqhpUz6LbnufSWNBIUKKGstdNUJbXCMQmIKpE6D0lOg4GhImx4yF9d/swmoA5EsATRG4Z/5SKEdMOAGWxM0fwAtH0HTm7D1FWHfcubDlGMhOf8rJaim5GZS8+KfWXbV7WxsaOG4S25m9TP3MKe0cNKbdTE4b9/jprfPT2aWhlllaTjrA2Rkqic8R2w2T1TLX1ubG7vNG5VgGhyE86ovYM22j/nDU8/S2t3G3393XXjqk3CzP8rQ4AgNjQ6mTNFHfSbxs9ass9KwdQIOmCbnQI/DR13tXjgQ4fVRXJzC4qVFQBE9rd9DtuUFlnieRvL2Glj+lzgHvuVavWI1vS290AJvvPoG76e/T9X3qigpPRpXf1J4ypioSA5EmjwfCAe2b+9FpZIjl2dgtzvYtq03zAFHiAPDwyOMjIwyEOIACFP/GhocuN0BLJZ+pFIpWdkaulXDALyw7QWMGiPlpnJOnnIy8zPnk6HOQPZtuR7GdUg1LWUazy97nis+uIKRG0ZQ/V3Fzs07uemim7jvufsoW1C2Tw7s2eOmr89PVpaGsrI06usDZGaO99Q0mTSUlRGRlBU4YLN5oxJMLS1O1q2zUlpqDLXo5bF02eP88cY/8spDD1F54okce8YZBIclNO6FA+vWWdl6gBwQzrUD4MDivKj3jpyMKU7rEx/3JqG90UNfnx+lUs6HH7bR2elhwYJMTjtt6rjEd3V1FiqNhPwZh895HE9KHUT969knueW+J/jPW2/gb9/Kru0N7NreAEByWi6X/+r5CV8XGQRXVWZHAUc0do5sZVpXY6XDOoBWm0B6uibkfzqKMUUIeJRKGRs2dlFT00HAHyTFmMhFF425/S9erMHtDmC1duF2ByiblcqiRdnCCfia8Jmkkq9/wtuhlNM7yJYOF3XtTrZ19RMIjpCklDM1XcuS0nSOnprG1PQkkjUJaJXy70yFgEQiQZ+YwJFTjBw5xUhweASr08eHjd2sbLKxpqWHD5tspOuUHFlgpKrQiFEbXYK94r1drPl0D4uOyuHEE8Zn6k1ZOTzw3BvcdMU5JKo1pKZnAmMX6XZLP+17BEPOpUvyKClJZfnJhbz6ajNSKTh6/Xi8QYqLU8ZVHIkKj2x1BrDZvWGjQ/GGTKOW8/77u9nR7KVk9o857ZyTeOiuW6jftJ4zr7qXeUfM5LxzBaPAF19qoqXZGZ4yE7l9iPZj29vqpdmcRHtoYo7XO0Rrq5v6LXby8oU++Ip5GVGJrIm2VTbFyIyCFL7c3cvrtR2c9rcaFhUYuey6co6uyNzr33bt2j18+GEr8+dnkJAg48wzp/LKKzuw2310dAgtirHTl/bXlySur677/vYPyoruYNXrT7F69xBNO9tp2vkvANKSk3n81l9P+LrIILiqagIOmKI5ULPOirVjjAPCbIVRUowRHNggcGD79l6ys7VMnZZCVWVW2KQ5kgOzysY48NgH39GklN8lJKGsG6GzHoI+wTA8bToULobCYyF9puALpdIfUsPwr1USibA/5iOFf8feKnhS7VgB29+DtrVCskpjgrwqmHIMJEVfixubelj5YRsAS5bmjfMhMxkNfPTMPZx09W/w+gIU5KQDY9dWS3s/e9rdUa8/efkYB0Cyz1ZWcVtOVwC7bTwH1BqBA83bXRw3YwlXXnAUV972V77cch13/uiHLF5YypJQAPDii03Y7T7a2txhD7dIDkT6se2LA5b2aA5sqbeTHzKtrqjIiNqXibaVmj8F8m6FPethy7/gmeVcnH0MxdddT0HF3lfH4xw4PHXbbbeRmzuNV155jU2b1+Dv9vPRcx/xER+h1idxxW9+N+HrIoPg/eHAunVWOkIcmD5dqLYWq7Am48C0aSlUhjhgMmlwufy0trpxOPzkTVWSsmAPu0Y30/emYJMwN30uvzj2F0w3TseoMn5n7o/jOnCtXbuHp56qB+Cyy8rC15EsbRbPL3ueKz+4kpYft1DyVAkem4fsgvHX1o0bu1mzZk+4JW35BBzYWytrOB5wBbBNwAFNiAOiWfqttwoVxDabh+VX/JC86VN5/v/+gae3g1lLz8NuH5yUA5F+bPuMByI4YLV62LXLiUIhC7fi7YsDMN5cfd689AkH3sRKaLm1kZenY8YMIzqdgoYGBy5XAIfDN+G2S0pSKZymo8fXs9dtf52KJ6UOosxmM+X5y2mqKMN26hCBxi9QtW+gu20Tyanp2B3BsJ/NX+64C3liBqeceRKVVVnY7V7sdg//frkJt3sIl9PPnnY3Hs8Q1VVZeLxBymen4fEGGRwcZl2NFalMwqyyNPSGsZX3XHMSLqefbdt68fuCaDRyCguTaWtzk2xQCpMH7B4coQoVnU4R5a0zNCSsjOza7SSv6Jv5Hg+GRkdH6XD62NjWR227k/Y+HxIgOzmRY6ebWDg1lSMKUkjVKtEnJnz3gq9JJJdJMRs1XL5oCpdWF9Dt9vNufRfv1Ft5p76TN+qsTDVpOa44jTnmZORSKWs+jSgfDSWlYqv5dIYU/vjUKzj6/DQ09WM2j11sa2o6+OKLTuRyGWlpakpKUqmqzA6XwoptfXu76JrNSbicATZu7KKjY4DCouRwa9/w8Gjo9To6rQPk5ek58YzzmT6znFuvuZQHf30u0xb8iGNP/D7VC7PDLYDls9PC+6FRy8OGh7EDByZr8zOlafAHgrQ0O8nK1pCdpWVwaDhqekfs8yfallQi4cgpRspzDby7tZNVjTY+2+1g4R4H/3flAvRqoTQ+1hdk5co2NmzoZskSc9SEpvgK+DerrKwsZBmXsWC2judPf4wXG5W8uNtEfWsLhiQt/c7RMAduuPs5FNJELjl7EVWVERz4t8ABp8tP+x6BA1XVWXg9QWaXp+H1CByoWWdFJpVQNisNQ0QFljk3CadL4IDPHwQJaJMUZGZoMSQLSWebzUOvw49GG+JAxA2LP2S82drmpnruN/AlHky5O8DyhWAG3rsbGAVdtpCAmnIs5C8UJtYlJhO6K/7uSyoTzNAXXAXzr4QBGzS9BQ2vwvZ3ofF1MBbB1O+BuRJkCdTV2qmttYEE0tLU4Wl2kau/Oq2a9x6/kz1WJy07BjCbJRNwQBp+fVVVdlRLhKjJWGA2J+F0jXGgqDCaA0IVlQ5r5wBms45zT5rB3NJCll99JxfddifL55/AD05ZzKKFOWGvq9nlaeH9UGsiOBAzcGAynx+TSUPAH6S5xUl2loasbC1Dg3vhwGQTnSQSoTU0YzZsfwdZ4wqO2nMGHZ3L4ZL7QSt83jgHvh0ymUxIpUeQmJjKUYsupqNzA/7E1XRs28aQ3E+d4jMMuxOBXB6++zkGgzJOPe8YKifggMvlZ0+IA2JLTnl5Gp4QB9atsyKVSqiqyg572US2RwkBtgSVSgj59HolyREcCDKEamonOzU72GKzIpVImZY8Db00BR8dVMhOpDqnevKdjet/RitXtvHhh21IJGA266iuzom6Jj19wtNc+cGVNF7WyKU5lxIcVbJhQxea0LVVo5HzzNO76OoWps2deOKUr8QBVwQHCmM44AlxoDPEAVEWSz+ffWbF6yvktB//nFXPP0lr870cffZllJeXhjmg+Yoc8PuDtLQ4ycrSMHt2GsHgCF1dYnXu+Ofvj3dcbMudqFj21tbaaWlxMnt2GqedNg2ArCwtaWnqqImah7viSamDrPXrO7F82k3+0Rk4Kr5HSvVJXJSlQTbcT2KScJA3NVhY/9E/gFHWvXsPpuwSlLqZBCTT6HP6kctlGI2JBIdH6er0UFtnZ3h4NHySWCz9LFtWEA7kxUBX9IcS26A0aqHix+sbChtDl5Skhk/cwiIDZbMixsPaPQwNCkmp7dudHLv06/3u/luJiagNrX182dqLrT+AUi5larqWo6ensbQknaL0JIwaBaqEw6dc8ZuSVCoh05DI5YsKuLQ6n7ZeD69s3MNbdZ38/dPdaJXtVBYamVstVOwsOmpsZTXqQhk6/rQ6PduafWzb1suaT/fw5UfPUL6gkkTDdPR6Jamp6nBCSHxd5LFrsfTT0uIMe0eVlKSGDfjLZwvJV5vNi8sdoL9fWAnUqOXIZBI0ajmFhQZs3V4KCw0ATJleyj1Pvclt115H09r7sTRvprX1J1zwg1nhqqnIlrrJqrT2pvLZacJ41hQVxcUp487JyH0TARuZzItN7p0+J4cyo5Y36zpZ1+2i6p5VXFyVz9VHF9LQ4GDFit2sX9/JJZfMDAcckYFHfAX88ND69Z189KmZEa7hdxWPc3nlIFtMd+IcGiVNL1zHdzT38MIH7zA8MsxT7/6bgqwcsg1mkqSZ9PX5SQhxYDg4SmeXh7raiTngjfAMiJTYBqXWCBzweYPU1gkcKI3gQFGhgVll0WPCPR7BU2pni+vr+9IOptwdYPkc2taBew/IFEJL3tyLYdqJkF4i+EIlfLW25e+UJBJISocFV0DFZeDaA1tegi3/hs//BhufhryFVBQfid1uAhhnXg5jN8watYp+J2zb1suna/bw2scfUVFWQIFpSogDieHXi68TXyt6m7W0OFm1ysLs8jRKS1LDBvyzy4Xkq83mxe0a44CYrHK6/KSmJlJQYAhzYFpBDh8++QfOue4BXv/8bba0NPPD3Wdx8YWzw2O2I1spvorZ7exygQMpRoEDE52T0T5ARAUU41q0Zp6OS38kI/Wvkt33AfylDCouhUU30NDginPgW6KOjoFQ5UYCC6uWsWzZtfglTt61PkGTdjOvef7GF41TWPvOewwHAnz+5gsYs3JINBYQTMhhwB1AoVIglUoYHR2lq8tD7SQciPSOiTyfxDaoefNM1Nba2bChi66ubhTaYQaSd/PJjvW0jzYzYgqSLDVxTOpSTpuxHJ0vh5W9JwLQuMX9TX6NcR1GWrIkD4vFHf5vIMqzblneFJ464Smu+uAqXu9+nS7nIFveVtGy+QtKSk0UVywgSacAolvS9saB8vKIeCBkmq7XK+nu9uKK4YDLFcA1AQfE34+MjNDS4mR0VErl2dfR+sWrvPP4X8hJ81FQvojt2/u+MgfKQxwwGlVUV49VXUUm1w6IA0xeURVbQSkmniITUPs7qe9wUjwpdZCl1SpQq+Wk+6FMoeaTgJdXdjqZp0jkpKVC4OnMSGR29Tns3rYOt6MN254GQGjzc6p0pE05kzzzqUydOjZxbcAzRG2tjXaLO9zqpFHLefofWxnwDHHCCQXhfleNOgF/IEheno5cs47BwWHBCE4pw2b3RB3kLS3OsJ+VQiFjFKEft6T023EgT5aIKs3Ucea8HI4vzSArOZEUjeJb4wv1TUgqlVCQquXG44v5yeKpfNbcw/NftPHpDjuDwRHKFmcyvcwUfv5kF0rx/6/4z7/p2fUyq1rf4pgz72HRotnhVtSJJAY33V2eqEkatXX2qEl71dU5NDb1oFYnYLH0hyoK+zGlJWKz+8LtGMkGJWtrrBhTVFx98/088eCj7Gl4mtX/3k3p9P/j+GXzJ9yPifzc9qaSklQ83qDg3eANTpjYih0RG5nMmyi5N9Vs4BdmA3U7HbxT38Vjn+7i6ZpWlhenozUq+PxzK6tXt3PddXOiVsbjOnwkcmBLYC4v8hvOHfo9pe3/x6fSCzGXFWAyaehz93PKomNZ39jAHnsnu6zt7LK2A5CoTKSiYD4n5R0bxQHPgMABS7sbr0fggFoj5x9Pb8UzIHBAbPmo39LD8MiI0H6UqwsPC8jL07FhQxdqjZx589LDN0CisXO6Sc3oqMCBadOSJ9y/w1LuDmj7XDD1dncIiSjTDJh5GhSfLPglaVK/Pb5Q34SkUkg2w9G/hIU/g9Y1sP5J2PkRU4c+ZOrMGTDjNDAJ3kT74sDzb6zhs+0fs27HGq47/RIWLSqNMqGNlXg97Ooe40BpSapQpVUXzYGmxjEOmM1J2G1e3O4A/QNDUW154nH98/PP55nXMvmg7j3uefER8op+ytmnzpt0PyYKECZTaUkqXo/AAa8nOGFAMykHJjCgBUjLzYLca+nZvRO2vorxyyeQbHiShUXn0GT8His/741z4DDXmWdOY/NmG+3tbnbudLF7t4u2tgGmpV7Cz5b+ktXu13m1/nVSjtfhqfPibfPgsO4B6x4AehtVZJUcSdr0o8nJ0ZObqwVAp1MwODjMc881IpVKWLQoB41GztNPb2UghgNbtvQwMjJCeqaKaUeO0KXvpItdrFfZWN84ikGWSolqHscXLOW40iNZ94GLJ262kJ/fCaF4YN5XWLCL67upiRLesZ51ifJEnvjeE/xo5Y+o6X6Hvn4T9oaV2BsljIxKKZtfsV8c6O6OiQdq7dRFcGDhwhwaYzhgC3FgYAIOrFtnJTdXS2enh64uD909cPHNv6J21ds8cucjHHFcHcsvu/wrc6CkJBVPiAMWS/+41u3IfRO1Lw5E+ilGTuwUW3i3b3dQX29n+fLC8CLLt1nxpNRB1mWXlWE267BY3OxY3cWR81NZrxjkyyEf6dscLEvTMK04n8t/9mtq6+xIR/to2ryWfnstLQ1f4PW4KShMRW9QkmvW0dLUyFsvPIQubQYJ6iJmzilj7jyht3XVKgtbtghG5sGhES68sJTi4hRqa200NjqwdgywbFkBAAX5Ojq7vGFjc/Gke/utnXRYhaz0smUFzD36YkxpCcyZu+/Rk9+UJk1EZek4Z34u3yvNICc5EYM6Id77/hWklMtYXJLOccUm9vR5ee7zNv6zsYO739tGvlHNiTMzmGNOnjBpI1Y/nXTGqbz0t0/xORupeevXLF7y/KTVQ6JnGsCUKXra2twYDEqeeHILw8ERiqYaKJ+dhilNw2mnTaW4OJnaOjsatRyXUxKqjJVEteXV1tnZvLkbnU7JksV5nHLuxWytnUXtR/fyt9+ej0bxIAuXLIuq1mpq6uHdd3cjlQk3ebFVXBMlqmx2Dy5ngMyMyXu+w9NG1MLkqMjnThQMidVhKqWMXA/MzU+j2efn1fpOJBJQZsrpXefk1VebOeOM6ePaOeL65hXJgcdXGXEs+C1XJt3N0pHHad12BSbTQqYXZfD7n14kVEBJfKzZVI/FsZvP6xtxugcwmw1CS16uju27Orj7iX+Sl2YmVZtF5ZypzK+I4UBghKHgCEVFBszmJIZHRmhrFVY0RQ6IJe4bN3aj0ynCN4Y2m4e33t6JtWMAd56O7x91HPoUGUcdeZj3cLutQjVUZCIqfQaUnQml3xem5v0vteUdTMkSoPA44Z/LChuehNp/wkd3gj4XSk/FZK6c8EZdvJG+8LQqtlnraXXs4pE3n+XYY27bawvChBx4YgvB4RGmFhmYXZ6GyaTh9NOm0licTF2tPTzNzu0eRKdTUlaWRlubO1yNJXq1BfxBLj97KeXFU3juo39zyW9+T4BrufDUxeNaKRpDLJCFAv7JVrEjpdYIVbtqzcS31eK+iRMEI83cJ+KAWB2mVMnwek5idsFSiobWoNn+L34meYFZ+XO5d82RvPqqNs6Bw1TV1TncdddCbr31M3p7/XR0DJCaqqKnx4dtp4wbl93IVWVX8beMf/GB5T1sg824G5x4t/rwbB0g4PZjzAFjegIzZqTg83h47k8PU7agDG1qHu2dCeSaDVEcCARGGBoZRJPtoS+pk57MBtzSbv5udYJ0BJlKTrY6l7ThY/E15JKrmsIV51ZSXJhJW5uLRx9ax44dfcycaWTRorPJzBzl+9+v+qa/yrgOY8V61gEo5UoeXfoo1310HWtPqcG9LR/39lZqXnuGhYvMmExjCZT95kDo/qY8xIFwPFBrD0+zi+WAWDkkerX5/UGqq7Npb3eTm5tEQYGBI265mtK5pdz7i3uxtv6WOx67A0yasZjgADigCXFAsw8OaEIcyNwHB8TqMJVKhscTDP9cnNxXX2+no8PDunXWSQcjfJsUT0odZIlZ5LVr97ByZRtLluQxrJbysze28pbFTlqrlvn5KeEKkNnlafz2vhsBCA4N0Vi3AbU+G6dbgdmcxMrX12Nrq8HWVgNAc42C+tKZTJ9ZjjalkOKpOdj75Oh0ynClhhCsB5DKJKytsdLV6UGnVzKjNAUYjcrSJumUZCOYOnu8QUrmn0lxcQo6w+G1Qj46OorV6Wd9a++4RNS5C3I5vjSDnGQ1usTvjkn5Ny2JREJuioZblpXyk+Om8e8N7Tz3eRuPfLKLVK2C5bMyqZqSOqEf1/kXzCG/4Eke/t2V2PZs5b5fXso1tz+JrU9IMFmtA2zaZAsZAI5dOIuKDFRVZvPiS03hpNIZZ0yLKkG1WgfY096PSilDp1Myd46JslmpmNI0Yc80lVLO9Okp5OYkAaN4vENUHXUExy55iXdf+D2/u/4yzrjoai7/2a0kKIRS4g9XtlG/1Y7ZrIuCQuzKhnjBb2lx8vZbO4XE11KhjHnDxq6ostxIvyyLpZ/OrpB5Yyi5NZHPlHhtKJpqoLzchNmchLHNTULXIAM6KbsBxalZWLUqVtR3Emzz8uUXnQD7DEbigcvXo1gOLFiSh1O/EP3bP2C69VHYOQiFx4UrQMpnp/H3+y4GIBgc5sst29EotQz5BA78+/1mGi3babRsB+CltXJmFxdQMXMq2cZM8gp1eJxSdDpleIVu2bKCcGBdV2unq8sbrpwSRg8Lk5bEFTpdkhKyYerUZKZJqiguTiEr3fhNfo0Ty20NteatjU5EzTobSk4RKqISk787JuWHg/RZsPg2WPRzqPsXfPkYrHsIal8Qkn9Fx4F0/O3k+eeXkV9wEz/6/f1s2bmdC276A497f8moV8fs8mgOLInlQFU2L74YzYHSGA607+lHqRI4UFikZ1ZZWtgDRFxZnlEqHMPpJjVezxDHLizhhMW/4aGXX+Kim/7Mmg0NPHjr1SSqBI+dxqYennuuEWdfgMJQghf2zgGxwlAikWC1Rk8IFL2qxJ9NZOY+kb+IeG2YWiRwIN2cRIMlgz3BcqpSajlaUsfSM7+kN7EUtvhospSx7gvBsDbOgcNHYmJKjAdycpLC3z2AXqVncP0MhlZpWHa8ljk/9VBjraGpp4m2xjb6k6wE0l7CIVPTv8OLrbWJVa1NgDAlu9Wsp2mbEWWOBv33EpCmDzOQEOSJncL7azJ0qJwaVLYy8hKm49+ZgdSn5sRls9kmd9HT5WPXdh/FhUIbltGYyLRpMH9+BlLpSVRWZlFQUPBNfX1xfYulkCl4+LiHuX719Xz6y09x/LWQzrqd3P/Lu/H5R/CRQXn5PuKBCTgwLh7Y048qxIGiIj1lE3CgNMQBk0mNxzPEjBmp6PVjQ50WnbCIgukF3H7V7Vxz6jVc+IsfU78rib6+QHihDybngFht/vbbQkwgvE80B0Sft3A8sB8cEKvDiorG4gHxMxQXp7B8eSHr1lnDhuyTeVBNJrvdS2NbDzPlblKmpuz/H/cQKZ6UOkSKLXH8cJqRK57ZwN8/3UVz9wCzZwknVaTHjjwhgVkVlVHbKZ5diaXVzkDfNhyd2xj0D7Btyya2bdkEwJ+feY2MvFlChti+hWceepa8wmksPCIDf1CPo1dKS4sTAL1BGEHrdluprbVRWmpk6dK8KH8bmNxc7utWOBHV1sv63b10R7TmnTM/l+NnZJCbrA4bQcd16KRVyblsYQEXVubx3tYuHvt0J0/XtPF2XScnz8qksnB8cqpoqolTLvkT/37kOtyOZu6/9VKmHvlbYDamNHW4wgnGe1RFejWNPx6F6qjIqX2TVTtVzMvAZvegNwitfq2WIU67/B4qqhby2B9/x5dr13HD3Q9TOnMqILQxpqYmTjo1L/Jzrl5tYXerm+xs7bjfgVCWK5NJwiNq9za5I1KRFV+R8JVIBNNghSaBz1p6WN/ax4+e30SSUs4so5ZKYwKjo6N7TcpG9v7Hg5FDr2gO5MDUNfCvC4Wg3r6N8lmnAUR57MjlMqrmlkZtZ17pNJYtWEqHo52dVgsDPi8btjazYWszAK8/fBuVZQIHul1WbnvwA0qm5FJWkYIkmEh2ZjId1lasIY+TxYvNfLZW4IBaI8dsTgqzAMb7IHzjEhNRlhrB80hszRMrouKJqK9HCg3MvwzmXgTN78PaB2HjU9D4Wig5tXhccqqoMIVfXXwFv37kYXZ1tnLZ7fdyduW5QBlpJnWIABNwwKSJ8mqaiAMSoNfhD7eyRt6Ef7a2g/VfdjF/QQY3/GJ+eAXZ6fLT1urlhh9cxPFHzeHHv3uYj79o4Nk/3MiR84qoq7Uz0D+EIVnJsmUFE3p7xHKgsdFBYaGBU04pCg8YEPVVORBpxB496XAqmOei0AVh1yekWNbBq1fwvQQtM03HIE+5CEby91odGOfA16vYeCD2Ow/7gh2TR3VJDucVn8fA0AD24+009TbR1NuEtd9KrX0HA6cFGNjVx8AuF8H+IVytTlytTuF9fl7NjPI5MKDB4FVgr91D2Ywy0jLzGfanMSXPzKMbt7BjRx/b8lxccslMXn55Bx9+2Iper2DGDCOXX14WTphFJs/iiuurSC6T8+CxD3L5O1ez6dovCfzRTO8OCw/d+gemH3MhUIHJpA49e2IORHo1TRgPAA6HH88EHFi7toMvv+xiwYIMfhHBAVfEdVp8vkKTzOW3385bTz3BY3f8ibRpCymcv3i/OADw9ts7Q/dOEFsA8pXjgQivqFh/qImM2Pd3u6La2/tpbXWxTdXHrKn5+/WaQ6l4UuprUopGyb+vquTOdxp57vM2WpLV/PikQoxJyr2+zhdMQ5d9CnOPuYj8PB19dgsJkg662raxo6GOqSWzSNQI1RaP3PM3Xn3usajXK5QqtPp0NDoTTbm/wuXMxtHro279Rho3OEhQJDKzLIPZ5VkoFEoclh3oVCUk60vCFSRfp8RE1IY2oSKq2z2WiDprXg7Hz8wkNyURfWK8Ne+bUIJMysmzs1hWlsnKxm4eWt3CP9a18VZ9JyfPyqKy0Mgrr2xjzacdLDoqmxGJEm3BT/D57mPQ287uDb/nokvfJsecGtVGumtXH198bkWhEBIvHm+QU04pHFdF1NTUw+5WF0WFBlSJchobHEyZog//7smntmK3eUgzadCohcubWI0kJF17cLsClFScxokXpbDq5d/yq8uW8+s//42lS2YLkyoiEsWRr4+U2ZyEOO1vdqi1MPJ3oiIrpSabvhericwJY1+7fFYW3yvNoMHqYkNbH1s63ax9bQsZq7Zz9HQTx5emU1mYSqJC8M8RV8b1egWVlVnxG81vSsok+MGrsPr3sPYvlGh3UnLSz0G3dw+/EX8iM7PmcdpRi8nL19Hl6ME/2kdzu4X19c3MnzktvMr2u4dW8ftHXop6vUqpID0lGbUiiSnFZ9PjSGPXLid1Tbv4aMN6VAols8rSmTuagVKRwPY9HYwqc0nS5YUrSL52hRNR68DVPpaImnH6WCJKnRJPRH0Tksmh+CTBNH7nKvj0Ptj4D2h8Q/CcKlzMv1/ZzqdrOjhqUTYMS6kyH8/AwJvY+jv5zxf/5vKLK5hemBo1NXLXrj4+/2KMA15PiAMxK76NTT207nZRWGQgUSWnoXGMA41NPdSstdLY2IPDIXgOQrQ3B/Tgcgc4snQuv73sJ9z/0tMsufyXPH3Pz5ldXgyMTwZNtIotcsDaOcDUqclUVGRgs3kw6KOTupGVUvs7dam0JDUmGTXBZyg9BaafCN1bkbatI6d7Lbz3NqxJg6IlULwcphwDSsGLKM6Bw1OxSSuJREKSIokkRRJTDFM4acpJAPzm008YdO6mfImRkhnJ9PZ2o1baaG/bTu3GWh645AHKZpQhl8r561//yn1/vTPqfRQKBWlpmUilKTidP2PPnjw2b+5my5ZGPv/8HRQKDUcdlYdWOxWlUklfXwudnYWkpMwgKekwWqSI61uju+6q4aWXtnPWuRfTbnQx/PNt+O7MxNfRSfOaFzj3wrlMD1UtTRoPTMKBpqYedu92UVRkQKWS09gYHQ+sDXMgQPtkHHD5aWrqCU+q7Oz0csY1PyYjL483/vEiJoOH3KyK8HtOxgGLpZ+kJCVmMyxfXkhRkQF9DAciK6X2lwMTxgN7ee3+bDeyxS83N4n+ET3F0w+P7ijJqOhoGhcAbrcbvV6Py+VCp9Pt+wVfQSvqO/nVq/UEhoY5Y242x0w3TZpgiZw+Jhoqi5PCatZ1sK7GSukMI2lparpba9hW9xkNtQ3YrBYCvr6obR19zjMoE5PJyNTwyRt/oa3xrUk/4/MrN2LKzJ709wdTo6Oj7HH62NjWx4bWPrrcfpRyKSWZOioLjZwwI4PcFDXJcY+ow04jI6N82NTN/33UzNYON5l6FT1f9tC9zUl2lpZrrinnw5VtBHwu6j+6nTMvvpxTzrt03HZuueVTdu50Ulho4PQzpoWPc7M5ifotPcAoZbPSWLXKwvr1XWRnadEblDQ2OsjO0nLhRaWsWmVh1co2/P4gBQUG5s5Nxx8IRlUcrVrVxscfW/D5hzEaVWSYoHHtX6j9/GPOu+p6Lv7xjcjk+5erP1BT9MhzuaQkNXz+VlZlUVUZfa4dyLZHR0dx+4ao2+Niq9XF7h4Pfd4hFDIpJZlJzMtLRtY7hL3ZxeLKHE4+qXC/9m8ifR3Xx8NBX8t+Nn8Ir18DfifMPBNKloNk4uqGyOljoqGyOCFGNHKeUSpwoNnawscbNvP55mZaO7rp9w0Qifl7fngj5vQMurq8vLXuQ1Zv+XTSj7jljYcpm/41tm64O8DyRUwiqhTyFwkBeMoUSEyJe0QdbhoZgZ0fwaf3QvuXoE3n8Q0zWVGfSlZ2EtdcU87KD9vwBfz885MXOW/5Im754TnjNnNzBAfOOD2aA1vqBQ7MKhvjQFa2FoNe4EBWtpaLLhQ48NlnewgMjqBUSikrS0OvU0YlmVaGOOD3CRwwZSp584u3eXP1On5y4Sn88cbLUSj2rwL7QD08Is9l8fOI53BVZVbUqvcB+4P43WDdDJ214GgBj12oXEufCbkL2OQo5NMdyUw/opwTl0/fr/2bSHEOfDOKtAVxuQbDbTvLlk3hP//ZzquvNnP66VOpqMjgxRffoaHhIzZt2kJr6278/l5GRkbC27rkkkfIzy9j1y43mza9zNat/5j0fT/55BOOOuqor2MX4/qOqazsH+zY0ce0acn839+O5ubNP6Ff0Yb74QGqFx7JVTdfNS6ui4oHYjhQH+JAWQQHsrO16EMcyM7WcmEEBwZDHJg5U5jYF1lxFI4HfMNkZ2uZNSstnBwzmTR8+fGX3HntnRiMBu58/E7yp+VPup8Heq2OnCRYEsEB8Zz+rziwD0VOm501J4UeXw8nFJxAiurA2vcOxfUxXin1DejEskxm5ei56T/1PP9lO1+09nF5dT5pSapxz43Mksa2162rsbK1oQeHw0fpjFSKi6uYUnoUrX21JOsDTJuWxIJ5iShkTnq6regzipDJZLjdg6i06aRmlTE46CNRCT5fAK/Xh2R0mKLS2aRlZB3S72B0dJT2Xh8bLL1saO3D1h9AJZcyPSOJ0+ZkcfyMDHJS1KSoFRN6FsV1eEgqlXD8jAyWlKTzzhYrD6xsZmi6ltQsJbONSVHH7+BPq1EoJq66WHRUTvhxcHCY7i4PU6bosVj62bS5G0aF9tPy2WlYOwboHxjE5Q6gSJDS1+enfktPuOVPqZSRlamhodFBQ0MP69d3YjQmcuyxZmCUvj4//sAImRkaTjq5lIsveYF/P/kw//jrH2jcvJ6b//gIxrT0A/oexCSSOOEstvWuKeRT0j8wBAjntXj+AiQblFEJq4mm8k2kyMTWUZXZLJqayoA/yK4eD02dbjpcPv6zqQOXT3jft9Zu548NFk4qy+SmE4sPaB/jOsiauhR++Bm8/VOoe0FIxFReC/rxiwGRVRPiuGSRA6KRs8PhY0ZpKsXFRcw+r5iEvlrK9AFmzkph8ffS2bTFQu+Ak8pZBaQataRZPdTuTiWv08xgcAiNRobHF2DAE2CUEUoKcymekntov4PRUXDvCVVEfR4xNa8USk+FkpMhuQA0afFE1OEsqRSmLhFM0XesgI/u5MriVSzNTqNFd3LU8fvT6xegnCThc1RoRPhRiwQOdHWPcWDzpm5GAYNexezyNDqsA8ikEoLDI3i9Q3Ts6WdLfU+45U+plJGZpaGxwcFnn+1h61Y7I6PCthMUAjcC/hEyMjWcvGwal138a/72wtv87J7H+bxuG/9+4Gbysg+QA7ZoDsRWW4l+VQP9wvU4nJQKncNuVyDqdfvrDxKd1DoaCo6CQQ/07oTOLUKCd+t/mOt1MFcGoxul0JILU78HJ/3pgPYxrm9OkRVVbW0uYGzi2auvNvPpp8LUvsTEBDweM7NnX01t7VY0Gi+nnJLNtdcWsnZtAwMDNkpL55Obm05zsxO7PQurdQZDQ35SUuQMDPhwu71IJEGmTClg3rx538wOx/Wt17nnTuell7Zz7rnTOWbRFD6qfJnL3r+Mxp81UjW7asJCg0UhDiwKcaA7ggObNnUDoNerwn5UUqmEYFDgwJ49/dTX94Rb/pRKGVlZGhoiODA6KmxbEeKA3z9CZqaGsrLUqOvsgmMW8Ojbj3LblbdxzanXcPMDN7PohEX73OdYDsS23oXjgf6xeADGzNhdIQ6IrzsQDkyU1IrVgbb4fZ2KJ6W+IWUnq3n2sgW8tN7Cfe9t57Y3Gjh2ehqnlmejSph4ZHVsC09llZA4EiulxAkcweFRDAYl+QVG7H0SiotzOfb4peHXrVrVRt6MUzhi8XnI5VLKZ6fR2ubmvfdaMRpVnHXmtENSkTQ6Okqbw8uGtj42tPXSMzBIYoKU4kwdZ87NYekMEznJGoyaeCLq2yaZVMIp5dmcMDODf37ext8+3skXA36Cn+zk3Pm5GNSKqISU29nHC4/9hct+egsKhZITT5jCiScIEx9ffKmJDusA62qswkTIOenAaLhqyJiayOOP19NucWNKV5OkVdDS0if4pM0w4vcNs7vVjVIhI0EuxW730d3tRaWUc+FFpbjdQzh6fVRXZeHo8bFqlYXyhedxX/k87r7xR/zojCXc8sdHKD9i4YT7Gjkdz+MVpmG4nH5Wr26nx+EnIWEseBYTTbV1drq6PQwNDiMLnd7i+VtZlRU2NwcwpibS1OTAYnGHS5EnU2Riq6oyWyj7T0xgdq6B2bkGgsMjeAaH6XL56HD6cHgG6fUM4RgI4B8anvRaE9fXpKR0OPcFqH8Z3r8FVvwSCo+F2ecJ/j0TKLY8uypkcClWSokcGA6OYkhWctRCM5KgDI3UxLwFxeFx9V5PkKoZ85lXNAe1OoGq6izaWt28995ujMZEzjxrGgkJh+AWYXQUnBZoDyWi+jtBrhxrzSteDin5oURU/Pj8VkkqFdr6ir4Htf8k/9P7yHc/BZ/WwtxLQGuKSkj1D3j5zf/9kzt+ciFaTSInnjiFE08MceDFJqwdA9SsEzgwZ24EB0waUo2JbKnv4YvPrQwNjSKTD4c5MKPUiM8/TOtuN4rQQAyb3YfLFQDgZz+dh9s9RK/DR1V1Fj0OgQPHzq1k7QvTOfunf2DO6dfx7D2/YPmxR0y4q9HT8QQOOF1+Pl7dTk9PNAfEyqi6WjvdXR4GIzgAY+fw8PAItaGR56nG/eeAmNQChGBEIhFa9jJnC/9GgkKSqr8L+tqQeHvA4wCfEwL9QltxXN8qxU48O/30qeFHMVH14YetDA2NkJ6u5swzS3C5Eujvz6GycgHLlgnnmcs1SGHhsWRmVqPTKTnzzGnU19v5+9+3kJ2t5eabj0Cj+fZN8Yrr8NCtt1Zx661j0xsT5Yk88b0nuGTFJTzd+DQ/TPgheYl5PPHHJ/jBdT9AZ9CN40BHxwDrQhyYG8MBozGR+voePg9xQC4fprm5L+yb7PcPs3u3G4VC4IA9ggM/DXHA4fBRXZ2FI8SByCRSdn42D7/+MPf+4l5uv+p2LvzJhVzy80uQRiySxU7pc7lC8UAMB8TKqNpaO10TcKAyggN1IQ4YD4ADYlIL2GtSKvIecnB4cK/b/LoVT0p9g5JKJZx/RB5LStK5Z8U23qyzsm5XL8tnZXL0tDQSZHtfGa6qzB7X9hNpkmxMTZzQsLZsluDnU1tro2GrI/zzYHAYny8YDrQPhoaGR9je1U/dHie17U76vEMkJsgozdJxTkUuS0tNZCWrSdUo44mo74AUchmXLZzCmfNyeXh1M899buGW17Zy4swMTizLQC6VMjo6yq0/uoBtWzZh6+zg1j/9HVnElVmshpLKJHi8QRYvzot6D1OahtISIwMDg0ydmkxWppYV7+3GbvfhcPgYBVyuAHPnpnPaadPYssVOh3WA0hlGTGnCGFlRL77UFE4GnXduFY++spI/3HQNN11xNhf9+EbOu+r6KPjAxNPx6p0BnE4/gUCQlGRNOBH16ad7qFkr+Gtp1Ak4B0dotwwA0edvskEZ3ve1n1n5eLUFiVTClCluqiqzoyqiiooM4fM6MrE1keQyKfpEKYGBQfo9o8w0p5CYpMA/NMJIvHP78JBEIkyOK1wMq+4QqqbaaoRJctNPFBI2e1FVVfa4G5BYk+TY6qrI/66ttdHc4kSjEZIFweAIPl8wHGgfFA0Hwd4EHZugYyN4bCBXCW1FZWcJiajkvHgi6rsieQJUXCoc12sfhM8fgXd+AdOXCeb0MuFYO/tnf+C9NRtpaLHw1iO/iWqZi6yG8nqCLInlgEmDQd+PWq1gyhQdZrOOujo7drsXh8MHo2McOOOMaWzZYmPTZhtzQuPET4/kwItN4WTQeeeVsOnVv3Lxr+7n5B/9jpuuPIvfX38Rcnn0cRk7Hc9sTsJZH6AvxIHkFE04EfXpp3tYWyP4a6k1CQwOjmBpHwhvSzyHI1v7LJZ+1q/vwtHrIylJQVVVdlRFVCQHxKSW+DhOUjmo9NjccixuvRDQGRCSUiPDX/GPHNfhpDPOmM4ZZ4y1ZObl6dHrFRgMSpYsyaO6OmdcdVXkf3/4YSsbNnRjCN2LDA4O098/iMt1eAWtcX37pUnQ8OTxT/KDd3/AE/VPIHlewhcrvqBxUyN/euFPqBLHuoYiq6E8ngniAZMG/YQcCMUDE3Bg8yYb5SEOnBbDATEZFFnZlKhJ5DeP/IYX//YiT9z3BDu27uDXD/4arV7w6quttdPRMRAeelRfHxEPpGjCiajYeGBwcIT2CTgQ2doncqA3hgNiRVRUPBC6/ldOxoGQItsBDcbDa1BYPCl1GMikU3H/OeVcVJXHH97dxkvr23mnvpPvlaRzXLEJ5QFUM8Saok3U+iNWXGnUcjSahHAia/JpZwcml2+I+j0u6vY4abC6GRweQZ+YQElGEkdMSWFJSQaZBlW8Ne87LF1iAjcvK+WCI/O58+1G3qyzUrPTwUnFJlS+UU676Kf88VeXs+aDt3n47lu57td/QCKRYLN78HiDLFtWEDYIFxXps1S9MItccxIatZzaOjtabQKKBCmLjsrB7xumfY8bY4qKwaFh7HYvWm0CTmcAm90TdU5EJnEBklPT+MNjL/HPR/7MMw/dx6bPazjm+7eiTjJQNistPBlQfI14rpXNArd7MFyBVVKSSmubm4H+AH7/MB+830ZVdRZ9vYEJE0iR5+3aGisjI6BUyMjL02Gze3j7rZ10WIXEgkIhC5fyioktm93Dho1dk3pQRZb/Fs/Yu6l2XN+QNEY45UFYcAV8eDvU/xua3hISU8XLIEG9722EFGuSPJH5pfgztUbggJjImnza2QEq0A/WWiEJ1VkLQT8odUJF1JwfCAkKgxk0qfFE1HdVCg0cewvMvRg+uE2Y0tf2Gc7Cc2jxT+MnF5zBpxu28sHaTVx261949t5fIJVKsdk8eD0CB7ye4LhjUbypVmvkLFqUjVojp67WjlYrJ0Gh5ahFOfj8w+xpd5NiVGG3e2lucZKdnUSKUc2GDV1R/hyRSVyAZH0Sb/ztdv781Kv86v5/8MkXW7n+nItINeiZFRo3PtF0vFllAgfECqzSklTaWt309wfwB4Z5//02qquz6O0LTJhAim3TNRiU9Pb66enx0djUw1tv78TaIQQxURwIBTPi+PPJvEei2kCSv3mPpLgOrSaa+hc7+U/8WWQCC8DpDJCdrY2b4cd1SKRT6vjdjAe47osr6D+qF81aDQ0bG7jjmju48/E7kcll2GwePCEOePbCAU2IAxqNnNoQBxQKDYsW5eD3D9Pe7sYY4kBLi5PsnCSME3AgctJdrCQSCUvOOpWBoSRee/RRrlx2FXc/dRcF0wuiXmcyaSgLcUCswCopSaU1xIFABAf6+gITJpCibHtiONDU1MPbb++ko2OCeOArcMBgPDAfqUOteFLqMFJ5bjIvXnkkNTt7ePjjnbxa28Hb9Z3Mz09mSUk6Ocn7H5Tsj2ITWLEO//sr/9AwzbYBmjrdNFjddDh9AGQbEjm2OI2FRakcUZCCSaeKT837H5M5Rc3jF1Xwt1cb+fv6Np7e0E4KUsrVZhaecjOfvHYnb730NGkZWZx35U+wWPrZuLEbnU7B4sXmqARL5IV0cHCYdTVWtNoE7HYfOTlJ4Wl9NruHN9/0sXWrA5c7gN3mRadT0Kp08dyzjSxbVrDXY10mk3Hxtb8kyTidJ/50I0315zPnuJvQG47HlKaZdDpe5IoLCDd12iQlQ0M+vL4gfb0BLryoFIulf1xyTJTN7sGYkkjRVANqdQIKhUyY6qFTkg3kmrXU1trGJY/35UF1OPeQxxWjjDJhQp/lc1jzJ2h4DZrehJwFMP0EMBYd1LeLTWDFTvzabwUHwb4NurdCVz30tQKjoMuGKcdCQcjrJikDEpPjHlH/S9Jnw1lPseWtkzFt/B0Z9X8jZzSfHuWpXHf6Rfz5pad4/q3VZKcbufeGy8ZzIObGWrzejY6O0m3zRnBAF57SZLONccDtCmCzewHotA6wamUb8xdkRlVLxUoikXDD5WeQkZzJtXf9lcvvuJPzjz0Dg/5YTCbNpNPxYrfpdAZISlIyFPTh8wXp7Qtw0YUhDtg8EwYNYrB1wgkF1KyzIpNKqKu1o0tSQjaYcwUOxCaP9+U9EudAXJMpNoEV+d9xxXUwJRr2azQJzPdcxxrzH8n5UQE7H9jOulXreODWB/jFPb8IX88yMzXo9eMrxsXfFxenMDg4zEsvbWN4eIQZM1In5IDLFcAe4oDVOsDKlW0sWJA57t59Iokten19Bo4448ds/+Qlfvz9H/Or+3/FUSceFV0MYpo4HkhKUhIMcaCvL8CFB8CBdeusSKUSamvtJCUpyc6G3BAHjN8hDsSTUoeZpFIJC6emUVWYyub2Pp5e28rq7XY+a3GQpVdRkZ/CgoIUMnTjTdG/LglGygPssnvY1tXP7h4Pw6OjaJVyCtM0HD0tjcUlJqaakjBqFWiU8cPsf132+j60nznJPiKFXcoRPvYMoNKVs+B7P+aL9x/iqb/cTVZuHiXzltDc3IfbHcBi6Q8nWGx2Dy5ngMwMwTPnuWcb2drQg9GYSLpJTUG+Lvxci6Wf1t1unE4fWdlJKBKklM9Jo90yQId1gNo6exggtXV2amqsbNzYTXVVFtULs8PbCUimUXjkH7A2/B8b3ruFojwn8+b+ZNKkauzEPLGiSiaDdssAlVVZkyaPxNe6nH5sdi9JSQrU6gQ0ajnG1ESWLs0LewW1NDvRlKdFvT4WMrGT/iL96Ab8B7EtK65DI4kE8ioh92Xo2gKfPyoYSLd9JiR1co+E/GrQ5QjP/SY0OACOndDTDLYG4XEkKFTHGKdC+Q9g2vGQXgpaU9y3Ji5e22Tio1U38NOqjZykfYUlgYeQaefQf/JZ/O31l7jviVcoMmdx6jGLojkQurGOrJAqLk7h/fd309LixGhMxJSuJr9AF36uxdJPa6ubPqeP7KwkEhRSjlqUQ0fHAC5XgF6HL/y56mrHOFBVncXC6uzwdmSBZM498kJWNa7gyff/SXJmgDlzLoxqOY9U7KQksaJKJgNL+wBVlVmTBg3ia50uP12dXtSaBAx6JSlGFcXFKUydmhzmQHOLk3JNWtTrYzkQO+kvqmJyyPtf/z3jiiuuuA5UK1e2sXKlhYqKdJYuLce95od8WfhXCq6cSsvfmnjnxXfIKcjhuNNPBsDl8kddLyMrpMSpfM8914jV2k9iYgIFE3DA6fSRlZWEQiFlUQQHHBEcqI3gQHV1FtURHBBb9IxGFUceWcplV97PU/c+xG+u/g0/uO4HXPLzS6KYEMuB8ggOtLcPULkfHHC5/HR2etFoEtDrlRgn4EBLixPNPjgQO+kv7ikV1wFLKpUwLy+FeXkp2Nx+XtvcwYqtXazY2smbdVbStEqmZ2gpzdQxLT3pkFQgjY6O4vYH6egTTJItvR5abB7sA4JJnFohw5yi5uTZmRw5xcgcswGjVkmyWoEs3pYXV4TEkvAlS/LIL03h2n9sZLPEjabgZBaMOvjygxe551fX8ad//IfFi0vHeaFZLP10dnnIzNBgsfRTGiopjzT5F2U2J5FfoKPTKsNkUmM265gyJZmymWnhRA0IF2q73YtUCs6+AF+u7yLXrAtXW6mUcmbPncrxyx7jo9ce5oVH/kDr9s3c8Pu/sMcapLbOHk445Zq1tFsEH6xFi3LGVVSJSSeNegyikQqvCGVo0OkUtDR7CfiHsVo9UW2MKqVc8LKancaK93ax5tM9LDoqhxNPmBKVpIo0Tv+qFZBxHQaSSiGrHE5/FAZsUP8KNL4O21cIj2qj0A6XMQtMxcL/PxRJKr9bmODlaofe3dCzQzAoB0hIBEMelJwKBQsh5wihJU9tBFn8FiOuMYkcMC05BsXsm7E/dy1LJB9wVJ6JBMkxPPjax/zotw+R95iJxYunT8iBbdt6ycjUYNArmTs3HaVKHmXyL8psTiI/X4eic4wDaWlq8vJ1Ue2qjREc6OsLsP7LLsy5unDwo1TJqZiTy/JlP+WZt97lT0+/zObtO3j+j7+kxxakrtYeTjiZc7VY2gUfrEWLcsZVVMUm1SbjQEamhuLilLDf21QMUW2MSpWcqUUGZpensWLFLj5ds4ejFuVw4olTooIT0fcK/osKyLjiiiuug6jIeKC6Oge9XkHimmHWLniIUl8pDU818Pe7/86wVMMFV52MzeZBrx9jwUQVVJWVWfj9QcxmHWVlY+13Igc6YziQH+KAmCxqiuHAl192kRvBAZVKTmmpkexsLTabj6wsLb/522946ZGXePy+x/nkg80sveBSbI4RSkuNdHQM0NXlobIyk8WLNeNa8mKTapGK3D+RAy0tTsAQ1caoUskpKjJQHuLAmjV7WDQBB2pr7RN6ZR2Oit8xfgtk0qm4+uhCLl9YQHufl/e3drGmpYdtXf181iIYlasVMrIMieQmJ5KepMKoVWBQK1ArZCQmyEhUyJBLJYwiDD8aHR3FPzSCdyiINzCMZzAYmsw1SM9AAHt/gE6XH++gYIIpl0pIS1JSmKbhhJkZzMszUJqpw6BRYEhUoJDHWzHimlyxpeGv/mwh79R3csdbjXTPPhfNthYkrna0Ov24KZMwlvF3Of3hct0LL0qPqkwSZUrTcMophbz/fivNzX3hVQVxcp/F0h8uxe2wDlBYKLTKRbbEWSz9eLxDlJebqK214VcuZ+GppWxa9WcuP3Ux0474OdaeFOQyKUPBEVpbXSCRkKQVqptiFVlmXDEvY9zvNWo5MpmErCwNZbNSMaWpQThbwyspADa70IrY5wzwn1d24AyZkIqTC0XFemXF9R2Q1gSV18ARV4NzD2x/B1pWQncDtH4qPCchUaieSs6DpEzBOFydIvhRJahBoQZpAjAqgkDwehryCNO5AgPgdYC3BwbsgiG5u0PwhwKQyITPkVwA006A3AWQWS68R2LyPk3Z4/rfViwH0n70b9j+Hsp3b+DPZZvY3pDKF9YAqcm6CX3QxOuz0zXGgYsuTI9akRZlMk3CgdDkPouln8YQB6wdYxyIbImzWPrxesY4kCYt4Wdn5vDsypeZufwaTq/8PoPOJGRyKcEhgQMSJGiTElBr9sGBivEcUGvGOFBakhr2e1OqZFEcEFvSnX0BXnllR9iMWpxYJSrWKyuuuOKK65vWRK2i1dWXsbLNzA3cQObuPGxrbdiEQXLjWBCOByIqqIqKDCgUsgPigNEYEw9EcMAYwwFPBAc2beoWPJiNiUxdcCzzlgfZ9O4LPHfP70krOw2HIx+ZTEJfnx+3e2jc/u+LA5oIDpSUpKIJcUAVwwGPZ4iCAj3btvXxxhstDAwI7xXLgb15ZR1u2u+klNVqJStr747ucR1ayWVSClK1/PCYIq46qhCXb4hmWz/rW3tptPbT6vCwZY8Lp6+H4ZGvNlkrSSVHr0ogWZNAdVEq+UY1pVlj1Vi6xAS0CnncoDyuvUrsGRdXQmIlkUhYPiuLo6amcu1TG/jkjJvQSoP4tZkTbk9MOtVHtPDty0epqdFBh9WDXqeMau3btq0XmUyCVCYlO0vL1KnJOJ0BiotTws+LLH9tt/SjTpSTnDmfi37xNC8/djNfvnsTBvN55JUuIyFBRtFUQ6hEOMC2bX2UlKRGtfNFbs9m91C/pQcYDZune7xBhodH8XiDlKRpWLx4rG1RbxhbIWpu7qO11UXN2g6GgiMY9AoWHZUTfq74fhP5XsX1HZFUBil5oQTVD8HvFNro2tZC5xbo3Sk87voERsbfEO2XlEmgMgjJpryFkFIgeF2ZSoXkk0oHSn3cFyquvWpfHAAEn7T8RXQ/9wv+c9a/sA1pyU/un/CpYrDhrA+QkTkBBybwz2hscmDtGECnV0a1dIgckEmlZGXHcMA0ngOW9n4S1XLy0vJ56MZf8ZtHH+exFc8wz1zJ0bOqSUiQMbUomgPi5MsJOWDzsKVe4IBonu71CBwQJ1+KVVaR2wDCrY3vvbcbr3eIRLWMoxaFOBDx3Il8r+KKK664vk7tFweAJXlLuOWIW7hj+A4KFs/khPmVEz5PvD7X1wfI3E8ONDU56OjwoJ+EA1KplOz94EB7ez+JiXK83iD19XY6O70kphSQfcRF9DS8QdfG55k57SJkSUXY7T4GBoQFg71xoD7EgbIQBzwhDnhCHBDv52M5AEJibvVqCx7PEGq1jEUTcODbFA/sd1JqxowZPPzww5x//vmH8vPEtZ+SSiUkaxQsKDCyoEBoZfIPDTMQCOINBOl0+el0+enzBnB6gwwEhhgMCpUXIEEmlaBWyNAlJpCcmECKVkGGXoVWmYAqQRqurlLK41OR4jpwiT3jsHfDTF2igmd/XMXaFju3vraVP72/naOnpTEn0cG0kpkkKBTh54otfJHJIxAu7LEeSpHm4JHT7sSKpLw8XVRfdmyrW2S1VvXCLPyBIG53AIMxm5/+/jnefv7PfPHRcxiTrCz43s8om2ViZAR6erpx9PrCn1eEZMW8jPD2NmzsYt06KwOeIUDC4sWaSY0HY6vGFi8289yzjQSHR8nO0nLhhaXhz7yvJF1c30FJpULiSJ0CufOFnw35Bb+nwIDQYufaA75e8PYKFU9Bv/A8iQQkUsEDSmUQkk1qI+iyQKUHuUqovFJo4hVQcX0l7S8HUGrIuuJRaL+c/Leug0/uhYKj2Kw+hmlFU9Coxzw0LZZ+ujo9UUEDCNfOWA8li6U/bA4eOe1OrEiK5UBsq1vkCv3C6iwCfoEDRr2Bp++8mb/9+1Wee2cFo4kurjjpHGZFcED0rIriQEVGeHsbNggc8AwIHFiyNw7EVAosXmwOeU+1kZgop7zcFF4d31dwFldcccX1dWq/OQCcPf1sOgc6eUL6BG2qDZRwAru37yY1PZUkQ4ylxyQciPVQslj6w+bgkdPuNJNwILbVLfL6W10ttAm63QFAQnFxClOm6GkrMSI7dSbv//MZPnjuCUqrlyAxVBAIDIc/7944MDCwH/FADAfE1sJPPtmDyzXIvHnffg7sd1Lqrrvu4uqrr+a1117j73//Oykph9cYwbhAlSBDlSADrRKz8dtzEMb13VNkzzjAf/6znVdfbeb006dyxhnTxz2/uiiNFdcv4g/vbuPRJ5/m2Xf/wpFLT+V3f3447JUWe6GOTNi8+eZONm8WSmpLSlIxm5PC5uAgJILM5qRwRZJCIQu30UW2usUmt8T3EYMAsQ1wSuHdvF0yl1efvANbx48w3/og1VXThB710PYmAoto2K7Ti8m20XH7IqpmXQfraqxUVmWRbFCGP9eyZQXjPqP4Pi5nIGSWPvF0v7j+B5SgEv5pUiEl/5v+NHH9D+tAOUDufLjqU1h9F2/84wHOffkdTjiylP88di/SUFXeOA5E3KhHcqB0Ig6ExmSLFUkKhSzcPhHZ6jZRFZPJFMMBk4YpBZcxr2Q6tz/yOLc98QD/d8tPqKoujPKsmpADNg9OVwC9LoYDE7Qs1tR0ULPOSlVlFoZkZTjpVlGRgVojx5yri2rPM5uTcLoCOF3+Sac6xRVXXHF9XTpQDvxk7k+weqy8u/tdHPUOXvjVC0yfNZ37nrsPeYKQtthfDkwYD4Q44JmAA5GtbhNVMU3EAZvNg0IhY3BwmMXnX0b5ETN47cnnyC7soPySGyf8vCBwwOUKoNtPDqxbZ6WyMovkZGVU0u2884rD/1+U+D4ajTy8v98GFux3Uuqaa67hxBNP5PLLL6e0tJTHH3+ck08++VB+trjiiutbqnEeUq8289FHFjo6BqioyCAvTz/uNYkKOXd8fyaGvgX84t1R1r3/KrenmLnmymvp2DMQLnu1WITWDjHp0tTUg8XiRi6TYkwZP5UycsVgcHCYHTt6sXYIpuNiWauY3HnxpSbqau14PENhg/HY5I7N7mHVKgtD8tksv+wRPnrlt/z55vP5yW13c+4554WTaGKiyWb3hJNiYrXXjNJU9AblpCNZbXYPb7+1kw6rB4CsbG34c5WXm4Qx6WmaqMRVVWU2eoOwr3pDf3jfI/fBZvewY5eT1IzDH05xxRXXt1tfhQPIFbD0d6QNmBl9+Upe/6yB39x8A9f97HYse/zjORC60W4McUAml5Ji3D8OdFgF03GxzU2skNqwoYvNm7rx+Yex23zC9Tbmht5mEzigGjbx+yt/xl9ffo4Lb/k99//qSq79wcljHAgFGDabJxwciNVepTNSMegn5wDA6tUWGhsdBPxBpkwxUFsncEA0Pj/vvBIam3p44oktpBhVLKzOxqBXsm1bLwZ9DAci9sFu99Ld2oPO4MY8zbCvP2VcccUV11fSgXJAIpFw18K76PZ2s2bPGoZHhtlcs5mH73iY8667IqoNLpYD4XhALsW4Dw4IVVUO3nyzhaYmB8cfnx8VD2zY0MWmTd34/cPY9sEBtzuATqdkZAQqTzyRqmNmcce1d3D/z2/lzifupLCkcNwUWXG63owZqej3kwP+EAfqQhzwRHCgKcQBo1FFdXU2FRUZbNjQxbZtvbhcgbBZfCwHGtt6mCl3kzL1my82OiCj84KCAj766CMeeughTj/9dEpKSpDLozexadOmg/oB44orrm+/Tj99Kh0dA6SmJtLQ4CAvT09bm4uGBgczZhijoPTzS89mxGnlxp//jM9f+itdo0YK9HNQfjzKlCl6PF6hz1pMtNTW2RkYGMJs1lG9MBsYDx7xcdUqC3v29CMBUoyJ4xJPYpWTSimLaoWr32Jn0yYbc+eacLuH2LihC3OenqVL5jJ77gt89Or9/Pm2n7P+s9Vcf/t96AzJwFgCSyj1jf4se6tkim0/TDYox32ulhYnTz1Zj9cXxB8IolDIoqb7WSz9bNzYTXNzH+Wz09i2rY/Gph4UmgTmLRhvrhhXXHHFdSg1EQeACVlQddrlPP6YhIsuu5zfv7GNqYrrkZvO5ONPMpgyRR/2XRJvsOtqxziwsHr/OIAEjCmJ4QRPpIfInLnptO524XYHsFj6MZk0bKmP5sCGjV3kmfUsWTqNivJbeebdN/jJXY/y/mcbefKun5KeGuKAbS8c2Mfqtdmsw9o5gNk8VhEVaXze0uLkhRebGBgYxGhMJOAfZnZ52oQcmF0ucKDX4cOUAnhdqIx9mKeZ/8u/bFxxxRXX/ml/OfDQcQ9xvu98Rq8epfkvzbz+zOsERnUkGGcxMjIixAMxHKiN4ED1PjggLBZ42bnTic3mQS6XRiWezOYk5s5NZ3cMB+pjObChi7w8PeXlaeEkkck0j7+//Xduu+o2rv3+tdz4xxuZeeQRUckocbre/nKgM8QBsSJKFcOBF19oYsAzREqKCr9/mMWLzVGm8OF4IMQBh8OHwSinb9DFNlUfs6bmH6w/8VfW/7N333FVlv8fx1+HDYcN58gQcKGMVBxpQKYmltowLVvOn31tT7OyrQ2tbGhDbapZaaZmZqapaSqSuXAgbgVlyFAOe5/fH3CO58A5CIrMz/Px4EGH+z73OOH95r7u6/pcdZ59LyEhgZUrV+Lm5sbw4cOrNUoJIURVd9/dhd69vfSBAxAXl0lMTDJAtSclzz/7DBvWxfDXX8tI/PU9SsZ8iLJEhfOFAnqEtTF6ohAQ4ExyUi7hET4mC5UbFjkPCHAmLEwNgIe7Hdu2JVFeVk5IqAdZWUWEdVfxwP3B+qLhSgcrdu9JJTu7GBQACjIvFJBfUApUFCbv2ElF+KxPua53JN98+Br/Gz6Aqe99Rs/wm0hMzCE7uxhnZ1v9sdRmWJ1hd2Pd+rri6dHbk4mNTSMxMZv8glIc7K3w93c2ObufriBu7P50DhxI58KFAjp0dsfHx7Hu/xOFEOIqmMoBMJ8FY/9vIqvWxLBy5Tc8uiqDrRMW40kvEjOHEGYiB5KSc4kI9zFZoNawuK1hDrh72HHkyAUSz+Zw7mw2AFGDA4gaFKB/ou1QOQQiO7u4IgZQcCGzgIL8ihzIzyulYwc35r/1BP16deXpd+cSetujfDvjWYYPCq+eAyaGZ5hT8fTeQ/8+XeHz7dGXciDrYiGOjjYE+DuTnV1Efl6p0axOuhzYH1uRAxpNEX17utIrxAXnILc6/T8UQoirUdsccLRx5Otbvub+kvspGFnI2RWJrP/xR/qOcKAQNS4utoSFqavfDyTnEl6LHICKGlOFhaVYW1uQnV1EdHQyZytzYPDgAAYZ5IDSIAcqKMjMLKBAdz9g8HAjLS2Pc+fhjS/f4/uP5vP2k2/Tf/jtdOh9C75tnWvdGKVTNQd0hc+jDXLgYlZlDgQ46xvRdPWr0tLySEsrqLgfMMiBsF4etL/OhaAuTSMH6tSi9PXXX/P8888TFRVFXFwcKlXTn15QCNE0BAS4GN1w6MLIMJR0FAoFn332GSNGnOTw4T1oVs/A4sFZnHTQYn00E6WDlb6xxsbGkjZeSmxsLhXlrzp0TpNVSEpqPkFB7jz9VC+gohfTqVOHSUrOJTOzgPLyivcGB3uiVinJzChg7drTWFgq6NZVxcCBFU8dfHyUFdOzVulN5dupP7dP/IZ/137AS/+7lwG3jWX80y/Tq1eby/aMqspU45Wu3tXZxGzOJGTj5eVAr55tCI/woVMnV32X5j/XnWLb1nP0u6mtfuy70sEKO1srMi8U0LNPGzzc7Wt9LEIIUV+q5gDUnAWzZr1PQsIx9uzZyl3Ly9kzcQ99nNPZcvweHJSd9H/U29hY4tWmSg5UGTqXpSkkNaUyB56uzIHKG47Y2DRiY9NAASqVAyHBnqjVSjIyK3LA0kJB127Vc8Cw15JaraSLb2feeug5Fq1bwV1PvM3dUf2ZNeWhSzlQx7oeVRuwdMXcE89mk3CmIgfCerQhIrxKDvx5iq3bznFTv0s54KC0wtbOiguZBfS9wY0gPwvwc67T8QghxNWqbQ60UbZhftR8xhSNofBcEek7z3Nww4/c8diL+Po6cvz4RZRKK6McaHOZHND1VAKIiPAlIsK3Wg4oKnMguDIHMitzwMJCQTcTOWBXJQd0vbPOnrWmfd8R3KNuy8pvvif59Ble+vgVOnau22iFqjmgK+Z+9mw2ZypzoEePNoSbyIFt287RzyAHlEor7OysyMwsoG+4Cg9/LW2bSA7UulFqyJAh/Pfff3z++eeMGzfuWh6TEKIVMBVKhjp3VvP3339w/fXXc/bsWe4o289/JZFEl5aQvTdFP+7b3EwVcKnbrrfXpW6yOmqVUl803NXVVt9TSid2fzpJybn4+jjStZunvpFIrVLqey0ZTs9a8b0LFtbvsmP9T2xbt4QzR/9j6vtzUauMA8hUQfXLid2fzv7YdGxsLXBxsaXrdWpGjAg0Oh+AbVvPcfJkFgBDh3QgM6PAYF+B5BaWUlBSVqt9CiHEtVZTFnTo4M7Gjb9xww03cPToUT7VjOA1x53cWjaXvbG3Q/C9QO1ywMvbRA5U/rHvoLQiP78EwKhw+P7YdJKTcvHxdaRbV0/9jYFhr6XqORCAjcVo3G3/Yc0/fxN77BiL35+CWm2cA1VnC6yN/bHpxO5Px9amIgeu66pmpGEOVB7f1m0GOTC0AxmZBQb7CoSSfMi/WKt9CiHEtWYuB7q4d+GTgZ/weOHjlGYUc/HkRfKSdpHlNqTaTHm1uh+oIQeUBjlgWDg8NjadpKRcfH0d6VolB4LN5gDExqZx4kQW3bv34aOfujPtsWm89n+Tefurt+kU2gmg2myBtREbm87+/enYVOZA165V7gcqj29blRxQq5XEx2dQWFhKZKQPHTs7k1GQUat9NoRaN0qVlZVx4MAB2rateTpHIYSoL23atOG3335j6dLfuOmmsfS7mM/Xcec4UFbEKwv20stFSb9+bY2GrBm6XA0nw6KGuoYiAA9Pe+xsrQgJ8SAyomIKWV2xcl0PrOjtyWReKDDqtQVgaWmBo9ct3NW/P3s3fciT9w1h3JMvcO//PY5l5XDn2P3p7NqVSnJSLh6e9pftRZWWnoedrRWdAl0JCfHAxsZSf26GjWNqlZJ+N1Vco3XfdY1ZuvMVQojmxNXVldWrV/PFF99yQ9T/2JybxHVHpxLJSk58f5RDyhFE9GtvNGTNUG1qOOkKnesaigA8PeyxtavIgYjIyhwwmMlIN4zuQmYBDgZP6wEsLRV0UoUw9PEwlmz5lRtHv8DLD4/i9ccfxNbGGqhoYNq1K5Wk5Fw8Pexr1YtKN0wxNMQDlcrhUg4Y3BSp1Upu6ldx/dd91zVm6c5VCCGaixvb3sjUG6cyPWc6HXZ14L4nJrJzZxqdOrni6mpbrcC3KbXJAd09ga6hCMDDwx67yhyINJMD0dHJZGYWGPXaArCwgLzcYiwtISw8jC//+JI3Hn6DJ0c8yfPvP8/gEYOJrcyB5ORcPOqQA8nJuYRcJgf6VV7/dd/hUoMWQMfOTaOHlE6tG6U2bNhwLY9DCCFM6tGjBykpLvrpUP97+1aGv/k3cdpC/srU4HTMgVvMNOpcroaTYYOOYeNNYKAbefkVM90FB3uye0+q0VC9xMQc/tuVgkZThFJpTXCwp/4pzInjWeTmlZCZ7c7Elxbx74avWfjpe2zbsIYpb8+mQ5cQwrqrOHUqi4sXCzl4IIOu3eDggcqpZ7upjGbLS0zMQZNVqD+eqg1whkUc1SolQ4d0YOiQDvqhiwEBFaFj2AtMCCGak86dO3PrrY9U5oA//q9Hs+XtJ4i0XIZbzqekHv0fanUfk++9XA0nwz/kDRtvAgPdyK+c8TQk2FM/k5Fum4mJOez671IOhBjkwPETWeTllpB7QcnsyVP49Z8NvP/Ncn7dGMN37z5L3+5BdA+ryIGsi4UcOJhBt65woHIK8m6VU5BXPT7dMEWVysHo5ssoB9RKhg7twNChHfRDVnQ5YNgLTAghmosHgx/kZNZJlnksY8uZGMrz/AkLU3P8+EX27TuPs7Mtfn7OZq/1dckBw4abwEA3/czXwWZy4L//zNwPnKi4Hzh7Npe0tDzOpmh5fd5MFn/yJTOemcHhvYcZeM+9l+4HDmbQtSscrMyBrgY5YHiMBQUltLmCHPD3d9L3AAtrglkgVcqFEE2ebox5u3a2/O9/ExkQeicF+yxI9rdh5ek0bDxtGdBFXeftGl7AdY02AQHOaLKK8PZyqNYV1/B7n+u9ybxQoH+fbpmHhx17956nrEzLxo1JhEc8xJDhI/jo9ed4/N5beGDS0zz48LPc0NebvXvTAC2JiTns3XcetJCdXUJhUSlh3VXk5ZeaHX6oY667su7cgoLceeD+4Dp/NkII0ZTocqBjRyWPPvEEvr43sv5YO14M/IaQpDlw+D4IvgMUijpt1zAHdI02AQHOZGmK8PKuOQeu7+PNhcwC/ftM5cCGDYkMDh/A6OH9mfjKJ0Q8MIXJE0Yw/anR9L3BOAf27T2PloocKCospXuYivy8UpOzRxmqVQ48IDkghGi+Xr3hVc5kn2H3+b/oH3APW1ZswN2nIz4+Hvj7O5v8G7m2jO4HDHJAoynC+zI50KePN5mZBfr3Vc0BpdKa1atPUlZWTq9eXkz9eCqhPUP5fPrnxO+LJ2rMQ5w+a4n+fmDveaDyfqCwVD+0r6YhiKaOzdS59e7tpR81UVxWTFOi0Gq12sY+iKYkOzsbFxcXNBoNzs5Nq1ubEK3ds88+y5w5c1CrfRkz5kv63hTImoyLbD2eQa8ANyZGtEOTVWg0nA1gR0wSMTuS9UXBdb2SfHwcycsvNRqWp5u6u1cvL7PDAi/n11+Ps379KWxtrRgwwB8/fye8vWzY+Os3LPn6U/zadeT/Js/AxrGjPjwOHsggO7uIw/GZZGYWcv31XvrChKaGH1YdtleV4XLDulJ+7V0pKCljeA8fHGzq9lyitVwfW8t5CtEcTZs2jenTp+Pq6sm4cV8xbFAHbs2fBUd+B+8wiHiStCyF0TAGnR07ktgRk0xoiAfWNhU3AT4+juRXmTnJKAfMDAe5nJVVcsDfzwkfHwd+WLueNz79AT9vFbOef5i27pem7j5wsCIH4g+byYEqT/qrDteoynC5UV2pTg4VNaW63gP2rnU6r9ZyfWwt5ylEc5JXnMd9f9xH3K9xnFl8BjsHB+547AX6RAZVu1abuz7u2JFETEyyfvibUmlFcnIehr2T6isHfv31OJs2ncHBwYbOnd1o395Zv49jB48x/bHpaC5qGPXEowy9ZyBQ0VMqO7uIwwY58MADwTVe72u7LDOzQF/DSldTakj7IbjbudfpvK7F9dGiXrYihBANYOLE5/D29ictLYnNm9+jd1dPFk3swwu3duHAuSymrznM3qOZFVN8V075ChCzI5nY2PMs+Sme6O1J7NiRzJ9/niZ6R7JRo07VqbsNxcdnsGRpPPHxNRcFjI/PIHpHEkXF5ajbOJCbV8yKFcf4778M+gyayO3/N4/SckumPXEP29d8jJ11EZkZBaSlV8wG4uBgg6+PI2HdK4bx+fs7kZiYQ1p6ntF+dE8+DM/TkFqlpHcvL9QqpX5oom5YihBCNFf33/8I7dsHkZWVwV9/vU2HYB+4bzEMeR/Sj8CfL5F59KDJ6+O6daf5778U1q07rc+BHdHJ1aYLN5cDh+MzWLIknsOXyYHD8RnsiE6iuKiMNmoH8nIrcuDfnancHjmQdydNxsleyYinpzFn2WLKFUVkZBaQnnYpB3x8HekeVnHzos+BtDrmgFqpnxZclwG6YepCCNHcKG2UzI+aT5tBXjgFOlOYn8+2X75DrbKutq6566NhDhw5coENGxLZsCGB7OziWuVAfGUO1Op+IDqJvLxSXFxssLW1ZOPGRKKjk4iPz2DPoTImfzKDnpE9WfjeR6z8ejFp53NIM8gBX1/HWg21qykLDHNANzQxtgnmgAzfE0I0G+fOlXH77dP5/vvH2LdvO99++xHvvvsuTwzsRJ927jy1dB+rzqQT3sbFKETCI3w4c0ZDUVEZh+MzcXG1QaMpJDUlr7LX1KWeU/qpu6v0PqpaMLxq7yvD2lRFRWV4eNgTEuzB2XM5ZGcXkXmhkNj96ZxLdSHqgU9Rav9lwafvs+2vNXS7cSL59Cawszv9+vlWaygzrBmlozs/pYOVURF2qN6LSjfEUOpKCSGau1OnChg6dBqLFj3MkSP7mD17Gl988QXc8Cj49YVfJhCU9BmO6mHY+g03eq/S0RpLSwssLcHVpSIHUlLzKms5mciBKk+cqxYM1/W8iqgyFff+WF0OOBAc4sG5sxU5cCGzkP2x6aQlKXj+3ocptDnHSx8uYPXfOxlx4y2obDrTxTAH1CZyQF09BxyUVkbFd6H6k3PdEEOpKyWEaM7aOrVljMvLfPHYy5yafpLUxLMs+nAur336GgqD4dvmhrM56nNAgbe3AxcuFJCTU8TZs7ls2pTA5XLAsOZUcGUO6OreGt0PxBrcD4R4cLYyBzIzCw22oWL6l9NZ/u1yvpzxJVvW7cK7x12EdguodQ7ozlGjKUKjKSQtLc9sDkhNKSGEqAcVNUVu4rrrPuOZZyYxY8YM+vTpw/Dhw7m+vTtrn76RZ5bGsu14BkdTc7ivhw/dr2tDRLgvbq62rPz1OAX5pYQEexIa4gloAS1796UZ1XNKT88nK6uIgABn/Ux3VRt2YnYkcyiu4imJjY1ltdpUdraW5OWX4tfWGZXKwahBKKy7iuDg/3HTLXfy9cdvsXH1h6h8Qxh00zR69+qmXy8tPa9afSsdXRH3qkXYoXpDluEsg7mFpfX4f0QIIRpWRQ5cT+/eXzNx4n3MnTuXvn37Mm7cOPDtAY9tR/Hr4/gdWU3S3/Ecue5hgrr6A3DHHR0pLSmnoKCUtn7OhIReyoF9e9OM6jmZyoGqDTs7YpKJO1Q9B3TLbe0syc+r2JdK5WDUINQ9TEVIcCgjoiJ4dfYivvz5N/zV3rxzw0R69zbIgbS8avWtdHTFe6sW34XqNzC6GQYBKMmvn/8ZQgjRCO7o0Z+Msqf5/vH3Sfgggb9/+5vgsGDueege/TpqtZLMzAI2bUrU12WCihywtLSguLiMtLQCevf2QqVywM7Oslo9J5P3A1UadmJikjlkIgd0y+3sLMnLK8WvMgcMG4TCwlQoFApG/W8UIT1CeG3SmxzZ8BWRvZ+ulgNV61sZUquVuLhUXPNdXHLM5oDh/UBTqykljVJCiGYjIMCFgAAXoAMnTx7k008/Zdy4cezatYvOnTvjrrRl0f9dzz1v/M3e4kK+2XuOl3ydaOvmQHCwJzck57J3bxrOztYMGhQAUDksTgFoOX0mmxPHs7CwgPJySE7KpY1XxYW9d69LxQGhoveV7rvRVLOVjUC63kpKByvy8kvx8LTXL9NxV6l5aebnDL17NJ+98zIfvnQf+7bfzYSnXqKNjx+JiTmkpOYRFORudhZBU0+CzD0dEkKI5s4wBxISDjN9+nQeeeQRunbtSo8ePcDWCe5fzJ/TXuDmsu9wPfQOeL8Inp0ICfYk+YZLORCly4G0Szlw5nQ2x09cyoGk5Fy82lTmQG+vSw07QES4j/571SnHQ4I99U+pHZRW5OeV4lk55bfhNtxdnZg37Ukm3n0Lj0//grGvvMNv/9zIjOfGE9jOl8TEHFJTKnPAzOxRkgNCiNYkIMCFaQGPoPTP5uOEj0n9KZX5786n83Wd6db3UmNO1V5Nuu8eHvb6mlE2Npb6mk3OzraAltOnszlhkAPJybm0McgBo/uByhwIN5EDwQY5oFRakZdXikdlDhhuAyC0VygLN37LzOdm8sVrM0g9dZSHpz6MjZ1Nxf1AC88BKXRehRQ2FKJ5KCkp4eabb+b48eOsWrWKG264Qb8sOvoci9efYKeiiLzSMu6/3p8gNwd9gfOu3VQmG3l0Q/L8/B0pK8PoyYi5RiFT4uMz9IXFdTPoBQW56wunGzZY7d5znsTEbG66yQdN8j98//kscnOyuWv0RAaPnMSp0yU1HnNd5RaWSqHzy2gt5ylEc1deXs4dd9xBTEwMy5cv5+abb9Yvi44+x6ENGxhvNwu74vPQ/QHS3Ppz4FAmoKVblem2dXRD8vz9TORADVOKm3I4PoP9sen6HlNBQe76grlVG6zS0/M5GJdOLmdZ+MfvpKRf4JF7h/LYfXdRkGOhX+9KjqOaknwpdH4ZreU8hWjOtFotj254lF+m/UL+/nxe//R1Im+J1C+Pj8/QF/bWNQJVbSQydU3VDcnzq4cc0B2DrseUqRzQHUt6ej5xcemgieOvpUvxa+/Ha5+9htJNfdljrqvisuImVehcekoJIZqVhAQNcXGZhIZ68Msvv1BeXo6Pj4/ROpGRbQFw++s0B9zK+f7fBDo52+OdoyU0xNNk4058fAYxO5KxsFTQoYNbtZn3zM12tyMmic2bE/H3d+bWW9sZFRZPT8/HwcEaW1tLNFmFpKXnoVYp9d1pLS0V7Pw3mYtZRdjZWvH88+MYdNvdLF80n2XffcGfK37ihqjRqNoNwcXVrl4apYQQorkzzIEffviBrKws2rdvb7RORQ4M5pMNvjysmofHvsXYKPeSkX07nYK8Tf5Bfzg+gx0xyVhaVOZAHWZzMsqBymX7Y9PZsSMZW1tLundXkWVQ78MwB8rKtMQdziA1JY/Q6wI4tu5rPvthNe/O/5lFqzbx9Ng7GRgWQWpSCVC9nogQQrQ2uhx4rst0Ep5KIC05jeCbgo3W0TVExRrUhNVdew0bhwzFx2cQE5OMRT3lQGyVHNDUkAOHD2eQkpLHddd1Zf7vA3j7ybd59PZHefTVR7lr/F3s2XPebF2p5k5m3xNCNCtxcZnExCQTF5eJl5eXUYNUTs6lWSc2bkxg+9/n6J1jwbNRgZzOKeSAdSn27jYmtxu7P52k5FzKy7Qmu7mam9li8+ZEDuxPJzo6Sb8srLtKXzvkxPEs0s7nk5Kar1/u7+9EUJA7Yd1V9L3Bh5AQD/1wQHulkrGPP89rn63Fv8vNbPn9W1bOe5B///oKzcVMoKKBbPee1Goz8gkhRGtgmANubm5GDVJVc2Dtpkw+T38ebnkXl4LjjLD9mvZuF0xud39sOslJuZSV1z0H9h8wzgGoqBvl6GRNUVEZ59PySU2pngPdw1QEBblzU7+2hF7nSUS4D3a2Nrzw0D3sXPIZwyJu5OMFq7jz2RdYt3cDtg4VdQHT0vLYvTu12ox8QgjRGuhy4NTRfL66/StsvW355sA3FJcWk597qW5e1RnndNdec0PaYmPTSUrKpfwKcuCAiRwIC1PhVJkDaWn5pJjIgbDKHOjXry3XXedJeLgPHYI6MH/NfAYOv4VP3/iUh+98jvKSPKNjb0k5ID2lhBDNSkWR20vfdZYtW8ajjz7K77//TmRkJFFRFbVCrrvOE/tiK/4X6MWiY6l8Hn2acdpywjsYj+U2LGRu2CNJNxQvIMDZZIj5+ztzNjGbDu0vzfinKyS4IyaJmOJkQkI9UKkuFSfUFSnXrWvKqQQt9l4PcM+TYyjL2sjvSxeyfsUCbrnrfjp2u4MLOa76bQkhRGtiLgf++OMPxo8fz+LFixk6dKhRDqzNGoZ9uzb0OPUybrtmQPl4CBxs9H7DQuaGT6F1w/BqyoHEs9m072A882tIsCd33N6RHTHJhIZUyYHKIuWGhg7tYPQ6Jwt6B0QSNCqMc7nxLN/0N8s3/s3Y4TczMCyc8gJH/baEEKI1McwBfycXPuz/IY9vepyPln3E7o9288SbT3DznTfrC4sHBDize3cqxcVlJCRko1Rambx2GhYyN1yuG4ZX4/3A2Ww6VMmB4GBPbr+9IzExyYTUMQds7WyJun80mfmeHNj0C29NmswL709G3bs/UPOMfM2NNEoJIZqVS0Vujf32229cvHiR++67j3379hEZ2ZbIyLasXXuq4knKqSzcUnIo7+vGt9vPcDQ1hzF9Azh+7IK+0cnO1oroHcmAQZffyqF4AA/cH1xtv7fe2g4fb0cqZnAyVpBfSlZWIXv3pjFwoF9lTav0WtWHMmwkCw6O5L6HnuSz92ez7tdfKF6ygE6hfXG3n0Bpt9uxsrYGLjWgubracvz4RQAGRwWYbfgSQojmyFwOrF27lszMTMaMGVOZA/5VcsCerOSXmN1/CYG7v4W0w9D3MQ4fz9Y3OtnaWbEjuiIHdAXJ98emE1tZLPeBB0znQHCwBw5KK/0TcN0NQn6BcQ4cOFiRA+ZqWhny93eiR882VNTA6sNHr47jpfd+4ue1f/PNL+vp0aUzjz1wG127eWBrU5EDugY0wxyIGhxgVFxdCCGau6o5EOkbyTM9nmHq8qlcSL/ArBdn0SmkE8HB/gQHe+pnKT1/Po/09AKg+oPh+PgMoqOT8fCw4+LFIpYsidfXozIsml5TDihN5EBBlRw4WJkDXWuZA0PuHsCNUWFE//Yz0x6bxnU39MG76xB69A4w2UCma0Azuh8Y3LTvB1pUo1S7du1ISEgw+tnMmTOZOnVqIx2REKKhfPnll+zdu5cjR44wevRo/vzzTywtLfVPUsLCVBw6lEFwiDt/nc/i75OZnM7IJyBXy7EDF0hOyiUjswCNpgil0lp/4TZsHDJFrVLi4qp7UpGBi6th3SktFy8WUppeQMyOZPLzS8kvqKgJMmhQzSFkOG0rgIubB/aqO1F1vR5n68Pknv+bT15/jAWfvEb/IcO5+fa7iT1sz4H9GVhYQOr5PBSASuVgNBughY2CrNwSeng4EtSpboUNmwPJASFar48//pidO3eyZ88e7r33XrZu3YqNjU2VHHDjQMgXlGd9T+dzX6G4eJpTOSOJ3V8x015mxqUc0DXkGPagMkX3tFt305OlKcLVJafyRqEiB9JLC9gRU5EDBfkVORB1mRxQq5XV1gn06MHw63wotj3PsbRDPDztE1765GtG3dqP0XcM4OxxCw4cyMTCAs6n5oGiIgcMZwN0tCuhNPsCzq7Z+Hd2vYpPvGmSHBCidZrYdSJxz8Tx5fEvyTuSx7THpjF39Vzs7O30DTcdOriQkJCt7zllWBsqNjadffvO4+xsi6envVHjlWEPKlOq5oBGU4RLlRwoLS0gpjIH8vNrdz+gVisr1wngzhHd2Pz7Zt6b8hGH9xwk9fRdjHv8zmrv0TWgWVhAamoeCoXB/UBlDtg6aEnNyeA6q2zcAxv/fqBFNUoBvPXWW0yaNEn/2smp6U+BKIS4eo6Ojixfvpw+ffqwYcMG3nnnHd58802jJyl3392FtWtP4X2+jIeD2/LzmfPs1pbSpasbnT2UHD9+EW9vJWHdVUaFzU31kDKkCzpNViF79pzn+PGLDBrkT9duKrKzS8i8UEBIiAeHD2eSkqyberyCqQLqhrPz5eWX6pfp6k6p23REobgTF4d0Uk5u4e8/fuW3n77DXe1LG//r6RJ2I56e7bGyttM3pum6+JZbQFGZlnj1hRbZKAWSA0K0Vra2tvzyyy/07NmTnTt38uKLLzJ79myTOfDDgdu4LaQ7NyS9wTCLb3DvPgyNax99DnQPUxkVtDX1ZLwqXRYkns1m397z9OjZhm5dK3LgQualHEhOqZIDJgrnVp2dT7csonL68Tbq9tymCMfGqYD9pw7x4++b+WrZn7TxcCM0oAuRYd0I9lBja22rb0zT5YCtZTG2ZdnYeVzEv7N/ff4vaDIkB4Rond4b8B5Hpx7lr2f+4vTR08x+dTYvffSS0VC5iAhffeMRXOrRFBamIj29oh5VYKAbWVlFRo1XdcmBs2ez2bv3PD17tqFrZQ5kGuRASh1ywHDWvZvvvJlSKy8WzJrHwY1L+CIlnjHPTWLQLSH6bekazgx7SoVVyQEsyyiw0HDE7iLdAttd6cddb1pco5STkxNeXtUr6QshWr7Q0FDmz5/PuHHjmD59emVtqagq61wagz7mjkAe/3EvB85p0JZa4e5mR0iwR0U33z0GYWVmtr7oHcl4uNsReaMvvXt5kZaeR1p6AdnZRSQm5tC7lxcjRgTq39Opk6s+cHSMxoNX7qfqbBy6ZRHhvkSE+xo0ZAWgHtGfh557jQO7Yvjr91Xs2f438btXYWNrR+fQ7mwr6kl6Yk9c1R0IDHTB2t6arNwSgoNbZoMUSA4I0Zq1b9+eRYsWMXz4cObMmUO/fv24++67jdbR5YB3aFdwH4DF8v8jImEV6WXJXHQfTOcgFSEGwz3AdL2Ow/EZ7IhOxt3DjhsjffU3PVmawsoB3VrUaiUj65ID6hpyQK0kIsKXiAhfoxuYe4f34u1nxrJjXzzf/7qZ9dv38Pfef7G2tqJXSCdO5wVxw+ku+Km96djJGTdHLaXZCpyD3OrrY29yJAeEaJ2sLa1ZcM8Cok5GceCdA6xfvp6ufbpy2/23Ga2nuwZXrf+Ul1fKkSMXUKkcGDq0w2VzwHDIX6RBDmg0hZVrVORAne4HLpMDtwwLYfDQT1n903q+eW8eHz0zhYtTJjJi/AgsrSzx8LAnMNANf3+narUKdfus6CmlJahL08gBhVarrV4IpZlq164dhYWFlJSU4O/vz4MPPshzzz2HlZX5treioiKKior0r7Ozs/Hz80Oj0eDs7NwQhy2EuEKG04Ibjit/+OGH+frrr1GpVOzfvx9vb2+z7/P2ceTtP+JZ/G8CdiVahgeqGXxTAGnpeURvTybzQgGRET76oXR/rjvFtq3nsLO34vz5PJydbbn77s707lXxx6+pnk81qUtPqcttZ+nSoyScySK0Sxmudqc5vH838fv3kJaSBICllRVtfP0JHzyc77/4AAebuj2XyM7OxsXFpUlfHyUHhGhdzOXAiy++yKxZs3B2dmbv3r107NjR/HuDXAg4+Snl0Z+SWeJGYsAj9OrfjbS0PLZHJ3Mhs4CISB/9cL60tDzWrz9DdHQyhUUleHs5VuRA5dTh5qYMN6cuPaUut52lS4+SkKihQxcbtPYX2LHvMDsPHOXU2VQALC0taO+rZviN3fjwm5/B3rVWn7OO5IAQoqkxlQOxabEMe3IYKb+kYGNrw7zf59EhqEO191a9/u7YkURMTDLh4T76BwDR0clkZhYQGXnpfsAwB4qKSvHyUl6zHDDsKVV1WzlZOXz74besXryajiEdGT/lUfbGKUhI0HDjjb6MGNHZ5P6Ky4rJKMhgSPshuNvV7UH1tciBFtVT6umnn6Znz564u7uzY8cOXn75ZVJSUvj444/NvmfmzJlMnz69AY9SCFFfdNPBAvoQio4+h1p9P4GBO7jzziF4elYv6rd5cyLr1p1hyJB2TJjQlbfvuo7EPWlsLc1jxZl07DxssS+EzAsFnDieZVRjatvWc5w8mYWXtyM9erTB1tYSTVYhael5qFVKMjMKOH78IsXFZbVqnDKcic/Uz3QNVLqfm5KWnsemTYmcPHGR7Jxiyi19GTluMCN5GIDM9PMknDxG0pmTnD55AjfPNnX5mJsVyQEhWhdzOWBndxvdum0hPLwnvr6+1d6XkKBh4cJDZGQUAB0IGDadpdHODNV+TLfkD8k6+BCJRV24kFnA8RNZRjWmEhNz+HdnMhezCnFztSUkxIMsTSFpaXmo1UoyMk3kQA03JaZmYDL8me7GRPdzU9LSKnLgxMmL5GQXE6zw4H9jInlyzB0VyzOziDuewLEzSRw/nUBbN4c6fMrNi+SAEK2LqRzIO+5J1PVP8uvRmfiqfPH28672Pt11Mzu7okFarVaSkJBNenoBCQnZ+h5NmZkFnDhhfD+QmJjDzp3JZGUV4upqS58+XiiVVvqhfpn1nAO6461aB8vJ1Yln33mWoaOG8sGLH/L6/03BPSAMpV8kmZnGM9Q2ZU2+UWrq1Km8//77Na4THx9PUFAQkydP1v+sW7du2NjY8MgjjzBz5kxsbW1Nvvfll182ep/uyYgQoukzNS34xo0J/PPPee6991PeeedmM+9UoFBUfF+x4igrVx4nJMQddwtL9tiWsmjPOfwUVnR1c6B7mMqoyHm/m9rqv/fq1abyJiALF1c71ColsfvT2bUrlYMH0gloV/H0wNzwv9j96ZWz65mfDcPU8D5T62RnF9OxkysODtZEVtae0vFQtaEMRxJSvLD26oF/V7XZ/TVFkgNCCHPM5cDmzcncccd7ZnMgLi6TjIxCPD3tSUzUMHr0GkJCwlnIZzzk/DGuh+bhVN4bD/fbUXZXGRU59/d34oa+PiQmZtOzZxuysoo4eSILVxc71Gol+2MrcuDAwXTaBVTmgJnhf/tj0+kepqpxdrzaTPuty4FOHStyICLSOAfUHq5QZs3FFAfsVCpu7NW8GqUkB4QQ5pjLgdMb29N/3IMkeOzgYPZB+ij7GL1Pd910drYlPT2fjz7ahZ+fI927qwgLU+mvvR4e9iiV1kZFzv39nehrkAMqlQPJybmkpFTUpDp+/GLF/cDBipldwfT1Oy0tr3I2Pu1lZ+OrKQu6dO/CI29NZ9k3v3Lgnz/IToknu+MICgs6Y2dvZ7S/6Ohk0i/kEHK9HbSvzSd87TX5Rqnnn3+eCRMm1LhOhw7Vu+IB9O3bl9LSUs6cOUOXLl1MrmNra2s2oIQQTZupacGjogKMvgOUlJQQHx9Pt27dABg40A+12oGCghKmTdvB+fMVAfLjj7eTX1zK5B/3se5oGhbWJTwzNBBnext9j6VevdowdEjFNWf3nlR9mOnGaId1V5GclEtxSZnRz6uK3Z/O/th08vJKahyiZ2rMe03rZGYUELs/nYOH0jmbmEt4hA8R4b4kJubw364UsvKKsbVv8pd+I5IDQghzapsDZWVlHDx4kLCwMODSzUv1HBgJpbeTveIFOscvooNNOta3vghKD6PhFWPHhgKwe3cqiYk5Rtf77mEqkpJzKSmuOQf2x6YTu78iB2oaolfXHMjILGB/bDqHDqaTeDaXiMphKImJOez6L4Wi3Bw8lE50HF7zZ9uUSA4IIcypKQdu7vsKX+e8zrJjy2jj0IaixCI6d60Y0qa7bhYXl7Hkp3guZlX0mHr++euBigYc3XpVe65WzYEjRy7g7a0kKMgdf38nlEorkpNzKb5MDiQm5rB373kKC8tISytg0CB/sw1Tl8uCdu1duP+Ru3n8pXv46Ysf+eOH5fz965906nMLd//f7fTr519xP/BfCpqcfCydHWFQLT7gBtDk70xUKhUqlempFy8nNjYWCwsL1Orm1StACHHlIiPbEhnZVv86PT2dG2+8hdOnjzN79m88/vggfXhNnx5NSUk5bdo4MHJkRQFCBxsr5k3ozc+7zvL2msO8+fthHunXgdzk/Go9lvz9nTibmEPmhQIyMwpQq5QEB3vi4Wl/2aF7ut5XdraWNfaEMjW8r6Z1Nm1KZH9sOlmaInJyiigsKiUi3Bd/fyf6XO9N6oV8gkOaV5FzyQEhRF1UzYHs7Gz69RtKXNwePvxwOc8+e3uNOYCVDc73zYGDN2H9x2T480UIf4LEFJ9qT6n9/Z1IPJvDhcwCMjILUKuVhAR74ulhf9khG7reV7Z2ljX2hDI1rKOmdTZtSiR2fzqarIocKCosJSKiIgeu7+NNTqY9wUHNq6eU5IAQoi4Mc6Bb0Wfctfwunhs3maz9Gh6Z/jr3je+vv24uWRJPaZkWN1dbwsMv9TI1de011VvJ39+Js2dzOH1aQ2Skj/59HrXIAX9/J3r2bMPp0xr9REnm1r1cFhgu79hnKBklHTi16y/2b/yF47v+Ju+N/9E9MoI+fbxJv5BDly52ZrfV0Jp8o1RtxcTEsHPnTgYOHIiTkxMxMTE899xzjBkzBje3plFVXgjR8FxcXMjMLKCkJI/XX3+Uhx46pH8aavg03fAGRqFQcH8ff7q1deGpJfv4aOMxBnXypEsXN/3TiR0xScTsSKasrJwLF4qMxpnX1JBkWNj8gfuDjV7rtrt5cyL+/s7cemu7WhVLN6Rr7EpNyePkyYt4etize0/F+PMRIwLJLSyloKSsTttsLiQHhBCmKJVK0tLyKSsr4s03H+N//xuAo6MjYD4HAOh6N3h3g+X/B1tnEex/C3S59dL1ekcSO2KMc0A3DK+mmwfDJ+0PPBBs9Fq3XaMcqEWRXEO6xq6U1FxOnszCw9NeX4dk5IhAKMmH/It12mZzITkghKjKxdaFeUPm0feTcLTlZSz8YDZD7gzDxa2id5VuWF5YWM0lNaB6byVdYXST9wO1zIFBgwLqPQd05xTQ0ZdDe45Qmr6b959/H/c2au59+H7GjL2VrNKsOm3zWmoxjVK2trYsXbqUadOmUVRURPv27XnuueeMxocLIVofGxsb3nlnHs88M5wLF04wefJkvvjiC6D60/SqQnxcWPVEJC+vPMiaAymc9nDgpvKKCUtjdiRzKC4DPz+nanWnDFWtHaV7wqLJKsLFtSJ8/P2d9EVsY3Ykc/hwJinJuQQHe9S5USo42JPgYE99Y5cmq/CyNalaCskBIYQplpaWvPvuXJ588g6ys8/xyCOP8MMPP6BQKC6bA3gGwsS/4M8XUe77gW4uJzlcOg7wZUdMMnGHKnIgrErdKUNVa0fpciBLU4SrS/Uc2BFTkQPJKZU5UMebkZBgT0KCPfU3OVmawsvWpGopJAeEEKYEeQTx2ONv8cnLUyhMy2LmczOZ8d0MLCws9H8714buGqr/uz0mmUOVOaCrRWVKfHwGsbHp+oYv/f2ApggXEzkQU5kDKVeYA/r7gbQ8Evv54e8/kph/DrLqu5+Z//anLP/6J24ddytDpg+p03avlRbTKNWzZ0/+/fffxj4MIUQjMTctOMCjjw4kIOBnhg0bxty5c+nXrx/3339/jduLjj7Hxo0JREUF8On9Pbi+nTvvrDnMj5n5DCsqIbyymLibuy3JSbn6IoZV6WpHHT9+gcKCw4T1UBEU5G7UWATo/zs8wofColL8/Z1rrB9SVVp6HgcPZJCdXYSzsw1du6no3cuLtPQ8feNXSyc5IIQwlwUTJ4bTufMqBgwYwE8//US/fv149NFHa9yWYQ5E3vkZ+Iej+P0FgrLeI6FkAhHhHQFwd7MlKdl8DuhqRx0/foGCwsP0CKvIAcPGIriUAxHhPhQVXkEOVDZCFReXkZCQTfcwFb17e5GWlqdv/GrpJAeEEOZy4L2JT1Fql8DH4z9m5987WTJ3CaOfHF3jtqo2JoHxED7dcD83N1uSa8iB2Nh09lfmQGHhYcIqc0BjJgfCw30orIccCKvMAYDw/l3xbd8ORckFNqxYTcKRhFpv91prMY1SQojWzdR0sIaGDh3KK6+8wowZM5g0aRI9evQwW/AUKmbt2LgxEajoUTU+oh0Xjmfx5YFzrD6dzshevkye3JuPP97NobgMACLCq087rutB9e+/yaSmVBRMvHdUsMnGIl0NqqrbudxMfWnplVOBH88iL78ED3c7/WyAtalJJYQQLUVNWXDjjTfy3nvv8cILL/DMM89w/fXX06tXL7PbqpoD9BjN5jhXQuJeoHPSPBShI4iYfA8ffryHuEOVORBRPQd0Paj+/TeZlNTKHLg32GRjka72SNXtXG6mPsOpzXNyS0hPLwAqek3VpiaVEEK0FDXlwKwHZrFr9y62frKVbz/8ltBeoYSFh5ndlq4xCdD/DV5cXMb583l06OBCRIQvERG+fPTRLg7VkANhBjmQWiUHXGqZA6YayAwZ5kCuQQ5UH07oRdc+nUjPTzd73g1NGqWEEC2CqelgDSUkaLjhhvH06LGZfftiePDBceze/S8KhcLk+qZmb8o+k4f7nhysItxZvieJY6m59L6h8ulDhI/J7ei6z7q62rJt6zn63VQxTMSwsSg+PoPjxy+idLCq1oAUH5/B4sWHyckt0W9PJy09j/Xrz7B/fzqOjta0beuEh7sdzs42Zp+qZGTmcSoxhx4ejgR1al4Fz4UQ4nJqyoKEBA3BwSPo128D27b9xQMPjOHIkTgsLCxMbstUDsScdGVWzAt8OOA3usethPQj3HR9Rc/biHDTOaAbTufqasvWbee4qV9lDhg0Fh2uzAEHpVW1BqTDlTmQm1Oi355OWppxDnTp4k7Xrip9TylT0tPzOX8mA2fXbPw7u5pcRwghmquaciAxMZunB37O8T1DSNmazLQn3mLu79/h4+tqcluG9aZ0EhKySU8vICEhW99wpOsxFW4mB4zuB7ado5+JHNDfD5jIgbS0PFauPMHZs9nk5ZUY3w/UkAPmhhOmp+dzOCGTrtbZuAc2/v2ANEoJIVoEU9PBGoqLy+S//9K4+eapaDTv8OijM8w2SIHpelP66WUH+XOkvIQP/zrKOdsCHh8fTDtPR30dJ32XWYOeTUOHdKBXrzYkJuaQlp5n1PikG+IHGNWD8vd3InZ/Ojm5JTg5WlerW5WYmMPOf5PJvFBE+3bO3Hlnx8v2ijp3LpeTJzXEqy9Io5QQosWpKQvi4jL5998UIiKeJSnpIk8//abZBimoOQdyB30Gdhth/Sv0sfyIPmOfBXXFzYmpYXQhwZ4MHWqQA2l5RjcduiF+gFE9KH9/J/bHppObU4Kjk3W1hqbExBz+3ZnMhcwi2rV31k8nbupJvc7Zs7mcO6XBzuMi/p39zX+YQgjRDF0uB2L/0/DmE9/xYtZ9+A5rz9mkPLONUqbqTZlqqNL1mNIxNYwu+DI5ULVXlmEOJCbmUFhYgpWVAg8Pe6PjSUzMYefOZDIzi2hf6xzI4cwZDUfsLtItsJ3Z9RqKNEoJIVqF0FAP0tLyyciw4fXXv2XgwLr/Id62rRPXX++Nv58z/QJc6OHvyjNLY3lv3VHu6dkWkvPZty+d4pIycrKNezbphthlZxcBxkXHw7qryMsrobS0nE2bzgCQkpqvX6b7XjUU/f2d6HuDD4mJ2Qwc6G+yl1XVYX9t2zpSXK4lOFgapIQQrUt95kBbP2cI+D/w7VUxO9/f70DXe0jzHMymv8+aHEZnOLQCjIuOdw+7lAMbK3MgNSVfv0z3verQPX9/J27oa5ADJobpVR365+fniE2ZC85BMhudEKJ10eUA+S7M/OAb5qe+xX7L9fRlYq234eFhT2CgW7XGIZ2ahtHVlANhYSbuBypzwN/fiQED/AEtXbsaP5zw93ei72VyoOrQPz8/J3LKXQjq0jRyQBqlhBDNmq4Q7XXXeWJvb22y0DlUPDVRqzM5eTKLkBBP/TqbN2/Gw8ODbt26XXZfVceo927nzvwR3Xj5t0Ms3X0Wl3IFjsVldApwxsrKwqhnU2JiDtnZxVhaWqDJKjTqLRUc7MmRIxfZtOkMbm72DBjgR1CQu77GlLkZQdQqJWPHhAIVjV6796Tq3wPVe2ABeHooUTrb4e9vuhCjEEI0R9HR51i+/Bi+vo6MGtWlTjmwc+dOAPr27XvZ/VSrVeLdjYQhv2H152R8D/yMtfV/JJ++GRd1GyLCfYyG0RnmQJam0OgpeUhNOaBWmqwjBRU3NGPHhupfGz5Z1227ai8slcoBldIT/CQHhBAtR11yICYmmXB1Tx7v/jhf7P+CJX8vIcguiB4RPS67H8NC54YNQLrr79mz2Zw4kYW3t5LwyhwIM5EDmio5UOP9gFrJoEGmR0PUJgeq9sJSqRwIdfSseMDSBEijlBCiWdMVoj127CIdOriSlpaPWm16Fr6qY8yXLVvGAw88QMeOHdm9ezfOzpcuzKZm7jA1Rv3syWzCsi1xsLJjT0kh+X7W3BzmQf/rvIz2ravxpMkqJCU1HxfXHKOeTZkXCigpLcfO3pKu3TzNDsMzHNoHGHXr1Qdk5XsNe1kJIURLtnFjAn/9dQZPT3s8PR1qnQPr1q3jzjvvpE2bNuzbtw9Pz0uNP7XNgbjjxcSkP82ojn0JSviIJwJ+4LjLSLpGdDMaPqG7bmdpCklNycfVJcfohuZCZgGlJeXY21nSraun2eLkhjccgNHNh6mbJcOeVkII0VIZ5kBISMW13NQsfIbX8aH+j7Bp6ya+nvI1DkoHvlv3HWoftX5dUw08umtv1fqtuutvYWEpdnaWtG/vUm1Yn/5+QFNISko+LlVyIDOzgJKScuzsLOlajzlgashhUyKNUkKIZk1X30PXUyotLc/sjBuGY8wTEjSUl3fEy8uH48ePM2nSJJYuXaqvM2Vq5g5TY9R1wTbUxYYjSdksSUhj8d5znM4u5ME+/thYVdQr0RU2NzXrHkBkhA9KZUXdKF2jkmEDlO5nhkEDl6aONRWQpsbBCyFESxQVFUBWVhG+vo6AttY5kJvrg59fAKdOnWDMmDGsXbtWX2eqrjngEvo/0rIHo1z3BF1zlkD0GejzCFjbAZcK2pqadQ8gIrIiB7qHqfQ3EqZuiMzlgFqtNJkFukLrQgjRkhnmQGioh9lZ+KrmwKi2r/JX2w1kn9bwxmNv8Pnyz7GyrmgmMdXAY25GU911V6m0Ii+v1OSkQ4Y5UHXWPYDIyhwIq+ccaOr3BNIoJYRo1iIj29K2rZP+SUhoqIf+CXlN4uIyiYsrYPLkT5g69QGWLVvGTTfdxBNPPAFcfjY/HcNgiwTGlnRh1l9HWRB9hqOpOTxyU3vaeTrq1zecdc+QqbAw1fvJVNDoGq0uV+RcCCFaqrZtnRg8uJ3+ml3bHNi/P5vnn/+UKVPuZv369cyYMYPXXnsNuLIcgG4Qshm2fgDbP4E/JkP4E9Dm0tAKczc0phqPTN0QmcuBmrYthBAtnWEOmOoZZUpcXCYH9+Xy5svf8uKz93F031Hmz5zPk288CZjvFWVKXa6/5ta97P1AC80BaZQSQjR7hk9Chg3rUOMsfDqXbja6Ymk5i+eee47nnnuOPn36cP311192Nj9zbKwtGXOdLw5ZpSw9ncaMP48wJNSL4WG+WFooTPZ+MsdU4GRmFFRMF+tgRXCw6WF+O2KSiNmRTHiEDxHh5mfeEEKIluLqcsADB4e5/N///R9vvvkmERER3HzzzVecA1hakdDhCc6lh9Ln3DSs/34HOt8KYaPB0trkU29zTOVARmZFDjgorQgJNj28Y8eOJHbEJBMR7lPjDExCCNFSVO0ZVZtruOH9QMln7zL1oams+GYF3ft0p9+QflfVwFPTtf5qcyCzMgeUysr7ATM5EBOTTHgzyAFplBJCNHu1fZptyDConnnmGbZt28bKlSsZNWoU+/btw83tymejiIvL5MKRbF683p/t+Xmsik0m5lgGD/ZuS5mmtFrvJ1MMZ84zXM9U8fKqYnYkc+BAOpmZBXTq5KofNpiYmIOnlz1KZ7srPjchhGiKrjYHJkyYwNatW1mwYAEPPvgg+/btw9vb+4qPJy4uk5iDHuT0+YEhfA17v6f07G6Ouz9AUomvfma9mm5GDGfNM1yvauFyU3bEVMmByuEiiYk5BPhYIR1rhRAtzdXmwEsTX2LL1i2sW7SOdye/y3fB3+ET4HPFx2Oqh5PuOqyrKWW4zBTDWfMM16tauNyUmBpywLutHQpHk29rFBaNfQBCCHG1AgJcav1k3BSFQsF3331Hhw4dSEhIYNGiRVd1PKGhHoSH+9C7exs+ub8Hj4S0pai4jLk7zrDqQDL29pYmuwHrZtBLS8/TNz7pbjx0XF1tsbCo+G5OeIQPvr6OODvbkpiYA1wKxnPncq/q3IQQoim62hwA+Pzzz+natSvnz59n/vz5V3U8uhwI7tYW7pgNY1ZSVG5Hl3Of43b8R5wcyk3nQFoeu3enkpaWp88A3YMIndrkQES4+Rw4e1ZyQAjR8tRHDqz+ejW+ob4U5Rbx5RdfXtXx+Ps76WfP00lMzGHbtiT+/TcFpdLqsjmga3yKrZIDYWEqfHyUpKfnEx+fYXL/4TXmQM5VnVt9k55SQggBuLi4sHz5cnbu3Ml1193G9OnRREUFEBnZts7bqtpd+IH+7Qh0tWfOtpMkWpSxJTeXruXlqKu8z/CJirmZ87Kyiigvr/huTqdOrgwaFABoUTpYsXtPKkoHK4KC3PH0sq/z+QghRGvg4ODA8uXLWbNmDX36jKrXHKDjADJGbSD+s6eJctlEUFECyrIngW5G7zPMAXOz5tU1BxyUVuzenYqDsiIH/HysAPPvFUKI1sra2pqta7Yy/PXh5AzK49ufo4no1uWKioSbGvrn7+9EeXk5mZmFFBaWmewlZXQ/YGbWvOBgT6MGK1PHZ3Q/UJkDysoc8G5rB+TX+ZyuFWmUEkKISj169KBHjx5Mnx7Nxo2JAGZvRkxNFW6O7ubEy8OBRetPEGtVwgfrj9K3vTv3X++Hk501cGmseHFxGcePXySsu6payJhrrDIc7peXX0pKah5BQe7k5VcMFwwKcqd3Ly9yC0spKCmr+4cjhBCtQOfOnZk8eXK95wBAQCcfzt07m0Ub/uABh/mwZQb49obeD4FDxZDxqjnQPUxVbYieucYqw+F++XmlpKZU5EB+nkEO9PaCknzIl0YpIYQwpUO7Dvz91d8M/eku9juswSZWabZRqi61oaCioWrYsPb6IXmmVLsfCKt+PwCmG6wMh/vl5ZWSUpkDeVVyoLismIwCaZQSQogmYcWKo6xceZyRIwO5++4uQMWUsgUF2ezZM5e0tEDU6qp9mkxPFX45kZFtiYxsS35RKXM2HWPhjgQOnNMwoocvA7qo9DPoLVkab7ZulLkpXWP3p7NrVyrJSbkMG9a+Wnfh2swaIoQQrZG5HCgqyic2dj6JiX74+/tXe9+V58AjUDoBtn0MMZ/BH89C6N0QdJv+yfqSJfFm60aZmqUPKmpN7dqVSlKy5IAQQtRF1RxQ2at4JuBNPjj9Apv+/pR+vd6gXed21d5nqm7U5Zj7W17HMAdqqhtlajuxlTmQ3MxyQBqlhBCt2sqVx9m69RyA/mYkMrItM2Y8wtq1axkzJp0///wTS0tLo/ddSTFFHQdbK14eFsLdvfyYtjqOn/5LZOvxdMbdEIAjCuxsregU6FqtN1RNwrqrSE7KxcJSQV5+Kb17eemXqVVKdsQk8fXXB/D2cyLiproPRRFCiJbKXA7MnfsSq1b9RErKcbZu3YqNjY3R+64mB7CyhYEvQ/f7Yd1U2L8ETm2G6yeRpgjA1s6KwE6u1XpD1aR7mIqk5FwsLRTk55VW9IqqpFYr2bGjIgc6+tsy+EZnruCohRCiRTKVA2OjbuGnMZ+wbv06nj/6PD+s+wF7B+MyGKZmxqsvAQHOJCfnEhDgXOv3hIWpSE7OxcJCQZ6JHAD4889TbI1OoMeNSoa0r/fDviLSKCWEaNVGjgw0+q4za9YstmzZwoYNG3jnnXd48803jZZfyVThCQkafvnlGElJOdxzT2ciI9vyw0N9+X1/Mu+tO8KMP4/Q3skOda6WHmFqk09FDIfpBQd76mfV8/d3Yuy4EP1/VxWzI5nDhzNJTsujXSfXOh23EEK0ZOZy4J133mHt2rXs3LmTF198kdmzZxstv9Ic2Lz5LBkZ+Xh62jNwoD8BDyyFI3/AX6/B329h4xCMZd5AwsI6m+wRZThMLyTY02j4yLix5nNgR0xFDlxIU3BdR0tplBJCiErmcmDBhwsIXBfIhTMXeG3ya3w470MUCoV+uam6UZeTlpbHwYMZZGcX4exsQ9euKpPbsLGxpE0bJTY2ltWWGQ7TC66SA2NryAGAbdvOcepMFuX2uTC2Tod+zUijlBCiVbv77i76JyKGQkJCmD9/PuPGjWP69OlERkYSFRVltE5t6okYrhMXl8nvv58gPb0AV1dbIiPbYmGhYHgPXwYFq5n3z0kWbj9DgraMwjQNRf+VE9jeBXXl3N3x8RksXnyYnNwSoKLb7sEDGcTEJOPlreTOOzsa9ZAyFB7hQ2FRKd5+Tvj4NKE5YIUQopGZy4H27duzaNEihg8fzpw5c+jXrx9333230TpXkgPr158mKSkXHx9H1GplxfuCb4dOgyDmc5yiP+dOy/loMq8n9t/b8engo79hOVyZA7k5FTkQEuzJgYMVOeDtVZkDvU3nQES4D0WFpXT0t8Xbu243UUII0ZKZywEvLy9WL1/NoEGD2Lt2Lz8u+pExE8YYrVObulKG6yQm5rB373kyMwvx8LDDxcXO5Pv8/Z3QaIrQaApJS8vTr6O/H8gxuB+ozAGvy+QAQL9+bdFalNGjV9PJAWmUEkIIM8aOHcu2bdv4+uuvefDBB/n993/IzLTV33zUpp6I4TqhoR7ccUcnkpJyaNPGgenTo7GyUnD48AVGjgzkhbuDGHNDAJ/8dYyVe5M4lJ5Dt/Qc/m9wRxxsrIjdn05ObglOjtaEdVeRlp7H6TMasrIKgYpx7WqVkrT0PA4eyAC02DtYk5CQTVh3Fa++Ei6FzoUQog7uvPNOXnjhBWbNmsXEiRPx9OxAXp7LVeXArbe2JyMjn4sXC9mw4Qz79qXqc+Duu1/Asud4+Od9nHYv5rrMPWRcjISbR4OtM/tj08nNKcHRyZruYSrS0vI4c7pKDqiVpKXlceBgRQ442FfkQPcwFa++Gl5Z6Pxig3x+QgjR3A0cMJDXp73OW2+8xYK3F9C2XSccHdvpG6FqU1fKcB1/fyd69mxDdnYRubklxMamcerURc6ezSU83IeICF/9tlxcKt7n4pKj33ZsbDo5OSU4OVkTVpkDp09ruHixeg4crMwB+8ocCAtTMXRoBwbd0paMgoxr/MnVnjRKCSGEGQkJGoYOfZbt22OIjz/EQw+NY/jwWUDFzUdoqAdpafmkpeURHX0Ojaa42tNyw5ojAQEuTJlyPYB+ZqesrEL9tN53390Fbxd7PhjVnaEdVXyy6TgHLubywvID3NRZRecQd6CifpSHpz2bNiWSk1NMULAH7ds567vpJibmsHffedCChYWCEyez2BGdxAMPBtOtR5sG+/yEEKIlePjhF1m7djNxcbuZOHEMo0Z9Clx5DkyYULFs+vRotm5NqpYDOKrhto9I9RuLYvO7eGu2wKod0HEAvUIHAD50D1Ph6XEpB4KDPGjX3jgH9u09j5aKHDh5IovoHUk8+EAwEde7NdRHJ4QQLcKEMc/y62/rObhnJx+88DYjHnkDCECtVhr1aIqPzyAvr7RarynD2lNqtZJBgyqWLVkST1xcJnm5xeTmVfR80jVKVX2fjuGsex6GORDsQfsqObB373mg8n7gxKX7gd59a1+vsCFIo5QQQpgRF5fJ3r0XeO652Tz//AguXkylQ4dLNxgBAS6o1RVPwBMSsikt1ep/Hh19jo0bE4iKCmDYsA7Vth0VFQBg1FPK0MCePgzo4U18Sjaf/X2CTfFpbEFLn3buuHg7kHgym+zsYry8lAwa5K8f4gcVwdWpoxuZFwrw9XXkzBkNWVlFxOxIlkYpIYSoo2PHshk06BXOnv0f2dkZ+PsXN0gO+HYLg26/QNoR2PYRxK+mc/lmOgf0hTZ3sPtUqXEOVLkB6tjJjQuZBjlwsYgdMcnSKCWEEHUUH3+Rwf1f52zCeHJyszhjuY47/Z4HjHs0paUVUFam1f/csPaTqSF1ugYmS0v0PaUMmapZZTjr3u7dqTXmQKdObmTqcuC0hotZRcTEJEujlBBCNKba1P/QMXy6vWbNGkJDQ/Hw8DC5jouLjf4J+YoVR5k2bQclJeVAxSxOVVVMC97W6HiqUigUhPi4MHd0T46n5TD/n1Osj0sl+mQmAa72dOnkRL9QtX7Inn48u0qJn78TefklqFQOPPBgMDE7kgmP8Km2DyGEaI3qngXdGTDgZ264IRRvb28Ty69NDgCgDoK7v4aMqbBjDhxeBQnRdHduh3tgPxxDIvVDNQzrmvj7OZGfV5EDDz4QXNEgFS45IIQQcCU5EMzNN6/kmM0evkv+jn9zNjG8zXDgUk8mpdJK31MK4PffT3LgQDpnz2abnMBI18BkeP2ui6o9sKrmgJ+fE3l5BvcDMcnVGr6aAmmUEkK0KrWp/6FjOLNSQMBNRsvKysqwtLQ0OfvSK69sIzk5FycnG667rnoAmTqetLR81GrTwahQKOjcxpmP7w0jLbuQJf8lsnJvEn+du8D2NA29/N3wLFNwISEXALVKaRxSKiUR4b7Ex2ew8tdjBAa7QY+mF0hCCNFQriwLjHs7XS4Hzp/Pw83NDqXSmoQEzWVrTtWUAwB4doQ7P4WbX4fYH7CO/YkO5xdD5nJo25sLJd05kljRC0o3pAQu3axERPhyOD6DX5Yfo2eQNR271uaTEkKIlulKc+A2biI3Jpdlx5bhYevBjX43mp2FLze3hKKicpKSco2KlVelqzml0RTh4lJz0XRDVfdbtb6VqRyIj89g2bKjtAu1hPaX3UWDkEYpIUSrYtj76Up99913zJs3j82bN+PoWH0mu5EjA0lKysXT0x57e2ujZVWfyri42GBlpSAjI5+TJ7OAmoNR7WzHM1GdeaR/R7YeS2fF3nPsOJlJTmEpSisL8jQ5WJ+1I8jbid4q4zCL3Z/OoUMZlGq1V3zuQgjRElxtFvzyyy+88847bN68GXd392rLdUPx2rVzRqMpJi4uU39tv9ocwFEFNz4HNzwOp7dC7I9wagtBBdvoaONIaU43OHsDaq+uqNXGw0X2x6YTfzADe2zoOPyKTl0IIVqEq8mBV294le2btvPuq+/y1qK3uL7z9SbXGzKkPaWl5Tg72+oLkEP1GfuUSissLRVkZxeRkpIHmC+aXpOqNahMNZbFxqZz8GAGRVbWMKjOu7gmpFFKCNGqmHqiXRcajYZXX32V1NRUHnroIZYuXYpCoTBa5+67u9C7t5fJ4RhVn8poNMWUlmrx9HQgJMSz1sFoZ23JLaFeDA5pQ0ZuMRsOn2fp9tPsT9Sw+5wGC8DDzppObRzp3s4NPzcHunXzpESrregpJYQQrdjVZEFhYSFTp07l1KlTPPjgg/zxxx9YWloaraObXtzU0Lz6ygGsbCFwcMVXXgYc/4uc7UuxTIrFPnUH5VhQYOuDQtUZB//rwK0d3bu5YUURwUHWl9++EEK0YFeTA9pyLcnLkilMKuStx97iyxVf4uNafRRCRIQvnTq5VhuaV7VHU15eKWVlWpydbfHzc67zMD4dtVpJZmYBS5ceAWDw4AA8POyNGsDCwlSUUUq7LpaX2VrDkUYpIYQwYFiY1lQNEBcXF3755RcGDhzIsmXL6N27Ny+88EK19XRBl5CgYe3aU/on4lWfyuiekAcGuprc3+UoFApUTrY82NefY38mErsyCYWnNapeKkopZ3+ShpiEiqm/LRTgYGVJqaagzvsRQojW4nI5YGdnx8qVKwkPD2f9+vW88cYbvPvuuya3pbvhiYvL1L+u7xwAQOkJYQ/y2Sp/li/5j+6qs4ztc45gl0S8UvfCub8BCMaCjlbOlGtCgf9d2b6EEKKFu1wOWFpa8uvKX+nVuxfZx7N54fkX+Hre1zjYOFRbV9dTKTExR/+6ao8mXU8pHx+lydpTdREbm05sbBoKBahUDgQGuhk1gHl42NOpkyuOriVXtZ/6JI1SQghhYOPGBDZuTARMF6YFuPHGG5kzZw5PPPEEU6dOpUePHkRFRZlc19R4dd304QMH+uufkGs0xTUe1+WKMSYkaHB0tCW8VxscHW0YdnMHrG2t8OvoTImdBfHJ2WzclcyJ1BwURWVYWVjU+jMRQojWpDY50L17d7755htGjx7NjBkz6NWrFyNHjjS5rrm6JefO5RAXl0laWl695YDS0ZaQXh2xdQwm96YOxNmCopMVfg6ZkHqAhN3/UZx6AodiV9pa2tTq8xBCiNamNjnQqVMnfvrxJ+644w6SNyTz6ievMuuFWVhZVG9iqdozSiczs4DExBw0mkLKyrTk5ZXWeFxVh/2ZWm5nZ0VQkDt2dlaEhanw8LAHLjWAJSbmcOzoRbzLa/FBNBBplBJCCAPXXefJsWMXL1ug/LHHHmPXrl0sXLiQ++67jz179tCuXbtq61V9Ih4Xl8n69afRaitCSffzgoISpk+P1j+RqXrzYXhTo9uO4Y1JXFwmGk0R48d3NTn1eJ/2Hgxo687BQxkEh3hgYyWNUkIIYUptc+DBBx9k9+7dfPLJJ4wfP56goCBCQkKqrWcqB2JikrGyUlBaqqVjR1fCw32ucQ50BP8+KNqM4sShDEJDXMDEE30hhBC1z4HbbruN6dOn88Ybb7D/y/181OkjXhz5YrXSHlV7RukaqSwtFZSVafH2VhIU5I5SacWmTQmAlq5dVfp1dY1Qho1bVZfpXufllXDzzQH07n2ppqBhA5a/vxOl2hIc20hPKSGEaDB1mfLV3t6aDh1cqxUor0qhUDBv3jwOHTrE7t27GTFiBDt27MDe3t5oPd0wvujocyxceIjrrvPk1lvbk5FR0VsqNNSDYcM6MH16tNETmapP1g1vakzN1FSbYo1XW09LCCGaq2uRAwAffPAB+/btY8uWLYwYMYJdu3bh7OxstI6pHNA1Qh06lKEftic5IIQQ1861yoFXX32V3bt3s3r1aja+vRHvtt6M6zvOaB1dwfH4+Aw2bUokIMCZoCB3iovLSEjI1g/b2707lb17zwPg4mIHYHY2PVMz9lVt/DJFrVbi6mFNRkHGZc+toUijlBCixavLlK91mYnDzs6OFStWcP3113PXXXdha2trdl3DbsBvvhnJ2rWniIlJRq2umJEpKioAQP/d8DjMhWhaWp7+vK5mNkEhhGjprlUOWFlZsWzZMnr16sUdd9yBg4P53kemcsBw2J7kgBBCXDvXKgcsLCz4/vvv6dOnD64hruzM2on3GW8Gtxtcbd3Y2HT2708H4IEHgtm9O9Vo2J6/vxM9e7YBtEYNS/7+TmaH7mk0hfqGqystkN7YpFFKCNHi1SVY6voU2d/fn6NHj+Lq6lrjelW7AVe92dBoipkw4Tr9vg2PQ9eAZfhEfNiwDiQkaPSv6xK0QgjR2lzLHFCpVBw4cOCyORAVFUBWVhFKpTUJCRrJASGEaEDXMgdcXFzYuXMnLi4uvPDPC/x+6ndcbF3o493HaL2wMBV5eSXY2VmSlpZn1LNJ1+jUtaunUaOT7r93706t1jOqd28v0tLy9K/N1a5q6qRRSgjR4l3r4QqGNyJ5eXkcPXqUnj17Gq1TtRuwqZsN3c+r0oWn4RNx3furri9PyoUQorqGzIGioiL2799Pnz7GNyORkW3RaIqJiUkmLi6TYcM6SA4IIUQDaagceK/fe6TnpfPNmm9wGulEsEewfp3gYE/y8ko5cuQCiYk59O7tVa3RCUw3KOkasAx7RumGBVZdv7n1mJJGKSGEqCfnz59n6NChnDp1in///ZegoCD9spqezlzuyY0uRA2fiJtbRwghROPJysri9ttvZ9++fWzbtq3aAwpz13vJASGEaBmKi4pJ/jSZE3+fYE75HF554BX8nf31y83VfbpcPShd45Nhzyhz6zQ3Mv2SEELUE1dXV+zt7dFoNNxxxx1cuHBpdoyAABejp+KGDJclJGhYu/YUCQmaauvt3p3Kjz8eZvfu1GrLanqfEEKIhuHo6IijoyP5+fnceeedpKSkGC03lwW1zYGAABcKCkp45ZVtrFhx1GiZ5IAQQjQ+Ozs73F3d0ZZqOfXpKWZvmE1q3qW/3dVqpVEPKVM/T0vLY/fuVNLS8qptX61WUlxcxuLFh9mxI6na8pre21RJT6krUFZWRklJ05lCUYjLsba2xtLSsrEPo8WztbXl119/5frrr+fEiROMGjWKdevWYW1tfdkZP6Kjz7FxYwJKpbW+6K1uPd2ypUuPcOqUhuPHL3D33V2M3i+1RBpWeXk5xcXFjX0YQtSa5EDDsLKy4ueffyY8PJz4+HjuuusutmzZgr29fb3kQE5OEd9/f5iSknIAoyyQHGhYkgOiuZEcaBgWFhYsWLCAU6dOsXv3bo5+dJQ5znOYcuMUynLsTBYr14mPzyA2Nh07O0t98XPderplBQUl/P13ImVlWgAiInyNttEc60pJo1QdaLVaUlNTycrKauxDEaLOXF1d8fLyQqFQNPahtGhqtZrff/+dyMhI/v77b55++mnmzp172ZsF3axMvXu3YfDgdkZDM3TLzp/Po7i4nIsXi6q9vy7FG8XVKS4u5vTp05SXlzf2oQhRJ5IDDcPFxYXff/+dPn368N9//zFx4kR++umnesmB06ezyMoqxNHRlpEjA43eLznQcCQHRHMlOdAwHBwc+O2337j++utJPpfM0c+O8qn9pwyyHkPi8YrOLaYajHSz83Xq5EpYmNpoiJ5u2fnzeeTllWBvb014uE+1bVxuGGBTJI1SdaBrkFKr1Tg4OMg/ZtEsaLVa8vPzSUtLA8Db27uRj6jl69atGz/99BPDhw9n/vz5hIaGcscdYwHzNwuGU4FHRrY1uUylsmPnzlS6dHEnIUFjdFNjWG9k7dpTZp/Ei6uj1WpJSUnB0tISPz8/LCxkFLxo+iQHGl7Hjh1ZsWIFgwcPZunSpYSEhDBu3NPA1eXA/v0VOdCjh5revb2M1pEcaBiSA6I5khxoeD4+Pvz222/cdNNNXIy9yPHFx1GMXUJU5zFmG4zCwlT678HBniaXnT5tzcmTGq67zgMbm4pZ/EzN1peYmGP0uimTRqlaKisr0zdIeXjIEyjRvNjb2wOQlpaGWq2WrrsN4I477uD999/nxRdfZObMmUyYMIFhwzqYXT8ysm21mxDDZampeezbl8aNN/qgViuJi8s0ebMhwzeurdLSUvLz8/Hx8cHBwaGxD0eIWpMcaHgDBgxg7ty5PPzww3zyySc89thjV5UDkZFtmT9/H8ePZ1FerpUcaCSSA6K5khxoeL1792bRokXce++9ZP2TxcVbM9nm+zM93Z4xuX5wsGe1xqiqy/788xS5uRU9pcwN02tuQ/ikUaqWdDWkJHxEc6X73S0pKZEQaiBTpkyhsLCQcePG4ejoeFXbWrnyOHv2nKdXrzYMHdrB7JN2U8M3LlfHRNReWVkZADY2No18JELUneRAw5s0aRIXL15k+PDheHqavtGoi23bksjIKMDDw15yoJFIDojmTHKg4Y0aNYpPP/2Ufv36ka/O5+m/n+bzfZ/zVM+nsLeyr/P2Dh/OJCUlD6XSmt69vUz2ujI1hC8tLU9fz8rVw/rKT+gakEapOpIhe6K5kt/d+lPbP+4VCgWvv/660c/Ky8uvqKu/rnbIyJGB1Z60JyRo2Lz5LKBl4ED/asvlqXn9k39PojmS39v6U5dGnhdffNHo9ZXmABhngeF+JQcanvx7Es2R/N7Wn7rkwFNPPaX/708GfMIzfz/DnL1zeLrH0zhY163Ti66OVHi4j9Ew7rS0PA4ezAC0dO2qqjbE27D3lKuHe532ea1Jo5QQQtRRXf+414VWUtK/fPXVJ/z111+4ubnVaZ+9e3thb29t8sl4XFwmixcf5vz5XDIyCpgypY/Rcil+K4QQ9etKcyAr6xAffPAG69atw8vL67Lvq7oNe3trZszoV22fkgNCCNGwrjQHCgsL0czQUPJICbO1s3mm5zMorWs3xC4tLQ8bG0vGjg0xOWRv8+azZGUVkJ1dzIgRnY2WN+UC6NIoJYQQdVTXP+7j4jLZtu003377Aunpydx111389ddf2Nra1nqfNQVfaKgHTk7WJCaWk5SUW+29uuK3Qggh6seV5EB0dCI//DCFxMTj3Hbbbfzzzz91GtotOSCEEE3HleTAjh1JrFjxEqeOniJgbgDWU6yZvWc2T/d4GifbyzcW1VQryt/fCXt7S9LTtWRmFlZ7r1qt1L+nuKy4VsfcUGS6iBZOoVDU+DVt2rSr2vaqVavqdAxKpZLAwEAmTJjAnj176rzPAQMG8Oyzz9b9YIWoRwEBLgwb1qHWf+CHhnrQpUsbnnrqU5ycnNm6dSvjx4+v01TSoaEehIf7mAy+c+dy8PCw46abfLnnns4m3i1aM8kBIerfleRAYKAnjz/+Ce7uHuzdu5dRo0bpa5bWdhuSA+JKSA4IUf+uJAc6dXLj4Yc/wNvbl4QTCZR/V05Wbhaz980mqzDrstvw93ciKMjdZG+nzMwCnJxsCA31IDLSp66n06ikUaqFS0lJ0X/Nnj0bZ2dno59NmTKlQY5jwYIFpKSkEBcXxxdffEFubi59+/bl+++/b5D9C9GYAgJcUKsdKC5uw8svf4G1tTU///wzL7zwAlqtttbbMBd8GzcmcOxYFv7+zmZnbhKtl+SAEI1PlwO5uS68+upX2Nvbs27dOh599FHJAXHNSQ4I0fh0OXDhgh2vvfY1Li4u7P9vPy4rXMgvzuejPR+Rmpda4zbUaiW9e3uZnFEvNjad5OQ8VCoHszP4NVXSKNXCeXl56b9cXFxQKBRGP1u6dCnBwcHY2dkRFBTE3Llz9e8tLi7mySefxNvbGzs7OwICApg5cyYA7dq1A2DEiBEoFAr9a3NcXV3x8vKiXbt23HLLLSxfvpzRo0fz5JNPcvHiRQAyMzN54IEH8PX1xcHBga5du7JkyRL9NiZMmMA///zDnDlz9E9azpw5Q1lZGQ899BDt27fH3t6eLl26MGfOnPr9IIW4Sron3A8+eAcLFiwA4OOPP2bGjBlXve2oqACiovyJigq46m2JlkdyQIimQZcDd989iKVLl2JhYcF3331XpwcU5kgOiJpIDgjRNOhy4LbbIli1ahU2NjZs+mMTbde1xUphxSd7PuFU1qkr2nZYmIru3VWEhanq+aivPWmUasV+/PFH3njjDd59913i4+OZMWMGr7/+OosWLQLg008/ZfXq1SxbtoyjR4/y448/6sNm165dwKUnHrrXdfHcc8+Rk5PDhg0bACgsLKRXr1788ccfHDp0iIcffpixY8fy33//ATBnzhzCw8OZNGmS/smOn58f5eXltG3bll9++YXDhw/zxhtv8Morr7Bs2bJ6+JSEqJCQoGHt2lMkJGiu6P2GT7hHjx7Nxx9/DMBrr73GunXrrurYIiPbMmHCdWg0xVd8fKJ1khwQovbqMwfuvPNOvv76awA++uijq/5dlRwQV0pyQIjaq88cGDBgAD/99BMWFhYs/2E5Q1KHoHJQ8UXsFxxIP1DnbQcHezJokD95eaWkpeVd0fE1Fil03oq9+eabfPTRR4wcORKA9u3bc/jwYb788kvGjx9PYmIigYGB3HjjjSgUCgICLj19U6kqWmB1TzyuRFBQEABnzpwBwNfX16j78FNPPcX69etZtmwZffr0wcXFBRsbGxwcHIz2aWlpyfTp0/Wv27dvT0xMDMuWLePee++9omMToqr6nk77ueeeQ6PRkJaWxi233HLV2zM8Pt1r3RS1dZmyVrQukgNC1F5958DEiRPJyclh165d+n+DV0NyQFwJyQEhaq++c+Duu+/mu+++49dff+WZR57hER7hkY2P8O2hbxnecTg3+99cp+0ZFkLXvfb3d0KtVpKWlqd/7ephfdXHXp+kUaqRNPYfB3l5eZw8eZKHHnqISZMm6X9eWlqKi0vF8UyYMIHBgwfTpUsXhgwZwu23314vN886uq7qCoUCgLKyMmbMmMGyZctISkqiuLiYoqIiHBwcLrutL774gu+++47ExEQKCgooLi4mLCys3o5ViGsxnfabb75JQoKGdevOmLwWREefY+PGBKKiAi5bI8Tw+KoGZn0HqKgfkgOSA6J5uRY58Mwzz3DmTBYbNpyVHGiFJAckB0Tzci1yYPz48fTvP5y//04mNNSDRbcu4qVtL/HriV9JyUshTDuYA/szCQtTXbZWlK4Aur+/U7WZ+gxfu3q419vx1wdplGokjf3HQW5uxXTBX3/9NX379jVaZmlpCUDPnj05ffo0f/75Jxs3buTee+8lKiqK5cuX18sxxMfHAxVPMgBmzZrFnDlzmD17Nl27dkWpVPLss89SXFzzlJVLly5lypQpfPTRR4SHh+Pk5MSsWbPYuXNnvRynEHBtptNWKBQcPnyBmJhkSktLeOONp7n//vsZOnQoUFG4duPGRIAab0bM/VFbNTjrM0DF1ZMckBwQzcu1yAFAnwNlZWW8//7L9O/fn/vuuw+QHGjpJAckB0Tzcq1zQKvVMnfuVwS3D6Zjn458c/Ab4orPUBrXB6DGRinDnlCGhdANG6oMvzclzaZR6t133+WPP/4gNjYWGxsbsrKyqq2TmJjIY489xubNm3F0dGT8+PHMnDkTK6umd5qN/cdBmzZt8PHx4dSpU4wePdrses7Oztx3333cd9993HPPPQwZMoQLFy7g7u6OtbU1ZWVlV3wMutk/oqKiAIiOjmb48OGMGTMGgPLyco4dO0ZISIj+PTY2NtX2GR0dTUREBI8//rj+ZydPnrzi4xLCnLo8sa4t3TUgOvonvv/+e5YuXcrKlSu57bbbiIoKICurCKXSmoQEDefO5Zjcf9U/ag0D0/CYm/vTccmB+iU5IETdXcscOHToD+bNm8dXX32FVqvl/vvvlxyoQnKgfkkOCFF31zIHzp6N5oMPPgDgyy+/ZGbUTN7Y/ibamzZRWDCUtDR/MjMLiI1Nr9ZzqmrPKN0XQHx8hv49arWS4rKaG3kbWtO7OptRXFzMqFGjCA8P59tvv622vKysjNtuuw0vLy927NhBSkoK48aNw9raul5mt6pv16qVtS6mT5/O008/jYuLC0OGDKGoqIjdu3dz8eJFJk+ezMcff4y3tzc9evTAwsKCX375BS8vL1xdXYGKGTc2bdpEZGQktra2uLm5md1XVlYWqampFBUVcezYMb788ktWrVrF999/r99eYGAgy5cvZ8eOHbi5ufHxxx9z/vx5oxBq164dO3fu5MyZMzg6OuLu7k5gYCDff/8969evp3379ixevJhdu3bpn7gIUV9q+8S6LnTXgsGDX+Lo0VhWrFjBiBEjWLFiBXfccQcaTTExMcnExWWya1eKyf3X9EfttTjmxiI5UP8kB4Som2uZA7fe+jjx8XtZuHAho0ePpry8nAcffFBywIDkQP2THBCibq5lDmi17YmP38OcOXN45JFHmDt3Lovv/Z7H1j7NPsuVcDwT28QgDuzPAIx7TtXUEyo2Np39+9OrvafJ0DYzCxYs0Lq4uFT7+dq1a7UWFhba1NRU/c/mzZundXZ21hYVFdV6+xqNRgtoNRqN0c8LCgq0hw8f1hYUFFzxsTc2U5/djz/+qA0LC9Pa2Nho3dzctDfddJN25cqVWq1Wq/3qq6+0YWFhWqVSqXV2dtYOGjRIu3fvXv17V69ere3UqZPWyspKGxAQYHa/gP7Lzs5O27FjR+348eO1e/bsMVovMzNTO3z4cK2jo6NWrVZrX3vtNe24ceO0w4cP169z9OhR7Q033KC1t7fXAtrTp09rCwsLtRMmTNC6uLhoXV1dtY899ph26tSp2u7du1/tR9aitITf4ca2fftZ7bRp27Xbt5+9JtsvLi7Wjho1Sgtora2ttatWrdKeOZOl/eOPk9ozZ7KuaP+G7zHc1pUwd31saI2VA1pt8/93JDnQujX339+m4FrnQFlZmfahhx7SAloLCwvt4sWLJQdMkBy4cpIDrVtz//1tCq51DpSXl2snT56s//fy+eefa+NOJGnv/+l/2usWXqcd+tNw7YQPPtLOXf+LdnPi5lp9zV3/i/bh9+dq567/Rfvz7jXamSu+1362/VttZkFmnY/vWuSAQqutrC7XTCxcuJBnn322WnfdN954g9WrVxMbG6v/2enTp+nQoQN79+6lR48eJrdXVFREUVGR/nV2djZ+fn5oNBqcnZ31Py8sLOT06dO0b98eOzu7ej0nIRqC/A43D6WlpYwZM4aff/4ZKysrfv7558vOyrRixVFWrjxOv36++Pu7mC2YunbtKWJikgkP92HYsA51Prbs7GxcXFyqXR8bWmPlAMi/I9G8ye9v81BeXs5jjz3GV199hUKhYMGCBYwfP77G90gOVJAcEKJm8vvbPGi1Wl566SVmzZoFwJw5c3jqqaf46chPzN4zGwuFBfd2uZdebXrp37NjR5L++t6pk6vJ+lIAu3encvhIGt6B8PztY3C3q1vR82uRAxb1spUmIDU1lTZt2hj9TPc6NTXV7PtmzpyJi4uL/svPz++aHqcQQtTEysqKH374gQcffJDS0lImTpxosmaGoZUrj7N16zmWLj1KTEwymzefZe3aUyQkaIzWCw31IDzcp8UWupUcEEK0BBYWFsybN4/HHnsMrVbLo48+SnJyco3vkRyoIDkghGgJFAoF77//PlOnTgVg8uTJHD9+nNHBo1l6+1I6uHZgYdxCvtz/JdlF2QDExCRz6FAGMTHJ+vpSBw9msHt3Kmlpefpt+/s70bmLG97ejo1ybqY0ak2pqVOn8v7779e4Tnx8PEFBQdfsGF5++WUmT56sf617MiKEaF0ae1pmQ1ZWVnz//fc4Ojpyzz336OssmDNyZCCA/gl5Wlqeydl8mkLtiqokB4QQTUVTygELCwu++OIL7O3tiYyMxMfHp8b1JQeujuSAEAKaVg4oFApmzJiBra0tAQEBdO7cGYCOrh1ZPGQxC+MW8tWBr3jr37cYHDCYvjcEAxAe7qOvK6XRFBoVP9d9d/WwJqMgoxHOyrRGbZR6/vnnmTBhQo3rdOhQu67FXl5e/Pfff0Y/O3/+vH6ZOba2ttja2tZqH0KIlquxp2WuytLSki+//NLoZwkJCfj5+WFhYdzJ9e67u3D33V0M1tOgVmc2iyfhkgNCiKaiqeWAQqHgo48+MvrZ2bNn8fb2rjaTnORABckBIcTVaIo5MG3aNKOfJSUloVKp+F+3/xEVEMWsXbP449QfuNntYPiY4fRQ+6BQKFCrlaSl5eHikmOy+HlT0qiNUiqVCpVKVS/bCg8P59133yUtLQ21Wg3Ahg0bcHZ2NpqtQQghTGnsaZkv58iRI9x4440MGzaMb775BhsbG7PrNsUn4eZIDgghmoqmngOJiYlERETQp08ffvjhBxwcHMyuKzkgOSCEqLumngPnz59nwIABtG/fnl9++YV2Lu34fNDnbE/azid7PmFB3AL+OP0Hw9oPo4e6B2q1slpNqaaoURul6iIxMZELFy6QmJhIWVmZvoBhp06dcHR05JZbbiEkJISxY8fywQcfkJqaymuvvcYTTzwhTz6EEJfV1P+A379/P1lZWSxevJiEhARWrFiBp6f5KV2bUvfj+iI5IIS4lpp6DsTFxZGens6vv/5K//79+e2332oc1ic5IDkghKibpp4Dx44dIyUlhRMnThAREcGaNWto3749/dr24wafG/jz9J8sOLSAhXELWXViFd1detMmP5Qu7bybdONUsyl0/sYbb9CjRw/efPNNcnNz6dGjBz169GD37t1AxVCXNWvWYGlpSXh4OGPGjGHcuHG89dZbjXzkQghRISFBY7LwbG3ccMMQnnnmc+ztHdm6dStdu/Zi06b/zK6v634cF5d5NYfcpEgOCCGau6vJgZCQCJ5//mscHd3YvXs33br14o8//jG7vuSA5IAQoum5mhzw9+/GlCnf4uqq5vDhw4SF9Wb58nUAWFtYc2fHO1l2+zI+vOlDAl0D2Za2mWU5n/JV/Fy2nt1KVlFWPZ9N/VBotVptYx9EU2JuikOZPlM0d/I73PiudCruhAQNCxceYvfu85SWpvDvv++SlZWCUunE8uXLGDJkiH493VNxoN6fkDeVqcCvtZrOU/4dieZMfn8bX33kgFabyc6dM8jIOIOtrT0//PA999xzj349yYGrJzkgWir5/W189ZEDCkU2u3fPJCXlGFZWNnz99Zf62ny6HAgOcSMx7zRLDi0nweIASfmJaNHiYuOCv7M/bR3bMrXvVNzt3Ot0/NciB5pNTykhhGhKruQpx5VOxR0Xl0lGRiGdOrly3303sXjxn4SG9iYvL4dhw4bxxx9/6NfTPRUPCHDBxcWGhQsPER19rk77E0IIcXmNlQP33HMDP/zwBz179qOoqIBRo0bx008/6deTHBBCiIbRWDkwcmQvvv/+dyIibqW0tJj/+7//Y968efr1YmKSiT98kf6hPRnb9nGuj5/Cy20/5amwp+im6sbFwoskZCdg0USag5pNTSkhhGhKrmR2jisdpx4a6kFaWj6gZeBAfwICXBg8eDvPPPMMe/fuJSoqSr+e4feNGxPYuDERgMjItnXerxBCCPMaOwcGDfqbV155hT/++IM777xTv57hd8kBIYS4dho7B26+eS3vvPMOixYt4r777tOvZ/h948YENm9MwVLrz5tvPoxWqyWvJI/CskJcbJtG/aym0TQmWoQJEyZw11136V8PGDCAZ5999qq2WR/bEOJauNKnHFciIMAFtdqBkyc1+togtra2zJ8/ny1btuiLt3p72+Pmdl4fdFFRAURF+RMVFXDNj1EIkBwQrUtj54CVlRUffPABu3btwtHREYC2bR1xdk6WHBCNRnJAtCaNnQMWFha88cYbHDx4EHf3imF4/v7OODqeM5sDCoUCRxtHPO09USgU1/y4a0N6SrUCEyZMYNGiRQBYW1vj7+/PuHHjeOWVV7Cyuna/AitXrsTa2rpW627ZsoWBAwdy8eJFXF1dr2gbQjSkhp6dw9wUtYZTgr/11lvMmDGDZ599lnfffZfIyLZGT8ajo8+xcWMCUVEB8sS8lZEcEKL+NcUcmD17NlOmTOHhhx/mo48+khwQepIDQtS/ppgD3333Hf/73/8YPXo0n332WbPIAekp1UoMGTKElJQUjh8/zvPPP8+0adOYNWtWtfWKi4vrbZ/u7u44OTk1+jaEaAkCAlwYNqyD2eDTarVkZmai1Wr55JNP6NWrl342Ih3dMI6NGxMa4pBFEyM5IETzdrkcAMjIyADgq6++olu3bmzbts1oueRA6yY5IETzVpscSEtLw8LCgh9//JGuXbuyfv16o+VNMQekUaqVsLW1xcvLi4CAAB577DGioqJYvXq1vovtu+++i4+PD126dAHg7Nmz3Hvvvbi6uuLu7s7w4cM5c+aMfntlZWVMnjwZV1dXPDw8ePHFF6k6kWPVrrZFRUW89NJL+Pn5YWtrS6dOnfj22285c+YMAwcOBMDNzQ2FQqGfPaDqNi5evMi4ceNwc3PDwcGBoUOHcvz4cf3yhQsX4urqyvr16wkODsbR0VEfwEK0ZAqFgnnz5rFmzRq8vLyIj4+nb9++PPvss2RnZwMyjKO1kxyQHBAt38yZM/n777/x9/fn9OnT9O/fn0ceeYQLFy4AkgOtneSA5IBo+V5++WWio6MJDAwkKSmJIUOGMGbMGFJTU4GmmQPSKNVK2dvb65+CbNq0iaNHj7JhwwbWrFlDSUkJt956K05OTmzbto3o6Gj9xVz3no8++oiFCxfy3XffsX37di5cuMCvv/5a4z7HjRvHkiVL+PTTT4mPj+fLL7/E0dERPz8/VqxYAcDRo0dJSUlhzpw5JrcxYcIEdu/ezerVq4mJiUGr1TJs2DBKSkr06+Tn5/Phhx+yePFitm7dSmJiIlOmTKmPj02IJu+2227j0KFD3H///ZSXlzNnzhyCgoLYunUrkZFtefPNyCbTVVc0LskBIVqmgQMHcvDgQSZOnIhWq+Wrr76iS5curFu3TnJAGJEcEKJluuGGG4iNjeXpp59GoVDw448/EhQUxPLly5tkDkhNqauUn5/PkSNHGny/QUFBRmNHa0ur1bJp0ybWr1/PU089RXp6Okqlkm+++QYbGxsAfvjhB8rLy/nmm2/0xc8WLFiAq6srW7Zs4ZZbbmH27Nm8/PLLjBw5EoD58+dX6xpo6NixYyxbtowNGzboZwrr0KGDfrmuMJtarTYaQ27o+PHjrF69mujoaCIiIgD48ccf8fPzY9WqVYwaNQqAkpIS5s+fT8eOHQF48skneeutt+r8WQnRXHl4eLBkyRL+7//+jyeeeIKkpCQCAprO05CWRnJAckCIpsbZ2Zlvv/2WCRMm8Pjjj3PkyBH8/f0b+7BaLMkByQEhmhoHBwfmzJnD2LFjefTRR9m7dy9+fn6NfVgmSaPUVTpy5Ai9evVq8P3u2bOHnj171nr9NWvW4OjoSElJCeXl5Tz44INMmzaNJ554gq5du+oDCGD//v2cOHGi2tjtwsJCTp48iUajISUlhb59++qXWVlZ0bt372pddnViY2OxtLSkf//+dTzTS+Lj47GysjLar4eHB126dCE+Pl7/MwcHB30AAXh7e5OWlnbF+xWiubrllls4ePAgu3fvNmqUKi8vx8JCOsrWF8mBCpIDQjQ9/fr1Y+/evcTExBASEqL/ueRA/ZIcqCA5IETT07t3b3bu3MnWrVuN/t2UlZVhaWnZiEd2iTRKXaWgoCD27NnTKPuti4EDBzJv3jxsbGzw8fExmmVDqVQarZubm0uvXr348ccfq21HpVJd0fHa29tf0fuuRNXZORQKhdlwFKKls7Oz48Ybb9S/LisrkxuReiY5UDuSA0I0Dmtra2666Sb96/Ly8iYzDXhLITlQO5IDQjQOS0tLfc02aHo5II1SV8nBwaFOTygai1KppFOnTrVat2fPnvz888+o1WqcnZ1NruPt7c3OnTv1f+SUlpbW+LSma9eulJeX888//+i76xrSPZkpKysze1zBwcGUlpayc+dOfXfdzMxMjh49avT0T4jWICFBQ1xcJqGhHnWaitbCwqJJhVBLIDkgOSBEY7jSHFAoFJID9UxyQHJAiMbQUnJAHpeLakaPHo2npyfDhw9n27ZtnD59mi1btvD0009z7tw5AJ555hnee+89Vq1axZEjR3j88cfJysoyu8127doxfvx4Jk6cyKpVq/TbXLZsGQABAQEoFArWrFlDeno6ubm51bYRGBjI8OHDmTRpEtu3b2f//v2MGTMGX19fhg8ffk0+CyEaQ3T0OaZPjyY6+pzZdeLiMomJSSYuLrNO225KASSaLskBIRrf5bJAckBcS5IDQjS+1pID0iglqnFwcGDr1q34+/szcuRIgoODeeihhygsLNQ/KXn++ecZO3Ys48ePJzw8HCcnJ0aMGFHjdufNm8c999zD448/TlBQEJMmTSIvLw8AX19fpk+fztSpU2nTpg1PPvmkyW0sWLCAXr16cfvttxMeHo5Wq2Xt2rXVuugK0Zxt3JjAxo2JbNyYYHad0FAPwsN9CA31aMAjE62F5IAQje9yWSA5IK4lyQEhGl9ryQGFVgbXGsnOzsbFxQWNRmPUVbWwsJDTp0/Tvn177OzsGvEIhbgy8jvcfERHn2PjxgSiogKa1HSt5q6PLU1N5yn/jkRzJr+/zUtTzALJAfl3JJo3+f1tXlpLDkhNKSGEaGIiI9s2meARQgjROCQLhBCidWstOSDD94QQopmrTQ0qIYQQLZfkgBBCtG7NOQekp5QQQjRzuvHmQKt4miKEEMKY5IAQQrRuzTkHpFFKCCGauaioAKPvQgghWhfJASGEaN2acw5Io5QQQjRzrWW8uRBCCNMkB4QQonVrzjkgNaWEEEIIIYQQQgghRIOTRikhhBBCCCGEEEII0eCkUUoIIYQQQgghhBBCNDhplBJCCCGEEEIIIYQQDU4apepBYUkZ2YUlDfZVWFLW2Kds1oQJE7jrrrv0rwcMGMCzzz57Vdusj21czpYtW1AoFGRlZV3T/VxrCoWCVatWNfZhCNH6lBRAoabhvkoKGvuMzZIcaFySA0I0jsLSQnKKcxrsq7C0sLFP2SzJgcYlOSCaG5l97yoVlpTxV1wqmsKSBtuni501t4R6YWdtWav1J0yYwKJFiwCwtrbG39+fcePG8corr2BldW1/BVauXIm1tXWt1t2yZQsDBw7k4sWLuLq6XtE2rlRERAQpKSm4uLjU+j0TJkwgKytLLvqiSUlI0BAXl0loqAcBAZd+n6Ojz7FxYwJRUQHNdmaOJqukAI6shcKshtunnSsEDQNr+1qtLjlweZIDoqUwlwMgWXCtFJYWsjlxM9nF2Q22T2cbZwb6D8TOyq5W60sOXJ7kgGgpmlsOSKPUVSouK0dTWIKdlSW2Vte+41lRacX+isvKa90oBTBkyBAWLFhAUVERa9eu5YknnsDa2pqXX3652rrFxcXY2NjUy/G6u7s3iW1cjo2NDV5eXtd8P6bU5+ctRFxcJjExyQD6EEpI0DB3bizHjl0EaDIB1GKUFVc0SFnZVXxda6WFFfsrK651oxRIDlyO5IBoKczlQFxcJhs2nGH37vOAZEF9KikvIbs4G1srW2wtba/5/orKisguzqakvAQ7ap87kgM1kxwQLUVzywEZvldPbK0scLCxuuZfV9rwZWtri5eXFwEBATz22GNERUWxevVq4FIX23fffRcfHx+6dOkCwNmzZ7n33ntxdXXF3d2d4cOHc+bMGf02y8rKmDx5Mq6urnh4ePDiiy+i1WqN9lu1q21RUREvvfQSfn5+2Nra0qlTJ7799lvOnDnDwIEDAXBzc0OhUDBhwgST27h48SLjxo3Dzc0NBwcHhg4dyvHjx/XLFy5ciKurK+vXryc4OBhHR0eGDBlCSkqK2c+nanfdy21j2rRpLFq0iN9++w2FQoFCoWDLli21+txMfd6vvPIKffv2rXZc3bt356233gJg165dDB48GE9PT1xcXOjfvz979+41e06idQoN9SA83IfQUA/9z+LiMrGysqRzZzeiogIa8ehaOCs7sHG49l9X2PAlOSA5IFoHczkQE5OMr68TUVH+kgXXiK2lLfZW9tf860obviQHJAdE69DcckAapVope3t7iouL9a83bdrE0aNH2bBhA2vWrKGkpIRbb70VJycntm3bRnR0tP5CrHvfRx99xMKFC/nuu+/Yvn07Fy5c4Ndff61xv+PGjWPJkiV8+umnxMfH8+WXX+Lo6Iifnx8rVqwA4OjRo6SkpDBnzhyT25gwYQK7d+9m9erVxMTEoNVqGTZsGCUll4ZQ5ufn86Odv8kAAQAASURBVOGHH7J48WK2bt1KYmIiU6ZMqdNnVNM2pkyZwr333qsPppSUFCIiImr1uZn6vEePHs1///3HyZMn9evExcVx4MABHnzwQQBycnIYP34827dv599//yUwMJBhw4aRk5NTp/MSLVtAgAvDhnUw6qobGurBffd1YcaMfk3miYhofJIDlyc5IJojczkQHu7DqFGdefPNSMkCAUgO1IbkgGiOmlsOyPC9Vkar1bJp0ybWr1/PU089pf+5Uqnkm2++0Xcb/eGHHygvL+ebb75BoVAAsGDBAlxdXdmyZQu33HILs2fP5uWXX2bkyJEAzJ8/n/Xr15vd97Fjx1i2bBkbNmwgKioKgA4dOuiX67rlqtVqozHkho4fP87q1auJjo4mIiICgB9//BE/Pz9WrVrFqFGjACgpKWH+/Pl07NgRgCeffFL/hKG2atqGo6Mj9vb2FBUVGXXzrc3nBtU/b6h4CvLTTz/x+uuv68+rb9++dOrUCYCbb77Z6Pi++uorXF1d+eeff7j99tvrdG6idQkIcKk2nly0XpIDtSc5IFoKyQFhSHKg9iQHREvRlHNAekq1EmvWrMHR0RE7OzuGDh3Kfffdx7Rp0/TLu3btanRB3L9/PydOnMDJyQlHR0ccHR1xd3ensLCQkydPotFoSElJMepiamVlRe/evc0eQ2xsLJaWlvTv3/+KzyM+Ph4rKyuj/Xp4eNClSxfi4+P1P3NwcNCHB4C3tzdpaWl12teVbONyn5tO1c8bYPTo0fz0009AxR8LS5YsYfTo0frl58+fZ9KkSQQGBuLi4oKzszO5ubkkJibW6byEEK2T5IDkgBCidZMckBwQoimSnlKtxMCBA5k3bx42Njb4+PhUm2VDqVQavc7NzaVXr178+OOP1balUqmu6Bjs7WtfkPdqVZ2dQ6FQVBvffi22UdvPrernDfDAAw/w0ksvsXfvXgoKCjh79iz33Xeffvn48ePJzMxkzpw5BAQEYGtrS3h4uFE3YCGEMEdyQHJACNG6SQ5IDgjRFEmjVCuhVCr13T5ro2fPnvz888+o1WqcnZ1NruPt7c3OnTu56aabACgtLWXPnj307NnT5Ppdu3alvLycf/75R99d15DuSUFZWZnZ4woODqa0tJSdO3fqu+tmZmZy9OhRQkJCan1+9cHGxqbasdbmczOnbdu29O/fnx9//JGCggIGDx6MWq3WL4+Ojmbu3LkMGzYMqCigmJGRcfUnIlqcmqaBFa2X5ED9kxwQTZXkgDBFcqD+SQ6Ipqo55YAM3xMmjR49Gk9PT4YPH862bds4ffo0W7Zs4emnn+bcuXMAPPPMM7z33nusWrWKI0eO8Pjjj+tnqzClXbt2jB8/nokTJ7Jq1Sr9NpctWwZAQEAACoWCNWvWkJ6eTm5ubrVtBAYGMnz4cCZNmsT27dvZv38/Y8aMwdfXl+HDh1+Tz6Km8zlw4ABHjx4lIyODkpKSWn1uNRk9ejRLly7ll19+MeqqCxXnvnjxYuLj49m5cyejR49u0KdNovnQza4RF5fZ2IcimjHJgcuTHBBNleSAqA+SA5cnOSCaquaUA9IoVU+KSsvJLy695l9FpeUNcj4ODg5s3boVf39/Ro4cSXBwMA899BCFhYX6Fv/nn3+esWPHMn78eMLDw3FycmLEiBE1bnfevHncc889PP744wQFBTFp0iTy8vIA8PX1Zfr06UydOpU2bdrw5JNPmtzGggUL6NWrF7fffjvh4eFotVrWrl1brXvttTZp0iS6dOlC7969UalUREdH1+pzq8k999xDZmYm+fn53HXXXUbLvv32Wy5evEjPnj0ZO3YsTz/9tNGTEyF0TE0DKxpAaSEU51/7r9LCBjkdyYHLkxwQTZXkQOMoKiuioLTgmn8VlRU1yPlIDlye5IBoqppTDii0dR1Y28JlZ2fj4uKCRqMxumgUFhZy+vRp2rdvj52d3aWfl5TxV1wqmsISU5u7JlzsrLkl1As7a8sG26do/sz9DgtRW+aujy1NTedp8t9RSQEcWQuFWQ13kHauEDQMrOXpqKg9yQFxtSQHTP87KiwtZHPiZrKLsxvsGJ1tnBnoPxA7K/m3LGpPckBcrWuRA1JT6irZWVtyS6gXxWUN04MJwMbSQhqkhBCiqbC2r2ggKmvAIqOWNtIgJYQQTYSdlR0D/QdSUt5wD6mtLaylQUoI0SJIo1Q9sLO2lEYiIYRozaztpZFICCFaMTsrO+yQRiIhhKgrqSklhBBCCCGEEEIIIRqcNEoJIYQQQgghhBBCiAYnjVJCCCGEEEIIIYQQosFJo5QQQgghhBBCCCGEaHDSKCWEEEIIIYQQQgghGpw0SgkhhBBCCCGEEEKIBieNUkIIIYQQQgghhBCiwUmjlBBCCCGEEEIIIYRocNIo1cIpFIoav6ZNm9ZgxzJgwAD9fu3s7AgJCWHu3Ln65QsXLsTV1bXBjkcIIVoDyQEhhGjdJAeEEE2ZNEq1cCkpKfqv2bNn4+zsbPSzKVOm6NfVarWUlpZe0+OZNGkSKSkpHD58mHvvvZcnnniCJUuWXNN9CtGcJCRoWLv2FAkJmsY+FNFCSA4I0bxIDoj6JjkgRPPS2nKg2TRKvfvuu0RERODg4GC29dxUy//SpUsb9kCbGC8vL/2Xi4sLCoVC//rIkSM4OTnx559/0qtXL2xtbdm+fTsTJkzgrrvuMtrOs88+y4ABA/Svy8vLmTlzJu3bt8fe3p7u3buzfPnyyx6Pg4MDXl5edOjQgWnTphEYGMjq1avr+ayFaL7i4jKJiUkmLi6zsQ+lyZEcuDKSA0I0L5ID5kkOXBnJASGal9aWA1aNfQC1VVxczKhRowgPD+fbb781u96CBQsYMmSI/nVDdP/My8szu8zS0hI7O7tarWthYYG9vf1l11UqlVdwlOZNnTqVDz/8kA4dOuDm5lar98ycOZMffviB+fPnExgYyNatWxkzZgwqlYr+/fvXet/29vYUFxdf6aEL0eKEhnoYfReXSA5cIjkgRMslOWCe5MAlkgNCtFytLQeaTaPU9OnTgYpxxjVxdXXFy8urAY7oEkdHR7PLhg0bxh9//KF/rVaryc/PN7lu//792bJli/51u3btyMjIqLaeVqu98oM14a233mLw4MG1Xr+oqIgZM2awceNGwsPDAejQoQPbt2/nyy+/rFUIlZWVsWTJEg4cOMDDDz98xccuREsTEOBCQIBLYx9GkyQ5cInkgBAtl+SAeZIDl0gOCNFytbYcaDbD92rriSeewNPTkz59+vDdd9/V+wW7Jerdu3ed1j9x4gT5+fkMHjwYR0dH/df333/PyZMna3zv3LlzcXR0xN7enkmTJvHcc8/x2GOPXc3hCyGEEcmBupMcEEK0JJIDdSc5IIRoLM2mp1RtvPXWW9x88804ODjw119/8fjjj5Obm8vTTz9t9j1FRUUUFRXpX2dnZ9d5v7m5uWaXWVpaGr1OS0szu66FhXEb4ZkzZ+p8LFeiavdfCwuLauFdUlKi/2/d+f7xxx/4+voarWdra1vjvkaPHs2rr76Kvb093t7e1c5ZCCGuhuTAlZEcEEK0FJIDV0ZyQAjRWBq1UWrq1Km8//77Na4THx9PUFBQrbb3+uuv6/+7R48e5OXlMWvWrBpDaObMmfquwFeqLmO6r9W69UmlUnHo0CGjn8XGxmJtbQ1ASEgItra2JCYm1mm8OICLiwudOnWqt2MVQjRvkgP1t259khwQQjQUyYH6W7c+SQ4IIRpKozZKPf/880yYMKHGdTp06HDF2+/bty9vv/02RUVFZlvsX375ZSZPnqx/nZ2djZ+f3xXvsyW4+eabmTVrFt9//z3h4eH88MMPHDp0iB49egDg5OTElClTeO655ygvL+fGG29Eo9EQHR2Ns7Mz48ePb+QzEEI0F5IDTZPkgBCioUgONE2SA0KIhtKojVIqlQqVSnXNth8bG4ubm1uNXUhtbW0v28W0tbn11lt5/fXXefHFFyksLGTixImMGzeOgwcP6td5++23UalUzJw5k1OnTuHq6krPnj155ZVXGvHIhRDNjeRA0yQ5IIRoKJIDTZPkgBCioSi0zaTyX2JiIhcuXGD16tXMmjWLbdu2AdCpUyccHR35/fffOX/+PDfccAN2dnZs2LCBKVOmMGXKlDp1x83OzsbFxQWNRoOzs7P+54WFhZw+fZr27dsbTekqRHMhv8MtS3T0OTZuTCAqKoDIyLYNsk9z18eG0tg5APLvSDRv8vvbskgOSA4IUVfy+9uytJQcaDaFzt944w0WLVqkf63rOrp582YGDBiAtbU1X3zxBc899xxarZZOnTrx8ccfM2nSpMY6ZCGEuGY2bkxg48ZEgAYLocYmOSCEEJdIDkgOCCFat5aSA82mUWrhwoUsXLjQ7PIhQ4YwZMiQhjsgIYRoRFFRAUbfWwPJASGEuERyoDrJASFEa9JScqDZNEoJIYS4JDKybbN+IiKEEOLqSA4IIUTr1lJywKKxD0AIIYQQQgghhBBCtD7SKCWEEEIIIYQQQgghGpw0StVReXl5Yx+CEFdEfneFqD/NZOJaIYxIDghRfyQHRHMkOSCaIqkpVUs2NjZYWFiQnJyMSqXCxsYGhULR2IclxGVptVqKi4tJT0/HwsICGxubxj4kIZota2trFAoF6enpqFQqyQHRLEgOCFF/JAdEcyQ5IJoyaZSqJQsLC9q3b09KSgrJycmNfThC1JmDgwP+/v5YWEgHSSGulKWlJW3btuXcuXOcOXOmsQ9HiDqRHBDi6kkOiOZMckA0RdIoVQc2Njb4+/tTWlpKWVlZYx+OELVmaWmJlZWVPM0Toh44OjoSGBhISUlJYx+KELUmOSBE/ZEcEM2R5IBoqqRRqo4UCgXW1tZYW1s39qEIIYRoJJaWllhaWjb2YQghhGgkkgNCCFE/pN+eEEIIIYQQQgghhGhw0iglhBBCCCGEEEIIIRqcNEoJIYQQQgghhBBCiAYnNaWq0Gq1AGRnZzfykQghRNOiuy7qrpMtleSAEEKYJjkghBCt27XIAWmUqiInJwcAPz+/Rj4SIYRomnJycnBxcWnsw7hmJAeEEKJmkgNCCNG61WcOKLQt/VFHHZWXl5OcnIyTk1OdpsvMzs7Gz8+Ps2fP4uzsfA2P8NqS82haWsJ5tIRzADkPqHgikpOTg4+PDxYWLXf0t+SAnEdTIufRdLSEcwDJgdqQHJDzaErkPJqOlnAO0PRyQHpKVWFhYUHbtm2v+P3Ozs7N+hdUR86jaWkJ59ESzgHkPFryk3EdyYEKch5Ni5xH09ESzgEkB2oiOVBBzqNpkfNoOlrCOUDTyYGW+4hDCCGEEEIIIcT/s3fn4VGV5//H37PPZJLJMtn3AIFAgABhMURRAQVxQ61brVvrWq1aa22tttb+au3yrdpa19at7lpxR1QiyKpAICwhbCHJZJ/sk8xMZv/9EWdMIGwakhju13XlCpmcmfOck0me63y4n/sIIcSwJaGUEEIIIYQQQgghhBh0EkoNEJ1Ox/33349OpxvqoXwnchzDy0g4jpFwDCDHIY5spJxbOY7hRY5j+BgJxwAj5ziGo5FybuU4hhc5juFjJBwDDL/jkEbnQgghhBBCCCGEEGLQSaWUEEIIIYQQQgghhBh0EkoJIYQQQgghhBBCiEEnoZQQQgghhBBCCCGEGHQSSgkhhBBCCCGEEEKIQSeh1HHy4IMPMnv2bMLCwoiKihrq4Ry1xx9/nMzMTPR6PbNmzWLDhg1DPaRjsmrVKs4991ySk5NRKBS8++67Qz2kY/bQQw8xY8YMIiIiiI+PZ/HixezevXuoh3XMnnzySSZPnozJZMJkMlFQUMDHH3881MP6zv785z+jUCi44447hnoox+T3v/89CoWiz0dOTs5QD2tEk3lgaMg8MHzIPDC8yDww+GQeGBoyDwwfMg8ML8N1HpBQ6jhxu91cfPHF3HzzzUM9lKP2xhtvcOedd3L//fezefNm8vLyWLBgAVardaiHdtTsdjt5eXk8/vjjQz2Ub+2LL77glltu4csvv+Szzz7D4/Fw5plnYrfbh3poxyQ1NZU///nPFBcXs2nTJubOncv5559PaWnpUA/tW9u4cSNPP/00kydPHuqhfCu5ubnU19eHPtasWTPUQxrRZB4YGjIPDB8yDww/Mg8MLpkHhobMA8OHzAPDz7CcBwLiuHr++ecDkZGRQz2MozJz5szALbfcEvra5/MFkpOTAw899NAQjurbAwLvvPPOUA/jO7NarQEg8MUXXwz1UL6z6OjowH/+85+hHsa30tnZGcjOzg589tlngVNPPTVw++23D/WQjsn9998fyMvLG+phnJBkHhg6Mg8MPzIPDB2ZB4aOzANDR+aB4UfmgaEzXOcBqZQSQM//5BQXFzN//vzQY0qlkvnz57N+/fohHJno6OgAICYmZohH8u35fD5ef/117HY7BQUFQz2cb+WWW27h7LPP7vM78n2zd+9ekpOTGTVqFFdccQUWi2WohySGEZkHhi+ZB4YHmQfESCfzwPAl88DwIPPA8aEe6gGI4aG5uRmfz0dCQkKfxxMSEti1a9cQjUr4/X7uuOMOCgsLmThx4lAP55ht376dgoICuru7CQ8P55133mHChAlDPaxj9vrrr7N582Y2btw41EP51mbNmsULL7zAuHHjqK+v54EHHuCUU05hx44dREREDPXwxDAg88DwJPPA8CDzgDgRyDwwPMk8MDzIPHD8SKXUMfj1r399UGOwAz/kD7YYSLfccgs7duzg9ddfH+qhfCvjxo2jpKSEr776iptvvpmrr76anTt3DvWwjkl1dTW33347r7zyCnq9fqiH862dddZZXHzxxUyePJkFCxawdOlS2tvbefPNN4d6aN8rMg+IwSbzwNCTeUD0JvOAGGwyDww9mQeOL6mUOga/+MUvuOaaaw67zahRowZnMAMsNjYWlUpFY2Njn8cbGxtJTEwcolGd2G699VY+/PBDVq1aRWpq6lAP51vRarWMGTMGgPz8fDZu3Mg//vEPnn766SEe2dErLi7GarUybdq00GM+n49Vq1bxr3/9C5fLhUqlGsIRfjtRUVGMHTuWffv2DfVQvldkHhCDSeaB4UHmAdGbzANiMMk8MDzIPHB8SSh1DOLi4oiLixvqYRwXWq2W/Px8ioqKWLx4MdBTKlpUVMStt946tIM7wQQCAX72s5/xzjvvsHLlSrKysoZ6SAPG7/fjcrmGehjHZN68eWzfvr3PY9deey05OTn86le/+l5OQABdXV2Ul5dz5ZVXDvVQvldkHhCDQeaB4UXmAdGbzANiMMg8MLzIPHB8SSh1nFgsFlpbW7FYLPh8PkpKSgAYM2YM4eHhQzu4Q7jzzju5+uqrmT59OjNnzuTRRx/Fbrdz7bXXDvXQjlpXV1efpLeiooKSkhJiYmJIT08fwpEdvVtuuYVXX32V9957j4iICBoaGgCIjIzEYDAM8eiO3j333MNZZ51Feno6nZ2dvPrqq6xcuZJPPvlkqId2TCIiIg5av280GjGbzd+rdf133XUX5557LhkZGdTV1XH//fejUqm4/PLLh3poI5bMA0ND5oHhQ+aB4UXmgcEn88DQkHlg+JB5YHgZtvPAEN/9b8S6+uqrA8BBHytWrBjqoR3WY489FkhPTw9otdrAzJkzA19++eVQD+mYrFixot/zfvXVVw/10I5af+MHAs8///xQD+2Y/PjHPw5kZGQEtFptIC4uLjBv3rzAp59+OtTDGhDfx1vAXnrppYGkpKSAVqsNpKSkBC699NLAvn37hnpYI5rMA0ND5oHhQ+aB4UXmgcEn88DQkHlg+JB5YHgZrvOAIhAIBAY+6hJCCCGEEEIIIYQQ4tDk7ntCCCGEEEIIIYQQYtBJKCWEEEIIIYQQQgghBp2EUkIIIYQQQgghhBBi0EkoJYQQQgghhBBCCCEGnYRSQgghhBBCCCGEEGLQSSglhBBCCCGEEEIIIQadhFJCCCGEEEIIIYQQYtBJKCWEEEIIIYQQQgghBp2EUkIMIz6fj9mzZ3PhhRf2ebyjo4O0tDTuvffeIRqZEEKIwSDzgBBCCJkLxIlEEQgEAkM9CCHEN/bs2cOUKVP497//zRVXXAHAVVddxdatW9m4cSNarXaIRyiEEOJ4knlACCGEzAXiRCGhlBDD0D//+U9+//vfU1payoYNG7j44ovZuHEjeXl5Qz00IYQQg0DmASGEEDIXiBOBhFJCDEOBQIC5c+eiUqnYvn07P/vZz7jvvvuGelhCCCEGicwDQgghZC4QJwIJpYQYpnbt2sX48eOZNGkSmzdvRq1WD/WQhBBCDCKZB4QQQshcIEY6aXQuxDD13HPPERYWRkVFBTU1NUM9HCGEEINM5gEhhBAyF4iRTiqlhBiG1q1bx6mnnsqnn37KH//4RwCWL1+OQqEY4pEJIYQYDDIPCCGEkLlAnAikUkqIYcbhcHDNNddw8803c/rpp/Pss8+yYcMGnnrqqaEemhBCiEEg84AQQgiZC8SJQiqlhBhmbr/9dpYuXcrWrVsJCwsD4Omnn+auu+5i+/btZGZmDu0AhRBCHFcyDwghhJC5QJwoJJQSYhj54osvmDdvHitXruTkk0/u870FCxbg9XqlZFcIIUYwmQeEEELIXCBOJBJKCSGEEEIIIYQQQohBJz2lhBBCCCGEEEIIIcSgk1BKCCGEEEIIIYQQQgw6CaWEEEIIIYQQQgghxKCTUEoIIYQQQgghhBBCDDoJpYQQQgghhBBCCCHEoJNQSgghhBBCCCGEEEIMOgmlhBBCCCGEEEIIIcSgk1BKCCGEEEIIIYQQQgw6CaWEEEIIIYQQQgghxKCTUEoIIYQQQgghhBBCDDoJpYQQQgghhBBCCCHEoJNQSgghhBBCCCGEEEIMOgmlhBBCCCGEEEIIIcSgk1BKCCGEEEIIIYQQQgw6CaWEEEIIIYQQQgghxKCTUEoIIYQQQgghhBBCDDoJpYQQQgghhBBCCCHEoJNQSohBUl1djV6vZ+3atUfc9rTTTuO00077Vvvxer3cfffdpKWloVQqWbx48bd6nSN54YUXUCgUVFZWHnHbZcuWER4eTlNT03EZixBCCCGEEEKI7x8JpcSIU15ezo033sioUaPQ6/WYTCYKCwv5xz/+gdPp7LOtz+fj+eef57TTTiMmJgadTkdmZibXXnstmzZtCm0XDGCCH3q9nrFjx3LrrbfS2Nh4VOP6wx/+wKxZsygsLBzQ4z3Qc889x9/+9jd+8IMf8OKLL/Lzn//8uO6vtyeeeIIXXnjhoMcXLlzImDFjeOihhwZtLEIIIYQQQgghhjf1UA9AiIH00UcfcfHFF6PT6bjqqquYOHEibrebNWvW8Mtf/pLS0lKeeeYZAJxOJxdeeCHLli1jzpw5/OY3vyEmJobKykrefPNNXnzxRSwWC6mpqaHX/8Mf/kBWVhbd3d2sWbOGJ598kqVLl7Jjxw7CwsIOOa6mpiZefPFFXnzxxeN+Dj7//HNSUlJ45JFHjvu+DvTEE08QGxvLNddcc9D3brzxRu666y4eeOABIiIiBn1sQgghhBBCCCGGFwmlxIhRUVHBZZddRkZGBp9//jlJSUmh791yyy3s27ePjz76KPTYL3/5S5YtW8YjjzzCHXfc0ee17r///n5DnbPOOovp06cDcN1112E2m3n44Yd57733uPzyyw85tpdffhm1Ws255577HY/yyKxWK1FRUcd9P8fqoosu4mc/+xlvvfUWP/7xj4d6OEIIIYQQQgghhpgs3xMjxl//+le6urp49tln+wRSQWPGjOH2228HoKamhqeffpozzjjjoEAKQKVScdddd/WpkurP3LlzgZ5A7HDeffddZs2aRXh4+EHfe+aZZxg9ejQGg4GZM2eyevXqfl/D5XJx//33M2bMGHQ6HWlpadx99924XC4AKisrUSgUrFixgtLS0tBSw5UrVwLwf//3f8yePRuz2YzBYCA/P5///e9/ffYRfI3+luApFAp+//vfH/IYMzMzKS0t5Ysvvgjtu3dfrPj4eCZPnsx777132HMlhBBCCCGEEOLEIJVSYsT44IMPGDVqFLNnzz7ith9//DFer5crr7zyO+2zvLwcALPZfMhtPB4PGzdu5Oabbz7oe88++yw33ngjs2fP5o477mD//v2cd955xMTEkJaWFtrO7/dz3nnnsWbNGm644QbGjx/P9u3beeSRR9izZw/vvvsucXFxvPTSSzz44IN0dXWF+jeNHz8egH/84x+cd955XHHFFbjdbl5//XUuvvhiPvzwQ84+++zvdB4AHn30UX72s58RHh7OvffeC0BCQkKfbfLz83n33Xe/876EEEIIIYQQQnz/SSglRgSbzUZtbS3nn3/+UW1fVlYGwKRJk45pPx0dHTQ3N9Pd3c3atWv5wx/+gMFg4JxzzjnkcywWC06nk6ysrD6PezwefvOb3zBlyhRWrFiBVqsFYMKECdxwww19QqlXX32V5cuX88UXX3DyySeHHp84cSI33XQT69atY/bs2fzoRz/iP//5DyqVih/96Ed99rdnzx4MBkPo61tvvZVp06bx8MMPD0gotXjxYu677z5iY2MP2nfQqFGjaG5uxmq1Eh8f/533KYQQQgghhBDi+0uW74kRwWazARx1A+1j3T5o/vz5xMXFkZaWxmWXXUZ4eDjvvPMOKSkph3xOS0sLANHR0X0e37RpE1arlZtuuikUSAFcc801REZG9tn2rbfeYvz48eTk5NDc3Bz6CC4fXLFixRHH3juQamtro6Ojg1NOOYXNmzcf+cAHSPAcNDc3D9o+hRBCCCGEEEIMT1IpJUYEk8kEQGdn53HZPujxxx9n7NixqNVqEhISGDduHErl0WW7gUCgz9dVVVUAZGdn93lco9EwatSoPo/t3buXsrIy4uLi+n1tq9V6xP1/+OGH/PGPf6SkpCTUhwp6ekUNluA5GMx9CiGEEEIIIYQYniSUEiOCyWQiOTmZHTt2HNX2OTk5AGzfvp0pU6Yc9X5mzpwZuvve0Qr2m2prazum5/Xm9/uZNGkSDz/8cL/f773Urz+rV6/mvPPOY86cOTzxxBMkJSWh0Wh4/vnnefXVV0PbHSos8vl833rsvQXPQWxs7IC8nhBCCCGEEEKI7y8JpcSIcc455/DMM8+wfv16CgoKDrvtWWedhUql4uWXX/7Ozc6PJD09HYPBcNAd+jIyMoCeKqjgMjzo6TVVUVFBXl5e6LHRo0ezdetW5s2b962qjN5++230ej2ffPIJOp0u9Pjzzz/fZ7vg8rr29vY+jweruo7kSGOrqKggNjb2kBVfQgghhBBCCCFOHNJTSowYd999N0ajkeuuu47GxsaDvl9eXs4//vEPoKey6Prrr+fTTz/lscceO2hbv9/P3//+d2pqar7zuDQaDdOnT2fTpk19Hp8+fTpxcXE89dRTuN3u0OMvvPDCQaHQJZdcQm1tLf/+978Pen2n04ndbj/sGFQqFQqFok/FU2Vl5UF3wjOZTMTGxrJq1ao+jz/xxBOHff0go9F40Nh7Ky4uPmJgKIQQQgghhBDixCCVUmLEGD16NK+++iqXXnop48eP56qrrmLixIm43W7WrVvHW2+9xTXXXBPa/u9//zvl5eXcdtttLFmyhHPOOYfo6GgsFgtvvfUWu3bt4rLLLhuQsZ1//vnce++92Gy2UD8rjUbDH//4R2688Ubmzp3LpZdeSkVFBc8///xBPaWuvPJK3nzzTW666SZWrFhBYWEhPp+PXbt28eabb/LJJ58cdlnh2WefzcMPP8zChQv54Q9/iNVq5fHHH2fMmDFs27atz7bXXXcdf/7zn7nuuuuYPn06q1atYs+ePUd1nPn5+Tz55JP88Y9/ZMyYMcTHx4eqwKxWK9u2beOWW245llMnhBBCCCGEEGKEklBKjCjnnXce27Zt429/+xvvvfceTz75JDqdjsmTJ/P3v/+d66+/PrRtWFgYH3/8MS+88AIvvvgi/+///T8cDgfJycnMnTuXV1555bB31TsWV155Jb/+9a95//33+dGPfhR6/IYbbsDn8/G3v/2NX/7yl0yaNIn333+f3/72t32er1Qqeffdd3nkkUf473//yzvvvENYWBijRo3i9ttvZ+zYsYfd/9y5c3n22Wf585//zB133EFWVhZ/+ctfqKysPCiU+t3vfkdTUxP/+9//ePPNNznrrLP4+OOPiY+PP+Jx/u53v6Oqqoq//vWvdHZ2cuqpp4ZCqSVLlqDT6bjkkkuO9rQJIYQQQgghhBjBFIEDbwkmhDgufvKTn7Bnzx5Wr1491EMZElOnTuW0007jkUceGeqhCCGEEEIIIYQYBiSUEmKQWCwWxo4dS1FREYWFhUM9nEG1bNkyfvCDH7B///6jqrgSQgghhBBCCDHySSglhBBCCCGEEEIIIQad3H1PCCGEEEIIIYQQQgw6CaWEEEIMS6tWreLcc88lOTkZhULBu+++e8TnrFy5kmnTpqHT6RgzZgwvvPDCcR+nEEKI40PmASGEGPkklBJCCDEs2e128vLyePzxx49q+4qKCs4++2xOP/10SkpKuOOOO7juuuv45JNPjvNIhRBCHA8yDwghxMgnPaWEEEIMewqFgnfeeYfFixcfcptf/epXfPTRR+zYsSP02GWXXUZ7ezvLli0bhFEKIYQ4XmQeEEKIkUkqpYQQQowI69evZ/78+X0eW7BgAevXrx+iEQkhhBhMMg8IIcT3j3qoBzDc+P1+6urqiIiIQKFQDPVwhBBi2AgEAnR2dpKcnIxSOfz+T6OhoYGEhIQ+jyUkJGCz2XA6nRgMhn6f53K5cLlcoa/9fj+tra2YzWaZB4QQoheZB4QQ4sR2POYBCaUOUFdXR1pa2lAPQwghhq3q6mpSU1OHehgD5qGHHuKBBx4Y6mEIIcT3hswDQghxYhvIeUBCqQNEREQAPSfZZDIN8WiEEGL4sNlspKWlhf5ODjeJiYk0Njb2eayxsRGTyXTI/x0HuOeee7jzzjtDX3d0dJCeni7zgBBCHEDmASGEOLEdj3lAQqkDBEt0TSaTTEJCCNGP4bqUoaCggKVLl/Z57LPPPqOgoOCwz9PpdOh0uoMel3lACCH6J/OAEEKc2AZyHhh+i8GFEEIIoKuri5KSEkpKSoCeW32XlJRgsViAnv/Zvuqqq0Lb33TTTezfv5+7776bXbt28cQTT/Dmm2/y85//fCiGL4QQ4juSeUAIIUY+CaWEEEIMS5s2bWLq1KlMnToVgDvvvJOpU6fyu9/9DoD6+vrQhQlAVlYWH330EZ999hl5eXn8/e9/5z//+Q8LFiwYkvELIYT4bmQeEEKIkU8RCAQCQz2I4cRmsxEZGUlHR4eU6wohRC8nyt/HE+U4hRDiWJ0ofx9PlOMUQohjdTz+PkqllBBCCCGEEEIIIYQYdBJKCSGEEEIIIYQQQohBJ6GUEEIIIYQQQgghhBh0EkoJIYQQQgghhBBCiEEnoZQQQgghhBBCCCGEGHQSSgkhhBBCCCGEEEKIQSehlBBCCCGEEEIIIYQYdBJKCSHEEKmq6mDp0v1UVXUM9VCEEEIIIYQQYtCph3oAQghxoiotbWH9+joAMjIih3g0QgghhBBCCDG4JJQSQoghkptr7vNZCCGEEEIIIU4kEkoJIcQQyciIlAopIYQQQgghxAlLekoJIYQQQgghhBBCiEEnoZQQQgghhBBCCCGEGHQSSgkhhBBCCCGEEEKIQSehlBBCCCGEEEIIIYQYdBJKCSGEEEIIIYQQQohBJ6GUEEIIIYQQQgghhBh0EkoJIYQQQgghhBBCiEEnoZQQQgghhBBCCCGEGHQSSgkhhBBCCCGEEEKIQSehlBBCCCGEEEIIIYQYdBJKCSGEEEIIIYQQQohBJ6GUEEIIIYQQQgghhBh0EkoJIYQQQgghhBBCiEEnoZQQQgghhBBCCCGEGHQSSgkhhBBCCCGEEEKIQSehlBBCCCGEEEIIIYQYdBJKCSGEEEIIIYQQQohBJ6GUEEIIIYQQQgghhBh0EkoJIYQQQgghhBBCiEEnoZQQQgghhBBCCCGEGHQSSgkhhBBCCCGEEEKIQSehlBBCCCGEEEIIIYQYdBJKCSGEEEIIIYQQQohBJ6GUEEIIIYQQQgghhBh0EkoJIYQQQgghhBBCiEEnoZQQQgyytWtreOCBtaxdWzPUQxFCCCGEEEKIIaMe6gEIIcSJZvnyKpYvtwBQWJg6xKMRQgghhBBCiKEhoZQQQgyy+fMz+nwWQgghhBBCiBORhFJCCDHICgtTpUJKCCGEEEIIccKTnlJCCCGEEEIIIYQQYtBJKCWEEEIIIYQQQgghBp2EUkIIIYQQQgghhBBi0EkoJYQQI1xVVQdLl+6nqqpjqIcihBBCCCGEECHS6FwIIUa40tIW1q+vAyAjI3KIRyOEEEIIIYQQPSSUEkKIES4319znsxBCCCGEEEIMBxJKCSHECJeRESkVUkIIIYQQQohhR3pKCSGEEEIIIYQQQohBN6JCqd///vcoFIo+Hzk5OUM9LCGEEEIIIYQQQghxgBG3fC83N5fly5eHvlarR9whCiGEEEIIIYQQQnzvjbjERq1Wk5iYONTDEEIIIYQQQgghhBCHMaKW7wHs3buX5ORkRo0axRVXXIHFYjns9i6XC5vN1udDCCGEEEIIIYQQQhxfIyqUmjVrFi+88ALLli3jySefpKKiglNOOYXOzs5DPuehhx4iMjIy9JGWljaIIxZCCHEkjz/+OJmZmej1embNmsWGDRsOu/2jjz7KuHHjMBgMpKWl8fOf/5zu7u5BGq0QQoiBJvOAEEKMXCMqlDrrrLO4+OKLmTx5MgsWLGDp0qW0t7fz5ptvHvI599xzDx0dHaGP6urqQRyxEEKIw3njjTe48847uf/++9m8eTN5eXksWLAAq9Xa7/avvvoqv/71r7n//vspKyvj2Wef5Y033uA3v/nNII9cCCHEQJB5QAghRrYRFUodKCoqirFjx7Jv375DbqPT6TCZTH0+hBBCDA8PP/ww119/Pddeey0TJkzgqaeeIiwsjOeee67f7detW0dhYSE//OEPyczM5Mwzz+Tyyy8/4v+qCyGEGJ5kHhBCiJFtRIdSXV1dlJeXk5SUNNRDEWLIrV1bwwMPrGXt2pqhHooQR8XtdlNcXMz8+fNDjymVSubPn8/69ev7fc7s2bMpLi4OXXzs37+fpUuXsmjRokPuR3oLCiHE8CTzgBBCjHwj6u57d911F+eeey4ZGRnU1dVx//33o1KpuPzyy4d6aEIMueXLq1i+vKfxf2Fh6hCPRogja25uxufzkZCQ0OfxhIQEdu3a1e9zfvjDH9Lc3MzJJ59MIBDA6/Vy0003HXbZxkMPPcQDDzwwoGMXQgjx3ck8IIQQI9+IqpSqqanh8ssvZ9y4cVxyySWYzWa+/PJL4uLihnpoQgy5+fMzmD8/nfnzM771axxNtVVVVQdLl+6nqqrjW+/n+0qq0YbeypUr+dOf/sQTTzzB5s2bWbJkCR999BH/7//9v0M+R3oLCiHEyCHzgBBCfL+MqEqp119/faiHIMSwVViY+p0rpI6m2qq0tIX16+sAyMiI/E77+76RarSBFRsbi0qlorGxsc/jjY2NJCYm9vuc3/72t1x55ZVcd911AEyaNAm73c4NN9zAvffei1J58P/F6HQ6dDrdwB+AEEKI70TmASGEGPlGVKWUEOL4Oppqq9xcMwUFyeTmmgdxZMPDQFSjiW9otVry8/MpKioKPeb3+ykqKqKgoKDf5zgcjoMuOFQqFQCBQOD4DVYIIcSAk3lACCFGvhFVKSWEOL6OptoqIyPyhKuQChqIajTR15133snVV1/N9OnTmTlzJo8++ih2u51rr70WgKuuuoqUlBQeeughAM4991wefvhhpk6dyqxZs9i3bx+//e1vOffcc0MXJUIIIb4/ZB4QQoiRTUIpIcSgefvt3SxZspcLL8zmoovGDfVwxPfApZdeSlNTE7/73e9oaGhgypQpLFu2LNT01mKx9Pkf8fvuuw+FQsF9991HbW0tcXFxnHvuuTz44INDdQhCCCG+A5kHhBBiZFMEpI61D5vNRmRkJB0dHZhMpqEejhAjyhVXfMiqVTXMmZPKK6+cM9TDGVRVVR2UlrYQGamlo8NNbq75e1dRdqL8fTxRjlMIIY7VifL38UQ5TiGEOFbH4++jVEoJIQbNhRdm9/l8Igk2gFerFXi9Pf8X8H0LpYQQQgghhBBiIEkoJcQJaO3aGpYvr2L+/Izj3gMpWCGUm2vmoovGnbDL9oKN33tXSg2E3udXQi4hhBBCCCHE94mEUkKcgJYvr2L5cgvAcQ+lghVCcGJXBh2vBvByfoUQQgghhBDfVxJKCXECmj8/o8/n4ylYETRQlUHfxoEN1gezUuxYHWvl03A4v0IIIYQQQgjxbUgoJcQJqLAw9bBhzEAuCTteFULHYsmSvaxaVQPARReNG9RKsWN1rJVPw+H8CiGEEEIIIcS3IaHUAAn4/djXrMF4yikoFIqhHo44AQ1kkDTSloQd2GB9MCvFjlXvyifpFyWEEEIIIYQYySSUGiD2teuovuFGIhYuJPmvf0Gp1Q71kMQIcjThRO8gqaam8zstTxtpS8IObLB+pEqxQxnskGikhYNCCCGEEEII0ZuEUgMk/JSTib7qKtpeeYWKi8pJe/optMnJQz0sMUL0DieCXx8YjPQOkl54YQfLl1tob3eF7vR2LKGGLAnr32CERL33cahwUCqohBBCCCGEECOBhFIDyHTmGdSXN+LesIq955xP+l/+RMQZZwz1sMQI0DucOFQw0jtImj8/A4vFRmlpM62t3Vx6ac5hw4vDhRzBpuAJCWE0NjqOufpqJAUog1FB1nsfhwoHjzYcG0nnXgghhBBCCDHySCg1wHY6ItmhPZ3FymJqfnYbkRdeQOL996PU6YZ6aOJ7rL9wIhhe9Bc8FBam8txz2yktbcbp9GK12qmq6iAjIxK3243L5QJAqVRSUtLGE0+UoFYr+w2vgk3BVSoFPl8g9PqH03tMBwYo3+egZDAqyI5mH/2FY8HzarF0sHp1LRdemI3BoJHlf0IIIYQQQohhS0KpAVJV1cG+9fUkJYZjj4hHMXE64XvX0/He+9i//IqkB/9IeEHBUA9TfM/0F+AcGFqUlrawbl0NjY01pKR043A4WLx4MQAqlZKdOx/i9tut+P0uXC4HHo8n9NzMzEyuueZl9uxpY+zYaB555BZuu20vkZGRJCYmkpqait8fQUyMhqysTKKico+qOfjhlqBJn6Tvrr/gKnheV6+uoby8HYA//ekUYOT0BhNCCCGEEEKMLBJKDZDS0hY2b9pPFm1kT0zFnBBB1MQL0Ofm0v7mm1Rf+2O6ppxC7L33kjVp+N3xSwxPhwpwVq9ezYYNG1i16ks2b95KY6MFj6en+mns2LEsXryYH/94EunpJl54wUdlpbXf1/d6/aGQaeLEWO66q4LKyvJ+t42OjqalpSV0d8l//vOftLe7iIgYw9lnFzJ2bHxo28MtQfs2S+C+z9VVgyV4PlNSjKFKKekNJoQQQgghhBjOJJQaILm5Zt5o+orffvwaWXGZnDGjgJsuPYsxY8cSf/fd7Hn+f+i3fYn9ygtpvvVmzFddhULu0HfCCvZpmjgxFoNBc8iwJTfXTGurlfb2HcCo0OO33HIL27dv77OtVqkkzRBGdksbZSfNJk6j5odqNVMyE1FNHY8pOYlOfSI726MhZRQtLi0zZyaG7kS3dOl+Fi78LaNHaxg/3kh9fT07duxj164KnM4WkpPjUCgUoYDo4YcfpaqqAoC779YwdeoUTjrpJObOncupp57KokWj6M+BQUnwXByuV9XRNHo/kpEabPU+ruA5v+mmqUM8KiGEEEIIIYQ4MgmlBkhGRiR+VScAFU2VPLO0kmeWvkZSVCILZ83mvDknEz0ql4TSVTT9/WHaXnmF+LvuYkfkZJYXWY65ebT4fgv2adqzp41Ro6KAbyqhnE4nRUVFLF26lM8//5zdu3ej0xmYMaOKDJ0T29KPKfT5STCZyNVqyTGEMSougay0FDpdStrtfhzRYcTG6MDnY7LTid/hwLd1G+bmzxkV6OkL5TCaqV+fzqYdhUy8eC4TcuKBgj6hzdKl+4mIqKOgIDkUePQsF6zl5JPPIytrJ5s3b8Jma2Pjxo1s3LiRxx57jEmTJrFt27bQ8fr9fpRK5WHPBRy6V9XRNHo/Urg1UpcNjtTjEkIIIYQQQox8EkoNoKfvv5/Lx0znlY1l7GspY9PuHdS3N/D8J0tYsuYTyt9eQnlKMpXaTeQ0babuF3ehjEqltvskntg9k9TUiNBF5Uit6hA9ei+ZC1ZKffjhhzzzzDMsX74cp9MZ2lahUJBoiGTvtZfjba5FodNxe8YounJmEJmdQcyE0Wwps/HsF/WgVTNhciIZp6QSE2ckEAhgbeykprKd1EQ99bsa2P/VHiYlePDU1RPZtB/DayVUvPovFHo9E8aPR58/jc5p+Rim5PW71C747+uvf4CMjEgCgQCVlZV89dVXrFmzhs8//5zTTj6Z7rIy6ipb2FXexk/+3w2ccuopnHfeeSxatIiYmJiDzsXhelUdrtF70JHCrcG4c9538W1/54f7cQkhhBBCCCHEoUgoNcDaGvxEuXP4ySmn8MsLVbz47ufU2PcwbnQi7e1uln5cSU2tjl9Ul5EbF8mMhkp+qKrAv30VL960nXn3XknhyWlS/TDCHBg4FBamMm6cnvDwcBobXZSWtrBq1UY++OADABLikjhn2mROcrmZWFuLSa1BGWEgouAc7PEZrC110OpUMc2cTGJqImve2Mi2vXY0GiWjxsYRH2cEegKtHaWtbN5sZcyYKLpdamxJY+jOT8RoULFtSy15WTpSacNjseBtaKD99Tdo/c+zAPjMCYzJGU/t0gS8U3NQxMWzv8HL+PEJJDjdODbvx9vYgG/7PkaV7mNqZxO3RcfgLvqcis9XAFBvt9NgbeCtt97irbfeQqVSMWfOHM4443yysk6moGAM999feNjz9/bbu1myZC8XXpjNRReN6/d34kjhVu9g63AB0HcNhL/t87/t77z0jRJCCCGEEEJ8X0koNcCSEsOJsHrwevyoCWNaRj7jnXmMGR3F9m1NuD0+nIE2alrrqGmt4xPgj8BofT2n1e1g60/eIPsPv2FC/jxAqh9GimDg4HTaWb16K6+99hqffvopL7/8MhERM1i/vo7sjJNYPG0Rs2x2zlY3oa6yoM3KonPmaayyGulUR3NqxljsTj8t3V5cbi8lW6wYw9QUFCTR0eFCrVFg63Dxn/9so7AwmfHjYwEFLpeXnTtbMRrVJCSGYQxTY3d4Of3MbOLjjJSVNVNiiWLK/NPITtXz1pNf4K6oJMveTdSm7YR5v8S9/A0AUoBuoKLX8fm1ehRqI46YGGLGjcN40kmooqOpbXbTtbKSX6mqqfNV81VLHXucDlasWMGKFStQKlXcccefue226w8b5CxZspdVq2oAuOiicf2e42BvrGP5ecDBAdC3CYd6h2YGg+ZbhUtS8SSEEEIIIYQ40UgoNYDqG+3UN3Th92tpaHCQnBzB1KkJlO5sZt/edvQ6DZmZJqKitBTO+QO76stYvnEju6rLKe92UN7t4NnWVjbd/FPuzMomYd55bO84k+7uNMaNS5Alfd8zwR5H8+al43LtZ+PGf/PII0ux27tC23y6bAW/OTOMuH0fEv7+Bk52ddNlisOXPQv9hPHU+E1s3u1g3d56/D4bdn8VBQVJmEwampq87CxroaPDxZVXTeAPs1N55529LHlnDx63D4vFxq0/m8qkybFYm+w0NjhISAxj3rwMPllWwdq1tYwaFcm5545h6dIKaut6xjV+4gSawlMp8WnZ4tOgV/lJT9XS2dhKZ20TBqWXMRlGJuYlUtPoJHF0EomjE2hucpOSFUN0SgwKlQqA6qJK9oepMJjHceuF2fwz3cDuoiKWfLyU96uq2OVycUa0gtLtTaz/qoHy8p2MH69n7ty5VFd3smJFNRDglFNSALjwwuxv/fMI/v5YLB0sW1ZJbq653wDo24RDvUOzP/3plEM+/3C/w1LxJIQQQgghhDjRSCg1gCr327DbvSQlxZCVZWLS5FgAKio6sHW4gABeT4Cqyk5ibDp+dO4FPPjT6ylatZcPVq5nf+setlaUkpk/n7YuGzEfvELt6//mwtpqMlJzUOjGkZIynnPPPY1x47KYODG2z3Kkt97aQ21tJz/4wVhpmj4MLF9exbJlu3n88StpavqmrigpIY0zJ+YzvTPAnI1f4V7/BVFJSegKZuGKS8NJFNHjkqmu72bN6lpaW51kZprwegKoVAqqLDZsNg/t7d102lzUBgJs39bMvHlGWlqcdDu9uD1+GhvtbN/WTGSUjil58dizvaSnRxAfZ8Ri6aStzUVFhY3PlldhsdiIjOzZDuCM+RmEGTT4fD5UKhWFhcm8/fZutu1ToFBAU7eJyVPyMDu8JH39mgn9ngUFUVE6pk5N+LpqCyacdx7jzz6bO0tK2PH++yS//B/al7xPzqyLeG7tZ9x224ekpKRx2mkXYrNNIiwsnquuyuWVV77bHeWCFVCrV9dQXt6O0ajpNwT6NuFQMCy78MLswz5fluUKIYQQQgghxDcklBpAmaNMaMebSZ42OtTTZ1NxAz5/gMTEcFpautm1q4X6BjtNTQ5iYuqwO7wkx0Xzo7PPpKN9DvX1duITwvBG69lZWs6a5a/g8fvYZykFStm7F1aufBCjMYbc3Cncf//vgRSsVjsffLCPpiYnUVG6g0Kp3ncmS02N4K239rBxYx3h4Vp+/ONJEmINoKqqKjIyMpg4MZY9e9pobY2kq1PPxKhRLFTq+UG4E03NLhyGKGojRxE1aRxxE8ewv0NJuyNAQ4MDn6mb9PQIWludVFR0kJUVyeWX51BXZ8dmc1HdbmN/eQdutxe/H5YXVfLyy6UkJhmJTwijvd1FQoKRurpOlhdVMnNGEoUnp2Cx9Nwh8vTT0wBIT4+grd2F1+cnNs5AXZ2durouJk2OY8rUeHbvamVcTgzjx8fS2FiCUglKJXg8flatqqbR6qC1pZuFCzNZuHB0n/NQVtZMRUUHo0dHhQLaIIVKRVh+PjOmTGH54x8Qs2cT01Y8yceddgwaPbW11bzyyj9QKBRMmHAS+/dfj9udilar/dY/l2DlUkqKkSVL9uL1+li7tmZA3vsXXTTukMsK+xvD8VqiJ9WUQgghhBBCiO8TCaUGUFKCkajxZrRfB1LQc9EP0NHezb7yDtIzTMTHG9AbNOh0SlausDB1agLz5mVgbbITGaUPVbNYM0yYc0dzvrWCVUs/orK+nD3ODva5XNjtrWzY8DmVlXfx1Ve76ejoxuFYSXX1UpYtm4DTOZXw8Hi83khGj87ggw9aqahwATBjRhIffLCPkhIrgYAC6P9uZeLwegcAbrebZ555meXLX2XXrh3s+t/bJK0p4Sc1xVzq7yYhNY0wlYL9bj3FqlTSZk7AZYqlzaOhtNXL3ucrCQ/XkpoSgU6nDPWKio0zsH9/Ox0dLuwOL5FROhoa7Hg8AdRqJRqNloQEI3v2ttHt9GG3e5g6NQGH3YNSCRs21tPY4MBgUJOWbqK4uJG9e1uZkhfPgoVZpKdH0NLsJC7OgF6nZsuWRgIBQu9D+OY9fMopKaxeXYvBoMLu8LJ3Xzs11Z243X5WraoNhVLWJjsWSyclW6zs29eGMfybxutBZWXNlGy1MiUvntQzTmZr7GhM+kbuK93AL4wGijRaPsDPqp07KS1dz89+tp4333yeVatWHdXP40gVUI2NDpYvt7B8edWgvvcHaoneoY5VKrGEEEIIIYQQ3ycSSg2w1jYnNU0NoQt5i6Wz59/pEYCCurpOXAYNhYXJ1NV1UVlpo6Kig7KyZuyOb5ZX9b5on7FoNuaEUezZaeWqDguRtaVYm/ay027n1C9eobFrMh83JtDaVkFXVw1fflnDl19+etDYZsx4mIkTZ5KbayYxsYxAYClut4qVKyM599zXSE6OIjY2gpkzZ3L++ecP8pn7fqmq6uCl/xTTsXsr/2tawfsbPqfFYQdAo1Cw9MYbOSUqBrc6BnVCLsVdenY0aWlyqiHMSOq+MGJi/ISHB9iwoQGbzY1e39OHye3y0dnloaPDRUFBEmEGDWZzT0i0b28bu3e30t3twRSpJSpKx6SJcdjtbioqbGi0Kiore0KsPXvaUanBHwCvJ0B6egR797Zis7kp2WrF7+s5lun5iYwf39N3ymTSAYHQ+zfI2mRn1OhoTjs9nZZmJyVbrURH6diwsYHWlm7mzEkJbWuxdLJ7Vys6nYq4uDAy0k0Hnb+SrVa2ljRRbbGhUqkoKEgie/YkAuedhqO4mAvXrePsffuoHT+Bj6KjeWPvHi644ILQ87u7u/niiy8444wzUCqVwNEFMsEwZ+LEnsqtQ92p70g/++9ajfRdX2PFimo++aSCBQuyuOaab54vzdKFEEIIIYQQ3ycSSg2whgYHu5t9oa9372oFei78I6N6llLZOtwYw9VfV0c5aGxw8Npru3A4PBQWpnDBBWMp2Wpl3bp6tm9r5sorJ4RCAmNYMnZ7PjPD3czZXUJ3SQmXNRZzniGKysICyi45D5faRkdHA2Vl+9i/vwqrtZaurg4Mhkg6O91kZEQSE9NEZ2cxAPv393wEKZVKmpqaiImJGbwTN4wFfD5c5eVsf2c1teu2kaVuoX7fbjZV7uEjmw3v19uZNVrOShjFSTE5+AxxvOk10tQFTqcGQ4QBT6yP7kYnWqWSxkY7kZE6fD4fXq8flQo0WjVulw+tTomr2cP+/e2MGhXJeeePxmLppKXZydtv76W8vB0Ag0GFw+4lOzuaG27I4+mnt9LS2k0A0Os1pKYaSUoKp7aui8wsE0VFVWSkm2hsdLKpuB57lweNpqdSzhimpq7ODgSYNLmnsmlTcUPo/QuwZnUtPp+fRYuyuPyyCQB9luyVlTWzdm0dOp2S5ORwABxOL1UWG2Oy7X2qpYK9q8p2tlJT0wbA7NmpKNRqjLNmETZ9Ou6KCsLWreWmnWVcGx2D++U32FvXSvJFZ/PWzp1c+5OfMHr0aG666SauvfZacnPNrF1byzPPbMXp9PS7nC4YXBUUJHP//YXf6v0wENVI3/Y1gstw3W4fgQBAoM/3pVm6EEIIIYQQ4vtEQqkBlpgYhjc2steyPRcd7d1Ym+ykp0cwc0YyLS1OpuTFEx9nZN68DIqKqqio6KC11cnadbXk5MQwJS+e4uJGrE0O1q6t47rrJh+0BIqcDPwLF9K9Ywe6L78kbPNnTNgM7okzWaadQfqZV3DxJTmUlrbwm998RmmpnU2bGrnmmkn86Ec/Ijc3F4fDQWNjB3v2NOHxuPjkk/9y/fXXD8GZGz78TieOTcU4vvoSx+YtdO/cSaC7GyOQqDDiMEXjiUrgo87NeIHpo0axKG8OalsKDq+G9qgwqqpsNDTY8fn86PUBIqKVxMbqcTi8REfrSU4Jx+f189VXDdjtHtRqJV6Pl7q6TsLDtdhsHlRqLy0t3Wzf1syWLY1ERelpaLDj94NCAVqtmrQ0UyjgASAAMdF60lK1JCWFk5VlosPmZsXnFjRaNaNH9QQWFftt+Hx+Skqa8HgC1NZ2snt3K7GxBiKj9MTHGUlPjwi9f5OTw/H5/NTWdVGy1cr48bEsW1bOqlW1zJmTwsKFoynZamVLSSMmk5bxE2JJT4/A2uTAZnNjsXSG3r/WJjt2h5d58zLISDexfn09ubkxbCpuCFUKKlQqdGPGoBszhrLNVZS+t5ZUZzWGT5di+eB/7OvsxKTVUl5ezi9/+Uvuu+8+LrvsMurrJ1NaasBo1PQbSg1EJdFQvsby5VUsX25h+vQErroqVyqihBBCCCGEEN9rEkoNsJhoA4npiaGvI6N6ljJFRnUyPT+RwpOT2b6tmbq6LsyxhlAwpddpWLuuBpfLT8lWK/PmZZCebsLpaMVisVFW1hy6e1mwZ0/wAj4sPx/DtGl4Gxqwr1mDdfUGzvOuo35jNJb2HzLhJ5ej14fj97dSU9PT6LqwsJDCwsLQMqJJk+yUl3dw2233s2jRqCE5d0PJXVND56ef0fXFFzg3bybg8eAzhKNOSUE/axYrOtr5ZG8d+eZTiU+Not0BPzo1kjnTJ5IZn8n+8jY2VDWg0QSo2N5MW7sLt8uPRqMgPFyJyaRFb9AQY9aTmRFJc7OTXbtbsXe58XrB7fbh7PahADo73QQCoFOoSE01AgHa213YbG5SUozU1toxmw3MmJGAw+FhyZK9aDQK2ttdeDw+0tIiiDEbsNncgIKWZicOhxet1095eTsajYLIKB0ul5cAASorO2ho7KKz001EhDYUqMbHGYmM6gyFowUFSVRZbEzJi8faZOejjyqob7DT2elmWn5izx3+uryhpYbB93ZoCevXgsv7oKc6avbs1D5VWb3DK4ulk3XrmiltMJOelslPrhiFqa2OG/bs4ZLyfbxXtovXWlsoc7l48cUXAUiOTGHx7OcJBAIoFIo+P+eBqCQaytcILjecPz9D+sAJIYQQQgghvvcklBpA9Y126spaSDaYQxfWvZtFW5vsFBVVsWWzFZvNxdp1dSQnhTNhQgxp6RHMN6RTWtpKRroJi6UTnU5NZKSOLruHkq1WzLEGLJZOOtq7aWhwAIT6+0zJi2f8+CSiLr6YZ/cloti1g0JTPbFvP45n7f948NQLeX5UJhf0qh6pqurghRd20NzsJD8/kYKC5BOq8sJVXk7np59iW/YJrt27UWg0aLOyMM6ZQ43PxM4WDXu8Ft5b9jG7LRYAzHPysTdG0NTkoGDKbDLjYygubmTH9iY6O934fH4cDi+BQACNRkFEhIaYGD2xsWFMmBDDzp0aNm9uoKHBjkajQqdT4fP7CPhBAWi1SlQqBQ6nD58vwGuv7UavVxIersXh9GE0qvnBD8aSkxPTU5m0pYnOLjejR0X1VFv5AlRU2sjJiUWvUwMBTjklhZKSJrxeHzU1XahUGtLTw7FYbFRbeiqzoqK0mCJ1KFWwdk0thSenhKqlgn2otDp1aNnepuIGzLEGnE4vsV+/L4O9qcrKmikqqgpVcO3d24rb5cVi6cQYpqaj3UViYljod8Ji6aS5yU5Dg52srG/6T/UOr2LMetIzTNS0Qnr6OOKnTSPS7eaW9nau27ePZcvX8OaOrXze2kC6p42Jj93GnueMaMeMoTM9jbSTTsIwfjy6MWNQfIc7+A21wsLUw4ZRB/aq6n3XTQmxhBBCCCGEEMONhFIDqHK/jfrKDryx3yxVio8zhv69qbiBxgYnnZ0e7A4P+8vbaWyw09HhIjHRiFIFiYlGtDp1KMzKSA+nuNiK1+Nn+7YmGhocJCYaGZcTQ3p6BEVFVWzc2MjWkia0WhXZ2VHEp0azs3MCddNPZ/JYL52ffkrye0/ywJgxJI35Y2i8paUt7N9vw+v1kZ0dRWFhKm1tbTQ3NxMdHY1KpRr8k3iceRoa6PjgAzrefRd3+X4UOh267GxM552Ldkw2lW1K1pe2sN26hXfWf0KLraffkV6jZ1z0NMI0EaGKoYx0Ex3tLlRKBeZYPRERWlJSjOwsa8Xe5UGpgvQ0E1arky0ljdTWddLWbqemsYVutweFz4tWq8KDDx8KVAEFCpUWFFqUSgV+P7S1uVAoIVWjQq1SYOtwsWWLlS1brHR2utFolURF6TAY1CQkhqFSgcPu5f339zF6TBTmGAPjcmK45JLxPP30FqxWJ2npJvLz47FYbHi9frRaJbm5sVgsnVgsnaxdW8v2HU3YbG7mz0tn3rwMtm9rDi1DDYZV55wzGmOYOtSgPyjYxDxoa0kTdbV2wiO0dHW6CY/QkJ+f2KdvVUODnaYmB1UWG7Nn9zzPGKZGqYLp+QlodSl0tHf3qaZSarUo4+PRxMczJzuPzIo2fq+14++0YvJ48FkbqauuYc7f/850QxiXRUVxelQUYZmZ6HNy0E+aiGHiRHQ5OajCwwftPTgQjdIP5cBeVcHlftATaK1Zs4bVq1dzzz33DOh+hRBCCCGEEOLbkFBqAGWOMqGtiST5gDuXBaWnR5CQaMDZHYHfF05YmBqHw0tubgyxcUbcLi+bihtZt64WtysBrU4dqqaprLThcvnJyjIxaXIsLc1OioqqiI7SkZIcTtmuFjptburqu8jKjGTCeDOmSD2dCXHE3XEHzpISOt59l6rLLif6Rz8i4de/IjfXzKhRJvbv72D58ipSUyOYPDkTm83Gnj17yM7OHuQzeHz4uux0fvopHe++i2PjRhRqNbqcHCIvuIBdjgi+2uVmWkQW0R4D//fSZ7xb9l88fhcAkWEmZmWcTF7ydJQBHUlJRlasqCY9PYLGRgebNzfS1OzE4e4iKVPBzob97LHVUNvUhMvvwFfbjdNrxxNw4i1zHXmwXd/8U6XQoEKDVmGgymomQmci4NZR0RWBxmciSh9DUmwsWq2K2tpOAgEwm3v6WblcPnQ6JZ02N1arnZItVjo6XKjVSmw2N1u2NNHc7AAUaHUqlEolEybEEmHS0tzkZO/eduxdbv7X5iIjI5LIKF1oGWrf6rzYgw4hOkqH1+fH1uFi0qQ4ADLSTVRZbNTXd9LS4iQjPYJNxQ0Yw9SMy4khK8sUWhoYZHd48ftAq1MzPT8Ra5OdyKjOg+4MCH3DX/imGvCzTz/B+8ky1jvsrHfYSexo5zIFXNTWhnnZMvD13JRAnZyMftw49JMm9SyHzZuMUq8/8s/rWxiIRumHcmCvquByv1NOieeee+7hr3/9K36/n5kzZzJv3rwB3bcQQgghhBBCHCsJpQZQUoKRqPFm2umpitpf3kZJSVOoETQEL57DmDQ5ju3bmti82YpGo8IYpuaLldVUVfU0oPa4/bg9PlpanKQkh6NUKujqcoeaUBcVVbG1pIm8KXFcedUEPllWyd69bbjdXlpau9Hr1SiVSqCZyCgd6enjSLj3XjqWLKHt5Zdxbt5M6hOPc801E0NL+FasqMbj6bmb16ZN9d/rUCoQCODYuJH2N9+i87PPCLhcaEdlEbFwIc6EDCwuAyljE/ng8a1s39nEtnIHqWkR2JsNKFFj0ho5PWcuo6MnolFp8fv8aHRKNpZUUFZZgf3LVlQRXdS11dHpbsOHByp79q1V6tESgVZhQKcIJ0wVj0FjIMEchcelQK/V4e5W4HFDwAcoAkTH6IiLC6Ou3obX70Gp8eLyumjt6MSn7EapcFHTWovD20W3t4vA13dd0zXoCNdEE6WNJSMuA5NxFOGROvxtAerq7NTXO1CpFOh0KhISjISHa2hv78baaCcQAL1ezfx56cR+Xf1ksUTw4YflKBUK9Ho1/gAsWbKX9PQIXC4/xjB1n0qo/kKpmho7ra3d7N3bTv70pFBfqSl58dTV2qm1dbFuXT0er4+ZM5K54IKe99ns2T19pIINz90ub58lfX2Dp6NzyZkLmDU5jxc+/JAXP15KQ3s7j5aW8phCyam5U/jLBYtIdNjxNlpxlZdjX7eOZpcL1Gr048YRNnMmxsJCwmbOQDlAy/6Opcn522/vZsmSvVx4YXa/jdsPdGCvqsLCVLq7d3PjjYvYt28fABdddDkzZsz4lqMXQgghhBBCiIEjodQA+rJkD5q9LbSo/TQ0OPjyyzqs1p7eTwsXjsZi6aShwU5iohGLpRObzU1PH2YFJVut1NZ1ERWlIz3dxIQJMSx5Zy91tXa8Hj+xsQbCw79pQh2sKAnexe/KK3MBKCtrpmSrlYx0E1qduu+Sp/xEoi+/HN3YsbS++hq7zr2QFXNu5+M1bqZPTwACoVBq7doaLr98UE/fgPC1t9Px3nu0vfY67spKVHFxGAsK0OWMQ5OSSotHw4qVNdhsdna1bue9Ha/RYKtntu8KWtu68bgDTNFdhF5hoq3CzYb6Hbi1zTQ5aqntqMHtdwKgQkMM8SSEpxDnyMaki2FUSiIdVg06tQ6n04tKpSQ6RofD7iU/P4Hx42P46KMK9HoVBoOG8HA1ra3dNLd0k5XZEyR0W9vQ6JWoVEr0ehWRo3X4/H6qKm049R50Og3jciKZPDOcJlsjSz7eQk1zPa3OZirLy/h8nw8FSsLVMUSpkkk0ZjAjJ5cIfQRGY88+9+/vIMKsJz4hjAkTzLS191RDBQMft8uH3x8gPj6MuLgwnE4vO3e2EBNjwO7w9nnv9cds1hMT3dMDKj09InT3wKlTE1i0KIuSrVaqLTbKy+3s3NlM4cnJoX1bLD2N1ffubcXe5T1oSV/Qgc3+DycjMZH7r7uOX191Fe+tXs2fn32dfY3lrC7bTvwf7ycyoud3ytnVhcbtxm2x4N5fjqemhva33qL1+edR6PWETZ9OxPx5hM+diya+/2M/GsfS5HzJkr2sWlUDcFShFHyzPDAtTc3f/nYfL730EgBmcwJz597GNddchslkOsKrCCGEEEIIIcTxJ6HUAPnkk084+8aruPWkizjttLMYlxODRqMIVUrBN03Pg0FRWJiGlNRwkpONJCf3XFhPyYsPNTTPHhNFt9NLjNmATqcmK8sUugAfPz623yqVAx/vb8lTWH4+u9s0hH/wEgXvP8h/685krSuXX/5yJlqtCq8XTjop8aDXHs6c27fT+vLLdH68jIDPh378eCIvuQTd2LGoY2JCS7G2L6+gaEMxxXVrKG/aG3p+u68erSeKdn8t7b5qOnz1OAJt0AkahQ6TKpEk1SQi9XGYNLGofRFEReowGFQ49D4mTTKzZ087nm4nfpWPqCg9qakRLFyYGeoRVlRUhUarQqNRkZIaTn5+IsYwNUuXVqBSKTCbDej1atLSwrHZPJjNegpPTuHfz2zD6fQSCAAEKNvZRnubG53OQBJTyEieRkKCEYXKx26LBWtXHXW2apo9VVS3bmPjug+I0sWRahpFYe40TJFmTBF6Fp41ir17Ww+qeho/3ozD4UGnUzFhghmTSYfN5sJk0uJ2eSnZYsVs7jmfwaomIBQSFZ6cQlq6qVdg1BQae/D9WVbWHDpui6WTfXvbWLGimthYPSqVCpvNTXycEWO4ut/wq3cT9KOtntJptVwybx6TkvP48PMtKMM7iY745vfirLt/SURYGJefuYDzz1pEpE6Hr6sL9/79uHbtwr1/Pw0P/AF+/wD63FxM55yN6eyzv1NAdSQXXpjd5/PRCC4P9HrjWLt2PQqFggsuuIp5824kLCz8hLqZgRBCCCGEEGJ4k1BqgMyfP5+FhXN4fO3bTJ4zgXn5c5ien8gll4wPbRNcfhQMijrau3E0eLA7vKE7lwXv0GezuRkzJob86Un9NpPu7XBVI4da8pSSN5pley5g4rZ3eCL5E/5P0XOhajRqcThg6tSEATw7x0fA56NrxQpann0O55YtqMxmjIWF6CdMQJOSgtJkQqFUAlDfaOOf/13KW6s/xGrv6eejQEG0JhkNYexyrsDu72lqHqaIIVqdSroinzhjMiaNGbfbi8fTs1+jTonb7aez043brSIiQkt1TRdutxeDQUl0jJ78aUkUFiaHfm4tzU527Gimq9PFxInJTJ4cH/q5FhQksam4kbb2bhYtyjoobExPN1FR2YHf76e9zYXXC1VVNqKi9AQCAaKjdaSkhuOwe4nWJhAbl0iSJhevx4dC56TBbqHeXsXelh3sWPkVRn0YU0dNJKl6DpPHTgR6ej4VFVVRurMZW4eLGLMea6ODri4PF1wwNjSW117fyZaSRkwmLd2unp5PQcGQaHp+T6C5fVsz0ERycjiRUfrQ+zdYzVdQkBQK7F767052lrUQHaVj3rxMul0ecnKiQ+ci+JxgH6ved7U8Vj3B2Bl9Hqusr2fz7t0AfLFlC3f98x+cc/LJLJ4zh7nTZxA9ZQoBjwdPQwPOrVtx7d6F9W//h/Wvf0M/eTKmc84hctFZqM0DE/gEq52mT0886gqp5uZmnnnmGS688Fqg506a11//AHv2dJKRMZH6eh8FBcYB72MlhBBCCCGEEN+WhFIDRKVS8cpf/8QlN93ELQ//ieSESAon5wEHh0bBj3Xravr0zAkGUpWVNrQaFcnJxj4BRVlZM0VFVQc1mP42VSPxcUZSxiXzcfUZnG/7jLudb3DP5frQ8j2/3z8g5+V48DudtC9ZQusLL+KprkabmUnk4sXoxo9HHRfXb4PqT9Zs4fFlzwCgVCiJMITT4bDR6qnFoIwkSplKumYmUcoUdMpvzqEWBXq9Co/XD/ScE5fLj8mko8vuRq1WotGoaLI6gQDTpiWQn58EBKir66KhoWf55rp1teze3YoCBW2tLqbnJ/LOO3tZudKCQgFutx+73UNzk5Ps7Cja2l3Yuzy0tDqZOSORefPSqay0Ub6vjba2bvR6DUnJRlzdPjQaFaavG5TbOt0YDGqSkox0O324XDrCdVFkhE/EbNaRV6Cl1lHOx+vW8fPH/g+9VsvCk05iqisfV4OZJmtPM3a73U1np4f6+s4+gdCUvHjsXV50OiV6nRqTSdurAtAVukPf2jW1PY34ow2cv3hMKKiCnrvzbdzYSF2tnSuvmkB8nJGCgiS6u3sCPJNJEwprez+nd0XXocLWwwW0h/teZlIS2195ldc/+4xXP/2Eiro6Xv/sM17/7DPCDQZ+f9313LB4Mdq0NLRpaQTOOqsnoNq8GdeuMqwPPYT1T3/CMG0qpgULiJg/H01y8tG8nfsIhlFWq53y8g6gZ7lfwOvFXVmJp7YWFApUUVFo09NRRUVRWlrKU089xbPPPovT6SQqKoqf/vSnAFx++dmUlrYQGamlo8ONxdLBFVd8eNQ9qoQQQgghhBDieJJQagBp1Gqeu+UWrnjySS781T1cMvVqLj+nEK1O3W9oVGWxhXrmjMnuCaQaGxxoNSrCIzR9Lsrh4Avznov/OqprbKSlRhx1JZW1yc72bc3YbG5Omj8WdcRo/C8+ya3N/+U9Z0850HAMpfxOJ22vv0HLM8/ga29Hn5uLcc4c9NnZqMxmFCpVaNtWm42SPXsYnZjFc2+uZOXWDagUanwBLwSU6H1xJGinE6NKJ1zbc96MRg12uwdvr9Pudgfo6HD1eUynUxEdraOry41SqejpG+Xw4PMFz1mAhgYHfn8Aq9WB2ayjucmJRq0iIkJDQUES1iY7O3e20NTkRKEAo1GNVquko8PFV1/V43B4cTg8eH0BtBoVd/w8n+3bmskZF8POnS20tHaTlRmF2WygpcXJlLx4MtJ7wk2fP4DH7SM6So/T6aWpyY7d7ae11YWyO4HrFl3MmRMX0tndztKv1rBi6zreXbUKvUZPekQOoyImEU4Cfj90dXlZu7aOnWUtoRDpuusms6m4gd27WklL/2ZJaWRU5zd36GvpxuPxo9er+rwvrU129DoN5hh9aOlefJyR2bNTmT07NbTNgUtOj9THKuhwAe2RwtuMxER+deWV3P2jH/HiktW8s3IlO2q30dTRSlLsNxVQOysqWL5xA/Omz2DCOefAokV46upwFhfTvWcPjX/+C41/egjt6NFEnH4aYQUFGPLyUIWHh15j7doali+vYv78DAoLU0OPl+5oZuvnO8gJ62Cho56492oof7wCd1UVvd+ErV4vy7u6eKfbydaOjtDjU6dOJTMz85tj+roqqrS0hdxcM6+8svOYe1QJIYQQQgghxPEiodQA272zndlxF1Kuf46XNjyLx+fmD3ddCBy81Ch4gR1cOtXY4CAhMaynGqWf5XoHXphbLJ1s2FiHrcNNmEGDxdIJHP5ivKXZyZIle7FaHcTFGcjIiKTE6iB54nnk73iXRUY9XbNPJioqamBPzHfgdzppe+MNWp75N772dgxTpmDIn4Y2IxNVVFRoiR7AG+9t5Ikl/2NH/Rb8AT8qpQq314NBGUmiKhezOpMoZQpKharPPgIB8AfAd0AWp1JBWJiGQCBAZ6cXhQIMBg02awepdJChsJPr8qM0tBMe6Caq2oO+zk82AXw+Py6/Cp9Fx2K1HltGJKl5o0hL8rC9oh2jUcOYMVEAGMLUxMWGYTbr6epy96mUmjIlju3bmqmo6MDn9zNhQizdLk/ofeJweKirsxMZpeP6Gyazdk0tGzbUExurx+X2s39/G3a7D4ez572wdk0tK1ZUo1RCZuYUbjplJpvL9lJi2UJ5+w72tJYQrYtnSsoMwiJmotOp0OtUtLQ4eem/O1m0KCv03nS7vLz2+k6m5PUsR1SqwBimZsKEGDo6XOTmxoR6RlVZbOh1ahwOb+gYjGHf/AkqK2vms+VVAJwxP6PP+9gcayA7O4a2tu7Q/g5c5mhtstPR7iIxMazfgDY9PYJqSyclW6wYw9ShYPfA6imFQsGiOflMzBxLaqqR6tYaJo4aFXqdd774gr+89F/ue/ppEs1mCiZOZMaECcyckMvkM85A2d6Oc9s23OXltL7yKi3/eRYUCjQpKWjS09Cmp9OwrRNtpZP67eE0rIrB29hI155yUi0Wsrw91WoKnQ5lXBxKsxnjnDmo4+NQm2NxeDzM+9XduL4OqdTAqeHh/HjuXC564gl0KSl9jjvYYwq+XY8qIYQQQgghhDheJJQaYNu3N7F3HyzK/iFfVL/Dm1v+y4KdaVxw6mmhbXpfCF9+2QQ2FTdgs3kID9cSHxdGW1s3VRYbxjB1nwvzYJNoa5OdTcUNGMPUzJyRTHWNDYfTQ3FxAx3tLmy2OlpanBQWJmOONfS5UC8qqsJisdHd3RNm1NR00t3tg0lxhE09n99sXoK7s4uUYRBK+d1u2l9/neann8HX1tYTRk2bhm7UKJSRkSh6bl1IIBDg4y/X87un/sOemsrQ89VKDVNSZpJumESTRR3a/kAKBfh84HL50GmVdHf7Ual6HleqFGSlhzE5wYdzXznxnmbSVW2Y9D134etZ1GeiI0yPgwg6Iky4osNRadTU1NtReVxE6fyYFC7ivc0E1u6jafXHxKLkjPA4ogvyUeXmsaPaDwSYNDnuoFCxqKiS5csrUauVX1e+BELvk03FjQCEhalpaLAD9IRabd20tDjp6vLi9fWEaxqtEp8/wKbiBurqO1GgoLW1G71eRWenhgz1TNLNM2gP1FDvLeWLio9ZV/0Zp+SexJTEArrbDNTWdVGy1crll03oCTjf3kNbu4v95R0kJBjx+f3s2tXG/v3tqFQK2tpdtLS4aGiw09TkYMyYaKZMje/TTy2oZKuVkhIrCiAuztDvEtXg69i7vKHgtved+3rf3bL3c4Pbdbs87NvXhjG8J5Rau6aODRvrmDkjmQsu+Cao6b08MDHhm75wABOyMjlj5kzWbN1KQ0sL73zxBe988QUAWo2Gkv++ROpZZxHw+SgrK6OjqgpDQwv6FhsRdVbc+8rJcXST7XajqtDQaTWgDAvDiYHtgRTKnX5INmGeHMXeRivb9+7Bsd1F0b/+BYABmJ2XR2tHBz+YO48f5Odj3L4d+9q1VCw8C/NNNxJ7882hsDbY2Dw310xGRqRUSAkhhBBCCCGGDQmlBlB9o53oaAOjR+s4/fQ0Hpr5KDf99S9c/Yc/UHldPT+cdy7V1V10tHeHeg1BTy+eMaN7ltk0NDhCF95Av9UgwUbo+fmJXHBBNpuKG1jy9h6sVgcOuwdrkwNbhxtjuJrs7BgaGuyMy4khPs4Y6gm0Y0cTVqsTvV5JcnI4BQVJREfr2drpZPr+j9l3xdVkv/UaKoNh8E7g1wI+Hx3vvU/TP/+Jt7ERw9SpGC68AF1W3zCqorqZx15/m9dWvo+92xl6fpgimnTNDBLUYzHYVUREhNOishE4xIrEQACUStCoFfh8fmI1TjI0HWRpOxilbSOsqYOmBjddXi8bVFpe6waLM0Ba9AwWXnYRZ144iUceWcJr7/4Ff8CL1+vB7w+GLUpUKjWnnXw9V195BXu2WCh+70MqbEVkhbWRVbWTNPVrRBvNBBInYjKc2SeUsjbZqaiw0dnpxueD1NRwysvbvx6zgv0V7ZhMWnInxIbueFeyxYrb46ejvRuvF8LD1aSnR+Gwe2lssKPRKDHo1bhcXjo63LS3f33ewlREx4QxKWUaCQmnUNfcxJ7WElbvXsvyklVMSs/l5DGn4XHHUlRUSenOFqxWBxqNio4OF62t3Ywfb6alxUltXRcpyeGhaq6sLBNVFluowsnaZAeaQz2ogu/Npqaen+OBy/SClU9ZWSZ27myltdXBx0v3M3t2CvPmGftsE7y7ZVDvJXsHVhu2tDixdbhpafnm/dOf3kHyBaeexgWnnobL7WbDzp1ff5SyYedO7E4nSV83O1eoVPzfe+/yv88/7/kaBVHGCEzhBgxaLUadns9+9yAolShUKn764EN8unNDzw4twJd9x9BqsxFj6lmi+cYfH0Sv1X7zzTFjCD/tNDqWLKH5sX/RtfILUh55GG1qKhkZkdLcXAghhBBCCDEsSSg1gCr321AqYcHCrFBj53//+h7UXiP3/+fffLxyG1cUXk5qSiTjcmJIT49g+7ZmtmxpZOrUBDweLxs31qPVKklNM/XbP8di6cRm84QaTK9bV8OKFdU0NHbR1emhtq6LwtmpoT5D5tieUCl4wR6stlq2rJzlRRayx0RxwYVjQ0FImy2XEpzklRdRff0NpD/3LMreF7/HUSAQoKuoCOvDj+Devx/9xImYzlqIdvQYVNHRKBQKupxOPlyzho/WrmXZl1/i8rgBUKAkxTCOKfEn092uD7Xfcbn8dHS4UACBfvapVfmYbO4mxt9IwFNLntHFKG3Plh/aullcacF9iDRLN+lsdrlj6VzdSYtTTbers5+t/Ph8bhpb3Hz0RTPTp4/CnjOGXateZld37+3qoXwHxvVv8quZM7nlzl+gMZtZvbqGsrJm3G4fbref5uZuTjopGQhgMKiJjNRhNuuZNDk21C/MbDaQMy6asrJWbDYXERFaUlMiaGp20NriIjs7ilknJbFjRzOlO1oIfH1itFolapWC7OwoTjs9nfffA4WngLDkCWyr3oKlYStPWh4n0ZRMQeYcpmZNJS7ewITxZlwuPw0NXWRlmUhODscYrj5oid3s2d8cbXyckcioToqLG6mosJGVZWLS5Dhu+1k+QKgaMD09gn1721i/vp7c3Bhi44z4fD527mzFaNSEfqq9Q6OWMDXWJgfGMHWoUjAYfgXf/0GFhcmhsfYn2OQ9uOwwOHYAnVbLKVOmcMqUKUDP+7e+uRlVr95mapWKKGMUHfYOAgRos9tos9tC31fGxKD8uqIpOroncFIqlcRHxTA+K4OcjAxyMjKZlZtLVK+eVMFA6sC7Epp/8hPskyfT8dZbVFxwIcl/+ysRp53W77EJIYQQQgghxFCTUGoAZY4y4S4z0NHeTVlZc2h50VhjIdOi3Gwo/4xWRwvP33cfk8YF70bW9HUoEKC42EpNTSc6nZqp0xIOqpKCb8IlY5gai6WTFSuqKS9vJypaT2JCOHPmpLBw4ejQ9j0VKQeLjTMydUpCqIIq6PpH76ba2sgbV/2ESRvXU3PbbaQ98USfvk3Hg/3Lr7A+/He6t21Hm51N1BVXoB83DlVMDHaXi0eefIP/fvIRjV21AGTGpXPGhAXMGDONj78oQeWIR6PQY28hFLJAT/VTa6vr668CxCodRKprgRps/maq3J08X+WixecD4Kq4XOJ0U9nSnUidqgt34CkADIYYdDoz2dlZTJ48hvZ2Nc3NaRQVWRg1KpKzzjqNSy75nO5uBT6fguLiFhob7TgcbmbMiCUlJZ6wsHBOPz2dSy9NZOnSRJqamti5cx9bt+6iyVpDa2sDdr8PQ309jfffj2HKFEprdPx3++ukR2eSHJFJgns8ycnZoffG7NmpoUAGekJLh8NDWroJrVaD1WonwqQlITEMu91DvctOe7sbtVpFc5OT+AQDBECj7ekb1dzcTUlJE6ednk5Wlom2tm4cnT7ileNJVOeQPt1FSf063tn2OlsaV3PF3AuYf+ZUVEoVFksnbpe3T0hyoN7hkdvlpaqyA5/PT319F9YmB/Pm9fSS2r6tiXXr6khKCqex0U55eTstLU4yMiMpKWmmu9tHbJyBSZPjQsfduzrK74O6OvvXywN7Gs9HRnUetDTywJDqQMGbCwSXHfbXq6r3MSXHxfX53jO/voeysmY2b2kgfZSO6DglDpcLp6sbR7cLa5Odmho76ekR/PHGm3jo5p8SYzKFgqojOfDmBwDGGTPQjhpF67//Tc1Pb8F8443E3fazQy5fFUIIIYQQQoihIqHUAGttc1Lf2o61yYG/J+egoCCJysppmCPi+LLpPRbceSsP/vg2zp5TACiYNi2e5ORwNBoFRqOW8AgN0VG6UKVI7wvpYK+b4N3P0tNN6PVqCgqSQncv6633xXqw4qSgIAmAhgY7WVmm0LbWJjtfZzPETJ9CZGYqHW+8geW660l9/F/HZSmfY/MWmv/1L+zr1qFJSyPq4ovRjR9Pd3g4727YwAsffcjabdvw9boboAIlKY4z6NoXxop9rehJh6+vt3sHUgalm2hlLakGOzONLjK0NrY7O/hxTXW/Y4mJTmBDzEzaO6aj1iuZOTOGBy79EeefP53XXtvDsmWVLFyYyemnp/PCCzvYtq0J6CYyUkd6ek8YsX59HQUFyaSmpvHxxxXExuqZPz+Djg43ublmamo6Wb7cwvz5Z/e56xqAx+Nh9+7dxKtU+N9eQse77+KpqsLlc7K3uYy9zWV8UfExb2+LZ+60WVx4+imcOXtan59x79DSnu3tCX6+XjaX8fV7JT7ewMqV1bS2dmM0arn22lzmzctk3boaPvxwPyaTFoul8+vAR4HX62frViugIDc1i/tuO49P15bw1pr3ePC1f/HW2ve5+fxLmJgyhU3Fjeze3Yq9y3tQ2FNW1szSpRWoVAoyMiLZuLGetnYXqSnhJCQYsdncoXCtosLWU+GmAKNR29MUPjsKg0FNQqIBY7iavK8DqbKyZkq2WDGb9RjD1NTV2UlMDAMC7N7VSmKikcREY5+lgker93K/Q4VsweW00P9d/cyxBsaNiz3odxkI/R4DoerK4Ose2ID9SOPrTWM2E/eLX9D+2mu0PPkk3du3k/LoI33uACiEEEIIIYQQQ01CqQFUud+G3e7FlKglI90Ualaenh7B3LkZtLTEM719FK+se4Xbn/gTKzYvZHxEITnj4qioqMNm8zB2bAyxcfpQg+igAy9Qg+FD8LPF0om1yd4neIqO1rNuXU9lkTFMzRcrq9m2rYmWFiejRkVRW9fF+vX12GwuSktbCQ9X0+3sSaUCgQARp56KQqWi/c03qbzkUtKeeAJt2sHB17EKBAI4vvqK5ieexLFhA+rEREyLF+MdPZplFft576mnWLpuLZ5gQvY1nSKcJHUuSeoJaAg74DW9GJR1qBTVOPxWGr1tVLgdOAMBro42o1Nms12ZxaTrT0H34G8xR2eQmTWR0dkTsVgimDFjIrm5KaxYUUNVVQcZGSYuvTSHRYt67rp2+unpxMcbyc01U1raQnNzN5Mnx/UJnIIO/Hfvu5999lkln35aSXu766BQSqPRMHHixJ4v7rsX8803c91fHmH6229Q3GVjPUo2NTVitVl5feUHvL7yA/7vhns5ZXJeaDlo7wbd0BN6NDY4WVpbwaJFWfziFzOwNtlxOLx89VU9Go0Sm80DgM3mwu3xER2tC72WzVaHrdNFZmYkbW3dNDd3s31bEwp7NL+9/E5uvaiev778Ej9/7P+I1sdy6pgFJEeMxmzWH/RzL9lqDfWaqq6xYbU60OlVRJi0TJgQg1anxhimpqioiq4uNzk5ZrKyTFRU2DAaNfh9PaGPXqempaUbh9OL5eu76QWXwNod3lAPNbfLGwpetTo1u3e19lstdThHqqQ6cDntobbp3deqtwN/j3s/p7i4kb17W0PVY8cyvlCoddZFRGVm0rFkCRWLLyDtySfQZcud94QQQgghhBDDg4RSAyhzlAnteDPJ0zLYvq2Jmuou4uPCsDu8bN1mpaXZydRp8dxz8W2UNn3FUx++wWp9MT8MXI7eG093t5f4hDDGjI4iOTkcu6On0uWl/+5EpVJw8impoYvT+Dgj+/a28e9ntqHRKPD5Qft1w+mamp5qk+QUI7t3t2LQqynZaiU3N4aWFidanQqH04M5Ro/b4+Ojjyro7HQTG2cguMLH/3VlUvjJJ6OKiaHthRfYf955xN/9S6IvvfRbLefz2+10fPgRba++imv3bjSpqWjPPpsiu503l3/G6r//HbfXQ6whiRhlFo2+fShRE6saRYI6h2hVGkqFEn/Ah542xuo9ZGhtRKms/LR2M67AwV2jVAoN642TUc64mbN/MJHpF4/nV75ZfP55LfPnpzNjRhIvvVRKdbWH3FwFl146jshI7UFBU3/NooN3M+stIyOSqqoOSktbDvp+bq6ZnTubiY01kJJy5IoVjTkGy2nXsqN1MmfUfMwNNRvpSohjTWIK79a2sLvGgq8tGrvDy/T8RJ794H3CDWFccOqptLf3VB0Zw9T4fP7QXfPGj+/pPXXjjVMYMyaKzZutmEwaAFatqqXa0olWowq9z4KNwDMyIoiLC0OlUgAKxuXEYAxTs3evjrOzf0i8Zwpf1nzOuzteISMmi3FTr8LalML2bc0E7yrYu6pn16426uu70KhV1NV2URVnYN68DIqKqmhscJCQGMa8eRm0NDsp3dlCcko4ZrOehgY7ShX4/IFQEFRt6cQUqcVsNvQJeYqKqqit62LFimrS0yNwufwYw/r+yTuaiqQDt+n9de/9Her5hwqeDrdvY5iark43ZTubKVpu4cwzM7jkkp67AB7YR6o/vYOw6XPmoE5Joe2556i4+BKSHnyQyLMX9fs8IYQQQgghhBhMEkoNoKQEI1HjzWjjjEDz1wGPoqf5crOTxkY727Y2MeukJK4843wKJ+bzq6f+wb+WP8bJ4wqZEjcHvy9AZJQ+dLH52us7qa3rwhyjP2j50bJllezc2YzJpCUxMZzOLg8QQKdTk5YWzqRJcdi7vDicHmw2N9nZMdzx8/zQcqPck5KxNtnptPVUZM2ckciyGi0tdgj0agtumDABza9/Tdurr9L4wB9oe+klYm++mYgzz0Sp0x32nPidTuzr1mH75FO6iorwOxwox4xh64QJ/KtsJ1+u+Dy0NG9M7Djiu2ehDUTi1biJUmSSqE5Br7TiDVjo9G/G6mmjxuPgtHAjN8Wm4vBr6AqLRlOvgUCAmIg0DGFZJKWOJ8KcQ2WljoULR/HII3NDYzrzzFEolSrmz88gNTWCBQuygACnn552VHcpO9LdzHpXRgW3DW5/8cXjmDAhtk/gdTi5uWY2bkzmY8MPOe8HVzBuw5ssXL2aM/RGdkw/B1tkTzDj9fn483//S2NrK/c9/RQL809nvDmfmdMyWbQoKxRi9DZpchyRUfpQWDJnTkqfz8Gm6eNyYkhLjSAnJybUJy24hLSxwYnV6iDemMLCrB/S5K5iffVn3P70A7z75UnkRp5CdJg5tJ/4OCN1dV3k5ESTFuwr9fXywmDVUTCQio8zUlRURV1tF8kp4bS0dGM268nJiaGuzs6+fa38+5ltZGdHMXlyHDk50X0qxabkxVNXa6etrZudO1uIiTF83WPqG4erYjrUNn0Cn/zEI1ZeHVi9djT7tju8hEdoaWlx0tXlYfXq2lAo1V8fqQMdGITpR49G8ZOf4XrpBep+8Qt2frCW5HvulrvyCSGEEEIIIYbUiAylHn/8cf72t7/R0NBAXl4ejz32GDNnzhyUfVdUtLN5XRcqpQKFQoHB0FN1cvbZWSwvshDwB9i4sRGA7OxELpn0E77cv5aN+79g4/5NnDPtLH6QfCXQUxFRbbERbtQQG6tny5aevj7z5vVcwIaHq9Fq1cTHh3HOOaNYv76eqiobSmUAnz8QWtpjbbKzfVvPa3W0dzMlLz4ULrQ0G6mrtRMfr8BsDgs1Q/b7+1YdqWNiiP3pT3EUF9O1fDl1v7wbxf2/J2zqVAxTp6JJSUGp1xHw+vC2NOOurqa7ZCvdu3eD14siLo5d0dH8pcnKVx99SOCgqiYFGpuPeVE2EtX1JKi7uLehhFUOZ793zdvareK2mrl0RiXywB/O4gmng93lPb2ILJZO5s9PZ/78DJYvr2L+/Iw+zy0sTO2zdO6aawb2wjwYOPUXPB0p0OotWHEVXCI4NtdM2k/m4tiwgeo//x95ZWvAuYvwnAtwR4znhsWL+c9771Hf0sKLn72NRv0+l7Ut4DfXXsnll00IvW6wQufAqqGFC0ezcOFoysqa+c9/tuFwetDpVMTFGdi1u5WNGxs455xRfZaQJiQagADh4VqyskwUF5sw+pLxx1SzrqqI1ds3cu6sM/lB/LVYLJ1s2dJIIEAopLJYOkPvR2OYmvz8hD6VQxnpJupq7XQ7PdTVdmEMj2P8+FjsDi/btzfT1u7CbveQmxsbCpyC73cIkJsbQ3GxldhYPfHxB/eVClZalWyxYgxT9xvyGMPUKFWEztehKp+O1eFeJ/iYRqNgy2Yrp5ySEvreofpI9dZfEFbTBrtHnUO2chWOykbaS+ollBJCCCGEEEIMqREXSr3xxhvceeedPPXUU8yaNYtHH32UBQsW9DSQjj/0RdxA2b2nla3lCpRKBX5/gCqLjdmzey74Y+OMrFldi8/nZ0pePOZYA8lJJiZ1zWJCQh57nV+yZMN7fHnnWu649DJ0XZns2dNOINATQCkUSiAQChVOPjmVtHRTaBnPmOxo1q6po6XFGbpgXbeuhvXr61Eqoby8nehoA+cvHhNqqrx9WxMOh4ekpHAggNvVU7XkD/gPOjaFUolxxgzCpk6le/duuku24Kmrw7F5MwGn85vtNBqUUVHsVav5IqBkbaONdbt3HfR6ShSYVRoMSrD5fLixcEmUhjafjmavAVdAQwAnBoUBrSKBGPNosrImUDCnkJSsMXzyqYWZuWZyCrLJAcwJLUyd6mHHjmbmz884KHwaLEcbPB1qmV9QsOKqoCA51NsKwDhrFuP+9zqdy5fT9Ni/aP33v1EkpXDm1Hn88B//YX1ZMU8seZtNZWW89MmHvPH5Jzx6xx38aOFZwDcVOkoVNDY48fn8LFqUFQpkSrZa2bixHo/HR4w5jPnz0thuc1P3dQ+y2bNTQ0vIMtJNZGd/088qOTmcmJgwzOZsrj7nDJ5d+i5LN33Kut0b+NGci8mKH4/bHQjdPbK/cfReIud0eklMNBIWpqHb5Qm9r9PTI5g1KxmLxUZ+fjyxccY+/dWC4ZdSqaCz082o0ZGkpZsO6isVH2ek2+Vh3742jOH9h1J2hxe/j1Do1TvwOZqldIdyqAqq3t+bnp8I1/b93pH6XB1KqAl+7jloOrpIz4k65tcQQgghhBBCiIE04kKphx9+mOuvv55rr+25knvqqaf46KOPeO655/j1r3993Pc/bmwM9gg10VE62tpdfaoZ0tMjOPmUlD6VIKmpRr78sg6v109u8lxu+M1i3vlyKXc//i+ijBFkhk0hjhwgitPnpocaQdtsbvLzE5mSF0/JVivQc7F6wQV9mxivX19PaWkzKAJ0O/1odcoDqkUUGAxqsrIimTQ5lunZk2i2JaP0H3pZnkKtxpCbiyE3F7/LRVdbG+UVFRTv3s0HG7awadd+Or320Pazw0bz2/iZzArz8+OaEqzenot7PwGafG74up95hzvAFXXn4tVF4FXpSMk7hxRNFG0dOk4/PZ1f/nJmn/Dm5p/m9xlX8HsXXTTu2H5oQ+TAZX4H6l1xdWCApVCpMC1YQPhpp9Hx7rtUP/oE5qX/xbUplbMvPp8L//kYq7eW8Of//pd127eTn5MD9L1TXU5ODEtrK/r0m7I22fF6AhgMajweH12dbmpq7Iwfb8bvD9DY2MXvfreG8HA1ra09yz7nzcsI3TUvWMW0e1cr+/d3kKaczu8umsnHOz7k7+8+xdikbC456WLsjvhQlVJ1jY3WVidddk9oHNu3NbNypQWFQsHUqfEUnpx80F0or7wyt8/5sjbZ2VTcgDFMzdSpCdhsLrq63ERG6kIhMBxcmXRg5dGBvZ7S0yPoaHf1e/e+wy2lO5p+Vd8l1DqSA/cf/PB1dRHoNhCZZjryiwghhBBCCCHEcTSiQim3201xcTH33HNP6DGlUsn8+fNZv379oIwhKyuK6AlmLJZOph3Qbyb47+AFfHyckdLSVlyunpCms8uDzarlT9ffzrn5i/hw0ye8s+pzvL7VtOzLY9IpP8DtTe1zt6+ioio2bmykrtaOOdZAS7Ozz0VuQUESAK1tTurr7YQbdTQ0OLDZ6ti7t4XWVhe5uWYmTe5pgP3zi69h965W6uo6We7bgMPlwu500mqz0djairWtlZq6DrIC86iuaaPF1cCO7g/x4en3fCiAfyUrUSjslLsjSVDHYfXWoyEKpSIefyARL0mo1IlkZmZz5Y0zKChIDjUaH8nLiw63zA/6VlwtXbq/3wCruqGb0ogZRD74LIGP3yX2q49oefxx1MnJzDjrLJb+/WHWluzC3mLAarRTstXKq18sYdyoZM477ycAffpNWSydNDb29JIaNTqKMIMGs1mPw+ElLi6MLVsa8Xj8ZGVFEhcXRka66aDeSMHQx2zWUVoK+blJXLr4d7z92Roe/+C//OndP7Otdj5//On1dLs8oZ5R4yfE9ApxA7S1deP1Buj++vdjU3FDqAdVdJSOmho7ZrOewpNT+vR6GpcTw7x5GWwqbmD3rlamTP2msqi/cOjAyqP+ej1Zm+xUVtooKWnqU1XW31K6YBjU0d5NQ4ODjnYXkVH9h1MHhlpHE2QdyYH7P9RxCyGEEEIIIcRQG1GhVHNzMz6fj4SEhD6PJyQksGvXwcvHAFwuFy6XK/S1zWb7TmNobXPy5nu7sFTZyMuLAxSUljYTE6Pj3HPHhKpIoOdCMRgapaWF4/MHyEg3fV0JBTcuvJpfXXENz7+/jE82r+TS++7FaDAwa9xUzp9zMqgSQ82c3R4fRUVV2Lu87NvXBvRc5M6encrs2amhZXzB/ezd28LmzVb8/gBxcWGhi9Zt26y89245a7r+jYfuQx5nMftx0EKAg5f5AWgUCpLVGqJU4fyzZQpf2kfR5DPS5vMAeiJiwikoSOHaayeyebOV0tJmrrxywvemymkgHEt/qUMFWH2W+P3tLnzdt1Lx/OvYX38V77PPooqJIWb0NLYpe5b/RSV42Fy/hk11frb/dBP/+PmdoX5TwSqqhIQwkpPDmTQ5DoBPllVisdjIzo7C5/PR1eUlOzsKpVKJVqf+ZllYmJp33tlLS4uTwsJkiDOSmOhCq1MTH2fk5h8u4CcXz+XX/3ieFz99mw0/38I9l19P3pTkgyqFJk2Ow2bzUF1jQ69Ts3ZNLfv2teN2++jsdOP1+Wlt6SYmRk9auqlPGHaoz0fSu9fWuJyYPssBbTYPnTY33S5fqJoL+l9KFwy1EhONjMuJoaO9u8/vfO/g6cBQ62garx/Jgfv/rr2vhBBCCCGEEOJ4GVGh1Lfx0EMP8cADDwzY6zU0OLBU2Wht7cZi6aS+vouGBjt6vZq0dBPz5vU03Q5eKAZDo6CioirK97WTmBgeqpZ48Larub3pB7zw+npWbv2Kivo93P7Pv3L7PyEpKpEpY8YTpYujozyeSaPHkDcl7qAmyFqdmvAILdXVXYRHaAAFYWFqDGEacnNj2FTcQHp6BMXF9Th8HfTUOB2KAoPSRLJ6ApGqZFy+LkyqNhaamplicEEggi8dWXzSnc3Y06Zw6gWT+P3cjEMGMCdSEPVtHSrAOjCsUun17MmYw1cnZ3J6WBWZpZ9iKv6cQsUXqDxTGX/WGdxx0VU89cGbbNu3j3k/u5Ubzl/Mb3/8Y0q2Wtm3r428KXHMm5cJ9FQn7SxrxtbR05fp7rtPAmDZsnJWrarFbNaF+pO9/145mzY1AGAMV5ORbqKysgO/348xTB1qZn721AVMy8jjpdWvcfsTf+KsmXNobDmTXbtaQ1VP8XFGLrggO1Tt5HR6USggNtaAXq9GqQSnw4vX68ft6tvrqaysmaKiKqbkxYfGdjR6V1r1fl7wd3XSRHPoToGHsm5dDStWVJOeHhGqPrQ22UOVUtYme2j5LfTcva93qPVdm6gHg0Wdrqf/3HepuBJCCCGEEEKI421EhVKxsbGoVCoaGxv7PN7Y2EhiYv8Xp/fccw933nln6GubzUZaWtq3HkNiYhiFheG0tDiZMCGG8vKOUKXUlLz4wzY37tl/z93EzGZ9n+0slk4suwNEd+cxL/9Mfnh1Fvf97V2Kd+1gy55dNHWtwuf3wecQHWEi8bNYTHoTCeZI4syRqBVaaqrtdHW6MYZrUCqhMdBBmAr+8NoHNLa04VHY6XB0EPj6fncKlIQpozEqzBiVMRiVsZhUiWgVhtC4zOEBfjtbibZsHypzLJGLzydy8WIWpafzR632W5/HkehIjc2/jf7CqmBAlZU7lfTUH9G9YwetL71M5+ef07Z5Az+ITME45kI+6d7FhvJNPPXOEt5fvYpf/OA68qakHtQHbeaM5D7N8wFKS1tpaLBTWtrKtPxEioqq2LOnFa/PT3JSeKjXWTCYdbn8GAw9d7Hz+yAnJ4NlP3iEVz/5hF/88198vmkjU8xzWbV6ChHhOhYuzGT27NQ+VVh2hze0JC0x0YjfD7V1XaGbCUBPtdPSpT19suDgPk9B/S2T6x0I9dePCQjt51DWr6+nvLwdvV7dp5l68N+bihv6LL890JH+PhxO72NPSQ5HqVQCzaFADHr+jqTFKjEbDxc6CyGEEEIIIcTgGFGhlFarJT8/n6KiIhYvXgyA3++nqKiIW2+9td/n6HQ6dLpDN/U+VjHRBi64ID30dbAKKniRa22yH9T3qTeTSUtMjAGTqW+g0/tuY2lp4axcbiUjfDyB2BSmTImnu9vNl1v3YEpwk5WjYWNJOc22drrdVioba7HZ7ThdbgJ+ULcpUSoUaFU68Jno7vahI5Ix8dl49A3Y7HZ+++Mfs2h2IRr1od8irvJyWp9/Hv++LiIWLSL62mvQjx2LUsKofh2psflAOTCoMuTlkZKXR0XxPupfeAXjxiIu927i0pgotp90Bb/6rAiLtYH7nnuUP176e6BvJVBaesRBjcaDy04LCpJCy9siI3WYTFoKCpJD7+uNGxuor7OzbVsTM2YkEBamDQUyCoWCKxYuJCN6DHc++hhfWT9if3spE8PnExmpY/bs1INCmt5VR8nJxj79sKAndHF7fOh1KjLSTYfs0RSsijqw31Pv8Ki/vlJH6vfU+7z0p3fwNdAVTBZLJyqVkpTkcAoKktDq1H2WDgLs3tWKIlOPeZws6RNCCCGEEEIMvREVSgHceeedXH311UyfPp2ZM2fy6KOPYrfbQ3fjGwzBO2plpJvQ6tQ0N9lZtqwSj8fP/PkZVNd0UlJipanJGWpuvHZNXai66vS56aGL17KyZtaurcNs1rNgYSbxcUZee30n69bVo1LClCnxnDE/g6qqDtrbPMyZk0JsnJHEQCMmk4Z58zIOe/FbVtbMBx/so6vLy8KFmfz82d+xp7qaqIiIwwZSXStW0P6//6FJSiLurl9gmjsXVVTUQJ/KEeVIjc2Ph97VWWWNStZHzWP2ry9htmofrS+/TN6mYpbEJ/CgPhpMOZTvchKu/6Zn0to1tWzYWM/MGUlccMHY0OsGl51am+xs39bMmNGRzDklBbvD+02j81gDSqUSt9tHS4sTq9WJUqkkLb3nrm/BO+Xp1eE8+rNf8tySz/hg+xLW2V5mlvHHBALTUSi+qegJ7gsCkB5xUD8na5OdaksnTocXpVKB0+k7KHwKNkrPSDf12+8pqL9ldIfq99T7DnoHLsc90NFWQvV3V74jhWK97+4ZDL6Dx9n7OFJjlUfc/3Dz+OOP87e//Y2Ghgby8vJ47LHHmDlz5iG3b29v595772XJkiW0traSkZHBo48+yqJFiwZx1EIIIQaKzANCCDFyjbhQ6tJLL6WpqYnf/e53NDQ0MGXKFJYtW3ZQ8/Pjob7RTl1ZC5uq29m3r426WjuJiUZKS5upq+tCqVTQ0tLTPFwBdDs9bCpuoKO9mw0b67B1uDGGq0ONp6Hn7lxbShoxmbSYTDqgmYZ6O502F1qtijCDBrvDi0ajIiMzkrZ2FxkZkeTnJ/R78XrghW3JVisNjU5SksOJjtbT2dnT66ajw93vMQb8ftrfegv7F18QNmsWcb+4E8OECSgOE2CJHsfS2Hyg9K7OCoZhE3LNRGaMx7RoEY6Nm6j511P8cfMGAv591EXoiBw/mhXFxXxZugNzdx42m5u9e1t57fWdB1X3WSydNDT0vM/r6uwEA6Ng76TwcDVpaT1VTcHqnfT0CCyWToqLG+nqdKNSKfD5AmREjuOnc+5kc8tn/PmtJ9htLeXh2+/AHBkZ2teWLY0EAhAZpT+ogqnaYmPDhnocDi9hRjU2W88NDBITw4AAu3f1LDmsreuirtbOlVdNgPSIPsvbgvoLjw7V76n3HfSCX/dXBXk0gsdSssXa54YFweM/XBP03mMuKqoKjan335P4OCO+ri4C3c5jHttQeeONN7jzzjt56qmnmDVrFo8++igLFixg9+7dxMcf3N/L7XZzxhlnEB8fz//+9z9SUlKoqqoiSkJzIYT4XpJ5QAghRrYRmSTceuuth1yudzxV7W6mrrIDc3wKxnA1KqWC6uouUlKMOBwejOEazGY9qQYjHref+HgDu3e1EhamISkpnKQkDmqiPCUvHnuXF7NZDwTYssVKZWUHarWS2FgDOp2SlSssjB4djcmkwWZzY3d4D2rwHKy88Hr8NDQ4mDYtnnnzjERH6fC4fXR1uSnZaqW72wNAU9PBF60Bv5+2l1/G8dVXmM49l7if3Yo2Pf2g7cTw0bs668BQTKFSYTxpFmNnzcS1axfNzzyD8rPlOJ/fyY0V+2no6mJWTh4XT7+M7i41W0uasHd5Q+FTcnI4He2uUOizZYs1FBgB2Gwexo2LCTX3P7DKZ926WiwWGwaDCo1GRUSEhpgYM5dceCc7G7Zz5z/+wfRrr+WOxT/h8rNOIz09gtGjo2lpcWIMU4cCnGCfKafTi1qtJDJSx9Sp8ZhMWhoa7KFKIZutDp/PR7hRQ2eXi5f+u5NFi7KYnp/Ypzn6gWFS7yC3v8bpve+g1zug+jahVDB4MpsNGMPVB/X36v35cA68q9/32cMPP8z1118fqnZ96qmn+Oijj3juuef49a9/fdD2zz33HK2traxbtw6NRgNAZmbmYA5ZCCHEAJJ5QAghRrYRGUoNBcfGjSS9+he6Rs2hvMVJYWEya9fWsb+ineSkcGbMSEKpAofDS7fLS3iEFpfLj9mspaXFiU6nIv+AO3FB31vOW5vsgIKEhDBcLj+Fhcns2tXKzrIWEhLCSE6OID4uDGOYOnQ3vWAA8NnyKkpKrMTHhREbayB4d722dhcarYrw/8/encdFVe4PHP8MAwzMsC/DPrgRIKkolgG2mJRmdW23Mpfseiu1cummtqn1M+uWXbvtu9X1Zrt5zTLlZiaSuaGGuCujsq8DAwzb/P6gGWfYRGMR/L5fL1405zznOc85jnOar9/n+7g5EztIi/NXSjBCUKB9JoZtQMrrjjvwm/YgTp2QfSb+nLZkZykUClyiown95z+pzMggf+nLzCwoYFFFBVv37+ZkYRaLJjyCv78/LipHtmw5RUVlDX37eOPq6mgzPUwBmNGoHcnKMtKvrycDBvqj9dc0qdGk9degdnWiqqqW2rp6HJV1KBQKPL3q2b+/mGpTAC/c8zQvffU+T320lM3p23j/6b8TpnMnL7+ClJQsKiprMJSaiInxQ612orCoEn+tGpVKSZjOA90fWVAatSN6fRmFhZUUFZno18+b0lITp7LKSdvdMFUxJSWLXbtyMZbXNvk7eKYMpcbTCOHcg0EadUMx+Kgo7yZ9Ws6t15e1OJbWxtQdVVdXs2PHDubPn2/d5uDgQFJSEqmpqc0es3r1auLj45k+fTrffvst/v7+3H333cydOxelUtlZQxdCCNEO5DkghBA9nwSl2olL//44eXkSdmATG52uJs3NEV9fF2tR58goH7t6Npl6AwZDNVWmWsrLa6irq0ejPv3HsWXLSVJTs4mPD7LWqNH6axgwEDy9VNZsicLCKtSuTphM9daskKwsI7t25TJ4cAAjRzZ8ca2qrKHaVIda48hVI3TWwFX4H/V9wnUebNp0kvLyhilPtrV8AEq/+eaPgNTt+M+YjqO/f4ffU9H5XKOjqX/yRS6JGc3Kz5Yyc9cOjuXn88ArC3juwQe5OvFaCguryM4ux9fXlTCduzX4aXmvJScfZ+fOPPr187IGUJrL8klMDCY318ipU+WYauswm814eDQEaQ8fLsbBQcHlQbcSFbCf5N+/Y/j9f2Pp9Efx8FBx+FAJJSUmnJ0d8PBQkZdvJOtUOf36eRM7WGtXuNwSEGucfWRbJN3X1xUPT2d8fV1tbwd5+UZrNlhzwd7GfP1ciYjwwdfPtdn9Z2KsqKW+ruF3c5oLkP3wwxF++OE4Pr6u3H7bRT0iGGVRUFBAXV1dk+nXAQEB7N+/v9ljjh49yv/+9z/Gjx/P2rVrOXz4MNOmTaOmpoYFCxY0e4zJZMJkMllfGwyG9rsIIYQQ50yeA0II0fNJUKqdOGg0hLz2KsduH8dtjjtxHDAYX63GmrEBDXVeDIZqnFWOjBwZ3rBSmKmWo0dKqaxsmBZl+UKZmppNenoBgF3hZNsvpQB19Wb6RXhZA10adcOKW2YzgNnaLiLCh+ISEwMu9mdoXKD1i3pklA933dmf7Tty+O23bGpq6wHIyzs9fa/8l18oT07G/frr8Zs2TQJSPdy+fUWkFgUQP/8DNuz7hukvvMAPpaU89tpr7Dt2jLl3/ZXsrMpWgjMKFIqGgGnFH8GVoXGBTdpGR/vRv38xxcVVaLVq4uICGDDQn8KCSjRujnh7qSguMRE7aCDPeI7lvsWLGbfgMR65fTzxl12JsbwGDw9nBgz04/AhJVmnjPTv79Nkil1LK97ZBm8ShwdbA2y2LDWzIqN8MFbUtpoxlZFRwNq1x1AqFQy/PNQuaLRp0ylCQjRUVdXbBZobs5y/2lTbbA2vgnwj6ekF+PqeXjF006aGaZDZ2RVERORZF08400qBPVV9fT1arZZ33nkHpVJJXFwcp06d4sUXX2zxy8iSJUtYtGhRJ49UCCFER5DngBBCdC8SlGpHrlFRBD39FIqnnsL9yK94xvzFbol5g6HGmjllW5C4srKWuvp6Dh8uIi0tj/j4oBaXlteoHamsrOWE3kBAgBoPD6eGulM2GRbBwW7k5VdQU1Nn/WKbODzELkCmUTtSWFTJli2n0Kgbik9femkQ/8txhfpqQoMbMqiq9u2j5LPPcL3kErQPPyRT9i4AdnWoxs7nqzHX83+3387zhw6Sf+QIQQHuhAS1PCVwwMCGIIrBYLK+321XkYz6I8Cj07nj4eFEQIDmjxpnvYCGgE9z2T4/vvIvlnz0EUs//YTLB+3hnXnzCfb3JyOjgJ9+OkFlZS2VlXV2x9iuYmcbnGkctLH85OUb7bKhmsvw0qgdSU7OBMy4ujqSqTdY60mdyionJNjNrv2mTac4cqSEEycMODk1TBtoKShlGcenK/c1W5sqPb2hWHt6ehGjR/clL99IeLgHpQYTAQEaa+bXmaYcdhd+fn4olUpyc3Pttufm5hIY2LS+F0BQUBBOTk52UzSio6PJycmhuroaZ2fnJsfMnz+f2bNnW18bDAbCwsLa6SqEEEKcK3kOCCFEzydBqXbmffttVO7cQem3q9HXeBBwxSVNvtza1oY5cKCYwsJKYmP9KSio4siREqqqahk1ujcTJvZv8kU6bXce2dnlFBdXUWWqxWCosS797qBs+MJsrKglN6eSLSlZ8Mc0vLvuPN2XpR99poHKylr8/V25687+3H9/LDff8q71y3ptURGFH3yAc69eaB/7O87h4Z18N0VXaFyHSj1oIM/u2smg8eOJ2JdByaef4n3XXSgcHFrsIy/fiMFQTZjOA62/htXfHmHLllP4+LhQWFhFSUkVgwc3ZEZ5erm0aWqck6MjT993HyPi4piyeDGXTrmPFx58GAdDMHp9GQqFmWPHSsnLN1r7sC087uvnan1vW4I2pSUm6+p7Wn9Nk2BO41X4LNMBLasAOjgoyM+vAOyLi1uOycgowMVVSVCQhogIL2umVEuZTJbtlmm1sYO0dgG9mBgf4HSwWq8vw83NmXvvHWCXIXY2RdHPZ87OzsTFxZGcnMxNN90ENPwLeHJycouLWSQmJvKf//yH+vp6HP54jx48eJCgoKBmv4gAqFQqVCpVs/uEEEJ0HXkOCCFEzydBqQ4QuGgRedv24vbTKn4tUnDZTUNbXGK+2lRHZWUt5eW1jBgRhouLo3VVPrDPctDryzAYaggKckOlcrCukGcwmMnUG6yZUjqdO3V19dTWmfH2cm5SdNnSjy7cA7Wrk91+65fy+jr4aQUKpRL/2bNwjYnpqNslugGlRsMd33xD3ssvU/Te+9QWFfEPcz03X3UViQMHWdvl5RtJTs4kN6eCgEC1NSji6+uKj48LunAPfH1dKC6uAszWvxeffPI7W7dmM2xYEBMmXGx37rx8I3v3FABmBgz05/LYWN566DkWfvg6Dy59jhEXX8HlUaOor1GQk1PO3j351vpWltUrXVSO7N2TT05OQwBJp3OntMTEsWOl1NU3TFltKTOqMZ3OncGDA7BkSu3bV4SLyhFfv4bgrq203XlUGGsZdlmQ3b7Ghd8tLH//LNNqAT5duY9dabl4eDhz662RzJnT124slt/NZX/1BLNnz2bSpEkMHTqUSy+9lGXLlmE0Gq2rME2cOJGQkBCWLFkCwIMPPshrr73GI488wkMPPcShQ4d47rnnePjhh7vyMoQQQpwjeQ4IIUTPJkGpDuDg7Izn0lcpmjyeyL1r+Fml4crroltYucsXjcbJWmcmISHU7sulLY3a0TpdL213nl1hZ0uGlOULqe30P9vpP3n5Rk7oy1A6KLgmKbzJNCnLOYP3/0y1Xo//I4/gNnx4q1kx4sKgUCgImDMH55BQls2ayTs5OXy0di0fPPkkNw6/HGgIqhw/bqDMUM2llwZap8R5eDiTmBiCh4czwcFudlNJ8/KN7N6TT1GRyVoY3bJ9754Cjh0r5fjxUurq6gEFI0dqGBAdzMvT5/LlxnW89+OnHMw6zIzr/oZDkQuWlSWhYeqbpRaUh4fKulKg1l+Dp1cZdfVm6xRDoE3BHNui7gDOKkcO7C+yjl2vL/uj9lMRYWFuBIe4kZ9fSUZGAb5+ruzdU0BWVhnFJSZO6A122VLNBcUsgTVfX5cmnwm2420p0NXdjRs3jvz8fJ5++mlycnKIjY3lhx9+sBa91ev11n8JBwgLC2PdunXMmjWLgQMHEhISwiOPPMLcuXO76hKEEEL8CfIcEEKInk2CUh2k96DemP/5KuUz7qP/7tXoLwpo8kVRry/DwUHBqNG97abetPTF2FI3KivLiIvKiX79vElMDLablmQ5zlnlSGCghsrKOrtpUXp9GUeOFGM2N7/C16NvvEhBdjZP1NZx8V9uxOvWW3BwcWnnuyO6M+87x/FAfT0p999PcnkZExYtYunDD3PfjX9Bp3PH2UlJlamOTL2BhITTxcIdlFCRU4unl4vd+12vL7OuemfJ+LG8V3ftyqWyshYHBwVVVfUYDCa7OlFzJt2OvzqUt358j0WfL2H2rfcxYODprD7L6nlqtSNgRqN2bHZFwD8TxLHtx5LplJ5ewKlT5RQWVhIYpOHA/qKGrMTBWnbtyqWwsCHLsbTERGFhFb17ezBgoD9afw2FBZUkJ2dai5xbflpiCWJr1I7WoFtLtmw5yY7NxxgW682IG875kjvdjBkzWpymsXHjxibb4uPj+fXXXzt4VEIIITqLPAeEEKLnkqBUOzp06BB6vZ4rrrgCJycn+lwVx5EFS1Au+DuK//6bZMMdDBgc2GpWRGss7UpLqqioqCF2sBZfP1frqn5Ak753bM9m2/Zc/HxdmTQpBo3aEWdVQ+FHjfr0H7/li/4vu9IoLDNQe/kV+E2fjqNfz1leXrSfoLvv4jNnJx6cOpUvSkqYtWwZuUVFzJ84iTFjeluDRnD6vWjJ5tOoHfnkk3QOHSomIsKLoUMDueaaXpSWVJGTU4FeX2adSmeZJmcwVHP4cAkeHs6k7c5j27Zcsk4ZmTCxPxNvj2dYbD/e/fETnlv5BruPZvDCjOnoQnysAbHKyloOHy7h2DEDrq4N7/vmVgRsrC2r2DUXRPb1VbFp0yk8PBpqV3h4OqNSKSktMdG3rxd9+3oBDSsUWmrEeXq5oPXXsH5DJrvT8sjPr2w1GGUZ38qV+9FnGkhMDOHmmy9qdfypqdkc3V+EU301I1rtWQghhBBCCCE6ngSl2tHbb7/N0qVL8fb25sYbb+Tmm2/m2uuvZdu+h/H7dBmadZ+h955s/QLb0opfzbH9cnnYVEtOjhEnJwU/bzxBdU0dvXp5UJBvZOnSbdapgIUFlaSlFVBUWEllRS1pu/OIiPCh2lRHSYmJtWuPAQ0FoNeuPUb2KQPmyoYMDt8J96Dq27fZsQgB4HvbbbxeUoL/vHm8UVjI8x9/THFZGf+YPoPoaD+797VtZtT2HTls3ZpFfn4lRUWVRPf3Y2hcIHn5RmvRcbCfJpeXb7RO+SssqCTrlBGlUsHePQV4eqmIjPDnxX6zcCeIT7d8TsbcI3yx5Bl0uoaVBE/oDZSUVOHr60qYzv2M2USpqdnExwdZp+ZZxmOr8TRby39brnVIXKA1g8lYUftH0M1IZJSPtY1tvSzbMZnb+Geg15ehzzRQVFxFYWGV3dgTEkKbFG6Pjw/Cua6KIbHebTyDEEIIIYQQQnQcCUq1I7VajY+PL0VFhXz88cd8/PHHuLi4csUVV9PPvz9/y/sdxS+rMA99EIXidN2blM2n+G1bNpdeEsTNN1/UpLCzZSrTjh25HDpUhLG8lvz8CgoLKykrr8HdraHO1Nq1x0hPLwAalpxP250HioYi0xERXsQOasisGjw4gF9/zeJUVrk1UKVUOjDK5QBfmhuKPrsNHix1pAQAKSkn2bAhk6SkcBITQ+32+f/1rzyVnYPfa6/xTF4u769ezYTR1zGwXz9rQOSEvowqU411OppO586wYcGkpxfg46Oi2lTbbPCqOYUFlWRlGenTx/OPLCSzNehyQl+Ga3lfHrjiYdYe+IwrH3yQZ/86nUFhQ4iK8rELatlOjwP7AFNqarb179GEiQ3FxpsLYtkGfEpLTKSmnsLDU0VMf1/r39vGK+vZBt2gaX0qgKFxAdRU1zM0LqDVe5GRUUDarjwiIrxQKpUkJgY3+QxonI2ZkBDKsIFemKsqW+1bCCGEEEIIITqDBKXa0TPPPMMll9zDF1/8yO+/b+TAgV+oqMjjxx+/Y7uPlvgRfyXu96/JevUNfvKNp6rSkcTEYAoLq8jJNvLjj5kEBKhxVjmyZcspKiprABgwsOFLr9JBgcFQbf2iW1dXR0FBFRqNE8aKWmtx85gYH7bvyEHpoMDbS8UVV4QwevTprKcBAyErqxyA8D++qI8MN+J98HfqHZ2gro7ckjoGdPL9E+enDz7Yy/r1mej1hiZBKYCAJ5/gr1lZqFZ/i9vlV1Nd6kZevtEaCNmy5RR7duezY0cu900ZQHS0HxMmxFgLc1tWjoSWC3RbgrLlZdVUVNTg4uLIiKt1aNSO5OVXoFE7cuKkgaKiKmLDg/jl7beZueyfzHr1JS6PTOTxiVNJvEwHQHJyJrvT8gGs9dgsUwcBu0UCWit8rtO5c0JfRtquPFQqB4zGGkpKTJiq6qxT8Wy1dUU8Sz04Z1XrH89pu/M4fLiYQbH+1pX6GlY1PH0NPWkVPiGEEEIIIUTPI0GpdlZdbaaurhcJCfcTETGRmBgTdXW/U1WlwOfKiTgd1FH51jLmH14NSndifoshIiASB6UH5eXV/PDDcXQ6D1QqB0wmB44dMwCQk1NB796ef5zFjIeHEzk5FfTr54Onl8oaAHBWOVJaUsWB/UXk5Biprzdz8FAJxSX7rJkhen0ZublGnJ2VOKsc8XGooiZlNU79+lGjPwnAtm25JCV1xR0U5yObxD4AMjNLSU8vJCbGl/BwT4KX/ZM7s7Ko3Pc727mIXza58PuBE1x2SS8AamvrKSkxkbY7z5qdZFtrKivLSGlJlbXIeWM6nTuHDhWRnV1GSbGJ4GCNdVpcfV1D0X6VswMKhQKVswPuajXvzX+cQX2iWfTBW0x+/ii3DrqLYbEXEa7zABpWtbNkOwUGauxW5ktIaBp8a0zrr6HKVMO+jEJ8fVy49NKGQJDtan5n0lzNqpZqzTXOoLTU7LL8BqwreAohhBBCCCFEdyBBqXa2du1RfvnlJP36eREU5IZW2w+dLs765Z0x9/N9SSnli+ZSV1fEliO/sOXILzg6ONHbty9luX05nqNj6IA+hOk8yM2p4Ngxwx+rc/nZfYlWq51I2XKS2hozo0f3sta/qa83k5dX8cdy9Bry8yuthaF9/VztCkgXZRVx4ONP0Dgqcbz7r9Ru2AiAQiFT90SDKVMGoNN5kJQUbt2Wnl5IamoWAOHhnihVKsLefYfDY29hyJHvWVsYw3+Pf0ZqVjAzxkxlSFxAw+pzNgEU2yweY0UtB/YXYTBk2U31s11pb+TIcLJOGcnOqqC4xISxopbqP+qr9e7tgVKpxMVViVKptB53zaArqBrrxrLVb/NOymscPHkjj0+71ZpZlJdvBM59Bb7YQVprfaswnUez0w9bqj1lmZbbuGZVS9lNltUIzWasKxieqRC6EEIIIYQQQpzPJCjVARSKhmk0NTVmfvnlFD4+RWzbls3kyRcTHu7JdQsf41hcNF/PnMnPJQY2VpoorizjUP5+DuXvZ0jg5QylD7GDtPxacwJ9ThY+Pi4kJ2cSrvOwZnQkJ2dy8EAx1dV11NbWM2FCfyKjfEjblUd+fgXBIRruurM/GRkFrF17DKVSgV5fxtC4QEaO1GCurWX73OdxqS5nfcANRKsvwsHBEaXSifj4kK6+jeI8kZgY2mTaXkyMr91vACetll7vvkXmPRNIdNrGl2YjJ40H2HBkFa8/+ihBAR7Wto0zhCwBm7RdDVPS8vMrSUnJQq83UG5smMZ61539GTOmN56eKnx9Xax/B/LzK8jUG0hMDEbj5kjsIK3dCn0DY/py00X38bP+v2w4/hVBySYGDJiBytnZLgCUkVFASkoWvr4uJA4PsW5vbQU+Xz9XYmO1NC5Ubss28ATYBaFaW4GzcTDLsnJfXp6RdT8co9pUK1lRQgghhBBCiG5NglLtzJJVEhCgJje3gosv9uP33wsoKKgkPb2wIVsK0PsMpm7s8zyz7U0civI4ddllpCod+H7LVhJ7x6FSKTFW1GJyymbpDy+hdtagVYcysG8Ek24bTm/nSGIHaTmhN5CVZcTDwxljRS1D4wLRqBv+WF1UjmzZcpJMvcG6kphG7cj2HTmEhaip/eLfBFTl8LPv5fSedBse/u7Mnbum2YLWQtgKD/e0vpdtuV58MUGL/49r/v4Y/0oczsOpm9mwczPP/duDB0ZPZM/eAmIHaa2ZUXA6M0jr3zAlT+PmSH5+JbvScnFUOqDTeVgzrKKj/ax1oAC7KWzR0X7WVf9cVE74+rigVCooLjExaEAIgwc+wP6i7Szf8Bnpxw/x0dMLCA88ndmUtjuPXWm5eHg4E6bzsAagmstmstDry6wr6gHNrqLZeJpiYKDaboXBxn1asrxcVI5UVNRat1vOc/RoKUeOlODi4khCQmirQbPG8vKNnDiYR6ifI03/9IQQQgghhBCic0lQqp01l1UydGigtf6OxYYNmWzYVkvl5fOZWPotocnJjO/bl4cWPk1Rncr6JXP5d6dwdHCkotrI8eoDHN9xgNU71gAQHhjIu/Mfp0/AAPT6Mvy0TlTX1BAd7Wf90p+ams2prHKyThmZMLE/en0ZqT8fpzbrJ4IrT3Gw3wj6jp/MqDuHsnbtUWprzZSWVnfqPRM9i+f111N99BhXv/46j158OS/t3cRHa9eSebycaPVVQEMQyUGJNYBqG1ixZPepXZ2aZC0B7N2Tz86defTr50WYzoORI8Ptsp0sWYGXXRaMp5fKWnuqtKQKtTqewdOieOGL17n8/r/x9tx5XJeQAIC3lwpXV0d6hXvYZS7ZZjPZjnPnjhw2JOuJ6OeFTufeJCNKry+zntuy3xJYai14lLY7j91p+fTr503sYG2TsdgWYrecp6WgWWN6fRlHDhXjUO1Kn1ZbCiGEEEIIIUTHk6BUJ2guq8RSn+eqpHBCE5Io+fJL8v7xIjmLFuGelETc6NEonJyIDR5GbUQYDm6lVDkWUGzKJrNAz+GTJ8nMyUHr423NtnhpxQqe+2g5fUJCCPELwMPFCz83H0pwgFIfDh8JoK+vA876NbhXl7I3/Cq8x08mKj4CaH5KlhDnwm/GdIr37mfSpv+R0+9KPj60kY37NuE80JlJA6faFSgH2LungF27chk8OIABAxu2/2Vs3xaCLAoUCigsrLJmElnapaRkkZFRiJe3ilGjetnVXGqoH1UAqPn6//7JY28uY9xTT/K3G29lyYz7KS4x4ah0wMNTZXde22wmy4qBAJs2neKEvgxnJ2WTzChLoMhBiXVlwdam6tlqnP1lOw7Lb9tpe23p1xJM06gd6RfhTbCffPQLIYQQQgghup58M+kijTOqvG+/Hc3w4eQteZ6ydeswpqTgnpRE4qX90bg5Eq7zoLKyDsvKW86uZv6zagtf/+cUCQlmEhJCOZp1itq6Og7q9RzU65ucM149ntBTe3B3dOLxam9+3bYa8/Yf8fd3JzjYCxcXF77//ntuuOEGPvjgA/z9/TvxjoieYvHiLaxceYC7b7uNy32OMrtQzwnf4fxUuBl96SHCemmoNJqB04GUw4eLyMgowt3dCU8vlV3Gke2Kc4UFlRw7Vkrfvl64uipJTy+id++GWlUZGQXo9QZQgKuLE/v3F1uLpEdH+/0R1Clg48YTKH5WcFXorbjWBvDed9+w99hBHr9zOuBvV4y9MdsA0BVXNNRds/xubiqebaZUYUElhw4VoVE7tprRZDtFsaXVCG21VBjdliVIFhnlw+BBWsxVla22F0IIIYQQQojOIEGp84hzUBAhryyjYutW8l97jdJvvsHD5XtGDx2KJmw4e3KdOXCgGE+vhmLllbne7NtXgMlUh7PKkQWTpvHE5Hv55vsdbNlxGDefGsyORo4fPcqJrGwuPvYbJ917kx49hgOpaygsPglAUREcOHB6HD/++CPOzs5ddBdEd7dy5QEOHizmP1/CFf/4B5XzpvJSYAVrRt7HhHHX465W4662n2pWUFBFlamWgoIqu8BP4xXnDh0qYl9GISHBbnh6qjiVVU5qajb9IrxJ251HubGG3r08ueyyII4dM7Avo9C66mTD+cwUF1dRXl5DRUUNN156LRNuSWTWqy8y+cW5vP/4E62uaGcbABoSF4ifTbFywG61wMYr8SUnZ7I7LR9oCDxt2XKS1NRs4uOD8PZ2sQugtXVKnm0frRU9t8+mMrfYTgghhBBCCCE6kwSlzjMKhQLNZZehvvRSKrbvoOijj6j49VeMv/xCoLsHntpw3HwjqT5eRcIQLzCb0QaorV9gNcoaSn4r47IKJbGOFfSqLcRB5YLiiqvI7J1AUf8E6mvciTJoCAy5ghMnCklI0JKVVcqOHafw8nJk1qwb8fSUMsji3Nx5ZyQrVx7gzjsjSbzuYkwRn3D87vHcqd+HpynJ2i63qIgAn4YC4SNGhOHi4kh8fBCFBZWk7crjhN5AVJQPgwcHYFndTqN2JOuUkcLCCk6cMOCgbFjpcu+ePwqol9fi6+vCgIH+uLo6cvRoCdk55Sz75w5uuKEPAwb6YzDUcOKkgbBQd2u9qksufoe/LnmOm+fNZe6ECcy9ZwJKpbLZ62uuEHlhQSXrN2Ry9EgJdfUN7WyDWxkZBeTnVxIc4mbNxEpNzSY9vQCA4BCNXcCqrVP9bPtoLShlG0yrKy9vtU8hhBBCCCGE6CwSlDpPKRwc0Fx6CepLhlKbn4/hxx8xbvoFx/37qV29l7zVEAaMUyggy4X6ujocfq2HulomA/UuUIk3Wb4Xobp8BJdNvZ7IoCAUTk5kZpbSP8af9euPA7lERupwdTWwb98R/PzcGDZsWJdeu+jenngigSeeSLC+VvXrR/jHH6P/61/JX7oU32nT+PfePTz+5pt8+dwSLo+NJSEh1BpU+XTlPrtV8EaODLf2pfXX4OvnyrJ/7qCkxISfvyuenioOHy4iLS0PrdaVzMwyjh7dR58+noT38iRtVy5ZpUZ++ukECQmh3HxzhLW/jIwCkpMziR2k5eslz/PSf1bw3Ecf8evvv/Pe/MfR/hE0s9VcIfLk5EzS0vKoqakjLLRhtUDbrKm03XlkZBThqFQwNC4AwK5gube3C9BQRyov30jK5iwKCyvPONWvcdHzltgWaPd1bbWpEEIIIYQQQnQaCUqd5xQKBU5aLb733IPP+PHUGwzU5OZStX8/1cczqSsspM5gAIUChZMTuRWO7CtS0S9pKAHR4eRn1XNRXBjOutOZT5bC656eznh5qaxF16uq6nB0dJDV90S7c4mKpNeKf3N00hRyX1rK93V1VJpM3PX0U6x9+Z8M7NcPaAieuKiciIz0ISzUvdlMIa2/hhtu6ENqajYxMT44OTny/Q9HKcivJCLCGxcXR45nGqiqquWyy4LAXM+uXXk4OSma1GiyBJigIUPpsXsmMCwmhin/t5jhD9zPh08+SeLAQXbnb64QeewgLfn5DXWarkkKJzraj3+9uoOtv2az9rujeHmrMJlqKK82k5qabQ3C2WY3Wfr65ptDrFlzGIWDAo2bY5Opfv0ivK0BpsZ9tMR2OqBvpFvb/tCEEEIIIYQQooNJUKobUSgUKD09UXp64nLRRc22CQGG2Lzu3Up/jYuth4a6k55eKKvviQ7hHB7OsRkv4/LKQl7I3YchMJBfc3K4Zd5cNrz6Gr2Cgv4o7l2Bv7+rdWqdhW22jyUYk5FRwNq1x3B2ciA42I0RI8Lw9nbh668PUVlZy+HDJRQUVNGnjyfOzo4kJ2cycmS4tV9vLxUODgq8vVTW81w5eAgp77zDlMX/xw1z5nD3lbdw02WjGTQoAK2/huhovyZ1p5rbBmCqrqWm2kxlVR39+nrh768+Y1ZTYWEl9fVmXJwbFjjIyzeyZs1RsrIapt05qxyb1JuyvTfNZVZJTSkhhBBCCCHE+UiCUsLKkkElRHtLSTnJhg2ZXHyxH+bH/oHjtx+w7OevmaQp50BxMbc9Pp/1/3oVnc6dQ4eKMBiq0evL7IIuycmZGAwNWXyHDxWTmppNXV0dObmVhAS7MWFif7T+GvLyjbh7OFNcXMWevfmUlJjo28cLnU7NkcMlaP3VjBzZ0G9xiYmy8ho2JOuprKyzBsICfX15Yco85v7rHT756Ut+/f13/jFtFiP9I1q8xsaBoWuSwqmqrOHEyXI0akf+8pe+1iynxhlblmM1akd8fV3p188bjcYJZ5Ujen0Z7h7OBONGWJgbabvy8PV1scsiO1NhdKkpJYQQQgghhDgfSVBKCNHhNmzIZMMGPQALFiSyaOcNFHkp+ZdyFROPHuSgXs/ERQv5asnzjBwZbg3uWOj1ZRgMNXh4OKPTufPJx/tITy8gNNSdSy4JIHaQ1hp00evLMJSacHJywMNTgwKIiPAmONiNkpIqQAGcniqoUjlQUmzit23ZhOk8rIGtH9fp6euSQODAMH449BXTX3+ST/wXckl0tLVelNJBwYkT5YSFuXHiRDlKpYLhl4c2yaiyBJ327sknJ6cCsA8eWYJKDkowGGpw93BG7erUEKTyc+Waa3qhUTuydu0xTmWVc8klAezckcOmTae44ooQhvyx0p/lntnWs2ptNUEhhBBCCCGE6EoSlBJCdDhL3TLb3xu4DrcBN/Da87OZtGMrP+/axVc//cRd117bJNvHEmzRqBsyh2JiGgqQx8cHNamppNO5Ex8fwuHDRZw6ZWTYsCBGje4FgKeXCp3Onbx8I6u/PUJOTjmDBvpjMtXbZR/p9WUolQ70CvcgLGwYob7B/HD4C0Y/8gj3X383vdWDOXKkBKOxBqOxhuPHS3FyVhIS7NZsHSxL0CkwUENklE+TNrbXl7Y7j8OHjJiq6sjKMmKsqEWnc7eOKSTYDW8vFV9+eYiSUhMAo0f3bbVWlhBCCCGEEEKcjyQoJYRod5bpeklJ4dbaZbb1y2xfP7tzMX/LexJlxSGSDh+m7oorULq42PVnmX62fUcOB/YXERnlw4SJgc1OhdP6axgwEJKTM8nKKsfTU9UkK6m0pIqcnHKMxhrc3FRE93e3q8ek07kz/PIQa1ZW5qFaRgTdRUTQb7y2+mMGhKZxWcAYoqJ8qaqqJyzMDYOhBl9f+3Fb2Nd0gr17CoB8Bgz0txubr5+rTc0rM2C2TsvT6dwZMMAPMHPsmAEHB/DyVHHFFSGA/fRB22LsQgghhBBCCHG+anNQKisri+Dg4I4cixCih7CdrmcbjGrO1ddFsMHpH1xv3kH1V++R/9JL+D38MI4eHnbt8vKNlJaYCAxUWzOHWqqjZFuHybaw+N49BezalUvfvt7Ex4cAZgyGan76n54hQ7TWWlO2NZji44MoLKzEw8OZay+5i6FRMSz59E30+Sf5q/8Urr96CDqdOymbs/htWxag4OabI5rUmLL0t31HDrt25WI2g6eXC1p/jd21DI0LtI4jL9+Ip9fpPjy9ytj8yymKiiq5eIC/daU/yzXb9iEZUkIIIYQQQojzXZuDUjExMbz++uvcfffdHTkeIUQP0Hi6XmtOZ00lUn5NHAdmPMSDU6Ywe8YMLr/qKms7vb6MnBwjkVE+dkEonc69SQ0lnc6da67pZc1M2r4jx7rynNkMHh5OjBzZMLbk5EwUCgBFs6vYJSSEWguU63TujBx5I2G+wTz+/j955cdl7D/xF+77y/UUFlZiKK2msLDSOt7mVskrLTEREKDGZKpHo3a0XoPtb4AtW06SmpptDapt35GDRu1IXV095cYaovv72AWemutDCCGEEEIIIc5nbQ5KLV68mPvvv59vvvmGt99+Gx8fn44clxCiG2s8Xe+rrw7w9deHuOWWCG69NbLF49wSE/n3kMEkp+1i55Ln2ODmRsTQoUDToItt9tHqb4+wKy0XY3ltkwwh2+CQq6sj1dV1ZGWVW6f9DRjoZ601ZcmkGjw4wJqt1FhevpGaclcevvYR1qR9y3fpX1OuyGbhvQ+icXO0TpmzrRNlCYpZAmuOTg44ODhgrKhtci2Wc6xZc5SsrIaV8ior66wZXn36eOHpqSJ2kNYucGWpraXXl9ldu22ATQghhBBCCCHOJ20OSk2bNo3rrruO++67j/79+/Puu+9y4403duTYhBA9xNdfH+J//9Nz6lQ5Q4cGEh7uSWZmKenphcTE+BIe7mltu/jVV/l52zZ27d3LXQue5t1HFlDnG45O524N7MDp7KOMjAL0egOOSgdrTSfbQJRtMCs5ORO93kB2djlubirC/uhz6B+r10E+ZjMYDCZrIKnx9LoT+jJ2bM9FF+7BP2fOZHXKYP759fs88MpTvP/EE0T387MbX3JyJgZDtd1YNGpHawHz5jSeflhZWYvZDIWFlbi6OhI7uCEjbOnSbaSnF1BVVYuzyvGPWlkV1n5sM7UyMgpISclC625mWKw3ns2eWQghhBBCCCE6z1kVOu/duzf/+9//eO2117jllluIjo7G0dG+i507d7brAIUQ3d8tt0Rw6lQ5fn6upKcXEh7uSXp6IampWQB2QSm1Ws23333HoAGxHCwt4tk3n+eGS/7Gzyo/+vTxpMImuwgaVporN9ag03mQOLyh6LdtIMrSTq8vI1zngU7nQVVVHYWFlWRmGqirq2fMmN5ER/sxYKA/nl4ulJZUcWB/EaUlJjy9yqg21eKgbAgmFRZWUlnZMAZjRS33jh3NTdcMZcri/2PE9Gk8de8UHrr9dpRKJXp9GQZDDR4ezk1qS7XGdvqh1l/zR20pFzRqR/bvLyZtVx5HjxSTn1+BVuuKTufe7Op+pSUmSkuqyMgoYO3aYxw8WEyQN4RpnejTHn+wQgghhBBCCPEnnPXqe5mZmXz99dd4e3szduzYJkEpIYRo7NZbIxk6NNCaGQU0+W0rLCyM9z74lHHjbmCDoZR+uz/GO+h2DtXVoVQq6d37dBH0cJ0HWaeMxMcHWQM+jYM/lkynyCgfpv5tIHp9GRq1I2vXHuNUVjnrN2Raa1INjQskL9+IwZDFr79modE4ERCopr6uIQiVmBiMxs0RF5WjTWHxcFYufJFn3/+QBe+9y7qtv/L2vHnNBsfaovH4bV+npGSxa1cu9fVgMtUSE+PHqNG9m52q5+nVcN15+RUolQ4NK/j1UxMc7NbmsQghhBBCCCFERzmriNK7777LnDlzSEpKIj09HX9//44alxCihwkP97TLiGr8urFbbrmWt99+i/vuu4+3CnJ5Uf0dyrB7OJzvQKbeQEJCQztnlSOBgRqcVU0/ziyFyzVqR2sGUeOAT9ruPPLzK9mdlg9AdLQfWn8NVaYaCouqcHFpqBNlmW6n9dcQHe1nVxQdIDe7iiv7jKK390W8vf4Dhk25j3/OnMm4pCQUDZXUrRoXZm8LyzF1dXV4eDqj9ddQX2+2BuMs1/TDD0fYtOkUV1wRwpC4QE7oyzhx0kB4uDuJw0PwdTVjrqps0zmFEEIIIYQQoiO1OSg1evRofvvtN1577TUmTpzYkWMSQggApkyZwt69e1n5n08Jc1UTnbsBz4tv5uI/iolD66vO2WZIna4bdVp0tB/R0X5kZBSwfkMm+fmVZGQUEB3tZy1YHjtIi6+fK0abAuIAhQWVHDpUhEbtiNZfg0btiIMSynPcGaa5ixMOW/jb80v44ddUXn5kJj4ep7O70nbnsW1bLlmnjPj6ubYpiyptdx670/Lp18+bW2+NbDH7atOmUxw5UgLA6NF9qTLVkHWqHH//hvPUlZef8VxCCCGEEEII0RnaHJSqq6tjz549hIaGnrmxEEK0kxdffJFLL72bUykHuHjTUq449SNFgybx3nt78PV1IXF4SLMBJ2g9YAXYZTv5+7uyOy2ftN15DUGoilpGjgxH669h+44cu6LheflG69Q/aAhuGStqG6b4lddAnTNX6MZy04jh/OvbDxl23xT++chMbhg+HGgIdGWdMqJUKqyF25ubfmeb6eWicqJfP28SE4Ptsqtsr0Hrr+GKKxrqall+2wbXhBBCCCGEEOJ80uag1Pr16ztyHEII0SxHR0cSEi4i3dMXlxFa9s2djueny9llGIqHlwthOo8WM43OVFjcdlU92+CN7Xatv6ZJcEuvL0OpdCAk2M16nGWfr6+KHTvyqKs3U50dyMtTnuHLbV9w94KnueWqEbz00EPWoFLa7jw0akf0+jJ27Mjl0KEiayDMdnwOSqivw7rqXkvXoPXXMHp0X0aP7ktevtG6guBdd/Y/y7suhBBCCCGEEB1PqpQLIc57lvpTK1ak8ld9JuOKCrmptxs50SNbzIKytWXLSVJTs4mPD6JfhLc1s6hxIXJfP1f27inAYDARGKi27m8c3NLp3Bl+eYhdZpNtGz9/DT98fxSjsQZf9xA++7/FfPG///HYa68y9N7JvPjQQ/Ty6G8tnq7TuXPoUBEGQzUpm7OoMtUQO0hrPb9G7WhtZ9FcvSxbjYNVQgghhBBCCHG+kaCUEKLbKC+vp6qmho+Kixngso3EAb3R+l9s16bxdDaA1NRs0tJyOX68lKuv1pGXX0narjx69/ZgwEB/u8ykXbtyMZthxNW6c87AqjbVolAo6N/fl5qaWl5+eTvx8ZGsmL+UJ999k/sWL2bE4KHcd+14dDp3CgsqMZbXonZ1ZN++AgqLqgC4687+LZ7nTPWybANutoXVLwpzOcNdFkIIIYQQQojOIUEpIUS3ERaWSELCeLZsWcGTebl8tnkNfS6JwDU62tqmuQyh+Pggjh8vpbbOTGFhFUoHBfv3F5KTU46nl4u1nU7nzuDBAYC5SeZRW1fMy8goYM2aoxSXmHBxaZiaZyk8HhyiYZjvjVzaN47/7v6Wv/5zLrPvuptgh0EcPlyCv78ajcbZuuIfNB9ks4zV9retxsckJ2daVxe8KEx3NrdcCCGEEEIIITqMBKWEEN1GTIwv8+Yt4B//OMXmzRt5JCebz999l77z5uGkta/tZBusSUgIxdvbhZSULHx9GzKFvLxUBAa6oVE7kpycCZgJDnbD00tlDebYBncsq99BQ2HzlqYEpu3Oo6y8BkelAqVSgU7ngYuLI/HxQXh7N5w7dlAMTz9yEy+u+Dcvrvg3AV7fc/PQW4iPj8dZ5WgXgGppGp4lW8u2dlRLx0ixcyGEEEIIIcT5SIJSQohuw1JbKj7+C+Li4jiu1zM3M5M333mHwMcew8HZGa2/hsKCSpKTM+2ymqKj/cjKMrJrVy59+3oz+ro+6HTudlP2jh0zUFJSRUCABkcnBS4qRyoqaoGmq9ilpmaTnl4AgLPKsUnB9HCdB84qR7t6UFp/jV2W1cK/TuXua0cx51+v8OoPb3LUsIdn/jbVGlzKyzdSWmJf36qx5oJWjQNz0dF+1vPWlZf/6T8HIYQQQgghhGgPEpQSQnQ7fn5+fPXVVwwfPpyfSor59uAB7vjkE3ymTEGhUDTJajrNjNkMHh5OdnWYLFP2srLKKSyqxGCoprq6jn79vIkdrG02oBQfH2T93bhgum277TtymgSNbDOwLtLpWP3iS3y9cSML3n2HS6dMYfL11zNv4iRO6KvJyTESGeXTYm2p5jLDzlTzSgghhBBCCCHOBxKUEkJ0S0OHDuWNN97g+PHjTAoJoeifyygLD8cjKanZ6Wp5+UZAwZAhWgYM9Ldu1/prGDmyIYCTnJxJbm6FNVOqtfpRCQmhJCSEsmXLSd59Z4/dan6W+lPeXipOnjSiUjlQWlJFXr4Rrb/Gmt1UWmIiK+s4er2BESMi2L78I95dtYoX/7OClevXM+X6m7ms1+V2xzYmASghhBBCCCFEdyVBKSFEt5KZWUp6eiExMb5MmTIFALPZTPWePRhWr8ZZpyM6+iIA0nbnAQ3ZUnp9WatZRxkZBRw7Vkrfvl4kDg9p0qalguM//XSCPXvyOXmyjOj+fmj9NdZMLQcHBfX1Zvz91Tg4OODpVYbWX2MNXpWWVLF1a5a1KHpCQigP3XEH91x3HU+89j5vrvqC9x2/ZUT0lUx1vpmr/fu1OhYhhBBCCCGE6E4kKCWE6FbS0wtJTc0CGmpMASgUCnyefZZ/DhvGvR98QOi8edbAkLG8FmNFLdWmWhyUoFE3/7GXtjuPw4eL0bj52wV6LFlPtvWlGq+Cd+KEgd69PazBJkuGltJBwYkT5cTE+OBnE4yyLVKelWVErzdYpwMCeLu7c3nva3HI78vxqp1sSE9m4/6N/G3/WB685VZO6muaLX4uhBBCCCGEEN2JBKWEEN1KTIyv3W+LW+66ix8PHybLz4/F779H7OgJALj8UYS8srKWkpKqJjWfLFpaoc4S3LKtL2Vr1OjeRPf3s8tashQWT07OZO/eAnbsyGfECBV6fRlwOpCk9dcwYUJMs9dpGcf0QfH4BT7M6199yTurVvHqF18welgi18aOICxMZ3eMJYOq2lRLpt7Q6vRDIYQQQgghhOhqPSoo1atXLzIzM+22LVmyhHnz5nXRiIQQ7c2yAl9jc+bMYf369XxWUEDcrl3c2as30Xfeag3UnNAbKC6uAsx2x1kyocJ1HrionEhJacjCsgRzbINVzQV4LAGmxgGnBmaKi6uora0kNTUbN3dnDh0qYuTI8DNmONmumAcNK/Ul9rmSd79Zy46MX1mzZRPRa/swacx13DZiBFofH/buKWDXrlxMpnpyco3s3VPAhAn97fopKKwg62gBukEGekWqWx2DEEIIIYQQQnSkHhWUAnjmmWeYOnWq9bW7e/PLqAshepZrr72WJ598kmeffZaFBQVE//ADl0ZEoB040FrHKUzngUbtyPYdOdbMJksm1NEjpWRnl1Nba0bj5oivn6u1btNdd/Zv9dy2hcuhADAzYKA/Awb6YzDUUFhYSf/+PuzbV8SRwyVo/dXW4urNsQTSNGpHjBW11rHu2VWKmzGSWyJicfAuZOfJrTz1zts88dabXBUXR/+AAThVBdM3XIvRWE1ZeQ1pu/OIjvaz9lmWW0xhVinGfUX0igxscQxCCCGEEEII0dF6XFDK3d2dwED5oiXEhWjBggVs2bKF5ORkZufl8dknn9Br3jwcfX2tdZy278ixq8dkyYSqramnqqoWFxcnYgdprYEmS7vGMjIKSEnJwtfXhagoHyKjfCgtqWLXrjzMZvD0cmFoXCA33xxhPaayso6SkipAYd3WXNFyy7kdlFBfh3UMlrpTDTWqonhENxpHVR2rfv6Zz5M38OqaD1CgIDq8D/H9B+PtG0S/iyLs+gz2dqBvX090/X3a9+YLIYQQQgghxFnqcUGp559/nmeffRadTsfdd9/NrFmzcHTscZcphGiGUqlkxYoVDB48mEPZ2Sw8doylH36I/6xZOCiVQENh8tISE6UlVeTlG63T5LZsOUleXiXx8UHWzKIT+jLSduWhUTtap8BZgkhpu/LYlZaLh4czYToPhsYFkpdvpCHgZG5SewpgwEA/PL1UdvuaC35Z9ttmSgEkJISSkBDapN8pN97IlBtvZPmK7Xy7cQvlypN89csPlJSX88r3CqLCw4kI7YW3qy+DHIOJD+6FLsyj3e67EEIIIYQQQpyLHhWtefjhhxkyZAg+Pj5s2bKF+fPnk52dzcsvv9ziMSaTCZPJZH1tMBg6Y6hCiHaQmVlKenohMTG+1jpThw/XMHr0k3z88cNsqqkm88ABVN9+i9cttwANgR9Pr4ZAkKdXmTUQlKk3kJ9fQabeQEJCQ7sqU80fK/KdDkqt++E4W7dm0bevN4NjA/D1dbFbVS84uJK03XkUFlQ2ybCyZGvZshxrG6hqrt2Z5OUbOXW8Bq1DFNcPvYopUy7m0IkTbMvYx7Z9GezPzCT19918tL6YcZdfzn8eeOCs+hdCCCGEEEKI9nbeB6XmzZvHCy+80GqbjIwMoqKimD17tnXbwIEDcXZ25v7772fJkiWoVKpmj12yZAmLFi1q1zELITpHenohqakNhcktQakNGzI5dMibsWOf4OWXp+D83vuUfPUVqogIXAcMABoykByUDb+3bDlJamo2YWFuDIr1J3aQ1poNFa5ryCayXZFPrzdQXGKioqKGWbOGWtsCdjWqjOW1dvWgGrMUWI8dpGVoXMtTjpub3tdcm+TkTByUCi66yJvExGAcHByIDA8nMjyce0ZfR16+kZTNWeSezObiKClwLoQQQgghhOh6531Qas6cOUyePLnVNn369Gl2+7Bhw6itreX48eNERkY222b+/Pl2wSyDwUBYWNg5j1cI0XliYnztfgMkJYX/8ftywsNDMT/9FBVpaRSvWIHT3Lk4entjrKilvg6MFbWkpmaTnl4AwJw5lwBY605FRvlYi5xbgkNxcVpcXByJjw+yBoMMhmrgdI0qY3ktFZU17NiRY93emCV4BTS7qp/FmWpbWdoYDDX06uVBuM6DtN15ZGaWUlxisq4aqNeX8du2LGpKyghwc27jHRZCCCGEEEKIjnPeB6X8/f3x9/c/p2PT0tJwcHBAq9W22EalUrWYRSWEOL+Fh3taM6QsEhNDSUw8XXdJ4eTEnltu5t+P/p0XPvgA/5kzrVPlqk211NXVERrqbi0iDs1PqbMEhyKjfJgzpy/QELw6ftxAmaGaARc3BJaio/0wVtSyY0cuHh5OzdaWgtPZV+E6D7vVABtrbiyttUlOzmR3Wj61dfVUVtRiLK8lOtoPnc6dSy8JxpBbTHS0d4t9CSGEEEIIIURnOe+DUm2VmprK1q1bGTFiBO7u7qSmpjJr1izuuecevL3lC5gQF6qsrCzG3f8ANTXVRGzbxoz//hftTTeh9dfw6cp9FBWZGBTrb1dAvC21n7ZsOclPP52grMxEdY3ZWouqcduWspssBdYbrwYITafsnam+lG0bS7ArJ9vIkSMl1NXVWYNeN98cQV15OeaqyjbfPyGEEEIIIYToKD0mKKVSqVi5ciULFy7EZDLRu3dvZs2aZTc1Twhx4QkODmbgwHvZseNtXirIZ+Dq1SRFROAaE2MN4NjWjGqJJehjqR+VmprNkSMlhIa6MyjWx64P2yCRbe0oy6p+en2ZdWU9jdqRwECNdTXAw4eKWbPmKB4eziRd0+usC55bgl3JyZnU1ZlRKpVnnP4nhBBCCCGEEF2hxwSlhgwZwq+//trVwxBCnIfmzZvJnDnp6PWbmZObwzcffkjUU09ZAzjNaRxMAvv6Tpbpft4+KrJOGQnXVTXbT+PaUZY+HJRQXweRUT54eqmsqwGmpmZz6lQ54NbqlL3G8vKN7N1TgMFgwsPDmeBgNzy9dNbg19n0JYQQQgghhBCdwaGrByCEEO0hM7OUtWuPkplZ2mTfbbdF8fvva7nooovIqari74cPUfDBB9TX17fYnyWYlLY7z7pNp3MnMsoHnc6dhIRQ5sy5hOIiE+npBaSmZjfbT+wgLYNi/amsrOXxxzdx9EgxkVENmVWWvmz7jY8PYuBAf264oY9dttWnK/eRkVHQ7DksBde3bDnFb79ls3NnHsaKWobGBRId7cfQuMBunSX1+uuv06tXL1xcXBg2bBi//fZbm45buXIlCoWCm266qWMHKIQQokPJc0AIIXquHpMpJYS4sKWnF5KamgXQpPg5QFFRPY88soxZs25mc1kZr/6ayt/79cPzxhub7a+5qX2FBZUcOlSERu1oDfJYMqZsC6XbsmRjPf74Jo4cKQHgjjui7dpkZBRY+01ICLWrb5WXb2Tt2mOcyiq39mdry5aTrFlzFGeVktAQd3x9XfDwcG4xM6qgsIKsowXoBhnoFaluts355LPPPmP27Nm89dZbDBs2jGXLljFq1CgOHDjQ6iIWx48f59FHH+Xyyy/vxNEKIYRob/IcEEKInk0ypYQQPUJMjC/x8cHExPg2uz89vZDsbHeuu66hztwp70AM69ZRtX9/s+2jo/24687+dkGg5rKnLBlTtoGk5lxxRQh9+3pxxRUhTfY116/F3j35FBdX4evj0qT2VV6+kTVrjnLiRBnVpjr+MrYvN998ESNHtlyL6uTJco4cKSVjX1Gr4z1fvPzyy0ydOpV7772X/v3789Zbb6FWq/nggw9aPKauro7x48ezaNEi+vTp04mjFUII0d7kOSCEED2bZEoJIXqE8HDPZjOkLCzBqtGjpzF8+GBu/cuV1D8ymaKPPyZg/nyU7meuuRSu8/ijfpRHs/stRcyrTbVk6g129ahGj+7LkLhA9Poy8vKNdkGj2EFajOW11NbUk5x8nOBgN5s6UAq8vFQMHhzQJEtKry/D3cOZsDB3u+l+rQkNdcOhugpdf58ztu1q1dXV7Nixg/nz51u3OTg4kJSURGpqaovHPfPMM2i1Wu677z5++eWXzhiqEEKIDiDPASGE6PkkKCWEuCBYAlbp6YXcfvu1hId7UvXaqxy55Vby3nuPgEcewcGh9eRRZ1XDSnnOqtMfnbar6aWkZJGTU45CoaCsrBo4Pd3OUvfJYGjYbhtAio72Y//+YpKTj+Pt7Ur/GB/q6xr2DRjoh6eXqtnpeDqdO9dc0wudzr3ZgFRzxdr9fNX4avzxDGs+sHY+KSgooK6ujoCAALvtAQEB7G8hw23z5s28//77pKWltfk8JpMJk8lkfW0wGM5pvEIIIdqXPAeEEKLnk6CUEKJbS0k5yYYNmVx8sR+urk7ExPi2mDHVuO6Uwd2d6ZiJ3LKFpy+6CI/rr2/1XJbAkG2AyHY1vZyccozGGvr398PRSWE33U6vL8NgqEHp4EBpSVWTbKnCwkpqaupxcVE2ZE79kSml9dfYtbMEwRrva7wdmq7819OVlZUxYcIE3n33Xfz82n69S5YsYdGiRR04MiGEEJ1BngNCCNH9SFBKCNGtbdiQyYYNeg4eLKZPHy/y8irQagubDU5ZpvDFxPiSmVnKO+98yc979vAzMPiLL7gtIgLVRRcBzQd5GgeI4HSA6nTxczMDBvq32K60pIqcnAo8vcrs2iQmBqNxc7TLasrLN7J9R47dGCxBMAvLGG23W9o2V6y9O/Hz80OpVJKbm2u3PTc3l8DAwCbtjxw5wvHjx7nRpni9ZYVFR0dHDhw4QN++fZscN3/+fGbPnm19bTAYCAsLa6/LEEIIcY7kOSCEED2fBKWEEN1aUlI4JSUm1GpH+vb1BMwtrsJnW3dq7dqjODgM5IYbJrBmzSfMz8km6p13iF2wAKV780Ge5tgGqlrLRrK0y8s34ulV1mQ6nmWVPlvNjcE2W8t2f3NZXM312Z04OzsTFxdHcnKydTnv+vp6kpOTmTFjRpP2UVFR7N27127bk08+SVlZGa+88kqLXzBUKhUqlardxy+EEOLPkeeAEEL0fBKUEkJ0a4mJoZSWVpOamoVWqyEmxteaKdUay/4JE14iJyeD7du3M/PAflZ+8D5BDz3cbJCnrZrLsrJoLtuqJc2NobCgkkOHitCoHe322/a7ZctJUlOziY8POuOqgOe72bNnM2nSJIYOHcqll17KsmXLMBqN3HvvvQBMnDiRkJAQlixZgouLCxdffLHd8V5eXgBNtgshhOge5DkghBA9mwSlhBDdnu20vDOtwmdh2+7zzz9nyJAh7C4pYckvv7A44iK0Y8a0OXjUWOMMJ9sglWV/S8XJLVoKbNnWibrrzv7N9pGamk16egFAtw9KjRs3jvz8fJ5++mlycnKIjY3lhx9+sBa91ev1ZyxQL4QQovuS54AQQvRsEpQSQnR7bQ1EtaR379589NFHjB07lo+Lixny+WfcHRGBS0TEOfXXOMOpcR2otkwL3Lsnn5078xgyRMvIkafbeXupcHBQ4O3V8jSD+Pggqqpq0WpdrQXVLUGuMD8HfDWKc7qurjJjxoxmp2kAbNy4sdVjly9f3v4DEkII0ankOSCEED2X/LOCEEIAf/nLX/j73/9ORL9+9AkNpXj5curOcUlorb+GoXGBdnWgIqN8qDbVkrYrD7XN1DtblsLmeflGQIFCAWAfQCouMVFfb6a4xNTkeIuEhFBGje6Ng4MDen0ZcDowdvJk+TldkxBCCCGEEEK0NwlKCSHEHxYvXsz2HTvwm/UiVWUVnHzlDepra5ttax9Aap0lSJWpN3D4cDFVptpms6QsgaO9exqm3g0erGXAQPtC5bGDtAyK9W91Rb28fCOlJSYCA9Vo1I5s35GDRu1IZJQPoaFuZxyvEEIIIYQQQnQGmb4nhLigffXVAb7++hC33BLBrbdG4uTkxI/7oMj1Rq7P/A8en3+O9913Nzmuravz2bIEkloKKFmyp07oDRw5UsLgwQFN+m5pRb2MjAJSUrLw9XXBw8OZnJwKIqN8MFbUcmB/EZFRPgyNC6SuvBxzVWWbxiuEEEIIIYQQHUmCUkKIC9rXXx9i06aTANx6ayQASUnhLN5azvU7j7N47XdM0OlwGz7c7rhzWZ2vpYCShSUAlbYrj6qqWsDc5r7TduexKy0XDw9nkkb2IjLKx25sOp07eflGThzMI9TPkXOvwCWEEEIIIYQQ7UOCUkKIC9ott0TY/QZITAzl0ks9+f77ehbm59P/359wWXAwqj59rG20/ppzWp2vpVX1LPT6MurqzfTt58WAgf5t7jd2kBZjeS2+vi4MGOhn17fWX8OWLSdZs+Yofpp6RiRo6dNKX0IIIYQQQgjRGSQoJYS4oN16a6Q1Q8rWU089RUpKChs2bGBWVhZfvPMOvebPR+l57jlGeflGVn97hOzschISQuxW1bOwZDdp1I7WIuWWAFNGRgHrN2QCcE1SONHRfnbT9v4ytm+LgbLU1GxOnSpHFeREcLDUlRJCCCGEEEJ0PSl0LoQQzVAqlaxYsYKgoCAOG40sOHyIgrfeor6mxtqmLcXObdvo9WVkZ5dTUVmDZWreli0nWbp0G1u2NEwhtBRFt9SCsgSmoGGKXlpaHrvT8kjbnUdevpG1a4+xbVsOv23LtmvbeGzx8UEMHOjPqFHh+Pq6tuetEkIIIYQQQohzIplSQgjRAq1Wy8qVK7n66qtZXVxM3J493PDPt/GYPJkArZtdsXOg2Wl5tm10OncSEkIAM66ujny6ch8Z+4o4ebIhmJSQEGo9rrmaVbGDtOTnV1r/W68vQ6l0QKdzp39/X2vbvHwjycmZGAzVnNCXcehQIeXltYwe3YtLBnpJoXMhhBBCCCHEeUGCUkII0YLMzFLKy0N59NGneOGFhSzOz+eSg2nUff0tAQ+MR6dzp7TERGlJFXtLqsjJqQAasp0yMgpI251HuM7DWnRc66+xTtn7dOU+dqfl4+OjIibGj/j4ILtzN1ezyrZQel6+kaw9BQwY4MuAgf5NAmEGQw0eHs4UFlayZ08BNTX1eHqqGDbQqwPvmBBCCCGEEEK0nQSlhBAXlMzMUtLTC4mJ8SU8vPX6UOnphaSmZjF8+HgOHEijf/84vE/k4/bbjxi39EabkICnV0MmVGCgxm7Fu7TdeexOywfgrjv7N+k7dpDW+ru1FflaoteXkZNjJDLKB62/xq6AuiVYBmZcdY4UFVVQXl7bJPAlhBBCCCGEEF1JglJCiAuKJdAEnDEoFRPja/399ddfo1AoMNfXo59yH8WffYbS1xedrmHKne20vS1bTpKxrwgfH5U1+NSYJevJUvtJo3bEWFHb4qp8jTWe3mc7TXBoXKA1WBYZ5cNjj10GNGRXpe3OJdTPkXMv1y6EEEIIIYQQ7UOCUkKIC4ptoOlMwsM9mwSuFA4OeD6/hO+vv54R772H36xZaOOC7dqkpmaTmWkgJMQNX7/Wi4rv3VPArl25eHm54Ora8JHclqBU4+l9jYNUzdWk2rungPTtJ4mN9qTPGc8ghBBCCCGEEB1LVt8TQlxQwsM9GTOmzxmzpFpSWlpK4siRTNu1i80mE4Wvv05tcbFdm/j4IEJC3PDwcLZbEQ+aW7HPjNkMvr4udtP/zpbWX4NG7cjqb4/wzTcHgYaMKfsAV8O5LCv/CSGEEEIIIURXkkwpIYQ4Cx4eHiQkJLBv3z7+fvIEn+t0KF57Ff85j6JUq4GGVfT6RXhbazzZsp1mp/XXEBzsRl5+BVFRPudUW8pW2u48tm3LxsnJAVAQ9kd9KUtgasBAf7xc6gn1k49+IYQQQgghRNeTTCkhhLCRknKSRYtSSEk52ex+hULBa6+9xqWXXkpxaSmzKispKyig8I03qK+psbbT+msYGhcIYJcZpVE74qBs+A1grKilvq7h958VO0iLTueBt7crhYWVHNhf1CRTSwghhBBCCCHOF/LP5UIIYePLLw/y44/HKSkxkZgY2mwblUrFV199RVxcHL8fPsySq65i0fHjFL37Lj4PPICDw+l4f+PMKGNFLQZDDWm78/D1c2229hNgt5pe49X1LP3aZkHl5RsxVtRyyy0RGCtq7Qqn247lyKFiHKpdpaaUEEIIIYQQostJppQQQtgICXHDz8+VkBC3VtuFhobyxRdf4OjoyJcbN/JN3BCqfv+dkhUr7NrpdO5ERvlQbarl05X7qDbV4uHhhMFQjV5fZs2oKiyo5NOV+8jIKABOB7MsmU62rxvvs91vrKhlaFwg0dF+TWpK6XTu9IvwJji49WsTQgghhBBCiM4gmVJCiB4vM7OU9PRCYmJ8z1jg/PbbI+nf369Nq/NdccUVLF26lEceeYS3f/6Zex5+hIr33sPBwwOvsWOB06vkfbpyH7vT8gEYOTKcvXsKKC2pIi/fiNZfQ9ruPOv+6Gg/uwyqvHwjpSUmAgPVdplPGrUj23fkoPujdpSlfUu0/hp8XbWYqyrPeG1CCCGEEEII0dEkKCWE6PHS0wtJTc0COGNQKjzc86xW5nvooYeoqKhg0qRJBAUFkVVaSukXX6D08MB9xAhru9hBWutvrb8GT6+GzCZPr4ZsKdv9cDqYBQ01qXJyjERG+Vi3af01bN+RY50aeK6r9gkhhBBCCCFEV5GglBCix7NkPbUl++lsKRQK5s2bZ30d9MwiagsKKP3qK5SenqiHDAHA18+ViAgffP1cAZpkQhkrahk5Mtxuup2Fpa1tZpTWX2PXR+PaVUIIIYQQQghxvpOglBCixzvb7Kc/47PPPuM7QykLY2Io/vhjlB4eqPr1axI0apwJ1VpAydK2cTvbPiwkY0oIIYQQQgjRXUhQSggh2smJEyeYNGkS1dXV9Jo7l0kGA4XvvIP/rFnodB5A80GjxllTjVfWsyjIN5KeXoCvr6rjL0YIIYQQQgghOpisvieEEO0kLCyMN998E4D/e+EFfh37FxQqZwrefIP6MkOLx1mm4un1Zezdk99kZb2MjAI+XbmPLVuyyckxkp5e1KSP5lbkE0IIIYQQQojzmWRKnYO6ujpqamq6ehhCtJmTkxNKpbKrh3FBmDJlChkZGbz00ktMnTOHdcuXo33+Bao/fJeDEadX5Gts754Cdu3KpW9fbyKjfOwyqiwr85WXV1NRUYPZXNfk+LasvieEEEIIIYQQ5xMJSp0Fs9lMTk4OJSUlXT0UIc6al5cXgYGBKBSKrh5Kj/f888+zf/9+1qxZw52zZvG/V1/D6ekFDDuxHs2o+1s4yozZDB4eTgyNC7TbY1mR76f/6amurmP//hLy8o12wa3m6ksJIYQQQgghxPlMglJnwRKQ0mq1qNVq+XIvugWz2UxFRQV5eXkABAUFdfGIej6lUsl//vMfEhIS+P333xn/3GJWPz4fw7PPotq4FsaNa3LMgIH+eHq5NJvpFB3tR3S0H0oHBT/+mElAgCt6fVmzQajWalIJIYQQQgghxPlEglJtVFdXZw1I+fq2/7LyQnQkV1dXAPLy8tBqtTKVrxO4u7vz3//+l0svvZRrr72WoLvuxPGEnqLlH+EUFITbFVfYtT9TptOWLSc5caKc226LwO+PGlTNabzKH9gHqnxd2+kChRBCCCGEEOJPkqBUG1lqSKnV6i4eiRDnxvLerampkaBUJ+nVqxf79u3Dz88PAO1jj2E6dIjSr77CMTAQl4suanNfqanZpKcXADBnTt8W2zVXW8o2UOUb6XbW1yGEEEIIIYQQHUGCUmdJpuyJ7kreu+0nM7OU9PRCYmJ8CQ/3bLWtn5+ftX3fvmoyRo3i4pOnKPrwQ/wffRSnNmZexsT4UFhYSUyMT5N9eflG1v1wHL3ewIgRYSQkhNrttw9Umdt2kUIIIYQQQgjRwRy6egBCCNHdpKcXkpqaRXp6YZvb//LLMW655QZuHjeOX2+8AerrKXr7beqrq9vUh5+/hpgYP/yameKn15exdWsW+zIKSU3NbrJf669haFyg1JgSQgghhBBCnFckKNXDKRSKVn8WLlz4p/petWrVWY1Bo9EQERHB5MmT2bFjx1mf86qrrmLmzJlnP1gh2lFMjC/x8cHExLQ1y8mXyMgAQkOjAbhvzhyOTpxATVYWJZ9+2qY+dDp3IqN8mq0lVW2qxc3NmbBQN+LjpZC9EEIIIYQQonuQoFQPl52dbf1ZtmwZHh4edtseffTRThnHhx9+SHZ2Nunp6bz++uuUl5czbNgwPv744045vxDtKTzckzFj+pxx6p5te61WzSWXTCUx8Tqqq6u566mnyL9pLBVbt1K+adMZ+2gt2ylTbwBgUKy2ydQ9IYQQQgghhDhfSVCqhwsMDLT+eHp6olAo7LatXLmS6OhoXFxciIqK4o033rAeW11dzYwZMwgKCsLFxYXw8HCWLFkCNBRwBrj55ptRKBTW1y3x8vIiMDCQXr16ce211/Lll18yfvx4ZsyYQXFxMQCFhYXcddddhISEoFarGTBgAJ/aZJFMnjyZn3/+mVdeecWaeXX8+HHq6uq477776N27N66urkRGRvLKK6+0740U4k+KifElISGU99//kOHDh1NaWsrdH39M0cABlH7zDabjx8+579hBWgbF+hM7SNt+AxZCCCGEEEKIDiZBqQvYihUrePrpp1m8eDEZGRk899xzPPXUU3z00UcA/Otf/2L16tV8/vnnHDhwgBUrVliDT9u2bQNOZ0BZXp+NWbNmUVZWxvr16wGoqqoiLi6O7777jt9//52//e1vTJgwgd9++w2AV155hfj4eKZOnWrN9AoLC6O+vp7Q0FC++OIL9u3bx9NPP83jjz/O559/3g53SYgGmZmlrF17lMzM0nM63pJdFRkZwLfffkv//v05deoUk7Zvp1CtpujDD6kzGs+p7+hoP0aODMdYUUte/rn1IYQQQgghhBCdTVbfu4AtWLCApUuXcssttwDQu3dv9u3bx9tvv82kSZPQ6/VEREQwfPhwFAoF4eHh1mP9/f2B0xlQ5yIqKgqA439kiISEhNhNJ3zooYdYt24dn3/+OZdeeimenp44OzujVqvtzqlUKlm0aJH1de/evUlNTeXzzz/njjvuOKexCdGYpbg50OZpey3x8fFh/fr1DB8+nOLSUhxe+Af1zzxD8Ucf4fPAAzg4nP2/F+j1ZRzYXwTQZIpfXr4Rvb4Mnc4dX9c/NXQhhBBCCCGEaDcSlLpAGY1Gjhw5wn333cfUqVOt22tra/H0bPjCPXnyZK655hoiIyMZPXo0N9xwA9dee227jcFsbliaXqFQAFBXV8dzzz3H559/zqlTp6iursZkMqFWq8/Y1+uvv84HH3yAXq+nsrKS6upqYmNj222sQliKmre1uPmZBAcHs2HDBo4cyaO4Rov//Y9Q9dpLlP3wA55jxgCQkVFA2u48YgdpiY72a7U/SwF0nc7dLgil9dfYBax8I93aZfxCCCGEEEII8WdJUKqLZGaWkp5eSEyM75/OujgX5eXlALz77rsMGzbMbp9SqQRgyJAhHDt2jO+//54NGzZwxx13kJSUxJdfftkuY8jIyAAaMpsAXnzxRV555RWWLVvGgAED0Gg0zJw5k+rq6lb7WblyJY8++ihLly4lPj4ed3d3XnzxRbZu3dou4xQCGrKj2vvvap8+fdi/n4YMrPgROF3yM37ffYdz7964RkeTtjuP3Wn5AK0GpRoHobbvyLHLmrINWIG5Xa9BCCGEEEIIIc5VtwlKLV68mO+++460tDScnZ0pKSlp0kav1/Pggw/y008/4ebmxqRJk1iyZAmOjuffZbbnVKBzERAQQHBwMEePHmX8+PEttvPw8GDcuHGMGzeO2267jdGjR1NUVISPjw9OTk7U1dWd8xgsqwEmJSUBkJKSwtixY7nnnnsAqK+v5+DBg/Tv3996jLOzc5NzpqSkkJCQwLRp06zbjhw5cs7jEqIzWTKvSkvT+duqb4h1ceG1Dz5AN38+sYO0GMtrcVE5kpdvpLCgstnMqcZT92yDULbZVlp/DXV/BKSFEEIIIYQQoqudf9GaFlRXV3P77bcTHx/P+++/32R/XV0d119/PYGBgWzZsoXs7GwmTpyIk5MTzz33XBeMuHXtPRXoXCxatIiHH34YT09PRo8ejclkYvv27RQXFzN79mxefvllgoKCGDx4MA4ODnzxxRcEBgbi5eUFNKzAl5ycTGJiIiqVCm9v7xbPVVJSQk5ODiaTiYMHD/L222+zatUqPv74Y2t/ERERfPnll2zZsgVvb29efvllcnNz7YJSvXr1YuvWrRw/fhw3Nzd8fHyIiIjg448/Zt26dfTu3ZtPPvmEbdu2WTOwhGgvKSkn2bAhk6SkcBITQ9ulT0sG1i+/nMJsNrO5oIBpJhNvvfUWkY89hrGilgP7i9Dryzh0qKjZzCn7TKiGwJSlrlRycmabsq2EEEIIIYQQorN1m6CUpZD18uXLm93/448/sm/fPjZs2EBAQACxsbE8++yzzJ07l4ULF+Ls7NyJoz2zjpgKdLb++te/olarefHFF/n73/+ORqNhwIABzJw5EwB3d3f+8Y9/cOjQIZRKJZdccglr1661FmFeunQps2fP5t133yUkJMRasLw59957LwAuLi6EhIQwfPhwfvvtN4YMGWJt8+STT3L06FFGjRqFWq3mb3/7GzfddBOlpadXO3v00UeZNGkS/fv3p7KykmPHjnH//feza9cuxo0bh0Kh4K677mLatGl8//337X/TxAVtw4ZMNmzQA7RbUMri8ssv5/vvv2fMmDFsKStjauoWPvzkE3Q3NBTr1+nc0agbPrJjB2ntjrUNQjVmadv4GCGEEEIIIYToagqzpdp0N7F8+XJmzpzZZPre008/zerVq0lLS7NuO3bsGH369GHnzp0MHjy4Tf0bDAY8PT0pLS3Fw8PDur2qqopjx47Ru3dvXFxc2uNShOhU8h7+8zoiU6rpOVK47rrrKCsr41JXNf+ZPRvt1Ve3S995+UZOHMwl1M+RPpNux6ENiwjYaunzsae5UK5TCCHO1oXy+XihXKcQQpytjvh87DaZUmeSk5NDQECA3TbL65ycnBaPM5lMmEwm62uDwdAxAxRCdHuJiaEdFow6fY5E1q1bx6hRo/itrIxx/3yZL7VafC++uMVjtmw5SWpqNjExPvj5a9CoHTFW1FoLn1vo9WUcOVSMQ7UrfTr0KoQQQgghhBDizBy68uTz5s1DoVC0+rN///4OHcOSJUvw9PS0/oSFhXXo+YQQ56fMzFLWrj1KZmbpmRt3sPj4eNavX4+npyfebm4YP/qI6laC66mp2aSnF7Bp0ykO7C8ibXeetQ6VLZ3OnX4R3gQHu3X0JQghhBBCCCHEGXVpptScOXOYPHlyq2369Gnbv+cHBgby22+/2W3Lzc217mvJ/PnzmT17tvW1wWCQwJQQF6CuXhGzsWHDhpGamkqIszM5kyZT+Npr+P/97zh6Nh1bfHwQQLOZUra0/hp8XbWYqyo75RqEEEIIIYQQojVdGpTy9/fH39+/XfqKj49n8eLF5OXlodU2FPRdv349Hh4edqu3NaZSqVCpVO0yBiFE93U+rIjZWHR0NADO773L8fH38PeHZjDhkZkMiYuza5eQEEpCQtunFXazUoJCCCGEEEKIHqpLp++dDb1eT1paGnq9nrq6OtLS0khLS6O8vByAa6+9lv79+zNhwgR2797NunXrePLJJ5k+fboEnYQQZxQe7smYMX3OiyypxlyiolhzTRLvnzrFmHlzWbNmzRmPycs3sn1HDnn5Ruu2muxsilesoPx//+vI4QohhBBCCCFEm3SboNTTTz/N4MGDWbBgAeXl5QwePJjBgwezfft2AJRKJWvWrEGpVBIfH88999zDxIkTeeaZZ7p45EII0eDP1K0aNX4agyJjqaiv555/vsxT8xaRk1vWYnu9vqyhrlSmAdPhwxS8/Ta5//d/VB89ilNwCArHHrPOhRBCCCGEEKKb6jbfSpYvX87y5ctbbRMeHs7atWs7Z0BCCHGWzrVuVWZmKV9/fYKLhy7EyeUttu/+gVe2/czJmQdZNusRPIYMQeHoSF6+Eb2+jLAwN8I8alHXHsTz+3Tys0+h9PHBc+xf8LrjDlQXRaJwdu6oyxRCCCGEEEKINuk2QSkhhOjuzrVuVXp6IQUFVZjNSoYNn02/qBg++/xlvsrL5vgzi3g5TEdwWBjl9U64llVSVVuGstKIh1KJU+/euE2Zgvv1Y3Dp1QsHjaYjLk0IIYQQQgghzpoEpYQQ4hxkZpaSnl5ITIxvm7OewsM9z6lmVUyML3l5FRQUVODn58qIEU8x/p6ruPvuu9ldUYEhIR5ddTUuRQbMSnecAnvjdXEUx7wv4pfDDiQMG0hiTK+zPq8QQgghhBBCdCQJSol2M3nyZEpKSli1ahUAV111FbGxsSxbtuyc+2yPPoToCOc6Fe9chId7otUWcuRICf37+/0R3LqB7du3s337dm64+27MNTXUm0xgNqNwckKhUvHWM1vYkKqnQnOKxCt7degYhRBCCCGEEOJsSVDqAjB58mQ++ugjAJycnNDpdEycOJHHH38cxw4sdvz111/j5OTUprYbN25kxIgRFBcX4+XldU59CNGZznUqXnue76KLLuKiiy4CQOHkxO69e3niiSd45513CAsLIykpHMD6OyXlJBs2ZJKUFE5iYminjFsIIYQQQgghWtJtVt8Tf87o0aPJzs7m0KFDzJkzh4ULF/Liiy82aVddXd1u5/Tx8cHd3b3L+xCiI4SHezJmTJ8Oz5Jq6/nMZjMPPPAAP/zwAxdffDEff/wxCQkhLFiQaA1AbdiQyYYNejZsyOyUMbeX119/nV69euHi4sKwYcP47bffWmz77rvvcvnll+Pt7Y23tzdJSUmtthdCCHH+k+eAEEL0XBKUukCoVCoCAwMJDw/nwQcfJCkpidWrVzN58mRuuukmFi9eTHBwMJGRkQCcOHGCO+64Ay8vL3x8fBg7dizHjx+39ldXV8fs2bPx8vLC19eXxx57DLPZbHfOq666ipkzZ1pfm0wm5s6dS1hYGCqVin79+vH+++9z/PhxRowYAYC3tzcKhYLJkyc320dxcTETJ07E29sbtVrNddddx6FDh6z7ly9fjpeXF+vWrSM6Oho3NzdrQE6InkyhULBixQouu+wyDAYDkyZN4uabb+bkyZPWNklJ4SQl6ayZU93BZ599xuzZs1mwYAE7d+5k0KBBjBo1iry8vGbbb9y4kbvuuouffvqJ1NRUwsLCuPbaazl16lQnj1wIIUR7kOeAEEL0bBKUukC5urpas6KSk5M5cOAA69evZ82aNdTU1DBq1Cjc3d355ZdfSElJsQZ3LMcsXbqU5cuX88EHH7B582aKior45ptvWj3nxIkT+fTTT/nXv/5FRkYGb7/9Nm5uboSFhfHVV18BcODAAbKzs3nllVea7WPy5Mls376d1atXk5qaitlsZsyYMdTU1FjbVFRU8NJLL/HJJ5+wadMm9Ho9jz76aHvcNiHOaxEREfzyyy8899xzODk58e233xIVFcXSpUupqakhMTHULnOqO3j55ZeZOnUq9957L/379+ett95CrVbzwQcfNNt+xYoVTJs2jdjYWKKionjvvfeor68nOTm5k0cuhBCiPchzQAghejapKfUnVVRUsH///k4/b1RUFGq1+qyPM5vNJCcns27dOh566CHy8/PRaDS89957ODs7A/Dvf/+b+vp63nvvPRQKBQAffvghXl5ebNy4kWuvvZZly5Yxf/58brnlFgDeeust1q1b1+J5Dx48yOeff8769etJSkoCoE+fPtb9Pj4+AGi1WruaUrYOHTrE6tWrSUlJISEhAWj4H4+wsDBWrVrF7bffDkBNTQ1vvfUWffv2BWDGjBk888wzZ32vhOiOHB0dmT9/PjfccAMPPPAAW7Zs4dFHHyU0NJRx48Z19fDOSnV1NTt27GD+/PnWbQ4ODiQlJZGamtqmPioqKqipqbF+xjTHZDJhMpmsrw0Gw7kPWgghRLuR54AQQvR8EpT6k/bv309cXFynn3fHjh0MGTKkze3XrFmDm5sbNTU11NfXc/fdd7Nw4UKmT5/OgAEDrAEpgN27d3P48OEmtZyqqqo4cuQIpaWlZGdnM2zYMOs+R0dHhg4d2mQKn0VaWhpKpZIrr7zyLK/0tIyMDBwdHe3O6+vrS2RkJBkZGdZtarXaGpACCAoKajHFW4ieasCAAfzyyy8sX76cb7/91hq0hYbgtCXgfD4rKCigrq6OgIAAu+0BAQFt/seAuXPnEhwcbA2GN2fJkiUsWrToT41VCCFE+5PngBBC9HwSlPqToqKi2LFjR5ec92yMGDGCN998E2dnZ4KDg+1W3dNoNHZty8vLiYuLY8WKFU368ff3P6fxurq6ntNx56Lxan0KhaLFYJkQPZmDgwNTpkxhypQp1m319fUA3SIo9Wc9//zzrFy5ko0bN+Li4tJiu/nz5zN79mzra4PBQFhYWGcMUQghRAeS54AQQpz/JCj1J6nV6rPKWOoqGo2Gfv36tantkCFD+Oyzz9BqtXh4eDTbJigoiK1bt3LFFVcAUFtb22r21oABA6ivr+fnn39u9l+qLJladXV1LY4rOjqa2tpatm7dap2+V1hYyIEDB+jfv3+brk0I0RCs6g78/PxQKpXk5ubabc/NzSUwMLDVY1966SWef/55NmzYwMCBA1ttq1KpUKlUf3q8Qggh2pc8B4QQoufrHt9MRKcaP348fn5+jB07ll9++YVjx46xceNGHn74YetKXo888gjPP/88q1atYv/+/UybNo2SkpIW++zVqxeTJk1iypQprFq1ytrn559/DkB4eDgKhYI1a9aQn59PeXl5kz4iIiIYO3YsU6dOZfPmzezevZt77rmHkJAQxo4d2yH3QoiukJJykkWLUkhJOdlim8zMUtauPUpmZulZ9d1dAlLQEKyOi4uzK05rKVYbHx/f4nH/+Mc/ePbZZ/nhhx8YOnRoZwxVCCFEB5DngBBC9Hzd59uJ6DRqtZpNmzah0+m45ZZbiI6O5r777qOqqsqaOTVnzhwmTJjApEmTiI+Px93dnZtvvrnVft98801uu+02pk2bRlRUFFOnTsVoNAIQEhLCokWLmDdvHgEBAcyYMaPZPj788EPi4uK44YYbiI+Px2w2s3bt2iZT9oTozjZsyGTDBj0bNmS22CY9vZDU1CzS0ws7cWSdb/bs2bz77rt89NFHZGRk8OCDD2I0Grn33nuBhlU9bQvgvvDCCzz11FN88MEH9OrVi5ycHHJycpoNdAshhDj/yXNACCF6NoVZiu3YMRgMeHp6Ulpaajd1raqqimPHjtG7d+9W56QLcb6S93D3kZJykg0bMklKCicxMbTZNpmZpaSnFxIT40t4uGenjKulz8eO9tprr/Hiiy+Sk5NDbGws//rXv6wLHlx11VX06tWL5cuXAw1ZmZmZTYN5CxYsYOHChW06X1ddpxBCnO/kOSCEEBe2jvh8lKBUIxKUEj2VvIfFn3Wh/E/6hXKdQghxti6Uz8cL5TqFEOJsdcTno0zfE0KIbq4tNaiEEEIIIYQQ4nwjq+8JIUQ3Z6lBBbQ43U8IIYQQQgghzjcSlBJCiG4uKSnc7rcQQgghhBBCdAcSlBJCiG4uMTFUMqSEEEIIIYQQ3Y7UlBJCCCGEEEIIIYQQnU6CUkIIIYQQQgghhBCi00lQSgghhBBCCCGEEEJ0OglKCSGEEEIIIYQQQohOJ0Ep0a4mT57MTTfdZH191VVXMXPmzD/VZ3v0cSYbN25EoVBQUlLSoefpaAqFglWrVnX1MIQQQgghhBBCiDOS1ffaQX1VFeaamk47n8LJCQcXlza3nzx5Mh999BEATk5O6HQ6Jk6cyOOPP46jY8e+Bb7++mucnJza1Hbjxo2MGDGC4uJivLy8zqmPc5WQkEB2djaenp5tPmby5MmUlJRIEEicVzIzS0lPLyQmxpfw8NPv55SUk2zYkElSUris1CeEEEIIIYQ4L0hQ6k+qr6qiLDmZOkNZp51T6eGO+8iRZxWYGj16NB9++CEmk4m1a9cyffp0nJycmD9/fpO21dXVODs7t8tYfXx8zos+zsTZ2ZnAwMAOP09z2vN+C5GeXkhqahaAXVBqw4ZMNmzQA0hQSgghhBBCCHFekOl7f5K5poY6QxkOKhVKD48O/3FQqagzlJ11ZpZKpSIwMJDw8HAefPBBkpKSWL16NXB6yt3ixYsJDg4mMjISgBMnTnDHHXfg5eWFj48PY8eO5fjx49Y+6+rqmD17Nl5eXvj6+vLYY49hNpvtztt46p3JZGLu3LmEhYWhUqno168f77//PsePH2fEiBEAeHt7o1AomDx5crN9FBcXM3HiRLy9vVGr1Vx33XUcOnTIun/58uV4eXmxbt06oqOjcXNzY/To0WRnZ7d4fxpP3ztTHwsXLuSjjz7i22+/RaFQoFAo2LhxY5vuW3P3+/HHH2fYsGFNxjVo0CCeeeYZALZt28Y111yDn58fnp6eXHnllezcubPFaxIXppgYX+Ljg4mJ8bVuy8wsRaNxZujQAJKSwrtwdEIIIYQQQghxmgSl2olCpcLB1bXDfxQqVbuM19XVlerqauvr5ORkDhw4wPr161mzZg01NTWMGjUKd3d3fvnlF1JSUqyBGctxS5cuZfny5XzwwQds3ryZoqIivvnmm1bPO3HiRD799FP+9a9/kZGRwdtvv42bmxthYWF89dVXABw4cIDs7GxeeeWVZvuYPHky27dvZ/Xq1aSmpmI2mxkzZgw1NoG6iooKXnrpJT755BM2bdqEXq/n0UcfPat71Fofjz76KHfccYc1UJWdnU1CQkKb7ltz93v8+PH89ttvHDlyxNomPT2dPXv2cPfddwNQVlbGpEmT2Lx5M7/++isRERGMGTOGsrLOy9IT57/wcE/GjOljlyWVnl5IaamJa67pJVlSQgghhBBCiPOGTN+7wJjNZpKTk1m3bh0PPfSQdbtGo+G9996zTiP797//TX19Pe+99x4KhQKADz/8EC8vLzZu3Mi1117LsmXLmD9/PrfccgsAb731FuvWrWvx3AcPHuTzzz9n/fr1JCUlAdCnTx/rfss0Pa1Wa1dTytahQ4dYvXo1KSkpJCQkALBixQrCwsJYtWoVt99+OwA1NTW89dZb9O3bF4AZM2ZYM47aqrU+3NzccHV1xWQy2U37a8t9g6b3Gxqyov7zn//w1FNPWa9r2LBh9OvXD4Crr77abnzvvPMOXl5e/Pzzz9xwww1ndW3iwmLJmrLNnhJCCCGEEEKIriZBqQvEmjVrcHNzo6amhvr6eu6++24WLlxo3T9gwAC7AMnu3bs5fPgw7u7udv1UVVVx5MgRSktLyc7Otpty5ujoyNChQ5tM4bNIS0tDqVRy5ZVXnvN1ZGRk4OjoaHdeX19fIiMjycjIsG5Tq9XWYBJAUFAQeXl5Z3Wuc+njTPfNovH9Bhg/fjwffPABTz31FGazmU8//ZTZs2db9+fm5vLkk0+yceNG8vLyqKuro6KiAr1ef1bXJS484eGedplTQgghhBBCCHE+kKDUBWLEiBG8+eabODs7Exwc3GTVPY1GY/e6vLycuLg4VqxY0aQvf3//cxqDq6vrOR13Lhqv1qdQKFoMlrVnH229b43vN8Bdd93F3Llz2blzJ5WVlZw4cYJx48ZZ90+aNInCwkJeeeUVwsPDUalUxMfH200LFEIIIYQQQgghugsJSl0gNBqNdRpYWwwZMoTPPvsMrVaLh4dHs22CgoLYunUrV1xxBQC1tbXs2LGDIUOGNNt+wIAB1NfX8/PPP1un79myZA7V1dW1OK7o6Ghqa2vZunWrdfpeYWEhBw4coH///m2+vvbg7OzcZKxtuW8tCQ0N5corr2TFihVUVlZyzTXXoNVqrftTUlJ44403GDNmDNBQUL2goODPX4gQQgghhBBCCNEFpNC5aNb48ePx8/Nj7Nix/PLLLxw7doyNGzfy8MMPc/LkSQAeeeQRnn/+eVatWsX+/fuZNm2adfW65vTq1YtJkyYxZcoUVq1aZe3z888/ByA8PByFQsGaNWvIz8+nvLy8SR8RERGMHTuWqVOnsnnzZnbv3s0999xDSEgIY8eO7ZB70dr17NmzhwMHDlBQUEBNTU2b7ltrxo8fz8qVK/niiy8YP3683b6IiAg++eQTMjIy2Lp1K+PHj+/U7DPRfWRmlrJ27VEyM0u7eihCCCGEEEII0SIJSrUTs8lEfWVlh/+YTaZOuR61Ws2mTZvQ6XTccsstREdHc99991FVVWXNAJozZw4TJkxg0qRJxMfH4+7uzs0339xqv2+++Sa33XYb06ZNIyoqiqlTp2I0GgEICQlh0aJFzJs3j4CAAGbMmNFsHx9++CFxcXHccMMNxMfHYzabWbt2bZPpdh1t6tSpREZGMnToUPz9/UlJSWnTfWvNbbfdRmFhIRUVFdx00012+95//32Ki4sZMmQIEyZM4OGHH7bLpBLCIj29kNTULNLTC7t6KEIIIYQQQgjRIoX5bAvt9HAGgwFPT09KS0vtgghVVVUcO3aM3r174+LiYt1eX1VFWXIydYayThuj0sMd95EjcbAZhxBn0tJ7WPQ8mZmlpKcXEhPj264Fzlv6fOxpLpTrFEKIs3WhfD5eKNcphBBnqyM+H6Wm1J/k4OKC+8iRmGtqOu2cCicnCUgJIVokq+0JIYQQQgghugMJSrUDBxcXkCCREEIIIYQQQgghRJtJTSkhhBBCCCGEEEII0ekkKCWEEEIIIYQQQgghOp0EpYQQQgghhBBCCCFEp5OglBBCCCGEEEIIIYTodBKUEkIIIYQQQgghhBCdToJSQgghhBBCCCGEEKLTSVBKCCGEEEIIIYQQQnQ6CUoJIYQQQgghhBBCiE4nQakeTqFQtPqzcOHCThvLVVddZT2vi4sL/fv354033rDuX758OV5eXp02HiGEEEIIIYQQQnQdCUr1cNnZ2dafZcuW4eHhYbft0UcftbY1m83U1tZ26HimTp1KdnY2+/bt44477mD69Ol8+umnHXpOIbqTzMxS1q49SmZmaVcPRQghhBBCCCE6lASlerjAwEDrj6enJwqFwvp6//79uLu78/333xMXF4dKpWLz5s1MnjyZm266ya6fmTNnctVVV1lf19fXs2TJEnr37o2rqyuDBg3iyy+/PON41Go1gYGB9OnTh4ULFxIREcHq1avb+aqF6L7S0wtJTc0iPb2wq4cihBBCCCGEEB3KsasH0FaLFy/mu+++Iy0tDWdnZ0pKSpq0USgUTbZ9+umn3HnnnR06NqPR2OI+pVKJi4tLm9o6ODjg6up6xrYajeYcRtmyefPm8dJLL9GnTx+8vb3bdMySJUv497//zVtvvUVERASbNm3innvuwd/fnyuvvLLN53Z1daW6uvpchy5EjxMT42v3WwghhBBCCCF6qm4TlKqurub2228nPj6e999/v8V2H374IaNHj7a+7owaRW5ubi3uGzNmDN999531tVarpaKiotm2V155JRs3brS+7tWrFwUFBU3amc3mcx9sM5555hmuueaaNrc3mUw899xzbNiwgfj4eAD69OnD5s2befvtt9sUlKqrq+PTTz9lz549/O1vfzvnsQvR04SHexIe7tnVwxBCCCGEEEKIDtdtglKLFi0CGopht8bLy4vAwMBOGFHPMXTo0LNqf/jwYSoqKpoEsqqrqxk8eHCrx77xxhu89957VFdXo1QqmTVrFg8++OBZj1kIIYQQQgghhBDdW7cJSrXV9OnT+etf/0qfPn144IEHuPfee5ud1mdhMpkwmUzW1waD4azPWV5e3uI+pVJp9zovL6/Ftg4O9iW+jh8/ftZjOReNpwM6ODg0ycaqqakoPlQYAAAVX0lEQVSx/rfler/77jtCQkLs2qlUqlbPNX78eJ544glcXV0JCgpqcs1CCCGEEEIIIYS4MPSooNQzzzzD1VdfjVqt5scff2TatGmUl5fz8MMPt3jMkiVLrFlY5+psajx1VNv25O/vz++//263LS0tDScnJwD69++PSqVCr9efVf0oAE9PT/r169duYxVCCCGEEEIIIUT31KVpKvPmzUOhULT6s3///jb399RTT5GYmMjgwYOZO3cujz32GC+++GKrx8yfP5/S0lLrz4kTJ/7sZXV7V199Ndu3b+fjjz/m0KFDLFiwwC5I5e7uzqOPPsqsWbP46KOPOHLkCDt37uTVV1/lo48+6sKRCyGEEEIIIYQQorvo0kypOXPmMHny5Fbb9OnT55z7HzZsGM8++ywmk6nFaWUqleqMU84uNKNGjeKpp57iscceo6qqiilTpjBx4kT27t1rbfPss8/i7+/PkiVLOHr0KF5eXgwZMoTHH3+8C0cuhBBCCCGEEEKI7kJhbu+l3DrY8uXLmTlzJiUlJWdsu3jxYpYuXUpRUVGb+zcYDHh6elJaWoqHh4d1e1VVFceOHaN37964uLicy9CF6FLyHhZ/Vkufjz3NhXKdQghxti6Uz8cL5TqFEOJsdcTnY7epKaXX6ykqKkKv11NXV0daWhoA/fr1w83Njf/+97/k5uZy2WWX4eLiwvr163nuued49NFHu3bgQgjRAVJSTrJhQyZJSeEkJoZ29XCEEEIIIYQQ4qx1m6DU008/bVevaPDgwQD89NNPXHXVVTg5OfH6668za9YszGYz/fr14+WXX2bq1KldNWQhhOgwGzZksmGDHkCCUkIIIYQQQohuqdsEpZYvX87y5ctb3D969GhGjx7deQMSQogulJQUbvdbCCGEEEIIIbqbbhOUEkIIcVpiYqhkSAkhhBBCCCG6NYeuHoAQQgghhBBCCCGEuPBIUOosdbPFCoWwkveuEEIIIYQQQojziQSl2sjJyQmAioqKLh6JEOfG8t61vJeFEEIIIYQQQoiuJDWl2kipVOLl5UVeXh4AarUahULRxaMS4szMZjMVFRXk5eXh5eWFUqns6iEJIYQQQgghhBASlDobgYGBANbAlBDdiZeXl/U9LIQQQgghhBBCdDUJSp0FhUJBUFAQWq2Wmpqarh6OEG3m5OQkGVJCCCGEEEIIIc4rEpQ6B0qlUr7gCyFEJ3n99dd58cUXycnJYdCgQbz66qtceumlLbb/4osveOqppzh+/DgRERG88MILjBkzphNHLIQQoj3Jc0AIIXouKXQuhBDivPXZZ58xe/ZsFixYwM6dOxk0aBCjRo1qcRr1li1buOuuu7jvvvvYtWsXN910EzfddBO///57J49cCCFEe5DngBBC9GwKs6wTb8dgMODp6UlpaSkeHh5dPRwhhDhvdMXn47Bhw7jkkkt47bXXAKivrycsLIyHHnqIefPmNWk/btw4jEYja9assW677LLLiI2N5a233mrTOeU5IIQQzZPngBBCXNg64vNRMqWEEEKcl6qrq9mxYwdJSUnWbQ4ODiQlJZGamtrsMampqXbtAUaNGtVieyGEEOcveQ4IIUTPJzWlGrEkjhkMhi4eiRBCnF8sn4udlWBbUFBAXV0dAQEBdtsDAgLYv39/s8fk5OQ02z4nJ6fF85hMJkwmk/V1aWkpIM8BIYRoTJ4DQghxYeuI54AEpRopKysDICwsrItHIoQQ56eysjI8PT27ehjtZsmSJSxatKjJdnkOCCFE8woLC+U5IIQQF7D2fA5IUKqR4OBgTpw4gbu7OwqFos3HGQwGwsLCOHHiRLeeey7XcX7pCdfRE64B5Dqg4V9EysrKCA4O7qDR2fPz80OpVJKbm2u3PTc3l8DAwGaPCQwMPKv2APPnz2f27NnW1yUlJYSHh6PX63vUl66z0VPe73+W3IcGch/kHliUlpai0+nw8fHplPPJc6DryHu+gdyHBnIf5B5YdMRzQIJSjTg4OBAaGnrOx3t4ePSIN6lcx/mlJ1xHT7gGkOvozP85d3Z2Ji4ujuTkZG666SagocBtcnIyM2bMaPaY+Ph4kpOTmTlzpnXb+vXriY+Pb/E8KpUKlUrVZLunp2eP+LP+M3rK+/3PkvvQQO6D3AMLB4fOKUsrz4GuJ+/5BnIfGsh9kHtg0Z7PAQlKCSGEOG/Nnj2bSZMmMXToUC699FKWLVuG0Wjk3nvvBWDixImEhISwZMkSAB555BGuvPJKli5dyvXXX8/KlSvZvn0777zzTldehhBCiHMkzwEhhOjZJCglhBDivDVu3Djy8/N5+umnycnJITY2lh9++MFaxFav19v9S01CQgL/+c9/ePLJJ3n88ceJiIhg1apVXHzxxV11CUIIIf4EeQ4IIUTPJkGpdqJSqViwYEGzqb/diVzH+aUnXEdPuAaQ6+hKM2bMaHGaxsaNG5tsu/3227n99tvP+Xzd8R61N7kHDeQ+NJD7IPfAoqvugzwHOp/cgwZyHxrIfZB7YNER90Fh7qw1XYUQQgghhBBCCCGE+EPnVCkUQgghhBBCCCGEEMKGBKWEEEIIIYQQQgghRKeToJQQQgghhBBCCCGE6HQSlOogixcvJiEhAbVajZeXV1cPp81ef/11evXqhYuLC8OGDeO3337r6iGdlU2bNnHjjTcSHByMQqFg1apVXT2ks7ZkyRIuueQS3N3d0Wq13HTTTRw4cKCrh3XW3nzzTQYOHIiHhwceHh7Ex8fz/fffd/Ww/rTnn38ehULBzJkzu3ooZ2XhwoUoFAq7n6ioqK4eVpc528+6L774gqioKFxcXBgwYABr167tpJF2nLO5B++++y6XX3453t7eeHt7k5SU1O2eDy051+feypUrUSgU3HTTTR07wE5wtvegpKSE6dOnExQUhEql4qKLLrrg/k4ALFu2jMjISFxdXQkLC2PWrFlUVVV10mjb37n8P9TGjRsZMmQIKpWKfv36sXz58g4fZ3uR54A8ByzkOdBAngXyHIAuehaYRYd4+umnzS+//LJ59uzZZk9Pz64eTpusXLnS7OzsbP7ggw/M6enp5qlTp5q9vLzMubm5XT20Nlu7dq35iSeeMH/99ddmwPzNN9909ZDO2qhRo8wffvih+ffffzenpaWZx4wZY9bpdOby8vKuHtpZWb16tfm7774zHzx40HzgwAHz448/bnZycjL//vvvXT20c/bbb7+Ze/XqZR44cKD5kUce6erhnJUFCxaYY2JizNnZ2daf/Pz8rh5Wlzjbz7qUlBSzUqk0/+Mf/zDv27fP/OSTT5qdnJzMe/fu7eSRt5+zvQd33323+fXXXzfv2rXLnJGRYZ48ebLZ09PTfPLkyU4eefs61+fesWPHzCEhIebLL7/cPHbs2M4ZbAc523tgMpnMQ4cONY8ZM8a8efNm87Fjx8wbN240p6WldfLI29fZ3ocVK1aYVSqVecWKFeZjx46Z161bZw4KCjLPmjWrk0fefs72/6GOHj1qVqvV5tmzZ5v37dtnfvXVV81KpdL8ww8/dM6A/wR5DshzwEKeAw3kWSDPAYuueBZIUKqDffjhh90mKHXppZeap0+fbn1dV1dnDg4ONi9ZsqQLR3XuumtQqrG8vDwzYP7555+7eih/mre3t/m9997r6mGck7KyMnNERIR5/fr15iuvvLJbBqUGDRrU1cM4L5ztZ90dd9xhvv766+22DRs2zHz//fd36Dg70p/9vK+trTW7u7ubP/roo44aYqc4l/tQW1trTkhIML/33nvmSZMmdfsvI2d7D958801znz59zNXV1Z01xE5xtvdh+vTp5quvvtpu2+zZs82JiYkdOs7O0pb/h3rsscfMMTExdtvGjRtnHjVqVAeOrH3Ic0CeAxbyHGggzwJ5DjSns54FMn1PAFBdXc2OHTtISkqybnNwcCApKYnU1NQuHJkoLS0FwMfHp4tHcu7q6upYuXIlRqOR+Pj4rh7OOZk+fTrXX3+93d+R7ubQoUMEBwfTp08fxo8fj16v7+ohdbpz+axLTU1t8uc+atSobvvZ2B6f9xUVFdTU1HTrz6VzvQ/PPPMMWq2W++67rzOG2aHO5R6sXr2a+Ph4pk+fTkBAABdffDHPPfccdXV1nTXsdncu9yEhIYEdO3ZYp3YcPXqUtWvXMmbMmE4Z8/mgu342ynNAngMW8hxoIM8CeQ78Ge3x+ejY3oMS3VNBQQF1dXUEBATYbQ8ICGD//v1dNCpRX1/PzJkzSUxM5OKLL+7q4Zy1vXv3Eh8fT1VVFW5ubnzzzTf079+/q4d11lauXMnOnTvZtm1bVw/lnA0bNozly5cTGRlJdnY2ixYt4vLLL+f333/H3d29q4fXac7lsy4nJ6fZ9jk5OR02zo7UHp/3c+fOJTg4uFsHac/lPmzevJn333+ftLS0ThhhxzuXe3D06FH+97//MX78eNauXcvhw4eZNm0aNTU1LFiwoDOG3e7O5T7cfffdFBQUMHz4cMxmM7W1tTzwwAM8/vjjnTHk80JLn40Gg4HKykpcXV27aGStk+eAPAcs5DnQQJ4F8hz4M9rjWSCZUmdh3rx5TQoFN/6RAI5oT9OnT+f3339n5cqVXT2UcxIZGUlaWhpbt27lwQcfZNKkSezbt6+rh3VWTpw4wSOPPMKKFStwcXHp6uGcs+uuu47bb7+dgQMHMmrUKNauXUtJSQmff/55Vw9NdDPPP/88K1eu5JtvvunWfyfOVllZGRMmTODdd9/Fz8+vq4fTZerr69FqtbzzzjvExcUxbtw4nnjiCd56662uHlqn2rhxI8899xxvvPEGO3fu5Ouvv+a7777j2Wef7eqhCdHh5DlwYT8HQJ4FIM+B9iSZUmdhzpw5TJ48udU2ffr06ZzBtDM/Pz+USiW5ubl223NzcwkMDOyiUV3YZsyYwZo1a9i0aROhoaFdPZxz4uzsTL9+/QCIi4tj27Zt/H97dxMS1d+Gcfzyrx1DslxkNIRZCqKEJSVFLyBm0KoWQbkQMyIEw2hRwYCFRgYSEvQGSfSyKyJoUxGmqYESSo0mZYpmRpC4ibAES72fRejz9NS/HB3PGe37gbM5jnDNj+N9n7nneM65c+dUVVXlcbLJe/bsmQYGBrR27dqJfaOjo3ry5IkuXryo4eFhRUZGephwauLi4pSSkqLu7m6vo7hqKrVu6dKlc6o2TqfeV1ZWqqKiQjU1NVq9evVMxpxxwa5DT0+P3r59qx07dkzsGxsbkyRFRUWps7NTycnJMxs6xKZyLPh8Ps2bN++HupeWlqb+/n59/fpVjuPMaOaZMJV1OHHihPLz83XgwAFJUnp6ur58+aLCwkKVlJTon3/m/ve+/1YbFy5cGLZXSUn0AYk+MI4+8B29gD4wHaHoBX/HSoVIfHy8UlNTf7vNtj/AcY7jaN26daqtrZ3YNzY2ptra2ll7D6DZysxUXFysu3fv6vHjx1q5cqXXkUJmbGxMw8PDXscISk5Ojtrb29Xa2jqxZWZmKi8vT62trbNyICVJnz9/Vk9Pj3w+n9dRXDWVWrdx48YfXi9Jjx49mrW1car1/syZMzp16pQePnyozMxMN6LOqGDXITU19adasHPnTmVnZ6u1tVUJCQluxg+JqRwLmzdvVnd398QHMUnq6uqSz+f7q86BhoaGfvrAMd4Pvt8bdu6brbWRPkAfGEcf+I5eQB+YjpDUxyBvwI5J6uvrs0AgYCdPnrQFCxZYIBCwQCBgg4ODXkf7V7du3bLo6Gi7ceOGvXr1ygoLCy0uLs76+/u9jjZpg4ODE2styc6ePWuBQMD6+vq8jjZpRUVFtmjRIquvr7cPHz5MbENDQ15HC4rf77eGhgbr7e21Fy9emN/vt4iICKuurvY62rTNxqfvHTlyxOrr6623t9caGxtt27ZttnjxYhsYGPA6muv+VOvy8/PN7/dPvL6xsdGioqKssrLSOjo6rLS0dE48CjyYNaioqDDHcezOnTs/1KVw7mmTEew6/L+58NSlYNfg3bt3Fhsba8XFxdbZ2Wn37t2zJUuWWHl5uVdvISSCXYfS0lKLjY21mzdv2ps3b6y6utqSk5Ntz549Xr2FafvTOZTf77f8/PyJ148/BvzYsWPW0dFhly5dCvox4F6hD9AHxtEHvqMX0AfGedELGErNkIKCApP001ZXV+d1tN+6cOGCLV++3BzHsfXr19vTp0+9jhSUurq6X657QUGB19Em7Vf5Jdn169e9jhaU/fv3W2JiojmOY/Hx8ZaTkzMnBlJms3MolZubaz6fzxzHsWXLlllubq51d3d7Hcszv6t1WVlZP9WM27dvW0pKijmOY6tWrbL79++7nDj0glmDxMTEX9al0tJS94OHWLDHwv+aKx9Ggl2DpqYm27Bhg0VHR1tSUpKdPn3aRkZGXE4desGsw7dv36ysrMySk5Nt/vz5lpCQYAcPHrSPHz+6HzxE/nQOVVBQYFlZWT/9TkZGhjmOY0lJSbPqXIU+QB8YRx/4jl5AHzDzphdEmP1F15YBAAAAAAAgLHBPKQAAAAAAALiOoRQAAAAAAABcx1AKAAAAAAAArmMoBQAAAAAAANcxlAIAAAAAAIDrGEoBAAAAAADAdQylAAAAAAAA4DqGUgAAAAAAAHAdQykAAAAAAAC4jqEUEEZGR0e1adMm7dq164f9nz59UkJCgkpKSjxKBgAAAABAaEWYmXkdAsB/dXV1KSMjQ1euXFFeXp4kae/evWpra1NLS4scx/E4IQAAAAAA08dQCghD58+fV1lZmV6+fKnm5mbt3r1bLS0tWrNmjdfRAAAAAAAICYZSQBgyM23dulWRkZFqb2/XoUOHdPz4ca9jAQAAAAAQMgylgDD1+vVrpaWlKT09Xc+fP1dUVJTXkQAAAAAACBludA6EqWvXrikmJka9vb16//6913EAAAAAAAgprpQCwlBTU5OysrJUXV2t8vJySVJNTY0iIiI8TgYAAAAAQGhwpRQQZoaGhrRv3z4VFRUpOztbV69eVXNzsy5fvux1NAAAAAAAQoYrpYAwc/jwYT148EBtbW2KiYmRJFVVVeno0aNqb2/XihUrvA0IAAAAAEAIMJQCwkhDQ4NycnJUX1+vLVu2/PCz7du3a2RkhH/jAwAAAADMCQylAAAAAAAA4DruKQUAAAAAAADXMZQCAAAAAACA6xhKAQAAAAAAwHUMpQAAAAAAAOA6hlIAAAAAAABwHUMpAAAAAAAAuI6hFAAAAAAAAFzHUAoAAAAAAACuYygFAAAAAAAA1zGUAgAAAAAAgOsYSgEAAAAAAMB1DKUAAAAAAADguv8AjJXeC3rjjjAAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxYAAAJOCAYAAAAqFJGJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAAA9hAAAPYQGoP6dpAADNyklEQVR4nOzddXxV9R/H8dfddtfBNja6W0BBkW6QkrIAA0nBQEFKupEUEFAQlRAMrB9hoEi3tEpJjK6NsY2x3j2/P+auzAUb6+39fDz2ePA95/v9ns+93MH53PMNk2EYBiIiIiIiIulgk90BiIiIiIhI7qfEQkRERERE0k2JhYiIiIiIpJsSCxERERERSTclFiIiIiIikm5KLEREREREJN2UWIiIiIiISLopsRARERERkXRTYiEiIiIiIummxEJEJBuULl2anj17Wstbt27FZDKxdevWDLuGyWRiwoQJGdZfak2YMAGTyZTl180OTZs2pWnTppnSd1o+E2mJo2nTplSrVi19wYmIJEGJhYjkO8uXL8dkMll/HB0dqVixIgMGDODGjRvZHV6a/PTTT9mSPGSW3bt3M2HCBIKCgrI7lFzt6tWrTJgwgSNHjmR3KCKSjyixEJF8a9KkSaxcuZKFCxdSv359Fi1aRL169QgLC8vyWBo3bkx4eDiNGzdOU7uffvqJiRMnJnkuPDycMWPGZER4aTJmzBjCw8MfqO3u3buZOHGiEgse/DMBcYnFxIkTlViISJayy+4ARESyS9u2balVqxYAffv2xdvbmzlz5rB27Vqef/75JNvcvXsXFxeXDI/FxsYGR0fHDO0zo/tLLTs7O+zsctZ/L2FhYTg7O2d3GGmSGZ8JEZHMpCcWIiL/aN68OQB+fn4A9OzZE1dXV86ePUu7du1wc3PjxRdfBMBisTBv3jyqVq2Ko6MjhQoVon///ty+fTtBn4ZhMGXKFIoXL46zszPNmjXj2LFjia6d3Hj6ffv20a5dOzw9PXFxceHhhx/m/ffft8b3wQcfACQY2hUvqTkWhw8fpm3btri7u+Pq6kqLFi3Yu3dvgjrxQ8V27drF4MGD8fHxwcXFhaeeegp/f//7vo9JzbEwmUwMGDCANWvWUK1aNRwcHKhatSobNmxI0G7YsGEAlClTxvp6zp8/b62zatUqHnvsMZycnPDy8qJbt25cunQpwbXi5xAcPHiQxo0b4+zszKhRo2jfvj1ly5ZNMuZ69epZk0yAZcuW0bx5c3x9fXFwcOChhx5i0aJF933tSXn66ad59NFHExzr0KEDJpOJdevWWY/t27cPk8nEzz//DCT/mViyZAnlypXDycmJ2rVrs2PHjgTnt27dyuOPPw5Ar169rO/j8uXLE9Q7fvw4zZo1w9nZmWLFijFz5swHen0iIvFy1ldKIiLZ6OzZswB4e3tbj8XExNC6dWsaNmzI7Nmzrd969+/fn+XLl9OrVy/eeust/Pz8WLhwIYcPH2bXrl2YzWYAxo0bx5QpU2jXrh3t2rXj0KFDtGrViqioqPvGs3HjRtq3b0+RIkUYOHAghQsX5sSJE/zwww8MHDiQ/v37c/XqVTZu3MjKlSvv29+xY8do1KgR7u7uDB8+HLPZzEcffUTTpk3Ztm0bderUSVD/zTffxNPTk/Hjx3P+/HnmzZvHgAEDWL16darf03vt3LmT77//ntdffx03Nzfmz5/PM888w8WLF/H29ubpp5/m77//5ssvv2Tu3LkULFgQAB8fHwCmTp3K2LFj6dKlC3379sXf358FCxbQuHFjDh8+TIECBazXunXrFm3btqVbt2689NJLFCpUiMcee4yXX36Z/fv3W2+8AS5cuMDevXuZNWuW9diiRYuoWrUqHTt2xM7OjvXr1/P6669jsVh444030vS6GzVqxNq1awkJCcHd3R3DMNi1axc2Njbs2LGDjh07ArBjxw5sbGxo0KBBsn19+umn9O/fn/r16zNo0CDOnTtHx44d8fLyokSJEgBUqVKFSZMmMW7cOPr160ejRo0AqF+/vrWf27dv06ZNG55++mm6dOnCt99+yzvvvEP16tVp27Ztml6fiIiVISKSzyxbtswAjN9++83w9/c3Ll26ZHz11VeGt7e34eTkZFy+fNkwDMPo0aOHARgjRoxI0H7Hjh0GYHz++ecJjm/YsCHB8Zs3bxr29vbGk08+aVgsFmu9UaNGGYDRo0cP67EtW7YYgLFlyxbDMAwjJibGKFOmjFGqVCnj9u3bCa5zb19vvPGGkdw/5YAxfvx4a7lz586Gvb29cfbsWeuxq1evGm5ubkbjxo0TvT8tW7ZMcK23337bsLW1NYKCgpK8Xrzx48cnigkw7O3tjTNnzliPHT161ACMBQsWWI/NmjXLAAw/P78E7c+fP2/Y2toaU6dOTXD8zz//NOzs7BIcb9KkiQEYixcvTlA3ODjYcHBwMIYMGZLg+MyZMw2TyWRcuHDBeiwsLCzR62rdurVRtmzZBMeaNGliNGnSJIl34V/79+83AOOnn34yDMMw/vjjDwMwnnvuOaNOnTrWeh07djRq1qxpLf/3MxEVFWX4+voaNWrUMCIjI631lixZYgAJ4oi/5rJlyxLFE//+fPbZZ9ZjkZGRRuHChY1nnnkmxdciIpISDYUSkXyrZcuW+Pj4UKJECbp164arqyv/+9//KFasWIJ6r732WoLyN998g4eHB0888QQBAQHWn8ceewxXV1e2bNkCwG+//UZUVBRvvvlmgqFBgwYNum9shw8fxs/Pj0GDBiX4Jh54oKVcY2Nj+fXXX+ncuXOC4UBFihThhRdeYOfOnYSEhCRo069fvwTXatSoEbGxsVy4cCHN14e497tcuXLW8sMPP4y7uzvnzp27b9vvv/8ei8VCly5dErznhQsXpkKFCtb3PJ6DgwO9evVKcMzd3Z22bdvy9ddfYxiG9fjq1aupW7cuJUuWtB5zcnKy/jk4OJiAgACaNGnCuXPnCA4OTtPrrlmzJq6urmzfvh2IezJRvHhxXn75ZQ4dOkRYWBiGYbBz507r04WkHDhwgJs3b/Lqq69ib29vPd6zZ088PDzSFJOrqysvvfSStWxvb0/t2rVT9XchIpIcDYUSkXzrgw8+oGLFitjZ2VGoUCEqVaqEjU3C71vs7OwoXrx4gmOnT58mODgYX1/fJPu9efMmgPUGvEKFCgnO+/j44OnpmWJs8cOyMmq/AX9/f8LCwqhUqVKic1WqVMFisXDp0iWqVq1qPX7vjTZgjfm/80hS67/9xfeZmv5Onz6NYRiJ3st48UPP4hUrVizBzXe8rl27smbNGvbs2UP9+vU5e/YsBw8eZN68eQnq7dq1i/Hjx7Nnz55Eq4QFBwen6Ube1taWevXqWedC7Nixg0aNGtGwYUNiY2PZu3cvhQoVIjAwMMXEIrnPk9lsTnbuSHKKFy+eKEH19PTkjz/+SFM/IiL3UmIhIvlW7dq1E0zYTYqDg0OiZMNiseDr68vnn3+eZJv4OQG5na2tbZLH7/22P6v6s1gs1onNSfXj6uqaoHzvE4d7dejQAWdnZ77++mvq16/P119/jY2NDc8995y1ztmzZ2nRogWVK1dmzpw5lChRAnt7e3766Sfmzp2LxWK5b7z/1bBhQ6ZOnUpERAQ7duxg9OjRFChQgGrVqrFjxw4KFSoEkGJikZEy+u9WRASUWIiIpFm5cuX47bffaNCgQbI3sAClSpUC4r5tv/cbZX9///t+Sx8/ZOivv/6iZcuWydZL7bAoHx8fnJ2dOXXqVKJzJ0+exMbGxjr5Nzsl93rKlSuHYRiUKVOGihUrPnD/Li4utG/fnm+++YY5c+awevVqGjVqRNGiRa111q9fT2RkJOvWrUvwlOW/w63SolGjRkRFRfHll19y5coVawLRuHFja2JRsWJFa4KRlHs/T/ErmAFER0fj5+fHI488Yj2WX3Y+F5GcRXMsRETSqEuXLsTGxjJ58uRE52JiYqybu7Vs2RKz2cyCBQsSfBP832E3SXn00UcpU6YM8+bNS7RZ3L19xe+pcb8N5WxtbWnVqhVr165NsHzrjRs3+OKLL2jYsCHu7u73jSuzJfd6nn76aWxtbZk4cWKib9UNw+DWrVupvkbXrl25evUqn3zyCUePHqVr164Jzsd/m3/vdYKDg1m2bFlaXkoCderUwWw2M2PGDLy8vKxDzho1asTevXvZtm3bfZ9W1KpVCx8fHxYvXpxgVbHly5cner9S+7kQEclIemIhIpJGTZo0oX///kybNo0jR47QqlUrzGYzp0+f5ptvvuH999/n2WefxcfHh6FDhzJt2jTat29Pu3btOHz4MD///LN1KdXk2NjYsGjRIjp06ECNGjXo1asXRYoU4eTJkxw7doxffvkFgMceewyAt956i9atW2Nra0u3bt2S7HPKlCls3LiRhg0b8vrrr2NnZ8dHH31EZGRkjtnDIP71jB49mm7dumE2m+nQoQPlypVjypQpjBw5kvPnz9O5c2fc3Nzw8/Pjf//7H/369WPo0KGpukb8niRDhw7F1taWZ555JsH5Vq1aYW9vT4cOHejfvz+hoaF8/PHH+Pr6cu3atQd6Xc7Ozjz22GPs3bvXuocFxD2xuHv3Lnfv3r1vYmE2m5kyZQr9+/enefPmdO3aFT8/P5YtW5ZojkW5cuUoUKAAixcvxs3NDRcXF+rUqUOZMmUeKH4RkdTQEwsRkQewePFilixZws2bNxk1ahQjR45k8+bNvPTSSwn2IZgyZQoTJ07k8OHDDBs2jLNnz/Lrr7+mavfu1q1bs2XLFipWrMh7773H4MGD2bRpEx06dLDWefrpp3nzzTfZsGED3bt3T3bHcICqVauyY8cOqlWrxrRp05g4cSKlSpViy5YtifawyC6PP/44kydP5ujRo/Ts2ZPnn3/euinfiBEj+O6777CxsWHixIkMHTqUdevW0apVK+teEKnh6OhIx44duXPnDs2aNUs0Cb9SpUp8++23mEwmhg4dyuLFi+nXrx8DBw5M12uLTxwaNmxoPVa4cGHKly+f4HxK+vXrx4cffsjVq1cZNmwYO3bsYN26dYmGsZnNZlasWIGtrS2vvvoqzz//PNu2bUtX/CIi92MyNFNLRERERETSSU8sREREREQk3ZRYiIiIiIhIuimxEBERERGRdFNiISIiIiIi6abEQkRERERE0k2JhYiIiIiIpFue3yDPYrFw9epV3NzcrBsSiYiIiIjI/RmGwZ07dyhatCg2Nik/k8jzicXVq1cTbRwkIiIiIiKpd+nSJYoXL55inTyfWLi5uQFxb4a7u3s2RyMiIiIiknuEhIRQokQJ6z11SvJ8YhE//Mnd3V2JhYiIiIjIA0jNlAJN3hYRERERkXRTYiEiIiIiIummxEJERERERNJNiYWIiIiIiKSbEgsREREREUk3JRYiIiIiIpJu2brc7Pbt25k1axYHDx7k2rVr/O9//6Nz584AREdHM2bMGH766SfOnTuHh4cHLVu2ZPr06RQtWjTTY4uOjiY2NjbTryMiIjmXra0tZrM5u8MQEckVsjWxuHv3Lo888gi9e/fm6aefTnAuLCyMQ4cOMXbsWB555BFu377NwIED6dixIwcOHMi0mEJCQggICCAyMjLTriEiIrmHg4MDBQsW1F5IIiL3ka2JRdu2bWnbtm2S5zw8PNi4cWOCYwsXLqR27dpcvHiRkiVLZng8ISEhXLlyBVdXVwoWLIjZbE7VZiAiIpL3GIZBdHQ0wcHBXLlyBUDJhYhICnLVztvBwcGYTCYKFCiQbJ3IyMgETxtCQkJS3X9AQACurq4UL15cCYWIiODk5ISbmxuXL18mICBAiYWISApyzeTtiIgI3nnnHZ5//vkU/2GfNm0aHh4e1p8SJUqkqv/o6GgiIyPx8PBQUiEiIlYmkwkPDw8iIyOJjo7O7nBERHKsXJFYREdH06VLFwzDYNGiRSnWHTlyJMHBwdafS5cupeoa8RO1NUlPRET+K/7/Bi3qISKSvBw/FCo+qbhw4QKbN2++72NoBwcHHBwcHvh6elohIiL/pf8bRETuL0cnFvFJxenTp9myZQve3t7ZHZKIiIiIiCQhWxOL0NBQzpw5Yy37+flx5MgRvLy8KFKkCM8++yyHDh3ihx9+IDY2luvXrwPg5eWFvb19doUtIiIiIiL/ka1zLA4cOEDNmjWpWbMmAIMHD6ZmzZqMGzeOK1eusG7dOi5fvkyNGjUoUqSI9Wf37t3ZGbZkgaZNm+baoQcTJkzAZDKxdevWBMdNJhNNmzbN0GutWbMGk8mUZ34nevbsiclk4vz589kdilXp0qUpXbp0doeRJ50/fx6TyUTPnj2z9LqffPIJtra2/Pnnn1l6XRGRvC5bE4umTZtiGEain+XLl1O6dOkkzxmGkeE3Z/Lvf/D//XFxceHhhx9m4sSJhIaGZneYGeLWrVuMGDGCqlWr4uzsjLOzM6VKlaJFixZMnDiRGzduZFks6bmRjo6OZvjw4bRu3Zr69etnfHCSLy1fvhyTycTy5cszpL+cmJj16NGDUqVKMWzYsOwORUQkT8nRcywk65UrV46XXnoJiNscyt/fn59//pkJEyawYcMGdu7cia2tbabH8dlnnxEWFpbh/V6+fJn69etz6dIlatSoQa9evShQoADXrl1j9+7dTJgwgQYNGlCoUKEMv/aJEydwdnbOsP5WrlzJ6dOnWbx4cYb1md2mTZvGiBEjKFasWHaHIlmgWLFinDhxAg8Pjyy9rtls5u233+att95i165dNGjQIEuvLyKSVymxkATKly/PhAkTEhyLjIykXr167N27l23bttG8efNMjyMzdlYHGD9+PJcuXWLSpEmMHTs20fk///wzxQ0Y06Ny5coZ2t+iRYsoUaIEzZo1y9B+s1P8cEfJH8xmc4b/XqRWt27dGDx4MIsXL1ZiISKpZrl7l9jQUGxcXLB1dc3ucHKcXLGPhWQvBwcH681rQEBAgnNbtmyhd+/eVKpUCVdXV1xdXalVqxZLlixJsq9Dhw7x7LPPUrJkSRwcHPDx8eHxxx9n6tSpCeqlNMdi7dq1tGrVCm9vbxwdHSldujTdu3fnr7/+uu9r2bNnDwBvvvlmkuerV6+eaFPF+LkRly9f5vnnn6dgwYI4OzvToEEDfvvtt/te87/9xCtdujQrVqwAoEyZMtbhZ6kZ6vfXX39x4MABnnnmmUTv09atWzGZTEyYMIEDBw7wxBNP4ObmhoeHB0899VSyw678/Pzo27ev9e+mSJEi9OzZkwsXLiSoV7NmTTw8PBKs52+xWPDy8sJkMvHJJ58kqB8/52Tbtm33fV1JDQ279/Xs3r2bZs2a4ebmho+PD6+//jrh4eEA/Pjjj9SrVw8XFxcKFSrE8OHDiYmJSdD/vcN81q5dS+3atXF2dsbHx4fevXunaRicYRgsXbqUBg0a4O7ujrOzM7Vq1WLp0qWJ6t4772bZsmVUr14dJycnypQpw/z58639vffee1SqVAlHR0cqVKjAZ599luS1o6KimDNnDo8++iguLi64ubnRqFEj1q1bl+x76ufnx/z586lcuTIODg6UKlWKiRMnYrFYEtTt1asXAL169UowLDLewYMHGTBgANWqVcPDwwMnJyeqV6/O9OnTE2weFz+88sKFC1y4cCFBX/FfXqQ0x+LChQv06dOHYsWKYW9vT/HixenTpw8XL15MVDf+34vo6GgmTJhA6dKlcXBwoGLFinz44YdJvoc+Pj40bdqUb7/9Ns8M8xSRzBF94yY3583jXIcOnHqsFmeaNOXvWo9zullzrk+aTOS5c9kdYo6hJxZyX1FRUdabuxo1aiQ4N2PGDM6cOUPdunV56qmnCAoKYsOGDfTv359Tp07x3nvvWeseOXKE+vXrY2trS6dOnShVqhRBQUEcP36cJUuWMHr06PvGMmTIEObMmYOXlxedO3fG19eXS5cu8dtvv/HYY49RrVq1FNvHL1n8999/U7t27VS/B7dv36ZBgwb4+PjQt29f/P39Wb16NW3atOHbb7+lc+fOqe4r3qBBg1i+fDlHjx5l4MCB1iclqRmPvmnTJgDq1q2bbJ39+/czc+ZMmjVrRv/+/Tl8+DBr1qzhzz//5K+//sLR0dFad9++fbRu3Zq7d+/Svn17KlSowPnz5/n888/5+eef2bNnD2XLlgWgWbNmHDlyhEOHDvH4448DcPToUW7fvg3EJZt9+/a19r1lyxYcHR1TjDU19u3bx4wZM2jdujX9+/dny5YtLFq0iJCQEDp06EDPnj3p1KkT9erV48cff2TWrFm4uroybty4RH199913/PLLLzz77LO0bNmSvXv3smzZMnbs2MHvv/+Op6dnirEYhsGLL77Il19+SYUKFXjhhRewt7dn48aN9OnTh+PHjzN79uxE7ebNm8fWrVvp1KkTzZs357vvvmPgwIE4Oztz+PBhvvvuO9q3b0+LFi346quv6NGjB6VLl6Zx48bWPiIjI2nTpg1bt26lRo0a9OnTh+joaH788Uc6derEggULGDBgQKJrDxs2jG3bttG+fXtat27NmjVrmDBhAlFRUdbEvnPnzgQFBbF27Vo6deqU6Pcd4OOPP2b9+vU0btyYdu3aERYWxtatWxk5ciT79+/nu+++A6BAgQKMHz+eefPmAXGf93j3S57//vtvGjZsiL+/Px06dKBq1ar89ddfLF26lPXr17Nz504qVqyYqN3zzz/P77//Ttu2bbG1teXrr7/mjTfewGw288orrySqX69ePX777Td2795Nq1atUoxJRPIfIzqaW59+SsCHizCiohKdj7l2jdtffMHtL7+kQJcu+A4bhq2rSzZEmoMYeVxwcLABGMHBwSnWCw8PN44fP26Eh4dnUWQ5i5+fnwEY5cqVM8aPH2+MHz/eGDdunPH6668b5cqVMxwdHY1Zs2Ylanfu3LlEx6Kjo40nnnjCsLW1NS5cuGA9PnjwYAMw1qxZk6hNQEBAgnKTJk2M/348169fbwBG9erVE9WPjo42rl+/ft/XOX/+fAMwfH19jXHjxhlbtmy572cDMADjhRdeMCwWi/X40aNHDXt7e8PHx8cICwuzHh8/frwBGFu2bEnUT5MmTRIc69GjhwEYfn5+9439Xs8995wBGKdPn050bsuWLdaYv/rqqwTnunfvbgDGl19+aT0WFRVllC5d2nBzczMOHTqUoP6OHTsMW1tbo3379tZj69atMwBjxowZ1mPvvfeeARgtWrQwihQpYj0eFhZm2NvbG82bN0/V60rq/bj39dz72YmKijIefvhhw2QyGQULFjR+//1367mQkBDD19fX8PLyMqKioqzHly1bZu1rw4YNCa49YsQIAzAGDBiQ4HipUqWMUqVKJTi2ZMkSAzB69eqVoP/IyEijQ4cOBmAcOHDAejz+M+Hl5WWcPXvWevzixYuGvb294eHhYVSsWNG4efOm9dzevXsNwOjQoUOCa48aNcoAjLFjxyb4PIaEhBi1atUy7O3tjStXriR6T8uUKWNcvXrVetzf398oUKCA4ebmZkRGRiZ6j5YtW2Yk5cKFC0ZMTEyCYxaLxejdu7cBGDt37rzv+xcv/t+dHj16JDjerFkzAzA++uijBMc/+OADA0j0eYr/96JOnToJfp9Pnjxp2NnZGZUqVUry+mvXrjUAY9y4cUmev1d+/z9CJL+JDgw0zr/U3TheqfK/Pw9VNc4986xxacCbht8LLxonqj+c4Pzp5i2M8GPHsjv0DJfae2nDMAw9sUiFDgt24n8nMrvDSJGPmwPr32yY7n7Onj3LxIkTEx1v3749LVu2THS8TJkyiY7Z2dnx6quvsnHjRrZs2UKPHj0SnHdyckrUJjWbH8YPaXj//fcT1bezs0vVhOsBAwZw6dIl3n//fSZNmsSkSZMwmUxUqVKFDh06MHDgwCTH+Nva2vLuu+8mGBLy8MMP0717dz799FN++uknnnnmmfteP6NcvnwZIMXX3LhxY7p27ZrgWO/evVm5ciX79++nW7duAPzwww+cP3+eSZMmWZd+jtewYUM6derEmjVrCAkJwd3dncaNG2Nra8vmzZsZPnw4EPdUolKlSrz44ov07t2bkydPUrlyZXbv3k1UVFSGrOTWrFkzOnXqZC2bzWaeffZZ/vjjDzp06GB9egLg5uZG+/btWbp0KZcvX070OW3ZsiWtW7dOcGz06NEsXryYzz77jPfffx8bm+RHii5cuBAXFxc++OADzGaz9bi9vT1Tp05l/fr1fPnllzz22GMJ2g0cOND65AegRIkSNGzYkM2bNzN//nx8fHys5+rUqUPZsmU5evSo9ZjFYmHRokWUK1eOiRMnJvg8urm5MW7cODp27Mj333+f6KnF2LFjE3y2CxYsSKdOnVixYgWnTp2ievXqyb7eeyU1/8lkMvHGG2+wdOlSfvvtt3TNWbh48SJbtmzhoYceSvSU4dVXX2XBggVs3ryZS5cuJRq2OG3aNNzd3a3lSpUq0aBBA7Zt28adO3dwc3NLUD/+9yf+90lEBOKGPl3s0YOo+GG5NjZ4dX8Jr959MBfytdaLDQ3l9pdfErBoMUZYGNFXrnDhpe4Umz8f14b5c+6WEotU8L8TyfWQiOwOI0u0bt2aDRs2WMu3bt1i165dDBw4kAYNGrB582bq1KljPX/nzh1mz57NmjVrOHv2LHfv3k3Q39WrV61/7tKlC/PmzeOpp56ia9euPPHEEzRu3DjVKwD9/vvvODg40KRJkwd+fSaTiZkzZzJ8+HB++ukn9u7dy4EDBzh48CDHjx/no48+YsOGDQleI8TdTJUqVSpRf40aNeLTTz/l8OHDWZpY3Lp1C1tb20Q3Svf6700tQPHixQEICgqyHtu7dy8Ap06dSjRxH+D69etYLBb+/vtvatWqhYeHBzVr1mTnzp1ER0djY2PD9u3befHFF61zcbZs2ULlypXZsmULQIZMME9qWE78jXJK565evZoosWjUqFGi+q6urtSoUYOtW7dy7tw5ypcvn2QcYWFh/PnnnxQtWpQZM2YkOh8/z+DkyZMZ8hr27dtnLZ86dYrbt29TtGjRJL8A8Pf3T/baqf083E9UVBQLFy7kq6++4uTJk4SGhmIYhvX8vb/zD+LIkSMANGnSJNH8IRsbGxo3bszJkyc5cuRIosTifq/xv78vXl5eQOK5YyKSf8Xcvs3FPr2tSYVtwYIUXzAf5/988QZg6+pKwVdewb1NG64MHUrE0T+whIVx+fXXKbHkI1zSOQQ4N1JikQo+bg7ZHcJ9ZVaM3t7edOzYEWdnZ5544gnGjBnDxo0bAazfRB86dIiaNWvSvXt3vL29sbOz4/z586xYsYLIyH+f9NSpU4etW7fy7rvv8sUXX7Bs2TIAHn/8cWbMmHHfm8/g4GCKFSuW4jfJqVWwYEFefvllXn75ZSDu5nnAgAF899139OvXL8G3xJD8k4H448HBwemOKS2cnJyIjY0lOjo6wTfm97r3m9t4dnZxv/L3TrwODAwE4PPPP0/xmvcmjc2aNePAgQPs378fs9lMSEgIzZs3t+5ZsGXLFl577TW2bNmCs7NzmuazJCel15PSuXsnFMdLz9/n7du3MQyDK1euJHlzH++/Sfb94kzu3L0T0OP/ro4dO8axY8cy7Nr3fh7u59lnn2X9+vVUrFiRrl274uvri9lsJigoiPfffz/B7/yDCAkJAZL/O4pPxOLr3SutrzF+4n9GLgMtIrmXER3N5QFvEnXmLADm4sUptWI55vt8AWpfogSlVqzg6rBh3Nn4G0ZUFJdef4NSn32GU7WqWRF6jqHEIhUyYohRbhf/Df7+/futx9auXcuhQ4fo06dPopWAvvrqK+uKR/dq1KgRP//8M+Hh4ezbt4/169fz4Ycf8uSTT/LXX38lGCbyXwUKFLB+e54RycW9ChcuzMqVK/nhhx/4448/uHXrVoLhVsmtFhR/PKvX4Y8fMhMYGJjuPTfib8bWr19P+/btU9WmWbNmzJo1iy1btmBvb59gNatmzZrxww8/EBoayv79+2natCn29vbpijGjpefvM/79euyxxzhw4EDGB5eC+Gs/88wzfPvtt1l6bYj7/V+/fj2tW7fmxx9/TLCnzd69e3n//ffTfY3415jc39H169cT1EuP+ETt3iFoIpJ/3Zw9m/CDBwGw9SlIyaWf3jepiGfj6EixOXO4/NZAQrdswQgL4/Kbb1Lm22+wS8Vw77xCy81KqsSv+HPv0pRnz8Zl9PeOe4+3Y8eOFPtzcnKiadOmvPfee4waNYrw8HDrk5Dk1K5dm8jIyFQtW/ogHBwckv32/+LFi4mWXYV/X+d/5yakVvyNWVq+MQas4+FPnTr1QNe9V3zSGL8Ub2o0atQIOzs7Nm/ezJYtW6hevToFCxYEoHnz5vj7+/PRRx8RHR2dIfMrMlpSn8/Q0FCOHDmCu7t7igmum5sbVapU4cSJE2kaQpQRqlSpgru7OwcOHEjySUxGSOkzGf87/+STTybaKDO533lbW9s0fb7jh4Rt3749wRAriFuNa/v27QnqpUf8709q55eISN4V8suvBK6IW+LbZDZT4oMPsE/jnloms5li8+bi9M+/TzHXrnH5rYEYmfTvdU6kxEJSZc6cOQAJlr2Mn3Owc+fOBHW3bdvGxx9/nKiPPXv2EBGReK5K/DeT9y5/mpQ33ngDiJsAG/9NY7yYmJhU7UHw3nvvJTn+HOIm5IaGhlK5cuVEk8NjY2MZNWpUghudP/74g5UrV+Lj40O7du3ue+2kxI/xvnTpUpraxc8zuXf8/YPq1KkTJUuWZM6cOdabtntFR0cn+juO369k9+7d7NixI8GmifFD2uLnH+TEDfx+++03fvnllwTHpk6dSlBQEC+//PJ9n4i99dZbhIWF8corryQ57MjPzy/Z/ULSw87Ojtdee40LFy4wdOjQJJOLv/76i5s3bz7wNVL6TCb3O3/s2DGmTZuWbH8BAQFJ/u4npWTJkjRr1oxjx44l2hNkyZIlnDhxgubNmyeaX/Eg4n9/0jNvS0Ryv5jbt7l+z9DWQqNH4fTwww/Ul42DA8Xmv4/dP6MJwg8exH/hBxkSZ26goVCSwJkzZxJM4A0MDGTXrl0cOnQIT0/PBJNVO3ToQOnSpZk5cyZ//fUX1apV49SpU/zwww889dRTiYZqzJgxgy1bttC4cWPKlCmDo6Mjhw4dYtOmTZQtW5annnoqxdjatWvH0KFDmT17NhUqVOCpp57C19eXK1eusGnTJoYOHZpgrfykrFy5kqFDh1K9enXq1KmDr68vQUFB7N27l0OHDuHk5MSiRYsStXv44YfZuXMnjz/+OC1btrTuYxETE8OSJUuSXOkqNZo3b87s2bPp168fzzzzDC4uLpQqVYru3bun2K5Fixa4ubmxceNGhg0b9kDXjufg4MC3335L27ZtadKkCc2bN6d69erWzc127NiBt7d3ooSsWbNm1onf9yYPxYoVo0KFCpw+fRpXV9cEqzXlFO3bt6dDhw48++yzlC5dmr1797JlyxbKlSvHpEmT7tu+f//+7N27lxUrVrBr1y5atmxJ0aJFuXHjBidPnmTfvn188cUXqdqTJK0mTpzIoUOHmD9/Pj/++CONGze2/h78+eefHD16lD179uDr63v/zpJQr149nJycmDdvHrdv37YOExozZgy1a9emdu3afP3111y7do26dety8eJF1q1bx5NPPpnk8KzmzZtz4MAB2rZtS6NGjbC3t6dx48YJvqT4r0WLFtGwYUNeeeUV1q9fz0MPPcSxY8dYt24dPj4+Sf6OppVhGGzatIkqVaokuSeGiOQfN6a+S+w/X1i6PfEEBf6zomJamX19Kb5gPudfeBFiYri1ZAmujRriXKtWRoSbs2Xqwrc5gPaxSJ349eT/++Pg4GCUK1fOeO211xLsSRHv3LlzxjPPPGP4+PgYzs7OxuOPP2589dVX1r0Hxo8fb627YcMG4+WXXzYqVapkuLm5Ga6ursZDDz1kjBo1yvD390/Qb1L7WMT77rvvjGbNmhkeHh6Gg4ODUbp0aaN79+7GX3/9dd/XeejQIWPixIlGkyZNjBIlShj29vaGk5OTUblyZeO1114z/v7770Rt+Gf/iUuXLhldu3Y1vLy8DEdHR6NevXrGr7/+mqh+WvaxMAzDmDlzplGhQgXDbDYnWycpr732mmFra5tgbwLDMJJ87+Mlt2+AYRjG5cuXjYEDBxoVKlQwHBwcDHd3d6NKlSpG3759jU2bNiWq/+uvvxqAYWtrawQFBSU4169fPwMwWrdunarXEi+lfSySej0p7bmQ1N/DvfXXrFljPP7444aTk5Ph7e1t9OzZ07h27VqiflLah2H16tVGy5YtDU9PT8NsNhvFihUzmjZtarz33nsJPtPJfSaSe83xkvs9iImJMT766COjQYMGhru7u+Hg4GCULFnSaNOmjbFo0SIjNDQ0Vf0nF9ePP/5ofW/i/y2Id/PmTaN3795G0aJFDUdHR6N69erGBx98YJw7dy7Jz9adO3eMV155xShSpIhha2ub4O8ypc/j+fPnjV69ehlFihQx7OzsjCJFihi9evUyzp8/n+r3KaXXv3XrVgMw5s2bl2S7/8rv/0eI5FUhmzZb96E4WbuOEX3PfkLp5f/Rkn/3uGjW3Ii5E3r/RjlQWvaxMBnGfwax5jEhISF4eHgQHByc4mS/iIgI/Pz8rN+ki8QzmUw0adKErVu3ZncoCZw6dYpq1aoxYcKEVO1aLrB8+XJ69erFsmXL6NmzZ3aHI9nopZde4ueff+bs2bPWXe9Tov8jRPIeS0QE59o9SfQ/y2QXmT6NAp07Z1j/RmwsF3v0JOyfhT68erxMoZEjM6z/rJLae2nQHAuRXKtSpUr07duXuXPncufOnewORyTX+Pvvv/nqq68YM2ZMqpIKEcmbApcvtyYVLvXr4ZHEYjTpYbK1pci0dzH982VE4MpVhP/5V4ZeI6dRYiGSi02cOJEBAwZkykRhkbzq8uXLjB8/3roghIjkP9E3bhKw5J+FZmxtKTRyZKJNOTOCfYkSFHzj9biCxcK1ceMw7tmfKK9RYiGSi/n6+jJhwgQtlymSBs2bN2fs2LE5bn8VEck6/gvmY4SFAeDZtSsOFSpk2rW8e/bEoVIlACJPnCBw5apMu1Z2U2Ihch+GYeS4+RXyYHr27IlhGJpfISKSj0WdP0/w/9YAYOPmRsE3B2Tq9UxmM0UmTYR/nogEfPghMf9ZNj+vUGIhIiIiIvmG/wcfwj8bd3r37oWdp2emX9PpkUfweDpuWX3LnTv4z5+f6dfMDkosRERERCRfiDx9mpAffgDAtkABPLu/nGXX9h00CBtnZwCCvv6GiFN/Z9m1s4oSCxERERHJF/wXLIR/dlrwfqUvtq4uWXZtOx8fvF99Na5gsXBj+jTy2q4PSixEREREJM+LOHWKO7/+CoBtwYJ4vvBClsfg1eNlzMWLAxC2Zy+h27alWD84MphjAce4GXYzK8JLN7vsDkBEREREJLPd+vgT658LvtIXGyenLI/BxsEB36FDuTJoEAD+c+bi2rgx0UYMJwJPcCrwFKcCT3Hy9kkuhFwgODIYgBG1R/BilRezPN60UmIhIiIiInla1KVLhPz0ExA3t6LAc89lWyxurVvhUL0akX/+ReTffzN7WidWl7pGZGxksm0u3bmUhRE+OCUWIiIiIpKnBS5bBhYLAJ4vd7dOos5KYdFh7Lyyk82XNnOz5nmG/Rl3/PH1Z/i8ny3YJtygr7BLYUq6laSEWwke9X00y+N9EEosRERERCTPigkIIOi77wEwOTvjlYVzK2IsMey+upu1Z9ay9dJWoixRcSeKwdHSJh45b1AoCJ497k5452ZU9a5KZa/KVPSsiKu9a5bFmVGUWIiIiIhInhW4chVGZNwwI88uXbAtUCDTr3n5zmW+PvU168+tJyA8INF5N7MbF1+oziPvbgegyx4byk8chY1L1q1SlRmUWIiIiIhInhQbGsrtL76IK5jNePXskWnXMgyDAzcOsOr4KrZe3orFsCQ47+XoxROlnqB5yeY8XuhxzLZmLh96mzsbNhB76xaBn31Gwddey7T4soKWm5VEDh48SJ8+fahQoQIuLi44OTlRrlw5unfvzsaNGwkODsbZ2RlPT08iIiJS7Ovjjz/GZDLRr1+/LIpeREREJE7w999juXMHAI8OHTAXLpzh14i1xLLh/AaeW/8cvX/pzeZLm61JhZ2NHS1LtmR+s/n89txvjKk7hvpF62O2NQPg89ZbYGsLwK1PlxIbFJTh8WUlPbEQK4vFwtChQ5k7dy52dnY0b96cjh07YjabOXfuHD/++COrVq1i0qRJPPPMM6xatYrvvvuOF19MfvmzpUuXAtCnT5+sehkiIiIiGLGxBK763Fr27tUzQ/uPTyiW/LGEc8HnEpzzdfKla+WuPFvxWbwcvZLtw6FsGQo8/RRB33yLJTSUW8uW4/v2oAyNMyspsRCrMWPGMHfuXGrUqMG3335LuXLlEpwPDw9n4cKF3Lp1iz59+rBq1SqWLl2abGJx4sQJ9u7dS9WqValTp06K1+7ZsycrVqzIcztQioiISPYI3baN6IsXAXCpXx+HChUypF/DMNh4YSMLDi/gfMj5BOeqF6xO94e607JUS8w25lT1V/DVVwlasxaiowlcuRKvHi9j55V8MpKTKbEQAM6cOcPMmTPx9vZmw4YNFCpUKFEdJycnhg0bRmRkJPb29pQrV44tW7Zw/vx5Spcunai+nlaIiIhIdgn8bKX1z54vd8+QPo/cPMLsA7M56n80wfFHfR/l1UdepW6RuphMpmRaJ81crBiezz3L7S++xAgL49ann1Jo2LAMiTeraY6FALB8+XJiY2Pp379/kknFvRwcHDCZTPTu3RvDMFi2bFmiOjExMaxcuRJ7e3u6d8+YX2YRERGR1Ig4dYqwvXsBsC9VCtfGjdPV36U7lxi8dTDdf+6eIKl4rNBjLG29lOVtllOvaL00JxXxvPv3x2RvD8Dtz78gxt8/XfFmFyUWAsCuXbsAaN68earb9OzZE1tbW1asWIHFknDlg59++okbN27QsWNHChYsmKGxioiIiKQk8LPPrH/2fLk7JpsHu+WNio1i0dFFdF7TmY0XNlqPl/UoywctPmBZ62U8XvjxB04o4pkLFaJAt64AGBERBHz8cbr6yy4aCpUaHzWB0JvZHUXKXH2h/7YHbn79+nUAihcvnuo2RYsWpU2bNvz4449s2rSJJ554wnoufhhU7969HzgmERERkbSKCQwkZP0PANi4uVGgc+cH6mfP1T1M3TeVCyEXrMe8HL14o8YbPF3haexsMvY2uuArrxD09TcYEREEfbUa7969M2UVq8ykxCI1Qm/CnavZHUWO1LdvX3788UeWLl1qTSxu3rzJjz/+SPHixWndunWiNqVLl+bChQuJjgNJZvzLli2jZ8+eGRq3iIiI5E1Bq1djRMXtcF3g2WfTvOnc7YjbTP99Oj/5/WQ9Zmuy5aUqL/HqI69m2o7Ydj4+eL74AoGfLsWIiuLWkiUUHjcuU66VWZRYpIarb3ZHcH/pjLFw4cKcPHmSK1euUKlSpVS3a9++PYUKFWLNmjXcvn0bT09PPvvsM2JiYujZsyc2STx6HDRoEEH/Wad5zZo1HD16lPHjxyeqX6NGjbS+HBEREcmHjKgobn/xZVzBxgbPFJbET8qmi5uYtGcSgRGB1mM1fGowpu4YKnml/v7oQXn37UvQl19hCQvj9jff4t2nD+ZixTL9uhlFiUVqpGOIUW7RoEEDtm7dyqZNm9I0z8LOzo6XX36ZWbNm8fnnnzNgwACWLVuGyWSiV69eSbYZNGhQomPnz5/n6NGjTJgw4QFfgYiIiOR3Ib/8Yp347NaiBfbFU3dTHhwZzPTfp/PDuR+sx9zt3RlSawidy3fGxpQ105LtPD3x7N6dWx99BNHRBCxeTJHJk7Pk2hlBk7cF+Hci9pIlS/C/z0oEkZGRCcrx8yiWLl3Kvn37OH78OM2aNaNs2bKZFq+IiIjIvQzDIHDFv5O2vVK5xOyuK7t4au1TCZKKpsWbsqbTGp6u8HSWJRXxvHv1xMY1brhV0Pf/I+qfvThyAyUWAkD58uUZPnw4AQEBtG3bFj8/v0R1IiIimDNnTqKnCpUrV6ZBgwYcPnyYIUOGANq7QkRERLJW+OEjRPz1FwAOD1XBqVatFOtHx0bz3oH3ePW3V/EP/+cph9mNqQ2nMr/5fHycfTI95qTYFiiAV/zc0thYAj5clC1xPAgNhRKrKVOmEBERwdy5c6lUqRLNmzenWrVqmM1m/Pz8+O2337h16xZTpkxJ1LZPnz7s2rWLXbt2UaBAAZ5++ulseAUiIiKSXwWuvOdpRfeXU1wC9mLIRYZvH86xW8esxxoUa8DEehMp5JLyfl5ZwavHywSuXIklOJjgdevw7tcPh7Jlsjus+9ITC7GysbFhzpw57N+/n+7du3P27Fk+/PBD5s6dy759+2jdujUbN25k9OjRidp26dIFNzc3AF544QUcHR2zOnwRERHJp6KvXePOr3H7TNh6e+P+ZLtk6/507ie6/NDFmlSYbcy88/g7LGqxKEckFQC2bm54xy/Zb7EQ8MEH2RtQKumJhSRSq1YtPv300zS1cXFxISQk5IGvuXz5cpYvX/7A7UVERCT/uv3FFxAbC4Bnt27Y/LOL9b2iY6OZsX8Gq0+tth4r5V6KmY1n8pD3Q1kWa2p5vfQigcuXg40NTo88nN3hpIoSCxERERHJtSzh4dz++pu4gtmM5z87WN/rZthNBm8dzFH/o9ZjHct1ZFSdUbiY07bPRVaxcXGhxEeLcShfHhtn5+wOJ1WUWIiIiIhIrhW8bj2W4GAAPNq1xc4n4aTrgzcOMmTrEG5F3ALA3saeMXXH8FSFp7I81rRyejh3PKmIp8RCRERERHIlwzC4vWqltezZ/eUE5744+QWz988mxogBoIhLEeY2m0tV76pZHmt+oMRCRERERHKlsD17iDx9BgCnRx/FqVpcwhBtiWbq3ql8d/o7a906Reows/FMvBy9siXW/ECJhYiIiIjkSoGf/fu0In5DvODIYIZsHcK+6/us53pV68VbNd/Czka3vplJ766IiIiI5DpRFy4Qum0bAHZFiuDWsiWXQi7x+qbXOR9yHoibTzGpwSSeLPtkNkaafyixEBEREZFcJ3DV52AYAHi+8DyHbh1l0JZBBEUGAeDl6MX7zd6nhm+N7Asyn1FiISIiIiK5SmxoKMHffw+AydGRQ3W9GPHrK0RbogEo51GOhS0WUtyteHaGme8osRARERGRXCX4+++x3L0LwM3GVRh6aCIGcU8v6hetz+wms3Gzd8vOEPMlm+wOQEREREQktYzY2LhhUP+YVvIPa1LxVPmnWNhioZKKbKInFiIiIiKSa4Ru20b0xYsA/FHaxGUfEwCvVH+FN2u+iclkys7w8jUlFiIiIiKSa/h/+on1zz/VMmHCxDu13+HFKi9mY1QCSixEREREJJcIPLiPyIOHAbjsDX9WNDOz8XTalG6TzZEJaI6FiIiIiOQCwZHBbJkxyFr+tb4THz6xWElFDqLEQhI5ePAgffr0oUKFCri4uODk5ES5cuXo3r07GzduTFQ/IiKC999/n0aNGuHt7Y2DgwMlSpSgW7dubN++PclrnD9/HpPJlODHbDZTrFgxunTpwoEDBzL7ZYqIiEguERgRyLAvulP5zyAAgl1M9Hx7KXWL1M3ewCQBDYUSK4vFwtChQ5k7dy52dnY0b96cjh07YjabOXfuHD/++COrVq1i0qRJjB07FoAzZ87w5JNP8vfff1O2bFm6dOlCgQIFOHfuHD/88AOrV69m4MCBzJkzBxubxHlsuXLleOmllwC4e/cuBw8e5JtvvmHNmjX89ttvNG7cOEvfAxEREclZ/MP8eeXXV2i68Qw2cYs/UeClF6lctEa2xiWJKbEQqzFjxjB37lxq1KjBt99+S7ly5RKcDw8PZ+HChdy6dQuA4OBg2rRpw9mzZxk7dizjx4/H1tbWWv/q1at07tyZ999/Hy8vL8aNG5fomuXLl2fChAkJjk2fPp2RI0cyduxYtm3blvEvVERERHKF63ev0/fXvgReP0/TP/7JKpwcqdB7QPYGJknSUCgB4p48zJw5E29vbzZs2JAoqQBwcnJi2LBhTJw4EYBZs2Zx9uxZXnzxRSZNmpQgqQAoWrQo69evx8vLi8mTJ3Pp0qVUxdKnTx8gbkiWiIiI5E9XQ6/Sc0NPLoRcoNUhA4eYuOOezz2HrYdH9gYnSVJiIQAsX76c2NhY+vfvT6FChVKs6+DgAMCyZcsArMOiklKoUCFeeeUVYmJiWL58eZpisrPTAzUREZH86Prd6/T5pQ9XQq9gjjZ48tA/J2xt8Xq5R7bGJsnTnVsqdP2hKwHhAdkdRooKOhVkdfvVD9x+165dADRv3jxV9S9cuMDVq1cpVqwYlSpVSrFuixYtmDFjhvUa9/PJJ3HrUzds2DBV9UVERCTvuHH3Bn1+6cPl0MsAPHfKE9e7cfdh7q1bY1+8WHaGJylQYpEKAeEB3Ay7md1hZKrr168DULx48TTVL1GixH3rxte5cuVKonNnzpyxzrGIn7y9ZcsWChUqxKxZs1IVi4iIiOQN/mH+9P21LxfvxO2sXcapBE//Horln/PefftkX3ByX0osUqGgU8HsDuG+ckOMFosl0bGzZ89a52zEK1y4MDt27KB8+fJZFZqIiIhks4DwAPr+2pfzIecBKO5anAVhTxN24z0AXJs2xfGhh7IxQrkfJRapkJ4hRrlF4cKFOXnyJFeuXLnv0Kb4+kCqJmTH1ylWLPGjy9atW7NhwwYA/P39WbFiBe+88w4dO3bk999/x9XVNS0vQ0RERHKhwIhAXvn1Fc4FnwOgqEtRPmmxhPBne1vrFHz9tewKT1JJk7cFgAYNGgCwadOmVNUvVaoURYsW5cqVK5w6dSrFuvF9PnSfbxl8fHwYOnQoo0aN4sSJE4wZMyZVsYiIiEjuFRIVQv+N/TkTdAaAwi6F+bT1p7hsPUj05bh5Fi4NGuD08MPZGaakghILAaBnz57Y2tqyZMkS/P39U6wbGRkJQO/ecd8iTJ06Ndm6N2/etE7Gfvnll1MVy6hRoyhatCgffvgh58+fT1UbERERyX3CY8IZsGkAJwNPAuDr7MvSVksp5lyEW4s/stbT04rcQYmFAHEb1Q0fPpyAgADatm2Ln59fojoRERHMmTPHOtl62LBhlCtXjpUrVzJp0iRiY2MT1L9+/TqdOnXi1q1bdOzYkUcffTRVsTg5OfHOO+8QHR3N5MmT0/3aREREJOeJjo3m7a1vc/jmYQC8HL34uNXHlHAvwZ1ffiHqny8XnR9/HOfHHsvGSCW1sjWx2L59Ox06dKBo0aKYTCbWrFmT4LxhGIwbN44iRYrg5OREy5YtOX36dPYEmw9MmTKFt99+m4MHD1KpUiXatGnD0KFDGTlyJN26daN48eIMGTLEOu/B3d2dDRs2UKFCBcaPH0+lSpV44403GDVqFN26daNChQrs3buXRx55hJUrV6Ypln79+lG0aFE+++wzzp49mxkvV0RERLJJrCWWkTtHsutK3FL0rmZXFrdcTFmPshixsfgv/MBaV08rco9sTSzu3r3LI488wgcffJDk+ZkzZzJ//nwWL17Mvn37cHFxoXXr1kRERGRxpPmDjY0Nc+bMYf/+/XTv3p2zZ8/y4YcfMnfuXPbt20fr1q3ZuHEjo0ePtrYpX748R48eZe7cuRQuXJgvvviCadOmsXr1akJDQxk9ejS///477u7uaYrF0dGRkSNHEhMTk2jVKBEREcm9DMNg8t7J/HL+FwAcbB1Y2GIhVbyrABC8dh1R5+ImcTs99hjOdetmW6ySNibDMIzsDgLAZDLxv//9j86dOwNxH7qiRYsyZMgQhg4dCkBwcDCFChVi+fLldOvWLVX9hoSE4OHhQXBwcIo3txEREfj5+VGmTBkcHR3T/Xryu9mzZzNs2DC6dOnCl19+iY2NRt2JSO6l/yNEMs6cg3NY9tcyAOxMdrzf/H0aF28MgCUqinNt2hJ99SoApVatxLlWrWyLVVJ/Lw05eI6Fn58f169fp2XLltZjHh4e1KlThz179iTbLjIykpCQkAQ/kvWGDh1Knz59+Prrr+nfv392hyMiIiI5wNK/llqTChMmpjWaZk0qAIK+/saaVLg0bqSkIpfJsftYxO/sXKhQoQTHCxUqZD2XlGnTpmnoTA6xaNEiKlSoQHh4OCdPnqRy5crZHZKIiIhkk/Vn1zP34FxreWy9sbQp08ZatoSFEbB4sbXsM3BglsYn6ZdjE4sHNXLkSAYPHmwth4SEUKJEiWyMKP8ym82888472R2GiIiIZLPdV3czbtc4a/mtmm/xXMXnEtQJXLmK2IAAANzatMGpatUsjVHSL8cOhYrf2fnGjRsJjt+4ccN6LikODg64u7sn+BERERGR7HHi1gne3vI2MUYMAF0rdaVv9b4J6sQEBnLr44/jCjY2+Lz1ZlaHKRkgxyYWZcqUoXDhwgl2gg4JCWHfvn3Uq1cvGyMTERERkdS4EnqF1ze9TlhMGADNSzRnZO2RmEymBPX8FyzAEhoKgMfTT+FQtmyWxyrpl61DoUJDQzlz5oy17Ofnx5EjR/Dy8qJkyZIMGjSIKVOmUKFCBcqUKcPYsWMpWrSodeUoEREREcmZgiKCeHXjqwSExw1vquFTgxmNZ2BrY5ugXuTp0wSt/hoAk7MzPm+9leWxSsbI1sTiwIEDNGvWzFqOnxvRo0cPli9fzvDhw7l79y79+vUjKCiIhg0bsmHDBi31JyIiIpKDRcRE8ObmNzkfch6A0u6lWdB8AY52ie/hbsycBRYLAAX7vYLZ1zcrQ5UMlK2JRdOmTUlpGw2TycSkSZOYNGlSFkYlIiIiIg8q1hLLiB0jOOJ/BICCTgVZ/MRiCjgWSFQ3dMcO7u7YAYBdkSJ49eyZdYFKhsuxcyxEREREJPeZfWA2my7GzZF1tnPmwxYfUsy1WKJ6RlQUN6ZNt5Z9Bw/GRqNScjUlFiIiIiKSIb4+9TWrTqwC4nbVntt0LlW8qyRZ99ay5USdOweA0yOP4N7+ySyLUzKHEgsRERERSbfdV3bz7r53reUxdcdQv1j9JOtGXb5MwKJFcQUbGwqPH5dopSjJfZRYiIiIiEi6nA06y5BtQ4g1YgHoWbUnz1R8Jsm6hmFwY8pUjIgIADxfehHHhx7Kslgl8yixkDyhc+fOVKlShdjY2FTVnzBhAiaTia1bt6brutHR0UyYMIEKFSrg4OCAyWRizZo16eoztUwmE02bNk11/ejoaMqWLUuXLl0yLygREcl3AiMCeWPTG4RGx+1D0axEMwY9OijZ+qGbNhH6z/+/dr6+Wl42D1FiIYkcPHiQPn36UKFCBVxcXHBycqJcuXJ0796djRs3JtkmJiaGZcuW0a5dOwoXLoy9vT0eHh48/vjjjBkzhgsXLiSoX7p0aUwmk/XH1taWggUL0qpVK9auXZumeLdt28batWsZP348tra292+Qgd577z0mTpxI0aJFGTp0KOPHj6dy5cpZGsO9evbsiclk4vz584nOmc1mRo8ezTfffMPevXuzPjgREclzImMjGbh5IFdCrwBQxasK0xtNT7RXRbzY0Ltcn/rvcKlCI0dg6+qaJbFK5svW5WYlZ7FYLAwdOpS5c+diZ2dH8+bN6dixI2azmXPnzvHjjz+yatUqJk2axNixY63tLly4QKdOnTh69CiFChXiiSeeoESJEty9e5dDhw4xffp0Zs+ezV9//UX58uWt7WxtbRkzZgwAUVFRnDx5knXr1rFx40Zmz57NkCFDUhX32LFjKVWqVLZ8E//DDz/g6urKxo0bsbe3z/Lrp1WPHj0YNWoUY8eOTTZJFBERSQ3DMBi3a5x1WVlfJ1/mN5+Ps9k52TY3Z88i5to1AFwaNMCtTZusCFWyiBILsRozZgxz586lRo0afPvtt5QrVy7B+fDwcBYuXMitW7esx+7cuUPr1q05deoUw4YNY/LkyTg4OCRod+bMGQYPHkxoaGiC43Z2dkyYMCHBsV9//ZU2bdowbtw4XnvtNZydk//HCeDYsWPs2LGD0aNHY2OT9Q/grl69ire3d65IKiDuPe/WrRsLFizgzJkzCRI9ERGRtFj8x2J+8vsJACc7J+a3mE9hl8LJ1r+7Zw9BX60G4nbYLjxhvCZs5zEaCiVA3M3/zJkz8fb2ZsOGDYmSCgAnJyeGDRvGxIkTrcdmz57NqVOneOmll5g5c2aipAKgfPnyrFu3jodSMTGrVatWVKpUibCwMI4dO3bf+suWLQPgueeeS/L8pUuXeP755/Hy8sLV1ZUmTZqwffv2FPvcvn07HTp0oGDBgjg4OFChQgXGjBlDWFiYtU78HA0/Pz8uXLhgHdJVunRpIO4JzIIFC2jdujUlSpTAwcEBX19fnn76aQ4fPpzominN+Vi+fDkmk4nly5enGHfp0qVZsWIFAGXKlLHG9N95GF26dMEwDGtdERGRtPr1/K98eORDAEyYmNZwGlW9qyZbPzb0LtdGj7GWfYcMxr5EiUyPU7KWnlgIEHfzGhsbS//+/SlUqFCKde9NHpYuXQrAuHHj7nuNtH6rn5pvMTZt2oSLiwvVqlVLdO7atWvUq1ePK1eu0Lp1ax599FFOnDjBE088QbNmzZLsb9GiRbzxxhsUKFCADh064Ovry4EDB5g6dSpbtmxhy5Yt2NvbW2/W582bB8CgQYMAKFCgAACBgYEMGjSIRo0a0a5dOzw9PTl37hzr1q3j559/Zvv27Tz++ONpej/uZ9CgQSxfvpyjR48ycOBAayzxyU68xx57DLPZzKZNm5g8eXKGxiAiInnfycCTjNn1b5Iw6LFBtCjVIsU2N2fNIvrqVQCca9fG8/nnMzVGyR5KLASAXbt2AdC8efNUt7lw4QKXL1+mePHiVKhQIUPi2LRpE6dOncLFxYWqVZP/5gMgNDSUP/74g3r16iU5aXvkyJFcuXKFKVOmMHr0aOvxJUuW0L9//0T1jx8/zltvvcXDDz/Mpk2b8Pb2tp6bPn06I0eOZMGCBQwZMoSmTZvStGlT61OE/w7p8vT05OLFixQrlnCn0WPHjlG3bl1GjRqV4XMcBg0axJEjRzh69CiDBg1KlFDEc3R0pFq1ahw4cIDIyMgknzKJiIgkJTAikIGbBxIeEw5Ah7Id6FW1V4ptQnftImj1v0Ogirw7FVM2DF+WzKfEIhX8nnmWmICA7A4jRXYFC1Lmu28fuP3169cBKF68eKa2uVdMTIz1hjw6OppTp06xdu1aDMNg8uTJODk5pdj+6tWrWCyWJJ+wREVFsXr1anx9fRNNAu/bty+zZ8/m9OnTCY5/9NFHxMTEsGDBggRJBcDw4cOZM2cOX375ZaomlTs4OCRKKgCqVq1Ks2bN+OWXX4iOjsZsNt+3r8xQqFAhDh8+zM2bNymhR9EiIpIK0ZZohmwdwtW7cU8eqnlXY3z9lOdJxAQGcm3ESGvZd+gQ7B/wvkFyPiUWqRATEEDMjRvZHUaeExsba52vYWNjg6enJ82bN+eNN96gY8eO920fP4k8fsjPvU6dOkVERATNmzfH0dExwTkbGxsaNGiQKLGIX4L1l19+YdOmTYn6NJvNnDx5MlWvDeDIkSPMnDmTnTt3cv36daKjoxOcDwgIoEiRIqnuLyN5eXlZY1BiISIiqTHj9xkcuHEAAB8nH+Y1m4eDbfJPvQ3D4NrIUcT4+wPgUr8+nt26ZUmskj2UWKSCXcGC2R3CfaU3xsKFC3Py5EmuXLlCpUqVUt0G4MqVKw90TQcHByL+2XXzQcQ/0Uiqj+DgYAB8fX2TbJvUU47AwEAApk6d+sAxxdu9e7d1WFmrVq2oUKECrq6u1g30jh49SmRkZLqv86DCw+MeYd9v1S0RERGAb/7+htWn4oYzmW3MzG02l0IuKc/JvL3qc0K3bQPA1suLojOmawhUHqfEIhXSM8Qot2jQoAFbt25l06ZNqZ5nUapUKYoVK8alS5c4ffp0hs2zSC0fHx/g34TgXh4eHgDcvHkzybY3kngC5e7uDkBISAhubm7pim3q1KlERkayY8cOGjZsmODc3r17OXr0aIJj8UvlxsTEJOorPknKSPHvWfx7KCIikpyDNw7y7t5/N7UbV28cj/g8kmKbiJMnuTlzprVcdPo07PR/Tp6ntFGAuB2bbW1tWbJkCf7/PLJMzr3ftPfp0weAKVOm3PcaUVFR6QvyP4oWLYq3tzenTp1KdK5ixYo4Ojpy4MCBRE80LBYLu3fvTtSmTp06ABmyK/XZs2fx8vJKlFSEhYVx6NChRPU9PT2BpJ/+JLU8bXLiJ7HHxsamWO/UqVMUK1bMOiRKREQkKddCrzF462BijLgvvl6q8hKdy3dOsU1s6F2uvD0Y458hwF49euDauHFmhyo5gBILAeL2mhg+fDgBAQG0bdsWPz+/RHUiIiKYM2dOghWQhg4dSqVKlfjss88YNWpUksN7/Pz86Ny5M8ePH8/QmE0mE40aNcLPzy9RMuTg4ECXLl24efMm7733XoJzn3zyCX///Xei/l5//XXs7Ox48803uXjxYqLzQUFBqb7JL1WqFLdv306wF0dsbCxDhw5NMnGLX3r2s88+w2KxWI/v2bOHzz//PFXXhH/nTly6dCnZOhcvXuT69es01j/yIiKSgsjYSAZtHURgRNxT7rpF6jKkVsoLmBiGwbVRo4j65z7C4aEq+AwZnOmxSs6goVBiNWXKFCIiIpg7dy6VKlWiefPmVKtWDbPZjJ+fH7/99hu3bt1K8HTCzc2NX375hU6dOjFt2jSWLVtGq1atKF68OGFhYRw+fJhdu3ZhZ2fH7NmzMzzmp556ijVr1rBx40ZeeOGFBOemT5/Opk2bGDNmDDt37qRmzZqcOHGCn376iVatWvHrr78mqF+tWjU+/PBDXnvtNSpVqkS7du0oV64cd+7c4dy5c2zbto2ePXuyePHi+8b15ptv8uuvv9KwYUO6dOmCo6MjW7du5cqVKzRt2jTRRnh169alQYMGbN68mXr16tG4cWMuXLjA2rVr6dChA//73/9S9X40b96c2bNn069fP5555hlcXFwoVaoU3bt3t9aJX+a2c+fOqepTRETyH8MwmLp3KsdvxX0pWNy1OLObzMbOJuVbx8Bly7nzz/+vNm5uFJ87F5s07mMluZiRxwUHBxuAERwcnGK98PBw4/jx40Z4eHgWRZZz7d+/3+jdu7dRvnx5w8nJyXBwcDBKly5tvPDCC8bGjRuTbBMVFWUsXbrUaNOmjVGoUCHDbDYbbm5uxqOPPmqMGjXKuHjxYoL6pUqVMhwcHNIda3h4uOHl5WW0bds2yfMXLlwwunbtahQoUMBwdnY2GjVqZGzbts0YP368ARhbtmxJ1Ob33383unXrZhQtWtQwm81GwYIFjUcffdQYMWKEceLEiUSvo1SpUkle+9tvvzUeffRRw9nZ2ShYsKDRpUsX4+zZs0aPHj0MwPDz80tQPyAgwHj55ZcNLy8vw8nJyahbt67xyy+/GMuWLTMAY9myZQnqA0aTJk0SXXfmzJlGhQoVDLPZnGSdpk2bGr6+vkZUVFSScYtIYvo/QvKbb059Y1RbXs2otryaUWtlLePkrZP3bRO6d59x/KGqxvFKlY3jlSobIZs2Z0GkktlSey9tGIZhMgzDyMa8JtOFhITg4eFBcHCwdXJuUiIiIvDz86NMmTKJlieVnG3s2LFMnz6dM2fOUKpUqewOJ0c7ffo0lSpVYsKECanaLV1E4uj/CMlP/vT/kx4behBtiZsjMa3RNNqXbZ9im+gbN/B7+hli/1kK3vu1V/EdODDTY5XMl9p7adAcC8kDhg8fjpeXV4YsE5vXTZo0iSJFiqRqkz8REcl/AiMCGbxtsDWpeKHyC/dNKixRUVwZOMiaVLg0aIDPgAGZHqvkPEosJNdzc3Nj5cqVlC5d+r6rIeVn0dHR1on2Li4u2R2OiIjkMDGWGIZvG871u9cBqOlbk6G1hqbYxjAMro8dS/iRIwDYFS1C0dmzMP2zSqHkL5q8LXlCq1ataNWqVXaHkaOZzWbGjBmT3WGIiEgONf/wfPZd3wdAQaeCvNfkPcy25hTb3FryMcFr1wFgcnSk+PwF2P2zhLrkP3piISIiIpLPbbywkWV/LQPAzmTHe03ew8c55Q3tQn75Ff+5c63lotOn41StaqbGKTmbEgsRERGRfOxc0DnG7Pz3ifbQx4fyaKFHU2wT/tcxrr7zjrXsM2gQ7m1aZ1qMkjsosRARERHJp+5G32XQ1kGExYQB0K5MO16o/EKKbaJv3ODy669jREQA4NGpI979+2V6rJLzKbEQERERyYcMw2DC7gn4Bcftkl3BswLj643HZDIl28YSHs7l198g5uZNAJxq1qTw5MkptpH8Q4nFf+TxbT1EROQB6P8GyYtWn1rNhvMbAHAzuzGv6Tyczc7J1jcsFq6+M4KIY8cAMBcrRvGFC7SztlgpsfiH7T/LokVHR2dzJCIiktPE/99gqyU0JY84dusYM/fPtJYnN5hMSfeSKbbxf38+d379FQAbFxdKLF6Enbd3psYpuYsSi3+YzWYcHBwIDg7WN1MiImJlGAbBwcE4ODhgNqe89KZIbhASFcKQrUOsm+C9VOUlWpRqkWKb4LVrufXRR3EFGxuKzZ2DQ4UKmR2q5DLax+IeBQsW5MqVK1y+fBkPDw/MZrPGDIqI5FOGYRAdHU1wcDChoaEUK1Ysu0MSSTfDMBi3axxXQq8A8HDBhxn82OAU24QdOsS1MWOt5UIjRuDauHGmxim5kxKLe7i7uwMQEBDAlStXsjkaERHJCRwcHChWrJj1/wiR3GzViVVsurgJAHd7d2Y1mZXiJnhRl69wecCbGP8MByzQrSue3V/Kklgl91Fi8R/u7u64u7sTHR1NbGxsdocjIiLZyNbWVsOfJM846n+UOQfmWMvvNnyXoq5Fk60fGxrK5ddeIzYwEADnenUpPHq0RnNIspRYJMNsNus/ExEREckTgiKCGLZtGDFGDAC9qvWiSYkmydY3YmO5OmQokadPA2BfujTF583DpHsjSYEmb4uIiIjkYRbDwuhdo7l29xoAj/o+yps130yxzc1Zswndtg0AGw8PSixehK2HR6bHKrmbEgsRERGRPGz5seVsv7wdAE8HT2Y2nonZJvknD7e/+YbA5cvjCnZ2FH//fexLl878QCXXU2IhIiIikkcdunGI+YfmA2DCxPRG0ynkUijZ+nf3/c71iZOs5cJjxuBSt06mxyl5gxILERERkTwoMCKQYduGEWvELUbzysOvUL9Y/WTrR124wJW33oKYuHkYni93x7Nb1yyJVfIGJRYiIiIieYxhGIzdNZab4TcBqF24Nq8/8nqy9WPv3OHSa68TGxwMgEujRhQaPjxLYpW8Q4mFiIiISB6z6sQq67wKL0cvpjeajq2NbZJ1DYuFq++MIOrcOQDsy5Wj2Jz3MNlp8VBJGyUWIiIiInnIsVvHmHPw3/0qpjacio+zT7L1AxYvJnTzZuCfFaAWfYitm1umxyl5jxILERERkTzibvRdhm8bTowlbp5Ez6o9aVisYbL1Q7dtI2DBwriCyUSx2bOxL1kyK0KVPEiJhYiIiEgeMXXvVC7euQhANe9qvFXzrWTrRl24wJVhw8EwAPAZOBDXRsknISL3o8RCREREJA9Yf3Y968+tB8DF7BK3X4Vt0vtVWMLCuPzmW1hCQgBwe6Il3v37ZVmskjcpsRARERHJ5c4Hn2fy3snW8ri64yjhXiLJuoZhcG3sOCL//hsA+7JlKTJtGiaTKUtilbxLiYWIiIhILhYVG8Xw7cMJjwkHoHP5zrQr2y7Z+kFffUXIjz8CYOPiQvGFC7B1dc2SWCVvU2IhIiIikovNPTiXE4EnACjtXpqRtUcmWzfi5EluTJtuLReZ9i4OZctmeoySPyixEBEREcmltl/ezqoTqwCwt7FndpPZOJudk6xruXuXK4PexoiKAsCze3fcW7XKslgl71NiISIiIpIL3bh7gzE7x1jLQ2oNoZJXpSTrGobBtYkTiTp/HgDHhx7Cd9jQrAhT8hElFiIiIiK5TKwlllE7R3E78jYAzUo04/nKzydbP/h/awhZF7dilI2LC8XmzsHG3j5LYpX8Q4mFiIiISC6z4vgKfr/+OwCFnAsxucHkZFd1ijx7luuT/10xqvCkidiXKpUlcUr+osRCREREJBc5dusYCw4vAMCEiWmNpuHh4JFkXSMqiqvDhmOEx60YVaBLFzyefDLLYpX8RYmFiIiISC4RFh3GiO0jiLHEANCneh8eL/x4svX9P/yQiOPHAbAvV45Co5JfMUokvZRYiIiIiOQSsw/M5nzIeQCqelfl9UdeT7Zu2OHD3FrycVzBzo6iM2dg4+iYBVFKfqXEQkRERCQX2HRxE9/8/Q0ATnZOTG80HbOtOcm6lrt3ufrOCLBYAPAZ8AZOVatmWaySPymxEBEREcnhbobdZMLuCdbyiNojKO1ROtn6N2bOIvriRQCcatTAu2/fTI5QRImFiIiISI5mMSyM2TmGoMggAFqWbMlT5Z9Ktv6drVsJWr0aAJOzM0VnTMdkZ5cVoUo+p8RCREREJAdbdXwVe67tAcDXyZfx9cYnu7RsbFAQ18aOtZYLvfOOlpaVLKPEQkRERCSHOhV4inmH5lnLUxtNpYBjgWTr35g+g1j/AABcmjSmQJfnMjlCkX8psRARERHJgSJiInhn+ztEW6IB6Fm1J3WL1E22fuiOHQSvWQOAjZsbRSYlv2meSGZQYiEiIiKSA805OIezwWcBqOxVmTdrvpls3djQu1wbP95a9h0+DHMh30yPUeReSixEREREcpjtl7fz5ckvAXCwdWBGoxnY29onW99/zhxirl4DwLleXQo8+2yWxClyLyUWIiIiIjlIQHgAY3f9OwF7WK1hlC1QNtn6YQcOcPuLLwAwOTlRZNIkDYGSbKHEQkRERCSHMAyDcbvGERgRCECT4k3oUqlLsvUtERFcGz3GWvYdNBD7EiUyPU6RpCixEBEREckhvvn7G3Zc2QGAt6M3E+tPTPHpQ8CixURduADEbYTn+dJLWRKnSFKUWIiIiIjkABdCLjD7wGxreVKDSXg7eSdbP/LsWW4tXRpXMJspMmUyJlvbzA5TJFlKLERERESyWYwlhlE7RxEeEw5Al4pdaFy8cbL1DcPg+sRJEB23FK13n944lC+fJbGKJEeJhYiIiEg2+/TPT/nD/w8ASrqVZEitISnWD1m/nrDffwfAXLw4BV99NdNjFLmfHJ1YxMbGMnbsWMqUKYOTkxPlypVj8uTJGIaR3aGJiIiIZIhjt46x+OhiAGxMNrzb6F2czc7J1o8NDubGjJnWcuGxY7BxdMz0OEXuxy67A0jJjBkzWLRoEStWrKBq1aocOHCAXr164eHhwVtvvZXd4YmIiIikS0RMBCN3jCTGiAGgb/W+POLzSIptbs6dS+ytWwC4PfEErk2aZHqcIqmRoxOL3bt306lTJ5588kkASpcuzZdffsnv/zz6ExEREcnN3j/0Pn7BfgBU8arCq4+kPKQp/I8/CFr9NQAmZ2cKjRqZ6TGKpFaOHgpVv359Nm3axN9//w3A0aNH2blzJ23bts3myERERETSZ8/VPaw6sQqI2117WqNpmG3MydY3YmK4NmEC/DMk3OfNNzEXKZIVoYqkSo5+YjFixAhCQkKoXLkytra2xMbGMnXqVF588cVk20RGRhIZGWkth4SEZEWoIiIiIqkWHBmcYHftQY8OolyBcim2uf3VaiKPnwDAoVIlvLprzwrJWXL0E4uvv/6azz//nC+++IJDhw6xYsUKZs+ezYoVK5JtM23aNDw8PKw/JbT7pIiIiOQw7+57lxthNwCoU6QOL1R5IcX6Mbdv4z9/vrVcePx4THY5+vthyYdMRg5eYqlEiRKMGDGCN954w3psypQprFq1ipMnTybZJqknFiVKlCA4OBh3d/dMj1lEREQkJRv8NjBs+zAA3MxufN/pewq7FE6xzbUJEwj6ajUAHp06UXTG9EyPUwTi7qU9PDxSdS+do1PdsLAwbGwSPlSxtbXFYrEk28bBwQEHB4fMDk1EREQkzW7cvcHkvZOt5dF1R983qYg4ccI6YdvG2RmfIYMzNUaRB5WjE4sOHTowdepUSpYsSdWqVTl8+DBz5syhd+/e2R2aiIiISJoYhsG43eMIiYqb/9m6dGvalWl33zbXp061Ttgu+PprmH19Mz1WkQeRoxOLBQsWMHbsWF5//XVu3rxJ0aJF6d+/P+PGjcvu0ERERETS5KtTX7H76m4AfJx8GFt3LCaTKcU2IT/9RPiBgwCYS5XE8+WXMz1OkQeVo+dYZIS0jAsTERERyQx+wX50Wd+FiNgIABa3XEyDYg1SbGMJC+NsuyeJuX4dgOKLF+HWtGlmhyqSQFrupXP0qlAiIiIiuV20JZpRO0ZZk4pulbrdN6kACPj4Y2tS4dKksZIKyfGUWIiIiIhkok/++IS/bv0FQGn30gyudf/J11GXLhH46dK4gtlMoREjMjNEkQyhxEJEREQkkxy7dYyP/vgIAFuTLe82fBcnO6f7trs5cyZGVBQAXi93x6FMmUyNUyQjKLEQERERyQRRsVGM2TmGWCMWgFcefoXqPtXv2+7u3n3c2fgbALYFC1LwtdcyNU6RjKLEQkRERCQTfHjkQ84EnQGgsldl+lXvd982hsXCzZkzrWXft9/G1tU102IUyUhKLEREREQy2FH/oyw7tgwAOxs7pjacitnWfN92IevXE3H8OAAOlSvj0blTpsYpkpGUWIiIiIhkoIiYCMbsHIPFsADw+iOvU9Gz4n3bWcLDuTl3nrVc6J3hmGxtMytMkQynxEJEREQkAy04vIDzIecBqOZdjV7VeqWqXeCKzxIsL+tSr15mhSiSKZRYiIiIiGSQgzcOsvL4SgDsbeyZ2nAqdjZ2920XExDArSVL4go2NhQaNiwzwxTJFEosRERERDJAWHQYY3eNxcAA4M2ab1K2QNlUtfVfuBBLWBgABZ57Dofy5TMtTpHMosRCREREJAPMOzSPS3cuAVDDpwbdH+qeqnaRZ84Q9PU3ANg4O+Pz5oBMi1EkMymxEBEREUmnfdf28eXJLwFwtHVkSsMp2NqkbuL1zVmzwRI30du73yvYFSyYaXGKZCYlFiIiIiLpEBoVyrhd46zlQY8NopR7qVS1vbtnD6HbtgFgV7gwXj16ZEqMIllBiYWIiIhIOrx38D2u3r0KQK1CtXi+8vOpamfExnJjxr+b4fkMGoiNk1OmxCiSFZRYiIiIiDygXVd28e3f3wLgZOfEpAaTsDGl7vYqeN16Ik+eBMDhoSp4dOyYaXGKZAUlFiIiIiIPICQqhHG7/x0CNbTWUEq4lUhVW0t4OP7z5lnLhYa/g8lGt2WSu+kTLCIiIvIAZv4+k5thNwGoW6Quz1V8LtVtA5cvJ+bGDQBcmzXDpW6dTIlRJCspsRARERFJo22XtrH27FoAXM2uTKo/CZPJlKq2Mf7+BHz8SVzB1hbfYUMzK0yRLKXEQkRERCQNgiKCmLBngrU8/PHhFHEtkur2/gsWYvyzGZ5n1y44lE3dJnoiOZ0SCxEREZE0mPb7NALCAwBoVKwRnct3TnXbiL//JujbuMneNi4uFHzjjcwIUSRbKLEQERERSaXfLvzGT34/AeBm78aE+hNSPQQK4ObsezbD698fO2/vTIlTJDsosRARERFJhcCIQCbvnWwtj6w9El9n31S3D921i7vbdwBgV7QIXi93z/AYRbKTEgsRERGR+zAMgyl7pxAYEQhA8xLNaV+2ferbx8Zyc+Ysa9n37bexcXTM8DhFspMSCxEREZH72HB+AxsvbASggEMBxtYbm6YhUMFr1hB56hQAjtWq4f7kk5kSp0h2UmIhIiIikoKA8ACm7ptqLY+uO5qCTgVT3d4SFob/vPetZd/hw7QZnuRJ+lSLiIiIJMMwDCbunkhwZDAArUu3pk3pNmnq49bSZcT4+wPg2qIFLrVrZ3icIjmBEgsRERGRZKw/t56tl7cC4OXoxeg6o9PUPvrmTW59+mlcwc4O36FDMjhCkZxDiYWIiIhIEq7fvc70fdOt5XH1xuHp6JmmPvznz8cIDwfAs2tXHMqUydAYRXISJRYiIiIi/2EYBhP2TOBO9B0A2pdtT4uSLdLUR8SpUwR/9z0ANq6uFBygzfAkb1NiISIiIvIf35/+nl1XdgHg4+TDiNoj0tzHzZmzwDAAKPhqf+w80/a0QyS3UWIhIiIico+roVeZdeDfPScm1J+Ah4NHmvoI3bGTu7viEhNz0aJ4dtdmeJL3KbEQERER+YfFsDBu1zjuRt8F4KnyT9G4eOM09RG3Gd5Ma9ln8GBsHBwyNE6RnEiJhYiIiMg/vj71Nfuu7wOgsEthhj0+LM19BH33HZGnTwPg+PDDuD/ZLkNjFMmplFiIiIiIAJdCLjHn4BxreWL9ibjZu6Wpj9jQu/jPX2AtFxrxTpp26BbJzZRYiIiISL5nMSyM2TWG8Ji4pWG7VOxC/aL109zPrU8/ITYgAAC3Vq1wfvTRDI1TJCdTYiEiIiL53ucnPufQzUMAFHMtxpBaad/ILvr6dQKXLY8rmM34DhmcgRGK5HxKLERERCRf8wv24/1D71vLkxtMxtnsnOZ+/Oe9jxERAYDXC89jX6pUhsUokhsosRAREZF8K9YSy5hdY4iMjQTgxSov8njhx9PcT8Tx4wSvXQuAjYcHBV97LUPjFMkNlFiIiIhIvrXi+Ar+8P8DgJJuJRn46MA092EYBjdmzPx3M7zXXsW2QIGMDFMkV1BiISIiIvnSmdtnWHh4IQAmTExpOAUnO6c09xO6ZSth++KWqDWXLInXCy9kaJwiuYUSCxEREcl3oi3RjN41mmhLNAA9qvagpm/NNPdjREdzc9a/u3T7DhmCyd4+w+IUyU2UWIiIiEi+s/TPpRy/dRyAMh5lGFBzwAP1c/ubb4jy8wPA6dFHcWv1RIbFKJLbKLEQERGRfOVU4CkW/7EYABuTDVMbTMXB1iHN/cTeuUPAgoXWcqF3hmszPMnXlFiIiIhIvhEdG82onaOIscQA0KdaH6r7VH+gvm4tWULs7dsAuLdrh9Mjj2RYnCK5kRILERERyTc++uMj/r79NwAVPCvw6iOvPlA/0VeuELjiMwBM9vb4DNZmeCJKLERERCRfOBZwjE/+/AQAO5MdUxtMxd72wSZa33zvPYyoKAC8Xu6OffFiGRanSG6lxEJERETyvMjYSEbvHE2sEQtAv4f7UcW7ygP1FXbgACE//QyArZcX3v37Z1icIrmZEgsRERHJ8z488iFng88CUMWrCn0f7vtA/RixsVx/911r2WfQQGzd3DIkRpHcTomFiIiI5GlH/Y+y/NhyAOxs7JjacCpmG/MD9RX8v/8RefwEAA6VK1PgmWcyKkyRXE+JhYiIiORZ4THhjNk5BothAeCNGm9QwbPCA/UVGxrKzbnzrOVCo0ZisrXNiDBF8gQlFiIiIpJnLTi8gPMh5wGoXrA6Pav2fOC+AhYtIvbWLQDcWrfGpXbtDIhQJO9QYiEiIiJ50sEbB1l1fBUA9jb2TGk4BTsbuwfqK+r8eQI/WwnELS/rO2xYhsUpklcosRAREZE8Jyw6jDE7x2BgAPDWo29R1qPsA/d3Y+YsiI4GwKtPby0vK5IEJRYiIiKS58w9OJfLoZcBqOlbk5eqvPTAfYXu3EXo5s0A2Pn6UrDvg60oJZLXKbEQERGRPGXvtb18deorABxtHZnSYAq2Ng82ydqIieHG9GnWsu/QIdi4uGRInCJ5jRILERERyTNCo0IZt2uctTzosUGUdC/5wP3d/vIros7E7X/h9MgjuLdvn+4YRfKqB5rBFBQUxO+//87NmzexWCwJzr388ssZEpiIiIhIWs0+MJtrd68BULtwbZ6v/PwD9xXj74//++9by4VGjcRko+9kRZKT5sRi/fr1vPjii4SGhuLu7o7JZLKeM5lMSixEREQkW+y8spPvTn8HgLOdM5MaTMLG9OCJwM3Zs7GEhgLg8czTOD3ySIbEKZJXpfm3bciQIfTu3ZvQ0FCCgoK4ffu29ScwMDAzYhQRERFJUUhUCON3j7eWhz4+lGKuD75yU9j+/QSvXQeAjYcHvkOGpDtGkbwuzYnFlStXeOutt3B2ds6MeERERETSbMbvM7gZdhOA+kXr82yFZx+4LyM6muuTJlvLvm+/jZ2XV7pjFMnr0pxYtG7dmgMHDmRGLCIiIiJptuXiFtadjXu64Gp2ZWL9iQmGaqdV4KrPiTx9GgDHatUo8NyDJyki+Umq5lisW7fO+ucnn3ySYcOGcfz4capXr47ZbE5Qt2PHjhkboYiIiEgygiKCmLhnorX8Tu13KOxS+IH7i75xg4AFC+IKJhOFx4/DZPtgS9WK5DepSiw6d+6c6NikSZMSHTOZTMTGxqY7KBEREZHUmLpvKrcibgHQpHgTOpXrlK7+bs6YiSUsDIACXbrgVL16umMUyS9SlVj8d0lZERERkez2y/lf2HB+AwDu9u6Mrzc+XUOg7u7ZQ8hPPwFg6+mJ79uDMiJMkXwjzXMsPvvsMyIjIxMdj4qK4rPPPsuQoERERERSEhAewJS9U6zl0XVG4+Ps88D9WaKiuD753/58hw7BtkCB9IQoku+kObHo1asXwcHBiY7fuXOHXr16ZUhQIiIiIskxDIPJeyYTFBkEwBOlnqBtmbbp6vPWko+JOncOAKcaNfB46qn0himS76Q5sTAMI8nHjJcvX8bDwyNDghIRERFJzg/nfmDzpc0AeDl6MabumHQNgYo8c4aAjz6KK9jZUXjCeO2wLfIAUr3zds2aNTGZTJhMJlq0aIGd3b9NY2Nj8fPzo02bNpkSpIiIiAjAjbs3mLZvmrU8ru44vBwffI8Jw2Lh2thxEB0NgHfv3jhWrpzuOEXyo1QnFvErQx05coTWrVvj6upqPWdvb0/p0qV55plnMjxAEREREYgbNTF+z3juRN8B4MmyT9KiVIt09Rm0ejXhhw8DYC5VkoKvv5buOEXyq1QnFuPHjwegdOnSdO3aFUdHx0wL6l5XrlzhnXfe4eeffyYsLIzy5cuzbNkyatWqlSXXFxERkZzh+9Pfs+vKLgB8nHwYWXtkuvqLvnGDm7Pfs5aLTJyETRbd34jkRalOLOL16NEjM+JI0u3bt2nQoAHNmjXj559/xsfHh9OnT+Pp6ZllMYiIiEj2uxp6lVkHZlnLE+pPwMPhwed2GobB9UmTsdy9C4DHs8/gUrdOuuMUyc9SlVh4enqmelJUYGBgugK614wZMyhRogTLli2zHitTpkyG9S8iIiI5n8WwMG7XOO5GxyUBT5V/isbFG6erzzu//Eropk0A2BYsSKFhw9Idp0h+l6rEYt68edY/37p1iylTptC6dWvq1asHwJ49e/jll18YO3Zshga3bt06WrduzXPPPce2bdsoVqwYr7/+Oq+88kqGXkdERERyrtWnVrPv+j4ACrsUZtjj6UsCYm7d4vrEidZy4dGjsNXKliLpZjIMw0hLg2eeeYZmzZoxYMCABMcXLlzIb7/9xpo1azIsuPh5HIMHD+a5555j//79DBw4kMWLFyc7JCsyMjLBBn4hISGUKFGC4OBg3N3dMyw2ERERyXwXQy7y7PpnCY8JB2DJE0uoV7TeA/dnGAaX33yT0N/inla4PfEExea/n67lakXyspCQEDw8PFJ1L53mxMLV1ZUjR45Qvnz5BMfPnDlDjRo1CA0NTXvEybC3t6dWrVrs3r3beuytt95i//797NmzJ8k2EyZMYOI930LEU2IhIiKSu8RaYun9S28O3TwEQNdKXRlTd0y6+gxet46rw98BwNbTk7I/rMfO2zvdsYrkVWlJLNK8+4u3tzdr165NdHzt2rV4Z/AvZpEiRXjooYcSHKtSpQoXL15Mts3IkSMJDg62/ly6dClDYxIREZGsserEKmtSUdy1OIMfG5yu/qJv3OD6lKnWcuGJE5RUiGSgNK8KNXHiRPr27cvWrVupUydu9YR9+/axYcMGPv744wwNrkGDBpw6dSrBsb///ptSpUol28bBwQEHB4cMjSO9/vT/E09HT4q7Fc/uUERERHKFc0HnmH9oPgAmTExpOAVns/MD92cYBtfGjMUSEgKAe/v2uLdqlSGxikicND+x6NmzJ7t27cLd3Z3vv/+e77//Hnd3d3bu3EnPnj0zNLi3336bvXv38u6773LmzBm++OILlixZwhtvvJGh18lM35/+nh4bevD21ret40NFREQkeTGWGEbvHE2UJQqAlx56iccKPZauPoNWf83dHTsAsPPxofCY0emOU0QSSvMci6z2ww8/MHLkSE6fPk2ZMmUYPHhwmlaFSsu4sIwWERPBs+uf5ULIBSBuh9BpDadpgpiIiEgKPv7jY+YfjntaUdq9NN90+AZHuwffuC7y9Gn8nn0O45/FXUp8tBjXJk0yJFaRvC7DJ2+HhIRYOwr55xFicnLaBOnsTCwAztw+wws/vWB9WvHO4+/w0kMvZXkcIiIiucGpwFN0+7EbMZYYbEw2rGy7kod9Hn7g/iwREZx/rguRp08DUOD5bhQZPz6jwhXJ8zJ88ranpyc3b94EoECBAnh6eib6iT8uCZX3LM+UBlOs5dkHZrP/+v5sjEhERCRnio6NZsyuMcRYYgDoXa13upIKgJszZ1qTCocKFSj0zjvpjlNEkpaqydubN28mODgYX19ftmzZktkx5TmtSrei963eLP1rKbFGLEO3DWV1+9UUdimc3aGJiIjkGEv+XMLJwJMAVPCswGuPvJau/u789hu3v/gSAJODA8XmvIeN44MPqRKRlKV6joWNjQ2lSpWiWbNm1p/ixXP+KkfZPRQqXqwlltd+e4091+L236hesDrL2izDwTZnrWAlIiKSHY7dOsaLP75IrBGLncmOL578gireVR64v6jLl/F75lkswcEAFJ4wAc9uXTMqXJF8I1P2sdi8eTM9evTg3Llz9OvXj1KlSlGhQgX69+/PV199xY0bN9IdeF5ma2PLzMYzKeZaDIA/A/7k3X3vksPnzouIiGS6yNhIxuwcQ6wRC0C/h/ulK6mwhIdz+c23rEmFW6tWFOjaJUNiFZHkPdCqUBEREezevZutW7eydetWfv/9d6Kjo6lcuTLHjh3LjDgfWE55YhHvxK0TdP+5O5GxcStTjK07li6V9I+diIjkX7P3z2bF8RUAVPGqwudPfo7ZxvxAfRmGwbURIwheuw4A+1KlKP3tN9i6uWVYvCL5SYavCpWcqKgodu3axc8//8xHH31EaGgosbGxD9pdpshpiQXA+rPrGbVzFAB2NnYsa72MGr41sjcoERGRbLD/+n76/NIHAwN7G3tWt19Nec/yD9xf4KrPuTElbtEUk7MzZVZ/hUOFChkVrki+kylDoSAukdi+fTsTJ06kWbNmFChQgFdffZXbt2+zcOFC/Pz80hV4ftGhXAdeqhK35GyMJYYhW4cQEB6QzVGJiIhkrdCoUMbuGotB3Hecbz36VrqSirD9+7kxfbq1XPTdqUoqRLJQqlaFAmjevDn79u2jTJkyNGnShP79+/PFF19QpEiRzIwvzxpcazAnA09y4MYBbobfZMjWIXzS6hPMtg/26FdERCS3mXVgFldCrwBQq1Atuj/U/YH7ivTz4/KANyEmbqla7759cG/TJkPiFJHUSfUTix07duDt7U3z5s1p0aIFTzzxhJKKdDDbmJnVZBa+zr4AHLp5iJn7Z2ZzVCIiIlljy8UtfH/6ewCc7ZyZ0nAKNqY0DaSwirl9m0uvvkrsP5O1XRo2xGfQoIwKVURSKdW/wUFBQSxZsgRnZ2dmzJhB0aJFqV69OgMGDODbb7/F398/M+PMkwo6FWRe03nWCWpfnfqKtWfWZnNUIiIimSswIpAJeyZYyyNqj7CumphWlogILg94k+gLFwFwqFiRYvPmYrJL9aAMEckgDzx5+86dO+zcuZMtW7awdetWjh49SoUKFfjrr78yOsZ0yYmTt//r+9PfM373eADsbez5rN1nVPWums1RiYiIZDzDMHh769tsurgJgKbFmzK/+XxMJlPa+4qK4tKAAdzdvgMAOx8fSn+9GrNGVIhkmEybvH0vFxcXvLy88PLywtPTEzs7O06cOPGg3eVrT1d4mucqPgdAlCWKt7e8TWBEYDZHJSIikvF+OPeDNanwdPBkfP3xD5ZUxMRwZdhwa1Jh4+JC8UWLlFSIZKNUJxYWi4Xff/+dmTNn0rZtWwoUKED9+vX58MMPKVy4MB988AHnzp3LzFjztBG1R/Cwz8MAXLt7jeHbhhNjicnmqERERDLO9bvXeXffu9byuHrjKOhUMM39GBYL18aO484vvwBgcnCgxOJFOFXT036R7JTqoVDu7u7cvXuXwoUL06xZM5o1a0bTpk0pV65cZseYLrlhKFS8m2E36bK+C7cibgHQ46EeDH18aDZHJSIikn4Ww0K/X/ux7/o+ADqW68jUhlPT3I8RHc3VkaMI+eGHuANmMyU+/ADXRo0yMlwR+Uda7qVTPbNp1qxZNGvWjIoVK6Y7wPzE79g+7ty8lOr6b7h3ZGrECmKxsOL4CtxuhFLPpVomRigiIpL5NtzZx77bcUmFt6077SOr8MeWb9PWSXQ0tp9+jc3RkwAYNjbE9nyaczE3IK19ieQinsUrUKLCI9kdxn2la+ft3CC7n1j8Pu95agf9lKY2X7q58m5BLwCcLBZWXr1BpejozAhPREQk050z29GlaGEibeJGYH987QZ1IyLT1EdMhA2Xd3oSHuAAgMnGoFiDQNyKpa0fkdxoT7Ge1Hvl/Wy5dpZM3pbM0+1OKB3vhAIQbmPDoEIFCbZJ+8Q2ERGR7BYNjPLxtiYVLwbfSXNSERFkh9+vBf9NKuwslGh8S0mFSA6jRZ4zmfmhJ9lzKe1rc7ciliPG71w0hXDZbObVEjUZYHkUG5RgiIhI7vGD6QzHbM8CUMhwoa5LS/a42Ka6vfnkVZw3/YEpOhYAi6sDd5+qxR+FC2RGuCI5klvF3DGHSIlFJqvZ6iXgpQdqWyH0Kt1+6MbtyNv8ZRPAwUdK8dajb2VsgCIiIpnkWMAxfvzpRTDA1mTL3HYfU92neqraxoaGcuPdaQSvP2w95li9OsUXLsRcyDezQhaRdNBQqBysqGtRZjWZhY3pnzGpf35sXftbREQkJ4uIiWDkzpHEGnFPGl55+JVUJxV3Nm/m3JPtCf7+e+sxj04dKbXyMyUVIjmYEoscrk6ROgx+bLC1PHrnaM4Fa78QERHJ2d4/9D5+wX4APOT9EP0e7nffNhEnT3KxXz8uv/4GMTduAGDj7EyR6dMoMn06No6OmRqziKSPEotc4OWHXqZt6bYA3I2+y8DNAwmNCs3mqERERJL2+7XfWXViFQD2NvZMazgNs405ybqGYRD+xx9cGTYcv6eetu6kDeDSsCFl1q2lQOfOD7Q7t4hkLc2xyAVMJhMT6k/gTPAZTt8+zfmQ84zeOZq5zeZah0mJiIjkBMGRwYzaOcpaHvTYIMoWKJuoXszt24SsX0/Qt98R+fffCc7ZFS2C7+AhuD/ZTgmFSC6ixCKXcDY7837T9+n6Y1fuRN1h86XNfPzHx/R/pH92hyYiImI1dd9UboTFDWOqXbg2L1Z50XrOsFgI27uXoG+/5c7G3zD+s0eTrYcH3q+9iufzz2Pj4JClcYtI+imxyEVKuJdgRqMZvLHpDQwMPjjyAQ95P0Sj4rljCTIREcnbfjz3Iz/7/QyAm9mNqQ2nYmOyIfraNYL+9z+Cv/ue6CtXErVzqlGDAs8+g3vbtti4uGR12CKSQbTzdi605I8lLDi8AAA3eze+evIrSrqXzOaoREQkP7saepVn1z3Lneg7AMxsNING1zy4/fkXhG7dChZLgvq2np54dOpEgWefwaF8+WyIWERSIy330npikQv1rd6XYwHH2HxpM3ei7jBo6yBWtV2Fs9k5u0MTEZF8KNYSy+ido+OSCsPgteBHqfjWh1w6czZhRZMJl4YNKfDMM7g1b4bJ3j57AhaRTKEnFrlUaFQoL/z0gnUpvzal2zCz8UxNchMRkSy39K+lzD04lxL+BgN+saXMpagE5+0KFaLAc89R4OmnMBctmk1RisiD0BOLfMDV3pV5zebxwo8vcDf6LhvOb6Cqd1V6VuuZ3aGJiEg+cuLWCRYemk/HvRa6brdgjo21nnN65BG8evXErUULTOakl5sVkbxDa5XmYmU9yjK14VRree6huey9tjcbIxIRkfwkIiaCsZuG88b/onhpiwXzPzmFfZkyFP/wA0p99SXubdooqRDJJ5RY5HItSraw7mZqMSwM2zaMq6FXszkqERHJDxbsnMFLH52h/ol/RlWbTHj16U2ZNf/DrXlzDc8VyWeUWOQBrz/yOg2LNQQgKDKIQVsGERETkc1RiYhIXrbzzG+Un/wVleJXj3V2ovgHH1Bo2DDtQSGSTymxyANsbWyZ3mg6JdxKAHAi8AST904mj8/LFxGRbBIY6s+NgUOo/E9SEePmRJnPP8etebPsDUxEspUSizzCw8GDec3m4WTnBMC6s+v48uSX2RyViIjkNYZh8Os73XnobNzKTxHOdpRfsQrHKlWyOTIRyW5KLPKQip4VmVh/orU8a/8sDt44mI0RiYhIXrP5kwk8sukCALE2UGj+XJweeiiboxKRnECJRR7TtkxbejzUA4AYI4YhW4dw4+6NbI5KRETyggt/H6TAwq+t5TsDulG0YctsjEhEchIlFnnQoMcGUadwHQBuRdxi8LbBRMVG3aeViIhI8qJjojg25DWcI+PK5+uVot7r47M3KBHJUZRY5EF2NnbMajKLIi5FAPjD/w+m/z49m6MSEZHc7Kf33qLM6TsABHnY0mj2imyOSERyGiUWeZSnoydzm83F3sYegG/+/obv/v4um6MSEZHc6PCJLRT/Ypu17DJhBK7ehbIxIhHJiZRY5GFVvasyrt44a3nqvqn84f9HNkYkIiK5TUhUCH9MHGYdAnW1eVUebvtS9gYlIjmSEos8rlP5TnSr1A2AaEs0b299m4DwgGyOSkREcgPDMPho1dvUPnIXgHBnWxpNXpzNUYlITqXEIh8Y/vhwHvV9FICbYTcZum0o0ZbobI5KRERyurVn1lDh893WstebA7D3LpiNEYlITqbEIh8w25p5r+l7+Dr5AnDwxkHmHJiTzVGJiEhOdj74PD+tmkylf3bXji5ZmFIvv5K9QYlIjqbEIp8o6FSQ95q+h52NHQCrTqxi/dn12RyViIjkRNGx0YzYNpynN4dbj5UZPhqTrW02RiUiOZ0Si3ykhm8NRtYeaS1P3DORE7dOZGNEIiKSEy04vIACO49Ryj+ubF+tKq4tWmRvUCKS49lldwCStZ6r+BzHbh1j/YnvKHYtgi/fe4W+zk9gunqTmIAAYvz9sYSGYsTGQkwMJgcHbN3csHF3x1yoEOaSJbEvWRLHqg/h+NBD2Dg6ZvdLEhGRDLTn6h4++2Mpc7dbrMcKDx6MyWTKxqhEJDdQYpFPGIZBxLHjhG7fRs+9fjx7yIJdjAHc4i5fJd8uKgrLnTtw9SqRJ08mPGlnh2OlSrjUr49r0yY4PfIIJjt9pEREcqvAiEBG7RxF478MCgfFHXOuWxeX+vWzNS4RyR10F5jHRZz6m5D16wj55VeiL12yHk/yL95kwtbLC1s3N0xmO7C1w4iIIDY0FEtwMEb0f1aSiokh4tgxIo4d49bHH2Pr4YFbq1Z4PPUUTjVr6NstEZFcxDAMxu4ay627/nTa++/TCp+Bb2VjVCKSmyixyIOMqChCft3I7S+/JPzgwSTrmIsXJ6xqKb6K2ct5H4Mr3iZGtZtJ63Ltku7TMIi56U/0pYtEnjlL+J9/EPHHH0SeOQuGAUBscDBB33xD0DffYF+qFAW6daPAc89h6+qSaa9VREQyxpcnv2T75e3UPm1QNDDumHPt2jjXrJm9gYlIrmEyjH/uCvOokJAQPDw8CA4Oxt3dPbvDyVSWsDBuf/kVt5YtIzbgP5vg2driUqc2bq1a49KwIfbFiwGw6vgqZuyfAYCTnROft/ucCp4VUn3NmMBAQrdvJ3TrNkK3b8cIC0tw3sbNDc+uXfDq2RO7glr7XEQkJzoVeIoXfnyBqNhIpq6IpcK1uOMlPl6Ca6NG2RuciGSrtNxLK7HIA+ISii+59elSYgMDE5yzL18Oz67dcH+yHXZeXonaGobByJ0j+fHcjwCUdCvJl+2/xN0+7e+V5e5dQjZuJHjNWsL27k1wzuTsjHfPnnj17oWtq2ua+xYRkcwRHhPO8z88z9ngszx0wcKEL+KGQTlUrkyZ/32vYa0i+ZwSi3vk5cTCiIkh6Jtv8F+wMGFCYTL9v737Do+i3Ns4/t3d9N4INXQEkY5Klw7SFCt6LKiovEgVbAiCBUREERFQFBUbYgULiCIldEWQpiCIdBICJGx62d15/1hciLRAyiTh/lzXXifz7DMzt2c1yS/zFIK7dCH8rv8RcM01F/yhkOHI4N4f7mVHontydttKbZnaYSpWy6WvRpy1ezfH33+f5G++zTU3wxYRQZkhQwi7/TYsVq12LCJithfWvsDnOz8HYNzXflzxVyoAFSZNIrRXTzOjiUgxoMLiNKW1sEhbt44jL04ga+fOU40WCyHduxP1yAB8a9S4qOsdSj1En+/7YM+yAzCg4QAeafRIvnM6jh7l2FszSfrsM3A4PO3+jRtT/vnn8K2V92FXIiJSsH7a+xMjYkcAUOuYN+PfcW+I512xIjV+XKSV/kTkon6X1p+MS5ic+HgODh7C/vvuz1VUhHTvRvXvv6Piq69cdFEBUDGoIi9f97LnKcWbm99k2f5l+c7rVaYM5Z4ZTY2FCwjp3s3TnvH77/xz080cnTHDvWeGiIgUqQMpBxi7Zqzn+PGdp/7QE3H//SoqROSiqbAoIQyXi6S5c/mnR09SFi/2tPvVq0eVOXOoOHnyJRUUp2tZoSVDGp9aVvDpVU+zx74nX9f8l0/lylScPJnKs9/Hp0oVd6PDwbGpb7D/vvvJiY8vkPuIiMiF5ThzeCL2CVJz3MOebgtqS9iqPwCwhYcTdsvNZsYTkRJKhUUJkLVnD/vv7Uv8s8/hSksDwBYVRfnx46n6+WcENCm4pQAfqPcAnat0BiA1J5Vhy4aRlpNWYNcPbN6cat9+Q+T/9YeTcyzS169nz429SV25ssDuIyIi5zZl4xS2Hd8GQExwDPdvi4STT4/D774Lq7+/mfFEpIRSYVGMGS4Xx2fPZs+NvUn/7TdPe+itt1BjwfeE3XJzgU+AtlgsjGs1jpphNQH4x/4Pz6x+hoKcimP19SV62DCqfPgBXuXLA+49MA70/z8SP/igQO8lIiK5xR6I5cM/PwTA2+rNKw2eIW3etwBY/P0J/9//zIwnIiWYCotiKufIEQ48+CAJL03EyM4GwDsmhsrvv0eFceOwhYYW2r0DvAOY0n4Kwd7BACzet5h3t71b8Pe5+mqqz/uaoI4d3Q0uF0cmvET82GcxTpvoLSIiBSM+LZ5Rq0d5jkdcPYIyC3/DyMwEIOy2W/EKDzcrnoiUcCosiqHkH39izw03krZmractou+9VP9mPoEtWhRJhiohVZjQZoLneOrGqaw+tLrA72MLC6PSG1PdQ6NOOvH55xx6dDiukwWViIjkn8Pl4MkVT3pW/+sQ04E7Ym4k8ZNP3B28vIi87z7zAopIiafCohhxpqZxeOTTHBo6FKfd/Y3fq2xZKs9+n7IjR2INCCjSPG1j2vJIQ/eSswYGT6x4ggMpBwr8Pharlehhw6gwaRIWb28AUhYv5uCAR3BlZBT4/URELkczNs1gY8JGACoEVuD5Vs9j/+orXCd/3oT26IF3hQpmRhSREk6FRTGRuX07e265Gfu8eZ624Ouvdz+laN7ctFz9G/anXaV2ACRnJ/PoskfJcBTOL/uhvXpS6c03sfj5AZC2ejUHBw3WkwsRkXxac3gNs7bOAsDL4sXLbV8mxBrA8dkfePpEPtjPrHgiUkqosDCZYRgkff45e/vcQc6+/QBYAwIoP2ECFV+bjC0szNR8VouVF9u8SNWQqgD8lfQXY1ePLbQJ1kGtW1H5vXexBgUB7uLi0PDh2utCROQSHcs4xsiVIzFwf98e0mQIDcs0xL5gAY64OACC2rXThqUikm8qLEzkSk8n7qmniB8z1jNB269ePap9M5+wm3pjsVhMTugW7BPMlPZTCPByD8X6Ye8PvLP1nUK7X0CTJsS8PRPLyaFfqT8vIWHSK4V2PxGR0srpcvLUiqdIzEwEoHXF1vS9qq971cFZszz9Ih9+yKyIIlKKqLAwSdbff7Pn9tuxf/Otpy38rruoMucTfGJiTEx2djXCajChzQQsuIudN35/gyX7lhTa/QKaNCFm2htwcufXxNmzSZo7t9DuJyJSGs3aOotf4n8BINo/mvGtx2O1WEldvpzsv3cD4N+0KQFNmpgZU0RKCRUWJrB/9x17brvd803dGhBAxcmvUu6Z0Vh9fExOd24dKndgcOPBnuORq0byV+JfhXa/wJYtKTfmGc9x/AvjSF1V8CtTiYiURr/F/8aMzTMA97DWl657iQi/CAzD4PjMtz39Ih960KyIIlLKqLAoQq6sLOLGjOXw409gnFztyPeKK6j61ZeEdO9ucrq8ebD+g3Sr1g2ADEcGQ5YO4XjG8UK7X/jttxPR7wH3gdPJoREjyDl8uNDuJyJSGhzLOMYTK57AZbgAGNBwANeUuwaAjN9+I2PzZgB8a9UiqG1b03KKSOmiwqKIZO/bx9477uTE55972kJvuZmqn83Ft1o1E5NdHIvFwvMtn6deZD0ADqcdZvjy4eQ4cwrtntEjRng20XPZ7Rwa8RhGTuHdT0SkJHO6nDy54kmOZhwFoFn5ZjxU/9QcimNvn5ojF/nwQ8VmPp+IlHwqLIpA8o8/seeWW8navh0Ai58f5V98kQrjx2P19zc53cXz8/Lj9Q6vE+0fDcDGhI28sO6FQlspymK1UmHCi3hXrAhAxu+/c/SNaYVyLxGRkm76pun8Gv8r4J5XMbHNRGxWG+Be2jxt5UoAvCtWJKRbN9Nyikjpo8KiEBk5OcS/+CKHhg7FlZoKgE+1alT97DPCbr7J5HT5Ex0QzesdXsfX5gvAvL/n8fH2jwvtfraQECpOftUzmfv4O++QvnFjod1PRKQkWnlwpWfVPpvFxqS2k4j0j/S8f+y0uRUR/R7AcvJ7qohIQShRhcVLL72ExWJh2LBhZkfJG4uFrD+3ew5Dunen6hdf4Ff7ChNDFZx6UfV4vuXznuNXfnuF1YcKb3K1f8OGlBk6xH1gGMSNGo0rK6vQ7iciUpLEpcYxctVIz/GwJsNoUvbUak+Zf+0kZdEiAGxRUYTdfHORZxSR0q3EFBbr169n5syZNGjQwOwoeWbx8qLC5FfxqlCecmPHUOHVV7AFBZodq0B1r97dM3bXZbh4PPZx9tj3FNr9Ih94AL+T/w5k79nDsRlvFtq9RERKihxnDiNiR2DPsgPQIaYDfa/qm6vPsenTPV9HPtgPq59fkWYUkdKvRBQWqamp3HXXXbzzzjuEh4ebHeeieEdHU+OHHwi/885SO0FuUONBdIjpAEBKTgqDlw72/HAraBabjQrjx4G3NwDHZ80ic8eOQrmXiEhJ8cpvr7D12FYAKgVV4oXWL+T6mZO5YwcpP/0EgK1MFOF33GFKThEp3UpEYTFw4EB69OhBp06dzI5ySay+vmZHKFRWi5UJbSZwRbh7iNe+5H08Hvs4DpejUO7nW6sWUf/X333gdHJk3PhCmzguIlLcLdq7iDk75gDgY/Xh1XavEuITkqvP6U8roh56SE8rRKRQFPvCYu7cuWzcuJEJEybkqX9WVhbJycm5XlL4ArwDmNphKuG+7idKa+PW8spvrxTa/SIfegjvKpUBSP/tN1J+/LHQ7iUiUlztse9h7OqxnuORzUZSN7Jurj6Zf/5JyuKfAfAqU4aw228v0owicvko1oXFgQMHGDp0KJ988gl+efzryoQJEwgNDfW8YmJiCjml/KtiUEVea/8aXlb3KiOfbP+EL3d+WSj3svr4UPbJpzzHR15+GdfJTQdFRC4HGY4Mhi8fTrojHYBe1XtxS61bcvUxDIOEV079kSfy4Yf1tEJECk2xLiw2bNhAQkICTZo0wcvLCy8vL2JjY5k6dSpeXl44nc4zzhk5ciR2u93zOnDggAnJL19NyzblmebPeI7HrxvP+vj1hXKvoPbtCGzVCgDH4TiS5nxaKPcRESluDMNg3Lpx/H3ibwBqhtVkdPPRZ8zlS1u1irQ1awHwrlSJsD56WiEihadYFxYdO3Zk69atbNq0yfO6+uqrueuuu9i0aRM2m+2Mc3x9fQkJCcn1kqJ1c62bufvKuwFwGA6GLRvGXvveAr+PxWIh+skn4OQP0uPvvIMzNa3A7yMiUtx89tdnfLv7WwACvAJ4td2rBHgH5OpjOJ0kvDzJcxw9/FGsPj5FmlNELi/FurAIDg6mXr16uV6BgYFERkZSr149s+PJeYy4egStK7YGIDk7mUFLBxXKSlF+V1xBSI8eADhPnCDpow8L/B4iIsXJpoRNTPx1ouf4uVbPUT20+hn97PPnk7VrFwB+DRoQrF22RaSQFevCQkouL6sXk66bRM2wmoB7pahhy4aR48wp8HtFDXwETj69Ov7e+zjthbPUrYiI2Y6mH2X48uE4DPeqe/dddR/XV73+jH7O1FSOTnndc1z28cdK7ZLnIlJ8lLjCYvny5UyZMsXsGJIHQT5BTO84nUi/SAB+O/Ibz659tsCXhvWtVo3Q3jcC4EpJIfGjjwv0+iIixcG/m+AdzTgKwLXlrmVok6Fn7Xt06lQcR939gjp2JOCaa4osp4hcvkpcYSElS4WgCrzR4Q18be69PL7d/S3vbnu3wO8TNeDUU4ukTz7RClEiUuq88tsr/J7wOwDlAssxqe0kzyp8p8v880+SPv4EAIufH2VHjizSnCJy+VJhIYWufpn6jG893nP8+sbX+WnvTwV6D59KFQm53j0cwJmUhP2bbwr0+iIiZvpu93eeTfC8rd681u41IvwizuhnuFzEPfccuFwARA0YgE+likWaVUQuXyospEh0rdqVIY2HeI6fXvU0W49uLdB7RPZ7wPP18fffxzjLcsQiIiXNjsQdPL/2ec/xqGajqBd19gVMkubOJXPzFgB8qlcn8v77iiKiiAigwkKK0IP1H+SGGjcAkOXMYvDSwcSlxhXY9f3q1iWgRXMAcvbtJ2XJkgK7toiIGexZdoYtG0amMxOAW2rdwi1X3HLWvtn795Pwyque43JjxmDR8rIiUoRUWEiRsVgsjG0xlqZlmwJwPPM4A5cOJDU7tcDuEflAP8/XiR9o6VkRKbmcLidPrniSQ6mHAKgfVZ+nmz191r6G08nhp0ZipLt34Q7r04fA5s2KLKuICKiwkCLmY/NhSrspVA6uDMCupF08vuJxHC5HgVw/sHUrfGrWACBjwwYyd+4skOuKiBS1GZtnsPrwagAi/CKY3G4yPrazP4E4/t57ZGzcCLh32I5+/PEiyyki8i8VFlLkwvzCmNZxGiE+7l3RVx1axcvrXy6Qa1ssFsL73OE5PvHZ5wVyXRGRorRk3xLe3vI2ADaLjUnXTaJcYLmz9k3fsOHUnhUWCxVemoAtKLCoooqIeKiwEFNUC63Ga+1ew8viXirx0x2f8tGfHxXItUNvvAGLvz8A9m++wXVyaICISEmwM2knI1edWiL20aaPcm35a8/a13H8OIceHQ4nF6uI/L/+BFx9dZHkFBH5LxUWYppry1/LmBZjPMeT1k9i8b7F+b6uLSSEkB7dAXClppK8cGG+rykiUhSSMpMYsnQIGQ73Xjw9q/fk3rr3nrWvKzubQ8MexZGQAEBAs2aUGTSoyLKKiPyXCgsx1U21bqJ/g/4AGBg8teIpNiVsyvd1Tx8OlaThUCJSAuS43Dtr/ztZ+6rIqxjbYiwWi+WMvoZhEP/MM6SvXw+ArUwUFV+ZhOXkRqEiImZQYSGmG9hooGcZ2mxXNoOXDmavfW++rulfvx6+da8EIHPrVrJ2785vTBGRQvXyry+zPt5dKET5R/F6+9fx8/I7a99j02dg/+ZbwL27dsyMGXiVKVNkWUVEzkaFhZjOYrHwbItnaV7evQfFiawTDPh5AMczjufrumG9e3u+/vcHsIhIcfTlzi+Z+9dc4NTO2mUDy561b+KHH3Fs2jT3gcVChZcn4l+/flFFFRE5JxUWUix427yZ3G4ytcJrAXAw9SCDlw72jDO+FCE9esDJYQH2b7/FcLkKJKuISEHaeGQj438Z7zl+pvkzNIpudNa+SXM/48iLL3qOox97jJAuXQo7oohInqiwkGIj2CeYGR1nEB0QDcDWY1t5csWTOF3OS7qeV2QkQW3aAOCIjyf9118LLKuISEGIS43j0eWPevbyufvKu7mp1k1n7Xv8vfeJf/ZZz3HUIwOI7PdAUcQUEckTFRZSrJQLLMeMjjMI9Havwb7swDImrp+IYRiXdL3Q3jd6vrbP/6ZAMoqIFIQMRwZDlw0lMTMRgOblmzPi6hFn9DNcLo5MeImEl0/t9xP5YD+iBg8usqwiInmhwkKKndoRtZncbnKuPS4+/PPDS7pWUPv2WIODAUj+6SdcmZkFllNE5FIZhsGY1WPYnrgdgJjgGF5p+wpeVq9c/ZypqRwcMoTEDz7wtJUZOoQyI0acdbUoEREzqbCQYqllhZY82/JZz/Erv73Cor2LLvo6Vl9fgru6xx8b6emkrlhRUBFFRC7Zm5vf9HxPC/AKYGr7qYT6hubqk7lzJ3tvvY3Un5e4G6xWyr3wPFEDBqioEJFiSYWFFFs31ryRgY0Geo6fXvk0G45suOjrhHS93vN1yqIfCySbiMilWvDPAt7c/CYAFiy81OYlaobX9LxvOJ0cnzWLvbfcSvbevQBYQ0OJeetNwm+7zYzIIiJ5osJCirX+Dfpzc62bAffmUYOXDmZn0s6LukZg82bYQt1/CUxZvlzDoUTENJsSNvHM6mc8x8ObDqd95fae46y//2bfXXeT8MqrGDk5APheeSXVvvyCoOuuK/K8IiIXQ4WFFGsWi4XRzUfTqmIrAFKyUxiweACHUw/n/Rre3gR16gicHA61cmWhZBUROZ+DKQcZumwoOS53wXBLrVvoe1VfAJx2O/HjX+SfG3uTsWmT+wSLhYgHHqDq3E/xiYkxKbWISN6psJBiz9vqzeS2k6kf5d4AKiEjgf6L+5OUmZTna4Rcr+FQImKelOwUBi0Z5FkBqlm5ZoxqPgpXSgpHp03n706dSfroI3C6l9f2rlKZKp98TNknHsfq62tmdBGRPFNhISVCgHcA0ztOp2pIVQD2Ju/lkZ8fIT0nPU/nBzZvjvXkcKjUZcs0HEpEiozD5eDx2MfZbd8NQNWQqrx81UhOTHuLvzt15ti0abhSUgCw+PtTZugQqn/zDQFNmpgZW0TkoqmwkBIj3C+cmZ1nEu3v3kBv2/FtPLr8UXKcORc81+LtTXBH93AoV3o6aatWFWpWEZF/Tfx1IqsPrwbDoHFCAK8uq8SR63tzbMYMXMnJ7k42G6G33EyNhQuIGjAAq5+fuaFFRC6BCgspUSoEVeCtzm8R7OPem2LN4TWMXj0al+G64LkhJ5edBUhZuqzQMoqI/OuT7Z+w5JdPuWmNi8mzXIx8NxnnT8vB4d5p21NQLPqBCuPH412+vKl5RUTyw+vCXUSKl1rhtZjWYRoPL36YLGcWC/csJMIvgieueeK8a7sHNG+Oxd8fIyOD1OXLMZxOLDZbESYXkcuF88QJNs6dRsCXc5h+0DjjfVt4OGG33074nXfgXa6cCQlFRAqeCgspkZqUbcKk6yYxbPkwXIaLj7d/TJR/FP3q9zvnOVZfX4JatyJl8c84ExPJ2LKFgMaNizC1iJRmrsxMUpcvx/7d96TGxhLkcFDnP338mzYl7JZbCOnRXZOyRaTUUWEhJVb7yu0Z22IsY9eMBWDKxilE+EVwU62bznlOULv2pCz+GYDUpctUWIhIvhguF+nrf8P+7Tek/PgTrtTUM/oklQuk1h0PEtqzFz6VKpqQUkSkaKiwkBLt5lo3k5iZyOsbXwfgubXPEeobSofKHc7aP6hdW7BYwDBIWbaU6BHDizKuiJQSWX//jf2bb7F//z2OuLgz3k8MgtV1LSS0vpIX7v8Yf29/E1KKiBQtFRZS4vWr149jGcf4ZPsnOA0nj8U+xoxOM2hevvkZfb0iI/Fv1IiM338n++/dZO/fj0/lyiakFpGSxpWVRfIPP5D06adkbt5yxvuWwEC21PVnXs1E/qhsoXJYVT7qNktFhYhcNlRYSIlnsVh44ponOJF1ggX/LCDHlcOQpUN4u/PbNIpudEb/oPbtyfj9d8C9p0VE375FnFhESpKcw4dJmjOHE19+hfPEidxv2mwEtm5FSK9evOS7lAWHFwNWIvwieLPjm4T7hZsRWUTEFFpuVkoFq8XKC61eoH1MewAyHBk8suQR/kr864y+wR3ae77WsrMici7Ze/dyeNQo/u7SleOz3s1VVPjWqUPZp5+m1opYKs+cyXvldp4sKsDfy5/pHacTExJjUnIREXOosJBSw9vqzaS2k2hWvhkAKdkpPLz4Yfba9+bq51OjBt4x7h/46Rs24ExNK+qoIlKM5Rw6xKHHn2B39x7Yv/ras+eExdubkF69qDJnDtXmfU3EvffgFRnJpzs+5f0/3gfcf+SYdN0k6kXVM/MfQUTEFCospFTxtfkytf1UGpRpAEBiZiIPLX6IuNRTkystFgtBbdq4DxwO0n9ZZ0ZUESlmnCkpJLz6Kru7dSf5u+/A5d540xoSQtQjA6i5fBkVJ71MQJPGnj1zlu5fyku/vuS5xqhmo2gb09aU/CIiZlNhIaVOgHcAMzrOoHZ4bQDi0+J5aPFDHMs45ukT2Ka15+vUlSuLPKOIFB+GYWD/7jt2d72e4+/MwsjOBsAWFkaZ4cOpuXQJZYYMwSsyMtd5vyf8zpMrnsRluAuQfvX6cXvt24s8v4hIcaHCQkqlUN9Q3ur8FlVDqgKwL3kfDy9+GHuWHYDAa6/F4u0NQNrKVRjGmTvjikjpl3P4MAf69+fw40/gTEwE3EOeIh/sR43FPxH18EPYgoLOOG9n0k4GLhlIpjMTgO7VujOkyZAizS4iUtyosJBSK8o/irc7v025wHIA7EraxSM/P0JaThrWwED8r24KuMdTZ+/Za2JSETGD/bvv+afXDaStOPXUMrhLF6r/sJDoxx7DFhx81vMOphzk/xb/HynZKQC0rNCSca3GYbXoR6qIXN70XVBKtfJB5ZnVZRaRfu4hDFuObWHw0sFkODIIat3G0y9tlYZDiVwuXGlpHH5qJIcffxxXmnvxBq/oaCpNn0alqa/jU6nSOc89lnGM/ov7czTjKAANohrwWrvX8LZ5F0l2EZHiTIWFlHpVQqows/NMgn3cf31cH7+eIUuH4N3yWk+f1JWrzIonIkUoe98+9tzeB/v8+Z620BtvpPqC7wnu2PG856Zkp/DIz4+wP2U/ANVDqzO943QCvAMKM7KISImhwkIuC7UjajOz00wCvQMBWBe3jicOvoGtbDQA6b/+iisz08yIIlLI0tatY8/tfcjevRsAa0AAFV6eSIWJL51z2NO/spxZDF02lO2J2wEoF1iOmZ1nEuYXVtixRURKDBUWctmoX6Y+b3V6iwAv918XVx9ew9bqNgCMrCzS1/9mZjwRKURJn37K/n4P4rK7F3DwqVGDal9/RegNN1zwXIfLwZMrnmR9/HoAwnzDmNl5pmf+loiIuKmwkMtKo+hGzOg0A38vfwAWlT3ieU/zLERKH8MwODr1DeKfex6cTgCC2ral6mdz8alaNU/nv7DuBZbsXwK4d9We0XEG1UOrF2ZsEZESSYWFXHaalm3K9I7T8bP5sbWqBZd7nytStJ+FSKliuFwcGTeeYzNmeNoiHniASjOmn3UJ2TPONwxe/e1Vvt71NQBeVi+mtJ9C/TL1Cy2ziEhJpsJCLkvXlLuGqR2m4gjy4+/y7racf/aQGXfI3GAiUiAMp5O4kU+T9MknnrayI5+i7BOPY7HZ8nSNGZtn8MGfHwBgwcKENhNoWaFloeQVESkNVFjIZatFhRa83v51/qjm5Wn78MPHcbqcJqYSkfwyXC7ixozB/s037gabjfIvTSCib988X+O9be/x1ua3PMdjWozh+qrXF3RUEZFSRYWFXNZaVWxF+5uHeo5d6zcxevVoHC6HialE5FIZhkH8Cy9g/8o9fAkvLypOeY2w3r3zfI1Pd3zKaxte8xw/ec2T3HrFrQWcVESk9FFhIZe9Zp3vxeXrA0D9vQbf7/6Op1c+reJCpIQxDIOEl17ixKdz3Q1WKxVfmURI5855vsa8XfN48ZcXPcdDGg/h7rp3F3RUEZFSSYWFXPasPj4EX9sMgIhUqHgcftj7A0+seIIcV47J6UQkr47PmkXiBx+6DywWKkycSMj1eR++tGjPIp5d+6zn+KH6D/FQg4cKOKWISOmlwkIECGzRwvN1o33u/ywW71vMiOUjyHZmmxVLRPLI/t13HH11sue4/LhxhPbqmefzl+1fxsiVI3EZLgDuvvJuBjceXOA5RURKMxUWIkBgy1OFxZ2pV+Fr8wVg2YFlDFs2jCxnllnRROQC0tat4/DTozzHZYYNI+yWm/N8/oqDKxgROwKH4R7+eEutW3jimiewWCwFnlVEpDRTYSEC+F5xBbbwcAD8tvzN9HZTPZvorTy0kiFLh5DpyDQzooicRebOnRwcNBhy3MMWw/r0IbL/w3k+f8XBFQxbNswz7LFH9R480/wZFRUiIpdAhYUIYLFaCWzRHABXaioNjgUwo+OpHbrXHF7DoCWDSM9JNzOmiJzGkZTEwUcG4kpNBSCoXTvKPTM6z0XBf4uK66tez7hW47BZ87bPhYiI5KbCQuSkgNPmWaStXcvV5a5mZueZBHoHAvBL/C8M+HkAKdkpZkUUkZMMh4NDjw4n5+BBAPyuuoqKk1/F4uV1gTPdYg/EnlFUTGgzAS9r3s4XEZEzqbAQOSmwxakdddPWrAWgcXRj3u78NsHewQBsTNhIvx/7kZiZaEpGEXFLmDSJ9HXrALBFRlJp2htYAwLydG7sgVgeXf6oigoRkQKmwkLkJJ9KFfGuXBmA9E2bcKW7hz01KNOAWV1nEe7rnoOxPXE7fX/oS3xavGlZRS5nJ+bPP7WsrLc3laa+jnf58nk6V0WFiEjhUWEhchrPsrM5OaRv2OhprxtZl9ndZlM2oCwAe5P3cu8P97LXvteElCKXr4wtW4gfM9ZzXG7UKAKaNs3TuSoqREQKlwoLkdP8O4Eb3PMsTlc9tDofdvuQysHupxpxaXH0XdSXHYk7ijSjyOXKeeIEB4cOw8h27y0T1qcP4Xf0ydO5P+79UXMqREQKmQoLkdMENGsGJ1eU+W9hAVAhqAIfdPuA2uG1AUjMTOSBRQ/we8LvRZpT5HJjGAaHnx6FIy4OAP8mTSg36uk8nfvN39/wxIonPPtUdKvaTUWFiEghUGEhchqv8HD8rrwSgKzt23EknjlJO8o/iveuf49GZRoBkJKTwsM/PczqQ6uLMqrIZSXpo49JXboUAFtYmHsFKB+fC543d8dcRq8e7dlRu3fN3ioqREQKiQoLkf84fRfuf1ed+a8QnxBmdp5JywrulaQynZkMWjqIBf8sKJKMIpeTjK3bODJpkue4/EsT8C5X7oLnvbftPcb/Mt5z/L86/+O5ls9pnwoRkUKiwkLkP/67n8U5+3kH8EaHN+hcpTMADpeDp1Y+xextszEMo9BzilwOnKmpHBoxwrOzdsT99xPcrt15zzEMg2m/T+O1Da952h6s/yBPXfsUVot+7ImIFBZ9hxX5j4CmTT1DLNJWrzlvkeBj82HSdZO49YpbPW2vbniVl9e/7Bl6ISKXxjAM4seMIWf/fgD8GjQg+tFhFzxn0m+TmLllpqdtSOMhDG0yNM87couIyKVRYSHyH1Y/P/ybNAEg5/Bhcg4cOG9/m9XGmOZjGNRokKft4+0f83js42Q5swo1q0hpduKLL0he+AMA1uDgC86rcLgcjF0zlo/+/MjT9tS1T/FQg4cKPauIiKiwEDmrwNOHQ60593Cof1ksFvo37M/zLZ/HZnGP3/5p30/0X9wfe5a90HKKlFaZf+3kyPgXPcflX3gBn0qVztk/w5HBsGXDmPf3PAAsWHiu5XPcdeVdhZ5VRETcVFiInMXpE7jPN8/iv26qdRNvdHgDfy9/ADYc2aBdukUukis9nUPDh2NkuZ/4hd15ByHXdz1nf3uWnf6L+xN7MBYAb6s3k9pO4uZaNxdJXhERcVNhIXIWfnXrYg0JAdwrQxlOZ57PbVOpDe93fZ8IvwgAdtt3c9fCu/gr8a9CySpS2sSPG0/27t0A+NauTdmnnjp337R4+v7Q17OXTKB3IG92epOuVc9diIiISOFQYSFyFhabjcBmzQBw2u1kbr+43bWvirqKj7t97NmlOyE9gXt/uJfYA7EFnlWkNLF/+y32r78GwBIQQMXXXsPq63vWvv+c+Id7friH3XZ3ERLpF8n7Xd+nWflmRZZXREROUWEhcg6BrVp6vk5bu+aiz48JieGj7h/RIKoBAOmOdAYvHcyHf3yo5WhFziJrzx7inn3Oc1x+7Bh8q1c7a99NCZu4d9G9nmGGMcExfNTtI66MvLJIsoqIyJlUWIicw+kTuNMvYp7F6SL8Ini367tcX/V6AAzcS2E+v+55clw5BZJTpDRwZWVx6NHhGOnpAITedBOhN9541r6L9i6i34/9PAsjXBlxJR92+5CYkJgiyysiImdSYSFyDt6VK+NdoQIA6b9twJWZeUnX8fPyY+J1E/m/hv/nafty55cM+HmAVowSOSlh4stk7XAPOfSpXp1yz4w+o49hGMzaOovHYx8n25UNQLPyzXiv63tE+UcVaV4RETlTsS4sJkyYwDXXXENwcDDR0dH07t2bv/7SBFgpGhaLhYCTq0MZ2dlkbNx4ydeyWqwMbDSQCW0m4G31BuCXuF+4e+Hd7E/eXyB5RUqq5B9/ImnOHAAsvr5UfG0y1oCAXH1yXDk8u/ZZXt/4uqetd83evNnxTYJ8goo0r4iInF2xLixiY2MZOHAg69atY/HixeTk5NClSxfS0tLMjiaXiVz7WVzicKjT9azek/e6vudZMWpv8l7+t/B/rDl88XM4REqD7IMHiRt96ulE2aefxq927Vx9UrJTeOTnR/h619eetiGNh/B8y+fxtnkXWVYRETk/i1GCZpEePXqU6OhoYmNjue666/J0TnJyMqGhodjtdkJOLh8qkleO48fZ1ao1AH5XXUW1r74skOseTDnIoCWDPKvZWC1WHm3yKH2v6ovFYimQe4gUd0Z2NnvvvofMLVsACO52PRUnT87138Ch1EMMWjKIv0/8Dbj3qBjXahzdq3c3JbOIyOXmYn6XLtZPLP7LbnePR4+IiDhnn6ysLJKTk3O9RC6VV2QkvnXqAJD55584kpIK5LqVgivxUfePaFupLQAuw8WrG17lyZVPkuHIKJB7iBR3Ca9O9hQV3jExlH/++VxFxfr49dzx/R2eoiLMN4xZXWapqBARKaZKTGHhcrkYNmwYrVq1ol69eufsN2HCBEJDQz2vmBitEiL54xkOZRik//JrgV032CeYqR2m0r9Bf0/bD3t+4J6F93Aw5WCB3UekOEpZsoTEDz4AwOLtTcXXXsMWHAy4J2nP3TGXh396mBNZJwCoElKFj7t/TJOyTcyKLCIiF1BiCouBAweybds25s6de95+I0eOxG63e14HDhwoooRSWgW2LNh5FqezWqwMajyIKe2nEODlnqz6V9Jf3LHgDtbFrSvQe4kUF9kHD3F45NOe4+gnn8S/3lUA5DhzeH7d84z/ZTwOwwFAq4qtmNNjDlVCqpiSV0RE8qZEFBaDBg3i+++/Z9myZVSqVOm8fX19fQkJCcn1EsmPgKZNwds9QbSgC4t/dazcMdcvTvYsO/0X9+e9be/hMlyFck8RMxjZ2RwaMRzXyWGqwV26EH7X/wA4nnGcB396kC93nprLdN9V9zG9w3RCfPS9XESkuCvWhYVhGAwaNIh58+axdOlSqlU7+w6sIoXJGhBAQKNGAOTs30/2wcIZplQjrAZzesyhTcU2gHvexWsbXmPI0iHa70JKjYTJr5G5+bR5FePHYbFY+PP4n9y54E42JriXdfax+vBi6xcZcfUIbFabmZFFRCSPinVhMXDgQD7++GPmzJlDcHAw8fHxxMfHk5Ghya1StHINh1pTeEvDhviEMK3jtFzzLmIPxnLbd7ex5eiWQruvSFFIWbqUxNmzgVPzKqxBQXyx8wvuWXgPcWlxAET7RzP7+tn0qtHLxLQiInKxinVh8eabb2K322nXrh3ly5f3vD777DOzo8llJtd+FmsKZzjUv/6dd/FmpzcJ8w0DIC4tjr6L+vLxnx9TglaIFvHIPnDgjHkV1KnO6NWjeX7t856dtBuUacDcnnOpX6a+WVFFROQSFevCwjCMs77uu+8+s6PJZcavXj2sJ1esSV+7FsPpLPR7tq7Ymi96fUHj6MYAOFwOJq6fyPDlw0nJTin0+4sUFFdGBgcHD8F1csnw4M6dsfdsyV0L7+Lb3d96+v2vzv+Y3XU2ZQLKmBVVRETyoVgXFiLFhcXLy/PUwmm3k7GlaIYllQssx7td3+X+q+73tP28/2du++42NiVsKpIMIvlhGAZxz4wha8cOAHyqVmXHgE7cufBOdiXtAsDfy5+Xr3uZkc1GaidtEZESTIWFSB4FXdfG83XaypVFdl9vqzfDrx7OGx3e8KyMcyj1EPctuo83N7+Jw+UosiwiFyvxgw9I/v57ACwBAfzQvyGPrh9FWk4aANVDqzO3x1y6VetmZkwRESkAKixE8iiwzXWer1NXFF1h8a92Me34vNfnNCrTCACn4WTGphk88OMDHEo9VOR5RC4kbd0vJEx6xXP8yS0RzExe4DnuXq07n/b4lOph1c2IJyIiBUyFhUgeeZeNxrdOHQAyt23DcexYkWeoGFSR969/n0caPoLV4v7P9/eE37n121tZ8M+CC5wtUnSyDx7i0KOPwsn5SN+28mZ+pXjAvZTs6GajeanNSwR4B5gZU0RECpAKC5GLENTm1HCo1FWrTMngZfViQKMBfHD9B1QMqujOkpPKUyuf4onYJziRecKUXCL/cqakcOD/+uNMSgJgUzULn7R2b/RYM6wmc3vOpU+dPlgsFjNjiohIAVNhIXIRcs2zMGE41OkaRTfii15f0LN6T0/bD3t/oPc3vVmyf4mJyeRyZuTkcGjoMLL/3g3A4Qh4/UYrhtXCHbXv4NMen1IrvJbJKUVEpDCosBC5CP6NGmENCgIgbfXqIll29nyCfYKZ0GYCE9tM9EzsPp55nGHLhvHkiif19EKKlGEYHHz+Oc8mksn+MOF2G95h4UxtP5VRzUfh5+VnckoRESksKixELoLF25vAVq2Aol129kK6V+/O/Bvn065SO0/bwj0L6f1Nb5buX2peMLmsbH79eVK/+AqAHBtMusVG1brN+bLXl7Sv3N7kdCIiUthUWIhcpNOHQ6WuWGFiktzKBJRhaoepvNj6RYJ93Jv5Hc88ztBlQ3lq5VMkZiaanFBKq0xHJp9Mfgjft+Z62t7t5cett47m7c5vUzawrInpRESkqKiwELlIga1PKyxiY01MciaLxUKvGr2Yf+N82lZq62lf8M8Cbph/A/N2zcMwDBMTSmnzS9wvPDPxehq+c2oxg5XXV2TE099wR507PKuXiYhI6afv+CIXybtsNH516wKQ9ed2cuLiTE50puiAaN7o8AbjW4/3PL2wZ9kZs2YM9y26j90ndpucUEq6pMwkRq0axauz+nH3nCPYTtarR7o15YFXF1E5pLK5AUVEpMipsBC5BEEdO3i+TllSPOcwWCwWbqhxA9/2/jbXrsYbEzZy63e3MnXjVDIdmSYmlJLIMAy+3f0tN8y/ge2x3/DkF058Tq5hYO3ajravfoiXzcvckCIiYgoVFiKXILhTJ8/XqUuL99KuUf5RvHzdy8zsNJOY4BgAHC4H72x9h5u+uYkl+5doeJTkyV77Xh5a/BCjVo2i7N9JjP7MSUC2+73A667jilemYrHqx4qIyOXKYpTy3yiSk5MJDQ3FbrcTEhJidhwpJQzDYHenzuQcOgReXlyxZjW2EvDvV6Yjk3e2vsN7297D4XJ42puVb8aT1zyp/QXkrFKzU5m5ZSYfb/8Yh8vBlfsNRn7uxC/H/X5gyxZUmj4dq7+/uUFFRKTAXczv0vrTksglsFgsBHfq6D5wOEiNLT6rQ52Pn5cfgxsP5qteX3FtuWs97b/E/cKt393KuHXjSMpMMjGhFCcuw8X8v+fTc15PZv8xG4fLQf09LkZ97jpVVLRpQ6UZM1RUiIiICguRSxXUoaPn65RiPhzqv6qHVWdWl1m81u41KgZVBNy/RH7212f0mNeDD//4kGxntskpxUxbjm7h7oV388zqZzieeRyA9n9YGfUF+OS4H3QHtW1LpWlvYPXTpnciIqKhUCKXzHA42NWqNU67HWtgILXWrsHq42N2rIuW5czioz8/4u0tb5PhyPC0lw8sz8BGA+lZvSc2q83EhFKU9iXvY+rGqfy076dTjYbB8B3VaT5/l6cpqFNHKk6eXCL/nRcRkbzTUCiRImDx8iKoXTsAXGlppK9bZ26gS+Rr8+XB+g/y/U3fc0ONGzztcWlxjF49mlu/u5Vl+5dpgncpdzT9KC+sfYEb59+Yq6ioE1idjze1yFVUhN15B5Vef11FhYiI5KLCQiQfgjufWh0qedGPJibJv+iAaMa3Hs8Xvb6gdcXWnva/T/zNkGVDuOeHe1hzeI0KjFImJTuFqRun0mNeDz7f+TlOw712bIRfBGOrD2TiXG98Fp3a/K7MsGGUGzMGi01PsUREJDcNhRLJB1dWFrtatsKVloY1JIRaq1aWmr/iro9fz5SNU9hydEuu9gZRDejfsD9tKrbBYrGYlE7yy55l55Ptn/Dx9o9JyU7xtAd4BXBfvfu4/URtjj81GmeSezK/xc+P8uPGEdqzh1mRRUTEBBfzu7QKC5F8OvTEEyR/+x0AlWbMILhDe5MTFRzDMFh2YBlTN05ltz33bt1XRlxJ/4b9aR/THqtFDz9LiqTMJD768yPm7JhDWk6ap93L6kWf2n148Ip7cb75AYkffOh5z7tSJSpNewO/OnXMiCwiIiZSYXEaFRZS2FKWLePggEcACOnVi4qTXjY5UcFzupws3r+Yt7e8za6kXbneqx5anXvr3kvPGj3xtfmalFAuJD4tno///JjPd36ea5K+l8WLnjV60r9BfyJ2HSV+7Biydv3teT+wTRsqTnoZW1iYCalFRMRsKixOo8JCCpuRnc3O1m1wJSdjDQig1prVpXb5TZfhYtmBZczcPJPtidtzvRfhF0Gf2n3oU7sPkf6RJiWU/9p2bBsf/vEhP+37yTN/AtxPKG6qeRP96vejbE4ACa++iv3LrzzvW3x8iH5sBOF3363dtEVELmMqLE6jwkKKwuFRo7B/9TUAFae+TkiXLiYnKlyGYbDy0Ere3fouGxM25nrPx+pDj+o9uL327VwVeZXmYZjA4XIQeyCWD//88Kyfzy1X3MID9R4g2hpK4scfc3zWu7jsdk8fv7p1qTDxJXxraSd2EZHLnQqL06iwkKKQumo1Bx58EIDg66+n0pTXTE5UdLYd28aHf37IT3tz/0UcoE5EHW674ja6V+tOkE+QSQkvH4dTD/P1rq+Zt2seCRkJud4L9w2nTx33E6UIlz8nvvqaY++8jfPoMU8fa2AgZYYNI/x/d2rVJxERAVRY5KLCQoqC4XCwq811OJOSsPj6UmvVSmzBwWbHKlJxqXHM2TGHL3d+SWpOaq73/L386V6tO71r9qZhmYZ6ilGAHC4HKw6u4IudX7D60GoMcn9Lrx5anXvq3kPP6j2x7D3Iia++5sSXX+JKObUSFFYrob16UWb4cLzLRhfxP4GIiBRnKixOo8JCikr88y+QNGcOAOWee47wPrebnMgc6TnpLNq7iC93fsnWY1vPeL9SUCV61uhJz+o9qRJSxYSEJZ9hGGw+upmFexby494fScxMzPW+zWLjukrXcfsVt9E0oyzpK1ZhX/A9WX9uP+NawV26UGbIYHxr1iyq+CIiUoKosDiNCgspKhnb/mDvrbcC4N+wIVU/m2tyIvPtSNzBF399wYI9C3ItbfqvqyKvolOVTnSo3IHqodVNSFi4DJcLIzMTV1YWRkYGRk4OWK3uYUY2GxabDYu3N9bAQCxeXue/lmGwM2knP+79kYV7FnIo9dB/O1DdVo47fFrRMrUc3jv3krbuFxxHjpxxLYuPDyG9ehJx77341a5dkP/IIiJSyqiwOI0KCykqhmGw58beZO3cCUD1Bd/jW6OGyamKh/ScdBbvW8z3/3zPL3G/nDFcB6BaaDU6Vu5Ip8qdqBtZt9gPlzJcLhzx8WTv30/2vv1k79+HI/4IjmPHcBw/hvPYcZwnTuT5ehZfX6yBgblelsAA7NYs4rOPcTjzCMmudJxWsBngl+1++edYqJAdQFhSDtaMrPPew69+fUJ79SSkZ0+8IiLy+f+AiIhcDlRYnEaFhRSl47Nnk/DSRAAiH+xH9GOPmZyo+DmSdoRFexfx/T/fsyNxx1n7RPlH0bx8c1pWaEnz8s0pE1CmiFOeYhgGjrg4Mv/6i6y//nL/765d5Ow/gJGdbVquvLD4+RFw9dUEtmpFULu2+FarZnYkEREpYVRYnEaFhRQlR2Iiu65rCw4HtjJR1Fq27IJDXC5nB1MOsmT/EpbuX8rvCb+f9UkGQM2wmlxb7loaRzemUXQjygWWK5Q8hsNB1u7dZG7bRub2He5CYufOXEux5oXFzw+vyEhsERHupw9+flj8/LB4e4PLheFygsOJ4XSSmZFCmv0YGclJuNJS8cp0EJAFXq6LuJ+3N14VyuNTsSLeMZXxu/JK/OpeiW/t2lh9tWmhiIhcOhUWp1FhIUXt4ODBpCz+GYBKM6YT3KGDyYlKhmMZx1h+YDnLDyzn1/hfc+0O/V9lA8rSOLox9aPqUzuiNrXDaxPmF3ZR9zNcLrL37iPzj21kbN1K5tZtZG7fjpGZecFzLd7eeFeujE+VKvhUroxPFffX3hUqYIsqgzUw4KxDuexZdnYm7WTbsW1sObqFLUe3nLEs7L+8HAZRRiCtw6+mRZlraRrVkECLL4bDgcVmwxoQgCUgAOvJlzaxExGRwqDC4jQqLKSopSxfzsH/GwBAYKtWVH53lsmJSp4cZw6bjm5i7eG1rD28lj+O/3HOpxn/ig6IpnZ4bWqG1SQmJIaY4BgqB1embEBZbFYbOXFxZGzZSua2rWRs3UbmH3/kXnL1HLzKlsW39hX41a6Db53a+NWujU/Vqud8EuV0OTmacZSDKQc5kHKAf+z/sCtpF7uSdp2ziPDcy+JFgzINaF6+Oc3KN6N+VH28bd4XzCgiIlJYVFicRoWFFDXD6WT39d3IOXAAgOoLF+JbXWPb88OeZWfrsa38nvA7mxM2s+XYlvM+0bC6DKocgToHDeoctnDlIQizO8/Z/1+WiuWx1b0CW93aeNW5Aq9aNbGEhZDpzCTTken533RHOkmZSSRmJnr+93jmceJS4zicdhiHy5Gnf65A70DqRdWjQVQDGkc3pmnZpgR4B+T5/xcREZHCpsLiNCosxAzH359NwkT3JO7wu++m3OhRJicqXRwuB7uSdrEjcQd/Jf3F7vjtuLb8SbV/0qh9CGoeNvDLOf81EoNgd3nLyRfsLmchNaDwVqIK8QmhVngtaobV5MqIK2lYpiHVQqths2qHaxERKb5UWJxGhYWYwWm3s6ttO4zMTKyBgdSMjcUWFGh2rFLDcDjI3LaNtHXrSFu7jozffz/vCk2Z3rCrgoWdFU8VE0nBBV9EBHoHUjGooudVKbgSVUOqUiu8FmX8yxT7JXRFRET+62J+l9ZyNSKFwBYaSmivXpz44gtcaWnY580j4p67zY5VojlPnCB15UpSli4lbdXq886P8CpfnoDGjfFv3Bj/Jo3xq12b2kY2xzOPcyzjGMcyjpGUmUR6TjqpOamk5aSRlpNGjisHl+HCMAxcuHAZLixY8PPyw8/mh6+XL342PwK8AwjzDSPcL5xIv0jC/cIJ9wsn2DtYxYOIiFy29MRCpJBk/rWTPTfeCIBXhfLU/PFH93Kjkmc5hw6R/ONPpC5dSvrvv4Pz7PMkvCtUIKBFcwKbNyfg6qvxLl++iJOKiIiUTnpiIVIM+NW+gsC215EWuwLH4TjsCxYQ1ru32bGKPUdSEimLFmH/fgEZGzactY81NJSgVi0JaN6cwBYt8ImJKeKUIiIi8l8qLEQKUdTDD5MWuwKA4+/MIvSGG7TfwFkYDgepsbGc+PwLUlevBseZqyr5VK1KUPv2BHdoj3/jxtp4UEREpJjRT2aRQhTQtCn+TZuSsWED2bt3k7L4Z0K6djE7VrGRcySBE199yYnPv8ARH3/G+z41ahDaqyfBXbpqyV4REZFiToWFSCGL6v8wBx7uD8DRN6YS3KkjFtvlvcRoxubNHH/vfVKWLDnj6YRX+fKE9uhOSM+e+NaurcnQIiIiJYQKC5FCFtimDf4NG5KxeTPZf+/G/s23hN18k9mxipxhGKStWMHxWe+Svn597jetVoLatiX8zjsIbN1aw8VERERKIBUWIoXMYrFQZsRw9t/bF4Cjb7xBSI/uWH19TU5WNAzDIDU2lqNTp5L15/Zc79miogi79RbCb78d7woVTEooIiIiBUGFhUgRCLz2WgKva0PaipU44uJI+vgTIvs9YHasQmUYBunr1nF0yutkbN6c6z2fatWI7PcAITfcgNXHx6SEIiIiUpBUWIgUkejhw9mzchUYBsemTyekZ0+8y0abHatQZPzxBwkTXyb9119ztfvWvZIyjzxCUIcOGu4kIiJSyugnu0gR8atTh7DbbgPAlZ5OwsSJJicqeI6kJOLGjGXvrbflKip8a9Wk4htTqfbVVwR36qSiQkREpBTST3eRIlTm0WHYwsIASF64kLQ1a8wNVEAMh4PETz5h9/XdOPH552AYAHhXqUyFSZOoNn8+IZ07a4UnERGRUkyFhUgR8goPp8yI4Z7jw6NH40xJMTFR/qWvX8+eW2/jyAvjcNntAFgDAoh+/HFqfPcdob16XvbL64qIiFwOVFiIFLGwW24h4NprAXAcjuPIixNMTnRpco4c4dCIx9h3z71k7djhaQ+98QaqL/qByH4PYNHEbBERkcuGCguRImaxWin/4otYAwMBsM+bR/KiH01OlXeu7GyOvf0Ou7t1J3nBAk+7b90rqTJnDhUmTsQ7unROShcREZFzU2EhYgKfShUp+/TTnuO4p58m659/TEyUN6mxsezpdQNHJ0/GSE8HwBYWRrlnn6XaF18Q0KSxyQlFRETELCosREwSevNNhPToAbhXiTo4aDDOk3MUipvsffs48H8DOND//8jet8/daLUS/r87qbHoB8Lv6KN5FCIiIpc5FRYiJrFYLJR/4Xl8r7gCgOx//uHAgEdwZWSYnOwUZ2oaCZNf45+evUhdvtzT7n91U6p9/RXlxozxrHIlIiIilzcVFiImsgYEUGnaG9giIwHI2LiRQ48Ox8jJMTWX4XJxYt58/unWjeNvv+3J4xUdTYVXXqHKRx/hV6eOqRlFRESkeFFhIWIyn8qViXl7pmcyd+ry5RwcNNi0Jxfpv//O3j53EDdyJI6jRwGweHsT+dBD1PhhIaE9e2g/ChERETmDCguRYsD/qquoNH2aZ3nW1NhY9j/QD8fx40WWIXPnTg4MGsS+O/9H5tatnvagTh2pvuB7okcM9xQ/IiIiIv+lwkKkmAhs3pyYd97x/PKe8fvv7LnpZtJ/+61Q75u1Zw+HRjzGnht7k/rzEk+7b61aVH7/PWKmTcOncuVCzSAiIiIln8UwDMPsEIUpOTmZ0NBQ7HY7ISEhZscRuaDMP/9kf//+OI8eczdYrUTcczdRg4dgCyqYJwaGYZD+63oSP/iA1GXL4LRvA17R0UQ9MoCwW2/F4uVVIPcTERGRkulifpdWYSFSDDmOHuXQY4+T/ssvnjZbVBSR/foR3ud2rAEBl3zd5IULOTFvfq7dsgFs4eFEPvww4XfegdXPL1/5RUREpHRQYXEaFRZSUhlOJ8dnvcuxGTMwsrI87dbAQIK7dCHk+q74N2mCLTj4nNdwZWaStXMnaWvWkrZqFekbN4LLlauPV9myhN99F+F3/q/AnoiIiIhI6aDC4jQqLKSkyz5wgIRXXiXlp59yDVkCwGrFp0oVvGMqYQsOweLri5GVhTMpkZz4I2Tv3XtGIfEvvwYNiLj3XkK6dsHi7V34/yAiIiJS4qiwOI0KCyktsnbt4vgHH5Cy6EdcqamXdA3vKpUJ6daN0F698K1Ro4ATioiISGmjwuI0KiyktHFlZpK6YgXpv/xK+saNZO/Zg5GZeUY/i7c3PjVr4le7Nv4NGxDYqpVWdxIREZGLcjG/S2vJF5ESxurnR0iXLoR06QK4V3hyJibiSk/HyMrC4u2NLSICa1CQNrITERGRIqPCQqSEs1gseEVGQmSk2VFERETkMqYN8kREREREJN9UWIiIiIiISL6psBARERERkXwrEYXF9OnTqVq1Kn5+fjRr1oxff/3V7EgiIiIiInKaYl9YfPbZZwwfPpyxY8eyceNGGjZsSNeuXUlISDA7moiIiIiInFTsC4vJkyfz0EMPcf/991O3bl3eeustAgICeO+998yOJiIiIiIiJxXrwiI7O5sNGzbQqVMnT5vVaqVTp06sXbv2rOdkZWWRnJyc6yUiIiIiIoWrWBcWx44dw+l0UrZs2VztZcuWJT4+/qznTJgwgdDQUM8rJiamKKKKiIiIiFzWinVhcSlGjhyJ3W73vA4cOGB2JBERERGRUq9Y77wdFRWFzWbjyJEjudqPHDlCuXLlznqOr68vvr6+RRFPREREREROKtZPLHx8fGjatClLlizxtLlcLpYsWUKLFi1MTCYiIiIiIqcr1k8sAIYPH07fvn25+uqrufbaa5kyZQppaWncf//9ZkcTEREREZGTin1h0adPH44ePcqYMWOIj4+nUaNGLFq06IwJ3SIiIiIiYh6LYRiG2SEKU3JyMqGhodjtdkJCQsyOIyIiIiJSYlzM79LFeo6FiIiIiIiUDCosREREREQk31RYiIiIiIhIvqmwEBERERGRfFNhISIiIiIi+Vbsl5vNr38XvUpOTjY5iYiIiIhIyfLv79B5WUi21BcWKSkpAMTExJicRERERESkZEpJSSE0NPS8fUr9PhYul4vDhw8THByMxWIp8vsnJycTExPDgQMHtI9GCaLPrWTS51by6DMrmfS5lUz63Eqe4vCZGYZBSkoKFSpUwGo9/yyKUv/Ewmq1UqlSJbNjEBISov+ISyB9biWTPreSR59ZyaTPrWTS51bymP2ZXehJxb80eVtERERERPJNhYWIiIiIiOSbCotC5uvry9ixY/H19TU7ilwEfW4lkz63kkefWcmkz61k0udW8pS0z6zUT94WEREREZHCpycWIiIiIiKSbyosREREREQk31RYiIiIiIhIvqmwKGLjx4+nZcuWBAQEEBYWZnYcOYfp06dTtWpV/Pz8aNasGb/++qvZkeQ8VqxYQa9evahQoQIWi4X58+ebHUkuYMKECVxzzTUEBwcTHR1N7969+euvv8yOJRfw5ptv0qBBA8+a+i1atOCHH34wO5ZchJdeegmLxcKwYcPMjiLn8eyzz2KxWHK96tSpY3asC1JhUcSys7O57bbbGDBggNlR5Bw+++wzhg8fztixY9m4cSMNGzaka9euJCQkmB1NziEtLY2GDRsyffp0s6NIHsXGxjJw4EDWrVvH4sWLycnJoUuXLqSlpZkdTc6jUqVKvPTSS2zYsIHffvuNDh06cOONN/LHH3+YHU3yYP369cycOZMGDRqYHUXy4KqrriIuLs7zWrVqldmRLkirQplk9uzZDBs2jBMnTpgdRf6jWbNmXHPNNUybNg0Al8tFTEwMgwcP5qmnnjI5nVyIxWJh3rx59O7d2+wochGOHj1KdHQ0sbGxXHfddWbHkYsQERHBpEmT6Nevn9lR5DxSU1Np0qQJM2bMYNy4cTRq1IgpU6aYHUvO4dlnn2X+/Pls2rTJ7CgXRU8sRE6TnZ3Nhg0b6NSpk6fNarXSqVMn1q5da2IykdLNbrcD7l9SpWRwOp3MnTuXtLQ0WrRoYXYcuYCBAwfSo0ePXD/fpHjbtWsXFSpUoHr16tx1113s37/f7EgX5GV2AJHi5NixYzidTsqWLZurvWzZsuzYscOkVCKlm8vlYtiwYbRq1Yp69eqZHUcuYOvWrbRo0YLMzEyCgoKYN28edevWNTuWnMfcuXPZuHEj69evNzuK5FGzZs2YPXs2tWvXJi4ujueee442bdqwbds2goODzY53TnpiUQCeeuqpMybY/PelX0pFRM5u4MCBbNu2jblz55odRfKgdu3abNq0iV9++YUBAwbQt29f/vzzT7NjyTkcOHCAoUOH8sknn+Dn52d2HMmjbt26cdttt9GgQQO6du3KwoULOXHiBJ9//rnZ0c5LTywKwIgRI7jvvvvO26d69epFE0byJSoqCpvNxpEjR3K1HzlyhHLlypmUSqT0GjRoEN9//z0rVqygUqVKZseRPPDx8aFmzZoANG3alPXr1/P6668zc+ZMk5PJ2WzYsIGEhASaNGniaXM6naxYsYJp06aRlZWFzWYzMaHkRVhYGFdccQV///232VHOS4VFAShTpgxlypQxO4YUAB8fH5o2bcqSJUs8k39dLhdLlixh0KBB5oYTKUUMw2Dw4MHMmzeP5cuXU61aNbMjySVyuVxkZWWZHUPOoWPHjmzdujVX2/3330+dOnV48sknVVSUEKmpqezevZt77rnH7CjnpcKiiO3fv5/ExET279+P0+n0zPavWbMmQUFB5oYTAIYPH07fvn25+uqrufbaa5kyZQppaWncf//9ZkeTc0hNTc31V5w9e/awadMmIiIiqFy5sonJ5FwGDhzInDlz+OabbwgODiY+Ph6A0NBQ/P39TU4n5zJy5Ei6detG5cqVSUlJYc6cOSxfvpwff/zR7GhyDsHBwWfMXQoMDCQyMlJzmoqxxx57jF69elGlShUOHz7M2LFjsdls3HnnnWZHOy8VFkVszJgxfPDBB57jxo0bA7Bs2TLatWtnUio5XZ8+fTh69ChjxowhPj6eRo0asWjRojMmdEvx8dtvv9G+fXvP8fDhwwHo27cvs2fPNimVnM+bb74JcMb3vffff/+CQ0vFPAkJCdx7773ExcURGhpKgwYN+PHHH+ncubPZ0URKlYMHD3LnnXdy/PhxypQpQ+vWrVm3bl2xHyGjfSxERERERCTftCqUiIiIiIjkmwoLERERERHJNxUWIiIiIiKSbyosREREREQk31RYiIiIiIhIvqmwEBERERGRfFNhISIiIiIi+abCQkRERERE8k2FhYiIiIiI5JsKCxERKVJOp5OWLVty880352q32+3ExMQwatQok5KJiEh+WAzDMMwOISIil5edO3fSqFEj3nnnHe666y4A7r33XjZv3sz69evx8fExOaGIiFwsFRYiImKKqVOn8uyzz/LHH3/w66+/ctttt7F+/XoaNmxodjQREbkEKixERMQUhmHQoUMHbDYbW7duZfDgwYwePdrsWCIicolUWIiIiGl27NjBlVdeSf369dm4cSNeXl5mRxIRkUukydsiImKa9957j4CAAPbs2cPBgwfNjiMiIvmgJxYiImKKNWvW0LZtW3766SfGjRsHwM8//4zFYjE5mYiIXAo9sRARkSKXnp7Offfdx4ABA2jfvj3vvvsuv/76K2+99ZbZ0URE5BLpiYWIiBS5oUOHsnDhQjZv3kxAQAAAM2fO5LHHHmPr1q1UrVrV3IAiInLRVFiIiEiRio2NpWPHjixfvpzWrVvneq9r1644HA4NiRIRKYFUWIiIiIiISL5pjoWIiIiIiOSbCgsREREREck3FRYiIiIiIpJvKixERERERCTfVFiIiIiIiEi+qbAQEREREZF8U2EhIiIiIiL5psJCRERERETyTYWFiIiIiIjkmwoLERERERHJNxUWIiIiIiKSbyosREREREQk3/4fIjTV35pnri8AAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "mapies = [mapie_split, mapie_cv, mapie_cqr, mapie_ccp]\n", - "y_preds = [y_pred_split, y_pred_cv, y_pred_cqr, y_pred_ccp]#_1, y_pred_ccp_2, y_pred_ccp_3]\n", - "y_pis = [y_pi_split, y_pi_cv, y_pi_cqr, y_pi_ccp]#_1, y_pi_ccp_2, y_pi_ccp_3]\n", - "titles = [\"Basic Split (new implementation)\", \"CV+\", \"CQR\", \"CCP (default)\"]# 1\", \"CCP 2\", \"CCP 3\"]\n", - "\n", - "plot_figure(mapies, y_preds, y_pis, titles)\n", - "plot_widths(titles, y_pis)" - ] - }, - { - "cell_type": "markdown", - "id": "50af1a1f", - "metadata": {}, - "source": [ - "The ``SplitCPRegressor`` is a very adaptative method, even with default parameters values. If the dataset is more complex, the default parameters may not be enough to get the best performances. In this case, we can use more advanced settings, described below." - ] - }, - { - "cell_type": "markdown", - "id": "3bd4052c", - "metadata": {}, - "source": [ - "# How to improve the results ?\n", - "## 1/ How does the ``CCP`` method works ?" - ] - }, - { - "cell_type": "markdown", - "id": "f5d6d295", - "metadata": {}, - "source": [ - "The CCP method is based on a function $\\phi : X \\to \\phi(X) \\in \\R^d$\n", - "\n", - "This vector $\\phi(X)$ constitute features that should be able to represente the distribuion of the conformity scores, which is here (by default) the absolute residual: $\\lvert y_{true} - y_{pred} \\rvert$\n", - "#### Examples of basic $\\phi$:\n", - " - $\\phi : X \\to 1$, will try to estimate the absolute residual with a constant, and will results in a prediction interval of constant width (like the basic split CP)\n", - " - $\\phi : X \\to (1, X)$, will result in a prediction interval of width equal to: a constant + a value proportional to the value of $X$ (it seems a good idea here, as the uncertainty increase with $X$)\n", - " - $\\phi : X \\to (1, X^3)$, will result in a prediction interval of width equal to: a constant + a value proportional to the value of $X^3$ (it seems a good idea here, as the uncertainty increase with $X$)\n", - " - $\\phi : X \\to y_{pred}$, will result in a prediction interval of width proportional to the prediction (It is sometime the case, when the uncertainty is proportionnal to the value).\n", - " \n", - " Note that using $\\phi : X \\to y_{pred}$ is somewhat similar to using a standard Split CP (``method=\"base\"`` in ``MapieRegressor``) with a ``GammaConformityScore``.\n", - " \n", - "\n" - ] - }, - { - "cell_type": "markdown", - "id": "d47d625c", - "metadata": {}, - "source": [ - "#### Using custom definition:" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "id": "5c783830", - "metadata": {}, - "outputs": [], - "source": [ - "calibrator1 = CustomCCP([lambda X: np.ones(len(X))])\n", - "calibrator1_bis = CustomCCP(bias=True)\n", - "# calibrator1_bis is equivalent to calibrator1, as bias=True adds a column of ones\n", - "calibrator2 = CustomCCP([lambda X: X], bias=True)\n", - "calibrator3 = CustomCCP([lambda X: X**3], bias=True)" - ] - }, - { - "cell_type": "markdown", - "id": "d0d8e515", - "metadata": {}, - "source": [ - "#### Using ``PolynomialCCP`` class:" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "id": "f25b8c98", - "metadata": {}, - "outputs": [], - "source": [ - "calibrator1 = PolynomialCCP(0)\n", - "calibrator2 = PolynomialCCP(1) # degree=1 is equivalent to degree=[0, 1]\n", - "calibrator3 = PolynomialCCP([0, 3]) # Warning, degree=2 is equivalent to degree=[0, 1, 2]\n", - "# Note: adding '0' in the 'degree' argument list is equivalent to having bias=True, as X^0=1" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "id": "77f2c8a4", - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABKUAAAMWCAYAAAAgRDUeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3zb5bX48Y/2smV575HETuw4wxmQHUbC3i1lQym0ha7b3o57294OaPtrezvgdjJaCiUFSltCWQmBBEhCBmTZSRw7HnEsb8lDlq29fn98bcVOHAiQ2CE57xd+mdhfS49k+Xt0zvd5zqOKxWIxhBBCCCGEEEIIIYQYR+qJHoAQQgghhBBCCCGEOPtIUUoIIYQQQgghhBBCjDspSgkhhBBCCCGEEEKIcSdFKSGEEEIIIYQQQggx7qQoJYQQQgghhBBCCCHGnRSlhBBCCCGEEEIIIcS4k6KUEEIIIYQQQgghhBh3UpQSQgghhBBCCCGEEONOilJCCCGEEEIIIYQQYtxJUUqICXT48GFUKhVPPPHERA9lTGON77777kOlUk3coIQQQgghhBBCnBGkKCUE8MQTT6BSqUZ9ZGRkcMEFF7B27dqJHt4JczqdfPWrX6W0tBSTyURGRgbnnnsu//3f/83g4OApu9+f/vSn/Pvf/z5lty+EEGeqxsZG7rnnHiZPnozRaMRqtbJkyRJ+85vfsGXLFlQqFd/73veO+/P19fWoVCq+/vWvj+OohRBCnArvFRN8Pl/8uFAoxG9/+1vOOeccEhMTSUhI4JxzzuF3v/sd4XD4mNstKioaledYLBbOPfdcnnzyyfF8eEKMSRWLxWITPQghJtoTTzzBZz7zGX70ox8xadIkYrEYXV1dPPHEE1RXV/PSSy9x5ZVXnvT7jcViBAIBdDodGo3mI91Wb28vc+bMwe12c9ddd1FaWkpPTw979+7l5ZdfZu/evRQVFX2g2zx8+DCTJk3i8ccf58477wQgHA4TDocxGo3x4xISErj++utP2xlfQghxOnrllVf41Kc+hcFg4I477mDGjBkEg0HefvttnnvuOe688042b95MMBiksbFxzNu4//77ue+++9i1axdz584d50cghBDiZDmRmPDoo4/i8Xi44oor2LhxI1deeSWXXnoparWaV199lRdffJELL7yQl156CbPZHL/toqIikpOT+cY3vgFAR0cHf/7zn6mrq+PRRx/lc5/73EQ9bCHQTvQAhDidXHbZZcyfPz/+77vvvpvMzEyeeeaZU1KUUqlUo4o7H8Vjjz2G3W5ny5YtLF68eNT33G43er3+pNyPVqtFq5VThxBCfBRNTU3cdNNNFBYW8sYbb5CdnR3/3pe+9CUaGhp45ZVXKCgo4Pvf/z7bt29n4cKFx9zOM888Q2lp6XsWpIqKirjzzju57777TsVDEUII8RGdaEwA+PrXv87GjRv53e9+x5e//OX4cV/4whf4wx/+wJe//GW+9a1v8Yc//GHUfeTm5nLbbbfF/33nnXcyefJkHnzwQSlKiQkly/eEeA82mw2TyXRMEeZXv/oVixcvJjU1FZPJxLx58/jXv/51zM+//vrrLF26FJvNRkJCAtOmTeO73/1u/PvH6ylVW1vLDTfcQHp6OiaTiWnTpvE///M/7znWxsZGNBrNmEmL1WodVfw6//zzmTFjBrt27WLx4sWYTCYmTZrEww8//L7PydE9pVQqFR6Ph7/+9a/xKcHDs6qEEEKM7Re/+AWDg4M89thjo5KPYcXFxXz1q1/l1ltvBeDpp58+5phdu3Zx8ODB+DFCCCE+nk40JrS2tvLYY49x4YUXjipIDfvSl77EBRdcwKOPPkpbW9t73md6ejqlpaXHnYkrxHiRopQQI/T399Pd3Y3T6aS6upovfOELDA4OjrqqAPCb3/yGOXPm8KMf/Yif/vSnaLVaPvWpT8WvYABUV1dz5ZVXEggE+NGPfsSvf/1rrr76arZs2fKeY9i7dy8LFizgjTfe4HOf+xy/+c1vuPbaa3nppZfe8+cKCwuJRCKsWrXqhB5rX18fl19+OfPmzeMXv/gFeXl5fOELX+Avf/nLCf38sFWrVmEwGFi2bBmrVq1i1apV3HPPPR/oNoQQ4mzz0ksvMXny5GNmth5t0qRJLF68mH/84x9EIpFR3xsuVN1yyy2nbJxCCCFOvRONCWvXriUSiXDHHXcc95g77riDcDjMq6+++p63FQ6HaW1tJTk5+UONWYiTRdbgCDHCypUrR/3bYDDwl7/8hYsuumjU1+vq6jCZTPF/f/nLX2bu3Lk88MADXHHFFYAySyoYDLJ27VrS0tJOeAxf+cpXiMVi7N69m4KCgvjXf/7zn7/nz9111108+OCD3Hnnnfz85z/n/PPPZ/ny5Vx++eUkJSUdc3x7ezu//vWv481x77nnHhYsWMB3vvMdbr/9dnQ63QmN97bbbuPee+9l8uTJxxTvhBBCHMvtdtPW1sY111xzQsffeuutfOlLX2LDhg1cfPHFAESjUZ599lkWLVrE5MmTT+VwhRBCnEIfJCYcOHAAgNmzZx/3mOHvDR87LBQK0d3dDUBnZye/+MUv6Ozs5Etf+tKHHboQJ4XMlBJihD/84Q+8/vrrvP766/ztb3/jggsu4LOf/SyrV68eddzIglRfXx/9/f0sW7aM3bt3x79us9kAeOGFF4hGoyd0/06nk02bNnHXXXeNKkgBo5bMjSUzM5Oqqiruvfde+vr6ePjhh7nlllvIyMjgxz/+MUfvaaDVakfNaNLr9dxzzz04HA527dp1QuMVQgjxwbndbgASExNP6Pgbb7wRnU43agnfxo0baWtrO2bpXiAQoLu7e9RHNBrF6/Ue83UhhBAT74PEhIGBgfc9dvh7w8cOe+2110hPTyc9PZ2ZM2eyatUqPvOZz/DLX/7yww5diJNCilJCjHDuueeycuVKVq5cya233sorr7zC9OnT+fKXv0wwGIwf9/LLL7Nw4UKMRiMpKSmkp6fz0EMP0d/fHz/mxhtvZMmSJXz2s58lMzOTm266iX/84x/vWaA6dOgQADNmzPhQ48/Ozuahhx6io6ODgwcP8tvf/pb09HR+8IMf8Nhjj406NicnB4vFMuprU6dOBZReV0IIIU4Nq9UKHJswHE9qaiqXXHIJzz//PH6/H1CW7mm1Wm644YZRxz7zzDPxpGP4o6WlhV/+8pfHfF0IIcTE+yAx4XgFp5GGv5eRkTHq6wsWLOD111/n1Vdf5Ve/+hU2m42+vr6TthmSEB+WFKWEeA9qtZoLLriAjo4O6uvrAdi8eTNXX301RqORP/7xj6xZs4bXX3+dW265ZdRsJJPJxKZNm1i/fj233347e/fu5cYbb+Siiy46pi/IyaZSqZg6dSpf+cpX2LRpE2q1mqeeeuqU3qcQQogTY7VaycnJYf/+/Sf8M7fddhtut5uXX36ZYDDIc889x8UXX3xMcemSSy6Jz/gd/sjMzOT2228/5utCCCEm3geJCdOnTweUHrTHM/y9o5d2p6WlsXLlSi655BK+8Y1v8Le//Y1///vf/OY3v/kIoxfio5OeUkK8j3A4DMDg4CAAzz33HEajkXXr1mEwGOLHPf7448f8rFqtZsWKFaxYsYIHHniAn/70p/zP//wPb7755jH9q+BI8Pggicr7mTx5MsnJyXR0dIz6ent7Ox6PZ9Rsqbq6OkDZPvyDeL+lhUIIIUa78sorefTRR9m2bRuLFi163+OvvvpqEhMTefrpp9HpdPT19Y256152dvYxOzcZjUYmT548ZtwRQggx8U40Jlx22WVoNBpWrVp13GbnTz75JHq9/n17VF1xxRWcd955/PSnP+Wee+45ZgWFEONFZkoJ8R5CoRCvvfYaer2esrIyADQaDSqVatRsp8OHD/Pvf/971M/29vYec3sVFRWA0vNjLOnp6Sxfvpy//OUv2O32Ud87uifU0d555x08Hs8xX3/33Xfp6elh2rRpo74eDod55JFH4v8OBoM88sgjpKenM2/evPe8r6NZLBZcLtcH+hkhhDib/dd//RcWi4XPfvazdHV1HfP9xsbGUVevTSYT1113HWvWrOGhhx7CYrGccKN0IYQQp7cTjQl5eXncfffdrF+/noceeuiY4x5++GHeeOMN7rnnHlJTU9/3fv/7v/+bnp4e/vSnP52UxyHEhyEzpYQYYe3atdTW1gLgcDh4+umnqa+v59vf/nZ8vfcVV1zBAw88wKWXXsott9yCw+HgD3/4A8XFxaOm0v7oRz9i06ZNXHHFFRQWFuJwOPjjH/9IXl4eS5cuPe4Yfvvb37J06VLmzp3L5z//eSZNmsThw4d55ZVXqKysPO7PrVq1iqeeeorrrruOefPmodfrqamp4S9/+QtGo5Hvfve7o47Pycnhf//3fzl8+DBTp07l2WefpbKykkcfffSEd94bNm/ePNavX88DDzxATk4OkyZNYsGCBR/oNoQQ4mwyZcoUnn76aW688UbKysq44447mDFjBsFgkK1bt/LPf/6TO++8c9TP3HbbbTz55JOsW7eOW2+9Va5qCyHEGeKDxIQHHniA2tpavvjFL/Lqq69y6aWXArBu3TpeeOEFLrzwwhNuXn7ZZZcxY8YMHnjgAb70pS994BxAiJMiJoSIPf744zFg1IfRaIxVVFTEHnrooVg0Gh11/GOPPRYrKSmJGQyGWGlpaezxxx+P/fCHP4yN/JPasGFD7Jprronl5OTE9Hp9LCcnJ3bzzTfH6urq4sc0NTXFgNjjjz8+6vb3798fu+6662I2my1mNBpj06ZNi33/+99/z8ewd+/e2Le+9a3Y3LlzYykpKTGtVhvLzs6OfepTn4rt3r171LHnnXderLy8PLZz587YokWLYkajMVZYWBj7/e9/P+q4scZ39OOMxWKx2tra2PLly2MmkykGxD796U+/51iFEEIo6urqYp/73OdiRUVFMb1eH0tMTIwtWbIk9rvf/S7m9/tHHRsOh2PZ2dkxILZmzZoTvo/CwsLYD3/4w5M8ciGEECfbicaEYDAY+7//+7/YvHnzYmazOZ6/fPrTn45FIpFjbrewsDB2xRVXjHmfTzzxxJj5iBDjRRWLvc+aICHEGef888+nu7v7pPauEkIIIYQQQow/t9vNeeedR2NjI5s2bYq3DBHi40B6SgkhhBBCCCGEEB9TVquVtWvXkpaWxuWXX05zc/NED0mIEyY9pYQQQgghhBBCiI+xrKwsDh06NNHDEOIDk5lSQgghhBBCCCGEEGLcSU8pIYQQQgghhBBCCDHuZKaUEEIIIYQQQgghhBh3UpQSQgghhBBCCCGEEONOGp0fJRqN0t7eTmJiIiqVaqKHI4QQp71YLMbAwAA5OTmo1WfOtQ6JB0II8cGdiTFB4oEQQnxwJxoPpCh1lPb2dvLz8yd6GEII8bHT0tJCXl7eRA/jpJF4IIQQH96ZFBMkHgghxIf3fvFAilJHSUxMBJQnzmq1TvBohBDi9Od2u8nPz4+fP88UEg+EEOKDOxNjgsQDIYT44E40HkhR6ijDU3KtVqsEHSGE+ADOtCUNEg+EEOLDO5NigsQDIYT48N4vHpwZC72FEEIIIYQQQgghxMeKFKWEEEIIIYQQQgghxLiTopQQQgghhBBCCCGEGHdSlBJCCCGEEEIIIYQQ406KUkIIIYQQQgghhBBi3ElRSgghhBBCCCGEEEKMOylKCSGEEEIIIYQQQohxJ0UpIYQQQgghhBBCCDHupCglhBBCCCGEEEIIIcadFKWEEEIIIYQQQgghxLiTopQQQgghhBBCCCGEGHdSlBJCiNNIc3M/a9Ycorm5f6KHIoQQYgJJPBBCCDHsTI4J2okegBBCiCOqq3vYtq0dgMLCpAkejRBCiIki8UAIIcSwMzkmSFFKCCFOI+XlqaM+CyGEODtJPBBCCDHsTI4JUpQSQojTSGFh0hl39UMIIcQHJ/FACCHEsDM5JkhPKSGEEEIIIYQQQggx7qQoJYQQQgghhBBCCCHGnRSlhBBCCCGEEEIIIcS4k6KUEEIIIYQQQgghhBh3UpQSQgghhBBCCCGEEONOilJCCCGEEEIIIYQQYtxJUUoIIYQQQgghhBBCjDspSgkhhBBCCCGEEEKIcSdFKSGEEEIIIYQQQggx7qQoJYQQQgghhBBCCCHGnRSlhBBCCCGEEEIIIcS4k6KUEEIIIYQQQgghhBh3UpQSQgghhBBCCCGEEONOilJCCCGEEEIIIYQQYtxJUUoIIYQQQgghhBBCjDspSgkhhBBCCCGEEEKIcSdFKSGEEEIIIYQQQggx7qQoJYQQQgghhBBCCCHGnRSlhBBCCCGEEEIIIcS4k6KUEEIIIYQQQgghhBh3UpQSQgghhBBCCCGEEONOilJCCCGEEEIIIYQQYtxJUUoIIYQQQgghhBBCjDspSgkhhBBCCCGEEEKIcSdFKSGEEEIIIYQQQggx7qQoJYQQp4ktW1q5//4tbNnSOtFDEUIIMYEkHgghhBh2pscE7UQPQAghhGL9+mbWr7cDsGRJ3gSPRgghxESReCCEEGLYmR4TpCglhBCniZUrC0d9FkIIcXaSeCCEEGLYmR4TpCglhBCniSVL8s7Iqx9CCCE+GIkHQgghhp3pMUF6SgkhhBBCCCGEEEKIcSdFKSGEEEIIIYQQQggx7qQoJYQQZ6Hm5n7WrDlEc3P/RA9FCCHEBJOYIIQQAiYmHkhPKSGEOAtVV/ewbVs7AIWFSRM8GiGEEBNJYoIQQgiYmHggRSkhhDgLlZenjvoshBDi7CUxQQghBExMPJCilBBCnIUKC5PkargQQghAYoIQQgjFRMQD6SklhBBCCCGEEEIIIcbdGVWUuu+++1CpVKM+SktLJ3pYQgghJoDEBCGEECDxQAghTmdn3PK98vJy1q9fH/+3VnvGPUQhhBAnSGKCEEIIkHgghBCnqzPubKzVasnKyproYQghhDgNSEwQQggBEg+EEOJ0dUYt3wOor68nJyeHyZMnc+utt2K32yd6SEIIISaIxAQhhBAg8UAIIU5XZ9RMqQULFvDEE08wbdo0Ojo6uP/++1m2bBn79+8nMTFxzJ8JBAIEAoH4v91u93gNVwghxCn0QWOCxAMhhDgzSTwQQojTlyoWi8UmehCnisvlorCwkAceeIC77757zGPuu+8+7r///mO+3t/fj9VqPdVDFEKIjz23201SUtJpf958v5gg8UAIIT66j0NMkHgghBCn3onGgzNu+d5INpuNqVOn0tDQcNxjvvOd79Df3x//aGlpGccRCiGEGC/vFxMkHgghxNlhvONBNBb9SD8vhBBnsjO6KDU4OEhjYyPZ2dnHPcZgMGC1Wkd9CHE22LKllfvv38KWLa0TPRQhxsX7xQSJB+JsJfFAnG3GMx64/C5ueeUW3rS/+aFvQ4jxJDFBjLczqij1zW9+k40bN3L48GG2bt3Kddddh0aj4eabb57ooQlx2lm/vpn16+2sX9880UMR4pSQmCDEiZF4IM50ExkPkgxJqFVqfrj1h/T4ek75/QnxUUlMEOPtjGp03trays0330xPTw/p6eksXbqU7du3k56ePtFDE+K0s3Jl4ajPp0pzcz/V1T2Ul6dSWJh0Su9LiJEkJghxYsYrHoDEBDExJjIeqFQqvjj7i/zHm//BT7b/hAcvePCU36cQH4XkCGK8nVFFqb///e8TPQQhRgmGo/R6gnQPBujxBOkZDNDrCTIYCOMJRPAGw/hCEXzBCDFArVLevGhUKjRqFRaDhkSjDqtRS6JRR6pFT4bVSKbVQHqiAYNW86HHtmRJHkuW5H2kx7dlSyvr1zezcmXhcW+rurqHbdvaAc7agHMiz5M4+SQmiNNKLAZ+F3h6wOM88uHrhaAPQoMQ9ELIC5EgoAaVClRqUGtBawRDAhiTjnwkZEJiNiRmgSlZOf5DGK94ABITJB5MjImOB7mJuSzKXsR6+3peP/w6FxVdNKHjEeK9SI4wfiQmKM6oopQQE8EfilDfNUi9YwB7r5fD3R7svV5a+3w4BwIcvb2lQavGqFOj0xz50GpUqFBylhgxYjGIxpSiViAcwR9SPkePurEkk45cm4lJaRamZFiYmplIcUYCxekJaDWnfnXu8PRe4Lgn0vLy1FGfz0Yn8jwJIc4AsRi428BRAz0N0NsEvYfA1Qz9LRDyjT5epQadGbQG0OhArR/6rEYJHrGhwBCFaBjCAQj7lY9IcPRtafSQkAUpkyCtBNJLIW0qZM4Ay6k//57oee5sjwkSD85e8zPn0+Bq4Kfv/pRzs88lyXB2JuHi7CA5womRmKCQopQQH4DD7aeyxcX+tn5qOgY42DVAS683XnhKNGpJNuuxmXVMzUzgnKJkEgw6zHo1VqOeRJMWk06DRq3MhFKrVMrsKFQM/QcouUgsNlycihGJKh8DgRAuT4g+X4jBQAi3P0K/N8i+NhdvHnTgDUYA0GvUTMmwMDM3iTn5ycwvSqY4IwHVh7yKfjwnMr23sDDprL36MWw8l8YIIcZJOAhd+6BtN3Tug6794DwIwUHl+xodmFLBnALmNEiZosxu0lvAkAgGKxgTlWKSSgNqjVKkUqlQZkkN3c/RxamRBSp/H3h7weeCwIDyedABjgPg/YtyLCgzqTJnQu5cyD8X8hcoYziJTvQ8d7bHBIkHZy+1Ss2np3+aX+z8BT/Z/hN+ed4vJ3pIQpwykiOcGIkJClUsFjt6IsdZze12k5SURH9//wfaaSMSjfHjlw9ww/w8puec3X9cZwp/KEJVi4vKFhe77X1UtrjocgcApfiUaTWSlqAnxaInPdFAltWI1ajDoFVj0GrQaVVo1ad+tlI0GiMwNKOqzxukpddHe7+PTrefLneA7qHZWkkmHfMKbCwpSWdpcRpTM09+kUqcnT7sefN095EeV8sOqHkRLvrRh15SJU4jsZgy26nlXWjdqXx27IdISFlal5ClLKWzpIIlQykCJWSMmAU1NBPqVL8WYjGIhpSCVdCjzNrqawZ3Owx0wEC7MltLpYaMMihcClMugMIlYDxz/nbFxDoTY8JHfUxN/U1satlEYVIhaw6tYe3htfx86c+5YsoVp2C0QghxejjRc6fMlDpJvMEwWxu7eW5XK099bgGz8mwTPSTxAQXCESrtLrYd6mFrQzeVLf0EI1EMWjW5NhNT0hNYPCWVPJuJjEQjZoMWo079kfo6nQxqtQqTXoNJr8Fm1jMpLQFQZlj5QxF6B4PUOQY43OOl3jHIxrpuIrEY6Ql6zpuWwaXlWSwtScOoG//H8dxzB1m9up5PfKKET35y2rjf/+lguMljUpKe/v6gNHs8U3QfhK2/VYoBn/yzFKY+jlx2OPw2HNoIhzcpv0tQik/WPCi5BKzZYCtSCjo6E2jNytK7iaJSKTOvNHplJlRiFuTOU74XDiqzuPqawVkLfU2w9+/w7iNKYS13HpReAaVXQuqUCRn+2R4TJB6cHS6ddCkHeg/w03d/ytysuWRbsid6SEKcds72eABnV0yQotRJkmjU8bNPzOLev+3i9sfe5e+fX0hZ9plxdehMFYvFqO0c4M2DDjbVOdltdxEMRzHrNRSlWjh/Wjp5KSbyksxYTVrMei167QQmGx+QWqXCrNdiTtGSl2IGjjRer+lwU+cY4I0aB//a1Ypeq+bcohSunZPDZTOysRjG59SwenU9mza1Apy1AWe4yaNWqyIcViaunqkB56wy5zY4vBmq/q4UB658UApTpzufCw69CfXroWmj0gMKFSTlKUvvJp0PyZMgIR30CaA3KzOOPi60etCmKMsJc+coS/sCg0pxqnMfOOtgw4/g9R+ArRDKroKKWyCzfNyGeLbHBIkHZwe1Ss1nyj/Dz979Gd/e9G0ev+Rx1BNZzBbiNHS2xwM4u2KCFKVOolSLnpvm5/HUuy3c+ud3+PvnFjI16+T2bBAfzWAgzNv13bxZ6+DNgw4cAwEMWjWT0yycV5JGXoqZwhQzVqMOi0GLRn1mJZF6rZqsJCNZSUYuKM3AGwhzqNvDW/s6qWzo4e2Gbr77/H6WFqdx/dxcLizLPKUzqD7xiZJRn89Gw80dR14FEWeIyRfCYDfselxZunXZL6QwdTqJxZTeS/WvwcFXoXUHxCJgzVGKUEVLlc8JGUr/J51xokd8cqnUygyv7NnKRzQMgw4697xNuH0/2e/8Gc2230PKZCj/hFKgOsUzqM72mCDx4OyRakrl+qnX81TNU/xp35+4Z/Y9Ez0kIcY0UbvDne3xAM6umCA9pY7yUdaMH+728PqBThIMWn6x7iDRGDx51znMzk8+RaMVJ6K1z8ur+ztZX9PFzsN9hKMxMq0GJqclUJRqZnKahWSLngSDdlx2rDsdPfP3GiqrnBTOTCZpipUDHW663AEsBg1XzsrhzsWFlGWfnMr88FTUM3kK6kQb7+f4TOwfAifhcVU9q+ySVr8Oal+Bilvhmj9IYWoihYNw6C2ofVkpRg10KD2fUkuUAlRqCdjyhopQprPyd/XMMzVUVTlYMNvIdXP7oH23stwvEoTsCjjnszDzeuX5+YgkHowPiQkf3cnsKTXSY/seo7qnmj9f/GfmZs49WcMV4qS5//4trF9vZ+XKAn74wyWn9L4kJpx6p2s8kJlSp0B6opFvX1rKA6/XcfOf3uHR2+extCR9ood1Vmnu8bB2fycvV7Wzv92NTqNicloCK8symJRuIc9mJsmkm5A+Sqejitnp8c9lZWkEw1EOdrl5t6mXl/e28+yOFsqyE7l1QSGfmJuLWf/hTx3DU1FhYqegHr1WfaKuBJ0Kp8tzLIbMuR00Rqh8Cvz98KknlJlTYnyE/ND4BlQ/D3VrlV3qEjIhbZrSFyqtBMypyjJLtcSE2RVKPJhWkQ7T0mDqxcqMP/sWZTbZi1+GV78N5dfBgnsga+aHvq/T5Vx1JscDOH2eZ3GsW8tu5X93/C/f2vgt/nnVP0kxpUz0kIQYZTx3hztdzlVnckw4XZ7jo0lR6hRJTTDwX5dO48H19dz1xE5+/smZfGLux/tFfLprcAyydn8HL+/t4GDnAHqNmqmZCVxbkcPUrATSE4wkGrXjsiPex01ZWRplZWnxf+u1ambm2piZa8PtC7LtUC+7mvv4/r/387O1NVw/L497z5tCdtIHv1I+PPV0oqegHr1Wff36ZtavtwOcdgHng17VOF2eYzHCrE8pPYgqn4K/Xg03/x1Mp8+bgTNO0AsNr8P+55WZaiGvsiwv71xl17nkSWBKVn4nYpTpZWlMHxEPUKkhMUMpQpVdBc6Dymyz6n/DnlWQOx+WfE1pkv4B4+vpcq76OMUDkJhwJjFqjXxuxuf49a5f882N3+TPF/9Z+kuJ08qSJXnjdh48Xc5VH6eYcKbEAylKnUJJJj3/dck0/vhWI9/4RxX1XYP816XTUJ2FywFOhVgsRl3XIGv2tfPy3g4anR4MWqUQdd2cHEozraQnGkgwalHLc/6hWU165mQkkuyLwZQ0Kh0D/P3dFv62zc6FZRl88fwpzCk48SWqhYVJp0Vl/ui16uN5JeiDOvqqxvsFoNPlORZHKb1CWRa248/w6HK4bfWE7XJ2RgoMQN06OPBvqH9dWTqZlAeFSyBzutIbyWhTluuJD0ethcxyHKoi2lTtlKirSOh+B/5xm/JcL/gCzP8M6C0ndHOny7nq4xQPYHRMGP73eyUkp8vzLMaWk5jDDdNu4G81f+M3e37Df877z4kekhAn7GQuBztdzlUfp5hwpuQIUpQ6xcx6LV9bWcJT79h5aGMj9Y4BfnfzHEwfYfnT2SwWi1Hd7mbNvg7W7OvgcI8Xo07NtMxErp+bS2mWlbQEAxaD5owt/jmcHuz2AQoKEslIH/uN/4kc80HY7QPUHeyjtDSFzy+bTPdAgDcOOnj3cC/X/bGLinwb37h4KkuL0z42z/snPzlt1G4eH/ZK0HiszT76qsbpOvVWnIBJy5Td27b8Bh49X1nKV7xiokf18eXvV5qUV69WluhFgmArgEnnjS5EncHLJR2OEef7jOPEhBM45oOw2weobQgRKV3K/EuuhbYd0LAeXvsebPy50ndqydfAZPvI9zUeTlY8gPGPCRIPzgwLshfQ6Grk8f2PU55azsVFF0/0kMTH0Imcf072OepMPAdJjjD+pDIyDrRqNZ9eVEROkonndrdyyf9t5uHb5jE958xo/niqxWIx9rb2s2ZfB6/s66C1z4dZr6E0K5FzilIozUokLcGAWX/mFqJGstsHqK3tHfXvo4tPI4/p6fZRWeWM94v6MAoKEkd9Tks0cMP8fK6amc3mhm421Tu5/bF3mZFr5esXTeWCaRlnxe8CxufkP3y71dU9wPGn3kqDyI+J9FK46Eew6dfw1PVK8n7h9z/w0qezlrcXDq5RekQdekvZNS55EkxZAZnlkFykFEPUZ8dbnOPGhIyxY0J3j4+qSiezK9JHL9P7AEbFBI0WChZB/gLoaVCa+m/9PbzzCMy7C5Z/A8xnT5+c8U4IJB6cOW6cdiPtg+18b8v3yE/Mpyy1bKKHJD5mTmQW5chjWlsHPnKvpNN1OdjpQHKEE3d2vGMbR02H+9m+vmXMAsBF0zMpSDHxly2HufYPb/Pty0r5zJJJZ03y/kFEozH2tPSxZm8Ha/Z30tHvJ9GgZVpWIkuL05iamUiqRY/FcPa9hEcmAyMTjZFFqZHHbNhgp6rSCUBqmulDzaDKSLccc3xNTXe82PWDK6ezpbGHN2sd3PXETkqzEvnGxVNZWZZ5zOv7dD8pflDjFYxHBrbLL5885nN3osHvTPsdnK7q6nup3d9BcYX62OTfkq4UpnY9Dm8/CE2b4IZVkJQzMYM93Xm6lR3zqp+Hw29DNKIsfSy5RClE2QrOqkLUSMeNCRnHjwmVVU48nhBeT/hDzZ7KyLCM+pkDNd1HCl1L/xP6muHAi/DuI7DzMZh7B5z/7WOKU2fiuWg8YoLEg4+npsMuth7wUlEx9kVCjVrDvbPv5Zc7f8mX3/gyf7/i76SbZaMkceJOZBblyGOeeGJ/vFdSXl7ihzoXjLUc7MM2Bj/TzkeSI5y4s+/d2ylWX9dH017lDeFYAWdalpUfXDmdx7c28aOXa1hX3cWvPzWbvBRpthqORNlxuI+1+ztYu78T50AAq0lLaVYiF0xLpzhDKUSdLTOijmesAtFwwjHWMcM769lsBv70p734vGEuuKCAFSvGTkK2bmtj29Z2Fi3OYfGi3FHfG1mIqqxyxotdZWVpXDAtg6XFqWw/1MuGWgefe3IXs/KS+P6V08lQaeInuI/rtNLjGa+12ScS2I4+5niB5Uz7HZyu9u3vpv5ADx5sY89I0eqV3csyy2H3X+EP58BF98P8u+EsPsfFuduVWTfV/wb7VuVrqSUw7XKlWXlS/llbiBrp6AIRjBETRhwzuyIdp9OL3e7G6fRSVJTEihUFYxamDtR0s3VLOympRpYuyT3mmOFilNPppa3dAyiN0kkuhCVfgf5WOPCCUnzd8zdY9EXshZ9l/0HvGRkPYHxiwoeJBzB2TDgTfwenq7q6Pg5VKTNijzdzPUGfwD2z7uHBXQ/yxQ1fZNVlqzBqjeM5TPExNtb55+jzxMhjhnskZWaa+epX32BgIMjtt5dz551jnwuO3pVupJGFqA/SGHzkeelMOx9JjnDizu53cidZW/sAer2G4hJbvBAwFotBy5fOL2ZjnZMXKttZ+cBG/vOiqXx22WQ06rMrEQmGo2xt7Gbt/k7WVXfi8oZINuuYlpXIJdMzmZKeQLJFj+UsL0TB2H2iji5QjXXMtGkpDPT38PSqt+lq70Sr8bBba6Wn2YjP6+Giq28gp6AIgIP79vDEb/5Ed2+Epv1puNqmY0lIwJKYRGpGJjt2+DhwYBA4Uuwa+VrXaTQsK0ln4eQUtjb28Gp1F596eBtlyRaK3coxJ3pSFKOdSGA7+piRgWXnzs74G4n587MAmWp9KjU392M0aCkqsjKr4n2udBcthbSpyoySV74BVc/CtQ9BWvH4DPZ00ncYal5SClFtO0GlgfRpUHYNZJSCNXeoR5S8fRmrT9TI4tPx+kgVFibQ3d/Ljv3NqHQhatp17GzcSUqajuz0FO765JFeNvf99mkaDvVgtZjZXpvHzOlZWBPMZKTYyM9Op6rSSWWVk9wcCxWz05l99Gs9KQ8WfQmmXwP7/gWbHyBz65/YF7yBA7HPUT4jE3j/wokY7cPEAxg7JixblsuiRTkSD06x9vZB9AYNxcVJVLxPTMhJyOHO8jt5dN+jfO3Nr/GHFX9Ao9aM00jFx9FY582jzwFjHbNwYTa9vU7uv38dhw+3YjT6eeONfTidSQwODnL33XdTUFAAwLZt2/j+939Fa2uAmpos+voWYrVaSU5OJicnhzVrOtm0yQF8sMbgI89LkiN8OGdCjiDv6k6i+noXPn+Ycysy3rd3j0ql4vxpGczKtfHMDjs/W1vLM+/a+f6V01lRljlOI54Y/lCEjXVO1u7rYH2Ng8FAmPQEAzNyrExJT2BSmgWbWQpRRzveUj1Q+m4drDnEi6s342g7zOXXf5ILV8wE4LknH+HRX94/6vjOmiP/n104nXankYKCRJrqa2jatxqAg21w8N3RY7jtKz9ldsUiKmanY9Q4cR1+hkZ1McHBYgomlxCKmuNJ0HlTM1g4KZX1NQ5eP9BJbSSCr6Ob+UtzuPzyyfHbPNOuipxORgb3735386jtbeW5PrWqq3vwekNMn556Yn17EjLgvP+Gxjdh3z/hjwtg7qdhxQ8+Ns2iPzRnHdS8ANUvQNc+UOuUmVAzrlcKUonZUogaw/GW6gH4A0H++fIONm+vZ9rUNO7/5nWAEitSF95IIBga8zYXzynjymVL4ufxtyq34+xzAbDxwOhjp03KY/UDPwWU2Ver33qdpo1qalvyKJ2cT5I5iY5231BRLA+Wfg2662HXM1zR+yjhA2vQFv6YwsuuGzUzUGLCqXO8mPDUU3MmclhnhYb6Pvy+CPNPIEcAKE8r54apN/D3g3/nu29/l58v+7m8JxbH9V7nzVgsxvbtB/j979dgtx/ii1+8i8LCcwD46U9/yg9+8INRx69adeT/y8rOYf/+MOXlqezevZuaGiVH2LMHPve5x0b93E9+8ggrV5azcmUhBkMnbvdqDhwoJRotpaysDI9HN2aBaeR56b0KJxIPTq7TLUeQd3gnUXpahD0v/4SgfTnJ1quZUpI/6vtjzWJJSdDzxfOnUNni4oWqdu7+607mFyXz7UtLmV905jQG7ez38+ZBB+sPdLGlsRt/KEp2kpH5hclMSbdQkGLGZj67l+a93455I3uCDPS72LfrHer2V1J3oIr6A3tx9XTHj1156TxgJg6nB9eAHpVKhcFsIyUtnaycLMyWRIIhDe5BaG5R43AriU1RcSnX33kvLfYenF19GPQhdNogblcfPY4uZs+ZSsUCpfHmy/9Yw+pVj44aY1JKFklpxZTNnsOtn72N7LxCrpiVzXlT03hlfweb67s575dv8YXzp/CF86eg06g/1HrrkVdO4P23wz4bHX116ejtbcWpVV6eys8eeYeX3vVwSyDExctnoR7RyHzMWSwqtbITX+582Pcs7FkF+/4Bi76izDYxJEzQoznJIiGwb4O6dXBwLfQ2gtYIGdNh1k2QNk3ZofAsX5r3fjvmDceE/PwEdlc3sL2qll3VDeyqbqC6oZlwOAJAqb2I+795Xfz2MlJsOHv7sVoSyclMIS8rmQSziVAQ9CTy9pY2vJ4wAF+5/Up6XAM0NffQ4XCj0UaIqkJ0dbuYlJfJ9LK0eNF1+WdeoMfljo/PoNORn5HDvPJirr98AddfuhTSSjBc/H1or0S7/1/wr8/AOw/DFQ9CVjnw4XpwSEx4byOfn+GLQhITxleSNcjOZ5/DP2cRKbYVTC4efQF6rL/3JblLGAwN8vKhl7EZbHxnwXcmYujiNPB+M4ZGnjd7enrYtGkTO3fuZNeuXezevRun0xk/9gtfuCx+m06nkneZzTays7OZNCmXxMREvF41PT0Rdu3yYDQqRaGKigq+/vWvU1vbhd3uwGyOYDSG6enpob29nRUrZrFw4UIA/u///sUDDzwwaozp6TmkppawcOECfvSjL5Ofr+TJ7zXLR+LByXe6xoOz993eKVC7bwuH923k8L6NrHn6/zFj3rksvuBSFl94KTkFRced6aJSqZhTkMyMHCsb67p5vaaL6x/eRkW+ja+tLOG8qekfu0JNNBqjqtXFG7UO1tc4qOlwo1ZBYaqFJVPSKE63kJ9iIcmkw6Q/u6ckD/dpMho0eLxKInB0Uaq/rweTXhNvZHto/6v86RffHnWMSq0mPbuIwikl5OYpU8Pt9gH0SfP58WPvsmDB6CLpM3+voarSicpgo7Q0hWAwwp56E8uv/PJxG6I7nB527uqkoCCRyVOn88lP30PjwYPYDzXQ52yjv7eT/t5O7HVvs/Ky88jOU6btdrc2UuRtZeH5Fbxy0MWDr9fx7I4W7r+6nJXTM0cFihNpjnj07iIf9irKmTwt+OirS0dvbytOrYICK/9+eytdvS5WvbaR7PQUrr5wAdesWMiFCyvec5YLpiQ49/NKE++9z8LGn8O238H8z8KS//h47mQ26ISG16HuVWjYAMFBZfZTeinkL4T0qUrzd2MSnOXLVIb7NBmMmnhxaORrJBKJ0NzuYHJ+NgDNzW6u/OoPcPS6Rt1OalIiRTm5nDtLeZM5/Jp7+v/9iCWLC455X/HMMzVUVjnp7fGTkmqistLBJy+4mOllacctkA1/PTfXzNfvvI7Kmiaq61to7ujA4/PT0NZMQ1sz3QM9SlEKQKXimT39zJn2OaZNqkN14N/wyDKouAUu/jGFhckTEhPOpngAx255Lk6tfbu30bhzP4079/PSY48xe+FsFl+0mKUXLyUrP+u4MeGSokvwhDw8Xfs0ifpEvjznyxP1EMQEGD7/WSw6+vuDwLHnNYfDgc1miPdk2rVrNT/4wbdGHaPRaMjLm0J5eRlTpigF0erqHhISFvHCC7VcddXU+LGhSIgf/Ox1Nm4/RI/Oy+x5DnYNNHKoxsGUC6dw8XXTaOt0k5ahx5KoIRKLECPGBvcW/vnPt8jJstKT7ODSOy6lpa6d9kPt9Dm6cTrbcTrbqa3dyN2fvSpelKqqqqKzs5MlS5aQkDD64tvRBSvJET660zUeSFHqJJp7zgJW3vhFqrdtoMN+kH07t7Nv53Ye+eV9FBVP4+5v/pzS0knHNCAd2Vh65aJclpSksrmum80N3dz5+A7yk03cdE4BN52bT2qCYYIe3XuLxWI0OgfZ2tjDloZuth/qpd8XwmLQUJKRwLUVOUxOs5CeaMRq0mLQnt1Jx0jDDcOLS2xUVGRQUJCoPJ+11byz8XXe2bSe2r27ufe/7qeg/Gpqa3vJyJhB/uQSps+eR8n0WZSUz2by1DKMJqVh/tZtbfz61zuYXp5KeXnmMa85UHpBeTwhUlOMx+zSd/NNZWPO1hr5pmn+vPlMr5jPzl2d1Nb2MqnQQIKhi7rqKur2V1IyfVb851597hmee/IR1GoN+VNmUnzucvoCs7j7r16WFKfxk2tnMDldCUQn0hxxrCsnY11Feb/gdSZPC5YteidWJBLhvntu4Pn177Bl/0E6nL088uxaHnl2LWajkduuWsHnrvnkMX+bxzSWXv4t6GlQdp7b9nvlY9qlcO49Si+q0/WChd+tzIZq2gSH3oSuobVfyUVQuBhSpij/b0pWZoCp1O91a2eV4T5NJcVHYoLLPci6t3fx8lvvsnbTLtRqFV1bnsZuH+DgwT6WzJ6NNzTI/BnFzCsvYV55MfnZygUth8PD6ufraW1xk5efyNSStDEvdBUWWmlrH2T69FSam93UN7iwWHRML0sbs5k6jI4J3733RnbuVOLB1Kk2kjNi7NhXx8799ZROPnJRpLuvn1u++QsAMlOTWVheys0zMrlix99JqHkRzv+O8voemll4smKCxAOJBxNp0bJFXPTpy9j35n467S3s2bqHPVv38If7/8Dkssl84Ydfp7Q09dgcYWsbh7blMWneTB7Z+wiAFKbOIsPnv/nzM7nooiLKy1OJRqPs2bOHV155hZdffpkdO3bwyCOPkJe3km3b2snJmUF5eTkLFy5k3rx5zJs3j5kzZ2IymahpbGfVi9v47dptZE0L453dx1qNh+fWuuj2d9Pr72UgOAD5QD7sAHb0Dw0mDXY51ej7dKhUKjStGtQqNRqVktP5gyHC4Qhqbww0MaIroqgujJJLFlm+dHyHffiafPgO+7jnwD0kNSeRbEym4bEG6tbUodaoyZ1axPKLzuPWmz/F8rnLsegtYz4fIDnCh3W6xgMpSp1Ek6YUc8MXv47/U19k88Z9HNj9FodrNuPtq6W5sY5pZcV0OlVs2GDHSD0GQ5Sk9Jm8tclBQ4OLfneA5mY3FbPTubg8i+kpZt6qdtIaCPLA+joeXF/HuZNSuGJmNpfMyCJtAgtUwXCU2k43lS0udh7uY2tjN92DQTRqFYUpZubk28hPMVGUYsFm0ZNg0J51TdyP5+hlesONwmfOSMbRspffPP4i9fvepq+7c9TPdbQ2s/Sy4SV8hVz80uZRt+cejGE0KTOvnnm6BpcrAMA3vjF51H3v29sNxJg5K52Kigxqa3ux2wfGbFwOo3fcG7mEcNjIr2WkT2H2OYtxOD3U1A1QUKAhI91Coi2Z7PxCOlqaaa6vpLm+EoCk9BxeK5rPO3Wf5vMrpvOfK6eeUHPEo6+cHC9YvF/wGnlifq8rIifjasmHuY2Pcr/jteOHGJtWq+XeGy9kxewytu0L4lM7+eeaLWzfvxeP30MsFmP+/CwO1HTz6rpDHOio4orz57N9k5uGehcGo4ZDh/q5/PJJTC8rgSVfo6epjnDtetKatqKpeUlp+l16Jcy8Xlnyp57Aws5AJ7TuhNYdcHgztFdCLAKmFEgthhmfVD4nZimzoXSmiRvraeboWUjDzcIz8zSs2b6RF36ynar6eiKRaPxnkhIttHZ2x8+/D1/85WManBu1XjIyLLy9pY2XX25ErVKRnm4eddzefUo8mDUzHb1eQ1amBb1eEx/DMY3LOTKTa3bFsTFhVDzIsFBSlMvKBeditw/gcHjIyLDQ3efmwoWz2bqnhq6ePl7YtI0XNoFep+WCkihf2/9NLl3yN6XZf/askxYTJB5IPJhIU6ZO4dZv3oj3lrvYtKGG6nd30rS/ksGeFprrmiktL6Sl3c+GDXZ0oVYsFi3WjEm8tamDhgYXef1lZJwb5pG9jxCOhrku7TNn5CyOs93Rf+fD573zz8+huXkP99zzLHv2bMLhGJ0jNDY2csklNwIwtczKRTf9m8b+RnY3H+D/Gh9j0O6gO9SlFJxSgBTYH9CSYrZhCViwaC0kqpJRB5LJwUh+diqDfVGcHUEKc1Oxmsw01XkpL8ugeEoKKpUKNWoaGvs4UN1DeXkaNpuBtvZBcnIspKaaiMaiOLoHsbf3YitUY5wP3rCXnv4Bunr70SdEiGoDNCU2Ycow4XP4aKk5xFM1h3jqt4+jS9eRNi+NRZ9bxKTUSUxLnkbGomQWak1ceF7+0U9dnOQI7+10jQdSlDoFtmxtp2p/mMLiy0kvupQeZy82cwedThVr1jRxuNmN48Dv6e3Yi0qtISO3HGvGbKL+Cir3KFP1y8rS6Gz3QleAC6clk72okK2HuqnrHOR7L+zn+y/sZ1pWIounpLK0OJ05BTZsZv0peTyeQJh6xyB1nQPUdrrZY3dR3e4mGImiUavIsRkpzUokL9lMYYqZ5KEilFEns6HGcvQyzrKyNMrK0nC7+vjGLXcRjSivAb3BRFbhXBZfeBHX3HgtaRlZ1NR0s3VrG1u3wkUrC0lNM7Fhgx23OxC/vcoqJ+FIDEuCjoxMMw6nJz7ryW4fYPeeLvy+CA6nj4rZ6ZSWpsQLZGM133x9fTNVlQ6cTi833VQ66nsjC2xAfGnf0Y/x1nu+xq33fI3qfXWsfvoF6vdtxtlaSb+znRTVu8wv/m8efquRf26385lSHd/73nJaWwdZs+bQmCfb99qSdqT3S2ZGnpjXrDl03CsiJ+NqyYe5jTP1Ks3ZpKaml8o9fnJyE/nGbbeycdNyega7KMvO5kBNN8+vrmdb1QFe2fsc//uXp7FZrEzJnkxR+iTCh/OoqkxQevaoVDT1JlHbewHTiy9nbnqzsjtd1dPw7iNK8adwEUy+4MhufqdiGVw0Cq5mcNaCowba9yiFqIEO5fumZGUGVNlVkFwI1jwwWkGfOLFFs9PY0ct2hvs0ffX/PcxvV70YP25Kfi7T86fyqSsWc/M1C9FqNaxde4hNm1tZviyPefMysdsHcPX76ezwxm+vt8dPNBpDb9BSWGgddb97dnfh80dwOnzMrhgRD4bGMZb1rzdTWXVsTBhZXANlN59j4kGGhdLJ+Wx44mf4A0Fe2rCLv/5rE+9W78PZ38u6A33cdNlVMFhN7NHz2Ge5CsPSb3LnnTOoru6hublf4sFHuF8x8bZsaWdvjZ/CGYvJnLaQbkcfyaYBWtr9So5w2E3rO3/D1WlHrdGQWTiFpOwpxHwlDGyeTuYyFY/tf4w6Uzcp+y4B5PVwJjn673zJkjyWLMmjs7OTCy/8FNGocnHCZLJQVDSfi646n/NumEWXpovv7fgWtc56/F29oFaO00VNaAMJpCemMjtjNvX7fdgPhjBEE5k/q5CF0wrIyrCiVWvZu6eHjbvb8PijpBbbmFuRjscQPrJsu+LY8W5/o4mqqh7cXRpuuqmUfrUGmz6RVJMFh8ODzxFh3mQlTtjtA5QUJGLwDuA+3EtpaQrzZmdy2//eRjgaZl9lAy88/QYNVXvpbmom5Azh2etBq9NS2bmXDYffwNM5iD5Hz4YmAymHsyhNncqiovnMTJvJ1OSpGLVGiQkfU1KUOona2gfYsaOT3h4fJqOWkpJkrFYD6zeEUJtSqKxyotaoSUzQEUibTCzcS5+zla6WvXS17AVWYTTb0AyupKTke1jMWrKzLAz0ByiKxLhxfgFtnQNU1ffRq4rg9If4585WHnv7MADpiQamZiQwLSuRojQLOUkmMq1GEo1aEo1aEozKsrlYLEY0BtFYDG8ggtsfot+nfHT2+2l3+Wh3+Wjp89Lo9NDR7wdABaQm6MmxmTh/Wjo5SUZykkxYzToSDFoMWvXHrvfVeDl6tlFXawObXn6KV57s5Ie/UXavsNqSWbLyKgJBNedfegWdrlyq9/djTk8nqkpk565OKisdVFY6UAHp6WZKSpJxu4MEAhG2bm2jxe6msNDK8uV5GA0aqvY6+fGPtrFseS6TJydjMWspnpLMgZpuOjs9eEqSCQYj/OlPeykosHLJJUVkpFtGjRcgBrhcflY9eQC1RsWyZXns2tXF86vrUalVXHpJEfkF1njiMdaMKoD0rFzMaeeTNm0+K29IoiS/G69ngBXLppAWPcwbTQ7+4+4b+K97tSxbfCnZmUuJxS6isDApfkUgKUnP7363h7q6PoD3DDjDwfxEvNd01g8z1fXooPhhbuN0nWIr3l9zcz99VQ6siXoMxhChUBSXK8CkIhtpg2bMWh1VlU58vgg6nZrZJdOobT6Ey+NmV0MluxoqUalUbG2eTFLWXWQkZhMMRtBoVBiTEmHK+TgS5tGua2ey6TBWXwN07lcah8eioDEoM5Myy5Ud7GwFyswqU7JSJDJYQZ+gLP+LxZSfiYbA33/kw+OE/lbobwGXHXoPQXcDhH3Kg9SZlNtMnwaTzoekPLBmKbert5zVTcrfz8jZRqnpOho31/DImnf40X/cygULZwNw0+Xn8U5VHUtnz+HGK5bQUBOgssqJNphCb68fu32ADRvs2FuU5uLp6WZqa3uJxWLY7W5isRgFBYksXpKDqz+ARq1i7z4nq1fXU1xiY/nyPObMzeRAdTcNjS7SM0ysXFE0qtB12WWTR401XqiKKTHhyVUH0KiVmPDaa01U7e1m9qw0Lr540vvGA6NBz3nzZ9Fco6Uk6RxyJ6vB3MMV162EBB3O1x/j9XX/5L/+axVzy0rJKLqKT3/6FgoLKwDlb+zNN1t4+OFK7PYBQOKBOH21tw+yY2cHvb0qjCNzhPUh1JZkKiudqNVqEhK02DLzIOLD5XTScaiOjkN1wFpMCVbmuBZTett8NvteYPqUXiY77okXa8/UHjhnupHLyMrLUzl0qIZ//esp/va3fp5++mkAsrKyWHnpZQxEAkxdOQm7vpdufQtvmJ7jjf3PYVCZ0HitDHTqwVfEtLx8irPzaDoQJOxXoY7q0OXauDAnkeaQG6NRQ9UeJ+++XhPPEawJRkqKUzhwYChH8CTjdHpZvbqOZUPxAIZymkonFUMzaWND8WDVqgOo1SNyhOfrUalUXHppEfn5Y+cIKpUKnUqHTq2jqGAyKbl+cpnFFbfbmJztIRgIct6s83hnVwv7G9pY/dOfoDNpyZqfT7TCzZ7pe3jb+SaRWAQVajJ0OfTVJNHrS8H32hyuva4YzXEu0ElMOL3IO8aTqL7eRe3BXlSBKPPmZ7FkaW78e253gEFPiMREHbm56bSk3s2ixd+nKDfEc8+8wJ5tG+myV+L3uuh1tFNbq1SQIcbf/nA/RcVTySmqoKs3EUuCkWXL8rh5cRED/hAtvV4O93pxDgQ43DXIzsZeQsSIHn+o7ynBoMVm0mE16ZicbmF+YTJpiQYyEw0kGnWY9RpMeg1auep9wiqrnOze0UztrhfpbXmL2n174t+r3ldHp8MAxLj3O7+Kz2qqqelGq9VTMTsdu32AzZvb6OvzUVRkxWjQYjRoCAYjWK16nM4wBw/2Ym92M29+FitWFACwdm0TTqeP9a/bWX5ejNLSFPILEnE4vVitegoKEln15AEOHOihxe6mr08pQHZ3+xgcVLYMv2hlIenpZpxOL4cPu8nNSaCgIJGHH6rE4VCS0337nfHX+/Csq7F6Uu3b66Svz09qqpFzzimgrGxu/HtLpqejdbXRSAxvfw/r1j4FPMWrrxZxxx2fprz8Yurro2i1KlJTTUyd+tF2iRh+82a397N5c9t7XlH5MFNdV6+uP2Z71ePdxvHeSJ6uU2zF+6uu7sFT34dBE6aoMAmrVc/sinS8njDBYITmZjc2m4FEq46ZU0r41qUXUzEnlU079/Pkc5vZuLOK9m4HVXWN2JsH6dX24veH2VJVxbNvdlFWNAW1P4m0ZCvhZbOZv+gSCHnB06PMYhroYKCjhci+t0jUvIQm4vtwD0StUwpZJpvSmHzK+UpD8oRM5bPeAjqzsnueXJQ4YZV7HKx9q4o/vVTPOwcq8fqVc+9fnltPxGNDWVJXwPZ/HNm9yGJQdlidXZHO21va2fFuBykpRnR6NXMq0rG3DOD3h/F6Q7S3D9Lb50erVbNiRQF33D6dt7e08+IL9fT3B+nt8zN/XhYrVyhXiPfs7kK59ASbNrfSUO9iYEBpqvvKmkNEwjEAppelsfKi0TEhJzeBvXsdbNuuLCfZt7+Hz35W6Sk4fIV9rH5UDoeHDRvshIIRcvMSuXzlpNGzs865i3f+3UU0tpudB2rhQC0b1v+WP/7xYu6++zPYbDNYt64JtVrF1KnJH3nXoLFiwljnX4kH4sNoqO/jYG0v0UAy8+dnsWTJUTnC4HCOkEFL2rUsXJhNYQ7868n17H57F51NdfgG3fQ6uylrvorZRSYq/Zt585E1LHrxExRPOoeGBh02m5kbbywd87VyIk2ixfhbv76ZV189wLvvPkdn50Z2794NgEqlZubN57K7p4Y2DjJwQw8AB3WDWFWppLsKmZyYgzmcwsE9IQZ7o2Sjx6g3UEQKqVELgyY3zkEvBw/20tLkY/782LE5wno7y5cP5Qj5iTgcR3KE1avraGx0EQxG8fsjtLS4R+cIR8WD3FwlR3jooUqczqEcYZ8z/np/r5iwb9+IHGFB/qjVG8WF6XQf7kKlUjPYM0jDuhpYB2m5OSy7ZhlJs7JpC3fj17qI5raQMPkA9erNLH7mz8xIm8H8zPmck3UOM9JmYNQa3/d3IjnC+JOi1ElUUmKj9HAKqXotM2elk5FuweH0kGQz4HYHOHCgB4tZh90eobV1AJ1ezeJF87jxrs+yaOWN9HYPsHfXTlJTTfEp9Fua7LQeXEvrwbUAqNR6ktKm4Gmby+4tZSw+bwmZOQU4nCEKYhDqi+I75GFaeQqLLyzA5Q3iC0UIhqMEQlEisRgqVHi9Qdz9QYjGGHQFmFSYxOSCJGxmHWa9Fp1GhV6rVj40MgPqo6irrmLvxt+xb+vrRMLKMjuVSoPBNpuyuZcx4DGye08nxCDJppwo7fYBLGblSlpqmolUoK/PT3PzAPPmZbB4cS61tb00N7txu4O4XH60Wg3WJAOdnR5efLGRSUVWLBYdzm4vFouO0tIULGYt7e0eiqckkZOTgN0+wPTyVPyBMDqtGnuzm55eP9ZEPQUFVipmp8eXF27d1kYoGGXR4hwy0i2EQkfKnj09SkI1vFQDjt1BsKamm+3vKEt8Fi7IOWapYEa6hauuWYJ78Dk2bnwTl2s7rrotdHYe5he/uB+1+sfcc88PufXWuzjnnOyPfCVweNrr5s2tNDa6gPe+yv5BfZDtVc+0KbhCuXLV152MxRAhJ5wUfyM2nIh3dnpoax/E4fDi6gvw0suN2JINXLpsPnOnlWG3D1DX1M6b7+xlUm4eqckm7C1u9h0+wK76Kl7Y9AYAKYnJnLu/hJL8Qs5bUMaCWaV09s/EbJnDq7UN9Hb2cc7cZK65JFOZ+RQYhIgfwgHlA0ClYtATxt7iod+rorA4g5z8NGXJnSlJKThp9MrsK63hrN8d76PwB4L84amXeeiZtTS2tMW/nmiwsmjGPK6/4GL27O4iBtiSjPHXjN0+gNmixIS0VBP19Y3YW9zMmpXOz366nJ07O3nzTTs+fwRbkp7MTDM9PX4OHuzF4wlRNMlKb4+PWAx0OjXFU5IwW7Ts3NlJTo4FyARiOBweli/LY2AgSFqaiU2bW3H1+bElG+P9paaXpZGWauLtLe2YzToWL8nhj3+sPPJYEnRjLuM7Ogl5e0sbO3d1Ulhg5aabSo/5fkaGhX/86Sf87qFN7Nn2HO80HeKAM8DGjS+xceNLFBQU8f3vr0ar1XLBBQUf+dx5KmOCxANRXJLMtN4Uksli5sz0+N92UtKIHMEyIkfQqVmyZB63fOFTLL3iUnq6B6h6Zz8ZmYlDOcIVDLzup/qdx3mRBwFQqQykpRXj9y/kzTfLufbaleTlFfDmmy1AjKoqJzt3dgHHbxINR5Jgny/E/v3dUsQ6hd555x3efvuX7NixhkhEKfSoNCoSZydhW27lacdf0AVt6Hw25mTPZFp2ET6ngeSEBMIGLZMKkwHYs3YPLc0DzJuXctwcIWlkjjBpKEdwjsgRLEM5QvGRHGF4NlRBgZV33+2gs9MzVLCyUlExIkfY2kYoFGXRohwyMiyEw++TI2SMkSNsH8oRFo6RI2RYuPpTC3D7f87m17YT6a+j+UAV3W3tPP/HZ1Fr1Fx/7+c476qrcXk8JGXG6Nd0YB+w0+5p57H9j/HHqj+iUWmYljKNRdmLWJa3jFlps9BpdMf8XiRHGH9SlDqJcnMSOeecLCalHdnOcriXgt8fxmzSkZVtobfHhwrw+8Js2NDMcNPpgoJEUtIuiM80AZgxK5OLr/8S9oZKGg7sJhz04XLUsHFNDQBtTbdw1W3/xe49XQz2u+ltfY3UzCImp89jSooBfZbSP8Lh9LDl7XZ6e30sWZyDJ6ph845eag504/OHMZwT5vplReP8jJ0dmhvr2LnpZQCy8qYwd9k1FEy7kNr6EAUFVpKSzMydk4nbHaCmpod165owm3VkZVmIRJSr0/PnZZGWZqS11Y3fF6bfFcBiVv58W1x+GhvdqNWQkWGio32Qtw+5MJt0ZGSYSEk2MmlyEk6nlz+/0IjJpOHKKybj8YbZtasLjUbFwgXZ5OQkUFvbR0urm/w85U1Pe7uH9vZBZs5SmuBmZilNcAGuuHISL73YSCgURaVCWdqnhsZGFwsW5nD7beXAkb5TlZUOenr85OYkMHPW6GAzsjfV3LnZqDUXMXvWzezr7ubFl/7N4P4NeO37+dznrmLOHOWNUUNDAwcOtDF9+vSxn/f3mcY+PN01N9fC6tX1hMMRtmxpPWlvvD7I9qonYwruqW7CKD6YwsIkCmdnQNgPCRnxr9vtA7jdQSLRmLIxRIEVFQMMDoRY/3pzfJnU/PlZFBQkMnVSTjyhLyhI5GbHcibtT2bL7mo6epz0DvTx6pZ3eZV3+f2zKt545Pe02n1oNCp21h2gzz1IbvksnKSQllcUv8CwdWsbW7e1s3hRDosX5/La8/U8/1Id4XCURe4c/mPpvIl66s5oOq2G3/3tRZrbHRj0ei5ZfA7leTMxkcb8eVno9BqmFBuGZsB6+dWvd5CZYVZ2OtKo4jHBZNRiGDoX79zZidmiZUpxMpV7umhtHSQajREMRmltG6S2todIBKZPTyEnN4HBgRAJCXr++tf99PT4OW95PmVlqeza1RXvLXXttSVAjFAwSvWBHsqnp8bjwayZyuxdrydERUUG08vSWL4sl7WDh9Hq1CSnGHj55QZ8/gh+X5is7AQuWll4TCP21pYB/L4wZrPumARlZH+qFedPJ82WzrenRenZ8ReeeruBp6vhnDkz+Oxn58R/5rXXXmP58uUYjWNfBZ/ImDDe8QAkJpxucnISOGd+NoVJR/rXjMoRht739fb6UKnA7x+RI8xUcoTUtMRRBd7LKs7HcUMz1dU78TQMEg0EcDqr+cc/qgFobr6XO+/8FuvWNdHT001v7yaysycxdWoOgUAAg8EwdFw///xnHW1tA1x//VT6+4M8++xB3n67hcHBEHa7W4pSJ1ksFqOpv4lHX32U9etfAMCQZyB9eQYFC6YS9lpJN2UxL7OEwW4tgZAaXxO8tdGN2RwjK0tDJBJDo9Iyf34WaWkmWluV2bL9/QEslqEcoeWoHKFjkLffdmEy6cjMNJGSYmTSpKEc4c9DOcKVk/F4juQIK1YUHMkRWtzk5x+VIwxtlJGZOSJHuGISL77YSDg8lCOsGpEjLMjh9tuHcgTHUTlCbgIzZx6VI4yIB/PmZ6PRLqWi4jpMhiivPPs6e7e8Td3eWq745GIKitOBdOyNdhJDeSwuXUw4GmYwOMhh92Ga+ptoHWzlbwee4rH9j6FXG6jImM2S3CUszV1Kia0ElUolOcIEkKLUKeRweuh3BcjOMpOTk0B7uweIMX16KvkFVowGDbv3dMVnyBzdb0Hp6+Plypu+QFlZGu/uaGPjht343U2ownaa66uZt2ghFrMWg0FDW88hat99EoAtLym3kZScRmJyJpbEDCKmBaiM5VgsOhaea8PZWoWrO0gMHb5BLf19Pej0BnQ6PVqdTmZHnaCR/ZcSzW6e/cufMCXmcsEVN+Hxhimbu4J5592AJuEcrKklOPqD+BrCtLQM0tIyQH19H3MqMrBa9WzZ0kZ7hweLWQcxCIUi9Pb6CAYj5OdZMZt1pKYY6ej0oNGoOHiwl7q6PiLhKBqNmnAoisPpIxSM0R8MYrFoUalUBAJhnvtXHT09/qFApaKgIJH6+j4a6l309fpJshm57rojFfuduzrjr8/hZR3ZWWYKChJxOD1MnpzMeecXcOBAD6FghLb2QbzeEAMDQex2d/x2ht90paaYOOecLCpmpx8zi2rfXie7dzuYOzeDFSuK4ldIppPOhXMm8cTWT1Bd18ADuwM8MMVPutXIT37yE/7617+yfPly7r33Xj7xiU/E32DB+19ZGDnttavLy/r1dtavb56QN17D46iu7hn17w/izTdbWLeuiUsumcSdd578Jozioxk522XevEzMQ1ckQdmFr7nZjdPppbLKCUBaqmnUjmzDfX0uW34O37jnMnbu7GTXnlb6gz3U2Zupszej1kSYXppBONRNR/sgW2vepdlh59U9r/LFn4PJoCcjJYXC3HQCg3pKbYsAWLw4lz3V9XS4OtCq9PQOmOnq7sOg12HQ69DrtGg0MjvqRIzc0W7aNBsvvbWNZ17ZxO++81XCQeVK8f/7z0+zc3cbNm0BRp0Bh8NLSB3kH/84iFqtYvbsDG66aRpPrjrA7l1daLQqSoptTJpkA5SCot6gYfHiXFJSjfHl/g6Hh/oGFyrAYNBgtepBBV5fhFgM6updzJ2TTkfHIPv3d9Pb6yc61H/qkkuKqK/vw+0OUFXpJBJRlnLMn5/FZZdNjs/EGp7BZbZo0WhUmC1aHA4lHvzv/xawYYOdHTs68Xj89PT4CYeimC26Ue9vhmNCXr6V9HTzMTv8Dc8mHN7AY/78rCPL+ip+waLla/h11XP0BnZD5TNQcTN1dXVccsklpKam8pnPfIbPf/7zlJSMvgL9cYkJw+Nobu4/7mYfJ0JiwunN4fDQ3x8gO3uMHCHfitGoYfduZVZTUtJxcoS9Hu64+wvY8kP8/t2HcbZ0kX5gBjkhK9XVVVx88XKSkvSYzVoOHqxnz54nAHhZuU5KenomyclZWK0ZBALzCYeLsdkMXHttLm1tlXR3u4lGtXg8Vnp6ejAYDBgMBrRareQIJ2jkkkmnu5af//ZnWMsNBOZ56Q32QA7krCwgpawYW/Jk/J2JGBsSaWsK0h9V4c7wMGdOBslWPdvebqKjw4PFogNihEJR2tsHaGlxM39+FunpZoxGDR0dR+UIkaEcIRzF4fARCsUIhYIkJCj5QCAQ5l//qqO3d4wcocFFX5+fpKSjcoSdnfHXZzxHyB7KEYZiwvkjc4S298kRUodyhIr0Yy5S7Ns3do4A8KXv3ArcSmdLJ1n5WfGvP/7rx3nr5beYs3gOV992NUsuXkJFRgUVGRVEohHe3tFIZUstmsxeurxd/G7373hw14PYDDbOzTqXFQUrWLpyKVb9ZMkRxokUpU6yvr4APc2D8SmKHZ0eSktTKCtLw+MNs3lzG9FIlMsvn0RqmgmrVZm2u2tnJ3//ey1pqSZWXlQY30WtqlJJUMrK0igqstFYVIzbnc+8eVnMn6f88e3c1UkgEMFgTGDKzIuIBjroaDmE3+elv6+b/r5uoJq5F8wgYtJhsxnodzayY+134+NefxDW/+3I40hJy+B3z6whI0eujLyfPZVdbH7tddY9/QZtje8CYErMQmdbSjSqwmrVU774Hir3OHC1DBAOx2htHWBwIIharcLni9Dd7cNs1mEwatDpNPgDIRob+wiHY4RCEQYGghQWJlFRkRF/bVnMWt7YYMfjCWHQq0hIMBAIRJg/P4NNG1sJR2K4XAFC4SjV1b3odWpsNgMlU5NpOtxPTo6FFSsKCIej2O1ugsFI/DENF1SLp9iUxIYYHZ1eSktTyEi38Pzz9by7o4OiQivnnJOFzWbA5Qqg0UCLfZBFi3Ooqelmy9Z2DAYNOdmW+Juu9vZBUtNMRxWmVKCChgYXlZU7WLQ4h8WLlPXn6YlGvnFRCRvyk3ixqoMLH9jID6+aTjAYRK1Ws2nTJjZt2kRaWlo8GSkuLqa8PJUtW9p49NEqfL7Qca9INDf3Y7HomT8/8z23HH8vJ+Mqw0cJClu2tPLvf9cPrfGPHfP9M60Z4seFs9tLR0sPWVMs8Tdew4k+gNejxIRIVIkJAFu3tBMOR3n8if04HF6WLMnlE9dNparSGS9YTS9LG0pQ8nD1p5GTlM+9n7o6fru2JGVXtUmZRSQlmugd7KG1qxtfIEhzRyfNHZ2k2WwsLV5BQoIOh8PDyztepbK+AYB1dXD/qiOPQ6VS8b0v3MSP/uP28XvyPqbs9gHe2lzPtpod7GmqpM+tLFX445OvM69k1tBFiJn0NFlptrvxagP09fqVDSuCUbQaaLb3s27dYZxOLyo1BPwRDje7QaXG5wvR2+MnJcXIJz85NR4PCgoS+fvfa/H7lOUfWp2KpCQDJSXJbH+nnY6OQbRaFdUHeuh3BdDpNCQm6rBaDZSU2NiwwU5hoRW9XoPT6aX6QA+TJx85D5ktWpKTjaSkGuP3GYnE8HrC2D0D8ddx+fTUeEzYu8+JZzDEpZdOihdWt25RYoIlQYfVqiOnNBmvJ4zD4YknIsOzCa1WQ3y22PCMPtQaKLsKQ958st95BP59L1Q/T3PiDeTl5dHa2sqvfvUrfvWrX7FixQruvfderrnmGnQ63QnFhOFz+YwZStLzcYwJw0lwMKgUIyUmnD76XD6c9Ud2pezoGJEjDMWD6FA8SE09kiPsHM4R0kysHJp1WFnppGooJtxcVsa9pV/hT4G/0pd/kEmGZex8ejNmnZk1aw7h9YYxm5OYOfNiYrEuDh2qx+v14nR24XQqhYVzz51OUlICM2ak0dpazYYNR3KEZ59VPobl5uaya9cuMjMzx/X5+7gJRAKs2rSW9bv+wYN/303/UKNv0z4zy8svJ6unhAxVHpoVZvbvcdN7OEo4HKPT62Vw8NgcwTicI/hDNDa6CIdjDA4G6erycvPNZdx8c1n8ApjFouWNN5QcQa9X4sFwjrBxYyuR4RwhNJQj6IdyhJJkmpreJ0cYKqgWF4/IETqGcoSMoRzh3Q4Kx8oRWgZZtGgoRxiKBzk5R+UIqaajClNK0au+fihHGI4HI4wsSEWjUSLhCCqVij1b97Bn6x6S05K57MbLuPLmK8kuyKZsUi72uhD2TeksP/9CyhaaOdh7kEZXI3sce3it+TXUKjXFCaVY0qZRtqQ03ovrg5Ic4cRIUeok6+z00GsfBI7dcaagIJFoJEpb+yCVVU5uvqmMFSss7NzVyYYNzfT0BtDr1PHjCwut1NQoDahraropK0tjxYqCUb0ahm937pxMmJPBzFnXkJFuocsxSO2BFgIeJx1trfgGnDS0ZuJ0+qivd5F9LuRPLmHA1Yvf5yUYCBKNKieczNwpfPn7v8KSaEUcy+H0sG9vN+GQn9b6N3n1ucdxOZsBJXkrmLoQXfIFRMJRPB5lplO/K0B3jx9roo6pJTa6ezw0NkZISTaQkWmhvW2QbqeP1DQjNpsBjyeIyxXAZjMQCMSoOdCD2aRl3tyMeEFq06ZWBgYCaDQq0tLM5OYlYjbrWLgwl2gUKisdGA1avL4wGekm8vITSU42Ur3fSc2BHhrq+yifkUZVlROPJ6T0I/GGmDkr/ZiZSw6nB+im3+XH4fTQ0+ujvz+ARqvm5pvKxnyenvl7DXv2dGG1GigrS8XjDY+aGTiyKDVzVhpJNgPr1jXR0ODCHwij12viS1nVajUXTc9idp6NP26o55v/3EtR8Wd49Y1vs/Wt5/nTn/5EW1sbv/zlL/nlL3/JXXfdxWOPPcbhw/3s2tWFxaI7blGqurqH/v4AF11U9KGvgJyMqwwfJSisX99MW9sgU6cmc8EFxwbNM60Z4sdFW9sgTY39BHUDx8SD4f+PRKO0tw1SVenk5pvL8HrCvPmmnUOHXAQDUXqHejHMrkjH4wnR7w7w5z/vZfGSHObPz8Lh8GBLOjYmzJmbyZy5NzFrpjILpb6hlwG/m8OtDkIxL1V7HfT2+Wg6pBQBJhVk0DvQj8vtwecPEgqH47f306/exScvXTgeT9nH0vDsqKa2Vla/9Qavb3+HyNC23Wk2G7MKKihIKyAQCNPQ6MXe4qa+zgUqZZZcSoqBmpoeNL4wKSlGMjLMbN/ejtPpQ69Xk5ioIwYcbuojFgOPJ0zW0KzVYd09PnQ6NTFAr9Og02owmXWUlaWi1arZurWdhEQdep2auoCLvLwEFi3KweHw8sYbrUSiUYoKrRQUWNm5s5PBwTB6nTp+Hh5unF40yRpPFlz9AVz9fnJyEuKv49ycBG6+WYkJwzs1DauqdMZjwqxZ6XR6vDgdvviSxOHbHfm38uSqA1Tv7ybgHxETMiyQmA0Xfh9qXyGybzWLw1v4v3u+his7n9WrV7F27Vo2bNjAhg0byMrKYu3atVRUVLxvTBg+ly9alMMPf7jkQ78mJjImrF/fzPr1dubPz+SOO8rH/HmJCROjs8NLd4NybhgzR4hGaWsbpHIoHqxYYWHnzqEcoSeAXj9GjtByJEf4ovrzvNzwKvuDW7n2hWv5xfJfUF4+iUsumQQUccEF91JYmMThwy62bavH63XS1NTM/v0N1Nam43K5aWrqp7xczbRp0+jp6cHr9eL3B+I5wpQp5fzmN3/AbDaP/xN4movFYmw6sId/7HiNxsBOqre+i2NdF8EuZdMIlVpF5rQpZJScS1b7ufQ4g3QHI/T3e+lxBpUcYaqN7u6hHCHFQEaGhba2QZxOH2lH5Qg6nYZAIIrLFSQYjIwqSG3ceCRHSE83k5s7Ro5g1OL1hsnIMJGXN5QjVDs5cKCHhoY+ysuPyhF8IWbOTD9m5pLDMZQj9PtxODz09Cg5glarjseDoz3zzFE5gic8ambgyKLUzJlpJCWNyBGOjgcjDBe75lx2Gzd+6TO88/qbvPLMK/Q6e3n6D0/zzB+f4erbr+ZrP/kaDoeXhgYXRqOWZUvOIS03jSW5S/CH/bQOtFLdU83etoPUW14kVvY8hzr+wtKtS1lZsJIF2QvG7EU1FskRTowUpU6yrCwLGWb9qL5QIxs/X375JLZsbcdo0OBweshIV/qELFiYg93ujl+xrJitrM8NhaLU1fWxatUBbr99OmVlaccsfcpIt7Bixeiv7d/Xw7ZtLrKybVx93Tzs9gH2PraPgN+H3xeiYsFS/vLS5vjxNTXd7N7TiU4TZWDAh0qfI0UpRvc6Gvn73L2ni/2b/o/2RqXZsNGcwIVX3kj5uddRXRujam831Qd6MZm09PcrV8JBWf5WUZFO9QE1bneInJwECguTGBwM0ufy4+jyotNrCIcjhEMx1GoVwVAEny/CwToXs2Z5eOstpZltR8cggUAEk0lHydQUigqT6On1sWtnJ35fmNJpKWTnJNDX56ffFcRs1tHZ6aHL4cPnD9Hl8DK4vR2/P4LJpKW728fzz9fjdgdxOLzU1vZgtepZsUJ5jSXZlJkeSbYBlizOwWLRUTFbSXhrarp5fX0zfl+YkpJklizNpWK2kkSnphyZdj53jtJM9+hp6MPmzs3EaNCSkWmObx07/LwP/y5yeiN0dHg5nBfj6+vb+f1tX+B//ud/WLNmDQ8//DCvvvoqU6ZMAZQGgpFIiGXLjt3lY9jJuEJwMm7jowSF4av5K1cWnhaBRShycxNQRwNkjdhtxuHwjGr8fPnlk5TZI0YNDocnXlDKyrLQ3qFMdz9Q0830sjS8njBPrqqmp9uH1xtielnamLvYZGRYWDkiJqzf0My2be1kZ1n4xNXnkpFh4Qc/eJsaey+JCUM77Pzue/HjD9R0U7nHgUYHbrefkpJkSopGX5U8W43sbTFyZs9rbx7gl//6Xfy4mcUl3Hb5ReQlF7F1ayfeARUDrkE6OjwEAmEikRiJCXq0GjWpKSZSkk3kzEigoiKdPbsdhMNRQqEIwWCEYChKNBIjGosSi0IkCu0dysyi9RuaeestOwPuIF1dHlSAXq8mPz+BaCSKvcWNRqMs5ysstJKRYUajVWavWq161q07TE+3j4QEHT5fmO3vtNPvCqA3aHG5Ajz3XB3pGSba2zwoG+4qV6wzMizYkpSYYEsycvnlk+L90ADWrj3Ehg12iktsfOK6EjIyLPHCakqqkdLSFLyeMGaLFq8nfNyYsHhRDgCZGSNiwnBvqm4/du+5HBpM4Jzw83zS+hNavVdy9/P/5HC7gz//+c/8+c9/JhgMMm2aUoD6xCdKGBzs4pprJo95fyfrivFExoSR8UD6AJ1esrLNpGltx5w/gHg82LKlHeNQPBjuJbhgwVE5QoWSI/T3B2hsVJLqsrI0srIS+WzWpzjkmsfTtU/z6Vc/zWfKP8OX7vgSOvWRBPqtt1pZvbqFKVOS+drXbuHNN1u4//6t9Pf7qKnp4ZvfvIzLLrssfvyWLa2sW9eI0Qi9vR6i0WwSE8f+mz2bNDf3s21vPb6MRmoDu9nesZ1efy+qmIaWRzpw7XEAYLSYWfnJS5i1+AL2H/RTVdXNrh3OeI7QO5wjZA/lCNXH5ggulx+Hw4tON5QjhGNoNCHCYeKN8n2+sJIj+EbnCPn5SlNzs1lpbA5QWppCdvZQjtA/Ikfo8uH3h+jq8jI42I7PF8E8IkfYu9dJ2xjxIGkoHiQlDbBkyVCOUHEkR3jppUYGh2bOLl6cS8VQPEhNHZEjzD2BHMGoJWOseDCiN9VwsSs/fyp3ffMu7vjqHWxdv5WX/vYSOzfvJHfo/cyiRTlEwiGmTxvdh9CoNVKcXExxcjELEt3UHG7Dk9hKZ6SZ9c3rea7+OUxaE4tyFnFp0aWcl3ceZt3xi7SSI5wYKUqdZMnJBiaVHHnRDS/ZgCPJdb8rwMBAkPwCKz3dPiqrnEyZYiMnO4Ht77TT0+PH4wkxqSiJ6dNTqQpFGRgMUVnlpKwsbcxCydHaOwZpanIxMBjAbleWfJWWpWBvdlNSknLM8R5vmFhMTWpaIpOLM457QjjbjPz9RQLd6A1GLGZlGcOCFZ9kfU81OVOv5JN3fJpEq5Xa2l7a2h34vCECgQgqIBgKEwrFMBk16A0aGhpdJCcbmTzJhsGoprLSgVajxqDX4vOF8HrCaHXK8guzRYfaryIcjpKZaabpcD9Opw+fL0wsGsNs0VFenkZWlpLs7tvnJBCIEg5H0WhURKOQlm6i3xXE6w1RPMVGLBqj8ZALgCSbgamZFrKyzLz+mh2vL0RL6wDd3T763UF27eqKX4Ebfk1YzFo83jArVhTEd5hcs6aJvfu6iYQj9LkC5BdYmT8vi7KyNGpquuOF1pwcZVlqQ4Nr1Gt4+HnOzrJw3vn5OJ1eDlSPXj4yfIzJoKNArcMU1NBugE8/voPbFhbwgyuv5Oqrr6apqYn+fliz5hDz52cRje7lpptWsmbNFdx7771ccsklo/rjnIwrBBN9lWHJkjxJPk5D6Wlm0m1qSDhynh55TgGG+oiA0+Hl7S3tBPxhCgutlJWl0tfnp7a2F7NZR1qqCVd/AJNJg1arHnU/YxVKRupoV+LB4IASDzIyLJSUJNPT62P+/KxjfsbrCRONQkaKhSmTUiQejDD8+wuHwzR3tXHOzKmYLVqmFuVSWlCMUWfgpksuZl55CZ0dXvbt68btDuL3Rwj4wwwMBolGwTjU82lgIEjhUKx3DwTYtLEVW7KBzEwLfX0BfH7looRep8JgUJqbuwcCaDUq1m84jNsdpK/PT2+vn3BEeQ+ydGkevX0B2lrdbNgwSGqKie4eLx2dHpYty6Wk2EZnp4fDTW5yc5TffWGBFb8/jC3JgC3JMLT824fHE8HZ7cPdH8Bs1mI2HXnbWFCQGJ8tVVCQHr8i7nB4eGXNofjsqvnzlNfYcF+o4bYEZouWqkonhYXWUYn58HPs6g9gSzJwx+3TaWhwsXVb+5gxIabP5OnOm7jMsIOKnrWEfnsORTc+wU9+8hN++MMfUlNTg8MRpLq6g3nzMvnud3/BN7/po67u89x9991kZ2fHb/NkncsnMiZIPDh9JdtMFBYeWWY0KkcYOg/39w/lCPlWenp8VFYO5Qg5CWzfPiJHmJQ0FA9G9/tzODz02s18uvCLbHa9yl/2/4XXml/j/kX3c072OQDU1/dSVeWgt9dHdXUhF1yQz+bN+ezf333MrmfKmILEYhpycmxUVORP+DKfieQL+9jdtZst7VtYd/AtHJEW6AWr20phRiHTE8+l64CZosXdbLL/g7wZS/jkZ64i0WpRcoQ2Dz7fUI6ggmBwKEcwadDrNTQ0DOUIk20YDEM5glaNwTCUI3jDaLWg1aqwWPT4fGF0OqVfVFPTiBwhFsNsVnIEvV5DU1M/oVAEu92N06n0qo1GIS3NRH//UI5QbCMWi8V3m0tKMjB1qoWEBJ2yRDsS4+BBF4ODAUwmHdXV3eTkWOI5Qn9/gP4x4sGaNU1UVjqJRKIkJRlYvDg3vmtfPEeoGMoRKo/KEUbEhOxsC+edN5QjHBg7R1CWAyaQmmqKz9zKyLCw/LLlLL9sOW2H2whGlJ1ni4ttDLTv5xdf+T5bX1jMVbddxfxl81Grj7zHysq0kpVpBcqIxWJ4Q14a+huo7q5mv3M/b9jfQKfWMS9zHhcXXszKwpUkG5NHvWYkRzgxUpQ6idraB6ip6cVSqooXi46enltZ5eRwsxuDQUNNTQ92u5ueHj/tbYNEYzF83jC5OQnxZtZlZanMn5dJZZXyxm3nrk76XX46OpVK93BRq2J2+qiCVUf7IOFIDINBG0/8b7qp9JilfzC6IfvMWWnse+dVXnu3mSUrL2NSydjTLs8WBQWJtB6q5h8P/y+V217n3As+RXLRbag1KpYtW0JS+lPs29tLZ1eE8hmJ9LsCeIptmM1aBgeDdHR4iERiaDUqklNM+H1h2to8JFiUqw4trcpMCKNBg0oF0aGlvpEwJKUaMJu1BIMR0tLMeDwh9u1z4vWG0Os1GAzK8gy/P0xnp4e+vgADAyGsSXoGBqIMekJ09/jIzUtArYFIJEZ+gZUlS3P505/2UlfnIuCPsHhxLm9saKa3zzdUHNOQYNGh12kIBMI8M9THID8vkSVLc9m3t5vde7qYOyeTFSuUYKHWqCksTCTBoqOkJHnUa2xkbzRQEpL2tkESEvVUVjqYVGQlJyeB0tIU+l1KEt7V6cHp9NHc7I73liooUJ7fpsP9pA31Y0sLRehNMfL0O3a2Nfbw+1vmUDZpEmvWHIpPld2xYwfRaJSXXnqJl156iYKCAj7/eSUZyco68ubwTDXWWvaRjTeXLMkjFArR09NzVjwf46W5uZ++Kgd5WTpGbMg6KibY7UrvJ4fTSywKh5pchIIx2toHycpUYkhSkoGUoabnnR0eFizIJeAPM7siPV6McvX76exQYkJ3jy8+Y2V6WdrQMW6iUYhElEIAwCWXFFFWlnpsPHB4cPUHyMo2M2tmGt7gII8+9yJpyVbuvemKcXjmTm8paVp2N+3kvx55nR5XP6t/+b/UVA+iUau486Jb6O0JUpCezqyZ6diSBtDrlSvJahXYWwbi/2+2aNEbNPT1+SksspKSamTDG814PWFsNgMJCToCgSM9PFRqFRazDpNJRywGXm+Yf/6zDhXKVt3ElG23ExMN2JKNhEIxolEYHAhhS1I2gAgEwtQc6OG88/NJTNQTiURZvCQPW5KBrVvbaGjoIznFSHZ2AlVVDny+MDnZFhIT9Xg8IaKxGFu3tdPfH6D6QA+LF+VgSzLEd+1bsaIgnkCkpZoIh6JUzBl9kWtkbzRQ4kNb+yCJCXrq6/uYXZEef/1BLJ6wKxsBDMWEoV4iw83WDUYthYXJHNRcgjNSynmBl9E9fiks/U9053+XWbNmxWNCR4ednp4eenp6+P73v899993HNddcw7333suKFStGJSNnqhOJCa2treTlnf5JzMfJ3598EafNi2l62phLVQEqK50cPjxGjtCu7Kjp84XJzU0gNdVIx1A88PvDVIyIB/39fjo6vEAKcywX4+pLoVP7Lne9dhfLM1awPHwHDQ19hELRoaKF8jr4wQ8Wx18XIzU39+NweJkyJYkLLsjnzTefZ9euFm644Yb4DMQzWTQWpba3lm3t29jSvoVKRyWhaAir3kq2OR/dvqkcXlfH1u3bUF+VzMCkOajVKpZdWEpmbhn79vfS2RWkfEYW/f0BBgfHyBG0KqxWA/39gfi5v6vLQ0vLUI5gHMoRlJWfhMOQmmogOVnp1TRczAqFIni9IXS6oRzBpOQIwz87MBAmKSlKMBjB4wnR3e1TZnSrh3KEfCtLlhzJEfxDOcK//lWLy+XHZNJSUJBCb68OrzdEdXU33d0+JUfIT8Rq1dPQ0I/jqHigVivLTvV6DYuGZr8OG9kbDaCqykl7+yAJCUM5wqQROUL/UI7Q5TkmHgwXxZqajuQIHR1ekpIGRl14yy3KZefOznhsObj3INFIlLfXvc3b694mpyCHK2+5kktvuJTktNHFJZVKhUVvYXb6bGanzyYQCdDc38ze7r00uhr58fYf8+PtP2ZG2gwuLrqYiwsvJidh9OM93ZxIPAgGg7hcLjIyMt7n1j4aKUqdRPX1Lg4395Nh1seLUhnpllGzmSpmp3PokAtHl5eqSgdqtQqjQcP08lT0Og0QY+YsZbrjvr1KD59gUJly29joorPDQ3GxjdJS5er1hg12qiqV9b47d3VRVeUkLdWE2aIjJyeBORUZxx3LsJFFhox0C6/9+1l2b9tETn7RWVOU2rqtjW1b21m0OIdkm4E9lV30dexm+/q/0dlcFT+usb6ZxGAPhYVJFBQkYjFr8fmiGA3KlaokmwFLgp6SkmTq6/tITPDhH3QRCrvpafPR5nWh1/jQaUN4PR5CAT/RaJBALDh0DypQqdFo1Ax49PQc0hKNGdDozKAygtoCGhspqZkUTs3H2R2ivW0QrzeM1arHZjNgMmnRatREYwYMBjVb3m7DmqRcee93+aEgkYICKw0NLgYGg2ze1ErtwV6iUTCYNWi0apJsRhYuylYKZy0D1BzoRadTM+gJkZNtGeqTF1N2f6l0UFSYyK23lo75+tJowOMJotHAzBnKa7uw0Epzs5s9u7uo3NPFgoU5lJWlkpOTQJLNyOTJSTQ3u+PLA+HIEsJIJIbValCWB3qVZR+OYJgntzVzze+38o2Lp3LJ9CNTZS+//BfcfffdPProozz++OPY7Xa+973vcd9993HttdeyatWq424hPp5O1ZasY61lH+45AsoVlIceeoi//e1vbN26Fa1WwsLJUF3dg6e+D3XUTNqIXslHL7ebUpxMV5eXvr4ABoOaJJuB8umppKebj1na5OoP4HYHMBg11Nb20tvjJxKJMqU4eVRM2LGjk8oqB9ZEPQUFVsxmPdnZFjLSzXg94THHMcxuH6CxwTXUvBQOt3Xx/d+sYnpxwVlVlNq6tY2t29qVwkuygef+vY+Ne7fz7sFdDHiVAmCiOYGnn9tFijGbwiIry5bk09zsjs/8Gf69tbV56ewaxGDQ0Nfvxxf0ExyI0NjlwRv0smFPFJ0B2jrcBMMhoh1hYkSJxZSCll6nwWLRE+2GcEiNVqVHp9GjRodZZ6Y/kM7yRVN4d7sTtztA5R4HBQVWyqanUl/fRzgSw2YzoNNpGBwM8tq6wyxZkkt2ThIQw2zR4vOHCUdi+H1hjAY1AX+EcDhKMBijoCCJzEwL3d0+XH1+Xn65ka4uLwcP9vKZO2dgtepxuwPY7QN09/iorHQwa3Y6X/xixTGvMZvNQCQcpd8diPc7G44HbneA9a8302x3U1iQxMqLCrAN7To2XEwduVOf1xOOx4OCfOvQ30sy7pz5GJufhU2/hIYN8KknRi2faG1t5bnnnuPhhx/m7bffZvXq1axevZopU6bw4IMPctVVV53S19aJOJVbdL9fTJg7N5V58+bxxBNPjFrCJT48p9PJj/77u9jys8n48X3xv4ujz8MVFUM5gsNLZaUDjUaF0ahh+vRU9PqhHGHo72bf0C6fmZlmKiudhMNROjuPzRHsVWaMlvPQ5ezn7egmtrCZjBlLKe6ey8UXF8VfA8ebzTFy167CwiT+9Kc/sXXrVmbOnHnGFqU6PZ3xItT2ju30B/pRRbSka3MoM83H22omUN/P5rUbcRxuiv9c7d4WslRuioqsFBZalWXR/ihG41COkGQgYUSOYLWGCAYjRCIxent9qFRqtFoVJpOe9vZB/P4QsRj4fEcuUGg0YDLpSEzU0dXlJRCIoNWq6O72oVJBLAbJyVoKC610dXlpaxskOdlIaqoRiA2dM/UkJOiVHGFLG1brUI7Q7weO5AiDg0E2b26ho8NDLKYUZXQ6NZddNgm3O8iePV1KjlCj5AjLl+eRlGSIx4OeoXhQVDSUI4zxnkOjAc/gUI5wVEzYs6eLysouFiwYkSMkjcgRRsSD4SWE8RyhIh3PcZaGjywGz//Rf3D1bVfz0lMvse65dbTb23n054/yl1//heWXL+c7D3wHrW7s98UGjYGpKVOZmjKVUDREx0AHVd1V1PfV83+7/o9f7/w1U2xTWFmwkssmXcbkpMkfatfKiYwHS5bk8eCDD/LKK6/w5ptvntKdmCX7OIlKSmwUdR87E2mksrI0FrZ72LatHWuSMhMmEoni90XiOxOsevIAixbn0N4xyDvb20lI0BMMRVGrVSRZDVitBubPy6Kmphun00tOroXUFGO8WXooFGXKFGU5gNWqj/euOr4YxJQ1yTt3ddIz1Fj3YF0PF57k5+h09eqrTRys7aXfHcAQqWL764/jH2wFQKXWMGvBpSRkXkJS2mTa2gbQadWsW3eYpiYXHe0uNNEuqra7OdzQSH9PO5FQN0GPg0jIxfBOB76h+/KpjegNZqIxHSq1HlVMR0yli++So9GAFhX+wQiRsJ9YxEco4ica8QHKZRJvM7TuBp3BisGcwWBCNglJedjS8gl6MjBYcikuSWX3ri56e/0EQxEcDi/79zuprHSSkKBDrQKvV1kWGvCHMOg1zJmTwZLFOfFiz769Tp5bXY/L5SeGsgPH/HmZOJw+cnISlKV49S4sFenHfY212AcZ9IRosQ9yw6fK4lPDi4ttHDrUj9utbA+rUqmUncmGdpUcniE1bLgAlpFuYsnS3FH3lwH84KoyntzWzM/W1vLW5FR+f8scUhOUGQLTpk3j17/+NT/5yU/417/+xcMPP8zWrVtpa2vDaDTGrwosW5bBhReO3kZ8vHyQRojPPXeQ1avr+cQnSo7bwH3YWGvZR64vB7jnnnt4/vnnqampYebMmR/6MYgjystT6etOJifr+I0wMzIsFOQn0pybSHKygcREPQaDJl6Q2rqlnXAkSmWlg8VLcuhoH+TNt+zotGq0OjXJyUbKp6cxa2Ya3T0+NmywY7MZyMlNoLaml9ahmTll09PQaCA52YhrxHT2sQxvA93Z6WHDBjshnbJ1c2+vL97b6mzw6qtN1B7spbWjm8rW7Wyu2kU0ppx/8zMzOX/2EmYXzWDAHSYQjJKSbOCFFxuIxaI0tXXRaG+jzdmFvcOBNzyI29vPQKCfcCQ86n5UqDDojBj1elQxDcQ0qFVaNGo1kUgMlSqGWq8hEA3gGvDhDwaIECIYDhKJKre1tQX+vg00ag2JpkRSm1LJTk1n7owiElNsePsMmIwmUpKN1NT2EXKHeO21w5SUJKPTqZXlQN4QKiAciVFT00s0BhaLjgsvzGPyZGX26959TrZu7SAcjhKNxfB6QjQ3u5ldkU5VpTO+HK++wUWF5dhtvQFcrgA+X4jmw27mz8uKL/EoLrZhtw+wdWtbvLm/1xOO7yg5cvkfDPU9q3SQkmpk1sy0Y+8r50uQXQG7/woPLaLw8l9TePnN8W/feuut3Hrrrezfv59HHnmEJ598ksbGRhISEkbFgwsuKP5QScRHdariAbx/TDCZTPz617/mpZdekqLUSZKens7//uE3fP3z9/Linx/lnHN/OGZyV1aWxsKFQzmCdUSO4B+RI6w6wKJFObS3D/LOO0M5QnAoR0gayhHmj8gRcizKRe39+eROKyB5cRMdeW+hu+UdmjTXcPBQIdMmv9cuejFiMeju9rJmzSG6upSi/JYtLVx77al5vsZbf6CfnZ072daxjW3t27AP2FGhIjchl+kp06l8K0DrPi3WnCzaXC28s3Y1/oEeANQaDXOWLSWcMAOtOQ29Xs306als2dLOvn0Ourq8WCw6BgdD1Nb24HT6MBg0DA6GyMxUVkG43SGCwRgQIeAPYbPGiAVd6KNefN5BoiE/4VAIohEsZjXasJq2Dj/hUBRUaoKoCYWiaLRadHoDPW4DunAKthQrhkQdWo0WlcpAQYGVvj4/KpWKKVNs7N7dRU+Pf6hJ+pEcwWLRoVYP5QiV3QQCEYxGLeXlqcydm8HMoXOu1arjueeGcoRYlJ4eH+edlzd0G9r4UjzLceIBKLvxDXpCtLQMcsMNJ5AjDMWEo3ffi+cIGSaWLMk97v3BscXgoqlFfOX+r/C5b3+ON196kxf/9iK1lbW4ul1oddqh23YyvczK7Iqx+2vq1DoKkgooSCogEo3g9DmpcioFqsf3P84jex8hNyGXFQUruGzSZZSnlp9wbJnIeADwH//xH7zyyis0NjYyderUExrzhyFFqVOgp9uH3T7AoUN9VO5xsmx5HpddOjm+tM5k1jKl2EZhoRWfNwzEaDrspqHehccTZNCjbOnsD4TpcwVISNCTmmpUltjlWJg5S/mDraxy0t7mYXZFOkuW5jLoCWG3u9Fp1bS3eQgFo0Mv+G6SbMfvQRUMRenrUxroebzKfQLU1/Uec+yZZGRvrgSLDp1Ojd8Xprl+L/7BVlQaI3rbMqbNuw69KY2egRDmxD4inmp2vVnLYH8zIW8bsZATiHEQUGmsqHRp6IxpJOVMw2jJZMBrVL6uSSQQMpOZlcjCRbns2NFBsk2ZoeN2B/EHwgwOhkiyGsjINNHV5SMl2YDRpMVo1NJ0yMWA20XQ20sk5ELDAKnJARJNbnoddhxN+2je7wJArdZTn1JIVJNHTJuHOziFsCoTvy+EWq0mNdVIapqJQCCKQa+mtTWCwajMkhpeDpqRbsFkdmE260hNNaHVasjOtrBmTRNqjQpPSXJ8JtPIGU1Hm16eSk+Pj+lDJ7yamu74fXziumIqq5zKNrH2wVHrw4/+Hb1XAWz4uOvLs5mRk8Q/d7Vy0YOb+L8bK1g+9cjYTCYTt99+O7fffjv79u3D41H6+axf38zatdX87GeXcv3113DXXXdx/vnnj+tSjg/SCHH16no2bVKKpu8XdMa6+hkM1rN37++59dZHWLPmEOXlqbzxxhsTknyd6fr6/Bx2dnLoUB97Kp0sX5YX35VseKlcYZEy7d1s0tHc7I4n93v2dOHzhzEatFgsOux2Nz5vBExgMGrJSDfHp8hv2GCP/13dcft01q07jN3u5oILCmhudtPW7iEYiuL1hkcttTpaRoYFm83Alq1t9LsDxAz9APj8YaoqnWdsUerovlyWBB0qlYqeHh9b9u4mGouSkZhNaUYFkzMmkxAzYvn/7J13fFv1uf/f2nvYsmRbjldiJ7aT2M7GdoAsCAmrjLbQlg5aum97y6W3t+t278nl3rYX2lKgBQplQwgkIYHE2cMZHonteMWyLVm29h6/P44kS44dQgstvT+e1wtiSWfpnKPzfD+f7+f5PBo5NqedtjPdPL1vjLFJB97IBLGEkMPFIglqmQ6dUk+RoYRa7UJkIjWiuBypSIkEBUatmg99aDHtHU56U12FJFIxhRYVw8OCUW1+vhKtTo7LFSIeh+XLCxka9NB1ZgKNPs6oYxKX30NCFMJUJMITdtE/dpZ9fzlEPC7MsOvVekwaCzpZPlqZibywhbNnRalmGGGkMpg3z0gsJnT/EgGFFk2m5NNi0VC/GDraJxg+B+YCFSUlWmKxBHtbbcTjCQL+WEbJlK1oyo6GRnPGaDetfuroHM+UnG64opxgKIbfF81pQT79OrW12S9IftntfgbH51G+/OuYu++Hpz8Jva/Adf8FMlVmuUWLFnHPPffwwx/+kGeffZY1a9bw7W/vZfv2QbZu/S/c7pPccccdvP/973/LSxey463KB3B+TnC73fz5zz9mzZo1zJmziC1bzrJ69TW8//3v/yuP/p2YKZZdsoprP/8BnvnFg3z9Uz+iYf27OH58nEtTOSF9b6tUUubNS2GEYAoj9Hno6XHh92VhhFCMycksjOAOU1ysYfHiFEZoc2Cz+WloMFNdncfu3ee4tGkOk5PzcPfNQVR7mtf0j3DgtadpPryZjy+9nUVVpecdd9oior/fjdsdYXxcII3377f93c7dmx3heJg2exv7R/azz7aPTmcnCRIUqAoo15XTYG7AkLAQGFdSnVfIOe8ZbB4HEa2MvpPdhLxOxFIFCvNiapvWIFfr8E+GkQISiYh9+2wMDXmZnAyRTIJWK8PjiTI+7icWSyAXB5DEPfScmyDsdxH2e4iHvSSjPtqP+2lPJs8/aJEYRBJiEik+mZREQoxEIiKZTJBMJojH4iQTcZLxKJBksit3daVajVJrIJpUocvLx9VfiMuvBLEBv19PJJIkFMrCCKYURlCkMIJCglYrx24P4nQGsVg0qFQyZDIJBoMCg0FJdbVRwAhiEX5/XkbJ1DhLPgCoq0thhLosjNDmoLHRzI03VtHWlsIIQzNghKy8fSEC7PV8NzPnSKVk03s2sek9m+g+1U0iLkxEtbU5OLT/LPf/53+z9prL2PTeTdSvrJ8VI0jEEoo0RRRpirii/AomQhOcHD/JmckzPH7mcR7seBCTysS60nVcVXEVSwuXIhXPTsn8PfMBgN/fQUfH77jttl9nMMKrr776lmOEd0ipNyni8Tjf/PK/kyhejds6n3g8yYH9Nux2YfC16aq5GRM2iUREPJ5kYMBDPJ6kpiaflmYtGo0sA86bmqdqUMvK9Gg1Mnp6XFRW6DOAPJsQsJg13PaBhcAU6C8v1wvdOVI+PUAOmE8D+W3b+hkY8BAKx3jf++rIz1fjsUNV1dvXof/NiJMnHOzd3U5wfDt6yzKUygKcziCu2CXIC8SItZeQiIzRdWwbiVA/iVA/XdFJAEQSHRJlCVLNIsTKEnR55SApJBKXIRGDVCpFLIYYIErE0OkVNNQLg/FLLxN8Go63SQhH4uTnqWhotGA0Ktj92jn0egXxRAKFIkwiCU5nEL1ewebN83jp5X4cMSUyZQnFRRpKSwVVnsoapkwixj7qYOxcL6LYEInIECH3aWKhXUASkVSHKK+GycRCPM75lM5dQHGxgkBAGOAYUgRZ2v+ptraAgQEPiUQSi1lNeYWeyYkwwzah7XdZmQ7neJDXC7NZTd3CAsxmoTNFtsfUrbcIsyKPPNrJsM3Hvr02qqqM9PS42LlTUITI5BKKijSUlwvdIGciwLLNQi9bVkSVRct9u8/yofsP8rHVlfzHplok4tyHabYiaMOGco4d20I47ONPf/oTf/rTn5gzZw7vf//7ue2221i4cOHrfs+/Nd6IEeKNN1bn/HsxMTDgZsuWfTz55H+xffuLACgU85g377rM/t+JNy+eeGI7r/7lz9x+xVq8iTj7D2TlgxQplfaJkkhEjPoDmdyQBvd+f5RYPIFUIqah0Zz5DcTjSURiEXULTZkBVjYZYLFouO22qXvWmCcoBrPLpAYHc30Wsgdtu14dwmbzkkwkaVoveCoo5OJZiYb/C3HipIPDh0cJiG14og7qi5qAJH63iNqCJvLU+cglKsb9dl7t3IUn4sC1w0k8EUckEqNX5KGV5VGoLaOkoBCTpoBIQIpEIkZvUOB2hQVMgRiNRkpJiZZwOMH69WWUV+jp7p5ELhcDwqTV5s2VdHVN0tkxzthYANdkCJlcAskEA/0eVqwsprLSyMmTDvwuCVqDicIiDcVFwjVVrJDi8YQ42TWEw2vHG3Hi9Ns5N3GcaDyMCBFmvYVqdyWKpImWxoUsWlzAoYOj6PQyLIVqjEZFxv8p3elRrZYSjSbIy1dSXZ3PuXNegqE41VVGIpF4xhdqNvIy3UWyq2siU0qa7TN16621HG9zcOjQKHv3TeWDvftsLKwz4XKFGR0VfjPVVcZZ78mpnJCPee1X4dQT0P4kDB+G9/4RCnOf6RqNhltvFZRUGzaUk0gk+M1v9mC327jzzjv54he/yMaNG/ngBz/Iddddh0qlmmGvb1681fkA4MwZOz/72T089tivcLkmePzxJ/j1r7dz5IigAKmoML6h7b0TF46e7kkURRVcesP7eO2JP3HmjAexpQkQcsIFMUJLFkYY8uX48pSVCWViPT0uKiv1med6NiFQW1uQyTudneOIEFFmWcmkxMYJ/352BZ5id+szbBhez/tr30+DuYHBQQ/t7U5+97uTnDo1jt8f4VvfWs1jj2lxu2Hlygupq95eEYgGaHO0ccx+jMOjhznhOEEkEUEn01GuL+fKiisp1ZViUVvQyXWopCp2vjLInl1dvDj8BKaKxSgUcpzOIF7JApRzZEjzFiKSyOkfigCTyGQiZDIR4+MBfL6oUEoX9REP2Jm0jzMenCAZniQWnCSZUrkikiBR6FBoDBgKizAVFrBs1VyCETltJ9xIZCp0eXo2blqATq/i+ed7BYwQT2Cz+VCpZASDUfR6BStXFvPSS/3Y7T5IRtFrQK1MUj1XyUDvKO4JJ27nBFG3C+fwAGM9bZnjEImliJX5KOeUEhCX4rabKK0qp7hYO4URDCmMcDwXI4RCMbRaGdddNxe7PcjwsI+SkhRGcF4kRqjLwghZHlO33prCCI90MjzsY9++aRhBJkYmm4YRZsgJMzUUeL2oXjT1PG1sNNOx7zWi4RAvP/EyLz/xMoVzCrnihiu44sYrKJtXNut2xCIxBaoC1pau5fI5l+OOuOkY7+D0xGle6n+Jx888jk6u49KSS9lUuYkmaxMKiSJnG3+PfDAw4Oa55/bwxBN3s2vXNgBUqhpKS6/IHMNbHe+QUm9S+P1+Bs8eY2j381zynT+gyy9HLhdllFIwVcOa7l4WicQZGPCgUUszXQggVx0ilwveIXq9grXrynJKA7PXyY7p79sd/oxSKjsGB70cOTKGK6WMksvELF9WxNOFGvq7YO68/7sg9cnHdvHob/+HSdteSMaR6U6itH4CcWyQyGQHiWA3CedzkIyBSIFYUYZUtxy1sYqYqJRY0ohUJkKllBCLQygSJxEDqRQKCtQZQ0qlSkrpHB2VlQaqqowsrhcIxN/+7gSRaJy8fCXNzcVYrVr8gRjXXDuPw4dHcblCLFiQT3V1HsPDPkz5SlpWW/H5I+zaOYhMLiESjXPihIN4IkkkHEckFlFcrGPO3EaUquUYjQq8nghDg+NEA71EfWeI+c9wruMhSMYZPpHPvIUtaAuWsHhpExuvmp8xzi8v17NjxwCelOlinlGJRCKmbqEJa4k2Q4Q++2wvx46NCW1dC1Q5Pirpv7Pv+8NHRs8jl9ISc61WhlgiYnDQy769Njo6nOi0MkrL9PR0u7CY1dx6S21mnWyD/+lmoVajiq9squWRQ4P8dncfB/om+M37l2LNm7llq9CZ4nscPnwD9913H4899hjnzp3jRz/6ET/60Y9YunQpv/vd72hsbHzL7snXi+ya8ptuWnBRMyDp6O3t5ZOf/BI7djxFMplALBazZMn11NZeRSIhwmCQv4VH/v9nxOOjPLuvlfw8KZ++9YPI5aKMUiod6fs17R2VzglqjZS62oIMsE8TRlVVRuRyCUeOjKHXyzOePEDO8tMj+7N0mdRM+SDd8cznjSBChFYnY16lQEppdbL/syqpI23D/Px3z7C38wDuoAuAK2vkiGISRr0jTIbG6JloIxjzAaCR6cnXWCg1VGNQFqCWmJBKJCgVYhIJodQlEREhEiVQKqXC81kEWq2cwkJNJh/ULxYIxEce6aS/34PBIJRXNLdYKTCp0Ov9mApUeLwRSuZoqV9sZnjYR75JyeoWK4ODXhyOIB5PhGAwysRECNdkmFgsgVgiwpSvorKkmDnRQoqK1Hg8URzjflz+SUbcNiaCIxzrPUkg4mfX6Rep2T+XMtNcLm2s52MfWpYxzS8v17N9x4DgZ6aQsKBG6OAbiyWYV2XM3ItpP7Nhm3Cesv3Qsmeps7v22e3+89RVRqOCSDSOzxcRSvr22Wg/NY7TGaSi3EAgECWegLqFwn2drbRK36M5OUEsgfr3gGUhHPgV3LcWrvwerLxjxvsh3anozjs7+NOf/sQDDzzAwYMH2bJlC1u2bEGv1/OZz3yG73//+2/B3Xjxkc4Jy5cXvaF8EI1Gefjhh/nSl77G2Jgwo24ylfGBD3wNlyvOvHmG/6+7q71VUVWdR0VYz+X17yI/X87T991PkQxWrxbuw8xYSSPFn5UPNJppGME+C0ZY+9dghDmsGKvjRH8v5+Qn2Wfbx9b+rZTpypgfb8ZzYC5jY4KiXKmUsHnzXH76Ux1nzsCKFW/fxiiOgIMTjhMcsR/h8OhhTk+eJpFMoJVpmaOdQ0tJC6W6UqwaKzq5Do1Mg0Q8VU75+J/28Miv/szkuXZIJlGaBlDP3YxCIQGpAVnBksyy0SiIRAkS0QC27l78E6NEfWMkgg6SMWEiSiRRIlaaUOiLsVQtQSQ3Ek7qkKuNLFtWSEWFAb1ezuJUTvjtb08g049QWKjh8svnCBjBH+Oaa2bBCCYlLS1WfL4Iu3YNIpNp8HjC+FxxEoNKPMESIpIiShoET1ilSorBIMM5Ns5Q7xAhj4NY0IlvfJjRM0eBJH17pBRVVKK3VFDdsJBbPtSIxxujrW0KI7jdYfLyhDJTjyeSQwxZLNMwgul1MIJG6Ig3nVzKwQjiFEbYl8IIOhmlpYL/lcWizpSDZ6utZsIIbzRqawv49t0fp/PDl/L8I8/z2pbXGDs3xh/v+SN/vOeP1DTW8B8/+w/Kq8svuB2xSEyeIo+WkhaarE34Ij5OT5yma7KLAyMH2NK3BaVESZO1iU0Vm7is9DI0sosj0f7afABw+vRpPvnJL7Fr17MINjJSli27gaqqtcTjfz+M8A4p9SaFXq/nkaef59pNV/Kb732cnz3wFMuX1fKed08ZhU83Gn/qqW5OnHCgVEhzCKkdOwbxeASiKPuHZDFrplpnpsB4OrKJrOmlTbMZnAtyRzsGvYL8fBXzF+Tzs58dYnJS2HcyMYN89J84kskku17ezl/+8BvOnGjNvC+Rm4mHJ/GeuROSURCrECvnI8u/AbGqGpHcikgkQaMV2rW6XBFECaFDXiIBYjFIpWKSJEkmwO4IUlKio7RMj1ot49IUCO3qmsBg9OIcD9LZMZ7ptLh+fQWHj4xmZsgGBzw4J0IsWaIklDI3rKnJx2LWsHFjBVqNnNa9w/T3u4jHkuh0cgoKVHjcETRqGdddX0Vvr4vu7kkKCzXIFRLGxrSEgosw5ikhEWKo9yQ6eTeu0eOcPvocJ3YpOLPvMi7fdD3XX3sVHV0+WluHGRv14/NFsdn8GA1yKisMNDaYM7Papnwler0ChUKSc9+mvy8IZFRbm51AIIpCIWHZsqIMuQRTZahV1UYaG4VOTU3NVkLhWI5KMO3NlV4nW9E10z0uk4q5qsqMPJhg75ibjXfv5sc317Np0VT77+nmgcuXL2f58uXcfffdvPDCCzz44INs2bKFEydOUFIyVUd+9OhR8vPzqaio+BvuyIuL9DHa7X56e4VSqoudsYhGo7zvfe/jiSeeIJmSg1911bXcddfXCYdNmW1u2dLHr37VdtE16O/E68cXv/gZ1BNH+OwP76d4TiHf+8KHeM97chtHTPc1eDKVExRKaQ4hNWtOsGhmBOTp9WaSq89mcJ4ZKA550GhkzJmjo7BQw7PP9QIwUzXBP3t0nhnhl394lj9t2YY/JIAHuVSOVq5nd88WgjEBjOkVJoq0FZjUVvJVhcglStRqCckkRCNxYnHh/MTiSWQyMdFInLw8FUlgwhnMtOZesMDEFSmPhq6uCYwGwRi8u3sCry+C3iCnsdFCXW0Bhw+PcuzoGP0DbmLRBHqdnPGUMrWmJj9zDa+4ohyxBPbvs5FIgN4gmNr7fFF0egWLFprwB6I4x4PU1eUzMqJgdFSOSmKgQd9A/WITr+3rweYZxBOzseP4K2w98jIP7CjhpitbuOXqywl7xBxrHWM0BU7z85QEgzHaJ5xsuKIcq1WT42cWjcTZsqUPnXbKTy17lrqnx8WOHQPo9QqMBiXLlxfl3LsuVxi5TCgVKSvT0ZxShaQbAAwOeXJyQrbSKr2dGe/zooU4ln0d2ZH/xbjlLji7E971G1AKIGh6PjAYDHz605/m05/+NKdPn+ahhx7ij3/8IwMDA0Sj0cxmI5EIO3fuZO3atcjlb/3g/W/JCc899xyf/vSnOXdOIKPy8y189KN3cumlN+B0huntddHUZOXw4VG+8pXd7+SENzGsVi21cRPlhgJqv/5BKiuN/OIrv+B0ayFXXfX58+7ZDEZQSnMIqQvlgwxGaJyGES5QvlRYqOWKwgagAV/ExzH7MY47jrPL9wSxxVEMc/Iw9c1nvkHHrR94OlO+l3ybJIXJ0CQdzg5OjZ/i1Pgp2p3tOILC8yBPkUeprpQNZRuwaqwUaYrQyrVoZJrzyqWSySTbnt3N4/c9Ts+JU5n3lXnlSPIXkl2plUwmSYZdxP02Yv4R4n4bybALAJFUjVhtQWZahNJQiERtQSzXIpUKvk8hkYiSEh0Wi+p8jGAQzME7O8eF7qdpjHB4CiMMDHiYSGOEUBZGsKQwglZOa+swdrufWEzITWVlOkZG/Gg0Mq67bgojlM21osszMTTkIRiMU1dXQMDn5/TJHgq0XvJUE5w6vJfT+7fx8h9+xcJlC1m5ZiUux3zazwhlnUIXvxBud4TNm+fS2GimLTU+N5kuAiNoZsAIt2ZhhFQZalVVFkZoshIKxXJUgjkYIUttVZtS+c5a5n2Bsr7pn9ctraNuaR2f/87naX25lW1PbuPgqwc523kWU+EUkd91vIt8cz4W6+wl32KRGL1Cz4riFSwvWk4gFqDX1UuHs4POiU52Du1EKpayvHA5G8s3sq58HfnK/PO287fkg1AoxC233MKzzz6b+T1fc82N3HXX1/D7DX93jPAOKfUmRr6pgDt//iB33/kB7vrwTdz+7/fRuLwWi1kzI2nknAjidodxTkzJG0+eEHxzDEZ5plNa2vgZzgfj6e26XSFGRoVB9UwE1Ez7t5g1VFbomZwIsXSphbY2BydOOAjYheN5uyScNyPsDj8/+o/PcGL/1qk3RTJIRonHPEhU85EbLkGkWIBIXoJIdH6dcDgcJx6DlNctAAqlDJlMhM8bobhYRzgSJxSKoVSKqas1odcrGBr04PNHCYfjaNRStm0fYOicD7EYJFJhP5FInDNnJojHEySTSVQqKePjQQYHPHh9ETo6xhGLxaxfX0ZpmQ7TaRVeb5h4LEFZuYENG8rZt9fGsM3HwIAH+1iA3l4XeUYFqy6xEgjEkEii6HUyzBYDJXNMKFUb2LC+jEhwlJ0vvkj3yV386D8+i0yuZOGyy6msW0dJyXy6TkfweQWDzb5+N339bjo6nNiGfWzeXElpmR63K0RPr1vogpQaJLldYdyuEG1tQgcNlVLKsuVF581UNDYIZUqmfGXm/rSYNRmjc7vDT2mZPme9i/GyAmEmJjYS4l1zC9g36eNTfzzK+1aW8a3rFyKTiGc1D1Qqldx0003cdNNNjI+Ps2/fPgIBeaa2+vOf/zx79uxh6dKlXHfddVx55ZWsWLHiLelclz7GefOMNDVZX3cG2+fzodVqAZDJZPj9fpLJJFdddRXf+MY3uOSSSzLLDgy4sVic3HvvcY4cGQMurgb9nbi4+MwtGwmHgvzbLx8lGknynvVXZWYBZxoITTiFnDCRkrynAUh/vxuZXJLx9sleZzogTw+iXO4QoyOpnHARg630fy53iAKzOmWK7eR0v7DtRCJx3jb+WcNu9/PizuN84rs/IpwiFyQiCfFknEgsQkwSp1BbQYHaSr6qCIVUKFvITomBQDyjlJ2KJFqNHHcsjFYnY0ljIXv2nCMQjFFaqqOiXOgQ19U1ycREkMEhD+eGvHR2TZBMgKxcnHnORSJxxp3BjKfFuWEfg0NeJGIRfX0u3J4Il11awnveU8vgkJczpycIBGOUleq4+up5DAx46O5xMTLqZ3IyxOiIH58/isWsQSwWo9XJyTMqKSjQ8O53NXCszcpll86hplbPky8d4sjpU/zmz1v4wb2PUV5UTPPiJcyzzCfgluEYD+DzxZDLxHg8YRz2AIcOjWIt0bJ5cyXH2xyMjvpz8kG2MmrvPhvDw4KaaqaZ6/JyPcM2H81N1sx9mW1qW1amo6x0Kie8no9VdgyMQpf3Zi63tFHa/RL8qgne8wDMWX5BM9kFCxbw3e9+l29/+9vs3r0bicSYyQednfvYtGkTBoOBa665hk2bNrFhwwYKC9+a8qY3khOSySSBQACNRngGmExC98HCwkK+8IUv8C//8i+o1YKCOJ0PFi408ZWv7H5DviTvxBsLu92PtWYln/ja57j3e/fgmvCx6YMfYe68vMzz2pnKB9klUCdPCr45BoM80yktbfwM54Px9HPe7Q4xcpH54NI5l9JS0sJ4cJwn971Kr7iH2JI2DooOkCyVMHRwGIB2RzuOgAOz+u9T1u2NeDnrPkuvq5deVy/dk930uHoyBJRKqsKqsVJlrOIS6yUUa4qxqCyoZWrUUnWOEmqm7/+tT32DjkNHhDdEIlQFNWhKliFSmolEYoT9k3hdQ8S9gwIJFROui1hVgFRXhrzkEuT6OcSYUuRrtLIMmTVvnhGHIziFEepSGGHIg8+XwggaKdu2DTA05MtMeEMuRoApjDAw4ME3HSOU6jCZBIwQiyUoKdEJGCH13B0Y8GC3pzBCnoJVqwSMEAhEiUZj5BfoWLxiEdXVeWzcWEEiHufA7nac53o5deg4v/vp74lFouQXFZE/ZwEhSQkRsVnACH1u+vpSGMGWwgiletzuED090zCCO4zbPYURlEopy2fCCCkrA5NJmTNeSecEu91Paek0jHARXlbw+mV9s32uUCpYd9061l23jgnHBKdPnCYQEtF1ZpSyMh0///LP6T7VTU1DDc1XNLP8suXMXzx/1s51IpEIjUxDvbmeenM9gWiAIe8Qp8ZP0evu5dv7v82393+bxQWL2VixkXVl65ijE8jMvwUjKJVK3G43yWSSa6+9lm984xssW7Yss+zfGyO8Q0q9yaHPL+A9n76He77xEX7+lQ9w8yd+ycc+eVXujZ0ihVqarWg0MsrL9Rw+MopGLaWvX+h0pFbLGBkNYDB6c0im6WB8cNDL7t3DBAIRylLkwEzd9qbv3+7wc/LEOB5PhKJiDX39HkrLtAwOeZFxM+uu+yhNa1a/tSfrLQ6PaxKFUsmk08Ej9/+Z3s6Tmc/E8gIUhiUk5HWIFPMQiaZmdEXiXOIJQCIFqUQEIkEZlUiASATFRWrGx4OEwwniiQRXbKjgWNsYoWAM50QIvV5OT68LpzOEKV+JzeZnfDyEVCrGbFbR0mzF7vCzb6+NgQEv8VicoiIN8+YaEUtEFBSo8HojdHVNEAzG2P3aOa65dh5eT5jKCiMymRiHQ0hMTc1W9u21UV4utKJNK43C4TiJRJKSEqE2vHXPMMmkUCJhNquxmPVMhJsoqGmhrMFDf+dOznS+Rtu+l5DKNRiKVoOmGaWying8gcWsocSqFczOAzGWLytKlYgqc0hPg1G450z5KhYsENj9dKv0nh5XpnW6XC7BlK+kJ9WGfv16Yf3sEr1sYhaEwVa6XHC27pJ2h19oDlCkZlFVPpeZSnjiyDCPHhrk8MAE/3vbsosyDywoKODaa69ly5az7NtnIxaLIpfLEYvFHD16lKNHj/LNb34Tg8HAunXruPnmm3nf+973Bu5UIdIdnzZsKKelZarEK/sYZ5v9GB0d5fnnn+e5557j5Zdfpquri/JyQZHx4x//mB//+McsWrQos3y2ImDz5rkEg1E0GtkbrkF/J14/Lq9bwrrFo/z0D49z6OgwP/niRxGJRDMOdJpbpnLC9h0D9Pe58XojyOQSdFpZxoMnO6YD8j2tNg4dHKG8Qo9Br8iYSU+P7JyQfq3WSBmx+YlG4pSUaHFOBBl3FvCpq2/nxnf9cwPTZDKJze6kIM/Aw8/s4fEX9xCJCudTLBJTqJtDobacAlUJCok2Z125XEw4nJsUdFopIrGIeDxBJCqwVQqFFLVawsREAud4CI1WxsKFZrq6nBlfsIA/Rm/PJE5nCJc7QiwaR6mQIpGKqa0TlA2HD4/S0eHEYQ8QjsTRauWo1VIsFjWmfBUHDo7gHA/y2u5h1qwRvCzmzjUyNhZgcjLMwICH9evLUCilTDiDVJTrGDSpWFhnor3DSSIBlRV6Cgs17N9vY2jIIzSyKNIgk0uYPKelStvEr++6mh5bL09ua+UvO7cRjW3BmldCbfEiirSVKBQq9Ho51hotwzYfErGIgD/G+vVl55GuRoM3ow5rbrISTs1yjzuFxjCRSJyODif5JoEATCSSBILRnHOerQrMBuJ1tQUUpEpDLtRZMt1YoKhYg2Lxu0C8CvbdA7+/CtZ+lYV1HwEunA/EYjGXX355Jh8ATE46KSwsZGxsLONJCNDQ0MCVV17J5z//+Ryl7cXGX5sTYrEYe/fu5dlnn+Xpp59mw4YN/OY3vwGgubmZJ598ks2bN6NQTPmWTFeJ/bW+JO/E68fevcP8+c9dRKMJrrhiIV/9r6/ygy/8gJ7TNj71zS9isQjeTy1Z+eDw4VE0Gil9fVkYYSSAwZDrDTgdjJ+HEWbpvjodfI87gpw8GaTQ04DaV4PP5WU8eY6R8CBFN8ookhfwhOgJnnn8GYwKI2W6Mkr1pZTry5mjnYNJacKoNJKnyEOv0COXyJGKpDlGyYlkgkg8Qjgexhvx4g67mQxP4gq7mAhOMOIf4ZzvHDafjRHfCN6o0E1WhIh8ZT4FqgLmGeexomgFReoiLOopAkoukb+uKbPL6UKtVSNXyBkc9CLWzEEsPYG2uB65uRGJTIF7rI+49xgx7xDJiAcQIdEUITMtQqKxItEUIZIohK7ZUhEikZhEJE56DqeoSI3TGcLrjeD1RrjiigqOHRsjFIrhdKYwQk8KI5jSGCE4hRFarNjtQjfGgQEv8XicwkIN8+YZEYtnwAi7z3HNNfPwesNUVk7DCE1W9u3LwgihmTHCgQMjAHi9EWprTbjdYQ6fjCESVVDRVEt+7bWM9J1h8lwXQx1HCQdeRSzXkihbiKO4hQX1Cygp0abMzoUOqna7H4NBmZMTDKmcYDJdBEYwzYIRUiV62fkAUhjhdXKC3e5PNQdQz1rWdzFlf/nmfJrWN2XUbNFwBJVaJYzzjnfRdbyL3//09+gMOpY0L2HttWtZc82aC96bapmaBfkLWJC/gHAszIh/hJ1dB+i29fCz8Z/zk8M/yZSh1hWvZPklZTQuKp4VIwwPD2cwwiuvvMLZs2cpKhLO2S9+8QuUSiU1NTWZ5f9RGOEdUuotiPbOGKrSu/AN3M1T9/4LzU2PUlYmXOyZ6r2zS7fi8STFVg0KhYRQKIZGnXuJpteIl5XpSMQTOJ0hlArhge/x2AiFYzklftk/rM7OcZ58qhv7WACzWY1KJc2YV8+bZ6CrqwSZtpC8gn9OU9ujB49xz/d/yLmePeiMBXgnxxBLZOgK6pDJViBWL0UsMyMSgXiaGEypkiCViggGYsSzZsDlMglyuRipVEJ+noJwJIFOJxO8o0IxEqkp9HQHPaVCgtcboa/fg14nx+sVyD9IkpenZNnSQjZvrsxcf7FETHm50AWwujqPmpp8/IEpP46nnuwWOg0tMbNvrw2vT6jPbmq2MjDgwWhUsG+vDbFEOHaDUcEdd9TT0+Pi2Wd6gCQ+X5TTp53EUuP8aDTB6Iif/fttOBwBwqE4KpWUWGw1qtLVSEw2ou79TI7sJRF9ieREDTVl76VyxdXo9RZsIz7a2uwZT7R0eemzz/ZiyldSWKRBIhGhVEmIRgSPk7Rx59ioH4cjiG3YR2GRhlAoBiJI/Q8QVIF799o4ecLBbbfVneeNkB5sJeKJzLmc/vnIqJ+alP9J2zE7ayvyKVbL+MtxG5t+uZuPLJ5DqMuDwSDPPMynD87TkQ0EduzYgcPh4LnnnmPr1q1s376dyclJnnrqKaRSaYaUSiaTfPvb36auro7a2lqqq6szQGD6frZvH2D79kGAHABy+PAoDz3UwcKFJj7+8QbKyw1MTk6ydetWWltbaW1tpa2tLee7P//883zmM58ByCGj0jFdEfBGPareiYuPI0fHMIlrWDonzqsndvPzRxT87K5PAOcPdNLeT4cPj9LaOpwxkDYaFbR3OGfsRjbdSyqttnKOB9Fq5Nhsfmw2P5DMeBhl77usTMdLL/Wz/4CNsjI9rskwExNBFEop1dV5TE6E0WhlGFX/nPkgGApzz4Mv8OPf/gW3349MKiYYDpOnzaPKUkuetByTuhiJWIJEQs5zXyYTkUgkkcskJOIJUhwWUonQYSkvX4UImJgIgkhEbU0+HR1O4gmIxxOplu4hQqEY/oBQBj1i8+H1Rqio1COViPF6BbBYUamnfrE5Aw7zTSoaGy0EQzGsxVqKrZrM9dPrZby2e5ilSyzs2DFId48LEPzC1GoZRqOCHTsGUSglKJVS8k1q5s7No6xMh9cbpqd7kjG7n54eFy5XiFgcorE44+NBTpyw0909STyepLvHRWGhmsUFl1GuXMHgRB+D7tPs6HgJhUzBpQ3LkahLKDCZaWy0MGITcoJaI8x4d6RKicrL9YyOBQiFBJ+cQDBGYaGGQCDK8TYH8XiS0TE/fWdd6PUK5s0zpjJBLqjcvm2AtjY7DkfgPH+z9HkbHPISDsVmNFtPNxYoKtYwOOiFsmJY+nWkR+8jf8c3KZ/7KiOl3+UPfxjJEEEXkw/Ky9/PLbfcwv79+3n22WfZtm0bx44d4/jx4xw/fpw77pjyrnrppZfo6elh4cKF1NXVYTabM+D5YnLCwICbe+89QXv7OLfdVpc5pgMHDrBr1y5aW1vZs2cPk5OTmX2GQiHi8Xhmlv6GG24473fyTk74+8W+fTZsNj8SCTidIW742HpEMjU/ufO73Pet77Dgjz/GXGyewgiHczGCwSAnEJhSjmTHjBghkcIIyiyMEIrllPidhxGe7MZuFzCCSAQ2m58FC+ahiVZybsRNwwoDl1yqY8g7hD1oxxP20GZvY+fgTgIpH6WZQiqSIhFLiCfixJLnT7KkQy6WY1AYMMgN6BQ6lliWoJPryFPlYVaZ0cl0KKQKlBIlcskbK5k91HqKX//wj/SfPMymD36Ia27dRFubHZ11EaoKCHlt+DqfIxG0AyBW5CHVVyI3lqI0liFXCuXLORhBLkEmEyE3RFHkhYgp/CjzIyS0Z1HG/chlEaK6BHs0SSKXxBCJk5wUw6kEiOolJKJixqUKdqMi0iCjslZFfVUZsYIRTp4VIxIjYARtFkbI8ux78sluenpcNDaa2bfPhtebwghNWRhhnw2xWEQwGMNgyMIIz07DCKnL4vNFOXx4lM5Op4ARwmmMkAAsxI0FaA2XYko6CNi78Nraefn3B2ibU0zNslUUVS8VMELKEy1dXvrss72YTEoKC1MYQSkhGk0gFmdhhLEURrD5KCxMYQQgByO0pTDCydfBCIkLYISRKYxw+PDoeX5XTmeQ7u5JNCmVOsxe8pf9G7r7L3cz4Zhg77a9HHz1IEdbj+J1e3ntxddQqpUZUioej/PgLx9kbs1cyqvLKakoQSaXnbefCksFyrNB4ics1C+RUb4qxFn3WV7se5E/R/6MKC7FNDCPG+o38q76jWiimhyMcOLEiZzv/uKLL/KRjwiTMDN55f6j8sE7pNRbEE3NVtyeMIqlP2Tw2M/40kdv5ss//jVViy8VBkKpmMkI2mbz09fvpr/Pg1IpwR+Y+aGdXY63eXMlrXuF9qPdPS5MJgXBYBzbsA9TgSpnXxaz4P0wOOghFIwRCMSonGvAZFIilogonSP4IJnylbMqUN6OkUgkeOGxB3n8D79mZGgg877PG0Yz52PkFS+ltq6EPXumWthOr04UAEmCZEKMSi0jkUgQ8AtZJxKNU1mpp7LSiMcToarKiHMiRFenE6lEhFIhQpk8g3ukj5DzHGKViHMTMeKxCKFgGH9YTyx6BQUFKnQ6GeODr7FnewcP3BshEJKzsL6cK99dy+hYCI8njM3my5iiA3ziE40AHD4ySm+vB51WRlOzlTyjgoEB6O6epH9AeN/jCTMyKnh/7NtrY+icF6VCgsfjIRYVlGBGo4Lq+UZOnXLg98dIJBKZmelEXABchoJygmorpsqbUNJF0tfKU7//Ns8+9FPKajdRVnM13oBwfF1dkzgnggQCUdrbnYhIUlqmp6BAhW3YlyE9GxvM+AMx5s415MyCpO99SGbuu8YGMydPOPD6orQdd5yXUNKE7LDNR9txR47RusWsyUkQ2bOAaqA+LmdAleTXxwZRj0WIb0tmBv2PP36G557r4dprq7jrrhWZ/U3vfmE2m7n99tu5/fbbicfjHDlyhG3btrFgwdSDu7e3l29+85tZ95iEefPmYTQWMT4uo6ysiS9+8SOUlxtobi7g9Ok9qFRhnnxyjEgkgt/v5557XuP06QGOHWukpWUO5eUGjh8/fp4aa8WKFVx77bVcf/311NfXz/5j4Y21l30n/rZYtrSQcxNulmnX8V79Qr5yz734gwH+9JMvEgwkOXx4NGN0nm0EvWRpIR5PGL1eTn+fJzPbmV3GlI7swUtabXXunIedOweZN89APAF+XxQQsWG95rxB1eCgB9dkGLHISyKRBJFAWuv1ClauKmbCGZxVcfV2jTN95/iPn/2BF149mFFEAVi1NaxtakIrzSMajWMbmQJQ8fM4v2RGNSuTS4imavWSQCSapKJCT0WFgZ4eF1VVRiacIdrbnQJppQzRPtDB6bMOnAk3ExNJ/vBsBwMDbvyBCOuWraJ55TwUCgm954bpsrXzp6djxMIS6hdaWVM3D71eDiSxWrU5Krn3vKeW97ynlsOHR9m9exiJGGrrTBQVaoSyve5J+vs9mExKVl1SDCQzz7/BIYEU848KZuEyKahUEpRKYSJsoD8MiEgk4gT8Cfr7hC5SUqmUSlM1C6w15FmS9Dg6OHTmGOs+0sq84grW1Dczv7SaUVtAKNWbDPPc8734vFE6O504J4Lk5alS9+ZUx760emzuXANGg4J8k5KamnwC/hjqlPFtzuB/FvFD+nnf1manu8eF3x/N+U1lL+Nyh3JUgl3u61ldVEXF4AssPHstDx7+CNtZT0vLnIvOBxKJhJaWFlpaWvjRj36E3W5n+/bt7N69m6qqqsxyv//973nssccyr/Pz85k/fz5KZT42m5gVKz7K+95XT3m5gZKSScrKzqFQBHj8cRvhcJg9e87wxBNH8fl8aDR3ZYDCv/3bv9Ha2pqz3auvvpprr72WTZs2zVo2ko53csLfL5qarLhTTWRaWgS/tHWbm9Abf8z3PvsN7tj0cf71B19Ca644zwjaZhMmEp3OkKB0v4AqMAcjtAqKyO7uLIxg82EyTcMIliyMEBIwQl6eAqVSSmmpjpqafFpbbRjkSvLjJdRUCBPu0USUSDxCJB7BH/XjiXjwRXwEY0FC8RCxRIxEMkE8GSeejCMRSQSCSiRBIpYgl8hRSVWoZWq0Ui0qmQqZWCb8J5EhF8svWH73ehGPx9m7bS9P/P4Jju8/nnl/2zN7aN1nJ+EbIDxxlkjQj0iiRKIvR15Qj0RXilgunH+JBJIiEdFoEpVGgtjkIql3IyvworD4kBcEQCLkCCkgiStIBOSIAxISfgmRs1EUUjnekTBSkQjiSeLxBLFIgKRWjvmSPNSFEuJqD6On2jk3uJ+tWjFSrRRpqYz8xgLiCTODIQtxWzktC2sz1/+Tn2wEBGKlt9eDTiejrs5EMBjDYlHR1+ehv1943+MJMzKSwgj7BOyoVKYwQkyoAjEaFVRW6jl0aAS/P0Y8nsIIgSiJhIAR9HoFwWAUuaqEsvnzWbe2BI+9n6cfepHWLS8Sjz6D0VrF0OnLqV+1jElXZAojiJKUlqYwgs2X6dgnlOrNgBE0WRghpXxqbDRz8qQDrzdKW9ssGCGRYHjYR1ubI8doPT3OSi83XTme/ru7ezKnHBagtdXGwYMjrFxZzA03TCmHplsr5JvzueZ913DN+64hHotz+sRpDr12iKq6qXzQf6afB+9+MPNaLBFTUlGCzpiPNyjDWl3PzR+6AotFw4JqNQMddnR+I/IOFXPDczH5TLyw7TAT7hE8K0/zO0039/X+F+IuMSd+OEVEiUQiVq1alcEIr9dR/B+VD/65Rplv8xi2eensnGB5jYlvf0sofQsFm/jSJ+7gG//yEZZcfjuLm6eAZLYRdHf3JI0NZgxGRUYtVVmRWyMLzOghtXxZEf5AjH17h3F7IigUEspKdZlOZtn7SoN9vz/KyZMOHPYgtmEvN9wwH4NRqPV9+bktHNzZgSRxOdfdtOatPm1/dSSTSfp7uviv73ydzrb9xONTg3aZuhKR/hrE6loSIhEerwiZTIJUJiIWndkrS6GQoFBKCQVjRCNxNFoZSombSecgiYCToXY/nsEAId84B54dxWCpo2HNnVgsaoKhKK2Pf4ZjO85XMgCo82rxWtfQ0e4kkUzy2nN3Ew1PEZSdr8GTv5aiUBegNi5g2fp/w2BUYjFrCPr9qDQa9u4bZufOQQKBKJFInLHRAAMDHo63ObCWaKgo1yNOJYq0B1PaMFytknHihINYPERxkZbKSgMKpQSTSUVePohFYLP5iCeS+H0x5HIxS5ZYUKtlKBQStJoFwPW8trONnrbn6Dv5An0nn6K0+jLUsuvp6izE64tQWKihsFCNyxUmFIyh1ytYvNjMwIDnPHP+tGdUOvyBGEeOjGF3BFm/voza2gJuu60uU8KXvvfT3Ss1ailz5xqZmAyyf7+N0RE/sXiCpUsKWb9ek/Gmyi7jy/49XT1Hw3MnRjmEm+3SEB+0e6my6BgeFjpaDQ97uVBMn9VeuXIlK1euPG+522+/nfb2djo7O/F4PJw5cwY4I9wXakvmoW+1xnjkkf/gkUdm3l9JSUlm2bq6OpYvX54BQatXr6a4uHjmFWeIN9Je9p3468MxHkAmE/PZzy7JDFYW1xVz8+d+wPwrP8MXb70dS54pMwMOZDqeNTSaMRoUU6oZjWxGz5zpxrdp0+jP/st2JidDDA6KWb68KEVUC/uYXqqxdq1Q6uVw+Dk35EOrk1FRrqd+cQHHTw3zxCt76XUa+EHtrX+Hs/bXh9cX4FePvMAvH3ia0fEppYhCqqBUv4C5eY3IJQrcY5BfKcLnm/l5DcIzscCkJhiMIRaLiAUTiKVxYiIvrpALr9vL6a0hpKook143jskJvvjeT7FgQR5jYwE67Ed48Mevzbr9aus8enpMiMUidh85ySundkx9+Brwa1ArVOTpjNxx3U3Ms1YAoDfIkEokTEyE6Ox0MjzsRSYXc/asm3NDXoZtfkqsGqwlWiRiEcZUyYTR4M2YhnvcYc6eFYibwkINy5YV0d/vJh5PUltnpLRMz9iYn97eSaJR4VyUzNGyaKE5QxrZbPVMTF7HfY9s58jZI/zupYcpLbTQUL4UqWIRW7f2YR8LkJenRKOVMTbmR6WU0tBoxmxRM125B5xHuB4+PMqRI2N0d0+yfn0ZG64ox2xW09BozgHdMFV+qlBIiEZiHDo0wpkzE1y5sZINqXKPNGjo6BzHYReI1oIUKFeXbQbpcuS77uae5b/gXGUYks1/dT6wWCy8733vO2/yoLm5GZ/PR2dnJ/39/UxMTLB//34ARCIJy5bdkXnOv/DC73j66adn3ed11/135u/LLruMoqIimpubaWlpYdmyZW/I4/CdnPDWh83mo7PTydKqBXz721P2GHv3DrNvnw2LRc3mj3+RA88+yHc+9VVWbLqBm26/Ca1WJmCERjMGgwK1Wo5SKZ3RL2cmD6nly4vw+2Ps2zeM253CCGW6TCczyG1EkPbwOXnSgcMRRCKByy8vo6WlBItFw4Gd+9n/Uh/SxCquvUkY86QJJI1MQ54y760+lRcdyWSS//3h/bz8lxeZdIwDAkCXqs3EkxCd7MY9eQaJykTlwhWMec0klYXn+cqK5DF0cz0oS9yILRNICzwgShBxxAj2JpnsBCZFaKJSYp4wPqebQutiVrTcQcCbxO+O8tLzH5r1OHX6evL6b6JocR5xYhx75IPE4+GcZUQSMfJ8OZqFaqwftrK7Q0LFcDlVqiqWlS2j73iCXbuGCAQEf6rubhfhsICLqqryqKjQIxanMELKgyltGK5WSzlxYpxYLER+voqVK4uQSMS4XGHy8gTbEpvNRzyexO+PIZNNwwhaGT5/nEOnJESMl1G0qoXSPDvdR/by2p9/y75n/oyuZDHVy1ZTWKgTMEJoGkaYZs4/PR/4/SmMYJ+GEVIlfOl7P929UqNJYYSJFEYY9RGLJVm6NIURUvlgtjK+sjIdmtRkXPZvbSavt+kxfeJPIpVkTNKzQyqVctW7r6L/TD8DPQME/UGGeoeAIQA0eeYpUloW4qUHfjPrPivzruKjH3g3dvrpSHbQX9WPbJ4MdZWasoYyVlWvoqq4CnGBmGgiikwsm3Vb/6h88A4p9SZGd7eL/gE3FrUgJU3fkKX1n2NoVMOxV39HMjrC2jU/Qa4QfBPKynTs2DGYMS93OgMc2D/CqkuKWb++4rx9pMGERi1DIhGhUUszZMWcUj15/ijr15exbFnhlPxwPJhZFqbkvS9uPcuOHYNUVxlZXF+QUeWcPrqVwztfoG6hGVjzlp+3NxJjdh9PP7aL9iM7cJ7bh93Wj0gsIZmII5YokOhXI9atRaEuIJpFPiVJcujw6IyEVDIZh+gosfgoeSoDheUrmJgIEY9HOdf2pYzBVACwZ62n1RewsM7EyGiAsVE/2vxa1GoZhjwDyaQUhVJOIJjE602QbymnolxP3UITcpmEcyea8HnsOO3jREJe4lEfiXiMoHcUk2UOS5daMg+i268VBi9iRRlhKtGaapEo5tC6d5j168toaDTT2GA+Tylkd/iRyyXccUc9g4NeQuE4Xk+Y8nI9Hm+EeCyJVComL1/BuXN+5i/Ip7/fTSAQI5mE8fEgTU15mM1q3K4QR4/Z8Qb1SAtuRJp/NbLoQSbGdjJ4eiem4sXMqbsZo3EpDfVCt4m0yqOqyngeATVTlJXp6O6eZHRUANnppJM29E8Db71ewehoAIfdj04vZ2w0gMcTIRxOMG+ugbTaKn0u0mV8xUWaDKkFIBGL+fgV1TTb3Dywt59r7tnDd65fxM03z8doVLBhw8ytXdM+HxqNDLc7Asze6aKqqorf/e53qfssic1mo6uri507T7B//2luumljZl2JRMKKFcJMvFwuRy6Xo1KpsFgsFBUVsXbt2syyFouFQ4cOzXouZ/MieSf+vjE87KOv101EJgz8Bwe9LKup41NXf5R7n3+Ir//2bn75xc/R0liXUXXs2DGYMS6XSGDXq0MUWlS8/wN155Ujpbfp8USEAaQ7xIsvnqW9w0l56vlx2aUlrFlTlgPg1RopEokoo35qbi6hubmEF18UckJVtZH168uwWDTIVDEe3vYsBXkGfvCltx8p9dL2bu5/fBc2Tx8H29sJR6Z8iPLVFuYZ6ynUliMRi0l5hhOLg80WmFWJHI4FCcYniPiibGy6BJczzsiIn73dBzllOzrrsZiLxVSVlLBj+yCSETXzrOUUFxrRqBTEoiCTSggFkoLfoFpPVZWRokINI54yXNEaxsbd+IIBIvEQwXCYQDhIIBxkwQITVSX5lJXpuP/Jbdz5w/uotFrRiAvIUxRSai7FNRlGLhczb56RDVeUZzyWso1h7XYhJ1x2+Rzy8lQEAhF0qfJyuVyMxxOlvEww4h8a9KBWyfDFo6nxgwyXOyz4jvhjQJKBPi8GcSktpXMIJB0Elf1sOfQSO9p20bLwEhZZG2lusVJTk8/xVBvxgD9G/eKCWRUe2TFTTkh3Zdq+o5+jR+0sXWrB44ly6OAIxcVaXO4wY3ahHD0aS5KeWc8+FwF/jHg8ic3mzyiyhHI+C5ZrfwiH7qP87H/DAye45brvXzAfgPC8/dWv2pBKxbz3vTUXHMx//vOf5/Of/zwAgUCAM2fO0NvbS2trJydOnOMzn1maWb+yspJly5Yhk8kyOSEvL4/CwkKKioq47rp5me1+//vfv+DxvZMP/vHRk1K0F0in8kFZmY59+2ycOjVOVZWRjRsruea6H/DI/zzAcw89QSJgo2b1uzjTK3S8czoDHDkywiWXFJ+nDElvs6trAo0mhRE0UvbuTWGEOTry8mLnYwRnMLMsZGGEdD6omsoHAKdad3Nk90Eal5YA50/E/SPDbvezZ88wExMhWlqsmEwq9mw7xKRjHJFYSlIkJRkPEQ2MI9GWoCi5DKm+ArnGiF8phVg0JcZMIjP5UVU4UZbZIekgNBwkElRgEFcSOllI5Gw+/c/+Nmf/jqy/rYV+1q9aSG+vm7NnXej1CzAaNZjN+cTjYjQaJW53HKczgtVaxYIFhVzaUoJSKeNs52r8fhfDw2OEQh7icT+JeJywI0S5o55NyQ+TLD5HT7CDu2+6G5FChLpci6KgCI28DlF4LrFYkuXLC7FaNSxebKalxZrzHEzngwxGCCWwDXsxFajQ69M+WWLy8lIYYf4URoBpGMEd4uhRO+PjISKROFGRCHuonOs/s5rhs/2cOdzKYMdhDvUfYFFTE5dcuRGVwTKFEWZQgE+PC2IE+wwYweFHp5Mzmo0R5qUwgn0aRhjxU5wq69ZkqcKnl8PClNfbbCbqnZ3jbNnSh1gs4tJL51ww15VXl/Oln31JuOOSScZHxxnsGeT40bN0tZ9j7aZLMutLZBJqGgRlolQmRSaXIVfKySvII9+cz/JLl7OobC4wl7Wla7n9sttxBp10u7oZ9A5ywnGC7QPbSZBAKpKhDRVTb17MVfUtzM+bT6Wh8g2Xwr7Z8Q4p9SZGdbURVfsobW12hgY9mQFvc8scRKI7iHgaePXpH3HXh67lsuu/xtorVmaUSyAYvG15oRePJ0rbMceM+5jqbBbCPxpNKaRs9PS4WLSwgG99syWzbJpkGhz0Cuz2tAG42aymsdEitBJNLWt3+AkGhdljjXp2FvXvGclkktMnj/HSU4+y7dmnCIe8IFYi0y+laOGN+PwiJMkJRJqlhMPCLR2dRj4lk+DzCmAlEeonER4iERkiGR4kERmGZIwQEPfM56OfvY1nn+2hu9uFTCWoT6QKC/nmYqprKpEpTLj8amoXzQcEsk+rlbFs43dYu7aM5qaSjE9YMpnEPhbAUqhGJBJhNqtZvqyI9esfzDHynj8/D6d9lNHhQaRSGXWNFQB43S7Gx0ZS32IEOIB7EMQSJRN5dWjEm7n2PTdjKlDlXO/0v+nZr7IyHRUVekZH/UikYpYusbD/wAgjo376+z2EwzEC/ihVVXnI5V5kMhFDQ15i0XPULSyguEjD0iWFFBVp6Otz0dPtIhZfR33Tjcwp6Kf1pfs5vuMbuKobqV/wr6zftJEjR8dylE/TS0E7O8dp3WvL+E8dPjxKKBhDqZLi8YQ5eWIcg3EqaYyOBkjEEyxebMY27MPrE66nxaJGKhOzYH4e9fUFLK4353x3jVoA4OmyxrQqxe0KZ7b/1atr+d2ePr74lxNc32jlR1+5BKVsZql42udj+fJCrriiYkZ560w+JCKRiJKSEkpKSli/fv1569TU1HDw4MFZ17/Q+7MdI/AOCPkHhlotJRyOMTjkyemGd+PVjRCT8eSBp/jk93/MzWs28rVPvxeLRZNRQ5WX63n4kU7Gx4UB1fE2x4ykVHZJ0uhIgPaOcUZH/CxcVMB/37Mhs1z2wCgNyqcbp+fkhNTy4lTroOTbqPvehMvLEy/v4e4Hnqe9tw+AfHUhK+c2M8dQyanBDgq15ShFxsw68WmHHwgK3z0cCzIZGsMdcuIJj+MJOwnGhNIGBmDd6jpWX1rD1hf7UIkNKKQqjOo85s4porLMQiwoRy7ScFnLPDauqeXMGQ/lFXpksqV8qHo9GzdWYLFoMr4wyWSSjk6n0IWoVM/y5UU0N7+bjs61GYVcXW0BXl+AvuEx+s6Nsv6SerQaQdHT3j1AKByhs68f6M98nwJ9AXOMFRgK1lBgUuUQUekSuPRzsahYw6WXljA45KG93UlxkeDv5HQGOXp0jJFRPzabD5VKyty5BgqLNPh9UdpPjeN0BllYV0BRsYYlSwuJRhOcPDWOXmylrLSGT7/7Zp7fs5Ond73Gvq4DiAs2s2bte6irrWX7jgFaW4dZsrQwo15KR9rEPF2uEYnEOXx4lGAohkopzQEiwr0pIhyO09/nIRCIpma6NViLNUxMBIhGEpSV67FateeVZghm54JaK9urx+UOYzQoKJv3ESzmWmj7E6scN7Dqg/dD5ezP0e3bBzhzZpL58/NmLXeY6dmtVqtpbGyksbGRm246f52f//zns6479f7IO/ngnySqqvNQDkkEjDDkwZ96/jY1CSV8paVaursncTgCFC/awMf/cy6P3nMvp9s6aL7+fZSXz+OFFEY49noYwR3C74+mFFIpjLCogG99a0qhlX7GZzDCReQDu91PKNX0Qat5e2CEdIwMjnD39x7hyK7X0FZdx9N/dJD0DRBwngUgKZIiNVQi1Vci1ZUhygLgyWQSvz+CrMiNTH8GsBEZ8+LcHiJ8LkQypWQ2mufzk9//lHu3dXFwvx2JxIxUKkcqLcBiKWHFigXIZCbGxmRccskiQITBICcvT8HatT/gttvquOmmBZlGCYlEkv5+d0rFJKaszMDmzXOprv5DDpEcj8cZHh6mr68PlUqVUeX3D/bztP9p8INnwgW4cNCFWClGW2FBrbyc2tp3AbnXO/3vdIwASeRyCY2NZrZs6WNkJAsjBGbACLFz1NUVUFysYenSLIzQ4yIYjDE46GHj1cu4/VNr8Ht9PHH/s+x/6WXu27OH6obFWGubGRurZ8OG8vPIm87OcVpbbRn/qcOHR1OdC1MY4eQ4BsM0jJBIYQSbD28K8xUWqpHJxCxYYKS+3szixdMwgiYLI4xkYQR3OLP97GObiajKjrY2R6YccTaD9Jl8qUQiEeZiM+ZiM8suXXbeOlV1Vfz6uV/Puv5M76tlakr1pSSTSULxEK6Qi35PPzuPnGQsaOeA9DVe2/MCIDR8sWqszDXOpdpYTbm+nCJNEVatlSJNEQqJ4rxjerPjHVLqTYwSq45IJE5ftwuqjTQ2Tqld5HIJbW0KFrQYOHvkFzx93ycZ6v00N972oYy5tdsVIt+kJhr1saAmj8NHRnNUL+kbbarbmTenRMtSqMbu8OMcD2bIjtraggwoz1ZVlaX8fgYGhFaQ6f0MDnrxpH7I/0gQkkgk6Dx+hB3PP8GuF5/G63blfC7Rr0Fquh53CJBAHCBX6UoyESQRPgdxH7K8pchUYuKxBN6Be0nGJnO3J1Oh1JZRVlVPWZmO6uo8JpxBaq79L2LRBEqVjBtvqKK2toAdqRnacEyZITk83kjKDF0gMrLJQ5FIRHGRBoNRgUYtzVzX1r02jh0bw++PCiaAxSVYinNnC3QGI88c7OFsVzsdxw9z8vB+Th49gN/rwTd+FLe9jK6udbhdYfQGD8MDQ/hC2pxjSF/b9evLePTRLro6nZjyVaxdW4ZSIcXjjdDbM0kyCR5PhHffPB+VWsrOnYMUmFQUF6kzSrrOznGkUjH5+UpOd00yf4GJNWuWsHD5eiZsR3j+4f/hR1/8MH/69SLyym/AYGnAPibBYlZnOmako+24g2PHxtDrFRSYVLR3jCMCmppLaGy04HaFOHJkjLY2O6Z8JTqdjHg8wdhoAJlcTOkcLcVWLVqNDOdEiHg8gcEodOhI3+PpZBWPJ9HrFYCIoXMeSufoyPZZWb6siH9dX83zJ0Z44cQIx4dc3HvbMuYX6c+7N9Mz5rPNOg8MuPnDH04xPi5Ie2cCC69HLs3Wmry93cmLL/Zx6NAIH/7wolmBSPYxvhP/uAgEYkLb4wkXS5cWUlOTn1En1VQXcVPyvew9vYfHXnmR9r5uHv7ZF4kEhDK9420OdDo5eUYlefkKjEZFjr9O9uAj3d3GaPBiMik5enSMQosau92fUw5Yl5pRTINytUbKk091c27Ig1whwe0Oo1JKc/yjxlJl4rHprM7fOexOF09t28vvn3iZQ6e6SWaZAkpEUlZZNyNJSPFOQrmu4bz1k8kk/qgbd8hJnsqCQa1DhJhz3n7aRvact3y+Lp855iJKS4wYDQpMJhVL5tWzoqYRa7GOG26soq62IKPYqbRasI+FGR3xY9Ar8HoijIwK1yjbv8LlDhEIxNDr5TmeSXtbp/JBXW0BOq2a+gWV1C+ozDmu//raJ/nXD72Lw6e62X3kFK8dOsWp7gHGPeM4vU5ulKznxMlxjAYvCnUMv1dET7cbmJYTLBpc7hDhUIyxMT/V1UYUSimFFjXRaIIJZwixWExdXQEf+1g9L754lmjsHEsazRnT9HFnkMpKA0VFajo6Jiiv0HPlmmquXLOAD197Nc/sfoVf//l57n18C+9aswZ9rAq5RE5envK8jkjH2xy0HXcwbPNRVKhhdMxPR/s4iIRSb41G8EI5cXIcGMfjCVNcpCEeTyBXSFCrZcgVEppbrFRUGujvcxOPJwj4YzgcAllrSnX2G02Z20YicUbH/CysM2E2q3O8pizLN0BBNez7b3jwOrj0LljzZTL93bMi+3k72/P+b8kJ7+SD/xthtWqJhOOc7XEBM2EEOz09rkyH56qqUj7/0x/x5G/uZesffs1o7ykMupXEYhJqavJeNx+kAXW6RMuSyglOZzBT8lRbW5AB5dmqqhkxgkXACD5fGiPMbIXx9wz3pJtXn3+VJx98gYHTZzLvu07+EUgiVpqQFzQg1VcgVhfldORLxsLEg3akejeG1XLU8x2I1SG6/qWL+LTSbplMjVJZSl31ClYurqRtuZczXS6qqn5CY6MFvV7BzTfPp6VlDn/4w0m2bu3H51PS2+tCKhVljOZVKoHIS5PXdrsfsVjEvHlGLBY1BoOcLVvOsm1bP3v2DHPmzCRz5ugoLzdQVlZGWVlZznFVlFXgdrtpa2tj7969vPLqK7TuaSXgC+DpGqW7YjuPj48x372EWk0D9nMT+EICuTA9H6QxwsCAh66uyQxZ6vGE6e11kUikMMK756NSCRjBZFJRXKxm8eIpI/NsjFBdbcyMw8vKdNz13TuIfeMj3PeLp3jx0afpPv6/HN0xB8/IzXzizutyrk9bWxZGKFDR3j6OSARNTSmM4M7CCKYsjDAm2CaUlmopLtai1cpwOlMYwXARGGHIQ2lpLka4GGVvOrI7YM7W9S/bcmG2ZWYindIx3YIh+/3skvdswkslVaHSqijWFmN0V3O0bZTaYh2mMhj2DjMeGscZdDLkGeKY/RjeSG7JukFu4IMLP8jH6z9+0efijcY7pNSbHNXz89CLJZSX63G7wpx0CZLb3XuGGT7no7RsLuu/+hAvPfYzDm//Jf1de7jkqn/FZLGiUcsoKxXY6qIiTeaGc44HBSmgJCUFNOf65cjlEi5ZVUxPr5sdOwZxOAKcPj2B3y8kji1b+ohEhQfs2bMuOjqcjNh8VFYasdl8TE6EkErFme4MoZRSKpH8+4KQeCzGqaMH2L3tBV576TkmnefPBEk18xGpL0GizWWRk3GvoH4Kp9VPQySjwvoiiRbTnJVUVefh8UTpHl+EWuHHWl6DN2yhtr6BxQ019A96iccTDA562bixgtpaU8a/KE3sACyuN2MwKnO8jSxmYdY1/ZDPvj5p8tBi1mQUVACmfCV6vQJTvvKC50Wt0bJo2SoWLVvF4qb3cvTYKGbDBI6hI5QvWEY4oaGv383Y0Cl2/eXfmFuzHPm1N7Gw5t0ZAjNNhKnVMgLBGM6JIDfcUE1zUwl2h5+TJ8Zp7xjH446Q9p3x+6JIxOKMtxWQIdJUKhkyuYShQR8nTzgYGQ1QU7Ocr/3X4+x44WWe+MN/cW7nd9Dk17Kw6XagOIdYzfY2M+UrUaqkuD1hAUQEomjUUjRqLW1tDiYnQ0xOhFi6tBCPJ0Lr3mHC4TgV5XpEIhGhcDyTUMrKdDz0YAc9PS6UCmmOOitdGtXf7yEaEbpxGIxT3WskYjHXN5ZgVkh5rM3GNffs4VvXL+LWlbmDgJaWORecbW5vdzI+HqKgQDXrrPlsICMds5kMGgxyXn1VMCHt7XXz4IObM59NL9GYjTC7GKXVO/HmREmJloWLCrD7NakBSBKXG0ZHAtjtASacId61+grWrqrn3uceZfUHvsBVy67gipWX4PPFMJlUrFhRRMAfw+UK43QK+WTcKeQESZY8PHtgsuqSYnp7zs8HdbUF7Gkd5tDBUerqTDjsQQ4fGWXCGUIkFiqVi4o02Gx+jhwWBjZilQCkX6e79lsSw2PjPL19H0+83MqugydziCgAhVSFVTuPMkMNEvHUcCaRTOCLTOIOjeMOCwood2iCeFLIictKLqOqfAkajYxAvIiiUCFXrVlMMqgl6FKxeEEldTUWenpcFGgF4HjFFeWoNfPOM8+uX2zO+DalQ62RZnyTMjkhS7mUXj57YJlvEvJBvunC+UAsFlNVbqWq3Mq6Fcs50TKOx+dlPGCjZ9DGpvULGBzycPToGI/sfhjbuJ0NK1dSMvcKLJaiHPWU1arFmKfENuxj7ly4699WZAbDnZ1OOjqcmeMZHw/i8YQJhxOZ9tvPPtubyQeJRDIDVgcHvYyPJfjodTfy2fe/ix/f9wSPbt1OMrmDZZUrmTtvQ4Y4S5/LbIVgugW4bdhLOBynpERLeYWe420OASD1uEgCxUUaxuxC3ggGowz0ewgsi2E0KHJywq5Xhxgd8dPe4eSDtxUCU/lA8IvyYTarhfORfS3zyrE3fhnx0d9T8NqPYWAPvPtB0OaWbbzVOeFC+WBiIsiePUPcf/8p7rhjMV/9ajPwTj54u8b8+XnoYnIBI7jDnDyZwgi7hxke9lFaqmPFiiJcrjCxWIIjbR4arvoQRusCDr38DMnkERZeejUl1nlTGCGVD8TT8kF2idYllxTTM0NOgBRGiEzDCCNTGGFiOkYIpxs+/ONIqdGhUX765V9wbM9hEtMm0EXKfGT5C5EZ5yGWCxOLiWiAuHeAeNBBImAnEXKQCHsAkJlkaGoXoQvMIdFZjkImQW8VUzVvMeOOfJqalnPppQ2CL2ssQXu7k49/vJ7q6jwgydq1ZTm/n7VrBTLAYJDjdkeyujsnM7/htGfPwIAbi2XqN5hWUJWU6Jg/Pw+pVEx7u/OCv0+9Xs9ll11GeXkDRUXXcMu7YxQUTNJ6cCuRCjFt0uO0ibbReuA5+n7ey7zFtShu3MiihVdmCMw0walWywgGYzidKYzQXILd7ufkyXHa28fxeLIwgj+KRCLGYFBm8mFr6zSMMOTj5ElHxt8MhPwwEZ1Dfv37KYqPMn5mN3+++5ccfOk5LnvXu9h00xoKC7UZbzOTSYlSKcXtzsIIGikaTRZGmMzCCK0pjFCRwgihaRjhoRRGUEpzxk05GCGawgiG8ztcvh5h9HpKqrTlQvp4ZlvmQoRYNqGYHRqNlFOnHDgcAUZH/XzhC8szn3V2jueQ0dnHWK4XJizGxrycHZzAUilHbYDx4DiusAt3xI0n7CE8zefszY53SKk3OSorDKxbLpRvtbYOQxKWLi3EOS4Yo5mDKi5pKsda8j1ee6mFHU/+lBcfuIN113+aefXXMDkZQqWWZgZm6R9JunvZ9BvwqSe72bffRkmJlsJCDT3dARQKcYbsSM88Ct3XwpSl/CIKTCrUGhkyuTDrNzrqZ2/rME5niHCqzO/voZSKRiK0HdjDjuefZN+ulwn4PBjyC1HnL4WJnZCMIJJbkWhXItGuQCTNIxmbIBHqRqKe6h4QGf0tidCZ87YvkZtQGypQq5NYrTo2bDCxr+jfM53r0ooyfyBGvM+TeUikSaWZYqbPZnoATSdhIPdBUlamyxiSX2y0HXdw8sQEDY1m3v/JLwBCR754PIl/shuSSc52HuJs5yH+9KvvsfFdtzC3/hrGXcI+WppTtdANU4NqQUWlYXF9QeZ4H3qwg+FhX84x2x1+JpxB4rEkJVYtiUQSsUQECEowtyvE0KCHYeccWq7/CT3trdg6H+bgC1/EcfYyIh++k0GbKsPgmwpUmZnCwUEv8+fnMzbqxzbsp+24g+rqPLQ6OQajgsoKPYvrC9ixY5BwOJ7pPpjdua+nZ5L77jtBcbGGRQsLaGq2nne9ysv1qY5+EdqOO2YsK5QHktTHZAxpknz5yZO09ozzk5sbUMmnyvmmD+azX+e2Cp95IDEbyMjezubNc89bz+2OcO6cIEs+cGAk57OLKdG4EPB5B6C8+WEuUGNuLuFwV4KdOwdJQkYx1dZmx+uLMDYW5JZbVvL+m1fwyf/8NY/vfob2oXbev+EGAm4p54bE1C00ZTqwpXOCbdiHdZo8fE/rMNu3DSASCZL1Mbs4kw/S5MKEU+jwOTjooaBATXmZnvIyPbF4AtdkmOrqPDyeMDt3DeL1RJFrBdD094IffedG+ctLrfz+Ly/T1TeEVCKhoXo+5aZK+sfPIhFJKdJWUKKvokBdQiIZxxuewBdxo5UL9+1EcIT957act22JWEpRXiFzK01o1HIKC9VYrYv5etNGmptLMiVkDY1mbDZ/yltEdB7plx3TP0v/PVOp5YVaSZeV6SgrfWP5YHDQy7GjYySBdWvr+fitVwJCeVokGqbfZsPl8/Hw1pd5eOvLtCyt418+cC3l+fPo6fFQU5PP5s2Vme+c/X3KynTU1pqyjMSFDo2Dg57MdwkEYkikYvR6GRKJGEnKOLmsTCd04HOHGByKsKhwFV9532Ie3/ESB3v30nn/CW6//hoaKhpSJXOCSXl1dV7m3Bw+PIpCISUUiuNyhTGnSk71egVLlhYCyUxXyhKrhiVLCsk3KTMKLr1ejkQCDz7UQX6egoWLCmhusuZcr4YU6AkEouzefY6iIk3O7DLAoC1Cl2sTLcVVVNqeg1+tgpvvh7mXZ5a5UD4oLze8aTlh+rpud4T8fBXDwz4mJ8M8+ujpDCn1Tj54e0ZlhZE1DeUcPpzCCExhBJcrjNmsyvg9DQ15CIfjBINx1r5rI7XLl/HM/X+kbdvjOM4e4erbbqWsrFzACLOUCz35ZDf7szFCTxZGMCkzpUZC97UpjGAyCZ0yZbJpGGEiRDCFEaaTQW9luJwuTrcPEpcY6DxynG1P7WSsty31qQixqgCZaRFSYzXEwyTCrgwhBRDse55EYPS87cqMSlT6QhJ/vJHlqxpYc3k1T01s5MYbqykq0mSIXbc7QixmzxDL5eUGPvzhmX8XM5lEXywpnP0cePe752c+v5hob3fy0kt9JJPwwQ8u5Eff/REAz73QzWN7drL/9K8gmaT3RAe/OtHBA7+4l6vfezVzG5txuGSp4zzfL0lQUWlYvDgLIzw0A0aw+5mYCBKPJykp0ZBIgFicwgjFGtzuEK2tHnp6XKjVMqxWLWr1AuT6UlZb/bTvfokHfvgznn/wz3zs3z/Kkpbl52OEMT82m5+2thRG0MoxGIROgYsXZ2EEnYymJmtO577u7iyMsKggowTLzgnl5fpUR78IbW2O8/IBvD5hlD4X0/270q+nK9RmitlIp+mKyOnh98dwOkMEg3FOn86tCGprc5zXSXB6DA356T3tRyZSMK+kiGLtVAOlM+fOMdYXZiDf/ZblhHdIqbcg7A4/nZ1OvN4I1dV5LK4vIBKNs2PHIOXlelr3DNPT66Kq9lKuvr2W/S/9L9v+8jPaWp/GWPFerBUrkMslLF9WRGfnOEODHrRaGXULTZla4DSQ7u5xpcyW/VRWGnG7IoTCMbRaGYVFGvKMgkyzvFxPMBDD4wlzySrhJhsZDdDcXIJGLWXLlj50OjliiZhJnxwPnDcr/WZFOBTk4O5XePGJP9F2oJVoRGBexVINhqovE5eU4oqJkJlLQCSBZJRkeIio/QESkXOQEBh3ZcXPEEnUwt/6SpT6EPmF1SQkJagMFaj0lRSXWKiuzsPlCmfKGbNNt9M/TLtD8BDJJpD+1sh5cKW2OZ3QeqP7SpNJ2aRS+qF1ww13kfzS7bzywlNsffIRbIN9PPXH+4D7mF/fwoqlP2FB7dzzHkbTS0OBDKFTWqbN3LcDAx48ngh5+UoKzCrC4TimfGWGzOrqmmBiIsTERIjiYg3N665kv6qOc2d2Mtz/HL/88k1UN26ieun7GRwUurOkZaaNDWaKizQkk0lkcjFKhUA2LVtWmHNNpn//NKloMCo4edLBpCuMUiHltg/WMTjozVzXkyfGScNqnV6BbdjLgMIjlNZMuwZlZTqGBr3EJvzMKTfyUvsoJ865ufe2ZdQUC4OcnTuHeOmlPjZurOTDHzbkDO43b577ug/s2TpbXIyC6ppr5nHgwAgf/GBtzmcXU6IxE/BJD4zsdj+9ve5Z9/1O/HUx7gzicoNOL8c5HkStkrJ8eREOR4AdOwZRKMRsebGP5mYrX7/jdh74SzUvHnmRb9z/c5ZWLmP9kstoNpRkSI69e4fp7HRSWKSmuck6lRMsGiacIZwTQRJxUKlk6A0KwiEhHxQVCvd5c2rQaTQqcLnClJcXIJdLMp5UNTX5DA55UCqkyPLF6M3CYPWtBCBdZ4d48OkdPPLCLvqHp9pJzMtfRMOclcSjEow6H1pxMUqpBl/ExTlPNx2O/fgibiDJ3Lx66syrAMhTmZBL5FRa51CcX4RanEdRXiGL5pexcaNA9maXNKajrrYg87rApBL8hd4ASfR6MX0wOxuhdbFRVqbLEDTZx1m/uACjQcGHP3Qvx06f5sFndvD0jn20Hu2g9WgHhaY8Pvau67nyyquxWDQ552C2QW+6Q2NZqZbf/vYEgUCUeDxJWZmeaCROIpGkPNUx2GLRYDQIZQTj4wESSSgpymdlxWXMUdcyFDzBLx5+mPLiV7j92uupNFchlYrxeCKZSQu1RkpxsQZjngKFUoJaI6WmJj9nIN/ROY4mqyvl8TYH485gxjPtxEnBXy1tIJ0NnoQywCQKhYTOLicatQy1Wpopt8w+x4NDXnb0zWXt0s8xb+xheOh6aLkT1n0NxOIL5oP0s/6tyAnp57hCIeKllwa45ZYFmc/eyQdv37Dbp2GExQVEIgJGKCvT09o6TE+Pi6qqPIqKNIyM+AERRXPMzGu6kdK6FThO7+Teb36PV59eTF7VpWi1xdTVmXLyAUDPdIzgjhBK5YTCQg15eVkYIZjCCJekMMJICiNoUhhBL2CE5GgKI7yF5XvxeJzTJ05z+LXDbH9mF0M9fYglchKJOCTjiBV5iHXlSNTFiOUaEiEnsckzhG2tkIgAIrT1n0IkliJWRtDOUxMZV6Eol6MqMlBUWMMc8WUYk1U0N1RhHwtlVIU331yTOY40mTQwIPwW3kySdqbf9vTnwBvZ18KFJjZurCRbkQVQv8iCRLSB737yvQx99yT/+d//yd5n9uJ3+Hns3scQiR6nZtkSLvnBv1G14HyVz0w5IdsH7TyMkKekoEAtYASTMkNmTccIdXUFHNhvwzEeRG/I5wcP/pSH7tvOgRef40f/+i3mLqxl3oqrqKytprHRTHFxCiPIxCiVAtmUwQip+z27dA7IKIMMBgWnTjmYnAyjVEq57bYURrCnMEIqH9hsfsLheCofhc/LB5DCCENe2trsaDTSGQmekyfHOXp0LNPpLzv3L19e9Lq5fraJsItRUK1YUcTp05OsW5dLhE4/NzPFTGRY+vqPuCcYH4vSrrywcu9vif+TpNT//M//8JOf/ITR0VEaGhq45557ZmzV/lbFyRPjHNhvIxZLUltrwmLWsOmquZjNarq6JnBOhCAJer0Mvb4Ym+2jFFetw9n7CN37vk9schXh1XcBRWzbPsCJEw5MJmE27NSp8UzLe4D164XSouoqIy3NVtqOOzhyeJRAMMbAgIfmJgG4th134HGHOXnSQV6eijVrSjMDvMFBL1qdHGuJFotZxV9+K5j/vZkJZ3xshAOvbufZPz9E3+lTJGcoDUygJBTRI5YJ89OJUDdxz+4ZtiZGpi5h45Um5i2Yz9GjY5SWfpGrrqrMlMw99GAHwzZBkr/pqvMVJ9PjQsqovzZmY7r/msgmjm69JZeMyD12Dbfe8TnWXvcRdmx5mbY9f+H4gV24xweYV1U647bTNch79w6jVstoabbS3FRCc1MJjzzayfE2B7ZhH1qdnIpKA5UVeto7nHR1TbB0aWHOeRsaFAwRS+foKS3TIZeLaNNvoqnpgwx2bmHLo7+hr30nBvnnufKG2+jWy/F4wvgDMQxGBSOjfsxmNf0DXs6edbN589Q1TXfOq67Ow1SgyulauX59GasusTI46KGp2Xqese3RY2MZ1aJcJgaRCJlMnOPxlU0chsIxznZ7aNAo+Pz6av6wt5/r/ruVr19bxwdWlQFJBM5W+I3MNsv9RuP1tlNebsgp2cuO1yshSa8/m1/JvHlGmpqsf/N3eLvFPzofdJ2e4NjxKJFIAo83KjyXm0vYtEnICVte7CMYiAJJ6hebubyvgWKDlXZbG6+07aZzpB15wY3U1L4LrUbF1q19dJ2eoGZBPoFgLMc4urnFinMiiN8XpanJissV5vCRUYKBWGa/aQJiy5Y+fN4wJ046sJjVLK43Z3KCyx2mstJAXp4ST1AYjL+ZcxSRSJQ9R9t5bMtuHt3yGm6f/7xlJCIJyYSYSGhKoXjK3jrj9pQyNQadkk9/qgGDQcHOnYPc8u7vctVVgh/Tgw91YBv2UVSoy3z/mZRM2XEhddRfG29WTsgGCRvWn086ZB/7nJJVrFq0iNuvuYFXjuznjy9sZ9QxSXVV/gUHvS53GI/HxoQzSHOLNdOh8ZFHOjl2bAylSsryZUU0NJp56skeBoe8FBZO7besTOiUFAhEKSoSyvNi8QQ93So+v341/vgE3/7VH/nGvf/LqkUL+erHPwDIM0AAID9fhUQiIuCP0dU1STgUy/idpb//+vVCZ8m2NjvdPS5galxkMilp73BSaFHnDOSzFWbRSIJgIEZ5mZ55VXm43KEcvyuLRUM4FKO7x4VGY2bezd+CI3+APT8Xyvne8xBvVT54vW2ln+ebN8/lpz/N/eydfDB7/KNzwsmT4xw4kIURLJpMPujqmsiUaQsYQUZ/v5v9+22sXVuWIhnLWLToerrb2vjxf/w3p9t+hdpUiihwJRpzFcuWF5+HEaqqjLS0WGlrcwgNBNIYoTmFEdocuN1hTp2aBSNo5VitWiwWFQ/3ChMVb8XE9TN/2sozf9rK4OlO4tFIzmeJRAJZ4UrkxirEyjyCAy8THdt//kZEYpQ6M2s2y4hWjzAs6gI0LDBex2Xm9RgmajiyK8CxQxMs3zCHT33yfFPp6XExxPIbjTfzOZEmk9euLT3vOLOPvbx8Na/c9wpH/62Xr/3+q+zduhX3STe20V7y58xcOn4eRpiWD44fd2Cz+dBq5VRUGKis1NPenoURsvKMoP6LUVqqp7Q0hRHaHFx66RycziCGwkpuufOLqBnh4Xv+wLY//ILS2gbyPvthCoqLGBlJYYT+LIyQpUTSpBS3JlMKIxzPwgirUhihaQaMcHQMgEgkQTAYo7xcz7JlRWiyfB+zc0IoFKOnx4VGI5tFdZTM+ffNyv2vtx2LRZNTspcdr1dWmF5/NmWYoRiqq2dv5vFmxP85UurPf/4zd955J7/5zW9YtWoVv/zlL9m4cSOnT5/GYrH8nY4iidGoRKWWzqhoyfYp6ulxMe4MEQ6ZaVz3XS7dfJpXnv4V3/zMu2lY0YzSsgmJ1IrBKJTjTU4IpRdpIL3pqrk5pIupQIVSIcU5EczsO+0DFI8l8HiiaLWyjHE1CJ5Ver2cxgYzpgIVjqs/xPJLr2bxqvq/6tsnEglGhgbYs2MLu19+EdvwON6JfkAMYo1gXAKp14rUrEYcYk6Iu0FmFD6VlxAXK5GpSkFWgkRZxrzahWy6pokly0oyxz+ddLKYNWzeXJlR0fyj4o0QXTOV+mXH9AfohZYFOHfOT1Jey3s//Qu+8I0QTscoUpkwkIhFo3z3rk9w3S0fZmnTZRnwcOTwBIFgLPOQtTv8xGIJdHoZpWVaRlOGx1arFo8nSlfXBCdPjrN33zB5RgXd3ZOUl+tTZoHJjPIq3Y5+zH4FtWtqCDuf5eHf/JCXn3qEq957J3r9IjRqKaYCobuURi1ly3AfwzYfbccd1NYWcPLEOEePjZGXJ9SWQ65qymLWcNsHpso5s5VvAEuXFGY8fZqarVhLtJmyzelqtunbrinS85VNtfxhXz9ff/oUrd3jfH51JSACkgwMuHOS/oXab79eSUS2z8CWLWffktKJv6a05J813i75IIlwL0ql4oyqg9R7zc1W0oSUxaJBoZAwNhJmjmoR37l9FceHD/C9+x7mvx5+is994DqQlgiEqlaW2bbHE84MnL7076sy27fb/SiUUiacwZz97m21ceqUg3A4gVYrw2RSUZ8yKk3PHC5ZasFq1dLXr+JH//I5qqvy/+oz4PMHee3wKR57cTdHT/Vxun+ISCyCTKQkmgxllpOIhGdUPBklnozjj7oznymlGmRiBUqZkjxVARpZPtb8Im69aSUNdSU5g8bp7aWnl6j9o+Jiia43YnKafn2hUoDBQS/OsSTv3bCJ7935AZ7esY8bNjRnPr//iZfpHrDxpTvenXlmutwhDh0cwe0Oo9HIMib5sVgCrU6OVCLC4RByQm2dCZ8vgscb4ac/O8TCOhMyuQSFUsLi+oJM6emNN1Rn7rEHH3KyfsF1XLlygid2v8ANX/gaN61byxVL16DWSCkwCflArZES8MdySKfq6ryMytZsUTE6EiDfpKIxpZrKPs+bNs3NOZ8wpTDzeML4fVEKC9U0t1hT5NcERkPu7Hj6vmloNINMCas+AZYaOPZH+NUlbFr9S2AeM+UD+NtzAghkUfbrNyv+f8oH8PbJCUajEpVKmqNayGAEjRS/PwsjjIcIh2PodAqam62Z33rhxtUc6VTQum0v4bGjvPbY71Dr85nsW00icgUNyyrZtGkumzZlYQSTCqVSitMZzOw77QMUj2dhhFQ+AMGzSq+X09hoxmRSseHmd+HfuI7a5XV/1bdPJBKMDo1y9vRZ2g504BVXc3j3cfzOQcKO9hQmSIVIksIMSUjGkBnnIlYKSnuJqoC4R45MawFFATKNmXl181j2rnxG9G30B3egk+vYULSOG6puoK6gDpPShEgkosp0DpNh4B9q/v9GiK430hwn/fpCv+HRsyKWKT7LB793F/sCD/Fy+8t859B3WFe6jnXF6/jB537Au+94Nw2rGjIY4fDhCYLZGCGVD3Q6GaWlF8AIe4fJy5sFIyyfwgitrUKXyIYGM6vXryC/ZD4Hd7zK1kce4yefu4srbtpE89XXYy4ysmVLH8PDPtraUhghpUzKwQjTDMdvuy0LI9inYYRUPvCl8kFLi5Xa2oJM11zIVSa9nupo8WIzaYyQnuRIrz/d2yk7Xi/3z9RV982ePJt+DOlzpC+KUWx588nZ7Pg/R0r9/Oc/54477uAjH/kIAL/5zW944YUX+P3vf89//Md//F2OIW2EPZ00SP+dTSjs2DFIOBQjGo3jdoeIRKq4/qO/wzt+hNatv+f4oa+jy5sD+ddSUnwLpWVlDA162PnKIEuXWli/Xuh2kN1t74YbqnOOJ22oHQ7HiEQT5OerGBz00tPjYmDAg1IhETyJAjFqzRqqamvp6pogGL24G+/0qTZ2v/w8u3e0YhvqgbiPbAcSkaISmeV2JOo6ohPPEfe8mvokAYlg6m8pInkhyWQYkRhKrBryG64nP/99VFbk4ZwIYspX0rK65KKInothhN9OMVOpX3ZkD6Zfb9npy1vMRVjLKgCBrHnqT3+kdfsWWrdvoWTeSm779H+wfn3DeWSm0GLVj1wmIR6HkRE/bncYtVpGZYUBkQhGbD62bu2jrEyf6hxVSGOjRWDVjd5MR8eurgkUCgnFJRaa3v2fOEffz5/v/R4P/fJfmFPdRL7+K9TWrsh0jqxbaMoQR0IkcbvCeL0RlqRqzC1mDbW1BXR2jvPIo50ZUnV6l8rBQW9OiWFNTX5GbTadvErH9Psn5ItwiV5LYbWcV7rstA1OsiIsg8koFosm5yF9IS+P9MDBbg/kmFtmx0ydmt5Mf4+/prTknzXeDvmgZoEJZb5ixsGDxaKhfvFUi2aAyckQkWiCWCzByLkoH9p0M1/44E38+L4n+fFv/0I8nmBheS1NBRtZvKgAENHf58ZhFwaE07vt3TgtH4Bgqi0Wi5DJRBj0CubONdDT4xLKCZUSAv4YNTX51NUWEPDHmHSWUWq6OFIqkUjwiwee5tX9Hew7dpoJr4tEcqqTkQgx1aYlFGrK0MnzebHnfpIIExVpI3IAhUSNLNWC2GRSUFioYenyO7lsdSlWq5a9rTbyTUpWt5S87qAsuyzvnyHeiMnpxfhbZC8vl8t4z6bLMp8N29x85ecPMep08ptHX+S65vX86+3XUb/YjMcTzSE00zlBhAiXO8zkpJAPKioN1NWZaG214fNFGB3xI5OJUWtkbLqqMkP2pI9xcNBLNJJAqZJy7ZVN3LhxFXc/+AzP7NrOi637+Jfxm/nOv707515Ol502NJopMAnehP39bs6edVFbZ2J1i+AX1dE5ziOPdGaWm96RLD2Q37C+PAM4GhstGdIt+3ylY/r9Y3cEGJyooWLJv1Nw5n4Kt32IZfpb+P7BTQB8+MOLc9b/W3PCzp2DbN3az1VXVfDhDy9+Jx/8DfF2yAmLF5szBsozle9mA0LBI0fACC5XkJ07B6mqyqO0VPCmuXJjJRqtApNpEwqcvPL0Vo5sf4n9W56jvGYBK9c1I9VVcum6GqHLs0VzPkYwZWGEyAwYQZnCCP4YtbUaqhdV0dU1QSBy4aYM6Wg/0s6el/ew/7V2BnuGUgbj51dLiGQ6RFIlyUgWKZXOHSIJYkUexCOIRFBSoiF/8XryTddRWWlk3BkgWWjDbjrGodAerGIrt9XexjVzr6HCUIFaps7Z18UoCd9O8Uaa47zestOXv6X8boa8Q9x99G629W/jifufYuDlPlpfbqW8rp4PfuEjrF9ffR6ZmcEI8hkwQqWAEWwXwggp8j8bI5jNKsrL9QwOejnT7cJU2cjNd9bi6DnIrqeeYc/WV1m64VpWXbEWq1WbRQolcbtTGGGJJfP7yWCERzozpOr0nDA46M0pMWxstGTG/7Mpk6ZjhJnIJLs9gMcTzjGChwt7O6WPwe0OZ7pnTs/rM3Xvez0y643EbDYDE8GJ11nzb4//U6RUJBLhyJEjfPnLX868JxaL2bBhA/v27ZtxnXA4TDg85Sbv8Xj+5uPIJp+c40FsNj+QZHG9+TxCobHBzNmzLoKBGEajCrcrTOfpCQoK6rjjqw8hT5zlof+9jwPbf8vB7fextPkyCkouIUwNIHSRaTvuYO9eGydPOLjttrrMe2mSqmV1CaVleiKROB0dTgKBKEeOjOLzRnE4gqg1EkLBeKZd8okTdv7yh3uJuV4F4qlSuwQkY5CMQjKOxHQjUmUViXAfUdc2iM1+s0o0DUh1K1J/N5KMDCOSFSCSWZAqi9Hnl5NvKaHYaiAUilFdncfGjRWZc/hm+jy9XeN1JZkzqK7OM8CbpraaTXElUS+m+cr3sW/7nxnuPciP7rqZjTe8l9v/9SvkmYTBisDk2ykq0mAt1mC1ajOklSlfycioH51WjtsVRquRYcpXotMJar7p3yX9r9sVQiQSIZdLWLV6GUWlf+DM8R08ef9P+MWXb2Kg67OoC6/i1EkXDY3mnDLFxfVmwZDT5iMUjueU9LW12enocNLZ6USRag2e7lKZ/Xub6RxfrJptcNDLmdOT1NTk07C+int3neX5cJiqBEi29WEwyDMDnJm8PNIgwmCQ09RkxW73zzpomKlT08UMMl4vph/D/8WyjOx4u+SDApOKhEqTQzyl/WzqF5vPGwDMKdVhHfQglYrQahV4PGEc9jhrF67jo++6hudfa+Wxl3fyLz/+KT9/uIiW+kasugrqF8zLmKC3HRe6r2Srg7KJqtUtJYCIc0PC93PYA5w968bhCKJRSwiGpvJBWZmO++47zqd//H1iiShJEiSTSZIkSCTjxBNxFFIVq8uuZzJoxxWy0zt5YtbzIZcomG9amnldpC0nkUyglunQyvPI1+Qzr8yKFDkarYwrNlRgNqszipn0oOufiWR6o3ExEv2ZfC6mx+uZogLYhgPcuv46ntqzlX7bCA9sfZqtB/fwm29/khve1ZRp0d2RlRPmVRnx+6KEw3HyTUpGR/yM2QOIRGDMU1BVbcRuD1JcpMk5ruzvVVGhx+MJpxq6GPniR2/mUx/YyI9//yjf/90DPPfqHm5suZagW7gPb721Nuear19flinLDIcE4Hr48GhGUTU45MHlCqPXK7hiQ3kO+Emfw+nn+WKVbJnt1ORTsP4bcOwhFvU+yrfLD/JE99f51rc8OaqovzUngCjV/VK4Fu/kg78u3mhOeCvyAeSST05nFkaYIR80NqYwQjCFEdxhOjrGMwTq8uVF+FOkb2lNJT994Fu8+MJptj7xCt6Rdp743wdIxOO88LtiympqaVqzhHmLajg7EM0oNVpaSigt1eNwBOjocGJJlbuOjfnp6XGRTCZpaSnJ/E5OnLDz2L2PEhnvSKmYhJxAyu+JZBxl6QakedUkwm5Cg9tIBO0znQoApMYFKIqbECv0xNx9ROxHESn0iBVGZOp89AXFmArNFFv152GE/gE3fuMAHc5XGA2MUiYr47M1n2VjxUZKtCXIJLI35Zr9o+NirB1m85xLx3QyO3v5Ul0pP738p/z35HM8uPCXeNe5mdg1yUDHCb77iX/jmluv5qNf/CiGfGGdHIxgTWGEFGllMikZGfGj08lxu8MpNXYKI5gugBHcUxghWzVos/kpLbuS696/iZ9/9VfsfvJhOvbv5hv3fDFD6ixebM6Y9odC8Ryipq3NLpQftg6zclVxJqdNzwkzYoQ3mhOytuvxRAiH4+d5T82kssouP6ypycftDs062TRT976LmZx6vZh+DG+mn+bFxv8pUmp8fJx4PE5hYWHO+4WFhXR1dc24zg9+8AO+9a1vvWnHMDkZpm33CB2d44jFIhKJJMPnfCQS4PFEaFktlBWkL3ZtbQF3pNQdGrWU1r02+vvcSCRiysv1WMwtFFc20tk+ROeRlzi2bxuHW38ISTh3fDFn21aTV7QQlVyJ1yeQUUDGa6e2tiAHeAcDMXbtGkSpklFdLTxcHA4/Y/YgHe1ONl01l2NH7SRCgyRjjlm/Z9z5BHGSgAQkqRtXJAOJDrE0H5HMjEhiQCQ1IlYLRJmlUIlMtgyxeDmXXz4HU77QMntxvfmCne7+f4g3Uup3IcJpJgVVNlkl3Hdzue6G77D+2g/w0K9+RH/nq2x98hFefekFPn7X19h88wdoO+6gp1sgh9avrwDIqJAcDgHALl1moaHRQnm5nt5eFzqdYK6fPj67w89TT3XjnAjS0mwlEpExMOAmmRRkuyuWF7Ni+QeorG3hsd/9kifuvxuL9RnmLvsEQ4MKnnrqTEYZly7JbN1rQ6mQZNSBo6N+JBIRJpOSsbEA4XCM+dX5OcllKJWUNGppxsj9YiPbyypjsmvW8NnVlTx8aIhuUYghpxfNtv4MAJlpBi4NIpqarGzePDenDXA6skHCpk2Vs3Zk+Wujvd3Jiy/2UVCg5MMfXvR/ejYc3h75wDEeYGTIyfEeBx0dTurqTExOhjhxYjzljSOifnHujNzqlhLKSvUZEmZwyENPr4viIg0Ni0poWPQePnD1VXT09/Lszr28uHcfTtdWzPkG1h1uYH5pJQXFFhKJRCYfwFRuqEvNlt94QzWHD4+ybdsAI6N+qquMwjE7/NjHgrR3ONm0aS4WiwbbSABvZPaJh1DMz/azDwNCmZ0IMZBEKpajlGrQyHWopDoUUhUamXDfKRUS5AoxN1fcQN3CAqqqjDkdBt9sSfo/U7wRP6sLLTvTQHX6jGp5uZ73XXcpd31yI/c+tpWfP/AXxibGueGz3+WaNSu552ufomJOIcfbHHT3uGhsMHPjDfMz23rppX4GBz1UVxspsWppaDQz0O9hYMBDSYk259j2tE55VJWX69m5c5DOTmcWaVbEmpavc+8fX+Vbv76f7z70X1zdtIZL1Nfw29+eyFHGWSxCTtjbakOhlLCndZhTp5woFGKqq4wMDnrO6w6V/jcSiWfUVLORdTNF+txlm64jU8KKj+FRVFJx+lE+F/0M3zz2IbZzzd+UE7IB5Nq1pVgs6vPywDv54I3FG80Jb3Y+AJh0BTn6SjcdHVkYYTgLI7TMgBHuUGXAYmurjf5+ASNk39dudxh3yg9t2Yo5mAtvoKzsg5wbdPLiE7s5fewY3ceOcmrPKwDINUYKS0tovnwRFfMrsFgtJCOgkCeZnAyhVgslWR0dToLBWErJJ/yWjx21E/PZSUbcM3xDIULDr8HQdnL7topAIkcs0yJWmhArDIhkGqS6CsQKPRaLElnJIsSLFgsYwZTCCKnS9uyIJ+IctR9la+xFHEMOKvWV3LnsTq6quIpCTSFikfjNuWBvk3gjCsY30jRhOlF17ZLLKJfWcG51K/+7+276/nwWzzEPz/3pOV55bhef+c9PcdW7r6KtzZEptctgBNM0jLDUQkPDNIxQOKW8sdtTGMEZpKXlfIyQfjanSVeDIZ9//f6/8ecHXqNt+1N87qbPcemmtfzrdz+LxSJ0km1ttaFUSjIlcmmMkEzCpEvoHpvd9GK6afkbyQcwO5GT/retzX6e99RMlTzZlRxpBVdaKTXTvqYbvL8ZnlVp7zC9Xj5j18G/R/yfIqX+mvjyl7/MnXfemXnt8XgoLZ3ZEPpiYnTUz8FDI0xMBDHlqxCLRfgDUUCEcyI0I6GQ/Z7N5mNyIkRlhT63Y9uaGjQ6I5PRS9CXOygrHMDrOMVLTz+Oe+J/ANDozeyfqKGodB6yqB5JdD6nT4XR6PRotDo0Oj3JZIJINI5cJsI1GSQc8mLJj+B2jnDqyGl+9t2DaJLDgreTWAPJiKCOSodIhUhmRqxeiFSzCJG8FERihJk8IQmoNRJisQSNDWa+9rWWv/pcvhNvLGZ7KOV0fVhWNHVfrVvKZev+zC9/8jivPPkzgp5+Xnn+STbf/IEZu/yltzM26sfhCGIt0XLrLbUcPjJKR4cTtzucMtcvobNznCef6qavz4NUIkKjEWarbDYfPl8Ua7EWg1Ege4JBMde+7wu8/2O38eDdX2fvM/+OwbqWwf5bM0aG6Yd42gOq7bgDjydCIp5ErZaysM6KbcRHd/cklsIpmXbatLyn+0KGhLNHTqLIIrTmzjHwFaueh3adZS+TvEiA9wxN0lCad942nnjiNA891MHChaYMiJg+aMgu2du0aS6bN+f6pP0tJRUDA24ef/wMnZ3jAIyPJ2lvf+u6Z/wzx5udD4aHffT1uhkcFKUMnD1MTIbwByJIpYLfwEwd2LJfu9whFAoJFZX6HKNNkUiErUdGlWEllTUi+sfPsvXVo/xl6x7iiQQKuQyrqZBuTyXl1iIiIhlRmZhTZ/ox6DQYdBrmzNEglYkIBqM4nAHUailSZQylIUzPuX4+8Ml2zFYxtmg3ComaeCJKLBkjDTREiFBKNegU+ZTq52NUmlHJtCSSccQiwaBcIgaxBBbMz+MLX1jx/zXZ9PeOmXLChToAfvNf30OZsZr7nnyeQz0HeX7XQe66/SYq5hTm+iplbSv97J8718ittwrq1i1b+hgd8WeITbvdz6OPnubIkVHBD21aPii2ajEavBkidvWyhTz+0+/w7J5X+MWDT7C/4zgryy+nsrAykxPSJXXp0sBQKEYwEEUkktHYaKGkREsgIBjWpiP9XR95pDOHpL3YmA4cMiESYWjYAJW1RHfew48bf8XwHA/EV4Ekd5j9xBOnefLJbi69tCRHoZT9jJ9ewj29o+s7+eDvE292PgAYHQlw8KBPwAimFEbwpzCCMzQjyZz9ns3mY3IyROW0fGAwCPemzdaP3R6gqUkoZ3U6g8ytX8rSy5qEbqslYnrbuziyt5140MmuF3Yx9r9jOfsTS2RI5XJkCgWJpAQQ81oX7Lg/jkIpJhwMEfd6OT8E0kkkVSFWW5FqihAr8xErjIikqoxCRa1OYYTGN44R4ok4h0YPsbV/K86Qk2pjNR9b/DGuKL+CAlVBZh/vxPkxE5k9e/luNe9Zci3fX/V9nnrpKWwPjOEf8fLKs69w1buvmlHtk8EIYymMYNVy6621HD48DSM0pzDCkymMIJ0BI1i1GAwCAeN2hykuVmdImAUNtdg9WnTDJ9i/cye3XX6QT//np9j83s0ZAqutLYUREgJGaGkRTM5NJhVudwiYUse+vmn57DFbTkj/ZjWa/8femce1Xd9//Jk7JJAEQgIECEehBVpaeir08GjVVq1O61Fv3dycv+k2N49dHtPpNjfn3NS5uanTeUznMXX1aGvVWlp7QmmhLbSFAAESAkkgF1d+f3yTLwmEWl09x+vx4JGWJN/kG/L9vr+v1+f9fr3kaLWKIybeVVe3s2GDkLw5Uddu7Mje3LmZ48Sz/yaYxeHwsWmTndZI57zXG06YOvhZ4CslSqWnpyOTyejqij/BdnV1kZmZWP1UqVSoVKpj9h4yM7UsmJ+FqydAWZmRgH8Ie4dQRIxpahxO3xE7YspnxpijjXms1ZpCnzeEwyUjKXkW6dbjsQyswujrwprpZjjUxr66PXS0rcXb62DLm4MTvs5EaKsFQ5qRwoJsTJmLycmfQn7RNPKKpmEtLEadpPnojUziI/FRxuafBBN1UE0kVkXfw4JFVZiyS/Ha17L87OVIpVJKS9OZMiUlbrXJak3B4w4RDofRG1SiYGW1pojf+YpZJhxOH2vWHObwIS9IwuRadeJj9+xx0tbWzyv/bsRiSUapkJGcohBOsnPnMWfB6/z1gYd55cnf0dS9kz7XZQwNLWPNmsNUVlkoinRzRMMCYkMD9AYVnZ0+OjuE/Yp+Fnl5Ouzt/XHkJBFiu6Ki24wNJxib0ieVSlhRnkmaXE6108OqP23m5uXT+ObiwrgLo5deamTHji60WsWEF/6JRvaOFfbudfHaa004nQFOOy2fU07JR69Xikbq0cd81Yxtvwj1IDs7GelIiIxCAy0tXvLydHR2+Wlr9ZKaKowlxSZ9JYLFkozTIVzgxcJqTcHbF6LT7kel0DGr9Hg086ZRnuZEbx5ApvGzeecBGg7ZeG9HDT2ePh5++ePvg1wmJz/HzML5xeRnZ1A2xcr0YiszivPJzjBOkoBjhGPpCRHFkcb8xtWDyOuXTDXz3YvOQ2s8i/2tjZywQPBHKitNx2rVkqxNEp+j0crJytKSlaWNE6uqInHh0dvddU721nczODiCyaQRH+t0+unq8vHC80KXSkaGluzsZObOzaSqMpeqyiv4+nlLueiG+3i95iVKc0qZ41lEc7OHiy8qpapqdKRIo5WTX6AnaqArbE+D1zsQd4EdNf8vLjIc0fg+tisq2r0X+9kl/HvpsulfcDN9u57B0voM/LUOLvgHpFrF7b70UiPvv98GwNNPz0742p91PZg+3RjXqevxDHzl6gF8/JpwrOsBQGaWhgULUnC5IhwhMCQKTUaj+iPrQSIDZRg9nt966zBNTW48HiH84uBBNyMjUFUldCcK3XnzOG3VMvH7q0uR0d3ZTXdnN4ca29m/187AQIh+rx9nlwdTupq2dh8e7yCa1CS+tryYFH0KKfoUkvXJpKWnkZGTgT5N/6nVg8GRQT7s+JC3mt/CHXIzLXUa182+jpOtJ5Om/uQhHF9UHEvfuCiONOKX6DzT75Cz1P8d0mZV8PLtj9D+ziFmrJxBmDClpekUFqQgl4/KCNGOvXA4jF6vEoUYqzWFBQuyRD8qh0PgCIcOGo1tDQABAABJREFUeZFIwuTm6sTHihzhlQhHUMpIThY4QvS7XlFhwun0c1Axm+SMafQdfpff3vxbXnz8db571/cpKUkTwwJiQwNstj42bLCxc6cjzucpL0+H3X4UHCGmU8k3piYkSukDoXssmgY4ETZvFgze1Wr5Ebuex47sHSvYbH1sjYSazJkjeH7F7k/0MVGj808TXylRSqlUMnfuXNavX8/XvvY1QDBdXb9+Pdddd91n8h5SU1UklaRSUztEqkFFUZEBe0c/+/f3iKuTJSVpcZ5PDqePTR/YxTEnvUEVZxQdK2CcuXIKm6vtDA+PUFPjYHBwmNycXM695DTWrDmMyrWEudPTmTXTyJbqAxTkwfTSZPy+fnx9XgYHB5FKJSCR0Nc3gM8vw5pvxtY6xO49/Zy4dAaFOf3YbYcpLptJwdTSj9jjSXwSHI1Z+bFCrFgV+12KVfgvuXgGMAOH0yeKL3+7705qt1XzzZvvZelplYIJeY0DqUzC4sU54oqC2TRqnOlwCmr+wOAwBYU6ykqNceb04REhKSzgHyIlWYnJrEGnU8WJPtf84HqKypfwt9/dgX3Pg/i7t5JkuQSAqsrsuH2p2y148xApDnNmZxBLShoautmwwUbAP0TAP5RQeIr1gNu3rweZTMLwsNAJEu0s276jM+Hfy2brw9Pq44wiI3XBIPes2cemJhd/WF2BXqME4Nxzi+NuE+FoEo+OlOB0JEyfbmTlyiLa2/uYNi2Vbds60GoVeDyjZqL/rT/JFxFfhHpgStdgMkipb5XS0iL8zpqbgrs3wLvvtpKRqcGgV48zJ3c4fOKoU5pRzfBwGL9vCIgXL1aeOYXqzZF6UOskGBhEIVUyNSeHgcERvEYz02ekc/llZfznjUZa2h3k5mvIzlXj6fPR5wsgkUiQSCRIJRL8/mEGAhLSjSm0Ngfw9oxw0on52L3NKBVyLl550mfyuf0v4lh4QhwNYoWq2O9SXBDERdG6P0t8DIoAp37zR5w2fzE/ufYCymcIZrUdHT7mL8iM6ziKxoVHjcW93gFMpiSsuTrOObdIfKzfN8TjT9Th7PYjlUhQqeWUlhrHiD6pPPLTm/nbC2t5eu2rHO5qZm7OEvI366mqyo7bn3RjErvrutld58RiSWb2nPh64HD4ePXVgzS3eMjP05NuTEooPsV6jcTVg3mjxGiiVCZb+wD7ek6i0lLIlN5/wyNVcPbDUHYWcOzqAXyympCoHkSFqM2b7cjlEoaGhP39KtUD+GLUhFRDEqoSLTU1Q6SmRjiCPQFHiEnninYyRMec9HpVnFF07HF80klW1Gp5PEeIkP41aw6zZ4/QIRcIDLJzpyMSmJRPTkEOOQU5VFRWiO81drs7dnSxcWMbixfnkJXqpbO1k6nlU8kr/nTT6waHB6m2V/N2y9t4B7xMT5vOD+f9kBNzTsSgNnyqr/154lj4xh0NEnXtR8Ww0RHjhXzv3HP45fRf8urBVzn0XisXTbmMZ375DPtrD3Dt7d/nxFNn4XJFOIJ0DEeIMdePdvwMDAxTWKijrMzIwpiwknBY4Ah+/xApKUpMpghHiBFJSkvT8fmG8PmG6OtToE9byZCmiK5D67n54uu55LpLuOjai3B7BqmL+HdChCPMmYAjBIYiY6rjhadYD7iJasKE9eAo6nplZPEmepsIsQsiE23nSKl+R0KsaJidnUxjYy9qtQxf5JoTYN++HnJGZJOi1MfFD37wA6644grmzZvHggUL+P3vf4/P5xOTNj5t9PaG2LBGiLMHIbr4wy12MY3G1RNk7boWamoctNq8+PxDeNxBtm4bjV5eulRYVbNaU0SS39npIzNTy9KlVlINKtauayHdmERoYJjFS3IwpidhztCQ603BnKGhr38IlTaNzNwMKo47ctFoaOjmULudxSeqKS5O4+8PPMCOjf/mG9//6aQo9SnhWMz/fhJ8lKlf9P6Az0v1+lcI+j3ce9MFuNp/xKD6BNrt/WRbkgVPjkjiXezJL6rmm0waCvJ1ol9YVEAymTR4vCEyMrQsW5YnGhqKiRPuEHpDH0nJ6cxd9hO6mj+gfvMj+Ny3kjL/x8D8uNfauasLwqA3qJk3N5OlS0cFq/XrW9jyoZ3Dh7zI5bC3vpvDzR6Gh0fQ6VRiUWlqcrO52k7ZdKOwwhIjWEUx0d8r9vdV6Rre2efglZp2Tvj1BqrCKi45rYhVq6axatW0I/5djmYcI1GC09GspuXl6bnxRuFz+/nPN7FunY158zLEFfIovopGt593PYh6Sm3dO0xjk5t2ez+ZGVo2bbLT0yOM5litKTz33D5qahzYWr34fUO4PUG2jVm5Ek1m65xUV3dgydJy1llTqKrK5o03DvHmm4dRqmRUTDGz7JQ8Wpq9dHb4SE5WsLvOyUBQwrSC3I/0Cqhv6Ka2xskJxwvHp6uvh6t+cj/aJPWkKPUp4vOoCR9VD2Ifs7F+I73ePp5bv4Yd+/fyn7/+jB5XEK83RGNjr+jRVDamHuzb14NGq2B6WXqc6Gqz9TEwMIzVqkOllGEwqJhRbhI9o6IX+W6PYDR9auXxTM2ewqOvvcCmw2+hqnFxZe9U0lP1ca+3a2cXYcCgV7NsqXDtExXHbK1e6htceD0DBAJDpBmTCAWH8HpDYk2wtfbR4woIabERA9+oWBWLj6oJKdZ8SJoDWx6G5y+jM/t8Hm2/lJNPKeLpp8884t/laMfzPklNSFQPAK68cgZAXKfUVxGfd03odQdYv8Yh+p0VF6fy4Yd2OjsjHMEVZO3aCEdo9eLzDeHxBMVOhnEcwZGAI6SqWLu2hfT0JEKhYRYvzsFoTMJs1pCbm4LZLHQQCpi4sykq+DY0dNPe3s/8+Znk5+v4y11/peaDzVx3x3Wfmig1MDzAB+0fsK5lHf2D/ZSnl3NRyUUszlmMXvXVEksT4Vj4xn0SxIphse8hWZnM3YvuJsVRwgvuh3hwx285sL6RwUCIX1x7E66fXkNIVUJ7ez/Z2cmib99YgSSOIxToRL8wh8NHXV03JlMSHk/yxBwhkko3MDCMUinFZNKQnp6EyaRl3g3LOfDhOp76w1NseHUDZ119NQfbhcVhvV7NvHkxHMER4Qhb7Bw65EWhgL17uzl8eAKOsNlOWZkxrgvr43KEWMQKSNFFnCPhaMbzEqX6HU0Hdqxo+OyzDdTWOikqMsRddwLoMocSPv9Y4isnSl144YU4nU5uu+02Ojs7qaio4M033xxnbPhpobPTh1QmJduSLEbUl5ebCCO0ppeVGXnzzWaGh6HfN8i+fT1kZQq/t9m8EXPz0c6W7Ts6Re8crzfEpg/sbNvWQV//ICnJCqRSKY2NvdTvdSGVSSgtNTI8HEanU3HSSda4L1TUHDovT0fAL/iClM80UVPrZNeuLnQ6FcHQMN3dQrS4L/Dxx/8mcXT4OMbmxxJxavsREv2s1hR++sAr/OXeH9PauIVH77uLaTPXMWfZTVRWFVBT66S2xonPNxiXLimmaLiDNB304HAGWLrUGicgXXVVeULD8YYGF2+8eZjkZAUpyUqkMgmzFy7nm9efy7MP38kLf/4xLfve55Tzb6JsRl7Czqgooq/ncYcwpKowm5LwuAfwuAcoKjZQMcuEzz8kFM5nGnC7BeLzwx8Wxryfbtavt4nCW6K/19jPcFlpBkWmZO5fs4814X463thHOBxm/Xrbx+5wiiJKMmbMEIpMbILTx11Ni02Bin0vX7UV8Sg+73oQ9ZRKM5qo0CrIy9OhVMpwuwPs2uVk9mwhbSkQHAIJ+PoHRRIfHYuqWmgZ43sjIeAfpKPTF0nx62bnzi7c7hAyuYRpU9Ow2320t/ej06si5EMyzhgzKj6NTeerrXFSU+sUBTRbRycgrGBO4tPDf+MJ8UkxdvU10etHH3PKKZdgzTZz91+eorGthTnnfpfbvn0lixYV4XT6qakV6oHfNyR2HUUNwd2eIAcdQhpkesQMN7rinG1JYenJeeM8MpxOP3vru+n3DSBBQl//ADKpilu//i28tPLTBx6jZMU13Hz5pVx53klimt7Y7igYFceCwSE0GjnDQyMkJSnocQXE66VZFSb8viHWv9PC7t1OjMYkLr9sunjs1UfqQVRYm+jziv+9Fk6+FWqfxbz/RS7u38Sjf7+ZdeumfuJ6AMeuJsTWg//Gp+rLhM+7JnR2+JFKpWRnJ4sR9TNmmAiHYznCYYEjROpBVtYYjhDzHYt2Io6MRDjCpghH6BskJSWGI9S7kEqPgiPURDhCIMIRIqlmIkcIDuNyCQsq/f3HniMEh4K83/Y+77S+Q2AwwEzTTC4uuZiq7Kr/CTEqis/reBzbpTn2PVw09yzyd5fyuvFBBn8xgOOvPbgbunnwjgeZsWAOc5av5viFBaJAEscRymM4gidIU5MHhyOGI+wUxmqvuqo8oeF4Q4MQzpCcrCAlRYlUKhGF2OjxUFp2MZlFs3jl0b/y4E9up3L5CpZ87ezEHGFnFx5PiNRUFWZzEh7PAB7PQESQMeHzjXKE3iNxhIjw9tH1YBSxAlL0/x+3wymKqPAUHT9M5PMVfS8fhVivsNj3YjZr6QlMHHZzrPCVE6UArrvuus+sFXcsMjO1mBcrxQNg0wd2ul0BiopSWbxYuABJTVWjUkmxWnVkZWoon5mO3qASozBjEetp4/MPUVPjEAWpxUtycLtDtNq8HDzkxhrx7hk7lhRFVEiwt/czEg6LHSYGg4qkJAX5ecLz33tFeLzHMylKfdXwUWJY7P1mUynHvfwyb7z4DA//8mfs370ZZ8e1zC1/mIpZQuePWiWjutqOPzCI1ztAbtSoz5qCwxmImDv3jROQxnpqmU1aHF1+ujr76ZbLMJs15OQkYzYl4XTJKTruh0yZcSLPP3o3tVvPYdU3fspV115O+Uyo291N3W4nSRo3LS1eKmYJhS8zU0tXl590YxJzRREsPu3x2ecaGBoOi+3uDQ3d4kjtmpiOx7GF4kieYPnpWq6ancsLNe3sGgpxw3/2ItvqBvhEJORIKUnRC4hYj6gjXcgkSoH6quPzrAdRT6nMKYLpbHV1O+++10qGWcNJJ1mRySTs29eDJSsZmUzK9DIjJpMGtydIWloSJSVp44yYo2l9Qkt6mF07HQQCgqFzenoSKpWMdWtbkCsk5OfpyS/QMbN8/AVTVHyKIvrvWRG/hkBQEBV0emGlcdI76quHoxHCYh/z0++cw2XnLOTyW+7jvW113Py7P3HNhSv41jmr2N/gQaWWsWNHF339A6QkK5hSlIpBrxJ90WLrARA3Mjd2RXdvvYv29n78vkHMZg2Dg8Mkp6hITVUjcVt56f67uf2hx7nlDw+zfut2nr7/BsxmPTPLYXddNx9sagdAp1NisSSj0Sro6QlgNmkwpiWRmakVhahYsba6uh25TIpcJqGmxoFGK6esNJ3qTXZ27uzC5xscd0wecTVapoA5l9M2kIvl8NP8XHMzDzacy7rwZZ/4XLxhQytvvXWY004r4Pbb442ip0834nD4cTh8tLR4JutBAnyuHCFLQ/piwyhHiIzlxXME4TxuterIytJQXp6OXv8RHCHSvVFT4xAFqcWLIxyh1cvBgxGOECHbib6rUaJst/czMiKsQuj1oxwhL094/lq5UAvcMRYA/y0CQwHea32Pd1rfITQcosJUwSUll3Cc5bj/KTHq88ZHiWHC/fO4YOQxntj7BH9M/yO+91Jp/kcze7buxNHWxoLZt1FRIYi8anWEI/gjHCE3auadgmNMTYgdrRt7ThW6qfx0dvYjj+UI5iSamtyiOOTzDeEJJPOtn99O47YNPPG7v9NYW8NZV19NYWmxwBEqxnCE9DEcISbt8dlnBY6QlDSGI0R8saIdj+M4wkd0KMWKP4k6nD4OjpSa91GeV2ORKBnws8RXUpT6POH2BOlq8ooiUjSJLxpT7+oOkJmpYWhITWenj2Stkrrd3Xi9IbIyNXFqbiLiq9UIfzJjmpq5czMwm7S8/HIjve4QVqtOFKRc3YG4Lg8Ag0GFVAq51mSMaRq83hAed5D29n7kMik6vYrS0nQyM7UcrEM04p3E/y6c3X7MBUu5809lPPyL79Fy8AC3f/cqnl67ndLSUhxOH66eIB124dbnF9o7hVE6K3W7u2m1efG4g1gsyeL9iTy1KqssdHT6cPcG6OkJolbLaTropr9vMJL2V8Ypl/yZuo0P8cyDN9N5eAuLzvw+O3e5IQwDg8PY7f34fINc/Y2ZyOVSRkbCKBRSymfGdzpFj628PB1LluTgdPqxt/uoqXVSWpqOzdYX1/EYi+hIrXD8COOGY8WpinIzFeVmNjV18+yWFgbmJtNvVhAOhz82uZ8+3ci2bR10dwfGpSRFLyDWrDmUcHX80zDLnMTRo7c3SHOzF7khIIhSm+3s3dNNqMjAaacVMDAwTEuLF5VaTopfKaQj5euwtQ4KXR3a0RIde5ETO5bk9Q7S4wqIHVXr1rfQ3OIlK1PosvL7huh2BSJdVWFmRi64ovXAYFCRl6/D5xtEpZaRbkzCZNJQU+skFBxm9mwzAAr5VytiexKfDGq5ll9d912eX/8mv3/qJf78zzfIs5j58TUXiqNEfv8gOp0KCIs+VdHVcI1WLn4XNdpR8/6xK7pVlRY6O3z4/YN4PCFGRmBoGHbu7MLbNwiYuPv/ruWhf7zF61vfYMbK/+Pxe76PSZPLrp1duFxBBoeGUSpkLF1mJRQcot3uozhmLCHWWyt6wb7slDxMJg1Op5/GSCJTWWk6acYk9HoVaWMMa2NTkdyeEAZ9YiJiPf4kmDWLnjf/wA9LnqNLexD6noaUT9KhE450Lo5vX8zL02M2C91SZrNrsh58weB2h+ho7BVFpK1bIxxhaoQjuMZwhGQldXURjpA1hiMkIL7aSM0wGiMcwRzhCL0RjhARpFyuQFyXB8RwhNxkjMYIR/BEOIJcij7CEUzpSRyGI5o3Hy18gz7ebX2Xd1vfZXBkkDnmOawuWc1xWZNi1BcZUqmUr5d/ncyRIu6W3Iq0QIbrL904Wh387Oqf8cymZ0TxxuUK0tEh3EZ9ioRROit1dd20tnrxeCIcwZeAI0S+25WVFjo6fPSKHEFGU5Ob/n6BIzidfjQaBUajmoICA8cddym6zGL+ds8feOzOu8iffSLqrPkCR7h6DEcYs3AX230kcgS7j5qaGI4Q0/EYi9iaEB03HFsTYsWf3t7QURmtTwSrNYXGxl5R4EuU5jyR59WnEbDy32BSlDrGaDzQy+Hdwh9+6VKrmEq2sMqC2SSYZw4PhwmFhiEMrW1eOjp8yGUSyqbHq5ObPrCzdVsHC+ZnifOepaXp+PxC5GXd7m70hj5KSlLJtabQavOyYYONObMzcDiFVvnoc0AYJfF4Q3i9g1xwfp5o3mxMS0JboaBilonnX2igtkZooZRKJ0nI/zpGzW+z+ONzb/Dg3T9hbtWJaFOEk6fZJPjajDUPj96nN4yO7TmcAXFGO9GcdVVlNl2dft566zDDw2HCI8Jcd3m5iZYWL06nnza7hBPOvYMLr9jHA3fdQu32LZx24W1Yiyqwd/jo6xvEmCaIqVExqWKWaVw3U5yp7+pScbQ1NlFw8eLshJ1QsSkYUdIV3d+xSBuEbOcInSkSXmhx4nh8G7+7YBYv/KOe557bz+rV0zCZNLz0UiPnnluc0HsqL0/PlVfOEMlE4r+Th40b28jOFt7DI4/s4rnn9mO1pjA4OMJppxVw5ZX6SVLyGaNuTzeN9S58GCgrTY9LJZs3L5Pt2zvFUYpQcBivN0T1JjsN+1wA5Bfoxa6MDzbZ2ba1g/kLsjg3Ug/MZi3W3BT8kbEph8MHQGVlFjPLTeyu62bXzi5SU9X09gZFrx2zWYvbHSIUHGZvvYu5cwXfqn37erDZ+sSRPpfLzytrGoHJejAJATZbH02NHi4+9QxWnDCb+//+Cj+46lxA+D5GxafouT1WpIleHEd9n5yOiWtCVVU2nV1+Nm1qQ62WMzISZmhwBOvUVORyqThqmqsv5lfXzOC1ba9z+rdu5+vnLufcxSsIBcO0tfZFujkk4nd6rO9VdJ+i5/F58wTT9rHjrYsWWrDmpsTVrOhzE9aDRBf4SWm8G74IWds6VuRsg4fmwxm/45FNU466HgCcdJKwGn609QCEmvDQQzWkpydx4om5oofUZD34bHHgQC+HaoVz6dKlVtFgeOFCi2iwL3IEoLU1whHkEsrKxnCETXa2bu1gwYIxHMEX4Qh13ej1EY6Qm0Jra4QjzMnA4fCP685ob+/H44lwhAvyRCJrNCaJsfbPP99Afb1glv7fdM/2DfSxoXUD77W9x8jICHMz5rK6ZDXzMuZ9pQ3Mv3Joz6Gq8RYOTHuKxp/Uov+nnssvupwkjSBYms0xHGGMF5PZrEWvHx3bcxyhHoBQE7q6YjhCODyOIzQ1udFqRzudjl8yA3XKnXzw+mt88NprJB2uZ86MbwHx3Upjz9djgz9iPaCi70vkCAmee7Q1oaGhm82b7Uil8V2Qb7xxSAwW0OtVEcN5S0LvqUR1dyycTj/19d0Yjeq47ZtMSQwNhZkzJ4OlS7Wfu0g1KUodYxRPTUUnlYlEODaVbPuOTrQaeZyZstBFMoBUxqjKGSG3rp4AHk8IV8QQNwqrNQWPOySaNs+dm8m8uZl43MHIwlk4jpBHYUxTo9OpRNI+1l8I4OGHawhEvKTc7mPXmjuJLydivyNJGi033f1A3P3763ah1emZN7cw0dPjxvainVIT+VkB6HQKsrNT0BuUTC8ziqN2VZXZccJRaWkZ0+fM59c/up5n/3gtF37jOlZc+H9iclP15nY2bLBhteowpo+u5sX6qpWUpIn7Z0yPxLZGHiuOFMakEUbf79hiqTcIgtz69S1ExwNd3QFqap04nX6cbf3kWpIpXJzBhoMult73HooaD/sjhTg7O1mMCJ+IhEQ7ojZtauOJJ/aM8yPZuLGdgwfdbNzYzre/PZsnntjL7t1OWlu9zJ+fRXRF/bNKdJmEgPIZ6SgYpChyITM2lSzquRP9LtlsfdhavTFbGO2E6HEJ9aDHNb4euD0h3J4g7rognR1+SkrSIhcUTsJAmlFNfoGeWK+dWRUm2u39yKSSuIuZ6MVIWWk6112/Dme3IHRFxzkm8b+N2O/JPPMcTlk4R7xveHiYd3fs4Pzli0XCOq5jKMb3KdZEPNEooU6nICNDS1GRQbzAn1k+nkDMqjBx7Tfv5MF/vMZNv/kbW3bX8/RvbmLRwhLRUH3d2paE+1Pf0E1NjYM0ozrugj49EuWdbhwlV1FD3tgxiLH1wKAXusHWRerBzHJTXLpmT0+IXc1TCaWWcUH6u/DiNyh1zqZpz3Kee+7TqQcATzyxl8bGXnp6gsyYkc7evYLwPVkPPltMnZpKypBSJMKxqWTbt3eijdSEKIEXukgGkEoZ1wnhitQEV4Ka4PGERNPmuXMzmTcvE48nGHlEOI6QR2E0RjiCMQFHiLzmww/VEAwK3Sy9vaGPvf/ekJf1tvVsbN8IwPzM+Vw49ULmZMyZFKO+hBCE8RL+r/RhXnE9weNJj7Ndv525g3PRKrTs3bEXo9mY0CMKiBvbi3ZKHcnjUOQIeiXTpxvFUbuqquxxwhEI5+1TT5vCqad9ny3nn8Tvf/xbnr//l3i6mgkop5GXp4/r+Iv1VYvjCJF6YPyIehDdp9hbvV4Q5ESOUG6KJBUKHCFqDh9bfzZubOPgQbf42tHUzIkM0WNDCcZ2QALU17vo6PBRX+9ixYpC1q+30dzsobs7QHFxKtFrzc8qBXgiTIpSxxgF+XpOnjf+SxOrusaaPGs1clrb+ggGhtBoFDQ0uKipcVBWZsSYlsScORksrBofE+lw+unrGyAlRYnHHcTh9GGxJONwBrBYkkWS3esOiSlpCxdlj3r+RNBq66OmxsHCKgulpeksXpKNrVaGvx9Uqsmvx/86juRB5ey0c+t3LmdwcICf/vbPzFt4YsLnR32f7Pb+uDS+t95qxmbzMmdOBiaT0JZePtOE3qBO2KE0dtY5w5LLbx5/kecfe4i/P3gvH76/gXO+8Qus1nI2V9uFk7C9n9JSo7itqK8awEWrR5Mlx6b/RV8/0Zjh2M/EbNKyfUdnXBJgY2MvtTVOLNla5s/PFMdoj5tq4snNzRycpiHHmMfZs3OwZgrH45EiwqOITVsC+Ne/DpCdnczixdlx25g3L5OOjn4WLsxh9eqScUkuX9VkpS8aphanMbVAA8mJOzNKStLGXaw1NLjQahQUF6cyODDCb+/bRlWlhbIyI25PiLKy8X87p8OP1xvCZNYik0nQaOWRrikJc+aYmVluEl836r8wq8LE5ZeVxQlSbk8I2yYvOp2SmeUmlizOpqvXAYcBJDgcvi9Ei/ckPj8cyYfqp79/kl8/+gKvrNvMX3/xPTRJR7YASDcmYS4VLuyfemrvuHows9yEQa+ecNW2rDQ9ruvp+svO4uTjZ3Hxjfey4Pzvc+35q/jxNavYsKGNmhoHSMBk0sQ9p7bGSWOTmwptvNgVPUbHjuSNvWgf+3mM7QYz6IV6EPVsq1poQatVMKPCBFOXQMO/WVj3Mru/1cSHplvwWwUR6VjWAxitCSecYGXFisKvfPLqFxUF+QZOnDU+sW6imqDVymlt7YuY9I/hCMYIR1iYgCM4YjiCJ4jDEeEIjghHiJDs3t6QmJK2cGF2jOePgNbWCEdYOMoRDm2WMgSo1UfPEXoCPayzrWNzx2akSDku6zgunHohs8yzSFWnfrwPcRJfGMR6UN1QcAPTjNO4o/oO7t12L+emncttX78NgJ8/8nMqKivGPd9s1lJeDnV1EY4QEZmqq0cXlufNyxDFqvJyE/oJasJH+SEVlhTxvXvv5v1X/sXrTzyJKrWAtvkrBY4Q2Vasv9NFFyXgCGPG8RKJOBPVhGhHmD5SE2prnVgsEY4wplsr6i8X7ZQCYXzxozDWQH3TJjtGo1q8boxuo6jIQG9vgNJSI4sX54wT0ibquPq0Mak6fIqI9YSa6A9tt/s4sL+HoaEwMpmU7sjKh8cdIiNTS0WFOe4gi/rZdHb6kMkkdHX5cDr9OJwBzKYkhofD+PxD+Gx9bNzYzqGDvRBZsbxodalIpqPb2bG9E39gCK1WQWlpOhecX4ps+P+orzuVvGnzPqNP6quLoeERvMEh+oKD9AWH8EZug4PDhIZGIj/DDAyNAEI7tBThTyaVSFArZKiVUjQKOUlKGSlqOYYkJQaNAn2SAoXs8xupkcnkZOXmUV+znZ9++2Ku/dGdfO2Sq+MeE/2eNTW6Uatl6A1qUez5cIudXneI3t4QGRka5szOYOnSPMwmLdWb23nqyXoqqyxUVWaP22as19pF3/wucyqXcMf3ruGBn17Iyktv5PiF5xAMDZFuTBJFW7NJO66DMLotrUZOVqZW7D4EQWw62hP0WCP3qPdbrKcbQLYhiZVWI/92DdBmlvCkq4c7Fmbx9NNn0tLiSWhWHjtyF5uWtG5dC2+/3Ux6ehK33HIcTz89W3zOTTfN5/TTR4lHdFX8fyVh6YuI2Lboib5XNlsfNbUOenuDWK069ta72BtZITvxhFwyM7TjjG531wmkWqWS0t0dQCoVzvcmc1Jc19RLLzeybWsHCoWU0IDwHb/oolLxQmjd+mbWrbUxODRMRoYWg17NBReUcuryXOY8mUxXV3CcX8EkPibCYRjwQcgLQc/o7YAPhoIwFIr8BGFkOFK7JcKtRCqYZsuTQKkFhQaUGkhKHf1RJov1/vNAfrYZuVzGs/95jwPN7bz2pzvIMqfFPWZ3nZN1a21okxXiKKnN1seWD+24e0P0+wbJz9PT2NjL0qVW5s3LpL6hm1dfPUiaUc2ihdlH9MSYXpzH1hd+z9U/+hN/ePZ5qmvr+PUN11BRYSYQHEKllsWJq7FjfbHb02jlZGZpaT4cUxMSdEYlwtgUwKg3XHR0MFYUq5ctoQUDJ+rfZIXnZzD0Iav+8gBojROOWydK3ztSPYDRmqDXK/FEDKon68Hni6OpCXa7jwMHYjhCd4QjeEJkZCTgCI4JOIIjgNkc4Qi+IXy+BBwhph5Et7N9eyeBWI5wQSmS0CU01LWSM7XkI/exy9fF2pa1bOvahlKqZJFlEedPPZ+ZppmTnVFfQZxecDp5KXlc/871PNbwGPpMPa0Nrdx4yY3ccPcNnHHRGXGPj37PmpoiHCFSEzZvjiwsd/QTCg3T2xuMjJjliaLVU0/VJxxpm2gEzWbr4+DhfpZeeDHm/Gk894c/0fzBY+wok2K1LsNs1o7rIIxuS6uVk5WlFbsP4ejrQfT+WCP3qPdbosS9hoZu3O4Ql11WJt4X22E/dr9i93esgXo0NXPVqqlxyYHnnlvMvHmZcV360X36PK/xJkWpTxF1u4VZ0cwsYaY2tkNqFGEMBjVJGjmVVRa6Ov24egKUlRlRKmXjvuh1u500NbrJsghfmuZmL2qVDK83hNmkiWs3HBkeYWg4TKpBGTfGFytsWfN0aDSKuPsXL11EXvGsz00p/bIhNDRMhydIhzuIsz9ElzdId3+I7v4BvIHBcVakSrkUlVyKQiZFKZOikElQyKRIJAJnCRNmZARGwuE44So0NDIull2jlGHUKjHr1Fj0arL0SVgMwq1M+umSkzSTmd88/iJ/vOtHvPnSszx0z89wdLRz9Q9uFf1nbLY+mpu9eLwh8gtMcSfw4463YLN5STcmRWLrR3duwwYb9fUugqGhOFEq9rsrRsGatEybUcGvH3+dv/zmTl554m72bH+fJWfdjC8opemgWxTDoisp0bE8jztIR6dA3PUGlejvE+uLdaS0wijMJi1Ll8Y/LnYcMBZ1dS46t3aTnKYkaaaB7z1Xw1MfNFPoHCbQM0oWoogduTv99MK4MQ23O0R2dvK4le5YsjGRCfokPltEE1JqahyRRLzxY0hWawp5VsGvLc2YJK5uVVVaEl78OBw+mg8L435Dg2FcriAqtSzSNRVfD6Ljf3n5OkpzdSIJj92OXC7BYtFTNn30eQZdMt+4YOkR/QomEYNwGPwu8LRCXwf0d0FfF/Q7wN8Nw2PG4iVSQWiSK0GmFIQnmRIkUfExDOER4Wd4cIxwNSYhVyoDdapgnp1iAX0O6CyQmgeqT2ai+nHw7dVnUFpo5bzv3c2OvU1Urv4Bbzx6J6VTrLE7zMjICB53iIEBwTfHak3h+OMsYqeU2x2KG1Wq3mRn06Z2YcQuVzeOOMfVA7MWlVLBfT/6BlWzyvn5X/7K2d/9MT+49FJmFU+nqcmNTqdkWeR8HRWJohf8bs/oCKxBn6AmHGVi4bKl8Svl6cYkbLa+cd2GQgqmnCbLeZxg2sn0/W/DwQr2ZP+AXSNLOXhIOL4T1YTKSktc+t5E9SD6/COFYkzis0ddXYQjZEY4QsIRpwhHSJJTWWmhq8uPy3UEjlDnpKnJTVZWDEeI1ATzmJowMhLhCKnKuJGn2OMqL8oRYu4/4bT5FJSWHLEetPW18XbL29Q4atAoNCyzLuO84vMoSy+bNDD/imN6+nT+eeY/+c7679DwgwZ0z+vYu3Yvv73lt3TZu7jqB1eJ490iR/CEyM8f5QiVlRaCwSGsVh3JyQp6e4Mk5AjBoThRaqKaAPFJdNaSGVz+kztY8/fHeO73v6f1QAO3/f4HoxwhUg88niAdkXqg/4T1IPq4hBwhQVhATY2T6mo7dXVOLrusDGOkdkTfS3R7UYz1RIwVuXy+QYxjRtPHvu+JTNA/D0yKUp8qwvT7Buns8MV5RcXCYklm+oz0cR0VE0OCOkmGMU34IpeVGSkrMxLwDxFVYGPTzKK3sdu22fro7PQzMhxm+Wn54173aIn4/yLc/gEOd/tocflp7fXT7g7g6h8QT5ValYxUjRKjVkm+UUumXk2GTkWmTo0pRY0pRYVWJUcuFYQoqRRkEglSiURYDEc4UYcJMxIWhKmRkTCDI2GGhkZw+Qbo8gbp9Abp8ATocAv/dnhDNHR48Ucu8uVSCVl6NXlGDQXpyRSbk8nSq495rLtSqeIHd/6ObGshf/v93bzw+J9wdtq56Z4/oFQKJ26lQki4kMul4uiezdbHvLkZlJYaxxmkO5w+FHIpKclKrNZ4IhX97jodfjyeEPb2fk4/vQCAmtpuLvm/25k2axHPPvwznvrdlZRV/YC5C6viiXxMel7RlNS4izSI91j7pIgtEtH/O51+6ve6yLUmo1LJ6G33UZybwqLKHF7Z2c6OwRHSewaw7nWKq9nTpxsnHLk72jjvoxnZmzRA//QRTUhpbHLT0xsUu0TGomx6OmXTjaJoFXvBlchQc3g4jCVLi0olIyNDQ1mZEX8gph5EnhMd/6tKsLK4u66bjk4f+fl6zjpryrjX+bxXz76wGB4Edwu4mqDXBh4beNoEwQhAKhc6mDRGME6BvCpBJErJEm61ZtAaR8UoqVwQoyTSSHdU5HwdXY0IjwgdVOFh4bUH/YLw5bWDxw597cK/vXboqIGD64XngPA+DHnC+0ifKvwo/vv0rLE4YUE5W/55P8u/eStNLXYWXnwj/37oNhbPE4y1Z5anU1PjwN7eT0uLl6IiAzZbH3PnZYiegIAogjocQgJfik5JnlUfd66O1gOH0y+khNlH60FtjZMTFpTzdN7P+f6v/sSdjz7KSRWVLJt1MjBaB6OrzFExKjNLm7gm/Jff/0TjgE1NbhoaXKSlqfAHwzyycQonzZ3KacYNzDp8B3ieod53HXp9ftw5OtE5fbIefLExEh7hz7V/xqg2kqePju+F6e8fpLPTl7ALNTqCfdJJuXEx9UeGBLVaJpJdkSMkqAnRUZ7Kygk4wkiY5csTcIQJ6kE4HKbR3ch623rqXfXolDrOKDyDc4vPZWrq1Ekx6n8IJo2Jp05/ih+9/yPWXryWeZnz2P7Udp564Ckc7Q5++KsfolAqBI6gjOEIEZ8mpVLGuecW4/MNodXK48ZKHQ4fCoWUlJQjcIRITbDH1ISo35TPN8TOSELrtBMvJb+shq1vvsK3Vx7g1gdvRZtqHuUIRRNwhGNUD2L/L5iRu8jNFTiCw+Fn0yY7FRVmduzoIhQSvNxaW71xpvETdWt91Dhj7P4ken4sHA4f9c1O8nJSYcrH3t2jxqQodYwwPBLmj+80kqpRUJAuxByXzzQhXPwIhWDs2BGAzz8kjtwdDcpnpqM3qMQOj4oKM/PmZopJenrDqPilVMrIyNQS8A/x8suNYgqgViPH7x8g4B/CbveJX9qoCbRO1UqKJkTx9Jlk5Yyfff9fweDwCIe7fRxy+jjo7OdQtw9PxAReo5SRqVMzLTOFvDQtJZkplFl0pCer0ChlJCllJClkyI/xeF1e+vgT4fBIGP/AEIEBoWOrocNLXbubfZ397O/qZ1OTizCgVcooNCVTlpVCWZYei+HYiFQSiYTV37ye9Mws7vvZDbz7xr+x5BZw1fd+hNmk5fTTC+KS7aInY5lMwvBwmKxMLXqDStyezdaH3qBm3vwkLFlacfQOhJNmZqYGCON0+Gn39oteHVGvqNPOPpNkQwEvP/Yzdm+4lRzzd2ieciWAODro9Q4QCg1zuNlDWZlRPC4TdzN+fMSe5KP7W7+3m/b2flyuALNmmaivd2FK03JqWSaB1n7ebOrGmavicbuTPS/2EbIHWL48nyuvLOeNNw5x771bWb16mmhc+1GIJRann16Y8PdRwvHCC/t57bWDrFw5hRtvXHBMPoP/ebRugz3/gmlCu3o0IcVkFr6/Gq18XCu2zdZHZ4cvxqj8yBj1ghIIdUWFWUz127evB4N+lOgolTIyM7T4A0O89HIjPa4AVQstlJWmC3H27iB6nTJu+/UN3Wza3EL/SBfTik2cfsL8Y/gBfckQDoPPCd0HoLsRXI2CIDUyLAhJySahO2nqckifBlmzwFgojNQptYIAJFcf+/E6c2n8/8NhoZNq0A+BXuG92mugs1YQz/b9B4ZeFIQvfQ6YyiCzHDJKhZHAY4Ap1iyqn72Ps679OVtq97Hy2p/TvP5xDLpkzGahJkSNv8fWA0G0UYnHxfbtnahUciqPt4iPh9HRiWg9cDj9eNv7xToQrQtLl1r53Y3X89rG9/jzSy/R4mwlK+8bOBzpcZ4gGq2CYHAIrzeExaIdrQkTGPR+XMQeq1EysmGDjYMH3ZSVGSktS8fdG0KWlkWw8mY+fOlZjtNUc1fyD9m39WKeWnsuXS7hOlGvV/Lii/t58UX4+tfLj0qMgonFprG/n6wHxx6ekIf6nnpsXhu9oV5OyTuF8vIxHGHM2JHN1kfHx6gHAOXl6ej1KrGrYmxN0I+pCRkZWgKBCEeIpABqtRGOEEjAEWqcaGVO9NowJRUlZGRnMDQyxI6uHWxo3UB7fztGtZFVRas4t/hcCg2FJCuTP6VPdRJfZKhkKu474T7u3X4vT0ue5rjU49j20Dbe+tdb5BTkcOn1l4r1INagfBxHyNKKvkrR+/V6NfPmJWGxaOO6T+M4QsREvCZSE2pjasKcORl4vSF0OiUWy1SOP2kez//xIa5deS1nX30VUn2JwBEOj+EIx7gexHGE+vEcwWhMEhc0m5r8+HyDhELDuFzByEijmaVL89mxo4uXXjrA4sU5rFiROHhqLGLPN7H7NfY81NDQzZo1hxlW+ZBLFMdk/yfCpCh1jOAfGGLrngNsfegHnHjqClacvpLSinksXSqIOrHdGUAcyY69nQixgta8uZk4nD70BiFV5q9/241KJcOSpWVgYFg0No9uc8f2TjZubEOhlKHVCga6I8MQDA5xuNmDwymkK61Zc5h2ez+eQ49gO1DNDT+/j6zz/ndEqagIta+zj4YOL4e7fQyNhFHIJFj0SczK0VOSlcL8vDQKTFp0SQpSVAqSxni8fNaQSSWkqBWkqBWYdWpm5RpYjZWRkTB9oSE6PQG2Hu5hy6Ee9to9vLCjjZFwGzq1nOkWPXPzDJRm6VDJ/7v9WLbyPNJMGTz36B9YffX14u/HqvViC22kQ8rjDrJ2bYt4Ip43N4O5czNE4TVWaBXG5KxiolJLi5eKWSZ63ULXlMGgwmbrY+EJ0znra2t46k/38cyff8+OzR9w1Q/v5eSl5eLr19Q4aGp0i/5t0e2PRUNDN5uq7RjT1CxcJHSYjBWXoxh7nMbCaFSz8f02dDoVlqxksUts+45OploNaGVy9vX4aJKFeG84hDFdwuKI19hzz+0XTRKPRpTatKmN3/xmG319A6xYUUhZmVEkHIkS+Nrb++nuDtDe3v+R257EUaJ7P9++/990DL/P2eddxMqTj8ds1rMsErsbVw8mSG05EuL8SEjBoI/Ug78K9SDLIpD2aLR9NE3G7Qmydm0zLldQGBUvTY8km0GLzcvuum5mlkf8rWocbNzWyFPvPUmexUzzO098Op/VFxU+J3TVQ9ce6NoLgcjKpsYodB3NWACWOZA7H7TpwoicKkUYo/u8IJGAQi38aNKEzqhpy4X7BgMQ8EDXbjj8Ptg+hNbN0PimIKwZp0D2PMhdACn/3cW3KU3P+ifu4bKbf8tFZ5yIQTdKTGN9lYRuENBo5fh9Q6Jos31HJy0tXmZXmJg7NyPu4h1GuzXG1oPoWKrPN4hKLaPbFSDVoOZn3zmPr69exNnX/oJrf/lLfuK4nNu+f26cWHSwqZee3iCh4LAYTZ5IDKiubqd6s52qSovY6TXR6vnYC3+Hwyd2SlmtOuwd/VitOhYttGDNFfynbK0+tLPO4PX6Mhar36Pc8xTW4dd5y/htpk+fzxNP7GHt2hYkErBadR8pSrW0eNiwoZWNG1txOAKccELuEWvCZD049khVp3JH0R2ccsYpPDrjUTYt2cR3v/bdUY6QoCZ80noQ/Z7px9QEiyXCESLG5tHtbt/eyQcftKFQxHCEEQgEhjh82CMeo2vWHKa9vR9H7fO0N+7jh/f9EPk8Oe+3v0/fQB8FugK+MeMbnF5wOrm6XJLkx74TcxJfLkilUn604EdkajK5n/tZ8OMFDLw3wPnfPF98zIQcIdIN5PGM4QjzIhwhIrzGCq2JakJFhYne3hB2+yhHKC9Pjxtf8wSSufbuO9n07+d5/sFHmHvSEoqOO5OmJrfo3xbd/lg0NHSLhuILF47hCAm6HycSuIxGNRs3RjiCJcIRtHJstr6IEbpGFNK83oHISKOwyBWb1nc0olRDQzcvvdRIIDDE3LmZ5OamxInhsXW2psZJe3s/GflCOuyniUlR6hghRa3gdF07H/S08/Zzf+Xt5/6KIc3I8SeeSuVJy5EkTcPrHYibRQWBBDc1uceZOo/tqhqbDhY92JxOP3v3dqOQS1m6NF/48tiFC4mLVpfi6g6wq8bJwMAIySkqKmaZMKYnUVVlYW99Nx12H3W7u9EbVEhlUrItyYw4BSX0WI96fdEQDodp6w1Q1+5hr93LQWc/QyNh1HIp+elazpiZxYL8VGZb0zAmK9EnKVArPl8B6uNAKpWgTxIM0adl6risMp/g4DAdngAfNHbz7n4nu1rdbD7kQi6VUGxO5vjCNObmpX3i/Zxz/GJmH7dI/O6Ew2H6PG50htQJBZuoYNvW6qW3J4glS0v5TBN17hBZmZrxs9Cm0a6SpUsFr5KaWifJKQrc7hAulzA609TkxjVwMquuKeCtZ+/kodsuJEX1EPMXnYTZpEWrkaPVKjAYVLS399Nq84rHW+x7rakdNQvMjbQKj03kiyL2ZO7qDlBTK4gBSqWMuRGxLfa4jnY4lpSksWxZPsuA4OAw/9zSwpaWXh5ssSN7L5kLLpwKwOrViSPCx2Lduhb27nWhUknZts3Oa681sXJlETfeOD/h+MZ5503FYFCJRuqT+O8xVL6aFxqvocfr4NWaB5BI/sDCOWWcffLxFGYU4fUyvh5EiHZ1dTtPPlUvjtolMu6MelQ1NvaSl6cT68H+/T2ok+TI5Zl0uwKsWXMYe4RczqowUVPjZWR4hPBIGF+/0Pk5szyd5sMemls8NB/2AGE6O/ykGZMoKjLAe4g+cV9pDPigs07oLOraI3hAIREEmsyZYJkNhScIHk1JqaDSw5fpc1EkCT+6TCg+FYF59kJHLTS+LQhVu/8Jtc+A1gQ5C6BgCRisn6jDS5Ok5l9/+GnctUSPu480Q8oRV2kN+j6eemov7e39DA6McOKJVtF8fOwoRWw0t1IpIz0ytqTVKnA6/HEC08CAmitOvJJ39q7j9kf+yqHOZh689VqRxEe7VgYHRthb76KwUB/3vqLvt3qzXQwgUCplR/TjiB3bg26RVFhJ4bTT8sWRxeh+RDtaSkrSuPjqRcAievdtR1H/PKtDd8M773Hm8bdgs42GXnwU9u518dZbhzl0yI1aLf/ImjBZDz4drFuzjh5bD9jg/TXvU/3LasqXlHPeOech0eSM4wix9WCsqXOirqpoOpjXaxe7nhobe9m2TQi4EDlCpB5cdFGpGE0fCo2QnKyiosKE0RjhCHu76ejwUVfXjV6vQiqVYsnW0tsodOz9q/FfpKanMiN9BqcXnM7C7IVkJWehkH663RST+PLhyhlXYtKYuE16G2kz0whJQqhQEQ6H6ff0ExiQxn2fxxp5r19vo63NS29vEItFS3m5ibq6EFlZCTiCOQFHqHGSnDyeI2zebKeszCjWlap7b2LWcbO4/yf3037wIItWXUVhSY7AEVq94vuLPf5iDcVzc8dwhASWCyJHiBx7E3KEMfUgKmBHP5PYkcbYtL6jQU2NE5utD4VCQmNjD1u3drBgQRbnnFM8TgyPdrBNmaEgPYFP7rHEpCh1DHHdNVcTliTzmyeexdu0DXePizdfepY3X3oWhVLNKRf9miWLl44jspur7ezZK1zgREWpWMKxdKlV/HJ43MIqYlenj3Z7P8nJCjIytIRHwNUTEIWlvDwd23d0Ul3dTig4RJoxicsvH3XyFwzXwlRXd3C42cPCKguLF2djtabwh9sjotSnbJT9eSAwMExDp5fdbR7q2j14AoMoZBIKjFqWz8jk+II05uWnkZ6iwpCkOObjd5831AoZBenJFKQnc1llPt7AALtaPby1p5NNB7t5vLqFp7bYKMvSUTXFyKxcw7iEvzfePMTG99tYvCSHFcvHK/KxBOSZP/+e/7zwFL/+6/N09SSzb18PrbY+WtsE89ZTluVRWprOmSun8NJLjRF+JxHa1jsjbesJupdiRVqH0y+aGkbJuVYj5713W9m920l2dia/fuI/PPbbH/GTay5iyRlX8o0bfiSuzmzf0cmePd309gTJteriRGAQEvR8vkGMafFmgYlWL63WFFojHSZ+/yDNzV7qdjvJyxcK1by5mXH7k2glVK2QccXiQk4tD/CvnW38+o19ZKSoWHHlNJafWPBRf2I2bWqLGAabmD8/i4YGF06ni/Z2YewlUeLS0fqRTOLoIZPJeOf9av75y+t56/1N7OwY4YMde/lgx14AFlVUcPs3v5XwubGkt6oqe1w9iK6iNzb24vWGqN5sx94u1INp04S0M683RG2NE5lUitGoRqWWUb1JSLQxpKqxWnWcdJJwwWY2C0a7r756EHuHjzRjkniRlpU/xO1/Q0z1+0ohHAa3TfBfat8pjOSFRwSvJ3Op0AU1ZSkYCyApDVRfsTEUqVTwtCo6WfgZHoTeFjjwpvBz6B3Y/x9IzhD8sApOGNdBVd/Qzbq1LQAsOyUvLlkO4utBc1sXiy+9icvPXsrXFp3K/v29AHS7AnHbmDdPsCTo6x+gqNggno9LStImHJ+IFX+cjvE1QaOV89ZbhznY2MeKitP51iUn8n93PsSmnfX8/JpvsWzxdJZFLvqffbYBpzNAS4tXFAFia0JVxItnogCCWFitKdhahbTZQGCIQHAIZWTRZ9nS/IRhB2O3l1oyD4pnQdNaqH+Vubav8cBJ57Il+Vvk5By5i2bTpjbWrm2msFDP3LkZpKcnsXFj2xFrwmQ9+HRwzTXXkJSUzr/+9TLbtm0g4PGx67Vd7HptFwq1kjOu/j5Llswf953YvNnOnph6AEfgCJ4gW7d24PEIHVdGY5LAEcICCZZKpWRnRzjC9ghHCA1hTMARvN4QdnsnXm+IglIVaQtaORSuxfl2BwBlpjJuPPFGZqTPID0pHankq3W9PIlPhkce2cVzz+0fZzdxRuEZpCel8913vsv9O+/n+tnX8+IDL7Lh1Q1c8eNbcLoF7ulyBVgbqQennBLhCGcm4AhHGG2NFWkdCeqBVivnvfcEjuByBfj+9+eKYlNa3kzufvJ+HvzZvbz2p99w9tVX0S8poLc3SG4kaCOOI1SYEhqKT8gRWsdwhDpBmALBqDx2fyaqL2OFu7lzMzCZxgt0idDQ0I3T6WfKFD3Fxam0tvbh8XhxuQIJtx3lSj2Bnok2ecwwKUodQ6SkpKAMz6I0M4XOk6/Hb68nuXk7fe3bcDm60KcXit5RD/32T+zdfYiTV5zGcccL3Q+paSpuu/0DkrUKFi3OIRQaZsf2ToaGRkYNQK0p6A19FBbq2VxtRyqTMLPchN6gijOMjh4wwYBgEjdlSiotLV5SDSoxfQwkZFm0DA+P4PMPid0rfZH24c5O/+fyOR5rdPeH2GnrpabVzUGHj+FwGKNWSXm2ngUFaZxQbCLToCZNqxwnwHzVoUtScsJUEydMNREcHKauzcPLu9p5d7+DR94/hFohZV5eGktLzOSmCX4jG9+PaRONiFKJ/NKCAT9rX3sJZ6ed7192Nj/6zd8pKcmhurqdDz/sQC6XYTJpKC1Np6oyO24MIoojXegDtNq87NrZxUgYjjsuC6VSJnq0VVZZcLkC6HQqPH0q7n7kae7/xa9564UH2b97G/NPvQVrQT4lJWnMmT0a1epw+vDEdGlFU/tiMZERutmkJRgaoqnRjSVbS7YlmYHB4XEdMbGPn2hbWYYkrjupiN1tHv65pYXH99l5y+biV6tnsWSqsHKRyCNk3boWDhxws2yZlRtvXMCmTW1YrbrJVe/PGBKJhP5+Iy2ym7l5xRNU6t7ikd3prO/SsHP/fqbm5dDZ4ceg76PfH+CaW//ElMwCrrhgMVWVFpxOP06nj+efb8DrHcTtCdLa5sXnG6RqoQW/b4hZFSb8viEGBoap3mxHJpVQVZUt1gCNVk5xZCQq2vlkNKpxdvshRYUhVZXgfYNOpxDJf2ObMELa3z9IfUP3ONHhS4fhQaEbqm0b2HdB0C0YjRuLYNZFUHwaZM4YHcf7incMx0GmgPQiSL8Ojv8/6O+Ehtdh78uCF9XelyGtEIpOgbyFIFcK6XE1DpCAyaQRk+wSjS+srd5FW2c39/z5n9jaern+wgvQaOWsWXOYut1OZHKJuI1zzylm3tzMo6oH0fvcnhA7dnTS3t5P0ZRUcYxjeDiM3zcUNy532dcqOW7mNFZ++06uuO0XrJh7Cld87VQWL8oRRwBnVZjEfYnt0vqoAIJYmM1aQsEhXK4gRqMas1mD2zNArNn62Mcn3J5MAdNOh7xFsOdFkg6+ygnDr9DacSFcdQ+ohfP/2Jqwbl0L27d3ifUAhNSnyZrw2UOv1xMKzQCSqKq6iI7O3YzoPuDw/u0M9A9gn7adgx4jJWEjD9z1D/bXd7D0rEUcd1wuAKmpKm677QOSkxUsWiRwhO1jOQIpeL2DuFwBjEY1Pt8gJ5yQi16vijNHFjlCMMoRDAJHSFWJ6WOOHi+yglbqdFvZsM+GVCJlaupU0mRmfBxmruxUTrae/Ll+ppP44mGs3UTsOem4vOP422l/45q11/Dbjb+l6d+HcLZ18adbf843b/8pVmsKr756cDxHqPqEHKHVy65dXYyMjOEIviEqK0c5QjRoIHpcaLUKFpz7f9RteIXnH3yEmQsXsvyyy9BGvEC1Y+pBojCARDCbtQSDQzQ1ubFYtGRnJzMwcASOcJQhM2NH7qJIVItrapzY7T5mzTJxzjlTaWjoxmTSxCVsfl6YFKWOMdrb+7E3ekjqUaI8qYLhotmcl3sLxnAvGt3oqtqG157F032Axh1PodYYmD5nIe2SqbQ6LCjUqchkUhRKKYHgEDZbn7jaGBWObLY+Tj+9QBShosQ2Kg5oNcIBo9XIkUgk+AODogFoaWm62IlSkK9Hbxg9GBxOnzg/HjUU/TKiyxtkp62Xbc292Hr8yKQSCowazqqwcPI0EzNzDRiTVSSrJg+BKNQKGfML0phfkEZwcJgPD7l4fkcr7+3v5oOmbnJSkzhhqonKxcLF+OIloyupcSfEyHdRnaThqpv+wsN3fpOeriZ+9u0LWHbhr1ClTEGvV5GerhHNz6PPi/0eg9Beu369TUyndDiFcVMIUz7ThMcdwu8fJBgaYXO1ndNPLyArU4vHHSRJo6BwikHscJJKpVx27XcpmDaXJ353I/954tukF32Dk89YKSSORV57+47OI3ZpfRRiO6tKStLGHaPR/YsV8Y70/1m5BsxKOevruqj3+rj8sa3MzUvlh6dMpXe/hzffbGbbtg6uvHIGeXl6kWhEbydXvT8/rFvXwo4dXWwPL+d3Zxm4Z/ELeHU57NDch1KjQCUTTCyfevl91m3bzDo285fXn2VKthWLLpdkaSa9PUEUCiFNaXgoTEenj9oaJ8PDYfGiKFoP/BHCEXsh43D4cNeFyMzSMLPchE6n4OWXG7G1eqmtcYoiU5S8F00xMLN89LiMrp4NhIbjHv+lwtAAdO4G22Zo3yGk42mMghl5XhUUnwK6HOF3ssmaAAhdVDoLHPctmH81eFqh7gWo+xds/TPs/DvkHs+CqcfjdJoBRDFnogvkb16wnEOHe/nV40/xj/+8TbOth29/7UIGB4bJy9ORnp4kbiPRxbjN1kdTk1v0jiorTRc902ZVmDDoVTgcfryeEH19wuKaRitHJpOgiRDvLoefKVMMAEwrzGHd337N6u/9nte2vsHupgN8++CFfP2K2Vx0kWAgHzs+8UlNbvPydLTb+8d5UMUiljxE9zXRqIjZrIN5V9FrPAH2vkSB859w/7/huG9D1fXs3evijTcOizVhbD2AyZrweaI9kjqp1So4/vgTOP30q5ApR9jQ9Szble/xlv8p6rauZ9Or2/A5etlX/QZJyTrKj6ugTW6hzaVHoU4WOIJCSnAsR5iXycKFFoEHxIhQsfUgel9JSRpabYQj+IeorXUyIPXh1jeysWk7bXlNhCUjZCZls9KyklPzTyXZb2GF4xwA9u+d9BybxHhEbSait2M962akz+CJ5U9w9dtXY7nJwsAvw3g6Hdx/420sv+o7KFMyIhwhKU4oGXtdAzEcocIkiql1dRGOUG7C44lwhOAImzdHOEKWFo8nSFKSgsJCQ1yHU/S2urqdHTscKPWLqfxaATvffAGPo43zr7uOXp/mv6oHsZ1VJSVp447R6P5NVA/G3n8k/7lEXfbRzzR6e7QpfZ8FJq++jjHOO28qu3Y56OkJMssNO3QjrGnpplSu4tIZo8R0yYrz+fC9dbjstQT9bnZ88B/gPwDoTDMZmHknCqWU2bMzyM5Oxu0O4XT6efa5BtQqGT7/ECUlaRw61Mvfn9jD4iXZXHB+6ajKq1EQDA2Rl6cj16pjYGCY+noXapUMh9MX9wU2m7RUb27nqSfrMWeMpu/k53+54lvt7gA7WnrZ3tJDuzuIXCphakYKV1bls3xGBvnGZIzJ/3vdUJ8EaoWME6aZOWGame7+EK/saufFnW08/aENtUJK1dfyOG56lvj4iU6IpdOtXHfHY9x7yzcIehtZ+9wtnHT+vSxePEM4QU4g+kS/x12dPpxOgRRHxdSdu7ogDHqDmvKZ6Xi9A9Q3dCOVSSKdiGF27nQwMDhMn3cQbYUJs0kbY1iez1lX/4XXn7oL5/4/8kH4EDOm3z5h+ECiLrAjobQ0HZ9/iH37euI6EBPtHzBuXDDR/7Mykrk0I5m2Di9v7+5iv7Ofi//6IcXpWnINUhq32NmwoZXrr5/NqlXTJgnHFwTLluWxYUMrPT1BXupZhVSbymneR5nW08sm+cWcsNSM2axlfkUBZy48kR376ulwOWhqa6EJoX09Sanm9NkrseaVUVycKm5bp1MyMDDMk0/VI5NKWLw4B41WzuNP7MHXP8jy5QXi6F/d7m6GR0awWJKZWW7C6x2kxxUQRzgE0+XR731Tk1v0tOrsEi7+FAqZKBh8KTAUFLyhbFuEjqjhkDCGVniSkJCXVwUpGWKHySSOAKlU8NFaciMs/B60boVtf4Omt5kSepfvlhRB6VmQI4yOHmmk7YarzqL6g07eb1zHB3XbGRkJ83+rVnPKsvGjbLGInhM7u0ZrQllputCpFZOqtHBhDg313Wg0Cmy2vkiHYR8mcxJORyBuLC9qWP791atJ/7eFN2ve4FfPPkSW9btccWHlhPsyUSfYRIgmXyqVsglXvsdGhMeKeolEvvSCQii4kZ6meiT1L2PY+Dskmx9iUfFF7DUu5Z0tPWJNuP32hR/5Hifx2SCWIwC89FIjweAQM2eexl8vvZaagXf55/5/ojtVjbROh6/BR6Dfy9b174vbSM2ZxkD5lSgUCTjCsw2o1TJ8vgQc4YIYjhBJm7RYVUzNGqIj1ILbv5/tKhc79kkwqTOYIa1kxZRTOLFkAZve7uUvj9jIz+8Qe/wqKjI+h09wEl90fPvbs+PG9hL5mBanFvPkiie54j9XkX8r7L81TLDHyRuPPcipV1zP4sX5ooiSCCJH6ErAESJdWnq9mvLyCEeo70YqleDzxXCEgWH6+gbRak1iylzUsDw1VU1SkozhYdCYy7j+3rv514MP8scf3cr5//ctrNZTxffycetBaWk6Pl+EI/iGEopbR6oHY++P1pToAkZsqnPU5mH/fhd1dU7OPHMKVVXZXxgRaiwmRaljjIULc7j77kWsW9eCzeYlqbqb4dk66nUDPL+tje+smIpEIuG7P7qehrMv4q23DtLbtQ+trJHm/VtprN9N6fQc8vP1eL0h8vN0/P2+b6HR5ZBsLGVElkfZrGnMni2k0fz9iT202/t5551WCgtTxQ6pmhoH9fUu7O39nH664ENTkK+jo9MvGpvHdmW8/tpB2u0+8rwpKJVCycnJ/mJfrIfDYdrdAba39LK9uZdObxClTMq0zGTOmJnFihlZ5KZpSNMov5p+KJ8R0pNVXL24kCur8tnV2stjHzTzzj4H7+53MjNbz+nlWRSakhMKNkL301Rs33mA5x66gaB3P5v+/RNOfuAfR+wcihKAwkI9LS1eDAaVmDJZNMUgGMVGHrtwkQWdTkl0/K7OHYJIKpFcLhW7saKG5UlqOSWlRi7//u/Y8+FLVL/xMI/9ugXrA3/FYs2P69iKRqFKZQLpH9uROJFQpdUIq/NaTeJTrJguEknfix63YwlQ9LahoZuaWidqlQylf4ivFZtwSIfZdLCHxsFB5FPVBGvdvPByI6tWCatTE8V/T+Kzw9h6cM/6OXRXfo/Vmoc5deTP2Jq+g9lczpLjSkjXCQR7MOzng1112FzNbN1bT6+nn6r5U9AqVFhzdTz3xju8/t4WFs2dTnZqDi67nPw84buzfr2N3budDIRGGBwaoajIgNWawvDICPb2fqo32ckv0KPTKVgUWU2PXUWLGj6/9vpB0Rw93SqI+Ckpqi9+l9RgQPCGat0iCFIjg5CSBVNPhWkrwRpJlVNMpkJ9YsgUkL9Q+Ol3Qs0zQtfUB78DTTpMXY65eBlmc+JVZLNZy3cuW476BSVr96yheu8OsrKSuWj1TeJjEl3kx9aE7ds7cTr9VFe3o1LLKS4yMKtCIBbnnlNMfUkqtTVONFo5bo8kQqIlcWN5MOrdFgoOceV5J1NRUsiz773IN++6h97gN/je5WePE5HqIzUhKgRPtHIdi9hurYkQ3T+NVo7d7iMzxsA3kTAW7RBTqeX4fV9jdv4pFA5sQtvwFD+UPMnMvDn85oPjeOmlZFatmjZZD74gGFsTDhzoRatV0N0d4PD+ABedfhHnTT2PrfO38rctz7Gj60O8Nie+Oh+hhhDew17yypLJKpQSdEvJy0vhbz+/i5R0CylmKyPKDKbPyk/AEWxY8pUElb2ECzuocdjoUdsh6AUJKFFhUGaR6S6jQn88UzVFLJg+hWmFGbS0eHjkwU0cONDLjBlGVCqhJpSVfYkWKSbxuSGRjylAni6P51Y+w5VvXcnwnSM03Q5Bl5P3n3uYn//1V0ccQ0vIESIpk0VFMRzBrGXhwjEcoU7oohU5QqQeRA3L1Wo5paVGTjtN4M46nZLychMnn/owv73lt/zjvj8Q9Ni55sfX0NjkFjjCx6gHDocPjyexSXsUIkeI1IOxj03IEWqcoiAdRTS5r67OSXu7j82b7ROGJXwRMClKfQqItkZv2tTGunUtlJSl8e92F9WdHv64oYlrFheiUsioqXXS2RliVsUCLlp9BQC9Lie+/j6UGsGB//CBA3TadgO7gTUANG1JoXFmBVOnz6LIWgSkU1ioH20xn5uJViPH4w4hlUnYVG2ns8OHTq9ielkaEB7XlZGiU5GN4DWglV9A5ckrKZk55/P4+I6IcDiMrccvCFEtvTj7QqjkUkqzUlg1N5sVM7LINiRh0Ci+8umBnzXkMinz843MzzfS1uPnsU2HeaXGzj1v7KPAqOHs2dlMz9Il/NwvuXQO+fmP8dBd38LZthdn+34aGqZQU+ukYpYJu72fnTsdzJljjpjwCygqMlBVmc2zzzWI6RarVk2N6z6q2+1k506HOBZhsWjRG6zjxlrVKrloAj08PII1T8+ixd9l1vzjeOHPP+La85bxgzvv44TlZ4vbXruuhbo9TqxWXVxBGLuKET2xNzW52Vxtx5yhQSKRYLf7xPG96OMSeb9Fj9soxnpN1dQ6qa1xUlRsoKLCjNWagsLWR9mADEV2MvWufrqOS2WnTMqPXtzNNxYV0DimZfpImCQsnx7G1oPCZYvpViwm7e1vMr39d2D/PlhmiR0fFbNM/OU3VwIwPDzM9j2N5Gfm0Nraj9Wawrb6eva3NbG/rQkQvKvysjKpc5SRY8piWmkuLseA6JMwb14mp59eECGwMnbt7MLjCVFT46Sq0hKJFw7FeSroUlSQLRg5e319fPPMCyia8gUlIAM+YSTPtlnwihoZEkbxSlcKPznzhA4p+Xj/rEn8l0g2waLvwfHXCoboWx6Bmqdhz4vCSGTZ2aAcf7F7wQWlXHBBKXf/IZtb//QotfsP4u33Y28PUlvjZGhohI5OH3PmmFm2dOz4mpaWFi81tU4GNtvJzNBSUWGOE0zt9n5a2/pQqWXodCpmzzEzMxIBHvW82r69k+llwsp9hlmD3zfIWSvK+dbX53PLb57ghl/+hQ0f7ubxe24gzSCcv+sbunnqqXrcvSGmRATfKGKN1g360fdaXd3Oa68fRKdTUVycGudR5fcNibdWq5BCuH17J51jDHwTdVdFzxfFRUJNMFnz2duSS7t9LpWpNZwk2c1p531Ir7oEarw0tM1m84cu4KPrAUzWhE8TY2vCjBnpJCUpxE4ShUzBwuyFrNsD+96fzXGnBcj5mYtaRy0HWw/iC3jZYXoKmUnO3pYwXbbDdNkOA5sAqF+vZMNUI/oiPfLSZLJPkyJJCvLPfsEfUCqRkpJqIMmlJ8k+lYyhYjz7U8lISefE44uRIuPAVg9GmY9phcL4ldGYxNSpMH9+Jmlpl5KZGWb27NkT7eIkJnFUyEzO5B+n/4Mr37wSyZ3Q9ks57vZOXPY2GhoyqKlxUlHxERyhKptnnx3DEWK6j+rqEnAEvXXcOJxaHc8Roul2USubJE0SP/vDzyibXcaffvEnDuw+QPbcr1G/P/CxOMLrkXoQHamOdjZFHzfW+y2RofvYmlBT46S21klR0ShHiOUXZ545hc2b7VRGQjrGvsePEqUcDh/1zU7yclJhytH8ZT8ZJkWpTxGxc/sXAo9vOszd/2ngjtfqufaEQrGDI9ZXJ9VoItUY8VQwaTGnS2m95B4O7tuBu6ue7o4mgv4+dm3ZyK4tG7nwG9fxxz+uxuH0sXf3YV79+63s21qKtbCYxZUZBAZScPVIaGpyA8LIk9Wagtdrp6bGgVYjx2pN4ZRT8mIOCuNRjyp9FgiHwxx2+djRLAhRLt8AaoWU6RYdFy+wcur0DHIMGnRJ8kkh6jNCTpqG21ZO54ZTpvLP7a08samZ369rxJqm4ewKCzOz9eP+FhKZmlkn3kY4VE/fyHzWrmvB3i6MBplNmojvq/CcseNrEyXgRbYMEnD1BMWx1liBZ2y3U/RkHb3tC2Xy7duf4b1XfsMvfngNa/+zjm/fcgc5OcIFolQqIT09acLUvNj3umGDjfp6F1OmGDjrrCIxLTOKfft6kMkkYkT5kcZcYhF7rhjbdmu1prDaqOGgo5+NTd28VmvnuW2t5KUmMdOiJd360cfx2Jn/SRx7xPu45MDU9+CZ1fD+r6HkTGbNWgYQNyInk8k4blYJABkZQvLb1eesxKA24xlw0HDoMI7eXprtHTT/WzAG9W7/F31ewWfkP9Xv8tRbbkqn5FJSmItWpSJJY2Tndgf2iLfJ0qVWPtgk1AONNr4eRNvB01MNH/kd/UwR6oO27YIQ1bUXwsNgsELZ14Sf7NmCECWbjCb/TCBXwvRzoPRsaN8Omx6A/Wug8S2Ysky4L0Fy4Unz5nN+VQ/T8gpEQaqm1okuRYFSKSNhPTBrxWMkGqWdqCZIgB5XEH9kjCl60T220+nGHxbGiV42Wx8r5p3KnNJp3P3Y48w6+zv8/Nvf4syls6mtcdLfN4ghVcXppxckTElye+LP+a+9fpBWWx+51vh6Ea0DsfXgSN4gYxHb9RXXwSiZCta5KHWDcGgjqa2b4ZVrOVWuYaZpETL9pTBs/UjvtMma8Onjo7y9RD+whXksrMwhNBzCHXRz2HuY+u56DnsOc0jVQvhaOd37HfQfcuNv7WfQN0DHrg46dnUw4+IZVJ5ciXJYi/fgCAde38GCOXMon15OakEug34jba0jvNZ6CLdBRqZZx/TpRrq7D7B2bTN6vZLp04184xvlomi2d2/OpFg5iWOG9KR0/r7876x64SKGbxphRu0iegat7F/bgt0e4QjmqLVM4powUQJe7HNcrqA41horWokcQZqYI8S+jtPpJ2/mQm57xMoffvJr9u+9n7TSlaSnZ0yYmjeWIxw+7CU7O3ncffBfcIQYn6hEHGFsOMfH2TYIn/fBg27kkk/3mmpSlPoMcdXCAsqydHz/nzXc88Y+Vs3OYfWFJUcUUqx5ZrIKK3F4i5h9ggFrjgZnx0Fk4TY6bfuZU3UCIBD3Nk0Pm9e/xub1r8VtQ6VOIlmfwaxFF+NxZ+HSyKnfc5ADte9Rvz0NhVLD9PIMFCMWFEoVBo0SfcrnW2xGwmEOOvsFIcrWi9s/iEYpY7pFx+WVeZxSlkG2QYNeM0k6Pk+kqBVcvaiQS4+z8q8dbTy68TB/fKeJnNQkvlZhYVaOgRf+tY+N77ej0ysZHpIglU6ntsaJJVtLaUkSFrOf0nJrnOH+oUO9fLjFjlIpwWpNwecfijMjj6KhoZvDzR6KphhQJ8mp3+uisFAv3ldT66Q10iJvSFWj1cjjupBc3QFkMglGo4Grb76PAekUtrz5R1oaa7nnT49xyrI8IZViVnyXSKLUPMGXR0eHvZ/i4lTmzc3E4fShN8Sb2sZ2Sh0pfS8WiYwIxz53amYKUzNTcPsG2HLYxR67lzdaXbz2j27KsnScXGLm5FIzs3IMyCLjrNHVcL1eSWWlJW7mfxKfMgxW+OY78J8fQs3TlBnrKTvrBtAe+W8gH9ZRklFBxSwTsypMvLvxIKi9ODxd9Hj6SVKrSFKrhDGpe7ewdfeBuOdLJBLSDXrSUlJZterH7K7rpqG+my17atl2IIn83DQOHuxjVrmZObOzUCkUpGfqP//27qBHSMyzbQFHPYTDgs/RjPOEjhzLrEkh6vOGVAq5C2D104JY+N5vhA6qprUw5WSYsQpUKTz/fAPvb2xHr1OiDWfR1hIUzcoP2Vs58fhCVCp53EXz9h2dPPfcPpxOP3PnZkQS5MaPHdQ3dNN82MOUIgNJajl760drQn1DN4/9bQ8Opw+zSSuO08WuOne7hJpQWT6TJ39+O7c88DDfvPNXfGf/Kr51/hlAAiEoZhsOh0/slIp2HeZaYeWZU+Lea6JOqbHv5UgoK02f8D2MPmglTFsOjgaktmosXbtg7duw0QCFJwppfkVLhaTJCCZrwhcHY0UrlUxFhjaDDG0Gx2cdD8BIeITbD7zHO/ubqVhlpHhaMh3th1HKumhtPsDFl17MksVLUMqUvP7a65z91h/48K1Nca+j0WgxGDI46aSvU1+fg8Pho6GhiffeW8uWLWkolRqWLMkjObkYlUqFxaIiI8PCJCZxLHD33dU899x+0nIuQL7iSXorm9i5M4tcrZVpxRpyMkaYNiMdvf4IHMEX4QjmBBzhsIeiIgNqtZz6+jEcocZJa6uX/ft7SU1Vo9XK486jrkg90GrlOBw+1q+34fWGmDs3l7+s+Qu3XPUzDu58Dtk8JeHwHJHPJzqPixyho59Zs0wJRSxgXEDB0fpUJUoA/Khk2KPpkIp2b02ZYiA7e/zi0rGEJBwOhz/VV/iSwev1otfr8Xg86HS6T+U1en0D3PhCLev3OSg2J/P1RQWYkiceLYiS64pZJtFAOeo/s+kDO66eAGVlRvrdHbQeeB9XVzMNdfU4OtoYCLjF7az6xh0kZyxBJpOwZ8cmtq75WcLXSzMX8PUbfsqCquNITf/sRjaGR8I0OvrY0dLLTpsbT2CQZJWc6RYdi4vTWVqagUWfNClEfYExMDTMy7va+fN7hzjU7SPfqMH+QRedBzwY05I4eakVg0GF2x1iSr6Ux37zHbzuHu5/6t9kWHLF7fzkJ+9z8KCbKVMMnLtqatx3PjZ9b/16G9u2dZJtSUZvUFFf7yLbksxll5exfr2N2honSpWUHlcAhUJGTk4Kp59eIJ68t+/oZMeOLkKhIfr6BpBKJeiSuvnwjXvo7e7ke7ffy7KV5x31/n9cU/TYYzv6nqo3t7O52k5llYWqytGVjY+77eGRMF3eINtbemh09NPc7ScwOEyKSk55jp451lSGHUG69ns4uTKbM8/45D25n8V58/PAZ7Zfu5+HNTcKKXGzLhJGnyZYrIhNG/P7RuvBvHmZonFzNOXrz8++TUdPJzUNzTQ22/H6PQwMCX4DBTmZPP+re9iwwYbHE+LvG/5Om8ue8DUvW76SC1cexxlLP+ORbn8PtG0F24fg3Cd8JqkFkHucMJqXWS54RE0KUV9cOPbB+7+BhldBIoVpK7jhb3paWoOkGZOYWS6c95adkse7u7Zw3V1/4ufXX8Kt/3dx3GZ+HFMTVp0r1ITMrOh5MMzMcuEi/69/3c2uXV3Mnp2BVqtg27ZOLNnJXH6ZUBPWrWshGBqioMDAnDkZhIJDcSLTuvUtvPuujWBgmOzsZEqnp/Hs2//hydffYMWSefz9Vz/ElHZ0i3Yf17Mj9tiOvp/YY3rsSvfH9gQJ9UPXHmHctecgeO2ABNKnQvZcsB7PB4dMvLNbybzKQk4/vfCo9jMRvoo14Yu6T9ExwGXL8vB4BsQxnUBgkJdeauTcc4uZNy+Tt9/eTmPj+3R1NVNdvYu2tlaCQbe4nZtuup/W1imEw5CUdIAnnrgx4etlZ0/jF7+4izPPPIn09C+4z+AkvvAoL3+cAwd6yc5O5oKrctiYcx8+PCyVnsVL9zxOMBDkDy/+AVPmKB+N4wjnjuEIMel7IkfITkavj3CE7GQui9SD2lonSqWUnp4JOML28RwhP18vmrAPDQ7x6K8f5fm/PM9JK0/ipntvIkk7sWflxz1nR4Wz2A6o6up28RiPrQmfhkdUbPps4XQlCpmClVNWfuztHO25c7JT6nNAqlbJX6+YxzNbbdz75n5u//deVs7K4rSyzISG3LEKqMMptDJGV+G2buvA4wnhcYfIyNSSZl2JJmOIfoULWvsoKNCwYG4SKpmHrNxC+gNatBo5w4Ec7I2L8Lp7GR4MkpwsJRgI4vMF6PO4eebP97Gg6vlP/bMYGh6hobOPHS097Gp14wsNo1NHhKipJk4uMZOpU6NPmvSI+jJAKZdx4Xwr58zO5oXtbTy0oYmB0hTSs9Qcb07hotWl4mM9vS4GB0I4O+3ccvWF3P/Uv8XR1cVLcsTbgYFhujp9FBbqx6XvVcwyYW/vRyqTMDw0wuDAMD09Adavt5GXJ5z48vJ0BPxDbPnQTnOLl0f/uhupVMrSpVbmzs2gsbGXHdt76OsfYGpxGudffBJfv/ok/vCLW/j1j66jdusmvvOTu1Enacbv8BEQFZEGBoZpafGOG71riPiT9PUPAoj3ba62s2dvNwCpBtU4QRr4SFEqVtg6qzKboZERPP5B9nf2ccDZT6cnyGObDuMfGAbgter93NfQyqXHWfnG4k9ORCbxCTHzAkFoee27sOMxaN4Ix/8f6LLGPTS2QyIaixxdZYsaN4OQ+FVgnMZ06wykPS0UKkPMqjBx+socdu62odMLY0+z52QAYeq6pqE9rGFweIDQ4CBKlQR/YACfL8TL727AbEr+bESpfge0fiiYlbsOgkQGxilQcYkgRGVMj3hEKT/99zKJ/x7mEjjvb4I49c5dUP8qvzxexWvmmVB0CudfOF186Lptw4TDYW77wz9I1aVw3aWjF79LFueItwMDw3R2+QiHw3R2+ggDBr0as1lLmlGNTqdiaHgEp9OPQinF3Rtkd103syIjHiqVjCyLlvq9Lvbv72HPHicjYWHbCqWU3t4goeAImVla5lRksPzU67no7Eouu/m3VHztOp6972aWzC//2B+Fw+Hjg012elwBqhZa4jqdon5V/X1CPRBFqZhj2pCqihOtjtYTJF7YOh6sx8OAHzyt0FELbhscehdqn2URYRbJYHh3OtgL4LJXEo5eTuKLg9iOqpYWDyAknf3kJxt5//02AJKSFNhsKszmM9FqB+joaCcY7KGiwsBZZ5nQan0UF5ewd+8AECYQGOLDD0+gs9PJ0FCItDQ5/f0BvF4/TmcXv/zlLzj77GWf1y5P4iuE1aun8dxz+1m9eho//WkVDv88Ln/jcjZ0vUIgGKCrtYubL72ZB/71ADqDcF2/OFIPFkfqQVdXDEeISd+L+lFJpRKGhkbw+wdpa+ujrq5bHHnLy9MRCAyxZYud5mYvjz46niNs395Df/8AU6emxaUCyhVyrv3ZtZTNLuPXN/6aa8+6ljv/cifWKdaP3O+oiCRyhIoJOELfGI6w2c6eSE1ITVWJolU00Q8+2iNqImFrLOJH/EIfuU//LSZFqc8JEomES47L46RpJm77915e3NnOxsZuLpyXy6xcw4TPGzuys2B+ltgppVTKqKlx0NToJi1NxYzp6ZgzNHT3SigpsVJSNjpD6/NX4Bu8lVBoCI1GwcIqC80tXt58sxmjUc35500l9VNaARkYGmGv3cP2ll5q29wEB0dI1SiYY01lcXE6J0w1kTEpRH2poZTLuOT4PM6Zk81jHzTztw8OsTkQZOj9Q1w4Lwe9Rok+1civHv0n3790Je0th/jJNRfz28dfRJuiY8XyQlYsF8SRZ59roN3ez+ZqO6efXsCc2QKJjnYMGdOTqNvdzZYP7SCREA7D/v091O12snhJTsSbBFJSlIRCwxw+7CEQGGLj+22sWF7I0qVW1Co5rp4AC6ssuLoDrK91svKy25m1YCEP/uInNNTu4NbfPUpe0bSE+xubjufzC50oHneQDRta6XYFUSik4mOjIlNNrZPOLh+DA8PIZKPbqqyyiLdRg/MokbLZvGLr8ZEQK2xVVWYjl0oxJquoKlJRVZTOwNAI/aFB7O4gdk+AHt8Abv8g7Z4AIyPhybTKzwOpeXDpy7DrH7D+DqFzaspJMGs1KBOTwrHt11URE8uqSot4MVFT42B4KIwhVcXCqmwCfVIkIR3ZaYLPzjLRNPQCNm+2o9epKJuexsxyE+++a+Odd1qZOi2VSy8p+/T23dsOrVuF0Tx3C0jlQvfGnKug9EwwTZsUor7sMJcIY32t21Cvu4Pz+QCSDkLLxYJIIpHw3cvPpsfTx88feobrf/En0vTJXLzyJABWrChkxYpITXi2AXt7P6HgEKVlRjFpCWDRwmysuTqqq9vZt6+H9PQkklOUNDX1UlPjYHqZkUBwmObDXpQqwQjd4Qzg8QgX3Dd8fy5e76AoHJnNWuobuult0/L8b+7kjkf+yklX/JifX38JP/7WBchiT94xSJTS99Zbzbz51mGUCilarYKy0nSxO8rp9NPdHWBwcBiPN4TD4RN8QGKO6ajnFkC6MYmGBtdR1YRYYUskIEqNcFyZpsHICAz6we+CnsPgdyDz9wghAv1dk6LUlwixSWfnnlss3kbHMNeubWb79i4sFg1LluSQn6/DZpNSWVnA/PmFzJ8vbGfNGi1Ll96K3y+EZpx33lTq6pz8+c+7yc5O5sc/Po7U1NTPZR8n8dXCT39axU9/WiX+36wx8+SKJ7n8jcsJ/yDMwD0DNB9o5kdX/Ij7nrmPJG3SuHrQ3t7P5s0RjjAnhiOYtRiNSdTVdbNli53BwTBy+TCNjUI9iHJnSMARNraxYkWEI6jluFwBFi604HIJC9+xItIJZ5xA/tR8brvmNq5deS233HcLS1YsEfcpUTqexxPhCN1jOEJEZKqpcdLZ6WNgLEeI1ITKSotocP6xOUKMsHUkUSr2GrMnMClKfeVhMWh49PJ5rK3v4t439/PHDU0UmZNZNTub4owjm4+ZTVrOOac47ndajRytViF2ZcSO/MQilrA0NbrRaoXxh6GhYQKBIZFYHyv0+gfY3eZhd5ub+g4vg8NhTMkqqqYYOWGqicpCIxm6pEmz8q8YNEo5151cxKXHWfnDO408u7WV2jY3y6dnsmJGJqZMC7/+6/PccPnZNDXUcet3LueXf3kWlXq0/TW2G8rnH2Lp0ry41zCbtOgNfWg0SvLz5FRWWXjppUbs7f0MDNqoqDDT1enD6QxQVGwg25JMfUMPeXk60Vsk9jh69rkGamuEC/+LVl9Eafkc7vrBN/nOhcu57mf3cNrXVo/7jiZKx6tzh3C7g4RCQ6SlakUh6v3326je1M7iJdloNQrcAyO02vrFbVVVZotje6kGYaxXrZKx4d1WelwBUlKUVFVmjxvziz3WY4WtRFDKpaTJVQz5hwgGoCLfiCxJiC2fxOcIqRTmXg5Tl8OGu6D2OWjZBCVnwrQzQKE+4tOrqrLjLjDMZsE3R6tViN0VY7urophZno7T4aexyc3OnQ4MejW21n5CoWFGRj565e1jYXhIGMez7wL7DujrBJkSTCWw4FtQshKMhZMeUV9F5M6HK1+Hxrdh/V1Q/QAceAPmXw0GK7dfdwkudx8PPv0aV/z4d+hTtJxx4oK4TcyqMNFu70cmlWDN1cWZ1kYvom2tQmpRcXEqWZZk3nzjME6nH5crAGHweELMmZPBqlVT2b3bwc5dDmZXCCOA5465rhKTMTGx/olf8vOHnua2P/yD97bV8Y97byIjfTw5r61xYm/vxxIxtAXBLHZoKExKskI0Kq+tEWrC4NAIKqWUkWFoafaKaZixx7QhVSXu/web7Gx414ZUIqGw0EtVVfa48d1oPYgVthJCKgVVMg6PBFuvCqt1vnC8O/dDeOQT/JEn8UXAqlXTWLVqdCEtL0+PXq/EYBCSvxYuzIlLWYzFWBHLELkWGRgYpq9vAI9n4LPbkUn8z8GsMfP4aY9zyZpLkNwoYfDuQRp2NXDrN2/lnsfvQakaXaCK7Yby+RJwBLMWvV7gCIWFOsrKjOza5eDgQTcdHT6BI3RFOEKRAYslmYaGHqxWnbg4EMcRnm2gNrI4ENvZlFecx59e/RP33nQvt19zO6u/vZqrb74amVyWMB2vri6GI6RpRSFqLEcYGBihtTWGI8TUhNRITVCrZWzY0EpPT4QjROpBbDdU7HhfrLB1JMQ+R/4ZZN1MilJfAEgkEk6dnskJU00886GNR94/yK/f2k9BupazZlqYka07aqFmrNnZREbK0d/HiljAERLOPh5GRoTEvN1tHmpb3bS5A0gkkJOaxNLSDE4uMTE3Lw1ziooU9STp+KrDoFVy28rpXFGZzy/W1PNqrZ0PDnazYqqZ5JCWm371OHffcDF1O7bwix98i9sfeAy5QoHD6cPnH+L00wtEc/BYRIUYrUbO4sXZool4cZGBYGCQ4iKDMAtdqKe+3kWfdwB/YJB58zLw+4dYv94mtOLGHCNjUzHziqbx4D/f5KF7fsp9P7uBD99/jwWnfA+lKonymSYxHTD6nOjxVz4TvN4BsQMr+vsN79jodobYuLEdrVaBViufUDyKHs8Op49dNQ56e4J0dwdoaOjm9dcO0h5JJqmqzI4b5aiqzBZJSVR4S4TY5xSWpH38P+wkPh2kmOGsP8KCa2Dd7bDnRWh4XfCaKj0TVEfvZzLWEHkic0uzWcvSpVZMZg3RVcaPJLMfB0EP2GsEP5vO3TAUBGUKZJRB+QVQcgYY8kBr+shksEl8ySGRwNTToPBk2PUkvPtLePNHBDKr2Kc+nZ9+81J6vf08/doGzvvePbz9t1+weN4MQLhI9vuEmhBrEB69L3oBvWihBWtuChqtnNoaJ8nJchTKZJYsziEQHKat1UuaUY3TKQix2dkppBk1Yjx37DESm3Qnl8u463uXc8L8ci69+beUn/V/3HjJlcwpmSb6Wo19TvR3J52Ui0oto6pydHTPYFDR1xciGBomKUlOcZGBGeWmhNdgscdy9SY7IyNhlCq5sMDi8PHa6wextwvkRamUjdaDCIlxOHwJ9y+KceOA0sRdYJP48mKseXpsZ1Usor+PFbEA3O4Q2dnJkwb4k/jUkZWcxV0zfs8Pgt9myg+L2P+rfez4YAd3f/dubnv4NmQyGQ6HD1+kHvh8CThCjFH34sXZool4V5efnh5BhIrjCH0h/P6h8Rwh5nwZm3Q3FppkDdfecSOK5Ez++Zfn2bOjnjv/fEfCdLzy8ghHiHRglZam09zspa8vRCg0zFtvtbBwoYXe3tCE4pHIERw+du1y0BPLEV4/SHsk4byqagxHqIrhCBHhLRHiOML0T79TffLK7wsElULGVYsKuGBeLs9sa+HJ6hYeeKcRo1bJ4uJ0lhSb0CUdWwFnrIg11r3/aBEOh+nwBNnX2Ud9h5f9nX0EBodRK6QUm1M4qcTMySUmiswppCerSFJOXuz8LyIvXcujl8/nkZcbeGRrM//Y2YYBKbM0KZy46hesffZmDtTvxtlpJys3TzwhZmVq0RvGhwFE7y8pSWNgYJiXXjyAUiWYFZ5zTrEoGjmcPurrXdTUOhmM+ChlZGjZu6cbn28wYbJfLNRJGn541/2YcmbyzMM/Z3v1VmaffAt6wwmYTdoJ0/HGdjKWlqZTVGRg926h3ba/f5AZ04Xfbd/RmdDEPCq8LV9ewOZqO1KZhJpaJyk6FdkI3VBCa7AjTlCOIxgT7NvHiYSdxOeAzBlwyb8EIWfj72D/G7B/DVhmQ/Fpgr/SMewsjR/nI2GM8FFj0A+OBiGFrbNO8K9BAvpsQYwoWAwFJ0BKBiSlCd0ak/jfglwB87/BFl8lvHsP8zrepCy8na6+Fdx02SXU7+9i14F63t60UxSlbLY+duzoQqdTjiMLsee8gYFhqjfbSU5W4HQGyMnRielMDoePV18NsGePC68nhMPpB6DD3s/6dS3MX5AldkslMh8HWFY1m3WP/przv/drbvnjA5xYvphf3XSF+H4SpeON7WQEgeSnpKgYHAowPBRGo1WyaKFAICBxh6LD4SPNmERxUSoajQKlUiYm/ZEN1txkamocpI2JR/8oD6rJejCJsRgrYsX+exKT+LQQNe/XahUsCFzHppz7ybu2iKYH9rGvdh+uLhdmi3mUI2Rp0euPgiO8dAClMoYjlJvExxmNajZvbicQiOEIe2M4wlEak69Zc5iAajoLztaz953nuOaMa7jjkTu46KJ4C4SxHVgwWg+GhgIEAkP09ob44Q/nH3FBISq8LV9ewObNdqRSCTU1TlJSVGRnC91QIkcwTsARJti3SU+pSaBVy/nm4ilcelwe/6nr4J9bW3ltdwev1topNqcwPz+VOdbUYy5QfRwMDY/Q2hvgcLePJkcfDZ199AWHkEogOzWJqilG5uWnsrjYhFmnIk2jRC6bJB2TENC1uwftB25yF6RxKCnM+75+1LJcTjr/bq648kTMFuHCJ3pC9LiDcQJLbIdUNHHjqSfraW/vR6dTCgXKoBbFmLrd3exrcKGQS0hKUjFnTgZKhZSmJjedHcK2oo+tqXVSXW1nx44uFlZZWLgoW7xPoT+eKcffTfueP7J1zU2UFt3K3DlXT9jJmCgxb+XKKeRadchk0Grrp7LKklBAij7X4w7S0eknK1NLYaEBV0+AvDzdaCS6ScuzzzUIY7gVJvH5YwlGoqS/2E7KHt9kO/4XEhIJ5MwT/HgcDbDtUaFrasMvBDEnZz7kVUF6sZBu9nnB3wOuJnA1CkJUb7Mw+qPWg7EIipYJY4mmqUI3lGqS+E5CwFvv9bJu/RmcsWAZ38h+Bmv3y6R0V7N6ZiULy+dw1/dGk/is1hQaG3vxekPiiBsIF+ZuT4jMLA1WawpPPlXP3j3dGI1JmDM05BfoxMfabH00N3vpdQfItqSgUEpZsjiH9vZ+PJ4QPa6A+Hq1NaP1oGqhhUULs8XtBH1yVi9azVvb3+W9PR/wg9+5eOGBH2PJSNxFkigdKdpRJZOBrbWfqkrLhGQh+ny3J4jT4SclRYlGo0CjlZNuTOKUU/KwWlNYv95GY5ObCm3i2PHo7VjB7WjjxycxiUlM4tPEunUtrFtnY968DFaccjx91d9iR8nDFH2njFsvvBmzxQzEcARPMO6cGdshJXKEpyIcISXCESLhGNGEve5uP0lJchQKucARlBGO0OmLqzU1MTVh4UILC2NqQk2Nk/b2foxGNcefVMmV36ziwVt/w/fP/z7X3XEdKy9ZGccXxtaEiph60NraL3ZIJaoJ0ed6PEE6OvxkZUU4gmsMRzBrefbZBpqa3GhjakJCjjAm6W/SU2oSIpKUcs6bm8s5s3M40NXH89taea/RydMf2nj6QxvZqUmUZKRQZtFRmJ5MsvrT+XMGB4exuwO0uwO09QY41O2jtcfP0EgYqQQy9Wpm5xqYmWtgcZERi0GDMVmJRjn59ZpEYkRbwZcty6NklonrH99OtcRNp2oG3ehwRQSU4kIl8xZMweH0oTf0jVP4YzuooiNwZdONmEyaMau9YfR6NalpatLTk2LulxAdVXI4fdTt7mZoaASVSoa7N8TWbZ3kWnWiEKZWyZm9oJzTznyctS/cz2O/u5VDDdv5/h2/xdYaoqbWKYpNudZkWm2CF9bixTmi+BM7kjfW7y3RqnZWppaSkjQ87iBNB3sJBobRahXi2GH0fRUVG6iYZeKNNw+x8f02Fi/JEc3iYdT3KvoeJvElg0QijLqdeT8svQP2vQZ1/xI8pxrfEszQTSWQUS48Tmf5dMZvwiNCQp6nTfjpOSiIUYFe4X6VDlLzBYP2vCVgqYBkEySlTo4DTSIhovVg8bI8TFVXwN6X0bx2CzdO/zdu4yIa9tqp2e2hdLqBoikGli61jjt32mx9dHb4yMzSYrP1Mb1MEIaml42vB1ZrCvn5OpQdMsxmDVarDpNJQ16+TvRfA+Gif2hohMHBEfr6Q2zb2ok1VyeSHrcnRHm5icKCr7GwaTpPrn2BinOu46lf30hueh61NU5RbJpeZqS9vZ+OTh+VlVliR+LYNE2brQ9NDJGKRbQmZGZp0emUNDb5CYaGsdt9caOMKrUwBjirwsQbbxzi/Y1tLFmcw4oVhXGiU6xx+tiurklMYhKT+LwQyxEWLsxBr1eS9MEIm2c/wguOF1jqWc2e3b0UF6qZd1wBDocPvT4BR4jpoIoKPGVjakJ0ocPvH6SgwEBysiIxR3D4qKsb5Qi9vSG2bu0kN6YmqNVyysqMZGcn43AEsFhM3P/P+3n4roe5/yf3858XN3PCeavp6BwgNzeZ1lbBCysahhE7dRGtBw6HL2EXa+w+lpSk4fEEaWrqJRiM4Qgx70vwsxJqwsaNbSyO1IQoor5X8PlxhEnV4EsAmVRCaZaO28+aTnBwmAOdfayp6+DD5h4+bO5h3T4HADq1HIshiZzUJMwpKtK0KgxJCpKUMpIUMpKUMuRSCWEgHBZG7oJDIwQGhvEPDOELDdMbGKDHN0BP/wDd/SE6vUF6/YPie0nVKMhOTeL08izKs3WCL5ROhUGjRKuUTZqUT+KoMLYl/JnrF7KpycnPXtnL79YdIEMqw7FuHU/V/ok7H3yMeQtPjBtBS9RBVVRkQKmUJRyBK59pQm9Qc+hQLzW7nFitOubNzWTp0tGuq1ablw+3dpKsVbCwKhtXT2DcOJzPP0hFhVlINEs5n8ozytmy4QG+vvJkihfcgL07FblMyuDQCM3NHpBISElWoNWMP9XGrnzMm5s57j1rNYLxuMWiFUUskHC42TPaJWDSRnyj/IRCQ2yqtlNX56SzQ5gjjxWlxnplTeJLjCQ9zL4UZl0sCEQH1wujfZ27YdffBeFIKoeULDBYQZctdCdpjYKPkyJJSN+SqwGJUBAYgZFhIXFr0C/chrzg6wZ/N/Q7ob8T+jpgOFIT5CrhNbJmg7lUSFEzlQgCVJJh0qR8EkeFsfWAGeeiKj4F1t5G2s4nUbtq2LB/AZf8fTe5OQZe+9Pt4zp6oudpd2TFvKQkjcsvyxjXmQTC6u9ZZ03hrbeaaWzsjVtRTjcmYbP1iV1Eh5u9pKerSUpKprTMGFcPOjt8lJSkUVPjwOfU8qPV3+H1Ha+z/Ju3smLBiRSkzI6k+klwuQLIZBJ6e4N4vYMkQuyoSax5exQa7WhNmFmeLvq/QVisJQBOhx+dTom7N8S//nVANKWOJSAQ73s1iUlMYhJfFCQaG1248BrePJzHLRtv4YXAP2j/t4rHd6zh3qd+ScXxFQm7QmM7qOI4wph6EF3oOHSol5qaCEeYF+EIEXGotdXLhx92kpysYOHCbFyuwLhxOJ9vlCPs3Nkl+DQbk1h49oUcaldS985LtBw4RHr512g+bBI4QorgLTsWcRxhXua4mqfVjuEIjghHOOyJ6yQWhK0IR9gU4QidEY4QUxOO5JX1WeGoRSm73Y7FcgzMTifxX0GtkDEz0pU0NDxCj2+A+g4vO2297Ovow9bjZ0dLL57AICPhT/YaGqUMnVqBQaNgZo6BnNQkpkU6stKTVaSo5eiSFCgmx/EmcZSIzodHVz0SYWGRiTe/t5g/vtPEn987SHdgF4MDfu78/jf43ZP/pqh0hvhYcSzPHSIrU1jROJKHUvT/L714gHa7j/q9LlGwiT4vGBwiWatAp1cBYQrydaInFcS3ujY0uJBKoHjmySw88Xgev++HbF1zMwbrheSVnYlCIaOo2EBzsxe3O8S+fb3juqM+arzO5x9ieDgsJmGaTdo4EW3sKs/G9x14vSEslmSmTDGweElO3GMT+V5N4ksOqRR0mTD7EuEn1Cd4N7VsgY5d0N0IbpuQcjfo/4SvIRdG8NSpggCVPV8Yx8sqh7QiUOuEH2XyMfW3msRXGx9ZE1QpQlfgrIsZ+ed3OF73NjfZA9Q3j3Dtzx/k0bu+l3ARzGJJxqBXj68JCcbS6htc2Nv70elVcaN9+/b1IJNJ8HoHsGRpUalkhELDlJSkJRx9sLX2kaSRI0PNLZdejUm7hhfefRNLahOV+ctISzGQl6djIDTMQGiYhvpu6ktSxTTMRDUhkZeV3yfUBL9vCHPpqP+bw+HDENMlEB1vfPPNw/j9gyRpZCxZnCM+Nvp6iXyvJjGJSUzis8bRcASA5QXL8Qx4uGvzXfQF3AyGgtx69a08+PKD5BWPpu5Fz9N1dSGyshJwhDH1IPr/l146QHu74EEbFWziOEKyAp0uwhEKdJSXJx6Ha2hwCaGmKpn4fH1OOZYFGrrr/k3n9qeYdv7lDCpy4jnCBPUAxo/X+SL1wOcbEvchVkQbxxE2juEIi3PiHvtF4AhHLUpNnz6dhx56iIsvvvijHzyJzwRymRSzTo1Zp+bEaWbC4TCBwWF8oWF8oSE6PAG6vCF6fSHcgSH6Q4MMDAmraiBBKgWNUk6KSo5BoyBVoyTLoCZFrUCtELqrNEoZKrl0sgNqEv8VovPhcGSjTJVCxo2nTePsCgs/smj5z2+6Cdh285NrL+HBZ9dgzho1ibXZ+ujoFFaqx3ZRJfJPstn64szBo4h2JJWVGamoMONxB9m5ywFh4nypYv2XLFla8vL0WLK0lM/MR3/3P3j96fv48J2nSdW0ctzyG5k508zICHR3d+HqCYjvYaLuqE3VdnbtElZWSkvTJzSdHZuoKYhVVhoaXPj8Q+TkpvDd6+cCsH1H50eanU/iKwRVCpjLhB8QOpoG+oWuJ3+PIFD5XBBwCWl4A77RyHeJVOhsUumELqekNKG7KiULFGqhu0qhEX4m0/Em8V/iaGsCufNJvqGaOZv/yHP+u/ja07387V9vk5+dwc+uvUh82JG6jBKJPLHG4LHpktFupLw8nbiqvn69jT17XWi1ClHEifXaWLTQQig4hNcbQiqVcePXz+PSVZV887b7eaP+ea4//xKStUoyi7QMDI5gb++ntsYpvo9Eq+Hr19vYtq2Tdns/6cYkzGbtxDVhjBdUdNXf7WkhKUlORYV5HMGKPm8Sk5jEJD5vHHU9AC6cdiEOn4NHrn0E+QMjdOzt4JYrbuHhVx4mzTyaIm2z9dER6WYd20WVyD/JZuuLMwePItqRJHIET5CdO4UJpagvFcSfhy2WCEewjJ63Cwv1tJQa4eyZvPHEY2x45i+UL1nOYHIFLlcCjjCmO2rTpqPkCGPqQbQTrKHBhc83RE5OCt/9boQjbO/8QtWDo76yvPvuu7nmmmt4+eWX+fOf/0xa2mR8+BcNEokEjVKORinHlKIiP/3z/4JNYhIQPx8O8OKL+3nppUbOPbeYVaumjXt8cUYKL/zfEh6e8iQ3XnE2vc4Wbvj6hfzlhTfQJsefiKO3sWLNq68ejDt5Rx8XNYIFxLS7aEeSUilj3txMcUwuOkeeSOCKjgNGRwXNJi2FU+7hjRnH8a+/3s5rj30Lyy33s7CqHK1WIY7MJSoi0W4mlUqGTqfCmKYetz+xqN7czuZqO2XTjSgVMiBM+UwTF60uEd9nFNHX0WrkE6b7TeIrDJkiMkqXCvocyJr5eb+jSUwC+Jg1QSaHRTewsnQlD3IW//ePBm594CnyTMlcdt5KIPG5NfbiPLYmlEUu6OPqQSTZKNqNpFTKRHErdszN4fCxu64bCDMzskoeO/4RHQ1xOFJ46hd38Iu/PcYvn3yUVScv5fc//QYWi1YUxyZ63w6HD5VajtGoRiaViGMYiYzIq6vbqd5sp6rSgiFVJW573rxMNP/P3p3HRVXvfxx/DTsMmywDgoKoqIAL7gGuiaWWWdpuLmVl+zXrVla3tL1fy832XbNFMzPzmmlqmgqkoYKKuCsgoAODbMMO8/tjmHFmmEFAccHP8/HgQcycOefMhOfN93u+389X6UBIR0+z6XmG47gpHWyu5iSEEBdSc9sIj/Z7lFNlp/j5gZ+p+r8qTmWdYs7dc3jvp/dwdXMFrLQRbOSBzTZC/fVRa5EJhmlyZm0Eiw6uXr388aofsWs4rlqtxcnJnqqqWsZMf4DcfZv57buf6Ng9i753P2H1nOHM6FZjG8HXpcH7MZWYmE1SUg4dO7pTW4vxvO64o4fxPA2MbYRLJA+a3Cn10EMPMXbsWGbMmEFkZCRffPEF48ePb81zE0K0EZbzw5cvP8Sff2aSnV3KgAGBhIZ6NXiNnZ2CR8b2od+6NYwaPhR15mHuu3sK897+iqL8auPwVuPS2fWdLenp+WRmFuNgb2fs4LFcBc90BFFVVS0HDxaQk61fzS8iwo9Ro85clA13rHOyS/H1czXrLDIc27BdhSKS8TM+Z+PP8/jv81O4b/bz3D5tpnGkoelrLVfXC2rvTkSEr1kYWVLnaVn1vyNk52jRaMpp5+OiH/iIAi9vZ2Pxc0PHVUxsELExwWbv13Deph1U6jwt+46cpkOwrIgmhGh9lpnw7bf72Lo1G6222mojBADfrjy4cA8ZjOXN79Zx74uf0MW1mK4DbzSbrmD5x/W++kywd7DDp/4PelOmd6cNUy9WrjxMerqGa6/tZDbNLTn5JLt2nqK8opY8dbmxmKzp9L98TTmpKXkUF1dy/7i7CPbuyI8bV5OVn8WSd5/hjjsijMc2bbAYzjszs4QybTWDrwrC28vZZiao1Vr+t+oIOdmlAAQHuZOSmodWW20sfH7HHRHsS8/nyy934+PrwpC4YAYMCDTeIS8sqjRO/bNc6S//oAYv9xKCZYafEKIVtaSN8FLcS+SX5/PXo39R+XolB/cc5I3H3+DBeU9y4oS2YRtBZdFGcLAzdvBYroJnOoLI2EbI0a/mZ7ONkFOqX+3VIg9MtysursTT05k6nYLhN93EkPh+vPrYq7w7+znmfT6PrpFdba6uFxTUhDaCWsuqVUfIztZy/FgRSncnAHx9XdFqa4x5Zei4iokJIjY22Ph+i4oqjQXjLfNg3/E8Qju0gy7N+B/bTM0agx8WFsaff/7Jhx9+yMSJE4mIiMDBwXwXO3fuPK8nKIRoeyZODCc7uxQ/P1fS0jTGwMnIKCItTUNUlK/xsdg+Pdi8bjVDhg4jb9/fvPj+Z4SGjMKvxo7Onb3Mai6BfpW50tJqQkI8iRuin+5nWW/K9G7Ehg2ZnDhRggLw8XVFW1Zj1mET3cefnGz9KnqG4uLqPK0xYACyMkvYkXySkFAvRsf3onffb0la8ymfvTWXfxI28uTL/8U/8MxwYNPXd+3SzrjS0tlGMZlOQRw6rINxpJSh0G16ugb1qTLy8rTk5pah0ZTTtau3ef2TzBJ27DjFoUOnie7jz/79p9mXno+j0hHFYJmmK4S48KKifDl8+DRRUb7Gx6zlAfb2vPbNGg6eHsMvv61j2quLWffgPtYcGEpk/y6EdPRoMB0hNeVMJgyJa5gJptdHlUrJKXUZR44Uoikop32Qu1mnTUiIB337BXDcopisWq01a3QcP15McUklw4Z24PHpNzHl5hgefHk+fSY8zPvPPcC0m+KNNytMX2vtfGyxnILo3U6/ypSzi73xvR0+XMgPi9MpLa3C19eVyopaRo0KaVAYvrCoEsgnN6eUyspafHxdcNUW4+ZdSLAMsBRCXEBNbSPMHzmfqZVT0T2i48gbR9j8+2YcvLvg4N0NJyd7fRvBpOYS6FeZM7YRrOSB5VRpYxtBAT4++s4d02tzdLQ/OTn6VfSs5QFAVlYJycknCQ31Ijra32Qfg/l01ae8+MCLPHLjIzzxxhP0GRJr1hllWF2vKaOYTKcgRkf7G0dKGd5feroGtdp2G8FQGN7QOaVUOujbCPvycfSqxEHRuovXNLswREZGBsuXL6ddu3ZMmDChQaeUEEKczaRJ3RkwINAYLgZpaRqSknIAzO6MDBw4kG8XfcOC79ZwMjyePEc7CoqqcSsoY2B0oNmdg+g+/voVL3zO3BG3NffasH1enr4ItK+PC1u2ZFNXW0dklC+FhZVE9/FnytRI410UQ4fSyZNaAgP14ZWSoqasvAbQFybv3NmHq158lV4DhvDJ609x7w3DeeyFN7j6uokoFPrgKi6uwtPTmV69/Zo8pc50eLHpaxKTsjl1UktenpZT6nICVG4EB7vj6elMZmZJg/pVhkK4Kal57N6dR0FBOWHdfQgOdm/SeQghxPl0//19iIvr0KQ8sLOz49sff2H06JuY2juQQMUaHu+2mKTC6wiJuw4wv9aHhnqSnVNKbEyQ1aK0lne1Y2P0NaJCQjwBHVu2ZFNbV0dUpD4T+kT707uX35lMUJtnQp9of7JzSqmsqCU7uxR/fzf6RYaTsuJDZv7nQ+5+9r/8uHor37z5OCpfb7M8MJ3ucTZmeVC/vaF4+taEHFJS1GRmFlN4ugJ3dydCQzyNHWmGeiWGIumFRRXs2qnmeEYRujro1y+A2B6eeIV7t/D/qBBCtExT2wjODs58Pvpz7qi8g5p7amifH45/WC8yM0uoqKjFy8uZ6GiVeRshur6N4NvENkK0SRvBt76NUFdHZH0eREf7M2VKpM08MLQRyg1tBJNOLbVaS06eHS9+9ibfvfc5r816jdix19At5jo6dPRqcmeU6fuwzATQT+k7daq+jXCqnIAAizaCSR54eZUYO6fs7RXGNkLnKKdWbyM0q0fpiy++4IknniA+Pp60tDT8/WUZWSFEy4SGejUYkmsIH9MQMrj11lsZPPhadu/J44/j+axGw15FLTX781C6ORg7XQwr1+3fX2Ac2WQ5bc70DsaA/oHGeeDqPC1Hj+4jO6cUjaacuvoa0HfcHoHKX0l6ej6rVx+jqrqWTp28jNPl4mKDUCodcXG2NxuR5R3Yl3HTvyT970954+mHWbJwKff/+xVCO+tHTTW3xpNlnSlDvauszGKOZxQTGOhGzyglMbFBdO3qbTal5fc1R9my+QRDh3Uw1j9Rujng4uyApqCc3gNU+Pm5NvlchBDifGluHiiVShYv/om0NA2bTt9Fr0PPEu+4nMKdWRw9HY+b0sH4R7mTkz2BAUqcnOyNr7ecNldYVMHJXH3DIzY2mNhY/R10tVpLSkoeOdkWmXBHBCqVkn31mVBdZZIJJiO0TEctDRgQyJN3TSPQvRMLfl9G+Oj7eeWxGdw2bghw9pFRlqx1XhkKumdmFZNxXJ8J0X0DiI0xz4Tffz/K5i0nGDa0A2PHdjbWSQkMVFJZWUtsXBCRqkIIkindQogLr6mZ4OXsxZfXfskdNXegqysjysmL3r1VZGQU4+3tzKFDp1Ga5IFh5TpjG8GiXp/lKKcBA0zaCOr6NoKNPDC2ESzyIC6uvo1gkgcqldI4gikry5GQATdwe/sQfvpkAdlHj/HMf5+jR0/zRTvOxjITDPWusrKKOV6fBz17KomxkgdbtpxgqEkeGEZKubg4oNGU03uwW6u3EZrcKTVmzBi2b9/Ohx9+yNSpU1vznIQQVyhrIWTt+WsqO1L48CySHQeS6qkif8cJ/tPNBwd7O6Dxux6Wd6VNqfyVjBsXRkpqHt7ezsaRUgYpqXlk55QSHORu7JACjEupmtauOnP8UMZP+JAvP1jE5pXv8PJjE3ju/+YzePhos2NbK6h+NimpeaSm5OHkbIeXlzO9eqq46aZws/djsGXzCY4cKQRg7JjOaPLLTY4XToG2qknHFEKIC6GpeQCd+etPBxZ8+wpz2Mmoyv3sSLmVyAj9NfZsebB/fwGBJlMkTKlU+kxITTmTCaaFw1PrO6yCgt3NOqQMdaisLc99143DCfHvwCe/LOWxN+azY38a85+biZfHmeu15WqBTZWakkdKah7OTvpM6NlLxUTTTKg/v81bTPJgbGdUKiVBQeXkqcvoPyBAf0xNYZOPK4QQrc1WJgS5B/Fx/MfcveZuttv9wsw+M9m++idKgwZyJLMWwOzv6ha3EerzIMUkD0wLh6ek5JGdXUqwRR4Y2whW8kD/OjWHDxfSp09f3v85mhdnvsizUx/nhY9eIDomGsBqQfWzSUnJIzU1D6f6POjVy6KNUH9+W6zkgUZTbnK8cArKC6wd4rxqcqdUbW0tu3fvpkOHxpdqFEKI1jZ79my+++pTVKq1dL/1LbKUCmZ9t5MBSiXjhofYXLkOLKZtWNnGEB7p6fmkFOYZH1fnaXFxdiAy0pe4WP1IJ9MV7dR5WhK25qApKDcbuQWwY8cpKhS9iLvxA/KPfM3zD01hzKQ7mfnki7h76gPW0MGk1VY3qGtlS2ioJznZpURG+eLv72Z1VT/DfoYO01+7Dd8NxzO8ZyGEuBwdO3aM0WPGUF1dTcm9D/BM8AbiWcDOb/Zz3GM0Q4Z0NK6kZ6kp9ZsMHUz70vMprL9mGhoXoaGegP5abFlQ1zCNrkBTjptS/+e24Zrc4agP1/S8ntExOXz3x0r+3JbKly//i2uG9APOdC6ZFi0/2ygqw6p94V29iYz0xcnJ3vj+LAv5DhuqzwHDd9NjGt6zEEJcLqJ8o3h96OvM3jSbWY/N4si6I/gF72TUlEfx9nbmyy934+vrQlxccKNTpM+WCWZthBSTNoJai4tLfRshrr6NYLLohlqtJSEhB42m3GzkFoCdHWhLq7C3h8i+kXy++nNefuRlnrjzCWbOmckt991i7GDSaqsb1LWyJTTUk5ycUiIjzdsIlnkwtD4HhprkgeF4hvd8ITS5U2rdunWteR5CCNFkzz33HD/++DNq9TFC/v6AUdf+hw0lWrbqSqnZmc2Ma8KNRWQtNdZhZdqRY9lpk5lZgrasmuhoFRERfmYr2qn89cNwt/+TS1FRJUqlo/E1+/cXsC8tn9yTWnpG+fHsOwv4edE3/P7jf9m+eQOPPPcaQ0dfZxyRVVNTx8aNmXTt0g5PTydAR6/e/mbnbDjP8rJqAgKV+Pu7MaC/eaPLsrj72DGd6d8/gMzMEtR5WuPxTEeCCSHE5SYsLIxJk+5nyZKPeHfhV4xfuwqPzR/Tz2kj/qcPkXtkJipVlNXXnq1+k+kf76adNuHh7di/v4AePXy4444Is9WaTGtU/bP9TCYYXgOQmVVKmbaGru278f2r8/i/RYu49t7nmTphFO8+c59xNJYhD7p0bUdIRw/clA4NOqkM51hYVEGZVp9Rlp1wloV8x47tbJymYWg4GY5pOhJMCCEuF6NCRjG7/2xey3sN520u5GdnkbbxJzy9prFr1yk8PZ3p2NGz0Wt+Y5lgmgeWnTaZmSVotSZtBItMyMwsYft2622Ew4cLKdVWk5VVWn+MSv797lxWLlzMJ698wr5d+5hw7wzApI3Q1aSN0Mu/wWp5mZkllJdXExBQ30YwyYSm5IFhBFj0BcwDqVIuhLjsBAUFsWDBEm65ZSzJyX/RoUM3ohRjKezmxN+nijm97iAzh3XG06V5K0WYXqhNO23UeVqKCitpH+jWYNit6fdBA9ujKSg3vtbwnK+vCzt3nsLd3ZH//e8o9p5xzHptCH/9+i4vzZpBXPw4HnnuNe64PYING45zMleLpqCcw0dOgw68vF3MptsZama1D7Q+5cTa+Vm+P9NaWkIIcTl77bWXyco6QkLCGibdMYWXX17KusTuPBT6HcFZb0HgPRA2rNn7Nb1mWnba2NsrjCOgrF1vQ0I8GDioPQWacvpE++Pn62p8PCrSF42mHFc3B9L3lPHCPQ9yYtIhZr/5Jb9vSWb+szO5/fbhbPgzg9yTWgo05ZRpq7G3V1BbqyMzq4TKihr6RPtTVl8fxdYURFvnZ/n+BgwIlBFSQojL2rSoaWQUZ/DNo99w/M0M9m77B1XHjgQFDSAkxNPq9bGpzNoIJp02arWWoqJK2rc/SxthUHs0mnLjay3bCEqlIytXHqG2tg4IZOazM+kR3YM3n3iTo/uP8sJHL5CR68DJk1o0mnIOHz4NgJeXi9l0O0PNrPY2MqGpeXCh2wgKnU6nu6BHvMQVFxfj5eVFUVERnp6eF/t0hBCN+PHHH7n99tsBmDhxHjNm3EWRrwOv/LYPOzsFM+LCUDk5mE1jM0hMyiYpMcdYFHzP7vz65bydzEYmmRZG798/sMGIpKb65ZdDbNhwHDelE926tSOskyc9e/lxYNdGPnz1WSorK7j/iRfoP/xGTpzQonRzICdHC+gICnJn9epjZOeUMnBgoLFQubUpfpbT9mw9Z15Tyo8CbRV2djCxbwfs7KyPMrOlrV432+r7EqIt0mq1xMXFkZqaSrduvZk48V1GD3Lj6tPzIDMJQofAoPtQF9SYTV0wSEzMJjEph6j6qQ5uyjPX4N71d6JNRyWdzC2jRw8fm1MDG7P8l0P8sz0X73bO2CkUxpFQLsoaXv78W5b+voVxwwfy8iN3U1fpYhwhZTinbX/noNFUNMwDK3f4Ladq2HouX1NuXsdKcxi6jQG/8Ab7PJu2eO1si+9JiLaoTlfHA+seYO2ytWR+kQlA/JSZXHvTiAbXa1vXx8TEbJKScoxT35QmeWA6Msm0MHr//oEtygMwaSO41bcRwjyNx8k8kslLD79E5pFMpsy6lx6DhuLu7tiwjZBtpY3QyDW/sefMa0r5UVBegKO9I+O7jG/2e2vqtdOu2XsWQohLxFVXjWHSpPsA+O23N7Czy+WOwSGseDiOIC9X5m84xJLtWaSna4z1PgySEnNISTnF4h/SSdiaTWJiDgkJ2Rw7Xmy2XWNFD9PT81m8JJ309PxGzzM9PZ+ExGy0ZTV4eTnh7GzP+g2ZJCbk4B8Sw7i7v6L34NG8N+/fvD77DjxdThER4UdQkBJ1Xjn79xdgZ29HcJD7WafbGe50WL5f0E/jG9A/EJW/0jg90TAdRQghLmdKpZIPP/wGDw9vDh7czY4dn9K5bwRM+w2GPwVZf8Oap1EfPGD1GrlmzTG2b89lzZpj7N9fQGJCDomJORw/diYTztxJVjS4A70vPZ/Fi9PZd5Y8ADh0qIDMrGIqK2ro0rUd6fvy2bLlBAf3l3PjoBv5YM4sUvcfZdi02azb8RddunjhpnQgNSWP4uJK3NycCAp2p0+0vtESEuKhn5qt1jY4VqOZoFIalwM35EFqimSCEOLyZaewY/7I+USN7o1/vAqALcsWYV9X2GBbW9fHpKQcdu06xbJlB9my5QQJ9Xlw7Fgz2wiLm9hGSMhGqzVpI6zPJCEhW//cdi2PvfkS191+HV+/+QmrvvyUslItanUZQUHuaLU12NnZERzsftbpdk3NA8P0xJQLmAcyfU8IcdlKS9PQvftk+vZN59ixvTg56ZdwDQ/wYOUjccz9XxqLt2fh7+LIYH8Xs9fGxAZx6PBpSkuryTpRQvsgJUVFFZzM1bJndz6Qj+EORP/+AVZHHlnWnbIcfWVan6qyshZfX1ciI3zJOlFCcXElmoIKUlLz2H+ggj6xj3LzlLv48NVneeS2MYydNBmvkEkcPFRN13Bvhg4NNp6DZT0rU4ZQVLo5mBViB/ORUlJTSgjR1hQXezB+/IssWfIEvr4OBAcrwd4eRj4HnYbB8vuIyv4vHgE34Boyzuy1SndH7O3tsLeHwPZuFBdXceRIIcczili58gidwjwJCnI3dkZZ3mW2VijcMPoq1mIJblcXBxzs7aip0VGgKUejqcDZxYECTTmHDhcS3acj+377jLkffMcLH3zHVz//wU1x47Ar9ye8q0kemNSvsqxpZRAS4kFhUSWFRRWo1VqrtUekppQQoi1xdXTlLpcXOHXzo1RkVYBah72u4SrTtqayxcQEcejQacrKqikrq6ZTJ0+OHCnk5Ekte/bYaCNYXHst604ZRl/FWORBSopJGyHSl6ys+jaCpsJsH/96+V/0je3LW/9+i51/7yVk4ESgH6NGhZhlgrUah5bvV6l0MCvEDuZ5IDWlhBCiGaKifAG49dZvUSpr6Nq1q/E5Z0d7Xp/YmyFd/Zjzyx7mbzlKNxy5pl97IiL8iI0J5tRJLQkJ2QDExQYR1skL0AE6du5Sgw6Ki6vJOlFMYiKMjg/F18/VZsdOUmIOe9P0d0ScnOwb1KdycbZHW1ZDxw6e+Pu7mXUI6afRRfDpsvX878eFfPPhW9TWrqTPkGlcNXgGPXvqhwRbq29lylDI3VrHldSUEkK0ZVFRvkyefAO33daH8eNHmC94ETYUHkxAsXwmoYd/JmvDXtJ73ktEr44AjB/fBXt7O6qraslT6+tAeXo6c/xYETm5WgpOVwD6/aWv1VBZWUtsXBB+vq5mK/GZduokJuWQtrdhJsSPDqWqug57OwU+vq4MHBhofJ1S6ag/trsb7865n3tvGcO/XvuUtxd/RXR4BMPjp5tNEVGrtRQWVRLY3kYmqJR4e+mv/d5eJWaNFKkpJYRoq+J6d6O07iU+evTf+Dn4ETEgosE2hsLm6en5bNiQaZyuFhsbzKlTWrZuzcbDw4kePXzw9HTG2EbYqQbq2whZ9W2E0aH4+rra7NhJSsphr5U8MDzv4mKPVltDx471bQSTLDH897Cxw+jWsxvP3vsC6eu/plvHCvxu627WsWRZ38ra+7W1OMfFrCklnVJCiMtWaKgXoaFeDR4/ffo07dq1A+C63kH07uDFjW9tYY+uEs2OE7zQ3QcHOzvihgRTUVlLcXEl2rIaRo0KBfQdP/rGh45jx4tJSVGjAPz93cxWULLs2ImJDTJ+N1tW1l9JRISfcaSS0s0BbVkNvn6uxucM7B0cuHHyvYwYeyNfv/c6a5Z/SPbB37n7sWcYMvo6MjNLyD2ppUcPH5urCBqOa/rd1mNCCNFWnMmEzsbHdDodRUVFeHt7g5svTP6JP+bNZkTtInz2vgLt/w1+XYmM8MPP19VYH6RMW0P8qFDUai279+jvioOOXTvVHM8oQleH2ap6hpX4TMXGBBm/Wy41bujMMtSL8vN1RaVSNugYiuwawh9fvcov6xKZ/cYXTJj1LDNvHcvzD95OoL8PmZklnMytz4QmLHPelMeFEOJyFxrqxf2h19A5w44nNj3B9/u/Z3rUdEoKS/DwNr/mWY5qAoiLC6aior6NoDVpI6hN2gjH6tsICittBIuOnZj6PIixkgcREX7GkUpKpQNabQ2+9Zlg2TkU2DGQz1d9zNdvf83iT74j+/ABnnrrKfwC9Sv65Z4lDwzHNf1u67ELSQqdW5BChkJc3tauXcsdd9zBJ598wm233WZ8/K8tmfzfmoPsq60kyNuVB0d0xq6yrn6qns6suLmpxKRs1qw5hrvSkfHju5iNlGqsU8ia9PR8UlLzjCOmevTwMRZOt+ywyssrY1+ahtDgIpI3fMmOxE107xnNpHuewMOvl3G7lpyHNVLovKG2+r6EuFKUlJQwffp0srKy2Lx5My4u+mncCQkn2LfuD6a4vI1L1SnoeTNqv3gys0qNnUTWpmPsS88nMSGHmto6HOztzEZK2So0bsu+9HxSU/JwdrGnTFvToGi6oYHipnRgR/IpMjOLiY0LZPuhZN744ieqqqt5fNqNTL9hLMePlWNakP28kELnZtriexLiSvHl7i+Zv2s+3XK6sfaNtTzz7jMMuWaI8fn09Hyzwt6WHUS2CoMnJORw6FABLi4ODUZKNfdabDgHw4gp00ywPJ+8vDL27dPg55bPyi+/pKa6hsdfe5zIQQPPet4tcSEKnctIKSHEZS0jo4i0NA1RUb6EhnqxceNGTp8+zT333ENERAS9e/cGwMHOjkFOrozt2Z4F+3J4ZVU6sQFe1J2stDrqyLQDqVs3H3r08DHerbBWo8lyZb+NGzMJCfHk2ms7GZ9LSc0jMTEHZ2d74mKDzOo+GYbNGpb83peWT+5JLeDHG18sYdffW/n6vVd5bfYU+sUMY8DIaVToOpmdjxBCXOlMM0GnO82mTZsoKCjgwQcf5Ouvv0ahUBAX1wG4hnfXdeR+1ef47V6Cs+sujpTeQJcewVZXUNqXns/q1cewt1MwdGgHs20MK/NZ1ugAfV0pszyof85Qg8rHxxl7ezt8fV3MXm+aCX9vy6HwdCXOLg48/cQt3H/rGP7vy2W8u3AFnyxeze3XXkOfkGi8vVzOX6eUEEJc5gx5MDrqFg6FHeKr779CW6zl9Vmv88nKTwjpGmL1dYbrr60VVtPr88DOTsHVV4c2yANofGU/a5mQkmLSRogLMqv71KCNsC+f3FwtPXv68fX6r/nvnP8y76F5jL5pNI+99Bj7D5XarCt1qZLV94QQl7W0NA1JSTmkpWkAePXVV7nmmmsoKyvjxhtvpKBAf1Fevz6D9esz0ewtZPVjQ+nVwYs/s0+T4w5BwQ0v2IYi5pqCigarLBnYWsVi48ZMdqfmkZCQbfZcdB9/PNwdqayspaKyFm1ZjfH1ISEe9OjhQ3Qff3r08GHosA70jPIzTgnse9UQnn//J26a8SZZGdl8/toM/lo2m/wT/6DT6VDnaUnecbJ+6qEQQlyZTDOhU6dO/Pjjj9jZ2bFw4UI+/vhj43br12fw+4Z8PsqbBePewaMqg5ucPqOzR67V/aam5JGTXUptna7ZeZC6u2Ee9In2J7qPP64uDuTllZO2T2P2ekMm9In256rBQURG+hqnA7bz8uDxKbfy9X/mEtsrmi+W/8rsj17j2zX/Q60pBDB2kllbkU8IIa4EpnnwypBXuPqhq3Hv4U5ZaRnP3/c8pcWlAA1WmzNcf21NZUtJySM7u5Q6G3kAZ2kjWMmE6Gh/PDzq2wgVtWi1VtoI0fVthKEd6NnTj5iYILzaefHiJy/yyEtPsHnNViYPn8aJQ/vNzv9yyAMZKSWEuKwZip0bvtvb27N48WIGDBjAsWPHuOuuu1i1ahXx8fq54PHxoVQUVjLGyZ061wp2FZXxQcIxHosPp72Xq3G/pkXMLedzG0ZRhYZ6Wg2tkBBPsjKL6RzmZfZcRIQf14/vQlJiDqGhng3qTlmOeBo7prPZz1lZpWjrIoge/S7tfTJI3vgt7zx7H8sXRhAddzOuvlcBwTJySghxxbLMhPj4eN58803+/e9/M2vWLPr160dMTIwxE3r29GN1/tU4hX1B9OFn8N35FlRNgp4TwaRQuunqdNam9aWkqPHxdbGaB5lZxYR1Ns8DQw2rrQk5uLk5Ehnpi5OTvXEbQ0Faw7aWMjNLyDpaydDuo3jothv5c1ciny5Zzec//ca0G0cxrPdg6srdjfsSQogrjWkeONo58um1nzIhbwL/PPMPWUey+L8n/495n80zK0quVutX2CsurqSoqIJevRpeQ023t3zOMA2v0TZCVjGdO1tpI1zfhaQkK20EkzwwGDv2TBtBoVAQ2nMAsbf9i93rf2L+0/O4+d6b6fnvGUDjK7ReKqSmlAWZMy5E25CamspVV11FRUUF8+bN44UXXjA+t3r1Ub79No3s7FLcOruT09GRijoddw7uyJCu/madTqdOlqEpKCcuNsjYObV4STqpKXn0ifbnjtsbruZhWR/KdHrfhg0ZbNqUiYurIyNHdqS8rIbGalpZ7te0Bpa/nxt7dvzN5+/+lwOpW3B0dmPkdZO4ddoMQrt2N77O8H7Ky6s5fKiQocM6NOjwkppSDbXV9yXElUan03H77bezdOlSgoOD2blzJyqVCtDnQVJSDkePFnLqRD7vjlxOb/4CVRTE/QtcPI21pHx8XQgMUJKRUUyfaH9jZ9HixemkpOYR3ce/QbFz09pQlrWqkpNPsm5dBsUllYy/vgtdu3obi6qfrT6UaQF2w7ani0p4+o0f+HHtnxSXldA7vCszbxvHPbdcjYuzE3CmlpW3tzOHDp0G9KsBNuj4kppSZtriexLiSnSg4AA3fnAjB185SF1NHQ889wC3zTxTgzY5+SQbN2ai0VTg6+vCyJEhZtPzTDudTp0qQ6MpJy7OpI2wOJ3U1Dz6WMkDaFgfyjQTjG0El/o2Qnl9G6EJ9QINnWm6ulqy9iax5ONF+AX4MWbqNDLzPBpMF7R8P+Xl1Rw+XMjQoR3MOrxAako1W6dOncjIyDB77PXXX+eZZ565SGckhLhY+vTpw6effsr06dOZO3cuw4cPZ/jw4YD+jsm114aRn1+Gn58r/h3cmf/PcRYmZpCeW4LriQr2puaTk11KvqacoqJKlEpHY+CYjqKyxjDqKXmHfsnVosJKvLxL6u966Dh9uoKavHKSEnMoK6uhrLwagFGjGg8clb+ywTa9B8QQ1t+B03XXY1+RxN8bf+OP5Yvo0qMnI8fdyMixN5KSWkJqSh75+WWUlFQB+lFYpjWxisqrycnR0t/Xg7BO3i392C8ZkgdCCAOFQsGXX37J7t272b9/P9OmTeP3338HztxJj472Z+/edpTEf4ymdCVe215C8duT2A/5F6kpduzadQpPT2d8/VzJyysHzoxgMh1FZclyCe7Cokq8vfTX3ZAQD4pLKsnJLiUxKQcnJ3sSE3MoL9NnQnwjmaBSKRs8387Lg25+/bixVzDVzmoOa9J4+JX3mfPel9wUH8sd1w0nL9OZPXsKsLODUye1UL9qVKRJcV83pQNoNHi5lxB8YVcFbzWSCUIIgO4+3Xl/2vtMPzqdnEU5fP7G5/Qa1IvIvpGAfmRSv34BFBdX4unpZFbbSaVSGqf65eSUkp9vpY1gMorKGstMKCqqxMvLoo1QU05SUn0boayJbQSVSRthdGdG3zict59+m69feR1l+14UDbmOa6/t1OB1hveTl1dGaWl9G2FsZ7OaWIVVZahzq+jtUGR11fPzoU11SgG89NJL3HfffcafPTxkmVshrlTTpk0jMTERgMGDBxsfDw31Yvr0MxfV1auPMrDUni4hvqzLKMDd0Z6QcE/aOTuiCnCjsrKW6D7+Zp041kZIWTIMvc3KLGbnrlP06xtAr97+FBdXoykoJzLSl337NOTmGJaX1bNWQL2x0VcxsUFoNOV4enZnxMhnqSnZw8bVv7Doo7f58t1XCA3vTbv2fekW1o/TpQEMHdYBMB/OW1pdw5HDRaQFaNpEpxRIHgghzvDw8GD58uXcdNNNZiNnQ0O9jH9kT5qkH2G6evUYjlZ7MN3pHdw3vkp8wDXkde8JKAgPb0dhYSWhoZ7GhkpkhJ/VKXamDHlQWFTBjh2nOHToNKNGhTD++i4kJuUQW79MeFB7JTm5ZzLBVrFcWyOwDHWnAlRhKBRX4XZ3NXuO72Xxb3/xzYr1tPP0IKpTN2J696Rr9/a4uyqNnWmmxXS9a4tx8y4kuPd5+fgvCZIJQgiA0Z1G89ys53juyHN0DexKeNSZEaFmnTtg7DwyPBcd7Y9WW42zsz0qVX0boX7an7GNYGWElCVjGyGrmJ07T9GvXwC9etW3ETQmbYRcizaClUywNvqqQ1gH3l3yLu+/8j2rvvme1N+O81tYJdMfHo/CZGq6ofPMdKQUWLQR6rQcO1xKmotGOqWaysPDg8DAhlXyhRBXpo8//hh7e/tGtzGdcz65uoonfkwlzamSLjoFV0cGMKC//ppiGPkE1le8S0/PJyExB18fF+KGBBtHTBUVVoAOQIfKX8lNN50Jv65dvY3hYmA297v+OJYrb5g+FxsTbLYflf84hsSPo0xbSuKfa9i0ZjWp25eTsvkb3D29UJzuj/pwNIEhkQT6d6BDByUllbUoUBg/i7ZA8kAIYSoiIoK0tLQmZkIcmm6jcN89F//dP3J3x4Os0d6Iv78bY8d2btBQsWQ65W9IXLDx7rharSVPXU5xcSWZmSXExgYTGxtsfN0NN3QxywRbtUCsZoJKadyfacNl4vV9eOHhO0lJP8qCnzewdutO3vruGxQKBb26dWJvXncG9upG56AOhHbywNdXCZpivMK9z+HTvvRIJgghDB6MfpCD8w6yKXsT+4v208u/l9XtTGs7gb72k6EIuenqfGfLhPT0fBIScvD1dSHOJBOKiirqt9ChUjWzjaBqpI2gUmJnZ8esF6YwZuIwPpz7IYv+778cSE7kkRcfoUOYvvPJ19eV8PB2DW58mL7vwqoaHBSOrdpGaFM1pTp16kRFRQXV1dWEhIRw55138vjjj+PgYLvvrbKyksrKSuPPxcXFdOzYUeaMC3EZMl0K3FpPfm1tLb/99hs33HBDo69183HmgYXJ7MguwqdOwV0DOtK7pwp1npaErTkNakz9vuYoWzafwMXVgVOntHh6OjNpUjdjZ5a1kU+Nae5IqbPta8mSA2QcK6BLaBEejsfYv2cXB/bsoui0PtScnF1QBYcw5tZpfPbqnDZRU0ryQIgr29nyAGDPnj24ubnRpUsX26+P9CG0YCXVq56mulrH0fZT6TlqJGq1lq0JORRoyomNCzIbKfX770dZtuwgVdV1dAh21+eBSU0SW6OfrGnuSKmz7WvJkgNkZBYR2dsDB49Ctu5MY/vug+w9lEFdXR0A7f19CA9ux5qVv+Da0XpDrTFtIRMkD4RoW6xlQlVNFZNXTyazJJNHej/CieQTxMTHNHit5XVYrdaSkJBjVk8qMTGbpKQcYmKCzG40/P77UbZsOYGLi0UboT4TmpMHtrZvrE6VgU6nY+varXz00kcUqAu45b5buPb2iaz4NYOMjCKGDAnmppu6WT2m1JRqpscee4x+/frh4+NDYmIic+bMITc3l3fffdfma15//XXmzZt3Ac9SCNFaDEu/AmaNkISEE/zxx1H++GMuf/+9kYULFzJt2jTj8xkZRSxcuJf8fH2dkHHjOrP04Tgm/WcDKXUVfLEzi3td7aku1E+7O3yo0Gz++JbNJzhypJDA9u707RuAs7M9RYUVqPO0qPyVaPLLOXToNFVVtU3qnLK2Ep/lY+o8Lck7Tja6L3Welg0bMjly+DTFJdVERIUzZcYkQB9OJ7MzyTx6iOyMYxw9cgRvnzZSPATJAyGudI3lwfr1GSiVR3nhhZmEh4eTlJSEm5ubcRvLTAgdN5UvVtozpvxlotSfo03MItMxngJNOYcO6/PAtFNq85YTFBVV4u7hyMBBgbhZ1CTJ11jJBBuNEWurLlk+bmiQGB63Rq3W58HhI6cpKa5CV+XLtJvimXZTPADasgp2HzjG4cwcDmXkcCLjKK6uLk3+vC91zc0EyQMh2hZrmeDk4MTdXv/hP7kzefS2RylKL+KFj15g5PiRxtcZrp3FxfpOasO1t6KihsP1139fX1eSknLIzi4lI6PYrFNqy5b6NkKgSRuhqAK1WotKpUTTjDwwPX5jj6nVWrPMAX1txaFjhjJoxCAWf7yYHz5ZzK/frca320gUHl3RaCq4mC75TqlnnnmGN998s9Ft0tPT6dGjB7NnzzY+1rt3b5ycnJg5cyavv/46zs7OVl87Z84cs9cZ7oQIIS4/lkuBG6xfn8Gff2bj4hIGbOSBBx4gOjqaPn36APqgys+vwM/PlagoX37++QDLlx9iYKQPAZUO/GNXxceJx+iMI+HtXOkT7W9W5NxQo2nosA707x9Q/4d/IV7eLqj8laSk5vHPPyfZszuP0E76uwTWOpIsV9drrOPK2hQ/a9sUF1fRpas3bm6OxMUGGZ9TKBS07xCKvbMfOZpQXDsOwqfjpT2tQfJACNFUjeXB+vWZDBrkgYeHB7t37+bBBx9k4cKFxjobppmQmVnE5MmriIwMY7H7R9zbfhGqjBWE6HZzqt2dKPv4NyhwPqy+JkffaH9COnqSk1PKydwyQN94SEzIYdeuUxw96m5sHNmaAmhY6bWxmlVNWe7bkAddu+jzIDYuyOx5pZsLXYJDyD3uQIibP9PviLR5vEtFa2aC5IEQbYutTPhnUwlOu27GqdP/QTq89dRbdO7RmdDwUODMtdPT05mQEA/jiKiOHd3p08ef6Gh/MjNLsLOzIzjYvUGBc0ONpqFDTdoIhwvx8nIxFk7/55+T7NmjX9EPrF/HDavrNWU1vsYywdnFmemzpxPUvR+L/vslmf/8gm9QKH7XTm+wH8N77X2VkqsGtu7175LvlHriiSeYPn16o9t07tzZ6uODBw+mpqaG48eP0717d6vbODs722ygCCEuL6YFa03Fx+uD5eqrX+T113P5/fffmTRpEsnJyXh7e5sF1YkTJcydm8ipU/oGxPffX09+SSUPL0pmW1YhTkoXHhzfDRdHe+OUuv79Axg7Rn8dSt5x0iy8QL9KX052KVXVtWaPW8rMLGHnrlNUlNeizitn1KgQmx1OlnPcG9umqqqWjIxiABKTsklKzCEmNojYmGAyM0vY/k8uheVVKN0u7UiQPBBCNNXZ8iA+PpTrr19CfHw8ixYtIjY2lpkzZwLmjZf77lvL33/nkpdXxh9/3Aq6q8nf8CXtEl9kbN1H2A1/FIL0HUaGEUv9+weY1Z0KbK+kRw8f4zXZx9elPgs8zR63lJqSR0pqHlptdaNT9JqTByEhHuRryklNyaPwdCUnT5UZpyCWaWv4Z3suRUWVdFQq6Hxtkz7qi6Y1M0HyQIi25WyZoBzwJnOPP4I2XcuLM1/kk/99gqvS1ezaqdGUs/iHdE4X6kdNPfHEQEB/7R86NNjqlDpDHoC+7lSDNkK0Pzk5pVRVNaGNsPMUFRW1qNX1bQQbHVNNyYTogV3weeNZ9u/aw8qFPzD/6Xms/mE5gZFXM2bCQGJjg0lKymHv3nxqHEulU8rf3x9/f+tLKp5NSkoKdnZ2qFSq83xWQojLSVxcB+Li9HcqIiO/JSKiN0eOHGH06Ils27beLKgWLtxLdXUdAQFuTJyoLzbo5+HMDw/G8ulfh5m/4TAvrkzj4RFdUFsZrRQS4kFWZgmagnI0+eWo/JVERPjh6+d61ql7ISEe9OsbwLHjRcYiuLa2tTbFz9Y2i5ekk5qSB8DRo4Xs26ehorKG2Bh9gA4a2J6cgjKioi7t6XuSB0KIc2WaB9CB1157jWeeeYaHHnqEwkJfnn76ZrNMaNfOGWdne9q1q++gUCjwi78Peg2B5TPgrzehx3XQ584Gd6dDQjzIzCrh+LEiYuOCjA2IIXHBhHT0POs0DcMILGcX+0ZHQtma4mdrmw0bMklJzePo0UJyckupqdGhVDoyalQIAwe1p0BTTnh4ddM+0ItIMkEIca7OZEIc5Y5ZvHTbS2QczuDpe15i/pLXGlw7a2p1tPN2JibmzGhTa9dga6OVQkI8yMoqQaMpR6MpR6WqbyP4up516l5IiAf9+gVw7JhJG6GZ076tbXPo0GnChkwn2iGbhP/9wqHU+Rz4OwrfDx41vsfe/c9e6+pcXfKdUk2VlJTEtm3bGDlyJB4eHiQlJfH4449z11130a5du4t9ekKIS4Svry/9+/+bNWv+TXLyRt58803mzJljfN70LvqZhgvY2yl4eGQ4A0J9mL00hVd/38+Y7v50797OeCfCMAqptraOgoJKs7pTjXUimRY2HzUq1OxnA0Mx9aHDOhhHZTWVYaphdB9/amrqyM0pxc/X1ViT6qabwinQVmFn16zdXrIkD4QQTfXUU0/x4YcrOHHib1566SFmzBiBn9+ZDvrHHutPZKSfMRuMAiLgnnWw5hnY9S2o0+kU8SDgY5zikZhkngeGKXhnazBYLi1u+jPop1Rs3JhJSIgn117bqUnFcU0ZOrtqauoor6jB1cWR0FBPMjNLGGLoPNMcbtY+L2WSCUKIpnh+9PMsvfNP9n62iT1Jf/Pz1z9z84ybjc8bpuZFR/sb/763xXK0kmEqnNU2QiOZYHr9HzUqtEEewJli6kOHdjCOymqqM+8piuDwnvzx81qKM7fzwPUP0Puqvtw9eyodewc0a58t0WY6pZydnVmyZAlz586lsrKSsLAwHn/8cbP54EIIAXDvvWMpKDjC9u0f8uqrr3Lvvfca77aa30VvaHBnX/73yBCeXJbKb+lqevi7E1unX8Q0KTGHvWn5dOzo0aDulKn09HxSUvOI7qMPNcPdlKLCSry89UETEuJxpnCtv9JYTB1odqdURISfMfh8/VyJiPClqLDirDWpLleSB0KIplIoFLz66gc8/PANlJbm8t577/HKK68Yn280E5yVcMP70CkOfn8Kv+0v4hBxD4czu7Bxo75uSMeOHkRbqTtlYK1ulCETCosq8fZqmAmJSTns26chJ7eUiAjfZndKRUb4ERnhh1qtJSLC17jvs9WlulxJJgghmkKhUPDciPk8pb6ZrGWHWPjfhYy5eQzuXu6A+d/TZ2O4jhqu24apcB07ehhrUVmTnp5PSkqesePL2EYoqsTLSh6oVEpjMXWg2Z1SZm0EX1eiek7hdMFEEtclcODvDTx+6+N0i+7G5H9NbtHqe03VZjql+vXrx99//32xT0MIcQmxtST4pEndmTjxfV54wZtJkyY1efi/YdWm+PhQvpg6kC82H+GdPw5yLE/LdZXVxNQXEm/n40xOdqmxYKGllNQ8UlPyOHSogIryfUT39adHDx+zjiLArNPItJh6c6jztCRszUFTUE5crH7ZWpW/EnWe1tgB1tZIHgghLNnKA4CpUwcQHb2GZcuW8eKLLzZpf6Z5EBd3OwT1g59n4L37A5R1gwgNGY2ziwM+7ZzJzrGdB4a6UYcOFVBesY9h9cVwAQqLrGdCbEwQlRU1hIR4NusabrjDbqgz2Cfa37gsuYFkghDiSmArE26/pTdDx2zkqqqr6DC8A/Zu9mfdl2VHkoFpZ79hKly7ds7kNJIJKSl5pNZnQkXFPqKj69sINvJApVKaFVNvKss8MJy7SqVErdbSzucaHnhyIkf37mHxZ4vJP5nf5H23RJvplBJCCEu2lgQH/d2Ql19+uVn7M6zaBPq75w+M6Erp8VK+2HOCFcfymNgvmNmzB/Duu8nsTdNfvGNjghvsxzCC6u+/cziZqwXg1lsirHYUGf577JjOZiOkLEdbWaPO0y9juyP5JGXlNU2eTiiEEG1NY3kA+hXZevfu3eT9WeYB/t1IjFxAXcZzxDqvpavXSRxv+jdvf3actL31eRDbMA8MI6j+/juH3JP6PBg7trOxYWAYKWVgqDliua+zrdRnuqx5SWk1eXnlAE2eUiiEEG1JY5kQ7BHMis9XcN8f97EwbSEze8/ErpEaF4aOJMDsb/KqqlpOndLSubMXsbHBxMYG8847/7C3kUyINsmEk/WZcOut+mncXlbyAPSZYTpCylYnmak9e/LYuVNNVVUtJSXVZudumgcBATF0j+2Og13rdhtJp5QQos2ytfyrgeEuiZeXE9u2bScnZydvv/2K1W3BvN6UgTZDi++OEhxjfVi2M5v0kyX0HaS/y20YOWXJMFTW29vZWCcKzDuK0tPzOXToNEo3hwadR+o8Lct/OUxWZjFabXWDwFHnaVm79jipqXm4uzsSEuqJm5ujzemEABpNGTk5Wvr7ehDWydvmdkIIcTlqah5ERflSWVnJM888y+zZjzFkiPWOKmt5sG7jKdZvncCjo6K5teYzWPMU1/e+BfAnNsZ6Hhim0nl7O7N5ywmGmdzpNm0Y7KvPBDelQ4POo33p+Xz77T5K6xsWpp1SarV5HnTv7kOvXv7GkVLWqNVa8g9q8HIvIfjSXv9CCCFa5GyZ4FfRlfFu97G84GNe+fpd2hf4c99T06xua1prylRGRjF5eeVkZBQbO6AMI6ZibGSCWRuhvk4UmOeBsY1gJQ/Uai3Llx8mK8tGG6E+E5KTT+HsbEevXv44ONjZnE4IkK8pQ51bRR/HIqs3dc4H6ZQSQrRZtpZ/NTDcJdFq1bz//u3U1lYzYEBPbr/9dqvbW6stYmiQXD0qhCOKGt5Ys58TDuU8cFcPwgP0dzAMhcuNQ2TrRzeNHdOZ/v0DyMwsQZ2nNet8MkzxA31AmRY/z8wsoaK8GgcHBb4+rg3OMzOzhG1/56ApqCSskye3397jrKOisnNKOXK4iLQAjXRKCSHanKbmAcAHHzzHmjVL2LNnG3v2/IOLi0uD7RvLg+D4YRBxO/x8Lz2yF9Fj6Cjo3xewPoUuMsKPsWNN8kCtbdDQMEzzA4z1oAyZkJqSR2lJNe4ejg06mjIzS/h7Ww4Fmko6hXkalxG3dofe9DV5x4tx8y4kuOmDx4QQ4rLRlEyoS+mFStGHP1/7Hmohok8Xhlw7pMG2tmpNWeusMoyYMrA1ja6xTLAcmWWaB5mZJVRU1LcRfG20EbbloNFUEhbWtMUycnK0HDtcSpqLRjqlhBDifIuK8kWtLiM/34kxY6by229fce+999K7d28iIyObtI8OHTwYOLA9IR09GRrqxYDQdjy6JIW3/jjA9b2DGNzekz//zKK4uJLSkjNTJgwdTYbpFGBecNwwqsnb25nFS9JxcbZHW1YD6IfrjhgRAujo1bvhnY2QEA8GXxVEZmYxI0eGNOiQsjb1LzjIHQUKm3eMhBCiLTNc+7y8nIiPv4etW9dw+PBeZs2axaefftqkfRjyoEMHD/Dxgrt/hw1z4e9PIf8g+REPsuHvSptT6HbXT6fo109F/Cjz63afaH+02mpqaupYv+E4ACdzy4zPGb5bTt0LCfHgqsEmeWCl8WE59S8kxAO3Ck+8wr2b9L6FEKKtMbQRPPMf4eio7Rz/4xCvPf4aX6z+guBOtjv1Tfn6uhIe3s5q5xCYT6suLbVoI6gt2ggm125DJ5e3tzOLF6fj4mKPVmuljdDLRhuhkUywNvUvKEiJg8KxVdsI0iklhGhzEhJOsGzZQYKD3bnllu42e/VDQ71QqTQcOVLIzJlPUV5+jD///JNJkyaxfft2PDzOXvDVck56zw7efHxjL/7z6z5WpuaQsE+N87FyQgKUxMQGGUdKgf5uRXFxFfb2dhQVVpiNljLcdXn/g52kppyie3cfrh4Vqq8n4q9k1CjbdzVU/kqm3BUF6EdpJe84aXwdNByFBeDr64a/vxuhIa1zB0QIIS4GQ0Hynj39cHV1tFroHM7cNV+9+iiFha489dR/efHFe/jss8+IiYlh2jTr0zZMNahR4uAE177GKeUAvDfNxvvvF/FSx6FVxhAbE2RlCp2Cyspajh8rbnBnPDLCj/37T7Nhw3HatXNlxIiO9OjhY6wxZa2OFOgbMlOmRBl/Nr2jbti/5SgslUqJyt4Xgtpe0XMhxJWtJW2ENx9cwszMURTuL+S5+57j05Wf4uLacAStJWurmppeg/fsyePw4ULat1cSU58Jhg4nszZCUYVZJhjbCO/vJDW1vo1wdajxut5oG8EkE9RqLcnJJ83ywFp9LD9fN9qrGh9Zdq6kU0oI0easX5/BH38cx8/PlchI/QXV1qpLpnPKFy9eTL9+/di/fz/33nsvS5YsQaFQALZX6bA2J/3YwSIiChVEdmvP0sOnKAhyINjHiZirgswKnxsKFBYVVpB7sgwv7xIr0+x01OnAxdWBAf0DscZ0ah9wpsHhrzQPxPp9GzrFGqsxJYQQbYGhIPnBg6fp3NkbtboMlcp6HoDpNb0XOl0mL774Ig888ADR0dH06dPHuJ21TLBVo2RHcTR7KudzQ91/GafahMbxBL59n2gwha53Lz/y1GUUF1eSmVnS4A52gaacmuo6XF3s6d3Lz+aUC9NGD2DWCWWtkWQ60koIIdqylrYRfl/+O8OuGkbGgQzemfMOz/73WWMbwVpnP5z5O9+0OLnpNRgUuLjYExbm1WBan7GNUFRBbm4ZXl4NMwF01NWBi4tDg5VUDZqbB7bqY7U26ZQSQrQ58fGhFBZWEhzsTlSUb6MrbBjujmdkFJGcXMr77y/gttvGsXTpUmJiYpg1axZge5UOa3PSTUPs+kHB/GfVPv4pLKV8wyHuiQvD09UROFPY3Nqqewaj40Px93czdiCZdkAZOpnMAw6zTihrgWhr7rsQQrQ1hjpPhpFSarW20VX4TDOhX787GTFiK5s2rWPSpEkkJyfj7e0NWM8EWzVK9JnQiwLPb9l78Dsicz+E356EAfdApzjjdvo73CFmDQhTsXFBKJX6ulHW7robHrOZCSrrmWAoti6EEG1dS9sIBcdUPPfWK8x94GnWL19P74G9GT95PGB9RJThvy07ksyvwR54eTlbvd4bXmtt1T2D0aPr2wj1HUjnIw8uVhtBOqWEEG1Ohw4ejB7dyeaoJmsMoRQT04V3332Xxx57jISEBP71r3+hUCjOukqHKdOGSShe/B6pYkHicd754wD/WbmXqYND6d/Jx7i96ap7lizDwdrIJ2uhYvjvxvYthBBtXVxcBzp08DDeCY+K8jWOlGpMWpqGbdtOMnPm6xw7dhCNRsP+/fu56qqrgLOv3GTKrLNqyBzIvwVWPABJH0DWNhg0E5z112lrjRgDa51H1hpDjWZCI/sXQoi27tzaCDdz6+M7WPruUtb8ucbYKWXtmmuL5TX4bNfjxq7ZjbYRLrM8kE4pIUSbY3nX42wrbIB5A2Ps2EcICQlh/PjxxqG5TdmHLXZ2CuI7+qDoFcrSTDWfbD7KgIzTTLkqBKWzo9XRT7ZYCxdNfrl+aVg3ByIi/KzuIzEpm6TEHGJizacQCiFEW2eaCePGdW7Stdw0E3799Vc8PDzo3Lmz8flzyQT8upJx9Y9UbHib8NyvsFs9GwbeBx0GALanglhjLRPyNfpMcFM6GGtEWUpMzCYxKYfYmKBGV+ITQoi25FzbCEvGLqHOt479QfvZdWoXfQP6nnPnTmPX/HPNA019HiiV9W0EG3mg73S7eHkgnVJCiDanOXewDSxDacKECcb/1ul06HQ67OzsWnxOaWkaju3W8PDgYA73ruPTv44wZ/leYlSeqLAn96R+FaXGOqXUeVr27M4HdGASONYKl1tKSsxhb1o+FZU1ODnZN5hb7uDm2OL3JoQQl7JzzYTQ0D5mz9XV1Z1THgCk7S8iKfM6ruk9lKH5r8KWtylQ9qK23wwyT2J1Kogl01XzTLezLFxuTWJSDrt356HRlNO1q7dxmoix8WN/Tm9PCCEuSeejjbD46cVMWzON7/d/j5+rH8HuweeUCY0VRDfUlDJ9zhrTVfNMt7NWuNxSUlIOe/fmU1Fho41wAda8kE4pIUSbc053sC1otVpmzpxJhw4deOONN1q8H9MQHB/qxbiegcz8+h82ZJ/GpaKOWB8Pm8N+DSOpigor2LlLDTrw8nYxK1yel1dGXl4Z6en5VkMnJjYIAFWAm9W55Z17+DR4jRBCtAXnMxPWrFnD7NmzWbduHcHBLb+jbMiEkKheELyJA1//h7Dsr2HLM5RVXI2b12CrmWDacWSr88nb2xk7O/13W2JjgtBoyvH0dDYWVTdrGIW1+K0JIcQl63zkgYO9Ax+M+oBJP05i9ozZjB48mvufvL/F+7NVEH3LlmzKyqqIjPS13Uaoz4SUFDWHDxcC5p1P0dFNaCPE1LcRVDbaCFFOLX5vTSWdUkII0YiNGzfy/fffA3D8uBePPjqFuLgOzd6PZQh2b+/JV3f0Y8abCWS4w19lWvzzShjl54Zd/ZRBA0NDoX2gkn59AwBdg6KEhtFSKal5VgOna1dvnJzsUbo5oC2rQenmQE6OlvaBbk2aAy+EEFe6uro6nn32WdLT04mJGcu33/7K8OEt672xzASXa+eQlBxP8M7/MMxlNacq01C5PQGY3xk37TiytWpeYWEldXX677Z07erNqFGhGPJErdZSWFRJYHtDJpS26H0JIcSVwMfFhwm1E9i0bROLty+moNSbCbdd3aIi4bYKotfV1aHRVFBRUWtzlJQhE3x9XVEqHRusmhcR4WccLZWScpY2gtIBrbYGpbK+jWDMA9tZcr6c29hjIYRo466//nrjCnzLlr3Mjz8m2Nw2I6OI1auPkpFR1KR9d+ncjlenRjPJ3Zue/h78mHyCl1bt40ieeWMgJMQDpZsjx44XERSkZNSoTg2m+UX38adPtL9xlT7QD+VdvCSd9PR8Y2hpy2oY0D8QbVkNuSe1ZiOuhBBC2GZnZ8fSpUtxdnYnK2sPzzzzjM1tm5sHoaFeDJ8Uz6mxP7KKh/BxOA2rn4TdP0JttXG7kBAPevTwoaqq1jh1z3KKniELLDur9qXns3hxOvvqM+FkrhZvLxfjKCnTn4UQQjRu1j2zuO7O60AH6xd/yZaN+21uq1ZrSU4+iVqtbdK+VSol48aFMXBgYIOOJlMhIR4olY5oNOVER/tb7XSKjvanTx9/s/2k1+eBWRtBW8OAAYFotTXk5mrxuoB5IJ1SQghh4eefDzB58ip+/vkAAP/3f/9Hr14Dqa0tZ/XqeZSVlVl9naF4YlqapsnHiovrwNvzhrJi9lDevz2a2jodr/++n883H6WkQt8QUfkrqais4fChQuNUDUsREX7ccXuEWRgZRk8lJOZQVFhpNirK0LCRUVJCCNE400zo2rUrc+e+B8Dffy9l6dKlVl/TkjwAiBsSwvVzX8fxsW3QfRzs+xX+9y/9Kn3oGyoDBgSSkVFsVk/QVGSEH3fcEdGgsyo1JY9//jnJ6tXHcFM6mGWAZIIQQpydZRth2VfLCOzagdryatb99CFVlVVWX2fo+MnMLGnysSLqr+WNjb5SqZRUVNRw+HAhKVbywNZ+DKOnEhJyKCqqNBkVdXHyQDqlhBDCwvLlh9i8+QTLlx8CwNHRkTVrVqBSqThyJJ0HH3wQnU7X4HVRUb7ExAQ1q3iigUKh4IboYNY9Poz7hoaxO7uQOcv38PveXGrrdISGeuLv70poqGeT92m4U+7r49JgVJTKX8mA/oEcPlzIq68lsXz5QfLzy5t93kII0dZZZsIzz8wwjpK65557SE9Pb/Cac8kDADyD4NZvYMov+v/e+l/YMA+KslGrtTi7OBDe1bvBaKjG9In2JyjYHXs7BWX1d8QNd8ENnV07dpxizrObSUzKbtl5CyFEG2aZBy4uLiT+sRkXTxfyj5zi5TkvW31da3b0tKiNUD96ytfXpcGoKEMeHD5cyKuvJrH8l9ZvI0hNKSGEsDBxYrjZd4CgoCB+/PFHRo0axaJFi4iNjWXmzJlmr2tJ8cSMjCI2bswiP78MPz9XRo4M4bnrIrl9YAiv/LaPn3dms+lAHtHe7qgC3HBysr4kUnp6PimpeUT30Q/dVedp0ZbVMGpUCHBmBQ1LSYk57NunISdPS3h4u2aduxBCXAmsZcLLL7/Mtm3b2LhxIxMnTmT79u14eJy5xra0mG5CwgmWLTtIcLA7t9zSndDOI+C+jZD8FWx+C37/N3bu/anTDiU6OsTq6nqmq/JFRviZFUefOiXSZh4AbN5ygiNHCtnlWkXstGafvhBCtGnW8iAsLIylPyzlhvE3sHXZVn7s/yO3Tb7N7HXW6kadjVqtZc+efIqLK/H0dKJXL3+r+3BysicgQGm1jWC6Kp9hpJRarUWrbUIbIUnfRsgtrKVHuKpZ595c0iklhBAWJk3qzqRJ3Rs8PmLECF5//XXeeecdunXrZvW1GRlFpKVpiIrytdkgMd0mLU3D2rXHyM4uJSjIHZVKSWioF11U7nw9fSAbD6h5e+1BNmQX4OPsgG9VFck7TuqX7PZXGjuj8vLKyMnWz1OPiPAjYWsO2//JZdDA9tx0U7jNulExsUFUVNYQ0NGD4GD3Fn5iQgjRdlnLBAcHBxYvXky/fv2Ii4vDwcH6n9TNzYT16zP444/j+Pm5Ehnpp3+NgxNc9SD0vBn+ehOfnd8y0WEXpwuHsmvbNQSHqYwNlX3p+Xz77T5KS/TTvyMj/Ni9J5+kpBzaByq54YYuDBgQaPO9DhuqX8ijb9+Go4GFEOJKZ6uNMP668Tw550ne/+R9tlVtY3zVeNyc3My2Mb1BYKuDynSbzMwSdu48hUZTga+vi80aT4YOJaXSgeTkk8b9p9fnQUl9Hhg6pRIScti+PZdBg+rbCDbOJSYmiIqKGgLCFK3eRpBOKSGEaIZ///vf3H333fj766dMWDY4DHVEAJsNENNtoqJ8ufbaMPLzyzh9uoJ1646za9dJ9u0rYOLEcCZN6s6wcH9W7Mrmg42HWX5IjSd2DCv1YcIwN2NNkaBgJX2i/QkN9SR5x0myThRTVFSJpuDMcFt1npY9u/V3XAD9XZfe/sTGBFOgrcJOJnQLIUSTBQQEsGvXLlQq/R1kax1Qzc2E+PhQCgsrCQ52p7y8mnnzEnBwUJhkwtvYXfUQbHyVdmkr8FAnkn96OFx9GzgpSU3Jo7SkGncPR/pE+6NWazl+rIjCwgpAf0dcpVKiVmvZvScf0OHm6khGRjF9ov0ZO7YzY8d2Bs3hVv70hBCibXnjpTe4YcoNPJ78OF/s/YLbgqZz4kS5sZPIdPXUs62mB/rOpn79AigurqS0tJqUFDVHj54mK6uUmJggYmODjftSqZQkJ580239KSh4lJdV4eOhX5TN0eGVl1bcRNCZthPpRWTk5pVRW1hIXp99/bGwwBeUFONo7tuZHJ51SQgjRHJmZxaSllRAV5URoqBd//pnK4cP6O8qhoV5ERfmiVpehVmtJSDhBUVFVgzvkhhojhsenT9c/N29eAps3Z1NYWGFcynvSpO442Ntx84COXN+nPR+tOch3/2SxKiOf3b9pie7oTm+dH32jVURE+LFhw3EStmYT2F7J0KEdzFbjy8wsYecu/R0XgLraOjZsyOT68V3o0bvpdUmEEELolZc7s3r1UaKifNm9W80ff6QA/Y3X/JZkQlycfrTSvHkJrF+f2SAT8O0MN3/Fyc73YP/X67Qv3AC//gWdr6Zf1FAgiD7R/vj5urJhQyYlJVVE9PClU5in8Y56ZmYJu3aeQgfY2Sk4criQhMRs7rwjwtjQEUII0XQnTpRScjSYR8Kf5t39L/P1sQV0LBsN6DuJQkI8KCqqpKiogvT0fLTamgajpkyLjatUSkaN0j+3eHE6aWkatKVVlGr1I58sr9WmrwWMq+0Zpu5t2HCcnTvVBAbWtxGiLdoIO0+RkVFEXR0UFJSzevUxYmKC6NHXtTU+LjPSKSWEEM1gekd7x44NPProNG68cQb33z8P0HdMqVT6bTIyiqmpOdNhlZBwgvXrM4iPD2XcuM4N9h0fHwpgdlfclIujA0+Mj+Sha7uxdMcJFiYcZ+WRPFQezgQq6uhcXQsoQAFB7d0ZNSrU7PVKNwfatXMhMFCJu9KRhMQcsnO0JCXmSKeUEEK0gCETSkoK+fjjp0hL28v06VuNz9vKhBMnSox5EBfXweooqrNlQlC/OOj7P8hN1RdCP/A73XXr6N4pBgKuI/loDcXFVQQGKhk1KqRBw6dL13YUaMoJDnbn+PEiCk9XkpiUI51SQgjRAoY8iInpT7+cfiyau4joSXlce+2zgL5jystLPxJKrS6ntlZnfNy09pO1KdaGDiR7e4wjpSxZ1q2KiPCzWLlPAUBQkJU2glLfRvDwcMLBwY7MzGKysvQrBfbo26XlH0oTSaeUEOKK15SaHwamd7T/+qsUrbaUH354n7vuGkNo6Bizbby8nIx3xQHef38Hf/6Zxb59+cY74abi4joQF9fB7HyscXVyYFpMJ24f2JHVu3P5OuE4P2zP5OedJ+gV6EGfmPb06uYD6KfsGeama8tqcHHRLwM+oH8gAYFKkhJziIltGGxCCHGlakkmhIY6oVZno9Gc4t//vp8//vjDWGfKWiY89dSmRvMAmpgJCgUERcMtCyH/ECS+D/tWwvEt9PEIxTc8FmXEMOOUPdN6JiEdPSjTVuPv78add0ToO6SsNHSEEOJK1dI2wlWZV/FN1TfsWpLIxmGruO06feFz0/pPhpFSAP/73xF2784jK6vYoiNJz9DBZHodb65evfzw8nI2vtZ0X1qtSRthQCCJidn1HWwXJhOkU0oIccVrSs0PA9MVlaZOnUpiYiKfffYZd955J//88w9dunSxuerS6dOVlJfXcPDgaTIyis5aX0StLkOlsh2Ezg723NSvA+P7BLErs5Bvko6z8YCa5MoiNucVcVVnH5TaOrKPFgMNh/XGxgQTGxNMeno+v648RM8oP+hrvXEkhBBXipZmwvLlyxk4cCAbN27kmWee4e23326wjUFT88D0fBrNBIUC/LvBhA9h1IuQ8j2OqYsJO7UY8pdDUD8Ka3px4IT+brthKgmcmSYSGxuMWq1l/YYMPKtzCXYvIbhh20gIIa4YLc2DmTNnkpCYwHfffseXT31Jp7BODI4cbHMVvtLSaior68jOLkWt1p615lRRUSVeXo0XTbdkeWzL+lWm3w31pPRthMP0jgqAVhwwJZ1SQogrnumdjeaaP38+u3btYvv27UyYMIGkpCSzZcFNzZzZh6qqOvz8XElL0xiDy/IujJeXEw4OCvLzyzhypBBoPAgd7O0YGObDwDAf1MUVrNiVzeq9J1m1O5eaOh2+zo5QXk473OnXNwA7O4XZ61NS89iXVoDCxv6FEOJK0tJMiIiIYOHChdxyyy2888479O3bl8mTJ1vdtql5ADQ7E3D3hyGz9Cv2ZSbCrsVwdCPdtEl0dnSlpigKjg1C1T4alcU0EUOtqQDH05R3KCS4d7M+AiGEaFNamgcKhYLPPv2M3bt3szt1Ny898BKf/vIpHX07Wt1+zJgwamrq8PR0Ni5IAQ1X7FMqHbC3V1BcXElurn7V7aZ2SlmyvDFhbT8pKXmkH9Bgr7OHsS06TJNIp5QQ4opna2RTUzg7O/PLL7/Qv39/0tLSmDZtGsuWLcPOylJ2kyZ1Z8CAwAbTMCzvwhQVVVFTo8PPz43ISL9mBaHK04X7h3fhniFhHMvX8vGqA2w5nM/WYxo2HdXgqFCgcnUivL07vUPb0aGdG316+1GhqyMqSm6JCyHEuWTCzTffzLPPPstrr73GvffeS48ePejfv3+D7ZqaB0DLM8HBGTqP1H+VF8LRvyj861vsT+7ERZ2MDqhyDqDEKRSnoB54doogJNiLvv0C8KyuJDjcu0WfgRBCtBXnkgdubm6s/HUl/fr3o+B4AU8+8iRfLfwKd2f3BtvGxgbTtat3g6l5liv2abU11Nbq8PR0pmNHzxZN4zPQaMo5dOg0eXllFBZWEhrqiZOTvdnoq+hofyrsSlq9jSCdUkIIcRamBcqt1f4ICgpi+fLljBgxgl9++YVFixYxffp0q/syXSbc8LPlXRjDXfHwcG+btUbOxsHejvAAD7xPVOKy9TQBLnaUedhhH+yKVldN4rECNh3Rn4O9nQI3ezuUZRUtOpYQQlwpzpYHAC+//DK7d+9m1apVTJ48mbS0NOzt7RtsZ2jsZGQUGVfws3ZX/nxkAq7eEDWBj5b58duvqYR75TKp9zH6+mXgU3EEj5J/4IAOFTDc3h1cvXFU3dGyYwkhxBXibJkQGhrK8p+XEx8fjzpBzQufvMCbj76Jo71jg20NHUGZmSXGny2n1RlGSgUFKa3WnmqOlJQ8UlPzsLODujrIySklIEBpdi6+vq6EhXnh49O6K/BJp5QQQpzF+vUZrF+fCWCzQRATE8Mnn3xCamqqzekaBrbmp584UUJamga1WktNjY6ioqpG99OU4os9e/px8OBpIiN9qKnR0bOnH/ZO9gSHeVDupGB/bgkbd+Zy7FQpurJaFDKHTwghbGpKHtjZ2fHdd99x22238cYbb1jtkDJlmgmGlVk3bswCMhk5MsQ4UupcMyEjowil0oleA8IIDOxJcXg7crp6criggKiOlQRxmCPbtlORc5BA1wp8nVt+B14IIa4ETcmE4cOHM3/+fLbs2cK+XvtYkLaAe3vea3VWheXIKAONppzMzBKKiiqordWh1dY0el6W0/6sCQ31JCenlI4d3amtxWyklOn5HDlSiIOiYSfa+SSdUkIIcRaGjp2ePRu/I3HPPfc0aX+Wd8INDRIHBwU1NTq6dPEmJiaIqChfszswHTp4mDU4TBsyhv1YNkZcXR3p3Nmbvn0DjY0dU8O6qbi2kx979uYTEemLQnqlhBDCpqbmgZeXF2vWrGnSPq1lwtq1x9Dp9I0Sw+Pl5dXMm5dgvCNv2Ql1tkxIS9NQVFTJpEndLfLAsDT4VTj4jCcjTYN7Dw982/k36fyFEOJK1dRMeOihh3iIh/g+/Xve2P4Gyw4t49butzbYznJklKGTyt5eQW2tjvbtlfTo4UNIiAfp6fmkpOQRHe2Pr6+rWSeUaeeWYT+WHVROTvYEBCjp3LkdAyzqC5qeT2mdN8HBDaccnk/SKSWEuCI1Z4lXQ8eOq2vT7xJUV1fz2muv8dhjj9GuXTuz5wxTNhISTrBw4V569vQjJiaI8vJq9u7NN5uisXDhXuMdmIED25uNsDJtyNhqjDSlQOO5zJcXQojLXWvnAcDff//NoUOHmDJlSoPnQkO9OHGihIUL9xIfH0pUlC/9+weSnV2Cl5eT8Ro9b16C2R15y1G31jLBdMU+yQMhhDi71syEyRGTOXH6BO/83zs4PeDEjVE3mj1vKDienp7Phg2ZhIZ60qOHD1VVtWRkFJtN29uwIZPU1DwAwsPbmY2wMu3cstVBZdkBZo1KpcTBw9/qdMPzSTqlhBBXpOYs8dqSlTdmzJjBt99+y99//82qVausTt8wHfL74otxrF59tMEUjfj4UOP3Dh08jOdhKzAtO6hasqKgEEJcSVo7D1JTUxk+fDh1dXWEhYUxZMiQBttY5kFkpC9FRZU288DyXGxlglqtbTA10LSmoRBCCHOtnQnJ/00m79c8vs78mnYftmN4x+ENtjHUewK4444IkpNPNpi2Fx3tb/zu66uv+RQS4mFz6p5lB9W5FEk/36RTSghxRWpOiLTkzvHs2bNZtmwZa9asYc6cOfzf//1fg23i40MpLKxEqXQkI6OowTllZBRRVFTF9Ok9jcc3fF+9+miDu+CW0/MsO6ikASKEEA21dh707t2bCRMm8NNPPzFp0iSSk5Pp2NF8WfCW5sHZMiEjo8j4MzSvsSWEEFei1s6EJ598kpUrV1Kyq4SP/+9jPJ73oF9AP7NtoqP90WqrcXGxR63WNhjVpFZr0WprGDUqxNjxZPienHyS/fsLKCqqxMtL3zllOT3PsoPKVt2pC0U6pYQQV6TWnqIQHR3NggULuP3223nrrbeIiIjg7rvvNtsmLq4DRUVVJCXlkJamYdy4zmbn1FjjwRCUpnfBrTVULLcXQghhrrXzQKFQsGDBAg4ePEhqairjx49n69atuLufqdFxLnkAtjPB8r215K6+EEJcSVo7EwYPHsxnn33G3XffjfpXNR8Ef8DT9z1ND98exm0iIvzQamvYv7+AzMwSBgwINOs4aqxDydBxVVRU0WAbw/RAa9tfTNIpJYQQreS2224jLS2Nl19+mZkzZxIWFsaIESPMtmmsgdDYc6ZLiZveBbe1nRBCiItHqVTy66+/MnjwYFJTU7njjjtYsWKF2dTuluYBSCYIIcTlZPr06ezdu5d33nmHzC8yme83n2dufYZQz1DjNo3VfGrsOUPHk1qtNY6UssZaB9XF0nAdQiGEEOfNvHnzuO2226iurmbixIkcPHjQ7PnQUK8Gd8QtnwP91IyMjCKr25SXV/Pss1v4+ecDDZ7PyCiy+VohhBAXTmhoKL/++isuLi6sWrWKf//73xbPn1seGLaTTBBCiEvfm2++yQ033EBddR1H3jvCe+ve46T2pPF5lUrZYISU5XOgn66nVmutblNVVcu33+4jMTG7wfNqtdbmay80GSnVArW1tVRXV1/s0xCiyRwdHa0W2hatzzBtIyMjg7S0NLKysujWrRtw9tU9MjKK2Lgxi9RUNTU1dYD5tI2EhBMsW3aQX345xKlTWjIzi5g0qbvZPqR+SOuTTBCXG8mEi2fw4MF888033HbbbWRmZlJTU4ODg8N5yYP16zMoKalk0aJ9VFfrt5FMuLAkD8TlRvLg4rG3t+f7779n2LBhHD12FIrhg10fMKvfLHSlblaLlRukp+eTkpKHi4u9sfi56Xbp6fn89NMB0tM1gAKA2Nhgs31ITanLlE6n4+TJkxQWFl7sUxGi2by9vQkMDEShUFzsU7niuLq6smLFCvLy8ujZs6fx8bM1DtLSNKxde4zS0moGDAhoMB1j/foM/vjjOHl55VRV1VFRUdtgH1I/pPVIJojLmWTCxXPrrbfi7+/P8OHDsbPTT1o4H3mwfn0mx44VUlhYgbu7MxMnhjfYj2RC65A8EJczyYOLx93dnf/973+UlJTgHOjMtDXTeH/X+1ztcCfZh3SA9Q4jw+p8Xbt6Ex2tajBFLyUlj337NJSX1+Lqak9kZMNrfmNTAC806ZRqBkPYqFQq3Nzc5B+uuCzodDrKyspQq9UAtG/f/iKf0ZUpICCAgIAA488nT54kMtIHsN04iIry5dprwwAdI0eGNGioGFZrSk1Vc/x4MZ076+uJmG5n+G9ZAvz8k0wQlyPJhEvDyJEjjf+t0+lQqWqJiQk6pzwASE11Ydu2k/Ttq2qw2hJIJrQWyQNxOZI8uDQEB58ZwfTVtV8x+cfJrPf4ntHhU212GEVH+xu/R0T4WX3+0KECTpwoxc/PlcLCStRqrVkHl+G/MzNLzH6+GKRTqolqa2uNYePrK3eXxOXF1dUVALVajUqlkmG6F9mWLVu46aabePzxx3nuuedsbhca6sX06bYbDHFxHTh5UsuxY0UMHBiASqUkLU3ToJEh0zXOP8kEcTmTTLh0VFRUcM8995CUlERSUhKBgdav0U3Ng1271AwZEmQzD0Ay4XyTPBCXM8mDS0vmzkwOPHMAn/E+bLr+B6I9Z1ndLiLCz2pnlOnz8fGVbNyYiaOjHcXFlWRmljToeLpUpvBJofMmMswPd3Nzu8hnIkTLGH53pdbBxbd37140Gg3PP/88CxcuPKd9LV9+iB07TlFZWcfYsZ1trtpk7Q68FLxtOckEcbmTTLg0aLVatm/fzvHjxxk3bhwlJSUt3ldT8gCsZ4LkQctJHojLneTBpSMlJYXiomKOf3ec7K3ZvL/rfQorClu0r6SkHA4fLqS6uo7+/QNtruLXo4dPg+cudBF0GSnVTDIcV1yu5He3dZ2tSK2pBx98kIyMDN58803uvfdeVCoV48aNa9FxDTVDJk4MN67MZHpOGzdmYWu6h9wtP3fy70pcruR3t3U1NRN8fX1Zs2YNsbGx7Nq1i4kTJ/Lbb7/h5OTU7GM2Jw8sn5c8OHfyb0pcruR3t3U1p40we/ZsMjIy+OCDDzj+2XEcPR15T/cej/Z9FF/X5o3EjIkJMn63nM6tVmvZsycf0NGrl3+jI6g6RzU/j5pLOqWEEOI8aO4f9A888AzJyQfZsOEXbrnlFjZu3MigQYOafdwBAwJxdXW0ekf8p58OsnDhHgID3VGplA3OSwreCiFE62hOJnTt2pWvvlrKrbdex/r167n77rv59ttvjUXQm6qxPEhL0/Dtt/s4daqU/PxynnzSPG8kD4QQonU0Jw8UCgWzZs1l164jbN26msz3M3F61snYMaVyUzX5uF27euPkZG91hFRCQg4bNhynXTtXvLxcGnRKmRdBr2zyMVtKpu8JIcR5YGuKnC379hUwaNBj9Os3lLKyMq677joOHjzY7OMags5QtNZUdnYJlZW1uLtbb6SEhnoxblxnuSsuhBDnWXMzwd4+hJtuegl7ewd++OEHnnrqqWYfs7E8iIryxcPDkcrKOrKzSxs8L3kghBCto7l5sH9/IUOGzKZXr8FoS7XkzM+hKq+K93a+R05pTpOPaxjtZChkbkqjKae6ug4XF+udViqVkgEDAi9YnSnplGrjFApFo19z5849p32vWLGiWeegVCoJDw9n+vTp7Nixo9nHHDFiBLNmzWr+yQrRypr7B31UlC9DhoTwxhtfEB7ei/z8fF5++eVmH9dW0CUknKC4uJJhwzrw738PlIaGkDwQ4gJqSSZcc8213HPPPAA++OCDZt+oaKzhc+JECb6+LgwbFszNN3dr1n5F2ySZIMSF0ZI8GDo0jLfe+pqwsB7kncqj847OuDm48f6u9zlefLxJ+7FVLyo9PZ+ysmqiovyYODH8ohY4N5BOqTYuNzfX+PXee+/h6elp9tiTTz55Qc5jwYIF5ObmkpaWxkcffURpaSmDBw9m0aJFF+T4QlxqDAFVXe3I9de/yoQJ0/niiy9avB/LoFu/PoODBwsJCfEkLq7D+TptcRmTPBDi0hUa6oVK5UZAwDBmzvwPa9eupVu35nUeNdbwkUwQliQThLg0Ga7ltbUu3HDD69x44z188/k3LBq7iHbO7fhw14fszd971v3YGu2UkpJHTo4Wf3+3Rlfwu5CkU6qNCwwMNH55eXmhUCjMHluyZAkRERG4uLjQo0cPPv74Y+Nrq6qqeOSRR2jfvj0uLi6Ehoby+uuvA9CpUycAbrrpJhQKhfFnW7y9vQkMDKRTp05cc801LFu2jMmTJ/PII49w+vRpADQaDXfccQfBwcG4ubnRq1cvFi9ebNzH9OnT+euvv5g/f77xrsrx48epra1lxowZhIWF4erqSvfu3Zk/f/75/SCFaCVRUb7Ex0cxf/57uLi4AKDT6aisPLf52/HxocTHhxAfH3o+TlO0AZIHQlzaDCOd5sx5ghEjRhgfP9c8AMkE0ZBkghCXNv0I2t689967ODk5EeQexPdjvyfULZQv93zJ1uytLdpvdLQ/ffr4Ex3tf57PuOWk0PkV7Pvvv+eFF17gww8/pG/fvuzatYv77rsPpVLJtGnTeP/991m5ciVLly4lJCSErKwssrKyAPjnn39QqVQsWLCAMWPGYG9v3+zjP/744yxatIh169Zx6623UlFRQf/+/Xn66afx9PTkt99+Y8qUKXTp0oVBgwYxf/58Dh48SM+ePXnppZcA8Pf3p66ujg4dOvDTTz/h6+tLYmIi999/P+3bt+fWW289r5+ZEKaas5qGLaGhXmav1el0PP3002zfvp3Vq1e3eInpuLgOxMV1MC7zfS7nKNo+yQMhzk1r5AHAvn37GDduHB9//HGLV2kFfSZ06OBBWpqGjIwiyQPRKMkEIc5Na2RCXV0dc5+ZS/H+Ygb+ayA/HviR0xWnub7z9c1aQTEiwo+ICD/Uai3JyScJCfG46FP4pFPqCvbiiy/yzjvvMHHiRADCwsLYt28fn332GdOmTSMzM5Pw8HCGDBmCQqEgNPTM3TV/f33PquHuRkv06NEDgOPHjwMQHBxsNlT40UcfZe3atSxdupRBgwbh5eWFk5MTbm5uZse0t7dn3rx5xp/DwsJISkpi6dKlEjiiVbXGEtoZGRl89tlnFBcXM3HiRH799VecnZ3PyzkafjYE5PkITNE2SB4IcW5aIw8APvzwQzIyMpg4cSKrV6/m6quvbvG+GssDOD+NKNE2SCYIcW5aIxMOHz7MV199RVlZGTe43sCE2RP49fiv5JfnMyVyCg52zevaMRRCN/3Z0EGlVmuNPzs0rIN+3kmn1EVysYNfq9Vy5MgRZsyYwX333Wd8vKamBi8v/flMnz6d0aNH0717d8aMGcP111/PNddcc97OQafTARh7dmtra3nttddYunQp2dnZVFVVUVlZ2aSRIh999BFff/01mZmZlJeXU1VVRXR09Hk7VyGsaY0ltDt16sTXXy9l8uSbWLt2LbfffjtLly7F0dER0BcwX78+g/j40CbVBTE9R8uAbK1GlGgeyQPJA3H5a408AJg/fz6HD2ewbt1qxo+/gXXr/iA2Ntb4fHMyobE8gNbrWBPNI5kgmSAuf62RCd26deOLLxYzffotrFy5Ejc3Nx556hE+2fMJ6mQ1V7vewuG9lURH+zepVpShAHpIiIdZB5VKpTT7uXOU03l7D7ZIp9RFcrGDv7RUvxzwF198weDBg82eMwyz7devH8eOHeP3339n/fr13HrrrcTHx7Ns2bLzcg7p6emA/q4FwFtvvcX8+fN577336NWrF0qlklmzZlFVVdXofpYsWcKTTz7JO++8Q0xMDB4eHrz11lts27btvJynELZYm2pxPri6hnPzza+xdOnTrFixgilTpvDdd9/h4ODA+vUZrF+fCXDWBoitP2wtg/J8N6JE80geSB6Iy19r5YGjoyMPP/w2R47kcfToP4wdO5Z169YxaNAggCZnwtnywPS/JRMuLskEyQRx+WutTPD27snEiS/z88/Ps2TJElxcXHjnxXf4T+J/WFz0KXbHBwORZ+2UMh0JZTp1z7Sj6sz3c69reDaXTafUq6++ym+//UZKSgpOTk4UFhY22CYzM5MHH3yQjRs34u7uzrRp03j99ddxcLj03ubFDv6AgACCgoI4evQokydPtrmdp6cnt912G7fddhs333wzY8aMoaCgAB8fHxwdHamtrW3xORhW+oiPjwcgISGBCRMmcNdddwH6ebMHDx4kMjLS+BonJ6cGx0xISCA2NpaHHnrI+NiRI0dafF5CNEdzRy41RVSUL3feeQOjRgUxc+Zd/Pjjj9TU1LB48WJjkdqePf1Yvfoo5eXV7N2bb/X4ln/Ymgak6XlfjnfE21ImSB5IHoi2ozUyITo6iLfeWsCbb97P9u2JxMfH8/vvvxMXF0d8fCiFhZUolY5kZBRx4kSJ1eM3lgeW5325ZUJbygOQTADJBNE2tFYbYerUmxkxIpBHHrmHhQsXUl1dzcL3FvLgH4+RN2gzpyqqOHWqIwUFFaSk5FkdOWU5MsrwBZCenm98nUqlpKBcOqWMqqqquOWWW4iJieGrr75q8HxtbS3XXXcdgYGBJCYmkpuby9SpU3F0dOS11167CGfcuNbqPW2OefPm8dhjj+Hl5cWYMWOorKwkOTmZ06dPM3v2bN59913at29P3759sbOz46effiIwMBBvb29AP81ow4YNxMXF4ezsTLt27Wweq7CwkJMnT1JZWcnBgwf57LPPWLFiBYsWLTLuLzw8nGXLlpGYmEi7du149913OXXqlFngdOrUiW3btnH8+HHc3d3x8fEhPDycRYsWsXbtWsLCwvj222/5559/jHdXhGhNzRm51FRnrg+d8fNz5eabb2b58uVs2bKFq6++mri4DqxefZSkpByOHi0kM7PE6vEb+8O2Nc77QmpLmSB5IHkg2o7WzIRrrlnL+PHj2bRpE3PnzuWPP/4gLq4DRUVVJCXlkJam4Z9/cq0e/2wdHZdzJrSlPADJBMkE0Va0dhvB19eVO++8kyVLlvDQQw/x6y3LuHfZ46QpEvlqfy7BuSNIT9WPfLTslLIcEWUqJSWP1NQ8q69rNbrLzIIFC3ReXl4NHl+9erXOzs5Od/LkSeNjn3zyic7T01NXWVnZ5P0XFRXpAF1RUZHZ4+Xl5bp9+/bpysvLW3zuF5u1z+7777/XRUdH65ycnHTt2rXTDRs2TLd8+XKdTqfTff7557ro6GidUqnUeXp66kaNGqXbuXOn8bUrV67Ude3aVefg4KALDQ21eVzA+OXi4qLr0qWLbtq0abodO3aYbafRaHQTJkzQubu761Qqle7555/XTZ06VTdhwgTjNgcOHNBdddVVOldXVx2gO3bsmK6iokI3ffp0nZeXl87b21v34IMP6p555hldnz59zvUja1Pawu/wpWjr1izd3LlbdVu3ZrXaMX7//XfdggULzB47frxQ99tvR3TLlu1v0fFNz9uwr+PHC1t0fraumxdCa2ZCY+/rcv/3JHkgLvff4UtVa2eCVqvVzZo1S3f69GnjY6bX8JYevy1kguRBy0kmXNnawu/wpehCtBFWrFih++GHH4w/Hzt2WvfcTx/o+i8aoBu4aLDulnef0X289ifdxsyNTf76eO1Puvvf/Fj38dqfdD8mr9K9uOxT3dd//9ii82tqHih0uvpKcpeJhQsXMmvWrAZDc1944QVWrlxJSkqK8bFjx47RuXNndu7cSd++fa3ur7KyksrKM0PSiouL6dixI0VFRXh6ehofr6io4NixY4SFheHi4nJe35MQF4L8DrcdJ06cwNvbG3d390a3+/nnAyxffoihQ4MJCfGyWTTVMOoqJiaIceM6N/t8iouL8fLyanDdvBDOZyY0NQ9A/j2Jy5/8Drcd+/fvN65WZoshDyZODGfAgMBGC2lfrpkgeSBEy8jvcNuRkZGBv78/WRVZPL3laY4UHmFQ4CBu6XYLLg5n/t8mJmaTlJRDZKQv/v5uDWpLGSQnnyT1UAbdu/rz/MR7mn0+Tc0Du2bv+RJ18uRJAgICzB4z/Hzy5Embr3v99dfx8vIyfnXs2LFVz1MIIc5Ffn4+8fHxjBw5ErVa3ei2y5cfYvPmEyxZcoCkpBw2bsxi9eqjZGQUmW0XFeVLTExQmypu25JMkDwQQlxu3nvvPXr27MmCBQsa3c6QB8uXHzLWl7pSMkHyQAhxJTh58iQjR45k9OjR+OPPj9f9yPSo6exS7+Klv18iVZ1q3DYpKYe9e/PZsuUE+/cXsGdPPsnJJ1GrtWb7DAnxoEsXb4KDG78Rfq4uaqfUM888g0KhaPRr//79rXoOc+bMoaioyPiVlZXVqscTQlw+MjKKrP7BfjGdOHECjUZDcnIycXFxHD161Oa2EyeGM2xYB26/vTsxMUGAzlh3xFRoqBfjxnW+6DUsLnYmSB4IIWy5FPNAp9ORkpJCbW0t99xzD2+88Qa2JkAY8mDixHBjp9OlnAmSB0KIS9mlmAmZmZmcPn2axMREhgwZgjpXzRMDnmDR2EUEuwfz5d4veX/n++SU6kfC9uzpx9ChHejRwwfQsX9/gbFOrYFKpaR3L3/8/Fxb9dwvaqHzJ554gunTpze6TefOTRs2HBgYyPbt280eO3XqlPE5W5ydnXF2dm7SMYQQV5aLvSyzNdHR0SQkJHDttddy+PBhYmNjWbNmDdHR0Q22nTSpO5MmdTf+nJFRhEqluWTvfl/sTJA8EELYcinmgUKhYMGCBQQEBPB///d/zJkzh9zcXP773/9iZ2d+39kyD0JDvS7pTJA8EEJcyi7FTBg0aBBbtmxhzJgxpKenG9sIPaN68sO4H1hyYAlf7P6CN7a/waDAQdz7yHi8nPXnrlZr8fIqsVr4/EK4qJ1S/v7++Pv7n5d9xcTE8Oqrr6JWq1GpVACsW7cOT09Ps5UZhBCiqS72ssy2dOvWjcTERMaMGcPu3bsZNmwYS5cuZcyYMY2+7lJY0acxkglCiEvVpZoHCoWCN998k/bt2/P444/z/vvvk5OTwzfffIObm1ujr72UM0HyQAhxKbtUM6Fnz57GNkJ6ejpDhw5l2bJlXH311UyJnML4zuP5KOUjfjn8C8mnkukf0J+xYWNRqfys1pS6UC6bmlKZmZmkpKSQmZlJbW0tKSkppKSkUFqqX+bwmmuuITIykilTppCamsratWt5/vnnefjhh+VOhxCiRS6FKQy2tG/fns2bNzNixAhKSkq47rrr+Omnn876uktxuHFLSCYIIS6kSzkPAGbNmsUPP/yAo6Mjy5YtY8SIEdTU1Jz1dW0hEyQPhBAX2qWcCSEhIWzZsoXY2FhOnz7Ntddey//+9z8AvF28ee6q51hxwwpu7Hoje/P38lLSS3yw6wP+OrSN7f9kN6grdSFcNp1SL7zwAn379uXFF1+ktLSUvn370rdvX5KTkwGwt7dn1apV2NvbExMTw1133cXUqVN56aWXLvKZCyGEbefSICgshMmT32Xo0Jto3z6YLl36nXVfhuHGljVELjeSCUKItuZcO4hiY8fx5JNf4u7ejpiYcfzxR+ZZ99UWMkHyQAjRFp1LJpSWOjB9+vtcddV1dOwYSmhob7N9dfDswNzYufw64Vem95yOtlrLsqzvWFz0X77f/x2783ZTWVt5lqOcPxd1+l5zLFy4kIULFza6TWhoKKtXr74wJySEEOdBS+ekZ2QUsXDhXpKTT9G+/XQefHAOJ08qSErKQafT4eWlw9vbm4yMIrOlvy/V4cbNJZkghGhrzqVGiSET9uxxZ9So92nXrpNxX4Y8MGzX1jJB8kAI0RadjzZCSMj9PPZYe06cqLXRRihjUtQMHuzzIL+mrOeXQ7+SrTvIF3u+QIGCAGUAgW6B9A/o31pvE7iMOqWEEOJSZ/nHflO0tEGQlqYhP7+Crl296dPHn9jYEJPnVjNjxit8//33VFaGmQVaaKgXJ06UsHDhXuLjQ4mL69Cs4wohhDi7C5kHYJkJ4YSHt6OoqIqQEEcGDRrEsGHDeP/99xs0ck6cKOGff3Lx8nK6JKehCCFEW3CptBGSk3/m/vvfY8mSJZSUBJvkQWc6VvYl4mA7Zoz0xSUsj6TcJNI16WSWZBLqGdqsc2gu6ZQSQojzpCV3NFpaaDYqyhe1ugzQMXJkiHEfHTt68NJL33Hq1ClGjx7Nv/71NFdffY9ZoK1fn8H69ZkA0iklhBCt4ELmAdjOhOXLl3P48GEOHTrEtm3beO+9r4mJCTJmguSBEEK0vkuhjRAcrOTZZ78nJyeHkSNHMnv2cwwbNsUsDzasz0KBgheHDWNYx2HU1NVQWlWKQqFo9nk0x2VTU0pc+qZPn86NN95o/HnEiBHMmjXrnPZ5PvYhxIUSFeVr9sd+awoN9UKlcuPIkSKzWiB2dnb8+eef3Hvvveh0Ot577w3ee+8B7OyKjdvEx4cSHx9CfHzr3vUQVzbJBHElu5B5ALYzYeLEiaxfv56AgAD27t3LhAkjUas3ExLiCUgeiAtD8kBc6S6FNoKDgwNbt27lrrvuora2lrfeeomPPnoUJ6cywHoeONg54O3ijZdz646klZFSV4Dp06fzzTffAODo6EhISAhTp07l2WefxcGh9X4Fli9fjqOjY5O23bRpEyNHjuT06dPGugfN3YcQF9uFXl7b1rBeNzc3vvjiC4YPH84DDzzAn3/+Sa9evXjvvfeYNm0acXEdzO6IJyScYP36DJnOd4WQTBCi9V3oPADbmXD11VeTkpLC5MmT+fPPP7n77rtZvnw5n332WYM8AMmEK4nkgRAXxqXSRnB3d2fRokWMGDGCRx55hDVr1hAVFcWHH37IHXfccdHyQEZKXSHGjBlDbm4uhw4d4oknnmDu3Lm89dZbDbarqqo6b8f08fHBw8Pjou9DiLbqbMvR3nXXXezcuZOrrrqKoqIiZsyYQXp6eoPtDNM31q/PaO1TFpcIyQQh2p7GMiEwMJA//viDN954AycnJ/73v//x9NNPW92PZMKVRfJAiLansTxQKBTMmDGD5ORk+vXrx+nTp5k2bRrHjh1rsO2FygPplLpCODs7ExgYSGhoKA8++CDx8fGsXLnSOJz21VdfJSgoiO7duwOQlZXFrbfeire3Nz4+PkyYMIHjx48b91dbW8vs2bPx9vbG19eXp556Cp1OZ3ZMy2G1lZWVPP3003Ts2BFnZ2e6du3KV199xfHjxxk5ciQA7dq1Q6FQMH36dKv7OH36NFOnTqVdu3a4ubkxduxYDh06ZHx+4cKFeHt7s3btWiIiInB3dzeGrRBXom7durF161befPNNnn/+eSIjI43PGf7NyvSNK49kgmSCuPLY29vz9NNPs2PHDq655hqzjgfTf6+SCVcWyQPJA3FlioqK4u+//+all17ipZdeonPnzsbnLnQbQTqlrlCurq7GOx4bNmzgwIEDrFu3jlWrVlFdXc21116Lh4cHW7ZsISEhwXjhNrzmnXfeYeHChXz99dds3bqVgoICfvnll0aPOXXqVBYvXsz7779Peno6n332Ge7u7nTs2JGff/4ZgAMHDpCbm8v8+fOt7mP69OkkJyezcuVKkpKS0Ol0jBs3jurqauM2ZWVlvP3223z77bds3ryZzMxMnnzyyfPxsQlxWbK3t+epp55i3rx5xsf27NlD//792bx5M3FxHXjxxTiZpnEFk0wQ4srRs2dP1q5dS0BAgPGxO++8kzlz5qDVaiUTrnCSB0JcORwdHfnPf/7DnDlzjI8lJyczcOBAkpKSLlgeSE2pc1RWVsb+/fsv+HF79OiBm5tbs1+n0+nYsGEDa9eu5dFHHyUvLw+lUsmXX36Jk5MTAN999x11dXV8+eWXxkr7CxYswNvbm02bNnHNNdfw3nvvMWfOHCZOnAjAp59+ytq1a20e9+DBgyxdupR169YRHx8PYNYb6+PjA4BKpTKbL27q0KFDrFy5koSEBGJjYwH4/vvv6dixIytWrOCWW24BoLq6mk8//ZQuXboA8Mgjj/DSSy81+7MSoi174YUX2LVrF8OHD+emm27i1VdfJSIi4mKf1mXvYmRCS/MAJBOEEPDPP/+wZMkSAL755htefPFF7rnnHqnXc46kjSB5IMTl6LnnnmPHjh3ExsZy66238sorrxAeHt6qx5ROqXO0f/9++vfvf8GPu2PHDvr169fk7VetWoW7uzvV1dXU1dVx5513MnfuXB5++GF69eplDBuA1NRUDh8+3GCedkVFBUeOHKGoqIjc3FwGDx5sfM7BwYEBAwY0GJ5rkJKSgr29PcOHD2/mOz0jPT0dBwcHs+P6+vrSvXt3szo5bm5uxrABaN++PWq1usXHFaIt+vLLLwkICOCLL77gl19+YeXKlRw6dIiwsLCLfWqXtYuRCc3NA5BMkEwQ4owBAwbw66+/MmvWLI4dO8YDDzxASkoKn3zyycU+tcuatBH0JA+EuLx8++23zJkzhwULFrB06VJWrFjB8ePHad++fasdUzqlzlGPHj3YsWPHRTluc4wcOZJPPvkEJycngoKCzFbUUCqVZtuWlpbSv39/vv/++wb78ff3b9H5urq6tuh1LWF5Z0+hUNgMQiGuVL6+vnz66ac89thjPPfcc9jZ2UmH1HlwMTKhuXkAkgmSCUKcoVAouOGGGxgzZgyfffYZr732Gg8//PDFPq3LnrQRmkbyQIhLi0ql4quvvuJf//oXzz77LN7e3q3aIQXSKXXO3Nzcmn2H+mJQKpV07dq1Sdv269ePH3/8EZVKhaenp9Vt2rdvz7Zt2xg2bBgANTU1jd6Z6dWrF3V1dfz111/GobmmDHdhamtrbZ5XREQENTU1bNu2zTg0V6PRcODAAbPizUJcyTIyikhL0xAV5dukpWcjIyP55ZdfzuuqOlcyyQTJBCEuFc3NAycnJx599FFmzpxpNjpGtIzkgeSBEJeS5mZC7969WbVq1QVpI0ihc9HA5MmT8fPzY8KECWzZsoVjx46xadMmHnvsMU6cOAHAv/71L9544w1WrFjB/v37eeihhygsLM2ncXsAAQAASURBVLS5z06dOjFt2jTuueceVqxYYdzn0qVLAQgNDUWhULBq1Sry8vIoLS1tsI/w8HAmTJjAfffdx9atW0lNTeWuu+4iODiYCRMmtMpnIcSlJCHhBPPmJZCQcMLmNmlpGpKSckhL0zRr39IAEbZIJghx6ZE8EBeD5IEQl6bLPROkU0o04ObmxubNmwkJCWHixIlEREQwY8YMKioqjHdFnnjiCaZMmcK0adOIiYnBw8ODm266qdH9fvLJJ9x888089NBD9OjRg/vuuw+tVgtAcHAw8+bN45lnniEgIIBHHnnE6j4WLFhA//79uf7664mJiUGn07F69WopximuCOvXZ7B+fSbr12fY3CYqypeYmCCionwv4JmJtkwyQYhLj+SBuBgkD4S4NF3umaDQyURaM8XFxXh5eVFUVGQ2LLWiooJjx44RFhaGi4vLRTxDIVpGfocvfwkJJ1i/PoP4+NBLaqluW9fNy11j70v+PYnLnfwOX94u1TyAtpkJkgeiLZPf4cvfpZoJTc0DqSklhBCXibi4DpdU0AghhLg4JA+EEEIYXO6ZINP3hBCijWrK/HIhhBBtn+SBEEIIg0stE2SklBBCtFGG+eXAZX33RAghxLmRPBBCCGFwqWWCdEoJIUQbFR8favZdCCHElUnyQAghhMGllgnSKSWEEG3U5T6/XAghxPkheSCEEMLgUssEqSklhBBCCCGEEEIIIS446ZQSQgghhBBCCCGEEBecdEoJIYQQQgghhBBCiAtOOqWEEEIIIYQQQgghxAUnnVLnQUV1LcUV1Rfsq6K69mK/ZZumT5/OjTfeaPx5xIgRzJo165z2eT72cTabNm1CoVBQWFjYqsdpbQqFghUrVlzs0xDiylZdDhVFF+aruvxiv1ubJA8uLskDIS6+ipoKSqpKLthXRU3FxX7LNkkmXFySCeJSJqvvnaOK6lr+SDtJUUX1BTuml4sj10QF4uJo36Ttp0+fzjfffAOAo6MjISEhTJ06lWeffRYHh9b9FVi+fDmOjo5N2nbTpk2MHDmS06dP4+3t3aJ9tFRsbCy5ubl4eXk1+TXTp0+nsLBQLvDispCRUURamoaoKF9CQ8/8nicknGD9+gzi40MvqVU4LlvV5bB/NVQUXpjjuXhDj3Hg6NqkzSUPzk7yQFwJJBNaX0VNBRszN1JcVXzBjunp5MnIkJG4OLg0aXvJhLOTTBBt3aWQB9IpdY6qausoqqjGxcEeZ4fWH3hWWaM/XlVtXZM7pQDGjBnDggULqKysZPXq1Tz88MM4OjoyZ86cBttWVVXh5OR0Xs7Xx8fnktjH2Tg5OREYGNjqx7HmfH7eQtiSlqYhKSkHwBg4GRlFfPxxCgcPngaQBsj5UFul75BycNF/taaaCv2xaqua3CkFkgdnI3kgrgSSCa2vuq6a4qpinB2ccbZ3bvXjVdZWUlxVTHVdNS40PX8kExonmSDaukshD2T63nni7GCHm5NDq3+1tOPL2dmZwMBAQkNDefDBB4mPj2flypXAmeG0r776KkFBQXTv3h2ArKwsbr31Vry9vfHx8WHChAkcP37cuM/a2lpmz56Nt7c3vr6+PPXUU+h0OrPjWg6rrays5Omnn6Zjx444OzvTtWtXvvrqK44fP87IkSMBaNeuHQqFgunTp1vdx+nTp5k6dSrt2rXDzc2NsWPHcujQIePzCxcuxNvbm7Vr1xIREYG7uztjxowhNzfX5udjOTT3bPuYO3cu33zzDb/++isKhQKFQsGmTZua9LlZ+7yfffZZBg8e3OC8+vTpw0svvQTAP//8w+jRo/Hz88PLy4vhw4ezc+dOm+9JCFNRUb7ExAQRFeVrfCwtTYODgz3durUjPj70Ip5dG+TgAk5urfvVwk4vyQPJAyEkEy4cZ3tnXB1cW/2rpR1fkgmSCeLKdinkgXRKXaFcXV2pqqoy/rxhwwYOHDjAunXrWLVqFdXV1Vx77bV4eHiwZcsWEhISjBddw+veeecdFi5cyNdff83WrVspKCjgl19+afS4U6dOZfHixbz//vukp6fz2Wef4e7uTseOHfn5558BOHDgALm5ucyfP9/qPqZPn05ycjIrV64kKSkJnU7HuHHjqK4+M4WyrKyMt99+m2+//ZbNmzeTmZnJk08+2azPqLF9PPnkk9x6663GEMrNzSU2NrZJn5u1z3vy5Mls376dI0eOGLdJS0tj9+7d3HnnnQCUlJQwbdo0tm7dyt9//014eDjjxo2jpKSkWe9LXJlCQ70YN66z2bDcqChfbrutO6+9NlTuiF/BJA/OTvJAtDWSCcIWyYSzk0wQbcmlkAcyfe8Ko9Pp2LBhA2vXruXRRx81Pq5UKvnyyy+NQ0S/++476urq+PLLL1EoFAAsWLAAb29vNm3axDXXXMN7773HnDlzmDhxIgCffvopa9eutXnsgwcPsnTpUtatW0d8fDwAnTt3Nj5vGIKrUqnM5oubOnToECtXriQhIYHY2FgAvv/+ezp27MiKFSu45ZZbAKiurubTTz+lS5cuADzyyCPGuwlN1dg+3N3dcXV1pbKy0mxIb1M+N2j4eYP+jscPP/zAf/7zH+P7Gjx4MF27dgXg6quvNju/zz//HG9vb/766y+uv/76Zr03IUAfQqYBJK4skgdNJ3kgrgSSCVc2yYSmk0wQbd2FzgMZKXWFWLVqFe7u7ri4uDB27Fhuu+025s6da3y+V69eZhe/1NRUDh8+jIeHB+7u7ri7u+Pj40NFRQVHjhyhqKiI3Nxcs+GkDg4ODBgwwOY5pKSkYG9vz/Dhw1v8PtLT03FwcDA7rq+vL927dyc9Pd34mJubmzEoANq3b49arW7WsVqyj7N9bgaWnzfA5MmT+eGHHwD9HwaLFy9m8uTJxudPnTrFfffdR3h4OF5eXnh6elJaWkpmZmaz3pcQ4someSB5IIQQBpIJkglCXGwyUuoKMXLkSD755BOcnJwICgpqsKKGUqk0+7m0tJT+/fvz/fffN9iXv79/i87B1bXphXjPleVKHAqFosFc9tbYR1M/N8vPG+COO+7g6aefZufOnZSXl5OVlcVtt91mfH7atGloNBrmz59PaGgozs7OxMTEmA35FUKIs5E8kDwQQggDyQTJBCEuNumUukIolUrjEM+m6NevHz/++CMqlQpPT0+r27Rv355t27YxbNgwAGpqatixYwf9+vWzun2vXr2oq6vjr7/+Mg7NNWW4K1BbW2vzvCIiIqipqWHbtm3GobkajYYDBw4QGRnZ5Pd3Pjg5OTU416Z8brZ06NCB4cOH8/3331NeXs7o0aNRqVTG5xMSEvj4448ZN24coC+WmJ+ff+5vRFwxbC35Kq4skgfnn+SBuNxIHggDyYTzTzJBXG4udibI9D1h1eTJk/Hz82PChAls2bKFY8eOsWnTJh577DFOnDgBwL/+9S/eeOMNVqxYwf79+3nooYeMK1NY06lTJ6ZNm8Y999zDihUrjPtcunQpAKGhoSgUClatWkVeXh6lpaUN9hEeHs6ECRO477772Lp1K6mpqdx1110EBwczYcKEVvksGns/u3fv5sCBA+Tn51NdXd2kz60xkydPZsmSJfz0009mw3JB/96//fZb0tPT2bZtG5MnT76gd5bE5c+w5GtamuZin4q4jEgenJ3kgbjcSB6IlpJMODvJBHG5udiZIJ1S50llTR1lVTWt/lVZU3dB3o+bmxubN28mJCSEiRMnEhERwYwZM6ioqDD27j/xxBNMmTKFadOmERMTg4eHBzfddFOj+/3kk0+4+eabeeihh+jRowf33XcfWq0WgODgYObNm8czzzxDQEAAjzzyiNV9LFiwgP79+3P99dcTExODTqdj9erVDYbStrb77ruP7t27M2DAAPz9/UlISGjS59aYm2++GY1GQ1lZGTfeeKPZc1999RWnT5+mX79+TJkyhccee8zsLokQZ2NtyVfRSmoqoKqsdb9qKi7IW5E8ODvJA3G5kTy4cCprKymvKW/1r8raygvyfiQTzk4yQVxuLnYmKHTNnUTbxhUXF+Pl5UVRUZHZBaKiooJjx44RFhaGi4vLmcera/kj7SRFFdXWdtcqvFwcuSYqEBdH+wt2THH5s/U7LMS5snXdvNw19r5s/nuqLof9q6Gi8MKcpIs39BgHjnJHVDSPZIJoLW0xE1qSBxU1FWzM3EhxVfEFO09PJ09GhozExUH+TYumkzwQraWpeSA1pc6Ri6M910QFUlV7YUYwATjZ20mHlBBCXIocXfWdRLUXqLiovZN0SAkhxCXIxcGFkSEjqa67cDeuHe0cpUNKCHHZkU6p88DF0V46iYQQQug5ukpHkRBCCFwcXHBBOomEEKIxUlNKCCGEEEIIIYQQQlxw0iklhBBCCCGEEEIIIS446ZQSQgghhBBCCCGEEBecdEoJIYQQQgghhBBCiAtOOqWEEEIIIYQQQgghxAUnnVJCCCGEEEIIIYQQ4oKTTikhhBBCCCGEEEIIccFJp5QQQgghhBBCCCGEuOCkU6qNUygUjX7NnTv3gp3LiBEjjMd1cXEhMjKSjz/+2Pj8woUL/5+9+45vs7z3///SXpbkvXem7STOIpDFSoCwWkahUFZKSwuFUlr49duWUtbh0HPo6eluoYcCpexZRggZBLLJtOPEGV6xvLct27IkS7p/fyhW7CwyLVv5PB8PYyzfkq5bke+3rs99XddNdHT0sLVHCCHOJpIHQgghBkgmCCFGCilKRbiGhobQ1+9+9ztsNtuQ2x566KHQtoqi4PP5zmh77rrrLhoaGigtLeXGG2/k3nvv5bXXXjujzynEaFdd3cWSJZVUV3eFuyliFJM8ECIySCaI00EyQYjRL1LyYNQUpZ566inmzJmD2Ww+aqX8SFX+119/fXgbOsIkJyeHvux2OyqVKvTznj17sFqtfPLJJ8yYMQODwcDatWtZvHgx11xzzZDHeeCBB7jwwgtDPwcCAZ5++mlycnIwmUwUFhby9ttvf2V7zGYzycnJ5Obm8thjjzFu3Dg++OCD07zXQkSWXbva2LChnl272sLdlBFDMuHESR4IERkkE4aSPDg5kglCjH6RkgfacDfgeHm9Xm644QZmz57N888/f9TtXnjhBRYtWhT6eTiGevb29h71dxqNBqPReFzbqtVqTCbTV25rsVhOopVH97Of/Yzf/OY35ObmEhMTc1z3efrpp/nXv/7F3/72N8aNG8fq1au59dZbSUhI4IILLjju5zaZTHi93pNtuhBnhYKCuCHfhWTCAMkDIc4+kglDSR4cJJkgxNklUvJg1BSlHn/8cSA4p/hYoqOjSU5OHoYWHRQVFXXU311xxRV8/PHHoZ8TExNxuVxH3PaCCy7g888/D/2cnZ1Na2vrYdspinLyjT2CJ554gksuueS4t/d4PPznf/4nK1asYPbs2QDk5uaydu1ann322eMKHL/fz2uvvcaOHTv43ve+d9JtF+JskJVlJyvLHu5mjCiSCUGSB0KcfSQThpI8OEgyQYizS6TkwaiZvne87r33XuLj45k1axb/+Mc/TvvBORLNnDnzhLYvLy/H5XJxySWXEBUVFfr65z//SUVFxTHv+5e//IWoqChMJhN33XUXP/7xj7nnnntOpflCCHFUkgknRvJACBGpJA9OnGSCEGI4jJqRUsfjiSee4OKLL8ZsNrNs2TJ+8IMf0NPTw/3333/U+3g8HjweT+hnp9N5ws/b09Nz1N9pNJohPzc3Nx91W7V6aI1w//79J9yWk3HoUF+1Wn1YUPf394f+f2B/P/74Y9LS0oZsZzAYjvlct9xyCw8//DAmk4mUlJTD9lkIIU6XE82E05EHMLozQfJACBGJJA9OjmSCEGI4hLUo9bOf/Yz/+q//OuY2u3fvZuLEicf1eI888kjo/6dNm0Zvby/PPPPMMYtSTz/9dGjY78k6kfnbZ2rb0ykhIYGdO3cOua2oqAidTgdAfn4+BoMBh8NxQnPDAex2O2PHjj1tbRVCRI5wZ8LpyAOIrEyQPBBChIPkwenb9nSSTBBCnAlhLUo9+OCDLF68+Jjb5ObmnvTjn3vuuTz55JN4PJ6jVud//vOf85Of/CT0s9PpJCMj46SfMxJcfPHFPPPMM/zzn/9k9uzZ/Otf/2Lnzp1MmzYNAKvVykMPPcSPf/xjAoEA8+bNo6uri3Xr1mGz2bjjjjvCvAdCiNEo3JkgeXA4yQMhRDhIHoxMkglCiDMhrEWphIQEEhISztjjFxUVERMTc8zhogaD4SuHk55tLrvsMh555BF++tOf4na7ufPOO7n99tspKSkJbfPkk0+SkJDA008/TWVlJdHR0UyfPp1f/OIXYWy5EGI0C3cmSB4cTvJACBEOkgcjk2SCEOJMUCmjZJU/h8NBe3s7H3zwAc888wxr1qwBYOzYsURFRfHhhx/S1NTEeeedh9FoZPny5Tz00EM89NBDJzT81ul0Yrfb6erqwmazhW53u91UVVWRk5Mz5PKtQowW8h6OfOvW1bJiRTULF2Yxd276sD3v0Y6bZ9JwZMKx9kv+nsRoJ+/hyHe2ZILkgRCnRt7DkW+k58GoWej8V7/6FS+99FLo54FhoqtWreLCCy9Ep9Px5z//mR//+McoisLYsWP57W9/y1133RWuJgshxLBasaKaFSscAMMaOOEgmSCEEMd2tmSC5IEQQhzbSM+DUVOUevHFF3nxxReP+vtFixaxaNGi4WuQEEKMMAsXZg35HskkE4QQ4tjOlkyQPBBCiGMb6XkwaopSQgghjm3u3PQRefZDCCHE8JNMEEIIASM/D9ThboAQQgghhBBCCCGEOPtIUUoIIYQQQgghhBBCDDspSp2gQCAQ7iYIcVLkvSvE6Sd/V2K0kveuEKeX/E2J0UreuyLcZE2p46TX61Gr1dTX15OQkIBer0elUoW7WUJ8JUVR8Hq9tLS0oFar0ev14W6SEKOeZIIYrSQThDi9JA/EaCV5IEYKKUodJ7VaTU5ODg0NDdTX14e7OUKcMLPZTGZmJmq1DJAU4lRJJojRTjJBiNND8kCMdpIHItykKHUC9Ho9mZmZ+Hw+/H5/uJsjxHHTaDRotVo5cyfEaSSZIEYryQQhTi/JAzFaSR6IkUCKUidIpVKh0+nQ6XThbooQQogwk0wQQggBkgdCCHGyZIyeEEIIIYQQQgghhBh2UpQSQgghhBBCCCGEEMNOilJCCCGEEEIIIYQQYtjJmlKHUBQFAKfTGeaWCCHE6DBwvBw4fkYKyQMhhDhxkZgJkgdCCHHijjcPpCh1iO7ubgAyMjLC3BIhhBhduru7sdvt4W7GaSN5IIQQJy+SMkHyQAghTt5X5YFKiaTTGKdBIBCgvr4eq9V6wpfGdDqdZGRkUFNTg81mO0MtPPMiZT9A9mWkipR9iZT9gFPbF0VR6O7uJjU1FbU6cmaFSx4Eyb6MPJGyHyD7MhKd6n5EYiacSh6AvDdGItmXkSdS9gNkXwYcbx7ISKlDqNVq0tPTT+kxbDbbqH/zQeTsB8i+jFSRsi+Rsh9w8vsSKWfDB5M8GEr2ZeSJlP0A2ZeR6FT2I9Iy4XTkAch7YySSfRl5ImU/QPYFji8PIuP0hRBCCCGEEEIIIYQYVaQoJYQQQgghhBBCCCGGnRSlTiODwcCjjz6KwWAId1NOSaTsB8i+jFSRsi+Rsh8QWfsyEkTS6yn7MvJEyn6A7MtIFCn7MZJEymsaKfsBsi8jUaTsB8i+nChZ6FwIIYQQQgghhBBCDDsZKSWEEEIIIYQQQgghhp0UpYQQQgghhBBCCCHEsJOilBBCCCGEEEIIIYQYdlKUEkIIIYQQQgghhBDDTopSZ8hTTz3FnDlzMJvNREdHh7s5J+TPf/4z2dnZGI1Gzj33XDZt2hTuJp2w1atXc/XVV5OamopKpeL9998Pd5NOytNPP80555yD1WolMTGRa665hr1794a7WSflr3/9K1OmTMFms2Gz2Zg9ezaffPJJuJt1Wvz6179GpVLxwAMPhLspJ+yxxx5DpVIN+Zo4cWK4mxVRJA/CTzJh5InUTJA8EF9FMiG8JA9GnkjNA5BMOF5SlDpDvF4vN9xwA/fcc0+4m3JC3njjDX7yk5/w6KOPsm3bNgoLC7nssstobm4Od9NOSG9vL4WFhfz5z38Od1NOyRdffMG9997Lxo0bWb58Of39/Vx66aX09vaGu2knLD09nV//+tds3bqVLVu2cPHFF/P1r3+dXbt2hbtpp2Tz5s08++yzTJkyJdxNOWkFBQU0NDSEvtauXRvuJkUUyYPwk0wYeSIxEyQPxPGQTAgvyYORJxLzACQTTogizqgXXnhBsdvt4W7GcZs1a5Zy7733hn72+/1Kamqq8vTTT4exVacGUN57771wN+O0aG5uVgDliy++CHdTTouYmBjl//7v/8LdjJPW3d2tjBs3Tlm+fLlywQUXKD/60Y/C3aQT9uijjyqFhYXhbsZZQfJgZJBMGLlGcyZIHogTJZkQfpIHI9dozgNFkUw4UTJSSoR4vV62bt3KwoULQ7ep1WoWLlzIhg0bwtgyMaCrqwuA2NjYMLfk1Pj9fl5//XV6e3uZPXt2uJtz0u69916uvPLKIX8zo1FZWRmpqank5uZyyy234HA4wt0kEWaSB6ODZMLIIXkgIplkwsgneTCySCacGO0ZeVQxKrW2tuL3+0lKShpye1JSEnv27AlTq8SAQCDAAw88wNy5c5k0aVK4m3NSSkpKmD17Nm63m6ioKN577z3y8/PD3ayT8vrrr7Nt2zY2b94c7qacknPPPZcXX3yRCRMm0NDQwOOPP878+fPZuXMnVqs13M0TYSJ5MPJJJowckgci0kkmjGySByOLZMKJk5FSJ+BnP/vZYYt9HfolB2Zxptx7773s3LmT119/PdxNOWkTJkygqKiIL7/8knvuuYc77riD0tLScDfrhNXU1PCjH/2IV155BaPRGO7mnJLLL7+cG264gSlTpnDZZZexZMkSOjs7efPNN8PdtBFN8kCEm2TCyCB5IEAyQYSX5MHIIZlwcmSk1Al48MEHWbx48TG3yc3NHZ7GnAHx8fFoNBqampqG3N7U1ERycnKYWiUA7rvvPj766CNWr15Nenp6uJtz0vR6PWPHjgVgxowZbN68md///vc8++yzYW7Zidm6dSvNzc1Mnz49dJvf72f16tX86U9/wuPxoNFowtjCkxcdHc348eMpLy8Pd1NGNMkDEU6SCSOH5IEAyQQRPpIHI4tkwsmRotQJSEhIICEhIdzNOGP0ej0zZsxg5cqVXHPNNUBwOOjKlSu57777wtu4s5SiKPzwhz/kvffe4/PPPycnJyfcTTqtAoEAHo8n3M04YQsWLKCkpGTIbd/+9reZOHEi/+///b9RGzYAPT09VFRUcNttt4W7KSOa5IEIB8mEkUfyQIBkghh+kgcjk2TCyZGi1BnicDhob2/H4XDg9/spKioCYOzYsURFRYW3ccfwk5/8hDvuuIOZM2cya9Ysfve739Hb28u3v/3tcDfthPT09Ayp4lZVVVFUVERsbCyZmZlhbNmJuffee3n11Vf597//jdVqpbGxEQC73Y7JZApz607Mz3/+cy6//HIyMzPp7u7m1Vdf5fPPP+fTTz8Nd9NOmNVqPWzOvsViIS4ubtTN5X/ooYe4+uqrycrKor6+nkcffRSNRsPNN98c7qZFDMmD8JNMGHkiJRMkD8SJkkwIL8mDkSdS8gAkE07asFzj7yx0xx13KMBhX6tWrQp3077SH//4RyUzM1PR6/XKrFmzlI0bN4a7SSds1apVR3z977jjjnA37YQcaR8A5YUXXgh3007YnXfeqWRlZSl6vV5JSEhQFixYoCxbtizczTptRuvlXr/5zW8qKSkpil6vV9LS0pRvfvObSnl5ebibFVEkD8JPMmHkieRMkDwQxyKZEF6SByNPJOeBokgmHA+VoijK6S91CSGEEEIIIYQQQghxdHL1PSGEEEIIIYQQQggx7KQoJYQQQgghhBBCCCGGnRSlhBBCCCGEEEIIIcSwk6KUEEIIIYQQQgghhBh2UpQSQgghhBBCCCGEEMNOilJCCCGEEEIIIYQQYthJUUoIIYQQQgghhBBCDDspSgkhhBBCCCGEEEKIYSdFKSFGKL/fz5w5c7juuuuG3N7V1UVGRgYPP/xwmFomhBBiuEkmCCGEAMkDEXlUiqIo4W6EEOLI9u3bx9SpU/n73//OLbfcAsDtt99OcXExmzdvRq/Xh7mFQgghhotkghBCCJA8EJFFilJCjHB/+MMfeOyxx9i1axebNm3ihhtuYPPmzRQWFoa7aUIIIYaZZIIQQgiQPBCRQ4pSQoxwiqJw8cUXo9FoKCkp4Yc//CG//OUvw90sIYQQYSCZIIQQAiQPROSQopQQo8CePXvIy8tj8uTJbNu2Da1WG+4mCSGECBPJBCGEECB5ICKDLHQuxCjwj3/8A7PZTFVVFbW1teFujhBCiDCSTBBCCAGSByIyyEgpIUa49evXc8EFF7Bs2TL+4z/+A4AVK1agUqnC3DIhhBDDTTJBCCEESB6IyCEjpYQYwVwuF4sXL+aee+7hoosu4vnnn2fTpk387W9/C3fThBBCDDPJBCGEECB5ICKLjJQSYgT70Y9+xJIlSyguLsZsNgPw7LPP8tBDD1FSUkJ2dnZ4GyiEEGLYSCYIIYQAyQMRWaQoJcQI9cUXX7BgwQI+//xz5s2bN+R3l112GT6fT4boCiHEWUIyQQghBEgeiMgjRSkhhBBCCCGEEEIIMexkTSkhhBBCCCGEEEIIMeykKCWEEEIIIYQQQgghhp0UpYQQQgghhBBCCCHEsJOilBBCCCGEEEIIIYQYdlKUEkIIIYQQQgghhBDDTopSQgghhBBCCCGEEGLYSVFKCCGEEEIIIYQQQgw7KUoJIYQQQgghhBBCiGEnRSkhhBBCCCGEEEIIMeykKCWEEEIIIYQQQgghhp0UpYQQQgghhBBCCCHEsJOilBBCCCGEEEIIIYQYdlKUEkIIIYQQQgghhBDDTopSQgghhBBCCCGEEGLYSVFKCCGEEEIIIYQQQgw7KUoJIYQQQgghhBBCiGEnRSkhhBBCCCGEEEIIMeykKCVEBKqpqcFoNLJu3boTvm9bWxsWi4UlS5acgZYJIYQ4VadyjD9TJDuEEOLUjMRj+3C76aabuPHGG8PdDDHMpCglxCmoqKjg+9//Prm5uRiNRmw2G3PnzuX3v/89fX19Q7b1+/288MILXHjhhcTGxmIwGMjOzubb3/42W7ZsCW334osvolKpQl9Go5Hx48dz33330dTUdFzteuKJJzj33HOZO3du6La9e/fy4x//mDlz5mA0GlGpVOzfv/+w+8bFxfHd736XRx555OReFCGEiBCReIw/EbfeeitGo5F9+/Yd9rtf//rXqFQqPvroI0CyQwgxesix/fiP7YNlZ2cf83Efe+wxXnzxxcNur6+v59Zbb2XChAlYrVaio6OZNWsWL730EoqiDNn2//2//8c777xDcXHxCe2TGOUUIcRJ+eijjxSTyaRER0cr999/v/Lcc88pf/rTn5SbbrpJ0el0yl133RXa1uVyKYsWLVIA5fzzz1eeeeYZ5fnnn1ceeeQRZcKECYpKpVJqamoURVGUF154QQGUJ554Qnn55ZeVv//978odd9yhqNVqJScnR+nt7T1mu5qbmxWdTqe8+uqrQ25/4YUXFLVarUyaNEmZOnWqAihVVVVHfIzS0lIFUFauXHlqL5IQQoxSkXyMP15NTU1KTEyMctFFFw25vbKyUjGZTMr1118/5HbJDiHESCfH9hM7ti9fvlzx+XyKoihKVlZW6PalS5cqiqIoJSUlSm1traIoivLoo48qL7zwgqIoirJnz55QO4uLi5ULLrhA+cUvfqH87W9/U/74xz8qX/va1xRA+fnPf35Y+2bNmqXcdtttp7SPYnSRopQQJ6GyslKJiopSJk6cqNTX1x/2+7KyMuV3v/td6Od7771XAZT//d//PWxbn8+nPPPMM4eF2ubNm4ds95Of/EQBDgurQ/32t79VTCaT0t3dPeT2trY2xel0KoqiKM8888xXhtqkSZMkEIQQZ6Wz4Rh/vJ577jkFUF588cXQbYsWLVJsNluoIzKYZIcQYqSSY/tBx3NsDwQCyo033qjMnDlTKSoqUrKyspTKykrl0ksvVS655BKlu7tbefXVV5WMjAzlr3/9q/KrX/1Kee6555Qnn3xSycnJUT777LNjtuGqq65SLBZLqOg14De/+Y1isVgOey1E5JKilBAn4e6771YAZd26dV+5bU1NjaLVapVLLrnkuB77aKH20UcfKYDy1FNPHfP+559/vnLhhRcec5vjCbUf//jHSnR0tBIIBI6r3UIIESnOhmP88QoEAsrcuXOV+Ph4pbW1VXnttdcUQPnDH/5wxO0lO4QQI5Uc2w86kWP76tWrlfPOO0/R6/XK1KlTlX//+99Dft/c3Kx8//vfV2w2mxIXF6c8/PDDSk9Pz1e24b777lNUKpXicrmG3F5cXKwAyrvvvntqOylGDVlTSoiT8OGHH5Kbm8ucOXO+cttPPvkEn8/HbbfddkrPWVFRAQTX7Tia/v5+Nm/ezPTp00/puQBmzJhBZ2cnu3btOuXHEkKI0eRsOMYfL5VKxbPPPktXVxf33HMPP/7xj5k5cyb33nvvEbeX7BBCjFRybD/oRI7tarUalUo15L6HPpZarT7q7wf09fXR2trK/v37eemll3jhhReYPXs2JpNpyHb5+fmYTKazesH3s40UpYQ4QU6nk7q6OiZPnnxc2+/evRvguLcf0NXVRWtrK7W1tbzxxhs88cQTmEwmrrrqqqPex+Fw0NfXR05Ozgk915Hk5uYCUFpaesqPJYQQo8XZcow/EQUFBTz00EO89dZbtLS08Oyzzw7pgAwm2SGEGInk2H64rzq2K4rCLbfcwgMPPMBf//pXUlJSePfdd/njH//IpZdeSk9PD2+88QYzZsxg8uTJPPDAAzz99NPo9XomT57MqlWrhjzf73//exISEsjJyWHx4sWcd955vP7664e1S6vVkpGRITlyFtGGuwFCjDZOpxMAq9V6RrYfsHDhwiE/Z2Vl8corr5CWlnbU+7S1tQEQExNzQs91JAOP0draesqPJYQQo8XZcow/UfHx8QCkpqYyadKko24n2SGEGInk2H5kxzq2q1QqFi9ezMUXX4xGowEgJyeHZcuWsXTpUqKioigoKGD9+vWkpaXx2GOPodPpeOSRR7jhhhswGo1DHu/mm29m5syZtLS08NFHH9HU1HTY1Q4HxMTESI6cRaQoJcQJstlsAHR3d5+R7Qf8+c9/Zvz48Wi1WpKSkpgwYcJRz0wfSjnk8qonY+AxjjYEVwghItHZcow/ETU1NTz66KNMmjSJnTt38t///d/88pe/PGbbJDuEECOJHNsPdzzH9ksuueSI9120aBHAUU9STJw48bDbsrKyyMrKAoIFqu9973ssXLiQvXv3HjaFT1EUyZGziEzfE+IE2Ww2UlNT2blz53FtP3BQLikpOaHnmTVrFgsXLuTCCy8kLy/vuAJtYL56R0fHCT3XkQw8xsAZFCGEOBucLcf4E3HfffcBwTVWbrjhBp566ikqKyuPuK1khxBiJJJj++FO5NgOsH///mM+3mOPPcbixYuP+/m/8Y1vUFNTw+rVqw/7XUdHh+TIWUSKUkKchKuuuoqKigo2bNjwldtefvnlaDQa/vWvf53xdmVmZmIymaiqqjrlxxp4jLy8vFN+LCGEGE3OhmP88Xrvvff44IMPePLJJ0lPT+d3v/sder3+qAudS3YIIUYqObYfdKLH9jNhYOpeV1fXkNt9Ph81NTWSI2cRKUoJcRJ++tOfYrFY+O53v0tTU9Nhv6+oqOD3v/89ABkZGdx1110sW7aMP/7xj4dtGwgE+J//+R9qa2tPuV06nY6ZM2eyZcuWU36srVu3YrfbKSgoOOXHEkKI0eRsOMYfj+7ubu6//36mTZvGD3/4QyC47siTTz7J0qVLeeuttw67j2SHEGKkkmN70Mkc209FS0vLEW9//vnnUalUh111sLS0FLfbfVxXSRSRQdaUEuIkjBkzhldffZVvfvOb5OXlcfvttzNp0iS8Xi/r16/nrbfeGjJ89X/+53+oqKjg/vvv59133+Wqq64iJiYGh8PBW2+9xZ49e7jppptOS9u+/vWv8/DDD+N0OkPz4SF4FmIgVAcusfqnP/2J6OhooqOjQ0N4Byxfvpyrr75a5nMLIc46kX6MX7x4MS+99BJVVVVkZ2cf9bl++ctfUl9fz7vvvhta5Bbg3nvv5aWXXuKBBx5g0aJFQxYCluwQQoxUcmwPOplj+6l46qmnWLduHYsWLSIzM5P29nbeeecdNm/ezA9/+EPGjh07ZPvly5djNpuPup6ViECKEOKk7du3T7nrrruU7OxsRa/XK1arVZk7d67yxz/+UXG73UO29fl8yv/93/8p8+fPV+x2u6LT6ZSsrCzl29/+trJ9+/bQdi+88IICKJs3bz6pNjU1NSlarVZ5+eWXh9xeVVWlAEf8ysrKGrLt7t27FUBZsWLFSbVBCCEiQaQe46+//nrFZDIpHR0dR32eLVu2KBqNRrnvvvuO+PtNmzYparVauf/++0O3SXYIIUYDObaf2LH9VC1btky56qqrlNTUVEWn04Ve7xdeeEEJBAKHbX/uuecqt95662l7fjHyqRRlmJf5F0Kccd/5znfYt28fa9asOan7P/DAA6xevZqtW7fK2W4hhBhhTvUYn5SUxO23384zzzxzWtsl2SGEECdvpB7bh1NRURHTp09n27ZtTJ06NdzNEcNEilJCRCCHw8H48eNZuXIlc+fOPaH7trW1kZWVxZtvvskVV1xxhloohBDiZJ3KMX7Xrl3Mnj2bysrK03plI8kOIYQ4NSPx2D7cbrrpJgKBAG+++Wa4myKGkRSlhBBCCCGEEEIIIcSwk6vvCSGEEEIIIYQQQohhJ0UpIYQQQgghhBBCCDHspCglhBBCCCGEEEIIIYadFKWEEEIIIYQQQgghxLCTopQQQgghhBBCCCGEGHbacDdgpAkEAtTX12O1WlGpVOFujhBCjHiKotDd3U1qaipqdeSc65A8EEKIExeJmSB5IIQQJ+5480CKUoeor68nIyMj3M0QQohRp6amhvT09HA347SRPBBCiJMXSZkgeSCEECfvq/JAilKHsFqtQPCFs9lsYW6NEEKMfE6nk4yMjNDxM1JIHgghxImLxEyQPBBCiBN3vHkgRalDDAzJtdlsEjpCCHECIm1Kg+SBEEKcvEjKBMkDIYQ4eV+VB5Ex0VsIIYQQQgghhBBCjCpSlBJCCCGEEEIIIYQQw06KUkIIIYQQQgghhBBi2ElRSgghhBBCCCGEEEIMOylKCSGEEEIIIYQQQohhJ0UpIYQQQgghhBBCCDHspCglhBBCCCGEEEIIIYadFKWEEEIIIYQQQgghxLCTopQQQgghhBBCCCGEGHZSlBJCCCGEEEIIIYQQw06KUkIIMYJUV3exZEkl1dVd4W6KEEKIMJI8EEIIMSCSM0Eb7gYIIYQ4aNeuNjZsqAcgK8se5tYIIYQIF8kDIYQQAyI5E6QoJYQQI0hBQdyQ70IIIc5OkgdCCCEGRHImSFFKCCFGkKwse8Sd/RBCCHHiJA+EEEIMiORMkDWlhBBCCCGEEEIIIcSwk6KUEEIIIYQQQgghhBh2UpQSQgghhBBCCCGEEMNOilJCCCGEEEIIIYQQYthJUUoIIYQQQgghhBBCDDspSgkhhBBCCCGEEEKIYSdFKSGEEEIIIYQQQggx7KQoJYQQQgghhBBCCCGGnRSlhBBCCCGEEEIIIcSwk6KUEEIIIYQQQgghhBh2UpQSQgghhBBCCCGEEMNOilJCCCGEEEIIIYQQYthJUUoIIYQQQgghhBBCDDspSgkhhBBCCCGEEEKIYSdFKSGEEEIIIYQQQggx7KQoJYQQQgghhBBCCCGGnRSlhBBCCCGEEEIIIcSwk6KUEEIIIYQQQgghhBh2UpQSQgghhBBCCCGEEMNOilJCCCGEEEIIIYQQYthJUUoIIYQQQgghhBBCDDspSgkhhBBCCCGEEEKIYSdFKSGEEEIIIYQQQggx7KQoJYQQQgghhBBCCCGGnRSlhBBCCCGEEEIIIcSwk6KUEEKMEOvW1fL44+tYt6423E0RQggRRpIHQgghBkR6JmjD3QAhhBBBK1ZUs2KFA4C5c9PD3BohhBDhInkghBBiQKRnghSlhBBihFi4MGvIdyGEEGcnyQMhhBADIj0TpCglhBAjxNy56RF59kMIIcSJkTwQQggxINIzQdaUEkIIIYQQQgghhBDDTopSQgghhBBCCCGEEGLYSVFKCCGEEEIIIYQQQgw7KUoJIcRZqLq6iyVLKqmu7gp3U4QQQoSZZIIQQggITx7IQudCCHEW2rWrjQ0b6gHIyrKHuTVCCCHCSTJBCCEEhCcPpCglhBBnoYKCuCHfhRBCnL0kE4QQQkB48kCKUkIIcRbKyrLL2XAhhBCAZIIQQoigcOSBrCklhBBCCCGEEEIIIYZdRBWlHnvsMVQq1ZCviRMnhrtZQgghwkAyQQghBEgeCCHESBZx0/cKCgpYsWJF6GetNuJ2UQghxHGSTBBCCAGSB0IIMVJF3NFYq9WSnJwc7mYIIYQYASQThBBCgOSBEEKMVBE1fQ+grKyM1NRUcnNzueWWW3A4HMfc3uPx4HQ6h3wJIYSIDCeSCZIHQggRuSQPhBBiZIqootS5557Liy++yNKlS/nrX/9KVVUV8+fPp7u7+6j3efrpp7Hb7aGvjIyMYWyxEEKIM+VEM0HyQAghIpPkgRBCjFwqRVGUcDfiTOns7CQrK4vf/va3fOc73zniNh6PB4/HE/rZ6XSSkZFBV1cXNpttuJoqhBCjltPpxG63j/jj5ldlguSBEEKcutGQCZIHQghx5h1vHkTcmlKDRUdHM378eMrLy4+6jcFgwGAwDGOrhBBChMNXZYLkgRBCnB0kD4QQYuSIqOl7h+rp6aGiooKUlJRwN0WIEWfduloef3wd69bVhrspQgwLyQQhjkzyQJxtJA+EODrJBDHcImqk1EMPPcTVV19NVlYW9fX1PProo2g0Gm6++eZwN02IEWfFimpWrAgu8jl3bnqYWyPE6SeZICKJElDo9/rpd/vxun143X78vgAoCooCKKAAWp0arV6DzqBGZ9CiM2rQ6TXHfGzJAxHpJA+EOH6SCWK4RVRRqra2lptvvpm2tjYSEhKYN28eGzduJCEhIdxNE2c5RVEI9PTg7+jA396O3+kk0OdG8bgJuN0obg+Kz4dKowa1BjRqVBotaqMBtdWKOioKjdWK2mpDm5iAWq8/5TYtXJg15PvJWLeulhUrqlm4MOuooVVd3cWuXW0UFMSRlWU/6ecazY7ndRKnn2SCGE08fT66ml10Nrvoau6ju91NT4cHV5cHl9OLu6efk10FVKtXY4rSYbLqMdv1WGONxCRZsCeZsCeYWXBxJnDm8wAkEyQPwkPyQIjjJ32E4SOZEBRRRanXX3893E0QZylFUfDV1+Op2k9/XR39dbV4HQ76a+vob2zE39UF/f1HfwCdFpVaA0oAJaBAIHj2+2g9ELXNhjYxEW1iIvrUVPTjxmEYMwZDbg7a5GRU6q+emTt3bvopH/yO50zKrl1tbNhQD3DWBo6ccQoPyQQxEgX8AToaXbTUdNNS3U2Lo5uOJhfunoMZoTdqMFh06I0adAYN8elWdEY1Wp0GjVaFRqdGo9Wg1qhQqVWoVEMf39evEPAF8PsU/L4A/W4fXo8fn8dPZ1MfTVXOIUUutVrFuEQTvXu6KOoLkJhlJT7Dit54/B8Tj/c4d7ZnguRBeEgeCHH8pI8wfCQTgiKqKCXEcPA7nbh37sS9dx+evXvx7NuHp6oKpa8vuIFKhSY6GrXdjsZuwzB+PGqTCbXZjNpsQm0yo7JYUBuNqHQ60OtRq9UwuJB0oCAV6O8n4HIRcLlQ3G4Crl4Cvb0EursJ9PTga2nBW1GB7/33wecLPr1ejz43F+PkyZimFmKeMgV9bi4qzbGnb5yM4zmTUlAQN+T72eh0nHESQoxO7p5+Gio6qS8LfrXW9RDwBatBJqueqBgDiZlWDFFajBYdFrsBg0WHRqNGrVWh0aqDxafBlaeTFPArBPwB/H4Fn9ePq8tLb6eHvm4vvV0eGso7Kd/aHDw5ooKYZAupY+2kT4ghdXwMZtvRR+ke73HubM8EyQMhxNlA+gjHRzIhSKUoJzsYPDKd7GVsFb+f5v/5LfZrr8E4btwZbKEYTgGvF8+ePfTtKKGvuIi+4h30O4LVbJVOhzYxEU18HJrYWLSxcWjj49DExqE2m1Hp9ah0uuDXGSgIKYEAis+H4vUScLvxNzcHR2W1tdLf3IyvsQl/W1uwrUYjxsmTscw+j6i5czEWFKDSSk1anB6j4fLfJyNS90ucWV63j9o9HThK26jb20lnkwsAg1mLLcGEJdqAxW7AGmfAaNGj1QdHQKk1p150OhWKouDrD+B1++huddPV7MLZ6qa7zY27NziKy55oIjM/lpzCBFLHRaPRRvT1csRJisRjZyTukxBCnGnHe+yUotQhTjZ0/D097P/mN/G1tJL1z39inDjhDLZSnCkBrxd3SQmuTZvo3bCRvuJiFI8HtFp0ycloU5LRJiYG/z8pGfXAiCeD4bimzA0XJRBAcbvxdXTgraqiv7aW/poa+uvqULxeVCYT5unTsV6yEOuCBWjDtKbCO+/s5d13y7juunFcf738zYxWkfphPVL3S5xeiqLQVteDY1c7+0taaax0ogQUTFY99kQTUTEGbPFGomKM6I1atAYNanV4C1DHS1EUfB4/3R1u2ut66Wxy0dnkwuv2o9WrSRkbzdgZiYyZloDBrDvl55NMiAyReOyMxH0SYiSTPIgMx3vslKESp4kmKoqUJ5+k9r4f4rjzTrL+9TKG3NxwN0t8BSUQwL17N71r1tK7YT19RcEilMpkQp+ZiWXuXLRpqehSUtHYbMERUAbDaZlGcSap1GpUZjN6sxl9WhoAis+H3+nEU1aGp6IC7/79ND7+BI2PPY5h/HisCy7GdvXVw/q+fffdMlavDl5u9mwNnIFFHu12PV1d3rN6sUchRgsloNBQ2UXl9mYqtrXQ0+FBo1URnWQme0oc0UlmbHEm9EYNWoNmxGfG0ahUKnRGLbEpUcSmRKEoCl63j476XlpqeuhscrHq5T18/speUsfZGT8r+ZQKVGd7JkgeCCFE0NmeB3B2ZYIUpU4jbVwc9m98g8433qD6jsVkvfIvDJmZ4W6WOIS/q4ve9evp+WI1PatX429vR2UwoM/OxjJnDtqMDPQZGcGr3VksZ2TqXTiotFq0sbFozz0Xy7nnoni99Dc10bejGG95OW3P/4PWv/4N/Zgx2K+6Cvs1X0eXknJG23TddeOGfD8bDSzyqNWq8B1YZyZSA0eI0SwQUKjb10HF1mYqi1ro6+7HYNYSm2ohMz+W6GQzxig9epN21IyEOlEqlQqDSUfymGiSx0Tj9wVwtvbRWNFJa20vq17ewxev7iUjL4aC+WlkTYpDrTn+UcRneyZIHgghRNDZngdwdmWCTN87xKkMz/VWV9P92WegN9D6u9+hMhjIfOlFjGPGnKHWiuPlqaqie/kKelZ9Rl/xDggE0CYloc/NQZ+ZiS47B210NOqoqIgpQp2I3buaKd1cQaGuGXtrFZ6KSvD5ME6ZQvRN38R+xRWojcbT8lxy+dehzsRZkOF+jSN1WkOk7pc4Ma213ezZ2EjZpiZcTi/GKB1xqVFEp5iISbZgtOjQjeLRUIfaXdpKcXEzhYWJ5OXHH/f9/P4AXc19NFZ00VztxNXlxRSlY9ysJCZfkE50kvmw+0geDHWmzopLJpy6SNwnIY7HunW1rFhRzcKFWWf86nCSCUOdTX0EGSl1BuhTUoj/yU9o+8MfqP7WLWQ+/3+YJk0Kd7POOp7ycpyfforzk6V4y8tDV6WzXnIJ+pwcdKmpqKOiTluxZTQrKmmleI8X79Rx3PTDq/G1tODasgX3zp00/uJhmp/6T2xXXEHM7bed8kL+cvnXobKy7Kf9dZDXWIhT09PhYd+mRvZubKS9oRe9UUN8ppXc6QnEJAVHROkMkXkCo7i4maKiFoATKkppNGpiUyzEplgYf24SrTU91O3roHRNPTs+qyU510bhggxypyWGRpLJsWqoM5EHIK+zEOLkrVhRzYoVwYs8nemilByrhjqb+ghSlDpD9ElJJPzkJ7T8/vc47lhM2u9/R9S8eeFuVkRTFAXPvn04l35K9yef4N2/H5XRiGHcOOzXXIN+7Fi0sbGordazcjTUsUwtTAx9V6nV6JKSsF95JbZFi/CUl9O7YQPOJUvofOstjAUFxN55J7ZFl53U6zhSLv966AKKw3km6ESd6FmNkfIaCzGa+P0Bqne0sXN1LTV7OlCrVcSlRzFxdjKxaVGYbXr0xsj/2FR4IA8Gvp8MrU5Dcq6d5Fw7fT1e6vZ20FDWxad/34XZXsak89OYfGH6iDlWjaY8AMkEIcTwWbgwa8j3M2mkHKtGUyZESh5E/qerMNLGxZH4k5/Q+pe/UPP9u0n6xS+IveVb4W5WRFEUBXdpKd1LP8W5dCn9NTWoTCYM48dhv/ZaDBMmoImNDa4NFSFTK86EvLx48vIOPyOu0mgwTpiAMzadhjHzSWnbg3/3DuoffJDm//4vYm67jdibb0ZtsRz3c52pM8En6tAFFIfzTNCJOtGzGiPlNRZiNHC29lG6rp7d6xpwOb3YEkyMnZ5IXLoFS7QRg1l7VuVHXn78V46QamnuxeHoJjPTSkLisY//pig9Y2ckkTs1gebqbmpK29j88X62frKfsTOTmHNFNtGJh0/tG06jKQ9AMkEIMXzmzk0/5nHwdE4HGynHqtGUCZGSB1KUOsM00dEkPPgg7f/4B01PPom3vJykR36JSn38C3+KoRRFwb1zJ86lS+n+ZCn99fWozGYM48djnjULw4QJwRFR5vB+yA2n5paDHYbEhOMvGB2Nw9HNXocHZeIMZly9CPeOHfSsXUvLb/+Xtr/8Ffv11xF/991o40ZW1f1YDl1AcTjPBJ2oQ89qyJx7IU5NaFTUmjpqdrej1alJyLIydmYiMSnBdaI02sjJ6RMpIh0Ph6ObPXvaAY778dQaNcm5dpJybPS0u9lf0kbl9hb2ftlI9uQ4Zl2VS0Km9ZTbdjJGUx7A0EyQPBBCnIjTfcwYqdPBTsVoyoRI6SPIQueHOB0Lneuzsg/7XSAQwPnuu/R89hnGqVNJ/+Mf0CUknKZWRz4lEKCvuDg4NW/pUnxNTagtFgwTJmAYk4t+/IFClMkU7qaeccdTcNqytZG9e9qZMDEWi1lLUXEzUwsTjzga6mSfUwkE6Hc46F71Ge7iHQDYr72W+Ht/gC7x5Kd9jDbDdfAf/DwDHwBmz07liityz9hzHq9IXQA2UvfrbNbX42XX6npKPq8NjYpKzLSSkBmFJcY4KqfnHU/BaeuWRvbsaWfixFjMZu1JLWR+os95PNy9/ewvbqFuXycel4/U8dHMujKbtAmxJ/2Y4TYcmTCS8wAi89gZifskRg8lEKCvp5s+pxOXs5M+ZxcupxNvnwuvuw+fx4PX3UdnWzedHS5sNj1msxZQoVIRXJrDYERnMOKoc1Nb7yV7TALW2GhKdrs4d95Y5l44AWNUFGr1iS3NMVqLIMNB+giy0PmIo1arif7GN9BlZND51ltUXXU1qc/8N1Hnnx/upo1Yit9P3/btOD/9lO6ln+JraUFttWIYP56oCy5AP3482piYs6IQNZjD0c3eA2eoB34+tECVeeBsc2amlZUrqyk+sGhtXLzppEZQJSZYDttepVajz84m7tt30t/URPeyZXS9/z5d776L7ZprSLjvPnRJkV+cGq4zRIOf52jzweWDgRBH1l7fS/FKB3u/bEJRFJJybAdHRUXp0GhG76iowaOWBn4+tFh0aCYUFbXQ0+vD5fKdVGEpIdFyWkZcGS06Js5JJXdGEo6SVmr2dPD+/xaRnGtn9nW5pI6NOeXnGG7DkQmSB0JEHndPD221Djoa63G2NNHZ1EhXcyPdrS30dLSjBAJDtlepVGgNBjRaHRqtFrVWi9uj4HYH8HRo0Rs0eD1+9AYNWo0Kv6+fgM+H1+PF3N9P8xYfTYEAJmBHNex4BUCF0WonOikRe2Iy9qRkYpJTiU5KJi4jC1PU4aNZR+p0sJFA+gjHT4pSp1lVVSfbNpQedVSK5dxz0Wdl0f7iC9R8/26ib/gGST//+VlXWDkaxefDtWVrsBC1bBn+tjbUdjuGCeOJWnAx+jFjz5oRUUczuHMxuEA1uGg0uIg0sIh5TLSBl/9ZikajYt789KMWpY41Emv37tbQqCtg0AisJGJvuw3fokXBKx5+8AHO998n+oZvkPCjH6GxHzz4jfSD4okargUDBz/P0T4AHG/4Rdq/wUg1khfGPBsoikJNaTvbVzio3d2BwawlfWIMidlWbPEm9KbIWCvq0Ew40rS6wUWkwsJEWlr6cDic9HR7mT8//ZgFpmONitpd2kpxcTPR0QY6Oz0nPPpq8GOPnZlEdmE8NaXt7C9p473fbCdtfDSzrxtDUvboOU4NRyZIHoxOkgkCwO/rp6V6P81VFbTWVNNas5+22hpcXZ2hbQwWC8YoK0ZLFDEp6SSNGY/BaERnNKIzmjBERaE3mtBoNKg0GlQqNSq1irY2N7V1PWSk26it7WZfWQfjx8UwdWoiiqKgKAGUQPB7wO+nbHcT+3Y3YDb6aKrrQKPykRalJeD301i+l6qiLXhdrkHtsqG2xJMyJpcxkyeSlDOW+MxsNFrtkPc3cFLv9Ug7Hkkf4fhJUeo027evg+LK4BnXo02V0iUnk/DgQ3S9/z6d77xLzxerSXnqP87aq/MpXi+9Gzfi/HQZPStX4u/sRBMTg2HCeAyXXYoudwza6Oizeo2owY40ammgU3KkgtLA+/Dll0tpbXURH2/GYg7+6QcOnHVRH1jjzOf389mqKoq2t3LurFSuvXb8kOcpKm4OjboCQv8/8BzahARib701WJxaupTOt96m698foL7uZsonXUn+1JTDDoqjPYCG6wzR8TzPseaVb9nSGLqSiMmki7j5/yPRSF4YM5L5vH72ftlI0YoaOptcWGMNjJ2ZSGK2jagYA1pdZF199UijljIzrUctJuXlx7NiRTUOhxOvx09nl5uW5l7iE8z4/X602oMfDYuKaln2qQO9Xn/E4lVxcTNFRS2oNSoCfiX0+McyuF2HFtG0Og1RKWai3P3EeQK07u/m7V9vJTM/ltnXjSU+PeqUXqvhMByZcDJ5AEfOhOxsW+gzgOTBmSWZcPZRAgHaah00VpTRWL6PhvK9tNY6CPh8qFRqzHY75ugYEjJzMNvtmOzRRMXEYjCZ0Oj0aHRaNFod6uO82nWaJYq0zAOfyQ1G1DoDmZk29CYTzc0uHI4eMjNtJCYG+w3T5sRijE7k5ZdLaWlVSIg3c96V+UyYEE2/14u/vx+fx013exsdLU3sKqqir7YVV3sTlRtWAKDWaolPz6K208qeKhMqzxQUfQwrVtYAX/1eP9LUM5A+wul+npHeR5Ci1GlUV9eNQa9l7Fh7aCTJ0ah1OmJuuAHztGl0vPEGNd+9i6iLLiLplw+jT0sbphaHT8Dtpnft2mAhatUqAj09aOLjMeTnY8jNQZeVHZyaJ4WokCMVnA4tUDkc3ezZ3YaiKKHb1xYX819/f5fK2ib6fD34G9y88jMfHp8Xl9vNv//7GS6aMQOA15cv4wfPPgPA89sM/Px1K1azBXuUhZS4eK6YuZDCqQlMLUzE7fXS5+074ntdGx9P7K234l2wgO4PPsD1r+dJ0r9J9dW3k3/nzcDBg2IkLpAYLoeG0uDXdvCVRP7zP+cDI+9ysJGkuroLi0XPzJlJI3JhzEjU2+WhZFUtO1fX4XH5iE+PouD8VOLTozBZDag1o39U1GBHKjoNLlANrCOlKEroNkVR+K/fPcnqNbtobG6kuLybpevc+P1uPN4+Zk49l1effz/0HIvvvQRnTytqtZZ/vmfDZrURZYkiLjaeCePyufbyHwIQHW2gtq6RSZO/+pgyuBA1eJTX4N/vK+tk4sRY5t80nv3FrTh2tfHGU5sYOyORudePJSrGeOovYIQ7UiflSJnQ25vE975XKHlwhkkmnB0CAT8t+6uoKS2hZtcO6vaU4nH1AiosMTFY4xLInXYOUbFx2BISMJgt6AwGtHrDcReejiRYcHIeKDgF+06JiebQ/wM4HE52D/QRDty+7stN/Om596h2NOLp70Ypc/Ppxn68/R763G7efP45phdOwZaQyKodu3jsxWcB0OuMRNstmPR6TDotVuMu5o7JZmaMASo24NcYWZiTxKSE2bTXZxGTknbUkcnHmnomfYTTZ6T3EaQodRrt3dtOicNByripxMUfPr3sSEUFw9ixJP70p3R/+im9X3xB5aLLib75ZhLu/cGQKU+RwNfRQe/atXSvWEnP6tUofX1ok5MxTZuGPjcHXUamjIg6hiNN1XN7veysrKBo3z42luxm+55y6tsbeeHnjwEpAOxzOPhi95qjPm59UwdbtjaSmWll8GUPPD4P9a0eoDV0202XXMKVV+UD8O/Vq3ngpcdI+jCW8RmZjM/KZExyFgmWNObPnEhqsg19Sgpx3/8+/ZtL8H6yhIS3/4R/28ec/+ijRGUFF987maGto/3MyXAZ/NoOvpKIzP8/83btamPHjj2kpyeTnn74GgzyHj59WhzdFK1wUL61GZVaRVK2jeRcO9HJZgzmyJiidySHjjJSFIWGpnp2lhazs7SYjZu3ULm/nLG5E3j9hTeB4Bokb73/Ch2d7Ud8zN6+3iHFLq02+NoFAj46u9rp7Dp4vy5nF7948PHQyKiFX7+V3zxbQ07WGMbkjCUjdRzxMeO4YN65jB178Ez54ELU0UZ5DXzX6TWMOyeJrMlxVG5vZn9JG1VFLUy6IJ1ZV+eEFqaXv6fjc7RMGAmL4Ua6HTua2LatmPHjJ0omRBBFUWivq6GqaCv7d2ynfu9u+t19qLVa7InJpIybgDUhEXt8IiabDZ3RhM5gOO255HA4Q3kwUHByu93sLitn5+49bC3aRUnpXppaGvjrb37HQB9hb3kFm4tXHfVx6xo6CPQ3kplpG9JH8Pa7aW51D9n2+9//PoXjx9BeV8uHny7jT6/9Bdvbz5P4eBSpcbFMnJBHzoTZfO3mG8kvPHjMOdbUM+kjnDkjrY8gRanTyNVfw+NfPE/MlliW7ZnFnddcwpwpU9AeqHwfbf0ftU6H/aqrsMyZg/Pjj+h49VU633yT6BtvIP7730cbNzrPXimKgmffPno+/yJ4hbYdJRAIoEtPx3LuuejG5KJPS0djt5/Va0QNrNOUlWlDb9AedRHywR/Ul335JU/+43l2VVXh8/sP27attw0IFkLNJHDfdd8kNyOZpNhYEqJjsJrNNNa5KS/vRu+yhd6XN11yCddeeCEbNjnYWdpIUqqejCwT7U4nDW2tpMWmhQpYNc1NADS1t9PU3s6a4qLQ8xt1Bl554nEumTULgORzJqPMKKCvqAjnRx9Sc8diohYsIOmRX5KVlTzk4Hc8ay4Mru4P/Hwy4RPJwXXovmVl2bn++gnhbtZZo6AgjrVrf0919Q6WL5/Dd797M1/72tdISQl+EJSzf6cmEFDYv6OVohUOGsq7MEbpyCyIJTnHhjXejM4weqfoDazTlJllw6DXHnUh8oFMyMiI4gcPfpvNWzfS1tF62HaO2uBHvYFi07euvwurzUhCXCLx8YlE22OwmC3U1XqoKHexdl0drl4fAGuWbqG/v58NG6vYVVpHcrKG1HQtrW0tmE3m0GOmpZlpam7A6/Wwt6yUvWWloed/6n9h/uwLeelvbwFfvUj6ob8feD0KCxOZd+M4yr5sZMeqWvZsbOCcK7KZfGH6acmEsyUPBgpQkgnDq6dnL6+9dhd2eyo7dlzOAw/czty5c9Ec6CNIJoweHlcvjpJiqoq2UFW0lZ72NtRaLTHJqaRPLMCWkEh0SgpGixW9yYRGe/Ld7d2lbcE+QpYNvV4zZCTUYJmZttD35Z9/we+f/TtllVX4j9BHcPYEl95obnZhMaRz57duJyszicT4eOJiYrBYzNTXeago78HTY2VP64E+wnXXcO2Vl/PllzXsLG0gJUVHRpaJzs4umltbSErMoaJWTWbmJPTJwQxw9nlw9nkob25j9e4y4AMe/Z9f8uNrr+Dyq69h7DnnkTFuwlHf84cWSKSPcOpGah5IUeo06uxpwqDV0dHbzrtrl/Lu2qWYDWbOnzKDb11+MYW5BUwgdsgwdRi6eHTebbcTddHFdC9fTufrb9D5+htYFy4k5vbbMBUWjvgzvr62NlybNtG7YQM9X6zG19SEymBAPyYX62WXoc/ORpecjNpmQ20whLu5I8LAOk31db0kJx+clgfBkVBri4tZ9uWXXDV3LhMzx+NwdNPn8lNcXg5AnN3O1PHjGZ+WTUJUCudOGcc5k4MVb4ejG7/TxnXnfZ2ZM5KHPO+OTaVU7XWjGWti6rREvB4fb7+9j6mFiRTmpxMTZT+sQLZla2OogHXfN27g9suv4IPlRWwqLsNFG9WtDkoqynF5+shOOfh8f//3v3nl06WcP3UaF162iClNTfSuXk3lZYuIvfPbxN9zD2q9Hji+NRcGV/eP9UHuq8Irkj8ERvK+jQZ6fwC/p5NAoJ8tW75gy5YvuPvuu0lLy+PKK6/mhhuuY/bs1MPO/slCuMfmdfvYvb6BHZ/V4Gx1Y080Mf7cJBKzbFiiDWi0o/cqegMG1mmqG5QJA0Wa6poqVq1eTk29g0f+v/8Agsf52ro62jpa0Wg0jBszkUl5U8jOyCPKnM450yeFttuzp50L59zKjJnJhz3vpg2l7NntYuw4A3FxJrYXNWM2a8nLj2f61HHExyYfViAbmCIIULS2gk+XbePLzSWgbqa5rZwdu4poaKomPu7gNG+/38+i6+eTN76A886ZxwXzFpCWcvT3+sDrAcH1qgoXZpI1xcW+LxtZ+1Y5O1bVMuGitNDf09GOfZIHkblvo4Gvv58NH/wTvV5PV1c97733PO+99zwmk50LL7yEu+76Fnl55wGSCSNVR2M95Zs2UL5lIw1le1ECASwxscSmpJFdOIOY1DTMNht6k/mUilCHOthH6CFpoI8waCTUxi3b+Hzder626FIyM8cGL2DR42dP2YE+QmwMkyZOJDsjl1h7GjOmTWBa4UAfwUm/O45Lz7+OmYdkwrbNuynf52HsOBNTpybi9fp5+60yphYmMnlSJnZb9GEFsi2D8uAHdy7m1huu5+Ol29m6fS/9gRZqG6rYU7YPj9dDUlwcxcuXsOWjd1lbWUNpcwcXXHA+N9xyGxdefDE6ne6Ir4f0EU7dSN0vKUqdRrdefz2XmM28vr2S9z5fTfH+ElweF0s3rwl+/e/viDGnsnJlNZMnxzOpIPghbd26erYXNdHb4yMvLx59ejqxixfTVFqFc8UqlNVrcC5Zgj43F9vVV2G/8kr0mZlh3tsgX0cHfdu20fvll/Su34D3QKFEm5iILjsby/z56LOz0cTEoLFaUZ3GA3WkGFiTaWCklCHKy0sff8zSjRtZtW0rLndweKxarcJ8bgp797STPSadF375CLPy89GrLNTU9IQKSLt3t/KH322jp8fHnDkpTJg4tBA6MI00K9NGb4+PuDhj6DLhAwuX33xT/leO1gKwWSxcOncqEzPGhJ4/EAhQXlvLmLSDB/jPt21l2969bNu7l9+98ToWk4mLCws5HzjvT3+m6/33SX70UawXXhhaa+FYay4caWjpkYb2flV4DddVMU7WqZylGen7Funa61z8f1c9S6+xheU7V9HQuJnS0u3U1e3mued2U11dzNKlS1m3rpYXX9zJRRelc/75WaxYUc1HH1Wyb18H6enWIf/ukXrW7ng42/ooWVVL6dp6+j1+EjKtZE6KIz4tCqNVj1o9sk/YnIjCA5mQmWVDo1Zo6djJ07/9G5+tXkZFVRkQvDjFA/f8PxyOXvbsaeeGq+/n8V8kkze+gG5nYMhaU+vX1/KrX61Fp1UxaXLCkDwYPFUvM8tGXV0v+fmxOKqdlJd1EGUJFqWONrppcCZoNBrOmZFPUkLGkOKV09mFq+/g1Zt279tJRVUZFVVlfPTp+wCMy83j0gWLuPj8S5lSMC00emTw61E4aP3C6EQz51yVQ3O1k31fNrH5rQoy8mOJPiflqMc+yYORu2+Rzt/vZUZ6Ev9x/RV0pU7nw+Xr2LNnHX19XXzyydt88snbbNmyBbs9aUgeALz99j6WLdtPZ6dnyPv2bM6D4aAoCs1VFZRv3sC+L9fRXleLRqsjNj2DsefMJiYlFXtCIvoDa0KdKaE+woGRUkazh9feeY/P1q5lw6YtuD0eAKxRFi44N5E9e9rJys7hj7/+T6ZOnoQaCzU13aEC0vr1dTz1H5uIitIxb146EyfGhkZZwcG1qbKybPT29h/oI9iG9hFuzvvK0VoANquVBRfMZFzO+NDz+/1+qhwOcrOy8LpctDiq+NcTT7PPUcO+l1/h7y+/gslg4Pw553Hjt27ha9dcS3z8wYtnSB/hoJM9BozU/ZIKwWlmNhiwK1lMsy/i8suvw9G2n90Nu+j0N5CTlM2r/9pLXX0P/1rzGq3uBgqzC0gyZGGJisbv9/Pa66XBEVN58dS6zeyNn83EGRcx3l+De9s2Wv/8F1p//wf0ublEXXQRUXPnYJo2bVimvwV6e/GUldG3Ywd9RcX0FRfTX1cHgCY2Fn1WFrarrkSXmYk2ITFYhDKZRvzoruF26NpieXnx5OXF09bVxTd+/gu27t09ZPuE6FiumjuHRefNJjPjYAdgbkImzS29rFxZjdPpBYIjrIqKm9mxo5X+/gB2u4EHHxwz5LlXrqymqdFFUrKZnBwbjY0uHI7uUPAdunD54JF8h66VdqR10tRqNdGmOLZtbw7d/t/3/ZCr5s3j3RXrWVeyjZ6+Hj7cuJEPAb1Wy6a0NGrvvofeSeeR+vAjPPro3GO+hu+8szd0lYjrrz/6sN+vCq/BwXWsg/vp+PB3Mo9xKmczZN2o8CqYn0ZztZNda1Wcl3wNunm3kpqu8Oc/v0pPTxEXX3wl1dVd/OUvRZSUlPHrX1/OggULMJsLiI3Nor29j1/8Yg0/+MHU0IelkXp260xRFIXGii6KP6uhcnsLWr2GpFwbiVk2ohPNGCyRsV7UoQuW5+XHk5cfzwuvPMvv//obnN2doW3Vag2T887hissWoQQCg4pCwWPcrp1ddHa5aWwIFoESEi1sWN/A3r3t6HRqxo2LCRWLWpqDedDY6CI52UxCopnkZAsGvfaIhaABg6fTxQ/KhKNd7c/j1lJXo0Kj6iUh0cK4MRN5/YUP2LhpHZ8sX8a+imLKKndTVrmbP//9f7n/7v+PB+756ZDHu+nm/MPaoVKpSMq2U1bbRVNDD6q9Hbz6+EamXJTOpVfnotUPncIpeRD5x4yRymC2sPC79/LR/z6Nqq6IjLgrmf6t+2hq2kl19Ua02nri4sbw8MNr2bevg/fe+w8CgUby8maj1+cRGxtNf7+fxx9fFxrVcbblwXAI+P3U7t5F2eb1lG/aQE97GzqjkfiMLPLPv5i49EzM9mgMZvMpLUp+LIcuWJ6XH0defhxNLS1874GfsuuQPkJ8bAKXXjyf+bPPIzP9YFEoMTGH5mbX0D5CopkN6+vZu7cDnVZNRoaNm2/OG/LcgzMhJ9tOQ2MvDofz6H2EA9MLj9hHOMLi6xqNBpsliW3bmsnMtJGRP5k//O63rNv4JR99vJLtpSW4PH18uuoLPl31BYYf3Mvaf79DdM5M9lX2UVAQJ32EA072GDBS80CKUqdZR3sfvn4Fq1XPrJkpJDks0BNPWmoUpTvb0WjUxMUa2b15D63dbezeXwmAUW8gt24scdpMmrrOIS/vwoPrRWRasSbkEjVvHv2trbiLivDs20fHa6/R/vzzoNViGDMGQ14epkkFGMaNR5+ehjYp6YRHJgXcbvobGvA1NNDf0ICnshLPvn14ysrxNTYGN9Jq0aWmoktPxzR9GrrUVLRJyagtFtQWCyr16J8+cSYNrC3W1duNod7FvMJCAGJtNuqaW1GhYmLmGMYlTMToTuPi2ZP41s0FQLBAtH59HevXwyULs+h1+XA6+/F4/BRtb8Zi1jK1MJEah5P2dg9qNfzf/+1g7txU8vLicTi6aWrso7k52GFJTLAwYWIsFrOWXpePBQuyQqOtBkJm+YpqiouaKSvrwGLWo9GomDc/nW1bg5cPVanULFqUzdx5aUMu8z14/bS0hARuvuRSpqZP55//3Mn+1hqIbqSuuxybxUL2L37B3hffxVS8nl9deh6Tr7yCi+79BS0t2iMeoAdfJeJYc6Dnzk0/7uHuxzq4n8yB/9BQPJnHGKlnM8TxSR0bQ2V5B0mKgq+1H016LHl5V9LTcyl9fUmsWuXA7fbj8ezB7e7m44/fB94HwG7PwGjMR62+lOnT78FkMp017we/L0D51maKV9bQ4ujGYteTMzWBxCwrUbHG0OLWkcLh6KZ0dyu7923l8kXnEhcbPCtsMppxdndiNtk5Z9oFpCZOp687h1nnZIeKNEvXVbB6TR3nz08jIcHCnj3tBBSF5iYXObnBDsrsOSm0tLgABbVGxeuvlVJYmIjrQH70uvopL+/EYNQycWIsZrMW14E8SEi0DClC5eXHs2JFNUXFwUwwH8iE+fPTWbasiuLiVgoL4/nud6cMyYPBC7Ib9AZmTZ/NrOmzueT8xfzfPzZS5diCX72b/bVbmD/7wtDrsnT5Kmqb1nHtVdcRY5tIdrb9sBFbX25sYteuVqYUxHPh1CSKV9awb1MTc78xlnEzk0KFS8kDEU4mq5X06eez6/PlzI//jPTZ91DeMJ+WljTGj4/h889r0Go1pKZa+OyzTfT0tFNSUhS8rymK+vopqFQTaG9fxNy5N8r74TRRAgHq9u1mz7rV7Nuwhr5uJ0arjfiMLHKnnUNsegYmqw39MJ1kH1iwvMvZiT3WzcypUwGIj42lrqERUDE+dwKZqQWo+jOZP3cy3/pWMA92l7Yd6CPUccnCbHpd/TidXjweH0VFzVjMOmbPSaXL6UGrVdPV5Qn2EeakkZcfh8PhpLHRRUuoj2AmJdlCV6eHzMyDBazBhajlK/ZTXNRyoI+gQ61RM38+bD3QR1CrVcE+wtz0UIHq0EXZU5OTueGarzNp/Dz++c+d1DVWoDdWsL9uF1aDji9efBbU/0e/MYvf/XofX7/xKmbPuZzGRpX0EYicY0BkfbILs7q6bjZtbmR/kwGjUYveECwQ1Nf14u33U1XlZPKByyXHJj1IfW8Vu2p3s7WshI7uLkrrdwG7cLh3MG/mxOBw+kwrm4oqmTklm+QkK53qKBzxhWQUzibJ4Ke/uhpPRQW+piZcGzfg/PBDGFjUTq0OTZtTW62oo6JQGw2gAIqCoigEXC4CPT0EurvxO50EuruH7JMmNhZtQjz6nBxM06ehiU9Al5KCJioKtdmMymCQItRxGCjyTJ4cT1XbXl7b/AkbXtpGlNnM+r++REN9H5mZVn73owdR9UcxY3IWba19oYP+wIikou3NFBU1E/Ar9HsDzJ6dgs2mo6XFR+nuNrq6PNx2ez4//el5bNnayN+fK6at3U3V/k6uvXY8FrOWpGQToJCUbGbylHjKyzp495196A0aJkyIYWphIkuWVFFX3xNqvwK0t7np7PSSlhpFZqaVd9/ZR1NTH6igZGcLGZkHF0w/0mW+Aerre9BoNEzKHst1111OXl48Hq8XtVZL3NevpCghnVf+8EuUl15C/dJLjMmcwrU33cljj32P5mYvu3a1Ybfryc6209vbH7paxMkYOCvhcHSxZk0d8+enHXGNHzi5A/+hoXisxzjaGZKRejZDfLXq6i6Ki5sJmLXUevpJQ4e7pJOF89NZv7WRLVuasFj0TJkST3LydXzve5fgcGzm00+XUVa2g66uGrq6avjXvz5l/vwk0tNnY7frcTo76O7WAfaIm77R1+1l15p6Sj6vxeX0EptqIW9OCrHpFix2I1pd5GTNQKEnNd3Phi0f8/7Hb9DUUktn96PMnvENMjOtXH7J1dijkomLyScnO5rW1r5QcWhgFNHKlQ4cNd30e/3MmZtOn9tHn6ufuvoeNqxvYNzYGObMSceg17JmTR0rllfT6+qndHc7N980kRkzknDUOKko78RmMzBjZjIvv7yTdWvryB1j5+qrxg7Jg4Er7SkKtLW56RiUCSUlrbj6fJSUtA4pRB0tD1qaeykubiY+Lp7U5Cu54or7GDvOHpq6l5lppbJ2FavWvsenq97AFpXAxed/jfu+/11ys8fS0tzLjpJWoqK0jBkbzaw5KUydk05mQSx71jew/PlSSj6v46LbJhKbfPSF1QcMzoSlS/dTUBAneSBOm/q6bopKnFS5pjHGsI2mL/7GzCvvYd/4GNxuH8XFLVx0UbCDnJPzPL29pZSXf0lR0Vo6O9uprFwPrOfjjzdz2WUzQ+/Pzz4r5qKLppCdHR1xmXCmKIpCU2U5e9Z9wZ71q+ntaMdotZGYlUNsegYxKWmYrFZ0BuOwFKIGijyTJ8XhaNjJx6s+ZNvOLcRGR/Pui69TV9dLZqaNpx7+FWrsFE7OHtpHODAiqagouP5eIBAI9hHmpGKz6YN9hNI2ujo93HZ7AU88kcaWLY38/e87aGtzU1XVxbXXjsNi1pGcHBzRlJxsZvKUBD79tIovNzZQVt7BzJnJWMw6liypPKyP0NbWR2en50Ae2Hj3nTKamlyoVFBS0kpGhm1QJgyd5jegvr4HjVbNhHH5XHft18nLj6PP5cLV2U7Z1iL27NzB8jWfsnzNp6hVKsZkTeH6b97JY49/n8ZGt/QRRjkpSp1GZWWduFw+UlLiyMmxhT6ATZ2aSFVVFz09XppbXPT1+Sgt7mH+/Kk8+aOb2bS5ns82lODoqmCno5T0uNRQ5761rYfbn3kQo97A+NRxWEkkOzGLhbMLSUuJJTNzHIlTp9LU6KSuohVfdzedZQ7GxEOCyY+/uxulvx/F68Xf0Y7fHwg2VnXgP3o9aosZTUwMer0OdZQVjTUKtc2GJjoGzUDhaeArAqZKhMOy1bt4b81KKl/dSWdvZ+j2WEs023c6qKsKUFbWzoIFBUPWcho3Lpa4eBMORzdr19TR3t5HdrYNX7+CRqOi2uHE6eyns9NNn8tHe3sfK1dWs2BBFpmZVtxuP15PgLraHvbuaSc52UJigoXEhGDYJCZYePmfpdTV9WCz6dlv0FCyoxW9QU1aalRomG5CggmNWkVNTQ+zZ6eQmGDBbNagKMG3UnubG4tZG1q/KvgcR+oEqIiONjBtWhJ5ecHOjeHAAueJCRbOuXgy99fcxpJVn1LW2UyZYwf//d8P8Ne//op5864kI+MyUlPHolar+N73Ck/pMtYDZyXWrKmloiL4b/LKK9OOuO3JHPgHX171qx5DhuFHnl272igr7yAxwcy4wgQCfT5ULR76d3eRbDbQouoDFLzeADt2tNHaauH++3/I73//X7zxxjbefPMjWlqK2LNnIx5PBhs21NPT08/y5c9RWvomqanjMRjGkJIykSuuOJ/Jk/OYMiVxyFDzt97aR11dN9/4xvgRvUBuW13PgdEtjShAUraNceckEp1kwWTVo9ZEVu54vB5efv11Pl/3b5pai1EIXmfbaLTQ2NjJ1q1NB/Igi8svu2TIfceNiyU+3sTadfVs2lRPbKwJnV5DVqaVivIO+tw+ou0G9DoVlZUdvP76Hm66KXiSy+8P0OX04nH7aWrqpb6hl2i7gYkTYsnMOPiZxeHopqPTQ1WlkxUrqnE4nNijDaGpfAsXZmEy6/D7/Gi0GubOSWXV5w7c7uAV+6xWHZ1dHpJTzKGpfEdaj8rh6Mbp7Ccn2xYalTVYQqKF795xOxoNrNmwDGdPC+8veZ73lzzP5PzpzJ55FSrfDNQqLYsuywkt3h6bEsV5146hprSD8i1NvPHkJqZcnM55XxuD5hiFzUMzwWLRHfF4LHkgTkZZeSe9vT4SUuKISb0Spe5z9n30Z86ffCN7mpNpb3dTXe2ku9vDypUd3HTThfz977/go4/Kee+9z+ns3MHevRvJypocen84HC384AcXYzbbyMmZSiCQTlpaHtdccwHZ2cmhTuxAp7avr5+dO1vPykXTFUWhtaaavetXs3vt5zhbmtGbLSRm5zD2nNnEpadjjLKhNxqHvW3LVxWz9LNl1P9tOz29XaHbLeZoSnbVUFXRT1lZBwsWFA5Zy2ncuJgDfQQna9bU0dFxoI/gC6DWqKmuduJ0euns9OBy+Whrdw/qI9jo6/Ph9fiprQ2eREhJDvYPQn2ERHMoD8rLO+nr89PS7DpCH8GMRqOixtHN7DmpJCaaMZs1oBwsWFnMutD6VYmJ5iOuSQVgtxuYPi2JvPxgccZkNmMym4lLTWfM7POo9Gj5YsMa6tpaKNtfzK//60f86Q8/Y97cRWSPvY7k5BzpI4xSUpQ6jcaNi8Y8MZaUGWNCHfItWxtpbOwlLs5EV5eHpkYXFRWdNDe72LS5kdwxMVij9CycW0hX5wTm5l5IUpKZ6Jjg4tMlZZWAih53L9sqiwD4ohJe2gjx1nhuuGARD976TT77vJbOLjc93f20tdpoT0jg5muCwzkVvx/F72fv7mZ27mhm0qR4YmNNfPllIxWVHehNei5ekM3E/EQZ9XQG/OWdd3jkzT+Hfo6x2hgfNxmLawz5WbmMSU+hu60Zp9OLwxEcqeZwdNPV6aaxMTiENjPTSnt7Hw6Hk/z8WGbMScHpDC5uWNPppLKiC0VR0GpVrF1bx0cfVjJpUhzpGVG43X7S0qMwm3Vs3FiPxaJj3vzgh5EtWxspKIgFoKAgll272unu6Sc7zsYVV+RQX98LKCxYkIXD0U1/v4LeEDxsNDX1oVJxoMAJS5ZUERNr4N139nH++WksWnRwLSsIjharqupizJhoJk+J50hirFby48+lf1wud6a7qdjxbz6uLqeh28knn7zGj35UyMKFC+jq8p7ycNWB+6elWXj33TJ8Pj/r1tWetg9q118/4bgvr3qmh+DK2dPhV1AQR09NDynJZtJzogFw9/az+u0yUnr9mDOiqavtYf2GOioqunA4nKSm7qOry0t6eiLf+c6tNDdfS3l5J1ZrDGPGmCktbaW7ux5FCVBXtwfYQ2Xlx6xb9z/odCbGj5/EK6+8SV1dgObmXj74YC+trV6iow2Hva8PverMO+/s5dlni4mJMXD//TPOeIfF7wtQVdxKyRe11O/rxGDRkpEXR0JWFNZYU8SsF3Uol6uXC648h7b2ltBtqUmTsRlnM2vGQubPy6WqqiuUBwmJltCoqMFrRZWVtVFT082E8Vquv248ZrOWPXs72L69idraHjweP05nP1u2NFFc3ILBqGbGjGRSki20tLpISrJQX9/NihX7mTUrhXlz00L5c9FFGUAwdzo7PPj8ARLiTdQ39FLf0MOUyQlMmxpcUHfixFjy8uP5y1+KCChgMKiJiTGyZk0N7j4/y5dVUzApjkWX5RxWdPJ4fXR3e5k0Oe6IRSuA2bPmUV0Ri91wIwZzGXsqV1BUso6S0m10dLbxqwevRqU6fBSWWq0ma1IcKWPs7FnfQPGKGsq3NnPhLRPJOspx9kxmwkjKA5BMCIdxY6PpqYll7OQxJCaa6Xdns/yll+kueo209AU0+8ZSWdnFtm1NVFc7+fDDSqZNSyYmxsj1119Mc/O55OffSG6unaQkCwUFcXz55WbUag29vR3s3LkKgNJSWL4cYmLSufnm7/HTn97Piy/upKWll/Z2NzU1vcDhCzsPzoT0dCtvvbWPzZvriYrSc+edk0dtEau9vo69G1azZ+0XtNfXojMaScjMIWvKNOIyMjHb7OiNZ35d3qP524v/5A8v/CX0c2xMDBmJU6F/AhPGjCEjNYm2loE+ghMITvHr6vTQ0Bj8t8zMtNHRUUF1dTcFBbHMmJ6Gs/tAH6HGTUVFF4oSONBHqOXDDyuYNCmejAwrHo+f9HQrFouOjV82YDbrmD8/DQheTW/69ESMBg35BXGU7mqju8d7oI+QS/2B0VLBPoITrzeA/sBafo1NLlCB6sDXkiWVB/oIZcw/P43LLx9aMNpd2kbV/i7Gjo1m8pSEI75WCfHx5E24Gm/feaSleyiv+oK1WzbQ5epl6Yr3uCPQQV7erRjTZ0of4QSMlDyQotRplJZmxZYXh37QCJGBD0pdnW6irHpsNh2pqRaKilrIyrKydWsTNpuOBQuyINOKPXrootFXLihkYs7z1LQ5+PiLLezaX067p5HW7lZau1ux2rSU7GildFcbHX2tvLrjryRYE9nnz2JfTw52czTagIXslCRKtrhoae7HpzMybpyeDUXtVFV2oSgq/GodeZMOv0S0+GqHLva9u7yOiqp2Zk3NJTHBwsJzzkGtVpOXOpGLJs1jYmoejqoedu5sw+Xqp76+l8QEC0aDlq1bGnj99d1ERelJT7NiMKhDa0XFJ5ioreump8dHY2Mvag0E/NDfr6DVqtHpNKSmRVFc1IzL5Wfz5iYmTIzBatURE63niy8cNDW5SEoyc9ll2Tgc3Wzd2oRGrWLq1AQmT0kgK8seGg7c6/KxfXsTigL2aONhUzDmz0/jww8r0GjU+P0KdfU97N7dRnd3cEHFgaLU4KmH5eUdWKISDhtFNXgNq8GLKd7wzXnc8flGyla9w4dNTfwoU0f27FRUajXPPfccK1eu5O677+bCCy88rAP7VQfZwWclmppcrFjhYMWK6rB88DodQ3CPtb9ny1mWkSQry467MBGfLxC6zWjRUXhZBqVrG1E192H0K0yfFE92to2oKD1ms5aXX97FZZflsHjxJKqru0hMtIT+TQsK4sjPfwGvt40XX/yYkpKtqFS11NTsxevtw+HYS02Nj08/rcbl8lJW9ic6OvbxzjsTaW6ehs2WRCBgZ9asiXzySQfr1vWGruj07rtlrF1bC6iJitKfsb8DZ1sfpWvrKV1bT193P9FJJsbPSiIuI4oouwFdBKwXNXiB7kAgwOdrvuTiC2aTkGjBbLZwzvRz2bR1E5MnXMacc66msV5PdbWTxnova9bUkp5uZczYaFpaennqqQ0E/AFQqZg0KQGzRcf2omY8bj96vYZ+nxIqDmVmWNm1s4X29r7QNIymJhfNLX0A6LQtTClMYM3qWly9XlZ9VoPH4yM1JSqUB2Vl7RQWJrLoshwyM620tvaRkGDCYNSyfVswD6LtR8iD89NYs7oOu12Pq89Pb6+btrY+vF4/Pb1e8vPihyyw7nB0U1raTkuLC0e1kzlzhr5+O0paAYUpkxMGLbo+lfj42yneUUnJ3hWkpiSwcGE2EBx9dsMdV3DZxVdx/ddvIiY6eLJFb9IyZUEGaRNj2PF5LR/9sZjk8XYu/84kzPahV8waKZlwuqZkSCaMLKlpVtx5ccQcGCGiMxqZ/rWbKP70A/pqVzDeUAs5X2P8+GiWL3cwaVIcn3xSRXy8kcWLJ1FQEEdi4tB/zzvvXMT06UU0NOzlzTc/pbS0CI+nms7OBjo6aklMNLBqVQ1r1tTS07OfLVt+RUxMBgZDAQ8/PAmLJQGfz0ZOThYffdRBZWXwWHHOOSl8+GE5RUXNKMrBNdlGi+621tCIqOb9lWj1ehIycyi4cCHxGVlYoqPRGYdnjajBi30DFJfsD06NK8gGYP555/Lbv/yNsVmTOW/6heRkTKK6qpudO9vodXmpr+8hMcGM0ahhy5ZGXn99T7CPkB6FwaAJrRUVH2+ktrabnp5+Ghp70WhU+P3KgT6CCp1OT1paFMVFLbhcPrZsaWLChBiionRER+v5/HMHzc0uEhPNLLosG4fDGewjaFRMnZrI5CkJZA/pI/SzLdRHMBw2Je/889P54IMKtFoVPl+wj1C6u42enn6AUFFq8NTD8rJOLJaEw0ZRDV7DanAf4Zvxc9m/v4Pahp0sX/ExcyePp3bDv4F/894/PLT2Kzz4819wwQUXSB9hFOTB6P/0N8J0tPdR09o4ZBh8ZqYVMq2Aivr6bno9AW67LZ+4eFPoSmgrV1Yf86pns8+dQ25SLp+vcqAoMPO8WFQWJ9kpKVSUevD5AjR0NuDz+2jorKdhWz0rtm0Y8ngXjVtEQex5ZGXacCmtrKx5DZdbRcCnoWGzmc2PLCMuxkKMzUxGUhJ3XHHFkMsyiyMr2dHC1q1NWJN72Fb3Je+u+pzCzEIeVt8HBD9YP3fPb6ipCi4o++X6Znp7+/H5Fdrb3XzxRQ0msxa9TkNZWQftHW4M+uCINa/Hj9sTXCMsI92G2aQjPz8WvUGLxaxl9epa6ht6iI01EGXVY7HomDkzkY0bG1EUqN7vxOv1s3NncOpmv8+PokCvy0dmppWysnbKyzrp6HBjjzYyc0ZyaFpdc0sv06YlAQoWs3ZI4a25pZfcMTHcc89Uqh1OYqINdHR66OvzUV7Wyfnnp4Ven4FFzw0GDQkJZrIOmUMOUFTcTHFRCzUOJxqNhtmzU0LtSLxhAZMuP5eL3niDvuf+TtWataT+5hn++Mc/snPnTt58803Gjx/P3XffzR133EFsbLAzcrwH2erqLiwWPTNnJh3zErPHEq4rbwy2alUNn35adaCgceRL4UbKYoijRWubi1pHNznjooGDeXDRN8axd3szFZuaKMBAW4KBBd8cR3lFJzt2BNcaWreuNjQiMCvLfsjIpnPQ6+PYsGEhWq0Kr9dHenofOTmQl5fA1q1NbNnSRVdXDR5PByUlGygpGZoHBoOFKVP+gtPppbq6i46O14Fi/H4Dn30WzZVX/oukJBsJCTZMJhM33ngj+fmHXwHteAT8ARyl7ez8og7HrjY0OjWJ2TbGz4oiOsmC0apDo4mMUboDV7Rrbmnn4+Ub+XTV6zQ0VfOU/z0SEzIAhTtu/AUL5vjp6PDS3u6iqqoDl8tHf78fp9OL0aghJ8fO6jV1VJR3oigKCQkmUlKiACgtbSMqSsecOWnk58di0GvJzLSy6nMHdXU9RMcY0Ok0pKVaGDs2mrVr6+h19eN2+9i6tZGuLg9OpxeVWoXRqCU9wxrKA6fTS3Fxc2hpyhkzk8nLj6eluRebzQAoR1wbakxuDBddmBla9yo62sCOkhba2zwUTIobcp+BApjH42PsuJjDrvDncHSHCmD19b00N7mYPScltJ7VwoWTWbhw8pD7LFu5hK1Fm9latJnf/Ok/ueKSr/GtG+5gxtRZqFQq4tKiiBpno21HG00VTv716EbO+1ouky9KH9JZGTgOT5o08FySCeL0ae/oo6K+MdRxr63rZerl11BTvIHaoo34Kl+i2f41nnpqHunpVl58cSeVlV28+OLOw96LgzPh61+/hszMKbz88i4UBa65JpW4uHYmTJjAZ5914fUGaGmpwu/30tpawcqVFaxc+cGQxyss/C7R0QuYNCken6+aurr/QVEUvF4tq1bZufrq10hJsZOQYCMnJ4c777wT9QiaXdHX003ZxnXsXvs5tXt2oVZriM/MIv/8i4hLz8ISE4PBbBn2EbglO1rYsrWR6LhO1m5ZzpfbNnD+eRfyn798mJIdLYCR//jpX6jZH+wjbFjfhMvVj88foKPDzRerazCZBvcRPOgH9RG6e7x0dXqYPSc1+Bk7y4Zer8Fi1vHF6lrq63uIizWG+ggzDvQRUKB6fxceb4Bdu9rx+QL09wdAgV5XP5mZNsrKOigv76S93Y092sDMmcmhaXXNzS6mT0sCwGLWDbnKXnOzi9zcaH7wg6lUVzuJjjbQ2emhr6+f8rIu5g/pIwQXPTcYtCQkmMjKOkYfocaJRq1m9pzUUDsSE83MIo3rvn4ZSiCAs7WF6pIifv3Ub2hxdvPRsuVkpiTzvbvu4t4f/4To6GhA+giDjZQ8kKLUadbY5GJvmxL6eWBtqJkzkrFHd7Ni5X6cXV4sUVpuvimfBQuyWLmymr1721m/rp60tCgWXpJNYoKFouJm1q9voGRHK7fdlk9mpjVUJCiYmEBiwlgAzNpeQMXMziSuVWaijeql2dlMdWMjFbUNVNc30dzZSpTejkajpq/Ph0/Tw576faF21tZBUV3w/7OSk5kydixzp0xhQtbJ/QFGsuaWXkp2BItNiUkm3lm1ihU7P6Oxu+7gNp1t1NZ20dLipq/PR5fTQ2eHB4NRg8mkxWbXU1vTjVqtoqmpF5NJi6KAzabD7fah1qjxevzoDWpcrn7Ky9vp6Yli8uSEIQWpZcv24/MpmM0abDYjfX0+rr9+Aq6+ALt2tgWDTK8hMdFElFWPq9dHUpI5NPoqK9NGcVELHZ19bN3SQFenm8lTEoYsoJiXF8+WrY1Drqa3bm09mzbXM+ucVG6+6cgd1d27W1m3rh6DQU1qarAz5erzUe1wMnZc75DRUgMF2d2l7dTWdgAwZ87BsxGaqCjivvMdegsL6XrnHaquuZafTL2YlYXn8O9/v8W+ffv4yU9+ws9//nNuvPFG7rnnHgoK8lm3ro7nniumr6//qMNkd+0KLhB/ySXZJ30G5HScZTiVx1i3rpb33y87cAZKOez3kbYY4mhRV9tDRUUnGkOwuD/4CmQTpiXS1dfP7nUNxJt1bH29jAtumUj1TCeVlV08/vh6uro83HDDBB56aBYrVlSzYoUDhyO4zs+kSfHMnp2K3a4fUrwCWLx4EllZdmbN+idebwM2WxcdHXXs2VNBWdl+Ojsb0WotmM16uro87NrVRkPDLvr6dgKwf3/wa8CVV16JRqM54aJUW10PezY2sndjA33d/VjjjIyZnkhcehRRMQb0psiYojd4ZE9lVSXvLXmRCscq+vvdABj0FjZu2kZ8jBqjQUtMrJEdO1rwevykpUVhteqDFx4J+NFoVOi0Gurrg1O4NRpQCI6E7en20t3toc/Vj92uZ9rUxNDV7Vpb+1jycRXtHR6amnqJitLh6u3n5pvzyMqy8fbbZQQCoNeoMRq1xMYZibLoiY0zYDJqWLmymswsG01NwSzo6elHpw/+2wyMmGpp7qWwMJGERAtbtzSG3s8Aa9bU4fcHuOKKnNCVARddfsgU7tJW1q0PZoJao8JgCBbfXC4fLc29oZFUmZlWpk0PftbZuLGBivJOYGgmHGpK/ly+f/ujfL7+bfaW7+L9j9/i/Y/fYvyYiXzrhju49upvkp1tZ8/eDqpqnBRmRLPmzTJ2b2jg4jvySEgPFs0GjsOzZ6d+5WXHjyWcmTBQrPB6gyehJBNGjqZGF5UNntDPA39DMy9diMtnoXnH58T1vsiq99r55W++zeLFk3jxxZ1s3FjP22/vY8KEWO68czJZWXZWrKjmnXfKWLWqhqeemkdBQRyXXZYDKMyenRn6973ooi5ARXNzNopyNfHx3bS1Oaiurmbv3goqK6tpaqrH57MTH2/CZNLhcrVRUbE11M6qquAXwJgxY5gyZQoXXXQRY8YM/Rsfbv1uNxVbv2T32s/ZX7wNJRAgNi2DCbPnE5+RRVRsLAZL1LAWz5qbXQeKTZCQaODDZUtZv3UZ7V0H+wj7q+tZu7aGioou3G4/XV0eOjo8GI0aTCYNdruempoAarWapiYXRmNwfSabTY/b40etVoX6CO5WHxWVneSOsYem0Q0UpJYv20+/L4DFosVmMxzoI4ynr8/Prl1tmEw69AaFxISBPkI/SUmW0OirrCwbxUXNdHT42bKlka5Oz+F9hPw4tgzKg8REM+vW1bFpUwOzZqWErth3qN2lbaxbX4fBoCH1wAkXl6uf6monY8fGDBktFeoj7G6jpiY4ZXDOnLTDHlOlVmNPTCJ58nx+dLeB1es/5osvN+JoaOSXTzzJE//5NJdeMI+fPvwIBQUzpI9wwEjJAylKnWbJSWb6E2IGTdvz0NXpprmll8xMK7POSaWtrS/0B5aYYGHBgixKdrTS2elBo1ENKRisX1dPR6eHouLmA0Wsw9ddCD7G4dOh1jnrmTfbyNx5wbUi/vXyTqqqOklPj+Jr14/lhV8+QrvTicvdR3uni5a2HlAFCPjh54tvIytdzqAdicPRzfbtTRTVbmVt1Qrae4JFFL1Oxw0XX0ymaQpddWa6nP1ERxvp6OyktqYbny9AQoKZlJQo/H5/cHHwKB1xsSZaW13UN/QQZdFhMAQLh/X13aSlW+nr6z+wthNkZdnYvr2J6GgjGzbU098/sECujsxMK/n5cXg9Ptrb+tDr1UyYEENsrJmGhp7g8wYUduxopr3NTenuFuJizTQ29uLzBfB6WnE6+7FHG/ls5X527GilxuEkLy+ezEzrkPdyW1sfzi4vbW3Bod67d7eyfEU1AJcszCIvL56i4ma2FzVhs+nJyw8+RnOLK7RWyuCiVFy8iXHjYomJNrBrl4GCgli2bG0cMpUVwDJzJg51Ap2vvc55m5dRmJPPH7YX8dbKFfztb3+jqKiIl19+mZ6eHt5991327+9i69YmLBbdUQPndJwhCPdjrFhRTV1dD+PHx3DRRZkn3QZxeqWlR6EEho4sMZu1bN0SfG/njI2mrrGXjhY3iToN6/65h4JxdtQZAYqLm6mv7+Htt/cxe3YqCxdm0dnpYdeuVnbsaAU4aqc5K8t+4EzYJCD4geTtt/cxZ841/O//TiAry86NN77PihU1FBTEUlAQxzPPPENNTQ2dnZ00NHRSV9eJWu2np6eP6667ittuu/a49tnl9FK2uYk9Gxpore1Bb9SQkGkldkYU0ckmzFbDMRebHo0cjm7WrN3Fms3PUlWzgYEPfePH5nHB7G+AtxCfX0e03UBnp5uNG9pwOj1otBoSk8yMHRtNeXknZrOWuHgziUkmtm9vormlD7UK9HoVLlc/paWtuD1+3H1+7HY9mZlWdpS0sn1bEwaDhl5XcFpEIABqjZqsrODi5evX1+H1+oiNNTFjZhL79ztJSYkiJ8fGmjV1vPLKbnR6LWPGBD+UVlZ24Q8oFBW10O9VKN3dxqYvG/AduFDKwPG8s8tDZ5eb1JQo/P4AdfU9FBc3k5cfz9JPKli9po7z56eFilPFxc1s3x7MhIULs4OvR5d7SLF2QLTdQGamFZNJi9GgpaAgNvR3c+j6U7tLW1mypBqD5jye/Nn16EyNvPrWi3y49D32VezhsV//nNmz5jNuzASam1zsLutErddy09fGsndjI2/95xYmX5jG7GvHnLYzxuHMhIEC9syZSdx+e0HYz36Lg5KSzejtltBIqeDnKg/NzS4mziykzWlAqVuHoeYdlj/Xy0Xf/j6LF09i1aoamppcaLVqli/fj92uZ9KkeN5+ex+Njb2sWFHNo4/OPWwEBAzOg4PWrauloWEfixZFccMNE3jxxZ289NJOtmxpZOHCTK688lxee+012tracLlcNDV1UVfXiUrlIxDQ8Pjjv2LMmKRhec0O5ff5qN6xnd1rP6d8y0Z8Hg/RySnkzphFfEYW1vgEjJYoNNrwdHEdDifbtjdRWr6e4r2f4jzQRzAYDHz98suIt86gud5EbW0PMTFGqqq6qK3ppt8XICHBRGqKHX8gQHu7G4tFR1ycidYWF3UNPVgG9RHq6p1Yowx0O71otGra2tyU7Ghh2/YmYmJMB/oIwWO20aAjM9NGfn4sXq+ftjY3Op2aCRNjiI010dDQe6BvEmDHjmba2tyUlrYSF2emodGFP9RH8FLf0MuXX9bj9wdzLi8/jsxM25D3cltbH12D+wilbSxfsR+ASxZmk5cfF+wjbG8O9hHygo9xsI/gHFKUCvYRYoiONmC3tZFfECyEDYzMGmx3aRtLllSi1li589YH+a//iOLt9//NK2++zf76Bj5a+Tl15WX8/LuL6axMYPs2nfQRRggpSp1mMbEmkrIOrs1kjw5OXbJHdzNzRjJz56VSsqM1OJwy3hS6StlVV+WyYUMDfr+f8vLgAcwSpSU1LYo+l4+Wlj52724lLy/+sDWMjmT5imo2fdlAXJyJjMzgB1OtTksgAK2tfaTEx3P9RReFth94zIHFtVua+skaPdPHz5gjvdYWs5boaCOmLj/tPR2Y9Raun3cZP7zpOno61ezY0Yyjq5GeHi8ulw+Xy0ufO4BWA6AKngnX64iNM2Iy6ejocNPR4cHXH6Ct7cAZNFVw/fBAoBtFUfB4/Xj7A9hsejo7g1MvEhNN9PcHiIszcdFFGZhMGrZubebLL+vp7PQQCCjodBri4ox0dLiJizPi9vjoc/no6/PhcHTT29NPcrIFjVZFe7ub/dVdtLb00t7uwe320d4ebE9igiX0XoZW4uJMTJuWxNy5qTS39LJkSRUlJcEzQ/3eAHHxpuCc8x4fcXHG0Os3sGD6odM/Bqb4TZgYy4MPjjlsZNbgf4v161vZ5Szk4rgU5jYW03LTTdz0+GN8b9s2Nm/ezN/+9jcWLryGJUsqmT8/je7uBpqb/8m2balMnz79sH/j03GGINyPMTCkeOHCrBFxtkMExceZibYbMduCV5g8dITJjJnJzJuXxo6SVgJ+Pyk6HW37ncR5/Hx7YS4fbaqjqdPDihXVLF48iehoA16vH7c7OOJxwFcN6/7HP0r44IMK0tKiyM+PJyvLTmenF58vgMmkO/DeW3jY4zU391JR0UVcXOox97O3y0Pl9hbKtzXTUNYJKhXx6VFMnJ1MbIoFk82A3qSJmFFRA8ewgeKI2awlMTGOhuYSQCFv3Gxu++b3GZs9ncqqTjZvasRiCbBnbxtNTS76vQoaLZgtGsxmLSazjoQEE3qDhv7+ACU7Wmlt6cPjCXYoPJ4ALlfwynZqjYr+foWOzoHRFgqdXR56ur3ExZrwev2kplqYMDEWV28/z/19B32ufvr7leDUcIOGcWOjcTq9gIq21j5cLh96f4CK8k50ehX2aAMejx9FUdhf3UVbm4uWlj5iYg5egS8h0UK0PTgNr6U5OL3OUe2ksDCRluZePv64iobGXrqdXmbMSCYh0UJhYSI9vcFMmDI5PrSIe7R9aCY4HN2hv5E5c9KZMyd9yN/NoWtTrV9fx76ydjIzbWRl2UhITKFw0jQefvAJ3v/4LUr37iTaGnyMgoJYNhW/gjuQS3R6HvNuHMfeDQ2UfF5L5fYWLrxlwildsWlAODNhcB6MpnWAzgaxMSbGFAzuIxjYs6c9NDVq7sUTKS6Kxlu3jZLPlrG/eCuX3v0AP/zhtNBiy1u2NAEQHW0gLs5IW5v7hPIADs+EhQuzePvtfTQ1uVizpo67757GTTfddNhjDmRCRUUvE45vjebTIuD3U7t7F3s3rGHfxjW4e3qIio0ns2AKcelZ2BMTMVptaHW64WsUQ9eLGiiOWMw6YmKMmCxenD0dmI02rrzkar5z6w10dsCOHc3s62qkp8dDr8tPn8tLn9uPVhO8cpBao0anVxMbG+wjtLf30d7hpr/fT1tbcF71wOLhPd1eAgoY1VrS0oKjjbq6PHR3e0lKNNHf7yc+3sQ55yTT29tPaWk7ZWUddHd7g30ErZq4OCPt7W7i4gy43X5cruBnDIejm97eflKSLQQCAdra3TQ19tLe1kd7uxuTSRuaapeYaMYebWDr1iaaW1zk58dhseiYWphIc7OLJUsq2V7UDAqYzTry8uOCfYTe/gN9hODrNzDSK/OQZT4GpvhNnBjLgw/lHjYya/C/RTAPOsjMtJGZacMaZebbt97C4lu+xbbiHfzztdeZmZ1NfWU1uYEirs93s3W3k5UfBbj4yqsP+5wS7s/3p+MxRksfQYpSp1FdXTd1u9tIMR9cyPnQxUBLdrSwZEkVPl+AXaVtxEQb8HgC5OfHMnVqIvX13cTGmomLM9LcEry0Z2+Pj/LyDtatq6fX5RtyVbZDp1kNcPf1EwiAyaQJFQSuu3YsGzY0MHt2ypB2N7cE18BwOr2MHRPDhImxhxUNzlYDxZL9TbWs2rWKvLQ8PA1JaDQqbrnsCrRqPZa+XGaMSaWnU83WrU3sLGmhq8uLz+/H1x9ApQKTUYvdrsNq1R1YoNBCa0sfVZWddPd4MZu0GI06el39KAEOnB1Xo1ZDT48PjRp6e4KL4FZWdqHRQlKShW98YzwTJ8bS6/Lx6dIqSncHp+xptWrcbh8VFZ1kZ0cTExO8xO3UwkR8/QqrVjkOhBJcckkWzS0uPvygAm9/gK1bWygoiKO1rQ9vv4/33tvH3HlpQxbtd7n6mTrt4NQ+jUYdChGNRoXD0R1an2r37tYha6aVlbXj9QQDz2LW0uvyYTFrmTAxFotZy5atjbS29NLY2EtOju2wfwuA2DgT3rzpNKefQ9LGD6l/8CF6PvuMGU8+yT/+8Q+WLKkMTcHIyyvnv//7LWbMeItzzjmHu+++m29+85tYLEcu6I5Gc+emH7XzcaQPqIdeeU2cftXVXRQXN5OSbA4VpWBoJgysP7RtWzNOp4e0NCupyVFkxRig08s1+Ul0+PzkpkSxc2crra1uILgOUFOT67COAkBtbfcR/20HPsTa7cG2fP/7hSQkmEOXIx7c7hdf3Elrax8zZiQze3bqYWfmFEWho8GFo7SNyqIWGiq6UKkgJtlC7rQEYlMtRMUYMZh1qDWjvxA1mMPRTcnOBlZ88Tb767bww+88wyef7Eej0XDReT8i4IvjgvnTGZcTy5497RQVNVPf0ItOp8bV24+vX0GjAZtVT2KCmfh4M3PnpLJnbwdLl1bQ0e7BbNZisxtwufrx9kNAAa1KhVarRq1W0e/10dnh5plnNuH1BtBogyOpDAYtt9+Rz7ixMaxcWc327S1093gZMyYai0VHZ5eHzZsaWXR5LgajFlCYf34aRUUt+Pr91Nb2oNHqDkwJdFJT002URU90tJ4oqw6TWcOeve3Ex5tISLQMWYfKoNeGpu1t3dJIXLyJvj4f8Qmm0FUEB9aEKi5uprW1L7T+VGaWLXTlP4DOLg/JKeYhowo93uAFPnJyh2bCQMckNtYYmsoIwcKVzWbn9pu/G2rTnj3tpKRB8e632LzDyxvv/y/XXHUD37phMbPG51K6tp6P/rSD3GkJXPCt8ZitQxdCHy2OlQcgmRAu9XXd7N7dxlhtdKgjfeji0CU7Wli6tBqfL4a8nHPwde7m7f94GEvGNC4+/0oqHV5SU62kpUVRXd3NyeZBT48Xv1/BatWF3gePPTaHd98tO6lMOBMCfj81u0rYu3EN5Zs20NftxGS1kZQ7jrj0TKKTkzFZ7egM4fs7HSiWVNfuZ8O2T5kycRYt9fGoNWq+8bVrMBvtqPrHMWV8Cp0dsHVrEyUlLTi7vPj8Afr7/ahVqmAfIVqPzarHatWTlmahtbWPqsoOunv6gycvBvURVGrQ6dShJVkCAVi50oHFoqOyoguNVkVSkoUbbhjPxAnBUUlF25vp7ulnzBg7ZrMWV28/FRVdZOdEExs7qI/gU/jsMwc93R4CfoVLLsmiqKiZqv1d9PT0U1AQR/aB40ZwBF8vc+emh9agcjq96PWa0LS9LVsaUWuCxS8Ugt8JjrDKy49jd2nbIX2EDrxef2gaYq+rH4tZx8SJsVjMOrZsaaSlxUVTYy+5ufbD/i1ANSgPglcrTEw0o1KpmDG1kBlTC4NFrdJmsnLdrPjwJVZv38rCq79ObnIit9zwDX74s1+QkHr49MDRarT0EaQodRqVlXXSvN9Jf8LBqUkDI6EOUuHzBejq8lBR3onfH0BRgpVtRVFQFLjo4szQh6vMTCvbtjZSWdmJ3+9n7552kpMtocLRypXVFBe10NsTvJJCWVkH48ZFk5ISRUenh1nnpISef+CM46FKdrRSUd5JcnIUk6fE8/3/eYJVW7fy95//nBsuXjAcL92IVFrawttL17GuYjXF1SUApMeUcFnmYtLTrORPSOL+uOtYt64e44F1nmw2HXHxRgxGDXGxJuobeujqdGM264iJNdJQ34tOr6Zyfzv7ylvpc/f9/+ydd3hc5Zn2f9N7kUYz6qNuy5Jt2ZZtsFzAmGIcSEJCCAmBBFI3u8mmbzZls8lmk2xIIZteNiSQQgsdG4ONbbBlcJWLJNvqozaa0fTevz+O5mgky+AkkPZxXxcX1syZM6e8c573vt/nuR/SuQxxcmRzWdJkyeYkSLMSkCrJJOSks1LUChXhcJpTp6bJZnPI5BKCgQTHjwvpr4lEBrlCgtmsQqeVo1DKMMaUyGUS9u1zoFLJ8Pm0VNuN3HprK5Bj3/NjWCxqNBo5zskouRxo1DJKSlRUVBioqzXhcAgTmn37Rqmo0HH99Y3otHpc7ig6rfD4sNsNbNg4K1rNz4TKGxTmcaLLzcR4BL1BSTiURG9Q0N5exur2MjFDyumM4HZHGXHMdmXKlxBqtXJaZwwOeyeiZK98F01TxwjufIboseNUfufbtLYKK92trRaKit7M2NgYDz30EIcPH+bw4cN84hOf4NZbb+WDH/wgS5cufa2H0kXhtWrJulAder68A4Rg9eyzzzIwMMCHPvShV+17/39Hd7eHvn4fuWyOqjqz+LrVphMzPY4eceJ0xgiFkkSjKQYG/DidEfz1ZsptGtQpMEpk+I55iJ0LckmNiZZ6Ezv3jZJMZtizx8HAQICGBrNIFH71q9M8+eQgu3aNYLFo2Lq1liVLSvB44phMKgIBoTvmhdoRd3d7GBwMkk5naGoyk0r109CwiObFzTx273M4ejyMnPYS8SeQyiQUlWlpbLdRVK5FZ1Kj0sn/YUzLC9HbM83BF/s4M/g0z+67j0BQEEPMug0kIg1UVui55ea34hgJYq8xisJKY9hELJ6issKAezqKyxVBLpOxeHERLleUl16aIBCIEgxFcDpdJFJJEqkMiRSEogkkSJHJZaSyMjIpGRLUSCQqMhkJfX1+JBKhtEGnVeD1JXjg/rNUVOoIBlOUlKgFjxK1nLIyLTK5YGD7+GP9NDaaKS7W0NxczObL7dz9q9N4fQmamswsX2bF4QiSTmVRqqS0Li3B4QjhcIQ4dGiS4eEggwN+Nm6qZMuWGk6emsYfiIu+UHa7geuvaxCIz0xTjTxOnHDRVRAPurrcjI9HMBiU9PV5sdq0OCejNDcXE42mRdHJMRI8r1OfVitHJoP21aV0KCsvWAoIs2JwsQU+9ZHP89uHfsWIY4jf3H83v7n/btpXrOHmt7ybxW2XMnLaw2//4yU63tJAy4aKv0qG32vZovuVYsKqVRY+9alP8bWvfQ2T6W93Vf3vDX39foZHAihNs6VJNpv2vPKjdDpLIJikd0hJd6aZOtM4tZwkN3qKGG1sueUdLGsrp7vbw+WXV7F9+yAOR5AHHzxLIJA8Lx7s2uXg8OFJwuE0V11lZ+XKMhobi3A6o1x/fYM4Bi4UE/bsGeXo0SkaGorYvLmaW2+9ngMHDvDwww/zpje96VW9Rpl0GsfpE5x7cT/9hw8SD4fRmsxYa+uxVFZhLq9AYzCiVGte1e/9U9DTPc2jT+7lWM8uzg0KfoxHjvWxatF7qazQs7SlinLbjRzoHEetFozHjUYlJSUawdevWM3kZJhAIIFWo0CnVzAxEcZkVjI+4efMGSfReIxsNk0qM8MRMlnISZBkpcgUSiRZORKJnGxWwthoiExG2EYmkxIo4AihYAqFUorZrEStlmOzaVEqZchlEvbudaBSySkp0VBdbeTWW1uAHPv2jWKxaNBo5SSSGSQSKUqlFLNZzVU31rB9+yDn+nyMj4fYu3eMykodGzZUEYumxTI+m02L3W5k40bYek2taKBeiIU5QriAIyhpby9l9eoyMUNqyhnB7Y4xMhIUvaXyJYQ63SxHmJ9NlUehGHxb6fvI6fTs2vcCg04X//X9H/Gtn/6czatW8OGP/AvX3HgzcqWSvyb+mvFg/foqnnrqKaamprjjjjte1e+ej9dFqVcRTU1mtLVGyl8my2jZ8hKGhgIMDwewlWpRKaVMT8dpbS1GoZDT3+9l59NDbN5cTWNTEQ5HiLGxCNlsjkQyi1EGFRU6MQPF7Y5RUanHYlGze/cIbneMickwdbUmWpZYMBqVuNyRC5b5CcihUsmxWNQ4HCHi8RTZbJZs9nwztH9UdHaOiVlkBqOCXz32LNuPPcO4fwwACRIWl7awpfUK9GjQ6+XsfHoInz9BPJZicjJMOJyiu3eKkckpikozTDj9uEPTONwuEpkoqcEYyWyc1GiMLOlXPqjI7D8lSJBLlMglKjQyPSatCY3PwLmgAXlGi1ltocpajtGgJBRKkoukqa83c+aMB683TlGRGpVKzgvPj9J13IVKJcVsUhGLZXj88QGGhvykUllKS40zk5UILS0lGIxKTp9yMzkZZmw8hFojdHzKZoQOfoUdIguF2ELIpBIikRQyqYRly6wA1NiNjDiCTE6G8Hhi1NgNHDnqFDOm6uqE9ws7UuZLCJ3OiFiSajILAphpzXWoW1rw3XMPI++6Fcv73se1H/0IEpmMmpp1rFu3jrvuuotf/epX/PSnP2VgYIAf/OAH3HvvvTidTtRq9Z85gv58vFYtWReqQy9M5QUoKiriU5/6FBs3bqS1tfVV++7/n9HaaiE8Gqa8THvBbex2A2VlGmJxI9lsTiTxra3FWK06Esk0x45MoUVCnUpFaChENpNjo9WAayRCfzBN/bJiNm+uZmwsxK9+dZrSUi2LFhXR2TlBb68Xvz8hjqeqKj0uV4SRkcAFx1hrq4X6OgPO4RAvPD5IJjFAJpPBMxHi6Z+dRmdWYi7VYW8txmzToDYoUWnkSP/BhKjOzjEOdk6yrqOceMLN/3z3uwyOPkcmK5TNmY2lLFv8JnTqevRqNUXFQut1u93A1FSUgX4/oVCC/oFxdMYIE+4gE84xxsZHSaT8dPVFSCSDpDMhdh+KspD56MtBKlUilWiQy/RYIqUYDVbCQTUT7iImXFVUltfSsqSWgD/B8EiAXBY0agWTk2FyOSFrzlykoqd3mqd3DgmTea2CVCrH8eNupt1RQIJKKUMqkdLSUoLRIEzMT51y43bHeOLxAZYttWI2CSVIZlNIzH5qa7OJmVGFMJtVZDLCwtyy5UI8sNcYcYwECQaTpNI5HI4g2VyW1e1lNM8swGlnFkEKO/VFo2kyGVAp5bSvLluwFDCPQjH4fXUf5o5bP8TBw/v53YO/4tk9O8TOfZ/75Fd4+4230/PCBHt/e5YzByfZctsSzGV/2cza17JF9yvFBLVajcPh4OMf/zi//OUvX9Xv/v8ZTY1mwqOm80h5IZYttzI0PMMRbDqUSikejwlV0yqy7pNU+I9x6jc9uE5dyWU33cDZvjBGo0os6bPbjTQ1mVm/vooDB8ZwOIIsWmTm2LEpBgYCeDwxzp0LEAjE2bChkpISzcvGAwE5tFoFlZU6urs9xGJ5jpB9Va5LNBhg+MQxBo8eYqjrKMlYFJ25iNKGJoorqjCXlaPRG1Go1X+1EvDOznEOdk6wrqMCg17Obx96ir0HtzPtm+EIEgk15W20NG7GYtHQ0mrhwIFxRkeDxONpJicjhMNpunumGB2bxGJLMeDw4Qm4GZ9wkkxFyGRjZHJRDp2Lkc1dBEcogAQpUqkSmVSNWmlErzXhTxiZmDZCTo9Ba6WstBydSsXEeJhsDhrqTZw548XrjWMuUqFWy3jh+TG6ulyoVDJMJsEY/fHH+hkaDpBOZzGZlKJ/4bZt9Sh2DXPq1DROZ5jx8RBqtZyOjkqxJHW+IfpCkMkkhCNJZDIJy5bOcIQaIyMjQSYnw3g8cex2A0eOOMWMqfp6EyMj8zjCTAnhpDNCdbVQumcyqxb8vRWKwTbbStauWol72sODjz3OfQ8/wsSUi+0vHub54+/nv55+jOZLN7Dsyq1UNDX/VcbgXzMeAJjNZm6++WY2bdpEY2Pjq/r9hXhdlHoVUVlpwLjEgh84ctTJ4ICPri43mzZVsnVrg+iJs359BStW2tBp5XSdcIFEQiyWxeePMD4eYWxM+GEPDAR46aUJGhqKaGwsIhpLEQwmicx4S3SdcDExHqZthZX1GyoJh1MzaY9pPN44arV8puPEtEjeFxKnli23YjKrCfjjnD3jxTvja3T2nAeuPG/zfxgU+kU9/fQwZ896GZ8Isc/xCH3ebgCkyFhTt5a3rL8WR1+GcqOeZCJD/6CXwckxnH4nkayHlDxA4OA0wYTgB4YDQIJWrkeR06OQaDBKbcikGnRKLdUVJYQCGdRKJYk4pBOQy0qAHEUWFTarhvHJEJlsGokiTTqXwOMLkiaJXJvEF/YznZ4ilgmRzgrmtpJJCSZ1EWrMVBZVYFMsIyWVolDIyWSynDvnRSYXxKjFzcVotQJBCYWSpNM5JBIJFRW6mfEgXJcD+6H7tBu5XIpcLsPvj9PZKXQQyY/f/ApHYfloIfr6/Ph8cfr6/Nx00xIsJUI5x4o2GxPjEcaDYTo7J0mlM6xdU8ENNwip4x0dwj3KG557pmN0HXfN8agqHM+q+nps//7v+O+7D89Pf0qks5Oq7/8vijLBv8FqtfLpT3+aT37yk+zevZuf/vSn2O121Go1Bw6M8eyzwzidT/KJT9zBokWLXuXR9sr4Y0wM//CHs2Ka/YXMGfNYqA69o6MSjcaFxWJg+/ZBWlubePTRR1/TYPP/G2pqTMTbbLimwhw94mRgcCYeFBg/Q54sa1m+zMrJU26OHXWhUApeQ3v3jjLiCJJJZ9GWqEirYOycn4piLWVaBcoUxI552TMYwRdLMj0eRhXN8IkPtNFYZaS3z8vmK+3sPzDB+LhgkhoKpHAMBbjxhkVYizWEfXHCvgQhb5yAK4pnPELJdJIStYpcIMXgtKCOp8lhW1pE83IbSrUMheofwyMqj/leUU8/PUxPj4fDx45yuPtL5BAImEFXw7r2m6gouRSZXEk2m0WplHLsWB/n+ntJpCdR67x4/SP4AqNkc3HxO2QyNQqZBbnUjFxWhF5tR6kw0NxcTS6rxOtJE49JkEoUyORKEvEscnmOpiYzEmmWiYkAwXAIm1XGtNeL3x9AqY6jUkUYmzhHIuklmQ4yOJHjSA88c0CPRlWOVl1OZdli1MoapFIrEokc93SUo0emkMul+P0JiopUaDQyRh0horEUuRyo1TK2bLFjtepmsrcNPPPsMNksqFRSZHIpDz/SJ5TXJbJotfI5mVALiVJ+f4JgKMWp09M0NhVx8ztacLsixGIZrDYtQ0NBhgYDDA760etVYjzIl/+5XRGOHnGSSKbp6fGK8SC/zfwMqQtBKpWy/pJNrL9kE+7pKR549Hc8/Pj93HDd2xibDDMUjhHhLCf3TTEx6GXNtQ2seUMdMvlfRnx9reIBLBwTqquzfPjDi4hGlezYMcR//Me3kUpDF9jD6/hTUFFpIL7EQgqhpGlw0E/XcTcbN1Vy7bX1oifO+o5KVqywodMq6DrhQiKRkERLXL8ax0QRRdlBFCef4OHTz3LSWYOiah2rV5cSDCaYno6J2bC7do1w7pyfK6+0s2ZNGffdd5arrrLT0+MV44HAEUax2S6chbF5sx2bTYfLFeHgwQmmpgT7kM7OUW64uP4Xc5DL5Zh2DDN47DADR1/C2X+OXC6HyVZGxeIlM0JUGWq9AYXqrydEFfpFPf30EGfP+hifCHOk914m3D0ASCUKljd3sHXzG+k6GkOSlqBQSHG7Qzy39wSOCQfJtId0zkM45iKe9As77wWQoFIYkUsNSKValHIzMpmGhroylAotXk8akJJKSJFK5aTTOXLZHGXlWmw2DUPDfrLZFFJ5mlQ6hs8XAmkctSaFL+DBH5ogkQqSyXOEPgkGrQW5tJhSaxX2hjayyJErFGQzOc6d9SGTSzCZ1DQ3F6HTKZiciBAMCWXnEiRUVxtoby8VPaDOnPXS3T2NTCZFIZfh9ycKOIJiLke4gCjV1+fH70vMcITmGY4QnOEIYcaDYdG0fe3a8gKOUInLFRUNzz3TMbq6XHM8quZnSL0crCUWPvze2/nge25j/4sv8buHHqaipJiKxsWcefEgp/bu4vnBCW655WauvPFmSqr/ct3p/9LxYN26CrRaN8XFAkeoqyznM+96O3HnGLwuSv194J4HnqR6zEdMD05nlBdfnMDlEh7eW7c2iJ44ZWU6TGYVExNhgsEURqMSjydGf7+P4mIVra0lrFtXzp49o3g8CdSaEOs7KnF2hykr04sTsLxCnM9SEcqyELNXauxGlCq5KDbB3CyWvCiTF89WrLCyuLmY+KOC6NXX5/uLXbu/Bk6ddHPsmIv6xWo8/gDxRIbJiTC6RB0KyQAV8uVUKpaj86l4eucAwcwUUqefIfcwnqhLJCkqiZ4SnY0qXRNSuQG90kyx3oI0pUGjFlquSyQSiopVRCNp2ttLWbKkmKeeGppp/6pAr5fj9caZ9sSpqxUeDpEpHwqVUDOuVssw1ajIZLOMDAeJqVKojAqWLCmi4zIr7qCLF46c4XjvIFOBKXpdXRx9bL9wfFItxaoydLkyaorr2dS2EptVRzCQQKNRIFdIMRepKCvVsny5Vazttll1eDwxUqkcRUUqLBYtapWMs2e9GI1KItH0nDF4IdjtBiYnwwW+atMcPz7FypWlbNtWR9cJF6OOIAMDEXp6plm/oUIcpw6HYKTb1+cVvdV0eut54uocQ/p3vxtVSwuBBx5g8Po3Uv71r2G8clZdlUqlXHXVVVx11VXkhH7Z7No1wsMPP8OpU//DT3/6P2zcuJFbb72Vt73tbZjN5ldhtL0y/hgTw4cf7uP554UVuosJOjCb/pvLjXLnnV/iwIEDfO97jzM5KdyXbdv+gRXovwJOnBjm/t/toK6qnanpuBAP3DPxYEaUcjhCOCcjlJXrcDhCBINJhPm3hBMnXIxPhDHPrPS1rSjl4Uf6OD0UYMAdpbJMT321keWLi8kls6Snsiyy6pAG0rz4+z5sgM1mJHvST4dBS0f7zOQsDUwl2fOT0+KxSqQSFGoZOSkYitVgVNDb56PYpkFuFbIIo/EU/eMhVm+q/stdxL8g8oLgylVWmhZDKJggmcySStlQKcpQyIsoMV6NVtXM2HAU19RL5CRjeHznmPKcI5UWvCskEgWmeDXFZjsq2XI0ShtlZdXEIwZUSi2ptIRcNotCKSWTznHJpeVsvaZO7I4TjiTRqBWsWVtKV5cbny9ONiUlmcqiVaZRmrLYinSsX1vEiCNIZYWOAwcm0NjS6HRybnt3MxKpj/2dxxlyDNA/1Ic/6GDcdYBcLoNEIkOvqUatqCOSaGXdmg0UFZvQaRUkU2n8/gSWYjWlNi1LWixipl1e7AmFkiQSGcrK9FhtWmKxND3dHoqLNUSjaTGTqe0CMaGtzcbAYIBYLI3QzgOxg+DKVaWs76jg7BkPHk+Mnp5pNqyvmCM05WPC8IjQSn3tmtIFhaiFDOkvBGtJKf/8vo/z4fd+DIlEwrM7e+g6Mc2h0z9heOwkRp2ZlQc2c8Xjb+C9/3YDlYuK/+jx9cfitY4HIMSEo0fHePHFB/jhD7/FjTfeyNvf/iXRj3HbtvY/6dhfx8L47e8fQxODrCLFpDPCiy9O4HYL3cmuvbZe9MQpn8MRkrMcoc9PscVGSFLKoqUyRroOs6zkHJLEOSSRBryeeuSG2W6L8w3vP/ShlcCsX8zSpSVoNApRbIK5WRj5OcPx406efdbBVVfZWbeugh//WDDbfvHFiYs+d/+UE8fpE+J/sWAAmUKJpaqaRZdupKi8Ar3Fgkqr+6t6RBXi1Ek3R49N0dioxOcLEY+nmZgII881IZcOU6Rtp0i3EqJant7ZRzAyjkTuZv9JB4HwJPnsV4XMiE5tw6xbgsFagl5nQSkzEY+qkMsVyOXSGW8pKK8wcN0b6kmmMjz11ODMgrCUxkYzExNhJiYi1NUJ90ir9KJQCO+rVTLamlVkMjlGhgMYpGlUKjlLlhTTsaEYX2CKg4d6Odndh8fvZHD0ML2DzwGglOsxaCpQyqootzayYsUqrFYtwUASjVbwqC0qUlFWpmXZMit9fT50WgU2mxaPJ0YslkGvV9HYaMZgUHD2rG+GI6QuniNMFHIEoYPgqpWlbNtWL3CE0SADAwF6ejysX18pik0OR3CGI/iIRFL09/nR6azniVELGdJfCDKZjMvWd3DZ+g6RI5z7zQle6nyaJ4928eTRLhq+/k02Ll/KO265hdXXbKO44rX1XfpLxYPubg/J5BB33vkfHD16lP+961Fcp05xxn8Qs1LO9NAAbLj8TzmFi8LrotSrBL/fz8e//O9Uaor48u2fY3FzMQqFRMyUgllPg7xIpNUqMBoV4o9Vp5ezos0mZpK0twudCYSAFEelklNXZxQJ+ZIlJQtmp8x/3eWOiJkvhchP7vbvHyM842ly001LKCnRMuRFbA/9jwiXO8KhkwM8eXwnvc900ahdS6W0nUwmiyFbTYtyK8Gck974ToJRJxmElQZjyIIOK43KxRSpbBRrbWSTMuRyKRKJhOJSNZZiDf39fhKJNLlsCqNRRVWVga1ba1Gq5KIXmEIpQ6GQUVmlp729DJ1WzvbtQ8hkEiwWoea8ulpPMCh0p1i/oZKf/+wksViaXA7kchgZCRJ6MkkgkCAaK2NDTQPZHOSyOfzRIBP+UVyRCfwpJ0OpQ/RPdLL/Dw9SJK+kuWIx61vbSYZUqNVyNl9hp6/POyfzqaWlGIcjSDKZxmbTUlNjEo347XYD/X0+JsYj1Njjc4QhmPWWumZrndhCXIDgnQY5caz29k6L5+5whOjv87FnzyglJWpkMpnQbdCqE38j81Fogm6z6tCtWYOythbv3Xcz/i8fIXLzzZR9/nNI5nVmya/AXXllDePjNRgMWzh48DleeOEFXnjhBT7ykY/wxje+kVtvvZWtW7ei+At3drkQ8kak8w1JXw7PPnuU7373v+npESYiKpWavr4ezOZLRfPr1/Hq4Rvf+BYPPPATPnzbN7ls49UolBIxUyqP/G8i74Wj1SmoqtJTUa6jolx4zre12SjJx4RVQkyIx9Ik0hkqG4ysuKyKXC5HJp0lncySjKeJh1IkY2mSiTSZVFbwK8xKyOVyxONpAqEElhIN5mINSq0ctVZB7xkPA4MBJCopj+4VSsFraoxc/2YhlqhU0gsKDf8I8HojHD25gz/sfIpwxMOy+v9BKpGRzUmoLvkQseQwgchhxj2/JZl2ASCTadEqazFrN6DT1qBXVyOlGINBhcGoxO9LsGRJMSMjIYKJGJlMFotFTVOTmaamYoxGJcuXCQsB4+NhDEYlFouGVe02tmypZdlSK9u3DxEKJ1AoZJRY1CSTWaqqDWxYL4yj7951lHgiTTYHmUyO3bvGiERTxKLVVNqaWVQjx+OJk82lmHQN4AsMEIoOEor24O7bw8m+H6DXVlNqWcqq5RsxGuswGjVce209fX3e87KeliyxEI2kUKlltLRYMBpVBIMJjEYliWSa4zMr1YBoUg6z8WBJSwkfmBnPC8aElhLuuGPZnHjQ1+/jYOekYHOglCOVSTAYlFiKZRcck4Um6BebPZWPB21tNrK5LFLteqKJKVzuKfadfoR9px/hRw9/hTdsuYHPfu2jNC3687v0vRr4U+JBOp3mW9/6Ab/+9V2EQtMAnDhxhg0bfDQ0mP4iRtb/P8HtdvNvX/wM5ZZKPvHB/6C5uRilUipmSsGsz03An+DMGS86neBBJHKEmW5m+UwSa5uZIwfOUWlwYw5NslzVj8T9PKcfu4RUxybWrm5b0KR4vunxyEhAzJQqRHe3hx07hnjggTN4vXECgTif/3wH5eV6PB5Ys6Z0wXPNpFO4hgeZ7DvHZN8Zxs/2EJp2I5FIMFpLsdXWY7RaKSqvRGMwotLqkMpkr8p1frXgckU5cvwMuzuf4hcPHaXashmjajWZTBaNrJ4K8/XEkuOM+R4jlpoglxM4gk5tQyUrpcy4FKO2DIO+lHRSBuSQK2S0tpag0yo4enSKbDZFJpPFatVQV2tiXUcFSqUMu93I7t0jKJUy1Co5NbVG2ttL0WkVbN8+iFQmFXypVDKq7QaCwaTAEdZX8fOfnyQWy8zIYTnOnvWi1sgYG8vg9VazcnEz2RxkM1mCET9u7wje4Bjh2Di+8PNM+p+jx6FFq6ym3r6E1W1riUXUqFQyrrjCTl+fb07mU0uLhVOn3KRSQsOu5sUWtFqFmK3U3+9jYjxMTY1xjjAEiP++5po6liyxzCmzm9GC5pih58/d4QjS3y9wBItFjVwunelIrhV/I/Mxa4J+vr/UyyEfE1a0VzPqWsrKuIOu08cZcHsZ2P08v927n9aKMi5vb+OGm99B6/rLKK6s/qtmkf8p8QDg6acPcddd/82ZM/sAUClVHLzvq7SWFmGoWsziVa1Yquyv+vEW4nVR6lWC2WzmV9/5Ebf+y3v5wc6f8sj/fJ3V7WXcdNMScZt8uVFeJAr440SdKSLRtNiprLATXnt7GR/7ePucLmUX6oo3J1NkXhbJ+WbrAux2A13HXZDLIZNJ0OkVHDnqRK8XCGpDg/nVu0B/I3C5I+zcf5yfP/EHukZOiK9PJYbIKSV44mN4k+NkSSNDiVlWgV2xmiJlGWWGCjRKLYFAnHQaZBLQKlXEMmmSSWHlyOeNk4insZSoyWZzKBVSWlutrF9fId4/z3SM06enCYcSLF1awfLlNvH+rltXzpGjU/j8cbZtqztPdLTbjQwNB8hms4TDKQLBFH5/gpn0CpLJLJddVs3hw06yXiUr6pbj9zWTSKbJZNIE0lOM+odwJ0d5fvAZ9g7uoLqkgtVNbSyLbWb5MuGBUzMTFLt7polGhcDpckVZu7ZMTJ0FuPeeHrq7hQmtUiUXhSFA/PfqdqF87tTJacBNRYUek3m25CKf2bduXbko2t17Tw89vUJ3yi1baoknUjQ3F4nXo9DLasmSWcGr8PehsFqxfuITBB99FP/99xM7doyqH3wfpf38h6owSXsv8F7Gxsb43e9+xz333EN3dzcPPvggDz74IPv27WPTpk1/5Ih79VBodHghQ9KFcOrUKb797W/z29/+lnQ6jUQi4bLL3sjSpbdgNleQTufEdP/X8erhq1/9MoNnz/Cz3/47a9fVcNNNl82JBzBbbpT3wvEH4jgjKaLRNO2ry8RypcKY8PGPtXPy1DSQY/mMR5tEIkGukCFXyFDrFBgtGtyuCFOOJPaaV84UAahfVIRcLccxGiSRyCCVgkwuESdXer1iwXKsv2e4XRHOnJ3k6ece4LEd9xCNeQCQyVSMOp8invQTjp0TRSi1ogKDpgWN8nos5ga0mjLisTSpGfsPs1FOPC48m9OZHBq1jIGBAOlMBo1GSlGxmvb2ctZ3VIgG4NPTMaFFdzhBaZmQrbp8mRW3K8LEZAS9Xk48kWbz5urzGpUcPeLEYFCi1ysJBZPEYhkGBwPI5TKkUgiFEhiMKrQ6OT5vhtbFbfj9zYTDScLhNDl8BGNncXu7GZ08xMDoDlQqLa2LLqGq7g00N3YAVuw1Qjzo6Z4mEEjQ0GDG5YrS0+PlLTc0smWLkJFx3+97OH58ShCo4oLfUx7zBSJ/IIH/VJzly2D5Mitmk3rO89s00+7ebjdwz0yc8XhjtLaUYLFo0Ovkom9Vb8/0eT5WC8WEi8WSlpKZ/Swlnf4P9r+4l0eefJBnntvOlN/BL//wPV460snDDz5O0+rSvxoByceE1avLLjoexGIxfv3rX/Ptb3+b/v5+ACyWCjZsuIO2tqtxOGKsW1f0N902/O8RVquVH373x3zwX97HfU/+iJ9/705Wry7jppuaxW3y5UYuVxSTWUXAnyASSRGJpli9uowlLRZcrmhBPCjlQ/96GQ5HELUih3dsEFlsEsfpE5w5sA+pTIa1po6qlmWoSupxhQy0rW2kttY859gulIXR2mrh2WeHyeWyyOUSiorUbN8+iNEoZDKtXl1K2OfFM+rAMzbC9OgIruEh3I4hsuk0UpkMQ4kVs60Me2sb5rIytCYzSo0WuVL5N1n+PTUV4dk9L/H7hx/g7GCX+Lo33Ec6myLkHSEUHSNHGqlEhU5VjVW/Hr2mHIupGrVKiz8QI5MGmQyUCiWppNDpWpqBgQE/crl0hiOoUCpktC61sr6jQjQBz3OEUCjJ0qWWGY4gdKFb11HBkSNOfL4Y27bVn1cSZ7cbGRryk83m8PniZDJw/JgbqUxCPJ4mkcxy+eVVHD40hc+noaVpFT7fUvy+OKlMGmtZiHODPUz7Bzna8zhHuh+lsszO8iXthKJXznKEGiO7dwkcIW+H2NPjpXmxhfe9b7l4PPfe083pbiGuKpUyMQ7AbExYvTrPEQSxS+AIs15QvT0egSMUiHb33tNNz0wH+y1X1hCPp2leXCxej/xn8l5W87tc/rEQxLHrgOsYn5zksR07eXT7DgaHR+ganaBrdAJJLMLhh+/HYCmhftVami7poGpJKzL5X2Yx+0+JBwBdXV3ceeed3H///WQyQjfI1Q11XNVch8HSQEJdha6mgaJyy2v+m31dlHoVcf01G/n9xz/GzXfdxbv/6yvc+6X/RCEXLvF80chm1dHZOXZe2/tTJ9309/lnAlIc7AaR1INAxvPlVYWCxfxMkYuBzaqjrs7I8LAJjUZOSYma+37fy+Sk4CHyapkY/q3gmZde4ss//zWnhs6Ir2kVBlKZBL7UJKG0B5OsnFrlJZillRhkViQI/hESCWhVqpkOFMJnMxlIJDKo1XKhI54MEok06UyWujozb3lLExMTESDHxEQYpzNfhz/O2bNeJEjweROsbi/jkUf62LvXgUQiCEuRSIppd4ymJjM+f4JIOIXHG2PtmjK2bLEzPBxkbCyE35dAKoXych3JZJZMFjwewcMkkcgSCibp6KjgxEkXPm8cq6KKKnMNgWCShiYd9SuTdHYfZ+dLnTxycAcVJSW8dfNmcpoVjJ+T4nRGCYUThENp9Po0I44gRUWzgtC6deUAtLYWE/AnKCvTFmQEJgj446KJvM8ndP8ymdVzxnTXCReHD08xMR7h1ttasFl1rFtXTjwukDajUSGKt4WfKczoupDwOu1L4KjbQGVZDaknH2LwzTdQ/p//iemN1wMLd7SoqqriM5/5DJ/+9Kfp6uri3nvv5eDBg1RXL5vxX7Lwox99jampKd761rdy5ZVXotG8dp1gFmrzfLGEIZVKcdVVVzE1JZigbt26la9//esUFdXR3e3BZFISCCRxOALccsuTF12D/jpeGQ0NFn7xvV/yz5+5nQ/+62386sf3s2bVpcD5pUX5/8SYMNP2Pi9IDQ0HUSoEnymrTceWLbNjfSFCDn98pkj+GPyBONV2I4l4GoVSyv33nwUQ09j/UTDtcfPf376Tnc89QCIpxDy5TI1WqycYmmbC8yQqRQV6TSs61Q3o1ItQyAyiHblMIkGpkJFIZGGmlDsSSVNUpMbnS6DTKdDrFIyNh5FJYXGzhcsuq6KiXM+JEy6CQUEIPt7lorfXK6zAqxVs2liN1abjkUf62L59gHBIaK/t98U5ddKNTC4jEU9x5oyPlatsXH1VLVVVevY8N0okkkSplFJTY8JoUuKaihGPpQgFU8RiaZKpLLW1ZoaH/aTTWaTSEmrs1QSCm9Dp5FyyTsq0/zi79z3DV+78FDKZjA2XXsYy95XEw014PDPr7zmYno6BRDA1B6GrntmsYuXKUlQqKSq1HKNRWZANmBA79O0/MM7u3SMUmTWYTWraV5fNGaMHOifEEm+rTce6jtk4Y7Xq5oi3+e+en9F1IX+plyvrW+g9uVzO5Ruu5PINVxIKh3h61xM8+PB9tNdezbP/18Px3aO0bjXy/n96D295y1u44YYbXnNvvj8nJvz0pz/l4x//OAAWi4UvfvGLXHvtO+jvD4vxoLXV8kf7kryOV8abrr+C0OS/8an//gaf+MKX+O5Xv4w8zxHmlRfZbFo6O8fPa3t/6qSb/n6/cK/8CbDPknrayunpnsbRNU7DogzanIeAe4pTu3eSjAnzz4HHVFirqzBZbRitNowlNtQGwURcqdKgUKvIZXPkslmkuSxLKrxc3R7BoMmgU5/jke8ewDU0BMDOn3yPycd+B4BUJkdXVITOXET9ytXoi0swWq2odHqUas3frAhViGf3Ps93fvh/9A2dFV9TK42kMnFCsRGiCSdaZTU2w0a0KjtqhU3kCEhArVaTTKaRSiCDwBHi8TRKhZwcOdRqBZFIEqlUQn29mbfc0MTERBiAiYkwk04hDp3HEVbPcIQ9DpBISCUzhCMppqdjNDUV4fPFCYdTeL1x1q4tY8uWGoaHA/T3+wkGE+j0CqqrDXg8MbLZXAFHyBAKpli/vpIXX5zA74+jUVTTtqiKqako7WvMLFmeYPe+F9jXuZsdex6hoqyM666+EqWmnYFzUqacUWLxNOFQilQqJ/gkwyxH6KgAoKXVQsCfoLxMNycjMDDjQXWwcwKfP47RqMJkVs2OafIcwcnEeJhbb2vFZtOyrqOCeCIjcASDUhRvCz9TmNF1IX+pVyrrW+j9yvJyPnzHe/in29/N6d4zPPLUdnrP9XHd7f/K4KleZAk3X/3OXcTi32BFXTVbrriCRWsupWbZCsxlr3431z8nHsTjca644gp8PsGuZ2lVGduWN9PcugL01ZhLK0jk1ExPx/j5z07SvqaCltdwbf51UepVxobmZn775a/w9i98nnW3/ivf+tAnufyy+gVFoxFHcE7be5c7wtCQ4Euh1ShwOqOYzKE5ZHs+GXe5IxzYP8HoWJDqKsNFZ1K53BFOnZwmGEyyeXM1y5ZbefyxAbzeOFosrF60jPKSf5xVcedUiK//8r45ghSAPKvBKmumWFmDWVE6EzwglcqSK9DkhEl4AomUOa+bTEqSqQyZTI6KCj0yuRSvJ4bTGeHAgQnq6oz0DwRIJNJoNQqSiTTT7hgKuQyDQcG6deW43BF6ejy43TEkEtDp5CiVQjvXl16aJBpNE40KK+9KhYyPfbydUyenaV5cTE+PB483zspVpdTYjRw8OElLSzEtLcViJyi9XgE50OuVaDRypqej5LI5gr4slZrFfOWO9dx+xa0MOAd47IV9/PqppwlGH8SstlBvbqVWvwyJRIVMJkGtknPgwAQ9vR5RROroqOLIUSdnz3hZ3FwsjleTWRjzTmeE8YkwlmI1q1bZ5oxRlzuCWqXAUqwWSzVsVh0dHVViVsBC5acXU6cOBWJtczUrP/vveO++m4nPfIZI5wFKv/zll+1oIZFIWLlyJStXCj4M27cPcvDgBJlMhrvvvhu3282vf/1r1Go1mzZt4qqrruLqq69m2bJlf1LQyfs85P0f8sgfY2Gb54WQy+Xo6urikUce4Ytf/CIKhQKFQsG//uu/cvz4cT75yU9yySWXAEIQA6iqMrB+vYlbbnnyT6pBfx0vD6VCyXe/+jPu+OgtvOsDb+O97/gmt9/6xgsKRoVt75saBUHK6YyiVAjPi2j0/I488wl5vmtca2ux2LlsIRQScBB+K0KHMwmbN1dTUa7n3t/04PNKqC5fSfvKfxwTfLcrwiNPHOLxp+8GQCKRkstlyeWkKKQNVFqux6BpRakwolBIBYP4YELMiAJIZ3IEAgnSBdlASqUMg0GJ358gk86yZEkx2WyO6ekYfl8MkBCNpnE6Y0SiSXp6p/F6o6jVwlSspsaIVivn6BEnY6NBMeNKksoyPR3D64ujVskJBhOiSH/HHctnnvMqOg+MkUhkWbq0hC1bath/YAKPJ8Yyo4JRR5jW1mLGxiPkcmAyqbGVaolEkoTDSRLxDMm4nZve9EEuXflO4kkf+w48w8EjO/jB/30OuUyJzbKK8pL1RKMriMez6PVK7DVGTpxwcejwFJUVem67rUUc3/Zqozi+zaaQ2KHP44mTSmVRa2Rzxmd+TKpUUoxGpVgGWBgP8tsVdtl7JR+rQrycWPtKQq5Bb+Btb34nb3vzOzlyaJLhUx48Y2G+/JFf8eKLL/Liiy/ymc98hsbGRq6++mquuuoqNm/ejMn0p2Ud/bkxwefz8eSTT1JcXMwb3vAGAG6//Xbuvvtu3vve93LHHXeg1+sBUKlUcxZoPve5F16PCa8BOtpX8b/f+G/++TP/zra3efjCxz/Lpk21C5YXjYwE57S9d7miDA0LsVurVTLpjGAyq+aQ6RMn3Zw4GQCplXe84yqckyEOvjCIa9yJzZiktCQHqQjTow7Gz/QQj0TIZl6+09tKo/CMTKVlaDUyyoxGtNpa6hc307qiDa25CK25CKVajUKlQq5Szxio//3A6Qxz14/vmSNIAUjQUaRZhl5Vj1Fbhky2MEcgB57p+AIcQUUikSEaSVNSpcZiUePxRJmcDHOgc5y6WhP9A4Ldh1arIJnMMD0dRy6XYjAoWddRMZOVKnAEJEIZp0opI+BP8NKLk0SiaWLRFOlMtoAjuGluLqanx4vHI4hXV15Zw8HOCVpmyu5mOYIctVpGiUWDSillbDxMNpsjEpayevk6Vi9fx03X+RgZO8fTzz3Hbx96lEj0Nxh1NiqsbZQWrQCJCplMaI5xoHOcnh6PKCJ1dFRy5IiTM2e8NDcXi+PVZBa6tk7lOYJFQ/uq0jnZTC6XEB8tFo1YumezaenoqKSjo1LcZn6XvYvnCC9f1vdy70skEpa1LGFZi5ABf+SIk/FIBQ0Nizjq+DnhSJRDQ6P86vlD1FuLWGQrYXlTA2vXr6eurZ2KxUsoKqtAcpG/lT83HmSzWY4dO8YTTzzBf3zxi7hHhhg4eoj1jbWMT2m4asVSLu3owFbXQEpqxDmdpcxuwmbT8u1vHWbgnI+sRMa7L+po/zS8Lkq9BtClK1hXcgMHph7loz/8OgfWfG/BVPL8j6XGbuTIUScBf5xMNkdjk5kVbbYFy/Xm/9AcjhCHDk8QDCTRahQ4HEK3lPlZI4WimGc6xsMP9+FyRbFaNbS2CoJUJpOhts5IVeoqtm6tpeOS19a47bXEYztO8JOHH2VtWyNxiY+Hdu/FHfAiQUaRtBqbvBGLwo6C2euUywpZqBqNnGRitpxpZiELqVSCVCYhncqSToNCAVqdEu9YkHQ6RzSa5ootdvbuGSUaTeF0hqmrM2E0Kujvi5CIZxhxBCku1rB6tUoszzty1IlOp6Cx0QyARivHWiL4NoXDyTmZUps2VYodJmQyCS0tJcQTKXG8lJXpiMUymMwq3v8BIYX28ccGkEolmEwqfP4Y7un4TLptjGAwweOPDXDunJdsDmokG7DWXsJoYJB+72lOTh3kuPMFqo2NXNGwgVC4HJVKhlolw+OJce89PWzbVieO02Qize/v62FFm1CSKJUJq9smk1CKUVGhFz2jRhxB1Co50WhaPA+ddvaR1Ns7zbO7RgC46sqaOWN6yZISLCUaDuyf4MCBCdavrziv1NHljszJ3pKZdVg++lFCTz1F4IkniZ04Qfr6TzA4mGDFCqv4uYWyp2C268WSJUU8+OCDPPLIIzz88MOMjo7yzDPP8Mwzz/DpT3+abdu28dRTT4mfSyQSqC7CuHPXrhF27XIAzAk4DkeAF14Yo7JSx7Ztcz1M3G43nZ2d7Ny5kyeeeIKxMYFErF69mje+8Y0AfPaznz1PJJsvxv2pNeiv45XRfdpPhfmfGFV/i5/95pOYTBLeMpOpN//5nifV+XIppzNKWZmWtjabWO41H/MJ+cHOSbq7p4kn0my9pu6Cx1VIwHt6p3nppUnsdgNKhYJINElLi4UVK6ykkhm2bP4f3vKWv3xHylcL6XSaH/70tzy//yArVjRz5PguTp85DIBSbsWoXYNRuwytsg4ksxNEqUTw3pBKJHNK0WRSUGvkyGRC3AiF00gAjUbB1FSUZCpHLJaisamYcDjN9HSMSDQD5LDbDZSVaejrT9DT7UGrU9CxvpK6OiPLl1nF+1JVbaQDcE/HkEoRPaUKM6U2bqrE7Ypw8tQ0Hk+MYosGpULwWbLadNirDUQjKSwWLQ31RdjtBmLxceQKKaWlGsrL9ezcOUwolEYqSeNwhNh/YJw9e0aRSqC2dj1vumozTZX99PTtYcx1gAnXt1Eri1lUdzX1jdtQKeXYa4zCMXhj3HNPD+s6ymluLiaRTHPf73toa7Oh1QrXS6uVs35m9dxiEVZgHY4QiWSag52TyGQSampNtC230rx4rqH40zsGeP6F8fM6WC5pKRF91zo7x3CMBM/LHARBzPIHEpSVaxf8LdntBhyjIY53udBq5WL57EKZVTW1RiRSCbYiFcqi65GhoHuik96RY/T399Pf38+PfvQjZDIZBw8eZM2aNYAQD5QXmTWyUEwYGQlw4MA43d3TrFhhnRMT0uk0J0+eZO/evTz55JM8//zzZDIZ1q5dK4pSJpOJrq6u12PCXxE6ZSNL7DfRM/IgX7rzy2xf++MFy4tEjlBj5MgRJwF/gkwmR2NjniOkzitHms8RxsYjHDoeIBCQsWpVDdWVNqqqdBSbFWTTKdKpFOlkku6TkzhGvFSWC/5BLx1yEvAnMRjVWMuL8HhSGIvVjI5FWdZ2KVu3NtKytPSiCfXfGh574ji//v0DXLpmKbHUJE/u3I0v4EOCHJ2qDqN6MUZtHVJmhYhcbmGOIBM5ghSZTBCsMmlQKCQYjSrGxoKkUlmCgaTAEfaOEoumcU5GqKs1YTQq6e+PEo9nGBkJUlSkZs3qMrE878gRJ1qtgsYmM8x8v9Wa5wipOZlSGws4glQmpaXFQjyeFsdLaZmOWDQtcIT3z3CEx/uRSaXozEp8vpiQxZuDwcEAp066GRoOcO6sj2xOSon2SjYu34Bzuo8xVxfnRvZydng3pZZmOuo2EwpVoFLJUasEL8N77+lm27Z6cZwmkxl+//veGY6gEHhMq0Us1xY4guAZNTISRK2WEYmkxfPQaWdL4Xp7PDy7axiAq66snSMaLWmxCBzhwDgHOsdZ31F5XqmjyxU9L3trPpLJzHnZihfKrsrvo7JSx4+/9U12PreXZ/ftY8rl5syk8N/jJ3pZdewU71y9FACFWkNRlR37klYqmpoprqrGXFqOTH6+PPOncASXy8WBAwfYsWMHjz/2GFMuIZPNe+gFao1aFCoV77j6CkpqarFUVM6IyxqOHHFy9qwPiUQiZqbJczHaVy/sI/dq4XVR6jXAwYOTmCV2Lit/Gy95H+FNn/k0D3z1v+eULLncESLRNFu21MzpytfYYCYYFEwOjUYlzJs45Y2hXe6IIGZo5axdU8HoWJBoLMXRo05GHSE8nphojg3MIee7d4/gcASJx4UMHOGBlqbYoqLEop2TvfX3hFwuR+epk3z+hz/nWL/QrvXA4D50Cj1LypdyRV0rU/1qyC0cROVyyGWzpJIZFAoJqVQOiQTSaVCqJJTadNTUGJiejotposFAAoVcRlYF9fUmVrTZcLuFkonycj2Qw2RSkEymUamk1NiNNDUVi95S3/zmi3i9CVpbLbzzFsFbQPBeyrFs+cJd5u69p4fhkSC1NUZKSzWMOFKMjAQ41+cHhEm/cyYNeNQR5NQpNxKJ0DVpaiqCVAIqtZTGRhMvvTSJyxUhGk2TzuRQq2TEYmk0igo2VNaSzCSYiJ9jINjFrw7czROnitiyfCOLS9vxTeUYnwiLabp9fV7c7hh9fX5OnZxmzZoyshmIxbIEAgnC4aRgyJsBpzOC2x2lsbGIFSttc/zV8ug64aKry4UEsFo154lOhYKsTi8XGwTkswEdjhBOZ4TFzQKxOXJ0xnR33Ra8lFDc+QR1P/wk1ZprOH26SFwNfvDBczzxRD/XX9/Ipz61Rvy+Qt+FurrLuOyyy/jud79Lb2+vKErt27ePRYtmyXs4HKakpISGhgaWLFnCkiVLaGlpoba2lmxWz/S0nBUrKqipMc3plFOI558fo7d3jN/8Jsq119ZTU2Pi0KFD3HrrrZw7d27OtlqtlmuuuQabbXZ1aCHyM7+97B/jUfU6/jgcP+YiFMqxuuVTOIN3860ffgxbqZQbrr9J3KaQ+N78jhaOHnESDKbQG5RYbVp8/jiOkaBYvleIQkLudkXEUie9Xs5zzzlmJrISPJ4Y6zsqRKJdSM6f3jmEz5dAKpEQDCVJJjL4vHFWry6ltFRHMJjC4QhdtGH03woCQT//++Pvcf8j9xCNCVnIx3skNNa1s2b5BzBqluOcnJ0GSaVQWLUukQglGNFoCpVaSiwmvKlUSoEcNXYTdfVFdJ92E55pSjLqSCKVgs2mZ/myEjQaGYFgAr1ejkYj54X940xNhbGWqEmZVKJp+fR0jLt/dQqvJ0HrUstM17kmUXTKe4gV3oN8eWdfvx8As0mFRqsQhIvOCVQqKRUVQhzKC5DhcJJIOEl/MEHXcTeZTA6ZVDinbCbH0SNOJiZCSCSSmcwsGaGQnCLdVRTVX0UyPUogeoAzg49x6twD9I1uZtOlN1Jjb2TEEWR8IiyKQn94+BzhUAq3O0YymUUmk2C1RQqOPyp6T+Uzaisr9BiNijnleXk8/8I4AwPCuRaKUjArsuZjSziSFoXc/DWb3+2y8LP57RLxFP19PvQ6QZTaf2CCQ4cmWLu2Yo6fYmF5YGVdO80rGug7dCOeaR8J8yhjkdPsfm4XAwMDNDfP+gZ97nOf495776WlpUWMB4sWLaKyspJMRs/YWIalS0suGBO6uz0880w/4+NT1NWZxOf2HXfcwQMPPEAkMnt9AVpaWti2bRuZTAbZjJn06zHhr4uDnRPolI0sq3snZ8Ye4I6PfIyffPubc0qWXK4okWhqhiPMduVrbDAzMZNls76j8rzsjbwxtMsV5cgRJzqtgrVryxkdDRKNpjh6dIrRUe0sR1hfBRI1cUkCW20xzTMdmLtHgsRiClReObLRGLF4huXLDDQ2V3Kiy83Jbj+ty8v/0pfuz0Iul+Pg4SN8464f03NO4Agnz+1BpzHTVLuStUtbGRvWkMsuzBGELKgcqWQWhUJKKpUFCWTSoFRJsdm01NYamXbnOYLg1ymXy1CqoE7kCFHi8fQMRwCjUUEymRI4Qo2RpqYi0Vvqm998Ca8nTuvSEm65RcjIyXsvLVu+cJe5e+/pZngkSFmZDshhswpziCNHnIBQjZEvFRwdDQr7k0AwlGBqKopMCiqVjJoaA88+O8yUK0osKliTCBwhg0JRQ1vTIpKpGJ5QNxPuIzy884fsO1TC+tVXUFW6hukp5nEEH253dJYjrC0lk8kRj2cI+BOEQinicaHyZMoZwe2OCUkaK2xz/NXy6JrJEhc4gvY80cnhCHLo0CSBQBKdTiE2CMiLSQ5HkElnhOY8RzjiPM+EfX62IsCBA+McOjTJ2rXlc2JCYYlgeflq1q1ZzZc+80nODQzwwosvceClwxw6dozV6zdy+c1vxTM2xsToMLd/7bvYjHqseh2lRj2lJgPVVVXYyqvR6Muobaqhur6SNYuzSGNK1q1WE/Z6kKtUAu/d18dIfz9/+L2LS1pzmPVZXti/n89/7RuMOafmXBOVXEZrTTVVdfUsX7USc1kFWoMRlU43Jy7MF8k7OipZ0ap7zf2xXhelXkWMj4cY7/XQ2ioM8HXrVqC2bOJtn/scV/zLP/PjT34BVVZYrSzMXMpnlFRU6IhE0xw/PiWsehZrMJnVc4SJfBlewB/H6YyyuLmYG25o4shRJw//4RwuV5TSMi1+v9ANp3pmQOXJuc2qExTzcJrTp924XDFyQF2tiZYWC6WlWnp6vKhVclzuyEX7U/01Mehw8/Vf3cOzx17AGwqKr6skeirly6lWrEITkVHbaMMjc5J+mUzl/KqPRiPHYJDi8ycgB6lkjlQ6hUwXo8ISxx304nXlqCiuJZnMIJPBH3r+j9+djuENhEmn06SzaTLZDNlclhJVFdvqb2VqKorRqOLKb32GeCJNMiZDgZqDzmLORZogroOEnqqi6gXv/e7dI0w6w8SiKaqr9Yw4gpzociOVSgjMdEBqbSmh2m4UjexD4SQGvZJQKEk6DWq1lKYmCwqFjOHhIMmkQLSymSzhcJZsFnK5NJVVFvx+JZaidtbWXYLMEOKc7xiPvbiTTHY7V6xYR1t5B+lUlocf7sM5FaXIrEKlEq5bT4+HSy8tZ2goKJKNfEZXXZ2REUdQ9EZzuSPANAF/XBx3eYEPFk7BtdsNoiCrVsk5sF8gLCtXlrJli25OdmLh7w3gbMhM83Xvw7L/Md7teJJEf5hMbBUyjYbx8RBud4zx8dB531mI2YyqSj72sY/xsY99jEQiQTgcFrc5fvw4iUSCnp4eenp6zttHS8sN3Hnnt6ipMVFZmebxxz/KE09ISCaTJJNJIpEITucU6XSKkpJ30t19OTU1JnQ6nShItbS0sGnTJq6//no2b958Uf5Wf0x72dfxp2PaE8VSoqF5iYXNm6tZu/Y+PveVT/DJL/wzw45B3vnWf2ZsLCJ45ExGxc/5AwkaGoX745yMikQbWDD7I298C7OlTt/97hFOnHQRCCTIZIVV2jzRzpPz5uZirDYdmzdXo1bJcbsjuFxCZk5NjZG2NhsqtQKPJzZT2vf3gSe3P80P/+/bnBs4SW6mlkKCDJ26hbKiGylSVaJXqNCoFMBszFjIRlEqFQhHOpVDJs2Sywl+fVIpTE65MBZNU1kbwutzYtJ2EI9rhGeq6iVu+cB/4vV7SSYTJJNJfn5fmkxGmFSvX/ElNnZsACR84zs/ZPf+e8mk1cikeo6fKeHsUCPZrJmS4goaapcRDioxm2aFwUK/sUg4hVIlIxZPMT4eZnDQTyAgxIOWmUYQ+XK3410ukqksAb/QsEOvl2O3m4lEUzidERQKKRq1nEQiTcCfxD9zHbQaGUVFaqqqVlFauhGv18+U5yDHu5/ia3f9E6XWWq6/5jasstW43TGeeLIf11SUoiIVsXiKgYHAzAQ3x/FjLmLxNE2NZjELsK7eKIpZJSUazKaQWMqYF4zynSsLO1jmkX/eWywqurshk86wZ4+DlatKRQ+2+d0u8ygs2ZufeejxxAgGkng8sQuON6lUgtKkRFtvQGdR4xnRU2Fczqcf/DJqawqDYXZx8fDhw7jdbvbt28e+ffvO29c73/kwt9zSRk2NiUcf/R579+7l0UfTJJNJEokE09MeAgE/EomCiooXxM95vV4ikQgmk4l169ZxzTXXcP3119PQ0HDedyyE12PCa4+J8RC9vR5aZoS/dR0rUes38YGPf5Ib3/M+vvHFr5LLGLHbjXPKhvIZJRUVeiLRFLt2j4hEe6HsD4cjSMCfEAn3DTc0ceSIk4f/0MeUK0JZmW6WI1QLHCG/rc2mFeZpkRSnTrlxu2Ko1DIqK/Ss66igyKwmEkmhVstwuaJ/VCezvxYGBqf43k9+wQsv7SUUmZ3XKaRGinVrKNa1o0grqLBZmXBMkrmAnW4uJ1RLgMAR9AYJfn+CXE7wgk2lkyjVEWoaYnj903g9UiyWOpKJDBJphucO/4CdB6P4A2HS6RTZbIZ0Jk0ul8Wsb+DS1tuZaopgNKi44Qu3kMlISMTlyKQauocsTHgWk0npyKZNWIvt55Vu5k3wJ51hotEUWo2M/n4/uRzIpBIGhwKzHKFaGGddXS5C4RQGvYJwKEkmnUOpkrJiRSkKhZSTw9OkZho5ZTI5wpEU2Qxkc1kqKy34/QosxR0sX7QBlc7PiPMQO/Y8Si73CBsuuYzG6o2k01kefqQPpzNCUZEKlUqGzx+np8fLpZeUMzQcmMcRUtTXmxgZCYpG5S6XMP8J+BPiuMsLfHAhjmAUBVm1WsaBA2P09/tZtbKULVfWzBFeCn9vMBsTFioD9HhiBF4hJhRmUy1ubGRxYyPve9ctJBIJYvE4ZpMJc2k548kMmWyWSX+QSX+wYA/HANi8ZAnXrWjmdCaJKxjmty8d52c/k5DJZklnsyTTGcKJBJlsjmUlS3juB88A4PD6GXNOIQEqrSUsa6xn4yVr2NjRgbG4+BWbDVzIg+u1xt/PLPPvAH19flzDQSrXVPLJT85OBO684wt85md3csO/f5L3b76DG67cMIcwnzo5zfhYGJtVx4gjQHf3NDU1xvP8d4A5WVWLZ/xCOjvH2LNnFOdUmHAohV6vYOWKUrFzTR75f+ezrZ5+eoBdux00NZq54S2LRAHkrsf+j70PvcQ/TdzCl//5ltf6sv1JSKXT7Dt+nMee38e9O54mKxIPCVZlLcstm1BliohEhIdpPJ4VycmFoFbLMZkEP5BkMoNMkWMw+xz+uIdYNkCyPwb9s9uvrF/Kf9y8QfSMGjkyTiKdWHDfMqkMqVTK6FiIZMKP0ztNPB0X358aHeD4qFBOUqqv4Cvv+Jx4v77z+99hMZrwjWtwnM0RDqVIp7OMjobZtk0ozykyqxgbi2CxqFm2vET0DbNYNKxYYaPIrKLz4ASxWBpLiQaTSUkqJaz2VFYJqzUjw8JKWjYrZAeMOoI0NZnZsKGKEUeQKacGW2wdl5kXM5Hq5mDPCZ459gL1JU0st66j0lBHcbGalTWlDA76kckkmMxq1q/Xo9PLzzPnL8zEs1l1mMwhjh6dYmgoSF2dkWXLrXz0I+3iNnlBVqeVc+aMT/RRUyml7N49gq1Uh0YtB3JzPNRgbqagZzqGVAZaiwn7Zz5GeOdOgjt2MPTGN1H1g+9z442LMJtV52Us5ZGv69bpFGLXuvxkXqVSzSnV27BhAw6Hg+7ubnp7e+np6eHMmTOcPj1AIOBGpSoSV6b9fj/Hjh27wOiExYs14rZNTU08+eSTrFu3juLi4vO2vVDt+ev4y2J8LIxUImHrNXW0z6yC/8+Xv4dUUsL3f/Ztntt7hLds+xx2u0X0fzp5aprjx6ZYuaqUVDLN4cOTKJVSqquNC3rmOBwhgsGUaCqd95Tq6/MSj2cIh5Ncdrkdjyc2Wx44r5w8L2Q9vWOA3bsdNDaaectbFmG16Tjbd4Zv//Rd/N99RRzcdfwvdOX+eIyNO3h615P87qFfM+wYFF9XKoqpLNlKVelmfD7BqDsWy6LVZMWJ7kKQSaGsXDsTO3IkEmmCsWN4Q50kUlMkU16ygyn2Hpn9zP/8x1oWLarl2NEpzo346J/nYViIWAykMikeT4zBwSmCIaf4XjACfcN7xb//9QPfZ8MllwsLDSePcuClfSikVYyPFuGdFiaokpAEa0kxK1YYMZtVjI1HxDlAYZdHi0VDc3MRvT1egsEEBoOSykoD09NRPJ44TU1mLr20nNOnpznd7RH9UZQqKXKZlKYmM5svtwstyxVb8LuXIU+fwh97jv/77X+h1ZiprbialqZtWG061q4Vsil8vgQtLZaZjpESFsr8KowJVpuOo0ecHD06xfEuF3V1Rtrby8QMqcLswr5+n+ij5vcnCIUT9Pf7MJqUQG7Otu2ry+jtmcbtiqLVyikp0cwxYZ/tvCdgfUeF2OnvQujtmWb79iFkMgkbNlSyZqmFsy862fHjU9Qss2B6lwWdSYgLO3fu5PTp0/T29or/DQwMMDAwSjKZAhTic763t5cjR44s+J1SaY5rr60Q//7CF77AV7/6VVpaWs7z83k9HvxtoK/fz/BIgEXLrXzyU/kym0o+/9Gv8d93fYV3/8uHePt1/8K1V3XMIcynTroZGwths2oZcQQYHw9RVqpbkIgXZlUJMcVIZ+e4yBFCoRR6vZKVK20zz4fZsqX8v/PZVjt2DM6JB3mS+rX//TpHTx7hvWMf4JMfeedre9H+RCSSSToPHWbHrt088tQOsVGHBClm/SIWVW8hGTPONKqAaDRNLpvl5apqNWoZJpMSnz9JIplBI8vhjj5NOOIimQ7QMxFlT8EUbkXrGv7p1k30D/iJx1M4dg9esIGUTCpHKpMwOhomkfAz7XWTyc6uoPsHoXewEwCbpZ6PvOeL4v364S9+ibWkBLdTx8A5CIXSgqVILMOllwjPX41WLpbI5TOsXK7oDEewUlSkprNznEgkhUGvpKbWSCyWQqmQUlXIEWJJspk8RwjRtGiGI4wEcTp16CSbaa1eji/SxaFjh9jbuQt7eQsNVRspMTVQVKRh5UojgwN+pDIpJrOK9R2V6HQKUYDKI5+ZBIJIYjKrBI4wHKCu1iRwhI8WcIQZIUinVXDmrJfR0SDV1QaUShm7dzmwlepQq2Vzti00Xc+X8XmmY0JHeq1C/C0UovB4F0Jvj4ft2weRyqRs3DjXi2o+R9h46SXse+IR+gaG6B8eYmBomMHhEQaGxgmG/GQ1zax8820Y9XDk6DHGnz5/ISOPnL6Uxo3XUmIzsVYqY9HlV7OybRlFRUXIlao5cWF+d8K/FbwuSr2KaGoyky3REPDH6e2dFj2hhs6kWVd0E13BHfzgmR8Tzrn57mc+WJAF40Z4XuY4fGgKvz+BWh1jy5ba874jTyJ0WrlY6nTw4CQDA37MRWrKSvVs2lTJ1q2zopiQhXI+Sqw6Vq4onWNODSBX5oin4ugNf1u14olkkrt+/RR3P/UY05EpktkENqOVGkst3sg01ao2jMnFKCUaMmGIZGdNQJQqKV1drjlZUolshHDWTSjrJpJzE417sCVKuabh7UxPx8jlskzGB0hmZsUjpVxJsb4IjcxAY3k9y5YLE+x9+0ZZZ3szjQ0WLl1tx6RXk0pJCAaSDPSFMOiVpOJyqqsMGI0qvl7571hKZWSlSbzBANP+AOdGxjkzNIq9pJItWwQPpVQ6zdd//WsSKWF1XSFVUW2uocJQw7hvMblcLe+4uUU8vrwYAwJZjUZT4oP97Fk/MqmESy4pZ0lLCTufHiKTyREMJonH0lRU6NBqBV+yVCpDPJ4hlcqhVAmCUhcu+vp8ZFNyrNk2qvRtGFo9HB0/wKO999Ba28QtrW+mY30z6zdUcOrkNKOOIEajUjyf+SgUj5KJNCPDATKZLD5fHJDMMTh//LEBJifDlJfrGRj0MeUUDKEjkTSBQILiYg2bt9kXzIxyOoXVwXyWYTYDkWgaqVSK8dprUTY24vv1rxl+2020fPbfWP+lC0+08nXdq1eXctVVtQuaCs71paqmurqarVu3iu8fODDGs88Os3lzZUFJYJ3oReXzpRgfj9HcXEpbWz2lpaWo1erZcahUih4hL3eMwOsk5K+Iyio9gRnC29szPVtOZLiWZnuWM/2/4Jf3fYTvfeNnrFqZF0Fn48HRYy7GxkKoVDJWrSo9L0sKZmOCVivH4QixZ88oA/1+zEUqFlk05/nvvBysVh0rVpSKGVQAZWVaEskIyZT6FT79l8dze45x149/wPDoUcLRCWQyBfU17SgUE5SVLEOZ24RauQiJRCIKUiBIItFoilh8liBkcykSyQliSQfx5CiJ9Cg9o5PcduNdpBJWxsfDuPxeApGTc45BqylCqy7BXl3N8uXlFJsq6enxIs8tY8u6L7Hu0gZaW8tRKpS4XEmCgRQvvDCJSqWlrs5IRbkeJG/l1nduxWTO4gt48ft9DI+M0ntugGnvOJvWL2flCkHU/M1Du/j+T78lfr9BZ6fc1kpNVRuJ5Bra2mrmjBO3KyJmGzkcIaKRFPZqI0qFApc7gsGgpKxMSySaIjERwT9TbuKejlFq05DLgUIpRa2W4/Mm6Ovz01BfNCPSuDj4Ygq1chFV2kVccxlM+Xaxr/NRBkafYOuWd9Da+mGKzBbs1UYSyTS7d48s6PdUeLz5mJBIphkeCZBJZ5mcDON2RdmypQarTcfJU246OycoL9czNRVhoN+PxxvDZtUxNhomFktRVKye49MFgtgVjQolgxOTkZkSwRzOyeicTLQ85otUC+HECZe40l9TY8Ri07H2TVqGT0wzdGKa3/7HizRtLCeqkbF0aQlr1qwRPabyOHBgjJ07B7jmmgYxJnz5y1/mQx/6EF5vkvHxGIsWlbBkSTWlpaUUFRXNIRmrV6++4PG9Hg/+NtDUaMZ5RkPAn6C3xyN6Qg325Wiuvp1B5x+49+Fvkcrexpc/98E5ZDbf/PTQoSlCwRRabWpBMpkn2TqtQix1Otg5QX+/n6IZjrBxUyXXXjvrPXMhcd5q1bJihW2OOTWATJ4lmYxjNP1tUchEIsEPf/4YDzz6B3zBSTLZJEWmUuwVDfiDXoq0q1DRgkyqIRRgjiO5QiHleJeL9Ex1WC6XI50NE09NEU9NkUhPkZh2YyuuYU3LO3HPcITpQA/Z7GxJmVKhwmwsRik3UlOZ5wiw7/lRltffQmOjlbVr7Bj1WpKpHMFAmv7+IAaDmkRcRnW1HqNBxb+X/je2Mhk5YvgCAbw+PwNDY/QNOKipahDm1DYtsXic7/3sF6LYJZdpKCupx1pURzDSQnl5Iy2twvMrb5bvcAgZOQ5HkEikkCP4yGWFTnlbttRw7z3dpDM5gsEE8ViGigodGq1Z5AixeFrgCEpZAUfwkkkr0CvWYKlYi6V8gt6Bvew5/FOWNLVwQ8tNdHQ0s359JadOuhkdDWI0qMTzmY9C8SiZzDAyHCSdyeL1Crys0OD88cf7mZyMCBxhwIfTGWVkhiMEAwmKLWquuKJuwcyoSWeE8jKdmGWYyeTmlAoWYiGhqhBdBfHgQl5VhedVWV5OZXk5l2+YXZXp7fFwvGuK5ctKsDcI4teaDRv5xV3fASASyeD1JqmuLmJRYwWW4mJUSuWc76iom+svNf8YC7sT/q3gb+uJ8neOykoDZ8lx7JiLoaEgGo1wedetm2lnnH43T596mruffZCXek7xH+/6F2yWYioq9JjManRaOQaDHI9HMCHNe+AUknmbVYfNqhO7nRXuf9268jkdavIoJOj9fT4OHpwUP+N0RqirK+h04I6IPg5a3WtbO3oxiCUS7Dp0iF88/hj7T54kNaMqWWUN1KjXoM+WkIlmsEtkSFISgW0wt/sFgFIhIToTd0/HtxPMTpLMnR+I/UkZN729med2D9PT4+WSiiuxFhsoKyrlzVuXccnqWp57boRjx1w0NppnBKAc2SzYTfVsbKvhhusWifdHKtNQb9dQVqbDZFaJYuL1y1cJZoQnXKxvW3qeX1Ie8WSSD95wAyf7+znU00s0HmPQe45B7zn2jzzLkfEDfOdfPj3HRyl/r+dnQ2zeXE1wpsTPbjcIJTtqOd09bvy+BPF4mg0bq7ju+kaSiTQHD05is2nErnpbttSQTuU43jXFtDtKNgtrG9r52qdu5pHdB7n/hUf53N138mDn43zojTeR89no6RZanYNkTht7EIzM86vLNTUmDh+exOdPUFWpZ9UqG5Dj7BmvkK7rjjA8HCCTzZLJZFDIZdTWGTGb1Xi9MXR6OU1NZjETquu4S8wSyGdGBYMJUZxa3FyMTiuf/Y01NWH77Gfx3XsPzq/8F5EXX6TiG99Aqj0/SBb6fCw0wR8ZCfCrX50WWqazcGvWqioDa9dWUFs7m+VkMpnYtm0bIHT6O3NmArm8gpqa2YytC5mwv9wxvo6/LjzTUQKRFG5XVDTLXtdRzvDwBoqKKugd+iG3fGAbH/vQf/GW698KSFjVbqOiXI9CIUGnU6I3yDGbVXNKmfLIZ8EcneluY7cbUavkrOtYOB7ArP+OP5AgGBQ6tFVV6uZk1+SRL2m+0ArvXxqDw/089OjveOTJB5lyC9lFUomGKsv7KDYuh5yaprIEUumFmwtIJJBKC+cTjHbhDjxBPDlBjsx528qUHi5du4p9+0bxBdpQKrQ0L2rkzW+8hPXrW3jh+QmOHXWxqt1Gsck6I6jomZwsp8hcT9vSRtpXl3H0iJNplxeZTMnS1hqMRgUV5Xqi0TRvur6N6ekYJ064aGtrf1kRpLV5GW/adiOneroYHO4nFHEQGnJwbmgHu/bL8Pl/yMc+unWOj9KZeTFBq5XT1JQmkUyLJXP2GmHc2Eo17N07itcTR6dXcvvtrWzZUitm4NlKNWIXpbY2G6dPTzM0FEAqlSCXFfHBd3+RT33k3/jJ3T/imT338cye3/Out9/BDdvew94nXIyMBBkfj1BSopkzjnt7pjlxwoVKLScaSeMYDQkxwRenqsow422WFBddhoYE8iABdHql2CxEq5HjD+iJhFMsWSI8XxPJtDDXqTfO8VPLe22VlQtZJfPLBS8WhSV/+c/JFTIaV5dS1mDmxN5RenaNESdHMpi8YEy49NJqqqpmf3vt7UIWwPbtg/T1TaDRVNDSMks0Xo8Hf1+oqBTu7dFjQrZHvuvmuhnj/6UtH2bfoUf53SO/4uiJLv71/R+juMg8wxFU6LQKjAbFDEfQih44hWQ+X3aT73ZWuP91HRVzsk/yKCTo/f0+DnZOiJ9ZyOQ5EROek/q/BY4Qj7N3/wF++9DDHDneRXomyBrVLZToL0UlLyGXSaPVyeeWKuXm7kcuk5BIClmxo74/EEtNksmezxEicS03vX0xzz03wqlT0zTXXEtDfSklRWVcdUUra9bU8NxuB0ePTdHUZBYFoGwWyiyLuaTdzg1vWiTeH5lMSW2NhnKRIwhiokbbOFu+dvWFRYNEIsF73vF2es6eo+tUN/FEjLGpbsamujl+5knOjezn8x//zBwfpdl4MNc3aPPl1QRDCYwGIXbmx0B3zzQ+X4JYPM3GjVVcf30DyWSGg50T2Eq1YjzYsqWGdDrH8eNTTE9HyWZytC3p4D8/924e376HJ559iK/973+yfc9Sbnvbuwj7bfT0eEinhZuxZd7zqTDjqLY2xOFDTnx+IR60rxIMt8+IHCEqcIRMjnQ6g0Ihpa5OyBr2euPo9Yo5Xl1dXS4xUzCfGRUMJURxqrm5GJ1WseBv7JVQWPJ3IaGt0HJhoW0sJRoWLSrGVqoXXzMZjaJwdeSIE5/bi15dTEXZXC+6hUzYX+4Y/5bwuij1qkOCRAIWiwajUUnAH6eiQs9ll1eTTKSpqbmZztPNPHD4d7zvu//OdcveyrXrLqXabuTMGa8gbtiNVFUZRXEhX4pVaOJcKDjYrDoam4pwOEK43JE5wlM+JROE7Kp9e0c5edKNxxOjvt7M+ESYgwcnaWwqor/Px8OP9DE6M+nLZXMLn+JrjGg8zrOHDvHr7U+x99gxMcjkoZYYscqb0MuskAOZZHYY53JZojm/kAGVcRHOTpOTZNlkuBmTSU4ymSadiJDMRZFKJJSaSmm212NW2pDETKxubcRuN9DUZMHnT7Cq/DIsxRoWNxeLRvXLllsxmdUE/HGxlHLz5mry5uRwfkZb/j4Violdx10c75oiEk5fUJQyaLV89YMfAiCdyfD8kdPs7DzKsb5ujg9001rTKAo3KCb49a4HuWzZOqqqqkUBM48tW3Q88kgfu3aPEAymuOGGJjo6qnjggV6eeWYEvV5BOCR0wEsm0qIRfmNjkXj8er0SlUpGRYUBny/O9HSc06emMWQr+eYdX2A8OMSdv/sNH7zzvyjRlHFp9RUsqVjCeTMA5q4mjI4FcbmiqNQyDEYlFRV6LCUaQCA84XCS2loTdXVGhoaCJJMZ7PYi6upMBIMJPJ440ZjQParruIvjx6dYubJUFOqyGTAaVYCEoaEA69dXEImm5/zGZHo9lg9+iNCzzxLavp2B666n6vv/i6a1dc5xr19f9bKrzd3dHqan45SUaC7YmnV+p6P5mG86W/i5HTuGOHx4kve8Z+kFiciFjvFiSczreHUwPhYmHE5jNCmx1wieOYlkGpVSzjve2YxjpIKV48088ex3+J///ST7X9zH4pp30dpaydDQBMFgikWLi7GWqPH7E3g8QnlwvhSr0KB5vgidNz7PlzblRap8ubewXY5DhybweuOc6JIhkUioqTGyYX2luF04KnR0zFzIaOMvgL6Bszy2/Q88/Pj9OF0Tc96TIEOvacWobSObFSbThYJUOhMhnnSIGVCx5AgVxW/DVrwSlQriKSmx5CgABr0Ji7mBirImLOZ65NJy1q2+BL1ORXGRhkWNzdisq9i4sUosx1y+zIrZpBYzkc6c8VJRYeCGG4TrO/++aLVyMWOuUDA63iU8t8KR9MuKUldfsY2rrxDE6zNnh9m95wVGJ0/SeWgfHq+PkuJqTp6axmwK8dKxh0EiYUnj5XPK+PI4esSJ0xljfHyIbdvq+OSn1uB2RYhG0rz00iQKpZRgcLaph8cbo9quFzv57T8wQSabo6GxCL8vQSKRQauVEwpCe+ttvPGa9/D8i/dx7313c/dvfo697Gqaat6ETGY6zzj/xIxpbWNTEStX2OjsHGdsLIRUKqF9lY329jIcDsFnavfuEcKhJM1LLGJMUChl+LwJ1m2rwGrTMTQUIBYVYkJPj5fBQT8mswqVUi76qRWKVXnhsDCj6mLxctlU+iIVqiodHmeEIomEiecneS4FHW9tRF1A6l8uJrweD/6xIHIEg5KAPzHLEZIZampu59DxFnY+fw+f/srHuGzNO9m88VKqq42cOeshk81htxuprjbMaVU/n4wWCg42m5bGxiIcDmGeVSg8FZkLOYKCfXtHOXHSjccTp77BJHCEzgkaG4vo7/fx8MN9jE8I1Rf5kri/NCLRKHv2H+CBR5/gpSNHyWTncgSlrAiTphm1QpiPS5j9neVyWRJpj5ABlRayoCTIWKy5BZtNRyyWYtgbIpONIpFIsRaX01TfiE5dTiZpZsWyRdhnGhY5RkLU1mziTW9unGNSL3AEFQF/Qiyl3Hx5tfgenJ/Rlr9PebFqaqbxw8R4GEuJ5oICg9lk4nMf/1cAJiaCvNB5gsnpAV48fJSu7i4W1S8WhZusJMLjOx/i0vZNVFfXnOcbtOXKmlmOEErOcIRKHnjgDDt3DmMwCL5TOq2CZDJDPJEhEknR1FgkHr9erxA4QrkBnz+OxyNwBI2ini9+/OtMus/y47vv5hP/8VnMhiqWNV5Lg71lwXObwxFGg0y5IqjVcgwGRQFHgKHhAKFQSuAItSaGhgMkE1nsdiN1tSaCoRmOEE3jcATp6nJx7JiLVatsolCXyeRmxDgJQ8MB1ndUEomm5vzGLhavlEnlcAQJBpMzCQILZ1IViocLffdC3Trznzt6dIq+Pt8Fs89e7hgvVtR6rfC6KPUqo7HBhKquCJ1WTtcJF8FgEpc7ytmzPjzTMd7whjo+fMvVtNbXcfeee7nv6K/o85zm5o4bkeXUqNVCh56WlmKUKjl2u2FORsmGjVWi2GCz6ujsHOPnPzuJQiEhkwWlQkYgkGBsTBCWKip1nD3rRaMWjqe1tRiPJ4ZSJSMaS2EpVpNMZdi9e4TBgQDjYxGSCeEBn30FD6ZXE8FIhJ0vvcjjz7/AM4deIpaY680kR4lV3ohNvhiztPI8c7aR5GE8mWHC2WmyzHUylyBBrsjS2lLC8uVWSp5/EyvaSpGnzPSeDtC2wkpTUzF79ziIBQUyt35DBdV2wxxRKY/8tXe5I2J52fzStPzfhUIizM1eype2WSwXVxYjl8nIhc1YM0v57Fu3sH5jOZNTQQbPRRgaCrD/3H4ePbqLRw/s4ruPlHLbtm28Z9sbIKMSj2Mh09abblrC5ZvtonIfiQpZUj29HorMKtpXl4vHn/98TY0Bq1WLTCYBJJSV6QgGEuSCJdzQ/B7qlb3sH97Fk+d+R7enAXvzbbjc1jmdBQuV+jNnfExOhlHIZUyMC906tmypweWOEA4nKS3TsmVLDZ7pGN09Hioq9VgsapzOCFIZZLI5MQNs1BHCaFJisWjOu+aPPzbA4cOTOBxBVq60iT5T4liRSomv2sB0ughL5xMM3/wOSj/9aYpufdecMTd/Ml/4dyGBuNBE/0Iko3A/81u7AphMSvbtc+BwBBkYCHDPPdvE9y7GN+SVxLDX8eqiskpPLpvDUKTixEw8cIwEyWSELmgjjiCNjWY+9O7/Zsr3Aj/79TfoOnWAbbGPoVcvJx5LU2rT0tBoFrNq7HbDHA+bjRur5ogNT+8c5uQJFwqlDEuxhkAwwdioEA86Oqo42DnJwEy3tooKAy0tFhyOEJFIklAwRSqd4eSpaXbvHmF4KIBMIRj3SyR/OQKSy+XoPnOSp3c9yc7dTzEw1IdUIiObmyUfGmU9Zt1aTLo1yGVzvRfjyXGm/I8RTzpIZbzzd09WMoalZB3t7WVMTuq5rqiet775cp7fG+TEiWlWrBCIQ1eXm8mJOFu2lLJxY+UcQSmP+UIPsGCmTWHm0vz37XYDjtE/Lh4AREJqFJLlrGhu55P//J/4A16CAQWO0SBHDk/wuye+RyjsRS6Xc8XGq3nXzXew/pJNTLujosCTyWQZnwhz4oSLJS0lWG06PvihFTQ2mTl21IXRKBC6ws53N90kdIES40GtAZNRhUwmEa+PPyCUQCxb/E6k12/k4LEHOTv0JCOTu5Fr38Nm+Qc4esQ5e01rhMl1vrTPMRqi64QLiUQwE85jYjJMMJgSnt0zQm9VpY6APyF+v9mkIpuZjQmO0dmYUBgPdu8eYXwizJ49o0xNCVkR+Y6UecwXfxfC/G3m/11TY0QikVBeqsU3HOLcoSn6j7po31bLiiurkcmkFxUT5j+zTSYlXm+M/ftHufvu07z//cv4/OeFlfTX48HfJhoazBRX6NBpFedxhOnpKG94Qz0feM/1LG5o5KEdv2D78z9izHWCay+/GQlqNBo5Go2ClhYLSqUMu924oIdN/r/OznF+/vMZjpDJCRwhmGB0VHiuV1TqOXvWh1oto+uEi5ZWCx5PXOAI0RQWi2aWIwwGGB8Pk0z+FThCKMTu5/ez87k9PH/wRZLJ5Jz3ZVI1RnUzRk0LWkXVeRzBFXqBSGKIeMpNbj5HkMhRKmHlShvLl1t58JGbWLWykmy6iN7u4AxHKGLPHgehoED816+vxGgQyqXmCwP5a+9yRcXysvkEP//3fAEgv6/6ehMHOyeQyqQ4HMGLEggmJqL4PUZKTZfwv1+/CYNRitsVpe9ciKHhAC91PcueF7ez47nt/OJ3lbz9hjdx05vfSDqpFI9jIRPvm25q5vLLCzlCioOdE/T0CBxh9eoy8fjyn6+tNWC1apDKhEzr8jIdwUCSTKKCzWs+TJnpFF1nd/DC8Z8zPLmExub34XJZ53QWnMMRznqZnIygUMiYGI8UcIQooZAQD2Y5wjQVlTosFjWTzggymTD28yLQ6GgI0xyOMCvwPP54P4cPO0WOkPeZmjOWLkK4mb9N4d/zBeOFcCHRqXA/hUJoHjqtgtOn3bjdMZyTUT7+iVnPrYvxkXolMey1xuui1KuMomINpTVlHDnqFM1nV7TZ6DwwwdRUhOefH+fWW02YtCa+86F/5+F9e/jN8/fzlUfOcsfVb8NkbkIhl6FUycXMnPzEyVKsntOdDODpp4fp6ZnGaFRSVqYnFBbakKpUcqqr9SxbZiUSThONpQgGkzQ1FfOxj7eLD5fWSytwuSNMOaMoFBKamsxMO/WMDLz2qyCeQIAn9r/AvTt2cPTsWbLZLI3ldSwvWY/EX0lPbBdKiYZS+WKM0nJiOT/h7DRT6TNEsl5WqW9EIhEeeAmpn2BKKOWQSxWUaMoo1pRSX1ZDmaGcmFdFcbGWrVsbRL+t3t5plHLh/lhKNKxcWUp+ZXt+ltFCeKVtCkvp8tsVfmb9hkqxS97FIyf6zaiVSuqqS/C40mSyORZX13Gj4SqeOdyJY2qKr959N9/8zW/YtOwSVlVcytZNq1i/vkI0HZ9/LkLrYWEivW5dOfG4QC7yx+dyR2aypPRs2FAlZucVejh5vDE83hhN5Y1Ummrod5/h4NhuPvKTL7H54DpaTRso0lowmdXidZ6YCNPcXER13ldqpitf3sA5L0jZrDp27x5hYjxM2worpaVaDh4UzG1tVh39/V5+/rOTtLfbuHJLLXnD88JrbrGoUSikBAIJ+vv9bL7Cft49dDhCnPXrWbztdmpPP8vU175G5OBBKu68E5le2Hb+ZL7w723b6l9xgn+hTkevRBICgSRjY4JZ6UsvTc5572J8QxYiPnnSYzIpCQSSr6+av4oosWgxm9T0nvOK8SDfbey++3pxjAoeP5deWs41m29k1fL1/Nedn+XBJ79Iy6LLWNp4C5mMAbNJPScTQ4wJFrVo0Gy16dh/YJydO4dIpbIY9ErCoXw8kFFtF9LA13UIpdu2Ug3OyQgtS0rYek0du3eP4HRGKSvTEgwmyKSzQovrhnIOnIDcAtmOryay2Sxdp47y0KO/Z+dzT+Hze9GodbQs2sSi6muJxuK4/I9i1l2KUbsaiQTiyVGmg88ST45i1K6i2LBxZm8SQrEucd9adSlmQy22kiY2rFtNLFyGxyNFq5Hz+c9fIW63YsU0Eolkjql1viTrYjJnXmm7+d5GhdtvWF+JvfqPiwd2u4G+Pq9Y1ta+WliN9wcS5HJprt3ybnrO7eZ070me2bOdZ/Zsp6Guics73kZ5yUballexbVvdTNng3JhQmAEGnNf5btY0vZiqagPNi4tnPdNsOswmoXGFezoKOQ2XXfoeDMqNDDsf46ldP+Hg0Ye57JLbWbXsKnI5GWXlwrWYmAxTUqJhw3qhdCRv0J+/dmXlOtrbS0VRqavLzYoVVtZ1lHOwc5JEMk2RWY3RqEAqk3DPPT1U2/W0LbfSvLhozjVva7MxPh7B549z6KVJios1XHGFfc49nH/PLua+vtx9rqg2Ut1q4dyLTl58dIDu58dZf2Mj9Susf3RMCASSFBdrGB8P4/MluO++s6Io9Xo8+NtEcZGGhtYyjhxxitkSK9psHDgwztRUlBeeH6f2VhMmo4Uvf/qrPLFzO48/+zuGRk/zjhtuw2xqRCaXo1TKRFI6Gw80c7qTATz99BDd3R6MRiXlZXpC4QizMcHAsqVWIpEU0WieIxTN5QgtJbjcUZwFHCGCjukAZF/jagqPz8fTu5/jocefpLv3DNlcjjp7E4uqt5AIVzPqeQyl3IxJ04pGUTGTAeXEHz1JMu2n1vJOUZxK56aJpYQ5k0yqpNhchUlbTlVFLRZzJUGfCrlcSkdHJR0d7wIEEq9UuESOsGqlUDKWFxPml5vNxyt1MFtIACj8TD677ULZNPNhtxvp6/PNxIMgq1eXYbercbmSZDI5muoWo9ZdzfMH9zM6Ps63fvAj/vdnv2Bd+wYW127gistWXdDE22bTznAE4XjWdVQQT2RmOIJwfC5XFJVKTmXlDEcoOP78uXq9cXy+BHX2FkpLmhgZP8npgR184X8+xca9l1FtvRy9tnhWzLNqBY6wuJjqaoPgKzWS5whCxlFekLLZtDMcITLDEXQc7JygpdWCzaqlr9/Hz39+klWrbFy5pUY85sJrbrGoUcilBPyCf+IVV9jPu4cXI9zM36bw70IR70K40Nh5pe+ORFN4puPEYmnOnpu7IHcxPlILiWF5IUxJnFgyh64m8JrFhH9IUeqHP/whd955J06nk7a2Nr7//e+zdu3av9j39/ZO89zuYcLhNMu21rJkSQlveEMdu3Y7qKkxcODABP39PgBW168m4izilG8P33vsl5SbKnj7+rdity8R9zXqCKLXKSgpUXP8uItCfx69Xo5SKcdm03LddfUcPDjJyEgQqTRHJpsTO+253BHReDrgj8+03UzPeO7o2D4+hFIp57LLyul9RlipfS0CzrjLxa93bOeh556jf2xsznsSpJQFrkYuEVYfquTLcWX6GUgeIJ4LnrevnCqEImsinYYGYxu3X3klb7lmNV6nnEcf6SMYSLJhXaVgwDejDhcif23ymO959OdiftnGfFyM8JVHvnwz7z+2UFdFu70Rm/VaYokEjz3/PD977FGO9Pay69h+njt+gDdc8wuWLKk7r1QwPzbyGUz54+roqKK3V8iYqLEbGXEEGZ7xQRgYCIglooXnMOoIkkxkaGgQRKbndqvRZ6vJFjk4OLKbFwKHuHb1Ft5ScgcOR4jjx6fI5RDPyeEIiWNTp5WL5CP/HTV2IxPjEfF43O4oPr+OpiYdp05N4/MnUKvlXHZ5NWfPeDGZhQyR/Pk1NxcTDqfo6/NRVqad6ytVkM026gjR1RtGt/EGqurrCT71FIPXXUfV/34PzfLlmExK5HIJJpMwVi+0yv3H4pX209pq4brrGnjppUluu23JnPcuxjdkITEsT3rkcolY2/+PREL+2vGgv8/L8S4XuVyWcERYoW1fXYbbHWH3bgfZXI5Dh6cAaGqysmn15ygxPUf3wG85O/DPrF/zNt705s+K++vsHKOn10tZmYbycj3Hj83GBI8njkIuxaBXsvmKakYdYUYcQaRSCdmMcG/znfbyHj6JpFDi1NZmo6kpPVOWNY5UJqF9dSnFFmHFNPcaeEqlUileOLiX3z5wN50v7SeRnNtiWa/aTCLwRpRSkKiC6NRLCMe7mQ7uJJubm02rkOvRai4nHs+gU5expP5W3n7jZmqrm9mxY4JgIMnGjZXc/I4W8dznCzHzy7BeyeD6j8XLxYSLFb5gbmZO4WJCHsuXlWA2qbDbV2G1fY5z/Wf43YO/4g+P38fAUB8DQ1/j6svfzvXX/Q9Wm+48Y/R8FlUhtl7bwNZrG+jtmeYXvzhJLJpCpZJhtQoeU4cPO7nuunrxHPKCWTSqoKxMS1ubjXA4jVr1HrZtuQXH1MM8vOPrHDv9B959878Byzl+zEUuhyiG2asNNC8uIhpNo9XKxQ6VhaJSOJJGpZbT0+PF7RaaX6iUcjIZOHnKjXMygscbo7WlRPTLdLsinDwlxITW1mKOHnNRYlFjK9XNEXnz5+EYDXG8y4VWK19wTGi1cmQyxGv2SrHfWKym/doa3I4QfYemePqnpylvMLHhpiZsNXMJ6MvFhPxrKpWEnTtHuPnmxeJ7r8eDC+OvHRN6ezw899wI4XCKZcvqWNJi4Q1vqGf3bgf2GgMHOsfp7/MD0LZkIwGPjcGJnfzsN9+ntMTOdVveOcsRejyMjgbR6xVYLGqOHRdiSV4w0esVqJQySm1arru+noOdEzMxATKZnFjG43JFRePpgD8xMw9LiZ4728cHUSjkXLapjCGXwBFeqaP1n4LxSSf3PfIo25/Zxch8jiBRoEq+kWxKjkIKxbrVhOJ9OIO7SWUC5+1LroxCTkcmDZUla7ntHW+krroen1eJeyqG2x2jbYX1whxhXonTK4lQfywulA2TxyuJWoXICweF9+3872nCZruOaCzGjl27ufeBhzjde4Z9B59j/0v7eON199O8uOw8wSI/NgCxc5/NpqWjo5LeHo/AEWqMjIwIHEGlkgkcYaZEtPAcRkeDJBJpGhuLqK428NxzalTyeuTac5w89wwHj+znig3bsJR8AIcjyDGRI6hEcSt/jjqtYoYjzGYc1dQYmRgPi8fjdsfw+xM0NRVxOs8RVDIuu7yaM2e8mMxCqX/+/NRqOeUVQiVGU2PRgr5S+Wyrri6X2KFvPnRahdjB72Lu9cXilfZjtxtZs6acs+e8XHFF9Zz3LsZHaqExlxfC5LkomawMc7fndVHqYnH//ffziU98gp/85Cdccskl3HXXXVxzzTWcPXsWm+0vY+jVdcLFmbM+JMCII0hHB2zd2kCJVcfZM160WsWcbJXeHi/tvIFrVm5h++nHuWv79zk8to9P3/IuTnXCyZPTM2nnRnK5FMFgQiTS11/fSLXdKKTjLSmhsamIA/sF49r8/js7xzh4cBKpFAY1W9ieAAEAAElEQVQG/BQVaYQa6JlMrFMn3USjKcrL9UAOdc7EstrFlJf8+RPyaDzOC0e7+b+HdnG47wSemPO8baTIUUq0SJCQzEaRywSiH8l5mc4MiNupJAYMshIqiypZVFnLlrWrKDbpOHrUhd3exDVb64SyOnWEtWsqxGswX3z6S+FPEZ0WKgWE2ayrQm+rC32PRqXiihUdNBYvw5+a5MG9O5FKJaxsqRO3OdHXx/LGRiQSiSgO+f0JurrcbNs2K1zllfXBgQDBoOAZ0t5eOlM+5gcEkuuZjtHX56XGbhSzv2xWHTqtnOJiLRZLE++5/mru3vE4z3Q9Q+fHD/GODW9hsW05qaTgvZU/R6kMppwxMpks27bVzfFUi8XSlJXpxI6AgLiKdcklFTgcQdatK59DCuaLX3KFhGQyg1whPc9XKv//eCJFf78PnV7OkpuvQllfj+83v2H4nbdg+8THCZReRjqdIxAQUsgLJ/d/TvvtC2VQFb5fWLJXiFfyuroQ8sSmcGX8HwV/C/Ggt9dDf58PqUwQhvQ6gdhuvbYBq1XHCy+Mk8lkaWuzUVKiobzCQDi8kbrqdXjCz/D8i7/nhluf4t3vfD+33/IBnn56mLNnvSxeLDTJcE5GCQYTHD3ipKWlWGxfv6SlBLcrwv4DE2K2SR6dnWM8+eQgACdPTWOzakWfJLcrgscTR6tVkEhkcThiLG5cibXkz5+E5HI5JqcmePjRHTzx9HYGRw6TycbnbSVBLjMilahJZ0LiqzKpCl/4efL+dBKJArWiiiJTHYsbWzAbmnjrDasAZjyz7mDrVcIzz+NhzjW4mI5qrwUuVnh6pZKxwkyc9tVlC5YKFr5WZKzm+qs+xrtv/hgvvPgkv3ngbv7tEx8Xt5lwjqNSqrAUl4j7lsnAWfAczl+vEydcHD48SSqZwWLRsmVLNaFQkonxMAc7J+noqBJFH5VazrLlJSxfZsVq0/GOm5s5ccKFvcbI1FQL1WXbeKnrF3z5zvfS3nYlmy55HxqVVewkmT+OTEZovJKIp0ThJ399Vq6wceaMF4tFI479khmvEYtFRXe3l9bWYqwFXpwOR4jjx4SYIJVKCAWTNNSbsFcL3p6FXfisNh2JeIr+Pp/4252PfDe/vOg1//oXiqD5z0skEmw1RiyVekZ7vQwed/Pg149Qs8zC+rc2UlQ2sxDzMjEh/962bfV861tz33s9HiyMv4WY0HXCxZkzMxxhJEhHh9ANz2oVTKN1OsWcbJXeXg8K2Y1suuQa9h1+iP+7/xv0Du3iw3fczksHcpw8MT1j2mwil4NgKCES6euva6S62iiW7DQ2FnHgwPg8jjAulIpJJTMcQT3HJ+nUSTfRWJrycmFMKmXFLG5cgvXV4AjRKAcPnebe+3dysucowcgCHEGiRCYViHImE0UqFwh5Iu0mlDgnbqeQGVErSiktqaa+pp7LOtowGnUcO+bCbl/ENdcI8cDhCJJsmM24eSUPoNcKf4rodKGSr7xw0NxcfF5Z1/zv0Wo0bLzkCuxl7YRi4zz5zOPodTqaF88+L7rPnKVl8aIZjiCIQ4FAgq4uF9u21YvXS+QIgwECAYEjrF4tcIT+GZuAjo7KGY7go6bGSHW1UTwPnVZBcbEGi6WJd954Pb9/+EH2du7g2KkDvPGqd1BVuoJkMotOqxDPUSaT4HRGyWaybNtWP6c8LhZNU1qmEzsCQgFHuHSGI3RUzBF3CsUv2Uw8qK83seXKmjkNAwqz2eLxNP19fnS6hUWpSDQ1p4Nf4T24mDK6C+GVxozNpp1TsleIP3Wc56+VEi2xZO41jQn/cKLUd77zHd7//vdz++23A/CTn/yEp556il/+8pd89rOffYVPvzpY0WbD7Y6J/85jvjk5CJlQwWACnz9OScTMR6/6KEHJCL9//gne/G+fodJcTamkFXOuTfSZGnUE2fOcg1WrbGzZUgsIDwYQsn9uuKFpzvEcPDhJd/c0SHLEY1mUKum8MkAJGo2cujoTy5aX8B7eQqFp98Ugm83i9HjoHRnmUHcPj+w+wMDEKKmZ1Ww5KoplNRgkOUK5qbmfJS1mQsVyfrSYUSollMkaMBt01JXZUaaKKC0pYnV7Ges3VM4RYfLleHnYrLrzrsHfOhYq9StE4dh5JQGrcH+Lm8v56Wc/O6cUs290lMs+/E8sq1vE1tY3sHlNGytXlvLiixOMTwh+TvnsunQqh8GgpKREzeRkmHQ6R2LGQHBsPER3j5sHHuglk82JaaH5lXsQxmNe+BkcDFApWcWX3rqWZ3t38IOnfkmttYa3X/o2IlGbmKE0OhbE640RjqTEYzl1cpq9ex1IJBJWrrSJ514oNt5661xD8ryYFfAnaGgwAxDwx6mZecDmA1Xh9c1j/opCwFjG2FW3UXFsJ65v3knD6v14NnwQlyvCyMjcVNaXK5u4GGPZkZEAe/aMAjk2b7a/6isS84/hlYSwv2f8NeNBLpsjHkmxZImFnEyC2azC70/MEYfsdgMbN1bOER+qKnW8eHCCdDpLReV1/Ow772ZP5+/4+a9/yC/v/TE1FVcgy1yCQm5h+TIrefN+tytKe3sZbW02TuTjQcv58QDgYOckIzOdavJdVgvJfjaTo6nRTFubjYlJE59q+tnMd108otEIQyMD9Jw9zY5ndnHk+GHCURcgrK5rlLUU6a5gOrQdoW1q/hmVI50JAAHkKaHkUCGXoFbrqLa+BZu1HHvlYjJpCxUVBq6/rvE8oWB+18G/x3jwciVjhfHgYjyP8vtrbi7mtne8j1tvfu8cz5VvfPfL7H3hWW54w3sp+3/snXd8W/XZxb/ayxq2LFlecoadxM5yYmfZSRhJSgh7lEKZbaGD0kFLBx20tKUttHRA27eliwJllg2BkISVCRm2k9hOYjux5XhJli3JmtZ6/7jWjWQ7Awij1OfzMSaydHV1daXnPud3nnNyPoHNZmLG9By6ug5n+E25nAGisSQatZzocJyhoWGOdAUoLzeTiCfp6/Nz222bKSsz0dcbJJmEM8+0A4ipdpdfUcGunb28/XY3Pm8OV138W3r7t3H/o79mT+O1LFt0JTNn3kjpVMFX6kinj6JiwQ+xtUVQmJeV5bBrV59o0FxUrGdpbcGYVEoQFF4puJwB0cdq3vw8fL4Ifv8wRpMqg8waXQ/S0/VS2xkdMuDxRsaorFJImbjDWPXdwEAIdyRG+ZmFDHUHcTQO8Mjtb1FaZWXxRVMxmDXvaaHjRPhfqgfw4daESFAwCBd6hKD4/ymM5zXT3OTG640wOBgmN9fKtZfcSnC4hedeeZKrvvhl8i1TyFLMxZRTKfQIShmdnT5efdVB1fw8CgqyMvbBatWO7RG2drOv0Y1EkiQcio/0CJljgGq1jMmTjMyeY+HTXAnwznsEp4uWQ4fY3bCXZ154gx7nEVHxKpNoyFJPQSVPEomN6hGSwyTiwgLgcNyDQm5AoQCLaQbmnGwK8iYhTeZiyTVRXZ1HbW1RRuN+9tmZ/pypv42XRPhRxTsxvj4ZzyOHw8eBA4PMmFHEb372k4we4UBrKxdcdS1zyudQU3URNQvnMH9eHtvf6jnaI4yo62KxJPoRL8Sebj+xWIJIJC70CEd8NDb18/jj+4nHR/cIQs9XXmEWDcUPtQUwa2v5ynVL2bzraf7x2B+wF5Rx9umfHukRBIVSZ6ePwcEQfn9U3Je9e1xCjyCVMm+eRXzt6STM1VdnGqqnyCyvJ0JpqQkAvz+K0aQSP5fHUiaN7hHGCxrweiJjPkdw/DG6k/WrGq1cO5UYvQ+pn6DXg0yueF/rw8eKlBoeHmbXrl3ceuut4m1SqZSVK1eybdu2D2w/ystzMedqcDiGxKYXMs2vU/+ub3Di90dRKqTEosKKR2lpEb/+7G10eFr505NPsPPgyzT73ySw7jS+8unz0etVCNeTwkVlfYOTHTv66O4KYM7VCHGXKRa2PJclSwQPkYHBED09AbJ0Knp7g/h83YQjUUKhGAMDYaLRGFaLDqNpiLd3t+MY7KBkkpZgOEIwEsYz5Kff68E5MMDpM5fhOCClvq6PrUfW0R3fe8zjkSebznTVSqQSKV3RfQwNCwVHggytNBudJAetNIcsWTa5ahuTiw2cd95UCgqyMpLrPs54J6N+6Ql+6cclnawavb1UA+J0BXhuw26UcjkNbftpaNvPhr3z+PtPvkFBQVmGhNnhGKKvL4BSKaO0NAerNQu3O4TZrCYYjBEdTuAZHGbTpi6uuGKGOFY3mmBL7YOwag2VFflcesGtvPDGDv743L+48/lfs6NjKb+46YuEI1G6u/wUFGZRXpGTdsGWZHAwTCyWJByJZainUj5U2SYVR44IkfYp4tLhGKK3N8D0GUI0eEptdsXlR4vTeOfWaHWdwzHEgcMhWHwB0yum4X3ueSoav84DtstZv34qN95YKTYL441NpC78nc4AbW3ekSI1PjnV2Ohm3brDJJNgterGGKm/24Iweh/g4zeWkY4Pux7sePEwDa8eYf5ZdvKLBcVeVZVt3MY5VRMsVh2NjQNEIoLiwj8UpatTwpeu+x5Lqz/Nm289xn+efZhg6HmCiXnMeut6zMZ5GabOKZ8dfyAmevz094cylBpLavJpb/eKEnirRcv+A4M0NDgJhmK0d3hZvqyQ8pGRp/37B3APbqfYriIcCREKhfAHhvB4B3H192EwmCgrvpCnn2mlr8/H3sNfJ8nw2IMCSJAzregXKGTCuecJbhkhoUAuM6FS5KNW5KNSFKBTFzFlsoFZsy1UVOSgUi44LvnyccGJ6kG6Eud4iXHpo3ip0Tcgg5Dq7hqk+UAL/oCfBx//PRrVg6xZcQPnn38zQMaYo8MxRF+vcJ0xdaoJjVYYGQoGYlgsWurq+4hGEyP7bhhRb+jHkGx2u56KilwcDh+TJplYtfLTLJx3Js++fB/PvPQAjS2vcO2nvo2cmXR1+bFYNNTWFGQooVpaBti5c4BQKIbFohGPRWQ4hqPDh8mk4kiXUA+W1hZmeD2l4stTx25e5VHl3Hjn1mhl3XieUeBi9y4n3d1+FHJphipqNKmV/t54vGF6e4J4vBFMRhUVKwrxOAK073XTttvFtEV5bG1xs+ENYZSptrZooh68S3yYNSHo9fD0L2+nYHo5s8/8xEiP4MvsEdLMr1P/PtojyIjFkuxtcFNaNoXbbr6LI33N3P/IwzQeeJpO93rkWSu54dqL0GeleoSjDXAgEM0Yx0tXaiypEfzbBgbDQo+QpaSnN4BvaJiWlgEG3GFmzsoVG2CjScXbO9vocbVRMkk3UhMieIeGcA8M0O8eYNnCT3CgOUldnZM9rU/hDR27RzBpKsk3rkIikeL276BvKNUjyFHJc1DKc1HJzagUuRh0Vux2I+eLPUL0uA38h43Y8DChIR+hIR+RYIBoOMxwKEQkFCQaChGPxUgk4iTicWFEPplEKpMhlcuRyuSCf5hGgzSppNggIUsSx9ObRGvKRqk+GoqRrqAZT90DHNNsG9J6BGeQtet2olQo2NO8hz3Ne9i6czH33PXtcXoEH729fhQKKWWl2eTl6cQeIRCIMTycwOMZ5s03j/DpT5eLY3WjCbbUPpjNapoa3cydXcAlF/2MF1/ZxANP/J37HvkJzW0r+N43biIcjtHdFaCgUEd5uTmD1B0cjBCLJQiHczLUU8PDcXbuFBR41dU2MSAg5fXU0yuksQLs3z9AZeVRBdOxlEmjVUfjkYZOV5D2du8Yddl4Y3SpffV6IvT0CovpxzLJHz3WOF765rvB6H1Ify0fFD5WpFR/fz/xeJy8vLyM2/Py8ti/f/+4j4lEIkTSkt58vrHeRe8EgwMhtu5uoampH6lMgk6nwOMJE4smWb16EkqVPKNhr5xrJeCPYTarycvT0tQ0QDAUZffuPqqqynj1/+7hrYaD/PWZ51lft4knN79EYa6VJeVVlElrCUVsVM61cqjNy+BgmL17+nG6AkdZ2PLcox4izf1s2dJNPB4nFIrR1eWjwzFEIg6RSIzGxgFWr57Knj1Ofvuff9IXaznm63xm7T5UUi2+eB+BpPuY95OjxiybglQiRSKFXNlktGojaokRtTSLKZMNTC3NobhIj0Yjo7FxgCVL8sesdH/c8U5G/Y7VsKSTQdVVNnF76WSVwzGETVnGv771Gx7c+B9e3P4Guw7XseAzn+Frn/oU37ryKjQqFc3N/dTXOcnL01JQkMXsObnic/S7Ahw65GXGDBMdHX6WLStEqZKLY3Wp/dJp5Tz9dAtud4ja2gKw6LDZIihVcqwWHZ+99HSuvWgZP/6/h/nri4+x6utf5GsXX8OcueXMq8zLIIVmz7Hg80XpPOJDrZIL+zeSXOMfitLV7Sc6HGd4OEGOWUWx3ZBBiI3nwXUySB07nVbO9JGmTm85k7ZhI6p1T3HD4ft4qmsZG9abRFJqvLGJlE/H1KkmliwpwOkMjDGvTTeYFWTmR2WypyIlafQ+fNzGMkbjw64HM5cX0vDaEXa81IFLHqdx/yAVFWZAQuO+fnLMKs47t1QkfUBocFNG5MX2LBLxJPYSw4jpbJTzVt3I9Vd/jf888wybtj/FN3/wZeRyBbPLF3H2ynMJD+vExjcaS/Daaw7mzc/D5QxkKDVqaorINqnZsrWbeCyOTC6jpcVNR4egkopE4kI9OHsqdrue+/5az/rtVx/ztUpQkGvcRyhymNDw4eMQUjI0qskiIQVQnHs9UqkWldyMPktPQWEWq1aW4OoP43D4OOOM4v+5evBO/KWOR2ClkzBVIyMdo1U+PT0RrrnkXtzet3j06Xtw9nfz5No7OXD4JX76g19z+RXzAGEEra7eSZ5NqAkp5dzL69pxOHyUlZmIJ+L4/THKykxIJVLsxQbxdXi8EZqahW3U1hRQUW5GKpGgUspHXu9Uli67ky/dcAPf/P4t3HXvV5k94zTWrPiKSPCkE0MrVpSgUis40ulDpZazeYvgwzMcjTPkGyYeT+B2h8nJUYv7MfpYnYj8G41jkXwCJEgk4HD4GfIJ3yGp/R1vXDTduH3GjBw83vDI90AOVUsLMBRpObjDSctOJzmxBBdV5TOnSvgum6gH7w7vtCacynqgNZqYtngpDevX0no4QlOvBamUkR5BaKZXr56MUinLaG4r51oJBKIjPYKOpiY3wWCU3budVFVV8Oy//8bbO5t58PGneHP7q7yw/hkKbPnMn72I2SynolwYWYuN1IP58/JwuoIZSg3B3LtQHOMrtuuJx5O0tAywe5eTeCKJxXK0Od+zx8lfH/oTQ+G28V8s8OJLTcgkKkLRHiKx/mPeTybRkKWaimSkRzBopqNW5KGQGdGo9cyYkUt+fhbFxXrUajlNjW6W1BR8pFRO8WgU/6Cbof5+fG4XPpeLoHeQ0JCPaDhzPF0ilaJQqpCrVChUKqQyOVKZDIlUilQmAyARjxMLhUjEYyRicaKRMNFImNjwMIP7IXWmypVKNAYjWaZsDHk2svPyMVjzKC5Ofa9lqnvGM9t2OoMZnkkOhw+LcQ53//iPPPniI7y+9TX27N/OJy69nC9edw1fuO4aVEqlMIJW78Rm01GQnyWq5hwjXq+H2rzMmJFNR8cQy5cXoVTKxLG61H7ptIqjPUJNIVi05NnCKJUyrFYtn7nqLK66fAW//M39PPrMv/nU9Tu4/srPH+0R0kih2XMs+IaG6ez0oVbLxBE5oUcYZs/efuKxBENDUUpGfPvSCbHxPLhOBikiR6dVjNQEg3gcfD4h0TgcCYmKLhh/jC713uTbhHrg9UTGklxpz5Vuuj/6vX23RNLofXiv/lfvBh8rUurd4Be/+AW33377Kdteb1+Qt3f4GXCHMZsF1VLnSBy30aji6msEhUbqYma0IiMUirNtWxc2W5Z4n0Vzp7Fo7jfp7r2BP/5rA5sb32Zj3Vb+s+klFHI5k3InMSl3ElnSXDpdUqpmlQJjzczKy3Pp7g6wYWM7Oq0CpVKGZGRfEokkVqsGpysgGOcmZcd9nQOJdnSYMchs5DCJaDKIXpaHSpKFUqJFKdGhlGiQSmQoVRJqawq58qqKExIvo0fxJjAWxyKwToasSr/P2Wfexr62Nm7+zR94a38Dv/73v3lp6zY2/+Uv1Dc4aW0dZG6lRRwRTSm0ensDuFxB5lZauOWWxThdAda9LDQmkycLZJC7P8TatYfp6PARjyfQZckpsRtob/eSSCTQaeWimfnp5cuptM/l6V3P8NOH/kTVtJms6rmA/fvtouIpNZKZ2geh2ESRSaVYrRrC4RiBwDDBYIxskwrdyChSal82buygcq51jB/XiXAsL6+Cqhk4DDcg3fwin2x/g2iDl9jgTOTZ2WO28eSTB3jwwSZmzjRzxhnFovIppZQCgZC6//599PeHOPvsKVx33ayMbbxXI/UtW46wfn37yIhWciJR6Rg4lfVAZ1Rhrsqla1MvqoDQKDscQ/T0+OntCaDukmMvNrBiJAUm9dlMLSKksHFjB62tHmz5WSKR8PWbPseVl13OY0+8zda31+MJ7OIXv7uVn//2u5gMNqrmLiLXPJWQ38K0wALmzhUu4NOVGikV1NqXDhEMRsnOVqFRy1GrZUhlUqx5GnEUqbs7SOaIXSaSRBkYeg2NajJm/Uoi0T6UCisqRR5ymQGFzIhcZkQq0aBSSqiqsrFwUf6I19BFp+R4/6/ieATWeDVhPNWScJ/L+dINV/Kr39/Dw//5P/Y17+Hiq87iD7/+O2evPI+GBietLYNUptWEXTt7aWrqx+cVPJm+/e3FALz8UhtvburCbFaJz3v4sJedO4TV6iydHHuJgfYOL4lkAq1WLpqZB4NZ3PG9v7LhjRd54PE7+eP91+ELfp1Nm5djsehE1ZPFKtSElNopFI4RicRQqmSUlmUzNBRh0BNBLpeKo6mpxzU3CQEec+daRbLuZDAeyZdCylw+pdQabaKfwtatR9i2VUiNTTdudzkDmIxD4kjm5m3d+HzDVM6ykJWE7hYvB15wEGgbomheLosX50/Ug/cZp7o/WPG5L9F24AhDHfXEBicTUZTQ3x/iyBE/AEaDiquvEWwIUg3h6AY2FIyxbVs3tnyleJ+F1eVMst/MocPXsvXtnby+eRNvbBMIKoVCQZFtKoV5U1DJrRQUzmHunPF7BKVSRpZeSadjiCy9EpCg0crRauVUzDSL5MXu3U5O1D4OhQ+illvRKovIUk0llgihUdhQyPTIpTrksizkUi0yuQy1SsaiRflcedXMEzbUo0fxPmjEhofx9PXg6e1hsLuLwd5ugl6P+HelRovWaEJvtmCdXIrenIvRYsVotaHLzkal1SGTK5DJR8gomQyJRDJCyo3I25JCynYykSCREBRU8ViMWCRMwOthqN+Fp68XT18PQ24X/sEBXDu2ExsWFoMUKjUmWz6D0UnIo5Mw2fKRymTjEjDHUi3Z7QbOPusX7Nu/n9vu+A17mvdwz31/4/XNW3nyX38XeoQWj9AjjEwFpBRafb0B0UT+W99ahNMZZN3I4sWUKUasVu1Ij3CIDoePWCyJTqcQzcmTySQ6rUJUctfMX8XM0mpefvMR7v7zr5g/ez7dvZey/0CROKqZGktN7UOKkJLJJFjztOS7tPhGFivC4ZhoQJ7aF7FHeAf1IP34jfbySh3H2bNzRe+yY2Hr1q4RH0y9qEZ0OoOiUgoEQiqViFlVlTfGdP+9GqmnSEaVSiZu58NQH36sSKnc3FxkMhl9fZnzyH19fdhs459ot956K9/4xjfEf/t8PoqLi8e978nAlqdl4QIDbneIiooc+vpC7N3nJBZNikllxydmhC+j8dDdFcTbqacosZTzll3E9EoFf354A+0Dh9jh24kn6OHpPSCXycg3WzC/mkNJvpW8XBPGrCyMOh0dh/20uT0Yokq0WjndMQ/eIRmuAS9Hdgzw6xcjeIIeBtOSLKTI0UmFETudxIxeZkUvtYopeRqNlMsvLx/j9TSBY+NkfKHeKU6GrBp9n1lTp/KZpdeTHdvEWz2vcPmqlchksnHlpantTJ4sJN+lj/k1NQuNSYfDR2lZgLVrD9Pa5kGllFJaliOmm6Sa8kgkgUYjRyqDRBymz7Dy0Pm3sXHn2dzws7u4q+VOKkxL2LtvFTOm59LZ6WfJknxKywTSJ0VqeT1henuDLF5cgNMVoLXFg0QiGJinsGVLN3V1fQT8seMa3o/3nqSrvtJT+lI/ySU3EnjzTbzPPcehc8+j8Dd3o1u0KGO7Tz3Vwq5dfSNFV7jwH+3b0djopr8/TG6uZtxG4734fHR0ePnTn+o5eHCQadOykUqlQGcGKfZeR0E+ivgo1IOqpYXEw3GcO1ysrLSRW27k8OEhUSk1d671hKoYny8irpSPiapvjiGJ1bBi8UU88o8yfnT7Q+zes529zU0MeF4iFhvmuQ2QbcrBainA+Eoe+TYrVksOBr2BZELJEacbnzdMOKEjEo/Q2+MjkQyxvX6Q//uXB6nMS5+rm3RCSiEzo1Lmo1YUoFYWo1FORim3iCMAFouaX/5i+cd+zO5U4mS8od4pxju3RhNVo+9TWnwun6iZjsP5GH39jSxbcgYw/gia3a5n4cKCMUb6jY0D9PYERLXdnr0u9uxxMTwcp6hYL/qeZdQDtVw0NZ8xI4ev3ngd1151IXf97qf83z9/hkE3lTll1/PW9jKUKhmrV0+ipqZIfB1arZyGkUZkXqUVjzeMsy+ITqcQDchTx3ntWsErC46dsDje+3E8L6/041hTc+z3ZNvWEY9P4Ju3HF2EGz2S6fNFMRiUTC4zYbHqmDrfSsc+N10HBjnSPIjRqsGrVTKcp0OpPvlL+fHqgdXqHnnf3BkG5x+negDvvCac6nogkUj4xJdu4cmf/4g5knaM0+x4k0Xs3esiFkuISWUnagaTaf9NweHw0drio7/bjFm7iuXnXEb5LAn/fHAD3a6D1Lu34g962Lgd5DI5eVYr2S/mUlSQh9ViQp+VhUSi4nDbEF5fBINBgVwuIZT0olZK+Mej6+nudiNXhRjyDzAU9qS9LgWqkRE7tdyCWpGPRpGHVDrSI2hlXH75jDFeT/8NCPq89Hd20O/oYKCrE//ggDhil5VjxlxkZ2r1InKLS7CUTEGfY0ahVgs/ShUSqfRdPW/miO7Rxc6cwszzL5lIEI2EiYRCDPZ00Xeold62Fvod7RzYtonmTa8hlcnIKSjCVjqN8rLp6ExH34PRZMbo82/WjBlcevbX0cg20Hj4RS46dw0SieQYPYKwjSlTjBlEjMPho6mpH693mI4OH6Wl2axde4jWNg9KpYwZM0xpPYKPnm4/kUgctVqOTCYhHk8yY4aN+353J69u2sy3bvs59ft+xKT809m3bzXTp5vpdAyxpKaA0tJUjyCQWqlRtFWrJuF0BWlt9TAwEBYNyAG2bO1i924ngUD0uEbg443Ipau+0hVn6cfxRKq+bVu7aW31oFbJMszU09+HlPJKsGkYSzy9E9P88V7X2rWH6Or2U1iQJV7HpZNiDocPaw7k5Sne1XOcLD5WpJRSqaSqqoqNGzdy4YUXAoK53saNG7npppvGfYxKpUKlUo37t3eD7BwNF82blHHbRReViQ2v0xUY4/mUjtlzLDhdQXwjq+rpBILdrhcTxux2A9tedVEon8PcisVcfXUF/3lmH2/tPYDOHEZliHCwvZuD7V20djnwBfx4AwEiw1GSySRSqQSJRIJaocLk1xP2QzQix6Yz88mLllFstVJotVJaVIQ9L2+kkZ3AqcKJjM1PJY5FVqXOyUklRi46Yznfnn4O+TaDSL7IjV7+8Uwdn+UsystzMzzRVqwoySBu0tMOHY4hZDIp2SOzzjU1heJ5vmNHLz3dAfbscbFgQR5arVL0wgFYUb2AJ2//Hd/+3V9527GJzq37WdpxLpqEIA2uqSka46NlNKXi0FP7mMxQBqhUMiQS4ffxyMDUeyLMcg9lEFDH8vFy9QdxZE2n6NovwvOP4/jMZzF/4fNYvvIV8WLk4ovLMn6Ph3Ql1KluBBob3cjlMqZNy+bii8vQaBQZ44PAex4F+Sjio1APSkqMlHxuNg2TO9n8eAv6iISrrqpAIpGITa3LGRjj+ZQOg0FJTo4Gg0GZcXt6PSi2Z/HSi92YjfMoLZ7KvEor4XCUnbv3kW32MKU0zq66/bhcvbgH+4jvCzLkHyIQ9JNMJEgiQXpAgkwqR6POQp9lwO+XkohrKcyfw3Wfvo6C/EIKC+xMnVxGli7TPHcC7x0nMjc/VTgWCSqSLCUGoIwvzL2HgiI5oYCEA829FBdncbDjWYIhgaRKnaf2cUzGUyOoqd8gQamQkpOj5rTTisTHth3y0tPjZ8eOHnQ6OdOn5VBali1+fxsNJu647W5yDIt54PE72NLwAwqOnI0t51yMBhU1NUUZryd3xMvTbtdjR09K3TdaKTYcjaNWy7CXGI5JBqbeD8HrKZN8gmN7eZ2IXBx7bMYinfxKbUOlVTBtoY3JlRZ6Wjx0t3jY9HgL255uo6w6j4plBeRNMmT4hY2H8erBzJlmcZxPLpcQiwmEx8epHsA7rwmnuh4ATJ6Sw9f/9Gv+c8dtdB/cRNXqc7noohqx4XU6g2M8n9KR2SP4xjTHKV+eYrueLW+6yNZVMa1kGVdfXcGTT+9hV30zxuwgGl2Y1sNHaD3UyWHHIXxDfob8foajUTGVUoIElVKFcVBPMCglGpFj1edy0RVnUJCXR74tj8n2Ygpsto9NjxD0enA52ul3dNDvaCc0JIxsao0msvMLmDyvmvzS6eRNKUVjMKDS6lCo1Cf83L1TnOyIrkQqRanRotRo0eeYsc+cAwiKroDPQ/f+Jjob99J1oInGNzay77X1aI0m8sumY581B4sl77iG2oLvn5Fzz1rFzWUXUliYLZIvcpWTx56q51N8gvIKc4Yn2ooVJRnn5sKF+Wk9gg+pTEq2SY0l1SOMnOc7dvTS0+Mf6RFsqNVyDPqj5MiZy5by17vv4/Y776WxbQPOV/Yy59AlyEj1CIVjfLTSyRWrJfPzAqBSyZFKhN/H82ZKqaJG+z1ZrdqT8vE61nFOebqlfo+H8UIQThVS70dhQRZLagpQKmUZ44MgeG3FShTk5Z28/cm7wceKlAL4xje+wbXXXkt1dTULFy7kd7/7HYFAQEza+CCQ8rtJpXute7md7W91Q1IwP+48MkR9vROXKySmnG3Z3C1676TSy1JJa3v3CAl9BoOSs1ZPwmrR8cijTfT3B0kkYPnyQsy5GiYVWZAmVJxxRjGhUJy6uj7mzcsTx0OOt7/PP9+K3x9j9epJvLT3RX798L/52qc+xcoFCz6go/a/hXfqZXGqMNpfarTxd4p8CQ2HufW+3+H0uahv38Pjv/4BvUcirF17GJlMwtJlR8mh9LRDpytA955+Zs82U1BQIhrVA5hzNUilUoaH47jdIZzOEFKplOKRL9udu3rRaeXEYzJuv+F6nnxpLs82PMlL7Q9QM+U0rllw1ZjXsndPP5CEEQJpxYrMJqC5uV+YwdYpiUTi7N3jorc3mEE8pS4AS+wGps/IwesJjyGgTjgaOSOH+d/8JoOPP4b7//5M7/rNrJ11HcvOm8sll0znkkumH/d9ORkl1HgJTCdjeDtzpplPfWo6M2eaOXJkiA0bOpg1K3eMj8jH0VPko1APAPwqCYEsGV0HBhkYDHPYF2Lrlm7y8jRcfPF0tm7toi5VE0ZSzjZv6RYVt2eeaRfPveamfrZs7cZsVrP6rElYrDoefaSJrVt7kEphXqWVlStL6OjwMuiZxvJlhVgsOkzaPgwGBStWlByX9EjF10tlEjodfqbNkHDXHz+PTqPj5ac2fVCH7H8OH0ZNSCdQ0kfTLr/iaBDEroPCxfa61x7j/kd+g1r1Tz7V/V1+VPFZNm/p4u23e1i4MJ+LLpomPiY1gppKuyvI13H2milAUvSiKq/I5WLgT3+qx+0O4fVIUankVFfni+NsKf+mytkLsRc+xHMv/4Otux7GH97DhUW/HPc1ebwRPHvDzJltGXPt43IGcHQOEQrFkEolhELxMeRTavzOXmIY5fWUST4dryaMd//U52ruXCvfvOX411XHU08qlDLsM80Uzcih/q1uHE0DHNjRR/PWHvRmNbYZJkJqGZULbePWhPHqgdGoFL//05VSH0d8FGrCWztcHGANBQUxdr/0PFs3d7Jpr4pkElatKqGzc4j6ehcuV1BMOduypUv03kmll6WS1vbuceEbimDQq6iqsnH22VN45JFmXP1BEokky0Z6hBJ7HhI0Qo8QjLG7ro/588aOAo1Gc5Ob519oxe+Psnr1ZDZseZRnXlzLTdd/jmWLFx33sR91xGMx3J0d9B5qpe9QK4FB4bOry84h1z6JvKml2GdVkm0rQJ2VhUqjfdfqp3eC92rZIFcqMeZaMS61Ur70dGLRKN6+Xtp2v0173U469tbTtvMtdKZsCstnUjJrLrrsnAwSJX007YoryoGjI3rBUJA7/3AXHp+bptbd/P0PP+aII8zatYeQyqQsW0aG6kfsEZxBuvf4mTM7N8OoHtJ6hEiC/v4Qzr4gEomO4mKD+Nw6rYJEQs53vvZVnn6umtfeepjtjf/H/IqzWLDouoxjkJ5Sh13Yj9HnenOTG4fDh1anIBKJsXePa4zRuNgjjNSE8fyejjU+dyyvp5TnVeVcq+jpdjycjBIqfZspku9kSDG73cCyZYz7WtNfjzXnuE9/SvCxI6U+9alP4XK5uO222+jt7aWyspKXX355jLHh+4XBgRBrX3WJ0vCyshzeequb3h4/CoUMt1swvZMA4VCUnbt68XrCvL2jG593GF2WnCsuP+q9tHNXL3V1fbjdIXJyNKLZs8cTRqtVEE/AkSMBBj0dBENRFi8uQKmSk52txmiyH/MCN52cqG9w0tsXorAgi+xsNXv3d9HR20uP0/NBHLL/SbwTY/NTiWP5S6WQ+n9bgZo1i5fyr/XP8FbrDpZc/zkuX/RpfN1GCguyGI7EeOTRpjFqv1Tanc2mo7s7QIowcroCbNzYQVaWnOJiPQUFOpYsyReN0R2OIXbt6sM/NCzKdU3KPK6v/TK9kgYe3PgU332gnT/bvkPltGnic9WJCRTqMQqqvXv62b69m96+IPosBX7/MIcPC75XkBSPQ32dk7r6PgKVMa6/fs4o9ZWAkxmNlKrVmK+5lkDZNJyPPM6qtu/T0HcNcNl7ivNOEU/r17ezc6cwdpDazsmspqUTXvffv48NGxwA/OhHtRn3+Tjiw64Ho9+7ZaU5FDrB2zPEwEAIEM6drVtBIoFQOMqunb14vGHefluoCVk6eQZJ0NDgpK6uD4NBicGgAvpHkpIiKBUyNFphXEmhlDGpxIjHE6GkxEhVVd4x1Rvp5EQqvr60LJvTTy/G0XWYru5ONJqJUbz3E+/E3PxUIZ1AORbJkvp3ob2al1+dwpHuQ/zrie8QpZnC3Mvw+YSErkcfaRqj9Es3805HevJcQWEWMpkEs1nNrNkW8fn27O2nbncfpmw1iXiSoaFhpk26lALrQt7e+wdu/9U1uAZv5sbrv45SoRSfr263UBNMxqPjrqnnc3T6ePutHsG/SifHN2JIbsvXAkn2j3gmdnX76eoKcM01FdjRi0qpdBzr/TrWcUx9rlyuY6siTxap11PX5BZ8vmabhQCNdh8t23ohAb3b+5i5OJ+p8yzkTTEiHfGrOV49+LjWgXR8FGpCanzy3DUXkFfwPMkjdeRK8jjQn5/ZI4Rj7NzZi9cT4e23e/B6h9HpFFxxRXlG0truuj7R1D9l9uzxRNBq5SQS0NXlx+PpIBiMsnhRPkqljGyTOkNBMhrpzWx9g5Pe3qDQI5jUNDUf4Uh3D33/pT2Cf3CAvhESqr+zg0QshlKrI7fIzoya5UyurMJky0ejN6DUfDjjhu/FsmE8yBUKzEXFmIuKWXDuRfg9g7S+vZUD2zbTtmM7B7dtJqewCIxlOAZNwPhES+r/82xqTq9dzrMvPcPufZs494orWXPaZ+nr1gs9wnCcRx5pHqP2S6Xd5dt0dI/0ydiPeiZlZckpKtZTWKgTVTspgizVI0hlUhLxBAZdEZd84lsMhrbz7Lon+fWf27DafsiMsjLxuUan1KWQIqy2v9VDb28AfZaSoaEoh9u9TJ4kHPdUbayvd1JXJ4z3XX/9nDHqKzg2aXQssiqVipn+7/GUkSeD1Ge1vl7w+QLE7ZyMAXr6vm/c2CHuV4qITN0n3Tvt/cLHjpQCuOmmm445nvF+o7cviGxEBldiN9DpGMJoUhGNxiksMog+Uyns2tVL6dRsKsqFeOSSUSeu3a5n3rw8USl1+LBw4kmAuZVWLBYNsWiCtlYPNlsWqWZ7tDEzHFVwldgFTyCfTzDFyzapiA7H8fuHqW9w0u8OAuD1jp+gNIH/XhzPXwoyyZd7vvMVrjpvBV/45S9p6zrC79bey7nzz+Gzq69i795+IWbYHxPJp4KCLLyeCDabcIFfV+cUCSMAny/K9Ok54ur16DG6rVu7cDh8aDQyFAoZer2CnBwtF9ReyvWXrOKLd93JGV++kSvPvJDvXncVdrueqVOzcbtD6LTyMSqwuro+vN4I+iwFy5cXMuiJ4PMNYzQJMeVG0xDDkRgOh49YNI7D4aO5uV8cVWxu7hfND0eP2aY/1+jPmW7JEiKSHOLPPM6SbX+l80gdmwJnArwrUipFPBUW6jGZVKxMW+l5p6tpqceuPMHK6McJH2Y9GP3eyeUSetuGmJ6vRyaVILOocDiGKCszMTycwJqnYf/+AbQ6BQX5WRTkM8Ywee5cK/6AkNgKSep2O2nv8CKXScm1aDCb1eza1YdUJkEqk+DzCQEAo42Z05Ub3T1+du9yMr/Kyty5VlyuEA6HD//QMO5BgQhNJD6oozaBDwqjx8TGI1mO3m7jlYWv86t77+CfD/2Fh5+4n8kl27norB+QjCuor3fhD8TSDMtjRIZjyGSCL1pbq0ckiwCRrPrEqknifjgcQ+LzdncP0d7hZapcQiIOQ/4ICoWMxQvn87WbnuexZ+/jj/f9hudefJ6ffv831C5ZINSEUqEmaLXyDPKrtydIKBxDLpdiNKmYN8+KwaCktycgGo6bjEMolBLa27309vl54IEm1qyZTFW1LcMcfTSZNJ6/1GikPscuVygjCfPdIEX2mc0asnRy5s61UlKRi73CTOdhD+2NA8jiSZo2d9OwsROFSoa1RE/h9GwKp5kwF+lRaeT/k/UAPvyakBqfnDUnj8Ntl9LV+iDz7O2UFEiZXl6J03k0sW3Xrj5Kp5qoqBjpEUpG9wgG5s/LE5VSh9u91Ne7RnoECxaLllhspEfIF8auxzNmhqNKi5ThdKpHMJlUDA/H8fuj1Dc4GRgUepjBwQj/DUgmk3j7eulu2U/3gWb8A24kUilGq43SBYuZNGc+BdPL0RmzUel0p3wU76MGiVSKPsfMvNXnUfmJc/D2O2l8fSP7t7yBp+k1DHIV8eyZ6KcvH3OOpBMYv/7pd7jsok/wndt/SmdXN/944k5W1l7C6tVXsyfVIwSiIvmU6hHybcL3YzphBODzDY/qETIVPlu3do/0CHIUCin6EWuDC2uu5Zor1vCtH/2EC6/+DJes+RRfvuE67HYDpaWpHkExRgW2u64PryeCPkvJsuWFeMQeQSCcjCPnvcPhIxYb6RGa3OKoYnOT+2iPMIpMSn+u8czT0z250gmqd0NKpYgns1mDTqcY1+frZA3Qx/MK+yDxsSSlPkxEo3HicYmoAmlsdOH1RCguNrB6JDUiGIyi1Sjo7fVjMKoQGnodUqkEpSrzLRk9ktTc3E8wJBi0rVpZQnl5Lk8/fZBAMIpKJQUk2GzaMcbMAOs3dFBf76SoUE9hkV708mlpGUChlJGVpaRyrpWcbWrogpwczQdyzCbwweGdKrQWVlSw+S9/4Zv33MPDr6zjuV0vMEQPP7ziqwCoVXK2bu0iGIoydUo2Go2c6WJUtuDnodPK6e4OUDrVKCRLjOPRZLXo0GoUhMMxYvEEclkciUSC0ZRg//5BwpEo3z3/m/zl+Sd5aOMzbGncxb9+/H2K7XqcriD1DU5i0QRNzW4WLsindmkheXk6evsCGAxKci065lfZxMYhhaamAfyBKEqlHH9AuOBKjdRmmOGOIqVO5Ak2Y/F0Egu+h//llyla9wp3yVuIFn7/nbxVImbOFOT7kOSTn5yWsXqWWk3r6PCydu2hE3pS1dYWvStibALvDqFQlEOHPFx8cRmXXDKdm29+lVfe6mLNvHxK87IYVkrY3+xGJpeg1yuJRBKYzUrc7hAqlYyqKtuYxjU9Xt7lDAAS8mxaIpEEtSOeBIfahDHbkklGIuEokeEYu3b2ZiilNmzoEEcGK2bmIlyHSyivyKWhwcnhdh9Gg4q5lbn8+1mQy4+fyDqB/z68U3WWWq3hh9/6GacvXck3bv0Shzv285eHvsDNX/wllZY5qNRydu3qY2hoGL1egcGgJB4Hg0HFvPl5pPyd+vtDyGRQkK8Tz+XRHk2RSIJoNEF3l58cs4aAP4paDX7/MG++2cPq0z+HPFnBPx7+MdfdeD5f/eItfPGzX8VerMflDLJlazehYBSvN8LMWblodQoGBkJYrVpUKhn2YoNIRGm1crE2pK6HwqE4Xd1+GhqclFfksmVrN3W7+/AHYmM+kyfjB5b63KaTwe8WWq1gCj9jenbGvkikEuxTs9HolXR0+Jg0P5dkKIGnN4hvIMyulzp4+/nDAOiMSnIKdJwxPRdtME7Lzj7UWQoUShlypRSZXEoyCTn5EwrJU4lQKEosFhf9vN7c3MWhQ/M5Y5qRSYo9eJvWEVBWo9Uq6O0JYDAKBElBvg6JREjIS8fokaTmJjfBYKpHmER5hXlUjwD5Nt0YY2aA9Rvaqa93UVSURWGhXjRVbmkZFJL5soSG17ROBZ1gNn90TcsTiQTuTgfdLfvpObifsH8IuVKFxT6J6TXLmVq1CFOeDa3RiEz+/po3f5QhkUoxWW3UXnYliy++jI69DTS88iIde+t5ZX89BdNmML1mOYZcy7iPXzh/Hs8//CA/uOOXvPDKeta9+TjDiS5uvFYICFCrZWzd1k0wGGXqVBNqtXzMWJhOq6C720/pVJOYPjfao8lq1aLVyglH4sTiSeQyiUAsGpPsPzBAOJzkS1f/iAcff4jHn3+YHQ1v8Ye7fkJxsR6nc6RHiCVoanKzcKGN2toibLYs+vqCGAxKLBYtVVU2kUhKoanJjd8fRaGQiaRsaqQ2ZQ4OY8mkEymURqdqwrsngux2A16PQBDX1mZ6aqWOndMZHPN5Hw/j7dcHiQlS6hSjpyeAyyWlY8TozWbLIhKJY7Nlif41UhmoVIJ/glajoLXNi0wqYfJkQ0bDvHXrEbZt62HJknwxIry8PBfziJknCON9AOYcDZFIgt7eANNn5NDdHUjzlBIuKsKhKMOROHKFhKqqPHQjF2IpdVblXCt797po7xCS9z7uqwUTODFSiqCffPYmls2dyzfu+T0yqYz5cwupnicVjPvdYXp6/JjNGortepEIXbFCJ47t+XzDlE7NFs/b8UYcamsL6OsL0NXlJxKLk0wmMRiEBr21dRCpVEKZbgnTayp4o/M5zvjyjXzjU1czST8Pn2+YflcIn28YtzuM1aJDrpCQSIBCIRujDEuRYmazhgUL8sg2qRj0RDISBVOKx9GFwukKiIqw8cjfFKQyGYZzziFYOJXYfx5D8+vv0NNdR953v4tUmWlafTyUlBixWgXFjdXqHpd0Gj3G9+c/1/Hooweorrai16ve9ejgBN4b9u3rx+EYYt++fi65ZDqFhVnk5mpQlugw5ejwtHiRJBOYy40c6fTj8w0TCcfwD0WJxxNilD0cjZJfUnO0HlisOubMBpNRJX6WNm7sQCYTFicMBgW9gSiODh8+X5SWloEMT6lEIomrP0RBvg5GSAOXMyA2zG53iGefaQFA9jExsp3Ae4PLGUCrmMG//vQiP737ZnbVv01l5VTmz63A5RS+74NBITlu7lwrwRFfwfRRulRKXndPQPz76JpQWyPUA593mEQiiUotH1mt9jM0MnanUZWwaM5P8Q+/wj1/+RWvvvkKP7zlNxgMClpaPXg8EZQKKQaDCpdTqC2lZdnMq7RmqJrSCbHUuW8yqfB4IuK/zWYNBqMSs1kz5nh4vBFs+ULTNJr8HY3cXA1lZTnk5r77Rb9gMEY8TkaqYDocjiEOHBhEIpFQVW2jaEYOL73YypY2NyUFWdhtWah1CvyeCO7uAJFAjHhsfCnk5369FHXWyderCRwf6TXhuutmMXVqNsFgFHnJCqprF7HrqX+gZSMS0yKUKiElu7XNg0wmYfIkY0bDvHVrF9u2drOkpkD0pCmvMI/0CIJB986dQo+Qk6MmEknQ0ysoA7u7/WM8pcLhmNAjyKUjPYIiQ51VOdfK3n0uOo8I25Z+xHqEWDSKq/0Q3Qf309t6kGgkjFKrI2/yFIpnzWXqvAVkmXPRZOk/EF+o/zbI5AqmzKtmcmUVnr5edq19mv2b3qBr/5+xlExmxtLTMI9K/xMUQUPc+rXvsri6ip/8+jcoFHIqKwuYN69QMO53h+npCQg9QrFeJEZWrCwRx/aEHsEknrfjKXxqawrp6wvSdWSISCxBMpE42iO0eJBKJRRbzmRy0Rx27X+CC6++ji9ddwM5+vlCj9Cf1iNYtcjlEhKJJAqFNMO0HI56Zwk9gk2sB+mJgtJj9QjOoKgIG4/8HQ1zroaysmzM77ImWK1ajCYV+/cPjBlTTGE0SfbSS4fY9GYXpWVGNBrFux4dPNWYIKVOMaZNy8ZvEBRHVouO8y+YisMxJBJAXk+YRBwKCvSUV+QyHImxbVsPw9E4uqzMt2PbtqPRwakmBI6qNKQySMTBZtNx+hl2hiMxOhw+dFo5Xk+YZBLSY2PLynIY9ESYPctCdZVNbMzTja7/9Kd6QiNKLK9nYnzvfx3piqArV69m/ozpWEzZYtJKrlkjnuPHSrRLRVun+zhVV9nG3Le8PJeKikEGB4WCUVWVx+w5Ftz9IXRZ8jTiaDZ3TF3Dz/75T+56+H4WVezi6xfcwOxZuXQ4hBhapyuAWqWgotxMbW3BmOcaPcY4Gna7nqXLCo/5mlLkbyAYO65iqrm5n7Ubh5DnnMVq23549DECW7bw1uLr+esbcS6/fDoWi5annmoR1TTjITWeFwpFuf32LWNIJofDy6ZNRygsFPbh0UcPsHt3H+3tXtEksra26KSM0Sdw6jB6POaTn5xORUWuaCYcCMdIdgYIHfJz2plFdPcGiQzHaDvkJRSK0d0TEJUQ6VHyo+tBekqKzxfFZtOyYkUJ/f0hXM4g9hLDCDElpLparDpWrixheDiBTCYhGIxhMgoXNSbjEFXVgkLrKzdtwNUvjHMnMxPIJ/A/inRD9Af/8iR1e3Yyf65g3G2x6jjjjGKOHAkck5gZXRNS525VtS3j/uUVuVQcGOTtt7ux2w0UFAj2BBqNHEeHTySLhPG1HxCJXc3N3/si13xpDTff+GOWLDmDoSEhQnvO7FxaWmV0dQWoqMgZM8o6eoxxvLG6pbUF2Iv1GQspqdeTGgEMBmMnVEyNZw7/8kttvLmpi+XLCjEYVWPI59FI7UNkODaul5fLFaCxqR+z+Why3KYt3RxsHaS9a4i5c6yccUYxJYVZdHYMUWrTkqVVMByOE4smiA8Li0LJJASHhidIqVOI9JpQUmLk61+fT2OjW6wJ+oWfZ3DHQ+gG3mDhtMUorYVs29ot9Ai6TEXPtq3d7Gt0A5mx86kGNOXPmW/TccYZdoaH43R0+NBpFXg9kTHf6WVl2QwORpg9O5fqapvYmKcbXf/xT3WEwwIZ+lEY3xsOheg91EL3gWZc7YeIx2JojSaKymcxeV419tlzycrOQaWdUPydLCQSCdm2fFZ+9kZqL72SunUvsGfjOjb9+35yi0uYecYqsm1Cemg62XH5xRcyd9ZMCmx5oqghN1fN+eeXHjfRzucbFtOFU9uqrraNuW95hZmKAwMMDITIy9NRNT+tR9Ap0oijOfx06vn86g9/4vf3/ZFFVQu47rIvMXt2Lh0dIz2CM4haLaeiwkztqMQ+OHHaXbo5+HivKUX+BoLR4yqmmpvc45rDp0ijZcsLMRpVY8jn8fYHOKaXl8sVpKnRPWL7AJve7KLtkIc+ZwBLrlY8vidjjP5+YoKUOsWYPNnE9NMnif8eHSlvs+nE8SarRcfGje0Eg1GkUgl9vUEefXQ/Wo2C2toCliwZiQ5ekhkdrNPKCYViqFRSsrKEC7uUj04iDoFgjIKCLJyuINFoXDSkrl1aSLH9qBpLp5XjHgixdWsXOq2c8vJcli0r5PVOGQyBOUf9QR22CXxEMXr1unzSZPFvyWSSr/32N6iUSn7xpRtRyMd+naSfa93dAWw2rXhbSgk4c2YOuRYddrseg0FBXp6O+fOtrFgxCRA+Q6PH5wB++oUvsHLhAr7wy1/yxXtu5fff+AZXXH46AE8/fZAtW7qwlxgyVh/SkzHTvaDSPaJSn1mrRVB6jVZCjafy0mnlbNzYASTFIlnfIIxGdXX7BYPQT30Sg2shg489RuVjP+IMfwVPPnIB1qJs3nzzCMAxSanUmN7tt28RjWnTSalNm7poa/OwaVMXX/ziPFatsuN2h1iyxEZhoUG8ED7ZmOEJnBqMHpdMvY9r1x5i27Zupk41YbJqcDe4OfB6N1NrbGx5q5tQKEY8nqC1ZYD6OidLavKPGSWv1coJhWM4On3k5QnqqLlzrVisOhyOIeJxUCkF35mGBicuV0BsZK+5pkI87/v7Q4TCMZqa+/F4hfSyZcsLGfR1cLBrYnxvAgLSv//kcjkL5i8W/7a/pYmvffvz/Obnf8JiHeujkXqcxxsBkhTkZ2EyqkfM/gUl4MyZOVjS6kFOtoaCAl1Gkl5NzdHtHSVjcnn+sdf46V3f5467v83qledyxw/vJtuUQ3NTP6+91kkoFCMUimfsT/o4XTqRNJ5PVCoVMF0NNV490KbVgzmzLfT3HzU3d7vD4mp9Cm+OfH+DoHofj3xOR2pfHn2kaVx/qsbGAXp7AjQ2DrD67KkAVFZaGBwIY7frmV9lpaTEgMMxxME2D1KFlKLJpjHP4+kLTCjmTzFOXBPszLj0Vny7H6Hv4FZkvR1EQlNIStX09gZ59NFmtFoFtTWFx4yS12kFKwSVShi5A0QfnXg8SSAYFXuE4ejRJra2tojiYoPY4Oq0wsir0CMoKK8ws3x5ETv3yxgK866VHe8VoaEheloP0H2gGXdnB8lkEn2uhSlVi5havYiCaTPIMuWgUE/0MO8VGoORmk9eSdV5F1G/7kV2v/gsbzzwN/KmlDLzjFVjFE3l08rExyaTSb71o59gyTXzrZtuRCYbew2Rfq51d/vJt+mw2w00N7nZsrULs1nNjOlmMaXPoFeKhFRK4We1asdV+fzgmzezvGYJ3/nxT/neL77Bz3/wPa64Yjkg9AibN3dRMrpHSEuwS/eCGk3WHG8sbjyVl06rYOOGDoBRPUJQ7BHS758ijQDMZvW45HM6UvvzyCPN4/pTNTW66ekN0NTo5uyzp1A5z4JvKMKMGdmYzdoMBdiJjNHfT0yQUu8j0hvdYykzfL4o/f0hNBo5eoMSR4ePUEhYhaicZ+Xqayoy7u90BahvcNLT40etllNULMXZFsLpClJiNyCVCQ1yIBijr1eIHR8xC8lI9UttJ/V8FouG8vJcLrusnK1HprNhhxdj1gcXTT2BjyaO50FVd/Ag/1q7FoD97e3867YfYTZmEh2px6bkuVUjCimnK8ALLxyiu9tPT68fW56OefOEVQ+jSX3csbh0nDZvPlv/+je+/tvfcO1PfsLDVa9z501fxu0OMzAYJhpNsHFjBytWlGC16DINBUe8o1IKxt7e4EgM7FFyajzvqNHHJEU6pycBtrQM0FDvoqAwiwUL8kTlJJYKPBd/niMPPM4lNHF+sJfeuV8Dili2rHBcX6h0dVP6KuuWLUf4z38OUliYxbJlQqG6+GLhgmDePBvhcIIlSwpYs2aKuK33GjM8gXeP9Pcx/X0oKTHS0+bhpT/vZd/6TnrdAdz9ISorLfS7w7S1egC45poKVEr5GKVGd4+fttZBensURMImfL4oDQ1OAHGsyG7Xs3lLNw17XCgUMoYjQmN++RUVYiO+Z6+LttZBotEEvT1BTEY1l11WTvVCJdd/pRSVMguXM/CBJ8T9tyARTxCNxMWf2HCCRCJJIp4gEU+SiCdJJpJIJBIkUglSmeABJJVKkCtlKFRHf2QK6UeWDDieD9Wdv72dlkMH+OR153LX7b/n3NUXjXs/lzOAzzeMyaimqtqGyzlSD7r8uAdCTCox0tIywNy5VkxnCqTVaJJoPGTpsrjz9t9z+rKV3Prjm1l5wTJ+eutv8Q0W4XAMISHJ4cPejPM4lYoHArEz2hzd442I6XspojddDTX6eKTGAdNTAFtaBsTnqK0pEM3JQSDFNGoZ+TadqJQCgXw+1msWbx8Zq5o710pzUz9btnZjNquZOTNH3EYKU6dkEx1OMmPGsZViE/hgcbyakLxwFrvWPsvrDz1AmaKX9kApsqwpdHQMicRqZaWVq6+ZOSZVTOgRAqhUshFPHY/QI5QYkMkk6LQKAsEovb1BtmzpEr9r0lP9Utvp6PARCsWxWITG/7LLZrCzcTrbd/nR67I+sGPlHxyg5+B+ug82M9jTjUQiwWQrYMay0ymrXoJ18hR0phzk78AaYQInD5Vay6ILPsncVWvY9cIz1K97gVf/8Wfss+Yy+7QVqLRjCYxdDQ08+9LLABxobeP3P/8pBn3md0166pvQI+RhtWp57rlWtmzpJidHhdsdZnAwzHyxR1Cd1FgcwPIli3nh0Yf43k9/zpdu+TYrl53FrTd/dWSbEWJRz9EewaodYzqeIqO8ngg9vYGRHkElPu94JM7oJL6UR1a6sXtLy+BIj6BjwQKb0COMPKa5yY1aI8Nm04pKKYCKmeZxX3M6YZZuVJ5O7FWMfL+kCOwpU4RwndGBB+/UGP1UY4KUeh+xd09/mq9TybjNtcGgIB5P4PFEKC3Npra2CLc7hNmsHncsKCV9z8/PQqWS4nIJKRg+X5IOh09UStnteuLxBLF4kmyTcszMa2o79hIDWk2mW/9Vp13GgryVTC/JeT8Oy/8EkrEY8cFBYm438cFBEkNDxIeGjv4OBkkOD5OMRklGoxCLkYzHQTrSjEilwv8rFEjVaiRqNVKNBqlWi8xkQpaTI/w2mZDn5CDVffCN4vzp03nkJz/lhl/8nDfr61n5la/w1C9/yeSCo6t2KU+pvt4geWkqKYdjCL1BSQFZlJTo8fmiQFIkfB58cB9vvdXDokX5XH31rIzndboC7N3TT0qVZLUY+NdtP+KO+x7n90/dz1k3N/P5FZ9hxvRs/P4Yfb3CzLvVohPP8xK7gZ27ekUyymbTYbPpOHzYS3wkZsxqGX8VfDykUjJTqsXhSIzurgDVVXljVrvrm700KOYzXDaTqv63mfSP2/jVBRfQYL2KreOomNLVTWvWTBFXWW+/fQuvvNJObq6G73xnEf/+9zzxMekXuKNH9iYUUh8OGhvdvPTSYXbs6OG662ZlkIX5U0188tYFPHNPHWWxBMncGH5/jDPOKEatkrOkJv84ZsoSdDoFSpUsox40NDiJx2HGjBwsVh1udwifd5iSSXrs5TnjGC0L2zEaVVTMNIvn/JRJU/nVj55m//4BcfTvfw2x4TgBb4Sgb5iwP0rYHyU08jsciDIcjpGInbr5RokElBo5ap0CdZYCjV6J1qgkK1tNVrYKlVb+kSStfv/L+/jadz/PG1te5avf+TydXQ6++NmvZuzrnr0uWlo95OdnZdYDvZKCwiyWLzuagpRKjdy69QgvvHAIg0HJqpWTxhA0e/YK9WDObAsWq46zV56HLFHMXfd+h5u+cyWnLbmCOTOuIBqV0NvjZ89el+i1mfoc2EsM7NrZK5JRtnwdtnyhJiTiQk04ljJqNOx2fYaxu1Yrxx+IoVLLyc3VcPkVFeJ9GxqcBAIxFi/OF1VNqZox2vw9hfQRytS2Hn2kibq6PgwGJZdeMp1v3jJ1zD4BY3yv/hc/zx8VvPZaJ+vWHeassyZz3XWzMmqzRCKh+pwLqT9s4ODL91OmP0A07qJ4wULcfhVms3pcRUNqHCo/X4dKJcPlEsavfT7o6DiqlLLbDSTincTjSbJNqnF6BGE7JSUGtNrMHuGy8z7DnLILKH0fe4RkMonX2UfPSGLekLsfqUxGTkERc1aupnTBYsyFdrSmbOSK/12j8g8aaq2O2suuZP7Z57P1iYfY++ordB9oZtriWkoXLhGtPQCqKyv5/S9+xnd+/FM2bdvOpz73Bf5+z28osGUqkDZu7Bi5DteKZIjZrCEnR0VJiRGzWc3AgKAsTRE+Dz7YyFvbe1i0OJ+rr56ZsY9OZ5C9ewRiSTBOz+bPd9/Fnb99gPsf/zt7m/dw+flfYsaMbPx+gZx1OHxYrUcVQyUlBnbu7BXJqHybjnybjsPtXuLxpLgvJ0vipFIyU/8/PBynu8tPdbVtjPqpvsFJMBBj8eICzh4JSKupKRxj/p5COjFWXW0TFVKPPNJMXZ0Tg0HJJZdM45u3HL3mTN/v8VRgHxYmSKn3FUlCoRiHD3txugLjklIFBVlMmy58sdfWFohjSukqq3TotHIMBoUYI9nd5ae0NJvKeVZRIZVSeaSP/6WPPzldATodQ8ikEjHBLx0n24j/ryOZTJLweon29Ag/XV3EenuJDQyQ8Hoz7itRqZBqNUi1OiQ6HbLsbKRKJRKlEolSgUSpQiKTkSQpZK/HEyTjcZLDwyRCIZKhEIlgkJjbTaKpiYTfn2HyItFqkVssKGw25Pn5KIuLUZaUIB1n9eJU4pzaWjb+4Q988nvfo63rCCu/8hUev+MOqmbMAISL5/Z2H0O+YRYuPKqS8noizJieg8GgpKAgSzxvQTg/G/a4GBiIZESEp/723LNt7N/vRqOR43QFRcL38xefy+zJM/jpQ3/gjqd+zWllKzlt2pkZZFh5eS7l5bnjjtM6HEPEE0kxlRJOPq1wdEqmwzGEzaZDqZKLn+V+lzBOUVycRUFhFm3RLKZc8Dny27bjeXEt1hc3oMlfQ5PhnAy11LHUTStXluDxRCgszBrzt3TyKTUWkLp9Ah8OZs40s2NHD4cOebn//n1jmhB9jpqlV8/giXvqmZavR66TM7fCIjaoQtJe5vdy6rYlNQUcPuyjtWVQNHLWauWiiTRARUUOXk9kXK+a5qZ+Dh/2MnNWLktrC8c0qv8LNSGZTBL2R/G5w/gHwgQ8EfyeCEFvhOG0kS+pVIJSI0ellaPSyTHkqlHpFKi0CtQ6OZosBeosJUq1DLlShkwhQa6QIZVJkMmkJBNJUUEVjyeJRxMMh2NEAlHCAeF3KBAl4I0QGhKIL68rRCQQFb/yZQopWoMSQ66GbJsWU56WrBw1UumHS1QZDEb+du/D/OI3P+YfD/2ZX93zM7p7u/jRd36OXBzvljAcidPXF6S/XyBRPd4IM2bkjPg/CSlPqeuflIqq0zEkBmmk4HIGePa5NvY3C/XA5QyKRv7zKsv4xQ//yX+e/wdPvvBHDrbt4JrLfsKQx4iQDCsglYqXIoBs+bqRdKiUJUJmTTgZIsdizawHFqtO9Jvas7dfVF61tA7S1DxAjlmFyaQSx2pzczVs3tJNS4sbjVqREXgA438e58614g/EMJvV435OxzN1nyCkPmwk8fsFZWtHh3dMfe7o8CLPsqKY/VkG+3djie4g1rmOqllzsVQsodcVG9MM67RC6uXRHiFAaZmJykqrqJBKNZ/p43/poz5OZ5DOziFkMomY4JeO90tNkYjHcR9x0NvaQnfLfkI+LzKFktxiO2WLaimtXoTJVoDWaEI2jl3EBD44aPR6Vnz2S1SedS5vPPA3mt58lfaG3VSedQ7WSUfJj3NWrWRScTGfv/kWWg4d4pOfuYG//u5uKqYLfnoOh0/sERYtsokjcQa9kqVLCzHoVRQUZGWMlTqdQRoaXAwMhMf2CM4gzz3XRnNzP9r0HsGq5bNXfZLyaTP5/V/v5t5//piFc85j/syVGWRYKn0uRQDl23RiWmBq/DWVSgljVVHHwuiUTIfDR55Nh1IpE0mhlO9TsV1PQaEOlytIc5Mbc66GvXtcdPf4GRwM09mZ6fl0rM9j5VwrgUB0pCZk/m08U/fU7R8mJj7VpxAxl4tkGlEwe44FpysomsuO19wGgjHMORqmz8jJIIeO1QwHgjEScejuFoycBXVVgZjIlz7upFTJsdl0hELxjFEoh2OItrZBkklhe6Nxso34/xKSySTxwUGG29uFn8OHiXZ3kwwJF9XI5cjNZuRWC9qSEuR5VhRFxShK7CgLC5FlZY0QUEokcjkShQLkciQy2VF11DGel1iMZCJBMhojGRXUVYlQiFhfH7GeHiIOB8PtHUSPHGHY4SC4ezdEBbN6WU4OiuJilFOmoC4rQ2G3n/LUkfJJk9lw7x/45PdupaG1lXO++Q3u/+FtrF68GLtdj1IhIxyJ0+HwUVNz1ChcKoNgbwyjSZ3h7+RwDIkJR3a7PoPQFR7rJ5kUVhJbWzxYLToKCkIjc+CFPHfX3Xzz139mbd06uv3t/POH3x8zAuv1REYu9JNiCIFOK6eqKu+EI4Mng/SmITUC2NjYT1eXH7c7hC1fx4H9A2g1Cq6//iLedGWTW7eRizqfoPORt3hp4Av0qfNEQ/MjR4a4//59GQbno70pRiOlkDIalSxZUnDckb0nnzxwQrP1Cbw3lJQYue66Wdx//z76+0M0No5NUmw+MMiQQcGkmQaGDnjZ9PhBpi+yMWlO7rjNcMpk2ZavEz8ztTUF5KbVg9RjVMqj9WB0QlhDg5PWlkGydJZxG9WPm6IiFk0w5A4x5A7jc4fwucIMDYSJRwVFjEwuQa1XotUrKSjLxmBWY7RpycnToTUqUKjkyBVSZAopMrnw834gHk8QjyaIDScYDsUYdAYY7A4y0BPA6wrh6Q3QdWAQAKlMQlaOGnOhjtxiPTk2HTLFB58wJZPJ+MG3fkphQRE/+9UP+ffj/6S3r5t77rwPjUbLnNm51Nc56er209DgpKwsh96eADIZ9AZiotF+6nzbtbMXvV5JsV3P8mWFYhOSGqXr7fGTRBiFbGn1YLHqKMg/6uF0y1duJs88m4efvp3f3fc5brj6h8yZ/Wlxf1OjcFqtHFu+DkiiHakJ2rSa8F7P/1RN8HjDYgPw2mudtLV5qKgwc6QrQN3uPvyBGPMqrbz9dreoMO7uCdDdEyBdDdbfH2Ljxg7R5Dz1czykJwUej2BO+XstnGth0uzjb3MC7x5nnGGno8N3zHrQ2Oimrc1D7TI7a9acTmjIx5bHHmTf6xvobNqLfXYlhhnLMh4TCEaJx5N0dwsWH6VlJmprCsVEvvRmVqmUkWfTEQrGMsaCHA4fra2pHiE6Zr9PpZoiNDRE3+FW+tpacLYfIh6NotRosZRMomjFaqbMX4DRmofGYEAqnfA1/KjBXFjMRd/9MYfrdvL6A39j6+P/pnBGBXNWnY1KI5wjM2dM54l//o3PffVmWg4d4orPf5E/3vkLli5ehN1uQKmQEo7E6OjwUVNTKBqFy2QSAoEARpMqY8TM4fBl9gjOoHg+Ohw+env8kASJVEprqwerRUtBQdZIjzCZB//0Z77/s9+xecezuL2H+N0vbh8zDuf1RNDpBIoklUKp0ypG6sF7NwFPJ5JSSqemRjdHuoZwu8PY8rXs3z8oqBQrreyu6xN9CMPhOCAhHI6JhubukXqQbnCeItiOhRQZptMqROJtPIhjgIY4CxcVj3ufU4UJUuoUIe710valG3lNpeTCb32bbL1+RD1RIja86UbIxzNNPh5S9/N6wgSDUSrnWTHnasR5XGDMtnft7GHHzj5yzRquvXYmOq0cpUr4ctelrcClTKA3HHiBfY793HrNtVx42mnv/eD8FyIZjzPscBA5eJDhtjaG29sFdRIgNRhQFBSgW1qLcvIU1BXlqKZMQabXI9VqkWq1Aul0CiCRSEChENZ1VSrg6IWxqqQk477JWIxEMEjc7ydy8CChhgbCjY0MH27H19iILxZDolKhnDwZ1YwZaGbORF5QcErGQGxmM2t/+zuu+cntvLZrl3i71aJjzZrJonEgZJqfB4IxdFo5Dz7YSEvLIGVlJqqrbaxaNUkcrUsndO12PUuWFAJJfL5hWls9QJItW7qpq+8j4I9x/fVz+P13vswZr1Zx5+N/4rzvfo1vX/oFLlm1VCRle3sDhEIxWls9HD7sQ6ORM31GTgY5diyMNkUfD+MRu2azijff7BJTRgxGJSqVjJ27esmdWUoTJoLeA0zt2U3h0z9kk3oer0evo7a2iH/8Yy8bNnTgcPiOS0SlsGXLEX71qx0MDQ1z9dUzue66oyOQ4yXwPfVUywnN1ifwzvHmm2+i1+uprKxEIpGIxNRrr3XS1NSP0xngjDPs46rizJepeP2h/TRv6aGn1cucM4rIGhU+kd7oBgNR5lUKKov0epBqptPv++RTB3H2BfnEWSVcdlk59hIDbYe8RGOJDL+d5qZ+1q3fxjPr7sBeXMwDf3ni/T9opxjJZBL/YARPX5DB3iCe3gB+T0QMptXoFWRlq5k020y2TYulxIDJqkGploseT1LZhxMfLpNJkcmkKNWgNSgx5WmZPFv4WyKRZDgUI+CL4Dzso/ewj/7OIY40D3K4vh+JBAwWDbnFevKnGtGb1R/oyN9nrvwCtrwCvvG9GwmGgqKywWIVakKKNModMZlNKftS42Vthwapr3dRWWnhE6smiQR/usrHbtezpCatHrR4AGF09e0dfXR1Bbjmmgqu/vRKFlbP5tFn7uQPf/8ee5u38+Pv/oKSEqu4TVu+TvS6cjmD4ujraP+l0TgZr6vU/qaM0lNKKbtdT0+PH7tdT1aWSqwJHm+EigozBflZFBXrgSR1u52iR1V/f4gHH2rCPyQQBidDRu3Z209TYz8eb4Samkw15OjXkEr6VEslnHf8t3kC7wDBYJDnn3+es88+G4PBINaD1OLR/ffvA5JiTRitktboDay8/svMP+dC3nryUQ6+tYWOPfXkl01javVicgoKxcbS64kQCESprBynRxilsNi5s5edO3tHeoRZ6LQKVGKPcPRaNmUCvWnnoxzubOFbX7mRM5ctfUfHIBaNMtDVSb+jnd62VnyuPpBIMORamFxZRfGsuRRXzCYrOwd1lv4jOaY8gUxIJBKmzF+AfdZc3nr6MXa+8DQb/vonZp6+kpLZc5FIJBTY8njs73/hS7d8h131DeL7arVqWbNmyqge4aj5eSAYRadV8OCDTbS0DFBWlk11lY1Vq0rE0brU6F3qsUuWCApA31CElhYPAFu2dlFX5yQQiHL99XO46/Zv8dxLC/jzA/dw7Zdv4EvXfp2zV9WKpGxPb4BwOE5Li4fD7V7UavkY/6Vj4WQS7MYjds1mNZvSegSjUYlKJcfriVBaaqK0VLifQa/icLt3pN4J5NP6De001LtwuYLHJaJSaG5y89TTLYRCUc443Z6h4hq9//UNTurqnOSaEhQUmU647feCCVLqFEFmNHKgpoav3fN7vrn1QpbOm8c5tbWsWVJDdZVtjBFyumkyIK7+HavJTW+Eq6sEj4Xe3gAKhYQ3Xu9kOBrHkquluamf+jqnOAro7g9RX9/PgDtEKBijfmRlcjgSx+OJsHbtYUBI0Vi79jBd3X4ODByh2dGOLxD4AI7cRwPpJFTkwAGGDx0iOTyMRKFAUVSItroK5YwZaOdXoSqxIzUYBPXTR2iWXSKXIzMYkBkMKAsK0J9+OoA49hfcuZPA9u2E9+7F9/zz+J55BqnRiHrmTDTz5qGePh3Je5BE67VaHv/ZHWzft49llZXi7amRufQku3TyZ+euXt56qxuXK8TAQIjyilyqq2w4XQHRdDyF9DE5pysgpkmmImVVKqn4HBeeuZjJtiJ+9tAf+c7f76T+UDN/+O5N4vY6HT48njBms2bMWEg6mpv72bJFMJCtXVo4rvl5CqPHbtM/swDzq2wiSR0IxvB6whzYP8D0GTlcf0MlUEk8cC4d/3qcZU274aXv4S7rRprIGRPffDxs2NBBY6NbOB47e1i/vl1UQY2XwJcySE/9nsCpwS233MKOHTuw2+1ccMEFXHDBBSxfvhyrVcu6dYdJJsFq1YnvQ2rssqPDy5tbu5l17iQmV1rY/swhNj12EPtMM9MX25ArZRmNZKQ1JtQDpYTXR+rB5EkGtFo5Tz/dgtsdoramAK1WTl29jyNHhhjyDbPpzS4uu6wclVJOMpGkvt5FJJKgtqaAYDBGXb2TxqZeHF1tJJJjV8w/ihgOxQQCqi/AYE8QryskKqC0BiUGi4biihysJXosdgMavQKlWo5SI//Qx9/eCaRSieA5pVNgzs+ivKaARDxBOBClr91HZ/MgvW1e2vf007bLiUorx2LXYys1kluY9YEQbWevPI+CvEImTypFqThqQFxekSuq+YAM4ic1XrZ9ezfOET+cyy4rz9hu+ihdqh64nAHsxUI96O8P0dUlrLQL43Iqpk/L40ff/g1a5XSeXfdbrvrCXu6755/Y7ZMAgaz1+aIYDErmzrVmjL6ORkpJtKQmH5VSftxxuHQlVmqbqde7+qzJVJTnHl2cLNaPeFoFqCjPFe8njOlKSHlUbdzYgX8oSpZeMY433Fg4HEPU7e4b+Y6QZqR61tQUjSH7UgbpcyZUUqcU69ev5/LLL0ehUHDGGWdw4YUXcv7557NmzRTWrj00piak14P0EJSc/ELOvumbLL7kcna+8DQHt2+h+8A/kWtNFJTPRmmaxOF2H2azmuHhOA8+0Cj0CBYtzc1u6uud1NYUigqL+nphFCoo9gjZRCJxvN4Ia9ceAlI9wiG6uv20tXfS5jiE/yR6hHg0ymBvN66Odlwdhxns6SKZSKBQq8kpKGJyZRVTqhaQU1CM1mhEqf5wEv0m8N4hVyqp/dTVzKg9jfV//QP1Lz9PZ2MD1edciMZgxKDX8497f0f93n0sqpovPq68wiwq+VKqp3TCZufOXt7a3o2rP8SAO0x5uZnqahtOZ1A0HU8hfUzO6QyKY3++ochIjyATVYHnn3069sJJ/P6+u/nZ726j6eBl/Py2r4rb6+z0MTgYEnqEYv2JlURmNbW1RcdNsEsnfADx/1NkV1WVTVQvBYJRkXgbTYg1N7nR6TK93t6Jq2V9gxOHw4dCLqWldZD6eidLagpEpVr6/otjgIY4RYXvr4XDBCl1CqFauYLShx+mtd/F67t38/ru3Xzr3nuZW1rKwmnzyFfOpLTYNuZCZ8vmLt7e0cPCBflcdJEwZzvazDnVCKfSwZqaBnC5grjdIYb8UfRZCmZMz+HtHT34vMPosuSUl+dS3+AEiWAaV1ZmonKusGoyb14e27d309XtF4kqmUxKYUEW+qhw8fhxX6GIDQ4SbmwkvG8fkQMHSEYiAgllt5N15ploquajra5GnmNGZjIiVak+7F1+V5BqtSi1WpTFxZguuojE8DDR3l4Cmzfjf/11Qg17CG7dikSpRFVRgW7JEtQVFcJo4ThIKeoq51rH+JEp5PIMQqqjt5dn3nidr172KfEc7nQMEY5Excfb7XoWLSqgsbGfnBwVOq38hGqk1N91WvnI5wRWjkSGpwijTscQb+/o5bPLbmDvjO38/eXH2H/kIN+69EssnDsFu11Psd2ATiunuzvAXk+Y2XMQfa9Sz1/f4KSuXjCQTZFgML66MZ2w8noibNvWhcGoYmaFWVRIjh4lHE28yXQ6ptz4GYYdK/A+9yzOX/6Sm4y5lMxcRfnZp5/o7WbLliM4HD7mz7ewYEE+mzd3sWtXHyCooMbzqLrkkukTCqlTjGg0SlFREXv37sPhcHDvvfdy7733YjKZOO20VWRnL8JkmofRODYt6IknDvD8822cd95UbrllIYocFa8+cpCORjdHDg4ydb4VTyzO7jonLS0D+AMxoR4MhAiH45jNaixWLd09ft5+uxufd5isESl6a8sg9mI9Xu8wy5YLBpt2ux5bfhYeT4TeHr9oki7UDSMbt5NhYPpRQSKewOcOCyRUTwBPX5DQiHpErpJhyBUUUJYSPQWl2YJJuEZQQEn+iwiok4VUJkVrUDF5joXJcywk4gn8ngiOxgHa9/bTe8jLkf2DyJVSrJMMFJfnkFOge0+1vrmpX1Q9jafYmTv7aPORTCb52wN/YvWKc3H2qsQL3/7+o+N2qe/CyHCMut1OKistGQTsiZRL/f0hunsCTJlqHFlxTorP4+gcIhGZx6cvuJctdXdz0ZVncfMXf0jVnPMpyM/CZFSLpFZLywBarVwkmtL3IaUkAiEVE46tdk8RPjKZkLa8dWsXGq2C2poCyityxyT3pSup0m9P96hK94/KzT1+E9/c1E9dvZM8m5appSYMBiXbt/eIqZ41NUVjalpNTRE1NUV4+v53FiY/CESjUaZMKePQoRZeeeUVXnnlFW688Uaqq6uprDwdvX4R06bZx4zaj64HICieX3ttEBSn8YlvXsT2ta/QvWcLjt1bILkJdVRHLGqn05tHR0eYrCw1M2aoefvtXrzeYXQ6BeUVZuobnEgkYM7RUDbtaI8wf14e29/qSesRspGO9Ajt/cJirFSSWROSiQT+wQEGe7oY6O5ioPsIQ/0ukokEcqUSk62A6UuWUVwxm/xpM9AZTaj1+omxvI8Z9ndIOSA5n9lnVNL91rNs/MdfmL3iE5TMrkSlVGYQUu0OB69v2casstPE72l3f+hoj1Fhxm43sGhxAY37XOSY1ei0ihOqkdJH01Km56keIfU8nZ1DvP12P5edczP72zfy5IuPccixnxs+/VUq507GbjdQXGxAp1XQ3e1nr8c1YpyuzXj+lJLIYFBmeF+NR2KlEz5Cj9Cd2SOMIuTGI95g7GhedbWN6HDipJRczU1uXK4gU6caKSvLpqlpYGTqRDBUH73/qecKej3I5O+vEGOClDqFOO+885D9azsdd36fQ80beSGU4GBggIbWVhpaW/n+BVMpthuwWnSsfaWJfQ1eltYW43aH8fmG2bvPxaFDXpYsyUepkrN1axfBUHREBaLCZtMCSQ7sHxDnaePxOP39YXQ6BQaDioULCnC7Q2K6mEwqIdukYvnyQlavPprGMnsO+HzDdB7xoVbJ0WnlLF1WiN2u5407hULj9w9/GIfxfUMyHme4rY3QCBEV6+kBiWRkFG8p2oUL0C5YgMJiQWYyfaRUUKcSUqUSld2O6tOfJvuKK4j7fAR37GRo/SsEtm7D/X//h0SjQTN3LtolS1CVlmY0Les3dFBf78TlCo0hpdIRDIc55xvfxNHXQ1tnL9+/5noAtm7tYk+Di127+vjcZ2dTXp7L1VfPFM3HA8EYgeOokeAo+RMKxWhrG0SnU7D67CkjhFYQnVaO2y2sqhzp9PPtz3+aT66u4aof3c7n7v4ut17+Rb5+7XlYLboxKkYgQ+peOddKwH/UQPZ4nmt2u55OxxD1dU5UKimBQBSPJ0IkHM9QSKZwvG0p7XZyb/wy4cZGev7zHJccfpjIn7bhz/8+upqaYzaSGzZ0cPCgh5Ur7dxyy0ImTz6ATqcQVVATCXwfDBQKBU899RRPPdXI7373CO3t23C7d+PxeHj22SdYujTA6acvwusdpr3dw9/+tplAQMull06jq8tPW5uHv/51L5MnG9FoFLxY34ssEueseTYOvtULUgn6pIQh7zC5ecI5FI/FkcllmM1qMUFs4cICjnT6UKnl5OVpxYS+K6+sEEkEi1VHbU0BoRH/EHuJAZVSLowYTR7kzw9CZDieMdr3QSNlRC6ooAQSytcfJplIIpGALltFToGO3CI9+WVGzAU61Drlf50C6lRCKpNiMGuYtbyQWcsLCQejdB8c5ODbfRzZP0j3QQ8qrRzbVCMls3PJMr3zhZeGBidbt/awZ28/V19VcdxRsgcf+we/+M2P+cs//8TPv/9PZsywo9XKWbv2MK1tg+I2UsSTSiln6pTs4yRPHoXDMcSuXX0MDQ0TDEVRq+SceaawfZcziFYr50inj4GBMCUlxTz3yCvccfePuPOeHzBz+ga+ddPPWb5c+I7cuLGD+pFY8JSiK5XKB4hKoiU1+Sf0W7Pb9Tg6hzjS6QOEBLRQKEaWTj7usToZ/7byilzROP1EiZgpv7jKSou46KnRyMVUz5N9zgm8d1x66aVotfN5/vlt7N37Ovv3b2Zg4AA7d+5k586d3Hjjw1RU5FJSYuTvf9/Chg0uLr20nK4uP/39IV5/3UFdnZOLLy5Do1Hw5JMH8fki9PdPJTd3AdbT5xEP9HNg22b0dKAMtJAcaub0IinDUgNKj42FM4x4QmqKC1Ts2NGDTCYh26Rm2fJCMekLBE9cwcdMSCKz2w0sWwbFxXq2fVtQnnYf6uDAtk0M9bvwuZz4BwdIxIVQCI3BiMmaR9GMmeSXzRBIKIMRtd4wkZb3Mcc//rGX9es7WLWqhN/cdQ8v//G31L30PD0H9zNvzfmi19SQ38+VX7iJPpeTS889wiXnfBq73cBzz7WybVv30R6hwszVV1eIhtyBYJSAI3pcc+4U+RMOx2ltHSRLp2D12ZMFQssVRKdVCD3CQJgjR/zc/KUbuPDcZdz07R9wy0++xlc+dzM3XHcOVquWnTt72T3SIwAYTSpRwQRjDcWP57lmtxvo7Byivt6JSiXDH4gy6AkTDscwmlRjHney/m0pfzil8sQEbyoAYe5ITcjL60KtkonBBx9mAt8EKXWKEQpF2Vz4aS6U6/hs1xYOFS6jY34Zr++q58ya2eJK1M8e+BvNvY3Y35rMzOIKSgunEQ0mqD/YR3u7lyuumCGc+N4InUeGMOfExJQwEBRUBoOC3t4gpaU5I0zq0ZEhryfM4cM+ensDJBJJDrZ4GPQ0ieoUh2OIYDCKxaIhGIwRCMbEESOvVzBT6+ryfxiH8JQiGY0Sbm4muHs34T17SIbDSLQaVKVl6FeuRHfGGagnlSDLyUGqVp94gx8zSCQS5EYjhpUrMKxcQdzvJ/DWW/iee57A9u0Et29HZjajq61Ft3Qpsqws4XGjtjOeskmrVnPRktX8/pl/cv9Lz7FlWwdfWnMtALFYAo8nQn2DUyS20ldr3f0hpLJMz7N0pI/gtbQk6e8P0dzUT0FBFom4YOBfVKSjoUFGLJbA4RhiUdVM1v7qXr72u99w2wO/Ze3mtzl96lkUF5qYOtUkJiw5HEPiGEfq9RyPfEuH1aIjHInS1OzGnKNm4ULhoj89velkkHE8Z89GZynB9dpWTM3b6fzc9agqyrF8+SbcU+fz+utHSPehWDkiXU79nlBBfXjYsuUImzb1sWzZJ6iqOpPh4SiTJ3txOndSXl5NXp5gQP/SS9u5447zUCoLWL9+IYWFVSgUJgYHw/zlLw3MnJmLViujPxjlYCTKzHIjvhYfxigYpVKkoRiTirLo6w9nJIelzrmNG6O4nEHsxQYsFg1bt/bQ0xvIIBGCwRiRSJxkUiADUsRA+xGhAQmH4uzZ68pQbLyfiA3H8ThDePqC4s9wSAjmUGnlGHI1lFZZsU0xYJtiRGdUodLKkZ/ERdn/KtRaBVMqrUyptBIJRGnf5+bgW710HRikY68bU56Wktlm8qcaT3q8b+5cK3v29uMfElLEyityj+mztHrFOfz9X3+js7uVr3z3cq697NdMsc9gOBpHLpNmbGO0esfjjeDxho9JjNrtelpaBujuGcIzGKGgUCeOzMXjwvmtVEqRSCUolVLUag0//f5dzJqxkNvv/BZfufUiVtZ+m6VLFmMvMYivLd1zKvXZslh1YxIsjwWLVYfbHWL/gQFmTM+hdmkRbnfopMbuUhjveB5LsZvyj0qZoqeeJ/35UkqoCXzwCIWi+HxGKisvo6jofJYs0aPTtfL669s455xFokrqxz++ha6uOjZunE1p6SIqKubj9SZYv76dPXtc/PjHNVitGpzOAM3NAxQUDI8EmkxGrreRTMRIRIY4sr+RHFkP2pCTROAIkuB+soH+tyApkUNSSUWWDE/jPv7TqiYnR4vRpMLtDpPs9WNXxPDs28e+gwmi4TDdb/jxObsA6GnaTUvEjdaYTZbZQsH0CsxFxeSXlWOwWFBpdah1WUiPobqfwMcXqTVToyWPhdd+h+H//AdXw0ts/Nv/MX/NBdimlqLPymLV8jU89OT9/OeFJ3h7RydXXnwdwWCcWCyJxxMWeoQRRVC6gsfdH0Imk2R4nqUjfQTv4MEkrv4Qzc1uCvKziMeTBIJRCguzqK+XEosmcDh8LKqez7///He+//M7uPMPP2X9q1uZV76GoiITpaUmDHph0WZ0Kp/Vqj0pHycQCJ9wOEZTkxuzWcOiRcJ1lkE/Vg11PIxWih1LneV0BkWlWEqJlRr5S/2uqSmkpqbwpJ/7/cQEKXWKsW9fP3v3uWnTns5X7SrmOV7FEIdPfOEm8vKOXjz44/3Ek1EODx7k8OBBAGzZFgwUkZeYzLZtRqZMMRIJx8k2qcQG3WrRYTQNiXH2TmeQzZu7OOOMItG76sD+ARKJ5Mg8bdZItGSIHTv66O4KYM7VjDGb7ncFuPvuHcycmUNwZLVcwkdvXONkkBgeJtLYKBBRe/eSHB5GZjajXbwYXc0SdIsXI7dYkBmNpzyJ7r8dsqwsDCtWYFixgpjXi3/DBjxPPYXvxRfxvfgi6pkzWT19PpZcO5WVeeLjjuWz9JXLL0atVHHX43+hxdPA75/9Gzeu+Rzzq/LQajLnodNVQ0IUN+zfP5gxKjh6rNVu13PokJeDBwdpanZTUKBHq1VQX+ckGIqiUMrIyhIIIWHs0M2vv3ALd93/OM/seoZmRwvnzvwUn7tyyRiT83ebwlc510r3iJ9Jsd0wrnn6aBJv9L9HH888m4G8K1aTGD6T4LZt+Ddt4siXv8xwXjFH1EtpNM0RfShOlMo3gQ8OGzZ0sHGjg5wcNatW2WlqCpKVVUZFRXWG0Xwk4kAikTI83E1j4zM0Nj6DTKbEYpnJkSOzaW+fw7JlFVRU5HLokJfGwzBnfi6VZWbqN3YS6AmS8EQxKiS8tbGDF4JRVp01SYyAP9zuY2homFmzczNIhC1bu0WfG7tdz7z5eUASlyvA3b/ewZKafPzB4MirkTCWjj41SCSS+AfCIvk02Bsk4IkAQhJeVo4a2xQD5sIsCkpNmGxa1FoFSu3/rgrqvUKlUzB9kY1pC/PweyLs39rDwbd7adjQSdOmbgqnm5hSaUWddXxVQ3lFLldfVSGO3wHHVDZZLTb+ds/jXHrNxQwF27n/sZu56uK7mTa1gtNOK8LR4RO3MVq9YzIK2/T5uomEo+K4YPr44IoVJXR1BejpCTI4GBGI1mHBb23yFAMyuQy1WoZMLjTJzU39JIcr+PQFf+CJF37CM+u+TeuhK/nhd27h8iuEsTzBz4kTGpkfD2azGoNBSVGxnosuGt+3L514Sh3D1HOOdzyPpW5K+UelTNGrqm0nNEKfwAeHffv62bu3H61WTnV1Hnv2hCgvn8Mdd3xSrAfJZJJYrJtkMoLLtROXaycANlsJ8fhU+vtn8tRTFubNsxIIxLDZtMjlEoxGJSUlRqxWwTdy6tRs2gbtPPyWgmuuWsHXvzKbl59roHHnfiTDbkKefkxZUTTxKMPhMCGvB1fISywoLNCaNDGQytHq1IQi4PQpycmbRExaDwygLV3BlT+/CaVaI/xoNBME1AT47GdnY7cbxIXR5uZBDvrKmXd2BUP1j7D9qUeZWr2IWaet4MbPXYNapeFvD/8ZR992/vnYMFddfANVVVYheS69R0hT8DgcPuLxJPsPDGSM+o0mYex2A4favBxsGaSpSSCldDoF9fVOgsEoSqWMrCwFdrthxMjfw4+/+SN+/5cHeG3bkxw4tJ/Tqq/mmqsWj/GxerdqIqFH8COVSSkuNow7cncs76n015+uFDuWusnh8Ikqr5QS60SpfB8mJkipU4yVK0t47bVOBgbC3KdexnJJhMt7t+D63b0kv/xFbEU5ANT/+372HTrEI2tfZ8PbO2lzttE76KIXFwFjP0uj1bjdYebPt1J/aB+asJn9+xXUNzgpsRtE1dQzz7TQ1xfgtdc6mTI1G51WSBGrr3PicgUpKNRxxeUVNDf3s3btYWQyCQ7HENVVtoyG++67d9DY2I/bHSIxolFMrRb+NyARDhNubCS0axfhxkaS0ShyiwXd8uXoV5yJtqoKudmMVDchUT9ZyI1GTJdcgvGii4i0tuJ57HF869ah3bOHM2w29CUrScZMSOTyY67aWi06vv+Fy/AORvnL+n/QEWji1UPPcs83v0F+3tHzazQpk9pOfZ2T1tZBXK4QW7Z0EwwJxn9qtRyjSU11lY01ayZjNKowm9XMnpPLxo0dtLYOUlCYxYIFeVTOtWK16Ni4sYMdO/o41OalIreKyCQDm3ue5cmmv7LwiIbqqtXiPqc+G6NNzlO3H8/zKqWqqm9wHlPpNZp0Gv3vYx3Pfm8UR9Z0ij4zB9m+BuJvvMklfY9wds8LbLujmmdc13LhtYveyds8gfcR6fVg/XoH8XiSTZu6yMkZYMeOHq67bhYlJUa+9rUbuPrqS9i4cSMPPPAUb775Kj6fk97eOnp765g+/dtABStXlvDYY1vo6jrEGWesIihJsmcwSKFdw+xCI/vf7qMkS02xTs3hbX0YJVLy8nUoFTLC4TiODh81NUUiiaBSHzVprqq2iSqou3+9Q/TMseQLTblSKT8lxsexaJwhdxhffxhffwifK8TQQJhEPAkS0I2Ykdtn5pA32YC1xIAmS4FKq0Chmmh4TjUkEgn6bDULzpnM/NUlHGkeZN+bR+hsFtRTeZMNlFbnYTiOd1F5RW4G8XE8372ysmK++aU/8fu/fp1B30GeePE7/PnuR6ipqaCmRrjP8ZRBdfVO9jS42LO3n3PPncK2rYLvDcDlV1QI9WCrShy33rixA5criKPDR21NAVk6uUh8bdnaTV1dH7Y8E6dV/4S9LQ+zt+UB7vlbF78v+xPZppwx5E9zUz9btgo1YWlt4bieU6PJohnTc4iEY8yYnnPMY5hOPAFjUgaPdTxHk1keb4SppSacfQFeXneYyHBsQhX1EUJ6Tdi3T/B22bevn0AgKtYDiURCV9dh6urquO++x1m37hWOHNlHb28H0IHV6iQcPpOuLj+rV09i797NhEJFbNumZMOGDmbNyh1RTZm5++4dtLd7eeChg8yrKsI2tRRNrp3169vZ2djHyhXFfO97C9i62cHf/9aAXC7hwlVTWbGiRLAIkEiQSmXc8Pn1vLmth8lTsolKhXNtXu0ccovsH+4BncBHDqMXRtN9TAs/9Rte++d97NnwMu5OBwsv+iTf/ca1eL1xnnjxr/QO7Kb+4LPc/p1vkZeX5r96DGVQfb2T1hYPLleQLVu7CAajeL3DqFQyjCYV1dU21qyZgnHEiHz2HIvQI7R4KCjUsWCBTegRrNqRHqGXQ4e8lBYvJeDNYe+hx3lt5z0sO11DdbVtDPkz2uQ89bfjeV6ZczVUVmYmDY5GOukEjBlVPJ4yKp3MSiX39fUFWbeuneHh+EdGFTUeJkipU4za2iLuuGMpGzZ0kJen5cABK+taClnZ9hThP/6W2De/hjw3F6lUiiJqYo61hmu+fyHFk3Rsqqtjw84d5BpymaQ24PMNExqO8NPHfkcimSA3K5ccVQFzy8q4/vLl6LKMLFtWyKZNXUyZYhRTvKqrbGIzrFbJ2br1CB0On+hVpdPKxYSylEpDkBSaKCsz8Xa/gbxhM/mWj7bvTCIUIrxvH8Fduwg3N0M0ijwvj6wzz0T/iVVoKyuRWSxIlWONhCdw8pBIpainTcP2wx9g+cbN+F56icGH/s3gQw/hffYZdMuWk3vmmVjHUQSlcNd3r2TmTAtfu+cu1u16k3+8NImLF50rrnAEgrEMUib1o9PK0WXJcblC1NX3oVHLmTHDzOTJRw3HzbkaKudZxfM5XZqaIoicrgBqlQJzjppQKEYiIeP8VVV8c/rp3PHQX/jaPXdR39bEL7/8ZTRphvajTc7TlVzH87wKBGMk4tDdHSAwokRJv1+6UnHnrl6RTE7dPtprKmUur1YJ4yiQA7kzOFhuZpbOTWjrNpb3v4H0l2/Quf00jJdewkDJXJoO+jIUOcdCR4eXxkb3Sd13AieP0fWgry/IrFm57NvXT39/iMZGt3i8m5uDNDUV8N3v/ornniukubmZdevW8eyza6mpWcnQkASvdxiX61WeeOI+XnhBi81WTjRawJIlC7jkiqvQTJrCg3/ZgyqUoMSspaOuH+r6mZ2jZapRjVGnZP3aQ/jDUSxWLQX5WXT3BDLGolzOANY8LeGIiSU1+fQ6PZgMeRTk55+0UiSZTBINx/F7IgRGfvyDEfwDYYIjXm0SCWgMSrKy1VhK9FiK9eSXGtEahDG8/2UvqA8LMpmUkllmSmaZ8TqDNLzaycG3+9j8eAvZ+TpKq6zkFmed0Bj9RB5F11yzgIsufpkrr7+Efc11fOW7V/PaC2/RfSQmkqXBQEzcVvo2tVo5hw558A9F2ba1RwxoSRFNo5P90sfXUuSZyxlg185eVCopBoMSk0lNXl4WNTXfIRI/j9/8362sufQM7v3VfVTPyyT5Gxqc1NUJNcFebBD373i+V+kjhMcir1Lf/VqtnO6eALZ8bUbK4OhtphRi6ccKoLdHSGo61OalrdWDWiWnpqbouKTZeHA5A7Q2D6A0q8m2TSzmnSqM7REGR3yhMuuBVColHM6joOB8/v3vrzB7toHXXnuNdevWYbNNJpm00N8fwu/38pvf3AhAdnYRCsVk5s+fzw9/eBkWi43LL5/Oo48eYN48C9u2dbNkSYHQpI8EbOiylDz3fDv79vVzwSWz0WgUGI1K3tg6KF4PdHR4sU/OZV4QFizIo6/PTDxewKRJlg/tOE7gvwejfUxX3XAT9plzWf/XP/DaP+9j/tnn84vbP0t5uZmf3v1LNrz5MvPmTGH5wnPSeoTouMognVaBTqfA5QpSV+dErZZRXm5m8iSjSMykSKAUQZTRI4wohpzOIGq1HLNZQygUJZGQc+7Zi/l66Zn89r7fcuvPfkRzyz6+87WvoErrKUebnB9LyZQOh8MnJuoBYhpg+v1S+54yWc+36cakDI4mx+obhNcfSKsHqec51OaltdWDWiUTSakTmcWnw+kMcuiAi2J79nHv914xQUq9DxjNEnd0VNH67DwKHvolzjvvJPuzn0VTXk59g5OGETPN8vIKzq6p4eyRpcKUEqOprR2r3kavr4d+fz/9/n4OuvfwxPYnkUqlfO2yy7j33s/jdAVoOzRIXO4jFrdQXp4rNvrbtgkrid1dAa6+pgKHY4jNm7qIxxOsWTOZQDCGVCrhrNWTAfhM9DqR3PqoIREMEtq7V1BE7d8PsRjy/HwMq1aRddYn0M6Zgzw392NrUv5hQ6bTkX3ppZguuojAtu247/8nQ+vW4V+/Hm1tLYY1a0TfqdGYWTCHzyy/ltcPvMoN55/Pxld6xfO/cq41w0MqXYmUUvppNYoxiiWAvXtc7N7tpLTUJKbjXXF5hfj3dJXg4sUFI7ceTbW8ZN4VzCudyR+e+xdvNzXxr9tuY5pdWP3LNqnQaORMKjFkrFKnr1yn7+vuXb28+WYXlZUWps/IwesJi+QVICYGpoiqFLl1os9b6ruitDRbJOBSsNmn0Jo3lQ1vNFGr60bV2Ij/tdeIq7UkbPNoO+ts7F8+D8lxyNnGRkHuD0yQUqcY441TVlfbRBIwhQ0bOtiwwSE+pqKigoqKCm6++eYM0rC3N4RcriMUCnD48C5gF0888TxPPHEbOTk5HDhwgEBAwd4GFwoGUYaU+HoSwkjcEWEUT5FM4ukMMnwkiCZLQXuXn0N73FQtsjEcSyJPwqoz7MyrslFfL+WWzz9GWWk2kWCMeCxBNBInNhwnGhF+woEoYX+U0NAwYX+UcCBKbDghvjaVVo5GryQ7X8fkubmYi7Kw2PVospRCGp5GhuwkPYwm8MHAaNWy/PLpLDxvMvve7KZxUxc7XjiM0aJh2uI8LMXvTUmtz9Jzy41/5Ac/v541Ky/BaDDxUkMT9fUuCguzsFg0aEfqQTqhkj4umG7In0607NnrYvcuJ6VlJuzFBlasKBH/3tx0tB7MnmOhojxX9J4SvpNz+MJVf+WFjb/gis9dwDe+fCtf+MxXkEqlNDf143KFKCnRU1aWM25N0Grl7NrZK/775XXttLQMUlZmEr/z9+8fwOONYDIOZTx3VbWNXTt7RWLpRAbm9fUuSsuymVdpHbMv6WbscHzSbDw4HEN0dHjR2rTMnJ93wvtP4OQxtkfwjqkHMLom1HLBBRdwwQUXZDxm1646srMnMzjYzuDgEeAIL7+8iZdf/j1SqZTbbruNvXt/REeHl7q6bnQ6L/F4nNraIrzeYbZt6+app1o4eHCQgwcH+fnPl9HY6Oaxxw4Qi8W58cZKvN5hpFIJn//8XADC4TtYsqSAs86awgQm8G4wvWYZtqllPPfbX/DW049RtqiG8qkLuWDVZ9mz/3Uuu/ACXn6pO6NHSPeQSidUrriinOYmN1qtYoxiCYQeYdfuPsrKTGI63hVXlIt/b25ys3btIaQyKYsX5Yu3Cz2Cj7OX38DM6XN46Ml/sqthD7//xc+YVFwMgGmkR0iFAaSQrmRK39ddu3rZuNFBaakJu90wRhGVSgwMBKPi31PE0vGII7FHKDOJBFz6vqRMzFO/U891PLP4dDgcPtraPEhk7y9tNEFKfQAoKTFS8tULGb5gHp1fvgn3H/6A/hOfoHLOEoCMmdkUUkoJu12Pq/NrHHL0E1f3M5Rw4g73crivnR63G5s5V7x/r7eHpV/4IkqFgqmFhRSY89CrjJj12XiQoY/YxQu7eDwhRr2uGInJHO8C66OARCBAaM8egrt2ETlwAOJxFIWFGFavRn/WJ9DMno3cbJ4goj5ASGQyspbWoqutIXLwIO777mNo/QYCW7agW7IE/Zo1yA2ZTctwJEaRdgbfPnceG1/pJdukYm6lRVRKpQzKAfbu6aeuro958/KYPUe4/fwLph7D40mCRAJud3hERZSpXtqypZvmZjembBVnnTUpw7Tc3R9CJpfwydNXcenqxVz5ox+z9PNf4Kc33MgXLjmPQU8EuUyKwajK2Ga6kinl4wbw5ptdtLV5ALjssnKcrgBG01AGASWVQUIIqDnuWEY6xlN/pb9Oq0VHTa1QJBPhMOH9+/Fs38mklgZkf9nCgX/9DO2CBWSdfjra6mpUpVORyGTiha3RqBTl/hN4/zFeAuJog/pj3b+y8jp6e5dTXQ05OS42b34Ln6+Njo4DyOVyzGYzubkSSkqMnHPOOaxdu5a8vDymlU3HZMgjEc6CYQMmtYUlWbXEhqLkyqRI5TJ6690AGIH+ejfrR/5tAlx1/Wys6x/39ShUMpQauWhAbp1kwGBWk52vJduWhSZLgUItQ6ESfk6ktJnARwdqnZLqsycxd0UR+7f0UrfBwY7n2zFaNUxfZCO3+N1fK8jlGpZX/wRpQkVzU7+oakqpf1Lf56lkvZaWAVasKCE3VyOSQuMTLGk1YZTiastWoR5kp+rBKL+l/v4QOSYrd/3oX7z8+t/59b138Mqrr/HL235PQ0OAri5/RpJdCik1066RhKgU3nqrm8HBCEaDKmNfPd4w+/cPIJPBSGDZCUf10jFaAZa+H6nf6WN7J7vdFAGo1copKTFSVmo67v0n8N5xrETck6kJM2ea2b//HpqaOjEae0kmjxAOt+NwNNHb20tBQYF4/66uRmpra1GpVEybNg2brRi1OheTKQ+VSkI4XC6SY7FYnIMHB9mwoYPrrpsFkHF9MHGtMIH3CmOejSt+9ite/ftf2PvqOpSmDgpMM6m6rIaXX+rGlNEjREWDchhZjK7rY/68PGbPsRAIRjn//NJjkitCPYgQCIwlYbZs7aKp2U12tprVZ03K8Fty94eQy6VcvOYCLjy3li9/+3ucd8U13Pq1W/j0J8/BM9IjGI2ZyXnpSqadaTVh05tddHYOoVTIxiijUiSRTCYhHk+Kt6f/PhbGU3+lv06rVTtmbO9ktp0i1HRaBVOnmigqfH+5gQlS6gOEsqSEyU88Ts/tP8H3zDOYW1r45Oc+hzz72HI4q0XHmjWTqW/QUWKfTSgUJ6XycA4OULfLzd/+tofa2gJ6fW40KhWhSITm9naa29sztvWZlZfj9UzDrZWT0Lh5uOmPPNOi5bZHFeSYtOTmZKFUKigw53LXTTe9vwfjBIgPDRFqaCC0ezeRgwchkUBRXIxhzRr0q1ejqSifUER9BCCRSFBPn07h3XcTOXyY/v/7M0PrXiawdSu6JUswnHceT67tZNOmLgxGJfFYUvAtSySZW2khkd3Jo5s3c+MFnwaOXjC3tg7Q3DyAXq/AaFJlqI3Sjc7d/SEOH/YydaoJjUZGY+MAkycLX7Cpkbd4PI5aLSMeS7J27WHgqO9TIBjD54uyfkMHAFfO+yJr9z3Dt/70W+rbmrjhE1cC4xPHKaRf7C9fLnzpp36PHsMDMpRS7v4QLS0DYojBsVBenot5ZCTF6Qoc975StRptZSWauXNJBAJEWlqI7N/P8OHD9G3eDMkkEo0GdUUFfao8+kMm1ItmsvLiauTWdx4JP4FTg5M1qL/00mmYTCqxUcnJWc7KlSVUV1v461/f4KqrXuTii8u45JLpeDweAPr6+ujr68vYjl5v4vPfv5rWg4O4Dnl44N/fwjfkQKvRE4/JMOg1GPVaFHIlF63+NLULzkAqkyJXSlFpFah1CtRaBSqdDIVSjkwhRa6QCr+VsonRu48ZFEo5s88oonxpPk1beqhf7+Dt5w9jytNSsawA0zswfX388WY2vdmF0aikuydIT08Qe7GTT6zOY+Off86XP/d94tGcjO/Wja92UFfXRzSWoKI8V1QbpdKI58y2YLHqaG7qF2pCqQmNeqQmTBmpCU39OBw+kIBarWD/gUHRJD1F7HT3BGhsdNPUPMC8eZ/ka5+fyl8f/CGfvuFsvv3VX1NZOem4yXmjyZ9FiwpwOHyiYilFXrmcgTFKqXTT9hOpmdLHFI+VSJiOE41UppBSVM2YkUN5eQ4FBeMrnyfw/uNkakJJiZEbb6xkw4ZsZs06k6GhKKk03ldeaeCVV7rJyTnAJZdMp7e3F7VaTTgcZu/evezduzdjW9dc80OamipwOgOUlbl5+umvc/BgFr/9rZK8PAOFhdmoVCpKSko488zfvX8vfAL/M5DLlezor2J3t5P/Z+9MA5o6sz/8hAQCCYQ1YQ/usqi4W6DaWrVqN6u2Vjvd1+kynba20073dbrv7Uy3ma7/0bYuXay1Vaq1FWwFAS2gggtBtgQkBBICBPh/CDckISB2uur7fBg0971vbnB6T87vnvM707qLiO1qoGz3GGwONenjtciUe/nq2+9YttD5XVwSUMrKG9lTeoSQkABCw5QeDwLcjc4b6ls5eKiJESPCCAxUUFLcwLBhPZYJPS1vDkcXQYGKnhzhAIBL2LHaOrBY2tm46RAAZ864hW92fMB9TzxMyb7dnHfmJcDRcoRe8Wd6T24g/fRlUO5eKeXMERpRq/wHrGZKSY3syREsGI22QZmw92eO7o4klCUnRzBunBa54pfNuYUo9SvjFxRE/OOPoZ42lbpH/0HdQw8Reu65qGfM6PfpcUpKlCuJlqoyQsOaAX9KdjdhaXJ6dIyfkETRWx/S1m3lky93kpu/n+BIB93+rRw21jE6KYnaWhtGk43DdQ3Y2q3Y2p0mtnXNQKXz/UJVGnaV7ee1v99B6tChv/SvxEWn2ewUogoKaCsrA8Bfr0dzztloTj+dwORkFFqtEKJ+pyiHDiX+ySdov+F66v/1Kpb167F9/z10DMFUm4DdHsxps/SEhylpNLcRGt3OskefpLu7m9DgYG5ddqFrr/p6O/Y2B/X1do8v+QZDMwWuSRKBlJUdoaS0gfi4YEJDlVRVt5CbW8OIkeEeLW8LF45i+/Zqqqpb2Lat2iUKSWPE8/OOcOSInYiIQK6ecykX+J/M/f/5F3mle3jnvvtIGdq/wbO78DRxUgxRbkbl0CuOjU/X9WnRy86ucGvhdb5HTs5hcnNryMiIJTw8sF/frYFw3yMzcwKqCRPoamvD0dBA+/79tB8+TGddHZoDB5lsNiMr6GL/qxB63mLiHnlksP/kgt8A90Rl/foDOBzdPcaeSnJz29m69TDgbBG8++73SEoKYN267Xz66XaGDu1Go2mlsrKSoKAgWmwONm420N0NVnsDjU11NDY5xatat6Iog7GOfaZdvP76S7/65xX8vlD4yxl3agKpWbGUfFtN/pcV5KwqJ3qohpSTY1GFHF3Y/nZrFVXVLdjbApkwvrfi595Hbyf7my8pP7CXD99ehzaqt+qno6MLS3M7BkMz8+Y6v5eYm+wU7DS6Js1pdWqXefmECdEEqxXOmJBTw8gR4RQVGWlp6WDo0FBOOimWgwctlJc10tJTleW8b3fTaLbT0txBR0cns2dn8NzDa3jtvbu5+9HL+cu1tzFq9K39fjZ38cdktJKaEsm8nkmYgIfwNGly33hQKMWDVLd4kFNDRmYs4WGBHiLaYFvy3Pc4mum5h6jWPeBSwe8E75iQm1uNTtfAli0Wtm83ExBQxuTJMQQGjqe4uAqZrIk339zIxo2FJCQ4CAqyYjAYSE4eTX6+8/tVeLiJ1lYzra1mAJqaYJ9zUDgaTRTbt+exatVKRowY8Rt9asHxwsqVe9m3L5yaURksHFvIuPAi2sInow5t5ub7HgdAExLC5RcudZ3T0GDH3tZJQ4PdQ/TxnjZX1jN1Lz4umNCwnhwhp5oRI8I9Wt4WLhzJ9u+dVjfbcqpcopBer6GsrJG8vCMcOdJGRISSCxdch9Uxnedfe4WC3bt58fFHGT6k/8pBd/Fn0qQYtFqVR3WSJI6NT9f1mcTnkSP0CGU5OVXk5lSTkRlHeFhgv75bA+G+x0DG557VVO0D7vlzIESp34iwhQtRTZlC7X33Y/7gA2w7dhD2pz8REBs74HneT+GmTomjoaGVyMhA9u45QqWhGXtbB/X7NQS1jGBIdBhz5w71GDOsVilo60hFJb+VGtMRjpitpI4Jo/6IjX1l9ajUfpwxPZXkpL4lwz83joYGWgsLad25k/ZDh0AmIyApidBzzyVk7ukEjhrlrIgSZuV/GAKSkoh7/DEir70G03PPcdLGbMZHH6J2xDSmnz8HmdvI4EdM13L3a6/ywJtvEhYcwhVnnw3AzJmJBAYqyMiIpaG+lcICI5UGC8nJEUyY4Bxbr9eHoFYpqK6y0t7RSXVNM602B0eOtJKdXUGSXoO1xeGayhcXp2bbtmoOHjKTl1dLVlY8F1+cxqxZSQQq/ak8bCExIaTHsyqVmVPSufShhzj1+ut46sa/cMkZZ/QrHPc1IneW/W7cVMGB/WY6e+x13FvvSkud/iRx8cEeT1lyc2tck8/i4tWugOSrzbY/3PeQkhA/pZKAuDgCesr5uzs66LLb6bJa6TAacVRX4a/X093VhcxP+Pv8EXCfagOwaNFI10/JJ6ykRMn77zdTVzeUIUOSuOOO6R7+JXPnDgW6GTbsGb79di/NzU20tto55ZRY9u0zkZ9fBQRw8snLfouPKPidovCXM+60RJIzY8nfUMHuLYf55v/2oU+LYNS0GPwD+p+UOH1GPN9urWL6jHiWLOn19rj/jn/wY8kuKioPcel1F7Di3x8TqgkDemKCUkFGZiz19a0UFBpRKv0YPiLMaTouDb6IDESjCaC5uc1ZFUUXjWY7u3Y72wNbrM6YMG6slqAgBU3mNkxGG2+9vZtp0+KYN3cIFksHhystJCSGMG5sFFpdEjNnruXlN57lxVef4of8XJ77xz/Rafv3AXT3rpo+PQGtTs2GL/azalWZq4rQve1O8quKjw/2qMTKzem9l8fHqz1Eq8G25LnvcTRRyl1UM9dZB1wr+P3hHhN8x4MGrNZ2duwIo6ZmHHFx0fzpT+mu82JjK4FuWlu1LF36Onv2VGI0NnHqqTFUVzeRl1eFRiNn4cLpDB8+/Lf6mILjCMmM/8ylo7nuumv4+KlHqDu4nZGpp3LLn6/huVdf59FnnydMo2HhWWcAUjyQk5EZ58wRCo1UVlpIHh3JxAlODzy9XuM0Cq9qceYI1S00W9o53N3C7l0mp5Bj7XBN5YuLC2ZbThUHDzaRt6OWrJMTuPjiVGeOEKigstJCYmJIj2dVKjMyJ3LTnXez8OLLefDOv7HwzPn9fkZfRuTOHOEQ+/eb6ZJyBLfWu9IS53TOuHi1Z46QU82PxU5rhbj4YB85wtH9Ht33GEiUchfUbE2/vCgl6+7uFs9C3LBYLISGhtLU1IRGc/R/2P+V7q4umtaswfjMs3Q2NaE66STCFi7ET31s004ks+XCAiPl5Y1ERCiRy+XodEH4+fn1MVL2Xp8+XovJ1MqOH2qIjAzi2mvTPRLon5OOujpaCwpoLSigo7IS5HIChg4laMJ4QubMIXD4cGdFlBCijgtai4owPvsstu9/QB4ZSeiiRQSNH+8SeB769795+r//h0wm4z9338PimTM9zl+xsoTvvqtCowlg8eLRfaqNjCYr2dkV5OfV0dzcTmRkEAFKP9rbukhJicDPzw+Vyh97WweBSgVffnmII0da0Sdp+NvfpvapOnKvbBoyLIQ7X3mFtz5fx/mzZvH8zbcQour7BGLFypI+RuTZ2RVs3FhBR0cniQkaLr7Yab4u7V1YZGTr1ioUchnLliW7kgVflVJJeg11da00NLSSlRV31P82PSul+k9C3E3aIxTtyGQyQs9dcMyi1K993/y1+CN/LskvbOPGQ3zxxUH8/f144IFMgoL8PaYwua9/++0fycurQ63255JL0njnnd1s3GggLS2C998/S5jgC/qlxWxn+ycHKPuhDrnCj1HTYtCnRRyzf1hF5UGWXHYWpnojk8ZP4Z1/fYRK5XmPXrmihG97YsJ5i0d7VBxJnkgbvjzI/nIzkZGB6HRqNBp/Wloc6KKDaKhvo7Ozi2HDQ7FZHezYUUNNrZXRoyN46KGT+1yTe3WTuWUPN//9Wrq6unn2H/9kesapPj/HyhUl/LCjjvi4YC65JBWtTs1dd21l375GwkKVLF8+mZTUKNfeJlMrZWVmlEo/MrPiOTkrHq1O3W+lVFRUEN9tq3bGhMy4Pt5Y7gy2Usp7Qp+5zsqQsVE/afreH/ne2R9/5M/kHg/y8uqIi1OhUMgZMkSDn5+fz3jgvn72bD0Gg4XPPttPfHwwL788e1Dt5gLBsdLp6OCLV55jb85WEtPGsWHvQd7670rkcjkvP/EYc06d4bF+xYpStxxhVJ9qI6PRRnZ2BXl5tdTXtxISHMCYsVFYWzrQRauQyWSo1f7Y7Q4CA+V8ueEQDUfsJEk5glfVkXtlk35IEA8++TRr1q1n8dlncv/fbkMVFNTnM61YUdrHiHxwOcJh5HIZF16Y4hKPfFVKJSVpqKuz9cSDeA9xyxeDrZRyN2kPVrYjV/iTOuO0Aff2xWDvnaJS6jdG5udH2HnnETxrFqYXXqRpzRpa8/MJnjGDkLlz8fORAPtCaiFSqxSogxUuQ2T3pPNo6wE62ruQy2Uuw+mfg+7OTtrKy7H/+CP23btxGI3g749y+HDCL1xG8Ow5KIckiYqo45Sg9HT0b79NyzffYHrueY688QYBI0YQtmwZZoWG+elnUG08wn83fcE1jz9GaHAws6dMAZyiSaDSn9GjI0hMCPH5RFinVbuqnRoaWklNjWDN2nKqq1pQKPw4Z8EICguMlJQ2EBkRyIQJWsrKzQQHB5CdXcGsWUkewpTnVMwoXrj1VqaPH89Nzz7Dzj17eee++xjnVbLuy4h8fLoOk6kVgDmzk0hJiWLFyhI2bqxg/ecHGDJEQ+ORVrq7nZVNUrKQmZngkTikpESRl1/L5s0GjhxpxdbaQUpKVB/hyf2/de89+kMyXweIGCb8pI4nJCPc0NAAlwdVVlYCFRVNQF+j2qSkUC67bEyP8NRNWlokU6bEUltr4+yzhwtBSjAgwWGBzL40lfGnJfLdR2UUb62isqSBsacmEDpIvymT0Up9XRDP/+Ndrlt+AfmFO7jhtit47YX3CPAPcK1RBvqTPDqChMS+MUGq9GlrdxCoVJCWFoF/gIINXxzAZGplZFs4gUoFFRUW7G0OTjoplpSUCBydXcTHqV2T89zb4aRJdwBLl53M5x9uYfnd13PZdUu4/qqb+euf/4ZC4fl12t2IXNprxvR4109JRNq0qYLt26vp6oLu7i4U/nJ++KEGfaLGZVbuEQ96zlu7tox168qRyWQEqxWkpEZ5iE8jR4T/pHhwLBP6BH8cBooHvib/+VoPYLd3olD40fQrVE0ITkzkCn/O+uvfCIuO5fu1HzA+LJb5p83hi6838te77uE/Lz7HSZMnAU7RJDBQwejR4SQmhvisEtLpVH2qnQoKjOzf38Tw4aGcc84ICguNlJQ0EBkZxPgJOsq9cwS3GOaRI6Sm8OQD93HS5Enc//hTFBWX8OJjjzJquOdkSl9G5M4cwTkRec5sp8H6iy/ms317DZ9/foDwcCVtbQ7a27vIzal2iUeZmfEeQlJKaiR5eT05QoMdm62DlNTIPsKTu8DkvUd/uE/oSx0ZOLh/wP8BIUr9TlCEhxP7wP2EX/QnTM89T/PmzbR88w2qzExCZs9GERExqH3c/afAt9HyQOslM+X/dfpeZ3Mz9uJi7Lt3Yy8pobutDT+1moCRIwk58wxCZs8mICEBRUSE8Ig6AZDJZISceirqrCzMH3xA/Sv/xPjoo1hHTWB/6CQun/0n7A47a7Zs5qIH7ufbV19jZGIiBkMzNlsHaalRhIb1FU3chZiFC0diNFnZvave+VS8OYCRI8OZPCkGtUpBXZ2VmpoWGs1tzJ6lp9HcRl2trY8wFR6mxM9PRrjb+5132mmMHzWKyx9+iNNuvIHLTlvKvImnMi5dh06r7vPfEfT9bwucQWj95wdoaemgrMyMXO5HUJCzTXEg9PoQwsKUNDbaqTe1Ulpaz7p1B6iubgGcQpa7wKTTqj1+N/3dAzzbP8SXzOMRb7Pc/iY9Sccuu6z32PnnjyY1NUpMWhIMmqjEEBbcPIF9O+rIXbufbavLSRgdTnJmLAGBA3/l7DXZjuffL/+XS649n2+2fc3DT97Dw3c/6VpjMtrQaoNc1UQS7pU+khAjtdH5B/gRFx/MzJmJhIcFsmZtGa2tDsrLzNQ32Jk2LZbg4AA2bzYwYWI0s2b1ekB5t9VFRWp5658f8OpbL/Lcy4/zVfYWrrroYU6dPsZ1PSmpUX2ql+bNH868+X1bntraO+lo70augPDwIKZOjT3qd7CGhla6OrsJDJSjT9JgMlqdMaHKGROUAYo+ApN3JZQ3g20HFPxxOZZ44Gt9QkKITxFLIPi5OXnpxRiMcqpzPmB2QhRtWZl8vS2Ha2+9nc9Xvk9CnHOIhNU6QI7gJsQsXDgSo9HG7l0mFAo/QoL9GTkygsmTY1Cr/Kmrs1FT3UJjYxuzZukxm9uodc8ReoSpsJ4cIczt/RaddSbj0lK56c57WHjJ5Sw56zKyJs905gg6FSmpkX2ql3y9BtDe3kl7exd2u4MRw8PQalVkZMYN+LvS6zWEhSk5csROfX0rpSUNrPvsAFWuHCHeQ2DS6VQev5v+PKiEp9QJTuCIESS8/BL2PXtpeP01WrK/xvrNNyhHjUJ96qkEjRnj4cnzc3M0Eas/umw255SvvXux792Lo6YGAEVMDOrMTFTTpqKadhL+0TrkYWHCs+YExc/fn4iLLqJUO5HGF59n2L4cMv1LaeQUZg09hxqjmekTxzAiwfklSPpy3GS2+xRcmsx2amudTxrKyxpZt+4AnZ1dBAcHcMqpCa4ea4lGcxsdRhv5+UoWLRrJ+qqD1NXaMBiaXf+/bzS30dzSwaZsA62tnT0eU2pGJCTw0g0PsPz5f/L6l+/xbWEhT1x/Ezpt/74K3sJQSkoUZ589nG+/rSIpKRiZTE5GRiwjRoaTl1/rISBJ50rT+ubNG0Jubg1yuYzCIiMhmgDiCCYjI9bZclhgJDIy0MM/7mjG6O7/vTsahSgl8ORoCYtA4AuZn4zR02IYOi6K7z87wI9bq6g7aCHl5FgSRvd9wCa1sOmTNCQnO6fu1dcP44JzHmRzzmtcefGfXWul4RQWi9P03F1wyc6uwGJx3sfKyhvJzamhs6uT2tpWjzY6k9GKJiSAxiN2du02YjY7z0lNjaThSCsWS5vr/YqKjK62uj17jxAVFYRWp8bPz4/zz76auiotH617iPseX8atTY9z9RVL+v29+BKFZs9OotXeweHKFlQqBecsGOGqcgJ8im4qlYLIyCBGjAxHrfJHGaDAYGgmJCSAuPhgEvXBFBR6xgM4eiXUYCf0CU5cREwQ/Bps23aYTZsqGDNmEklzIji8+d/MjtNhHJXC6bNPIb7Hf1kSTZrMbT4FlyZzGzW1Tm+88vJG1n12AEdnFyEhAZxyaiKzZiVhNNqorm4hJMSfPZY26ow2du5UsmjhSNZXHaC21rmXJNyYzW00t7STnW3Abnf0eEypGDF0KP/4+1Pc+4+neW/1a+TuyOfuW5ej0/U/MMxbGJozewh2u4PKymbUKn/OWTDCVeWUl1frISBJ50rT+ubNG0puTjV+cj9XjhBPMBmZcc6WQ1dMcP7OvEUqX/zanlJClPodIpPJCEpJJuG552g3VNL4wQdYvviCI6+95hzlnpZG0OTJBKWk/CZVRt3d3XQ2NNB+8CBthw7RXl5Ox+HD0N2Nn0ZDwLChBJ96CsEzZqAcPhx5RCTyYPFFR9DLpu2NbLLMZPHpp3KuaT1+339Bil8E16YvYNHlvf3ikmhiNFkJDWvuI7jExKgZ3ZPEvPduCVVVLWh1QWRmxjF2nNYluBQWGWk4YicsTEmnoxu9XoPV5iA4JACNxt+1r9QuqFT6YW5s44cdNSTqNa5ryN5YRWrwTOLHJPFV2cfc8Mo9vBt1P5OSk11eVHI/GZWVLSQmBlNZ2YJcLuPk6Qmua1myJIUlS1I8BCtfApL0mp8cujohJkbNsGFhNDS0kqTXMHJk78j0994toaq6hSlTotmZX8vWrVWMH691/W7A0yvrl/KLEwgEAomAIAXTl4wiNTOOLf/dw67sw1TvNTN2ZgJBIb2t+p7tcU5fjezsCmyWoVx94esM0fe2Qmh1znZt74pug6EZi6XDZXr+7rslFBfXk5AYwtQp0R5tdAZDM01Nbfj7+xEaGoxMZkWv16DRKImMCEKj6X0Crk/SsG1bNfX1rR5tdZII1tmu57RpT7LP8AaPvXADDU2lLL/xLsrLmigqMuInl1FpaCEtLYLDVVZqa1rIyIxzVWK5V1RJotOu3SZqa2yuz+v+GffsOYJcjvOzhgQQpPJHpVIQFRXE6XOGoFIpWL/+IFXVLUydEk1+fi1bv61ixvR4JvX4MbpigptX1kCeVAKBQPBrsmlTBZs2GQC4//55PLS/Ddne/+Pi9FHMmH2qy6tQEk2MRhuhYco+gktsjLrnQYeG994t5nBVMzqdisyMnhxBpyIvr5adBXXY7Z3ExwVjNrf15AgdPTlCgGtfqV1QqZTT2NjGDz/UkpiocV1D9qYqhkSfiS5iONt3fcT9T93Oy9p/kDp6lMuLSi6XUWloJlEfQqWhGT+5H9On06eiShKdpJ/eApL0mlwuo7Ozm9gYNcOG9+QISRpGjgx3Xfd77xb35Agx5OfX8u3WKsZP0Lp+N+DplXU0T6pfCiFK/c4J0CcSffttaG+4npZt27B8/jm2HXm05uU5DcL1epSjR6McMQL/hATkP7P5Ynd7Ox11dXRUV+OoqaH98GE6KirosjqVZ3lYGP4JCaimTkV90jQCU1ORh4cjDw39RSu6BH9sJH+CKbOTSMpYSt5TbxH239eILvoI89oGakZm8ENhLTurv+Oxm67qU8EnfamWqogAVwucL3NvqZ9batfQanufIEvVSaWlvdOSsjITXFMt3YUwudyPIUkaEhNPRh+lZ0PZR5x+001cfcYyhqsnsn+/Gau1A6u1g0OHmvAPkBMfF+yzHcJdiPLVNuH9GZvMdvbvb6S11YE6WOFqOczLr0Uu9yNY7Y/J1Mr322uoqXH+9+k+2crbK0sgEAh+DSITglm4fCI/flPF9k8PsHXlPkZPiyFpbCQymczDf0nC/TVJPOno3kNsnIrZp87rU9Ej3S9VKmfVUFqasyLLl7m3Xh9CRmY85WVHqKq2Mm1aLPPmDgEgLFSJXh+CyWhl1+56Dh5sIi4+mK6ublJTIz3igcXSwZAhoXQ6gomJ/jtTJ33Dv997ic1bt3L69Dsx1QW44kHDkVZUQQqs1g7At/m7JDrFxKpdFWP9fcaiIiNl5Vbs9k6qa6zYbA7XAw653I/4uGDCwpSsWlWGuclZ+TVv/vB+vbKEKCUQCH4vSDmC9HPWmZPY5KckuH4121etQJc+i9LD/uyr2ML9d97gUdEDvRVUUhUR4GqB8zb31us1rol9DUdaKSwwERXVW1EkVSeVljSwfv0B/OR+ZGXFu+UIvUKYn5Qj6GcRFz2EbYXvc95lV3LReVeg1Uxkf3kTLdZ2rFYHBw81EeDKEfrm7u5ClGcbne/P2GRuo7y8Ebu9E7Xa39VymJdXi5/cj+Bgf0wmG9u3V7s6TJYsSXbt5+mVJUQpwQD4qVRo5sxBM2cODrOZ1oICWr7ZSmtRES1bttC8YYNznVqNIjYWRWQkcq0WRXg4fkFByIKCnD/9/aG7G7q76e7uprutjS67nW6bjS6bjU6zGceRI3QeOUJnYyOdjY3O9YBfSAgKrZagKVMIHDWSoEmTCdAnIg8NRa7RIFOI/zsJfCOV4krmmt4+BVPuuBLHNYuoe/wJLJ9+iuLb73n5YC17LQZMLXW8d/8DyN1ETkmkysuvdQk7I0aGE6BU+BSAUlKiiIwK4vnn8qmubqG4+Ajz5g13VUDl5ddSWGCkqrqF+LhgkpPDsdpCPNrp9PoQTp4ej14fwhuv7+Lg3g7OGX0pFcO+55+fvUdq3E4yY88kOVmL3d5FYmIwFotz3KwvvEWxhvpWsrMr+lQyRUYFkdJznSDj4MEmV+uKTqtGrw9h7Ngotm+v5tAhCxGRgahU/syYEe9RjeVutCgQCAS/Jn5yP8adlsiQ9Ci2/N9eSr6rZlduNUmTtKRPju0jirhXEK1cUcLGr7/hmx0PEqAM4L9vrGX8uEke66XWs/y82h5fqgguuSSmx4PK6iHGaHVqxo11VmNVV7UQqlH2qUgyN9kp2Gmk1e4gNjaYoUM1jBurda1zv3+/+24JZfuaiE84mdtvGMurb9/Ffz64ltlZtxAamk54RCCZGbG02rtoaGglLvboHn/1PfHAVxVTVFQQs2Yl9VxLN9DtlryEMHZcFNDNwYMW/PycQptksu7eQuhLDBQIBIJfm6PlCNLf26zTWfWPe6nK+5L/ZBdRfeQwrW2NPPPwA/i52cJIIlVeTzwAGDEinIAAeR8BSKdTMWu2s43v+efyqapuoaS4gfnzh7kqoPLyaiksdMsRRkdgtXV4tNPp9RqmT3f+fOONXRwoh1MmXU9d02b+s+I1Rg2dRGrSApKTI2mzd5GoD8FiaR8gR/AUxTxyBDfRKDIqiBRdJEajU2g6eEjKEZwth3q9hnFj29j+fQ2HDlmIjAxCrQpg+gxP8/PfQ44waBWhurqauLiBjbYEvw6KsDBCZs4kZOZMutrbcTQcoX3fXlp3/0jb3r10VFXRbjDQuWsX3a2tg99YJsMvJAS5RoM8NBT/1FQUsbEohw9HmZKMv06HPDgYv+Bg/HyMvBQI+sO9FLe/McKK8HDin3icsHPP5cCd93J3aC1Xtfixbts27vzXP3nyhhs9xosbTVaazG3ExKj6bYFzx2Bo9vBhkti9q56Cgjqio9VMmRJNkl5DYZHR5U0i7eVeraXXh1BT08LQIeH8ed51pA9P4dH//gtD/atcHn45C0+fhl4fwrbvqvlhRzUgcxmxu3tMDTT1z/vzOKcMqvtM1NRp1YSGNdPh6KKjvZOpU2KYN8/pc+Uu2k2eFCMqpAQCwW+KJjKIs/+SzhN3fEvAkXYO/2AiVOlP0phIj/u7O+npOjq7smhuzySv8FuuvukiVr23nqTEXq8Od78lqcpoIA8ldw+mjMzeeLBrdz0FO+sYPiKcCROjgW4slnZ25hsBXG137v5LGZmxNBxpRaMJYPiQcTz3yCre/uAhPst+iJFJZ7LwzBvRatWYm+xUHLKwfv1BwCm8eftMSXtmZ1f0qWJy/zyTJse4rsVktBIW2rtHWKhzXaejiyitihnT410G6957iAopgUDwWzOYHAFAqVZzwf2P8fbd93DmGBP/+a6az778irjYGG6/8XqPtUajjSZzG7ExavR6zVE9lAwGi4cPk8TuXSZ2FtQRExPMlCkxJCV55Qg9e7lXa+n1IdRUtzBsaATXzb2NtNFj+OfbL1FVe5DzIv7M/NOnotdr2Latih9+qMGVI3h5TPU/9S+yz+dxF9ekPaRjoWFKOjq6aG/vZMqUGObPd7bEu4t2kyfH/GYVUhKDFqXS0tJ45ZVXuPDCC3/J6xEcI34BAQTExhAQG0PwKacA0NXWRpfNRrfdTpfVisNsprOpic7mZrC30d3VBTIZMj8ZMpUKuSYUuSYEv5AQ/AICkCmV+CmVyAIDkSmV/X5RFAgGi3cp7kCoM04i7at16F55hceff4FbKw28tnYtSdEx3Hj++a51BkMztbVWRidH9Gnt8+WfpNeHMGfOEJeYIxmLQzfd3RAXp2bWrCHk5dd6eJP4mmI3d95QUlKjXK/ddPGZ6CPjufs/L/BK9kuUGPZx/eLFNDS0Ymlqp6Gh1XXN3sKZtH94mBKtVkWS6+mI70lI5WWN5ObWkJYWQVRPpZReH0JIcAAWSzuN5l6TXjFNSSAQ/N6QyWRMXzCM7A0HGaLwp+TbauoOWhg/OxGlqq9PplQ1de7Cd1l2xQJ+LN3F5dcvZdW764kId36J7p3cF8GkyTEe5+v1IX38k/T6EE53iwf5eZ7xQKPxdw3KyM6uwPk1SObTrDwzM8FlTi69npL8Go8/9yKfffkyb3+4j6ame5g8KY3Ozi6qqlsoKjKSkhrlUzgzGa0oA/2Jjw9GGahwVXr5up/n5BwmN6fGJazl59W6hLmCQiNdnd2YRUwQCAS/Y44lR1AEKLni8ceJeflpLPY2PvihiNfefpf4mBguPG+Ra53BYKGm1kpyckSf1j5f/kl6vYY5c5JcYo5kLA7OhqG4WDWzZieRl1eLxdLu8pryNcVu7tyhpKREul674ZpFxMck8eTLT/Dex0+w78ACLr1gCQ0NrTR55Ah9hTNp/7AwJVptEElJnq183pVf5eWN5OZUk5oWiVbrrJTS6zWEBPtjsci94oHvPX4rBi1KPfroo1x77bWsXbuW1157jYiIvhNUBL8P/HpEJYm+QzIFgl8X71Lc1av3smZNGYsWjWTx4tF91vsplUTfeit/njcP05IlPFZczN2v/oukqEjOnnka0PfLtXvl0aef7KegsA5ri4OUlKg+wpJ7BVFQkIL29k6qq1swmqx92uqysysoKKhjwoTeMeHuZuQSrZYAbph9I1/9uIHs0i8w/vcQj1z5F9TB8a5yWPe9vScI+smdZuYBSkWfzyNhNPWM/a5ucZoZDgmlrOwI49N1DBsWRmiokvHpOmeiklvj8teSWhTd/VDcRTaBQCD4NZFiQnd3Nz9+c5hvPyrny7dK0AwJ4dQzh/k8R60K5t8v/5dFF8/nkOEA1916Ge+9vpoA/wCfYot75dEnn+6noKCOFqujT3WQuzA0bqyW6mor27fXEBSkIDMzgXFjo1xeUwZDM/n5dZSVHXFrocPDRL2+vpWiIiPJQ88g/pIU/m/N/bz10Z+Jin6A+fPPZtcuk6tlzt0nShLGDIZmbNYOtNogbFaHa8qg93Q8k7EnHlQ5x363tna6qrz0iSGkpkYQrFYQFqbkzTd3ERkZyMlZ8UyaHIPJaHUJWJIflZi8JxAIfguOOUeQyznzpr8RqA7BbH2BL4v38cCTT5OYEM/0k6YBfQUX98qjTz8tp6DAiNXaQUpqZB9hyb2CKEiloKOji+qaFoxGW5+2uuxNFewsqGPihGhm9Yhq7mbkEq1WFRedewff5q0lt3ANFtsBbr/hVtRq9xyhd2/vCYJyuYzoGDUBAfI+n0fCaLSx7rMDVFW3UFNrJTpaxcQJ0Ywdp2XY8DBCw6QcoYrcnGqXv5bUoij5U7kLbL8mgxalrr/+eubPn8+VV15Jamoqb7zxBmefffYveW0CgeA4Zc2aMr7+2kBVVQuTJ8e4RgxXVDRRXNxAWlokSUmhBKWm8vDOndTOmsVb333HVf/4B8/sriM2LYOx47SuL/DQKxSVltZjMFhQyP1cvdreFUruCUx2doXziUpNC8HBShL1IV6CTTetrQ4OHmzCaLL2mY4HUGloJj+vDn2ShsduuJZvi6bx9OrXueSJ23n6pr+SnJziem/XJL+e8eUjhoczOjnCZWg+0BNs9xbEGTPiaTS3YbG0U1hkpKsTxk9wVoY988wOdu0y0dDQyoiR4R7XCnj8LkpL69m2rZoYdQdTpsYhhj0LBIJfC5lMxthTE/nHS/kMkStQyGQUbjSQdko8ZrO9T1WSNiqa/7y8gsWXzGfHzu1c99cbWH7DP2ht7exT9SSdU1riOybs8TFoQqtTY6yzsW9vI1ZrB+FhgX1Em7KyI9TW2sjOrvAQptyn4x08ZKG5uZ0Z08fxwj/WsGrdczz67B3MmbmFR+99hqhIpzDm3q4ntYO4C1W2AWKCdwtia6uD7m5oaGjFZu0gOTmCpctSWbmihIKCOoICFbTZHa7phdK1dnbiuhapokyfpEHW3k1AZCDhMUKsEggEvx6DzRFmX3U9cn8FDQ88TN6hw/zljru47dqHiNUl9OQIGpcwJIkspSUNPfFA5hYPPCuU3MUhV45Q3UJwcACJiSF9RBu7vZODh5owGm19puMBVFY2k5dXS1JSKPfddgvf/ZDBm//3CjffdyMP//1OUlJTPK7RXYySJgi6C0b94d6CqE8KccUUg8GC1drB+PHOyrBnnt5B0S4TDQ12RowI7zPJz/v3tS2nikhNJ1OnJf5P/65H45icqYcOHcrXX3/Nyy+/zKJFi0hJSUHhZW69c+fOn/UCBQLB8ceiRSOpqmohKiqI4uIGV8ApLm4gN7cawPWaPCCA177+mkMzZlCYn09owZdwoJL/5meRNFKLrWf6niQWFRYZabE6b9xZJzvNXQdqWRifruPA/ibs9k4aGlqpqLDQ2dnFGWcMJSUlirHjtBhNNpe5ODh9qCyWXj+rwgIjra3O67DaHJw7K4Pzz5zGbS+9yNWP/YMvcnN49q83E6GRpnT0ji8fOy5q0BVL7i2IkrhlMDRTb7JSXHyEtnYH32ypJDxCSXx8MBpNgIf/lPSzydxGk9numji4b18jieGdxMdrGH4s/5ACgUDwMzAsOYJPPinnotlDqT3QRGOtlSB9MPsrnfdc9yqekcNH89KTb3DFDRdisXSwceNBautamTo1Dn1iSJ92uKIiIy0tzphwclbfmOAuKoGnR1RRkZHa2tbemJAaxaxZSS4RSTpn1+6emBCrIi42mKoq52S8w1VWJozXcc/yJzlz7pnc9dCtzD/vFB67/1lmnzrP9b7uLePeFVH94d6CqNWpe7ylAlGpFOzZ20hBoZH9BxopKT1CTLSKsLBA1zV7C18qlYLs7Aq2b6+mocFOVZWVeG0QqhgVaROj/7d/XIFAIDgGjiVHmHnpNTwu8+Pq5X+jwdbGrl3V7FF0UVhoZNjwUKzWnhyhR2QpdIsHUnXWQG1s49N1HDjQhL3VQUNDK4cOWejqrOSMM4aRkhrplSM4BbDdu0xYmnv9rAoLjbS2dgLdWG0dLDhjJovPzeLefzzBX+68i3PPmM/9f1tOSHCwSyCSxKhjqVrybkGUqr/Kyxupq7XS7pYjJMSH9OQIvf5TkvClVvm7KqfWrz/AvrJGYqIgLiHsWP8pj4ljHpdWUVHBmjVrCA8PZ8GCBX1EKYFAIDgaixePZvLkGNcTDwnpz+6vAfj7+7N6/Xp2Fx6g/Z1VRG//jLhDa/i+dToNwfEMHdobSMan67C2ODwmWni3wrlXDk2eFMPV1wRhMDSjVilYv/4gVdUtbNxU4eo5l54st7c5eO/dEhob7YSGKpl5mh6dVk1WVhzqYAWBSoXHvo9dfTPJ0am8+MlbnHTVlfzz9r8xe8qUPi2Cg8X7c0h/f/PNXRw4YKarHNraHKSlRXHzLZP6NVUPDXN+fqPJhlzu55zENMz5xF0gEAh+ba65Jp2srATS0iIJcHTz1b+LaSxtJDE+mMTEvvelU7Jm8c4/PyXQX09ubrXLuy86OojaWitDh7mNzk7SUFVlJSMz1qPdznviniRmuXtEqVQKqqqcMWHTpgqXL5UUE9raHbz7bgmNZjuhGiWnnaZ3tQcWFRlRBipc+55+2hno41O599HbuOavF3PBoou4+7aHfQpkg8H7M7j/fVtONQU76+jq6qatrZO0tCiWLk32aaoOzuqygp11tLY6iI9zVl7J2rsZOSJs0NcjEAgEPwfHmiPMuuQqXupwsP3jj4iKb6PIKKequoXOri7kfn4MG9bbAzA+XYfV6jkZ27sVzr3KafLkGK6OCsJgsLhEGmeOcMgrR7DQ3t7Je+8W02i2o+mJBzqdiqzMeNRqfwID5R773rf8Hobrx/HOh2/yff5OnnzwPobrnVVTP6WFzvtzuLcr7j/QRFe5Mx6MSYvsyRF8m6pL7YtyuQw/uR96vYbUkU4h65fkmBSlN954g+XLlzN79myKi4vRarW/1HUJBILjnKSkUNeTjoFekwgPD2fGzEkwcxLb35tF7VP3cFrtVxQqR1MRN4vMTOcTj5SUKKw2B3v3HMFgaPbpy+Q+tQ/6ij2FRUZMplbXpItlS1PRadWsWFlCVXULkRGBTJyoc52fkhLVx7sKnIlOXOBoXr/5cZ5d/QaL7ryDxdNP56U7/srkSZ5mvL7M2Y+GdE5nZyea0AB0WjVdXd1kZMT2+UwbNuxn69YqZsyIZ+KkGCoNzVQetpCUFELWyfFEKNrFUAOBQPCb4H3vX3rPVLLfKeVgUT0VMhlhcwJdfnsSJ2c6vUPUan8iIwNI1MswVFgwmWwYKixkZjrXKQMUxMSoUQb0/crra2of9BV8inpigjQRb+myVLQ6NStX9MSEyEAmTnKLCT3m7O7G6ADW5kAWzHmQYfoNrP3sBbZ8t4UXnvgnUydneFyXtzH7YJHO63T0xASdmq7ObpcgJ32mDV/sZ+u3Va7JfHp9CNExatraO8nIdHoRmuusxMWJBxUCgeDX51hzhDOv/DNRkRF8t+JdpulllEUk0N4up6baRkWFhcxMZ5VsSmokVlsHe/YcwWCw+PRlcp/aB33FHmeOYOvNEZaloNOpWLGitCceBDFpYrTr/JTUyD7eVeBs69OFpfPXKx5hxSevcfGfb+DyC5dy6/V/Jigw0OO6fJmzHw3pHIeji1BXjtBFRmacx2f64osDfLu1iukz4pk/fxh6vYbKymYqKy0MGRJCVlYCwcp25Iq+g0h+TgYtSs2bN48ffviBl19+mUsuueSXvCaBQCAYkPpwOxft/5Hz9Wnc3r6PrhIzHXVa/KOdbQYDtev1N7VPQhKYNmzYT22NlfCw3lEBkhnh+HQdkVFBffysGupbKSs7glqlQKdVo1Yp8JNDc72M0bIz6NRF82nOZnZcWcQLt97KrMlTXHtL416tLQ6Xt9TRqqikc0aMCGfx4tEDnrN1axX795sBmDdvOPa2DqqrWtBqg9Bp1Tga2wd8L4FAIPi1UKr8OeO6cRRlV5L78X6+W1nGhNP1hMf2vb/FJwbwyLMPUX6wjAf/9i7jx2tdRuJw9HjQ39Q+CUlg2vDFfmpqrYS5xQSXYXmSxqfoVd8TE1Qq5zFzUxuxcWoOHsxgzNBwqhvfZunl53DRBZdz+033EhLsvMaiIiOFhSZarI5jMiKXzhsxMpzzemKCr/O2fusWD+YPR6tT46+Q0Wxp9xD0BAKB4I/CtHOXIJf789Ljj7Dyh13MO/UCUkee4vruLjFQu15/U/skJIHpiy8OUFtj84gHfXMETz8rZ47QiFrlj06nQq3yRy6Xsb/UgS7oPKLTf+T/Vq0he+t3/OOev3PS5EmuvV05grVj0GbkrhxhZBiLF4/q95xvt1ax/4AZgPnzh6HTqbDbHVRXWdFqneKVremXzxEGLUp1dnaya9cuEhISjr5YIBAIfkEqKyux2qy8vecHhl18M4tKt1P18KNUjZzOiGXzidYF9yvODJSguFc6NZrb6OrqprFnfKrRZMVqc5rEek/wk/ydpNY/6K3Y6up09pc3NbWRFjWZG/50Oi999hYL77iDC0+fyz+uu44IjcYVzKQWwCZzG6FhvqfkSdcZHqZEq1WRmhrRp/LKe+LgjBnOp0TST/fgKRAIBL9H0mclEjsilC/fLGb7J/sZNTWaYRN0HlWdnZ0ODlTsx1RfxYtv3M7a/37KgfLmPhPnfDFQPAA8Kp3M5ja6Orsxm9s8Xl+6LJV8t2lNkghkMnrGhJEjI6itcSY7HY4u5H5RTJ/4ICGRBaxY8wLZ33zFI/c8xczpc1xil9T+Z25qIyy02afI5F7tpQz0Z8TIcLIy4zwqrNyvV6tTM2N6Tzzo+Qm9Alu6iAkCgeAPyuSzFxLxyae05+zks+z/kjJ6KBDvigdZWQk+J9dJDCRYuVc6mXtyBLOUIxhtWG0dzhzBa4KfTqfCaLS5Wv+gt2Krs7OblpYOHJ3djI4/mZtvWMgDTz7BRX++gaULz+WOv95ISHBwb47Q0wLozBGUPoUm6TrDwpRotUGkpkYy2S0Gek8bnN6TF0g/4bfJEQYtSm3cuPGXvA6BQCAYNNdddx3btxfw7rtv8PjqNzBd8CQn5XzGhL2baX6zkqibrkEe7LvtwLutzR13rynvG/JAE/yk43K5H/FxwW7jXZ3HIiOV5Of7ExUVSGOtnKUTr2DWhL28vv7/2PjDDzxz000smDGDlJQoV0uexdJG+X6za/S4L08sPznExKj7tLX4ut5584YzcVIMBkMzRpPVVREmEAgEv2d0SRouuHsKX79byt7tdTTW2hg/W4+iZzR2eFgELz72FpffuJA9ZTu595HbmZB8LQUFdU7z8ERNv1VGRzMVd/eachdt3F/X6vrGA+lcKSakp+uIigpyrcnMiMXh6EKrDcLRcTL335bB+q+f48obL2TBGedx798eYWlqqqsdz2Jpo7bG6lOc8p6kN2F835Y/7+udN3848+YPx2S0uqYVShVhAoFA8Efm2Tf+Q8neA3z13VZefPNJWq33s7e0G40mgMTEgSuMBhKs3L2m+uYI/U/wk4779ckRnMciIwPZudNIZGQghTvbOOvUv5A5pZAPPn2Pzd9t48E7b2f2KTNISY10teRZmqUcodElhHlfp1wuIzpGTUBPrPT1OXQ6FfPnD2P+/GEYjTby8mrR6zWuirBfE+FSLhAI/pD8+9//pLr6IJs2beKDzx+jfOIjOEIOMmXvx9Q9/DDhl15KUGpqv+fn5BwmN7eGjIxYRowMdxmdj+7xFdFp1S6fKOekpYF9qPT6EE6eHu9R2eS+JkqrZstmA62trYwYGcaiWWdz1XmzWf7iC1zy0IOcmZnFEzfegNUGXZ2g0Sixtzlc05Ia6ltd/eTSNahVClern4RUIeX+WSS8hSqBQCD4IxAQqGDeNWMp3GQgd+1+vvuojEnzkwiJcAo9Uyan869n/83lNyxl1ScrUAcNIS4uA70+pN8qKG9ycg6Tm1NDWloE2p4HD94m5FE9bdtt7Q7kclxteb7ELb0+hOk9McHdYB1Aq1WTlhpFq92BudFOZEQcb/3zA9au+5CHn7yHb3M38/dbH0AfM4POnnigT9RgbrI7vVAqm2mzd5DuFg+kSXren9dkdIpZMbGqPse8xSqBQCD4oyOTyfgseyNTx4+jqHQvH3z8NLNPvp0RwyN9VkD5IienitycalLTItFqnSKTu9Ck06lcPlHZmyo8pu1BX3FLr9cwfbqngbn7Gq1WxebNBuz2TkaMCGPRogu47E9ncN9jT/Dn5X9j/uxZ3HXLX7Hauujs7EYTosRu73RN/fPMETyn6bl/Zl+eWRLeYtWvjRClBALBHxKFQsHTT7/B3LkzqKurZO++Vwh//v8YOvpCqpbfRsMrrxA8cyZt0+dSedjapw0uN7eGwsI6Dh1q4rTT9BhNrcj9ZM5Jfl5CTkFBHd3duKbt+WKgCiyA9jYHbW2dDBmiITxMyXvvlpCREcs9S28iLjCZtXlrmHL55fx5wfnMTZ/NiOGRlJfJyc2tod5k5ZviI66yX8l43ReS8DQ6uW9Ln3uC9VOM1QUCgeC3ZPxsPbokDV++8SM5q/cz9tR44kaGAzA9cyY3XHUnL73+D97/8Ekuu+A5UlNm9tvu5t0Kt2HDIfbuPUJlpYUpU2IxN7X1HOlGT29FrHtVks3m6PdaB6rCamt3UFtrJS0tgsjIIEqK650PPqKzuP7St9iW9wa33/sXxqVO4qLz72Tc2CnU17dSUGhBqfSjpKSehgY70Gu63h8GQ7OrbdCXcCb9/Knm6gKBQPB7IyAggH+/t445p02hztxIftEbnHnGM/22unm3weXmVFNQaKSktIExY7SMG9vWe5K+948Gg4WdPTmCNG3PFwNVYAG0t3fS3t7FkCEawsKUvPduMRmZcdx6zV1EhX7Kpm0fMve8C7hs6cVkTppDV5cfVmsHOl2Qx1RA6DVe98VAnlnuottPMVb/XxGilEAg+MNSVdXFOec8xDvvXM+BAzsoKvqMs8++laEffUjtP/5B04cf0b5rDweHzAE8W+AyMmI5dKgJR2c3DQ125H4y9uxpoLa2hdCwQNdavT6ECROige4+T5kHK+yUltazbt0BGs1tBAYqMBiaXSazcfFqFJYE7jn3bg607uCl1Sv4+LuveeKGG2k0aDCZbBQX49Ea6O0X5c7RPFIkJANEQIhSAoHgD0PcyDAuuHsK61/bTeHGShprbaSeHIdMJmP61KVs2bqd3Xu+5tONT3DFJfP7nN9fdVBwsAJ/fz8iIwNJTo7AUGnhh+9rUKv9CQsN9GjT81WVdCyiTn5eHbt/NNFkaUOv17Bn7xGqa1qIilRhMnUy75Q7uPaKq3ngsTu58+EL+NP5lzEkdhHlZXa0WhVqVQCBSoWrpbA/oQ0GHxMkk3RAiFICgeAPT12dHwvPe5J337mePZUH2fLl20ydepfHmv6qgzIy4zh4qIm2tk66OruwNLfx/fe1BKv9CQ1Tutbq9RomToh2/dmdwQo7pSUNrPvsAI1mO4FKOQZDM+XlZgDi4oOhbQQ3XPwoVQ1bee3df7Ph6y+ZPvl8rGYdarUWq63DozWwP6HN/RqPVjHmkSMIUUogEAgGJi0tEphBevo/2bt3J3fc8RcA/AIDiXvoIdQZmVTfex/Tdn2A//Dzgd7KocxM59CG3NwaUlMjaG3tpLa2hZiYYNQqBdnZFUA3cXHBPWaCIS5Dc+nLv7ew46slUFrX3NKBQi5DLpeh12sIDFSQkRFLeLhz7Ov4dB2Xp0zk4vnzuf2ll1hy912cPGYis5PP4KT0WAKUCtc1eJusuyNVbBlNVvLyaz2Eq4E8swQCgeCPgipUyaJbJ/LtqjJ+3FKFxdTKpPlDSErS8LebHuP19+7mb3/9O7FxYX3O7U+kOfusEUREqIiMDHQamze1oVb7ExqqxFBpwdxkJy7W6VUYFRXkYWhuMDRTUGikvKwR6BV1pJbAjMxYRo7ojQkADkcXTeY2IicEMWFCNJGRgURHqzBUWHqErVTWfbiZd1a8yYuvPomf31pmZl7OlGlLUQcF+fSVgr5teO5rvI/355klEAgEf3ScOcIsUlJeYEf2xwz376D0uy2knHyqa01/Ik1mptP0OzenmozMOFptDoLV/sTEBqNW+ZO9qQLALUfQuAzNJUHIW9iRWgIzMuMYMSLcY11zSztyuQw/uR96vZpApZyMzDjCw3pzhJTUSZy/4GweePIZ3ln9NKkjJzFn7rV9WgO9TdbdkSq23P2jpDUDeWb9GghRSiAQ/GFJSgolKSkUGAZc1ud46Px5BI0dQ9XNt2D/4D12fLOT4EXnkTLG+VQjQKkgOCSACoOF8ek65s0fhl4f4tGyd/CghYqKJgID/Vm0aARWm6NfYSc3t4bi4nrX3t7rkvQaApQKDy8oybtKYpRez8dPPsknW7dy7+uv8dCaf3BJ63z+fsml6KKcYlOT2dPfyhe+/KPckzHv9xUIBII/En4KP05ZOpqYIRq2/Hcv331YxqQzksjKGkZW1op+z9Pq1NTXt5KdXeFR1ZSSGoXN5iA/v851bP78YZib7BTsNNLdDaZEGxZLBzk5VQSp/MnKjMNmc7BnzxEiI4MIVis8RJ3cnN6YoAxQuL7wz56dRJDK31mVNTocmy3EJTJlZvZeq7+/P1ddch3nzF/IE88/zMefP8euPZ9w2013M3HSWcDAnlES/YlW3p5ZokJKIBAcL0g5whlnXE/38uv48l/PU/xNNgGBQQyfPA3oFWlKSxrIzq7wqGoKCJA7c4QKKUcYil6v8WjZO3ioiYpDTQQG+bNo4Uisto5+hZ3cnGp+LG5w7e29LilJQ0CA3MMLSvKukhg9YgT/fe2ffPblVzz50ivc8PfruGDRufzlqiuIilQN6Bnljq8KMV+eWb8mQpQSCATHFR0dHTz22GPceOONREREEJCQQNLKFXxy3q2M2rMJ2zsv0/G3m/DXatHrQygrO4LF0o7V5vDwYJJa9qqrW6iubkHmJ6OwyMisWUmAb2EnIyPW9XMgAchXpZN3S965p5zC/IwM3vzsU556/30+2LSJGxafx4zRM6mttTM6OWJADytf1QBH870SCASCPxqjT4olIj6Y9f/cxfa1Bxg7s9dnCqBo907KD+5j8TlLe1/rp1XNPSbYbA4mTY7BZLQCMqCboCAFuTk1VBgsdDq6CFYrPGKCd5VSRmas62d/AlC+21Nt9/PdW/J0uhieefQVrrz4zzz14iPcsPwKJoybzB0334u8e1i/nlHun8v9p8TRpg8KBALB8YBMJmPudTfTYmni6Zde5sbru0ibluE67qtdTa/XUFbW2JMjdDB5cm+OMHFCNJbmNiormzGZWoFWrxyhr7CTkRnn+jmQAOSr0sm7Je+ceXM5/dRTeO/DVfzrrXdYu249V150IRPTZlNT2+rTM8odXxViR/O9+qWRdXd3d/9m7/47xGKxEBoaSlNTExrN4Bz6BQLB74fLLruMd955h9NPP53169cjlztHoW7bdpjidz4jq+Ad5O12wpYuxTpsDLt31QPdjB2n9SnYZGdXsGWLwVUpNZjqopycw2zeXIleH8LceUNd+5aW1rNxUwX21g5GjowgOTnCVTElVTbFxKgJDVNSb7JSXHyEjIxY0saF8cIHH/DK6lUo5AoWZMzh4jln4e+n8ukr9VNwNDYik8kIPXcBMj+/Yzr3eL1vHq+fSyA4Hmltbmf9v3ZRe8DC8IlaRk2LYV/5HhYsm01Xdxfvv76aqZOcZUi+/J8kEcjdL8pbsMnPqyU/v462NoerUupo1UXu8WDe3KGuPaVr8JPLqDS0eEz90+rULrEqJlZNdXULBoOFmTMTycxMIOf7b3n8+Qf5saSISeMzOOWki0keOZn0cbqfTWQy11kZMjaK8Jhj3+94vHcej59JIDjRWLJkCR999BFp8dG88uRjJIx2Tun29n+SRCDvqiV38tzigUrlT1Zm/KCqi3JyqnpzhLlDXfuWljSwcdMh7HYHI0eGkzw60vXeUmVTbE+OYDLZKCluICMzjrQxIbz61ju888FHKAOUzD31TBafeS4yWaDP6/4p2JrMyBX+pM447ZjPHey989gyD4FAIPidUVHRxPr1B6ioaALg1ltvRaVS8dVXX3HXXZ6GhjXx42i6/zUCx46h8Z13aHrvXeqqmzyMzSVKS+tZsbKEoCA5C84dydXXjO0jSEm+TUaT1eP1zZsr2bXLRE5OtcvHA5xPYgoLjezd24i9zeFqBZSeho9OjgC62bvnCFu3VlFcXE9ubg2hwcHcd+WVZD//OqeNPZmPtq5nwb038Og7b7Jzt2HAaxEIBIITgaCQAM69dSKJ4yLZv9NEzsf7GZY0ktNnnYnD4eCG266iurYKcFZHpafrKCoyUlribK+TWtykCilvcae0pJ6CQiNaXRBLlyZz1VXjPAQpk9FKfl5tT2VVL654sM0zHkjVWoWFpp6BFkfY0xMPwFnVlNwTE77/vpqSkgZyc2oAyJw2nTeeW8t1lz1Ffb2ZZ1+9noeevow1n35GV1fXgNcjEAgEJwreOcLtt9+OUqmkuKqOxx5/AlPFQZ/nSSKQVCHlLeyUljRQWGhEpwti6dKUnnjgKUhJvk1Go83jdSkmbNtWhcFgcb1e2BMT9u5pxG7vdLUCShVSzngAe/Yc4dutVfxY3EBuTjWhGg13/PUvfPjme0wZdzKfbFjN5TdfzktvvsauHw0DXsvvCdG+JxAI/tAUFzeQm1sNOPvHx40bx1tvvcUFF1zAk08+yeTJkzn//PPZtKmCTZsMgJ5LHnqRqkeeJTb3Y6bVVqGedEWffd1LeZctTfU4Jk3dC1QqXCPB3UUtvT6EykoLQ4dqPNolxqfrqDRYaGlxkKTX4N3iJxmUh4Y1ExmpdFVKSdib/UmPmMmI6VMxtBWyPn8TWx/fyrnbT2FG8nTktsg+1yIQCAQnCnKFH4ohITTtN0Otjdw1+7nv1icpP7CPPfuKuf7Wy/ng7c9QBihdolCL1YHN5qCt3YFc7pys54uiIqeRebBa61OwWr/+IHK5jOnTE/r4NlUaLAwd5hkP0tN1tFgddDo6kSvkpKZGoAxQuNZIrXUmo5XqaisGg8XVDghw+LAVmSOV+TOeQqk+wJdb3uaJl/7CR5+9wMUXXMGwxJkYKtpdewkEAsGJhneOMGXKFF599VUuv/xyvty9F/1LL3LNbbdTWNTk+s4fGRVEZWUzdrsDtcrf576FRUbKy8yo1VrfglWRkcBAOVZrT47gtkaKCcOGhXq0z41P11FZaaGlpYOkJE2fFj/JoDw0TElkZKCrUkrCblMyMnE+cVFZmJp28M32L/mhcBNnzZ3D5LEz6bBH9rmW3xNClBIIBH9onNM1en+Cszw3Ly+Pp556iiuuuIIxY8Ywe7azz3v27CRK95h5r3Ua0bGhXHJkNY7XXsC6ZAnqrCzXHgNNnpAEqxEjwhk/QdfHp2PuvKGkpEb1aa1LSYmiutrKli0GNm8+DDgN0d1x932aN2+4xzG9PsTldTV23FSeDbqa9zZ8wRuffMJH2dmMjB/CJfIzGDbydCLcSmQlv6r2NofL1F2YnAsEguMRKRbogvwp/OwghZ9X8fjf/8Wlfz2HXcUFPPLUvTx895MuQ3JloNOAvNXuwNxo79fwe6DpdEVFRqqqW4iPC+4TD+bNHUpqSlSfdkDJWP2rjYdobm4nNTXC1coNvUKSVqfm4ovT+rynXh/ChInOeDBu7Bj+euMyduzczrsr3uTRZ+4jwF/JydPOIi5xKd3d0chkMqC3TbGt3eE26U/EA4FAcPzhK0e47LLLyM/P5+WXX+b9nDzi3nqTsaddCGgZn67DYLBQXu6sViosMhIZFdRHyBlUjjAyjPHjdX0Mx+fOHUpKSmSf1rqU1Eiqq1t6coRKwGmI7o6779P8+cM8jun1GiZOiAaiGTsuE2XgDXz0yWe8/9Eq1n6+nuFDRnL+OecwavQ8NCG9cUpqVWxv73SZuv/aJudwnHlKDRkyhIqKCo/XHnvsMe68885B7yF6xgWC4wOHw8GcOXPYsmULKSkp/PDDDwQHO8d5V1Q0sXlzJUVFRhRWM0trPkRVVkTQ5MlEXHQRe/ZbKCwykqTXUFfXSkNDK1lZcS4hR6qUOpq4421eDpCdfYi1a8twOLoZOTKc4JAANBp/Zs1K+skVTt99Z+A/a76mtCGP0qo9yOV+nD51GhfMns3p06aRu62OgoI66utbMZpsjB+v46a/TPLYo668iupqG/pLz2fI0PB+3sk3v8f7pogHAoGgyWRj3cu7sJhaadaUc+eT19Ld3c0zj7zCwrOXAL0ijaHSQnmZmYmTdMyaNcRjn9KSerblVBMZGUh0tKqPmOPLo8obd+NySXAyGa0893w+1VUtjB2r5dRTE8nPr3PFhJ9S4ZSTc5iNm3ZjMn9Dbv5nNJqNJCUOYcGZ53PO/EUc3O9Pwc462tq7qKu1Ehziz8UXpfZpRSwvOUL6yXGkTYw+5mv4Pd47/9eY8Hv8TAKB4KfR3t7OqaeeSm5uLgmR4Sw/ew6zL72aoJAQjEYbu3eZOHioic7ObiZNivYwOZcqoZKSNNTV2Zw5gpuflLc/VX94m5cDZG+q6MkRutxyhABnjvATK5y++87Aeyu/4lDNdg5WlqBQKJh5chbnnjGP6SdNY9t3dewsqKOh3t6TI2i56SbPHMFwoJaa2layzpnfM/V88Az23nncVUo99NBDXH311a6/h4T0PzJdIBAcvygUClauXMnEiROprKykqKiIrJ5KqKSkUC67LJSKiiaKixuwB0/CvuZ9IjaupLaign2Js9hR2snuXfW0t3fS2upAHawgMirIlVR4t/T5QjIvrzQ0Y2/rYHy6jrHjtFgsHTQ0tJKaGkFJyRH2l5vRaVXMmtV/AiIJXGqVwmWOLolY339fR5sxiklhC3jwnr+w/0gxH2zayCUPPYjS35/UxNHolEOJVOihO6jPnnp9CFXVVvbvb6KluOGYRanfKyIeCAQnNqFaFef/fRIbXvuRytLhLDvjWv77+ats/najS5SS2uT0+hD0ic4WO28BqajIyI4dtfj7y4iNDabZ0u5q+9PrQ0hJjTpqtZHkWWVuagOcAzbGjdVy1lnDyM2pcU3oKyg0Ul5uRqsbOCb0Z8yem1NDxUGIiT2Dm6/8E52yA5SUZfOf9/7Fi68+hS4qkejICYwfezKBQfG0NDsrvVJSo1x7mpvsmA63oIpR/SRR6veKiAkCgQAgICCADz/8kIkTJ2Kx26ky1ZO76r9MX3YpOp2KWbOTPMzO8/JqXeJRYU882L2rnrZ2B62tnajV/j05glNkWrYs5ajXIPlWSa2Crhyhub0nR4j0zBF6Oj58MZAx+/fb62hpjGVkzFKWXxdHZW0hn3yxgetuu4NApZKRQ9PQqIYTohzqmSO4iWbVVc3sP9BCWHHDMYtSg+W4E6VCQkKIiYk5+kKBQHDcEx0dzdq1a9FoNCQnJ/c5npQUSlJSKOvXHyA35BRmXpNK4prnmVi0iu7wyZSqRqFW+6MK8u8p6XWKTODbt6m0tJ5t25xP07NOjne1cRQWGCkvbwSc/lQLF450ndPa2onZbMc5ctyJrwor6b395NDVicc1ZGTEYrc7k5LxaQmcrh3NdYsWUX74MBu257L26+/YtHc9nV2dhAQGU1c+mvb/24N/ZyiOZhWZjlEMi1MjQ4Y+7dcv2f2lEPFAIBAEBPpz1l/S+faDMrq2LCbqgnhuuO3KPuskcQpwTb6TXk9P17H/QBOtrQ70eg3+Cpmr7U9a4417ddXJWb3xwNxkp2Cnke5uCAsNJDMzgczMBNd5Q4eGYm7sjQm+KqygV+SSy6Gzs/czSL5TvdP8hnHZxQt46K4n2LZ9K2s+/YycH75m995P8fOTE6MdDoGT8QucSoc9AmtzKMOHx5OUFMrIEWH/2y//d4aICQKBQCIhIYGPP/4YnU5HQGsLqx9/gO8//pDM8/+En1zuapXLc4sHOp2K8ek6qqtaaO/oJEatQqXyd7X9ua/zprSkgW05Vc4cISvB1dZXWOj0pwJYtizFM0ewOWhsbPXYx1eFlfTecrmMzs5uj2vIyIzD3tbpzBHGDeH02alcedGF7D90iM3fbuPzr7aQW7iGrq5O1CoNbf6pvPp2MXSGYbeqOalzNHHxIcjkCo82yJ+b4659z26309HRgV6v58ILL+SWW25BoRi89ibKcwWC45vu7m6Xt4aE1M4H3ZwyIQT5i49g3baNI7qR5MfO4KQZSaSkRGE0Wdn2XXWfdj5JRCosMFJQWIdGE8DixaOZPMn55Xegdj9fAlRefi179xxhdHKEa4+BKqWOxtq1+/hu+yFCYpqRhzWxo6SEnXv3YrE6pzLJ/fyIiYjgujPP4q7//BuZ37ENZv093jdFPBAIBN4UZhvIWb2fkAglk88aijLIeT/wjgkmo5Vdu3urmbQ6NTk5h10VTZmZCZiMVr7b1hMPMuP6tL+9+24J+8oaiYhQct7i0Uzqaf/wtbf3e7uLUJJAlpwc4drDfZ13pdTRWLt2H99/X03SUDuhEXUU7NrBzqI8DhkOIKUEIcEadJExfPdNLjFJEcf8e/493jv/15jwe/xMAoHg56P0uy18/tLTxI9OZfLZC/Hr+S4stfMBjB2ndRmOb9tW5dG6l5NTRW5ONRmZcWRmxrv2lUSkwkIjBQXGnhxhlKslcKB2P18CVJ5bTJD2GKhS6misXbuPbdsOEq4zE6g+QsHuH9ldUorV5pzUJ5fL0UVGcuWFS3n4uReO+fd6Qrbv3XTTTUycOJGIiAhycnL4+9//Tk1NDc8++2y/57S1tdHW1ub6u8Vi6XetQCD4fSO146WlRXqUl27bdphNmyqIjKzmrbceZ/369URH97YkJCWFotM5J3TodGrmv/E6Da+/TueLrzDVVE2Z35mkpJyKTqvG3tZBeXkj6mCFS2D6csMhvv++muHDw5kwPprIyMA+Zrf94W5sLuE+lW+gdYPBaLJSUtJAixlSRo7kqsvHAU5xrrahgfLDhymrrKSy0sDI+PiBN/sDIeKBQHBi4ysejJ+lp7rexv4t1Wx8t4iN5W+QljaGay//i8e5Wp2asFBnJVJYaDNanRpDhQWTyYahwkJmpnNNm72jZyKfwkOU2vDlIUr3NKDRBDB1aqzHvVyrUxMX20pRkZH6+tY+QpJ7xRb4jge+1g0Gk9EZDxob2xkxIo4Lz5/HhedfCoDd3spBwwEOHiqnovIQNVW1KJXKY9r/98yxxgQRDwSC44uj5QgaTRX/2bmHZW3tBIWEMPa00wFnxVFomJI9e44QGqZ0VVDZ7Y6eCXz+pKRGUlFhwWRqpaLC4iFKffnlIb7f3pMjTND15AiDE7bdjc0l3KfyDbRuMBiNNkpKjtDcLCM5OYWrrurNEepMJg5WGDhQUUGloZIhiQlH2e1/43cvSt1555088cQTA64pLS0lOTmZW2+91fXauHHjCAgI4Nprr+Wxxx7rN7A+9thjPPjggz/rNQsEgt8G79GvEps2VbBx4yHKyu7HaNzP0qVL2bhxo+sJaUVFE0ajjeHDQ0lLi2TN2jLWfJvA9NnLmfzdG0woWk3NZ21UxY4jqScIuE/cMBgsNJrbsNk6uOWWya6qJnCKSdIkDmuLY8AqJ6PJyu5dzifoY8dpBxShfFVY+VqTnV2Bn1zGqFHhZGX1jo6VyWTERkUh7w6i/qAafyIZqvl9tzWIeCAQCAZLf/Fgx54GdpQ1ECkrYt2mNazP/phxaRPImHqya43JaMXc1EZMrAqTycozT+8gUR/M+PFa0tN1vdVMSc544D2Rz2Cw0NrqYOjQUBYuHIXJaCU/r9bDo6qw0OThS9VfC6BkoD6QANVfi5/3muzsCvz8ZIwaGU6W2yhxgMDAIKLChrDHGoB/91AWzf39T+T7JWOCiAcCwfHFQDnCV18dYO/eu2loqGRdUCCBAdsJCtEwYspJGI02msxtxMao0es1roqoRH0I6eOdE/uMRhuBgQrnxD0f8aDR3IattYNbbp3kqmoCXB5VRYUmrNaOAaucfFVs9YevCitfa5wxgZ6Y0CukyWQyYnQ6DpR3UHuom6yJY5g6+QQXpZYvX85ll1024Jphw4b5fH3atGk4HA4OHTrE6NGjfa75+9//7hGoLBYLiYmJP/l6BQLBb4ev0a8As3vMAa+77g3+/Odz2LJlC/fccw+PP/444AxU+/ebyciIIykplLvu+patWw/DjASuyl5H9R13Yv3iExQRu5CducRlci4JQ5Mm6QgMVJCREesSgiyWdsApSo1P12FtcWBr7SA/v9b1ujcGQzMFBXV0d0NoWOCAotTR/K2kNRZLh8sXC/q2EhoMzfywo5pucxMqtT+TB/er/k0Q8UAgEAyWo8WD6ZmTOFRfwNbC9dyw/CrWr9pMTLTTj8lgaKa2xkpycgRbtlRSXFwPwPLbpgB4tNQtXdY79EIShyZN1BGoVJCWFkF+Xi3mJju1Nc5WCK1OjT5JQ1WVFaXSb0BfKkm8AgY0Upf8pfrbR1pjsXQwdIgGfZKGoiKjx/ukp+uw2Rz88EM1lqZ2NEo5p/b7jr8PfsmYIOKBQHB8cbSYcPXVb3L99efyw+5ihsdGI9+yCaU6mDpbFDW1znig06l4791ifixuAHpjQl5eLVZrB+PH97bgScLQxIk6ApVyMjLjXEKQK0fo8aiyWjuw2TrIz69zve6NwWBhpytHUA4oSh3N30paY7G0O3MEVU+O4NVKmJtTzY/FDSi6W5k67QQXpbRaLVqt9iedW1hYiJ+fHzqdrt81SqXyuCpPFghOZCTjcm+yshLIynLeTP39/80FF1zAE088wUknncS5557rEai2bTuMw9FJSkoEixaNRBEeTuKr/6L8mVeIeOcN/D59jba4a1EmJbmEodHJESxfPhxw+kEdOmSh2dLO2DHOJCIlJQqrzeEa9d1fa59eH8KECdFYLG00me0YTdZ+Baf+Wjp8rZGM1tXBCqwtDgoK6rC2OEhJiUKvD2HqlDhaavxJG2B07e8BEQ8EAsFgGUw8mLR5JePHTOZQ1T6uuPZi1n74OcoApcf9NVEfzKFDTSTqg1179Hf/lcSh5OQIlt82nPy8Wr79tgqrrZ3U1EjXemWAgpgYNTGxasJClf3ex6UKLH2SxqPSyptjiQd6fQjZ2RWuSq0mcxtV1S0AzJqVxNSpcTQ0tDJq1O9/CusvGRNEPBAIji8GExP8/F7l0ksvZeXGzeiXLqLwy3Ukn7aQ5OQI9HoNpSUNdHZ1kZgYTIZbtamvljpJGHLGA6c4npfnliOM7ckRUiOx9ghSGk1Av619er2GiROisTS30WRuw2i09Ss4+bqe/tZIRutqtT9Wawc7dxqxWjtISY10fcaJE395H73fvSg1WHJzc/n++++ZOXMmISEh5Obmcsstt3DRRRcRHv77D6wCgeDXYcmSJbz77no+//wd/vSniyks3MnIkSNdgertt3+kutrG7Nl6Fi92Pj2V+fkx8va/YD0ti5q//Q3T008Tes45JKZnAL1f9nNyDrN5cyXNzW20d3RTYXB6j7ivGajdTqdVM2uW2mV0HhrW7Frr3a43GI8paY1apUAdrGB8uo68vFpkMujs7CQv35nkLFw4EkdjVB+z3z8qIh4IBILBEBoWwpdff8b49EnsOVjEDdfezKuvv+zh19TV2Y1a7U9XZ+9coP78nNzv8654YHHGgza7w3WO+7qB2vJSUqNISY3qMw0Q+rbsHc1fyn2NJHZ1OLpoNNudHidJGgyGZk7OikOrU2Ousx79F/gHQcQEgUAwGC655BLef389Gzd+wCufbeLeJWdS9s1nnHzhpWiiVGRnV3CkoY308VoP36jBeD/l5FS5xYQuD+8p97X9CU06nYpZs5NcRufu1VLe7XqD8ZiS1qhV/qjVzgmCefm1+MnA4egiL6+WESPCycyMx9ZkPvZf5jFy3IhSSqWSlStX8sADD9DW1sbQoUO55ZZbPEpvBQKBACAk5FwCAr7DZtvP4sWLyc3NRa12flmXyniln+6oJ01kyOpV1Nx9N01r16Lct4/Ecy5w+Ufl5tawf7+ZhIQQ0sdHePSVu4tI3i103pP11CrnU3T3aqkvNxzk++9rmDYtlosvHnNMnzclJcplyl5dbWXIEBtyufyo7X9/VEQ8EAgEg2XUqFFMmfpXtm59lK93ruK5h8fylzuuJlDtbGeQBBxv3yhfSKKPwdDM5s2V7C83k5AYwvjxER7nuwtE7r5RUoue92Q9lUpBTKwac5Mdk9FKWXkj69YdQKMJYM7sIcdseC6JXdnZFdTV2pgwMRplgOKoLYB/VERMEAgEgyUi4gL8/bfT0lLByp0lXDYxhe2rVzLjostd3+u9faN8IYlCkn9Ubk415eVmEhODSR+v88wR3EQk7xY678l6apU/sTFqj2qpL788yPfba5h2UiwXX5x2TJ83JTXS1XJYXd1C0hANCoX8qO1/PzfHjSg1ceJEtm/f/ltfhkAg+ANw3nkp2O33smXLbYwZ4ynwuJfxeiNN6Ji99A6Sp0zF9PzzOF54iurhpwNpZGQ4/UjCI5RUV1lJ0tt97iOZGgIuX6e9e47gJ4euThidHEFomNKjWspgaKbR3OYSwAaL0WRl23c9Y8uz4hg7LorQMKVLABvslMA/EiIeCASCY+Gmmy6mvn4vhyuzCZKHsG1VGZPPHEpoVJBLwPHGl5gEvS18er2GQKWC8AglVVVW9Em+44Ev3yhpD7kcOjshOTmCsFClaxpgbk4NVYdbICH4mO7hktjV1u7AUGFBn6Rh5ky9xx4iJggEghOZ889PxW6/j+zsW0kfP55zbruNTx+7n+1rPmD60ktcAo473kKShLu3k9QK58wRWkhK8t0S55EjpEa69pDLZXR2dpPckyO4V0v9lBxBErva2zupqLAwPl3H2HHanhzB32W6/mtx3IhSAoFA4E1/418XLx7N4sWjqaqaTVxc3KDb1jZtqmDTJgMAWfdfimrCBCpuWc6EH9ci11qJXXw2mZkJPPPMDpcxbmZmX4FLejrS2urgrru2Mn68ltHJET6FIunPM2cmuszUoW+1lS8k0/X8vDpaWx2ogxUsW5p63FVGCQQCwdHoLx6AMyYsWLCC+vp6/DuDWfdyEdvX7mf8nESih/T1IIH+Tci9W/OeeXrgeCBVUNl64sGM6fFMmuSchCpVSnnHhIxMZxzIyIwdsOLKHWn6nsXSTnNzByaT03jd3aj9eKuQEggEgv44eo4w15UjnPnX2/nk6UfJW7eWKQvOw8/Pz2MvbyFJwrstLzMznmee3uEySndvAZTozRE6uOvv3zJ+gpbk5AifQpH055kzE11m6tC/SObO7l0m8nfW0dHRRXOP8fqyZSm/WmWUN0KUEggExy39jX+VcDiC+eKLg4SGBmA2txEV1c60aSn97ufd2heUPo6Gu16m5YmH0X+9gfqqg0RceaVLOJJ+eiO1091111b27zcDsGSJ5/uWltZTVnYEtUqBTqsmMzPBI6HZtq3aw7Dcm5ycw6xbd4AApRx9kgZVkP+A5cYNDTaqq23oJzQxZKjw2BAIBMcXR4sHVVVWiottpKUFcdJFo/jkle/IW99JalY8Q9P73mN9tfW5C0OSwOMuIPlCqsRyjwfz5g/vIxCVljhjgkql6BMPTEYr69cfdBmWe4tSrngQICd5dDhjxkZhqLD025JoMlopLz1CQGQg4TFCqBIIBMcfx5IjNDZGEpc1n6pvP6f4m02MnXm6x9r+2voa6lspK2tErfJ3iT2ScORulO6O1E5319+/Zf8BMwBLliR7rCktafDYNzMz3kPg2pZT5WFY7k1OThVfbDiIn5+MsWO1KBSyAXOE+gY7NbWNqJOafP6ufg6EKCUQCI5b+hv/KiEFJIfDytq1j3LkyH5KSoqIivJdeeSrtW/Ttno2tZ7BtZOTmVy8hrpHHmHi5ZeTuXzKUa9vxox4j5/ueLf4uWM0WbG1dhAUpCAyMqjPuUaTlXXrDlBZ2UxiYghLlyYftTqqqtrK/v1NtBQ3CFFKIBAcdww2HgDk5n7Fk/9ezqKZVyPjHGxNbaRO96yq9dXW56t6yltA6o8Z0+M9fnrTX2UWwK7dJpdhubfQZDL2xANDM4n6EGbNSkKrU7uGcPjCYGimoqIJVYyKtInRR712gUAg+KMx2JjQ3t7M6tUPYbNV86+7/kr5t1+jDg1n2MTe7/nuvkzu+Kqg8haQ+mN6T24w/Wg5gtf7Go02bLYOgoLkvnMEo411nx2gttaKPlHD3LlDjlodVV3VzP4DLYQVNwhRSiAQCI6V/sa/SkiBSC638+67Bkymav70pz+xfv165HL5oN5jzJgo9u1rJGjh+Qy55zyqbr2V+hdfJHjWLEIXLEAml7uMzNvbHFQYLK6Wu3nzhjNxUgwGQ7PL0FxCemIRHqZkxcoSkvQaApQK9PoQDIZmlEoFkyZHk3Vy3yctBkMzIZoAEhNDOOusYYNq14uPUyNDhr6f4CwQCAR/ZAYbD9LSItmxw0J7u41V2a8w/b5pVPwINks7E+bqUfj3Hxv0SZoe/6j+fTi8fZ2kdrt584czqScemIzWPpVS6ek6WqwOOhxdZGcfIi422K21T0ZYqJIJE6P7CFYGQzMhIQEk6p3xYDAtenp9CO0tHYwcEXbUtQKBQPBHZLAxAay8/XYlRmMV/9n4DRdPm8SPmzeiCg0jZvjIo7yHZkD/KPDt7ZSSGsn8+cN6YoLFZWguIeUIYWFKVqwoJSlJQ0CAHL1eg8FgQalUMHlyDFlZfQUtg8FCiCYAfaKGs84eNqh2vbj4EGRyRb8C3s+BEKUEAsEJixSMiosb+Pe//49Fi+bw1Vdf8fDDD/PAAw8Mao+gIH+GDQsjKMifwORhDF21ivI776f5q89p2fUjLXPO4/PtVpdBoeTjIU3dkzw+wHMKntTi9+JL+RQVGomPD2H06AjA07PEl+Ck14cwZ86Qfo/78qOKjFQRFaUm9Bd6AiIQCAS/Z6QEpaKiicmTF3P22T/w2WerefTV2/i/l9ZRmm0md/V+ppw91DWZzxtlgHNyqjLA8+u1uxCVm1PTNx70CEm7dpvYmW9k4iQds2Z53rtTUqPYs7eR7OxDhIcFkZYWQWen89i4sVGEhSp9mpTr9SGc3hMP+hOkvP2otDo1/t0QFxd8TL9DgUAgOF7ozRHgzTff57zz5vLpp58ybepUEuITyf/8Y05eejGhuph+9wgIkBMdoyYgoPdhhiRC6fUaGupbWb/+AH5yP7o6uzCZWgFcU/c8cgQ38UiqzHrxxZ3OHCEhhFGjnF0O3j5W3uj1GubMSer3uC8/qqjIQKKjQ36xKikAv6MvEQgEgj8W27Yd5pZbvubpp3+goqJpwLVSeW5XVyyvvfYaAA899BBffPHFoN4rLS2SjIw419MDP5WK8nnXsTXzOhytdoJW/Ivoip10OrrIyIglfbzW9YTDYGjGYulA7udHk9mO0WT1+R7d3RAcrGB0coRLaJo8KcYlOBlNVvLya13nux/3Pga9Zb+FRcZBfUaBQCD4o7Jt22EefHAbq1fvZf36A4OKCdu313DppfeTkpJCdXU1D728nDlXpdBm62DbR2VY6m0+z9XrQ0juuU+7I03Ty82poaq6hc7ObjIyYxk/XuvVbiejrc3BwYMWTMa+8aChoZWOji4Cg+Skp+tc76XVqZk0OcYlOpmMVvLzal0VV/0dk5BaA4tETBAIBMc5PyVHkMv1vPTSSwDce999RM2YQ0CQiu/XfIi9paXf8/V6Tc99urdSSpqmZzBYKCwyUlXdQldnFxmZcV45ggWLpR25XEaTuQ2j0Vfc6aarJ0eQ3kenUzF5coxLcDIabeTl1brOdz/ufQx+uxxBVEoJBILjjk2bKvjqq0NERQWR2vMEur+pS5KYFBoaAGRx0UVX8v77/+ZPf/oTO3fuZMiQIUD/Uzp8lf869zyT4JvOwvLYQ5xatB2H3UxCyjUe3iJS4tJktlNbayM0rLlPZdOc2UlotUGuqiZJZHKvgjIYmtnbM3JW+rt03P2YtL4/Q0aBQCA43pCmpu7b18iwYWE9bRC+4wF4xoS//vUFli9fxObNm3nzg+e57ba7+fyVXeSuPcCwqTosHV0eFUhandpnNZJ0rx86TOPRsuft6zRubBQmoxWLpR2DobnPXlmZcQSrFR4T9iSRyf06JBFMQooJWp3a45i03pdpu0AgEByP/NQcobt7FueddyGrVv2Xy6+6ho2ffsyWfz7D9tUrGT37fKpqWvtUH+l0qj7VSO6VTGqVs+pWqkpy95qS1jWZ26iptRIapuyz15zZQ9BqVa7zJZHJ/TokEUxCqtLS6VQex6T1v1WOIEQpgUBw3DFmTBQFBUbS0iJJS4sccMKGJCqtX3+A3NxqzjtvOXv37mLHjh1ceOGFbNu2DZlMdtQpHb72BOhe+R/MH36E8amnqHvkEcKWLEE9bRrgFImkaqbQsGafrRdSG5+EL5HJvZ3P+7j7sf72FAgEguOV2bOTMJvbUKkUDB8eCnQPeC93jwmHDwfxl7/8g8cfv4knnniCOXPmcN6dJ7Pu5SLKttViUzqNz4/m0+QuVg1kMK7VqZk1K8klInnjy1zdl8jkHRPcj/uMCT72FQgEguORn5ojbN9ew7Jld1FWVkxRURG33n0vrz/5OB8/9RBFX35MvWISwFE9mtyFKp1O5dMg3X2d0WgjNEzpUW0l4W2w7ktkchfBvI+7H+tvz18LIUoJBILjjqAgf8aO1ZKREecRYAYy6HM3uV21ahULFizg2WefdU1bOtqUjv6QyWSEX7AEsz4N84P30v3OO9jy8gi/6CIUoc5rk8SpweAroXCOnD2CWqXoc1zaOyfnMO+9W0JGRuygJkEJBALB8UBWVgJNTe3k5laj06lJS4t0VUoNRO89fyx2+wG6u7uZPn06AQEBLLx9Ip+8WISxvInuBjvd3d0ek/kGg+Qz5e311F+1VX/4ign1PTFB5SMmSPvn5Bzm3XdLyMgUMUEgEJw4/Bw5wpIlS3jyyScZNnEiMy+9hq/fepWYRA16/bCfdE3uPlPeopavaqv+8CUyOXOERtQq/z7Hpb1zcqp4791iMjLjBjUZ8JdAiFICgeC4w1tAOtqEjb5rQtm5c6dHkjGYPQaitDGI3El/Ze7YHWizV1D34IP4zT6DKl0aarU/1p4pSoMVp9xxHw27bGmqzz1yc2soLq4HEAmIQCA4oXCPCYO9l7uvc39AARAQoGDxLRPYtrqcXV8fJu/zQ0ycl4RcMXirVu8KJneRSjo+kDk59C9sSR5RAEuXpfrcIzdHxASBQHDi8XPkCPn5+a6YMGHeWTTWHKZgwzpaqhLR6SYf8zX5qnCShCq1yh+rraNfY3KJ/oQtjxxhWYrPPXJzqvmxuAFAiFICgUDwc/G/CkiARwJSVFSETCZj3LhxP3k/Kfglpo0n9i9LqLnvPmzr1hAYkktp8mxaA3qrpvqjv2l949N1mEytmEytlJbW+2zNy8iI7bmOCJcnFfQmPhEiGggEguOU/zUmuMcDh8PBqlWruOCCC5i+ZBSh2iC2rSonZ1X5gJP5vPGuYPL2gfJuyfNFf9P6wsKU+MllhIUp+z03IzMWe5sDXXSQyxDdXeQa3KcQCASCPxY/d46Ql5dHzLQZDKmp5sevv0IdFk700OHHtJ+vCidJqJKmtcLArYG7d5nI31nHpInRzJqd5HrdmSPYMJlslJY0+GzNy8iMAyA1LdLlSSVdg16vIbj/UPKzIabvCQQCwQBs3LiRk046iUWLFmE2m3/yPklJoZxxxjCSkkIJ0OvR/+c/+N90B6p2C5Py/suwugIS430HG8ncfPcuExZLBxpNQB+PKK02iOqqln6nZWRmJrB8+RSitGr27jmCwdDs8p8yGJp/8ucSCASCE4Wuri7mzp3LsmXLeOONNwAYNzOR+X8eS1vrwJP5vPGeiidN7mtrd1BQaESlVuDLV8pzep4MZ27k2TpoNrfR1dmN2dzW7/tnZiYwb+5Q/GR+rhggCWMiJggEAsHRWbduHVlZWSxevJiZ19xEeFwCeZ+txVJvOqZ9vCfmQY8Rutofk8mGWq3w6SkFvdP1LM1t+OoiT0mNRKtVUV1lHSBHiGf5bVPQalWuyYDuUwJ/DYQoJRAIBAMwceJEoqOj2b9/PyeddDbffmvod21FRdOgRo4DyPz8GHH9ZWyY9wC7/YeTUL6N7lefxb5vX5+1BkMz+fl1HDxoYcTwUGbNSupTUTU+XecxStYbSdhSqxSMTo5ArVLQZG4jJkblM/ERCAQCgSd+fn7MnTsXgOuvv5F///tzAIaMjeLcWyfir5STu/YAdYeavMSjoyOJVIYKC+VljbTZHT6rpCThaNduZ+vdhIk6xo31rI5NT9cxfrx2wGl6JqMVc1MbMbHOGOD9d4FAIBAMzJQpU4iKimLPnj3MOHUpibP+jL9SyfbVK2mzeT6gkMQjo3FwDy50OhV2u4PqKit2e2e/VVIGg4X8/DoaGuxMnBDN2HHaPmuOmiP0XJta5U9ycgRqlT9N5jZiY9T9imE/N0KUEggEAi9Wr97Ln/60jtWr9xIZGcnq1auRy/3Zu/c7HnrosX7PkyZ4FPf0ZQ+Gk88Zz75Ft9Ny44PIAgOpf/556l9/HYdbVZZeH4LcT0ZNTQsg89nil5ISxbKlqR6te6Wl9axYWUJOzmGysyvIz6/FanMweVIMVpuD2loroWGBP8nHSiAQCE4U3GPC7bffTnLydDo7O1i+/CoaGpz3e21iCOfdOZmIWBU7v6ig9Ie6n1R1dDRBSaqosljaKNhZB8j6iFcpqVEsXZbaZ6JeaUk9b765i7Vr97Frt4naGithoYFodWoMhmaPvwsEAoGgL+7xIDo6mg8//BA/PznFxdk8/eK/WXjH/bS3trJ9zUo6Oztd5/2UyqOjiUngrKiSy2XU1DgfgPgSr1JSI1m2LMWjda+0pIEVK0rJyanqyRHqsNo6mDw5Bqutg5paK6FhykGbrP+vCFFKIBAIvFizpoytWw+zZk0ZAJMmTWL58kcA+Prr1/n66699npeWFklGRtwxTejLykrg/gdOZuqNSxj66SdE/vla2vbto+6BB7Bs2EC3w4FOqyYyMhBbawcWS//tGN5I5oa5uTV92v70+hBGJ0eg14dgNFnZtdtEfUProPcWCASCEwX3mCCTyXj++VeJiEigqamWiy66yJV4qEOVnHvbRJLGRtFiaCEu0J/ExOBjeq/+BCUJrU6NXh9CQ4Mdu90BdA9676IiIwUFdfzwQw0gI7knBkCv2KVSKcjPq6Wx0X5M1y0QCAQnAt45QlZWFjfeeC8AGze+woE6E/NvvBVzTTU7P/+Y7m7nPVqv1/TccwdfeeRLTPJGp1M5cwRbB5bmn5Aj5FRjsbT35Ai93lbStRqNNnbtMlFf/8vmCMLaViAQCLxYtGikx0+Axx+/HaOxlLfffpulS5dSUFBAfLznhIqfap5YUdFEcbFzRHnSzTcTtnAhdY8/geWzz2jZupXQc85BExJDZEQQGs3g3QalJytJeg0BSoXHdD+dVo1O6xwLvm7dAWJUHUyfoefYrBkFAoHg+Mc7Jsydm8rmzZ9z0kknsWHDBh555BHuv/9+wDmZb/6fx5Czupyi7MMc+sFIxNwgFAHyQb1XfxP13DEYmunq7GbEiDDGje3bqtEf6ek6WqwOIiMDGTc2ymN/rU6NVqfmvfd+5Pvva8iaHMuEGWIqn0AgELjjK0d4/vn7qK0t4cMPP+T888+noKCArKWX8N2KdwiOiCTl5FPR6VQ/qeqov6l67mhClEREBKIJ+Qk5QpKGgAC5x/7StebkVLHuswNEaDqZfsovKxsJUUogEAi8WLx4NIsXj/Z4TSaT8corr1BQUEBRURHPP/88Tz311P/8XhUVTbz99o8cONDEsGGhXHbZGJKSkkj45ytYc3IxPfccje++S7I2Gu3EWfjHqV3T83RaNaWl9RQWGQkPU9JobmN8uo6UlChycg6Tm1tDRkbsgOO+c3NrqKpqQR3rR1z8sT3RFwgEghMBXzFh3LhxvPrqq1x66aU8++yzXH/99Wi1ToHIz8+Pk88fRVi0im8/KGPbqjImnzEU9QDT8CR27TaRk1NNbGwwC84Z7lOYkqqbVCqFqz1QWldaUs+mTRUAzJ6dREpqFKUl9WzLqSYyMrDfPSUMhmYaG9uorR2cF5ZAIBCcSPSXI7z55pvs2rWLPXv28Morr/Dggw/SWF1F8dZs1OER6NOOfYK30WgjO7uC2lobMTGNTk9ZH8LU2HFaQsOUqFX+rul5Op2K0pIGNm46BMCc2UNcFVc5OVXk5lSTkRlHZmZ8n/0kcnOqOVzVTICfPwnxv6zXoBClBAKBYJCoVCpWrVrFihUruOuuu3yu8ah66qdqyn1NcXED9fV2HI4u6utbKS5uIC+vljVryli0aCSLVq6gaf0X1L/yChFf/pf2nfEc0E2G7nHotGpX+a2fn4yurm6sLQ6sNgebN1eyf78ZwEOUMpp6n8LrtGoyMmIBOHmcmqjIoJ/3FyYQCATHMZdccgmVlZUsWrTIJUi5M2ZGAm3d3fywej/ffVTGxLl6tD5aN9yro0CGzdZBbU0LBkMzWp2zojU3p4aMTOdDBqmqKT+vlj17jgC9olRRkZGCQiMyGWi1QURFBbF+/UH2lTUSEaFEn6hxrfVVlTVzZiKBSgWT0wdfgSUQCAQnOiEhIaxZs4aPP/6YO+64A4A5195Ik7GGoi8/Rx0aTmdA5FGrntwrowwGCxZLO12dXVgs7RgMFsrLG/sISlJlU55bTNDpVBQWGSksNCEDtFoVkVFBGAwWNm+upLzcDOAhSnlXZWVkxgEwdaKGqKhfNkcQopRAIBAcAyNGjODee+91/d1bhJLMziV8CVTuayT/qdDQAHJza9i48RDFxfWUljqDyuLFowk752xC5p5O0wcfYHzzLdKLP0HWsINW/7MZP84ZMKRKqUClgr17jqDXawgMVLhEJ3AKUtnZFdTV2ggODqCzs5P6ejszZyYyKUUY2woEAsGxcvfdd7v+7OuhRJ21g9pgP+I7ZOz4/BDB8WqSp0Wji+6tTJUm6gFuk/S6aWt3sHJFCSWlRzhc6ayIcn/I4O4HJZGersNkanX92WBoRi73Q68PITU10rXWZHTGA4ulHUNlM2VlDbS0OJg3bwjLb5uCuU5USgkEAsGxkJKSQkpKiuvvhw9bUaVfTKDxOb7/+EMi0s+hvKLDddyXQCUZogMujye1yp89e49QWGjEYLBQWdkC0KfKyd0TCpwteiaTzfVnaW+9XkOgUu4SnaC3KuvQoSYC/OUk6kOoNDSTkRnH+LRfPkcQopRAIBAcA+5JR3S0kr/801FRnAAAUo9JREFU5Sbi4+cAmSQlhZKWFonRaMNotGI0Wtm/vwlw+k1t23aYTZsqGDMmymWI7u5DtWlTBXl5dcTFqZgxI8GjX12uVBJxySWELllC0+o1HHn3HRpee41wnY6zTzsN1Ukn4RcQ4Grnmzgx2mMSHzgTH4ulg87ObmpqWjh0qAl7WyeBgQqmpoz41X6HAoFAcLzgHhM++OALPv30C+66637XfV2KCV2dnXTtb6blsJXdtipix0Swa7eJ9HSdh7ik1amZNcuZAKxcUUJhoYmISCVpaVFkZMZ6vLdUMeVOSmqUyyTdZLSya3c9Y8dFMm6s1mOtFA80mgAaGlrZtauejo4uQjXKAVu+BQKBQOAb93ig1fpz/fU3MGTIWcyecQ3VG5+jqeQropNOp8ncxm6ziZra3ol5pSUNFBYZSUrqNRl396EqLDJSXmYmIlLJmLRID0FJwtu3KiU1ss/EPblc5rT68DJPl6qymi0d2NtaOXioCavVAcD4tJH80ghRSiAQnPAMpuVOwr3K6Zlnnuezz94lIWEbN964BXCKTzqdc83w4WEe0/g2bapg0yYDAPffn9Vn79mzk1w/s7J8JwXywEAi/nQhoectpvnz9TS+/z7mlStp+vhjVNOmYdeOoatThtXmDCTu7XpqlQKNxp+xYyJpbe1Epwuivt7uUU0lEAgEJzo/JSYYjdXcc88ldHR0sGdPBmec8WfAMyYMGxlKQFMHTXvN7P+uhuIKMwBLl6X69HlK7zGiTU/X9TuNbyAMhmZqa6wkJ0eg1ak92vX0+hDMTW1AN/ogBUeO2GhpcfQRvgQCgeBE5qfmCGvXPsb69f/H0KE7uemmr5k89m5W/+NeFIatNASdRGxssMc0PsmOA2DZspQ+e0vG5L4EpcFitTkfTFttzmot93Y9tcofjSaA6TPiMZvbkMtlrkqpXwMhSgkEghMe9yBytIAjCUxpaZFMmnQ3q1ev5vDh/Tz44K188MEHyGQyjzXu+ykUMsxmOwqFzOfeWVkJZGUlUFHRxPr1BwgNDaCpqd1nIJQrlYQtWkjoOWdj27mTI++/j3Xrt2jt35AZEY0yeCqdo07GYLCyt6cMGKCrEwKUCjIzE5g1yymCGU1Wdu2uIj4+hGOfHSgQCATHFz81Jtx11108+OCD3HPPrcyalUF6enqfNUlJoRzcVc+6f+1iYqyGzs7ufveWqp5MRiv5ebWoVApsNseAk/nc8W7vc28TnDQ5hrBQ59+TkyP4299OAnC9V0SwP0OO+g4CgUBwfPNT40F6+gN88sknHDxYymOP3clbb73FrKtu4KtXX0AXVMzYcWd5VDXJ5TJarO3I5b5zBKnqyWi0kZdXi1rlj9XWMaA/lTfe7X3urYIAnZ3daLUq5s8f5nrNaLSxa1cVifrwQb3HT0WIUgKB4ITHPYgcDfd2Owjlo48+4pRTTuGjjz5i4sSJ3HnnnV5reikpOUJ9fSsbNxq46KK0foPb5s2VfPnlQWJiggkO9ne9ry9kCgXqqVNRTZlCR20tls/W0fzlBuwbP6fmq3XExieiihlBROAEZNpowNN/BGD3rnr27KhizBgtw4/6GxAIBILjm58aE+677z6+//57NmzYwIIFC8jLyyMqKqpPTBg6LoqCZhv6LjlRchlFWyoZd0oCMpnvZGTX7noKdtYRFh5IUKDzq/tgRCnv9j5vkcqXJ5XB0Ex+fh1hKgXRI8IIjxF+gwKB4MTlf8kRVq5cyZw5c3jnnXeYOHEiN910E+aaKn74ZBVNhxLR6TJc51YamrFY2iksMHHqqfp+habdu0zsLKgjPDyIwEA5wKBFKe/2Pm+RyvvP0vvt2llNs7WLGYN6l5+G3y+4t0AgEPwhSEoK5Ywzhh31CYgvMjMzeemllwC46667WL9+fb9rFy0ayejREURFBVFc3OB6XaqMqqho6nmlm+5uiI9Xe7T/DYRMJiMgNpaoa65myMqVDF31ERGXXUaHzJ/g/G9wvPIM9iceJPa71QTt2k7bwYN02e0e7ycQCASCnx4T/Pz8+O9//8uIESOoqKhgyZIldHR0+Fx75sKRbK1uoq7NQVVJIzs+O0i73eGqVDIZ3Y3GnffoyMjAnnaPnzaaW6tTo1Ip+OTT/axduw9wVkx5C1cajT9WawdlPdOZBAKB4ETlf8kRTjvtNJ5++mkAbr31Vr7++muyll7CyKmZlHyTTU3ZXtfajMw4EuJD0GgCMBgsrtelyiij0eZ6zRkPlB7tfz+FhvpWysoaKS9vHHAqYLfb//5SiEopgUAg+B/585//TEFBAa+//joXXnghP/zwA6NGjeqzbvHi0UyeHOPqTZfwLg0eOTKcigoLGRlx/XpLDYTM35/A1FQCU1N53TqNgo27mepfQbJ9PwnVJrrK9iDr6gTALySE5LAIkvwCUfun/8TfgEAgEAgAwsPD+fjjjznppJPYvHkzt912Gy+88EKfde7xQG3vpHRzFd99UEZQUjAHDjsn7UliUVxsMKZEG8mjI36St5Q7RUVGCgrqCApU0GZ3kJ6u82gJdBqtJ1FecoSRI8L+p/cSCASCE52bb76ZgoIC3nvvPZYsWcKOHTuY/5flfHD/HeSt+5jpF15KWHQMmZnxjBgR7hKHJNxb7HQ6FXFxwRhNNpJHR/5kbykJycfqwIEmAgL8GDEinMTEEA9xauw4LWplu2jfEwgEgt8aaWreQAbkL730EsXFxZSUlFBTU+NTlILeNjypUiopKZTQ0AAUChmhoQEANDW143B009TU/j9f+2lzh9MlV9DcPo6V5Wb0WjkRCjsZkU0kq8y0HzqItaIKef0RsIkR4AKBQDAQg4kHaWlpvP/++5x77rnU19fT2dmJXC7vs05q9aioaKLB7qCpqAHznkaiIpU0mlsxGa1odWpsNgednWDrGWDxv5CerqPF6qDV1oHF0k5RkZFO5zMKDzP0mBhn8iMQCASC/jlaTJDJZLz22muUlpZy6NAhamtrGTp0KAvvuJ//u+sWtq9eyamXXElgcIhLCJIqpXQ6FWqVP3K5DLXKaefhbVb+vyCZpzscXdTUWGloaMVq7XC996+JEKUEAoHgKKxatY+vvjqE2dzWbxISEBDA6tWraWlpYfjwgZ2ZvCujJBGqrMxMU1M7oaEBPtv2vCeAuP9d2tfbFD0hIYQpU2JdpunSzyFpkUQnhdLd3c2GT/eSl1PB5KlxjPITXd0CgUDQH4OJBwALFiwgJyeHk046qV+vKIni4gYKShuYmhGDX7WNQ7vqaTHZya61Muv0oT69nwCPaXre0/UAj2PSepvNwYJzhruOu5unS6/t2XOEYQk/rUVQIBAITiQGExOCgoJYu3YtnZ2dJCU5hwypw8JZeOf9rLzvDnI+WsGMiy5H4e/fpzJKEqGqq1uw2jpQq/x9tu25T9LT6VQefwd8tudFRgUxcmS4yzTd3TxdwmCwsH+/GZn8l5WNhCglEAgERyE+PpioqCDi4wd+ahwdHU10dLTr742NjYSH9y13lUSk1tYOHnxwG2PGRJGREYfRaCU3t5qMjDjOOMM5+cL9CUxTU7uHmOUubgE+p4NIa9z3dEcmk5E6PpZu/wBSB+FdJRAIBCcyg40HABkZvSa2XV1dWCwWwsLC+qxLS4ukpKSBr78xsHjxSFK1gRRnHybA0knZrnoyZyeh1akpLaknO7uC9HQdKalRHtP0tDq1x98Bj2PQd/qeL7N0SZyK6BmyIRAIBIL+GWxMSEjwFKwaGxvR6ody5k2388nTj7Dj09WctOgClyDU3t7JihWlJCVpSE6OoMnc5pqWOnlyDAClJQ0UFhkZn67DauvwELO8J+u5H5OQ1rjv6Y1er8HRGkZC/C/7oEKIUgKB4ITEu+poIM4/fzSpqVGDMhyX2LBhAxdeeCGvv/465513nscxqWXjwQe3sWmTAYD7789i27bDVFRYXG18AJs2VbjWXHbZGMCZwFRUNGE02hg+PNTjuqRj0mcbzNSQ/qYFCgQCwYnALx0PmpubueSSS6itrWXLli0olUqP40lJoVit7eTl1REWpuT++7NwBPpR8qUB874migOqSMmKpajISGGhCYCU1CiPCiqT0Yq5qY2YWJVHRZVKpSA/rxa9PqTfiit3JF8pc51o5xYIBCcmv3RM+PTTT7nkkkv4v//7P84880xmXHQFW955gx83b2Tsaaej06lYsaKUop77/bJlKZSWNGA02VxtfNDrCQUwa5azAkuv12A02mgytxEbo+4zWc+9gsrX9D1vdDoVwUotcsUv+6BCiFICgeCExLuFbiB+imizadMmGhsbufTSSxk1ahTjxo3rs2b27CSPn768pNzXuF/H+vUH2L/fTEZGnOs192PSZzuWICkQCAQnIr90PDAajWzZsgWz2cz111/Pm2++2aelzzsedMj9qA9VMDIkEENxA/WHW0juMR5P7/EBkQQkgPy8WmprrCQnR7he0+rU5OfVelRHgbNiSjouEAgEAk9+6Zjw5Zdf0tTUxIUXXsj333/PpDMW0FhTTdFXnxMcEcXQ8RNdfk/ST19eUu5rdDqVqwoqL6+WmlpnPJBecz8mxYT/ZXLfz40QpQQCwQnJYCqI/hcef/xxdu3axcaNG1mwYAHff/89Op3OY01WVgIJCSEUFzdQUdHU55oqKppoamrnssvG9Al40prQ0ADWrz/g8TTHfZ9jCawCgUBwIvJLx4Phw4fzwQcfMH/+fP7zn/8wduxYbr75Zo81A8aDZgcb3y6hOr+e0aPCGD2673VK1U/ulVFanbpPdZR3y59AIBAIPPmlY8Jzzz3H7t27+fbbb1mwYAG5ubmcdtk1mOtq2LXpC9Rh4aSkDiUyKgiDwYLRaOtT1WQ02rDaOpg1K6mPKbm0Rq3yJy+v1sNLyn0fb/+q3xIhSgkEghOSX7plTaFQsHLlSqZOncr+/fs599xz+frrrwkMDPRY5y4anXHGMJ9+UNL1+rp+96oo94qp/kQsgUAgEHjya7Qwn3766Tz11FMsX76c5cuXM2LECM466yyPNQPFA93J0ezbXEXNXjOWulbSZyUSFt2bREhVU+6VUdJr7uLTYFr4BAKB4ETml44JAQEBrFq1iilTprBv3z7OO+88NmzYwNm33MmKe25jxycfMeOiKzAYHK77+eTJMT79oKCvoCRVTblXRblXTPUnYv2WiDFLAoFA8AsRERHB559/TlhYGLm5uVxxxRV0d3d7rElLi/Q5ac/9mFQNVVHR5HNNV1c3r79exOrVe3+xzyIQCASC/41bbrmFq6++mq6uLpYuXUpRUZHH8YHiQfqEaFLnJjF0Zhz2Ngc5a8op/raKTkeXxzq9PoSu7m42fHmQnJzDv+jnEQgEAsFPQ6fTsW7dOkJCQti8eTPXXXcdAYFBLPz7A/gHqcj96L/ERvuetAdOISk5OcJVDWU02nyu6e6GL788RE5O1a/xsX4yQpQSCASCX5DRo0ezevVqFAoFK1as4K233nIdG6yRYllZI7m51RQXN3i8vm3bYd5++0d27KghP7+ONWvK+pwrPXn3PlcgEAgEvy4ymYxXXnmFWbNmYbVaOf/883E4HMDg44GxtYMqlYxgfTCG4iNseX8P1WVmSopNrFxRQn19K8Y6G/vLzeTm1PQ5X2rfk3ylBAKBQPDbMHbsWD744AP8/Pz4z3/+wwcffEBolI5zlt9Fm91O4ecfkZCgHrC1rrq6peeebvF4vbSkgezsCsrKjlBebiY3p7rPuVK1lfe5vwWife8n0NnZSUdHx9EXCgS/E/z9/ZHL5b/1ZZywnHbaafzrX/8iJyeHiy66yPX60fyeiosb+OKLgygUMtLTtX2enm/aVMG6dQc4cqQVq7UDtbrvv/Ev3RcvEDFB8MdDxITfDn9/fz766CMWLVrE448/jkLh/Cp+rPHg1Jl6/Du6+e7DfRRuNOCQw15DEz/+WE91tZXgYH8yMmP77CPa935ZRDwQ/NEQ8eC3Zf78+bzwwguUlJS4pnXHj0oh+qSlVG19l6INnxJ96YV9hmPs3mViZ0EdI0aE+6ymKiwy8vXXBqwt7Wg0SlJ95AGDmb73ayFEqWOgu7ub2tpazGbzb30pAsExExYWRkxMTJ+bmuDX4aqrruLKK6/0+P0fTTBKS4tkx44a6utb0enUfRKV2bOT2LevkU2bLNhsHeTm1lJR0eSx7tfwSjlRETFB8EdGxITfjvDwcL7++uufJR4s/tskSr6tYdvH+5kcH8qheisHrO34+ckYOSK8zz7eHlOCnwcRDwR/ZEQ8+G258cYb6e7u9vj9Z551Ot9Y6jEVfs6e774hZfqpfc7r7gZNSACTeyarujM+XcemTRW02rsIUHZiNrdhNNo8qq58+Uv9VghR6hiQgo1Op0OlUon/cAV/CLq7u7HZbBiNRgBiY/s+ORX8Okj3jM7OTh544AEuv/xyzjhjWL/rk5JC/7+9O4+Lqtz/AP4ZhnVYBkQQZFOERE1RMQ1IcSEl0zBLzQ0or/dexdxz6ZaoZXpv2U+9mbuS5loqmdpFIVFBxe1iieCCCpooigoKsg3n94eXyZFFBpg5M8Pn/XrNq2bmzHO+zzTMp3nOc56DiIiXlad0PK/iak12duY4eDATbm5Pr9z0/CBUbU8LIfUwE0gfMRN0w7PfF2fPnkVcXBxmzJhR7fbV5YHUWIr2vVzRqosjkn/KABKz4dbdA7cLSnD9Wl6VA1B3cwqQlfVIeYU+qj/mAekj5oHuqPjOKC0txZw5czB+/HiMnvV3/OfbIlw4Eg/LJk3g3q6Dcvv2HRwgtzWrdpZTm7b2ePfdlxAfnwUbG1Pk55cgKyu/0iBUTk4hsrLyVa7QJwYOStWSQqFQho29PU+DIf1iYWEBAMjJyYGjoyOn6Yrs448/xr/+9S9s374dx44dQ9OmTavd9kUznU6fvo0HD4owZUpnuLvLqxy8qu60EA5W1R0zgfQZM0F3/PHHH+jRowcKCgpgY2ODv//979VuW1MeyKxNcd/CCP99XIjOLnK4Ghvh/m/3cUlihJa+DjAx+/O/ccW6UgCUg1IcqKo75gHpM+aBbpk6dSq++eYb7N27F0ePHkXfv01A/t07SPnPXljK7WDv6gagdrOc5HIzODtZom07ezg4yKocwKruKn7PDlZZmTVgB6vBhc5rqeL8cJlMN6a4Eamr4rPLtQ7EN2nSJLi7u+Py5csYMGAACgoK6tzWrl2XceTITRw9+kelS4hXqO6KTlwEve6YCaTvmAm6wcXFBdOnTwcAREZGYvfu3XVua9euyzhw+CaO3czDkFld4NLaFhln7+LX7y4g9egfKHr89L+1u7v1/9Yg+XNdKS6AXnfMA9J3zAPdMX36dDg7O+P8+fMIDQ1FaZkCoR99ArljMyTv3o6CBw9q3dbxY7dwPjUXF1Jz0aWLU5WDWBVX8Xt+wErbi6BzUEpNnI5L+oqfXc3KzMzD/v1XkZmZ98JtmzdvjvXrf4C1tS2Sk5MxbNgw5RWY1NW9uwtatbJF9+4ulZ7bufMiBg3ajdWrz1U5G6qmy49T7fDvivQVP7uapU4mREVFYfjwcJSXl+O994YjMTGxTvt8Ng8cPWwwINIX787sgpa+DriRdh/xG9OwZclZXDh7B539mqnMiKpqoIrUw78p0lf87GqWOnng4eGBdet2QCazwpEjRzBq1CiYmFvg7VlzITU2wbEft6CkuKhW+23bzl45U+p5x479gQULTiA29lqVp+5VN1ilKRyUIiJqAOrOOiouborBg7+AqakZ9u3bh7/97W8QBEHt/bq7y9G9uyvc3SvPkNq16zISE//ATz9dqbIuDw95tbOriIio7tTJBIlEguHDP8ZLL72GkpJiDBw4EKmpqWrv8/k8kEgkcPSwRt+/tEPzHs1x/o98SBUCCq4+xqFN6bh08jYeP3j648bB0RJ+XZx46h4RUQNT9zeCIDTH4MELYGxsip07d2LSpEmwbeaMt6Z9jKLHj3Fi5zYI5eUvbMfBQaY8de95x4/dwoULuUg+kV3lbChHR1m1s6s0gYNSBk4ikdR4mzt3br3ajomJUasGS0tLeHt7IyIiAmfOnFF7nz179sTkyZPVL5ZIw9SdddSunT2GDu2H+fO/hZGREdavX4+oqKgG229S0k2UlSnQpk0ThIZ6cTYUMQ+ItEjdTOjQoRmmTv0aXl4d8fDhQ4SEhODmzZsNsk+JRIIyKZD6sBCx13Nh084WTZxkuJpyF0e2XkLC5nSkH8/G/ewClCte/EOHDAMzgUg76vIbYfjwAfj00yWQSCRYvnw5Fi1aBNc2L6Pv3ybg/h83cfaXPS9sp7rZTmkXcqEoL4ebqxW6veqstdlQNeFC5wYuOztb+e/bt2/HnDlzcPHiReVjVlZWWqljw4YNCAkJQVFRES5duoTVq1ejW7duWL9+PcLCwrRSA5EmvWhB8pq2DwmZhvj4f+OVV15psP3GxWXi1q1CBAd7ICoqUO12yfAwD4i0py6Z4OZmj9DQBdixYxLat38JdnZ2DbbP8+fvAZCgZ293jP6wM4RyAfn3nyDjzF1c/+0ess7n4up/78JIKoHcUQaZjQlcW6u3f9IvzAQi7aj7b4R+6Nt3Ig4fXgM/Pz8AQNvuvfHw9m0c/3ELLO3s4RPQvdp2qlsMPeVcDu7nFsO3oyOGD2+jdn80gTOlDJyTk5PyJpfLIZFIVB7btm0b2rRpA3Nzc/j4+ODbb79VvrakpAQTJkyAs7MzzM3N4eHhgYULFwIAWrRoAQB4++23IZFIlPerY2trCycnJ7Ro0QJ9+/bFjz/+iJEjR2LChAl48L8F23JzczF8+HC4uLhAJpOhffv22Lp1q7KNiIgIHD58GEuXLlUeVbl+/ToUCgXGjBmDli1bwsLCAq1bt8bSpUsb9o0k0pB27ewRGfl3HD58FgMHDmywdoODPRAc7I7gYI8Ga5P0G/OASLe1a2eP3r19sGvXfsTExMDSsuFOpXs+EyRGEsibytC5nwcGTeuMEfNfxetj2uGlbk4wMgJybxZAasKrcBkyZgKRbmvXzh4TJ05EQsJp9O3bV/l4wJAR8AkMQnrSYdy8cF7tdjv6OsK3owM6+jo2ZLn1wplSjdjmzZsxZ84cfPPNN+jUqRP++9//YuzYsbC0tER4eDiWLVuGPXv2YMeOHXB3d8eNGzdw48YNAMCpU6fg6OioPLpRl8uHTpkyBRs3bsTBgwcxdOhQFBUVwc/PDzNnzoSNjQ327duH0aNHo1WrVujatSuWLl2KS5cu4eWXX8b8+fMBAA4ODigvL4erqyt++OEH2Nvb49ixY/jrX/8KZ2dnDB06tEHfM6JnZWbmITU1t8pFxGurqqMnV65cQVpaWr0GqQIDXREY6KpcXLE+NZLhYx4Q1Y+m8kAQBKxevRqjR4+u19XdAgNd4epqjdTUXGRm5qnsx8hIAms7c1i/Yo6XXmmGslIFSp4oYCbjz4TGiplAVD+ayoS0tDRkZmYiJHIK8u/l4L+xe2FuI0dTV7dat9umrT3atLVHTk4hTp++XeVC59rGtGnEoqKisHjxYgwePBgA0LJlS1y4cAGrVq1CeHg4srKy4O3tjddeew0SiQQeHn/OuHBwcADw59GNuvDx8QEAXL9+HYDqZZEB4MMPP0RsbCx27NiBrl27Qi6Xw9TUFDKZTGWfUqkU8+bNU95v2bIljh8/jh07djBwSKMqFi4E0GADPllZWejRowfu3buHmJgY9O/fv17t1VRjQwQmGQbmAVH9aCIPAGD27Nn45z//id27d+Onn36CmZlZndt6UY3MBKrATCCqH01kQkZGBoKCgpCfn499+/bh7Zlz8P3sqTi5ewdeey8MNv/726utrKx8pKffB4BKg1I5OYXIysqHu7sNrOoeO7XG0/caqYKCAmRkZGDMmDGwsrJS3j7//HNkZGQAeDoVNiUlBa1bt8bEiRNx4MCBBq2h4kpjFZchVSgU+Oyzz9C+fXs0adIEVlZWiI2NRVZW1gvbWr58Ofz8/ODg4AArKyusXr26Vq8jqg91Fy6sDRcXF/j5+aO0tBSDB7+DQ4cOqTyflHQT8+YlISmpdgvgPlvj85ekVfdqIGSYmAdE9aeJPACAgQMHwsJChtjYWLz11jsoLS1VeV6dTKgpDwBmAj3FTCCqP01kgru7Ozp2fAXFxcUYOPAtnEn5DUPnLICJmRmO/7gF505nYuvWNKRdqN13+LMLoVfMmsrJKQTw54BVVVfm0wTOlBKJ2EejHj9+DABYs2YNunXrpvJcxTTbzp0749q1a/jll18QFxeHoUOHIjg4GD/++GOD1JCWlgbg6VELAPjyyy+xdOlSLFmyBO3bt4elpSUmT56MkpKSGtvZtm0bpk+fjsWLF8Pf3x/W1tb48ssvkZyc3CB1ElVH3YULa0MqlWLs2C9w6VIOLl1KxMCBA3HgwAEEBAQAeLqAeVzc0/+ZCgx0rbGt579n9u+/qnLUpiIoeWU+cTEPmAek/zSRBwAQGBiITz5ZiTlz/oIDB/YhPDwcmzZtUv5t1jYTXpQHAJgJOoKZwEwg/aeJTDAxMUFk5FfIyLiLq1dPoX///vj111/xzj8+w/aomcg4sgvnczoAeHqKXk2enQnl6CjD6dO3VWZNVVyR7+k/a/47awh6M1NqwYIFCAgIgEwmg62tbZXbZGVl4c0334RMJoOjoyM++ugjlJWVabfQWhL7aFSzZs3QvHlzXL16FV5eXiq3igAAABsbGwwbNgxr1qzB9u3bsXPnTty///QDa2JiAoVCUecalixZAhsbGwQHBwMAkpKSEBoailGjRsHX1xeenp64dOmSymtMTU0r7TMpKQkBAQEYP348OnXqBC8vL+WRHCJ95OvrhH/+czW6d++FgoIChISEIDExEcCfi9W+/HJT7N9/FTt3Xqz2KPnz3zPPHrVJSrqJ6OjzkMtN9fI0DUPKBOYB84CoJiNHvoVPPvkWxsbG2Lp1K8LCwpTfZcHBHujSpRksLU2QmZlX7cypmvIAgF5ngiHlAcBMAJgJRNXp2LE5vvxyA7p2DUB+fj6Cg4Nx/c5dvD0zCsYoQUeHVJibCMjJKUTahdxqZ049PxPq2VlTaRdyER+fCUuZidbWmtKbmVIlJSUYMmQI/P39sW7dukrPKxQKvPnmm3BycsKxY8eQnZ2NsLAwmJiY4IsvvhCh4prpwtGoefPmYeLEiZDL5QgJCUFxcTFOnz6NBw8eYOrUqfj666/h7OyMTp06wcjICD/88AOcnJyUgd+iRQvEx8cjMDAQZmZmNV66+OHDh7h9+zaKi4tx6dIlrFq1CjExMdi4caOyPW9vb/z44484duwY7Ozs8PXXX+POnTto27atsp0WLVogOTkZ169fh5WVFZo0aQJvb29s3LgRsbGxaNmyJTZt2oRTp06pBCeRpiQl3URcXCaCgz1eOHOptiqOrvTtuxcDBgzAoUOHEBISgri4OAQGvorAQFflUe6rVx8iK+sRgMpHyZ//nnn2qE109Plaz7jSRYaUCcwD5gEZDk1lwty5Y9Chgx2GDRuGLVu2oLy8HFu2bEFgoCvy8kqUgxinTmVX+d1eUx4A6s3C1TWGlAcAM4GZQIZCk78RXn/9PwgJCcGxY8cQHByMhIQEvDVtNmK+/BxlN4/g+nU5MjLycS7lLoDKM6dUZ0I9nR1VMQAVH59Z7es0RtAzGzZsEORyeaXH9+/fLxgZGQm3b99WPrZixQrBxsZGKC4urnX7eXl5AgAhLy9P5fEnT54IFy5cEJ48eVLn2sVW1Xu3efNmoWPHjoKpqalgZ2cn9OjRQ9i1a5cgCIKwevVqoWPHjoKlpaVgY2Mj9OnTRzh79qzytXv27BG8vLwEY2NjwcPDo9r9AlDezM3NhVatWgnh4eHCmTNnVLbLzc0VQkNDBSsrK8HR0VH45JNPhLCwMCE0NFS5zcWLF4VXX31VsLCwEAAI165dE4qKioSIiAhBLpcLtra2wrhx44RZs2YJvr6+9X3LDIohfIZ10dy5icJrr20R5s5N1Ej7BQUFQt++fYXOnTsLDx48UD5+/fpDYd++DOHHH9OFuXMThcTEG2q1m5h4o06vq0p135vaoMlMqKlf+v73xDwgff8M6ypNZ8JPP/0kmJubC5s3b1Y+VpEH168/rPN3uyFkAvOg7pgJjZshfIZ1kabz4NGjR0KPHj0Ef39/IT8/XxAEQTi882fhq6EDhPUfTRL2fLdX+GzaBuHnjfuEK6dP1Pr288Z9Kq/7Lf4/Qurh+DrVWNs8kAjC/1aS0xPR0dGYPHkyHj58qPL4nDlzsGfPHqSkpCgfu3btGjw9PXH27Fl06tSpVu3n5+dDLpcjLy8PNjY2yseLiopw7do1tGzZEubm5g3RFSKt4mdYMzRxFOR5RUVFePLkSY1HGuujvutXVPe9qQ2azISa+sW/J9J3/AxrhjYyITs7G87OzhppG9DfTGAeENUNP8OaoY08KCwsRGlpKeTyP7+rT+/djcOb1sGjQ0d0ChlYr/Zzcgpx9eIfcHO3Q4/Bb6r9+trmgd6cvvcit2/fRrNmzVQeq7h/+/btal9XXFyM4uJi5f38fO2sME9EhiEw0FXjpzqYm5ur/E/Cl19+CTc3N7z33ns1vm7nzovYtesyund3gbu7HHK5KfLySir90NDUpczFVJdMYB4QUX1pIxOeHZC6efMmZs2aheXLl6v8KHleRR4MHuyNLl2ckJqa22gygXlARGLQRh7IZKprPn3++edo27Ytug4agpMxP8DYxBTt+/Sr9Lpjx/7A8WO30LadPRwcZLCUmaCgsFS58HmFrKx8ZGQ8hESq2WEjURc6nzVrFiQSSY239PR0jdawcOFCyOVy5c3NzU2j+yMi/VHVJbPFdujQIcyYMQPDhw/HkiVLatx2167LOHLkJrZtu4jjx28hLi6zysVTNXUpc3WJnQnMAyKqji7mgSAIGDZsGDZv3oygoCBkZ2dXu21FHuzadVk56KTLmcA8ICJdpouZsG/fPnz66acYMmQIUvOeoPMbbyHjzEmkHo6vtO3xY7dwPjUXR4/8gfT0+0g5l6Oy8HkFd3cbtGplC1cXa43WLupMqWnTpiEiIqLGbTw9PWvVlpOTE06ePKny2J07d5TPVWf27NmYOnWq8n5+fj6Dh4gA6ObR4qCgIEycOBHLli3DlClTkJ2djUWLFkEikVTadvBgbwCocqbUszR1KXN1iZ0JzAMiqo4u5oFEIsE333yDN954A+fOnUNAQABiY2Px0ksvVdq2Ig8GD/ZWZoAuZwLzgIh0mS5mQr9+/TB27FisWbMG48aNw5w5cxDYux9+/zUWUmNj+AQGKbf1D2gOAFXOlHqWo6MMVmYOkBqbaLR2UQelHBwc4ODg0CBt+fv7Y8GCBcjJyYGjoyMA4ODBg7CxsVG5MsPzzMzMYGZm1iA1EJFh0YUr4DzPyMgIS5YsgbOzM2bPno1//etfuH37NtasWQNTU1OVbd95pzXeeae1SJWqT+xMYB4QUXV0MQ8AoFOnTjh27Bj69euHK1euIDAwEPv27UPXrl1Vtns+D3TlR1R1mAdEpMt0MROMjY2xatUqODs7Y/78+Zg/fz7Gjh2LtwKDkJ50GEZSY7z0aiAAICDABQEBLiJX/CdRT99TR1ZWFlJSUpCVlQWFQoGUlBSkpKTg8ePHAIC+ffuibdu2GD16NM6dO4fY2Fh88skniIyMZKgQUZ14eMjRv7+nzv3Pu0QiwaxZs7BhwwZIpVJs3LgR/fr1Q25u7gtfq4vTjeuCmUBE2qSreQA8nTGUlJSELl264N69ewgKCsK2bdtq9VpDyATmARFpm65mgkQiwbx587BixQpIJBKsWbMGy/YehEvHLrhw5FdcOXWi2tfm5BTi9OnbyMkp1GLFT+nNoNScOXPQqVMnREVF4fHjx+jUqRM6deqE06dPAwCkUin27t0LqVQKf39/jBo1CmFhYZg/f77IlRMRVa8+Pwh69Xobc+ashpWVNRISErB1654XtlUx3fj5NUT0DTOBiAxNffLA0dER330Xg1de6YWioiJ89tkX+PnnSy9syxAygXlARIaoPpnwxhvD8Y9/fAsLCxkOHjyIR/besHLvgPOH4pBx5mSVr8nKyq9yXSlt0Jur70VHRyM6OrrGbTw8PLB//37tFERE1ADqek56ZmYeoqPP4+pVJ4SFLYetbSY8PYMqtfX8pb11cbpxXTATiMjQ1GeNkszMPPzww3W0bj0FlpYtMWDAMJw8mQOp1FilLUPMBOYBERmi+v5GyMpyR1jYcjg6ZsPF1R/HM93g6laO3+NjUa5QQN7CF1lZ+cor7lWsJ/X8ulLaoDeDUkREhqiuPwhSU3Nx714RysrKYWTkjMDAQGUbTZuWYNGiRfjoo48qBZouLGBLRESV1WeAqCITysslePnl4bC3d0KbNjK0a2ePb775BsHBwfDx8WEmEBHpiYb4jWBi4opXX+2hbMPGZgTW/XMWyg8dhG2rh7hV5AHg6YLmFTcxcFCKiKiBPH8Eujbq+oOgXTt75OQU4t69QjRtaqHcp5ubNfr06YOEhAQcPHgQixatqHRp76Skm4iLy0RwsAcCA13V3jcREdVMm3kAVM6EXr3c4OEhR2xsLD788ENYWlpi1apVeO21AcrtAeYBEZE26MJvBBcXS3Tv3h0nTpyAX5vWGFhcAmcfBdzdWwAA0i7kIuVcDjr6OqJNW+3OntWbNaVI90VERGDQoEHK+z179sTkyZPr1WZDtEGkLdpcm8PDQw5HRxny8krg6GipDC0jIyOMGTMGlpaW+PXXXzFwYA+Ym19XCbW4uEzExWUhLi5T43VS48VMoMZM22s1VZcJvr6+6N27NwoKCjBq1Ch8/vl09OzppHyeeUDawDygxk4XfiNIpVL85S9/gbm5Oc6kXcS/j5zCuVPxyElNAgCknMvBuZS7SDmXo/Ean8dBqUYgIiICEokEEokEpqam8PLywvz581FWVqbR/e7atQufffZZrbZNSEiARCLBw4cP69wGkdjatbOvNCtJjP2NGjUKp0+fxssvv4w7d+4gODgY06dPx5MnTwAAwcEeCA52R3Dw0ym7SUk3MW9eEpKSbmqlbhIXM4FI87SdB9Xt08nJCQcOHMDcuXMhkUiwdu1a+Pn5ITk5GUDlPACYCY0J84BIO3ThN4JEIsGYMWNw8uRJ+Pj4IPdhHlYmnMCyddE4+fNu+HZwgG9HB3T0dVS+Ju1CLvbsuYJLl+9rtF6evtdIhISEYMOGDSguLsb+/fsRGRkJExMTzJ49W2W7kpISmJqaNsg+mzRpohNtEGmLttfmqGl/Pj4+SE5OxuTJk7FmzRosXrwYe/fuxb59+xAY2ErlNI2KI+UAePpGI8FMINIsMdZqqm6fUqkUUVFR6N69O0aNGoX09HQEBARgwYIFmDVrVqXvfWZC48I8INI8XfqN0L59e5w6dQqRkZHYuHEjfk3PwIUl32LWqHsYOvp9SI3/HCJKOZeDtAv3AYkxBmmwXs6UaiTMzMzg5OQEDw8PjBs3DsHBwdizZ49yOu2CBQvQvHlztG7dGgBw48YNDB06FLa2tmjSpAlCQ0Nx/fp1ZXsKhQJTp06Fra0t7O3tMWPGDAiCoLLP56fVFhcXY+bMmXBzc4OZmRm8vLywbt06XL9+Hb169QIA2NnZQSKRICIioso2Hjx4gLCwMNjZ2UEmk+GNN97A5cuXlc9HR0fD1tYWsbGxaNOmDaysrBASEoLs7OyGfUOJ9IBMJsPq1auxd+9eODs7QyKRwMXFpdJ2VR0pJ8PGTGAmUOPTu3dvnD9/HqNGjUJ5eTk8PKr+zmcmNC7MA+YBNT5WVlb47rvvsGvXLjg4OEBu3xTFObeRuG0TSouLldt19HVE27ZN0O5lzc7w4qBUI2VhYYGSkhIAQHx8PC5evIiDBw9i7969KC0tRb9+/WBtbY2jR48iKSlJ+cVd8ZrFixcjOjoa69evR2JiIu7fv4/du3fXuM+wsDBs3boVy5YtQ1paGlatWgUrKyu4ublh586dAICLFy8iOzsbS5curbKNiIgInD59Gnv27MHx48chCAL69++P0tJS5TaFhYX46quvsGnTJhw5cgRZWVmYPn16Q7xtRHrpzTffRGpqKnbv3g1zc3MAT494/vTTTxAEAYGBroiKCuQR8UaMmUDUODRp0gSbNm3CsWPH8N577ykfP3r0KO7cuQMAzIRGjnlA1Hi8/fbbSE1Nxc//iUXo5JnIv5uD+Og1+M+BgxAEAW3a2uOtt7zwkrdmZyby9L16KiwsRHp6utb36+PjA5lM/Us2CoKA+Ph45dVY7t69C0tLS6xdu1Y5Jff7779HeXk51q5dC4lEAgDYsGEDbG1tkZCQgL59+2LJkiWYPXs2Bg8eDABYuXIlYmNjq93vpUuXsGPHDhw8eBDBwcEAAE9PT+XzFVNwHR0dYWtrW2Ubly9fxp49e5CUlISAgAAAwObNm+Hm5oaYmBgMGTIEAFBaWoqVK1eiVatWAIAJEyZg/vz5ar9XRIbEzs4OdnZ2yvvLli3DRx99hN69e2Px4sXo2LGjeMUZEDEyoa55ADATiBorf39/5b8/fPgQ77zzDkpKShAVFYXx48fDzMxMxOoMA38jMA+I9IGDgwMcHBwAb29YyOUYN2oE9q/5HgE7d+OTj6bB1UHz62BxUKqe0tPT4efnp/X9njlzBp07d6719nv37oWVlRVKS0tRXl6OESNGYO7cuYiMjET79u1VzhE/d+4crly5Amtra5U2ioqKkJGRgby8PGRnZ6Nbt27K54yNjdGlS5dK03MrpKSkQCqVIigoSM2e/iktLQ3GxsYq+7W3t0fr1q2RlpamfEwmkynDBgCcnZ2Rk6P9qwgQ6TJBEGBubo5ff/0VnTp1wogRI/B///d/cHR0fPGLqVpiZIK6eQAwE5gJRH+6e/cu3N3dcebMGUydOhVLly7FV199hXfffVfs0vQafyM8xTwg0h/u7TqgQ59+OPBbGo6dOYs3h4/CwNf7YOaHkRrdLwel6snHxwdnzpwRZb/q6NWrF1asWAFTU1M0b94cxs8sYGZpaamy7ePHj+Hn54fNmzdXasfBwaFO9VpYWNTpdXVhYmKicl8ikVQbhESN1UcffYR3330XH3/8MbZt24b4+PhK3wWkPjEyQd08AJgJzASiP3l7eyM5ORnR0dGIiopCZmYmbt26JXZZeo+/EWqHeUCkWxZ+tRjvjRiBv44cjpPpl3Hs5CmYm2p29iwHpepJJpOpfYRaDJaWlvDy8qrVtp07d8b27dvh6OgIGxubKrdxdnZGcnIyevToAQAoKyur8chM+/btUV5ejsOHDyun5j6r4iiMQqGotq42bdqgrKwMycnJyqm5ubm5uHjxItq2bVurvhHRn1q2bImtW7dixowZuHXrFgelGgAzgZlApI+kUinGjBmDESNGYN26dRg7dqzYJek95gHzgEhf+Xb2Q9Lv5/HvmdORdjoZN8+noHPfNzS2Py50TpWMHDkSTZs2RWhoKI4ePYpr164hISEBEydOxM2bNwEAkyZNwqJFixATE4P09HSMHz8eDx8+rLbNFi1aIDw8HB988AFiYmKUbe7YsQMA4OHhAYlEgr179+Lu3bt4/PhxpTa8vb0RGhqKsWPHIjExEefOncOoUaPg4uKC0NBQjbwXRLokKekm5s1LQlLSzWq3yczMw/79V5GZmVfrdjt16oQ333yzIUokA8RMINI9msoDCwsLTJgwgWtKUZWYB0S6SROZYGxsiimLl2HMlGl46dWAhiq1ShyUokpkMhmOHDkCd3d3DB48GG3atMGYMWNQVFSkPCoybdo0jB49GuHh4fD394e1tTXefvvtGttdsWIF3n33XYwfPx4+Pj4YO3YsCgoKAAAuLi6YN28eZs2ahWbNmmHChAlVtrFhwwb4+flhwIAB8Pf3hyAI2L9/f6XpuESGKC4uE3FxWYiLy6x2m9TUXBw/fgupqblarIwMGTOBSPcwD0gMzAMi3aTJTOg2aCh8Auq+5lttSASeSKsiPz8fcrkceXl5KtNSi4qKcO3aNbRs2VJ5SXUifcLPsP5LSrqJuLhMBAd7VHup7szMPKSm5qJdO3t4eMi1Uld135v6rqZ+8e+J9B0/w/pNV/MAMMxMYB6QIeNnWP/paibUNg+4phQRkZ4IDHStNmgqeHjItfrjg4iItI95QEREFfQ9E3j6HhGRgarN+eVERGT4mAdERFRB1zKBM6WIiAxUxfnlAF549ISIiAwX84CIiCroWiZwUIqIyEAFB3uo/JOIiBon5gEREVXQtUzgoBQRkYGqzfnlRERk+JgHRERUQdcygWtKERERERERERGR1nFQioiIiIiIiIiItI6DUkREREREREREpHUclCIiIiIiIiIiIq3joBQ1qIiICAwaNEh5v2fPnpg8eXK92myINl4kISEBEokEDx8+1Oh+NE0ikSAmJkbsMoiImAciYx4QkS5hJoiLmUC6jFffawDlRUUQSku1tj+JiQmMzM1rvX1ERAS+++47AICJiQnc3d0RFhaGjz/+GMbGmv0I7Nq1CyYmJrXaNiEhAb169cKDBw9ga2tbpzbqKiAgANnZ2ZDL5bV+TUREBB4+fMgveNILmZl5SE3NRbt29vDw+PNznpR0E3FxmQgO9tCpq3Dos7ISBRQKQSv7kkolMDaV1np75sGLMQ+oMWAmaEdpSTHKy8q0tj8jY2OYmJrVentmwosxE8jQ6UIecFCqnsqLivAoPh6K/Eda26fUxhrWffqoNTAVEhKCDRs2oLi4GPv370dkZCRMTEwwe/bsStuWlJTA1NS0QWpt0qSJTrTxIqampnByctL4fqrSkO83UXVSU3Nx/PgtAFAJnLi4TMTFZQEAf4A0gLISBa6du4eiQu0cqDCXmaClb1O1BqaYBzVjHlBjwEzQvNKSYmScOoGiggKt7dPc0hKtXnlVrYEpZkLNmAlk6HQhD3j6Xj0JpaVQ5D+CkZkZpDY2Gr8ZmZlBkf9I7ZlZZmZmcHJygoeHB8aNG4fg4GDs2bMHwJ/TaRcsWIDmzZujdevWAIAbN25g6NChsLW1RZMmTRAaGorr168r21QoFJg6dSpsbW1hb2+PGTNmQBBUZwc8P622uLgYM2fOhJubG8zMzODl5YV169bh+vXr6NWrFwDAzs4OEokEERERVbbx4MEDhIWFwc7ODjKZDG+88QYuX76sfD46Ohq2traIjY1FmzZtYGVlhZCQEGRnZ1f7/jw/NfdFbcydOxffffcdfvrpJ0gkEkgkEiQkJNTqfavq/f7444/RrVu3SnX5+vpi/vz5AIBTp07h9ddfR9OmTSGXyxEUFISzZ89W2yeiZ7VrZw9//+Zo185e+VhmZh4sLU3RpUszBAd7iFid4VAoBBQVlsLYRAozmYlGb8YmUhQVlqo9K4t5wDwgYiZoXnlZGYoKCmBsagJzK0uN34xNTVBUUKD2zCxmAjOBGjddyAMOSjUQiZkZjCwsNH6TmNX+yEdNLCwsUFJSorwfHx+Pixcv4uDBg9i7dy9KS0vRr18/WFtb4+jRo0hKSlJ+6Va8bvHixYiOjsb69euRmJiI+/fvY/fu3TXuNywsDFu3bsWyZcuQlpaGVatWwcrKCm5ubti5cycA4OLFi8jOzsbSpUurbCMiIgKnT5/Gnj17cPz4cQiCgP79+6P0mYG6wsJCfPXVV9i0aROOHDmCrKwsTJ8+Xa33qKY2pk+fjqFDhypDKDs7GwEBAbV636p6v0eOHImTJ08iIyNDuU1qaip+++03jBgxAgDw6NEjhIeHIzExESdOnIC3tzf69++PR4+0N0uP9JeHhxz9+3uqHAFJTc1FXl4xXn+9BY+INzCpiRFMzKQavUlNGibCmQcvxjwgQ8NM0B5jU1OYmJlr/GbcQDNqmAkvxkwgQ6ILecDT9xoZQRAQHx+P2NhYfPjhh8rHLS0tsXbtWuUU0e+//x7l5eVYu3YtJBIJAGDDhg2wtbVFQkIC+vbtiyVLlmD27NkYPHgwAGDlypWIjY2tdt+XLl3Cjh07cPDgQQQHBwMAPD09lc9XTMF1dHRUOV/8WZcvX8aePXuQlJSEgIAAAMDmzZvh5uaGmJgYDBkyBABQWlqKlStXolWrVgCACRMmKI8m1FZNbVhZWcHCwgLFxcUqU3pr874Bld9v4OkRjy1btuDTTz9V9qtbt27w8vICAPTu3VulvtWrV8PW1haHDx/GgAED1OobEQDlEZFnj4xQ48E8qD3mATUGzITGjZlQe8wEMnTazgMOSjUSe/fuhZWVFUpLS1FeXo4RI0Zg7ty5yufbt2+v8uV37tw5XLlyBdbW1irtFBUVISMjA3l5ecjOzlaZTmpsbIwuXbpUmp5bISUlBVKpFEFBQXXuR1paGoyNjVX2a29vj9atWyMtLU35mEwmUwYFADg7OyMnJ0etfdWljRe9bxWef78BYOTIkVi/fj0+/fRTCIKArVu3YurUqcrn79y5g08++QQJCQnIycmBQqFAYWEhsrKy1OoXUQUPD7nKURFqHJgHzAOiqjATGidmAjOB6HnazgMOSjUSvXr1wooVK2BqaormzZtXuqKGpaWlyv3Hjx/Dz88PmzdvrtSWg4NDnWqwsLCo0+vq4vkrcUgkkmqDsCHbqO379vz7DQDDhw/HzJkzcfbsWTx58gQ3btzAsGHDlM+Hh4cjNzcXS5cuhYeHB8zMzODv768y5ZeI6EWYB8wDIqIKzARmApHYOCjVSFhaWiqneNZG586dsX37djg6OsLGxqbKbZydnZGcnIwePXoAAMrKynDmzBl07ty5yu3bt2+P8vJyHD58WDk191kVRwUUCkW1dbVp0wZlZWVITk5WTs3Nzc3FxYsX0bZt21r3ryGYmppWqrU271t1XF1dERQUhM2bN+PJkyd4/fXX4ejoqHw+KSkJ3377Lfr37w/g6WKJ9+7dq39HiKhRYR40POYBEekrZkLDYyYQqYcLnVOVRo4ciaZNmyI0NBRHjx7FtWvXkJCQgIkTJ+LmzZsAgEmTJmHRokWIiYlBeno6xo8fr7wyRVVatGiB8PBwfPDBB4iJiVG2uWPHDgCAh4cHJBIJ9u7di7t37+Lx48eV2vD29kZoaCjGjh2LxMREnDt3DqNGjYKLiwtCQ0M18l7U1J/ffvsNFy9exL1791BaWlqr960mI0eOxLZt2/DDDz9g5MiRKs95e3tj06ZNSEtLQ3JyMkaOHKnVI0uk/zIz87B//1VkZuaJXQrpEebBizEPSN8wD6iumAkvxkwgfSN2JnBQqoEIxcUof/JE4zehuFgr/ZHJZDhy5Ajc3d0xePBgtGnTBmPGjEFRUZFydH/atGkYPXo0wsPD4e/vD2tra7z99ts1trtixQq8++67GD9+PHx8fDB27FgUFBQAAFxcXDBv3jzMmjULzZo1w4QJE6psY8OGDfDz88OAAQPg7+8PQRCwf//+SlNpNW3s2LFo3bo1unTpAgcHByQlJdXqfavJu+++i9zcXBQWFmLQoEEqz61btw4PHjxA586dMXr0aEycOFHlKAnRi6Sm5uL48VtITc0VuxSDpygtR2mxQqM3RWm5VvrCPHgx5gHpG+aB9pSVlKC0uEjjtzItnarFTHgxZgLpG7EzQSKoexKtgcvPz4dcLkdeXp7KF0RRURGuXbuGli1bwtzcXPl4eVERHsXHQ5GvvUtuSm2sYd2nD4yeqYPoRar7DFPjkZmZh9TUXLRrZ9+gixdW972p72rqV3V/T2UlClw7dw9FhaXPN6cR5jITtPRtCmNTqVb2R4aDmdC4aSoPAMPMhLrkQWlJMTJOnUDR/wZWtMHc0hKtXnkVJqZmWtsn6T/mAYn9G4FrStWTkbk5rPv0gVCqnR8gACAxMeGAFBGpjVdW0jxjUyla+jaFQqGd4z1SqYQDUkSkNuaB5pmYmqHVK6+ivKxMa/s0MjbmgBQRqU3sTOCgVAMwMjcHOEhERER4OjDFcCUiIhNTM4CDRERENeKaUkREREREREREpHUclCIiIiIiIiIiIq3joBQREREREREREWkdB6WIiIiIiIiIiEjrOChFRERERERERERax0EpIiIiIiIiIiLSOg5KERERERERERGR1nFQioiIiIiIiIiItI6DUgZOIpHUeJs7d67WaunZs6dyv+bm5mjbti2+/fZb5fPR0dGwtbXVWj1ERI0J84CIiCowE4hIV3BQysBlZ2crb0uWLIGNjY3KY9OnT1duKwgCysrKNFrP2LFjkZ2djQsXLmDo0KGIjIzE1q1bNbpPIn2XmZmH/fuvIjMzT+xSSI8xD4gMAzOBGgIzgUj/GUoecFDKwDk5OSlvcrkcEolEeT89PR3W1tb45Zdf4OfnBzMzMyQmJiIiIgKDBg1SaWfy5Mno2bOn8n55eTkWLlyIli1bwsLCAr6+vvjxxx9fWI9MJoOTkxM8PT0xd+5ceHt7Y8+ePQ3cayLDkpqai+PHbyE1NVfsUkiPMQ+IDAMzgRoCM4FI/xlKHhiLXUBtLViwAPv27UNKSgpMTU3x8OHDSttIJJJKj23duhXvvfeeRmsrKCio9jmpVApzc/NabWtkZAQLC4sXbmtpaVmHKqs3a9YsfPXVV/D09ISdnV2tXrNw4UJ8//33WLlyJby9vXHkyBGMGjUKDg4OCAoKqvW+LSwsUFJSUtfSiRqFdu3sVf5JzIQKzAOixoeZoIp58CdmAlHjYih5oDeDUiUlJRgyZAj8/f2xbt26arfbsGEDQkJClPe1cf6xlZVVtc/1798f+/btU953dHREYWFhldsGBQUhISFBeb9Fixa4d+9epe0EQah7sVWYP38+Xn/99VpvX1xcjC+++AJxcXHw9/cHAHh6eiIxMRGrVq2qVeAoFAps3boVv/32G/7617/WuXaixsDDQw4PD7nYZegUZsJTzAOixoeZoIp58CdmAlHjYih5oDeDUvPmzQPwdKG7mtja2sLJyUkLFRmOLl26qLX9lStXUFhYWCmkSkpK0KlTpxpf++2332Lt2rUoKSmBVCrFlClTMG7cOLVrJqLGjZmgGcwDItI3zAPNYSYQkTbozaBUbUVGRuIvf/kLPD098fe//x3vv/9+lVN2KxQXF6O4uFh5Pz8/X+19Pn78uNrnpFKpyv2cnJxqtzUyUl3i6/r162rXUhfPT/U1MjKqdKSltLRU+e8V/d23bx9cXFxUtjMzM6txXyNHjsQ//vEPWFhYwNnZuVKfiYgakjqZ0BB5AOh3JjAPiMhQMQ/Ux0wgIm0wqEGp+fPno3fv3pDJZDhw4ADGjx+Px48fY+LEidW+ZuHChcojLHWlzvnbmtq2ITk4OOD8+fMqj6WkpMDExAQA0LZtW5iZmSErK0utc8MBQC6Xw8vLq8FqJSKqjrqZ0BB5ABhWJjAPiMgQMA8aBjOBiDRB1CHoWbNmQSKR1HhLT0+vdXuffvopAgMD0alTJ8ycORMzZszAl19+WeNrZs+ejby8POXtxo0b9e2W3uvduzdOnz6NjRs34vLly4iKilIJIGtra0yfPh1TpkzBd999h4yMDJw9exb//ve/8d1334lYORHpM7EzgXlQGfOAiMTAPNBNzAQi0gRRZ0pNmzYNERERNW7j6elZ5/a7deuGzz77DMXFxdVOGTUzM3vhdNLGpl+/fvj0008xY8YMFBUV4YMPPkBYWBh+//135TafffYZHBwcsHDhQly9ehW2trbo3LkzPv74YxErJyJ9JnYmMA8qYx4QkRiYB7qJmUBEmiARGvoyDRoWHR2NyZMnV3m51+ctWLAAixcvxv3792vdfn5+PuRyOfLy8mBjY6N8vKioCNeuXUPLli1VLt9KpC/4GSZNqe57Uxs0mQk19Yt/T6Tv+BkmTRErE5gHRHXDzzBpSm3zQG/WlMrKysL9+/eRlZUFhUKBlJQUAICXlxesrKzw888/486dO3j11Vdhbm6OgwcP4osvvsD06dPFLZyISEuSkm4iLi4TwcEeCAx0FbscjWImEBHVrLFkAvOAiKhmup4HejMoNWfOHJVzkSsuK3ro0CH07NkTJiYmWL58OaZMmQJBEODl5YWvv/4aY8eOFatkIiKtiovLRFxcFgDoZOA0JGYCEVHNGksmMA+IiGqm63mgN4NS0dHRiI6Orvb5kJAQhISEaK8gIiIdExzsofJPQ8ZMICKqWWPJBOYBEVHNdD0P9GZQioiIahYY6KqTRz+IiEj7mAlERATofh4YiV0AERERERERERE1PhyUUpOeXayQSImfXaKGx78r0lf87BI1LP5Nkb7iZ5fExkGpWjIxMQEAFBYWilwJUd1UfHYrPstEVHfMBNJ3zASihsE8IH3HPCCxcU2pWpJKpbC1tUVOTg4AQCaTQSKRiFwV0YsJgoDCwkLk5OTA1tYWUqlU7JKI9B4zgfQVM4GoYTEPSF8xD0hXcFBKDU5OTgCgDB0ifWJra6v8DBNR/TETSJ8xE4gaDvOA9BnzgMTGQSk1SCQSODs7w9HREaWlpWKXQ1RrJiYmPPpB1MCYCaSvmAlEDYt5QPqKeUC6gINSdSCVSvnHS0REAJgJRET0FPOAiEh9XOiciIiIiIiIiIi0joNSRERERERERESkdRyUIiIiIiIiIiIireOaUs8RBAEAkJ+fL3IlRET6oeL7suL701AwD4iI1GeImcA8ICJSX23zgINSz3n06BEAwM3NTeRKiIj0y6NHjyCXy8Uuo8EwD4iI6s6QMoF5QERUdy/KA4lgSIcxGkB5eTlu3boFa2trSCQStV6bn58PNzc33LhxAzY2NhqqUPMMpR8A+6KrDKUvhtIPoH59EQQBjx49QvPmzWFkZDhnhTMPnmJfdI+h9ANgX3RRffthiJlQnzwA+NnQReyL7jGUfgDsS4Xa5gFnSj3HyMgIrq6u9WrDxsZG7z98gOH0A2BfdJWh9MVQ+gHUvS+GcjT8WcwDVeyL7jGUfgDsiy6qTz8MLRMaIg8AfjZ0EfuiewylHwD7AtQuDwzj8AUREREREREREekVDkoREREREREREZHWcVCqAZmZmSEqKgpmZmZil1IvhtIPgH3RVYbSF0PpB2BYfdEFhvR+si+6x1D6AbAvushQ+qFLDOU9NZR+AOyLLjKUfgDsi7q40DkREREREREREWkdZ0oREREREREREZHWcVCKiIiIiIiIiIi0joNSRERERERERESkdRyU0pAFCxYgICAAMpkMtra2YpejluXLl6NFixYwNzdHt27dcPLkSbFLUtuRI0cwcOBANG/eHBKJBDExMWKXVCcLFy7EK6+8Amtrazg6OmLQoEG4ePGi2GXVyYoVK9ChQwfY2NjAxsYG/v7++OWXX8Quq0EsWrQIEokEkydPFrsUtc2dOxcSiUTl5uPjI3ZZBoV5ID5mgu4x1ExgHtCLMBPExTzQPYaaBwAzobY4KKUhJSUlGDJkCMaNGyd2KWrZvn07pk6diqioKJw9exa+vr7o168fcnJyxC5NLQUFBfD19cXy5cvFLqVeDh8+jMjISJw4cQIHDx5EaWkp+vbti4KCArFLU5urqysWLVqEM2fO4PTp0+jduzdCQ0ORmpoqdmn1curUKaxatQodOnQQu5Q6a9euHbKzs5W3xMREsUsyKMwD8TETdI8hZgLzgGqDmSAu5oHuMcQ8AJgJahFIozZs2CDI5XKxy6i1rl27CpGRkcr7CoVCaN68ubBw4UIRq6ofAMLu3bvFLqNB5OTkCACEw4cPi11Kg7CzsxPWrl0rdhl19ujRI8Hb21s4ePCgEBQUJEyaNEnsktQWFRUl+Pr6il1Go8A80A3MBN2lz5nAPCB1MRPExzzQXfqcB4LATFAXZ0qRUklJCc6cOYPg4GDlY0ZGRggODsbx48dFrIwq5OXlAQCaNGkiciX1o1AosG3bNhQUFMDf31/scuosMjISb775psrfjD66fPkymjdvDk9PT4wcORJZWVlil0QiYx7oB2aC7mAekCFjJug+5oFuYSaox1gjrZJeunfvHhQKBZo1a6byeLNmzZCeni5SVVShvLwckydPRmBgIF5++WWxy6mT33//Hf7+/igqKoKVlRV2796Ntm3bil1WnWzbtg1nz57FqVOnxC6lXrp164bo6Gi0bt0a2dnZmDdvHrp3747z58/D2tpa7PJIJMwD3cdM0B3MAzJ0zATdxjzQLcwE9XGmlBpmzZpVabGv52/8YiZNiYyMxPnz57Ft2zaxS6mz1q1bIyUlBcnJyRg3bhzCw8Nx4cIFsctS240bNzBp0iRs3rwZ5ubmYpdTL2+88QaGDBmCDh06oF+/fti/fz8ePnyIHTt2iF2aTmMekNiYCbqBeUAAM4HExTzQHcyEuuFMKTVMmzYNERERNW7j6empnWI0oGnTppBKpbhz547K43fu3IGTk5NIVREATJgwAXv37sWRI0fg6uoqdjl1ZmpqCi8vLwCAn58fTp06haVLl2LVqlUiV6aeM2fOICcnB507d1Y+plAocOTIEXzzzTcoLi6GVCoVscK6s7W1xUsvvYQrV66IXYpOYx6QmJgJuoN5QAAzgcTDPNAtzIS64aCUGhwcHODg4CB2GRpjamoKPz8/xMfHY9CgQQCeTgeNj4/HhAkTxC2ukRIEAR9++CF2796NhIQEtGzZUuySGlR5eTmKi4vFLkNtffr0we+//67y2Pvvvw8fHx/MnDlTb8MGAB4/foyMjAyMHj1a7FJ0GvOAxMBM0D3MAwKYCaR9zAPdxEyoGw5KaUhWVhbu37+PrKwsKBQKpKSkAAC8vLxgZWUlbnE1mDp1KsLDw9GlSxd07doVS5YsQUFBAd5//32xS1PL48ePVUZxr127hpSUFDRp0gTu7u4iVqaeyMhIbNmyBT/99BOsra1x+/ZtAIBcLoeFhYXI1aln9uzZeOONN+Du7o5Hjx5hy5YtSEhIQGxsrNilqc3a2rrSOfuWlpawt7fXu3P5p0+fjoEDB8LDwwO3bt1CVFQUpFIphg8fLnZpBoN5ID5mgu4xlExgHpC6mAniYh7oHkPJA4CZUGdaucZfIxQeHi4AqHQ7dOiQ2KW90L///W/B3d1dMDU1Fbp27SqcOHFC7JLUdujQoSrf//DwcLFLU0tVfQAgbNiwQezS1PbBBx8IHh4egqmpqeDg4CD06dNHOHDggNhlNRh9vdzrsGHDBGdnZ8HU1FRwcXERhg0bJly5ckXssgwK80B8zATdY8iZwDygmjATxMU80D2GnAeCwEyoDYkgCELDD3URERERERERERFVj1ffIyIiIiIiIiIireOgFBERERERERERaR0HpYiIiIiIiIiISOs4KEVERERERERERFrHQSkiIiIiIiIiItI6DkoREREREREREZHWcVCKiIiIiIiIiIi0joNSRERERERERESkdRyUIiIiIiIiIiIireOgFJGOUigUCAgIwODBg1Uez8vLg5ubG/7xj3+IVBkREWkbM4GIiADmARkeiSAIgthFEFHVLl26hI4dO2LNmjUYOXIkACAsLAznzp3DqVOnYGpqKnKFRESkLcwEIiICmAdkWDgoRaTjli1bhrlz5yI1NRUnT57EkCFDcOrUKfj6+opdGhERaRkzgYiIAOYBGQ4OShHpOEEQ0Lt3b0ilUvz+++/48MMP8cknn4hdFhERiYCZQEREAPOADAcHpYj0QHp6Otq0aYP27dvj7NmzMDY2FrskIiISCTOBiIgA5gEZBi50TqQH1q9fD5lMhmvXruHmzZtil0NERCJiJhAREcA8IMPAmVJEOu7YsWMICgrCgQMH8PnnnwMA4uLiIJFIRK6MiIi0jZlAREQA84AMB2dKEemwwsJCREREYNy4cejVqxfWrVuHkydPYuXKlWKXRkREWsZMICIigHlAhoUzpYh02KRJk7B//36cO3cOMpkMALBq1SpMnz4dv//+O1q0aCFugUREpDXMBCIiApgHZFg4KEWkow4fPow+ffogISEBr732mspz/fr1Q1lZGafoEhE1EswEIiICmAdkeDgoRUREREREREREWsc1pYiIiIiIiIiISOs4KEVERERERERERFrHQSkiIiIiIiIiItI6DkoREREREREREZHWcVCKiIiIiIiIiIi0joNSRERERERERESkdRyUIiIiIiIiIiIireOgFBERERERERERaR0HpYiIiIiIiIiISOs4KEVERERERERERFrHQSkiIiIiIiIiItI6DkoREREREREREZHW/T8KR2cDPx5y+AAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxYAAAJOCAYAAAAqFJGJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC/JklEQVR4nOzdd3QUVR/G8e+mJ6QROgmQEKoUQZr0gEgTEBBRERXEF1BRivReRRABFUVBpYhdEVQQpIRelC69hRZqKAmQnp33j5iVGCAJ2WRTns85nMPM3Lnz24XAPjtz7zUZhmEgIiIiIiKSAXa2LkBERERERHI+BQsREREREckwBQsREREREckwBQsREREREckwBQsREREREckwBQsREREREckwBQsREREREckwBQsREREREckwBQsREREREckwBQsRERvw9/enW7dulu1169ZhMplYt26d1a5hMpkYO3as1fpLq7Fjx2IymbL8urYQFBREUFBQpvSdnr8T6akjKCiIypUrZ6w4EZG7ULAQkTxn/vz5mEwmyy8XFxfKlStHnz59uHTpkq3LS5fly5fbJDxkli1btjB27Fhu3Lhh61JytPPnzzN27Fj27Nlj61JEJA9RsBCRPGv8+PF8+eWXzJo1i3r16jF79mzq1q1LZGRkltfSqFEjoqKiaNSoUbrOW758OePGjbvrsaioKEaOHGmN8tJl5MiRREVFPdC5W7ZsYdy4cQoWPPjfCUgMFuPGjVOwEJEs5WDrAkREbKVVq1bUrFkTgFdeeYUCBQowffp0li5dynPPPXfXc27fvk2+fPmsXoudnR0uLi5W7dPa/aWVg4MDDg7Z67+XyMhI3NzcbF1GumTG3wkRkcykOxYiIv9o2rQpACEhIQB069YNd3d3Tpw4QevWrfHw8OD5558HwGw2M3PmTCpVqoSLiwtFihShV69eXL9+PVmfhmEwceJE/Pz8cHNzo0mTJhw4cCDFte/1PP327dtp3bo1+fPnJ1++fFStWpX333/fUt9HH30EkOzRriR3G2Oxe/duWrVqhaenJ+7u7jz22GNs27YtWZukR8U2b97MgAEDKFSoEPny5aNDhw5cuXIl1ffxbmMsTCYTffr0YcmSJVSuXBlnZ2cqVarEihUrkp03aNAgAAICAiyv59SpU5Y2ixYtokaNGri6uuLj48Ozzz7L2bNnk10raQzBzp07adSoEW5ubgwfPpw2bdpQunTpu9Zct25dS8gEmDdvHk2bNqVw4cI4Ozvz0EMPMXv27FRf+9107NiRRx55JNm+tm3bYjKZ+OWXXyz7tm/fjslk4vfffwfu/Xdizpw5BAYG4urqSu3atdm4cWOy4+vWraNWrVoAdO/e3fI+zp8/P1m7gwcP0qRJE9zc3PD19WXq1KkP9PpERJJkr6+URERs6MSJEwAUKFDAsi8+Pp4WLVrQoEEDpk2bZvnWu1evXsyfP5/u3bvz5ptvEhISwqxZs9i9ezebN2/G0dERgNGjRzNx4kRat25N69at2bVrF82bNyc2NjbVelatWkWbNm0oVqwYffv2pWjRohw6dIjffvuNvn370qtXL86fP8+qVav48ssvU+3vwIEDNGzYEE9PTwYPHoyjoyOffvopQUFBrF+/njp16iRr/8Ybb5A/f37GjBnDqVOnmDlzJn369OG7775L83t6p02bNrF48WJee+01PDw8+OCDD3jqqac4c+YMBQoUoGPHjhw9epRvvvmGGTNmULBgQQAKFSoEwKRJkxg1ahSdO3fmlVde4cqVK3z44Yc0atSI3bt34+3tbbnW1atXadWqFc8++yxdu3alSJEi1KhRgxdffJG//vrL8sEb4PTp02zbto13333Xsm/27NlUqlSJdu3a4eDgwK+//sprr72G2Wzm9ddfT9frbtiwIUuXLiUiIgJPT08Mw2Dz5s3Y2dmxceNG2rVrB8DGjRuxs7Ojfv369+zr888/p1evXtSrV49+/fpx8uRJ2rVrh4+PDyVKlACgYsWKjB8/ntGjR9OzZ08aNmwIQL169Sz9XL9+nZYtW9KxY0c6d+7Mjz/+yJAhQ6hSpQqtWrVK1+sTEbEwRETymHnz5hmAsXr1auPKlSvG2bNnjW+//dYoUKCA4erqapw7d84wDMN46aWXDMAYOnRosvM3btxoAMZXX32VbP+KFSuS7b98+bLh5ORkPPHEE4bZbLa0Gz58uAEYL730kmVfcHCwARjBwcGGYRhGfHy8ERAQYJQqVcq4fv16suvc2dfrr79u3OufcsAYM2aMZbt9+/aGk5OTceLECcu+8+fPGx4eHkajRo1SvD/NmjVLdq3+/fsb9vb2xo0bN+56vSRjxoxJURNgODk5GcePH7fs27t3rwEYH374oWXfu+++awBGSEhIsvNPnTpl2NvbG5MmTUq2/++//zYcHByS7W/cuLEBGJ988kmytuHh4Yazs7Px1ltvJds/depUw2QyGadPn7bsi4yMTPG6WrRoYZQuXTrZvsaNGxuNGze+y7vwr7/++ssAjOXLlxuGYRj79u0zAOPpp5826tSpY2nXrl07o3r16pbt//6diI2NNQoXLmxUq1bNiImJsbSbM2eOASSrI+ma8+bNS1FP0vuzcOFCy76YmBijaNGixlNPPXXf1yIicj96FEpE8qxmzZpRqFAhSpQowbPPPou7uzs///wzvr6+ydq9+uqrybZ/+OEHvLy8ePzxxwkLC7P8qlGjBu7u7gQHBwOwevVqYmNjeeONN5I9GtSvX79Ua9u9ezchISH069cv2TfxwANN5ZqQkMAff/xB+/btkz0OVKxYMbp06cKmTZuIiIhIdk7Pnj2TXathw4YkJCRw+vTpdF8fEt/vwMBAy3bVqlXx9PTk5MmTqZ67ePFizGYznTt3TvaeFy1alLJly1re8yTOzs5079492T5PT09atWrF999/j2EYlv3fffcdjz76KCVLlrTsc3V1tfw+PDycsLAwGjduzMmTJwkPD0/X665evTru7u5s2LABSLwz4efnx4svvsiuXbuIjIzEMAw2bdpkubtwNzt27ODy5cv07t0bJycny/5u3brh5eWVrprc3d3p2rWrZdvJyYnatWun6c9CRORe9CiUiORZH330EeXKlcPBwYEiRYpQvnx57OySf9/i4OCAn59fsn3Hjh0jPDycwoUL37Xfy5cvA1g+gJctWzbZ8UKFCpE/f/771pb0WJa11hu4cuUKkZGRlC9fPsWxihUrYjabOXv2LJUqVbLsv/ODNmCp+b/jSNLqv/0l9ZmW/o4dO4ZhGCneyyRJj54l8fX1TfbhO8kzzzzDkiVL2Lp1K/Xq1ePEiRPs3LmTmTNnJmu3efNmxowZw9atW1PMEhYeHp6uD/L29vbUrVvXMhZi48aNNGzYkAYNGpCQkMC2bdsoUqQI165du2+wuNffJ0dHx3uOHbkXPz+/FAE1f/787Nu3L139iIjcScFCRPKs2rVrJxuwezfOzs4pwobZbKZw4cJ89dVXdz0naUxATmdvb3/X/Xd+259V/ZnNZsvA5rv14+7unmz7zjsOd2rbti1ubm58//331KtXj++//x47OzuefvppS5sTJ07w2GOPUaFCBaZPn06JEiVwcnJi+fLlzJgxA7PZnGq9/9WgQQMmTZpEdHQ0GzduZMSIEXh7e1O5cmU2btxIkSJFAO4bLKzJ2n+2IiKgYCEikm6BgYGsXr2a+vXr3/MDLECpUqWAxG/b7/xG+cqVK6l+S5/0yND+/ftp1qzZPdul9bGoQoUK4ebmxpEjR1IcO3z4MHZ2dpbBv7Z0r9cTGBiIYRgEBARQrly5B+4/X758tGnThh9++IHp06fz3Xff0bBhQ4oXL25p8+uvvxITE8Mvv/yS7C7Lfx+3So+GDRsSGxvLN998Q2hoqCVANGrUyBIsypUrZwkYd3Pn36ekGcwA4uLiCAkJ4eGHH7bsyysrn4tI9qIxFiIi6dS5c2cSEhKYMGFCimPx8fGWxd2aNWuGo6MjH374YbJvgv/72M3dPPLIIwQEBDBz5swUi8Xd2VfSmhqpLShnb29P8+bNWbp0abLpWy9dusTXX39NgwYN8PT0TLWuzHav19OxY0fs7e0ZN25cim/VDcPg6tWrab7GM888w/nz5/nss8/Yu3cvzzzzTLLjSd/m33md8PBw5s2bl56XkkydOnVwdHRkypQp+Pj4WB45a9iwIdu2bWP9+vWp3q2oWbMmhQoV4pNPPkk2q9j8+fNTvF9p/XshImJNumMhIpJOjRs3plevXkyePJk9e/bQvHlzHB0dOXbsGD/88APvv/8+nTp1olChQgwcOJDJkyfTpk0bWrduze7du/n9998tU6nei52dHbNnz6Zt27ZUq1aN7t27U6xYMQ4fPsyBAwdYuXIlADVq1ADgzTffpEWLFtjb2/Pss8/etc+JEyeyatUqGjRowGuvvYaDgwOffvopMTEx2WYNg6TXM2LECJ599lkcHR1p27YtgYGBTJw4kWHDhnHq1Cnat2+Ph4cHISEh/Pzzz/Ts2ZOBAwem6RpJa5IMHDgQe3t7nnrqqWTHmzdvjpOTE23btqVXr17cunWLuXPnUrhwYS5cuPBAr8vNzY0aNWqwbds2yxoWkHjH4vbt29y+fTvVYOHo6MjEiRPp1asXTZs25ZlnniEkJIR58+alGGMRGBiIt7c3n3zyCR4eHuTLl486deoQEBDwQPWLiKSF7liIiDyATz75hDlz5nD58mWGDx/OsGHDWLt2LV27dk22DsHEiRMZN24cu3fvZtCgQZw4cYI//vgjTat3t2jRguDgYMqVK8d7773HgAEDWLNmDW3btrW06dixI2+88QYrVqzghRdeuOeK4QCVKlVi48aNVK5cmcmTJzNu3DhKlSpFcHBwijUsbKVWrVpMmDCBvXv30q1bN5577jnLonxDhw7lp59+ws7OjnHjxjFw4EB++eUXmjdvblkLIi1cXFxo164dN2/epEmTJikG4ZcvX54ff/wRk8nEwIED+eSTT+jZsyd9+/bN0GtLCg4NGjSw7CtatChlypRJdvx+evbsyccff8z58+cZNGgQGzdu5JdffknxGJujoyMLFizA3t6e3r1789xzz7F+/foM1S8ikhqToZFaIiIiIiKSQbpjISIiIiIiGaZgISIiIiIiGaZgISIiIiIiGaZgISIiIiIiGaZgISIiIiIiGaZgISIiIiIiGZbrF8gzm82cP38eDw8Py4JEIiIiIiKSOsMwuHnzJsWLF8fO7v73JHJ9sDh//nyKhYNERERERCTtzp49i5+f333b5Ppg4eHhASS+GZ6enjauRkREREQk54iIiKBEiRKWz9T3k+uDRdLjT56engoWIiIiIiIPIC1DCjR4W0REREREMkzBQkREREREMkzBQkREREREMkzBQkREREREMkzBQkREREREMkzBQkREREREMizXTzf7oOLi4khISLB1GSI2ZW9vj6Ojo63LEBERkRxAweI/IiIiCAsLIyYmxtaliGQLzs7OFCxYUOvAiIiIyH0pWNwhIiKC0NBQ3N3dKViwII6OjmlaDEQkNzIMg7i4OMLDwwkNDQVQuBAREZF7UrC4Q1hYGO7u7vj5+SlQiACurq54eHhw7tw5wsLCFCxERETknjR4+x9xcXHExMTg5eWlUCFyB5PJhJeXFzExMcTFxdm6HBEREcmmFCz+kTRQWwNVRVJK+rnQhAYiIiJyLwoW/6G7FSIp6edCREREUqNgISIiIiIiGaZgISIiIiIiGaZgIdlSUFBQjn38ZuzYsZhMJtatW5dsv8lkIigoyCY1iYiIiGQ2BQsB4NSpU5hMphS/8uXLR9WqVRk3bhy3bt2ydZlWcfXqVYYOHUqlSpVwc3PDzc2NUqVK8dhjjzFu3DguXbqUZbV069YNk8nEqVOnsuyaIiIiIplB61hIMoGBgXTt2hVIXCDtypUr/P7774wdO5YVK1awadMm7O3tM72OhQsXEhkZafV+z507R7169Th79izVqlWje/fueHt7c+HCBbZs2cLYsWOpX78+RYoUsfq1Dx06hJubm9X7FREREckOFCwkmTJlyjB27Nhk+2JiYqhbty7btm1j/fr1NG3aNNPrKFmyZKb0O2bMGM6ePcv48eMZNWpUiuN///033t7emXLtChUqZEq/IiIikjsd3baJooHl8CxU2NalpIkehZJUOTs706RJEyBxdfI7BQcH8/LLL1O+fHnc3d1xd3enZs2azJkz56597dq1i06dOlGyZEmcnZ0pVKgQtWrVYtKkScna3W+MxdKlS2nevDkFChTAxcUFf39/XnjhBfbv35/qa9m6dSsAb7zxxl2PV6lShRIlSiTblzQ24ty5czz33HMULFgQNzc36tevz+rVq1O95n/7SeLv78+CBQsACAgIsDx+pnEYIiIiEhl+g99nTefzvv9j9eezbV1OmuiOhaQqNjaWdevWYTKZqFatWrJjU6ZM4fjx4zz66KN06NCBGzdusGLFCnr16sWRI0d47733LG337NlDvXr1sLe358knn6RUqVLcuHGDgwcPMmfOHEaMGJFqLW+99RbTp0/Hx8eH9u3bU7hwYc6ePcvq1aupUaMGlStXvu/5BQoUAODo0aPUrl07ze/B9evXqV+/PoUKFeKVV17hypUrfPfdd7Rs2ZIff/yR9u3bp7mvJP369WP+/Pns3buXvn37Wu6U+Pv7p7svERERyV12Ll9KfFwsAA6OOeMje86oUrLM8ePHLY9CGYZBWFgYK1euJDQ0lKlTp1KuXLlk7WfPnk1AQECyffHx8bRu3Zr333+fvn37Wh5r+vLLL4mJiWHJkiU8+eSTyc65evVqqrX99ttvTJ8+nSpVqhAcHGwJCUnXTEsfnTt3ZtOmTbRt25bevXvTpEkTHnnkETw9Pe973r59++jSpQuLFi2y3Enp27cvtWrVomfPnrRo0QJXV9dUr3+nfv36sWfPHvbu3Uu/fv0UKERERASAmMjb7Fm5DAA7ewdqtOlg44rSRsEiDdp+uIkrN2NsXcZ9FfJw5tc3GmS4nxMnTjBu3LgU+9u0aUOzZs1S7P9vqABwcHCgd+/erFq1iuDgYF566aVkx+/2AfzOkHAvH3/8MQDvv/9+ivYODg5pGnDdp08fzp49y/vvv8/48eMZP348JpOJihUr0rZtW/r27UuxYsVSnGdvb8/bb7+d7PGsqlWr8sILL/D555+zfPlynnrqqVSvLyIiIpKaPSuXERuVOIlNpcZN8fApaOOK0kbBIg2u3IzhYkS0rcvIEi1atGDFihWW7atXr7J582b69u1L/fr1Wbt2LXXq1LEcv3nzJtOmTWPJkiWcOHGC27dvJ+vv/Pnzlt937tyZmTNn0qFDB5555hkef/xxGjVqhK+vb5pq+/PPP3F2dqZx48YP/PpMJhNTp05l8ODBLF++nG3btrFjxw527tzJwYMH+fTTT1mxYkWy1wiJg8lLlSqVor+GDRvy+eefs3v3bgULERERybC4mGh2Ll8KgMlkR612OefzhYJFGhTycLZ1CanKrBoLFChAu3btcHNz4/HHH2fkyJGsWrUKSBx7ERQUxK5du6hevTovvPACBQoUwMHBgVOnTrFgwQJiYv6901OnTh3WrVvH22+/zddff828efMAqFWrFlOmTLEMEL+X8PBwfH19sbPL+JwDBQsW5MUXX+TFF18E4OLFi/Tp04effvqJnj17snfv3mTt73U3JGl/eHh4hmsSERER2R+8iqiIxM8V5R6tT/5iafsCNjtQsEgDazxilNMlfYP/119/WfYtXbqUXbt20aNHDz777LNk7b/99lvLjEd3atiwIb///jtRUVFs376dX3/9lY8//pgnnniC/fv3U7p06XvW4O3tzcWLFzGbzVYJF3cqWrQoX375Jb/99hv79u3j6tWryR63uteieUn7vby8rFqPiIiI5D0J8XH8+ctPlu3a7Z+2YTXpp+lmJU2uX78OgNlstuw7ceIEQIqB2AAbN268b3+urq4EBQXx3nvvMXz4cKKioix3Qu6ldu3axMTEsH79+vSWnybOzs44Ojre9diZM2c4ffp0iv1Jr7N69eoPdM2kxQYTEhIe6HwRERHJPQ5uCObW1cSp/UvXqE1h/3t/4ZodKVhImkyfPh2ARo0aWfYljTnYtGlTsrbr169n7ty5KfrYunUr0dEpx6okfevv4uJy3xpef/11IHE2pmvXriU7Fh8ff8+7Cnd67733OHz48F2PzZo1i1u3blGhQoUUg8MTEhIYPnw4hmFY9u3bt48vv/ySQoUK0bp161SvfTc+Pj4AnD179oHOFxERkdzBnJDAn0t+sGw/2uEZG1bzYPQolCRz53SzANeuXWPz5s3s2rWL/PnzM2XKFMuxtm3b4u/vz9SpU9m/fz+VK1fmyJEj/Pbbb3To0IEff/wxWd9TpkwhODiYRo0aERAQgIuLC7t27WLNmjWULl2aDh3uP5Va69atGThwINOmTaNs2bJ06NCBwoULExoaypo1axg4cCD9+vW7bx9ffvklAwcOpEqVKtSpU4fChQtz48YNtm3bxq5du3B1dWX27JSL0FStWpVNmzZRq1YtmjVrZlnHIj4+njlz5qR7qtkkTZs2Zdq0afTs2ZOnnnqKfPnyUapUKV544YUH6k9ERERypiNbNnDj0gUASlapRrGy5W1cUfopWEgy/51u1tnZGT8/P1599VWGDh1qWZMCwN3dnbVr1zJo0CA2bNjAunXrqFSpEl999RVFihRJESxeffVVvLy82L59O+vXr8cwDEqWLMnw4cPp379/qmtJALz77rvUrVuXWbNm8eOPPxIdHU2xYsVo2rQpjz/+eKrnz5s3j19//ZW1a9eycuVKLl26hL29PaVKleLVV1+lf//+lC1bNsV5+fPnZ9myZQwcOJC5c+cSGRlJ9erVGTduXJquey+tWrVi6tSpzJ07l/fee4+4uDgaN26sYCEiIpKHGGYz237+3rL9aMecd7cCwGTc+WxHLhQREYGXlxfh4eH3/eAaHR1NSEiI5Zt0kSQmk4nGjRuzbt06W5diM/r5EBERyTxHt2/m1+mTAfCt8BDPjJ2SbO0sW0rrZ2nQGAsREREREZsxDINti7+zbD/a4ZlsEyrSS8FCRERERMRGQnbv4MqpkwAUKV2WUg8/YuOKHpyChYiIiIiIDSTerfjWsv1ox5x7twI0eFskVbl8GJKIiIjYyNkD+7hw7AgABUuUIrBGbRtXlDG6YyEiIiIiYgN3jq2o06EzJruc/dE8Z1cvIiIiIpIDhR4+yNkD+wDIX6w45eo2sHFFGadgISIiIiKSxbb//O/ditrtO2NnZ2/DaqxDwUJEREREJAtdOnmckD07AfAsVJiKDYJsW5CVKFiIiIiIiGShO8dW1H6yE/YOuWM+JQULEREREZEsEnb2NMf/2gpAvvw+VGrczMYVWY+ChYiIiIhIFtn207/rVtRq2xEHJycbVmNdChYiIiIiIlng6rkzHNm2CQA3L2+qPtbSxhVZl4KFiIiIiEgW2PrTt/DPwrs123bE0cXFxhVZl4KFiIiIiEgmu3ruDEe2bgTA1dOLao+3tnFF1qdgISns3LmTHj16ULZsWfLly4erqyuBgYG88MILrFq1ivDwcNzc3MifPz/R0dH37Wvu3LmYTCZ69uyZRdWLiIiIZD/bFn9nuVtRKxferQAFC7mD2WxmwIAB1KxZk4ULF1K6dGl69+5N3759qVGjBsuWLaN58+Z88MEHPPXUU9y4cYOffvrpvn1+8cUXAPTo0SMrXoKIiIhItnP13FkOb9kAgKuHJ9WaP2HjijJH7pg0V6xi5MiRzJgxg2rVqvHjjz8SGBiY7HhUVBSzZs3i6tWr9OjRg0WLFvHFF1/w/PPP37W/Q4cOsW3bNipVqkSdOnXue+1u3bqxYMECjH+SvIiIiEhusW3xv2MrarV7KlferQAFC/nH8ePHmTp1KgUKFGDFihUUKVIkRRtXV1cGDRpETEwMTk5OBAYGEhwczKlTp/D390/RXncrREREJK+7Gpo37laAHoWSf8yfP5+EhAR69ep111BxJ2dnZ0wmEy+//DKGYTBv3rwUbeLj4/nyyy9xcnLihRdeyKyyRURERLK1bbl8Jqg7KVgIAJs3bwagadOmaT6nW7du2Nvbs2DBAsxmc7Jjy5cv59KlS7Rr146CBQtatVYRERGRnCDF3YoWufduBehRqLT5tDHcumzrKu7PvTD0Wv/Ap1+8eBEAPz+/NJ9TvHhxWrZsybJly1izZg2PP/645VjSY1Avv/zyA9ckIiIikpNtv2MmqJptO+Lk4mrjijKXgkVa3LoMN8/buops6ZVXXmHZsmV88cUXlmBx+fJlli1bhp+fHy1atEhxjr+/P6dPn75rfyaTKcW+efPm0a1bN6vWLSIiIpKZroae5fDmxLsVLnngbgUoWKSNe2FbV5C6DNZYtGhRDh8+TGhoKOXLl0/zeW3atKFIkSIsWbKE69evkz9/fhYuXEh8fDzdunXDzi7l03b9+vXjxo0byfYtWbKEvXv3MmbMmBTtq1Wrlt6XIyIiImJT2xd/h2EkPipes02HXH+3AhQs0iYDjxjlFPXr12fdunWsWbMmXeMsHBwcePHFF3n33Xf56quv6NOnD/PmzcNkMtG9e/e7ntOvX78U+06dOsXevXsZO3bsA74CERERkezh2vlzye5WVM8DdytAg7flH0kDsefMmcOVK1fu2zYmJibZdtI4ii+++ILt27dz8OBBmjRpQunSpTOtXhEREZHsatt/71a4utm4oqxh02CxYcMG2rZtS/HixTGZTCxZssRyLC4ujiFDhlClShXy5ctH8eLFefHFFzl/XmMdMkOZMmUYPHgwYWFhtGrVipCQkBRtoqOjmT59eoq7ChUqVKB+/frs3r2bt956C9DaFSIiIpI3XTsfyuFNiU+7uLh75Jm7FWDjR6Fu377Nww8/zMsvv0zHjh2THYuMjGTXrl2MGjWKhx9+mOvXr9O3b1/atWvHjh07bFRx7jZx4kSio6OZMWMG5cuXp2nTplSuXBlHR0dCQkJYvXo1V69eZeLEiSnO7dGjB5s3b2bz5s14e3un+PMUERERyQu2Lf42T96tABsHi1atWtGqVau7HvPy8mLVqlXJ9s2aNYvatWtz5swZSpYsmRUl5il2dnZMnz6dLl26MHv2bDZs2MCGDRswm80UK1aMFi1a0L17d5o1a5bi3M6dO9O3b19u3rxJly5dcMnFi7+IiIiI3M3Vc2c4tGkd8M/dipZtbFtQFstRg7fDw8MxmUx4e3vbupRcrWbNmnz++efpOidfvnxEREQ88DXnz5/P/PnzH/h8EREREVvb8sPXlnUrarV7Kk/drYAcFCyio6MZMmQIzz33HJ6envdsFxMTk2xwcUY+7IqIiIiIpMXlUyc5um0TAG5e3lRvkbfuVkAOmRUqLi6Ozp07YxgGs2fPvm/byZMn4+XlZflVokSJLKpSRERERPKqLT98Zfl9nfZP45gHHwvP9sEiKVScPn2aVatW3fduBcCwYcMIDw+3/Dp79mwWVSoiIiIiedGF40c4sWM7AO4+Baja7O5jiHO7bP0oVFKoOHbsGMHBwRQoUCDVc5ydnXF2ds6C6kREREREYPN3iyy/f7TjMzg4OdmwGtuxabC4desWx48ft2yHhISwZ88efHx8KFasGJ06dWLXrl389ttvJCQkcPHiRQB8fHxwyqN/YCIiIiKSfZw7tJ/T+3YD4FmoCJWbPG7jimzHpsFix44dNGnSxLI9YMAAAF566SXGjh3LL7/8AkC1atWSnRccHExQUFBWlSkiIiIikoJhGGz+/t+7FXU7PYe9g6MNK7ItmwaLoKAgjH+m5Lqb+x0TEREREbGlM/v3cu7gfgDyF/PloYZNUjkjd8v2g7dFRERERLIbwzDY/N2Xlu26T3fBzt7ehhXZnoKFiIiIiEg6hezewYVjRwAoWKIUFeo2tHFFtqdgISIiIiKSDol3K/4dW1Hv6ecx2eljtd4BEREREZF0OP7nVi6fOgFAYf9AytSua+OKsgcFCxERERGRNDKbE5LNBFX/ma6YTCYbVpR9KFiIiIiIiKTRka2buHruDADFypYnoHpNG1eUfShYiIiIiIikQUJ8PFt/+MqyXf+ZF3S34g4KFpLCzp076dGjB2XLliVfvny4uroSGBjICy+8wKpVq1K0j46O5v3336dhw4YUKFAAZ2dnSpQowbPPPsuGDRvueo1Tp05hMpmS/XJ0dMTX15fOnTuzY8eOzH6ZIiIiIulyYN1qrl84D0CJh6pQsvLDNq4oe7HpAnmSvZjNZgYOHMiMGTNwcHCgadOmtGvXDkdHR06ePMmyZctYtGgR48ePZ9SoUQAcP36cJ554gqNHj1K6dGk6d+6Mt7c3J0+e5LfffuO7776jb9++TJ8+Hbu7zJYQGBhI165dAbh9+zY7d+7khx9+YMmSJaxevZpGjRpl6XsgIiIicjdxsTFs/fFry3aD517S3Yr/ULAQi5EjRzJjxgyqVavGjz/+SGBgYLLjUVFRzJo1i6tXrwIQHh5Oy5YtOXHiBKNGjWLMmDHY37EwzPnz52nfvj3vv/8+Pj4+jB49OsU1y5Qpw9ixY5Pte+eddxg2bBijRo1i/fr11n+hIiIiIum0Z8Vv3Lp+DYDAmo9SvFwFG1eU/ehRKAES7zxMnTqVAgUKsGLFihShAsDV1ZVBgwYxbtw4AN59911OnDjB888/z/jx45OFCoDixYvz66+/4uPjw4QJEzh79myaaunRoweQ+EiWiIiIiK1F377Fn0t+SNwwmWjw7Au2LSibUrAQAObPn09CQgK9evWiSJEi923r7OwMwLx58wAsj0XdTZEiRfjf//5HfHw88+fPT1dNDg66oSYiIiK2t+PXxUTfvgVApUZNKViilI0ryp70yS0NnvntGcKiwmxdxn0VdC3Id22+e+DzN2/eDEDTpk3T1P706dOcP38eX19fypcvf9+2jz32GFOmTLFcIzWfffYZAA0aNEhTexEREZHMcvvGdXYuXwqAvYMDdTt1sXFF2ZeCRRqERYVxOfKyrcvIVBcvXgTAz88vXe1LlCiRatukNqGhoSmOHT9+3DLGImnwdnBwMEWKFOHdd99NUy0iIiIimWXb4m+Jj4kBoOrjrfAqfP8nO/IyBYs0KOha0NYlpCon1Gg2m1PsO3HihGXMRpKiRYuyceNGypQpk1WliYiIiKRw49JF9q1eAYCjswuPdnjGxhVlbwoWaZCRR4xyiqJFi3L48GFCQ0NTfbQpqT2QpgHZSW18fX1THGvRogUrViT+wF65coUFCxYwZMgQ2rVrx59//om7u3t6XoaIiIiI1Wz5fhHmhAQAarTpgJuXt20LyuY0eFsAqF+/PgBr1qxJU/tSpUpRvHhxQkNDOXLkyH3bJvX50EMP3bddoUKFGDhwIMOHD+fQoUOMHDkyTbWIiIiIWNvlUyc5tDlx2nsXD09qtulg44qyPwULAaBbt27Y29szZ84crly5ct+2Mf88Z/jyyy8DMGnSpHu2vXz5smUw9osvvpimWoYPH07x4sX5+OOPOXXqVJrOEREREbGmzd99CYYBQJ32T+Ps5mbjirI/BQsBEheqGzx4MGFhYbRq1YqQkJAUbaKjo5k+fbplsPWgQYMIDAzkyy+/ZPz48ST8c6swycWLF3nyySe5evUq7dq145FHHklTLa6urgwZMoS4uDgmTJiQ4dcmIiIikh7nDh/g5K6/AHAvUJBqzZ+wcUU5g8ZYiMXEiROJjo5mxowZlC9fnqZNm1K5cmUcHR0JCQlh9erVXL16lYkTJwLg6enJihUraN26NWPGjGHhwoW0aNECLy8vTp48ybJly7h16xYPP/wwX375Zbpq6dmzJ1OmTGHhwoUMHz78rgv2iYiIiFibYRhs/HqBZbve011wcHKyYUU5h4KFWNjZ2TF9+nS6dOnC7Nmz2bBhAxs2bMBsNlOsWDFatGhB9+7dadasmeWcMmXKsHfvXj799FN+/PFHvv76a27cuGE5PmLECEaPHo1TOn8gXVxcGDZsGG+88Qbjxo1j4cKF1nqZIiIiIvcUsnsH548cBMCnuB+VGj2W5TVExUdx7uY5zt08R+itUGoUqUHFAhWzvI70MhnGPw+P5VIRERF4eXkRHh6Op6fnPdtFR0cTEhJCQEAALi4uWVhh7jRt2jQGDRpE586d+eabb7Cz01N3OZl+PkREJC8wmxNYNKQvV86cAqDdgOGUrVMvU695M/Ymey7vYX/Yfo7dOMbR60c5E3EGg38/ovd7pB89qvTI1DruJa2fpUF3LCSTDBw4kMOHD/P555/j6enJ3LlzbV2SiIiIyH0d2rjOEiqKBpalTO26Vr9GVHwU2y9sZ+v5rey6vIuj149iNlKu9XWn0FspFxnOjhQsJNPMnj2bsmXLEhUVxeHDh6lQoYKtSxIRERG5q7jYGDZ99++Y0IZdumMymazSd1hUGGvPrGX9ufVsv7CdmISYe7Z1sXch0DuQ0l6l8fPww9fdN0c8BgUKFpKJHB0dGTJkiK3LEBEREUnV7t9/5dbVMABKP1KLkpWrZqi/yLhIgs8G89vJ39h6fisJRkKKNiZMlMtfjhpFalC9cHUq+FSghEcJ7O3sM3RtW1GwEBEREZE8LTIinO0/fw+AyWRHwy7dHrivA2EH+PbIt/xx6g8i4yNTHC/kWohGfo1o7NeYGkVr4Ol0/3ELOYmChYiIiIjkadsXf0dsVGIIqNykGQVLlErX+bEJsaw8tZJvD3/LvrB9KY4Xy1eM1gGtedz/cSr6VMTOlDsntVGwEBEREZE868bFC+z5YzkADk7O1Hv6+TSfezvuNj8c+YEFBxcQFhWW7JiHowfN/ZvTpnQbHinySK4NE3dSsBARERGRPGvTtwsxJ8QDULNNe9x9CqR6TnhMOF8d+oqvDn1FRGxEsmPl85fnuQrP0bp0a1wdXDOl5uxKwUJERERE8qQLx49wZOtGAFw9vajZ9qn7tr8dd5uFBxYy/8D8ZOMnTJh4rORjvPDQC1QvXN1qs0nlNAoWIiIiIpLnGIbBhkXzLNv1OnXB2c3trm3jEuL48diPfLL3E65FX7PstzfZ80TpJ+hRuQelvUtnes3ZnYKFiIiIiOQ5J3f9yblD+wHIX6w4VR5rkaKNYRj8cfoP3t/1PmdvnrXsdzA50KFsB3pU6YGvu2+W1ZzdKViIiIiISJ5iTkhgw1fzLdsNn+uGvUPyj8Unbpxg8vbJbL+4Pdn+Fv4teKP6G5TyTN/MUXmBgoWIiIiI5Cn7g1dxLTTxDkSxchUoU7uu5djtuNvM3jObrw59RbwRb9lfu2ht+tfoT+WClbO83pwi9897JXlC+/btqVixIgkJKVe1TKsjR47g4ODAxx9/bMXKREREJDuJjY5iyw9fWbYbP/+yZbD1mtNraPtzWxYcXGAJFb7uvrzf5H0+a/6ZQkUqFCwkhZ07d9KjRw/Kli1Lvnz5cHV1JTAwkBdeeIFVq1bd9Zz4+HjmzZtH69atKVq0KE5OTnh5eVGrVi1GjhzJ6dOnk7X39/fHZDJZftnb21OwYEGaN2/O0qVL01Xv+vXrWbp0KWPGjMHe3t6y//Lly0yePJlOnToREBBguda9lC9fnueee45x48Zx8+bNdNUgIiIiOcPO35Zw+8Z1AMrUqotvhYe4GnWVgesH0m9dP65EXQHAyc6JVx9+lSVPLqFpyaZ5dqan9DAZhmHYuojMFBERgZeXF+Hh4Xh63nvJ9OjoaEJCQggICMDFxSULK8w+zGYzAwcOZMaMGTg4ONC0aVMqV66Mo6MjJ0+eZPXq1Vy/fp3x48czatQoy3mnT5/mySefZO/evRQpUoTHH3+cEiVKcPv2bXbt2sXWrVtxcHBg//79lClTBkgMFufOnWPkyJEAxMbGcvjwYX755RcSEhKYNm0ab731VprqbtSoEWfOnOHkyZPY2f2bldetW0eTJk0wmUyULVuWc+fOERkZyf3+yv/9999UrVqViRMnMmLEiAd5G3Ml/XyIiEhucOv6Nb7o25O4mGhMdnZ0m/YxW2L2MOXPKdyIuWFp19C3IcPqDKOERwnbFZtNpPWzNGiMhdxh5MiRzJgxg2rVqvHjjz8SGBiY7HhUVBSzZs3i6tWrln03b96kRYsWHDlyhEGDBjFhwgScnZ2TnXf8+HEGDBjArVu3ku13cHBg7Nixyfb98ccftGzZktGjR/Pqq6/ido9p35IcOHCAjRs3MmLEiGShAqBixYqsX7+e6tWr4+HhQYUKFThy5Mh9+6tSpQpVq1Zl7ty5DBs2LEWfIiIiknNt/u5L4mKiASgf1IQxR6aw7uw6y3FvZ2+G1h5K64DWukPxABQsBEj88D916lQKFCjAihUrKFKkSIo2rq6uDBo0iJiYGMu+adOmceTIEbp27crUqVPv2neZMmX45ZdfiI2NTbWO5s2bU758eQ4fPsyBAweoVavWfdvPm5c4//TTTz+d4liRIkXu+jpS07lzZ0aOHElwcDCPPfZYus8XERGR7OdSyAn2r1sNgL2LM++7LuXC2X+/LG3p35KhtYdSwDX1lbfl7vR1rAAwf/58EhIS6NWrV6ofxu+8I/HFF18AMHr06FSv4eTklK6a0vJNwZo1a8iXLx+VK1tvMFXdunUtfYuIiEjOZxgG67/8HP55HHqb/0UuGImhwsfFh5lNZvJu43cVKjJIdywEgM2bNwPQtGnTNJ9z+vRpzp07h5+fH2XLlrVKHWvWrOHIkSPky5ePSpUq3bftrVu32LdvH3Xr1k02aDujatasCfz7noiIiEjOdmLHds4e2AdAhFsch0pFAIljKcbXH09B14K2LC/XULBIg5CnOhEfFmbrMu7LoWBBAn768YHPv3jxIgB+fn6Zes6d4uPjLWMs4uLiOHLkCEuXLsUwDCZMmICrq+t9zz9//jxms/mBHne6H09PT1xcXDh37pxV+xUREZGslxAfx7J5H1i2d1S4jqOTM2/VfItnyz+rsRRWpGCRBvFhYcRfumTrMnKdhIQExo0bB4CdnR358+enadOmvP7667Rr1y7V85MGkXt7e1u9Nh8fH8KyeZgUERGR+4uOj2baJ31xvZp4h+KiTzQuFfz4ttFUyuQvY+Pqch8FizRwKJj9b49ltMaiRYty+PBhQkNDKV++fJrPAQgNDX2gazo7OxMdHf1A5wKWOxoZ6eNeoqKiUp2RSkRERLKvMxFnGLyyP1W3RgL2GBh4t6zJ123G4WzvnOr5kn4KFmmQkUeMcor69euzbt061qxZk+ZxFqVKlcLX15ezZ89y7Ngxq42zSKtChQoBcO3aNav2azabCQ8PT3WMh4iIiGRPa8+sZcSmETy0xxHn+MS1F7weqcD/nnzHxpXlbpoVSgDo1q0b9vb2zJkzhytXrty37Z3Tzfbo0QOAiRMnpnqNtEw3mx7FixenQIECqa5NkV7Hjh3DbDZTpUoVq/YrIiIimcswDGbvnU3f4L7YX4+mwhkPAOydnHj2f8NsXF3up2AhQOJaE4MHDyYsLIxWrVoREhKSok10dDTTp09PtqjdwIEDKV++PAsXLmT48OHJQkeSkJAQ2rdvz8GDB61as8lkomHDhoSEhKQahtJj+/btADRu3NhqfYqIiEjmioqPYuD6gXy852MAah7Oj52RODC7drtOePhk/0fbczo9CiUWEydOJDo6mhkzZlC+fHmaNm1K5cqVcXR0JCQkhNWrV3P16tVkdyc8PDxYuXIlTz75JJMnT2bevHk0b94cPz8/IiMj2b17N5s3b8bBwYFp06ZZveYOHTqwZMkSVq1aRZcuXVIc79atm+X3Fy5cSLFv6NChVKhQIdk5q1atwsHBgTZt2li9XhEREbG+i7cv8ubaNzl07RAAxcNcKHE5cayku08BarXtaMvy8gyTYfyzUkguFRERgZeXF+Hh4Xh6et6zXXR0NCEhIQQEBODi4pKFFWY/O3bsYPbs2WzYsIHQ0FDMZjPFihWjXr16dO/enWbNmqU4Jy4ujkWLFvH999+ze/durl27houLC2XLlqVly5b07t2bEiVKWNr7+/tz8eLFDA+8jo6OxtfXlzp16rB8+fIUx1ObQi44OJigoCDLdmRkJEWKFKFZs2b8/PPPGaotN9HPh4iIZFd7r+yl79q+XI1OnC0yn0M+XvyrAlEXEmd3bPlafyo1fsyWJeZoaf0sDbpjIXdRs2ZNPv/883Sd4+joSPfu3enevXua2p86deoBKkvJxcWF1157jXfeeYfTp09TqlSpZMfTm5u//vprbt26Rf/+/a1Sn4iIiGSeZSeXMWrzKOLMcQD4ufvxlmMX9l74DoAipcvyUMMmtiwxT9EYC8nxBg8ejI+PD5MmTcpQP/Hx8bz99tu0a9eORo0aWak6ERERsTbDMPj8788ZunGoJVTUKlqL+U0+49hvKy3tgl7sgclOH3ezit5pyfE8PDz48ssv8ff3JyEh4YH7OXPmDC+++CLTp0+3YnUiIiJiTQnmBCZtn8TMXTMt+54q+xSfPv4ph5atIDL8BgBl69TDr2Jl2xSZR+lRKMkVmjdvTvPmzTPUR+nSpZPNeCUiIiLZS1R8FEM2DCH4bLBl35vV3+SVKq9w/UIou3//BQAHRycad+1hqzLzLAULEREREcn2rkdfp8/aPuy7sg8AB5MD4+qPo11gOwzDIHjBXMz/PLlQs11HvAoXsWW5eZKChYiIiIhka+dunqP36t6cjjgNQD7HfEwPmk694vUAOLnrL07t2QmAR4FC1H6yk81qzcsULEREREQk2zpx4wQ9/+jJ5ajLABRyLcTHzT6mgk/iOlTxcXGsWzjX0r5R1+44OmtqdFtQsBARERGRbOlA2AF6r+7NjZgbAAR4BfBJs08o7l7c0mbX8qXcuJi4CK5fxcqUr9vQFqUKChYiIiIikg39dfEv3lj7BrfjbgPwUIGH+KTZJ+R3yW9pc+v6NbYtTlyzwmSyo0m3nqkujiuZR9PNioiIiEi2suHcBl5d/aolVNQoUoPPm3+eLFQAbPx6PnHRUQBUbdaCwv6ls7xW+ZeChYiIiIhkGytOraDv2r7EJMQA0NC3IZ80+wR3J/dk7c4fPczBDWsBcMnnTr3OXbO8VklOwUJEREREsoVlJ5cxZMMQ4o14AFr6t+T9Ju/j4pB8MLZhNhM8/1PLdr3Oz+Pm6ZWltUpKChYiIiIiYnO/nfyN4ZuGYzbMQOJq2u80fAdHe8cUbQ+sX8PFE8cAKFiiFA8/3jpLa5W70+BtEREREbGpX0/8ysjNIy2h4ulyTzPy0ZHYmVJ+Bx4TeZuN3yywbDfp1gs7e/ssq1XuTXcsJFdo3749FStWJOGfFTezs88++wx7e3v+/vtvW5ciIiJic0uPL2XEphGWUPFM+WfuGSoAtv70LZHhNwAoW6ceJStXzapSJRUKFpLCzp076dGjB2XLliVfvny4uroSGBjICy+8wKpVq+56Tnx8PPPmzaN169YULVoUJycnvLy8qFWrFiNHjuT06dPJ2vv7+2MymSy/7O3tKViwIM2bN2fp0qXpqnf9+vUsXbqUMWPGYH/HNxaXL19m8uTJdOrUiYCAAMu1rOXcuXN4e3tTqFAhLl++fNc2r776KiaTiYkTJ1r2vfTSS5QqVYpBgwZZrRYREZGc6OdjPzNq8ygMDACeq/AcI+qMuGeoCDt7mt2//wKAg6MTjbv2yLJaJXU2DRYbNmygbdu2FC9eHJPJxJIlS5IdNwyD0aNHU6xYMVxdXWnWrBnHjh2zTbF5gNlsZsCAAdSsWZOFCxdSunRpevfuTd++falRowbLli2jefPmTJgwIdl5p0+fpmbNmrz88svs2rWLxx9/nIEDB9KtWzdcXFx45513KF++PMePH092nr29PWPGjGHMmDEMGTKERo0asXbtWtq3b897772X5rpHjRpFqVKl6Ny5c7L9Bw8eZPjw4SxevBgnJyfc3Nwe/M25Cz8/P2bOnElYWBi9evVKcXzlypV88skn1KpVi2HDhln2Ozo60r9/f1auXMnmzZutWpOIiEhOsfjYYkZvGW0JFc9XfJ5htYfd80tAwzBY+8UnmP95OqHWk0/hVbhIltUraWDY0PLly40RI0YYixcvNgDj559/Tnb8nXfeMby8vIwlS5YYe/fuNdq1a2cEBAQYUVFRab5GeHi4ARjh4eH3bRcVFWUcPHgwXX3nNsOGDTMAo1q1asbx48dTHI+MjDSmTp1qDBkyxLIvIiLCKF++vAEYgwYNMqKjo1Ocd+zYMaNt27bG7t27LftKlSplODs7p2i7cuVKw2QyGW5ubsbt27dTrXn//v0GYIwYMSLFsYsXLxrr1683IiIiDMMwLHVaW5s2bQzAWLBggWXf9evXDV9fX8PFxcU4dOhQinMuX75sODg4GF27drV6PZlBPx8iImJNvxz/xagyv4pReX5lo/L8ysaUP6cYZrP5vucc3LTOmNb5CWNa5yeMuW/0MGJjUn7mEOtL62dpwzAMmwaLO/03WJjNZqNo0aLGu+++a9l348YNw9nZ2fjmm2/S3K+CRdocO3bMsLe3NwoUKGBcvHjxvm3vDA+jR482gDR9QI6JibH8/l7BwjAMo0KFCgZg/Pnnn6n2+dZbbxmAsWfPnlTbZlawuHDhguHj42N4e3sb586dMwzDMLp27WoAxvTp0+95XrNmzQwXFxfj5s2bVq/J2vL6z4eIiFjPypCVRtUFVS2h4t0/3001VETfvm3M7vWCJVic2Jn6ZwSxjvQEi2w7xiIkJISLFy/SrFkzyz4vLy/q1KnD1q1b73leTEwMERERyX5J6ubPn09CQgK9evWiSJH731Z0dna2/P6LL74AYPTo0alew8nJKV01pWU8xJo1a8iXLx+VK1dOV9/WVLRoUT766CNu3LhBjx49WLx4MYsWLaJx48b069fvnufVrVuX6OhotmzZknXFioiI2NCGcxsYsmGIZaD2cxWe462ab6X6f/7WH7/i9vVrAATWfJTSj9TK9Fol/bJtsLh48SJAig+5RYoUsRy7m8mTJ+Pl5WX5VaJEiUytM7dIeta/adOmaT7n9OnTnDt3Dj8/P8qWLWuVOtasWcORI0fIly8flSpVum/bW7dusW/fPqpVq5Zs0LYtPPvss3Tq1ImVK1fSpUsX3N3dmTdv3n3/oaxZsyaAxlmIiEiesPX8VvoH97csfte+THuG1h6aaqi4cuYUu37/FUgcsN3kpf9leq3yYHLdOhbDhg1jwIABlu2IiIgMh4vv3/6LyIjYjJaWqdw8neg8/MHTe1JY8/Pzy9Rz7hQfH8/YsWMBiIuL48iRIyxduhTDMJgwYQKurq73Pf/8+fOYzeZU77BklcmTJ/Pjjz8SExPDpEmTCAgIuG/7pLrPnTuXFeWJiIjYzK5Lu+gb3JdYc+LnqVb+rRhbd+w9Z39KYhgGaz6fjWFOvMNRp0NnDdjOxrJtsChatCgAly5dolixYpb9ly5dolq1avc8z9nZOdmjOtYQGRHL7RsxVu1TICEhgXHjxgFgZ2dH/vz5adq0Ka+//jrt2rVL9fyrV68C4O3tnZllptmds2UtWbKE/v37Y2d3738wfXx8AAgLC8v02kRERGxlf9h+XlvzGlHxUQA0KdGESQ0nYW+X+tMGhzatI/TwAQC8ixajZrunMrVWyZhsGywCAgIoWrQoa9assQSJiIgItm/fzquvvpqltbh5pm9sgC1ktMaiRYty+PBhQkNDKV++fJrPAQgNDX2gazo7OxMdHf1A5wKWOxoZ6cNali5dysKFCwkKCsLPz49Fixbx/vvv079//3ueExWV+A+stafBFRERyS6OXz9O79W9uR13G4D6xeszrfE0HO0cUz03+vYt1n/5uWW7affeODimfp7Yjk2Dxa1bt5KtbRASEsKePXvw8fGhZMmS9OvXj4kTJ1K2bFkCAgIYNWoUxYsXp3379llaZ0YeMcop6tevz7p161izZk2ax1mUKlUKX19fzp49y7Fjx6w2ziKtChUqBMC1a9ey9Lr/lbSORdK4Ci8vL9auXcuIESNo06bNPd+XpLqTXoeIiEhucuHWBXqt7kV4TDgANYvUZEaTGTjZp+3L0C0/fPXvCtu16xFQrUZmlSpWYtPB2zt27KB69epUr14dgAEDBlC9enXLDEODBw/mjTfeoGfPntSqVYtbt26xYsUKXFxcbFl2rtStWzfs7e2ZM2cOV65cuW/bmJh/Hwvr0SNxxcs7V5a+l9hY645TKV68OAUKFODIkSNW7Te9XnvtNS5dusR7772Hv78/+fPnZ86cOURFRdG9e3fM/zwX+l9JdVepUiUryxUREcl016Ov03NVTy5HXgbgoQIPMeuxWbg63H/8ZJLLp06yZ8UyABycnQl66ZVMq1Wsx6bBIigoCCNxLY1kv+bPnw8kTjc6fvx4Ll68SHR0NKtXr6ZcuXK2LDnXKlOmDIMHDyYsLIxWrVoREhKSok10dDTTp0+3DLgGGDhwIOXLl2fhwoUMHz48WehIEhISQvv27Tl48KBVazaZTDRs2JCQkJBUw1BaBQUFYTKZWLduXZraf/PNN/zwww+0aNGCnj17WvY/8cQTdOvWjc2bNzNjxoy7nrt9+3YAGjdunOG6RUREsovIuEheW/0apyJOAeDv6c/sZrPJ55gvTecbZjNrvvgE458paR/t+CyeBQtnVrliRdl2jIVkvYkTJxIdHc2MGTMoX748TZs2pXLlyjg6OhISEsLq1au5evVqsrsTHh4erFy5kieffJLJkyczb948mjdvjp+fH5GRkezevZvNmzfj4ODAtGnTrF5zhw4dWLJkCatWraJLly4pjnfr1s3y+wsXLqTYN3ToUCpUqGDZTrq74OCQ+o/GhQsX6NOnD97e3nz++ecpjs+cOZPVq1czcuRI2rRpk2zsimEYrFmzhooVKyosi4hIrhGXEEe/4H7sv7ofgMKuhfnk8U/wcfFJcx8HNqzl/JHELyPzF/ejZpv2mVGqZAKTYRiGrYvITBEREXh5eREeHo6np+c920VHRxMSEkJAQECef9Rqx44dzJ49mw0bNhAaGorZbKZYsWLUq1eP7t27J1u0MElcXByLFi3i+++/Z/fu3Vy7dg0XFxfKli1Ly5Yt6d27d7Jpf/39/S13ojIiOjoaX19f6tSpw/Lly1McT21u7ODgYIKCgoDED/sFCxbE09OTY8eOpRou2rRpw7Jly1iwYAEvvvjiXdusXLmSli1bUrduXTZt2mSZJWr9+vUEBQUxc+ZM+vbtm4ZXalv6+RARkdSYDTNDNgxhxakVAHg4ebCg5QLK5k/7GMyomxHM69+bqJuJCxw/NWIC/lWrZ0q9kjZp/SwNumMhd1GzZs27fgN/P46OjnTv3p3u3bunqf2pU6ceoLKUXFxceO2113jnnXc4ffo0pUqVSnY8Pbn5wIEDXLt2jQkTJqTpjsVvv/2WapsWLVrctYa5c+fi4+PDSy+9lOb6REREsivDMHjnz3csocLF3oWPHvsoXaECYMNX8yyholzdhgoVOUy2XXlbJK0GDx6Mj48PkyZNylA/GzdupEiRIrz88stWquzujh49yrfffsvIkSOzzRocIiIiGTFn3xy+OfwNAPYme94Leo/qhdMXCs4d3M/+4FUAOLm6aYXtHEjBQnI8Dw8PvvzyS/z9/UlISHjgfl599VUuXryY6Y/6nDt3jjFjxvD6669n6nVERESywpLjS5i1Z5Zle3z98TTya5SuPhLi41j12UeW7YbPvYR7/rSPy5DsQY9CSa7QvHlzmjdvbusy0qRp06ZpXitEREQkO9t6fivjtoyzbA+sOZB2ge3S3c9fvyzmWuhZAIqWKUfVx1tarUbJOrpjISIiIiLpduTaEfqv60+8EQ/A8xWf58WH7j6Zyf1cv3ie7Yu/A8BkZ8fj/+uDnZ29VWuVrKFgISIiIiLpcun2JV5b8xq3424D0LREUwbVHJTqbIz/ZRgGaz6fTXxc4iK6j7R+ksL+pa1er2QNBQsRERERSbNbsbd4fc3rllW1qxSswjuN3sH+Ae4yHN6ygdP7dgPgUbAQ9Z5OuSaV5BwKFiIiIiKSJnHmON5a/xZHrh8BwNfdlw+bfoirg2u6+4q+dYt1C+Zath97uTdOLunvR7IPBQsRERERSZVhGEzYOoEt57cA4OXsxexmsyngWuCB+tv4zXwiw28AUKZWXQJr1LFWqWIjChYiIiIikqo5++bw8/GfAXCyc+KDJh8Q4BXwQH2dP3qIfasTF9NzdHGlafdeVqtTbEfBQkRERETua/nJ5cnWqpjUYBKPFHnkgfpKiI9n1dx/16xo8ExXPAoUzHCNYnsKFiIiIiJyT/uu7GPU5lGW7f41+tMy4MHXmdi5bAlhZ04BUDggkGot22S0RMkmFCxERERE5K4u3LrAm2vfJNacOB3sU2Wfonul7g/c3/ULoWz94WsATCatWZHbKFiIiIiISAqRcZG8sfYNrkZfBaBmkZqMqDMi3WtVJDEMg1VzZt2xZkU7igaWtVq9YnsKFpIrtG/fnooVK5KQkGDrUrK91atXYzKZWL58ua1LERGRbMpsmBm6cahlWtkSHiWYETQDR3vHB+7z77UrOXvwbwC8ChehfueuVqlVsg8FC0lh586d9OjRg7Jly5IvXz5cXV0JDAzkhRdeYNWqVXc9Jz4+nnnz5tG6dWuKFi2Kk5MTXl5e1KpVi5EjR3L69Olk7f39/TGZTJZf9vb2FCxYkObNm7N06dJ01bt+/XqWLl3KmDFjsLf/93bq5cuXmTx5Mp06dSIgIMByLWs5d+4c3t7eFCpUiMuXL9+1zauvvorJZGLixIl3Pe7v78+6detSvZbJZOLUqVN3Pfb777/z7LPPUqFCBby9vXFzc6NChQr06NGDo0ePpmjfrFkzGjRowODBgxXERETkrt7f9T7BZ4MB8HD0YNZjs/B28X7g/m5du8qGRfMs24//7w0cXVwyWqZkMwoWYmE2mxkwYAA1a9Zk4cKFlC5dmt69e9O3b19q1KjBsmXLaN68ORMmTEh23unTp6lZsyYvv/wyu3bt4vHHH2fgwIF069YNFxcX3nnnHcqXL8/x48eTnWdvb8+YMWMYM2YMQ4YMoVGjRqxdu5b27dvz3nvvpbnuUaNGUapUKTp37pxs/8GDBxk+fDiLFy/GyckJNze3B39z7sLPz4+ZM2cSFhZGr14pp8lbuXIln3zyCbVq1WLYsGEAREREcOPGjXv2efbsWQCuXLlCdHT0XdskJCRw/vx5y/by5cvZtm0bDz/8MN27d6dPnz6ULVuWBQsWULVqVdauXZuij8GDB3PgwAG+/fbb9LxkERHJA5YeX8oX+78AwN5kz7SgaZT2Kv3A/RmGwZovZhMTeRuASo2bUapqNWuUKtmNkcuFh4cbgBEeHn7fdlFRUcbBgweNqKioLKos+xk2bJgBGNWqVTOOHz+e4nhkZKQxdepUY8iQIZZ9ERERRvny5Q3AGDRokBEdHZ3ivGPHjhlt27Y1du/ebdlXqlQpw9nZOUXblStXGiaTyXBzczNu376das379+83AGPEiBEpjl28eNFYv369ERERYRiGYanT2tq0aWMAxoIFCyz7rl+/bvj6+houLi7GoUOHLPs/++wzo0iRIsbChQsNw0h8H4KDg42DBw8aTZo0MRo2bGgYhmGMGjXKCAwMNJYvX24YhmEARkhIiLF161ajWrVqxgsvvGDp815/Z1evXm0ARs2aNVMci42NNQoWLGg0aNAgTa9RPx8iInnDzos7jWoLqxmV51c2Ks+vbHx96OsM93lk2yZjWucnjGmdnzA+/t/zRuTNCCtUKlklrZ+lDcMwFCz+kdc/OB07dsywt7c3ChQoYFy8ePG+be8MD6NHjzYAo2vXrqleIyYmxvL7ewULwzCMChUqGIDx559/ptrnW2+9ZQDGnj17Um2bWcHiwoULho+Pj+Ht7W2cO3fOMAzD6Nq1qwEY06dPT9F+/fr1Ru3atY3GjRsbPj4+Rps2bYyiRYsa7733XrL36OeffzYqVKhgdOzY0QCM9u3bGyVLljS++OILIyEhIU215c+f3/D29r7rsVdeecUAjGPHjqXaT17/+RARyQvORpw1Gn7T0BIqJm6dmOE+o27eNGb37GoJFoe3bLBCpZKV0hMs9CiUADB//nwSEhLo1asXRYoUuW9bZ2dny++/+CLxVuno0aNTvYaTk1O6akrLeIg1a9aQL18+KleunK6+ralo0aJ89NFH3Lhxgx49erB48WIWLVpE48aN6devX4r2jRo1Ytu2bRQrVoxr166xc+dOtmzZwoABA5K9R+3bt2f37t1cvZo4G8eRI0fYvXs33bt3x84u9R/drVu3cv369Xu+N3Xr1gW466NSIiKSt9yOu80ba9/gesx1AOoWq8uQ2kMy3O/6RZ9z+0Zin4E161Du0QYZ7lOyLwULAWDz5s0ANG3aNM3nnD59mnPnzuHn50fZstaZLm7NmjUcOXKEfPnyUalSpfu2vXXrFvv27aNatWrJBm3bwrPPPkunTp1YuXIlXbp0wd3dnXnz5t01HG3YsIFHH32UCxcu4OPjwyOPPEK9evWYMWMGsbGxlnZLly6levXq+Pj4AFC+fHmqV6/O/PnzMZvNKfr9448/GDt2LMOGDaNTp040adKEggULMmPGjLvWXLNmTeDfP3sREcmbzIaZEZtGcPxG4lhIf09/pgVNw8HOIUP9nv57D/uDEyd9cXJ147Eer1p1EhXJfjL2NyaPWDSsnyVtZ1f5vPPTdfLMBz7/4sWLQOKA5Mw8507x8fGMHTsWgLi4OI4cOcLSpUsxDIMJEybg6up63/PPnz+P2WxO9Q5LVpk8eTI//vgjMTExTJo0iYCAgBRtvvjiC4YPH87UqVN58cUX8ff3Z+DAgRQpUoTXXnuNn3/+mQ0bNjB69Gi++uorZs2aRatWrTCZTMyYMYOLFy/y6quvsnbtWhYuXJis7z/++CPZoPcyZcrw7bffUqNGjbvWm/S+nTt3zorvgoiI5DRz9s1hzZk1QOIMUB82/RBPJ88M9RkXE82qubMs242e74aHT8EM9SnZn4JFGty+cZ1b167auoxcJyEhgXHjxgFgZ2dH/vz5adq0Ka+//jrt2rVL9fykR4S8vb0zs8w0u3O2rCVLltC/f/8Ujyx16tSJjh07pqi5YsWKBAcHc+bMGQDeeOMNhg8fjst/puJ79NFH2bFjhyXU3WnatGlMmzaNW7ducfDgQcaPH0/9+vX54osv6NKlS4r2SXdCwsLCHuj1iohIzhd8JpiP9nwEgAkTUxpNwd/LP8P9bv7+K8Iv/fMFZMXKVH2sZYb7lOxPwSIN8nnnt3UJqcpojUWLFuXw4cOEhoZSvnz5NJ8DEBoa+kDXdHZ2vueUqmmRdEcjI31Yy9KlS1m4cCFBQUH4+fmxaNEi3n//ffr375+snafn/b8BKlmyJACFChW6Zxt7e3t8fX3vedzd3Z3atWuzZMkSatasSc+ePXn88cdT9BkVFQVg9Wl4RUQkZzh54yTDNg2zbL/5yJs09GuY4X4vnjjGrmWJa1LZOzryeM8+mNIwNlByPgWLNMjII0Y5Rf369Vm3bh1r1qxJ8ziLUqVK4evry9mzZzl27JjVxlmkVdIH5WvXrmXpdf8raR2LpHEVXl5erF27lhEjRtCmTZv7vi/3WvTuvwzDSHddDg4ONGnShL1797Jjxw5atWqV7HjS+3a/ECMiIrlTRGwEbwa/ye24xLUlWvi3oEflHhnuNz4ujhUfz8AwEscC1n3qOXyKP9gj05LzKD4KAN26dcPe3p45c+Zw5cqV+7aNiYmx/L5Hj8R/hO61svSd7hyYbA3FixenQIECHDlyxKr9ptdrr73GpUuXeO+99/D39yd//vzMmTOHqKgounfvfteB1lklaSE9R0fHFMeS3rcqVapkaU0iImJbCeYEhm4YyumI0wCUy1+O8fXGW2Vg9bafvuHqucTHegv7B1KzbccM9yk5h4KFAIkDfQcPHkxYWBitWrUiJCQkRZvo6GimT59uGXANMHDgQMqXL8/ChQsZPnx4stCRJCQkhPbt23Pw4EGr1mwymWjYsCEhISGphqG0CgoKwmQysW7dujS1/+abb/jhhx9o0aIFPXv2tOx/4okn6NatG5s3b77nrEzWsmPHjrvuX7lyJT///DPe3t6WqWXvtH37dgAaN26cqfWJiEj28tGej9gYuhEAb2dv3m/yPm6OGX8s9uKJY/y59EcA7OwdaPlaP+wd9HBMXqI/bbGYOHEi0dHRzJgxg/Lly9O0aVMqV66Mo6MjISEhrF69mqtXrya7O+Hh4cHKlSt58sknmTx5MvPmzaN58+b4+fkRGRnJ7t272bx5Mw4ODkybNs3qNXfo0IElS5awatWquw5Q7tatm+X3Fy5cSLFv6NChVKhQwbKddHfBIQ3/EF64cIE+ffrg7e3N559/nuL4zJkzWb16NSNHjqRNmzZpHruSXrVq1aJy5cpUrVoVPz8/bt++zb59+9i4cSOOjo588cUX5MuXL8V5q1atIn/+/DRq1ChT6hIRkexn5amVzP17LgD2Jnvebfwufh4Zf1TJ8gjUP/+PPvrUMxQqlXJ2RMndTMaDPLydg0RERODl5UV4ePh9B85GR0cTEhJCQEBAipl48podO3Ywe/ZsNmzYQGhoKGazmWLFilGvXj26d+9Os2bNUpwTFxfHokWL+P7779m9ezfXrl3DxcWFsmXL0rJlS3r37k2JEiUs7f39/bl48WKGB15HR0fj6+tLnTp1WL58eYrjqd3WDQ4OJigoCEgcx1CwYEE8PT05duxYquGiTZs2LFu2jAULFvDiiy/etc3KlStp2bIldevWZdOmTWla2C69Jk+eTHBwMAcPHuTKlSvY2dlRsmRJgoKC6NevHxUrVkxxzqlTpyhdujR9+/ZN0x0V/XyIiOR8R64d4YXfXyAqPnHyjsG1BvPCQy9Ype9N337J9p+/AxIfgeoy6T3drcgl0vpZGhQsLPTBKecaNWoU77zzDsePH6dUqVIP3M/+/fupUqUKH330Ea+99poVK8x+Ro4cydSpUzl06BCBgYGpttfPh4hIznYj+gbPLnuW0FuJMzm2C2zHxPoTrTKu4uKJY3w98i0Msxk7e3u6Tp6puxW5SHqChcZYSI43ePBgfHx8mDRpUob62bhxI0WKFOHll1+2UmXZ0/Xr1/nwww959dVX0xQqREQkZ0swJzB041BLqKhUoBKjHh1llVARHxfHytkz/30EquOzChV5mIKF5HgeHh58+eWX+Pv7k5CQ8MD9vPrqq1y8eDHXfyMfEhJC//79GT16tK1LERGRLDB772w2n98MgI+LDzObzMTFwTr/12376VvCzibOLlXIvzS12z9tlX4lZ9LDb5IrNG/enObNm9u6jBzhkUce4ZFHHrF1GSIikgU2nNvAp/s+BcDOZMe7jd6laL6iVun70snj/Ln0h8S+7e1p+apmgcrrdMdCREREJBc6e/MsQzcOtWz3faQvtYvVtkrfKWaB6vgshf1LW6VvybkULERERERymej4aAasG8DN2JsAPFbyMbpX6m61/rcv1iNQkpKChYiIiEguYhgGE7ZN4PC1wwD4e/pbbQYoSHwEavsSPQIlKSlY/Ecun31X5IHo50JEJOf44egP/HLiFwBcHVyZETQDdyd3q/QdHxvL7x9NtzwCVafDM3oESiwULP5hb28PJC70JiLJJf1cJP2ciIhI9rQ/bD/v/PmOZXts3bGUyV/Gav1v+u5Lrp47AyQ+AlWnQ2er9S05n4LFPxwdHXF2diY8PFzfzorcwTAMwsPDcXZ2xtHR0dbliIjIPVyPvk7/df2JMyd+GfR8xedpXbq11fo/e/Bvdi5bAoC9gwOtXx+gR6AkGf1tuEPBggUJDQ3l3LlzeHl54ejoaLXnEUVyGsMwiIuLIzw8nFu3buHr62vrkkRE5B4SzAkM3jCYi7cvAlCtUDXeqvGW1fqPiYxkxccz4Z8vX+s/+yIFS/pbrX/JHRQs7pC0THlYWBihoaE2rkYke3B2dsbX19fy8yEiItnPR3s+YtuFbQAUcCnAe0Hv4WhvvbvM6xbOJeLKJQB8K1SixhNPWq1vyT0ULP7D09MTT09P4uLiMrSKs0huYG9vr8efRESyufVn1zP377kA2JvsebfxuxR2K2y1/o/v2M7+4FUAOLq40ur1/tjZacydpKRgcQ+Ojo76QCUiIiLZ2vlb5xm+abhlu98j/ahVtJbV+o+MCGfVnA8t201e+h9eha2zcrfkPhq8LSIiIpIDxSXEMWj9ICJiIwBoWqIpL1V6yWr9G4bBqjmziAy/AUDpGrWp3ORxq/UvuY+ChYiIiEgONGPXDPaF7QPA192X8fXHW3XSmYMb1nL8r60AuHp40rznG5rUJgsZhsHFkHA2/3iM2+Exti4nTfQolIiIiEgOs+b0Gr48+CUAjnaOvNf4PbycvazWf0TYZdbO+9Sy3ex/r5PPO7/V+pe7MwyDS6ciOLHzMid2XeHmtWgAPAu6UiXIz8bVpU7BQkRERCQHOXvzLKM2j7JsD6w5kEoFK1mtf7M5gd8/mk5sVCQADzVsQrk69a3WvyR3rzBxpxO7LytYiIiIiIj1xCbEMnD9QG7G3QSgeanmPFfhOateY8evP3Pu4H4APAoUokn3XlbtX9IWJuzsTPhVyE9gjcKUfriQDapMPwULERERkRxi2o5pHLx6EICSHiUZV2+cVcc9XDp5nM3fJT5ihclEqz4DcMnnbrX+87IHCRMu7jlrhlIFCxEREZEcYMWpFXxz+BsAnOyceC/oPdydrPehPy46mmUfvIv5n3W8aj/ZiRIPVbFa/3lRXggTd1KwEBEREcnmTkecZuyWsZbtoXWGUsGnglWvEbxwLtcvhAJQpHRZ6j3dxar95xV5LUzcScFCREREJBuLSYhh4PqB3I67DUDrgNZ0KtvJqtc49ucW/l6zEgAHZ2davzEQe4fc8WE3K+TlMHEnBQsRERGRbGzKn1M4fO0wAP6e/oypO8aq4ypuXbvKH5/eubp2T3yK+1qt/9xKYSIlBQsRERGRbGrZyWX8cPQHAFzsXXgv6D3cHN2s1r9hNvP7xzOIvpU4y1SZWnWp0rS51frPbRQm7k/BQkRERCQbCgkPYdzWcZbt4XWGUy5/OateY+fypZz5ew8A7vl9aN5Lq2v/l8JE2ilYiIiIiGQz0fHRDFw/kKj4KACeDHySDmU7WPUal0+dZNM3CyzbLV8bgKuHp1WvkVMpTDwYBQsRERGRbGbajmkcvX4UgECvQEY8OsKq/cfFJE4tmxAfD0CNNh0oVbWaVa+R0xiGweVTNzm+85LCxANSsBARERHJRlafXs13R74DwNnemXcbv4urg6tVrxE8fw7XQs8CUKhUAA2efdGq/ecUChPWpWAhIiIikk2cv3We0VtGW7aH1B5C2fxlrXqNw5vX8/faP4DEqWWfeHMwDo5558OywkTmUbAQERERyQbizHEM3jCYm7GJMzS18G9h9fUqbly8wKq5syzbj738KgX8Slj1GtmRwkTWULAQERERyQZm75nN3it7AfB197X6ehUJ8XH89v5UYqMSB4RXbBBEpcaPWa3/7EZhIuspWIiIiIjY2NbzW/ns788AcDA5MLXRVDycPKx6jY1fL+DSyWMAeBctRrNXXst1U8sqTNhWtg4WCQkJjB07lkWLFnHx4kWKFy9Ot27dGDlyZK77QRAREZG8KSwqjOGbhmNgAPDmI29StVBVq17j5K6/2LlsCQD2Dg606TsEJ1frLbRnS2kJEyY7EyUUJjJdtg4WU6ZMYfbs2SxYsIBKlSqxY8cOunfvjpeXF2+++aatyxMRERHJELNhZuSmkYRFhQFQv3h9Xqr0klWvcfNaGL9/PMOy3ajryxQpXcaq18hqChPZU7YOFlu2bOHJJ5/kiSeeAMDf359vvvmGP//808aViYiIiGTcggML2Hx+MwAFXQsyqcEk7Ex2VuvfbE5g+YfTiL4ZAUBgzTpUb9nWav1nJYWJ7C9bB4t69eoxZ84cjh49Srly5di7dy+bNm1i+vTpti5NREREJEP2XtnLB7s+AMCEibcbvE0B1wJWvca2n77j3MH9ALgXKEiL3n1z1OPkChM5S7YOFkOHDiUiIoIKFSpgb29PQkICkyZN4vnnn7/nOTExMcTExFi2IyIisqJUERERkTSLiI1gyIYhxBuJK1+/UuUV6hava9VrnD34N9t++hYAk8mOJ94YiKuHp1WvkRkUJnKubB0svv/+e7766iu+/vprKlWqxJ49e+jXrx/FixfnpZfu/vzh5MmTGTduXBZXKiIiIpI2hmEwbss4Qm+FAlCtUDVerfaqVa8RGRHO8g+nYRhmAOo93QW/ipWteg1rUpjIHUyGYRi2LuJeSpQowdChQ3n99dct+yZOnMiiRYs4fPjwXc+52x2LEiVKEB4ejqdn9k/pIiIikrv9cPQHxm8dD4CHkwc/tv2R4u7Frda/2ZzA4sljOb1vNwAlK1flqRETsLOzt9o1rMESJnZd5sTOywoT2VRERAReXl5p+iydre9YREZGYmeXfACTvb09ZrP5nuc4Ozvj7Oyc2aWJiIiIpNux68eY8ucUy/b4euOtGiogcVxFUqhw8/KmVZ+B2SZUKEzkbtk6WLRt25ZJkyZRsmRJKlWqxO7du5k+fTovv/yyrUsTERERSZeo+CgGrR9ETELikxXPln+WZqWaWfUap/btZutP3wD/jKt4czDu+X2seo30UpjIO7J1sPjwww8ZNWoUr732GpcvX6Z48eL06tWL0aNH27o0ERERkXR59693ORF+AoBy+csxsNZAq/Z/82oYyz94F/55yr3+M10pWdm6C+2llcJE3pStx1hYQ3qeCxMRERHJDGvPrKVvcF8AXB1c+bbNt5T2Km21/hPi4/l+3DDOHz0EQED1mnQYPBqTnfXWxEiNwkTulGvGWIiIiIjkdFcirzBmyxjL9uBag60aKgA2fj3fEio8Chai1esDsiRUKEzInRQsRERERDKJ2TAzYtMIbsTcAOCxko/xVNmnrHqNY9u3sHPZEgDs7B1o239opq5XoTAh96JgISIiIpJJFh1cxNYLWwEo7FqYsXXHWnXl6+sXz7Ni9kzLdtCLPShWprzV+k+iMCFpoWAhIiIikgmOXDvCzF0zLdsTG0zE28Xbav3Hxcbw64x3iI2KBKB83YZUa9HGav0rTEh6KViIiIiIWFl0fDRDNgwhzhwHwEsPvUTd4nWteo21X3zKlVMnAchf3I/mvd7I8N2QtIYJvwr5KaMwIf+hYCEiIiJiZe/teM8ytWwFnwq8+cibVu1/35oV7A/+AwAHJ2fa9R+Kk6vbA/WlMCHWomAhIiIiYkXrz67n2yPfAuBs78yUhlNwsneyWv8Xjh1h7RefWLYf79mHgiX909WHwoRkBgULERERESsJiwpj9JZ/F/IdVHMQpb2tN7Xs7RvX+WX62yTExwNQvVVbHmrYJE3nKkxIZlOwEBEREbECwzAYtXkU16KvARDkF0Tn8p2t1n9CfDy/zZzCrWtXAfCtUInGXXukWpPChGQVBQsRERERK/j68NdsCt0EQAGXAoyrP86qU8tuWPQF5w7tB8A9vw9t+w/F3iHlRzmFCbEVBQsRERGRDDp2/RjTd0y3bE9sMBEfFx+r9X9wYzC7fv8F+GcRvAHDyeed33JcYUKyAwULERERkQyISYhhyMYhxJpjAehasSsNfBtYrf/Lp06yas4sy/ZjL/emeLkKChOS7ShYiIiIiGTAzJ0zOXb9GABl85elX41+Vus76tZNfnlvEvGxMQBUbvI4hUvXZfNPxxUmJNtRsBARERF5QJtCN7Ho0CIAnOycmNJwCs72zlbp22xOYNn7Uwm/fAmAfD4luXiqOsen7kzRVmFCsoMHChY3btzgzz//5PLly5jN5mTHXnzxRasUJiIiIpKdXYu+xshNIy3bA2oOoGz+slbp2zAM/vj0c07v2524w+RKfEILbt2It7RRmJDsJt3B4tdff+X555/n1q1beHp6JpvtwGQyKViIiIhIrmcYBmM2j+FqdOLUr/V969OlQpcM95k0ZuLAumBuXv7lnyMmHPO1wWTnoTAh2Vq6g8Vbb73Fyy+/zNtvv42b24MtHS8iIiKSk31/5HvWnVsHgI+LDxPrT3ygqWXvNgDbHH+R2Ju/Wdo4ugXh//DDChOS7aU7WISGhvLmm28qVIiIiEiedPLGSd7d8a5le0L9CRR0LZjm8+83m5NhvkXsraVAAgB+lRrQrv8buHo4Wa1+kcyS7mDRokULduzYQenS1lueXkRERCQniE2IZcjGIcQkJM7S9Gz5Z2nk1yjV8wzD4PLpmxzfeZkTuy5z82rK2ZwwJWBKWA7GbQB8KzxEp+FvYe+gOxSSM6QpWPzyyy+W3z/xxBMMGjSIgwcPUqVKFRwdk/9lb9eunXUrFBEREckmPtj1AYevHQYg0CuQt2q+dc+2aQkTSWMmAqsX4uTOrzm69RwAHgUK0W7AcIUKyVFMhmEYqTWys7NLW2cmEwkJCRkuypoiIiLw8vIiPDwcT09PW5cjIiIiOdTW81vpuaonAI52jnzzxDeU9ymfrE16wkSZRwoTUK0gru5O/PXrYjYs+gIAB2dnnhv/LoX99XSI2F56Pkun6Y7Ff6eUFREREclLbkTfYMSmEZbtfo/0s4SKBw0TSU7u/osNX82zbLd6fYBCheRI6R5jsXDhQp555hmcnZMv/hIbG8u3336r6WZFREQkVzEMg7Fbx3Il6goAdYvV5fmKz3PpVMQDh4kkV0PPsuz9d+GfB0jqdnqOcnXqZ+4LEskkaXoU6k729vZcuHCBwoULJ9t/9epVChcurEehREREJFf58eiPjNs6DgwoHfsQfTxHcOHvWw8cJpJE3Yzg65FvcePiBQDK1q5H2/5DMaXxEXSRrGD1R6HuZBjGXedpPnfuHF5eXuntTkRERCTbOnnjJJ+v/ZpHL7Wj9LVqeMYU4ChhydqkJ0wkSYiP45f33raEikIl/Wn5en+FCsnR0hwsqlevjslkwmQy8dhjj+Hg8O+pCQkJhISE0LJly0wpUkRERCSrJI2ZOPrXBf7ccog2UX1StHmQMHFn/6vmzOLcof0AuHl5037waJxcXK32GkRsIc3Bon379gDs2bOHFi1a4O7ubjnm5OSEv78/Tz31lNULFBEREcls9xqA7cK/j36Y7MCvgs8DhYk7/bnkBw6sXwOAg6MT7QePwrNQ4VTOEsn+0hwsxowZA4C/vz/PPPMMLi4umVaUiIiISGZLy2xOZhI4732cx4JqUb9B1QcOE0mObN3Ipm8XWrZb9RlAsTLl73OGSM6R7jEWL730UmbUISIiIpLp0jY1LFz0PsEh7z855fM3rz3ai2aVa2b42uePHub3j6Zbths89xLlHm2Q4X5Fsos0BYv8+fPfdcD23Vy7di1DBYmIiIhYU3pXwJ4X+QErLy4HoE7ROrxUKeNfqoZfvsTSaRNJiIsDoFJQM2o/2SnD/YpkJ2kKFjNnzrT8/urVq0ycOJEWLVpQt25dALZu3crKlSsZNWpUphQpIiIikh5JYeLEzsscT8c6Ez8f+5mVWxJDhaeTJxMbTMTOlLGZmmIib/PzlHFEht8AoMRDVXj8f6+n+UtbkZwi3etYPPXUUzRp0oQ+fZLPkDBr1ixWr17NkiVLrFlfhmkdCxERkbzhQcNEkjMRZ+j0ayei4qMAmB40ncdLPZ6hmswJCSx+Zyyn9+0GIH8xX56bOA1Xd48M9SuSVTJ1HYuVK1cyZcqUFPtbtmzJ0KFD09udiIiIyAPLaJhIEmeOY+jGoZZQ0bFsxwyHCsMwWPP5bEuocHH3oMPQMQoVkmulO1gUKFCApUuX8tZbbyXbv3TpUgoUKGC1wkRERETuxlph4k6f7P2Ev8P+BqCkR0mG1BqS4Tq3//w9+9asAMDO3oEnB44gf9HiGe5XJLtKd7AYN24cr7zyCuvWraNOnToAbN++nRUrVjB37lyrFygiIiKSGWEiyc5LO/ns788AcDA5MKXRFNwc3TJU74H1a9j83ZeW7Zav9cOvYuUM9SmS3aU7WHTr1o2KFSvywQcfsHjxYgAqVqzIpk2bLEFDREREJKMyM0wkiYiNYNjGYZgNMwCvV3+dygUzFgBO7d3FH59+YNlu2KUbFRsEZahPkZwg3cECoE6dOnz11VfWrkVERETyuKwIE3dea+LWiVy4fQGAGkVq0L1S9wzVf/nUSX6ZPhlzQgIA1Vo8Qa12T2WoT5GcIk3BIiIiwjIKPCIi4r5tNfOSiIiIpEdWhok7/XbyN34/9TsAHk4eTG4wGXs7+wfuL+LKZRZPHkNcdOIA8DK1HqVJt56aVlbyjDQvkHfhwgUKFy6Mt7f3XX9ADMPAZDKR8E9CFxEREbkXW4WJJGdvnmXS9kmW7dF1R1PMvdgD9xd16yY/TR7D7RvXAShWrgKt3xyEXQaCikhOk6ZgsXbtWsLDwylcuDDBwcGZXZOIiIjkQrYOE0nizfEM2ziM23G3AWgX2I6W/i0fvL/YWJa+O5FroWeBxLUq2g8ahaOTs1XqFckp0hQsGjdujJ2dHaVKlaJJkyaWX35+fpldn4iIiORg2SVM3GnuvrnsvbIXAD93P4bVHvbAfRlmM7/Peo/QwwcAcPPypuOwcbh5elmlVpGcJM2Dt9euXcu6detYt24d33zzDbGxsZQuXZqmTZtagkaRIkUys1YRERHJAbJjmEiy5/IePtn3CQD2JnveafQO7k7uD9SXYRisnT+Ho9s3A+Do7EKHIWPwLlLUavWK5CRpDhZBQUEEBQUBEB0dzZYtWyxBY8GCBcTFxVGhQgUOHDiQWbWKiIhINpWdw0SSW7G3GLpxqGVq2d4P9+bhQg8/cH/bfvqWPSt/A8BkZ0eb/kMoGljWKrWK5EQPNN2si4sLTZs2pUGDBjRp0oTff/+dTz/9lMOHD1u7PhEREcmmckKYuNPb298m9FYoANULV+eVKq88cF97Vi5jyw//Tr3fondfSlevleEaRXKydAWL2NhYtm3bRnBwMOvWrWP79u2UKFGCRo0aMWvWLBo3bpxZdYqIiEg2kNPCRJLlJ5fz68lfAXB3dGdyw8k42D3Q96sc3ryeNfM+sWw3fqEHlRo/ZpU6RXKyNP9ENW3alO3btxMQEEDjxo3p1asXX3/9NcWKPfjUbCIiIpL95dQwkeT8rfNM3DbRsj3i0RH4uvs+UF+n9uzk949mgGEAUPvJTtRs08EqdYrkdGkOFhs3bqRYsWI0bdqUoKAgGjduTIECBTKzNhEREbGRnB4mkiSYExi2cRg3424C8ETpJ2hTus0D9XX+6GGWTn8bc0I8AFWaNqfBcy9ZrVaRnC7NweLGjRts3LiRdevWMWXKFJ577jnKlStH48aNLUGjUKFCmVmriIiIZKLcEibu9Pn+z9l1eRcAxfMVZ0SdEQ/Uz9VzZ/h5yjjiY2IAKFu7Hs3+97pW1Ra5g8kw/rmXl043b95k06ZNlvEWe/fupWzZsuzfv9/aNWZIREQEXl5ehIeH4+npaetyREREspU0h4ny3pSpUSRHhIkk+67s48XfXyTBSMDOZMf8lvOpXrh6uvuJuHKZb0YP4ta1qwCUrFyVDkPG4uCUM94HkYxIz2fpBxu1BOTLlw8fHx98fHzInz8/Dg4OHDp06EG7ExERkSySm8NEkttxtxm6cSgJRgIAPav2fKBQcfvGdX6cNMoSKoqULsOTA0cqVIjcRZqDhdlsZseOHaxbt47g4GA2b97M7du38fX1pUmTJnz00Uc0adIkM2sVERGRB5QXwsSd3vnzHc7ePAtA1UJV6VW1V7r7iLoZwY8TR3L9QuIUtfmL+dJx2DicXN2sWqtIbpHmYOHt7c3t27cpWrQoTZo0YcaMGQQFBREYGJiZ9YmIiMgDymthIsnKUytZcnwJAG4ObrzT4J10Ty0bE3mbn94eTdjZ0wB4FCxEp5ETcPP0sna5IrlGmn/K3n33XZo0aUK5cuUysx4RERHJgLwaJpJcvH2RcVvHWbaH1xlOCc8S6eojLjqaxe+M49LJ4wDk887P06Mm4VmwsFVrFclt0hwsevVK/y1EERERyXyGYXDlzE2O78ibYSKJZWrZ2MSpZVv6t6RdYLt09REfG8uSaRM5f+QgAC4ennQaOZH8RYtbvV6R3OaBB2+LiIiI7ShMpDT/wHx2XNoBQNF8RRn56Mh0TQebEB/HrzMmc+bvPQA4u+Wj04gJFCxRKjPKFcl1FCxERERyCIWJezsQdoBZu2cBYMLE2w3exss57eMhzOYEln/4Hid3/QWAo7MLHYeNpUiAxpKKpJWChYiISDamMJG6yLhIhmwcQryRuCL2K1VeoVbRWmk+3zCb+eOTDzi6bRMADo5OtB88muLlKmZKvSK5lYKFiIhINqMwkT5T/5rK6YjE2ZsqFajEq9VeTfO5htnM6s8/5sD6NQDY2TvQ7q3hlKxcNVNqFcnNFCxERESyAYWJB7Pm9Bp+OvYTAK4OrkxpNAVHO8c0nWsYBmu+mM2+1SsAMNnZ0abvYAKq18y0ekVyMwULERERG1GYyJhLty8xZusYy/bQ2kMp5Zm2gdaGYbDm89nsXfU7ACaTHa1eH0DZOvUypVaRvEDBQkREJAspTFiH2TAzYvMIwmPCAWhWshkdynRI07mJdyo+Ye+q5cA/oaLPACo2CMqsckXyBAULERGRTKYwYX0LDixg+4XtABR2K8zYemPTNLWsYRisnfcJe/9YBiTdqeivUCFiBQoWIiIimSA9YSLwkcKUrl5IYSKNDl49yAe7PwASp5ad3GBymqaWTQwVn7Jn5b+houXr/anYsEmm1iuSVyhYiIiIWInCROaLjItkyIYhxJsTp5btXrk7tYvVTvU8wzAInj+HPSt/S9xhMtHy9f48pFAhYjUKFiIiIhlgCRM7L3Ni12UiwhQmMtPUv6ZyKuIUAA8VeIg+1fqkeo5hGKxbMJfdK35N3GEy0fLVfgoVIlaW7YNFaGgoQ4YM4ffffycyMpIyZcowb948atbUVHAiImIbChO2kWJq2YZTcLS//9SyhtnM2vn/Pv6UFCoqNX4ss8sVyXOydbC4fv069evXp0mTJvz+++8UKlSIY8eOkT9/fluXJiIieYzChG39d2rZIbWG4O/lf99zzOYEVs35iP3BfyTuMJlo0buvQoVIJsnWwWLKlCmUKFGCefPmWfYFBATYsCIREclLFCayh7tNLduxbMf7n5OQwO8fTefw5vXAvwO19fiTSObJ1sHil19+oUWLFjz99NOsX78eX19fXnvtNf73v//ZujQREcmlFCayn/ROLZsQH8eyD97l2PYtANjZ2/PEm4Mo92iDLKlXJK/K1sHi5MmTzJ49mwEDBjB8+HD++usv3nzzTZycnHjppZfuek5MTAwxMTGW7YiIiKwqV0REciiFiewrvVPLxsfG8uuMyZzc9RcA9g4OtB0wjMAadbKkXpG8LFsHC7PZTM2aNXn77bcBqF69Ovv37+eTTz65Z7CYPHky48aNy8oyRUQkB1KYyP7SO7VsXHQ0S6ZN5MzfewBwcHLmyYEj8H/4kawoVyTPy9bBolixYjz00EPJ9lWsWJGffvrpnucMGzaMAQMGWLYjIiIoUaJEptUoIiI5h8JEzpKeqWVjoyJZ/M44Qg8fAMDR2YUOQ8dQ4qEqWVGqiJDNg0X9+vU5cuRIsn1Hjx6lVKlS9zzH2dkZZ2fnzC4tzcyGmVm7Z1G9cHUa+jW0dTkiInmOwkTOlJ6pZaNuRvDzO+O4cDzxM4OTqxtPDR9H8XIVs6xeEcnmwaJ///7Uq1ePt99+m86dO/Pnn38yZ84c5syZY+vS0iQmIYYhG4aw5swa8jnmY1GrRZTJX8bWZYmI5HoKEzlbeqaWvXktjJ8mjebquTMAuLh70GnEBIqU1v+3IlktWweLWrVq8fPPPzNs2DDGjx9PQEAAM2fO5Pnnn7d1aWniaPfvNyu3427TZ20fvnniG/K7aB0OERFrU5jIHdIztez1C6H8OGkUEVcuA5DPOz9PDR9PoVKaml7EFkyGYRi2LiIzRURE4OXlRXh4OJ6enll+/ci4SLqt6Maha4cAeKTwI3zW/LNUVwoVEZHUKUzkPvP2z2P6zulA4tSyi9stvussUJdCTrB48hgiw28A4FWkKJ2GT8C7aLGsLFck10vPZ2kFiyxw8fZFnlv2HGFRYQC0L9Oe8fXG33cObhERuTuFidzr4NWDPL/8eeLN8Zgw8Vnzz+46C9S5g/v5eep4YqMiAShY0p+nho/HPb9PVpcskuul57N0tn4UKrcomq8oHzT5gO4ruxOTEMOS40sI9AqkW+Vuti5NRCRHUJjI/dI6teyJndv5bcYU4uNiASheriIdhozBxd09S+sVkZQULLJIlUJVmFh/IoM2DAJg+s7p+Hv5E1QiyLaFiYhkUwoTeUtappY9uGEtK2bPxDCbAfCvVoN2/Yfh6OKSlaWKyD0oWGShlgEtCQkP4eO9H2NgMGTDEBa2Wkh5n/K2Lk1EJFtQmMib0jK17M5lS1m3cK5lu0L9xrR8rR/2DhqzKJJdKFhksd4P9+Zk+ElWnFpBZHwkb6x9g6+f+JqCrgVtXZqIiE0oTORtqU0ta5jNrF/0BTuXLbHse7j5EzzWvRcmO7ssrFREUqNgkcVMJhMT6k/g3M1z7L+6nwu3L9AvuB+ft/gcZ/vss7CfiEhmUpgQgARzAiM23Xtq2fjYWH7/eAZHt2607Hv0qeeo93QXTYAikg1pVigbuRJ5hWeXPcvlyMS5t58o/QSTG0zWP5QikmspTMh/zd03lw92fwCknFo2+tYtlk6byLlD+wEw2dnR7JXXqPpYS5vVK5IXaVaoHKCQWyFmNZ3FSyteIio+imUnlxHoFcj/qv7P1qWJiFiNwoTcy57Le/hoz0cAmDDxTsN3LKEiIuwyiyePtaym7eDsTNt+Qyn9SC2b1SsiqVOwsKGKBSrydoO36b+uPwAf7P6AAK8AmpVqZuPKREQenMKEpCYiNoIhG4aQYCQA0LNqT2oVTQwNl0+dZPE7Y7l9/RoArp5edBwyhqJlytmsXhFJGwULG2tWqhlvVn/Tcit4+KbhFHcvzkMFHrJxZSIiaacwIWllGAbjt47n/O3zAFQvXJ3eD/cG4PS+PfwyfRKxUVEA5C9WnI5Dx2k1bZEcQsEiG3ilyiucDD/Jbyd/Iyo+ijfWvsE3T3xDYbfCti5NROSeFCbkQfx8/GdWnloJgIeTB+80fAcHOwcOrF/DH59+gDkh8S5GsbLlaT94NG6eXrYsV0TSQcEik8VdvEhCeESq7YYXfJ7oI0c5cv0IcImJX/2PCfUn4GyvRX9EJPswDIOwS3GEHIvk1NEobkYkpGhjMkGxEs4ElHPFv4wrLq72wG0IvU3K6CF5ybmb51i0YRIlEhLnjRlUqxf5z0awbu337Nyw2tIuoEJlHu/UFbsLl4i+cMlW5YpkGw4++XEoVMjWZaRKs0JlsvPDRxC+eHGWX1dExFoM4KZ7CS4XfoTLhR4h+i7r7piMBLyvH6XwlV0UCtuLU9ztrC9UcpwEk4m9JQtz0dvdsq9kWDiVQsPQHIki/yrQqxeF+/ezybU1K1Q2cjX0uN5kEclxFCYks0U72LMzoCjhbv/cmTcMHjp/lVJh4QoVIv9x5cwRcsID8vrMm8niXK9TsHT6/rM97+DAFlcXkv5lrRMVTYm4+EyoTkTkXwZww7EUoflqc86tFpEOKf8bMxkJFIo+hG/kXxSP2omz+Ra4AiWyvFzJQc47OLDlnwBhbxjUjDLY6VycSLvEMTcORgL1o87g63kTss+SUyLZRqjjdVuXkCYKFpksvkIBihUNT9c5xYC/PT14r0B+ABaYXZl34TJVYmMzoUIRycsMA67El+Z4dH1ORNcjIqFoijYmEvBz+ptAly2UdtmGq91NG1QqOdUle3v6+Rblhr09AG8di2fbCX/izIkfQTwcoulQ4gCFXCJtWaZItnbKt4itS0gTjbHIZKcP7STiyrl0n2cYBnPDfmbdrV0AeNu7M6F4bwo4eFu5QhHJawwDbl2348ppB8LOOBJ92y5lI5OBd5EECpWMp6BfPI4uufq/CskkZsPM2xfncTA6BAxoEVqGYvviLMe9ihSmWqvHcc7nZsMqRbK//MUD8StT2SbXTs9naQWLbCwuIY7/rfofOy/tBKCCTwUWtFyAm6P+ARaR9Enr1LC+5bwpU0NTw4p1zNk3hw93f4hdAjQ54kuJU/8+KFGubkNavtYPRydnG1YoIqlRsLhDTg4WANejr/PcsucIvRUKwGMlH2N60HTsTHf5hlFE5A4KE2JLey7voduKbjhFQdNdhSh0498A8ehTz1KvUxdMdvq/TCS7U7C4Q04PFgAnbpyg6/Ku3Iq7BcD/qvyPNx9508ZViUh2pDAh2UFEbASdfulEXOhVmu4shFtM4p0KBydnmvd+k4r1G9u4QhFJK003m8sEegfybuN3eX3N65gNM3P/nkuAVwBtA9vaujQRyQYUJiQ7MQyDcVvGke9wBHUPFMXenDjFoUfBQjw5cCRFAgJtXKGIZBYFixyigW8DBtcazDt/vgPAmC1jKOFRgmqFq9m2MBGxCYUJya5+PPwDN5b/RYPT/6594lexMm37D8XNy9t2hYlIplOwyEG6VOjCiRsn+OHoD8SZ4+gb3JdvnviG4u7FbV2aiGQBhQnJ7g6e28tfH37GQ1f/fVyiWosnCHrxf9g76COHSG6nn/IcxGQyMazOMM5EnGH7xe1ci77G62teZ1HrReRzzGfr8kQkEySFiRO7LnN8p8KEZF+nj+7n53dGUOR24t8/w85E81f6UPWxFjauTESyigZv50DhMeE8v/x5TkecBqCxX2Peb/I+9nb2Nq5MRKxBYUJyEsMw+HvNSv744iNMCYkfKWJd4NkhEwl4qJptixORDNOsUHfIjcEC4FT4Kbos78LN2MQVcLtV6sZbNd+ycVUi8qAUJiQniouJZs3nszmwfo1lX1j+OLoOmUylgEdsWJmIWItmhcoD/L38mR40nd6repNgJDD/wHwCvALoWLajrUsTkTRSmJCc7PqFUH6dPpkrZ05Z9h30j6Ddy/0VKkTyKAWLHOzRYo8yvM5wJmybAMCEbRMo4VGCWkVr2bgyEbkXhQnJDY79tZUVH80gNioSgDh7M1uqXKVKw2Y8Wb6DjasTEVtRsMjhOpfvzIkbJ/j68NfEm+MZsG4AX7f+mhKeJWxdmoj8Q2FCcgtzQgKbvl3IX7/8ZNl3I18cwTUu4+NbghF1RtiwOhGxNQWLXGBQrUGcjjjN5vObuRFzgz5r+7Co9SI8nDxsXZpInqUwIbnNzathLP9wGucO7bfsCyl2m81VrmLv7MS0xtNwc3SzYYUiYmsavJ1L3Iy9SdflXTkZfhKA+sXrM+uxWTjYKTuKZJV0h4lqhXD1UJiQ7O/Ezj9ZMXsm0TcjADDZ27HroZvs9QsDE4ytO5anyj1l4ypFJDNo8HYe5OHkwayms3hu+XOEx4Sz+fxmpu2YxtDaQ21dmkiupjAhuVl8XBwbv57PruVLLfs8ChZke81b7LULA6B1QGtNHCIigIJFrlLCswQzgmbQc1VP4s3xfHXoK0p7laZz+c62Lk0kV1GYkLzg+sXzLHt/KpdOHrfsK1OrLodrGfx56jsASnmWYnTd0ZhMJluVKSLZiIJFLlOraC1GPTqKMVvGAPD29rcp6VmSR4s9auPKRHI2hQnJSw5tXs/qubOIjYoCwN7BgcYvvsLVCi4sWtcfACe7xHEV+Rzz2bJUEclGFCxyoY5lO3LyxkkWHFxAgpFgmSnK38vf1qWJ5CgKE5LXxEVHs3b+p+wPXmXZl7+YL236DSG+oAuv/9rJsn9QrUFU8KlgizJFJJtSsMil+tfoz6mIU6w/t56bsTfps7YPX7X+Ci9nL1uXJpKtKUxIXnXx+FGWz5rG9QvnLfseatSUx3q8isnJgW4runEz9iYAj5d6nGfKP2OrUkUkm9KsULnY7bjbdF3eleM3Ep+PrVO0DrMfn42jnaONKxPJXhQmJC8zJySwfcn3bP3xGwyzGQBHZxce6/EqlRo/BsD0HdOZd2AeAL7uvvzQ9gdNaS6SR6Tns7SCRS4XeiuULsu6cC36GgBPl3uaUY+O0kA7yfMUJkTgxsULLP/oPS4cPWzZV7RMOVq9/hY+xX0BWH92PX3W9gHAwc6BL1t9SeWClW1Sr4hkPU03Kxa+7r7MbDKTHit7EGeO44ejPxDoHcjzFZ+3dWkiWU5hQiSRYRjsX7eK4PlziYtOHKBtMtlRp+MzPNrxGewdEj8ehN4KZfim4ZbzBtQYoFAhIvekYJEHVC9cnXH1xln+c5j611RKeZaigW8DG1cmkvkUJkSSi4wIZ9WcDzn+1zbLPu8ixWjVZwDFy1W07ItNiOWtdW8REZu4KF6zks3oWrFrltcrIjmHgkUe0TawLSfDT/LZ359hNswMWj+IRa0XEegdaOvSRKxOYULk7k7u+os/Pv2A2zeuW/ZVadqcoJf+h5OLa7K2U/+ayoGrBwAo4VGC8fXH6zFaEbkvBYs85I3qb3DyxknWnl3Lrbhb/2/vvsOjKhM2Dv9mJr0TSICEQOi9SBHpVYpYWHZdlwUE1oqAIPJhw4IFWNaGDVlYRVcR22IDEaQjRYpU6b2FhJaeyZTz/REYEzqknEzy3NeVKzPvOZl5ZEwyT855z8uwhcOY2WsmZQLKmB1NJN9UJkQuLystjcUf/Zvfly3yjAWGhnHrQ8Op2aLVRfvP3TeXz3fmLILnZ/Xj9Y6va7K2iFyVJm+XMhmODAbOG8iO0zkT9ZqVb8a0W6fha9OVosT7qEyIXN2+DWtZ8O+3STtz2jNW9abmdH94BMERF/9had/Zffxtzt/IdObMvXih1Qv8udafiyyviBQvmrwtlxXkG8Tbnd+m75y+nMw8yfoT63lp9UuMaz1Oh7jFK6hMiFybSx2l8AsMotPAB6jfseslf+ZnODIYtWSUp1TcWf1O+tTsU2SZRcS7qViUQhWCK/BWp7cY/NNg7C47s/fMpnpEdQbWH2h2NJFLUpkQuT6XOkoR36QZ3R4cTmjZcpf8GsMweGn1S+xN3gtAjYgaPNPyGf3RSUSumYpFKdUwqiEvtXmJMcvGAPDauteID4unQ1wHk5OJ5LimMmGB2NplVCZEzslMS2XJR9Ou6yjFeV/t/oof9v0AQJBPEK93fJ0g36BCzywiJYeKRSnWs2pP9ifvZ8qmKRgYjFk2ho97fkztyNpmR5NSyjAMTh5OY8/6EyoTItfBMAx2rFzG4hn/JjMl2TN+taMU5/1+6ncmrpnouT+u9TiqhlcttLwiUjKpWJRyDzd+mH3J+/jpwE9kODMYvmg4M3vNpFzglX8JiRQUlQmR/ElOPMHP/3mPAxvXe8b8AoPoOPB+GnS89aqnMqVkpzBqySiy3dkA9K3Tlx5VexRqZhEpmVQsSjmrxcpLbV7iSOoRtp3axvH04zy2+DGmd5+Ov83f7HhSQqlMiOSf2+Viw9xv+eXLT3Ha7Z7xmje3ptPgBwmNvPofiAzDYOyKsRxNOwpAg7INGN18dKFlFpGSTZebFQASMxLpO6cviRmJANxR7Q5eafuKJu1JgVGZECk4J/btYf7Ut0k8sNczFhJZls7/ePiS61JczoytM3ht/WsAhPmF8eUdXxITElPgeUXEe+lys3LdooOiebvz2wz8cSBZriy+3/c91SKqcX/D+82OJl5MZUKkYGVnZrDyy5lsmPsdhuHOGbRYaNKtF23/di/+Qdc+2Xr9ifW8ueFNz/0J7SaoVIhIvqhYiEe9svUY3248o5aMAmDyhsnEh8XTtUpXk5OJN1GZECl4hmGwc9Vyln48Pc8lZMvFVeHWB4cTU6vOdT1eYkYijy95HJfhAuD+hvfTvlL7As0sIqWPioXkcWuVWxl+03De/u1tAJ5e8TSxIbHULVvX5GRSnKlMiBSeU0cOs+jDKRzautkzZvP1pdWf+9L8jj7YfK7vV7nD5eDxJY9zKusUAC0rtGRok6EFmllESicVC7nIAw0fYF/yPubsm0OmM5Phi4bzWa/PiAqKMjuaFCMqEyKFKzszg1Vfz2LD3G9xu1ye8WpNW9Bp4INEVKh4Q4/7r3X/YmPSRiBnwdRJHSbhY9XbARHJP/0kkYtYLBbGtR7H4dTDbE7azImMEzy66FE+7PEhAT4BZscTE6lMiBS+y532FB5dnk6DHqR6s5Y3/Njf7/2ez3Z8BoCv1Zc3Or5BZEBkvjOLiICuCiVXcDLzJH+f83eOpx8HoEd8Dya1n6QrRZUyKhMiRSfxwD6WfDydw9vynvZ0811/ocVdf8HX78YvA77z9E76z+1Plivne/j5Vs/zl1p/yXdmESnZdFUoKRDlAsvxdue3GfDjADKdmcw7MI9q4dUY0mSI2dGkkKlMiBSt9LNn+OWLT9iyaD7k+ntffk97Oi/ZnszIxSM9paJPzT4qFSJS4FQs5IpqR9bmn+3+yYjFIzAweG/Te8SHx9Ozak+zo0kBU5kQKXrO7Gw2/Pgda2Z/TnZmpmc8vHwFOg18IF+nPZ3nNtw8tfwpjqQdAaB+2fo83fLpfD+uiMiFVCzkqjpV7sRjzR7j9fWvA/DMimcoH1SepuWbmpxM8uuPMpHInvUnVCZEiohhGOxe8wvLPv2Q5MQTnnG/wEBu6fM3bup5Jz6+vgXyXO9vep/lR5cDEOEfwesdX8ffduOnVImIXI6KhVyTQfUHsT95P7P3zMbhdvDo4kf5b8//UjW8qtnR5DqpTIiYK2HvbpZ8PJ2jO7Z5xiwWKw27dKPNX/sTFB5RYM+17MgypmyaAoDVYmVS+0laBE9ECo2KhVwTi8XCs62eJSE9gVXHV5FsT+aRnx/hk9s+oWxgWbPjyVWoTIiY78zxo6z4/BN2rVqeZ7xyg8Z0HPgAUZXjC/T5Dqcc5snlT3ruD79pOK1iWhXoc4iI5KarQsl1SctO495597L7zG4AGpVrxPTu0wn0CTQ5mVxIZUKkeEg/e4ZVX33GlkU/5VmPokzFGDoMuI9qTW8u8KvtZToz6T+3P7vO7AKgS+UuvNHxDV3VT0Su2/W8l1axkOuWkJ5Avzn9SMxMBHJ+Yb3W4TVsVpvJyURlQqT4sGdksO77r1k35xucdrtnPCg8glv63EOjrj2w+RTMPIrcDMPgyeVPMnf/XADiw+L5rNdnhPiFFPhziUjJp8vNSqGqEFyB97q+x8B5A0l3pLPw0EJeXfcqT9z8hNnRSiWVCZHixelwsGn+XFbP/pys1BTPuG9AIC3u6EOzXnfhFxhUaM8/Y9sMT6kI8glicqfJKhUiUiRULOSG1I6szWsdXmPowqG4DBefbP+ESqGV6Fe3n9nRSgWVCZHix+V0sm3pQlb/bxapJ5M841abD4279eSWP91ToBOzL+WXo7/w5oY3PffHtx1PtYhqhfqcIiLneVWxmDhxIk899RQjRozgzTffNDtOqdcmtg3PtXqO51c+D8A/f/0nFYIr0KVyF5OTlUwqEyLFk9vl4vdli1j9v1l5Lh2LxULdNh1o/df+RJSvUOg5DqYc5P+W/R9uww3AkMZD6FJFP49FpOh4TbFYu3YtU6dOpVGjRmZHkVz61OzDkdQjTNsyDQODJ5c9yQfdP6BhVEOzo5UIKhMixZfb5WL7iiWs/t8sziYcz7OtapNmtO07kOj4ojlakJadxqOLHiU1OxWAznGdebjxw0Xy3CIi53lFsUhLS6Nfv35MmzaNl19+2ew4coHhNw3nWPox5uybQ5Yri2GLhvHJbZ8QFxpndjSvpDIhUry53S52/rKMVV/P4szxo3m2VWl0E63v7kdMrTpFl8dw89SKp9iXvA+AGhE1GN9uPFaLtcgyiIiAlxSLoUOH0qtXL7p27XrVYmG327HnuvpGSkrKFfaWgmCxWHix9YskZiSyNmEtp7NOe9a4CPcPNzueV1CZECn+XE4H25cv4ddvv7qoUFRu0JjWd/cjtk69Is81ZdMUlhxeAkCoXyiTO00m2De4yHOIiBT7YjFr1iw2bNjA2rVrr2n/CRMmMG7cuEJOJRfys/nxRsc3uPfHe9mXvI8DKQd4dNGj/Lvbv/G3+Zsdr1jKUyY2JJKSlHnRPioTIuZz2LPYsmgB677/H6mnkvJsq1SvAW3u7k+leg1MyfbzwZ95f9P7QM7K2q+2f5XKYZVNySIiUqzXsTh8+DDNmzdnwYIFnrkVHTt2pEmTJpedvH2pIxZxcXFax6KIHE07Sr85/TiVdQqAnvE9mdh+og7Jn6MyIeI97BnpbPxpDuvnfktmSnKebXH1GnLLn/9G5QaNTUoHu87sov/c/mQ6c36OPN7scQY1GGRaHhEpmUrMAnnffPMNf/rTn7DZ/lh4zeVyYbFYsFqt2O32PNsuRQvkFb1tJ7cx+KfBnl92g+sPZlTzUSanMo/KhIh3yUg+y4Yfv+O3eT+QnZmRZ1u1pi24ufdfia1d16R0Oc5mneVvc/7G0bScU7J6VevFhLYTtLK2iBS4ErNAXpcuXdiyZUuescGDB1OnTh2eeOKJq5YKMUf9cvWZ1H4SIxaPwG24+XDbh0QHRdO/Xn+zoxUZlQkR73PqyGHWz/2G35ctwuVweMYtFiu1WrXl5rv+UmRXeboSp9vJ6GWjPaWiXtl6vNDqBZUKETFdsS4WoaGhNGiQ97zV4OBgypYte9G4FC8d4zryTMtneGn1SwBMWjuJcoHl6FG1h8nJCo/KhIj3MQyDw9s2s+6H2ez/bV2ebVabD/U7dKbFnX+mTMVYkxJe7LV1r7Hm+BoAIgMimdxpMgE+ASanEhEp5sVCvNtfa/+VpMwk3t/0PgYGT694mjIBZWhZsaXZ0QrM9ZSJ6k1zykRQmMqEiNlcTgc7Vy5n3ZxvSDqwL882v8BAGnbuTrNevQktW86khJf2xc4v+GT7JwD4WHx4vePrVAgu/MX3RESuRbGeY1EQNMfCXIZhMG7VOL7e/TUAwb7BfNTjI2pH1jY52Y1TmRDxXhkpyWxZNJ+N874n7czpPNtCy0XRtOedNOzcHf+gIJMSXt6a42t4aMFDuAwXAONaj6NPzT4mpxKRkq7EzLEQ72exWBh7y1hOZZ5iyZElpDvSGfLzEP5723+JDSk+pxZcjcqEiHc7vmcnG3+aw85Vy/PMnwCoUKMWzW//EzVvbo21mM7dO5B8gFFLRnlKxcB6A1UqRKTY0RELKRKZzkzun38/m5M2AxAfFs/HPT+mTEAZk5NdnsqEiHdzZNvZ+csyNs6fy4l9u/NutFio2aIVzXr1JqZ23WI98TnZnkz/uf05kHIAgPaV2vNWp7ewWYtnCRKRkqXEXG62IKhYFB9ns84y4McBnl+OjaIaMb3bdAJ9As0NlovKhIj3O3sigU0L5rJ18QKy0lLzbAsIDqF+p1tpcuttRFSoaFLCa+dwOxjy8xDPZO0aETX4b8//EuIXYnIyESktVCxyUbEoXo6mHWXA3AEkZeasXtuhUgfe7PQmPlbzzspTmRDxfk6Hg73r1rB18XwObP4NLvjVVr5aDZp060XtNu3x9fM3KeX1MQyDV9a8wuc7PwdyrgA1s9dMrzqNVES8n4pFLioWxc/O0zsZNG8QaY40APrU7FPk12BXmRApGU4ePsjWxfP5fdliMlNT8myz+fhQu1U7mnS/nQo1ahXr050uZeb2mUz4dQIAvlZfpnebTtPyTU1OJSKljSZvS7FWO7I2kztN5uGfH8bhdvC/3f8jKjCKYTcNK9TnVZkQKRmyszLZuXI5Wxb9xPHdOy/aHh5dnoZdetCwczeCwsJNSJh/K4+u5J9r/+m5/3yr51UqRKTYU7EQU9xc8WbGtxvPmKVjMDCYunkqUYFR3FPnngJ9HpUJkZLBcLs5uuN3ti1bxM6Vy3DYs/Jst/n4ULNlGxp0upXK9RthsVpNSpp/+87uY/TS0bgNNwD/aPAP7qpxl8mpRESuTsVCTNMjvgcnM056/ir3yppXCPMPo2fVnvl6XJUJkZLj1NHDbF++mO0rlpCSlHjR9nKV42nYuTt123UkMCTUhIQF61TmKR5Z+AipjpxJ553iOjGi6QiTU4mIXBsVCzFV/3r9ScpM4oOtH+Sszr38aUL9Qmkb2/a6HkdlQqTkSD97hp0rl/H78sWc2Lfnou1+gYHUadOBhp26Ub56Ta+bO3E5mc5MHl30KEfTjgJQu0xtJrabiNXivUdfRKR0UbEQ041sOpJkezJf7/4ap+HkscWPMa3bNJpEN7ni16lMiJQc9ox09q5bw45flnJg828Ybnee7RaLlSqNb6Jeu07UaH4LvgEBJiUtHG7DzdPLn2bzyZy1fqKDonmnyzsE+Ra/FcBFRC5HxUJMZ7FYePaWZ0nJTmHBwQVkubJ4ZOEjfNj9Q2pH1s6zr8qESMlhz8hg7/o17Fy1nIObNuByOi/ap3y1GtRt24k6bdoTHFF8F9TMr9fXvc7Ph34GIMgniPe6vEeF4AompxIRuT4qFlIs2Kw2JrabSFp2GquOryI1O5WHf36Yj3t8TKXQSioTIiWEPSODfevXsHP1Cg5sXH/JMhFaLop67TpRt21HylaqbELKovXZjs/46PePALBZbLzW8bWL/qgiIuINtI6FFCsZjgwemP8Am5M2UzYjliYp7WmS2p70U9kX7asyIeIdMlKS2bdhLXvWrubApvW4HI6L9gkpE0mtW9pS65a2xNSq49VXdboeSw8v5dHFj3quAPVcq+e4u9bdJqcSEfmD1rEQr2QYBunHXdyf8TTrNu8kKCMCgHT+KBUqEyLe4czxo+xZt4a961ZzbOcODMN90T7BZSKp1bINtVq1JbZW3VJTJs7bdmob/7fs/zyl4r4G96lUiIhXU7EQU11uzkQQEZ593LhJKZdAzy5tqNMsVmVCpBgy3G6O79nF3nWr2bNuDaePHr7kfsERZajZsg21W7Ultna9UlcmzjuedpxhC4eR6cz5mdcjvgePNn3U5FQiIvmjYiFF7lonYJetHsg865dsDVtFlm8ah5yteSf4HRMSi8ilZKamcHDzbxzYtIH9G9eTkXz2kvuVialEjeYtqd78FirWrIXVaivaoMVManYqjyx8hJOZJwG4KfomXm77si4rKyJeT8VCisSNXs2p8ekyDJ63Chyw8thKnlz+JJPaT8JWyt+YiJjB7XZxYu8e9m9cz4FN60nYs/uSpzhhsRBTq+65MtGSyJhKRR+2mMp2ZfPY4sfYczZnfY4qYVWY3Gky/jZ/k5OJiOSfioUUGk+Z2JDInvU3djWnOpF1eKfLOzy04CHsLjvzD84nYGUAL7V5SX/dEykCqadOcmjrJg5s2sCBzb+RlZpyyf18/P2p0rAJ1Zu3pHrTmwkKjyjaoF7Abbh5ZsUzrElYA0CEfwTvdXmPMgEl9zK6IlK6qFhIgSqIMnGhZuWb8XrH1xmxeAROt5Pv9n5HoE8gz7R8psSsuCtSXGQkn+Xw71s4tHUTh7dt5szxY5fdt2ylylS9qTnxjZsSW6c+Pr6+RZjUuxiGwb/W/ot5B+YBEOgTyLtd3qVyWMm/nK6IlB4qFpJvhVEmLtS+UnsmtZ/E6KWjcRtuPt/5OYE+gYxqNkrlQiQfstLSOLJ9K4e2beLw1s2cPHzwsvv6BQZRpWET4ps0I75xU8LKRRVhUu82Y9sMPtn+CZCzVsWrHV6lUVQjk1OJiBQsFQu5IUVRJi50a5VbebnNyzyz4hkMDGZsm0GgTyCPNHkkX48rUpqknEzk6M7tHN3xO8d2/k7SoQNwmeWMrDYbFWvWJq5+Y6o0aEzFWnWw+ejXxvX6fu/3vL7+dc/951s9T/tK7U1MJCJSOPQbQq6ZGWXiQndUv4MsVxYvrnoRgCmbphDoE8jgBoML9HlESgK328XJQwc5umMbR3du59jO7aSeSrrs/haLlfLVqhPXoDGV6zUktk59fAMCijBxybPy6Eqe++U5z/3hNw3nTzX/ZGIiEZHCo2IhV1QcysSF7q51N1nOLCatnQTA6+tfJ8AngL51+hbq84oUd2mnT5GwdzcJe3eRsHc3x3fvIDvz4u9ZD4uFqMrxxNVvROUGjYitU5+A4JCiC1zCbTu5jZFLRuI0nADcU/seHmj4gMmpREQKj4qFXKQ4lokLDag3gCxnFm/99hYA49eMJ8AWoL8ESqmRlZZGwr7dJOzJKREn9u4i7czpK36Nj78/MTVrE1O7HrG161GxZh38g4KKKHHpcijlEI8sfMSzAF7Xyl156uanNCdMREo0FQsBvKNMXOiBRg+Q6cxk2pZpADy/8nkCfALoWbWnqblECpJhGKSfPUPSwf0kHthH0sH9nNi3m7MJx6/6tcFlIomtVZfYOvWIqV2PqCpVNUeiCCRmJPLQgoc4nZVT9JqVb8bE9hO1/o6IlHj6DVOKeWOZuNDwm4aT6czkk+2fYGDw1PKn8LP60aVKF7OjiVw3l9PJmWNHckrEwf2eMpGZknzVr/ULDKJC9RqUr16LCtVrUqF6TULLRukv5EXsbNZZHlrwEEfSjgBQI6KGFsATkVJDxaKUKQllIjeLxcKYFmPIdGby9e6vcRkuRi8dzasdX6VLZZULKZ5cTidnE45z6ughTh05xKkjhzl95BCnjx3B5XRe9ettvr5Ex1ejwrkSUb56TSIrxmKxatFIM6U70nlk4SOeVbVjQ2J5v+v7hPuHm5xMRKRoqFiUAiWtTFzIYrHw7C3P4nA7+G7vdzgNJ6OXjOa1jq/RuXJns+NJKWbPSOdswnHOHD/KqaOHPSXibMIx3C7XNT1GYGgYUfHViKpSlegqVYmKr0ZkTCWd0lTM2F12RiwawZaTWwAoF1iOabdOo3xweZOTiYgUHf1mKqFyl4m96xNJvkyZiKlVhhrNvK9MXMhmtfFi6xcxDIPv932P03Dy+NLHeaPjG3SM62h2PCnBstLTcspDwjHOJhzLdfv4NZ3CdJ7VZiOifEWiqlTNKRHnykRwmUidzlTMOd1Oxiwdw5qENQCE+YUx9dapxIXFmZxMRKRoqViUIKWtTFzIZrXxUpuXMDD4Yd8PON1OHlvyGG92fJMOcR3Mjideyp6RQcrJRFKSEnN9TiIl6QTJJxLITE25rsez+fgQGVOJyEqVKVspjrKxcZStVJmIChWx+fgW0n+FFBa34eb5lc+z6PAiAAJ9Anmv63vUKlPL5GQiIkVPxcLLlfYycSGb1cbLbV7GbbiZu3/uH+Wi05ta6VYukp2VSdrp06SfOUXamdOknTlN6qkkUpKSSDmZSGpSIlnpaTf02CGRZYmoUJEyFWKIqBBDZEwlylaKIzy6Alabrg5UEhiGwaS1k/hu73cA+Fp9mdxpMo2jGpucTETEHCoWXkhl4spsVhuvtH0FA4Mf9/+Iw+1g5OKRKhelhNvtIistjcyUZDJSkslIPkva6dOknTlF+rnykHYmp0xccfG4q7FYCCkTea44VCSiQkzO7YoxRERX0IrVpcCUTVP4dPunAFgtVia1n0SrmFYmpxIRMY+KhZdQmbg+PlYfxrcdDwb8eOCPcjG502TaVWpndjy5Rm6XC3tGOlnpadjT07Gnp5OZlnKuNOR8zkxJJiM1mYzknNtZaWkYhjvfz22xWgktG0VYVBRh5aIJiyqf63Y0oWWj8PHVqUul1YytM5iyaYrn/rjW4+hapauJiUREzKdiUYypTOSPj9WH8e3GY2Aw78C8P8pF58m0jW1rdrwSze124cjKIjsrE0dWVs7tzAyys7JwZGV6PtszcspC7vLgKREZafk7onAFvv4BhESWJaRMJMFlIvPeLhNJWFQ0IWXK6pQluaRPt3/Ka+tf89wf02IMvWv0Ni+QiEgxoWJRzKhMFCwfqw8T2k3AwOCnAz+R7c7m0UWP8lqH1+hUuZPZ8QqEYRgYbjdulwu3y4nL5cLtdOJ2u3A7c8ZytuV8uJzOc2NuzzaXy4nb6cKZbcflcOB0ZOPMzvlwnb/tyM7Zdu52zjYHzmw7TocDhz2L7MycIuHMthf5v4OPvz9BYeEEhoYTFBZGUHgEgWHhBIWFnysNZQmJzCkOfoFBRZ5PSoYvdn7BxF8neu4PazKMAfUGmJhIRKT4sBiGYZgdojClpKQQHh5OcnIyYWFhZse5JLPLhNvl8ryZdDkcuJwOnA6H57bL4cDlcHpuOz1jOdvdLtcfb2zdLtwuN4b73BtZtxvDM55r27n9c287/29hGAac/3xuDMONYZAzjgEGGBeN5f5aAMPzeIbh5njacVKzU3P+PbFQIag8Ib4huZ7DIOfLDCD3c5Pr8T2v2kXbzn2B5zFyf2td/PgX/rfkfs68287vnzfDhf8+Jefb2MfXD//gYPyDQ/APDiYg6PztEAKCQwgIDvYUhj8+h+HrrzkNUri+2fMNz/7yrOf+g40eZPhNw01MJCJS+K7nvbSOWJjkRspEYKgvTrsde0Yqp45kkJ2ZkXMqSUbOZ0dWFg57ro8sO85s+7nbOWNOux2H3Z5rPzuGO//no3sDXyCSPwqZPfU0dk6bF6iksFjw8fXDNyAAv4AAfAMCz90OxO/cbd+AQPwCA/Hzz709AP+g4JwSERRCQEgI/kHB+PjpCJwUP3P2zeG5X57z3B9cfzDDmgwzMZGISPGjYlGEzpeJXWuPsWfdQVJOnsFwZ4KRhWFkgTsTyCIwxE1AiAtfPxcpCZms/jKdpR/lFIlrXa23VLNYsGABC1gsViyWP8YMwGk4cBp//Dv6+fjja/UBLDkLkVk49/WWXI937nOuhcpy9v1j28XPbYGcrXky/LENzt3J1+NbrBasNh+sNitWmw82mw2rjw9Wqw3r+du2c7fzbLfm2pYz7uPnj83PFx8/f3x8ffHx9cPHzw/buc8+fn74+Pph8z23j58vVpuPFnCTEm3+gfk8s+IZzh1zpH/d/jzW7DH9fy8icgEVi0L267dfsWftelJOniEzNQW3MxNwXPFrUrMg9WTh5PHx9cPH3x9f/wB8/f3x8fc/9ybSB5uPLzZf3z8+57qd82YyZx+f3Nt8fDxvYi02W86bW6sNi9Wa84b1/Jtb27kxq/Xcfhdvg5wr8VzqjfP5sfNvrC3Wc9suKALX8ovebbgZv2Y8n+/83DP2dMun6Vunb+H8o4uI11p0aBFPLHsC17k/RtxT+x7GtBijUiEicgkqFoVsw7wNpJ/ecsNfb7X54B8UhH9QMH7nPue5HxiE37kxz2kn/gH4+Pl7bvv6+3tKhNWqq9xYLVaeafkM/jZ/Pv79YwDGrxmP3WlnUINB5oYTkWJjyeEljF46GqfhBKBPzT483fJplQoRkctQsShkwRHhpJ+GnD+rB+IbEExwRDhlykcSXCaCwNBQAkJCCQwNIzA0jIDQUAJDwnS+eSGzWCyMbj4af5s/07ZMA+C19a9hd9l5qPFDJqcTEbMtPLQwp1S4c0rFHdXu4LlbnsNqsZqcTESk+FKxKGRt7+nHhgXtqXVzHNVvitalYYsRi8XCo00fxd/mzzsb3wHgnY3vkOHMYGTTkfqrpEgpteDgAsYsHeM5UnFb1dt4sc2L2HTEV0TkilQsClnVJpWo2qSS2THkCh5q/BD+Nn/PglcfbP2AlOwUxrYcqzcSIqXMvAPzeHLZk545FXdUu4OX2ryknwUiItdAx3RFgEENBjG25VjOXYOJr3Z9xZhlY3C4rjzRXkRKjjn75uSZqN27Rm+VChGR66BiIXLOPXXuYWK7ifhYcg7kzT84n2GLhpHhyDA5mYgUtu/3fs/TK57GbeSs6/Pnmn9mXOtxKhUiItdBxUIkl9uq3cbkzpMJsOWs4rzy2EoeXPAgyfZkk5OJSGH5Zs83PLPiGU+p+Gutv/JcK03UFhG5XvqpKXKB9pXaM/XWqYT6hgKwKWkTg+YNIikjyeRkIlLQZu2YxbO/POtZ/K5vnb6MvWWsSoWIyA3QT06RS2havikf9viQsgFlAdhzdg8DfhzA4ZTDJicTkYIyfct0Xlnziud+/7r9eermp3RFOBGRG6RiIXIZtSNr83HPj4kNiQXgaNpR+v/Yn22ntpmcTETywzAM3lj/BpM3TPaM3d/wfq2oLSKSTyoWIldQOawyH/X4iBoRNQA4nXWawfMGs/zIcpOTiciNcBtuXl79Mh9s/cAzNrLpSEY0HaFSISKSTyoWIldRPrg8M3rMoGl0UwAynZkMXzSc2btnm5xMRK6Hw+3gqeVP8cWuLwCwYOHZW57lvob3mZxMRKRkULEQuQbh/uH8u9u/ubXKrQC4DBfPrXyOKZumYBiGyelE5GrsLjujFo9i7v65ANgsNia0m8Bfa//V5GQiIiWHioXINfK3+fNqh1fpX7e/Z+y9je8xbtU4nG6niclE5EpSs1N55OdHWHJkCQB+Vj/e7PQmvar1MjeYiEgJo2Ihch2sFitjWoxhdPPRnrGvd3/NiMUjtJCeSDGUmJHIoHmD+DXhVwACfQJ5r+t7dIzraG4wEZESSMVC5DpZLBYG1h/IpPaT8LX6ArDsyDLu++k+TmaeNDmdiJy3L3kfA+YOYNeZXQBE+Ecwvdt0WlZsaXIyEZGSScVC5Ab1rNozz0J6W09tpe+cvuw8vdPkZCKyMXEj9/54L8fSjwEQGxLLxz0/plFUI5OTiYiUXCoWIvnQokILZvScQYXgCgAkpCdw74/3svTwUpOTiZReiw8t5oH5D5BsTwagTmQd/tvzv1QNr2pyMhGRkk3FQiSfapWpxWe9PqNhuYYAZDgzGL5oOB9v+1hXjBIpYl/t+oqRS0aS5coCoGXFlnzY/UOigqJMTiYiUvKpWIgUgHKB5fig+wd0j+8OgIHBv9b9ixdXv4jD7TA5nUjJZxgG7/z2DuNWjcNtuAG4reptTOkyhRC/EJPTiYiUDioWIgUkwCeASe0n8XDjhz1jX+36iiELhnhOyRCRgpflzGLMsjFM3TzVMzaw3kAmtJuAr83XxGQiIqWLioVIAbJarAxtMpQJ7SbgZ/UDYE3CGvrP7c+B5APmhhMpgU5mnuS++fcx78A8IGc17TEtxjC6xWisFv2KExEpSvqpK1IIbq92O//p/h8iAyIBOJBygL/P+TvLjiwzOZlIybHnzB76zenH5qTNQM4aFW91fosB9QaYnExEpHRSsRApJE2imzCz10xqRNQAINWRyrCFw/j35n9rUrdIPv1y9BcG/DjAcznZ6KBoPu75sRa+ExExkYqFSCGKDYnlk9s+4dYqtwI5k7rf/u1tRi0ZRboj3eR0It7p8x2fM3ThUNIcaQDUK1uPz3p9Rp3IOiYnExEp3VQsRApZsG8wr3V4jUdvehQLFgB+PvQz/eb042DKQZPTiXgPh8vBi6te5OU1L+MyXAB0juvMh90/JDoo2uR0IiJSrIvFhAkTaNGiBaGhoURHR9O7d2927tSqxuJ9LBYLDzR6gHe7vEuoX85K3XuT99L3h76adyFyDZIykvjHT//gy11fesYG1x/MG53eIMg3yMRkIiJyXrEuFkuXLmXo0KGsXr2aBQsW4HA46NatG+npOoVEvFO7Su2Y1WvWRfMu3t34Li63y+R0IsXT5qTN/O2Hv7ExaSMAflY/xrcdz6jmo3TlJxGRYsRieNEs0qSkJKKjo1m6dCnt27e/pq9JSUkhPDyc5ORkwsLCCjmhyLVJd6Tz7C/PsuDgAs9Yy4otmdhuIuUCy5mYTKR4mb17Ni+tfsmz0GT5oPJM7jSZ+uXqm5xMRKR0uJ730l71p57k5JxFxiIjIy+7j91uJyUlJc+HSHFzft7FyKYjsVlsAKw5voa7v7+btQlrTU4nYj6H28Erq1/huZXPeUpF0+imzLp9lkqFiEgx5TXFwu12M3LkSNq0aUODBg0uu9+ECRMIDw/3fMTFxRVhSpFrZ7FYuK/hfUzvNp2owCggZ7Gv++ffz7TN03AbbpMTipgjIT2BwfMGM2vnLM/Y32r/jendpuuInohIMeY1p0INGTKEH3/8kRUrVlCpUqXL7me327Hb7Z77KSkpxMXF6VQoKdZOZZ7iyeVPsvr4as9Ym9g2TGg7gTIBZUxMJlK0VhxdwVPLn+Ks/SwAvlZfxt4ylj41+5gbTESklLqeU6G8olgMGzaMb7/9lmXLllG1atXr+lrNsRBv4XK7+PfmfzNl0xQMcr4to4OimdhuIi0qtDA5nUjhcrqdvLfxPaZtmeYZiwmO4dUOr9IwqqGJyURESrcSM8fCMAyGDRvG7NmzWbRo0XWXChFvYrPaGNJkCFNvnUpkQM48osSMRO776T4mb5jsOc9cpKQ5mXmSBxc8mKdUdKzUkS/u+EKlQkTEixTrYjF06FA++eQTZs6cSWhoKAkJCSQkJJCZmWl2NJFC0yqmFV/e8SU3V7gZyFmte/qW6dw7914OpRwyOZ1IwVp9fDV/+e4vnosW2Cw2Hm/2OG91fotw/3CT04mIyPUo1qdCWSyWS45/+OGHDBo06JoeQ6dCibdyuV3M2DaDd357B6fhBCDQJ5Cnbn6K3jV6X/b7Q8QbOFwO3v7tbWZsm5Hn1L9XO7zKTdE3mZxORETOK3FzLPJDxUK83baT23hi+RMcTDnoGetWpRtjbxmrid3ilfYl7+PJZU+y/fR2z1jrmNZMaDfBcxqgiIgUDyVmjoWIQP1y9fni9i/4U40/ecbmH5xP7297s+jQIhOTiVwfwzD4YucX3PP9PZ5S4Wv1ZXTz0UzpOkWlQkTEy+mIhYgX+enAT7y0+iWS7cmesTuq3cETNz+h89GlWDuTdYbnVz7P4sOLPWPVwqvxz/b/pE5kHROTiYjIleiIhUgJ1T2+O7PvnE2HSh08Y9/v+54+3/ZhxdEVJiYTubyFBxfS+9veeUrFPbXvYdbts1QqRERKEB2xEPFChmHw7d5v+eev/yTNkeYZ712jN6Obj9bRCykWzmadZfyv4/lx/4+esTL+ZXixzYt0jOtoXjAREblmOmIhUsJZLBZ61+jN7Ltm06piK8/4N3u+4c5v7mTuvrmU8L8ZSDG38FDOUYrcpaJjXEe+vvNrlQoRkRJKRyxEvJxhGHy560veWP9GnqMXbWPbMvaWscSGxJqYTkqbM1lnmPjrRObun+sZC/ML48mbn+T2arfrMskiIl5Gl5vNRcVCSovEjEQmrJnAz4d+9owF+gQytMlQ+tXth4/Vx8R0UtIZhsF3e7/j1XWvctZ+1jPesVJHnmv1HFFBUeaFExGRG6ZikYuKhZQ2Cw8tZPya8SRmJHrG6kbWZewtY2kU1cjEZFJS7U/ez0urX/Ksng06SiEiUlKoWOSiYiGlUVp2Gm/99hazdszyrGoMcFf1uxjZbCTlAsuZmE5KCrvLzn+2/IfpW6bjcDs84z3iezCmxRgdpRARKQFULHJRsZDSbFPSJsatGsfuM7s9YyG+ITzc+GH+Xvfv+Fp9TUwn3mzZkWVMWjspz4rwsSGxjL1lLG1j25qYTERECpKKRS4qFlLaOd1OPt/5Oe9ufJfU7FTPeLXwajxx8xO0jmltYjrxNvuS9/Gvtf/Ks26Kj8WHQQ0G8WCjBwn0CTQxnYiIFDQVi1xULERynM46zVsb3uJ/u/+X5/SodrHtGNlsJLXK1DIxnRR3KdkpvL/pfT7b/hlOw+kZbxrdlLG3jKVmmZomphMRkcKiYpGLioVIXttObmP8r+PZnLTZM2bBwl017mJok6FUCK5gYjopbpxuJ//b/T/e3fgup7NOe8YrBFfg8WaP0z2+uyZni4iUYCoWuahYiFzMbbiZs28Ob/32FgnpCZ5xf5s//ev2576G9xHqF2piQjGbYRgsOLiAt397mwMpBzzj/jZ//tHgHwxuMFinPYmIlAIqFrmoWIhcnt1lZ+b2mUzbPI1Uxx/zL8L9wxlYbyB/r/t3gn2DTUwoZlh9fDVvrn+Tbae25RnvEd+DUc1GUTGkoknJRESkqKlY5KJiIXJ1yfZkpm2exswdM/NcNjTcP5xB9QfRt05fFYxSYOvJrUzeMJnVx1fnGW8a3ZTHmj1Gk+gm5gQTERHTqFjkomIhcu2Oph3lvY3v8cO+H3Abbs94hH8EA+sPVMEooX5L/I2pm6byy7Ff8ozXKlOLEU1H0C62neZRiIiUUioWuahYiFy/gykHmbppKnP2z8lTMML8wrin9j38ve7ftcielzMMg7UJa5m6eSq/JvyaZ1tsSCzDbxpOz6o9sVqsJiUUEZHiQMUiFxULkRt3IPkAUzdPZe7+uXkKhp/Vjztr3MnAegOJD483L6BcN5fbxZLDS5ixbQYbkzbm2RYbEss/GvyDP9X4E742LZ4oIiIqFnmoWIjk3/7k/UzfMp25++fidP+xhoEFC53iOjGg3gCalW+m02WKsQxHBrP3zOaT3z/hSNqRPNsqh1bm/ob3c3v127Uau4iI5KFikYuKhUjBSUhP4NPtn/Llri9Jd6Tn2VYjogb31L6H26vdTohfiEkJ5ULH0o4xa8csvtr1VZ4rfwFUD6/O/Y3up0d8D3ysPiYlFBGR4kzFIhcVC5GCl5qdype7vuTT3z8lMTMxz7YgnyDuqH4Hf639V63mbRKn28nSI0v5atdX/HL0lzwrrQO0qtiKe+vfS+uY1ppDISIiV6RikYuKhUjhyXZls+DgAj7f+Tm/Jf520fb6ZetzZ/U7ua3qbUQERBR9wFLmWNox/rf7f8zePfuiwudr9eX2arfTv15/FT4REblmKha5qFiIFI2dp3fy+c7P+WHfD2Q6M/Ns87H60LFSR+6sfidtY9tqYnABSrYn89OBn5izbw4bEjdctL1icEX61OzDX2r9RVfyEhGR66ZikYuKhUjRSs1O5fu93/PNnm/Yfnr7RdtD/ULpFNeJblW60SqmFX42PxNSercMRwbLji5jzr45rDi6Is+EegCbxUaHSh34S62/0DqmNTarzaSkIiLi7VQsclGxEDHPrjO7+G7Pd/yw7wdOZZ26aHuwbzAd4zrStXJXWsW00uJ7V3A66zRLDy9l0eFFrDq2CrvLftE+1cKr0ataL+6qfhflg8ubkFJEREoaFYtcVCxEzOd0O1l5bCVz9s1h6ZGlF11RCnJOl2oa3ZS2sW1pG9uWGhE1SvXla11uFztO72DV8VWsOLqC3xJ/y7OWyHnRgdH0rNqTXtV6USeyTqn+NxMRkYKnYpGLioVI8ZLtymbVsVXMPzifxYcXk5qdesn9ygeVp3mF5jQv35xm5ZsRHxZfot80G4bBodRDrE1Yy6pjq1iTsIZke/Il9y0XWI6OcR3pHt+dFuVb6FQnEREpNCoWuahYiBRfDpeDNQlrWHp4KSuOrrho4bbcygaUpVn5ZjSKakS9svWoG1nXq9fLyHRm8vup39mYuJGNSRvZlLiJM/Yzl90/PiyezpU707lyZxqWa6jLxIqISJFQschFxULEOxiGwYGUA6w4uoIVR1ew4cQGslxZl93fgoUqYVWoW7YudSPrUi28GvHh8cSGxBarxd5cbhcnMk6w5+wedp3Zxc7TO9l5ZicHUw5e8tSm80L9QmlZoSWtYlrRqmIr4sLiijC1iIhIDhWLXFQsRLyTw+Vg26ltrD+xnnUn1vFb4m+XnJtxIR+rD1VCq1AlrAoVQypSIagCFYL/+CgTUAZ/m3+B5bS77CRlJHEy8yRJmUkkZiRyJPUIh1MPcyj1EEdSj+BwO676OGF+YTSJbkKTqCa0rNiS+mXr6xQnERExnYpFLioWIiWDy+1i15ldbDu1jd9P/c72U9vZeWbnNb1pv1CALYBw/3DC/cMJ8Q3B3+aPn80PP5uf5/b553Qbbty4yXZlk+5IJ82RRnp2OunOdNKy00hzpF338/tafakRUYO6ZevSJKoJjaMbEx8Wr9ObRESk2Lme99LF53wBEZErsFltOac9la3rGXO4Hew9u5c9Z/ewP3m/5+NgysErFo4sVxZZGVmcyDhRqJn9bf7EhcYRFxpHfFg8tSJrUbtMbeLD4/G1apFAEREpWVQsRMRr+Vp9qRNZhzqRdfKMn5/XkJCekPORkfM5MSORs/azJNuTSbYnc9Z+9oaOeAT6BBLiG0KwbzBlAspQLrAc0UHRlAssR1RgFDEhMVQOrUxUUJSOQoiISKmhYiEiJY7NaiMmJIaYkJgr7mcYBg63g2xXNnaXHYfbgd1l9yw+Z7PYsFqs2Cw2/Gx+BPsGE+QTpLkPIiIil6BiISKllsVi8cytCMF7L10rIiJSHOgYvYiIiIiI5JuKhYiIiIiI5JuKhYiIiIiI5JuKhYiIiIiI5JuKhYiIiIiI5JuKhYiIiIiI5JuKhYiIiIiI5JuKhYiIiIiI5JuKhYiIiIiI5JuKhYiIiIiI5JuKhYiIiIiI5JuKhYiIiIiI5JuKhYiIiIiI5JuKhYiIiIiI5JuKhYiIiIiI5JuKhYiIiIiI5JuKhYiIiIiI5JuKhYiIiIiI5JuKhYiIiIiI5JuP2QEKm2EYAKSkpJicRERERETEu5x/D33+PfWVlPhikZqaCkBcXJzJSUREREREvFNqairh4eFX3MdiXEv98GJut5tjx44RGhqKxWIp8udPSUkhLi6Ow4cPExYWVuTPLzdGr5t30uvmffSaeSe9bt5Jr5v3KQ6vmWEYpKamEhMTg9V65VkUJf6IhdVqpVKlSmbHICwsTN/EXkivm3fS6+Z99Jp5J71u3kmvm/cx+zW72pGK8zR5W0RERERE8k3FQkRERERE8k3FopD5+/vz/PPP4+/vb3YUuQ563byTXjfvo9fMO+l180563byPt71mJX7ytoiIiIiIFD4dsRARERERkXxTsRARERERkXxTsRARERERkXxTsShir7zyCq1btyYoKIiIiAiz48hlvPvuu8THxxMQEEDLli359ddfzY4kV7Bs2TLuuOMOYmJisFgsfPPNN2ZHkquYMGECLVq0IDQ0lOjoaHr37s3OnTvNjiVXMWXKFBo1auS5pn6rVq348ccfzY4l12HixIlYLBZGjhxpdhS5ghdeeAGLxZLno06dOmbHuioViyKWnZ3N3XffzZAhQ8yOIpfx+eefM2rUKJ5//nk2bNhA48aN6d69O4mJiWZHk8tIT0+ncePGvPvuu2ZHkWu0dOlShg4dyurVq1mwYAEOh4Nu3bqRnp5udjS5gkqVKjFx4kTWr1/PunXr6Ny5M3fddRfbtm0zO5pcg7Vr1zJ16lQaNWpkdhS5BvXr1+f48eOejxUrVpgd6ap0VSiTzJgxg5EjR3L27Fmzo8gFWrZsSYsWLXjnnXcAcLvdxMXFMXz4cJ588kmT08nVWCwWZs+eTe/evc2OItchKSmJ6Oholi5dSvv27c2OI9chMjKSf/3rX9x3331mR5ErSEtLo2nTprz33nu8/PLLNGnShDfffNPsWHIZL7zwAt988w0bN240O8p10RELkVyys7NZv349Xbt29YxZrVa6du3KqlWrTEwmUrIlJycDOW9SxTu4XC5mzZpFeno6rVq1MjuOXMXQoUPp1atXnt9vUrzt3r2bmJgYqlWrRr9+/Th06JDZka7Kx+wAIsXJyZMncblclC9fPs94+fLl2bFjh0mpREo2t9vNyJEjadOmDQ0aNDA7jlzFli1baNWqFVlZWYSEhDB79mzq1atndiy5glmzZrFhwwbWrl1rdhS5Ri1btmTGjBnUrl2b48ePM27cONq1a8fWrVsJDQ01O95l6YhFAXjyyScvmmBz4YfelIqIXNrQoUPZunUrs2bNMjuKXIPatWuzceNG1qxZw5AhQxg4cCC///672bHkMg4fPsyIESP49NNPCQgIMDuOXKOePXty991306hRI7p3787cuXM5e/YsX3zxhdnRrkhHLArA448/zqBBg664T7Vq1YomjORLuXLlsNlsnDhxIs/4iRMnqFChgkmpREquYcOG8cMPP7Bs2TIqVapkdhy5Bn5+ftSoUQOAZs2asXbtWiZPnszUqVNNTiaXsn79ehITE2natKlnzOVysWzZMt555x3sdjs2m83EhHItIiIiqFWrFnv27DE7yhWpWBSAqKgooqKizI4hBcDPz49mzZqxcOFCz+Rft9vNwoULGTZsmLnhREoQwzAYPnw4s2fPZsmSJVStWtXsSHKD3G43drvd7BhyGV26dGHLli15xgYPHkydOnV44oknVCq8RFpaGnv37mXAgAFmR7kiFYsidujQIU6fPs2hQ4dwuVye2f41atQgJCTE3HACwKhRoxg4cCDNmzfn5ptv5s033yQ9PZ3BgwebHU0uIy0tLc9fcfbv38/GjRuJjIykcuXKJiaTyxk6dCgzZ87k22+/JTQ0lISEBADCw8MJDAw0OZ1czlNPPUXPnj2pXLkyqampzJw5kyVLlvDTTz+ZHU0uIzQ09KK5S8HBwZQtW1Zzmoqx0aNHc8cdd1ClShWOHTvG888/j81mo2/fvmZHuyIViyL23HPP8dFHH3nu33TTTQAsXryYjh07mpRKcrvnnntISkriueeeIyEhgSZNmjBv3ryLJnRL8bFu3To6derkuT9q1CgABg4cyIwZM0xKJVcyZcoUgIt+7n344YdXPbVUzJOYmMi9997L8ePHCQ8Pp1GjRvz000/ceuutZkcTKVGOHDlC3759OXXqFFFRUbRt25bVq1cX+zNktI6FiIiIiIjkm64KJSIiIiIi+aZiISIiIiIi+aZiISIiIiIi+aZiISIiIiIi+aZiISIiIiIi+aZiISIiIiIi+aZiISIiIiIi+aZiISIiIiIi+aZiISIiIiIi+aZiISIiRcrlctG6dWv69OmTZzw5OZm4uDieeeYZk5KJiEh+WAzDMMwOISIipcuuXbto0qQJ06ZNo1+/fgDce++9bNq0ibVr1+Ln52dyQhERuV4qFiIiYoq33nqLF154gW3btvHrr79y9913s3btWho3bmx2NBERuQEqFiIiYgrDMOjcuTM2m40tW7YwfPhwxo4da3YsERG5QSoWIiJimh07dlC3bl0aNmzIhg0b8PHxMTuSiIjcIE3eFhER03zwwQcEBQWxf/9+jhw5YnYcERHJBx2xEBERU6xcuZIOHTowf/58Xn75ZQB+/vlnLBaLyclERORG6IiFiIgUuYyMDAYNGsSQIUPo1KkT//nPf/j11195//33zY4mIiI3SEcsRESkyI0YMYK5c+eyadMmgoKCAJg6dSqjR49my5YtxMfHmxtQRESum4qFiIgUqaVLl9KlSxeWLFlC27Zt82zr3r07TqdTp0SJiHghFQsREREREck3zbEQEREREZF8U7EQEREREZF8U7EQEREREZF8U7EQEREREZF8U7EQEREREZF8U7EQEREREZF8U7EQEREREZF8U7EQEREREZF8U7EQEREREZF8U7EQEREREZF8U7EQEREREZF8U7EQEREREZF8+38DEo5yo1eGTAAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "# # ================== CCP 1 ==================\n", - "mapie_ccp_1 = SplitCPRegressor(estimator, calibrator=calibrator1, alpha=ALPHA, random_state=random_state)\n", - "mapie_ccp_1.fit(X_train, y_train)\n", - "y_pred_ccp_1, y_pi_ccp_1 = mapie_ccp_1.predict(X_test)\n", - "\n", - "# # ================== CCP 2 ==================\n", - "mapie_ccp_2 = SplitCPRegressor(estimator, calibrator=calibrator2, alpha=ALPHA, random_state=random_state)\n", - "mapie_ccp_2.fit(X_train, y_train)\n", - "y_pred_ccp_2, y_pi_ccp_2 = mapie_ccp_2.predict(X_test)\n", - "\n", - "# # ================== CCP 3 ==================\n", - "mapie_ccp_3 = SplitCPRegressor(estimator, calibrator=calibrator3, alpha=ALPHA, random_state=random_state)\n", - "mapie_ccp_3.fit(X_train, y_train)\n", - "y_pred_ccp_3, y_pi_ccp_3 = mapie_ccp_3.predict(X_test)\n", - "\n", - "mapies = [mapie_split, mapie_cv, mapie_cqr, mapie_ccp_1, mapie_ccp_2, mapie_ccp_3]\n", - "y_preds = [y_pred_split, y_pred_cv, y_pred_cqr, y_pred_ccp_1, y_pred_ccp_2, y_pred_ccp_3]\n", - "y_pis = [y_pi_split, y_pi_cv, y_pi_cqr, y_pi_ccp_1, y_pi_ccp_2, y_pi_ccp_3]\n", - "titles = [\"Basic Split\", \"CV+\", \"CQR\", \"CCP (1)\", \"CCP (1, X)\", \"CCP (1, X**3)\"]\n", - "\n", - "plot_figure(mapies, y_preds, y_pis, titles)\n", - "plot_widths(titles, y_pis)" - ] - }, - { - "cell_type": "markdown", - "id": "7f8ac6b0", - "metadata": {}, - "source": [ - "Note: The small width different between ``Basic Split`` and ``CCP 1`` is just because of the variance induced by the finite number of calibration and test points. The two values would both converge toward the same width if we would reproduce the experiment many times and average the results." - ] - }, - { - "cell_type": "markdown", - "id": "1d40c5b6", - "metadata": {}, - "source": [ - "## 2/ Improve the performances using what we know about the data" - ] - }, - { - "cell_type": "markdown", - "id": "18e437ec", - "metadata": {}, - "source": [ - "To improve the results, we need to analyse the data and the conformity scores we chose (here, the absolute residuals).\n", - "\n", - "1. We can see that the residuals increase with X for X > 0.\n", - "\n", - "2. For X < 0, the points seem uniformly distributed around the base distribution." - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "id": "599cd91f", - "metadata": {}, - "outputs": [], - "source": [ - "calibrator1 = CustomCCP([lambda X: X < 0, lambda X: X >= 0])\n", - "\n", - "calibrator2 = CustomCCP(\n", - " [lambda X: X < 0, (lambda X: X >= 0)*PolynomialCCP(1)]\n", - ")\n", - "\n", - "calibrator3 = CustomCCP(\n", - " [\n", - " (lambda X: X < 0)*PolynomialCCP(5),\n", - " (lambda X: X >= 0)*PolynomialCCP(5)\n", - " ]\n", - ")" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "id": "055808e8", - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABKUAAAMWCAYAAAAgRDUeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3zb5bX48Y/2smV575HETuw4wxmQHUbC3i1lQym0ha7b3o57294OaPtrezvgdjJaCiUFSltCWQmBBEhCBmTZSRw7HnEsb8lDlq29fn98bcVOHAiQ2CE57xd+mdhfS49k+Xt0zvd5zqOKxWIxhBBCCCGEEEIIIYQYR+qJHoAQQgghhBBCCCGEOPtIUUoIIYQQQgghhBBCjDspSgkhhBBCCCGEEEKIcSdFKSGEEEIIIYQQQggx7qQoJYQQQgghhBBCCCHGnRSlhBBCCCGEEEIIIcS4k6KUEEIIIYQQQgghhBh3UpQSQgghhBBCCCGEEONOilJCCCGEEEIIIYQQYtxJUUqICXT48GFUKhVPPPHERA9lTGON77777kOlUk3coIQQQgghhBBCnBGkKCUE8MQTT6BSqUZ9ZGRkcMEFF7B27dqJHt4JczqdfPWrX6W0tBSTyURGRgbnnnsu//3f/83g4OApu9+f/vSn/Pvf/z5lty+EEGeqxsZG7rnnHiZPnozRaMRqtbJkyRJ+85vfsGXLFlQqFd/73veO+/P19fWoVCq+/vWvj+OohRBCnArvFRN8Pl/8uFAoxG9/+1vOOeccEhMTSUhI4JxzzuF3v/sd4XD4mNstKioaledYLBbOPfdcnnzyyfF8eEKMSRWLxWITPQghJtoTTzzBZz7zGX70ox8xadIkYrEYXV1dPPHEE1RXV/PSSy9x5ZVXnvT7jcViBAIBdDodGo3mI91Wb28vc+bMwe12c9ddd1FaWkpPTw979+7l5ZdfZu/evRQVFX2g2zx8+DCTJk3i8ccf58477wQgHA4TDocxGo3x4xISErj++utP2xlfQghxOnrllVf41Kc+hcFg4I477mDGjBkEg0HefvttnnvuOe688042b95MMBiksbFxzNu4//77ue+++9i1axdz584d50cghBDiZDmRmPDoo4/i8Xi44oor2LhxI1deeSWXXnoparWaV199lRdffJELL7yQl156CbPZHL/toqIikpOT+cY3vgFAR0cHf/7zn6mrq+PRRx/lc5/73EQ9bCHQTvQAhDidXHbZZcyfPz/+77vvvpvMzEyeeeaZU1KUUqlUo4o7H8Vjjz2G3W5ny5YtLF68eNT33G43er3+pNyPVqtFq5VThxBCfBRNTU3cdNNNFBYW8sYbb5CdnR3/3pe+9CUaGhp45ZVXKCgo4Pvf/z7bt29n4cKFx9zOM888Q2lp6XsWpIqKirjzzju57777TsVDEUII8RGdaEwA+PrXv87GjRv53e9+x5e//OX4cV/4whf4wx/+wJe//GW+9a1v8Yc//GHUfeTm5nLbbbfF/33nnXcyefJkHnzwQSlKiQkly/eEeA82mw2TyXRMEeZXv/oVixcvJjU1FZPJxLx58/jXv/51zM+//vrrLF26FJvNRkJCAtOmTeO73/1u/PvH6ylVW1vLDTfcQHp6OiaTiWnTpvE///M/7znWxsZGNBrNmEmL1WodVfw6//zzmTFjBrt27WLx4sWYTCYmTZrEww8//L7PydE9pVQqFR6Ph7/+9a/xKcHDs6qEEEKM7Re/+AWDg4M89thjo5KPYcXFxXz1q1/l1ltvBeDpp58+5phdu3Zx8ODB+DFCCCE+nk40JrS2tvLYY49x4YUXjipIDfvSl77EBRdcwKOPPkpbW9t73md6ejqlpaXHnYkrxHiRopQQI/T399Pd3Y3T6aS6upovfOELDA4OjrqqAPCb3/yGOXPm8KMf/Yif/vSnaLVaPvWpT8WvYABUV1dz5ZVXEggE+NGPfsSvf/1rrr76arZs2fKeY9i7dy8LFizgjTfe4HOf+xy/+c1vuPbaa3nppZfe8+cKCwuJRCKsWrXqhB5rX18fl19+OfPmzeMXv/gFeXl5fOELX+Avf/nLCf38sFWrVmEwGFi2bBmrVq1i1apV3HPPPR/oNoQQ4mzz0ksvMXny5GNmth5t0qRJLF68mH/84x9EIpFR3xsuVN1yyy2nbJxCCCFOvRONCWvXriUSiXDHHXcc95g77riDcDjMq6+++p63FQ6HaW1tJTk5+UONWYiTRdbgCDHCypUrR/3bYDDwl7/8hYsuumjU1+vq6jCZTPF/f/nLX2bu3Lk88MADXHHFFYAySyoYDLJ27VrS0tJOeAxf+cpXiMVi7N69m4KCgvjXf/7zn7/nz9111108+OCD3Hnnnfz85z/n/PPPZ/ny5Vx++eUkJSUdc3x7ezu//vWv481x77nnHhYsWMB3vvMdbr/9dnQ63QmN97bbbuPee+9l8uTJxxTvhBBCHMvtdtPW1sY111xzQsffeuutfOlLX2LDhg1cfPHFAESjUZ599lkWLVrE5MmTT+VwhRBCnEIfJCYcOHAAgNmzZx/3mOHvDR87LBQK0d3dDUBnZye/+MUv6Ozs5Etf+tKHHboQJ4XMlBJihD/84Q+8/vrrvP766/ztb3/jggsu4LOf/SyrV68eddzIglRfXx/9/f0sW7aM3bt3x79us9kAeOGFF4hGoyd0/06nk02bNnHXXXeNKkgBo5bMjSUzM5Oqqiruvfde+vr6ePjhh7nlllvIyMjgxz/+MUfvaaDVakfNaNLr9dxzzz04HA527dp1QuMVQgjxwbndbgASExNP6Pgbb7wRnU43agnfxo0baWtrO2bpXiAQoLu7e9RHNBrF6/Ue83UhhBAT74PEhIGBgfc9dvh7w8cOe+2110hPTyc9PZ2ZM2eyatUqPvOZz/DLX/7yww5diJNCilJCjHDuueeycuVKVq5cya233sorr7zC9OnT+fKXv0wwGIwf9/LLL7Nw4UKMRiMpKSmkp6fz0EMP0d/fHz/mxhtvZMmSJXz2s58lMzOTm266iX/84x/vWaA6dOgQADNmzPhQ48/Ozuahhx6io6ODgwcP8tvf/pb09HR+8IMf8Nhjj406NicnB4vFMuprU6dOBZReV0IIIU4Nq9UKHJswHE9qaiqXXHIJzz//PH6/H1CW7mm1Wm644YZRxz7zzDPxpGP4o6WlhV/+8pfHfF0IIcTE+yAx4XgFp5GGv5eRkTHq6wsWLOD111/n1Vdf5Ve/+hU2m42+vr6TthmSEB+WFKWEeA9qtZoLLriAjo4O6uvrAdi8eTNXX301RqORP/7xj6xZs4bXX3+dW265ZdRsJJPJxKZNm1i/fj233347e/fu5cYbb+Siiy46pi/IyaZSqZg6dSpf+cpX2LRpE2q1mqeeeuqU3qcQQogTY7VaycnJYf/+/Sf8M7fddhtut5uXX36ZYDDIc889x8UXX3xMcemSSy6Jz/gd/sjMzOT2228/5utCCCEm3geJCdOnTweUHrTHM/y9o5d2p6WlsXLlSi655BK+8Y1v8Le//Y1///vf/OY3v/kIoxfio5OeUkK8j3A4DMDg4CAAzz33HEajkXXr1mEwGOLHPf7448f8rFqtZsWKFaxYsYIHHniAn/70p/zP//wPb7755jH9q+BI8Pggicr7mTx5MsnJyXR0dIz6ent7Ox6PZ9Rsqbq6OkDZPvyDeL+lhUIIIUa78sorefTRR9m2bRuLFi163+OvvvpqEhMTefrpp9HpdPT19Y256152dvYxOzcZjUYmT548ZtwRQggx8U40Jlx22WVoNBpWrVp13GbnTz75JHq9/n17VF1xxRWcd955/PSnP+Wee+45ZgWFEONFZkoJ8R5CoRCvvfYaer2esrIyADQaDSqVatRsp8OHD/Pvf/971M/29vYec3sVFRWA0vNjLOnp6Sxfvpy//OUv2O32Ud87uifU0d555x08Hs8xX3/33Xfp6elh2rRpo74eDod55JFH4v8OBoM88sgjpKenM2/evPe8r6NZLBZcLtcH+hkhhDib/dd//RcWi4XPfvazdHV1HfP9xsbGUVevTSYT1113HWvWrOGhhx7CYrGccKN0IYQQp7cTjQl5eXncfffdrF+/noceeuiY4x5++GHeeOMN7rnnHlJTU9/3fv/7v/+bnp4e/vSnP52UxyHEhyEzpYQYYe3atdTW1gLgcDh4+umnqa+v59vf/nZ8vfcVV1zBAw88wKWXXsott9yCw+HgD3/4A8XFxaOm0v7oRz9i06ZNXHHFFRQWFuJwOPjjH/9IXl4eS5cuPe4Yfvvb37J06VLmzp3L5z//eSZNmsThw4d55ZVXqKysPO7PrVq1iqeeeorrrruOefPmodfrqamp4S9/+QtGo5Hvfve7o47Pycnhf//3fzl8+DBTp07l2WefpbKykkcfffSEd94bNm/ePNavX88DDzxATk4OkyZNYsGCBR/oNoQQ4mwyZcoUnn76aW688UbKysq44447mDFjBsFgkK1bt/LPf/6TO++8c9TP3HbbbTz55JOsW7eOW2+9Va5qCyHEGeKDxIQHHniA2tpavvjFL/Lqq69y6aWXArBu3TpeeOEFLrzwwhNuXn7ZZZcxY8YMHnjgAb70pS994BxAiJMiJoSIPf744zFg1IfRaIxVVFTEHnrooVg0Gh11/GOPPRYrKSmJGQyGWGlpaezxxx+P/fCHP4yN/JPasGFD7Jprronl5OTE9Hp9LCcnJ3bzzTfH6urq4sc0NTXFgNjjjz8+6vb3798fu+6662I2my1mNBpj06ZNi33/+99/z8ewd+/e2Le+9a3Y3LlzYykpKTGtVhvLzs6OfepTn4rt3r171LHnnXderLy8PLZz587YokWLYkajMVZYWBj7/e9/P+q4scZ39OOMxWKx2tra2PLly2MmkykGxD796U+/51iFEEIo6urqYp/73OdiRUVFMb1eH0tMTIwtWbIk9rvf/S7m9/tHHRsOh2PZ2dkxILZmzZoTvo/CwsLYD3/4w5M8ciGEECfbicaEYDAY+7//+7/YvHnzYmazOZ6/fPrTn45FIpFjbrewsDB2xRVXjHmfTzzxxJj5iBDjRRWLvc+aICHEGef888+nu7v7pPauEkIIIYQQQow/t9vNeeedR2NjI5s2bYq3DBHi40B6SgkhhBBCCCGEEB9TVquVtWvXkpaWxuWXX05zc/NED0mIEyY9pYQQQgghhBBCiI+xrKwsDh06NNHDEOIDk5lSQgghhBBCCCGEEGLcSU8pIYQQQgghhBBCCDHuZKaUEEIIIYQQQgghhBh3UpQSQgghhBBCCCGEEONOGp0fJRqN0t7eTmJiIiqVaqKHI4QQp71YLMbAwAA5OTmo1WfOtQ6JB0II8cGdiTFB4oEQQnxwJxoPpCh1lPb2dvLz8yd6GEII8bHT0tJCXl7eRA/jpJF4IIQQH96ZFBMkHgghxIf3fvFAilJHSUxMBJQnzmq1TvBohBDi9Od2u8nPz4+fP88UEg+EEOKDOxNjgsQDIYT44E40HkhR6ijDU3KtVqsEHSGE+ADOtCUNEg+EEOLDO5NigsQDIYT48N4vHpwZC72FEEIIIYQQQgghxMeKFKWEEEIIIYQQQgghxLiTopQQQgghhBBCCCGEGHdSlBJCCCGEEEIIIYQQ406KUkIIIYQQQgghhBBi3ElRSgghhBBCCCGEEEKMOylKCSGEEEIIIYQQQohxJ0UpIYQQQgghhBBCCDHupCglhBBCCCGEEEIIIcadFKWEEEIIIYQQQgghxLiTopQQQgghhBBCCCGEGHdSlBJCiNNIc3M/a9Ycorm5f6KHIoQQYgJJPBBCCDHsTI4J2okegBBCiCOqq3vYtq0dgMLCpAkejRBCiIki8UAIIcSwMzkmSFFKCCFOI+XlqaM+CyGEODtJPBBCCDHsTI4JUpQSQojTSGFh0hl39UMIIcQHJ/FACCHEsDM5JkhPKSGEEEIIIYQQQggx7qQoJYQQQgghhBBCCCHGnRSlhBBCCCGEEEIIIcS4k6KUEEIIIYQQQgghhBh3UpQSQgghhBBCCCGEEONOilJCCCGEEEIIIYQQYtxJUUoIIYQQQgghhBBCjDspSgkhhBBCCCGEEEKIcSdFKSGEEEIIIYQQQggx7qQoJYQQQgghhBBCCCHGnRSlhBBCCCGEEEIIIcS4k6KUEEIIIYQQQgghhBh3UpQSQgghhBBCCCGEEONOilJCCCGEEEIIIYQQYtxJUUoIIYQQQgghhBBCjDspSgkhhBBCCCGEEEKIcSdFKSGEEEIIIYQQQggx7qQoJYQQQgghhBBCCCHGnRSlhBBCCCGEEEIIIcS4k6KUEEIIIYQQQgghhBh3UpQSQgghhBBCCCGEEONOilJCCCGEEEIIIYQQYtxJUUoIIYQQQgghhBBCjDspSgkhhBBCCCGEEEKIcSdFKSGEEEIIIYQQQggx7qQoJYQQp4ktW1q5//4tbNnSOtFDEUIIMYEkHgghhBh2pscE7UQPQAghhGL9+mbWr7cDsGRJ3gSPRgghxESReCCEEGLYmR4TpCglhBCniZUrC0d9FkIIcXaSeCCEEGLYmR4TpCglhBCniSVL8s7Iqx9CCCE+GIkHQgghhp3pMUF6SgkhhBBCCCGEEEKIcSdFKSGEEEIIIYQQQggx7qQoJYQQZ6Hm5n7WrDlEc3P/RA9FCCHEBJOYIIQQAiYmHkhPKSGEOAtVV/ewbVs7AIWFSRM8GiGEEBNJYoIQQgiYmHggRSkhhDgLlZenjvoshBDi7CUxQQghBExMPJCilBBCnIUKC5PkargQQghAYoIQQgjFRMQD6SklhBBCCCGEEEIIIcbdGVWUuu+++1CpVKM+SktLJ3pYQgghJoDEBCGEECDxQAghTmdn3PK98vJy1q9fH/+3VnvGPUQhhBAnSGKCEEIIkHgghBCnqzPubKzVasnKyproYQghhDgNSEwQQggBEg+EEOJ0dUYt3wOor68nJyeHyZMnc+utt2K32yd6SEIIISaIxAQhhBAg8UAIIU5XZ9RMqQULFvDEE08wbdo0Ojo6uP/++1m2bBn79+8nMTFxzJ8JBAIEAoH4v91u93gNVwghxCn0QWOCxAMhhDgzSTwQQojTlyoWi8UmehCnisvlorCwkAceeIC77757zGPuu+8+7r///mO+3t/fj9VqPdVDFEKIjz23201SUtJpf958v5gg8UAIIT66j0NMkHgghBCn3onGgzNu+d5INpuNqVOn0tDQcNxjvvOd79Df3x//aGlpGccRCiGEGC/vFxMkHgghxNlhvONBNBb9SD8vhBBnsjO6KDU4OEhjYyPZ2dnHPcZgMGC1Wkd9CHE22LKllfvv38KWLa0TPRQhxsX7xQSJB+JsJfFAnG3GMx64/C5ueeUW3rS/+aFvQ4jxJDFBjLczqij1zW9+k40bN3L48GG2bt3Kddddh0aj4eabb57ooQlx2lm/vpn16+2sX9880UMR4pSQmCDEiZF4IM50ExkPkgxJqFVqfrj1h/T4ek75/QnxUUlMEOPtjGp03trays0330xPTw/p6eksXbqU7du3k56ePtFDE+K0s3Jl4ajPp0pzcz/V1T2Ul6dSWJh0Su9LiJEkJghxYsYrHoDEBDExJjIeqFQqvjj7i/zHm//BT7b/hAcvePCU36cQH4XkCGK8nVFFqb///e8TPQQhRgmGo/R6gnQPBujxBOkZDNDrCTIYCOMJRPAGw/hCEXzBCDFArVLevGhUKjRqFRaDhkSjDqtRS6JRR6pFT4bVSKbVQHqiAYNW86HHtmRJHkuW5H2kx7dlSyvr1zezcmXhcW+rurqHbdvaAc7agHMiz5M4+SQmiNNKLAZ+F3h6wOM88uHrhaAPQoMQ9ELIC5EgoAaVClRqUGtBawRDAhiTjnwkZEJiNiRmgSlZOf5DGK94ABITJB5MjImOB7mJuSzKXsR6+3peP/w6FxVdNKHjEeK9SI4wfiQmKM6oopQQE8EfilDfNUi9YwB7r5fD3R7svV5a+3w4BwIcvb2lQavGqFOj0xz50GpUqFBylhgxYjGIxpSiViAcwR9SPkePurEkk45cm4lJaRamZFiYmplIcUYCxekJaDWnfnXu8PRe4Lgn0vLy1FGfz0Yn8jwJIc4AsRi428BRAz0N0NsEvYfA1Qz9LRDyjT5epQadGbQG0OhArR/6rEYJHrGhwBCFaBjCAQj7lY9IcPRtafSQkAUpkyCtBNJLIW0qZM4Ay6k//57oee5sjwkSD85e8zPn0+Bq4Kfv/pRzs88lyXB2JuHi7CA5womRmKCQopQQH4DD7aeyxcX+tn5qOgY42DVAS683XnhKNGpJNuuxmXVMzUzgnKJkEgw6zHo1VqOeRJMWk06DRq3MhFKrVMrsKFQM/QcouUgsNlycihGJKh8DgRAuT4g+X4jBQAi3P0K/N8i+NhdvHnTgDUYA0GvUTMmwMDM3iTn5ycwvSqY4IwHVh7yKfjwnMr23sDDprL36MWw8l8YIIcZJOAhd+6BtN3Tug6794DwIwUHl+xodmFLBnALmNEiZosxu0lvAkAgGKxgTlWKSSgNqjVKkUqlQZkkN3c/RxamRBSp/H3h7weeCwIDyedABjgPg/YtyLCgzqTJnQu5cyD8X8hcoYziJTvQ8d7bHBIkHZy+1Ss2np3+aX+z8BT/Z/hN+ed4vJ3pIQpwykiOcGIkJClUsFjt6IsdZze12k5SURH9//wfaaSMSjfHjlw9ww/w8puec3X9cZwp/KEJVi4vKFhe77X1UtrjocgcApfiUaTWSlqAnxaInPdFAltWI1ajDoFVj0GrQaVVo1ad+tlI0GiMwNKOqzxukpddHe7+PTrefLneA7qHZWkkmHfMKbCwpSWdpcRpTM09+kUqcnT7sefN095EeV8sOqHkRLvrRh15SJU4jsZgy26nlXWjdqXx27IdISFlal5ClLKWzpIIlQykCJWSMmAU1NBPqVL8WYjGIhpSCVdCjzNrqawZ3Owx0wEC7MltLpYaMMihcClMugMIlYDxz/nbFxDoTY8JHfUxN/U1satlEYVIhaw6tYe3htfx86c+5YsoVp2C0QghxejjRc6fMlDpJvMEwWxu7eW5XK099bgGz8mwTPSTxAQXCESrtLrYd6mFrQzeVLf0EI1EMWjW5NhNT0hNYPCWVPJuJjEQjZoMWo079kfo6nQxqtQqTXoNJr8Fm1jMpLQFQZlj5QxF6B4PUOQY43OOl3jHIxrpuIrEY6Ql6zpuWwaXlWSwtScOoG//H8dxzB1m9up5PfKKET35y2rjf/+lguMljUpKe/v6gNHs8U3QfhK2/VYoBn/yzFKY+jlx2OPw2HNoIhzcpv0tQik/WPCi5BKzZYCtSCjo6E2jNytK7iaJSKTOvNHplJlRiFuTOU74XDiqzuPqawVkLfU2w9+/w7iNKYS13HpReAaVXQuqUCRn+2R4TJB6cHS6ddCkHeg/w03d/ytysuWRbsid6SEKcds72eABnV0yQotRJkmjU8bNPzOLev+3i9sfe5e+fX0hZ9plxdehMFYvFqO0c4M2DDjbVOdltdxEMRzHrNRSlWjh/Wjp5KSbyksxYTVrMei167QQmGx+QWqXCrNdiTtGSl2IGjjRer+lwU+cY4I0aB//a1Ypeq+bcohSunZPDZTOysRjG59SwenU9mza1Apy1AWe4yaNWqyIcViaunqkB56wy5zY4vBmq/q4UB658UApTpzufCw69CfXroWmj0gMKFSTlKUvvJp0PyZMgIR30CaA3KzOOPi60etCmKMsJc+coS/sCg0pxqnMfOOtgw4/g9R+ArRDKroKKWyCzfNyGeLbHBIkHZwe1Ss1nyj/Dz979Gd/e9G0ev+Rx1BNZzBbiNHS2xwM4u2KCFKVOolSLnpvm5/HUuy3c+ud3+PvnFjI16+T2bBAfzWAgzNv13bxZ6+DNgw4cAwEMWjWT0yycV5JGXoqZwhQzVqMOi0GLRn1mJZF6rZqsJCNZSUYuKM3AGwhzqNvDW/s6qWzo4e2Gbr77/H6WFqdx/dxcLizLPKUzqD7xiZJRn89Gw80dR14FEWeIyRfCYDfselxZunXZL6QwdTqJxZTeS/WvwcFXoXUHxCJgzVGKUEVLlc8JGUr/J51xokd8cqnUygyv7NnKRzQMgw4697xNuH0/2e/8Gc2230PKZCj/hFKgOsUzqM72mCDx4OyRakrl+qnX81TNU/xp35+4Z/Y9Ez0kIcY0UbvDne3xAM6umCA9pY7yUdaMH+728PqBThIMWn6x7iDRGDx51znMzk8+RaMVJ6K1z8ur+ztZX9PFzsN9hKMxMq0GJqclUJRqZnKahWSLngSDdlx2rDsdPfP3GiqrnBTOTCZpipUDHW663AEsBg1XzsrhzsWFlGWfnMr88FTUM3kK6kQb7+f4TOwfAifhcVU9q+ySVr8Oal+Bilvhmj9IYWoihYNw6C2ofVkpRg10KD2fUkuUAlRqCdjyhopQprPyd/XMMzVUVTlYMNvIdXP7oH23stwvEoTsCjjnszDzeuX5+YgkHowPiQkf3cnsKTXSY/seo7qnmj9f/GfmZs49WcMV4qS5//4trF9vZ+XKAn74wyWn9L4kJpx6p2s8kJlSp0B6opFvX1rKA6/XcfOf3uHR2+extCR9ood1Vmnu8bB2fycvV7Wzv92NTqNicloCK8symJRuIc9mJsmkm5A+Sqejitnp8c9lZWkEw1EOdrl5t6mXl/e28+yOFsqyE7l1QSGfmJuLWf/hTx3DU1FhYqegHr1WfaKuBJ0Kp8tzLIbMuR00Rqh8Cvz98KknlJlTYnyE/ND4BlQ/D3VrlV3qEjIhbZrSFyqtBMypyjJLtcSE2RVKPJhWkQ7T0mDqxcqMP/sWZTbZi1+GV78N5dfBgnsga+aHvq/T5Vx1JscDOH2eZ3GsW8tu5X93/C/f2vgt/nnVP0kxpUz0kIQYZTx3hztdzlVnckw4XZ7jo0lR6hRJTTDwX5dO48H19dz1xE5+/smZfGLux/tFfLprcAyydn8HL+/t4GDnAHqNmqmZCVxbkcPUrATSE4wkGrXjsiPex01ZWRplZWnxf+u1ambm2piZa8PtC7LtUC+7mvv4/r/387O1NVw/L497z5tCdtIHv1I+PPV0oqegHr1Wff36ZtavtwOcdgHng17VOF2eYzHCrE8pPYgqn4K/Xg03/x1Mp8+bgTNO0AsNr8P+55WZaiGvsiwv71xl17nkSWBKVn4nYpTpZWlMHxEPUKkhMUMpQpVdBc6Dymyz6n/DnlWQOx+WfE1pkv4B4+vpcq76OMUDkJhwJjFqjXxuxuf49a5f882N3+TPF/9Z+kuJ08qSJXnjdh48Xc5VH6eYcKbEAylKnUJJJj3/dck0/vhWI9/4RxX1XYP816XTUJ2FywFOhVgsRl3XIGv2tfPy3g4anR4MWqUQdd2cHEozraQnGkgwalHLc/6hWU165mQkkuyLwZQ0Kh0D/P3dFv62zc6FZRl88fwpzCk48SWqhYVJp0Vl/ui16uN5JeiDOvqqxvsFoNPlORZHKb1CWRa248/w6HK4bfWE7XJ2RgoMQN06OPBvqH9dWTqZlAeFSyBzutIbyWhTluuJD0ethcxyHKoi2lTtlKirSOh+B/5xm/JcL/gCzP8M6C0ndHOny7nq4xQPYHRMGP73eyUkp8vzLMaWk5jDDdNu4G81f+M3e37Df877z4kekhAn7GQuBztdzlUfp5hwpuQIUpQ6xcx6LV9bWcJT79h5aGMj9Y4BfnfzHEwfYfnT2SwWi1Hd7mbNvg7W7OvgcI8Xo07NtMxErp+bS2mWlbQEAxaD5owt/jmcHuz2AQoKEslIH/uN/4kc80HY7QPUHeyjtDSFzy+bTPdAgDcOOnj3cC/X/bGLinwb37h4KkuL0z42z/snPzlt1G4eH/ZK0HiszT76qsbpOvVWnIBJy5Td27b8Bh49X1nKV7xiokf18eXvV5qUV69WluhFgmArgEnnjS5EncHLJR2OEef7jOPEhBM45oOw2weobQgRKV3K/EuuhbYd0LAeXvsebPy50ndqydfAZPvI9zUeTlY8gPGPCRIPzgwLshfQ6Grk8f2PU55azsVFF0/0kMTH0Imcf072OepMPAdJjjD+pDIyDrRqNZ9eVEROkonndrdyyf9t5uHb5jE958xo/niqxWIx9rb2s2ZfB6/s66C1z4dZr6E0K5FzilIozUokLcGAWX/mFqJGstsHqK3tHfXvo4tPI4/p6fZRWeWM94v6MAoKEkd9Tks0cMP8fK6amc3mhm421Tu5/bF3mZFr5esXTeWCaRlnxe8CxufkP3y71dU9wPGn3kqDyI+J9FK46Eew6dfw1PVK8n7h9z/w0qezlrcXDq5RekQdekvZNS55EkxZAZnlkFykFEPUZ8dbnOPGhIyxY0J3j4+qSiezK9JHL9P7AEbFBI0WChZB/gLoaVCa+m/9PbzzCMy7C5Z/A8xnT5+c8U4IJB6cOW6cdiPtg+18b8v3yE/Mpyy1bKKHJD5mTmQW5chjWlsHPnKvpNN1OdjpQHKEE3d2vGMbR02H+9m+vmXMAsBF0zMpSDHxly2HufYPb/Pty0r5zJJJZ03y/kFEozH2tPSxZm8Ha/Z30tHvJ9GgZVpWIkuL05iamUiqRY/FcPa9hEcmAyMTjZFFqZHHbNhgp6rSCUBqmulDzaDKSLccc3xNTXe82PWDK6ezpbGHN2sd3PXETkqzEvnGxVNZWZZ5zOv7dD8pflDjFYxHBrbLL5885nN3osHvTPsdnK7q6nup3d9BcYX62OTfkq4UpnY9Dm8/CE2b4IZVkJQzMYM93Xm6lR3zqp+Hw29DNKIsfSy5RClE2QrOqkLUSMeNCRnHjwmVVU48nhBeT/hDzZ7KyLCM+pkDNd1HCl1L/xP6muHAi/DuI7DzMZh7B5z/7WOKU2fiuWg8YoLEg4+npsMuth7wUlEx9kVCjVrDvbPv5Zc7f8mX3/gyf7/i76SbZaMkceJOZBblyGOeeGJ/vFdSXl7ihzoXjLUc7MM2Bj/TzkeSI5y4s+/d2ylWX9dH017lDeFYAWdalpUfXDmdx7c28aOXa1hX3cWvPzWbvBRpthqORNlxuI+1+ztYu78T50AAq0lLaVYiF0xLpzhDKUSdLTOijmesAtFwwjHWMcM769lsBv70p734vGEuuKCAFSvGTkK2bmtj29Z2Fi3OYfGi3FHfG1mIqqxyxotdZWVpXDAtg6XFqWw/1MuGWgefe3IXs/KS+P6V08lQaeInuI/rtNLjGa+12ScS2I4+5niB5Uz7HZyu9u3vpv5ADx5sY89I0eqV3csyy2H3X+EP58BF98P8u+EsPsfFuduVWTfV/wb7VuVrqSUw7XKlWXlS/llbiBrp6AIRjBETRhwzuyIdp9OL3e7G6fRSVJTEihUFYxamDtR0s3VLOympRpYuyT3mmOFilNPppa3dAyiN0kkuhCVfgf5WOPCCUnzd8zdY9EXshZ9l/0HvGRkPYHxiwoeJBzB2TDgTfwenq7q6Pg5VKTNijzdzPUGfwD2z7uHBXQ/yxQ1fZNVlqzBqjeM5TPExNtb55+jzxMhjhnskZWaa+epX32BgIMjtt5dz551jnwuO3pVupJGFqA/SGHzkeelMOx9JjnDizu53cidZW/sAer2G4hJbvBAwFotBy5fOL2ZjnZMXKttZ+cBG/vOiqXx22WQ06rMrEQmGo2xt7Gbt/k7WVXfi8oZINuuYlpXIJdMzmZKeQLJFj+UsL0TB2H2iji5QjXXMtGkpDPT38PSqt+lq70Sr8bBba6Wn2YjP6+Giq28gp6AIgIP79vDEb/5Ed2+Epv1puNqmY0lIwJKYRGpGJjt2+DhwYBA4Uuwa+VrXaTQsK0ln4eQUtjb28Gp1F596eBtlyRaK3coxJ3pSFKOdSGA7+piRgWXnzs74G4n587MAmWp9KjU392M0aCkqsjKr4n2udBcthbSpyoySV74BVc/CtQ9BWvH4DPZ00ncYal5SClFtO0GlgfRpUHYNZJSCNXeoR5S8fRmrT9TI4tPx+kgVFibQ3d/Ljv3NqHQhatp17GzcSUqajuz0FO765JFeNvf99mkaDvVgtZjZXpvHzOlZWBPMZKTYyM9Op6rSSWWVk9wcCxWz05l99Gs9KQ8WfQmmXwP7/gWbHyBz65/YF7yBA7HPUT4jE3j/wokY7cPEAxg7JixblsuiRTkSD06x9vZB9AYNxcVJVLxPTMhJyOHO8jt5dN+jfO3Nr/GHFX9Ao9aM00jFx9FY582jzwFjHbNwYTa9vU7uv38dhw+3YjT6eeONfTidSQwODnL33XdTUFAAwLZt2/j+939Fa2uAmpos+voWYrVaSU5OJicnhzVrOtm0yQF8sMbgI89LkiN8OGdCjiDv6k6i+noXPn+Ycysy3rd3j0ql4vxpGczKtfHMDjs/W1vLM+/a+f6V01lRljlOI54Y/lCEjXVO1u7rYH2Ng8FAmPQEAzNyrExJT2BSmgWbWQpRRzveUj1Q+m4drDnEi6s342g7zOXXf5ILV8wE4LknH+HRX94/6vjOmiP/n104nXankYKCRJrqa2jatxqAg21w8N3RY7jtKz9ldsUiKmanY9Q4cR1+hkZ1McHBYgomlxCKmuNJ0HlTM1g4KZX1NQ5eP9BJbSSCr6Ob+UtzuPzyyfHbPNOuipxORgb3735386jtbeW5PrWqq3vwekNMn556Yn17EjLgvP+Gxjdh3z/hjwtg7qdhxQ8+Ns2iPzRnHdS8ANUvQNc+UOuUmVAzrlcKUonZUogaw/GW6gH4A0H++fIONm+vZ9rUNO7/5nWAEitSF95IIBga8zYXzynjymVL4ufxtyq34+xzAbDxwOhjp03KY/UDPwWU2Ver33qdpo1qalvyKJ2cT5I5iY5231BRLA+Wfg2662HXM1zR+yjhA2vQFv6YwsuuGzUzUGLCqXO8mPDUU3MmclhnhYb6Pvy+CPNPIEcAKE8r54apN/D3g3/nu29/l58v+7m8JxbH9V7nzVgsxvbtB/j979dgtx/ii1+8i8LCcwD46U9/yg9+8INRx69adeT/y8rOYf/+MOXlqezevZuaGiVH2LMHPve5x0b93E9+8ggrV5azcmUhBkMnbvdqDhwoJRotpaysDI9HN2aBaeR56b0KJxIPTq7TLUeQd3gnUXpahD0v/4SgfTnJ1quZUpI/6vtjzWJJSdDzxfOnUNni4oWqdu7+607mFyXz7UtLmV905jQG7ez38+ZBB+sPdLGlsRt/KEp2kpH5hclMSbdQkGLGZj67l+a93455I3uCDPS72LfrHer2V1J3oIr6A3tx9XTHj1156TxgJg6nB9eAHpVKhcFsIyUtnaycLMyWRIIhDe5BaG5R43AriU1RcSnX33kvLfYenF19GPQhdNogblcfPY4uZs+ZSsUCpfHmy/9Yw+pVj44aY1JKFklpxZTNnsOtn72N7LxCrpiVzXlT03hlfweb67s575dv8YXzp/CF86eg06g/1HrrkVdO4P23wz4bHX116ejtbcWpVV6eys8eeYeX3vVwSyDExctnoR7RyHzMWSwqtbITX+582Pcs7FkF+/4Bi76izDYxJEzQoznJIiGwb4O6dXBwLfQ2gtYIGdNh1k2QNk3ZofAsX5r3fjvmDceE/PwEdlc3sL2qll3VDeyqbqC6oZlwOAJAqb2I+795Xfz2MlJsOHv7sVoSyclMIS8rmQSziVAQ9CTy9pY2vJ4wAF+5/Up6XAM0NffQ4XCj0UaIqkJ0dbuYlJfJ9LK0eNF1+WdeoMfljo/PoNORn5HDvPJirr98AddfuhTSSjBc/H1or0S7/1/wr8/AOw/DFQ9CVjnw4XpwSEx4byOfn+GLQhITxleSNcjOZ5/DP2cRKbYVTC4efQF6rL/3JblLGAwN8vKhl7EZbHxnwXcmYujiNPB+M4ZGnjd7enrYtGkTO3fuZNeuXezevRun0xk/9gtfuCx+m06nkneZzTays7OZNCmXxMREvF41PT0Rdu3yYDQqRaGKigq+/vWvU1vbhd3uwGyOYDSG6enpob29nRUrZrFw4UIA/u///sUDDzwwaozp6TmkppawcOECfvSjL5Ofr+TJ7zXLR+LByXe6xoOz993eKVC7bwuH923k8L6NrHn6/zFj3rksvuBSFl94KTkFRced6aJSqZhTkMyMHCsb67p5vaaL6x/eRkW+ja+tLOG8qekfu0JNNBqjqtXFG7UO1tc4qOlwo1ZBYaqFJVPSKE63kJ9iIcmkw6Q/u6ckD/dpMho0eLxKInB0Uaq/rweTXhNvZHto/6v86RffHnWMSq0mPbuIwikl5OYpU8Pt9gH0SfP58WPvsmDB6CLpM3+voarSicpgo7Q0hWAwwp56E8uv/PJxG6I7nB527uqkoCCRyVOn88lP30PjwYPYDzXQ52yjv7eT/t5O7HVvs/Ky88jOU6btdrc2UuRtZeH5Fbxy0MWDr9fx7I4W7r+6nJXTM0cFihNpjnj07iIf9irKmTwt+OirS0dvbytOrYICK/9+eytdvS5WvbaR7PQUrr5wAdesWMiFCyvec5YLpiQ49/NKE++9z8LGn8O238H8z8KS//h47mQ26ISG16HuVWjYAMFBZfZTeinkL4T0qUrzd2MSnOXLVIb7NBmMmnhxaORrJBKJ0NzuYHJ+NgDNzW6u/OoPcPS6Rt1OalIiRTm5nDtLeZM5/Jp7+v/9iCWLC455X/HMMzVUVjnp7fGTkmqistLBJy+4mOllacctkA1/PTfXzNfvvI7Kmiaq61to7ujA4/PT0NZMQ1sz3QM9SlEKQKXimT39zJn2OaZNqkN14N/wyDKouAUu/jGFhckTEhPOpngAx255Lk6tfbu30bhzP4079/PSY48xe+FsFl+0mKUXLyUrP+u4MeGSokvwhDw8Xfs0ifpEvjznyxP1EMQEGD7/WSw6+vuDwLHnNYfDgc1miPdk2rVrNT/4wbdGHaPRaMjLm0J5eRlTpigF0erqHhISFvHCC7VcddXU+LGhSIgf/Ox1Nm4/RI/Oy+x5DnYNNHKoxsGUC6dw8XXTaOt0k5ahx5KoIRKLECPGBvcW/vnPt8jJstKT7ODSOy6lpa6d9kPt9Dm6cTrbcTrbqa3dyN2fvSpelKqqqqKzs5MlS5aQkDD64tvRBSvJET660zUeSFHqJJp7zgJW3vhFqrdtoMN+kH07t7Nv53Ye+eV9FBVP4+5v/pzS0knHNCAd2Vh65aJclpSksrmum80N3dz5+A7yk03cdE4BN52bT2qCYYIe3XuLxWI0OgfZ2tjDloZuth/qpd8XwmLQUJKRwLUVOUxOs5CeaMRq0mLQnt1Jx0jDDcOLS2xUVGRQUJCoPJ+11byz8XXe2bSe2r27ufe/7qeg/Gpqa3vJyJhB/uQSps+eR8n0WZSUz2by1DKMJqVh/tZtbfz61zuYXp5KeXnmMa85UHpBeTwhUlOMx+zSd/NNZWPO1hr5pmn+vPlMr5jPzl2d1Nb2MqnQQIKhi7rqKur2V1IyfVb851597hmee/IR1GoN+VNmUnzucvoCs7j7r16WFKfxk2tnMDldCUQn0hxxrCsnY11Feb/gdSZPC5YteidWJBLhvntu4Pn177Bl/0E6nL088uxaHnl2LWajkduuWsHnrvnkMX+bxzSWXv4t6GlQdp7b9nvlY9qlcO49Si+q0/WChd+tzIZq2gSH3oSuobVfyUVQuBhSpij/b0pWZoCp1O91a2eV4T5NJcVHYoLLPci6t3fx8lvvsnbTLtRqFV1bnsZuH+DgwT6WzJ6NNzTI/BnFzCsvYV55MfnZygUth8PD6ufraW1xk5efyNSStDEvdBUWWmlrH2T69FSam93UN7iwWHRML0sbs5k6jI4J3733RnbuVOLB1Kk2kjNi7NhXx8799ZROPnJRpLuvn1u++QsAMlOTWVheys0zMrlix99JqHkRzv+O8voemll4smKCxAOJBxNp0bJFXPTpy9j35n467S3s2bqHPVv38If7/8Dkssl84Ydfp7Q09dgcYWsbh7blMWneTB7Z+wiAFKbOIsPnv/nzM7nooiLKy1OJRqPs2bOHV155hZdffpkdO3bwyCOPkJe3km3b2snJmUF5eTkLFy5k3rx5zJs3j5kzZ2IymahpbGfVi9v47dptZE0L453dx1qNh+fWuuj2d9Pr72UgOAD5QD7sAHb0Dw0mDXY51ej7dKhUKjStGtQqNRqVktP5gyHC4Qhqbww0MaIroqgujJJLFlm+dHyHffiafPgO+7jnwD0kNSeRbEym4bEG6tbUodaoyZ1axPKLzuPWmz/F8rnLsegtYz4fIDnCh3W6xgMpSp1Ek6YUc8MXv47/U19k88Z9HNj9FodrNuPtq6W5sY5pZcV0OlVs2GDHSD0GQ5Sk9Jm8tclBQ4OLfneA5mY3FbPTubg8i+kpZt6qdtIaCPLA+joeXF/HuZNSuGJmNpfMyCJtAgtUwXCU2k43lS0udh7uY2tjN92DQTRqFYUpZubk28hPMVGUYsFm0ZNg0J51TdyP5+hlesONwmfOSMbRspffPP4i9fvepq+7c9TPdbQ2s/Sy4SV8hVz80uZRt+cejGE0KTOvnnm6BpcrAMA3vjF51H3v29sNxJg5K52Kigxqa3ux2wfGbFwOo3fcG7mEcNjIr2WkT2H2OYtxOD3U1A1QUKAhI91Coi2Z7PxCOlqaaa6vpLm+EoCk9BxeK5rPO3Wf5vMrpvOfK6eeUHPEo6+cHC9YvF/wGnlifq8rIifjasmHuY2Pcr/jteOHGJtWq+XeGy9kxewytu0L4lM7+eeaLWzfvxeP30MsFmP+/CwO1HTz6rpDHOio4orz57N9k5uGehcGo4ZDh/q5/PJJTC8rgSVfo6epjnDtetKatqKpeUlp+l16Jcy8Xlnyp57Aws5AJ7TuhNYdcHgztFdCLAKmFEgthhmfVD4nZimzoXSmiRvraeboWUjDzcIz8zSs2b6RF36ynar6eiKRaPxnkhIttHZ2x8+/D1/85WManBu1XjIyLLy9pY2XX25ErVKRnm4eddzefUo8mDUzHb1eQ1amBb1eEx/DMY3LOTKTa3bFsTFhVDzIsFBSlMvKBeditw/gcHjIyLDQ3efmwoWz2bqnhq6ePl7YtI0XNoFep+WCkihf2/9NLl3yN6XZf/askxYTJB5IPJhIU6ZO4dZv3oj3lrvYtKGG6nd30rS/ksGeFprrmiktL6Sl3c+GDXZ0oVYsFi3WjEm8tamDhgYXef1lZJwb5pG9jxCOhrku7TNn5CyOs93Rf+fD573zz8+huXkP99zzLHv2bMLhGJ0jNDY2csklNwIwtczKRTf9m8b+RnY3H+D/Gh9j0O6gO9SlFJxSgBTYH9CSYrZhCViwaC0kqpJRB5LJwUh+diqDfVGcHUEKc1Oxmsw01XkpL8ugeEoKKpUKNWoaGvs4UN1DeXkaNpuBtvZBcnIspKaaiMaiOLoHsbf3YitUY5wP3rCXnv4Bunr70SdEiGoDNCU2Ycow4XP4aKk5xFM1h3jqt4+jS9eRNi+NRZ9bxKTUSUxLnkbGomQWak1ceF7+0U9dnOQI7+10jQdSlDoFtmxtp2p/mMLiy0kvupQeZy82cwedThVr1jRxuNmN48Dv6e3Yi0qtISO3HGvGbKL+Cir3KFP1y8rS6Gz3QleAC6clk72okK2HuqnrHOR7L+zn+y/sZ1pWIounpLK0OJ05BTZsZv0peTyeQJh6xyB1nQPUdrrZY3dR3e4mGImiUavIsRkpzUokL9lMYYqZ5KEilFEns6HGcvQyzrKyNMrK0nC7+vjGLXcRjSivAb3BRFbhXBZfeBHX3HgtaRlZ1NR0s3VrG1u3wkUrC0lNM7Fhgx23OxC/vcoqJ+FIDEuCjoxMMw6nJz7ryW4fYPeeLvy+CA6nj4rZ6ZSWpsQLZGM133x9fTNVlQ6cTi833VQ66nsjC2xAfGnf0Y/x1nu+xq33fI3qfXWsfvoF6vdtxtlaSb+znRTVu8wv/m8efquRf26385lSHd/73nJaWwdZs+bQmCfb99qSdqT3S2ZGnpjXrDl03CsiJ+NqyYe5jTP1Ks3ZpKaml8o9fnJyE/nGbbeycdNyega7KMvO5kBNN8+vrmdb1QFe2fsc//uXp7FZrEzJnkxR+iTCh/OoqkxQevaoVDT1JlHbewHTiy9nbnqzsjtd1dPw7iNK8adwEUy+4MhufqdiGVw0Cq5mcNaCowba9yiFqIEO5fumZGUGVNlVkFwI1jwwWkGfOLFFs9PY0ct2hvs0ffX/PcxvV70YP25Kfi7T86fyqSsWc/M1C9FqNaxde4hNm1tZviyPefMysdsHcPX76ezwxm+vt8dPNBpDb9BSWGgddb97dnfh80dwOnzMrhgRD4bGMZb1rzdTWXVsTBhZXANlN59j4kGGhdLJ+Wx44mf4A0Fe2rCLv/5rE+9W78PZ38u6A33cdNlVMFhN7NHz2Ge5CsPSb3LnnTOoru6hublf4sFHuF8x8bZsaWdvjZ/CGYvJnLaQbkcfyaYBWtr9So5w2E3rO3/D1WlHrdGQWTiFpOwpxHwlDGyeTuYyFY/tf4w6Uzcp+y4B5PVwJjn673zJkjyWLMmjs7OTCy/8FNGocnHCZLJQVDSfi646n/NumEWXpovv7fgWtc56/F29oFaO00VNaAMJpCemMjtjNvX7fdgPhjBEE5k/q5CF0wrIyrCiVWvZu6eHjbvb8PijpBbbmFuRjscQPrJsu+LY8W5/o4mqqh7cXRpuuqmUfrUGmz6RVJMFh8ODzxFh3mQlTtjtA5QUJGLwDuA+3EtpaQrzZmdy2//eRjgaZl9lAy88/QYNVXvpbmom5Azh2etBq9NS2bmXDYffwNM5iD5Hz4YmAymHsyhNncqiovnMTJvJ1OSpGLVGiQkfU1KUOona2gfYsaOT3h4fJqOWkpJkrFYD6zeEUJtSqKxyotaoSUzQEUibTCzcS5+zla6WvXS17AVWYTTb0AyupKTke1jMWrKzLAz0ByiKxLhxfgFtnQNU1ffRq4rg9If4585WHnv7MADpiQamZiQwLSuRojQLOUkmMq1GEo1aEo1aEozKsrlYLEY0BtFYDG8ggtsfot+nfHT2+2l3+Wh3+Wjp89Lo9NDR7wdABaQm6MmxmTh/Wjo5SUZykkxYzToSDFoMWvXHrvfVeDl6tlFXawObXn6KV57s5Ie/UXavsNqSWbLyKgJBNedfegWdrlyq9/djTk8nqkpk565OKisdVFY6UAHp6WZKSpJxu4MEAhG2bm2jxe6msNDK8uV5GA0aqvY6+fGPtrFseS6TJydjMWspnpLMgZpuOjs9eEqSCQYj/OlPeykosHLJJUVkpFtGjRcgBrhcflY9eQC1RsWyZXns2tXF86vrUalVXHpJEfkF1njiMdaMKoD0rFzMaeeTNm0+K29IoiS/G69ngBXLppAWPcwbTQ7+4+4b+K97tSxbfCnZmUuJxS6isDApfkUgKUnP7363h7q6PoD3DDjDwfxEvNd01g8z1fXooPhhbuN0nWIr3l9zcz99VQ6siXoMxhChUBSXK8CkIhtpg2bMWh1VlU58vgg6nZrZJdOobT6Ey+NmV0MluxoqUalUbG2eTFLWXWQkZhMMRtBoVBiTEmHK+TgS5tGua2ey6TBWXwN07lcah8eioDEoM5Myy5Ud7GwFyswqU7JSJDJYQZ+gLP+LxZSfiYbA33/kw+OE/lbobwGXHXoPQXcDhH3Kg9SZlNtMnwaTzoekPLBmKbert5zVTcrfz8jZRqnpOho31/DImnf40X/cygULZwNw0+Xn8U5VHUtnz+HGK5bQUBOgssqJNphCb68fu32ADRvs2FuU5uLp6WZqa3uJxWLY7W5isRgFBYksXpKDqz+ARq1i7z4nq1fXU1xiY/nyPObMzeRAdTcNjS7SM0ysXFE0qtB12WWTR401XqiKKTHhyVUH0KiVmPDaa01U7e1m9qw0Lr540vvGA6NBz3nzZ9Fco6Uk6RxyJ6vB3MMV162EBB3O1x/j9XX/5L/+axVzy0rJKLqKT3/6FgoLKwDlb+zNN1t4+OFK7PYBQOKBOH21tw+yY2cHvb0qjCNzhPUh1JZkKiudqNVqEhK02DLzIOLD5XTScaiOjkN1wFpMCVbmuBZTett8NvteYPqUXiY77okXa8/UHjhnupHLyMrLUzl0qIZ//esp/va3fp5++mkAsrKyWHnpZQxEAkxdOQm7vpdufQtvmJ7jjf3PYVCZ0HitDHTqwVfEtLx8irPzaDoQJOxXoY7q0OXauDAnkeaQG6NRQ9UeJ+++XhPPEawJRkqKUzhwYChH8CTjdHpZvbqOZUPxAIZymkonFUMzaWND8WDVqgOo1SNyhOfrUalUXHppEfn5Y+cIKpUKnUqHTq2jqGAyKbl+cpnFFbfbmJztIRgIct6s83hnVwv7G9pY/dOfoDNpyZqfT7TCzZ7pe3jb+SaRWAQVajJ0OfTVJNHrS8H32hyuva4YzXEu0ElMOL3IO8aTqL7eRe3BXlSBKPPmZ7FkaW78e253gEFPiMREHbm56bSk3s2ixd+nKDfEc8+8wJ5tG+myV+L3uuh1tFNbq1SQIcbf/nA/RcVTySmqoKs3EUuCkWXL8rh5cRED/hAtvV4O93pxDgQ43DXIzsZeQsSIHn+o7ynBoMVm0mE16ZicbmF+YTJpiQYyEw0kGnWY9RpMeg1auep9wiqrnOze0UztrhfpbXmL2n174t+r3ldHp8MAxLj3O7+Kz2qqqelGq9VTMTsdu32AzZvb6OvzUVRkxWjQYjRoCAYjWK16nM4wBw/2Ym92M29+FitWFACwdm0TTqeP9a/bWX5ejNLSFPILEnE4vVitegoKEln15AEOHOihxe6mr08pQHZ3+xgcVLYMv2hlIenpZpxOL4cPu8nNSaCgIJGHH6rE4VCS0337nfHX+/Csq7F6Uu3b66Svz09qqpFzzimgrGxu/HtLpqejdbXRSAxvfw/r1j4FPMWrrxZxxx2fprz8Yurro2i1KlJTTUyd+tF2iRh+82a397N5c9t7XlH5MFNdV6+uP2Z71ePdxvHeSJ6uU2zF+6uu7sFT34dBE6aoMAmrVc/sinS8njDBYITmZjc2m4FEq46ZU0r41qUXUzEnlU079/Pkc5vZuLOK9m4HVXWN2JsH6dX24veH2VJVxbNvdlFWNAW1P4m0ZCvhZbOZv+gSCHnB06PMYhroYKCjhci+t0jUvIQm4vtwD0StUwpZJpvSmHzK+UpD8oRM5bPeAjqzsnueXJQ4YZV7HKx9q4o/vVTPOwcq8fqVc+9fnltPxGNDWVJXwPZ/HNm9yGJQdlidXZHO21va2fFuBykpRnR6NXMq0rG3DOD3h/F6Q7S3D9Lb50erVbNiRQF33D6dt7e08+IL9fT3B+nt8zN/XhYrVyhXiPfs7kK59ASbNrfSUO9iYEBpqvvKmkNEwjEAppelsfKi0TEhJzeBvXsdbNuuLCfZt7+Hz35W6Sk4fIV9rH5UDoeHDRvshIIRcvMSuXzlpNGzs865i3f+3UU0tpudB2rhQC0b1v+WP/7xYu6++zPYbDNYt64JtVrF1KnJH3nXoLFiwljnX4kH4sNoqO/jYG0v0UAy8+dnsWTJUTnC4HCOkEFL2rUsXJhNYQ7868n17H57F51NdfgG3fQ6uylrvorZRSYq/Zt585E1LHrxExRPOoeGBh02m5kbbywd87VyIk2ixfhbv76ZV189wLvvPkdn50Z2794NgEqlZubN57K7p4Y2DjJwQw8AB3WDWFWppLsKmZyYgzmcwsE9IQZ7o2Sjx6g3UEQKqVELgyY3zkEvBw/20tLkY/782LE5wno7y5cP5Qj5iTgcR3KE1avraGx0EQxG8fsjtLS4R+cIR8WD3FwlR3jooUqczqEcYZ8z/np/r5iwb9+IHGFB/qjVG8WF6XQf7kKlUjPYM0jDuhpYB2m5OSy7ZhlJs7JpC3fj17qI5raQMPkA9erNLH7mz8xIm8H8zPmck3UOM9JmYNQa3/d3IjnC+JOi1ElUUmKj9HAKqXotM2elk5FuweH0kGQz4HYHOHCgB4tZh90eobV1AJ1ezeJF87jxrs+yaOWN9HYPsHfXTlJTTfEp9Fua7LQeXEvrwbUAqNR6ktKm4Gmby+4tZSw+bwmZOQU4nCEKYhDqi+I75GFaeQqLLyzA5Q3iC0UIhqMEQlEisRgqVHi9Qdz9QYjGGHQFmFSYxOSCJGxmHWa9Fp1GhV6rVj40MgPqo6irrmLvxt+xb+vrRMLKMjuVSoPBNpuyuZcx4DGye08nxCDJppwo7fYBLGblSlpqmolUoK/PT3PzAPPmZbB4cS61tb00N7txu4O4XH60Wg3WJAOdnR5efLGRSUVWLBYdzm4vFouO0tIULGYt7e0eiqckkZOTgN0+wPTyVPyBMDqtGnuzm55eP9ZEPQUFVipmp8eXF27d1kYoGGXR4hwy0i2EQkfKnj09SkI1vFQDjt1BsKamm+3vKEt8Fi7IOWapYEa6hauuWYJ78Dk2bnwTl2s7rrotdHYe5he/uB+1+sfcc88PufXWuzjnnOyPfCVweNrr5s2tNDa6gPe+yv5BfZDtVc+0KbhCuXLV152MxRAhJ5wUfyM2nIh3dnpoax/E4fDi6gvw0suN2JINXLpsPnOnlWG3D1DX1M6b7+xlUm4eqckm7C1u9h0+wK76Kl7Y9AYAKYnJnLu/hJL8Qs5bUMaCWaV09s/EbJnDq7UN9Hb2cc7cZK65JFOZ+RQYhIgfwgHlA0ClYtATxt7iod+rorA4g5z8NGXJnSlJKThp9MrsK63hrN8d76PwB4L84amXeeiZtTS2tMW/nmiwsmjGPK6/4GL27O4iBtiSjPHXjN0+gNmixIS0VBP19Y3YW9zMmpXOz366nJ07O3nzTTs+fwRbkp7MTDM9PX4OHuzF4wlRNMlKb4+PWAx0OjXFU5IwW7Ts3NlJTo4FyARiOBweli/LY2AgSFqaiU2bW3H1+bElG+P9paaXpZGWauLtLe2YzToWL8nhj3+sPPJYEnRjLuM7Ogl5e0sbO3d1Ulhg5aabSo/5fkaGhX/86Sf87qFN7Nn2HO80HeKAM8DGjS+xceNLFBQU8f3vr0ar1XLBBQUf+dx5KmOCxANRXJLMtN4Uksli5sz0+N92UtKIHMEyIkfQqVmyZB63fOFTLL3iUnq6B6h6Zz8ZmYlDOcIVDLzup/qdx3mRBwFQqQykpRXj9y/kzTfLufbaleTlFfDmmy1AjKoqJzt3dgHHbxINR5Jgny/E/v3dUsQ6hd555x3efvuX7NixhkhEKfSoNCoSZydhW27lacdf0AVt6Hw25mTPZFp2ET6ngeSEBMIGLZMKkwHYs3YPLc0DzJuXctwcIWlkjjBpKEdwjsgRLEM5QvGRHGF4NlRBgZV33+2gs9MzVLCyUlExIkfY2kYoFGXRohwyMiyEw++TI2SMkSNsH8oRFo6RI2RYuPpTC3D7f87m17YT6a+j+UAV3W3tPP/HZ1Fr1Fx/7+c476qrcXk8JGXG6Nd0YB+w0+5p57H9j/HHqj+iUWmYljKNRdmLWJa3jFlps9BpdMf8XiRHGH9SlDqJcnMSOeecLCalHdnOcriXgt8fxmzSkZVtobfHhwrw+8Js2NDMcNPpgoJEUtIuiM80AZgxK5OLr/8S9oZKGg7sJhz04XLUsHFNDQBtTbdw1W3/xe49XQz2u+ltfY3UzCImp89jSooBfZbSP8Lh9LDl7XZ6e30sWZyDJ6ph845eag504/OHMZwT5vplReP8jJ0dmhvr2LnpZQCy8qYwd9k1FEy7kNr6EAUFVpKSzMydk4nbHaCmpod165owm3VkZVmIRJSr0/PnZZGWZqS11Y3fF6bfFcBiVv58W1x+GhvdqNWQkWGio32Qtw+5MJt0ZGSYSEk2MmlyEk6nlz+/0IjJpOHKKybj8YbZtasLjUbFwgXZ5OQkUFvbR0urm/w85U1Pe7uH9vZBZs5SmuBmZilNcAGuuHISL73YSCgURaVCWdqnhsZGFwsW5nD7beXAkb5TlZUOenr85OYkMHPW6GAzsjfV3LnZqDUXMXvWzezr7ubFl/7N4P4NeO37+dznrmLOHOWNUUNDAwcOtDF9+vSxn/f3mcY+PN01N9fC6tX1hMMRtmxpPWlvvD7I9qonYwruqW7CKD6YwsIkCmdnQNgPCRnxr9vtA7jdQSLRmLIxRIEVFQMMDoRY/3pzfJnU/PlZFBQkMnVSTjyhLyhI5GbHcibtT2bL7mo6epz0DvTx6pZ3eZV3+f2zKt545Pe02n1oNCp21h2gzz1IbvksnKSQllcUv8CwdWsbW7e1s3hRDosX5/La8/U8/1Id4XCURe4c/mPpvIl66s5oOq2G3/3tRZrbHRj0ei5ZfA7leTMxkcb8eVno9BqmFBuGZsB6+dWvd5CZYVZ2OtKo4jHBZNRiGDoX79zZidmiZUpxMpV7umhtHSQajREMRmltG6S2todIBKZPTyEnN4HBgRAJCXr++tf99PT4OW95PmVlqeza1RXvLXXttSVAjFAwSvWBHsqnp8bjwayZyuxdrydERUUG08vSWL4sl7WDh9Hq1CSnGHj55QZ8/gh+X5is7AQuWll4TCP21pYB/L4wZrPumARlZH+qFedPJ82WzrenRenZ8ReeeruBp6vhnDkz+Oxn58R/5rXXXmP58uUYjWNfBZ/ImDDe8QAkJpxucnISOGd+NoVJR/rXjMoRht739fb6UKnA7x+RI8xUcoTUtMRRBd7LKs7HcUMz1dU78TQMEg0EcDqr+cc/qgFobr6XO+/8FuvWNdHT001v7yaysycxdWoOgUAAg8EwdFw///xnHW1tA1x//VT6+4M8++xB3n67hcHBEHa7W4pSJ1ksFqOpv4lHX32U9etfAMCQZyB9eQYFC6YS9lpJN2UxL7OEwW4tgZAaXxO8tdGN2RwjK0tDJBJDo9Iyf34WaWkmWluV2bL9/QEslqEcoeWoHKFjkLffdmEy6cjMNJGSYmTSpKEc4c9DOcKVk/F4juQIK1YUHMkRWtzk5x+VIwxtlJGZOSJHuGISL77YSDg8lCOsGpEjLMjh9tuHcgTHUTlCbgIzZx6VI4yIB/PmZ6PRLqWi4jpMhiivPPs6e7e8Td3eWq745GIKitOBdOyNdhJDeSwuXUw4GmYwOMhh92Ga+ptoHWzlbwee4rH9j6FXG6jImM2S3CUszV1Kia0ElUolOcIEkKLUKeRweuh3BcjOMpOTk0B7uweIMX16KvkFVowGDbv3dMVnyBzdb0Hp6+Plypu+QFlZGu/uaGPjht343U2ownaa66uZt2ghFrMWg0FDW88hat99EoAtLym3kZScRmJyJpbEDCKmBaiM5VgsOhaea8PZWoWrO0gMHb5BLf19Pej0BnQ6PVqdTmZHnaCR/ZcSzW6e/cufMCXmcsEVN+Hxhimbu4J5592AJuEcrKklOPqD+BrCtLQM0tIyQH19H3MqMrBa9WzZ0kZ7hweLWQcxCIUi9Pb6CAYj5OdZMZt1pKYY6ej0oNGoOHiwl7q6PiLhKBqNmnAoisPpIxSM0R8MYrFoUalUBAJhnvtXHT09/qFApaKgIJH6+j4a6l309fpJshm57rojFfuduzrjr8/hZR3ZWWYKChJxOD1MnpzMeecXcOBAD6FghLb2QbzeEAMDQex2d/x2ht90paaYOOecLCpmpx8zi2rfXie7dzuYOzeDFSuK4ldIppPOhXMm8cTWT1Bd18ADuwM8MMVPutXIT37yE/7617+yfPly7r33Xj7xiU/E32DB+19ZGDnttavLy/r1dtavb56QN17D46iu7hn17w/izTdbWLeuiUsumcSdd578Jozioxk522XevEzMQ1ckQdmFr7nZjdPppbLKCUBaqmnUjmzDfX0uW34O37jnMnbu7GTXnlb6gz3U2Zupszej1kSYXppBONRNR/sgW2vepdlh59U9r/LFn4PJoCcjJYXC3HQCg3pKbYsAWLw4lz3V9XS4OtCq9PQOmOnq7sOg12HQ69DrtGg0MjvqRIzc0W7aNBsvvbWNZ17ZxO++81XCQeVK8f/7z0+zc3cbNm0BRp0Bh8NLSB3kH/84iFqtYvbsDG66aRpPrjrA7l1daLQqSoptTJpkA5SCot6gYfHiXFJSjfHl/g6Hh/oGFyrAYNBgtepBBV5fhFgM6updzJ2TTkfHIPv3d9Pb6yc61H/qkkuKqK/vw+0OUFXpJBJRlnLMn5/FZZdNjs/EGp7BZbZo0WhUmC1aHA4lHvzv/xawYYOdHTs68Xj89PT4CYeimC26Ue9vhmNCXr6V9HTzMTv8Dc8mHN7AY/78rCPL+ip+waLla/h11XP0BnZD5TNQcTN1dXVccsklpKam8pnPfIbPf/7zlJSMvgL9cYkJw+Nobu4/7mYfJ0JiwunN4fDQ3x8gO3uMHCHfitGoYfduZVZTUtJxcoS9Hu64+wvY8kP8/t2HcbZ0kX5gBjkhK9XVVVx88XKSkvSYzVoOHqxnz54nAHhZuU5KenomyclZWK0ZBALzCYeLsdkMXHttLm1tlXR3u4lGtXg8Vnp6ejAYDBgMBrRareQIJ2jkkkmnu5af//ZnWMsNBOZ56Q32QA7krCwgpawYW/Jk/J2JGBsSaWsK0h9V4c7wMGdOBslWPdvebqKjw4PFogNihEJR2tsHaGlxM39+FunpZoxGDR0dR+UIkaEcIRzF4fARCsUIhYIkJCj5QCAQ5l//qqO3d4wcocFFX5+fpKSjcoSdnfHXZzxHyB7KEYZiwvkjc4S298kRUodyhIr0Yy5S7Ns3do4A8KXv3ArcSmdLJ1n5WfGvP/7rx3nr5beYs3gOV992NUsuXkJFRgUVGRVEohHe3tFIZUstmsxeurxd/G7373hw14PYDDbOzTqXFQUrWLpyKVb9ZMkRxokUpU6yvr4APc2D8SmKHZ0eSktTKCtLw+MNs3lzG9FIlMsvn0RqmgmrVZm2u2tnJ3//ey1pqSZWXlQY30WtqlJJUMrK0igqstFYVIzbnc+8eVnMn6f88e3c1UkgEMFgTGDKzIuIBjroaDmE3+elv6+b/r5uoJq5F8wgYtJhsxnodzayY+134+NefxDW/+3I40hJy+B3z6whI0eujLyfPZVdbH7tddY9/QZtje8CYErMQmdbSjSqwmrVU774Hir3OHC1DBAOx2htHWBwIIharcLni9Dd7cNs1mEwatDpNPgDIRob+wiHY4RCEQYGghQWJlFRkRF/bVnMWt7YYMfjCWHQq0hIMBAIRJg/P4NNG1sJR2K4XAFC4SjV1b3odWpsNgMlU5NpOtxPTo6FFSsKCIej2O1ugsFI/DENF1SLp9iUxIYYHZ1eSktTyEi38Pzz9by7o4OiQivnnJOFzWbA5Qqg0UCLfZBFi3Ooqelmy9Z2DAYNOdmW+Juu9vZBUtNMRxWmVKCChgYXlZU7WLQ4h8WLlPXn6YlGvnFRCRvyk3ixqoMLH9jID6+aTjAYRK1Ws2nTJjZt2kRaWlo8GSkuLqa8PJUtW9p49NEqfL7Qca9INDf3Y7HomT8/8z23HH8vJ+Mqw0cJClu2tPLvf9cPrfGPHfP9M60Z4seFs9tLR0sPWVMs8Tdew4k+gNejxIRIVIkJAFu3tBMOR3n8if04HF6WLMnlE9dNparSGS9YTS9LG0pQ8nD1p5GTlM+9n7o6fru2JGVXtUmZRSQlmugd7KG1qxtfIEhzRyfNHZ2k2WwsLV5BQoIOh8PDyztepbK+AYB1dXD/qiOPQ6VS8b0v3MSP/uP28XvyPqbs9gHe2lzPtpod7GmqpM+tLFX445OvM69k1tBFiJn0NFlptrvxagP09fqVDSuCUbQaaLb3s27dYZxOLyo1BPwRDje7QaXG5wvR2+MnJcXIJz85NR4PCgoS+fvfa/H7lOUfWp2KpCQDJSXJbH+nnY6OQbRaFdUHeuh3BdDpNCQm6rBaDZSU2NiwwU5hoRW9XoPT6aX6QA+TJx85D5ktWpKTjaSkGuP3GYnE8HrC2D0D8ddx+fTUeEzYu8+JZzDEpZdOihdWt25RYoIlQYfVqiOnNBmvJ4zD4YknIsOzCa1WQ3y22PCMPtQaKLsKQ958st95BP59L1Q/T3PiDeTl5dHa2sqvfvUrfvWrX7FixQruvfderrnmGnQ63QnFhOFz+YwZStLzcYwJw0lwMKgUIyUmnD76XD6c9Ud2pezoGJEjDMWD6FA8SE09kiPsHM4R0kysHJp1WFnppGooJtxcVsa9pV/hT4G/0pd/kEmGZex8ejNmnZk1aw7h9YYxm5OYOfNiYrEuDh2qx+v14nR24XQqhYVzz51OUlICM2ak0dpazYYNR3KEZ59VPobl5uaya9cuMjMzx/X5+7gJRAKs2rSW9bv+wYN/303/UKNv0z4zy8svJ6unhAxVHpoVZvbvcdN7OEo4HKPT62Vw8NgcwTicI/hDNDa6CIdjDA4G6erycvPNZdx8c1n8ApjFouWNN5QcQa9X4sFwjrBxYyuR4RwhNJQj6IdyhJJkmpreJ0cYKqgWF4/IETqGcoSMoRzh3Q4Kx8oRWgZZtGgoRxiKBzk5R+UIqaajClNK0au+fihHGI4HI4wsSEWjUSLhCCqVij1b97Bn6x6S05K57MbLuPLmK8kuyKZsUi72uhD2TeksP/9CyhaaOdh7kEZXI3sce3it+TXUKjXFCaVY0qZRtqQ03ovrg5Ic4cRIUeok6+z00GsfBI7dcaagIJFoJEpb+yCVVU5uvqmMFSss7NzVyYYNzfT0BtDr1PHjCwut1NQoDahraropK0tjxYqCUb0ahm937pxMmJPBzFnXkJFuocsxSO2BFgIeJx1trfgGnDS0ZuJ0+qivd5F9LuRPLmHA1Yvf5yUYCBKNKieczNwpfPn7v8KSaEUcy+H0sG9vN+GQn9b6N3n1ucdxOZsBJXkrmLoQXfIFRMJRPB5lplO/K0B3jx9roo6pJTa6ezw0NkZISTaQkWmhvW2QbqeP1DQjNpsBjyeIyxXAZjMQCMSoOdCD2aRl3tyMeEFq06ZWBgYCaDQq0tLM5OYlYjbrWLgwl2gUKisdGA1avL4wGekm8vITSU42Ur3fSc2BHhrq+yifkUZVlROPJ6T0I/GGmDkr/ZiZSw6nB+im3+XH4fTQ0+ujvz+ARqvm5pvKxnyenvl7DXv2dGG1GigrS8XjDY+aGTiyKDVzVhpJNgPr1jXR0ODCHwij12viS1nVajUXTc9idp6NP26o55v/3EtR8Wd49Y1vs/Wt5/nTn/5EW1sbv/zlL/nlL3/JXXfdxWOPPcbhw/3s2tWFxaI7blGqurqH/v4AF11U9KGvgJyMqwwfJSisX99MW9sgU6cmc8EFxwbNM60Z4sdFW9sgTY39BHUDx8SD4f+PRKO0tw1SVenk5pvL8HrCvPmmnUOHXAQDUXqHejHMrkjH4wnR7w7w5z/vZfGSHObPz8Lh8GBLOjYmzJmbyZy5NzFrpjILpb6hlwG/m8OtDkIxL1V7HfT2+Wg6pBQBJhVk0DvQj8vtwecPEgqH47f306/exScvXTgeT9nH0vDsqKa2Vla/9Qavb3+HyNC23Wk2G7MKKihIKyAQCNPQ6MXe4qa+zgUqZZZcSoqBmpoeNL4wKSlGMjLMbN/ejtPpQ69Xk5ioIwYcbuojFgOPJ0zW0KzVYd09PnQ6NTFAr9Og02owmXWUlaWi1arZurWdhEQdep2auoCLvLwEFi3KweHw8sYbrUSiUYoKrRQUWNm5s5PBwTB6nTp+Hh5unF40yRpPFlz9AVz9fnJyEuKv49ycBG6+WYkJwzs1DauqdMZjwqxZ6XR6vDgdvviSxOHbHfm38uSqA1Tv7ybgHxETMiyQmA0Xfh9qXyGybzWLw1v4v3u+his7n9WrV7F27Vo2bNjAhg0byMrKYu3atVRUVLxvTBg+ly9alMMPf7jkQ78mJjImrF/fzPr1dubPz+SOO8rH/HmJCROjs8NLd4NybhgzR4hGaWsbpHIoHqxYYWHnzqEcoSeAXj9GjtByJEf4ovrzvNzwKvuDW7n2hWv5xfJfUF4+iUsumQQUccEF91JYmMThwy62bavH63XS1NTM/v0N1Nam43K5aWrqp7xczbRp0+jp6cHr9eL3B+I5wpQp5fzmN3/AbDaP/xN4movFYmw6sId/7HiNxsBOqre+i2NdF8EuZdMIlVpF5rQpZJScS1b7ufQ4g3QHI/T3e+lxBpUcYaqN7u6hHCHFQEaGhba2QZxOH2lH5Qg6nYZAIIrLFSQYjIwqSG3ceCRHSE83k5s7Ro5g1OL1hsnIMJGXN5QjVDs5cKCHhoY+ysuPyhF8IWbOTD9m5pLDMZQj9PtxODz09Cg5glarjseDoz3zzFE5gic8ambgyKLUzJlpJCWNyBGOjgcjDBe75lx2Gzd+6TO88/qbvPLMK/Q6e3n6D0/zzB+f4erbr+ZrP/kaDoeXhgYXRqOWZUvOIS03jSW5S/CH/bQOtFLdU83etoPUW14kVvY8hzr+wtKtS1lZsJIF2QvG7EU1FskRTowUpU6yrCwLGWb9qL5QIxs/X375JLZsbcdo0OBweshIV/qELFiYg93ujl+xrJitrM8NhaLU1fWxatUBbr99OmVlaccsfcpIt7Bixeiv7d/Xw7ZtLrKybVx93Tzs9gH2PraPgN+H3xeiYsFS/vLS5vjxNTXd7N7TiU4TZWDAh0qfI0UpRvc6Gvn73L2ni/2b/o/2RqXZsNGcwIVX3kj5uddRXRujam831Qd6MZm09PcrV8JBWf5WUZFO9QE1bneInJwECguTGBwM0ufy4+jyotNrCIcjhEMx1GoVwVAEny/CwToXs2Z5eOstpZltR8cggUAEk0lHydQUigqT6On1sWtnJ35fmNJpKWTnJNDX56ffFcRs1tHZ6aHL4cPnD9Hl8DK4vR2/P4LJpKW728fzz9fjdgdxOLzU1vZgtepZsUJ5jSXZlJkeSbYBlizOwWLRUTFbSXhrarp5fX0zfl+YkpJklizNpWK2kkSnphyZdj53jtJM9+hp6MPmzs3EaNCSkWmObx07/LwP/y5yeiN0dHg5nBfj6+vb+f1tX+B//ud/WLNmDQ8//DCvvvoqU6ZMAZQGgpFIiGXLjt3lY9jJuEJwMm7jowSF4av5K1cWnhaBRShycxNQRwNkjdhtxuHwjGr8fPnlk5TZI0YNDocnXlDKyrLQ3qFMdz9Q0830sjS8njBPrqqmp9uH1xtielnamLvYZGRYWDkiJqzf0My2be1kZ1n4xNXnkpFh4Qc/eJsaey+JCUM77Pzue/HjD9R0U7nHgUYHbrefkpJkSopGX5U8W43sbTFyZs9rbx7gl//6Xfy4mcUl3Hb5ReQlF7F1ayfeARUDrkE6OjwEAmEikRiJCXq0GjWpKSZSkk3kzEigoiKdPbsdhMNRQqEIwWCEYChKNBIjGosSi0IkCu0dysyi9RuaeestOwPuIF1dHlSAXq8mPz+BaCSKvcWNRqMs5ysstJKRYUajVWavWq161q07TE+3j4QEHT5fmO3vtNPvCqA3aHG5Ajz3XB3pGSba2zwoG+4qV6wzMizYkpSYYEsycvnlk+L90ADWrj3Ehg12iktsfOK6EjIyLPHCakqqkdLSFLyeMGaLFq8nfNyYsHhRDgCZGSNiwnBvqm4/du+5HBpM4Jzw83zS+hNavVdy9/P/5HC7gz//+c/8+c9/JhgMMm2aUoD6xCdKGBzs4pprJo95fyfrivFExoSR8UD6AJ1esrLNpGltx5w/gHg82LKlHeNQPBjuJbhgwVE5QoWSI/T3B2hsVJLqsrI0srIS+WzWpzjkmsfTtU/z6Vc/zWfKP8OX7vgSOvWRBPqtt1pZvbqFKVOS+drXbuHNN1u4//6t9Pf7qKnp4ZvfvIzLLrssfvyWLa2sW9eI0Qi9vR6i0WwSE8f+mz2bNDf3s21vPb6MRmoDu9nesZ1efy+qmIaWRzpw7XEAYLSYWfnJS5i1+AL2H/RTVdXNrh3OeI7QO5wjZA/lCNXH5ggulx+Hw4tON5QjhGNoNCHCYeKN8n2+sJIj+EbnCPn5SlNzs1lpbA5QWppCdvZQjtA/Ikfo8uH3h+jq8jI42I7PF8E8IkfYu9dJ2xjxIGkoHiQlDbBkyVCOUHEkR3jppUYGh2bOLl6cS8VQPEhNHZEjzD2BHMGoJWOseDCiN9VwsSs/fyp3ffMu7vjqHWxdv5WX/vYSOzfvJHfo/cyiRTlEwiGmTxvdh9CoNVKcXExxcjELEt3UHG7Dk9hKZ6SZ9c3rea7+OUxaE4tyFnFp0aWcl3ceZt3xi7SSI5wYKUqdZMnJBiaVHHnRDS/ZgCPJdb8rwMBAkPwCKz3dPiqrnEyZYiMnO4Ht77TT0+PH4wkxqSiJ6dNTqQpFGRgMUVnlpKwsbcxCydHaOwZpanIxMBjAbleWfJWWpWBvdlNSknLM8R5vmFhMTWpaIpOLM457QjjbjPz9RQLd6A1GLGZlGcOCFZ9kfU81OVOv5JN3fJpEq5Xa2l7a2h34vCECgQgqIBgKEwrFMBk16A0aGhpdJCcbmTzJhsGoprLSgVajxqDX4vOF8HrCaHXK8guzRYfaryIcjpKZaabpcD9Opw+fL0wsGsNs0VFenkZWlpLs7tvnJBCIEg5H0WhURKOQlm6i3xXE6w1RPMVGLBqj8ZALgCSbgamZFrKyzLz+mh2vL0RL6wDd3T763UF27eqKX4Ebfk1YzFo83jArVhTEd5hcs6aJvfu6iYQj9LkC5BdYmT8vi7KyNGpquuOF1pwcZVlqQ4Nr1Gt4+HnOzrJw3vn5OJ1eDlSPXj4yfIzJoKNArcMU1NBugE8/voPbFhbwgyuv5Oqrr6apqYn+fliz5hDz52cRje7lpptWsmbNFdx7771ccsklo/rjnIwrBBN9lWHJkjxJPk5D6Wlm0m1qSDhynh55TgGG+oiA0+Hl7S3tBPxhCgutlJWl0tfnp7a2F7NZR1qqCVd/AJNJg1arHnU/YxVKRupoV+LB4IASDzIyLJSUJNPT62P+/KxjfsbrCRONQkaKhSmTUiQejDD8+wuHwzR3tXHOzKmYLVqmFuVSWlCMUWfgpksuZl55CZ0dXvbt68btDuL3Rwj4wwwMBolGwTjU82lgIEjhUKx3DwTYtLEVW7KBzEwLfX0BfH7looRep8JgUJqbuwcCaDUq1m84jNsdpK/PT2+vn3BEeQ+ydGkevX0B2lrdbNgwSGqKie4eLx2dHpYty6Wk2EZnp4fDTW5yc5TffWGBFb8/jC3JgC3JMLT824fHE8HZ7cPdH8Bs1mI2HXnbWFCQGJ8tVVCQHr8i7nB4eGXNofjsqvnzlNfYcF+o4bYEZouWqkonhYXWUYn58HPs6g9gSzJwx+3TaWhwsXVb+5gxIabP5OnOm7jMsIOKnrWEfnsORTc+wU9+8hN++MMfUlNTg8MRpLq6g3nzMvnud3/BN7/po67u89x9991kZ2fHb/NkncsnMiZIPDh9JdtMFBYeWWY0KkcYOg/39w/lCPlWenp8VFYO5Qg5CWzfPiJHmJQ0FA9G9/tzODz02s18uvCLbHa9yl/2/4XXml/j/kX3c072OQDU1/dSVeWgt9dHdXUhF1yQz+bN+ezf333MrmfKmILEYhpycmxUVORP+DKfieQL+9jdtZst7VtYd/AtHJEW6AWr20phRiHTE8+l64CZosXdbLL/g7wZS/jkZ64i0WpRcoQ2Dz7fUI6ggmBwKEcwadDrNTQ0DOUIk20YDEM5glaNwTCUI3jDaLWg1aqwWPT4fGF0OqVfVFPTiBwhFsNsVnIEvV5DU1M/oVAEu92N06n0qo1GIS3NRH//UI5QbCMWi8V3m0tKMjB1qoWEBJ2yRDsS4+BBF4ODAUwmHdXV3eTkWOI5Qn9/gP4x4sGaNU1UVjqJRKIkJRlYvDg3vmtfPEeoGMoRKo/KEUbEhOxsC+edN5QjHBg7R1CWAyaQmmqKz9zKyLCw/LLlLL9sOW2H2whGlJ1ni4ttDLTv5xdf+T5bX1jMVbddxfxl81Grj7zHysq0kpVpBcqIxWJ4Q14a+huo7q5mv3M/b9jfQKfWMS9zHhcXXszKwpUkG5NHvWYkRzgxUpQ6idraB6ip6cVSqooXi46enltZ5eRwsxuDQUNNTQ92u5ueHj/tbYNEYzF83jC5OQnxZtZlZanMn5dJZZXyxm3nrk76XX46OpVK93BRq2J2+qiCVUf7IOFIDINBG0/8b7qp9JilfzC6IfvMWWnse+dVXnu3mSUrL2NSydjTLs8WBQWJtB6q5h8P/y+V217n3As+RXLRbag1KpYtW0JS+lPs29tLZ1eE8hmJ9LsCeIptmM1aBgeDdHR4iERiaDUqklNM+H1h2to8JFiUqw4trcpMCKNBg0oF0aGlvpEwJKUaMJu1BIMR0tLMeDwh9u1z4vWG0Os1GAzK8gy/P0xnp4e+vgADAyGsSXoGBqIMekJ09/jIzUtArYFIJEZ+gZUlS3P505/2UlfnIuCPsHhxLm9saKa3zzdUHNOQYNGh12kIBMI8M9THID8vkSVLc9m3t5vde7qYOyeTFSuUYKHWqCksTCTBoqOkJHnUa2xkbzRQEpL2tkESEvVUVjqYVGQlJyeB0tIU+l1KEt7V6cHp9NHc7I73liooUJ7fpsP9pA31Y0sLRehNMfL0O3a2Nfbw+1vmUDZpEmvWHIpPld2xYwfRaJSXXnqJl156iYKCAj7/eSUZyco68ubwTDXWWvaRjTeXLMkjFArR09NzVjwf46W5uZ++Kgd5WTpGbMg6KibY7UrvJ4fTSywKh5pchIIx2toHycpUYkhSkoGUoabnnR0eFizIJeAPM7siPV6McvX76exQYkJ3jy8+Y2V6WdrQMW6iUYhElEIAwCWXFFFWlnpsPHB4cPUHyMo2M2tmGt7gII8+9yJpyVbuvemKcXjmTm8paVp2N+3kvx55nR5XP6t/+b/UVA+iUau486Jb6O0JUpCezqyZ6diSBtDrlSvJahXYWwbi/2+2aNEbNPT1+SksspKSamTDG814PWFsNgMJCToCgSM9PFRqFRazDpNJRywGXm+Yf/6zDhXKVt3ElG23ExMN2JKNhEIxolEYHAhhS1I2gAgEwtQc6OG88/NJTNQTiURZvCQPW5KBrVvbaGjoIznFSHZ2AlVVDny+MDnZFhIT9Xg8IaKxGFu3tdPfH6D6QA+LF+VgSzLEd+1bsaIgnkCkpZoIh6JUzBl9kWtkbzRQ4kNb+yCJCXrq6/uYXZEef/1BLJ6wKxsBDMWEoV4iw83WDUYthYXJHNRcgjNSynmBl9E9fiks/U9053+XWbNmxWNCR4ednp4eenp6+P73v899993HNddcw7333suKFStGJSNnqhOJCa2treTlnf5JzMfJ3598EafNi2l62phLVQEqK50cPjxGjtCu7Kjp84XJzU0gNdVIx1A88PvDVIyIB/39fjo6vEAKcywX4+pLoVP7Lne9dhfLM1awPHwHDQ19hELRoaKF8jr4wQ8Wx18XIzU39+NweJkyJYkLLsjnzTefZ9euFm644Yb4DMQzWTQWpba3lm3t29jSvoVKRyWhaAir3kq2OR/dvqkcXlfH1u3bUF+VzMCkOajVKpZdWEpmbhn79vfS2RWkfEYW/f0BBgfHyBG0KqxWA/39gfi5v6vLQ0vLUI5gHMoRlJWfhMOQmmogOVnp1TRczAqFIni9IXS6oRzBpOQIwz87MBAmKSlKMBjB4wnR3e1TZnSrh3KEfCtLlhzJEfxDOcK//lWLy+XHZNJSUJBCb68OrzdEdXU33d0+JUfIT8Rq1dPQ0I/jqHigVivLTvV6DYuGZr8OG9kbDaCqykl7+yAJCUM5wqQROUL/UI7Q5TkmHgwXxZqajuQIHR1ekpIGRl14yy3KZefOznhsObj3INFIlLfXvc3b694mpyCHK2+5kktvuJTktNHFJZVKhUVvYXb6bGanzyYQCdDc38ze7r00uhr58fYf8+PtP2ZG2gwuLrqYiwsvJidh9OM93ZxIPAgGg7hcLjIyMt7n1j4aKUqdRPX1Lg4395Nh1seLUhnpllGzmSpmp3PokAtHl5eqSgdqtQqjQcP08lT0Og0QY+YsZbrjvr1KD59gUJly29joorPDQ3GxjdJS5er1hg12qiqV9b47d3VRVeUkLdWE2aIjJyeBORUZxx3LsJFFhox0C6/9+1l2b9tETn7RWVOU2rqtjW1b21m0OIdkm4E9lV30dexm+/q/0dlcFT+usb6ZxGAPhYVJFBQkYjFr8fmiGA3KlaokmwFLgp6SkmTq6/tITPDhH3QRCrvpafPR5nWh1/jQaUN4PR5CAT/RaJBALDh0DypQqdFo1Ax49PQc0hKNGdDozKAygtoCGhspqZkUTs3H2R2ivW0QrzeM1arHZjNgMmnRatREYwYMBjVb3m7DmqRcee93+aEgkYICKw0NLgYGg2ze1ErtwV6iUTCYNWi0apJsRhYuylYKZy0D1BzoRadTM+gJkZNtGeqTF1N2f6l0UFSYyK23lo75+tJowOMJotHAzBnKa7uw0Epzs5s9u7uo3NPFgoU5lJWlkpOTQJLNyOTJSTQ3u+PLA+HIEsJIJIbValCWB3qVZR+OYJgntzVzze+38o2Lp3LJ9CNTZS+//BfcfffdPProozz++OPY7Xa+973vcd9993HttdeyatWq424hPp5O1ZasY61lH+45AsoVlIceeoi//e1vbN26Fa1WwsLJUF3dg6e+D3XUTNqIXslHL7ebUpxMV5eXvr4ABoOaJJuB8umppKebj1na5OoP4HYHMBg11Nb20tvjJxKJMqU4eVRM2LGjk8oqB9ZEPQUFVsxmPdnZFjLSzXg94THHMcxuH6CxwTXUvBQOt3Xx/d+sYnpxwVlVlNq6tY2t29qVwkuygef+vY+Ne7fz7sFdDHiVAmCiOYGnn9tFijGbwiIry5bk09zsjs/8Gf69tbV56ewaxGDQ0Nfvxxf0ExyI0NjlwRv0smFPFJ0B2jrcBMMhoh1hYkSJxZSCll6nwWLRE+2GcEiNVqVHp9GjRodZZ6Y/kM7yRVN4d7sTtztA5R4HBQVWyqanUl/fRzgSw2YzoNNpGBwM8tq6wyxZkkt2ThIQw2zR4vOHCUdi+H1hjAY1AX+EcDhKMBijoCCJzEwL3d0+XH1+Xn65ka4uLwcP9vKZO2dgtepxuwPY7QN09/iorHQwa3Y6X/xixTGvMZvNQCQcpd8diPc7G44HbneA9a8302x3U1iQxMqLCrAN7To2XEwduVOf1xOOx4OCfOvQ30sy7pz5GJufhU2/hIYN8KknRi2faG1t5bnnnuPhhx/m7bffZvXq1axevZopU6bw4IMPctVVV53S19aJOJVbdL9fTJg7N5V58+bxxBNPjFrCJT48p9PJj/77u9jys8n48X3xv4ujz8MVFUM5gsNLZaUDjUaF0ahh+vRU9PqhHGHo72bf0C6fmZlmKiudhMNROjuPzRHsVWaMlvPQ5ezn7egmtrCZjBlLKe6ey8UXF8VfA8ebzTFy167CwiT+9Kc/sXXrVmbOnHnGFqU6PZ3xItT2ju30B/pRRbSka3MoM83H22omUN/P5rUbcRxuiv9c7d4WslRuioqsFBZalWXR/ihG41COkGQgYUSOYLWGCAYjRCIxent9qFRqtFoVJpOe9vZB/P4QsRj4fEcuUGg0YDLpSEzU0dXlJRCIoNWq6O72oVJBLAbJyVoKC610dXlpaxskOdlIaqoRiA2dM/UkJOiVHGFLG1brUI7Q7weO5AiDg0E2b26ho8NDLKYUZXQ6NZddNgm3O8iePV1KjlCj5AjLl+eRlGSIx4OeoXhQVDSUI4zxnkOjAc/gUI5wVEzYs6eLysouFiwYkSMkjcgRRsSD4SWE8RyhIh3PcZaGjywGz//Rf3D1bVfz0lMvse65dbTb23n054/yl1//heWXL+c7D3wHrW7s98UGjYGpKVOZmjKVUDREx0AHVd1V1PfV83+7/o9f7/w1U2xTWFmwkssmXcbkpMkfatfKiYwHS5bk8eCDD/LKK6/w5ptvntKdmCX7OIlKSmwUdR87E2mksrI0FrZ72LatHWuSMhMmEoni90XiOxOsevIAixbn0N4xyDvb20lI0BMMRVGrVSRZDVitBubPy6Kmphun00tOroXUFGO8WXooFGXKFGU5gNWqj/euOr4YxJQ1yTt3ddIz1Fj3YF0PF57k5+h09eqrTRys7aXfHcAQqWL764/jH2wFQKXWMGvBpSRkXkJS2mTa2gbQadWsW3eYpiYXHe0uNNEuqra7OdzQSH9PO5FQN0GPg0jIxfBOB76h+/KpjegNZqIxHSq1HlVMR0yli++So9GAFhX+wQiRsJ9YxEco4ica8QHKZRJvM7TuBp3BisGcwWBCNglJedjS8gl6MjBYcikuSWX3ri56e/0EQxEcDi/79zuprHSSkKBDrQKvV1kWGvCHMOg1zJmTwZLFOfFiz769Tp5bXY/L5SeGsgPH/HmZOJw+cnISlKV49S4sFenHfY212AcZ9IRosQ9yw6fK4lPDi4ttHDrUj9utbA+rUqmUncmGdpUcniE1bLgAlpFuYsnS3FH3lwH84KoyntzWzM/W1vLW5FR+f8scUhOUGQLTpk3j17/+NT/5yU/417/+xcMPP8zWrVtpa2vDaDTGrwosW5bBhReO3kZ8vHyQRojPPXeQ1avr+cQnSo7bwH3YWGvZR64vB7jnnnt4/vnnqampYebMmR/6MYgjystT6etOJifr+I0wMzIsFOQn0pybSHKygcREPQaDJl6Q2rqlnXAkSmWlg8VLcuhoH+TNt+zotGq0OjXJyUbKp6cxa2Ya3T0+NmywY7MZyMlNoLaml9ahmTll09PQaCA52YhrxHT2sQxvA93Z6WHDBjshnbJ1c2+vL97b6mzw6qtN1B7spbWjm8rW7Wyu2kU0ppx/8zMzOX/2EmYXzWDAHSYQjJKSbOCFFxuIxaI0tXXRaG+jzdmFvcOBNzyI29vPQKCfcCQ86n5UqDDojBj1elQxDcQ0qFVaNGo1kUgMlSqGWq8hEA3gGvDhDwaIECIYDhKJKre1tQX+vg00ag2JpkRSm1LJTk1n7owiElNsePsMmIwmUpKN1NT2EXKHeO21w5SUJKPTqZXlQN4QKiAciVFT00s0BhaLjgsvzGPyZGX26959TrZu7SAcjhKNxfB6QjQ3u5ldkU5VpTO+HK++wUWF5dhtvQFcrgA+X4jmw27mz8uKL/EoLrZhtw+wdWtbvLm/1xOO7yg5cvkfDPU9q3SQkmpk1sy0Y+8r50uQXQG7/woPLaLw8l9TePnN8W/feuut3Hrrrezfv59HHnmEJ598ksbGRhISEkbFgwsuKP5QScRHdariAbx/TDCZTPz617/mpZdekqLUSZKens7//uE3fP3z9/Linx/lnHN/OGZyV1aWxsKFQzmCdUSO4B+RI6w6wKJFObS3D/LOO0M5QnAoR0gayhHmj8gRcizKRe39+eROKyB5cRMdeW+hu+UdmjTXcPBQIdMmv9cuejFiMeju9rJmzSG6upSi/JYtLVx77al5vsZbf6CfnZ072daxjW3t27AP2FGhIjchl+kp06l8K0DrPi3WnCzaXC28s3Y1/oEeANQaDXOWLSWcMAOtOQ29Xs306als2dLOvn0Ourq8WCw6BgdD1Nb24HT6MBg0DA6GyMxUVkG43SGCwRgQIeAPYbPGiAVd6KNefN5BoiE/4VAIohEsZjXasJq2Dj/hUBRUaoKoCYWiaLRadHoDPW4DunAKthQrhkQdWo0WlcpAQYGVvj4/KpWKKVNs7N7dRU+Pf6hJ+pEcwWLRoVYP5QiV3QQCEYxGLeXlqcydm8HMoXOu1arjueeGcoRYlJ4eH+edlzd0G9r4UjzLceIBKLvxDXpCtLQMcsMNJ5AjDMWEo3ffi+cIGSaWLMk97v3BscXgoqlFfOX+r/C5b3+ON196kxf/9iK1lbW4ul1oddqh23YyvczK7Iqx+2vq1DoKkgooSCogEo3g9DmpcioFqsf3P84jex8hNyGXFQUruGzSZZSnlp9wbJnIeADwH//xH7zyyis0NjYyderUExrzhyFFqVOgp9uH3T7AoUN9VO5xsmx5HpddOjm+tM5k1jKl2EZhoRWfNwzEaDrspqHehccTZNCjbOnsD4TpcwVISNCTmmpUltjlWJg5S/mDraxy0t7mYXZFOkuW5jLoCWG3u9Fp1bS3eQgFo0Mv+G6SbMfvQRUMRenrUxroebzKfQLU1/Uec+yZZGRvrgSLDp1Ojd8Xprl+L/7BVlQaI3rbMqbNuw69KY2egRDmxD4inmp2vVnLYH8zIW8bsZATiHEQUGmsqHRp6IxpJOVMw2jJZMBrVL6uSSQQMpOZlcjCRbns2NFBsk2ZoeN2B/EHwgwOhkiyGsjINNHV5SMl2YDRpMVo1NJ0yMWA20XQ20sk5ELDAKnJARJNbnoddhxN+2je7wJArdZTn1JIVJNHTJuHOziFsCoTvy+EWq0mNdVIapqJQCCKQa+mtTWCwajMkhpeDpqRbsFkdmE260hNNaHVasjOtrBmTRNqjQpPSXJ8JtPIGU1Hm16eSk+Pj+lDJ7yamu74fXziumIqq5zKNrH2wVHrw4/+Hb1XAWz4uOvLs5mRk8Q/d7Vy0YOb+L8bK1g+9cjYTCYTt99+O7fffjv79u3D41H6+axf38zatdX87GeXcv3113DXXXdx/vnnj+tSjg/SCHH16no2bVKKpu8XdMa6+hkM1rN37++59dZHWLPmEOXlqbzxxhsTknyd6fr6/Bx2dnLoUB97Kp0sX5YX35VseKlcYZEy7d1s0tHc7I4n93v2dOHzhzEatFgsOux2Nz5vBExgMGrJSDfHp8hv2GCP/13dcft01q07jN3u5oILCmhudtPW7iEYiuL1hkcttTpaRoYFm83Alq1t9LsDxAz9APj8YaoqnWdsUerovlyWBB0qlYqeHh9b9u4mGouSkZhNaUYFkzMmkxAzYvn/7J13fFv1uf/f2nvYsmRbjldiJ7aT2M7GdoAsCAmrjLbQlg5aum97y6W3t+t278nl3rYX2lKgBQplQwgkIYHE2cMZHonteMWyLVm29h6/P44kS44dQgstvT+e1wtiSWfpnKPzfD+f7+f5PBo5NqedtjPdPL1vjLFJB97IBLGEkMPFIglqmQ6dUk+RoYRa7UJkIjWiuBypSIkEBUatmg99aDHtHU56U12FJFIxhRYVw8OCUW1+vhKtTo7LFSIeh+XLCxka9NB1ZgKNPs6oYxKX30NCFMJUJMITdtE/dpZ9fzlEPC7MsOvVekwaCzpZPlqZibywhbNnRalmGGGkMpg3z0gsJnT/EgGFFk2m5NNi0VC/GDraJxg+B+YCFSUlWmKxBHtbbcTjCQL+WEbJlK1oyo6GRnPGaDetfuroHM+UnG64opxgKIbfF81pQT79OrW12S9IftntfgbH51G+/OuYu++Hpz8Jva/Adf8FMlVmuUWLFnHPPffwwx/+kGeffZY1a9bw7W/vZfv2QbZu/S/c7pPccccdvP/973/LSxey463KB3B+TnC73fz5zz9mzZo1zJmziC1bzrJ69TW8//3v/yuP/p2YKZZdsoprP/8BnvnFg3z9Uz+iYf27OH58nEtTOSF9b6tUUubNS2GEYAoj9Hno6XHh92VhhFCMycksjOAOU1ysYfHiFEZoc2Cz+WloMFNdncfu3ee4tGkOk5PzcPfNQVR7mtf0j3DgtadpPryZjy+9nUVVpecdd9oior/fjdsdYXxcII3377f93c7dmx3heJg2exv7R/azz7aPTmcnCRIUqAoo15XTYG7AkLAQGFdSnVfIOe8ZbB4HEa2MvpPdhLxOxFIFCvNiapvWIFfr8E+GkQISiYh9+2wMDXmZnAyRTIJWK8PjiTI+7icWSyAXB5DEPfScmyDsdxH2e4iHvSSjPtqP+2lPJs8/aJEYRBJiEik+mZREQoxEIiKZTJBMJojH4iQTcZLxKJBksit3daVajVJrIJpUocvLx9VfiMuvBLEBv19PJJIkFMrCCKYURlCkMIJCglYrx24P4nQGsVg0qFQyZDIJBoMCg0FJdbVRwAhiEX5/XkbJ1DhLPgCoq0thhLosjNDmoLHRzI03VtHWlsIIQzNghKy8fSEC7PV8NzPnSKVk03s2sek9m+g+1U0iLkxEtbU5OLT/LPf/53+z9prL2PTeTdSvrJ8VI0jEEoo0RRRpirii/AomQhOcHD/JmckzPH7mcR7seBCTysS60nVcVXEVSwuXIhXPTsn8PfMBgN/fQUfH77jttl9nMMKrr776lmOEd0ipNyni8Tjf/PK/kyhejds6n3g8yYH9Nux2YfC16aq5GRM2iUREPJ5kYMBDPJ6kpiaflmYtGo0sA86bmqdqUMvK9Gg1Mnp6XFRW6DOAPJsQsJg13PaBhcAU6C8v1wvdOVI+PUAOmE8D+W3b+hkY8BAKx3jf++rIz1fjsUNV1dvXof/NiJMnHOzd3U5wfDt6yzKUygKcziCu2CXIC8SItZeQiIzRdWwbiVA/iVA/XdFJAEQSHRJlCVLNIsTKEnR55SApJBKXIRGDVCpFLIYYIErE0OkVNNQLg/FLLxN8Go63SQhH4uTnqWhotGA0Ktj92jn0egXxRAKFIkwiCU5nEL1ewebN83jp5X4cMSUyZQnFRRpKSwVVnsoapkwixj7qYOxcL6LYEInIECH3aWKhXUASkVSHKK+GycRCPM75lM5dQHGxgkBAGOAYUgRZ2v+ptraAgQEPiUQSi1lNeYWeyYkwwzah7XdZmQ7neJDXC7NZTd3CAsxmoTNFtsfUrbcIsyKPPNrJsM3Hvr02qqqM9PS42LlTUITI5BKKijSUlwvdIGciwLLNQi9bVkSVRct9u8/yofsP8rHVlfzHplok4tyHabYiaMOGco4d20I47ONPf/oTf/rTn5gzZw7vf//7ue2221i4cOHrfs+/Nd6IEeKNN1bn/HsxMTDgZsuWfTz55H+xffuLACgU85g377rM/t+JNy+eeGI7r/7lz9x+xVq8iTj7D2TlgxQplfaJkkhEjPoDmdyQBvd+f5RYPIFUIqah0Zz5DcTjSURiEXULTZkBVjYZYLFouO22qXvWmCcoBrPLpAYHc30Wsgdtu14dwmbzkkwkaVoveCoo5OJZiYb/C3HipIPDh0cJiG14og7qi5qAJH63iNqCJvLU+cglKsb9dl7t3IUn4sC1w0k8EUckEqNX5KGV5VGoLaOkoBCTpoBIQIpEIkZvUOB2hQVMgRiNRkpJiZZwOMH69WWUV+jp7p5ELhcDwqTV5s2VdHVN0tkxzthYANdkCJlcAskEA/0eVqwsprLSyMmTDvwuCVqDicIiDcVFwjVVrJDi8YQ42TWEw2vHG3Hi9Ns5N3GcaDyMCBFmvYVqdyWKpImWxoUsWlzAoYOj6PQyLIVqjEZFxv8p3elRrZYSjSbIy1dSXZ3PuXNegqE41VVGIpF4xhdqNvIy3UWyq2siU0qa7TN16621HG9zcOjQKHv3TeWDvftsLKwz4XKFGR0VfjPVVcZZ78mpnJCPee1X4dQT0P4kDB+G9/4RCnOf6RqNhltvFZRUGzaUk0gk+M1v9mC327jzzjv54he/yMaNG/ngBz/Iddddh0qlmmGvb1681fkA4MwZOz/72T089tivcLkmePzxJ/j1r7dz5IigAKmoML6h7b0TF46e7kkURRVcesP7eO2JP3HmjAexpQkQcsIFMUJLFkYY8uX48pSVCWViPT0uKiv1med6NiFQW1uQyTudneOIEFFmWcmkxMYJ/352BZ5id+szbBhez/tr30+DuYHBQQ/t7U5+97uTnDo1jt8f4VvfWs1jj2lxu2Hlygupq95eEYgGaHO0ccx+jMOjhznhOEEkEUEn01GuL+fKiisp1ZViUVvQyXWopCp2vjLInl1dvDj8BKaKxSgUcpzOIF7JApRzZEjzFiKSyOkfigCTyGQiZDIR4+MBfL6oUEoX9REP2Jm0jzMenCAZniQWnCSZUrkikiBR6FBoDBgKizAVFrBs1VyCETltJ9xIZCp0eXo2blqATq/i+ed7BYwQT2Cz+VCpZASDUfR6BStXFvPSS/3Y7T5IRtFrQK1MUj1XyUDvKO4JJ27nBFG3C+fwAGM9bZnjEImliJX5KOeUEhCX4rabKK0qp7hYO4URDCmMcDwXI4RCMbRaGdddNxe7PcjwsI+SkhRGcF4kRqjLwghZHlO33prCCI90MjzsY9++aRhBJkYmm4YRZsgJMzUUeL2oXjT1PG1sNNOx7zWi4RAvP/EyLz/xMoVzCrnihiu44sYrKJtXNut2xCIxBaoC1pau5fI5l+OOuOkY7+D0xGle6n+Jx888jk6u49KSS9lUuYkmaxMKiSJnG3+PfDAw4Oa55/bwxBN3s2vXNgBUqhpKS6/IHMNbHe+QUm9S+P1+Bs8eY2j381zynT+gyy9HLhdllFIwVcOa7l4WicQZGPCgUUszXQggVx0ilwveIXq9grXrynJKA7PXyY7p79sd/oxSKjsGB70cOTKGK6WMksvELF9WxNOFGvq7YO68/7sg9cnHdvHob/+HSdteSMaR6U6itH4CcWyQyGQHiWA3CedzkIyBSIFYUYZUtxy1sYqYqJRY0ohUJkKllBCLQygSJxEDqRQKCtQZQ0qlSkrpHB2VlQaqqowsrhcIxN/+7gSRaJy8fCXNzcVYrVr8gRjXXDuPw4dHcblCLFiQT3V1HsPDPkz5SlpWW/H5I+zaOYhMLiESjXPihIN4IkkkHEckFlFcrGPO3EaUquUYjQq8nghDg+NEA71EfWeI+c9wruMhSMYZPpHPvIUtaAuWsHhpExuvmp8xzi8v17NjxwCelOlinlGJRCKmbqEJa4k2Q4Q++2wvx46NCW1dC1Q5Pirpv7Pv+8NHRs8jl9ISc61WhlgiYnDQy769Njo6nOi0MkrL9PR0u7CY1dx6S21mnWyD/+lmoVajiq9squWRQ4P8dncfB/om+M37l2LNm7llq9CZ4nscPnwD9913H4899hjnzp3jRz/6ET/60Y9YunQpv/vd72hsbHzL7snXi+ya8ptuWnBRMyDp6O3t5ZOf/BI7djxFMplALBazZMn11NZeRSIhwmCQv4VH/v9nxOOjPLuvlfw8KZ++9YPI5aKMUiod6fs17R2VzglqjZS62oIMsE8TRlVVRuRyCUeOjKHXyzOePEDO8tMj+7N0mdRM+SDd8cznjSBChFYnY16lQEppdbL/syqpI23D/Px3z7C38wDuoAuAK2vkiGISRr0jTIbG6JloIxjzAaCR6cnXWCg1VGNQFqCWmJBKJCgVYhIJodQlEREhEiVQKqXC81kEWq2cwkJNJh/ULxYIxEce6aS/34PBIJRXNLdYKTCp0Ov9mApUeLwRSuZoqV9sZnjYR75JyeoWK4ODXhyOIB5PhGAwysRECNdkmFgsgVgiwpSvorKkmDnRQoqK1Hg8URzjflz+SUbcNiaCIxzrPUkg4mfX6Rep2T+XMtNcLm2s52MfWpYxzS8v17N9x4DgZ6aQsKBG6OAbiyWYV2XM3ItpP7Nhm3Cesv3Qsmeps7v22e3+89RVRqOCSDSOzxcRSvr22Wg/NY7TGaSi3EAgECWegLqFwn2drbRK36M5OUEsgfr3gGUhHPgV3LcWrvwerLxjxvsh3anozjs7+NOf/sQDDzzAwYMH2bJlC1u2bEGv1/OZz3yG73//+2/B3Xjxkc4Jy5cXvaF8EI1Gefjhh/nSl77G2Jgwo24ylfGBD3wNlyvOvHmG/6+7q71VUVWdR0VYz+X17yI/X87T991PkQxWrxbuw8xYSSPFn5UPNJppGME+C0ZY+9dghDmsGKvjRH8v5+Qn2Wfbx9b+rZTpypgfb8ZzYC5jY4KiXKmUsHnzXH76Ux1nzsCKFW/fxiiOgIMTjhMcsR/h8OhhTk+eJpFMoJVpmaOdQ0tJC6W6UqwaKzq5Do1Mg0Q8VU75+J/28Miv/szkuXZIJlGaBlDP3YxCIQGpAVnBksyy0SiIRAkS0QC27l78E6NEfWMkgg6SMWEiSiRRIlaaUOiLsVQtQSQ3Ek7qkKuNLFtWSEWFAb1ezuJUTvjtb08g049QWKjh8svnCBjBH+Oaa2bBCCYlLS1WfL4Iu3YNIpNp8HjC+FxxEoNKPMESIpIiShoET1ilSorBIMM5Ns5Q7xAhj4NY0IlvfJjRM0eBJH17pBRVVKK3VFDdsJBbPtSIxxujrW0KI7jdYfLyhDJTjyeSQwxZLNMwgul1MIJG6Ig3nVzKwQjiFEbYl8IIOhmlpYL/lcWizpSDZ6utZsIIbzRqawv49t0fp/PDl/L8I8/z2pbXGDs3xh/v+SN/vOeP1DTW8B8/+w/Kq8svuB2xSEyeIo+WkhaarE34Ij5OT5yma7KLAyMH2NK3BaVESZO1iU0Vm7is9DI0sosj0f7afABw+vRpPvnJL7Fr17MINjJSli27gaqqtcTjfz+M8A4p9SaFXq/nkaef59pNV/Kb732cnz3wFMuX1fKed08ZhU83Gn/qqW5OnHCgVEhzCKkdOwbxeASiKPuHZDFrplpnpsB4OrKJrOmlTbMZnAtyRzsGvYL8fBXzF+Tzs58dYnJS2HcyMYN89J84kskku17ezl/+8BvOnGjNvC+Rm4mHJ/GeuROSURCrECvnI8u/AbGqGpHcikgkQaMV2rW6XBFECaFDXiIBYjFIpWKSJEkmwO4IUlKio7RMj1ot49IUCO3qmsBg9OIcD9LZMZ7ptLh+fQWHj4xmZsgGBzw4J0IsWaIklDI3rKnJx2LWsHFjBVqNnNa9w/T3u4jHkuh0cgoKVHjcETRqGdddX0Vvr4vu7kkKCzXIFRLGxrSEgosw5ikhEWKo9yQ6eTeu0eOcPvocJ3YpOLPvMi7fdD3XX3sVHV0+WluHGRv14/NFsdn8GA1yKisMNDaYM7Papnwler0ChUKSc9+mvy8IZFRbm51AIIpCIWHZsqIMuQRTZahV1UYaG4VOTU3NVkLhWI5KMO3NlV4nW9E10z0uk4q5qsqMPJhg75ibjXfv5sc317Np0VT77+nmgcuXL2f58uXcfffdvPDCCzz44INs2bKFEydOUFIyVUd+9OhR8vPzqaio+BvuyIuL9DHa7X56e4VSqoudsYhGo7zvfe/jiSeeIJmSg1911bXcddfXCYdNmW1u2dLHr37VdtE16O/E68cXv/gZ1BNH+OwP76d4TiHf+8KHeM97chtHTPc1eDKVExRKaQ4hNWtOsGhmBOTp9WaSq89mcJ4ZKA550GhkzJmjo7BQw7PP9QIwUzXBP3t0nhnhl394lj9t2YY/JIAHuVSOVq5nd88WgjEBjOkVJoq0FZjUVvJVhcglStRqCckkRCNxYnHh/MTiSWQyMdFInLw8FUlgwhnMtOZesMDEFSmPhq6uCYwGwRi8u3sCry+C3iCnsdFCXW0Bhw+PcuzoGP0DbmLRBHqdnPGUMrWmJj9zDa+4ohyxBPbvs5FIgN4gmNr7fFF0egWLFprwB6I4x4PU1eUzMqJgdFSOSmKgQd9A/WITr+3rweYZxBOzseP4K2w98jIP7CjhpitbuOXqywl7xBxrHWM0BU7z85QEgzHaJ5xsuKIcq1WT42cWjcTZsqUPnXbKTy17lrqnx8WOHQPo9QqMBiXLlxfl3LsuVxi5TCgVKSvT0ZxShaQbAAwOeXJyQrbSKr2dGe/zooU4ln0d2ZH/xbjlLji7E971G1AKIGh6PjAYDHz605/m05/+NKdPn+ahhx7ij3/8IwMDA0Sj0cxmI5EIO3fuZO3atcjlb/3g/W/JCc899xyf/vSnOXdOIKPy8y189KN3cumlN+B0huntddHUZOXw4VG+8pXd7+SENzGsVi21cRPlhgJqv/5BKiuN/OIrv+B0ayFXXfX58+7ZDEZQSnMIqQvlgwxGaJyGES5QvlRYqOWKwgagAV/ExzH7MY47jrPL9wSxxVEMc/Iw9c1nvkHHrR94OlO+l3ybJIXJ0CQdzg5OjZ/i1Pgp2p3tOILC8yBPkUeprpQNZRuwaqwUaYrQyrVoZJrzyqWSySTbnt3N4/c9Ts+JU5n3lXnlSPIXkl2plUwmSYZdxP02Yv4R4n4bybALAJFUjVhtQWZahNJQiERtQSzXIpUKvk8hkYiSEh0Wi+p8jGAQzME7O8eF7qdpjHB4CiMMDHiYSGOEUBZGsKQwglZOa+swdrufWEzITWVlOkZG/Gg0Mq67bgojlM21osszMTTkIRiMU1dXQMDn5/TJHgq0XvJUE5w6vJfT+7fx8h9+xcJlC1m5ZiUux3zazwhlnUIXvxBud4TNm+fS2GimLTU+N5kuAiNoZsAIt2ZhhFQZalVVFkZoshIKxXJUgjkYIUttVZtS+c5a5n2Bsr7pn9ctraNuaR2f/87naX25lW1PbuPgqwc523kWU+EUkd91vIt8cz4W6+wl32KRGL1Cz4riFSwvWk4gFqDX1UuHs4POiU52Du1EKpayvHA5G8s3sq58HfnK/PO287fkg1AoxC233MKzzz6b+T1fc82N3HXX1/D7DX93jPAOKfUmRr6pgDt//iB33/kB7vrwTdz+7/fRuLwWi1kzI2nknAjidodxTkzJG0+eEHxzDEZ5plNa2vgZzgfj6e26XSFGRoVB9UwE1Ez7t5g1VFbomZwIsXSphbY2BydOOAjYheN5uyScNyPsDj8/+o/PcGL/1qk3RTJIRonHPEhU85EbLkGkWIBIXoJIdH6dcDgcJx6DlNctAAqlDJlMhM8bobhYRzgSJxSKoVSKqas1odcrGBr04PNHCYfjaNRStm0fYOicD7EYJFJhP5FInDNnJojHEySTSVQqKePjQQYHPHh9ETo6xhGLxaxfX0ZpmQ7TaRVeb5h4LEFZuYENG8rZt9fGsM3HwIAH+1iA3l4XeUYFqy6xEgjEkEii6HUyzBYDJXNMKFUb2LC+jEhwlJ0vvkj3yV386D8+i0yuZOGyy6msW0dJyXy6TkfweQWDzb5+N339bjo6nNiGfWzeXElpmR63K0RPr1vogpQaJLldYdyuEG1tQgcNlVLKsuVF581UNDYIZUqmfGXm/rSYNRmjc7vDT2mZPme9i/GyAmEmJjYS4l1zC9g36eNTfzzK+1aW8a3rFyKTiGc1D1Qqldx0003cdNNNjI+Ps2/fPgIBeaa2+vOf/zx79uxh6dKlXHfddVx55ZWsWLHiLelclz7GefOMNDVZX3cG2+fzodVqAZDJZPj9fpLJJFdddRXf+MY3uOSSSzLLDgy4sVic3HvvcY4cGQMurgb9nbi4+MwtGwmHgvzbLx8lGknynvVXZWYBZxoITTiFnDCRkrynAUh/vxuZXJLx9sleZzogTw+iXO4QoyOpnHARg630fy53iAKzOmWK7eR0v7DtRCJx3jb+WcNu9/PizuN84rs/IpwiFyQiCfFknEgsQkwSp1BbQYHaSr6qCIVUKFvITomBQDyjlJ2KJFqNHHcsjFYnY0ljIXv2nCMQjFFaqqOiXOgQ19U1ycREkMEhD+eGvHR2TZBMgKxcnHnORSJxxp3BjKfFuWEfg0NeJGIRfX0u3J4Il11awnveU8vgkJczpycIBGOUleq4+up5DAx46O5xMTLqZ3IyxOiIH58/isWsQSwWo9XJyTMqKSjQ8O53NXCszcpll86hplbPky8d4sjpU/zmz1v4wb2PUV5UTPPiJcyzzCfgluEYD+DzxZDLxHg8YRz2AIcOjWIt0bJ5cyXH2xyMjvpz8kG2MmrvPhvDw4KaaqaZ6/JyPcM2H81N1sx9mW1qW1amo6x0Kie8no9VdgyMQpf3Zi63tFHa/RL8qgne8wDMWX5BM9kFCxbw3e9+l29/+9vs3r0bicSYyQednfvYtGkTBoOBa665hk2bNrFhwwYKC9+a8qY3khOSySSBQACNRngGmExC98HCwkK+8IUv8C//8i+o1YKCOJ0PFi408ZWv7H5DviTvxBsLu92PtWYln/ja57j3e/fgmvCx6YMfYe68vMzz2pnKB9klUCdPCr45BoM80yktbfwM54Px9HPe7Q4xcpH54NI5l9JS0sJ4cJwn971Kr7iH2JI2DooOkCyVMHRwGIB2RzuOgAOz+u9T1u2NeDnrPkuvq5deVy/dk930uHoyBJRKqsKqsVJlrOIS6yUUa4qxqCyoZWrUUnWOEmqm7/+tT32DjkNHhDdEIlQFNWhKliFSmolEYoT9k3hdQ8S9gwIJFROui1hVgFRXhrzkEuT6OcSYUuRrtLIMmTVvnhGHIziFEepSGGHIg8+XwggaKdu2DTA05MtMeEMuRoApjDAw4ME3HSOU6jCZBIwQiyUoKdEJGCH13B0Y8GC3pzBCnoJVqwSMEAhEiUZj5BfoWLxiEdXVeWzcWEEiHufA7nac53o5deg4v/vp74lFouQXFZE/ZwEhSQkRsVnACH1u+vpSGMGWwgiletzuED090zCCO4zbPYURlEopy2fCCCkrA5NJmTNeSecEu91Paek0jHARXlbw+mV9s32uUCpYd9061l23jgnHBKdPnCYQEtF1ZpSyMh0///LP6T7VTU1DDc1XNLP8suXMXzx/1s51IpEIjUxDvbmeenM9gWiAIe8Qp8ZP0evu5dv7v82393+bxQWL2VixkXVl65ijE8jMvwUjKJVK3G43yWSSa6+9lm984xssW7Yss+zfGyO8Q0q9yaHPL+A9n76He77xEX7+lQ9w8yd+ycc+eVXujZ0ihVqarWg0MsrL9Rw+MopGLaWvX+h0pFbLGBkNYDB6c0im6WB8cNDL7t3DBAIRylLkwEzd9qbv3+7wc/LEOB5PhKJiDX39HkrLtAwOeZFxM+uu+yhNa1a/tSfrLQ6PaxKFUsmk08Ej9/+Z3s6Tmc/E8gIUhiUk5HWIFPMQiaZmdEXiXOIJQCIFqUQEIkEZlUiASATFRWrGx4OEwwniiQRXbKjgWNsYoWAM50QIvV5OT68LpzOEKV+JzeZnfDyEVCrGbFbR0mzF7vCzb6+NgQEv8VicoiIN8+YaEUtEFBSo8HojdHVNEAzG2P3aOa65dh5eT5jKCiMymRiHQ0hMTc1W9u21UV4utKJNK43C4TiJRJKSEqE2vHXPMMmkUCJhNquxmPVMhJsoqGmhrMFDf+dOznS+Rtu+l5DKNRiKVoOmGaWying8gcWsocSqFczOAzGWLytKlYgqc0hPg1G450z5KhYsENj9dKv0nh5XpnW6XC7BlK+kJ9WGfv16Yf3sEr1sYhaEwVa6XHC27pJ2h19oDlCkZlFVPpeZSnjiyDCPHhrk8MAE/3vbsosyDywoKODaa69ly5az7NtnIxaLIpfLEYvFHD16lKNHj/LNb34Tg8HAunXruPnmm3nf+973Bu5UIdIdnzZsKKelZarEK/sYZ5v9GB0d5fnnn+e5557j5Zdfpquri/JyQZHx4x//mB//+McsWrQos3y2ImDz5rkEg1E0GtkbrkF/J14/Lq9bwrrFo/z0D49z6OgwP/niRxGJRDMOdJpbpnLC9h0D9Pe58XojyOQSdFpZxoMnO6YD8j2tNg4dHKG8Qo9Br8iYSU+P7JyQfq3WSBmx+YlG4pSUaHFOBBl3FvCpq2/nxnf9cwPTZDKJze6kIM/Aw8/s4fEX9xCJCudTLBJTqJtDobacAlUJCok2Z125XEw4nJsUdFopIrGIeDxBJCqwVQqFFLVawsREAud4CI1WxsKFZrq6nBlfsIA/Rm/PJE5nCJc7QiwaR6mQIpGKqa0TlA2HD4/S0eHEYQ8QjsTRauWo1VIsFjWmfBUHDo7gHA/y2u5h1qwRvCzmzjUyNhZgcjLMwICH9evLUCilTDiDVJTrGDSpWFhnor3DSSIBlRV6Cgs17N9vY2jIIzSyKNIgk0uYPKelStvEr++6mh5bL09ua+UvO7cRjW3BmldCbfEiirSVKBQq9Ho51hotwzYfErGIgD/G+vVl55GuRoM3ow5rbrISTs1yjzuFxjCRSJyODif5JoEATCSSBILRnHOerQrMBuJ1tQUUpEpDLtRZMt1YoKhYg2Lxu0C8CvbdA7+/CtZ+lYV1HwEunA/EYjGXX355Jh8ATE46KSwsZGxsLONJCNDQ0MCVV17J5z//+Ryl7cXGX5sTYrEYe/fu5dlnn+Xpp59mw4YN/OY3vwGgubmZJ598ks2bN6NQTPmWTFeJ/bW+JO/E68fevcP8+c9dRKMJrrhiIV/9r6/ygy/8gJ7TNj71zS9isQjeTy1Z+eDw4VE0Gil9fVkYYSSAwZDrDTgdjJ+HEWbpvjodfI87gpw8GaTQ04DaV4PP5WU8eY6R8CBFN8ookhfwhOgJnnn8GYwKI2W6Mkr1pZTry5mjnYNJacKoNJKnyEOv0COXyJGKpDlGyYlkgkg8Qjgexhvx4g67mQxP4gq7mAhOMOIf4ZzvHDafjRHfCN6o0E1WhIh8ZT4FqgLmGeexomgFReoiLOopAkoukb+uKbPL6UKtVSNXyBkc9CLWzEEsPYG2uB65uRGJTIF7rI+49xgx7xDJiAcQIdEUITMtQqKxItEUIZIohK7ZUhEikZhEJE56DqeoSI3TGcLrjeD1RrjiigqOHRsjFIrhdKYwQk8KI5jSGCE4hRFarNjtQjfGgQEv8XicwkIN8+YZEYtnwAi7z3HNNfPwesNUVk7DCE1W9u3LwgihmTHCgQMjAHi9EWprTbjdYQ6fjCESVVDRVEt+7bWM9J1h8lwXQx1HCQdeRSzXkihbiKO4hQX1Cygp0abMzoUOqna7H4NBmZMTDKmcYDJdBEYwzYIRUiV62fkAUhjhdXKC3e5PNQdQz1rWdzFlf/nmfJrWN2XUbNFwBJVaJYzzjnfRdbyL3//09+gMOpY0L2HttWtZc82aC96bapmaBfkLWJC/gHAszIh/hJ1dB+i29fCz8Z/zk8M/yZSh1hWvZPklZTQuKp4VIwwPD2cwwiuvvMLZs2cpKhLO2S9+8QuUSiU1NTWZ5f9RGOEdUuotiPbOGKrSu/AN3M1T9/4LzU2PUlYmXOyZ6r2zS7fi8STFVg0KhYRQKIZGnXuJpteIl5XpSMQTOJ0hlArhge/x2AiFYzklftk/rM7OcZ58qhv7WACzWY1KJc2YV8+bZ6CrqwSZtpC8gn9OU9ujB49xz/d/yLmePeiMBXgnxxBLZOgK6pDJViBWL0UsMyMSgXiaGEypkiCViggGYsSzZsDlMglyuRipVEJ+noJwJIFOJxO8o0IxEqkp9HQHPaVCgtcboa/fg14nx+sVyD9IkpenZNnSQjZvrsxcf7FETHm50AWwujqPmpp8/IEpP46nnuwWOg0tMbNvrw2vT6jPbmq2MjDgwWhUsG+vDbFEOHaDUcEdd9TT0+Pi2Wd6gCQ+X5TTp53EUuP8aDTB6Iif/fttOBwBwqE4KpWUWGw1qtLVSEw2ou79TI7sJRF9ieREDTVl76VyxdXo9RZsIz7a2uwZT7R0eemzz/ZiyldSWKRBIhGhVEmIRgSPk7Rx59ioH4cjiG3YR2GRhlAoBiJI/Q8QVIF799o4ecLBbbfVneeNkB5sJeKJzLmc/vnIqJ+alP9J2zE7ayvyKVbL+MtxG5t+uZuPLJ5DqMuDwSDPPMynD87TkQ0EduzYgcPh4LnnnmPr1q1s376dyclJnnrqKaRSaYaUSiaTfPvb36auro7a2lqqq6szQGD6frZvH2D79kGAHABy+PAoDz3UwcKFJj7+8QbKyw1MTk6ydetWWltbaW1tpa2tLee7P//883zmM58ByCGj0jFdEfBGPareiYuPI0fHMIlrWDonzqsndvPzRxT87K5PAOcPdNLeT4cPj9LaOpwxkDYaFbR3OGfsRjbdSyqttnKOB9Fq5Nhsfmw2P5DMeBhl77usTMdLL/Wz/4CNsjI9rskwExNBFEop1dV5TE6E0WhlGFX/nPkgGApzz4Mv8OPf/gW3349MKiYYDpOnzaPKUkuetByTuhiJWIJEQs5zXyYTkUgkkcskJOIJUhwWUonQYSkvX4UImJgIgkhEbU0+HR1O4gmIxxOplu4hQqEY/oBQBj1i8+H1Rqio1COViPF6BbBYUamnfrE5Aw7zTSoaGy0EQzGsxVqKrZrM9dPrZby2e5ilSyzs2DFId48LEPzC1GoZRqOCHTsGUSglKJVS8k1q5s7No6xMh9cbpqd7kjG7n54eFy5XiFgcorE44+NBTpyw0909STyepLvHRWGhmsUFl1GuXMHgRB+D7tPs6HgJhUzBpQ3LkahLKDCZaWy0MGITcoJaI8x4d6RKicrL9YyOBQiFBJ+cQDBGYaGGQCDK8TYH8XiS0TE/fWdd6PUK5s0zpjJBLqjcvm2AtjY7DkfgPH+z9HkbHPISDsVmNFtPNxYoKtYwOOiFsmJY+nWkR+8jf8c3KZ/7KiOl3+UPfxjJEEEXkw/Ky9/PLbfcwv79+3n22WfZtm0bx44d4/jx4xw/fpw77pjyrnrppZfo6elh4cKF1NXVYTabM+D5YnLCwICbe+89QXv7OLfdVpc5pgMHDrBr1y5aW1vZs2cPk5OTmX2GQiHi8Xhmlv6GG24473fyTk74+8W+fTZsNj8SCTidIW742HpEMjU/ufO73Pet77Dgjz/GXGyewgiHczGCwSAnEJhSjmTHjBghkcIIyiyMEIrllPidhxGe7MZuFzCCSAQ2m58FC+ahiVZybsRNwwoDl1yqY8g7hD1oxxP20GZvY+fgTgIpH6WZQiqSIhFLiCfixJLnT7KkQy6WY1AYMMgN6BQ6lliWoJPryFPlYVaZ0cl0KKQKlBIlcskbK5k91HqKX//wj/SfPMymD36Ia27dRFubHZ11EaoKCHlt+DqfIxG0AyBW5CHVVyI3lqI0liFXCuXLORhBLkEmEyE3RFHkhYgp/CjzIyS0Z1HG/chlEaK6BHs0SSKXxBCJk5wUw6kEiOolJKJixqUKdqMi0iCjslZFfVUZsYIRTp4VIxIjYARtFkbI8ux78sluenpcNDaa2bfPhtebwghNWRhhnw2xWEQwGMNgyMIIz07DCKnL4vNFOXx4lM5Op4ARwmmMkAAsxI0FaA2XYko6CNi78Nraefn3B2ibU0zNslUUVS8VMELKEy1dXvrss72YTEoKC1MYQSkhGk0gFmdhhLEURrD5KCxMYQQgByO0pTDCydfBCIkLYISRKYxw+PDoeX5XTmeQ7u5JNCmVOsxe8pf9G7r7L3cz4Zhg77a9HHz1IEdbj+J1e3ntxddQqpUZUioej/PgLx9kbs1cyqvLKakoQSaXnbefCksFyrNB4ics1C+RUb4qxFn3WV7se5E/R/6MKC7FNDCPG+o38q76jWiimhyMcOLEiZzv/uKLL/KRjwiTMDN55f6j8sE7pNRbEE3NVtyeMIqlP2Tw2M/40kdv5ss//jVViy8VBkKpmMkI2mbz09fvpr/Pg1IpwR+Y+aGdXY63eXMlrXuF9qPdPS5MJgXBYBzbsA9TgSpnXxaz4P0wOOghFIwRCMSonGvAZFIilogonSP4IJnylbMqUN6OkUgkeOGxB3n8D79mZGgg877PG0Yz52PkFS+ltq6EPXumWthOr04UAEmCZEKMSi0jkUgQ8AtZJxKNU1mpp7LSiMcToarKiHMiRFenE6lEhFIhQpk8g3ukj5DzHGKViHMTMeKxCKFgGH9YTyx6BQUFKnQ6GeODr7FnewcP3BshEJKzsL6cK99dy+hYCI8njM3my5iiA3ziE40AHD4ySm+vB51WRlOzlTyjgoEB6O6epH9AeN/jCTMyKnh/7NtrY+icF6VCgsfjIRYVlGBGo4Lq+UZOnXLg98dIJBKZmelEXABchoJygmorpsqbUNJF0tfKU7//Ns8+9FPKajdRVnM13oBwfF1dkzgnggQCUdrbnYhIUlqmp6BAhW3YlyE9GxvM+AMx5s415MyCpO99SGbuu8YGMydPOPD6orQdd5yXUNKE7LDNR9txR47RusWsyUkQ2bOAaqA+LmdAleTXxwZRj0WIb0tmBv2PP36G557r4dprq7jrrhWZ/U3vfmE2m7n99tu5/fbbicfjHDlyhG3btrFgwdSDu7e3l29+85tZ95iEefPmYTQWMT4uo6ysiS9+8SOUlxtobi7g9Ok9qFRhnnxyjEgkgt/v5557XuP06QGOHWukpWUO5eUGjh8/fp4aa8WKFVx77bVcf/311NfXz/5j4Y21l30n/rZYtrSQcxNulmnX8V79Qr5yz734gwH+9JMvEgwkOXx4NGN0nm0EvWRpIR5PGL1eTn+fJzPbmV3GlI7swUtabXXunIedOweZN89APAF+XxQQsWG95rxB1eCgB9dkGLHISyKRBJFAWuv1ClauKmbCGZxVcfV2jTN95/iPn/2BF149mFFEAVi1NaxtakIrzSMajWMbmQJQ8fM4v2RGNSuTS4imavWSQCSapKJCT0WFgZ4eF1VVRiacIdrbnQJppQzRPtDB6bMOnAk3ExNJ/vBsBwMDbvyBCOuWraJ55TwUCgm954bpsrXzp6djxMIS6hdaWVM3D71eDiSxWrU5Krn3vKeW97ynlsOHR9m9exiJGGrrTBQVaoSyve5J+vs9mExKVl1SDCQzz7/BIYEU848KZuEyKahUEpRKYSJsoD8MiEgk4gT8Cfr7hC5SUqmUSlM1C6w15FmS9Dg6OHTmGOs+0sq84grW1Dczv7SaUVtAKNWbDPPc8734vFE6O504J4Lk5alS9+ZUx760emzuXANGg4J8k5KamnwC/hjqlPFtzuB/FvFD+nnf1manu8eF3x/N+U1lL+Nyh3JUgl3u61ldVEXF4AssPHstDx7+CNtZT0vLnIvOBxKJhJaWFlpaWvjRj36E3W5n+/bt7N69m6qqqsxyv//973nssccyr/Pz85k/fz5KZT42m5gVKz7K+95XT3m5gZKSScrKzqFQBHj8cRvhcJg9e87wxBNH8fl8aDR3ZYDCv/3bv9Ha2pqz3auvvpprr72WTZs2zVo2ko53csLfL5qarLhTTWRaWgS/tHWbm9Abf8z3PvsN7tj0cf71B19Ca644zwjaZhMmEp3OkKB0v4AqMAcjtAqKyO7uLIxg82EyTcMIliyMEBIwQl6eAqVSSmmpjpqafFpbbRjkSvLjJdRUCBPu0USUSDxCJB7BH/XjiXjwRXwEY0FC8RCxRIxEMkE8GSeejCMRSQSCSiRBIpYgl8hRSVWoZWq0Ui0qmQqZWCb8J5EhF8svWH73ehGPx9m7bS9P/P4Jju8/nnl/2zN7aN1nJ+EbIDxxlkjQj0iiRKIvR15Qj0RXilgunH+JBJIiEdFoEpVGgtjkIql3IyvworD4kBcEQCLkCCkgiStIBOSIAxISfgmRs1EUUjnekTBSkQjiSeLxBLFIgKRWjvmSPNSFEuJqD6On2jk3uJ+tWjFSrRRpqYz8xgLiCTODIQtxWzktC2sz1/+Tn2wEBGKlt9eDTiejrs5EMBjDYlHR1+ehv1943+MJMzKSwgj7BOyoVKYwQkyoAjEaFVRW6jl0aAS/P0Y8nsIIgSiJhIAR9HoFwWAUuaqEsvnzWbe2BI+9n6cfepHWLS8Sjz6D0VrF0OnLqV+1jElXZAojiJKUlqYwgs2X6dgnlOrNgBE0WRghpXxqbDRz8qQDrzdKW9ssGCGRYHjYR1ubI8doPT3OSi83XTme/ru7ezKnHBagtdXGwYMjrFxZzA03TCmHplsr5JvzueZ913DN+64hHotz+sRpDr12iKq6qXzQf6afB+9+MPNaLBFTUlGCzpiPNyjDWl3PzR+6AotFw4JqNQMddnR+I/IOFXPDczH5TLyw7TAT7hE8K0/zO0039/X+F+IuMSd+OEVEiUQiVq1alcEIr9dR/B+VD/65Rplv8xi2eensnGB5jYlvf0sofQsFm/jSJ+7gG//yEZZcfjuLm6eAZLYRdHf3JI0NZgxGRUYtVVmRWyMLzOghtXxZEf5AjH17h3F7IigUEspKdZlOZtn7SoN9vz/KyZMOHPYgtmEvN9wwH4NRqPV9+bktHNzZgSRxOdfdtOatPm1/dSSTSfp7uviv73ydzrb9xONTg3aZuhKR/hrE6loSIhEerwiZTIJUJiIWndkrS6GQoFBKCQVjRCNxNFoZSombSecgiYCToXY/nsEAId84B54dxWCpo2HNnVgsaoKhKK2Pf4ZjO85XMgCo82rxWtfQ0e4kkUzy2nN3Ew1PEZSdr8GTv5aiUBegNi5g2fp/w2BUYjFrCPr9qDQa9u4bZufOQQKBKJFInLHRAAMDHo63ObCWaKgo1yNOJYq0B1PaMFytknHihINYPERxkZbKSgMKpQSTSUVePohFYLP5iCeS+H0x5HIxS5ZYUKtlKBQStJoFwPW8trONnrbn6Dv5An0nn6K0+jLUsuvp6izE64tQWKihsFCNyxUmFIyh1ytYvNjMwIDnPHP+tGdUOvyBGEeOjGF3BFm/voza2gJuu60uU8KXvvfT3Ss1ailz5xqZmAyyf7+N0RE/sXiCpUsKWb9ek/Gmyi7jy/49XT1Hw3MnRjmEm+3SEB+0e6my6BgeFjpaDQ97uVBMn9VeuXIlK1euPG+522+/nfb2djo7O/F4PJw5cwY4I9wXakvmoW+1xnjkkf/gkUdm3l9JSUlm2bq6OpYvX54BQatXr6a4uHjmFWeIN9Je9p3468MxHkAmE/PZzy7JDFYW1xVz8+d+wPwrP8MXb70dS54pMwMOZDqeNTSaMRoUU6oZjWxGz5zpxrdp0+jP/st2JidDDA6KWb68KEVUC/uYXqqxdq1Q6uVw+Dk35EOrk1FRrqd+cQHHTw3zxCt76XUa+EHtrX+Hs/bXh9cX4FePvMAvH3ia0fEppYhCqqBUv4C5eY3IJQrcY5BfKcLnm/l5DcIzscCkJhiMIRaLiAUTiKVxYiIvrpALr9vL6a0hpKook143jskJvvjeT7FgQR5jYwE67Ed48Mevzbr9aus8enpMiMUidh85ySundkx9+Brwa1ArVOTpjNxx3U3Ms1YAoDfIkEokTEyE6Ox0MjzsRSYXc/asm3NDXoZtfkqsGqwlWiRiEcZUyYTR4M2YhnvcYc6eFYibwkINy5YV0d/vJh5PUltnpLRMz9iYn97eSaJR4VyUzNGyaKE5QxrZbPVMTF7HfY9s58jZI/zupYcpLbTQUL4UqWIRW7f2YR8LkJenRKOVMTbmR6WU0tBoxmxRM125B5xHuB4+PMqRI2N0d0+yfn0ZG64ox2xW09BozgHdMFV+qlBIiEZiHDo0wpkzE1y5sZINqXKPNGjo6BzHYReI1oIUKFeXbQbpcuS77uae5b/gXGUYks1/dT6wWCy8733vO2/yoLm5GZ/PR2dnJ/39/UxMTLB//34ARCIJy5bdkXnOv/DC73j66adn3ed11/135u/LLruMoqIimpubaWlpYdmyZW/I4/CdnPDWh83mo7PTydKqBXz721P2GHv3DrNvnw2LRc3mj3+RA88+yHc+9VVWbLqBm26/Ca1WJmCERjMGgwK1Wo5SKZ3RL2cmD6nly4vw+2Ps2zeM253CCGW6TCczyG1EkPbwOXnSgcMRRCKByy8vo6WlBItFw4Gd+9n/Uh/SxCquvUkY86QJJI1MQ54y760+lRcdyWSS//3h/bz8lxeZdIwDAkCXqs3EkxCd7MY9eQaJykTlwhWMec0klYXn+cqK5DF0cz0oS9yILRNICzwgShBxxAj2JpnsBCZFaKJSYp4wPqebQutiVrTcQcCbxO+O8tLzH5r1OHX6evL6b6JocR5xYhx75IPE4+GcZUQSMfJ8OZqFaqwftrK7Q0LFcDlVqiqWlS2j73iCXbuGCAQEf6rubhfhsICLqqryqKjQIxanMELKgyltGK5WSzlxYpxYLER+voqVK4uQSMS4XGHy8gTbEpvNRzyexO+PIZNNwwhaGT5/nEOnJESMl1G0qoXSPDvdR/by2p9/y75n/oyuZDHVy1ZTWKgTMEJoGkaYZs4/PR/4/SmMYJ+GEVIlfOl7P929UqNJYYSJFEYY9RGLJVm6NIURUvlgtjK+sjIdmtRkXPZvbSavt+kxfeJPIpVkTNKzQyqVctW7r6L/TD8DPQME/UGGeoeAIQA0eeYpUloW4qUHfjPrPivzruKjH3g3dvrpSHbQX9WPbJ4MdZWasoYyVlWvoqq4CnGBmGgiikwsm3Vb/6h88A4p9SZGd7eL/gE3FrUgJU3fkKX1n2NoVMOxV39HMjrC2jU/Qa4QfBPKynTs2DGYMS93OgMc2D/CqkuKWb++4rx9pMGERi1DIhGhUUszZMWcUj15/ijr15exbFnhlPxwPJhZFqbkvS9uPcuOHYNUVxlZXF+QUeWcPrqVwztfoG6hGVjzlp+3NxJjdh9PP7aL9iM7cJ7bh93Wj0gsIZmII5YokOhXI9atRaEuIJpFPiVJcujw6IyEVDIZh+gosfgoeSoDheUrmJgIEY9HOdf2pYzBVACwZ62n1RewsM7EyGiAsVE/2vxa1GoZhjwDyaQUhVJOIJjE602QbymnolxP3UITcpmEcyea8HnsOO3jREJe4lEfiXiMoHcUk2UOS5daMg+i268VBi9iRRlhKtGaapEo5tC6d5j168toaDTT2GA+Tylkd/iRyyXccUc9g4NeQuE4Xk+Y8nI9Hm+EeCyJVComL1/BuXN+5i/Ip7/fTSAQI5mE8fEgTU15mM1q3K4QR4/Z8Qb1SAtuRJp/NbLoQSbGdjJ4eiem4sXMqbsZo3EpDfVCt4m0yqOqyngeATVTlJXp6O6eZHRUANnppJM29E8Db71ewehoAIfdj04vZ2w0gMcTIRxOMG+ugbTaKn0u0mV8xUWaDKkFIBGL+fgV1TTb3Dywt59r7tnDd65fxM03z8doVLBhw8ytXdM+HxqNDLc7Asze6aKqqorf/e53qfssic1mo6uri507T7B//2luumljZl2JRMKKFcJMvFwuRy6Xo1KpsFgsFBUVsXbt2syyFouFQ4cOzXouZ/MieSf+vjE87KOv101EJgz8Bwe9LKup41NXf5R7n3+Ir//2bn75xc/R0liXUXXs2DGYMS6XSGDXq0MUWlS8/wN155Ujpbfp8USEAaQ7xIsvnqW9w0l56vlx2aUlrFlTlgPg1RopEokoo35qbi6hubmEF18UckJVtZH168uwWDTIVDEe3vYsBXkGfvCltx8p9dL2bu5/fBc2Tx8H29sJR6Z8iPLVFuYZ6ynUliMRi0l5hhOLg80WmFWJHI4FCcYniPiibGy6BJczzsiIn73dBzllOzrrsZiLxVSVlLBj+yCSETXzrOUUFxrRqBTEoiCTSggFkoLfoFpPVZWRokINI54yXNEaxsbd+IIBIvEQwXCYQDhIIBxkwQITVSX5lJXpuP/Jbdz5w/uotFrRiAvIUxRSai7FNRlGLhczb56RDVeUZzyWso1h7XYhJ1x2+Rzy8lQEAhF0qfJyuVyMxxOlvEww4h8a9KBWyfDFo6nxgwyXOyz4jvhjQJKBPi8GcSktpXMIJB0Elf1sOfQSO9p20bLwEhZZG2lusVJTk8/xVBvxgD9G/eKCWRUe2TFTTkh3Zdq+o5+jR+0sXWrB44ly6OAIxcVaXO4wY3ahHD0aS5KeWc8+FwF/jHg8ic3mzyiyhHI+C5ZrfwiH7qP87H/DAye45brvXzAfgPC8/dWv2pBKxbz3vTUXHMx//vOf5/Of/zwAgUCAM2fO0NvbS2trJydOnOMzn1maWb+yspJly5Yhk8kyOSEvL4/CwkKKioq47rp5me1+//vfv+DxvZMP/vHRk1K0F0in8kFZmY59+2ycOjVOVZWRjRsruea6H/DI/zzAcw89QSJgo2b1uzjTK3S8czoDHDkywiWXFJ+nDElvs6trAo0mhRE0UvbuTWGEOTry8mLnYwRnMLMsZGGEdD6omsoHAKdad3Nk90Eal5YA50/E/SPDbvezZ88wExMhWlqsmEwq9mw7xKRjHJFYSlIkJRkPEQ2MI9GWoCi5DKm+ArnGiF8phVg0JcZMIjP5UVU4UZbZIekgNBwkElRgEFcSOllI5Gw+/c/+Nmf/jqy/rYV+1q9aSG+vm7NnXej1CzAaNZjN+cTjYjQaJW53HKczgtVaxYIFhVzaUoJSKeNs52r8fhfDw2OEQh7icT+JeJywI0S5o55NyQ+TLD5HT7CDu2+6G5FChLpci6KgCI28DlF4LrFYkuXLC7FaNSxebKalxZrzHEzngwxGCCWwDXsxFajQ69M+WWLy8lIYYf4URoBpGMEd4uhRO+PjISKROFGRCHuonOs/s5rhs/2cOdzKYMdhDvUfYFFTE5dcuRGVwTKFEWZQgE+PC2IE+wwYweFHp5Mzmo0R5qUwgn0aRhjxU5wq69ZkqcKnl8PClNfbbCbqnZ3jbNnSh1gs4tJL51ww15VXl/Oln31JuOOSScZHxxnsGeT40bN0tZ9j7aZLMutLZBJqGgRlolQmRSaXIVfKySvII9+cz/JLl7OobC4wl7Wla7n9sttxBp10u7oZ9A5ywnGC7QPbSZBAKpKhDRVTb17MVfUtzM+bT6Wh8g2Xwr7Z8Q4p9SZGdbURVfsobW12hgY9mQFvc8scRKI7iHgaePXpH3HXh67lsuu/xtorVmaUSyAYvG15oRePJ0rbMceM+5jqbBbCPxpNKaRs9PS4WLSwgG99syWzbJpkGhz0Cuz2tAG42aymsdEitBJNLWt3+AkGhdljjXp2FvXvGclkktMnj/HSU4+y7dmnCIe8IFYi0y+laOGN+PwiJMkJRJqlhMPCLR2dRj4lk+DzCmAlEeonER4iERkiGR4kERmGZIwQEPfM56OfvY1nn+2hu9uFTCWoT6QKC/nmYqprKpEpTLj8amoXzQcEsk+rlbFs43dYu7aM5qaSjE9YMpnEPhbAUqhGJBJhNqtZvqyI9esfzDHynj8/D6d9lNHhQaRSGXWNFQB43S7Gx0ZS32IEOIB7EMQSJRN5dWjEm7n2PTdjKlDlXO/0v+nZr7IyHRUVekZH/UikYpYusbD/wAgjo376+z2EwzEC/ihVVXnI5V5kMhFDQ15i0XPULSyguEjD0iWFFBVp6Otz0dPtIhZfR33Tjcwp6Kf1pfs5vuMbuKobqV/wr6zftJEjR8dylE/TS0E7O8dp3WvL+E8dPjxKKBhDqZLi8YQ5eWIcg3EqaYyOBkjEEyxebMY27MPrE66nxaJGKhOzYH4e9fUFLK4353x3jVoA4OmyxrQqxe0KZ7b/1atr+d2ePr74lxNc32jlR1+5BKVsZql42udj+fJCrriiYkZ560w+JCKRiJKSEkpKSli/fv1569TU1HDw4MFZ17/Q+7MdI/AOCPkHhlotJRyOMTjkyemGd+PVjRCT8eSBp/jk93/MzWs28rVPvxeLRZNRQ5WX63n4kU7Gx4UB1fE2x4ykVHZJ0uhIgPaOcUZH/CxcVMB/37Mhs1z2wCgNyqcbp+fkhNTy4lTroOTbqPvehMvLEy/v4e4Hnqe9tw+AfHUhK+c2M8dQyanBDgq15ShFxsw68WmHHwgK3z0cCzIZGsMdcuIJj+MJOwnGhNIGBmDd6jpWX1rD1hf7UIkNKKQqjOo85s4porLMQiwoRy7ScFnLPDauqeXMGQ/lFXpksqV8qHo9GzdWYLFoMr4wyWSSjk6n0IWoVM/y5UU0N7+bjs61GYVcXW0BXl+AvuEx+s6Nsv6SerQaQdHT3j1AKByhs68f6M98nwJ9AXOMFRgK1lBgUuUQUekSuPRzsahYw6WXljA45KG93UlxkeDv5HQGOXp0jJFRPzabD5VKyty5BgqLNPh9UdpPjeN0BllYV0BRsYYlSwuJRhOcPDWOXmylrLSGT7/7Zp7fs5Ond73Gvq4DiAs2s2bte6irrWX7jgFaW4dZsrQwo15KR9rEPF2uEYnEOXx4lGAohkopzQEiwr0pIhyO09/nIRCIpma6NViLNUxMBIhGEpSV67FateeVZghm54JaK9urx+UOYzQoKJv3ESzmWmj7E6scN7Dqg/dD5ezP0e3bBzhzZpL58/NmLXeY6dmtVqtpbGyksbGRm246f52f//zns6479f7IO/ngnySqqvNQDkkEjDDkwZ96/jY1CSV8paVaursncTgCFC/awMf/cy6P3nMvp9s6aL7+fZSXz+OFFEY49noYwR3C74+mFFIpjLCogG99a0qhlX7GZzDCReQDu91PKNX0Qat5e2CEdIwMjnD39x7hyK7X0FZdx9N/dJD0DRBwngUgKZIiNVQi1Vci1ZUhygLgyWQSvz+CrMiNTH8GsBEZ8+LcHiJ8LkQypWQ2mufzk9//lHu3dXFwvx2JxIxUKkcqLcBiKWHFigXIZCbGxmRccskiQITBICcvT8HatT/gttvquOmmBZlGCYlEkv5+d0rFJKaszMDmzXOprv5DDpEcj8cZHh6mr68PlUqVUeX3D/bztP9p8INnwgW4cNCFWClGW2FBrbyc2tp3AbnXO/3vdIwASeRyCY2NZrZs6WNkJAsjBGbACLFz1NUVUFysYenSLIzQ4yIYjDE46GHj1cu4/VNr8Ht9PHH/s+x/6WXu27OH6obFWGubGRurZ8OG8vPIm87OcVpbbRn/qcOHR1OdC1MY4eQ4BsM0jJBIYQSbD28K8xUWqpHJxCxYYKS+3szixdMwgiYLI4xkYQR3OLP97GObiajKjrY2R6YccTaD9Jl8qUQiEeZiM+ZiM8suXXbeOlV1Vfz6uV/Puv5M76tlakr1pSSTSULxEK6Qi35PPzuPnGQsaOeA9DVe2/MCIDR8sWqszDXOpdpYTbm+nCJNEVatlSJNEQqJ4rxjerPjHVLqTYwSq45IJE5ftwuqjTQ2Tqld5HIJbW0KFrQYOHvkFzx93ycZ6v00N972oYy5tdsVIt+kJhr1saAmj8NHRnNUL+kbbarbmTenRMtSqMbu8OMcD2bIjtraggwoz1ZVlaX8fgYGhFaQ6f0MDnrxpH7I/0gQkkgk6Dx+hB3PP8GuF5/G63blfC7Rr0Fquh53CJBAHCBX6UoyESQRPgdxH7K8pchUYuKxBN6Be0nGJnO3J1Oh1JZRVlVPWZmO6uo8JpxBaq79L2LRBEqVjBtvqKK2toAdqRnacEyZITk83kjKDF0gMrLJQ5FIRHGRBoNRgUYtzVzX1r02jh0bw++PCiaAxSVYinNnC3QGI88c7OFsVzsdxw9z8vB+Th49gN/rwTd+FLe9jK6udbhdYfQGD8MDQ/hC2pxjSF/b9evLePTRLro6nZjyVaxdW4ZSIcXjjdDbM0kyCR5PhHffPB+VWsrOnYMUmFQUF6kzSrrOznGkUjH5+UpOd00yf4GJNWuWsHD5eiZsR3j+4f/hR1/8MH/69SLyym/AYGnAPibBYlZnOmako+24g2PHxtDrFRSYVLR3jCMCmppLaGy04HaFOHJkjLY2O6Z8JTqdjHg8wdhoAJlcTOkcLcVWLVqNDOdEiHg8gcEodOhI3+PpZBWPJ9HrFYCIoXMeSufoyPZZWb6siH9dX83zJ0Z44cQIx4dc3HvbMuYX6c+7N9Mz5rPNOg8MuPnDH04xPi5Ie2cCC69HLs3Wmry93cmLL/Zx6NAIH/7wolmBSPYxvhP/uAgEYkLb4wkXS5cWUlOTn1En1VQXcVPyvew9vYfHXnmR9r5uHv7ZF4kEhDK9420OdDo5eUYlefkKjEZFjr9O9uAj3d3GaPBiMik5enSMQosau92fUw5Yl5pRTINytUbKk091c27Ig1whwe0Oo1JKc/yjxlJl4rHprM7fOexOF09t28vvn3iZQ6e6SWaZAkpEUlZZNyNJSPFOQrmu4bz1k8kk/qgbd8hJnsqCQa1DhJhz3n7aRvact3y+Lp855iJKS4wYDQpMJhVL5tWzoqYRa7GOG26soq62IKPYqbRasI+FGR3xY9Ar8HoijIwK1yjbv8LlDhEIxNDr5TmeSXtbp/JBXW0BOq2a+gWV1C+ozDmu//raJ/nXD72Lw6e62X3kFK8dOsWp7gHGPeM4vU5ulKznxMlxjAYvCnUMv1dET7cbmJYTLBpc7hDhUIyxMT/V1UYUSimFFjXRaIIJZwixWExdXQEf+1g9L754lmjsHEsazRnT9HFnkMpKA0VFajo6Jiiv0HPlmmquXLOAD197Nc/sfoVf//l57n18C+9aswZ9rAq5RE5envK8jkjH2xy0HXcwbPNRVKhhdMxPR/s4iIRSb41G8EI5cXIcGMfjCVNcpCEeTyBXSFCrZcgVEppbrFRUGujvcxOPJwj4YzgcAllrSnX2G02Z20YicUbH/CysM2E2q3O8pizLN0BBNez7b3jwOrj0LljzZTL93bMi+3k72/P+b8kJ7+SD/xthtWqJhOOc7XEBM2EEOz09rkyH56qqUj7/0x/x5G/uZesffs1o7ykMupXEYhJqavJeNx+kAXW6RMuSyglOZzBT8lRbW5AB5dmqqhkxgkXACD5fGiPMbIXx9wz3pJtXn3+VJx98gYHTZzLvu07+EUgiVpqQFzQg1VcgVhfldORLxsLEg3akejeG1XLU8x2I1SG6/qWL+LTSbplMjVJZSl31ClYurqRtuZczXS6qqn5CY6MFvV7BzTfPp6VlDn/4w0m2bu3H51PS2+tCKhVljOZVKoHIS5PXdrsfsVjEvHlGLBY1BoOcLVvOsm1bP3v2DHPmzCRz5ugoLzdQVlZGWVlZznFVlFXgdrtpa2tj7969vPLqK7TuaSXgC+DpGqW7YjuPj48x372EWk0D9nMT+EICuTA9H6QxwsCAh66uyQxZ6vGE6e11kUikMMK756NSCRjBZFJRXKxm8eIpI/NsjFBdbcyMw8vKdNz13TuIfeMj3PeLp3jx0afpPv6/HN0xB8/IzXzizutyrk9bWxZGKFDR3j6OSARNTSmM4M7CCKYsjDAm2CaUlmopLtai1cpwOlMYwXARGGHIQ2lpLka4GGVvOrI7YM7W9S/bcmG2ZWYindIx3YIh+/3skvdswkslVaHSqijWFmN0V3O0bZTaYh2mMhj2DjMeGscZdDLkGeKY/RjeSG7JukFu4IMLP8jH6z9+0efijcY7pNSbHNXz89CLJZSX63G7wpx0CZLb3XuGGT7no7RsLuu/+hAvPfYzDm//Jf1de7jkqn/FZLGiUcsoKxXY6qIiTeaGc44HBSmgJCUFNOf65cjlEi5ZVUxPr5sdOwZxOAKcPj2B3y8kji1b+ohEhQfs2bMuOjqcjNh8VFYasdl8TE6EkErFme4MoZRSKpH8+4KQeCzGqaMH2L3tBV576TkmnefPBEk18xGpL0GizWWRk3GvoH4Kp9VPQySjwvoiiRbTnJVUVefh8UTpHl+EWuHHWl6DN2yhtr6BxQ019A96iccTDA562bixgtpaU8a/KE3sACyuN2MwKnO8jSxmYdY1/ZDPvj5p8tBi1mQUVACmfCV6vQJTvvKC50Wt0bJo2SoWLVvF4qb3cvTYKGbDBI6hI5QvWEY4oaGv383Y0Cl2/eXfmFuzHPm1N7Gw5t0ZAjNNhKnVMgLBGM6JIDfcUE1zUwl2h5+TJ8Zp7xjH446Q9p3x+6JIxOKMtxWQIdJUKhkyuYShQR8nTzgYGQ1QU7Ocr/3X4+x44WWe+MN/cW7nd9Dk17Kw6XagOIdYzfY2M+UrUaqkuD1hAUQEomjUUjRqLW1tDiYnQ0xOhFi6tBCPJ0Lr3mHC4TgV5XpEIhGhcDyTUMrKdDz0YAc9PS6UCmmOOitdGtXf7yEaEbpxGIxT3WskYjHXN5ZgVkh5rM3GNffs4VvXL+LWlbmDgJaWORecbW5vdzI+HqKgQDXrrPlsICMds5kMGgxyXn1VMCHt7XXz4IObM59NL9GYjTC7GKXVO/HmREmJloWLCrD7NakBSBKXG0ZHAtjtASacId61+grWrqrn3uceZfUHvsBVy67gipWX4PPFMJlUrFhRRMAfw+UK43QK+WTcKeQESZY8PHtgsuqSYnp7zs8HdbUF7Gkd5tDBUerqTDjsQQ4fGWXCGUIkFiqVi4o02Gx+jhwWBjZilQCkX6e79lsSw2PjPL19H0+83MqugydziCgAhVSFVTuPMkMNEvHUcCaRTOCLTOIOjeMOCwood2iCeFLIictKLqOqfAkajYxAvIiiUCFXrVlMMqgl6FKxeEEldTUWenpcFGgF4HjFFeWoNfPOM8+uX2zO+DalQ62RZnyTMjkhS7mUXj57YJlvEvJBvunC+UAsFlNVbqWq3Mq6Fcs50TKOx+dlPGCjZ9DGpvULGBzycPToGI/sfhjbuJ0NK1dSMvcKLJaiHPWU1arFmKfENuxj7ly4699WZAbDnZ1OOjqcmeMZHw/i8YQJhxOZ9tvPPtubyQeJRDIDVgcHvYyPJfjodTfy2fe/ix/f9wSPbt1OMrmDZZUrmTtvQ4Y4S5/LbIVgugW4bdhLOBynpERLeYWe420OASD1uEgCxUUaxuxC3ggGowz0ewgsi2E0KHJywq5Xhxgd8dPe4eSDtxUCU/lA8IvyYTarhfORfS3zyrE3fhnx0d9T8NqPYWAPvPtB0OaWbbzVOeFC+WBiIsiePUPcf/8p7rhjMV/9ajPwTj54u8b8+XnoYnIBI7jDnDyZwgi7hxke9lFaqmPFiiJcrjCxWIIjbR4arvoQRusCDr38DMnkERZeejUl1nlTGCGVD8TT8kF2idYllxTTM0NOgBRGiEzDCCNTGGFiOkYIpxs+/ONIqdGhUX765V9wbM9hEtMm0EXKfGT5C5EZ5yGWCxOLiWiAuHeAeNBBImAnEXKQCHsAkJlkaGoXoQvMIdFZjkImQW8VUzVvMeOOfJqalnPppQ2CL2ssQXu7k49/vJ7q6jwgydq1ZTm/n7VrBTLAYJDjdkeyujsnM7/htGfPwIAbi2XqN5hWUJWU6Jg/Pw+pVEx7u/OCv0+9Xs9ll11GeXkDRUXXcMu7YxQUTNJ6cCuRCjFt0uO0ibbReuA5+n7ey7zFtShu3MiihVdmCMw0walWywgGYzidKYzQXILd7ufkyXHa28fxeLIwgj+KRCLGYFBm8mFr6zSMMOTj5ElHxt8MhPwwEZ1Dfv37KYqPMn5mN3+++5ccfOk5LnvXu9h00xoKC7UZbzOTSYlSKcXtzsIIGikaTRZGmMzCCK0pjFCRwgihaRjhoRRGUEpzxk05GCGawgiG8ztcvh5h9HpKqrTlQvp4ZlvmQoRYNqGYHRqNlFOnHDgcAUZH/XzhC8szn3V2jueQ0dnHWK4XJizGxrycHZzAUilHbYDx4DiusAt3xI0n7CE8zefszY53SKk3OSorDKxbLpRvtbYOQxKWLi3EOS4Yo5mDKi5pKsda8j1ee6mFHU/+lBcfuIN113+aefXXMDkZQqWWZgZm6R9JunvZ9BvwqSe72bffRkmJlsJCDT3dARQKcYbsSM88Ct3XwpSl/CIKTCrUGhkyuTDrNzrqZ2/rME5niHCqzO/voZSKRiK0HdjDjuefZN+ulwn4PBjyC1HnL4WJnZCMIJJbkWhXItGuQCTNIxmbIBHqRqKe6h4QGf0tidCZ87YvkZtQGypQq5NYrTo2bDCxr+jfM53r0ooyfyBGvM+TeUikSaWZYqbPZnoATSdhIPdBUlamyxiSX2y0HXdw8sQEDY1m3v/JLwBCR754PIl/shuSSc52HuJs5yH+9KvvsfFdtzC3/hrGXcI+WppTtdANU4NqQUWlYXF9QeZ4H3qwg+FhX84x2x1+JpxB4rEkJVYtiUQSsUQECEowtyvE0KCHYeccWq7/CT3trdg6H+bgC1/EcfYyIh++k0GbKsPgmwpUmZnCwUEv8+fnMzbqxzbsp+24g+rqPLQ6OQajgsoKPYvrC9ixY5BwOJ7pPpjdua+nZ5L77jtBcbGGRQsLaGq2nne9ysv1qY5+EdqOO2YsK5QHktTHZAxpknz5yZO09ozzk5sbUMmnyvmmD+azX+e2Cp95IDEbyMjezubNc89bz+2OcO6cIEs+cGAk57OLKdG4EPB5B6C8+WEuUGNuLuFwV4KdOwdJQkYx1dZmx+uLMDYW5JZbVvL+m1fwyf/8NY/vfob2oXbev+EGAm4p54bE1C00ZTqwpXOCbdiHdZo8fE/rMNu3DSASCZL1Mbs4kw/S5MKEU+jwOTjooaBATXmZnvIyPbF4AtdkmOrqPDyeMDt3DeL1RJFrBdD094IffedG+ctLrfz+Ly/T1TeEVCKhoXo+5aZK+sfPIhFJKdJWUKKvokBdQiIZxxuewBdxo5UL9+1EcIT957act22JWEpRXiFzK01o1HIKC9VYrYv5etNGmptLMiVkDY1mbDZ/yltEdB7plx3TP0v/PVOp5YVaSZeV6SgrfWP5YHDQy7GjYySBdWvr+fitVwJCeVokGqbfZsPl8/Hw1pd5eOvLtCyt418+cC3l+fPo6fFQU5PP5s2Vme+c/X3KynTU1pqyjMSFDo2Dg57MdwkEYkikYvR6GRKJGEnKOLmsTCd04HOHGByKsKhwFV9532Ie3/ESB3v30nn/CW6//hoaKhpSJXOCSXl1dV7m3Bw+PIpCISUUiuNyhTGnSk71egVLlhYCyUxXyhKrhiVLCsk3KTMKLr1ejkQCDz7UQX6egoWLCmhusuZcr4YU6AkEouzefY6iIk3O7DLAoC1Cl2sTLcVVVNqeg1+tgpvvh7mXZ5a5UD4oLze8aTlh+rpud4T8fBXDwz4mJ8M8+ujpDCn1Tj54e0ZlhZE1DeUcPpzCCExhBJcrjNmsyvg9DQ15CIfjBINx1r5rI7XLl/HM/X+kbdvjOM4e4erbbqWsrFzACLOUCz35ZDf7szFCTxZGMCkzpUZC97UpjGAyCZ0yZbJpGGEiRDCFEaaTQW9luJwuTrcPEpcY6DxynG1P7WSsty31qQixqgCZaRFSYzXEwyTCrgwhBRDse55EYPS87cqMSlT6QhJ/vJHlqxpYc3k1T01s5MYbqykq0mSIXbc7QixmzxDL5eUGPvzhmX8XM5lEXywpnP0cePe752c+v5hob3fy0kt9JJPwwQ8u5Eff/REAz73QzWN7drL/9K8gmaT3RAe/OtHBA7+4l6vfezVzG5txuGSp4zzfL0lQUWlYvDgLIzw0A0aw+5mYCBKPJykp0ZBIgFicwgjFGtzuEK2tHnp6XKjVMqxWLWr1AuT6UlZb/bTvfokHfvgznn/wz3zs3z/Kkpbl52OEMT82m5+2thRG0MoxGIROgYsXZ2EEnYymJmtO577u7iyMsKggowTLzgnl5fpUR78IbW2O8/IBvD5hlD4X0/270q+nK9RmitlIp+mKyOnh98dwOkMEg3FOn86tCGprc5zXSXB6DA356T3tRyZSMK+kiGLtVAOlM+fOMdYXZiDf/ZblhHdIqbcg7A4/nZ1OvN4I1dV5LK4vIBKNs2PHIOXlelr3DNPT66Kq9lKuvr2W/S/9L9v+8jPaWp/GWPFerBUrkMslLF9WRGfnOEODHrRaGXULTZla4DSQ7u5xpcyW/VRWGnG7IoTCMbRaGYVFGvKMgkyzvFxPMBDD4wlzySrhJhsZDdDcXIJGLWXLlj50OjliiZhJnxwPnDcr/WZFOBTk4O5XePGJP9F2oJVoRGBexVINhqovE5eU4oqJkJlLQCSBZJRkeIio/QESkXOQEBh3ZcXPEEnUwt/6SpT6EPmF1SQkJagMFaj0lRSXWKiuzsPlCmfKGbNNt9M/TLtD8BDJJpD+1sh5cKW2OZ3QeqP7SpNJ2aRS+qF1ww13kfzS7bzywlNsffIRbIN9PPXH+4D7mF/fwoqlP2FB7dzzHkbTS0OBDKFTWqbN3LcDAx48ngh5+UoKzCrC4TimfGWGzOrqmmBiIsTERIjiYg3N665kv6qOc2d2Mtz/HL/88k1UN26ieun7GRwUurOkZaaNDWaKizQkk0lkcjFKhUA2LVtWmHNNpn//NKloMCo4edLBpCuMUiHltg/WMTjozVzXkyfGScNqnV6BbdjLgMIjlNZMuwZlZTqGBr3EJvzMKTfyUvsoJ865ufe2ZdQUC4OcnTuHeOmlPjZurOTDHzbkDO43b577ug/s2TpbXIyC6ppr5nHgwAgf/GBtzmcXU6IxE/BJD4zsdj+9ve5Z9/1O/HUx7gzicoNOL8c5HkStkrJ8eREOR4AdOwZRKMRsebGP5mYrX7/jdh74SzUvHnmRb9z/c5ZWLmP9kstoNpRkSI69e4fp7HRSWKSmuck6lRMsGiacIZwTQRJxUKlk6A0KwiEhHxQVCvd5c2rQaTQqcLnClJcXIJdLMp5UNTX5DA55UCqkyPLF6M3CYPWtBCBdZ4d48OkdPPLCLvqHp9pJzMtfRMOclcSjEow6H1pxMUqpBl/ExTlPNx2O/fgibiDJ3Lx66syrAMhTmZBL5FRa51CcX4RanEdRXiGL5pexcaNA9maXNKajrrYg87rApBL8hd4ASfR6MX0wOxuhdbFRVqbLEDTZx1m/uACjQcGHP3Qvx06f5sFndvD0jn20Hu2g9WgHhaY8Pvau67nyyquxWDQ552C2QW+6Q2NZqZbf/vYEgUCUeDxJWZmeaCROIpGkPNUx2GLRYDQIZQTj4wESSSgpymdlxWXMUdcyFDzBLx5+mPLiV7j92uupNFchlYrxeCKZSQu1RkpxsQZjngKFUoJaI6WmJj9nIN/ROY4mqyvl8TYH485gxjPtxEnBXy1tIJ0NnoQywCQKhYTOLicatQy1Wpopt8w+x4NDXnb0zWXt0s8xb+xheOh6aLkT1n0NxOIL5oP0s/6tyAnp57hCIeKllwa45ZYFmc/eyQdv37Dbp2GExQVEIgJGKCvT09o6TE+Pi6qqPIqKNIyM+AERRXPMzGu6kdK6FThO7+Teb36PV59eTF7VpWi1xdTVmXLyAUDPdIzgjhBK5YTCQg15eVkYIZjCCJekMMJICiNoUhhBL2CE5GgKI7yF5XvxeJzTJ05z+LXDbH9mF0M9fYglchKJOCTjiBV5iHXlSNTFiOUaEiEnsckzhG2tkIgAIrT1n0IkliJWRtDOUxMZV6Eol6MqMlBUWMMc8WUYk1U0N1RhHwtlVIU331yTOY40mTQwIPwW3kySdqbf9vTnwBvZ18KFJjZurCRbkQVQv8iCRLSB737yvQx99yT/+d//yd5n9uJ3+Hns3scQiR6nZtkSLvnBv1G14HyVz0w5IdsH7TyMkKekoEAtYASTMkNmTccIdXUFHNhvwzEeRG/I5wcP/pSH7tvOgRef40f/+i3mLqxl3oqrqKytprHRTHFxCiPIxCiVAtmUwQip+z27dA7IKIMMBgWnTjmYnAyjVEq57bYURrCnMEIqH9hsfsLheCofhc/LB5DCCENe2trsaDTSGQmekyfHOXp0LNPpLzv3L19e9Lq5fraJsItRUK1YUcTp05OsW5dLhE4/NzPFTGRY+vqPuCcYH4vSrrywcu9vif+TpNT//M//8JOf/ITR0VEaGhq45557ZmzV/lbFyRPjHNhvIxZLUltrwmLWsOmquZjNarq6JnBOhCAJer0Mvb4Ym+2jFFetw9n7CN37vk9schXh1XcBRWzbPsCJEw5MJmE27NSp8UzLe4D164XSouoqIy3NVtqOOzhyeJRAMMbAgIfmJgG4th134HGHOXnSQV6eijVrSjMDvMFBL1qdHGuJFotZxV9+K5j/vZkJZ3xshAOvbufZPz9E3+lTJGcoDUygJBTRI5YJ89OJUDdxz+4ZtiZGpi5h45Um5i2Yz9GjY5SWfpGrrqrMlMw99GAHwzZBkr/pqvMVJ9PjQsqovzZmY7r/msgmjm69JZeMyD12Dbfe8TnWXvcRdmx5mbY9f+H4gV24xweYV1U647bTNch79w6jVstoabbS3FRCc1MJjzzayfE2B7ZhH1qdnIpKA5UVeto7nHR1TbB0aWHOeRsaFAwRS+foKS3TIZeLaNNvoqnpgwx2bmHLo7+hr30nBvnnufKG2+jWy/F4wvgDMQxGBSOjfsxmNf0DXs6edbN589Q1TXfOq67Ow1SgyulauX59GasusTI46KGp2Xqese3RY2MZ1aJcJgaRCJlMnOPxlU0chsIxznZ7aNAo+Pz6av6wt5/r/ruVr19bxwdWlQFJBM5W+I3MNsv9RuP1tlNebsgp2cuO1yshSa8/m1/JvHlGmpqsf/N3eLvFPzofdJ2e4NjxKJFIAo83KjyXm0vYtEnICVte7CMYiAJJ6hebubyvgWKDlXZbG6+07aZzpB15wY3U1L4LrUbF1q19dJ2eoGZBPoFgLMc4urnFinMiiN8XpanJissV5vCRUYKBWGa/aQJiy5Y+fN4wJ046sJjVLK43Z3KCyx2mstJAXp4ST1AYjL+ZcxSRSJQ9R9t5bMtuHt3yGm6f/7xlJCIJyYSYSGhKoXjK3jrj9pQyNQadkk9/qgGDQcHOnYPc8u7vctVVgh/Tgw91YBv2UVSoy3z/mZRM2XEhddRfG29WTsgGCRvWn086ZB/7nJJVrFq0iNuvuYFXjuznjy9sZ9QxSXVV/gUHvS53GI/HxoQzSHOLNdOh8ZFHOjl2bAylSsryZUU0NJp56skeBoe8FBZO7besTOiUFAhEKSoSyvNi8QQ93So+v341/vgE3/7VH/nGvf/LqkUL+erHPwDIM0AAID9fhUQiIuCP0dU1STgUy/idpb//+vVCZ8m2NjvdPS5galxkMilp73BSaFHnDOSzFWbRSIJgIEZ5mZ55VXm43KEcvyuLRUM4FKO7x4VGY2bezd+CI3+APT8Xyvne8xBvVT54vW2ln+ebN8/lpz/N/eydfDB7/KNzwsmT4xw4kIURLJpMPujqmsiUaQsYQUZ/v5v9+22sXVuWIhnLWLToerrb2vjxf/w3p9t+hdpUiihwJRpzFcuWF5+HEaqqjLS0WGlrcwgNBNIYoTmFEdocuN1hTp2aBSNo5VitWiwWFQ/3ChMVb8XE9TN/2sozf9rK4OlO4tFIzmeJRAJZ4UrkxirEyjyCAy8THdt//kZEYpQ6M2s2y4hWjzAs6gI0LDBex2Xm9RgmajiyK8CxQxMs3zCHT33yfFPp6XExxPIbjTfzOZEmk9euLT3vOLOPvbx8Na/c9wpH/62Xr/3+q+zduhX3STe20V7y58xcOn4eRpiWD44fd2Cz+dBq5VRUGKis1NPenoURsvKMoP6LUVqqp7Q0hRHaHFx66RycziCGwkpuufOLqBnh4Xv+wLY//ILS2gbyPvthCoqLGBlJYYT+LIyQpUTSpBS3JlMKIxzPwgirUhihaQaMcHQMgEgkQTAYo7xcz7JlRWiyfB+zc0IoFKOnx4VGI5tFdZTM+ffNyv2vtx2LRZNTspcdr1dWmF5/NmWYoRiqq2dv5vFmxP85UurPf/4zd955J7/5zW9YtWoVv/zlL9m4cSOnT5/GYrH8nY4iidGoRKWWzqhoyfYp6ulxMe4MEQ6ZaVz3XS7dfJpXnv4V3/zMu2lY0YzSsgmJ1IrBKJTjTU4IpRdpIL3pqrk5pIupQIVSIcU5EczsO+0DFI8l8HiiaLWyjHE1CJ5Ver2cxgYzpgIVjqs/xPJLr2bxqvq/6tsnEglGhgbYs2MLu19+EdvwON6JfkAMYo1gXAKp14rUrEYcYk6Iu0FmFD6VlxAXK5GpSkFWgkRZxrzahWy6pokly0oyxz+ddLKYNWzeXJlR0fyj4o0QXTOV+mXH9AfohZYFOHfOT1Jey3s//Qu+8I0QTscoUpkwkIhFo3z3rk9w3S0fZmnTZRnwcOTwBIFgLPOQtTv8xGIJdHoZpWVaRlOGx1arFo8nSlfXBCdPjrN33zB5RgXd3ZOUl+tTZoHJjPIq3Y5+zH4FtWtqCDuf5eHf/JCXn3qEq957J3r9IjRqKaYCobuURi1ly3AfwzYfbccd1NYWcPLEOEePjZGXJ9SWQ65qymLWcNsHpso5s5VvAEuXFGY8fZqarVhLtJmyzelqtunbrinS85VNtfxhXz9ff/oUrd3jfH51JSACkgwMuHOS/oXab79eSUS2z8CWLWffktKJv6a05J813i75IIlwL0ql4oyqg9R7zc1W0oSUxaJBoZAwNhJmjmoR37l9FceHD/C9+x7mvx5+is994DqQlgiEqlaW2bbHE84MnL7076sy27fb/SiUUiacwZz97m21ceqUg3A4gVYrw2RSUZ8yKk3PHC5ZasFq1dLXr+JH//I5qqvy/+oz4PMHee3wKR57cTdHT/Vxun+ISCyCTKQkmgxllpOIhGdUPBklnozjj7oznymlGmRiBUqZkjxVARpZPtb8Im69aSUNdSU5g8bp7aWnl6j9o+Jiia43YnKafn2hUoDBQS/OsSTv3bCJ7935AZ7esY8bNjRnPr//iZfpHrDxpTvenXlmutwhDh0cwe0Oo9HIMib5sVgCrU6OVCLC4RByQm2dCZ8vgscb4ac/O8TCOhMyuQSFUsLi+oJM6emNN1Rn7rEHH3KyfsF1XLlygid2v8ANX/gaN61byxVL16DWSCkwCflArZES8MdySKfq6ryMytZsUTE6EiDfpKIxpZrKPs+bNs3NOZ8wpTDzeML4fVEKC9U0t1hT5NcERkPu7Hj6vmloNINMCas+AZYaOPZH+NUlbFr9S2AeM+UD+NtzAghkUfbrNyv+f8oH8PbJCUajEpVKmqNayGAEjRS/PwsjjIcIh2PodAqam62Z33rhxtUc6VTQum0v4bGjvPbY71Dr85nsW00icgUNyyrZtGkumzZlYQSTCqVSitMZzOw77QMUj2dhhFQ+AMGzSq+X09hoxmRSseHmd+HfuI7a5XV/1bdPJBKMDo1y9vRZ2g504BVXc3j3cfzOQcKO9hQmSIVIksIMSUjGkBnnIlYKSnuJqoC4R45MawFFATKNmXl181j2rnxG9G30B3egk+vYULSOG6puoK6gDpPShEgkosp0DpNh4B9q/v9GiK430hwn/fpCv+HRsyKWKT7LB793F/sCD/Fy+8t859B3WFe6jnXF6/jB537Au+94Nw2rGjIY4fDhCYLZGCGVD3Q6GaWlF8AIe4fJy5sFIyyfwgitrUKXyIYGM6vXryC/ZD4Hd7zK1kce4yefu4srbtpE89XXYy4ysmVLH8PDPtraUhghpUzKwQjTDMdvuy0LI9inYYRUPvCl8kFLi5Xa2oJM11zIVSa9nupo8WIzaYyQnuRIrz/d2yk7Xi/3z9RV982ePJt+DOlzpC+KUWx588nZ7Pg/R0r9/Oc/54477uAjH/kIAL/5zW944YUX+P3vf89//Md//F2OIW2EPZ00SP+dTSjs2DFIOBQjGo3jdoeIRKq4/qO/wzt+hNatv+f4oa+jy5sD+ddSUnwLpWVlDA162PnKIEuXWli/Xuh2kN1t74YbqnOOJ22oHQ7HiEQT5OerGBz00tPjYmDAg1IhETyJAjFqzRqqamvp6pogGL24G+/0qTZ2v/w8u3e0YhvqgbiPbAcSkaISmeV2JOo6ohPPEfe8mvokAYlg6m8pInkhyWQYkRhKrBryG64nP/99VFbk4ZwIYspX0rK65KKInothhN9OMVOpX3ZkD6Zfb9npy1vMRVjLKgCBrHnqT3+kdfsWWrdvoWTeSm779H+wfn3DeWSm0GLVj1wmIR6HkRE/bncYtVpGZYUBkQhGbD62bu2jrEyf6hxVSGOjRWDVjd5MR8eurgkUCgnFJRaa3v2fOEffz5/v/R4P/fJfmFPdRL7+K9TWrsh0jqxbaMoQR0IkcbvCeL0RlqRqzC1mDbW1BXR2jvPIo50ZUnV6l8rBQW9OiWFNTX5GbTadvErH9Psn5ItwiV5LYbWcV7rstA1OsiIsg8koFosm5yF9IS+P9MDBbg/kmFtmx0ydmt5Mf4+/prTknzXeDvmgZoEJZb5ixsGDxaKhfvFUi2aAyckQkWiCWCzByLkoH9p0M1/44E38+L4n+fFv/0I8nmBheS1NBRtZvKgAENHf58ZhFwaE07vt3TgtH4Bgqi0Wi5DJRBj0CubONdDT4xLKCZUSAv4YNTX51NUWEPDHmHSWUWq6OFIqkUjwiwee5tX9Hew7dpoJr4tEcqqTkQgx1aYlFGrK0MnzebHnfpIIExVpI3IAhUSNLNWC2GRSUFioYenyO7lsdSlWq5a9rTbyTUpWt5S87qAsuyzvnyHeiMnpxfhbZC8vl8t4z6bLMp8N29x85ecPMep08ptHX+S65vX86+3XUb/YjMcTzSE00zlBhAiXO8zkpJAPKioN1NWZaG214fNFGB3xI5OJUWtkbLqqMkP2pI9xcNBLNJJAqZJy7ZVN3LhxFXc/+AzP7NrOi637+Jfxm/nOv707515Ol502NJopMAnehP39bs6edVFbZ2J1i+AX1dE5ziOPdGaWm96RLD2Q37C+PAM4GhstGdIt+3ylY/r9Y3cEGJyooWLJv1Nw5n4Kt32IZfpb+P7BTQB8+MOLc9b/W3PCzp2DbN3az1VXVfDhDy9+Jx/8DfF2yAmLF5szBsozle9mA0LBI0fACC5XkJ07B6mqyqO0VPCmuXJjJRqtApNpEwqcvPL0Vo5sf4n9W56jvGYBK9c1I9VVcum6GqHLs0VzPkYwZWGEyAwYQZnCCP4YtbUaqhdV0dU1QSBy4aYM6Wg/0s6el/ew/7V2BnuGUgbj51dLiGQ6RFIlyUgWKZXOHSIJYkUexCOIRFBSoiF/8XryTddRWWlk3BkgWWjDbjrGodAerGIrt9XexjVzr6HCUIFaps7Z18UoCd9O8Uaa47zestOXv6X8boa8Q9x99G629W/jifufYuDlPlpfbqW8rp4PfuEjrF9ffR6ZmcEI8hkwQqWAEWwXwggp8j8bI5jNKsrL9QwOejnT7cJU2cjNd9bi6DnIrqeeYc/WV1m64VpWXbEWq1WbRQolcbtTGGGJJfP7yWCERzozpOr0nDA46M0pMWxstGTG/7Mpk6ZjhJnIJLs9gMcTzjGChwt7O6WPwe0OZ7pnTs/rM3Xvez0y643EbDYDE8GJ11nzb4//U6RUJBLhyJEjfPnLX868JxaL2bBhA/v27ZtxnXA4TDg85Sbv8Xj+5uPIJp+c40FsNj+QZHG9+TxCobHBzNmzLoKBGEajCrcrTOfpCQoK6rjjqw8hT5zlof+9jwPbf8vB7fextPkyCkouIUwNIHSRaTvuYO9eGydPOLjttrrMe2mSqmV1CaVleiKROB0dTgKBKEeOjOLzRnE4gqg1EkLBeKZd8okTdv7yh3uJuV4F4qlSuwQkY5CMQjKOxHQjUmUViXAfUdc2iM1+s0o0DUh1K1J/N5KMDCOSFSCSWZAqi9Hnl5NvKaHYaiAUilFdncfGjRWZc/hm+jy9XeN1JZkzqK7OM8CbpraaTXElUS+m+cr3sW/7nxnuPciP7rqZjTe8l9v/9SvkmYTBisDk2ykq0mAt1mC1ajOklSlfycioH51WjtsVRquRYcpXotMJar7p3yX9r9sVQiQSIZdLWLV6GUWlf+DM8R08ef9P+MWXb2Kg67OoC6/i1EkXDY3mnDLFxfVmwZDT5iMUjueU9LW12enocNLZ6USRag2e7lKZ/Xub6RxfrJptcNDLmdOT1NTk07C+int3neX5cJiqBEi29WEwyDMDnJm8PNIgwmCQ09RkxW73zzpomKlT08UMMl4vph/D/8WyjOx4u+SDApOKhEqTQzyl/WzqF5vPGwDMKdVhHfQglYrQahV4PGEc9jhrF67jo++6hudfa+Wxl3fyLz/+KT9/uIiW+kasugrqF8zLmKC3HRe6r2Srg7KJqtUtJYCIc0PC93PYA5w968bhCKJRSwiGpvJBWZmO++47zqd//H1iiShJEiSTSZIkSCTjxBNxFFIVq8uuZzJoxxWy0zt5YtbzIZcomG9amnldpC0nkUyglunQyvPI1+Qzr8yKFDkarYwrNlRgNqszipn0oOufiWR6o3ExEv2ZfC6mx+uZogLYhgPcuv46ntqzlX7bCA9sfZqtB/fwm29/khve1ZRp0d2RlRPmVRnx+6KEw3HyTUpGR/yM2QOIRGDMU1BVbcRuD1JcpMk5ruzvVVGhx+MJpxq6GPniR2/mUx/YyI9//yjf/90DPPfqHm5suZagW7gPb721Nuear19flinLDIcE4Hr48GhGUTU45MHlCqPXK7hiQ3kO+Emfw+nn+WKVbJnt1ORTsP4bcOwhFvU+yrfLD/JE99f51rc8OaqovzUngCjV/VK4Fu/kg78u3mhOeCvyAeSST05nFkaYIR80NqYwQjCFEdxhOjrGMwTq8uVF+FOkb2lNJT994Fu8+MJptj7xCt6Rdp743wdIxOO88LtiympqaVqzhHmLajg7EM0oNVpaSigt1eNwBOjocGJJlbuOjfnp6XGRTCZpaSnJ/E5OnLDz2L2PEhnvSKmYhJxAyu+JZBxl6QakedUkwm5Cg9tIBO0znQoApMYFKIqbECv0xNx9ROxHESn0iBVGZOp89AXFmArNFFv152GE/gE3fuMAHc5XGA2MUiYr47M1n2VjxUZKtCXIJLI35Zr9o+NirB1m85xLx3QyO3v5Ul0pP738p/z35HM8uPCXeNe5mdg1yUDHCb77iX/jmluv5qNf/CiGfGGdHIxgTWGEFGllMikZGfGj08lxu8MpNXYKI5gugBHcUxghWzVos/kpLbuS696/iZ9/9VfsfvJhOvbv5hv3fDFD6ixebM6Y9odC8Ryipq3NLpQftg6zclVxJqdNzwkzYoQ3mhOytuvxRAiH4+d5T82kssouP6ypycftDs062TRT976LmZx6vZh+DG+mn+bFxv8pUmp8fJx4PE5hYWHO+4WFhXR1dc24zg9+8AO+9a1vvWnHMDkZpm33CB2d44jFIhKJJMPnfCQS4PFEaFktlBWkL3ZtbQF3pNQdGrWU1r02+vvcSCRiysv1WMwtFFc20tk+ROeRlzi2bxuHW38ISTh3fDFn21aTV7QQlVyJ1yeQUUDGa6e2tiAHeAcDMXbtGkSpklFdLTxcHA4/Y/YgHe1ONl01l2NH7SRCgyRjjlm/Z9z5BHGSgAQkqRtXJAOJDrE0H5HMjEhiQCQ1IlYLRJmlUIlMtgyxeDmXXz4HU77QMntxvfmCne7+f4g3Uup3IcJpJgVVNlkl3Hdzue6G77D+2g/w0K9+RH/nq2x98hFefekFPn7X19h88wdoO+6gp1sgh9avrwDIqJAcDgHALl1moaHRQnm5nt5eFzqdYK6fPj67w89TT3XjnAjS0mwlEpExMOAmmRRkuyuWF7Ni+QeorG3hsd/9kifuvxuL9RnmLvsEQ4MKnnrqTEYZly7JbN1rQ6mQZNSBo6N+JBIRJpOSsbEA4XCM+dX5OcllKJWUNGppxsj9YiPbyypjsmvW8NnVlTx8aIhuUYghpxfNtv4MAJlpBi4NIpqarGzePDenDXA6skHCpk2Vs3Zk+Wujvd3Jiy/2UVCg5MMfXvR/ejYc3h75wDEeYGTIyfEeBx0dTurqTExOhjhxYjzljSOifnHujNzqlhLKSvUZEmZwyENPr4viIg0Ni0poWPQePnD1VXT09/Lszr28uHcfTtdWzPkG1h1uYH5pJQXFFhKJRCYfwFRuqEvNlt94QzWHD4+ybdsAI6N+qquMwjE7/NjHgrR3ONm0aS4WiwbbSABvZPaJh1DMz/azDwNCmZ0IMZBEKpajlGrQyHWopDoUUhUamXDfKRUS5AoxN1fcQN3CAqqqjDkdBt9sSfo/U7wRP6sLLTvTQHX6jGp5uZ73XXcpd31yI/c+tpWfP/AXxibGueGz3+WaNSu552ufomJOIcfbHHT3uGhsMHPjDfMz23rppX4GBz1UVxspsWppaDQz0O9hYMBDSYk259j2tE55VJWX69m5c5DOTmcWaVbEmpavc+8fX+Vbv76f7z70X1zdtIZL1Nfw29+eyFHGWSxCTtjbakOhlLCndZhTp5woFGKqq4wMDnrO6w6V/jcSiWfUVLORdTNF+txlm64jU8KKj+FRVFJx+lE+F/0M3zz2IbZzzd+UE7IB5Nq1pVgs6vPywDv54I3FG80Jb3Y+AJh0BTn6SjcdHVkYYTgLI7TMgBHuUGXAYmurjf5+ASNk39dudxh3yg9t2Yo5mAtvoKzsg5wbdPLiE7s5fewY3ceOcmrPKwDINUYKS0tovnwRFfMrsFgtJCOgkCeZnAyhVgslWR0dToLBWErJJ/yWjx21E/PZSUbcM3xDIULDr8HQdnL7topAIkcs0yJWmhArDIhkGqS6CsQKPRaLElnJIsSLFgsYwZTCCKnS9uyIJ+IctR9la+xFHEMOKvWV3LnsTq6quIpCTSFikfjNuWBvk3gjCsY30jRhOlF17ZLLKJfWcG51K/+7+276/nwWzzEPz/3pOV55bhef+c9PcdW7r6KtzZEptctgBNM0jLDUQkPDNIxQOKW8sdtTGMEZpKXlfIyQfjanSVeDIZ9//f6/8ecHXqNt+1N87qbPcemmtfzrdz+LxSJ0km1ttaFUSjIlcmmMkEzCpEvoHpvd9GK6afkbyQcwO5GT/retzX6e99RMlTzZlRxpBVdaKTXTvqYbvL8ZnlVp7zC9Xj5j18G/R/yfIqX+mvjyl7/MnXfemXnt8XgoLZ3ZEPpiYnTUz8FDI0xMBDHlqxCLRfgDUUCEcyI0I6GQ/Z7N5mNyIkRlhT63Y9uaGjQ6I5PRS9CXOygrHMDrOMVLTz+Oe+J/ANDozeyfqKGodB6yqB5JdD6nT4XR6PRotDo0Oj3JZIJINI5cJsI1GSQc8mLJj+B2jnDqyGl+9t2DaJLDgreTWAPJiKCOSodIhUhmRqxeiFSzCJG8FERihJk8IQmoNRJisQSNDWa+9rWWv/pcvhNvLGZ7KOV0fVhWNHVfrVvKZev+zC9/8jivPPkzgp5+Xnn+STbf/IEZu/yltzM26sfhCGIt0XLrLbUcPjJKR4cTtzucMtcvobNznCef6qavz4NUIkKjEWarbDYfPl8Ua7EWg1Ege4JBMde+7wu8/2O38eDdX2fvM/+OwbqWwf5bM0aG6Yd42gOq7bgDjydCIp5ErZaysM6KbcRHd/cklsIpmXbatLyn+0KGhLNHTqLIIrTmzjHwFaueh3adZS+TvEiA9wxN0lCad942nnjiNA891MHChaYMiJg+aMgu2du0aS6bN+f6pP0tJRUDA24ef/wMnZ3jAIyPJ2lvf+u6Z/wzx5udD4aHffT1uhkcFKUMnD1MTIbwByJIpYLfwEwd2LJfu9whFAoJFZX6HKNNkUiErUdGlWEllTUi+sfPsvXVo/xl6x7iiQQKuQyrqZBuTyXl1iIiIhlRmZhTZ/ox6DQYdBrmzNEglYkIBqM4nAHUailSZQylIUzPuX4+8Ml2zFYxtmg3ComaeCJKLBkjDTREiFBKNegU+ZTq52NUmlHJtCSSccQiwaBcIgaxBBbMz+MLX1jx/zXZ9PeOmXLChToAfvNf30OZsZr7nnyeQz0HeX7XQe66/SYq5hTm+iplbSv97J8718ittwrq1i1b+hgd8WeITbvdz6OPnubIkVHBD21aPii2ajEavBkidvWyhTz+0+/w7J5X+MWDT7C/4zgryy+nsrAykxPSJXXp0sBQKEYwEEUkktHYaKGkREsgIBjWpiP9XR95pDOHpL3YmA4cMiESYWjYAJW1RHfew48bf8XwHA/EV4Ekd5j9xBOnefLJbi69tCRHoZT9jJ9ewj29o+s7+eDvE292PgAYHQlw8KBPwAimFEbwpzCCMzQjyZz9ns3mY3IyROW0fGAwCPemzdaP3R6gqUkoZ3U6g8ytX8rSy5qEbqslYnrbuziyt5140MmuF3Yx9r9jOfsTS2RI5XJkCgWJpAQQ81oX7Lg/jkIpJhwMEfd6OT8E0kkkVSFWW5FqihAr8xErjIikqoxCRa1OYYTGN44R4ok4h0YPsbV/K86Qk2pjNR9b/DGuKL+CAlVBZh/vxPkxE5k9e/luNe9Zci3fX/V9nnrpKWwPjOEf8fLKs69w1buvmlHtk8EIYymMYNVy6621HD48DSM0pzDCkymMIJ0BI1i1GAwCAeN2hykuVmdImAUNtdg9WnTDJ9i/cye3XX6QT//np9j83s0ZAqutLYUREgJGaGkRTM5NJhVudwiYUse+vmn57DFbTkj/ZjWa/8femce1Xd9//Jk7JJAEQgIECEehBVpaeir08GjVVq1O61Fv3dycv+k2N49dHtPpNjfn3NS5uanTeUznMXX1aGvVWlp7QmmhLbSFAAESAkkgF1d+f3yTLwmEWl09x+vx4JGWJN/kG/L9vr+v1+f9fr3kaLWKIybeVVe3s2GDkLw5Uddu7Mje3LmZ48Sz/yaYxeHwsWmTndZI57zXG06YOvhZ4CslSqWnpyOTyejqij/BdnV1kZmZWP1UqVSoVKpj9h4yM7UsmJ+FqydAWZmRgH8Ie4dQRIxpahxO3xE7YspnxpijjXms1ZpCnzeEwyUjKXkW6dbjsQyswujrwprpZjjUxr66PXS0rcXb62DLm4MTvs5EaKsFQ5qRwoJsTJmLycmfQn7RNPKKpmEtLEadpPnojUziI/FRxuafBBN1UE0kVkXfw4JFVZiyS/Ha17L87OVIpVJKS9OZMiUlbrXJak3B4w4RDofRG1SiYGW1pojf+YpZJhxOH2vWHObwIS9IwuRadeJj9+xx0tbWzyv/bsRiSUapkJGcohBOsnPnMWfB6/z1gYd55cnf0dS9kz7XZQwNLWPNmsNUVlkoinRzRMMCYkMD9AYVnZ0+OjuE/Yp+Fnl5Ouzt/XHkJBFiu6Ki24wNJxib0ieVSlhRnkmaXE6108OqP23m5uXT+ObiwrgLo5deamTHji60WsWEF/6JRvaOFfbudfHaa004nQFOOy2fU07JR69Xikbq0cd81Yxtvwj1IDs7GelIiIxCAy0tXvLydHR2+Wlr9ZKaKowlxSZ9JYLFkozTIVzgxcJqTcHbF6LT7kel0DGr9Hg086ZRnuZEbx5ApvGzeecBGg7ZeG9HDT2ePh5++ePvg1wmJz/HzML5xeRnZ1A2xcr0YiszivPJzjBOkoBjhGPpCRHFkcb8xtWDyOuXTDXz3YvOQ2s8i/2tjZywQPBHKitNx2rVkqxNEp+j0crJytKSlaWNE6uqInHh0dvddU721nczODiCyaQRH+t0+unq8vHC80KXSkaGluzsZObOzaSqMpeqyiv4+nlLueiG+3i95iVKc0qZ41lEc7OHiy8qpapqdKRIo5WTX6AnaqArbE+D1zsQd4EdNf8vLjIc0fg+tisq2r0X+9kl/HvpsulfcDN9u57B0voM/LUOLvgHpFrF7b70UiPvv98GwNNPz0742p91PZg+3RjXqevxDHzl6gF8/JpwrOsBQGaWhgULUnC5IhwhMCQKTUaj+iPrQSIDZRg9nt966zBNTW48HiH84uBBNyMjUFUldCcK3XnzOG3VMvH7q0uR0d3ZTXdnN4ca29m/187AQIh+rx9nlwdTupq2dh8e7yCa1CS+tryYFH0KKfoUkvXJpKWnkZGTgT5N/6nVg8GRQT7s+JC3mt/CHXIzLXUa182+jpOtJ5Om/uQhHF9UHEvfuCiONOKX6DzT75Cz1P8d0mZV8PLtj9D+ziFmrJxBmDClpekUFqQgl4/KCNGOvXA4jF6vEoUYqzWFBQuyRD8qh0PgCIcOGo1tDQABAABJREFUeZFIwuTm6sTHihzhlQhHUMpIThY4QvS7XlFhwun0c1Axm+SMafQdfpff3vxbXnz8db571/cpKUkTwwJiQwNstj42bLCxc6cjzucpL0+H3X4UHCGmU8k3piYkSukDoXssmgY4ETZvFgze1Wr5Ebuex47sHSvYbH1sjYSazJkjeH7F7k/0MVGj808TXylRSqlUMnfuXNavX8/XvvY1QDBdXb9+Pdddd91n8h5SU1UklaRSUztEqkFFUZEBe0c/+/f3iKuTJSVpcZ5PDqePTR/YxTEnvUEVZxQdK2CcuXIKm6vtDA+PUFPjYHBwmNycXM695DTWrDmMyrWEudPTmTXTyJbqAxTkwfTSZPy+fnx9XgYHB5FKJSCR0Nc3gM8vw5pvxtY6xO49/Zy4dAaFOf3YbYcpLptJwdTSj9jjSXwSHI1Z+bFCrFgV+12KVfgvuXgGMAOH0yeKL3+7705qt1XzzZvvZelplYIJeY0DqUzC4sU54oqC2TRqnOlwCmr+wOAwBYU6ykqNceb04REhKSzgHyIlWYnJrEGnU8WJPtf84HqKypfwt9/dgX3Pg/i7t5JkuQSAqsrsuH2p2y148xApDnNmZxBLShoautmwwUbAP0TAP5RQeIr1gNu3rweZTMLwsNAJEu0s276jM+Hfy2brw9Pq44wiI3XBIPes2cemJhd/WF2BXqME4Nxzi+NuE+FoEo+OlOB0JEyfbmTlyiLa2/uYNi2Vbds60GoVeDyjZqL/rT/JFxFfhHpgStdgMkipb5XS0iL8zpqbgrs3wLvvtpKRqcGgV48zJ3c4fOKoU5pRzfBwGL9vCIgXL1aeOYXqzZF6UOskGBhEIVUyNSeHgcERvEYz02ekc/llZfznjUZa2h3k5mvIzlXj6fPR5wsgkUiQSCRIJRL8/mEGAhLSjSm0Ngfw9oxw0on52L3NKBVyLl550mfyuf0v4lh4QhwNYoWq2O9SXBDERdG6P0t8DIoAp37zR5w2fzE/ufYCymcIZrUdHT7mL8iM6ziKxoVHjcW93gFMpiSsuTrOObdIfKzfN8TjT9Th7PYjlUhQqeWUlhrHiD6pPPLTm/nbC2t5eu2rHO5qZm7OEvI366mqyo7bn3RjErvrutld58RiSWb2nPh64HD4ePXVgzS3eMjP05NuTEooPsV6jcTVg3mjxGiiVCZb+wD7ek6i0lLIlN5/wyNVcPbDUHYWcOzqAXyympCoHkSFqM2b7cjlEoaGhP39KtUD+GLUhFRDEqoSLTU1Q6SmRjiCPQFHiEnninYyRMec9HpVnFF07HF80klW1Gp5PEeIkP41aw6zZ4/QIRcIDLJzpyMSmJRPTkEOOQU5VFRWiO81drs7dnSxcWMbixfnkJXqpbO1k6nlU8kr/nTT6waHB6m2V/N2y9t4B7xMT5vOD+f9kBNzTsSgNnyqr/154lj4xh0NEnXtR8Ww0RHjhXzv3HP45fRf8urBVzn0XisXTbmMZ375DPtrD3Dt7d/nxFNn4XJFOIJ0DEeIMdePdvwMDAxTWKijrMzIwpiwknBY4Ah+/xApKUpMpghHiBFJSkvT8fmG8PmG6OtToE9byZCmiK5D67n54uu55LpLuOjai3B7BqmL+HdChCPMmYAjBIYiY6rjhadYD7iJasKE9eAo6nplZPEmepsIsQsiE23nSKl+R0KsaJidnUxjYy9qtQxf5JoTYN++HnJGZJOi1MfFD37wA6644grmzZvHggUL+P3vf4/P5xOTNj5t9PaG2LBGiLMHIbr4wy12MY3G1RNk7boWamoctNq8+PxDeNxBtm4bjV5eulRYVbNaU0SS39npIzNTy9KlVlINKtauayHdmERoYJjFS3IwpidhztCQ603BnKGhr38IlTaNzNwMKo47ctFoaOjmULudxSeqKS5O4+8PPMCOjf/mG9//6aQo9SnhWMz/fhJ8lKlf9P6Az0v1+lcI+j3ce9MFuNp/xKD6BNrt/WRbkgVPjkjiXezJL6rmm0waCvJ1ol9YVEAymTR4vCEyMrQsW5YnGhqKiRPuEHpDH0nJ6cxd9hO6mj+gfvMj+Ny3kjL/x8D8uNfauasLwqA3qJk3N5OlS0cFq/XrW9jyoZ3Dh7zI5bC3vpvDzR6Gh0fQ6VRiUWlqcrO52k7ZdKOwwhIjWEUx0d8r9vdV6Rre2efglZp2Tvj1BqrCKi45rYhVq6axatW0I/5djmYcI1GC09GspuXl6bnxRuFz+/nPN7FunY158zLEFfIovopGt593PYh6Sm3dO0xjk5t2ez+ZGVo2bbLT0yOM5litKTz33D5qahzYWr34fUO4PUG2jVm5Ek1m65xUV3dgydJy1llTqKrK5o03DvHmm4dRqmRUTDGz7JQ8Wpq9dHb4SE5WsLvOyUBQwrSC3I/0Cqhv6Ka2xskJxwvHp6uvh6t+cj/aJPWkKPUp4vOoCR9VD2Ifs7F+I73ePp5bv4Yd+/fyn7/+jB5XEK83RGNjr+jRVDamHuzb14NGq2B6WXqc6Gqz9TEwMIzVqkOllGEwqJhRbhI9o6IX+W6PYDR9auXxTM2ewqOvvcCmw2+hqnFxZe9U0lP1ca+3a2cXYcCgV7NsqXDtExXHbK1e6htceD0DBAJDpBmTCAWH8HpDYk2wtfbR4woIabERA9+oWBWLj6oJKdZ8SJoDWx6G5y+jM/t8Hm2/lJNPKeLpp8884t/laMfzPklNSFQPAK68cgZAXKfUVxGfd03odQdYv8Yh+p0VF6fy4Yd2OjsjHMEVZO3aCEdo9eLzDeHxBMVOhnEcwZGAI6SqWLu2hfT0JEKhYRYvzsFoTMJs1pCbm4LZLHQQCpi4sykq+DY0dNPe3s/8+Znk5+v4y11/peaDzVx3x3Wfmig1MDzAB+0fsK5lHf2D/ZSnl3NRyUUszlmMXvXVEksT4Vj4xn0SxIphse8hWZnM3YvuJsVRwgvuh3hwx285sL6RwUCIX1x7E66fXkNIVUJ7ez/Z2cmib99YgSSOIxToRL8wh8NHXV03JlMSHk/yxBwhkko3MDCMUinFZNKQnp6EyaRl3g3LOfDhOp76w1NseHUDZ119NQfbhcVhvV7NvHkxHMER4Qhb7Bw65EWhgL17uzl8eAKOsNlOWZkxrgvr43KEWMQKSNFFnCPhaMbzEqX6HU0Hdqxo+OyzDdTWOikqMsRddwLoMocSPv9Y4isnSl144YU4nU5uu+02Ojs7qaio4M033xxnbPhpobPTh1QmJduSLEbUl5ebCCO0ppeVGXnzzWaGh6HfN8i+fT1kZQq/t9m8EXPz0c6W7Ts6Re8crzfEpg/sbNvWQV//ICnJCqRSKY2NvdTvdSGVSSgtNTI8HEanU3HSSda4L1TUHDovT0fAL/iClM80UVPrZNeuLnQ6FcHQMN3dQrS4L/Dxx/8mcXT4OMbmxxJxavsREv2s1hR++sAr/OXeH9PauIVH77uLaTPXMWfZTVRWFVBT66S2xonPNxiXLimmaLiDNB304HAGWLrUGicgXXVVeULD8YYGF2+8eZjkZAUpyUqkMgmzFy7nm9efy7MP38kLf/4xLfve55Tzb6JsRl7Czqgooq/ncYcwpKowm5LwuAfwuAcoKjZQMcuEzz8kFM5nGnC7BeLzwx8Wxryfbtavt4nCW6K/19jPcFlpBkWmZO5fs4814X463thHOBxm/Xrbx+5wiiJKMmbMEIpMbILTx11Ni02Bin0vX7UV8Sg+73oQ9ZRKM5qo0CrIy9OhVMpwuwPs2uVk9mwhbSkQHAIJ+PoHRRIfHYuqWmgZ43sjIeAfpKPTF0nx62bnzi7c7hAyuYRpU9Ow2320t/ej06si5EMyzhgzKj6NTeerrXFSU+sUBTRbRycgrGBO4tPDf+MJ8UkxdvU10etHH3PKKZdgzTZz91+eorGthTnnfpfbvn0lixYV4XT6qakV6oHfNyR2HUUNwd2eIAcdQhpkesQMN7rinG1JYenJeeM8MpxOP3vru+n3DSBBQl//ADKpilu//i28tPLTBx6jZMU13Hz5pVx53klimt7Y7igYFceCwSE0GjnDQyMkJSnocQXE66VZFSb8viHWv9PC7t1OjMYkLr9sunjs1UfqQVRYm+jziv+9Fk6+FWqfxbz/RS7u38Sjf7+ZdeumfuJ6AMeuJsTWg//Gp+rLhM+7JnR2+JFKpWRnJ4sR9TNmmAiHYznCYYEjROpBVtYYjhDzHYt2Io6MRDjCpghH6BskJSWGI9S7kEqPgiPURDhCIMIRIqlmIkcIDuNyCQsq/f3HniMEh4K83/Y+77S+Q2AwwEzTTC4uuZiq7Kr/CTEqis/reBzbpTn2PVw09yzyd5fyuvFBBn8xgOOvPbgbunnwjgeZsWAOc5av5viFBaJAEscRymM4gidIU5MHhyOGI+wUxmqvuqo8oeF4Q4MQzpCcrCAlRYlUKhGF2OjxUFp2MZlFs3jl0b/y4E9up3L5CpZ87ezEHGFnFx5PiNRUFWZzEh7PAB7PQESQMeHzjXKE3iNxhIjw9tH1YBSxAlL0/x+3wymKqPAUHT9M5PMVfS8fhVivsNj3YjZr6QlMHHZzrPCVE6UArrvuus+sFXcsMjO1mBcrxQNg0wd2ul0BiopSWbxYuABJTVWjUkmxWnVkZWoon5mO3qASozBjEetp4/MPUVPjEAWpxUtycLtDtNq8HDzkxhrx7hk7lhRFVEiwt/czEg6LHSYGg4qkJAX5ecLz33tFeLzHMylKfdXwUWJY7P1mUynHvfwyb7z4DA//8mfs370ZZ8e1zC1/mIpZQuePWiWjutqOPzCI1ztAbtSoz5qCwxmImDv3jROQxnpqmU1aHF1+ujr76ZbLMJs15OQkYzYl4XTJKTruh0yZcSLPP3o3tVvPYdU3fspV115O+Uyo291N3W4nSRo3LS1eKmYJhS8zU0tXl590YxJzRREsPu3x2ecaGBoOi+3uDQ3d4kjtmpiOx7GF4kieYPnpWq6ancsLNe3sGgpxw3/2ItvqBvhEJORIKUnRC4hYj6gjXcgkSoH6quPzrAdRT6nMKYLpbHV1O+++10qGWcNJJ1mRySTs29eDJSsZmUzK9DIjJpMGtydIWloSJSVp44yYo2l9Qkt6mF07HQQCgqFzenoSKpWMdWtbkCsk5OfpyS/QMbN8/AVTVHyKIvrvWRG/hkBQEBV0emGlcdI76quHoxHCYh/z0++cw2XnLOTyW+7jvW113Py7P3HNhSv41jmr2N/gQaWWsWNHF339A6QkK5hSlIpBrxJ90WLrARA3Mjd2RXdvvYv29n78vkHMZg2Dg8Mkp6hITVUjcVt56f67uf2hx7nlDw+zfut2nr7/BsxmPTPLYXddNx9sagdAp1NisSSj0Sro6QlgNmkwpiWRmakVhahYsba6uh25TIpcJqGmxoFGK6esNJ3qTXZ27uzC5xscd0wecTVapoA5l9M2kIvl8NP8XHMzDzacy7rwZZ/4XLxhQytvvXWY004r4Pbb442ip0834nD4cTh8tLR4JutBAnyuHCFLQ/piwyhHiIzlxXME4TxuterIytJQXp6OXv8RHCHSvVFT4xAFqcWLIxyh1cvBgxGOECHbib6rUaJst/czMiKsQuj1oxwhL094/lq5UAvcMRYA/y0CQwHea32Pd1rfITQcosJUwSUll3Cc5bj/KTHq88ZHiWHC/fO4YOQxntj7BH9M/yO+91Jp/kcze7buxNHWxoLZt1FRIYi8anWEI/gjHCE3auadgmNMTYgdrRt7ThW6qfx0dvYjj+UI5iSamtyiOOTzDeEJJPOtn99O47YNPPG7v9NYW8NZV19NYWmxwBEqxnCE9DEcISbt8dlnBY6QlDSGI0R8saIdj+M4wkd0KMWKP4k6nD4OjpSa91GeV2ORKBnws8RXUpT6POH2BOlq8ooiUjSJLxpT7+oOkJmpYWhITWenj2Stkrrd3Xi9IbIyNXFqbiLiq9UIfzJjmpq5czMwm7S8/HIjve4QVqtOFKRc3YG4Lg8Ag0GFVAq51mSMaRq83hAed5D29n7kMik6vYrS0nQyM7UcrEM04p3E/y6c3X7MBUu5809lPPyL79Fy8AC3f/cqnl67ndLSUhxOH66eIB124dbnF9o7hVE6K3W7u2m1efG4g1gsyeL9iTy1KqssdHT6cPcG6OkJolbLaTropr9vMJL2V8Ypl/yZuo0P8cyDN9N5eAuLzvw+O3e5IQwDg8PY7f34fINc/Y2ZyOVSRkbCKBRSymfGdzpFj628PB1LluTgdPqxt/uoqXVSWpqOzdYX1/EYi+hIrXD8COOGY8WpinIzFeVmNjV18+yWFgbmJtNvVhAOhz82uZ8+3ci2bR10dwfGpSRFLyDWrDmUcHX80zDLnMTRo7c3SHOzF7khIIhSm+3s3dNNqMjAaacVMDAwTEuLF5VaTopfKaQj5euwtQ4KXR3a0RIde5ETO5bk9Q7S4wqIHVXr1rfQ3OIlK1PosvL7huh2BSJdVWFmRi64ovXAYFCRl6/D5xtEpZaRbkzCZNJQU+skFBxm9mwzAAr5VytiexKfDGq5ll9d912eX/8mv3/qJf78zzfIs5j58TUXiqNEfv8gOp0KCIs+VdHVcI1WLn4XNdpR8/6xK7pVlRY6O3z4/YN4PCFGRmBoGHbu7MLbNwiYuPv/ruWhf7zF61vfYMbK/+Pxe76PSZPLrp1duFxBBoeGUSpkLF1mJRQcot3uozhmLCHWWyt6wb7slDxMJg1Op5/GSCJTWWk6acYk9HoVaWMMa2NTkdyeEAZ9YiJiPf4kmDWLnjf/wA9LnqNLexD6noaUT9KhE450Lo5vX8zL02M2C91SZrNrsh58weB2h+ho7BVFpK1bIxxhaoQjuMZwhGQldXURjpA1hiMkIL7aSM0wGiMcwRzhCL0RjhARpFyuQFyXB8RwhNxkjMYIR/BEOIJcij7CEUzpSRyGI5o3Hy18gz7ebX2Xd1vfZXBkkDnmOawuWc1xWZNi1BcZUqmUr5d/ncyRIu6W3Iq0QIbrL904Wh387Oqf8cymZ0TxxuUK0tEh3EZ9ioRROit1dd20tnrxeCIcwZeAI0S+25WVFjo6fPSKHEFGU5Ob/n6BIzidfjQaBUajmoICA8cddym6zGL+ds8feOzOu8iffSLqrPkCR7h6DEcYs3AX230kcgS7j5qaGI4Q0/EYi9iaEB03HFsTYsWf3t7QURmtTwSrNYXGxl5R4EuU5jyR59WnEbDy32BSlDrGaDzQy+Hdwh9+6VKrmEq2sMqC2SSYZw4PhwmFhiEMrW1eOjp8yGUSyqbHq5ObPrCzdVsHC+ZnifOepaXp+PxC5GXd7m70hj5KSlLJtabQavOyYYONObMzcDiFVvnoc0AYJfF4Q3i9g1xwfp5o3mxMS0JboaBilonnX2igtkZooZRKJ0nI/zpGzW+z+ONzb/Dg3T9hbtWJaFOEk6fZJPjajDUPj96nN4yO7TmcAXFGO9GcdVVlNl2dft566zDDw2HCI8Jcd3m5iZYWL06nnza7hBPOvYMLr9jHA3fdQu32LZx24W1Yiyqwd/jo6xvEmCaIqVExqWKWaVw3U5yp7+pScbQ1NlFw8eLshJ1QsSkYUdIV3d+xSBuEbOcInSkSXmhx4nh8G7+7YBYv/KOe557bz+rV0zCZNLz0UiPnnluc0HsqL0/PlVfOEMlE4r+Th40b28jOFt7DI4/s4rnn9mO1pjA4OMJppxVw5ZX6SVLyGaNuTzeN9S58GCgrTY9LJZs3L5Pt2zvFUYpQcBivN0T1JjsN+1wA5Bfoxa6MDzbZ2ba1g/kLsjg3Ug/MZi3W3BT8kbEph8MHQGVlFjPLTeyu62bXzi5SU9X09gZFrx2zWYvbHSIUHGZvvYu5cwXfqn37erDZ+sSRPpfLzytrGoHJejAJATZbH02NHi4+9QxWnDCb+//+Cj+46lxA+D5GxafouT1WpIleHEd9n5yOiWtCVVU2nV1+Nm1qQ62WMzISZmhwBOvUVORyqThqmqsv5lfXzOC1ba9z+rdu5+vnLufcxSsIBcO0tfZFujkk4nd6rO9VdJ+i5/F58wTT9rHjrYsWWrDmpsTVrOhzE9aDRBf4SWm8G74IWds6VuRsg4fmwxm/45FNU466HgCcdJKwGn609QCEmvDQQzWkpydx4om5oofUZD34bHHgQC+HaoVz6dKlVtFgeOFCi2iwL3IEoLU1whHkEsrKxnCETXa2bu1gwYIxHMEX4Qh13ej1EY6Qm0Jra4QjzMnA4fCP685ob+/H44lwhAvyRCJrNCaJsfbPP99Afb1glv7fdM/2DfSxoXUD77W9x8jICHMz5rK6ZDXzMuZ9pQ3Mv3Joz6Gq8RYOTHuKxp/Uov+nnssvupwkjSBYms0xHGGMF5PZrEWvHx3bcxyhHoBQE7q6YjhCODyOIzQ1udFqRzudjl8yA3XKnXzw+mt88NprJB2uZ86MbwHx3Upjz9djgz9iPaCi70vkCAmee7Q1oaGhm82b7Uil8V2Qb7xxSAwW0OtVEcN5S0LvqUR1dyycTj/19d0Yjeq47ZtMSQwNhZkzJ4OlS7Wfu0g1KUodYxRPTUUnlYlEODaVbPuOTrQaeZyZstBFMoBUxqjKGSG3rp4AHk8IV8QQNwqrNQWPOySaNs+dm8m8uZl43MHIwlk4jpBHYUxTo9OpRNI+1l8I4OGHawhEvKTc7mPXmjuJLydivyNJGi033f1A3P3763ah1emZN7cw0dPjxvainVIT+VkB6HQKsrNT0BuUTC8ziqN2VZXZccJRaWkZ0+fM59c/up5n/3gtF37jOlZc+H9iclP15nY2bLBhteowpo+u5sX6qpWUpIn7Z0yPxLZGHiuOFMakEUbf79hiqTcIgtz69S1ExwNd3QFqap04nX6cbf3kWpIpXJzBhoMult73HooaD/sjhTg7O1mMCJ+IhEQ7ojZtauOJJ/aM8yPZuLGdgwfdbNzYzre/PZsnntjL7t1OWlu9zJ+fRXRF/bNKdJmEgPIZ6SgYpChyITM2lSzquRP9LtlsfdhavTFbGO2E6HEJ9aDHNb4euD0h3J4g7rognR1+SkrSIhcUTsJAmlFNfoGeWK+dWRUm2u39yKSSuIuZ6MVIWWk6112/Dme3IHRFxzkm8b+N2O/JPPMcTlk4R7xveHiYd3fs4Pzli0XCOq5jKMb3KdZEPNEooU6nICNDS1GRQbzAn1k+nkDMqjBx7Tfv5MF/vMZNv/kbW3bX8/RvbmLRwhLRUH3d2paE+1Pf0E1NjYM0ozrugj49EuWdbhwlV1FD3tgxiLH1wKAXusHWRerBzHJTXLpmT0+IXc1TCaWWcUH6u/DiNyh1zqZpz3Kee+7TqQcATzyxl8bGXnp6gsyYkc7evYLwPVkPPltMnZpKypBSJMKxqWTbt3eijdSEKIEXukgGkEoZ1wnhitQEV4Ka4PGERNPmuXMzmTcvE48nGHlEOI6QR2E0RjiCMQFHiLzmww/VEAwK3Sy9vaGPvf/ekJf1tvVsbN8IwPzM+Vw49ULmZMyZFKO+hBCE8RL+r/RhXnE9weNJj7Ndv525g3PRKrTs3bEXo9mY0CMKiBvbi3ZKHcnjUOQIeiXTpxvFUbuqquxxwhEI5+1TT5vCqad9ny3nn8Tvf/xbnr//l3i6mgkop5GXp4/r+Iv1VYvjCJF6YPyIehDdp9hbvV4Q5ESOUG6KJBUKHCFqDh9bfzZubOPgQbf42tHUzIkM0WNDCcZ2QALU17vo6PBRX+9ixYpC1q+30dzsobs7QHFxKtFrzc8qBXgiTIpSxxgF+XpOnjf+SxOrusaaPGs1clrb+ggGhtBoFDQ0uKipcVBWZsSYlsScORksrBofE+lw+unrGyAlRYnHHcTh9GGxJONwBrBYkkWS3esOiSlpCxdlj3r+RNBq66OmxsHCKgulpeksXpKNrVaGvx9Uqsmvx/86juRB5ey0c+t3LmdwcICf/vbPzFt4YsLnR32f7Pb+uDS+t95qxmbzMmdOBiaT0JZePtOE3qBO2KE0dtY5w5LLbx5/kecfe4i/P3gvH76/gXO+8Qus1nI2V9uFk7C9n9JSo7itqK8awEWrR5Mlx6b/RV8/0Zjh2M/EbNKyfUdnXBJgY2MvtTVOLNla5s/PFMdoj5tq4snNzRycpiHHmMfZs3OwZgrH45EiwqOITVsC+Ne/DpCdnczixdlx25g3L5OOjn4WLsxh9eqScUkuX9VkpS8aphanMbVAA8mJOzNKStLGXaw1NLjQahQUF6cyODDCb+/bRlWlhbIyI25PiLKy8X87p8OP1xvCZNYik0nQaOWRrikJc+aYmVluEl836r8wq8LE5ZeVxQlSbk8I2yYvOp2SmeUmlizOpqvXAYcBJDgcvi9Ei/ckPj8cyYfqp79/kl8/+gKvrNvMX3/xPTRJR7YASDcmYS4VLuyfemrvuHows9yEQa+ecNW2rDQ9ruvp+svO4uTjZ3Hxjfey4Pzvc+35q/jxNavYsKGNmhoHSMBk0sQ9p7bGSWOTmwptvNgVPUbHjuSNvWgf+3mM7QYz6IV6EPVsq1poQatVMKPCBFOXQMO/WVj3Mru/1cSHplvwWwUR6VjWAxitCSecYGXFisKvfPLqFxUF+QZOnDU+sW6imqDVymlt7YuY9I/hCMYIR1iYgCM4YjiCJ4jDEeEIjghHiJDs3t6QmJK2cGF2jOePgNbWCEdYOMoRDm2WMgSo1UfPEXoCPayzrWNzx2akSDku6zgunHohs8yzSFWnfrwPcRJfGMR6UN1QcAPTjNO4o/oO7t12L+emncttX78NgJ8/8nMqKivGPd9s1lJeDnV1EY4QEZmqq0cXlufNyxDFqvJyE/oJasJH+SEVlhTxvXvv5v1X/sXrTzyJKrWAtvkrBY4Q2Vasv9NFFyXgCGPG8RKJOBPVhGhHmD5SE2prnVgsEY4wplsr6i8X7ZQCYXzxozDWQH3TJjtGo1q8boxuo6jIQG9vgNJSI4sX54wT0ibquPq0Mak6fIqI9YSa6A9tt/s4sL+HoaEwMpmU7sjKh8cdIiNTS0WFOe4gi/rZdHb6kMkkdHX5cDr9OJwBzKYkhofD+PxD+Gx9bNzYzqGDvRBZsbxodalIpqPb2bG9E39gCK1WQWlpOhecX4ps+P+orzuVvGnzPqNP6quLoeERvMEh+oKD9AWH8EZug4PDhIZGIj/DDAyNAEI7tBThTyaVSFArZKiVUjQKOUlKGSlqOYYkJQaNAn2SAoXs8xupkcnkZOXmUV+znZ9++2Ku/dGdfO2Sq+MeE/2eNTW6Uatl6A1qUez5cIudXneI3t4QGRka5szOYOnSPMwmLdWb23nqyXoqqyxUVWaP22as19pF3/wucyqXcMf3ruGBn17Iyktv5PiF5xAMDZFuTBJFW7NJO66DMLotrUZOVqZW7D4EQWw62hP0WCP3qPdbrKcbQLYhiZVWI/92DdBmlvCkq4c7Fmbx9NNn0tLiSWhWHjtyF5uWtG5dC2+/3Ux6ehK33HIcTz89W3zOTTfN5/TTR4lHdFX8fyVh6YuI2Lboib5XNlsfNbUOenuDWK069ta72BtZITvxhFwyM7TjjG531wmkWqWS0t0dQCoVzvcmc1Jc19RLLzeybWsHCoWU0IDwHb/oolLxQmjd+mbWrbUxODRMRoYWg17NBReUcuryXOY8mUxXV3CcX8EkPibCYRjwQcgLQc/o7YAPhoIwFIr8BGFkOFK7JcKtRCqYZsuTQKkFhQaUGkhKHf1RJov1/vNAfrYZuVzGs/95jwPN7bz2pzvIMqfFPWZ3nZN1a21okxXiKKnN1seWD+24e0P0+wbJz9PT2NjL0qVW5s3LpL6hm1dfPUiaUc2ihdlH9MSYXpzH1hd+z9U/+hN/ePZ5qmvr+PUN11BRYSYQHEKllsWJq7FjfbHb02jlZGZpaT4cUxMSdEYlwtgUwKg3XHR0MFYUq5ctoQUDJ+rfZIXnZzD0Iav+8gBojROOWydK3ztSPYDRmqDXK/FEDKon68Hni6OpCXa7jwMHYjhCd4QjeEJkZCTgCI4JOIIjgNkc4Qi+IXy+BBwhph5Et7N9eyeBWI5wQSmS0CU01LWSM7XkI/exy9fF2pa1bOvahlKqZJFlEedPPZ+ZppmTnVFfQZxecDp5KXlc/871PNbwGPpMPa0Nrdx4yY3ccPcNnHHRGXGPj37PmpoiHCFSEzZvjiwsd/QTCg3T2xuMjJjliaLVU0/VJxxpm2gEzWbr4+DhfpZeeDHm/Gk894c/0fzBY+wok2K1LsNs1o7rIIxuS6uVk5WlFbsP4ejrQfT+WCP3qPdbosS9hoZu3O4Ql11WJt4X22E/dr9i93esgXo0NXPVqqlxyYHnnlvMvHmZcV360X36PK/xJkWpTxF1u4VZ0cwsYaY2tkNqFGEMBjVJGjmVVRa6Ov24egKUlRlRKmXjvuh1u500NbrJsghfmuZmL2qVDK83hNmkiWs3HBkeYWg4TKpBGTfGFytsWfN0aDSKuPsXL11EXvGsz00p/bIhNDRMhydIhzuIsz9ElzdId3+I7v4BvIHBcVakSrkUlVyKQiZFKZOikElQyKRIJAJnCRNmZARGwuE44So0NDIull2jlGHUKjHr1Fj0arL0SVgMwq1M+umSkzSTmd88/iJ/vOtHvPnSszx0z89wdLRz9Q9uFf1nbLY+mpu9eLwh8gtMcSfw4463YLN5STcmRWLrR3duwwYb9fUugqGhOFEq9rsrRsGatEybUcGvH3+dv/zmTl554m72bH+fJWfdjC8opemgWxTDoisp0bE8jztIR6dA3PUGlejvE+uLdaS0wijMJi1Ll8Y/LnYcMBZ1dS46t3aTnKYkaaaB7z1Xw1MfNFPoHCbQM0oWoogduTv99MK4MQ23O0R2dvK4le5YsjGRCfokPltEE1JqahyRRLzxY0hWawp5VsGvLc2YJK5uVVVaEl78OBw+mg8L435Dg2FcriAqtSzSNRVfD6Ljf3n5OkpzdSIJj92OXC7BYtFTNn30eQZdMt+4YOkR/QomEYNwGPwu8LRCXwf0d0FfF/Q7wN8Nw2PG4iVSQWiSK0GmFIQnmRIkUfExDOER4Wd4cIxwNSYhVyoDdapgnp1iAX0O6CyQmgeqT2ai+nHw7dVnUFpo5bzv3c2OvU1Urv4Bbzx6J6VTrLE7zMjICB53iIEBwTfHak3h+OMsYqeU2x2KG1Wq3mRn06Z2YcQuVzeOOMfVA7MWlVLBfT/6BlWzyvn5X/7K2d/9MT+49FJmFU+nqcmNTqdkWeR8HRWJohf8bs/oCKxBn6AmHGVi4bKl8Svl6cYkbLa+cd2GQgqmnCbLeZxg2sn0/W/DwQr2ZP+AXSNLOXhIOL4T1YTKSktc+t5E9SD6/COFYkzis0ddXYQjZEY4QsIRpwhHSJJTWWmhq8uPy3UEjlDnpKnJTVZWDEeI1ATzmJowMhLhCKnKuJGn2OMqL8oRYu4/4bT5FJSWHLEetPW18XbL29Q4atAoNCyzLuO84vMoSy+bNDD/imN6+nT+eeY/+c7679DwgwZ0z+vYu3Yvv73lt3TZu7jqB1eJ490iR/CEyM8f5QiVlRaCwSGsVh3JyQp6e4Mk5AjBoThRaqKaAPFJdNaSGVz+kztY8/fHeO73v6f1QAO3/f4HoxwhUg88niAdkXqg/4T1IPq4hBwhQVhATY2T6mo7dXVOLrusDGOkdkTfS3R7UYz1RIwVuXy+QYxjRtPHvu+JTNA/D0yKUp8qwvT7Buns8MV5RcXCYklm+oz0cR0VE0OCOkmGMU34IpeVGSkrMxLwDxFVYGPTzKK3sdu22fro7PQzMhxm+Wn54173aIn4/yLc/gEOd/tocflp7fXT7g7g6h8QT5ValYxUjRKjVkm+UUumXk2GTkWmTo0pRY0pRYVWJUcuFYQoqRRkEglSiURYDEc4UYcJMxIWhKmRkTCDI2GGhkZw+Qbo8gbp9Abp8ATocAv/dnhDNHR48Ucu8uVSCVl6NXlGDQXpyRSbk8nSq495rLtSqeIHd/6ObGshf/v93bzw+J9wdtq56Z4/oFQKJ26lQki4kMul4uiezdbHvLkZlJYaxxmkO5w+FHIpKclKrNZ4IhX97jodfjyeEPb2fk4/vQCAmtpuLvm/25k2axHPPvwznvrdlZRV/YC5C6viiXxMel7RlNS4izSI91j7pIgtEtH/O51+6ve6yLUmo1LJ6G33UZybwqLKHF7Z2c6OwRHSewaw7nWKq9nTpxsnHLk72jjvoxnZmzRA//QRTUhpbHLT0xsUu0TGomx6OmXTjaJoFXvBlchQc3g4jCVLi0olIyNDQ1mZEX8gph5EnhMd/6tKsLK4u66bjk4f+fl6zjpryrjX+bxXz76wGB4Edwu4mqDXBh4beNoEwQhAKhc6mDRGME6BvCpBJErJEm61ZtAaR8UoqVwQoyTSSHdU5HwdXY0IjwgdVOFh4bUH/YLw5bWDxw597cK/vXboqIGD64XngPA+DHnC+0ifKvwo/vv0rLE4YUE5W/55P8u/eStNLXYWXnwj/37oNhbPE4y1Z5anU1PjwN7eT0uLl6IiAzZbH3PnZYiegIAogjocQgJfik5JnlUfd66O1gOH0y+khNlH60FtjZMTFpTzdN7P+f6v/sSdjz7KSRWVLJt1MjBaB6OrzFExKjNLm7gm/Jff/0TjgE1NbhoaXKSlqfAHwzyycQonzZ3KacYNzDp8B3ieod53HXp9ftw5OtE5fbIefLExEh7hz7V/xqg2kqePju+F6e8fpLPTl7ALNTqCfdJJuXEx9UeGBLVaJpJdkSMkqAnRUZ7Kygk4wkiY5csTcIQJ6kE4HKbR3ch623rqXfXolDrOKDyDc4vPZWrq1Ekx6n8IJo2Jp05/ih+9/yPWXryWeZnz2P7Udp564Ckc7Q5++KsfolAqBI6gjOEIEZ8mpVLGuecW4/MNodXK48ZKHQ4fCoWUlJQjcIRITbDH1ISo35TPN8TOSELrtBMvJb+shq1vvsK3Vx7g1gdvRZtqHuUIRRNwhGNUD2L/L5iRu8jNFTiCw+Fn0yY7FRVmduzoIhQSvNxaW71xpvETdWt91Dhj7P4ken4sHA4f9c1O8nJSYcrH3t2jxqQodYwwPBLmj+80kqpRUJAuxByXzzQhXPwIhWDs2BGAzz8kjtwdDcpnpqM3qMQOj4oKM/PmZopJenrDqPilVMrIyNQS8A/x8suNYgqgViPH7x8g4B/CbveJX9qoCbRO1UqKJkTx9Jlk5Yyfff9fweDwCIe7fRxy+jjo7OdQtw9PxAReo5SRqVMzLTOFvDQtJZkplFl0pCer0ChlJCllJClkyI/xeF1e+vgT4fBIGP/AEIEBoWOrocNLXbubfZ397O/qZ1OTizCgVcooNCVTlpVCWZYei+HYiFQSiYTV37ye9Mws7vvZDbz7xr+x5BZw1fd+hNmk5fTTC+KS7aInY5lMwvBwmKxMLXqDStyezdaH3qBm3vwkLFlacfQOhJNmZqYGCON0+Gn39oteHVGvqNPOPpNkQwEvP/Yzdm+4lRzzd2ieciWAODro9Q4QCg1zuNlDWZlRPC4TdzN+fMSe5KP7W7+3m/b2flyuALNmmaivd2FK03JqWSaB1n7ebOrGmavicbuTPS/2EbIHWL48nyuvLOeNNw5x771bWb16mmhc+1GIJRann16Y8PdRwvHCC/t57bWDrFw5hRtvXHBMPoP/ebRugz3/gmlCu3o0IcVkFr6/Gq18XCu2zdZHZ4cvxqj8yBj1ghIIdUWFWUz127evB4N+lOgolTIyM7T4A0O89HIjPa4AVQstlJWmC3H27iB6nTJu+/UN3Wza3EL/SBfTik2cfsL8Y/gBfckQDoPPCd0HoLsRXI2CIDUyLAhJySahO2nqckifBlmzwFgojNQptYIAJFcf+/E6c2n8/8NhoZNq0A+BXuG92mugs1YQz/b9B4ZeFIQvfQ6YyiCzHDJKhZHAY4Ap1iyqn72Ps679OVtq97Hy2p/TvP5xDLpkzGahJkSNv8fWA0G0UYnHxfbtnahUciqPt4iPh9HRiWg9cDj9eNv7xToQrQtLl1r53Y3X89rG9/jzSy/R4mwlK+8bOBzpcZ4gGq2CYHAIrzeExaIdrQkTGPR+XMQeq1EysmGDjYMH3ZSVGSktS8fdG0KWlkWw8mY+fOlZjtNUc1fyD9m39WKeWnsuXS7hOlGvV/Lii/t58UX4+tfLj0qMgonFprG/n6wHxx6ekIf6nnpsXhu9oV5OyTuF8vIxHGHM2JHN1kfHx6gHAOXl6ej1KrGrYmxN0I+pCRkZWgKBCEeIpABqtRGOEEjAEWqcaGVO9NowJRUlZGRnMDQyxI6uHWxo3UB7fztGtZFVRas4t/hcCg2FJCuTP6VPdRJfZKhkKu474T7u3X4vT0ue5rjU49j20Dbe+tdb5BTkcOn1l4r1INagfBxHyNKKvkrR+/V6NfPmJWGxaOO6T+M4QsREvCZSE2pjasKcORl4vSF0OiUWy1SOP2kez//xIa5deS1nX30VUn2JwBEOj+EIx7gexHGE+vEcwWhMEhc0m5r8+HyDhELDuFzByEijmaVL89mxo4uXXjrA4sU5rFiROHhqLGLPN7H7NfY81NDQzZo1hxlW+ZBLFMdk/yfCpCh1jOAfGGLrngNsfegHnHjqClacvpLSinksXSqIOrHdGUAcyY69nQixgta8uZk4nD70BiFV5q9/241KJcOSpWVgYFg0No9uc8f2TjZubEOhlKHVCga6I8MQDA5xuNmDwymkK61Zc5h2ez+eQ49gO1DNDT+/j6zz/ndEqagIta+zj4YOL4e7fQyNhFHIJFj0SczK0VOSlcL8vDQKTFp0SQpSVAqSxni8fNaQSSWkqBWkqBWYdWpm5RpYjZWRkTB9oSE6PQG2Hu5hy6Ee9to9vLCjjZFwGzq1nOkWPXPzDJRm6VDJ/7v9WLbyPNJMGTz36B9YffX14u/HqvViC22kQ8rjDrJ2bYt4Ip43N4O5czNE4TVWaBXG5KxiolJLi5eKWSZ63ULXlMGgwmbrY+EJ0znra2t46k/38cyff8+OzR9w1Q/v5eSl5eLr19Q4aGp0i/5t0e2PRUNDN5uq7RjT1CxcJHSYjBWXoxh7nMbCaFSz8f02dDoVlqxksUts+45OploNaGVy9vX4aJKFeG84hDFdwuKI19hzz+0XTRKPRpTatKmN3/xmG319A6xYUUhZmVEkHIkS+Nrb++nuDtDe3v+R257EUaJ7P9++/990DL/P2eddxMqTj8ds1rMsErsbVw8mSG05EuL8SEjBoI/Ug78K9SDLIpD2aLR9NE3G7Qmydm0zLldQGBUvTY8km0GLzcvuum5mlkf8rWocbNzWyFPvPUmexUzzO098Op/VFxU+J3TVQ9ce6NoLgcjKpsYodB3NWACWOZA7H7TpwoicKkUYo/u8IJGAQi38aNKEzqhpy4X7BgMQ8EDXbjj8Ptg+hNbN0PimIKwZp0D2PMhdACn/3cW3KU3P+ifu4bKbf8tFZ5yIQTdKTGN9lYRuENBo5fh9Q6Jos31HJy0tXmZXmJg7NyPu4h1GuzXG1oPoWKrPN4hKLaPbFSDVoOZn3zmPr69exNnX/oJrf/lLfuK4nNu+f26cWHSwqZee3iCh4LAYTZ5IDKiubqd6s52qSovY6TXR6vnYC3+Hwyd2SlmtOuwd/VitOhYttGDNFfynbK0+tLPO4PX6Mhar36Pc8xTW4dd5y/htpk+fzxNP7GHt2hYkErBadR8pSrW0eNiwoZWNG1txOAKccELuEWvCZD049khVp3JH0R2ccsYpPDrjUTYt2cR3v/bdUY6QoCZ80noQ/Z7px9QEiyXCESLG5tHtbt/eyQcftKFQxHCEEQgEhjh82CMeo2vWHKa9vR9H7fO0N+7jh/f9EPk8Oe+3v0/fQB8FugK+MeMbnF5wOrm6XJLkx74TcxJfLkilUn604EdkajK5n/tZ8OMFDLw3wPnfPF98zIQcIdIN5PGM4QjzIhwhIrzGCq2JakJFhYne3hB2+yhHKC9Pjxtf8wSSufbuO9n07+d5/sFHmHvSEoqOO5OmJrfo3xbd/lg0NHSLhuILF47hCAm6HycSuIxGNRs3RjiCJcIRtHJstr6IEbpGFNK83oHISKOwyBWb1nc0olRDQzcvvdRIIDDE3LmZ5OamxInhsXW2psZJe3s/GflCOuyniUlR6hghRa3gdF07H/S08/Zzf+Xt5/6KIc3I8SeeSuVJy5EkTcPrHYibRQWBBDc1uceZOo/tqhqbDhY92JxOP3v3dqOQS1m6NF/48tiFC4mLVpfi6g6wq8bJwMAIySkqKmaZMKYnUVVlYW99Nx12H3W7u9EbVEhlUrItyYw4BSX0WI96fdEQDodp6w1Q1+5hr93LQWc/QyNh1HIp+elazpiZxYL8VGZb0zAmK9EnKVArPl8B6uNAKpWgTxIM0adl6risMp/g4DAdngAfNHbz7n4nu1rdbD7kQi6VUGxO5vjCNObmpX3i/Zxz/GJmH7dI/O6Ew2H6PG50htQJBZuoYNvW6qW3J4glS0v5TBN17hBZmZrxs9Cm0a6SpUsFr5KaWifJKQrc7hAulzA609TkxjVwMquuKeCtZ+/kodsuJEX1EPMXnYTZpEWrkaPVKjAYVLS399Nq84rHW+x7rakdNQvMjbQKj03kiyL2ZO7qDlBTK4gBSqWMuRGxLfa4jnY4lpSksWxZPsuA4OAw/9zSwpaWXh5ssSN7L5kLLpwKwOrViSPCx2Lduhb27nWhUknZts3Oa681sXJlETfeOD/h+MZ5503FYFCJRuqT+O8xVL6aFxqvocfr4NWaB5BI/sDCOWWcffLxFGYU4fUyvh5EiHZ1dTtPPlUvjtolMu6MelQ1NvaSl6cT68H+/T2ok+TI5Zl0uwKsWXMYe4RczqowUVPjZWR4hPBIGF+/0Pk5szyd5sMemls8NB/2AGE6O/ykGZMoKjLAe4g+cV9pDPigs07oLOraI3hAIREEmsyZYJkNhScIHk1JqaDSw5fpc1EkCT+6TCg+FYF59kJHLTS+LQhVu/8Jtc+A1gQ5C6BgCRisn6jDS5Ok5l9/+GnctUSPu480Q8oRV2kN+j6eemov7e39DA6McOKJVtF8fOwoRWw0t1IpIz0ytqTVKnA6/HEC08CAmitOvJJ39q7j9kf+yqHOZh689VqRxEe7VgYHRthb76KwUB/3vqLvt3qzXQwgUCplR/TjiB3bg26RVFhJ4bTT8sWRxeh+RDtaSkrSuPjqRcAievdtR1H/PKtDd8M773Hm8bdgs42GXnwU9u518dZbhzl0yI1aLf/ImjBZDz4drFuzjh5bD9jg/TXvU/3LasqXlHPeOech0eSM4wix9WCsqXOirqpoOpjXaxe7nhobe9m2TQi4EDlCpB5cdFGpGE0fCo2QnKyiosKE0RjhCHu76ejwUVfXjV6vQiqVYsnW0tsodOz9q/FfpKanMiN9BqcXnM7C7IVkJWehkH663RST+PLhyhlXYtKYuE16G2kz0whJQqhQEQ6H6ff0ExiQxn2fxxp5r19vo63NS29vEItFS3m5ibq6EFlZCTiCOQFHqHGSnDyeI2zebKeszCjWlap7b2LWcbO4/yf3037wIItWXUVhSY7AEVq94vuLPf5iDcVzc8dwhASWCyJHiBx7E3KEMfUgKmBHP5PYkcbYtL6jQU2NE5utD4VCQmNjD1u3drBgQRbnnFM8TgyPdrBNmaEgPYFP7rHEpCh1DHHdNVcTliTzmyeexdu0DXePizdfepY3X3oWhVLNKRf9miWLl44jspur7ezZK1zgREWpWMKxdKlV/HJ43MIqYlenj3Z7P8nJCjIytIRHwNUTEIWlvDwd23d0Ul3dTig4RJoxicsvH3XyFwzXwlRXd3C42cPCKguLF2djtabwh9sjotSnbJT9eSAwMExDp5fdbR7q2j14AoMoZBIKjFqWz8jk+II05uWnkZ6iwpCkOObjd5831AoZBenJFKQnc1llPt7AALtaPby1p5NNB7t5vLqFp7bYKMvSUTXFyKxcw7iEvzfePMTG99tYvCSHFcvHK/KxBOSZP/+e/7zwFL/+6/N09SSzb18PrbY+WtsE89ZTluVRWprOmSun8NJLjRF+JxHa1jsjbesJupdiRVqH0y+aGkbJuVYj5713W9m920l2dia/fuI/PPbbH/GTay5iyRlX8o0bfiSuzmzf0cmePd309gTJteriRGAQEvR8vkGMafFmgYlWL63WFFojHSZ+/yDNzV7qdjvJyxcK1by5mXH7k2glVK2QccXiQk4tD/CvnW38+o19ZKSoWHHlNJafWPBRf2I2bWqLGAabmD8/i4YGF06ni/Z2YewlUeLS0fqRTOLoIZPJeOf9av75y+t56/1N7OwY4YMde/lgx14AFlVUcPs3v5XwubGkt6oqe1w9iK6iNzb24vWGqN5sx94u1INp04S0M683RG2NE5lUitGoRqWWUb1JSLQxpKqxWnWcdJJwwWY2C0a7r756EHuHjzRjkniRlpU/xO1/Q0z1+0ohHAa3TfBfat8pjOSFRwSvJ3Op0AU1ZSkYCyApDVRfsTEUqVTwtCo6WfgZHoTeFjjwpvBz6B3Y/x9IzhD8sApOGNdBVd/Qzbq1LQAsOyUvLlkO4utBc1sXiy+9icvPXsrXFp3K/v29AHS7AnHbmDdPsCTo6x+gqNggno9LStImHJ+IFX+cjvE1QaOV89ZbhznY2MeKitP51iUn8n93PsSmnfX8/JpvsWzxdJZFLvqffbYBpzNAS4tXFAFia0JVxItnogCCWFitKdhahbTZQGCIQHAIZWTRZ9nS/IRhB2O3l1oyD4pnQdNaqH+Vubav8cBJ57Il+Vvk5By5i2bTpjbWrm2msFDP3LkZpKcnsXFj2xFrwmQ9+HRwzTXXkJSUzr/+9TLbtm0g4PGx67Vd7HptFwq1kjOu/j5Llswf953YvNnOnph6AEfgCJ4gW7d24PEIHVdGY5LAEcICCZZKpWRnRzjC9ghHCA1hTMARvN4QdnsnXm+IglIVaQtaORSuxfl2BwBlpjJuPPFGZqTPID0pHankq3W9PIlPhkce2cVzz+0fZzdxRuEZpCel8913vsv9O+/n+tnX8+IDL7Lh1Q1c8eNbcLoF7ulyBVgbqQennBLhCGcm4AhHGG2NFWkdCeqBVivnvfcEjuByBfj+9+eKYlNa3kzufvJ+HvzZvbz2p99w9tVX0S8poLc3SG4kaCOOI1SYEhqKT8gRWsdwhDpBmALBqDx2fyaqL2OFu7lzMzCZxgt0idDQ0I3T6WfKFD3Fxam0tvbh8XhxuQIJtx3lSj2Bnok2ecwwKUodQ6SkpKAMz6I0M4XOk6/Hb68nuXk7fe3bcDm60KcXit5RD/32T+zdfYiTV5zGcccL3Q+paSpuu/0DkrUKFi3OIRQaZsf2ToaGRkYNQK0p6A19FBbq2VxtRyqTMLPchN6gijOMjh4wwYBgEjdlSiotLV5SDSoxfQwkZFm0DA+P4PMPid0rfZH24c5O/+fyOR5rdPeH2GnrpabVzUGHj+FwGKNWSXm2ngUFaZxQbCLToCZNqxwnwHzVoUtScsJUEydMNREcHKauzcPLu9p5d7+DR94/hFohZV5eGktLzOSmCX4jG9+PaRONiFKJ/NKCAT9rX3sJZ6ed7192Nj/6zd8pKcmhurqdDz/sQC6XYTJpKC1Np6oyO24MIoojXegDtNq87NrZxUgYjjsuC6VSJnq0VVZZcLkC6HQqPH0q7n7kae7/xa9564UH2b97G/NPvQVrQT4lJWnMmT0a1epw+vDEdGlFU/tiMZERutmkJRgaoqnRjSVbS7YlmYHB4XEdMbGPn2hbWYYkrjupiN1tHv65pYXH99l5y+biV6tnsWSqsHKRyCNk3boWDhxws2yZlRtvXMCmTW1YrbrJVe/PGBKJhP5+Iy2ym7l5xRNU6t7ikd3prO/SsHP/fqbm5dDZ4ceg76PfH+CaW//ElMwCrrhgMVWVFpxOP06nj+efb8DrHcTtCdLa5sXnG6RqoQW/b4hZFSb8viEGBoap3mxHJpVQVZUt1gCNVk5xZCQq2vlkNKpxdvshRYUhVZXgfYNOpxDJf2ObMELa3z9IfUP3ONHhS4fhQaEbqm0b2HdB0C0YjRuLYNZFUHwaZM4YHcf7incMx0GmgPQiSL8Ojv8/6O+Ehtdh78uCF9XelyGtEIpOgbyFIFcK6XE1DpCAyaQRk+wSjS+srd5FW2c39/z5n9jaern+wgvQaOWsWXOYut1OZHKJuI1zzylm3tzMo6oH0fvcnhA7dnTS3t5P0ZRUcYxjeDiM3zcUNy532dcqOW7mNFZ++06uuO0XrJh7Cld87VQWL8oRRwBnVZjEfYnt0vqoAIJYmM1aQsEhXK4gRqMas1mD2zNArNn62Mcn3J5MAdNOh7xFsOdFkg6+ygnDr9DacSFcdQ+ohfP/2Jqwbl0L27d3ifUAhNSnyZrw2UOv1xMKzQCSqKq6iI7O3YzoPuDw/u0M9A9gn7adgx4jJWEjD9z1D/bXd7D0rEUcd1wuAKmpKm677QOSkxUsWiRwhO1jOQIpeL2DuFwBjEY1Pt8gJ5yQi16vijNHFjlCMMoRDAJHSFWJ6WOOHi+yglbqdFvZsM+GVCJlaupU0mRmfBxmruxUTrae/Ll+ppP44mGs3UTsOem4vOP422l/45q11/Dbjb+l6d+HcLZ18adbf843b/8pVmsKr756cDxHqPqEHKHVy65dXYyMjOEIviEqK0c5QjRoIHpcaLUKFpz7f9RteIXnH3yEmQsXsvyyy9BGvEC1Y+pBojCARDCbtQSDQzQ1ubFYtGRnJzMwcASOcJQhM2NH7qJIVItrapzY7T5mzTJxzjlTaWjoxmTSxCVsfl6YFKWOMdrb+7E3ekjqUaI8qYLhotmcl3sLxnAvGt3oqtqG157F032Axh1PodYYmD5nIe2SqbQ6LCjUqchkUhRKKYHgEDZbn7jaGBWObLY+Tj+9QBShosQ2Kg5oNcIBo9XIkUgk+AODogFoaWm62IlSkK9Hbxg9GBxOnzg/HjUU/TKiyxtkp62Xbc292Hr8yKQSCowazqqwcPI0EzNzDRiTVSSrJg+BKNQKGfML0phfkEZwcJgPD7l4fkcr7+3v5oOmbnJSkzhhqonKxcLF+OIloyupcSfEyHdRnaThqpv+wsN3fpOeriZ+9u0LWHbhr1ClTEGvV5GerhHNz6PPi/0eg9Beu369TUyndDiFcVMIUz7ThMcdwu8fJBgaYXO1ndNPLyArU4vHHSRJo6BwikHscJJKpVx27XcpmDaXJ353I/954tukF32Dk89YKSSORV57+47OI3ZpfRRiO6tKStLGHaPR/YsV8Y70/1m5BsxKOevruqj3+rj8sa3MzUvlh6dMpXe/hzffbGbbtg6uvHIGeXl6kWhEbydXvT8/rFvXwo4dXWwPL+d3Zxm4Z/ELeHU57NDch1KjQCUTTCyfevl91m3bzDo285fXn2VKthWLLpdkaSa9PUEUCiFNaXgoTEenj9oaJ8PDYfGiKFoP/BHCEXsh43D4cNeFyMzSMLPchE6n4OWXG7G1eqmtcYoiU5S8F00xMLN89LiMrp4NhIbjHv+lwtAAdO4G22Zo3yGk42mMghl5XhUUnwK6HOF3ssmaAAhdVDoLHPctmH81eFqh7gWo+xds/TPs/DvkHs+CqcfjdJoBRDFnogvkb16wnEOHe/nV40/xj/+8TbOth29/7UIGB4bJy9ORnp4kbiPRxbjN1kdTk1v0jiorTRc902ZVmDDoVTgcfryeEH19wuKaRitHJpOgiRDvLoefKVMMAEwrzGHd337N6u/9nte2vsHupgN8++CFfP2K2Vx0kWAgHzs+8UlNbvPydLTb+8d5UMUiljxE9zXRqIjZrIN5V9FrPAH2vkSB859w/7/huG9D1fXs3evijTcOizVhbD2AyZrweaI9kjqp1So4/vgTOP30q5ApR9jQ9Szble/xlv8p6rauZ9Or2/A5etlX/QZJyTrKj6ugTW6hzaVHoU4WOIJCSnAsR5iXycKFFoEHxIhQsfUgel9JSRpabYQj+IeorXUyIPXh1jeysWk7bXlNhCUjZCZls9KyklPzTyXZb2GF4xwA9u+d9BybxHhEbSait2M962akz+CJ5U9w9dtXY7nJwsAvw3g6Hdx/420sv+o7KFMyIhwhKU4oGXtdAzEcocIkiql1dRGOUG7C44lwhOAImzdHOEKWFo8nSFKSgsJCQ1yHU/S2urqdHTscKPWLqfxaATvffAGPo43zr7uOXp/mv6oHsZ1VJSVp447R6P5NVA/G3n8k/7lEXfbRzzR6e7QpfZ8FJq++jjHOO28qu3Y56OkJMssNO3QjrGnpplSu4tIZo8R0yYrz+fC9dbjstQT9bnZ88B/gPwDoTDMZmHknCqWU2bMzyM5Oxu0O4XT6efa5BtQqGT7/ECUlaRw61Mvfn9jD4iXZXHB+6ajKq1EQDA2Rl6cj16pjYGCY+noXapUMh9MX9wU2m7RUb27nqSfrMWeMpu/k53+54lvt7gA7WnrZ3tJDuzuIXCphakYKV1bls3xGBvnGZIzJ/3vdUJ8EaoWME6aZOWGame7+EK/saufFnW08/aENtUJK1dfyOG56lvj4iU6IpdOtXHfHY9x7yzcIehtZ+9wtnHT+vSxePEM4QU4g+kS/x12dPpxOgRRHxdSdu7ogDHqDmvKZ6Xi9A9Q3dCOVSSKdiGF27nQwMDhMn3cQbYUJs0kbY1iez1lX/4XXn7oL5/4/8kH4EDOm3z5h+ECiLrAjobQ0HZ9/iH37euI6EBPtHzBuXDDR/7Mykrk0I5m2Di9v7+5iv7Ofi//6IcXpWnINUhq32NmwoZXrr5/NqlXTJgnHFwTLluWxYUMrPT1BXupZhVSbymneR5nW08sm+cWcsNSM2axlfkUBZy48kR376ulwOWhqa6EJoX09Sanm9NkrseaVUVycKm5bp1MyMDDMk0/VI5NKWLw4B41WzuNP7MHXP8jy5QXi6F/d7m6GR0awWJKZWW7C6x2kxxUQRzgE0+XR731Tk1v0tOrsEi7+FAqZKBh8KTAUFLyhbFuEjqjhkDCGVniSkJCXVwUpGWKHySSOAKlU8NFaciMs/B60boVtf4Omt5kSepfvlhRB6VmQI4yOHmmk7YarzqL6g07eb1zHB3XbGRkJ83+rVnPKsvGjbLGInhM7u0ZrQllputCpFZOqtHBhDg313Wg0Cmy2vkiHYR8mcxJORyBuLC9qWP791atJ/7eFN2ve4FfPPkSW9btccWHlhPsyUSfYRIgmXyqVsglXvsdGhMeKeolEvvSCQii4kZ6meiT1L2PY+Dskmx9iUfFF7DUu5Z0tPWJNuP32hR/5Hifx2SCWIwC89FIjweAQM2eexl8vvZaagXf55/5/ojtVjbROh6/BR6Dfy9b174vbSM2ZxkD5lSgUCTjCsw2o1TJ8vgQc4YIYjhBJm7RYVUzNGqIj1ILbv5/tKhc79kkwqTOYIa1kxZRTOLFkAZve7uUvj9jIz+8Qe/wqKjI+h09wEl90fPvbs+PG9hL5mBanFvPkiie54j9XkX8r7L81TLDHyRuPPcipV1zP4sX5ooiSCCJH6ErAESJdWnq9mvLyCEeo70YqleDzxXCEgWH6+gbRak1iylzUsDw1VU1SkozhYdCYy7j+3rv514MP8scf3cr5//ctrNZTxffycetBaWk6Pl+EI/iGEopbR6oHY++P1pToAkZsqnPU5mH/fhd1dU7OPHMKVVXZXxgRaiwmRaljjIULc7j77kWsW9eCzeYlqbqb4dk66nUDPL+tje+smIpEIuG7P7qehrMv4q23DtLbtQ+trJHm/VtprN9N6fQc8vP1eL0h8vN0/P2+b6HR5ZBsLGVElkfZrGnMni2k0fz9iT202/t5551WCgtTxQ6pmhoH9fUu7O39nH664ENTkK+jo9MvGpvHdmW8/tpB2u0+8rwpKJVCycnJ/mJfrIfDYdrdAba39LK9uZdObxClTMq0zGTOmJnFihlZ5KZpSNMov5p+KJ8R0pNVXL24kCur8tnV2stjHzTzzj4H7+53MjNbz+nlWRSakhMKNkL301Rs33mA5x66gaB3P5v+/RNOfuAfR+wcihKAwkI9LS1eDAaVmDJZNMUgGMVGHrtwkQWdTkl0/K7OHYJIKpFcLhW7saKG5UlqOSWlRi7//u/Y8+FLVL/xMI/9ugXrA3/FYs2P69iKRqFKZQLpH9uROJFQpdUIq/NaTeJTrJguEknfix63YwlQ9LahoZuaWidqlQylf4ivFZtwSIfZdLCHxsFB5FPVBGvdvPByI6tWCatTE8V/T+Kzw9h6cM/6OXRXfo/Vmoc5deTP2Jq+g9lczpLjSkjXCQR7MOzng1112FzNbN1bT6+nn6r5U9AqVFhzdTz3xju8/t4WFs2dTnZqDi67nPw84buzfr2N3budDIRGGBwaoajIgNWawvDICPb2fqo32ckv0KPTKVgUWU2PXUWLGj6/9vpB0Rw93SqI+Ckpqi9+l9RgQPCGat0iCFIjg5CSBVNPhWkrwRpJlVNMpkJ9YsgUkL9Q+Ol3Qs0zQtfUB78DTTpMXY65eBlmc+JVZLNZy3cuW476BSVr96yheu8OsrKSuWj1TeJjEl3kx9aE7ds7cTr9VFe3o1LLKS4yMKtCIBbnnlNMfUkqtTVONFo5bo8kQqIlcWN5MOrdFgoOceV5J1NRUsiz773IN++6h97gN/je5WePE5HqIzUhKgRPtHIdi9hurYkQ3T+NVo7d7iMzxsA3kTAW7RBTqeX4fV9jdv4pFA5sQtvwFD+UPMnMvDn85oPjeOmlZFatmjZZD74gGFsTDhzoRatV0N0d4PD+ABedfhHnTT2PrfO38rctz7Gj60O8Nie+Oh+hhhDew17yypLJKpQSdEvJy0vhbz+/i5R0CylmKyPKDKbPyk/AEWxY8pUElb2ECzuocdjoUdsh6AUJKFFhUGaR6S6jQn88UzVFLJg+hWmFGbS0eHjkwU0cONDLjBlGVCqhJpSVfYkWKSbxuSGRjylAni6P51Y+w5VvXcnwnSM03Q5Bl5P3n3uYn//1V0ccQ0vIESIpk0VFMRzBrGXhwjEcoU7oohU5QqQeRA3L1Wo5paVGTjtN4M46nZLychMnn/owv73lt/zjvj8Q9Ni55sfX0NjkFjjCx6gHDocPjyexSXsUIkeI1IOxj03IEWqcoiAdRTS5r67OSXu7j82b7ROGJXwRMClKfQqItkZv2tTGunUtlJSl8e92F9WdHv64oYlrFheiUsioqXXS2RliVsUCLlp9BQC9Lie+/j6UGsGB//CBA3TadgO7gTUANG1JoXFmBVOnz6LIWgSkU1ioH20xn5uJViPH4w4hlUnYVG2ns8OHTq9ielkaEB7XlZGiU5GN4DWglV9A5ckrKZk55/P4+I6IcDiMrccvCFEtvTj7QqjkUkqzUlg1N5sVM7LINiRh0Ci+8umBnzXkMinz843MzzfS1uPnsU2HeaXGzj1v7KPAqOHs2dlMz9Il/NwvuXQO+fmP8dBd38LZthdn+34aGqZQU+ukYpYJu72fnTsdzJljjpjwCygqMlBVmc2zzzWI6RarVk2N6z6q2+1k506HOBZhsWjRG6zjxlrVKrloAj08PII1T8+ixd9l1vzjeOHPP+La85bxgzvv44TlZ4vbXruuhbo9TqxWXVxBGLuKET2xNzW52Vxtx5yhQSKRYLf7xPG96OMSeb9Fj9soxnpN1dQ6qa1xUlRsoKLCjNWagsLWR9mADEV2MvWufrqOS2WnTMqPXtzNNxYV0DimZfpImCQsnx7G1oPCZYvpViwm7e1vMr39d2D/PlhmiR0fFbNM/OU3VwIwPDzM9j2N5Gfm0Nraj9Wawrb6eva3NbG/rQkQvKvysjKpc5SRY8piWmkuLseA6JMwb14mp59eECGwMnbt7MLjCVFT46Sq0hKJFw7FeSroUlSQLRg5e319fPPMCyia8gUlIAM+YSTPtlnwihoZEkbxSlcKPznzhA4p+Xj/rEn8l0g2waLvwfHXCoboWx6Bmqdhz4vCSGTZ2aAcf7F7wQWlXHBBKXf/IZtb//QotfsP4u33Y28PUlvjZGhohI5OH3PmmFm2dOz4mpaWFi81tU4GNtvJzNBSUWGOE0zt9n5a2/pQqWXodCpmzzEzMxIBHvW82r69k+llwsp9hlmD3zfIWSvK+dbX53PLb57ghl/+hQ0f7ubxe24gzSCcv+sbunnqqXrcvSGmRATfKGKN1g360fdaXd3Oa68fRKdTUVycGudR5fcNibdWq5BCuH17J51jDHwTdVdFzxfFRUJNMFnz2duSS7t9LpWpNZwk2c1p531Ir7oEarw0tM1m84cu4KPrAUzWhE8TY2vCjBnpJCUpxE4ShUzBwuyFrNsD+96fzXGnBcj5mYtaRy0HWw/iC3jZYXoKmUnO3pYwXbbDdNkOA5sAqF+vZMNUI/oiPfLSZLJPkyJJCvLPfsEfUCqRkpJqIMmlJ8k+lYyhYjz7U8lISefE44uRIuPAVg9GmY9phcL4ldGYxNSpMH9+Jmlpl5KZGWb27NkT7eIkJnFUyEzO5B+n/4Mr37wSyZ3Q9ks57vZOXPY2GhoyqKlxUlHxERyhKptnnx3DEWK6j+rqEnAEvXXcOJxaHc8Roul2USubJE0SP/vDzyibXcaffvEnDuw+QPbcr1G/P/CxOMLrkXoQHamOdjZFHzfW+y2RofvYmlBT46S21klR0ShHiOUXZ545hc2b7VRGQjrGvsePEqUcDh/1zU7yclJhytH8ZT8ZJkWpTxGxc/sXAo9vOszd/2ngjtfqufaEQrGDI9ZXJ9VoItUY8VQwaTGnS2m95B4O7tuBu6ue7o4mgv4+dm3ZyK4tG7nwG9fxxz+uxuH0sXf3YV79+63s21qKtbCYxZUZBAZScPVIaGpyA8LIk9Wagtdrp6bGgVYjx2pN4ZRT8mIOCuNRjyp9FgiHwxx2+djRLAhRLt8AaoWU6RYdFy+wcur0DHIMGnRJ8kkh6jNCTpqG21ZO54ZTpvLP7a08samZ369rxJqm4ewKCzOz9eP+FhKZmlkn3kY4VE/fyHzWrmvB3i6MBplNmojvq/CcseNrEyXgRbYMEnD1BMWx1liBZ2y3U/RkHb3tC2Xy7duf4b1XfsMvfngNa/+zjm/fcgc5OcIFolQqIT09acLUvNj3umGDjfp6F1OmGDjrrCIxLTOKfft6kMkkYkT5kcZcYhF7rhjbdmu1prDaqOGgo5+NTd28VmvnuW2t5KUmMdOiJd360cfx2Jn/SRx7xPu45MDU9+CZ1fD+r6HkTGbNWgYQNyInk8k4blYJABkZQvLb1eesxKA24xlw0HDoMI7eXprtHTT/WzAG9W7/F31ewWfkP9Xv8tRbbkqn5FJSmItWpSJJY2Tndgf2iLfJ0qVWPtgk1AONNr4eRNvB01MNH/kd/UwR6oO27YIQ1bUXwsNgsELZ14Sf7NmCECWbjCb/TCBXwvRzoPRsaN8Omx6A/Wug8S2Ysky4L0Fy4Unz5nN+VQ/T8gpEQaqm1okuRYFSKSNhPTBrxWMkGqWdqCZIgB5XEH9kjCl60T220+nGHxbGiV42Wx8r5p3KnNJp3P3Y48w6+zv8/Nvf4syls6mtcdLfN4ghVcXppxckTElye+LP+a+9fpBWWx+51vh6Ea0DsfXgSN4gYxHb9RXXwSiZCta5KHWDcGgjqa2b4ZVrOVWuYaZpETL9pTBs/UjvtMma8Onjo7y9RD+whXksrMwhNBzCHXRz2HuY+u56DnsOc0jVQvhaOd37HfQfcuNv7WfQN0DHrg46dnUw4+IZVJ5ciXJYi/fgCAde38GCOXMon15OakEug34jba0jvNZ6CLdBRqZZx/TpRrq7D7B2bTN6vZLp04184xvlomi2d2/OpFg5iWOG9KR0/r7876x64SKGbxphRu0iegat7F/bgt0e4QjmqLVM4powUQJe7HNcrqA41horWokcQZqYI8S+jtPpJ2/mQm57xMoffvJr9u+9n7TSlaSnZ0yYmjeWIxw+7CU7O3ncffBfcIQYn6hEHGFsOMfH2TYIn/fBg27kkk/3mmpSlPoMcdXCAsqydHz/nzXc88Y+Vs3OYfWFJUcUUqx5ZrIKK3F4i5h9ggFrjgZnx0Fk4TY6bfuZU3UCIBD3Nk0Pm9e/xub1r8VtQ6VOIlmfwaxFF+NxZ+HSyKnfc5ADte9Rvz0NhVLD9PIMFCMWFEoVBo0SfcrnW2xGwmEOOvsFIcrWi9s/iEYpY7pFx+WVeZxSlkG2QYNeM0k6Pk+kqBVcvaiQS4+z8q8dbTy68TB/fKeJnNQkvlZhYVaOgRf+tY+N77ej0ysZHpIglU6ntsaJJVtLaUkSFrOf0nJrnOH+oUO9fLjFjlIpwWpNwecfijMjj6KhoZvDzR6KphhQJ8mp3+uisFAv3ldT66Q10iJvSFWj1cjjupBc3QFkMglGo4Grb76PAekUtrz5R1oaa7nnT49xyrI8IZViVnyXSKLUPMGXR0eHvZ/i4lTmzc3E4fShN8Sb2sZ2Sh0pfS8WiYwIxz53amYKUzNTcPsG2HLYxR67lzdaXbz2j27KsnScXGLm5FIzs3IMyCLjrNHVcL1eSWWlJW7mfxKfMgxW+OY78J8fQs3TlBnrKTvrBtAe+W8gH9ZRklFBxSwTsypMvLvxIKi9ODxd9Hj6SVKrSFKrhDGpe7ewdfeBuOdLJBLSDXrSUlJZterH7K7rpqG+my17atl2IIn83DQOHuxjVrmZObOzUCkUpGfqP//27qBHSMyzbQFHPYTDgs/RjPOEjhzLrEkh6vOGVAq5C2D104JY+N5vhA6qprUw5WSYsQpUKTz/fAPvb2xHr1OiDWfR1hIUzcoP2Vs58fhCVCp53EXz9h2dPPfcPpxOP3PnZkQS5MaPHdQ3dNN82MOUIgNJajl760drQn1DN4/9bQ8Opw+zSSuO08WuOne7hJpQWT6TJ39+O7c88DDfvPNXfGf/Kr51/hlAAiEoZhsOh0/slIp2HeZaYeWZU+Lea6JOqbHv5UgoK02f8D2MPmglTFsOjgaktmosXbtg7duw0QCFJwppfkVLhaTJCCZrwhcHY0UrlUxFhjaDDG0Gx2cdD8BIeITbD7zHO/ubqVhlpHhaMh3th1HKumhtPsDFl17MksVLUMqUvP7a65z91h/48K1Nca+j0WgxGDI46aSvU1+fg8Pho6GhiffeW8uWLWkolRqWLMkjObkYlUqFxaIiI8PCJCZxLHD33dU899x+0nIuQL7iSXorm9i5M4tcrZVpxRpyMkaYNiMdvf4IHMEX4QjmBBzhsIeiIgNqtZz6+jEcocZJa6uX/ft7SU1Vo9XK486jrkg90GrlOBw+1q+34fWGmDs3l7+s+Qu3XPUzDu58Dtk8JeHwHJHPJzqPixyho59Zs0wJRSxgXEDB0fpUJUoA/Khk2KPpkIp2b02ZYiA7e/zi0rGEJBwOhz/VV/iSwev1otfr8Xg86HS6T+U1en0D3PhCLev3OSg2J/P1RQWYkiceLYiS64pZJtFAOeo/s+kDO66eAGVlRvrdHbQeeB9XVzMNdfU4OtoYCLjF7az6xh0kZyxBJpOwZ8cmtq75WcLXSzMX8PUbfsqCquNITf/sRjaGR8I0OvrY0dLLTpsbT2CQZJWc6RYdi4vTWVqagUWfNClEfYExMDTMy7va+fN7hzjU7SPfqMH+QRedBzwY05I4eakVg0GF2x1iSr6Ux37zHbzuHu5/6t9kWHLF7fzkJ+9z8KCbKVMMnLtqatx3PjZ9b/16G9u2dZJtSUZvUFFf7yLbksxll5exfr2N2honSpWUHlcAhUJGTk4Kp59eIJ68t+/oZMeOLkKhIfr6BpBKJeiSuvnwjXvo7e7ke7ffy7KV5x31/n9cU/TYYzv6nqo3t7O52k5llYWqytGVjY+77eGRMF3eINtbemh09NPc7ScwOEyKSk55jp451lSGHUG69ns4uTKbM8/45D25n8V58/PAZ7Zfu5+HNTcKKXGzLhJGnyZYrIhNG/P7RuvBvHmZonFzNOXrz8++TUdPJzUNzTQ22/H6PQwMCX4DBTmZPP+re9iwwYbHE+LvG/5Om8ue8DUvW76SC1cexxlLP+ORbn8PtG0F24fg3Cd8JqkFkHucMJqXWS54RE0KUV9cOPbB+7+BhldBIoVpK7jhb3paWoOkGZOYWS6c95adkse7u7Zw3V1/4ufXX8Kt/3dx3GZ+HFMTVp0r1ITMrOh5MMzMcuEi/69/3c2uXV3Mnp2BVqtg27ZOLNnJXH6ZUBPWrWshGBqioMDAnDkZhIJDcSLTuvUtvPuujWBgmOzsZEqnp/Hs2//hydffYMWSefz9Vz/ElHZ0i3Yf17Mj9tiOvp/YY3rsSvfH9gQJ9UPXHmHctecgeO2ABNKnQvZcsB7PB4dMvLNbybzKQk4/vfCo9jMRvoo14Yu6T9ExwGXL8vB4BsQxnUBgkJdeauTcc4uZNy+Tt9/eTmPj+3R1NVNdvYu2tlaCQbe4nZtuup/W1imEw5CUdIAnnrgx4etlZ0/jF7+4izPPPIn09C+4z+AkvvAoL3+cAwd6yc5O5oKrctiYcx8+PCyVnsVL9zxOMBDkDy/+AVPmKB+N4wjnjuEIMel7IkfITkavj3CE7GQui9SD2lonSqWUnp4JOML28RwhP18vmrAPDQ7x6K8f5fm/PM9JK0/ipntvIkk7sWflxz1nR4Wz2A6o6up28RiPrQmfhkdUbPps4XQlCpmClVNWfuztHO25c7JT6nNAqlbJX6+YxzNbbdz75n5u//deVs7K4rSyzISG3LEKqMMptDJGV+G2buvA4wnhcYfIyNSSZl2JJmOIfoULWvsoKNCwYG4SKpmHrNxC+gNatBo5w4Ec7I2L8Lp7GR4MkpwsJRgI4vMF6PO4eebP97Gg6vlP/bMYGh6hobOPHS097Gp14wsNo1NHhKipJk4uMZOpU6NPmvSI+jJAKZdx4Xwr58zO5oXtbTy0oYmB0hTSs9Qcb07hotWl4mM9vS4GB0I4O+3ccvWF3P/Uv8XR1cVLcsTbgYFhujp9FBbqx6XvVcwyYW/vRyqTMDw0wuDAMD09Adavt5GXJ5z48vJ0BPxDbPnQTnOLl0f/uhupVMrSpVbmzs2gsbGXHdt76OsfYGpxGudffBJfv/ok/vCLW/j1j66jdusmvvOTu1Enacbv8BEQFZEGBoZpafGOG71riPiT9PUPAoj3ba62s2dvNwCpBtU4QRr4SFEqVtg6qzKboZERPP5B9nf2ccDZT6cnyGObDuMfGAbgter93NfQyqXHWfnG4k9ORCbxCTHzAkFoee27sOMxaN4Ix/8f6LLGPTS2QyIaixxdZYsaN4OQ+FVgnMZ06wykPS0UKkPMqjBx+socdu62odMLY0+z52QAYeq6pqE9rGFweIDQ4CBKlQR/YACfL8TL727AbEr+bESpfge0fiiYlbsOgkQGxilQcYkgRGVMj3hEKT/99zKJ/x7mEjjvb4I49c5dUP8qvzxexWvmmVB0CudfOF186Lptw4TDYW77wz9I1aVw3aWjF79LFueItwMDw3R2+QiHw3R2+ggDBr0as1lLmlGNTqdiaHgEp9OPQinF3Rtkd103syIjHiqVjCyLlvq9Lvbv72HPHicjYWHbCqWU3t4goeAImVla5lRksPzU67no7Eouu/m3VHztOp6972aWzC//2B+Fw+Hjg012elwBqhZa4jqdon5V/X1CPRBFqZhj2pCqihOtjtYTJF7YOh6sx8OAHzyt0FELbhscehdqn2URYRbJYHh3OtgL4LJXEo5eTuKLg9iOqpYWDyAknf3kJxt5//02AJKSFNhsKszmM9FqB+joaCcY7KGiwsBZZ5nQan0UF5ewd+8AECYQGOLDD0+gs9PJ0FCItDQ5/f0BvF4/TmcXv/zlLzj77GWf1y5P4iuE1aun8dxz+1m9eho//WkVDv88Ln/jcjZ0vUIgGKCrtYubL72ZB/71ADqDcF2/OFIPFkfqQVdXDEeISd+L+lFJpRKGhkbw+wdpa+ujrq5bHHnLy9MRCAyxZYud5mYvjz46niNs395Df/8AU6emxaUCyhVyrv3ZtZTNLuPXN/6aa8+6ljv/cifWKdaP3O+oiCRyhIoJOELfGI6w2c6eSE1ITVWJolU00Q8+2iNqImFrLOJH/EIfuU//LSZFqc8JEomES47L46RpJm77915e3NnOxsZuLpyXy6xcw4TPGzuys2B+ltgppVTKqKlx0NToJi1NxYzp6ZgzNHT3SigpsVJSNjpD6/NX4Bu8lVBoCI1GwcIqC80tXt58sxmjUc35500l9VNaARkYGmGv3cP2ll5q29wEB0dI1SiYY01lcXE6J0w1kTEpRH2poZTLuOT4PM6Zk81jHzTztw8OsTkQZOj9Q1w4Lwe9Rok+1civHv0n3790Je0th/jJNRfz28dfRJuiY8XyQlYsF8SRZ59roN3ez+ZqO6efXsCc2QKJjnYMGdOTqNvdzZYP7SCREA7D/v091O12snhJTsSbBFJSlIRCwxw+7CEQGGLj+22sWF7I0qVW1Co5rp4AC6ssuLoDrK91svKy25m1YCEP/uInNNTu4NbfPUpe0bSE+xubjufzC50oHneQDRta6XYFUSik4mOjIlNNrZPOLh+DA8PIZKPbqqyyiLdRg/MokbLZvGLr8ZEQK2xVVWYjl0oxJquoKlJRVZTOwNAI/aFB7O4gdk+AHt8Abv8g7Z4AIyPhybTKzwOpeXDpy7DrH7D+DqFzaspJMGs1KBOTwrHt11URE8uqSot4MVFT42B4KIwhVcXCqmwCfVIkIR3ZaYLPzjLRNPQCNm+2o9epKJuexsxyE+++a+Odd1qZOi2VSy8p+/T23dsOrVuF0Tx3C0jlQvfGnKug9EwwTZsUor7sMJcIY32t21Cvu4Pz+QCSDkLLxYJIIpHw3cvPpsfTx88feobrf/En0vTJXLzyJABWrChkxYpITXi2AXt7P6HgEKVlRjFpCWDRwmysuTqqq9vZt6+H9PQkklOUNDX1UlPjYHqZkUBwmObDXpQqwQjd4Qzg8QgX3Dd8fy5e76AoHJnNWuobuult0/L8b+7kjkf+yklX/JifX38JP/7WBchiT94xSJTS99Zbzbz51mGUCilarYKy0nSxO8rp9NPdHWBwcBiPN4TD4RN8QGKO6ajnFkC6MYmGBtdR1YRYYUskIEqNcFyZpsHICAz6we+CnsPgdyDz9wghAv1dk6LUlwixSWfnnlss3kbHMNeubWb79i4sFg1LluSQn6/DZpNSWVnA/PmFzJ8vbGfNGi1Ll96K3y+EZpx33lTq6pz8+c+7yc5O5sc/Po7U1NTPZR8n8dXCT39axU9/WiX+36wx8+SKJ7n8jcsJ/yDMwD0DNB9o5kdX/Ij7nrmPJG3SuHrQ3t7P5s0RjjAnhiOYtRiNSdTVdbNli53BwTBy+TCNjUI9iHJnSMARNraxYkWEI6jluFwBFi604HIJC9+xItIJZ5xA/tR8brvmNq5deS233HcLS1YsEfcpUTqexxPhCN1jOEJEZKqpcdLZ6WNgLEeI1ITKSotocP6xOUKMsHUkUSr2GrMnMClKfeVhMWh49PJ5rK3v4t439/PHDU0UmZNZNTub4owjm4+ZTVrOOac47ndajRytViF2ZcSO/MQilrA0NbrRaoXxh6GhYQKBIZFYHyv0+gfY3eZhd5ub+g4vg8NhTMkqqqYYOWGqicpCIxm6pEmz8q8YNEo5151cxKXHWfnDO408u7WV2jY3y6dnsmJGJqZMC7/+6/PccPnZNDXUcet3LueXf3kWlXq0/TW2G8rnH2Lp0ry41zCbtOgNfWg0SvLz5FRWWXjppUbs7f0MDNqoqDDT1enD6QxQVGwg25JMfUMPeXk60Vsk9jh69rkGamuEC/+LVl9Eafkc7vrBN/nOhcu57mf3cNrXVo/7jiZKx6tzh3C7g4RCQ6SlakUh6v3326je1M7iJdloNQrcAyO02vrFbVVVZotje6kGYaxXrZKx4d1WelwBUlKUVFVmjxvziz3WY4WtRFDKpaTJVQz5hwgGoCLfiCxJiC2fxOcIqRTmXg5Tl8OGu6D2OWjZBCVnwrQzQKE+4tOrqrLjLjDMZsE3R6tViN0VY7urophZno7T4aexyc3OnQ4MejW21n5CoWFGRj565e1jYXhIGMez7wL7DujrBJkSTCWw4FtQshKMhZMeUV9F5M6HK1+Hxrdh/V1Q/QAceAPmXw0GK7dfdwkudx8PPv0aV/z4d+hTtJxx4oK4TcyqMNFu70cmlWDN1cWZ1kYvom2tQmpRcXEqWZZk3nzjME6nH5crAGHweELMmZPBqlVT2b3bwc5dDmZXCCOA5465rhKTMTGx/olf8vOHnua2P/yD97bV8Y97byIjfTw5r61xYm/vxxIxtAXBLHZoKExKskI0Kq+tEWrC4NAIKqWUkWFoafaKaZixx7QhVSXu/web7Gx414ZUIqGw0EtVVfa48d1oPYgVthJCKgVVMg6PBFuvCqt1vnC8O/dDeOQT/JEn8UXAqlXTWLVqdCEtL0+PXq/EYBCSvxYuzIlLWYzFWBHLELkWGRgYpq9vAI9n4LPbkUn8z8GsMfP4aY9zyZpLkNwoYfDuQRp2NXDrN2/lnsfvQakaXaCK7Yby+RJwBLMWvV7gCIWFOsrKjOza5eDgQTcdHT6BI3RFOEKRAYslmYaGHqxWnbg4EMcRnm2gNrI4ENvZlFecx59e/RP33nQvt19zO6u/vZqrb74amVyWMB2vri6GI6RpRSFqLEcYGBihtTWGI8TUhNRITVCrZWzY0EpPT4QjROpBbDdU7HhfrLB1JMQ+R/4ZZN1MilJfAEgkEk6dnskJU00886GNR94/yK/f2k9BupazZlqYka07aqFmrNnZREbK0d/HiljAERLOPh5GRoTEvN1tHmpb3bS5A0gkkJOaxNLSDE4uMTE3Lw1ziooU9STp+KrDoFVy28rpXFGZzy/W1PNqrZ0PDnazYqqZ5JCWm371OHffcDF1O7bwix98i9sfeAy5QoHD6cPnH+L00wtEc/BYRIUYrUbO4sXZool4cZGBYGCQ4iKDMAtdqKe+3kWfdwB/YJB58zLw+4dYv94mtOLGHCNjUzHziqbx4D/f5KF7fsp9P7uBD99/jwWnfA+lKonymSYxHTD6nOjxVz4TvN4BsQMr+vsN79jodobYuLEdrVaBViufUDyKHs8Op49dNQ56e4J0dwdoaOjm9dcO0h5JJqmqzI4b5aiqzBZJSVR4S4TY5xSWpH38P+wkPh2kmOGsP8KCa2Dd7bDnRWh4XfCaKj0TVEfvZzLWEHkic0uzWcvSpVZMZg3RVcaPJLMfB0EP2GsEP5vO3TAUBGUKZJRB+QVQcgYY8kBr+shksEl8ySGRwNTToPBk2PUkvPtLePNHBDKr2Kc+nZ9+81J6vf08/doGzvvePbz9t1+weN4MQLhI9vuEmhBrEB69L3oBvWihBWtuChqtnNoaJ8nJchTKZJYsziEQHKat1UuaUY3TKQix2dkppBk1Yjx37DESm3Qnl8u463uXc8L8ci69+beUn/V/3HjJlcwpmSb6Wo19TvR3J52Ui0oto6pydHTPYFDR1xciGBomKUlOcZGBGeWmhNdgscdy9SY7IyNhlCq5sMDi8PHa6wextwvkRamUjdaDCIlxOHwJ9y+KceOA0sRdYJP48mKseXpsZ1Usor+PFbEA3O4Q2dnJkwb4k/jUkZWcxV0zfs8Pgt9myg+L2P+rfez4YAd3f/dubnv4NmQyGQ6HD1+kHvh8CThCjFH34sXZool4V5efnh5BhIrjCH0h/P6h8Rwh5nwZm3Q3FppkDdfecSOK5Ez++Zfn2bOjnjv/fEfCdLzy8ghHiHRglZam09zspa8vRCg0zFtvtbBwoYXe3tCE4pHIERw+du1y0BPLEV4/SHsk4byqagxHqIrhCBHhLRHiOML0T79TffLK7wsElULGVYsKuGBeLs9sa+HJ6hYeeKcRo1bJ4uJ0lhSb0CUdWwFnrIg11r3/aBEOh+nwBNnX2Ud9h5f9nX0EBodRK6QUm1M4qcTMySUmiswppCerSFJOXuz8LyIvXcujl8/nkZcbeGRrM//Y2YYBKbM0KZy46hesffZmDtTvxtlpJys3TzwhZmVq0RvGhwFE7y8pSWNgYJiXXjyAUiWYFZ5zTrEoGjmcPurrXdTUOhmM+ChlZGjZu6cbn28wYbJfLNRJGn541/2YcmbyzMM/Z3v1VmaffAt6wwmYTdoJ0/HGdjKWlqZTVGRg926h3ba/f5AZ04Xfbd/RmdDEPCq8LV9ewOZqO1KZhJpaJyk6FdkI3VBCa7AjTlCOIxgT7NvHiYSdxOeAzBlwyb8EIWfj72D/G7B/DVhmQ/Fpgr/SMewsjR/nI2GM8FFj0A+OBiGFrbNO8K9BAvpsQYwoWAwFJ0BKBiSlCd0ak/jfglwB87/BFl8lvHsP8zrepCy8na6+Fdx02SXU7+9i14F63t60UxSlbLY+duzoQqdTjiMLsee8gYFhqjfbSU5W4HQGyMnRielMDoePV18NsGePC68nhMPpB6DD3s/6dS3MX5AldkslMh8HWFY1m3WP/przv/drbvnjA5xYvphf3XSF+H4SpeON7WQEgeSnpKgYHAowPBRGo1WyaKFAICBxh6LD4SPNmERxUSoajQKlUiYm/ZEN1txkamocpI2JR/8oD6rJejCJsRgrYsX+exKT+LQQNe/XahUsCFzHppz7ybu2iKYH9rGvdh+uLhdmi3mUI2Rp0euPgiO8dAClMoYjlJvExxmNajZvbicQiOEIe2M4wlEak69Zc5iAajoLztaz953nuOaMa7jjkTu46KJ4C4SxHVgwWg+GhgIEAkP09ob44Q/nH3FBISq8LV9ewObNdqRSCTU1TlJSVGRnC91QIkcwTsARJti3SU+pSaBVy/nm4ilcelwe/6nr4J9bW3ltdwev1topNqcwPz+VOdbUYy5QfRwMDY/Q2hvgcLePJkcfDZ199AWHkEogOzWJqilG5uWnsrjYhFmnIk2jRC6bJB2TENC1uwftB25yF6RxKCnM+75+1LJcTjr/bq648kTMFuHCJ3pC9LiDcQJLbIdUNHHjqSfraW/vR6dTCgXKoBbFmLrd3exrcKGQS0hKUjFnTgZKhZSmJjedHcK2oo+tqXVSXW1nx44uFlZZWLgoW7xPoT+eKcffTfueP7J1zU2UFt3K3DlXT9jJmCgxb+XKKeRadchk0Grrp7LKklBAij7X4w7S0eknK1NLYaEBV0+AvDzdaCS6ScuzzzUIY7gVJvH5YwlGoqS/2E7KHt9kO/4XEhIJ5MwT/HgcDbDtUaFrasMvBDEnZz7kVUF6sZBu9nnB3wOuJnA1CkJUb7Mw+qPWg7EIipYJY4mmqUI3lGqS+E5CwFvv9bJu/RmcsWAZ38h+Bmv3y6R0V7N6ZiULy+dw1/dGk/is1hQaG3vxekPiiBsIF+ZuT4jMLA1WawpPPlXP3j3dGI1JmDM05BfoxMfabH00N3vpdQfItqSgUEpZsjiH9vZ+PJ4QPa6A+Hq1NaP1oGqhhUULs8XtBH1yVi9azVvb3+W9PR/wg9+5eOGBH2PJSNxFkigdKdpRJZOBrbWfqkrLhGQh+ny3J4jT4SclRYlGo0CjlZNuTOKUU/KwWlNYv95GY5ObCm3i2PHo7VjB7WjjxycxiUlM4tPEunUtrFtnY968DFaccjx91d9iR8nDFH2njFsvvBmzxQzEcARPMO6cGdshJXKEpyIcISXCESLhGNGEve5uP0lJchQKucARlBGO0OmLqzU1MTVh4UILC2NqQk2Nk/b2foxGNcefVMmV36ziwVt/w/fP/z7X3XEdKy9ZGccXxtaEiph60NraL3ZIJaoJ0ed6PEE6OvxkZUU4gmsMRzBrefbZBpqa3GhjakJCjjAm6W/SU2oSIpKUcs6bm8s5s3M40NXH89taea/RydMf2nj6QxvZqUmUZKRQZtFRmJ5MsvrT+XMGB4exuwO0uwO09QY41O2jtcfP0EgYqQQy9Wpm5xqYmWtgcZERi0GDMVmJRjn59ZpEYkRbwZcty6NklonrH99OtcRNp2oG3ehwRQSU4kIl8xZMweH0oTf0jVP4YzuooiNwZdONmEyaMau9YfR6NalpatLTk2LulxAdVXI4fdTt7mZoaASVSoa7N8TWbZ3kWnWiEKZWyZm9oJzTznyctS/cz2O/u5VDDdv5/h2/xdYaoqbWKYpNudZkWm2CF9bixTmi+BM7kjfW7y3RqnZWppaSkjQ87iBNB3sJBobRahXi2GH0fRUVG6iYZeKNNw+x8f02Fi/JEc3iYdT3KvoeJvElg0QijLqdeT8svQP2vQZ1/xI8pxrfEszQTSWQUS48Tmf5dMZvwiNCQp6nTfjpOSiIUYFe4X6VDlLzBYP2vCVgqYBkEySlTo4DTSIhovVg8bI8TFVXwN6X0bx2CzdO/zdu4yIa9tqp2e2hdLqBoikGli61jjt32mx9dHb4yMzSYrP1Mb1MEIaml42vB1ZrCvn5OpQdMsxmDVarDpNJQ16+TvRfA+Gif2hohMHBEfr6Q2zb2ok1VyeSHrcnRHm5icKCr7GwaTpPrn2BinOu46lf30hueh61NU5RbJpeZqS9vZ+OTh+VlVliR+LYNE2brQ9NDJGKRbQmZGZp0emUNDb5CYaGsdt9caOMKrUwBjirwsQbbxzi/Y1tLFmcw4oVhXGiU6xx+tiurklMYhKT+LwQyxEWLsxBr1eS9MEIm2c/wguOF1jqWc2e3b0UF6qZd1wBDocPvT4BR4jpoIoKPGVjakJ0ocPvH6SgwEBysiIxR3D4qKsb5Qi9vSG2bu0kN6YmqNVyysqMZGcn43AEsFhM3P/P+3n4roe5/yf3858XN3PCeavp6BwgNzeZ1lbBCysahhE7dRGtBw6HL2EXa+w+lpSk4fEEaWrqJRiM4Qgx70vwsxJqwsaNbSyO1IQoor5X8PlxhEnV4EsAmVRCaZaO28+aTnBwmAOdfayp6+DD5h4+bO5h3T4HADq1HIshiZzUJMwpKtK0KgxJCpKUMpIUMpKUMuRSCWEgHBZG7oJDIwQGhvEPDOELDdMbGKDHN0BP/wDd/SE6vUF6/YPie0nVKMhOTeL08izKs3WCL5ROhUGjRKuUTZqUT+KoMLYl/JnrF7KpycnPXtnL79YdIEMqw7FuHU/V/ok7H3yMeQtPjBtBS9RBVVRkQKmUJRyBK59pQm9Qc+hQLzW7nFitOubNzWTp0tGuq1ablw+3dpKsVbCwKhtXT2DcOJzPP0hFhVlINEs5n8ozytmy4QG+vvJkihfcgL07FblMyuDQCM3NHpBISElWoNWMP9XGrnzMm5s57j1rNYLxuMWiFUUskHC42TPaJWDSRnyj/IRCQ2yqtlNX56SzQ5gjjxWlxnplTeJLjCQ9zL4UZl0sCEQH1wujfZ27YdffBeFIKoeULDBYQZctdCdpjYKPkyJJSN+SqwGJUBAYgZFhIXFr0C/chrzg6wZ/N/Q7ob8T+jpgOFIT5CrhNbJmg7lUSFEzlQgCVJJh0qR8EkeFsfWAGeeiKj4F1t5G2s4nUbtq2LB/AZf8fTe5OQZe+9Pt4zp6oudpd2TFvKQkjcsvyxjXmQTC6u9ZZ03hrbeaaWzsjVtRTjcmYbP1iV1Eh5u9pKerSUpKprTMGFcPOjt8lJSkUVPjwOfU8qPV3+H1Ha+z/Ju3smLBiRSkzI6k+klwuQLIZBJ6e4N4vYMkQuyoSax5exQa7WhNmFmeLvq/QVisJQBOhx+dTom7N8S//nVANKWOJSAQ73s1iUlMYhJfFCQaG1248BrePJzHLRtv4YXAP2j/t4rHd6zh3qd+ScXxFQm7QmM7qOI4wph6EF3oOHSol5qaCEeYF+EIEXGotdXLhx92kpysYOHCbFyuwLhxOJ9vlCPs3Nkl+DQbk1h49oUcaldS985LtBw4RHr512g+bBI4QorgLTsWcRxhXua4mqfVjuEIjghHOOyJ6yQWhK0IR9gU4QidEY4QUxOO5JX1WeGoRSm73Y7FcgzMTifxX0GtkDEz0pU0NDxCj2+A+g4vO2297Ovow9bjZ0dLL57AICPhT/YaGqUMnVqBQaNgZo6BnNQkpkU6stKTVaSo5eiSFCgmx/EmcZSIzodHVz0SYWGRiTe/t5g/vtPEn987SHdgF4MDfu78/jf43ZP/pqh0hvhYcSzPHSIrU1jROJKHUvT/L714gHa7j/q9LlGwiT4vGBwiWatAp1cBYQrydaInFcS3ujY0uJBKoHjmySw88Xgev++HbF1zMwbrheSVnYlCIaOo2EBzsxe3O8S+fb3juqM+arzO5x9ieDgsJmGaTdo4EW3sKs/G9x14vSEslmSmTDGweElO3GMT+V5N4ksOqRR0mTD7EuEn1Cd4N7VsgY5d0N0IbpuQcjfo/4SvIRdG8NSpggCVPV8Yx8sqh7QiUOuEH2XyMfW3msRXGx9ZE1QpQlfgrIsZ+ed3OF73NjfZA9Q3j3Dtzx/k0bu+l3ARzGJJxqBXj68JCcbS6htc2Nv70elVcaN9+/b1IJNJ8HoHsGRpUalkhELDlJSkJRx9sLX2kaSRI0PNLZdejUm7hhfefRNLahOV+ctISzGQl6djIDTMQGiYhvpu6ktSxTTMRDUhkZeV3yfUBL9vCHPpqP+bw+HDENMlEB1vfPPNw/j9gyRpZCxZnCM+Nvp6iXyvJjGJSUzis8bRcASA5QXL8Qx4uGvzXfQF3AyGgtx69a08+PKD5BWPpu5Fz9N1dSGyshJwhDH1IPr/l146QHu74EEbFWziOEKyAp0uwhEKdJSXJx6Ha2hwCaGmKpn4fH1OOZYFGrrr/k3n9qeYdv7lDCpy4jnCBPUAxo/X+SL1wOcbEvchVkQbxxE2juEIi3PiHvtF4AhHLUpNnz6dhx56iIsvvvijHzyJzwRymRSzTo1Zp+bEaWbC4TCBwWF8oWF8oSE6PAG6vCF6fSHcgSH6Q4MMDAmraiBBKgWNUk6KSo5BoyBVoyTLoCZFrUCtELqrNEoZKrl0sgNqEv8VovPhcGSjTJVCxo2nTePsCgs/smj5z2+6Cdh285NrL+HBZ9dgzho1ibXZ+ujoFFaqx3ZRJfJPstn64szBo4h2JJWVGamoMONxB9m5ywFh4nypYv2XLFla8vL0WLK0lM/MR3/3P3j96fv48J2nSdW0ctzyG5k508zICHR3d+HqCYjvYaLuqE3VdnbtElZWSkvTJzSdHZuoKYhVVhoaXPj8Q+TkpvDd6+cCsH1H50eanU/iKwRVCpjLhB8QOpoG+oWuJ3+PIFD5XBBwCWl4A77RyHeJVOhsUumELqekNKG7KiULFGqhu0qhEX4m0/Em8V/iaGsCufNJvqGaOZv/yHP+u/ja07387V9vk5+dwc+uvUh82JG6jBKJPLHG4LHpktFupLw8nbiqvn69jT17XWi1ClHEifXaWLTQQig4hNcbQiqVcePXz+PSVZV887b7eaP+ea4//xKStUoyi7QMDI5gb++ntsYpvo9Eq+Hr19vYtq2Tdns/6cYkzGbtxDVhjBdUdNXf7WkhKUlORYV5HMGKPm8Sk5jEJD5vHHU9AC6cdiEOn4NHrn0E+QMjdOzt4JYrbuHhVx4mzTyaIm2z9dER6WYd20WVyD/JZuuLMwePItqRJHIET5CdO4UJpagvFcSfhy2WCEewjJ63Cwv1tJQa4eyZvPHEY2x45i+UL1nOYHIFLlcCjjCmO2rTpqPkCGPqQbQTrKHBhc83RE5OCt/9boQjbO/8QtWDo76yvPvuu7nmmmt4+eWX+fOf/0xa2mR8+BcNEokEjVKORinHlKIiP/3z/4JNYhIQPx8O8OKL+3nppUbOPbeYVaumjXt8cUYKL/zfEh6e8iQ3XnE2vc4Wbvj6hfzlhTfQJsefiKO3sWLNq68ejDt5Rx8XNYIFxLS7aEeSUilj3txMcUwuOkeeSOCKjgNGRwXNJi2FU+7hjRnH8a+/3s5rj30Lyy33s7CqHK1WIY7MJSoi0W4mlUqGTqfCmKYetz+xqN7czuZqO2XTjSgVMiBM+UwTF60uEd9nFNHX0WrkE6b7TeIrDJkiMkqXCvocyJr5eb+jSUwC+Jg1QSaHRTewsnQlD3IW//ePBm594CnyTMlcdt5KIPG5NfbiPLYmlEUu6OPqQSTZKNqNpFTKRHErdszN4fCxu64bCDMzskoeO/4RHQ1xOFJ46hd38Iu/PcYvn3yUVScv5fc//QYWi1YUxyZ63w6HD5VajtGoRiaViGMYiYzIq6vbqd5sp6rSgiFVJW573rxMNP/P3p3HRVXvfxx/DTsMmywDgoKoqIAL7gGuiaWWWdpuLmVl+zXrVla3tL1fy832XbNFMzPzmmlqmgqkoYKKuCsgoAODbMMO8/tjmHFmmEFAccHP8/HgQcycOefMhOfN93u+389X6UBIR0+z6XmG47gpHWyu5iSEEBdSc9sIj/Z7lFNlp/j5gZ+p+r8qTmWdYs7dc3jvp/dwdXMFrLQRbOSBzTZC/fVRa5EJhmlyZm0Eiw6uXr388aofsWs4rlqtxcnJnqqqWsZMf4DcfZv57buf6Ng9i753P2H1nOHM6FZjG8HXpcH7MZWYmE1SUg4dO7pTW4vxvO64o4fxPA2MbYRLJA+a3Cn10EMPMXbsWGbMmEFkZCRffPEF48ePb81zE0K0EZbzw5cvP8Sff2aSnV3KgAGBhIZ6NXiNnZ2CR8b2od+6NYwaPhR15mHuu3sK897+iqL8auPwVuPS2fWdLenp+WRmFuNgb2fs4LFcBc90BFFVVS0HDxaQk61fzS8iwo9Ro85clA13rHOyS/H1czXrLDIc27BdhSKS8TM+Z+PP8/jv81O4b/bz3D5tpnGkoelrLVfXC2rvTkSEr1kYWVLnaVn1vyNk52jRaMpp5+OiH/iIAi9vZ2Pxc0PHVUxsELExwWbv13Deph1U6jwt+46cpkOwrIgmhGh9lpnw7bf72Lo1G6222mojBADfrjy4cA8ZjOXN79Zx74uf0MW1mK4DbzSbrmD5x/W++kywd7DDp/4PelOmd6cNUy9WrjxMerqGa6/tZDbNLTn5JLt2nqK8opY8dbmxmKzp9L98TTmpKXkUF1dy/7i7CPbuyI8bV5OVn8WSd5/hjjsijMc2bbAYzjszs4QybTWDrwrC28vZZiao1Vr+t+oIOdmlAAQHuZOSmodWW20sfH7HHRHsS8/nyy934+PrwpC4YAYMCDTeIS8sqjRO/bNc6S//oAYv9xKCZYafEKIVtaSN8FLcS+SX5/PXo39R+XolB/cc5I3H3+DBeU9y4oS2YRtBZdFGcLAzdvBYroJnOoLI2EbI0a/mZ7ONkFOqX+3VIg9MtysursTT05k6nYLhN93EkPh+vPrYq7w7+znmfT6PrpFdba6uFxTUhDaCWsuqVUfIztZy/FgRSncnAHx9XdFqa4x5Zei4iokJIjY22Ph+i4oqjQXjLfNg3/E8Qju0gy7N+B/bTM0agx8WFsaff/7Jhx9+yMSJE4mIiMDBwXwXO3fuPK8nKIRoeyZODCc7uxQ/P1fS0jTGwMnIKCItTUNUlK/xsdg+Pdi8bjVDhg4jb9/fvPj+Z4SGjMKvxo7Onb3Mai6BfpW50tJqQkI8iRuin+5nWW/K9G7Ehg2ZnDhRggLw8XVFW1Zj1mET3cefnGz9KnqG4uLqPK0xYACyMkvYkXySkFAvRsf3onffb0la8ymfvTWXfxI28uTL/8U/8MxwYNPXd+3SzrjS0tlGMZlOQRw6rINxpJSh0G16ugb1qTLy8rTk5pah0ZTTtau3ef2TzBJ27DjFoUOnie7jz/79p9mXno+j0hHFYJmmK4S48KKifDl8+DRRUb7Gx6zlAfb2vPbNGg6eHsMvv61j2quLWffgPtYcGEpk/y6EdPRoMB0hNeVMJgyJa5gJptdHlUrJKXUZR44Uoikop32Qu1mnTUiIB337BXDcopisWq01a3QcP15McUklw4Z24PHpNzHl5hgefHk+fSY8zPvPPcC0m+KNNytMX2vtfGyxnILo3U6/ypSzi73xvR0+XMgPi9MpLa3C19eVyopaRo0KaVAYvrCoEsgnN6eUyspafHxdcNUW4+ZdSLAMsBRCXEBNbSPMHzmfqZVT0T2i48gbR9j8+2YcvLvg4N0NJyd7fRvBpOYS6FeZM7YRrOSB5VRpYxtBAT4++s4d02tzdLQ/OTn6VfSs5QFAVlYJycknCQ31Ijra32Qfg/l01ae8+MCLPHLjIzzxxhP0GRJr1hllWF2vKaOYTKcgRkf7G0dKGd5feroGtdp2G8FQGN7QOaVUOujbCPvycfSqxEHRuovXNLswREZGBsuXL6ddu3ZMmDChQaeUEEKczaRJ3RkwINAYLgZpaRqSknIAzO6MDBw4kG8XfcOC79ZwMjyePEc7CoqqcSsoY2B0oNmdg+g+/voVL3zO3BG3NffasH1enr4ItK+PC1u2ZFNXW0dklC+FhZVE9/FnytRI410UQ4fSyZNaAgP14ZWSoqasvAbQFybv3NmHq158lV4DhvDJ609x7w3DeeyFN7j6uokoFPrgKi6uwtPTmV69/Zo8pc50eLHpaxKTsjl1UktenpZT6nICVG4EB7vj6elMZmZJg/pVhkK4Kal57N6dR0FBOWHdfQgOdm/SeQghxPl0//19iIvr0KQ8sLOz49sff2H06JuY2juQQMUaHu+2mKTC6wiJuw4wv9aHhnqSnVNKbEyQ1aK0lne1Y2P0NaJCQjwBHVu2ZFNbV0dUpD4T+kT707uX35lMUJtnQp9of7JzSqmsqCU7uxR/fzf6RYaTsuJDZv7nQ+5+9r/8uHor37z5OCpfb7M8MJ3ucTZmeVC/vaF4+taEHFJS1GRmFlN4ugJ3dydCQzyNHWmGeiWGIumFRRXs2qnmeEYRujro1y+A2B6eeIV7t/D/qBBCtExT2wjODs58Pvpz7qi8g5p7amifH45/WC8yM0uoqKjFy8uZ6GiVeRshur6N4NvENkK0SRvBt76NUFdHZH0eREf7M2VKpM08MLQRyg1tBJNOLbVaS06eHS9+9ibfvfc5r816jdix19At5jo6dPRqcmeU6fuwzATQT+k7daq+jXCqnIAAizaCSR54eZUYO6fs7RXGNkLnKKdWbyM0q0fpiy++4IknniA+Pp60tDT8/WUZWSFEy4SGejUYkmsIH9MQMrj11lsZPPhadu/J44/j+axGw15FLTX781C6ORg7XQwr1+3fX2Ac2WQ5bc70DsaA/oHGeeDqPC1Hj+4jO6cUjaacuvoa0HfcHoHKX0l6ej6rVx+jqrqWTp28jNPl4mKDUCodcXG2NxuR5R3Yl3HTvyT970954+mHWbJwKff/+xVCO+tHTTW3xpNlnSlDvauszGKOZxQTGOhGzyglMbFBdO3qbTal5fc1R9my+QRDh3Uw1j9Rujng4uyApqCc3gNU+Pm5NvlchBDifGluHiiVShYv/om0NA2bTt9Fr0PPEu+4nMKdWRw9HY+b0sH4R7mTkz2BAUqcnOyNr7ecNldYVMHJXH3DIzY2mNhY/R10tVpLSkoeOdkWmXBHBCqVkn31mVBdZZIJJiO0TEctDRgQyJN3TSPQvRMLfl9G+Oj7eeWxGdw2bghw9pFRlqx1XhkKumdmFZNxXJ8J0X0DiI0xz4Tffz/K5i0nGDa0A2PHdjbWSQkMVFJZWUtsXBCRqkIIkindQogLr6mZ4OXsxZfXfskdNXegqysjysmL3r1VZGQU4+3tzKFDp1Ga5IFh5TpjG8GiXp/lKKcBA0zaCOr6NoKNPDC2ESzyIC6uvo1gkgcqldI4gikry5GQATdwe/sQfvpkAdlHj/HMf5+jR0/zRTvOxjITDPWusrKKOV6fBz17KomxkgdbtpxgqEkeGEZKubg4oNGU03uwW6u3EZrcKTVmzBi2b9/Ohx9+yNSpU1vznIQQVyhrIWTt+WsqO1L48CySHQeS6qkif8cJ/tPNBwd7O6Dxux6Wd6VNqfyVjBsXRkpqHt7ezsaRUgYpqXlk55QSHORu7JACjEupmtauOnP8UMZP+JAvP1jE5pXv8PJjE3ju/+YzePhos2NbK6h+NimpeaSm5OHkbIeXlzO9eqq46aZws/djsGXzCY4cKQRg7JjOaPLLTY4XToG2qknHFEKIC6GpeQCd+etPBxZ8+wpz2Mmoyv3sSLmVyAj9NfZsebB/fwGBJlMkTKlU+kxITTmTCaaFw1PrO6yCgt3NOqQMdaisLc99143DCfHvwCe/LOWxN+azY38a85+biZfHmeu15WqBTZWakkdKah7OTvpM6NlLxUTTTKg/v81bTPJgbGdUKiVBQeXkqcvoPyBAf0xNYZOPK4QQrc1WJgS5B/Fx/MfcveZuttv9wsw+M9m++idKgwZyJLMWwOzv6ha3EerzIMUkD0wLh6ek5JGdXUqwRR4Y2whW8kD/OjWHDxfSp09f3v85mhdnvsizUx/nhY9eIDomGsBqQfWzSUnJIzU1D6f6POjVy6KNUH9+W6zkgUZTbnK8cArKC6wd4rxqcqdUbW0tu3fvpkOHxpdqFEKI1jZ79my+++pTVKq1dL/1LbKUCmZ9t5MBSiXjhofYXLkOLKZtWNnGEB7p6fmkFOYZH1fnaXFxdiAy0pe4WP1IJ9MV7dR5WhK25qApKDcbuQWwY8cpKhS9iLvxA/KPfM3zD01hzKQ7mfnki7h76gPW0MGk1VY3qGtlS2ioJznZpURG+eLv72Z1VT/DfoYO01+7Dd8NxzO8ZyGEuBwdO3aM0WPGUF1dTcm9D/BM8AbiWcDOb/Zz3GM0Q4Z0NK6kZ6kp9ZsMHUz70vMprL9mGhoXoaGegP5abFlQ1zCNrkBTjptS/+e24Zrc4agP1/S8ntExOXz3x0r+3JbKly//i2uG9APOdC6ZFi0/2ygqw6p94V29iYz0xcnJ3vj+LAv5DhuqzwHDd9NjGt6zEEJcLqJ8o3h96OvM3jSbWY/N4si6I/gF72TUlEfx9nbmyy934+vrQlxccKNTpM+WCWZthBSTNoJai4tLfRshrr6NYLLohlqtJSEhB42m3GzkFoCdHWhLq7C3h8i+kXy++nNefuRlnrjzCWbOmckt991i7GDSaqsb1LWyJTTUk5ycUiIjzdsIlnkwtD4HhprkgeF4hvd8ITS5U2rdunWteR5CCNFkzz33HD/++DNq9TFC/v6AUdf+hw0lWrbqSqnZmc2Ma8KNRWQtNdZhZdqRY9lpk5lZgrasmuhoFRERfmYr2qn89cNwt/+TS1FRJUqlo/E1+/cXsC8tn9yTWnpG+fHsOwv4edE3/P7jf9m+eQOPPPcaQ0dfZxyRVVNTx8aNmXTt0g5PTydAR6/e/mbnbDjP8rJqAgKV+Pu7MaC/eaPLsrj72DGd6d8/gMzMEtR5WuPxTEeCCSHE5SYsLIxJk+5nyZKPeHfhV4xfuwqPzR/Tz2kj/qcPkXtkJipVlNXXnq1+k+kf76adNuHh7di/v4AePXy4444Is9WaTGtU/bP9TCYYXgOQmVVKmbaGru278f2r8/i/RYu49t7nmTphFO8+c59xNJYhD7p0bUdIRw/clA4NOqkM51hYVEGZVp9Rlp1wloV8x47tbJymYWg4GY5pOhJMCCEuF6NCRjG7/2xey3sN520u5GdnkbbxJzy9prFr1yk8PZ3p2NGz0Wt+Y5lgmgeWnTaZmSVotSZtBItMyMwsYft2622Ew4cLKdVWk5VVWn+MSv797lxWLlzMJ698wr5d+5hw7wzApI3Q1aSN0Mu/wWp5mZkllJdXExBQ30YwyYSm5IFhBFj0BcwDqVIuhLjsBAUFsWDBEm65ZSzJyX/RoUM3ohRjKezmxN+nijm97iAzh3XG06V5K0WYXqhNO23UeVqKCitpH+jWYNit6fdBA9ujKSg3vtbwnK+vCzt3nsLd3ZH//e8o9p5xzHptCH/9+i4vzZpBXPw4HnnuNe64PYING45zMleLpqCcw0dOgw68vF3MptsZama1D7Q+5cTa+Vm+P9NaWkIIcTl77bWXyco6QkLCGibdMYWXX17KusTuPBT6HcFZb0HgPRA2rNn7Nb1mWnba2NsrjCOgrF1vQ0I8GDioPQWacvpE++Pn62p8PCrSF42mHFc3B9L3lPHCPQ9yYtIhZr/5Jb9vSWb+szO5/fbhbPgzg9yTWgo05ZRpq7G3V1BbqyMzq4TKihr6RPtTVl8fxdYURFvnZ/n+BgwIlBFSQojL2rSoaWQUZ/DNo99w/M0M9m77B1XHjgQFDSAkxNPq9bGpzNoIJp02arWWoqJK2rc/SxthUHs0mnLjay3bCEqlIytXHqG2tg4IZOazM+kR3YM3n3iTo/uP8sJHL5CR68DJk1o0mnIOHz4NgJeXi9l0O0PNrPY2MqGpeXCh2wgKnU6nu6BHvMQVFxfj5eVFUVERnp6eF/t0hBCN+PHHH7n99tsBmDhxHjNm3EWRrwOv/LYPOzsFM+LCUDk5mE1jM0hMyiYpMcdYFHzP7vz65bydzEYmmRZG798/sMGIpKb65ZdDbNhwHDelE926tSOskyc9e/lxYNdGPnz1WSorK7j/iRfoP/xGTpzQonRzICdHC+gICnJn9epjZOeUMnBgoLFQubUpfpbT9mw9Z15Tyo8CbRV2djCxbwfs7KyPMrOlrV432+r7EqIt0mq1xMXFkZqaSrduvZk48V1GD3Lj6tPzIDMJQofAoPtQF9SYTV0wSEzMJjEph6j6qQ5uyjPX4N71d6JNRyWdzC2jRw8fm1MDG7P8l0P8sz0X73bO2CkUxpFQLsoaXv78W5b+voVxwwfy8iN3U1fpYhwhZTinbX/noNFUNMwDK3f4Ladq2HouX1NuXsdKcxi6jQG/8Ab7PJu2eO1si+9JiLaoTlfHA+seYO2ytWR+kQlA/JSZXHvTiAbXa1vXx8TEbJKScoxT35QmeWA6Msm0MHr//oEtygMwaSO41bcRwjyNx8k8kslLD79E5pFMpsy6lx6DhuLu7tiwjZBtpY3QyDW/sefMa0r5UVBegKO9I+O7jG/2e2vqtdOu2XsWQohLxFVXjWHSpPsA+O23N7Czy+WOwSGseDiOIC9X5m84xJLtWaSna4z1PgySEnNISTnF4h/SSdiaTWJiDgkJ2Rw7Xmy2XWNFD9PT81m8JJ309PxGzzM9PZ+ExGy0ZTV4eTnh7GzP+g2ZJCbk4B8Sw7i7v6L34NG8N+/fvD77DjxdThER4UdQkBJ1Xjn79xdgZ29HcJD7WafbGe50WL5f0E/jG9A/EJW/0jg90TAdRQghLmdKpZIPP/wGDw9vDh7czY4dn9K5bwRM+w2GPwVZf8Oap1EfPGD1GrlmzTG2b89lzZpj7N9fQGJCDomJORw/diYTztxJVjS4A70vPZ/Fi9PZd5Y8ADh0qIDMrGIqK2ro0rUd6fvy2bLlBAf3l3PjoBv5YM4sUvcfZdi02azb8RddunjhpnQgNSWP4uJK3NycCAp2p0+0vtESEuKhn5qt1jY4VqOZoFIalwM35EFqimSCEOLyZaewY/7I+USN7o1/vAqALcsWYV9X2GBbW9fHpKQcdu06xbJlB9my5QQJ9Xlw7Fgz2wiLm9hGSMhGqzVpI6zPJCEhW//cdi2PvfkS191+HV+/+QmrvvyUslItanUZQUHuaLU12NnZERzsftbpdk3NA8P0xJQLmAcyfU8IcdlKS9PQvftk+vZN59ixvTg56ZdwDQ/wYOUjccz9XxqLt2fh7+LIYH8Xs9fGxAZx6PBpSkuryTpRQvsgJUVFFZzM1bJndz6Qj+EORP/+AVZHHlnWnbIcfWVan6qyshZfX1ciI3zJOlFCcXElmoIKUlLz2H+ggj6xj3LzlLv48NVneeS2MYydNBmvkEkcPFRN13Bvhg4NNp6DZT0rU4ZQVLo5mBViB/ORUlJTSgjR1hQXezB+/IssWfIEvr4OBAcrwd4eRj4HnYbB8vuIyv4vHgE34Boyzuy1SndH7O3tsLeHwPZuFBdXceRIIcczili58gidwjwJCnI3dkZZ3mW2VijcMPoq1mIJblcXBxzs7aip0VGgKUejqcDZxYECTTmHDhcS3acj+377jLkffMcLH3zHVz//wU1x47Ar9ye8q0kemNSvsqxpZRAS4kFhUSWFRRWo1VqrtUekppQQoi1xdXTlLpcXOHXzo1RkVYBah72u4SrTtqayxcQEcejQacrKqikrq6ZTJ0+OHCnk5Ekte/bYaCNYXHst604ZRl/FWORBSopJGyHSl6ys+jaCpsJsH/96+V/0je3LW/9+i51/7yVk4ESgH6NGhZhlgrUah5bvV6l0MCvEDuZ5IDWlhBCiGaKifAG49dZvUSpr6Nq1q/E5Z0d7Xp/YmyFd/Zjzyx7mbzlKNxy5pl97IiL8iI0J5tRJLQkJ2QDExQYR1skL0AE6du5Sgw6Ki6vJOlFMYiKMjg/F18/VZsdOUmIOe9P0d0ScnOwb1KdycbZHW1ZDxw6e+Pu7mXUI6afRRfDpsvX878eFfPPhW9TWrqTPkGlcNXgGPXvqhwRbq29lylDI3VrHldSUEkK0ZVFRvkyefAO33daH8eNHmC94ETYUHkxAsXwmoYd/JmvDXtJ73ktEr44AjB/fBXt7O6qraslT6+tAeXo6c/xYETm5WgpOVwD6/aWv1VBZWUtsXBB+vq5mK/GZduokJuWQtrdhJsSPDqWqug57OwU+vq4MHBhofJ1S6ag/trsb7865n3tvGcO/XvuUtxd/RXR4BMPjp5tNEVGrtRQWVRLY3kYmqJR4e+mv/d5eJWaNFKkpJYRoq+J6d6O07iU+evTf+Dn4ETEgosE2hsLm6en5bNiQaZyuFhsbzKlTWrZuzcbDw4kePXzw9HTG2EbYqQbq2whZ9W2E0aH4+rra7NhJSsphr5U8MDzv4mKPVltDx471bQSTLDH897Cxw+jWsxvP3vsC6eu/plvHCvxu627WsWRZ38ra+7W1OMfFrCklnVJCiMtWaKgXoaFeDR4/ffo07dq1A+C63kH07uDFjW9tYY+uEs2OE7zQ3QcHOzvihgRTUVlLcXEl2rIaRo0KBfQdP/rGh45jx4tJSVGjAPz93cxWULLs2ImJDTJ+N1tW1l9JRISfcaSS0s0BbVkNvn6uxucM7B0cuHHyvYwYeyNfv/c6a5Z/SPbB37n7sWcYMvo6MjNLyD2ppUcPH5urCBqOa/rd1mNCCNFWnMmEzsbHdDodRUVFeHt7g5svTP6JP+bNZkTtInz2vgLt/w1+XYmM8MPP19VYH6RMW0P8qFDUai279+jvioOOXTvVHM8oQleH2ap6hpX4TMXGBBm/Wy41bujMMtSL8vN1RaVSNugYiuwawh9fvcov6xKZ/cYXTJj1LDNvHcvzD95OoL8PmZklnMytz4QmLHPelMeFEOJyFxrqxf2h19A5w44nNj3B9/u/Z3rUdEoKS/DwNr/mWY5qAoiLC6aior6NoDVpI6hN2gjH6tsICittBIuOnZj6PIixkgcREX7GkUpKpQNabQ2+9Zlg2TkU2DGQz1d9zNdvf83iT74j+/ABnnrrKfwC9Sv65Z4lDwzHNf1u67ELSQqdW5BChkJc3tauXcsdd9zBJ598wm233WZ8/K8tmfzfmoPsq60kyNuVB0d0xq6yrn6qns6suLmpxKRs1qw5hrvSkfHju5iNlGqsU8ia9PR8UlLzjCOmevTwMRZOt+ywyssrY1+ahtDgIpI3fMmOxE107xnNpHuewMOvl3G7lpyHNVLovKG2+r6EuFKUlJQwffp0srKy2Lx5My4u+mncCQkn2LfuD6a4vI1L1SnoeTNqv3gys0qNnUTWpmPsS88nMSGHmto6HOztzEZK2So0bsu+9HxSU/JwdrGnTFvToGi6oYHipnRgR/IpMjOLiY0LZPuhZN744ieqqqt5fNqNTL9hLMePlWNakP28kELnZtriexLiSvHl7i+Zv2s+3XK6sfaNtTzz7jMMuWaI8fn09Hyzwt6WHUS2CoMnJORw6FABLi4ODUZKNfdabDgHw4gp00ywPJ+8vDL27dPg55bPyi+/pKa6hsdfe5zIQQPPet4tcSEKnctIKSHEZS0jo4i0NA1RUb6EhnqxceNGTp8+zT333ENERAS9e/cGwMHOjkFOrozt2Z4F+3J4ZVU6sQFe1J2stDrqyLQDqVs3H3r08DHerbBWo8lyZb+NGzMJCfHk2ms7GZ9LSc0jMTEHZ2d74mKDzOo+GYbNGpb83peWT+5JLeDHG18sYdffW/n6vVd5bfYU+sUMY8DIaVToOpmdjxBCXOlMM0GnO82mTZsoKCjgwQcf5Ouvv0ahUBAX1wG4hnfXdeR+1ef47V6Cs+sujpTeQJcewVZXUNqXns/q1cewt1MwdGgHs20MK/NZ1ugAfV0pszyof85Qg8rHxxl7ezt8fV3MXm+aCX9vy6HwdCXOLg48/cQt3H/rGP7vy2W8u3AFnyxeze3XXkOfkGi8vVzOX6eUEEJc5gx5MDrqFg6FHeKr779CW6zl9Vmv88nKTwjpGmL1dYbrr60VVtPr88DOTsHVV4c2yANofGU/a5mQkmLSRogLMqv71KCNsC+f3FwtPXv68fX6r/nvnP8y76F5jL5pNI+99Bj7D5XarCt1qZLV94QQl7W0NA1JSTmkpWkAePXVV7nmmmsoKyvjxhtvpKBAf1Fevz6D9esz0ewtZPVjQ+nVwYs/s0+T4w5BwQ0v2IYi5pqCigarLBnYWsVi48ZMdqfmkZCQbfZcdB9/PNwdqayspaKyFm1ZjfH1ISEe9OjhQ3Qff3r08GHosA70jPIzTgnse9UQnn//J26a8SZZGdl8/toM/lo2m/wT/6DT6VDnaUnecbJ+6qEQQlyZTDOhU6dO/Pjjj9jZ2bFw4UI+/vhj43br12fw+4Z8PsqbBePewaMqg5ucPqOzR67V/aam5JGTXUptna7ZeZC6u2Ee9In2J7qPP64uDuTllZO2T2P2ekMm9In256rBQURG+hqnA7bz8uDxKbfy9X/mEtsrmi+W/8rsj17j2zX/Q60pBDB2kllbkU8IIa4EpnnwypBXuPqhq3Hv4U5ZaRnP3/c8pcWlAA1WmzNcf21NZUtJySM7u5Q6G3kAZ2kjWMmE6Gh/PDzq2wgVtWi1VtoI0fVthKEd6NnTj5iYILzaefHiJy/yyEtPsHnNViYPn8aJQ/vNzv9yyAMZKSWEuKwZip0bvtvb27N48WIGDBjAsWPHuOuuu1i1ahXx8fq54PHxoVQUVjLGyZ061wp2FZXxQcIxHosPp72Xq3G/pkXMLedzG0ZRhYZ6Wg2tkBBPsjKL6RzmZfZcRIQf14/vQlJiDqGhng3qTlmOeBo7prPZz1lZpWjrIoge/S7tfTJI3vgt7zx7H8sXRhAddzOuvlcBwTJySghxxbLMhPj4eN58803+/e9/M2vWLPr160dMTIwxE3r29GN1/tU4hX1B9OFn8N35FlRNgp4TwaRQuunqdNam9aWkqPHxdbGaB5lZxYR1Ns8DQw2rrQk5uLk5Ehnpi5OTvXEbQ0Faw7aWMjNLyDpaydDuo3jothv5c1ciny5Zzec//ca0G0cxrPdg6srdjfsSQogrjWkeONo58um1nzIhbwL/PPMPWUey+L8n/495n80zK0quVutX2CsurqSoqIJevRpeQ023t3zOMA2v0TZCVjGdO1tpI1zfhaQkK20EkzwwGDv2TBtBoVAQ2nMAsbf9i93rf2L+0/O4+d6b6fnvGUDjK7ReKqSmlAWZMy5E25CamspVV11FRUUF8+bN44UXXjA+t3r1Ub79No3s7FLcOruT09GRijoddw7uyJCu/madTqdOlqEpKCcuNsjYObV4STqpKXn0ifbnjtsbruZhWR/KdHrfhg0ZbNqUiYurIyNHdqS8rIbGalpZ7te0Bpa/nxt7dvzN5+/+lwOpW3B0dmPkdZO4ddoMQrt2N77O8H7Ky6s5fKiQocM6NOjwkppSDbXV9yXElUan03H77bezdOlSgoOD2blzJyqVCtDnQVJSDkePFnLqRD7vjlxOb/4CVRTE/QtcPI21pHx8XQgMUJKRUUyfaH9jZ9HixemkpOYR3ce/QbFz09pQlrWqkpNPsm5dBsUllYy/vgtdu3obi6qfrT6UaQF2w7ani0p4+o0f+HHtnxSXldA7vCszbxvHPbdcjYuzE3CmlpW3tzOHDp0G9KsBNuj4kppSZtriexLiSnSg4AA3fnAjB185SF1NHQ889wC3zTxTgzY5+SQbN2ai0VTg6+vCyJEhZtPzTDudTp0qQ6MpJy7OpI2wOJ3U1Dz6WMkDaFgfyjQTjG0El/o2Qnl9G6EJ9QINnWm6ulqy9iax5ONF+AX4MWbqNDLzPBpMF7R8P+Xl1Rw+XMjQoR3MOrxAako1W6dOncjIyDB77PXXX+eZZ565SGckhLhY+vTpw6effsr06dOZO3cuw4cPZ/jw4YD+jsm114aRn1+Gn58r/h3cmf/PcRYmZpCeW4LriQr2puaTk11KvqacoqJKlEpHY+CYjqKyxjDqKXmHfsnVosJKvLxL6u966Dh9uoKavHKSEnMoK6uhrLwagFGjGg8clb+ywTa9B8QQ1t+B03XXY1+RxN8bf+OP5Yvo0qMnI8fdyMixN5KSWkJqSh75+WWUlFQB+lFYpjWxisqrycnR0t/Xg7BO3i392C8ZkgdCCAOFQsGXX37J7t272b9/P9OmTeP3338HztxJj472Z+/edpTEf4ymdCVe215C8duT2A/5F6kpduzadQpPT2d8/VzJyysHzoxgMh1FZclyCe7Cokq8vfTX3ZAQD4pLKsnJLiUxKQcnJ3sSE3MoL9NnQnwjmaBSKRs8387Lg25+/bixVzDVzmoOa9J4+JX3mfPel9wUH8sd1w0nL9OZPXsKsLODUye1UL9qVKRJcV83pQNoNHi5lxB8YVcFbzWSCUIIgO4+3Xl/2vtMPzqdnEU5fP7G5/Qa1IvIvpGAfmRSv34BFBdX4unpZFbbSaVSGqf65eSUkp9vpY1gMorKGstMKCqqxMvLoo1QU05SUn0boayJbQSVSRthdGdG3zict59+m69feR1l+14UDbmOa6/t1OB1hveTl1dGaWl9G2FsZ7OaWIVVZahzq+jtUGR11fPzoU11SgG89NJL3HfffcafPTxkmVshrlTTpk0jMTERgMGDBxsfDw31Yvr0MxfV1auPMrDUni4hvqzLKMDd0Z6QcE/aOTuiCnCjsrKW6D7+Zp041kZIWTIMvc3KLGbnrlP06xtAr97+FBdXoykoJzLSl337NOTmGJaX1bNWQL2x0VcxsUFoNOV4enZnxMhnqSnZw8bVv7Doo7f58t1XCA3vTbv2fekW1o/TpQEMHdYBMB/OW1pdw5HDRaQFaNpEpxRIHgghzvDw8GD58uXcdNNNZiNnQ0O9jH9kT5qkH2G6evUYjlZ7MN3pHdw3vkp8wDXkde8JKAgPb0dhYSWhoZ7GhkpkhJ/VKXamDHlQWFTBjh2nOHToNKNGhTD++i4kJuUQW79MeFB7JTm5ZzLBVrFcWyOwDHWnAlRhKBRX4XZ3NXuO72Xxb3/xzYr1tPP0IKpTN2J696Rr9/a4uyqNnWmmxXS9a4tx8y4kuPd5+fgvCZIJQgiA0Z1G89ys53juyHN0DexKeNSZEaFmnTtg7DwyPBcd7Y9WW42zsz0qVX0boX7an7GNYGWElCVjGyGrmJ07T9GvXwC9etW3ETQmbYRcizaClUywNvqqQ1gH3l3yLu+/8j2rvvme1N+O81tYJdMfHo/CZGq6ofPMdKQUWLQR6rQcO1xKmotGOqWaysPDg8DAhlXyhRBXpo8//hh7e/tGtzGdcz65uoonfkwlzamSLjoFV0cGMKC//ppiGPkE1le8S0/PJyExB18fF+KGBBtHTBUVVoAOQIfKX8lNN50Jv65dvY3hYmA297v+OJYrb5g+FxsTbLYflf84hsSPo0xbSuKfa9i0ZjWp25eTsvkb3D29UJzuj/pwNIEhkQT6d6BDByUllbUoUBg/i7ZA8kAIYSoiIoK0tLQmZkIcmm6jcN89F//dP3J3x4Os0d6Iv78bY8d2btBQsWQ65W9IXLDx7rharSVPXU5xcSWZmSXExgYTGxtsfN0NN3QxywRbtUCsZoJKadyfacNl4vV9eOHhO0lJP8qCnzewdutO3vruGxQKBb26dWJvXncG9upG56AOhHbywNdXCZpivMK9z+HTvvRIJgghDB6MfpCD8w6yKXsT+4v208u/l9XtTGs7gb72k6EIuenqfGfLhPT0fBIScvD1dSHOJBOKiirqt9ChUjWzjaBqpI2gUmJnZ8esF6YwZuIwPpz7IYv+778cSE7kkRcfoUOYvvPJ19eV8PB2DW58mL7vwqoaHBSOrdpGaFM1pTp16kRFRQXV1dWEhIRw55138vjjj+PgYLvvrbKyksrKSuPPxcXFdOzYUeaMC3EZMl0K3FpPfm1tLb/99hs33HBDo69183HmgYXJ7MguwqdOwV0DOtK7pwp1npaErTkNakz9vuYoWzafwMXVgVOntHh6OjNpUjdjZ5a1kU+Nae5IqbPta8mSA2QcK6BLaBEejsfYv2cXB/bsoui0PtScnF1QBYcw5tZpfPbqnDZRU0ryQIgr29nyAGDPnj24ubnRpUsX26+P9CG0YCXVq56mulrH0fZT6TlqJGq1lq0JORRoyomNCzIbKfX770dZtuwgVdV1dAh21+eBSU0SW6OfrGnuSKmz7WvJkgNkZBYR2dsDB49Ctu5MY/vug+w9lEFdXR0A7f19CA9ux5qVv+Da0XpDrTFtIRMkD4RoW6xlQlVNFZNXTyazJJNHej/CieQTxMTHNHit5XVYrdaSkJBjVk8qMTGbpKQcYmKCzG40/P77UbZsOYGLi0UboT4TmpMHtrZvrE6VgU6nY+varXz00kcUqAu45b5buPb2iaz4NYOMjCKGDAnmppu6WT2m1JRqpscee4x+/frh4+NDYmIic+bMITc3l3fffdfma15//XXmzZt3Ac9SCNFaDEu/AmaNkISEE/zxx1H++GMuf/+9kYULFzJt2jTj8xkZRSxcuJf8fH2dkHHjOrP04Tgm/WcDKXUVfLEzi3td7aku1E+7O3yo0Gz++JbNJzhypJDA9u707RuAs7M9RYUVqPO0qPyVaPLLOXToNFVVtU3qnLK2Ep/lY+o8Lck7Tja6L3Welg0bMjly+DTFJdVERIUzZcYkQB9OJ7MzyTx6iOyMYxw9cgRvnzZSPATJAyGudI3lwfr1GSiVR3nhhZmEh4eTlJSEm5ubcRvLTAgdN5UvVtozpvxlotSfo03MItMxngJNOYcO6/PAtFNq85YTFBVV4u7hyMBBgbhZ1CTJ11jJBBuNEWurLlk+bmiQGB63Rq3W58HhI6cpKa5CV+XLtJvimXZTPADasgp2HzjG4cwcDmXkcCLjKK6uLk3+vC91zc0EyQMh2hZrmeDk4MTdXv/hP7kzefS2RylKL+KFj15g5PiRxtcZrp3FxfpOasO1t6KihsP1139fX1eSknLIzi4lI6PYrFNqy5b6NkKgSRuhqAK1WotKpUTTjDwwPX5jj6nVWrPMAX1txaFjhjJoxCAWf7yYHz5ZzK/frca320gUHl3RaCq4mC75TqlnnnmGN998s9Ft0tPT6dGjB7NnzzY+1rt3b5ycnJg5cyavv/46zs7OVl87Z84cs9cZ7oQIIS4/lkuBG6xfn8Gff2bj4hIGbOSBBx4gOjqaPn36APqgys+vwM/PlagoX37++QDLlx9iYKQPAZUO/GNXxceJx+iMI+HtXOkT7W9W5NxQo2nosA707x9Q/4d/IV7eLqj8laSk5vHPPyfZszuP0E76uwTWOpIsV9drrOPK2hQ/a9sUF1fRpas3bm6OxMUGGZ9TKBS07xCKvbMfOZpQXDsOwqfjpT2tQfJACNFUjeXB+vWZDBrkgYeHB7t37+bBBx9k4cKFxjobppmQmVnE5MmriIwMY7H7R9zbfhGqjBWE6HZzqt2dKPv4NyhwPqy+JkffaH9COnqSk1PKydwyQN94SEzIYdeuUxw96m5sHNmaAmhY6bWxmlVNWe7bkAddu+jzIDYuyOx5pZsLXYJDyD3uQIibP9PviLR5vEtFa2aC5IEQbYutTPhnUwlOu27GqdP/QTq89dRbdO7RmdDwUODMtdPT05mQEA/jiKiOHd3p08ef6Gh/MjNLsLOzIzjYvUGBc0ONpqFDTdoIhwvx8nIxFk7/55+T7NmjX9EPrF/HDavrNWU1vsYywdnFmemzpxPUvR+L/vslmf/8gm9QKH7XTm+wH8N77X2VkqsGtu7175LvlHriiSeYPn16o9t07tzZ6uODBw+mpqaG48eP0717d6vbODs722ygCCEuL6YFa03Fx+uD5eqrX+T113P5/fffmTRpEsnJyXh7e5sF1YkTJcydm8ipU/oGxPffX09+SSUPL0pmW1YhTkoXHhzfDRdHe+OUuv79Axg7Rn8dSt5x0iy8QL9KX052KVXVtWaPW8rMLGHnrlNUlNeizitn1KgQmx1OlnPcG9umqqqWjIxiABKTsklKzCEmNojYmGAyM0vY/k8uheVVKN0u7UiQPBBCNNXZ8iA+PpTrr19CfHw8ixYtIjY2lpkzZwLmjZf77lvL33/nkpdXxh9/3Aq6q8nf8CXtEl9kbN1H2A1/FIL0HUaGEUv9+weY1Z0KbK+kRw8f4zXZx9elPgs8zR63lJqSR0pqHlptdaNT9JqTByEhHuRryklNyaPwdCUnT5UZpyCWaWv4Z3suRUWVdFQq6Hxtkz7qi6Y1M0HyQIi25WyZoBzwJnOPP4I2XcuLM1/kk/99gqvS1ezaqdGUs/iHdE4X6kdNPfHEQEB/7R86NNjqlDpDHoC+7lSDNkK0Pzk5pVRVNaGNsPMUFRW1qNX1bQQbHVNNyYTogV3weeNZ9u/aw8qFPzD/6Xms/mE5gZFXM2bCQGJjg0lKymHv3nxqHEulU8rf3x9/f+tLKp5NSkoKdnZ2qFSq83xWQojLSVxcB+Li9HcqIiO/JSKiN0eOHGH06Ils27beLKgWLtxLdXUdAQFuTJyoLzbo5+HMDw/G8ulfh5m/4TAvrkzj4RFdUFsZrRQS4kFWZgmagnI0+eWo/JVERPjh6+d61ql7ISEe9OsbwLHjRcYiuLa2tTbFz9Y2i5ekk5qSB8DRo4Xs26ehorKG2Bh9gA4a2J6cgjKioi7t6XuSB0KIc2WaB9CB1157jWeeeYaHHnqEwkJfnn76ZrNMaNfOGWdne9q1q++gUCjwi78Peg2B5TPgrzehx3XQ584Gd6dDQjzIzCrh+LEiYuOCjA2IIXHBhHT0POs0DcMILGcX+0ZHQtma4mdrmw0bMklJzePo0UJyckupqdGhVDoyalQIAwe1p0BTTnh4ddM+0ItIMkEIca7OZEIc5Y5ZvHTbS2QczuDpe15i/pLXGlw7a2p1tPN2JibmzGhTa9dga6OVQkI8yMoqQaMpR6MpR6WqbyP4up516l5IiAf9+gVw7JhJG6GZ076tbXPo0GnChkwn2iGbhP/9wqHU+Rz4OwrfDx41vsfe/c9e6+pcXfKdUk2VlJTEtm3bGDlyJB4eHiQlJfH4449z11130a5du4t9ekKIS4Svry/9+/+bNWv+TXLyRt58803mzJljfN70LvqZhgvY2yl4eGQ4A0J9mL00hVd/38+Y7v50797OeCfCMAqptraOgoJKs7pTjXUimRY2HzUq1OxnA0Mx9aHDOhhHZTWVYaphdB9/amrqyM0pxc/X1ViT6qabwinQVmFn16zdXrIkD4QQTfXUU0/x4YcrOHHib1566SFmzBiBn9+ZDvrHHutPZKSfMRuMAiLgnnWw5hnY9S2o0+kU8SDgY5zikZhkngeGKXhnazBYLi1u+jPop1Rs3JhJSIgn117bqUnFcU0ZOrtqauoor6jB1cWR0FBPMjNLGGLoPNMcbtY+L2WSCUKIpnh+9PMsvfNP9n62iT1Jf/Pz1z9z84ybjc8bpuZFR/sb/763xXK0kmEqnNU2QiOZYHr9HzUqtEEewJli6kOHdjCOymqqM+8piuDwnvzx81qKM7fzwPUP0Puqvtw9eyodewc0a58t0WY6pZydnVmyZAlz586lsrKSsLAwHn/8cbP54EIIAXDvvWMpKDjC9u0f8uqrr3Lvvfca77aa30VvaHBnX/73yBCeXJbKb+lqevi7E1unX8Q0KTGHvWn5dOzo0aDulKn09HxSUvOI7qMPNcPdlKLCSry89UETEuJxpnCtv9JYTB1odqdURISfMfh8/VyJiPClqLDirDWpLleSB0KIplIoFLz66gc8/PANlJbm8t577/HKK68Yn280E5yVcMP70CkOfn8Kv+0v4hBxD4czu7Bxo75uSMeOHkRbqTtlYK1ulCETCosq8fZqmAmJSTns26chJ7eUiAjfZndKRUb4ERnhh1qtJSLC17jvs9WlulxJJgghmkKhUPDciPk8pb6ZrGWHWPjfhYy5eQzuXu6A+d/TZ2O4jhqu24apcB07ehhrUVmTnp5PSkqesePL2EYoqsTLSh6oVEpjMXWg2Z1SZm0EX1eiek7hdMFEEtclcODvDTx+6+N0i+7G5H9NbtHqe03VZjql+vXrx99//32xT0MIcQmxtST4pEndmTjxfV54wZtJkyY1efi/YdWm+PhQvpg6kC82H+GdPw5yLE/LdZXVxNQXEm/n40xOdqmxYKGllNQ8UlPyOHSogIryfUT39adHDx+zjiLArNPItJh6c6jztCRszUFTUE5crH7ZWpW/EnWe1tgB1tZIHgghLNnKA4CpUwcQHb2GZcuW8eKLLzZpf6Z5EBd3OwT1g59n4L37A5R1gwgNGY2ziwM+7ZzJzrGdB4a6UYcOFVBesY9h9cVwAQqLrGdCbEwQlRU1hIR4NusabrjDbqgz2Cfa37gsuYFkghDiSmArE26/pTdDx2zkqqqr6DC8A/Zu9mfdl2VHkoFpZ79hKly7ds7kNJIJKSl5pNZnQkXFPqKj69sINvJApVKaFVNvKss8MJy7SqVErdbSzucaHnhyIkf37mHxZ4vJP5nf5H23RJvplBJCCEu2lgQH/d2Ql19+uVn7M6zaBPq75w+M6Erp8VK+2HOCFcfymNgvmNmzB/Duu8nsTdNfvGNjghvsxzCC6u+/cziZqwXg1lsirHYUGf577JjOZiOkLEdbWaPO0y9juyP5JGXlNU2eTiiEEG1NY3kA+hXZevfu3eT9WeYB/t1IjFxAXcZzxDqvpavXSRxv+jdvf3actL31eRDbMA8MI6j+/juH3JP6PBg7trOxYWAYKWVgqDliua+zrdRnuqx5SWk1eXnlAE2eUiiEEG1JY5kQ7BHMis9XcN8f97EwbSEze8/ErpEaF4aOJMDsb/KqqlpOndLSubMXsbHBxMYG8847/7C3kUyINsmEk/WZcOut+mncXlbyAPSZYTpCylYnmak9e/LYuVNNVVUtJSXVZudumgcBATF0j+2Og13rdhtJp5QQos2ytfyrgeEuiZeXE9u2bScnZydvv/2K1W3BvN6UgTZDi++OEhxjfVi2M5v0kyX0HaS/y20YOWXJMFTW29vZWCcKzDuK0tPzOXToNEo3hwadR+o8Lct/OUxWZjFabXWDwFHnaVm79jipqXm4uzsSEuqJm5ujzemEABpNGTk5Wvr7ehDWydvmdkIIcTlqah5ERflSWVnJM888y+zZjzFkiPWOKmt5sG7jKdZvncCjo6K5teYzWPMU1/e+BfAnNsZ6Hhim0nl7O7N5ywmGmdzpNm0Y7KvPBDelQ4POo33p+Xz77T5K6xsWpp1SarV5HnTv7kOvXv7GkVLWqNVa8g9q8HIvIfjSXv9CCCFa5GyZ4FfRlfFu97G84GNe+fpd2hf4c99T06xua1prylRGRjF5eeVkZBQbO6AMI6ZibGSCWRuhvk4UmOeBsY1gJQ/Uai3Llx8mK8tGG6E+E5KTT+HsbEevXv44ONjZnE4IkK8pQ51bRR/HIqs3dc4H6ZQSQrRZtpZ/NTDcJdFq1bz//u3U1lYzYEBPbr/9dqvbW6stYmiQXD0qhCOKGt5Ys58TDuU8cFcPwgP0dzAMhcuNQ2TrRzeNHdOZ/v0DyMwsQZ2nNet8MkzxA31AmRY/z8wsoaK8GgcHBb4+rg3OMzOzhG1/56ApqCSskye3397jrKOisnNKOXK4iLQAjXRKCSHanKbmAcAHHzzHmjVL2LNnG3v2/IOLi0uD7RvLg+D4YRBxO/x8Lz2yF9Fj6Cjo3xewPoUuMsKPsWNN8kCtbdDQMEzzA4z1oAyZkJqSR2lJNe4ejg06mjIzS/h7Ww4Fmko6hXkalxG3dofe9DV5x4tx8y4kuOmDx4QQ4rLRlEyoS+mFStGHP1/7Hmohok8Xhlw7pMG2tmpNWeusMoyYMrA1ja6xTLAcmWWaB5mZJVRU1LcRfG20EbbloNFUEhbWtMUycnK0HDtcSpqLRjqlhBDifIuK8kWtLiM/34kxY6by229fce+999K7d28iIyObtI8OHTwYOLA9IR09GRrqxYDQdjy6JIW3/jjA9b2DGNzekz//zKK4uJLSkjNTJgwdTYbpFGBecNwwqsnb25nFS9JxcbZHW1YD6IfrjhgRAujo1bvhnY2QEA8GXxVEZmYxI0eGNOiQsjb1LzjIHQUKm3eMhBCiLTNc+7y8nIiPv4etW9dw+PBeZs2axaefftqkfRjyoEMHD/Dxgrt/hw1z4e9PIf8g+REPsuHvSptT6HbXT6fo109F/Cjz63afaH+02mpqaupYv+E4ACdzy4zPGb5bTt0LCfHgqsEmeWCl8WE59S8kxAO3Ck+8wr2b9L6FEKKtMbQRPPMf4eio7Rz/4xCvPf4aX6z+guBOtjv1Tfn6uhIe3s5q5xCYT6suLbVoI6gt2ggm125DJ5e3tzOLF6fj4mKPVmuljdDLRhuhkUywNvUvKEiJg8KxVdsI0iklhGhzEhJOsGzZQYKD3bnllu42e/VDQ71QqTQcOVLIzJlPUV5+jD///JNJkyaxfft2PDzOXvDVck56zw7efHxjL/7z6z5WpuaQsE+N87FyQgKUxMQGGUdKgf5uRXFxFfb2dhQVVpiNljLcdXn/g52kppyie3cfrh4Vqq8n4q9k1CjbdzVU/kqm3BUF6EdpJe84aXwdNByFBeDr64a/vxuhIa1zB0QIIS4GQ0Hynj39cHV1tFroHM7cNV+9+iiFha489dR/efHFe/jss8+IiYlh2jTr0zZMNahR4uAE177GKeUAvDfNxvvvF/FSx6FVxhAbE2RlCp2Cyspajh8rbnBnPDLCj/37T7Nhw3HatXNlxIiO9OjhY6wxZa2OFOgbMlOmRBl/Nr2jbti/5SgslUqJyt4Xgtpe0XMhxJWtJW2ENx9cwszMURTuL+S5+57j05Wf4uLacAStJWurmppeg/fsyePw4ULat1cSU58Jhg4nszZCUYVZJhjbCO/vJDW1vo1wdajxut5oG8EkE9RqLcnJJ83ywFp9LD9fN9qrGh9Zdq6kU0oI0easX5/BH38cx8/PlchI/QXV1qpLpnPKFy9eTL9+/di/fz/33nsvS5YsQaFQALZX6bA2J/3YwSIiChVEdmvP0sOnKAhyINjHiZirgswKnxsKFBYVVpB7sgwv7xIr0+x01OnAxdWBAf0DscZ0ah9wpsHhrzQPxPp9GzrFGqsxJYQQbYGhIPnBg6fp3NkbtboMlcp6HoDpNb0XOl0mL774Ig888ADR0dH06dPHuJ21TLBVo2RHcTR7KudzQ91/GafahMbxBL59n2gwha53Lz/y1GUUF1eSmVnS4A52gaacmuo6XF3s6d3Lz+aUC9NGD2DWCWWtkWQ60koIIdqylrYRfl/+O8OuGkbGgQzemfMOz/73WWMbwVpnP5z5O9+0OLnpNRgUuLjYExbm1WBan7GNUFRBbm4ZXl4NMwF01NWBi4tDg5VUDZqbB7bqY7U26ZQSQrQ58fGhFBZWEhzsTlSUb6MrbBjujmdkFJGcXMr77y/gttvGsXTpUmJiYpg1axZge5UOa3PSTUPs+kHB/GfVPv4pLKV8wyHuiQvD09UROFPY3Nqqewaj40Px93czdiCZdkAZOpnMAw6zTihrgWhr7rsQQrQ1hjpPhpFSarW20VX4TDOhX787GTFiK5s2rWPSpEkkJyfj7e0NWM8EWzVK9JnQiwLPb9l78Dsicz+E356EAfdApzjjdvo73CFmDQhTsXFBKJX6ulHW7robHrOZCSrrmWAoti6EEG1dS9sIBcdUPPfWK8x94GnWL19P74G9GT95PGB9RJThvy07ksyvwR54eTlbvd4bXmtt1T2D0aPr2wj1HUjnIw8uVhtBOqWEEG1Ohw4ejB7dyeaoJmsMoRQT04V3332Xxx57jISEBP71r3+hUCjOukqHKdOGSShe/B6pYkHicd754wD/WbmXqYND6d/Jx7i96ap7lizDwdrIJ2uhYvjvxvYthBBtXVxcBzp08DDeCY+K8jWOlGpMWpqGbdtOMnPm6xw7dhCNRsP+/fu56qqrgLOv3GTKrLNqyBzIvwVWPABJH0DWNhg0E5z112lrjRgDa51H1hpDjWZCI/sXQoi27tzaCDdz6+M7WPruUtb8ucbYKWXtmmuL5TX4bNfjxq7ZjbYRLrM8kE4pIUSbY3nX42wrbIB5A2Ps2EcICQlh/PjxxqG5TdmHLXZ2CuI7+qDoFcrSTDWfbD7KgIzTTLkqBKWzo9XRT7ZYCxdNfrl+aVg3ByIi/KzuIzEpm6TEHGJizacQCiFEW2eaCePGdW7Stdw0E3799Vc8PDzo3Lmz8flzyQT8upJx9Y9UbHib8NyvsFs9GwbeBx0GALanglhjLRPyNfpMcFM6GGtEWUpMzCYxKYfYmKBGV+ITQoi25FzbCEvGLqHOt479QfvZdWoXfQP6nnPnTmPX/HPNA019HiiV9W0EG3mg73S7eHkgnVJCiDanOXewDSxDacKECcb/1ul06HQ67OzsWnxOaWkaju3W8PDgYA73ruPTv44wZ/leYlSeqLAn96R+FaXGOqXUeVr27M4HdGASONYKl1tKSsxhb1o+FZU1ODnZN5hb7uDm2OL3JoQQl7JzzYTQ0D5mz9XV1Z1THgCk7S8iKfM6ruk9lKH5r8KWtylQ9qK23wwyT2J1Kogl01XzTLezLFxuTWJSDrt356HRlNO1q7dxmoix8WN/Tm9PCCEuSeejjbD46cVMWzON7/d/j5+rH8HuweeUCY0VRDfUlDJ9zhrTVfNMt7NWuNxSUlIOe/fmU1Fho41wAda8kE4pIUSbc053sC1otVpmzpxJhw4deOONN1q8H9MQHB/qxbiegcz8+h82ZJ/GpaKOWB8Pm8N+DSOpigor2LlLDTrw8nYxK1yel1dGXl4Z6en5VkMnJjYIAFWAm9W55Z17+DR4jRBCtAXnMxPWrFnD7NmzWbduHcHBLb+jbMiEkKheELyJA1//h7Dsr2HLM5RVXI2b12CrmWDacWSr88nb2xk7O/13W2JjgtBoyvH0dDYWVTdrGIW1+K0JIcQl63zkgYO9Ax+M+oBJP05i9ozZjB48mvufvL/F+7NVEH3LlmzKyqqIjPS13Uaoz4SUFDWHDxcC5p1P0dFNaCPE1LcRVDbaCFFOLX5vTSWdUkII0YiNGzfy/fffA3D8uBePPjqFuLgOzd6PZQh2b+/JV3f0Y8abCWS4w19lWvzzShjl54Zd/ZRBA0NDoX2gkn59AwBdg6KEhtFSKal5VgOna1dvnJzsUbo5oC2rQenmQE6OlvaBbk2aAy+EEFe6uro6nn32WdLT04mJGcu33/7K8OEt672xzASXa+eQlBxP8M7/MMxlNacq01C5PQGY3xk37TiytWpeYWEldXX677Z07erNqFGhGPJErdZSWFRJYHtDJpS26H0JIcSVwMfFhwm1E9i0bROLty+moNSbCbdd3aIi4bYKotfV1aHRVFBRUWtzlJQhE3x9XVEqHRusmhcR4WccLZWScpY2gtIBrbYGpbK+jWDMA9tZcr6c29hjIYRo466//nrjCnzLlr3Mjz8m2Nw2I6OI1auPkpFR1KR9d+ncjlenRjPJ3Zue/h78mHyCl1bt40ieeWMgJMQDpZsjx44XERSkZNSoTg2m+UX38adPtL9xlT7QD+VdvCSd9PR8Y2hpy2oY0D8QbVkNuSe1ZiOuhBBC2GZnZ8fSpUtxdnYnK2sPzzzzjM1tm5sHoaFeDJ8Uz6mxP7KKh/BxOA2rn4TdP0JttXG7kBAPevTwoaqq1jh1z3KKniELLDur9qXns3hxOvvqM+FkrhZvLxfjKCnTn4UQQjRu1j2zuO7O60AH6xd/yZaN+21uq1ZrSU4+iVqtbdK+VSol48aFMXBgYIOOJlMhIR4olY5oNOVER/tb7XSKjvanTx9/s/2k1+eBWRtBW8OAAYFotTXk5mrxuoB5IJ1SQghh4eefDzB58ip+/vkAAP/3f/9Hr14Dqa0tZ/XqeZSVlVl9naF4YlqapsnHiovrwNvzhrJi9lDevz2a2jodr/++n883H6WkQt8QUfkrqais4fChQuNUDUsREX7ccXuEWRgZRk8lJOZQVFhpNirK0LCRUVJCCNE400zo2rUrc+e+B8Dffy9l6dKlVl/TkjwAiBsSwvVzX8fxsW3QfRzs+xX+9y/9Kn3oGyoDBgSSkVFsVk/QVGSEH3fcEdGgsyo1JY9//jnJ6tXHcFM6mGWAZIIQQpydZRth2VfLCOzagdryatb99CFVlVVWX2fo+MnMLGnysSLqr+WNjb5SqZRUVNRw+HAhKVbywNZ+DKOnEhJyKCqqNBkVdXHyQDqlhBDCwvLlh9i8+QTLlx8CwNHRkTVrVqBSqThyJJ0HH3wQnU7X4HVRUb7ExAQ1q3iigUKh4IboYNY9Poz7hoaxO7uQOcv38PveXGrrdISGeuLv70poqGeT92m4U+7r49JgVJTKX8mA/oEcPlzIq68lsXz5QfLzy5t93kII0dZZZsIzz8wwjpK65557SE9Pb/Cac8kDADyD4NZvYMov+v/e+l/YMA+KslGrtTi7OBDe1bvBaKjG9In2JyjYHXs7BWX1d8QNd8ENnV07dpxizrObSUzKbtl5CyFEG2aZBy4uLiT+sRkXTxfyj5zi5TkvW31da3b0tKiNUD96ytfXpcGoKEMeHD5cyKuvJrH8l9ZvI0hNKSGEsDBxYrjZd4CgoCB+/PFHRo0axaJFi4iNjWXmzJlmr2tJ8cSMjCI2bswiP78MPz9XRo4M4bnrIrl9YAiv/LaPn3dms+lAHtHe7qgC3HBysr4kUnp6PimpeUT30Q/dVedp0ZbVMGpUCHBmBQ1LSYk57NunISdPS3h4u2aduxBCXAmsZcLLL7/Mtm3b2LhxIxMnTmT79u14eJy5xra0mG5CwgmWLTtIcLA7t9zSndDOI+C+jZD8FWx+C37/N3bu/anTDiU6OsTq6nqmq/JFRviZFUefOiXSZh4AbN5ygiNHCtnlWkXstGafvhBCtGnW8iAsLIylPyzlhvE3sHXZVn7s/yO3Tb7N7HXW6kadjVqtZc+efIqLK/H0dKJXL3+r+3BysicgQGm1jWC6Kp9hpJRarUWrbUIbIUnfRsgtrKVHuKpZ595c0iklhBAWJk3qzqRJ3Rs8PmLECF5//XXeeecdunXrZvW1GRlFpKVpiIrytdkgMd0mLU3D2rXHyM4uJSjIHZVKSWioF11U7nw9fSAbD6h5e+1BNmQX4OPsgG9VFck7TuqX7PZXGjuj8vLKyMnWz1OPiPAjYWsO2//JZdDA9tx0U7jNulExsUFUVNYQ0NGD4GD3Fn5iQgjRdlnLBAcHBxYvXky/fv2Ii4vDwcH6n9TNzYT16zP444/j+Pm5Ehnpp3+NgxNc9SD0vBn+ehOfnd8y0WEXpwuHsmvbNQSHqYwNlX3p+Xz77T5KS/TTvyMj/Ni9J5+kpBzaByq54YYuDBgQaPO9DhuqX8ijb9+Go4GFEOJKZ6uNMP668Tw550ne/+R9tlVtY3zVeNyc3My2Mb1BYKuDynSbzMwSdu48hUZTga+vi80aT4YOJaXSgeTkk8b9p9fnQUl9Hhg6pRIScti+PZdBg+rbCDbOJSYmiIqKGgLCFK3eRpBOKSGEaIZ///vf3H333fj766dMWDY4DHVEAJsNENNtoqJ8ufbaMPLzyzh9uoJ1646za9dJ9u0rYOLEcCZN6s6wcH9W7Mrmg42HWX5IjSd2DCv1YcIwN2NNkaBgJX2i/QkN9SR5x0myThRTVFSJpuDMcFt1npY9u/V3XAD9XZfe/sTGBFOgrcJOJnQLIUSTBQQEsGvXLlQq/R1kax1Qzc2E+PhQCgsrCQ52p7y8mnnzEnBwUJhkwtvYXfUQbHyVdmkr8FAnkn96OFx9GzgpSU3Jo7SkGncPR/pE+6NWazl+rIjCwgpAf0dcpVKiVmvZvScf0OHm6khGRjF9ov0ZO7YzY8d2Bs3hVv70hBCibXnjpTe4YcoNPJ78OF/s/YLbgqZz4kS5sZPIdPXUs62mB/rOpn79AigurqS0tJqUFDVHj54mK6uUmJggYmODjftSqZQkJ580239KSh4lJdV4eOhX5TN0eGVl1bcRNCZthPpRWTk5pVRW1hIXp99/bGwwBeUFONo7tuZHJ51SQgjRHJmZxaSllRAV5URoqBd//pnK4cP6O8qhoV5ERfmiVpehVmtJSDhBUVFVgzvkhhojhsenT9c/N29eAps3Z1NYWGFcynvSpO442Ntx84COXN+nPR+tOch3/2SxKiOf3b9pie7oTm+dH32jVURE+LFhw3EStmYT2F7J0KEdzFbjy8wsYecu/R0XgLraOjZsyOT68V3o0bvpdUmEEELolZc7s3r1UaKifNm9W80ff6QA/Y3X/JZkQlycfrTSvHkJrF+f2SAT8O0MN3/Fyc73YP/X67Qv3AC//gWdr6Zf1FAgiD7R/vj5urJhQyYlJVVE9PClU5in8Y56ZmYJu3aeQgfY2Sk4criQhMRs7rwjwtjQEUII0XQnTpRScjSYR8Kf5t39L/P1sQV0LBsN6DuJQkI8KCqqpKiogvT0fLTamgajpkyLjatUSkaN0j+3eHE6aWkatKVVlGr1I58sr9WmrwWMq+0Zpu5t2HCcnTvVBAbWtxGiLdoIO0+RkVFEXR0UFJSzevUxYmKC6NHXtTU+LjPSKSWEEM1gekd7x44NPProNG68cQb33z8P0HdMqVT6bTIyiqmpOdNhlZBwgvXrM4iPD2XcuM4N9h0fHwpgdlfclIujA0+Mj+Sha7uxdMcJFiYcZ+WRPFQezgQq6uhcXQsoQAFB7d0ZNSrU7PVKNwfatXMhMFCJu9KRhMQcsnO0JCXmSKeUEEK0gCETSkoK+fjjp0hL28v06VuNz9vKhBMnSox5EBfXweooqrNlQlC/OOj7P8hN1RdCP/A73XXr6N4pBgKuI/loDcXFVQQGKhk1KqRBw6dL13YUaMoJDnbn+PEiCk9XkpiUI51SQgjRAoY8iInpT7+cfiyau4joSXlce+2zgL5jystLPxJKrS6ntlZnfNy09pO1KdaGDiR7e4wjpSxZ1q2KiPCzWLlPAUBQkJU2glLfRvDwcMLBwY7MzGKysvQrBfbo26XlH0oTSaeUEOKK15SaHwamd7T/+qsUrbaUH354n7vuGkNo6Bizbby8nIx3xQHef38Hf/6Zxb59+cY74abi4joQF9fB7HyscXVyYFpMJ24f2JHVu3P5OuE4P2zP5OedJ+gV6EGfmPb06uYD6KfsGeama8tqcHHRLwM+oH8gAYFKkhJziIltGGxCCHGlakkmhIY6oVZno9Gc4t//vp8//vjDWGfKWiY89dSmRvMAmpgJCgUERcMtCyH/ECS+D/tWwvEt9PEIxTc8FmXEMOOUPdN6JiEdPSjTVuPv78add0ToO6SsNHSEEOJK1dI2wlWZV/FN1TfsWpLIxmGruO06feFz0/pPhpFSAP/73xF2784jK6vYoiNJz9DBZHodb65evfzw8nI2vtZ0X1qtSRthQCCJidn1HWwXJhOkU0oIccVrSs0PA9MVlaZOnUpiYiKfffYZd955J//88w9dunSxuerS6dOVlJfXcPDgaTIyis5aX0StLkOlsh2Ezg723NSvA+P7BLErs5Bvko6z8YCa5MoiNucVcVVnH5TaOrKPFgMNh/XGxgQTGxNMeno+v648RM8oP+hrvXEkhBBXipZmwvLlyxk4cCAbN27kmWee4e23326wjUFT88D0fBrNBIUC/LvBhA9h1IuQ8j2OqYsJO7UY8pdDUD8Ka3px4IT+brthKgmcmSYSGxuMWq1l/YYMPKtzCXYvIbhh20gIIa4YLc2DmTNnkpCYwHfffseXT31Jp7BODI4cbHMVvtLSaior68jOLkWt1p615lRRUSVeXo0XTbdkeWzL+lWm3w31pPRthMP0jgqAVhwwJZ1SQogrnumdjeaaP38+u3btYvv27UyYMIGkpCSzZcFNzZzZh6qqOvz8XElL0xiDy/IujJeXEw4OCvLzyzhypBBoPAgd7O0YGObDwDAf1MUVrNiVzeq9J1m1O5eaOh2+zo5QXk473OnXNwA7O4XZ61NS89iXVoDCxv6FEOJK0tJMiIiIYOHChdxyyy2888479O3bl8mTJ1vdtql5ADQ7E3D3hyGz9Cv2ZSbCrsVwdCPdtEl0dnSlpigKjg1C1T4alcU0EUOtqQDH05R3KCS4d7M+AiGEaFNamgcKhYLPPv2M3bt3szt1Ny898BKf/vIpHX07Wt1+zJgwamrq8PR0Ni5IAQ1X7FMqHbC3V1BcXElurn7V7aZ2SlmyvDFhbT8pKXmkH9Bgr7OHsS06TJNIp5QQ4opna2RTUzg7O/PLL7/Qv39/0tLSmDZtGsuWLcPOylJ2kyZ1Z8CAwAbTMCzvwhQVVVFTo8PPz43ISL9mBaHK04X7h3fhniFhHMvX8vGqA2w5nM/WYxo2HdXgqFCgcnUivL07vUPb0aGdG316+1GhqyMqSm6JCyHEuWTCzTffzLPPPstrr73GvffeS48ePejfv3+D7ZqaB0DLM8HBGTqP1H+VF8LRvyj861vsT+7ERZ2MDqhyDqDEKRSnoB54doogJNiLvv0C8KyuJDjcu0WfgRBCtBXnkgdubm6s/HUl/fr3o+B4AU8+8iRfLfwKd2f3BtvGxgbTtat3g6l5liv2abU11Nbq8PR0pmNHzxZN4zPQaMo5dOg0eXllFBZWEhrqiZOTvdnoq+hofyrsSlq9jSCdUkIIcRamBcqt1f4ICgpi+fLljBgxgl9++YVFixYxffp0q/syXSbc8LPlXRjDXfHwcG+btUbOxsHejvAAD7xPVOKy9TQBLnaUedhhH+yKVldN4rECNh3Rn4O9nQI3ezuUZRUtOpYQQlwpzpYHAC+//DK7d+9m1apVTJ48mbS0NOzt7RtsZ2jsZGQUGVfws3ZX/nxkAq7eEDWBj5b58duvqYR75TKp9zH6+mXgU3EEj5J/4IAOFTDc3h1cvXFU3dGyYwkhxBXibJkQGhrK8p+XEx8fjzpBzQufvMCbj76Jo71jg20NHUGZmSXGny2n1RlGSgUFKa3WnmqOlJQ8UlPzsLODujrIySklIEBpdi6+vq6EhXnh49O6K/BJp5QQQpzF+vUZrF+fCWCzQRATE8Mnn3xCamqqzekaBrbmp584UUJamga1WktNjY6ioqpG99OU4os9e/px8OBpIiN9qKnR0bOnH/ZO9gSHeVDupGB/bgkbd+Zy7FQpurJaFDKHTwghbGpKHtjZ2fHdd99x22238cYbb1jtkDJlmgmGlVk3bswCMhk5MsQ4UupcMyEjowil0oleA8IIDOxJcXg7crp6criggKiOlQRxmCPbtlORc5BA1wp8nVt+B14IIa4ETcmE4cOHM3/+fLbs2cK+XvtYkLaAe3vea3VWheXIKAONppzMzBKKiiqordWh1dY0el6W0/6sCQ31JCenlI4d3amtxWyklOn5HDlSiIOiYSfa+SSdUkIIcRaGjp2ePRu/I3HPPfc0aX+Wd8INDRIHBwU1NTq6dPEmJiaIqChfszswHTp4mDU4TBsyhv1YNkZcXR3p3Nmbvn0DjY0dU8O6qbi2kx979uYTEemLQnqlhBDCpqbmgZeXF2vWrGnSPq1lwtq1x9Dp9I0Sw+Pl5dXMm5dgvCNv2Ql1tkxIS9NQVFTJpEndLfLAsDT4VTj4jCcjTYN7Dw982/k36fyFEOJK1dRMeOihh3iIh/g+/Xve2P4Gyw4t49butzbYznJklKGTyt5eQW2tjvbtlfTo4UNIiAfp6fmkpOQRHe2Pr6+rWSeUaeeWYT+WHVROTvYEBCjp3LkdAyzqC5qeT2mdN8HBDaccnk/SKSWEuCI1Z4lXQ8eOq2vT7xJUV1fz2muv8dhjj9GuXTuz5wxTNhISTrBw4V569vQjJiaI8vJq9u7NN5uisXDhXuMdmIED25uNsDJtyNhqjDSlQOO5zJcXQojLXWvnAcDff//NoUOHmDJlSoPnQkO9OHGihIUL9xIfH0pUlC/9+weSnV2Cl5eT8Ro9b16C2R15y1G31jLBdMU+yQMhhDi71syEyRGTOXH6BO/83zs4PeDEjVE3mj1vKDienp7Phg2ZhIZ60qOHD1VVtWRkFJtN29uwIZPU1DwAwsPbmY2wMu3cstVBZdkBZo1KpcTBw9/qdMPzSTqlhBBXpOYs8dqSlTdmzJjBt99+y99//82qVausTt8wHfL74otxrF59tMEUjfj4UOP3Dh08jOdhKzAtO6hasqKgEEJcSVo7D1JTUxk+fDh1dXWEhYUxZMiQBttY5kFkpC9FRZU288DyXGxlglqtbTA10LSmoRBCCHOtnQnJ/00m79c8vs78mnYftmN4x+ENtjHUewK4444IkpNPNpi2Fx3tb/zu66uv+RQS4mFz6p5lB9W5FEk/36RTSghxRWpOiLTkzvHs2bNZtmwZa9asYc6cOfzf//1fg23i40MpLKxEqXQkI6OowTllZBRRVFTF9Ok9jcc3fF+9+miDu+CW0/MsO6ikASKEEA21dh707t2bCRMm8NNPPzFp0iSSk5Pp2NF8WfCW5sHZMiEjo8j4MzSvsSWEEFei1s6EJ598kpUrV1Kyq4SP/+9jPJ73oF9AP7NtoqP90WqrcXGxR63WNhjVpFZr0WprGDUqxNjxZPienHyS/fsLKCqqxMtL3zllOT3PsoPKVt2pC0U6pYQQV6TWnqIQHR3NggULuP3223nrrbeIiIjg7rvvNtsmLq4DRUVVJCXlkJamYdy4zmbn1FjjwRCUpnfBrTVULLcXQghhrrXzQKFQsGDBAg4ePEhqairjx49n69atuLufqdFxLnkAtjPB8r215K6+EEJcSVo7EwYPHsxnn33G3XffjfpXNR8Ef8DT9z1ND98exm0iIvzQamvYv7+AzMwSBgwINOs4aqxDydBxVVRU0WAbw/RAa9tfTNIpJYQQreS2224jLS2Nl19+mZkzZxIWFsaIESPMtmmsgdDYc6ZLiZveBbe1nRBCiItHqVTy66+/MnjwYFJTU7njjjtYsWKF2dTuluYBSCYIIcTlZPr06ezdu5d33nmHzC8yme83n2dufYZQz1DjNo3VfGrsOUPHk1qtNY6UssZaB9XF0nAdQiGEEOfNvHnzuO2226iurmbixIkcPHjQ7PnQUK8Gd8QtnwP91IyMjCKr25SXV/Pss1v4+ecDDZ7PyCiy+VohhBAXTmhoKL/++isuLi6sWrWKf//73xbPn1seGLaTTBBCiEvfm2++yQ033EBddR1H3jvCe+ve46T2pPF5lUrZYISU5XOgn66nVmutblNVVcu33+4jMTG7wfNqtdbmay80GSnVArW1tVRXV1/s0xCiyRwdHa0W2hatzzBtIyMjg7S0NLKysujWrRtw9tU9MjKK2Lgxi9RUNTU1dYD5tI2EhBMsW3aQX345xKlTWjIzi5g0qbvZPqR+SOuTTBCXG8mEi2fw4MF888033HbbbWRmZlJTU4ODg8N5yYP16zMoKalk0aJ9VFfrt5FMuLAkD8TlRvLg4rG3t+f7779n2LBhHD12FIrhg10fMKvfLHSlblaLlRukp+eTkpKHi4u9sfi56Xbp6fn89NMB0tM1gAKA2Nhgs31ITanLlE6n4+TJkxQWFl7sUxGi2by9vQkMDEShUFzsU7niuLq6smLFCvLy8ujZs6fx8bM1DtLSNKxde4zS0moGDAhoMB1j/foM/vjjOHl55VRV1VFRUdtgH1I/pPVIJojLmWTCxXPrrbfi7+/P8OHDsbPTT1o4H3mwfn0mx44VUlhYgbu7MxMnhjfYj2RC65A8EJczyYOLx93dnf/973+UlJTgHOjMtDXTeH/X+1ztcCfZh3SA9Q4jw+p8Xbt6Ex2tajBFLyUlj337NJSX1+Lqak9kZMNrfmNTAC806ZRqBkPYqFQq3Nzc5B+uuCzodDrKyspQq9UAtG/f/iKf0ZUpICCAgIAA488nT54kMtIHsN04iIry5dprwwAdI0eGNGioGFZrSk1Vc/x4MZ076+uJmG5n+G9ZAvz8k0wQlyPJhEvDyJEjjf+t0+lQqWqJiQk6pzwASE11Ydu2k/Ttq2qw2hJIJrQWyQNxOZI8uDQEB58ZwfTVtV8x+cfJrPf4ntHhU212GEVH+xu/R0T4WX3+0KECTpwoxc/PlcLCStRqrVkHl+G/MzNLzH6+GKRTqolqa2uNYePrK3eXxOXF1dUVALVajUqlkmG6F9mWLVu46aabePzxx3nuuedsbhca6sX06bYbDHFxHTh5UsuxY0UMHBiASqUkLU3ToJEh0zXOP8kEcTmTTLh0VFRUcM8995CUlERSUhKBgdav0U3Ng1271AwZEmQzD0Ay4XyTPBCXM8mDS0vmzkwOPHMAn/E+bLr+B6I9Z1ndLiLCz2pnlOnz8fGVbNyYiaOjHcXFlWRmljToeLpUpvBJofMmMswPd3Nzu8hnIkTLGH53pdbBxbd37140Gg3PP/88CxcuPKd9LV9+iB07TlFZWcfYsZ1trtpk7Q68FLxtOckEcbmTTLg0aLVatm/fzvHjxxk3bhwlJSUt3ldT8gCsZ4LkQctJHojLneTBpSMlJYXiomKOf3ec7K3ZvL/rfQorClu0r6SkHA4fLqS6uo7+/QNtruLXo4dPg+cudBF0GSnVTDIcV1yu5He3dZ2tSK2pBx98kIyMDN58803uvfdeVCoV48aNa9FxDTVDJk4MN67MZHpOGzdmYWu6h9wtP3fy70pcruR3t3U1NRN8fX1Zs2YNsbGx7Nq1i4kTJ/Lbb7/h5OTU7GM2Jw8sn5c8OHfyb0pcruR3t3U1p40we/ZsMjIy+OCDDzj+2XEcPR15T/cej/Z9FF/X5o3EjIkJMn63nM6tVmvZsycf0NGrl3+jI6g6RzU/j5pLOqWEEOI8aO4f9A888AzJyQfZsOEXbrnlFjZu3MigQYOafdwBAwJxdXW0ekf8p58OsnDhHgID3VGplA3OSwreCiFE62hOJnTt2pWvvlrKrbdex/r167n77rv59ttvjUXQm6qxPEhL0/Dtt/s4daqU/PxynnzSPG8kD4QQonU0Jw8UCgWzZs1l164jbN26msz3M3F61snYMaVyUzX5uF27euPkZG91hFRCQg4bNhynXTtXvLxcGnRKmRdBr2zyMVtKpu8JIcR5YGuKnC379hUwaNBj9Os3lLKyMq677joOHjzY7OMags5QtNZUdnYJlZW1uLtbb6SEhnoxblxnuSsuhBDnWXMzwd4+hJtuegl7ewd++OEHnnrqqWYfs7E8iIryxcPDkcrKOrKzSxs8L3kghBCto7l5sH9/IUOGzKZXr8FoS7XkzM+hKq+K93a+R05pTpOPaxjtZChkbkqjKae6ug4XF+udViqVkgEDAi9YnSnplGrjFApFo19z5849p32vWLGiWeegVCoJDw9n+vTp7Nixo9nHHDFiBLNmzWr+yQrRypr7B31UlC9DhoTwxhtfEB7ei/z8fF5++eVmH9dW0CUknKC4uJJhwzrw738PlIaGkDwQ4gJqSSZcc8213HPPPAA++OCDZt+oaKzhc+JECb6+LgwbFszNN3dr1n5F2ySZIMSF0ZI8GDo0jLfe+pqwsB7kncqj847OuDm48f6u9zlefLxJ+7FVLyo9PZ+ysmqiovyYODH8ohY4N5BOqTYuNzfX+PXee+/h6elp9tiTTz55Qc5jwYIF5ObmkpaWxkcffURpaSmDBw9m0aJFF+T4QlxqDAFVXe3I9de/yoQJ0/niiy9avB/LoFu/PoODBwsJCfEkLq7D+TptcRmTPBDi0hUa6oVK5UZAwDBmzvwPa9eupVu35nUeNdbwkUwQliQThLg0Ga7ltbUu3HDD69x44z188/k3LBq7iHbO7fhw14fszd971v3YGu2UkpJHTo4Wf3+3Rlfwu5CkU6qNCwwMNH55eXmhUCjMHluyZAkRERG4uLjQo0cPPv74Y+Nrq6qqeOSRR2jfvj0uLi6Ehoby+uuvA9CpUycAbrrpJhQKhfFnW7y9vQkMDKRTp05cc801LFu2jMmTJ/PII49w+vRpADQaDXfccQfBwcG4ubnRq1cvFi9ebNzH9OnT+euvv5g/f77xrsrx48epra1lxowZhIWF4erqSvfu3Zk/f/75/SCFaCVRUb7Ex0cxf/57uLi4AKDT6aisPLf52/HxocTHhxAfH3o+TlO0AZIHQlzaDCOd5sx5ghEjRhgfP9c8AMkE0ZBkghCXNv0I2t689967ODk5EeQexPdjvyfULZQv93zJ1uytLdpvdLQ/ffr4Ex3tf57PuOWk0PkV7Pvvv+eFF17gww8/pG/fvuzatYv77rsPpVLJtGnTeP/991m5ciVLly4lJCSErKwssrKyAPjnn39QqVQsWLCAMWPGYG9v3+zjP/744yxatIh169Zx6623UlFRQf/+/Xn66afx9PTkt99+Y8qUKXTp0oVBgwYxf/58Dh48SM+ePXnppZcA8Pf3p66ujg4dOvDTTz/h6+tLYmIi999/P+3bt+fWW289r5+ZEKaas5qGLaGhXmav1el0PP3002zfvp3Vq1e3eInpuLgOxMV1MC7zfS7nKNo+yQMhzk1r5AHAvn37GDduHB9//HGLV2kFfSZ06OBBWpqGjIwiyQPRKMkEIc5Na2RCXV0dc5+ZS/H+Ygb+ayA/HviR0xWnub7z9c1aQTEiwo+ICD/Uai3JyScJCfG46FP4pFPqCvbiiy/yzjvvMHHiRADCwsLYt28fn332GdOmTSMzM5Pw8HCGDBmCQqEgNPTM3TV/f33PquHuRkv06NEDgOPHjwMQHBxsNlT40UcfZe3atSxdupRBgwbh5eWFk5MTbm5uZse0t7dn3rx5xp/DwsJISkpi6dKlEjiiVbXGEtoZGRl89tlnFBcXM3HiRH799VecnZ3PyzkafjYE5PkITNE2SB4IcW5aIw8APvzwQzIyMpg4cSKrV6/m6quvbvG+GssDOD+NKNE2SCYIcW5aIxMOHz7MV199RVlZGTe43sCE2RP49fiv5JfnMyVyCg52zevaMRRCN/3Z0EGlVmuNPzs0rIN+3kmn1EVysYNfq9Vy5MgRZsyYwX333Wd8vKamBi8v/flMnz6d0aNH0717d8aMGcP111/PNddcc97OQafTARh7dmtra3nttddYunQp2dnZVFVVUVlZ2aSRIh999BFff/01mZmZlJeXU1VVRXR09Hk7VyGsaY0ltDt16sTXXy9l8uSbWLt2LbfffjtLly7F0dER0BcwX78+g/j40CbVBTE9R8uAbK1GlGgeyQPJA3H5a408AJg/fz6HD2ewbt1qxo+/gXXr/iA2Ntb4fHMyobE8gNbrWBPNI5kgmSAuf62RCd26deOLLxYzffotrFy5Ejc3Nx556hE+2fMJ6mQ1V7vewuG9lURH+zepVpShAHpIiIdZB5VKpTT7uXOU03l7D7ZIp9RFcrGDv7RUvxzwF198weDBg82eMwyz7devH8eOHeP3339n/fr13HrrrcTHx7Ns2bLzcg7p6emA/q4FwFtvvcX8+fN577336NWrF0qlklmzZlFVVdXofpYsWcKTTz7JO++8Q0xMDB4eHrz11lts27btvJynELZYm2pxPri6hnPzza+xdOnTrFixgilTpvDdd9/h4ODA+vUZrF+fCXDWBoitP2wtg/J8N6JE80geSB6Iy19r5YGjoyMPP/w2R47kcfToP4wdO5Z169YxaNAggCZnwtnywPS/JRMuLskEyQRx+WutTPD27snEiS/z88/Ps2TJElxcXHjnxXf4T+J/WFz0KXbHBwORZ+2UMh0JZTp1z7Sj6sz3c69reDaXTafUq6++ym+//UZKSgpOTk4UFhY22CYzM5MHH3yQjRs34u7uzrRp03j99ddxcLj03ubFDv6AgACCgoI4evQokydPtrmdp6cnt912G7fddhs333wzY8aMoaCgAB8fHxwdHamtrW3xORhW+oiPjwcgISGBCRMmcNdddwH6ebMHDx4kMjLS+BonJ6cGx0xISCA2NpaHHnrI+NiRI0dafF5CNEdzRy41RVSUL3feeQOjRgUxc+Zd/Pjjj9TU1LB48WJjkdqePf1Yvfoo5eXV7N2bb/X4ln/Ymgak6XlfjnfE21ImSB5IHoi2ozUyITo6iLfeWsCbb97P9u2JxMfH8/vvvxMXF0d8fCiFhZUolY5kZBRx4kSJ1eM3lgeW5325ZUJbygOQTADJBNE2tFYbYerUmxkxIpBHHrmHhQsXUl1dzcL3FvLgH4+RN2gzpyqqOHWqIwUFFaSk5FkdOWU5MsrwBZCenm98nUqlpKBcOqWMqqqquOWWW4iJieGrr75q8HxtbS3XXXcdgYGBJCYmkpuby9SpU3F0dOS11167CGfcuNbqPW2OefPm8dhjj+Hl5cWYMWOorKwkOTmZ06dPM3v2bN59913at29P3759sbOz46effiIwMBBvb29AP81ow4YNxMXF4ezsTLt27Wweq7CwkJMnT1JZWcnBgwf57LPPWLFiBYsWLTLuLzw8nGXLlpGYmEi7du149913OXXqlFngdOrUiW3btnH8+HHc3d3x8fEhPDycRYsWsXbtWsLCwvj222/5559/jHdXhGhNzRm51FRnrg+d8fNz5eabb2b58uVs2bKFq6++mri4DqxefZSkpByOHi0kM7PE6vEb+8O2Nc77QmpLmSB5IHkg2o7WzIRrrlnL+PHj2bRpE3PnzuWPP/4gLq4DRUVVJCXlkJam4Z9/cq0e/2wdHZdzJrSlPADJBMkE0Va0dhvB19eVO++8kyVLlvDQQw/x6y3LuHfZ46QpEvlqfy7BuSNIT9WPfLTslLIcEWUqJSWP1NQ8q69rNbrLzIIFC3ReXl4NHl+9erXOzs5Od/LkSeNjn3zyic7T01NXWVnZ5P0XFRXpAF1RUZHZ4+Xl5bp9+/bpysvLW3zuF5u1z+7777/XRUdH65ycnHTt2rXTDRs2TLd8+XKdTqfTff7557ro6GidUqnUeXp66kaNGqXbuXOn8bUrV67Ude3aVefg4KALDQ21eVzA+OXi4qLr0qWLbtq0abodO3aYbafRaHQTJkzQubu761Qqle7555/XTZ06VTdhwgTjNgcOHNBdddVVOldXVx2gO3bsmK6iokI3ffp0nZeXl87b21v34IMP6p555hldnz59zvUja1Pawu/wpWjr1izd3LlbdVu3ZrXaMX7//XfdggULzB47frxQ99tvR3TLlu1v0fFNz9uwr+PHC1t0fraumxdCa2ZCY+/rcv/3JHkgLvff4UtVa2eCVqvVzZo1S3f69GnjY6bX8JYevy1kguRBy0kmXNnawu/wpehCtBFWrFih++GHH4w/Hzt2WvfcTx/o+i8aoBu4aLDulnef0X289ifdxsyNTf76eO1Puvvf/Fj38dqfdD8mr9K9uOxT3dd//9ii82tqHih0uvpKcpeJhQsXMmvWrAZDc1944QVWrlxJSkqK8bFjx47RuXNndu7cSd++fa3ur7KyksrKM0PSiouL6dixI0VFRXh6ehofr6io4NixY4SFheHi4nJe35MQF4L8DrcdJ06cwNvbG3d390a3+/nnAyxffoihQ4MJCfGyWTTVMOoqJiaIceM6N/t8iouL8fLyanDdvBDOZyY0NQ9A/j2Jy5/8Drcd+/fvN65WZoshDyZODGfAgMBGC2lfrpkgeSBEy8jvcNuRkZGBv78/WRVZPL3laY4UHmFQ4CBu6XYLLg5n/t8mJmaTlJRDZKQv/v5uDWpLGSQnnyT1UAbdu/rz/MR7mn0+Tc0Du2bv+RJ18uRJAgICzB4z/Hzy5Embr3v99dfx8vIyfnXs2LFVz1MIIc5Ffn4+8fHxjBw5ErVa3ei2y5cfYvPmEyxZcoCkpBw2bsxi9eqjZGQUmW0XFeVLTExQmypu25JMkDwQQlxu3nvvPXr27MmCBQsa3c6QB8uXHzLWl7pSMkHyQAhxJTh58iQjR45k9OjR+OPPj9f9yPSo6exS7+Klv18iVZ1q3DYpKYe9e/PZsuUE+/cXsGdPPsnJJ1GrtWb7DAnxoEsXb4KDG78Rfq4uaqfUM888g0KhaPRr//79rXoOc+bMoaioyPiVlZXVqscTQlw+MjKKrP7BfjGdOHECjUZDcnIycXFxHD161Oa2EyeGM2xYB26/vTsxMUGAzlh3xFRoqBfjxnW+6DUsLnYmSB4IIWy5FPNAp9ORkpJCbW0t99xzD2+88Qa2JkAY8mDixHBjp9OlnAmSB0KIS9mlmAmZmZmcPn2axMREhgwZgjpXzRMDnmDR2EUEuwfz5d4veX/n++SU6kfC9uzpx9ChHejRwwfQsX9/gbFOrYFKpaR3L3/8/Fxb9dwvaqHzJ554gunTpze6TefOTRs2HBgYyPbt280eO3XqlPE5W5ydnXF2dm7SMYQQV5aLvSyzNdHR0SQkJHDttddy+PBhYmNjWbNmDdHR0Q22nTSpO5MmdTf+nJFRhEqluWTvfl/sTJA8EELYcinmgUKhYMGCBQQEBPB///d/zJkzh9zcXP773/9iZ2d+39kyD0JDvS7pTJA8EEJcyi7FTBg0aBBbtmxhzJgxpKenG9sIPaN68sO4H1hyYAlf7P6CN7a/waDAQdz7yHi8nPXnrlZr8fIqsVr4/EK4qJ1S/v7++Pv7n5d9xcTE8Oqrr6JWq1GpVACsW7cOT09Ps5UZhBCiqS72ssy2dOvWjcTERMaMGcPu3bsZNmwYS5cuZcyYMY2+7lJY0acxkglCiEvVpZoHCoWCN998k/bt2/P444/z/vvvk5OTwzfffIObm1ujr72UM0HyQAhxKbtUM6Fnz57GNkJ6ejpDhw5l2bJlXH311UyJnML4zuP5KOUjfjn8C8mnkukf0J+xYWNRqfys1pS6UC6bmlKZmZmkpKSQmZlJbW0tKSkppKSkUFqqX+bwmmuuITIykilTppCamsratWt5/vnnefjhh+VOhxCiRS6FKQy2tG/fns2bNzNixAhKSkq47rrr+Omnn876uktxuHFLSCYIIS6kSzkPAGbNmsUPP/yAo6Mjy5YtY8SIEdTU1Jz1dW0hEyQPhBAX2qWcCSEhIWzZsoXY2FhOnz7Ntddey//+9z8AvF28ee6q51hxwwpu7Hoje/P38lLSS3yw6wP+OrSN7f9kN6grdSFcNp1SL7zwAn379uXFF1+ktLSUvn370rdvX5KTkwGwt7dn1apV2NvbExMTw1133cXUqVN56aWXLvKZCyGEbefSICgshMmT32Xo0Jto3z6YLl36nXVfhuHGljVELjeSCUKItuZcO4hiY8fx5JNf4u7ejpiYcfzxR+ZZ99UWMkHyQAjRFp1LJpSWOjB9+vtcddV1dOwYSmhob7N9dfDswNzYufw64Vem95yOtlrLsqzvWFz0X77f/x2783ZTWVt5lqOcPxd1+l5zLFy4kIULFza6TWhoKKtXr74wJySEEOdBS+ekZ2QUsXDhXpKTT9G+/XQefHAOJ08qSErKQafT4eWlw9vbm4yMIrOlvy/V4cbNJZkghGhrzqVGiSET9uxxZ9So92nXrpNxX4Y8MGzX1jJB8kAI0RadjzZCSMj9PPZYe06cqLXRRihjUtQMHuzzIL+mrOeXQ7+SrTvIF3u+QIGCAGUAgW6B9A/o31pvE7iMOqWEEOJSZ/nHflO0tEGQlqYhP7+Crl296dPHn9jYEJPnVjNjxit8//33VFaGmQVaaKgXJ06UsHDhXuLjQ4mL69Cs4wohhDi7C5kHYJkJ4YSHt6OoqIqQEEcGDRrEsGHDeP/99xs0ck6cKOGff3Lx8nK6JKehCCFEW3CptBGSk3/m/vvfY8mSJZSUBJvkQWc6VvYl4mA7Zoz0xSUsj6TcJNI16WSWZBLqGdqsc2gu6ZQSQojzpCV3NFpaaDYqyhe1ugzQMXJkiHEfHTt68NJL33Hq1ClGjx7Nv/71NFdffY9ZoK1fn8H69ZkA0iklhBCt4ELmAdjOhOXLl3P48GEOHTrEtm3beO+9r4mJCTJmguSBEEK0vkuhjRAcrOTZZ78nJyeHkSNHMnv2cwwbNsUsDzasz0KBgheHDWNYx2HU1NVQWlWKQqFo9nk0x2VTU0pc+qZPn86NN95o/HnEiBHMmjXrnPZ5PvYhxIUSFeVr9sd+awoN9UKlcuPIkSKzWiB2dnb8+eef3Hvvveh0Ot577w3ee+8B7OyKjdvEx4cSHx9CfHzr3vUQVzbJBHElu5B5ALYzYeLEiaxfv56AgAD27t3LhAkjUas3ExLiCUgeiAtD8kBc6S6FNoKDgwNbt27lrrvuora2lrfeeomPPnoUJ6cywHoeONg54O3ijZdz646klZFSV4Dp06fzzTffAODo6EhISAhTp07l2WefxcGh9X4Fli9fjqOjY5O23bRpEyNHjuT06dPGugfN3YcQF9uFXl7b1rBeNzc3vvjiC4YPH84DDzzAn3/+Sa9evXjvvfeYNm0acXEdzO6IJyScYP36DJnOd4WQTBCi9V3oPADbmXD11VeTkpLC5MmT+fPPP7n77rtZvnw5n332WYM8AMmEK4nkgRAXxqXSRnB3d2fRokWMGDGCRx55hDVr1hAVFcWHH37IHXfccdHyQEZKXSHGjBlDbm4uhw4d4oknnmDu3Lm89dZbDbarqqo6b8f08fHBw8Pjou9DiLbqbMvR3nXXXezcuZOrrrqKoqIiZsyYQXp6eoPtDNM31q/PaO1TFpcIyQQh2p7GMiEwMJA//viDN954AycnJ/73v//x9NNPW92PZMKVRfJAiLansTxQKBTMmDGD5ORk+vXrx+nTp5k2bRrHjh1rsO2FygPplLpCODs7ExgYSGhoKA8++CDx8fGsXLnSOJz21VdfJSgoiO7duwOQlZXFrbfeire3Nz4+PkyYMIHjx48b91dbW8vs2bPx9vbG19eXp556Cp1OZ3ZMy2G1lZWVPP3003Ts2BFnZ2e6du3KV199xfHjxxk5ciQA7dq1Q6FQMH36dKv7OH36NFOnTqVdu3a4ubkxduxYDh06ZHx+4cKFeHt7s3btWiIiInB3dzeGrRBXom7durF161befPNNnn/+eSIjI43PGf7NyvSNK49kgmSCuPLY29vz9NNPs2PHDq655hqzjgfTf6+SCVcWyQPJA3FlioqK4u+//+all17ipZdeonPnzsbnLnQbQTqlrlCurq7GOx4bNmzgwIEDrFu3jlWrVlFdXc21116Lh4cHW7ZsISEhwXjhNrzmnXfeYeHChXz99dds3bqVgoICfvnll0aPOXXqVBYvXsz7779Peno6n332Ge7u7nTs2JGff/4ZgAMHDpCbm8v8+fOt7mP69OkkJyezcuVKkpKS0Ol0jBs3jurqauM2ZWVlvP3223z77bds3ryZzMxMnnzyyfPxsQlxWbK3t+epp55i3rx5xsf27NlD//792bx5M3FxHXjxxTiZpnEFk0wQ4srRs2dP1q5dS0BAgPGxO++8kzlz5qDVaiUTrnCSB0JcORwdHfnPf/7DnDlzjI8lJyczcOBAkpKSLlgeSE2pc1RWVsb+/fsv+HF79OiBm5tbs1+n0+nYsGEDa9eu5dFHHyUvLw+lUsmXX36Jk5MTAN999x11dXV8+eWXxkr7CxYswNvbm02bNnHNNdfw3nvvMWfOHCZOnAjAp59+ytq1a20e9+DBgyxdupR169YRHx8PYNYb6+PjA4BKpTKbL27q0KFDrFy5koSEBGJjYwH4/vvv6dixIytWrOCWW24BoLq6mk8//ZQuXboA8Mgjj/DSSy81+7MSoi174YUX2LVrF8OHD+emm27i1VdfJSIi4mKf1mXvYmRCS/MAJBOEEPDPP/+wZMkSAL755htefPFF7rnnHqnXc46kjSB5IMTl6LnnnmPHjh3ExsZy66238sorrxAeHt6qx5ROqXO0f/9++vfvf8GPu2PHDvr169fk7VetWoW7uzvV1dXU1dVx5513MnfuXB5++GF69eplDBuA1NRUDh8+3GCedkVFBUeOHKGoqIjc3FwGDx5sfM7BwYEBAwY0GJ5rkJKSgr29PcOHD2/mOz0jPT0dBwcHs+P6+vrSvXt3szo5bm5uxrABaN++PWq1usXHFaIt+vLLLwkICOCLL77gl19+YeXKlRw6dIiwsLCLfWqXtYuRCc3NA5BMkEwQ4owBAwbw66+/MmvWLI4dO8YDDzxASkoKn3zyycU+tcuatBH0JA+EuLx8++23zJkzhwULFrB06VJWrFjB8ePHad++fasdUzqlzlGPHj3YsWPHRTluc4wcOZJPPvkEJycngoKCzFbUUCqVZtuWlpbSv39/vv/++wb78ff3b9H5urq6tuh1LWF5Z0+hUNgMQiGuVL6+vnz66ac89thjPPfcc9jZ2UmH1HlwMTKhuXkAkgmSCUKcoVAouOGGGxgzZgyfffYZr732Gg8//PDFPq3LnrQRmkbyQIhLi0ql4quvvuJf//oXzz77LN7e3q3aIQXSKXXO3Nzcmn2H+mJQKpV07dq1Sdv269ePH3/8EZVKhaenp9Vt2rdvz7Zt2xg2bBgANTU1jd6Z6dWrF3V1dfz111/GobmmDHdhamtrbZ5XREQENTU1bNu2zTg0V6PRcODAAbPizUJcyTIyikhL0xAV5dukpWcjIyP55ZdfzuuqOlcyyQTJBCEuFc3NAycnJx599FFmzpxpNjpGtIzkgeSBEJeS5mZC7969WbVq1QVpI0ihc9HA5MmT8fPzY8KECWzZsoVjx46xadMmHnvsMU6cOAHAv/71L9544w1WrFjB/v37eeihhygsLM2ncXsAAQAASURBVLS5z06dOjFt2jTuueceVqxYYdzn0qVLAQgNDUWhULBq1Sry8vIoLS1tsI/w8HAmTJjAfffdx9atW0lNTeWuu+4iODiYCRMmtMpnIcSlJCHhBPPmJZCQcMLmNmlpGpKSckhL0zRr39IAEbZIJghx6ZE8EBeD5IEQl6bLPROkU0o04ObmxubNmwkJCWHixIlEREQwY8YMKioqjHdFnnjiCaZMmcK0adOIiYnBw8ODm266qdH9fvLJJ9x888089NBD9OjRg/vuuw+tVgtAcHAw8+bN45lnniEgIIBHHnnE6j4WLFhA//79uf7664mJiUGn07F69WopximuCOvXZ7B+fSbr12fY3CYqypeYmCCionwv4JmJtkwyQYhLj+SBuBgkD4S4NF3umaDQyURaM8XFxXh5eVFUVGQ2LLWiooJjx44RFhaGi4vLRTxDIVpGfocvfwkJJ1i/PoP4+NBLaqluW9fNy11j70v+PYnLnfwOX94u1TyAtpkJkgeiLZPf4cvfpZoJTc0DqSklhBCXibi4DpdU0AghhLg4JA+EEEIYXO6ZINP3hBCijWrK/HIhhBBtn+SBEEIIg0stE2SklBBCtFGG+eXAZX33RAghxLmRPBBCCGFwqWWCdEoJIUQbFR8favZdCCHElUnyQAghhMGllgnSKSWEEG3U5T6/XAghxPkheSCEEMLgUssEqSklhBBCCCGEEEIIIS446ZQSQgghhBBCCCGEEBecdEoJIYQQQgghhBBCiAtOOqWEEEIIIYQQQgghxAUnnVLnQUV1LcUV1Rfsq6K69mK/ZZumT5/OjTfeaPx5xIgRzJo165z2eT72cTabNm1CoVBQWFjYqsdpbQqFghUrVlzs0xDiylZdDhVFF+aruvxiv1ubJA8uLskDIS6+ipoKSqpKLthXRU3FxX7LNkkmXFySCeJSJqvvnaOK6lr+SDtJUUX1BTuml4sj10QF4uJo36Ttp0+fzjfffAOAo6MjISEhTJ06lWeffRYHh9b9FVi+fDmOjo5N2nbTpk2MHDmS06dP4+3t3aJ9tFRsbCy5ubl4eXk1+TXTp0+nsLBQLvDispCRUURamoaoKF9CQ8/8nicknGD9+gzi40MvqVU4LlvV5bB/NVQUXpjjuXhDj3Hg6NqkzSUPzk7yQFwJJBNaX0VNBRszN1JcVXzBjunp5MnIkJG4OLg0aXvJhLOTTBBt3aWQB9IpdY6qausoqqjGxcEeZ4fWH3hWWaM/XlVtXZM7pQDGjBnDggULqKysZPXq1Tz88MM4OjoyZ86cBttWVVXh5OR0Xs7Xx8fnktjH2Tg5OREYGNjqx7HmfH7eQtiSlqYhKSkHwBg4GRlFfPxxCgcPngaQBsj5UFul75BycNF/taaaCv2xaqua3CkFkgdnI3kgrgSSCa2vuq6a4qpinB2ccbZ3bvXjVdZWUlxVTHVdNS40PX8kExonmSDaukshD2T63nni7GCHm5NDq3+1tOPL2dmZwMBAQkNDefDBB4mPj2flypXAmeG0r776KkFBQXTv3h2ArKwsbr31Vry9vfHx8WHChAkcP37cuM/a2lpmz56Nt7c3vr6+PPXUU+h0OrPjWg6rrays5Omnn6Zjx444OzvTtWtXvvrqK44fP87IkSMBaNeuHQqFgunTp1vdx+nTp5k6dSrt2rXDzc2NsWPHcujQIePzCxcuxNvbm7Vr1xIREYG7uztjxowhNzfX5udjOTT3bPuYO3cu33zzDb/++isKhQKFQsGmTZua9LlZ+7yfffZZBg8e3OC8+vTpw0svvQTAP//8w+jRo/Hz88PLy4vhw4ezc+dOm+9JCFNRUb7ExAQRFeVrfCwtTYODgz3durUjPj70Ip5dG+TgAk5urfvVwk4vyQPJAyEkEy4cZ3tnXB1cW/2rpR1fkgmSCeLKdinkgXRKXaFcXV2pqqoy/rxhwwYOHDjAunXrWLVqFdXV1Vx77bV4eHiwZcsWEhISjBddw+veeecdFi5cyNdff83WrVspKCjgl19+afS4U6dOZfHixbz//vukp6fz2Wef4e7uTseOHfn5558BOHDgALm5ucyfP9/qPqZPn05ycjIrV64kKSkJnU7HuHHjqK4+M4WyrKyMt99+m2+//ZbNmzeTmZnJk08+2azPqLF9PPnkk9x6663GEMrNzSU2NrZJn5u1z3vy5Mls376dI0eOGLdJS0tj9+7d3HnnnQCUlJQwbdo0tm7dyt9//014eDjjxo2jpKSkWe9LXJlCQ70YN66z2bDcqChfbrutO6+9NlTuiF/BJA/OTvJAtDWSCcIWyYSzk0wQbcmlkAcyfe8Ko9Pp2LBhA2vXruXRRx81Pq5UKvnyyy+NQ0S/++476urq+PLLL1EoFAAsWLAAb29vNm3axDXXXMN7773HnDlzmDhxIgCffvopa9eutXnsgwcPsnTpUtatW0d8fDwAnTt3Nj5vGIKrUqnM5oubOnToECtXriQhIYHY2FgAvv/+ezp27MiKFSu45ZZbAKiurubTTz+lS5cuADzyyCPGuwlN1dg+3N3dcXV1pbKy0mxIb1M+N2j4eYP+jscPP/zAf/7zH+P7Gjx4MF27dgXg6quvNju/zz//HG9vb/766y+uv/76Zr03IUAfQqYBJK4skgdNJ3kgrgSSCVc2yYSmk0wQbd2FzgMZKXWFWLVqFe7u7ri4uDB27Fhuu+025s6da3y+V69eZhe/1NRUDh8+jIeHB+7u7ri7u+Pj40NFRQVHjhyhqKiI3Nxcs+GkDg4ODBgwwOY5pKSkYG9vz/Dhw1v8PtLT03FwcDA7rq+vL927dyc9Pd34mJubmzEoANq3b49arW7WsVqyj7N9bgaWnzfA5MmT+eGHHwD9HwaLFy9m8uTJxudPnTrFfffdR3h4OF5eXnh6elJaWkpmZmaz3pcQ4someSB5IIQQBpIJkglCXGwyUuoKMXLkSD755BOcnJwICgpqsKKGUqk0+7m0tJT+/fvz/fffN9iXv79/i87B1bXphXjPleVKHAqFosFc9tbYR1M/N8vPG+COO+7g6aefZufOnZSXl5OVlcVtt91mfH7atGloNBrmz59PaGgozs7OxMTEmA35FUKIs5E8kDwQQggDyQTJBCEuNumUukIolUrjEM+m6NevHz/++CMqlQpPT0+r27Rv355t27YxbNgwAGpqatixYwf9+vWzun2vXr2oq6vjr7/+Mg7NNWW4K1BbW2vzvCIiIqipqWHbtm3GobkajYYDBw4QGRnZ5Pd3Pjg5OTU416Z8brZ06NCB4cOH8/3331NeXs7o0aNRqVTG5xMSEvj4448ZN24coC+WmJ+ff+5vRFwxbC35Kq4skgfnn+SBuNxIHggDyYTzTzJBXG4udibI9D1h1eTJk/Hz82PChAls2bKFY8eOsWnTJh577DFOnDgBwL/+9S/eeOMNVqxYwf79+3nooYeMK1NY06lTJ6ZNm8Y999zDihUrjPtcunQpAKGhoSgUClatWkVeXh6lpaUN9hEeHs6ECRO477772Lp1K6mpqdx1110EBwczYcKEVvksGns/u3fv5sCBA+Tn51NdXd2kz60xkydPZsmSJfz0009mw3JB/96//fZb0tPT2bZtG5MnT76gd5bE5c+w5GtamuZin4q4jEgenJ3kgbjcSB6IlpJMODvJBHG5udiZIJ1S50llTR1lVTWt/lVZU3dB3o+bmxubN28mJCSEiRMnEhERwYwZM6ioqDD27j/xxBNMmTKFadOmERMTg4eHBzfddFOj+/3kk0+4+eabeeihh+jRowf33XcfWq0WgODgYObNm8czzzxDQEAAjzzyiNV9LFiwgP79+3P99dcTExODTqdj9erVDYbStrb77ruP7t27M2DAAPz9/UlISGjS59aYm2++GY1GQ1lZGTfeeKPZc1999RWnT5+mX79+TJkyhccee8zsLokQZ2NtyVfRSmoqoKqsdb9qKi7IW5E8ODvJA3G5kTy4cCprKymvKW/1r8raygvyfiQTzk4yQVxuLnYmKHTNnUTbxhUXF+Pl5UVRUZHZBaKiooJjx44RFhaGi4vLmcera/kj7SRFFdXWdtcqvFwcuSYqEBdH+wt2THH5s/U7LMS5snXdvNw19r5s/nuqLof9q6Gi8MKcpIs39BgHjnJHVDSPZIJoLW0xE1qSBxU1FWzM3EhxVfEFO09PJ09GhozExUH+TYumkzwQraWpeSA1pc6Ri6M910QFUlV7YUYwATjZ20mHlBBCXIocXfWdRLUXqLiovZN0SAkhxCXIxcGFkSEjqa67cDeuHe0cpUNKCHHZkU6p88DF0V46iYQQQug5ukpHkRBCCFwcXHBBOomEEKIxUlNKCCGEEEIIIYQQQlxw0iklhBBCCCGEEEIIIS446ZQSQgghhBBCCCGEEBecdEoJIYQQQgghhBBCiAtOOqWEEEIIIYQQQgghxAUnnVJCCCGEEEIIIYQQ4oKTTikhhBBCCCGEEEIIccFJp5QQQgghhBBCCCGEuOCkU6qNUygUjX7NnTv3gp3LiBEjjMd1cXEhMjKSjz/+2Pj8woUL/5+9+45vq7r/P/7SHrblKe+VbTvDWWQSCEkgCXuXfIEwWuBL2YUuaMtqv7SlUPpjlRYKpYSGvUMgCQnZO3aGs+x47y1bsjXv7w/FIs524li283k+Hn4kkq+kc2X7vnU+95xziYiI6LH2CCHE2UTyQAghRAfJBCFEbyFFqX6usrIy8PXCCy9gsVg63ffII48EtlUUBY/Hc0bbc8cdd1BZWUleXh7XX38999xzD//973/P6GsK0dcVFzezaNEBioubg90U0YdJHgjRP0gmiO4gmSBE39df8qDPFKX+8Ic/MGXKFMxm8zEr5Uer8i9cuLBnG9rLxMfHB77Cw8NRqVSB23v27CEsLIyvv/6acePGYTAYWL16NbfeeitXXnllp+d58MEHmT59euC2z+fjmWeeYcCAAZhMJrKzs/nwww9P2B6z2Ux8fDwDBw7kiSeeYMiQIXz++efdvNdC9C+7dtWzbl0Fu3bVB7spvYZkQtdJHgjRP0gmdCZ5cGokE4To+/pLHmiD3YCT5XK5uO6665g8eTJvvPHGMbd78803mTNnTuB2Twz1tNvtx/yeRqPBaDSe1LZqtRqTyXTCbUNCQk6hlcf2q1/9ir/85S8MHDiQyMjIk3rMM888wzvvvMPf//53hgwZwsqVK7npppuwWq2cf/75J/3aJpMJl8t1qk0X4qwwfHh0p3+FZEIHyQMhzj6SCZ1JHvxAMkGIs0t/yYM+U5R68sknAf+c4uOJiIggPj6+B1r0g9DQ0GN+7+KLL+arr74K3I6NjcXhcBx12/PPP58VK1YEbqenp1NXV3fEdoqinHpjj+Kpp57iwgsvPOntnU4n//d//8fSpUuZPHkyAAMHDmT16tW89tprJxU4Xq+X//73v2zfvp0777zzlNsuxNkgLS2ctLTwYDejV5FM8JM8EOLsI5nQmeTBDyQThDi79Jc86DPT907WPffcQ0xMDBMmTOBf//pXtx+c+6Px48d3afv8/HwcDgcXXnghoaGhga+3336bgoKC4z72lVdeITQ0FJPJxB133MFDDz3E3XfffTrNF0KIY5JM6BrJAyFEfyV50HWSCUKIntBnRkqdjKeeeooZM2ZgNpv59ttv+elPf0prayv333//MR/jdDpxOp2B2zabrcuv29raeszvaTSaTrdramqOua1a3blGWFRU1OW2nIrDh/qq1eojgtrtdgf+37G/X331FUlJSZ22MxgMx32tG2+8kcceewyTyURCQsIR+yyEEN2lq5nQHXkAfTsTJA+EEP2R5MGpkUwQQvSEoBalfvWrX/GnP/3puNvs3r2bjIyMk3q+3/72t4H/jxkzBrvdzrPPPnvcotQzzzwTGPZ7qroyf/tMbdudrFYrO3fu7HRfTk4OOp0OgKysLAwGAyUlJV2aGw4QHh7O4MGDu62tQoj+I9iZ0B15AP0rEyQPhBDBIHnQfdt2J8kEIcSZENSi1MMPP8ytt9563G0GDhx4ys8/ceJEnn76aZxO5zGr87/+9a/52c9+Frhts9lISUk55dfsD2bMmMGzzz7L22+/zeTJk3nnnXfYuXMnY8aMASAsLIxHHnmEhx56CJ/Px7nnnktzczNr1qzBYrFwyy23BHkPhBB9UbAzQfLgSJIHQohgkDzonSQThBBnQlCLUlarFavVesaePycnh8jIyOMOFzUYDCccTnq2mT17Nr/97W/5xS9+QXt7O7fffjvz589nx44dgW2efvpprFYrzzzzDAcOHCAiIoKxY8fy6KOPBrHlQoi+LNiZIHlwJMkDIUQwSB70TpIJQogzQaX0kVX+SkpKaGho4PPPP+fZZ59l1apVAAwePJjQ0FC++OILqqurmTRpEkajkSVLlvDII4/wyCOPdGn4rc1mIzw8nObmZiwWS+D+9vZ2CgsLGTBgQKfLtwrRV8jvcP+3Zk0ZS5cWM2tWGlOnJvfY6x7ruHkm9UQmHG+/5O9J9HXyO9z/nS2ZIHkgxOmR3+H+r7fnQZ9Z6Px3v/sd//73vwO3O4aJLl++nOnTp6PT6Xj55Zd56KGHUBSFwYMH8/zzz3PHHXcEq8lCCNGjli4tZunSEoAeDZxgkEwQQojjO1syQfJACCGOr7fnQZ8pSr311lu89dZbx/z+nDlzmDNnTs81SAgheplZs9I6/dufSSYIIcTxnS2ZIHkghBDH19vzoM8UpYQQQhzf1KnJvfLshxBCiJ4nmSCEEAJ6fx6og90AIYQQQgghhBBCCHH2kaKUEEIIIYQQQgghhOhxUpTqIp/PF+wmCHFK5HdXiO4nf1eir5LfXSG6l/xNib5KfndFsMmaUidJr9ejVqupqKjAarWi1+tRqVTBbpYQJ6QoCi6Xi9raWtRqNXq9PthNEqLPk0wQfZVkghDdS/JA9FWSB6K3kKLUSVKr1QwYMIDKykoqKiqC3RwhusxsNpOamopaLQMkhThdkgmir5NMEKJ7SB6Ivk7yQASbFKW6QK/Xk5qaisfjwev1Brs5Qpw0jUaDVquVM3dCdCPJBNFXSSYI0b0kD0RfJXkgegMpSnWRSqVCp9Oh0+mC3RQhhBBBJpkghBACJA+EEOJUyRg9IYQQQgghhBBCCNHjpCglhBBCCCGEEEIIIXqcFKWEEEIIIYQQQgghRI+TNaUOoygKADabLcgtEUKIvqHjeNlx/OwvJA+EEKLr+mMmSB4IIUTXnWweSFHqMC0tLQCkpKQEuSVCCNG3tLS0EB4eHuxmdBvJAyGEOHX9KRMkD4QQ4tSdKA9USn86jdENfD4fFRUVhIWFdfnSmDabjZSUFEpLS7FYLGeohWdef9kPkH3prfrLvvSX/YDT2xdFUWhpaSExMRG1uv/MCpc88JN96X36y36A7EtvdLr70R8z4XTyAOR3ozeSfel9+st+gOxLh5PNAxkpdRi1Wk1ycvJpPYfFYunzv3zQf/YDZF96q/6yL/1lP+DU96W/nA0/lORBZ7IvvU9/2Q+QfemNTmc/+lsmdEcegPxu9EayL71Pf9kPkH2Bk8uD/nH6QgghhBBCCCGEEEL0KVKUEkIIIYQQQgghhBA9TopS3chgMPD4449jMBiC3ZTT0l/2A2Rfeqv+si/9ZT+gf+1Lb9Cf3k/Zl96nv+wHyL70Rv1lP3qT/vKe9pf9ANmX3qi/7AfIvnSVLHQuhBBCCCGEEEIIIXqcjJQSQgghhBBCCCGEED1OilJCCCGEEEIIIYQQosdJUUoIIYQQQgghhBBC9DgpSgkhhBBCCCGEEEKIHidFqTPkD3/4A1OmTMFsNhMRERHs5nTJyy+/THp6OkajkYkTJ7Jx48ZgN6nLVq5cyWWXXUZiYiIqlYpPP/002E06Jc888wznnHMOYWFhxMbGcuWVV7J3795gN+uUvPrqq4waNQqLxYLFYmHy5Ml8/fXXwW5Wt/jjH/+ISqXiwQcfDHZTuuyJJ55ApVJ1+srIyAh2s/oVyYPgk0zoffprJkgeiBORTAguyYPep7/mAUgmnCwpSp0hLpeL6667jrvvvjvYTemS9957j5/97Gc8/vjjbN26lezsbGbPnk1NTU2wm9Yldrud7OxsXn755WA35bR8//333HPPPaxfv54lS5bgdru56KKLsNvtwW5alyUnJ/PHP/6RLVu2sHnzZmbMmMEVV1zBrl27gt2007Jp0yZee+01Ro0aFeymnLLhw4dTWVkZ+Fq9enWwm9SvSB4En2RC79MfM0HyQJwMyYTgkjzoffpjHoBkQpco4ox68803lfDw8GA346RNmDBBueeeewK3vV6vkpiYqDzzzDNBbNXpAZRPPvkk2M3oFjU1NQqgfP/998FuSreIjIxUXn/99WA345S1tLQoQ4YMUZYsWaKcf/75ygMPPBDsJnXZ448/rmRnZwe7GWcFyYPeQTKh9+rLmSB5ILpKMiH4JA96r76cB4oimdBVMlJKBLhcLrZs2cKsWbMC96nVambNmsW6deuC2DLRobm5GYCoqKggt+T0eL1eFi5ciN1uZ/LkycFuzim75557uOSSSzr9zfRF+/fvJzExkYEDB3LjjTdSUlIS7CaJIJM86BskE3oPyQPRn0km9H6SB72LZELXaM/Is4o+qa6uDq/XS1xcXKf74+Li2LNnT5BaJTr4fD4efPBBpk6dyogRI4LdnFOyY8cOJk+eTHt7O6GhoXzyySdkZWUFu1mnZOHChWzdupVNmzYFuymnZeLEibz11lsMGzaMyspKnnzySaZNm8bOnTsJCwsLdvNEkEge9H6SCb2H5IHo7yQTejfJg95FMqHrZKRUF/zqV786YrGvw7/kwCzOlHvuuYedO3eycOHCYDfllA0bNoycnBw2bNjA3XffzS233EJeXl6wm9VlpaWlPPDAAyxYsACj0Rjs5pyWuXPnct111zFq1Chmz57NokWLaGpq4v333w9203o1yQMRbJIJvYPkgQDJBBFckge9h2TCqZGRUl3w8MMPc+uttx53m4EDB/ZMY86AmJgYNBoN1dXVne6vrq4mPj4+SK0SAPfeey9ffvklK1euJDk5OdjNOWV6vZ7BgwcDMG7cODZt2sTf/vY3XnvttSC3rGu2bNlCTU0NY8eODdzn9XpZuXIlL730Ek6nE41GE8QWnrqIiAiGDh1Kfn5+sJvSq0keiGCSTOg9JA8ESCaI4JE86F0kE06NFKW6wGq1YrVag92MM0av1zNu3DiWLVvGlVdeCfiHgy5btox77703uI07SymKwn333ccnn3zCihUrGDBgQLCb1K18Ph9OpzPYzeiymTNnsmPHjk733XbbbWRkZPDLX/6yz4YNQGtrKwUFBdx8883BbkqvJnkggkEyofeRPBAgmSB6nuRB7ySZcGqkKHWGlJSU0NDQQElJCV6vl5ycHAAGDx5MaGhocBt3HD/72c+45ZZbGD9+PBMmTOCFF17Abrdz2223BbtpXdLa2tqpiltYWEhOTg5RUVGkpqYGsWVdc8899/Duu+/y2WefERYWRlVVFQDh4eGYTKYgt65rfv3rXzN37lxSU1NpaWnh3XffZcWKFXzzzTfBblqXhYWFHTFnPyQkhOjo6D43l/+RRx7hsssuIy0tjYqKCh5//HE0Gg3z5s0LdtP6DcmD4JNM6H36SyZIHoiukkwILsmD3qe/5AFIJpyyHrnG31nolltuUYAjvpYvXx7spp3Qiy++qKSmpip6vV6ZMGGCsn79+mA3qcuWL19+1Pf/lltuCXbTuuRo+wAob775ZrCb1mW33367kpaWpuj1esVqtSozZ85Uvv3222A3q9v01cu9/uhHP1ISEhIUvV6vJCUlKT/60Y+U/Pz8YDerX5E8CD7JhN6nP2eC5IE4HsmE4JI86H36cx4oimTCyVApiqJ0f6lLCCGEEEIIIYQQQohjk6vvCSGEEEIIIYQQQogeJ0UpIYQQQgghhBBCCNHjpCglhBBCCCGEEEIIIXqcFKWEEEIIIYQQQgghRI+TopQQQgghhBBCCCGE6HFSlBJCCCGEEEIIIYQQPU6KUkIIIYQQQgghhBCix0lRSgghhBBCCCGEEEL0OClKCdFLeb1epkyZwtVXX93p/ubmZlJSUnjssceC1DIhhBA9TTJBCCEESB6I/kelKIoS7EYIIY5u3759jB49mn/+85/ceOONAMyfP5/c3Fw2bdqEXq8PcguFEEL0FMkEIYQQIHkg+hcpSgnRy/2///f/eOKJJ9i1axcbN27kuuuuY9OmTWRnZwe7aUIIIXqYZIIQQgiQPBD9hxSlhOjlFEVhxowZaDQaduzYwX333cdvfvObYDdLCCFEEEgmCCGEAMkD0X9IUUqIPmDPnj1kZmYycuRItm7dilarDXaThBBCBIlkghBCCJA8EP2DLHQuRB/wr3/9C7PZTGFhIWVlZcFujhBCiCCSTBBCCAGSB6J/kJFSQvRya9eu5fzzz+fbb7/l97//PQBLly5FpVIFuWVCCCF6mmSCEEIIkDwQ/YeMlBKiF3M4HNx6663cfffdXHDBBbzxxhts3LiRv//978FumhBCiB4mmSCEEAIkD0T/IiOlhOjFHnjgARYtWkRubi5msxmA1157jUceeYQdO3aQnp4e3AYKIYToMZIJQgghQPJA9C9SlBKil/r++++ZOXMmK1as4Nxzz+30vdmzZ+PxeGSIrhBCnCUkE4QQQoDkgeh/pCglhBBCCCGEEEIIIXqcrCklhBBCCCGEEEIIIXqcFKWEEEIIIYQQQgghRI+TopQQQgghhBBCCCGE6HFSlBJCCCGEEEIIIYQQPU6KUkIIIYQQQgghhBCix0lRSgghhBBCCCGEEEL0OClKCSGEEEIIIYQQQogeJ0UpIYQQQgghhBBCCNHjpCglhBBCCCGEEEIIIXqcFKWEEEIIIYQQQgghRI+TopQQQgghhBBCCCGE6HFSlBJCCCGEEEIIIYQQPU6KUkIIIYQQQgghhBCix0lRSgghhBBCCCGEEEL0OClKCSGEEEIIIYQQQogeJ0UpIYQQQgghhBBCCNHjpCglhBBCCCGEEEIIIXqcFKWEEP3GihUrUKlUrFixIthNEUIIEWSSCUII0XNUKhVPPPFEsJvRLW699VbS09NP6bHp6enceuut3dqe/k6KUqJbFBQUcNdddzFw4ECMRiMWi4WpU6fyt7/9jba2tk7ber1e3nzzTaZPn05UVBQGg4H09HRuu+02Nm/eHNjurbfeQqVSBb6MRiNDhw7l3nvvpbq6+rjtqa+v59lnn+W8887DarUSERHBpEmTeO+9987I/vd3e/fu5aGHHmLKlCkYjUZUKhVFRUXBbtYpa21t5fHHH2fOnDlERUWhUql46623gt0sIfoNyYT+rb9lwk033YTRaGTfvn1HfO+Pf/wjKpWKL7/8MggtEyJ45DguhOgp2mA3QPR9X331Fddddx0Gg4H58+czYsQIXC4Xq1ev5uc//zm7du3iH//4BwBtbW1cffXVLF68mPPOO49HH32UqKgoioqKeP/99/n3v/9NSUkJycnJged/6qmnGDBgAO3t7axevZpXX32VRYsWsXPnTsxm81HbtG7dOh577DEuvvhifvOb36DVavnoo4+44YYbyMvL48knn+yR96a/WLduHf/v//0/srKyyMzMJCcnJ9hNOi11dXU89dRTpKamkp2dLWfRhehGkgn9X3/LhOeff55Fixbxv//7v3z33XeB+wsLC3nqqae45ppruPTSS4PYQiF6lhzHxdnun//8Jz6fL9jNOHsoQpyGAwcOKKGhoUpGRoZSUVFxxPf379+vvPDCC4Hb99xzjwIof/3rX4/Y1uPxKM8++6xSWlqqKIqivPnmmwqgbNq0qdN2P/vZzxRAeffdd4/brqKiok73+Xw+ZcaMGYrBYFBaW1u7sptdZrfbz+jz97T6+nrFZrMpiqIozz77rAIohYWFwW3UUSxfvlwBlOXLlx93u/b2dqWyslJRFEXZtGmTAihvvvnmmW+gEP2cZMLRSSYEx8lmgqIoyj/+8Q8FUN56663AfXPmzFEsFotSVlZ2BlspRO8ix/Gj62/H8TMBUB5//PFgNyPo0tLSlFtuuSXYzehTZPqeOC1//vOfaW1t5Y033iAhIeGI7w8ePJgHHngAgLKyMl577TUuvPBCHnzwwSO21Wg0PPLII53OpBzNjBkzAP8ZzGMZMGAAaWlpne5TqVRceeWVOJ1ODhw4cKJdo7i4mMsvv5yQkBBiY2N56KGH+Oabb45Yn2L69OmMGDGCLVu2cN5552E2m3n00UcBqKmp4cc//jFxcXEYjUays7P597//3el1jrXmRVFR0RHTym699VZCQ0M5cOAAs2fPJiQkhMTERJ566ikURen0+IULFzJu3DjCwsKwWCyMHDmSv/3tbyfc76OJiooiLCzslB4L8Nlnn3HJJZeQmJiIwWBg0KBBPP3003i93k7bdbyXeXl5XHDBBZjNZpKSkvjzn/98xHOWlZVx5ZVXdvr5OJ3Ok2qPwWAgPj7+lPdHCHF0kgmSCSejt2UCwE9+8hOmTp3KI488Qn19PQsXLmTx4sX8/ve/Jykp6ZT3VYi+Ro7jZ8dx/NB9nDJlCiaTiQEDBvD3v//9iG1PZp8Pt3z5clQqFZ988skR33v33XdRqVSsW7eu03tQXl7OlVdeSWhoKFarlUceeeSIXLDb7Tz88MOkpKRgMBgYNmwYf/nLX454r1QqFffeey8ffPABWVlZmEwmJk+ezI4dOwB47bXXGDx4MEajkenTpx8xBf1oa0r95S9/YcqUKURHR2MymRg3bhwffvjhcd8HALfbzZNPPsmQIUMwGo1ER0dz7rnnsmTJkhM+9mwh0/fEafniiy8YOHAgU6ZMOeG2X3/9NR6Ph5tvvvm0XrOgoACA6OjoLj+2qqoKgJiYmONuZ7fbmTFjBpWVlTzwwAPEx8fz7rvvsnz58qNuX19fz9y5c7nhhhu46aabiIuLo62tjenTp5Ofn8+9997LgAED+OCDD7j11ltpamoKBHpXeb1e5syZw6RJk/jzn//M4sWLefzxx/F4PDz11FMALFmyhHnz5jFz5kz+9Kc/AbB7927WrFlzyq97Ot566y1CQ0P52c9+RmhoKN999x2/+93vsNlsPPvss522bWxsZM6cOVx99dVcf/31fPjhh/zyl79k5MiRzJ07F/APFZ85cyYlJSXcf//9JCYm8p///KfTtAshRM+TTPCTTDi+3pgJKpWK1157jTFjxnD33XezatUqxo8fzz333NOt+y5EbyfHcb+z4Tje2NjIxRdfzPXXX8+8efN4//33ufvuu9Hr9dx+++0Ap7zP06dPJyUlhQULFnDVVVd1+t6CBQsYNGgQkydP7vQezJ49m4kTJ/KXv/yFpUuX8txzzzFo0CDuvvtuABRF4fLLL2f58uX8+Mc/ZvTo0XzzzTf8/Oc/p7y8nL/+9a+dXmfVqlV8/vnngeP4M888w6WXXsovfvELXnnlFX7605/S2NjIn//8Z26//fYTZsbf/vY3Lr/8cm688UZcLhcLFy7kuuuu48svv+SSSy455uOeeOIJnnnmGX7yk58wYcIEbDYbmzdvZuvWrVx44YXHfc2zRlDHaYk+rbm5WQGUK6644qS2f+ihhxRA2bZt20lt3zHEd+nSpUptba1SWlqqLFy4UImOjlZMJlOXh9PX19crsbGxyrRp00647XPPPacAyqeffhq4r62tTcnIyDhiKsD555+vAMrf//73Ts/xwgsvKIDyzjvvBO5zuVzK5MmTldDQ0MDUh2NNLygsLDxiWtktt9yiAMp9990XuM/n8ymXXHKJotfrldraWkVRFOWBBx5QLBaL4vF4TrivXXUqUzUcDscR9911112K2WxW2tvbA/d1vJdvv/124D6n06nEx8cr11xzTeC+jvf2/fffD9xnt9uVwYMHn/RUjQ4yfU+I7iGZ4CeZcGK9ORN+/etfK4Ci0WiULVu2nPTjhOgP5DjudzYcxzv28bnnngvc53Q6ldGjRyuxsbGKy+Xq0j4rypHT9379618rBoNBaWpqCtxXU1OjaLXaTtt1vAdPPfVUpzaOGTNGGTduXOD2p59+qgDK73//+07bXXvttYpKpVLy8/M7tcVgMHTKptdee00BlPj4+E7t7jjuH7rtLbfcoqSlpXV6ncOzy+VyKSNGjFBmzJjR6f7Dp+9lZ2crl1xyiSKOTabviVNms9kATnoIf1e37zBr1iysVispKSnccMMNhIaG8sknn3RpOL3P5+PGG2+kqamJF1988YTbL168mKSkJC6//PLAfUajkTvuuOOo2xsMBm677bZO9y1atIj4+HjmzZsXuE+n03H//ffT2trK999/f9LtP9y9994b+H/H8FSXy8XSpUsBiIiIwG6395phoSaTKfD/lpYW6urqmDZtGg6Hgz179nTaNjQ0lJtuuilwW6/XM2HChE7DshctWkRCQgLXXntt4D6z2cydd955BvdCCHE8kgk/kEw4vt6cCR2jLRITExkxYkSXHy9EXybH8R+cDcdxrVbLXXfdFbit1+u56667qKmpYcuWLcDp7fP8+fNxOp2dpri99957eDyeTsf1Dv/7v//b6fa0adOOONZrNBruv//+Tts9/PDDKIrC119/3en+mTNndpqCN3HiRACuueaaTr+zHfefaAroodnV2NhIc3Mz06ZNY+vWrcd9XEREBLt27WL//v3H3e5sJkUpccosFgvg/0B5Jrbv8PLLL7NkyRKWL19OXl5eYM51V9x3330sXryY119/nezs7BNuX1xczKBBg1CpVJ3uHzx48FG3T0pKQq/XH/EcQ4YMQa3u/GeWmZkZ+P6pUKvVDBw4sNN9Q4cOBQjMh/7pT3/K0KFDmTt3LsnJydx+++0sXrz4lF6vO+zatYurrrqK8PBwLBYLVqs1EEbNzc2dtk1OTj7ifY+MjKSxsTFwu7i4mMGDBx+x3bBhw87QHgghTkQy4QeSCcfXWzOhtLSUxx9/nBEjRlBaWnrUtauE6M/kOP6Ds+E4npiYSEhIyHFf93T2OSMjg3POOYcFCxYE7luwYAGTJk064n03Go1YrdZO9x3tWJ+YmHhEEfRYbUlNTe10Ozw8HICUlJSj3n/oax3Nl19+yaRJkzAajURFRWG1Wnn11VePyK3DPfXUUzQ1NTF06FBGjhzJz3/+c7Zv337cx5xtpCglTpnFYiExMZGdO3ee1PYZGRkAgQXmTtaECROYNWsW06dPJzMz84iD4ok8+eSTvPLKK/zxj3887Tnvx3Jo5byrDg/HDocv7NcVsbGx5OTk8PnnnwfmXs+dO5dbbrnllJ/zVDU1NXH++eeTm5vLU089xRdffMGSJUsC8+EPv9yqRqM56vMohy1gKIToXSQTfiCZcGy9ORM6Rip8/fXXXHfddfzhD384qcWThegv5Dj+AzmOd4/58+fz/fffU1ZWRkFBAevXrz/qKKljHetPx7Ge81RyZdWqVVx++eUYjUZeeeUVFi1axJIlS/if//mfE+bReeedR0FBAf/6178YMWIEr7/+OmPHjuX1118/+Z3p56QoJU7LpZdeSkFBQeDqCcczd+5cNBoN77zzTg+0zO/ll1/miSee4MEHH+SXv/zlST8uLS2NgoKCIw4y+fn5XXqO/fv3H/EBu2NqQscVRCIjIwH/B/VDHevMg8/nO+JD8r59+wA6DVHV6/VcdtllvPLKKxQUFHDXXXfx9ttvd2kfusOKFSuor6/nrbfe4oEHHuDSSy9l1qxZgf0+Fcf6+ezdu/d0myuEOA2SCcd/DsmE3psJn3zyCZ9//jlPP/00ycnJvPDCC+j1elnoXJx15Dh+/OfoT8fxiooK7Hb7cV/3ZPf5WG644QY0Gg3//e9/WbBgATqdjh/96Een1N60tDQqKiqOGJl3sm05HR999BFGo5FvvvmG22+/nblz5zJr1qyTfnxUVBS33XYb//3vfyktLWXUqFE88cQTZ6y9fY0UpcRp+cUvfkFISAg/+clPqK6uPuL7BQUFgUuVpqSkcMcdd/Dtt98ede63z+fjueeeo6ysrFva9t5773H//fdz44038vzzz3fpsbNnz6a8vJzPP/88cF97ezv//Oc/T/o5Lr74YqqqqnjvvfcC93k8Hl588UVCQ0M5//zzAf8BVKPRsHLlyk6Pf+WVV4753C+99FLg/4qi8NJLL6HT6Zg5cybgv2LIodRqNaNGjQLo0iWyu0PH2YhDPwS4XK7j7t+JXHzxxVRUVHSao+5wOPjHP/5x6g0VQpw2yYRjk0zw642Z0NLSwv3338+YMWO47777AP+0lqeffprFixfzwQcfnHLbhOhr5Dh+bP3tOO7xeHjttdcCt10uF6+99hpWq5Vx48YBJ7/PxxITE8PcuXN55513WLBgAXPmzDnhlRKP5eKLL8br9XZ6rwD++te/olKpAldkPRM0Gg0qlarTaLeioiI+/fTTEz728J9daGgogwcP7vH87c20wW6A6NsGDRrEu+++y49+9CMyMzOZP38+I0aMwOVysXbt2sAlQzs899xzFBQUcP/99/Pxxx9z6aWXEhkZSUlJCR988AF79uzhhhtuOO12bdy4kfnz5xMdHc3MmTM7zWUGmDJlyhFztw9111138dJLLzFv3jweeOABEhISWLBgAUajETj2sNxD3Xnnnbz22mvceuutbNmyhfT0dD788EPWrFnDCy+8EJgPHR4eznXXXceLL76ISqVi0KBBfPnll9TU1Bz1eY1GI4sXL+aWW25h4sSJfP3113z11Vc8+uijgbnYP/nJT2hoaGDGjBkkJydTXFzMiy++yOjRowPzruGHsyAd88aPpbm5OfBhY82aNYA/PCMiIoiIiOi0OOPhpkyZQmRkJLfccgv3338/KpWK//znP6c19eKOO+7gpZdeYv78+WzZsoWEhAT+85//YDabT/o5XnrpJZqamqioqAD8l0Du+NB03333BeaXCyFOnmTCsUkm+PXGTPjNb35DRUUFH3/8cadpHffccw///ve/efDBB5kzZ06XF3MWoi+S4/ix9afjOPiL73/6058oKipi6NChvPfee+Tk5PCPf/wDnU7XpX0+nvnz5wcuRPH000+fcPtjueyyy7jgggt47LHHKCoqIjs7m2+//ZbPPvuMBx98kEGDBp3yc5/IJZdcwvPPP8+cOXP4n//5H2pqanj55ZcZPHjwCdeHysrKYvr06YwbN46oqCg2b97Mhx9+eNysPOv0+PX+RL+0b98+5Y477lDS09MVvV6vhIWFKVOnTlVefPHFTpd3VhRF8Xg8yuuvv65MmzZNCQ8PV3Q6nZKWlqbcdtttnS4p23HZ2E2bNnW5PR2PPdbXoZdiPZYDBw4ol1xyiWIymRSr1ao8/PDDykcffaQAyvr16wPbnX/++crw4cOP+hzV1dXKbbfdpsTExCh6vV4ZOXLkUV+7trZWueaaaxSz2axERkYqd911l7Jz586jXjY2JCREKSgoUC666CLFbDYrcXFxyuOPP654vd7Adh9++KFy0UUXKbGxsYper1dSU1OVu+66S6msrOz0ujExMcqkSZNO+F50XML2aF+HXy71aNasWaNMmjRJMZlMSmJiovKLX/xC+eabb456Cd6jvZdHuyxrcXGxcvnllytms1mJiYlRHnjgAWXx4sUnffnvtLS0Y+5TVy5tLoQ4kmSCZMLx9KZM2Lx5s6LRaJR77733qN/fuHGjolarlfvvv/+E+yVEfyLH8f59HO/Yx82bNyuTJ09WjEajkpaWprz00kunvM+A8vjjjx9xv9PpVCIjI5Xw8HClra3tiO93vAeHe/zxx5XDyxUtLS3KQw89pCQmJio6nU4ZMmSI8uyzzyo+n++Ittxzzz2d7uvIrmeffbbT/cuXL1cA5YMPPujUpsNz5o033lCGDBmiGAwGJSMjQ3nzzTeP2sa0tDTllltuCdz+/e9/r0yYMEGJiIhQTCaTkpGRofzhD39QXC7XEft8tlIpiqweLMTJeuGFF3jooYcoKyvr0mVru8utt97Khx9+SGtr62k/V15eHsOHD+fLL7/kkksu6YbWCSHE2UUyQQgh+raz9Tg+ffp06urqTnpR+9Ph8XhITEzksssu44033jjjryf6HllTSohjaGtr63S7vb2d1157jSFDhgQltLrb8uXLmTx5snQ+hBDiJEgmCCFE3ybH8eD49NNPqa2tZf78+cFuiuilZE0pIY7h6quvJjU1ldGjR9Pc3Mw777zDnj17jpjD3lfdc889clUhIYQ4SZIJQgjRt8lxvGdt2LCB7du38/TTTzNmzJgTLoouzl5SlBLiGGbPns3rr7/OggUL8Hq9ZGVlsXDhwlO+jKkQQoi+SzJBCCH6NjmO96xXX32Vd955h9GjR/PWW28FuzmiF5M1pYQQQgghhBBCCCFEj5M1pYQQQgghhBBCCCFEj5OilBBCCCGEEEIIIYTocVKUEkIIIYQQQgghhBA9ThY6P4zP56OiooKwsDBUKlWwmyOEEL2eoii0tLSQmJiIWt1/znVIHgghRNf1x0yQPBBCiK472TyQotRhKioqSElJCXYzhBCizyktLSU5OTnYzeg2kgdCCHHq+lMmSB4IIcSpO1EeSFHqMGFhYYD/jbNYLEFujRBC9H42m42UlJTA8bO/kDwQQoiu64+ZIHkghBBdd7J5IEWpw3QMybVYLBI6QgjRBf1tSoPkgRBCnLr+lAmSB0IIcepOlAf9Y6K3EEIIIYQQQgghhOhTpCglhBBCCCGEEEIIIXqcFKWEEEIIIYQQQgghRI+TopQQQgghhBBCCCGE6HFSlBJCCCGEEEIIIYQQPU6KUkIIIYQQQgghhBCix0lRSgghhBBCCCGEEEL0OClKCSGEEEIIIYQQQogeJ0UpIYQQQgghhBBCCNHjpCglhBBCCCGEEEIIIXqcFKWEEKIXKS5uZtGiAxQXNwe7KUIIIYJI8kAIIUSH/pwJ2mA3QAghxA927apn3boKANLSwoPcGiGEEMEieSCEEKJDf84EKUoJIUQvMnx4dKd/hRBCnJ0kD4QQQnToz5kgRSkhhOhF0tLC+93ZDyGEEF0neSCEEKJDf84EWVNKCCGEEEIIIYQQQvQ4KUoJIYQQQgghhBBCiB4nRSkhhBBCCCGEEEII0eOkKCWEEEIIIYQQQgghepwUpYQQQgghhBBCCCFEj5OilBBCCCGEEEIIIYTocVKUEkIIIYQQQgghhBA9TopSQgghhBBCCCGEEKLHSVFKCCGEEEIIIYQQQvQ4KUoJIYQQQgghhBBCiB4nRSkhhBBCCCGEEEII0eOkKCWEEEIIIYQQQgghepwUpYQQQgghhBBCCCFEj5OilBBCCCGEEEIIIYTocVKUEkIIIYQQQgghhBA9TopSQgghhBBCCCGEEKLHSVFKCCGEEEIIIYQQQvQ4KUoJIYQQQgghhBBCiB4nRSkhhBBCCCGEEEII0eOkKCWEEEIIIYQQQgghepwUpYQQQgghhBBCCCFEj5OilBBCCCGEEEIIIYTocVKUEkIIIYQQQgghhBA9TopSQgghhBBCCCGEEKLHSVFKCCGEEEIIIYQQQvQ4KUoJIUQvsWZNGU8+uYY1a8qC3RQhhBBBJHkghBCiQ3/PBG2wGyCEEMJv6dJili4tAWDq1OQgt0YIIUSwSB4IIYTo0N8zQYpSQgjRS8yaldbpXyGEEGcnyQMhhBAd+nsmSFFKCCF6ialTk/vl2Q8hhBBdI3kghBCiQ3/PBFlTSgghhBBCCCGEEEL0OClKCSGEEEIIIYQQQogeJ0UpIYQQQgghhBBCCNHjpCglhBBnoeLiZhYtOkBxcXOwmyKEECLIJBOEEEJAcPJAFjoXQoiz0K5d9axbVwFAWlp4kFsjhBAimCQThBBCQHDyQIpSQghxFho+PLrTv0IIIc5ekglCCCEgOHkgRSkhhDgLpaWFy9lwIYQQgGSCEEIIv2DkgawpJYQQQgghhBBCCCF6XL8qSj3xxBOoVKpOXxkZGcFulhBCiCCQTBBCCAGSB0II0Zv1u+l7w4cPZ+nSpYHbWm2/20UhhBAnSTJBCCEESB4IIURv1e+Oxlqtlvj4+GA3QwghRC8gmSCEEAIkD4QQorfqV9P3APbv309iYiIDBw7kxhtvpKSk5LjbO51ObDZbpy8hhBD9Q1cyQfJACCH6L8kDIYTonfpVUWrixIm89dZbLF68mFdffZXCwkKmTZtGS0vLMR/zzDPPEB4eHvhKSUnpwRYLIYQ4U7qaCZIHQgjRP0keCCFE76VSFEUJdiPOlKamJtLS0nj++ef58Y9/fNRtnE4nTqczcNtms5GSkkJzczMWi6WnmirOAorLhaexEV9rK77WVrytrfhaWlFcThSvD3w+FJ8XfAoqnQ61yYjKaERtMqE2mdBERqKJikYdYkalUgV7d4QIsNlshIeH9/rj5okyQfJACCFOX1/IBMkDIYQ48042D/rdmlKHioiIYOjQoeTn5x9zG4PBgMFg6MFWif7Ka7PhKi7GVVSMq7gYd1kZ7uoqPDW1eOrq8DU3d8vrqPR6NBERaGJi0CcnoUtLQ5+ejj4lBcOgQWijo7vldYTob06UCZIHQghxdpA8EEKI3qNfF6VaW1spKCjg5ptvDnZTRD/ic7lw5efTvns37Xm7ac/Lw1VYiLepKbCNOjQUTURE4F9dUiLq0FDUJjMqgx61wYjq4AgolV4PanXgSwUoXi+Ky+X/cjpRnE689lYURxs+hwOf3Y7Pbqd9z17s6zfgO2StA01kJIYhQzBmZmIcOQLzmDFoExOPGF21Zk0ZS5cWM2tWGlOnJvfQuydE8EgmCHF0kgfibCN5IMSxSSaIntavilKPPPIIl112GWlpaVRUVPD444+j0WiYN29esJsm+ihFUXAVFdG2LQfH1i205eTiKiwErxdUKrQxMWhjYzGOGOEfvRQViSbGitZiQaXX+790OtBqu33KneL1orjdKC4XPrsdT3U17qoqPLU1eGrraPr0U3z//jcAmuhoTKOzMZ8zgZDJkzAMHcrSpcUsXepf5FMCR/RHkglCnBzJA9HfSR4IcfIkE0RP61dFqbKyMubNm0d9fT1Wq5Vzzz2X9evXY7Vag9000UcoXi/tebtxbFiPY8tW2rZt84+AUqnQxsWhS0ggdOYMdDFWtImJaMLDURv9az+pNJoebatKo/G/ptGIxmJBl5CAqWM/PB58bW146+pwFuTjKivDuXcfrSu+B68XTVQUVwweRcrgoWRMyj7lNpzMmZTi4mZ27apn+PBo0tLCT/m1+jI54xQckglCnJxZs9I6/XsqTvY4d7ZnguRBcEgeCHHyeioTzvY8AMmEDv2qKLVw4cJgN0H0MYqi4C4txb52LfbVa7Bv2ICvpQWVwYAuKQnj8OFoExLQJSejjY72T7czGlGpe/eFK1VaLZqwMDRhYegHDAD80w69jY049+3DuX8/qsJdTK5dAev/SeGoUVguuRjLnDnoYmNP+nVO5kzKrl31rFtXAXDWBo6ccQoOyQQhTs7UqcmnfWw62ePc2Z4JkgfBIXkgxMnrqUw42/MAJBM69KuilBAnQ3G7sW/YSMu339K6ahWeykpQq9GlpGDKzkaXkoIuNRVteDjqkBD/9Lt+QK3Xo46LQxcXR+i0afja23GXl9O+cyfOffuo+eOfqHnmjxiHD8dyycWEX3kl2sjI4z7nyZxJGT48utO/Z6PuOOMkhBC92cke5872TJA8EEKcDaSPcHIkE/xUiqIowW5Eb9IXLmMrus7ndGJfsxbb4sW0Ll+Or6UFTVQU+sGD0ScloUtPRxsdjSY01L/w+FlG8XpxV1XRtm0rzr17cRUWgUpFyJQpRFx/HWHTp/eb4pzofv31uNlf90sIIc6k/njs7I/7JIQQZ9rJHjtlpJTot3wOB60rV2H7ehGtK1ehtLWhsVoxjhyJYchgdGnp/gXJTaZuX4S8r1FpNOiTktAnJaHMvRh3ZSX2Detx7txJ+X33o46IIPySS4i67Vb0yd03tPSjj/by8cf7ufrqIVxzzbBue14hhBB9j2SCEEIIkDw420hRSvQr3pYWWpcvp/mrRTjWrUNxudDGx2MeNw7DsGHoBwxAExYmo36OQ6XRoE9ORp98LcrlV9CWl0fb5k00ffQRje++i3nSJKJvvZWQ86addjHv44/3s3JlGcBZGzgdizyGh+tpbnad1Ys9CiHObmd7Jkge9E/tra188/e/Mf6yq0galhXs5gjRJ5zteQBnVyZIUUr0eZ7GRlqWLsO2aBGOTZvA40GXlIR58iQMmVkY0tJQh4X1+sXJeyOVToc5Oxtzdjaehgbsq1fj2LKF0rvuQpecTNT8+UT86HrUBsMpPf/VVw/p9O/ZqGORR61Whcfjn03dXwNHCCGO52zPBMmD/klvNlFfXso3r77A/D+/hPYsXCZCiK462/MAzq5MkDWlDiNzxvsGd3UNLUuWYPv6a9q2bQNFQZeain7QIEzDh6NLSfEvUn6WT8s7Wbt315GTW8Po7FgyM2OOu63P5aJt61bs69bhys9HEx5O5E03EnXrrWhCQ0/4WnL5187OxFmQnn6P++txs7/ulxDH05OXp5Y86OxMnRWXTDh9p7tPO5cv4Zu//42pP7qJSVffcAZaKMSZIZkQPGdTH0FGSok+w1VWTsuSb7Et+pr2nTtBpUI/YAChM2diHD4cfVISKrNZClGnICe3htycWoATFqXUej0hkyZhnjABZ34+rcuWUffq36n/15tEXHcdMXfdiTYq6piPl8u/dpaWFt7t74O8x0KIU9WTl6eWY1VnZyIPQN7n3iBxWCbW1HQ2ff4xw8+fRVj08T9rCdFbSCYEz9nUR5CiVDdq27kL49AhZ+XV284U54FCWr79FtvixTj37AGtFv3AgYTNmYMxKwtdfLwUorrB6OzYTv+eDJVajXHoUAxDhuAuLaVlyRIa332XpvfeI/JHPyLmnp+iOUpFvLdc/vXwBRR78kxQV3X1rEZveY/PZh63l8YqB9aUsGA3RZylfD4Ft9OLu92L2+nB7fTidft+2OBgbmp1anQGDTqjBr1Ry8yZqUDPXJ66txyr+lIegGRCXzVw3EQ2ffERy/71d678+W+C3RwhTkpHFkgm9M5M6C95IEWpbuJtbqbkllswjRlN8quvopaFtE+Joig49+2j5Rt/Icp14AAqgwHDoEGEXXYpxmEZaGNjZWpeN8vMjDnuCKmaWjslJS2kpoYRaw3p9D2VSoU+NZXoH/8Yd1UVLV9/TcOCBTR9+CGRN99MzJ13oDabA9ufqTPBXXX4Aoo9eSaoq7p6VqO3vMdns01fFbH9u1IuvnskKZm9K/hF/9Bud9NU7aC5xkFTTRst9e3Ym53Ym5202dy0O9xwCgs0qFSQEqqj9LtyPt9cS0iEgbBoI5HxIUTEmgmPNVFZbe+W4f+95VjVl/IAJBP6KmNIKBlTziNv5XfsXvM9mVPPD3aThDihqVOTj3sc7M7pYL3lWNWXMqG/5IEUpbqJJjwc688eovoP/0fZvfeR/MrLqDWaYDerT1AUhfYdO/xrRC1ejLu0DJXJhGHIEMKvvAL9kKForVYpRHXB8YpIp6KkpIW9exoAjvt8uvh4om67jdCLLqJl0SLq//EPGt99l+g7fkL0Lbf0qlGEhy+g2JNngrrq8LMaMue+9xs/N50DW2tY9OoOLr9/NAmDI4LdJNFH+bw+Gqsd1JW0UFPSQm1xCw0VdpxtnsA2BrMWg1mL3qjFYNYRGmlEb9Sg0anRaFQ42j00NjqxxpqwRBgBFR0VK6/Hh9ftw+tW8Hl9eFw+XO3+kVX2ZheN1Q6cdv/tDmq9mnafQv3OeiZekEJsqoVwqwmVum9mdF/KA+icCZIHfcuQiVMo37ub5W/9g9SR2YRYIoLdJHGW6e5jRm+dDnY6+lIm9Jc+gix0fpjTWcjQVVxMzf97kZavviJszhyS/vq8FFGOQXG7cWzahG3pMlqXLMFTW4s6NBTD0CHoBw5EP2gw2qgo1KGh8h4e5mQKTpu3VLF3TwPDMqIIMWtPehHz03nNo3EWFdGyaBHtu3ahjY8n7he/IGzO7H71M+2pg/+hr9PxAWDy5EQuvnjgGXvNk9UfF7WFbljYdmUZm74qwu30csWDY4hL7z/vjThz3C4v1QeaqdjfRPm+JqqLbIFpd6YwPaGRBkxheoyhWkyhOpxeH7UN7SSnhBEbH4pao0KtUXU6zm7ZXMWePQ1kZERhNmvJza0hOzuWzKxjZ4KiKPg8Cl6vD59Hod3hxt7oxGFz0VjroLm+Hdw+3O3+YpVWr8aaGkbikAhSMqKIG2BBqz/7Ts71RCb05jyA/pkJp7tPDRVlHNiyicjERFrq61j+1j9JHZnN1b96ol99JhLBdTLHn0WLDgSOGeHh+tOeltZXiyA9QfoIstB50JhGDEel12P75BPKUUh6/nlUanWwm9Ur+BwOWlevpmXJUlpXrMDX0oImMhL9kCGEzLgA/YCBaCMjpRB1AoeOWuq4fXixKDU1LPDvsmXFgUXMo2NMp1RcirWGnNKIK0N6Ovq776Z9925sX3xB+UMPYXorm7jf/hbTiOFdfr7eqKfOEB36OseaDy4fDHoXnV5L9qxUcpaU8PnfcrjsvmziB8rPRXSm+BRqS1so3llP8Y56akpaUHwKOoMGi9VESmYkIeEGQqONmEL1aPVqtDoNao0/J7dsriK/yIbWqEVv0gaO8dbYY2dCTk4trXYPDofniG07qFQqNDoVGp3/M4wxVEdE7A9Tsb1eH16XD4fNSXNtGy0N7bTUO8ldVsqWr4tRqVXEJIeSOjyKAdlWYlPD+uxIqq7oiUyQPOjbwqJjGHHBLLYvXczGTz9g4lXXB7tJop849NjQcfvwY8Chx4y33toZmJaWnBx2SseM3jodrDeQPsLJk6JUNyssbGJrfRLnTLkIvvmW0v+9m+SXXkTdi6Yt9SRXaSmtq1bR+v33ONatR3G50CYkYBo9Gv2AdHQpqWjCw2VqXhcc2rk41rS6Q4tIHYuXR0YY+M/beWg0Ks6dlnzMItPxRkXt3l0XGHUFnNQILJVKhSkrC8OwYTjWrqVp0dcUXncd2vNmMuD3v0NntZ7iO9E79NSCgYe+zrE+AJxs+PX2YOov9u2rZ9fOOrKyoqnf3cTnf8vh4p+OJHnYsa9OKc4OrnYPJbsaKNpRR8nOetpa3Wj1aiLjzaRnx2CJNmCJMaE36tAZfihAHc3hmbDnYCYcWmiyxoYEbmdnx1Jb20ZJiY3WFhfTpiUftSjVobbGftRCl0ajZl9hA7m5NUREGGhqcjJqpJUxF6XQVN1GY5Wd5to2cpb6i1QGs5akYZEMHG0lfWQ0BrOuXx6LeiITJA/6psKiJhZ/3+z/3DT2HOpKiln7wQISh2WSkjUy2M0T/cChx4ZjHQMOPWZ0TEeLizPz6KOr0GrV/OhHGcc8FhzveHHoYuDAKY3A6m/HI+kjnDwpSnWzffsayT2ghtFDufT6SJo/+ICS239Mymt/RxNy+mv79Ha+tjYcmzbRunIVrStX4i4pAY0GfWoqIeeei37gQHRJSWgsFtQmU7Cb2ycdbdRSR6fkaAWljoLRf/6TR12dg5gYMyFm/5++z+efEqI+OJrP4/Xy3fJCcrbVMXFCIlddNbTT6+Tk1gRGXQGB/59oWmCgXRljqdKm4lr2LclrV1Ewew7a/7mdfRkXMXxkbJ8MoJ46Q3Qyr3O8eeWbN1cFriRiMun63fz/3mjnrnp25zWgaFRcddUQNn5eyJcvbeei27MYOObkr3Qp+ge300vxznr2b6qieFcDXrePkAgD0cmhWKwmIuLNmEJ06Ixa1F0YUXRowalDamrYMYtJmVkxLF1aTEmJDZfTS1NzO7U1dmKsZrxeL1rtDx8Nc3LK+PabEvR6/VGLV7m5NeTk1KLWqPB5/atBZI2wEj9QT/zAcHw+BafDTX1pK3UVrVQXNnNgWy2oIDo1DCL05JXZgB+ORX29U9ITmXAqeQBHz4T0dEvgM0BffL/7kn37Gsnd7Z/umpkVzdiLL2fF26/zxfPP8D//9zwRsfFBbqHo6452bDjeWkMdBaPHHltNaamNlBQL4eH+gRSH9xHcbjcLFuSyeHEpl18+hEcemdDpdQ5dDNx/++QWBj/a1LOOfZE86L7X6e19BClKdaPy8hYMei2DB4czOjuWsMws1EYjjQsWUHTd9aS+8Tq6hIRgN7NbeVvttG3bhmPzZhwbN9K2cye43WiiotAPHIB53Fh0aeloo6PRhIX1qoWu+5qjFZwOL1CVlLSwZ3c9iqIE7l+dm8uf/vkxB8qqafO04q1sZ8GvPDg9Lhzt7Xz252e5YNw4ABYu+ZafvvYsAG9sNfDrhWGEmUMIDw0hITqGi8fPInu0ldHZsbS7XLS52gKjpo7n0BFdqYNjKNFfhj50Ntrli2h//SUiwz5i/60Pk3bPJd36np1tDg+lQ8P90CuJ/N//TQN63+Vg+5Pi4mYMBg3pA8LJzo7FYNYx8cpBbP7yAIv/sZMpVw9m9IWpwW6mOMN8Xh8leQ3sWVdF8Y46PG4flhgjKZlRRCWaCYs2YTBr0eq6vvbS0YpOhxaoOtaRUhQlcJ+iKPzphadZuWoXVTVV5Oa3sHhNO15vO05XG+NHT+TdNz4NvMat91yIrbUOtVrL259YsIRZCA0JJToqhmFDsrhq7n0AREQYKCuvYsTIzscUtVqFKVRPcmYUyZlReNw+Nq4qo6qgmebaNjzFLcSpoDmnjrxwI4PHxfbLRXOD4WidlKNlgt0ex513ZksenGEV5S0YDFoGDwkLfG7S6vVMvnYe3//nX3z0h99x4x+exxgaGuSWir7oaMWbo30mXLu2HEVRAvcvXbqUX//6ZfbtK8btbqamxsGll7pxudpwOBysWbOGKVOmAPDPf/6Txx67B4ANG8y88EIkFouFyMhIEhMTufDC+cyalcqsWWm0tTlob7ef1MLgx5t6JnnQfXp7H0GKUt1o794GdpSUkDBkNNEx/lFAIRMnogkPp+Ff/yL/yqupmP8bBl96bp/8w1JcLpz5+bTt2kX7zl20bd+Oc+9e8PlQh4aiT00l9Pzz0aWmoktMRBMW5p+WJ2tqdYujTdVrd7nYeaCAnH37WL9jN9v25FPRUMWbv34C8BdA95WU8P3uVcd83orqRjZvqSI1NYxDL3vg9DipqHMCdYH7brjwQi65NAuAz1au5MF/P0HcF1EMTUllaFoqg+LTsIYkMW18BonxPyxmd+j0kkMLacrQu6hauYHQr78k4sWfU168krhHf402IuK470VfP3PSUw4N90OvJCLz/8+8XbvqyS84QJw1hpiDeaA3aph4xSByl5Ww5qN8cjdVcf68oaQPiAhuY0W3a6yys3ttJXvXV+GwuQiNNJCUEUl0YgiWGBOGEB0a7ell4+FT9RRFobK6gp15uezMy2X9ps0cKMpn8MBhLHzzfcA/nfqDTxfQ2NRw1Oe0t9k7Fbu0Wv+ILZ/PQ1NzA03NPzyu2dbMow8/GVgsfdYVN/GX10oZkDaIQQMGk5I4hJjIIZx/7kQGD/afKdfq1AwZEY3Boic5KRSDWkVlfjP15a0s/88eVi7cR+ygcLIHR5KVdfLTXCUTTs6xMqE3LIbb3+3ZW8fegiJSB44M9BEAQiIimXDVdax9bwFv/OLnzHnwCQYNjQtiS0VfdLTiTVtbG7m5uWzZsoWVK9ezceM2qquL+eCDr4BBAOzYsYPNmz895vMWFFTT1HSA4cOjOfTaaC6Xg/JyB+Xl5YH77rzzTu68cyoA77zzDn/84828/XYiGRkZZGZmkpaWSUjIQObMmcjAgT8c34839exUpr9JHpyc3tZHkKvvHeZ0rq7x8T8WcM1dNxEZEsUFYyZw+5UXMmXUKLQaDe6qKsr/9jKqlmYarvlfznv6njO0B92jfd8+nPv24yoqwnWgAOeBAzgLDoDbDSoV2thYtPFx6BIS0CYmoUtIQBMa6i9CaaXW2RUd6zSlpVrQG7THXIT80JFSOQd28vS/3mBXYSEer/eIbV/9xS+5cfZsamrtfLd+B9tLchmYEk9cVBTWiEjCzGaqytvJz28hKsyCy6kwLCOK7OwYnG436zaWsDOvirhEPSlpJhpsNirr65iUMRaPw0hqahjvf7+IR1999aj7ZNQZWPDUk1w4YcJRv384n9OJ7auvsK9ciVerZ9PI6xhyxzymnpty1O0PvXJIx3DfUwmf/hxcPblv/fFKS3B6+1Vc3MzM82dSVLqdUcMncs0VVzJr+mxirfH4fD5WfnYAe6UDY5SBG391DiaLjCLt6zwuL/s3V7NrVQXVhTZ0Bg3W1DCik0P9U/NC9Wh1Jy5E7c6rIze3htQ0Cwa99pgLkXcUj1JSQnniz/exact66hvrjtguPjaVtUu2BLZfsfYdwixGrNGxxMTEEhEeSYg5hPIyJwX5DsLDw3HYPWRkRJE13ILb7Wbd+kJ25ZUTH68hMVlLXX0tZpOZc0bPoqSkhaQkMxdePQq7w37UfZo2eTr//vsHx9xnr9dHU7WDin2N1Ba30m53ExKhZ+iEeJyhGlauqzju2iTdkQmSB92nP2bC6e7Tv159ix//9DYiLFamTpjMjdfPZVz2KDQa/yjJVV9voG7HUkwxydzx3HPojbLEhfhhnaYRI2IwmXTH/Bs+9G9827blPP744+zatQvvUfoIb7z2KpfMmkVJYQ1Llqxh34GtJMVHEx0RToTFgsmgp76mncoKB5bQUNweDWnpkQzLisbr9ZGzo4Y9+xtITAll0LBwWh3t1DY2ct55l1LfaGb48GgWLHiZxx577Kj7ZDSa+frrr5g+ffopvx9nOg+g/2ZCb80DqR50o6bWagxaHY32Bj5evZiPVy/GbDBz3qhx/M/cGYy87U744D2sH7xEWWsBif/3B9Qm00n9gfWk9rw8Cq++BgB1WBja6GjUkZGEnnce2rhYdPEJaMLDUZlMqM1mGQl1mjrWaaootxMf/8O0PPCPhFqdm8u3GzZw6dSpZKQOpaSkhTaHl9z8fACiw8MZPXQoQ5PSsYYmMHHUEM4Z6a94l5S04LVZuHrSFYwf13mtgu0b8yjc245msInRY2JxOT18+OE+RmfHkp2VTGRo+BEFss1bqgKjte699jrmz72Yz5fksDF3Pw7qKa4rYUdBPg5nG+kJP7zePz/7jAXfLOa80WO4YNw4po4ahV6nC3xfbTAQcfXVhEyaxN4X32TihjepKlqPa+HL6I8y5fVkFnKEE4dXfx4W3J/3rS9ISgrBq9jw+txs27GabTtW85vfP0JyQiYzzpvN3AsvQWsMx15m592nNnDRj4eTkhnV6/JAnFhLQzs7vy9j16oKnA4PUYkhDJ0YR0xyKOZwA3pj1z5qdazTVH5IJnQUpYpLC1m+cgmlFSX89ue/B/zH+bLycuob69BoNAwZlMGIzFGkp2QSak7mnLEjAtvt2dPA9Ck3MW78kWvXbFyXx57dDgYPMRAdbWJbTg1ms5bMrBjGjh5CTFT8EQWyjimCADmrC/jm261s2LQD1DXU1OezfVcOldXFxET/MM3b6/Uy55ppZA4dzqRzzuX8c2eSlJBMdGIo0YmhuF0eagptVOY3s/27UjweBXerk+/bDzBlctJRr+B3MpkgedA/962vaG6pRqfT0WSr5auln/PV0s8xG0OZNH4i115xIRnDR6EoPhrzlvP+k7/m6kefxBwWLplwlutYp2nfvkYGDowAOo+EWr58OYsWLWLeDTcwMDmJTcs2kL9/K9u3bwcgPCSEtNhoEsLCiAs1EhsWQu23n/HOsi8BMAAjVUBNK6o6NTa1mhaVGrdHIcyjoLarMKuhpsFH9WYfKvzrTKUC7IPiff52qoHVW1ejqLTsN4eRGhfN27/7JbuLG9lb0kCbYqeqoZLde/fS3u5g0KBBgX187rnn+OCDD7jgggu46KKLOPfcc9Ed0kc42vsBx16rSvoIx9db90uKUt3opmuu4UKzmYXbDvDJipXkFu3A4XSweNMq/9dfXyDyyvlUfvk1yd98S/uOHSQ+/xwffljHt98W0dTk7PRHEawKrdfmX3Q0/LrrMGZmojIYUBsMqIxGKUCdAR1rC3SMlDKEuvj3V1+xeP16lm/dgqO9HfCvzWGemMDePQ2kD0rmzd/8lglZWehVIZSWtgYKSLt31/H/XthKa6uHKVMSGJYRFZg+Bz+MuEpLtWBv9RAdbQxcJrxj4fJ5N2QddbTWodPwACwhIVw0dTQZKYMCr+/z+cgvK2NQ0g+/yyu2bmHr3r1s3buXF95bSIjJxKzx5zBn0iQumjgRa2QkgH/a5813kP/1MgaVbebAxZdgfeghom6+qdPVGY+3kOOhThRePXVVjFN1OseA3r5v/Z1Wq+Xrhd+z9LtNfLHkS4rLN7A3fztllbt5+73dFJXm8tar75OzsZLSbbV8+tctjL0onaU7q/nyq0L27WskOTms08+9v56164sURaF8XxPbvyulaHsdGp2auAEWrGkWImLNGEN0x71i3vFkH8yE1DQLGrVCbeNOnnn+73y38lsKCvcD/oVnH7z7l5SU2Nmzp4HrLrufJx+NJ3PocFpsvk5rTa1dW8bvfrcanVbFiJHWTnlw6FS91DQL5eV2srKiKCm2kb+/kdAQf1HqaIupQ+dM0Gg0nDMuizhrSqfilc3WjKPNEXjM7n07KSjcT0Hhfr785lMAhgzM5KKZc5hx3kWMGj6GpGFRJA6NxGFzkrOqHF8ZaBo9vP2btYyYlsTw85IwhvzQaTmZTJA86L37dja45aYbGZeewterd/H1shXsyc/B0d7Kd6uX8d3qZXz6n7ewpg+lstJBVeFGFvz6Z1z72NN8+OG+XtVHED2rY02mjpFSkREOnv/Tn/jyi89Zu2kzTpcLgL0rljBnuP+EtNft4fYLpjAsLZVISwRurxZLZCiWyDAqqtzk7W1Gr9EzLDMOg9FEQnIk1thQVGo1DQ3tVFS04nYr7N/fSGSkgTHjE1i7pozdefVkZkQyd24aXo8LV3s7bqcTj9OJx+WiuclBY50Nk94LKg+elmaS9W1YExV8bjXEJuEbmkid3c6Xv3+UcGssFmscH77zLhtyctmwYQN//OMfCQuzMHfuHC699FLmzp1LTEzMEe/H8daqkj7C8fXW/ZKiVDczGwyEK2mMCZ/D3LlXU1JfxO7KXTR5KxkQl8677+ylvCaVQmcu5evWMfWCGaQMOZfYyCtwu708+eSaQMU2WJVMxeMf6qlLSEAXL1cC6W6HL1iemRlDZmYM9c3NXPvrR9myd3en7a0RUVw6dQpzJk0mNeWHDsBUayo1tXaWLSvGZvOHUqw1hJzcGrZvr8Pt9hEebuDhhwd1eu1ly4qprnIQF29mwAALVVUOSkpaAsWxwxcu75heODo7ttM6CEfbF/B3liJM0WzdVhO4/8/33sel557Lx0vXsmbHVlrbWvls1Uo+W7USvU5H0Sef4mj9oSOV+fA8PPUX0bRwITX/93/YFn1F4p/+hCHNH0IffbQ3cJWIa64Zdsy/jxOF16HBdbyDe3d8+DuV5zidY4CsGxV8KpWK1uZwIkyzmX7tTYSFt7Pww8+oadjCtElzqK2xs2xlGQUHivh+8y/JWDaWjPRzSLVm0NDQxqOPruKnPx0d+LDUW89unU18Xh8FW2vZsriY+vJWQiIMDBhtJTYtjNAoY5dHRcGRC5ZnZsWQmRXDmwte42+v/gVbS1NgW7Vaw8jMc7h49hwUn++QopD/GLdrZzNNze1UVfqLQNbYENatrWTv3gZ0OjVDhkQGikW1Nf48qKpyEB9vxhprJj4+BINeGyiMZR/lQhYd0wuzs2MD66UdbT86ONu1lJeq0KjsWGNDGDIog4Vvfs76jWv4esm37CvIZf+B3ew/sJuX//lX7v/fn/Pg3b+grtafTUMnxBM520h1oY3yvY1s+OIAm74qZPD4OMbNSeO7NWVH5MHR/j4kD+SYEWxmk4kQ/RCGJEQwbewNlNcUUFi6HZe3BmtUCu/8J4/yCjUl1WXU163k/e/XkpRxBVFRw3tNH0GcWYceG1JTLWQOUBExvZ0dmz7iF8/9Pw5UVXfaPjI0hPEZQzl//BjSBw3D5tCSNCCByxIjaWxys2pNJTaHl7FJCQw/J4HFf9nExl1udFo1ESmRzLssM/BcNTUO1mysDmRC2qAEKqvs1DRA9rgBKNoQsrNjCY/9oZixO6+enN01jM5OJzXdBCU2UlMtxEQbqK5qoaSkicR4E+GhKhzNzdibm2ioaaCxtok2hxP7/r3MHphAmh7yq+vYU1VLS4uN999/n/fffx+T0ci+3G24tVZ272lm+PBoHn986nHfQ+kjHF9vzQMpSnWzxoY2PG6FsDA9E8YnEFcSAq0xJCWGkrezAY1GTXSUkU8LSqlz2NnjsMOGzzCpv6CmMJN243jq6+cwdeoNQatkKh63/z8yKuqM6FiwvNnegqHCwbnZ2QBEWSyU19ShQkVG6iCGWDMwticxY/II/mfecMBfIFq7tpy1a+HCWWnYHR5sNjdOp5ecbTWEmLWMzo6ltMRGQ4MTtRpef307U6cmkpkZQ0lJC9VVbdTU+DsssdYQhmVEEWLWYnd4mDkzLTDaqqMQtWRpMbk5Nezf30iIWY9Go+Lcacls3eK/fKhKpWbOnHSmnpsU6JAcvih7ktXKvAsvYnTyWN5+eydFdaUQUUV5Sz6WkBBCTSb25PmnBr70+dtMGTOUc4ePxzHxapIGD8f13dcUXn4FMffdS/SPf9zpKhHXXDPsmO/11KnJJz3c/XgH91M58B8eiqfyHL31bIY4eYlJoeQX23B7fBgNUWRnXkJb+2xC9BFs31GLy+2l3raDNmcL2w58z7YD3wMQE5GKzpCFWn0hY8fejclkkt+HIPK4vOxZX8XWb4ppqW8nKjGErGkJRCWGEhJuOK1Fy0tKWsjbXcfufVuYO2ci0VH+s8ImoxlbSxNmUzjnjDmfxNixtLUMYMI56dwwz3/BicVrCli5qpzzpiVhtYawZ08DPkWhptrBgIH+tRsmT0mgttYBKKg1Khb+N4/s7FgcB/PD7nCTn9+EwaglIyMKs1mL42AeWGNDOhWhMrNiWLq0mJxcfyaYD2bCtGnJfPttIbm5dWRnx/CTn4zqlAeHLshu0BuYMHYyE8ZO5sLzbuX1f62nsGQzXvVuiso2M23y9MD7snjJcsqq13DVpVcTackgfUIsGZoEinfWc2BbLXvXV9Ho8XJgZx0fI3kgereGxjY8HoUwi54JE5IoLg7D2x5PUmIoO3fUodaoiYoy8t2WfFrtzZTWN8LOPRj1BioqxqFSDaOhYQ5Tp14vvw/9kNfjZtPyTezZuIWdnxVTWbqH5DAzAKbwCOpsLaiAgcmpDEzKRK8ayMSJI7n+RyPQ6HTs2d1AztIicgoauXBWOHaHD1srOF0Kubm1hIbomTwlkWabE61WTXOz099HmJJEZlY0JSU2qqoc1Ab6CGYS4kNobnKSmmph3jx/AWt3Xv0hfYQicnNqD/YRdKg1aqZNgy1bHHz88X7UapW/jzA1mbImH6mpSTQqNmrqGxg2JILsUVF4XE7aW2zs3VHE1g351NSXUGUrY09FKRaDnvd++wioNXi1kTy7axeTJo/jgpmX41SlMmpsyhHHUOkj9E1SlOpG5eUtbNxURVG1AaNRi97gLxBUlNtxub0UFtoYefByyVFxD1NhL2RX2W627smhwdFKXsUuYBeffbiCOXMmMHx4NMOHR/Pdd7lMnz6SAQMie2a47sFF8WSqXvfpKPKMHBlDYf1e/rvpa9b9eyuhZjNrX/03lRVtpKaG8cIDD6NyhzJuZBr1dW2Bg37HiKScbTXk5NTg8yq4XT4mT07AYtFRW+shb3c9zc1Obp6fxS9+MYnNW6r45z9yqW9op7CoiauuGkqIWUtcvAlQiIs3M3JUDPn7G/n4o33oDRqGDYtkdHYsixYVUl7RGmi/AjTUt9PU5CIpMZTU1DA+/mgf1dVtoIIdO2tJSbUEClGHT/PrUFHRikajYUT6YK6+ei6ZmTGBocepqWHUNTfyyZvf8PHqxahVKoYlDuOa82dx9yOP0LLwA2r/8hwVn3xN1pCbsY+LC1wt4lR0/C2VlDSzalU506YlBRZFPNypHPgPD8XjPcex/q5769kMcWLFxc3k5tbgdHox6DVUVTpITAxjzNg48nbVsT+/CYNRx4B0C5ERV3DFpVMoLN3E92uWU1C0i7qmEqCEd95ZzLnnxpGSMpnwcD02WyMtLTogXKZv9ACnw83OleXkLC2l3e7GmhrGgOwYohJCMIbpUR9lfaOT0VHoSUz2sm7zV3z61XtU15bR1PI4k8ddS2pqGHMvvIzw0HiiI7MYkB5BXV1boDjUMSpp2bISSkpbcLu8TJmaTFu7hzaHm/KKVtatrWTI4EimTEnGoNeyalU5S5cUY3e4ydvdwLwbMhg3Lo6SUhsF+U1YLAbGjY/nP//ZyZrV5QwcFM5llw7ulAcdV9pTFKivb6fxkEzYsaMOR5uHHTvqOhWijpUHtTV2cnNriImOITH+Ei6++F4GDwkPLPycmhrGgbLlLF/9Cd8sfw9LqJUZ513OvXf9hJHTBxM1IJSd66oJa2jnpsmpaEO17N1YxZBxsag1Xf/8cmgmLF5cFPgMdjjJA3EqKspb2LSpiqJSNQaDBr1ec7CP0OrvIxQ1M2qk/+8r2vo49U357CvczvZdW2hta+PAgbXAWr76ahOzZ4/v1Ee44IJRpKdHSCb0MT6fl5oDBaxatIoDOdvQtJWSV1bBpqJy8iqqsYSYee23v6PNG0rqwAR+nzYKrTaa0aMGduojNDR5KClpICfHvx6hz+fz9xGmJGKx6P19hLx6mpuc3Dx/OE89lcTmzVX885/bqa9vp7CwmauuGkKIWUd8vL8IFh9vZuQoK998U8iG9ZXsz29k/Ph4Qsw6Fi06cEQfob6+jaYm58E8sPDxR/uprnagUsGOHXWkpFgOyQRL4F+90YjeaMRsCcex20elG0xxGdx/x0AGDwylubEeR0M91SWV7N9fwIptm1mxbTN/fvUfDI2PYdKwTC67eBaWhCE0e2OJTR9Aeno4drtb+gh9jBSlutH+/U04HB4SEqIZMMAS+AA2enQshYXNtLa6qKl10NbmIS+3lWnTRvP0A/PYuKmC71bnUFu0ipyiPIa129A891v23XgHxT4L//u/F2IwmBgwYDQ+XwpJSRlceeV0BgxICPyCdvzCtrW52bmz7rQWROyYvsfBD4bi9H27chefrFrGgXd30mRvCtwfFRLBtp0llBf62L+/gZkzh3day2nIkCiiY0yUlLSwelU5DQ1tpKdb8LgVNBoVxSU2bDY3TU3ttDk8NDS0sWxZMTNnppGaGkZ7uxeX00d5WSt79zQQHx9CrDWEWKs/bGKtIfzn7TzKy1uxWPQUGTTs2F6H3qAmKTE0MJXPajWhUasoLW1l8uQEYq0hmM0aFAVU+AtWIWZtYP0q/2scuf4IqIiIMDBmTByZmf4PXwa9/6pjsdYQJp6TzP1X3sxnq7+nqLaY3eV7+P27e/jbp28yfeREZsSOZkbxHi4rfoJpV93Feddcdco/k46zEqtWlVFQ4P+ZLFgw5qjbnsqB/9DLq57oOWQYfv+za1c9+/MbibWaGTM2DlACHY7Cwmaam52AgtujUFTUSlRLBFdfejeP/fy3rFixl2+/+Zbi4s3sKd5M8+ZQ6veXUuvxsmTpP8nLe5/ExKEYDINISMjg4ovPY+TITEaNiu001PyDD/ZRXt7CtdcOlQVyu8jZ5iF3WSm5S0vwuH3EDbAQNzCcyHj/elGHrnHX5ed2OfnPwoWsWPMZ1XW5KPgvgmw0hlBV1cSWLdUH8yCNubMv7PTYIUOiiIkxsXpNBRs3VhAVZUKn15CWGkZBfiNt7R4iwg3odSoOHGhk4cI93HBDBqmpYXi9PpptLpztXqqr7VRU2okIN5AxLIrUlB8+s5SUtNDY5KTwgI2lS4spKbERHmEITOWbNSsNk1mH1+NFo9UwdUoiy1eU0N7uASAsTEdTs5P4BHNgKt/R1qMqKWnBZnMzIN0SGJV1KGtsCD+5ZT4aDaxa9y221lo+XfQGny56g5FZY5k8/lJUnnFoVFomDo9B5fCw9F95rP+kgDGzUxl+blKXRrAdngkhIbqjHo8lD8Sp2J/fhN3uISEhkgHp4YGO+ejRsRQWNdPS4j7YR3Cza4eD886bwG9+OZ+NGytYuXQJxQdWs6e8nAFRFtav8l/opqSklp/+dAZms+VgHyGZpKRMrrzyfNLT489IH0GcnnZ7K0W5WynYspGibZtpt7dS3dLG6vxKdpYV03LI+nsREbHU+2IoPOCmtK6JmTPPITbWHPj+kCGRB/sINlatKqex8WAfweNDrVFTXGzDZnPR1OTE4fBQ39B+SB/BQlubB5fTS1mZ/yRCQry/fxDoI8SaA3mQn99EW5uX2hrHUfoIZjQaFaUlLUyekkhsrBmzWQPKDwWrELOOjIwoUlMtxMaaO+3HocLDDYwdE8fwkXEAxIaEQHIq6aPGMLixkUKXhiXfL6eippQ9lbXsqazl/XXrGZ2SyNTBqcRawgnXR3PpiMFkxFhoqAghMiGpy5ktfYSeJ0WpbjRkSATmjCgSxg0KdMg3b6miqspOdLSJ5mYn1VUOCgqaqKlxsHFTFQMHRRIWqmfWeWNpHpXFOaV1ZDbsIKI8D82zP6U6ZgAqRcHhaGbXLv+0jt27YelSiIhI5Nprb+M3v/k5b721k9paO/X1bZSV+Q9ohwfOoVcZSE4O44MP9rFpUwWhoXpuv31kYPvA9D0pSnWLVz76iN++/3LgdmSYhaHRIwlxDCIrbSCDkhNoqa/BZnNRUtIC+D+sNze1U1Xl/1mmpobR0NBGSYmNrKwoxk1JwGZzAlDaZONAQTOKoqDVqli9upwvvzjAiBHRJKeE0t7uJSk5FLNZx/r1FYSE6Dh3mv9nvXlLFcOHRwEwfHgUu3Y10NLqJj3awsUXD6Ciwg4ozJyZRklJC263gt7gP2xUV7ehUuGvSgGLFhUSGWXg44/2cd55ScyZ88NaVuAfLVZY2MygQRGMHBXD0USGhZEVMwF3+gASZ8Deuu18tX4FDfZGvtjwHRnX3Un7xT9F/+0nWD/4f5RU55D4x2fQRkV1+efScTYiKSmEjz/ej8fjZc2asm77oHbNNcOOO2z4aG05U0Nw5expzxs+PJrW0lYS4s0kD4gI3L9lcxU+r0J8Qij19e3s2V1PZZWd2joHUVEVOBwe4mKjueaa62hsupS6klZCVWqUVi8WDSy2V6IoPsrL9wB7OHDgK9aseQ6dzsTQoSNYsOB9yst91NTY+fzzvdTVuYiIMBw3D6ZOTeajj/by2mu5REYauP/+cWdth8XV7mH7d2VsW1KMx+UjYXAE8QMtRMSZ0Zu0p1WMAnA47Jx/yTnUN9QG7kuMG4nFOJkJ42Yx7dyBFBY2B/LAGhsSGBV16FpR+/fXU1rawrChWq65eihms5Y9exvZtq2asrJWnE4vNpubzZuryc2txWBUM25cPAnxIdTWOYiLC6GiooWlS4uYMCGBc6cmBfLnggtSAH/uNDU68Xh9WGNMVFTaqahsZdRIK2NGx7JnTwMZGVFkZsXwyis5+BQwGNRERhpZtaqU9jYvS74tZviIaObMHnBE0cnp8tDS4mLEyOijFq0AJk84l+KCKMIN12Mw72fPgaXk7FjDjrytNDbV87uHL0OlgoyRVqKjzdQU2yjaXseqhfvZvKiYMRemMnJ6ElrdiT/PnMlM6E15AJIJwTBkcAStpVEMHjko0CHfvLmKyo4+QpOTqioHBQWN1Na2sXFjFQMHRhAWamD6RbNprJ/KtP0b0bUVoS5+FV/qHCpKjajVGuz2RnbuXA5AXh4sWQKRkcnMm3cnv/jF/YE+QkNDO6WlduDU+wii6xory8nfvIGCzRuo2LcbxecjLMZK3KAhLN66gze+/i6wbVRkJCmxo8E9jGGDBpGSGEd9bUcfwX8hqpISG81NTiqr/D/L1FQLjY0FFBe3MHx4FOPGJmFrOdhHKG2noKAZRfEd7COU8cUXBYwYEUNKShhOp5fk5DBCQnSs31CJ2axj2rQkwP/7OXZsLEaDhqzh0eTtqqel1XWwjzCQioOjpfx9BBsulw+93n+srap2gApUB78WLTpwsI+wn2nnJTF37sBO79HuvHoKi5oZPDiCkaOsR30foyMjGZx6AfaRI0hK9VJcuYXvVi/D1trI2vwiRmZPJWNgGm3NDbRX5rH4lXUAGEJCSRg8lOSskaRkjSRu4CA02qNf3a+D9BF6nhSlulFSUhiWzGj0h4wQ6Tjz2NzUTmiYHotFR2JiCDk5taSlhbFlSzUWi46ZM9MgNYySCCMJqZlEG320Lv+Oces2sHnwQHaaQvnSF8Hqaht2dwWNjeU0NVUQE6Nn+fJSVq0qw+GoYOPGXxEZmYxen8Wjj44kJMSKx2Nh4MA0vviikcJC/5XczjkngS++yCcnpwZF8X/IDvyhdUzfk6LUSTl8se/d+eUUFDYwYfRAYq0hzDrnHNRqNZmJGVww4lwyEjMpKWxl5856HA43FRV2Yq0hGA1atmyuZOHC3YSG6klOCsNgUAfWioqxmigrb6G11UNVlR21BnxecLsVtFo1Op2GxKRQcnNqcDi8bNpUzbCMSMLCdERG6Pn++xKqqx3ExZmZPTudkpIWtmypRqNWMXq0lZGjrKSlhQeGA9sdHrZtq0ZRIDzCeMQUjGnTkvjiiwI0GjVer0J5RSu7d9fT0uKfjtdRlDp06mF+fiMhodYjRlEduobVoQuu3xAznlsuvIbK1iIWb1rFg/MvJ8xsRjnnEV597i+seP895q1axRV/+xvhF3UeUXCig+yhZyWqqx0sXVrC0qXFQfng1R1DcI+3v2fLWZbeJC0tnPbsWDweX6f7O/5+mprbKchvJi3NQmycCZNRh8GgZvnyEsaMjWPmzDR/MSLCREpKKLT72Lepmntn/45mRx15NTvYWpCLSymltHQvLlcbJSV7KS318M03xTgcLvbvf4nGxn189FEGNTVjsFji8PnCmTAhg6+/bmTNGnvgik4ff7yf1avLADWhofqzrgPiavewY0UZ274twe30kjAonPhB4UTEmTGYj//h9XCHLvjt8/lYsWoDM86fjDU2BLM5hHPGTmTjlo2MHDabKedcRlWFnuJiG1UVLlatKiM5OYxBgyOorbXzhz+sw+f1gUrFiBFWzCE6tuXU4Gz3otdrcHuUQHEoNSWMXTtraWhoC0zDqK52UFPbBoBOW8uobCurVpbhsLtY/l0pTqeHxITQQB7s399AdnYsc2YP8E+prmvDajVhMGrZttWfBxHhR8mD85JYtbKc8HA9jjYvdns79fVtuFxeWu0usjJjOi2wXlLSQl5eA7W1DkqKbUyZ0vn9276jDv/oQushi66PJiZmPrnbD7Bj71ISE6zMmpUO+Eef/ej2S5g941KuvvxH+FpjOZBTy9qP89m6uIhRM1OIGhLO3v1NvT4TumtKhmRC75KYFEZ7ZjSRh4wQ6Rgt1dzkPNhH0JOUFELOtlpSA30EfWBkS0n0DGLC3dTu3sj+VYuIVKl58ZFHccWk8NmiTeTl5eB0FtPUVEljYxmxsYZAH6G1tYjNm39HZGQKBsNwHntsRKCPMGBAGl9+2ciBA/5jxXH7COKkNFZVsG/danasWE5zVSlqjZaw2ES8kQOwpiQxdsIoDOYQ9OlDePPTLxicNpJJY6czIGUExYUt7NxZj93hoqKilVirGaNRw+bNVSxcuMffR0gOxWDQkJNTQ4hZR0yMkbKyFlpb3VRW2dFoVHi9ysE+ggqdTk9SUii5ObU4HB42b65m2LBIQkN1REToWbGihJoaB7GxZubMTqekxObvI2hUjB4dy8hRVtI79RHcbA30EQydpuQBnHdeMp9/XoBWq8Lj8fcR8nbX09rqH/jQUZSqqXFQUmIjJ6eG/P1NhIRYjxhFdegaVof2EaJjJnL95fOobshn9YaV3P+zOzEYDCiKwr/+8w7bDpRx4TljiA0Loam6kpJd2/F5PGi0OsIT0yAsjaxJ4xh97jgM5s79kt6SB4e35VT1hTyQolQ3a2xoo7SuqtMw+NTUMEgNA1RUVLRgd/q4+eYsomNMgSuhLVtW3OmqZ5qwMCqGTGW7LZWxhmomV+xlzL79EOmj3JyF56Y7UU0azNBJk1i50o7L5aO2thCv10Vd3QG+++4A3333Zae2jRgxn+jouYwYEYNaXUlZ2V9QFHC5tCxfHs5ll/2X+HgLYQ2VWJoa+WlPvnF92I7ttWzZUk1YfCtbyzfw8fIVZKdm85j6XsD/wfofd/+F0kL/grIb1tZgt7vxeBUaGtr5/vtSTGYtep2G/fsbaWhsx6D3TzlwOb20O/1FwpRkC2aTjqysKPQGLSFmLStXllFR2UpUlIHQMD0hITrGj49l/foqFAWKi2y4XF527mzA6/Xh9nhRFLA7PKSmhrF/fwP5+5tobGwnPMLI+HHxgWl1NbV2xozxTzsKMWs7Fd5qau0MHBTJ3XePprjERmSEgcYmJ21tHvL3N3HeeUmB96dj0XODQYPVaibtYGAdKie3htycWkpLbGg0GiZPTgi0w1/ASuSKC6Z0eszbe/aQ19zM4uZm0i+9lFumncu977xDTEICcPIH2eLiZkJC9IwfH3fcS8weT7CuvHGo5ctL+eabQmbPHsCttx79Urj9ZTHEvqKu3kFZSQsDhkQAP+TBuPHx1NbY6cgEk1PH1CmJVFS2UlRko7Cwmd15dTgO/p12LDZd5nKRMTaGVGcUkftimZx+AT4VOLQK+vgWho7SMWKklS1bqtm8uZnm5lKczkZ27FjHjh3rOrXNYAhh1KhXsNlcFBc309i4EMjF6zXw3XcRXHLJO8TFWbBaLZhMJq6//nqysrJ6/D0807xuHzu+L2PL10U4234oRkXGd70YBT9c0a6mtoGvlqznm+ULqawu5g/eT4i1pgAKt1z/KDOneGlsdNHQ4KCwsBGHw4Pb7cVmc2E0ahgwIJyVq8opyG9CURSsVhMJCaEA5OXVExqqY8qUJLKyojDotaSmhrF8RQnl5a1ERBrQ6TQkJYYweHAEq1eXY3e4aW/3sGVLFc3NTmw2Fyq1CqNRS3JKWCAPbDYXubk1HeemGDc+nsysGGpr7FgsBkA56tpQgwZGcsH01MC6VxERBrbvqKWh3snwEdGdHtNRAHM6PQweEnnEFf5KSloCBbCKCjs11Q4mT0kIrGc1a9ZIZs0a2ekx3y5bxJacTWzJ2cRfXvo/Lr7wcuZdO58JY4dTmFPHpi8KQaPCplfhc/uOeYztOA6PGNHxWpIJovs0NLZRUFEV6LiXHLxSGan+71dUtmK3ezv1EaoO6yOYw6MZf9nV5GzYR8HmjVC2HV/hJq4ZlswI6+XUM5jLrhpIdHQDw4YN47vvmg/rIxSwbFkBy5Z93qlt2dk/ISJiJiNGxODxFFNe/hyKonTqIyQkhGO1WhgwYAC33347all7tpOmqkr2rl/N3rUrqS0uRKPTg8lKjTIEtw7WrVzPxtxNnDdpOsNGn8P6zZWAkd//4hVKi/x9hHVrq3E43Hi8Phob2/l+ZSkm06F9BCf6Q/oILa0umpucTJ6S6P+MnWZBr9cQYtbx/coyKipaiY4yBvoI4w72EVCguKgZp8vHrl0NeDw+3G4fKGB3uElNtbB/fyP5+U00NLQTHmFg/Ph4MrP8x4yaGgdjx/in2IWYdYHf5dhYMzU1DgYOjOCnPx1NcbGNiAgDTU1O2trc5O9vZlqnPoKNPXsaMBi0WK0m0tKO00cotaFRq5k8JTHQDn8BK4nL5pwf2F5RFBZ8/BklZWUsXrGSQQPSueHKK5hz/Ry8tiYaKsooP1BGe+kqVu9axup/qYhKTCYpI4u0UWNIyRqJ2fLDUgjSR+gZUpTqZlXVDvbWK4HbHQs/jx8XT3hEC0uXFWFrdhESqmXeDVnMnJnGsmXF7N3bwNo1FSQlhTLrwnRirSHk5NawdmMDuaFmbr7xBiJn2Khavp6o2hLMS9+Db314rFamZI4idnQ65eecQ1PkR0QnumloKKWoqIi9ewsoKCimtrYCgyEGrVZNS4sLk6mZAwe2BtpZWOj/Aki1Whna1sbsqipGJCUhOquptbNju7/YFBtn4qPly1m68zuqWsp/2KapnrKyZmpr22lr89Bsc9LU6MRg1GAyabGE6ykrbUGtVlFdbcdk0qIoYLHoaG/3oNaocTm96A1qHA43+fkNtLaGMnKktVNB6ttvi/B4FMxmDRaLkbY2D9dcMwxHm49dO+v9QabXEBtrIjRMj8PuIS7OHBh9lZZqITenlsamNrZsrqS5qZ2Ro6ydFlDMzIxh85aqTlfTW7O6go2bKphwTiLzbjh6R3X37jrWrKnAYFCTmOjvTDnaPBSX2Bg8xN5ptFTHh63deQ2UlTUCMGXKsc9G1NY5ePCKO1ixcxWfr1lBUVsbT373Hc8kJ3PtpZdy769+xfDhWaxZU84//pFLW5v7mMNkd+3yLxB/4YXpp3wGpDvOMpzOc6xZU8ann+4/eAZKOeL7/W0xxL6ivKyVgoImNAb/qNNDr0BmjQ0hItw/fcrW7CI0RHtwdJSDqioH/124B4fdzdRzk7jqqqHk5taQk1tHbV07VquJ5GFh4PDhbXWjbXThK7VQUqGiLW8/E9MiSQozMnHMW7T7qgkPb6axsZw9ewrYv7+IpqYqtNoQzGY9zc1Odu2qp7JyF21tOwEoKvJ/dbjkkkvQaDT9qiilKAoFW/0jaVob2okfFE7C4HAi40NOaWRUx8ieA4UH+GTRWxSULMft9o9MNuhDWL9xKzGRaowGLZFRRrZvr8Xl9JKUFEpYmB5FUfD5vGg0KnRaDRUV/incGg0o+EfCtra4aGlx0uZwEx6uZ8zo2MDV7erq2lj0VSENjU6qq+2Ehupw2N3Mm5dJWpqFDz/cj88Heo0ao1FLVLSR0BA9UdEGTEYNy5YVk5pmobranwWtrW50ev8IiY4RU7U1drKzY7HGhrBlc1Xg9xlg1apyvF4fF188IHBlwDlzD5vCnVfHmrX+TFBrVBgM/uKbw+GhtsYeGEmVmhoWWIdt/fpKCvKbgONnwqisqdw1/3FWrP2Qvfm7+PSrD/j0qw8YOiiDedfdwozZl1G2oxVfuZ38r4p5a28jNz4wFp2h84jwjuPw5MmJJ7zs+PEEMxM6pmG5XP6TUJIJvUd1lYMDlc7A7Y6/ofHj4wmPMLB0WTHNzS5CQnTMm5fZqY+wZk05yUlhzLowjdhYM3sKfazdm0hUWBwXTgRnQylprCWNtTg2DyRt8mSMPg/Tz08GVNTUpKMolxET00J9fQnFxcXs3VvAgQPFVFdX4PGEExNjwmTS4XDUU1CwJdDOQ/sIgwYNYtSoUVxwwQUMGtT5b/xs1G5vZd+61excsYTK/XtRa3WozLHoE8cQnZzMf79czdptX9HQ/EMfoai4gtWrSykoaKa93Utzs5PGRidGowaTSUN4uJ7SUh9qtZrqagdGo399JotFT7vTi1qtCvQR2us8FBxoYuCg8MA0uo6C1JJvi3B7fISEaLFYDAf7CENpa/Oya1c9JpMOvUEh1trRR3ATFxcSGH2VlmYhN6eGxkYvmzdX0dzkPLKPkBXN5kPyIDbWzJo15WzcWMmECQmBK/YdbndePWvWlmMwaEg8eMLF4XBTXGxj8ODITqOlAn2E3fWUlvqnDE6Zcuz+aV1dO3fd/CDrt37H0u+/o6CwiD/89W8898rfufSiC/mfa69m7IhzWfL1PuoqKsga4ENncJC/aR07ln0DQGRCIsmZI2nwJmJrCOPCCwdLH+EMk6JUN4uPM+O2Rh4ybc9Jc1M7NbV2UlPDmHBOIvX1bYE/sFhrCDNnprFjex1NTU40GlWngsHaNRU0NjnJ2VHPvBuyiB85BMXtxl1bi3N3Hq6SEtz78xhQvZwBPv80EW18PG2h0RQ6zMy2jiBz9qVUNqt497NiKvM2UL+ojClXJ/KvRx+loa6OVpuNprpmmuqbUZx2NLYm7omKJj0lJWjvY29WUtLCtm3V5JRtYXXhUhpa/UUUvU7HdTNmkGoaRXO5mWabm4gII41NTZSVtuDx+LBazSQkhOL1ev2Lg4fqiI4yUVfnoKKyldAQ/xSetjYPFRUtJCWH0dbmPri2E6SlWdi2rZqICCPr1lXgdncskKsjNTWMrKxoXE4PDfVt6PVqhg2LJCrKTGVlq/91fQrbt9fQUN9O3u5aoqPMVFXZ8Xh8uJx12GxuwiOMfLesiO3b6ygtsZGZGUNqalin3+X6+jZszS7q6/1DvXfvrmPJ0mIALpyVRmZmDDm5NWzL8Q89z8zyP0dNrSOwVsqhRanoGBNDhkQRGWFg1y4Dw4dHsXlLVWBk1qF2765j0aJCNBotP7noZp594B4+WLaM1z/8gJ1lZbz7+ec0l5XxxebNFBU1s2VLNSEhumMWpbrjDEGwn2Pp0mLKy1sZOjSSCy5IPeU2iO6VlByK4us8ssRs1rJls/93OzU1jAkT/JnQ0dnv6IQUFjbT0NDG2jXlZAyLIjs7lla7h5ISG4VFNiCOG+Zl+c9kt3torHTQWNGKrb6dkm21uJ1eItGg1Sej9aSj2DI5f/Ac7r7WSlxCGP94I4etOXVozFqidRp+dtdjlFeU0djYRH2djYb6VrweF22OdrIiJnPTlTcG743sZlUHmln9wX6qC21EJ4UwakYKUUkhp7yAeUlJC6tW72LVptcoLF1Hx4e+oYMzOX/yteDKxuPVERFuoKmpnfXr6rHZnGi0GmLjzAweHEF+fhNms5boGDOxcSa2baumprYNtQr0ehUOh5u8vDranV7a27yEh+tJTQ1j+446tm2txmDQYHf4p0X4fKDWqElL8y9evnZtOS6Xh6goE+PGx1FUZCMhIZQBAyysWlXOggW70em1DBrk/1B64EAzXp9CTk4tbpdC3u56Nm6oxOP1f8boOJ43NTtpam4nMSEUr9dHeUUrubk1ZGbFsPjrAlauKue8aUmB4lRubg3btvkzYdasdP/70dzeqVjbISLcQGpqGCaTFqNBy/DhUYG/m8PXn9qdV8eiRcUYNJN4+lfXoDNV8e4Hb/HF4k/YV7CHJ//4a6Z8PI1Jlw/llec3o2vzoi2Af/96DaNnpTJ6Vgrag+ugdNcZ42BmwtKlxSxdWsL48XHMnz886Ge/xQ/i4s3ow0M6TdtrbnJSU+MgNdXChAkJnfsIsebD+gjqTgWDNWvKqWlUUepI5kfzZ9JUXUnl/r00lJex4eOFrH3/HXQGI7EDBjF5WCbxg4cSnZxNXoGXysoC5swJ5brrhvHWWzv59793snlzFbNmpXLJJRP573//S319PQ6Hg+rqZsrLm1CpPPh8Gp588ncMGhQXzLcyqHxeL8Xbt7FzxVIKNq/H5/USnZxKxrnTqbeHsWFbCzu2bSZ378vYDvYRDAYDV8ydTUzYOGoqTJSVtRIZaaSwsJmy0hbcHh9Wq4nEhHC8Ph8NDe2EhOiIjjZRV+ugvLKVkEP6COUVNsJCDbTYXGi0aurr29mxvZat26qJjDQd7CP4j9lGg47UVAtZWVG4XF7q69vR6dQMy4gkKspEZaX9YN/Ex/btNdTXt5OXV0d0tJnKKgfeQB/BRUWlnQ0bKvB6/TmXmRVNaqql0+9yfX0bzYf2EfLqWbK0CIALZ6WTmRXt7yNsq/H3ETL9z/FDH8HWqSjl7yNEEhFhINxST9ZwfyGsY2TWoXbn1bNo0QHUGhM3XnUnT/36Z3y6aDH//egT9hUU8OEXX+Jyu3j+909RXe9lZ74WryGanz08Hnd7O7baaupKSmiqriR/0zraWmyEA6W2BL4tyyY92z+SyhR25IiuY5E+wsmRolQ3i4wyEZcWH7gdHuGfuhQe0cL4cfFMPTeRHdvr/MMpY0yBq5RdeulA1q2rxOv1kp/vP4CFhGpJTAqlzeGhtraN3bvryMyMobbJRUmlmtRRk7HOmInS3o63uRlXWRmeyko8dXWU5VUQaishrGIHzjwfMW4X9wNYgO3g3Q6TOhqp1YLegEejxx0ehd2SgC85AZVWfj0OXy8KIMSsJSLCiKnZS0NrI2Z9CNecO5v7bria1iY127fXUNJcRWurC4fDg8Phoq3dh1YDoPKfCdfriIo2YjLpaGxsp7HRicfto77+4Bk0lX/9cJ+vBUVRcLq8uNw+LBY9TU3+qRexsSbcbh/R0SYuuCAFk0nDli01bNhQQVOTE59PQafTEB1tpLGxnehoI+1OD20OD21tHkpKWrC3uomPD0GjVdHQ0E5RcTN1tXYaGpy0t3toaPC3J9YaEvhdhjqio02MGRPH1KmJ1NTaWbSokB07/Av3ul0+omNM/jnnrR6io42B969jwfTDp390TPEblhHFww8POmJk1qE/i7Vry9m3r4HUVH+HK8xs5vbLLuO2Sy9lU04Of3/pJebW1LL1yhu5YPr/0tKioabmbbZuTWTs2LFH/Iy74wxBsJ+jY0jxrFlpveJsh/CLiTYTEW7EbPFfYfLwESbjxsdz7tREtu+oo6KylZgYU6AwZTDqWLumDKfTR25uDTNnphEaosXj8eJ2eYmIMACgUqmwtbgob2gjdWgEQ6NNuNs92Jtc2Ooc2Jtd5G2vw9HqgnYt+9dWsd9XRWaomcxz/R9ONn9UAEQRRhRhwIAYNYrVX1pxeX3ofJC/qZoBI49+gYK+wlbXxtpP8inYUktolIGscxOITQ/HFHbyxahD14vqKI6YzVpiY6OprNkBKGQOmczNP7qLweljOVDYxKaNVYSE+Nizt57qagdul4JGC+YQDWazFpNZh9VqQm/Q4Hb72LG9jrraNpxOf4fC6fThcPivbKfWqHC7FRqbOkZbKDQ1O2ltcREdZcLl8pKYGMKwjCgcdjf/+Od22hxu3G7FPzXcoGHI4AhsNhegor6uDYfDg97royC/CZ1eRXiEAafTi6IoFBU3U1/voLa2jcjIH67A1zHSb8uWampr/NPrSoptZGfHUltj56uvCqmsstNiczFuXDzW2JBAYTU62siokTGBRdwjwjtnQklJS+BvZMqUZKZMSe70d3P42lRr15azb78/E9LSLFhjE8geMYbHHn6KT7/6gLy9O4kIS2brlmoGZUXx5rsvMmJYGtMTLmLDFwfI/a6UsRelMuqClG47YxzMTDg0D2QdoN4lKtLEoOGH9hEM7NnTEJgaNXVqEju21/7QRzh4lbJLLxvIurUVeH0+8vc3ARASosMSpsfW4r+YhVqjISoxGY82CoepkVETVPjslTRXVdNSX8u2b77E/Zl/9KaCGrPDSNX+EJY0DGBYVAxjkiqpaVDI+d7H5TOmM2vqZDRaLahUVJS3sH9/E/X1DkqKG9m7s5Jhw86+olRTdRW5SxaRt/I7HM1NmMKjMMVnkDxsCKlDUjCGhrF3TyOW4nJMVW5srY2YjRYuufAyfnzTdTQ1wvbtNexrrqK11Ynd4aXN4aKt3YtW479ykFqjRqdXExXl7yM0NLTR0NiO2+2lvv7gmr8HFw9vbXHhU8Co1pKU5B9t1NzspKXFRVysCbfbS0yMiXPOicdud5OX18D+/Y20tLj8fQStmuhoIw0N7URHG2hv9+JweGlvP9hHsLtJiA/B5/NR39BOdZWdhvo2GhraMZm0gal2sbFmwiMMbNlSTU2tg6ysaEJCdIzOjqWmxsGiRQfYllMDCpjNOjKzov19BLv7YB/BEijABqa0HqJjil9GRhQPPzLwiJFZ8MPaVP48aDzYR7AQFmrm5uuv5abrrmHb9h28+9EnzLlgLps3V5E1PJqG5kr2ln3Jnv0RZA4dQkxqOjGp6SiKgtvZjq22hrqSIhqrqsjfuJYdyxYDEJWYTHLWCNKzx5KcNRJTaOd+zaGkj3BypOrQjcrLWyjfXU+C+YeFnA9fDHTH9loWLSrE4/GxK6+eyAgDTqePrKwoRo+OpaKihagoM9HRRmpq/Zf2tLd6yM9vZM2aCuwOT6ersnUaQjl+POCflvDWn9awu6KGtCQjd/54BJEWHds3FpO3vYbhw6MYPtwKKhVqo5HGVg9rN1TRYveSOiCKsMgQItIj0EZF9Pyb2Mt0FEuKqstYvms5mUmZOCvj0GhU3Dj7YrRqPSFtAxk3KJHWJjVbtlSzc0ctzc0uPF4vHrcPlQpMRi3h4TrCwnQHFygMoa62jcIDTbS0ujCbtBiNOuwON4qPg2fH1ajV0NrqQaMGe6t/EdwDB5rRaCEuLoRrrx1KRkYUdoeHbxYXkrfbP2VPq1XT3u6hoKCJ9PT/z955h8dVn9n/M70XaTSjPuq2im25YXAFY6oTkpAEUkkh2SSbbHo2u5uy2WSzKUvqpm0qARJCgNhUF7CxDbaMiyy5SLKtPmqj6b2X3x9XcyXZMhgCKfvjPA8PtudOu/O9973n3POe10xRkRoQLLCZdJ59+xwzRQmuv74GlzvG448Nkkrn6Ox009ZmweONk0pn2L79POs3VM4L7Y/F0ixfMdvaJ5NJxSIik0lwOMJiPlVfn2deHkJ/v49UUih4Oq2caCyDTitncXMxOq2c451OPO4oTmeUujrjRb8FQPGM0FWYFmWz6pBIJKxZsYI1v/41Pfc9jvLoHq6c+Dw9ixv4weMPsWrVQ1xxxRV85CMf4W1vexs63cLTnv4esX591SXJx0J96BdOXnsNrzxGR4OcPOmivEwrilIwvyYU8odOnHARCiXpODRJeYWe1lYhtFqzxU5Pjw97jRGHI0wolAYkKJQyAoHkglPZCpk+7e02WmaOuX3d05zoc2O1aLjj3a3U1xfReXyKMyc9tC0pZslMPZBIIRxOceToFOFImppaEyUmFb7TXnK5iy3ffy9IxjN07hjh5L4xFEoZDatsVDSZ0ZlVSKUvzRnlcIQ5fWaKPQceZmTiOB//wF3s3DmCTCZj81WfJJexcPXGlTTVFXP2rI/ubheTU1EUCimxaJpMOo9MBkaDEptVS0mJlvXrKjh7zs+uXYP4fUm0WjlGk4pYLE0qDbk8yCUS5HIpUqmEdCpDwJ/grruOkkrlkMkFJ5VKJec9722lqbGIvXtH6epyE46kaGgwo9MpCASTHDvq5Kab61Gp5UCejZsq6e52k0lnGR+PIJMrZs6tIcbGwuh1SsxmJXqDAo1WxtlzPlE8nZtDpVLKxba9zuNOLCUa4vEMJVaNOEWwkAl18qQLjycurtXC+i4gEExSVq6d5ypMpoQBH3X182tCgZgUF8+vCVabDqPRxHve8UHxM50966O8Ek72PcSxUyke0v0PN2++lTW1N9GxPU33njFW3VRD29WVyGR/v1k5L1QP4LWa8NfC5ESYvj4vjXKzSKQvDIcWOMLQLEcoEgTi1laLwBGmIhQXawSO4IoDEpQz9aBAygtT2STNxei0tfT5tCxbuorVtRqigQAht4t9e3qJJoOYdGnSviE8Uz2sq4hCBZDr5g9ffvKS38MIOLxGkjf/CpVWe8nt/q8gn88zeqqLEzsfY7i7E4VKRWl9E4vXbWTCp2LIkSE4FuFXj/6AZc1rcE+WIJVJeesb3oRWbUKSbmLZonICfujsnOb0aTehYIpMNkc6nUUqkQgcwazEaFBiMAhh9x5PnOEhP+FIWrh5MYcjSKSgUEiRyQTXVC4He/c60OkUDA0GkckllJbquO22RTQvFlxJ3V0uwpE0DQ0mtFo5sWiawcEgtXVmiovncIRMnmeecRAJJ8ll81x/fQ3d3S6GR4JEImna2izUzpw39u0bY3o6yvr1VWIGVSiUQqmUiW17x487kcoE8Ys8wv8RHFYtrRb6er0XcAQ/qVRWbEOMxtLotAqam4vRaRUcP+7E7Y4x7YxSXz8rsBSEK5DMqQfCtEKbTYtEImFl+zJWti8TRa3m5mJUxn6e2bmbZw7uZvnSJbzzLbey9botqNVqlGoNJdU1lFTXiCJV0DWNxzFKcHqK80c6OLVnF0iETKrqtqXUtq+iunXJRcHpf038vXCE10SpVxD9/QFcIyHS1tnWpIITahYSMpkcwWCSwYEA2WyOfF5QtvP5PPk8bL7WLl5c2e0GTnQ6GRoKkM1mOXfWR1mZcBfUbjewd+8oJ7vdRCPCJIX+fj9NTWZslWY8oSxLriindLFwN3z1G8tZ/caLP/eZvaP0TEBZmYnWNbV8+LtfY19nJ7/8t3/jtmu3/AX23N8menvdPLzrEIcGn+Xk6GkAqopOc6P9fVRVGmhdXMonLG/m0KFJ1DM5T0ajAkuJGpVahqVYw+RUhGAggVaroKhYzdRkFIVSytCIj/MDHuKJOJl8lgR5cvkcGXLk8hKkOQlIlWSTcjI5KWqFikgkw+nTHnK5PDK5hFAwSVeXYH9NJrPIFRLMZhU6rRyFUoYxrkQuk3DggAOVSobfr6XabuSOO9qAPAeeHcdiUaPRyHFOxcjnQaOWUVKioqLCQF2tCYcjzJ49oxw4MEZFhY5bbmlEp9XjcsfQaYXTh91uYMPGWdHqQidUIaCwgJPdbiYnougNSiLhFHqDglWryli9qkx0SDmdUdzuGKOO2alMhRZCrVZO20zA4YVuqgKsN13LRHkttkOPsObQId7cvpwn+no5duwYx44d4zOf+Qx33HEHH/7wh1myZMmrsn5eKl6tkawL9aEX2jtAKFZPP/00g4ODfOQjH3nF3vf/d/T0eOkf8JPP5amqM4v/XsiTAoEoO51xwuEUsViawcEATmeUYCApOBhlUFamE4OsAex2PZ0nXKQzOU6dduOcilFWrhOmr83UhKPHpunudmMwKlm10kZVtZFQOIVOqyCVA51Zxabratk0M7lsLoYnnEy6E2SzOdbZDQSj5/jYT9+MvaKe4Q/2/yV23SuGbDZH73OTHHl8iEwyS2WTmarmYow2zUsWHfp6PRx+vp+zQ7t4+sADBEPCuces20Ay2kBlhZ53vf0tOEZD2GuMorDSGDERT6SprDDg9sRwuaLIZTIWLy7C5Ypx5MgkwWCMUDiK0+kimU6RTGdJpiEcSyJBikwuI52TkU3LkKBGIlGRzUro7w8gkQitDTqtAp8/yYN/PEdFpY5QKE1JiVrIKFHLKSvTIpMLAbaPPTpAY6OZ4mINzc3FbL7Gzt2/PYPPn6SpycyypVYcjhCZdA6lSkrbkhIcjjAOR5ijR6cYGQkxNBhg46ZKtmyp4dRpD4FgQsyFstsN3PL6BoH4zIT1F3DypIvuOfWgu9vNxEQUg0FJf78Pq02LcypGc3MxsVhGFJ0co6GLJvVptXJkMli1upR1yspLtgLCrBhcbIHPffyL/P7h3zLqGOahJ+7jIe5jWcsqNrS8nuD9V3HiKQdXvK6WlnXlSP9K4tSrOaL7xWrCypUWPve5z/GNb3wDk+lv96763xv6BwKMjAZRmmZbkwpOqLnIZHIEQykGB/xks3lyeaHNLzfDEa691i5M4nOEWLq0RCTphw6NE41mKC8r1AOjyBH6+/0k4lmWr7BSX1+FslzDgN9DdYuVq2+uIZvJkEmnSScSpBMJMskE6XQKsjn6zvkYHgpgNKpob7fyhR98j3Nj4xRvuoF3vvd9f4U9+ZdBKh6j58BeTux8jIBzCkOJlUVXrqe0vhF9sYWBoSg79u3lRO8ezg8JeYzHT/SzctEHqKzQs6S1inLbWznUMYFaLQSPG41KSko0Qq5fsZqpqQjBYBKtRoFOr2ByMoLJrGRiMsDZs05iiTi5XIZ0doYjZHOQlyDJSZEplEhyciQSObmchPGxMNmssI1MJiU4hyOEQ2kUSilmsxK1Wo7NpkWplCGXSdi/34FKJaekREN1tZE77mgF8hw4MIbFokGjlZNMZZFIpCiVUsxmNde/tYYdO4Y43+9nYiLM/v3jVFbq2LChingsI7bx2Wxa7HYjGzfCTTfWigHqc7EwR4jM4QhKVq0qZfXqMlFMmnZGcbvjjI6GxGypQguhTjfLES50UxUwVwy++boteHw+nnpmP92nz9B9+gz/9b0fcuvrtvKOt7yJhtpaQHClK9UarPZarAUnVSJB0OXEPTZK0DnFuY5nOfnUDiQSCZbqGuxL2qltX0llcytKteZlr8W/Zj1Yv76KJ598kunpae68885X9L0vxGui1CuIpiYz2loj5fZLW/iWLitheDjIyEgQW6kWlVKKx5Ogra0YhULOwICP3buG2by5msamIhyOMOPjUXK5PMlUDqMMKip0ogPF7Y5TUanHYlGzd+8obnecyakIdbUmWlssGI1KXO7oRaR9PvKoVHIsFjUOR5hEIk0ul/u7vjP+UtHRMc7hw1OsXVuOwajgt48+zY4TTzERGAdAgoTFpa1sabsWPRr0ejm7dw3jDyRJxNNMTUWIRNL09E0zOjVNUWmWSWcAd9iDw+0imY2RHoqTyiVIj8XJkXnxDxWd/aMECXKJErlEhUamx6Q1ofEbOB8yIM9qMastVFnLMRqUhMMp8tEM9fVmzp714vMlKCpSo1LJee7ZMbq7XKhUUswmFfF4lsceG2R4OEA6naO01EhjYxFOZ5TW1hIMRiVnTruZmoowPhFGrREmPuWywgS/vj6P6NSbK8TOhUwqIRpNI5NKWLrUCkCN3cioI8TUVBivN06N3cDxTqfomKqrEx6fO5Gy0ELodEapnmndM5kvbgUsbGu7bim5TYvRPvwwyw8d4l+vu549K1fw6z/8gcHBQX784x9z33334XQ6UavVL3XJvOJ4tUayLtSHPtfKC1BUVMTnPvc5Nm7cSFtb2yv23v8/o63NQmQsQnnZpe8k2+0Gyso0xBNGcrm8SOLb2oqxWnUkUxk6j0/T0TGBVlsjOlNyuTwjIyGSyRx1dUaWLS3B44mzd+8oZrOKygo9fWe9jI0L9vvCMWkpUc8TD17oMzmdMU6edFFUkiCXz5GbySz8e0A+n2f0tJeDD/UTdMcprTNS3VpMcYUOuUL24i/ATE3omGLtunISSTff/v73GRp7hmxOaJszG0tZuviN6NT16NVqioqF0et2u4Hp6RiDAwHC4SQDgxPojFEm3SEmneOMT4yRTAfo7o+STIXIZMPsPRpjofDRF4JUqkQq0SCX6bFESzEarERCaibdRUy6qqgsr6W1pZZgIMnIaJB8DjRqBVNTEfJ5ofXDXKSit8/Drt3DwsW8VkE6naery43HHQMkqJQypBIpra0lGA2C4+/0aTdud5zHHxtk6RIrZpPQgmQ2hec79Vovbvc0m1Vks8KNuaXLhHpgrzHiGA0RCqVIZ/I4HCFy+RyrV5WJYqt25ibI3El9sViGbBZUSrk40fLCVsAC5orBH6z7KHfe8REOHzvI/Q/9lqf37eRUXyen+jr55Ae+wBrNG9j/+3N07hxlzS11LL6yDMlLdNT9uXg1R3S/WE1Qq9U4HA4+/elP85vf/OYVfe//n9HUaCYyZrqIlM/F0mVWhkdmOIJNh1IpZAW1tlmE6WsDfnbvHhE4QmMRDkcIrVYhtvRZrVoqKvSiA8XtjlFRqZu54REjFE4yMRElFksLx7RJRzAiwWa79Bob8o0SHZumospMSmsEqTCY5++pJrwU+CYn6Nr5GD0H9pJJJbHW1qNvWMuZQTnqRQ1kfUp+/4sH2H94Bx7/DEeQSKgpb6e1cTMWi4bWNguHDk0wNhYikcgwNRUlEsnQ0zvN2PgUFluaQYcfb9DNxKSTVDpKNhcnm49x9HycXP4yOMIcSJAilSqRSdWolUb0WhOBpJFJjxHyegxaK2Wl5ehUKiYnIuTy0FBv4uxZHz5fAnORCrVaxnPPjtPd7UKlkmEyCcHojz06wPBIkEwmh8mkFPMLt26tR7FnhNOnPTidESYmwqjVctatqxRbUi8MRF8IMpmESDSFTCZh6ZIZjlBjZHQ0xNRUBK83gd1u4Phxp+iYqq83MTp6AUeYaSGcckaprhZa90xm1YLH21wx2GZbzhUrluP2eHn48Sf44/ZHGJ+c4rd/eIDHd+/m4I7HUSwQZyORSFBqNFhr6rDW1AlRK7EYIdc0HscIgWknZ/Y9zYkdjyKRSrHV1osiVfmiZhRK1WX/vn/NegBgNpt5+9vfzqZNm2hsbHxF338uXhOlXkFUVhowtlgIAMc7nQwN+unudrNpUyU33dQgZuKsX1/B8hU2dFo53SddIJEQj+fwB6JMTEQZHxcO7MHBIEeOTNLQUERjYxGxeJpQKEV0Jlui+6SLyYkI7cutrN9QSSSSnrE9ZvD6EqjV8plxrR6RvC8kTi1dZsVkVhMMJDh31odvJtfo3HkvXPeX239/aczNi9q1a4Rz53xMTIY54NhOv68HACkyrqhbw5vX34yjP0u5UU8qmWVgyMfQ1DjOgJNozktaHiR42EMoKeSB4QCQoJXrUeT1KCQajFIbMqkGnVJLdUUJ4WAWtVJJMgGZJORzEiBPkUWFzaphYipMNpdBosiQySfx+kNkSCHXpvBHAngy08SzYTI5IdxWMiXBpC5CjZnKogpsiqWkpVIUCjnZbI7z533I5IIYtbi5GK1WICjhcIpMJo9EIqGiQjezHoT9cugg9JxxI5dLkctlBAIJOjqECSKF9Vu4w9HSsnDeTH9/AL8/QX9/gNtvb8FSIrRzLG+3MTkRZSIUoaNjinQmy5orKrj11iYA1q0TfqNC4LnXE6e7yzUvo+qFxVaQKpUUvfOdqFtakP7hD7x5127+8ac/5ZhEws9//nPsdjtqtZpDh8Z5+ukRnM4n+Mxn7mTRokV/3uJ6GXgpIYZ/+tM5tm3r581vbrpkgHsBC/Whr1tXiUbjwmIxsGPHEG1tTTzyyCOvarH5/w01NSYS7TZc0xE6jzsZHJqpB3OCn6FAlrUsW2rl1Gk3JzpdKJRC1tD+/WOMOkJkZwJQ05k8hw6OCxOStAoi4RRmkxqrTcfevaN0d7tZvtzKe97Tyq7dIzgcIVattNHT48PrTaBWyYnHsrhdMbZsqVlQmJobth4KpfBHhHaoWDzNoUPjf/OtPe6xMAcf6mfyfABzmZZl11ZhqzWiVL/w5c6FWVG7do3Q2+vl2IlOjvV8hTwCATPoali76nYqSq5CJleSy+VQKqWcONHP+YE+kpkp1DofvsAo/uAYuXxCfA+ZTI1CZkEuNSOXFaFX21EqDDQ3V5PPKfF5MyTiEqQSBTK5kmQih1yep6nJjESaY3IySCgSxmaV4fH5CASCKNUJVKoo45PnSaZ8pDIhhibzHO+Fpw7p0ajK0arLqSxbjFpZg1RqRSKR4/bE6Dw+jVwuJRBIUlSkQqORMeYIE4unyedBrZaxZYsdq1U349428NTTI+RyoFJJkcmlbNveL7TXJXNotfJ5TqiFRKlAIEkonOb0GQ+NTUW8/R2tuF1R4vEsVpuW4eEQw0NBhoYC6PUqsR4U2v/criidx50kUxl6e31iPShscymx9UJIpVLWX7mJ9Vduwu2Z5sFH7mfbY3/k3e++g+mpPOOhOEODR9n/5Z1sWnM9625dRNPq0pcVhP9y8GrVA1i4JlRX5/joRxcRiynZuXOYf//37yKVhi/xCq/h5aCi0kCixUIaoaVpaChAd5ebjZsqufnmerH9bv26SpYvt6HTKug+6UIikZBIZAkEkkxORhgbi6BWyQSO8PwMR2gyE4sVOIJwTShwhCjty600NRXx3LMTLF9hZcwh3AxUq2Tiei6Q9wsdJVDgCCqCgSRnz/qIx4Vco87OKd79/r/Y7ntVkc/lGO7upPPJR3CcOYlSo6WouoGstpqa1np+/qs+zp3zM+oc4HjffUy6ewGQShQsa17HTZvfQHdnHElGgkIhxe0O88z+kzgmHaQyXjJ5L5G4i0QqILxhH4AElcKIXGpAKtWilJuRyTQ01JWhVGjxeTOAlHRSilQqJ5PJk8/lKSvXYrNpGB4JkMulkcozpDNx/P4wSBOoNWn8QS+B8CTJdIhsgSP0SzBoLcilxZRaq7A3tJNDjlyhIJfNc/6cH5lcgsmkprm5CJ1OwdRklFBYaDuXIKG62sCqVaXiWjl7zkdPjweZTIpCLrSRznIExXyOcAlRqr8/QMCfnOEIzTMcITTDESJMhCJiaPuaNeVzOEIlLldMDDz3euJ0d7vmZVQttJ4vBWuJhX98/3v50HvezcHnj/CHbY/QVF+HQi6nr9fLiW4n/Y793PnuN2Gvunjyn0QiQa3Toa6rx1ZXTy6XIxWPEXBO4h1z4J920v3Ukxx77E9I5XJK6xqpWbqcmmXLKW9ajEx+6am/f+l6sHZtBVqtm+LiAkdYwrZt26ipqXnR1/tz8Joo9Qri3gefoHrcT1wPTmeM55+fxOUScj5uuqlBzMQpK9NhMquYnIwQCqUxGpV4vXEGBvwUF6toayth7dpy9u0bw+tNotaEWb+uEmdPhLIyvXgBVlCICy4VoS0L0b1SYzeiVMlFsQnmu1gKokxBPFu+3Mri5mISjwiiV3+//y+27/4aOH3KzYkTLuoXq/EGgiSSWaYmI+iSdSgkg1TIl1GpWIbOr2LX7kFC2WmkzgDD7hG8MZdIUlQSPSU6G1W6JqRyA3qlmWK9BWlag0YtjFyXSCQUFauIRTOsWlVKS0sxTz45PDP+VYFeL8fnS+DxJqirFU4O0Wk/CpXQM65WyzDVqMjmcoyOhIir0qiMClpailh3tRV3yMVzx8/S1TfEdHCaPlc3nY8eFD6fVEuxqgxdvoya4no2ta/AZtURCibRaBTIFVLMRSrKSrUsW2YVe7ttVh1eb5x0Ok9RkQqLRYtaJePcOR9Go5JoLDNvDV4KdruBqanInFw1D11d06xYUcrWrXV0n3Qx5ggxOBilt9fD+g0V4jp1OIQg3f5+n5itptNbLxKjFgqknwvNihXI7XZ8v/41U5/8FEve8Q4eeuABkAmuiT17Rtm27SlOn/42P//5t9m4cSN33HEHt912G2az+c9YZZePlxJiuG1bP88+K9yhu5yiA7P233x+jLvu+gqHDh3ihz98jKkp4XfZuvX/sAL9V8DJkyP88f6d1FWtYtqTEOqBe6YezIhSDkcY51SUsnLdTGZUCoEjSDh50sXEZATzDFlob7exbXs/wVCKbC5PaamO0lKdeFwVHCSFKX6FegDC2hKze2YcKYWcnwLmijKdnU46O6dpbDRToOCZdJY9e0b/ZkWpiD/J848Ocu55J1qTkua1ZZQ1mNAYlJclJBQEwRUrrTQthnAoSSqVI522oVKUoZAXUWK8Aa2qmfGRGK7pI+Ql43j955n2niedEbIrJBIFpkQ1xWY7KtkyNEobZWXVJKIGVEot6YyEfC6HQiklm8lz5VXl3HRjnTgdJxJNoVEruGJNKd3dbvz+BLm0lFQ6h1aZQWnKYSvSsX5NEaOOEJUVOg4dmkRjy6DTyXnPe5uRSP0c7Ohi2DHIwHA/gZCDCdch8vksEokMvaYataKOaLKNtVdsoKjYJLR2pjMEAkksxWpKbVpaWi0EAklqakziWgmHUySTWcrK9FhtWuLxDL09XoqLNcRimXnrcCG0t9sYHAoSj2dgZnUVJgiuWFnK+nUVnDvrxeuN09vrYcP6innrtFATRkaFUeprrihdUIhaKJD+UrCWlPKxD36aj37gU0gkEp7e3Ut3r5ejZ+5mZPwUDx/+MSsf38yWq17PO//xddSvsL3q4tSrXQ9AqAmdneM8//yD/OQn3+Gtb30rb3vbVzh8eJK1ayvYunXVy/rsr2Fh/P4Pj6KJQ06RZsoZ5fnnJ3G7helkN99cL2bilM/jCKlZjtAfoNiiYkmbhbXrKgSO4EsIHKGuYqaWKEVnyNzrs5ZWCzffXA8I08m6T7qoqTGiVMpEsQnmtzkVRLKCeLZ8hZXm5mJx6lp39/RfbN+9WkhEI5zZ9zRdux4n5HZhtNpYvHYjFYtbONYd5US3B3dsDL8/TCKRYXIygjzfhFw6QpF2FUW6FRDTsmt3P6HoBBK5m4OnHAQjUxTcrwqZEZ3ahlnXgsFagl5nQSkzkYipkMsVyOXSmWwpKK8w8PrX1ZNKZ3nyyaGZG8JSGhvNTE5GmJyMUlcnnBe0Sh8KhfC4WiWjvVlFNptndCSIQZpBpZLT0lLMug3F+IPTHD7ax6mefrwBJ0Njx+gbegYApVyPQVOBUlZFubWR5ctXYrVqCQVTaLRCRm1RkYqyMi1Ll1rp7/ej0yqw2bR4vXHi8Sx6vYrGRjMGg4Jz5/wzHCF9+Rxhci5HECYIrlxRytat9QJHGAsxOBikt9fL+vWV4jp1OEIzHMFPNJpmoD+ATme9SIwqrOVLCa9zIZPJuHr9Oq5ev458fmatn3Tx9DMdHOy+j989fB9XrlrJm7bezE1brsWgX7i+SKVS1Do9ZQ2LKGtYRC6bJRmL4Z8axzs+RmDayfEntvH8tgeQK5SUNTZhX7qC2mUrKK1vRCqbdXX/pepBT4+XVGqYu+76dzo7O/nRj57E4RAcXVu3Xn/Zr/Vy8Zoo9QohEAjw6a/+G5WaIr76/i+wuLkYhUIiOqVgNtOgIBJptQqMRoV4sOr0cpa320QnyapVwmQCoSAlUKnk1NUZRdLd0lKyoDvlwn93uaMLtjkVLu4OHhwnMpNpcvvtLZSUaBn2IY6H/r8IlzvK0VODPNG1m76numnUrqFSuopsNochV02r8iZCeSd9id2EYk6yCHcajGELOqw0KhdTpLJRrLWRS8mQy6VIJBKKS9VYijUMDARIJjPkc2mMRhVVVQZuuqkWpUou5r4olDIUChmVVXpWrSpDp5WzY8cwMpkEi0XoOa+u1hMKCdMp1m+o5Je/OEU8niGfF4Ymjo6GCD+RIhhMEouXsaGmgVwe8rk8gViIycAYrugkgbST4fRRBiY7OPinhyiSV9JcsZj1batIhVWo1XI2X2unv983z/nU2lqMwxEilcpgs2mpqTGJQfx2u4GBfj+TE1Fq7Il5whDMZkvdeFOdOEJcgJCLAHlxrfb1ecTv7nCEGej3s2/fGCUlamQymTBt0KoTj5ELMTcE/VLuKYXFgvUznyG0fTuBP/yBeFcXVT/+EcrKSq67roaJiRoMhi0cPvwMzz33HM899xwf//jHecMb3sAdd9zBTTfdhEJx6TsZf0m8+c1N8/5/OXj66U6+//3/ordXuBBRqdT09/diNl+FyaR8kWe/hpeKb33rOzz44P/y0ff8N1dvvAGFUiI6pQooHBOFLBytTkFVlZ6Kch0V5cI6bm+3UVKoCSuFmpCIZ8hmhda9AuFuaS1Z0Jly4WNNjfOP0wIKodGBYJJt2/pxu+Ok0zlueVMxAFLZrJX7bwmpRIaupxx0P+1AIpNQt9xK5WIzhiL1S2q58vmidJ7ayZ92P0kk6mVp/beRSmTk8hKqSz5CPDVCMHqMCe/vSWVcAMhkWrTKWszaDei0NejV1UgpxmBQYTAqCfiTtLQUMzoaJpSMk83msFjUNDWZaWoqxmhUsmypcCNgYiKCwajEYtGwcpWNLVtqWbrEyo4dw4QjSRQKGSUWNalUjqpqAxvWC+vo+z/oJJHMkMtDNptn755xorE08Vg1lbZmFtXI8XoT5PJpplyD+IODhGNDhGO9uPv3car/x+i11ZRalrBy2UaMxjqMRg0331xPf7/vItdTS4uFWDSNSi2jtdWC0agiFEpiNCpJpjJ0zdypBsSQcpitBy2tJXxoZj0vWBNaS7jzzqXz6kH/gJ/DHVNCzIFSjlQmwWBQYimWXVL8mhuCfrnuqYLQ1N5uI5fPIdWuJ5acxuWe5sCZ7Rw4s52fPGznmtWv4xOf/xBrr2v/izmnXggvpx5kMhm+850fc889PyAc9gBw8uRZNmzw09Bg+rNGl7+Gi+F2u/mXL3+ecksln/nwv9PcXIxSKRWdUjCbc1MQiXQ6IYNI5Agz08wKTpKVK21EIwWOkESpklFXO0u6C0HSF+LCf3e5Ygu2ORUIv8AR0kRjKW6/vRmdVrgOWrbs73caq3fcQeeOR+l7bj/ZTBpbbT0NK9dgrWtAYzDgdsfpPNnN3o4n+dXDnVRbNmNUrSabzaGR1VNhvoV4aoJx/6PE05Pk8wJH0KltqGSllBmXYNSWYdCXkknJgDxyhYy2thJ0WgWdndPkcmmyWcEFXVdrYu26CpRKmZgFplTKUKvk1NQaWbWqFJ1WwY4dQ0hlUiGXSiWj2m4gFEoJHGF9Fb/85Sni8eyMHJbn3Dkfao2M8fEsPl81KxY3k8tDLpsjFA3g9o3iC40TiU/gjzzLVOAZeh1atMpq6u0trG5fQzyqRqWSce21dvr7/fOcT62tFk6fdpNOCwO7mhdb0GoVoltpYMDP5ESEmhrjPGEIEP984411tLRY5q2/GS1oXhh64bs7HCEGBgSOYLGokculMxPJteIxciFmQ9Avzpd6IRTO78vbbYxNlhPLrqTrTBdHOk9wpPME//Hf3+H6qzdx6+tuZv2Va5C/wNR6qUyGxmBAY2ihYlELuWyWRCSCb3IM7/g4QZeTI9v/SMeDv0OhUlO+aDE1S1dQs2wFtpo6JNLLyzd8OfUAYNeuo/zgB//F2bMHAFCrtfT396HTrfiLcYTXRKlXCGazmd9+76fc8U8f4Me7f872b3+T1avKuP32FnGbQrtRQSQKBhLEnGmisYw4qczljoptE6tWlfGpT6+aN6VsoawEeGGnyKXanOx2A91dLsjnkckk6PQKjnc60euFxdfQYH7ldtDfCFzuKLsPdvHLx/9E9+hJ8d+nk8PklRK8iXF8qQlyZJChxCyrwK5YTZGyjDJDBRqllmAwQSYDMglolSri2QyplGBn9vsSJBMZLCVqcrk8SoWUtjYr69dXiL+f1xPnzBkPkXCSJUsqWLbMJv6+a9eWc7xzGn8gwdatdReJjna7keGRILlcjkgkTTCUJhBIMmOvIJXKcfXV1Rw75iTnU7K8bhkBfzPJVIZsNkMwM81YYBh3aoxnh55i/9BOqksqWN3UztL4ZpYtFULxa2aKYk+vh1hMKJwuV4w1a8pE6yzAfff20tMjXNAqVXJRGILZEPLVq4Txx6dPeQA3FRV6TObZlouCs2/t2nJRtLvv3l56+4TplFu21JJIpmluLhL3x9wsq5aWWcHrUsdHAVK5HPNtt6FqasJ///0Mv+lWyr/xX6y//nrWr/8A8AHGx8e5//77uffee+np6eGhhx7ioYce4sCBA2zatOnyF9srjLlBh295y+LLvgNy+vRpvvvd7/L73/+eTCaDRCLh6qvfwJIl78JsriCTyRMMpl7lT///H77+9a8ydO4sv/j9v7FmbQ233371vHoAs+1GhSycQDCBM5omFsuwanWZ2K40tyZ8+lOrOHXaA+RZNpPRthAu5RS5VIuTKB6MhUgms0ilIJNLxIsypVLyN+WSyuXynD08xfOPDpGMpqloMlPVXITJpkUmv7yLN7crytlzU+x65kEe3XkvsbgXAJlMxZjzSRKpAJH4eVGEUisqMGha0ShvwWJuQKspIxHPkJ6J/zAb5SQSwrk5k82jUQstNplsFo1GSlGxmlWrylm/rkIMAPd44sKI7kiS0jLBrbpsqRW3K8rkVBS9Xk4imWHz5mrWrZu//zuPOzEYlOj1SsKhFPF4lqGhIHK5DKkUwuEkBqMKrU6O35elbXE7gUAzkUiKSCRDHj+h+Dncvh7Gpo4yOLYTlUpL26Irqap7Hc2N6wAr9hqhHvT2eAgGkzQ0mHG5YvT2+njzrY1s2SKIlQ/8oZeurmlBoEoIeU8FXCgQBYJJAqcTLFsKy5ZaMZvU887fJrNKvPlx70yd8fritLWWYLFo0OvkYm5VX6/nohyry60JC2FWxF1CJvPvHHx+P9ufeIinntnBdMDBH/f8jJNnj/G1j/6Utbc2UNVc/JLf45VAoSasXl122fUgHo9zzz338N3vfpeBgQEALJYKNmy4k/b2G3A44qxdW/Q3PTb87xFWq5WffP9nfPifPsgDT/yUX/7wLlavLuP225vFbQrtRgWRKBhIEo2micbSrF5dRkurBZcrNqcelM5whNkpZZfKq3ohp8il2pzsdiPd3S7y+TxSmQS9Xsnx406USsHBsXTp35colctlGew8yoknH2W87wwqrY7K5lYqm1spKq9EoVIxPR1l2459/GHbg5wb6haf64v0k8mlCftGCcfGyZNBKlGhU1Vj1a9HrynHYqpGrdISCMbJZgQjvlKhJJ0SJl1LszA4GEAul85wBBVKhYy2JVbWr6sQf78CRwiHUyxZYpnhCMLvu3ZdBcePO/H742zdWn+R6Gi3GxkeDpDL5fH7E2Sz0HXCjVQmIZHIkEzluOaaKo4dncbv19DatBK/fwkBf4J0NoO1LMz5oV48gSE6ex/jeM8jVJbZWdayinDsulmOUGNk7x6BIxTiEHt7fTQvtvDBDy4TP8999/Zwpkeoq0qlTKwDMFsTVq8ucARB7BI4wqxIWnD2zRXt7ru3h96ZCfZbrqshkcjQvLhY3B+F5xRcghdOuXypEMSx1wOvZ2Jqikd37ubRHTsZHBnliaee5omnnmb7vXeztLXlRV+rAKlMhtZkQmsyUdWyhGwmQyISxjvuwDc5QXDayaE/3sdz9/8WpUZLxeIWapetoGbpcizVNRfdEHk59QCgu7ubu+66iz/+8Y9ks1mkUinXXnsrra3vRKcr/YtyhNdEqVcQt9y4kT98+lO8/Qc/4L3/+TXu+8p/iOFoF4pGNquOjo7xi8benz7lZqA/MFOQEmA3iKQeBDJeaK+aK1hcjlPkQtisOurqjIyMmNBo5JSUqHngD31MTQkJ2//XQgyfOnKEr/7yHk4PnxX/TaswkM4m8aenCGe8mGTl1CqvxCytxCCzIkEgNxIJaFWqmQkUwnOzWUgms6jVcmEingySyQyZbI66OjNvfnMTk5NRIM/kZASnU2jd6eiY4Nw5HxIk+H1JVq8qY/v2fvbvdyCRCMJSNJrG447T1GTGH0gSjaTx+uKsuaKMLVvsjIyEGB8PE/AnkUqhvFxHKpUjmwOvV8gwSSZzhEMp1q2r4OQpF35fAquiiipzDcFQioYmHfUrUnT0dLH7SAfbD++koqSEt2zeTF6znInzUpzOGOFIkkg4g16fYdQRoqhoVhBau7YcgLa24pmJYdo5jsAkwUBCDJH3+xOYTCpMZvW8Nd190sWxY9NMTkS54z2t2Kw61q4tJ5EQSJvRqBDF27nPmevoupTweimxVrN8OfLqalw//yXjH/8E8lveStM3v4JELqeqqorPf/7z/PM//zPd3d3cd999HD58mOrqpTO91RZ++tNvMD09zVve8hauu+46NJqXP1XjxVAoNC5XlMHBIHD5QYfpdJrrr7+e6WnBZn/TTTfxzW9+k6KiOnp6vJhMSoLBFA5HkHe964nL7kF/DS+OhgYLv/rhb/jY59/Phz/5Hn77sz9yxcqrgIsFo8J/Yk2YGXtfEKSGR0IoFULOlJD5NLuWFyLk8NKdIoXPEAgmqLYbSSYyKJRS/vjHcwCijf1vAWN9Pg4+1I9vMoqtxkDL2jIsVQYUqssLMQfweN3813fvYvczD5JMCTVPLlOj1eoJhT1Mep9ApahAr2lDp7oVnXoRCplBjCOXSSQoFTKSyRzMtHJHoxmKitT4/Ul0OgV6nYLxiQgyKSxutnD11VVUlOs5edJFKCRc5HV1u+jr8wl34NUKNm2sxmrTsX17Pzt2DBIJC+O1A/4Ep0+5kcllJBNpzp71s2KljRuur6WqSs++Z8aIRlMolVJqakwYTUpc03ES8TThUJp4PEMqnaO21szISIBMJodUWkKNvZpgaBM6nZwr10rxBLrYe+ApvnbX55DJZGy46mqWuq8jEWnC6525/54HjycOEiHUHISpemazihUrSlGppKjUcoxG5Rw3YFIM2T94aIK9e0cpMmswm9SsWl02b40e6pgUW7ytNh1r183WGatVN0+8Lbz3hY6uS4mvL9TWt9BjcrmcazZcxzUbriMcCbNrz+Nsf/xB1i99Hd7pGI/+oBupOcqvd/8nb3vnbdx6662vejbfn1MTfv7zn/PpT38aAIvFwpe//GVuvvkdDAxExHrQ1mZ5ybkkr+HF8cZbriU89S987r++xWe+9BW+//Wvis6KC0Ujm01LR8fERWPvT59yMzAQEH6rQBLss6QeBDIucoQ5gsXLcYrYbFrqak2M1JrQaBRoNXJ+e/cZ8bj7W6oJL4R4JMzpvbvp3v0EYa8HU2kZzeuvpmJRM/pii9gm9fT+Z/neT35N//A58blqpZF0NkE4Pkos6USrrMZm2IhWZUetsIkcAQmo1WpSqQxSCWQROEIikUGpkJMnj1qtIBpNIZVKqK838+Zbm5icjAAwORlhyinUoYs4wuoZjrDPARIJ6VSWSDSNxxOnqakIvz9BJJLG50uwZk0ZW7bUMDISZGAgQCiURKdXUF1twOuNk8vl53CELOFQmvXrK3n++UkCgQQaRTXti6qYno6x6gozLcuS7D3wHAc69rJz33Yqysp4/Q3XodSsYvC8lGlnjHgiQyScJp3OCznJMMsR1lUA0NpmIRhIUl6mm+cIDM5kUB3umMQfSGA0qjCZVfPWtMARnExORLjjPW3YbFrWrqsgkcwKHMGgFMXbuc+Z6+i6lPD6Ym19Cz1eWV7OR+98H//4/vdypu8s25/cQV//ADaLXcy3+vm9/0ssHufGzZtZu2Y1KuWLO41kcjk6cxE6cxH2Je1k02nikRAehwPf5Dj+qUlGT3WTz2VR6w1ULm6lZtkKFCWNjE4rcLtjL7keJBIJrr32Wvx+Ia7nDW94A9/4xjfQ66v+KhzhNVHqFcaG5mZ+/9Wv8bYvfZG1d3yS73zks1xzdf2CotGoIzRv7L3LHWV4WMil0GoUOJ0xTObwPDJ9IRl3uaMcOjjJ2HiI6irDZTupXO4op095CIVSbN5czdJlVh57dBCfL4EWC6sXLaW85O/rLsgLwTkd5pu/eWCeIAUgz2mwypopVtZgVpTOFA9Ip3Pk52hywkV4EomUef9uMilJpbNks3kqKvTI5FJ83jhOZ5RDhyapqzMyMBgkmcyg1ShIJTN43HEUchkGg4K1a8txuaP09npxu+NIJKDTyVEqhXGuR45MEYtliMWEO+9KhYxPfXoVp095aF5cTG+vF68vwYqVpdTYjRw+PEVrazGtrcXiJCi9XgF50OuVaDRyPJ4Y+VyekD9HpWYxX7tzPe+/9g4GnYM8+twB7nlyF6HYQ5jVFurNbdTqlyKRqJDJJKhVcg4dmqS3zyuKSOvWVXG808m5sz4WNxeL69VkFta80xllYjKCpVjNypW2eWvU5Y6iVimwFKvFVg2bVce6dVWiK2Ch9tPL6VOHFxZrFRYLU9e/h/Sux6l64k8MD/RQ9ZMfo6wQiqhEImHFihWsWLECgB07hjh8eJJsNsvdd9+N2+3mnnvuQa1Ws2nTJq6//npuuOEGli5d+rJaOg4dGmfPnlGuu65mniOlMHWjocHM2rUVl2yryOfzdHd3s337dr785S+jUChQKBR88pOfpKuri89+9rNceeWVgEBqAKqqDKxfb+Jd73riZfWgv4YXhlKh5Ptf/wV3fuJdvPtDt/GBd/w377/jDZcUjOaOvW9qFAQppzOGUiGcL2KxiyfyXEjIC1Pj2tqKxcllC2EuAQfhWBEmnEnYvLmainI99/2uF79PwuLKVVRUlb/Ce+elwzcZ5dCf+nH0+DDZNCy5phKb3Yha/9Laat2uKNsfP8pju+4GQCKRks/nyOelKKQNVFpuwaBpQ6kwolBI0ekUhENJ0REFkMnmCQaTZOa4gZRKGQaDkkAgSTaTo6WlmFwuj8cTJ+CPAxJisQxOZ5xoLEVvnwefL4Z6JoS9psaIViun87iT8bGQ6LiSpHN4PHF8fiGsPhRKiiL9nXcumznPq+g4NE4ymWPJkhK2bKnh4KFJvN44S40KxhwR2tqKGZ+Iks+DyaTGVqolGk0RiaRIJrKkEnZuf+OHuWrFO0mk/Bw49BSHj+/kx7/+AnKZEptlJeUl64nFlpNI5NDrldhrjJw86eLosWkqK/S85z2t4vq2V8+2l5pNYXFCn9ebIJ3OodbI5q3PwppUqaQYjUqxDXBuPShsN3fK3ovlWM3FC4m1LybkGvQGbnvTO7ntTe+k87iTs70eqqt17Nq7nc7uY3R2H+Pzn/88jY2N3HDDDVx//fVs3rwZk+nluY7+3Jrg9/t54oknKC4u5nWvex0A73//+7n77rv5wAc+wJ133olerwdApVLNGzn+hS8891pNeBWwbtVK/udb/8XHPv9vbL3Ny5c+/a9s2lS7oGg0OhqaN/be5YoxPCLUbq1WyZQzismsmkemLyTjLldMnAJXXW24bCeVyxXj9Ck3oXCSzdfYWbrMyi9/eQp/IInFYEVWFsVq/dvmCK6RIbp2PUbfwQPkczlK6xppXLMOW20dar1h3nWa0xnhBz+7d54gBSBBR5FmKXpVPUZtGTLZwhyBPHg9iQU4gopkMkssmqGkSo3FosbrjTE1FeFQxwR1tSYGBoW4D61WQSqVxeNJIJdLMRiUrF1XMeNKFTgCEqGNUzWTBXbk+SmisQzxWJpMNjeHI7hpbi6mt9eH1yuIV9ddV8PhjklaZ9ruZjmCHLVaRolFg0opZXwiQi6XJxqRsnrZWlYvW8vtr/czOn6eXc88w+8ffoRo7HcYdTYqrO2UFi0HiQqZTBiOcahjgt5erygirVtXyfHjTs6e9dHcXCyuV5NZmNo6XeAIFg2rVpbOW6Mul1AfLRaN2Lpns2lZt66SdesqxW0ubD+9fI7wwmLtCz0ukUhY2toiuqMK3zGTSfOnx58kEo3y0KOPo1GrWbNyBeuvXMOGK9fQ1FB/WRxBplCgL7KgL7JQ276CntNOprsc2EviqPIB3I5hhk4cJZ/Pk5NpUZfU01y/hNrysgVfL5fLceLECR5//HG+8pWvCJlXajUf//jH6e/v57Of/SyrVgk5gn8tjvCaKPUqQJepYG3JrRyafoRP/OSbHLrihwtayQsHS43dyPFOJ8FAgmwuT2OTmeXttgXb9S480ByOMEePTRIKptBqFDgcwrSUCwn4XHLu9cTZtq0flyuG1aqhrU0QpLLZLLV1RqrS13PTTbWsu/Jvp1XjpeLRnSf5322PsKa9kYTEz8N79+MO+pAgo0hajU3eiEVhR8HsfsrnBBeqRiMnlZy1KhZahKVSCVKZhEw6RyYDCgVodUp84yEymTyxWIZrt9jZv2+MWCyN0xmhrs6E0ahgoD9KMpFl1BGiuFjD6tUqsT3veKcTnU5BY6MZAI1WjrVEyG2KRFLznFKbNlWKEyZkMgmtrSUkkmlxvZSV6YjHs5jMKv7hQ4KF9rFHB5FKJZhMKvyBOG5PYsZuGycUSvLYo4OcP+8jl4cayQastVcyFhxiwHeGU9OH6XI+R7WxkWsbNhCOlKNSyVCrZHi9ce67t5etW+vEdZpKZvjDA70sbxdaEqUy4e62ySS0YlRU6MXMqFFHCLVKTiyWEb+HTjt7Surr8/D0nlEArr+uZt6abmkpwVKi4dDBSQ4dmmT9+oqLWh1d7uhF7q0LkUrnOKxdyeaNjZSd2M3wG9+E/NNf4px5iXhxXkDhwr+lpYiHHnqI7du3s23bNsbGxnjqqad46qmn+Od//me2bt3Kk08+KT4vmUyiUr346Nc9e0bZs8cBMI+AOBxBnntunMpKHVu31s97jtvtpqOjg927d/P4448zPi4UjdWrV/OGN7wBgH/913+9qABeOF725fagv4YXR8+ZABXmf2RM/R1+8bvPYjJJePMbbgEubi0qkOpCu5TTGaOsTEt7u01s97oQFxLywx1T9PR4SCQz3HRj3SU/11wC3tvn4ciRKex2A0qFgmgsRWurheXLraRTWTbVf5vKxUV//s54mYiFUhx9Yojeg5Oo9QoWXVlGab0RvUl1WblRmUyGn/z89zx78DDLlzdzvGsPZ84eA0Apt2LUXoFRuxStsg4ks61/UomQvSGVSOa1osmkoNbIkcmEuhGOZJAAGo2C6ekYqXSeeDxNY1MxkUgGjydONJYF8tjtBsrKNPQPJOnt8aLVKVi3vpK6OiPLllrF36Wq2sg6wO2JI5UiZkrNdUpt3FSJ2xXl1GkPXm+cYosGpUImht3bqw3EomksFi0N9UXY7QbiiQnkCimlpRrKy/Xs3j1COJxBKsngcIQ5eGiCffvGkEqgtnY9b7x+M02VA/T272PcdYhJ13dRK4tZVHcD9Y1bUSnl2GuMwmfwxbn33l7WriunubmYZCrDA3/opb3dhlYr7C+tVs76mbvnFosajyeOwxEmmcpwuGMKmUxCTa2J9mVWmhfPb4vbtXOQZ5+buGiCZUtriZi71tExjmM0dJFzEAQxKxBMUla+cE2w2w04xsJ0dbvQauVi++xCzqq513SNK/8BW5WZPQd2cXbsBAMDAwwMDPDTn/4UmUzG4cOHueKKKwChHiiVlxe+v1BNGB0NcujQBD09HpYvt86rCZlMhlOnTrF//36eeOIJnn32WbLZLGvWrBFFKZPJRHd392s14a8InbKRFvvt9I4+xFfu+io71vxswfYikSPUGDl+3EkwkCSbzdPYWOAIF7frXcwRQhw9OkUwmEKrVeBwCDe+LyTYc8m31xNn2/Z+XNNRrFYtNbUmurtdlJdrSSYzVOo3USop4+oNG16FvfPnIZfNMnDsMJ07HmXyXB9qvQH7knbKGhdTVFaOcsbV/ujjXdzzhwe56oolxNNTPLF7L/6gHwlydKo6jOrFGLV1SJndT/n8whxBJnIEKTKZIFhlM6BQSDAaVYyPh0inc4SCKYEj7B8jHsvgnIpSV2vCaFQyMBAjkcgyOhqiqEjNFavLxPa848edaLUKGpvMMPP+VmuBI6TnOaU2zuEIUpmU1lYLiURGXC+lZTrisYzAEf5hhiM8NoBMKkVnVuL3xwUXbx6GhoKcPuVmeCTI+XN+cnkpJdrr2LhsA05PP+Oubs6P7ufcyF5KLc2sq9tMOFyBSiVHrRKyDO+7t4etW+vFdZpKZfnDH/pmOIJC4DFtFrFdW+AIQmbU6GgItVpGNJoRv0chzwwEV+DTe0YAuP662nlruqXVInCEQxMc6phg/brKi1odXa7YRe6tC5FKZS9yK17KXVV4jcpKHT/7zrfZ/cx+nj5wgGmXmwMdhznQcRiAG6/dzE/++5vi85Kp1GU5qU6d8XOyJ0F+uY13vONqMqkUsVCQAzuP4xlxYA2M4Tx8hp2HH+C5YgtVLUsw2OsYD0U5cKiDxx9/nKmpKQA2btzIddcJw43+4z/+42+mHrwmSr0KOHx4CrPEztXlt3HEt503fv6fefDr/zWvZcnljhKNZdiypWbeVL7GBjOhkBByaDQq4YILp0IwtMsdFcQMrZw1V1QwNh4iFk/T2ekUx70WwrGBeeR8795RHI4QiYTgwBFOaBmKLSpKLNp57q2/J+TzeTpOn+KLP/klJwaEca2Hhg6gU+hpKV/CtXVtTA+oIb9w3ohcLoyFTaeyKBQS0uk8EglkMqBUSSi16aipMeDxJESbaCiYRCGXkVNBfb2J5e023G6hZaK8XA/kMZkUpFIZVCopNXYjTU3FYrbUf//38/h8SdraLLzzXUK2gJC9lGfpsoWnzN13by8joyFqa4yUlmoYdaQZHQ1yvj8ACBf9zhkb8JgjxOnTbiQSYWrS9HQUqQRUaimNjSaOHJnC5YoSi2XIZPOoVTLi8QwaRQUbKmtJZZNMJs4zGOrmt4fu5vHTRWxZtpHFpavwT+eZmIyINt3+fh9ud5z+/gCnT3m44ooyclmIx3MEg0kikZQQyJsFpzOK2x2jsbGI5Sts8/LVCug+6aK724UEsFo1F4lOcwVZnV4uDggouAEdjjBOZ5TFM3kfxzsvDt0tuBXPVZaz9F/+Bd9vfk3ya//CiOYK+t7xUT77+avE95s7/aKu7mquvvpqvv/979PX1yeKUgcOHGDRokXicyKRCCUlJTQ0NNDS0kJLSwutra3U1taSy+nxeOQsX15BTY1JDJG+MEz62WfH6esb53e/i3HzzfXU1Jg4evQod9xxB+fPn5+3rVar5cYbb8Rmm707tBD5uXC87EvJqHoNLw1dJ1yEw3lWt34OZ+huvvOTT2ErlXLrLbeL28wlvm9/Ryudx52EQmn0BiVWmxZ/IIFjNCS2783FXELudkXFVie9Xs4zzzhmLmQleL1x1q+rEIn2XHK+a/cwfn8SqURCKJwilczi9yVYvbqU0lId+RyE/gq5Y5l0lpN7x+jcKYjTtUtLKG8wYSjRXFZuVDAU4H9+9kP+uP1eYnGBjHX1SmisW8UVyz6EUbMM59TsZZBUCnO71iUSoQUjFkujUkuJx4UHlUopkKfGbqKuvoieM24iM0NJxhwppFKw2fQsW1qCRiMjGEqi18vRaOQ8d3CC6ekI1hI1aZNKDC33eOLc/dvT+LxJ2pZYZqbONYmiUyFD7MKJiXv3jtI/EADAbFKh0SoE4aJjEpVKSkWFUIcKhDMSSRGNpBgIJenucpPN5pFJhe+Uy+bpPO5kcjKMRCKZcWbJCIflFOmup6j+elKZMYKxQ5wdepTT5x+kf2wzm656KzX2RkYdISYmI6Io9Kdt54mE07jdcVKpHDKZBKstOufzx8TsqYKjtrJCj9GomNeeV8Czz00wOCh817miFMyKrIXaEolmRCG3sM8unHY597mF7ZKJNAP9fvQ6QZQ6eGiSo0cnWbOmYl6e4vz2QB2f+twn+eg/fYzeIyPs3fMMpwePMuDqwukdp7l5NjfoC1/4Avfddx+tra1iPVi0aBGVlZVks3rGx7MsWVJyyZrQ0+PlqacGmJiYpq7OJJ6377zzTh588EGi0dn9C9Da2srWrVvJZrPIZtqUXqsJf10c7phEp2xkad07OTv+IHd+/FP873f/e17LkssVIxpLz3CE2al8jQ1mJmdcNuvXVV4kLhWCoV2uGMePO9FpFaxZU87YWIhYLE1n5zRjY3M4wozYOZecFzhCPC4cg+PjYeKJLMuWltDSYsHZN0Ze/7fVuhcLBcUWvYjfR1FFJS0bN1Pa0Ii+yIJcoRA4wtFjfOsHP6P3vMARTp3fh05jpql2BWuWtDE+oiGfW7i2CC6oPOlUDoVCSjqdAwlkM6BUSbHZtNTWGvG4CxxByOKRy2UoVVAncoQYiURmhiOA0agglUoLHKHGSFNTkZgt9d//fQSfN0HbkhLe9S7BkVPIXlq6bOEpc/fd28PIaIiyMh2Qx2YVriGOH3cCQjdGoVVwbCwkvJ4EQuEk09MxZFJQqWTU1Bh4+ukRpl0x4jEhmkTgCFkUihramxaRSsfxhnuYdB9n2+6fcOBoCetXX0tV6RV4prmAI/hxu2OzHGFNKdlsnkQiSzCQJBxOk0gInSfTzihud1wwaSy3zctXK6B7xiUucATtRaLTXEFWp1OIAwIKYpLDEWLKGaW5wBFmWu8Kz7XbjRe5FQEOHZrg6NEp1qwpn1cT5rYIlpevZu0Vq/nK5z/L+cFBnnv+CIeOHOPoiS7qa+zic/yBIOtueh21djuN9XU01NXSWFtLZUU5MomOWEROfb3Qfnih4CxXKjGWWDnntNB5Noa9QseHP9BCLjTF4SNH+PKX/xN3aLbOAWg1Gm684QaKimZvMv4t1YPXRKlXEBMTYSb6vLS1CQt87drlqC2buO0LX+Daf/oYP/vsl1DlhLuVc51LBUdJRYWOaCxDV9e0cNezWIPJrJ4nTBTa8IKBBE5njMXNxdx6axPHO51s+9N5XK4YpWVaAgFhGk71zAFWIOc2q05QzCMZzpxx43LFyQN1tSZaWy2Ulmrp7fWhVslxuaOXnU/118SQw803f3svT594Dl84JP67SqKnUr6MasVKNFEZtY02vDInmYs7YEQUphtoNHIMBin+QBLykE7lSWfSyHRxKiwJ3CEfPleeiuJaUqksMhn8qffX3H8mji8YIZPJkMllyOay5PI5SlRVbK2/g+npGEajiuu+83kSyQypuAwFag47izkfbYKEDpJ6qoqqF/zt9+4dZcoZIR5LU12tZ9QR4mS3G6lUQnBmAlJbawnVdqMYZB+OpDDolYTDKTIZUKulNDVZUChkjIyESKUEopXL5ohEcuRykM9nqKyyEAgosRStYk3dlcgMYc77T/Do87vJ5nZw7fK1tJevI5POsW1bP87pGEVmFSqVsN96e71cdVU5w8MhkWwUHF11dUZGHSExG83ljgIegoGEuO4KAh8sbMG12w2iIKtWyTl0UCAsK1aUsmWLbt6d7LnHG8yGsM89ySssFqyf/gwd//lLrnYfx/vQl0m967coKysvem+YGzxeyac+9Sk+9alPkUwmiUQi4jZdXV0kk0l6e3vp7e296DVaW2/lrru+Q02NicrKDI899gkef1xCKpUilUoRjUZxOqfJZNKUlLyTnp5rqKkxodPpREGqtbWVTZs2ccstt7B58+bLyrd6KeNlX8PLh8cbw1KiobnFwubN1axZ8wBf+Npn+OyXPsaIY4h3vuVjjI9HhYycqZj4vEAwSUOj8Ps4p2Ii0QYWdH8Ugm9httXp+98/zslTLoLBJNmccJe2QLQL5Ly5uRirTcfmzdWoVXLc7igul+DMqakx0t5uQ6VWIJmKo1D85aaM5XN5+o9Pc3j7INFgkoqmIiqazJhLtZeVG/XEjl385Nff5fzgKfIzvRQSZOjUrZQVvZUiVSV6hQqNSgHM1oyFYhSlUoFwZNJ5ZNIc+byQ1yeVwtS0C2ORh8raMD6/E5N2HYmERjinqo7wrg/9B76Aj1QqSSqV4pcPZMhmhYvq9cu/wsZ1GwAJ3/reT9h78D6yGTUyqZ6usyWcG24klzNTUlxBQ+1SIiElZlNYFELm5o1FI2mUKhnxRJqJiQhDQwGCQaEetM4Mgii0u3V1u0ilcwQDwsAOvV6O3W4mGkvjdEZRKKRo1HKSyQzBQIrAzH7QamQUFampqlpJaelGfL4A097DdPU8yTd+8I+UWmu55cb3YJWtxu2O8/gTA7imYxQVqYgn0gwOBmcu+PN0nXART2RoajSLLsC6eqMoZpWUaDCbwmIrY0EwKkyunDvBsoDC+d5iUdHTA9lMln37HKxYWSpmsF047bKAuS17FzoPvd44oWAKrzf+gmtOFJZbyvn4lXcy0n0LY2f9TLudPPPrAda8vo7yRjPHjh3D7XZz4MABDhw4cNHrvPOd23jXu9qpqTHxyCM/ZP/+/TzySIZUKkUymcTj8RIMBpBIFFRUPCc+z+fzEY1GMZlMrF27lhtvvJFbbrmFhoaGi95jIbxWE159TE6E6evz0jpD9NauW4Fav4kPffqzvPV9H+RbX/46+awRu904z7lUcJRUVOiJxtLs2TsqEu2F3B8OR4hgICkS7ltvbeL4cSfb/tTPtCtKWZluliNUCxyhsG2B/EajaU6fduN2xVGpZVRW6Fm7roIis5pOrxZiMDERoeiv3NU9PTTAiZ2Pca7jWfJAWcMiFq3diKWqGo3RhFQqZXBomh/+76947sh+wtFZkq6QGinWXUGxbhWKjIIKm5VJxxTZS8Tp5vNCtwQIHEFvkBAIJMnnhSzYbDaBSpmiujqCL+AhGpJQa6sim86Ql2TZc/h77HwuQSgSI5PNkMtlyWSz5PM5zPp6rmq7k+mmKEaDilu/9C6yWQnJhByZVEPPsIVJ72KyaR25jAlrsf2i1s1CCP6UM0IslkarkTEwECCfB5lUwtBwcJYjVBvFIPtwJI1BryASTpHN5FGqpCxfXopCIeXUiIf0zCCnbDZPJJoml4VcPkdlpYVAQIGleB3LFm1ApQsw6jzKzn2PkM9vZ8OVV9NYvZFMJse27f04nVGKilSoVDL8gQS9vT6uurKc4ZHgBRwhTX29idHRkJiN5nIJ1z/BQBKXKyau08J10cIcwSgKsmq1jEOHxhkYCLByRSlbrquZ506ce7zBbE1YqA3Q640TfJGaMNdNtbixkcWNjXzw3e8imUwSTyTE7U739ZHOZOgfGqJ/aOii11nVdhP//PGPYLNpUWrDPPDkt/jjDgnpdJpUKk08mcDt8ZHNZpAq34QvspzVa64ipjPivucPSCQS7GWlLKosY3FJEVU6FXJZhu57/xfv8aXULl9JdVs7Gv18A8xfqx68Jkq9gujvD+AaCVF5RSWf/ezshcBdd36Jz//iLm79t8/yD5vv5NbrNswjzKdPeZgYj2Cz6hh1BOnp8VBTY7wofweY56paPJMX0tExzr59YzinI0TCafR6BSuWl4qTawoo/Lngttq1a5A9ex00NZq59c2LRAHkB4/+mv0PH+EfJ9/FVz/2rld7t70spDMZDnR18eizB7hv5y5yIvGQYFXWssyyCVW2iGhUOJkmEjmRnFwKarUck0nIA0mlssgUeYZyzxBIeInngqQG4jAwu/2K+iX8+9s3iJlRo8cnSGaSC762TCpDKpUyNh4mlQzg9HlIZGZPTNNjg3SNCe0kpfoKvvaOL4i/1/f+cD8Wown/hAbHuTyRcJpMJsfYWIStW4X2nCKzivHxKBaLmqXLSsTcMItFw/LlNorMKjoOTxKPZ7CUaDCZlKTTwt2eyirhbs3oiHAnLZcT3AFjjhBNTWY2bKhi1BFi2qnBFl/L1ebFTKZ7ONx7kqdOPEd9SRPLrGupNNRRXKxmRU0pQ0MBZDIJJrOa9ev16PTyi8L55zrxbFYdJnOYzs5phodD1NUZWbrMyic+vkrcpiDI6rRyzp71izlqKqWUvXtHsZXq0KjlQH5ehhrMdwp6PXGkMkEMLhwLBUjlcixvv42ze6poHj7A8BvfRPk3/gvjDTeI2xRyPnQ6hTiRonDyVqlU81r1NmzYgMPhoKenh76+Pnp7ezl79ixnzgwSDLpRqYrEOxGBQIATJ05ccn0uXqwRt21qauKJJ55g7dq1FBdfPPnpUlkkr+Evi4nxCFKJhJturGPVzF3wb3/1h0glJfzoF9/lmf3HefPWL2C3W8T8p1OnPXSdmGbFylLSqQzHjk2hVEqprjYumJnjcIQJhdJiqHQhU6q/30cikSUSSXH1NXa83vhse+AF7eQFIWvXzkH27nXQ2GjmzW9ehNWm41z/Wf7l7ndj0Jl49xcnXv19ds7PoYf7cY9FsFbraVxto7hCj1r3wrlR4xMOdu15gvsfvocRx+zFnVJRTGXJTVSVbsbvF+7ux+M5tJqceKG7EGRSKCvXztSOPMlkhlD8BL5wB8n0NKm0j9xQmv3HZ5/z7X9fw6JFtZzonOb8qJ+BCzIM5yIeB6lMitcbZ2homlDYKT4WikL/yH7x75/80I/YcOU1wo2GU50cOnIAhbSKibEifB4J2VwOSViCtaSY5cuNmM0qxiei4jXA3CmPFouG5uYi+np9hEJJDAYllZUGPJ4YXm+CpiYzV11VzpkzHs70eMV8FKVKilwmpanJzOZr7MLIcsUWAu6lyDOnCcSf4de//0+0GjO1FTfQ2rQVq03HmjUCa/X7k7S2WmYmRkpYyPk1tyZYbTo6jzvp7Jymq9tFXZ2RVavKRIfUXHdh/4BfzFELBJKEI0kGBvwYTUogP2/bVavL6Ov14HbF0GrllJRo5oWwz07eE7B+XYU46e9S6Ov1sGPHMDKZhI0bq1i1Wseiq8qpXW5l9HQx42f9bPvOCUrrjPzye78nmJvi7Nmz9PX10dfXx+DgIIODY6RSaUAhnuf7+vo4fvz4gu8plea5+eYK8e9f+tKX+PrXv05rayvSC0aHv1YP/jbQPxBgZDTIomVWPvu5QttlJV/8xDf4rx98jff+00d42+v/iZuvXzePMJ8+5WZ8PIzNqmXUEWRiIkxZqW5BIj7XVSXUFCMdHRMiRwiH0+j1SlassM2cH2bblgp/Lritdu4cmlcPCgLI1771BKfO9+EoXs7/rP7PV3enLYBMKsW5w8/RtfsJpgf70RhN1LSvpLShEZO1FJVWRyqd5kDHYXbu2cv2J3eKoewSpJj1i1hUvYVU3DgzqAJisQz5XI6Fu2rz6JRprEU5LKYcZOJoFUk0yjjPBI/hTQQJxGL0TqbY2zn7rCWVpaxbvxo0QifH3c4xcpcIh68wRLi6+ijpgdM48yo8PhfZ3GzPeGAI+oY6ALBZ6vn4+74s/l4/+dVvsJaU4HbqGDwP4XBGiBSJZ7nqSuH8q9HKxRa5gsPK5YrNcAQrRUVqOjomiEbTGPRKamqNxONplAopVXM5QjxFLlvgCGGaFs1whNEQTqcOnWQzbdXL8Ee7OXriKPs79mAvb6WhaiMlpgaKijSsWGFkaDCAVCbFZFaxfl0lOp3ionD+gjMJBBeSyawSOMJIkLpak8ARPjGHI8wIQTqtgrPnfGKOmlIpY+8eB7ZSHWq1bN62c0PXC05BrycuTKTXKsRjYS7mft6F0NfrZceOIaQyKRs3zm+VvZAjbLzqSg48vp3+wWEGRoYZHB5haGSUweEJQuEAWvVsDlwwFKbn7LmL3k9cQ9UKcdumhnp+/cPvsWLZUowG4Tovk0oR9LjwjAzjOD/CqQPPcfqZpwAJxZVVVLcupW75Kqpal6LSXt4whFcar4lSryCamszkSjQEAwn6+jxiJtTw2Qxri26nO7STHz/1MyJ5N9///IfnuGDcCOepPMeOThMIJFGr42zZUnvRexRIhE4rF1udDh+eYnAwgLlITVmpnk2bKrnppllRTHChXIwSq44Vy0vnhVMDyJV5EukEesPljdX+SyGZSvGDe57k7icfxROdJpVLYjNaqbHU4ot6qFa1Y0wtRinRkI1AdM4JXamS0t3tmueSSuaiRHJuwjk30bybWMKLLVnKjQ1vw+OJk8/nmEoMksrOikdKuZJifREamYHG8nqWLhMusA8cGGOt7U00Nli4arUdk15NOi0hFEwx2B/GoFeSTsiprjJgNKr4ZuW/YSmVkZOm8IWCeAJBzo9OcHZ4DHtJJVu2CBlK6UyGb95zD8m0cHddIVVRba6hwlDDhH8x+Xwt73h7q/j5CmIMCGQ1FkuLJ/Zz5wLIpBKuvLKcltYSdu8aJpvNEwqlSMQzVFToZjIHwqTTWRKJLOl0HqVKEJS6cdHf7yeXlmPNtVOlb8fQ5qVz4hCP9N1LW20T72p7E+vWN7N+QwWnT3kYc4QwGpXi97kQc8WjVDLD6EiQbDaH358AJPMCzh97dJCpqQjl5XoGh/xMO4VA6Gg0QzCYpLhYw+at9gWdUU6ncHew4DLMZZnXKjgXglB1C2nvOvy/+Q0Tn/gk0be/nbIvfgGJQiHmfKxeXcr119cuGDI766KyUFNTTXV1NTfddJP4+KFD4zz99AibN1fOaQmsE7Oo/P40ExNxmptLaW+vp7S0FLVaPbsOlUoxI2QhXCqf6jX8ZVFZpSc4Q3j7ej2z7USGm2m25zg78Ct+88DH+eG3fsHKFYUWndl60HnCxfh4GJVKxsqVpRe5pGC2Jmi1chyOMPv2jTE4EMBcpGKRRXNR/s4LwWrVsXx5qeigAigr05JIRVEqXjzz4M+BbzJKx7YBRs94MVk1LNlUgaXagNZ46fydZ/ad4Ac/+zEjY51EYpPIZArqa1ahUExSVrIUZX4TauUiJBKJKEiBIInEYmniidkbFbl8mmRqknjKQSI1RjIzRu/YFO956w9IJ61MTERwBXwEo6fmfQatpgitugR7dTXLlpVTbKqkt9eHPL+ULWu/wtqrGmhrK0epUOJypQgF0zz33BQqlZa6OiMV5XqQvIU73nkTJnMOf9BHIOBnZHSMvvODeHwTbFq/jBXLBVHzdw/v4Uc//474/gadnXJbGzVV7SRTV9DeXjNvnbhdUdFt5HCEiUXT2KuNKBUKXO4oBoOSsjIt0Via5GSUwEy7idsTp9SmIZ8HhVKKWi3H70vS3x+gob5oRqRxcfj5NGrlIqq0i7jxapj27+FAxyMMjj3OTVveQVvbRykyW7BXG0mmMuzdO7pg3tPcz1uoCclUhpHRINlMjqmpCG5XjC1barDadJw67aajY5Lycj3T01EGBwJ4fXFsVh3jYxHi8TRFxep5OV0giF2xmNAyODkVnWkRzOOcis1zohVwoUi1EE6edIl3+ufeCFSq5TRdUUZtu5WzR51Mng+w51f9FJfruOrmG3j3u+9AOpOJdujQOLt3D3LjjQ1iTfjqV7/KRz7yEXy+FBMTcRYtKqGlpZrS0lKKiormiU+rV6++5Od7rR78baCp0YzzrIZgIElfr1fMhBrqz9Nc/X6GnH/ivm3fIZ17D1/9wofnkdmClnH06DThUBqtNn0RWYZZYUmnVYitToc7JhkYCFA0wxE2bqrk5ptns8guJc5brVqWL7fNC6cGQJonmclQXPzSBkz8uQi6nJzcs4vTe3eTiIQpqa6h7ZrrsNpr0BVZyAE/+eWjPPjIn/CHpsjmUhSZSrFXNBAI+SjSrkRFKzKphnCQeYnkCoWU7pPT6BUJzKYkRnUCpdxPPOXCH/fiDAY50h+mutjM269cTTytIJ6W0zs5TmYu11AoMRuKUCqM1LeuYP37P8KpM0H27nXQWmdlcZOVK6+0Y9AqSMbThHxhpsb8GNQQyqUo1mfQ5JN88ubricXDRGIxoqkUsVSGYCqDJ5KgpqKMq1ZoKClRE08k+OEvfiVOS5fLNJSV1GMtqiMUbaW8vJHWNuH8VQjLL+SKORwhotG5HMFPPidMytuypYb77u0hk80TCiVJxLNUVOjQaM0iR4gnMgJHUMrmcAQf2YwCveIKLBVrsJRP0je4n33Hfk5LUyu3tt7OunXNrF9fyelTbsbGQhgNKoEjvMj0u1Qqy+hIiEw2h88n8LK5AeePPTbA1FRU4AiDfpzOGKMzHCEUTFJsUXPttXULOqOmnFHKy3SiyzCbzc9rFZyLhYSqueieVw9efLBAZXk5leXlXLNh9q5MX6+Xru5pli0tEfdLQ20Nv/rB9wCIRrP4fCmqq4tY1FiBpbh4Xi6VRq3m6vXzM3jkSiWWiiosFVWcGC3htGuKZc0K2puy+KcmOdtxgJNP70AilVJSXUN12zJq21dS1dyGYg7/eDXxmij1CqKy0sA58pw44WJ4OIRGI+zetWtnxhln3suu07u4++mHONJ7mn9/9z9hsxRTUaHHZFaj08oxGOR4vUIIaSEDZy6Zt1l12Kw6cdrZ3Ndfu7Z83oSaAuYS9IF+P4cPT4nPcTqj1NXNmXTgjoo5DtoXuTP9l0A8mWTP0aP86rFHOXjqFOkZVckqa6BGfQX6XAnZWBa7RIYkLRHYBvOnXwAoFRJiM3X3TGIHodwUqfzFhTiQknH725p5Zu8Ivb0+rqy4DmuxgbKiUt5001KuXF3LM8+McuKEi8ZG84wAlCeXA7upno3tNdz6+kXi7yOVaai3aygr02Eyq0Qx8ZZlK4UwwpMu1rcvuSgvqYBEKsWHb72VUwMDHO3tI5aIM+Q7z5DvPAdHn+b4xCG+90//PC9HqfBbX+iG2Ly5mtBMi5/dbhBadtRyenrdBPxJEokMGzZW8fpbGkklMxw+PIXNphGn6m3ZUkMmnaerexqPO0YuB2saVvGNz72d7XsP88fnHuELd9/FQx2P8ZE33E7eb6O3Rxh1DpJ5Y+xBCDIv3F2uqTFx7NgU/kCSqko9K1fagDznzvoEu647yshIkGwuRzabRSGXUVtnxGxW4/PF0enlNDWZRSdUd5dLdAkUnFGhUFIUpxY3F6PTyhc8xgpQWCyUfPrTBB95hMCDDxLvOkHVj388L+djoQv80dEgv/3tGWFkOguPZq2qMrBmTQW1tbMuJ5PJxNatWwFh0t/Zs5PI5RXU1MzmicwXuy5trb1UPtVr+MvD64kRjKZxu2JiWPbadeWMjGygqKiCvuGf8K4PbeVTH/lP3nzLWwAJK1fZqCjXo1BI0OmU6A1yzGbVvFamAgoumM6ZyS92uxG1Ss7adQvXA5jN3wkEk4RCwoS2qkrdPHdNAYWW5hdzmr5cRINJjj4xTN/BSdQGJYuvKqOkWo++WI1MdvGNkaGRAR5+5H62P/EQ027BXSSVaKiyfJBi4zLIq2kqSyKVXnq4gEQC6YzwfUKxbtzBx0mkJsmTvWhbmdLLVWtWcuDAGP5gO0qFluZFjbzpDVeyfn0rzz07yYlOFytX2Sg2WWcEFT1TU+UUmetpX9LIqtVldB534nH5kMmULGmrwWhUUFGuJxbL8MZb2vF44pw86aK9fdULiiBtzUt549a3crq3m6GRAcJRB+FhB+eHd7LnoAx/4Cd86hM3zctROntBTdBq5TQ1ZUimMmLLnL1GWDe2Ug3794/h8ybQ6ZW8//1tbNlSKzrwbKUacYpSe7uNM2c8DA8HkUolyGVFfPi9X+ZzH/8X/vfun/LUvgd4at8fePfb7uTWre9j/+MuRkdDTExEKSnRzFvHfb0eTp50oVLLiUUzOMbCQk3wJ6iqMlBaqiMUSok3XYaHBfIgAXR6pTgsRKuREwjqiUbStLQI59dkKiNc69Qb5+WpFbK2ysoFV8mF7YKXi7ktfws9LxBI0DMWJJRM01JrIhvN8PRveunYNsjSaypZsqmSqioDV11VTVXV7LFXmIS0Y8cQ/f2TaDQVtLbOigmv1YO/L1RUCr9t5wnB7VGYurl2Jvh/SetHOXD0Ee7f/ls6T3bzyX/4FMVF5hmOoEKnVWA0KGY4glbMwJlL5gu5NoVJYHNff+26innukwLmEvSBAT+HOybF5ywU8pxJC+dOo/HFB7j8ucjncoycPEHXU08y3HUchUpFeeNibHUNFJWVg1LFs4ef5/cPb+N4VzeZmSJrVLdSor8KlbyEfDaDViefd3NDRg6zPkmJPo5FH8dmTGDSJJBKcvzm4HEcvgDR5MU5ijl5MYvf8gUe3j7Ic8eclJbKWbKsFovFzrvfvZabblrCPfecYdeuEVavLsWXK0FZEsWTSpHXbOKq65bwuc+tEac5yy0SLKY8DQ1mbDYtRqOcgC9GRSTO2Z4prmjXUG6O43EM45ucIOCcIuzzcPKx+zgtl6MwFfHGqzcw5vVx5twAiWSc8ekexqd76Dr7BOdHD/LFT39+Xo7SbD2YH66/+ZpqQuEkRoPwuxbWQE+vB78/STyRYePGKm65pYFUKsvhjklspVqxHmzZUkMmk6eraxqPJ0Yum6e9ZR3/8YX38tiOfTz+9MN843/+gx37lvCe295NJGCjt9dLJiMorlsuOD/NdRzV1oY5dtSJPyDUg1UrSwGhzU7gCDGBI2TzZDJZFAopdXWCa9jnS6DXK+ZldXV3u0SnYMEZFQonRXGqubkYnVax4DH2Ypjb8ncpoW1u5MJC21hKNCxaVIytVC/+m8loFIWr48ed+N0+9OpiKsrmZ9EtFMJ+qc/YPuNOy+fzpJMJgs4p3I4R/FOTnNn3FCd2PIpUJsNaU0/N0uUsXrcRW239JV/3z8VrotQrDgkSCVgsGoxGJcFAgooKPVdfU00qmaGm5u10nGnmwWP388Hv/xuvX/oWbl57FdV2I2fP+gRxw26kqso4b5T9XEeJzTo/L8dm1dHYVITDEcbljs4TngqWTBDcVQf2j3HqlBuvN059vZmJyQiHD0/R2FTEQL+fbdv7GZu56Mvn/jpBhrFEgqePHuWeHU+y/8QJscgUoJYYscqb0MuskAeZZHYZ5/M5YvmA4IDKuojkPOQlOTYZ3o7JJCeVypBJRknlY0glEkpNpTTb6zErbUjiJla3NWK3G2hqsuAPJFlZfjWWYg2Lm4vFoPqly6yYzGqCgYTYSrl5czWFcHK42NFW+J3miondXS66uqeJRjKXFKUMWi1f//BHAMhkszx7/Ay7Ozo50d9D12APbTWNonCDYpJ79jzE1UvXUlVVLQqYBWzZomP79n727B0lFEpz661NrFtXxYMP9vHUU6Po9QoiYWECXiqZEYPwGxuLxM+v1ytRqWRUVBjw+xN4PAnOnPZgyFXy33d+iYnQMHfd/zs+fNd/UqIp46rqa2mpaGFm3N88zL2bMDYewuWKoVLLMBiVVFTosZRoAIHwRCIpamtN1NUZGR4OkUplsduLqKszEQol8XoTxOLC9KjuLhddXdOsWFEqCnW5bOECSsLwcJD16yuIxjLzjrGFIJXLKXrrW1EvWoT//vsZfuObWPK1r7H+K5d2KfX0ePF4EpSUaC45qvvCyRYX4sKQwbnP27lzmGPHpnjf+5ZckoisX191ScHsckjMa3hlMDEeIRLJYDQpsdcImTnJVAaVUs473tmMY7SCFRPNPP709/j2/3yWg88fYHHNu2lrq2R4eJJQKM2ixcVYS9QEAkm8XqE9uNCKNTeg+UIRuhB8XmhtKohUhXZvYbs8R49O4vMlONktQyKRUFNjZMP6SnG7SEyY6JjL58nn85c1NexykE5m6d7j4MTuUSQSCXXtJZTWmTCUqJEr5udG9Q+e49Edf2LbY3/E6Zqc95gEGXpNG0ZtO7mccDE9V5DKZKMkUg7RARVPjVJRfBu24hWoVJBIS4mnxgAw6E1YzA1UlDVhMdcjl5azdvWV6HUqios0LGpsxmZdOdOiJdSDZUutmE1q0Yl09qyPigoDt94q7N8LfxetVi465uYKRl3dwnkrEs28oCh1w7VbueFaQbw+e26EvfueY2zqFB1HD+D1+SkprubUaQ9mU5gjJ7aBREJL4zXz2vgK6DzuxOmMMzExzNatdXz2c1fgdkWJRTMcOTKFQiklFJod6uH1xam268VJfgcPTZLN5WloLCLgT5JMZtFq5YRDsKrtPbzhxvfx7PMPcN8Dd3P3736JvewGmmreiExmwuGY70o6ORNa29hUxIrlNjo6JhgfDyOVSli10saqVWU4HELO1N69o0TCKZpbLGJNUChl+H1J1m6twGrTMTwcJB4TakJvr4+hoQAmswqVUi7mqc0VqwrC4VxH1eXixdxUYoutWUnzahsWi5bpkSDjvT6OPDbEsSdH0JRpGY4Ix/eF5+bX6sH/LYgcwaAkGEjOcoRUlpqa93O0q5Xdz97LP3/tU1x9xTvZvPEqqquNnD3nJZvLY7cbqa42zBtVfyEZnSs42GxaGhuLcDiE66y5wlOReS5HUHBg/xgnT7nxehPUN5gEjtAxSWNjEQMDfrZt6ycQEMh0/hKtaK8EQm4XZ/bv4cy+pwl73RitNhZdtQFbbT1StYaOE108+KOfc+R457w2NwClrAiTphm1Qrgel6BAp0xRaophNYaRS6cJxT1MBUOcHA8Ccm5ZvgV3opjJgJ5hz3ES6RQSiZSSEjstLctQKu34/UWsX7+SFWubGRiX0t2ToKzsDXziE6vnTcHcvNmOzabD5Ypy+PAkDQ1m7rijFcizebMQcl04lk0mJcFgSjwGd+wY4sgxD0NDAc6f93NupIhvfGMjy2/YSj6XI5VIEA14mTh3lslzvTgHzrOxzEzOakCypInptAJPLsepgRG6e06yqH6xKNzkJFEe2/0wV63aRHV1zbxgbhBEIZEjhFMzHKGSBx88y+7dIxgMQu6UTqsglcqSSGaJRtM0NRaJ60yvVwgcodyAP5DA6xU4gkZRz5c//U2m3Of42d1385l//1fMhiqWNt5Mg32222Mu5nGEsRDTrihqtRyDQTGHI8DwSJBwOC1whFoTwyNBUskcdruRuloTofAMR4hlcDhCdHe7OHHCxcqVNlGoy2bzM2KchOGRIOvXVRKNpecdY5eLF3NSORwhQqHUjEFgYSfVXPFwofdeaFpn4XmdndP09/sv6T5b6DNKJBKUag15bRkxrZbGa67EbJDgn5rA4xghMO2ka9djJCJhrv/QP73wDvgz8Joo9QqjscGEqq4InVZO90kXoVAKlzvGuXN+vJ44r3tdHR991w201ddx9777eKDzt/R7z/D2dW9FllejVgsTelpbi1Gq5NjthnmOkg0bq0SxwWbV0dExzi9/cQqFQkI2B0qFjGAwyfi4ICxVVOo4d86HRi18nra2YrzeOEqVjFg8jaVYTSqdZe/eUYYGg0yMR0klhRN87lW6M74QQtEou488z2PPPsdTR48QT87PZpKjxCpvxCZfjFlaeRExGk0dw5sdIZLzkGN+W5YECXJFjrbWEpYts1Ly7BtZ3l6KPG2m70yQ9uVWmpqK2b/PQTwkXECu31BBtd0wT1QqoLDvXe6o2F52oahR+PtcIRHmu5cKrW0Wy+XZIuUyGfmIGWt2Cf/6li2s31jO1HSIofNRhoeDHDx/kEc69/DIoT18f3sp79m6lfdtfR1kVeLnWCi09fbbW7hms11U7qMxwSXV2+elyKxi1epy8fMXnl9TY8Bq1SKTSQAJZWU6QsEk+VAJtza/j3plHwdH9vDE+fvp8TZgb34PLrd13mTBuXcTzp71MzUVQSGXMTkhTOvYsqUGlztKJJKitEzLli01eD1xenq9VFTqsVjUOJ1RpDLI5vKiA2zMEcZoUmKxaC7a5489OsixY1M4HCFWrLCJOVNzcaEADKBZtgxFZSW+e+5h8nOfY/rp/Qxs+SBt7WXU1JjmXdzPJRCXutC/FMmY+zpzL3IKMJmUHDjgwOEIMTgY5N57t4qPXU5uyIuJYa/hlUVllZ58Lo+hSMXJmXrgGA2RzQpT0EYdIRobzXzkvf/FtP85fnHPt+g+fYit8U+hVy8jEc9QatPS0GgWXTV2u+GiDJu5YsOu3SOcOulCoZRhKdYQDCUZHxPqwbp1VRzumGJwZlpbRYWB1lYLDkeYaDRFOJQmncly6rSHvXtHGRkOIlMUgvtfGQKSTec489wEnTtHSMYyVDSZKW80YbJpUc44B/L5PD1nT7FrzxPs3vskg8P9SCUycvlZ8qFR1mPWrcGkuwK5bP4xnEhNMB14lETKQTrr40LkJONYStayalUZU1N6Xl9Uz1vedA3P7g9x8qSH5csFMtPd7WZqMsGWLaVs3Fg5T1Aq4EKhB1jQaTPXuXTh43a7AcfYS6sHANGwGoVkGcubV/HZj/0HgaCPUFCBYyzE8WOT3P/4DwlHfMjlcq7deAPvfvudrL9yEx53TBR4stkcE5MRTp500dJagtWm48MfWU5jk5kTnS6MRsExPXfy3e23C1OgxHpQa8BkVCGTScT9EwgKLRBLF78T6S0bOXziIc4NP8Ho1F7k2vexWf4hOo87Z/dpjXBxXWjtc4yF6T7pQiIRwoQLmJyKEAqlhXP3jNBbVakjGEiK7282qchlZ2uCY2y2JsytB3v3jjIxGWHfvjGmpwXndGEiZQEXir8L4cJtXkgwLrxGeYOZsnoTQVccR4+XqaEg1lSOYJeHfpuO+uVWZHLpCwpHJpMSny/OwYNj3H33Gf7hH5byxS8Kd9Jfqwd/m2hoMFNcoUOnVVzEETyeGK97XT0fet8tLG5o5OGdv2LHsz9l3HWSm695OxLUaDRyNBoFra0WlEoZdrtxwQybwn8dHRP88pczHCGbFzhCKMnYmHBer6jUc+6cH7VaRvdJF61tFrzehMARYmksFs0sRxgKMjERITvjbMnlLnaW/jlIp5IMHHueM888haPnFHKFgtL6RhpWrUFhNvP8qR7+55Ef8+zh50ml5ruYZFI1RnUzRk0rWkUlZm2KMpOPMlOUUlOUQ/29nBx3MxUIkblgooUEOX86s4o33rqU919bQ/ynxVx3XRORiIVnn3Vx7bV2rriinPvu62F6WjhubrttESUlGiB/0XVcISR6dDSIzbbwsVv4+4XHduG1li+3sm1bP3K5lJ4eLzU1JiRSKSqtFpVWS3FFNUs3X082kybi8+E4c5LDuw6QHuvHJomzpK2Sf7zhKoyVi/DG1AyPBDnS/TT7nt/Bzmd28Kv7K3nbrW/k9je9gUxKKQqaC4V43357M9dcM5cjpDncMUlvr8ARVq8uE8WPwvNraw1YrRqkM27n8jIdoWCKbLKCzVd8lDLTabrP7eS5rl8yMtVCY/MHcbms8yYLzuMI53xMTUVRKGRMTkTncIQY4bBQD2Y5goeKSh0Wi5opZxSZTFj7BRFobCyMaR5HmBV4HntsgGPHnCJHKORMzcXluJEu3Gbu3y8UjBfCpUSnua8zd1pnATqtgjNn3LjdcZxTMT79mdnMrb5erzgJ8VKi2VwxrHR1GWUNTZQ1NJHL5QhOO1FqXt2sqddEqVcYRcUaSmvKON7pFMNnl7fb6Dg0yfR0lGefneCOO0yYtCa+95F/Y9uBffzu2T/yte3nuPOG2zCZm1DIZShVctGZU7hwshSr500nA9i1a4TeXg9Go5KyMj3hiDCGVKWSU12tZ+lSK9FIhlg8TSiUoqmpmE99epV4cmm7qgKXO8q0M4ZCIaGpyYzHqWd08NW9CwLgDQZ5/OBz3LdzJ53nzpHL5Wgsr2NZyXokgUp643tQSjSUyhdjlJYTzweI5DxMZ84SzflYqX4rEolwwktKA4TSQiuHXKqgRFNGsaaU+rIaygzlxH0qiou13HRTg5i31dfnQSkXfh9LiYYVK0op3Nm+0GW0EF5sm7mtdIXt5j5n/YZKcUre5SMv5s2olUrqqkvwujJkc3kWV9fxVsP1PHWsA8f0NF+/+27++3e/Y9PSK1lZcRU3bVrJ+vUVYuj4hd9FGD0sXEivXVtOIiGQi8Lnc7mjMy4pPRs2VInuvLkZTl5fHK8vTlN5I5WmGgbcZzk8vpeP/+9X2Hx4LW2mDRRpLZjManE/T05GaG4uorqQKzUzla9wd7kgSNmsOvbuHWVyIkL7ciulpVoOHxbCbW1WHQMDPn75i1OsWmXjui21FALP5+5zi0WNQiElGEwyMBBg87X2i37DhX43ALnFQsknP0nosccIP7WDoo5Ozn3sq9S8b+O8i/utW+tf9AL/UpMtXowkBIMpxseFsNIjR6bmPXY5uSELiWEF0nPhHbvX8OejxKLFbFLTd94n1oPCtLEHHujDMSZk/Fx1VTk3bn4rK5et5z/v+lceeuLLtC66miWN7yKbNWA2qec5McSaYFGLAc1Wm46DhybYvXuYdDqHQa8kEi7UAxnVdsEGvnad0LptK9XgnIrS2lLCTTfWsXfvKE5njLIyLaFQkmwmJ4y4bijn0Mk/vx5ksznOHXZy9IlhosEkZfUmyhtMFJXrUOsU5HI5Tpw8xsOP/IHdzzyJP+BDo9bRumgTi6pvJhZP4Ao8gll3FUbtaiQSSKTG8ISeJpEaw6hdSbFh48y7SQjHu8X31qpLMRtqsZU0sWHtauKRMrxeKVqNnC9+8Vpxu+XLPUgkknmh1oWWrMtxzrzYdhdmG83dfsP6SuzVL60e2O0G+vt9YlvbqtXVgDC9MZ/PcPOW99J7fi9n+k7x1L4dPLVvBw11TVyz7jbKSzbSvqyKrVvrZtoG59eEuQ4w4KLJd7Oh6cVUVRtoXlw8m5lm02E2CYMr3J4Y5DVcfdX7MCg3MuJ8lCf3/C+HO7dx9ZXvZ+XS68nnZZSVC/ticipCSYkPSJtCAAEAAElEQVSGDeuF1pFCQH9h35WV61i1qlQUlbq73SxfbmXtunIOd0yRTGUoMqsxGhVIZRLuvbeXarue9mVWmhcXzdvn7e02Jiai+AMJjh6ZorhYw7XX2uf9hhf+Zpfzu77Q7zwXEokEc6kWc6mWRVeWMtbrY2ogyFO/6kGlldN0RSl+aZ7OMx7g4poQDKYoLtYwMRHB70/ywAPnRFHqtXrwt4niIg0NbWUcP+4U3RLL220cOjTB9HSM556doPYOEyajha/+89d5fPcOHnv6fobHzvCOW9+D2dSITC5HqZSJpHS2HmjmTScD2LVrmJ4eL0ajkvIyPeFIlNmaYGDpEivRaJpYrMARiuZzhNYSXO4YzjkcId6nBC9ijtGfg1w2y1jPac52HOD8kUOkYjGKK6poXrcJuamIg92nePR7P6Kn7yy5fJ46exOLqreQjFQz5n0UpdyMSdNKpbkYtWKSbL6XSOJZnKEot65cSzCuZsJv4PRkBmcgAAhOWpOpDrW6hurqxZjN9TgcOhRKOW95y2Le8pYvAoKwq1Sque66GqqqDNx4Yx0FEaqmxsT73vfyrvMKWOh6b+5zVq8uE0WrS0EmV2CylbL02hswNlzJb3/dScQ5yOKSKdL+IUY7diORK9FKyllUXYladwPPHj7I2MQE3/nxT/mfX/yKtas2sLh2A9devfKSId42m3aGIwiCyNp1FSSS2RmOIAgnLlcMlUpOZeUMR5hx583NcPL5Evj9SersrZSWNDE6cYozgzv50rc/x8b9V1NtvQa9tljMirJZtQJHWFxMdbVByJUaLXAEwXFUEKRsNu0MR4jOcAQdhzsmaW2zYLNq6R/w88tfnmLlShvXbakRP/Ncx5jFokYhlxIMCPmJ115rv0g4ejEX00LbzP37XBHvUrjQxXa57x2NpfF6EsTjGc6dn39Drvuki5Pdguh3KVFqITGsIIQpSRFPJTE1Bl+1mvB/UpT6yU9+wl133YXT6aS9vZ0f/ehHrFmz5i/2/n19Hp7ZO0IkkmHpTbW0tJTwutfVsWevg5oaA4cOTTIw4Adgdf1qos4iTvv38cNHf0O5qYK3rX8LdnuL+FpjjhB6nYKSEjVdXS7m5vPo9XKUSjk2m5bXv76ew4enGB0NIZXmyeby4nQxlzsqBk8HA4mZsZuZmcwdHTsmhlEq5Vx9dTl9Twl3anOvQvvehMvFPTt38PAzzzAwPj7vMQlSyoI3IJcIYW1V8mW4sgMMpg6RyIcueq28KowiZyKTgQZjO++/7jrefONqfE45j2zvJxRMsWFtpRDAN6MOz8WFk9cuzDz6c3Fh28aFuBzhq4CCe6eQP7bQVEW7vRGb9WbiySSPPvssv3j0EY739bHnxEGe6TrE6278FS0tdRe1ChbWRsHBVPhc69ZV0dcnOCZq7EZGHSFGZnIQBgeDYovo3O8w5giRSmZpaBBEpmf2qtHnqskVOTg8upfngke5efUW3lxyJw5HmK6uafJ5xO/kcITFtanTykXyUXiPGruRyYmo+Hnc7hj+gI6mJh2nT3vwB5Ko1XKuvqaac2d9mMyCQ6Tw/Zqbi4lE0vT3+ykr0y6YK1VwW3V3ucQJfQVIZTLMt96KS12KZvd2TN/7OAHTV2hbKRDbF7p4uBxcykE19/HXv76BI0emeM97WuY9djm5IQtdJBUujORyidjb/3+JhPy168FAv4+ubhf5fI5IVHBxrlpdhtsdZe9eB7l8nqPHpgFoarKyafUXKDE9Q8/g7zk3+DHWX3Ebb3zTv4qv19ExTm+fj7IyDeXlerpOzNYErzeBQi7FoFey+dpqxhwRRh0hpFIJuazw2xYm7RUyfJIpocWpvd1GU1Nmpi1rAqlMwqrVpRRbhDumLzdTKp/L0398miOPDxNyx7HVGmhabaOoXIdMBQef38/vH7ybjiMHSabmj1jWqzaTDL4BpRQkqhA6dQuRRA+e0G5y+fluWoVcj1ZzDYlEFp26jJb6O3jbWzdTW93Mzp2ThIIpNm6s5O3vaBW/+4VCzIVtWC8WcP1S8UI14XKFL5jvzJl7M6GAZUtLMJtU2O0rsdq+wPmBs9z/0G/502MPMDjcz+DwN7jhmrdxy+u/jdWmuygYveCimoubbm7gppsb6Ov18KtfnSIeS6NSybBahYypY8ecvP719eJ3KAhmsZiCsjIt7e02IpEMatX72LrlXTimt7Ft5zc5ceZPvPft/wIso+uEi3weUQyzVxtoXlxELJZBq5WLEyrnikqRaAaVWk5vrw+3Wxh+oVLKyWbh1Gk3zqkoXl+cttYSMS/T7Ypy6rRQE9raiuk84aLEosZWqpsn8ha+h2MsTFe3C61WvuCa0GrlyGSI++zFav9CUOuUNF1RRv0KG57xCJPn/Zx93kkmmcVuVKCOpIn4k+iLZltTC3VCpZKwe/cob3/7YvGx1+rBpfHXrgl9vV6eeWaUSCTN0qV1tLRaeN3r6tm714G9xsChjgkG+gMAtLdsJOi1MTS5m1/87keUlth5/ZZ3znKEXi9jYyH0egUWi5oTXUItKeTz6PUKVEoZpTYtr7+lnsMdkzM1AbLZvNjG43LFxODpYCA5cx2WFjN3dkwMoVDIuXpTGf2jgnvy5YpSuVyWybN9nD38LOefP0g8FEJrLqKiqZm8zsiuI8d5+uEf4hifP+1VIlGgSr0BaVaKvSiGRdeEJzKMN7KL54fjF73Pzw8txh+2EIwpMJmL+Jd/aaShoY3RUQXDwyEcjjDXXWfnuutqRFfhXFzY9vpiItRLxYtd772YqDUXBTH5uhsXEQwKA3gqylQ4zpzi6JM7mDp3miZJklXNVXzstm/9P/bOO76NwnzjX+1ly7Jly1vOsBPbIbETZzqDkVBC2KPs1RZa2tJSKB10QCmlLRRaRsuvpQXa0hZK2YWwEkaGE7I8kthJ7DixHC/JsiVZ01q/P053ljySQFNKqZ/PJxjL0t3pdLr33uee93nY09XLX557gT0t+3h/yzts+uB9zj3775TPzBtDWIjHBiAl91ksemprC2lpdgo9QomRjg6hR9BoFEKPkBgRTSZPOjs9hEIRSkszKS5O5513tGiU01DqD9B04C227NjEacvWYM7+Ijabh11Sj6CRyC3x2DToVYkeYURxVFJipLvLK22PwxHA5QpRVpbJHrFH0Cg4+ZRi9u0bIMMknE/F96fVKskvECYxykozx/WVEtVWDQ12KaFvNAx6lZTgJ74m+edHxbGWY7UaWbAgn/0HBjjttOKUvyUrzybCeGSYSIQp436iMQWmhHLv34FPHSn197//nVtvvZXf/va3LFq0iAcffJAzzjiD/fv3Y7FM/EGcSDQ02tm3fxAZ0GHzUFsLq1dPJzvHwP59A+j1qhS1SkvzADWcxRlzV7J2zys8uPYRth95n29deRW766CpqT8hOzcSj4fxeEJSI33OOaUUW42CHK8im9KyTDZvEoxrxeXX1R1hy5Ye5HI4eNBFZqaO884vlZRYu5sc+P1h8vPTgDjaeAazp8wkP/tfvyD3B4Ns3LmXx59bx/bWRpyB3jHPkaNELdMjQ8ZwzI9SIZBSvvgA/dGD0vM0snTSFdkUZhYyo3AKKxfOIyvDwM6ddqzWMs5YPVUYq9P6WLigQNoHo8mnjwsfhXSayHRbVO8ke1tNtB6dRsNp1bWUZs3GFe7hH++9iVwuY27lVOk5ja2tzCktRSaTSeSQyxWiocHBmjUjxJXIrLcfdOPxCJ4hNTW5ifExFyA0uc7+AK2tA5RYjZL6y5JjwKBXkpWlx2wu47pzPsOTr7/CWw1vUXfLNi5fdiEzLXMIDwveW+J7lCugrzdANBpjzZqpKZ5qgUCEvDyDlAgISEq3RYsKsNk8LFmSn9IUjCa/lCoZw8NRlCr5uL5SlhwDwVCYtrZBDGnKcY8dj2Ua7XM+S03Xe/Tc/j2M55zD6p/cjVyj+Zfit491EVJSkpEyspeMiXxDjoXxvA0+Lfgk1IOWFidtrYPIFQIxlGYQGtvVZ04nJ8fAxo1dRKMxqqosZGfryC9Ix+tdztTiJTi9b7Fh69NccPVrXHvFDXzuyi/yxhuH2b9/gJkzhZCM3h4/Hk+InTt6qazMkuLrKyqzcdh9bNrcLalNRNTVHeHVV9sBaNrdjyVHL/kkOew+nM4ger2KUCiGzRZgev5JGDPShAm+47SUikVjtO2ys2PtYQZ7/GQXpTH71EJCSg/Pr3ueV99cS3vHdqKx4KhXylAqjMhlWiLRIelRhVzDoHcD4hihTKZCqyoiM2MqM0srMaWXcdEF8wASnlmfZ/XpwjnP6QRnf4CTKrPxDgTJzdRx6pIiIqEoh3f3EwlFCYeiDIeiREJRotE4sWiMWDROLBonHotLpJ5MmFhGJhP8I2UyGQqVHKVKjkKtQKWSo1QrUOsUaAwqNHolGr3wMztHf1zE07FGxpKVODXz88YdFUx+LNNYzDmnf4NrL/sGG7e+yl+efZLv3HqL9Jzu3i40ag3mrGxp2QoF9Cadh0UyprHRzvbtPYSHo5jNelauLGZoaJjuLi9b6nqorS2SSB+NVsnsOdnMmZ1DjsXA5ZeV09hox1pipK+vkuK8NXzQ8Afu+sUXqKlaxYpF16PT5EhJkuJ2RKNC8EooGJaIH3H/zK22sG/fAGazTjr2sxNeI2azhr17B5g1K4ucJC9Om22I+l1CTZDLZQx5hpk+LQNrseDtmZzCl2MxEAqGaWsdlL67oyGm+Ymk1+j9n0yCHovoVCjl5E4xYilJJ+gN09Pqoq/Dw773umh5p4ucknRmLMiltMYi1Ys1a6Zx//2py5msB+Pjk1ATGhrt7NuX6BE6PNTWCml4OTmCabTBoEpRq7S0OFEpLmbFojN4f/tzPP73n9NyaB1f+fzn+GBznKbG/oRpcwbxOHiGQlIjfc7ZpRQXG6WRndLSTDZv7hrVI3Sxpa4buVyW6BG0Qo8wP6lHCETIz0/cDNeYmJqdiSUn57jfc9DnpaOpnoM7t3GofgdB7xC6dCPG/CKCphhPv9NE41/fxuPrG/NauUyFRqlDqYhzWnkLU7JlyOXwcn0PbfaupOdlIJcVYM6eQWnZLNas+QxZWUbeeOMws2Yt5otfrAIE4nXu3DB79vRL12n/iVTKj0I6TaRcFMnkJUsKUqwfptcsZHrNQnwuFy2b3mXPe2+z75030Wn13HT2RcSuzeKN994kzWCgfObIPti7bz+VM2ckegSBHHK7QzQ02FmzZppExEg9Qrsbt1voEebPF3qEtoRNQG1tYaJHGKSkxEhxsVEieQx6FVlZOszmMq64+ByefuEfvFf3Ort2b+bc0y+nKLea4eEYBr1KIkcUChm9vX5i0Rhr1kxLGY8L+CPk5hmkREBI6hEWJ3qE2oIUcieZ/FIk6sG0aRmsXFWSEhggkjUWi55gMEJbqwuDYXxSyucPpyT4JZM9xzNGNxEmUlAl/z15ZC8Zx/K6mgjivlKjJzA8dlz1ROJTR0r98pe/5IYbbuBzn/scAL/97W957bXXeOKJJ/jud797jFefGFRXWXA4AtL/ixhtTg6CEsrjCTHoCpLtM/H107+OR9bB0xv+yfnf+TaFpmJyZbMwxaskn6lOm4d337Exb56FlSunAMKJAQT1zwUXlKVsz5YtPezd2w+yOMFADLVGPmoMUIZOp2Tq1Axmz8nmOi4k2bT7eBCLxeh1OmnpOMy2vc28uH4zB7s7CSfuZivRkKUoIV0WZyieWnRiRCQlVCDuQo8JtVpGnmI6pnQDU/OsqMOZ5GZnMr8mj6XLClNIGHEcT4QlxzBmH3zSMdHImIjkY+dYBFby8maW5/O77343ZfSmtbOTk7/yZWZPncHqWWdx6oIq5s7NZevWbrq6BT8nUV0XCcdJT1eTna2lp8dLJBInlDAQPNI1xN5mB88+20I0FpdkoeKdexCOR5H4aW93Uyibx50XLeTtltf59WtPMCWnhEsXfxaf3yIplDqPeBgYCOD1haVt2d3Uz3vv2ZDJZMyda5HeezJhdPXVs1L2gUhmuV0hpk83AeB2BSlJnGDFQpW8f0WMvqMwXtCA25XL4eKLqRhowLN2LYGmJooefph16xwTjk0cj7FsR4ebd9/tRDTFPNF3JEZvw4e5MPpvwyehHlRUmIkrZJhMGlyuUAo5ZLWms3x5YQr5UFRoYOuWbiKRGAWFZ/PYL6/l3bq/8fs//YYnnvo/SgpOQxFdhEppZs7sHETzfofdT01NHlVVFhrFelA5th4AbKnroSORVCOmrCY3+7FonLJSE1VVFrp7MrjlwoexlByf6iMaibF/ay91r7TQ1t6GO9ZFc2cD9X/ZzpDPDgh313XqKWQaTqN/aC0C0yWeo+JEom7AjTIsjByqlDK0WgPFORdiycnHWjiTaMRMQUE6Z505jSnFGYT8YUL+CCF/hItXTiHoj3Dogz5C/gjGQARtVIZtcy82Um+MyOSgVCkEYkktkEtyhRy5Qpb4f5nwuzyR7hoTRhnjCCqwWCxOLBIjPBwl6AsTCceIhmNEhqOS98rIumTo0lXo09XoTWrSTBoMJi3GbC0a/Uja7bFGxpLrwfF4HonLKy/P4prLr+fqy76Q4sv481/dxXsb3+aCs75AXtZnyMszUT4zi66uQyl+Uw67j3Akjk6rJDwcZWhomCNdPioqzMSicfr6vNxxxybKykz09fqJx+G00wRjXzHV7rLLK9m5o5dt27rxuLO46sJf0du/hT8+cz9Ne69l+aIrmTXrK5ROF3yljnR6KCoW/BDbWgWFeVlZFjt39kkGzUXF6SxbWjAmlRIEhZcIh90n+VjNnZeLxxPC6x0mw6RJIbNG14PkdD1xOaM9o1zu0BiVlQjRxB3Gqu8m+vxkMhm6dDXT5lkIqmXYfEGKs/REglHqXmhj83NtmCw6rLPMTK3KJn+6CYVqbFrlsfC/VA/gk1EThB7BL/2/iPG8ZlqanbjdIQYHg2RnW7j2otvxD7fyylvPc9WNXyU/ZxppqipMWdVCj6BW0Nnp4Z13bNTMy6WgIC1l3RaLfmyPUNfNnr1OZLI4wUA00SOkjgFqtQqmTslg9pwcws4zCHakM3/eignfYzgYpPvAPo7s24NtTxNdB/bh9vlwI8ceGGbb3sPY7L1EY4I3lEKmI007DY0SQpFRPUI8TCAchjD0DgVweKfSMZCJzVVIfu4ccvMrCQRyKSjIYc2aaXz2szNTjuEbb5ybsjzxbxddNJP/FnyYcJzxrjMNJhPzz76AuavPwbangTf+9AxDHU3IOmVce/JiZi4Z+Sz3t7Vx3lXXMqdiDrU1F1C7cA7z5uay9YOekR4hoa6LROKkJ7wQe7q9RCIxQqGo0CMc8bC3uZ9nn91HNDq6RxB6vopKs2Qo3n7Qh1m/lK9dt4xNO1/kib//GmtBGWeeckWiRxAUSp2dHgYHA3i9YWlbdjc5hB5BLmfu3BzpO5RMwghm8yMQySy3K0RpqQkArzdMhkkjfS8nUiaN6RHGCRpwu0Jjvkdw9DG64/WrGq1cO5EYvQ3iP7/bhUKp+rfWh08VKTU8PMzOnTu5/fbbpcfkcjmrVq1iy5YtH9t2VFRkY87WYbMNSU0vpJpfi783NNrxesOoVXIiYeGOR2lpEfd//g46XG08+vw/2HHgDVq8G/C9eTJfu+Jc0tM1wt3axC3rhkY727f30d3lw5ytE+IuRRa2IpslSwQPkYHBAD09PtIMGnp7/Xg83QRDYQKBCAMDQcLhCJYcAxmmIbbtOoxtsIOSKXr8wRD+UBDXkJd+twv7wACnzFqObb+chvo+6o68SXd094T7I1cxk5maVchlcrrCexgaFgqODAV6eSYGWRZ6eRZpikyytXlMLTZyzjnTKShIS0mu+zTjw4z6JSf4Je+XZOJk9PLEBsTu8PHKul2olUoaD+6j8eA+1u2ey+M/vpWCgrKUMUebbYi+Ph9qtYLS0iwsljSczgBmsxa/P0J4OIZrcJiNG7u4/PJyaaxuNMEmboNw1xqqK/O5+LzbefX97fzmlT9x7z/vZ3vHMn52040EQ2G6u7wUFKZRUZmVdMEWZ3AwSCQSJxiKpKinRB+qTJOGI0eESHuRuLTZhujt9TGzXIgGF9Vml182UpzGO7ZGq+vGIw3tDh+HD3toUBVzzjlXkb7hnxz+7Gc568IvwMp5KVJw8SLBbvdx8KA7UaTGJ6f27nXy5puHiMfBYjGMMVL/qAVh9DbAp28sIxmflHpQWpZFfrGg2KupyRu3cRZrQo7FwN69A4RCguLCOxSmq1PGl6/7HsvmX8GGD/7Ocy//DX/gn/hjcznpg+sxZ8xNMXUWfXa8vojk8dPfH0hRaiypzefwYbckgbfk6Nm3f5DGRjv+QITDHW5WLC+kIjHy1B2Ns3v/bszvegiGgvj9fjweD06nk97eXkwmE9lZZ/HO823MKUjjnr9fTCgydpwCBFPZGUU/Q6UQjj2Xf3OChAKlwoRGlY9WlY9OXYjZaKWqPIvSqZkU5OqRxyrQquQQjRP0CSRUx8ZeOpKIJpkcVFolaq0CtU5JWqYGTaEBXZoKbboaQ4YGXboKXboarV6FSqMYIZ4UMuRyGTK5QCDJ5CNqKGSpIrGEtZ9AUMWR1FTiz2g0xrA/gs8TwucaxusK4RsMMuQM4XOHcHQM0bl3APF+gUqrID1LIKgMWgVlUzMmrAfJSpyjJcYlj+KJo29ACiHV3TVIy/5WvD4vTz37EDrNU6xZeQPnnnsLQMqYo802RF+vcJ0xfboJnV4YGfL7IuTk6Klv6COciIu3Wo0J9Ub6GJLNak2nsjIbm83DlCkmTl91BQvnnsbLbzzGS6//mb2tb3Htpd9GySy6urzk5OhYWluQooRqbR1gx44BAoEIOTk6aV+EhiPYOjyYTBqOdAn1YNnSwhSvJzG+XNx3c6tHxjbHI/ZGj3WO5xkFDnbttNPd7UWllKeookaTWsmfjcsdpLfHj8sdwpQxPrnYtNtBw24n8Wo5l1xSTme7i8Mtg8SjcfZt7aHp3SMolDLMRWnkTc+gsDQTyxQjBpN6wrTM/7V6AJ+cmlBRaU70CJ7UHiHRXIoNu8WiT+oRFEQicXY3Oiktm8Ydt9zHkb4W/vj039i7/0U6nW+jTFvFDddeQHqa2COMNMA+XzhlHC9ZqbGkVvBvGxgMCj1CmpqeXh+eoWFaWwcYcAaZdVK21ADr9Cr6/EFefW0Dfe5u3AMD2Ls6OXKonc7Dh+k6coT5+WbyjGmEIkr+vm03TUfaJ9wfhaYqFk2dT25GgHZHI2/uFXoEpVyOSW9EqzIzHMknEC7knQMzmTJ9Kjf/sIayssz/Gd+zDzPqt3Zt+7gE1sh1ZBln3vwDdm3eQ7RzA7Y92+loaqRkdhXmGQtY++YO1CoVTS1NNLU0UbdjMQ/f9+1xegQPvb1eVCo5ZaWZ5OYapB7B54swPBzD5Rpmw4YjXHFFhTRWN9oXSSR8zGYtzXudVM0u4KILfsJrb23kz/94nMee/jEtB1fyvVtvIhiM0N3lo6DQQEWFOYXUHRwMEYnECAazUtRTw8NRduwQrhHmz8+TAgJEr6eeXiGNFWDfvgGqq0cUTBMpk0arjsbzerI7/Bw+7B6jLhtvjE7cVrcrRE+vcDNd8tUaZ5wueaxxvPTNj4LR25D8Xj4ufKpIqf7+fqLRKLm5uSmP5+bmsm/fvnFfEwqFCCUlvXk8Y72LPgwGBwLU7WqlubkfuUKGwaDC5QoSCcdZvXoKao0ypbmtrrLg80Ywm7Xk5uppbh7AHwiza1cfNTVlvPN/D/NB4wF+/9I/ebt+I89vep3CbAtLKmooky8lEMqjuspC+0E3g4NBdjf1Y3f4RljYiuwRD5GWfjZv7iYajRIIROjq8tBhGyIWhVAowt69A6xePZ2mJju/eu5J+iKtE77Pl9buQSPX44n24Ys7J3yeEi1mxTTkMjkyOWQrpqLXZqCVZaCVpzFtqpHppVkUF6Wj0ynYu3eAJUuE6PL/JXyYUb+JCKxk4mR+TV4KeZJsSJ6nLuNP3/olT61/jte2vs/OQ/Us+NznuPnSS/nWlVeh02hoaemnod5Obq6egoI0Zs/JltbR7/DR3u6mvNxER4eX5csLUWuU0liduF0GvZIXX2zF6QywdGkB5BjIywuh1iix5Bj4/MWncO0Fy/nR//2N37/2d07/xo3cfOE1zKmqYG51bgopNHtODh5PmM4jHrQapbB9ieQa71CYrm4v4eEow8Mxsswaiq3GFEJsPA+u44G47wx6JTOTmjrRhH3IM0wwFGVnYS6XfPe7DD71FPFn/o/rapdQUP4LaTniXa7p000sWVIgRQXDyEVDssFssqFm8uuTn/9hMXobPm1jGaPxSagH/U4/R2xD7G8fpLnZSWWlGZCxd08/WWYN55xdit8fSWlwRSPyYmsasWgca4kxYTob5pzTv8L1V9/Mcy+9xMatL/DNH3wVpVLF7IpFnLnqbILDBqnxDUdivPuujbnzcnHYfSlKjdraIjJNWjbXdRONRFEoFbS2OunoEFRSoVBUqAdnThfOG5t7uPuJz3P34+O/T4Vcw0+vnsfy0kx2HXx/YkJKpsBkmE5Zfj5qpQKdWo41+1bSdenkmvLJTM/AoFOiVytSw/6iMNwXQK1VEtEp0OhVZCUM0nVGQXGUlqkhLUuD1qBCqVagUCZG6pTCP5n8OOcOTyTMkE3q+SYejxMNC8qqUCCCq89Pv22I/i4f7j4/PW1uQokxsKFWN6ZcPVkFBrKL00nL1IwhGY52QyOZhKlJjOKMVub09IS45qJHcLo/4JkXH8be383za+9l/6HXufsH93PZ5YLKoKW5n/oGO7l5Qk0QVHpC2qPN5qGszEQ0FsXrjVBWZkIuk2MtNkoEi8sdorlFWMbS2gIqK8zIZTI0amWC2JnOsuX38uUbbuCb37+N+x75OrPLT2bNyq9JBE8yMbRyZQkarYojnR40WiWbNgs+PMPhKEOeYaLRGE5nkKwsrbQdo/fVh/V+mojkEyAQmDablyGPcA4Rt3f0tid/Nnn5BsrLs3C5gynngeTPKZnUkivk9LuHOeIJMXNmJjWfseLqDTDQ48U7EGL/ll6a1gt+nSqNQjp+MnJ0pGVqBFLWqKbhg152NdiZMjWDhXNzmVqUxmCvj6Avgt8tEKd+zzCLz0tVov8348PWhBNdD0C4OfzeB600NzuRy0n0CEIzvXr1VNRqRUpzW11lwecLJ3oEA83NTvz+MLt22ampqeTlv/6BbTtaeOrZF9iw9R1effslCvLymTd7EbNZQWWFMMIcSdSDeXNzsTv8KUqN2tpCamsLpTG+Yms60Wic1tYBdu20E43FyckZac47Oz08v2s3za+un/B92u1lyNDT3n+EQHjiHkGvVnHGSSrK83tx+zW4AzNYPHUafZ5C/JE8ZlWXMGWa8P1PS1OxcWMXF15Y9l+lcjoR+DAKxokIrNGBPFOmLKOjYza76lqI2N7DtvsDDjU1UKibyi9++BAvvvEP3qt7l6Z9W/nMxZdx43XX8KXrrkGjVgsjaA128vIMFOSnSZM1toTXa/tBN+XlmXR0DLFiRRFqtUIaqxNJKINeNdIj1BZCjp7cvCBqtQKLRc/nrjqDqy5byc9/+UeeeemvXHr9dq6/8osjPUISKTR7Tg6eoWE6Oz1otQppRE7oEYZp2t1PNBJjaChMSSLpNZkQS1ZCfRjfJ5HIMehViZpglPaDxyMkGgdDAUnRBeOP0YmkVn6eUA/crtBYkitpXfPm5qZs6/GYrx8Lo7fhX/W/+ij4VJFSHwU/+9nPuOuuu07Y8nr7/Gzb7mXAGcRsFlRLnYk47owMDVdfIyg0xIuZ0YqMQCDKli1d5OWlSc9ZVDWDRVXfpLv3Bn7zp3Vs2ruN9fV1PLfxdVRKJVOypzAlewpp8mw6HXJqTioFxpqZVVRk093tY936wxj0KtRqBbLEtsRicSwWHXaHTzDOjSuO+j4HYocxYMaoyCOLKYTjftIVuWhkaahletQyA2qZDrlMgVojY2ltIVdeVXlM4mX0KN4kxmIiAut4yKrk55x52h3sOXiQW375az7Y18j9f/0rr9dtYdPvfkdDo522tkGqqnOkEVFRodXb68Ph8FNVncNtty3G7vDx5htCYzJ1qkAGOfsDrF17iI4OD9FoDEOakhKrkcOH3cRiMQx6pWRmfkrFCqqtVby48yXu/suj1MyYxek957Fvn1VSPIkjmeI2CMUmjEIux2LREQxG8PmG8fsjZJo0GBKjSOK2rF/fQXWVZYwf17EwkZeXuB9nn2SW0gIVaWmYb7wR74YNeF55hUNnnU3+PT/hLVcRTz3VzKxZZk49tXhMVDAIhNQf/7iH/v4AZ545jeuuOyllO451l+xY2Lz5CG+/fTgxohX/n7iz+FFwoutB1xEvBw+6sHUOSQlpPT1eent8aLuUWIuNrEykwIjHlHgTQcT69R20tbnIy0+TiIRv3PQFrrzkMv7+j23UbXsbl28nP3vwdn76q+9iMuZRU7WIbPN0At4cZvgWUFUlJKYlKzVEFdTa19vx+8NkZmrQaZVotQrkCjmWXJ00iqRSyJHL5MQSZucyZAlPJQVKhZJMQw4GrXDHf0HZafQMHkKt1JJtzMeoy8SoN2PUZ6FTG1JIFblChlqbj0qjQKWRo9IpUWsEhZPeqMZg0mDI0pBu0qJNU6FSC2N2yYTTf4Rs+hcgk8lQqhUo1Qp0aWpMOXqmnCRcA0QjMYYDEVx2P91tLnoPunF2+7DXeYjHe1DrlJiL0sidYiSnOA2VVjnGvygZ49WE8VRLwnMu48s3XMkvHnqYvz33f+xpaeLCq87g1/c/zpmrzqGx0U5b6yDVSTVh545empv78bgFT6Zvf3sxAG+8fpANG7swm0dMuQ8dcrNju3C3Os2gxFpi5HCHm1g8hl6vlMzM/f407vne71n3/mv8+dl7+c0fr8Pj/wYbN60gJ8cgqZ5yLEJNENVOgWCEUCiCWqOgtCyToaEQg64QSqVcGk0VX9fSLAR4VFVZJLLueDAeySdCNJcXlVqjTfRF1NUdYUudkBqbbNzusPskpZTD7pPSz0DwDUsmtZI/V61BTd50NXnTM4hFY4RDUbyDQdz2AP6hYQJDYboODNLe4CAcjKZsiwXwD/RjA2xvdab8Ta6QoTGomLk4j8zcT7dSfSKc6HoA0NfrZ9u2QQYGgpizdPT3BzhyxAtAhlHD1dcINgRiQzi6gQ34I2zZ0k1evlp6zsL5FUyx3kL7oWup27aD9zZt5P0tAkGlUqkoyptOYe40NEoLBYVzqJozfo+gVitIS1fTaRsiLV0NyNDplej1SipnmSWfqqYDcSJR9VHfZ3NPKzqlhWLzVNI1pQTCgxRn6sk3KcnQa9CpdQxHjAz40ugdykBVfBJfv/s0ps8sQK3TTajwGz2KN4mxmIjAGu86cu9eJ7uaIyxZcgnXXnM1bz/5RzqbPiDeeoTbr72Ab9x4DXf87Fc0tTTx8GN/4L1NdTz/p8eFHqHVJfQIiakA0X+pr9eHwxGgqjqHb31rEXa7nzcTNy+mTcvAYtEneoR2OmweIpE4BoNKMiePx+MY9CpJyV0773Rmlc7njQ1P88Bvf8G82fPo7r2YffsFLzBRzXTBBWXSNoiElEIhw5KrJ9+hx5O4WREMRiQDcnFbpB7hQ9QDGCFyysuzUl4rfjdnz86W0gInQl1dV8IHM11SI9rtfkkpBQIhJdaEmppcaZ+PXt9HJZJEklGjUUjL+bhVUvApI6Wys7NRKBT09aXOI/f19ZGXN/6Bdvvtt3PrrbdKv3s8HoqLi8d97vEgL1fPwgVGnM4AlZVZ9PUF2L3HTiQcl5LKjk7MxJkoebu7y4+7M52i2DLOWX4BM6tV/PZv6zg80M52zw5cfhcvNoFSoSDfnIP5nSxK8i3kZpvISEsjw2Cg45CXg04XxrAavV5Jd8SFe0iBY8DNke0D3P9aCJffxWBinAIEI3KDXBixM8jMpCsspMstUkqeTifnsssqxng9TWJiHI8v1IfF8ZBVo59z0vTpfG7Z9WRGNvJBz1tcdvoqFArFuPJScTlTpxolIgaEC/XmFqEx6bB5KC3zsXbtIdoOutCo5ZSWZUkJiGJTHgrF0OmUyBUQi8LMcgt/OfcO1u84kxt+ch/3td5LpWkJu/ecTvnMbDo7vSxZkk9pWSaARGq5XUF6e/0sXlyA3eGjrdWFTCYYmIvYvLmb+vo+fN7IUQ3vx/tMklVfySl9yfuxtnZkGTKZjPSTT0Y7YwaDTz3Fka/exLB5PrttixJFd2zsLwgXBv39QbKzdeMST/+Kz0dHh5tHH23gwIFBZszIRC6XA50ppNi/Ohr4ScQnoR4UFqURj8UpKc3A1uHBWmLk4EG3pJSqqrIcM3XN4wlJd8rHRNW3RJBFalm5+AKefqKMO+/6C7uatrK7pZkB1+tEIsO8sg4yTVlYcgrIeCuX/DwLlpwsjOlG4jE1R+xOPO4gwZiBUDREb4+HWDzA1oZB/u9PLuQKN98++7fcet7D/PaN71NbfhZLyteQk5GP2+/hUG8fdnec93b3CT5LccjPuYBLLi3HZNIgV8hRqRUC4aRVoNErUWmUqPUK1GqlNDqnUMpQKOXIlTIUiv8+sulfRcqI7nQT+QkfvHAoitcV5EjLILZmJ/bDQ/QkkrkyLDryS00UlJnQGlRjljnesTWaqBr9nNLis/lM7Uxs9r/T17+X5UtOBcYfQbNa01m4sGCMkf7evQP09vgktV3TbgdNTQ6Gh6MUFadLvmcp9UCrlEzNy8uz+PpXruPaq87nvgfv5v+e/AlGw3TmlF3PB1vLUGsUrF49hdraIul96PVKGhONyNxqCy53EHufH4NBJRmQg6B2WrtW8MqCiRMWx/N6OpqXV/J+TK4Jo7GlLuHxCXzztpGbcKNHMj2esDSSOxoTnTPkCjkavRyNXoW5UHhdLBqTfM7CwzHsXR7eXd+Jxx0k06TBmK4lx6LDbNYyMBhCq1cSicUptKaTplenKhb/y/Fha8KJrgcAuXl6Fi7UJnoEM319fnbvdhCJxKSksmM1g/Gk/4qw2Ty0tXro7zZj1p/OirMuoeIkGU8+tY5uxwEanHV4/S7WbwWlQkmuxULma9kUFeRiyTGRnpaGTKbh0MEh3J4QRqMKpVJGIO5Gq5bxxDNv093tRKkJMOQdwON1SeuWyVToVTnkm3IpMpkpzEwn3yTHnBZCpUj0NKoSsvJyyZ82hYIZFeSVzURvNKI1pKHSaP+lffppxImwbBiN8a4jk4mqzPwMLvne9+lpO8DGvz7J7vVvYsjM4pJTL0enOIm9h17jgrPXIJPJJugRBEJk2rSMFCLGZvPQ3NyP2z1MR4eH0tJM1q5tp+2gC7VaQXm5KalH8NDT7SUUiqLVKlEoZESjccrL83jswXt5Z+MmvnXHT2nYcydT8k9hz57VzJxpptM2xJLaAkpLxR5BILXEUbTTT5+C3eGnrc3FwEBQMiAH2FzXxa5ddny+8FGNwMcbkUtWfSWn9CV/j2trC4/6uWyp66atzYVWo0gxU08+D4jKK6EmjCWejue8cbT3tXZtO13dXgoL0iRCOJkUs9k8WLIgN3fsdcaJxKeKlFKr1dTU1LB+/XrOP/98QDDgXr9+PTfddNO4r9FoNGg0mnH/9lGQmaXjgrlTUh674IIyqeG1O3xjPJ+SMXtODnaHX7qrnkwgWK3pUsKY1WpkyzsOCpVzqKpczNVXV/LcS3v4YPd+DOYgGmOIA4e7OXC4i7YuGx6fF7fPR2g4TDweF3wzZDK0Kg0mbzpBL4RDSvIMZj57wXKKLRYKLRZKi4qw5uYmGtlJnCgcy9j8RGIisko8JqeUZHDBqSv49syzyM8zSuSLMsPNEy/V83nOoKIiO8UTbeXKkhTiJjnt0GYbQqGQk5mYda6tLZSO8+3be+np9tHU5GDBglz0enXKhffK+Qt4/q4H+faDv2ebbSOddftY1nE2upggDa6tLRrjo5VhEuPQxW2Mp1zIazQKZDLh59HIQPEzEWa5h1IIqOPx8Up+XJWfT/Ytt+D55z+peuddnspsZ2Dh7UyE5AuDE00M7d3rRKlUMGNGJhdeWIZOp0oZHwT+5dHATyI+CfUg26zHlKFFb1RLjaqoghKbWofdN8bzKRlGo5qsLB1GY+qd6eR6UGxN4/XXujFnzKW0eDpzqy0Eg2F27NpDptnFtNIoO+v34XD04hzsI7rHz5B3CJ/fSzwWI44M+X4ZCrkSnTaN9DQjXq+cWFRPYf4cFHIFU3Ir+Pm1zyOTyTAXpmE9yUzZfAvGbB1q7afqUuI/golGdFUaBZm5BjJzDcw+pYjhYIT+ziEONfXT2TzA/i097KvrwZijo6A0g8KZmSmm6aMxEaEhkSwlRqCML1U9TEGRkoBPxv6WXoqL0zjQ8TL+gEBSicepdRyTcXEEVfwJMtQqOVlZWk4+uUh67cF2Nz09XrZv78FgUDJzRhalZZnS+TvDaOKeOx4gy7iYPz97D5sbf0DBkTPJyzqbDKOG2tqilPeTnfDytFrTsZKOaKA/Wik2HI6i1SqwlhgnNBoXVVGjvZ6O5eV1LOP5sftmLJLJr+NJazwa5Ao5aoUctKADWg+58AGkqSlfmIdGrZRG+zsHgyg8AjGoydCQYTxx58JPAj5sTTjR9QAgK1PHBRcUpDx2wQVlUsNrt/vHeD4lI7VH8IxpjkVfnmJrOps3OMg01DCjZDlXX13J8y82sbOhhYxMPzpDkLZDR2hr7+SQrR3PkJchr5fhcFhKpZQhQ6PWkDGYjt8vJxxSYknP5oLLTqEwTY9RpUAbjxL2evC5BonHBCWtNk2DMTsHU14BOSVTKJhRSXp2NlpDGhq9Abni6JMYkzgxlg3Hg/GIqvzSGXz2jp+yZe16dr70N7SDm7iwpoCbrn+IKdMLJfJFqbHz9xcauJTPUFFpTvFEW7myJOXYXLgwP6lH8CBXyMk0ackRe4TEcb59ey89Pd5Ej5CHVqvEmD5Cjpy2fBm/f+Ax7rr3EfYeXIf9rd3Mab8IBWKPUJhCzoxWHFlyUr8vABqNErlM+Hk0byZRFTXa78li0Y+b0ieu/1heT6Knm/hzPIwXgnCiIH4ehQVpLKktQK1WpIwPguC1FSlRkZt7/PYnHwWfuivJW2+9lWuvvZb58+ezcOFCHnzwQXw+n5S08XFA9LsR073efOMwWz/ohjisWlVC55EhGhrsOBwBKeVs86ZuyXtHTC8Tk9Z2NwkJfUajmjNWT8GSY+DpZ5rp7/cTi8GKFYWYs3VMKcpBHtNw6qnFBAJR6uv7mDs3VxoPOdr2/vOfbXi9EVavnsLru1/j/r/9lZsvvZRVCxZ8THvtfwsf1sviRGG0v9Ro42+RfAkMB7n9sQexexw0HG7i2ft/QO+REGvXHkKhkLFs+Qg5lJx2aHf46G7qZ/ZsMwUFJZJRPYA5W4dcLmd4OIrTGcBuDyCXyylOnGx37OzFoFcSjSi464bref71Kl5ufJ7XD/+Z2mknc82Cq8a8l91N/UAcEqTQypWpF/AtLf3CDLZBTSgUZXeTg95efwrxJF4AlliNzCzPwu0KjiGgjmc0MpmUGjkHrGDqSSeh/Otfyfz97dhjbeR87SZkytRT7/EooTZvPsK6dR1ShDEc3920WbPMXHrpTGbNMnPkyBDr1nVw0knZY3ylPo0eU5+EegAjkfDWEiMatZLGJjt1m7vJzdVx4YUzqavrol6sCYmUs02buyXF7WmnWaVjr6W5n8113ZjNWlafMYUci4Fnnm6mrq4HuRzmVltYtaqEjg43g64ZrFheSE6OAZO+D6NRxcqVJUdtdMVtlStkdNq8zCiXcefPr0Sj0vHkvf+kdEEuluJ0DCaNkEg3iROC4x3RVWuVFJRlUlCWSfT8GK4+P2077Bze3c/+D/rYt7UXc2EaxRVZ5E0zIldMfEMpmUBJHk277PKRIIidB4SL7Tff/Tt/fPqXaDVPcmn3d7mz8vNs2tzFtm09LFyYzwUXzJBeI46giml3BfkGzlwzDYhLXlQVldlcCDz6aANOZwC3S45Go2T+/PwUTyW9Xkn17IVYC//CK288Qd3Ov+ENNnF+0c/HfU8udwjX7iBzZueMufZx2H3YOocIBCLI5TICgegY8kkcv7OWGMf1ehJxtJow3vPF71VVlYVv3nb066pjqSfHW6ZI9B2LFEtO/BTJcL1+xAtSHKW0WtM/VSopEZ+EmpAcCW/O1vHmm4fZurWLeBxOP72Ezs4hGhocOBx+KeVs8+YuyXtHTC+zWo1SEpdnKIQxXUNNTR5nnjmNp59uwdHvJxaLszzRI5RYc5GhE3oEf4Rd9X3Mmzt2FGi87f3nq214vWFWr57KP9/4PX99/31Wz6ngtPlzycjNx3pSFeYiK7nTyzCas9HoDaj1BpSqf6+y4tOKf9Wy4aMi+ZrSJZuG3XINpVP34tr3Ds4drxB0zKXLW4A/4OfeX9+Hy+OkuW0Xj//6RxyxBVm7th25Qs7y5aSofqQewe6nu8nLnNnZiTCr8AihKvYIoRj9/QHsfX5kMgPFxYkeYUcvBr2KWEzJd27+Oi++Mp93P/gbW/f+H/Mqz2DBoutS3ktySh1WYTtGH+stzU5sNg96g4pQKMLuJscYo3GpR0jUhPH8niYan5vI6yn5HCB6uh0Nx6OESl6mSPIdDylmtRpZvpxx32vy+7FkHXX1JwSfOlLq0ksvxeFwcMcdd9Db20t1dTVvvPHGGGPDfxcGBwKsfcchScPLyrL44INuenu8qFQKnM4gINy/CwbC7NjZi9sVZNv2bjzuYQxpSi6/bMR7acfOXurr+3A6A2Rl6SSzZ5criF6vIhqDI0d8DLo68AfCLF5cgFqjJDNTS4bJOiHpkUxONDTa6e0LUFiQRmamlt37uujo7aXH7vo4dtn/JD6MsfmJxET+UiLE/88r0LJm8TL+9PZLfNC2nSXXf4HLFl2BpzuDwoI0hkMRnn6meYzaT0y7y8sz0N3tQySM7A7BIyMtTUlxcToFBQaWLMmXjNFttiF27uzDOzQsyXVN6lyuX/pVemWNPLX+Bb7758P8Nu87VM+YIa2rXkqg0I5RMO1u6mfr1m56+/ykp6nweoc5dEjwvYK4tB8a6u3UN/Thq45w/fVzRqmvBHxYH6/kyFeqLDSVXcAC5zacjz3G0Lp1FP7iPrSVlaMXNy7Ei4S33z7Mjh3C2IFISh3P3bRkwuuPf9zDunU2AO68c2nKcz6N+E/XA9HovKnFSVvrIF1dwnejbnM3AwOCGbjVmk5dHchkEAiG2bmjF5c7yLZtQk1IMyhTSILGRjv19X0YjWqMRg3Qn0hKCqFWKdDphXEllVrBlJIMXK4QJSUZ1NTkTtioJjeyYnx9aVkmp5xSjK3rEANDfWg1ek69shy17lN32fCJwEcZ0VUo5JgL0jCfm8aCs6Yw2OujZUsv7fUOGt62oVTLyS81MbU6mzTT2BGZZAJlonOZ+HuhdT5vvDONI93t/Okf3yFMC4XZl+DxCAldzzzdPEbpl2zmnYzk5LmCwjQUChlms5aTZudI62va3U/9rj5MmVpi0ThDQ8PMmHIxBZaFbNv9a+76xTU4Bm/hK9d/A7VKLa2vfpdQE0wZI+Ou4vpsnR62fdAj+FcZlHgShuR5+Xogzr6EZ2JXt5euLh/XXFOJlXRJKZWMiYijifaj+L1yOCZWRR4vxPdT3yD4fMGIcm0iUmy87RaTOgEuu7xyzPNdfb6PtH2fZPyna8LAYIC1r3cl9QiZfLC1m94e39geIRhhx45e3K4Q27b14HYPYzCouPzyCqnB3LGjl131fZKpv2j27HKF0OuVxGLQ1eXF5erA7w+zeFE+arWCTJM2RUEyGsnNbEOjnd5ev9AjmLS0H+pl0Bcgp3IBl975E9Q6HSqtFrl8UgF1ovCvWDb8K0i+phwhxuZi1FzI+j/8ho7dW8lMzyHffAanLF3By6+/xK49Gzn78itZc/Ln6etOF3qE4ShPP90yRu0npt3l5xnoTnwHsI54JqWlKSkqTqew0CCpdqxWIbFP7BHkCjmxaAyjoYiLPvMtBgNbefnN57n/twex5P2Q8rIyaV2jU+pEiITV1g966O31kZ6mZmgozKHDbqZOEfa7eB5taLBTXy+M911//Zwx6iuYmDSaiKxK6RESv4+njDweiN/VhgbB5wuQlnM8BujJ275+fYe0XZdfXpHyHL/b9aG37cPiU3l1edNNN004nvHvRm+fH0VCBldiNdJpGyLDpCEcjlJYZJR8pkTs3NlL6fRMKiuEeOSSUQeu1ZrO3Lm5klLq0CHhwJMBVdUWcnJ0RMIxDra5yMtLQ2y2Rxszw4h6o8QqeAKJJpqZJg3h4She7zANjXb6nX4A3O7hf+u+msTHj6P5S0Eq+fLwd77GVees5Es//zkHu47w4NpHOHveWXx+9VXs3t0vxAx7IxL5VFCQhtsVIi9PuMCvr7dLhBGAxxNm5sws6e716LG3uroubDYPOp0ClUpBerqKrCw95y29mOsvOp0b77uXU7/6Fa487Xy+e91VWK3pTJ+eidMZwKBXjlGB1df34XaHSE9TsWJFIYOuEB7PMBkmIaY8wzTEcCiCzeYhEo5is3loaemXRhVbWvol88PRY7bJ6xrPPD153r6h0U7jHjex6mWcd8oi3M89x6HPXkLW5z6H5eavIzvGnUTxIqGwMB2TScOqpDs9H/ZumvjaVce4M/ppwn+yHohG52azjjSDUlIfTZkifA/nzs3BZhuirMzE8HAMS66OffsG0BtUFOSnUZDPGMPkqioLXp+Q2Apx6nfZOdzhRqmQk50jeMPs3NmX8GqS4fEIAQCjjZmTVRbdPV527bQzr8ZCVZUFhyOAzebBOzSMczDhvxKXodJMNh2fVMgVcsyF6Sy7OJ0l503nyP4Bmjd3Y2sepLN5gKwCA1Orc7CUpEueEaPHxI5OYuTx1sL3+MUj9/DkX37H3/7xR6aWbOWCM35APKqiocGB1xdJMiyPEBqOoFAIvmgH21wSWQRIZNVnTp8ibYfNNiStt7t7iMMdbqYrZcSiMOQNoVIpWLxwHjff9E/+/vJj/OaxX/LKa//k7u//kqVLFgg1oVSoCXq9MoX86u3xEwhGUCrlZJg0zJ1rwWhU09vjkwzHTRlDqNQyDh9209vn5c9/bmbNmqnUzM9LMUcfTSaN5y81GuL32OEIpCRhfhSIxJN4Xhnt85X882gYzyfsfwH/yZrQ1+uXRmVKSox0diZ6hEiUwsJ0yWdKxM6dfZRON1FZmegRSkb3CEbmzc2VlFKHDrtpaHAkeoQccnL0RCKJHiE/DWBcY2YYUVqIhtNij2AyaRgejuL1hmlotDM0JJC53qCSdPNHO4Yn8cnEaCuJEWIsg4u+fzctm97j3T/9nn1vPMON557KZ88/ne/++Cd0dnXzxD/uZdXSi1i9+mqaxB7BF5bIJ7FHyM8Tzo/JhBGAxzM8qkdIVfjU1XUnegQlKpWc9IS1wfm113LN5Wv41p0/5vyrP8dFay7lqzdch9VqpLRU7BFUKUSrSFi5XSHS09QsX1GIS+oRBMIpI3Hc22weIpFEj9DslEYVW5qdIz3CKDIpeV3jmaeP6RGS0jA/LETiyWzWYTCoxvX5Ol4D9PG8wj5OfCpJqf8kwuEo0ahMUoHs3evA7QpRXGxk9ZnTAPD7w+h1Knp7vRgzNAgNvQG5XIZak/qRjB5Jamnpxx8QDNpOX1VCRUU2L754AJ8/jEYjB2Tk5enHGDMDvL2ug4YGO0WF6RQWpUtePq2tA6jUCtLS1FRXWcjaooUuyMrSfSz7bBIfHz6sQmthZSWbfvc7vvnww/ztrTd5ZeerDNHDDy//OgBajZK6ui78gTDTp2Wi0ymZKUVlC34eBr2S7m4fpdMzhGSJcTyaLDkG9DoVwWCESDSGUhFFJpORYYqxb98gwVCY7577TX73z+f5y/qX2Lx3J3/60fcptqZjd/hpaLQTCcdobnGycEE+S5cVkptroLfPh9GoJjvHwLyaPKlxENHcPIDXF0atVuL1CRdc4khtihnuKFLqWJ5go1M1QTjJ6yuy0ZaWMvj8cww88QTe9espuO9edLNnT/gZzJolyPchzmc/OyPl7pl40dDR4Wbt2vZjelItXVokqawm8e9HKBzB4fAzvzSD2toy/vCHJtoPuSgoSOPUU60oFEKDoFBAerqaUCiG2azG6Qyg0Sioqckb07gmx8s77D5ARm6enlAoxtKEJ0H7QWHMtmRKBqFgmNBwhJ07elOUUuvWdUgjg5WzshF4ChkVldk0Nto5dNhDhlFDVXU2f32ZSV/B/yIoVHJKTsqm5KRsvK4gezd0s29rDzvXHkaXrqJkTjYls8zHPSYmQqvV8cNv/YRTlq3i1tu/zKGOffzuL1/ilht/TnXOHDRaJTt39jE0NEx6ugqjUU00CkajhrnzchH9nfr7AygUUJBvkI7l0R5NoVCMcDhGd5eXLLMOnzeMVgte7zAbNvSw+pQvoIxX8sTffsR1XzmXr994Gzd+/utYi9Nx2P1srusm4A/jdoeYdVI2eoOKgYEAFosejUaBtdgoEVF6vVKqDeL1UDAQpavbS2OjnYrKbDbXdVO/qw+vLzLmO3ksdRKMfG+TyeCPCr1eMIUvn5k5ZlvE9YsE39E+3+RzySQ+HoQjUWLRmKQC2bunX+gRioysPnMqAD5fGL1eRW+PD2OGQCAX5BuQyYSEvGSMHklqaXbi94s9whQqKs2jegTIzzOMMWYGeHvdYRoaHBQVpVFYmC6ZKre2DgrJfGlCw/v8q0Kfkp09GWz0acPRFFoymYzK5adinV3FW797hD3vvk1WYTHP/u433PPwo7z61tu8ueFZhmNdfOVaISBAq1VQt6Ubvz/M9OkmtFrlmLEwg15Fd7eX0ukmKX1utEeTxaJHr1cSDEWJROMoFTJkcjkZGXH27R8gGIzz5avv5Kln/8Kz//wb2xs/4Nf3/Zji4nTs9kSPEInR3Oxk4cI8li4tIi8vjb4+P0ajmpwcPTU1eRKRJKK52YnXG0alUkikrDhSK5qDw1gy6VgKpdGpmvDRiSCr1YjbJRDFS5ememqJ+85u94/5vo+H8bbr48QkKXUC4X71NRy2fhwOAx0Jo7e8vDRCoSh5eWmSf41cARqN4J+g16loO+hGIZcxdaoxpWGuqzvCli09LFmSL5njVlRkY06YeYIw3gdgztIRCsXo7fUxszyL7m5fkqeUUDiCgTDDoShKlYyamlwMiQsxUZ1VXWVh924HhzuE5L2JIlkn8b8DURH048/fxPKqKm59+CEUcgXzqgqZP1cuGPc7g/T0eDGbdRRb0yUidOVKgzS25/EMUzo9Uzpux7ubu3RpAX19Prq6vIQiUeLxOEaj0KC3tQ0il8soMyxhZm0l73e+wqlf/Qq3Xno1U9Ln4vEM0+8I4PEM43QGseQYUKpkxGKgUinGKMNEUsxs1rFgQS6ZJg2DrlBKoqCoeBxdKOwOn6QIG4/8HQ1zto6ysizM2QLJKzcYMF9zLYG583D94x8cvvQyMi+/HMtt30SuG0sEl5RkYLEIaimLxTnuBcPoMb7f/raeZ57Zz/z5FtLTNSk+VJP4eODpD9B30IPTGcTW4aG2VjChFW8GlJdnpfjX2BJ3pkPBCN6hMNFoTIqyh5Eo+SW1I/Ugx2JgzmwwZWik79L69R0oFMLNCaNRRa8vnFh2mNbWgRRPqVgsjqM/QEG+ARKkgcPukxpmpzPAyy+1ApOk1H8r0kxaFp07jZrVJbQ3ONj93hH2be7h4A47U+aYmVqVg1J9/Ao4h92HXlXOnx59jbsfuIWdDduorp7OvKpKHHbhfO/3C8lxVVUWyZ8oeZROTMnr7vFJfx9dE5bWCvXA4x4mFouj0SoTd6u9DCXG7nSaEhbNuRvv8Fs8/Ltf8M6Gt/jhbb/EaFTR2ubC5QqhVskxGjU47EJtKS3LZG61JUXVlEyIice+yaTB5QpJv5vNOowZasxm3Zj94XKHyMsXmqbR5O9oZCfqQXb2R7/p5/dHiEZJSRVMxngk2RuvH2T9ehsFhWnMmZPDnNk5/7KJ+iQ+PHp6fDgcUTo6Ej1CfhqhUIS8fIPk6aJQyNBoFKg1CvR6JW0HXSgUMqZOyUhpmOvquthS182S2gLJk6ai0pzoETyAMN4HkJWlJRSK0dMrKAO7u71jPKWCwYjQIyjliR5BlaLOqq6ysHuPg/5+Qck1WRP+N5FmyuLC79zJ7nfe4t0//YG6v/6J688+l8Xza/jx/b9EpVJSXV3A3LmFgnG/M0hPj0/oEYrTJWJk5aoSaWxP6BFM0nE7nsJnaW0hfX1+uo4MEYrEiMdiIz1Cqwu5XEZxzmlMLZrDzn3/4Pyrr+PL191AVvo8oUfoT+oRLHqUShmxWByVSp5iWg5IpJjQI+RJ9SA5UVA+UY9g90uKsPHI39EQeoRMqUf4sLBY9GSYNOzbNzBmTFHEaJLs9dfb2bihi9KyDHQ61UceHTzRmCSlThCibjeDTz/NrOEIvorzmVVlwZJj4NzzpmOzDUkEkNsVJBaFgoJ0KiqzGQ5F2LKlh+FwFENa6sexZctIdLDYhMCISkOugFgU8vIMnHKqleFQhA6bB4NeidsVFGJYk5wqy8qyGHSFmH1SDvNr8qTGPNno+tFHGwgklFhu1+T43v86khVBV65ezbzymeSYMqWLkWyzTjrGJ0q0E6Otk32c5tfkjXluRUU2lZWDDA4KBaOmJpfZc3Jw9gcwpCmTiKPZ3DN9DT958knu+9sfWVS5k2+cdwOzT8qmwybE0NodPrQaFZUVZpYuLRizrtFjjKNhtaazLGEGO957Eslfnz9yVMVUS0v/uObwb7xxkA0bBjllyWUUt24m+tensb+8lin33InxjDPGLEeUVAcCYe66a/MYkslmc7Nx4xEKC4XlP/PMfnbt6uPwYbdkErl0adG/JWZ4EuOjdUcfukCMqlITFYmLlmVLC7EWG6XxpkBAaC41aqUUcBEajnCw3U0gEKG7xycpGZKj5EfXg+SUFI8nTF6enpUrS+jvD+Cw+1NIL5ttiByLgVWrShgejqFQyPD7I5gyhIsaU8YQNfMFhdbXblqHI9GAfBpNj/+XoFQrmLEwj7L5uXS3udj5RgdtO+20N/RTMsvM9Hk5qI4jRTHZEP2p3z1PfdMO5lUJxt05FgOnnlrMkSO+CYmZ0TVBPHZr5uelPL+iMpvK/YNs29aN1WqkoECwJ9DplNg6PBJZJIyv/YBQ5Gpu+d6NXPPlNdzylR+xZMmpDA0JEdpzZmfT2qagq8tHZWXWmFHW0WOM46mHli0twFqczuixOJttSBoB9Psjx1RMjWcO/8brB9mwsYsVywsxZmjGkM+jIW5DaDgyrpeXw+Fjb3M/ZvNIctyGjV0cOuSmp9dHJByXxiiPZoo+iROPGTMyiWtkVFdZsFj0nHvudCGMJUEAuV0hotE4BflpVFSYGR6OsqWuW+gRDKmj/lvqutmz1wmkxs6LDajoz5mfZ+DUU60MDwtkmEGvwu0KJXqEEZSVZTI4GGL27Gzmz8+TGvPy8izJX+Y3j9YTDgspewMDwX/jnprEJx2zT/sM7f1ZtLz2e9o2vcGMk6r4x+O/o6iwUBI1ZGdrOffc0qMm2nk8w1K6sHj+nD8/b8xzKyrNVO4fYGAgQG6ugZp5ST2CQZVEHM3h7unn8otfP8pDj/2GRTULuO6SLzN7djYdHYkewe5Hq1VSWWlm6ajEPjh22l2yOfh470kkf33+8FEVUy3NznHN4UXSaPmKQjIyNGPI5/G2B5jQy8vh8NO815mwfYCNG7o42O6iz+4jJ1sv7d/jMUb/d2KSlDpBUGRkYP39Y3Rccy3LDq0l58JvAiOjSSIBlJdnkMabLDkG1q8/jN8fRi6X0dfr55ln9qHXqVi6tIAlSxLRwUtSo4MNeiWBQASNRk5amnBhJ/roxKLg80coKEjD7vATDkclQ+qlywopto6osQx6Jc6BAHV1XRj0Sioqslm+vJD3OhUwBOasscaok/jfwui71xVTpkp/i8fj3PyrX6JRq/nZl7+CSjn2dJJ8rHV3+8jL00uPiUrAWbOyyM4xYLWmYzSqyM01MG+ehZUrpwDCd2j0KBzA3V/6EqsWLuBLP/85Nz58Ow/deiuXX3YKAC++eIDNm7uwlhhT7j4kJ2Mme0Ele0SJ31lLjqD0Gq2EGk/lZdArWb++A4hLRbKhURiN6ur2UliQlvL8DRu6OHjQBYDZXI0npONCzQG6bv4Gg4sXk3/33aiLRxoSUVJ9112bJaPyZFJq40ZheRs3dnHjjXM5/XQrTmeAJUvyKCw0Sh5SH1fM8CRg3hklOLt8tG7vQ5cQNIxWZuTlGyQ/m2TzYYGsitHWOkBDvZ0ltfkTRsnr9UoCwQi2Tg+5uYI6qqrKQo7FgM02JJFeVVUWGhvtOBw+qZG95ppK6bjv7w8QCEZobunH5RbSy5avKGTQ08GBrsRd8Unx7H89ZHIZhTMyKSgz4bANsfP1wxze3U/HXidT52QzfZ4FhWpiBUTy+U+pVLJg3mLpb/tam7n521/klz99lBzLWB8N8XUudwgQGm9ThjZh9i8oAWfNyiInqR5kZeooKDCkJOnV1o4sb4SMyeaff3+Xu+/7Pvc88G1Wrzqbe374AJmmLFqa+3n33U4CgQiBQDRle5LH6ZKJmfF8osRUwGQ11Hj1QJ9UD+bMzpFS7qqqLDidQeluvYgNG5PqQZZuXPI5GeK2PPN087j+VHv3DtDb42Pv3gFWnzkdgOrqHAYHglit6cyrsUjXjMci0SZxYjF1iol5SdHvoyPl8/MM0niTxaJn/boO/Im0yN5eP88804Jer2JpbeGEUfIGvWCFoNEII3eA5KMTjcbx+cNSjzAcHmlily4torjYKDW4Br0w8ir0CCoqKs2sWFHEnlZZYtsnj5n/dVQvKkOhvw2OvMuB918lracL6/mfBYQe4Vt3/picbDPfuukrKBRjFbnJx1p3t5f8PEEx2NLsZHNdF2azlvKZZimlz5iulggpUeFnsejHVfn84Ju3sKJ2Cd/50d1872e38tMffI/LL18BCD3Cpk1dlIzuEZIS7JK9oEaTNUcbixtP5WXQq1i/rgNgVI/gT+oRRp4vkkYgKOzHI5+TIW7P00+3jOtP1bzXSU+vj+a9Ts48cxrVc3PwDIUoL8/EbNanKMCOZYz+78QkKXUCoa2ooPj3j2H7/BdwPPQgXH0jR/qjY6TpyYoKjydMf38AnU5JulGNrcNDICB0MNVzLVx9TWXK8+0OHw2Ndnp6vGi1SoqK5dgPBrA7/JRYjcgVQoPs80fo6w1Qt7mbhFlISqqfuBxxfTk5Oioqsrnkkgrqjsxk3XY3GWnHNsqcxKcbR/Ogqj9wgD+tXQvAvsOH+dMdd2LOSCU6xNeK8tyahELK7vDx6qvtdHd76en1kpdrYO5c4a5Hhkl7XGNxACfPnUfd7//AN371S6798Y/5W8173HvTV3E6gwwMBgmHY6xf38HKlSVYcgyphoIJ7yhRwdjb60/EwI6QU+N5R43eJyLpnJwE2No6QGODg4LCNBYsyBXuiiZe09LSj1anID/fwIoVhRiNGrYAPeULUTn2QlMd7WedRdZ115H95RvptA9L6qZko/LNm4/w3HMHKCxMY/lyoVBdeKGQOjJ3bh7BYIwlSwpYs2aatK3/qZjh/0XIZDJWXVdBOBSheXM3Pv8wQaV8TD1IbgZttiH27R/E2R+gujqHfmeQg20uAK65phKNWpnS/AJ093g52DZIb4+KUNCExxOmsdEOII0VWa3pbNrcTWOTA5VKwXBIaMyTE7eadjs42DZIOByjt8ePKUPLJZdUMH+hmqs/V4JBb6Sjw82UKaZ/856bxMcBmUyGpcTImTfOwdnl5YN/tnOw3k7HXifT51qYMseMXDGWnDqaD9W9v7qL1vb9fPa6s7nvroc4e/UF4z7PYffh8QxjytBSMz8Phz1RD7q8OAcCTCnJoLV1gKoqC6bTBNJqNEk0HtIMadx710OcsnwVt//oFladt5y7b/8VnsEibLYhZMQ5dMiNw+6TliGm4oFA7Iw2R3e5Q1L6nkj0JhM5o/eHSDonpwC2tg5I61haW5BiTt7S3I9OqyA/zyAppUAgnyd6z9LjibGqqioLLc39bK7rxmzWMmtWlrQMEdOnZRIejlNePrFSbBIfL5Ib3YmUGZ6hYfodfnQ6FenpKjo6PBKxWl1t4eprZo1JFRN6BB8ajSLhqeMSeoQSIwqFDINehc8fprfXz+bNXZKqJTnVT1yOuL6cHKHxv+SScjZtLWK4vg9j+vGZJ0/i04sRD6oyDtcu4PVfP8B7f/4D1Z85i75wlJdffwOA/W0Heeind2NMTz3XJKe+CT1CLhaLnldeaWPz5m6ysjQ4nUEGB4PMk3oEzXGNxQGsWLKYV5/5C9+7+6d8+bZvs2r5Gdx+y9cTywwRCbtGegSLfozpuPgddbtC9PT6Ej2CRlrveCTO6CQ+kXRONnZvbR1M9AgGFizIk5STIBBjWp2CvDy9pJQCqJxlHvc9J59Hko3Kk4m9ysQ1v0hgT5smhOuMDjz4sMboJxqTpNQJhr66muJHH6XzxhsJPvowWzJX4V4wRWqKR8NoVBGNxnC5QpSWZrJ0aRFOZwCzWTvuWJAofc/PT0OjkeNwCEl+Hk+cDptHUkpZrelEozEi0TiZJvWYmVdxOdYSI3pdqlv/VSdfwoLcVcwsyfp37KJJfEowb+ZMnv7x3dzws5+yoaGBVV/7Gi/8/OdMLRi5ayd6SvX1+slNUknZbEOkG9UUkEZJSToeTxiIS4TPU0/t4YMPeli0KJ+rrz4pZb12h4/dTf2IqiRLjpE/3XEn9zz2LA+98EfOuKWFL678HOUzM/F6I/T1+rHZhrDkGKTjvMRqZMfOXomMysszkJdn4NAhN9GYIE235Ix/F3w8iCmZompxOBShu8vH/JrcMXe7Gxrt+H0RFi3OZ/Vq4S52bW2RQGy5ZlJx7ixK2jbhfPwPuJ5/jt7TrmRLXNgHa9ZMkxRSd921mbfeOkx2to7vfGcRf/3rXGkdyeTT6JG9SYXUxwe5Qs7qL83mtd800bGrn0FZXPJ1Gt0YgnAcDQ9HCQQieL0RTj21GK1GyZLa/KOoGmQYDCrUGkVKPWhstBONQnl5FjkWA05nAI97mJIp6VgrssYxWhaWk5GhoXKWWTrmp02Zzg+v+CN+WZy9e52TpNSnEObCNNbcOIfeQ24+eLmdfVt6ONzkYMbifApnmI7bX/Khnz/Gzd/9Iu9vfoevf+eLdHbZuPHzX095fdNuB61tLvLz01LrQbqagsI0ViwfSUESUyPr6o7w6qvtGI1qTl81ZQxB07RbqAeiT9KZq85BESvmvke+w03fuZKTl1zOnPLLCYdl9PZ4adrtkLw2xe+BtcTIzh29EhmVl28gL1+oCbGoUBMmUkaNhtWanmLsrtcr8foiaLRKsrN1XHZ5pfTcxkY7Pl+ExYvzJVWTWDNGm7+LSB6hFJf1zNPN1Nf3YTSqufiimXzztuljtgkY43s1qZD6+BCNhFN+393kSPF1Gq+5NqariUbjuFxBSstMLFs20iOMp2gQx6Hy8w1oNAocDmH82uOBjo4RpZTVaiQW7SQajZNp0ozTIwjLKSkxoten9ggXrzyP0/LSmTJlMZOYhIgpc+ZyzX2P8M8Hf87O115i2rwFPPTTu/nOXT9h45atXPqFL/H4w7+kIC9VgbR+fUfiOlwvkSFms46sLA0lJRmYzVppVFQkfJ56ai8fbO1h0eJ8rr56Vsp22O1+djcJxJJgnJ7Jbx+4j3t/9Wf++Ozj7G5p4rJzv0x5eSZer0DO2mweLJYRxVBJiZEdO3olMio/z0B+noFDh91Eo3FpW46XxBFTMsX/Hx6O0t3lZf78vDHqJ7FHWLy4gDMTAWm1tYVjzN9FJBNj8+fnSQqpp59uob7ejtGo5qKLZvDN20ZuUCdv93gqsP8UJkmpfwMMixdR/Lvf0n7Dl1nZ9Ro7jedhn5M9LilVUJDGjJkC+bN0aYE0ppQ8TpSybL0So1ElxUh2d3kpLc2keq5FUkiJKo/k8b/k8Se7w0enbQiFXCYl+CXjw0QKT+J/G2ctXcr6X/+az37vexzsOsKqr32NZ++5h5ryckC4eD582MOQZ5iFC0dUUm5XiPKZWRiNagoK0qTjFoTjs7HJwcBAKCUiXPzbKy8fZN8+JzqdErvDLxG+X7zwbGZPLefuv/yae164n5PLVnHyjNNSyDAxFW+8cVqbbYhoLC4ZUcPxpxWOTsm02YbIyzOg1iil73K/QxinKC5Oo6AwDYcjQEtLPxUV2bS09FNX10UwEEavz6LonEvJOflkPP98hZx/PMLFlmLS5t0GjBSVVatKcLlCFBamjVE+JZNPa9e2T47s/QehUMg56yuzeeHBBuJtbvrtQenO3HgNYUWFGYNBJXnKiA2qkLSXel4WH1tSW8ChQx7aWgclI2fRt0p8fmVlFm5XaFyvmpbmfg4dcjPrpGyWLS0cs10KhYzMDA0nnTSZ1PVpRt7UDM69uZrOlgG2vtxO0/pOOpr6mXVyIabjuFA1GjP4wyN/42e//BFP/OW3/OLhn9Dd28Wd3/kpSmm8W8ZwKEpfn5/+foFEdblDlJdnJfyfcoARryNRRdVpG5KCNEQ47D5efuUg+1qEeuCw+6Xv1dzqMn72wyd57p9P8Pyrv+HAwe1cc8mPGXJlkDyHKibQjTdSK1gipNaE4yFyciyp9SDHYpD8ppp290vKq9a2QZpbBsgyazCZNNJYbXa2jk2bu2ltdaLTqlICD2D8a7SqKgteXwSzWTvutdt4pu6ThNTHh8jwMM/dcwcGUyYVy04hq0BoRIPBKIcOu7Hb/WOaQSF1FxYtzicUirK0tlBqOJMbyWQY9ELq5UiP4KO0zER1tUVSSInNZ/L4X/Koj93up7NzCIVCJiX4JcNs1jIAlJaaTuQumsSnAAZTJpf88Ke89+c/UP/GPzEXl/CXRx/hq9/9Pq3t7Xz2czfw+wcfoHKm4Kdns3mkHmHRojxpJM6YrmbZskKM6RoKCtJSxkrtdj+NjQ4GBoJjewS7n1deOUhLSz/65B7BoufzV32WihmzeOj3D/DIkz9i4ZxzmDdrVQoZJqbPjTdOK46/iqmUMFYVNRFGp2TabB5y8wyo1Qrpuyz6PhVb0ykoNOBw+GlpdmLO1rG7yUF3j5fBwSCdnameTxMRY9VVFny+cKImpP5tPFN38fH/JCZJqX8TDIsWYbj/10Rv+zqL979EV0M6ltPnjHmezx/BnKVjZnlWCjk0UTPs80eIRaG7WzByFtRVBVIiX/K4k1qjJC/PQCAQTRmFstmGOHhwkHhcWN5oHG8jPolJgOAzte6RX/PZ791OY1sbZ33zVv74wztYvXgxVms6apWCYChKh01IIBONwuUK8PdGyDBpU/ydbLYhKeHIak3H7vBJx6PwWi/xuDB+0tbqwpJjoKAgkJgDL+SV+x7gm/f/lrX1b9LtPcyTP/z+mBFYtyuUuNCPSyEEBr2SmprcY44MHg+SmwZxBHDv3n66urw4nQHy8g3s3zeAXqeioiKbhkY7+/cPIANkMjkgIxgKU336lViX2eh/6VWGv3czTU/OovRHt6OvqWHp0qKjJuqJCqmMDDVLlhQcdWTv+ef388ILrVx4YRkXXTTzX3rvkxgLhVLBRbfM5aVfNyJrGWTINUxHh2dMU2izDSGXyVh9xtQxSqrxmmHRZDkv3yB9Z5bWFpCdVA/E12jUI/VgdEJYY6OdttZB0gzjJ3LJ5TLy8gyTpOb/AGQyGdZKM0XlWezb0sO2V9qpe66NgjITFUvz0ehVR329QqHgB9+6m8KCIn7yix/y12efpLevm4fvfQydTs+c2dk01Nvp6vbS2GinrCyL3h4fCgX0+iKS0b54HO7c0Ut6uppiazorlhdKTYg4Stfb4yWO4JXV2uYix2KgIH/Ew+m2r91Crnk2f3vxLh587AvccPUPmTP7Cml7xVE4vV5JXr4BiKNP1AR9Uk34VwkcsSa43EGpAXj33U4OHnRRWWnmSJeP+l19eH0R5lZb2LatW1IYd/f46O7xkawG6+8PsH59h2RyLv47GpKTAo9201H091pYlcOU2ZNE9IlAPB5j9qmfoWnd62z4yxNkWHIpOGkRpdMz8AyFJaVGMkTD5IoKc8qIDUzcDPv8YaLRON3dgsVHaZmJpbWFUiJfcjOrVivIzTMQ8EdSxoJsNg9tbWKPEB6zDmO6YEqdXzA5vjeJsZArFJz2uS9hmTad9X94FL/bxRMP/Ixv/OintLa3c/kXb+Q39/6MZYsXYbUaUavkBEMROjo81NYWSse9QiHD5/ORYdKkHP82mye1R0gidG02D709XoiDTC6nrc2FJUdPQUFaokeYylOP/pbv/+RBNm1/Gae7nQd/dteYcTi3K4TBIFAkYgiBQa9K1IN/3QQ8mUgSlU7Ne50c6RrC6QySl69n375BQaVYbWFXfZ/kQxgMRgEZwWBEMjR3JupBssG5SLBNBJEMM+hVEvE2HqQxQGOUhYuK/6X3fSxMklInEMPDwzz//POceeaZmEwmpn2mlvZHHsP37a+T/dqTbOk7B3/+tMTI0cSmyUeD+Dy3K4jfH6Z6rgVztk6axwXGLHvnjh627+gj26zj2mtnYdArUWsEwzlD0h040QR63f5X2WPbx+3XXMv5J598AvbMJD7tyDObWfurB7nmx3fx7s6d0uOWHANr1kyVjAMh1fzc549g0Ct56qm9tLYOUlZmYv78PE4/fYo0WieO3omvXbKkEIjj8QzT1uYC4mze3E19Qx8+b4Trr5/DQ9/5Kqe+U8O9zz7KOd+9mW9f/CUuOn2ZRMr29voIBCK0tbk4dMiDTqdkZnlWCjk2EUaboo+H8Yhds1nDhg1dUsqIMUONRqNgx85eSqxGfNVCeEFBQZqgemkbBKDisvk8uSmKtm87yw7b6LjyKnQ1NeTc8g0M8+ePu/7Nm4/wi19sZ2homKuvnsV1142MQI6XwPfCC61s2HAEYJKUOoHYsGED6enpVFdXI1fIOf9rVaz9w146djnoaXLy9mCA6upcqeH9qPXA5Q7i94WZWy2oLJLrwehlu9xBnn/hAPY+P585o4RLLqnAWmLkYLubcCSW4rfT0tzPm29v4R8v3UWeJZ81X95y4nbOJD7RkMtlVC4toLTGwvZXD7H7/S76DnsoW5DL1KrsY470fe7KL5GXW8Ct3/sK/oAfRUIplWMRaoJIGmUnTGZFZZ84XnawfZCGBgfV1Tl85vQp4xpzW63pLKlNqgetLkAYXd22vY+uLh/XXFPJ1VesYuH82Tzz0r38+vHvsbtlKz/67s8oKbFIy8zLN0heVw67Xxp9HW/MNhnH43Ulbq9olC4qpazWdHp6vFit6aSlaaSa4HKHqKw0U5CfRlFxOhCnfpdd8qjq7w/w1F+a8Q4JhMHxkFFNu/tp3tuPyx2itjZVDTn6PYhJn1q5jHOOuuRJHC9UGi3zzr2IQ8MxTtJraNv0DvvfeQVzZjZF1rnodcoUI+QPMxqUDPG5blcIny9MdfU4PcIohcWOHb3s2NGb6BFOwqBXoZF6hBESWjSBXv/+H2g5sJf81e9wxec+/y/umUl8WnHSyavILirh5fvvofWt13joe9/irv/7PTsbGqX6YbHoWbNm2qgeYcT83OcPY9CreOqpZlpbBygry2R+TR6nn14ijdYlE7pWq5ElSwQFoGcoRGurC4DNdV3U19vx+cJcf/0c7rvrW7zy+gJ+++eHufarN/Dla7/BmacvlUjZnl4fwWCU1lYXhw670WqVY/yXJsLxJNiNRyqbzVo2JvUIGRlqNBolbleI0lITpaXC84zpGg4ddifqnUA+vb3uMI0NDhwO/1GJKBEtzU5eeLGVQCDMqadYU1Rco7e/odFOfb2dbFOMgiLTMZf9r2CSlDqBeP/997niiitQKpWcfPLJnH/++Zx77rmUv/oiey+9jsK656nPmo/NdGaKaTIg3f2bqMlNboTn1wgeC729PlQqGe+/18lwOEpOtp6W5n4a6u3SKKCzP0BDQz8DzgABf4SGxJ3J4VAUlyvE2rWHADBn61i79hBd3V72DxyhxXYYj8/3Mey1Tx/i8Tgxn4/owABRl4uo2y38GxwkNjRELBAgFgwSF/9FIhCLEY/HQfynUCBTqUb+qdXIDQYU6ekoMjKQG40oTCaU2dkos7ORG43H7fvx70K6Xs+zP7mHrXv2sLy6WnpcHJlLTrJLJn927Ozlgw+6cTgCDAwEqKjMZn5NHnaHTzIdF5E8Jmd3+KQ0STFSVqORS+s4/7TFTM0r4id/+Q3fefxeGtpb+PV3b5KW12nz4HIFMZt1Y8ZCktHS0s/mzYKB7NJlheOan4sYPXab/J0FmFeTJ6myfP4IbleQ/fsGmFmexfXXz0lZpyFNKRXpmEJJXWw6oanzuXrWEL5Nm7BddTXaOXMwX/8F0leuRJaUbLJuXQd79zqF/bGjh7ffPiypoMZL4BMN0sWfkzgxuO2229i+fTtWq5XzzjuP8847jzM+t4LnQhH69wzg2e/hUJpGahAnSvgaD8mNZKgtItQDtYz3EvVg6hQjer2SF19sxekMsLS2AL1eSX2DhyNHhhjyDLNxQxeXXFKBRq0kHovT0OAgFIqxtLYAvz9CfYOdvc299Ax0EJONvWM+iU8/1FolSy8uo3J5AZuebWVfXQ/dBwaZfWoRGTlHv1t85qpzKMgtZOqUUtQqtfR4RWW2pOYDUogfcbxs69Zu7Ak/nEsuqUhZbvIonVgPHHYf1mKhHvT3B+jqEu60C+NyGmbOyOXOb/8SvXomL7/5K6760m4ee/hJrNYpgEDWejxhjEY1VVWWlNHX0RCVREtq89GolUcdh0tWYonLFN/v6jOmUlmRPUJGF6cnPK18VFZkS88TxnRliB5V69d34B0Kk5auGscbbixstiHqd/UlzhHylFTP2tqiMWSfaJA+Z1IldULx9ttvc82116FSqTjllFNYWDkTvIP4d7+N59AuDnmn4CebDJPmmAlfo5HcSBr0Khoa7JjNWoaHozz1571Cj5Cjp6XFSUODXRoFFHoEYRTKL/UImYRCUdzuEGvXtgNij9BOV7eXIz0O+jxehrzej3P3TeK/EHnTy7jq5w/yws9+RMu6tfzguivxqK9nUc086TkVlWZJySeqnpKP8x07evlgazeO/gADzqCkHLTb/ZLpuIjkMTm73S+N/XmGQokeQSF9l8498xSshVN46LEH+MmDd9B84BJ+esfXpeV1dnoYHAwIPUJx+rGVRGYtS5cWHTXBbvTYrfj/ItlVU5MnqZd8/rBEvI0mxFqanRgMqV5v8Q/xuTQ02rHZPKiUclrbBmlosLOktkBSqiVvvzQGaIxSVPjvtfWZJKVOIILBIGVl5bS27mP9+vWsX7+er33ta8ydO5e5c5Zzsk/OgoHtyLdFiM+5DplKuAOxeVMX27b3sHBBPhdcIMzZjjZzFhthMR2suXkAh8OP0xlgyBsmPU1F+cwstm3vweMexpCmlMaCkAmmcWVlJqqrhLsmc+fmsnVrN13dXomoUijkFBakkR4WLh7/0yTHJx3xWIyIw0G4s5NIXx/h3l4idjsRh4N4cCTuGZkMucGAPC1N+KfXoczKQqbTIdNqkWvUAqEgV4BcJqQlRiLEQsPEQyHiw8PEQ0GiXh+R/n6GOzqIeb3EQ6GRdSiVKLOyUObmoiouRm21oioqQpGZecI/R1FRV11lGeNHplIqUwipjt5eXnr/Pb5+yaXSMdxpGxJG0xKvt1rTWbSogL17+8nK0mDQK4+pRhL/btArE98TWJWIDBcJo07bENu29/L55Tewu3wrj7/xd/YdOcC3Lv4yC6umYbWmU2w1YtAr6e72sdsVZPYcJN8rcf0NjXbqGwQDWZEEg/HVLMmEldsVYsuWLowZGmZVmiWF5OhRwtHEG4wQeSLm1+QSHo4xd2E+xtoiDMuX49u0Cf/WrXR9/WaU+XlkXX0NpksuYWvjIDabh3nzcliwIJ9Nm7rYubMPEFRQ4yXwXXTRzEmF1AlGOBymqKiI3bv3YLPZeOSRR3jkkUcwmUycfPLpZOlqqM5YwODeQZzWDMxFadJrN23uYtu2HhYuFGrCeGbONtsQO3f20do6gNcXEerBQIBgMIrZrCXHoqe7x8u2bd143MOkJaToba2DWIvTcbuHWb5C8DWxWtPJy0/D5QrR2+OVTNKFupHB+q3iWOkk/leRmWvg7JuqaNvRx6bn2qh7rg3rSWYwqdm9xyGNkY1G1eyR5iMej/OHPz/K6pVnY+/VSBe+/f0j43biuTA0HKF+l53q6pwUAvZYyqX+/gDdPT6mTc9I3HGOS+uxdQ4RC83livMeYXP9A1xw5RnccuMPqZlzLgX5aZgytBKp1do6gF6vlIim5G0QlUQgpGLCxOpGkfBRKIS05bq6LnR6FUtrC6iozB6T3JespEp+PNmjKtk/Kjspznw8tDT3U99gJzdPz/RSE0ajmq1be6RUz9raojE1TfSyc/VN3pg8kQiHw0ybVkZ7eytvv/02b7/9NgCzZpQxJd1ATUEXhZlFZOpSlQ6bNx9h27ZeFi7MG+kRRpk5i42k2xWioUEYj12wII+ODg+HOzykp6kpL9eybVsvbvcwBoOKikozDY12ZDIwZ+komzHSI8ybm8vWD3qSeoRM5Ikeoe2IUAsUSTfCJjEJEZs3H2Hdug5WrSph6dIiDBkmLv/xfbz64L3s3/gO02oWEo/HkclkHLbZeG/zFk4qO1k6Tzv7AyM9RqUZq9XIosUF7N3jIMusxaBXHVONlDyaJn5PxB5BXE9n5xDbtvVzyVm3sO/wep5/7e+02/ZxwxVfp7pqKlarkeJigeTt7vay2+WQVIzJ6xeVREajOsX7ajwSK5nwEXqE7tQeYRQhNx7xBmNH8+bPzyM8HDsuJVdLsxOHw8/06RmUlWXS3DyQmDoRDNVHb7+4Lr/bhUJ59PH9fxWTpNQJxDnnnINCMYvXXvuA3bvfp6VlI07nPurr66mvr0fxhccpNXSRuf5Zdn7n+2zPOpWq02bjdAbxeIbZvcdBe7ubJUvyUWuU1NV14Q+EEyoQDXl5eiDO/n0D0jxtNBqlvz+IwaDCaNSwcEEBTmdAShdTyGVkmjSsWFEoJX0BzJ4DHs8wnUc8aDVKDHoly5YXYrWm8/69QsHxeof/E7vxE4l4NEq4u5vhw4cJd3Yy3NlJpLubeFhQD8gNehSZWShzstFWVqAqKkZltaIuLESZa0Gu0yNTi8onNTKVEplSmaJumXDd8ThEIsSjUeLhsPAvFCLqdjNsszHcYWO4o4NwVxeRnh6877wjkWIynQ611YqmtBTNzJmoS0okMvSj4u11HTQ02HE4AmNIqWT4g0HOuvWb2Pp6ONjZy/evuR6Auroumhod7NzZxxc+P5uKimyuvnqWZD7u80fwHUWNBCPkTyAQ4eDBQQwGFavPnJYgtPwY9EqcTuGuypFOL9/+4hV8dnUtV915F1944LvcftmNfOPac7DkGITUOymqVQuQInWvrrLg844YyB7Nc81qTafTNkRDvR2NRo7PF8blChEKRskwace87nj920R/OLVGOGUrtFqMq1aRfvLJ+Bsa8G/Zgv3++3E89BBey2xk7goq1yznttsWMnXqfgwGlaSCmkzg+3igUql44YUXeOGFvTz44NMcPrwFp3MXLpeLl1/+B8uW+bCWLCE/AltfOYgzNsiwJoulSwtwOgW1xFtvHiY3V49GnagHCX+PObMFc2i5QobHMyw1ttFIFIVSgdmslRLEFi4s4EinB41WSW6uXkrou/LKSolEyLEYWFpbQCCxfGuJEY1aKYwYTR3kt09BLBqno8M9eez8D0Mmk1G2IA/rLDObn29j35YeonHYf9hF0+5+rr6q8qijZE/9/Ql+9ssf8bsnH+Wn33+S8nIrer2StWsP0XZwUFqGSDxp1EqmT8s8SvLkCESSdmhoGH8gjFaj5LTThOU77H70eiVHOj0MDAQpKSnmlaff4p4H7uTeh3/ArJnr+NZNP2XFCuEcuX59Bw2JWHBR0SWm8gGSkmhJbf4xjc+t1nRsnUMc6fQAQgJaIBAhzaAcd18dj5F6RWW2ZJxusw0d9fmiX1x1dY5EaOh0SinV83jXOYl/HRdffDF6/Tz++c8t7N79Hvv2bWJgYD97D7SyFygt/y5ZMhu7X/sb29dl0ROYwaIVlSM9wu5+2g+6WVJbgFqtoG5LN35/WFCBpGvIzxM+Q5E8Kikx0tcnpAvr9SqM6RoWLswXeoREuphCISPTpGX5ikIp6QsEokvwMROSyKxWI8uXC43qxh3CcwZdISYxidF44ondvP12BzabR/I9VarVnPetH/Dun35P/euv4He7KD/tDK780k30OexcfPYRLjrrCqxWI6+80saWLd0jPUKlmauvrpQMuX3+MD5b+Kjm3CL5EwxGaWsbJM2gYvWZUwVCy+HHoFcJPcJAkCNHvNzy5Rs4/+zl3PTtH3Dbj2/ma1+4hRuuOwuLRc+OHb3sSvQIABkmjaRggrGG4kczP7dajXR2DtHQYEejUeD1hRl0BQkGI5JCMhnHa6Qu+sOp1cfuKcUAhKpETcjN7UKrUUjBB//JBL5JUuoEIxAI43KlM2fORRQUnEVtrZH09HbefPNdzrvgZApPyib7slV848yz2di0kxk78ykuWUBp4UzC/hgNB/o4fNjN5ZeXCwe+O0TnkSHMWREpJQyEO+ZGo4reXj+lpVkJJnVkZMjtCnLokIfeXh+xWJwDrS4GXc2SOsVmG8LvD5OTo8Pvj+DzR6QRI7dbIDS6uv53pbmxQIDhQ4cItbcTamsjfPgw8eFhkMlQmM2oCgrQzpqFtnwm2jlzUOflIdPrkesNyPU6ZPITpyqQyWSQGONDq5UeV+Xno02k3IGg3IoHAkS8XsIdHQT27iW4ew+hAwcYevttPK+9BnI5quJitJWV6ObMQVVc/JG2dbT2ajxlk16r5YIlq3nopSf54+uvsHlLB19ecy0AkUgMlytEQ6NdIraS79Y6+wPIFameZ8lIHsFrbY3T3x+gpbmfgoI0YlHBwL+oyEBjo4JIJIbNNsSimlms/cUj3PzgL7njz79i7aZtnDL9DIoLTUyfbpISlmy2IWmMQ3w/RyPfkmHJMRAMhWlucWLO0rJwoXDRn5zedDwYvT8nUmc5XMPs9lig8mxmLQui3tdAUcNuvundQfSN1+lVrebMM8/kwj+feVwE6CROLDZvPsLGjX0sX/4ZampOY3g4zNSpbuz2HVRUzCc3t4iZZZk888ib/OiRy8nJsPLmuzVYi2qQK/LxeuO88cZhrFYjGo2cUEjOoUNCc9vb42fqVJEgStSDHn9Kcph4vKxfH8Zh92MtNpKTo6OuroeeXl8KieD3RwiFosTjAhkgEgOHj8QAiETh3XdtXHfd7I93J07iEweNXsVpV1dQvjiftb/fzXxrBkdcQRob+qiozJ7QZ2n1yrN4/E9/oLO7ja999zKuveR+plnLGQ5HUSrkeIfCNDbaqajMHnPOc7lDuNzBFM+zZFit6bS2DtDdM4RrMERBoUEamYtGheNbrZYjk8tQq+VotTru/v59nFS+kLvu/RZfu/0CVi39NsuWLMZaItwhrqpK9ZwSv1s5FsOYBMuJkGMx4HQG2Ld/gPKZWSxdVoTTGTiusTsR4+3PCWvCKFWluJ7k9SWnek7i40UgEMbjyaC6+hKKis5lyZJ0DIY23ntvC5+54gZmTNfR1/gOX7z1Wxzs+xtvby6gqHg+xYXVhEMx6hvsHDrs5oorKsjIUONyBens9JKVFRljVhzwR/D5wixelJ+itrDZPLhdIdrb3fQleoTW1kFcrhZJnWKzeejt9aJSyVGrFSmNajAoBCS1H3R//DtwEv8VSB7QSPYxPe26L2LKzeO9Pz9OyPcCK5d9hr+9+Beee/UfbNveyZUXXoffHyUSieNyBYUeIaEISlbwOPsDKBSyFM+zZCSP4B04EMfRH6ClxUlBfhrRaByfP0xhYRoNDXIi4Rg2m4dF8+fx198+zvd/eg/3/vpu3n6njrkVaygqMlFaasKYrgEYk8pnseiPy8cJBMInGIzQ3OzEbNaxaJFwnWVMH6uGOhpGK8UmUmeNVlSK43iA9LO2tpDa2sLjXve/E5Ok1AnGnj397N7dj16vZP78XBob/VRUzOLeey8cucNcsoR96ZkE3AM0erpp3P0y7Ia8zByMFJEbm8qWLRlMm5ZBKBgl06SRGnRLjoEM05AUZ2+3+9m0qYtTTy1ifk2epDaJxeKJedq0RLRkgO3b++ju8mHO1o0xm+53+Hjgge3MmpUl3Y2X8b8zrhEPhwUCat8+gi0thDs7IR5HptWiKi4i7dRT0c2Zja6mBmV2DgpjOnKD4RPV6MvkcmQGA2qDAXVuLoaFCwGIDQ8THRgg0NSE/4NtBBoa8L7zDkOvv45Mp0Mzcyb6efPQzp6NXKM55npOX1VCTo4uZZZ5Ip+lr112IVq1hvue/R2trkYeevkPfGXNF5hXk4telzoPnawaEqK4Yd++wZRRwdFjrVZrOu3tbg4cGKS5xUlBQTp6vYqGejv+QBiVWkFamkAICWOHTu7/0m3c98dneWnnS7TYWjl71qV84colY0zOP2oKX3WVhe6En0mx1Tiuefpo0mn076P350SKKpttaETldZqV+VdcQcb5foJNTQQaGnC/8CKDT/0FhcmEYelSDMuWol+wAFVh4eR47seAdes6WL/eRlaWltNPt9Lc7CctrYzKyvkpRvNp04eQyeQ43DYcbhs7976IQqGmwHISw1TR1V1D9ZxSrMVGenv9HDrkYepUI3NmZ6c0zXqDirVrDxKOxFm9eooUAX/osIehoWFOmp1NVZWFpt39eIfCbK7rlnxurNZ05s7LBeI4HD4euH87S2rz8foFdYhMyIb8z+3MSXziUFBm4tp7annhN42wz4UqCAM9Pmxd4yubLDl5/OHhZ7n4mgsZ8h/mj3+/hasufIAZ0ys5+eQibB0eiTwZrd4xZQjL9Hi6CQXD0rhgS3O/NPq3cmUJXV0+enr8DA6GBKJ1WPBbmzrNiEKpQKtVoFAKdbuluZ/4cCVXnPdr/vHqj3npzW/T1n4lP/zObVx2uTCWJ/g5cUwj86PBbNZiNKopKk7nggvG9+1LJp6AFBJqPKXYROom0T9KNEWvmZ93TCP0SXx8GN0jNDUFqKiYwz33fFaqB9NnXIHza98lFIlyoKeTAz2dwItYsnPRKqbgD5expS6DadMzCAajZGZqpAbdYtGTYdJIjbPDHmDTpi5OO62Y+fPzJLVJPA72Pl8ifj4Nh8PP9u29dHd5Ez2CkXlzcwGh0a2r62JLXTeVs8wMh6PA5Ej3JMbH5z8/G6vVyKqEt9NoH9N5Z55LWpaZtY/cz7KcDLSXfIEnnn0CW99Wnvz7MFddeAM1NRYheS65R0giRm02D9FonH37B1JG/UaTMFarkfaDbg60DtLcLJBSBoPgueb3h1GrFaSlqbBajQkjfxc/+uadPPS7P/PulufZ376Pk+dfzTVXLR7jY/VR1URCj+BFrpBTXGwcd+RuIu+p5PefrBSbSN1ks3kklZeoxDpWKt9/EpOk1AnGqlUlvPtuJwMDQfbsEeY29+zpx+cLc911J0lF51DHARobG3n8Bz/lg/ffpMHnpXfQQS8OfBn9LAvPx+kMMm+ehYb2PeiCZvbtU9HQaKfEapRUUy+91Epfn4933+1k2vRMDHohRayh3o7D4aeg0MDll1XS0tLP2rWHUChk2GxDzK/JS2lyH3hgO3v39uN0BoglNIri3cJPI+LxOJHuboLNzQRbWggdPAjhMDK9DvXUqWRceCH6BfPRzp6N0mRCYTT+y2Nv/ynI1WrkeXmo8vIwfuYzxCMRIg4Hvi1b8W7YQKChgYEnngClUiCoFixAN2cO8iRVVjJG+x3BxHdtLTkGvv+lS3APhvnd20/Q4WvmnfaXefibt5KfO3J8TaQMaqi309Y2iMMRYPPmbvwBwfhPq1WSYdIyvyaPNWumkpGhwWzWMntONuvXd9DWNkhBYRoLFuRSXWXBkmNg/foOtm/vo/2gm8rsGkJTjGzqeZnnm3/PwiM65teslrZZ/G6MNjkXHz+a55W4bxoa7RMqvUaTTqN/n2h/jjZSd7tCTJ9uwm738eYbhxgORaitLcKweDH6hQuJDg0RamkhuK8F//btgloOUGRnoy0vR1tejqa8HHWJFVVeHgqz+YSq/P7XkVwP3n7bRjQaZ+PGLrKyBti+vUeqCTfffANXX30Rr73yOo//+u807tuKy+egs2cXnT27WDq3ECilqsqCc3AXR7oHmH3SUvr7A9QnDG3nzBaO/f0HBhkORYlEYpSVZmK1pqNWKQgGo9g6PNTWFnH1VZU0NtrRaEdMmmvm50m+NQ/cv13yzMnJF5pyhULBqaf+e+OAJ/HfB5VKwaXfmEd36yDr/9TC1pcOkjs9g5kzMsdVh5aVFfPNLz/KQ7//BoOeA/zjte/w2weepra2ktpa4TlHUwbVN9hpanTQtLufs8+expY6wfcG4LLLK4V6UKeRxq3Xr+/A4fBj6/CwtLaANINSIr4213VTX99HXq6Jk+f/mN2tf2N36595+A9dPFT2KJmmrDHkT0tzP5vrhJqwbGnhuJ5To8mi8plZhIIRymdmTbgfk4kngNEpg8n7IBmjySyXO8T0UhP2Ph9vvHmI0HBkUhX1CcLx9AgymYzung7q6+t59OEnefetV+joO4K9vw/oIxLrZzjRI9TMy2XP/gY0qlz27VcKPUKJUVJxvPhSK3a7n3fesTFtmkmKfxctGAoK07j88gpamp2sXduOXCHHZvMwf35eSiLXU3/ey569TpzOIPGY0CPMLP9kNraT+M9i6dIiaWwPGNfHdMaipWj0abx8/0+Yn6FhaPXV/OONp+gd2EXDgZe56zvfIjc3yX91AmVQQ4OdtlYXDoefzQmLA7d7GI1GQYZJw/z5eaxZM42MhBH57Dk5Qo/Q6qKg0MCCBXlCj2DRJ3qEXtrb3ZQWL8PnzmJ3+7O8u+Nhlp+iY/78vDHkz2iTc/FvR/O8MmfrqK5OTRocjWTSCRgzqng0ZVQymSUm9/X1+XnzzcMMD0c/Maqo8TBJSp1gLF1axD33LGPdug5yc/Xs3z+IxxOivz/A3r1OiZSSy+X4/TnkLPwGD950BzlvPs66F15kczCAtXIGU0rS8AxFCAyHuPvvDxKLx8hOyyZLU0BVWRnXX7YCQ1oGy5cXsnFjF9OmZUgpXvNr8qRmWKtRUld3hA6bR/KqMuiVUkKZqNIQJIUmyspMbOs3kjtsJj/n0+UdEo/HCXd04K+vJ7BrF1GnE5RK1NZi0letwrB4Mbp5c1GazSgyMj5RKqgTCZlSiSo/H9OFF2C68AJiPh+BpiY8r7+Bb/NmBv/4RwaVSnQnnYR++XK0M2cek6g4ljfSfd+9klmzcrj54ft4c+cGnnh9ChcuOlu6w+HzR8ZVBhn0SgxpShyOAPUNfei0SsrLzUydOmI4bs7WUT3XIh3PydJUkSCyO3xoNSrMWVoCgQixmIJzT6/hmzNP4Z6//I6bH76PhoPN/PyrX0WXpBYbbXKerOQ6mueVzx8hFoXubh++hBIl+XnJSsUdO3slMll8fPT+FM3ltRphHEVEb6+PmeVZtLe7OXjQhVarlBoQhzOAzRbAOn02OYsWEQ8GifT1ETzYRqSzk3BPN4GmJmIej7Q8xepzmfHgvUf9rCdx/BhdD/r6/Jx0UjZ79vSPqQktLX7aO6bwkwd/Q45axQt/WM+OPZtpc9Rz+vJaghEFfn+E9iPrePG1J3n2VT0FeeWo5VbmVlUzf8HZzJmTg63TQ3eXD6NRjc02RM18gbhtbLRjLTEm/NJC5Fj0FOSn0d3jSxmLcth9WHL1BEMmltTm02t3kZlmISfLMuknNYkJUVCWyaV3LGTzs600b+4hzaRBV2oa97nXXLOACy58gyuvv4g9LfV87btX8+6rH9B9JCKRpX6fcJ4brQzS65W0t7vwDoXZUtcjBbSIRNPoZL/k8bWKymxpvHDnjl40GjlGoxqTSUtubhq1td8hFD2HX/7f7ay5+FQe+cVjzJ+7KGXbGxvt1NcLNcFabJS272i+V8kjhBORV+K5X69X0t3jIy9fLz02nipKVIgl7yuA3h4hqan9oJuDbS60GqEmHI00Gw8Ou4+2lgHUZi2ZeZN+UycKH6ZHCAZzsU67nD//4zsUZrl4/IFf8O7GjeQaDZSaOhmMTMPrG+KRJ38GQFZGLum6ImZVzOS6q04h3WhixYoiNmw4wvRpGezbNyCleIljT1qtgrq6Ljo6PJJXlUGvSkn7s9v9WHINlIailJWZ2NNqwOTTUlQ4SUpN4tiYyMe0ZHYVl9xxD8//9E5OLogy7ctf5b7f/oZ1G95g7pxprFh4VlKPEB5XGWTQqzAYVDgcfurr7Wi1CioqzEydkiERMyIJJB7PKT1CQjFkt/vRapWYzToCgTCxmJKzz1zMN0pP41eP/Yrbf3InLa17+M7NX0OjHkmSHW1yPpGSKRk2m0dK1APGTdYUt100Wc/PM6QQUOORYw2Nwvv3JdUDcT3tB920tbnQahQSKXUss/hk2O1+2vc7KLZmHvV5/yomSal/A0azxMnztMlYt66DdetsgJU7H3yQous+x5pf/ILAzp3g/yvuWbXs9GRhSc+j19NDv7effm8/B5xN/GPr88jlcm6+5BIeeeSL2B0+DrYPElV6iERzqKjIlhr9LVuEO4ndXT6uvqYSm22ITRu7iEZjrFkzFZ8/glwu44zVUwH4XPg6idz6b0c8FmO4vR3/rl0EGxqIulzIdDq05eXoL/ks6aeeijI3D2WmCVnSieZ/CXKDAcOSJRiWLCEWChFoasL90st433uPwCOPIDca0S9cSNqKFSizP/oYwKyCOXxuxbW8t/8dbjj3XNa/1Utjwky2usqS4iGVrAgSlX56nWqMYglgd5ODXbvslJaapHS8yy+rlP6erBJcvLgg8ehIquVFcy9nbuksfv3Kn9jW3Myf7riDGVYrAJkmDTqdkiklxpS71Ml3rpO3ddfOXjZs6KK6OoeZ5Vm4XUGJvAKkxECRqBLJrWN93xoa7TQ2OCgtzZQIuORtWbIkYbyb+CmuK5k4k+l0qKdMQT1lCvF4XEh1DASIuFwc+KAV98FOjLIMymKxSbXUCcToegBCUsromjBSD+DOO5fyzapLqX9rCU3vdDIcjKIxacgxqXG5hlGr0giGvLR37AJ2se/QSzz90o8wZWSy7uUtRMNabLYh1FoPHo9OasZ37uilbnM3Pb0+1Co5q06fgilDw8aNXTTUO1izZip+fwS5TMbqM6ZSMz+PnTuU3HXl06QX/GeMLyfx3wO1WsmpV1UwrTqH9X/ex+bn2qhYWoB11tjmNT0tndu+8ht+8NPrWbPqIjKMJl5vbKahwUFhYRo5OTr0iXqQTKhUVGZLSr9kQ/5koqVpt4NdO+2UlpmwFhtZubJE+ntL80g9mD0nh8qKbMl7SjgnZ/Glq37Pq+t/xuVfOI9bv3o7X/rc15DL5bQ09+NwBCgpSaesLGvcmqDXK9m5o1f6/Y03D9PaOkhZmUk65+/bN4DLHcKUMZSybuH71isRS8cyMG9ocFBalsnc6nFqQpIZOxydNBsPNtsQHR1u9Hl6Zs3LPebzJ3H8+PA9glAT7v79H+k7dJCtLzxD+67t5MoOYj+QTrYpn35XLwPuPgbcfXT07mTtu39DLpdz0/Wf59e/vh673U/bwX7kyiGi0RwqKs1So7+lrjvRI3i5+ppZ2GweNm7sIhbtZM2aafj8YWQyOOOMKQBcueoiNN49rDz1lI9pj03i04q86TO47O77+MePv0+up5vzT7mExoM7uOT883jj9e6UHiHZQyqZUBGVfnq9aoxiCYQeYeeuPsrKTFI63uWXV0h/T1YJLl40cg0tplqeueIGZs2cw1+ef5KdjU089LOfMKVYUI2bEj2CGAYgIlnJlLytO3f2sn69jdJSE1arcYwiSkwM9PnD0t9FYuloxJHUI5SZJAIueVtEE3Pxp7iuo5nFJ8Nm83DwoAuZ4t9LG02SUh8DJmKJxXlb8ae+uoqSp/6M97336H/sMdjyOqcZ0rBULucdbw4erY+hmB1nsJdDfYfpcTrJMwskgSXHQK+7h2VfuhG1SsX0wkIKzLmkazIwp2fiQkF6yCpd2EWjMSnqdWUiJnO8C6z/RsSjUUKtrQR27BCUIF4v8rQ0tLNmkbZiBYaTV6DKzUWeljbpqzMKco0Gw4IFGBYsIOrz4X33PdwvvYhvwwa869ahmTGDtFWr0FZWfmjiYjgUoUhfzrfPnsv6t3rJNGmoqs6RlFKiQTnA7qZ+6uv7mDs3l9lzhMfPPW/6BGosGTIZOJ1BSUWU/LzNm7tpaXFiytRwxhlTUkYPnf0BFEoZnz3ldC5evZgr7/wRy774Je6+4St86aJzGHSFUCrkGDM0KctMVjKJPm4AGzZ0cfCgC4BLLqnA7vCRYRpKIaDkCogJlgxHHctIxnjqr+T3ackZa7x7tGXLZDJkGg12TwSbU4thzlz0+SXkFv73fu//mzBeTRhdD9QaJYvOmcas5YXsevMw+7f2suetI5w1+/MUGs5Dm+VGqeliZ8MunK42OrtaUSiUZJqykMlk5FgMfP6mW3hv4zqyzTlMn1qGOTMPGZkEAwYUwUzicWtKPWgcpx5YrenYdzowZvxvkvaT+PAoOSmby36wgHVPNrPn/S4ctiHmrCxGNSoZSKnUsWL+j5HHNLQ090uqJlH9I57PxWS91tYBVq4sITtbJ5FC4xMsSTVhlOJqc51QDzLFejDKb6m/P0CWycJ9d/6JN957nPsfuYe33nmXn9/xEI2NPrq6vClJdiJENdPOhGePiA8+6GZwMESGUZOyrS53kH37BlAoIBodWcbx1oTRCrDk7RB/JteE412uSADq9UpKSjIom0DtNokTh+PtEWRyOXnTyzjvm9+n5+ABdrzyAvL6HXz3M/PoGdLQPqRgMBzE4++hs/sQDqcTS06iR7DoOdLj4pIvfBG1Ws1UazGW7DwMOhMmo5lARIE3MFVqnmPRznF6BKHRHerUM+SbvHaexImBuaCYy3/yAH/89jdZnOOhZtaXeOP1bkwpPUJYMiiHxM3o+j7mzc1l9pwcfP4w555bOiG5ItSDED7fWBJmc10XzS1OMjO1rD5jSorfkrM/gFIp58I153H+2Uv56re/xzmXX8PtN9/GFZ89C1eiR8jISE3OS1Yy7UiqCRs3dNHZOYRapRijjBJJIoVCRjQalx5P/jkRxlN/Jb9Pi0U/ZmzveJYtEmoGvYrp000U/Zt7hElS6j+I8e6gy+Ry0k87jbSTT8a3ZQvOPzzOrO07mBWNEsyZxkDxLHx553LSvALsgwPU73Tyhz80sXRpAb0eJzqNhkAoRMvhw7QcPpyy7M+tugy3awZOvZKYzsnfmn/DS6167nhGRZZJT3ZWGmq1igJzNvfddNPHuCf+dcTDYYL79uHfuZPg7t3EAwHkGRno5s4lbeVpGGqXosq1HJeR9yQEKAwGMs4+C+NZawj39DD47LN4Xn4F56OPosjKwnDyyaQtXz6h95SIZ59tYePGLowZaqKRuOBbFotTVZ1DLLOTZzZt4ivnXQGMXDC3tQ3Q0jJAerqKDJMmRW2UbHTu7A9w6JCb6dNN6HQK9u4dYOpU4QQrjrxFo1G0WgXRSJy1aw8BI75PPn8EjyfM2+s6ALhy7o2s3fMS33r0VzQcbOaGz1wJkGK2OBrJF/srVggnffHneGONyUopZ3+A1tYBKcRgIlRUZGNOjKTYHb7jMmA/1kglkKLUqp6dM0nS/gcxXj0ASDNpWHHpTOadMYWm9Z3s3tTF4qlmFJoc0nLnMMVyCrPn5TKtNJ3X1u7klw/sYEltPrW1RQwNCelI/U4H/U5H6nIN/8/emQc0dWZt/BcSCCQQ1oRNggtUFhX3Fqy2jlqXLrZ20+7rN92m09bu+75OO11nuk5bOzPa1S7WLkp12gouIKAFVHAhyJawhEACgQS+P8KNSQiIztiqfX9/fEjue9/cS+fLyXnuOc8J5883Lmbb9kZ0sSGsXvcQ/ykw8Np7YXR3BxAZqSYmRkNQYBAZ4TMZNeHMX+XvIDg+UGmUnPGnLIrXVLPpqz38/OEuxp+mJzJW7YoJP9YQHh5EbZ2Nujob+iQjp82LJff1J7nx6vtwdkd5fbbm/lBFUVED3Y4eMtJj3NVG0jTicWO1aHVqyssaXTEhJYKQ4L6YMLIvJpQ1YjBYQAbBwYHs2NniNkmXhJ3aOiulpU2UlTczYcL5/Pn/RvHWBw9w0bXzufPmvzB+/PBBJ+f5ij8nnpiAwWBxVyxJ4pXJaO1XKeVp2n6waibPNsWBJhJ6MpAxui9SRVVaWhTp6VEkJIQe9BzBkWGgmCALCCAhNY0zb7uHtkYTX7//MT3FecSHtYJMjlwzhVHjr2Z3Qw/bf2knL7aGnJxETE1NKJVK7HY7Oyt3s7Nyt9e+F519DdXVw2k12wmPaeL9z5/nx2IVL74TSGSEmpgYV44QKg/g1MRo7xFrAsFh8sQTeaxYsZNE3alkR3xPcP0GdrSNYdSYFGTKnXz/088sOcf1XVwSUCoqW9hR3kxYWJDb2F/C0+i8qbGDvftaSUmJIDhYQVlpEyNH9lkm9LW8ORw9hAQr+nKEPQBuYcdq68Zi6WLN2n0AnD7jVv6z5UMefOYxynZt57zTLwMOliMcEH+m9+UG0k9/BuWelVKuHKHFPcRgINIzovtyBIur3XYIJuwDmaN7IgllaWlRjBunRa44st7KQpQ6SpHJ5YSefDLqnBzse/Zg/uhj2r7/npBNX9Ijk2MpHIFseBrVJb3UtLueYI+fkEzJux9h77XyxXdbyS/cTWi0g97ADvYbGxidnEx9vQ2jycb+hiZsXVZsXS4T24Y2oNr13uEqDdsqdvPGPXeRMWLEb/QXODg9djudZWV0FBbS+csv9HZ1IY+OQp2TTeicOahPOonA6Ohj1qD8aEEmkxGUkEDsLbcQc911tH2/BvPy5Vg+/5y21atRT5tG2Ny5yMP8K+g//VRDTU07nZ3B/GGWnsgIJS1mO+GxXSx54ll6e3sJDw3ltiUXuc9pbOyk0+6gsbHT60u+17S5iGAqKpopK28iMSGU8HAlNbXt5OfXkZIa6dXyds45J7Bxo6tEfcOGWrcoJI0RLyxoprm5k6ioYK6dczkXBp7MQ//4OwXlO3j/wQdJHzFw26Kn+DNxUhwxHkblcEAcG5+l69eil5tb5S5PloSyvLz95OfXkZ0dT2Rk8IC+W4PhucdgJrfeCVTXoHsKfltCI5TknJvC5NOHs6fYRPnPtdTuaSW0Bwz5Dchau2nYE0R5met/T6kpkdz9p38QHSPjp7xift5QQmRMJ4FB7dTV1xAcHIzN5nBP6mrvaKSltYGW1gYAjE2ws9L13ru1Bqqt5cy9ZtlvdfuCY5CAgAAmzk0m4YQI1rxTysaVexh9Uiw//VhDTW07nfZgJow/UPHzwBN3kPuf76jcs5OP3luFNuZA1U93dw+Wti4MhjbmzXV9LzG3dlK01eieNKfVqd3m5RMmxBKqVrhiQl4dqSmRlJQYaW/vZsSIcE46KZ69ey1UVrTQ3leV5foc7KXF3El7Wzfd3U5mz87mr499xhsf3Md9T1zJn/54OyeMvm3Ae/YUf0xGKxnp0cybO9yrfVASniZN7h8PiqV4kOERD/LqyM6JJzIi2EtEG2pLnuceBzM994oJvYMuFfzGyGQyNFodS26/ke6ua6jZUcqa5V9hripn139W0QskOkLY9XMVEfIxaBQJrPn4K5y97axaXcDmgkrCI7sJUFiprW9g1IhkKivN9PZCj7wFW2cbtk6XN1uTGSr3ud5XExLCL2XBzNq7l4mxx77Nh+C3ZcWKneza1YLVGkr2xVcSWP0vMuWlOAng7iefBkATFsaVFy12n9PU1Emn3UlTU6eX6OM7ba6ib+peYkIo4RF9OUJeLSkpkV4tb+eck8rGTS6rmw15NW5RSK/XUFHRQkFBM83NdqKilFy08Hqsjum8+MZrFG3fzstPP8Go4QP7q3mKP5MmxaHVqryqkyRxbHyWrt8kPq8coU8okyZhZuckEBkRPKDv1mB47jGY8bl3NdWRzxGEKHWUIwsIIDglhbh770F3y5/Z++3PNH2+Ck3VLwT/vIrLgM5AFbb9CZgbYyiLjqMlKILGyjBC2lMYHhvB3Lkj3F80JE8be3cGKvlt1JmaaTZbyRgTQWOzjV0VjahUASyYlkZacvLgF/cb0NPRQecvv7gqosrKwOFAodMROvNUwubNJ2TiBAJjYo5bk/LfGnlwMBFnnUn4GafT+UspTW+/Tfu6dbT/+COqKVMIW7CAwGjvD2fJjH/69EQuuCDd69jjpj9y3xuv8/DbbxMRGsZVZ7qqMWbOTCI4WEF2djxNjR0UFxmpNlhIS4tiwgTX2Hq9Pgy1SkFtjZWubie1dW102Bw0N3eQm1tFsl6Dtd3hnsqXkKBmw4Za9u4zU1BQz7RpiVx6aSazZiUTrAyker+FpGFhfZ5VGcycksXljz7KqTdcz3M3/YnLFiwYsJLInxF5U2MHa9ZWsWe3GWePa51n6115eaN7+o3nU5b8/Dr35LOERLU7IPlrsx0Izz0GS0I8BTVHixCljgWCghWknRTP6KlxlG83Ufyf/WDpxlDaRHJwEEmTEghUK/jlx1oaLXaqQwMpzJdja83khBE6LuvzFZT+dzRhouv/n6JinmPb9r20Wy102u1kZkawf7+ZikoTk0ZEcNLEU3/T+xYcu8SNCOeC+6eQ+145O/LqmT0+lh9kMM0nJjx015P8UraNqup9XH79hSx/53PCNRFAX0xQKsjOiXdPnVQqAxiVEuEyHZcGX0QHo9EE0dZmd1VF0UOLuZNt213tge1WR9+0Si0hIQpazXZMRhvvvredE09MYN7c4Vgs3eyvtjAsKYxxY2PQ6pKZOXMlr771Ai+//hybC/P565N/Q6cdOCH39K6aPn0YWp2ab7/ZzSefVBAQ4Iojnm13kl9VYmKoVyVWft6Bz/LERLWXaDXUljzPPQ4mSnmKauYG66BrBUcPgUFKho+byGnho9hWtJ84jYXi9Ruw7ixDE2hk139ck3frNwbQKw8m1B7IxBgl6tBI9COiiJyhprenF61jP709TjpsNm6efxZt1lZ6nR309jpx9PTgcPbQ4QggKXkEo0aN/I3vWnA8sHjxaFas2MnixaO5774cbK0nsuKhu2hrKOX/llzAm8s/4okXXiRCo+GcMxYAUjyQk52T4MoRio1UV1tIGx3NxAkuDzy9XuMyCq9pd+UIte20WbrY39vO9m0ml5Bj7XZP5UtICGVDXg1797ZSsKWeaScP49JLM1w5QrCC6moLSUlhfZ5VGczImcjNd9/HOZdeySN338k5p88f8B79GZG7coR97N5tpkfKETxa78rLXNM5ExLV3jlCXi2/lDYBkJAY6idHGLzVz3ePwUQpT0HN1nrkcwRZb2+veBbigcViITw8nNbWVjSag/+H/a3osdmw79uHdUMets2bsVXuwWkyEuBw9ds6CaBTEYIjOBSHQokqSkPMsChX1VBvLzZbN21tXTTXt2JvbSc6FGQdHQR0tBMa0AXqUIY9/uhR0e7mbG+nc9s2bIWF2HftAqcTRUICIRMmoJk3D9X4LORRUUKI+o2w791L01tvYfnmW3rtdtd/l4ULCRyiKfqj77zDX/79L2QyGf+4737OnTnT6/jyFWX8/HMNGk0Q5547ul+1kdFkJTe3isKCBtrauoiODiFIGUCXvYf09CgCAgJQqQLptHcTrFTw3Xf7aG7uQJ+s4c47p/arOvKsbBo+Moy7X3uNd79exfmzZvHiLbcSpur/BGL5irJ+RuS5uVWsWVNFd7eTpGEaLr3UZb4u7V1cYuTHH2tQyGUsWZLmThb8VUol6zU0NHTQ1NTBtGkJXuKWP4ZaKeVp0h6l6EImkxF+9sJD9gs7Vj43D5Vj5b56enrpsHRRt9tMdXkzJkMbraZOujoOTGHpdvagVAciDwzA2uFAE6EkLiEUmcxVENFh66a6ykJbWxdB8gCiIpS0W7oI6IVAeQCJY6I4+6bxv9k9Co59ent72fp9FZu/3EtIWBCTFiQTGuHd/l1VvZcLrjgDU6ORSeOn8P7fP0al8v6MXrG8jJ/6YsJ55472qjiSPJG+/W4vuyvNREcHo9Op0WgCaW93oIsNoanRjtPZw8hR4disDrZsqaOu3sro0VE8+ujJ/a7bs7rJ3L6DW+75Iz09vbzw5N+Ynn2q33tdsbyMzVsaSEwI5bLLMtDq1Nx774/s2tVCRLiSpUsnk54R497bZOqgosKMUhlAzrRETp6WiFanHrBSKiYmhJ831LpiQk5CP28sT4ZaKeU7oc/cYGX42JjDmr53rHx2HgrH4j05HQ7s1nZ2FFdSumUbe37ZRXtLE2HBXcjpJlDeg6zXgUIOgYFyZAEBBMjlyBRBOHoDaW2X0WiWoU2Kx9SmJndDB+ExETz25GxOmTVatPwLjgi21lZWPHwXFlMDmyzdrPjqa+RyOa8+8xRzTp3htXb58nKPHOGEftVGRqON3NwqCgrqaWzsICw0iDFjY7C2d6OLVSGTyVCrA+nsdBAcLOe7b/fR1NxJspQj+FQdeVY26YeH8Mizf+GzVas598zTeejO21GFhPS7n+XLy/sZkQ8tR9iPXC7joovS3eKRv0qp5GQNDQ22vniQ6CVu+WOolVKeJu2hyi7kikAyZvxh0L39MdTPTlEpdYwSoFIRkpFBSEYGvddcTY/VitNspmjVFvasK2R0eAc6WTu2hiY6zVaCO1qwlzfQ2+eoKQM0MhnBPQFYQwJQhYXSGxPOXlMPaoeVBNt+nK2tBOgG7pM9kjhbW+koKcG2dStdFRXQ20tgUhKaM05HM38+wRkZKKKjhRB1FKAcMYKEJ59Ee/PNNL39Nq0rP6ehqAjV1KlozjoLRUTEgOcaTVbmZy2g1tjMv9d+w/89/RThoaHMnjLFfTxYGcjo0VEkDQvz+0RYp1W7q52amjrIyIjis5WV1Na0o1AEcNbCFIqLjJSVNxEdFcyECVoqKs2EhgaRm1vFrFnJXsKUVNILrsqml267jenjx3PzC8+zdcdO3n/wQcalpHhdgz8j8vFZOkymDgDmzE4mPT2G5SvKWLOmitVf72H4cA0tzR309roqm6RkISdnmFfikJ4eQ0FhPevWGWhu7sDW0U16ekw/4clTYPLdYyA8J/RFjfztBWjB4REQIEMdoSRlUiwpk2JxOnqw2xxYzXby1xnYsc1EYkwoqiAF7RY7vb29yLqcNOxt9donLEiBUiODABmqsCA6nT3sr7eSoA9jymlHX+Ws4NhCJpMxae5wYoeH8/3bv5D3cSVjZw4jvs9M22S00tgQwotPLuP6pRdSWLyFG2+/ijde+oCgwCD3GmVwIGmjoxiW1D8mSJU+9i4HwUoFmZlRBAYp+PabPZhMHaTaIwlWKqiqstBpd3DSSfGkp0fhcPaQmKB2T87zbIeTJt0BLF5yMl9/tJ6l993AFddfwA3X3MKfr7sThcL767SnEbm014zpie6fkoi0dm0VGzfW0tMDvb09KALlbN5chz5J4zYr94oHfeetXFnBqlWVyGQyQtUK0jNivMSn1JTIw4oHhzKhT3D0I1coUIVHMPGUyUw8ZTIbNuxn7Zp9nHpqPFMm6zDsa2ZHeSOpqeEMS3Qli5IwFSCXs6XQxLr1tZwyx9Uya+wpRqEIwNYVJAQpwRFDFR7O4kee4Z/33s4kZyNNJ09nzc8/8ed77+cfL/+VkyZPAlyiSXCwgtGjI0lKCvNbJaTTqfpVOxUVGdm9u5VRo8I566wUiouNlJU1ER0dwvgJOip9cwQPYcorR8hI59mHH+SkyZN46OnnKCkt4+WnnuAEnypCf0bkrhzBBsCc2S6D9ZdfLmTjxjq+/noPkZFK7HYHXV095OfVusWjnJxELyEpPSOagoK+HKGpE5utm/SM6H7Ck6fA5LvHQHhO6MtIHdw/+H+BEKWOA2QyGfLQUOShoZx43TBOvO4cgANj37u66HU4wOGgt6cHd52gTAayAGQKOTK5HFlgIJr6TqrfW4Hs49fgVy6iczQ301FcTMfWrXTtdRlSBw0fTvg55xA2by7Bo9NQxAgh6mglMC6OuPvvJ/raa2n8+99p/fwLbAUFqHNy0JxxBvLQ/oapBkMbu3a2cOXsi+l0dPLZ+nVc8vBD/PT6G6QmJWEwtGGzdZOZEUN4RH/RxFOIOeecVIwmK9u3NbqeircFkZoayeRJcahVChoarNTVtdNitjN7lp4Ws52Gels/YSoyQklAgIxIj/c77w9/YPwJJ3DlY4/yh5tu5Io/LGbexFMZl6VDp1WTnh7Tr3rJ32vjs3Ss/noP7e3dVFSYkcsDCAlxtSkOhl4fRkSEkpaWThpNHZSXN7Jq1R5qa9sBl5DlKTDptGqvv81AHlTCU+r4RK4IQKUJQqUJ4qzLMzmr73Wnswdndw89zl56nL309vS64kSv5FkrQxYAAXIZAfIAamraKN/ZzJgxMST6mQ4lEBwOw0ZHcsF9U/jm9e0UfW/AbLSRlh3vYbKdyDuv/pvL/ng+/9nwA489ez+P3fcsQJ+xtw2tNsRdTSThWekjCTFSG11gUAAJiaHMnJlEZEQwn62soKPDQWWFmcamTk48MZ7Q0CDWrTMwYWIss2Yd8IDybauLidby7t8+5PV3X+avrz7N97nrueaSxzh1+hj39aRnxPSrXpo3fxTz5o/q9/ewdznp7upFroDIyBCmTo0/aEteU1MHPc5egoPl6JM1mIxWV0yoccUEZZCin8DkWwnly1DbAQXHLr7m6aPHhDF6zMAPHGacqmHGqQf+NztsWBilpU1kZg5eiSEQ/LeoNOHEzbwR88q/cFoSdGefyPr8Tfzxtjv4esU/GZbgGiJhtQ6SI3gIMeeck4rRaGP7NhMKRQBhoYGkpkYxeXIcalUgDQ026mrbaWmxM2uWHrPZTr1njtAnTEX05QgRHu+36IzTGZeZwc133885l13JBWdcwbTJM105gk5FekZ0v+olf68BdHU56erqobPTQcqoCLRaFdk5CYP+rfR6DRERSpqbO2ls7KC8rIlVX+2hxp0jJHoJTDqdyutvM5AHlfCUEvzPkMa+cwgteMNHqQkfp6P+Y1eycqTprqujo6SEjqIiuqurQS4naMQIIs4/n9C5pxGckuKqiFKI/6keKwTGxhL/8MNEX3stpldeoe3r1dg2biR09mw0c+ciCwx0t8gl6zWMTouiy+5g1siF1BnNTJ84hpRhri9N0pfjVnOnX8Gl1dxJfb3rSUNlRQurVu3B6ewhNDSIU04d5u6xlmgx2+k22igsVLJoUSqra/bSUG/DYGhzCzctZjtt7d2szTXQ0eHs85hSkzJsGK/c+DBLX/wbb373AT8VF/PMDTej0/ZPMiR8haH09BjOPHMUP/1UQ3JyKDKZnOzseFJSIykorPcSkKRzpWl98+YNJz+/DrlcRnGJkTBNEAmEkp0d7/p7FhmJjg728o87mDG68JT6fSGXByCXD701c2RKJCNTIo/gFQl+r4RGBHPu7ZP4z4pdlP1cy65fmohODyctzTV1r7FxJBee9Qjr8t7g6kuvc58nDaewWFym556CS25uFRaL63OsorKF/Lw6nD1O6us7vNroTEYrmrAgWpo72bbdiNnsOicjI5qm5g4sFrv7/UpKjO62uh07m4mJCUGrUxMQEMD5Z15LQ42Wj1c9yoNPL+G21qe59qoLBrxnf6LQ7NnJdHR2s7+6HZVKwVkLU9xVToBf0U2lUhAdHUJKaiRqVSDKIAUGQxthYUEkJIaSpA+lqNg7HsDBK6GGOqFP8PslOTmcZPGAQnCE2bBhP2vXVjFmTAyjF97G3q+f57RhcTSekMFps2eQGO96kCuJJq1mu1/BpdVsp67e5Y1XWdnCqq/24HD2EBYWxCmnJjFrVjJGo43a2nbCwgLZYbHTYLSxdauSReeksrpmD/X1rr0k4cZsttPW3kVuroHOTkefx5SKlBEjePKe53jgyb/wwadvkL+lkPtuW4pON/DAMF9haM7s4XR2OqiubkOtCuSshSnuKqeCgnovAUk6V5rWN2/eCPLzagmQB7hzhERCyc5JcLUcumOC62/mK1L549f2lBKZvqAfh+oncyj09vTQVVVFZ0kJHcXFOIxGCAxEOWoUkRdfTOjsWShHjhRC1HFAUGIiiU8/Tee112J64QXavvkGa14e4QsXUrwnlJISl/HqksUZLF9RRun2Fi7LvpKLLxrj3kMSTYwmK+ERbf0El7g4NaP7kpgPlpVRU9OOVhdCTk4CY8dp3YJLcYmRpuZOIiKUOB296PUarDYHoWFBaDSB7n2ldkGlMgBzi53NW+pI0mvc15C7poaM0Jkkjknm+4rPufG1+1kW8xCT0tLcQps8QEZ1dTtJSaFUV7cjl8s4efow97VccEE6F1yQ7iVY+ROQpNcC5NDjhLg4NSNHRtDU1EGyXkNq6oGR6R8sK6Omtp0pU2LZWljPjz/WMH681v23AW+vrIN5UgkEAsGRJkARwMxL0ti0zYjK3E1LqZmJF41GpVGSm1uFzTKCay96k+H6A60QWp2rXdvTrB9cn5cWS7fb9HzZsjJKSxsZlhTG1CmxXm10BkMbra12AgMDCA8PRSazotdr0GiUREeFoNEceJCnT9awYUMtjY0dXm11kgjm7NLzhxOfZZfhLZ566UaaWstZetO9VFa0UlJiJEAuo9rQTmZmFPtrrNTXtZOdk+CuxPKsqJJEp23bTdTX2dz363mPO3Y0I5fjutewIEJUgahUCmJiQjhtznBUKgWrV++lpradqVNiKSys58efapgxPZFJfX6M7pjg4ZU1mCeVQCAQ/JqsXVvF2rUGAB56aBqPFl+EfOe7XDIhnfmLFrpbRyXRxGi0ER6h7Ce4xMep+x50aPhgWSn7a9rQ6VTkZPflCDoVBQX1bC1qoLPTSWJCKGazvS9H6O7LEYLc+0rtgkqlnJYWO5s315OUpHFfQ+7aGobHno4uahQbt33MQ8/dwavaJ8kYfYLbi0oul1FtaCNJH0a1oY0AeQDTp9OvokoSnaSfvgKS9JpcLsPp7CU+Ts3IUX05QrKG1NRI93V/sKy0L0eIo7Cwnp9+rGH8BK37bwPeXlkH86Q6UoisX9AfWZ8oJbX5/Zf0dnVhr6igY9s2OkpK6LFYkKlCUJ5wApozzyR01h8IShyGIjpKCFHHIcGjRjHs1Vexbd6M8dnnaHn/fXJ0CYSOzCHFo8/a82d5eSObC/eztfZnnrr5Gq+KHjjwpVqqIgLcLXD+zL2lfaV2Da32wBNkqTqpvPzAtKRpOcNoauroV3kklwcwPFlDUtLJ6GP0fFvxMafdfDPXLljCKPVEdu82Y7V2Y7V2s29fK4FBchITQv22Q3gKUf7aJnzvsdXcye7dLXR0OFCHKtwthwWF9cjlAYSqAzGZOti0sY66OteTIc/JVr5eWQKBQHA0MH3hSNZ/vYdoaw8bPqlkwml6L08mSTzp7t1BfIKK2afO61fRI31eqlSuqqHMzCgAv+been0Y2TmJVFY0U1Nr5cQT45k3dzgAEeFK9PowTEYr27Y3sndvKwmJofT09JKREe0VDyyWboYPD8fpCCUu9h6mTvoP73zwCut+/JHTpt+NqSHIHQ+amjtQhSiwWrtxuXr2RxKd4uLV7oqxge6xpMRIRaWVzk4ntXVWbDaH+wGHXB5AYkIoERFKPvmkAnOrq/Jr3vxRA3plCVFKIBAcLcyenez1c9aCLHJ7LiG0djkbPvwncZMXsvWXJnZVreehu2/0quiBAxVUUhUR4G6B8zX31us17ol9Tc0dFBeZiIk5UFEkVSeVlzWxevUeAuQBTJuW6JEjHBDCAqQcQT+LhNjhbCj+J+ddcTWXnHcVWs1Edle20m7twmp1sHdfK0HuHKG/F5anEOXdRuf/HlvNdiorW+jsdKJWB7pbDgsK6gmQBxAaGojJZGPjxlp3h8kFF6S59/P2yhKilOAoQSa1dxxm+15vby8Oo5HO0lI6S0uxV1SAw0FAuIbgjAxUU6cQesopBMbGuqbmHcHKLMHRQV5eDWvXOph9ywtkGrdgevkVJhR/Qoh8L45hF/TzXyouMfKXz/5OVWsFpvYGPnjoYeQeXmKSSFVQWO8WdlJSIwlSKvwKQOnpMUTHhPDiXwuprW2ntLSZefNGuSugCgrrKS4yUlPbTmJCKGlpkVhtYV7tdHp9GCdPT0SvD+OtN7exd2c3Z42+nKqRm/jbVx+QkbCVnPjTSUvT0tnZQ1JSKBaLa9ysP3xFsabGDnJzq/pVMkXHhJDed50gY+/eVnfrik6rRq8PY+zYGDZurGXfPgtR0cGoVIHMmJHoVY3lK/wJBALBb4XUnjF7drLb58bS2MGqV0soWLWP9JPjWbzENY1oxfIy1vzwH/6z5RGClEH8+62VjB83yWs/qfWssKC+z5cqissui+vzoLJ6iTFanZpxYyE3t4ramnbCNcp+FUnm1k6Kthrp6HQQHx/KiBEaxo3Vutd5fn4vW1ZGxa5WEoedzB03juX19+7lHx/+kdnTbiU8PIvIqGBysuPp6OyhqamDhPiDe/w19sUDf1VMMTEhzJqV3HctvUCvR/ISxthxMUAve/daCAhwCW2SybpnC6Gn8CcQCAS/Ff7igaf3mfR7w54xfPTovVSs/5Q3v92CsWUPHfYWnn/sYQI8cklJpCroiwcAKSmRBAXJ+wlAOp2KWbNdbXwv/rWQmtp2ykqbmD9/pLsCqqCgnuJijxxhdBRWW7dXO51er2H6dNfPt97axp5KOGXSDTS0ruMfy9/ghBGTyEheSFpaNPbOHpL0YVgsXYPkCN6imFeO4CEaRceEkK6Lxmh0CU1790k5gqvlUK/XMG6snY2b6ti3z0J0dAhqVRDTZ3ibnx8NOcKQRana2loSEgY32hIcJwQceqWU02zGXlmJfdcuOsvKcDY3g1xOYNIwwmbPRp19EiGTJhEYE0NAeLiY2vE7w7MUd9pD5xI2fz6Nf/87LR/8k86HH0ZzxhmEnnKKW6Acn6Xj/LrTefnb11i1YQN3//1vPHvjTV7/uzGarLSa7cTFqQZsgfPEYGjz8mGS2L6tkaKiBmJj1UyZEkuyXkNxidHtTSLt5VmtpdeHUVfXzojhkVw373qyRqXzxL//jqHxda6MvJJzTjsRvT6MDT/XsnlLLSBzG7F7ekwNNvXP935cUwa9DcylY+ERbXQ7eujucjJ1Shzz5rl8rjxFu8mT4kSFlEAgOCrwigl9yYcmJoTz7p7Ed2+VUvpjLW1NnWTOSCQrS4ezZxptXTkUFP/EtTdfwicfrCY56YBXh6ffklRlNJiHkqcHU3bOgXiwbXsjRVsbGJUSyYSJsUAvFksXWwuNAO62O0//peyceJqaO9Boghg1fBx/ffwT3vvwUb7KfZTU5NM55/Sb0GrVmFs7qdpnYfVq1yCX9IyYfj5T0p65uVX9qpg872fS5Dj3tZiMViLCD+wREe5a53T0EKNVMWN6ottg3XcPUSElEAh+a/zFA3/EjkzhnLse5KPHHuCsiSN4d30VX333PQnxcdxx0w1ea41GG61mO/FxavR6zUE9lAwGi5cPk8T2bSa2FjUQFxfKlClxJCf75Ah9e3lWa+n1YdTVtjNyRBTXz72dzNFj+Nt7r1BTv5fzoq5j/mlT0es1bNhQw+bNdbhzBB+PqYGn/kX3ux9PcU3aQzoWHqGku7uHri4nU6bEMX++qyXeU7SbPDnuN6uQkhiyKJWZmclrr73GRRdddCSvR3A0IBu8UqrX6cTR0EBXVRX2igrsFRU4m5oAkEdGEpSSgmrRIlTTT0Y5bBjy6GgCgo/8KEnB0YtvKa5cpSJ26VIizjmHhsefoPXjj7Hm5RF1ySUEJSeTnh7Dg+lnMWaChisee5Q3Vq4kOTaOm84/372nwdBGfb2V0WlR/Vr7/Pkn6fVhzJkz3C3mSMbi4Jo+lpCgZtas4RQU1nt5k/ibYjd33gjSM2Lcr9186enooxO57x8v8VruK5QZdnHDuefS1NSBpbWLpqYO9zX7CmfS/pERSrRaFcnupyP+JyFVVrSQn19HZmYUMX2VUnp9GGGhQVgsXbSYD5j0imlKAoHgaMQ3JkgEBQdy+o3jyPt0NyW51XS0dTNhnp70jBjOPmcZS65ayC/l27jyhsV8smw1UZGuL9EHJvdFMWlynNeeen1YP/8kvT6M0zziQWGBdzzQaALdgzJyc6vc0yn9mZXn5Axzm5NLr6envcHTf32Zr757lfc+2kVr6/1MnpSJ09lDTW07JSVG0jNi/ApnJqMVZXAgiYmhKIMV7kovf5/neXn7yc+rcwtrhQX1bmGuqNhIj7MXs4gJAoHgKGageOCPYeljOPOWO+GvT3H1vD/w5tdreOO9ZSTGxXHReYvc6wwGC3X1VtLSovq19vnzT9LrNcyZk+wWcyRjcXClwwnxambNTqagoB6LpcvtNeVvit3cuSNIT492v3bj/y0iMS6ZZ199hg8+f4ZdexZy+YUX0NTUQatXjtBfOJP2j4hQotWGkJzs3crnW/lVWdlCfl4tGZnRaLWuSim9XkNYaCAWi9wnHvjf47diyKLUE088wR//+EdWrlzJG2+8QVRU1JG8LsFviCzAVY3S29ODs60NR0ODS4SqrqbLYKC7pga6XT26Cp2WoFGjCF6wAHX2SShHjkQeGUmARiOqoQRufEtxP/10J599VsGiRakseudtLKu/wfjcsxiffRZVdjYR551HQHAwi049lRqjkfveeJ373nidEQkJnD5tGtD/y7Vn5dGXX+ymqLgBa7uD9PSYfsKSZwVRSIiCri4ntbXtGE3Wfm11ublVFBU1MGHCgTHhnmbkEh2WIG6cfRPf//ItueXfYPz3Ph6/+k+oQxPd5bCee/tOEAyQu8zMg5SKfvcjYTT1jf2ubXeZGQ4Pp6KimfFZOkaOjCA8XMn4LJ0rUcmvc/trSS2Knn4oniKbQCAQ/JoMFhPOPXc0J5+fSrg2hJ8/qmDjZ7uZcuZI1KpQ3nn13yy6dD77DHu4/rYr+ODNTwkKDPIrtnhWHn3x5W6Kihpotzr6VQd5CkPjxmqprbWycWMdISEKcnKGMW5sjNtrymBoo7CwgYqKZo8WOrxM1BsbOygpMZI2YgGJl6Xzr88e4t2PryMm9mHmzz+TbdtM7pY5T58oSRgzGNqwWbvRakOwWR3uKYO+0/FMxr54UOMa+93R4XRXeemTwsjIiCJUrSAiQsnbb28jOjqYk6clMmlyHCaj1S1gSX5UYvKeQCD4LThYPPAldWo2s66+gd63XuWCmdP5aN1PPPzsX0galsj0k04E+gsunpVHX35ZSVGREau1m/SM6H7CkmcFUYhKQXd3D7V17RiNtn5tdblrq9ha1MDECbHM6hPVPM3IJTqsKi45+y5+KlhJfvFnWGx7uOPG21CrPXOEA3v7ThCUy2XExqkJCpL3ux8Jo9HGqq/2UFPbTl29ldhYFRMnxDJ2nJaRoyIIj5ByhBry82rd/lpSi6LkT+UpsP2aDFmUuuGGG5g/fz5XX301GRkZvPXWW5x55plH8toEvxV9LVSm557zqpaSR0URmBBP8JzZKE8YjWriBALj45FrNASEhQlvKMGQ+eyzCn74wUBNTTuTJ8eRfPoCQk89hd2PPot11WfYtm0n6pKLUY0bx03nn8/eujre/vILrn7iCR6/5B5GxCYxdpzW/QUeDghF5eWNGAwWFPIAd6+2b4WSZwKTm1vleqJS105oqJIkfZiPYNNLR4eDvXtbMZqs/abjAVQb2igsaECfrOGpG//ITyUn8pdP3+SyZ+7gLzf/mbS0dPd7uyf59Y0vTxkVyei0KLeh+WBPsD1bEGfMSKTFbMdi6aK4xEiPE8ZPcFWGPf/8FrZtM9HU1EFKaqTXtQJef4vy8kY2bKglTt3NlKkJiGHPAoHg1+aDD8r4+ecarNZudxKiGRFGzGQtTUWN5H1SwZQzRqCNieUfry7n3Mvms2XrRq7/840svfFJOjqc/aqeJJGlvMx/TNjhZ9CEVqfG2GBj184WrNZuIiOC+4k2FRXN1NfbyM2t8hKmPKfj7d1noa2tixnTx/HSk5/xyaq/8sQLdzFn5nqeeOB5YqJdwphnu57UDuIpVNkGiQm+LYgdHQ56e6GpqQObtZu0tCgWL8lgxfIyiooaCAlWYO90uKcXStfqdOK+FqmiTJ+sQdbVS1B0MJFxQqwSCAS/Hv1yhGTXN9OqqlZKS5vIzIwma/Y8bOYWej/6J42TJ/BDQRF/uutebv/jo8TrhvXlCBq3MCSJLOVlTX3xQOYRD7wrlDzFIXeOUNtOaGgQSUlh/USbzk4ne/e1YjTa+k3HA6iubqOgoJ7k5HAevP1Wft6czdv/eo1bHryJx+65m/SMdK9r9BSjpAmCnoLRQHi2IOqTw9wxxWCwYLV2M368qzLs+b9soWSbiaamTlJSIvtN8vP9e23IqyFa42TqiUn/1X/Xg3FIRucjRozghx9+4NVXX2XRokWkp6ej8JmWtnXr1v/pBQp+fVSTJhE6axYyeQCB8QkEpYxCmZqKIiqKgNBQ5KGhyIKCfuvLFBzDLFqUSk1NOzExIZSWNpGcHI5crabylMvZ2Z7KzPJ/0/z669jGjyfyoot45sYbqdxfTdHOCraX1rOvDIqLTYwcGY6tb/qeJBYVlxhpt7o+uKed7DJ3HaxlYXyWjj27W+nsdNLU1EFVlQWns4cFC0aQnh7D2HFajCab21wcXD5UFssBP6viIiMdHa7rsNocnD0rm/NPP5HbX3mZa596km/y83jhz7cQpZGmdBwYXz52XMyQK5Y8WxAlcctgaKPRZKW0tBl7l4P/rK8mMkpJYmIoGk2Ql/+U9LPVbKfV3OmeOLhrVwtJkU4SEzWMOqz/ogKBQHD4ZGZGU1nZQmbmAU+L0tImtu01MzE7lpbiJvI/283E+cmkjhrNK8++xVU3XoTF0s2aNXupb+hg6tQE9Elh/drhSkqMtLe7YsLJ0/rHBE9RCbw9okpKjNTXdxyICRkxzJqV7BaRpHO2be+LCfEqEuJDqalxTcbbX2Nlwngd9y99ltPnns69j97G/PNO4amHXmD2qfPc7+vZMu5bETUQni2IWp26z1sqGJVKwY6dLRQVG9m9p4Wy8mbiYlVERAS7r9lX+FKpFOTmVrFxYy1NTZ3U1FhJ1IagilOROTH2v/7vKxAIBEPFX44ArpiQn18LQHJyONnnLcFqbsH57Vc0tIykxtTCtu117JD3UFxsZOSocKzWvhyhT2Qp9ogHUnXWYG1s47N07NnTSmeHg6amDvbts9DjrGbBgpGkZ0T75AguAWz7NhOWtgN+VsXFRjo6nEAvVls3CxfM5Nyzp/HAk8/wp7vv5ewF83nozqWEhYa6BSJJjDqUqiXfFkSp+quysoWGeitdHjnCsMSwvhzhgP+UJHypVYHuyqnVq/ewq6KFuBhIGBZxGP81h84hT9+rqqris88+IzIykoULF/YTpQTHPgqtlmEvvwQ9PcgCA3/ryxEch5x77mgmT45zP/GQcP07h/Db5hP67Qqa3nyLhkceIfz883n/wYfYYzBirlewcWMtNbXtOJ1O5HI5I0YcCCTjs3RY2x1eEy18W+E8K4cmT4rj2v8LwWBoQ61SsHr1Xmpq21mztsrdcy49We6yO/hgWRktLZ2EhyuZ+Qc9Oq2aadMSUIcqCFYqvPZ96tpbSIvN4OUv3uWka67mb3fcyewpU/q1CA4V3/uQfn/77W3s2WOmpxLsdgeZmTHccuukAU3VwyNc92802ZDLA1yTmEa6nrgLBALBr83//V8W06YN8xMPXD+j5g3ny5dK2PLVXsbNHMYp02bx/t++JDhQT35+rdu7LzY2hPp6KyNGeozOTtZQU2MlOyfeq93Od+KeJGZ5ekSpVApqalwxYe3aKrcvlRQT7F0Oli0ro8XcSbhGyR/+oHe3B5aUGFEGK9z7nvaHBegTM3jgidv5vz9fyoWLLuG+2x/zK5ANBd978Px9Q14tRVsb6OnpxW53kpkZw+LFaX5N1cFVXVa0tYGODgeJCa7KK1lXL6kpEUO+HoFAIPhfMHiOgNdrs66+Hqu5hQscThInn4IzMJWNm+pcOUJPD/KAAEaOPNADMD5Lh9XqPRnbtxXOs8pp8uQ4ro0JwWCwuEUaV46wzydHsNDV5eSDZaW0mDvR9MUDnU7FtJxE1OpAgoPlXvs+uPR+RunH8f5Hb7OpcCvPPvIgo/SuqqnDaaHzvQ/PdsXde1rpqXTFgzGZ0X05gn9Tdal9US6XESAPQK/XkJHqErKOJIekKL311lssXbqU2bNnU1pailarPVLXJfiNkcnlIJf/1pchOI5JTg53P/3w+9qNNxI2bx51991Hy3vvoczIIOvSS1FkhpOQoCb35x04OxTU1VqpMljIyXGdlp4eg9XmYOeOZgyGNr++TJ5T+6C/2FNcYsRk6nBPuliyOAOdVs3yFWXU1LYTHRXMxIk69/np6TH9vKvAlegkBI/mzVue5oVP32LR3Xdx7vTTeOWuPzN5krcZrz9z9oMhneN0OtGEB6HTqunp6SU7O77fPX377W5+/LGGGTMSmTgpjmpDG9X7LSQnhzHt5ESiFF3CB04gEPwmHDQeAOfdPYmvX9tG8dpqOq3dnJzj8g5RqwOJjg4iSS/DUGXBZLJhqDoQE5RBCuLi1CiD+n/l9Te1D/oLPiV9MUGaiLd4SQZanZoVy/tiQnQwEyd5xISMmH7T9QCsbcEsnPMII/XfsvKrl1j/83peeuZvTJ2c7XVdvsbsQ0U6z+noiwk6NT3OXrcgJ93Tt9/s5sefatyT+fT6MGLj1Ni7nGTnuLwIzQ1WEhLEgwqBQPDrM5SYACCTyTjjlruwtZpp2FFAzvknkJCQyvqfyujqlFNXa6OqykJOjqtKNj0jGqutmx07mjEYLH59mTyn9kF/sceVI9gO5AhL0tHpVCxfXt4XD0KYNDHWfX56RnQ/7ypwtfXpIrL481WPs/yLN7j0uhu58qLF3HbDdYT4DAjzZ85+MKRzHI4ewt05Qg/ZOQle9/TNN3v46ccaps9IZP78kej1Gqqr26iutjB8eBjTpg0jVNmFXHFkC1WGLErNmzePzZs38+qrr3LZZZcdyWsSCAQCAIJHjSL5X/+iZdkHNL76Kg2PPUbkhReyz+Hgic+fYv74ueSknOo2CZQYrF1voKl9EpLA9O23u6mvsxIZoXQfk95nfJaO6JiQfn5WTY0dVFQ0o1Yp0GnVqFUKAuTQ1ihjtGwBTl0sX+atY8vVJbx0223MmjzFvbc07tXa7nB7Sx2siko6JyUlknPPHT3oOT/+WMPu3WYA5s0bRae9m9qadrTaEHRaNY6WrkHfSyAQCH5LlCGBLLxlAmv+UcqO/HrsHQ7SsuNJTAri8RcepXJvBY/cuYzx47VuI3E4eDwYaGqfhCQwffvNburqrUR4xAS3YXmyxq/o1dgXE1Qq1zFzq534BDV792YzZkQktS3vsfjKs7jkwiu54+YHCAt1XWNJiZHiYhPtVschGZFL56WkRnJeX0zwd96PP3nEg/mj0OrUBCpktFm6vAQ9gUAgONqRKxQsuvsh/nnvrWz+/BPs+hReXfY8c2ecT0bqDD85wsDtegNN7ZOQBKZvvtlDfZ3NKx70zxG8/axcOUILalUgOp0KtSoQuVzG7nIHupDziM36hX998hm5P/7Mk/ffw0mTJ7n3ducI1u4hm5G7c4TUCM4994QBz/npxxp27zEDMH/+SHQ6FZ2dDmprrGi1LvHK1nrkc4Qhi1JOp5Nt27YxbNiwgy8WCASC/xEBcjnRV15B6B9mUnvXXTS/+y47Q9VYOzv4ZOPnjDthBJDgni407eREv5PrJAZLUDwrnVrMdnp6emnpG59qNFmx2lwmsb4T/CR/J6n1Dw5UbPU4Xf3lra12MmMmc+PFp/HKV+9yzl13cdFpc3ny+uuJ0mjcwUxqAWw12wmP8D8lT7rOyAglWq2KjIyofpVXvhMHZ8xwPSWSfnoGT4FAIDgWkCsCmHvtGH5csYtf/lNDV4eDpIlq9lTtxtRYw8tv3cHKf3/Jnsq2fhPn/DFYPAC8Kp3MZjs9zl7MZrvX64uXZFDoMa1JEoFMRu+YkJoaRX2dK9npdvQgD4hh+sRHCIsuYvlnL5H7n+95/P7nmDl9jlvsktr/zK12IsLb/IpMntVeyuBAUlIjmZaT4FVh5Xm9Wp2aGdP74kHfTzggsGWJmCAQCI4xlOpQzrvvcf55761sXPM9drudr9b+i4y0kUDigRxh2jC/k+skBhOsPCudzH05glnKEYw2rLZuV47gM8FPp1NhNNrcrX9woGLL6eylvb0bh7OX0Yknc8uN5/Dws89wyXU3svics7nrzzcRFhp6IEfoawF05QhKv0KTdJ0REUq02hAyMqKZ7BEDfacNTu/LC6Sf8NvkCEMWpdasWXMkr0MgEAgGRZmcTPK//kXTW29x/t/+zg6tjn+bjDz94d/pbg9mXzloNEEk6TWDVhgNJlh5ek35fiAPNsFPOi6XB5CYEOox3tV1LDpaSWFhIDExwbTUy1k88SpmTdjJm6v/xZrNm3n+5ptZOGMG6ekx7pY8i8VO5W6ze/S4P0+sADnExakJUvb/KPe93nnzRjFxUhwGQxtGk9VdESYQCATHEjKZjFOWjCYkNJAtX++jq9PJX5/4B9fcvIgdFVt54PE7mJD2R4qKGlzm4UmaAauMDmYq7uk15SnaeL6u1fWPB9K5UkzIytIRExPiXpOTHY/D0YNWG4Kj+2Qeuj2b1T/8latvuoiFC87jgTsfZ3FGhrsdz2KxU19n9StO+U7SmzC+f8uf7/XOmz+KefNHYTJa3dMKpYowgUAgOBYJ18Vyzp0P0PXIPdS1trGhbCevvPM8trb72Fne48oRkgavMBpMsPL0muqfIww8wU86HtAvR3Adi44OZutWI9HRwRRvtXPGqX8iZ0oxH375Aet+3sAjd9/B7FNmkJ4R7W7Js7RJOUKLWwjzvU65XEZsnJqgIG87Ht9rnT9/JPPnj8RotFFQUI9er3FXhP2aCJdygUBwzBAgl6O97jrCTjmFB2+/nb3r15Nvs/HWD29xwdg/MnpU9IBPvH3Jy9tPfn4d2dnxpKRGuo3OR/f5iui0ardPlGvS0uA+VHp9GCdPT/SqbPJcE6NVs36dgY6ODlJSI1g060yuOW82S19+icsefYTTc6bxzE03YrVBjxM0GiWddod7WlJTY4e7n1y6BrVK4W71k5AqpDzvRcJXqBIIBIJjlalnjiQkLIifPtpFhD2UV595i2tuuYhPvliOOmQ4CQnZ6PVhhxYT8urIzIxC2/fgwdeEPKavbdve5UAux92W50/c0uvDmN4XEzwN1gG0WjWZGTF0dDowt3QSHZXAu3/7kJWrPuKxZ+/np/x13HPbw+jjZuDsiwf6JA3m1k6XF0p1G/bObrI84oE0Sc/3fk1Gl5gVF6/qd8xXrBIIBIJjmYQT0pl/01K6XniapnYrOwz7+Xj1q/xh6p9IGRXttwLKH3l5NeTn1ZKRGY1W6xKZPIUmnU7l9onKXVvlNW0P+otber2G6dO9Dcw912i1KtatM9DZ6SQlJYJFiy7kiosX8OBTz3Dd0juZP3sW9976Z6y2HpzOXjRhSjo7ne6pf945gvc0Pc979ueZJeErVv3aCFFKIBAccwSnp5O6ciUv3vUA5772V/abG1m3azlnnv7ogK1uvm1w+fl1FBc3sG9fK3/4gx6jqQN5gMw1yc9HyCkqaqC3F/e0PX8MVoEF0GV3YLc7GT5cQ2SEkg+WlZGdHc/9i28mITiNlQWfMeXKK7lu4fnMzZpNyqhoKivk5OfX0Wiy8p/SZnfZr2S87g9JeBqd1r+lzzPBOhxjdYFAIDiaGHvqMEJCA1n7Xhmq7iSuu/xO/vbu0/zzo2e54sK/kpE+c8B2N99WuG+/3cfOnc1UV1uYMiUec6u970gveg5UxHpWJdlsjgGvbbAqLHuXg/p6K5mZUURHh1BW2uh68BE7jRsuf5cNBW9xxwN/YlzGJC45/27GjZ1CY2MHRcUWlMoAysoaaWrqBA6Yrg+EwdDmbhv0J5xJPw/XXF0gEAiOJtKyp9N6UR0dXW/xcksrdcZatpR9yOkLHhyw1c23DS4/r5aiYiNl5U2MGaNl3Fj7gZP0B/5pMFjY2pcjSNP2/DFYBRZAV5eTrq4ehg/XEBGh5INlpWTnJHDb/91LTPiXrN3wEXPPu5ArFl9KzqQ59PQEYLV2o9OFeE0FhAPG6/4YzDPLU3Q7HGP1/xYhSgkEgmOSgKAgGuf8kYuqQ3h55WNsb9jDz1+/w9TJ93tNkRuoOig7O559+1pxOHtpaupEHiBjx44m6uvbCY8Idq/V68OYMCEW6O33lHmowk55eSOrVu2hxWwnOFiBwdDmNplNSFSjsAzj/rPvY0/HFl75dDmf//wDz9x4Ey0GDSaTjdJSvFoDBxLapOv1/DkQkgEiIEQpgUBwzJIyOZYglYJv3/iFzNDTGDt6M9t3/sCXa57hqsvm91s/UHVQaKiCwMAAoqODSUuLwlBtYfOmOtTqQCLCg73a9PxVJR2KqFNY0MD2X0y0Wuzo9Rp27Gymtq6dmGgVJpOTeafcxR+vupaHn7qbux+7kIvPv4Lh8YuorOhEq1WhVgURrFS4WwoHEtpg6DFBMkkHhCglEAiOaU485wK2b9nJpbYO/rZuE7v2FFNasZGpUxd5rRuoOig7J4G9+1qx2530OHuwtNnZtKmeUHUg4RFK91q9XsPECbHuf3syVGGnvKyJVV/tocXcSbBSjsHQRmWlGYCExFCwp3DjpU9Q0/Qjbyx7h29/+I7pk8/HatahVmux2rq9WgMHEto8r/FgFWNeOYIQpQQCgWBwMjOj4arLSMqJY+uyN1jUUIvpxReJuvpqFBrpg9f/F/KcHNfQhvz8OjIyoujocFJf305cXChqlYLc3Cqgl4SE0D4zwTC3obn05d9X2PHXEiita2vvRiGXIZfL0Os1BAcryM6OJzLSNfZ1fJaOK9Mncun8+dzxyitccN+9nDxmIrPTFnBSVjxBSoX7GnxN1j2RKraMJisFhfVewtVgnlkCgUBwrKLPiGbhrRP48qVirjr1dj7RwN1L7yM+IaL/2gFiwplnpBAVpSI6OthlbN5qR60OJDxciaHagrm1k4T4UABiYkK8DM0NhjaKio1UVrQAB0QdqSUwOyee1JQDMQHA4eih1WwnekIIEybEEh0dTGysCkOVpU/YymDVR+t4f/nbvPz6swQErGRmzpVMOXEx6pAQv75S0L8Nz3ON7/GBPLMEAoHgWGf2tTfR3d7MeW025PFJXHrhWf3WDCTS5OS4TL/z82rJzkmgw+YgVB1IXHwoalUguWurADxyBI3b0FwShHyFHaklMDsngZSUSK91be1dyOUyAuQB6PVqgpVysnMSiIw4kCOkZ0zi/IVn8vCzz/P+p38hI3USc+b+sV9roK/JuidSxZanf5S0ZjDPrF8DIUoJBIJjluTkcJKTw2HBdXDbdbR88inGp57C+NhjRF56KSHjxrlFmvLyRnJzq7yqmoKUCkLDgqgyWBifpWPe/JHo9WFeLXt791qoqmolODiQRYtSsNocAwo7+fl1lJY2uvf2XZes1xCkVHh5QUneVRIn6PV8/uyzfPHjjzzw5hs8+tmTXNYxn3suuxxdjEtsajV7+1v5w1+FmGcy5vu+AoFAcCwTO1zDuXdO4ou/FnH5tAcZFjPS7zqtTk1jYwe5uVVeVU3pGTHYbA4KCxvcx+bPH4m5tZOirUZ6e8GUZMNi6SYvr4YQVSDTchKw2Rzs2NFMdHQIoWqFl6iTn3cgJiiDFO4v/LNnJxOiCnRVZY2OxGYLc4tMOTkHrjUwMJBrLrues+afwzMvPsbnX/+VbTu+4Pab72PipDOAwT2jJAYSrXw9s0SFlEAgOF4YPiKSq55+nKC7b6GjvQ271YoiPNxrjSTSlJc1HcgR+iqDgoLkrhyhSsoRRqDXa7xa9vbua6VqXyvBIYEsOicVq617QGEnP6+WX0qb3Hv7rktO1hAUJPfygpK8qyRGp6Tw7zf+xlfffc+zr7zGjfdcz4WLzuZP11xFTLRqUM8oT/xViPnzzPo1EaKUQCA4bog871wCx43jgYULueC110icOZOI889HJpf7bVfT68OoqGjGYunCanN4eTBJLXu1te3U1rYjC5BRXGJk1qxk97m+wk52drz752ACkL9KJ9+WvLNPOYX52dm8/dWXPPfPf/Lh2rXceO55zBg9k/r6TkanRQ3qYeWvGuBgvlcCgUBwLBMVr2bRnRP5/IUiNn+5h0kLhlPduJPKvbs496zF7nUDtap5xgSbzcGkyXGYjFZABvQSEqIgP6+OKoMFp6OHULXCKyb4Vill58S7fw4kABV6PNX2PN+zJU+ni+P5J17j6kuv47mXH+fGpVcxYdxk7rrlAeS9Iwf0jPK8L8+fEgebPigQCATHMkqVmkX3PMK/7r2VTZ99yEnnX8Rb/1rOVRcvISw01L3OX7uaXq+hoqKlL0foZvLkAznCxAmxWNrsVFe3YTJ1AB0+OUJ/YSc7J8H9czAByF+lk29L3lnz5nLaqafwwUef8Pd332flqtVcfclFTMycTV19h1/PKE/8VYgdzPfqSCPr7e3t/c3e/SjEYrEQHh5Oa2srGs3QHPoFAsHRwxVXXMH777/PKSmpvKpQoIyPI/qaa6lsUfTzfzKarGzf1gj0Mnac1q9gk5tbxfr1Bnel1FCqi/Ly9rNuXTV6fRhz541w71te3siatVV0dnSTmhpFWlqUu2JKqmyKi1MTHqGk0WSltLSZ7Ox4MsdF8NKHH/Lap5+gkCtYmD2HS+ecQWCAyq+v1OHgaGlBJpMRfvZCZAEBh3Tu8fq5ebzel0BwvNNu7uTzF4rYVbmDpz++jl56+OebnzJ1kqsMyZ//kyQCefpF+Qo2hQX1FBY2YLc73JVSB6su8owH8+aOcO8pXUOAXEa1od1r6p9Wp3aLVXHxampr2zEYLMycmUROzjDyNv3E0y8+wi9lJUwan80pJ11KWupkssbp/mcik7nByvCxMUTGHfp+x+Nn5/F4TwLB74Wq7cV89tRDfFi8g03lu/jD9JN5/flnCej7vuvr/ySJQL5VS54UeMQDlSqQaTmJQ6ouysurOZAjzB3h3re8rIk1a/fR2ekgNTWStNHR7veWKpvi+3IEk8lGWWkT2TkJZI4J4/V33+f9Dz9GGaRk7qmnc+7pZyOTBfu97sPB1mpGrggkY8YfDvncoX52HlrmIRAIBEcZVVWtrF69h6qqVgBuu+02VCoV/6ms4J3x4+m1d2F8+mkUvxT0O9dgaKO+3uplbC5RXt7I8hVlhITIWXh2Ktf+39h+gpTk22Q0Wb1eX7eumm3bTOTl1bp9PMD1JKa42MjOnS102h3uVkDpafjotCigl507mvnxxxpKSxvJz68jPDSUB6++mtwX3+QPY0/m4x9Xs/CBG3ni/bfZut0w6LUIBALB74mqqlZ+zKtl6pITSBudTtaIaTgcDm68/Rpq62sAV3VUVpaOkhIj5WWu9jqpxU2qkPIVd8rLGikqNqLVhbB4cRrXXDPOS5AyGa0UFtT3VVYdwB0PNnjHA6laq7jY1DfQopkdffEAXFVNaX0xYdOmWsrKmsjPqwMg58TpvPXXlVx/xXM0Npp54fUbePQvV/DZl1/R09Mz6PUIBALB7wUpR0AzglMuvZoTE7UEKhT88NPPvPLWOwOeJ4lAUoWUr7BTXtZEcbERnS6ExYvT++KBtyAl+TYZjTav16WYsGFDDQaDxf16cV9M2Lmjhc5Op7sVUKqQcsUD2LGjmZ9+rOGX0iby82oJ12i4689/4qO3P2DKuJP54ttPufKWK3nl7TfY9oth0Gs5mhDtewKB4JimtLSJ/PxawOUxNW7cON59910uvPBCXlyxnKlvv03OzxvoXfclsYoktjkWEB0TwvZtfSO4B/Bm8izlXbI4w+uYNHUvWKlwjwT3FLX0+jCqqy2MGKHx2nt8lo5qg4X2dgfJeg2+LX6SQXl4RBvR0Up3pZREZ1sgWVEzSZk+FYO9mNWFa/nx6R85e+MpzEibjtwW3e9aBAKB4PeEZ0w4945JOHof5t5Xq6hp2sMNt13Jh+99hTJI6RaF2q0ObDYH9i4Hcrlrsp4/SkpcRuahaq1fwWr16r3I5TKmTx/Wz7ep2mBhxEjveJCVpaPd6sDpcCJXyMnIiEIZpHCvkVrrTEYrtbVWDAaLux0QYP9+KzJHBvNnPIdSvYfv1r/HM6/8iY+/eolLL7yKkUkzMVR1ufcSCASC3xue8WDBgrNorK6iwdLOh5tLeOWtdxiTnsasGdO9vvNHx4RQXd1GZ6cDtSrQ777FJUYqK8yo1Vr/glWJkeBgOVZrX47gsUaKCSNHhnu1z43P0lFdbaG9vZvkZE2/Fj/JoDw8Qkl0dLC7Ukqi06YkNWk+CTHTMLVu4T8bv2Nz8VrOmDuHyWNn0t0Z3e9ajiaEKCUQCI5pMjOjvX4CXHDBBRQUFPDcc8/xf7fcwsaNG+n8YBUpX3zAqNKPqYk9n6ISOx0dDlJSI/zuO9jkCSl4paREMn6Crp+oNXfeCNIzYvq11qWnx1Bba2X9egPr1u0HXIbonnj6Ps2bN8rrmF4f5va6GjtuKi+EXMsH337DW198wce5uaQmDucy+QJGpp5GlEeJrORX1WV3uE3dhcm5QCA4HvGMCUpVIEvuyaHd/lfu+OslbCst4vHnHuCx+551G5Irg10G5B2dDswtnQMafg82na6kxEhNbTuJCaH94sG8uSPISI/p1w4oGat/v2YfbW1dZGREuVu54YCQpNWpufTSzH7vqdeHMWGiKx6MGzuGP9+0hC1bN7Js+ds88fyDBAUqOfnEM0hIWkxvbywymQw40KZo73J4TPoT8UAgEBx/+OYIs6+5geaaamrMbfy8aw+3P/gIX/zzfa/v/AaDhcpKV7VScYmR6JiQfkLOkHKE1AjGj9f1MxyfO3cE6enR/Vrr0jOiqa1t78sRqgGXIbonnr5P8+d7D/PQ6zVMnBALxDJ2XA7K4Bv5+Iuv+OfHn7Dy69WMGp7K+WedxQmj56EJOxCnpFbFri6n29T91zY5h+PMU2r48OFUVVV5vfbUU09x9913D3kP0TMuEBwfOBwO5syZw/r160lPT2fz5s3Iysupvf0OHM3N1I+ZSbFsJM6eHiZNivMyOZcqoZL1GhoaOmhq6mDatAS3kCMdP5i442teDpCbu4+VKytwOHpJTY0kNCwIjSaQWbOSD7vC6eefDfzjsx8obyqgvGYHcnkAp009kQtnz+a0E08kf0MDRUUNNDZ2YDTZGD9ex81/muS1R0NlDbW1NvSXn8/wEZGH9P5H4+emiAcCgUDC0e3k0Zv+zuNv3kwvvTz/+Gucc+YFwAGRxlBtobLCzMRJOmbNGu51fnlZIxvyaomODiY2VtVPzPHnUeWLp3G5JDiZjFb++mIhtTXtjB2r5dRTkygsbHDHhMOpcMrL28+atdsxmf9DfuFXtJiNJCcNZ+Hp53PW/EXs3R1I0dYG7F09NNRbCQ0L5NJLMvq1IlaWNZN1cgKZE2MP+RqOxs/O/zYmHI33JBAIDp3O9jbevf0mnlu5mr3GRtJPOIGP//EmwcHBgEuk2b7NxN59rTidvUyaFOtlci5VQiUna2hosLlyBA8/KV9/qoHwNS8HyF1b1Zcj9HjkCEGuHOEwK5x+/tnAByu+Z1/dRvZWl6FQKJh58jTOXjCP6SedyIafG9ha1EBTY2dfjqDl5pu9cwTDnnrq6juYdtZ819TzQ2Con53HXaXUo48+yrXXXuv+PSxs4JHpAoHg+EWhULBixQomTpxIdXU1JSUlTJs2jRFffE7t0qXEbfie+ZnjqJu0ALVKQUFhvVs8Ki4xsmVLA9u3NdLV5aSjw4E6VEF0TIg7qfBt6fOHZF5ebWij097N+CwdY8dpsVi6aWrqICMjirKyZnZXmtFpVcyaNXACIglcapXCbY4uiVibNjVgN8YwKWIhj9z/J3Y3l/Lh2jVc9ugjKAMDyUgajU45gmiFHnpD+u2p14dRU2tl9+5W2kubDlmUOloR8UAgEAAoAuU89LcbqKz+heXfvMFXX61yi1JSm5xeH4Y+ydVi5ysglZQY2bKlnsBAGfHxobRZutxtf3p9GOkZMQetNpI8q8ytdsA1YGPcWC1nnDGS/Lw694S+omIjlZVmtLrBY8JAxuz5eXVU7YW4+AXccvXFOGV7KKvI5R8f/J2XX38OXUwSsdETGD/2ZIJDEmlvc1V6pWfEuPc0t3Zi2t+OKk51WKLU0YqICQKBIDg0jPPvewxTYyN/Wf0D+2trqdizl7EZ6YCrGmnW7GQvs/OCgnq3eFTcFw+2b2vE3uWgo8OJWh3YlyO4RKYlS9IPeh2Sb5XUKujOEdq6+nKEaO8cYXbygHsNZsy+aWMD7S3xpMYtZun1CVTXF/PFN99y/e13EaxUkjoiE41qFGHKEd45godoVlvTxu497USUNh2yKDVUjjtRKiwsjLi4uIMvFAgExz2xsbGsXLkSjUZDWloaAIqICIa99RZNb75J46uvMcxYR93Ji9hpdPWN67RqxmfpqK2x0tXtCjSqkMC+kl6XyCSt86W8vJENG1xP06ednOhu4yguMlJZ2QK4/KnOOSfVfU5HhxOzuRPXyHEX/iqspPcOkEOPE69ryM6Op7PTlZSMzxzGadrRXL9oEZX79/PtxnxW/vAza3euxtnjJCw4lIbK0XT9aweBznAcbSpyHCcwMkGNDBn6zF+/ZPdIIeKBQCCQkMsDWPbFqwz743CSAiezp8jIyAkHWi8kcQpwT76TXs/K0rF7TysdHQ70eg2BCpm77U9a44tnddXJ0w7EA3NrJ0VbjfT2QkR4MDk5w8jJGeY+b8SIcMwtB2KCvworOCByyeXgdB64B8l36sA0v5FccelCHr33GTZs/JHPvvyKvM0/sH3nlwQEyInTjoLgyQQET6W7MwprWzijRiWSnBxOakrE/+aPf5QgYoJAIACISdJz8d0PYTKbSc0Y6xakPJFa5Qo84oFOp+rLEdrp6nYSp1ahUgW62/481/lSXtbEhrwaV44wbZi7ra+42OVPBbBkSbp3jmBz0NLS4bWPvwor6b3lchlOZ6/XNWTnJNBpd7pyhHHDOW12BldfchG79+1j3U8b+Pr79eQXf0ZPjxO1SoM9MIPX3ysFZwSdVjUnOUeTkBiGTK7wskr5X3Pcte91dnbS3d2NXq/noosu4tZbb0WhGLr2JspzBYLjm97eXre3hnVLAbW3346jqZn6sTNpHTmeseO0bsPxDT/XerXu+XsNDohIxUVGioob0GiCOPfc0e6WwMHa/fwJUAWF9ezc0czotCj3HoNVSh2MlSt38fPGfYTFtSGPaGVLWRlbd+7EYnVNZZIHBBAXFcX1p5/Bvf94B1nAoQ1mPRo/N0U8EAgE/uhx9vD9O6Xs3moidWosKZN07pggYTJa2bb9QDWTVqcmL2+/u6IpJ2cYJqOVnzf0xYOchH7tb8uWlbGrooWoKCXnnTuaSX3tH/729n1vTxFKEsjS0qLce3iu862UOhgrV+5i06Zakkd0Eh7VQNG2LWwtKWCfYQ9SShAWqkEXHcfP/8knLjnqkP/GR+Nn538bE47GexIIBP8deR//m/xP/s2YmXNImXKSV44gIbXzAa4coc9wfMOGGq/Wvby8GvLzasnOSSAnJ9HrfIPBQnGxkaIiY1+OcIK7JXCwdj9/AlSBR0yQ9hisUupgrFy5iw0b9hKpMxOsbqZo+y9sLyvHanNN6pPL5eiio7n6osU89teXDvlv/Lts37v55puZOHEiUVFR5OXlcc8991BXV8cLL7ww4Dl2ux273e7+3WKxDLhWIBAc3VRVtVJa2kRmZrRXeemGDftZu7aK6Oha3n33aVavXk1sbCzqKZP72vluJ27D9wQY9mBQn+c2G++0d1NZ2YI6VEF6eozf1wC++3YfmzbVMmpUJBPGxxIdHex3op8/PI3NJTyn8g22bigYTVbKyppoN0N6airXXDkOcIlz9U1NVO7fT0V1NdXVBlITEwff7BhCxAOB4PfNQPEgf2Mtm2pbSUoI5IGnb2XsuDHc9+C9XudqdWoiwl2VSBHhbWh1agxVFkwmG4YqCzk5rjX2zu6+iXwKL1Hq2+/2Ub6jCY0miKlT470+y7U6NQnxHZSUGGls7OgnJHlWbIH/eOBv3VAwGV3xoKWli5SUBC46fx4XnX85AJ2dHew17GHvvkqqqvdRV1OPUqk8pP2PZg41Joh4IBAcX/iLCdnnLWFH4S9sX5fLf4r2sOrnNbz7yotEhB+IGTqdivAIJTt2NBMeoXRXUHV2Ovom8AWSnhFNVZUFk6mDqiqLlyj13Xf72LSxL0eYoOvLEYYmbHsam0t4TuUbbN1QMBptlJU109YmIy0tnWuuOZAjNJhM7K0ysKeqimpDNcOThh1kt/+Oo16Uuvvuu3nmmWcGXVNeXk5aWhq33Xab+7Vx48YRFBTEH//4R5566qkBA+tTTz3FI4888j+9ZoFA8NvgOfrVMwlZu7aKNWv2UVHxEEbjbhYvXsyaNWtQKBQoIiJw3v8c1U+9TOLPHxOw6i02N53NTzt6SEoKJWu8lvFZOnelUnJfEPCcuGEwWGgx27HZurn11snutYDbo6qk2IS13TFolZPRZGX7NtcTdKliayD8VVj5W5ObW0WAXMYJJ0QybdqB0bEymYz4mBjkvSE07lUTSDQjNEd3W4OIBwKBYKgMFg/W5lYTq9vJ5oo1bKnMJTV5DBdcfpZ7jcloxdxqJy5ehclk5fm/bCFJH8r48VqysnQHqpmSXfHAdyKfwWCho8PBiBHhnHPOCZiMVgoL6r08qoqLTV6+VAO1AEoG6oMJUAO1+Pmuyc2tIiBAxgmpkUzzGCUOEBwcQkzEcHZYgwjsHcGiuUf/RL4jGRNEPBAIji/8xQSZTEZ10Bwc9j28vfwfmNraWfrAw7z14vME9HUNGI02Ws124uPU6PUad0VUkj7sQI5gtBEcrHBN3PMTD1rMdmwd3dx62yR3VRPg9qgqKTZhtXYPWuXkr2JrIPxVWPlb44oJ9MWEA0KaTCYjTqdjT2U39ft6mTZxDFMn/85FqaVLl3LFFVcMumbkyJF+Xz/xxBNxOBzs27eP0aNH+11zzz33eAUqi8VCUlLSYV+vQCD47fAd/Soxu88c8Prr3+K6685i/fr13H///Tz99NMAlJe3kB87i1OvH4/+k7+iW/0eIfYMqpnM0qVTAO+WOsnkXBKGJk3SERysIDs73i0EWSxdwAGPKmu7A1tHN4WF9e7XfTEY2igqaqC3F8IjggcVpQ7mbyWtsVi63b5Yrnv1biU0GNrYvKWWXnMrKnUgk4fwd/6tEPFAIBAMlYPFg1mzTkYdupdly5bxxN+XkqDVc/KC8YDrs7O+zkpaWhTr11dTWtoIwNLbXfHAs6Vu8ZIDQy8kcWjSRB3BSgWZmVEUFtRjbu2kvs7VCqHVqdEna6ipsaJUBgzqSyWJV8CgRuqSv9RA+0hrLJZuRgzXoE/WUFJi9HqfrCwdNpuDzZtrsbR2oVHKOXXAdzw6OJIxQcQDgeD4YsCYMDeVXOclXO5o4uXv1vGfvHxee+dd/nTt1YBLVKqrd8UDnU7FB8tK+aW0CTgQEwoK6rFauxk//kALniQMTZyoI1gpJzsnwS0EuXOEPo8qq7Ubm62bwsIG9+u+GAwWtrpzBOWgotTB/K2kNRZLlytHUPXlCD6thPl5tfxS2oSit4OpJ/7ORSmtVotWqz2sc4uLiwkICECn0w24RqlUHlflyQLB75nk5HC/UyGmTRvGtGmuD9PAwHe48MILeeaZZzjppJM4++yz3QEqJXMs+1NTaL7/bs7q3Y61uxunfRxypdJvC4UkDI1Oi2Lp0lGAS7zat89Cm6WLsWNcSUR6egxWm8M96nug1j69PowJE2KxWOy0mjsxmqwDCk4DtXT4WyMZratDFVjbHRQVNWBtd5CeHoNeH8bUKQm01wWSOcjo2qMBEQ8EAsFQGUo8mDjx7xQXF7Nt2zYefvEWnle/T9YpyV6fr0n6UPbtayVJH+reY6DPX0kcSkuLYuntoygsqOenn2qw2rrIyIh2r1cGKYiLUxMXryYiXDng57hUgaVP1nhVWvlyKPFArw8jN7fKXanVarZTU9sOwKxZyUydmkBTUwcnnHD0T2E9kjFBxAOB4PjiYDFhb3EcNY3XsnxTMS+/+TbjMjM4JSfbq12uvKwJZ4+rkyLbo9rUX0udJAy54oFLHC8o8MgRxvblCBnRWPsEKY0maMDWPr1ew8QJsVja7LSa7RiNtgEFJ3/XM9AayWhdrQ7Eau1m61YjVms36RnR7nucOPHI++gd9aLUUMnPz2fTpk3MnDmTsLAw8vPzufXWW7nkkkuIjDz6A6tAIPh1uOCCC1i2bDVff/0+F198KcXFW0lNTXUHqvfe+4W1ysX8aeQvjC3/GuMTTxB97bXokpIO6v2Ul7efdeuqaWuz09XdS5XB5T3iu3YgoUmnVTNrltpdlRUe0eZe69uuNxSPKWmNWqVAHapgfJaOgoJ6ZDJwOp0UFLqSnHPOScXREtPP3PFYRcQDgUAwFFQqFZ9++ilZWRPZ01DKS28+ydKAB8mcnugWf3qcvajVgfQ4D8wFGsjPyfNz3h0PLK54YO90uM/xXDdYW156RgzpGTH9pgFC/5a9g/lLea6RxK5uRw8t5k6Xx0myBoOhjZOnJaDVqTE3WA/+BzxGEDFBIBAcjBHjJ/Pnu+5h7+13sHGPgZvvfoDVH35AYny8W/zJza2iuclO1nitl2/UULyf8vJqPGJCj5f3lOfagYQmnU7FrNnJbqNzz2op33a9oXhMSWvUqkDUatcEwYLCegJk4HD0UFBQT0pKJDk5idhazYf41zx0jhtRSqlUsmLFCh5++GHsdjsjRozg1ltv9Sq9FQgEAoCwsLMJCvoZm2035557Lvn5+ajVri/rUmtH4uxT0CvPpfb2OzA+9xwRixahPuUUL+FGEoUk/6j8/Dp27zYzbFgYWeOjvPrKPUUk3xY638l6apXrKbpntdR33+5l06Y6TjwxnksvHXNI95ueHuM2Za+ttTJ8uA25XH7Q9r9jFREPBALBUElJSWHy5Jv58ccnWP/LZwxfmU5vz3lkzkhEJpO5BRxf3yh/SKKPwdDGunXV7K40MywpjPHjo7zO9xSIPH2jpBY938l6KpWCuHg15tZOTEYrFZUtrFq1B40miDmzhx+y4bkkduXmVtFQb2PCxFiUQYqDtgAeq4iYIBAIhsLUs8/nlH+vZ3/Lv9nf0spNd93Lirded1dNSt/rfX2j/CGJQpJ/VH5eLZWV5j6/Wp13juAhIvm20PlO1lOrAomPU3tVS3333V42bazjxJPiufTSzEO65/SMaHfLYW1tO8nDNSgU8oO2//2vOW5EqYkTJ7Jx48bf+jIEAsExwHnnpdPZ+QDr19/OmDHeAo9nawcMY8TKldTedRfmjz7CVLCNzXHTGTcpyS3yeHo7ZWfHAxAZpaS2xkqyvtPv+0umhoDb12nnjmYC5NDjhNFpUYRHKL2qpQyGNlrMdrcANlSMJisbfu4bWz4tgbHjYgiPULoFsKFOCTyWEPFAIBAcCjfffCmNjTvZv/8HJk4fjaG0md6eXsacOswt4PjiT0yCAy18er2GYKWCyCglNTVW9Mn+44E/3yhpD7kcnE5IS4siIlzpngaYn1dHzf52GBZ6SJ/hkthl73JgqLKgT9Ywc6beaw8REwQCwe8VmUzGpPOux9FRx9/XrGZE0jB6ew9UyXoKOJ74CkkSnt5OUiucK0doJznZf0ucV46QEe3eQy6X4XT2ktaXI3hWSx1OjiCJXV1dTqqqLIzP0jF2nLYvRwh0m67/Whw3opRAIBD4MtBI8HPPHc25546mpmY2CQkJg7atKSIjSHrjdZreeYf6F15i7F4DFR1nkJ5+KtC/LS8nZxjPP7/FbYybk9PfGFB6OtLR4eDee39k/Hgto9Oi/ApF0r9nzkxym6lD/2orf0im64UFDXR0OFCHKliyOOO4q4wSCASCgzFQPABXTFi4cDmNjY3ExcWx8YvdFH5TRU8PjPvDML8xYiATct/WvOf/Mng8kCqobH3xYMb0RCZNck1ClSqlfGNCdo4rDmTnxA9aceWJNH3PYumira0bk8llvO5p1H68VUgJBALBQAwUE86/cCynzXydiJuuIVanRSGXH3QvXyFJwrctLycnkef/ssVtlO7ZAihxIEfo5t57fmL8BC1paVF+hSLp3zNnJrnN1GFgkcyT7dtMFG5toLu7h7Y+4/UlS9J/tcooX4QoJRAIjlsGGgku4XCE8s03ewkPD8JsthMT08WJJ6b3WyeTyYi55hoqA5OQv/wYE0o+xbLWQdisWTQ1dlBR0YxapXCLPZJwJP30RWqnu/feH9m92wzABRd4v295eaPXvjk5w7wSmg0bar0My33Jy9vPqlV7CFLK0SdrUIUEDlpu3NRko7bWhn5CK8NHCI8NgUBwfHGweFBTY6W01EZmZivx42Po2bqL/Tua6e3tJWtWUj9hyl9bn6cwJAk8ngKSP6RKLM94MG/+qH4CUXmZKyaoVIp+8cBktLJ69V63YbmvKOWOB0Fy0kZHMmZsDIYqy4AtiSajlcryZoKig4mME0KVQCA4/hgsJoTrYplzzZ38/I9nWf/hJ4SlziBU4yQzXe93r4Ha+lw5QgtqVaBb7JGEI0+jdE+kaqx77/mJ3XvMAFxwQZrXmvKyJq99c3ISvQSuDXk1XoblvuTl1fDNt3sJCJAxdqwWhUI2aI7Q2NRJXX0L6uRWv/Hzf4EQpQQCwXHLQONfJaSA5HBYWbnyCZqbd1NWVkJMjP/Ko5Mun4vjnGzq7rkXy2efYd+5k+2aHEpKXf3ikjjkmzAMxIwZiV4/PfFt8fPEaLJi6+gmJERBdHRIv3ONJiurVu2hurqNpKQwFi9OO2h1VE2tld27W2kvbRKilEAgOO4YajwAyM//nmefXcoFC67nJNkCep29jD9N7yVM+Wvr81c9NeR4MD3R66cvA1VmAWzbbnIblvsKTSZjXzwwtJGkD2PWrGS0OrV7CIc/DIY2qqpaUcWpyJwYe9BrFwgEgmONg8WEJkciHdEzsO1dwwuffEWr3cY3H32AJqx/i/NAbX3+Kqh8BaSBmN6XG0w/WI7g875Gow2brZuQELn/HMFoY9VXe6ivt6JP0jB37vCDVkfV1rSxe087EaVNQpQSCASCQ2Wg8a8SUiCSyztZtsyAyVTLxRdfzOrVq5EPUK6r0GgY9uorNC/7ANMLLzBVbsAaMZ1k/agB30cyMu+yO6gyWNwtd/PmjWLipDgMhja3obmE9MQiMkLJ8hVlJOs1BCkV6PVhGAxtKJUKJk2OZdrJ/Z+0GAxthGmCSEoK44wzRg6pXS8xQY0MGfoBgrNAIBAcyww1HmRmRrNli4WuLhsrVr3Eqc+cRN0u6Pmuiolzkwdt99Yna/r8owb24fD1dZLa7ebNH8WkvnhgMlr7VUplZelotzrodvSQm7uPhPhQj9Y+GRHhSiZMjO0nWBkMbYSFBZGkd8WDobTo6fVhdLV3k5oScdC1AoFAcCwylJjQ27uIPWvrMa35mRZbB3c89Ch//8szBAQEDPE9NIP6R4F/b6f0jGjmzx/ZFxMsbkNzCSlHiIhQsnx5OcnJGoKC5Oj1GgwGC0qlgsmT45g2rb+gZTBYCNMEoU/ScMaZI4fUrpeQGIZMrhhQwPtfIEQpgUDwu0UKRqWlTbzzzr9YtGgO33//PY899hgPP/zwgOfJZDKiL78M1aSJVFx3M7PqvsFa3kFv9nnIZDK3CKXXh9HU2MHq1XvdBoWSj4c0dU/y+ADvKXhSi9/LrxRSUmwkMTGM0aOjgP4+Vr7o9WHMmTN8wOP+/Kiio1XExKgJP0JPQAQCgeBoRkpQqqpamTz5XM48czNfffUpDz7/Z5a9+CU7fmil8Jt9TJybTIDcf0KiDHJNTlUGeX+99hSi8vPq+seDPiFp23YTWwuNTJykY9Ys78/u9IwYduxsITd3H5ERIWRmRuF0uo6NGxtDRLjSr0m5Xh/GaX3xYCBBytePSqtTE9gLCQmhh/Q3FAgEguMFKUfocf4f19fu5ZlPviD3x594a9k/+eMVlw1pj6AgObFxaoKCDjzolkQovV7TlyPsIUAeQI+zB5OpA8A9dc8rR/AQj6TKrJdf3urKEYaFccIJri4HXx8rX/R6DXPmJA943J8fVUx0MLGxYUesSgqEKCUQCI5DNmzYzyef7CIxMZTzzx896Ieo1LKRnZ3AG2+8wWWXXcajjz7KiSeeyPz58wd9n5AxYwh78wMaH32EsMJ1NLbXEnnllRgMNvdEvoqKZmpq20lMCCU7O95dKQWuJ9gWSzfygABazZ39qqUkenshNFTB6LQot9Dkuc5TBJOOScd9j8HgrYECgUBwPLFhw37Wrq1izJgYQkIC/Rqde1Ja2sTGjXVcfvlDVFaWUV5ezhN/v4Pn7nmHTZ/tpfCbKibOT0buR5jyfGDgiTRNr77eeiAe5MT78XWSYbc72LvX4rdaqqmpg+7uHoJD5GRl6dyVUlqd2mutJIIN5RgM3hooEAgExxOHmiNs3mJiyrn3cv7+albkFfD8315n3JhMsidPOuh7eQpEEp4T+SoqWjxiQoK7UkpaZ7F0IZfLaDXb+1VLueilpy9HSEuLcgtNnus8RTDpmHTc9xgM3hp4JBGilEAgOO5Yu7aK77/fR0xMCBl9X7AHmroklaKGhwcB07jkkqv55z/f4eKLL2br1q0MHz4cGHhKx4iMRIYvfwPzRx/R8MyzGB97jMSzLoC0JPT6MNQq18esVJXk6eMhJS6t5k7q622ER7T1E6XmzE5Gqw1xn280WSkorPcSmQyGNrcIJv0uHfc8Jq0fyJBRIBAIjjfWrq1i7VoDu3a1MHJkRN8Xe//xALxjwp///BJLly5i3bp1fDz1DS5efBM/rdhF4df70E/Rulr1PMQdXwFIQvqsHzFS49Wy5+vrNG5sDCajFYulC4Ohrd9e03ISCFUrvCbsmYxWCgvqva5DEsEkPEUoz2PSen+m7QKBQHA8crg5wtlXPMLuuuvYsreaW+69ny/++T5xOtdnpj9xB+gnEIG3UKVWBQK4q5I8vaakda1mO3X1VsIjlP32mjN7OFqtyn2+0WijoKDe6zo8RTDpd+m45zFp/W+VIwhRSiAQHHeMGRNDUZGRzMxoMjOjB52wIbVsrF69h/z8Ws47byk7d25jy5YtXHTRRWzYsAGZTDboHjKZjMgLL0Q1ZQo1S2/HvvxdRubkEDnuQnRa9YDVSFJFk9FkJTyizW/rhdTGJ+FPZPJ8Ou973N+Te989BQKB4Hhl9uxkzGY7KpWCUaPCgd5Bp/B5xoT9+0P405+e5Omnb+aZZ55hzpw5nHpxGuv/vZPWtXaMva7+uYP5NHmKVYMZjGt1ambNSnaLSL74M1f3JzL5xgTP435jgp99BQKB4HjkcHOEXwwarr3qTmqev4/a5hbufPhRlv3tVQC/4s5AeApVOp1qwGokaZ3RaCM8QulVbSXha7Du7zo8RTDf4/4quQYybT/SCFFKIBAcd4SEBDJ2rJbs7ASvADOYQZ+nye0nn3zCwoULeeGFF9ymtgeb0gGgHDmS4R+uwPTiSzS//z72il1EX3U1QcnJftvoJHzb8QbDX0LhGjnbjFql6Hdc2jsvbz8fLCsjOzt+SJOgBAKB4Hhg2rRhtLZ2kZ9fi06nJjMz2l0pNRgHPvPH0tm5h97eXqZPn05QUBCygADW/bMcnSqQxIShfXb74q+NDgauthoIfzGhsS8mqPzEBGn/vLz9LFtWRnaOiAkCgeD3w3+XI4ylt7OKR//2Jlefs9B93J+4cygMVGkF/qutBsLfdbhyhBbUqsB+x6W98/Jq+GBZKdk5CUOaDHgkEKKUQCA47vAVkA42YaP/mnC2bt3qNWVpKHsABAQFEXvnHainn0zdvfdh/MtfCJs3D0PsRHbubAHo5/ekVimw9nmDDFWc8sSz/3vJ4gy/e+Tn11Fa2gggEhCBQPC7wjMmDPWz3HOd5wMKgPSceOQKGbnvl7M3v4GYs1QoAv1PbB0I3womT5FKOj6YOTkMLGx5ekQtXpLhd4/8PBETBALB74//Nke46qEnCOq00VZeQvvkSYRGRh2ScOQPfxVOklClVgVitXUPaEwuMZCw5ZUjLEn3u0d+Xi2/lDYBCFFKIBAI/lcMNekYDM8EpKSkBJlMxrhx44Z8fmh2NiO++Jz6hx+m7euviR+2nYCcsxnm8TRbarULkENP3xSlwUSpgab1jc/SYTJ1YDJ1UF7e6Lc1Lzs7HoDMzCi3J5V0DXp9GFEiGggEguOU/zYmeMYDh8PBJ598woUXXohMLmPtP8rY9MUeTjxrJIqgoQtTvhVMvj5Qvi15/hhoWl9EhJIAuYyICOWA52bnxNNpd6CLDXGbqnuKXIFDvhOBQCA4dvhv44EiMIhFdz/MB3ffzKaVHxE1KYcwTRgpI0Yc9p6DGaJL01ph8NbA7dtMFG5tYNLEWGbNTna/7soRbJhMNsrLmvy25mXnJACQkRnt9qSSrkGv1xA6cCj5n+F/pq1AIBAIAFizZg0nnXQSixYtwmw2H9K5Co2GxOefJ/6ZZ5BZzMR+/johv2ymt9cVXPT6MFSqQEymDq82C18kc/Pt20xYLN1oNEH9PKK02hBqa9opLjH63SMnZxhLl04hRqtm545mDIY2tyhmMLQd0n0JBALB75Genh7mzp3LkiVLeOutt0idFMvca8bQ3tzJxi/20N3lGPJeWp2aSZPjvHyg0tKisHc5KCo2olL7jwmSsbnJaAVkuPQymdcas9lOj7MXs9k+4Pvn5Axj3twRBMgC3DFAEsZETBAIBIKB0cRoOevWe9j8SxlL/u96brjjbtqt1sPeT6dTMXlynJfopNdrUKsDMZlsqNWKAVsDJXNzS5sdmaz/8fSMaLRaFbU11kFyhESW3j4FrVbVFwMsblHMYLAc9n0dCkKUEggEgkGYOHEisbGx7N69m5NOOpOffjIMuLaqqpXVq/dQVdXqfk0mkxGx8CxGfvkFqhOn0vrxx5ief57uxkZ0WjWd9m5qa9pdT6wHqJIyGNooLGxg714LKaPCmTUrud/a8Vk6ssZrB5yWIQlbapWC0WlRqFUKWs124uJUA4phAoFAIDhAQEAAc+fOBeCGG27inXe+ZuQELXP/byxWs52NK/fQ1ekSprzFo4MjiVSGKguVFS3YOx1+q6Qk4Wjbdlfr3YSJOsaN9a6OzcrSMX68dtBpeiajFXOrnbh4Vwzw/V0gEAgEA5OUOY4Lrr0BVZCCPfuquOT/7qGsryXaH5J4ZDTahrS/Tqeis9NBbY2Vzk7ngFVSBoOFwsIGmpo6mTghlrHjtP3WHDRH6Ls2tSqQtLQo1KpAWs124uPUh+2TdagIUUogEAh8+PTTnVx88So+/XQn0dHRfPrpp8jlgezc+TOPPvrUgOdJEzxK+/qyPQmMiyPpzTeJf/wxHE1NGB97jLa1axk/LmbQQAGuJ+jyABl1de2AzK94lZ4ew5LFGV6te+XljSxfUUZe3n5yc6soLKzHanMweVIcVpuD+nor4RHBh+VjJRAIBL8XPGPCHXfcQVradJzObpYuvYampiZGjIth/h/H0GHpYuPnu+nqcBx21dHBBCWpospisVO0tQGQ9ROv0jNiWLwko99EvfKyRt5+exsrV+5i23YT9XVWIsKD0erUGAxtXr8LBAKBoD+e8eC0Sy7ngeuuIUAm45edm3n9vX8PeN7hVB4dTEwCV0WVXC6jrs71AMSfeJWeEc2SJelerXvlZU0sX15OXl5NX47QgNXWzeTJcVht3dTVWwmPUP5XXlmHghClBAKBwIfPPqvgxx/389lnFQBMmjSJpUsfB+CHH97khx9+8HteZmY02dkJA07wkMlkRJx3HiO++AL1tBxaP/uMqK/e5byZ0X59oCR0WjXR0cHYOrqxWAZux/BFMjfMz6/r1/an14cxOi0KvT4Mo8nKtu0mGps6hry3QCAQ/F7wjAkymYwXX3ydqKhhtLbWc8kll+B0OkkeE8OCG8bR2d5N/srdxOtCSOv7jD0UBhKUJLQ6NXp9GE1NnXR2OoDeIe9dUmKkqKiBzZvrAJnX9Ulil0qloLCgnpaWzkO6boFAIPg94Jsj3PLMX1k0LRuA7/7zIVtLtvk9T6/X9H3mDr3yyJ+Y5ItOp3LlCLZuLG2HkSPk1WKxdPXlCAe8raRrNRptbNtmorHxyOYIwtpWIBAIfFi0KNXrJ8DTT9+B0VjOe++9x+LFiykqKiIx0XtCxVDNE4PiYhn297/T+sUXGJ95lobHH6c9YyqRC88kNiHC7zkajZLoqBA0mqG7DUpPVpL1GoKUCq/pfjqtGp3WNRZ81ao9xKm6mT5Dz6gh7y4QCAS/D3xjwty5Gaxb9zUnnXQS3377LY8//jgPPfQQSelRnH5jFqv/to2Kn+o4ceEogkMPzTJ8oIl6nhgMbfQ4e0lJiWDc2P6tGgORlaWj3eogOjqYcWNjvPbX6tRodWo++OAXNm2qY9rkeCbMEFP5BAKBwBPfeKAIDOSdz79gz5RJbN1r4Ka77uWrfy8jOirK67zDndA30FQ9TzRhSqKigtGEHUaOkKwhKEjutb90rXl5Naz6ag9RGifTTzmyspGsV3LcFQBgsVgIDw+ntbUVjebX6aEUCATHBjabjZycHEpKSrj99tt57rnn/us995bsZcedj6Gv2kiXUo160fnET5/Sb53R5EpU1CoFVpvDLTCVlzdSXGIkMkJJi9nO+Cwd6ekx5OXtJz+/juzs+EHHfT///Ba2bTNxQnwA11ybxairFyMLOLQi2uP1c/N4vS+BQPC/YdmyZVx++eVoNBoqKyvRal0CUd3uVla9Uow8SM5JC0cQcgiJQm7uPvLyaomPD2XhWaP8ClOScKVSKbD1xQNpXXlZI2vXVgEwe3Yy6RkxlJc1siGvucBmGwAAVplJREFUlujoYE6eljhoe94TT+RTVtbE5LFaHnnhVCLjDr2V73j87Dwe70kgEPzv2FGwiVNmzcZoaefGa67i1uv+77/e02i0kZtbRX29jbg4lctT1o8wJQlXalUgVlu3W2AqL2tizdp9AMyZPdxdcZWXV0N+Xi3ZOQnk5CT220/i+b9soWSbiZFJgVz7fxOYsej0Q76HoX52ikopgUAgGCIqlYpPPvmE5cuXc++99/pdU1XVSmlpE5mZ0QNWTXmuKa/p5ZsTLiY0aBwL6r4kePm77PrPj6xVTGT8jFS3oCRVNhUU1rOzb1S4Tqt2l98GBMjo6enF2u7AanOwbl01u3ebAbxEKUnckkSt7Ox4AE4epyYmOuR/9acSCASC457LLruM6upqFi1a5BakAOJHhXPWLRP46uVifv6kEk1KOCNHRw4oBnlWR4EMm62b+rp2DIY2tDpXRWt+Xh3ZOa6HDFJVU2FBPTv64oG0d0mJkaJiIzIZaLUhxMSEsHr1XnZVtBAVpUSfpHGv9VeVNXNmEsFKBZOzhl6BJRAIBL930iafyN/+8izvvPISc9L89x0MperJc43BYMFi6aLH2YPF0oXBYKGysqWfoCRVNhV4xASdTkVxiZHiYhMyQKtVER0TgsFgYd26aiorzQBeopTv9WXnJAAwdaKGmJgjmyMIUUogEAgOgZSUFB544AH3774ilGR2LuFPoPJcI/lPhYePZuPPU4ne8AXjKr5jfs9edn+VQc/EqwgIDnaf6+n/AQfKb6VKqWClgp07mtHrNQQHK9yiE7gEqdzcKhrqbYSGBuF0Omls7GTmzCQmpQtjW4FAIDhU7rvvPve/veLB8HDOXjqBj58txPRLM71OV2OCv9Y8yRQd8Jik14u9y8GK5WWUlTezv9plmO75kME3HoCrRc9k6nD/22BoQy4PQK8PIyMj2r3WZHTFA4ulC0N1GxUVTbS3O5g3bzhLb5+CueHwx5sLBALB75Fzr70etaOLsv+sJTI+gcDIZC+RRzI7l/AnUHmukTye1KpAduxsprjYiMFgobq6HaBflZOnJxS4cgSTyeb+t7S3Xq8hWCl3i05woCpr375WggLlJOnDqDa0kZ2TwPjMI58jCFFKIBAIDgHPpCM2Vsmf/nQziYlzgBySk8PJzIzGaLRhNFoxGq3s3t0KuPymNmzYz9q1VYwZE+M2RPf0oVq7torPW8aTlpbBnPpvGdO6nfoHHiDs9NMJnTEDWUCAu2JKIj09pt/EveISIxMnxvYzTzcY2rBYunE6e6mra2ffvlY67U6CgxVMTU858n88gUAgOM7wjAkffvgNX375Dffe+xDJyeHEJIZxypUZrH+3jOYdLVja7JhauwBobOygpMRIVpbOS1zS6tTMmuX6jF+xvIziYhNR0UoyM2PIzon3em+pYsqT9IwYt0m6yWhl2/ZGxo6LZtxYbT8hTBqA0dTUwbZtjXR39xCuUQ7a8i0QCAQC/1RVteIYNp+IYbvZtGol3+5rI3P0aUA6Op0KvV5Dq9lOq9nOdrOJuvoDE/PKy5ooLjGSnHzAZNzTh6q4xEhlhZmoaCVjMqO9BCUJX9+q9IzofhP35HKZy+rDxzxdqspqs3TTae9g775WrFYHAOMzUznSCFFKIBD87hlKy52EZ5XT88+/yFdfLWPYsA3cdNN6wCU+6XSuNaNGRXhN41u7toq1aw0APPTQtH57z56d7P45bdrl2Eq2YXr+eVo/+oj2desIX7iQkAkTkMlkA16f1eagx+n6Cd7temqVAo0mkLFjounocKLThdDY2OlVTSUQCAS/dw4nJhiNtdx//2V0d3ezY0c2CxZcB0DGeB0VM1rY90MN7LcxPCUcvT6M3NwqiotNACxekuG3tS+rrxI2K0s34DS+wTAY2qivs5KWFoVWp/Zq19PrwzC32oFe9CEKmptttLc7+glfAoFA8HvmUOPBps1GpmRfxT/uP58NOyqpNOxh0cLXAZdoFB6hZMeOZuLj1F7T+CQ7DoAlS9L77S11RvgTlIaK1eZ6MG21dQPe7XpqVSAaTRDTZyRiNtuRy2XuSqlfAyFKCQSC3z2eQtPBAo4kMGVmRjNp0n18+umn7N+/m0ceuY0PP/wQmUzmtcZzP4VChtnciULhX1SaNm0Y06YNo6qqldWr9xAeHkXrBQ8wem4pLH+b5rffRhEXh+bMMwkZP96vOOXbzmEwtLk9qAB6nBCkVJCTM4xZs1wimNFkZdv2GhITwzj47ECBQCA4vjncmHDvvffyyCOPcP/9tzFrVjZZWVkAjJ8cR4A8AHNRE5bdFrqHawiQy7BauwmQD/yQQap6MhmtFBbU+zU2Hwx/8UBqC5k0OY6IcNfvaWlR3HnnSQDu94oKDWT4Qd9BIBAIjm8ONx68/NY7nDJ7DoaaKl5++xWeffgBZDKZV4udZ1WTXC6j3dqFfICYIFU9GY02Cgrq+5maDwXf9j7fdkKnsxetVsX8+SPdrxmNNrZtqyFJHzmk9zhchCglEAh+93gGkYPh2W4H4Xz88ceccsopfPzxx0ycOJG7777bZ80BysqaaWzsYM0aA5dckjlgcFu3rprvvttLXFwooaGBkD2W+Ss/o/Xrr2l6622a33rLJU7Nn0/IxInI5HL3ub7tff48Rzz/DbB9WyM7ttQwZowW/9aMAoFA8PvhcGPCgw8+yKZNm/j2229ZuHAhBQUFxMTEuNd0zRvOqle2UbK2mrbObiyWLoqLTcw8VT+oyLRteyNFWxuIiAwmJNj11X0oopRve59vPPAXHwyGNgoLG4hQKYhNiTis6XsCgUBwvHC48SA5eQYvP/MUV9+6lJVfr2ZM+mguX3xhvxY7iWpDmysmFJk49VT9gELT9m0mthY1EBkZQnCw6/v/UEUp3/f2Fal8/y2937attbRZe5gxpHc5PA5t7rdAIBAchyQnh7NgwciDPgHxR05ODq+88goA9957L6tXrx5w7aJFqYweHUVMTAilpU3u16XKqKqq1r5XeunthcREtbv9TxYYSMTZZzNy5WfEP/UkAaGhNL/7LnX334/l22/p6ejw+55NjR1UVDRTWdHiNXXPG9f7CQQCgeDwY0JAQAD//ve/SUlJoaqqigsuuIDu7m738aDgQBbeMp6kjCjilYFMTY9GownCYGhzr5EqlUxGT6Nx12d0dHRwX7uH94OFoaLVqVGpFHzx5W5WrtwFuCqmfIUrjSYQq7Wbir7pTAKBQPB75b/JEa78823ceMlFADzxwkvkbykYcG12TgLDEsP6YoLF/bpUGWU02tyvueKB0qv973Bw5QgtVFa2DDoVsNfj/x4pRKWUQCAQ/Jdcd911FBUV8eabb3LRRRexefNmTjjhhH7rzj13NJMnx7l70yV8S4NTUyOpqrKQnZ3AtGnehrOyoCAizjmH8DPOoH39epo++ADLqlW0ffstIRMnop4+naDhw92tfVKP+p7drSiVckaNiiSpz09EEqfGjtMSGdhFYuLhJToCgUAgcBEZGcnnn3/OSSedxLp167j99tt56aWX3MflgXJOv2Eca98rgy1GQnQhJCWFuo97tthJYlFCfCimJBtpo6MOy1vKk5ISI0VFDYQEK7B3OsjK0nm1BLqM1pOpLGsmNSXiv3ovgUAg+L3z0nsf8EtZOesLi7jpjrv5/F/LSErs79OUk5NISkqkWxyS8Gyx0+lUJCSEYjTZSBsdfdjeUhLuHGFPK0FBAaSkRJKUFOYlTo0dp0Wt7BLtewKBQPBbI03NcxmQ+59K9Morr1BaWkpZWRl1dXV+RSk40I8uVUolJ4cTHh6EQiEjPDwIgNbWLhyOXlr7pjT5QxYYSNicOYTOmkVnaSnNyz6gff16bBs3ItdqUZ10EuqpU93GiI7uHurrbTQ1dWDrMzjsXzElEAgEgsEYSjzIzMzkn//8J2effTaNjY04nU7kHm3WAfIA5lyViTpcSfHaairz66mKVzF8RLjbgNzc2onJaEWrU2OzOXA6wdY3wOK/IStLR7vVQYfN1T5YUmLE6XQd8zRDj4tzJT8CgUAgGJiDxYSAgAC+/GE9WaNTMbaY2VdZ4VeUggNteFKllE6nQq0KRC6XoVYFAv3Nyv8b3DmCo4e6OitNTR1Yrd1e1/JrIUQpgUAgOAiffLKL77/fh9lsHzAJCQoK4tNPP6W9vZ1RowZ3ZvKtjJJEqIoKM62tXYSHB3lN7ZPwnQBy4Hc93HQfe6csIcVYhGLDWtq++Ya2r74iLEbHhMRUZGljaUsbhjo0CGvfU3EJg6GNvZVmZMiEp5RAIBAMwlDiAcDChQvJy8vjpJNO8juUQiaTMe28VEIjlfz8SSWOBhu9vb1MPSmRiHCXr5PJaGPWrGS/3k+A1zQ93+l6gNcxab3N5mDhWaPcxz3N06XXduxoZuQwUTkrEAgEB2MoMSFMo+G73B/4+MkHsZWXYJ88GaXa/4Nh38ooSYSqrW3HautGrQr027bnOUlPp1N5/S7t69ueFx0TQmpqpNs03dM83fN6du82I5MfWdlIiFICgUBwEBITQ4mJCSExcfCnxrGxscTGxrp/b2lpITKyf7mrJDZ1dHTzyCMbGDMmhuzsBIxGK/n5tWRnJ7BggWvyhecTmNbWLi8xy1PcAsjfbqUn+1TmX385XQYDlu++Y//n3xG8fTOKkg2EKpUEJSeTOHo0QSHJOAMTCAh3PZkPsEaQcJD7EwgEgt87Q40HANnZ2e5/9/T0YLFYiIiI8FqTNUuPrdtJ4Rd7qdvaxLYgOXp9GBUVzVgsXRgMbW7fp/KyRnJzq8jK0pGeEdOv1c/zd6BfG6Dv9D1/ZumSOBUVGngIfxWBQCD4fTLUmJCakck1jz/HiofuZONnHzL2jHOI8pMjSIJQV5eT5cvLSU7WkJYWRavZ7p6WOnlyHADlZU0UlxgZn6XDauv2ErN8J+t5HpOQ1nju6e96HB0RDDvCFh9ClBIIBL9LfKuOBuP880eTkREzpMkbEt9++y0XXXQRb775Juedd57XMWk6xyOPbGDtWgMADz00jQ0b9lNVZXG38QGsXVvlXnPFFWMAl6hVVdWK0Whj1Khwr+vKzIzGsL+d0vJeMucvIfK089mZX0GKdTfBFSV0lpfT9t139Ha5WgNlwcEooqNJCg0lhAlDvj+BQCA4XjjS8aCtrY3LLruM+vp61q9fj1Kp9DqePW8EP/xYTYixC8MmI8P14WRl6SgpMaJSHfiqXlJipLjYBEB6RoxXBZXJaMXcaicuXuVVUaVSKSgsqEff5yUorR8IyVfK3GAdcI1AIBAczxypmKAbPpIFN93Ok0tv5k+vv89fn3qcWTOme6/pm5C3fHk5JX2f90uWpFNe1oTRZHO38cEBTyiAWbOSAZeIZDTaaDXbiY9T95us51lB5W/6Xr9r1qkIVWqRK47sgwohSgkEgt8lvi10g+E54nWorF27lpaWFi6//HJOOOEExo0b12/N7NnJXj/9eUl5rvG8jtWr97B7t5ns7ASP8bMHjkn3lpkZjTNSh+LkdBL/72J6OjpwmM3Yd+2ic8dOunbtoruhAWdLC73O/96vRCAQCI41jnQ8MBqNrF+/HrPZzA033MDbb7/dr6Xv1NNHsu6bvehsveSv3E3o8NB+PlJZff4f0k9JQAIoLKinvs5KWlqU+zWtTk1hQb1XdRTgnvbnr1JKIBAIfu8cyZiQMuUk2sKisdnt3Hrv/az85/uMGj683zrJ70n66c9LynONJGYBFBTUU1fvigfSa57HpJjw30zu+18jRCmBQPC7RHqicShPuw+Fp59+mm3btrFmzRoWLlzIpk2b0Ol0XmumTRvGsGFhlJY2UVXV2u+aqqpaaW3t4oorxvQLeNKa8PAgVq/e4/U0x3Mf38AaEBJCUEgIQfHxhJ1yCgC93d302O3IZDJkAQFH5O8hEAgERytHOh6MGjWKDz/8kPnz5/OPf/yDsWPHcsstt3itkeJBSaERy7YmWistDBumdlc1SX5Qs2YlD9p251kZpdWp+1VH+ZvuJxAIBIIDHOmY8K+VX7BzbCbbd1Vy1Q1/4ovl/yQi3Pt7fnpGNNExIRgMFoxGW7+qJqPRhtXWzaxZyf1MyaU1alUgBQX1Xl5Snvv4+lf9lghRSiAQ/C45nKfdh4JCoWDFihVMnTqV3bt3c/bZZ/PDDz8QHBzstc5TNFqwYKTXNQ32pEa6fs+qKM+KqYFELH/IAgORBwr/EIFA8PvkSMcDgNNOO43nnnuOpUuXsnTpUlJSUjjjjDO81pSWNrGlqIETp8YRU9fB7q0malVNRM9UHVRMkqqmPCujpNc81w+lhU8gEAh+zxzpmBAUFMSaH39mbNpoaowmrr3pz/zrH28R5PNd3FM0mjw5zq8fFPQXlKSqKc+qKM+KqYFErN8S8UhcIBAIjhBRUVF8/fXXREREkJ+fz1VXXUVvb6/XmszMaL+T9jyPSdVQVVWtftf09PTy5pslfPrpziN2LwKBQCD477j11lu59tpr6enpYfHixZSUlHgdlz7zx47TMvfaMUxeMJyaXWY2fr6b+DgVaWlR7kook9G/55NeH0ZPby/ffreXvLz9v8ZtCQQCgeAQiY2N5fsf1hESFERR+Q7uvP+BfjmCXq/xO2nP85hUDWU02vyu6e2F777bR15ezRG7l/8FQpQSCASCI8jo0aP59NNPUSgULF++nHfffdd9bKhGihUVLeTn11Ja2uT1+oYN+3nvvV/YsqWOwsIGPvusot+5UrWV77kCgUAg+HWRyWS89tprzJo1C6vVyvnnn4/D4fKM8o0HMpmME88ayZyrMmhv7qRs7X66bd3U1rWzY0ez2xdKoryskRXLy2hs7MDYYGN3pZn8vLp+1yBVXPmeLxAIBIJfl/ETJrBixQpkMhmrctfz8Sefuo95GpIP1lpXWyvFBIvX6+VlTeTmVlFR0UxlpZn8vNp+50rVVr7n/haI9r3DwOl00t3dffCFAsFRQmBgIHK5/Le+jN8tf/jDH/j73/9OXl4el1xyifv1gxkplpY28c03e1EoZGRlaftVU61dW8WqVXtobu7Aau1Gre7/3/hI98ULREwQHHuImPDbERgYyMcff8yiRYt4+umnUShcX8UHigcnTIkjXBvCyheLafylmVa5jLgUTb/2O2ky3y+/NFJbayU0NJDsnPh+7y/a944sIh4IjjVEPPhtOeucc3j2qSf5atm7hBqrsbW2ogoPP6jf0/ZtJrYW/X97dx7W1Jm2AfwOgbCTIIKAAoJQF9y1WqR1pYpWB2tdal2gtfarYq1b3caK2rE6Y+2nTluXuqDWutSqdZSWCooKuKCOVqm4InFBUZRFkC2c7w8/UpE1QHKScP+uK5dNcnLO82ZC7slz3nPOA3h725c7m+r8hTQcPqxEztMC2NmZo1U5vwOqc/U9XWFTSgOCIOD+/fvIyMgQuxQijSkUCjg7O5e54g/pxocffohx48aVev+rahj5+jogISEVjx49g5OTdZnGVUCAB65efYKoqCzk5hbixIn7SEnJLLWcLs6VUl8xE8iQMRPEY29vj8OHD1c7Dxo1laP3//ji4OqLsC8QYPK4AA4NS/9IKbki3+HDSmRk5MHERAIfb/sy63r5HFNUN5gHZMiYB+KaMWs2xo58F7sWzEbczq14Y1RItRpGggDY2crQ+f+vrPqi9u2cEBWVgmd5xZCZq5CRkY+0tNxSDa7yzi8lFjalNFASNk5OTrCysuIfLhkEQRCQm5uLtLQ0AICLS9k9p6QbJd8ZKpUKCxYswPvvv48BA7wqXN7DQ46QkNbqQzpeVnK1Jnt7Cxw6lAI3t+dX8nu5CVXdwwRJM8wEMkTMBP3w4vfFuXPnEBUVhZkzZ1a4/CstG8JsanvE7r6OrJvZiP/5Ojr394CFjQwA0LJVQ7Rs1RAmUgl+j0xBo0aWUCqzy21APUzLgVKZrb5CH9Ue84AMEfNAfzi5N8U7cxdix8K5mDFlKj6bNw+dO3tUuHybto6QK8wrbFq1bOWAoUNfQXS0EnZ2MmRlFUCpzCrThKruYYLaxqZUNalUKnXYODjwMBgyLJaWlgCAtLQ0ODk5cZquyObOnYt//etf2LlzJ+Lj49GwYcMKl61qptOZM/fx5Ekepk7tCHd3ebnNq4oOC2GzquaYCWTImAn64+7du+jevTtycnJgZ2eHjz/+uMJlPT3t4fnZq7hxLg2Htybh+K5raNu7CRo1ff79HR9/B7eVTzF0qA8cHa0rPESvvCv5sVFVc8wDMmTMA/3h4t0cF4pl+O2/F3Hxo4+x98cf0KCC75TqzHKSy83h4myNVr4OcHS0KreBVdFhgi82q2zMazGoauKJzqup5PhwKyv9mOJGpKmSzy7PdSC+Tz/9FO7u7rh27RoGDhyInJzyr6JUHXv2XMOxY3dw/PhdDBjgVW5zqaIr/PEk6DXHTCBDx0zQD40bN8aMGTMAAKGhodi7d2+Vr2nW0QnDZneCXUNLnI1IwcWYOyhWFeNEfCoSEx8hMfExOnV2rrC55O5u+//nIPmracUToNcc84AMHfNAfyz8cimcGjbE3fQnGP3Bh8itxW+EE/H3cCkxHX8mpqNzZ+dym1gVXeFP1ydBZ1NKQ5yOS4aKn13tSknJRETETaSkZFa5rKurKzZu/Am2tgqcOnUKI0aMUF+BSVNvvNEYzZop8MYbjcs89/PPVzB48F6sW3eh3NlQFTWrqPr4d0WGip9d7dIkE8LCwjByZDCKi4vx7rsjERsbW+VrFI2sMWxWJ7Tt3QR3kh7j+M5raOkth7OLNXx9G5RZ/mFaDrZuTcTixSdw7fqTMk2r8hpVpBn+TZGh4mdXuzTJAw8PD4Rv2QtLCytcvZuKDz4cj4L8/Bptt5Wvg3qm1Mvi4+9i8eKTiIxMLvfQvYqaVdrCphQRUR3QdNZRfn5DDBnyJWQycxw8eBD/8z//A0EQNN6uu7scb7zRBO7uZWdI7dlzDbGxd/HLL9fLrcvDQ17h7CoiIqo5TTJBIpFg5Mi5eOWV11FQkI9BgwYhMTGxytdJzaR4Y/greGtiu+dnvE3NQ0cvezRsWHZvuFKZjVOn7uHPP9NxIj61zPOOTtaVzq4iIqKa0fQ3giC44p2hS2AqNcWZazcxaWIoCgsKNN6uo6OV+tC9l52If54Hp06mljsbysnJqsLZVdrAppSRk0gkld4WLFhQq3Xv27dPoxqsra3h4+ODkJAQnD17VuNt9uzZE1OmTNG8WCIt03TWka+vA4YP74dFi76DiYkJNm7ciLCwsDrbblzcHRQVqdCyZQMEBXlzNhQxD4h0SNNMaNu2EaZN+xre3u2RkZGBwMBA3Llzp1qv9WjtgBHzuqCRtxxWBQKeXsvE08d5pZbJLyiCjbUMbk1s4NeNJzMmZgKRrtTkN8LIkQPx+fxVkEgkOHzhEv4+YwaKNGxMVTTb6fKf6VAVF8OtiQ26vuais9lQleGJzo1caupfe8N27tyJ+fPn48qVK+rHbGxsdFLHpk2bEBgYiLy8PFy9ehXr1q1D165dsXHjRowdO1YnNRBpU1UnJK9s+cDA6YiO/jdeffXVOttuVFQK7t3LRUCAB8LC/DVeLxkf5gGR7tQkE9zcHBAUtBi7dn2KNm1egb29fbVfb2krwzvTOuJqwgPE/XQNx3ddQ7OOjvDu3AgmJhIoU57vCW/f3gndujXReDxkfJgJRLpR898I/dC372TEHFkDR3MpYndshf+7Y2Amk1VrPRWdDP38hTQ8Ts9Hu/ZOGDmyZbXr0ibOlDJyzs7O6ptcLodEIin12I4dO9CyZUtYWFigRYsW+O6779SvLSgowKRJk+Di4gILCwt4eHhgyZIlAICmTZsCAN5++21IJBL1/YooFAo4OzujadOm6Nu3L3bv3o1Ro0Zh0qRJePLkCQAgPT0dI0eOROPGjWFlZYU2bdpg+/bt6nWEhITg6NGjWLlypXqvyq1bt6BSqTBu3Dh4enrC0tISzZs3x8qVK+v2jSTSEl9fB4SGfoyjR89h0KBBdbbegAAPBAS4IyCg4svJUv3CPCDSb76+DujduwX27InAvn37YG2t2aF0EokEzbs4Y+T8rmjWwRHXz6bh2PYreHg7G+3aOaF9e0e0a+ekperJ0DATiPSbr68DJk+ejKPH/ovp/1yO7PSHOL4tHHm1OPk5ALRv54R27R3RXo/ygDOl6rFt27Zh/vz5+Oabb9ChQwf897//xfjx42FtbY3g4GCsWrUK+/fvx65du+Du7o7bt2/j9u3bAICEhAQ4OTmp927U5PKhU6dOxZYtW3Do0CEMHz4ceXl56NSpE2bNmgU7OzscPHgQY8aMQbNmzdClSxesXLkSV69eRevWrbFo0SIAgKOjI4qLi9GkSRP89NNPcHBwQHx8PD766CO4uLhg+PDhdfqeEb0oJSUTiYnp5Z5EvLrK23ty/fp1XL58uVZNKn//JvD3b6I+uWJtaiTjxzwgqh1t5YEgCFi3bh3GjBlT7au7WdrK0PdDX7xy0Rlxu68h4T/JcPSwhf9rrkhLz8PDtByeO4oqxUwgqh1tZELQjHn4PmwuLiz5Bz6aPhPWGsymfVHLVg5o2coBaWm5OHPmfrknOtc1NqXqsbCwMCxfvhxDhgwBAHh6euLPP//E2rVrERwcDKVSCR8fH7z++uuQSCTw8PhrxoWjoyOAv/Zu1ESLFi0AALdu3QJQ+rLIAPDJJ58gMjISu3btQpcuXSCXyyGTyWBlZVVqm1KpFAsXLlTf9/T0xIkTJ7Br1y4GDmlVyYkLAdRZw0epVKJ79+549OgR9u3bhwEDBtRqfZXVWBeBScaBeUBUO9rIAwCYM2cO/vnPf2Lv3r345ZdfYG5uXq3XSSQSeLZtCLcW9vhvlBLnD93GQ2U28kwlKC4qLrcp9TAtB0plNtzdbWFWZyMgQ8RMIKodbWRCsa0C62LPIDMzAyhW4f1PpkDh4lrj9SmVWUhKegwAZZpSaWm5UCqz4O5uB5vqxU6tsClVT+Xk5ODGjRsYN24cxo8fr368qKgIcvnzP5yQkBC8+eabaN68OQIDAzFw4ED07du3zmooudJYyWVIVSoVvvzyS+zatQt3795FQUEB8vPzq7Vn8Ntvv8XGjRuhVCrx7NkzFBQUoH379nVWK1F5Sk5YWJcnEW/cuDE6dfLDgQN7MGTIO/j11wj06tVL/Xxc3B1ERaUgIMAD/v5VnxfkxRpfbkJp60cUGRbmAVHtaSMPAGDQoEFYterfiIyMxN/+9g4OHNgLM7O/WkZVZYKpTIpXB3iihZ8Lon9Iwt3Lj5F+IR3nnhZCZWOGpl5ydYNKqcxW/0Bp5mZbp+Mgw8FMIKo9bWSCu7s7OnZ6DYcOReD7w/GQCsCwcePg4t0cwPMTmJ+/kIb27ZzQslXV2y05wbm7u12pJpSTk1WphlUrH4s6G0NF2JQSidgzFJ4+fQoA+P7779G1a9dSz5VMs+3YsSOSk5Px66+/IioqCsOHD0dAQAB2795dJzVcvnwZwPO9FgCwbNkyrFy5EitWrECbNm1gbW2NKVOmoKCKKw3s2LEDM2bMwPLly+Hn5wdbW1ssW7YMp06dqpM6iSqi6YkLq0MqlWL8+C9x9Woarl6NxaBBg/D777+jW7duAJ6fwDwqSgkAVTalXv6eiYi4WaoJpa0fUaQZ5gHzgAyfNvIAAPz9/TFv3hrMn/8hfv/9IIKDg7F161b132Z1M+FxVj5kzezQw88Zt88+xM3zDyEIwNM7OXgt0AOWNjK4uz9vRLm72wJCnQ+FqomZwEwgw6eNTDAzM0No6Fe4ceMhbt5MwPfHTsIExXhzUBBe8Xsd5y+k4cL5hwBQZVPq5SbUmTP3S82aerFhBWh21b+aMJim1OLFi3Hw4EGcP38eMpkMGRkZZZZRKpWYMGECjhw5AhsbGwQHB2PJkiUwNdW/YYo9Q6FRo0ZwdXXFzZs3MWrUqAqXs7Ozw4gRIzBixAgMHToUgYGBePz4MRo0aAAzMzOoVKoa17BixQrY2dkhICAAABAXF4egoCCMHj0aAFBcXIyrV6+iVatW6tfIZLIy24yLi0O3bt0wceJE9WM3btyocV1EYmvXzhn//Oc6fP11KI4fP4LAwEBERETg9ddfV5+4vHXrhoiIuIlnzwpx6dKjcveSv/w982IT6sW964Y4S8qYMoF5wDwgqsyoUX9DQcF3WLz4Y2zfvh0SiQSbN2+GqakpAgI8kJGRD2trM6SkZOLOnexyZ06pv2f8XNH/o9a4eCoVZyOVyHv4DDFbk2DZwAIP8wvg26kRHJ2skfGgdifS1SVjygOAmQAwE4gq0r69K5Yt24R//vMjnD4dj+9jz6JYEJCZdh9tfLsjJ6cQFhZSpKXlIv3RswpnTr186N6LTagXZ1w5OVkhN5NNKbWCggIMGzYMfn5+2LBhQ5nnVSoV3nrrLTg7OyM+Ph6pqakYO3YszMzM8OWXX4pQceX0YYbCwoULMXnyZMjlcgQGBiI/Px9nzpzBkydPMG3aNHz99ddwcXFBhw4dYGJigp9++gnOzs5QKBQAnl9dIzo6Gv7+/jA3N6/00sUZGRm4f/8+8vPzcfXqVaxduxb79u3Dli1b1Ovz8fHB7t27ER8fD3t7e3z99dd48OBBqcBp2rQpTp06hVu3bsHGxgYNGjSAj48PtmzZgsjISHh6emLr1q1ISEhQ710h0iZND6erjpK9K337HsDAgQNx5MjzxlRUVBT8/V+Dv38T9aynmzczoFRmAyi7l/zl75kX99qEh1+q9owrfWRMmcA8YB6Q8dBWJixYMA5t29pjxIgR+PHHH1FcXIwff/wR/v5NkJlZgBMn7iExMR0JCanlfre/+D0jkUjQ9jVXtH3NFZlpubhw5DYuxNyFtQDcPJYKk6wiyB21f7hGXTGmPACYCcwEMhba/I3w5pu/ITAwEPHx8dgQfw6mUlM0T38EX59euHG7CEplFq5de1LhzKnSM6GeN6ZKzisVHZ1S7RlXdUYwMJs2bRLkcnmZxyMiIgQTExPh/v376sdWr14t2NnZCfn5+dVef2ZmpgBAyMzMLPX4s2fPhD///FN49uxZjWsXW3nv3bZt24T27dsLMplMsLe3F7p37y7s2bNHEARBWLdundC+fXvB2tpasLOzE/r06SOcO3dO/dr9+/cL3t7egqmpqeDh4VHhdvF8ErgAQLCwsBCaNWsmBAcHC2fPni21XHp6uhAUFCTY2NgITk5Owrx584SxY8cKQUFB6mWuXLkivPbaa4KlpaUAQEhOThby8vKEkJAQQS6XCwqFQpgwYYIwe/ZsoV27drV9y4yKMXyG9dGCBbHC66//KCxYEKuV9efk5Ah9+/YVOnbsKDx58kT9+K1bGcLBgzeE3buThAULYoXY2NsarTc29naNXleeir43dUGbmVDZuAz974l5QIb+GdZX2s6EX375RbCwsBC2bdumfqwkD27dyqjxd3vM4VvCkpkxQvj8eGF16BHhm4+jhfs3M2pUo1iZwDyoOWZC/WYMn2F9pO08yM7OFrp37y74+fkJf8QeFb4bP0r4+r0gYf3nS4T4iMPCf7YcFL6Yvkn4z5aDwvUzJ6t9e/l1f0T/JiQeja5RjdXNA4kgCAZ11Hh4eDimTJlSZmru/PnzsX//fpw/f179WHJyMry8vHDu3Dl06NChWuvPysqCXC5HZmYm7Ozs1I/n5eUhOTkZnp6esLAwnL1HRCX4GdYObewFeVleXh6ePXtW6Z7G2qjt+Ssq+t7UBW1mQmXj4t8TGTp+hrVDF5mQmpoKFxcXraxbKBZw+eJD/BF/D516ucGnheZ7ycXKBOYBUc3wM6wdusiD3NxcFBYWQi6XIyfjCSK+WQ7lxfNwbuaD9oGDYGFd9kqrmkhLy8XNK3fh5m6P7kPe0vj11c0Dgzl8ryr3799Ho0aNSj1Wcv/+/fsVvi4/Px/5+fnq+1lZWdopkIiMkr9/E60f/mZhYVHq/yQsW7YMbm5uePfddyt93c8/X8GePdfwxhuN4e4uh1wuQ2ZmQZnmk9jnr9CGmmQC84CIaksXmfBiQ+rOnTuYPXs2vv32W/WV0cpTkgdDhvigc2dnJCaml5sJEhMJbt19isR7T2F3M7NGTSl9wzwgIjHoIg9evAKltcIeSYI5ZJ4t8ejOTUSv/w6+PfvAo20H9ZUsS8TH38WJ+Hto5esAR0crWFuZISe3UH3i8xJKZRZu3MiARKrdtpGJVtdehdmzZ0MikVR6S0pK0moNS5YsgVwuV9/c3Ny0uj0iMhwpKZmIiLiJlJRMsUtRO3LkCGbOnImRI0dixYoVlS67Z881HDt2Bzt2XMGJE/cQFZWiPu/Ii3x9HeDn5yr6VfjEzgTmARFVRB/zQBAEjBgxAtu2bUOPHj2Qmppa4bIlebBnzzX1jgh9zgTmARHpM33MhIMHD2L+/PmYu+xrFLXqjEZe3jgfeRDHftiEx6l3Sy17Iv4eLiWm4/ixu0hKeozzF9KQlPQYSmXpBry7ux2aNVOgSWNbrdYu6kyp6dOnIyQkpNJlvLy8qrUuZ2dnnD59utRjDx48UD9XkTlz5mDatGnq+1lZWQweIgKgnzOIevTogcmTJ2PVqlWYOnUqUlNTsXTp0jJ7QABgyBAfACh3ptSLtHUpc02JnQnMAyKqiD7mgUQiwTfffIP+/fvjwoUL6NatGyIjI/HKK6+UWbYkD4YM8VFngD5nAvOAiPSZPmZCv379MH78eHz//feYMWcu5s+fj7c/DMXJn7fj2NaNcPZuDt+efWDbwAF+3VwBoNyZUi9ycrKCjbkjpKZmWq1d1KaUo6MjHB0d62Rdfn5+WLx4MdLS0uDk5AQAOHToEOzs7EpdmeFl5ubmMDc3r5MaiMi46MMVcF5mYmKCFStWwMXFBXPmzMG//vUv3L9/H99//z1kMlmpZd95pzneeae5SJVqTuxMYB4QUUX0MQ8AoEOHDoiPj0e/fv1w/fp1+Pv74+DBg+jSpUup5V7OA335EVUR5gER6TN9zARTU1OsXbsWLi4uWLRoERYtWoT7H32Er5f9G/89uA///f0gotd/ByfPZnjlNX/4Te9c7k5tMRjMOaWUSiUeP34MpVIJlUqlPlmht7c3bGxs0LdvX7Rq1QpjxoxR/0ibN28eQkNDGSpEVCP6sLe4PBKJBLNnz4azszM+/PBDbNmyBUqlErt374aDQ+XhWNuTmusLZgIR6ZK+5gHwfMZQXFwc3nrrLZw5cwY9evTApk2bqjzvIGAcmcA8ICJd09dMkEgkWLhwIVxcXDBx4kSsW7cOycnJ2LlzJzr0/xvORfyCSzFRiN2+BZZ2cri1ao3GLXxh5+iEhw+fQanMKnNeKV0wmKbU/PnzsXnzZvX9kitlHDlyBD179oRUKsWBAwcwYcIE+Pn5wdraGsHBwVi0aJFYJRMRVak2Pwh69Xob8+cXY9myKYiJicH27fvh5dWj0nXp43TjmmAmEJGxqU0eODk5YfPmfQgJGYOEhCP44osvYW3dEW3bNqp0XcaQCcwDIjJGtcmE/v1H4u9/B5Yvn45Dhw7h559/g6trV/j6v40ug4fhyolYJMXG4MbZ07h6Mg5mFhYwsXZEdr4Vcu+7QmjlDDPz5xdZysl4DGt77c4IM5imVHh4OMLDwytdxsPDAxEREbopiIioDtT0B0FKSibCwy/h5k1njB37LRSKFHh59SizrpcDTR+nG9cEM4GIjE1tGkQpKZn46adbaN58KqytPTFw4AicPp0GqdS01LqMMROYB0RkjGr7G0GpdMfYsd/CySkVrq5d/1rXAC+07dMPdl5d8N/T1yAXbiP7bhIeJKfAIv8WHv95BSf+LL1O7y7d6mxc5TGYphQRkTGq6Q+CxMR0PHqUh6KiYpiYuMDf31+9joYNC7B06VJ89tlnZQJNX6cbExHVd7VpEJVkQnGxBK1bj4SDgzNatrSCr68DvvnmGwQEBKBFixbMBCIiA1EXvxHMzJrgtde6q9ehUOTiq6++wrRp0/Dn5Sc4d6kAfn4dEPTuOyjIe4b83BzkZmQgNzMDebk5AASYySxg17BuzvFXETaliIjqSE2m2db0B4GvrwPS0nLx6FEuGja0VG/Tzc0Wffr0QUxMDA4dOoSlS1eXubR3XNwdREWlICDAA/7+TTTeNhERVU6XeQCUzYRevdzg4SFHZGQkPvnkE1hbW2Pt2rV4/fWB6uUB5gERkS7ow2+Exo2t8cYbb+DkyZOIjo7G4sXflPqNkHA2/YU86KzxdmvDRKdbI6MWEhKCwYMHq+/37NkTU6ZMqdU662IdRLpSsgc6MTFd69vy8JDDyckKmZkFcHKyVoeWiYkJxo0bB2traxw+fBiDBnWHhcWtUqEWFZWCqCgloqJStF4n1V/MBKrPdJkHQMWZ0K5dO/Tu3Rs5OTkYPXo0/vGPGejZ01n9PPOAdIF5QPWdPvxGkEql+PDDD2FhYYHffvsNf/tbD9ja3tWLPGBTqh4ICQmBRCKBRCKBTCaDt7c3Fi1ahKKiIq1ud8+ePfjiiy+qtWxMTAwkEgkyMjJqvA4isfn6OpSZlSTG9kaPHo0zZ86gdevWePDgAQICAjBjxgw8e/YMABAQ4IGAAHcEBHgAeL6nfOHCOMTF3dFJ3SQuZgKR9uk6DyraprOzM37//XcsWLAAEokE69evR6dOnXDq1CkAZfMAYCbUJ8wDIt3Qh98IEokE48aNw+nTp9GiRQvcvXsXPXv2xNy5c5Gfny9qHvDwvXoiMDAQmzZtQn5+PiIiIhAaGgozMzPMmTOn1HIFBQWQyWR1ss0GDRroxTqIdEXX5+aobHstWrTAqVOnMGXKFHz//fdYvnw5Dhw4gIMHD8Lfv1mpwzRK9owA4OEb9QQzgUi7xDhXU0XblEqlCAsLwxtvvIHRo0cjKSkJ3bp1w+LFizF79uwy3/vMhPqFeUCkffr0G6FNmzZISEhAaGgotmzZgiVLluA///kPIiIiEBbmX2pZXeUBZ0rVE+bm5nB2doaHhwcmTJiAgIAA7N+/Xz2ddvHixXB1dUXz5s0BALdv38bw4cOhUCjQoEEDBAUF4datW+r1qVQqTJs2DQqFAg4ODpg5cyYEQSi1zZen1ebn52PWrFlwc3ODubk5vL29sWHDBty6dQu9evUCANjb20MikSAkJKTcdTx58gRjx46Fvb09rKys0L9/f1y7dk39fHh4OBQKBSIjI9GyZUvY2NggMDAQqampdfuGEhkAKysrrFu3DgcOHICLiwskEgkaN25cZrny9oyQcWMmMBOo/unduzcuXbqE0aNHo7i4GB4e5X/nMxPqF+YB84DqHxsbG2zevBl79uyBo6MjTE1N0ahRozLL6SoP2JSqpywtLVFQUAAAiI6OxpUrV3Do0CEcOHAAhYWF6NevH2xtbXH8+HHExcWpv7hLXrN8+XKEh4dj48aNiI2NxePHj7F3795Ktzl27Fhs374dq1atwuXLl7F27VrY2NjAzc0NP//8MwDgypUrSE1NxcqVK8tdR0hICM6cOYP9+/fjxIkTEAQBAwYMQGFhoXqZ3NznVxXYunUrjh07BqVSiRkzZtTF20ZkkN566y0kJiZi7969sLCwAPB8j+cvv/wCQRDg798EYWH+3CNejzETiOqHBg0aYOvWrYiPj8e7776rfvz48eN48OABADAT6jnmAVH98fbbbyMxMRG7du1Sz4TMy8vDgQMHdPobgYfv1VJubi6SkpJ0vt0WLVrAyspK49cJgoDo6Gj11VgePnwIa2trrF+/Xv1B/OGHH1BcXIz169dDIpEAADZt2gSFQoGYmBj07dsXK1aswJw5czBkyBAAwJo1axAZGVnhdq9evYpdu3bh0KFDCAgIAAB4eXmpny+Zguvk5ASFQlHuOq5du4b9+/cjLi4O3bp1AwBs27YNbm5u2LdvH4YNGwYAKCwsxJo1a9CsWTMAwKRJk7Bo0SKN3ysiY2Jvbw97e3v1/VWrVuGzzz5D7969sXz5crRv31684oyIGJlQ0zwAmAlE9ZWfn5/6vzMyMvDOO++goKAAYWFhmDhxIszNzUWszjjwNwLzgMgQODo6wtHRUX3/X//6F8LCwhAYGIhly5ahdevWWq+BTalaSkpKQqdOnXS+3bNnz6Jjx47VXv7AgQOwsbFBYWEhiouL8d5772HBggUIDQ1FmzZtSh0jfuHCBVy/fh22tral1pGXl4cbN24gMzMTqamp6Nq1q/o5U1NTdO7cucz03BLnz5+HVCpFjx49NBzpXy5fvgxTU9NS23VwcEDz5s1x+fJl9WNWVlbqsAEAFxcXpKWl1Xi7RMZIEARYWFjg8OHD6NChA9577z387//+L5ycnMQuzaCJkQma5gHATGAmEP3l4cOHcHd3x9mzZzFt2jSsXLkSX331FYYOHSp2aQaNvxGeYx4QGRYTExPIZDL89ttviIyMxNixY/H1119r9TxubErVUosWLXD27FlRtquJXr16YfXq1ZDJZHB1dYWp6V//01tbW5da9unTp+jUqRO2bdtWZj0vdlE1YWlpWaPX1YSZmVmp+xKJpMIgJKqvPvvsMwwdOhRz587Fjh07EB0dXea7gDQnRiZomgcAM4GZQPQXHx8fnDp1CuHh4QgLC0NKSgru3bsndlkGj78Rqod5QKRf5s2bhxEjRmDu3LnYvXs3Dh8+XOMZ+dXFplQtWVlZabyHWgzW1tbw9vau1rIdO3bEzp074eTkBDs7u3KXcXFxwalTp9C9e3cAQFFRUaV7Ztq0aYPi4mIcPXpUPTX3RSV7YVQqVYV1tWzZEkVFRTh16pR6am56ejquXLmCVq1aVWtsRPQXT09PbN++HTNnzsS9e/fYlKoDzARmApEhkkqlGDduHN577z1s2LAB48ePF7skg8c8YB4QGSofHx/89NNPSEhIwOPHj9XnpNUWnuicyhg1ahQaNmyIoKAgHD9+HMnJyYiJicHkyZNx584dAMCnn36KpUuXYt++fUhKSsLEiRORkZFR4TqbNm2K4OBgfPDBB9i3b596nbt27QIAeHh4QCKR4MCBA3j48CGePn1aZh0+Pj4ICgrC+PHjERsbiwsXLmD06NFo3LgxgoKCtPJeEOmTuLg7WLgwDnFxdypcJiUlExERN5GSklnt9Xbo0AFvvfVWXZRIRoiZQKR/tJUHlpaWmDRpEs8pReViHhDpJ21lwquvvop+/frVRYmVYlOKyrCyssKxY8fg7u6OIUOGoGXLlhg3bhzy8vLUe0WmT5+OMWPGIDg4GH5+frC1tcXbb79d6XpXr16NoUOHYuLEiWjRogXGjx+PnJwcAEDjxo2xcOFCzJ49G40aNcKkSZPKXcemTZvQqVMnDBw4EH5+fhAEAREREWWm4xIZo6ioFERFKREVlVLhMomJ6Thx4h4SE9N1WBkZM2YCkf5hHpAYmAdE+snQM0Ei8EDaUrKysiCXy5GZmVlqWmpeXh6Sk5Ph6emp9elrRNrAz7Dhi4u7g6ioFAQEeFR4adaUlEwkJqbD19cBHh5yndRV0femoatsXPx7IkPHz7Bh09c8AIwzE5gHZMz4GTZ8+poJ1c0DnlOKiMhA+Ps3qTBoSnh4yHX644OIiHSPeUBERCUMPRN4+B4RkZGqzvHlRERk/JgHRERUQt8ygTOliIiMVMnx5QCq3HtCRETGi3lAREQl9C0T2JQiIjJSAQEepf4lIqL6iXlAREQl9C0T2JQiIjJS1Tm+nIiIjB/zgIiISuhbJvCcUkREREREREREpHNsShERERERERERkc6xKUVERERERERERDrHphQREREREREREekcm1JUp0JCQjB48GD1/Z49e2LKlCm1WmddrKMqMTExkEgkyMjI0Op2tE0ikWDfvn1il0FExDwQGfOAiPQJM0FczATSZ7z6Xh0ozsuDUFios+1JzMxgYmFR7eVDQkKwefNmAICZmRnc3d0xduxYzJ07F6am2v0I7NmzB2ZmZtVaNiYmBr169cKTJ0+gUChqtI6a6tatG1JTUyGXy6v9mpCQEGRkZPALngxCSkomEhPT4evrAA+Pvz7ncXF3EBWVgoAAD726CochKypQQaUSdLItqVQCU5m02sszD6rGPKD6gJmgG4UF+SguKtLZ9kxMTWEmM6/28syEqjETyNjpQx6wKVVLxXl5yI6OhiorW2fblNrZwrZPH40aU4GBgdi0aRPy8/MRERGB0NBQmJmZYc6cOWWWLSgogEwmq5NaGzRooBfrqIpMJoOzs7PWt1Oeuny/iSqSmJiOEyfuAUCpwImKSkFUlBIA+AOkDhQVqJB84RHycnWzo8LCygye7Rpq1JhiHlSOeUD1ATNB+woL8nEj4STycnJ0tk0La2s0e/U1jRpTzITKMRPI2OlDHvDwvVoSCguhysqGibk5pHZ2Wr+ZmJtDlZWt8cwsc3NzODs7w8PDAxMmTEBAQAD2798P4K/ptIsXL4arqyuaN28OALh9+zaGDx8OhUKBBg0aICgoCLdu3VKvU6VSYdq0aVAoFHBwcMDMmTMhCKVnB7w8rTY/Px+zZs2Cm5sbzM3N4e3tjQ0bNuDWrVvo1asXAMDe3h4SiQQhISHlruPJkycYO3Ys7O3tYWVlhf79++PatWvq58PDw6FQKBAZGYmWLVvCxsYGgYGBSE1NrfD9eXlqblXrWLBgATZv3oxffvkFEokEEokEMTEx1Xrfynu/586di65du5apq127dli0aBEAICEhAW+++SYaNmwIuVyOHj164Ny5cxWOiehFvr4O8PNzha+vg/qxlJRMWFvL0LlzIwQEeIhYnfFQqQTk5RbC1EwKcyszrd5MzaTIyy3UeFYW84B5QMRM0L7ioiLk5eTAVGYGCxtrrd9MZWbIy8nReGYWM4GZQPWbPuQBm1J1RGJuDhNLS63fJObV3/NRGUtLSxQUFKjvR0dH48qVKzh06BAOHDiAwsJC9OvXD7a2tjh+/Dji4uLUX7olr1u+fDnCw8OxceNGxMbG4vHjx9i7d2+l2x07diy2b9+OVatW4fLly1i7di1sbGzg5uaGn3/+GQBw5coVpKamYuXKleWuIyQkBGfOnMH+/ftx4sQJCIKAAQMGoPCFRl1ubi6++uorbN26FceOHYNSqcSMGTM0eo8qW8eMGTMwfPhwdQilpqaiW7du1Xrfynu/R40ahdOnT+PGjRvqZRITE/HHH3/gvffeAwBkZ2cjODgYsbGxOHnyJHx8fDBgwABkZ+tulh4ZLg8POQYM8Cq1ByQxMR2Zmfl4882m3CNex6RmJjAzl2r1JjWrmwhnHlSNeUDGhpmgO6YyGczMLbR+M62jGTXMhKoxE8iY6EMe8PC9ekYQBERHRyMyMhKffPKJ+nFra2usX79ePUX0hx9+QHFxMdavXw+JRAIA2LRpExQKBWJiYtC3b1+sWLECc+bMwZAhQwAAa9asQWRkZIXbvnr1Knbt2oVDhw4hICAAAODl5aV+vmQKrpOTU6njxV907do17N+/H3FxcejWrRsAYNu2bXBzc8O+ffswbNgwAEBhYSHWrFmDZs2aAQAmTZqk3ptQXZWtw8bGBpaWlsjPzy81pbc67xtQ9v0Gnu/x+PHHH/H555+rx9W1a1d4e3sDAHr37l2qvnXr1kGhUODo0aMYOHCgRmMjAqDeI/LinhGqP5gH1cc8oPqAmVC/MROqj5lAxk7XecCmVD1x4MAB2NjYoLCwEMXFxXjvvfewYMEC9fNt2rQp9eV34cIFXL9+Hba2tqXWk5eXhxs3biAzMxOpqamlppOampqic+fOZabnljh//jykUil69OhR43FcvnwZpqampbbr4OCA5s2b4/Lly+rHrKys1EEBAC4uLkhLS9NoWzVZR1XvW4mX328AGDVqFDZu3IjPP/8cgiBg+/btmDZtmvr5Bw8eYN68eYiJiUFaWhpUKhVyc3OhVCo1GhdRCQ8Peam9IlQ/MA+YB0TlYSbUT8wEZgLRy3SdB2xK1RO9evXC6tWrIZPJ4OrqWuaKGtbW1qXuP336FJ06dcK2bdvKrMvR0bFGNVhaWtbodTXx8pU4JBJJhUFYl+uo7vv28vsNACNHjsSsWbNw7tw5PHv2DLdv38aIESPUzwcHByM9PR0rV66Eh4cHzM3N4efnV2rKLxFRVZgHzAMiohLMBGYCkdjYlKonrK2t1VM8q6Njx47YuXMnnJycYGdnV+4yLi4uOHXqFLp37w4AKCoqwtmzZ9GxY8dyl2/Tpg2Ki4tx9OhR9dTcF5XsFVCpVBXW1bJlSxQVFeHUqVPqqbnp6em4cuUKWrVqVe3x1QWZTFam1uq8bxVp0qQJevTogW3btuHZs2d488034eTkpH4+Li4O3333HQYMGADg+ckSHz16VPuBEFG9wjyoe8wDIjJUzIS6x0wg0gxPdE7lGjVqFBo2bIigoCAcP34cycnJiImJweTJk3Hnzh0AwKeffoqlS5di3759SEpKwsSJE9VXpihP06ZNERwcjA8++AD79u1Tr3PXrl0AAA8PD0gkEhw4cAAPHz7E06dPy6zDx8cHQUFBGD9+PGJjY3HhwgWMHj0ajRs3RlBQkFbei8rG88cff+DKlSt49OgRCgsLq/W+VWbUqFHYsWMHfvrpJ4waNarUcz4+Pti6dSsuX76MU6dOYdSoUTrds0SGLyUlExERN5GSkil2KWRAmAdVYx6QoWEeUE0xE6rGTCBDI3YmsClVR4T8fBQ/e6b1m5Cfr5PxWFlZ4dixY3B3d8eQIUPQsmVLjBs3Dnl5eeru/vTp0zFmzBgEBwfDz88Ptra2ePvttytd7+rVqzF06FBMnDgRLVq0wPjx45GTkwMAaNy4MRYuXIjZs2ejUaNGmDRpUrnr2LRpEzp16oSBAwfCz88PgiAgIiKizFRabRs/fjyaN2+Ozp07w9HREXFxcdV63yozdOhQpKenIzc3F4MHDy713IYNG/DkyRN07NgRY8aMweTJk0vtJSGqSmJiOk6cuIfExHSxSzF6qsJiFOartHpTFRbrZCzMg6oxD8jQMA90p6igAIX5eVq/FenoUC1mQtWYCWRoxM4EiaDpQbRGLisrC3K5HJmZmaW+IPLy8pCcnAxPT09YWFioHy/Oy0N2dDRUWbq75KbUzha2ffrA5IU6iKpS0WeY6o+UlEwkJqbD19ehTk9eWNH3pqGrbFwV/T0VFaiQfOER8nILX16dVlhYmcGzXUOYyqQ62R4ZD2ZC/aatPACMMxNqkgeFBfm4kXASef/fWNEFC2trNHv1NZjJzHW2TTJ8zAMS+zcCzylVSyYWFrDt0wdCoW5+gACAxMyMDSki0hivrKR9pjIpPNs1hEqlm/09UqmEDSki0hjzQPvMZOZo9uprKC4q0tk2TUxN2ZAiIo2JnQlsStUBEwsLgE0iIiLC88YUw5WIiMxk5gCbREREleI5pYiIiIiIiIiISOfYlCIiIiIiIiIiIp1jU4qIiIiIiIiIiHSOTSkiIiIiIiIiItI5NqWIiIiIiIiIiEjn2JQiIiIiIiIiIiKdY1OKiIiIiIiIiIh0jk0pIiIiIiIiIiLSOTaljJxEIqn0tmDBAp3V0rNnT/V2LSws0KpVK3z33Xfq58PDw6FQKHRWDxFRfcI8ICKiEswEItIXbEoZudTUVPVtxYoVsLOzK/XYjBkz1MsKgoCioiKt1jN+/Hikpqbizz//xPDhwxEaGort27drdZtEhi4lJRMRETeRkpIpdilkwJgHRMaBmUB1gZlAZPiMJQ/YlDJyzs7O6ptcLodEIlHfT0pKgq2tLX799Vd06tQJ5ubmiI2NRUhICAYPHlxqPVOmTEHPnj3V94uLi7FkyRJ4enrC0tIS7dq1w+7du6usx8rKCs7OzvDy8sKCBQvg4+OD/fv31/GoiYxLYmI6Tpy4h8TEdLFLIQPGPCAyDswEqgvMBCLDZyx5YCp2AdW1ePFiHDx4EOfPn4dMJkNGRkaZZSQSSZnHtm/fjnfffVerteXk5FT4nFQqhYWFRbWWNTExgaWlZZXLWltb16DKis2ePRtfffUVvLy8YG9vX63XLFmyBD/88APWrFkDHx8fHDt2DKNHj4ajoyN69OhR7W1bWlqioKCgpqUT1Qu+vg6l/iVmQgnmAVH9w0wojXnwF2YCUf1iLHlgME2pgoICDBs2DH5+ftiwYUOFy23atAmBgYHq+7o4/tjGxqbC5wYMGICDBw+q7zs5OSE3N7fcZXv06IGYmBj1/aZNm+LRo0dllhMEoebFlmPRokV48803q718fn4+vvzyS0RFRcHPzw8A4OXlhdjYWKxdu7ZagaNSqbB9+3b88ccf+Oijj2pcO1F94OEhh4eHXOwy9Aoz4TnmAVH9w0wojXnwF2YCUf1iLHlgME2phQsXAnh+orvKKBQKODs766Ai49G5c2eNlr9+/Tpyc3PLhFRBQQE6dOhQ6Wu/++47rF+/HgUFBZBKpZg6dSomTJigcc1EVL8xE7SDeUBEhoZ5oD3MBCLSBYNpSlVXaGgoPvzwQ3h5eeHjjz/G+++/X+6U3RL5+fnIz89X38/KytJ4m0+fPq3wOalUWup+WlpahcuamJQ+xdetW7c0rqUmXp7qa2JiUmZPS2Fhofq/S8Z78OBBNG7cuNRy5ubmlW5r1KhR+Pvf/w5LS0u4uLiUGTMRUV3SJBPqIg8Aw84E5gERGSvmgeaYCUSkC0bVlFq0aBF69+4NKysr/P7775g4cSKePn2KyZMnV/iaJUuWqPew1JQmx29ra9m65OjoiEuXLpV67Pz58zAzMwMAtGrVCubm5lAqlRodGw4Acrkc3t7edVYrEVFFNM2EusgDwLgygXlARMaAeVA3mAlEpA2itqBnz54NiURS6S0pKana6/v888/h7++PDh06YNasWZg5cyaWLVtW6WvmzJmDzMxM9e327du1HZbB6927N86cOYMtW7bg2rVrCAsLKxVAtra2mDFjBqZOnYrNmzfjxo0bOHfuHP79739j8+bNIlZORIZM7ExgHpTFPCAiMTAP9BMzgYi0QdSZUtOnT0dISEily3h5edV4/V27dsUXX3yB/Pz8CqeMmpubVzmdtL7p168fPv/8c8ycORN5eXn44IMPMHbsWFy8eFG9zBdffAFHR0csWbIEN2/ehEKhQMeOHTF37lwRKyciQyZ2JjAPymIeEJEYmAf6iZlARNogEer6Mg1aFh4ejilTppR7udeXLV68GMuXL8fjx4+rvf6srCzI5XJkZmbCzs5O/XheXh6Sk5Ph6elZ6vKtRIaCn2HSloq+N3VBm5lQ2bj490SGjp9h0haxMoF5QFQz/AyTtlQ3DwzmnFJKpRKPHz+GUqmESqXC+fPnAQDe3t6wsbHBf/7zHzx48ACvvfYaLCwscOjQIXz55ZeYMWOGuIUTEelIXNwdREWlICDAA/7+TcQuR6uYCURElasvmcA8ICKqnL7ngcE0pebPn1/qWOSSy4oeOXIEPXv2hJmZGb799ltMnToVgiDA29sbX3/9NcaPHy9WyUREOhUVlYKoKCUA6GXg1CVmAhFR5epLJjAPiIgqp+95YDBNqfDwcISHh1f4fGBgIAIDA3VXEBGRngkI8Cj1rzFjJhARVa6+ZALzgIiocvqeBwbTlCIiosr5+zfRy70fRESke8wEIiIC9D8PTMQugIiIiIiIiIiI6h82pTRkYBcrJFLjZ5eo7vHvigwVP7tEdYt/U2So+NklsbEpVU1mZmYAgNzcXJErIaqZks9uyWeZiGqOmUCGjplAVDeYB2TomAckNp5TqpqkUikUCgXS0tIAAFZWVpBIJCJXRVQ1QRCQm5uLtLQ0KBQKSKVSsUsiMnjMBDJUzASiusU8IEPFPCB9waaUBpydnQFAHTpEhkShUKg/w0RUe8wEMmTMBKK6wzwgQ8Y8ILGxKaUBiUQCFxcXODk5obCwUOxyiKrNzMyMez+I6hgzgQwVM4GobjEPyFAxD0gfsClVA1KplH+8REQEgJlARETPMQ+IiDTHE50TEREREREREZHOsSlFREREREREREQ6x6YUERERERERERHpHM8p9RJBEAAAWVlZIldCRGQYSr4vS74/jQXzgIhIc8aYCcwDIiLNVTcP2JR6SXZ2NgDAzc1N5EqIiAxLdnY25HK52GXUGeYBEVHNGVMmMA+IiGquqjyQCMa0G6MOFBcX4969e7C1tYVEItHotVlZWXBzc8Pt27dhZ2enpQq1z1jGAXAs+spYxmIs4wBqNxZBEJCdnQ1XV1eYmBjPUeHMg+c4Fv1jLOMAOBZ9VNtxGGMm1CYPAH429BHHon+MZRwAx1KiunnAmVIvMTExQZMmTWq1Djs7O4P/8AHGMw6AY9FXxjIWYxkHUPOxGMve8BcxD0rjWPSPsYwD4Fj0UW3GYWyZUBd5APCzoY84Fv1jLOMAOBagenlgHLsviIiIiIiIiIjIoLApRUREREREREREOsemVB0yNzdHWFgYzM3NxS6lVoxlHADHoq+MZSzGMg7AuMaiD4zp/eRY9I+xjAPgWPSRsYxDnxjLe2os4wA4Fn1kLOMAOBZN8UTnRERERERERESkc5wpRUREREREREREOsemFBERERERERER6RybUkREREREREREpHNsSmnJ4sWL0a1bN1hZWUGhUIhdjka+/fZbNG3aFBYWFujatStOnz4tdkkaO3bsGAYNGgRXV1dIJBLs27dP7JJqZMmSJXj11Vdha2sLJycnDB48GFeuXBG7rBpZvXo12rZtCzs7O9jZ2cHPzw+//vqr2GXViaVLl0IikWDKlClil6KxBQsWQCKRlLq1aNFC7LKMCvNAfMwE/WOsmcA8oKowE8TFPNA/xpoHADOhutiU0pKCggIMGzYMEyZMELsUjezcuRPTpk1DWFgYzp07h3bt2qFfv35IS0sTuzSN5OTkoF27dvj222/FLqVWjh49itDQUJw8eRKHDh1CYWEh+vbti5ycHLFL01iTJk2wdOlSnD17FmfOnEHv3r0RFBSExMREsUurlYSEBKxduxZt27YVu5Qa8/X1RWpqqvoWGxsrdklGhXkgPmaC/jHGTGAeUHUwE8TFPNA/xpgHADNBIwJp1aZNmwS5XC52GdXWpUsXITQ0VH1fpVIJrq6uwpIlS0SsqnYACHv37hW7jDqRlpYmABCOHj0qdil1wt7eXli/fr3YZdRYdna24OPjIxw6dEjo0aOH8Omnn4pdksbCwsKEdu3aiV1GvcA80A/MBP1lyJnAPCBNMRPExzzQX4acB4LATNAUZ0qRWkFBAc6ePYuAgAD1YyYmJggICMCJEydErIxKZGZmAgAaNGggciW1o1KpsGPHDuTk5MDPz0/scmosNDQUb731Vqm/GUN07do1uLq6wsvLC6NGjYJSqRS7JBIZ88AwMBP0B/OAjBkzQf8xD/QLM0EzplpZKxmkR48eQaVSoVGjRqUeb9SoEZKSkkSqikoUFxdjypQp8Pf3R+vWrcUup0YuXrwIPz8/5OXlwcbGBnv37kWrVq3ELqtGduzYgXPnziEhIUHsUmqla9euCA8PR/PmzZGamoqFCxfijTfewKVLl2Brayt2eSQS5oH+YyboD+YBGTtmgn5jHugXZoLmOFNKA7Nnzy5zsq+Xb/xiJm0JDQ3FpUuXsGPHDrFLqbHmzZvj/PnzOHXqFCZMmIDg4GD8+eefYpelsdu3b+PTTz/Ftm3bYGFhIXY5tdK/f38MGzYMbdu2Rb9+/RAREYGMjAzs2rVL7NL0GvOAxMZM0A/MAwKYCSQu5oH+YCbUDGdKaWD69OkICQmpdBkvLy/dFKMFDRs2hFQqxYMHD0o9/uDBAzg7O4tUFQHApEmTcODAARw7dgxNmjQRu5wak8lk8Pb2BgB06tQJCQkJWLlyJdauXStyZZo5e/Ys0tLS0LFjR/VjKpUKx44dwzfffIP8/HxIpVIRK6w5hUKBV155BdevXxe7FL3GPCAxMRP0B/OAAGYCiYd5oF+YCTXDppQGHB0d4ejoKHYZWiOTydCpUydER0dj8ODBAJ5PB42OjsakSZPELa6eEgQBn3zyCfbu3YuYmBh4enqKXVKdKi4uRn5+vthlaKxPnz64ePFiqcfef/99tGjRArNmzTLYsAGAp0+f4saNGxgzZozYpeg15gGJgZmgf5gHBDATSPeYB/qJmVAzbEppiVKpxOPHj6FUKqFSqXD+/HkAgLe3N2xsbMQtrhLTpk1DcHAwOnfujC5dumDFihXIycnB+++/L3ZpGnn69GmpLm5ycjLOnz+PBg0awN3dXcTKNBMaGooff/wRv/zyC2xtbXH//n0AgFwuh6WlpcjVaWbOnDno378/3N3dkZ2djR9//BExMTGIjIwUuzSN2draljlm39raGg4ODgZ3LP+MGTMwaNAgeHh44N69ewgLC4NUKsXIkSPFLs1oMA/Ex0zQP8aSCcwD0hQzQVzMA/1jLHkAMBNqTCfX+KuHgoODBQBlbkeOHBG7tCr9+9//Ftzd3QWZTCZ06dJFOHnypNglaezIkSPlvv/BwcFil6aR8sYAQNi0aZPYpWnsgw8+EDw8PASZTCY4OjoKffr0EX7//Xexy6ozhnq51xEjRgguLi6CTCYTGjduLIwYMUK4fv262GUZFeaB+JgJ+seYM4F5QJVhJoiLeaB/jDkPBIGZUB0SQRCEum91ERERERERERERVYxX3yMiIiIiIiIiIp1jU4qIiIiIiIiIiHSOTSkiIiIiIiIiItI5NqWIiIiIiIiIiEjn2JQiIiIiIiIiIiKdY1OKiIiIiIiIiIh0jk0pIiIiIiIiIiLSOTaliIiIiIiIiIhI59iUIiIiIiIiIiIinWNTikhPqVQqdOvWDUOGDCn1eGZmJtzc3PD3v/9dpMqIiEjXmAlERAQwD8j4SARBEMQugojKd/XqVbRv3x7ff/89Ro0aBQAYO3YsLly4gISEBMhkMpErJCIiXWEmEBERwDwg48KmFJGeW7VqFRYsWIDExEScPn0aw4YNQ0JCAtq1ayd2aUREpGPMBCIiApgHZDzYlCLSc4IgoHfv3pBKpbh48SI++eQTzJs3T+yyiIhIBMwEIiICmAdkPNiUIjIASUlJaNmyJdq0aYNz587B1NRU7JKIiEgkzAQiIgKYB2QceKJzIgOwceNGWFlZITk5GXfu3BG7HCIiEhEzgYiIAOYBGQfOlCLSc/Hx8ejRowd+//13/OMf/wAAREVFQSKRiFwZERHpGjOBiIgA5gEZD86UItJjubm5CAkJwYQJE9CrVy9s2LABp0+fxpo1a8QujYiIdIyZQEREAPOAjAtnShHpsU8//RQRERG4cOECrKysAABr167FjBkzcPHiRTRt2lTcAomISGeYCUREBDAPyLiwKUWkp44ePYo+ffogJiYGr7/+eqnn+vXrh6KiIk7RJSKqJ5gJREQEMA/I+LApRUREREREREREOsdzShERERERERERkc6xKUVERERERERERDrHphQREREREREREekcm1JERERERERERKRzbEoREREREREREZHOsSlFREREREREREQ6x6YUERERERERERHpHJtSRERERERERESkc2xKERERERERERGRzrEpRUREREREREREOsemFBERERERERER6RybUkREREREREREpHP/B1YfjDx0VlEQAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxYAAAJOCAYAAAAqFJGJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAD/HElEQVR4nOzdd1xV5R/A8c/lApc9RAUUBUXEvVcigqjgRMtSc6RmObLSTM09KUfmLv3ZcGe5cqS5F+5yC24B9wAVZI97fn8QV28MwXVBv+/Xi9er+5znec73Xuh6vuc8Q6UoioIQQgghhBBCPAcjQwcghBBCCCGEKPgksRBCCCGEEEI8N0kshBBCCCGEEM9NEgshhBBCCCHEc5PEQgghhBBCCPHcJLEQQgghhBBCPDdJLIQQQgghhBDPTRILIYQQQgghxHOTxEIIIYQQQgjx3CSxEEIIA3Bzc6N79+6617t370alUrF79+4Xdg6VSsXYsWNfWH+5NXbsWFQq1Ss/ryH4+vri6+v7UvrOy99EXuLw9fWlUqVKzxecEEJkQRILIcQbZ+HChahUKt2PmZkZZcuW5dNPP+XOnTuGDi9PNm3aZJDk4WU5cOAAY8eO5eHDh4YOpUC7efMmY8eO5cSJE4YORQjxBpHEQgjxxho/fjxLlixhzpw51K9fn7lz5/LWW28RHx//ymNp2LAhCQkJNGzYME/tNm3axLhx47I8lpCQwMiRI19EeHkycuRIEhISnqntgQMHGDdunCQWPPvfBKQnFuPGjZPEQgjxShkbOgAhhDCU5s2bU6tWLQA++ugjHBwcmDZtGuvWreP999/Psk1cXByWlpYvPBYjIyPMzMxeaJ8vur/cMjY2xtg4f/3zEh8fj4WFhaHDyJOX8TchhBAvkzyxEEKIf/n5+QEQFhYGQPfu3bGysuLy5cu0aNECa2trOnfuDIBWq2XGjBlUrFgRMzMzHB0d6d27Nw8ePNDrU1EUgoKCcHFxwcLCgkaNGhESEpLp3NmNpz98+DAtWrTA3t4eS0tLqlSpwsyZM3Xxff/99wB6Q7syZDXH4vjx4zRv3hwbGxusrKxo3Lgxhw4d0quTMVRs//79DBw4kCJFimBpacnbb7/NvXv3nvo5ZjXHQqVS8emnn7J27VoqVaqERqOhYsWKbN68Wa/d4MGDAShVqpTu/YSHh+vqLF26lJo1a2Jubk6hQoXo2LEj165d0ztXxhyCo0eP0rBhQywsLBg+fDitWrWidOnSWcb81ltv6ZJMgAULFuDn50fRokXRaDRUqFCBuXPnPvW9Z+Wdd96hRo0aemWtW7dGpVKxfv16Xdnhw4dRqVT89ddfQPZ/E/Pnz8fd3R1zc3Pq1KlDcHCw3vHdu3dTu3ZtAHr06KH7HBcuXKhXLzQ0lEaNGmFhYUHx4sWZMmXKM70/IYTIkL9uKQkhhAFdvnwZAAcHB11ZamoqAQEBNGjQgKlTp+ruevfu3ZuFCxfSo0cPPv/8c8LCwpgzZw7Hjx9n//79mJiYADB69GiCgoJo0aIFLVq04NixY/j7+5OcnPzUeLZt20arVq1wdnamf//+ODk5cfbsWf7880/69+9P7969uXnzJtu2bWPJkiVP7S8kJARvb29sbGwYMmQIJiYm/O9//8PX15c9e/ZQt25dvfqfffYZ9vb2jBkzhvDwcGbMmMGnn37K77//nuvP9En79u1jzZo1fPLJJ1hbWzNr1izatWvH1atXcXBw4J133uHChQssX76c6dOnU7hwYQCKFCkCwNdff82oUaNo3749H330Effu3WP27Nk0bNiQ48ePY2dnpztXVFQUzZs3p2PHjnTp0gVHR0dq1qzJBx98wN9//6278AaIiIjg0KFDfPvtt7qyuXPnUrFiRQIDAzE2NmbDhg188sknaLVa+vXrl6f37e3tzbp164iJicHGxgZFUdi/fz9GRkYEBwcTGBgIQHBwMEZGRnh5eWXb188//0zv3r2pX78+AwYM4MqVKwQGBlKoUCFKlCgBQPny5Rk/fjyjR4+mV69eeHt7A1C/fn1dPw8ePKBZs2a88847tG/fnlWrVvHVV19RuXJlmjdvnqf3J4QQOooQQrxhFixYoADK9u3blXv37inXrl1TfvvtN8XBwUExNzdXrl+/riiKonTr1k0BlKFDh+q1Dw4OVgBl2bJleuWbN2/WK797965iamqqtGzZUtFqtbp6w4cPVwClW7duurJdu3YpgLJr1y5FURQlNTVVKVWqlOLq6qo8ePBA7zxP9tWvXz8lu69yQBkzZozuddu2bRVTU1Pl8uXLurKbN28q1tbWSsOGDTN9Pk2aNNE71xdffKGo1Wrl4cOHWZ4vw5gxYzLFBCimpqbKpUuXdGUnT55UAGX27Nm6sm+//VYBlLCwML324eHhilqtVr7++mu98tOnTyvGxsZ65T4+PgqgzJs3T69udHS0otFolC+//FKvfMqUKYpKpVIiIiJ0ZfHx8ZneV0BAgFK6dGm9Mh8fH8XHxyeLT+Gxv//+WwGUTZs2KYqiKKdOnVIA5b333lPq1q2rqxcYGKhUr15d9/q/fxPJyclK0aJFlWrVqilJSUm6evPnz1cAvTgyzrlgwYJM8WR8PosXL9aVJSUlKU5OTkq7du1yfC9CCJETGQolhHhjNWnShCJFilCiRAk6duyIlZUVf/zxB8WLF9er17dvX73XK1euxNbWlqZNmxIZGan7qVmzJlZWVuzatQuA7du3k5yczGeffaY3NGjAgAFPje348eOEhYUxYMAAvTvxwDMt5ZqWlsbWrVtp27at3nAgZ2dnOnXqxL59+4iJidFr06tXL71zeXt7k5aWRkRERJ7PD+mft7u7u+51lSpVsLGx4cqVK09tu2bNGrRaLe3bt9f7zJ2cnPDw8NB95hk0Gg09evTQK7OxsaF58+asWLECRVF05b///jv16tWjZMmSujJzc3Pdf0dHRxMZGYmPjw9XrlwhOjo6T++7evXqWFlZsXfvXiD9yYSLiwsffPABx44dIz4+HkVR2Ldvn+7pQlb++ecf7t69S58+fTA1NdWVd+/eHVtb2zzFZGVlRZcuXXSvTU1NqVOnTq5+F0IIkR0ZCiWEeGN9//33lC1bFmNjYxwdHfH09MTISP9+i7GxMS4uLnplFy9eJDo6mqJFi2bZ7927dwF0F+AeHh56x4sUKYK9vX2OsWUMy3pR+w3cu3eP+Ph4PD09Mx0rX748Wq2Wa9euUbFiRV35kxfagC7m/84jya3/9pfRZ276u3jxIoqiZPosM2QMPctQvHhxvYvvDB06dGDt2rUcPHiQ+vXrc/nyZY4ePcqMGTP06u3fv58xY8Zw8ODBTKuERUdH5+lCXq1W89Zbb+nmQgQHB+Pt7U2DBg1IS0vj0KFDODo6cv/+/RwTi+z+nkxMTLKdO5IdFxeXTAmqvb09p06dylM/QgjxJEkshBBvrDp16uhN2M2KRqPJlGxotVqKFi3KsmXLsmyTMSegoFOr1VmWP3m3/1X1p9VqdRObs+rHyspK7/WTTxye1Lp1aywsLFixYgX169dnxYoVGBkZ8d577+nqXL58mcaNG1OuXDmmTZtGiRIlMDU1ZdOmTUyfPh2tVvvUeP+rQYMGfP311yQmJhIcHMyIESOws7OjUqVKBAcH4+joCJBjYvEivejfrRBCgCQWQgiRZ+7u7mzfvh0vL69sL2ABXF1dgfS77U/eUb53795T79JnDBk6c+YMTZo0ybZebodFFSlSBAsLC86fP5/p2Llz5zAyMtJN/jWk7N6Pu7s7iqJQqlQpypYt+8z9W1pa0qpVK1auXMm0adP4/fff8fb2plixYro6GzZsICkpifXr1+s9ZfnvcKu88Pb2Jjk5meXLl3Pjxg1dAtGwYUNdYlG2bFldgpGVJ/+eMlYwA0hJSSEsLIyqVavqyt6Unc+FEPmLzLEQQog8at++PWlpaUyYMCHTsdTUVN3mbk2aNMHExITZs2fr3Qn+77CbrNSoUYNSpUoxY8aMTJvFPdlXxp4aT9tQTq1W4+/vz7p16/SWb71z5w6//vorDRo0wMbG5qlxvWzZvZ933nkHtVrNuHHjMt1VVxSFqKioXJ+jQ4cO3Lx5k59++omTJ0/SoUMHveMZd/OfPE90dDQLFizIy1vRU7duXUxMTJg8eTKFChXSDTnz9vbm0KFD7Nmz56lPK2rVqkWRIkWYN2+e3qpiCxcuzPR55fbvQgghXiR5YiGEEHnk4+ND7969mThxIidOnMDf3x8TExMuXrzIypUrmTlzJu+++y5FihRh0KBBTJw4kVatWtGiRQuOHz/OX3/9pVtKNTtGRkbMnTuX1q1bU61aNXr06IGzszPnzp0jJCSELVu2AFCzZk0APv/8cwICAlCr1XTs2DHLPoOCgti2bRsNGjTgk08+wdjYmP/9738kJSXlmz0MMt7PiBEj6NixIyYmJrRu3Rp3d3eCgoIYNmwY4eHhtG3bFmtra8LCwvjjjz/o1asXgwYNytU5MvYkGTRoEGq1mnbt2ukd9/f3x9TUlNatW9O7d29iY2P58ccfKVq0KLdu3Xqm92VhYUHNmjU5dOiQbg8LSH9iERcXR1xc3FMTCxMTE4KCgujduzd+fn506NCBsLAwFixYkGmOhbu7O3Z2dsybNw9ra2ssLS2pW7cupUqVeqb4hRAiN+SJhRBCPIN58+Yxf/587t69y/Dhwxk2bBg7d+6kS5cuevsQBAUFMW7cOI4fP87gwYO5fPkyW7duzdXu3QEBAezatYuyZcvy3XffMXDgQHbs2EHr1q11dd555x0+++wzNm/eTNeuXbPdMRygYsWKBAcHU6lSJSZOnMi4ceNwdXVl165dmfawMJTatWszYcIETp48Sffu3Xn//fd1m/INHTqU1atXY2RkxLhx4xg0aBDr16/H399ftxdEbpiZmREYGMijR49o1KhRpkn4np6erFq1CpVKxaBBg5g3bx69evWif//+z/XeMhKHBg0a6MqcnJwoU6aM3vGc9OrVix9++IGbN28yePBggoODWb9+faZhbCYmJixatAi1Wk2fPn14//332bNnz3PFL4QQT6NSZKaWEEIIIYQQ4jnJEwshhBBCCCHEc5PEQgghhBBCCPHcJLEQQgghhBBCPDdJLIQQQgghhBDPTRILIYQQQgghxHOTxEIIIYQQQgjx3F77DfK0Wi03b97E2tpatyGREEIIIYQQ4ukUReHRo0cUK1YMI6Ocn0m89onFzZs3M20cJIQQQgghhMi9a9eu4eLikmOd1z6xsLa2BtI/DBsbGwNHI4QQQgghRMERExNDiRIldNfUOXntE4uM4U82NjaSWAghhBBCCPEMcjOlQCZvCyGEEEIIIZ6bJBZCCCGEEEKI5yaJhRBCCCGEEOK5SWIhhBBCCCGEeG6SWAghhBBCCCGemyQWQgghhBBCiOf22i83+6xSUlJIS0szdBhCCGFwarUaExMTQ4chhBAin5PE4j9iYmKIjIwkKSnJ0KEIIUS+odFoKFy4sOwHJIQQIluSWDwhJiaGGzduYGVlReHChTExMcnVZiBCCPG6UhSFlJQUoqOjuXHjBoAkF0IIIbIkicUTIiMjsbKywsXFRRIKIYT4l7m5OdbW1ly/fp3IyEhJLIQQQmRJJm//KyUlhaSkJGxtbSWpEEKI/1CpVNja2pKUlERKSoqhwxFCCJEPSWLxr4yJ2jJBUQghspbx/SgLWwghhMiKJBb/IU8rhBAia/L9KIQQIieSWAghhBBCCCGemyQWQgghhBBCiOcmiYXIl3x9fQvssIuxY8eiUqnYvXu3XrlKpcLX19cgMQkhhBBCvGySWAgAwsPDUalUmX4sLS2pUqUK48aNIzY21tBhvhBRUVEMHTqUihUrYmFhgYWFBa6urjRu3Jhx48Zx586dVxZL9+7dUalUhIeHv7JzCiGEEEK8DLKPhdDj7u5Oly5dgPSNse7du8dff/3F2LFj2bx5M/v27UOtVr/0OBYvXkx8fPwL7/f69evUr1+fa9euUa1aNXr06IGdnR23bt3iwIEDjB07Fi8vLxwdHV/4uc+ePYuFhcUL71cIIYQQIj+QxELoKVOmDGPHjtUrS0pK4q233uLQoUPs2bMHPz+/lx5HyZIlX0q/Y8aM4dq1a4wfP55Ro0ZlOn769Gns7OxeyrnLlSv3UvoVQgghRP6hKArJCQmkJCXqyoxNTdFYWBbYYd65JYmFeCqNRkOjRo04fvw4kZGResd27drFkiVL2L9/Pzdu3ADSL6B79epFr169MvV17NgxvvnmG44cOcKdO3ewsbHBzc2Ntm3bMmLECF09X19f9uzZg6IomfpYt24d33//PUePHiUuLg4nJye8vb356quvqFSpUo7v5eDBgwB89tlnWR6vXLlypjKVSoWPjw9Lly5l8ODBbNu2jfj4eKpXr864ceNo0qRJjuf8bz8Zcy/c3NyIiIgAoFSpUrp6T9YRQgghRP6k1aZxLyKcWxfOEXXjKlHXr/Hg9k0Soh+Slpqaqb7axAQLGzvsnJwpXMKVwiXdKFGhEnZOxXQJR3xKPBcfXuT8/fOEx4Rz7dE1rj+6Ts/KPWlVutWrfot5JomFeKrk5GR2796NSqWiWrVqescmT57MpUuXqFevHm+//TYPHz5k8+bN9O7dm/Pnz/Pdd9/p6p44cYL69eujVqtp06YNrq6uPHz4kNDQUObPn6+XWGTnyy+/ZNq0aRQqVIi2bdtStGhRrl27xvbt26lZs+ZTEwsHBwcALly4QJ06dXL9GTx48AAvLy+KFCnCRx99xL179/j9999p1qwZq1atom3btrnuK8OAAQNYuHAhJ0+epH///ronJW5ubnnuSwghhBAvX3z0Qy79fYjLx45w41wISXFxuW6blpLCo6h7PIq6x7WQU7pyY1tL4oprOFv0PqfMr6JVZb6peuXhlRcS/8smiYXQc+nSJd1QKEVRiIyMZMuWLdy4cYMpU6ZQtmxZvfpz587Vu9sOkJqaSosWLZg5cyb9+/fXDWtasmQJSUlJrF27ljZt2ui1iYqKempsf/75J9OmTaNy5crs2rVLlyRknDM3fbRv3559+/bRunVr+vTpQ6NGjahRowY2NjY5tjt16hSdOnVi6dKlursK/fv3p3bt2vTq1YuAgADMzc2fev4nDRgwgBMnTnDy5EkGDBggCYUQQgiRD6UkJ3Hx0H7O7N7O9dAzKIo227rm1jZY2RfC3MYWU3NzQAUoJCcmkhD9kEcP7pP4KEavTWp0HJroOKqFgoemGJdc4jjv+oh4szQATIxMSExLzHyyfEgSi1xoPXsf9x4lGTqMHBWx1rDhswbP3c/ly5cZN25cpvJWrVplOeTnv0kFgLGxMX369GHbtm3s2rWLbt266R3P6gL8ySQhOz/88AMAM2fOzFTf2Ng4VxOuP/30U65du8bMmTMZP34848ePR6VSUb58eVq3bk3//v1xdnbO1E6tVvPNN9/ojY2sUqUKXbt25eeff2bTpk20a9fuqecXQgghRMEQffc2xzdvIGT3DhLjMq+MaWZtQ4nylXCpUImibqUpVLwEFja2meqlaFM4cOMAG8M2Enz9KClx8dg/MqHIQw3OkWYUfaDBWJu+UKtlkjFVL9tSNcyOojUrU/edDri7VUJt9PIXznkRJLHIhXuPkrgdUzAyxecVEBDA5s2bda+joqLYv38//fv3x8vLi507d1K3bl3d8UePHjF16lTWrl3L5cuXifvPI8GbN2/q/rt9+/bMmDGDt99+mw4dOtC0aVMaNmxI8eLFcxXbkSNH0Gg0+Pj4PPP7U6lUTJkyhSFDhrBp0yYOHTrEP//8w9GjRwkNDeV///sfmzdv1nuPkD6Z3NXVNVN/3t7e/Pzzzxw/flwSCyGEEOI1EHX9GkfWruDs/j0oWv2nE3ZOznjU9aJsnfo4li6Dyij7nRvO3z/Pusvr2HhlI/cT7z8+YAq3HZKIKqLFwqs87g7VKHXPmoTT4UScOIY2LQ20Cnf/PsXGYyFUatSUeu06Yl2o8Mt6yy+MJBa5UMRaY+gQnuplxejg4EBgYCAWFhY0bdqUkSNHsm3bNiB97oWvry/Hjh2jevXqdO3aFQcHB4yNjQkPD2fRokUkJT1+0lO3bl12797NN998w6+//sqCBQsAqF27NpMnT6ZRo0Y5xhIdHU3x4sUxyuF/4twqXLgwH3zwAR988AEAt2/f5tNPP2X16tX06tWLkydP6tXP7mlIRnl0dPRzxySEEEIIw4m+e4fg5Ys4fzAYnlg8Rm1igme9BlRp0pxinuVzXNkpVZvKzqs7WXZ2GcfuHst03NrUmoYuDfEr4YdXcS8sTSwfH2wOsfejOLF1Eye3bSIx9hHatDRObd/M7UsX6TJpRr5fVUoSi1x4EUOMCrqMO/h///23rmzdunUcO3aMnj178tNPP+nV/+2331i0aFGmfry9vfnrr79ISEjg8OHDbNiwgR9++IGWLVty5swZSpcunW0MdnZ23L59G61W+0KSiyc5OTmxZMkS/vzzT06dOkVUVJTecKvsNs3LKLe1zfzoUwghhBD5X1J8PEfWruDopnWkpaToys2srKnRIpBq/i0xt855LmZsciwrLqxg+bnl3I67rXfMxMgE3xK+tHFvQ/3i9TExMsm2H6tCDjTo2JXage04unEtRzf+QXJCAnXfaZ/vkwqQxELk0oMHDwDQPvFI8PLlywCZJmIDBAcH59ifubk5vr6++Pr6Ymdnx+jRo9m2bRu9e/fOtk2dOnXYtGkTe/bseerTjWeh0WgwMTHRe8qS4erVq0RERGQaDpXxPqtXr/5M58zYbDAtLe2Z2gshhBDi2SiKQujenexdtoD46Ie6cnNrG2q3eZeqTZtjapbzwiwxyTEsO7uMJaFLeJT8SO9YKdtSdPTsSMvSLbHV5O0GpMbCgvrvdaJaQEtC9+zAo079PLU3lBd721e8tqZNmwZAw4YNdWUZF9n79u3Tq7tnzx5+/PHHTH0cPHiQxMTMc1Uy7vqbmZnlGEO/fv2A9NWY7t+/r3csNTU126cKT/ruu+84d+5clsfmzJlDbGws5cqVyzQ5PC0tjeHDh+vtq3Hq1CmWLFlCkSJFaNGixVPPnZVChQoBcO3atWdqL4QQQoi8i757h9XfjGbzD9N1SYXa2Jjage3oOetHard+J8ekIiY5htnHZxOwKoAfTvygSypUqPBx8eF/Tf/Hujbr6FS+U56TiidZ2NhSq/U7BeJpBcgTC/EfTy43C3D//n3279/PsWPHsLe3Z/LkybpjrVu3xs3NjSlTpnDmzBkqVarE+fPn+fPPP3n77bdZtWqVXt+TJ09m165dNGzYkFKlSmFmZsaxY8fYsWMHpUuX5u23384xthYtWjBo0CCmTp2Kh4cHb7/9NkWLFuXGjRvs2LGDQYMGMWDAgBz7WLJkCYMGDaJy5crUrVuXokWL8vDhQw4dOsSxY8cwNzdn7ty5mdpVqVKFffv2Ubt2bZo0aaLbxyI1NZX58+fneanZDH5+fkydOpVevXrRrl07LC0tcXV1pWvXrs/UnxBCCCGyp2i1HN+ykX3LF+ntjO1Rtz4NO3+InaNTju1T0lJYcWEF807O42HSQ125WqWmtXtrelbqiZut20uKPv+TxELo+e9ysxqNBhcXF/r27cvQoUN1e1IAWFlZsXPnTgYPHszevXvZvXs3FStWZNmyZTg6OmZKLPr27YutrS2HDx/W7apdsmRJhg8fzhdffPHUvSQAvv32W9566y3mzJnDqlWrSExMxNnZGT8/P5o2bfrU9gsWLGDDhg3s3LmTLVu2cOfOHdRqNa6urvTt25cvvvgCDw+PTO3s7e3ZuHEjgwYN4scff9TbeTs3581O8+bNmTJlCj/++CPfffcdKSkp+Pj4SGIhhBBCvGBxDx+w+YfphJ98PKnaqpADTT7qh3vNnDfNVRSF7Ve3M+PoDK4+uqorN1YZ06ZMG3pW7kkJ6xIvLfaCQqU8ObbjNRQTE4OtrS3R0dE5XrgmJiYSFhamu5MuRAaVSoWPjw+7d+82dChCGJR8TwohCqqwE0f1hj0BVG3aAu9O3dFYWOTY9uKDiwQdCsq0ylPL0i35rPpnFLfK3bL5BVVur6VBnlgIIYQQQojXVFpqKvt+W8w/G9boyizt7GnWbyBuVXJeeCU+JZ65J+eyJHQJacrjRVZqOdZiUK1BVCxc8aXFXVBJYiGEEEIIIV478THR/Dl9EtdCT+vKSlWvRbO+A7Cwtcux7Y6rO5h0ZJLe0rElrUsyuPZgfFx8Csxk6ldNEgshhBBCCPFauXPlEuu++5pHkfcAMFIb49OlB9WbB+aYFDxIfMA3h79hc/hmXZmpkSkfVf6IDyt/iEad/zdNNiRJLIR4itd8GpIQQgjxWjm7bzdb580iNSUZSB/61HrgcIp7ls+x3Y6IHYw/NJ77iY+XtPcq5sXwusMpaVMyh5YigyQWQgghhBCiwFMUhcN/rGD/70t0Zc4engQOHI5VIYds20UnRTPxyEQ2XtmoK7MxtWFY3WG0LNVShj3lgSQWQgghhBCiQEtLTWXHzz9weudWXVmlRv407tkXYxOTbNv9c/sfhgYP5U784012fV18Gf3WaIpYFHmpMb+OJLEQQgghhBAFVnJCPBtmTCb8xFFdmXen7tQObJft04ZUbSrzT83nf6f+h1bRAmBtas2wOsNoVbqVPKV4RpJYCCGEEEKIAik+Jpo1E8dw58olANTGxjT75AvKeflk2+Z23G2+2vuV3r4UtRxrMdF7Ik6WOe+8LXImiYUQQgghhChwYh/cZ1XQSKKup++ErbG0pO2gUbhUqJRtm+DrwQwNHkpMcgwAapWavlX78lHlj1AbqV9J3K8zSSyEEEIIIUSBEn33DquCRvLwzi0ALO0L8e6ICRQu4Zplfa2iZf6p+fxw4gcU0ld7dLZ0ZnLDyVQvmvNGeSL3JLEQQgghhBAFxv2b11kZNJLYqEgAbIo48t6or7FzzHoYU0xyDCOCR7D7+m5dWaMSjZjgNQFbje2rCPmNIYmFEEIIIYQoEKKuX2XF+OHERz8EwL6YC++NDMLaoXCW9S8+uMiAXQO4+ih9uJQKFZ9V/4yelXtipDJ6VWG/MSSxEEIIIYQQ+V7UjWt6SUUR11K8O2ICFrZ2WdbfcXUHw4KHkZCaAICtxpbJ3pPxKu71iiJ+80hiIYQQQggh8rUHt26wcsIIXVLhWLoM744IwszKKlNdRVFYELKAGUdn6OZTlC9UnumNplPcqvirDPuNI8+ARCZHjx6lZ8+eeHh4YGlpibm5Oe7u7nTt2pVt27YRHR2NhYUF9vb2JCYm5tjXjz/+iEqlolevXq8oeiGEEEK8Th7euc2KCSOIe3AfgCJupWk3YkKWSUVKWgqjD4xm+tHpuqSiZemWLG6+WJKKV0ASC6Gj1WoZOHAgtWrVYvHixZQuXZo+ffrQv39/atasycaNG/H392fWrFm0a9eOhw8fsnr16hz7/OWXXwDo2bPnq3gLQgghhHiNxNy7y4rxw3QTtQuXdOO9kUGYW1lnqvsw8SG9tvVi7aW1urJ+1foxscFEzIzNXlXIbzQZCiV0Ro4cyfTp06lWrRqrVq3C3d1d73hCQgJz5swhKiqKnj17snTpUn755Rc6d+6cZX9nz57l0KFDVKxYkbp16+Z47u7du7No0SIURXlh70cIIYQQBVfcwwesnDCCR5H3AHBwKZmeVFjbZKp7LeYafbb30U3S1qg1BHkF0axUs1ca85tOEgsBwKVLl5gyZQoODg5s3rwZR0fHTHXMzc0ZPHgwSUlJmJqa4u7uzq5duwgPD8fNzS1TfXlaIYQQQohnkRQfx+qJY3T7VNgXc+G9UV9nOVE7JCqET7Z/wv3E9KFSDmYOzPKbRZUiVV5lyAIZCiX+tXDhQtLS0ujdu3eWScWTNBoNKpWKDz/8MH2C1IIFmeqkpqayZMkSTE1N6dq168sKWwghhBCvmdTkZNZ+O4F74VcAsHYowrsjJmBpZ5+p7oGbB/hw84e6pMLd1p1fW/4qSYWBSGIhANi/fz8Afn5+uW7TvXt31Go1ixYtQqvV6h3btGkTd+7cITAwkMKFs15bWgghhBDiSdq0NDbOmsL10DMAmFnb0G7EeGwKF8lUd9OVTfTb0Y/41HgAahStwaLmiyhmVeyVxiwek6FQufE/H4i9a+gocmZVFHrveebmt2/fBsDFxSXXbYoVK0azZs3YuHEjO3bsoGnTprpjGcOgPvzww2eOSQghhBBvDkVR2Pbj91z6+xAAJhoz3hk6BofiJTLVXRK6hCl/T9G9blSiEVMaTpFJ2gYmiUVuxN6FRzcNHUW+9NFHH7Fx40Z++eUXXWJx9+5dNm7ciIuLCwEBAZnauLm5ERERkWV/KpUqU9mCBQvo3r37C41bCCGEEPnLgZW/cmbXVgCM1MYEDhqBcxlPvTqKojDr+Cx+Ov2TrqydRztG1huJsZFc1hqa/AZyw6qooSN4uueM0cnJiXPnznHjxg08PT2f3uBfrVq1wtHRkbVr1/LgwQPs7e1ZvHgxqampdO/eHSOjzKPtBgwYwMOHD/XK1q5dy8mTJxkzZkym+tWqVcvr2xFCCCFEARKyZweHVi9Pf6FS0bzfF7hVqa5XR6tomXxkMr+e+1VX1qdqHz6p+kmWNybFqyeJRW48xxCjgsLLy4vdu3ezY8eOPM2zMDY25oMPPuDbb79l2bJlfPrppyxYsACVSkWPHj2ybDNgwIBMZeHh4Zw8eZKxY8c+4zsQQgghREF09cwptv5vtu61T5cPKeflo1cnTZvGhEMTWH3x8f5Zw+sO5/1y77+yOMXTyeRtATyeiD1//nzu3buXY92kpCS91xnzKH755RcOHz5MaGgojRo1onTp0i8tXiGEEEIUfFHXr7H+u6/RpqUCUNW/JTVbttWrk6pNZfi+4bqkwkhlRJBXkCQV+ZAkFgKAMmXKMGTIECIjI2nevDlhYWGZ6iQmJjJt2rRMTxXKlSuHl5cXx48f58svvwRk7wohhBBC5Czu4QPWTBpLUnwcAKWq18Kvey+9YU0paSkM3jOYTWGbADBWGTPZezJtyrQxSMwiZzIUSugEBQWRmJjI9OnT8fT0xM/Pj0qVKmFiYkJYWBjbt28nKiqKoKCgTG179uzJ/v372b9/P3Z2drzzzjsGeAdCCCGEKAhSkhJZ++0EYu7dAaCIW2laDfgKI7VaVycpLYkvdn1B8I1gAEyMTPjO5zsalWxkkJjF00liIXSMjIyYNm0anTp1Yu7cuezdu5e9e/ei1WpxdnYmICCAHj160KRJk0xt27dvT//+/Xn06BGdOnXCzEyWexNCCCFEZoqisGXuTG5fugCAVSEH3v5qNKZm5ro6yWnJekmFmdqMmY1mUr94fYPELHJHpSiKYuggXqaYmBhsbW2Jjo7GxsYm23qJiYmEhYVRqlQpuSgWQogsyPekEOJFOPzHCvb9thgAEzNzOo6bTFG3x/MyU9JSGLh7ILuv7wbA3Nic7xt/T22n2oYI942X22tpkDkWQgghhBDiFbl89DD7fl+S/kKlosVng/STCm0Kg/YM0iUVZmozSSoKEEkshBBCCCHESxd1/SqbZk+FfwfLeLXvQpladXXHU7QpfLX3K3Ze2wmARq1hTuM5klQUIJJYCCGEEEKIlyoxNpa1304gOSEBgLL1GlD37fa646naVIbuHcq2iG1AelIx2282dZ3rZtmfyJ8ksRBCCCGEEC+NNi2NP2dO5uHtW0D6ClDN+g7QLSurVbSM3D+SrRFbATA1MmVmo5m8Vewtg8Usno0kFkIIIYQQ4qXZu2wBEaeOA2BuY0vbQSMx+XcBCEVR+ObwN2y8shFIX1J2eqPpeBX3Mli84tlJYiGEEEIIIV6Ks/v3cHTjWgCM1GoCvxiGTZGiuuOzjs/i9/O/A6BWqfnO5zsaujQ0RKjiBTBoYrF3715at25NsWLFUKlUrF27Vu+4oiiMHj0aZ2dnzM3NadKkCRcvXjRMsEIIIYQQItcir0Ww9X+zdK8bde+NS4VKutc/n/6Zn07/BIAKFUENgmTzuwLOoIlFXFwcVatW5fvvv8/y+JQpU5g1axbz5s3j8OHDWFpaEhAQQGJi4iuOVAghhBBC5FZyQjzrp00kNSkJgIo+TajatLnu+IrzK5hxbIbu9fC6w2lVutWrDlO8YAbdebt58+Y0b948y2OKojBjxgxGjhxJmzZtAFi8eDGOjo6sXbuWjh07vspQhRBCCCFELmTsrP3g5nUAiriWonHPPrrJ2n+F/UXQoSBd/c+rf07HcnJd9zrIt3MswsLCuH37Nk2aNNGV2draUrduXQ4ePJhtu6SkJGJiYvR+hBBCCCHEq3Fs0zouHN4PgMbCksCBwzHRpE/W3nt9L8ODh6OQvpdFj4o9+KjyRwaLVbxY+TaxuH37NgCOjo565Y6OjrpjWZk4cSK2tra6nxIlSrzUOIUQQgghRLrrZ8+wZ+kvutfN+g3EzskZgFP3TvHl7i9JVVIBaOfRji9qfqF7kiEKvnybWDyrYcOGER0drfu5du2aoUMSQgghhHjtxT18wJ8zp6BotQDUafuebmft8OhwPt3xKYlp6fNkA9wCGFVvlCQVr5l8m1g4OTkBcOfOHb3yO3fu6I5lRaPRYGNjo/cjhBBCCCFenoxN8OIe3AegZKUqeLXvAkBkQiR9tvfhQdIDAGo71eabBt+gNlIbLF7xcuTbxKJUqVI4OTmxY8cOXVlMTAyHDx/mrbdkJ0YhhBBCiPzi4OrlXA89A4BVIQdafj4EI7WauJQ4Ptn+CTdibwDgYe/BjEYzMFWbGjJc8ZIYNLGIjY3lxIkTnDhxAkifsH3ixAmuXr2KSqViwIABBAUFsX79ek6fPs0HH3xAsWLFaNu2rSHDfu0dPXqUnj174uHhgaWlJebm5ri7u9O1a1e2bduWqX5iYiIzZ87E29sbBwcHNBoNJUqUoGPHjuzduzfLc4SHh6NSqfR+TExMKF68OO3bt+eff/552W9TCCGEEC/A1TMnObQmfZM7lZERrfp/hYWtHSnaFL7c/SVn758FwMnSibmN52JjKqNJXlcGXW72n3/+oVGjxxuhDBw4EIBu3bqxcOFChgwZQlxcHL169eLhw4c0aNCAzZs3Y/bvNvDixdJqtQwaNIjp06djbGyMn58fgYGBmJiYcOXKFTZu3MjSpUsZP348o0aNAuDSpUu0bNmSCxcuULp0adq3b4+dnR1Xrlzhzz//5Pfff6d///5MmzYNI6PMeay7uztduqQ/Ko2Li+Po0aOsXLmStWvXsn37dho2lN03hRBCiPwqPvohm2ZPBSV9lSevDl0pXq4CiqIw9sBY9t9MXx3K2tSaeU3m4WjpmFN3ooAzaGLh6+uL8u8fYlZUKhXjx49n/PjxrzCqN9fIkSOZPn061apVY9WqVbi7u+sdT0hIYM6cOURFRQEQHR1Ns2bNuHz5MqNGjWLMmDGo1Y/HS968eZO2bdsyc+ZMChUqxOjRozOds0yZMowdO1avbNKkSQwbNoxRo0axZ8+eF/9GhRBCCPHcFK2WTXO+I+5h+twJ1yrVqRPYDoDZx2ez/vJ6AEyNTJntNxt3O/ds+xJZu38zjgt/36ZuYOkCMdE9386xEK/WpUuXmDJlCg4ODmzevDlTUgFgbm7O4MGDGTduHADffvstly9fpnPnzowfP14vqQAoVqwYGzZsoFChQkyYMCHXK3T17NkTSB+SJYQQQoj86e8Na4g4dRwASzt7mvcbiMrIiFUXVvHj6R8BUKFiUsNJ1HSsachQCxxFUQjdd5OVE//m6F8RnD1wy9Ah5YokFgKAhQsXkpaWRu/evTPtHfJfGo0GgAULFgDohkVlxdHRkY8//pjU1FQWLlyYp5iMjQ36QE0IIYQQ2bh54Sz7fluc/kKlovmnX2JpZ8/Bmwf1dtUeWmcoTV2bGijKgikpIZWtP4Wwa+k5UlPSl+4NCb6Jos1+lE9+IVduudDhzw5EJkQaOowcFTYvzO+tfn/m9vv3p4+B9PPzy1X9iIgIbt68SfHixfH09MyxbuPGjZk8ebLuHE/z008/AdCgQYNc1RdCCCHEq5MYG6u3X0Xdtu1xrVyNyw8v8+XuL0lT0gD4oMIHdCrfyZChFji3r0Sz9ecQHkUl6soqNixOg3fLoDLK/0OhJLHIhciESO7G3zV0GC9Vxm7mLi4ueaqfm53NM+rcuHEj07FLly7p5lhkTN7etWsXjo6OfPvtt7mKRQghhBCvhqIobJk3k0eR9wAoXq4C9d/rxP3E+/Tb0Y9HKY8A8C3hy8CaAw0ZaoGiaBWOb7vK4XVX0P77ZEJjYUyjLuVwr1HUwNHlniQWuVDYvLChQ3iqghCj9t87G0+6fPmybs5GBicnJ4KDgylTpsyrCk0IIYQQuXBi60Yu/X0QADMra1p8NpgUUum/s79ur4ryhcoz2XuybICXS3HRSexYGMq1sw90ZU6lbWnaswI2DuYGjCzvJLHIhecZYlRQODk5ce7cOW7cuPHUoU0Z9YFcTcjOqFO8ePFMxwICAti8eTMA9+7dY9GiRXz11VcEBgZy5MgRrKys8vI2hBBCCPGSRF2/yt4lv+heN/tkANYOhfkq+CtO3DsBQFHzosz2m42FiYWBoixYroZEsX1hKAmPUtILVFCzmSt1WpXCSF3wpkIXvIjFS+Hl5QWgt9N5TlxdXSlWrBg3btzg/PnzOdbN6LNChQo51itSpAiDBg1i+PDhnD17lpEjR+YqFiGEEEK8XKkpKWyc9S2pKckAVG/WGveadZl7ci5/hf0FgLmxOXMaz5G9KnIhLVXLgdWX2DD7pC6psLA1pU3/atRr414gkwqQxEL8q3v37qjVaubPn8+9e/dyrJuUlATAhx9+CMDXX3+dbd27d+/qJmN/8MEHuYpl+PDhFCtWjB9++IHw8PBctRFCCCHEy7Pvt8XciwgDwMGlJN6du/PnlT+Ze3IukL6s7GTvyZR3KG/IMAuE6HsJrPn2KMe3XdWVuVZyoOPIOriUK2TAyJ6fJBYCSN+obsiQIURGRtK8eXPCwsIy1UlMTGTatGm6ydaDBw/G3d2dJUuWMH78eNLS0vTq3759mzZt2hAVFUVgYCA1atTIVSzm5uZ89dVXpKSkMGHChOd+b0IIIYR4dhGnTnD0zz8AUBsb0/LzwYQ8PMvo/Y83vv2y1pc0KtnIUCEWGBf+vs3vXx/hbkT6JHcjtQqvd8vQsl8VzK1NDRzd85M5FkInKCiIxMREpk+fjqenJ35+flSqVAkTExPCwsLYvn07UVFRBAWlr09tY2PD5s2badGiBWPGjGHx4sUEBARga2vLlStX2LhxI7GxsVStWpUlS5bkKZZevXoxefJkFi9ezPDhw7PcsE8IIYQQL1fCoxg2/zBN99q7U3fSCpsz4M8epGjTh/C8V/Y9PqiQu1EJb6qUpDT2/n6Bc09sdGdbxBz/jypS1NXGgJG9WJJYCB0jIyOmTZtGp06dmDt3Lnv37mXv3r1otVqcnZ0JCAigR48eNGnSRNemTJkynDx5kv/973+sWrWKX3/9lYcPH+qOjxgxgtGjR2Nqmrcs3MzMjGHDhvHZZ58xbtw4Fi9e/KLephBCCCFyQVEUtv04h9gH9wFwrVKdCk396b61B1GJUQDUcarDsLrDUKny/x4LhnLv2iO2/hTCwzvxujLPuk40fL8spmav16W4SlGU/L+N33OIiYnB1taW6OhobGyyzwgTExMJCwujVKlSmJmZvcIIX09Tp05l8ODBtG/fnuXLl2NkJKPuhCjo5HtSiDfL6V1b2TpvFgBm1jZ8MHkWE0Km6CZrF7cqzm8tf8POzM6AUeZfiqJwevcN9q++iDY1/XLbWKPG5/2ylKvnbODoci+319IgTyzESzJo0CDOnTvHzz//jI2NDT/++KOhQxJCCCFELj24fZNdC+brXvv3+pQVN9fprQA1y2+WJBXZSIxNYeeSs4SdjNSVFS5hRcBHlbBzfH2X4pXEQrw0c+fOxcPDg4SEBM6dO0e5cuUMHZIQQgghniItNZVNs6eSkpQIQGU/f246pzBz50xdnYkNJlLWvqyhQszXbl58wLZfQol9kKQrq+pXgrfedkdt8nqP4JDEQrw0JiYmfPXVV4YOQwghhBB5cGjNb9y+dAEAe+diuLVpygc7e6CQPpynX7V+NHZtbMgQ8yWtVuGfTeH8szGMjIkGZpYmNO5WHrcqhQ0b3CsiiYUQQgghhADg5oVzHF6zAgAjtZqGvfvQ/8Ag4lLiAGjq2pTeVXobMsR8KfZBItt+CeXmxYe6suJl7WjSoyJW9hrDBfaKSWIhhBBCCCFISUpk8w/TURQtAPXadWTqjflcfZS+kZunvSdBXkGyAtR/hJ28x47FZ0mKSwVApYI6rUtRo5kbRkZv1mcliYUQQgghhCD410U8uHUDAGcPT/52u8v+M/sBsNfYM9NvJhYmr+/E47xKTUnjwJrLnN51XVdmZa+hac+KFCtjZ7jADEgSCyGEEEKIN1zE6RMc37wBAGNTDfZv12fimbEAGKmM+NbnW4pbFTdghPnLg9txbPkphKjrsbqy0tWK0KhrOcwsTQwYmWFJYiGEEEII8QZLio9jy9zHKz5VfKc1o85P1b3+osYX1HWua4jQ8h1FUTh38BZ7f7tAanL6kDG1sREN3itDxYbF3/hhYpJYCCGEEEK8wXYt/JFHUfcAKFahIt+r1hKbkn4n3t/Vn24VuxkyvHwjOSGV3b+e5+Lfd3Rl9k4WBHxcCYfiVgaMLP+QxEIIIYQQ4g116Z/DhOzZDoCpuTknaiZyKeoyAO627kzwmvDG34UHuBMew9afzhATmagrq9CgGA3ae2BiqjZgZPmLJBZCCCGEEG+g+Jhots2frXtt2rQim6JWA2BlYsX0RtPf+MnailbhxPZrHFp7Ga02fXMKUzM1vl3K4VHL0cDR5T+SWAghhBBCvGEURWH7T98TH/0QgEKVyjIzda3u+NcNvqaUbSnDBJdPxMcks2NhKFdD7+vKHEvZ4N+zIjaFzQ0YWf71eu8rLoQQubRw4UJUKhULFy40dChCCPHSndu/h4uHDwCgsbJiecljpJEGwMeVP8avpJ8hwzO4a6H3+S3oyOOkQgU1Alx5e1ANSSpyIImFyOTo0aP07NkTDw8PLC0tMTc3x93dna5du7Jt27Ys26SmprJgwQJatGiBk5MTpqam2NraUrt2bUaOHElERIRefTc3N1Qqle5HrVZTuHBh/P39WbduXa7ijIqKYv78+QQGBlK6dGk0Gg2FCxemefPmbNmy5bk/B5F7S5cupXfv3tSqVQuNRvNGXKCfOHGC4cOHExAQQJEiRVCpVPj6+ho6LCGEeKpH9yPZ8ctc3evQGmncIgoAr2Je9KvWz1ChGVxampaDf1xm/ewTJMQkA2BuY0rgZ9V462131Gq5dM6JDIUSOlqtlkGDBjF9+nSMjY3x8/MjMDAQExMTrly5wsaNG1m6dCnjx49n1KhRunYRERG0adOGkydP4ujoSNOmTSlRogRxcXEcO3aMSZMmMXXqVM6cOUOZMmV07dRqNSNHjgQgOTmZc+fOsX79erZt28bUqVP58ssvc4x35cqV9O3bl2LFitG4cWOKFy/O9evXWb16NZs3b2bKlCkMHjz45XxYQk9G8li4cGGcnZ0zJZKvo7Vr1zJx4kRMTU0pW7YskZGRhg5JCCGeSlEUtv5vNklxcQCkejoQbHUMgOJWxZnkPQm10Zs5GTkmMoGtP4dwJyxGV1ayQiEad6+AhY2pASMrOCSxEDojR45k+vTpVKtWjVWrVuHu7q53PCEhgTlz5hAVFaUre/ToEQEBAZw/f57BgwczYcIENBqNXrtLly4xcOBAYmNj9cqNjY0ZO3asXtnWrVtp1qwZo0ePpm/fvlhYZD9prGzZsqxfv56WLVtiZPT4DsLIkSOpW7cuI0aMoHPnzhQrViyvH4XIo59++gkPDw9cXV2ZNGkSw4YNM3RIL917771HYGAglStXJioqCmdnZ0OHJIQQT3V65xbCTxwFwNjagl9LnABAo9Yw3Xc6dmZ2hgvOgC7+c4fdS8+RnJg+HMzISEW9tu5Ua1IClZGsipVb8jxHAOkX/1OmTMHBwYHNmzdnSioAzM3NGTx4MOPGjdOVTZ06lfPnz9OlSxemTJmSKakAKFOmDOvXr6dChQpPjcPf3x9PT0/i4+MJCQnJsa6fnx+tW7fWSyoAPD096dChAykpKRw4cOCp58wQGRlJr169KFq0KBYWFtSuXZs//vgjy7H34eHhqFQqunfvztmzZ3n77bdxcHBApVIRHh4OpA8PmzZtGlWrVsXc3BxbW1saNWrEhg0bMp177NixqFQqdu/enenY084fEhJCy5YtsbOzw8rKCn9/f44ePZqpn1u3btG/f388PDwwNzfHzs6O8uXL06dPH6Kjo3P9OWWlSZMmuLq6PlcfABcuXGDIkCHUqFEDBwcHzMzMKFu2LEOHDs2UmAL4+vqiUqlISUlh7NixuLm5odFoKFu2LD/88EOW57h//z59+vTB0dFR7/ecVxUrVqRGjRqYmLy5O6wKIQqWmMi77Fnys+71zgq3SDZN3+RteN3hlHcob6jQDCYlOY1dS8+x9acQXVJhU9iMdwbXpLp/SUkq8kieWAgg/eI1LS2N3r174+iY8/JpTyYPv/zyCwCjR49+6jlMTfP2GPF51s3OuNgzNs7dn3hsbCw+Pj6EhoZSv359GjZsyPXr1+nYsSMBAQHZtrt06RL16tWjcuXKdO/enaioKExNTVEUhXfffZd169ZRtmxZ+vXrR1xcHL///juBgYFMmzaNL7744pnfX4YrV67g5eVFjRo16Nu3LxEREaxcuZKGDRuyc+dO6tZN3yk1Pj4eLy8vwsPD8ff35+233yY5OZmwsDCWLFnCoEGDsLW1fe54nteaNWv4+eefadSoEb6+vmi1Wg4dOsTkyZPZs2cPe/fuzfJC/v333+fIkSM0b94ctVrNihUr6NevHyYmJnz88ce6evHx8fj6+nL69GneeustfHx8uHbtGh06dMDf3/9VvlUhhHilFEVh2/w5JCckAHDH3YgrDg8BCHQP5O0ybxswOsOIuhHLlp9CeHArTlfmUdsR306emJrLJfKzkE9NALB//34g/SlAbkVERHD9+nVcXFzw8PB4IXHs2LGD8+fPY2lpScWKFZ+pj5iYGFatWoWZmRne3t65ajN58mRCQ0Pp1asX//vf/3Tl3bt3p0mTJtm2279/P6NHj9Z7igOwePFi1q1bh4+PD1u3btUlVcOGDaNmzZoMGTKENm3aULp06Wd4h48FBwczdOhQJk6cqCvr1q0bzZo14+OPP+bUqVNA+ucaFhbGgAEDmD59ul4fsbGx+eaue9euXRk4cGCmJHT8+PGMGTOGFStW0Llz50ztrl+/zpkzZ7CxsQGgf//+VKpUie+++04vsZgyZQqnT5/m448/Zv78+Xrnbdas2Ut6V0IIYXhndm8j/GT6XAqtpQk7Sj/eBG9E3RFv1CZ4iqIQsvcG+1ZdIi0l/YmNsakRDTuWpdxbzm/UZ/GiSWKRC2Ht3iU1n0/MNC5cmFKrVz1z+9u3bwPg4uLyUts8KTU1VTfHIiUlhfPnz7Nu3ToURWHChAmYmz/bcm59+vThzp07jB8/HgcHh1y1Wbp0KaampowfP16vvHHjxvj7+7N169Ys2zk5OTFixIhM5YsWLQLSL2SfvEguWbIkX3zxBSNGjGDZsmV6k+CfhZ2dXabzBwQE0LhxY3bs2MHRo0epWbOm7lhWn6mVldVzxfAiFS9ePMvyTz/9lDFjxrB9+/YsE4uJEyfqkgpIHw7n5eXFnj17ePToEdbW1kB6wpfV7/nJz0wIIV43j+5HsmfxE0Ogyt8g2UTB3Nicab7T3qhN8BLjUti19BxXjt/TlTm4WBHwUUXsnSwNGNnrQRKLXEiNjCT1zh1Dh/HaSUtL093pNzIywt7eHj8/P/r160dgYOAz9Tls2DCWL19Os2bNGD58eK7axMTEEB4eToUKFbIcBubl5ZVtYlG1atUsh3gdP34cCwsL6tSpk+lYo0aNgPTlSp9X9erVs0wMvL292bFjB8ePH6dmzZo0bNgQZ2dnJk2axMmTJ2nVqhU+Pj6UL18+X92ZURSFBQsWsHDhQs6cOUN0dDRarVZ3/ObNm1m2ezJ5ypCR8D58+BBra2tiYmIICwujQoUKODk5Zaqf8ZkJIcTrRFEUtv/4PUnx6cN9wlwSuF40fTjUqHqjKG33fE/OC5Kblx6y7ecQYh8k6coqN3Kh/jvuGJu8mSthvWiSWOSCceHChg7hqZ43RicnJ86dO8eNGzfw9PTMdRuAGzduPNM5NRoNiYmJz9Q2K6NGjWLSpEn4+fmxZs0a1OrcfUnExKQvK1e0aNEsj+c05yS7YzExMZQoUSLLYxmrB2Wc93lkd/6M8oxJ2ba2thw6dIjRo0ezYcMGNm3aBECJEiUYOnQon3zyyXPH8iJ8/vnnzJkzhxIlShAYGIizs7NuTs+4ceNISkrKst2TTysyZMyvSUtLn4z3PL9nIYQoqEL37uTKsb8BSDKDg+XTR2C8W/ZdWru3NmRor4xWq3BsczhHNoShKOllGktj/LqWp3S1IoYN7jUjiUUuPM8Qo4LCy8uL3bt3s2PHjlzPs3B1daV48eJcu3aNixcvvrB5Fs9i1KhRBAUF4evry4YNG/I0jCrjovTu3btZHr+Tw9Oq7O7229jYZNtfxhCyJy+GM1a2Sk1NzVQ/pxWbsosto/zJCdklS5Zk4cKFaLVaTp06xdatW5k1axb9+vXD3t6e999/P9vzvAp3797l+++/p0qVKhw8eFBvqeHbt29nmseSV8/zexZCiIIo9sF9di16PJ9sX8W7JJtoKVeoHEPrDDVgZK9O7IMkti8I4caFh7qyYh52NP2wAlb2ZoYL7DUly80KIH2SslqtZv78+dy7dy/Huk/eNe7ZsycAQUFBTz1HcnLy8wWZjYykwsfHh40bN+a490VWbGxscHNz49KlS1ledOZlydoM1atXJz4+niNHjmQ6lrGkbLVq1XRl9vb2QNZPf44fP57teY4fP57lMqzBwcG6OP7LyMiIatWqMWTIEJYvXw7A+vXrs38zr8iVK1dQFIUmTZpk+h1mvJ/nYWNjQ6lSpbh06ZIuuXvR5xBCiPxCURS2//S9biO8y8XiuOaYgJWJFd/5fIdGnXl5+NdN+KlIfg86oksqVCqo3aoUbb6oLknFSyKJhQDS95oYMmQIkZGRNG/enLCwsEx1EhMTmTZtmt6mdoMGDcLT05PFixczfPjwLIeqhIWF0bZtW0JDQ1943KNHjyYoKAhvb+9nSioydO7cmeTkZMaMGaNXvnv3brZs2ZLn/rp16wakz/lISUnRlV+7do1p06ZhbGysNwm5du3aQPrk4ifnFBw8eJBly5Zle56HDx/y9ddf65Vt2bKFHTt2UKlSJd3cg5CQkCzvyGeUmZk9/oLN2CPDzc0tt2/3hcjYB+PAgQN6n8H169df2IZ7Xbt2JTk5OdPyyFu3bpX5FUKI18q5/Xu4/M9hABJM0zhS4T4A473GU9KmpCFDe+nSUrQEr7jAxh9OkRiX/m+wpZ2GtgOrU6dVKYxkb4qXRoZCCZ2goCASExOZPn06np6e+Pn5UalSJUxMTAgLC2P79u1ERUXpPZ2wtrZmy5YttGnThokTJ7JgwQL8/f1xcXEhPj6e48ePs3//foyNjZk6deoLjXfhwoVMmDABY2Nj6tSpw7fffpupjq+vL76+vk/t66uvvmL16tXMmzePM2fO4O3tzfXr11mxYgWtW7dmw4YNmTbiy0nXrl1Zs2YN69ato0qVKrRq1Uq3j8X9+/f57rvv9JaarVevHl5eXuzcuZO33nqLhg0bEhERwbp162jdunW2G7h5e3szd+5cDh8+TL169QgPD2flypWYm5vz008/6ept27aNwYMH4+XlRdmyZXFwcODKlSusX78eMzMz+vXrp6ubcVGf2z1AIH3n7X379gFw+vRpXVnG05kGDRrw0Ucf5diHs7Mz7dq1Y/Xq1dSqVYvGjRtz584d/vzzTxo3bszly5dzHU92hgwZwpo1a/jxxx8JCQmhYcOGXLt2jRUrVtCyZUs2btyY677OnTvHpEmTgPRd6TPKunfvrqvz5KaGQgjxqsQ9fMDOBY+XTj9YKYokUy1dynehqWtTA0b28j28E8+Wn84Qee3x03y3KoVp/EF5zKzyx9LqrzXlNRcdHa0ASnR0dI71EhISlNDQUCUhIeEVRZZ//f3338qHH36olClTRjE3N1c0Go3i5uamdOrUSdm2bVuWbZKTk5VffvlFadasmeLo6KiYmJgo1tbWSo0aNZThw4crV69e1avv6uqqaDSa54pzzJgxCpDjz5gxY3Ld3927d5WePXsqhQsXVszMzJSaNWsqa9asUaZOnaoAyh9//KGrGxYWpgBKt27dsu0vJSVFmTp1qlK5cmVFo9Eo1tbWio+Pj7Ju3bos60dGRioffPCBUqhQIcXc3FypV6+esmXLFmXBggUKoCxYsCDL8585c0Zp0aKFYmNjo1haWipNmjRR/vnnH72+Q0NDlf79+yvVq1dXHBwcFI1Go5QuXVrp1q2bEhISold33bp1CqCMGDEi159dt27dcvw95PQ5PenRo0fKl19+qbi5uSkajUbx8PBQJkyYoCQnJyuA4uPjo1ffx8dHye5rLCOmsLAwvfKoqCilV69eSpEiRfR+z1l9zjnZtWvXU//+XjfyPSlE/qfVapV1U79WprZvqUxt31Lp199XqbSwkvL+n+8ryanJhg7vpTp78KYy7/PdypzeO5Q5vXcoP/TbqZzceU3RarWGDq1Ay+21tKIoikpRMubHv55iYmKwtbUlOjo6y5VjMiQmJhIWFkapUqX0hoUI0aVLF5YtW0ZoaCjly5c3dDhA+nClUqVK0a1btxd+V3zQoEHMnTuXiIgICheAFdHEqyPfk0Lkf+cPBvPnjMkAJJqm8Yf3TUytLVnZeiXFrbLeK6igS05MZc/y81w4/HjIr52jBf4fVaRICWsDRvZ6yO21NMhQKCF0bt26pVsKNsOePXv47bff8PT0zDdJxcsWHBzMxx9/LEmFEEIUMPEx0ez4ea7u9aGK90nSaJlYf9xrm1TcjYhh608hRN9L0JWVq+9Mww5lMdHI3hSvmiQWQvyrRYsWmJubU61aNSwtLQkNDWXz5s2o1Wpmz55t6PBemcOHDxs6BCGEEM9gxy/zSHiUvmdPuFMc4U7xdPDs8FrOq1AUhZM7rnHwj8to09IH35iYqfHt7EnZ2pk3QRWvhiQWQvyrW7duLFu2jN9++41Hjx5hZ2dH69atGTZsGHXr1jV0eEIIIUS2Lh45wIWD6ctmJ5qkcajifTwKeTCo1iADR/biJTxKZseis0ScidKVFXW1xv+jitgWebbVIcWLIYmFEP8aMGAAAwYMMHQYueLm5sZrPj1KCCFELiXGxbLjl3m614cr3EdlqWFqw6mYGb9e86Gun3/Atl9CiI9+vDdW9aYlqdumNGpj2UXB0CSxEEIIIYQowIKXLSTuQfo+FdeKxhNWLJ7xdcZT2q70U1oWHNo0LUf+DOPo5oj0dfcAc2sTmnSvQMmKDoYNTuhIYiGEEEIIUUBdCz3NqR2bAUhRazlY8T7NSzenbZm2hg3sBYqJSmDbz6HcvhKtK3MpZ0+THhWwtH39dxAvSCSxEEIIIYQogFKTk9k2//HiIkc9H1CoiDOj641GpXo9dpe+fOwuu5aeIyk+FQAjIxV125SmetOSqGQH7XxHEgshhBBCiALo0JrfeHDrJgB37RK5VCqRpT5TsTK1MnBkzy81OY19Ky8SEnxTV2btYIZ/z4o4lbY1YGQiJ5JYCCGEEEIUMHfDr3Bk/WoA0lQK+yvfZ0DNAVQsXNHAkT2/qJuxbP0phPs343RlZWoWxbezJxoLEwNGJp5GEgshhBBCiAJEq01j6/9moaSlAXCqTDRVytWja4WuBo7s+SiKQui+m+xbcZHUFC0AxiZGeHcoS3kv59dmeNfrTBILIYQQQogC5PhfG7hz5RIAD6ySuV3RlFkNgjBSFdzlVpPiU9i19DyXj93VlRUqZknAR5UoVMzSgJGJvJDEQgghhBCigIi+e5vg3xYBoKBwsPJ9vvadQyGzQgaO7NndvhLN1p9CeHQ/UVdWqWFxvN4tg7Gp2oCRibySxEIIIYQQogBQFIUt82eTlpwCwDnXR7Rs0Il6zvUMHNmzUbQKx7ZGcHh9GIo2fXMKjYUxjbqWw716UQNHJ55FwX1mJoQQL9DChQtRqVQsXLjQ0KEIIUSWzgbv4trpkwDEmaUSW8+Rz6p/ZuConk1cdBLrZ53g0NoruqTC2d2W9iNqS1JRgEliITI5evQoPXv2xMPDA0tLS8zNzXF3d6dr165s27YtyzapqaksWLCAFi1a4OTkhKmpKba2ttSuXZuRI0cSERGhV9/NzQ2VSqX7UavVFC5cGH9/f9atW5erOKOiopg/fz6BgYGULl0ajUZD4cKFad68OVu2bHnuz0Hk3tKlS+nduze1atVCo9G89hfo169fx87OjiJFinD37t0s6/Tt2xeVSkVQUNArjk4I8TqKj37I1gU/6F4frfKIbxpPxkRd8FZJigiJ4vegI1w/9yC9QAW1WrjRdmB1bBzMDRuceC4yFEroaLVaBg0axPTp0zE2NsbPz4/AwEBMTEy4cuUKGzduZOnSpYwfP55Ro0bp2kVERNCmTRtOnjyJo6MjTZs2pUSJEsTFxXHs2DEmTZrE1KlTOXPmDGXKlNG1U6vVjBw5EoDk5GTOnTvH+vXr2bZtG1OnTuXLL7/MMd6VK1fSt29fihUrRuPGjSlevDjXr19n9erVbN68mSlTpjB48OCX82EJPRnJY+HChXF2ds6USL5uXFxcmDFjBj169KB379788ccfese3bNnCvHnzqF27NsOGDTNQlEKI18nmX+aQFp8+B+GKcxydW/WntG1pA0eVN2mpWg6tvcyJ7dd0ZZa2pjT5sCIunvYGjEy8KJJYCJ2RI0cyffp0qlWrxqpVq3B3d9c7npCQwJw5c4iKitKVPXr0iICAAM6fP8/gwYOZMGECGo1Gr92lS5cYOHAgsbGxeuXGxsaMHTtWr2zr1q00a9aM0aNH07dvXywsLLKNt2zZsqxfv56WLVtiZPT44dvIkSOpW7cuI0aMoHPnzhQrViyvH4XIo59++gkPDw9cXV2ZNGnSG3Ex3b17d1avXs3atWtZvHgxH3zwAQAPHz6kZ8+emJmZsXjxYtRqmXgohHg+l48dIezQIQASTdIwaVqB98q+Z+Co8ubh3Xi2/RzC3YhHujK3yg74dSuPuZWpASMTL5IMhRJA+sX/lClTcHBwYPPmzZmSCgBzc3MGDx7MuHHjdGVTp07l/PnzdOnShSlTpmRKKgDKlCnD+vXrqVChwlPj8Pf3x9PTk/j4eEJCQnKs6+fnR+vWrfWSCgBPT086dOhASkoKBw4ceOo5M0RGRtKrVy+KFi2KhYUFtWvX5o8//shy7H14eDgqlYru3btz9uxZ3n77bRwcHFCpVISHhwPpw8OmTZtG1apVMTc3x9bWlkaNGrFhw4ZM5x47diwqlYrdu3dnOva084eEhNCyZUvs7OywsrLC39+fo0ePZurn1q1b9O/fHw8PD8zNzbGzs6N8+fL06dOH6OjoXH9OWWnSpAmurq7P1QfAhQsXGDJkCDVq1MDBwQEzMzPKli3L0KFDMyWmAL6+vqhUKlJSUhg7dixubm5oNBrKli3LDz/8kMUZ4P79+/Tp0wdHR0e93/Oz+PHHHylUqBD9+/fnxo0bAHz22WfcuHGDb775hnLlyj1Tv0IIkSE5IZ71c6fqXp+vksqYxkEFak+H84dvs+Lrv3VJhZGxigbvedDikyqSVLxm5ImFANIvXtPS0ujduzeOjo451n0yefjll18AGD169FPPYWqaty+P5/nSNDFJH3NqbJy7P/HY2Fh8fHwIDQ2lfv36NGzYkOvXr9OxY0cCAgKybXfp0iXq1atH5cqV6d69O1FRUZiamqIoCu+++y7r1q2jbNmy9OvXj7i4OH7//XcCAwOZNm0aX3zxxTO/vwxXrlzBy8uLGjVq0LdvXyIiIli5ciUNGzZk586d1K1bF4D4+Hi8vLwIDw/H39+ft99+m+TkZMLCwliyZAmDBg3C1tb2ueN5XmvWrOHnn3+mUaNG+Pr6otVqOXToEJMnT2bPnj3s3btX97t90vvvv8+RI0do3rw5arWaFStW0K9fP0xMTPj444919eLj4/H19eX06dO89dZb+Pj4cO3aNTp06IC/v3+e43VycuL777/n/fffp2fPnvTq1YulS5fi4+PDgAEDnuejEEIIADYsmo02Jh6Amw4J9O48HnuzgjFsKDkxleDfLnDu0G1dmW1RcwI+qkSRktYGjEy8NMprLjo6WgGU6OjoHOslJCQooaGhSkJCwiuKLH/x9fVVAGX79u25bhMeHq4AiouLS57P5+rqqmg0mkzl27dvV1QqlWJpaanEx8fnuV9FSf+dOzo6KmZmZkpkZGSu2owcOVIBlF69emWKB1AAZcGCBbrysLAwXfno0aMz9bdo0SIFUHx8fJSkpCRdeUREhFK4cGHF2NhYuXz5sq58zJgxCqDs2rUrU18LFizI8fxDhw7Vq79582YFUCpXrqwrW79+vQIoAwYMyNT/o0ePlMTExGw/m7yaOHFipnhz6/r163qfV4Zx48YpgLJ06VK9ch8fHwVQ6tatq/f/+Llz5xRjY2PF09NTr37G5/zxxx/rlWd8Zs8a97vvvqsAikajUaysrJQrV67kuY+C4E3/nhTiVQsLPal8276lMrV9S2VSx+bKt1vHGzqkXLt7NUZZOvqgMqf3Dt3PtgUhSlJCiqFDE3mU22tpRVEUeWKRCyu++Zv4mGRDh5EjCxtT2g+v/cztb99Ov5vg4uLyUts8KTU1VTfHIiUlhfPnz7Nu3ToURWHChAmYmz/byhB9+vThzp07jB8/HgcHh1y1Wbp0KaampowfP16vvHHjxvj7+7N169Ys2zk5OTFixIhM5YsWpW9eNGXKFL0nNSVLluSLL75gxIgRLFu2TG8S/LOws7PLdP6AgAAaN27Mjh07OHr0KDVr1tQdy+oztbKyeq4YXqTixYtnWf7pp58yZswYtm/fTufOnTMdnzhxIjY2NrrXnp6eeHl5sWfPHh49eoS1dfqdscWLF2f5e37yM3sWEydOZNWqVSQlJfH1119TqlSpZ+pHCCEypKWmsHL2BN2Y9RvVTJnq95VBY8oNRVE4tes6B9ZcQpuavoysiUaNTydPPOs6GTg68bJJYpEL8THJxD1MMnQYr520tDTdfA0jIyPs7e3x8/OjX79+BAYGPlOfw4YNY/ny5TRr1ozhw4fnqk1MTAzh4eFUqFAhy2FgXl5e2SYWVatWzXKI1/Hjx7GwsKBOnTqZjjVq1AiAEydO5Cq+nFSvXj3LxMDb25sdO3Zw/PhxatasScOGDXF2dmbSpEmcPHmSVq1a4ePjQ/ny5fPVOF1FUViwYAELFy7kzJkzREdHo9Vqdcdv3ryZZbsnk6cMGQnvw4cPsba2JiYmhrCwMCpUqICTU+Z/3DI+s2cxYcIE3X+vXbuWL774ItPcHyGEyIsVi6diFJUAwH3bFD7/aDqm6vw9HyEhNpmdi88RfipSV1akpDX+PSti55j9Yizi9SGJRS5Y2OTv/5Hh+WN0cnLi3Llz3LhxA09Pz1y3AXSTVvNKo9GQmJj4TG2zMmrUKCZNmoSfnx9r1qzJ9Wo8MTExABQtmvWGPDnNOcnuWExMDCVKlMjymLOzs955n0d2588oz5iUbWtry6FDhxg9ejQbNmxg06ZNAJQoUYKhQ4fyySefPHcsL8Lnn3/OnDlzKFGiBIGBgTg7O+vm9IwbN46kpKwT/CefVmTImF+TlpYGPN/vOSfr1q1j8eLF+Pr64uLiwtKlS5k5c+YLmUMjhHgzXbp8imvb9qFGhValUO79tpRx8DB0WDm6ceEB234J1bsRW7VxCd5q647aRG60vCkksciF5xliVFB4eXmxe/duduzYgZ+fX67auLq6Urx4ca5du8bFixfx8DDcl96oUaMICgrC19eXDRs25GkYVcZFaXYbnd25cyfbttnd7bexscm2v4whZE9eDGfc3U5NTc1UP6cVm7KLLaP8yQnZJUuWZOHChWi1Wk6dOsXWrVuZNWsW/fr1w97envfffz/b87wKd+/e5fvvv6dKlSocPHhQb6nh27dv661G9iye5/ecncjISHr37o2VlRULFizA1taWnTt3MmLECFq1amXQ/yeEEAVTWloqv80ci7k2/d+XR1XtGOTbx8BRZU+bpuXvTeEc3RSOkj7yCTMrExp3K49b5cKGDU68cpJCCiB9TX61Ws38+fO5d+9ejnWfvGvcs2dPgFztLpyc/HLmqWQkFT4+PmzcuDHHvS+yYmNjg5ubG5cuXcryojMvS9ZmqF69OvHx8Rw5ciTTsYwlZatVq6Yrs7dPX+Ejq6c/x48fz/Y8x48fz3IZ1uDgYF0c/2VkZES1atUYMmQIy5cvB2D9+vXZv5lX5MqVKyiKQpMmTTL9DjPez/OwsbGhVKlSXLp0SZfcPe85PvnkE+7cucN3332Hm5sb9vb2zJ8/n4SEBHr06KE3jEsIIXLjl2VBmN9J//cyzlLLp/2+y1dDVp/06H4ia6cf55+Nj5OK4p52dBxZR5KKN5QkFgJI32tiyJAhREZG0rx5c8LCwjLVSUxMZNq0aXqb2g0aNAhPT08WL17M8OHDsxyqEhYWRtu2bQkNDX3hcY8ePZqgoCC8vb2fKanI0LlzZ5KTkxkzZoxe+e7du9myZUue++vWrRuQPucjJSVFV37t2jWmTZuGsbGx3iTk2rXTn4otXrxY72L04MGDLFu2LNvzPHz4kK+//lqvbMuWLezYsYNKlSrp5h6EhIRkeUc+o8zMzExXlrFHhpubW27f7guRsQ/GgQMH9D6D69evv7AN97p27UpycnKm5ZG3bt2a5/kVy5cvZ+XKlQQEBNCrVy9decuWLenevTv79+9n+vTpLyRuIcSbIST8KFFbHt+QqvVBF4ra5M8Jz1dO3OP3oCPcupT+VF1lpKJuYGkC+1fH0i7znlbizSBDoYROUFAQiYmJTJ8+HU9PT/z8/KhUqRImJiaEhYWxfft2oqKi9J5OWFtbs2XLFtq0acPEiRNZsGAB/v7+uLi4EB8fz/Hjx9m/fz/GxsZMnTo1h7Pn3cKFC5kwYQLGxsbUqVOHb7/9NlMdX19ffH19n9rXV199xerVq5k3bx5nzpzB29ub69evs2LFClq3bs2GDRvyNBm3a9eurFmzhnXr1lGlShVatWql28fi/v37fPfdd5QuXVpXv169enh5ebFz507eeustGjZsSEREBOvWraN169bZbuDm7e3N3LlzOXz4MPXq1SM8PJyVK1dibm7OTz/9pKu3bds2Bg8ejJeXF2XLlsXBwYErV66wfv16zMzM6Nevn65uxkV9bvcAgfSdt/ft2wfA6dOndWUZT2caNGjARx99lGMfzs7OtGvXjtWrV1OrVi0aN27MnTt3+PPPP2ncuDGXL1/OdTzZGTJkCGvWrOHHH38kJCSEhg0bcu3aNVasWEHLli3ZuHFjrvq5desWn376KXZ2dvz888+Zjs+YMYPt27czcuRIWrVqlet5S0KIN1dyWjLLZ4/HPjX935q0SkVp4dvJwFFllpqSxoFVlzi95/ETdqtCGvx7VsLZ3fD7IQkDe8lL3xqc7GORd3///bfy4YcfKmXKlFHMzc0VjUajuLm5KZ06dVK2bduWZZvk5GTll19+UZo1a6Y4OjoqJiYmirW1tVKjRg1l+PDhytWrV/XqZ7ePRV5k7EmQ08+YMWNy3d/du3eVnj17KoULF1bMzMyUmjVrKmvWrFGmTp2qAMoff/yhq5uxj0S3bt2y7S8lJUWZOnWqUrlyZUWj0SjW1taKj4+Psm7duizrR0ZGKh988IFSqFAhxdzcXKlXr56yZcuWHPex6Natm3LmzBmlRYsWio2NjWJpaak0adJE+eeff/T6Dg0NVfr3769Ur15dcXBwUDQajVK6dGmlW7duSkhIiF7ddevWKYAyYsSIXH923bp1y/H3kNPn9KRHjx4pX375peLm5qZoNBrFw8NDmTBhgpKcnKzbF+RJGftY5BRTWFiYXnlUVJTSq1cvpUiRInq/56w+5+y0bNlSAZRFixZlWydjb4y33npLSUtLe2qfBYF8Twrx8sz4dYQy9d89K775oKVy/+FdQ4eUSdTNWGX5+MN6e1P8Ne+UkhCbbOjQxEuUl30sVIqSMSou/0lLS2Ps2LEsXbqU27dvU6xYMbp3787IkSNzPd4wJiYGW1tboqOjs1w5JkNiYiJhYWGUKlVKb1iIEF26dGHZsmWEhoZSvnx5Q4cDpA9XKlWqFN26dWPhwoUvtO9BgwYxd+5cIiIiKFxYxsiKx+R7UoiX45+IQ2weNQ7zpPTVDKv17Exjf8MuqPEkRVE4e+AWwb9fIDU5/am22sSIBu95UNG7WL6dAyJejNxeS0M+Hwo1efJk5s6dy6JFi6hYsSL//PMPPXr0wNbWls8//9zQ4YnXzK1bt3RLwWbYs2cPv/32G56envkmqXjZgoOD+fjjjyWpEEKIVyA+JZ7lcydQ7N+kQl3WEb+mHQ0c1WNJCansXnaOS/88XtzE3tmSgI8q4lA8/2ywKvKHfJ1YHDhwgDZt2tCyZUsA3NzcWL58eZYr7QjxvFq0aIG5uTnVqlXD0tKS0NBQNm/ejFqtZvbs2YYO75U5fPiwoUMQQog3xrQ/RlMsLP2Of5oJ9Oz/Tb55AnAnLIatP58hJvLxnlMVvIvR4D0PTExzt1eUeLPk61Wh6tevz44dO7hw4QIAJ0+eZN++fTRv3tzAkYnXUbdu3UhJSeG3335jxowZHDlyhNatWxMcHEzTpk0NHZ4QQojXzO6wHaT8dVr3unb7jtgVfrbNOl8kRatwbEsEa749qksqTM2NCfi4Eo06l5OkQmQrXz+xGDp0KDExMZQrVw61Wk1aWhpff/213jKd/5WUlKS35OmL2N1YvBkGDBjAgAEDDB1Grri5uZGPp0cJIYR4ivuJ9/ntl8l4xJsCoHEtim8rw68CFR+TzPaFoVwLva8rcyptQ9MPK2JTOPebz4o3U75OLFasWMGyZcv49ddfqVixIidOnGDAgAEUK1ZMt0/Af02cOPG5d+gVQgghhHhZFEXhm/XDcb9okv7aCN7/fCyqPCxr/jJcDY1i+8KzJMT8u6GtCmoEuFKndSnU6nw9yEXkE/k6sRg8eDBDhw6lY8f0SUyVK1cmIiKCiRMnZptYDBs2jIEDB+pex8TEUKJEiVcSrxBCCCHE06y98Acm2y5jpKRvJFe97Ts4uJQ0WDxpaVoOr7vC8a1XdWUWNqY0+bACJcoVMlhcouDJ14lFfHx8pk3J1Gq13q68/6XRaNBoZMdHIYQQQuQ/N2Jv8Mfvs6kaYwmAmZMDvu26Giye6HsJbP05hLvhj4eOl6zoQONu5bGwMTVYXKJgyteJRevWrfn6668pWbIkFStW5Pjx40ybNo0PP/zQ0KEJIYQQQuRJmjaNsRu/ouLZ9LkKCvDOp8NRG5sYJJ6L/9xh99JzJCemAWCkVlGvrTvVGpdAZZQ/VqYSBUu+Tixmz57NqFGj+OSTT7h79y7FihWjd+/ejB492tChCSGEEELkyaKQRdjsuYWxNj2xqBzQHGcPz1ceR0pSGsErLnB2/y1dmU0RcwI+qkhR15w3QBMiJ/k6sbC2tmbGjBnMmDHD0KEIIYQQQjyz8/fPs3HDz9SPsgdAY29Lo06vfgRG5PVYtv50hge343VlHrUd8e3kial5vr4sFAWA/AUJIYQQQrxESWlJjN42lJqhj58GtOz9BaZmr275VkVROLPnBvtXXSItNX2uqrFGjU/HsnjWc8o3m/KJgk0SCyGEEEKIl2jO8TkUOfgQTUr6hG1Pr4aUql7rlZ0/MS6FXUvOceXEPV1Z4RJW+PesiL2T5SuLQ7z+ZFFiIUS+5+vr+0bdTevevTsqlYrw8PBn7mP37t2oVCrGjh37wuISQuTd37f/ZsfOFZS6lX4Bb2JpiV/33q/s/DcvPuT3oCN6SUWVRi68O6SWJBXihZPEQmRy9OhRevbsiYeHB5aWlpibm+Pu7k7Xrl3Ztm1blm1SU1NZsGABLVq0wMnJCVNTU2xtbalduzYjR44kIiJCr76bmxsqlUr3o1arKVy4MP7+/qxbty5XcUZFRTF//nwCAwMpXbo0Go2GwoUL07x5c7Zs2fLcn4MQQgjxPOJS4hi7exT1Qux1ZU169MHCxvaln1urVfh7Yxhrpx0j9kESAGaWJrT4pAreHcqiNpFLQPHiyVAooaPVahk0aBDTp0/H2NgYPz8/AgMDMTEx4cqVK2zcuJGlS5cyfvx4Ro0apWsXERFBmzZtOHnyJI6OjjRt2pQSJUoQFxfHsWPHmDRpElOnTuXMmTOUKVNG106tVjNy5EgAkpOTOXfuHOvXr2fbtm1MnTqVL7/8Msd4V65cSd++fSlWrBiNGzemePHiXL9+ndWrV7N582amTJnC4MGDX86HJcRLNHHiRIYOHUrx4sUNHYoQ4jl89893OB+LxzIxfW6Fa9XqlG/g+9LPG/sgkW2/hHLz4kNdWTEPO5p+WBEre9nrS7w8klgInZEjRzJ9+nSqVavGqlWrcHd31zuekJDAnDlziIqK0pU9evSIgIAAzp8/z+DBg5kwYUKmDQovXbrEwIEDiY2N1Ss3NjbONExj69atNGvWjNGjR9O3b18sLCyyjbds2bKsX7+eli1b6m2kOHLkSOrWrcuIESPo3LkzxYoVy+tHIYRBOTs74+zsbOgwhBDPYf+N/ew5tJ7mEY4AqE1NafrRpy99WGfYqUh2LjpLYlwKACoV1G5ViprN3TCSvSnESybPwQSQfvE/ZcoUHBwc2Lx5c6akAsDc3JzBgwczbtw4XdnUqVM5f/48Xbp0YcqUKVnuel6mTBnWr19PhQoVnhqHv78/np6exMfHExISkmNdPz8/WrdunWl3dk9PTzp06EBKSgoHDhx46jkzREZG0qtXL4oWLYqFhQW1a9fmjz/+YOHChahUKhYuXKirGx4ejkqlonv37pw9e5a3334bBwcHvXHxqampTJs2japVq2Jubo6trS2NGjViw4YNmc49duxYVCoVu3fvznTsaecPCQmhZcuW2NnZYWVlhb+/P0ePHs3Uz61bt+jfvz8eHh6Ym5tjZ2dH+fLl6dOnD9HR0bn+nP7rybH8+/btw9fXF2tra+zs7GjXrh2XLl3Kst2ZM2do3749RYsWRaPRUKpUKQYMGKCXuGbnp59+QqVSMWXKlCyP79y5E5VKRe/ej8cxu7m54ebmRmxsLP3796dYsWJoNBqqVKnCqlWrsuwnMjKSAQMGUKpUKTQaDUWLFqV9+/acOXMmU92MeRFXrlxh6tSplC1bFnNzcypUqMBvv/0GpD+ZGzFiBG5ubpiZmVGlShX++uuvbPt6co5FcnIys2fPJiAggBIlSujieeeddzh+/PhTP7MMFy9epEePHrr3VKhQIapWrcqAAQNQFCXX/QghsheTHMPY4NHUP1MIFekX894du2Fb1PGlnTMtRUvw7xfY9MMpXVJhZa+h7cAa1G5ZSpIK8UpIYiGA9IvXtLQ0evfujaNjzl98TyYPv/zyC0CuNi00NTXNU0zPc1fHxCR9F1Nj49w9lIuNjcXHx4cff/wRDw8P+vfvT7ly5ejYsSNr1qzJtt2lS5eoV68e9+7do3v37nTr1g1TU1MUReHdd9/lyy+/JDExkX79+tGpUydOnjxJYGAg06dPf+b39qQrV67g5eVFQkICffv2JTAwkF27dtGwYUMOHz6sqxcfH4+XlxezZ8/G3d2dzz77jO7du1O2bFmWLFnCvXv3cjhL7hw6dIjGjRtja2vLZ599ho+PD3/88Qf169fnypUrenX37dtH3bp1+eOPP2jcuDEDBw7E1dWVmTNnUrduXSIjI3M81/vvv4+NjQ0///xzlsd//PFHAD7++GO98pSUFPz9/dm6dSvt2rWjS5cuXL58mfbt27N161a9uvfu3aNevXrMnDkTNzc3Bg4ciJ+fH2vWrKFu3brs27cvy3MPHDiQ7777Dl9fX7p3786tW7fo1KkTW7Zs4Z133mH58uW0bNmSzp07c/HiRdq0acPly5dzfL8A9+/fZ8CAASQlJdGiRQu++OILfH192bRpE/Xr1+fvv/9+ah83b96kTp06LFu2jGrVqvHFF1/QuXNnnJ2d+eGHH0hLS3tqH0KIp5t8ZDJOp5Owi03/d8/R3YPqzVu9tPM9uB3Hqin/cGrXdV1ZqaqF6TCyDsU87F7aeYXIRHnNRUdHK4ASHR2dY72EhAQlNDRUSUhIeEWR5S++vr4KoGzfvj3XbcLDwxVAcXFxyfP5XF1dFY1Gk6l8+/btikqlUiwtLZX4+Pg896so6b9zR0dHxczMTImMjMxVm5EjRyqA0qtXr0zxAAqgLFiwQFceFhamKx89enSm/hYtWqQAio+Pj5KUlKQrj4iIUAoXLqwYGxsrly9f1pWPGTNGAZRdu3Zl6mvBggU5nn/o0KF69Tdv3qwASuXKlXVl69evVwBlwIABmfp/9OiRkpiYmO1n8zS7du3SxTJv3jy9Y/PmzVMApVWrVrqytLQ0xd3dXQGUzZs369UfPHiwAigffvihXrmPj4/y36+rvn37KoCye/duvfKoqChFo9Eo1apV0yt3dXVVAKVNmzZ6v5OM33FAQIBe/R49eiiAMmzYML3yjRs3KoBSpkwZJS0tTVferVs3BVDKli2r3L17V1d++PBhBVDs7OyUBg0aKLGxsbpjv//+uwIon332md45MvoKCwvTlSUmJirXr19X/uvMmTOKlZWV0qRJE73yjN/LmDFjdGWzZs1SAGXGjBmZ+omKispU9l9v+vekELmxM2Kn0mB2dWVyhxbK1PYtle/eD1Tuhl95KefSarXK2QM3lXmf71bm9N6hzOm9Q5nbb5dyatc1RavVvpRzijdPbq+lFUVR5ImFAOD27dsAuLi4vNQ2T0pNTWXs2LGMHTuWESNG8O6779KsWTMURWHChAmYmz/bxkF9+vThzp07DB8+HAcHh1y1Wbp0KaampowfP16vvHHjxvj7+2fbzsnJiREjRmQqX7RoEQBTpkzRe1JTsmRJvvjiC1JTU1m2bFmuYsuJnZ1dpvMHBATQuHFjTp8+nWlIVFafqZWVVZZD2PKqbNmymZ4QfPzxx3h4eLBx40bdU5H9+/dz+fJlmjdvTkBAgF790aNHU6hQIX799VeSk5NzPF+fPn2A9GFRT1qyZAlJSUmZYskwffp0vd9J48aNcXV11bvjn5yczPLly3FwcNAtMJChRYsWNG3alEuXLrF///5M/Y8YMYIiRYroXtepU4fSpUvz8OFDvv76aywtHy/v2K5dO0xMTDh58mSO7xXSnxRmNZm7YsWKNGrUiL1795KSkvLUfiDrv4NChQrlqq0QInsPEx8y7sA46p92QK2kP3WvE/guRVxLvfBzJSemsn1BKDsWnSU1Kf1po72TBe8OrUllX5c3aolukX/I5O1cWDpsAHEPHxg6jBxZ2tnTZeIMQ4eRJ2lpabr5GkZGRtjb2+Pn50e/fv0IDAx8pj6HDRvG8uXLadasGcOHD89Vm5iYGMLDw6lQoUKWw8C8vLwyDZPJULVq1SyHeB0/fhwLCwvq1KmT6VijRo0AOHHiRK7iy0n16tWxsrLKVO7t7c2OHTs4fvw4NWvWpGHDhjg7OzNp0iROnjxJq1at8PHxoXz58i/sHx8vL69M812MjIzw8vLi4sWLnDx5kiZNmujmA/j6+mbqw8rKilq1arF161bOnz9P5cqVsz1flSpVqFevHqtWrWL27NnY2dkB8PPPP2NhYUHnzp0ztbGzs6NUqcz/wLu4uHDw4EHd63PnzpGYmEijRo2yXECgUaNGbNu2jRMnTuDt7a13rFq1apnqOzs7c+XKlUzH1Go1RYsW5ebNm9m+zyedOHGCKVOmsG/fPm7fvp0pkYiMjMxx0nfr1q0ZNmwY/fr1Y8eOHTRr1gwfHx9Kly6dq/MLIXL2zeFvKHI+maIP07+X7Z2LU++dDi/8PHcjYtjyUwgx9xJ0ZeW9nPFuXxYTjfqFn0+I3JLEIhfiHj4g9v7TJ5QWZE5OTpw7d44bN27g6emZ6zYAN27ceKZzajQaEhMTn6ltVkaNGsWkSZN04+DV6tx9ucbExABQtGjRLI/nNOcku2MxMTGUKFEiy2MZF34Z530e2Z0/ozxjUratrS2HDh1i9OjRbNiwgU2bNgFQokQJhg4dyieffPLKYsl439nVz8vn07t3b3r06MHSpUv59NNPOXz4MKdPn6Zbt27Y2mZeJz6rMkifi6PVanWvnydGGxubLPvP6VhunjQcOHAAPz8/IH2RAw8PD6ysrFCpVKxdu5aTJ0+SlJSUYx9ubm4cOnSIsWPHsmnTJlasWAFAuXLlGD9+PO+9995T4xBCZG1L+Bb2nt1K2/OPVyL07/UZxnmcX5gTRatwcuc1Dv5xGW1a+mILJmZqGnUuh0ftlzcxXIjcksQiFyzt7J9eycCeN0YvLy92797Njh07dBcvT+Pq6krx4sW5du0aFy9exMPD47lieB6jRo0iKCgIX19fNmzYkKdhVBkXe3fv3s3y+J07d7Jtm93dfhsbm2z7yxhC9uRFZsad/tTU1Ez1c1qxKbvYMsqfvJAuWbIkCxcuRKvVcurUKbZu3cqsWbPo168f9vb2vP/++9meJzdyG0vG+86uflafT3Y6dOjAF198wU8//cSnn36qGxaV3TCo3HqRMb4oX3/9NUlJSQQHB9OgQQO9Y4cOHcrVcCqASpUqsWrVKlJSUjh69Ch//fUXs2bNokOHDhQrVgwvL6+XEb4Qr7XIhEiCDgZR70whTNLSv8+rNGmGS4VKL+wc8THJ7Fh0lqshj290FnWzwb9nRWyLPNvQYSFeNEkscqGgDTF6Ft27d2fSpEnMnz+fAQMG6I0R/6+kpCTdmPyePXsyfvx4goKCdPMKspOcnJznlaFyIyOp8PHxYePGjTnufZEVGxsb3NzcuHTpEnfv3s305CIvS9ZmqF69Ojt37uTIkSOZhkNlLCn75LAYe/v0xDCrpz85LSV6/PhxYmNjMw2HCg4O1sXxX0ZGRlSrVo1q1arx1ltv0bBhQ9avX//cicX+/fvRarV6w6G0Wi0HDhxApVJRtWpVvZh2797NkCFD9PqIi4vjn3/+wdzcPFdPzszNzfnggw+YNWsWu3bt4vfff6d8+fLPfXFcrlw5zMzM+Pvvv4mPj8/0N5XV7/Blu3z5MoUKFcqUVMTHx3Ps2LE892diYkK9evWoV68eZcqU4YMPPuDPP/+UxEKIPFIUhQkHJ2AfnkyJe+k3UCztC9Gwc48Xdo5r5+6z/ZdQ4mMezz2r7l+SuoGlURvLdFmRf8hfowDS95oYMmQIkZGRNG/enLCwsEx1EhMTmTZtmt6mdoMGDcLT05PFixczfPjwLIdihIWF0bZtW0JDQ1943KNHjyYoKAhvb+9nSioydO7cmeTkZMaMGaNXvnv3brZs2ZLn/rp16wakz/l4cpjLtWvXmDZtGsbGxnpzAGrXrg3A4sWL9YbkHDx4MMdJ3hkTgp+0ZcsWduzYQaVKlahZsyYAISEhWd59zygzMzPTlWXskeHm5pbbtwvAhQsXdMu8Zvjxxx+5cOECLVu21CWrXl5euLu789dff7F9+3a9+kFBQURFRfH+++/nOgnN2KuiS5cuPHr06LmfVkD60sjvv/8+kZGRTJw4Ue/Y5s2b2bJlC2XKlHmlF+Gurq48ePBAb3+XtLQ0Bg0alOvlgo8ePZrl8K2s/g6EELnz55U/2X95N3VCHy+A0PjDPmgsLHNolTtpaVoOrr3M+pkndEmFubUJrT+vSv13ykhSIfIdeWIhdIKCgkhMTGT69Ol4enri5+dHpUqVMDExISwsjO3btxMVFUVQUJCujbW1NVu2bKFNmzZMnDiRBQsW4O/vj4uLC/Hx8Rw/fpz9+/djbGzM1KlTX2i8CxcuZMKECRgbG1OnTh2+/fbbTHV8fX2znCT8X1999RWrV69m3rx5nDlzBm9vb65fv86KFSto3bo1GzZsyDQxOSddu3ZlzZo1rFu3jipVqtCqVSvi4uL4/fffuX//Pt99953ehNl69erh5eXFzp07dU8RIiIiWLduHa1bt+aPP/7I8jze3t7MnTuXw4cPU69ePcLDw1m5ciXm5uZ6qyVt27aNwYMH4+XlRdmyZXFwcODKlSusX78eMzMz+vXrp6ubkdjkdg+QDAEBAXz++eds2rSJihUrEhISwoYNGyhcuDAzZ87U1TMyMmLhwoUEBATQokUL3nvvPVxdXTl48CC7d+/G3d2dSZMm5fq8FSpUwNvbm+DgYDQaDR988EGe4s7O5MmT2bNnD0FBQRw4cIC6devqPl8LCwsWLFiQp7+J5/XZZ5+xdetWGjRoQPv27TEzM2P37t3cuHEDX1/fLDdX/K8lS5bwv//9j4YNG+Lu7o6NjQ2hoaFs2rSJQoUK0aPHi7vDKsSb4E7cHSYenkjts/aYJ6fP6/OoWx+POvWfu++YyAS2/hzCnbDHNwNKVChEk+4VsLB58U//hXgRJLEQOkZGRkybNo1OnToxd+5c9u7dy969e9FqtTg7OxMQEECPHj1o0qSJXruMpTqXLl3KihUr2LJlC/fv38fMzAwPDw+GDBlCnz59sp3M/Kye3OH6u+++y7ZebhILa2tr9u7dy7Bhw1i3bh3//PMPFStWZPny5Vy5coUNGzbkaTy9SqVi1apVzJw5k0WLFjF79mxMTU2pUaMGAwcOzHLVq3Xr1jFw4ED+/PNPTp8+TdWqVdmwYQM3b97MNrEoXbo0c+fOZciQIXz//fekpaXh6+vLpEmTdE8rIP2iPzw8nL1797JmzRpiY2MpXrw4HTp0YMiQIXq7omfsKt2xY8dcv19IT45GjhzJyJEjmTVrFmq1mrZt2zJlypRMqw41aNCAQ4cOMX78eLZu3Up0dDTFihWjf//+jBw5ksKFC+fp3N26dSM4OFi3A/qLUKRIEQ4fPsyECRNYt24dwcHB2Nra0rZtW8aMGUOlSi9u7HRutGrVilWrVvHNN9+wdOlSLCws8PPz448//si0THJ23n//fRITE9m/fz9HjhwhKSkJFxcX+vbty+DBgylZsuRLfhdCvD4URWHMwTFY30yhzI30pxUaS0v8evR57r4vHb3LrqXnSE5In3dnZKSibpvSVG9aEpXsoC3yMZWiKIqhg3iZYmJisLW1JTo6OscLw8TERMLCwihVqpQMBxB6unTpwrJlywgNDaV8+fKGDgdIT6pKlSpFt27dWLhw4Qvte9CgQcydO5eIiIhcXeDv3r2bRo0aMWbMGL1hcq/Sp59+yvfff5+nxQdE3sn3pBCPrb6wmqDgcbQJLoZ1Qvp9Wv/en1PZL/u9j54mJTmNfSsvEhr8eAlqm8JmNO1ZEadSWa9qJ8TLlttraZAnFkLo3Lp1K9MeAHv27OG3337D09Mz3yQVL1twcDAff/xxnp8aGMq9e/dYtGgRnp6euj1ChBDiZboZe5Nv//mW6hfsdElFiYpVqNSo6TP3GXUjlq0/h3D/ZpyurEytovh2LofGXC7XRMEgf6lC/KtFixaYm5tTrVo1LC0tCQ0NZfPmzajVambPnm3o8F6Zw4cPGzqEXNm4cSPHjh1j1apVxMbGMnbsWNlpVgjx0mkVLaP3j8b8Xgrlw9OHXhqbmNK016fP9B2kKAohwTfZt/IiaSn/znEzMcK7Y1nK13eW7zVRoEhiIcS/unXrxrJly/jtt9949OgRdnZ2up2K69ata+jwxH+sXLmSRYsWUaxYMb755ps8zwkRQohn8du53/j75mFanXbGiPSL/rfe64S9U7GntMwsMS6F3UvPcfn445XdHIpb4f9RRQo5P/+qUkK8ajLH4l8ydlgIIXIm35PiTXc15irvbngXj3Om1LhgB0BRN3c6fzMNI7U6T33duhzN1p/PEHv/8TLtlX2KU//dMhib5K0vIV4mmWMhhBBCCPECpWnTGLl/JKYPU6h6KX1fHpWREf69P8tTUqHVKhzbEsGRDWEo2vR7uxoLY/y6lqd09ew3pxWiIJDEQgghhBDiKZaeXcrxO8dpftoRtTZ9CFStVm/jWLpMrvuIe5jEtgWh3Dj/QFfmXMaWph9WxLqQPAUUBZ8kFkIIIYQQObj88DKzjs3C86oVjg/SEwA7R2feeq9TrvsIPx3JjkVnSYxNSS9QQa0WbtRu4YaRWnbQFq8HSSz+4zWfciKEEM9Mvh/FmyhVm8rIfSMxjkuj5nl7XXnTXp9hYqp5avu0VC0H117m5PZrujJLOw1Ne1SguKd9Di2FKHgksfiX+t/xkSkpKZibmxs4GiGEyH9SUtLvtKrzOElViILslzO/cCbyDH4hRTBNTX+yUKmRPyUrVXlq24d34tn6cwj3rj7SlblVKYzfB+UwtzJ9aTELYSiSWPzLxMQEjUZDdHQ01tbWsm60EEI8QVEUoqOj0Wg0mJiYGDocIV6J8/fPM/fkXNxuW1DyrgUAlnb2+HT58OltD99mz6/nSUlKA8DIWEX9d8pQpZGLXGOI15YkFk8oXLgwN27c4Pr169ja2mJiYiL/8wsh3miKopCSkkJ0dDSxsbEUL17c0CEJ8UqkpKUwfN9w1Ila6oYU0pX7fdgHMyurbNslJ6ay97cLnD90W1dm52iBf8+KFClp/VJjFsLQJLF4QsbavJGRkdy4ccPA0QghRP6h0WgoXrz4U9cwF+J1Me/UPC48uIDXWQfMk9OH/5Wp/RZl63pl2+be1Uds+ekM0XcTdGXl3nLCu0NZTM3kkku8/uSv/D9sbGywsbEhJSWFtLQ0Q4cjhBAGp1arZfiTeKOciTzDz6d/xvmeGR430p9OmJpb0PjDPlnWVxSFUzuvc+CPS2hT0xc5MNGo8enkiWddp1cWtxCGJolFNkxMTOQfUiGEEOINk5SWxIh9I1ClaKl/5vEQKJ8uH2JVyCFT/YTYZHYuOkv46ShdWZGS1vh/VBG7ohavJGYh8gtJLIQQQggh/vX98e+5En2FWhftsU5Iv8HoUqESlf38M9W9cf4B234JIS46WVdWrUkJ6rV1R20se1OIN48kFkIIIYQQwPG7x1kYshCHh6ZUCEufaK02MaHpx5+hMnqcKGjTtPy9MZx//gqHf7d3Mbc2oXG3CrhWyvxUQ4g3hSQWQgghhHjjxafEM3LfSNAqeJ12wIj0VSHfercThYo9Xg3t0f1Etv0Swq1L0boyl3L2NOlRAUvbp2+YJ8TrTBILIYQQQrzxZh6bydVHV6lyxYZCj9I3ryviWopard7W1bly/B47l5wlKT4VAJWRirqBpaju74qRkSxPL4QkFkIIIYR4ox25dYRfz/2K7SMTql6yA0ClMsK/9+eojY1JTU5j/+pLnNnzeCl660JmNO1ZEWd3WwNFLUT+I4mFEEIIId5YscmxjNo/CpUCDU47oNamP3moFfgOTu4e3L8Vx9afzhB1I07Xxr1GERp1KYfGQlaPFOJJklgIIYQQ4o019Z+p3Iy7SYUwa4o8TJ8jYe9cnHrtOhK67ybBv18gNUULgNrECO/2HlRoUAyVSoY+CfFfklgIIYQQ4o2078Y+Vl9cjXWcMTUu2KcXqlT4ffgpuxZf4tLRu7q6hYpZ4v9RRRyKWRkoWiHyP0kshBBCCPHGiUmOYcyBMaCA12kHjP8dAuX5lj97f3/Eo6hEXd2KDYvT4N0yGJuqDRWuEAWCJBZCCCGEeONMPjKZu/F38bxqhdN9MwDMrBy4eq4sipKeVGgsjGnUpRzuNYoaMlQhCgxJLIQQQgjxRtl5dSfrL6/HMkFNrXOFdOVpNEKtpE/IdiptS9OeFbBxMDdUmEIUOJJYCCGEEOKN8SDxAeMOjgMF6p92wCQtfQiU2rQyapOSoIKazVyp06oURmqjp/QmhHiSJBZCCCGEeGN8ffhr7ifex+OaNcUj/30aobLC2KIhFramNO1RAZdyhXLuRAiRJUkshBBCCPFG2By2mS3hWygSXZj6IXZACgAmFk1wq1yMxt3KY25tatAYhSjIJLEQQgghxGsvMiGSoMNBlLlXnQYnbUEJA0CtKU/DTv5U9SuBykj2phDieUhiIYQQQojXmqIojA8OolpIC8resCcleSMARmpL2g0dQIkKxQ0coRCvB0kshBBCCPFaW31oI0X/qoNdnA1J8Yt05QF9+0lSIcQLJImFEEIIIV5LiqKwf+tZbq41wV5xIjl+IygJAHjUrU8F74YGjlCI14skFkIIIYR47STGprBzyVnCTkaixoS05EtoU84DYGZlTeMP+xo4QiFeP5JYCCGEEOK1cvPiA7b9EkrsgyQAFG0iiUl/of73eKNuH2NpZ2+4AIV4TUliIYQQQojXglar8M+mcP7ZGIaipJclGMdyi18oFp0KQKnqtSjv3ciAUQrx+pLEQgghhBAFXuyDRLb9EsrNiw91ZTdsLhJqtxzvk1YAmJpb0PTjT1GpZFlZIV4GSSyEEEIIUaCFnbzHjsVnSYpLfyqBSuGIyyZCim7n7X0uuno+XT/E2qGwgaIU4vUniYUQQgghCqTUlDQOrLnM6V3XdWVmtmrWlJzDVatzNDjpgFli+tMJt6o1qOwXYKhQhXgjSGIhhBBCiALnwe04tvwUQtT1WF1ZqaqFWeE8g6vR53C5Y06ZG08Mger1mQyBEuIlk8RCCCGEEAWGoiicO3iLvb9dIDVZC4Da2IgG75XhSKFtHD32N6bJRniHFNG1adTtY2wKF8muSyHECyKJhRBCCCEKhOSEVHb/ep6Lf9/Rldk7WeD/USWire7w/YY5ANQNLYTm3yFQparXoqJvE4PEK8SbRhIL8f/27jM6qnptw/g1Jb0nJNRAgNB7l95BVOyKHlSsxwKKYkV9rSjYEfuxYwO7qKj0Jr1DQq9JCCSk92TK+2F0kCIEMslOuX9rZck8M7P3HSKTeWb/i4iISKV3ZH82cz6MIzu1wF1r3bsufa5uDl4Oxs5+lGJHMQ0P+9H0UAAAPv4BDP2vVoESqShqLERERKTScjqcbJyXwMof9+BwuDan8Pa1MOC6ljTrWhuAdze9T3xaPD7FZvrER7mfO/DG/xIUrlWgRCqKGgsRERGplPKzi5n/aTwH49LdtdqNgxl2SxuCa/kBsC1tG+9teg+A8+Ij8C50Pa5J52607jeowjOL1GRqLERERKTSSdiWzryP48nPLnYVTNB5WCO6X9wYi8UMQLG9mEeXPYrNaaNRsj+ND/kD4BsQqI3wRAygxkJEREQqDbvdwepZ+1g/5wC4Rj7hF+zN0BtbE906/LjHvrPpHXZn7sanyEyf+GOrPg266XYCwyMqMraIoMZCREREKonsowXM+TCOI/uy3bWGrcMZfGNr/IO9j3vsptRNfLT1IwB6xkfgVeSqx3Y7j5Z9BlRUZBH5BzUWIqfgdDqxHT4MDofRUUREaoQ9cdks+fUIJUWu112TGboPiqT9eWGYclIpyTn22EJ7IS/Pe5jwXDt1j/oTk/zXECj/APpfeDm2Q4eM+BZEyo05MBBLSIjRMc5IjYXICZxOJweuu56CdeuMjiIiUu3ZzV7sir2SQ/X6uGu+Bam0jf+YgAUH2PMvz3sUKLJaWNoiguK/3s203LaX5MuuKPfMIhUt4vbbibrvXqNjnJEaC5ETFO/fr6ZCRKQC5AbUI671zeQF1HXXah9ZQ4udM7DaC0/7XCewtX4tiq0WAOpk5lI3M7c844rIGaixEDmRzeb+o1eDBvi1b2dgGBGR6sfphP22RmwpaY0DV2NgwUZ77600jDmCqfHAUz7P5rCxLOlPCmwFFJsDKbAGAuBjtnBey/b4ttHbGqmefJo3MzpCqVT6f4FJSUk8/PDD/Pbbb+Tn5xMbG8vHH39M165djY4mNYD/eT2oN2mS0TFERKqNwrwSFn6+nb0bUt21iPqBDL+tDWF1hp32uU+veJpvdxYTUODN5ctqYylxLRs17N6HaNqjd7nmFpEzq9SNRUZGBr1792bgwIH89ttvREZGsmvXLsLCwoyOJtWY0+k0OoKISLWUvDuTOR/FkZte5K61G9CAXlc0xeplOe1z/0z6k293fgtO6Lclyt1UtO47kOZqKkQqhUrdWLzwwgtER0fz8ccfu2uNGzc2MJHUCP/oK7S5kohI2TkcTtb/vp/Vv+zH6XC9yPoEWBl0fSuadIw8w7MhqyiLJ5Y/AUCr/UHUPupaejYoIpKBN91efsFF5KyYjQ5wOrNmzaJr165cddVVREVF0alTJ95///3TPqeoqIjs7OzjvkTOnRoLEZGyyMssYtbrG1g1a5+7qagbG8Kox7qXqqkAeGH1C6TkpxCSa6XbzmOb5A2/czy+AYHlkltEzl6lbiz27t3LO++8Q7Nmzfjjjz+48847ueeee/j000//9TmTJ08mJCTE/RUdHV2BiaV60FAoERFP2L/lKDMmrSZpRyYAJhN0u6gxl97XiaBw31IdY/7B+fy892dMDui/qTZmu6veacRIGrXrWD7BReScVOqhUA6Hg65du/L8888D0KlTJ7Zu3cq7777LmDFjTvmciRMnMmHCBPft7OxsNRdydpzHjYUyLoeISBVlL3Gw4oc9bFqQ4K4FhPow7JbW1GtW+nmS6YXpPLPiGQA67A4hPMv1tiW8XgP6/udGj2YWkbKr1I1F3bp1ad269XG1Vq1a8d133/3rc3x8fPDx8SnvaFKdqbEQETlnmUfymfNhHKkHj22VHdO+FoNvaIVvoFepj+N0Opm0chLphenUyvSmw55QAExmMyPGTsDLW7/rRSqbc2osMjMzWb16NSkpKTgcjuPuu+GGGzwSDKB3797s2LHjuNrOnTtp1KiRx85R3hxOB29vfJtWEa0Y3HCw0XHkbKmvEBEpte0rk1n81U5sRa7xSmarid5XNKPdgPpnvRjG7/t/Z+6BuVjsJvpvjsL012c+511+DXVim3s6uoh4wFk3Fj///DOjR48mNzeX4ODg414oTCaTRxuL++67j169evH8889z9dVXs3r1av73v//xv//9z2PnKE+FtkLuX3w/SxKXEOAVQOMLGtMktInRseRMtNysiMhZKS60sfirHexcdcRdC63tz7Bb2xAZHXTWx0vNT2XSStceQl12hBKU61qKtnaTZvS47GrPhBYRjzvrydv3338/N998M7m5uWRmZpKRkeH+Sk9P92i4bt268cMPP/DVV1/Rtm1bnn32WaZOncro0aM9ep7y4mPxIcAaAEBeSR7jF44npzjnDM8Sozk1FEpEpNRSDmTz9XNrjmsqWvaqy9WPdjunpsLpdPLUiqfILs6m7lFfWu8PBsDq5c2IcROwWCv1KG6RGu2s/3UmJSVxzz334O/vXx55TnLRRRdx0UUXVci5PM1kMvFUr6fYk7WHnRk72Z+9n0eXPcrrA1/HbKrUC3LJX7SPhYjIqTmdTjbNT2DFD3tw2F0fyHj5WhgwugXNu9U55+P+uPtHliQuwbvERL8tx5aj7Tv6RiLqazEWkcrsrN/dDh8+nLVr15ZHlmrJ38ufqQOnEuzt+sRlUcIi/re5agzlqrE0EkpE5LQKcor59a3N/PntbndTEdUoiFGPdStTU3Eo9xAvrHkBgB5x4fgVuN6mNGzbnk7Dq+aHjCI1SamuWMyaNcv95wsvvJAHH3yQ+Ph42rVrh5fX8Ss8XHzxxZ5NWA1EB0XzYr8XuXPenThxuiZzh7eif3R/o6PJqRw3x0JXLERE/ilxRwZzP4ojP6vYXes4tCHnXdIEi/Xcr8Y7nA6eWP4EeSV5xCT70/SQa+M7bz9/ht95LyazrvSLVHalaiwuvfTSk2rPPPPMSTWTyYTdbi9zqOqod/3e3NP5Hl5f/zpOnDyy9BG+uvArYkJijI4mp6OhUCIiADjsDlb/so91vx9wX9n1C/Ji8I2tadQmoszH/3rH16xKXoV/gYXeW2u564NvvoPgWlFlPr6IlL9Stf8Oh6NUX2oqTu+WtrcwtNFQAHJLcrl34b3kleQZnEpOprFQIiL/lJ1WwA+vbGDdb8eaigYtwxj1eHePNBUHsg/w6rpXMTmh76ZaeJW4PtRp0bMvrfoOLPPxRaRinPV1xenTp1NUVHRSvbi4mOnTp3skVHVlMpmY1HsSsaGxAOzJ2sPjyx4/fhUiMZ5WhRIRcduzIYWvn1vD4b1ZAJjMJs67tAkX39ORgJCyb1Jnc9h4dOmjFNgKaLM3mLrpvgAERUQy5NaxWkRDpAo568bipptuIisr66R6Tk4ON910k0dCVWd/T+YO8nItwTfv4Dw+3PqhwankX+kXmojUULZiO4u+3MHv722lKN8GQFCEL5c/0Jku58dgMnvm9fHDLR+y+ehmwrO86bwr1FU0mRgxbgK+gYEeOYeIVIyzbiycTucpPz1ITEwkJCTEI6Gqu0bBjZjSbwqmvyYGT1s/jWVJywxOJW66giQiNVzaoVy+mbKWuCVJ7lpslyhGPdaNOk0897s+Pi2edze969pde2MtzA7X78XuF19BdOt2HjuPiFSMUu9j0alTJ0wmEyaTicGDB2P9xwY1drudffv2cf7555dLyOqoX4N+jO04ljc3vokTJw8teYiZF84kOlhrdBvuuKFQxsUQEaloTqeT+GWHWPb1LmwlDgCsXmb6jmpOq951PTosqchexKNLH8XmtHHetnBC8lyrTNZuEkuvq6vGRrgicrxSNxZ/rwy1ceNGhg8fTuA/Lk96e3sTExPDFVdc4fGA1dlt7W8jLi2OhQkLySnOYfyi8Xw+4nP8vSpm80E5M43tFZGaoii/hIWf72DP+hR3LbxeAMNvbUt4vQCPn+/19a+zJ2sP0Uf8aHnQNTzY6uPDBXc/gMXqdYZni0hlVOrG4sknnwQgJiaGUaNG4evrW26hagqzyczzfZ7n2l+vZX/2fnZl7OLJ5U/yYr8X9YbWQJpMLyI1zeG9Wcz5II6c9EJ3rW2/+vS+Mhart8Xj51udvJrP4j/Dr8hM7y3HVpUaeMNthNdr4PHziUjFOOs5FmPGjFFT4UGB3oG8Puh1Arxcnwb9vv93Po371OBUNdxxfYUaPBGpvpwOJ+t+38/3L693NxU+/lbOv70t/f/TolyaipziHB7/83FwQu/NtfAtdp2jadfzaDd4uMfPJyIVp1RXLMLCwkr9CXp6enqZAtVETUKa8Hyf5xm/cDwAr61/jRbhLehZr6fByUSrQolIdZWXVcS8j+NJ3J7hrtVtGsKQm1sTHOFXbuedsnoKyXnJtDwQRINU13kCQsMYdvvdulovUsWVqrGYOnWq+89paWlMmjSJ4cOH07On643vihUr+OOPP/i///u/cglZEwxqOIg7OtzBu5vexeF08OCSB5lx4QwaBOmScMXTPhYiUr0diEtj/ifxFOSUuAom6Doihm4XxmC2nPVghlKbf2A+s/bMIjTHi27bw9z18++8F/9grSwpUtWVqrEYM2aM+89XXHEFzzzzDOPGjXPX7rnnHt58803mzZvHfffd5/mUNcSdHe5kW9o2FicuJqsoi/sW3cf0EdPxs5bfJ0dyCppjISLVlN3mYOWPe9g4L8FdCwjxZsjNbWjQIuw0zyy7owVHeXrF01jsJvptrIXlr6VlO19wCTEdu5TruUWkYpicZzlTNTAwkI0bNxIbG3tcfffu3XTs2JHc3FyPBiyr7OxsQkJCyMrKIjg4uMLPv+rrF/E6WPo9KvJMdp4OPcQRq2szop6FAdyeE+ne80LKn/lwAT6/JAJQ0i4UW49IgxOJiJRdQXEIu46MIK+ojrsW6r+X2Npz8bIUlOu5nTiZGpzCRp98emwNp9Vfq0AF+EGX1iYsHtpsT6S6crS8iK4X/deQc5/Ne+lSrwr1t4iICH766Sfuv//+4+o//fQTERER//Ksmst0aAOdcxef1XPeLfTiP/VqU2A2s8I3j755iVyfnVNOCeVE+fneHKAWALVLEqmdG29wIhGRstlZ0Je12aMocbqWMzdTQq+g6bT3/wVT+fYUAPwQGMBGnwgaHvZzNxVWk50r626kVn5++QcQqeJWJDc2OkKpnHVj8fTTT3PrrbeyaNEievToAcCqVav4/fffef/99z0esCaKLSnhudQ0JtR2fVL+SngoLYuL6VZYZHAyERGpSoodvizNuZXtBYPdtRDLIYaHvkKk194KyZBotTAlIoyAAgu9N/9jadnae6nlo6ZCpDo566FQ4Gokpk2bxrZt2wBo1aoV99xzj7vRqEyMHgqVlXaEgvxzu9rw4Z7PmXHgOwBCvYJ5q9vLRPlqWE55K9m0hdwHHgXA5+or8L/tRmMDiYicg8zDxaz68Si5aTZ3rWG7ADoOD8PLp/wmaP+T3WnnwfVPsDUjnvNX1aZ2hmu5+obtO9Ln+jFaBUqklPwCQwkJq2XIuct1KBRAjx49+OKLL84pXE0TElGbkIja5/TcR+r/HwnzD/PnoT/JLMnmuR1T+fT8T/G1ah+R8pSXnM7fM4UCQ8KIio497eNFRCoTp9PJlkWJ/PldAg6b67NDLx8L/f/TghY96pzh2Z71ydZP2JIVT6fdIe6mIjgyipH3PoJvQGCFZhGR8leqjyyys7OP+/PpvsRzLGYLL/R7gQaBriVn49PieXbls9oZurzpr1dEqqjC3BJmv7OFpTN3uZuKyIZBXP1otwpvKnZm7GTahmnUOepL+92upWRNZjMX3vOQmgqRaqrUG+QlJycTFRVFaGjoKS9dOp1OTCYTdrvd4yFrshCfEKYOnMr1v11Pga2AWXtm0bZWW65tea3R0aqv4xo3XaYXkaohaWcGcz+KJy/z2Hy8DoOj6XlpUyxeFTP06W8l9hIeXfoo5gI7/TZFuVc27D3qeuo1b1mhWUSk4pSqsViwYAFZWVlERUWxcOHC8s4kJ2gR3oJnej3Dg0seBODF1S/SPKw5XWpr3e9yp/G/IlLJOewO1szez7rZ+92fi/gGejF4TCti2hkzJvuNjW+wI30HgzdH4l/keqvRsF1Hul98hSF5RKRilKqx6N+/P2azmUaNGjFw4ED3V4MG2hW6opzf+Hzi0uL4JO4TbE4bExZNYOZFM6kTULGXtmsGjYUSkaohJ72QuR/Fkbw7y12r3yKUoTe1ISDUx5BMaw6v4ZOtn9B6fxDRqa7lbf1DQrlg3P2YzBV75UREKlap/4UvWLCAMWPGsHfvXv773//SqFEjmjVrxu23386MGTM4cuRIeeYUYHzn8fSo61p5K70wnfsX3U+xvdjgVNXQP4dC6YqFiFRSezemMnPSandTYTKb6HFxEy4e38mwpiKrKItHlz1KeJYXXbYf28l7xF33ERBavjt7i4jxSr0q1IABAxgwYAAAhYWFLF++nEWLFrFo0SI+/fRTSkpKaNmyJXFxceWVtcpyOp0U5eeVebKa1WzlpX4vcc0v13Ao7xCbj27m+VXP81SvpzwTVE6mvkJEKhlbiZ3l3+5my+Ikdy0w3Idht7SlbtMQA5PBc6ueIy3zCCM31MXidL2Adh15OTEdNXRXpCY4p+VmfX19GTRoEH369GHgwIH89ttvvPfee2zfvt3T+ao0p9PJnnWrWf3j12Ayce0zL5V5ze4w3zD3ZO4iexHf7fqONrXacFXzqzyUWtCqWyJSSaUn5zHngzjSknLdtaadIhlwXUt8A7wMTAa/7P2F3/b+Rv8ttQjOd2Wp07QZfa653tBcIlJxzmqwY3FxMUuWLOHpp59m4MCBhIaGcscdd5CRkcGbb77Jvn37yitn1eR0suyrT0netYPkndtJ3LbVI4dtFdGKJ3s+6b79/Krn2Ziy0SPHFo5fzldDoUSkEnA6ncT/eYhvJq9xNxUWLzP9/9OC4f9ta3hTcSj3EM+tfI6WB4JofDgAAB//AC4c/zAWq7HZRKTilLqxGDRoEGFhYdx1112kpKRw++23s2fPHnbs2MH777/P9ddfT8OGDcsza5VjMpvpfumxKwmrf/zGY8ce2XQk17W6DgCbwzWZOzU/1WPHFxftCisiRisqsDH3wzgWfrYdW7EDgLC6AVz1SFfa9qtv+OuU3WFn4tKJ+KQW023bsXkUw+8cT2htLTAiUpOUurFYunQpERERDBo0iMGDBzN06FDq1q1bntmqhZa9+hEc6dp5e/+m9RzZu9tjx57QdQLd6nQDILUglQmLJlBiL/HY8Wus40ZCqbEQEeMc2ZfN18+tZtfaFHetdd96XDWxKxH1K8cmcx/HfczWpI0M2BDpnlfR5cJLaNa9l8HJRKSilbqxyMzM5H//+x/+/v688MIL1KtXj3bt2jFu3Di+/fZbUlP1afmpmC0Wuo283H179U/feuzYXmYvXur3knvJ2Y2pG3lhzQseO36NpTkWImIwp8PJ+jkH+P6ldWQfLQTA28/K8NvaMnB0S7y8LQYndIlLi+Ot9W/RZ3MEQQWuaZt1m7Wg739uNDaYiBii1I1FQEAA559/PlOmTGHVqlUcPXqUF198EX9/f1588UUaNGhA27ZtyzNrldVm4BD8Q0IB2LnqT9IPJZ3+CWchwi+CqQOm4m32BmDmjpl8v+t7jx2/ZtIcCxExTn52Mb+8uYkV3+/B4XC9HtVpEsyox7oR2yXK4HTHFNgKeGTJIzTf60fDI679KnwDg7joXs2rEKmpznmnmoCAAMLDwwkPDycsLAyr1cq2bds8ma3a8PL2ocuFl7puOJ2s+PZLjx6/Ta02/F/P/3PfnrRyEltSt3j0HDWWGgsRqUAH49OYMWk1B+PTXQUTdD6/EZfe35ngWn7GhjvBK2tfIe/AIbru+Md+FWMnEFyr8jQ/IlKxSt1YOBwOVq9ezYsvvsiIESMIDQ2lV69evP3229SpU4e33nqLvXv3lmfWKq3jsAvwCwoGYPufi0nZ79m/q0tjL+WaFtcAUOIo4d5F93K04KhHz1FjaCiUiFQwu93B8u938/O0TRRkuzY+9Q/25uLxHel5aVMslsq1Y/WSxCX8uOUbBmyIxPzXvIrul1xJk87dDE4mIkYq9T4WoaGh5OXlUadOHQYOHMhrr73GgAEDaNq0aXnmqza8/fzpcdnVLJr+AQB/zvyMyx5+8gzPOjsPdXuInRk7WZ+ynpT8FB5Y/ADvD3sfL7MuSZ+V45abNS6GiNQMWakFzPkwjpT92e5awzYRDB7TCv9gbwOTnVpaQRr/t+z/6LupFgGFrrcR9Vu2ofco7VchUtOV+iOQl156iW3btpGUlMTnn3/OLbfcoqbiLHUYegGBEbUA2Lt+DYnbPbtLuZfFi1cGvEKUn+sy9Loj63hl7SsePUeNo6FQIlKOdq09wtfPrXY3FWaLiV5XxHLR2PaVsqlwOp08sfwJ6sfZaJDqGprlFxzCheMfxGypHBPKRcQ4pW4sbr/9dpo3b16eWao9q7c3Pa+41n170acf4HQ4PHqOWn61eHXgq+6rFF9s+4JZe2Z59BzVnVNDoUSknJUU2Vnw2TbmfBBHcaEdgOBIP654qAudhjbEZK6cH2p8s/Mbdm5aRaedoa6CycQFdz9AUHgtQ3OJSOVQuQZt1gBtBwyhVsMYAI7s3cXWxfM8fo4OkR14rMdj7tvPrHiGuDTPXh2p1v7RWBi98ZSIVD9HE3P5ZvIatv2Z7K4161abUY92I6pRsIHJTm9v1l7eXPIK/TdEYv5rnOh5l19DTPtOBicTkcpCjUUFM1ssDBzzX/ftZV9Npyg/z+PnuaL5FVzZ/EoAiuxF3LfwPtIL0z1+nmpPjYWIeIjT6WTLokS+nbKWjMP5AFi9zQy6oRVDb26Nt1+ppz1WuBJ7CRMXPkzPtcH4FbuGPDVq34meV15jcDIRqUzUWBigYdv2NO/RG4D8rEyWfPFxuZxnYveJtI9sD0ByXjIPLn4Qm8NWLueqVjQSSkQ8rDCvhN/f28qSGTux21xDYGtFB3L1o91o1atupb86+vr61wn6M4WoTB8AAiNqccHdD2A2a16FiByjxsIg/W+4BS8fXwA2z/udg1s3efwc3hZvXhvwGrX8XGNfVx9ezWvrXvP4eaqff3YWlfuXvYhUfod2ZzJz0mr2bkx119oPbMAVD3UhrE6AgclKZ1nSMpbN+ZZWB4MAMFutXHL/Y/gHhxicTEQqGzUWBgmuFUXf0Te6b895bxolhYUeP0+UfxSvDngVq8l1iX16/HRm753t8fNUW5X8U0QRqbwcDidrft3Hj6+sJzejCACfACsX3NmOvqOaY/Wq/J/2Hy04ygu//B89t4a7a0NuuYs6TZsZmEpEKis1FgbqOPQC6rdsA0BWyhGWfvVpuZynU1QnHun+iPv2k8ufZEf6jnI5V7WgVaFEpIxyM4qYNXUDq3/e535JqdcslGse707jDpHGhislh9PBEwsepcsKb6wO19uFdoOG027QMIOTiUhlpcbCQCazmeF33IPVy7VW+Ybff2b32lXlcq6rW1zNZbGXAVBoL2T8wvFkFmaWy7mqvOM2yNMVCxE5O/s3H2XmpNUk7cwEXC8j3Uc25pL7OhEY5mtsuLPwWdxneP+2m6AC1/LltRo3ZtDNdxicSkQqMzUWBgurW59+193kvv3H26+RnZri8fOYTCYeO+8x2ka0BSApN4mHljyE3WH3+LmqFfUVIlJK9hIHS2fu5Ne3N1OYVwJAYJgPl07oTLcLG2OupHtTnMq2tG3Mn/kh0an+AFgD/Ljsgf/D6uVlcDIRqczUWFQCHYdfRLMevQAozMvll6kvYCsp8fh5fCw+vDbwNcJ9XWNlVySvYNqGaR4/T1Xn1D4WInKWMg7n8e2La9m8MNFda9yhFqMe7069ZqHGBTsH+SX5TJnxIO13uiZrO01w6X2PEVwryuBkIlLZqbGoBEwmE8PvGE9IVG0AknfvYM5708plB+g6AXV4uf/LWEyuSYMfbf2I3/f/7vHzVGmaYyEipeR0Otm+IpmvJ6/laEIuABarmX7XNGfEHe3wDah6n/C/OPdpWiy3Y/rrkm3vUdfRqF1HY0OJSJWgxqKS8PEPYOR9E7F6u9YI37Z0ISu+/apcztWtTjce7Pag+/YTfz7Bzoyd5XKuKum41WZ1xUJETq240Ma8j+OZ/+k2bEWuYaVhdfy58pEutBvQoEpe8Zy9/Wfs323Ax+b68Klepw6cd+kog1OJSFWhxqISqd0klgvuecD9ZnbFt1+yeV75XE34T8v/MLLJSAAKbAXcu/BesoqyyuVcVVvVe2MgIuUv5UA2M59bw87VR9y1Vr3rctXEbtRqEGRgsnOXlJ3I/HfeIDTXtaCIV1QoV4x/rEo2SCJiDDUWlUyzbj3pP/rYZO6577/JlgVzPH4ek8nEEz2foFV4KwASchJ4ZOkjmswNGgolIv/K6XCycd5BvntxHdmpBQB4+VoYdksbBl3fCi+fyr83xanYHDamvnkv9Q67mgqHj5nrHn0Bbz9/g5OJSFWixqIS6nLRZXQdebn79pz/vcGWhZ5vLnytvkwdOJVQn1DAtbvq25ve9vh5qh4tNysiJ8vPLuaXtzbz57e7cdhdrxNRMcGMeqw7zbrVNjhd2bzz9dPU2eTapNVpcnLR+IcJr1vf4FQiUtWosaiETCYT/UbfRJcLL3UVnE7mvDuNFd9+5fEJ3fUC6/Fy/5cxm1z/K/xv8/+Yf2C+R89RpamxEBEgYXs6Myet5mBcmrvWaVhDLn+gMyGRfgYmK7vF638lb9Y69+3ml15Aqy69DUwkIlWVGotKymQy0f/6W+hy4SXu2vJvvuCPd6ZiKy726Ll61O3BhC4T3LcfXfYoezP3evQcVYqGQonIX+x2Byt/3MOs1zeSn+167fUL8mLk3R3odXksFmvV/jWanHqQJW+8hZfd9X1Y2zZg5Ki7DE4lIlVV1X5FrOZczcWt9PvHnIu4xfP58v8eIP1QkkfPdUPrGxgRMwKAfFs+4xeOJ6c4x6PnqDKO23nbuBgiYqzsowX8+Mp61v1+wD1CMrpVGKMe707DNhHGhvOAkpJiPnz+PvzzXW8F8mtZuePBVzVZW0TOmRqLSs5kMtHt4isYed8jWL1ck+pS9+/l80fGs2nubJwOh8fO81Svp2ge1hyA/dn7eXTpozicnjl+VaVfsCI10+51Kcx8bg2H92YDYDab6HlZU0be3ZGAEB+D03nG/6Y9hN+hIgAKfRxc/+gL+PhqsraInDs1FlVE8/P68J/nXiG8XgMASooKmffB23z15EOkHtjnkXP4e/kzdeBUgr2DAViUuIj3Nr3nkWNXJeWxMaGIVA22YjuLvtjOH+9vpbjABkBwLV8ue7AznYc3wmSuHh82/DbrIwpX7wbAbnbS5fYxxNRvYXAqEanqrEYHqO4OLd1CVsJRjx2va6fL2ea1kIQDWwBI3rmd6Q/dTb0GrWjWshcBAaFlPseT2bfz675fcTgdxMct4LeVvsQEx5T5uFVF0c5EcsLbEJiXpMnbIjVIWlIucz6MI/1QnrsW2zWKAaNb4uNXfX5dbt+0kq1ffof5r7Ge1mGtOb+3NsETkbKrPq+UldS6bzZxsLieB49oBYbiFdgSW/48nI4MAA4lbuNQ4nbMXs2w+nTEZK1fhmE8DWjO7e5bezfCXmrSp/jNoH0zcDoIzksl3Og4IlKunE4ncUsPseybXdhLXMM/rV5m+l7TnFa96larIZHpyUnMeuV5LE7X95TayodJYyYbnEpEqgs1FlWUxSsac/D12Is2YCtcA85CwImjZCfFJTsxmSOweLfA7N0cs0Vvjc+JyUy6TwOaGp1DRMpNYV4Jiz7fzp4Nqe5aRP1Aht3ahvC6AQYm87zC3FymP/sgliJX83QkqoR7J7yH1ay3AiLiGXo1KWdNu9UjeLfnhkKdrDF2e32OZGwjJWMHNvtfGxw50rAVLofC5fh4BREcUJcg/zoE+Ebg7RVYqk/g7E47cWlx5Je4dpcN9w2jWVgzTNV8qaTMQh8Ss4IA8G4UY2wYESk3yXuymPPhVnLTi9y1dv3r0+vKWKxeVXMH7X9jt9mY8dL/YU9zTUbPCCxm+N33Uy9Ym+CJiOeosShnra8fVGHnspWUsHPlMjbN/Y1DO+Ld9aKSHFIzc0jN3AmAt58fkY0aE1G/IcGRUQRHRhEUUQu/oBB8AwPxDQzEYvUCIDb7INf8cg05Ja6lZ+/pdA+3tb+twr4nI+xcc5jED//6+6vePZRIjeRwOFn/xwFW/7wPp8M1zNPH38qg61vRpFOkwek8z+l08seHb5K2fRcAhd52gq/pzeDmww1OJiLVjRqLasTq5UXrvgNp3Xcg2UdT2LnyT3avWUHyrh047Hb344oLCkjaHk/S9vh/PZaXjy9WHx8sXl78hyYcKUrBboY9y7/mvdC1hPqHYTZbMJnNmC0W15fZgsliwfxXzX2f+a/7LWZMf//ZfOzP3n5++AYGuZqagL/++9dts9ngTw1r0tQSkRogL7OIuR/Hk7Qjw12rGxvC0JvbEBTua2Cy8rN+9iy2LZgHuFaA2jcwkHcGPWpwKhGpjtRYVFPBtaLoetFldL3oMooLXY3EoR3xpBzYR+qBfeQcTT3t80uKCikpKnTfDsXb/efczCRy8ewGfadiMpsJCAsnKDyCwPAIgsJrERhRi5DIKMLq1ie0Tl28fKrnGwER8bz9W44y/9NtFOaWuAom6HpBDN0uiMFsqZ6rr+9dv4ZFn33gvr2uYy4vX/UuXhYvA1OJSHWlxqIG8Pb1o3HHLjTu2MVdK8zNJfNIMtlHU8hOTSE3/SiFubkU5OZQmJtLYW4OtuJi7LYS7DYb9pISiosLMFXgfnlOh4PctKPkpv37HJXA8AjC6tQjrG59IhpEE9moMbUaNcYvMKjigopIpWa3OVjx4x42zUtw1wJCvBl6cxvqtwgzMFn5Sj24n1lTp8Bfe/Nsis3kllFPEB0UbXAyEamu1FjUUL6BgdQJbEadps1K/Zz8knxumH09OzN2YnJA96huvDbgVSxYcNrtOOx2HA47DrsDh92O0+H467bddb/DjsPh+Ouxf99no7iggMJ/NDSFuTkU5OaQn5VJTtpR8rMy/zVTbnoauelpJMRvOa4eGFGLyIYxRDZqTGSjxtSNbU5wZO1STVqv7pPTRWqSzJR85nwQR+rBHHctpl0Eg8a0wi/Q+zTPrNryMjP4fspT2ItcE9P31cmj+UXDGRYzzOBkIlKdqbGQUvP38mfa4De49tdrSS9MZ2XaGqZufZPHz3u8XM9rt5WQm55ObnoaOWmpZB45TObhQ2QkHyIjOYmCnOyTnvP3lY59G9a6a37BIdSNbU7d2BbUadaCurHN8fGvXstJisgxO1YdZvGXOygpcs0xM1tN9Lo8lvYDG1SrvSlOVFJYyA8vPuO+2psaUkRK/3Be6f6QwclEpLpTYyFnpV5gPV4f+Do3/3EzJY4SZu6YSWxoLNe0vKbczmmxehESVZuQqNqnvL8wL5eMQ0mkHtxP6l9zSI4e3E9Rft5xjyvIzmLv+jXsXb/GVTCZCK/XgPotWtGgVVvqt2xDcGRUuX0fIlIxigttLJ2xk+0rD7trIVF+DL+1LZENq/cwSYfdzi/TXuTIHtcKUHm+Nladl8cnQz7Ax+JjcDoRqe7UWMhZ6xjVkSd7Psnjf7quVExZPYWYkBjOq3ueIXl8AwKp26wFdZu1cNecTic5R1NJObCPI3t3c3j3Dg7v3klhXi7/eBDpSQmkJyWwZcEcwDWEKiSqKbaiQCxejSv6WxGRMko9mMOcD+PIPJLvrrU8rw59r2mOt2/1/pXndDpZ8PF77F23GoBiq4O5XVN4cvCLNApuZHA6EakJqverrJSbS2IvYU/mHj6O+xi70879i+7nywu/rDS/vEwmk3uPjtiuPQDXL92M5EMc3r2D5N07SN61k9QDe49bivefk8VtWMg5GgVooqNIZed0Otm8IJHlP+zGYXNNVvbysdD/Py1o0aOOwekqxppZ37Fp7mwA7CYnCzuncvF51zKk0RCDk4lITVGlGospU6YwceJExo8fz9SpU42OU+ON7zyePVl7WJK4hOzibMbNH8cXF35BsHew0dFOyWQyEV6vPuH16tO6n2vjwpKiQpJ37SRpexyJ27ZyaNd2bEV/78JrJyN5F9DLsMwicmYFucUs+HQb+7ekuWuRDYMYdmsbQqP8DUxWcbb/uZilX37ivv1n+zRqt2rJvV3uNSyTiNQ8VaaxWLNmDe+99x7t27c3Oor8xWK28ELfF7hu9nXsydrD/uz9PLT4Id4c/CZWc9X4X8vLx5eGbdvTsK3r/yu7zcYf733OtiXfGpxMREojaUcGcz+KIy+r2F3rOCSa8y5tisVaPfemOFFC/BZ+f/s19+31zTPIbOrD//q/jJdZ+1WISMWpEq+6ubm5jB49mvfff5+wsOq75nhVFOgdyBuD3yDUJxSAPw/9yavrXjU2VBlYrFb8gsONjiEiZ+CwO1g1ay8/Tt3gbir8gry4aFwHel/ZrMY0FWmJCfz08iTsNhsAO6Jz2NI0hyl9p1A74NQLXoiIlJcq8co7duxYLrzwQoYM0TjRyig6KJpXB7yK1eS6SvFZ/Gd8v+t7g1N5hhOn0RFE5AQ56YX8+NoG1s7ez9//RBu0DGPU491p1DbC0GwVKTcjne+nPElRnmsFvMTIAla2SeeuTnfRs15Pg9OJSE1U6cerzJgxg/Xr17NmzZpSPb6oqIgi9xh5yM4+eY8D8bxudbrx2HmP8fSKpwF4duWzNAxqSNc6XQ1OJiLVyd4NqSz4bBtF+a5P6E1mEz0ubkynYY0wm6vv3hQnKsrP54cpT5OdmgLA0eAiFnVKpVeD3vy3/X8NTiciNVWlvmKRkJDA+PHj+eKLL/D19S3VcyZPnkxISIj7KzpaK/pUlCubX8noVqMBsDlsTFg0gcScRINTnb2a89ZEpOqwFdtZ/NUOfntvi7upCAr35bL7O9Pl/Jga1VTYiov56eVJpOzfA0Cun4353VKoFVKbyX0nYzZV6l/tIlKNVepXn3Xr1pGSkkLnzp2xWq1YrVYWL17MtGnTsFqt2P+xTOjfJk6cSFZWlvsrISHBgOQ11wNdH6BnXdcl+IyiDO5ecDd5JXlneFYl888deTUSSsRw6cl5fPvCWrYuTnLXmnaOZNTj3ajbNMTAZBXP4bAz+42XSYjbDEChl5253Y5Q4mfm5f4vE+areYgiYpxKPRRq8ODBbNmy5bjaTTfdRMuWLXn44YexWCwnPcfHxwcfH+0uahSr2cpL/V/iutnXsT97P7szd/Pg4geZNmhalVkpSkQqB6fTybY/k1k6cye2EgcAFi8zfa9uRus+9TCZas5VCnD9fcz/8B12rV4OgM3iZF63FLICbTzS9RE6RHYwOKGI1HSV+p1eUFAQbdu2Pa4WEBBARETESXWpPEJ8Qnhj0BuMnj2a7OJsliYt5aU1LzGxx0Sjo5WKSYOhRAxXVGBj0Rfb2b02xV0LrxfAsFvaEFE/0MBkxln+zRdsnvc7AA4zLOicwtHQYobHDOc/Lf9jcDoRkUo+FEqqrpiQGF4b8Jp7pagvt3/JF9u+MDjV2XM6NRZKpKId3pfF18+tPq6paNO3Hlc+0rXGNhXrf/uZld/NcN9e2j6VQ5GFxIbG8kyvZ2rc1RsRqZwq9RWLU1m0aJHREaSUutftzhM9n+CJ5U8A8OKaF4kOiqZfg34GJxORysjpcLJh7kFW/bQXh8PV1Pv4WxkwuiWxXaIMTmec7X8uZuGn/3PfXtU6nX318gnyCmLqwKn4e9WM3cVFpPLTFQspV5c1u4xb290KgMPp4MHFD7IjfYfBqc5AH/yJVLi8rCJ+fmMjK37Y424q6jQJ4erHutXopmL/pvX89tZr8NfV082xWWyLyQFgct/JNApuZGQ8EZHjqLGQcnd3p7sZ2mgoAPm2fMbOH0tqfqrBqUpJI6FEyt3BuDRmTlpNwrYMV8EEXUY04rL7OxEc4WdsOAMd2rmNWa88j8PuWl53X0wR65tlAnBXh7voH93fwHQiIidTYyHlzmwy83yf52lXqx0AR/KPMG7BOPJL8g1OJiJGstscLP9uNz+/sYmCnBIA/EO8uWR8R867pClmS839FXVk3x6+n/wUJUWFAKRHW1jS6jCYoH+D/tze4XaDE4qInKzmvmpLhfK1+jJt0DTqBdQDID4tnkeXPYrD6TA42ck0CVKk/GWlFvD9S+vYMPegu9aobQTXPN6dBi3DDUxmvLTEBL577v8oynftAVTcIJBfW+/FaYKGQQ15vu/z2gRPRColvTJJhanlV4s3B79JgFcAAPMPzmfquqnGhjoDJ5Wv8RGp6nauOczM51aTcsA1V8BsMdH7ylguvKs9fkHeBqczVuaRw3w76TEKcrIB8Iquxdet47FbwM/qx9SBUwn2DjY4pYjIqamxkArVLKwZr/R/BYvJtbnhx3Ef8+3Obw1OJSIVoaTIzoLp25j7YTwlhXYAQiL9uOKhLnQc0hCTuWZfLcxJO8q3kx4jNyMdgMAGdfm81WZsVtdkr2d6P0OzsGZGRhQROS01FlLhetfvzcTuxzbLe27lc6w4tMLARCJS3o4m5vDN5DVsW57srjXvUZurH+tGVCN9Ap+flck3kx4nK+UIACH16vFdx90UWF1zT25scyPnx5xvZEQRkTNSYyGGGNVyFNe3vh4Am9PG/YvuZ1fGLoNT/UVzLEQ8xul0snlhIt9OWUfGYdeCDVYfC4NvbMXQm9rg7VvltlPyuMLcXL597v/IOJQIQHDtOizpmUWy4ygAPer0YHzn8UZGFBEpFTUWYpj7u9zPgOgBAOSU5HDX/LtIyU85/ZMqmpabFTlnhXkl/PbuFpbO3Ind5pqvVCs6kFGPdqPleXUNTlc5FBfk8/2UJ0k9sA+AwPBa7BsezIaCeADqBdTjxf4vYjWrARORyk+NhRjGYrbwQt8XaBPRBoDDeYe5a95d5BbnGpxMRMrq0K5MZk5azb5NR9219oMacOVDXQmtrZ2iAYoLC/h+ylMk73JtGuofEoplVGd+PjoXcE3WnjZoGuG+NXuVLBGpOtRYiKH8vfx5c/Cb1A+sD8COjB1MWDSBEkeJwclE5Fw4HE5W/7KPH19dT25GEQC+AV5ceFd7+l7dHIuXfu3AX03F5KdI2u66MuEbEEjjWy9l2oEP3I95vs/ztAhvYVREEZGzpld4MVwtv1q8M+QdQnxCAFiRvIKnlj+F02nMOCQT/5xjobFQIqWVm1HIT69tYM0v+/j7n2/95qGMerw7Me1rGRuuEikpLOSHF54maXscAD4BAfS8906e3v0Kzr9ec+7qcBdDGg0xMqaIyFlTYyGVQuOQxrwx6A28za417GftmcXbm942OJWIlNa+TanMmLSaQ7syAdcaCD0ubszF93YiMMzH2HCVSElRIT+8+AyJ8VsBV1Mx4qGJPLHnJXJLXMNAhzYaqp21RaRKUmMhlUanqE5M7jvZfcXg3U3v8v2u7ys+iBaFEik1W4mdJTN3MvudLRTl2QAIDPPh0vs70/WCxphr+N4U/1RSVMiPLz5DQtxmAHz8A7h04lO8mPAOB7IPANA8rDmTek/SztoiUiXplUsqlWExw3ig6wPu28+seIaliUsNy2PQaCyRKiHjcB7fvrCOLQsT3bUmHSMZ9Xh36sWGGhesEiopLuLHlyZxcKurqfD28+eKR5/hq8xfWH5oOQBhPmFMGzQNfy9NbheRqkmNhVQ6N7S5getaXQeA3Wnn/sX3E58WX3EB9AGryGk5nU62LT/E18+vIS3RNXzHYjXT/9rmnH97W3wDvAxOWLmUFBfx00uTOLhlIwDefn5c8egzrDZtZ3r8dACsJiuvDnjVvZCFiEhVpMZCKqUHuz3I0EZDASiwFTB2/liScpMq5NyavC3y74oLbMz9KJ4F07djK3btTRFWx58rH+lK2/4NMGmDyeOUFBXy00uTOLB5AwBevq6m4nBIPk+veNr9uIk9JtK1TlejYoqIeIQaC6mUzCYzz/d5no6RHQE4WnCUu+bdRVZRVsUGUV8h4nZkfzYzn1/DrjVH3LXWvety1cRu1GoQaGCyysm1+d1TxzcVE5/GXieQexfe615We1SLUVzd4mojo4qIeIQaC6m0fK2+vDHoDWKCYwDYm7WXuxfcTYGtwNhgIjWM0+Fkw5yDfP/iOrJTXf/+vH0tDLu1DQOvb4WXj8XghJVPUX4e3z7/hHv1p7/nVAQ1acDYBWPJKMoA4Ly65/Fw94eNjCoi4jFqLKRSC/UN5e0hb7t3nt2QsoEHFz+IzWErv5NqKIeIW352Mb+8tYnl3+/G4XBdwqvdOJhRj3enWdfaBqernApyc/jm2cdI3rkdcG1+d9X/PUdUs1gmLJrAvqx9ADQJacIrA17By6w5KSJSPaixkEovOiiad4a8Q4BXAACLExfz9IqnK2QDPafGQkkNlrAtnZmTVnMwLt1d6zy8IZc90JngWn4GJqu88rMy+ebpiRzZuxsAv6BgrnrieWo3ieW5lc+xKnkV4FoB6s3BbxLsHWxkXBERj1JjIVVC64jWvD7wdfcnez/u/pGp66caG0qkmrLbHaz4YQ+zpm0kP7sYAL9gby6+pyM9L4vFYtGvjlPJTU9j5tMTST24H4CA0DBGPTWFqJgmTI+fzne7vgPAy+zF64NeJzoo2sC0IiKep98OUmX0qNuDKX2nuFdt+mjrR0yPm+7x82gklNRk2UcL+OHl9az/44B78YLo1uFc83h3oluHGxuuEss+msLMpx8hPSkBgMCIWox6agoRDRqy4OACXln7ivuxz/Z+lk5RnYyKKiJSbtRYSJUyLGYYj/V4zH37pbUv8fOen8vvhNohT2qQ3etSmPncGo7sywbAbDbR8/KmjBzXAf9gb4PTVV5pSQnMeOJhMg8nAxASVZtrnppCWN36xKfF88jSR9zDKu/scCcXNrnQyLgiIuXGanQAkbM1quUo0grTeGfTOwA88ecThPqE0rdBX4OTiVRNJcV2ln29i/hlh9y14Fq+DLulLbUbaw7A6RzZu5vvnn+CghxXMxZWtx5XPv4cwbUiOZJ3hLvnH1vJbkTjEdzZ4U4j44qIlCtdsZAq6c4OdzKqxSgAbE4b9y++n82pmz10dI2FkpojLSmXbyavPa6paNatNqMe666m4gwS4jbz9TMT3U1FZEwTRj31AsG1IskryWPcgnGkFKQA0DGyI8/2flYbCIpItabGQqokk8nExO4Tj9ud+675d7E3c68nDu7+owZCSXXldDrZujiRb6asJSM5DwCrt5lBN7Rk6M2t8fbTBe3T2b1mJd9NfpLiAtfViPot2zDqyckEhIZR4ihhwqIJbE93LTdbP7A+UwdOxcfiY2RkEZFyp98cUmVZzBam9J1CdlE2qw6vIqsoi9vn3c5nIz6jTkAdz5xEnYVUQ4V5JSz8fDt7N6S6axH1Axl+WxvC6gQYmKxqiFs8nz/efR2nwwFAk87duOi+R/Dy9sHpdPL08qdZfmg5AMHewbw95G0i/CKMjCwiUiF0xUKqNG+LN1MHTqVVeCsADucd5rY5t3G04KjByUQqp+Tdmcx8bvVxTUW7AQ248pEuaipKYd2vP/L726+5m4pWfQdy8f2P4eXtuhrx9qa3+WnPTwB4m715Y9AbNAlpYlheEZGKpMZCqrxA70DeHvI2jYIbAbA/ez+3z72drKKsczqeRkBLdeRwOFk7ex8/vLqB3PQiAHwCrIy4ox39rmmO1cticMLKzel0svSrT1k0/QN3rdP5Ixlx131YrK6L/9/t/I53N70LgAkTU/pNoXPtzobkFRExghoLqRZq+dXi/aHvu4dA7czYyV3z7iKvJK+MR9ZYKKn68jKLmPX6BlbN2ofT4fp/um5sCKMe606TjpEGp6v87LYSfn/rVVb/+I271uuq0Qy88b+YzK5fo0sSl/Dsymfd9z/U7SH3HDARkZpCjYVUG3UD6/LBsA+I8HWNZd58dDP3LLiHInuRwclEjLN/y1FmTFpN0o5MwLU2QbcLY7j0vk4EhfsaG64KKMrP5/spTxO/dKGrYDIx6OY76Hnlte4VnuKOxvHA4gewO+0AXN/6eq5rfZ1RkUVEDKPGQqqVRsGNeG/oewR7u5bJXH14Nfcvup8SR0mpj6HlIKU6sJc4WPb1Ln59azOFua7//wNCfbjkvk50H9kEs0Uv/2eSm57GzKce5uCWjQBYvby5eMJEOg2/yP2YhJwE7pp/l3uvimGNhvFA1weMiCsiYjj9ZpFqp0V4C94Z8g7+Vn8AFicu5rGlj2F32M/+YNp5W6qgzCP5fPfSOjYtSHDXYtrX4prHu1O/eZiByaqOtMSDfPl/D5B6YB8AvoFBXPl/z9Gsey/3Y9IL07lr3l2kF6YD0DmqM8/3fR6zSb9aRaRm0qufVEvtI9vz5uA33evG/7b/N55d+SzO0jQKumAhVdiOlcl8/fwaUg/mAGC2mug7qhkX3NkO30Avg9NVDYnbtvLVEw+Sc9S1clZwZG2uffYl6rdo5X5MXkked827i/3Z+wFoHNKYaYOmaa8KEanRtI+FVFvd6nTj1QGvMn7BeGxOG9/t+g5/L38e7PpgqYc76XqFVBXFhTaWfLWTHasOu2uhtf0ZdmsbIqODDExWtexYsYzf3noFe4lr+FhU46Zc/shTBIQeu9JTbC9m/ILxxKXFuR7jF8U7Q94hxCfEkMwiIpWFGgup1vo16MfkfpN5eMnDOJwOPov/DH+rP+M6jTM6mojHpB7M4Y8PtpKVUuCutexVl36jmuPlo2VkS8PpdLL6x29YNmO6uxbToTMj73sEbz9/d83usPPI0kdYdXgV4NoA772h71E/sH6FZxYRqWzUWEi1d37M+RSUFPDE8icAeG/ze1jNVu7ocIfByUTKxul0snlBIsu/343D7rq+5uVrYcDoFjTv5qHd52sAW0kJ895/k7jF8921NgOGMPS2ce49KsD19/3symeZe2AuAH5WP94a/BaxYbEVnllEpDJSYyE1wmXNLiPfls+U1VMAeGvjW1jNVm5td+vJD9aqUFIFFOQUM//TbRzYmuauRTUKYtitbQiJ9D/NM+Wf8rOzmPXK8yRtj3PX+lxzA90vveqkIZNvbHiD73Z9B4DVZOXVAa/SMapjRcYVEanU1FhIjTG61WhsDhsvr30ZgNfXv47FZOGmtjf9+5O0KpRUQok7Mpj7URz5WcXuWsehDTnvkiZYrFqTo7TSkhL48YVnyDySDLiWkx0xbgLNz+tz0mOnx03n/S3vA65dtZ/r8xx96p/8OBGRmkyNhdQoY9qMwe6089q61wB4dd2rWEwWbmhzg8HJRM7MYXew+pd9rPv9gHtlAb8gLwbf2JpGbSKMDVfFHNi8kZ9fm0xRfh4AAaFhXPrg/1EntvlJj521ZxYvrX3JfXtij4lc0OSCCssqIlJVqLGQGufmtjdjd9iZtmEaAC+tfQmL2cLoVqMBbZAnlVN2WgFzP4zn8N4sd61ByzCG3NSagBAtcXo2Ns/7nXkfvo3T4QAgslFjLn3oCYJrRZ702AUHF/DEn0+4b9/V4S6ubXlthWUVEalK1FhIjXRb+9uwOW28vfFtAKasnoLFZOGaltcc97hS7XshUs72bEhh4WfbKcq3AWAym+hxcWM6D2uEyaxGuLTsNhuLP/uQDb//7K416dKdC+95EG9fv5Me/2fSnzyw+AHsTtfmmte2vFaLPoiInIYaC6mx7uxwJ3aHnfc2vwfAc6uew2K2EI2GlEjlYCu2s+zb3cQtSXLXgiJ8GXZLG+o00Z4JZyM/O4ufX5tMYvxWd63LRZfRb/SNmM0nL8m75vAaxi8cT4nDtZ/FRU0u4pHuj+iKpojIaaixkBptbMex2J12PtjyAQDPrHiG+2y3G5xKBNIO5TLngzjSD+W5a007RzHwuhb4+GsH7bNxZO9ufnrlOfdO2harlcG33EW7QcNO+fiNKRsZO38sRfYiAIY2GsqzvZ/FbNLEeBGR01FjITWayWTink73YHfY+TjuY8A1prqTwbmk5nI6ncQvO8Syr3dhK3HNAbB6melzdTNa96mnT8zP0rZli5jz7jRsJa4VtALCwrl4wqPUa97ylI+PT4vnrnl3UWBzbTbYr0E/Xuj7Alazfl2KiJyJXimlxjOZTNzX5T4cTgefxn96/J2aYyEVqCi/hIWf72DP+hR3LbxeAMNvbUt4vQADk1U9DrudpV99ytqfv3fX6jZrwcUTHiUw/NTDHXdl7OL2ubeTU5IDQI+6PXh1wKt4WXSFSESkNNRYiOBqLu7vej/eFm9W713krifnHTYulNQoh/dmMefDOHLSCt21tv3q0/vKWKzeJ88BkH9XkJvDr6+/yIHNG9y1tgOHMfiWO7F6nbpJ2J+1n9vm3EZmUSYAnaM6M23gNHwsWnFLRKS01FiI/MVkMnF3p7t5c3UBxduXApCUm8i7m97VSjBSbpwOJ+vnHGDVrH04Ha4rZD7+VgZe35KmnaIMTlf1HNm7m59fm0xWyhEAzBYLA2+8nQ5DR/zrMLKE7ARunXMraYWuXczbRLThrcFv4e+lHcxFRM6GGguRfzCZTPSo24OlLHXX3tr4FiWOEsZ1HKfx7eJReVlFzPs4nsTtGe5a3aYhDLm5NcERJy9/Kv/O6XSyed7vLPzkPew217K8fsEhXHzfRBq0bvuvzzuYfZCb/7iZI/muRqR5WHPeG/oegd6BFZJbRKQ6UWMhUgr/2/w/Suwl3NflPjUX4hEH4tKY/0k8BTmu5UwxQdcRMXS7MAazRasPnY2SwkLmffAW8UsXumt1Y1tw0X2PnHLTu78dzD7ITX/cREq+a05L05Cm/G/o/wjx0VK+IiLnQo2FyIn+0TdEBzUE1gHwcdzHFNmLeLj7w1p2Us6Z3eZg5Y972DgvwV0LCPFmyM1taNAizMBkVVP6oUR+fnUyRxMOuGudRoyk/3U3Y7H++6TrA9kHuPmPm91NRWxoLB8M+4AIP+1jIyJyrtRYiJxGlH8kT/R8gmdWPAPAl9u/JLckl6d7Pa3lJ+WsZabkM/fDOFIO5LhrjdpFMPiGVvgFeRuYrGrasWIpf7w7jZJC19KwXr5+DLv9blr26nfa5x3IPsDNv99MSoGaChERT9I7I5ETnTDS6armV+Ft9uaJ5U/gcDqYtWcWOcU5vNT/Ja0YI6W2c/VhFn25g5JCOwBmi4lel8fSflADDa87S3ZbCYs//4gNv/3srkU0aMjICROJqB992ufuz9rPLX/cclxT8eHwDwn3DS/XzCIiNYEaC5ETmP7ZWfy1jcUlsZcQ4BXAQ0seosRRwsKEhYydN5bXB71OgJf2F5B/V1xoY+nMnWxfcWzp4pAoP4bf2pbIhkEGJquaMg4f4tfXX+LI3l3uWqs+Axh62zi8fH1P+9wTm4pmYc34YNgHaipERDxEA8VFSmlIoyG8Nfgt/Kyu1XpWHV7FrX/cSmZhprHBpNJKTcjhm8lrj2sqWvSow9WPdlNTcQ62LV3I54+MdzcVFquVIbfexYhx95+xqdiVscs1UVtNhYhIuVFjIXIWetbryQfDPiDYOxiArWlbufH3GzmSd8TgZFKZOJ1ONi9M4NsX1pJ5JB8Aq4+FITe2YshNrfH21cXis1FcWMDvb7/G7DdfobjANZ8itE5drn32ZToMveCMQ8nijsZx0x83cbTgKOBaUvbDYRr+JCLiaWosRE5wpjcp7SPb88n5nxDp51rGck/WHsb8PoaD2QcrIp5UcoW5Jcx+ZwtLZ+7CYXONpYtsGMSoR7vR4ry6Bqereo7s28Pnj9xL3OL57lrrvgO5fsrr1G4Se8bnrzuyjlvm3EJWURYAbSPa8tHwjwjz1QpcIiKepsZC5HSczlOWm4U149MRn1I/sD4ASblJ3PDbDWxL21aR6aSSSdqZwYxJq9m/+ai71mFQNFc82IXQ2trF+Ww4nU7Wz/6Jrx6/n4zkJMC16tOIsRMYMe5+vP3O/Pe5PGk5d8y9g7ySPAC61O7C+8Pe1z4VIiLlRI2FyDmKDopm+ojpxIa6PjVNK0zjxt9vZPmh5QYnk4rmsDtY/fNefnptA3mZRQD4Bnpx4dj29Lm6GRYvvdSejfysTH588RkWfvq+exft2k1iuX7KVFr3G1SqY8w/OJ9xC8ZRaC8EoHe93rwz5B3tqC0iUo70207kJKVf+jPKP4pPzv+EDpEdAMi35TN23lhm7ZlVXuGkkslJL+TH1zaw5tf97gtc9VuEcs3j3YlpV8vYcFXQ7rWr+OSBsexdv8Zd63LhpVz77EuE1a1fqmP8svcX7l90PyUO167mQxoOYdqgae6FF0REpHxoBqHIiY5bbfbUQ6H+KcQnhA+GfcDDSx5mQcICbE4bjy17jCN5R7i13a3ao6Aa27sxlQWfbaMoz/WpuslsovtFjel8fiPMZv3cz0ZxQT6Lpn/AlgVz3DW/4BDOv+temnTqVurjzNg+g+dXPe/+tzuyyUie6f2MNrQUEakAeqUV8QBfqy+vDniVyasnM3PHTACmbZjG4bzDPNrjUSxmi8EJxZNsJXaWf7eHLYsS3bXAcB+G3dKWuk01fv9sJW2P57e3XiEr5djqak279mDYf+/GPyS0VMdwOp28seEN3t/yvrs2qsUoHu3xKGaTLs6LiFQENRYiJzm3T5otZguP9XiMugF1mbp+KgBf7/yalIIUXuz3ooZhVBPpyXnM+SCOtKRcd61pp0gGXNcS3wAvA5NVPXZbCcu//oI1s77H6XQArgnaA8fcRtuBQ0t9tc/msPHsymf5ftf37tqt7W7lnk736IqhiEgFUmMhcqJ/vg/5l1Wh/vWpJhO3tLuFKP8onlj+BDaHjUUJi7h1zq28MegNrZtfhTmdTrYtT2bpzJ3Yil1vgi1eZvpc1Yw2fevpDexZOppwgNlvvkLq/r3uWr0WrRkxdgKhteuU+jgFtgIeWvIQixIWAWDCxMPdH2Z0q9EeTiwiImeixkKkHIxsOpJafrW4b9F95JXksTl1M//59T+8NfgtmoY2NTqenKWiAhuLv9jOrrUp7lpY3QCG39qGiPpaZehs2G021v78PSu+/dK94pPZYqXX1aPpdvHlmM9i2GBWURbj5o9jY+pGAKxmK5P7Tub8mPPLI7qIiJyBGguRE3jqg+ee9Xry6fmfcte8u0gpSCEpN4nrZl/Hy/1fpnf93p45iZS7I/uymfPhVrKPFrprrfvWo89VzfDy1tyZs5F6YB+/vzOVlH173LWIBg254O4HiIppclbHOpx3mDvm3sGeLNexArwCeH3g6/So28OjmUVEpPTUWIicxlmOhDpJi/AWfHHhF9yz4B62pW8jtySXsfPH8nD3h7m25bWeCSnlwulwsmHeQVb9uBeHw/U/greflYHXtSS2S5TB6aoWu62EVT98zaofvsZhtwNgMpnpOvIyel01Gqu391kdLy4tjrvn301qQSoAEb4RvDPkHVpFtPJ4dhERKT01FiLlrE5AHT45/xMmLp3IgoQF2J12nl/1PPuy9vFQt4e0DGYllJ9dzPxP4jkYn+6u1W4czLBb2hBcS5Pwz8aRvbv5452ppB7c765FNGjI+XfeS53Y5md9vIUHF/Lw0ocpsBUA0DCoIe8OfZfooGhPRRYRkXNUqdfgmzx5Mt26dSMoKIioqCguvfRSduzYYXQskbPm7+XPawNf4+a2N7trX23/inHzx5FTnGNgMjlRQnw6MyatPtZUmKDz+Y247IHOairOgq2khGUzpvPFYxPcTYXJbOa8y0dx3ZTXz7qpcDqdfB7/OeMXjnc3FZ2iOvH5BZ+rqRARqSQq9UelixcvZuzYsXTr1g2bzcajjz7KsGHDiI+PJyAgwOh4Uk2ZznG52TMxm8zc1+U+Goc05ukVT2Nz2Pjz0J9cN/s6pg2aRqPgRuVyXikdu93B6ll7Wf/HQXfNP9ibITe1JrqVVvM6G4nbtjL3/bdIT0pw1yIbNWb4nfdSu/HZL15gc9h4cc2LfLX9K3dtROMRPNv7WXwsPh7JLCIiZVepG4vff//9uNuffPIJUVFRrFu3jn79+hmUSmqWMk6yOIVLYy+lQWAD7l10L1lFWezN2su1v1zLlH5T6NdA/18bIftoAXM+jOPIvmx3rWGbcAaPaY1/8NmN/6/JCnJzWPrFx8ftnm22WDnv8lF0v/RKLNaz3+cjrySPh5Y8xJLEJe7a7e1vZ2zHsVriV0SkkqnUjcWJsrKyAAgP16eHUo4q4M1K1zpd+eqCr7hn4T3sztxNTkkO4+aPY2zHsdzW/jbtFFyBdq09wqLPt1Nc6JpUbLaYOO/SpnQcHI3JrDeupeF0Otm+bBELp39AQXaWu14ntjnD/ns3kY0an9NxE7ITuHvB3e6Vn6xmK0/1fIpLYi/xSG4REfGsKtNYOBwO7r33Xnr37k3btm3/9XFFRUUUFRW5b2dnZ//rY0WMFB0czecXfM7//fl/zD0wFydO3tz4JtvSt/Fcn+cI8NJwv/JUUmxn2cydxP+Z7K4FR/ox/NY2RDUKNjBZ1ZJ5OJl5H77Ngc0b3DVvPz/6XDuGDkNHnNW+FP+0/NByHlz8INnFrtfwIO8gpg6YSve63T2SW0REPK/KNBZjx45l69atLFu27LSPmzx5Mk8//XQFpZLqrqzLzZ5JgFcAr/R/hQ+2fMAbG97AiZP5B+ez79d9TB04lcYh5/ZJr5ze0cRc5nywlYzD+e5as261GfCfFnj7VZmXRUPZbSWs/fkHVn43A1tJsbverEcvBt74X4LCa53TcZ1OJ5/Ff8Yr617B4XTtcN4kpInmIYmIVAFV4jfouHHj+OWXX1iyZAkNGjQ47WMnTpzIhAkT3Lezs7OJjtaKIVJ5mUwmbmt/Gy3DW/Lw0ofJKc5hb9Ze/vPrf3iuz3MMajjI6IjVhtPpZOviJP78djd2m+tNq9XbTL9rWtCyZx2N2S+lhLjNzP/oXdISj010D4qIZPAtd9C0y7lvUFdkL+KZFc8wa88sd21AgwFM7juZQG/tcC4iUtlV6sbC6XRy991388MPP7Bo0SIaNz7zp7c+Pj74+GiVEDl3Rr257NugLzMunMH4hePZnbmb3JJcxi8czw2tb+DeLvfiZT77ia9yTGFeCQs/287ejanuWq3oQIbd0oawOhp2Vho5aUdZ/PlH7Fh+bCK1yWSm8wUj6XX1dXj7nvtyvEfyjjBh0QQ2H93srv23/X8Z23Gs5hyJiFQRlbqxGDt2LF9++SU//fQTQUFBHD58GICQkBD8/LSevFSEch4LdYKGwQ354oIv+L8//485B1wr60yPn87G1I283O9l6gbWrdA81cWh3ZnM/TCO3Ixj86/aD2xAz8ubYvU6tzkANYndVsK6X39i5XczKCkqdNdrN2nG0NvGUrtJbJmOvzJ5JQ8veZj0QtfeIX5WP57t/SzDY4aX6bgiIlKxKnVj8c477wAwYMCA4+off/wxN954Y8UHEqkA/l7+vNz/Zb7c/iUvr30Zm8PG5tTNXPnzlTzf53n6R/c3OmKV4XA4Wffbftb8ss89X8YnwMrgG1rRuEOkseGqiP0b17Hgk/+RkZzkrvkGBdP32jG0GzgUk/ncryY4nA7e3/w+b2962z2fol5APV4f9Dotw1uWObuIiFSsSt1YOMt75qzIKRk/zt5kMjG61Wg6RHbggcUPkJSbRHZxNuMWjOOmNjdxd+e7NTTqDHIzipj3cRxJOzPdtXrNQhl6c2sCw3yNC1ZFZKUcYdH099m9ZqW7ZjKZaT90BL1HXYdfYFCZjp9ZmMnEZRNZlnRsQY4+9fswuc9kQn1Dy3RsERExRqVuLEQMcVxfYWxz27ZWW2ZeNJMn/nyCBQkLAPg47mPWp6xnSt8pNAg6/WIGNdX+zUeZ/+k2CvNKANfWJN0uakyXETGYtTfFaZUUFrJ61nesnfXdcas91WveikE333FOO2efaHPqZh5Y/ADJea6lfk2YtIeLiEg1oMZC5DQqw0WzEJ8Qpg6cyufbPufVta9ic9rYlLqJK3++ksd6PMbIpiONjlhp2EscLP9hN5sXJLprgWE+DL25NfWahRmYrPJzOhzELVnAshnTyctId9f9Q0LpN/omWvcbVOaFDZxOJ19s+4JX1r2CzWEDINw3nCl9p9CzXs8yHVtERIynxkLkBJVxxVGTycT1ra+nfWR7Hl7yMEm5SeSV5PHoskdZlrSMx857jGDvmr2pW+aRfP74YCtHE3LdtcYdajHo+lb4BmrY2OkkxG1m0fQPSdm/x10zWyx0HH4Rva76Dz7+ZV81K60gjcf/fPy4oU+dojrxUr+XqB1Qu8zHFxER46mxEKlCOkR24NuR3/L8quf5ee/PAMzeN5uNKRuZ3HcynWt3NjihMbavTGbxVzuxFdkBsFjN9L4ylrb962tvitPISE5iyRcfHzePAqBp1x70G30z4fXqe+Q8y5KW8fiyx0krTHPXxrQew/gu4zVXSESkGlFjIXKCSjTF4pQCvQN5vu/z9Knfh0krJ5FTksOhvEPc9MdN3NTmJu7qeBfeFm+jY1aI4kIbi7/awc5VR9y1sDr+DLu1DbUalG1ycXVWmJvLyu+/YsPvv+Kw29z1yJgmDLj+Fhq27eCR8xTbi5m6fiqfxX/mrkX4RvBcn+foXb+3R84hIiKVhxoLkRNVkU+4L2hyAR2jOjJx6UTWp6zH4XTw4dYPWZSwiEl9JtG2VlujI5arlAPZzPkgjqzUAnetVe+69L26OV4+2pviVGzFxWyc8yurfviawtwcdz0gNIw+19xA6/6DMJs983e3K2MXjy57lO3p2921vvX78mzvZ4nwi/DIOUREpHJRYyFyWpXwksU/1Ausx0fDP+KjrR/x9qa3sTls7Mnaw+jZo6vt1Qunw8mmBQms+GEPDrvr5+Pla2Hg6JY066ax+qficNiJX7yA5d98SU7asZ3Hrd4+dB15Gd0uvqJMu2b/k81h45O4T3h749uUOFyrcnmbvZnQdQL/afkfDU0TEanG1FiIVHEWs4Xb2t9G/+j+PL7scbalb6u2Vy/ys4uZ/+k2DsYdG6sfFRPMsFvaEBLpmTfG1YnT6WTP2lUsmzGdtMSDx+4wmWjdZwC9r7mB4Fqe2yhwb+ZeHv/zcbYc3eKuxYbGMqXvFFqEt/DYeUREpHJSYyFykqr5iWrzsOZ8ceEXfLz1Y97Z9M5xVy9ubHMjd3a4E19r1d0YLmF7OvM+iic/+9jeCp2GNaTHxU2wWLX3wYkSt21l6ZefcmjntuPqjTt1pe+1Y4hs1Nhj57I77Hy+7XOmrZ9GscP18zGbzNzY5kbu6ngXPhYfj51LREQqLzUWIif6R1/hrORDoU7kZfbiv+3/y4DoAcddvfho60fM2T+Hx897vMpNmrXbHaz5eR/r/jjgHpnmF+TFkBtb07CNxuqfKPXAPpbNmM7e9WuOq9dt1oJ+/7mJBq09e/VqV8Yunl7xNJtSN7lrMcExTOoziQ6RnpkELiIiVYMaC5Fq6FRXLxJzE7lj3h2cH3M+D3V7iEh/zw2BKS/ZRwuY+1Ech/dmu2vRrcIYfGNrAkL0Kfg/pR9KZMW3X7F9+ZLjdnYMrx9Nn2tvILbreR6d31BoK+S9ze/xydZPsDldK0uZcO23cnenu6v01TERETk3aixEqqm/r14MaTiEZ1c+y9ojawH4ff/vLEtaxj2d7+Hq5ldj8dAqQJ62e10KCz/fTnGB602r2WyixyVN6DS0ISZz1RyuVh4yDh9i5bdfsW3ZYpxOh7seGFGL3leN9uhKT39bcWgFz658loScBHctJjiGp3o9RZfaXTx6LhERqTrUWIic4LhPdavWSKhTahLahI+Gf8SsPbN4ee3LZBZlkluSy/Ornuen3T/xSPdH6BjV0eiYbrZiO8u+2UXc0kPuWlCEL8NubUOdxiEGJqtcMo8cZuX3M4hfsgCn41hD4RcUTLdLrqTj8Avx8vbsVZ20gjReXvsyv+z9xV2zmq3c2u5Wbm13q+ZSiIjUcGosRE6rGnQWuJqlS2IvoX+D/ry67lV+2P0DAHFpcVz/2/Vc0PgC7utyH3UC6hiaM+1QLnM+iCP9UJ67Fts1igGjW+Ljp5crgOzUFFZ+P4O4xfNx2O3uum9gEF1HXk6n8y/y2NKxfyuxl/Dl9i95d9O75JbkuuudozrzZM8naRLaxKPnExGRqkm/qUVqkFDfUJ7p/QyXxF7CpJWT2J25G4DZ+2az4OACbm57Mze2vRE/a8Uu3ep0Oolbeohl3+zCXuL69N3qZabvNc1p1auu9j4Aso+msvrHr9myYO5xu2X7BATQ9cLL6DTiYnz8/T1+3qWJS3lxzYvsz97vrgV5B3F/l/u5rNllmE1akUtERFzUWIicwFRFl5s9G11qd+Gbkd/w7c5veXPjm2QVZVFoL+TtTW/z/e7vGd95PBc0vqBC3jQW5Zew8PPt7Fl/bOO2iPqBDLu1DeF1A8r9/JVdxuFDrP7xW+KXLDiuofD286fLhZfS5cJL8PH3/N/TgewDvLjmRZYkLnHXTJi4rNll3N3pbmr51fL4OUVEpGpTYyFSQ1nNVq5peQ0jGo/gnU3vMGP7DOxOO4fzDjNx6UQ+2foJ93S+h771+5bbFYPDe7OY80EcOemF7lq7/vXpdWUsVq/KOam8ohw9uJ9VP37DjuVLj5uU7e3nR+cLLqHLBZfiGxjo+fMWHOV/m//HNzu/weY41sh0jOzIIz0eoU1EG4+fU0REqgc1FiI1XIhPCI90f4Srm1/Ni2tf5M+kPwHYkbGDsfPH0qV2F+7tfK9HJ3g7HE7W/3GA1T/vw+lwzWPx8bcy6PpWNOlU+ZfBLU+Hd+9k5Q9fs2ftyuPqPv4BdBx+EV0uvAS/oGCPnze3OJdP4j5hevx0CmwF7nqUfxQTukzggsYXaEiaiIiclhoLkRPV0PdOTUKb8O6Qd1l+aDmvr3+d+LR4ANYdWcf1v13PgAYDuLPjnbSOaF2m8+RlFjHvk3gSt2e4a3VjQxh6cxuCwmvm3gdOp5PEbVtZ9cPXHNi84bj7/IKC6XLhpXQcfmG5DHkqshcxc/tM3t/yPplFmcfOa/VjTJsx3NTmJvy9PD93Q0REqh81FiIn+sensk5n9VgV6mz0qteLnnV7MvfAXN7Y8IZ70u6ixEUsSlxE3/p9ub3D7ee0q/L+LUeZ/+k2CnNLXAUTdL0ghm4XxGC21LxJwE6Hg70b1rJm1rckbY8/7r7AsHC6jryC9oOH4+Xr+Yar0FbId7u+46OtH5GSn+KuW81Wrmp+Ff9t/1/NoxARkbOixkJETmIymRgWM4xBDQfx0+6feHvT2+43n0uTlrI0aSnn1T2P29vfTtc6Xc94PLvNwYof97Bp3rEN1QJCvBl6cxvqtwgrt++jsrKVlLBt6ULW/vID6UkJx90XElWb7pdcRev+g7F6eXn83Pkl+Xy942s+ifuEtMK04+67oPEFjOs0juigaI+fV0REqj81FiInqaFjoU7BarZyRfMruKjpRfy460c+3PohyXnJAKxMXsnK5JV0jOzIDW1uYFD0oFPu4p2Zks+cD+JIPZjjrsW0i2DQmFb4BXpX2PdSGRTm5rJp7mw2/P4zeZkZx90XXj+aHpddTcte/TBbPD9xPbMwk693fs1n8Z8dN+QJYECDAYztNJaW4S09fl4REak51FiIyBn5WHwY1XIUlze7nJ/3/sz7m98nMTcRgI2pG9m4aCP1A+szutVoLou9jEBv12pFO1YdZvGXOygpcm3kZraa6HV5LO0HNqhRE4GzU1NYN/sntsz/g5KiwuPuq9+yDV1HXk7Tzt0wmT0/HGxf1j4+j/+cWXtmUWg/dm4TJoY0GsJ/2/9XDYWIiHiEGguRExz3frfmTbE4LS+LF5c3u5yLm17Mb/t+46OtH7k32UvKTeLFNS/y9sa3uSzmCprH9SNp3bFdmkOi/Bh+a1siGwYZFb/CHdm3h7U/f8+OFUtxOo4tGYvJRLPuPek28grqNmvh8fM6nU5WH17NZ/GfsThx8XH3mU1mzo85n/+2/y9NQ5t6/NwiIlJzqbEQOUHN+Rz93FnNVkY2HclFTS5iRfIKpsdPdy9T65MZQsnX9UkqPNZUNOsRxYBrW+LtW/1fchwOO3vWrmLDbz+TEL/luPus3j60GTCELhdeQlideh4/d0ZhBrP2zOLbnd8et1M2uFZ5urzZ5YxuOZroYM2hEBERz6v+v+VFykSXLE7HZDLRq14vetXrxa70XXz/w0L8tsRgcbpeWorNhSxt8g0z/HazacvFXBp7Kc3CmhmcunwU5uaydeEcNvzxK9mpR467zy8omI7DL6Lj8AvxDw7x6HmdTidrDq/h253fMu/gPEocJcfdXyegDqNbjuby5pcT7O35/S9ERET+psZCRMqsILeYnTMKCNwc665lBR9hdpP3yfJLhSKYHj+d6fHTaRHWgouaXMSIxiOoHVDbwNSekZaUwIbffiZuyXxsRUXH3RdWrwGdR1xMm/6D8PLx7JKxuzJ2MXvfbH7b9xtJuUkn3d+tTjeuan4VQxoNwcvs+dWlRERETqTGQuRE/9zHwsAYVUXSjgzmfhRHXlaxu9ZhSDTnXdKfoWmxfLvzW+YemOv+JH1Hxg52rNvBq+tepWudrgxuOJjBDQdTJ6COUd/CWXM6HOzftJ71v81i/6b1J93fuGMXOo24mJj2nTw6ITsxJ5E/9v/B7H2z2Zmx86T7w3zCuCT2Ei5vdjmNQxp77LwiIiKlocZC5HRq4AZ5peWwO1jz637W/rbf3YH5BXkxeExrGrWNAFyfmner041HCh9h9r7ZzN47m81HNwPgxDWEZ83hNUxZPYU2EW3cTUaT0CYGfVenV5SfR9ziBWz84xcyko+/SuDl40ubAYPpdP5Iwus18Mj5HE4HcUfjWJiwkIUJC90T5f/JYrLQo24PLou9jEENB+FtqVlL+IqISOWhxkJEzlpOeiFzP4ojeXeWu9agZRhDbmpNQIjPSY8P8w1jdKvRjG41mgPZB/h176/8uvdXDuYcdD8mLi2OuLQ4pm2YRoPABvSs15Oe9XrSvU53Qnw8Oy/hbB3Zu5tNc2ez7c/FJw13ComqTafzR9J24FB8/APKfK70wnRWH17NykMrWZK4hNSC1FM+rkNkBy5ofAHDYoZph2wREakU1FiIyFnZuyGVBZ9toyjfBoDJbKLHxY3pNKwRZvOZ19RqFNyIuzrexZ0d7mRX5i4WHFzAgoML2Ja+zf2YxNxEvtn5Dd/s/AazyUybiDZ0q9ONTlGd6BDZgTDf8t+tu6S4iB3Ll7Jp7mwO7z552FHDtu3pdP7FNOnSDfMpNgYsrczCTDYf3cyq5FWsSl7Fjowdp3ycCRPtItsxMHogw2OGa3dsERGpdNRYiJyoBm3cdjZsxXb+/G43WxcfGwIUFO7L0FvaULfp2V9RMJlMNA9rTvOw5tzR4Q6ScpNYcHABixIWsT5lPTaHq3FxOB1sObqFLUePLd0aExxDh8gOtI9s7z6Gv5d/mb9HgPRDSWyeN5u4RfMpzMs97j5vPz9a9R1Ex6EjqNUw5qyPnV+Sz57MPWw5uoXNRzezJXXLcVdtTuRj8eG8uucxMHog/aP768qEiIhUamosROSM0pPzmPPBVtKS8ty1pp0jGXhdS3z8PbPiUP3A+lzf+nqub309+SX5rDuyjuWHlrMyeeVJcwv2Z+9nf/Z+ftrzk7sWHRRNi7AWNA1tSsPghkQHRRMdFE2Eb8QZd/m222zsWbeKTXNmc3DrppPuj4xpQsehF9CyT3+8ff1Oeyyn00l6YTpJuUkk5iSyO3O3+ysxJxHnaZYEMGGiVUQretTtwXl1zqNT7U74WU9/PhERkcpCjYWI/Cun08m2P5NZOnMnthLXztEWLzN9r25G6z71zviG/Vz5e/nTt0Ff+jboC0BqfiqbUjexMWUjG1M3Ep8Wf9J+DQk5CSTkJDDv4Lzjj2X1p35QfSL9IqnlV4sIvwgi/SIJ8w3DmllM9todpKzZTFF2znHPM1utNO7RgxYDBxIU04AiexG7cvdSmFVIfkk+GUUZpBekk16UTkZhBmkFaSTnJZOUm0SBraBU36e32ZvWEa1pH9mejlEdK8V8EhERkXOlxkLkBOX1ZrmqKSqwseiL7exem+KuhdcLYNgtbYioH1ihWSL9IxnSaAhDGg0BoNheTHxaPNvSt7EjfQc7M3ayK2MXhfbCk56bb8tnV8YudmXsAsBqM9HosD/NEgKpk3Hy3hLZ/iXsaJjD7gZ5FHnvgfVfwskryp41P6sfTUOa0iysGS3CW9AxsiPNw5rjZdEeEyIiUj2osRA5DWcNXW728L4s5n4YR/bRY2/U2/StR++rmuHlfe4TlT3F2+JNx6iOdIzq6K7ZHXYSchI4kH2AgzkHSchJ4GDOQRJzEjmUc4jgDBPNEwJpnByAt+34vSUcJicHo/LZ0TCX5FqFcI69pZfZi/qB9Y99BdUnJjiGZqHNqB9UH7PJc3taiIiIVDZqLETEzelwsmHuQVb9tBeHw9VUeftZGXhdS2K7RBmc7vQsZgsxITHEhMS4awU52WxbupAty+dy9OD+k55jrhWIo20dilqEEOBVRDt7CW1x4nA6cDgdrsbSBH4WP3ysPvhYfPCz+uFn9SPUJ5Rw33DCfcMJ8w0jzDeMcN9wNQ8iIlJjqbEQOYHpXD+uruLysoqY/0k8Cdsy3LU6TYIZenMbgmtVnQnEdpuNA5s3ELdkAXvWrMBusx13v5ePLy169aPdoKHUbdZSQ99EREQ8RI2FyIlq4PvMg/FpzPs4noKcvyZEm6DL8EZ0G9kYi6XyfwLvdDpJ2beH+CUL2L58CflZmSc9pl7zVrQdNJQWPfuecWUnEREROXtqLERqMLvNwaqf9rJh7rG9FPyDvRlyc2uiW4YbmKx0ctKOsm3ZIuKXLCAt8eT9IPyCQ2jdbxDtBg4jooE2lBMRESlPaixETlRDrlhkpRYw58M4UvZnu2uN2kYweEwr/IK8DUx2esUF+exavYL4JQs4GLcZTphgb/HyommXHrTuN4iYDp2xWPUyJyIiUhH0G1fkdKrpqlC71hxh0RfbKS60A2C2mOh5WVM6DIrGZK58nZWtpIT9m9azY/kSdq9dia2o6KTH1G/Zmtb9BtH8vD74BlTscrgiIiKixkLkJNV5Lm9JkZ2lM3eybXmyuxYS6cewW9sQ1SjYwGQnc9jtHNy6ie3Ll7B79QqK8vNOekxonbq07juIVn0HElq7jgEpRURE5G9qLEROUj07i6OJOcz5II6Mw/nuWvMetel/bQu8fSvHS4HT4SBpezzbly9h56o/KcjOOukxvgGBtOjVl9b9BmlVJxERkUqkcrybEKm0qv5QKKfTyZZFSSz/bjd2mwMAq4+F/tc2p+V5dQ1O52omDu/ZxY4VS9ixYhm56WknPcbbz4/YrufRonc/GrXriMWq3apFREQqGzUWItVYYV4JC6ZvY9+mo+5arehAht/altDa/oblctjtJG2PY9fqFexavfyUzYTVy5smXbrTslc/Yjp1wcvbx4CkIiIiUlpqLERO8M+hNVX5esWhXZnM/SiO3IxjE53bD2pAr8tisXhV/N4UtpISDm7dyK5VK9izdiUFOdknPcZssRLTsTMte/WjaZfuePsZ1/yIiIjI2VFjIXI6VbCzcDicrJ29n7W/7nMvauUb4MXgMa2IaV+rQrOUFBayb9M6dq1azt71ayguyD/pMRarlUbtOxHbvSex3XriFxhUoRlFRETEM9RYiFQjuRmFzP0onkO7Mt21es1CGXpzGwLDKmYoUfbRVPZtWMPe9Ws4uGUTtpLikx5j9fGhSceuxPboRZNOXfHxD6iQbCIiIlJ+1FiIVBP7NqUyf/o2ivJsgGvZ3G4XNabLiBjM5bg3hdPhIHn3TvauX8Pe9atJPbDvlI/zCQigaefuNOvRm0YdOmnOhIiISDWjxkLkBMcvX1r5x0LZSuws/34PWxYmumuBYT4MvaUN9WJDy+WcBbk5HNyyiX0b1rJ3w5pTLgvryhFOky7dada9F9Ft2mk1JxERkWpMjYVIFZZxOI85H8ZxNCHXXWvcoRaDbmiFb4Dn3sTbbTaSd23nwOYN7N+8gcN7dv3rruR1mjajSefuNOncjajGTbXPhIiISA2hxkKkCnI6nWxfcZglM3diK7IDYLGa6X1lLG371y/zm3mn00nm4UPs37yBA5s3kBC3meKCglM+1svHl0btO9KkS3eadOpGQGhYmc4tIiIiVZMaC5ETVfJP2IsLbCz6cge71hxx18Lq+DPs1rbUahB4Tsd0Op1kHkkmMX4rifFbSNi2lZyjqf/6+FoNY2jUvhMx7TrSoHU7rN7e53ReERERqT7UWIichvNfhvsYJeVANn98EEd26rGrB61716XP1c3x8rGU+jhOp5P0Q4muRmKbq5nIzUj/18f7BYcQ074Tjdp3olG7jgSGR5Tp+xAREZHqR42FSBXgdDjZOD+BlT/uwWF3NTvevhYGXNeSZl1rn/H5xQX5HN6zi+RdO0jevYPkXTvIz8r818dbvX2o17yl66pEh85ENozBZK74TfVERESk6lBjIXKCyjYQKj+7mPmfxnMw7tgVhdqNgxl2SxuCa/md9Hi7rYS0xASO7NvtaiR27SAt4SBOp+Nfz+Hl40u9Fq2Ibt2OBq3aUie2mVZwEhERkbOixkLkRJWos0jYls68j+PJzz62yVzn4Q3pfnETLBYzRfl5pO7fR8qBvaTs20vKgb2kJRzEYbed9ri+AYHUbd6SBq3aEt26HVGNm2Kx6uVAREREzp3eSYhUQna7g9Wz9rF+zgGcDic48/DyyaZ5V28KMnfxw5RPSU9KJCft3ydY/81kNhPZsDF1m7Vwf4XVqaehTSIiIuJRaixETlKxlyycDgcFuTnkHE0l+2gKKfuTiFuynbzMozgd2TjtWUAxRcD62ac/lslkJrx+A6JimhAZ04S6sc2p3TgWL1/fivhWREREpAZTYyFyGjlH9zDvg7fwDQzGNzAQn4AArN4+WK1eWLy8sFi9sHi5/hk5HQ4cDgfOv75sthJKCgooLiiguPDv/+ZTkJ1NfnYWBVmZ5GVlUpCTjdPx7/Mf/o1PQADh9aOJatSEqMZNiGrUhIiGjfDy9vH0X4OIiIjIGamxEDmBxevYpOXi/DQ2zf3NsCwms5ngWpGE12tAeP0GhNeLdv/ZLzhEu1qLiIhIpaHGQuQEQRFRmL2a4ijZU67nsVit+IeE4e0XRG6GCVuJHyZzMCZzMNGtG9H32q6E143CbCn9/hQiIiIiRlFjIXICk8mEd+AlOJ1FxHYNodPgKApzcynIzaYoLw+7rQRbcTF2Wwn2Eht2W4nreWYzZrMZk9mMyWTGYrXi7eeHt58/3r5+ePn54e3rh19QEP4hoXj5+hG/LJll3+zC5O3Ayxus3mb6jmpOq151dTVCREREqhQ1FiL/wmTywcc/nNpNYj1+7MK8Eua8H8eeDcdWdYqoH8iwW9sQXjfA4+cTERERKW9qLERO8o8rBU7PHz15dyZzPoojN73IXWs3oAG9rmiK1UvDnkRERKRqUmMhUkEcDifrfz/A6l/2ufamAHwCrAy6vhVNOkYanE5ERESkbNRYiFSAvMwi5n4cR9KOTHetbmwIQ29uQ1C49pgQERGRqk+NhUg527/lKPM/3UZh7l+TvE3Q9YIYul4Qg9mi3a9FRESkeqgS72reeustYmJi8PX1pUePHqxevdroSFKNHbcYk/PcJ1nYSxws+3oXv7612d1UBIT6cMl9neg+somaChEREalWKv07m5kzZzJhwgSefPJJ1q9fT4cOHRg+fDgpKSlGRxP5V5lH8vnupXVsWpDgrsW0r8U1j3enfvMwA5OJiIiIlI9K31i8+uqr3Hbbbdx00020bt2ad999F39/fz766COjo4mc0o6VyXz9/BpSD+YAYLaa6DuqGRfc2Q7fQK8zPFtERESkaqrUcyyKi4tZt24dEydOdNfMZjNDhgxhxYoVp3xOUVERRUXHlvHMzs4u95wiAMWFNpZ8tZMdqw67a6G1/Rl2axsio4MMTCYiIiJS/ip1Y3H06FHsdju1a9c+rl67dm22b99+yudMnjyZp59+uiLiSQ1Q2hkWqQdz+OODrWSlFLhrLXvWoe+o5nj7Vup/ZiIiIiIeUemHQp2tiRMnkpWV5f5KSEg485NEzpHT6WTT/AS+fWGtu6nw8rUw9ObWDB7TWk2FiIiI1BiV+l1PrVq1sFgsHDly5Lj6kSNHqFOnzimf4+Pjg4+PT0XEkxquIKeY+dO3cWBLmrsW1SiIYbe2ISTS38BkIiIiIhWvUl+x8Pb2pkuXLsyfP99dczgczJ8/n549exqYTGq6xB0ZzJi0+rimouPQhlz+YBc1FSIiIlIjVeorFgATJkxgzJgxdO3ale7duzN16lTy8vK46aabjI4m1dVx+1gcf5fD7mDNr/tZ+9t+931+QV4MvrE1jdpEVFRCERERkUqn0jcWo0aNIjU1lSeeeILDhw/TsWNHfv/995MmdIuUt5z0QuZ+GEfynix3rUHLMIbc1JqAEA2/ExERkZqt0jcWAOPGjWPcuHFGx5AabM+GFBZ+tp2ifBsAJrOJHhc3pvOwRpjMpjM8W0RERKT6qxKNhUhFMv1jLJStxMGiL3cQtyTJXQuK8GXYLW2o0yTEiHgiIiIilZIaC5HT2LXm+BXJmnaOYuB1LfDx1w7aIiIiIv+kxkKkFKxeZvpc3YzWfephMmnok4iIiMiJ1FiInMB0wiLM4fUCGH5rW8LrBRgTSERERKQKUGMhcoKQKH/C6wWQnpxHm7716XNlLFZvi9GxRERERCo1NRYiJzCbTVz9WDdKCuz4BmouhYiIiEhpqLEQOQWLxYwlsFJvTC8iIiJSqeidk4iIiIiIlJkaCxERERERKTM1FiIiIiIiUmZqLEREREREpMzUWIiIiIiISJmpsRARERERkTJTYyEiIiIiImWmxkJERERERMpMjYWIiIiIiJSZGgsRERERESkzNRYiIiIiIlJmaixERERERKTM1FiIiIiIiEiZqbEQEREREZEyU2MhIiIiIiJlpsZCRERERETKTI2FiIiIiIiUmRoLEREREREpMzUWIiIiIiJSZlajA5Q3p9MJQHZ2tsFJRERERESqlr/fQ//9nvp0qn1jkZOTA0B0dLTBSUREREREqqacnBxCQkJO+xiTszTtRxXmcDg4dOgQQUFBmEymCj9/dnY20dHRJCQkEBwcXOHnl3Ojn1vVpJ9b1aOfWdWkn1vVpJ9b1VMZfmZOp5OcnBzq1auH2Xz6WRTV/oqF2WymQYMGRscgODhY/4irIP3cqib93Koe/cyqJv3cqib93Koeo39mZ7pS8TdN3hYRERERkTJTYyEiIiIiImWmxqKc+fj48OSTT+Lj42N0FDkL+rlVTfq5VT36mVVN+rlVTfq5VT1V7WdW7Sdvi4iIiIhI+dMVCxERERERKTM1FiIiIiIiUmZqLEREREREpMzUWFSw5557jl69euHv709oaKjRceRfvPXWW8TExODr60uPHj1YvXq10ZHkNJYsWcLIkSOpV68eJpOJH3/80ehIcgaTJ0+mW7duBAUFERUVxaWXXsqOHTuMjiVn8M4779C+fXv3mvo9e/bkt99+MzqWnIUpU6ZgMpm49957jY4ip/HUU09hMpmO+2rZsqXRsc5IjUUFKy4u5qqrruLOO+80Oor8i5kzZzJhwgSefPJJ1q9fT4cOHRg+fDgpKSlGR5N/kZeXR4cOHXjrrbeMjiKltHjxYsaOHcvKlSuZO3cuJSUlDBs2jLy8PKOjyWk0aNCAKVOmsG7dOtauXcugQYO45JJLiIuLMzqalMKaNWt47733aN++vdFRpBTatGlDcnKy+2vZsmVGRzojrQplkE8++YR7772XzMxMo6PICXr06EG3bt148803AXA4HERHR3P33XfzyCOPGJxOzsRkMvHDDz9w6aWXGh1FzkJqaipRUVEsXryYfv36GR1HzkJ4eDgvvfQSt9xyi9FR5DRyc3Pp3Lkzb7/9NpMmTaJjx45MnTrV6FjyL5566il+/PFHNm7caHSUs6IrFiL/UFxczLp16xgyZIi7ZjabGTJkCCtWrDAwmUj1lpWVBbjepErVYLfbmTFjBnl5efTs2dPoOHIGY8eO5cILLzzu95tUbrt27aJevXo0adKE0aNHc/DgQaMjnZHV6AAilcnRo0ex2+3Url37uHrt2rXZvn27QalEqjeHw8G9995L7969adu2rdFx5Ay2bNlCz549KSwsJDAwkB9++IHWrVsbHUtOY8aMGaxfv541a9YYHUVKqUePHnzyySe0aNGC5ORknn76afr27cvWrVsJCgoyOt6/0hULD3jkkUdOmmBz4pfelIqInNrYsWPZunUrM2bMMDqKlEKLFi3YuHEjq1at4s4772TMmDHEx8cbHUv+RUJCAuPHj+eLL77A19fX6DhSSiNGjOCqq66iffv2DB8+nNmzZ5OZmcnXX39tdLTT0hULD7j//vu58cYbT/uYJk2aVEwYKZNatWphsVg4cuTIcfUjR45Qp04dg1KJVF/jxo3jl19+YcmSJTRo0MDoOFIK3t7exMbGAtClSxfWrFnD66+/znvvvWdwMjmVdevWkZKSQufOnd01u93OkiVLePPNNykqKsJisRiYUEojNDSU5s2bs3v3bqOjnJYaCw+IjIwkMjLS6BjiAd7e3nTp0oX58+e7J/86HA7mz5/PuHHjjA0nUo04nU7uvvtufvjhBxYtWkTjxo2NjiTnyOFwUFRUZHQM+ReDBw9my5Ytx9VuuukmWrZsycMPP6ymoorIzc1lz549XH/99UZHOS01FhXs4MGDpKenc/DgQex2u3u2f2xsLIGBgcaGEwAmTJjAmDFj6Nq1K927d2fq1Knk5eVx0003GR1N/kVubu5xn+Ls27ePjRs3Eh4eTsOGDQ1MJv9m7NixfPnll/z0008EBQVx+PBhAEJCQvDz8zM4nfybiRMnMmLECBo2bEhOTg5ffvklixYt4o8//jA6mvyLoKCgk+YuBQQEEBERoTlNldgDDzzAyJEjadSoEYcOHeLJJ5/EYrFw7bXXGh3ttNRYVLAnnniCTz/91H27U6dOACxcuJABAwYYlEr+adSoUaSmpvLEE09w+PBhOnbsyO+//37ShG6pPNauXcvAgQPdtydMmADAmDFj+OSTTwxKJafzzjvvAJz0uvfxxx+fcWipGCclJYUbbriB5ORkQkJCaN++PX/88QdDhw41OppItZKYmMi1115LWloakZGR9OnTh5UrV1b6ETLax0JERERERMpMq0KJiIiIiEiZqbEQEREREZEyU2MhIiIiIiJlpsZCRERERETKTI2FiIiIiIiUmRoLEREREREpMzUWIiIiIiJSZmosRERERESkzNRYiIiIiIhImamxEBGRCmW32+nVqxeXX375cfWsrCyio6N57LHHDEomIiJlYXI6nU6jQ4iISM2yc+dOOnbsyPvvv8/o0aMBuOGGG9i0aRNr1qzB29vb4IQiInK21FiIiIghpk2bxlNPPUVcXByrV6/mqquuYs2aNXTo0MHoaCIicg7UWIiIiCGcTieDBg3CYrGwZcsW7r77bh5//HGjY4mIyDlSYyEiIobZvn07rVq1ol27dqxfvx6r1Wp0JBEROUeavC0iIob56KOP8Pf3Z9++fSQmJhodR0REykBXLERExBDLly+nf//+zJkzh0mTJgEwb948TCaTwclERORc6IqFiIhUuPz8fG688UbuvPNOBg4cyIcffsjq1at59913jY4mIiLnSFcsRESkwo0fP57Zs2ezadMm/P39AXjvvfd44IEH2LJlCzExMcYGFBGRs6bGQkREKtTixYsZPHgwixYtok+fPsfdN3z4cGw2m4ZEiYhUQWosRERERESkzDTHQkREREREykyNhYiIiIiIlJkaCxERERERKTM1FiIiIiIiUmZqLEREREREpMzUWIiIiIiISJmpsRARERERkTJTYyEiIiIiImWmxkJERERERMpMjYWIiIiIiJSZGgsRERERESkzNRYiIiIiIlJm/w+KqNLZeV5m3QAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "# # ================== CCP 1 ==================\n", - "mapie_ccp_1 = SplitCPRegressor(estimator, calibrator=calibrator1, alpha=ALPHA, random_state=random_state)\n", - "mapie_ccp_1.fit(X_train, y_train)\n", - "y_pred_ccp_1, y_pi_ccp_1 = mapie_ccp_1.predict(X_test)\n", - "\n", - "# # ================== CCP 2 ==================\n", - "mapie_ccp_2 = SplitCPRegressor(estimator, calibrator=calibrator2, alpha=ALPHA, random_state=random_state)\n", - "mapie_ccp_2.fit(X_train, y_train)\n", - "y_pred_ccp_2, y_pi_ccp_2 = mapie_ccp_2.predict(X_test)\n", - "\n", - "# # ================== CCP 3 ==================\n", - "mapie_ccp_3 = SplitCPRegressor(estimator, calibrator=calibrator3, alpha=ALPHA, random_state=random_state)\n", - "mapie_ccp_3.fit(X_train, y_train)\n", - "y_pred_ccp_3, y_pi_ccp_3 = mapie_ccp_3.predict(X_test)\n", - "\n", - "mapies = [mapie_split, mapie_cv, mapie_cqr, mapie_ccp_1, mapie_ccp_2, mapie_ccp_3]\n", - "y_preds = [y_pred_split, y_pred_cv, y_pred_cqr, y_pred_ccp_1, y_pred_ccp_2, y_pred_ccp_3]\n", - "y_pis = [y_pi_split, y_pi_cv, y_pi_cqr, y_pi_ccp_1, y_pi_ccp_2, y_pi_ccp_3]\n", - "titles = [\"Basic Split\", \"CV+\", \"CQR\", \"CCP 2 groups, 1 and 1\", \"CCP 2 groups, 1 and X\", \"CCP 2 groups, polynomials\"]\n", - "\n", - "plot_figure(mapies, y_preds, y_pis, titles)\n", - "plot_widths(titles, y_pis)" - ] - }, - { - "cell_type": "markdown", - "id": "7839b3d4", - "metadata": {}, - "source": [ - "## 3/ Improve the performances without prior knowledge: ``GaussianCCP`` " - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "id": "cdbabe43", - "metadata": {}, - "outputs": [], - "source": [ - "calibrator_gauss2 = GaussianCCP(np.arange(-1,6).reshape(-1,1), 1)\n", - "calibrator_gauss3 = GaussianCCP(30, 0.05, random_sigma=True, normalized=True)\n", - "calibrator_gauss4 = GaussianCCP(30, 0.25, random_sigma=True, normalized=True, reg_param=1e-3)\n", - "\n", - "# # ================== CCP 2 ==================\n", - "mapie_ccp_2 = SplitCPRegressor(estimator, calibrator=calibrator_gauss2, alpha=ALPHA, random_state=random_state)\n", - "mapie_ccp_2.fit(X_train, y_train)\n", - "y_pred_ccp_2, y_pi_ccp_2 = mapie_ccp_2.predict(X_test)\n", - "\n", - "# # ================== CCP 3 ==================\n", - "mapie_ccp_3 = SplitCPRegressor(estimator, calibrator=calibrator_gauss3, alpha=ALPHA, random_state=random_state)\n", - "mapie_ccp_3.fit(X_train, y_train)\n", - "y_pred_ccp_3, y_pi_ccp_3 = mapie_ccp_3.predict(X_test)\n", - "\n", - "# # ================== CCP 4 ==================\n", - "mapie_ccp_4 = SplitCPRegressor(estimator, calibrator=calibrator_gauss4, alpha=ALPHA, random_state=random_state)\n", - "mapie_ccp_4.fit(X_train, y_train)\n", - "y_pred_ccp_4, y_pi_ccp_4 = mapie_ccp_4.predict(X_test)\n" - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "id": "70924fa9", - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABKYAAAPdCAYAAACwXGBqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3iU15X48e/0Js2ojnoDCSSq6N2AwQbjbidxb4kd983uJllvetuf0+0kjmPHiUtM4hp3GxsDLoAAmyaJIkASkka9a0aa3n5/jDRINAMGRDmf59EjJL2auTOM3jPnvPeeqwiHw2GEEEIIIYQQQgghhDjNlMM9ACGEEEIIIYQQQghxfpLClBBCCCGEEEIIIYQYFlKYEkIIIYQQQgghhBDDQgpTQgghhBBCCCGEEGJYSGFKCCGEEEIIIYQQQgwLKUwJIYQQQgghhBBCiGEhhSkhhBBCCCGEEEIIMSykMCWEEEIIIYQQQgghhoUUpoQQQgghhBBCCCHEsJDClBDDqLa2FoVCwXPPPTfcQzmsw43vpz/9KQqFYvgGJYQQQgghhBDinCGFKSGA5557DoVCMeTDarWycOFC3n///eEe3jFrb2/nW9/6FoWFhRgMBqxWK9OnT+ehhx6ir6/vlN3vww8/zJtvvnnKbl8IIc5V1dXV3H333YwYMQK9Xo/ZbGbOnDn88Y9/pKSkBIVCwQ9/+MMj/n5lZSUKhYL//u//Po2jFkIIcSocLSa43e7ocX6/nz/96U9MmzaN2NhYYmJimDZtGo899hiBQOCQ283NzR2S55hMJqZPn87zzz9/Oh+eEEekCIfD4eEehBDD7bnnnuOOO+7g5z//OXl5eYTDYVpbW3nuuefYtWsX77zzDpdddtlJv99wOIzX60Wj0aBSqb7UbXV1dTFp0iQcDgdf//rXKSwspLOzk/Lyct59913Ky8vJzc09rtusra0lLy+PZ599lttvvx2AQCBAIBBAr9dHj4uJieErX/nKGTvzSwghzkTvvfceX/3qV9HpdNx6662MGzcOn8/H+vXree2117j99ttZt24dPp+P6urqw97Gz372M37605+ydetWJk+efJofgRBCiJPlWGLCU089hdPp5NJLL+XTTz/lsssuY+nSpSiVSj744APefvttLrzwQt555x2MRmP0tnNzc4mPj+fb3/42AM3Nzfz9739n3759PPXUU9x1113D9bCFAEA93AMQ4kxyySWXMHXq1OjX3/jGN0hJSeHFF188JYUphUIxpMDzZTz99NPYbDZKSkqYPXv2kJ85HA60Wu1JuR+1Wo1aLacOIYT4Mmpqarj++uvJycnho48+Ii0tLfqz+++/n6qqKt577z2ys7P50Y9+xKZNm5g5c+Yht/Piiy9SWFh41KJUbm4ut99+Oz/96U9PxUMRQgjxJR1rTAD47//+bz799FMee+wxHnjggehx9957L48//jgPPPAA3/3ud3n88ceH3EdGRgY333xz9Ovbb7+dESNG8Oijj0phSgw7WconxFHExcVhMBgOKcT87ne/Y/bs2SQmJmIwGJgyZQr//ve/D/n9VatWMXfuXOLi4oiJiWH06NF8//vfj/78SD2m9uzZw9e+9jWSk5MxGAyMHj2aH/zgB0cda3V1NSqV6rCJi9lsHlIAW7BgAePGjWPr1q3Mnj0bg8FAXl4eTz755Bc+Jwf3mFIoFDidTv7xj39EpwcPzK4SQghxeL/5zW/o6+vj6aefHpKADMjPz+db3/oWN910EwAvvPDCIcds3bqVvXv3Ro8RQghxdjrWmNDQ0MDTTz/NhRdeOKQoNeD+++9n4cKFPPXUUzQ2Nh71PpOTkyksLDzijFwhTicpTAkxiN1up6Ojg/b2dnbt2sW9995LX1/fkKsLAH/84x+ZNGkSP//5z3n44YdRq9V89atfjV7JANi1axeXXXYZXq+Xn//85/z+97/niiuuoKSk5KhjKC8vZ8aMGXz00Ufcdddd/PGPf+Sqq67inXfeOerv5eTkEAwGWb58+TE91u7ubpYtW8aUKVP4zW9+Q2ZmJvfeey/PPPPMMf3+gOXLl6PT6Zg3bx7Lly9n+fLl3H333cd1G0IIcb555513GDFixCEzXA+Wl5fH7NmzeeWVVwgGg0N+NlCsuvHGG0/ZOIUQQpx6xxoT3n//fYLBILfeeusRj7n11lsJBAJ88MEHR72tQCBAQ0MD8fHxJzRmIU4mWY8jxCCLFy8e8rVOp+OZZ57hoosuGvL9ffv2YTAYol8/8MADTJ48mUceeYRLL70UiMyW8vl8vP/++yQlJR3zGB588EHC4TDbtm0jOzs7+v1f/epXR/29r3/96zz66KPcfvvt/OpXv2LBggVccMEFLFu2DIvFcsjxTU1N/P73v482zL377ruZMWMG3/ve97jlllvQaDTHNN6bb76Ze+65hxEjRhxSwBNCCHEoh8NBY2MjV1555TEdf9NNN3H//fezZs0aLr74YgBCoRAvv/wys2bNYsSIEadyuEIIIU6h44kJu3fvBmDixIlHPGbgZwPHDvD7/XR0dADQ0tLCb37zG1paWrj//vtPdOhCnDQyY0qIQR5//HFWrVrFqlWr+Oc//8nChQu58847ef3114ccN7go1d3djd1uZ968eWzbti36/bi4OADeeustQqHQMd1/e3s7a9eu5etf//qQohQwZPnc4aSkpFBWVsY999xDd3c3Tz75JDfeeCNWq5Vf/OIXHLzPgVqtHjKzSavVcvfdd9PW1sbWrVuPabxCCCGOn8PhACA2NvaYjr/uuuvQaDRDlvN9+umnNDY2HrKMz+v10tHRMeQjFArhcrkO+b4QQojhdzwxobe39wuPHfjZwLEDPvzwQ5KTk0lOTmb8+PEsX76cO+64g9/+9rcnOnQhThopTAkxyPTp01m8eDGLFy/mpptu4r333mPMmDE88MAD+Hy+6HHvvvsuM2fORK/Xk5CQQHJyMk888QR2uz16zHXXXcecOXO48847SUlJ4frrr+eVV145apFq//79AIwbN+6Exp+WlsYTTzxBc3Mze/fu5U9/+hPJycn8+Mc/5umnnx5ybHp6OiaTacj3Ro0aBUR6XwkhhDg1zGYzcGjScCSJiYksWbKEN954A4/HA0SW8anVar72ta8NOfbFF1+MJh4DH/X19fz2t7895PtCCCGG3/HEhCMVnQYb+JnVah3y/RkzZrBq1So++OADfve73xEXF0d3d/dJ2yBJiC9DClNCHIVSqWThwoU0NzdTWVkJwLp167jiiivQ6/X85S9/YcWKFaxatYobb7xxyKwkg8HA2rVrWb16Nbfccgvl5eVcd911XHTRRYf0CTnZFAoFo0aN4sEHH2Tt2rUolUr+9a9/ndL7FEIIcWzMZjPp6ens3LnzmH/n5ptvxuFw8O677+Lz+Xjttde4+OKLDykwLVmyJDrzd+AjJSWFW2655ZDvCyGEGH7HExPGjBkDRHrSHsnAzw5e5p2UlMTixYtZsmQJ3/72t/nnP//Jm2++yR//+McvMXohTg7pMSXEFwgEAgD09fUB8Nprr6HX61m5ciU6nS563LPPPnvI7yqVShYtWsSiRYt45JFHePjhh/nBD37Axx9/fEg/KzgQQI4nWfkiI0aMID4+nubm5iHfb2pqwul0Dpk1tW/fPiCytfjx+KJlhkIIIYa67LLLeOqpp9i4cSOzZs36wuOvuOIKYmNjeeGFF9BoNHR3dx92N760tLRDdnTS6/WMGDHisHFHCCHE8DvWmHDJJZegUqlYvnz5ERugP//882i12i/sWXXppZcyf/58Hn74Ye6+++5DVlIIcTrJjCkhjsLv9/Phhx+i1WopKioCQKVSoVAohsx6qq2t5c033xzyu11dXYfcXnFxMRDpAXI4ycnJXHDBBTzzzDPYbLYhPzu4R9TBPvvsM5xO5yHf//zzz+ns7GT06NFDvh8IBPjrX/8a/drn8/HXv/6V5ORkpkyZctT7OpjJZKKnp+e4fkcIIc5n//M//4PJZOLOO++ktbX1kJ9XV1cPuYptMBi4+uqrWbFiBU888QQmk+mYm6cLIYQ4sx1rTMjMzOQb3/gGq1ev5oknnjjkuCeffJKPPvqIu+++m8TExC+834ceeojOzk7+9re/nZTHIcSJkhlTQgzy/vvvs2fPHgDa2tp44YUXqKys5H//93+j678vvfRSHnnkEZYuXcqNN95IW1sbjz/+OPn5+UOm1f785z9n7dq1XHrppeTk5NDW1sZf/vIXMjMzmTt37hHH8Kc//Ym5c+cyefJkvvnNb5KXl0dtbS3vvfcepaWlR/y95cuX869//Yurr76aKVOmoNVqqaio4JlnnkGv1/P9739/yPHp6en8+te/pra2llGjRvHyyy9TWlrKU089dcw78g2YMmUKq1ev5pFHHiE9PZ28vDxmzJhxXLchhBDnk5EjR/LCCy9w3XXXUVRUxK233sq4cePw+Xxs2LCBV199ldtvv33I79x88808//zzrFy5kptuukmubgshxDnieGLCI488wp49e7jvvvv44IMPWLp0KQArV67krbfe4sILLzzmhuaXXHIJ48aN45FHHuH+++8/7hxAiJMmLIQIP/vss2FgyIderw8XFxeHn3jiiXAoFBpy/NNPPx0uKCgI63S6cGFhYfjZZ58N/+QnPwkP/pNas2ZN+Morrwynp6eHtVptOD09PXzDDTeE9+3bFz2mpqYmDISfffbZIbe/c+fO8NVXXx2Oi4sL6/X68OjRo8M/+tGPjvoYysvLw9/97nfDkydPDickJITVanU4LS0t/NWvfjW8bdu2IcfOnz8/PHbs2PCWLVvCs2bNCuv1+nBOTk74z3/+85DjDje+gx9nOBwO79mzJ3zBBReEDQZDGAjfdtttRx2rEEKIiH379oXvuuuucG5ublir1YZjY2PDc+bMCT/22GNhj8cz5NhAIBBOS0sLA+EVK1Yc833k5OSEf/KTn5zkkQshhDjZjjUm+Hy+8B/+8IfwlClTwkajMZq/3HbbbeFgMHjI7ebk5IQvvfTSw97nc889d9h8RIjTSREOf8H6ICHEOWfBggV0dHSc1F5WQgghhBBCiNPP4XAwf/58qqurWbt2bbR9iBBnC+kxJYQQQgghhBBCnKXMZjPvv/8+SUlJLFu2jLq6uuEekhDHRXpMCSGEEEIIIYQQZ7HU1FT2798/3MMQ4oTIjCkhhBBCCCGEEEIIMSykx5QQQgghhBBCCCGEGBYyY0oIIYQQQgghhBBCDAvpMXWQUChEU1MTsbGxKBSK4R6OEEKc8cLhML29vaSnp6NUnjvXOyQeCCHE8TsXY4LEAyGEOH7HEw+kMHWQpqYmsrKyhnsYQghx1qmvryczM3O4h3HSSDwQQogTdy7FBIkHQghx4o4lHkhh6iCxsbFA5Mkzm83DPBohhDjzORwOsrKyoufPc4XEAyGEOH7nYkyQeCCEEMfveOKBFKYOMjA912w2S+ARQojjcK4tb5B4IIQQJ+5cigkSD4QQ4sQdSzw4NxZ+CyGEEEIIIYQQQoizjhSmhBBCCCGEEEIIIcSwkMKUEEIIIYQQQgghhBgWUpgSQgghhBBCCCGEEMNCClNCCCGEEEIIIYQQYlhIYUoIIYQQQgghhBBCDAspTAkhhBBCCCGEEEKIYSGFKSGEEEIIIYQQQggxLKQwJYQQQgghhBBCCCGGhRSmhBBCCCGEEEIIIcSwkMKUEEIIIYQQQgghhBgWUpgSQogzSF2dnRUr9lNXZx/uoQghhBhGEg+EEEIMONdjgnq4ByCEEOKAXbs62bixCYCcHMswj0YIIcRwkXgghBBiwLkeE6QwJYQQZ5CxYxOHfBZCCHF+kngghBBiwLkeE6QwJYQQZ5CcHMs5eRVECCHE8ZF4IIQQYsC5HhOkx5QQQgghhBBCCCGEGBZSmBJCCCGEEEIIIYQQw0IKU0IIIYQQQgghhBBiWEhhSgghhBBCCCGEEEIMCylMCSGEEEIIIYQQQohhIYUpIYQQQgghhBBCCDEspDAlhBBCCCGEEEIIIYaFFKaEEEIIIYQQQgghxLCQwpQQQgghhBBCCCGEGBZSmBJCCCGEEEIIIYQQw0IKU0IIIYQQQgghhBBiWEhhSgghhBBCCCGEEEIMCylMCSGEEEIIIYQQQohhIYUpIYQQQgghhBBCCDEspDAlhBBCCCGEEEIIIYaFFKaEEEIIIYQQQgghxLCQwpQQQgghhBBCCCGEGBZSmBJCCCGEEEIIIYQQw0IKU0IIIYQQQgghhBBiWEhhSgghhBBCCCGEEEIMCylMCSGEEEIIIYQQQohhIYUpIYQQQgghhBBCCDEspDAlhBBCCCGEEEIIIYaFFKaEEEIIIYQQQgghxLCQwpQQQgghhBBCCCGEGBZSmBJCCCGEEEIIIYQQw0IKU0IIcYYoKWngZz8roaSkYbiHIoQQYhhJPBBCCDHgfIgJ6uEegBBCiIjVq+tYvdoGwJw5mcM8GiGEEMNF4oEQQogB50NMkMKUEEKcIRYvzhnyWQghxPlJ4oEQQogB50NMkMKUEEKcIebMyTxnr4IIIYQ4dhIPhBBCDDgfYoL0mBJCCCGEEEIIIYQQw0IKU0IIIYQQQgghhBBiWEhhSgghzkN1dXZWrNhPXZ19uIcihBBimElMEEIIAcMXD6THlBBCnId27epk48YmAHJyLMM8GiGEEMNJYoIQQggYvngghSkhhDgPjR2bOOSzEEKI85fEBCGEEDB88UAKU0IIcR7KybHIVXEhhBCAxAQhhBARwxUPpMeUEEIIIYQQQgghhBgWUpgSQgghhBBCCCGEEMPinCpM/fSnP0WhUAz5KCwsHO5hCSGEGAYSE4QQQoDEAyGEONOdcz2mxo4dy+rVq6Nfq9Xn3EMUQghxjCQmCCGEAIkHQghxJjvnzshqtZrU1NThHoYQQogzgMQEIYQQIPFACCHOZOfUUj6AyspK0tPTGTFiBDfddBM2m+2ox3u9XhwOx5APIYQQ54bjiQkSD4QQ4twl8UAIIc5c51RhasaMGTz33HN88MEHPPHEE9TU1DBv3jx6e3uP+Du//OUvsVgs0Y+srKzTOGIhhBCnyvHGBIkHQghxbpJ4IIQQZzZFOBwOD/cgTpWenh5ycnJ45JFH+MY3vnHYY7xeL16vN/q1w+EgKysLu92O2Ww+XUMVQoizlsPhwGKxnPHnzS+KCRIPhBDiyzsbYoLEAyGEOPWOJx6ccz2mBouLi2PUqFFUVVUd8RidTodOpzuNoxJCCDEcvigmSDwQQojzw+mMB76gj6d3Ps2VI68kPSb9pNymEEKca86ppXwH6+vro7q6mrS0tOEeihBnnJKSBn72sxJKShqGeyhCnBYSE4Q4PIkH4nxzOuOBL+jjlb2v8F+f/BfBUPCU358QX5bEBDEczqnC1He+8x0+/fRTamtr2bBhA1dffTUqlYobbrhhuIcmxBln9eo6Vq+2sXp13XAPRYhTQmKCEMdG4oE41w1nPIjRxnDH2DvY3bmb53c/f8rvT4gvS2KCGA7n1FK+hoYGbrjhBjo7O0lOTmbu3Lls2rSJ5OTk4R6aEACEw2Ec7gAOjx+3P4jHH8TtC+L2BwmHQaEAlVKBSqFAqVRg0qqJ1Q98aNCqT14tefHinCGfT0RJSQOrV9exeHEOc+ZkHvaYujo7u3Z1MnZsIjk5lhO+r7PZsTxP4uSTmCDOeAEvuDrB5wK/CwKe/s9eUCgjH0pV5LNKB3oz6MyRz9qYSNA4CU5XPACJCRIPhsdwx4N5mfN4s+pNnix7kotzLiYjNuO03K8QJ0JyhNNHYsIB51Rh6qWXXhruIYjzWCgUpsXhoaHbTX2Xi4ZuN3WdThp73HQ6fXQ7ffS4/QRDJ77fgF6tJClWR0qsjlSLgfQ4PbmJJkZaY8i3xpBo0qI4xkRlzpzML30CHLiiMnB7h7NrVycbNzYBnLdB51ieJ3HySUwQw8rbB9210GODnjroroPuGuhrBWcHuLvA5zzx21cowRAPMalgTgNzBsTlQFIBJI2ChBGg1h7TTZ2ueAASEyQeDI8zIR5cmH0hz+16jp9t+hl/XfzXY36/JsTpJjnC6SMx4YBzqjAlxOnS1uthT3Mv+1p7qWh2sKell+r2Pjz+UPSYWL2aeKMWs15NvFFDmkWPSavCqFWh06jRqkCtUqFTKdCoVaiUEApHZlWFQxAMhfEEI7OpvP4QvkAIty9IrzdAnzfAzkY7JdUdONx+BmpdsTo1OUlGxqZbmJIdT3F2HCOTY1ApT82bn2O5ojJ2bOKQz+ejk3HlSQhxhgr4oH0PtFVA225o2RH5d2/TgWNUGjAkRgpJuhiIzwPrWNAaQWsClTZyjFoHSm3ka0IQDkc+CEHQH5lN5fdEZlYFPJHil9cB9npo3QXuHgi4I/epUIElA5ILIXNa5CN9EhjiTsnTcKznufM9Jkg8OH/FamK5fMTl/Lvy37xZ9SZXF1w93EMS4pSRHOHYSEw4QBEOh098+sY56Mtscbu3pZeRySbUqnOqddd5z+ULsKPBTllDD1vruimt76HVEdlCWKtSYjXrSI7RkRijJcGkJc6oIcmkI1avQaNSoFUr0aiUqJQKlCfp6lggGMIfDOMLhnB5A7Q4PLQ4PHT0+ejs89Lq8NLR5yUMGDQqxqTHMntkEheMSmZiZtxJXRIoxNmwNfiJ+FKPK+CDrv1gLTw1gxPDIxyOzHpq2AoNm6Hhc2jdGSkaARgTISYFTMlgSgJjAhiTIt9X6/sLUFpQqUF5kq4NhvuLVkHfgaWB9kboa4nMzOprBUdjpJAFEJcNWTMhfxHkzY/MthLiJDoXY8KXfUw19hrW1q8l25zNI1sfocvTxWtXvEaqKfUUjFYIIc4Mx3PulBlTJ4nd7ecrT25g5ohEnrxpMiopTp21ej1+Ntd2saG6kw1Vnext6SUYDqNVK8mIMzAiOYbZI5NIM+uwmvUYtWoMGhU6jfKkFZ6+iFqlRK0CAyosBg1pcYboz4KhMG5/kG6nj/0dThq6XTT2uPnbuv089lEVOrWSiVlxXFho5ZJxqeQkmk7LmA/ntdf28vrrlVxzTQHXXjt62MYhxEn36a/hsyfhpn9DzqzhHo04UeFwZPZT7Tqo+RTqNoC7O/IzUzJYsiD/YrCkR5bSGeJBbQBNfxHqdFAoIzOt1DrQxUYKYsmjD4w/6I0sGey2QVc12Bsij2fHK5Fj4nIgbx4UXQl5F0TGPkwkJohznUKh4I6xd/Dw5w/zw/U/5G8X/02W9AlxGBIPzj9SmDpJLAYN/3FhAQ+vqODBl7bz+I2TJdCcJbyBIJ/XdFFS1UlJVQe7mxwEw2EsBg15SUYuHmslPc5ARpwRs16NQatCp1YN97CPSKVUEKNTE6NTk5VgBCAQCtHrCVDd1sfetl5snS5+t3Ivv3p/DzmJRhYVpnDZxDSKM+NQnqJlf4fz+uuVrF0b2Yr2fA06A40fLRYtdrvvvG4AeU6Z8y3Y8Sq88FW47V1ILx7uEYlj1V0LVWtg/6eRAo67KzK7KS4nshQuNgPisyHGChoTaIygPEMvRikUkZlaan1k1lbGpEixKuAGR3Nk2WHXftizArb/EzQGyO0vUhUui8z4Oo3O95gg8eD8kGBI4Or8q3lp70ss372cW8feOtxDEuKMc77HAzj/YoIUpk6ii8aksM3WxYodLTz0Wjm/vnaCFKfOUE09bj7Z286aPa1sqOrE7Q9i1qvJTTJx8dgUchKNZMQZiNVpMGpVp7VYcyqolUrijVqm5iYwNTeBQDBEh9NLWX0Pe1p6eWmzjWdKakgx67hsfDrXTc9iVErsKR/XNdcUDPl8Phpo/KhWKwgEIiurz+Wgc97Qm2H2f8Anv4TlV8Md78uyvjNVwAe2jbBvJez7IDKrSKGC+BxImxhZ+paQD6aEyE54at1wj/jLUSgixbTEkZGPcBh8fdBRCU1bIzPEKj+Ed9WQOxeKb4LCyyL9sE6x8z0mSDw4f8zJmEN5RzmPbX+MuRlzGRE3YriHJMQZ5XyPB3D+xQTpMXWQL7OGvLbDyardLZTV23l3RzM3TM/i4avHS3HqDBAKhdlm62bNnjbWVLSyr7UPpQJyEk3kJRkZkWgiK8GI2aDBpFWf9YWo4xEOh9lS3sraHW34zCoanV48/hAjkkxcOyWTG6Znk2A6eUtSZGvYoU7F1ZDT/Ryfi/1E4CQ8rrKXI719NjwGShXc9g5Yi07+QMXx62uHfe/D3g9g/8eRpuL6uMgSuISRkJgfmRGliz37C1HHqWJXM7bynUxNriHRty+y9E9jgIKLYepdkDc3Utw6CSQeDHWqro5LTPjyTlaPqRzLgQbHvb5e/t9n/4+s2Cz+dcm/0B7jLppCnE4lJQ2sXl3H4sU5p3zXOIkJQ51vOYLMmDoFrpqUQTAc5sXP63H5gjz6teLzqtBxpgiFwmy1dfNeWTPv7WymvddLjE5NgTWGq4rTybfGYI3VE6tXozmPe4IpFAqqKrpp39nDhIlJ3HPFWLbU9VDW0MMjq/bx6Kp9XFho5Y45ecwckfClC62yNexQOTmWk/48yHN8BjEmwoU/go//D569BG5+I7KcSpx+fe1Q8Tbsej3SKwogPhdy5h6YPaSPi+ySdx5fUCot76G0TEfXxHnc8LXboWMf1G6A2vWw+63IksYpd8CU2770Uj85Vw11KuIByPN8porVxnJz4c38dcdf+c2W3/DDmT8c7iEJcYjVq+tYvdoGcMoLU3KuGup8yxGkMHWKXDs5E71axZuljbh9QR6/cRKaM7gv0blioBj1blkzK3Y0097nxWLQUJQay5IxKYxMjiHOqMGkU5+2RuVng+KJydHP8SYdF41JYVGhlSa7m3WVHWyp6+bD3a1kJxi5dVYON87Ixqg9sdPHmbI17MFNFU/nFaHjdbxXN86U51j0M6fBop9GilPPXw43vgI5s4d7VOeHgWLUztciy/UAEgsiPZSshRCbFilGyUyFqInFyQc+q7SQMi7y4XNB/WdQVwIf/Rw+eRhGL4O5/w3pE0/ovs6Uc9XZFA9AYsK5ZFzyOBZkLuCVva8wLXUaS3KXDPeQhBhi8eKcIZ9PpTPlXHU2xYRzKR5IYeoUunRCGjqNkle21HPdU5t45vZpxBnlze/JdqRiVGFqLEvHpVBgjSXOqDnhQsr5oKgoiaKipCHfUyoVZMYbuWF6NnOy4li7qx2bx8vDKyr4w+pKrpuayd0LRmKNPb4dnE7VFeHjdXBTxdN5Reh4He/VjTPlORaDxCQPKk5dBVc8BhOvG+5RnZsOW4zKh8LLIXU8mNNBb4ksrxSHGFOUxJiD4gEQ6TE1ciGMmE/n/r0E964msepjVLvfhKwZMPe/YNTS45ptdqacq86meAASE841VxdcTY2jhp9u+ClFCUVkm7OHe0hCRM2Zk3nU8+DJXBp2ppyrzqaYcC7FA8nUT7HFRSlY9Gqe21jH5Y+t5/lvTCcvKWa4h3XWG+gZ9U5ZM+/vbKatN1KMGp0ay5JxKYxOiSXeqEWvOT8Tj7Z2JzZbL9nZsViTTV/+9ppc0OrlotHxxE/PZs2eVpZ/ZuMfG+tYOi6V/1xUQP5paJZ+Mh3cVPF0XhE6Xgdf3ZA1+GcpYzxc9DNY9wi8cTd0VsHC75/Xy8ZOmi8qRlkyIw3pFefnsu22tkExwfolY4JCSU13PHu6FjGmYBmTY3dBzafw4vWQMCLS9H/SzaDSnJzBnwZnUzyAoTFB4sHZT6lQcue4O/nV5l/xX5/8Fy8sewHdedbbTpw+J/uccSYvDTtRZ1NMOJdyBGl+fpCT0fz8cIWn6vY+nvikmmA4zB+vn8SFhdaTNeTzxkAx6t2yZlYcVIwaZY1hdGosCUYtunO8GHUsRactW1vYs6eLwsIEpk5JPSX32ebwsHpPK5tru+nzBlhclMJDS0afdQWqL2s4AsCKFfvZuLGJWbPSWbZs+HfyORcb3cJJan4e8ESaaA8WCsDnf4sk82OuhKuePC07np1zosWo18HW3zMqMR+Si86rYtSxFJ22bBkUE6aehJhw8H0G/FC/CapWQ8deiE2HC74Nk287qwpUJ8PpjglnWjyAczMmnIrm5wfb3bGbJ8uf5JK8S/j1Bb/+MsMV56ljOf+c7HPG2VwIOdUkR5Dm52ekkckxfO+SQv7ySTXf+Mdm7po3goeWFqKSpuhHFS1GlUeW6Q0UowpTY7l4TMp5U4wazGbrZc+eriFfH1ykys6OjX6uqOigtKyd4onJJCYZTmgmlTXZdMjxVrOeG6fncNn4dFZVtLC+qpOL/rD2vCtQna4rRYOD25HWh8ubg7OEUg0z740sKdvxKjw5B677F6SMGe6Rnfn62mHPO5GZUQMNzBMLzuuZUUeMCdbDx4TdFR2UlbaTk2NGq1Wd0Cwqq9U09HfUGsibBzlzoKUMKt6B974Na39/3hWoTkdMkHhwbhqTNIZlI5bx3v73GBU/im+M/8ZwD0mcZQaffwa+PvgcMPicMbh3UmZm7AmdM87kpWHDTXKE4yOFqZOsptbOptX1FE9MPqRnT2KMjv9dWsiLm238be1+Ntd08ecbJ5MRbxim0Z6ZBopR75U3896gYlRRfzFqVEosCabzd5ne4ARjcEIyuHA0uJC0Zo2NstJ2AAoK4g97/GBHm5E1uMgFRP997eQsLh6Tyoe7Wllf3cFFf1jLxWNS+OGlY8hKGDoT5Gw4MR6P09VEcHBwW7ZsxGGfu2MNgOfa/8GZal9lF3t2NpNfrDx8z54xV0Zm+Gx6Av62AC7+fzDtTlnad7CjFaNSxkFcJugsoDx/ilGDHTEmDCocDS4krVljo7SsncamPlJTTIcce7CjzcgaKHLFxeno6fEysTiZMUWTIG0iNO+AircOFKgu/AFMvHHI/9O5eC46HTFB4sHZqaa2hw27XRQXH5ojDFiSs4SmviYe2/4YIywjWJi98DSPUpzNBp9/jnQOGFxIeu65ndHeSdOmpX3hOeNo54vBRS7ghJqFn2vnI8kRjo8Upk6yyn3d1JRH3hQeLuho1EpunZXLqJRYXtpcz+JHP+WhpYXcNisHxXmcjARDYbbWdbNix4GZUXEGDYVpkWJUvjWGBJNWGphz+NlLA4nJ4YpKxROTaW93UVnZRWVlF3FxekzGIz+PJesb+XxzC9OnpXL11aOG/Ky0rD1a5AKi/y4qSiJWr+HaKZlcPDaFD3e3sHZfBwt//wk3TMvmujFp2Krshw2UZ3sQOl1Xio4luB1tnfmWLS3RHUYMBs051w/gTLRjZweVuztxEnf4whRAylhY8jBs+gus+A7sfhOu+muk2HI+62uLzLrZ9UZkFziApFH9u+mNAUt6ZDc9aWB+6OwlIjHhSAWlicXJVFZ2UbO/B6USUtOMtLU5D1uc2l3RwYoVNaiUCubNyzzkmLLSdkrL2lEqIRSKfG9MUVJkxlr6REgbD83lkf/Ht+6HDY/RUvwDttnHHTFxkpjwxU4kHsDhY0Jurhllf7HwbHy+zyb79nWzvyzyXB+pMKVQKLi16FYecT3C99Z/j+WXLKcgvuB0DlOcxQ53/jla76HFi3Ow2Rxs3tzM5s3NpKSYsFiOvFHXq6/u5Z13qrn88pF85zvTh/xscIPwyNfH1ix88LgkRzgx50qOIFn+SdTY1ItWqyK/IC46o+RIZo5IZFRKDMs32fjp27t4p6yRX187gXzr+bH8CSAQDPF5bRcrdjTzwc4WOvp8xBkPzIwaaY0hwajFpJOXKRy+6HRwkergGVSOni6cXTvpbtzGjtIqfO5u9Dov+zYq0aoDXH3LXcy76FIA9u0q41cP3U+P3YvPr8a21cy21SmYYmIxxyUwc8FFFE+MLDWaMD6RcDiShRz8Wo/Va7h2chYXjk7hrfJGXtps49XN9RSGNdwRClE8PnL8wInxXGyaeCocS3A7+JjBz+3gHUYefngecGZuFXuuqKuzo9epyc01M6H46PEAvRnmPwSVq2Dnq/D4tEhT9Jn3nV+FF0fTgWKUbVNk5ljS6P5iVCGYM8AQF1kKKQ5beBpcpBroKzXwfYAtO/ZR29jGup2fU9/cwUe7fcR8okShDpKWYuGtv/w4evu3PvQ7Vq/fgc8bJsZk4J3tCSTGxxJnNpGWnMCP77uRif2vbVOMCmdfMPp1lEIJ6cWQOiHSlH7X66SuuoXC8Hhsrh8wdtpsYOi5SGLCFzuReACHjwlOZwrf/OZEiQenWFNTH1qdivx8C8VfEBPUKjV3T7ib3279LfesvocXlr1AiinlNI1UnI0OV8A52nvCnBwL7e3t9PXtoqNjLevW7cLn6yY2NkB5uR69PsD3vvc9li1bBkBJSQnf+MY3aGtz43Yr2L8/nnXrsomNjSU5OZmrrrqKxYtHArBwYSYDLayPpVn44HEdXDyReHBszpUcQd7dnUSVlT10drrIsBhJTPri5XkJJh0PXphPSVUHb5Y2suTRdXxtWib/u7QIi/Hc7MXgD4bYWN0ZKUbtaqHH5SfBpKUoNZZLxsWQl2QkwaTDpFWd1zPIDudIy/aCgQC2/ZVs2fQ52z8rZdTE+WRnXwRARfk2fnjvzUNuxw10N0b+PevCJdGCl7unh/qaquhxbb3Q1nDg9+KTkrnhrgsoKkqirnof91yziLTsXPZuyCczdyQjRo8lKb0ATyCB3FwL1mQTt8/K46LCVF76rI6ytj5+sb2Gn2UbWXZJXvT/93RNcz0fDX5uB+8wIv0ATr1duzppbesjyaIhKfEYlmsrFDDqYsiYBJufgQ9/CFufhaW/gYLFp37Aw6WnPtLAfNcb0LA5UnRKLoRx10DiaLCkgT4eVPJ25WBHWrbX0W1ny85KPviknNq6bh6eclv0Z9/8yWNs31099IaaI5/iGyIbtwwUvKrrWmjujMyK7eyDutb66K+YjHp+9uDNjClKYkxREtc8+H+s37qLwhGZjM7LZMzIbEakZxJnSKJotDUyvtw5kDWd3u3vkLl/JXk7b0Ch/Bo5S38FxsP3PxEn15FiwpnQIPdcV7mvi652N2mmJBKPISZY9Bbum3gff9z2R+768C7+ueyfmHXnRiN5cfIdqYATCATYvXs3H3zwKWvWfM6MGcsYO3Y8AGvXruUrX/nKkNvxeKC9f2FEXV1dtODV1dXO3r17o8c1NNTR0FAa/To3N5dvfWs+c+ZksnXrVmbNmkVBQQFlZaN5771CJk6cSFraaHp7Yxk3LumIPa8Ofn8q8eDUORNzBNmV7yBfZteNl9/dyC1fXUJ63gzmXbyM6265Cr3hQH+do/Xu6XX7eau8kQ1VXWjVSu6Ynctd80dg1p/9Bapup49P9rWxZncbn+xrp88bIClGS2FqLCOTY8hLNBFn1GLSnd/FqC/abW/g58lJCmz7trBz62fs3VlK9Z4deNzu6HEXf+V+vvuzHwGw7fPtPPKjB0lJSyMtM4MkaxrmuHiMMTF0dYdxeKykpOfgdAXIzdZgMXYSCoXYsaORmqpWEhMUJCcpsXd1MnP+RYybMgOAkjXv89P/uOOwj0OjM3HZjf/Nfd+5P/q9cDjMnpZeXt/WSE2nk+l5CTx89bgTniE4+MoQHL654/nudE5/Phd3YIIv97jq6uzcdNk8Wjo6uGT+HB68/WJG5R2Yzn7UndTCYWjYEmmMbrdB9mxY9CPImX0yHtbwCoWgaRvs+wD2roDWXZFilLUoMjsquRBiUyLL9M6TZtlH8kW77Q38vNfXybY9e/msfA+bd1RS29gaPUar0bDu6SeYPj2dtjYn3/zxYzR1tJKTkUxGSiKpSfFYYk2YY4w4eoLEqTPQ6VW4nAFURieZ2Qa8Pj/by5qo2t+BJV5NbJyCQCDEz/7jwEWPsZfdw+4q2yFjVKAgPzuDPR88GV0uBoDXCbteh+o1kf/n+f8b2RDgBGcISkw4utO9HOZcjAlf9jH9483X+OZNt5CRP54Fl17A9XdchFZ/YMnUkf7eK7sreaLsCQoTCnl26bPoVLqT8njE2eWL/oYHfp6VpWbPns9Yv349mzdvprS0FPegHOHOO3/A3/72fwC8++6nPPjg3eTkZDFyZDbp6ekkJSURGxtLU5Of9vZ4srJysdt9jBtnIj29j1AoxMcfV1FeXk9GhoacHB3t7e1ce+21TJ8eWdr3wgsvcNNNNx32cej1Mdx//8/43e/++xQ8S0OfC4kHh3cmxwO5BHkS7Sxdi9/TS13FauoqVvPqX3/A1LkLmXPhUmbMvwibzXvExtOxBg03z8hlwSgrb5c18cSn1TxdUsNNM7K5a94IrGb9cDykExIOh6ls62NNRRurK1rZbusmFIaseANTc+LJSzKRm2gkzqjFKDOjog3F9ToVTlcAGPr68LhduJ1OrMmRqd8b137On388dKcWg9FEbsE4ElLzmTpnVvT7IVUaS299KrJF+JShW4S/+FIFtZXtqPUeiout+HxBdlYGKJ6YzMWXTzxskWygODZy3Fz+tWoLtpoqNqzdzt5du3E7ammx7cXvdZKTlxb9nbLNG/j7I//HxGmzuXj6HLqzCli5t4Olf1jHzTNz+J+lo4f0DhvcPPFI69IP3nXkSNN8v+i2zva160cj05+HV3q6kfL9VfS63Pz55X/z55f/zZj8bK5ePIurFs0i7Ill795u4DCNpxUKyJoGacVQuRKqPoRnL4HMaXDBQ5C/6Oxq9O1xwP5PIsWofR+AqxO0MZEi1PivQfJoiEmRZXr9BhqKDxSI4MBrJBwOU9vYSl5mavR7Vz3wCBvLdw65jVG5GYzNzyUtIZW09MgFMputl6/MvSISD6YOjQcAL75YQWlZOwX5cSQkGujq1JFYlMqYqUlMyB912KR5IJl+98//R7ezhxVrdrK1fD/d7k4qbTaa2jsx6DVDilLXPPh/6DQaFkwfz9Li/yanZQV8+APY/jxc9odDCrAnKyZIPJB4MJx2bNuIz+Wmpvxzaso/58U//pkZC2Ywd+lcZl44E5ut77AzIAviC7htzG08s+sZHljzAH9Z9Bc053nR/nwycN4ymTTY7T5g6N9wX18fLpeLnBwrAK++upLvfve6IbdhNpsZO3YiKSkFXHzxnOj3lcosbr7578yalc7SS3Lp9fXS5emi29PNpuc3UOrcgs1fSvZ4Pav8TlrLekhMU6OY4ic0ykmnSUWvTkk4HOaxzsfwvOHH4wpjMRm55V+34GxwUr+rndaqTjytPXTa2vB4+lBnO9jcshmLzkLZujIe/dWjLFiwgEWLFjFv3jy02iP3uJIc4cs7k+OBvAM8iW678x7c5iy2fPg+W9avwmlvpWT1CkpWr0CpUvGDR/9FYWFhtFH1gA0bG9m4oYlZs9OZPSuDe+ePpK7LxdvbGnlmfS1Pr6/hglHJ3DE7l7kFyaiUZ14hp7HHTUlVBxuqOiip7qS914tOrSTfGsOycankJZtINRuwGDTn7W56RzLQUDy/II7iYivZ2bF0tLXw2Ser2PjJSrZvWs+Fl13Dt3/+CDZbL3ZXEtn5E5g4dTJFE6cwauxEsvLyh7zxH3hNjRmbSGFhwpDX3EBxKSfHjNPpJzFBT3Z27JDd+264vuiws7YGLx2ZOiUTa3om2aOmRROWhDgttVV7ScvMjv7O9k3r2FO+jT3l23j56T+j1RkYO3UuyQXTeW51F++UN/Hjy8ZwZXEGMLR54pGCzuGm9h5umu8X3daZfHL+smT68/DSaDTsefP3/O2lj3jtk3Iq6qrZXWVjd5WN//fky1w0ewoP33f/IfFgd0UHG0qaSEjUM3dOBtaiyyKFqOqPCOxdjfqFrxAwpqGecQdMuQNirMP0CI/C74GGz6FmLVR/DE3bIRwEc3qk11DCiMiHMRF05rOryHYaDDQUL8iPxIS0dAMfbyrjnY8/4+2PP6Pa1kzjp8tJT0nEZutlVHoBKpWKyy6czLTxBUwek0+cOSZ6e21tTl5/o5KGegeZWbFD48GgWRo5OWYam/oYMyaRujoHlVU9mEwaxhQlHbbBOhyICZFiVz6ZyWnYZh8oYLV2dNPeZY8e3+d0887HnxEIBHlpxacAjMzM4PJpY/hKeiMzW5eiGnc1XPoImCLnrpMVEyQeSDwYTnd/627UuWo2vVXGlk834bT38OmKT/l0xaeoNWp+/vRvKSxMPTRH2NDIxo0+pk5bwmfNH/DgRw/y2IWP0dTgOieTZjHUwHlr6tQULrool7FjE6mvr+fdd9/l7bff5uOPP+auu+7iscce619yl8yoURO4+OILmDlzJlOnTqWgoIAgQRp6G9havZe7/vwbml3NxKS76C3sYK29i+8v7yYYDh64YyuQrKA2rKXVr8PvUeANQ0eXnjSrGU2MioBCQcAfmRmrUCjoc3rpc/rwhl0YY1QEC4JYcgxofVbCqgQyfanY6+y8rXuF91a+BkDLSy10bOxg48aN/PKXv0Rt0FAwbRQLLrmAyy69jEl5k0gxpaBUKIc8HyA5wok6k+OBFKZOIrVazejiGXR3pNOruBxPbw2tdZ/h6txCwNvO9NnTqal1sWaNDWfrx/i9PaTkTmP3PgPV+3uxO7zU1TkonhjZRnZWfCy6Fh++BDW7mxzc9uxm4o0aFhelcEVxOjNHJKJRnf439MFQmMq2Xrbbethu62ZjdSf13W4UQEa8gdEpMSwcncyIJBMJJh1mvRr1MIzzTHXwkr2B5uE5GQHKN7zIn3/yDo01u4f8Tm3lHuDA7ntL//5GtHDU1u5k2/a26O1VVHTw4gsV9PR4Afj2tw/0jmhrd7JmjY2WFiepqSbycs00t7iw2Xqj4zi4mfnAjK7iiclDtiU/3GMByC8aR1u7k4p9LWRnx3LZ124lIzuP0s9L2PjxGnrtHWwvWQUlqwBI+e+/862XfLy6pYHffGVCtFHi0RomDt494tprRx8xYHzRbQ0+OR/tysjJuGpyIrfxZe5X+kgNv3RrApOyinBNyOfBr5j4bOdO1ny+hcZuG1PGFDB1aiq7Kzp46909vPv5ByydN4W2Wj1NNh86vYr9++0sW5YX2eWs8FLK7ONxVW5kPHuI+/Q38MmvIGMKjLsWxlwZKfwMB1dXZOlh4xao2wD1n0PQC7pYSMyHwssihai4LNBbQGOMzAoTwKFLeCYWJxMIBnHSyq+ff4+V67fS63JFj9dq1JTu2U96SiLZ2bE8cPPlQ2YytbU52dJ//rVaTawvaeTdd6tRKhQkJxuHHDc4HiRbDaSmmNBqVdEm5oc0M+fAjK6JxUNjwuGWIqUkxaMIadmyJTKe+Hgdq595mE8+L2f1xlI2bNtNdUMjf2ho5A/A9bNzeVH7QaSgefEvYPKtX3gef+21vdF4MLjp78EkHkg8GE5qtZqi6UV0d+TgNs3E3d1Ec/VOnK37IOhi6uyxVFXbWbPGRnftZhRhH6kjithVBdXVDrLsZvImXcAG1vIfH/0Hl3j/i82ftQHnVtJ8vjv473zgfDV2rJJPP32e//iPf1NdvWvI7+zatav/mES8YTfzr/8LLkMbNfYafl35CPs/r6En3BYtPIVNClDqiPWYyU21kq7Nx6Q2EfZqqK1y0dsFVnM8KfEWOtsD5I9MICZBy66dXUwoSGb0qCQUCgVKlOzd20l5eQcTJiaTOFqPrb6XrMwYEpMNtLc7sdU7yMg1kZCoJxgO4p/pp6G9k7rmDkwJIfq+0cme8Xuo2VZD/eYGfA4vFWt3UbF2F098/wkKfllAbHosaTFpZMdmYyxOpdAYx/ipeQRDQVSHWf4tOcLRncnxQApTp0BOjpmmxj6yps6gdPsIunuuISs9TE2tixUraqitc9C47Xl6u2sB0BnMJKRNwqGZxBbHWCCyjWxOjhmFQkF2diyxFh3ljXbKGuysqmjl1a0N6DVKirPimJufxLTcBArTzFgMJ3d6r9MboLKtj30tvexr7WVHo50djXZcviAKBaSZ9WQmGJiWl0BugpHEGB2xejUGjSzRO5KDm5gXFSVRWJjIHZfOobFuPxDZLjinYAKJGVO56LJLuXBJZHleZ4ebDRsa2bABLlqcQ2KSgTVrbDgc3ujtlZa1EwiGMcVoUCoV/P3pcubMTqeoKAmbrReHw0coGMbh8GJNNkZnVA2M5WCrVtdRVtpGe7uL668vPOJjGfg6Ozv2oJlVaVx05de46Mqv0dLay1uvfsqe0rU42rfR293KT29byqf7OnmrrImJX/1PZubE88RPHyQYjGHFiv2HPeEO3j3i2mtHH/G5njMn86jb1A4+Oa9Ysf+IV0ZOxlWTE7mNc/VqzfmkqCiBNqeXhHg98ydNRedLR6tTkJ+UyO6KDt54vZKPt2xlTUUJb39SggIFGUnpjLDm0d6bQ1qqMVKYArLyErGp5uPLWga6HqgrgbbdsPL78MH/Qnwe5M6FEQsjO6HF553c2UihEPTUQfseaKuI9Idq2AI9tZGf62IhLicywys+F+KyI4UoXaws0TuKg5uYjylK4vOK7dz7/Uejx8SbY5k/tZjcpBHceNVspk3OAmDr1lbWrmvggnmZTJmSgs3WS4/dQ0uzK3p7XZ0eQqEwWp0alSqyZG9icTIuZwCHw0cwFIkHydZB8aB/HIezelUdpWWHxoRjiQdWq4n508czf/p4fvLATeypbOGv//yYDWXl7GmoYuGSy2HJBNjyDI3/eoAfPPA9lt35c2655Rr27Omhrs4u8eBL3K8Yfjk5Zpqa+siaUkxpUgbd3QvISlNRVW2P5Ai1Dmo+fQdnTwcAelMMiVmjcChH4XRkkzf/AkpYizshwDUzvnNGznoQJ+7gv/M5czKZPTuDrKwsGhsjOxcplUrGjp1CYuo45n91Mpkz9Hz7k2+zvWkn7b4miLx0MKst4DKi8BgpSppOUW4mm9faqdjsxqgzkDEyCRo0TJyVxbiCFLZsaaGttZVQnw+FX4M5Pp6sAl00Jkwdl3fIeD9Z00xZWRtd7X6uv74QjUKLVqXDoDbQ1mindp8HvdKISa3GZnOTnR1LuCOMqxqyNQksmZEKkfa1NDb38MbL66nYup2ehkrczj6um3MdPb4eWuwdrHx6DUGtD/1kHZtsf+MXy7VkmbIZnzqGcYnjmGidSEF8gcSEs5i8UzyJGpt62by5BUeTi5hYDSNGxDN+XDIrVtSgVCkoLWtHqVISY1KTO/4KfPYd1O7bjNftoHn/pzTvj0xr97bNp6Dgj2Rnx0bf1GVnw4y8RHJNOvZptPiMKppdPuq7XfxpTRW+YAiAVLOegpQYshOMZCUYSbPoidWridVriNWr0alVhMJhwuEwoXCk8GR3+3F4AthdPprtHhq63TR0u2jscdPaX/BQAIkxWlLMemaNSCTVoifDYiDeFGlarteoUEoh6ogGzzpKT9eza2spbz6zmgnjn0Cr1aFQKFhwyZVs27iB0ZMu4uIrLmfLdhdlpe209cTT3hGZ1VRa2kZpaRsKIDnZSEFBPA6HD683yIYNjdTbHOTkmLnggkz0OhUfrKyhs9NLTU0PV189CpNRTf7IOBwOL2azlvETkqiq6uFvfysnKdFAfn4c4yck09nhjo4XIAz09HhY/vxulCoF8+ZlsnVrK6+8vBevN4DPF+mDMpB8HDyzakB3l5e6JjMB4xIW33AHV12RjUatZvGYFJTdHn776Ku8u7qbd5/5DYVjZzB65EXceut15ORYolcGLBYtubkWnE5/dBeJE3HwlYajTW09kWmvg6/iX3vt6BO6jTN5uq04uro6O91lbZh0YDJpaG9zMTI/nquvHkVtjZ2AN0RZaTtud5BkSxJXXXAh+xqr2V1dR0NHIw0djcB6PtjxFjHJ3yUjIQujqT9kK5QQl0Wb73LqvXPJHdFLonsPdFdHejhtXx45Tq2HpFGRWUsDhSJjIujNkSV0ulhAAeFQ5CPoA4/9wEdfK9gbIsUoez302MDf30RVY4DYtMgsqMxpYMkGc0rkNrUx533j8i8yeNZRSO3i4x2f0B3MYerUSwG4avEsfvLnf3LRrKnMGlvMsoUT+eSTRkrL2qna20dOZmR20po1Nmz1DiASE/bs6SIcDmOzOQiHw2RnxzJ7Tjo9di99vV5WrbbhcvqpqOjk+hsKmTIlBZ8vSF2dg/T0SDHq/ff3s2aNjfyCOK65uoCOTnd0rNFiVTgSE55fvhuVMhIT3nxrH7t2djJ2XCJXXTnqC+NBW5uTBpuXJG0uc0ak8uBXb+IrV40CnRYW/pCn1vyCf2zaxD823UWy+T/JH3s5t956B/fcczEQ+Rv7+ON64uN1TJmS8qXiwcDtDcQEiQfiZGtq6mPzlmZ6aozExPTnCOP7cwSlgtLSdpRKJTExKvKnLsDTVUNtxW48zj4a92yjcc82UCjwN89gxreW8HnXh7jMPyOw4/sAQ94nyfK+s8vgXkcFBbGUlJTzxBOPcvHFL6NWq1EoFHztuq/x0fpPSZ08kqR5Jva499Gh3sxrbEZbpiOWBIJ2I77akYR6TUwbnU9BTiq799nxuxV4bCo6283Myh1JusKBXq/igw8iOYJtv4urrw5jMqnJzx+UI4xPYuvWVl5/fR/FxcmMGBFPdnYsnZ1uSkvbKe6fURvujwfLl+9GqRyUI7xyfDmCoydAU5sZZdxsLlv2Fa66MheDMbKD5cYN9bz95lv4PG4U/1SQPi6HuMnpeC4I8ln4M96tfpcQIdQKDTHz0skZkcrosTpanC2kmg7tqfhFJEcYHlKYOokqK3vYs7cLRW+Q/IK46B9ccbEVh8NLn9NPbKyGjAwr9baLmDX7NqZPtfLGq6vY+PEa2mxbaG3Yi1ptiP7x9nS5eOpXd5M9ooj0vGLs7jTiEpOZMD6ZwjgdCycloDVpqety0tTjobLezo6qLnZoe3AHQ3gDoWMev0qhwGJQYzFqMRvUFFhjmJ6bQHKsDmusjli9BoNGhUGrGpYlhGez0rJ2PltfzuY1m2jYu5ru/i24//n0a1z2lSvZUd5BZtHXWHb9A9ElcYFQ5JJH8cRkbLZe1q1rpLvbTW6uGb1OjV6nwucLYjZraW8PsHdvF7Y6B1OmprJoUaTH04oVNQQDQdrb3NE+IJY4Hc0tTrKyzViTTSx/fje7d3ei16mor+9l02fNeL1B+vr8QGRmVnKykfZ2F7W1DjLSY8jOjuXJJ0rp7PQAsH1bG5ddNhIgOvvqcD2qSsva6e3zExujoXhiMgbjgWNG5cSy5Ko7+bzkfdprd7Jn5yb27NzEhx8+ylVXXcuMGVfR0ZGEWq1AqVTwzW9O/FJbXA9caSgpaaS21h4NDodzItNeD75ic7TbONKbyTN5uq04ul27OnFWdqNTBXA4jJjNOiaMjyT1DoePrk43cXE6Ys0aCrIzWbp0HrNnZ9DY2sFf//kxH6zfyu7aSnp6+3DaVexp68LjCfDBphIae2yMzctHF4onLy2D4kmpxFlmkT1qMdY4oLcZumrorNuPp6WRBPvnGMIfRYpNHMdGvBojGBIiTcmNiRA/AkzJkV3zTMmRn2uNkQKYQmLC8diypZl/ryzh/z1fwa6aSgCKynO57pIFlO/oAMJ8/uLjpKQc6BU1sdjX/zmZ9SVNbP68mYQEPRqtkknFydjqe/F4Arhcfpqa+ujq9qBWK1m0KJtbbxnD88t34+zrwecL0GP34nIGmDo1lS1bWggGw9FG62vXNVBT00NXtweTUcNnnzcTDEReN2OKklh80dCYkJ4RQ3l5G2VlnQDsqegi+8EDicfR+lNt39aK2x0gPSOGyZNT0ev6m94qFMy66AquaodPNm+h3eGkfeNLbNz4En/4QzG33nobhYWLWbmyhnCYLx0P4PAx4XDnX4kH4kRUVXazd08Xoa4w+fmHyRH6BnKEFOrrTcyadRXTplp5/cV1bFi1idaaPbTW16PW6gjvz2PuiCtY3/kOt/16HhMyFjN6xCyamxOwWq0sXJiN1Xroa+hYGkeL02/16jrefnsjH374OJWVq2lvj+QIX//xQ2RdaOGzhi20jasjPCFEu7IajSGdPPUIXG06irKy0fvi2b65B0dnkHSlGoNeQ7I6Hl3ARIIJ2l2u/hyhl6kH5wjBIO3tg3IEi47mZidZWWasVhPr1jVQXd1Dr8NHY6MLl8s3NEc4KB5kZERyhCeOliMcISaUlrbT2xv5OyguTo4WpQAyM41cfP21lK7bSEN1NY3ltTSW11L9ipHZl8xl+oxLaFO7cOk6cKm68Rfs4lXvZ7z670ewGq1MsU5hVvosZqTNID3mi9seSI4wPKQwdRIVFMRRWJtAolbN+AnJWJNNbNnaQnOLE48nQHV1DyajBpstSENDL8FgCK1WxbhJ08kbPRl7j4f9VQ3EWyC3IDKdvnLXTrpbdtDdsoOyDa8AoDclUZU/jpj4fOYsWszMedOwV/ViIoy51UdbVR9jJiRx6eUjcPqCOH0BXN4gHn+QQDiMAujr9dPV7YFAiO5OD2MK4ikqSECrVqFWKdColOjUSilAfUl+n491q95j7evPULVrc/T7WkMcurjZNLVZsNl62ba9FcIQFx85CdtsvZiMagoK4klMMpAIdHd7qKvrZcoUK7NnZ7BnTxd1dQ4cDh89PZGTfzgcprbWzttvV5OXa2ZicRKl29uZMDGJwsIETEY1TU1O0lKNmIxqtmxtYczYRDzeAEmJBjo63dhsveh1KrKzzdF+Z0VFSWzY2IjfF2LW7HSsySb8/gNFz4TEyK6RAzP84NCdJysqOmhvd1FQEMdFi3MOWTaYmZnAf37/27z40jI2bdyF3bOJ1h2rcNtbefHFf2AwGLn22u9gsWix231f+grBwO8/9VQZW7dGtlc/2pTf4zVw9f5YruKfi9Nxz3djxybS3RGPSRckPWCJvhnbsqWF6qpu3J4gPXYvbW0uerq9vPNuNQBarYrrly3kivnz6OxysnH7PqwJicRZdNjqHey27aXCto9NO8sAUKvUFKzJIjMpg7lTCrnjKxfS2mLGaJrCivIEWpoKmDk1ga9cmRuZ7eTrBa8T/E4IeInMh1Xg6PNRWWWnu09J/pgMcgsyQK0FlTYy+0mlBZVOGpV/SXv3N/Dkyyt49rVV2PucQKRxbJoli6kjplNX52D7tlbCQJxFT0pKTLR3k9EUiQlJiQYqK6ux1TuYMCGZXz58AVu2tPDxxzbcniBxFi0pKUZaW118/nkT7e0uxoxNZPasdFxOH62tLsaMScRoUrNlSwtGk5rUNBM9dg9tbU4umJeJ3xcivyAOm81BT7eHuHh9tN/UmKIkkhINrC9pwmjUMHtOOn/5S2n0McbF6Vlf0sjcOZENLQb6Sx2ciPh8QXy+IKNHJ7BkSe4hP1+6oJilC4pZ/s8dbF7/FtVN21hZ6WHv3lJ+8pNdbNmyjyVL8oDwSblifCpjgsQDkV8Qz+iuBOJJZfz45Gg8aG4elCOYDs0RJkyfwMixY7DbPVTtbSIxQUtufgLZ2Tk0vdlCeVUZG6r+zYZP/w2AyWRl9+6JmM0jufbaK7j00tl8/HE9EKasrJ0tWyKv7aMVpgYSYbfbz86dHVLIOkW8Xi+vvPIKr7/+GOXlB3IEjUVL3DwLnye/R2VTEgF7LDGeQibkjmRMxgi6W0PEW2LxaRRkZ0YKnGtXbMdW5z5qjgCDcoQ8MxMnJrF9ezsTJvTnCKb+HCHNiKk/PgzMiiouTqa+vi+SI+j7c4TiQTnChkb8/hCzZqVjtZoIBL4gR7AeJUe46NAcISs7kW///Bu8+OJsPlu/B6Wzkpryz+np6OSj1z7EbLYw7/JrMJnU9Pb5sGaoCRudVNursfXa2Nq2lfdr34/ct9HKZOtkZqfPZnb6bFJMKYf830iOMDykMHUSZaTHMm1aKnlJB65wDlwRqbc5aG7SkJpmoqsz0ii8z+ln69ZWzGZtpHqdHYslTj+kkfTMuWNxOn5JQ9U2dm7/HHuHDY+zg31lnwCfkJNjwJZTyLbtrdg722ireYfElFwSdVPAFU9WcgpKpZK2dicl65vo7HIzZ3Y6JlTs29lDxe4O3J4AdPlYPF2CzskwuCG4o2M/v/yfewFQKJTkj5tFVuES8gpnUb2/j+xsMyajmsmTUnA4vFRUdLJyZQ1Go4bUVBPBYOQq9dQpqSQl6WlocOBxB7D3eDEZI3++9T0eqqsdhEJBDFYTTU19kWTDoMFqNUSWbYagvd3F39+qxmBQcdmlI3C6Amzd2opKpWDmjLToEr6SDU0kJugpLEygqclJU1Mf4ycko9WqSEmNNMYFuPSyPN55uzoyhbfbG1nmp4Tq6h5mzEznlpvHDnk+SkvbaGp0MrE/kB3pOYssHxxL8cQFNPv+ixfeW0VX2SqSZ17C0qV5KJUKSkpK+P73f8S9997LnDlzDtvP7IumtA9caXC7/bhcfgKBICUlDSftzde1144+5iB2MqbjnurGjOL45ORYyJlohYBnyM552dmxTJqcQm2Nnd5eHznZZhT00tfr5+OPbWi1KiZNTmHxohza2pwkJpiiSX12diwP+a6jtHIPqzeUUVVfh8fvpaKmhoqaGtaVfcbFM6dTVeVApVKwtnwT9l4nSXnj2N2URE66FZMlUizYsKGRDRubmD0rndmzM1j9RiVvvL2PQCDErF49/zEjd5ieuXPLwQ3B/+tXT/H+2i0AWBPiuXTuHJJ1I9EpTMyalY7d4WNkflz/TFgXv/v9ZlKsRhQKBSqVIhoTDHo1uv5z8UBxaWR+PKXbW2lo6CMUCuPxhHA4vDQ2Olm3rpFZs9OIi9NTW+egrdXJP/6xk85OD/MvyKKoKJGtW1tpb3MzsTiZ66+P7CBcVdWDTq9m7JjEaDyYMD4yi9fl9FNcbGVMURIXzMtgLY1YzFp6erx88kk9n33WjMcdIDUthosW5wxpum6z9bJ7dyeOXj9qtfKQJGXw8zZlShpq1bXcN+4W/lL1Av/+6HNawklMzAgwceI4AL7+9a9TXFzMrbfeSlxc3GH/L4YzJpzueAASE8406ekxTJuaRo7lQKPlaI5Q76C5OfK+r6vLjUIBfX0H5QjEYrHohxR5L1+4iKDDw6byVTj22vE2e3A629iyZRWwimnTUtm1azQrV9bQ2lpPW9sq0tJGYLXqaW5uJiUlkiPU1dl59dV9NDb28pWvjMJu9/Hyy3tZv76evj4/NptDClMnweC/uxhrgOfee47v3PqdyA+VEDsxlpQ5maQXFeDtjCUzmMHUpJF0h0K4FQqc1QHe+bi9P0cIHsgRpqaSlGSgoSEya9Zu92LqX/pfX38gR9DrD+QIBoOGlBQDMChH+Ht/jnDZCJzOAznCokXZjB+fTGenG4tFR2LiQTnC+P4cIWVQjnBpHm+/Hbng1tPj7V/m158jzEjnllv6c4S2QTlCk5OJEw+TIwyKBwcKZfOIj7uHj1Z8xu7PSrjmtsvJGhFZsrd13VZe/O2HXHnLlSyatAgAb9BLu6udfd37sPXa2Ny0lQ9qPwAg15zLnPQ5LMxeyGTrZDQqjeQIw0QKUydZd7eXzrq+aLAZ+EPKzo7FbNYBYcaMSSQr20xOjrm/mu2NHjdYpC9RD3MWXU7RA3ewZWsLmzbW4OurJc7UQmPNbmbPn4/OqEanU9HTUUXNjreo2QFbVsMfAZVagyUhhRhLCirzhfjVYwCYP9dCS81Gulv9hNHQ2+WjuT4JjU6HVqtFbzSh1epO87N3dhrcP0oVauSjlRuJSbkAe48XS1wyMxYsQ2NIRxkzC3/YQn27m75AN52dXurre6ms7GZSsRWzWUtJSSNNzU5MRg2Ewe8P0tXlxucLkpVpxmjUkJigp7nFiUqlYO/eLvbt6yYYCKHVqSgoiGfr1lb8vjB2nw+FInJVuqG+l/Kydjo7Pf3BKtJUv7Kym6rKHrq7PFji9EydkhoNCFu2tkRnckVmVUBaqjGy+1K7kxEj4rn3vkns3t2JzeagsakPl8tPb68Pm80RfX4GGt8mJhgwFWsO2fUPYEd5O9u2tTF5spVFi3KjYygCphfexL8+m8dL1d3seryEP91QzOOPP86LL77ICy+8wLhx47j33nu5+eabMZvN0ds81isM1147mp07O1i92sbq1XXD8uZrYHy7dnUO+fp4fPxxPStX1rBkSR63337yGzOK49fe4aK5vpPUkZEkYuA8P1B0GliyNXVqKnV1DgKBEM0tTiB8SEFjoCfRtOICbrtuFlu2tLC7ooOQykV9eyO2tgaUKhgxIp4+Z5Dmpj4+37uV1p421u5ey/f+HBmTJSaGnPRk1CEzYxPn0dnpJj8/jpLtO6jvakWFhqZOJftqGtDrtOh1WnRaDZbYQ6fdi0MN/n8dMTKGJ19YSWZcHj32DOIsvdx2xRJUSiWzxkxD6U7E5QzQ2upEq/Xwyit7USoVTJxo5frrR/P88t1s29qKSq2gID+OvLw4IFJU1OpUzJ6dQUKiProEo63NSWVVDwpAp1NhTTEBOvbu6SYYgs2bW8nMjKGv109lZTdud5BQfz+qJUtyqazsxuHwUlbaHk14Zs/OYPbsjOiMrIGZXEaTGpVKgdGkpq0tEg8WLMimo9PNhpImbDYHlVU9BPwhjCbNkPc3AzEhIdFAsUlzyM5/A7sFDmzqMXVq6oHeVuO/x7cnb4Btz8OTs+HCH7EzdgHPPvssAP/7v//LDTfcwL333svUqVOH3O7ZEhMGEqK6OvsRNwA5FhITzjzdPW7aK1u+OEfIOsYcobSbSy69kq8/cC1//OwJWh0NWHdNYGbsaKqqdnLllRcTCmkxGtV0dOxj16432bULVq9+hPvuA61WS2JiKnFxqYRCC3A6I82tr78+jdrajbS39xIKqenpUbN//370ej06nY7Y2Fi0Wu3pfvrOSgPLJxcsSuetkldZW/4x8ZeoaAnWEQ6HSZiSSEJOCnEFo1H5UnE0afH3xdLTFqQHaNvVxqRJVixmLSXrm2hudmIyaYAwfn+IpqZe6usdTJ2aSnKyEb1eRXPzQTlC/+y7goJ4tm1rxe8P4/f7UCr7c4SGXsrK2unqOkyOUNVDd7cHi0XP1KmDcoQtLWzb1tr/KPtzhDRjdIfWESPiuW9wjtD4BTlCogGTSRMtPA22Y8fhcwSAG79xEXzjoiHHv/GPNyj5sIQPX/uQ/LH5XH7T5Vx09UVkmbPIMkc2Dtm4uY6yhhq0WZ34NO28Wf0m/9rzL3QqHZOsk1iQuYD5WfOHPR7A+ZUjSGHqJGtpcdJl64t+fWBnslQscZE+QaFgiGXL8igqSiI/P44d5R1s3dLCSy/tISnRwOKLcqK7q5WVRtYZFxUl9Z8k4nBoi5gwZSFffzBSGd6ytQWvN4jJnMLYmV9FFWqltWE/7a3NBAN+utoa6GprYNy8BbgVKnQ6Fe2NFWxb/X/RcX5SBZ+8cuBxmGLN/OWVD0nPzj31T9pZbtv2Fj59/13efXYVbQ270Gh1fPXBYhwONVXVPYyd910CgRCl29sI48NoUNPc7KS7y4NSqcDtDtLR4cZojOyiRxhcbj/V1d0EAmH8/mBkZkWOheJia3QqrMmo5qM1NpxOPzqtgpgYA319fmbOSuOD92sIBMMoFKBWK3G6/CiVCuLidBSMiqem1k56uolFi7IJBEJUVnazdUsL9h4P4ydEgoK9x0v+yMiVewjT3OKisDABa7KJN96o5PPNzUyflsad35gQLc6pVFBv62PW7HQqKjoo2dCETqciPc1EenpM9OpKYpLhoKV+ClBAVVUPpaWbmTU7ndmzIjM7YnQa7r5gJMWZnby8pZ6lf1jHdYuu5+sGAy+++CI7d+7k/vvv53/+53+46aabuPfeeykuLmbs2ERKShp56qky3G7/Ea9M1NXZMZm0TJ2acsQtY7/Iybja8GUCQ0lJA2++Wdm/5v/QHkLnYoPEs0FjYx811XZ8msjU9cE7k1mtJuIskZgQDEViQlKigfIdHTgcXp59bidtbS7mzMngmqtHUVbaTmlZJB6M6Y8HAD12D+pQDJfMmcXUqZGYEGeJ9O4pHjERZ6ALu7sLW0sb9l4n9r4+yvf1kZOahjlPi06nwmbr5e2N71NVH9nx56Nq+PXLQx/Lf912FY9875un42k7q9lsvaz+pIL1uz+jtLoMp8fDlXMXkZl2OdVVPZjNCfz6Ww+welUdde0OLGYdao2S1jYXbncQtQrqbHZWrqylvd1FmBAuZ4j9++2gUOJ2++nq9JCQoOfaa0cN2iAllpde2oPHHen7odYoMMdqWLgwm1e8e7DZHKjVClxOPwplpFltbKwGs1lHQUEca9bYyMkxo9Wq2L+/m/IdHWi1kWQjOzsWo0lNfLyehER99D4H+lLZnENfx3feOYHdFR288041zj4/S5fmRYurG0oiMcEUo8Fs1pBeGI/LGaCtzRmdBTKwe6zZrIvOGhuY2QdAzmywjoXNf4MPf0hO8hQe/93/8cRzL7Fz506eeeYZnnnmGaZOnco999zDDTfcgNFoPKaYMHAuHzcukvicjTFhIBH2+YKEwyAx4czR0uyio+rAEqdojjA1FUt/PAiFDsoRdnSwZSBHSDKwuH/2YWlpO2VlAzlCEXeNvo+/b32e9uk7qdLoeOZnz2DWmVmxYj8uVwCLJYOZM69Dq+2gtraShoYGfD4fzc02mpttTJx4AXq9noyMGGpqyli79hfRcb7+euRjQHx8POXl5WRmyiyqo6nvreeJDc+ybsfb/OYfFbhqXCj1Si6Yu5TRhll4mmOYfIMVhU/Lju09BMNgUChoafDQ3X1ojqBSRc7JLpef6uoeAoEwfX2R5dk33FDEDTcURS9qmUxqPvookiNo+3MEp9PPzJlpvP9+DcHBOYLTj0rVnyMUxFNTc2iOsGVLC3a7h/Hj+3MEu5f8/EE5QnN/jmDtzxE+b2b69DTuvLM/RyjtzxHq+5g1qz9H6I8H6ekH5QiJhoNm0UYed2Vlf44wOB4cxo3334gp1sTH735M1a4qHv3+o/z14b9y0TUXccXNVzCicAQjc5Ko2tOH7RMdCxbM4KYZFqp7qtnbvZc6Rx2/2fIbfrX5V6Qbsoi3jqVg3hguXJR1Qq8DyRGOnRSmTrLUVBNWo3bIlY3Buw+EgiEam/ooLWunqCgJa7IJS1wvO3a009nlRatRRo/PyTFTUdFJvc1BRUUHRUVJLFqUfciVk+zsWCZPSoFJVsZPuAJrsom2dic1Nd0EPN00NdTj7m2jtikJd39xW6vTUzh+Eg57Dz6vB5fTjc/rIRjwkZFXxP/86q8kp35xc7jzUVu7kx3lHfh9buoqVvHh68/g6G4GQK3WMGrCQhpsnai1sfT1+ujqcmPv8dLR6SEhQceUaans2dNJX5+fhHgd1hQTTY19tLW5MOhV6PQqQqEQPT1e4uJ0eL1hKnZ3YjSomTLZGi1KrV3bQG+vF5VKQVKSkYzMGJQqBRMmWOnr81Na2kZ8XGTHP7NFS1ycnvh4Pbt2tlOxu5Oqym7GjkuirKydnm4vXZ1uHA4fljg99h7PkKsTbe1OoAN7j4e2diedXW7sdi+dXZEdugbWmA/24ksVbN/eitmso6goEacrEJ2BZYnTDylMjZ+QhCVOx8qVNVRV9eDxBtBqVUOWtc4YkcjotFj+8mElz1eGyEq/jpWffI/tm1bw5JNPUlFRwVNPPcWaNWvYt28fOTkWamvtbN3aismkOWJhateuTux2LxddlHvCV0JOxtWGLxMYVq+uo7Gxj1Gj4lm4MPuQn5+LDRLPBhkZMShDXlIPEw8G/h0MhWhq7KOstJ0bbiiKFpX27+/B5w3R1d88dGJxMk6nH7vDy9//Xs7sOelMnZpKW5uTOMuhMWHS5BQmTb6aCf1vIm22XoL42G9rJaBwsX1bG872IAaDmuzsWCYW5aLTq+lzuul1evB4fPiDAYLBIH/+4YPceMW80/SsnX0GZklV1dv490er+WjzFsKRigA5aanEmxLo6vTg9QaoqnZhq3dQua8HFGGKJ1rJy7PwySf1KBQ+EhL0WK1GNm1qorUtcn7V6VQEQyFqa7oJh8HpDJDaP3t1QEenG41GSRjQalRo1CqUKiVarYoZ09MJBiAmVkNysoFAMERGegzjxifT1ubio48aCIZC5OaYyc42U1LSRF9fpNG6zxd5HD12D13dHnLzzNGEocfupcfuIT09ZsjreExRUvRjsLLS9mhMmDAhmRani/Y2d3R21sDtDn7P9Pzy3eza2YHXMygmWE1gsMC8b8P+TzFsXc4dgd1k3vCf+EYV8+ab/+TVV19ly5Yt3HnnnZhMJq6//vpjigkD5/JZs9L5yU/mnPBrYjhjwurVdaxebWPq1BRuvXXsYX9fYsLwSE0zkqSOO3KOEArR2NhHaWl/jmA1YbH0snNnO52dXrTaw+QI9QdyhHumfZ0PKtdQ6v+UK9+6kl9f8GvGjh3d34stl4ULvxmdjVde3orP10V1dS3bt++lsjIRtVpNXp4FrdbEtGnT6OrqwuPx0Nvrwu32EAh4GTNmMs88sxyr1Xq4h3hec/ldvFf+CW/vWEOVdyu1a/fSubITf2fkgoFKo2LU1EmwfQzm3By8bW5afUHs9l46O7wkJOiYNjhHSNBhtZpo7M8R9PrI5IKBHEGjUeH1hujp8eHzBYcUpT799ECOkJxsjLwfUR6UI8TrAAWWwTnCrnZ27+6kqqqbsWMjOUJ3t5euLje9vT4sFj12+0E5Qlt/jtDfp7Czsz9H6DxKjvDiQTmCMxCdgWWx6IcUpsaPT8JiGZQjHBwPBqmo6GDD1gCFF1zLdffdwZZP1vLOP9+hoaaBt55/i/LPynn6w6exWk20tbmoqupBr1czZ04mxdZiiq3F+EN+Olwd7Ozcyda6XezRf0Rw9AdUNz7H3PVzWZK7hJlpM9Gqjm3WoOQIx04KUydZfLyOvIKhL5rBzaCXLcujZEMTep2KtnYn1uRI35AZM9Ox2RzRK5fFEyPrdf3+EPv2dbN8+W5uuWVMtJg1mDXZxKJFQ7+3o7yDjRubSE0zccUV87HZetny/C76+tx0d3uYevMCps5ZED1+YMaLXqeit89Lr8uIRqbpDul9NPC822y9rF6xirJPfovfYwfAFBvPxdfcTOGUKygr91BW3kFbVzMGgxq73Ut3VyS51KUasSYbaG83kJxsID09hpwcC319Prq63ThdYQwG8PtC+HxBlEoFPn8QtzvI3n09TJjg5JNPIg1um5v78HqDGAwaCkYlkJtjobPLzdYtLXjcAQpHJ5CWHkN3twd7jw+jUUNLi5PWNjduj5/WNhd9m5rweILExevJSI/B5fbj8wWpquphz57O/t4GRAuoe/Z0YYnrjfQpMx1YlldR0cGq1XV43AEKCuKZMzeD4omRRDoxQR99IzV5UgoQPmRK+oDJk1PQ69RYU4wHZpf0P+8D/xfJHQFsjU4asozc+04Vj918PbsefJC1a9fyxBNPMHv2bJT9DZovuyyb8vJ/MmfOXUf8Pz4ZVwpOxm18mcAwcFV/8eKcMya4CEhOMpIcp4SYyGs48kbIOaQZ9LJleZFZJHoVbW3OaFEpNdVEU3Nk6vvuig7GFCXhcgZ4fvkuOjvcuFx+xvQnLge/MbNaTSweFBNWr6lj48Ym0lJNXHHFGKxWE5Xb19PQ3YWzz4/VauLff/pB9PiBZYM6vYq+Ph+j8uNlKV+/g5dYAtTVOfjPX/+BXba90eOmFo3h1suXkmxMY31JM/treggGwzQ3O/F6AwSDYWJjtHi9QQAsFh1FYxIpLk5m+7Y2AoEQAX9kxotGrcLrCeMM+gmHIBiCpubIDKPVa+r45BMbvQ4fra1OFIBWqyQrK4ZQMISt3oFKFSlu5eSYsVqN9PUFSE8zYTZrWbmyls4ONzExGtzuAJs+a8Lj9RMXr6MgP46WVic+X4Ddu7v6+95HrlwPzPjbs6eLOIueZcvyKCttjy7Le//9/axZYyO/II5rri7AajVFi6sJ/f1JXM4ARpMalzNwxJgwe1bkAlmK1ThkxiFAW7sLW3chlY7bmBZ4jSssv6Sx+RK+8swzPProozz33HO88cYbXHPNNdHbS0urJi+vjSuvPHyh9WRdOR7OmDA4HkhfoDNLfJyBnJyhW9cPbga9bFkeJSVN6PvjwUBvwRkzDsoRiiM5gt3upbo6klgPFLJutV7Bwt5JLN+9nDtX3sktY27hP2/5TzQqTfQ+P/64ntdf38fIkfH8539egtU6jq1bN9HX18v69Y08+ujlXH755dHjB2bhmUwaurtdtLWpZSkfUFvbw5rybfTE72GnczOlbaUEwgGc2/zYnt5P0BUpSJnizFxy3aWMnTGf7TsclJV10NHWEs0RuvpzhLQ0I1br4XOE7m43rv4cwecL4fcHUan8BALgcHjZvbsTtzsQyRHcQ3OErCwzJpMGo1FDe7sLgMLCBNLS+nME+6AcodWNx+OntdVFX18TbneQ+Hg9GRkmXK4A5eVth40Hlv54YLH0MmdO+pBleRX9M2j7+mfQzp6dQXF/PEhMHJQjTD6GHEGvxnq4eDCoV9VAwSsry8zX7voaX73zq2wr2cbby99m6gVTo31pp0xKYO/GDykquGzI/WiUGtJi0kiLSWOCfiZ7a1vwWBppDNSwtmEtb1e/jV6lZ3radC7OuZgLsy8kVnv4MYPkCMdDClOn2MDaWTiQYNt7vPT2+sjKNtPZ4aa0rJ2RI+NIT4th02dNdHZ6cDr95OVaGDMmkTJ/iN4+f3SW1eGKJQdrau6jpqaH3j4vNltk+Vd+fhw2jZKsTPMhxztdkTfKZrOOrGzzEU8K55vB/39JiQaUSiUmo5r0nHy2B9yYE9LIGHUl19xyMzGxMezZ00VjkxO3y4/XG0QB+PwB/P4wBr0KrU5FVXUP8fF6RuTFodMrKS1tQ61SYjJpcbn8/UstFKg1CowmDUqPgkAgREqKkZpaO+3tbtzuAOFQGKNJw9ixSaSmRhLeHTva8XpDBAIhVCoFoRAkJRuw9/hwufzkj4wjHApTvb8HAEucjlEpJgoK4lmzxkZPj4eUlE4am/qwO3xs3doavRI38JowGdU4XQEWLcqOzs5bsaKG8h0dBANBunu8ZGWbo/2qKio6osXW9PTIEtWqqp4hr+GB5zkt1cT8BVm0t7vYvauTESMsh/xf6HVqstRaTH4VDXq449nN3DIrhx9fNo/58+cDB6bNtrZuYufOl3nggVdYsWIZ9913H0uWLEGlUkVv92RcKRjuqw1z5mRKAnKWGHxOAWhqiuzM1t7mYn1JE15PgJwcM0VFiXR3e9izpwujUUNSooEeuxeDQYVaPXRnvMMVSwZrborEg77eSDywWiN/851dbgoK4g853uU8EA+ysyQeDDbw/xcKhaLPtSlGQ3JCPMp6JZPyx3HjJUuYMDqPlmYXZeUdOBw+PJ4gXk+A3j4foRDodSrMZm1kmXZ/rHf0eln7aQNx8TpSUkzY7V6criBuTxC1WoFOF2l47uj1olYpWL2mFofDR3e3h64uD4Fg5OLY3LmZdHV7aWxwsGZNH4kJBjo6XTS3OJk3LyNScGpxUlvjICM98hhyss14PAHiLDpSrEZ0ejW1tQ76+vxUVXbT1eXBaFRjNBx425idHRudNZWdncwNNxQBkdfjeyv209TUR1e3h6lTUrFaTdEZVAMtCowmNWWl7eTkmIck5wPPcY/dS5xFx623jKGqqocNG5sOGxPCukRebv0aS3Rbmdz5If4/TSP5+uf57ne/y3e/+12A/hkibbzyyqPU19exf/8/2Lv3bu68807S0tKit3myzuXDGRMkHpw9huQI/ecTu70/R8gy09npprS0P0dIj2HTpkE5Qp6lPx6ohtxmW5uTVpuG27LvYW3PSpbvXs7H9R/zi9m/YErqFAAqK7soK2ujq8vNrl05LFyYxbp19ezc2UFGxqHne7vdRyAQJinJyJgxSWfEkp/h4vA52Ni0kXUN61iz/1P6wj2ouzXkmXOZnzkfVW88uzV26jx/JC45mazx87j29sswxRgiOUKjE7e7P0dQgM/XnyMYVGi1Kqqq+nOEEXHodP05gnpQjuDyo1AoUKsVmExa3O4AGo2SQCBETc2gHCEcxmiM5AharYqaGjt+fxCbzUF7e6R3bSgESUkG7Pb+HCE/jnA4THV1DxC5YDJqlInUVCPr1jYSCIZpaXbS3ePBYNCwa1cH6emmaI5gt3uxHyYerFhRQ2lpO8FgCItFx+zZGdFZVNEcobg/Ryg9KEcYFBPS0kzMn9+fI+w+fI4QWRoYQ2KiITqDy2o1MWXuFKbMnRIdk83WS3NlKZWfr+b3Wz5iw9uzuPLWK5kyd0r04jZASkosKSmxQAGwAJffxX77fnZ27KSyu5K1DWtRb1QzxTqFS/IuYXHOYiy6oed+yRGOnRSmTqLGpl4qKrowFSqiBaPBU3QBSsvaqa1zoNOpqKiINITr7PTQ1NhHKBzG7QqQkR4TbXBdVJTI1CkplJZF3rxt2RrpA9TcEql4DxS2ivt3MRgoWjU39REIhtHp1NHk//rrCw/bQLGt3Ym9x0taqpHxE5JY/8ELrH+3kqVXX0/hhMmn8Rk882Rnx9LaWM0bz/yR57o7ufHBP7JxQxNKVQx3/+BpXIE0dpR30dziZ9HYWOw9Xpz5cRiNavr6fDQ3OwkGw6hVCuITDHjcARobncSY1HR0uKlviMyI0OtU/YWkMMEgKEJhLIl6jEY1Pl+QpCQjTqefHTvacbn8aLWR6bwGowaPJ0BLi5Pubi+9vX7MFi29vSH6nH46Ot39S/wgGAyTlW1mztwM/va3cvbt68HrCTJ7dgYframjpqYHtUpJMBAixqRBq1Hh9QZ4sb+vQVZmLHPmZrCjvINt21uZPCmFRYsiAUOpUpKTE0uMSUNBQfyQ19jgXmkQSUqaGvuIidVSWtpGXq6Z9PQYCgsTsPdEEvHWFift7W7q6hzRXlPZ2ZHnt6bWTlKSAbNZR4I/SFeCgX9tqmNTdSdP3DSZ/JTY6LTZ2FgzF198MR9++CHvvfce7733Hnl5edxzzz18/etfJykp6ZD/83PN4da2D1z9HLiiHgwG6enpITHx/H2zebLV1dnpLmsjM1XDoI1ah8QEmy2ybK+t3UU4BPtrevD7wjQ29ZGaEokhFouOhEQDNlsvLc1OZszIwOsJMLE4OfrmqsfuoaU5EhM6Ot3RmStjipL6j3EQCkEwGCkGACxZkktRUeKh8aDNSY/dS2qakQnjk+hxdvOTvzxLalI8P3ngptPwzJ3ZrCk6Xv+onB88vZKf3X0no7Jz2bCxifnj5jKrcCZBj560+GQmjE8mztIb7dOkVICtvjf6b6NJjVanorvbQ06umYREPWs+qsPlDBAXp+ufwRSZTRUKASgwGTUYDBrCYXC5Arz66j4UQHa2GcLQ2ekhNlZHXLwevz+y01Jfr584S2QjE683QMXuTuYvyCI2VkswGGL2nEziLDo2bGikqqqb+AQ98QkGysracLsjM6sSE/XYHT5C4TAbNjZht3vZtbuT2bPSibPoorv5LVqUHU0ikhINBPwhiidZh7zGBvdKg0h8aGzqIzZGS2VlNxOLk6OvPwhHk/a6OseBmNDfW2SgAbtOryYnJ55K1UV0BEexwPsOmmeWwPyH4ILvgELBrl2dlJTUMWvWMjyef9PY2MiPf/xjfv7zn3PNNddw3333ccEFFxx2h9dzzbHEhPb2dpKTD21CLE7cG6+spNFox1CYdNhlqwClpe3U1h4mR2iK7LTpdgfIyIghMVFPc3888HgCFA+KB3a7h+ZmF5BAsekiursSaFZt4o6Vd3BhylLmBW6mqqobvz/UX7iIvA5+/OPZ0dfFYHV1dtraXIwcaWHhwixeeeUp3n67mnvuuYfi4uLT+RQOi1A4REVXBSWNJaxtWMuOjh2EwiFSjCmMtIzEuSdE9Qe72eOuZfJ/XsVnm1rRKk3c//DPcIfj2bGjk6ZmD4sWWbHbvfT1HSZHUCswm3XY7V5iYjR4vUFaW53U1/fnCPqhOQKESUzUEx+vo6fHGy1o+f1BXC4/Gk1/jmCI5AgKRSSO9PYGsFgiKzKcTj8dHe7+JX79OUKWmTlzDuQInv4c4d//3kNDYy8Gg5px45LR6dW4XH527eqgo8MdyRGyYjGbtVRV2Wk7KB4olZElqFqtilmzhraJGdwrDaCsrJ2mpj5iYvpzhLxBOYK9P0dodR4SDwYKYzU1B3KE5mYXFkvvIRfsBopYKo2FSbMnsX3Ddko+LKHkwxIycjO44pYrWPrVpZjjDp3IYdQYGZc0jnFJ4/AFfdT31lPWVkZlTyU/2/gzfrHpFxRbi7kk9xIuzr2YeP2hF//OJMcSDwKBAA6Hg4SEhFM+HilMnUSVlT3U1tmxGrXRwpQ12TRkVlPxxGT27++hrdVFWWkbSqUCvU7FmLGJaDUqIBxtPr2jPNLTx+eLTL+tru6hpdlJfn4chYUJZGfHsmaNjbLSdpxOP1u2tlJW1k5SogGjSUN6egyTiq1HHMuAwYUGa7KJTZ98yPZN6xg/ZcZ5XZh6741VvP78E9j2bYh+7903N9JpjyU728ychbPp7HDjdofQ6yJXrCxxOkwxWgoK4qms7CY21ofX1Ucg4KCrxU2TqwedyoNG48PZ58Tn8RAK+fCG/EAIUKJQKlCpVTi9Wrpq1YTCelRaI6AnrDSgUMaTYE0lNy+VtjY3TY19uFwBzGYtcXE6DAY1apWSUFiHTqekZH0jZkv/FfgeD2RHxl9V1UNvn4+tW1qo609cdUYVKrUSS5yembPSIsWz+l4qdneh0Sjpc/pJTzP1984L9zc0bCM3J5abbio87OsrLk6HUhn5nJsTOckP7DazfVsrpdtbmTEznaKiRNLTY7DE6RkxwkJdnWPIDn4DywkHZnIUT0zG6YosAWnx+nl+Yx2XPraeH15axAXRabPj+Z//uZ7KykqefPJJnn32WWpqanjooYf48Y9/TE1NzZCr5cPpVG3Xeri17QM9SAAyM4PceuutBINBPv300yGzycSJ27WrE2dlN8qQkaRB/ZMPXno3Mj+e1lYX3d1edDolljgdY8ckkpxsPGSZU4/di8PhRadXsWdPF12dHoLBECPz44fEhM2bWygta8McqyU724zRqCUtzYQ12YjLGTjsOAbYbL39TbojyzSa2rp48qUVFI3MOq8LU59tsfGHZ99h9bb1dHRHlnA/+dJ7LByzlL5ePzm5ZmbPSqeuzhGdATTw/9bY6KKltQ+9Xk1vnwe3z03Y1YutwonL52LtjhBaHTQ0OfD6fYTagoTDAUIhBQqFAp1WRUyMjkB3mKBPiVqpRaPSoQxr0GsMuANWFszNZ926RhwOL6Xb28jONlM0JpHKym4CwTBxcTo0msjSzA9X1jJnTgZp6RYgjNGkxu0JEAiG8bgDJMTrCAbCBAMhfL4w2dkWUlJMdHS46en28O671bS2uti7t4s7bh+H2ayN7hzW0emmtLSNCROTue++4kNeY4PjQU7u0HjgcHgjTeFtDnKyLSy+KJs4iz7afB0YsoPfwTP7In8v8TjSpqKv/Rd8/H9QvQa++lw02b733l+Smvoor732Gn/5y18oKSnhlVde4ZVXXuE73/kOv/3tb0/1S+mYnMrtu48WE8LhMNu2vcFDDz3E22+/zeLFi0/qfZ+v2tra+P5//DdJI7Ox/vRH0b+Lg8/DxcX9OUKbi9LSNlQqBXq9ijFjEtFq+3OE/r6BO/p3/0xJMVJa2k4gEKKl5dAcwVZmQG9agDpjBx+FPuTT8MekFi4kv20CF1+cG30NHGlWx+DdvHJyLLz55pts2LCBJUuWnLOFqR5PDxuaNrC+cT3rG9fT7e1Gr9KTZ8ljcfZismOz2bWmnvefXUHDnoro773+8nb84Rhyc83MXTyJzk43bncQvb4/R7DoiBmUI5jNkfYZwWCYri43CoUStVqBwaClqakPj8dPOEz0IgWASgUGg4bYWA2trS683siM2o4ONwpFZGOL+Hg1OTlmWltdNDb2ER+vJzFRD4T7z5laYmK0kRyhpBGzeWCWrgc4kCP09fnYsqWF7u7IDqkKhQKNRskll+ThcPjYvr01kiNURHKECy7IxGLRReNBZ388yM3tzxEO855jSI5wUEzYvr2V0tJWZswYlCNYBuUIg+LBwHLCaI5QnIzzCMvEDxSEc7jh64upq6zj7X++zcp/r6SxtpEnfvEEz/7uWV7+7OXDFqcGaFVaRsaNZGTcSPwhP429jWxv305ldyX/77P/x8OfP8yEpAkszVvKktwlJBlO7GL4cMUDgNRUL7fccgsGg4FVq1YNmU12Kkhh6iQqKIgjt+PQGUmDFRUlMbPJycaNTZgtOoxGNcFgCI87SE+PF5UKlj+/m1mz07HE6aKzRxqb+lAqFVjMOsxmHVOnpFJR0UF7u4v0DBOJCXrWrKmjs8uL3x9i5MjI0gCzWRvtZXVkYQhH1ihv2doSXeu8b18Xi07yc3SmeuXVCtatbWTuvHRUvgre/NdfabWV9/9UQdGkBVgyLiUhNRdfsBeNWsnKlbXU1PTQ0uJEq+plb3kJlRV76eloIuTvxOtqI+jrIBSINP9z9d+aCwUqjYEwGhRKLaAhrNBAWAmEUCjDKEIK3N4gfp+bUNBNOOhm8E4Kzlpo3KZDb0xEY0jGE5OOMy6beGs2gUAyOr2F/Px4tm1tpavLg88fpK3Nxc6d7ZSWthMTo0GpiOzssWVLKx6PH5NRzaRJVubMTo8WfHaUt/Pa65X09HgIE8JmczB1Sgpt7W7S02Miy/IqezAVJx/xNdbY2Ifd4aWxsY9Llo6INkDMz49j/347Dkdk61iFQkFhYQJTp0T6LwzMlBowUASzJhuYMzdjyP1ZgR9fbuKZkhp+9NYulo5N5ZGvTcSoi5ziCgoK+P3vf88vfvELXn75ZR5//HFiY2OjRamSkgaeeuo1brnlEhYvHnWCr6Iv53iaI7722l5ef72Sa64pOGJT9wGHW9s+eL25zVbDunXrMJlM7Nix45x9o3m6jR2bSHdHPOmpmiMeY7WayM6KpS4jlvh4HbGxkV3yBopSG0qaCARDlJa2MXtOZHbK9m2tNLdE+hTFx+sZOyaJCeOT6Oh0s2aNjbg4HekZMeyp6KKhf4ZO0ZgkVCqIj9fTM2hq++EMbBHd0uJkzRobfk1kW+fubk+019X54JVXKli7rpHxxbF8XrWFf72zGm8g8uY8JSGBBRNnMyW/GGdvCGI1JMTreOvtKiBMe2cv1fVN1DU3U9vUgjvQR6/bQa/XgdPTR/igXXFUChU6rRYFKhRhFSqlGpVSRSgUJkwYHUq8LhWOXg8enwd/yEcwdCBRWVcHy9crMOmNxOhjSWxIIKMqhRmT8knJstDVEsKg15AQr6diTzd+h58PP6yloCAejUYZWRrk8qMAAsEwO3d2EA5H3txfeGEmI0ZEZsGW72hnw4ZmAoEQoXAYl9NPXZ2DicXJlJW2R5fmVVb1UGxKPuxrrKfHi9cTZNfuTqZMSYku98jPj8Nm62XDhsZow3+XMxDdaXLwUkCI9EErLW0jIVHPhPFJh95XxrcgbSJsWw5/mUnONX8jZ9mBLcVvvPFGbrzxRsrKynjiiSf45z//ydVXXw1E4sG///0ZEyfGcvvtF5/YC+hLOlXxAI4eEy68MIuf/OTHuN1uXnjhBSlMnSRWq5VfPPpbHrr/P1j1wnKmT3/osLPzioqSmDmzP0cwD8oRPINyhOW7mTUrHYtFF5090tjYnyNY+nOEqYNyhHRT5ML2zmwyirIwz6qmIe999FkbaVFfz/7afEbkHm0mRJhwGDo6XKxYsZ/W1si72Q0bGuj/kznrBUIBdnbsZGPTRtY2rmV3x25ChEgzpVGYUEjbPg3Vm8PETMjB4Wjn4ef+SJutBogUa8bNmA7xxSi1FmK1SsaMSaSkpIkdO9pobXVhMmno6/OzZ08n7e1udDoVfX1+UlKMuN2B/ublYSCIzxfEalWhxIde5cTt7iPo9xDw+yEUQGdSEqPV0LXf01+wUuIJRzaqUKvVxJhNaINmgi4P8bEaTAYNSrUShUJBdraZ7m4PCoWCkSPj2Latlc5OT3/j9AM5gsmkQamM5Ahbt7bidvsxmTSMGZPI5MlWxvefc81mDa+91p8jhEN0drqZPz+z/zbU0WV5piPEA+jPEez9OcIlx5Aj9MeEg3fli+YIVgNz5mQc8f7g0IJwTkEOD/7sQe586E7WvLmGN59/k6TUpGhRqqKig3dfXcfFl09n4qTD7waoUWrIteSSa8klEArQ1NdEaXsp+7r38ZvPf8OvP/8145LGsTRvKUtzl2I1HvvmAcMVDxYvzmH//go2btyI2Wxm7969FBUVHfO4T4QUpk6ijPRYiooSIAxbtrawf383pdvbmXdBJpcsHRFdZpeebmLpJXmYjOr+/iJhamodVFX24HT66HNGmuWNGZvI7l0d5BfEAeDzB8nNtTB+QuSPtrSsnaZGJxOLk5kzN4M+px+bzYFGraSp0YnfF+oPfB1Y4o7ck8rnD9Hd7aGtzYXTFaC7J7IbT+W+rkOOPZcM7tW1bm0jjU19vPXia7TvezxygEKF1jKTUZO/iiE2nZ4+P4mKAKpwPaUlO1nXXYfP2UDI1wQhN7sAFGoU6kTU+mSMcaMwmefh8ceCykwQI16vEWtaIrNmZ7N5czPxcXqASA8Sb4C+Pj8Ws468ERZaW13ExekIh8PodCpqqlrp7e2BgJ1wsBtl2IFB04dBZ6ertYL9NR8S6k9WtPp4WncX4vSnEVBk0BfKwx8y4nH7USqVJCbqSUwy4PWGCIdD2O2RWRgqtTK6NNSabMJg7MFo1JCYaECtVpGWZmLFihqUKgXOgvjojKbBM5sOptOpUPR/hgON9osnJnPN1fmUlvVvIWvrG7Je/OD/o6MVwQaOu2F8OltTYnmnrIklf1jLEzdPYVzGgds0Go3ccccd3HHHHTgcjuj333xzO8uXf5uXX/4Bd9/9De69914KCwtP4FV14o6nOeLrr1eydm0DwBcGnsNdBR0zxsScOXP6r8Jk8PDDf+CrX72UkSNHnuDoxcFycizkTLTS0RrZZnn//m62l7ZzwbxMLrlkBHBg2dz4CYlMGJ8cXYY3kOBv396K2xNAr1NjMmmIi9PR2hrZvdNoVJObY4lOl1+zxhb9u7r1ljGsXFmLzeZg4cJs6uocNP5/9s48rK3zTPs/7RtIAiEBAsRisAEbG6+xwUsc27HjxNn3xknb6TadptO06TLttF+X6Uz3pkmTNk3SZl+bpFnqxLGdzcF4NzYGbIPZESAh0IL27fvjSEJgSJw0aTMdP9eV2JbOOXp1dM553vt+n/t+rF5C4Rg+X2SS7GpqmEwa9HoFDXsGcLmDxJVCdZA/EEl1XPtnjKk+XW/vHqCvz83Db/8RT9AJgFaZxdy8hczOm0OmVE2WLoNAaJSW9pNsPzjI4OgwnuAY3vDEs0UhUZGh0KLT6CjMKUQlzUAUVSAVKSAiR5+Zwac/WUtr2yinE92GJFIxuSYVAwOCeW12tpLcXDWeccGDsGa+ke7uMdpO2VFlRnF73Yy4XERFflSZUZy+MRpP7ue1w28AIBaJycvKxaTNRSXKRiXOJhLW0dnpTDTICCKVwaxZeiKRGD09LoIh4XOT8k+TScP8GmhtGWWgH4w5KgoKMohEYuxpsBKNxvB5I6mKpvTKpvRYkKgIcTqDHGu2s36dJmW2v6DWyPoNxfgDEbzjQiXBTL9TU5PtXQkwm81L72glpYv/A8OJ++Gxa6DuVlj/A0hb8V2wYAG///3v+dnPfkZmprCouHNnD089dS933LGD+++v54tf/CJXXXUVCoXig11cHyA+qnwAZ+aEcDjMggV66usL6elxccstP+SCC/bzne/c9gFHfy6mi6tv2MzJkSM88N0HEMk0VCxbT1OTnVWJnJC8ts1mDZs2laLRpGGELjcdHU6842kYodpAa+sI5eV6AEKhBEaoSWCEJjtWq5cFC4xUVGSxe3c/q84rZGy0gsN9x4lXnmC77PfsefMZ1mVewy2LrqO89Mzne9IuorvbhcsVYmREII737rX+Xc7bRxHxeJwOZwf7BvfRONjIwaGD+CI+VFIVpdpSLiy5EH0sl6BDTbk+l5/vOMyA1Yvt8G5sx/8qHEQkQWmsonL5Bai0BsbGgsgBiUREY6OVvj4PY2MB4nHIyJDhdocZGRGke0p5HEnMTd+oi2jQQ9jhIBJwEw+5OXnCT0vQl+rsOjUCwKhECiKJUCEVE+bx8cT83wMMAq1p+8jkcjKzs5GrtPhCCnLyjCgjFrxjIsRk4PNBMBgjEEjDCIYJjOB0BlEqJWRkyLHZ/DgcfkwmDSqVDJlMgk6nQKdTUlGhFzCCWITXm5WqaKqdIR9AAiOIpmCEJju1tUauvLKcpqYERuibBiOk5e13I8Hey4czGSq1iktuvISLb7gY37gv9fo7b55k2wN3sesxFZfedDGX3nQphaUzezZJxVIsWgsWrYVoLMqQd4gj9iOcGj3Frw7+ip8f+DnV2dVcWHIhm0o3UZAxPdmVjL9nPoCpGGEW//Vfv+Kmm66kuLh4hqN8eHGOmPqQIh6P8/P/+RnBnCUYM0wMDvnYt9eKzSZc2BdtKptk8KzTK7Baxxkc8lFZmU19XQYajSwF0FfUmWncY2VgYByAS7bMSkmbkqA8nRQwGTVsvWkuMAH8i4u1QteOhG8PMAnQJ8H8jh3d9PS4CQQj3HhjNdnZatw2mFU+c/niP0M0H7NzYH8fxYVBcnNVDA6NI1XPRyzPQ6yeh1S/jngsRseJY8SDLxH1d3HyjT7isTAgRqLIRyw3I82sIdtYQphcQjEdUokYqVQqzH0lYiJeodtFRYWegD/KqtXCw+xok0SY/GepWFBrQq9XsPvtfrRaoQzW7Q4Siwor01qtgou3zGX7a90MDupAZEGrl1M1T5hEZLmDiEQxhgd6sVs7EUf6cY714HNuJxYVzJVl6iKyS2rJ1S1n6Xn1DNvjCW+qQMrUUhiXoPWuqsqhp8dNLBbHZFRTXKJlbDTIgHWcAnMGFksmjhH/e55nc34GxSU6zPmC0U6659QN11dRVZXDE0+2MWAdp3GPlfJyfcpUfdeuXoaGvOTlaShOyACnI8HSDUQ3L85ntjGT+xs6ufKePXz74ko+WVd6xj5a7cT1XVEBWVn5jI72c+edd3LnnXdSX1/P1q1bufbaa8nK+ug14u/HHPHKKysm/Xk20dPjYs+eU7z22v0888zj/OpXzyOX53L6tIsVKy5h1qyyDzTuczF9vPHGIbb/8c9csqyWbpuSvfvS8kGCmEr6RuXla1JeUdFoPAXwvd4wkWgMqUTMgloj27Z1YbP7yNIrqKkxUldvTk2y0gkBk0nD1q1zU2PRZwmAOl0y1ds72XchfeL25lt9WK0e4rE4K9YJ175CLp6RbPhniGPNdg4ftpGZE+AzN9WRm6uir9dDqb6KfncnFdkLyFGbGfWPcOD0IbxRBw+9Y8PjF6rSFFIVWnk2uRkWLLn56NXZRH0q5FI5Wp0ClzOIRCoWPJHkEjQZMkQiERdvLqO4RJBNyOViQMqscj2bN5dy4sQYba0jDA/76OpyIxJDPAY93W6WLSukfJaB5mY7/jEluUoT2kwZc+Ykfi+lFLvDxbETPYyM2/GEHfTYehnzNQEglyiYU1TGurIFWCrymTfbgkgk4sD+ITIy5WRqFZiM6pQfVLIDpFotJRyOkZWtpKIim/5+D/5AlIpyPaFQNOUTNROBWV2Vg3W5lyOHh0l2dEr3nbrhhiqONtk5cGCIPY2JfJDWdSmZEyQSERXl+hmvyVROqMzGsOFHcPhB2HMX9DbCtY+AdrKEOz0frF9fzAsvKLDZpDQ0NNDQ0MCXv/xlrr/+em6++WaWLl36kXtRfdT5AISOYg888BSPPPILKisXc++999LS4qCjA1asuPz/hN/W3zOs1nFy5lSz9qqr2Pn0sxxvcRPT1gBCTkg3eNbpEhhhMIER6tMwQt84K1aYaWxMwwiXzEpJm5L3SzopUFWVk8o7bW0jiKihyLCCYfFpmn37+Mv473lt92Nc67iKGytvJD8jPyUfeuCBZo4fH8HrDfGDH6zkqac0uFywbFnuP+AsfrCIx+MMjA9wYOgAewf3sndwL6OBUaQigUBYkruEwsxCCjML0cl1aGQa3nyjj/17+7AVjZGbp2ZwyIs8uxyxQo9UX44sZwFimYbeQRFSuxOJRIRMJmJkxMf4eBixWAREiQdGGXc7GPM5iAfHCPscOBMdvQFEYhkytQ6VRoehpJya2hKCETltJ71I5Soy9FouWF+BVq/htR196PRqPB7BnypDI0thhGXL8nn1lU4GB0aJRYIo5VEMWWJKiuT0dg3iGRvDMzaGzz1Ct72TzkOvp8YgVeqQZRgxlZeRr5vNwqXzsDtiUzCCCiDlB5XECIFAhIwMGZdeWobN5mdgYJyCggRGcJwFRkh0HjSbExghzXPqhhsSGOGJNgYGxmlMywnp+WASRpgmJ0zXZODdQiQSoUnrRJxniJGpz8Yz5uCZ+57hmfueYf5587nwqgtZs3kNGdqMGY8lEUsoyCygILOAaEmUYd8wTbYm2p3t/PbIb7nj8B2U68vZWLKRTSWbKNGVnHGMv0c+6OlxsXv3CV555V5eeulZ7rjjRcTi7ARGuOzvQkrBOWLqQwuXy8Uzj/4RX/h+PvW1+6msNCOXi1IVUzChaU0SRRq1DIlEhEYtTXUngAnCqHquAYfDj1aroKfHTTQax+uLpD4zfZ/0mPq6ze5NVUylR2+vh0OHhnE6BXmCXCZmyeI8/pKrofuEsHr6zxo7d7Tw4N2/Z6T7VWRyNRmzfkg8DoGAE7FuI/FAO8H+XxCPOAAQyXKQqErJMC8jKrEQExei1iiRKySEwzF8oSixWByxREROjjplUimRisjJUZGbq+Gaq+ekfpf7HzhGKBwlK1tJXV0+ZnMGXl+ES7bM4uDBITzjQYqKMpk3z4DbHcaQraR+pZlxb4hXX+0iHI4hlYg4cXI01e1JJBaRn2+mqMIMIlDIJYTCMezWHsK+08QCpxju3ktv60vsfEpEdl4VZXNXos5exKpVc1i3zpIy0y8u1rJrVw/uhBFjgTmD8ll6VGrZJIL0xRdPc+TIsNDyNUc1yVcl+fea+TmC95ZaysFDQ2cQTMly84wMGWKJiN5eDx0dTl5+6TRyhQSZTExHuxOTUc0N109fQjrVQLQ8N4PvXlzFAw3dfP/FVvaeHp0k7Zsan/vcFj7zmYvZuXMn99xzDy+99NIkQPLCCy+wadOmD+nq+9vjqqvmnNVKSDLGx8f53vd+xJNP/o5QSCBHHnvsCbZs+QJSqQid7lzb5w87Hn/8Oe5/9M8E/H5uuuIq5HJRqmIqGRPeUYnuexohJ6g1UqqrclLgPkkaza0WckI0EmN0LJDyiwImbT810t9LSqamywfJTmjjnhAiRGRkyphVKhAdmVr5P221VEurnQef3s1bzQ30j/ZytO16XP3ZiMRR1NJsctQhOkabOWDdRSweRSKSkq0xYs6chS4nB63MSKYyA4VCRjQaAxGIYhAWR1EqpYQS3ZfkMjFareCttHhxLvNrBBD5xBNtdHe70ekUWCxa6urN5BhUaLVeDDkq3J4QOTlKTLkaQsEohUWZrKw309vrwW73J7owhQlHYpw4MUY4HEUsEWHIVlFVUkY4XEKmVo7TGcTl9uLw2rB7BxnzDnLXk88QjUXJUGpYPGcuBfpS6mvncfVVlakKvuJiLTt39Qj+ZgoJcyqzUSkFDxOjSTApn19jTPmbDVgFsJzuj5a+Wj2/JnkdxbHZvGdUWen1CkLhKOPjoVQ+2NNoJdekxueL4POFicageu7M1/yknCCVwbLPgqkaDv4RflcHV9wLs6eX6dXXF3L48EsMDg5y//33c++99zIwMMDdd9/N3Xffzfr169mxY8eHdPX97fF+8wFAY2Mjn/3sv9PScgCAkREHL710nIwMHbNm6f5Pd137qKKjfYzuHjd1F18CsTBvPP8iJUtkrFp1NZCGERL5QJPIBxrNFIyQyAfV1dNgBO/7xQhF1A8vZl/XMfqlzTx+4nEeanmI8/LPo2S8joG3chkeFhY3lUoJmzeX8YtfaGlvh2XLPh7+nNNFNBbl1NgpDtsOc3j4MIdthxnxjyBChDnDzJysORRkFFCYWUiWIosMeQZyycQ8aMerbfzpjiexte9HoclEO3cr8ThEomLUlVsnkbZCownhGW/r72d8ZIDQ+DDxgJ2I1w5xoZJJJNcizzBgsFQjVugJi3RIVdkUFueQn5/B5s2lExjh/mN0jw6Sm6thzZpCASN4I1x62RwOHhxifDw0GSMYlNTXmxkfD/Hqq2HCYQ0QxxkU0e9U4UJHSBPFUp7wiBWBmBDesREcQ1ZC4yNE/SN0N+3m1N7X2PYAaPQ5FJZXoM4pZtGi+Vx65fxUl8gkRnC5gmRlKcjOVmI2Z6TIpSRBOgkjGGbACDU56HQKNBopBw8OnUEwTcII4jSM8PJp5PIERuhwYjKpU9LwqTEVI7zf2HLtKjZfVceBtw7wwsMvsO+NfRzbd4xj+45x53fv5CcP/YSFdQvf8zgSsQRzhhlzhploLIrdb+eY/Rinxk5x37H7uLvpboq1xWwo3sBFpRdRoa943wsEHyQfuN1uvvOd/8fTT/+BcFggEx977EkuuujTf3eMcI6Y+pBCr9dz95+e5VM3XsJfHvgKv3n0LyxZXMW110zcJEnz8SRR1NbmoLXVgVIhnURK7drVi9sdZPHiPL5y22J6ez1o1NKU7890kS55mipzmsn0XCh9tKHTKsjOVjF7Tja//OWBlMldPDZ9Gen/5mhraeepB35P465niUWEcuQ4YlzdDxANdBML2QAQyc2INTVIlHMQq2YhkmSiUklQqiS4XSHiUQgEoyhVMsSixHkSiSAONrufgoJMiixaxGIRJSW6lFG3ze7FMeKnrXUk1YFx3boSDh4aEjpESET09rhxjAaory+gZp6RpqN2KiuzMRk1bNxYQoZGTsOeAXp73UQiQutVg0GJ2xVCo5Zx6WXlNB+z09o2Sl6eBr1+NsPDBbicy1Gbwe+xEXC14g+2cuydhwkF/0B7USnj/Rex5qLLuP66+Rw6PExDwwDDQ14CgQiBgCAz3Ly5lCy9MbW6bchWotUqMGQrJ61IAKm/a9RSmpps+HxhFAoJixfnTSKYkpLU8go9tbVCB6dHHm5NrbosmG+ko8NJusdWuhywqipn2mtco5Bx69pyXj0+xAtHrVx4x9vce9Ni5qZJ+6YaCl544YVceOGFWK1WHn/8cR5++GFOnDjB0qVLU/vs3LmTWCzG2rVrkclm9g/6sCI5Rp1OjssVel/mh3a7nbvuuovf/va3jI2NATBv3gK+/e0fotPNw2bz4nIF2bati3vuaTprTfq5eO/4zne+Tti6j988+1fmL6rg09deyLXXTp40JX0ObDYvet1ETlAopZNIqfSccNtXFnMsYXr7bpOsmUrXZzI9T00W+9xoNDIKCzPJzdXw0sunAYj9E+aDwUE3Dz33Fr97+kV6hwcAYaX05d17CIeiOHxDRONRpGI5BlU+lTlLMajMZCqyUMoliMQiYrEY4TCEIyCTC6RUJBIlS69ErFUw6vCn2naXl2cxZ042C2qNKVKxtW2E9vZRPOMhtDo5tbUmqqtyOHhwiCOHh+nucREJxzAas5lfY6Snxy3kg8RvuGFDMWIJ7N83SCgURaOXkZenZnw8TKZWwby5Bry+MNaBcYotWgIBNWNjGegG85BKFyEtidM13MeIf4ATvZ28dXQ/z+99nteOL+LKDfVcvmUFp064aWgYYGjYi1wmYdYsPR5PmD2NVjZvFqpR0/3NJGIRR5vsRKMT10z6anVHh5Ndu3rQahXodUqWLMmbRDA5nUHkMkE2YrFk8vAjrbQcHyFYrmfjxlJ6+9yTckK6FDB5nGmv85J6yC6DPb+Bx6+F+i/Duu+npH1T80F+fj7f/e53+Y//+A927drFww8/zPPPP8+SJUtShwwGg9x3331cdtllFBUVfTgX5nvEB80J8Xic7du385Of/IS33noLALlcwXXXfZYtWz6D1yvm9GknK1aYOXhwiG9/e/e5nPAhRnlFFiVBLfPLjKxb9xVMJhVP3fsUgUsrgLJJ+UCXlg+USukkUmoSRvhKAiNopDMaPSf3m0nKlJebyWW59cTjdYz4R2gcbKR5pJm93r2Ia6Xo9cUYO6uoNc/iE594OSXliwntQv/hEY/HGfQO0upopdXRyjH7MZpHmvFFfEhFUgoyC6jQV7DSvJLCzEIMKgMamQalRHkG6D/e1MmTv3uKxh1vEIsIkslwSE3Q60amykQsFqf2iceixPw2IuNWot4BYt5B4lEBP4kVWUjUJnSlVYiURkRKAxKZXOiOKxKRV5CJyaSawAgJo26bzYvD4aetbUToiprECAcnMEJPj5vRJEaoMdLUZE/lhI0bS8jIkNPQMEBXl5NIJIZYLMJiyWRw0ItGI+PSS8s5dsxOW9soZdWzMZeV0dExSiAQo7AwE8fQEGODvUhiDvzOQU4ebOTIq0/y1hOFLF61mLr1dcREGRw+PMxQwu8yFouzbVsXmzeXUlsrjAnAYEhgBMO7YATNNBghjWBKSlLLy9MwwiNpGGHBDBghIQesSlT7nk2l1NSYet8sv2A5yy9Yjn3Qzs7nd7L9z9sZ6h9izvyJZ+T+N/cjkUqoXV6LRDpzMyGJWEKeJo88TR7rLOtw+B00jzRzauwUj7Y+yv3N92PWmFlfvJ6LSi9irmHutCTV34IRhoeH+c1vfsM999yDyyVU8dXWLuHb3/4hGs2cfwhGOEdMfYixdNlcvnHnI/zqKzfy9U9fx9bb7mF2pTlFRqUTRyajhqYmGy5XEMfoRKlj8zHBR0enl6c6qCXNoEG42Xbt6k0B8uRxXc4Ag0NCJcR0JNR0xJXJqKG0RMvYaIBFi0w0Ndk5dsyOzyaMJ/4xSTofRlh7u3n0979i18vPEYsKgEAkURKPhYmFXSDqQqqpgqxLEatmI5JkIpUJ7dXjidMQjkSJ+0i0ahVej0aiZGcrsNli5JtUxOKCHl+pFFNdZUCrVZBsed1x2smihbm0tI7Q1z+OWAwSqTAhDoWinDo1KrSM1SkIh2OMOvw893w7Q0M+DhwYRCwWs26dhSJLJoaTKkZH/YRDUXJNKi69rEKQflrH6elxMz4eZmTERzQS5bzlZny+CNFIDJFIjF5nYSwjlwLzFj5xYzmDPUd4e/s2Xv3LUzz9p3sw5pewdPUllM5ei0Kh5dTJUfr7xlOTEZ1eQUe7EyAxHm3KLy0/T51WGRjE5QzQ1CR01lAppSxeknfGxKl2gSBZMmQrU9fnijqhneyKOjPl5XqKLNpJ+6XLAadbEUyGfcSHMSTiX5ZaeLZlkCvu2cN/XlzFzXUlwMyGgmazmdtvv53bb7+d7u5uDAZD6uH/ve/9J4cO7UOv17NlyxauvPJKNmzYgEbz/pPe2URyjFKpiEgkfsZYZ4p4PM7KlSs5deoUAOXl5fzgBz/g+uuvT3XV6OlxYTI5+MMfjnLo0DBwdpr0c/HeUVKi508//gwqVYzPfvdOIiFYVDF/2gqS5H/JnDCaKH9PgpDubhcyuSTl9bN+3cS1NhWUJydSTleAocFETpjJg2eaMThdAXKM6oRRtoOT3cJ99nEBIR9GxONx7nv6Vf7rnqfoG04sRohEyCQyQpEQQ64BDKp8ZhuWYFDno1MYkErEiMUCAQUQCsdRKESkn5ZgMIrRqGZsNEC2QcX8GiPvvNOPzx+hqCgzRUodbbKn5Ad2u4+2E6PEYyArFqeuj1AoyojDj1gkTNyHh70891w7sVic48ftuNwhVq8q4Nprq+jt89DSMkLAHyErW8HVV82hp8dNe4eTwYQUIykZNRk1uFxBNBopYrGIHKMahVyBVFbB5ZdVoDNGeOrlBva2HOOWb/0SpVzGefPms2LuQgoKChh1hLBax+nt8xCJRNHrFGg0skn+ZseaR3C7g2i18kkdJZPG+3vSJEjTAeniYi0D1nHqVghS1bpEe/G6FWaWJHKIpWgiJ6RLAd+rqs8W0NKb/W/MVb2EquFO6GmE6x6FzNwZ84FUKmXjxo1s3LgRj8dDKBRK5QOb7RC33nort956K8uWLePKK6/k8ssvZ/bs2R+ZFO6D5oRHHnmEW265JfWdbrnlFr7//e9TWChUcSbzwdy5Br797d3vy6fkXLx3mM0ZVEUNmHQC+bT4wsvwekPc+b07sQ07WXTBJoqLtWfkg3Q5VHOz4KMjgFChg1rSDBrSMEICkCef8y5XgMGzzAeXzrqUTSWb6HJ18dcj79CX30mo7DRv8jLhbD1DjT0AjPpHicfjf1fJpy/so8vVRaerk9PO07Q4Wmh1tOIOCb5+WrmWPHUeS/OWkqfJoyCjAK1ci1qmnpaISkbv6V4eufMRXn/h9VSuU+ryKZi7Eqm+DKczRDgcYXxkiIinl+h4P1HfMMQiIJYhUeehyK1Fri0iJstBlKi+UqolqFQygsEoxcWZuFyhCYxQPQUjdDhZtCiXlpYR+voEjCCdBiPodAoikRijo36ee24ajFCUicEgYIRQKIpGI+XSS8tT0s+eHjdebwIjRKOcd54Zh8OfMNcXYSrIJyrWMmdOFv/2bwtxj7l4e/sBhnvaady1lxcefgGFUkHp3HmojeVEyKd/VDKBEXSKBFGUwAhF2pRfWn5+GkZwBXG5JjCCUilNPd/TozZha2AwKFPzlRWJnLBiRQIjFE3BCGlywHfDCO/lPTWTBNCYb+SGL97A9f96PcP9w6gz1Klj/e7Hf6D75Gm0ei11G+pYtWkVi1YuQqlSzjgOiViCSWNinWYd5xedz1hwjOMjxzk5epJnTj3Dw60PY1QZWWtZy6aSTdSaapGJhYXxD5oPYrEYS5cupa+vD4DKykp++MMfcvXVV6fuk38ERjhHTH3IkV9Szk/ue4qv3HQFP//WJ7n+i3dwwyeWTr64E8RQfZ0ZjUaWkjTZ7F66uoWHq1otY3DIh07vmUQ0TQXkvb0edu8ewOcLYbFocTkD03bhm/r5NruX5mMjuN0h8vI1dHW7KbJkMDjkJZr1WW74wndZu3neR3uy/k4Rj8d5a8dOdrzwdNqrYqSqUiSaecTlcxHLBa28SAQSqUA+JRZLAOE1qUQkSDQS7VgBcnPVjDj8KenEuvOLOdI0TMAfwTEaQKuV03HaxciIj3hM6Hw4MhJAKhVjNKqorzNjs3tp3GOlp8eDSBSnoiKLmvlGBq3CSkRmhoy+fg9+f4Tdb/dzyZZZeNxBLBYtoWCUQDBKT4875UtWXKyluFhLIBjBYtESDAoyw9IyPT5fmI52J/G4sCrdesKDyTifrLJcbrzgy3Se3M+xva/w6rP3E4v8Fp2xEo1pDXHJAsQiaUoeQgUoE0aFSxbncfDQEIND3lRlF4BOL1xzhmwVc+YIHV+SbdQ7OpyptupyuYTSEi2DQz7B98aooW5FAVl6BU1H7WTpFZPIWZggs5QKyYxdJ6dWH3734ioeeKeL773YQmOng19es+CsDAVLSkoA4eG/Z08/ubnlmExd2Gw2HnnkER555BFkMhl1dXVceeWVfPnLXz7razM9Ghr62bmzh/Xri6mvn5B7JceWvhoyNeLxOMePH+eFF17g9ttvR6kUJmDXXXcd27Zt41vf+hZXXHEFEonwm6VXBmzeXJbquPJ+Nenn4t1DJBJx9ze3YnWE+Ncf3sn151/Bbf9yMcC0k526eiEnLKg1TvJPkMklZGbIJkn3kjEVlL/TYOXA/kGKS7TotArUmunT/NTVy95eD2qNlEGrl3AoSkFBBo5RPy53Lr/60re57pqPthPL3zNOtA/xo7ufot9mS72mkqopzCojL6MIjTgXiVg4b2IRqFRSQZ4dmDDjzsyQIhKLiEYmmCmFQvid7HYfVqvgAzN3rpETJxwpnzCfN8LQkA+b3UcgEMHvF8ztJVIxVdXCBPrgwSFaWx3YbT5isXhKHi4Ri8jLz+DkyVEcI37e3j3A+edbACgp1mG1evF6I/T0uFm3zoJCKWXU4aekOJNeg4q51QZaWh3EYjB7dja5uRqam+2MjfmRSiW0t49RLc+hUDOXb964Erk6zAtvvMO23Xt56/AhlDIlc/KrmJNfgyyagVwhJdugpLIyG683jCLREl2vUzA06MVSpE1d33qdcL3pdR7qVpgJBoT8NOLw09vrIRSK0trqINugRKuVk5erQS4XjldXV0BdXQGtbSM88UQbC2qNk8B40o9NoZS8a8fJ9GoTFl/JkhXz4eCf4J7lcNX9zJ0rVEK9Wz5IGqTv29dJY6MVpdLPypUraWhoYP/+/ezfv59vfetbWCwWNmzYwDe+8Q1mz/5gnV7/lpzgdrt55ZVXUKvVbNmyBYAtW7aQk5PD1q1bue222yZVeE2tFvugPiXn4uyioWGA/fuHWLp0I7fkaHnojodoPtLHzV/9TOr6rU/kg6SkyWbz0tWVhhEGfeh0k70CpwLyMzDCDF1ZpwJwpyNMf7OSUvcqsr2LcTlsjEh6GY1bMX/JSC4Z3BO5hyefepLZWbMp05VRpiujWFdMrjoXg9KATqF7X6RVLB7DE/LgCroY9g0z6B1kcHyQQe8gfZ4+ut3d2HwTz2ydQkeeOo+anBpyVDnka/IxqAyopWpUUhUyydlXtJ9q7WPn8zsBUBlKUOYtQZNjYWRslEDvfqKeXiKePoiFEEkUSDIKUOQtR5JRgFiVg1QqQSoVIRKJCaTlCZNJjcMRwO+PEAxG2bChhCNHhgkEIjgcCYzQkcAI8SRG8E9ghHozNpvQpXESRqgxMjiYwAiZMvr6Ehhhdz+XXDILjyeBEUJRAoEERkj4kqUwQmACIygUUqqrM/D5wqnrQOiG58HlCuMI5lO5sprixZtpOdKOtf041r6TuA8dBpEIhb4EXcFcYpXLMRj0gCD9BFiyJI+DB4cYHPROqvbVJXKCwXAWGKFUy+CgL+WNWVdXQFaWgqYmO1lZikn5ACbILOW75IRJ+YDpCdv3kgCKRCLyioTP7u310Npix1RkYcw+gmvUxavPvMqrz7yKTC5j3pJ5nH/x+Vy69dJ3vRYlYgk5qhzOLzqf1YWrcQVdtDhaONB9jOdaX+Lpk0+jlqo5L/881lnWUVpRywrM74kRjh49yssvv8w3v/lNZDIZYrGYa6+9lnfeeYdvfetbXHrppZMWrf9RGOEcMfURhM2ZjbH6m1iP/Yxn772VjRe+OO3FndR52+xeDh4awuUUjG/LK/Qpk1qNevJPNLULmsWSSSwaw+EIoFRIZ+zCl/75bW0jPPd8O7ZhH0ajGpVKmjK0XrDASEuLGJE0C9VHVAHyUcfAwCh/+M2DdHccp9iSxYkjuxgbGUIkViBWVyHJWI5YNQeRWGCv09OmSiXolV2uCVZKIhGRmSEjHo8jlUrQaGR4vWFMRhU6vYIBq5ekyiXZWU+pkODxhOjqdhMMRgj4IxSX6NBq5WRlKVm8KDelJz94aAixRExxsfAbqdUySkt0lJbogDhmcwZvv91Pe4eTVasLE0b1UQwGFSsuNNPT40avV9C4x4pYIsLvi6DTK/jsZ+fT0eHk1Ve70OvlWCxadr/dn2gvC+FwjKFBL3v3WnG7Qxw5bEOrzQP9TWRpriboPErAtQdXy71IpBryFm9iTtknKK3IoulohBMnR+nsdLF5c+mkVf4nnmyjdoERjVqKRCKisjKLIksmJ06MpnwQhoe82O1+rAPj5OZpJvmtJaPpqJ09e6w0H7OzdWv1pFWPqqocvL4Iu3cP0NnZOkmbn4zeXg9udwitVoHFkilI+y6o4JXjQ7x41Mqm3+zmizWFnDxgQ6eTp1YYpk7Qk5F82H/2s3dTWJhBY2Mjzz33HH/5y1/o6urirbfewmAwpIipeDzOj3/8YxYuXMjixYvJzc2dNEmb+jk7d/awc2cvwCQQcvDgEI880srcuQY+97kFqTH19fWxe/dudu/ezWuvvUZnZycACxcu5OKLBfLjO9/5Dj/4wQ/OmBxOrQz4IJr0c3F2caTJToF0KeW5Tp544zlqF2Vzy2WCt83UyU7SC2o6U8+eHve0JNNUf55Rh19YZR/xk6GR40vIA6auCqbnhO3bu9m7z4rFosU5FmR01I9CKaWiIotgMEamUoNUNPNq38c93tl/kv/4xWNopHpGg1YOtZ0gFouRqdBhzqggP7MUjexMECWTCZWxIrHwXE1GRoYUhUJKplZOhkaGYzSATCahvi6fg4eGicWE/YR27wECgYggp7N6cbtD+HwhtJlyZHIJSqUUi0VLSamW+TXGFEDMNqiorTUxMuJHpZJiNKpT27z5Zi9v7x5g9aoCens9nO4YQyqTMH9+Dmq10L1x165eFErh+NkGNWVlWVgsmXg8Qbq7XeTna9BnqbBavYQjQkXwyIifY8dsHDtmp/m4HblcQoG5mk2VFgYdw3Q6TnLC2sbR3iOU5Fq4bM1qliw5D6VCjkYj4+QJISfUrTBTWZkt5IMEkaTWSFP+aUuW5CGXSzhxYjQl+Rsa9tLV6USrVbB0WX5q2/TYuaOHpiYbdrtvUmVUdVUOPm+EEydGeafBSjAQmdaAfWpOwLRSkPY1/AYeu5rilV+lX3sLDz54PEUGvVc+mDu3hu9852aGhoZ48cUXefbZZ3nzzTfp7e3lgQce4Pbbb0/ts2PHDrq6ujjvvPOorKw8o8vf2eSEnh4Xf/jDMVpaRti6tTr13A4Ggxw4cIDdu3fz5ptv8uabbxIKhVixYkWKmMrKyqK/v3/a7oLncsLfL/bsGWD79m6CwSijo0E+89VPIlVq+ONPf8eL98VYWPsdZHLZBEaweTl4cAhXojlGfr4mIZGST1tdkv6nxZJJLJbACMo0jKCbOR+0tY3w3HPt2GwCRhCJwGoVMWfOQizqJVj7x6hcKsNQHmDYO8xIYIROVydjgTGi8QlSRiKSoFPoUElVKCQKlBIlcomcOHEisQjRWJRwPIw/7McT8jAeHifOZMl4hiwDrVyLVq6lTFvGItMiDEoDOeoctHItSokSpVQ5yR/qvaK/b4x7f/EsNpuLW269XiA4TsowVtThlxQSDQUYHz6Js30H8ZALECHR5KHMXYgqpxSVPh+PJ+17SkRkZsqIxeLIZBI0mWICYg+GwjiavHE8o2NIJEHCOdCkOIqz0odYCqfkYk77xcRNYkKZoFVp6NdqEZeLqCpSsea8YopmKTlxzINYPAUjlOooLZ3ACG+91U9Hh5NVqxIYIZDACCvSMEKjFbFYhN8fQaebASPs7iccFn6D8fEwBw8O0dbmEDDCERtarYzxcQlR1XxU5TVoZwdhvJOxvuPYjr/EjvbXsNctxVi2EJstb3qM8EQbtbVGNJo0jFA0BSMMJzCCdZzcXM0kv7VkNDUlMELzDBjB+/4wwnThcPhpbx9Dk6hWh5mrrJLH2HTR1zBkK2k+2MzuV3bT8FoDwwPDHNlzhJzcnBQxFY1GefSuR6lcUEnFvAqycrImzUHSP2dlwUp6385msLWfsoVBDFUeToye4I2+NwARcmceJZGF/NvGq7FYBHl9T09PCiNs376dnh6h0rG+vp61a9cC8OMf/xi5XP6xwgjniKmPIBr3WImQT/Hi7zLa/gtuu/ky/ufeJ1iyuCS1Tbq0Lr1bX/ksPW53kNZWB9FobJLZOZxJZlksmWzeXErDHivRSIxAIIJ1cJw9e6zkmzVceqnQ/j1dxrdrVy+9vW4C/gg+X4TSMh0GgxKxREQwGE34Bv3vM0Mec9h58M6fsuPFPxMOCSWl1vZMlFlLMFZ/kqKyBbS1OWfcXyQWyJpwJI5YTEqiEY3GCYWjlBRrKS3V43aHKC/X09np4lT7GBKJCJVSgjlPSbY+hFI6gk4tIeSNMuwMEQyEGQ+a8fnUqNQydBkBZpUp8bhG+elPTjHmDDN3Xg6f+EQlAM3HBP+YmvkTHRjTPci2b+/GYFCyos5Mll5BTw+0J0w1MzNkuN1BBocEs8rGPVZ6ut1otXL6+8ax233I5CIyMuRUzNZz/LgdrzdCJBolEo4TDIaJxUEmk1FQvppQaCWi6AjekbfpbHmdX+97lrKqpeRXbCHIbIKheErC0d4+ht3uo73dSfMxO0uX5hGNxjlxYgzHqB9DdmJl3RehrEw3aTXE5QxgO+2j6agdQ44Kk1FD7QIjzcfseMbDNB21n5FUkqTsgHU8tV/6dT6VDE7eL0vytETGgrw95OQ7b51C2y6Utycn/s88c4qXXupgy5Zybr99wltqaleMlStXsnLlSn75y19y+vRpduzYwaxZs1Lvnz59mu9+97upf+v1eqqqqqiqqkImM9HZaSA/v5rrrqvEbFazeLGGQMDAqlUmnE4ngUAAv9/PH/7wMvv3e+noKKS+vpCuriPceOONDA4OTjofSqWSDRs2oNNNjHGm9ubvp/Xsufjb4tDhYdzOEOvnXciyxQV845f3EYmF+Nbnrk1NBqZOdJITpsxMOUaTiqFhL339Howm1Rlgu7oqh5yEqajN5k1VXUkk0Ns3jsGgpKnJhnXQS12dmfXrNNN8nhvnWBCxyCN4SYmEZ6FWq6CiXD9tF7+Pe8TjcZ55dTffu/MxTnb1pV7PUZu5YN46jIpiVHI1Nvu7dw2KRCEcikyqlBUhlMGXlGgpKdHR0eFM5QSfN4JEDDk5SjJ1IsIiHzpTGLEswsHjJznVPko8ImNhdQmFRQJodAXGcPvg3vv7GXdHmTc3h5X1ZkymCmw2b8pTLGmWfu21VVx7bRU2m5d3GqwoFBJmlevJy9UIEr72Mbq73RgMSs5bnk9SKgLCNeF2h9i5s5dAMIJcJhH8E5USAoEIPd3BhLl4HLEIRkcDEI+jVxs4T1fPktgK3LEBTjta+c3Tj/Loay9y+flrmGOqwe2JEUyszi+oNfLsc6cY94Sx232EwjEkYhFGqzpB0AXJy1djNmfg8wo5Qa9TJCqmZAx5BSIvaaCeuvZmKMBIPuebmmy0dzjxesNn7JvcRq2R0tvrSeypo9fwb8xVvYhq9y8o4FX2vyXI3errC886H+Tl5fG5z32Oz33uc/h8Pt5++20aGxuZM2diMn///ffz9NNC5bZEIqGsrCyVE0KhDAYHa5DLZVx3XSVabYxly7SEQibq6nIYGRkhEAiwbdtxHn/8LTyeAjQaGVddNYfLLruMV199lVAoNOmczJ49mzVr1kySW53LCf/4aGy0Mj4eIksvGFYD3PTFaygqNvHjf/8xX73+q9z642/i9konY4R8DeXlelpaRhga8rJiRf4Zz+SpZFYKIzRYiSQxgjWBEfKnwQimNIwQEDBCVpYCpVJKUVEmWq0c51iIHEysKy4BIBQNEYwG8Uf82H12nEEn3ogXX8iHL+IjEhdIqEgsQjgWRoQIiViCTCxDLVKTo8xBIVEI5JVUiVKiJEOeQZYyC7VUjUwiQy6WI5fIkYllH1g6OGof5YWHX+DPf3wen8cDYjk/8xaiUomIj/cS8Y8ybj0AsTAiuRZpZjGSTAvSzEKhSkoiLFIEAgmMEI8hy/EizxlHluclozCAWOchIvWT7NE2DqhDEuJhKeKojHBQTsQVQIyIaDROLBonEokgK1HiVo7hFUXxZLiJSaM80bWDp20SRFE5msosKnIt5KsKCFiVxIkyvyY39fune5AlMUJ1tQG/P4LJpKKry013t5vMzARGGPSmrsWeHjfaTDn9/QmMIBMwQmmplgMHBgWMEIkSiSQwQgxkMjEmk5pQSIEiezEF1StYskBFwHGSlx5/lQNvvIMiI4vskoXoMy+kbtWsyRiheQpGcPgxpKpvp8EIrgA2m4+mJjsGgwqTSUNtrZHmZjseT5imphkwQizGwMB4ar/06/wMjJC4X9Lvh+kkgQ0NVvbvH2TZsnyuuGKigmiqj1Xt8lpql9fype9/ib7OPg7tPkTJ7JLU+92nunnwVw+m/p2py8RSbqG4ohi5OosRbzbZZgurVhWSpZdTXqIgHMihtiyXWWYdbr2bPkcfj720C6fWzcmK7fz7oW3EHovR/YdufKO+SedDpVKxceNG1Gp16rWPYz44R0x9iDFg9dDWNkp14odcUbeQ0sI1/Mfnb+DWGzbzlR/+DpV+zqREAwKDPDzkpaxMh1wu4fCRYQL+KOUV+jNY3Ok8pZYszsPri/D0UydwOAIUl2Ti90cZGvSmJl/pMr6kDKq52Y7d5sc64OGKK2anOqe99pdn2PX8KeRczqp1a/5ep+8DRTwe58+PPMJfHr0X28DpiTfECiSaJUgNVyCSaIhJJMyrMXG600UoOL2Jr0YjRSaTMD4eElZAtDLC4Sje8RB+t42x4R50shjhgIM9p2zkVX2a3Fw1BQUaeo7ex65HX2XXo9OPs+S8O+jtkaNWyzjy9pM88etnEu+IEEnUnHg7i0PbLciUJgqrr0KpMaLTKydJ1PY0DvDyS6dTZafDQz56etwcbbJjLtBQUqxFLBGh1SpSnkwr6gTtuFwhSZCdoFSJmTc3B4VSgsGgIisbVEox3d1uwpEYPm8UiURY7Q8Eo4jFBZjMN5G99lN4bAdobnyGzrbvYcwvpWTe5QQDF6a8sLKyFCgUEsacQVrbHCw/L5+ubjcd7U40Cc+DZNStKEj93Wb3YrP7JwCwUUNVVQ5bt1aniK/pfNLKyvSMjvnZu9fK0KCXSDTGooW5rFunmdRsIL1cF8Dd5+PSWUbeHBqjtwLaDRCMRFFIJQwMCJ2uBgY8vFukr26Xl5dTXl5+xrV5yy23sG/fPk6dOoXT6aSxsZHGxkYAzOYrMBormTvXwPHjx9myZREAP/nJmZ9VVXUTl112PnPnGvB4fAwOCn4CixYtYtWqVaxZs4b169eftc/V+2k9ey4+eNhHfOQYVFRVaVi71sKKFeuZVZLDt3/9EB29g/zgi59kaDAwyQ9qxOGnqcmG0aRCq5UzNChIvoSp+JkT8qnl6Ekj6Z/+bB/Hjtmx231oNHL8vjBJc9Cpso21awXZl93upb9vnIxMGSXFWubX5NDabuXR+17kmDWLJUs+93c4a39bdPcP8bWf/olX3t6PPzhxz2sV2cwxLCU3w4IiJqaoQFhkmClEIsgxqHG7Q4jFImLxCMSFzqturxd/ZBznwQGOD4jw+N34xLPQiYsoLMxg1DPG3Tvv4K7XpvflmpM3D5PegEIhIRgJ8e93/Sj1nkQkJXOnhpJnc9CqdCyuqmJzfT1Dgz70abIdm83Lk0+epKV1BJVKSigco7/Pw4DVS4FZkzIh1+sEXw59okKiboWQE06edBAOC1VhF24oobvbRTQap6paj06nwDHqZ3jISzAUT8kZk402cnOL8XiW4A272N28j0de3k6cV9hUt4J55lrsdh8vvXQa27CPrCwl/kCEztNOLBYtEOfIYRtx4IK1lklEa11dQeq76XWeVLdKEK7T9RuKMRrVKanrVI80gLY2B+FQhAMHBjl1apQLN5amPNmS2+3c1c3hwzYWLTKh1yk5cWocKq9mybK5FB18iKfW/Jiuxb8B+ED5oLhYx6ZNm87o5Lp8+XIcDgcHDx7E5XLR3t5Oe3s7L774IhKJjNra+5kzJ5u5cw3cdNONbNu2DYD//u/JnyWXq7jooscmySpCoRAmk4lVq1axevVqNmzYQFXV2ctvz+WEjz6s1nHa2hxUVycwwgrz5CqPpUv4/A++y6O/+DXfuOHfWXP9Z1i1fqGAEYYnMILbHWJ8PMxM+WCqp9SSJXl4vRGefjqBEYoTGGFoGoyQAPwpjGD3I5HAmjUW6uuF+7Pp7d3seGIXStFG6i9YhFwikEaZ8kxMatMZY4rFY0TjUeLxuFARlZyCi0CMGLFIMBQXi8Qf1qlORTwep/HNJp5/8AWa3mkgkjAJFMs1iJRGPKf+gss3DMQxFpWgNi+FjFLEiuwzCDCVFpRmFzH9CHKzE7nJjUgWIx6J4++N4zkpRRNQIXZnEHFGKVt4NZ4BBQpUnGp6hLZT78w4zvJ5P0GdncXi83J467V7OXn0tcQ5EiFWyJDrZJw0HUFsEGG8zIhcp6KxLZ8l3hpqcmooyCigsdHKyy9PYIT2dgXBoPB9y8uzKCkRGjJptYqUJ9OKRD6Qyycwgkwmpq7OjEQixukMkpUFKpWYri6h4ZLPl4YRAlHEYhEymQirXUxW1kLqrqtEGrHRcbiRY3ve5vG2t3jt8So05kUUzCoXMMKYUICxfHk+XV1CMwuNZgpGqEvDCDYvNpt/0iJZCiMkTM6nq2QqK9MzOprACEPjRCJxFi1KYIS0ZgNTMULyfphagQhCFdVU77epMXUsllkWLLMsk7aRSCRsuHIDJ5pO0N/Vj8floeVQCy2HWgAw16xHn1eExZLJyWMn+eZ1t874eRV1m1mgr6dwUYA2VxOto60gBlWJipzqHJbWLeW6S67jvOLzsGRaZjxOMv6R+eAcMfUhRnu7k+4eF8uqjHzta2Wp12+67X7+8JMv81+33UTdxbdz8dXXTWJqd+3qxW7309PjxuHwceSIjYoKPevWWWb0ikqXPu1pHOCNN3pxuYP4/REikTjr1xUztWtT8u/JFZVXXu1k165eKsr11MzPSX3WfT9rpHn/a+QVWD52xJTN7uWd3QOcajlCdPwQB99+gXG3K/W+RJmHwrAZlWEpPu/EfuFwjH17rTOSUhIpZGeJ0OkzsA54iUSihByv4rU3EPQNQzxKZzd07p/Y54sbP4U2q5DBIR/uXi29CHpjuTIDiVSOVCojFhcTjoiQySVAHIVCglIpRypXEwn5gDjxqBevy0vLYcFoVJa9kZqFhVgsmTzz4O94Y9vzlFfW0Duox+42I1Xlo1JKcYz6qU+YhNcuMJ5RMWSze5HLJWzdWo3V6iUYjNLT7aa4JBNEEI3EkUrFrFpdiNMZJByG7h4nACLiBIIR8nI1rEyUBne0O+m1zwbj1zBkd4H3DQ7svIOju/9I7qxLMJZsJCtLycJaHZ2dTkLhKDa7n+pqwyQvtenCZNSwbp2F5mMj9PW6cTkD1Mw3TmprnOxc6HIGcbuttLaNIBaLGB7y4XaHCAZjzCoTSpunViSml+s6RvxIJCKMOgXfWVbNS8cGeeX4EJt/s5v7b17C1VfPRq9XsH598bRjTfp+aDQyXC4B2E73AK+oqODBBx8EIBAI0N7eTmtrK21tbezb10J29nl88Yu1FBfrGBwMnrG/SCRCqVRiNBr5l3+p5WtfW524ltU0NjYyd+7clN/JTGOc6k1yLv6+MTAwjkgkYuPG0pQHwvdvvYlYUMl///EhGg+e5stX30J5mZHKyuxUPmjvcFKrMTIa9vPmW31kZSlYscLM/JozTTyT17dEIsbpCvDKK520tDoY6PcQDgvESF2dmWTFDZzpm5D08HnlFSEnlCfzj0nD6w0utu19i+w2LXf/4ONHTO3ZM8CON9rxiwc5eLKZXXubUu9JRBKKs2ZTYaxFKc5INa4IhmJYreN4PDMTU5kZUoy5cjK1cqLRGPbRMXa0bMMdcBJMdHRND7EkxtdvXo7TZWDv/j5iu4Vzr5DL0SgViMUSpBIJsagIuViJYyRIRbkYrUaKWqEiFAkRiUaJxiM4x100nRDyms8bZ3P9Siors8nLVzJrw6eZW15Mrj6XUascedSACDXWgXFKSrTULjCyoNaYqqJLJ25sNiEnbLlkFpGIcA7M5gw8nhByuRi3O0yxRcsXPl/LE0+08ZcXOiAUQSKFTK2MUDhKRYWe88+3JK7TMMb4fNaVlmELdbC3uZmX3t7NrNxZrJm3CpMpj6XLhOveORZMEFMiZpXrp5UhJSN9vDBCb58bpyvA/BpjqltTsksVQEeHkz2NVnJNarq63QzbfAQDUcKROBCfBrCIUkSvxZI5YcxuWYbpwjIy9txFzeFPg+40V1917bvmAxCet/fc04RUKua66ypnnNDfdttt3HbbbUIXscFB2traaGtr4+TJk/T0jLJ48SzWry+muFh3RvUTCJXMGRkZmM1mnnhiEyqVCoCf/vSn/PrXv6a0tHTaapJz+eDjER2JyvYls8yTMMKePQM0NloxmdSIRAa+9JP/4sk7fsO2+36NSftZRPq5kzBCa6uDigo9NTPkgxMnRidJn/bsSWAEVxpGWH8WGCGZD8on8gFAZ3MTrQcPYykvof6CRe/5vcUi8UdCOk0XNpuXhgYrDoef+nozxxve4J4f3jMxFrmGeBxiIS+EA0gyLSiK1qI2zMJkMdLbO552tDiyHC+qYgfqMgdS/SgSjZh4UErEoWX4wRCe40MEXW7gzEWIL1z5CzLnZ3H6tAt3r4luQCwWo1JlIJHIkclkRKNiAgFQokYUUJEtM6JTZSGTqQmHfRCPEwuECARCBIYFUDO75CYMi/2I8uw8cucjOA87ySzNRJOTRyRYhsg7C5VCDggkDMSpqTFSX2+e9BxM5oN0jNDR4cRoVKHVChViUqmYVavSMEK3EwCRKE4gECEvT8PKlQmM0OHk2DGh8YVKJWXugktYdtGV7H7lDbqPNWLrfJix9iKWb9pEbm4ZkQjYbGkYofZdMIIpgRGaR+jrc+NyBaipmYIREjnB5UpghFYBIwylY4RZCYxgexeM4PCn7p304ydjqvfb1GhrG2Hbti7EYhGrVhXOWGleMruEb9/xbQCCgSB9nX30dvTS097DyZYeckqr2by5FJNJw0BH+Iz9RSIRcoUcfY6eizaVc8Un6gBYV7qStUVrySzKpDfYS4+7h35PPz86/CM4DJnyTAok5YitBWyYW8c1q1ejU3x8FiXOEVMfYlRU6MnpduByBmhrG8HrE8rIjx7zoi76d8Syx3jnxf8h4uvhez//CaaEoXO6b9Qvf3kQrzfMQP/4tIbOEx3PAniHwnh9ERr3WOnocJJrUjO7IpsVdeYzqlGmC6NRTW2taZJhtc3uTbn66/Vnbxz4UUc8Hqft2GHu+dmdtB9vJBZxI5JqMRUuwudtwFi0nKB0BYFYCXGRaBIpBUKr876+iYQTj3qJBfuIh3qJh/oIBXs5edLG/Av/wIUbK2hrc3B0wEvQK2hsRWIZqgwTpvwClJocQjEtEqmcmvlGYITWnIspXr6W81aU8tnP1KZIlHg8jm3YR0aGDLc7hDlfw8Yf/5De3q9jNitRycI4x0ZwjTo43d5F85ET1K+rYcHCfExGDW1HD9Hecoz2lmOpsasysiFvHicO1bJk0U3ccP3kVdHkClhyglJZmY1OryA7W4laJSPfLHRj3LtvkMEhL9u2dQq+WEoJpaV6xsaCyGQixsaCGAwq5HIJtQuMmIxqvN4QY6N+QtFiVPp/YW39pxnt3UbzvqcY7f0rpotuYfGif6F+pTnlkQNMS7K2tY3QsMeKIVtJ/coCHCNCpcjYWACdTgGIUl5pAH29HgKBCG53kP0Hhhgd9WPIVmEyCT5pq1YXpHxU0itCkvtr1NJUtWE0GheMgn0R6ix6yo0aHtzTw8V3vcNPr5rP//t/9TNei0nfjyVLctmwoWTaUtepq+dKpZKamhpqamqmPeby5cuJRqOEQiFCoRDDw0FOnXIzb17OGSBHJpOxfPnyGceXPkbgHBD5B0ZBQQbjLqHyo7VtJCUt0oqKuaBiC7tPv8r3//QbHvnp11myZD4w2TPqkUdacYwIk6pFC6Pvas6ZrLpqaR1haNCLKVfNsmX51K0wT1p5fLeYlBMSn6VO+r7Fpyf1/1ExMubi1w9s494nX2V0fIQ4YMkpoizfgts7zmzTPDLjpcgkcohPdFNNhscdIprAEvF4jPGQE1fQgSc0gjMwgivgoNo+j1uvvY6SUi1v7+7h8X1Dqf11mkzyjQaUEg0qWQbVJbNZsiQvYVQ7yA3LPsPsciNf/MIiTCZNatIsmJDakUhIeUa9VXk3RUUZqDVi7GMuRsbctLUPsu9wJ5b8PObXCO2um9pO09k3RGffxDgkYjGzLSUUZhci1cxl/YYVqSqkJPhIShSSz0WJRMSC+SbmzM5mcMhLZqYcny+Mw+Hn8OFhenrdHNg/hEIhJjtbQ0mJDu94mL4+D+3tTsrKslhQa8RoUnPypAOJSIFFM5er163DQx9/euGv/HHXg6ysnc/5m25gYVU5liItvX1ujhweZuGi3MTi2UQku0smpRsWS2aqetA5FkCukGK3+VMAWa2REghE6O1z09bqoKPDSbBcjzlfw+io0GxkyZK8Sb5dyXMyvyYHvU6RJumLJyoWR9DrFFgW/gemrsdg1w+pL99D/Tf/CMqZJ+47d/Zw6tQYs2dnzSh9mJoTzGYzZrOZdevWTbv9jh07iEQi+P1+BgbGaW8fZ/5807SkV2Vl5YxjS47vXD74x0d5RRY5o0pcrgRGSOSDxkYrx4+PkJurxmhUU1Zm5u7n7+LuH97N/T+5hwV1S1mw/hpqa4384hcCRujvH3/XfOByBfB6w3i9ERobExghV83s2dmsmJITBAL4zJguH9hsXiJRIRdkZX38LD9eeHofb+/uJxDTse3lk+gkPYhEYkRiMbFohHgshkRbilRXijTDgihhkB6XIJBSojgKsxNFQT9iWR8hmwfP0QC254OERwMsvOE2zp9Xx9FGD10HHyQUPAGASCRDo8mluNiCRpODz6dBJJKwdq0F6OOddy6mtHQNl15azR13rGfbNqF5QiwWp7vbRVaWgpGRABUVej73uXtpaflvZs/WkpERwW63Y7fbOXz4BLt3N3P56n/hgguKMReq2XTfJl7veh1/lx+wAceQZcnQlZk4JZvH6lVbqV04Of9PixF0AkaYMyeLrCwltbVGtm3rYnDwLDFCrRGTKYERxoQOf4cPD6NUFnDVp68iHrucMWsHrz39Iq8+dB/GfBPli1fTL1kIMIn4TEZb2wgNDVYMBiX19QU4HNNgBF0aRuhLwwj7ExjBoCI3V436bDBCIh8kvdySzUSmeklNR1alR1OTnYGBcQoKMmZcfJm6WKJQKiivLqe8unza7RfWLWRX9y7CoTCRcASXO8yA1Z/q4pkecqWchUuE81pOOfF4HH/Ez4h/hC5XF/3j/bT0dOPJaKbV+jK/eRIMSgNl+jIqsyqZkz2HMl0ZBZkFZCmyPrB09oPGOWLqQ4wCs3ABHj5so6vbjVIpnN7quQYcDj+KslvpOV7Cvtcf5eaLD3PTrT8jt8CCxZLJDddXYbN7KSjMxOeLMKcyK+WJk6x+SV7ESxbnYbN7U6B9RaJqZiohlYz0G7Cjw0njHmtqn6SEMH3bQFCYrWvU/1hiKklG7fjLU7y+7S/4xoVuJCJZNnLzbYiV5bhFYuSWy3CLlRAX5BfTHUcsESOVivCN7CY8+grxiGPazzRlO7nh+ipeebWTUds6mLUQqSKPnPwCrrpyNlVVOexKyACicU1qUiuWaFCqxOQYBO1uOoEoEonIz9OkpJLJ39Ex4uetoyPULjBSe14Vteet5KqbJo/n81//f5y/6TLa25ppazpI69FD+MdH8Xe8zWBnI401FxCJCSvPukzxtA/b5J+LFubS1e0iGo2h0ytZu9aCUiGlpXWEsdEASqWEslI9V101m1Aoyhtv9CKTijl0aIjFi/NYt66YUDiKZzyEyylU+BhMhXzmC7/i6OHPc/CNR9j53D007niEZRfchF+yHJFYwbgnjMmoZt26yQ/PpqN2jhwZTrTLFXHgwCBjziCFhRksWmQi6Yvicgax2X10tDtRKiUoFIJB/awyPStXFeL3RSa1Jk8SXIZs5aSkYLWOc6zZgc8XorrKkDo+CHLYb29Wcf87Xdz6xBH2djr4/qVzkUnOXOVLrpzPtPrc0+PiwQePMzIilPlOBySmM9QVi8UolUqUSiXvvNPJ3r2DiESiSfvPZMT7bmM8F//YGHUEGHQ7sdv8RKNxnK4guSY1ZfmlGLNuZPfp7Wz+wnf4xqdv5Ms3bcHnjbBunVBqXVysZdThR5MhGFonCYYk4ZDKCQlCRK/zYDAoaWl1vCshlXxOOBMri6MOPwUFGQwMjJNtmHzfJDsMRWP/eGJqZMzFs9v3cN8zr3C4tSPFlc3Kmk9Z1nwUUhWRWBhJhnTGyVTSb0cigUg8wp6ev+IOjhKNn9nx0BdxpjxYBq1eNtVsQSHWUFlWyM03z6e6KmdCFrbAlPpNSoq1gmwgLErJDtIJRJ8vglYrx2zOSP2GIw4/r79uZ0GtkWXz57Bs/hxuuer8SeOZU1rI7sd+zpHW0xw4foq3DjTTa7XT1t1JW3cnHncEkz6PHIOK7GwlsVhs2pyg1kjxeQVSZ3QsQEmplupqAwqllFyTmjfe7MUxEkChlHLRpiJuuKGKV17pJBzpx5CjSoEZs1mQkHd1uRGLIeCPccXFq/nS1k088MzrPPTyy2z6/H9w8ZqlXLF6A21HIkSjUbKylGd0Skp2lxywjpOXq6G3z8OBA4M4x4SckJurSck4kttbB72MjgVQqWVoMmSpaq6SUl0qJ4BglzCUkEKl3zfJDpbV1Qaqqgxp0sFsTHW3Qk4FHHtS6Np33WNQMH11SPrzdqbn/QfJCVKplMzMTDo77ezfP4xEIjmXD/4Xh9ksOA8dPmyjqysNI1QLGEGplGK3+zl4cIieHjfnXXItWQXlPPv7+xjo/Bl5WV+ksDADvz9CZWXWe+aDJGhfsSKBEWbICWdghEZrap+khDB922ASI2g+HovXYyNjvPDYK+x8ficDnV1INSbiEg1RTy9j8SgiuR6pfhZSXRlidS6iKdVb8XgMudlNZqWN8d7jjO4cJuw4s0IFYJ50Fr/69tX8/vdHON28DpFoKfPmVTJrVgnXXFNJfX0hDz7YzKuvdhMIyGhpcQBxxOIM1GooLNQCE949NpsXsVjErFl6TCY1Op2clhYHfn+Yxx47mZhnCguaF1xwAWm9FAC473f3cfDgQQ4fPsw7De+wf/9+wmNhRg4NMHp8kAc3jlHjW8q60tXkZ+veHSMsyqWrS8AIXm8kdQ20tIwwNpbACGVTMIJsCkYIRfF4QrhcAkaQyyXU1AjdIecvqOeaWy6ko6WDu//7IfZuew6p/BUs81eh117ORRdPNtduapoGI4xNgxFcQWw2Hx0dUzDCLD0rVxbi90/BCAmCy2CYBiMcS2CE6skY4f34a6bL/z5oN8DpZIlisRiFUoFCqaDt5BAnT44hEokm7T/dfiKRCLVMjUVmwaIV5pbHYlYOHe8nryKMKMvDiH8ER8DBS50v8UjbI6njKSVK8jR5mDPM5KpzubDkQlYWrDzrc/FB4hwx9VGECAzZgj+IyxlALhNTPTcHjVrG7Nm30N6ygH2v/g93fe96qpZ/nlUXXo6lWEdfr5tQKEp1tYHCQm3qhnCM+IWyQEmiLNA42T9HLpeweXMpXl8Em907iXzK0ivYs2cAECpG3nqzj2PH7Dgcfspm6RmwjtO4x0p5uT7VnSGQ6NoW/weskMdiMU4cO8wb2/7C6399DrdzdMoWYsSKYsTKWankkuyuF4/HIeoiFuwjFuwRKqKCfehKP4c6YzbaTAWOiAq7TSClsowF6HLKKa+qQZlZSoh8yisKsdm9GI1qlq9cmCKU0n2NauYL/k8uZyBlWr92bRFJw3Jg0u+T3iExWUkFgknrkSPDeL3hGdn3XHMRueYiVm8UuuocOzrAzlffZmyoGY/bQ15edoq8eew3n0Emk1Fbdwk5dVemxpCMdes07GkcoHGPlVAoSt2KAupWFPD0M228/nofublqsrKVaNRSQqEo3vEwcoUk5VcFgjQJwJCjJhAIM+Lw03zMzvCIkg3XfJNLP/GvPH7vnex8/h5EkgfJn30NVYsvYcJUYCKSXmeGbCV9/W5sNh8KpYTMTAGwGXJUwAhd3S48nhD5Zg0KhYSjR+0Eg1EsFmFl3e8L03HaCXHQ6QWj58OHh1m0KHfSOc/P06Q6WAaCUernGydVZGVrFHxt/WyePdLPE/t7OdLr5L6bF1OQpZ407vr6wndddW5pcTAyEiAnRzXj6vnUjhdTYybjwZYWBz/84R46O53cfHM1v/jFBdMef6Yxni2QORcfTgwMCHIxrXai06rbHUQkEnHhxhKCgQiLh4p4fMfL/Pd9j/DmvqNcMHcDC+cXMeoIYLP5Wbo0H6VSitMZxOEQJGQjDiEnSNJKxdMnJ5s3a1Pd+JIypyRRlZR1JP1+DuwfZHTUT9NRCSJEFJdoWVk/sV1YLBAB4r+PEuOMGBlz8fyORh58fgeNTW1nFG6pZZkY1GYUUkHWJBVPgKVoLIInNIYrMIIrOIIrMEKGMoO6kk2o1VJ0IgWBTi/ReAS1SkFlSTFZqhxmFRRRkldIdmY2Iw4/Pm8EkUjE176wWaioSZv0za8xpnycUibF5gyuuGI26VKZdHna1O1hcj6YanCfDJVSwcrFc1m5eC4gTEJfe/MkR0+d5Gj7SeYVLEAiFnGseYRjp9v47wf+xOXrV7KmdilFRZYzrhNhbCK6u9zU1Zu5/WtLsdm8eH1hjhweRpMho7hYAFIjI/7URDopO33xxdM4nUHM5gyCwSjBYBS1RsrAgI+S7Nk8+l8/5HD7MX56/9P89a3/xpI9i1VVq4lGDWeY6ScrBZMVU3v2DNDf70EiFrFoUS6LF+fS2+tBrZGmqnEVCjHhkOBdI5dJ6E1URet1Co4cHiYO6HVKWlsddJ52otcpUt0AYaKDZTAYnUTuWiyZwirXnIvAUAGNv4UHLoQLfwTnfeGMFbCPOie8Wz545ZUufvGL/QwMeLn55iq+8526M459Lh98/MJgSGAEVwC5XEx1dQ4ajYxAIILd7uPoUTudnU7k8lyu+ep3aHj+cX522w/JtsylevWlkzFCIh+Ip+SDdLnW5s2leNNyQpJ8yspKwwgaKW+9lYYRyvQMDIzT2DgFIwQSJP4/cK0iGAjS8FoDzz/8V1oOHJmEVyJeG2J1Por8FUi1pYiVWYCAEeLhcaJ+O1GfjVhoiFjQhuXfysiYK0YUUuA/oSPsEGw1cvOKyDFUUFu7ELW6FK83h/nzS+npcWGx6NiypZ6cHCWf/OS8SffP2rWW1LlvbLQya5aerVurgXiigmrCw6enx4XJNHEPJiupOjudnDo1xqlTYxQWZs54f5aVlVFWVsa1115LT4+LV189xenTRzl1ei+dY50YpHqOBnbT1Po2vd/vJVtnYtnqCzDWrzsjH6xbp0nJSkOhaEri//TTaRghS4lGk8AI3jByuSTlVwVpGMEgYASHw09zsz3ldwbg9GeQU72ZguhcAkMH6Ty4g9+2vsNY9w1cfsvlqDOEOXfS68xgUNLX52Z42IcyHSMYEhihK4ER8mfACP4wHR1OAHS6KRghrZo5P1+T6mAZCESprzdOqsg623iviqqz6QY4tcp3akwlFdP3e/LJEwwNjXPBBRY+/en50x5//lwz8+eaU/+Ox+OEYiEGhsZo7xtCmj1OTOHHFXThDrkZ9g3T6exELpGfI6b+t0V5eRZlpgw0ailNR+243UHKZ2XhHQ/R1GRj3ToL19y4Acuscvb89Q6O7/411tNvs3zTV5DIDfi8YWQy8aRy9l27ehmwjlNgPrMssOEdKw0N/ag1clQqCXKZBJc7SF+fACbMBRmcPDmKSimMJ1m9JVdI8PmEGz4UjrJrVy+dnU5On3YSSHQCjMenN279sCMWi9F65ABvv/Yy7+z8K/YhK2KJjFh0YsVCpLAgzTgPScYSRFLtpP2jgU4iY9uIB/uIR91nHF8at0J8DpmZctbceBmH95WwblMdthFh1dUy10hFRRZvvNFLR4dzEhGTTkglYybSaWpMZ9adfty+XjdarQJD9tm3YW9pc2MbK2DBebWpKrvmYyO0NLfT19kC8RidJw7z8mM/Y82mS7ly62fR5pSlxtHT4055FSSr6669poprr6lKEThJeWiyFDUpw7PZvfh8EVSJNvLj42HEEhEgVIS5nAH63KAvuZk1potobniIgZYHcPZvx5h5G8M1ORxvFlaPpvpHPf98O4ODXmQyCdYBL01H7axbZ8Fm9+HxhMjLE/Tlu3b1EgxGycyQYchWpginRQtz6egYY/v2LtQqmWDSm60645yr1FLeeKMXtytI8zH7pM6HABKJmPOLDcTdERptLjb9Zje/unYBG6rzJv0OUyf06f9OBxEzTSZmAhrpx9m8ueyM/XQ6OW1tDjyeMH/+c/skYupsfETeixA7Fx9uFBRkII7lINUbOdok5INZpiwsRVo6O8c41mynolzP17beyEhwJf951wMcbrubq4YvpjhrNiMOHwqFmMWLc1Pdy5I5wTowjnlKqXhvr4cdO3oYsHrIzJRjMKhwuybyQV1dAXsSsg6AfHMG1dUGenvdjHvDeDwhwuEYx5pH2LWrh+5uN2KFMKH8e2KQ4ZEx/rKzkT+/9g5v7DtGLBabREhJxTLyM8oo1FaQrco7s9WxrRGH34onOHZG+/Fw3EdurppxT5iSEi23ZF3D6royrr18IU8/fSrVbAGEqk5tpj1VwTa1pB/O7MQz03bw7m2me/uEfJBtOPt80NvrYbAnglExi/++dW2K7Ortc/PES2/jcHl44NlXeODZV6iZXcKXPrGFmy5dy7gnmhpHMBChvcOJRiOjukqQDH7h87WpybpcLkl8ltC50THiT5E4Pl8EpUpKeYWe8fEwErEodY06XUE8nhC56jL+ddPnaOpq5uW9O3hiz0OMxeqZu+A6Dh4cSlVvWSyZKf8ogN4+D01HbYhFIpzOCQ8+q1XoKpiXp8HrDdPe4Zxk9p78XgsXTeQElVowbs82qCblA3Wi9bhCIeG550+h1cpTnQ9Tv1ksn37jrVSP/xnlq9+Cnga44l6QT2zzbvmguFj3oeWEqfvqdHJGRwX5pdcb4cknT6aIqXP54OMZ5eV6SnR6NBopTYmcUF6exXgaRqitNdLUZCcSidHT46bPKmLh5k+iLTjEkR3P0/jUr9GJr2blxRsnMMIM0qGGBivvvNOPRiNDpZImOpylYQSzgBGUSmE8yeotuTwNI4QmYwR/YvE69nfCCFNj0OrmK9fciq2vN+1VEWKlAZlhLtKsCsTSiQXFyHg/oeGDxPx24pEzDasDp2LEepZRLT+Pz1xcwou+I9x88wa6uoLs3NlLRYWFpUvzeeSRFg4eHKa6Oudd7+mZSKepMd29nTxuba2R555rRyoV09LiOKv7s6XFwZtvDhGP5/K5f/k2mzeX0dU9xp/fbOTFE49wvK8Zd6+L7uZ2/vLAn1h/+Xqu+vRVZGTnTo8REtV1yS6wyZyQlIdOwggJIs7ni6BMYASvN4xYnMAI+RpcrgANDYIXlVoto6jMjHnlDTjtF+Lp288ff/knHr37CeovvphbvnzdDBhBjNXqpakpgRFsM2CETBkGgzJFOC1alEt7ewIjqJONPKbBCCppyo+tudlOTc2ZVU8z5fF32yb935Pw5Qz7z0Q8Ta2MnBoajZT+fjc+X5SGBuskYqqtbSRlFD+VOBOJRCgkCkYHwd4hp7KyPHX8WDxGOBpm2DeMXqmfdrwfZpwjpj7kyMpSUFph4OChoRQjWjM/h127eujrdbP77X5KtlajUGbwya/+jB0vvcy+7Xfw2qOfZ9kFn0SpWolcJkEul7BkigdVcbE2VcaeBNPt7aP093vQ6QUg7hkXOi8pFFKKLBnUzBMYZ58vjNsdpKIii6/ctjhVRji32ozN7mNoyItMKpQ+2iJq3EMCYfRRRTQa5fihvex48Rne2bkNr8eNSpNFTlEdecZbcAx1EhvdjjRzGeKMpYhEUmLBPiKuncSCfUi1q5BkJMrq4zFiPqGLgUgkJkNfRHZuBcrMEgzmCmZX1zA0HE1JHa++Zgkg3KTJ82vIUbFooWASmCSSpiOb0uO9tpnEeCe2S9+nfmXBJBLsbCLdjyx5PJ3eg0Jt5LovP4nIf5A9O5+nt7OdHS88zY4XnqZkziLmLLmJ8zdecMb+6ZH+IExKPYssGeza1StUN/kiRKNx8vMzqJlvxO+LIJBMOanvOjoaYHQ0QH5+Hpfc/H2O7DvEyQN/4om7v0bjzscwVdyAPmcOOr0AvpqPCW3QKyuzKLJkEgoJrcZrFxhTqwrJhJPsKJkc/5gzSOMeK2VlOsrL9eza1cOA1cvs2fqU+b/N7p10znt7Pfh9UfafHqS/f/yMzofJbcKDAbaU5rDPOc7nHj7Ep1eW8u3NVUjEAgB+440+tm/vYuPGUj75Sd2kCf7mzWXvOYmYqePFewEFlytEVZWBzk4nV19dMem9s/ERmQ78JCdHOp0clyt0bvX8QwxjjhqjXszBE5FUPkj6BT373ClOn3bi84ZZvtzMuvMWY84q4Ie/e5jHXn+W2YWzWD5rNaGQFr1OOamKJr26JJUTTBpCoSgdHWN4vWH8vgjjnol8YCkSZCR1ifL8XJOaoUEvVVUGNm4sSVWh5OUJkqloJIbJqKKoLJPHGz/afABgHXbw7Gvv8KfndnKk7TQikYiy3BI21l6IyJvDzvZn0SlzBDJKmcd42IUraKfXdYJwLMiygokOaO7gCO6g8OzNUKnJz84nV5dLeWERmy9YgDimZmw0QF29meqqCT+5dH+v9NemI5+mi/fabuoqaPr2K+sLsBS9v3yQJGBSeStxPKcryFUrt3D5+nqOdR/jhV17aT7Vzef/311861d/YsuqVZw/b82M3zl57PQ/k50bLUUZPPFEG4qEZKKq0kC2QYnJREoqYTJp0Os8HDo0zMiIj1gc1i05jyxJEY0n9vP6of289a8H2bz8fC5esQaJWIrTFQSEfDC/xsjKeuE6HXX4WVA74ROVl69h8eLclPxRo5GxoNaIcyzInsRKPwhVU44Rv7DYVJTJ/PlGKiuzJp1zk0nDiRNj7NrVjUQiprAwE71OOek37O31cKIjSGzOVpbkz4GW5+B3dXD945ArVK69Wz5IPus/ipzgcoXIzlaxaFEuAwNerr9+QgpzLh98PCNLr6K4OI+DB9MwQk0CI/S52b27n5KSagBmzdITDEbp7nYhlaqpu3A1qAqxHn+dbY8+xpE3X+cz3/wM8+cL1+HUfAACRhgY8KSAuCctJxQVZVBTMw1G+EoaRphrxmZLYISEPKrfqcY9CPG/g7x71DbK/rf2s+Mvr5NVUEXbkWaGTrcRiwQAEWJVDtLsuUg1ecQCo0T9dgLdryI3LkSqKxUOEosS9SRILDEozAoyLXr02aUUqJdzXvUa+k5JuOry2Vx11Ry+/HkhlzQ0CJVT69cXU1iYycaNpUA8dU980Hs6GdPd2+n7LFmSlyKuzibmzjVMGiNAaUkWc02V9B76DPO/cjEd7ifYve0N/IN+tj25jW1PbmPWvGqq6jexZuPSabvQJWMSRkjMI4qKEhih1ojXK2AEszmD+fON+P0JjFAzHUbQUF2dw6lTowwMRFlQexHrr7mcR+58hF1PP8PBXbu46cu3oCuYi0gsEjBCURpGqJ0GIyQ6SibHPzYWpLFxCkYYSGCEhPl/UlKevF8aGqwMDo6nCC/dlHwA713NBNDcPJKqylq3TjNpnyVL8t5zPjHTXOK9PtvrjVBYKFgJ1NebJ73X1GTn6FE7wIwVXdMRYiN2P729HmKKEL2BERZIXR9pTjhHTH0E0dY2wuu7ehj3hqmpKcVk1LBqdSGhcIziYi0Ne6x0tDsBWLluIzHJLGynn2Lva/eiM7zI2stupaioJnWspEH08JCXjtNOFi3MTfn1KFVSwRciV8OmTaU07rHS0+tGLI4TjU5cfA17rCgUklTHsyTRkPTk2TYwjkwuYc3iPHYMCyzyh510QqEgh/a8zbZnHuHIvt0E/ZNXLsLKCxkJnw9hEKtUSDSDxPwdRFxvQXxK1zKVmdLS8/F6w4yMFKGdtZUvffUyFp+3iOOtbp599hQuV5DK+YVnmIMnY2q55VQPpL81ZmK8k3E25Fcy0quvpn6fic8px2Rczae/fBttRw/x/KP3s3vHy3SfPEzdhutThNvUB1Ky6ipZyZQcV92KAp54so2jTXa83jClJToyM2VEozEOHhzGah3nvGV5k75DX6+bYDBCUaGWIksm1oHZjI7fTkFOP9a2x9j/8tepOe9idJd+j95eOHxkOCXBS6721y4wcuLEGH39booKM6lfWZD6DEOOioqKLAw5KpqO2lMrO3K5hEytggIEAJWUa+j0wiQt+f3M5gxUagkikRilSoJGLZ3k5ZY8n329HrraxthyXh5Hs1X88Z0uDvWM8YetizFplUA8UcEh3CMzrXa/33iv48yda+B736ubFiycjY/IdBOl5ORIKhWlGh+cAyIfXrR3jNHUFCROXHheOfyYTBpWryokHIoRi8c4cEAws163rpRb7Tfx5sEmdjXv5NG3H+TilSu5Sjvxm+7ZM5CS5vn8ERoaBhJm0prUvaBSS1m9qoDevnF6eybyAQhVU/osBTt39ACC/05vr4cFtUYqvFkJ750BJBIxS5YYycxOrI5/BCCks2+Qh/6yi8dffpOOHuuk9+RiFZWZ6xB5BDK4wrCIEd8Abfb9+CPjZxxLKotSbMlixO6nOn8hOUYl/3n7BqIBBc89147LFWTVikKuuXz6fABQXZUziQCcSVL3QePdcsLZkl8wedV0qok4kDL3tljmYzJdzJjLw5+e28Fdj75E98Awh0608qXrrk6RSOnfM3nsZDVRMpKyjieeaOPAgSEMBiXnLc8H4M03+hhzBli3rjj1HSyWTNrbx/D5wuTlaRLkkpv5hUu45sLz6fYc40/Pb2dPywG+cuP15MaraDpiT8nvLJZMLEWZVFZm4fMK8qakT1RyJddk0qS6D7a2OiblgxMnRrFYtCnfrGg0js8bSX3HY81CTujvcxMJxzBkqygv1wvd+dL8r4RqNg9NR0dQ16+kek0F7LsX/rAWLv4lLNrKR5UP3utYydduv33JuXzwvyja2kZ4/fUexscTGMGkYdWqQkKhGBaLloaGiarW0lItg4OCOXllZbbgt3NxJXq1j2f/8Cg//LcfojPlc96Fm5DJltLV5UmBYQClUopCkYYRGq309EyDERoSGCHR8SxJNCQ9ebZtG0cmk7BmTR4vtSuAj2axIhwKc/zgcfa/uZ+dL7zJyOBQ2rsHECtzkBrmI1IaiHr6iAXshKzvEJriESjS5VNSOh+/0kY4b4zQiJmMUg3lJTVkjSwieLKQoXYxa5eUzdjsZqoE9pOf/HDvg/d6TpwN+ZWMJKG8dm3Ru0iBl1BcfBO+sI//efJ/uO+e+xjeN8zp460svLgulQ/OwAg2L82J52Wygshk0qTywdGjCYxQOg1GOG8yCdPXl8AIRVqKijKxWj2paugFi0sR3/5FRgatHHrtRX77vV+iNZqprNvMNbesm8AItQmM0OemqCiT+vqC1GcYDAmMYFDR1DQFI2QqKCiYghF0CYyQ+H59fW7C4ViC8Deh0UgneblBAiP0eWhqsqU6950Z8Ul/vhcePNt4r+NYLJlcf33ltNVY70Y6JmO6eUiSDAvLxiEqoUV5dhV8HzT+KYmpu+++m5///OcMDQ2xYMEC7rrrLpYtW/Z3+/ymo3ZOnBxFBCnJ1EWbyjAa1UIbV7UMTa0sVanT0urA67+Ra1dfQ/uhP/Lc/d+kec9j3Pj5r3Co1ciB/cMYDCrBvygObncwBaY3rC8WOmcsEErzysv1NLxjxTHqT1WXNOyxcuTIMJkZcsbHQ2Rlqbjs8vJURVbzMTs+X4R8swaIU1b7CVZf/ElWrpoz85c8yxi129i5bRvb//IyvR37IDaNoaA4E5FYSTw6lnpJJJITdb89sY1IhkheiExdhNE8m8V1dVTXzCIUjtHa4mBF3aqUNM1iibNsaf6kc/CPiA9KPE23z3TVVzN9jkgkIqegio03fJ+rPv11Du1+ies+fQNSmeC98vrLzxGLx1i7+QokEgm9vR4OHxnG5QzS1GRn8+bS1IM2ef4ikRhvvtmLSCxmYa2Rvn4Pw0Netr/WQ26ehiy9gvb2MYqLtakqMJNRg0YtJdugwpBdzqbLNrHjhSdpeusBvrZ1HXUbP0t+xUWEwxMd85Ido44ds+NyBTEa1UJ3wrYRmo7aUSokeBNS0/TqKUOOig0bilOfm+xEmUxk6QTYlVdUpOQ6Xl9k2qq2QDBCR7sgb/nEdZWU5WTw1KE+Lrzjbe66fmHKQyCZ8NMnEH9La+73moi82/vv5XMyUyS/Q/oK+T9T/KPzQVvbKO0dYcRiiMVISaYuukjICbt3DxCNxVKVOSWlWkq6S/nCxs/hlXfxh2dfZOl1+/nCdZu5/dNX8eqrXZw4OYrbFWT1mkLiJHLCwSGKi7WsXl3Igloj1VU52Gxe3mmwpqpOkrGnwUpTkw2lUsrgkBeTUc2qVYUpidaoQzCUDgajREfg6Z/+Fwvmm/7mcxEOR9h79AQPPvsW297cz9CY/YxtxCIJCokKsUhMJBYWuuoBroCdofHu1HZqWSY6pYEio5klNeXMKy1lzZriROVMLnUrzCyqKcBm87J0Wf4Z5+AfEWdLPr2XVOC9Vk2nfk44KGZ1TR03PLqe/a0tKOQyli4VSCWvL8B37niI2265nOKC3EnP4aEhH9FYjM2bS1Pk1YJaI52dTuwjPvbtHWLt2iJUKin2kTjHm0fo7HQxt9qATC5BoZRQMz8nJY+7/obKVOe9oeF8SnTVbG/awdfv+C1Lqqq5Zs3FZGcYUt3ykuOIRuMMDXtTIKO8XJ8ilgCGBn1kG1TUJqqnctIkGlNlFMnzl/SgKi/PwmhUs6DWiM8r5AO9bsL/ymTSTJY73jAXNvwQ9v4OXvwSdO9m7aofzZgP4KPLCefywQeLf3ROaGqyc+LEKCIRKclUMh+cODGKRiNLtaM3GFS0tDhoa3NgMKi44oqJSunFK/6b733jz+x/7RVee/RPNLz0AkXzVmDOW8vBg4J/zYYNCYxQm4YRGqw4HP4UQG1oSGCEzDSMcNmElKe5OYER8gWMULXyYi687ipWnT/7bz4X8Xgcu93H9u3d7Hh+F32HXoAzJIJikCiQZc1GWShUesaCLoI9r6RtIkOsykGeYcRYWMScDSYCc/YSFw2jCampVG3hyxfcTIbXTN+pKIGyCMeLRv6hDQE+CPE0UwXju1VWTv0ctUzNZ1bfzuKsGzkceI5H/nw/bXMaeWHIx9Xaq9n30j7kCjnnX3I+YrHQVOnw4WFcrmkwQu0UjCASsXChib4+D8PDXrZv7yE3V0NWVhpGSFQGm0waNBop2dkqDAYlHR1ObDYftYsrWHvhf7LtuUZeefRx9r9wP17rIS6+ZSsOt+JMjGDSpGRqSqUEb2IBIp2IMRjSMEIiJ0AaRjg8DEzkg+T9kpQvApNyQiAQoSORE6YjpmpqjOh0E+bq6Tn53SR17xXvNYd4t/ffy/tqpkh+h5hCTigg/shzwj8dMfXUU0/x1a9+ld///vecd9553HHHHWzcuJGTJ09iMv3tE+uzidoFRux2X+rvyZjOt6itbYTTp52MjgbQ6vTMv+B7rNiwlXde+SM/+PdPk5lVjChzNVH9GqqrDcjlQtXTG6/3smiRiXXrSgCBDAPhwktPXACGbCVarYLx8RCjo0HkCgkuZ4A9jQP09LiJRGIoVRJKS3TUzM8BRECcQFjBZDenmSMcCjE82E/niRYONLzJvt3vMGbrB6II2u9SxJnnE3PtSB0/FTEP8ZiHeGgw9ZI2OwdpaAuG3GJy8itw+/VkZalYsjhvUgUNwEWbJnvxmIyaM87Bxz3ejXiCydfOe5FY6cerrMzmE5//Sur1UDDAvb/4AaP2YR79/W+pWflZVpx/PosW5rJ3n5UB6zhNR+1UVeVgs3uxWr2YjCrc7hBjYwEikTiO0UyKCrU0NdlwjPh59dUuqqoMHG0SrsF16yypcvKqqpwU+dO5d5igeDmXf341p488xq7n7iDL+BeWXXgrXp8pVanU1++mpFiLRCqe5PWyJ1H1V19nnrb6K/1cpPuAuZxBymfpAaFLosViTFWdpRNY6ZFOeolEIsp1Ki4uNPCO3c3Nf9rPl9aWc2V1bqLjyuSJwLtJKM7GbLanx8Ubb/SRNMr8sFcmpo7h/UyO/rfFxyEfVFVl4yWGXq/A6QxOIkcslkxWrSqYRECEQzEGB71EIjHMBcVs++3PeHXfO9z5yIvc/fjLzCuaS7akHKnUwPwaI4J5tQu7zcfixXksqDWm7sXqqhyunOZZmG1QolRK8YyHUka2drsvJdGKRuNUlOtZUGvEavUCcfSarLP+zvF4HIfTzcmufnYfbOEvr+3j6MkuAmHBvF0uUZGrKSJDFmY87Jy0byweTVVE+SPjyCTZaNRS5pfNw+gwUl5USJm5gKBPTG6ehi1bZp1R2ZTeecpk0kx7Dj7O8X6MT8/G7yL9eJetWzHpvd8/uY3fPPwCv39yG1sv2cj8giUUmPVUVmYzsK0L68A4R5vsKaLTavWSmSmnt0/wsmptdVBVnYNUJqajw4nfF8Hh8JOdpSQOXJAw+02uOt9wg+BVcmD/IC5XlM9fvJXL1qzhJ398lG//4VdctHw1syuvoXK2kd4+D/19bgqLMqlbYaanx52S9R1JACWVSkpVtYGV9eZJ33/q35NgJOlrtXBRbqJTk4z5iX3TwUp6TJU72jwyejVbqSopQnP8OYqtR5Cu/gNHBUeBM56nf2tO+FuIrfeK/0v5AD4eOaG2Ng0j1M6AEUxnYoTmZhuBQGQSoM0pLMVYcwUqiRtNqJXmvds5tfdVckvnsvqSC6hbN5lwM5nOnB8bDFMwglyCyxVgz540jKCUUFqqo6ZmAiP4Q2LOtv4jHAoz1D9E54lOOts6ef2VQwx0dyNWGBDJNETHB4iHzvSIFSIGUT/xyISBttZgQGw5D2NBAcaCItwBFfpsOeblY9j0xxgK9WDJtHBl8afZXLqZoswi1DLBd2p+4utfddXfvvj+94r30zDnbJ4pLS0ODu1zsGLFDXzj4X/ngeYHePzE43z/ze/T/oN2/G4/D935OAsuuIzl5y9i0aJc9u4VfKWamhIYIZEPTKYpGMERoKgogREcaRjh6AwYIbEg0NhoxW4XlDQVFVlIM8xc9sXb6TzWxJFdL/DLr3yD2jXrMc9dRXGxFqlUnLp/mprSMEK9edrqr5lygssVpLxcD4BWK6M+LZfMVKE0tfpoah5O7j9VWpsc60ySurP1r5pawfZhxnTfxWTSMOofRSaRfeT54Z+OmPrVr37FZz/7WT71qU8B8Pvf/56//vWv/PGPf+Rb3/rW32UMVVU5GHKE8nKhs5gQ6T43yX83HbUL3c9kYiIROHZ0hPKKIq770t1c6jrJcw/9nuOHHsM7+Gf+ymau/9RWMjJMQl4Q/kfTUTsHDgxhHRjHkKPCMeJPVYRUVeWkvIxe39WD1xsmI0PO4JCP4SFhBVKtkRDwRwmFoynPov17mrEPHKXYoiToDxDw+xh3u3COjmAw5VG5+HKe+fNJmg734Gn/FsRD058MkQJl8Y8QSTKJx+ME3G9NbCvJRCzLRyTPQyzPR6y0oFCIKS7R8Y1vLAXWvicB888S70f2l97ZL/28pBNWMxrn2b0sPf86dm/7EwPdJxjo/hot++r4wa9/htlcMcn4N73SSCgNL8Ex6seQrcTrC2MyqgkFPWRohM5N1oHxlMdB+viSYzAYlLS2OJhTZebiLT+h8fwrefnRn7D9sa/Sf3IjX/rPHxEIRrAOeFlQa5wkWaxdYKT5mB3PeJhAMJoinXp7PSnNuV6vYGBgHEO2MkVe9vZ6GBzyUlmZDZCS903n+ZUeU1cWens92LrH2VSRzclIkLte7+CZN7vIbQ+QIZfyxS/WpgDDdBKK5ETBZvNy+rQLm803oylmS4uD7du7iMeFZDadme4HialjgH9+icbHIR9UlGehMwvX4uLFudOC5/TJS0urg2BQIIvGPWF6OgN86foruaC2ntcONHDvU9s45G6iy2chd7aLUmM50Wg81eFl165eIa94wylT6RGHn6NN9lQl1cr6Ajo7XZzucCKRijAZ1bQkpFAatQR/IMrqVYVUV+Xg80Y4dnyIzsEeLMUavP4g/kAQz7gPh9PDkGOMb37mGo43eXj8iTZ2tb7C4HgXM9mlV2QvYrZhESKRiBP2/XSMOQEQISZDriNDnkWmQk+GPIsMhYY5s7PYdFEJZvOK1Pf5sCdiH7d4z3yQNvGdbkU3GemyvGQnvalRVVrKkupKDrae4P7nXkYtf50bNmzm0i23wGZS1w1MVBr5A1HmVhtQq2VkG5T4vGEkEjFSiRh9loKFtUbc7jDZhjO7D5pMQk5Imu6XlOhYX76KZfOqeWrHa9z355c4cLKJr998EzpJAQNWoUtuUkqY/F4LF+Wyb68VhyNAMBBNnYup+SDboGRlQuqRvmCzfl1x6twlK6RmWm2eKvHs7fVw4pQbKtezZGU1HHwA0/ObaO//NA0NFyGXSyaRSH9rTphKbJ3LBx88Pg45oaoqB0NCgpo0YIbp80FTk53x8TByuZhIJJ6STSVldhs2FBMOxxCL81i16gIqyr7O3T99isbtu3jqjjt47ndKMnPLaVmymHWXLGfu/CIcDv+kio36+gKKirS8/noaRhj0MTwsdPCLx+PU1xdQk/BH1Ok87NvdxnB3OyUWDQF/gIA/gMflwTniJLcglznLVvLMMydpOtTN2NGHpldLANGQV5DnaUsRa/IJ9mwnmTtEUjViZXbqP4k6V8AIxUmMcAG9vR5yC2ScDB3h9b4dnAx5mK2ZzadrPskFlgvIz8hHltap9X9rvB/ZX7KzX/L1ZMzUpCdDnsG/L/53rp5zNf/5yg8YWjdE6JUQvadO03vqVxx/ZyE/uudrAkZIXDfApEqjFEZw+DEYlHi9YUwmNaGQh4xEd1erdRqMYJqCEVodFBdPeC1qNFJyc+tZsmYJnYff5rkHnubYnj2suvwq/vMnW1ONT2prjTQ32/F4wgQC0UmVsqFQlIMHBUnokiV5qcZiyZwwODgFI0ypmJ0uJ0yHEdK/k83mZdeuXrq7XamumFOrzNJJ6eRYXa4Ag4M+XK5gqiPgdNK65HlPemCdDaH1XjF1DMnv8veOfypiKhQKcejQIf7jP/4j9ZpYLGb9+vU0NjZOu08wGCQYnPAvcrtnYuzPLsbGgjTtHqS1bQSxWIRGI8PpFFjkTZtKJ7UqTpo5e71hDNlKcvM0tLY68PnCHDo0xOLFc/j1Q0/Q1tLOXx5/hCPvvMhXb34WXVYOlQvXEpm9Ea8ni9oFQmn92FiA5mMj2Oy+1Ip5VVVOCnwnZVXRSIxAIEKRRTDDtdu9DNv8tLY4uGhTGX+64/ucOvyXmb+kWIVU10gs0EUs0DUzKYUYsbIUkUR4wEgkIhT5nwVxJlJFDpk6PYsW5VFSokWrlafJ8syTiIP/C/F+ZH8zgZZJ5nqLJ7yf0gmroeEweRWX89WfXcHbL9/H7lefpK99D5+9/Hyu+dQXuekLt6FQqhKlpjby8jSY8zWJSjrhM+x2H52dLhYtNrGg1pSSxOXmaVIPfBDkec8/345j1E99nRmManLzAsjlEkxGDZddtZYtV6zhD7/5Ay8/9iu+dtOFXPmpbzB/wfIzJJhVVTls3VpNwx4rSoUkJe1zu4OMe8IMWMcJh6KEwjGys5UUWbSTSLH0c/V+NN7Jc6dRTwC75TlqxN4oe6xObEUSMo952LmzJwVCppNQJFe7Zs3Ss2KFOdVGGCYmDumms1MNLD+M7klTx/DPKNFIj49DPrCP+Bjsc3C0w05rq4PqauGcH28ZITtbyZYts1LyIRAmAUlzcktRBtGoYGibNKK9cs0GvnTDZTzxUgPb9uzmiz+8B4izcM4crrywjhG3hvkLhHs1Eonxxhu9LFyUi93mS1XVJjuvbd5cyp4GK5FoDKlEjFYrTN7tdi+2YT8trQ4uuqgMjTbOv/78+4SiMz3n4cUX20EEzoANT2hsxu2kYhmGtC56Rbo55GjMZCi0GLQ6ior0FBUK3WZOn3bS2+tm7VrLpAqo/wvxfvym3o3ESidikrKcM1ZDM/P58hX/gn1TH3c9+TTd1iEe+OufOXj6MPf96MupTnmtaTkh36xJVOvB9u3d9Pa6qajQU2DOmCSJsxRpU9/D6QrS1uagqclGXb2ZqioDIpFIyAeJ77uy7jN87V+2sPX2X3P7r+9i+bwFbL3w8jMkmCaThvXrNJjNGvY0WFEoJbzTMEBHh5NwKIrbEyYaiQmVWwZlahxTz9X79f2YlugzLQJ9EZ5X7uDfC+5h+0grPzl2NcDflBPSQeRUYutcPvhg8X5zwoedDwDGnH4Ov95Oa+tZYISEmbPXK3THy82djBFAANpJkstiyUSXreEzX/sEG67egiTq5M2/vs2eHQ00PPcQDc89hCE/H5NlFoF4FrbeSkqK16buv1AoikQipiiRe4qKMmhtdeD3RxLEqXAv3/tfd9JxePocCoBEhbKgjVhwlIjPMSMpBSIkGUWoyy8HQCwGsViGSKZBqtKiz9ZSW2uipEQnYIRQjNZWBytWCBUtvrCP4fFDPHXqTUKxEDU5NVxRfgX1BfWY1CbEIvHf/Ht9XOL9VDLORGJN16Snp8fFtm2dCZK7gGs030K2ZAmt656k7dmjjL45StfxI3xq/ae48Ys3cuO/3YhcIZ+MEcyaRCXdFIywyMSCBaaUX1lu7hSMoElgBIc/YdStJjc3MCknAImKKi/LNl7C/Lo6Hvj5fbz+xJ8Y6TzEbT++jZLZJRMYocGKUilJyeXc7iDj42GOHRshGo3i8YRS53G6nDD17+8VyZygmbL4kzRm93hCBALRVJUZTC+pS+bq/HwNlZXZuFyBMxac0j9rUVrTk/T907d/vzF1DH+rH9YHjX8qYmpkRLjwcnNzJ72em5vLiRMnpt3nf/7nf/jBD37woY1haMjL/gODjI76MWQL1UvJtqw6rYKtNwvdNpI/+NQL1O8T2nDm5U/cMFVzK6j68Q8ZGv46zz25g5ZDu2g/vod9rz/DL8ViDHmzyTFXIVEUMtS7mJpFgnH6dODeavWyc1cPGrUM0BCLxykt1ZOpVWDKVWOzexlzqRAujclmgqmI+Ym43kSsLEWqX0cs2INIJlQ9iaQ6RBIdIqkOxGqkMjG5JjUbN5YmqliueNfzN1WWdy7OjJlIrLMhrNK3WXP+r+j94r/yq+//Jy2H3uLJ++7kvNXrmbdoGU1H7XS0O1lQa0zJRZOVWslKO3NBBjdcX4XN7uVgApyUlekwGTWCof62Lnp6hTJwTaKqqqfHRTweR6OW4vVF0KilVMy/iM+VLuPg67/j0bu+zZz5K7ANfoETJ0onyTbTZYECKRVCIhFjylUTCEbwjocJhWNUVxsmdN2JsSQ7CyZ91c42JgG7tH0vqs3HqJTzxsAoziVafMVK4vH4GW3rAZ599iSPPNLK3LmGlDFlehthEEipBx88zsiIn4suKuOTn5w36Rh/q5luQ0M/O3Z0o1ZLSe8q888cH4d8MDAwTtdpF729ItzuIL29bqyD4wwNelGqpFiKtKxbJ0idktdsemUIwM5dPXScdpKfp0mRCV/7/EVsvWI1f91+kjcOHKbT3s7/u/shvvObP6LVZLBiQTWFxnxi/gyKyuTMXyAcLx3gJ6uhtr3Shd8XZtYsPZkZcqLRGAq5YBhts3kpKtAhE6velZjq85xEq8gmS5WLQWUmHAuiU+SgkmWglKpRSNUoJCokYim5JhVr1hSlyI2ZJlH/18ioDxrvRmJNlxNmWq3eaCnh1k+t5/u/eZrfPPosR0908v3fPsZf7xXuh6NNdto7nNQuMLI+mRMODtHa6sDlClJWpk+RWK+80klL6wgGgzL1ud1dLg4kVq2n5gO1RorPG0n8Gef33/saL7zeyK8fe4Jv3/cLbvNfS/47FeTkqFPVTzBxDZ84MUogECEYjCKXi6ko1+P2BPGMBzGZ1Gf4fLS2jbBrVy8Lao3TttyeKaYj+oQvZCRS/3UGm55kA2+z4IIe+ur/MO0xnn32JM89186qVQUpQmhqTkjPByCAyHRi61w++GDxfnPCh50PQPBD279/XMAIBhUjI376+xMYQadg69b3wAj+BEbI00y6rkG4Pjs6nKmuZVVVVah0RvKrV+MeHeNE03HEwUEGOzsY6muga/9LvHDPLzAVmMgtyEWiyCQQVtJxUI4mU4NCpULsD6GOgzQY4E+/HUKvkzA8YOcMS470iPoJ9L6GSKZBrMhGpMhGrNAhVuchUZsQyzIQy9QgUaJQiCkqErwR002sZ4qLLirDF/bx186/8kbfG0RjURbnLuaqiqtYkreEHFXOtPOw/0sxE4k13XNjKsktvLeeb1Zeyat1T3HPq/fQ/3g/7uNuHv7Nw6xYt4I5C+bQ1GSno8PJggVpGCFRgTqc8AM0mzO44YaqhIQ6DSOYNAlD/a6UVPQMjKCR4vVG0GikuFxB8vPViflPHoa87/Dnh1/n8I7n+Mymz3LTlz7Bjf924yRZ4P9n79zj2qrvN/7OjZAEkkAgQIBwKbRAS0vpRUttvbRVW3VqvW9ep3Pq1Hmdzs3LNp0653TTTee8zbqfl02nztVL21VbS+8tLS20hRYIECAhkAQSEiDk98dJTpMQ2qr1zvN6VQSSk3NCzvmc5/k+n+cjiFIhjmBUk5Wlxu0eRKGQitsCxH0JTxb8NPUAxq4J4e2Xl6eJ5+NYqK5uZ/VqC2azVnQl2mwe0TEFiA4st9vPjBmZLIgZevJ5w9XDQqNSKSNyyu9XgW+VMPVZ8POf/5xbbrlF/N7tdpObm/uZt5eZqRGDt8vKDHR1eqndZWN4OCg6gQ7tjAmiVMooyNeOelxbm4cDrSn4FKez8AdXM6kwwLJn36Kns5a2xk30O99i9zqBHOtS01mhzyQz24QhLQW1JhlNcjKW1gG6m134tQoGbDJsXb3otAGcPU42Le/mrb+68bhtRIpSEnkqkgSTIDwl5CBNzEciTxcv/qkGJZdcXCZOdBvH4XEkOVGfFkciWMU+xlxYzDFL7sMn+S8aZQdTKoU8gopp6QSDI3Ez0goLdcKFNqLlL0xOwsG0y5c30bjfSUKCjJKSVCqmpVOzwy7YZq39+P0BEhPlYrBtSYmJX//pb2xcs5IH77yVfbt+hC73bHbtPo9Jkwy0WvqZU2US+8DDwpbL6aOj08uxx5iw2YWRxnJ59CrZumor27Z14fEMHTL4L97fJNL9FTm9z5iuYUm6hhP8Jl7eZOG1PZ10vLCZJy6ajk4VbRt/880Gtm7tChXe0SOBQbg56O72kZamiks2Pk/uR0uLi7/8pYZ9+3qZODEFqVQKtEYJY5+3LeTbgqNdD7Kzk5CO+Mko1NPS4iYvT8v+/U7RMRUOPD/0DYBQE/ILtFGPs1j62LXDhdyTzeULZvPBcxO5/Z63WVezi4amLtZs3cmA38cLH4JapSTHmEaqNgVThp6MdB26JDUS5Oyx9OBy+2npV+PzD+F09zM0Msg/q/u44y99+AMePEMHnQIyiTzUbpdCckIK+sR0dIlpyCPaJQoKkvnlL+Z861vujiaOhhU/FvE+W7E3sLGPmZI9nctPTGFXxwaevPta8eflU4VrRWxGWrxg+d11Djo7PKLrbmetnZ077Qz6A+TmJos5aBZLH9aOePUglbuu/x7XXHwit/3uWe576gUytCZOLF3Exo0dKBNknHpqAVVV2eJxqDVydoRWyCsqjDhdPvr7hzGkHmyVAuF9Xh7KzoKxJy/GsADSSAABAABJREFU+3scKtvLmKWHzB9DawWZW18kc/NSMD0FZWdEbffNNxtYs0YYQ/+Pf0wXfx7bivNl1gOjUchKDDt2w6Hn4/Xg6NYDgMwsNbNnC5PuysoMdHV5qa0NcYSQE+hI6kFBnHqwZ08PLS1u2tv78HgEl9KyZXX09Q0xbVo6lfPnYrG4OeeaqzDnqNiyfg+D/Xacti5sHTbamztob+nC5/UyPOQnGDF1b/+6g3sgkUiQyBJAmoBEnohUkYQkIQmJIgmpIhmpUo80MQWJTJjel5oqCG6fNw/HO+RldetqUZCamTGT80vOp9JYiUH17XL8HY123VjEu27EilWRj/kJP2FR3iKuTL2Zlp21SCwqcsuEz39FRTrBkZG4GWkiR6g4DEdojOAIFenUhGpCxxg1IfzZqamx09ajJ6X8YlJ6t7HsT8t446X3+P5Pr2HBaQKHCQtb4ba0RYvysdkEjmCzRU+EX7fuCDnCIWpC7PS+yPP4cIts69cLUzgTE+VjthCGHVjhyIZYfBqXdbzjWr68ifb2frKzk0LcvjtKGLNY+tBmDpNl/OJrwrdKmEpLS0Mmk9HV1RX1866uLjIz46ugSqUSpVJ51PYhJUVJZUyw4NlnF4uk12b3jMqAikT5VCHMFoLY7J5oEcGcjDlPiCMfCQR5f2U/kqS5TDp2IZdcUsY7b9exY9tOMlLc6JI8NDU2023rpc9pw9Pfh6fPzaB/kGAQeuRSpBIpMkUi0uEU3E4JgaCK1IxCfnD1bIxZ2RizssnJn4Bak3TU3p9xCDhc2PnRxFiCVfgzmZen5fjFp1ExLV38mUrhYvkLV2E94TpgsdgSGt73BQvMUeJN5BREi6UPqUxKil5JulHIBgl/zjdv7qCjw8POnXZmzcokUSlHq00QL37HzF/IfU/+h8fv/zXte19nY88WWg/8mCGEAlc1Jzr43mb3oNMfvHiGVxQsloM5UkqlDKlE+HooQTD8N3E5/eI2w+/dWLle/W4/FSoVaSVG/tfYzSmPreHpiyupMB8Mil66tDjqazxE3hwcbTKwe7cDuVzGxIkpLF1ajEqliGobAT53W8jXEV+HepCepiZdL4Uko3hzEpmTY7H0YbN5RmVARcJkSsJuE1YfI2E2J5NnFurBcGCEd95uIlObwwyz0P7gHwywcesBktKGKJyooHpzE50OB81tdg60W3H1eXH3eyEYJBiUIGuVoJDJUSeq0CVrhFVMuZ7ywhIuOqeCPJORgpxMzKb0kLg5jqOJo2HFPxKMdQMb/jzm5WmBfK6rmEVBTpr487/86zX6PH58gycDBwUdc27yqODxcDtq+CtIUCRISTWomH98jvjcAwecWDv62by5A41GzsRJBoqK9OL1PFWfzPO/vRlzSjGPv/J//HPzP5iadQwTDFPQ6pRUVWVHHU9aREuTmWTstoGD9SDCVTI0OIIyUUZennZMQTD893C6/Oh1o0Nt42Z7SSTYEsvpzPgJJc7XSHj9YjjmGjj5AZAJt9tfx3owebJBdE7I5RKGhwUnzLepHsCnrwlHux4ApOhVVJwd7XY4++ziqHoQmwEVifLyCI5g84wiyMFgkP7+QYaHR1i2rI7u7gHS0lTMnWsSxYDERDkDFek0WORUVk7j/Cvzxe2H9yM3N4lBv5/9DQ5ycpJYtqyOfft6KSlN5577jv9SXUneIS8ftX7E6tbVDI0MMStjFheUXEBlRiWpialf2n58mTga7bpHgkOJ3C0tLhp3y7kh9RHeLH6Ffccs5zfr72dOwhmYZQb+89SDdJx6HpwzV+AIxhiOEPHZnD07S5wEabH0IZVKSUlRivmBY3KExGiOAIIoduCAk6YmN/LMYymcX0Trtv/yzL2/prPxe/zojh+RpBXul2KdR1EcwRjBEaQhjnCIBSKRI8TkPxmNmjGzHo9kwWlOqE7OEevlaMQbjHC0EP57ZGcnMWeOSRx+ED4eELK3ckZk48LUp0VCQgIzZsxg1apVnHXWWQCMjIywatUqrr/++i9tP8L5N+Ex9h980MyGDVaCQVi0MI/Wtj5qamzY7V5x+tm6T6xiFo9OrxRDmgFqd3aHpscksGhhHh7vMDU1Nvr6h0hLU3HJJWUY0lSYcgwMj8zgxBPNDHiH0WzvonJ6xijLX7z9/c9/9tPvGeLUUwsw6nvp7rKiSdKOi1JfED6v7fKzIlKYibSghoPGwwLMrrWP09XexAf/uJ3WfdU8/NSjNDV7Wb68CalMwrx5OVE5YOEpLza7B+vObqaWGzCZhM+qGGyYpkIqlTLoD9DdPYCty4skU0NuiFxv2dqJRi1nOJjA1bf/inffmEft2sexbP0lxTMu45hjrx51LLU7QyPDQyJSeNpH+DXr67uxWNyoNQn4/QFqd9rp6PRGiU9hoTgvTyv0djt9o0SoQ7VJ7tvbS0lJKjctLObF6hbO/et6LpiUheKAh0WL8jnnnEmHnf5yJCvg8SYzHcmq2uTJBi64YBKTJxtoaxPysKZMSRuVK/Jtyxj5utQDEPJ5dtQIn7GEBBk7d9pYt85KRqaapWdPpLq6XawJ4elnn6yz0hPKyAkEgnhDI5Dr6rupXmcl1ZDIwkV5eD1CPajZYSfbpGHRolSmVaTT0uymp8fH/Hk5pKeryUgoRatNiLphPNS+ymRgae1neqUBb9COf2iI/JyMMZ83js+Hr6ImRN40R9WDiw4OnrBY+li9bi8vvv0hwWCQldU13HTBxdxbuoRP1rWzeVMns2ZnsvTsg6Pjw+2o4Sl4JpOGxYsLgaCYTVVWmgZL4S9/qcHhGMDpkqJUKoR8xIgwV7VGznGV5Uwy38Wzb73N/7avw+5r4fwJ18U9JqfLj7PWx9Ty9FH1wGbzYGntY2BgCJlUgndgeJQAFQ5PD9cDZ5ysDzhM6/wBGUPFVzPDuAo2PQOtG9k84VGWf+Jj4cI8/vGP0w/5dzlSR9RnqQnx6oFOlyBe/yMdU982fF1qQuS4eIMhhiMsyqO1NYYj2DysW2cVs3h0OqUY0gxQW3uQI8ycmUFpqUHgCH0RHMGgwmhUU1QkZIoNDIS7IqIFpmjhOolcs4H6+m402mSKSxJZdEoB+2r30WPrIX9iPlnmrC/sfRoYHhAcUpbVDI8MMyNjBheWXPitFqTC+Lztup8VkdePsDg2Z46JV2/6DXscP+An793MCs8ruP7aT6elnXef+SOW+loeee5n7G9yCxxBGuIIEe4fkSPYPFit3UydGuIIngiOYAhxhMEQR7B5kUg05OaGOMKWTtEJdeKJZhSKNvr7h8jPn8Kk8glI+upY8c9/Ur2imtt/dzv5ZZPF6XUgCDpjcgR1iCPU2keFj4eFYpEjxKkJRxKlElk/Iq8BsfEN8XAkjqjIbYaFviMRxszmg9OhY4818ni0mWPE+xxlfKuEKYBbbrmFyy67jJkzZzJ79mwef/xxPB6POIHji0Zvr5/Vy5totwo28eLiFDZusNLZ4UGhkOLoEcZlSwDfwDBbtnbicvrYtLkDl8uPRqOIyhwJT0ZzOHwYUhNxu4dobXPjdPpIT09Er0+k1+mnZocdr3eIY48R1M4UvRKd3jzmTW6kQFGzw05nl5dsUxIpeiV/eeRxaje+y4VX/4wrf3pL3OeP4/Ph04SdH02MlTcVRvj/j5//W154XMPa91+hbvO/ue78Xcxc9HParSqyTUkMDgZ45dX6Ua6/8BS8rEyNOGYeczI2u9AfnZSkICdXS7ZJw5wqkxiEaLH0sXVrF/19g0hlEkYCQVS6icw9608M2N6k+sO/8dbIboryHycz2yy+VnhqoE6fKL6n4Yl9q1a1sGGjlc5OL8lJCvr6BmlqdlOQrwWC4vtQU2Nj+/YuPJ4Mrrpy6igXFhx5m+Sdp07ipQ0t/KPOSqJjiOEVo8eDf1qEbxRWrGhmyxZhpTe8zSNZVYskOS++uEuc7nTvvXOjHvNtxFddD8Lh55t2B2hodNJu7SczQ8O6dVZ6egQ7udmcTHU1IIEB3zBbtnTidPnYvEmoCZWVGVRUGMXP2o4aO9u3d6HVKtFqhdV8d5+f/j4/TqecmTMz8XqGUSRIyc/T4XT6ycvXMmNGxpg3J5E3Lztq7NTssFNcpOeE43M50NbBBXf+Co0qkf7tb34p79t3EZ/Hiv9Zcbh6EP7+RCbxr0n38JP7n6Czu4dfv/hnJBonmYoy3G4/DQ29vPJK/SjHX3j7mVnxpwU6XT6yTcnIpBIMhkSmlKeLr7+ztpvt27pISRGE2b7+QY4vO4mirCLe3fxfrvj1r+nxXcXVFywW3RvhqYFBQK9LZObMgyLXli2dWFrdbNrYiXdgCI1agdstBFtnZqkJ14TOLg/W9n7arf1cekkZZpJFx1Qkxvp7hR+Xa06G9MshrRi2vcQU6xm8XnM5KzntK60Jh6oH39Y6EImvuib0OgdYtdxGe3sER9hopbMzxBEcIY4gAV+oHrhcPjZtOgRH2BbiCIYQR2iN4Qi9fmpqQhzh2BBHSFGi0x2CI0TUhJoaO52dXrKzk0hJUfKnu/9E3aZNXH7bj7nsxguP+ns0MDzAx60fs6p1FcOBYSozKrmg5AJmZsz81gtSYXyedt3Pg8jrR6w4VmIo4emqF3lo0yNsuOw9slTZdKxuZ+faVVz7vSZmnn4J7e1BsrNDHOGV+lGuv/AUvKysCI5AspihlJQkJydHS3a2RnTvRHGE/kGkUgkjI0H8/hGSkxOYOtUYync6hkuuOY3f3/F77rj0Do49eQHaguORJyjF6XXhf8LrtbBhQ4gjJIc4QpObgoJDcISrpo5yYcHh60HseVZTY2fHjoNDyj4PwudqTY2NxkZn1DaPxIkdue+rVlnE/YpcoDIaNfQM9MR9/tHGt06YuuCCC7Db7dxzzz10dnZSUVHB+++/Pyrs8ItCZ6cHqUxKtilJzOAxZqgZGh4hOztZzJ0KY+vWToompIijk/PytKNIcOX0DHE1pKnZTU2NDQmQkaHB6vGwus9CcITQzV8wblgzHHRyCQFzbvGmLC9PS+1OO0NDI9TssONwCPvndPkZx7cLh8qbgmgB5p5HH2PzWWfw+7tvpvVAA50vXMexp97EkiUXU7PDzo4aYWxxuLiUTz1IKlxOH9u220TRCMDtHmTSpFTxpiq2pa662orF4kalkqFQyEhOTiDVoGPuWb/g7AvP4fe/vIkfnXkiSy66laWXXIrZnEzRhBQcPQNo1NGXsrBo5XL6SU5SMG9+Dk6nH7fbj04vjDDX6YXVcYvFjVwmxZCaGPUe1IcCcuO13EYKu5HnWVKigmuOn8DLqw/wCb28L/FSunwfjZvtUavanwbhG4Xs7GT0emXUyPFPu6oWb2z5txlfdT0Ih5+nGtKp0CjQ65U4nX5KSlLYswemTxds7cXFKQwOjZBhVLNnTw9qjYKsLA1ZWRqq5pqiyP600JSmVEMiEGT7NhvNLS6cTj8DvmGq11tJTkpAJpMgkwmh617P8KhQz7AzalpFOlZrP9u22YQpOqHthyc/HWgXiG9E3Mg4viWIbQ+Id+Ma/vlMMlkwdwo33P8Uy97+H/c+8TJVFVO4dOF5+L1SakJj7A+GmA+L0+ucLh/bt9lEwQgQBatFi/KicizC6LD209ziQiaXMDIC/X1+FAoZp8ybzh03LuCh5/6Pa+57khff+Iin7r2eiikCyZ5QlEKPYwC15mBNCN+c+3zDyBUS9AlKKqYb0WoT6AyNCjebBQEqIUFCc7OL/v5BLJY+UdyKDEyPbbcdlTcV+T7mHwcphbD6cX5X8WdqVN38+r4ACxYVfmaB6mjVhO9aPYCvviZ0dnjFtplwBo/RqGZoKIIjdMVwhKIYjhDzGausjOAITSGOIAlxBKuH1astBINCBm4UR5gZhyPUjMERakMcocYuLqo4nUeXI/gDfkGQsqzCH/Az3TidCyZdIIaaj+OLR2wbcaw4VlyYwXOFv2eVZTH36u4labqazhc7ObDnAO0tD3Pc2T9gyZJTReEliiNELDy4XD62bbMBoNNFcgTDaI5gHJsjpKQkoom41iPXcN6NN1Mxt5qXHnsW5dYdzD79IjSa6MFaYUHX5fKTnKxg3rwIjqALcQRdBEeQS8VhHuHzT+QIcVpuI2tCvED18LlfUZEe1+n0aRCubwaDCo1GETf360id2JH79VXhWydMAVx//fVfeqtGGJmZGozzDvbDvvPOftyuQXJztJy6uAAAj3cItVpBZ4cHrU4JBDFlacTRyZEQ2pOi7X9erxBqWFycIpxILj/NLW4MqYmUT01Hp+8bFdYMsGJlCzU1NnJyksnOThZD1Gp32lGpFKSlq6iYls7G95VYgdSU6NDQcXzz8WmdWrPmncTTb6zkoTt+wrb1a1j7zkPMnZtLxbTjAUhUyqiutuIdGMLtHiTXrBU+++ZkwjkIsY6seJlNxnQNarUcn384NL4+gEQqRacfYc+eXnx+A7c89C/+9dzDvPn8r9m99X/85omnyDUnY7N7qdlhp9fpF0PZzeZkMjM1dHV50WqFPvYZMzKiLLwAdXUO+vuH0OmVOHp81Nd3i+21yyOcj2ONdg3vfySkEgmXnjSBObY+nv+kmbvXNJB8wEcwGPxMRGTyZAM2mxcIct55E6NuFMI3DtEjf8deZYs3tvzbjq+yHoTDzzMnCBk8b/57Hzt22DGZNJx4ohmZTMKePT3IZBKSkwQreaohkR7HAEqljBkzMkeR4LLSNPFnNpsHkJCZqcHa0Y8qUU5xcQq76xzIpBLKp6aj1ylRxwRzAqxc0XKwfXByWqihQ0JZaRpWaz/V1R2YsjRMr0iH10EhH8+V+rbh07q0dMkaXnr4NhYcW8G1v/oz1TW7cHn6eOXBX7Gr1oEyUcbWrV309Q+SnKRgQlEKep0ylI82Rj0YI7PJ7w8wPDSCtd2DwZBIf/8wiSrw9A+xcb2dm77/fSbnl/Crp59n3qU38+z9N3LBkuMx5yZjt3mpXmdlz54etNoETKYk1BoFPT0DGNPVKJUyzLlaUYxSa+RibWho6CVBIWMkEKSmxoZaI6esNI3qiIDc2HPysKvSOhOq0++HbX+nYv9rKJybWLHi3s98LdbpEpDLJcyZkzVqG+Hr/+7djqjv4+G7WA/gK+YIWWrS5umjOILLNUhurpZTTw1xBE+II3R6Qq7YICbTGBzBeHiOEA6dNhgSKS9PR6frGxXWDLBixRgcoTbEEdJUVFSks1avpBNINRwdjjAYGOST9k/4sOVDBoYHmJY+jQsmXsDsrNmkq786gvxdxJE6tRaYF1CSUsLNSTdTa66l/4V+2na0ser/nmP+8WYqKoTpkomJIY7gDXGE0HUXDsER4mQ2GY0hjuAbZnh4BLk8IAz60inZs6dXFHY8nmH27u2lZOZcnv9wDr/88W9Y+fcn6dq/m3Ouvhhrh4+Kis/AEXRKHI4IjhARGA6H4QhxakLktM1XXqn/XO4pszkZl8sPBJkbk/cY6RCLPd/jIXYK6FeBb6Uw9VXC6fLR1egWp4Z1WD2A4GYK59nIZBKUShlKpQy1Wk7jfhcymYSCfG3UCREvqLm0NA1Dmirq56tWteDuGwQk4s9rd3azTcyYOvghlABJGgUzZmSgUcvFpP9ElYyCfB2GNBUEheBLyXjA7XcewmcwwM33P8uKN59hw0crmLfoNBKUiaKA4+jx0WEVvnq8Qg/yzBmZLFigicqBMpmSxBXxeCr+3CoTXV0e2tv68Q8HCI6MoNUqcfQM0NjgxG7XUDjjWtLNx/LJu7/jx2efxI9+9jBabQFut5/Vqy1Yrf14PENcdeVU5HIpIyNBFArpKIdYWBgzpKqYNSsTu91LY4MTjUZBaWmaGOAe6XyMfE9cTj9Zmeq4AnAYxcZkfnlaKY++W4+lENYqBuly+cjQJfJpkJenw2gUVsiNRkfcm4bY9o2nn97Oq6/uZeZMI8nJys/s1hrH50Nvr4/mZjdy/YBghXb46OvzA0mUlKRG5dmEV6j9vgB9fUMERkaiXB/xsgKMRg1Ty0GvU3LKKfniDV1yUl+IkGvweoaxWvvZ3+iioaE3OmMqFC8ytTx8IxIUxS5VooxUgwqnV1gdl8nG68E4hM/h5NwpvPf0b7nm14/zmxsvoXyKkfIpRrEdw+sdEgl12J2xMJR1abN52BnK/VA7DgpCsTWhaq5QD1yuQUZGgiQmyhgeGhHuWfoGAZhVOpmbzr6ONXtWceEtD/P+2q3c/eNL0WoTaGh0Ur/HQYJCxoKFZvy+YdqtHoqL9GJrbLzg2vB0QbvdS0OjUBPKStNINajQ6ZSjyLjN5sHp8pOZpY4rAIuQJ8DsH9HgzKAw8G+ul14HNQNQ8f1P/TdwuQYZHg7icg3G/X28dr6nn97Oiy/uZuLEFE46ycyJJ5q/E617Xzc4nX46GnrFrJyOjhBHyNSIGS+jOEJjiCMUxHCEODWhtDQNQ8QQAKNR4Ah9sRyhtptt27qorIzhCBJISgpxBE0ER0iUUVCgw2BQEQxxBOnnDEAfGhmi2lrNh80f0jfYR3laOedNPI85pjkY1cYvNWB9HJ8e2cnZ/HbKn7nf8wBbblyJ5j0NsiYZVQurkCvkooDjcPjo6BC+ekJZmTNnhjiCzSPmQB2WI4RqQnu7MLUvGAwKHMExQGOjE7vdi1qtwGBIFD/7v33hYf7465fY9P7b7N9VS0b56Xg8FVx1VRyOEGe4hcEQwREaYzhCjPMxDJvNg8vlJytLHVcAjkVenhartT80eOTTw2jUoNP1iblz8V4nVih7770DrF3bRlGRHpVK8ZndWl8ExoWpo4yGfb007RT++AsWmKmqMhFuczKma7BY+ggEgpiykigtNTA4GGB9tZXBoQAaTfSY+XWfWNm0uYPZs7LE4DgYPT3MZNKg05tptbhZvdpC5fQMICi07gr/AYQLwdDgCHOqTMyckSmS86xMYfXebE7m3282sH9/L3D0bbrj+OYh8mJ2yXW3cdGPfopcIXxOR0ZG8DgtfO97E7BY+kQxNrKQROZA2ewDBALC53HmjMxRQk5paRple3rp7fFhNAqrF+VT03F0D6DRKETxaFrFbJ596yMe+cWN/O6OH7L4vB9Sdeo1NDT20dc3JLbkhQWlimnpo14rtqUxcmBB+OfhMMB40/s6OoX2D493+JDTFS0HnKibfWSpJLRJfSx67GMeOLuc9vVdvPrqXi68cBLp6WrefLOBpUuLxwxJP1x7hsXiYu3aNrKzhX149dW9bNvWRXOzSwyOnDs35wsZQTyOsVG7q5uGOgce9JSVplE114RGoxDbgbZs6SQQCJKQIBNDOQcHAxw44GRgYBir1SO6Mz5ZZ2Xzpg5mzc5iaZx6EIbT5WdCkY6p5eliTs+EohS02oSoaTQLF+WhVitCLYGCuLVnTw96XR9Ty9PQ65SsWdvK/z7ZC4y38o1DQGRI+s63/4xCcfA2sqe/h3nzs+js8InX2Nh8psgcKLstoiaEWubCKCtNY09ZL5s3dWA2a8kyJQFB1CoFLS1uplWkC+3kbvjhqRdwydnz+Mlv/sIn2+p48q4bqDKaqNvdjdMlEPKw4BSvFS+2pbGsNC2q1RXguLkmzLnJUccSPp5wO6DXM3zYPI9dnhLe3HcOPyxbh/Gta6H+XZ7vuYaX/mn9wuoBCDVhxw4b+/c7GRwcEfdvvB58udi3r5cDOwSRP4ojlKdjNEZwBFMER1hvZXAwDkdYZ2XTpg5mzx6DI4QCnE0mDTqdmdbWEEeoDHEEYBRHGBphzhwTM2dmiuQ8K+sgR3jzzQaam10A9PR+No4QGAmwoWMD7ze/j8vvosxQxrkTz+W47OPIUGeMC1LfIOyr7yN397mYKyax/MznUEvUOAYdZCgyCAQCeJ32gxwhJMaO4gjbhLgA2yHqAYQ4QlkvPT0+MjJCHKE8HYcjgiM0OtFo0sXnZmZpuflXV7D5lDm88NAfaV73EtmpfYyMTIlqW4t9rdiaENluF/65yBHiTO/rCNUEz2FqQn19N+vXW5FKo92QYeFo3rwcdDqlGEI/Vkj64Vr27HYvdXXdYjvi2rVt7N/vpKvLS3q6Wnx/jyQs/YvGuDB1lFE8MQWtVCaS4fBKhM3uEaeOhfMMBLdTM17vMFKZkE+1apVFWNFO1+DoGcDl8uMI9XOHYTYn43L6aWp20dc3SGamMGnA5fSJYpTJlITNHj1iPCFBRkamRvzwa0K2SLfbT/nUNIzpGhoanQwPBwBITR1v5fuuI/ZiFxalAF584mH++fxfuOm+Rzjl7PgBmGZzsiiUmkxJUcJVZOZZOOBQq1WQkaGhstLIggX5gCD4lJamRYlHKWlp3P/UP3jrH8/x7KO/Ye/OjVxz1x8oLZ0ohEmvb2f1agtms1ZwAYYQuY3IbChDmori4hTxsZEh6rGOqHgFQKOWs2pVC2EROjzpz273YrX2k21K4qLFhbyz18YNr2xH3T1EW63QX5+dncSaNW0AYxKRsL163bo2Xnxx1ygH1Nq17ezf72Tt2nauuWY6ixaZcTgGmDMnk+xsrZgh8mWNIB6HgPIpaSgYoqji4CSy8NS9LVs6xQyeyJuAVassDAwMEwgEcbv94mpbj0OoBz2O0fXA6fLjdPmwrHOzv9HJ9MqM0PbsBAGtVoGpJIUdNXbRhVVWmiYS6fD0M59vGEurW8xFePXVPfh8wgqnfLyVbxxEX/8iRanmti7mX/wzSgtzeeOJX5CWctDVF/v86ZUHa4I3RFRiJ1eG60FKaiJZJo3ouAJG3ZwLYlMZcyvLuOjWhzn9J7/kNzdewmXnnUp7u5fBwQArV7TEPZ5IASpyX9MMQk1ICzmkxmqJiFcP1Bo5K0P1YGp5Ot2OAfE1ehw+Wh1K3um/gKuqWmD3m5zlXcO7PWfy6qtfTD0AWLTITEdHP5MnGzj11PyoqVvhbY7ji8fEiSkkDyeIZFjkCKHPlSamJogcQRrDEYwaHKGa4IhTE1wuP01NMRzB5Qs9IsQRbHE4QkYER9BEcITyNIxGDY2NTgIBYZUiLe3TcYTASIDNXZt5r+k9enw9lKSW8JNpP2F+7nwyNZlIJeM15puGgyJ5Oeeq53Lj/27k0a2P8sMpP2TVk6t4Z9k7/Oz3P2PBmQviPt9sThaFUpMpSRSuYidXhsUSrVZBZmYMRzBGcIQI8SgMo1HDaWfNYPqsP/HMQ8/x8dv/4sdNe8madjrFJdkYDDEcIbSNyGwoQ6geGA5TD8LHFPkVhHNJ5AghMa2mRuAI7e39ZGcnRT0+LByFX3vXrm5gdO2LPMZD5V7V1Tno6PBQV+dg8eJCKirS6XMPMqkkBYNBLb5nRxKW/kVjXJg6yijI13HSTOGDE9mKF7nKGEmI3e4huru9qFQKkpMTaG52seylOuZUmTCkqqiszGBulWnU69jsXvr6BhkJBMVilZenJSc3WRQAAoGg0HsbIuKRJ4vN7qFmh53mJheNjU60WiULFgjFq3m7HFffeCvfOMbOpBoZGaGteT/Dw0P8/pc30dy4h6tuuRuZbHRGWvlUqN3ZjdXaLzoHbXYPb/67QTw/wjfFQkZaYtwWudjeZ6lUytJLfsS0WVX89vZr+OXVZ7LkotvIvexy1ldbhQuxtZ/SUoO4jXBoe3h74XPU5fTR0ekVXYjh142XJRX7noQzsyInBDY09LKjxo4pW8OsWZlCgHpBKpPMel5cvZ8NI04Ml+RzjNnI7LwUAJYuPbjiGYlIl9PKlS3iFCWAf/1rH9nZScyblx21jenTM/H5hJXPJUsOhj5+VSOIv6uYWJzKxAI1JEWvREXVg4ibH4ulj717e+juHqBiuhFP/xBvvLGPWbOzKCsz4HT5KSsb/bez27y43X5kMikDvgDNTS7q6rsBCZWVRqaWp4sr8Xv29IokObIm7Ky109joRN4iwe8LsGCBmQULzPQOdMN+ocPbZvN8ZTcr4/h6YKxcqub2LvyDQ6zZsotZ597Ef566lykT8w+5rTSDCmOpcHP/7zdH14Op5enoQ0G08VZyI/PWAIryTKz7v99z7xMvc9djf+eN9zfw7G9uoqHBQ02NDSSQnq6Oek54CmV4e5ETAzs7vDhdftH1FXa0xGafxGZ6bNnSGTUdsKGhV3yNSNckpRXsH8hDvfM53lz6MvWqXvYW3gGMXQ8g/lQ+GLsewNg1AcbrwZeJgnw9J0w72NZ6uJoQlyMsq2POHBMGQ4gjzI3DEWwhjjASwxFykkUBQOQIISIexRFsHmpq7DQ3j+YIjZ/IcTlBcoRCUmAkwJauLXzQ/AH2ATvF+mJ+VP4jjs89nuyk7HFB6huM6Eyqqbx2+mtcu/Jantr2FP49fgb9g9x/w/0072vmiluvQBrDK41GDeXlUFsb4ggh5+A77+xn8+YODhxwcuyxWXR0CAMBhIy0xLgtcofLR5IrFJx+2Q+Yu2g2j/7sdxyof5yWyjMEjhDaRuy0vPA56nL56Ojwii7EsepB+Gu8mhB2hulCNSGcNzprVmaUa6u+vpvERBmZmRrRMQUwZ87o8xxGT9AM7z8IrkqDIVG8bwxvo7AwhcHB4KjrzacNS/8iMC5MfYGIzHkqnyqcLLF/bK1WQSAwgtPpo6hYz9DgCO3WftZXW8nI1FBRYYw60Wx2ocB0dnrEqUsAbrcQbhgIBEVXSqulj3XV7fj9ggPqogtLozJ23O5BVGo5wREI23kXn1qIs+sydu84hpSM8i/4Hfr2YjgwgsMziKN/kB7vIH2+Idy+YVzeIfr8Q3gHAwwNjzAYGGEoEGRweIQgQSRIkEqE3n2JBJRyGYkKKaoEGWqFDI1SToomgVRNAqnqBFLUCRiSEkhUyA6/U0cRUqmUXz76DMv+8ntefuoP/OvFp+lsa+Xnv/szCcqDGUrhz2tjg5PERBk6faIo+Ax4AyjkEtIMKmQyCRq1XBR9lr28m40brBxzrIlLLp4c9dqRuVXlU9OZUDKZP7/+Aff/7A7eevF+GmqrOePSu/H5h0kzqHA5fdjsHozpmqj2Pji4OpCVqSErU0NTs0tcDTSmx18Nj4dIZ5jZnMzgYABrez8zZ2ZSNefgCodMJkXdPYy22cdwoZrXbA6GchL56/On4uj0xA0wj1zVjpyitHJlCx9+2Examoo77jiGf/xjuvicSAEqtn1vfGX8q0F43HFDQy/TKtLFVfFImM3J+AcDDAwM098/hFwmFV1S5txkMiNWs8PYWWunodGJUilFlShHr0sgEBhhR42dQEC48QivdHd2eQgERujpEVowLrqoNOIGqhtNkgKpRCK2/C1eXMjsY9MwmodwdA+KbYDj+JQIBmGwD/rt4LGDzwk+N/hcwv/7+2DYB4EhCAyG/g0LgS8SCUikgARkCpCrQKEChRoS1JCoA00aqNNAlQJqA6hTQ8/58nDCMVNZ/+ofOOPa+zjQ2snc79/GW0/ezYnHTot63M5aOytXWNAkKdCHRnhbLH0MDASQKySYzVoyszQ4XT7MCM696up2/vPufrRaJYsW5kV9BiMzq6aGSM2Dt15BXno+dz3xDMdfdiv33/AjKiqMDPiGUSbKogTWyBY/OFgTMrM0ZGZpaG6KqAljOKRiEekKM5uTUWvkeDxDKBNlpBlUUWO4N+1TUrv3bC6ZtpNS/weUtm7nrF89CUWTxmy9jjeV71D1AA7WBJ0uIarOjNeDrw6ROU/l5UfAEYr0DA2N0N7ez/r1VjIy4nAE2xFwhJArpbW1j3XrIjhCRD3YsiXEEVTyUOxsiCMsLsTRejb1O5tJNpoPeXxDI0Ns6tjEhy0f0uProUhfxGVll3FS3kmYNCZk0i/3vnUcXzwyNBn8Y8k/uPXjW1nzwzVMz57O9te28/ITL2O1WLnj93eQoEwQHx/+vDY2hjhCqCYYDCoUCik+XwC3e0jgCBq5KPosW7abjRutHHOMiUsuieEIEblVYaELItvQi7nlsYd55oE/Ydn4Ov98qpesX11Hdo5+1FQ6kSOEpiQ3fYZ6EP59ZWUMR7CGOEKMC6qmxo7XG+DYY00sXiwsIlRVZY8ZYB4pjkXuf02Nne3bu9BqlZxzzkRuvfXggkSsCD3mVNmvAOPC1BeKIL6BAE3NLsqnpkU5pcIwmZKYOCkVQHRGxbY3RaJ2p53GBidZJuGD09jgpKhYCPOMzPgxpmvw+Yfx+wMkJymiApxtdg+tlj5kMgknnmge9ToLlpxM8ZQ5X6li+k1AMBjE7RvG6hyg3TlAW+8AHa4BHP2DuAaGIjr3IVEhRZ0gR6OUkaSUk6ZRkiCXkiCXkCCXopTLkEkkjBAkGISRkSDDwSD+oQDewQC+oQD9g8N09fnpa3PSH7qRCEOnkmNMTiRLl0h2ioq8VA3mVDUJX2D7jVQq5bLrf0behIn87uc38snK/3Lnjxz86okXSdbpAeGC2dzsxuX2k18QvSJ34om5hG92Ojq9YnC68Dw3vU4/Fos76jVtdg/vvLOfPfUOVCo5NvuA2Pp64z0P8X55FW88dy9/+dX3WXT+vcjkhTTud4qCWHhFJV5rbdhREp5EA0c+xTB2eqbF0ie2zcYOMaiYlo7d7mXEFSRxkpb/7LCyclcXWdYhMoekXHBBSRRZiB3fG9my4XT6yc5OGrXiHUk4li8/MN6u8TWA2SxM/Ors9EAN0SHkESgrNZCkUVA1x4Q+RSm6K8ItRbHht81NwjkyPBSkvedguLNaIxfbpABaWtzY7QNkmzRUTNOKRByEdqbmJheTJxvErJzw8wwpWm6+4nujptWMIw4Cw9BnBacFnK3gskB/F3gcEIjIY5HKQ8JSEiiThK/qNJArhZBsWaIgQgEQhJGAIG4F/DDohaEBGPJCXyd0NwgC18hQxPYVkGQErQl0OZCSD6kTBNHqC8xvKSsys+n1xzn7ht+wdstuTv3R3bz8yO2cd+q8iEdJGBkZweX0Mzgo1DGzOZkTQvUg7O4L550ZjRqq11vF6Uexn/933tlP/R6hHthtA+J5tfTU2RTl5vLQi3/nhgcf55yTFnDeiYtD7o8EFi6Idl3Fa6+NWxOO4MbdaNSI2w9/H26b3VnbHeXACp+Hzfp82pylzBv8kMSXl7JfczLPWi+lf1g47w9VE8IYqx6En5+XpxuvB18hRoKxQX1BfL4ATU0uysvTRo2VDw+iOOYYE35/QHRG1dQcgiOEnK9ZWSGO0OikKFQTIjN+jEYNPl+IIyRHj5i32Ty0to7NEU4+ax4llRVj1oPBwCDV1mpWtqzENehiUsokrpxyJSfmnogpaVyQ+rZDpVDx5ElP8vstv2eZdBnHmI5hyxNb+N/b/8PZ7eTXz/waTfJBsai52Y3L5Sc//yBHmDvXhFabQJgjeDxDYnC68Dw3vb1xOEK4JtQ7UKvl2CJqQnjbGo0cl0vD92+5mer3PmTLyre5vWEfv/v7/ZSW5ohOqdjW2s9aD8KPG8URQguNscJQRYXAEex2L/X13RgMKmpru0eJYmHE5mFFCtUez5AYBh+7P2NNxP2qMS5MHUWMBINR35dPTcdmHzgYOBuH4Hq8w6SmqigpSRU/TIdOxpeQqJJhCOc/FQuCVuykPggl/bf3M6fKFLVNi6WPxv29EBR6ymMFsyMl4981OL2DNHV7OGD3sL+7n/beATyhG2uZVEJ6UgLpyYnk5WnI1CoxG9TkpWrITVWTpJSjVEhRyML/JMilUmRSCTLp2EQhGAwyPBIkMBJkKDDCcCDIYGAEj2+YDtcA7U4fzd0eDnR7aHcOsKezj08auxkJCvwjU5tInkHNRGMyJVnJpCcpj3qw5AmLzyLFkM69N15B7dYN/OzK83jytfeRyYSbmQSFMPlCLpeKbXwWixDI6fEOo1HL0ekPXjhtdg9msxDYfeKJ0Sty4aDZYFBoNW1scGJMV2MyCZlOs+YtIitvEn998Cbe/OtPKKi4jONPuziazES4DsPZC5Gf93iB558WkYUiTLLq6x1YLG7x2Pbt6aVSncAdZ5bwx/f2sjdNQrPdz4TaLnS6BFyuwUOuah9u1Hd4tV2nS2DOHNMh2zXeeGPvYQN3x/EZEEFEhBsTM6tWWaJCyCNhsfQhkUg45ZQCkaREth3Fe7wwTEODUinD7w9QNddEWsxUJhDqQfsYK3Q7agTXVYVmdDB0+HW/DjcsXysEhsDZAo5GQRzqOSCIUOG/uVILyZmQUgjmOaA3C/+fWgiadFAkCkKULEEQoaQKkMoE0epQ1+iRAIwMC/8Cg8J+DPnA0w3uNuhtge590NsEbivY6mBQmPxFQpIgUhmKIWMypE0UhLCjCEOKlg+fe4CLb3+ENz5cxwU3P4QyQcH3TjoWECZA1tTYsLb309LipqhIL9YDb4h4xK7mZhjVTJqYwoknmketFHd0CvVAKpHQ0Ogk3SjUg3C76oPXX8f9/JO3PvqQbfX7uHDeOUCGuI3I1r39jS602oRRovHRCIINH5PT5RNJwNatXaxZ28b8eTm0t/ezbZsUS+UPWJyzlVzH/7g9sZq/WS9Dpys5rPP1cPUAhJpgs3mZMEE3Xg++ZHiHvNz28W1M0E0gTyc4n8vL07HZBg5ZDzo6PJSWGqJEq8NyhERZVG7O3LmmUZP64OA0sDlz4nCERmEIUkKCbJRgNlY98A55WWddx/8s/8Mz5KHMUMb1E65nbs7ccYfUdwxSqZSfzf4ZpiQTj0geYfYvZrP9ke1sW7eNOy69gz+98SekUmEaXkJCBEcI5TaJHMEzjEYjR6eL4Ai2w3CETqHeSSQSGhudGEM1Idyy6vEMs21bFw6HD515JmdfX0L1v//Oj0/7Mbf/7nbKZs8azRG+oHpwKI6wZ08ParWCigoj27Z14XL5UanktLa6R4nM8fbncK2N4fc5UnyLh/r6btats6JOG2TObDNM+FyHfliMC1NHCX2+IW74v20U6KQUpAl9/YKLwiwWg1jnBHz6fs7yqWno9EoxE6eiwoghTSWSnfDrwsGw89qddl57bS8GQyLnnTsRjVqOUnkwAD2McDB0uq4HQ0qQ3MIi0oyjXV7fBYwEg7T1DLCny02DrZ8Ddg+uAWFFOkkpJydFRVVRGoXpGspNOoqMSWhVCjQJctRKGYqjNFpdIpGgkElQyIhu19NCoTEp6rFDgRE8/mF6vYPssrqpsfSyu91Nc7eXjQd6CAI6lYKJGUlMztIxJVuLXn10SMm02XN57KW3+cW1P+C8y68Vs6aM6RqWLCmImngXvgjLZBICgSBZmRp0eqW4rTA5P/YYk+g4ijxfhB7pIG73II2NTiAYlR21YMEkrv7583z4xhPsWPc8Gnkzudn3AdliG6HbPYjXO8T+RieJShm5ZmEMczxX42dBPHH3gw+axNyriZNS0emUGFJV5KdpuLIyh5c/bsGRquDv3Q62vNmHqt3P4lPzufzycp5+ers4xS8cZnsotLS4ePzxrTQ2OjnnnIlcfvmUqN/Ftoe8+WbDYQN3x/EpseNV3CsfJfm4qwnLDGFxKhw2fiShmYdCJNnt7BDqQZohph4YD9aDzAwN3oFh/vDYFvbt7eWkk3I4//xS8vK0HDjgZHh4JKrNqa6+m/UbW5Go3JQUp1NVWXa03p1vHvx9YKsXhJ7ufYIoNRIAiQy0WYLgNGGhIPhkTRV+lpAECRrBHXW0FgSkMuEfSiDiGpNiBioPfj8yIriqBvuhpwnaNoN1O9j3QMMHUPdvQQRLyYfMcsiqEASro5AtmahM4LXH7uSnD/yVzbv2seDYCvF3RqNQE8LCUWw9EDKdlOJ5sWVLpyjWms3Jo4LH49WDyNyoBQvM3HDpmSyaP5UHX3yeJ/7zVxJTLmNqKMw5/PpqjYK+fqEuRLqaYkn5Z0VkWG5422+8uU8MuJ01KwudTkmKIRl55fd59z9mKkeWc0fBn2lbu4V/+q7hgEMgLG1tfTz/fC0AP/xh+WEFKRhdEyKFrdiaMF4Pjj4kEgkF2gKW71lOh6eDS0oviaoH8VpqPkveS3l5GjqdUszEqagwYjhETcjI0LAzkiOcNxGNJoIjaGI4Qo0dQ1I/aaky8ovzSTWm0j3QzcetH1PdUc3wyDDlaeWcVXQWVaaq8VDz7zguLruYVFUqd0vupuKeCvb+YS/nX32+mDUVrgeRoeWjOEKWRsxZCv9eIpFw7LEm0XEUeQ8VlyNEZC8tWGCmsjIDt9uPVpuAyZRExewilr/4Ar+67lfMXXIKpvJFAkfYL7QY5uZqv5B6EAmRI3T0M3FiiCMYVGIbYFOTi44OD42NThwOH729vlAIvCZqil+4/e9QCDvLOjo8VFWZWBAxXCT2OhRuCUwyDmPOTj0qx38ojAtTRwnqBDnKfit/vuUSPqw4hiVnnEnViadiTDeKLpF44tGRupMiRa2ZMzKpXt9OV6eHhAQJH3/UyuBQgPR0NfX1DmpqbMytMonF7NVX92CxuOjs8FBcbKe4OAW/P4DL6Wf58iZAmEq2fHkT7dZ+XAeewLKvmpt/9ShLzv3BF/SOfb0wEgxiDTmO6jvc7OvqZ2AogFwqwaRXMS1HR0lWMrPyUykyJqNNlJOcqPhCW+U+LRQyKXp1Anp1AgVpSZwx1cTISJD+wWHaeweobuymer+Dug43m5uF1bCcFBXTc/XMzEvFpE/8XG6qgomlPPeftajUBz/PwWBwlGov2mlDracup48VK1pwOAaYNi2dmTMyKClJxeX0xQ0ej5x0GRaUGhudWNv70euVWCx9VFRmcfIpf6T6f0t46M4bePTO87jspt9z9vmLxNdvtbhp3O/E0eMT2wjjnYv19d2sq7ZiSE1k7nGC0yRWYA4jnvgcPscPtq1omTkjQ3SLhUPebzmvjE+2drLV1c9O/xBqk4TygUFAGPUdDk48EmFq9WoL1dXtAGzZ0sGKFc3i6ne8SUzhkNxDBe6O41MipYBLnqtl54M3cPbpp3L2ycdRNf1ghkc8ovBpnEmRNw+DjQE6u4R68NHHrQwNBsjP16HWyHnz3w30OAYoKxPa9JwuH1u3duLxDLFmbTvnn19KQoKMkSBsr7GJriuvZ5iaGhtrNu9l2ccvkZ+dQdOqF76Y9+rriEGPIER17RL+uQSijioFUgpg8izInQU5MwUHVKJOEKK+LqPOpVKhTVCZJDi38uYIPx/2g7cH2rfCgY+gdRPsfQ92/1sQ0DKngvlYQahSJB7qFQ4JmUzGE3dfi3fAj0Z9cDvBYDAqtFxoV0JsPQ07irZs7aSlxc30iDy2eMHjCyOmmplD5KHbMSBmOnU7BtDrlJx/xix+cO4Mzr7uIe7969PstRzghYd/EiXuJicliO0jh2ptqK5up3q9lao5JtHxNdYqerz8jvDj5s/LEb/OmJGBOVfIo7JY+iipmkFjWzFDA2vI867h+uDVrDcsJa/kfl5c1sCKFS1IJEI9ORKn1Isv7mLnTjvDwyOHrQnj9eDoQyVXcaHmQp648Qnay9rZfMxmfnzhj5lRNEMULGNrwmetBxqNnJoaNwZDIoODAZYtq2NwMIYjzI3DETpjOIIrgiMYQhyhvR9bzeu0N+7h6oeuxlvuZYd9B0qZktkZszmz6EymG6djVBuPujt/HN9MLClYQooyhZs/upmy35VReuzBjL1DcoSQK8jliuEIM0McIcJ9GnkPFTnpMiwoNTY6sVoPcoTwlEkQWtmaWwY4+5prmX18JX/+1Z/J2tfIgu//EFuvHIfDJ7YRxjsfw44igyGRuXNjOELM4+MN8Qif51EcYWaG6BYL7295eZqYneV2D9Lb64PQsmfkFL8jEaZqa+3U1zsAhOEcNTbmzDFRVZU9qs4KLrMh1GmDZGcnHWqzRwXjwtRRgkwqYX6SjX+PDNOwbR1/3LaOP/36DorKKjhx8RloM2bhdidE9aaGUb2+nfXVVuZUmcSg5NiA5/AHJTw1rK7Ogd0+gMMxQF//EMlJCkompbJpcyculx+NRsFFF5bi6B5Aq1VgNKrJzk6mYlo6hjQVldMz2LDRSru1n5odQiGSyqRkm5IYsQvZFt/2ouIdHKbO6mZHm4vadhf9/mFkEgnZKSrmFhmYkZdCVWEaRp0SvSoBVcI3z4YslUrQJirQZikozdJy5bxCPP5h9tv7WVHXxZp9dj7Y3cV/dnaQolYwMy+F44rTydZ/ujHAYUSKUt1dHdxzw2Vc/4sHKZs2Y5S4GkZYtG1rddPb48OUpaF8ajq1Tj9Zmeq4q4WR2wIhPycpWYHT6cfhEEYiNzY6Wb89lR/c9AIfvHoff33ghwR9d3P2JT8Sg81zzVoGBwPU1TlotbhFQSly+zU7DgYI5kZYbGG0kBV5QXd0D7Cu2opSKROPKTIIHYQhBOHHz5yRydJTJ3BWMMjKHR28X9/Fcy2ddL+2neMWZONwDLBo0aHDRg9CQkaGhgkTUmhqcrJ1qyBqnXPOpLiT+c45Z9L4yvhRxlBWJZ90KOlx9fHYS+/w2EvvYNBrOXvRHKbklSLzGzCkxv98RxLfcOhlbMBzZJi6xzMk1gO/L4DBkEi6UYXV2s/mTR1iTZhWkU5NjZuiCXq6ugaYH5reZTYnk5Wpwen00dHpEYPTUw0qior08PG3vx4QDEJvs+Aqsm4Dx34gCIl6SCuG4lOg8ATBEaVKEYSob2JrilwpuLm0p0Pp6UIulscOTWsEgcqyHlo3CG4qYykUHA85s4TnfUpIJJIoUeqBp1+lscXKs/f/FIfDd7AeRKxChx1Fy5btpr29n6HBEU444aDL8FAtB2GkGVRoNArsNi9+X4BAQIhZGBwMsLD0NLJTc/nniv+y39rCa3+4k5kzM0OvmyiSmM4uD4WFB11FkYSier2V3aHx3QkJskOKWOGa4HT5gW46rP2i+Lt4cWEUiQg7xMLT2RYuKgQK6bYsQLLjFeb1/xPJW59w3tQ7qZuTRW+vnylTDtXWJWD3bgfd3T6mTk1n2rR03nqr8ZA1YbwefDH4+OOPGR4axr3DjXuHm9v+dhvppUbOPvssDLlTcLtH4nOE6nbWr7eKxBFGBzyLHMHlp6bGRnt7P7NmZdLS4qa52U1ysoKSklQ2bYrgCBeV4nDEcISKdHHa34YNQrZbTU2II0ilZOUqse0dAGB583IK8go4reA0zio6i+LUYlITv3hHxTi+eZhjmsMLp7zANSuv4bGtj3FdxXXIXXLuufoebnv4NvQZ2WMGcIdF27Y2N729PkwmDeXl6dTW+snKGoMj2OJwhKQ4HGG9VVy0M5uTmTXrLEqnlXLfdffxz8cf5Pzrr6WobJrAEVrd4v7FTsITOUJuDEeI054rcgTHAOvWhThC6JhiYxYi859mzsyMK7qBEHbe5x6Myoo7NCSkpCSSmamhq8sTcpYJIeuxTs2wcNgz0INCzL784jAuTB1F3PTTG5lUcgzXPvo3Onetxd+xj4bd22nYvR2AxZc8xvx5izCma6LEqPXVVnbtFm5ywsTVYumLGj8f/oCEXSSGVBUUQ2B4hG7HAGq1Aq1WyexZWTh6BsjL07JlayfV1e10dXmZNSuLq66cKu7rggUaTCYN66qtJCplaNRy5s0TPpCP3CkQkH7PEN8mBINBrE4fO9ud7GhzccDez0gQ0pOUVJr1zMhPYV5xGlk6FSnqL3/S3ZcFjVLO1Bw9U3P03LRwIh2uAVbV2/hwdydrG7tZUW8jU5vIMQWpzC1KI1UT3e733vsHWLumjXnzc1h86tjK/ItPPEzD7p3cedX53P/UywxKCtizp4dWSx+tbUJg4aKFeZSWpnH6GRN4882GUBeJRMwOKSlJjetiihRqbXav2Auel6elpcWNRi3n449a2bnTjsORxP1Pv85//vFHnnr4Hj5e8T9u+tUfKCg0YUzXsGVrJ729Pnp7fOSatWK7nzjlYpqwWmBIjQ4QjFcMzWZhGmZNjQ2vd4i9e3uQIKxChwPYYx8fuy2pRMLJFSbmlWXwbq2V92o7YSTIpDNymTzVeMi/LcC6dW3s2GFj/vwczjtvUijAUSGufo9PYvpyoFAoaLV28vrvbmPVv5/lnb0jOJxunv3nB8AHVJaU8PANNwLCTcYn66z0OAaommuKIr7hFazI8fPhNo+Ghl7cbj/pRg3FCNNA5TIpqYZEOju8ZGZpmDU7i7ZWN8pEGdXrrNTVOTBlJ/GTn0yPWrH73vcmkGpQ0eMYiArWzcof5t7nYGgwus3vW4EhL3TWQvt26NguhIjLlEL20vSLofAkME0TptwpdUelze1rB5lcEKqmXSD88/dD+xaoewcaV8L6J4UcrKwKmHAiZE6Leh/q6rtZuaIFgIWL8uJmlAHsPdDGvU+8TCAwgs8/xE/P/wGNjUId6HYMRG1j5sxMtmztpK9/kKJifcQ0pdQxWykiBSC7bXRNUGvkfPBBE/X1PZSVTeOT/zuR8296kIqzrufuH13JxWfNE7e9apUFu32Alha3SBQia0JVaOR21RxT3Gt4JMzmZCytfWzcYGVgYJhep4/gCGg0irjvVbztpZlzIfd26NwFO/6Psh038JfZlbzqvAyV6tBEYd26NlasaCYvL5nzzptEXp6O5OSE8ZrwFeC2225j+vT5vPTS6/xv9XLa2/Zgr7PxTN0zAJx5/W3Mn3+MEPgfIUatX29lV0Q9gBBHiBg/L3IElw+pVEp2dhJ5eVq6urxkZqoPcoTZWThC1/gtW2I4wlXRHEGlkrN+vRWzORl5ugvZzBpah3fjfF/Yl2MMc7n/5PswJ5tRK9Rf2vs4jq83xoqeKDWU8vLil7nigyt4suZJeBkadjVwy0W38MO77sQ7IoiaDscAK0L1YNGiEEc4PQ5H6PCIU4djESnU2uLUA41GzscfhznCADfddNC52Dek44G/P85zD/6JF377CCecdQaJ2XPo7fWRm6uNagEHREdRbMj4mByhNYYjSEIcIXRvF/v4eNuKFe8KC1MYHAxSWJhy2L9Pfb0QpD55soG5c7NDExHloRbIrz5TdFyYOsrYXSshZ2gBqgvOot/vIKujhkDXNup37sCQVSq2DP3jqT/S3mqhq2Uui88+FYCUVCX33PsJSRoFx83LITNTg8Xixm73AqEPpjkZnb4vytZeVJSCTq+Mah8KOzF8A8NIgD73IK+8Wk/FtHRxKpnHO0xBvlaciBZ2sYStxO1t/V/yu3f0EQwGaXJ42NLcy5aWXno8gyhkEgrSNCydnsNJpUYmm7QYkpQkKb97p4NMKiEnRc1lVflcOiePTpeP5bWd/LfWyn9rO3hnh5XSrGROLDEyLVuPVCph7ZoIy2hImIrXwvaTux6graWF3dvW8/OrL+LWB56hpGQq1dXtbNzYgVwuIz1dTWlpGlVzsqNaIsI41M0+CO1427d1MRKEY47JIiFBJoxD9g4zp8oUWg1UYu3w8+Pb70OlL+G1p+/m1kuWcMySX2DKKyNJo6Bogh6tNkHMgnNFuLXC0/wiMVb7bXgaZmODE1O2hunTM0THVLxjOVQrrypBxnkzcjluQhqvbrRQ29XHr7YdoD9dwUWzzcikElpaXKxe3QoEOfFEM3l5OlaubGHLli70eqVIOMZXv78abN/ew4qGJcyfJePZM17izSYD/7blUV1by7zKqXR2eNHr+uhxubn1sccxac04vccy59ii0FQWD6+/Xo/bPUSyNoFBfwBLq1tse5pWkS5O0Isk7+HvI3N69uzpIdWgwmBIpK3Nzd/+VsvZS4uiyLHfN0wgMBIVeNvQJoR5+3zD7Ky1R00b+0bC3y/kLVmqoWu3EFauSQdTJeQfB0ULhWl2qlRBtPmuQZkkOMMKTxBC1Vs3wI7XBJHq44cFB1nhCTDxFFClCHlONTaQQHq6WpxwF9uuMKkwh9cf+zkX3vIQry7/mG5HP7+65mrUGjnLlzdRu9OOTC4Rt7H07GJmzsg8onoQ/p3T5Wfr1k7a2/spmpAi5vcEAsHQeaLF2tGP2axl9tRJbP/3E5x93UPc+oc/8eb7m7jye2eRm6slL09Y9Z5WkS4eS6Rby2jURK1sH+om3mjU4PcN43D4MBgSmTRJmLA2bYyV7TFJgUQCWeVg/DU0rEBf/1+uk92Et/MU6H1YyAqDUTUhth7AuCPqq4JEIqGmRkJLy0zmVs1nYMAB2vVs3vUu3c3dtE5dx85eBRNHFvD3x/5OR1s3XQemseSc4wBISVFyzz2fkJSk4LjjxuAIJItClcXSh8czxLHHmtBF5LbBQSeGzzeMRAJ9fX5eeaWeiop0cSrZnjYLXvMelg+9i3t/D0mKJOZkz6F7pB8PDaT3VlKSWvJVvZ3j+JoiNnoiOsMul2WLl3H5B5fjONtBQdsEmmr388yvHuCHv7gDszmPd97ZP5ojVH1GjtDqZvv2LkZGYjiCZ5g5cw5yhPDwgfB9lEajIP/Y8xmSGfn4nXfIKtjD+Tf8BE0oG1QTUw9GcYQxakJ4GmZjoxOTKYIjmMbgCEcoEo0lYMU6K8OZUY2NTjSadHH7sU6trxLfwbuuLxbt7f20NbnR9Q2SemIa9okLmTbtdH5wQwqDwwdHrva0f4zH1sL2VR+xY/XDFJXNQKIqo6PXTII6B5lMik6vpM89RN1uBxmZgvUwLB5ZLH1Ro+7D5DYsEIR/p1HLkUgkeAeGxHDo0tI08eTLytREWeNtdg/esFPqGxpYGClGbW7uodc7hDpBxmSTlh8cY+akEiPZehWpmgTkRymk/NsAiURCll7FlfMKuGJuPs3dHl7f0so7O638efV+dCoFxxUZmBUaWTxv/sFci6ie5NBnUaXWcMF1j/HXB2+kff8mHvrZlRy/9Nckp01Fp1OSlqYWA9HDz4v8HINgtV21yhIlqEa2uLqcfrzeIXz+EdZXW1mypICsTA0upw+VWkHhBH2U0+nUs84gyzyRZx66iZWv3ITOfCHT5pzD4iWF4rm1ZWvnId1ah0Okw2rucdlxtxEr5B3q+6x0DTedPJF9Xf28u9PKL9/axd/WHuDmhRORW3188EETwaBQwPLydCxcKIQYhr+O46vDypUtbN3axU5FJbrTkjm/6ClOKUli/w9+hUKjYnhQgtmczMYPttFsa6bZ1kx14xrSdCmYDfnoFSbs3f2olEpMpiQSEmQ0NjrF9qRIESqWOIdvZmw2D06Xn8wsNVPL09FqFfz73w1YWt3sqLGLwlR4KEBsK4nDIbRtCENnv6HtfGExqqUabLuFg0nJhynnwMRTwTQdkoygPPKQ4e8EFIkHRSpfHzSsgG1/hz3/hfp3ILOcqsIq7BXpgEQUW2IzKsJYevJcfvfT67ntsSdZuXEr9u7HuPWiKxgaDJCXpyUtTSVuI94NuTAtzElLi5tpFcIEybr6bjFIXa9TYrN5cbv89PUJC2xqjRyZTIJaI2fCBD1dNi8TJugBSNEl89offs6P7niOdzeuYG9LMxedcC6XXlTJRRcJOSiRrXWfNfg2PBGzKqIVKxaxrSeRwt4ooa9kCbLC+VD/Lpr9q+CJGTDtIjjh5+ze7Y+qCeP14OuF9tA0Srd7kLlzcxkYyOKWi69EMamR5a7X+MT3H3as+4i2xlq8jn42t29n6/KXmTitDKnGTKc7lYSkNIEj6JT09Q1RV+cgIyPEEWZGcISYmgCjJ3FpNCGO4B2mZocNj7wbi8pLdfMWetI6kQblTNAUc17e2ZycdzJBZzJv968FQDpOIccRBxdeOCnqa2yGXVZSFssWL+OK969g6PoAxkfysTU28/S9v2V/4zVo0vJCHEEV1ZoWe18DERwhQlCNFGJcrhBH8I2wfn2II2RpcLl8qFQKCgv1UU6n8Nfq6na2bu1CIplI5elXsW/N67z84P1ceNONDAQNn6seRDqs5s7NPmw2IYzOrDpUdmEkYp2V4cyo8H58HTF+VTnKOPfciWzfbqOnx4d+Sx99E5TUGIJ4dgW44uQijOkagsEgN91zP5vW/o/V739AX6+Vfbs2AhsBSEqdxOC0h/F6hygq1pOdnYTT6cdu9/LKq/UkKmV4vMOUlKRy4EAvf39xF/PmZ3P+eaUH1V61Ap9/mLw8bVSOTqJSmHIWeRKGWwuXvVSHMUPNSGjcdXhk5TcBY4lRU7J1HF+czoJSI5m6RHQqxbc/K+UoQCqVUGhM4s4lpfx0YTGr99r5x8YWPqwTVh4qT82mvPzgRXkstX5CUTrX3PUkD/7sGryObXz85r3MP/sB5s2bKYxgHUP4CX+Ouzo92O0CMQ4LqpEtruVT03C7B6mr70Yqk4QciUG2bbMxOBSgzz2EpiIdY7omIsQ8idMu/xPvvvworpZ/0KRsI+2SP455LPHcYIdCaWkaHu8we/b0CKswh2hFBEa1Dsb7XiKRMCkzGZ00mzW77NT1ebjptRoyk5XMnJ3GyP4+nnlmBwMDQ5xzzqQjmtI0ji8eCxfmsXp1Kz09Pp7eMJU6wxXcPeXvFOx/nDWySzhuQRlGo4YzFsxkMPAj3luzhdUbd9Lt6qXb1QtsR9Yg46xZSzEryphQpBe3rdUmMDgY4KVldcikEubNy0GtkfPCi7vw9A9x6qkFYhtg7c5uAiMjmExJTC1Px+0eElv2wlPOIj/3jY1OXlpWR9UcE51dwg2gUilnavnh82y+NhDFqHXCJL2wGDX1Qig7U8iKSjJ+puyk7yQSk6F8KUw5GxwHYOsLsPsN8jqe4saCTCg9DQqEVqBDtbd9/8zjeP/9FlbU/Ycd+/fw2KsvcctFl3HyooJDrgyHr4mdXQdrQllp2qgJfHPn5lBf141arcBi6cPp8tHa1ke6UYXdNhDVohfOcrt4yckkydJ4e/PbPLfyeeaeqGMmmWMeSzxH2KEQnoiZcIicyshrPkRnlMQV+hKSYNqF2FOOI7jrTdJ2/gvpjleYn386AydeyOqdcp55ZgeXXFLGvffOPew+juPLQSRH2LXLgd3uZdeubpYsKeTpS1+kRb6Tl2pfwnqxlf5aJf07vPgdA+zZthPYCYAucwKDU68SOEJRDEd4pZ7ERBkeTxyOcH4ER9Ao8PmGSTdDfmYf7f5mHIP72CH3srtJQY7aTEngNL436VRmTSzj4+XdPPCHA+TnaxkZETLbpk79ehLbcXy1uOaa6VEtfPFyTY1qI8sWL+MH714KPwPPr3LwtLexYtlfWXDxtcybN0ngCGNcX0WO0BWHI0QIMeXlIY5Q141UKgmFmIc4wmCAvr4h0TkUGWKekpKISiVDKpVSUjGZq679I0/+8nc8dfevOeuqyzGffJa4L5+2HpSWpuHxRHCEQ7QihhF7/R9r8SfeZM/KygwaGnr54IMmBgcDVFVlj3J4fZ0wLkwdZcydm8MDDxzHypUtZGSoqdvrYP2gnwbJEC9vsHDT6SVIJRKOOX4RWuN0RrTn4HFZSVUdwNKwkR2b1zPj2Knk5+twu/3k5Wp45oGLSDYUojWUMaLIZ8r0KVRWZmE2J/P3F3fRbu3nf/9rpbAwRXRK1dTYqKtzYG3vZ8mSAgCxba92Z3dU65/N7uHd/+yn3eohz52MLHTvpNd9tgDsLwtjiVHl2TpOmJTOgtIMsnSJJCd+8WFt32aoEuQsKc9i8ZRM9tv7eXFdM+/ssLK5uZeJGUksKc9icpY2rgATdkFdeO1DvPqX2/H27GDPxr9x1U/Oinp8rPgTJgGFhTpaWtzo9UqefW4nSqUsqu3OmK5h7nEmcZKS2ZxMrdMPoWlFcrlUdGWFQ8xViXJKSg384Lq7se4/kfdf+y33XbeUu//wNyaUTI5ybtXXd7N8eRNSmUD8Y52JY4lVGrWwSq9Rx7/EilNHQlP5It2Pkb8Pf62v76Zmh51EpYxB7zBLJhnoKwjy0b5u3u3qQaEK4h/wovx3g9iiETsCfBxfPmLrQVdXLhvypjKr+eecPPJXmvddh9FYidlk5JRj5pGpLOHa78H6HXW0OVvYuGsXB1o7OWluGbKgEnOulmff/C8frNtE1fTJ5BpycXUpmVCQjtmczKpVFnbutDPoH2FoeISiIj1mczKBkRGs7f1Ur7OSX6BDq1Vw3FxTVID6ggVmMQT6P+/ux9outHKnmQVXqUql+PrnS8UVowoEN8nkpYIYpUn/brboHS1IJJA2AU65H068C+rehk1/hc3PCS1/xSdjnLQE4xiryUajhh9eMI+Et6S8V/M22xt34w50YDROER8T70Y/siZs2dKJ3e6lurodZaKc4iI90yoEcrH07GLqSoQWQ7VGjtMlCfn8Djq6wl/DWW5+3zDnnj6bWdMKeXP921x0+2/Ztf8C7rv+B6NWoutCNSEsBo+1gh2JSNfWWAgfn1ojx2r1kBkR6htPHAs7xZSJMryehZRPWEjx8Ccom1ewdORt8hOn85vW2bz5ppxzzpk0Xg++JoitCXv3CjmB3d0D7Kl3sWTJiRyfczz7jt3HU2te5pOONfQ5O+mr7WOobghnnZPiY9IxTggw1JtAbo6ap+76OfrMXHQZ+QSVGUypLKayMjOaI6xuIT1fgk/hYLCgkz0OCy5tB/gFUq+RaMmU5aNymKlMncMEZS6zpxRSWGCgpcXFn5/cyb59vUyZYkAuF86ojIxxh+k4Do+xMuxSVam8coaQOTVy7wgH7h3B22FlzyfvctX1Cw8ruEAMR3g2xBGKIjiCUcPcuTEcoVZw04ocIVQPwiHmiYlySksNnHJKAVptgtgC99hrj/HnX/+ZN55+Fp+zgxt/fSP7m9wCR/gU9cBm8+ByjR3cLuzbwcmEVqtn1GPjcoQauyhKhxGe6FdTYxOzpCIHKHwaQe3Lwvjd2ReAuXNzohwLTU29PPDfPaxs6+GxFfv4yQkTSEyQU7PDTofVy7SKYi668HsA+H0DePr6GCa0SrZzO87uFpzdLcBqABrXJ1I3eSqTplRQZC4D0igs1B20m8/IRKOW43L6kcokrKu20tnhQatTMrkslahRyCF3RrJWSTZQXJxCQuB0Ko45ngmlU/i64XBi1MLSDEx6FZrvYF7UFw2JREKRMZn7zy7n1pMnsWxDM69sauXxlQ1k61WcVWGiIlcf15F20UVTyc9/hpf/fD/nXH4DmRnJothSMS0dq7WfbdtsVFYaxakTAEVFeqrmZPPKq/Xi1ItzzpkYNdWvdqedbdtsYv+5yaRBpzePanFNVMqZNEkIVwwERsg1a5l73AVMKJvCP5++gxu/fxrX/+K3nLr0IvEYVqxsoXaXHbNZG1UUYlczwhf3xkYn66utGDPUSCQSrFYhyy3SjqtRy8WfRYX6RhxTbPZUzQ47O2rsFBXrqagwis8t9smoyDWw09FHe4WOrVIpP311O1ceV0Db7p4o+/ShME5avjjE1gOYS/v2ElLfu4wy6x+h7XrImSU6PyqmpfO7e88BhOtdc3sXmoSDmVFb6+tp7mql+f1WcYumtDQ2t5ViNmZTWlaIvcsv5ibMnJnJkiUFIondvq0rNLnJTtUc4YbN7fZHZSxok5WQLYQ79/S5uGjh6RQVfE1Xx+O26YXEqClLIWOKIEZ9Eyfofd2RoIaKi2Dq+dD8CVT/SWjx2/MuTDhJeP+Vo53X559fyvnnl/KHZ3LYsdvC7LJy4KDYMjw8Qkenh8pKIwsXjG5la2lxU7PDzuB6K5kZGioqjFFZaVZrP61tfSgTZWi1SqZXGpkaGg8ezsDasqWTyWXCCn6GUY3XM8S8qgIuOv8X/ObPr/Hbv77Gum11/N/vf0Zmeqq4f8uW1eHs9TMhJPqGERm+rtcd3Nfq6nb+8+5+tFolxcUpUZlVXs+w+NVsFqYTbtnSSWdMqG+8No3w9aK4SKgJWeZk6iyptAxNpSqtlimyLbx1xjbcyvdhUyd7uqpYv6kXOHw9gPGa8EUitiZEvtcAUomUktQSUncsRrV6IlWnBCm8tYetXVvZ37UfZ7+TGu2rkCZh+95hXN02XN022LUVgLpVMlYWpaIr0pFQlkT2EikoB3kzFBurlClJ0uvRdJpQ27IwDZfiaFSRnmzghDlFSJCwe5MLrcxFYYGB3bsdGAwqJk6EWbMy0WiWsmjRaUyZ8vXjCOP4ZkGfqOelU1/iig+uQHIf9L9g5NKrryEjI0kUWyoqDsMRqrJ55ZUYjhCxMFJbG4cj6MyjWuMSE2M4QmjqncXSBwjX4Zvuv4mSaSX84a4/sL9+P3nHnMueRv+n4gjvhupBuL067FoPP06jkeOJyA6NF/IeWxNqauzs2GGnqCiaI4T3IRxsHv4au4+HE6ZsNg91zXbyclJgwiEf+rkxzt6/BBQUpPDs9XN4dbOFe97azX3v1nHN8RNEJ0dkzo4yUYUyUXAqGdM1ZGYcQ6/jcfbXb8HZtRtb+16GBr3s3r6J3ds3cfkNd/DTJy7EZvdQs3UPb7/wC+o3lpE3YSLHHZOOb1iHo0cqjoIMT/hzu63U1NjQqOWYzcksWpR38MQoNRxx29KXgUOJUcdPTGdhWQbZ42LUl4oUTQI3LpjIj+YV8lZNO39b08SfP9p/SIEqiJzC6VfT3avglVfrsdu9tLY4ADCmq0PxNcJzYlvZxpqMJ0ACEnD0+MQW10iRJ9b1FBkMbbH00d2bxFU/f4EN7z/JH+65hY8+XM1PfvFbzGbhvJRKJaSlqaLOh8jVish9Xb3aQl2dgwkT9Hzve0XiFM0w9uzpQSaTiOPLD9XyEonIa0WsBddsTubstHxae7ysabDz0V47b9dYydWpmGrSkJp7+PM4NgNgHF8ssqcfC0Vr4ZULYO0foOQ0pk07GSAqFFkikVCQI3yWwzcOP7vsYv65fCN9Q13UNTVh6ezC2t3N6++tRaNOxLX5nzgcPiyWPv61+gNeen+AsqJcJhZkk6RMRqU2sG2LDWso62TBAjOfrBPqgVoTXQ+EfBs9mYalh/2MfqkYFWAeatObdiFMPgcyx8WoLxVSGRQeDwXzwVYPax8VBKr9/zukQHXslHKcbUms+l8Lao2cjZvaqK9zodMmhNre4tQDo0Y8RyKnR0ZDcEn1OHx4Qy1N4fMn1vF0262FUcKXxdLHnElVlN85gfueeZZpZ17Pr6+5mrNPFcTj/r4h9ClKliyJbj0M74PTFX3N/8+7+2m19JFrjq4X4ToQWQ8inQCHO98i3V/R0/3ykZnLUep/AM2foLVUw/LbWSRTMjXtOKTaH0AgFw4z9nu8Jnx5GMtRIuaDzc9j7owchkeGcflddPR3sMuxiyZXEw2aJlQ3pdK9t5O+/T30t7gJ+APYd9ux77YzM30mcxbNQTGkwVHvo+H9bcyurGTy5MmkFJsZ9KTS1hbgP20H6NVDhjGJyZMNdHfvY8WKZnS6BCZPNnDlleWicLZ7d864YDmOo4ZkZTLPn/I8Z712Ifyok33uVjpeGQlxhPB1Pzz1MX5NGGsyXuRzHA6f2OIaKVyJHEEanyNEvo7N5iGtoIJfP/sIj9/5IAeWPUZq6RmkVc6MWw/icYSmJjfZ2UmjfgefgyNE5EbF4wjxAs6PdNsgvN/79zuRS774DqRxJv8l4sJZZiYak7nhlW089N4ezq3M4cILSg6ZeZSTk0pazjTau00cV3Up+eZkeuwtyIJtdLbUU1l1PCCQd7W8iw2r/8uG1f+N2oYyUUWSLoMZJ16By5mFQy1n984GGndXU7/NgEKRSPm0LNSyHBKUStJ1CeiSv9qCc8jMqIlhZ9R4m95XDVWCnItm53FOZQ5vbW/nqY8PiALV0spspuXoef2f9axd045Wl0BgWAhTHhmBEc8m9m56ntNO/TtlU81ieynAgQO9bNxgJSFBCIf2eIf53vcmjBJL6+u7aWp2UTRBT6JKTt1uB4WFOvF3NTvstFrc7NvXiz4lEY1aHuVGcnQPIJNJ0OuT+MH1v6J/KJd1//0Dd11VxwNPvcCihXmkp0eHtEP8aXpCTo+WDms/xcUpzJyRic3uEadohhHpmDrUVL5IlJamxZ0MGPncPIOGSwwazpo2xKbmHna0OfmwzcF//9FNWZaWhaVGFpRmUJ6tQyoVrjnhlVqdLoE5c0xRGQDj+IKRbIQffgDv/Qy2vkiZYQ9lZ94C6tRDPm14QElBaikV0+YzrSKddetbkKr7sLm68Az4kMlk4mrapfdWU7+/Ner5EomE9BQ9WakZnHvureys7aa+rpv1u3awfX8SebmpNDa4qZiWwawZ2SQmKMjM+RpYvccSo6ZeAGVnCxPLkjLGxaivEhIJZJTBuc+BvQHW/A7q3jooUJWfCwlJvP56PWvWtqPTJtDR4QEJpKbJ+eObz5OfbuauMy+OEpzM5mS2bO3k1Vf3YLd7mTEjg+LilLgtCHX13TQ3uZhQpEeVKGd33cGaUFffzfPP7cJm9wj3TKHWusjV526HUBOmFk7kxfvu4c4//oVrH3yEnQ1nc23I2T5aDDq4DZvNIzqmwu7DXDOccfqEqH2N55iK3ZdDoaw0bcx9EDHxZCg6CbobkTavIatrJ6xcCWu1ULwIJi0R/i4R15zxmvD1QayzSi6VY1AZMKgMTEkX3ErB2UHu272GVb4mKs5Io6RMR1dHC0qFDUvTHi6/4nJmzZiFQqbgH93/4O8fPE71B2uiXket1qDXZ3LKKddSV5cjuCPq9rJ27cds2pRKQoKKE04oICVlIomJieTnK8nMTPxS34txfHvxwAPVvPrqXlKzz0Wy+O/UapaTuGcegQMd7Nuwgu+dfj+TJqeJkyUhDkfwhDiCMQ5HaHJRVKQnMVFOXV0MR6ix09rqZu/eXlJSEtFo5FHXUUeoHmg0cmw2D6tWWXC7/cyYkclf//tX7rj8bvbVvI50ZgLBYKXI5+Ndx0WO0NHPtGnpcYUsIMoxdaT1IC5HOMxzj2TbkcMSJkwQ8uy+aEiCQWHWzjgEuN1udDodLpcLrfaLCf92ege59fUdrNpjozQzmSvmFpCqSRjz8ZEtT+FQ5XAezbpPrDh6BigrM+DuacN6oBpHZzN1O3dj62hjcMApbueinzxMgm4WMpmEmg2r2Lbi/rivZy6awq2/eojcgiKSdfqjfPRjIxgM0tTtYUtLL1uae+iJmKY3rziNk8syydKr0KnGxaivKwaHA6JA1dTtYUK6htaPOulsdGFIVXHSAjN6vZKeHi//e+0mLI27yDDl8Pg/3iXNeHAF46671rB/v5MJE/QsPWdi1Gc+cirfqlUWNm/uJNuUhE6vpK7OQbYpiUsuLWPVKgs7auwkKKX0OAZQKGTk5CSzZEmBeAHfsrWTrVu78PuH6esbRCqVoNP0svG9B+ixWbn5vt9z0ulLj/j4P21QeuS5Hd6n6vXtrK+2MqfKRNWcgyscn3bbgZEgtj4fW1t62dPZR1O3B//wCNpEOTPyUqjMS2Gow0dnfS8nVOWwZEnhER9nLL6M6+ZXgS/tuGr/Be/eAiNDUHkJFJwgkPw4iJxC5vUcrAczZ2aKYc5Vc0wUFel5+v8+oMvZxbbdTey3dODyuhkcEqauTp1UwHN3383q1RZcLj9/W/E3bK7uUa8nQcI911zGeacdw+TiL3myl78vJEatjxajco8RAsyzpgpi1GHcH+P4CtHdCB8/JGRRSWRQegY3PaPB0jZAqkElBuoHk2zc9LsnAPjd7T/k9ivPjdrMzyNqwjlLhZqQmRW+DgaZGsoBefbZnWzf3sX06RloNAo2b+7ElJ3EpZcINWHlyhZ8/mEKCvRUVmbg9w1HCU0rV7Xw0UcWfAMBsrOTKJti4PWV7/H82++yeP5Mlj18G4aUI7sWfNoMj8hzO7w/ked07Ir3p84IGfQI51HbZnA0Ql8HIBGy13JmQe4xfLzfyP9q5BwzJ3e8JsTg63pM69a1sXJlCwsX5uFyDbJ+vZU5c0wMDAzx5psNLF1azMyZmbz33kaam9fT0XGA6uoa2tos+HxOcTv33PMM+/ZlEgyCTFbD//3fPXFfr7x8Fs888ydKS0vR6cZdU+P4fCgvf4F9+3rJzk7igityWZPzCJ5hF52/7aSr2Up2fjZPvPkEKWkp4nOiOMLSGI4QMZVP5AjZSeh0IY6QncQloXqwY4edhAQpPT1jcIQtozlCfr5ODGYPDAd49nfP8urTr3LS907itt/dhko9dj7zp71mR7YzlkbUhPA5HlkTvojMqMiptIWTE1DIFJwx4YxPvZ1Pc+0cd0x9BdCrE3j2spm8tL6F33+wl3ve3sU5ldmcMMkY1z0VqYTa7MKEpPBq3KbNHbhcflxOPxmZyaTknI4qfZg+uQNa+ygoUDO7MpEEqYvcwkm4+pVo1HJ8rhw6D8yhz9VLYMiPRiPBN+BjwOujo7WF3999K79//p9f+HsxEgyy397P1pZetrb0is6oySYtlxWlsagsE5N+fJreNwUJchnnzzJz1vRsXtlk4c+r9zM4OZm0LCVVWVouuqBUfOySU17h5kvOpL3lAD+/+kL+8Pe3RCF03vwc8evgYICuTg+FhbpRU/kqpqVjbe9HKpMQGB5haDBAT88Aq1ZZyMsTLn55eVoGvMNs2GilucXN357diVQqZcECMzNmCNMqtm7poa9/kInFqZx74Xyu+OF8/vibO3jwjuvYuXUD1935axKUn22FMJ74FP75smV19PULQkH4d+urrezaLQgEKXrlKFEaOKwwFSlunT4nm1OnjODyDlHf0cc+Wx/NDi/V+x34h4UJnMs37OPPje1cMDOXS6vyP9NxjuNzoPxcMFXCO9fDxr8KeT3HXgfq0W6FSKdEeGRyeLUtHOYMwiSwwrQSpuSVI3G0MEHpZ1pFOotPz2brDguGNCEcdHplBhBks2Ui+1uTCQSH8A8OIVfAgG8Q74Cf37/4T6Ty4JcjTPlcITFqQ/Q0vfLzoPR7ITEqE+RjL+aM42uEtCI451k47hZYeR/s+he/naPhjYYKlJNO5PwLysSHDgW93P7Ic/zskedJT9Fx+dJF4u/mz8sRvw4OBujs8hAMBuns9BAE9KFR2KmGRLRaJcMBoRVEkSDF2etjZ20300LtHkqljCyThrrdDvbu7WHXLjsjQWHbigQpvb0+/L4RMrM0TJ9m5JRF13He6bO5+PbfM33pDbz2hzuZM72Uz4J44lP458uW1dHfJ9QDUZiKOKf1Kcqo5x5pRki0uDUbcmfDoBeczdCxC3r3C7lgW1/geGCeTEagzgT2QrjwFVB+PWIdxhEfkc6qlhYXIExAu+uutaxZ0wYIwyva29WkpS1BpRqko6Mdn6+Higo93/teOipVH5MnT2XHDi8QxOnsZ8uWudhs3QwPD6LXy/B4vPT3D7Bv3x6uvPJq1q796Cs53nF8u3DhhZN49dW9XHjhJH7xiyps3hlcvPxiZLfByINDtDe3c8eld/DYa4+hSRauRfNC9WBeqB50dUVwhIipfOF8KqlUwvDwCF7vEG1tfdTWdovtb3l5WgYGhtmwwUpzs5u//W00R9iypYf+/kEmTkyNmhYok8v48V0/ZtLUSTx828Ncf9b1/OZvv8GUZ4pzpPERT3wK/3zZsjr6+mI4wnoru0I1ISVFKT43POkPDp8ZNZa4FYvodj//ER/T58G4MPUVQSKRcFlVPieVGPn5mzv5x6ZW1jR084Nj8igyjm2Vi23fmT0rS3RMJSTIhOT9BiepqUqmTE7DmKGm2ymhpCSP4kkHHSke77EMSgrw+4dRqxXMrTLR3OLm7bf3o1LJOP20QlLTjV/IsY+MBGmwCWLUlpYe3L5hNEoZU0w6qiYYWBAKME9Rj4tR31QkyGVcVlXA0socnv54P3+vbmH9kB/FxhbOqcwhUSEjxZDOQ397lZ/+4AyaG/Zw908u5aG/vUqiSs3iUwtZfKqwWvvKq/W0W/tZX21lyZICKqcLRDrsHDKkqajd2c2GjVaQSAgGwe32k5AgY8ECsxhcmJycgN8foKnJxcDAMGvXtLH41EIWLDCTqJTj6BlgbpVJPL/uePAJps44lid/+wv21m7n7j/8DZM5P+7xRk7N83iFiRiO7gFWrGxh/34nIyMHHxsWmmp22Ol1+pHLJKKIBjCnyiR+DYeegzAKHY6sHzxS3Kqak41cKsWQpOS4YiXHFafhHwrQ5x+mtcdLu2uAXs8gTu8QB+z9BIPB8fPuq4ChEC57Fzb/Df53P7x7s9BqM3npmCJMrBW7KhRsWTXHJH5OampsBIaD6FOUzK3KxtcvQzakI1Mn5O4sFINEL2H9eis6rZKyyalMLU/no48sfPBBCxmZapYcO/GLO/aB3ggxql74WWohlJ8PJacLYlRyJsiVX9w+jOOLRUYZfP81aP4E9cr7uIS1kNQEnZcLmWDAbVeeg63HySPPvcFVd/8Rg17LGScdA8DixYUsXhyqCa/UY23vx+8bprTMIE5gAjhubjbmXC3V1e3s2dNDWpqKpGRhIlNZaRppBhWfrLPS3OQmQSmEo9vsA7hcwk33zTfNwO0eoscxQNVck3h+nTpvJtv//QQX3vIQ8y/5GY/cfiU/vfTMMa+V8ab3vffeAf71r31IZcJzykrTRKHKbvfS3yeIZspEGTabR8gFiTinw4Hn4eceaUZIpLglkpAENRjLhH8jAcFN5e0W2v48dqQDPYJI3NcByqJP9acex1eHyLyqpUuLxa/hlswVK5rZsqULk0nN/Pk55OdrsVikzJlTwPTphUyfLmxn+XINJ59sxOsdRKtVcu65E6mttfPYY9tITlZw/fXTSU09dNv5OMZxJPjFL6r4xS+qxO+NaiMvnvIil7x/CcFbgvgf8NOwq4G7f3Q3D/39IRKUCaPqQXt7P+vXhzhCZQRHMGowGFTU1nazYYOVoaEgcnkACFJamobBoBqbI6xtY/HiEEdIlONwDDA3oiZE4oTTTyCvOI9fXvVLrjn9Gn755C+Zffxs8ffxpuY5HAOsWBGHI4SEppoaO729cThCRJB5OPQcPiVHiBC3DiVMRd5j9gyMC1PfCeSmqnnph8fwVk07v/9wLw+9v4fpuXrOrcwmQze2HRAEkerss4ujfqZRy9FoFKI7I7L9JxKRpKWxwYlGI7RCBIMjDA1COCzuaME/HKC+o48drU62tzrp9w+TnChniklLVVEaJ5UYydQmkqpJGCfF3yIkJyq4/ZQSLp2TzyMf7OXtmnY2N/dyzvRsjitOIzPbzIN/fYVbLjuL3ds38cCtP+a+P72ATH7w0hTpivJ4h1mwINq1YUzXoNP3oVYnkJ8nZ06Vidqddl59dQ/FRXo0SQl0dXqw2wcoKtaTbUqirr6HvDytmDUSeR5FOpyWnHcxE6dU8Jubr+La8xZx2/2PM2/RaaOOM97UvFWrLNTU2BgaCpCboxXFqDVr2qhe1868+dmkp6twOf10dXrEbVXNyRZb+FL0AhHPy9OKbbvhnKzYlr/Icz1S3IoHpUKGUiFjZGCYgN3P7AnpSBLlKOSCsDd+Cn5FkErhmB/DpMXw4S+FAOkDH8HU84T2vsPkJ1VVZUfdZBiNQo6ORqMQXRaxLqswppanYbd5aWh0sm2bDb0uEUtrP0PDIwSDR3azc8QIBqHPCu3bBEGqu0H40KVOgIrvC2JURpngjFKMZ5l8ayCRQME8uHIF7H5TEGBX3w/ZM2HmFaA28PBtP8TmcPH3t1Zy/s0PsuL5BzhuxuSozUyrSKfd2o9MKsGcq40Ksg3fSFtahWlGxcUpZJmSaGzsZeOG9ZjNWurqHLhcfiorMzjnnIns3Glj23Yb0yuEdsClMfdVkS6nj156mJ//4UVufvAZ1mzZxfMP3IReO3oxcUeNHWt7P6ZQyC3AmrVtuFx+dDqlGF6+o0aoCUPDI2QYVchkUlqa3ZhztWJgbfic1qcoxeO32Tx8ss5Kj2MAdSgXJbaVN1wPIsWtuJDKIFGLzS3D4laHFn1U0L0PGE/7+KbinHMmcc45k8Tv8/J06HQJ6PXCRLC5c3NGTQQMI1bI0ofuRUZGRvD5hjnaHGEc44iEKdnE86c8z8XLL6b49mJ237+b7dXb+e1Pf8vdf74bmezgvVCkK8rjicMRjBp0OoEjFBZqKSsz4HAMcNddazCbtSQlJdDVFeIIRXpMpiTq63swm7XiAsEojhDH4VQwqYCn//M0D/z0AX5+2c+56mdXceG1FyKRSOJOzYviCLlaUYwaxRFcfrq6IjhCRE1ISYngCOusOBwDYk5WrCsqstUv3pS+eIh8jvxLmn8zLkx9DSCVSlhamcMpkzN56qNG/r6+hV++vZsKs56zppnITlEffiMhxAagjRWuHP55pJAFiJPPyqemjXrOp0WPZ5CdbU5qWp3s6exjeCRIilrBtFwd84rTOH6ikQxt4rgz6juADG0ivz9vGpdX5XPfO7v5+4YWPtpn5/QSI4H+VG554Bkevv1yNny8glXvvsHJZ10ACK2rHu8wS5YUiIHh8WA2JzNvXrYYLN7Q6KTV4gbgwgtLKCzUUVfnoM89iHdgiJkzM/B6h1m1yiLYciPOkUiXUmlpGkWlU/jLPz/k0btv5tc3Xcmp517B3CXXUViYKj4v3tS8imnp2O1eABYtzBN/vvp/FrrtftaubWdoaAS/L4Cjxxf3uMLn85atnaz+yEK3fQCLxc31108f5YqKbOuompMtEpOw+BYPkc8pLBlf/fzaQG+G8/4OLdWw4h7Y9DfY9SaUnQWFJ4LsyEt3bEjyWIGXRqOGBQvMpBvVhFcbIwnt584sCAyDvV4Qo9q3gscGUjkYimD6JVB2BqSXCJlR486obzekUqF9teR0WPc4VD8B795Cv/lU9srm88CNV9Ld6+K/H2/mql/+kd3vPiUSEZvNg9cj1ITI0PBYHDfXhDk3GbVGzo4aO9u32+jvGwRg1uws2lrdpBoSsdsFMTY7O5lUg1oc3R35eY91Kv3+jqs4bkYZl//8MSrOuoH7r72Gk4+fEvWcyKl54Z9HtiOGz0m9Xklfnx+fP0Bfnx+tVok2IuQ3EpHn8pv/buCdtxsIBEbE38W28or1IERkbDZP3OMLY1RroHScInzbEBuoPtZEwPDPI4UsAKfTT3Z2EieemPul7fM4vpvI0+Zx7+RHuWPwekpvKqP2kZ18vPxjjl9+PCeecSIg1ANPqB54DlEPRI4QChZ/9dU9tLa6GRwcieYIfX683uHRHCHiehnpUooNHE/WJ3PTQ3fx7CMv8sxDz7B3517uePSOuFPzKioiOMIigSM0N7vp6/Pj9wf44IMW8vKSGR4eweE4DEfY0snq1Ra6uyM4QowrKoojVEVwhJD4Fg9RHGHylxOfMF51vkbQKOXcdkoJl1bl88zHB/jn1jbu/U8dRcYkFpQYmW7WI5dKj+prxgpZsSfZp4FvKECjrZ/6Dje7rG7anQNIJGBOUXPy5AzmT0xjhjkVozYRbaJ8XIz6DmJKto7XfzyH371ey0s1bfy5uplMZJRrsph/5i+RBiwsOvN88fHhi2JWpgadfjRZjXQJDQ4GePONfaH2DAW5Zi0LFpjF6Xh1dQ5qdtgZGgwAkJGhYfeubjyeoaiJf3q9EqkUcYUQQJOs5e7HnuWtfzzHX393H5s+2cDC8+/lzKWzMKZr4k7EGOtnRUV6du604/EMMTQYQK9PpKzMwJatnXGDzW12Dy6nH7VKuFy7nH5qd3ZjzFBT5NeLrqjYto4okjGGMPVpxsWO40uGRAL5c+HKD2HfB/DJH2DLc7DzdSg8HiaeApr0w2/nUyC6tY+4I4aPGGFXVOcu6KyFrl0w7AOlVmgfmnYRTDoV9HmQZBwPMP8uQpEIJ9zJ5uGT0HxyL6VN7zAx+DEdnvP41bVX09szzC+v/X7U6rjF0sfWrV1otQmjCEPk6m5jo5Pq9VaSkhTY7QNkm5KQySSceKKZoiI977wzwK5dDtwuP7YQOeiw9rNqZQuzZmeJrqm6+m7sdi/ZJo0oNgGctbCKbZMKOP3qX3PFfQ9w6aln8tufXUBGhuCeijc1L7L9JAyn009yspKh4QGCQVAqZVTNMYntJfEIg83mob7OwdDQCAqFlFRDIjabhwyjGn+RPqqVN/LafrhMqvF6MI5YxApZkf8/jnF8UQgH+ms0Cmb6f8yGoicpvLyUooFJnHD6CeLjRI6QpUGni8MRbDEc4c19JCSEOEKuwBHCmc0GQyLr17czMBDBEXZHcATj2BwhEm3tXtInHc+iS9JZ+8YyrjvzOn7zt99w0UXRuYTxOEK4HgwPDzAwMMzwcJDjjsshL0875qKCzebB5fKjVoc4gstPbW03RqOaoiK96Io6JEcYQ5gaz5gaBwDG5ER+eXoZ154wgZfWt/DW9nb+uuYASUo5M8x6ji00MMGYhPQrFnZ8QwGaHR72dvZR1+GmqdvDSBCSlHIK0zUsCI2nL0zTkJakRJUwPsZ7HIJD0L+3j5T1LjJnpWBRjLC6v4/EhFJm51dFCZbhi6LL6YsSWcKClMvpo6NTIBXrq620t/ej1SYwpTyNJUsymTlDaPGo3dnNnnoHCrkElUpJZWUGCQopjY1OOjuEbYXFG6fTT1//EKtWWfANDDP3uGyM6RokEgklM87ixPOTWfef+3nrmR+hUvyWi3943pjHGm+S3hlnTCDXrEUmg1ZLP3OqTFGr2+HHxR7j5ClpJChlJGkUuN1+JBIJp5xSwMwZmVHth+HnxxaheCHskY7KHs/g5/q7juMLglQGJUug+GShrW/TX6FxBez5L6RPgry5wpS6xK94SlQwKOTRdO8TxKiuXeBzgkQKulxhLH3BCZB/HCRngCpVcM6M4zuP5euGWLnqUr5/zCIuTnuJiR1/o7VjEqdMnIezK/ozYjYn09DQi9vtF67boRvqyFHecDBXyWBQYcxQU1lpZOGCfECYNNTc7KbXOUC2KRlFgpT583Job+/H5fLT4xgQX29HjZ2GBidKpXCNTjOoxNdMUmq554obePzlV3n+v2/Q3tvOv564nSRN/BiGeFOTwmKXTAaW1n6q5sTUgzjCm9PlQyqVkJamwpSdRElJKhZLn1gT1Bo5q1ZZotxa4fcu8mtsEPuRjiYfxzjGMY4vEitXtrBypYWZMzM4c9GJ9G1yUXvsi7iHvIwER5BJBD4pcgSXL+qaGb5Wulw+OjpCHGF9iCMkR3CEmZni5L3ubi8qlRyFQi5whIQQR+j0RNUap9NPX1+II/iGmTs3W/yd0OZnw+8fxmAu5fqHfsNrj/+Ra864hl/+6Zcce9KxUccZWxMqIupBa2u/2IYXno4XPr7I54aPcfLkNBISZCQlxXCEmZlR7Yfh58flCDEtiuMZU+OIgiFJyc2LJnLtCRNYs8/Oq5stbG7q5eOGbpKUciabtJSZtJRmaknVfLEWu8HhETpcA1h6vBywe9hv76fD5SMIJCqkFBg0nFlh4pgCA9PNegxJSlLUCcik466ocYxG2Ba+cGEeaYVafvLSVhol0JA4gqPfj0YW4NG7b+H08y9h5uy52OwedPq+UUq/Rq1AJpOgUctF51DZZAPp6eqYVd8gOl0iKamJpKWpIn4vIdy2BIIYlKiUo1TKcPb62bS5k1yzVhTDli9voqvXyOzT/kBd9R/5+6M34Hc3cPn1P2Nfg5OaHXZRcMo1J9FqEbKx5s3LEQWg8CpJvPy3eKvbWZkaSkpScTl9dHZ68A0IrX8F+VrM5mRxv9qt/QA0t7hZu6aNefNzxAB5GN2iOI5vGGRyKF4IRQugpwm2vQR734Utzwv/DEVCSHjmVCGr6VO0+31qBIPgdYCrVRg7370PHPthyAtIIDkLTNMhezoUnAQpZtCkQcI46R3HaITrwdSF80g+5gZY9zimjx/lziktdOecBcES3lu7hZffWc1LD98qDrWIvV663YPIZFKcLh+Ty4SMnMllo+uB2ZxMfr6WhA4ZRqMas1lLerqavHytmMcWRl6elnXV7XQ7vGze1ClmP4WFsIZGF/NKTiJDZ2LF1g+Ydd5N/PPxnyMNJLGjxi4KTpPLDLS399PR6WHOnCzRmRg7ZdNi6UOtkYujzyMRrgmZWRry87UMDY8gkUiwWoX8kcwsNWqNnOXLm7C2C/WgpdnNmrVtzJ+Xw+LFhYdsURzHOMYxjq8DIjnC3Lk56HTn88wGP9vS/o+X61/mvLzzePjWhzn/6vOZOXMyNpsHnS4OR9CEOIJGLjqHymJqQnixw+sdoqBAT1KSYmyOYPOQmChwhN5eP5s2dZIbUROWL2+ivb2fzEw1Q0MjpJSb+Ms7f+HBmx7krivuYsbJpzNzwSm0tXvJzU2itVXIxgoPyIh0UYXrgc3mOaQDNisrxBFcIY7gC+Bw+CgoCHGEiP0CaG52s3ZtG/NCNSGMQ7UofpkYF6a+AUhUyDh5ciaLyjJweAb5eK+d93d1UNvuZmOToKDqVHKy9SrMqWrMqRoMSQkYNAloVYojclYFg0EGhgL0eofo8QzS4xmku9+P1TlAu3MAR/8gQYRTND1ZiTlVzXHFaUzP1VNhTsGgSUCvTiBBPr4CPo7DI9Ye/sFtx7Nso4VHP9zLPe/sRrn1dWrff4uNa/7Hk6/+F3NhcVQ7WqSTytM5hMc7TFGRnoQEWdx2uPKp6ej0iRw40EvNdjtms5aZMzJZsOCg+6qx0cn6aitSmYS5Vdk4egYwpCZGFTqpTEq2KYlAYARd4Q1k5a3h9ef+zMa168gtv56mVpDLpAwNj9Dc7AKJhOQkBRr16EttpI125ozMUfusUcuRySSYTBpRyAIJTc0u4fX1iRjTNWzZ2olUJg21rHjZsMFKZ4dAVCKFqcgcrHF8gyGRCBP8Ft0HJ9wJXbuh7t+Cm2rPf2HXG0I2jDYbUvIgpQC0JlCngcYA8iMMEw8MC44nrwM83cLErr5OcFrA3S605QEo1IIjqvAEyCwXHFx6M6hThba98ZbtcRwGsfWA429HNuVsZO/8FFPLq7S+Ws05D+5jYHCQtBQtf/zFNaOcPeHrtNPlo7PDS0lJKpdekjHKoQTCKvD3vjeBDz5opqGhl+LiFPExaaEpTXX13VitHpqbXGSbkhgZCVJaZoiqB273IKYsDZahAJmaQu76wfX8Y/XrzDz3Jr5/0ploAmZ6ewcACQ7HADKZhN5eH273UNz3IVwTSkpSowLdw1BrDtaEqeVpYh4cBMVj9nqGkUmlmLKT0OuV/Otf+3C5BDdsbBthZA7WOMYxjnF8XRCvhXTu3J/zzE4DT2x/go1/2Ub9ezvZVr2dv777NKY8U1x3qMvlw+MZwuOJ4Qgx9SC82HHgQC81NSGOMDPEEWwRHGG9FalUwty52TgcAxgMMRxBKiU7W+AI+/c70emUFBXpOfOan2Bzq9nywX+or9mLoWQxzU1JAkdIVqDRHIYjzMwcVfM0mhiOYAtxhKYQR9AlYjRq2LKlE6k0hiOEBi5F1oTIHKyvEuPC1DcIEomEtCQl58zIYWllNm7fME32fj5p7GZnm4tmh4d1+x28v7vr4HMApUJKokJGolyGQiYRbmOCghjlHx5hYCjAwGAgavaKRALJSjnpyUomZSSTU6JiUmYy5dl6MrSJaFVykhMV446ocRwRwv3i4dWPWMhkUi6vyueUyRn88t+7WDFwBsqa9Qx07uWX113Mn/7vv+hTo0P9AWqdfrIy1WKP+FiZSuHv33xjH+1WD3W7HaJoE35eV6eHdms/2aYkSkpS8HiTo0SucHii2ZzMBx80Y7G4qaj6PsfOr2LZn35GW9NNpBReTVbJLFJTVFGOKY9XGA8b6ZI6XKudxztMIBAUn2tM10QJaZHPn1qexoaNVpqb3RgMiWjUCubNz4l6bLx+9nF8w6FIhJwZwr/hQejvgtYN0PQJ2PcILqbmdRAMHHyOVA5yFShUgkglQSgIACPDgutpaAACMa2d8kRQpUCyCTKmgGECZE0TAssTdcK/hCMf1DGO7zYOVxMwFMHl78K2lzD85xc8d4aC778xyJ+WvcOE3CxuvPTMuNs1mZLQ6xJH14Q4LWp19Q6s7f1odUrx9+HnyGQS2tr6GPAFMGVpyC/QMrU8fhvEJ+usrFvXhjZRxyM33sojL/6DF97/J1PzpjItcy5abaLYKqhUytFqD+apRbZyRG4zts0OwOsRaoLXM4yx9GAenM3mQR/hFhCG1wRpbnIjlUnQ6RLE4PXI14uXgzWOcYxjHF82DlsPQrh66tV0ebp45bRXUG1Kpb+rhzsvv5Mn//0kWv3BOIPwdbq21k9WVhyOEFMPwt+/+eY+2tuFTNqwaCNyhC4P7e39ZGeHOIInOUrkiscRlEoZFksf+/Y5ySo7nj5/Mt11y+mpfYWqq66l368RpwnC2PUARrfaeUL1IPxcQWDTRG0j/PypU9PYsCGCI2gUzJuXE/XYrwtHGBemvqGQSCToVAoqzClUmFNEx1Ofb5gut48WhxdLj5dOtw+3dwjP4DDewQDDgaC4gC2RQKJchlopQ5MgR6dWkKVLxJyixpSiIkkpR5Ug/E6lkCEdF6HG8RkR7heHQ4dnZulUPHvZTB79ZyJ/HbqX5mW30NHawj3XX8Yjz/8LZeLB7A6LpY+OTg8lJamj3FTx8pQslj6StUqyQWz7g4POpLLJBkzZSeTlaanZYRezSsLbjsxjMmVpyMvTYcrSUD71BNJN/+SVP99J055HmTzxaubNv5r8fJ3owhoMBa4fyiW1rtrK9u1deDxDlJamjRlEGztp05iuQafvY2hohKHBALNmZYmi25atnYcNQB/HtwTyBNDnCv/Kz4PAEPj7YKAXepuhpxmcLYIDyu+GQc9B1xMAEkG0SlALLXdKndB+p88PteKlC2JWggYSkoTXG8c4PiOOqCZIJDDjMmpd05jGXTzk/B93rvJz80PPUJCTyRknHSM+9FBuo3hCj8XShzZZCdmI0yfhoCspL08rOpLc7kG2bbMBiGJQZPbGcXNN+H3DuN1+EhOUPHr7tazbNYs7//AsTp+dh396ndgquGdPL81Nburqu8X9iLcqvmrV/7N35nFRVe8ffw87DDDsssiMCySLKCpqQJYmrmWWpmWlWWa7lrapbbb6LbNfttumaWVZmppZJuYKpKKCiqiIwiCLAyjbsC+/P4YZZ4YZBBVFPO/Xi9fE3HPPPXfC+5nnOc+iZO/ePLJzynR1rcxqglFtKBeZZs7auno8POx1aXz6n5P2PIFAILjatNRGAHjlxldIPZ1Bw0sJZL9bR1Z6Fq89+hrvr3gfG9vz30uUylJycxttBC8TNoJRPSWlshQnJ1v8/NCl/cH5yKSQEHd8fRtthCQ9G8GrqSb4+jbaCL7nn9vduskIDnbHwTqSnxZ9xLrPFjL+iccoqvExbSMYRUnFxbXQRjDSAy8vKTKZkY3QqAemalddbVrsmMrJycHX1/fCAwVXBYlEgoONFQ42VnRytqNXZxeD4/X1DdQ1NFBX32DwvoVEgpWFRDidBG2Kfr44wOrVx1izJo1x4wIZP76HwViJRMLzE8OYdlsPnvS3YdVrU0lN3sdbL83grY++1hVHN34o6ztstmxRNqmnJJc7MWyYQjde2wVPG5nk6enAqJHdSNyXR0lJNc7OtmadXNrUQG1EldeQEIKCf2DZJ4vYsm4JB/fu5v6n3qWs0o78/AoyM0uIivQzKSTaqCZbW0ucnW1xd7Nrcj/6xCdkkxCfY1BLSy53wsnRhpKSaoqKzhco1F5H6mBltuufoINiaa1Jp3Nw00Q3GVNXq4mkaqg//57EAiSWmoLrIgVP0Ia0RhMG3hoOt24k+OBvpE9/mK/3lHLvrHeIW/kh4SEBgOmOcvpf0LdsURrUU2qiB40dj7RRSTY2lrqOlLFbMtH8a5CgUqk5eKgAaNBFUOmngmh30OXyIXSSeTP3k895aP7bPBBzF4/dN5yqylrSThQhlVrr1mG8bpVKja2dFe7udlhaSHSFd00VJ4+PzyY+IYeoSF9d+29tjaqkJBX19ZjUBAepldkuTwKBQHAlaa2NsOyuL5j892QsZkk4+W4Vyf8l8+HcD3lp0UvmbQQjPTCup2ROE7SRSZ6eDowa1Y3ERBM2gpGTKyzME1lj5K72uiqVGhsbS7KyLOl9+2Mo967jhw/+D7+wwfh4301UlBkbQWVkI7jbNbkffeLjs0lIyDGopSWXO+Hk1IyN0I70oMWOqdDQUD777DPuu+++tlyPoI2wsJBggQRr0RhPcBUwzhdfsyaNHTtOAzQRHS2uUhtWvjCenq4NvPLYveyO3cBbb7/Dq6+8jEQiMeu4AU3B2pzsMhQKTWivcXc8/Uii6uo6MjOLaWhoaBI+6+UpNenk0l5X29IbYOu2bFwVd3HLuC7E//k/lr4/hWkvLKJ3uL+urpP+mo277vn6OBIc7G4gSMao8tVs+COd7Bw1hYUVKLrISEs7R3hvT7p1c0HmYkt4b0+d8yoyypeoSD+D+9WuWziprnMsrRBB04KrxcVogqTX3Xz2dxQZN/dl8+EzjJ32PImrPsDTP+CCHeUUCmeyc85rgj76u9QaQ6OQTZtOUV1dR1SUH73CPHCR2erSQQ7sP0MD4NJYwwPO7zYrlaUUFFaQnJRPSYkVr06ZwRe//8I3G3+m3q6IGfdqurhq6zrpGy1aw0CpLKVcXcPAG3111zWFSqXmjw3pukLn5RW1HNh/hu4Brsj9nQgJcUcqtcbFxZZvvjmIm7sdN0X76TpRHT16lqLiKl0a4NU2SAQCwfVJa/XAxsqGJcOWcG/VvTQ83cDRhUfZ9Nsmuod0Z8Ijmmdsc5qgUDiTo6cHxt3x9COJmrURvKQmnVz6eqBF2zXW0tICaxs77n7qaQ7u+Ic/lv/Cf+tKuWPMfLy8HM123fP1bYGNoFKzYUM62dlqcnPVdOrkQN++nQgL89DYCDJbwsM9dc4r465/xcVVuiLyV0sPWvyt9J133uGxxx7j999/Z8mSJbi5ubXlugQCQQdm3LhA1OoaunRxJjOzGIVCBkBmZjEpKYWEhrrr3nv5kbuxL1/My6++xnFLOXN/SaZ7tSWSmgZCQtybFDxPTS3QFTG3sdF4Yo3rT+kLy5YtSpTKEnJzynCU2uAvN6wtFd7bE7W6BjtbS1T5agOnlHbOLGUp+xLzkCtkjJ80hshBffn925f5+PWHeGTWywQFPWFw/6r8863NA7q76jowXchRpJ+OOOjmzhQVVVFSUkVScj51dQ2Eh3sRHOzBokV7OXgwn8LCCgICXAzuV6ksZd++M6SlnWPoUDmFBRXExefg4GLDgAE+l/T/VSAQCC6GQYP8yM4uY9AgP917pvTA2tWXX3akMqB3MEO8y3Dc/gYp0lH8dTKAqEg/XdSQ/hfrI6kFxCfkYGlhWhOMDY0zqnKOHT9HmboGF1dbytW1BvP16duJkpIqioorUanUJutTZWSUUFJaxc2DOvP5K8+w9UACr36yjIPH01n10Vy6dj5fy0Pb4U+bGmK8HnMYpyOWV9TQAJwtrKBcXUNQkBuTJgWzcmUqBw6cwc7eiqrKOoYOlRsUi9d3UGmMsBIUCmdc6guROZbid/XLjggEguuIltkILnw17Cvuq76PgMkBFP5diF/3ALZsySQnp4yqqjpDG8FLz0ZoLGJu0kbwMmMj5Jbh6GiDv79hbanw8EYbwc7SpB4AZGWVkpiYh0IhY9iwzqgbNSVm2GNEDenN2zPf5sk7nuStr9/CXuZh4JDSdt1ribNIPx1RLnemtLQaaECpLEWtrrmgjVDcqAf6DqrCwgri4nJw8KgmcoAcTATgX05a7Jh68sknGTVqFNOmTSMkJISvv/6aMWPGtOXaBAJBB2X8+B7Y21uTkJBDSkqhTnRSUgpJSMgB0L0HMHvmU0x9YBIf/n6KlUdz2U0NlpnlFBdV0cn7fA0ogKTkfDIySwy64ZnLxQaN4+nkySIqK+ooPFtBRmYJ9XX1jB7dVVcMUF1ey9GjZ3W7H4cOFlBScr7welKSivKKWkBTrDwsPIBbVvzOZ++9xVcfvMl/O7Yx7/1PcPfsBJzv6OTsbEtYL48WRy7phxp7eZ4vhJ6fX86RlEKqq2vZvi0LVzdb/PwccXa2RaksbVLPKi3tHCUlVRw6WEBSkorjaeeQednj52d+J0YgEAjaCrlcxqBBnZHLzz/3zemBq6sre5JT2bc1ldNJ8witXE+dtS/b/7sTG5sbmtTMiI/LIe34WeRy5yZaoP9lX/t8j4r0pbCwAmdnW5KT8snLK6euXqMJIcEexAw9v6PuItOcc/CQRhO8fRzw9XUkO6eMqso6srPL8PR0YOqdIxgaFca4Ge/Q646neG/2dJ64fwQSicRAD/RTPy78menpQWPUlYvMDgepFUePniMpScXJk+dITS2kUycHXFzsKCmp0mhCY/0SbeH0ouJK9u07Q0ZmsWbdOWWEdirBwaUIv16X9L9WIBAIWkVLbQS5s5zPhn7Gw7UP0z2mO5b2Xuzfnk1mZjH19VBcXEWnToZRrUlJ+WRklBh0w2vWRghvtBEq6ygsrCAjo4T6eiMbQW1kIzTqgbbwelKSigqtjaC30aFSqbFy7sI7yz7k/156lyfueIIJTz2BtUv3VjmktBinI2o3aU6cKOLMGbXGRtiehaurkY2gpwcyWamBgyopScXx4+dw8a1D7tf2QUmtiuPv2rUr//77L59++injxo0jODgYKyvDKfbv339ZFygQCDomoaHuBq/m3tPi5ubG9BhL3Ost+Oa/BEr8XDkrtaIuT023bueNlvDenuRkG3bDM06h09+djujnzXQPTYtwqYMVGzeeIjunjM2xmbraUtqHfHV1HSuWH+HcuUpkMluG3CrHy1NKdJQvUqk1draWepFZ3kSPepKK+q7s+XsR08bcwsARz3LnvXc3SRdsKcbpi4UFFaSlnSNLWaJxqJ2AqqpaeoZ68OysfgadOf76+yQ7d5xm0M2ddfVQiosqsbC0QC53omsPV/z8HFu8FoFAILhctFYPXF1dCewXSortt2SnfEOd+gse67actOJJ5J1xNtAEN3c73NzsCQ5xb1KoVptCV1RcSV5uOQBRUX4G9ZqyN54iJ7uM2M2ZugLq+pqwfMURis5V4iyz5dYhcl2nu+SkfGztLPWK2QaybP5rvPzxtzz19ses+H0Hi156lIAumrS+1qZPmCpyq00jVGaVkJlRQn29RhNCe3pw771BOk3466+T7Nh5WlcYXaVSk6+qwNnJBmt3S6IifXGpr0cW6NLi9QgEAsHloqWa0NurNwsGLeCF7S+w32IjffoOw7r+HDZSGR5ejmRllRnaCOGe5OSUGXTD03+WGkewRkR4M316o40gbbQRssvYvDlTV1vKwEZYoWcjDJHj5SUlOrrRRtDTAy8vqS6qSiq1ZsjkZ0j+5xeWv/8hQ+++i5gXpuLt0zT1vDmMNaGwsIItW5RkZZU0OtQabYSeHjz7bD8DPdi58zSD9PRA66CysGi0EUKtr4iN0OoCE5mZmaxZswZXV1fGjh3bxDElEAgELUGhkBnsgpt7z/h4UOc8Mn95EZ/Anqhi5pIvs8Dp1DmiIjUpIMHBHrg3OppM7X4Y705DU4dPUnI++fnlutpSk+4NxstTysqfU8nOKcPd3Y6+fb1052t3TfRrWYHG0Ii5bRQTJsWw4KXZ/PvbfJTH4/ngq0+J6GfYOcpUkfULkZScT3JSPja2Fshktnh5OlBf30BklG+Te9q54zTp6UUAjBrZjcKCCpKSSuiicCL6Jj+sHKyxsGjRZQUCgeCycrF64OVlw12fHCA2toxNT/pwa/03FFn3RJk5Vle8/KZoP+T+zmb14OjRs3jr7U5D0y/4yUkaTdAWUJ80KRgvLykrV6aSk91UE0KCPQgJ9mjSujs0uBMfz53BVz9vZvmmNdz+1Bx++ehFhkX3NViXcRfBlpKclE9Scj62NhpN8PTSaEJUpK/BPe3YqacHo7rh5SXV1eGKaqw7QmEF+IooWoFAcOVpjSYM7zKc7LJsPtz3IZWny/j7m78JjwxHNmLK+QZEUXo2gnsrbQQjPUhq1INkE3qQbUIPdDaCqqmNoJlPxYkTpUTcPoWI6F588/43lJ3N4ZXFr+Ao0ziDTBVZvxBJSfkkJ+dj06gHXo16EGmkBztN6EFhYaON0MWJ6Gg/rJyqsLa0btF1L4VWeZW+/vprnnvuOWJiYkhJScHT07Ot1iUQCAQm8ff3RyKRcCJpN+F2y6ka9DAH6ir5KT6DQBtbFArnZgujXyhaSSsgf/19krxcNS4utrpj2iLm4b09dc4vOJ9GqI1gkjpYGcx9PL0Gn54zcfToy4n93/DYuFt54d2P6d0/SjdG62RSq2tQl9e2KJpKux6FwrlJrS1jBt3c2eA1KTmfE2lFSMM98fKUclZd3ey1BAKBoL1hZ2eHp6cndXV13Lk0l7WzhjHEczP97AopOPUkGYWOyOVORER4mzy/JfWctE6mv/46SW6eoSZoi5hrn8HGFBRqNMGhMWVEa5TEDIigutiRfdnbGD7tFWY8cAf/e24qDvaajktaB5NaXdOkxlVzGK/H3Hk3D+ps8AqQmVnSxIgTCASCa4GHej5EelE6v2T8QgMN7Nm2h1oLF4Jvuo3wcM8mBc7NPU8vpAk6G+Gvk+QZ6UF44/M3PNxT5/yC82mEhY16IJVaGcxtYQHqsmqsrCRMfOo+AkIDeHvG2zw+5nHe+votuvboqnMyqdU1BumAzRHeQj0Y1KgDg/T0ICkpnxMnipBKNd1nz1ZUNTmvLWixY2rkyJHs2bOHTz/9lClTprTlmgQCgcAsPXv25Mcff+TOO+8k6b81PNY3nJKgW/n3RAEJNTC+tq5Zh05zTiv9iKeioiqDVtuqfDXq8lqGDpU36eynrfekTQMEjXhpd+OPpBSQm6emZ2gMjzx9F4vnz+aFh8YzbvKjPDjjRewdpDonkzYdsLioCtC0JQ/r5WmwZu06pQ5WBAa6mnRIGXciHDWyG6NGdtMd13eyCQQCwbWIRCLh66+/Zs+eQxw/nszD3ydzeM132P79HLL4+RSVDgZuN/sF/kL1nPSNGX1N0H9/0qRggy5O+ikhGxvTAAECA111Y5RZZUhq7ZgYdQ8jotP57Jff+CduP9+98yxRfUN0DiZtKqC2OLmD1KqJo0q7Fu2xoUPlTe7J2CgbNaobo0Z1Mxijvab2VSAQCK4l3oh6g6zSLGofqSXjswz2//sPN/QMAHxZseIIFhYSBg3q3OwzvzlNMKcH2mNqveevsSZo9SA7u6mNcOJEEWXqGrKyylCp1Fg4ynn7+w9ZPGcBT459kjmL5hAeHgqgSwcsLtazEcI8DdasXadUqmcjmDjenB7oO9muJC12TNXV1XHw4EE6d+584cECgUDQhtxxxx08//wrLFz4Ft99/RYPPtgJp1wZ5SFSfjupwtlHSl+Fa6vn1e+iYey4aa6zn/a4haUFfr6OunO0x9zd7di//wyOjtb8t7eafsPfIjh8M3/88iXxW/9m1vxF9LnxJoKDPXQpfSUlVZxIL4IGkLnY6a6h7ayn7f5UV9egW5O5e9Gvr6WdQ7vrIxAIBNcydnZ2rFjxM6NHD0apTOOhBT8xIPRjbi58mxjPWCrPFULNTLC2b/Xc+s9RfcdNc12c9M+1tLDA18+R3uGeeLjb68aEhrhTWFiBVGqNbW0PPn1xDl+t/4Wb7n+BGQ+M4Z1nHyQk2EOX0ldSUkVerlr3zNc6qszqgVczemDGQNFGhgkEAsG1iKWFJZ/c+gn3lN9DzelastedZvWSb6hGRnaOpkaSqfS9lmJgIxg5bi6kCUplKRYWFvj5OerOMbYRpFJr1q9Pp66unn79vPl07acsfGEh85+Yz31P3sfDLzzM8ePnSGrUhBMnigCQyVpgI+g991uiB1fLRmixY2rz5s1tuQ6BQCBoFe+99wbp6SmsWbOGNWte45ZbFjKydyh/nC3i8+3p3NrDk3v6y7G0kJg8Pz4hm4T4HCKjfHWFbqUOVue7YHhKdXWjtmzJNOjCB00jr+RyJwYN8jOIXtIf4+npwNatSior6ggIdGHc+BlMfHAiH742mxen3c2o8ffz6POvoS6vpa6uAWdnW/r26QQ0IJc7cehgPvv3q+jb14uwXhpRkzpY6dL+tOhHU+nXTAHTziqBQCC41hkwIIg//vidW265hdWrV+Pg0I3kuleQhv1HWP5X8NeLcNMscOtmdo74+GziE3IIDXHH01PzrDdO6/BoTM+orq7D0lKiS9EztctuoAl6RddBowehIR5UVtZy7lwlCh9f4lcuYvHydbyyeAXrtvzHV2/OxM3OV6cHcn9nXVSUMquE/fvP0LevF73CNHqgH02lj0qlpqhY0zHQ+Jg5A0UgEAiuRZxtnfly2JfcU3EPVVmVFOwvYOvP39D/rqd0tZVaQnx8NgkJOYQ0owfaulE6G0HvGWusCeb0QF8Ttm5VUllZR0CAC3K5E/YO9rz66av06NWDrxZ8xfHDxxkz7bHzNkJfPRvhkJ6N0KgJUqmVLu1Pi0qlprjYcK1a2oMeiMrlAoHgmkQikfDGGx+xZ08yp0+nk5f3F51do/n9nhDe3niE7+MzSc9XMzHMh9KCqibpbgnxOSQlnSEjo5hbb5Wjyq/A0lJC1y7OYOTM2X/gDDSg68KnxbhgeXPOnurqOqqr6+jS1RkXF1tWLD9CZJQv0178ilXLlvLvxq/YvSOWB2fOJygoErncSVOgPFmT530qo4TKyjpA0mw6olZYgoLcmhRY1xfViym2LhAIBO2VyMhIXnvtf7z66nP8+uvnPPnkzWTJpxF221j47SHY/DqE34fK9WaDNAYtf/99iqPHzpKlLKF/fx+KirU1NRqQc37XW38nuryxqxM0LVjeXEpIdXUdeWfUhIa44+Zuz5EUTXvxG3sM5N3pnvy8bR0jHnmFe0cN5pGx4wgL8dB13FMonDlbWHleDy6QjqhUlpKXqyYoyM2k80z7erEF1wUCgaA9oXBW8NGtH/FI6SOo55dzTpVPftoebEb0aDLWOK1NS0JCDgcOnOHIkUJ69vSgVy9tSlsDYGQj7D8DoOvCp8W4YHlzz2mdjdCl0UZYcYTISF9cXW2pd+7F0++8zLL3FvPp3Fe495mnsbeXkZlZoou+OnWqpEWaoFSWktsCPbiYYuuXA+GYEggE1yxKZQ233z4fpXIbjz/+IqGh7lhZWTD/jp7c2M2dl1YfYvHOkwQ2WDMIwyihyChfMjKKqa1roPBsJZaWEo6mFpKXq0bmYqcbK5c7GUQu6aMtWA40++BOTS1gwx/pnCuqws7WCqWyRBeC6+vnSJVlJHc+GklG0lf836tPcOMtw3hizlskJWsMkZzsMhydbAgIdCGsl0eT+lH6mEopMUVL1y4QCATXCn36jCU6OokRI8bSr1+Ipq24fzd4PA7WPAr7v8dauo+0ktsAw11hqaM11tYWuLvbERTkhjKrhD2785A6WuMiszNIzzAVnaQtWA5c0LGTmJjH4UP5lBRXIZc7c+zYWXJz1bh72JOf38DMux6m4p4snnvvG2L/28+C2VOxr/Hn4MFCsnPKcHK0ITDAhV5hmuuYM66g5ZrQmvULBAJBe+ZG3xsZ5/UEPz39f1gmSrl38v3NdmYFQz2IjPQl41QxVdV11Nc3UFJSxe7deTg6WiNr1ANotBH6mrERGguWQwtshA3pnDtXhZ2dkY3g60hycj69e/uw5M8lvPHUG3z+8nz6j7iTeucwQFO/sK6ugYAAF8LCPC6LHrR07Zcb4ZgSCATXLKGh7kAUoaFjmrSQHdnTh56+MqYt3UNKvhrnUjV96xuwaEzti4rUdB1KiNeE6laU15KXq8bbR4rUwYotWzKBBnx9HZG52OqcQPpOIeM6VKbSA+VyJ5KS8yktq8HKUoKFpQS53Bk7Wysio3xxbezoEd7bk2nTV7Br8598+f7rPDL2Fm694yFCQ8fSPcDLoOueceF1fbTRVKp8NYn78gycV83V0BIIBIJrnZ49PZg3bz6hoe6GmmDvAvf9AnEf4/Lv24yzzaHM5WngfFTpmDHdcXezx83dTlPctrgKqaM1MmdblFklFBVX4uurad3t4W6PV7Bh8XGFwhkwLB6uTQ+MijTUBICa2nqKiqsId7enT59OuLnb4d1JSmZmSWPUUgi33dKflz5YyvRXP6ZnQDfuGTyGqMjuTTosNZeCoT/G+Li5GloCgUBwrTMt4gHyapUkyDdS0/kUXl7RTcaYc9RoO5MmJOQQGelLRUUtjo7WeHtLkUqNbASZre55rO8UMq5DpU0PjDTSg6SkfEpLG20Ei0Ybwc5KFzGlncPb34OPf/uYbxd+yy9LfkEefIyAcbObpBiaasahRRtNpVKpSUzMM6sj7b74uUAgELQ3FAqZgfFRXV3N3LlzefjhhwkNDaWzmwN/PnMzb/95hO8TMjn84wHuDfNhYLgPADY2ljg62WjCYXt7MnJUV13hQG363qmMEjIzirGzt2bcXQGoy2t1D+6Ift4GOwkJ8TkcTinQzW3sBNK2bNWvDaWtZaVl0PDb6T/oVn7++hNWffcZrh5/8PiLb9Bv2G1IJBJU+WqKiwzrXZnCVD0pA/Eyuq5AIBBc6xhrQkJCAn/++Sdvv/02SCRw0zNI5DfS8NMUXPa+S27OXfjcPB7QRAmVq2vZt+8MW7Yo6R3uyaiRXSkqruTAfhUNQL6qgpKSauLjs3FwsCYq2pdyda0ufXrSpGCD9cQn5JByuKkmxAxT4OBgjZu7HUFBrpSrnXQGgtYgAvD2dOP7957j0XtG8vRbX/Datx+TWTycd559EC/3844xczWktJhzXBkbNCJSSiAQdBQUChlfyhfw2OazrE5bjbuVO5s/38xdU++ic1dNMzetoyY1tYAtW5QGqWs2NpY4OtroUuZGjtSzERrT906dKiEzsxg7O2vGjQtArdazESKMbISEHA6b0AOt80dnI+jVhtLWstJibWPN4y8/Tu8be/O/2f9j4cyXeOXjV4gY2AtovoaUPqY0wVQNrSuNcEwJBIIOw7x58/jwww/ZsGEDe/bsQSaTaVL7xvYkc18+29RlLD2YjY2bHX3kmhaqaWnnKCmpQl1ea1CTSZu+l5OrJienDImFhKTkfIYOlQOmw2Ajo3x1r805gUxFPBmn502d+RLDxk7ki/de5c1ZjxDcux/Tn3uVKrqQm9eYH95MTStTu0DN1aYSCASCjkROTg633norlZWVdO3alWnTpmkOyAfyUeViBuW/RTS/ws5MuPFJsLYz0IRydS0REd6oVGpAAjTgYG9NfEIOyswSamvrkUqtm9WEqEhf3as5J5C53W39nffovqEk/raYJb/8xcsfLefnP3fw/MPjmD31rmZrSGkxFxVwofpUAoFAcC1jIbHg/wb/HxM3TOSNeW+QtzmPA/EH+GzdZ9g7nO/Uaip1zcBGaNQDLX37dqKkpIqsrFLy8yuACpKSLmAjNOpBpAk9MLARTGiCcXpe5NBIvvn7G96e8Taz7pnFQ889xKQnJzVbQ0ofkzZCO9ADSUNDQ8NVXUE7o6SkBJlMRnFxMc7Ozld7OQKBoBXk5+fTr18/srKyGDt2LGvWrMHCwgKAuLjT/P7PSfbZ1XKquIKYYC8GK9xIOVQINBDWy9Ok02bLlky2bVPqIqZasoMQn5DN1q1K5HJnRozoops3NbWAzbGZVFbUEhjoSvRNfrpjWmeVj7cUmYst+fnlHEkpJDLKFzvJSb758C3SUg7SJ/JWbh7zJN1vCDKIurpUzqqrsbCAcX0669IdW0pHfW521PsSCK4X3nnnHV555RVsbW3ZtWsXERERgEYPYjdnMCVgC11PfQr2rhSGPMGpcy4G9aOMv6QnJuaxb98ZqqpqdRFTF4oyio830oPGObXFxi0tQZlVRlSkr0G0lNY48faRkptThlJZwpAhcoJCnPnf16v4eMV6ZE5SZk0eT++u4VhbWdIrzPPyGRaFJ+CGkeAR2OpTO+KzsyPek0BwvZBZnMm4H8aR8koKVUVV3HrHrbzyyStIJJrvu8bFvrWOIOPoJX2M9SA62rdlNoIZTUhNLWDz5kwqKxtthGg/3TGtHvj4SJHJGm2EI4UMGNCJtD2x/PDxD4RHhvPIvJmUV9s1u+6L4WzFWawtrRnTfUyrz23Ns1NETAkEgmuazMxiUlIKG2uKeLJ69Wpuuukm1q1bx//+9z/mzZunG+tkYcn8m7oQW1jMD/8pOZhxju6VlvQOadpRT9u1TqFwZuydgSYdQOaKkG/dquRgcj5ZWaUEB7vrjiUl55OUpEIC+Ms1D2dtHSjtrkVxUSVHj57lSEoBuXlqAJ57bhCf/vw3f/z6Kz98vpADL08guE8MAX0nws39m9S+ElFRAoHgekVfE+bOncuePXtYv34948aNY//+/Xh4eBAdrUnjWB4bw139wul1fA6ue9/heN0IynvEGOyMazmSWkBSkgpPL3tu0jMYtJgrOLt1q5Lkg3p60HhMW2zcwgLq6+HIkUKD2lFaTSgqruS/3TkUnavC1s6KqCg/3n9hGpNGxjB30XLmLf6OTm5ujBowGHv74WZ32AUCgeB6Q18PPhr7EQ/lPsTJ/53k3/X/EhwezN2P3G3yPIMO1yb0ILVRD7y87A0cSPo0pwkHTWhCUlKjjSABf/9GGyHRyEYobrQRjhSQm6u1ER4m/MZw3n12AbMnPMmoyZMJvfFG8vIqAJrUvmrPeiAcUwKB4JomJaWQhIQcQJNP3r9/fz777DOmT5/Oq6++SmRkJEOGDCE2NpPYWCUAb70eTVdHe9779zj7JLX0sG8aIaTftW7SvYZ1Q7ROKztbS9Tlmnbh+s4gudyZLGUJ3brKDMJkw3t7kqUsoUxdg0LhbJDjHdHPW+dgkrmU4u5up4uYArCwsMAv4BYiRncm+3gs2cfXkrp/M6dTbsXh6dmU13U2WxBdIBAIrheMNWH58uX079+ftLQ0pkyZwoYNG7CwsNDTBDm9nt9F8bf3E3l2A0X5eVA3EyxtDOZNTson7UQR4dKmUUlHUgvYuPEUlhYSBg3qbFTHyRllVglduxnqQe9wT9TqGmrr6rGytMDN3c4gfUO/SG1ujhqlskSXGghQV2XL0NARhPiEc0C5h2V/r2Hjnn95Ydp4HrtnVLMF0QUCgeB6QF8PRo8exJx75vBaxmvk/pjLl+9+SXCfYEL7hTZJ5ZNKrbC0lCCVmnaVJCXlc+JEEVITeqCNvrKzs0StbrQRjDQhK6uEbkaaEB7uSVZWCWVlJmyECG+dHshkjTbCkUJdemDf6L7MXLiAJW9/xtqvvuL4gSTueXq6bv5rRQ+EY0ogEFzTaDrznX8FmDZtGrt27eL7779n0qRJHDhwgJgYBQAxMQoyM4vJijtDr7wG0jpZ8H1iFvlVtYwN98WiMay3ua51WqdVQKAL4eFeTXLJR4zoQnCwe5PopeBgD3Jy1Ow/cIaK8loCAlwA83WgRo3sZjCvXO5ERERnIiIeJDjkGVL2bubnrz/mmftv54ae/ehz03h8vO9ssl5tNFV1dZ2u0LsofC4QCDoixpogk8n47bffGDhwIH/99RcLFizg5Zdf1mlCz54ebNxezJHK+SgKljCedfDXHLj5BXD20c3bXNe65KR8crLL8PVzbF4P9AwC/WLrUqk1QUFuuhRCfby8pEyeHNrkmnK5E336dqIPXswJu5Ui9Tne//Y35v7fMt5Z8jP3jBjM8AHRTebT7pxr9UDTAVDogUAg6HgY68G0ntNIfSSVb9O+pXhPMW88+QZf//W1QRc6lUpNUlI+eXlqkpLA3d2+iTOnua51WidXQEALbAQvEzbC/jNUVJixEfTqQI0aZWgjBIX48PDcZ0nZ/R///LiCT16cy4uLXsTLq7/ZOoPQVBP0C8BfaUSNKSNEDrlA0DEoLy9n4MCBKJVK1q5dy5AhQ3THNm48yV9/neLs2Qqc3Ww4182e/86UcEMnR568pTtZp4p1aXxn8sopPFtBdNT53HFtxNSFHDym0uu2bMlg69Ys7B2sGDJETkV5Lc3VuLoQ9fX1LP3iR/75fQVncw/i4ubOyPH3M/KuSfgpujZeM5P9B85QWFCJKl9NeLgXM2f0M5gnTVlETo6ah2/tRtcuLq1aQ0d9bnbU+xIIrke+++47pk2bxvjx4/n11191tUU2bjxJQkIOZWU15OaW8dDN+YxQL4CqEug/DboM4khqAfFxObi52+HdSdrEoaOtF9Wck8dUKoVKpebnn4+SqSwhOrozN0X7cvBQAdBw0fWift9wiMXL13EgPZkStZrh0X15/N7RjL6lP7Y21sRuyeTA/jNUV9eTl6fG0cmayZNDDNatUqkpOH4YWf878OvVt9Vr6IjPzo54TwLB9UhNXQ13/3o3/8z6B8sKS/639H/0jOipO66tHVVWVo2jozX9+nkbpPNpI6IUCmfOnCmnsLDCoL6Ucb0qc5jSBJ2NYN9oI1Q02git1IP83Hzef/59EncmMiBmKK4Bt3Dz4G4GdQy1bNmSyf79ZygsrESlarQRZhraCMdPn0aVW83kfuMNOt+2BFFjSiAQXPc4ODiwevVqLCwsCAgIMDh2fifdhuLiamQyG7ofPcPqUypeW59CQI0lykPnyMkuo6CwguLiKqRSa9w97HUiYpzeZwpt6GyWspTKqlrCe3sS1suTpKR8snPKSIjPoby8lvKKGgCGDm29EWJhYUFRZRB2fs/SM7gIX5ck1q9cys9ff8wNob0ZPPpOrBz7QQNAPfpJi/qOs+ycMtJPFJPSqbDVjimBQCBo7zz88MP4+voyYsQInVMKmupBUKg7WeqbkG58FLeEz0CVysH0KA4cOIOzsy3uHvbk51egVtfoIpxCgj0uGHWk1YOi4irgvPPJwcGaivJazhZWoFSWEh+fQ0W5RhNiLkIT0o9V0lXaj8F33IzEOZ91O7YzbsbbuDg7Mm5YFDf49KC+3gW53JkydTVlpTUkJ+UTolfwt6i4kprcEhxcivDr1eolCAQCQbvF2tKar8d8zajTo7Czt6N77+4Gx7VRRdoC4lKpla7Wk5eXVBcRlZNTRkGBno3grmcjTGqFjZBVSmVlLeHhnoSFNdoI2WUkJDTaCOWttxE8fTx5b8V7rFuxjs/e/BJ27ibj6B0EBNxnwsGljVGqR08aDRxnOTlqTp0oI8WusNWOqdbQoRxTXbp0ITMz0+C9BQsWMGfOnKu0IoFAcDW54YYbDH6vr6/HwsIChUJm8GDduPEkFhkVzO6lYKVSRVKBGr8ejnha2eDVyYGqqjrCe3sa5mibiG4yjqTSiltSkooTaUWApl7V6NFddRFZR44UkpujbUeuwVSklfY9qYNVk258kVG+FBZW4OzszpBhtzJj3nx274hl68a1LP1oATU11bh1CqB7yI2EBvZl8C29AcOccz9fRyRIDFIir2WEHggEAmNGjhyp+++GhgYaGhqa6AHAxo2F/Fc8nwf9VtP95A/caXeM8uDbKKuXEhjoSlFRFbZ2ls3W7DCOotIvZn5gv4oGwEVmR1S0L1KpNb3DPfFwt8fXR0pO7nlNMFe0Vvu+cRdBbR2qTl4OSCQefPVyNPayKlb+uY2Vf27nu6x/cLCzZ1DfMKL7hOEn99GlJ2o1wdtHiqKLM7JAl8v10V91hCYIBAItXlIvvpn8DdP+mcayI8t4LOwxQLPZq58uB+c74oHmWR/eWB/Q1tYSL69GGyHc84J1nIwjqQxshBNFAEya1GgjJOnZCLlGNoKZ6FtTXQTvevAubF278fW7n3Fs20+8O/Mkr33yAm6ebrr5fH0dUakq6NnTg6KiKl16ov79+PpKsZJYt7mN0KEcUwBvvvkm06dP1/3u5NQ0l1IgEFx/xMbGMnPmTP7++2/kcrnBsdBQd1Sqciiv47OxYXy2J4M/D+VxrqoS35IGxozqqmkfm6/pgNGkZkej0ygpScWRI4XkZJfh7mGvqxcldbBCKrXW1asKDvbQhfcGBLjoBEaLKQeY9j1LSwl1dQ0Gx6Ii/QzmsbN34JYRd3DLiDtQl5bw6QfL2f/fdg7v+ZOKrT+weaU1XXsEI+/eE2f37pR5BuHiFkhYmBcKedvthFxphB4IBAJTlJaW8thjj9GlSxfefffdJse1mrCTR3EaMgivhJeY7P49K08NoaIymkmTgg2MA2NUKjUbN54iM6OE7JwyPBprlGiL12qMjAad8aAfbXXHHd0N5jVn7JjUBC8pUVF+REX5GRkv3rz97IO89cwUFn6yhfX/7uZk1mk2/5dIfX09vj+50z8skOCuXXCVutO5e1e6yJ1w8O1Yz0yhCQKBQEufTn2YO2Aub/73Jot/Wkzy0mQW/bQI906Gzhe53Ini4iqKizWpbsHBHqjVtezcmU19fT2jRzfaCCozNoLKyEbIKdPVrfLykiKVNtoI4RdhI3g1YyM0Hht9R2/6DfyQdT/8zYZlK3ho6EM89vJjjJwwEgsLC44ePcvBg/kMGOBtEOmlX5fKyqkKH6+mmziXmw7nmHJycsLbu2lbR3NUVVVRVVWl+72kpKQtliUQCK4A+m1h9R+e9fX1vPLKK6SmpjJx4kR27NiBjc35jksKhQwvL03nDi8vKZ/e15duG47y2c500pwb2H4gj+BgD7w8pRQWVLBli9KgvtSmTRns/i+H7t1d8fN1xMJSglJZqnMcuXvYExjoiruHfZM16xc712KqSKEutFgvYupC8wCoKy2pte2HS9cbiJngxZBoS1IO7OXYoQMcO7yXrFMr+b2x1OCYyY9x97IvWv6Bt3OEHggE1y/m9ADg33//ZeXKlQBER0dz2223GRzX14RErwhGP7qV3EXjmNL1bw6VFEL9s3h5SSko1OiBcW2pTZsyOJpaiK2tJZYWjXrQaCR4eUnpFaYxJExhvFtvrmit9nf9iKnm5gHIzy+nplRKaKf+TO0/hnF3d2XbnoPsPXScvYfT+OKXPygu1RhXEokEdeZwmqrWtUtrNEHogUDQsTClCRN6TOBw/mHef/V9KrMqefPpN/lw5YdYWlnqzvPykiKTaRw/MpnmWS6XO1FfX092dhlJSfkEB3tQWFhBWto5pFIrg2fvpk0Z7N7daCP4OWJhpAnu7o02grsJG8HEc7xZG0EvYkqfTp0cefS5u5k4NYbP3/ychS8sZMNPG3jg2ekcOVLJ2bOVFBZWmr322YoqrgQWV+QqV5D//e9/uLu706dPHxYuXEhtbW2z4xcsWIBMJtP9+Pv7X6GVCgSCy422LWxKSqHB+wkJOdx443M4OsrYvXs3L774osHxzMxiVKpyuneXERrqjkQi4bkxwbw2KBCpjSX76ypZu1fJ3sRc4uJzSE7KJ6mxrSyAUlnCuaIqyitqmDwlhF5hnhQXVeoirA4dzGfrv0ridmWTuC9P974xqnw1W7ZkcuhgfpOOfl6eUiL6eRMc7EFEP80X6+bmOj+fEgsLCTcEunJTdGcCgsMYe9/DvLjgE779Yycb9mfw8uL13HLP23QJHdq6D7ydI/RAILh+MacHcXGnSUryYNy4BwGYPHlykxQvY03AtQunh//KHm6jp00iNX+9QnLCUeLjcnRdWvVRKkuoqKjF3d2eQYM649BYo0S7o37wUD7/blWyKy7b4H1jjqQWsGWLEgcjQwc0RkNEhLcuTVCpLDU7D2h27bV6EHiDK1HRvri5ODFueDQLnnuI2KXvcm7PKnYs/ZTXH3qa/3vybuzt7Vr2YV8jtEYThB4IBB0Lc5oQw8OEPRKNhZ0FB3cf5LtF3xkcV6nUFBdX4ePjoHP4eHlJGT26K/37e+s6+W3ceIq9e/NIMqEH585VUV5ew+TJIfTq5amLvgI4dCifrVuVxF1ADzTP8EwOHcpvktqt1YPgYA9doXZTc7m4uzBv8TwW/7qYcnUlL099jtTta1B0tiY62rfJNVNTC1i5MpUTJ8625CO+ZDpUxNTMmTPp27cvbm5uxMfHM3fuXHJzc/nwww/NnjN37lxmz56t+72kpESIj0BwjWLcFlZLbGwm+/bVcvvtc/n55zksXryYQYMGMX78eEAjVunpRURG+qJQyFi9+hhr1qQxblwgO18dynO/HmRDqgoPLOjn6kjvcE9dWh7AkCFy7GytiIzSPNRV+eWUlFQhc7FrdC5JqKqq40jqWVT55YDpGlVKZSn7D5yBBvTONc2F6l1px5SUVCOVWuPgYG1yTFFxLfuSJRSUB3C2rGPUlwKhBwLB9U5zehAbq2Tw4AdRKlNITEzknnvuMYik1deExMQ85s3bybhxgYx//Uc49Cusm0VQ8XuUuExA2rurrkaTliFD5NjaWREaorl2Tk4ZebmNz34vKSUlNZw7W8nprDLK1bW6943R3wRprrj6hWqbaMeUlFTTpYsMhcJZ50zTnzc/v5zd8YWUnLEnsn/Heva1VhOEHggEHQtzmvDvltNY77iPrg9mk77kKD999hM9I3oSOTQS0Dw7c3PVBAW54eUlJT4+m4SEHCIjfXWpb4mJeVhYWODn56hLydMyZIgcOzsrIhvr/6lUjTaCzK7xed1oIxw5qykrgunnuFJZyv79ZwD0zjXNhTSh18BePPHOW/z6zVoObv8T1akUHOruoutLk7HT25CIi8th//4znKtyILhHJ/Mf7mWi3Tum5syZw3vvvdfsmNTUVIKCggwEpFevXtjY2PDYY4+xYMECbG1tTZ5ra2tr9phAILi2MFXEFiAmRtH4Ogh//0IWLlzIww8/TO/evQkICDAQq7i408yfH8+ZMxpxGD++B19PiWDB2sMs25vFnroKnhkRSGdXB11tqYAAF6IiNS1YE/flkZFRQmlJFWFhGnEK6+WBKr+cvDw1zs62JmuSgCYUt2+fTpSUVOkirsw5ncyld5gaoy2+LpVac66oioT4HCKjfImK9EOpLMXC0gLvTlJCQ5vvKnW1EXogEAhayoX1QMHDD6+ib9++7N69mxdeeIHFixcDhgbM9Omb+O+/XPLzyxk/vgf0moiqvitOm57gpooVSELGQtBE4HwtkYAAF6Ki/EhMzGPnzmzKy6sJDnHXPZOdna1xdbOjs78jcn9ns89xrcNLoXA26AplTGv0QC53YssWJUnJ+ajVNRw9eo6zhRVERftSrq7F0sICXz9HAgPbf1JFW2qC0AOBoGNxIU3ocdOXzDw5gfzN+Sx4dgFf/fUV3p29DZ6dqakFrPwplXNFmtS2qCg/3bFBg/xMFiTX6gFoHFgZGSWUlurZCGEeqFQttBH6NtoIjRFX5pxTLdGErl1duPex8XQJ68Ou9ev44/tf+Pf3v+jSZwgTpo1l0CA57u72yGS2uLhcmehZSUNDQ8OFh1098vPzKSwsbHZMt27dDOrFaElJSaFnz54cPXqUHj16tOh6JSUlyGQyiouLcXZ2vqg1CwSC9ktNTQ29ekVy9Og+unQJ4siR/djbn8/rfuONOFauPIq1tQXz50dpDJFG4tMLmP1LMoXqKu4bIMe+pI6jR88SFORGRD9v4hOy2bpVSWlJFdU1DfTv782kezW7KaY67ZkjcV+ewbytPd8Y/W6Ba35P48iRQrp3d+GOOwJ0NatknnZ4ejowrk9nLCwkF55Ujyv13BR6IBAILjd//PEHd9xxBwCzZ3/EokXPGBy/5551/PtvFrfe6s8vv4w9f6BKDRufh+SV4NkDBs0m8VC57tldXV3H1q1KSkqrqKlu1IPG3XVznfbMoe0KFRTkpkvTaO0c+mg7BtbW1vPf7hxqaxvoH+FNl64yoIFeYZ54WebCDSPBI7BVc0PH1AShBwJBx2dt6lruu+0+Kk5V0Ll7d77b9AXWNuczDlauTGXHjtNYWUqYdF+wzuFkCuPndnx8o41QWkX1JWjC5dYDbbfAzp3q+fztr8k7kYy9szt3PDiRm0beTGUVOHvX4uMlY0z3Ma2aG1r37Gz3EVOenp54enpeeKAJkpKSGts+el3mVQkEgmsVa2trgoJmcPz404APxr55/d306OjOBseiunuw9ukoZv+SzPcJmYT7OhNxg6tuRyIhPocTJ4rw93eid7i7QbqffnFyfUeRttufUlmqcxJJHazw8ZYaRE1pC6wPvNGXyQ+Etuqe9Tt8yPedITenDEeptYHz66y6ulVzXg2EHggEgsvNmDFjCA4ez7Fjm0lOLm9yfObMfoSEeOi0QYetFMZ+Bv4D4Z958OfzdAt9AoJ8kMudWL7iiE4Pwnu7G6T76ReV1TqJ9Auoa40MbWFzB6kV3j5Sihp3yU+cKOKPDek4O9syLEbRakMkJNiDkGAPYrdk4upqh72dNW7uduTppavQvL+nXSA0QSAQXE7uDL6TXneMI/Gbn6lzsaKh3tBG0KbphYefb4BkDuOopYQEPRuht7tByp++JmgdRdpraPVAW9hcKrXCx0dqEDWlLbA+cKAvkydfvI2QkT2dbf8coDQzjl8++YJ/fv6VyTPv48buN7Zqzoul3TumWkpCQgK7d+9myJAhODk5kZCQwKxZs3jggQdwdXW92ssTCATtiAceuBH4lPvvH4iDg4PBsejozk0cUvp4O9uz7KH+LN6SxpLtJ8kurmRoTS29QFdjSpsmZw79YrnBwR5N2rwGBbkhc7HVdABx0XT30xZYVyovrTPQiBFdCA52N9vdryMg9EAgELSG+fPf4Oefx3L//QOaHGtWEywsIGIq+PaB1dNwO7AQm65jOZp5s66+VFSkb7O76qbqSJnSBBeZRhNcZKXEJ+SQnV0GNJ+qcSF6hXngIjufOmLclryjIDRBIBC0lOdveoV3nQuo736G05Wn6WbXTXdM34lzIbSOJm0HVm2NqcgLaEJSUj7JyRewERr1QNslUFtg/bLZCNKRnDhykt2bNvLp65/y/UffM23eNMbMbn3EVGto96l8LWX//v08+eSTHD16lKqqKrp27crkyZOZPXt2q3LERaiuQNBxaK5duD719fUUFBRccOc0Lu40sbGZumiqrakqZv60H3VNHUP83Jg0VCNe8QnZBnWcjNFGTFVU1HAirYjwPp506+baxFmkn7p3oTnNocpXE7crh8KzFURH+ZoV1LPqaiwsaNepfC1F6IFAIDCmpXoAcObMGTp1ar7Qq7EeUFEEG2ZByhpyGrpxpvsj9BnYjfj4bOITcsw6qLQRUxUVNaSdKOLmQZ3p16+TQcSUsSacOFHU7Jzm0O68V1fXkZlZYhCl1YTCE+0+la+lXA5NaG/3JBAILo3mNKGsuowJf0ygtKaUWX1mYVlhiYu7i9m5jKOctJhKu9Mvnm7q+a2dq6KihhMniggPb7QRGiOmmtgIRgXZW6oJxnpgLgosOyOb5Z8tZ+DQgbw5/c0Wza1Ph0rlayl9+/blv//+u9rLEAgE7Qhta1jApCGSmVnMf/+l89VX88jNVbJnzx4cHR3Nzqft5gSaXfQhwV7MDO7Mx3sy2JJ9lup4C+4fKCchPofDKQUAJp1I2h2XefN2kJ5eBMDECcFNxunXkoqK9DOYyzgd0BhtvStrKwtUqnLKK2qRSq1bvNNzLSP0QCAQGNMSPUhJKeTkye3MnTuTzz//nMmTJ5udz1gPsHchzucN8va6cofDD3TKfh8Knic+4Rwphxv1wITBoE2rm6unB6NGdTOZnqd9z8tL2mQuUymBWrS1TaysLXCR2VJaVkN+foXu+h0doQkCgcCY5jTB0caRl4P/x5NbHuSxiY/hUuvCZ2s/w9bOtCPbOMpJS3V1HWfOqOnW7fz8CQk5HG5GE0zaCBNN2Ah6GhEV5WcwlzlHmZb4+GzWrEnD0hKcnW0pLa1psnYtfl38eOzNx7C2NN3d+3LSYRxTAoFAYIy51rBaUlIK2b07m/3791NUlM/kydNYs+ZnJBLTEUP69ae05KQV47y/FPkgD+LSCzhZoCYqQhN5pU3tM8egmzsbvOrTnONJla9mze8nyFKWoFbXmDy+4Y90MjJKcHa2JiTUAwcHa4OaV8YUFpaTk6Omn7sTXbu4NLtugUAguNZoiR4kJORw6lQyZWVlTJ/+GN7egQwbZrq2hik9iN2SRWxCf84NDeERh08h9nXGh4wGAomKbF4Pbh7U2eDVmOYcT0dSC1ix4ghljcaF/nGVSs0fG87rweBb5ISFeeoipkyhUqkpOF6IzLEUv47vtxIIBNchF9KEkgwnQrLv5sip+RSWFrLwpf/jlcVzTI7Vrz2lT2ZmCfn5FWRmlugcR/opfc0xqFELBpnQhOYcTyqVmjVrTpCVZcZGUKnZsCGd06c1dat69vTEysqiydr1KSgsR5VbTS+r4gtGHF8KwjElEAg6LOZaw2rRiFEodnbv87//PcLatav45psYpk+fbnK8qVojWqNk6FA5ZS5WzFtzmD9yCpl6d3ciFG7A+Y56unDZRmfTqJHddCkb2iLnWozrUOl35VMqS6msqMHKSoK7mz3GKJWlODnb4uvnSO/enowY0eWCnfyyc8pIP1FMSqdC4ZgSCAQdjpbpATz00GukpCSSlBTHtGmTOXLkgMlI2ub0IDhGAX3Gwbqn6XrsD56P6Av9ZwDm0+lGjdLTAxNtwI1rUel3YUpOyqestAZHJ+smzialshRnJ1v8fDV6MHSo3GTElfE5+RklOLgU4dfL7DCBQCC4ZmmJJkzhPkrqjvLXoh/Z8vsmBtzcl+HjhzcZa672lCmHlXF0k7mUuuY0wThCS18PlMpSKisbbQR3MzaCky2dOzudtxEu0EAjJ0fNqRNlpNgVCseUQCAQtAXah6tKFcHdd8/g118/YsaMGURERNCnT58WzdG5sxP9+/vg7++MQiEj1EfGjJ8P8OX2kwzpUcqtXdzZtjWLkpIqykrPp09onU1btigpKakCDFP3tNFNFRU1zJu3A4XCGamjpuW1XO7E4MFyoIGwXk13OORyJ4YNU+jqUxljKhrLz9cRCRKzO0cCgUDQkdEaKZmZxTz00Du8/voEsrJO8Pjjj7NixQqzkbT6aPWgc2cncJDBPT/Af5/Bv2/BxhcoDH2SLXsllJRUmUynO3gon/37VfTt60XMUMNnd+9wT5RZJSQlq6itrcfHV0pebrnumPbVOJrKQA/MGB/G0VhyuRMOlc7IAl1a9RkKBAJBR0FrI0xQvUT6HYc4vu4gi+Yu4oawG+hyQ5cWzeHubk9goKtJBxFonFJaO6CszMhGUBnZCHrPb62jS2sjyOXOOJqyEcIuYCOY0ART0Vi+vlKsJNZtbiNYtOnsAoFAcBWIizvNrFn/8sEHe8jMLG52bEpKIenpRUyZ8hS33347VVVVTJgwgeLi5s/TPz8hIYeUFE1vbX93Bz4YGcxgX1e2Hcvnw3/TSD1ZhKWlBZFRvvQO99Q5nZTKUkpKqrG0tKC4qBJVvlo3b3CwB5PuDeZEWhHp6UWknSgiKMhN52waOlTB0KGmI6G8PKVE9PPGy1OKKl9N4r48g7m10Vja3XcAd3cHevf2RCFvu50QgUAguNLExZ3mjTfiWL36GBs3nmyRJuTnWzJ37sdYWlry448/8s0337ToWsZ6gIUFRM0gd/hKymutcdn7Di75W7G0lBAV6Ut4b0+jCCcJVVV1ZJwqQaVSG8wdEuyBpaUFp7NK+W93DiDRaUJIsAeTJgWbrBfl5SUlIsJbZ4CoVGoSE/MM5tfqgTZK18tLSkiwO36+Ha9Dn0AguL5prY1wMr2Ydx76AY9eHlRXVvPqY69SUV7RomtpO+ppO/OB4TP40KF8TpxotBEifend21PndDKwEYorDZ7ZwY3P/BMnNDbCCX0bwUvPRjBTq1CrCab0QBuNlZR03kbw0NoIbRgtBSJiSiAQdEBiYzP5558MPDzsCQnRfFE313lDP8f8+++/p0+fPqSnp/P444+zcuVK3Thz3TtM5agfP1aEf349jwT78cOxXIp9rejsZtOkgLm2s0ZxUSW5eeXIXEqbOJr061BF9PM2eb/6aX7G52tFEc5HZGkdY83VnBIIBIKOgLZI+fHj5+jWzQWVqhwvL/Pd+c4/08NoaHiHOXPmMGPGDKKjowkJCdGNM6UJ5mqWHCjoyoGKD7mz/gNGee6g0DoX977PNUmn6xXmQb6qnJKSKpTK0iZGRVSkL1WVtcjlzvQK8zAbAaWf1mE8xkATGo/pR1wJBAJBR+ZibYRNazZxY8SNnE4/zeLXFjPng/P1psw9c7Xf87WvYPgMBgl2dpZ07SprkuKnsxGKK8nNLUcma6oJ+nWotF3/jGmtHpirl3UlEI4pgUDQ4YiJUVBUVIWfnyOhoe7Ndt7QT9/4778iFi/+jpdeepLZs2cbjDM3h6kcdX0hG9bPh5f/OMKeojKq/k3joaguONppOlt4eUp1UU0yl1ID4dIyamQ3Ro3spvvdlBPKUOQwOG5KFM3lwgsEAkFHQ1v3qWdPD+ztrVGp1M1259PXhNDQ8QwdupU+fcIIDAw0GGdKE8zVLNFoQhBFzt9zOG05Idmfwp/Pw4BHwX+Abpxmp1uue4YbY2y4gGmjw6wmeJnWBG1nQIFAIOjoXKyNkHfMhdcWLuDt117GapChC8WUg0f738bOIMNnsBMyma3J5732XJVKjUxmxkYY1Y1Ro/RshMugB1fTRhCOKYFA0OHo3NmJYcO6mI1uMoVWmCIju5KSkoKVleHj8ULdO/TRN04UyPg72JNvdp3i/2KP8+r6FKZGdaF3ZxfdeK2DqiWYioDSFxbj462ZWyAQCDoa0dGd6dzZSbcjHhrqrouYag5N19Y8nnnmY8aMuaHJ8YvVBG56GfLvht8fg10fQpeboP8jYGUHmDZkmsOUQWRWExrnbs38AoFA0JG4NBvhLj7505mPD37MpoxNjOgyAjAdGWUO42fwhZ7HrXlmX+t6IBxTAoGgw2G8+3GhzhtgaGToO6WSkpKQy+UoFG4XnVttaWnByC4eSMIq+TlTxSf/nuCmAHfuH6jA2tKi2VQ8Y0yJX2FBBWlp55A6WJkVx/iEbBLic4iM8jVIJxQIBIKOjr4mjB7drUXPclOOp5qaGv777z8GDRrUIl0xi2cPMmN+o2bzO3RXrkCiSoXIp8ErGGg+9cIYU8/8gkKNJjhIm9GE+GziE3KIivRttkOfQCAQdCQu1UYYrZjO8ZLjbDy1kTplHTeH34yXl+MlOXiae+Zfqh4UNuqB9AJ6oHG8XV09EI4pgUDQ4WjNTrYWU8L0yy+/8OCDDzJs2DDWrVuHhcXF94tISSkk69A5nhnoz2FJNUvjMjicXcJNXjKcaiE3T9NdqTnHlCpfzaGDBUAD6ImKftHaSfcGm5wjIT6HwykFVFbVYmNjqRMlrdhZOVhf9L0JBAJBe+ZyaEJJSQkjR44kMTGRXbt2MWDAgGbOvjApR0tIOD2eUT1vJurMmzRseZN8WRT0eQBldpXJtBBj9Lvp6Y/Tb24xaVKwyTniE3I4eDCfwsIKAgJcdCkjOgPI8pJuTyAQCNoll0MP3r7pbbb9vo0PPv2AHTE7WPDVghZ1bjWHqUgn7fNYW2NK/5gp9Lvp6Y/TFjMH83qQkJDD4cMFVFaasRGuUB8M4ZgSCAQdjkvaydbjhhs06RsbNmzggw8+4MUXX7zoufSFcKxCRkxwJ2as2MeGjAIcy+uI7uRiNgRYG1FVXFTJ/gMqaACZi51BMfP8/HLy88tJTS0wmRseGeULgFcnB4Ncc+1/dwtyu+h7EwgEgvbM5dAEJycnfHx8qKmpYeLEiezfvx83t4t/bmo1wS80DLyHk/nts/ifWU3VtkOoKkbj4BpiUhP0nUf6Dij9GlEuLrZYWGhezREV6UthYQXOzra6QusGxlHXi741gUAgaLdcDj2wtbTlzTvf5LZPb2P3pt2s+m4V90y756LnM1ckfefObMrLqwkJcTdvIzRqQlKSihMnigAM7IDw8BbYCJGNNoKXGRsh1Oai7601CMeUQCAQmKFPnz58/PHHPPbYY8ybN4+jRx2ZNu0OoqM7t3ouYyEc2M2dH+6PYOqH8eQ4WrC1rJSAimq8aLqToTUWfLyl9O3TCWhoUqhQGzWVlJxvUnQCAlywsbFE6mCFurzW4PyW5MQLBALB9YxEIuG7774jOTmZ9PR0IiPH8M03Kxk0SH5R8xlrguS2D9iTMJyuKfMZbf8zpyrD8HKZ1eQ8feeRuW56RUVV1NdrXs0REODC0KEK9PXE8LXsou5LIBAIrgdGDR7F7PmzWfTqIpa8vYTcQidGjBlwUYXDzRVJr6+vp7CwksrKOrPRUlpNcHe3Ryq1btJNLzjYQxc1lZR0ARtBaoVabcpGMK8ll5OLz0sRCASC64Dp06dz//33U1dXx48/vsLatUlmx2ZmFrNx40kyM4tbNPcNAW4svD+c2+2c8HG247Nt6Xy69QTF5dUG4+RyJ6QO1pzKKMbXV8rQoV2apOuF9/akd7gn4b1Nt3fVCpe6vJaIft6691pS10ogEAgEIJPJ+PXXX7G0tOH48Xjeeus9s2NbqwcKhYzIeydwcth6djIBhcUx2PAsZMZBQ4NunFzuRFCQG9XVdbo0PuOOelotMHZY6aNUlpKXq8ZFZtc0ja8dFcMVCASC9srClxcyYNgAGuoa2LjiM/6LzzA7VqVSk5iYh0qlbtHcXl5SRo/uSv/+3k2cTfrI5U5IpdYUFlYQHu5p0vEUHu5J796eZufR2QjqWiIijGyEK6gHImJKIBAIjFi9+hhr1qQxblwg48f34Msvv2TXrt1kZp5g27b3qasbhaVl0wIczbWcNUd0dGeioztTU1vHF9tP8uX2dOatPcztvXwYHuKNpYUEL08plVW1nEgrQiq1Nik6ptq7pqYWkJScj0LhTEV5LT7eDgZ548bd/QQCgUDQFENN6MPs2W+ycOEc/v13CTt33sugQYOanHMxegAQdXN3uPkbyJ0Jf8yE+E8gbTMMmA7Ofrqd9ZUrU02m8Wl/N34PNDWp4uNycHO3IyjIjaAgN9OaIBxTAoFAYBJjG+GfX/9B3kNByZlidv35NQ8+1NdkTdqLecaa+m5vjJeXlMrKWk6cuAgbIanRRqioxcfHjI1wBfVAREwJBAKBEWvWpLFjx2nWrEkDwNHRkT//XIuDgwOJiTv58ccfTZ4XGupOZKRvqwoqarG2smTm0ED+emYQ0QEerN6fzavrDpOao9ltVyic8fS0R6FwbvGc2vS+hPgccvPUBnWptLvu+fnlvPNuAmvWHKegoKLV6xYIBIKOjrEmvPfei7pI2unTp1NXV9fknEvRAwB8esG0WBj1AajzYeOLsG8Z1FaiUqmxtbMiMMCl2agoY5KT8jlw4Ax79+RR3rgzrt9SPCjIjZMnzzF33g7iE7Ivbt0CgUDQgTHWA5lMRuyGzVhYW3Ay8Thr16w1eZ72GdsW5TMuykZoTO9LSMghN1eNrDF6Vn+t+fnlvPNOAmt+vzI2goiYEggEAiPGjQs0eAUIDQ3lyy+/JDMzkwceeMDkeRdbUDEzs5iUlEJCQ91RKGR8+2AEsUfO8M7GVBbFptG7s4wQOzs6eUuxsTHdKkkbHRXe+3wYrzatT6FwNuiyAZooKS9PKYsW7eXIkUJy8tUEBrq2eu0CgUDQ0THWBIlEwpdffkl1dTVvv/22yQjay6UHDJwOoXdC7Otw8BfITKBcNpJy9Q2Eh3uZjYwylebXO9wTtboGN3e7JsaRNhJr9ZrjpKcXccC+mqgHW718gUAg6NCYshH6R/Tnw8Uf8kn8JyR7JzOiegRSG8NII1N1pFpCS9KsbWws6dTJtI2g363PuCg6mLERGteqtRFyi+oICvRq9dpbi3BMCQQCgRHjx/dg/PgeTd6fPHnyZb9WZmYxy5Yd5uTJYrp1kzF1ak8UChnDQr25KdCDL7en811cBoeqiukhcyDYWkLivjxdbSitQyo/v5ycbE3eenCwB/EJ2STE5xAZ5UtUpJ/Z60dG+VJZVUsnfyf8/Bwv+/0JBALBtY4pTXB0dGTVqlWX/VpbtypZvTqNgAAXnn22n8Y55egJd34O/R6CTfPocvoXOtl5oaq9i8S9DcgVzjqD5UhqAStWHKGstAbQpPXpp/DdcUf3Zo2jmwdpmnv06dNgdoxAIBBcr5izEZ554hliJsTw4N8P8u3hb3kq/CksLUxvJrcUlUrNli1K8vLUeHtLGTpUbvL5rXUqSaVWJCbm6ZxYqY16UNqoB1rHVHx8NgkJOURG+hIV1YyNEOlLZWUtnbpKroiNIBxTAoFAcBFUVFTw6aefMmvWLKyszj9Km+x2m0B/TEpKIQUFldTW1nPwYD7z5u0kJMSNI0fOMm5cILPG9+C+gXI+ik1jzf5s0pJP44slMXX1eHlKdel6vn5Seod7olA4k7gvj61blbq2sfqOKVW+ZudF250vIMCFqEg/zqqrMZESLxAIBIIWsHXrVgCGDBli8H5rNQEklJRUkZ5exK+/HketrsbKSqLThPEPb4Ija7HftgDFqSU4NPhRUDkeL68oQJOuV1Zag6OTNb3DPVGp1GzceIq04+dwc7ND7n/eiaXdiXeQWlHe2Ilp1KhujBrVDQpPtN2HJRAIBB2QUI9QXo98nTmxc3j13Vd5a+5bBhG1LYl+0h+jVJZSUlJNfX0DGRnFrFhxBH9/R7KyygycStoIp8TEPIPaUElJ+ZSW1uDkpOnWp53bwEbQc0ypVGoOHSoAGggL8yQqyo+oKD/OVpzF2tK6bT40PYRjSiAQCFpJQ0MDI0aMYOfOnZw6lcvttz+tMzpSUgr5669T7N2bS0yMguLi6iYGiX5RXG39EZnMhs8/T+L48XMcPJiva/M9fnwPOjnbs2BcL6bd1JU3f09h16lCfjyRR45lPT1C3QB0KXxbtmQQtysbD3d77GytiIzy1V1XlX9+56W+roHSsmqqq+q4fUx3gnq1vE6JQCAQCM7z559/cscdd+Dm5s6HH67j5ptDdM/81mrCkCH+je82kJycT2LiGYqKKg00gZ7joMdtFG5ZguO+T/E8/TFs3gRhE+jduxOgSdvzcLdnyxYlNdV1yOVOBIe463bWtTvxJSVVWFpacOz4WRrqNekpze2gCwQCgcA8t3W9jScXP8mR1CPMr3ybsXc+pnNEKZWl7Nt3hrS0c4SHe6Ju3BDQd1LpFx7Xj4TauPEU2dllZJwqpkytiYAyflZrx2tftel62jS+LVsy2L9fhbu7PXZ2VkRG6tkIjZqQklJAXV0DaWlFqNU1REb6EtTHvo0+LUOEY0ogEAhagXZn+557Hmbnzp188cX/cfasN1Om3I1CISM01J29e3MpKKggNjaT2lpNOoRCISMu7jSxsZn07OmhK4prXIckNjbTYHdcnwAvJ75/dCCHsov5ZEsaW46e4V8kRAe4460reCgBCQQEuDJ0qMLg/EMHC0g/UYTEQoKDgxWFBRWUlNaQEJ8jHFMCgUBwEWRmFlNd3ZUbbgjm6NEUXnnlCT79dJXuuW5OE06fLiU2NpOYGIVug0KrCVOnas6NizuNi4utaU2wtsV95EwY8jDs/Qb2fA1b3ybEtQshg8aDXw8S96koKammSxdZkxQQpbKUvLxy6urr6eTlQGFhBRUVdcQn5AjHlEAgEFwEWhvh2WnzeP75J9m1YhsWdr6MGTkGLy8pcrkTaWnnKCmpIikpn7o6jR5o0+60XfK0RdKN61IlJeVjaYkuYsoY4/FNu/FJAAgMNGEjHCogPb0ICwsJtrZWnDhRRGGhpuB5UJ/ul+kTah7hmBIIBNc9LUm10KLd2Y6MvJmnn36aTz/9lD//fJcZM0YBNBoVPUlJKUQms9HtjoPG6RQbqwTg9dejm8wdHd2Z6OjORmkdhkgkEnp1duGrKREczSvli20n2JRyhm3H8+npKyPC15nBMn9dZw5t6p5m96QBW1tLAgJc8JdrhO9ISqFBVJVAIBBc77RWE/bvP8vs2YuZPfsulMpk/v57CWPGLALMa8KyZYcN9MDUdVqiCdg6wk3PwoBHIelH+O8L2LkI7N0I8rkFq/B++Hb1wctLapAiIpc74e3tQElJFT6+jgwZLEepLCHKhLEjEAgE1ysXZyOMYMpDU1i+dDnxP69i9G0DAE0X1KFD5ZqSGlIrXcQUnO+SBzBpUnCTubVOJv3neGsJC/NAJrM1iJw1thFCQ93x93cmP7+cI0cKTTrA2grhmBIIBNc9+mkUFxId/Z3toUM/YPfu3ezdu5fnnpvOjh07sLGxMduNycpKQlFRJVZWkhatR6Uqx8vLtBhKJBKCfZz5eFJfMgvVLE/I5I/kHJZmF+PhaEO0dQNR9lYGIcFhvTyRudjpCqcDjBrZDVW+moOHVHT2u/wtbAUCgeBa42I14dtvv+Gee+7h888/5LbbhjJ69GjdHMbztFQP9NfTnCZg4wADpkOfyXB0AyR+h+Op9YRL/oDqvlAzmKycThw9VgxARIS3zkCSy52Iadw9V6nUJCbm0c2lErcLf1QCgUDQoblYPfhyyJfs3buX1MOp/G/ufJb/vhwn+6ZRUFosLUFdVo2JJq8GaL/XFxdXIZM1X6/KGONrG9gIYZ7IZHYG840a1Q2VSs3BQ6dRdHaFNg6cEo4pgUBw3aMvJBfC2MBYtWoVffr0Yffu3Tz33HN88sknZs89cuQsBQUVbN6s5IEHQs0KnExmg5WVhIKCctLTi3TXNbsmdymv3h7CrJhA/jqcxy97s/jzUC7rknPwdbZD4WGLo4ctXp5SnUNKn0MHC9idfIawnh4wLNDEFQQCgeD64WI1QaGYyM6dO/n000954IEH2LdvH127djV5Xkv1AFqpCdZ2EHY3hI6DM4ch8Vs4uhF2vE8fKwfkLj2xkt4EdW4mDSRtDZRC53x6+pfi52H6MgKBQHA9cCk2wtrVa+nbry9FR4p4bs5zfPF/X5jt1JeVVUZJaTVJSfkMHmy6+x5o6k1ZWmqaZOTmarpxt9QxZYx+TSpzDrNDhwrYczib8p71MPCiLtNiRA8mgUBw3aNQyBg9utsFd0JM0aVLF5YvXw7Azz//zJkzZ8yOHTcukB493PDwsCclpVD3fmZmMRs3niQzU7OTXVxcTW1tAx4eDrpaVC3B0c6aCRH+/PJYJJuevZlnhgZiBfx3ppgPtqfz7MoDLPk3jcSMsxSWVdHQoG0H3gCiM7hAIBAAl6YJH3zwAQMGDODcuXP88MMPZse1VA/gIjXBwgJ8esGYxTBjH0xcgUXAUFwqjuGa9CF1qx6m+u/5kLoBCtKgrhrQGCjOzjaoy2o4kVbU6vsXCASCjsSl6MENN9zA0u+WAnDq31Ms3bvU7NjISF/8/BxxdrZFqSzVva+NYlWpNE4otbqWuroGnJ1tdbWoLpbCwgrS0s5x4kSRwTUMuXIGgoiYEggEgktkzJgxfP311wwfPpxOnTqZHTd+fA8iIryb1AoxDhPW7o4HBroQHd251euxtJDQ3cuRWcNu4Fycik378rHwt0ft1MCh2hL2ntYYPFJbS/xdHbCta6Chky1Wzm3fClYgEAg6Mra2tqxevZqNGzcyffp0s+NaqgfAJWsCds4QcgcEj+HDN/4me9cmhipSiSIbj6KVSBrqaJBYIHH2w9m2EwMdZDQ4SLDrfnG78AKBQCDQMGHCBL744gvOdTvHT7k/8XfG34zsMrLJuKgoPwICXJrUj9JPt/Pykuoipnx9pUaFzVuPtq7VyZNF2NhYEhDgir+/k0E6n6+vI94FjnTq5HBJ12oJwjElEAgEF0DbTS8mRmHWKHjkkUdaNJd+C3Ht71qjo6Kiho0bT6JSqamtbaC4uPqS1947zJP0tCJcHWzJP1OJu48ttQ4W2PtLqZJakHm2nJNFFZTV1+FUaGqnRCAQCARaWqIHnTt35tFHH73gXNq0D22UVGioO6Gh7qhU5Rw5UoBKpWbIELkuYupSNSFTWYKlowdqxQjWM4LthfV0cVfjXXeMAT5Kutidpu6MEr/KFGwkVUh8376k6wkEAkFHpyWa8PjjjwNQtKOIjSc34mnnST/vfk3GaZ1B2ogpfUdUdXUdiYl5FBdXUlfXgFpde8lrVyicyckpQyq1prS0msLCCtTqGoO1qNW11Nc3UFFRd8nXuxDCMSUQCAQX4LffjvPPPxkUFVW1aLd6/fr1LFu2jFWrVmFl1fQxa7wjrjU6Dh8uoLa2ge7dXUymaxh3BjHu1GSqa4i9vTXdurnQvbsLXl4OBl2hFAoZlTV1HD1xlqSUAgICXLCwuHAhXoFAILheaa0eFBUVMXXqVJ599lkGDx5scoy+Jowe3Q0vr0I2bTpFQ4PGODBX46S1mpCSUkhxcRXjx/cgNNRdr1NgBJJQd/B3pPBENmlHcgiWN+DrYthOXCAQCASGtEYT3o5+m4S/Enj787dZ+NVCAtwCmowxjpDSpu5lZpZQV9eAj4/UZAqffoc94y6s2nmNC6Xb2FjSqZMUHx8pMpltk06BoEnvLqt3wc/P8aI/o5YiHFMCgUBwAfz8HPHwsG/RQ7mwsJAHHniA0tJS5syZwwcffNBkjNZoqKio4Y034ujZ04PISN8mTiMw3IkpLq42cGjpGzOAya4h+gaNqfx4O2tLwoM9CQ/2bOnHIRAIBNctrdEDgHfffZd169YRHx/Pvn378Pf3bzImNNSdI0cK2bw5A5nMhtBQd0aM6Ao06J7dCoWMuLjTLFt2WLczb7zJcSFNMNYDU5ogv0GO/AZ5qz4TgUAguF5plY2QX0ji4kQqKiqY/8Z8PlzwIV4OXgZjtE6h6uo6Vq5MRaFwJijIzcBppHUupaYWkJSUT3i4J2p1rYFDS9/BBRgcM75Wc539vLykWDl5Ym3Z9uU+hGNKIBBclxjvNDfHhAk9CAnxaFHBWXd3d7777jsmTJjAokWLiIiI4N577zUYozUI3ngjjthYJQCvvx5NZmYxxcWFBmNjYzN1Y6ZO7QlojIrMzGJUqnK6d5cZrEt7TP/eLqZgo0AgEFwvtJUeAMyfP5/NmzeTlJTEuHHj2LlzJ3Z2dgZjFAoZanU1iYlncHGx5fXXoxkyBIOi6GCoB9HRnQ0cTeY0QSaz0aUJCj0QCASCC9NWmuDt7c2SJUuYMmUK2b9n82b3N3n3sXdxtnXWjdF2x1u5MpXk5HwAJk0KRqVSo1aXGsynrREFMHSoZkNBLndCpVJTXFyFj49Dk+gn48iqi+3o1xYIx5RAILguMVVg1hyt/TJ/991389JLL/Hee+8xbdo0QkJC6NWrV5NxMTEKg1dTa9Ifo7+OjRtPkp5eRGSkr16r8vPH9HfNWyquAoFAcD3Slnrg4ODA77//Tr9+/UhMTOTJJ5/k22+/RSIxTJturR4Yr8WcJujrgXG6n9AEgUAgaEpbasLkyZPZu3cvn3zyCamfpvK+//u8OuZVbK1sDcaFh3savBqn+BmP0XcyJSbmkZurJijITfee/jH9SCpTKX5XC+GYEggE1yXmanZcLt555x3279/P5s2bueuuu9izZw/u7obXio7uTOfOTqSkFJKZWdxkTZoIqmqmTu3ZRPS0Y4x3w43vrTXiKhAIBNcjba0HXbp04eeff2bkyJEsXbqUfv368dRTTxmMuRQ90B9nrAnG8whNEAgEguZpa01YtGgRSUlJ7Ny5k8T/JfKpx6c8G/0slhaWujHBwR64u9ujVJaiUqkN0u6AxgiqWoYOlTdxKmnHSKVWJCbmGTie9Ocx5ey6mgjHlEAguC5p65QGS0tLVq5cSf/+/Tl58iTjx4/nn3/+wcbGxmCccdFb/TU1Z0Bo12+8G27u3tpKXAUCgeBa50qkuA0bNowFCxbw0ksv8cwzz9CjRw9iYmIMxlysHmjfM6UJxvfW1gaXQCAQXOu0tSZYW1vz66+/0q9fP7Kzs9m2YBvO7zrzSO9HDKJp9R1HERHeBs6j5pxK2ugp/ego/cgpc46sq43F1V6AQCAQdFTc3d1Zv349Tk5O9OrVCwuLpo/c0FB3kx349I9pd8AzM4tNjqmvb+Crr5JZvfpYm9yHQCAQCC6dF154gcmTJ+Pr64unZ9OGE5eqB9pxQhMEAoGgfdOpUyfWr1+Pg4MDN/W/ieSCZFanrTYYI5c7mezAp39MGxWlUqlNjmloaGDTplPEx2e32b1cLkTElEAgELQhPXv25PDhw8jlTbsctbTWR1raOdLTNUaI/jhtx769e3NJTT2LVGrN+PE9DM4VaRsCgUDQPpBIJHz11VcUFxfTqVMng2OXSw9iYhRkZBSzb98ZoQkCgUDQjunbty+pqanI5XLe3/s+K46swNHakZFdRzYpUm6OnJwycnPLAcPIKW3HvrS0c2RllWJnZ0VUlJ/BuSKVTyAQCK4z9J1SNTU1pKam0qtXrwsaCCkphfz11ymsrCT07u3ZZBc9NjaTDRtOcvZsBWp1DVKpZZM5RNqGQCAQtB/s7OwMuvIdPHiQ4ODgy6IHsbFKtm/PIi2tCFdXW8aNC2wyj9AEgUAgaD9obYQXIl6goKSA1TtXY2tpi5MquFmn0aFDBezff4aAAFeTUVVJSfls3aqkrKwaZ2cbQkKaPvON61ZdbUQqn0AgEFwhioqKGDFiBIMGDSI1NbXZtA3QGA4eHnbU1tbj5SVtYqzExCi44QZXyspqqKys5fjxpqkdCoWsSa0SgUAgEFx9fvrpJ/r378+sWbMuix7ExMjJzCxBpSqnoYEm0VIgNEEgEAjaI2fPniX+9XhOv3+an+N/Jt/xiNk0Pg0NADg7WzepPwWaTn11dQ1UVNRRU9OAp6dDkxm8vKQmz71aiIipi6Curo6ampqrvQyBoMVYW1tjadk0mkZwZbG3t6empoaSkhLGjBnD7t27GT26m9nxCoWMqVN76tI7jNF2cXJ1tSMuLpuePd3JzCxuYnCI9uBti9AEwbWG0IT2gYODA9XV1Xz22WeEhobyxBNPmB3bEj2Iju6MlZWE5cuP0KePp0k9AKEJbYnQA8G1htCD9oFWDypLKsn/NJ8/567hwX5OeHn1Nzk+LMwTmczOrOMqONiDu+++gS1blPj5SSkurkSlUjdxQrU0ZfBKIBxTraChoYG8vDyKioqu9lIEglbj4uKCt7e3QbcHwZXF1taWNWvWMGDAANLT0xk/fjybNm3C1tbW7DkX6gySmJjHuXOVjB7dFQsLC1JSCpuMFzVF2gahCYJrGaEJV58777yTd999l3nz5jFjxgwCAgIYNmyY2fEX0oPVq49x5MhZ7r77BrN6AEIT2gKhB4JrGaEHVx97e3vWrl3LgAEDyFZm4/CNAz/Y/IC1hTXhXuFNxpvqrmeMTGaLj48UDw8HcnPLkclKm5zTnupMCcdUK9AKjpeXFw4ODuIfr+CaoKGhgfLyclQqFQA+Pj5XeUXXN56envzxxx9ERUWxfft2HnroIX744QeTHftawpo1aezYcRq1uhOPPtrbbDcn/VctYtf80hCaILgWEZrQvpgzZw6pqamsWLGC8ePHs2PHDsLDwy9qrpboAZjWBKEHl4bQA8G1iNCD9oWvry/r1q1j0KBBZO/Lxu4XO5ZZLuPhsIfp5dmr1fMlJORw+HABAQEujBjR1Wx3P/1XLfqRVFZXqASVcEy1kLq6Op3guLuLgpGCawt7e3sAVCoVXl5eImS3DWjNl/qePXvy+efLmTp1AitXrkQul/O///3voq6rLW47blxgk7TA1auPsWLFEUJD3Xn00d4ikuoyIjRBcC0jNKHtaakmSCQSvv76a9LSTvHff7sYMWIUe/fuNtnJ9UI0pweZmcV89dVBUlIKmDw5RHTru4wIPRBcywg9aHtaYyP069ePTz75jkcfvZ/0f9Lp6dGTpZKlTAmdQh+vPq26bmSkr+41IsLb4Fh8fDZbtyqRy50ZMaJLs5FU3UJtWnXdi0UUP28h2nxxB4emhcMEgmsB7d+uqH3QNmi/1KekFLZovJtbL0aPfhGAL7/8kpycnIu6bkSEN/ffH9JEcECze75rVzbr1p0wua4LFdsVmEdoguBaR2hC29IaTbC1tWXWrE/w9OyKSpXHkiVLLuqazelBSkoh69ZpNGHNmrQmx4UeXDxCDwTXOkIP2pbW2gg+PgMYMWIWALmbculu3Z3vU74nMS+xVdcNCHDhllv8CQhwaXIsISGHI0cK2b07B6WytMlxudzpAsXXLz8iYqqViNBcwbWK+NttW1rbgjs01J3HH59G9+52BAZGUFNzcXndze1yjxsXiFpdQ2iou8l1XaheieDCiH9XgmsV8bfbtrRWEwYO7MpLL31FfPw6Hnnk+Yu6ZnN6EBrqztixgaSkFOgiq/QRenDpiH9TgmsV8bfbtlyMjfD000/SvbsDYWE3c8vAMBYce4kVqSuora/lRt8bWzRPc/WjIiN9qaysRS53Nul80q9hdbaiqkXXu1SEY0ogEAguA639Un9+/P26XRSFQkZdXV2rwqjNiV1c3GkOHy7ghRf6Ex3ducXzCQQCgeDSuRhNCA7uRlHRPaSmnqNrV1fq6+sBWlyDsDnj5/TpUmxsLIQmCAQCwRXm4m2EqSQk5JB+VM2SEUt44p8n+OnoT9TW13JT55suOI+5+lGpqQVkZpYwblwgwcEerbqXtkQ4pgQCgeAqom9I7Nixg+nTp7N+/Xp69OhxgTM1mBO72NhMYmOVAMIIEQgEgmsAfT2orKxkypQpyOVyFi5c2KKIhuaMH6EJAoFAcG1hYCP8u4O4WXH0f7k/vxz/hdKaUkZ1HdXs+eY69yUl5ZOcnA/QrhxTosZUB0cikTT7M3/+/Euae+3ata1ag1QqJTAwkKlTp7Jv375WX3Pw4ME8++yzrV+sQNBOUShkjB7dDbncmXnz5nH8+HGGDRuGUqm8pHljYhTExMjp2dODjRtPkplZfJlWLLhWEXogELRvtHqgUMjYsmULv/76K4sWLeLdd9+95LljYhRERHRCKrUWeiAAhCYIBO0drSb4+zsxZ84cjh87TsL8BAY7D2bjqY38fPRnGhoaWj1veLgnvXt7olA4k5iYh0qlboPVtx7hmOrg5Obm6n4++ugjnJ2dDd57/vmLq2PQWpYuXUpubi4pKSl89tlnlJWVMXDgQJYvX35Fri8QtAWZmcWXzekjkUj4/fffCQoKIisri5iYGM6cOXPR80VHd+b116Oxt7duVcFFQcdF6IFA0HZcTj0AuO222/jwww8BeOWVV/jkk08uab7o6M4MG9aF4uJqoQcCQGiCQNCWXE5NsLCwYMOGDXTr1o2TJ0/y7yv/co/fPcTlxPH1oa+pratt1XzBwR5MmhSMjY0lR4+eNVn8/GogHFMdHG9vb92PTCZDIpEYvPfzzz8THByMnZ0dQUFBfP7557pzq6urefrpp/Hx8cHOzg6FQsGCBQsA6NKlCwB33XUXEolE97s5XFxc8Pb2pkuXLgwfPpzffvuN+++/n6effppz584BUFhYyKRJk/Dz88PBwYGwsDBWrlypm2Pq1Kls376dxYsX63ZXMjIyqKurY9q0aXTt2hV7e3t69OjB4sWLL+8HKRCYoLVdNi6Ep6cnmzdvRqFQkJaWxvDhw3X/PrTExZ3mjTfiiIs73aI59TstGYvk5TakBO0boQcCQdtxufUAYNasWbz++usAzJw506Sh3hpNaE4PQGjC9YbQBIGg7bjcmuDj40NsbCy+vr4cOXKEdXPXMTN4JkcKj7D4wGLKqstITS1g5cpUUlMLWjSnfuc9lUptED1l/PuVQNSYuo758ccfee211/j000/p06cPBw4cYPr06UilUh588EE+/vhj1q9fz6pVq5DL5WRlZZGVlQXA3r178fLyYunSpYwcObJVxZq1zJo1i+XLl7N582YmTpxIZWUl/fr146WXXsLZ2Zk///yTyZMn0717dwYMGMDixYs5fvw4PXv25M033wQ0hnx9fT2dO3fm119/xd3dnfj4eB599FF8fHyYOHHiZf3MBAJ9WttloyV07tyZ77//nbvuGsHBgwe57bbb+Oeff3B0dARaXydEv+bIxo0nDTo2NdfBSXB9IfRAILg02kIPAF5//XWUyjMsXfolDz30EE5OTtx11126463RhOb0AJrv6ie4vhCaIBBcGm2hCV27duX779cwfvwoEhMTkb4o5a0v3+LtfW/z3t73UGQP50SyJrWvJbWj9GtQJSbmGXTw0+/o1y3U5rLdQ3MIx9R1zOuvv86iRYsYN24coPljP3LkCEuWLOHBBx9EqVQSGBjITTfdhEQiQaFQ6M719PQEzu9yXAxBQUEAZGRkAODn52cQNjxjxgw2bdrEqlWrGDBgADKZDBsbGxwcHAyuaWlpyRtvvKH7vWvXriQkJLBq1SohOoI2pa3aa6vVMiZMWMhPPz1DQkICH374Ia+99hqgqROi/9ocmZnFpKQUEhrqjkIhayKSbWVICa49hB4IBJdGW+mBRCJh3Ljn2L9fSXLyRh555BFiYmJwctJ0WWqpJlxID/T/W2iCQGiCQHBptJUmVFd7NtoIz7J9+3Zu33A7Sx9ayjP/PkOK5+90GzCE8OCQC86jUqlRKkuRy53w8pI26eBn+Fp12e/DFMIxdZUw/oJwpVGr1aSnpzNt2jSmT5+ue7+2thaZTLOeqVOnMmzYMHr06MHIkSO5/fbbGT58+GVbg7ZYm7bTTF1dHe+++y6rVq0iOzub6upqqqqqcHBwuOBcn332Gd999x1KpZKKigqqq6sJDw+/bGsVCMwRF3ea2NhMYmIUl63TkcYoGMSoUav59dfvmDNnju5YdHRnoqM761IuKipqOHy4wOT1jXe/9UVSf91iZ/zqIvRA6IGg49AWmhAW5slbb/0f338vY+bMx3VOKdBoQufOTqSkFJKZWczp06Umr9+cHhivW2jC1UVogtAEQceg7WyEIQwf/gsbN67i2WefxcrKip9v/5lntj5DcsM/WBUW43pmLOfOVpGUlE94uGeTCCr9iCht5JQ2eio1tUB3npeXlLMVwjFlwDvvvMOff/5JUlISNjY2FBUVNRmjVCp54okn2Lp1K46Ojjz44IMsWLAAK6v2d5tXO1y6rKwMgK+//pqBAwcaHNOG3Pbt25dTp07x119/ERsby8SJE4mJieG33367LGtITU0FNLsXAAsXLmTx4sV89NFHhIWFIZVKefbZZ6murm52np9//pnnn3+eRYsWERkZiZOTEwsXLmT37t2XZZ0CQXO0RQvu8wZDN+68c6ju/YaGBqqqqrCzs9M9Q06eLNIVLTS+fnO739d66/COpAlCD4QeCDoObakJY8b8ZPB+RUUF9vb2Bs+QvXtzTV7/QtFQ17ImdCQ9AKEJIDRB0DFoaxth4sTRuvddbV1ZMmQJz6x/nd0Vm1ClZqE4E8PR5AqgaWqfcWSUPklJ+SQn55s8ry1pf09jM1RXVzNhwgQiIyP59ttvmxyvq6vjtttuw9vbm/j4eHJzc5kyZQrW1taXpc3u5eZqh0t36tQJX19fTp48yf333292nLOzM/fccw/33HMPd999NyNHjuTs2bO4ublhbW1NXV3dRa9B2wEkJiYGgLi4OMaOHcsDDzwAQH19PcePHyck5Hw4oo2NTZNrxsXFERUVxZNPPql7Lz09/aLXJRC0htak1l0KDQ0NzJgxg8OHD7NhwwbdsyM83FMXMWVMc2HE+uu+2ruzF0NH0gShB0IPBB2HK6UJBw8eZNSoUXz55Zf06nUzoHmGyGQ2Jq9/obSSa1kTOpIegNAEEJog6BhcKT2or6/n0UcfJSsri48//p7VKWGsr/iSw16r6DJgsMnUPv0IKWPCwz11ryqVmiMZ+Sg6u0L3Nr2Na8cxpc0PXrZsmcnj//zzD0eOHCE2NpZOnToRHh7OW2+9xUsvvcT8+fOxsTFdtKuqqoqqqvPhaSUlJZd97aZoq7zT1vDGG28wc+ZMZDIZI0eOpKqqisTERM6dO8fs2bP58MMP8fHxoU+fPlhYWPDrr7/i7e2Ni4sLoOm6sWXLFqKjo7G1tcXV1dXstYqKisjLy6Oqqorjx4+zZMkS1q5dy/Lly3XzBQYG8ttvvxEfH4+rqysffvghZ86cMRCdLl26sHv3bjIyMnB0dMTNzY3AwECWL1/Opk2b6Nq1KytWrGDv3r26XRaBoC3Rpta1NadOnWLFihWUlJQwevRo/vzzT0aP7gbA+PE9TJ6zevUx1qxJY9AgP+RymYGRob9uU0Vw2zttoQlCD4QeCASXypXShM8//5ycnBzGjx/PqlWruPPOOwHN88TU9bV6MG5cIBER3k0cT9eyJnQkPQChCUITBB2FK6UHx48fZ+XKlZSXl/P005NZt24dD9QO4YUdL3Ck4W+kdSoUNffgYH0+9TU+PpuEhBxCQtzx9HTQ1ZoCTZSUNlIqMTGP9PQirCTWbX4fFm1+hStEQkICYWFhdOrUSffeiBEjKCkpISUlxex5CxYsQCaT6X78/f2vxHLbBY888gjffPMNS5cuJSwsjFtuuYVly5bpHtZOTk68//77RERE0L9/fzIyMti4cSMWFpo/m0WLFrF582b8/f3p06dPs9d66KGH8PHxISgoiCeeeAJHR0f27NnDfffdpxvzyiuv0LdvX0aMGMHgwYPx9vbWfdHS8vzzz2NpaUlISAienp4olUoee+wxxo0bxz333MPAgQMpLCw02BkRCDoC3bp1459//sHZ2ZmdO3cydOhQCgqabwe7Zk0aO3ac5uefj5GQkMPWrVkmW4HrtxDvKFyMJgg9EHogEFwrfPrpp9xzzz3U1NRw9913s3z58mbHa/VgzZo0XarY9aIJQg9aj9AEgeDaISgoiL///hupVEpsbCzDhw/Hqc6JH0b9wPSw6RwuOMxb/71FsipZd05CQg6HDxewc+dpjh49y6FDBSQm5qFSqQ3mlsud6N7dBT8/xza/D0mDtrrcNcKyZct49tlnm+SPP/roo2RmZrJp0ybde+Xl5UilUjZu3MioUaNMzmdqR8Tf35/i4mKcnZ1171dWVnLq1Cm6du2KnZ3d5b0pgeAKIP6GW097TGdITExk5MiRFBYW0qNHD/755x/kcrnJscYRUyqVmvT0YiIjfXXRVpeDkpISZDJZk+fmleByakJL9QDEvyfBtY/4G24d7VEPamtrmTZtms4ptWjRImbPnm1yrKmIqY6mCUIPBIKLQ/wNt572qAnx8fHcdtttFBUVERYWxt9//42vry+pham8Hv86qWdT6eHagwk3TCA9udYgYqq4uJLc3HKCgtyIiDDspnm24izWltaM6T6m1WtqjR5c1YipOXPmIJFImv05evRom67B1tYWZ2dngx+BQCCA8wVIU1IKr/ZSdERERLBr1y78/f05duwYUVFRHDlyxOTY8eN78OOPt/P4430YPbobQ4bI2/Uu+NXWBKEHAoHAHO1RD6ysrFi6dCnPPfccAM899xxz5szB1J6zVg/Gj++BQiFr95og9EAgELRn2qMmREVFsWPHDnx8fDh06BDR0dGkpaUR7B7Mj6N/ZHa/2eSp83h3z7tkue/i8ZkhjBrVjYgIb8LCPAkKcjNZDP1KcVVrTD333HNMnTq12THdurVsB8fb25s9e/YYvHfmzBndMYFAIGgtV7sAqTmCgoKIi4tjxIgRHDt2jPT0dIM6C+ZoD3UrmkNogkAgaK+0Vz2wsLBg4cKFeHp6MmfOHPbs2UNNTY3Z2qr6tGdNEHogEAjaM+1VE8LCwoiLi2P48OFkZmaSkZFBYGAg1pbWPNTzIe7ofgcfH/iYP9L/YE/uHqJ8oxjeZTheXk5mi6FfKa6qY8rT0xNPT8/LMldkZCTvvPMOKpUKLy8vADZv3oyzs3OLDDaBQCAwpj1/aff392fnzp3ExcUxZkzLQ2vbY+ixFqEJAoGgvdKe9UAikfDSSy8REBDAsGHDWuSU0tJeNUHogUAgaM+0Z03o2rUru3btIjExkWHDhhkcc7d3542oN3gg+AG+OvgV/yr/ZVf2Lnp59qKXdAD1BW4oFM5XxUl1zRQ/VyqVJCUloVQqqaurIykpiaSkJMrKygAYPnw4ISEhTJ48meTkZDZt2sQrr7zCU089ha2t7VVevUAgEJgmM7PYZPHZllBWZsXZs91YtuwQmZnFbN9+gKlTXyAjo8jsOe0x9PhiEJogEAg6GpeiBwARETGsWaNk2bJDxMWdZurUF9i+/UCz53QETRB6IBAIOiKXogmVlXbk5yt0NkJs7G6mTZursxECXQNZeMtCfh3zK3cE3MHJ4pMsO/Ulv5z7jN+PryerNMtkWnhbclUjplrDa6+9xvfff6/7XdvhYevWrQwePBhLS0s2bNjAE088QWRkJFKplAcffJA333zzai1ZIBAILojWKIDWteXOzCxm2bLDJCaeQSq1xsXFihkzJnD6dDqnTqXy11+rcHBwaLIb3l5Dj1uL0ASBQNDRuFg9gKaasGbNj/zxxwesWfMN69f/zuDBg3XjOpomCD0QCAQdkctlIzg5wdNPTyQvT0lm5jE2bPgJOzs7MjOLOZoCD4fOZla/Wfy0by0bT23keG0ih/fGI7WWIneS4yv1JcS97aNLrxnH1LJly1i2bFmzYxQKBRs3brwyCxIIBILLwMUaBSkphRQUVBIQ4ELv3p706ePLzJnPMm/ebHbs+JMbb7yR3377jRMnrAxErT2HHrcGoQkCgaCjcSlOImNNcHPz49ixvzl+PJmYmBjeffddXnjhhSaGTkfQBKEHAoGgI3K5bISICDlPPTWT119/iS1bfic6OprffvuN1NQGnR6MVnTjyaipPHbjZM6Un2HH6R3szt1NelE6O7J3YG1pfdnvz5hrxjElEAgE7Z2LqdVxsUZBaKg7KlU50MCQIXIUChkvvPA0Awf2YuLEiRw6dIiIiAjee+9TIiNvMhC1uLjTxMZmEhOjIDq6c6uvLRAIBILmuZJ6AKY1YdiwBB577DFWrFjBSy+9RFxcHG+99bFBJz6hBwKBQND2XG0b4ZVXnuPGG3tz7733sn//fvr27csHH3xBZOQAk3pwb/S93Bt0L+U15RRVFVFXX9fqdbSWa6bGlEAgELR3rmStDoVChpeXA+npxQbXu/nmmzlw4AA333wzpaWlPPnkg2ze/Am+vg66MbGxmcTGKomNzWzzdQoEAsH1yJWu3WRKE+zt7fn+++9ZsmQJNjY2rF+/njvvHIK3d5HO2BF6IBAIBG1Pe7ARYmJiOHDgADfeeCNFRUU88sgktm9fgp+fptC5KT1wsHbA19EXf2f/Nl+3iJgSCASCy8SVrtVh7no+Pj5s2bKFl19+mffff5+kpCQsLS11x2NiFAavYsdcIBAILi9Xo3aTqWtKJBIeffRR+vXrx4QJE8jIyKC0tFR33FgPQGiCQCAQXG7ai43g7+/P9u3befHFF1m8eDEHDx7U2QhXWw+EY0pw2Zg6dSpFRUWsXbsWgMGDBxMeHs5HH3100XNejjkEgivFla7V0dz1rKyseO+997jpppvo1asXFhaaANnKykpuvNHHQFy0OySAMEIElw2hCYLrmatRu6m5a/br1499+/axceNGbrnlFt37ffq4NXnuC00QXG6EHgiud9qTjWBjY8NHH33EzTffzI033ohEIgGgb193IiN9dTYDXFk9EKl81wFTp05FIpEgkUiwsbEhICCAN998k9ra2ja97po1a3jrrbdaNHbbtm1IJBKKiooueg6BQNCUMWPGoFCc3/l4/vnniY6OJikpSfdeTIyCmBi5wQ6JoOMiNEEguD5xdXXl/vvv1/2elpaGQqFgwYIFVFdX694XmnD9IPRAILh+GTduHL6+vrrfn3rqKW655RYOHz6se+9K6oGImLpOGDlyJEuXLqWqqoqNGzfy1FNPYW1tzdy5cw3GVVdXY2Njc1mu6ebm1i7mEAgEGlQqFT/88APFxcX069ePGTNm8OabbxId3Vnsil9nCE0QCARfffUVBQUFzJs3jxUrVo7y4A8AAQAASURBVPDFF19wyy23CE24zhB6IBAIsrKyWLVqFWq1mj59+jBr1ixef/31K6oHImLqOsHW1hZvb28UCgVPPPEEMTExrF+/nqlTp3LnnXfyzjvv4OvrS48ePQDNH+fEiRNxcXHBzc2NsWPHkpGRoZuvrq6O2bNn4+Ligru7Oy+++CINDQ0G1xw8eDDPPvus7veqqipeeukl/P39sbW1JSAggG+//ZaMjAyGDBkCaHbzJBIJU6dONTnHuXPnmDJlCq6urjg4ODBq1CjS0tJ0x5ctW4aLiwubNm0iODgYR0dHRo4cSW5u7uX9QAWCaxAvLy+OHDnCxIkTqa+vZ/HixQQFBfHtt99SV9f23TYE7QehCUITBIL333+f5cuX4+npSWpqKoMHD2bSpEmcOnXqai9NcAUReiD0QCDw9/cnNTWVu+66i9raWhYuXEhwcDArVqygvr7+iqxBOKauU+zt7XVh21u2bOHYsWNs3ryZDRs2UFNTw4gRI3BycmLnzp3ExcXpHt7acxYtWsSyZcv47rvv2LVrF2fPnuX3339v9ppTpkxh5cqVfPzxx6SmprJkyRIcHR3x9/dn9erVABw7dozc3FwWL15sco6pU6eSmJjI+vXrSUhIoKGhgdGjR1NTU6MbU15ezgcffMCKFSvYsWMHSqWS559//nJ8bALBNY+vry+//PILmzZtIiAggNzcXB555BF69+5NZqboynS9IjRBILj+kEgkTJ48mWPHjvH4448jkUj4+eef6dGjBx988MHVXp7gKiH0QCC4PvH392fNmjX88ccfdOnShaysLKZMmULfvn2viANXpPJdIuXl5Rw9evSKXzcoKAgHB4cLDzSioaGBLVu2sGnTJmbMmEF+fj5SqZRvvvlGF577ww8/UF9fzzfffKMrhrZ06VJcXFzYtm0bw4cP56OPPmLu3LmMGzcOgC+//JJNmzaZve7x48dZtWoVmzdvJiYmBoBu3brpjmvDcb28vHBxcTE5R1paGuvXrycuLo6oqCgAfvzxR/z9/Vm7di0TJkwAoKamhi+//JLu3bsD8PTTT/Pmm2+2+rMSCDoyw4cP5/Dhw3z++ee89dZb1NfX4+fnd7WXdc1zNTThYvUAhCYIBAJNJMoXX3zBo48+yosvvkhsbCxdunS52su65hE2gtADgeBa5Pbbb2fo0KF88sknvPvuu0gkEjp16tTm1xWOqUvk6NGj9OvX74pfd9++ffTt27fF4zds2ICjoyM1NTXU19dz3333MX/+fJ566inCwsIMcsaTk5M5ceIETk5OBnNUVlaSnp5OcXExubm5DBw4UHfMysqKiIiIJqG6WrTt6vU7wbSW1NRUrKysDK7r7u5Ojx49SE1N1b3n4OCgExwAHx8fVCrVRV9XIOio2NraMmvWLKZOnUp2djZWVkISLpWroQmt1QMQmiA0QSBoSp8+fdi8eTO7du0iOjr6ai/nmkfYCBqEHggE1x729va8+OKLTJs2jTNnzhh06msrhBVyiQQFBbFv376rct3WMGTIEL744gtsbGzw9fU1MEClUqnB2LKyMvr168ePP/7YZB5PT8+LWq+9vf1FnXcxWFtbG/wukUjMiqFAcC0RF3ea2NhMYmIUZgsRZmYWk5JSSGioe4vb0rq6uuLq6no5l3rdcjU0obV6AEIThCYIrnXaSg8Abrrppsu1zOsaYSO0DKEHAsGl01aa4O7ujru7++VcqlmEY+oScXBwaPVO9dVAKpUSEBDQorF9+/bll19+wcvLC2dnZ5NjfHx82L17NzfffDMAtbW1ze7QhIWFUV9fz/bt23Vhuvpod2OaK8AcHBxMbW0tu3fv1oXpFhYWcuzYMUJCQlp0bwLBtUxsbCaxsUoAs6KTklJIQkIOQKsMEcHlQWiC0ASB4Eog9KD9I/RA6IFAcKXoCJogip8LmnD//ffj4eHB2LFj2blzJ6dOnWLbtm3MnDmT06dPA/DMM8/wv//9j7Vr13L06FGefPJJioqKzM7ZpUsXHnzwQR5++GHWrl2rm3PVqlUAKBQKJBIJGzZsID8/n7KysiZzBAYGMnbsWKZPn86uXbtITk7mgQcewM/Pj7Fjx7bJZyEQtCdiYhTExMiJiVGYHRMa6k5kpC+hoVdmd0PQ8RGaIBC0P4QeCK4GQg8EgvZJR9AE4ZgSNMHBwYEdO3Ygl8sZN24cwcHBTJs2jcrKSt3uyHPPPcfkyZN58MEHiYyMxMnJibvuuqvZeb/44gvuvvtunnzySYKCgpg+fTpqtRoAPz8/3njjDebMmUOnTp14+umnTc6xdOlS+vXrx+23305kZCQNDQ1s3LixSWiuQNARiY7uzOuvR5vdCQHNDsjo0d3a5U6I4NpEaIJA0P4QeiC4Ggg9EAjaJx1BEyQNIrHWgJKSEmQyGcXFxQYhqpWVlZw6dYquXbtiZ2d3FVcoEFwc4m/4+qMl+eaXA3PPzWud5u5L/HsSXOuIv+HriyulB9AxNUHogaAjI/6Grz/ao40gakwJBAJBB6Ul+eYCgUAg6PgIPRAIBAKBlvaoCcIxJRAIBB0UbZ55c/nmAoFAIOj4CD0QCAQCgZb2qAnCMSUQCAQdlOjozu1mF0QgEAgEVw+hBwKBQCDQ0h41QRQ/FwgEAoFAIBAIBAKBQCAQXBWEY0ogEAgEAoFAIBAIBAKBQHBVEI4pgUAgEAgEAoFAIBAIBALBVUE4pgQCgUAgEAgEAoFAIBAIBFcF4ZgSCAQCgUAgEAgEAoFAIBBcFYRjSiAQCK5j4uJO88YbccTFnb7aSxEIBALBVUZogkAgEAjgyuuBcExdBipr6iiprLliP5U1dVf7ls0ydepU7rzzTt3vgwcP5tlnn72kOS/HHBdi27ZtSCQSioqK2vQ6bY1EImHt2rVXexmCdkhmZjEbN54kM7PY4P3Y2ExiY5XExmZepZV1QGoqoLL4yvzUVFztuzWL0IOri9ADQXMITbgyVNZWUlpdesV+Kmsrr/Ytm0VowtVFaILAHO1FD6yuyFU6MJU1dfyTkkdxZc0Vu6bMzprhod7YWVu2aPzUqVP5/vvvAbC2tkYulzNlyhTmzZuHlVXb/gmsWbMGa2vrFo3dtm0bQ4YM4dy5c7i4uFzUHBdLVFQUubm5yGSyFp8zdepUioqKxENecE2QklJIQkIOAAqF5u88M7MYqdSGiIhOxMQorubyOg41FXB0I1QWXZnr2blA0Giwtm/RcKEHF0bogeB6QGhC21NZW8lW5VZKqkuu2DWdbZwZIh+CnZVdi8YLTbgwQhMEHZ32ogfCMXWJVNfVU1xZg52VJbZWbR+AVlWruV51XX2LHVMAI0eOZOnSpVRVVbFx40aeeuoprK2tmTt3bpOx1dXV2NjYXJb1urm5tYs5LoSNjQ3e3t5tfh1TXM7PWyAwR2iou8EraISouLiKYcO6EB3d+WotrWNRV61xSlnZaX7aktpKzbXqqlvsmAKhBxdC6IHgekBoQttTU19DSXUJtla22Fratvn1quqqKKkuoaa+Bjtarj9CE5pHaIKgo9Ne9ECk8l0mbK0scLCxavOfi3V+2dra4u3tjUKh4IknniAmJob169cD50Nr33nnHXx9fenRowcAWVlZTJw4ERcXF9zc3Bg7diwZGRm6Oevq6pg9ezYuLi64u7vz4osv0tDQYHBd4xDbqqoqXnrpJfz9/bG1tSUgIIBvv/2WjIwMhgwZAoCrqysSiYSpU6eanOPcuXNMmTIFV1dXHBwcGDVqFGlpabrjy5Ytw8XFhU2bNhEcHIyjoyMjR44kNzfX7OdjHKZ7oTnmz5/P999/z7p165BIJEgkErZt29aiz83U5z1v3jwGDhzYZF29e/fmzTffBGDv3r0MGzYMDw8PZDIZt9xyC/v37zd7TwKBPgqFjNGju+l2QkAjQJGRvgZCJLhMWNmBjUPb/lyk40vogdADgUBowpXD1tIWeyv7Nv+5WOeX0AShCYLrm/aiB8IxdZ1ib29PdXW17vctW7Zw7NgxNm/ezIYNG6ipqWHEiBE4OTmxc+dO4uLidA9e7XmLFi1i2bJlfPfdd+zatYuzZ8/y+++/N3vdKVOmsHLlSj7++GNSU1NZsmQJjo6O+Pv7s3r1agCOHTtGbm4uixcvNjnH1KlTSUxMZP369SQkJNDQ0MDo0aOpqTmfTlleXs4HH3zAihUr2LFjB0qlkueff75Vn1Fzczz//PNMnDhRJ0S5ublERUW16HMz9Xnff//97Nmzh/T0dN2YlJQUDh48yH333QdAaWkpDz74ILt27eK///4jMDCQ0aNHU1pa2qr7Egi0mBIiwfWH0IMLI/RAcD0gNEEAQhNagtAEQUfnauiBSOW7zmhoaGDLli1s2rSJGTNm6N6XSqV88803unDRH374gfr6er755hskEgkAS5cuxcXFhW3btjF8+HA++ugj5s6dy7hx4wD48ssv2bRpk9lrHz9+nFWrVrF582ZiYmIA6Natm+64NhzXy8vLIH9cn7S0NNavX09cXBxRUVEA/Pjjj/j7+7N27VomTJgAQE1NDV9++SXdu3cH4Omnn9btKrSU5uZwdHTE3t6eqqoqg/Delnxu0PTzBs3Ox08//cSrr76qu6+BAwcSEBAAwK233mqwvq+++goXFxe2b9/O7bff3qp7EwgEAqEHLUfogUAg6OgITWg5QhMEgsuPiJi6TtiwYQOOjo7Y2dkxatQo7rnnHubPn687HhYWZvAATE5O5sSJEzg5OeHo6IijoyNubm5UVlaSnp5OcXExubm5BqGlVlZWREREmF1DUlISlpaW3HLLLRd9H6mpqVhZWRlc193dnR49epCamqp7z8HBQScWAD4+PqhUqlZd62LmuNDnpsX48wa4//77+emnnwDNl4OVK1dy//33646fOXOG6dOnExgYiEwmw9nZmbKyMpRKZavuSyAQXN8IPRB6IBAIBFqEJghNEAjaAyJi6jphyP+zd9/xTVX9H8A/2WnSvXdLGV3sAsoGQaYKggqICjh/ilsf5+MDuH143ApucKAiCC6QUQRkbwqUllFKWzroTjrTjPP7ozQ23S2lacvn/XrlBb05uTn35uZ8c7733HNHj8bSpUuhVCrh7+9f604bWq3W5u/i4mLExMRgxYoVtdbl5eXVojo4ODR9ct7LVfMOHRKJpNa17VdiHU3dbzX3NwDMmjULzz77LA4fPoyysjKkpaVhxowZ1ufnzJmDvLw8vP/++wgJCYFKpcLgwYNthv8SNSQlRYf4+DxER3vwUo2rGOMB4wER4wFVYUxgTCBqDzGBiamrhFartQ73bIr+/ftj5cqV8Pb2hrOzc51l/Pz8sG/fPowYMQIAYDKZcOjQIfTv37/O8r169YLFYsH27dutw3Srqzo7YDab661XZGQkTCYT9u3bZx2mm5eXh1OnTiEqKqrJ29calEplrbo2Zb/VJzAwECNHjsSKFStQVlaG66+/Ht7e3tbnd+3ahSVLlmDSpEkAKidQzM3NvfwNoatGXbeDpasP40HrYzygjobxgKowJrQ+xgTqaNpDTOClfK3EYLKgtMJ0xR8Gk6VNtmf27Nnw9PTElClTsGPHDiQnJ2Pbtm149NFHceHCBQDAY489hjfffBO//PILEhMT8dBDD1nvWFGX0NBQzJkzB3fffTd++eUX6zp/+uknAEBISAgkEgn++OMP5OTkoLi4uNY6unfvjilTpuC+++7Dzp07ERcXhzvuuAMBAQGYMmXKFdkXDW3PsWPHcOrUKeTm5sJoNDZpvzVk9uzZ+PHHH7Fq1SqbIbpA5bZ/++23SEhIwL59+zB79uw2PcNEHR/vuNSGTOVARemVfZjK22RTGA8ax3hAHQ3jQdsxmA0oM5Vd8YfBbGiT7WFMaBxjAnU07SEmMDF1mZQyKVzUCpSbzNCVG6/4o9xkhotaAaXsyn50Go0Gf//9N4KDgzFt2jRERkbinnvuQXl5uTXL/9RTT+HOO+/EnDlzMHjwYDg5OeHmm29ucL1Lly7FLbfcgoceeggRERG47777UFJSAgAICAjAokWL8Nxzz8HHxwcPP/xwnetYtmwZYmJicMMNN2Dw4MEQQmD9+vW1htVeaffddx/Cw8MxYMAAeHl5YdeuXU3abw255ZZbkJeXh9LSUkydOtXmuS+//BIFBQXo378/7rzzTjz66KM2Z0uIGsM7LrUBmRJQu1YmjcoLr+zDVF75XjLbuShaG+NB4xgPqKNhPLjyFFIFnJXOMJgM0Bv0V/xhMBngrHSGQnpl2z/GhMYxJlBH0x5igkQ096LaTk6v18PFxQU6nc6mkSgvL0dycjK6dOkCtVpt85pyoxkV5rYZyQRUJsPUClmbvR91Dg0dw0SXo752s6NraLsa/D4ZywBzG83rIFMCCp4VpeZjTKArpTPGhJbGg3JTOYwWY5vVUyFVQC3n95mah/GArpTmxAPOMdUK1AoZE0VERFRJ4cBkERERQS1XQw129ImIGsNL+YiIiIiIiIiIyC6YmCIiIiIiIiIiIrtgYoqIiIiIiIiIiOyCiSkiIiIiIiIiIrILJqaIiIiIiIiIiMgumJgiIiIiIiIiIiK7YGKKiIiIiIiIiIjsgokpIiIiIiIiIiKyCyamiIiIiIiIiIjILpiY6uQkEkmDj4ULF7ZZXUaNGmV9X7VajaioKCxZssT6/PLly+Hq6tpm9SHqKFJSdFi//hxSUnT2rgp1YIwHRJ0DYwK1BsYEoo6vM8UDub0rQFdWZmam9f8rV67Ef/7zH5w6dcq6zNHR0fp/IQTMZjPk8it3WNx33314+eWXUVpaim+++Qbz58+Hm5sbZs2adcXek6iji4/Pw549GQCAkBAXO9eGOirGA6LOgTGBWgNjAlHH15niAUdMtYKSkpJ6H+Xl5U0uW1ZW1qSyzeHr62t9uLi4QCKRWP9OTEyEk5MT/vzzT8TExEClUmHnzp2YO3cupk6darOexx9/HKNGjbL+bbFY8MYbb6BLly5wcHBAnz59sHr16kbro9Fo4Ovri7CwMCxcuBDdu3fHb7/91qxtIrraREd7YPBgf0RHe9i7KtQEbRkTmoPxgKhzYEzoONhHYEwgupI6UzzoMCOmXnvtNaxbtw5Hjx6FUqlEYWFhrTISiaTWsh9++AEzZ868onWrfkahpkmTJmHdunXWv729vVFaWlpn2ZEjR2Lbtm3Wv0NDQ5Gbm1urnBCi5ZWtw3PPPYf//e9/CAsLg5ubW5Ne88Ybb+C7777DJ598gu7du+Pvv//GHXfcAS8vL4wcObLJ7+3g4ICKioqWVp3oqhAS4tLhz4K0NsaESowHRFcfxgRbjAf/YEwgurp0pnjQYRJTFRUVuPXWWzF48GB8+eWX9ZZbtmwZJkyYYP2b1yM37uWXX8b111/f5PIGgwGvv/46YmNjMXjwYABAWFgYdu7ciU8//bRJQcdsNuOHH37AsWPHcP/997e47kR0dWJMuDIYD4ioo2E8uHIYE4iorXSYxNSiRYsAVE5+1xBXV1f4+vo2eb0GgwEGg8H6t16vb3bdiouL631OJpPZ/J2dnV1vWanU9srK8+fPN7suLTFgwIBmlT979ixKS0trBaqKigr069evwdcuWbIEX3zxBSoqKiCTyfDEE0/gwQcfbHadiejqdiViQmvEA6BjxwTGAyLqaBgPrhzGBCJqKx0mMdVU8+fPx7333ouwsDD83//9H+bNm1fn8N0qb7zxhjWgtZRWq7V72ctR832kUmmtocBGo9H6/6ogu27dOgQEBNiUU6lUDb7X7Nmz8eKLL8LBwQF+fn61Ai0RUWtqTkxojXgAdOyYwHhARJ0V40HzMSYQUVvpVImpl19+Gddddx00Gg02bdqEhx56CMXFxXj00Ufrfc3zzz+PJ5980vq3Xq9HUFBQW1S33fLy8sKJEydslh09ehQKhQIAEBUVBZVKhdTU1GZdKw4ALi4u6NatW6vVlYioPs2NCYwHtTEeEFFnwHjQOhgTiOhKsWti6rnnnsNbb73VYJmEhAREREQ0aX0vvfSS9f/9+vVDSUkJFi9e3GBiSqVSNZrBv9pcd911WLx4Mb755hsMHjwY3333HU6cOGEdguvk5ISnn34aTzzxBCwWC4YNGwadToddu3bB2dkZc+bMsfMWEFFHZO+YwHhQG+MBEdkD40H7xJhARFeKXRNTTz31FObOndtgmbCwsBav/5prrsErr7wCg8HA4NIM48ePx0svvYRnnnkG5eXluPvuu3HXXXfh+PHj1jKvvPIKvLy88MYbb+DcuXNwdXVF//798cILL9ix5kRXt127LiA2NgVjx4Zg6NBAe1en2RgT2h/GA6KOqyPHBMaD9okxgahj6gjxQCJa+76iV9jy5cvx+OOP13kr2Jpee+01vP3228jPz2/y+vV6PVxcXKDT6eDs7GxdXl5ejuTkZHTp0gVqtbolVSeyKx7Dnd+iRbsQG5uKsWODsWDB0DZ73/razbZwJWNCQ9vF7xN1dDyGO7+rLSYwHhC1DI/hzq8jxIMOM8dUamoq8vPzkZqaCrPZjKNHjwIAunXrBkdHR/z++++4ePEirr32WqjVamzevBmvv/46nn76aftWnIiojYwdG2Lzb2fGmEBE1LCrJSYwHhARNawjxIMOk5j6z3/+g6+//tr6d9W1zFu3bsWoUaOgUCjw8ccf44knnoAQAt26dcM777yD++67z15VJiJqU0OHBrbb4bmtjTGBiKhhV0tMYDwgImpYR4gHHe5SviuNl/JRZ8VjmK4Ue17KdyXx0g3qzHgM05XSGWMC4wF1ZjyG6UppTjyQtlGdiIiIiIiIiIiIbDAx1UwcYEYdFY9dotbH7xV1VDx2iVoXv1PUUfHYpfaAiakmUigUAIDS0lI714SoZaqO3apjmYhajjGBOjrGBKLWwXhAHR3jAbUHHWbyc3uTyWRwdXVFdnY2AECj0UAikdi5VkSNE0KgtLQU2dnZcHV1hUwms3eViDo8xgTqqBgTiFoX4wF1VIwH1J4wMdUMvr6+AGANPEQdiaurq/UYJqLLx5hAHRljAlHrYTygjozxgNoDJqaaQSKRwM/PD97e3jAajfauDlGTKRQKngUhamWMCdRRMSYQtS7GA+qoGA+ovWBiqgVkMhm/wEREBIAxgYiIKjEeEBG1DCc/JyIiIiIiIiIiu2BiioiIiIiIiIiI7IKJKSIiIiIiIiIisgvOMVWDEAIAoNfr7VwTIqKOoaq9rGo/OwvGAyKi5uuMMYHxgIio+ZoTD5iYqqGoqAgAEBQUZOeaEBF1LEVFRXBxcbF3NVoN4wERUct1ppjAeEBE1HJNiQcS0ZlOZ7QCi8WCjIwMODk5QSKRNOu1er0eQUFBSEtLg7Oz8xWq4ZXXWbYD4La0V51lWzrLdgCXty1CCBQVFcHf3x9Saee5QpzxoBK3pf3pLNsBcFvao8vdjs4YEy4nHgA8Ntojbkv701m2A+C2VGlOPOCIqRqkUikCAwMvax3Ozs4d/gAEOs92ANyW9qqzbEtn2Q6g5dvSWc6KV8d4YIvb0v50lu0AuC3t0eVsR2eLCa0RDwAeG+0Rt6X96SzbAXBbgKbHg85xGoOIiIiIiIiIiDocJqaIiIiIiIiIiMgumJhqRSqVCgsWLIBKpbJ3VS5LZ9kOgNvSXnWWbeks2wF0rm1pDzrT/uS2tD+dZTsAbkt71Fm2oz3pLPu0s2wHwG1pjzrLdgDclpbg5OdERERERERERGQXHDFFRERERERERER2wcQUERERERERERHZBRNTRERERERERERkF0xMERERERERERGRXTAxRUREREREREREdsHE1BXy2muvYciQIdBoNHB1dbV3dZrl448/RmhoKNRqNa655hrs37/f3lVqtr///hs33ngj/P39IZFI8Msvv9i7Si3yxhtvYODAgXBycoK3tzemTp2KU6dO2btaLbJ06VL07t0bzs7OcHZ2xuDBg/Hnn3/au1qt4s0334REIsHjjz9u76o028KFCyGRSGweERER9q5Wp8J4YH+MCe1PZ40JjAfUGMYE+2I8aH86azwAGBOag4mpK6SiogK33norHnzwQXtXpVlWrlyJJ598EgsWLMDhw4fRp08fjB8/HtnZ2fauWrOUlJSgT58++Pjjj+1dlcuyfft2zJ8/H3v37sXmzZthNBoxbtw4lJSU2LtqzRYYGIg333wThw4dwsGDB3HddddhypQpiI+Pt3fVLsuBAwfw6aefonfv3vauSotFR0cjMzPT+ti5c6e9q9SpMB7YH2NC+9MZYwLjATUFY4J9MR60P50xHgCMCc0m6IpatmyZcHFxsXc1mmzQoEFi/vz51r/NZrPw9/cXb7zxhh1rdXkAiLVr19q7Gq0iOztbABDbt2+3d1VahZubm/jiiy/sXY0WKyoqEt27dxebN28WI0eOFI899pi9q9RsCxYsEH369LF3Na4KjAftA2NC+9WRYwLjATUXY4L9MR60Xx05HgjBmNASHDFFVhUVFTh06BDGjh1rXSaVSjF27Fjs2bPHjjWjKjqdDgDg7u5u55pcHrPZjB9//BElJSUYPHiwvavTYvPnz8fkyZNtvjMd0ZkzZ+Dv74+wsDDMnj0bqamp9q4S2RnjQcfAmNB+MB5QZ8aY0P4xHrQvjAnNJ79ia6YOJzc3F2azGT4+PjbLfXx8kJiYaKdaURWLxYLHH38cQ4cORc+ePe1dnRY5fvw4Bg8ejPLycjg6OmLt2rWIioqyd7Va5Mcff8Thw4dx4MABe1flslxzzTVYvnw5wsPDkZmZiUWLFmH48OE4ceIEnJyc7F09shPGg/aPMaH9YDygzo4xoX1jPGhfGBNahiOmmuG5556rNQFYzQcbZ7pS5s+fjxMnTuDHH3+0d1VaLDw8HEePHsW+ffvw4IMPYs6cOTh58qS9q9VsaWlpeOyxx7BixQqo1Wp7V+eyTJw4Ebfeeit69+6N8ePHY/369SgsLMRPP/1k76q1a4wHZG+MCe0D4wEBjAlkX4wH7QdjQstxxFQzPPXUU5g7d26DZcLCwtqmMleAp6cnZDIZLl68aLP84sWL8PX1tVOtCAAefvhh/PHHH/j7778RGBho7+q0mFKpRLdu3QAAMTExOHDgAN5//318+umndq5Z8xw6dAjZ2dno37+/dZnZbMbff/+Njz76CAaDATKZzI41bDlXV1f06NEDZ8+etXdV2jXGA7InxoT2g/GAAMYEsh/Gg/aFMaHlmJhqBi8vL3h5edm7GleMUqlETEwMtmzZgqlTpwKoHBq6ZcsWPPzww/at3FVKCIFHHnkEa9euxbZt29ClSxd7V6lVWSwWGAwGe1ej2caMGYPjx4/bLJs3bx4iIiLw7LPPdtiAAwDFxcVISkrCnXfeae+qtGuMB2QPjAntD+MBAYwJ1PYYD9onxoSWY2LqCklNTUV+fj5SU1NhNptx9OhRAEC3bt3g6Oho38o14Mknn8ScOXMwYMAADBo0CO+99x5KSkowb948e1etWYqLi22yucnJyTh69Cjc3d0RHBxsx5o1z/z58/H999/j119/hZOTE7KysgAALi4ucHBwsHPtmuf555/HxIkTERwcjKKiInz//ffYtm0bNm7caO+qNZuTk1Ota/i1Wi08PDw63LX9Tz/9NG688UaEhIQgIyMDCxYsgEwmw6xZs+xdtU6D8cD+GBPan84SExgPqLkYE+yL8aD96SzxAGBMuCxtdv+/q8ycOXMEgFqPrVu32rtqjfrwww9FcHCwUCqVYtCgQWLv3r32rlKzbd26tc79P2fOHHtXrVnq2gYAYtmyZfauWrPdfffdIiQkRCiVSuHl5SXGjBkjNm3aZO9qtZqOeivYGTNmCD8/P6FUKkVAQICYMWOGOHv2rL2r1akwHtgfY0L705ljAuMBNYQxwb4YD9qfzhwPhGBMaCqJEEK0frqLiIiIiIiIiIioYbwrHxERERERERER2QUTU0REREREREREZBdMTBERERERERERkV0wMUVERERERERERHbBxBQREREREREREdkFE1NERERERERERGQXTEwREREREREREZFdMDFFRERERERERER2wcQUUTtlNpsxZMgQTJs2zWa5TqdDUFAQXnzxRTvVjIiI2hpjAhERAYwH1DlJhBDC3pUgorqdPn0affv2xeeff47Zs2cDAO666y7ExcXhwIEDUCqVdq4hERG1FcYEIiICGA+o82Fiiqid++CDD7Bw4ULEx8dj//79uPXWW3HgwAH06dPH3lUjIqI2xphAREQA4wF1LkxMEbVzQghcd911kMlkOH78OB555BH8+9//tne1iIjIDhgTiIgIYDygzoWJKaIOIDExEZGRkejVqxcOHz4MuVxu7yoREZGdMCYQERHAeECdByc/J+oAvvrqK2g0GiQnJ+PChQv2rg4REdkRYwIREQGMB9R5cMQUUTu3e/dujBw5Eps2bcKrr74KAIiNjYVEIrFzzYiIqK0xJhAREcB4QJ0LR0wRtWOlpaWYO3cuHnzwQYwePRpffvkl9u/fj08++cTeVSMiojbGmEBERADjAXU+HDFF1I499thjWL9+PeLi4qDRaAAAn376KZ5++mkcP34coaGh9q0gERG1GcYEIiICGA+o82Fiiqid2r59O8aMGYNt27Zh2LBhNs+NHz8eJpOJw3WJiK4SjAlERAQwHlDnxMQUERERERERERHZBeeYIiIiIiIiIiIiu2BiioiIiIiIiIiI7IKJKSIiIiIiIiIisgsmpoiIiIiIiIiIyC6YmCIiIiIiIiIiIrtgYoqIiIiIiIiIiOyCiSkiIiIiIiIiIrILJqaIiIiIiIiIiMgumJgiIiIiIiIiIiK7YGKKiIiIiIiIiIjsgokpIiIiIiIiIiKyCyamiIiIiIiIiIjILpiYIiIiIiIiIiIiu2BiioiIiIiIiIiI7IKJKSIiIiIiIiIisgsmpoiIiIiIiIiIyC6YmCIiIiIiIiIiIrtgYorokm3btkEikWDbtm32rkqHZbFY0LNnT7z22mt2ef+FCxdCIpG0yXuZTCY888wzCAoKglQqxdSpUwEAEokECxcubPT1RqMRQUFBWLJkyZWtKBE1y9y5cxEaGmrvalATpKWlQa1WY9euXfauSot8++23iIiIgEKhgKurKwBg1KhRGDVqVJNeP3PmTNx2221XroJEdsS2uOMoLi6Gt7c3VqxYYe+qNCg0NBRz585t0/es2aafP38eEokEy5cvty6bO3cuHB0d27ReV8pzzz2Ha665pkWvZWKqE0pKSsIDDzyAsLAwqNVqODs7Y+jQoXj//fdRVlZmU9ZsNmPZsmUYNWoU3N3doVKpEBoainnz5uHgwYPWcsuXL4dEIrE+1Go1evTogYcffhgXL15sUT2rkgg1H2q1+rK23x4yMjKwcOFCHD161N5VabFTp07hiSeewJAhQ6BWqyGRSHD+/PlmreOHH35AWloaHn744StTyXbkq6++wuLFi3HLLbfg66+/xhNPPFFnud27d2PhwoUoLCy0Wa5QKPDkk0/itddeQ3l5eRvUmDqDjtK+r127FuPHj4e/vz9UKhUCAwNxyy234MSJE3WW/+2339C/f3+o1WoEBwdjwYIFMJlMLXpve1q/fn2TEtPt3eV8HhaLBf/973/RpUsXqNVq9O7dGz/88EOtcnPnzq3zN0BEREST6/nyyy/jmmuuwdChQ5v8mvYiMTERc+fORdeuXfH555/js88+q7NcQ78vnn32Wfz888+Ii4u7wrWlmtgWt29Xe1ucmJiIZ555Bn379oWTkxP8/PwwefJkm+OtSmv0x95//304OTlh5syZzdo+anulpaVYuHDhFRuI8fjjjyMuLg6//fZbs18rvwL1ITtat24dbr31VqhUKtx1113o2bMnKioqsHPnTvzrX/9CfHy89cdPWVkZpk2bhg0bNmDEiBF44YUX4O7ujvPnz+Onn37C119/jdTUVAQGBlrX//LLL6NLly4oLy/Hzp07sXTpUqxfvx4nTpyARqNpUZ2XLl1qkyWWyWSXtxNaaMSIESgrK4NSqWz2azMyMrBo0SKEhoaib9++rV+5NrBnzx588MEHiIqKQmRkZIuSbIsXL8bMmTPh4uLS+hVsZ/766y8EBATg3XfftVleVlYGufyfpnX37t1YtGgR5s6daz0jXmXevHl47rnn8P333+Puu+9ui2pTB9aR2vfjx4/Dzc0Njz32GDw9PZGVlYWvvvoKgwYNwp49e9CnTx9r2T///BNTp07FqFGj8OGHH+L48eN49dVXkZ2djaVLl7bOzmuGzz//HBaLpUWvXb9+PT7++OMO3SG63M/jxRdfxJtvvon77rsPAwcOxK+//orbb78dEomkVqdFpVLhiy++sFnW1PiRk5ODr7/+Gl9//XXTN64d2bZtGywWC95//31069bNunzTpk025Rr6fdGvXz8MGDAAb7/9Nr755pu2qDaBbXFbYVvc8s/jiy++wJdffonp06fjoYcegk6nw6effoprr70WGzZswNixY2u9pqX9MaPRiPfffx9PPPGE3fpwHUlISAjKysqgUCjs8v6lpaVYtGgRADR5dG5z+Pr6YsqUKfjf//6Hm266qXkvFtRpnDt3Tjg6OoqIiAiRkZFR6/kzZ86I9957z/r3/PnzBQDx7rvv1iprMpnE4sWLRVpamhBCiGXLlgkA4sCBAzblnnzySQFAfP/9982u74IFCwQAkZOT0+zXtjcHDhwQAMSyZcvsXZUWy8vLE3q9XgghxOLFiwUAkZyc3OTXHz58WAAQsbGxV6iGjas6plpLSUlJvc+NHj1aREdHN7qOxvblDTfcIIYPH97SKtJVoqO173XJysoScrlcPPDAAzbLo6KiRJ8+fYTRaLQue/HFF4VEIhEJCQmt8t5tpWq/d2SX83lcuHBBKBQKMX/+fOsyi8Uihg8fLgIDA4XJZLIunzNnjtBqtS2u5zvvvCMcHBxEUVFRi9dxpRUXF9f73KJFi5r0G6ix3xf/+9//hFarbdf7oTNhW9wxXO1t8cGDB2u1Cbm5ucLLy0sMHTrUZvnl9sfWrFkjAIizZ8+26PVtKSQkRMyZM6dN33PkyJFi5MiRDZa5nHhoNBqFwWBocvmcnBwBQCxYsKBF71ef6vFu9erVQiKRiKSkpGato2N/Y8nG//3f/wkAYteuXY2WTUtLE3K5XFx//fVNWnd9wfKPP/4QAMRrr73W7PpWNYTZ2dlCp9MJi8XSrNcDEPPnzxffffed6NGjh1CpVKJ///5i+/bttcoePnxYTJgwQTg5OQmtViuuu+46sWfPHpsyW7duFQDE1q1brctGjhwpoqOjRXx8vBg1apRwcHAQ/v7+4q233qr1upqPqh+Rp0+fFtOmTRM+Pj5CpVKJgIAAMWPGDFFYWNis7RVCiIqKCrFw4ULRrVs3oVKphLu7uxg6dKjYtGlTs9fVkJYkpv7zn/8IpVIpKioqbJbPmTNHhISE1CpfVxKp6jNdu3atiI6OFkqlUkRFRYk///yz1ut37NghBgwYIFQqlQgLCxOffPJJvYmpb7/9VvTv31+o1Wrh5uYmZsyYIVJTU23KVH3WBw8eFMOHDxcODg7iscceq7Wu5OTkOj/vquOmemNfVZ+aj+r79f333xcSiUTk5eXVsVeJKnW09r0uFotFODs7ixkzZliXxcfHCwDi448/timbnp4uAIhXXnmlSXXfvn27uP/++4W7u7twcnISd955p8jPz69V/uOPPxZRUVFCqVQKPz8/8dBDD4mCggKbMjXbrKrv/OLFi8Wnn34qwsLChFKpFAMGDBD79++3eV1d3/cqP/zwg+jfv79wdHQUTk5OomfPnjYd2OZozbhS3eV+Hh9//LEAIOLj422Wf//99wKA2LFjh3VZ1Q9xk8kkdDpds+s6YsQIMWrUqDqf++mnn6xtvoeHh5g9e7a4cOGC9fmqGHf+/Plar33uueeEQqGwOX727t0rxo8fL5ydnYWDg4MYMWKE2Llzp83rqtr7+Ph4MWvWLOHq6ir69u1bZ/1CQkJqHSdVcaN6J6ax3xdCCBEXFycAiDVr1jRlt9FlYlvccN3ZFrePtrg+06ZNE+7u7jbLLrc/dtddd4nQ0NA6n/vpp59EZGSkUKlUIjo6WqxZs6bOfkFxcbF48sknRWBgoFAqlaJHjx5i8eLFtepiNBrFyy+/bP3sQ0JCxPPPPy/Ky8ttylksFvHKK6+IgIAA4eDgIEaNGiVOnDjR5MSU2WwW7733nujZs6dQqVTC09NTjB8/3ua7+dVXX4nRo0cLLy8voVQqRWRkpFiyZEmtddVMTFUdx9Xb8ap4mJSUJMaNGyc0Go3w8/MTixYtstkH1b8D7777rggLCxNSqVQcOXJEGAwG8dJLL4n+/fsLZ2dnodFoxLBhw8Rff/1V6/X1xR8hhNiyZYsYNmyY0Gg0wsXFRdx0003i5MmTNtvUWLwrLCwUEolEvPPOO43u6+p4KV8n8vvvvyMsLAxDhgxptOyff/4Jk8mEO++887LeMykpCQDg4eHR4nWEhYWhuLgYWq0WU6dOxdtvvw0fH58mvXb79u1YuXIlHn30UahUKixZsgQTJkzA/v370bNnTwBAfHw8hg8fDmdnZzzzzDNQKBT49NNPMWrUKGzfvr3RCdoKCgowYcIETJs2DbfddhtWr16NZ599Fr169cLEiRMRGRmJl19+Gf/5z39w//33Y/jw4QCAIUOGoKKiAuPHj4fBYMAjjzwCX19fpKen448//kBhYWGzL3lbuHAh3njjDdx7770YNGgQ9Ho9Dh48iMOHD+P6668HABgMBhQVFTVpfZ6ens16/4bs3r0bPXv2vOyhqTt37sSaNWvw0EMPwcnJCR988AGmT5+O1NRU63F2/PhxjBs3Dl5eXli4cCFMJhMWLFhQ53Hz2muv4aWXXsJtt92Ge++9Fzk5Ofjwww8xYsQIHDlyxObyury8PEycOBEzZ87EHXfcUef6vLy88O233+K1115DcXEx3njjDQBAZGRkrbLTpk3D6dOn8cMPP+Ddd9+17m8vLy9rmZiYGAghsHv3btxwww2Xte+o8+qo7XthYSGMRiOysrLw3nvvQa/XY8yYMdbnjxw5AgAYMGCAzev8/f0RGBhofb4xDz/8MFxdXbFw4UKcOnUKS5cuRUpKivWmFkBl+7lo0SKMHTsWDz74oLXcgQMHsGvXrkbbru+//x5FRUV44IEHIJFI8N///hfTpk3DuXPnoFAo8MADDyAjIwObN2/Gt99+a/PazZs3Y9asWRgzZgzeeustAEBCQgJ27dqFxx57rEnbWKWpcUWn08FoNDa6PrVabb1843I/jyNHjkCr1dZqDwcNGmR9ftiwYdblpaWlcHZ2RmlpKdzc3DBr1iy89dZbjU4CazQaceDAATz44IO1nlu+fDnmzZuHgQMH4o033sDFixfx/vvvY9euXdY2/7bbbsMzzzyDn376Cf/6179sXv/TTz9h3LhxcHNzA1B52fbEiRMRExODBQsWQCqVYtmyZbjuuuuwY8cO67ZVufXWW9G9e3e8/vrrEELUWf/33nsP33zzDdauXWu9fKZ37961yjX0+6JKVFQUHBwcsGvXLtx8880N7je6fGyLG8a2uH20xfXJysqq97d/S/tju3fvRv/+/WstX7duHWbMmIFevXrhjTfeQEFBAe655x4EBATYlBNC4KabbsLWrVtxzz33oG/fvti4cSP+9a9/IT093WbKjHvvvRdff/01brnlFjz11FPYt28f3njjDSQkJGDt2rXWcv/5z3/w6quvYtKkSZg0aRIOHz6McePGoaKiokn76Z577sHy5csxceJE3HvvvTCZTNixYwf27t1r/UyWLl2K6Oho3HTTTZDL5fj999/x0EMPwWKxYP78+U16n+rMZjMmTJiAa6+9Fv/973+xYcMG65xiL7/8sk3ZZcuWoby8HPfffz9UKhXc3d2h1+vxxRdfYNasWbjvvvtQVFSEL7/8EuPHj8f+/fvRt29feHl5YenSpXjwwQdx8803Y9q0aQBgjT+xsbGYOHEiwsLCsHDhQpSVleHDDz/E0KFDcfjw4Vo3I6gv3rm4uKBr167YtWtXvXPw1qlZaSxqt3Q6nQAgpkyZ0qTyTzzxhAAgjhw50qTyVWdCYmNjRU5OjkhLSxM//vij8PDwEA4ODjZnIpvqvffeEw8//LBYsWKFWL16tXjssceEXC4X3bt3b9LZU1zK8h48eNC6LCUlRajVanHzzTdbl02dOlUolUqb4YQZGRnCyclJjBgxwrqsvhFTAMQ333xjXWYwGISvr6+YPn26dVl9Q+2PHDkiAIhVq1Y1aZ80pk+fPmLy5MkNlqn6rJryqE9LRkwFBgba7JMqzR0xpVQqbYYDV50N/vDDD63Lpk6dKtRqtUhJSbEuO3nypJDJZDbrPH/+vJDJZLXOMh4/flzI5XKb5VWf9SeffNKk7a0aYVUTapx5aGxfZmRkCAA2o/CIquuI7XuV8PBwa3vj6Ogo/v3vfwuz2Wx9vur7UXMEoxBCDBw4UFx77bVNqntMTIzNaM3//ve/AoD49ddfhRBCZGdnC6VSKcaNG2fz/h999JEAIL766ivrsvrO0nt4eNic+f/1118FAPH7779bl9V3+chjjz0mnJ2dbS5la6mmxpWqNq2xR/Wzx5f7eUyePFmEhYXVWl5SUiIAiOeee8667LnnnhPPPvusWLlypfjhhx+soxyGDh1qc+lKXc6ePVsrLghROarY29tb9OzZU5SVlVmXV404+c9//mNdNnjwYBETE2Pz+v3799vEfIvFIrp37y7Gjx9vc9a6tLRUdOnSxWYkTFVMmzVrVoN1r1m+5uUzNc+uN2WqgB49eoiJEyc26X2p5dgWN153tsW12aMtrsvff/8tJBKJeOmll2yWX05/zGg0ColEIp566qlaz/Xq1UsEBgbaXFK4bds2AcDmc/3ll18EAPHqq6/avP6WW24REonE2ic4evSoACDuvfdem3JPP/20AGAdGVR1jE2ePNmm3X7hhRdq7ee6/PXXXwKAePTRR2s9VzMO1DR+/PhaMbCpI6YAiEceecTmvSZPniyUSqU1TlS91tnZWWRnZ9u8j8lkqnVJX0FBgfDx8RF33323dVlDl/L17dtXeHt721zFERcXJ6RSqbjrrrusy5oS78aNGyciIyPrfb4uHDHVSej1egCAk5PTFSlfpeZkeSEhIVixYkWt7HdT1DwzMX36dAwaNAizZ8/GkiVL8NxzzzW6jsGDByMmJsb6d3BwMKZMmYLff/8dZrMZQOVEolOnTkVYWJi1nJ+fH26//XZ8/vnn0Ov1cHZ2rvc9HB0dcccdd1j/ViqVGDRoEM6dO9do/arOlmzcuBGTJk1q8QTxVVxdXREfH48zZ86ge/fudZYZP348Nm/efFnv0xJ5eXnWM8yXY+zYsejatav17969e8PZ2dm6v81mMzZu3IipU6ciODjYWi4yMhLjx4/H+vXrrcvWrFkDi8WC2267Dbm5udblvr6+6N69O7Zu3YoXXnjBulylUmHevHmXvQ3NUbXPqtePqLqO2L5XWbZsGfR6Pc6dO4dly5ahrKwMZrMZUmnlTYGr7l6lUqlqvVatVlu3pTH333+/zVn2Bx98EC+88ALWr1+Pm266CbGxsaioqMDjjz9ufW8AuO+++/DCCy9g3bp1jX73Z8yYYdPGVY1eaUoscHV1RUlJCTZv3owJEyY0aZvq09S48vbbb6OgoKDR9fn7+1v/f7mfR1lZWb2vrb5+ANbRplVmzpyJHj164MUXX8Tq1asbvLtTXl4eANSKOQcPHkR2djYWLlxoc0epyZMnIyIiAuvWrbNO+jpjxgw8/vjjSEpKssaclStXQqVSYcqUKQCAo0eP4syZM/j3v/9tfc8qY8aMwbfffguLxWJzTP3f//1fvfW+Utzc3BhD2gDb4saxLa7NHm1xTdnZ2bj99tvRpUsXPPPMMzbPXU5/LD8/H0KIWm1xRkYGjh8/jhdeeMFmBOzIkSPRq1cvm/qvX78eMpkMjz76qM06nnrqKaxevRp//vknHn74Yevv+yeffLJWuf/9739Yt24dRo8ebT3GHnnkEesoPaDybnGvv/56Q7sJAPDzzz9DIpFgwYIFtZ6rvj4HBwfr/6tGxY0cORIbN26ETqdr0Y2gqt/VXCKR4OGHH8a6desQGxtrExOnT59uc/UFUDlZfdXk8xaLBYWFhbBYLBgwYAAOHz7c6HtnZmbi6NGjeOaZZ+Du7m5d3rt3b1x//fU2/asqDcU7Nze3Zo/sY2Kqk6hKrDT1Eq7mlq/y8ccfo0ePHpDL5fDx8UF4eLhNYLlct99+O5566inExsY2KTFVV3KmR48eKC0tRU5ODoDKSwXCw8NrlYuMjITFYkFaWhqio6PrfY/AwECbhgio/LIdO3as0fp16dIFTz75JN555x2sWLECw4cPx0033YQ77rijRQ3Wyy+/jClTpqBHjx7o2bMnJkyYgDvvvNPmEgA/Pz/4+fk1e92tQdRz2UJzVE82VXFzc7MG9ZycHJSVldX52YeHh9s0nGfOnIEQot4kXs3h4gEBATZ3ZdTpdDYdKaVSadNYt4aqfVbzGCOq0pHb98GDB1v/P3PmTOslXv/73/8A/PPDzmAw1HpteXm5zQ+/htT8jjs6OsLPzw/nz58HAKSkpABArVigVCoRFhZmfb4hNdumqh/iTelwPPTQQ/jpp58wceJEBAQEYNy4cbjtttta1DFqalypftKmqS7383BwcKj3tdXXX58nnngCL730Uq0f4fWpGXPq+5wBICIiAjt37rT+feutt+LJJ5/EypUr8cILL0AIgVWrVmHixInW79CZM2cAAHPmzKm3DjqdzqZT1qVLF+v/y8rKoNPpbMr7+vo2ul3NJYRgDGkDbIsbx7a4fbTF1ZWUlOCGG25AUVERdu7c2eil0kDz+2P1tcXV7zhapVu3bjaJkpSUFPj7+9dK4FYdo1XrSklJgVQqrbVOX19fuLq62pQDah+LXl5eTTqBnpSUBH9//0Z/7+/atQsLFizAnj17UFpaavNcSxJTUqnUZhAFUNmnBWD9/lSpHmeq+/rrr/H2228jMTHR5vLR+spX11D8jIyMxMaNG1FSUgKtVtuk9bYkLrVeRoHsytnZGf7+/jhx4kSTykdERAConKunOQYNGoSxY8di1KhRiIyMbNWkVJWgoCDk5+e3+npbqr5bnzY1CfP222/j2LFjeOGFF1BWVoZHH30U0dHRuHDhQrPrMmLECCQlJeGrr75Cz5498cUXX6B///42t9suKytDVlZWkx6tycPDo84fBfU1SlUj2mq63P1dncVigUQiwYYNG7B58+Zaj08//dSmfM1A/9hjj1kTfX5+ftZrsVtT1T5rzfm+qHPpLO27m5sbrrvuOqxYscK6rCqJnpmZWat8ZmamzRlke7uctsnb2xtHjx7Fb7/9Zp1LY+LEiQ0mPBrSlLiSn5/fpDhQPXFyuZ+Hn58fsrKyau2TqvU19noHBwd4eHg0+hugaq6dpnRE6+Pv74/hw4fjp59+AgDs3bsXqampmDFjhrVM1a3qFy9eXGcM2bx5c61OXvU4snLlSpsYcqVOGhUUFDCGtAG2xe0D2+Kmfx4VFRWYNm0ajh07hl9//dU6/25TNKU/5u7uDolEclltcXO1hyR8UlISxowZg9zcXLzzzjtYt24dNm/ebJ1PqSp2XCl1JSa/++47zJ07F127dsWXX35p7ftcd911V6w+DSVIWxKXmJjqRG644QYkJSVhz549jZadOHEiZDIZvvvuuzaoWdMJIXD+/PlawxPrU3U2s7rTp09Do9HAy8sLXl5e0Gg0OHXqVK1yiYmJkEqlCAoKuux6N9ZI9urVC//+97/x999/Y8eOHUhPT8cnn3zSovdyd3fHvHnz8MMPPyAtLQ29e/fGwoULrc/X9UO4vkdrioiIQHJycq3lbm5uKCwsrLW8KWfF6uLl5QUHB4c6P/uan3PXrl0hhECXLl0wduzYWo9rr722wfd65plnbDogb7/9drPr29ixUbXP6po8nahKZ2jfgdojSPr27Qug8hKs6jIyMnDhwgXr842p2R4UFxcjMzPTOlFnSEgIgNptREVFBZKTk63PX66Gvu9KpRI33ngjlixZgqSkJDzwwAP45ptvcPbs2Ra9V2NxZdq0aU2KA9Uv47jcz6Nv374oLS1FQkKCzfJ9+/bZrL8+RUVFyM3NbfQ3QHBwMBwcHGrFnPo+56plNT/nGTNmIC4uDqdOncLKlSuh0Whw4403Wp+vusTP2dm5zhgyduzYBidqrrq0vvqjuRqLISaTCWlpaYwhbYRtccPYFrePthioTI7cdddd2LJlC77//nuMHDmyydvU1P6YXC5H165d622L69qnNZeFhIQgIyOj1sjCxMREm3WFhITAYrHUOsYuXryIwsJCm3JA7WMxJyenSQm0rl27IiMjo8Gk3O+//w6DwYDffvsNDzzwACZNmoSxY8c2ayRbTRaLpdblqKdPnwaAWpOO12X16tUICwvDmjVrcOedd2L8+PEYO3asdcRylfq+Gw3Fz8TERHh6etqMlmpMcnJys+MSE1OdyDPPPAOtVot7770XFy9erPV8UlIS3n//fQCVWfD77rsPmzZtwocfflirrMViwdtvv92iUT1NVXWpXXVLly5FTk5Ok4fU7tmzx2Y4aFpaGn799VeMGzfOeq3tuHHj8Ouvv9oMg7x48SK+//57DBs2rMH5pZqq6otaMwGj1+thMplslvXq1QtSqbTO4bmNqTnHhaOjI7p162azrrp+CNf3aE2DBw/GiRMnam1X165dodPpbC59zMzMtLl7RnPIZDKMHz8ev/zyC1JTU63LExISsHHjRpuy06ZNg0wmw6JFi2qdSRNC1NqfNUVFRdl0QFoyHLu+Y6PKoUOHIJFIbIbZE9XU0dr37OzsWsvOnz+PLVu22NxlKDo6GhEREfjss89sRlEuXboUEokEt9xyS5Pe77PPPrMZtr506VKYTCZMnDgRQOWcLUqlEh988IFNW/Dll19Cp9Nh8uTJzd7GutT3fa/Z1kilUusl2M2NBU2NK2+//XaT4kD1+Uaa83nodDokJibadG6nTJkChUKBJUuWWJcJIfDJJ58gICDAeiez8vLyOi9veuWVVyCEaPQ3gEKhwIABA2p12gYMGABvb2988sknNvvizz//REJCQq3Pefr06ZDJZPjhhx+watUq3HDDDTY/vGNiYtC1a1f873//Q3Fxca161PU7pjo/P79aiazmaiyGnDx5EuXl5U26SxxdPrbFDWNb3D7aYgB45JFHsHLlSixZsqTBEf+X2x8bPHhwrbbY398fPXv2xDfffGPTdm7fvr3WCMJJkybBbDbjo48+sln+7rvvQiKRWI+dSZMmAai8q2l177zzDgBYj52qEwYffvihzTFW83X1mT59OoQQ1vkIq6taX9Woverr1+l0WLZsWZPeoz7V94EQAh999BEUCoXNHTTrU1ed9u3bVyuJXjUXWs3vhp+fH/r27Yuvv/7a5rkTJ05g06ZN1v3fFDqdDklJSc2OS5xjqhPp2rUrvv/+e8yYMQORkZG466670LNnT1RUVGD37t1YtWoV5s6day3/9ttvIykpCY8++ijWrFmDG264AW5ubkhNTcWqVauQmJjYpDkeaqrK6ta8HramkJAQ621E1Wo1du7ciR9//BF9+/bFAw880KT36tmzJ8aPH49HH30UKpXK+mO4emPy6quvYvPmzRg2bBgeeughyOVyfPrppzAYDPjvf//b7O2rS9euXeHq6opPPvkETk5O0Gq1uOaaaxAXF4eHH34Yt956K3r06AGTyYRvv/0WMpkM06dPt76+6ta5W7duxahRo+p9n6ioKIwaNQoxMTFwd3fHwYMHsXr1apvJ8lo6Gkqn01l/OO3atQtAZQPp6uoKV1dXm/eoy5QpU/DKK69g+/btGDdunHX5zJkz8eyzz+Lmm2/Go48+itLSUixduhQ9evRo0mR8dVm0aBE2bNiA4cOH46GHHoLJZMKHH36I6OhomwRY165d8eqrr+L555/H+fPnMXXqVDg5OSE5ORlr167F/fffj6effrpFdWiqqmTWiy++iJkzZ0KhUODGG2+0/mjavHkzhg4delm3gabOr6O177169cKYMWPQt29fuLm54cyZM/jyyy9hNBrx5ptv2pRdvHgxbrrpJowbNw4zZ87EiRMn8NFHH+Hee+9t8tm2iooKjBkzBrfddhtOnTqFJUuWYNiwYbjpppsAVI60fP7557Fo0SJMmDABN910k7XcwIEDbW5wcTmqvu+PPvooxo8fD5lMhpkzZ+Lee+9Ffn4+rrvuOgQGBiIlJQUffvgh+vbta7ONTdm/f/31V5PiSksS6UDTP4+1a9di3rx5WLZsmfXYCwwMxOOPP47FixfDaDRi4MCB+OWXX7Bjxw6sWLHC+sM5KysL/fr1w6xZs6yXO23cuBHr16/HhAkTrJOPN2TKlCl48cUXbW5golAo8NZbb2HevHkYOXIkZs2ahYsXL+L9999HaGhordtWe3t7Y/To0XjnnXdQVFRkcxkfUNlp/eKLLzBx4kRER0dj3rx5CAgIQHp6OrZu3QpnZ2f8/vvvLdrPTVXf74uquT02b94MjUaD66+//orWgyqxLW4Y2+L20Ra/9957WLJkCQYPHgyNRlNr1N7NN99s/R16uf2xKVOm4Ntvv8Xp06etcyIBwOuvv44pU6Zg6NChmDdvHgoKCvDRRx+hZ8+eNsmqG2+8EaNHj8aLL76I8+fPo0+fPti0aRN+/fVXPP7449aRq3369MGcOXPw2WefobCwECNHjsT+/fvx9ddfY+rUqRg9ejSAymPs6aefxhtvvIEbbrgBkyZNwpEjR/Dnn3826dKy0aNH484778QHH3yAM2fOYMKECbBYLNixYwdGjx6Nhx9+GOPGjbOOvHvggQdQXFyMzz//HN7e3nVeftkUarUaGzZswJw5c3DNNdfgzz//xLp16/DCCy806UqiG264AWvWrMHNN9+MyZMnIzk5GZ988gmioqJs9reDgwOioqKwcuVK9OjRA+7u7ujZsyd69uyJxYsXY+LEiRg8eDDuuecelJWV4cMPP4SLi4vN1TmNiY2NhRCiSbHcRrPu4UcdwunTp8V9990nQkNDhVKpFE5OTmLo0KHiww8/FOXl5TZlTSaT+OKLL8Tw4cOFi4uLUCgUIiQkRMybN8/m9rZVt4E9cOBAo+/v6enZpNuY3nvvvSIqKko4OTkJhUIhunXrJp599lmh1+ubtJ0AxPz588V3330nunfvLlQqlejXr5/YunVrrbKHDx8W48ePF46OjkKj0YjRo0eL3bt325TZunWrAGDz+pEjR4ro6Oha66t5C1shKm9XGxUVJeRyufU2oOfOnRN333236Nq1q1Cr1cLd3V2MHj1axMbG2rz2qaeeEhKJRCQkJDS4za+++qoYNGiQcHV1FQ4ODiIiIkK89tprNrfmbamqW5DW9ai5rfXp3bu3uOeee2ot37Rpk+jZs6dQKpUiPDxcfPfdd9ZbjVZX9ZnWFBISUuv2rtu3bxcxMTFCqVSKsLAw8cknn9S5TiGE+Pnnn8WwYcOEVqsVWq1WREREiPnz54tTp05Zy9T3WdenvvKo4xasr7zyiggICBBSqVQAEMnJyUIIIQoLC4VSqRRffPFFk9+Xrm4dpX1fsGCBGDBggHBzcxNyuVz4+/uLmTNnimPHjtVZfu3ataJv375CpVKJwMBA8e9//7tJ7VpV3bdv3y7uv/9+4ebmJhwdHcXs2bNtbndc5aOPPhIRERFCoVAIHx8f8eCDD4qCggKbMvXdonzx4sW11lfz+24ymcQjjzwivLy8hEQisbZHq1evFuPGjRPe3t5CqVSK4OBg8cADD4jMzEyb9TVl/zY1rlyOpnweVfu++i2vhRDCbDaL119/XYSEhAilUimio6PFd999Z1OmoKBA3HHHHaJbt25Co9EIlUoloqOjxeuvv97keHbx4kUhl8vFt99+W+u5lStXin79+gmVSiXc3d3F7NmzxYULF+pcz+effy4ACCcnJ1FWVlZnmSNHjohp06YJDw8PoVKpREhIiLjtttvEli1brGWq4k/Vbb0bU1/5mrcWF6Lu3xdVrrnmGnHHHXc06T2p9bAttsW2uH21xXPmzKn3N33136FCXH5/zGAwCE9PT/HKK6/Ueu7HH38UERERQqVSiZ49e4rffvtNTJ8+XURERNiUKyoqEk888YTw9/cXCoVCdO/eXSxevFhYLBabckajUSxatEh06dJFKBQKERQUJJ5//vla3zmz2SwWLVok/Pz8hIODgxg1apQ4ceJEnf2JuphMJrF48WIREREhlEql8PLyEhMnThSHDh2ylvntt99E7969hVqtFqGhoeKtt94SX331Va39W7NNrzqOa35eWq1WJCUliXHjxgmNRiN8fHzEggULhNlsrvXaur4DFovFGnur+sR//PFHnX3W3bt3W/tQNb87sbGxYujQocLBwUE4OzuLG2+8UZw8edLm9Y3FuxkzZohhw4Y1sIfrxsQUtar4+HgBQPzxxx9X/L3qS2J0RAMHDhS33HKLvatx2b755hvh5ORU68cF1e3dd98Vfn5+orS01N5VIWpUW7bvTdWcjlx71x73b3t39913t+jHb2dx5MgRIZFIbJIb1Pm1x7aCbfHV7eWXXxZdunQRJpOp0bJ9+vQRY8eObYNakT1kZmYKtVotfvnll2a/lnNMUavaunUrBg8e3GrXiF8N9Ho94uLi8PLLL9u7Kpdt9uzZCA4Oxscff2zvqrR7RqMR77zzDv79739f1mSJRG2F7fuVxf3bfAsWLMCBAwesl59fbd58803ccsstTZ6YmjoHthVXFvdv8z3xxBMoLi7Gjz/+aF1mNBprzcG1bds2xMXFNThtCXVs7733Hnr16tX8y/gASIRowT3YidoBiUSC+fPn15osj4iIrg7Lly/HvHnzcODAAZuJfImIqO2wLaaazp8/j7Fjx+KOO+6Av78/EhMT8cknn8DFxQUnTpzg3KpUCyc/JyIiIiIiIqJW4ebmhpiYGHzxxRfIycmBVqvF5MmT8eabbzIpRXXiiCkiIiIiIiIiIrILzjFFRERERERERER2wUv5arBYLMjIyICTkxMkEom9q0NE1O4JIVBUVAR/f39IpZ3nfAfjARFR83XGmMB4QETUfM2JB0xM1ZCRkYGgoCB7V4OIqMNJS0tDYGCgvavRahgPiIharjPFBMYDIqKWa0o8YGKqBicnJwCVO8/Z2dnOtSEiav/0ej2CgoKs7WdnwXhARNR8nTEmMB4QETVfc+IBE1M1VA3PdXZ2ZuAhImqGznZ5A+MBEVHLdaaYwHhARNRyTYkHnePCbyIiIiIiIiIi6nCYmCIiIiIiIiIiIrtgYoqIiIiIiIiIiOyCiSkiIiIiIiIiIrILJqaIiIiIiIiIiMgumJgiIiIiIiIiIiK7YGKKiIiIiIiIiIjsgokpIiIiIiIiIiKyCyamiIiIiIiIiIjILpiYIiIiIiIiIiIiu2BiioiIiIiIiIiI7IKJKSKidiQlRYf1688hJUVn76oQEZEdMR4QEVGVzh4T5PauABER/SM+Pg979mQAAEJCXOxcGyIishfGAyIiqtLZYwITU0RE7Uh0tIfNv0REdHViPCAioiqdPSYwMUVE1I6EhLh0yrMgRETUPIwHRERUpbPHBM4xRUREREREREREdsHEFBERERERERER2QUTU0REREREREREZBdMTBERERERERERkV0wMUVERERERERERHbBxBQREREREREREdkFE1NERERERERERGQXTEwREREREREREZFdMDFFRERERERERER2wcQUERERERERERHZBRNTRERERERERERkF0xMERERERERERGRXTAxRUREREREREREdsHEFBERERERERER2QUTU0REREREREREZBdMTBERERERERERkV0wMUVERERERERERHbBxBQREREREREREdkFE1NERERERERERGQXTEwREREREREREZFdMDFFRERERERERER2wcQUERERERERERHZBRNTRERERERERERkF0xMERERERERERGRXTAxRUREREREREREdsHEFBERERERERER2QUTU0RE7cSuXRewaNEu7Np1wd5VISIiO2I8ICKiKldDTJDbuwJERFQpNjYFsbGpAIChQwPtXBsiIrIXxgMiIqpyNcQEJqaIiNqJsWNDbP4lIqKrE+MBERFVuRpiAhNTRETtxNChgZ32LAgRETUd4wEREVW5GmIC55giIiIiIiIiIiK7YGKKiIiIiIiIiIjsgokpIiIiIiIiIiKyCyamiIiuQikpOqxffw4pKTp7V4WIiOyMMYGIiAD7xQNOfk5EdBWKj8/Dnj0ZAICQEBc714aIiOyJMYGIiAD7xQMmpoiIrkLR0R42/xIR0dWLMYGIiAD7xQMmpoiIrkIhIS48K05ERAAYE4iIqJK94gHnmCIiIiIiIiIiIrvoVImphQsXQiKR2DwiIiLsXS0iIrIDxgQiIgIYD4iI2rtOdylfdHQ0YmNjrX/L5Z1uE4mIqIkYE4iICGA8ICJqzzpdiyyXy+Hr62vvahARUTvAmEBERADjARFRe9apLuUDgDNnzsDf3x9hYWGYPXs2UlNTGyxvMBig1+ttHkRE1Dk0JyYwHhARdV6MB0RE7VenSkxdc801WL58OTZs2IClS5ciOTkZw4cPR1FRUb2veeONN+Di4mJ9BAUFtWGNiYjoSmluTGA8ICLqnBgPiIjaN4kQQti7EldKYWEhQkJC8M477+Cee+6ps4zBYIDBYLD+rdfrERQUBJ1OB2dn57aqKhFRh6XX6+Hi4tLu283GYgLjARHR5esIMYHxgIjoymtOPOh0c0xV5+rqih49euDs2bP1llGpVFCpVG1YKyIisofGYgLjARHR1YHxgIiofelUl/LVVFxcjKSkJPj5+dm7KkTtzq5dF7Bo0S7s2nXB3lUhahOMCUR1Yzygqw3jAVH9GBPIHjpVYurpp5/G9u3bcf78eezevRs333wzZDIZZs2aZe+qEbU7sbEpiI1NRWxsir2rQnRFMCYQNQ3jAXV2jAdETceYQPbQqS7lu3DhAmbNmoW8vDx4eXlh2LBh2Lt3L7y8vOxdNaJ2Z+zYEJt/W2LXrguIjU3B2LEhGDo0sM4yKSk6xMfnITraAyEhLi1+r46sKfuJWh9jAlHTtFU8ABgTGA/sg/GAqOnYR2g7jAn/6FSJqR9//NHeVSDqMIYODbzsBrDqjErV+uoSH5+HPXsyAOCqDTpN2U/U+hgTiJqmreIBwJjAeGAfjAdETcc+QtthTPhHp0pM2ZsQAhKJxN7VIGozTTmjEh3tYfPv1ag1zjwREbVnTW3nrvaYwHhARFcD9hGahjHhHxIhhLB3JdqTlt7i1lxUhLQH/g/ud90J5wkTrmANiYjal45wa/CW6KzbRUR0JXXGtrMzbhMR0ZXWnLazU01+bk9SR0dIlEpkPP8CyhMT7V0dog7h559PYfbsP/Dzz6fsXRUiIrIze8SE0/uzcHp/Vpu9HxERNY59hKsPL+VrJRKJBF5PPYm0++7HhUcfQ5c1P0Pm6GjvahG1a2vWnMHff1feinb69HA718Y+qiZ+dHFRQqeruKongCSiq5s9YsLmr04CAPx7uMLRVd0m71kfxgMiokrsI1x9MYGJqVYkd3aG8w03oPCHH5Dx3HMI+ugje1eJqF2bNq27zb9Xo6qJH+VyCUymyiurO3PQIVtnD2UjP7MEAyeHco5CuurZMybo88rtnphiPCAiqsQ+wtUXE5iYamXKAH+4TJkC3Zo1yPviS3jce4+9q0TUqLa8VWn1W8NOnx5+1Z4FqVI14WP1syGXi7ff7Tg2fn4CANBjkDdcvbV2rg2R/eJBSIiLXWNCma7CLu9b3ZWIBwBjQntQlJ8LRzcPnoCgDod9BPu52voITExdAY5jxsBw7hyy33sPqogIOA4bau8qETWoLW9VylvD2goJcWn1/cB9bH+p8Xk4feAirrsrElJp3R2R8hKj9f+5F4qZmKJ24WqKB2aTxfr/Ep2hzd+/pisRDwD77+erXaleh+VPPYT+E2/C0NvusHd1iJrlaooJ7c3V1kdgYuoKkEgkcJ87F9n//S/Sn3wSoSt/hKpLF3tXi6hebXmr0vZya9iffz6FNWvOYNq07pg+PbxNzwg1V3PPbrSXfXw1M1VYcHpfFspLjJj8UO86z5LnZ5RY/194sbQtq0dUr6spHlSUmaz///6beJzJL2338QBgTOhoNM4u6DbgWuxb+xP8uocjrN9Ae1eJqMmupphQhX0E+2Bi6gqRKpXwnD8f2W++ibQH/g9dVv0EmUv7ykoSVRk6NLDBhrY1h31eqTPCzVVzUsW2PCPUXM09u9Fe9vHVLKyfFyKH+uHkzkxs+ToBY+ZE1kpO5aUXQyIBhACK8srtVFMiW43FA6D1YoK92ypD6T+JqbyLpViz5ky7jwcAY0JHNPCm6UiLP44NS97Dnf/9AE5u7a9TSFQX9hHad0zoTPGAiakrSO7mBo/770fuBx/gwsOPIGjZV5DKucvpymvt64fb87DPlqo5qWJbnhFqrppnN9rz9eH0D/9ubijRVeDU3izIFVKMvD3cJjmVk1YErZsaRoMJJYUVEEJw/hG6IhgT6lZR/k9iKsjPEdGTbONAzXhgNJhRUW6C1kXVdpWsQ/WYcD65EPEn89Czp2eH/iw6O6lMhoghI3Bk4+/44503MWPBG+wTkF0wHjSOfQT7YIt4ham6doXr7bej4Ouvkfn8C/D/71vseNBlaUqD09pBoj0P+2ypmpMqNmWUQF3aIgDUPLvRGX8EdFZd+nhBKpMgfkcGjBVmjJ0TBcmlOaeyknRwdFWhvFiCsqIKWEwCMgXjAzUPY0LLVY2YUqhliA5zwc1TKzsh9cWDPz89jrST+bj//ZFQqGR1rrOtY8KyBXugyysHBONBe6dxcUXf8ZNx8Pe12PzFxxj/f4/Zu0rUyTAetA72EeyDiak2oL3mGpjy8qD//XfIvb3g869/2btK1IFVb3Cq/q7Z4FUPEtWviw4MdGpRA9meh33aW1sFgOrBrb4fAR35LElnFjnEH3KFFKf3XYShxIRx90ajVFeBgqxShF/rC4kMKM43wGQ0Q6aQ2ru6ZGcWswWF2WUoLiiHqcICs8kCmUwKmVIKubzyX7VGAZVGDpVG3uKY0LOnJxwcFC1qLzpLTKhKTDk4KmEoNcJsEpDWnW8CAFxILAAAZJwtREg9nbC2iAlVbX14N1eUXiyDAoCfq6rOMowH7UtgZE/oc7JxYutmeAaFIGbyVHtXiToR9hHaF/YRmoeJqVaWnFyIw3tOom8fb0RGelqXu0yaBItej/wvv4LcwwMed99tx1pSR1a9wamvwaseJJYvP2G9LnrgQL9GG8imNlwtnQiwIzSMzdFWZ4qqf9aTJoXVue+aGgA722fQXp0+nYf4E7no3d8HkQN9oVDJkbgnE98v3AdHVxXkSincfDUwVZiRl1YMk9EC+14gRPZkMVtwaEMKjv2VhvISU+MvuESmkCJAKkHunovYc06P+KwiAI3HhNOnCxAW5lqrbE1NaS86ajyomvzcwVmB4rxymI2WekdCAYCwCACAsbz+z6ctYkJVW19a7aYJ0jJznWUAxoP2Ivl8ITZs16FP797w656L7d8tg4uXD7oNGmzvqlEnwT5C+8I+QvMwMdXKTp8uQNy5yjPe1RNTAOA6YwYsRUXI/t/bkLm5wfXmm+1RRerg6joz0dB1xVXXQ/v4aPDzz6cAAC4uynrXv2rVKfz+exJuvLErnn56kM1z1QNNcyYCrF6vjjzEtC5tdaaoKcGtoevMDx7Mst5hxMFB0ak+g/bqRHweEk7mQ8gkiIzyRGhvTzh7OeD03kwU6wzoPsAHju5qlBRWoKLcDEOJ0e5z15D9bFtxCol7MuHf3RUuPho4OCogV0ohlUshLIDFVDl6ymyywGiwwFRhhqnCApPRDLPRglJ9BfJO5KN7FydER3vU++Ny7NgQpKbqUVxcAYvFguzsEqSk6OpsC3btuoAlS45CLpdixoyIWmWqYkJqqh6nTxcC6FjxwFBqglwhhYOjAnkXSmAyWpr0OnMD5doiJljjQGYpVBo5KspNKMwpq7NM9ZhRV0wIDXWGVCq11p2unNOnCxCXUJlAvO3Wadjx/ddY98Fi3PzcAgT37GPn2lFnwD5C+8I+QvMwMdWK0tOLoFLK0a2bC/r28a71vEQigdvdd8Py0UfIfOk/kKhUcJk0yQ41pY6oroDS2HXFZWVlcHcvgotLKt57bwcuXsyCo2MFMjOd4eYmwZw5czBu3DgAwPHjx/HEE0/gzJkCFBRYkJ3tiXPnusPZ2Rmenp4YOXIkYmMrrIGmORMBVq9XZ5qkry01Jbg1dDxUv8PI668PB9C55gNob1JSdFCpZAjt4oI+1eKBu58Wg6Z0RUWZCTKFFAqlDI7ulcmo3PQSuPs72qvKZEfppwqQsDsT3QZ4IzjKA2pHRaOvyckuQWpqEYLDXOHlrYUQAid3ZSDlWB5K00uQXFhe68fl4V0J2PXTfljSkpF9MROn4gqgcrJgxQqge3dvLFmyxLr+p556CmvXbkdenhGurs4wGLpg82YPuLq6ws/PD/fcc4+189GjhyvGjg2+7HgAtG1MqCg3Qa6UwcFJCVOFGaV6AxzdGk8OVxjMjZZpirST+fAMcoSDU/0dwbqEhLggOMgZKxbshZuvBrqcMhTlltvcQKGumFFXTCgp8cH99/dhPLjCMtKLoFLJ0a27E/r28YZMLsfQ22bj7++X45fFr+K2l16Db7ce9q4mdVAt6SOUlpbCzU0PF5eUan0EIzIzneHqCjzwwAMYOXIkAODQoUN49tlnrX2EnBwvJCd3h5OTE7y8vHDdddchNraUfQQ76Sx9BCamWtGZM4UoKCyH1tcDHp4OdZaRymTwePBB5H70ETKeeRaQSOAycWIb15Q6oobOIhQUFGDduu1Yt24XIiIGIjq6FwAgNjYWN910k03ZwkLgQmXbgwEDBiA8/BrEx+ehtDQdW7ZssZZLTAQSE2Otf7/66qsYO3YOACAiwoLbbx+K8PBw5OVF4OjRcPTp0wfu7l1w/ryhwevZO9Mkfe1d9f1e/Q4jnA/gyouPz0NebjmcHOXwrBEPpFIJ1Np/Eg9OHpXP56QVocdAnzatJ7UPhzach5OnGn5dXZqUlAKA1NQiJCbmAwC8vLWQSCSIGuqPwovF+HHJRpT75uH4yQxMmPAkAOD88VzcNOUGpOedq3N9+/e4YnyP+xA80BuZOgN27dqH5ORDAAC9HkhN3Wkt6+DggPvuu8/a6Thw4EMcPXoGp09HYMuWcERFRcHXtzt0Osdad4trKB4AbRsTykuMkCulcLw0P1NBVgm8Q5zrLFt1GR/wzyWAl8NssuC3D47CK9gJtz4/oNk3xkk5kQddThkCI91grLCgWGeA2WSBXFH/pYhV+97RaMG4GF8AlTFh0qSwlm8INcmZs4XIzy+H1t3Z2kdQqNUYOuMO7FixHKtffwnTX3gZft3CG1kTUW0NtZt5eXlYt2471q/fg169hlj7CH/88QdmzJhhU7Z6H2HEiBEIDe2L+Pg85Oen2fQREhKAhITN1r/feecdjB17KwCgS5dSzJ49DBEREcjPD8exYxHWPsK5c2XsI7QT7bGPwMRUK3J0Kcei7V8gPLAPLOpRuH3KYJsfGtk5l85uBjvB8+GHkfvhh8j41zMAwOQUNXpWoKoBCQ93wf79+7Fz504cOHAABw4cQFJSkrXc3DlPI8BxDMoTEiDOpsPRQQMPrQuc5BqEerkiyNsVjkoVzGUCxt8PI25fJkqNUmh91fjs4Ydhkclw6nwhkrNKoPVSw8Nfg1y9Hv3797feleKPP/5AamoqUlNTsXnzP4FJKpXCwyME8+Y9hrfe+uduMw01ci25/rr6vgLqntzxalfzeAoJcbG5wwhdWdHRHnjl30+jUJeLzMLJuHvOrXB2+qfDax3tEuwEL28tHJwUyL9QbMcak71UlJmQfroQIb08oK02gXXNY6Sm4GAnAIDWqRx/bFiLo8cP4/jJoziRcAxlZZVzDymVGsyfPx+pJ/OwfulxeLr5wygph5urF+RSFwT5+cLFwRkSkxIKqQappwqQerYQ2S4yTBp/L6aOnQG3ADWOxKXh1KkseHpK4e4uYLFYIJFIrDGhb9/5iIuLw+HDh23q6ODgjOjofti37y+by8UaaqvbMiYYSo2QKaTQuqoBADmpRQi/xq/ustWSUa2RmCovMQIACrNLW3RHzuPbL8DZUw2PAEcU5ZcjJ6UIpoq6E1PV98+kSWH4+P/+AgAsfX8MnOs5kUqtS6ksxFe/vYewkP5QqMdg+tTKPoJa64ihM+/E3yu+wQ8LXsDwe57GwOs45xTZamofoUcPZ+zdu9emj5CcnGwt5+rybzgpBuHc4dPIOJEAjdoBLlotHNWO8PXxQtceXRDQJQz6YiXi4hxQXHwKOl0FwsN9sWLFClgsFuzedQZnjx+HwpSJ8jIdyoxmKIsKMWiAJ4YODcSqVauQkpKClJQUbNy40freUqkUnp6huO++p/Hqqw9al7OP0LZqxgMA7aaPwMRUK9p/bDcu6HNw4WQstpyMxWsrvTF56FDcOHQYhvTujdTUIpy6dHbTO8bXNjllNsPlhhvsvAVkD1XXZGu1Cuh0FQBszwoIIVBaWmpdtmrVJvzrX7fVWk+wRotwlRr9t6zEmaF/AAC6A9gfHFxZQCqFRC4gKdQBEgnKy82oMGVBnnMSSimAU0Z0NZkggcCIqpUWAjhz6eWnzyDx7fdQonGHf6AP/vjXv5BsMOBYRi7iktORmn4GWVkZyMlJRmCgk7VeBw8exFtvvYVRo0ZhzJgxCA8Pt0nY1gxITZkwseZdR1p6NqUzDxHmWSb78vfX4OTZrdAXFSLx3A4sXfYSrh04FOOum4zrR09AWipsRrs4eTigILsURoO5wcmXqfNJPZkPi1nA3VcLqUyKhJO5iIvLhkotR+mlSdCrJ6ZKSouh1Thal939yD2IT9xvs04HtQb+bl0R5NMVhvMFWLc+FQpHOWbc+Aq6RXtgwEDb5IvZbMHqHxNw8rQOPX0c4S6VwZwdDAcBKAwK3H/HRGTpK2q1lVVt6Lvvfgm9/gL27DmKw4dPICvrLBIT41FWpkdRUY41KQUA8+fPh1arxahRozBq1ChoNBqburRlTCgvqZxjSq6SwsFFicTD2Qgc4I3QLq61yxYbrf+vKL/8S/mMly4HFBZReefFZtyRU1gEMs4UIjDcDQ7OSmhd1UiLz0dFmdlmNGaV+uJBYXYpE1Nt5MCRnbiYl4mLeeuw5/A6fLTMD2NHjsS40SMR06c33HpPxoV9v2PHF2/B3eV5dI25xt5VpnagsT6CxWJBWVmZddmKFb/hxRfvqrUeH3c3+Dk7w5SwCcueOFK5UCrDwptvglqrgUYjQ1lREQwlxUDScbgo3ZFSoEO+pRj9B4fDUGxEcmIB/Bwy0F1/El0DjNB6RMHd1wdlRXrknTyMzx+5H17XzkbkoGuxY8cOJCYm4sCBYzh8+DhSUhKQk3MR2dnnEBrqaq3Xzp078eGHH1r7CD162F7Oyj5C62vP/QMmplrR7VOnQn3hAjYknsLmA/txITsbn65di0/XroWbkzM+e+YlhEcEWM9ySlUqeD7yCM698S4uPP0MDm4/gzGLn7DzVlBbq5qjY8AAH1x/fSiioz1QXl6Ov/76C7/99hv++PVXTBo4EK9eNwa5W/djRPIp+MrliFSr0VutRm8PT/QJCIC7lyekGi2kWg3S8sw4nWaAb6gnHL1c4RPsDncfF0hlMkAiASQSnD1bgAMHL8LdTYUBA3ywa9cFJJ7MQ1S4CyaO9oe5pASiuLjy37IyWEpLkZeSjYqsbDheTEPX8mKEGQwYc2k7TAHBKBt8LRKVSlwrK0fJvv1QR0Zg06ZNWL16NVavXg0A8PUNxoQJEzBr1nSMHDkSKpWqzv0B1D9hYl1nUOo6m9JYAGvPjfPlaqs7gVDd5HI5vnz/B2zauh5bd23E2XOnsWPPNuzYsw0vvfYvTBw7DXfPWmSNBz6hzji+7QK2bjiHP7elISDAEbfeGt7pjkuq7dzRHGhdVXDxrkzQxMVl4+jRHHTr7oZ+fb0RHOyE5JQkbNm+CX9t34jDcQewJ/Y43FzdkZpaBF/P3igO0mHEkKHo3bMfekf3Q1hoN2SfL8Lp/ReRe6YERqUUKfll8A7UIqSOS9VkMimCurjgQmYppCoplDkGAEC5SgKtXIo9352Gb5gLyjwcYPRzhEJZmTyNj8/Dnt3piPRxxI2zx0Oh6AWFIgODB/tjzJgAnDhxAkVFRdb3KS8vx5dffgmDwYDFixdDqVShd+9rMWXKjbjzzlsQElJ7PpLWigl1xYPyYiMUShmkMgkkGhnKM8sQd/BinYmpsmqJKWMrzDFlLK9KTAEWs2iktC19XjlMFRY4OCshk1VeiigEoM8thbOnulb5+uJBQ5O4U+u6c9ZMSEqKsOvoMezYsxcXMjKx/IcfsfyHH+Hm6op3XnkLgddORVHCRvz6v9cw6q570X/iTfj551PWSYnbw4gGalt19RFKS0uxZcsW/P777/j9998x87bb8PBdt+PvP3bBfCYBzg5qBLu7INjdFcGe7ugWEgRPTy+oHZ1gkaqQftECXZkSXXoEQO2gQmCQK7y8NbCYzSgtLET2+XNIO3MewaZ0yArPIuXPPwEAKgHkKd3QrU8/eIaEws3HDypN5WXkeRfSsPe335Cy8SMUX7gOc/79KIYNGwZ//3Pw9q6MCX37qnHw4EEMGzbMun0bNmzATz/9hJ9++gkA4O8figkTJuL226dj+PDhUCqVde4PgH2ElmrP/QMmplqRq4sLbh08GP37XI+x3S5g78lj2HvqMNKLz6CotATX9g5HRlo5tmxJQZ45CUJuRDevCByRDcNA8xZE/v4ZViVnwf+JRzB0aGCnzdRe7Wp+rlVzdAwd6oWE+C14/cXlOHLyEEorDNbXbNm4EU9lZkHr4YWS0B7YNnQoXIJ9IfPyhs4oR3pOBVxC3eDh54rE0wX4bMlRFBYa0NfZA0/NG2hdT3ZOCY7H5UKvN8DZWQn/cH9kZZUiTS9H5DXdYFA7I7yPN1Rh/9xRMiEhF0fjstG3jzfcR6lQeL4QXr5qeLooYNLrkX8mBYXnMuAiSqAt02Nweg5MH32MVEvlD94+To54ZtAg7NXrsefMWWRlpWL58s+wfPln0Gq12Lt3L3r27Gl9v6ZMmFj97hHTp9ffeW8sgFVvnBv6vrXGd7El67ic9+U8UvYlkUjQK7IvFAhEl4Bb4OFVgh9Wr8HhY1uhL0mCr7c/Ygb4IuFkLtb/mYD4M2sQKIlC6poy/LE7E1qtHEeOZOOhh/paj13GhM7HYrYg+Vgu5E4K6IoNUDsqrJPlu7gV4o/NPyN2+59Iz0y2ed3+Q3swfsxkBAc74YG5jyIk5N/WEVQ52SU4eiQHwcFOGHZLd/z2y2lsjk1BhVlgrFewTbljx/+JBwDg66uFo5cD9ElFqFBI0K2vFyJ7eSH1eC4yzuqwZVkC/vomEWUKCaKH+SEqxgf5CQUoiC/AHx/F4do7KjvO0dEeUKlUiImJQUqKDuvXn0N0tAd8fFT48ssvsW3bNmzevBkpKSk4eHA7Dh7cjpdeehr33nsvPv/8c5ttbSwmVO+4V5/0t6a64kFZUQVcfTSQSiXo3t8bcetSILLL6vyulRdXjlaQSIC0FF29dzJsipQUHQ79nQ6gclS0xdJ4Yqp6nRQVlfFVrakcHaW5dBetwuxSBEa413ptffGgqXchpMvn5uaGydeNRkz/Cbi2dxoOHzuEo/EHkVOQiJLSMgzoF47z50pwTj0E5wpWYt+ClzBow27sSBmIQ4dykJNTihMncq2daMaDzqm+PsKQIR6Ij4/Fyy+vQlzcLpSX/3MXztXffo3ArCQoHbRwc3LDR08+Di8/L2jdPGAQalzMMSIoxB2+/i747fdz+GPHOUikZqjcJJg1q6t1PdnZpTieYIa+yBdOAcFw9jUgOyMbQb4yqBRSJF+oQGTPQET1DYJcUdn2JJzMs/YR+k+7Eye2bEJ+/F/47vlkTHjoCZvf2f7+LrjxhhtwbN9xrNu5FhpJPrwNRbh7+lQkpF7AgSNxyMg4j6++WoqvvloKJycnHD58GN26dbPWkX2Ey3/f9tw/YGLqCti1KwNHjuagS3APuIWHIq+gDM7e5chIK8f69ck4n6JH7IXVSNelAQD83fzxt2s3TJa4YPLxX5H6hh7it487bab2alf9cw0OdsYAPyMiQs9i0PTJOKfXWct5K1W4xsMf1/fqjSnjR8DRPwBJaaWI3ZkNS5YM1/cMgYeTA/7akgK9vgIWB0f4BMpwNC4bJrOAo6MC3t4OyM4pgbdXZUckNbUIR45cRF5eGdzdHdC/vw/CI9wRHOwEby8tIiM9a9V3c2wK4o5mIyenDDNnRgByBSQaDWSuWuQZFUh3VSJ4an8AQMr5QgR5K5GdlI2Lx5MRqilGtKwU4Tk5mFduQHFYGPaWlCC2vAK7S4thsFgQbDBAVFQgNbMMH3+8DF27euCZZ25BdnaFtTNT8/ivfveIhs4gNhbAqjfO69efq/f71hrfxZasg21Ax5eQkIf9h7MR4O+I0UNnQyO/DlJpEXzdvZBwMhdr1p7BwaPbEHe6sjOuVmjg7tkbCkVvnDgRhdhYN+sPJh4PnU/WOR1MBjMKJQIXLhTDx9cRkVGeSEjagvnPPmwtJ5PJ0TNyAAJ9BuLmG2/EdaP7AQAOHcrC3zvSMWJ4AGJifJGaWoRCXTmyMivnmPLy1iJPV4EygxlqtRzB1UZLpaYW4cjhavEgxgcRl+KBsr8PpDIJHN3UkEgk6Brjg9A+XijIKsHmX85CXiqQFJuOlB1ZMBnMUDrIkZ9RgsO7M9BvsB/O7snEoR3piBkeUOO4DcPs2bMxe/ZsCCEQG7sP7723AnFx25GZGW9zkuLIkXN4992PcPfdd2Du3J6Ij8+rMxnU0ngghEBZsRGeQVJIpBIEhLigqJ8Xzh3JQZlF4GR2yaU6V75fia4CkAASuRQFueWIj8+7rHgQfzwX7pfq0ZQRU9X3Yw+fyrt3qhwrf8Y7OCkhkQAFF0ubVQ+OmGp7u3an48iRXISE9IRW0QN5+SXw8CrH+XMlWL/+HM6n6LHv5Ank6zLx04Fj8HPzgIfvUJhM12DTpsoTlkOHBjIedFI1P9ehQwMxZEgAQkJCkJaWZi3nqnFAlL8vYqJ6YvSIa+DpH4TsAhl27s2GpUSB68PDIHdzwPZLfQS5gxMCguXIyysHJIBWq4RaLUN2dim8L43WTU3V4/CRi8jLK4e7uxox/X0Q3rs7goOd4e2tQV0Xl26OPY+4o5WJ05kzI+EeOQKBPboj9dB2fPvMI1B7hiAoKhrHU+XYmJSC8pyzMJaVQEAKhdYFjo5q9HVSIqqLD6ZFTMHxAi0OnctAZtZRyOUShIVVzoGUkqLD++9/hsjIADz33HRkZZWzj9AJ2wAmplpRenoRTh3IQn4+4KCWo3t3d0REuGP9+mTIZBIcjcuuHHKtlSPcNxJarQJnMpORUZCBjIIM7AbwqkyOyRez4H+zHi6PLkTXrq7Izi6x/hjjGZKOqfpw0cguaqRt2IpVL/2OLm9pgIsXAbkcIz3cYbRYMKZrFKZcNxoFuS44klAMVYgfjAEhiEstwtEjehw+lgcJAC8vB3Tv7g693giDwYzdu9ORlqpHSLAzRowA1Co54o7l4JWX92D48ACEdXWDViNH165uUKpkCAp0Qq/enjh7pgCff3YMwcFOGD+hC7y9tDajpABAACgsLMe335yETCbBsOGBOHwoCytWJMBgMGPwYH8MHxGEU6d1gNQdwb1CYXHxgEewEzy8tLBUVMBSUgJZYjI81x3GXYU5eF5dCn1xDtJn3wGJUokyr2As37MdOWVFePqpB3Ht4Anw8xuFGTMm2hz7Li5KhIa6oKTEaL2LRH2qJuatS83vUkNDW1sy7LXm8PuWrKM9D7elhqWk6BAXlw1n58off0aTGf7+Trj5ZickJ+tgMVsQF5eNsjIztA6u6NfreiQlH4C+uBAZmXuRkbkXAFBSEoE+fT6CUtkFZWVGyOUSuFwaHcF40HFVxYRIVwcYUYbTWbshc++CmAFTAQDDh4yGg1qDQTHD0C96LG6cNAH79hbg6NEcZGeprBOjb9mSitS0ykvlvLy0SEzMh0UIpKbqYREWBAc7YegQf+gKDZDJJDh+LBdr15xBt26uGDEiCP36+yAjowgGgwX+flpERnliw59J1mTXhIldrXNe9enjjcgoT+RaLIhPyEXPMFd4aJQwA+ga6orykwVY9dkx/PnTKfTzd4FZAiicFOjdtzKO1GzHJBIJevSIhKvrePj5DcLs2Z6YM+efSZ+/+uoHfPvtu/j223fRtWs0unUbi7lz70RISAyAyuN/69Y0uLmpEBPjU2c8yM8owbolcSgvNqLX6EC89NIQSKWVcxyWFRlhNlqg0iggkUiQk12CYjng6q9FfnwBwrs6Iyrqn9FHupwyODgqICSAQi61ea4xdcWD4vQS5BzKqbyUz9J4gqh6PNCdK4JEKoFSXfkzXiqVQO2ogK6ZiSmOmGo7GelFOHAwE/n5JqjVMnTv7oaIcA+sX38OUpkUR+OyIb3URwgL7gvnAg1SLpxDZkEeMgt+AxJ+g0qlhYvLVKxf7wcXFyX7CJ1E9T5CVJQ7EhOP4JdfVmLChPdRnJ+H03t2oLuHK8oK8tEvJBBD+vWDSh2MxFQVvMMC4BPZHWlpRTh6PBuH4/SVfQRvR3Tv7ga9vgIGg6myj5CmR1SUB7RaBdRqGeLicrFlSypGjAhEWJgrtBoFunVzg0qlR1CQE3r19sKhQ1lY8/MZDB8RgIkTK5NE1UdJAVV9BAO+/SYeUpkUw4cHwBw0Hie37oSHPhfFuX9BpZKhwqKCs1cQAnv7o9jshOAuPvDxdYbFbEZeehrOHDyEXobziIjSwDzyMdz6yDTr/ITHjmXjs8/eRElJPp5++kFce+0E+PmNxK23jm/1PoLZZETK+UIknNJb7yrLPkLbYGKqFZ05U4hTifkwCFfEDPDB0GEB8PbSwsPTAceP5SIjowiOjgr4+3vDM20MBg++A+HRTvhi1RbE7t+PhMwE6EuLkOPsBdWZOMgXPQT5tOfw7/dew5o1fRAW1h/nzjnAzU2DGTMi6gw6TZkUjtre3+vikffnn/hhxd/YkpaAxPJyAEBMzDCMG38DzhlcMFmpxvODusLX3xVA5SV0RnVlw5+aWoSdO9KRn1+G0FBnqFUyqFVyVBhMcHZWICfHhFOn8pGaokfMAB+MGVOZ/f/zz3PIySlDbGwKRhoFwiPcERTshNJSI4KCneHtpcW335zEyYQ8pKXpUVBYeTYuN6cMxZfuGHT92BB4eTkgJ6cM58/rEeDviOBgJ3yy9Ch0usoyp08XYPYdUQBgHX1VNUoLAKRKJaRKJeJLddiDcDj4RWPajSGI8VPAmJwMQ2oqypKSMdlRg43GMmSWlCA29mcAP2Pzb56YNfN29L72FiQlSSCXSyCVSnD//X0u6xbXVWcadu1Kx/nzugbnb2jJsNeaZ2waWkd9Pybb83Bbalh8fB7OnC2ATAKEhrjA2VmB3r084eWttXb0XV1VcHaWIyy0FyZMuBGDBvni+4/X4UD8ThxN24+MzAQkJSUiMbEMJSUZKC42Yv/+DYiNTUHXrjG4eNEb3t5ejAcd0ObN57FmzWY4VOzFkaTtMJoMiOgegxFDrsex47kABDasOoSg4H9GsZaXVV460aePN3buysD+/Rlwd3eAQilD375eSE0rQlm5CWWlRmRkFKMgvxwKuRRjxoTgrruisHNXBn799Qz0ugrkFxgwYIAfxowJwaGDWUhMzEdpaeVE63/vSMfZMwUo0ldeurZuXTJM5soERmSUJ8ZWiwkHzxciwN8RFcmFMOSWok+oGyQSQO2sQLneCMcKUW87lpKiw/LlJ1BebkKPHm646aZecHV1tT4/cGAk+vcfjqNHdyMpKR5JSfHYsmUJPvpoDO65Zx48Pfti48ZkCIE644EQAn99kwCT0QI3fy0O/ZmC9NMFmPxQH6i1CuhzKy+FUTtW7tfU1CKcOlUAi9kMqdEMJOlx7Ndk+N3fEyoHBQqzSuDgpITFLKBQyRAUWHuurvrUFQ9Kojyw9VAOAMBi+idB1JR4sPdoLpRqGWTyfyZMd/ZyQH5G826gYKq4/LmyqGnOnC1EYmI+DAZHDBjgi6FDA+HtrbnUR8hBRmYxnJwUCAjwgWfqJAweci/CIxywbPkv2Lt7E05npKPUUAJdQT727Kmcs8diMWHRosexdm1/hIXF4Nw5FVxd2UfoaGJjU/Dnn/HYu/cnXLjwF06cOAEA0GanI1BVAUhkGN8nBvffNhNhPcPh6OaBs+dKYD6Wg759vJGWVoQdO9JRUHCpj6CWQa2WoaLCDGdn5aU+QgFSUvQYMMDX2kdYvz4ZuTll2Lw5BSNHWhAR4Y6gICeUlBgRFFQ5SmrH3+lIOleICqMZ5eVmpKXpkZtbhuLiqj5CKLy8NMjJKa3WR3DG0qVHkZPtCanEHSFBKjz11ABkZpYgONQDfgGutfZBQHgkElIdkHDKDQEOF+CSvw+b3opD7qSbMOCGaQgLc8D110/F33+vQ37+RWza9BOAn7BhQwjuuusu9Ow5HmfOiBb3EXLTUhC/fQvOHtwLXVYmhBAQEiWOqf2RauiBMdPH4ZZbIup8LfsIrYeJqVbUvbsrLBHuCHHzRa/eXvD20iI7p/Kspl5vwMmEPGg1CqSmWnAhvQgKpRRDhgRi3pTxGNNvCAoKSnEg/jQ8PRxQ6KyAx45f4Pzp40hJOYGUlK0AAIlEAQ+PbigrG4KtW6Nx883XIyAgCFu3pgEQiIvLwcGDFwHUPykc8M9BXlZmtLlmnVqPKScH+thYbPnmG+zZvQebivQwiMrh+nKJDKGaMJxS9UF0YH/s2ZoKIcxwDyqHVFF5zGg1laPuPDwd4AEgP78Mqal69I/xwZAhATiVmI+UVD30eiMKCys7IM4uKlzMKsVvvyahSxdnaLUK5OaWQatVIDzCHVqNHBkZJfD11UCrkePgoSxER7ujvNwEhUKC1BQ98vPL4eSkRHCwM/r28UZkpCciIz2xe/cFGCssGDzYD95eWhgvnWmVSIAePdwAVCalUlMrz95XT0wBlYm2vXszAQDXXuuPyN7+AACFlxc0gwbB1WLBu6Wl+PPb3Th2eC9OFCdha24GsnS5ePfTD3DrLz/hX6NvAvoMQEFYFHo042x1XarOMHz2WRwOHar8zrTmxKJVZ2oaO2MDdM7huFe76GgPFKcVQ6WUwigqvxte3lrkZJcgLi4bWVmlSE8vQfbFMhQWGvDHH+fg5qrGlFnXw3N1F9w29SHotGXYvn07fHxC4OOjxcmTuUhL24m0tN3YuXMlAECr9UZa2iD8/HM0rr9+GAYMuBanT+vh4qLEkiVHcfp0AYCG4wFQGRNWrTqN9PQi3HJLD8aDGuJ3pOPYXxcw/v6ecPfTNv6CeuTl5WH58uVYvvwTpKSctS7XqP3h6RKDlBQ9jhy+CCEAVxc1goJhHR2luRQTPD0dcOaPs0hLK0Lv3iq8/voIHDqYha1bU1FWboKriwq+Phrk5ZUj8VQBiktM6NLFGXl5ZYAAFAoJunV1gUYjx6GDWdBo5PD106JQV46c7BKMGB6AIn0FPL0c8PeOdBQWlsPVVW2d+yoyyhOeng7YuSsDDhoFhg7xx5IlR4EyMybG+EEIAaW3GjK5FOcPZeMPByl69fKq1batWnUK69efQ8+envjPf4bUev6uu6bhrrum4Zln1uHnn1ehtHQPsrJOY9euDdizZzP27o3H+PFdAIg6zxjnZ5bg4nk9Iq71RWgfT2Qm6XBiezpWvrYfNz7SBxfP6yGVSaC5NL9W1Y0INmxMRtLZQgzt7Q3pmUL8sHAfrpsTiYvJengEOsJQaoKpwgyLRaCp98+sKx5Un0C9osxk/X9T4kGJrgIKdeWk7VW8gp1w4lw6CrNL4BXUtKSZkYmpNtO9myuyItwh03hW9hG8NcjOLkVqqh76IgNOnqzqI+hx4ULxpT5CDO66YyZGDBuP7IQDSErYDYXcgO6O8YjoEY6DBw8jNXU7UlO3AwAkEiU8PbvBYBiCbduiMW3aOPj5BbCP0E4JIbBt2zbs2PEeDh5cD7O5sh2Qy6ToHeAHs8EM54j+iE+WoaJMi2C3bjDJXXAsXgetRoHu3d0u9REcUFCQhJSUIsTEeGPIkAAkJuYjJUUPvb4ChYUGyOVSuLiokJVVit9+O4suoS5w1CqQm1sKR60CERHu0GoUyMgohp+vFlqNAgcPZqFvPy8AQHCIE/bvz0RWVimcnRT/9BGiPBAZ5YHdu9Mr+whD/OHtrbH2ESyQIrSrD9SOzujS3RmpqXrIFP9cPlgl4WQe9u3PQpnFGQEDxqN/tBxn9u3BvrWrcHj9b+g/aQp+XPEhXn9rLtau3QyZ7BASE7fh4sUULF78CubOzcattz4DFxcldLqKJo8iKsjKwK6V3+HU7r+hdNDAMzgUXsGhKDMIFGQXIO9CGrpJz+PkqqPIH/Iy3P1b53vAPkLdmJhqRQEBTnAe6AtlSKh1WWpqEU4l5qOszASNgwK+vo7Izy+FBEB5mRFbtqQAEOjV2wvBwU5wc9NYR5wYr+2G3Hffx5Pe3tjn5I6DF9JgMJQgNzcBq1YlAABSUv4Pc+f+Cxs3JiMvLxeFhbvg798V0dGhMJvNkMlkl8rZdjp0ugqsXHkKO3emobjYiNRUPYNOK7CUlqJoyxYUrl2L0r37cKysDDPP/zNpbTffAEwYMBr9Qwfg1MkSBAc7QauRo18/H+j1BiSczMXGDcnQahXw8dXAcuk344AYX3h6OeBCehHKy4zQFRqg0VR+fdMK9TiXpINUCnh5aZCRUYRz53RwcKicY8rNTY0uYa7IzSnBl7+eg4ODDJMnh6Gk1IRTifnw9dVi/IQu0GrkSEwsQNoFPYICnRAR4Y6MjBJkZBSjV28vKFVy+PpqoVRVvu/kyV2weXMK1A5y6PQGfPvNSUilQFJSIa65xg933lk5V0hVcvbokWzk5ZcjwN8RvXrXnstKIpVC5uiIrqP6o8gtEDf39sJrSgN++vVPbDm2EzMjI+CacQqmoztwoawMr5mMmDtmLKImTIDm2mugDA2FRPLPj/TGhrRXnWkoKzOitNQIk8mMXbsutNr3YPr08CYnulpjOO6VnpiRmickxAXlfbxhMlmsHV8Al05UGGE2C8hkEoSEOEMi0aO4yIjY2BR4eTkgwF+DopQiDJgShq5dZ1s/tx7dXJEeNw2HDnviTMZRZBWmoqQkG1u3/oGtW//A11+/jdWrj+HQoTzI5RKcPbsdRUUlUKsdUFRUBCcnJ2s9ag4jX7XqNBYv3o+KCjP0egPjQQ1HY9NQeLEU65cewy3PxEDtqGz8RXWYOXMmYmNjAQAqpRr9u45Gr16TYBLBGBDjA52+Al27uV46y12Ct/93AN4+DpBKpJDJAPOlmOCgVkB56c54Vcmlrt3ccOTIRVy4UAyLxQJDhblyioHEPJjNAlFRHvAPcERxkRGOjkp8/fUJ5OWXY8SIQERFeiIxMR+uLkWIifGFQikHIGCsMCM+3gHR0e7IyCxBRmYxevfyQmpqEUpLjOjXt/LyvuEjArDj73TkWEwwGgWO7MmAwgL08nHCgZ+TIEzC2vZUtUcJCXkoLjbC2VnVYLs0ZUofaLWuGDv2Vej15/Hpp19BLi/HwIHhGHjp3h4vvfQS+vXrhxtvvBGKS5PyJh3OgVwphXuAFlKZFEpXJZy7uaAkpQir3zwElUYOZy8HqLWV5b28tfDy1sJQYYLBYEae0Yj+vf1QdL4Iv38QB0gAd38tci8Uo7zECNGMO+nVFQ+q7soHAOWl/ySmmhIPyvQVUKrl1ssSAcArqPL7nXoiH15Bzk1q9/Oym3fpH7Wcf4ATBg7wg5u/v3VZaqoeiYn5KC83Q6NRwNdPi/z8sso+QrkJW2JTAAC9enshNHQcPELDYUg/jJwjf2DD2b8RFjEQd85+FKfPHsORI/tRUVGKnJyTWLnyJAAgM/NxzJr1CDZuTEZOThaKivbD378revbswj6CnZmMRvz83deYefd91mUBbi4YGt0LfSMHIj1PCw9/H/hGhkK4lUJfZEBiYj42bUqpPFZ8NTBfaoMGDPCFp6caFy4UobzcBF2hAVrtpT5CWjmSLvURvL01yMwows5zOjg4yOHjrYG7mwO6hLkgJ6cUX/yaBAcHOW6YHIaSUiMSE/Ph56vFtOndodUokHgqH2lplZf5RYR7ICOj+J8+glIGH1+tNS7dcEMYNm9KgdpBBp2+ovIyPymQlKTDNdf64c47owHAmpw9ejQbeXllCPB3RO8+3nD31mDQ1FuQn34BSQf3Yd/an3B4/a+I7DUa0qkjMXb8/XBzk+Dzz1dg9+5f8dhj/4e+fStHSO3btw+fffYl7r///jrv9AoAicfOY9eqH6A7uwcqjQY9rhkG3x7hcHR1g0KttvYndu1MwcG/9iFAfR5fP/MYbnjkKXS/Zshlf/7sI9SNiakrKDunBLpCA3x9NfD3d0RGRgkAgagodwQFO0OtkuPIkcozoy6uauvZuioKb2/0XvgfBK1YgXsPHkTxuJvwsWY49BWZkMnSceLEEUyYMAouLkpoNHKcOnUGR458CQD49VdAJpPB19cfbm5+cHb2RnFxPxiNoXB1VeHmmwORnX0KeXk6mM1yGI2lMBqNkMvlNp17atyuHak49v0mDC6Pg27/ViTodBjcJRyi/zAEeASh/7pv4O7oixBNb/g6+aMwpwJnyktx4UIxsrJKUFBoQHSUB5ydldi1Kx2ZmSXQaOQQwgNGoxl5+WWoMJgQFOgMjYMCHh5qZGWVQCoDLmaVITm5CGazBYAUMpkE2dllqKgQqKiogFZb+XlWGIxYvfoM8vIqR08BEgQHO0FXaEBysg5miwUxMb64+eZ/MvcHD2VZj0+g8pjw9a1MnGbnlCCsqxuu0RtxMiEPebnl0OuNKCs1Ql9UYR01BfyTnPXwcMDAgT7o28e7ztFUVderV43QqvLsU/fhWdxXOazWYIApNxevvvsOvj96FF9+8zWG/rwaM11dcV1gEBwHDIB2yGBor70W8QkCey6N0GqooZ0+PRwnTuQiNjYVsbEpdvnxVVW/+Pg8m7+bY+vWNGzcmIzx47tg7tzWn5iRLk/1US8xMT7QaOTIyKyMCTEDfJCaokdOThmOHs0B+njCz02Fw7+eQ+SoAHg4q3DmwEXs+vkswl1jMP7xccgrrkDqiXRkXjyNC5bzSM1OhJubAv36+aOw0IwzZ/Jx6tQa6HTn8NxzS/Hcc4CLiyvc3f3QtWso0tM1KCoaC6DyOxAXdwwlJRmwWJQwGIpQVlYGlUplnd/halZWXIHCi6XwDXNGTmoRvn1pLwJ6uMLJXQ0HJyXUjgqotQqotHLoiitw4HgOJBJgxIgAxMb+CSencAQH+0Knq8C0aXciNzcXffrchO6iPyRyBxxP18MkDPh5zRmoVXL06euNYUMD8M03J3H4cBZkcim6d3NFaJfK7+7u3elQKqUYMiQAHh5qJCbmI+LSndiyL5agosICBwcZHLVKlJRWoLTUDIHKS6779/dCZkYxTpzIQV6+AcIikJpahAnju6BQZ0ChrhyFxysnT4+IcEfMAF9MmNjVOiKraiSXRiOHTAZoNHLkZJega5gbRo8KxpYtKYg7cBHGCjPy8spgLDaiTxc3ZPyVjsMaJfqMCbK2R5GRnggOdq418WzV3FGAwJBBfhjY37dauxyIiROH2ZQ/d+4cXnvtNQgh4O/vj3vvvRf33XcfUk/mwc1XAwcnFYDKWHQuvQjdujtD5BhQqq9AaG9PKDW2P4WHDAlEaooeR4/m4FRyIW65JRypJ/IgU0jhGeSEwuxSmI2WJt1JryEV5f8kowzVRkxVnTSpfjfDmu12aVEFFCoZJLJ/vp8OTko4OCuRdqoA/ceH1BsTLOZ/LhvMbuacVNR6srNLoSs0wM9Xe6mPUAwAiIryQFBQ5eVYh619BBWCg52h0LohbMxUSA05OLNvN7IP/oV+EglumDwYZTfPwtbDhdCV50OmuIgTJ45i4sTRlX0EBykKco/jcNwXAIBffgHkcjl8ffzg5u4PJydvlJTEoKIiCK6uKkydGoDs7NPIyytkH+EyVV0+OXKoBwrS47Dzr23oE+CE/NSzMFYYEOThhiBvP/QI7ANnt+7IK5TjbJ4jUlNLkJShQ74+FdFRnnB2UmHnzso+glajAIQHjCYzMjKKkJZWeYmel5cGarUMmVklkMkkyMoqxblzepjNZkgkMsikEmTnlMFYYYGxogKOWgUgAQwGE1avPo38vPJLfYTKmzPpCg1IPq+D2SwQE+Nj20c4mGU9Pqv4+WoRHOyM7OxShIW54pprK3DyZB5yc8ug11egtNSIoiJjjT5CZXK2so/gW9lHuDSaSiKRwCMwCBcL1Sgr8IFWnobMQxvgrvgL5pTJCAyfjHfffQbAMzb7/IMPPsD333+PN998E5MmTcKDDz6I8ePHQyaToaSwAAd++xmHN6yDxSKBU0AU+o0cAFdvX8gundSobuiwEKSmleJonBv6+57G7++9ievvexi9rhvXikdJw66mPgITU62sIL8MablZ1kuasrJKEB7hjshIT5SUmrBzRzrMZgsmTeoCD08HODuroNcbcOhgJn78MQGeHg4Ye32o7QTU196IwLAw4Jdf8IgsGZui7kSf2XOt186uX38OpaUmaDROiI6+DiZTFs6dOwOj0Yj09DSkp1fexWHs2CgUFSnh46NBaupxbNjwhLXe335b+ZBKpVCpVAgMDMS2bdvgX+3MDtkyJCWhcO0vUH23Ci4FmXhWX4wtugKo5Eo8230WnE2+MF2U4r7Rj8BiAo4ezUFqYTFMxsq7LxUXVUAml8JoFMjJLkVIiAu8vR2Qm1uGcoMJSUmFMJkEjEYzivQVCA11Qd9+3tZjS6uR4/MDx5GdXZnIcnNTwWwGBg70wfbtF2AyCRQWGmAyWXDiRD6USilcXVXo0cMdyck6+Ptr4eKqQk5uKYr0FejV859kUFVStWtX10u3ERfIyipFeIQ7vL20WLv2DPYfyEBoiAsGDvSBm6sKBYUGyKQSpKUVY/BgPyQk5GLXrgyoVFL4+ztak7MZGcXw8HSwSU4djctG3NEcpKXqsX59MgYP9sOQIbYJIolEAolaDWVgIKbeehuy5HL8dfAgdpaUYGdJCfwLCnBrdjambdwIL5kMXZxdINeG4vD2YFjOX4/JD46t8wdVSooOWq0SAwb4NHj72Ya0xtmGyw8M4tIPhNqdpc44QWJHkJtXigupRejS3RWpqUXWBELMAF8AQGmpCTuqxQQA2LU7A0azwP4LBfCWyICt6UjYWnlbeaNcAv9wV4T19Ya7rhwKRwVcTrqgR1l/eE/xxG0P9AYAeHvnYePGZHh49ISbmwuKitKQl5cLna4QOl0hkpMT4OMTitDQqXBzUyElRYc9e95GSUnlSNwVKyofAKBUKqFSqfDiiy/i2WefbeM92D5knC4EAAREuKFrjDfOHclBfmYJspL1MBnMlZdDVfvaFZXrsfXkOjzz9Hrk5GWgd+87cd1182AyWeDu3gUffvgbfll+Eq5yBRJzi5F16Ue7yWiBXC6Bq6sax47nwttHA4VShrJSI86n6AGJBGVlpkt3TFLhlunh1ngQHOyELX+dR0GBARKJgEKpgpe3Gr39PLFvXyYyM4ohV0gRH58Pnc4AhUIGZycFnJ1V6N7dFVu2pECllqO0xASLEMi+WIouYf9cDqbRyOHqpoaHh9r6nmZz5TGcmlpkPY6jo90xaKAPXF1VOHY8B8XFJrhEucChTGDPmiT8vSYJRY5SuPg4wNNTjcGD/aDTVdjcbS8+vvL4lQMo2pcDs1nAd5gPZt7VE3XRarV47rnn8OWXXyIjIwMvv/wyXnvtNfQMGYxpE29HP2Vlux4c7ISTCXmI3ZaGUaMCMXhMEORKGWTVkjtVCeSquxf26eMNuUKGsH7e1jIKpQwmo6XBO+k1JSZUlJsgkUogLAKGaiOmqjQUE8qKKuDqpbEZMQUAnoGOyE7Ro6ykAvXFBLPpn79dnVs28o9aJr+gDEkZWQgOrrykKTOrBBER7oiM8kBJqRE7dqTDYrZg0qSwyj6Ckwr6IgMOHszCjz8mXuojhGDAgFDkFDkipfQM/DTZKMrNhS77BHrBAqgBiUyB0cMiUbDle2SVfokoixkqtzyYAn1xUV+MnKISmEwmXEhPw4VLfYQhQ8Lh7e2Inj09cerUfmzY8Li13jX7CKGhofj777/h6Vl79DtVTp6dk3IemWdP4e9Vf+P86YP4+fMEnMjIgoNCiRemz4CTR1cUFTn8P3vnHR7XWWf/z8yd3mekGfWRZEm2JfcSF9lO4jjVJJAEEhJCWNiFhYWlLWVZlmULbQm9E8ISSAJJSOIkpNmJHXe5xEWyLcm2+qiNpkjT+9z7++NqxpJLCGxg2f35PI8eyeOZO3fuvPe+95z3fM+XD9y1CVGh4/iJMONDeXI5icTwVJEj5Aococ5KWZmBQCA1gyOIxGJZJiYS3H13M3ff3Vx0IBkNah547QR+XwK9QYXdpiUvSqxc6WL37hHyeTmwPJsT6eycRK2WOULTXDsDg2EqK00yR/AnZY6waAZHmBZVGxttWKaF/8JYdrkMMkc4PE5trZUrrijHZtMSmm7AMeyJsra1ku6uIPvbRtFqBSorTEVxtsgRZpT6dZwM0HFawlEyBwOlzLFNcPT5Z3jt2aeomt9M84aN1C9diaVULju844478Hq9vPrqqzz//PM8//zz1FRVce0Vy5ijzGMx6ilrWkDfhInTAyoMdUpaqy4UpQqfVadTUddYxrzViwl1b+eVn/0ApSCw4KpNb2g8XOYIbxyXhak3Gd6JBGeC8pdecEDN/J3Pi4yOxWjv8HH3XS1s2mTkyFEvO3YMEQym0aiF4vP37x/j4MExjh6d4G/+ehENn6zH/4tf8rZjP0RV5UW69gsoNBoWLCiZzlmoY+PGD1NbayWfzzM+Ps7hw10cPNhFJDLByZNleDxRXnttgvLyHJWVlQSDQdLpdHH/RVFk4cKF/PSnP8Vo/ONzNP6vIjc5yeAjTxF66mn03n52pjPcPxXiVGSq+By3083ZyRRLXRCLZZiczBMOpQkGk5jNGubOtREIxunry2M2qdFqlQSDKYaHo8yb52D5ijLOnpkkFEpjs2lJpyW6u4MYDCqWL3cVRak9e0bwDIXJ5eSLjSAokSSR1WuqyIvQ3u5Dp1WRSGRxufRU11iw27R0dgbo6grS2ztFfb0Fz1CUfD7Pzp3DJJM5Fi12cvKEn2PHfCxf7mLTpjp8/jgQIBxK4fPHCQaTRMIZBEHJ3Xe1XPRYPfpYF8fbJ7BYNDS3yMLsTIfgTGGq0Nmju2uSkZEpUqkcGq2qWNZ6PpY3LOILd9bx+XdHea7tVR7e+hJjkQjfG+hnS2kpbX/3d+Q9HkzHerg5fQLh+89x9ldWDMuXYWxtxbBqNdqmRhRKJZ2dQcLhNNddV/dHu6XejNWG/87EsH//CB0dflauLGPjRvcF//9/MSDxfwNGR2L09YUQtMIF80Hh78Kc0NHh4667W0gkcuzc6aGvL0x3RuSqtVVsWFXB0fYJOrqDKEfCdPRMsa61kitWV+KtMXNyxwj+9gBtT/ey5q1zinPCDTd8mY0b3dTWWolGoxw4cIoDB7oQhDAHDkxw6lSM9nYFnZ1Bysrs+P0WotEo0owl0Gw2y49//GM2bNjwZz9+fykYOTOF3qzGZNdhtGpZep1bFiZysmsm4ItzumuKySkvOw88xq7Dz5DJysHaBq2FEpWWTCRNComhoTADZ6ZYoNfhjaewOvXM1ynp7pokHs9iNKpRKGHnq0MEgynqai34A0lSqRwDAyGQIB7PUjHtXi0gEJCbUyRTeVQCxOM5opEcm64pRa1S0tY2jsmsRqNWcvbsFNXVJta2VuGbiLPz1WHyeZHyChMmk4qhoQjplIhGo0Srka/DY+NymHp9vQWnS74mFxxWlRWm4jiuqjJy193ynHDjTQ3F/ZMkiScf7iTjS+FAQy6VwBNIMTQUITctlBSuUYXxmx6KkhtPolQq6Hp1hBdLDRe9sS8rK+ODH/xHVq9+Dx5PG08++Sv27NlDR/8+On60D3Ml3HrzHThdRnwTCfp6Q+i0Ktatq7ngu54pIBc+x/lQaQXyWRHpdRxTb2ROyCRz6IwqktEs6elmIzPxenNCOp5DqFKiOM/Q6Kw1M9w1yXe/eoh5K8t4z3sWXPD6/IxOfHrNZRrw58SEN0H/uHzP7XZbLvgt5ofPcYS7m9l0bS1HjnjZsd1DcDI1zRHk57cdGOPAgTB2u5X3/dUaVlQoGTo7yMSoH5NOQqsGlArSGQhOZmmuUnHtLVZsDjNKtQqfL0B3Vw8D/b34/OM0Grt5baKMgYE6qqtFKioqCAaDZDKZ4v6LosiKFSv4/ve/j1ar/fMevL9ghH0TjPWcZrznDIOnOpkaGUTM5zg1NsHOM4MMB4PF57pK3ZwIVNLsbCSQTpGJ5QmHYgSCacxmNXObbASCCfr6IrM5wkiMuXPtrFjh4uyZKTlbViOQTucJhTJkMvlZotTuPSMMDUXI5kT0EigFWQRfs6YKUZQXy3VagUQyh8upp7rGjN2uo/PUNEfomaKu3srQUIR8XpQ5QuIcRzh6bIIVy8vYdG0tvumS4HAojc+XIBhMEg5nUKkU3H1380WP2aOPdnP8uNy5uLlZFmZnOgRnClNFjtAdpHtYJNzYyDXrV6FODhH1DrH9gR8BYC51UlrtBo2FezbcxK1XXMG2vbvYeeQYw6OjPDg6SpWzlMd/9D3sZeXs/0kXZ3uDaLRjtLZWXXQ/PZ4I8XiWpUtdLFhUhthyF22//TWv/OwHGO0O6hYv+73j4zJHeOO4PCO9ySgvM5B12mcR6plh0Js317N//xg6rQqfP47LacTtNrN6dSUeT6S4crl0iYuSEh2SJCvlDz/cxb33tjDvn/+J8JYtxJ9/ir6Ow1R98xvULlp0gS3v4MFxnnzyLFVVNj7ykffR2Rlk9+6dxOMxYrE0t956K7feeisgTzS7dvXx8st9NDaaEAQRk6kaq/UvY5D+T0NMp4nt3EXo6aeJ79uHJEocyuv42oiX0WQYALWg4m0bNnLD0msY61XS0eHnVGcQg15FKJRmakruwldebmTpUiedXUoikSwlDj1ms4bu00GmQmmOHh2npERPJJIhlcqj16tIp0XiiSxnz4ZYvDjOrl0ekqk84+Mxsjm5A0VtrYWycnm8HT0yTiqZZf48OxUVJqZCaTmTSq9mYiKBz5ckmcri88WJxTJks/L7JJM5jh3zYbXp6O2d4vTpIBaLmk2bZAef1SaX5FltUdatq8RoUs2YLAK8sn2IVDJLU5ODdeurWLrERTyWK66wAyxbVgZIF5StlpTqaWpyTAtnWlwuPWdOTwIXD1F/8cUBBEHB+g3VfOmDH+Sf3/c+ntm9m/967ndcs3Il1qs3IkkSXdU9fPepZ3j/4jrmGVKke/uI7dkL+TxKiwX9smXMbV6Gxt1AY7P9jx4jb8Zqw39nYti+fYgjRyaw2V4/q+Uy/ryoqjYhiVIx+LwQfn70iLf42ObN9exvG0Ork0ui3G4zy5aXUVZuYHw8RiSVJa1RsHBVOZ5AkrNng/T1hUgmsjS3lFJeacb5rnl07h7l+Mseeg5PsPDqam57yxysTvnGbv/+ken5wMR73/sOamutXH/9EwSDozgcehYsKGH//v2ALCDs2TPItm290/NBngULypg79/cHdP5fhacziK3MUOx0plAoUGsEmM7SmOgO8r1f/hun+15BFGXnS2V5A5uvfBdNJa2oMyo0KiVTqSx6lNTqdeRFiV5fnDmlJTgcBuyOJI1NdsrKjIyPxzjbHyYayzDhk8s20tNB2bmcSD4PY2MxnC4jO3YMsWunh2g0Q8Avi2EajRJnqR6FEjzDcsC3Vquk1m3GVWZEUCmpqDBhsWjYtnWQQDCJyaRGnC7ri4QzxSzB06cn6eoOcqLDN+3OkR06TpcRmzU6nUulY/Pmejo6fMWA9K0v9bFjh4fGRhu33z4Xp8vIwpXl7N8/htGgwpCRUIXzmI1aLItsF1w7S+06Ro4G0Dg0eCeSuHQaDu2VOxidf43bv3+EH/+4HZVKyTvfeTW7d/81v3t4J9++7wec9R3m+ms2F59rcQxTWpZkbeuii37XFxOQz4daI5DPieRndNI7H29kTkgn82iNapLRLKmLCFOXmhPyWbHYee98F3BplQkJ8PaGyeoE/vVf113w+pmB57nspT/DZbz5KCs3oLHK5U4F4u3xRAA5/2fz5jnsbxtFpxPw+eSAaLfbwuo1F+cImUyekZEoO3aO8LGPrWBhqZOL+wpno7sryPGzeUrKruRvb7ub4/s6mOzex1sb9zJ00sqnP/0B7rrrLmAmRyjMCRImU/WszML/35CIhPGcbGdo+icakLtrGixWRLWVDp+S548cYCoqL1qr1Wo2b7qe9atuYLBXQceJANHYBHq9mnA4zeSkfO2uKDewdKmLzq6AzBFKdJhMGk6fnmRqKsXRo15KS6c5QjKPKp0nlxPlBltdQZKJ3DRHEBkfj5LLiahVSioqjej1KixWDX6/LCLNnz/NEaZShMMZDAYNXm+cCZ+8EDLhSxCLZWdwhCxHj00wNi43cJnp1nS5DFhtWk6fnsRq07KutQqjUT1j0TnIc8/3EotlufHGelpbpzlCPDvNEWSxdfmyMuCcWFuAzBHs2GxarJYgrjIDfcN55s9fzJXXXkMk4MM/MEDY72V8aJTI1GkUSOiNWu5oXcm7btzE8X4PL7Ud4sZNGymfIy+arLzCSVfffpYuv/mS3/X5ArJSEFjz9rvY/ciDPPftr/HOf/s6rrr61x0vlznCG8dlYepNht2hp6y2vPjvQr4OnCPY4XCaWCxDjdtCMJCkvcNHQ4OVykoTBw+OEZxMEY/lqK+3cvXVNXSc8BONZWnv8NHcXEp20y1M6qtxHN7K4DvvwvaOd+D67GcRTOcI/C9+cZLf/a6PqioTLS2lLFhQQmtrJadOBbjiitnleUqlklRKQK02MTqqIJdTUlYWY+5cF/+/QpIkksePM/Lwb8nufAVlKoG6uhrTNRuZMFUR6Agy3tuOXqNnefVqPvKO2ykvLeXM6UlGxyZIJnOk0yIKBWSyWbJZ0OuUaDQCvX0haqotOJ16kskcXV2ygBUWFGQyEuPjSdRqBVqtXJ4HkMnmKCvTMzAQxu9PkkzmkEQJk0nNyhXlbLiymu6uAIcOjZOenqgEQYkoQmmpgXAoTSKZpaHBhiiK9PWFAAVWm5a5ZUbKywwcPDTOVChFwB9ndDROOJLh6NEJursD01kg8k2I0aAinsixaVNtsfPkiy8OcPKkn1xOZCqUpsZtYeWKcpqbS+nuDhRvpCorjbR3+OjtmSqWn7icxuJ5Mm++g099qoG2thEOHBinvv7c5FQIUW9rG+Xs2UnKyoxFB5fLaeSu667jruuuI5/PF587lPLwxOmtvDio485rr+Vv3vY2mm020r09ZDweMgMDZPftoyqfJ32/Cc/yZRjXrsW4ejXaefNQCG+s59L/9GpDoQTxjy1FvIw/DUpLDHIez3nh56en5wRgOmcK/L4E+/aPkU5lcddaaGkuJTQlh53qDWre9tYGli5z4ffHSadn58JMBpNkLWoa15YzNRTl0LN9HHy6D71ZTUmViaOdfs6e9NOvV9FQacaqU7N6hQufN8bmm+qorDCRScnXlHQyx+RoCn1ei7cnS1JQ4HS+0d5j//cQGIkRCaSobLKh1grnSr2mhUUAo1GNUplDFHNUlS/ipk1/xarlVzLhTXK8K0BwIkFDuZESo4YSg4bhQAJPIIFSLxCLZaits7LqijKUgoKenhAmkxqnSyYfORHCkSwOhxaNWokoSUxNphBUSnbsGCQSyTAVSjEZTCEBpaVabryxHjEvceyYjx07hnA45BLxcW+CDesr5e5g3gQDAxGqquTPUFtrKXb0s1m15HISsZicGRgMJhgdiaM3qNDrz40Ft9tcdE253c6iw8jvi/PCCwOMjcWYnEqzcmUFTpeR5ha5FKSjw0fTSifh4TiTQ1GiYwnCPWHW3tbA3JZSOjuDnNo9ijknsnR1BeudBl59qJusN0EyeU7AKZRHPPXUGQ4fHqe+3orPF2doKIxZUcF73/IpVmx2YzDo8fviDA1FePzZb9E/eJYznqW82/c+brnxNnQ6fXGbBQH59aCaFiTTiSygv+hz3sickEnm0GgFBJWCRORCYepSSE63aVdrLsx/U2kEdGY1c1QmVl5z4co4QG6WMHW5K9+fEw67noYFMzlCpDgfFISqcChNNJqlpiYymyNUGDl4aJxgMEk8nqW+zkpVpYlx7+z5oOCamSl+nY9Xtg9y+JCXkhIdNTUWlm9YyuPD4IgfoDbzEv6ha3HWymT7HEcwT3MEibKyKE1Nzj/FIfqLRSTgo/fwAc4c3M/42W4kSUJnsaPQl1C7Yj6Vc2ow2ewMDCVpD54kFH0Wg95Ic/163nfPOyktcXD69CSjY75pjpBHQYpMVm4YodcJaLTTHKHGgtNpIJnM0tU1Oc0RlGQzIuNjCdRqJVqtIJfIheUSuVxOYmBQzqpMzOIIFZRXGDh+zMfZM1MEAkn8/iSZTB4xD6VOA+FwhkQiQ2OjDUmSzuMIdkwmNUeP+kgmckwGk3i9cfQ6FZ1dASorTTS3lBQzqcKhNG63peiU8vkSvPhiP+3H/eRFCatFS2trVbGbX3dXcAZHMMkcoXdq1hgunCfz5zv41Kfn0NY2yoG2MebMsSKoVNjLK8kqbYRVYXoGPJwdDOByalmzsIq6BU7KK62sVqv50N//vcwRps+R4YmT7H7tMY50/Y7bXtvMu95xO3Mb5sz63l0uwwXnkUqjofXOe9j98M955r5/556vfhejzXbJsfPf4QiimOdM216GTrajN1tYduMtxZLFN4r/TRzhsjD1JmJ0NMpod5AKg7MoQp2/+tbe4WNwKIJWq6S7K4DHEyU4mWJsNC6LIckcVZWmYsB1c0spK1eW097ho9Zt4chRL+FQCm/Mwby3fABHx04mn3yKyZe2Uf3FLzC1aD1dXZNMTMTJ5yXMZnXR+v7FL7YWa1xnYmgojM+XoKHBSlOTnWeeeYJXXw3idt/FwoVvZO3l/w4yHg/h3z1H+JlnyI6MkDdaOKOv4GlxklAwwUedKzhwyIegcvHv7/kkZso52xUjOqVk1XI5TLyp0YZBryYWTzM+lkDMg0oAu8NAKpVjdCQGkkQ4nOb0mSkikTRajQq9XoUkZcnlIJeXKC1VEwqnSaXzOEsNxOJZTp3yk0hk0WgEtFolBoOabDbHsCfC+HiMaDSLxaohGskQj2cJBJNUVZlQKhWIeYkat4V166t44Gcn6OmZIp3K09paRU/PJN7xOJmsKJd8mNRo1LJF+NFHT+N2W1i3rpKVK8rZsWOI48cnWLasjE2bZFFJEJS43RZMJrmd+czV5kJ+VAEd7X7GRuOYzBraj/uor7dQWWli3nwHRoOKI0e9dHVN4vcnGPJEaJ1ufuHxRDl6dIKAXy6JLHXq8XoTWG3RWa4qQRCKQlcgn2aeu5YzniEefP55Hnz+edYsXMj73/o23nrHnWhEkXwoRLq3h6zHQ2bIQ7ztAORyKI1G9MuWYVi7BuPqNeia579hoerPjXXrqi9Zhnix2vZCGOfMFtDpdPqyNf9NxNBQmI4OHxXlhlnC1Mw5weOJcvzYBD5fAkmS6O8PkclKjI7GKZ92QFqsGkpK9HJm4Xic1WuqSKeyLFniKookofC5sGpzo4XBaBK304hRLRAKJLGh5IbF5QhKBWN7xvn1nnHKgQ+01sJknp99bPcF+++Y/q2zRNm582WGh6v54Ac/+Kc+bH9RyOdE2p7qQWdSY680olAoGBqK8NxLL3Go/XE++J4vUOaq50DbOMsX3MW8+psQcDOnxsmSxS48tihqjYL2dj8RJDrPBEgncogSGE1qnBYNk1MpaussuGst/PLBU0xOpnE4tFitWpRKyIuyRymTzqNRKxEEJWazlmQixxO/PYtCIa/kShJMBlNYzFqqq80kk3mUSgWxaBabVT6v0+kc3d2TXHV1DSazBjEv0rquGptVS1vbKD29UzjsOioqTJztmWRkNIpOp0KrlRtrSKLEgTa5oYRnKMKSJS5sVi1Hj07g9yXYtKkWp0ueE0pK9eRyIkuXOmfNBx0dPjngfxqdninmlZsRh2O8/P0THJ9nJZLMY07mMZXpGRqPUW9UkVUpKMkJnDrhK3YyKoS5iqJEZaWJmhozfX1hXK4gkYEwJrsWrV4+9zyeKCdOjlJVPpeR0UFOdrbzj//6cb76rX/lHW+7m3vufC917tmE5FJQTQtCF8uF+kOQSebQGlToTGoSoTSSJL2hYOlkTC6tUmkvfgtfM8/OQHuAJQsunv/jGQwX/y6U9Z0/J1yeD958jI1G6e4O0qiyFYnu+W6McxxBoLs7KHOEYJKx0RiiJJFMZoscYdwbZ/WaSlKpHEuXuIpkOxxKM+6VFzwKwtbSJS6aW0qKzwmF0oiihF6vKpL/d75rKQM9FQSPP8Mz932Je+/7Pjqj6QKO8NRTj/Lqq2EaGu5l3rw31lXsfyvSiThn2vZycufLeHvPohQEHFU1NK1Zj6OimsFxkeOnvDz30n5EaTfvfvv7OdA2hlbt5B8+9I/o1W5Od8WYmlSwfJks3MQabRgMKmKxDOPjMldTCQrMFi3hUBqTSW5oNT4e4/RpmSNoNAJ6vYAoieRzkMuLlDp1iJKEWq3EaFTT2ztFNpsnkcyiVgtotYLMEXI5cjkRpRKisSxWm5ZMJn+OI1TLHCGfh5oaC+vWVfPAAyc4e1aO1WhtrWL3rmF8vjigpKbGRHm5kUQ8S2enHGzudltY11qF1SbPBz6/PB8URCWloMTtNqPRCqxtnW2OuDhHiMkcod1HfZ1s3Jg/34HRoObIES9dXUH8/iRDQ5FiCZ7HE+HYMR/+YBaN3oC1xMLEpITdn6O69lx+lMwRZKErnMhS565h0DPMI088ySNPPMnqFcu55463c93VV6FWXVom0ZtMrH3H3ez99S95+uv/xl3/fh8qzZub2RcPTfHsN7/CeM9pzKVOkpEI7S+/wFs+/lkaV6x+w9v573IESZIbav055oTLwtSbiJ6eEL7BCFnnOaLschovyNLp75Mv8h0dfpRKBTqtwIIFDtRquT3zosWyEnryhJzpk0nLX1NfXwivN0Fjo41582Xyv8OzinGdhWvFUyg/8xl6hCp21L6NsoomFi0q5ZZbGooD7VKK7cyk/nXrqvnXf32BHTt2sHx5y/8XwlQ+FCKydSvhZ58lebwdhVaLrqWF7tI6vn24nf2el8nmsyhQUKlbQyygxu228IF7riYYSCJm5NJMkOuiTSYtb31bBUaDiv/6xUn6+6bIiBkmQnF6x2OotDkO9WYIx+NkcxlyYh7Ikyc/XSQhICiU+Pxq8lkFSjQYkwZ0IT35tApB0lFe4qC21s7ERIKurkn6+8PYbFpsNi16vQqVoECSQKsV2L9/DKtVW3QY4Tbjdpvp65siGpWD9ycn00gS6HUCJpMKq03HmrUVBPxJRkYinDkzyb59I9x11zzUamFWgJ7bbWb9hqpL5kHZbVqUSgX2GRbSWreFIU+E48d8tLdPsGlTHbfd1sSRo95iB7+ZpYKF9+npmSTp0NHc4pBtwIncRUsuCo9d567lY/duZl9HBz//3bM8t28fB0+d4uCpU5TabLT97AHKKypQV1TIXf9SKVmo6usl6/GQHRnB/53v4s/lUBgM6JcuwbhmDcY1a9C1tKB4nUnrD8Wfql3rxWrbt28fYvt2DwAtLUY+/OEPE4/HefbZZy933HmT0NkZpKd3CkmUqK63FR8/35HR0GhnYiLO1FQarVaJ1aZjwQIHTqcRg0FFYsYYD4XTspCtU3H6zCTBthRiXqSh0c78wpywY4jDx/wcVwcxWzS4a0yEcnkmJ5OUl+hZMN9BTbUZMSuRy+WRJFAo5B8USsbGYwwNR9EZBFwaNWNjp/nmQ1+mpaXl/5QwFRyNEQ2mqFngmBV+DXIo9dCpIMe2DhEcizO/tZzhsTBf/8HPOXjscTyjPQA8+JufsrDxg8SiWWprK7j+uuV4hiK4ay1FVxVANiNhMKoRJeQFgUwGTT7O2f4hMukIZ/ryoEji9YbIZDOMB3NIijy5XA5QolGrCKfUSAElkqhCJRhRq0wo0CMoDUA1revq2bVrmEgkzdNberBYtThKdORyIrmchM2mRa1WEotleHnbIK3rKqmstAISBoOKZCpHPieRTGWxO+Sbz1xWRGVUUF1tYf48Nf5AkqlQiief7GFsNMbefSPcc08LFouaSETuxup0yfEEt9zcMMtVVoDNpkUpKGaVFLhrLQz3hVBG80ycDqEERJ2A2q6lpy+EoBGoWejA2x6kwW2bsTU5X/GKK8ppaSnFatUQDmeYP8/O1ueHqFtSWhSR5O+imltu/iFKVZInnvkNv3niV4yMefivh3/Cfz38Ez7+d5/l4x/6zO8dOxqdfN1PRDO/55mvj0wyh8GiQW/SkIhmyOdEVGp58eP15oNUwTGlvfhCiavWQu8RH6NnQsxfe6Gjq7cnBIBCUJDPyVlZM+cEn+81PvKRj/Dcc8+xYsWK/9ZnvIxz6OkNMTgURmONFIWp890YS5e46O8P45uI097uQ1Aq0WlVtCwoQTM9Ns5xBJnMl5UZaO/wkcuJjI/HaWqyTc8HFrlLZrufnp4pUsk87lozJpMGm01HbZ2FVavKz9uXeqYa7mLPIw+y479+zOaPfuYCjvDZzz5DW1sb69ev/D8pTEmiyHDXKU7tepmzB9sQc1lKqt3MX3cVJdW1mBx2tEYTO3d38pNfPMSpswfJ5bMoFErU+WWIeSN1tRbe/tbrCQaS5LJyaSYUOIKGt761EaNBfY4j5JJ4fVPkxRTBCBw5kSAQCJPNZcmLeZBy5KX89FytRKlQERtWkc8rQdKg1xlRCXqUCg2SqMdVUkJdnY2JiTidnUH6+6Y5glVDPidiMWswmTQyR9g3isWqpaxMrq7ALV8ve3uniMUyHDniJRLNoFAoUQkKjAY1V19dQySa4fjxCYaHo5w5M8W+faNs3lyPxaKZng8ixVLUDRu4pIPPNs0RbDYtdUW+amFoaJojHPex6dpamSMc8RY7+M0sFQR5+z09UyQSepqbS6Y5QvaCssDCc+XfN/J377+VA68d4ddPPsX23Xs5dPQYh44ew1VayouP/xrb68TaWJ1lrLj5Vg4//QQv/vBb3PLJz71p99Dx0BS/+ZdPk0nEmbP2WhKU0FBuYPDAVl783jd457/9J2VzGv/b7/P7OMK8eTo++MEPolKpeOyxx/7kHOGyMPUmoqnJhqHOQsXrZBM0N5eyZk2cAwfkC4FBryYvipQ6jaxcUU5b2wgPP9TF2rUVWG1azpyexOuNMzoWQ6kEq0WLxaJl5YpyursD+P1JVLW19FW1cHj7blZlzvKh/h/TE1rIqSvuorRUP6vbzcUh39wFArLd0j+dU3H6dOBNPkJ/ORAzGWK7dhF+9lliu/cg5UV82jK0S65kwGLk+zt2cnjwBJIkrya21Dawoelq5tgq6EtHUKuVbNs6wMBgmImJBHq9kp4RD0e7ehgJeFEbU4STYWLZMIFIkLyUg8jsfVCgRKkQUCL/KJi+yVSISEiQE8mLeXJSBs7r6KyIKLB4rVi0VnRKC4aUjUpFOXVl1SgyJnR6FQ1z7Bw7NsHkpGwVnpiIc+qUlvZ2Py6XHoNBTSyW5ciRCUKhFPm8RFmZhVtuaSwKPidP+Hn22T7C4QyRSIY9e0a5994WfP4ElZWmc50jl7guKkoBjIzECUfSjIzEufHGBpqb5VXcxqY4/X0RIpEMwyMRjhz1YjSoiqLr+dsLBpLEYzlqa2XX16XeDy4UhDcsXcqGpUvxBoP86sUXefD55ygrKaG8RHYPdncHeHFnBzdetYgFC2YIVek0+XCYdG8vGc8QuZFRAj/4If5vfweFXo9+0SL0K1divGIl+sWLUf43Ggb8IeGITz11hi1berj99qaie+BSuFht+0xbb1tbG4899hiCIHD8+HGWL1/+R3+GyziHBQtKiA3HqCi/eCkFyCKVu8bMUJUFmz2DxSzfKDqdRlasLMfvi7Nv/xjH232sa63EZtVy/NgE49446XQOu03HggUlLF5USiCQZMeOIWw2LVWVJrpPBxkekfMNW1pKQQCDXUtarcDg0l+yXMnqMzIWTTHqTaAyS2RTcqmPzxdn//6RP7pBwF8STu4aYc9jZwEw2bUsvdaNzqQm5Esw3hNivD+MmJNI5EVMlSoe3/YIjzz1AImkTAT1OgMb1tzO3PqbiYSUmMxq7A4tv3u2D5DdsBN+P2Pj/QwM9SBowojSFNG4j+DkOJlcePYODQMoUCrUKBSqcz8ISJKIIEhI5Mnnc+TFNJI026nTPQy7j5nQaUvRa0sw+J1YLdWsXrmE+c01DA6KKJQqHA4d3d2TZHMZXnl5iKYmOyq1kmh0uiOgWkE+B6dOBQj4E4ACV5mR66+rw+02c+Kkn2NHfUxNJclkckxOnnNOdXT4MBhUdHcFillTFxtjoVCaVCpPZ+ckK1aUnyv/a7QzNBTh8IEx+ntDlFUYecuaMuabNUWBa/94At+JSYY6gwz5Ypxq97NyuYs77pg365rp7Q8jiRJmu6Z4Ez1bEDbyob/+GB/4q4+wp+1VHnn8QXbt287yxSvl49kVYP+Bs7Q0O2htnX/BZzBY5VXxsC/5B4y6C5FJ5RFUSgxWDX5PlFzmnDD1uh35ph1TWr18C9/WNsKBtnHWtsrdbK1OPSqNEk9nkPlrKy54X3eVCS+ysJXLioiSVJwTNm6s5pOf/Bjj4+Pcd999PP744/+tz3gZ59DUaCM2bL0oUS6guaWENWMxDhwYkzmCQUU+L+F0Gli5spy2tlEefqiTta2VxUyfiSJHUGC1arGYtaxcWU53VxC/P0FllbG4sJ3J5lm3rorJySQtLSVYzNpillUB9vIK5q5p5fT+PTStWgdYZnGEyUk5vL2ry890VO3/CUT8Pjp37+DUzleIBHwYbXbci5bgqp9Dr0fihbYQa9epCJ7q4ue//jWdZ49QWKBtbmqmtnwDBq0FhUKgZUEJ+/ePcvKkn4mJOHq9kv6hIdpPnsHrG0OrTxJPTBFPTREKBxFnXtNlUyoKlNNzgSD/TFN2hUIERKS4iCjmyIsXCuTdo0qO9dkx6m2oBQtatZ1kvorqihrEvFnmCA02jh2dIDiZJpOVy9tOnfLT3u7DVWbAaFATjWU5WuAIooTTaeTqq2tYtNiJy2XAYtbw7O96iYQzRLIZ2o/7uffeFto7fBgNarq7guc4wiXKSkdHY4QjaUZHY9x00xyaW+R71cZGO/39YSKRNMPDEY4c8WI0qIui6/nbCwbkEte6OjPr1lVf8v3gQkF43epVrFu9ivEJH48/8yyPb3mGWndNUZTq7gqybcdxrtu4hAULZ5fRVTTOo+WqTXTu2s7+xx9h/V33XvJ93yjSiQRPffWLZBIJFl1zI6NhE709UVR6Fa133MOrD97PSz/6Nu/+2ncvcGn9IfwAfj9H2LVrF1u2bEGlUtHd3U1Ly8WbgrxZuCxMvYmoqjJjaS4hBBw56qW/b4r2dj9XXlnFjTc2FHNvKiuN3HjTHIwGFWNjcUAik87x6GNd013JZDKxYIGDzs4AjU02ADLZPHV1FhYtlol9e4ePsdEYS5Y6Wbehhm3x9bw0MJ/FyS4aps4yZ9sXGe5aSdvku+mc33BJJ0YqlcPrjTM4GCYczuD1yjdbhw6N/RmO2p8PkiiSPHaM8O9+R+SlrYjRKFlHOdpV63j+FBwbkvCHg7wy+LPia0rUbtY3XM28irmk4nlM1Tq0xin2nzrO2P5hplJ+4mKQhBhGOiaLWCq06MMWDIIFu7GGcnszasmISqEjm1BTU2lnzYp6Oo4H0WgF4rEsSqWCdDpHIpGltFTP/PklDA1FsNm05PIiU5Eow2NB0vkkkpAmJcXIEAdNAjRJBoMddPj3wllQoMBhLKUxUE8+YkWbL4VYCbmsglQqh1JQotbIttrJyTSJRJbgdCdJo0k9S2jS66ew2bSIokgmk6eqylgMHo835ejpmSxacAuC0/nQapUopn/Duawot9vM7bc30t7hIxJO89RTZ1h1RSW33XYuZHnmcwt150aT8wJRaubzXk+wKi8p4R/vvZdPvetdeGd0SWk7PMhXnr6PH71s5RPvejv33HAjJVYrCp0OpU6HuqwM1q1DnBaqMn19ZIYGyY6OMvmLXxD88Y9BqUTb0IB++XKMq1ehX74cdXn5JfflfPwh4YhbtvSwZ48cBPz7Jp6LOSVXrSpj3bpqhobChMPNfPKT/8Q73/m2y6LUm4jaWiupJS58EzGOHvHS1z89H2yoKnYr8/vihMJpFi0uYfEiJ4FAchbBf/HFAYY8EfI5EZNRhc2mlW9ydQIGvYraOmuxfGrHjiHa2/0sXerkPe9pYeu2QTyeCBs31uAZijA6GiOTEUkm8rPKrs6H02XEZtPKIdW1VrIZ+boWjabZvn3of7Uwlc+LHNs6xOHnBqieb8dRacTTNcm+J2QHlEKlwOTQUbughK27hjjRHeRI7xeIJ0cBUAkWKkuvZU7N9ZSaXdTXljPEJKe6uujoOs1EoI90dozsDi+ZbHT6XZVo1A606lKMeifVZc0gWVELFvI5PWazlbvfuYKB/gzdp6eIx7PodXK+4NhYDIVCQV2dFUeJloA/STyRpbnZwvH2QcbGg+h0afKECUd8SITQGWLEk2cZPL2dY50y2dGozZTY6rGZG1CIbpSSm3zOTF9/iMpKOfzWZFSzcGEpU1NpPENhRFEOUTeZVBgMKpwuI4sXwdhYnOHhCA6HjvJyI9mcyP62McS8SCIhzwmFUr1CptRMLFnioq8/TCiU5sRJP5s2GYslqbW1FoxGNd5AkuHxOGfOhmbNByturKNtSy/P/6ADgHpA6o8zdjww6xo33htGKSgYnoijdeguKcIKgsDGDdexccN1jIx6qKyQx3ZHh48tzz3I13/4PDddfwvvfuf7uGLZmqLIpdGpUGmUhCYSF93uG4EkSWTTOQS1Ep1JzXDXJPFIGp1RLjl5vfkgFcuiFBRFN9iBtnE6O+WFxNbWahRKBY5KE96BCLlMvpiJVYDdqgNAZ1CRz4mIeXHWnPCBD3yNkye38Z3vfO2P/nyXcSEqq8ykmkvIAkeOeOnvD9F+3M+GK6u46aY5xTK7ykoTN95Uj9GgZmwsBkAmk+fRR7vp7g4yPCw/1rKghK7OII1N8tiXOYK16KiSOUKcJUudNDXZ2btnlA1XVhEKpRkbjZPNiMUxbbVpZ5H9+a1XMnb2NLse/jm55g/O4giFxeu2tpE/5+H7k0DM5+k7eoiOV15i6GQ7gkpNWX0D9ctWojC68E0pEMwOXtl5jDNnpjjUvp9jZ35bfL1F38CKBddTVzOPcCiNWqMimYzw5LPbGfD0EYqOk84GSecmKYhYglKHRmVDo7Jg1Ncxr3YFybgGBTo0agNXX9WEyWim/fgkuZxIKiU3EYpGsoTCKaqrzSxY4KS7O4jNpiUv5gkEQoyNTyJJaSRlkkwuQl6KIqgSKFVxvP4+eoZfhXbZcWU1u+gZaSAZdyCILpQxJ5kspJI5lMppjlBrZjKYIpHMEpyUAAmbTYfPnyAYSOJyGdAbVBj0KhwlWjQagcYmKy++2I9SUBJvytLTM3WOI7Rc/N5WqxWmOYJ8nZqZkXb7bU20d/gIh9M89dRZVq2qmM0RZjxXzq8NYTQ6LxCl3kjuGkBFmYtPfPADfORv3kcgeC4LdP+BXn780L/y6O+cfOh9d3H7zZuxWs4JzE2r1hINBjj09OM4qqpp2bDxjQy/iyKXzfLsN75EyDvO4k03UN7QiHoqi1KQq3U0ej1Lb3gLB596jEPP/JZ1d7571uv/EH4Ab4QjLOejH/00733v3X9yUQouC1NvGnK5HB/8zD9zlcGFrWoRXm+CgwfHii00b7yxoZh7U15uxGqTbzq93gTz5juKBN/h0LJgQSlr11Zw4MA4o6PyBHTzzXMY8kRmOVMKFsbCY/feuwCA7u4FnDjcT0voFO7Bk9Q+8HFGKpZw9l3vp/b9m4r7XLCKb9nSw6lTATQaJZ/4RAOPPqrB56MYvP2/GZIokuzoILrtZSJbt5LzehHsdvRLlnA2befoqECpzkp3OsZ4MoJGKkejMGATqnCrV2BQOBgdnqBr6CWieR/RIz7i2elOfAodZqGUUq2burJqSJpRpM3oBD2SpEAURYwGDalUDq1eRVWliVgsw+rVFTidero7Q6hVSurrrTQ22bDbtBw96itmz0QiGfJ5CVGSUAk6ljbPYWQ0QjCYRi/J2TOLFpbicOixWNSc6Zugo6ePkcAYKcUkfWPDBJNHkBARFCoc2nIWuObjcC+msrKcwYEoRqMajUYgn5coKdFT6tTPEpqGPBGCk0kUQFOTg1RquiV4pQm320zAHy+W6V0KlZVm6uoSVFbKTsKTJwIzMqpqaW4u5ec/P8FkMEVXV4B16yuLoeo7dgwx4U1QVm6gdnqVcaZ1t4CLNRl4PagEgWrXue3oHQnUKhWBaIAv3H8/X/rFL7h5/Xruuu46Nq28AtV0tpRSq0XpcqF2uTCuXYuUzZKPRskOD5MeGCA3Nkb0lVcITa8yq1wu9EuWYLjiCgwrV6CdO/eS5X9/SDji7bc3zfr9RjA0FObYsVEOH36Shx56gK997XFEUc5kufba97N69RvLV7mMN4ann97Ogz/5NTdv+hC+YFqeD6a74RSEqUJuVHmFsZgVlc9TJPijYzFs04RhyRIXL744gM+XxG7XsnCRk3WtlUXSXeiGVnCqFOYDALtNJq3uWgueocissqsCZoZ6Hz3mIxBMkigzopSmybhG+b8iOPN8SJLEeG+Yntcm6G/3k4xmqF1YQk2LA0upnsomG/FwmgNto3R3T1FpjbFmVT2eJ7oJRrKYdCvJZtM4rddjN7WSycXoG3yN0/1DvLTbQzg2gChmAQU6dQU6TRVNdStRCeUkonZ0WicGvY5INItKpUCrUaHWKNFqlOTyEldfXcOClnLGx4aKjrnGBjubN9dz+swUI8MR/IEkfX0RufRShNHRNKtWzqe3d4poNCNn7enBbFaxZnUlTU02hjxhuk6f4WzvGWKJYdLZEfqGXyUzPX/pNE7mCMtYWHY1en0tZpMZk1mDz5fAZNZgNsvtuieDaTo6fDS3lOJ0GfFNJAhOpuQxuLCUkZEYyVSOpkYb6UwOv1/ONVxykes0yGLVmvE4x49NUOjwd+JkgOPHJli2XJ4T3G4LExPjdHUFWL/u3BiPxjP4lHkS2RwqAdQqFZWlOo5tHcJo1bB4Yw0A430hlHqBgaEoGqPm94aZA1RXnQsKX7LEBU/6yIs5nt/6NM9vfZqmOfO47ZY7edtb3kFFWSUGi4ZIIIkkSiiUf3hpQzYtf5eCWkFpjRlJgsGOACUVJuD154NEOINGJyCoZGFqbWvFrN8Arlozp3aPMjURx1kz26GTne7wiFLBqTMn+MaqT9LYtIRvfvPrdHYGGR018Ja3fATNm5yX8v8zstksH/74Z1lW24zdOY9xb5yDB8eKIs9NN80p5t5UzOAI49448+c7igTfUaJl4YIS1rZWcqBtjJFRWQC/+ZY5DA1FZjlTZnKE5pYSbrpJnuO7u+RFudpaCxqNQDiUviCAXaFUUrtqE6defIy+l5/m1KmaIkd46CENwSDY7bo/3wF8kxEJ+Dn56suc3LGVeGgKW3kF89ZuwOmuw1xSisZg4NUdHl47Mk7jiJ9oJEMqlUOtqUFQ6jFp51BiXI1GZccz7OVM37Mk0mOkcl5SGfkaq1Ia0KldWAz1mI2r0Qgl2ExlKJV6kok8mWwejVrAaFKjtss5fqWlepYvcZPJ5uk8FUKtVuJ0Grju2lr0BhU7dw6fxxFEObZDbWTpYgcjI1GCwRQ6BRhNKqqqLNx+u1zu9eqrZ+g808u4b5ScGGBgeIBwrA2QUCrVWAxVNNUvoKJ6OVVVFfT3RzCaNGi0ArmcRGmpgdJS3SyhaWgogs8vc4T162Vh/9RYcJojWPD7E8UyvUuhssJEbZ2Fyulr38kTfo4dn2D5sjI2XVtLc0uJzBEmU3R1BVm3rgqXy4DPl2DHjiG83gTl5VPU1r4eR7iwycDrQa1SUVF2bjsGcxS1Wk1wystXvv1dvvWjn3D9NVdz21s203rFSgRBYOkNbyERDvHyT7+P1VlG1fw/XMSRRJGXfvgtRs92s3DjdZQ3zUNQq3G51LP2u7yhiYqmeRx9/hkWXLUJW9m5a/8fww9A5ghHjw7T1vYYjz32K+677ykyGT19fWFuvPHvWL78z8MRLgtTbxISiQT7Dh/mae8YX3vfvzB/vhu1WlF0TMG53JtwKMWZ05MYDGqUgtzlbOYEUlIqB90uWOAgGExisWgY8kQQ8xCfEbbZ3Fx6UZfKucdXkQ+HmXh+G5XHjyB88+8ZeGUJjnvvxXLD9XR2BnnppQG8Xjl4vbxcblX7zW9a6euDFSv+d3blk0SR5PHjRLZuI7ptKzmfH6XFgm7eXIxXX4W2oZGD3RHu+/VWOibaUB9WcYX+nSgVIOYl5mmuJSpO0JveR0T0IpJDQI1ZcFKmbcSoLsUglWE32NDq1GQzIvlInnxeQhCUlJbqEUWJaCxLXpQwmTRUV5u58cY6NFoVbreZ3z3bRyaTx27X0dpaKdtinUbUaoGdO4dJJLNUV5tZuLCk2DJ23foqtm0dZOu2AbLZPCpBwekzQUBBKplHkiQqnLVUGGtBAVqNQCqTxhMYIZwbJ5gdpa1/L7t6tqNSaKi1z2F5wxLq7XNZ31LFpk21s4IyQc6C6nZMolIraGy0UVZmmCWQzizTm+laAop/L1pcitWmLQabRyLpWRlV3d0BEsksZWVGjEY1Hk+U3p4pnn++H41WQK1S0tsTwuU0cvddF7/Qv5EW36+Hd91yJW+79gqe2rmTB559ho7eXp7auZOndu7EZbfzi3/+AlcuW3bB6xRqNSqHA5XDgX7JEqR8HjGRIOvzke3rIzMyQqq7i+irr0I+j0KvR9fSgmHlCvTLlqFftAhVyR/ePvbtb5/3hlZCCsjn83z/+w/w859/g0jEB8D99/+Y2277OCqVAqv1MgF5s7FnzzGee+WX5HLw1+/+VDEE+8oNVcXnnMuOSnH69CQGoxpBAINBNUtoKp05J0wmyedEpiZTJGbOBy2lF3WonP9/TY2zz9MCCt0CQ+E0yUQOpQJMFg3JoEy6HQ7t/zq3VDycZtcjpxk8GURnkjsUNq104agyoTfLY14pKBnxxnl++2u0dz3JmH8/7V3/zvh4OUoFmPXLERRW4qle/OGXyeRkkU+rdmHU1VFhvxWtqg6jwY1Oa0AUJVRKBWqVgKTLYTKq5S6pSlCrFFSU6qipMeNusGGxalm8yMmOHUMMDEawWLXTIbKVNLeUUlqq57HHIgQDCew2LfX1FjIZkeoaM+vXVeHxRHn5lUGi0QzJpBxwe7zdx9FjE4h5EbO5hHlzNpDN5jGbtUxNpYjGfMRT/YTjPYx5u/nxL14GwGJyM79hFaX2lSxevJzbbp1bdPAVxqLfF8dVZqCm2oyjRIu71jIt+kizPkdVpUwwjh7xXjAfyM6rwjiV8Ptk1/jMOaG6ykhHu0AuJ+LxROnpneJA2ziuMpnQ+WNycHNraxVXbarl4LN9HH5ugIZlLvQWDeO9IWwuPXaH9o+aE5pbSnnxqWfp7D7Br5/4Jc++8BQ9/We473tf4hvf/zI333gbf7v5i4z1hEjGsxjMl75+hiYSqLUCxvOIWSE4XaVWYrJpsZUbOLbNQ/U8B2X1ly71AggHkuhMapTTwlRrazWtrbPPzbJ6C6d2j9J7xHeBMJXL5AnGxvnVngd5rXsHAF3dJ7jqqnsxmaw0NFj/W23NL+NCxGIx2g4e5KWXXuRzf/8V5s+vRqNRFh1TcC73piAUGY1qhOlMnws5QoSWBSUEgymZIwxFyOcl4olz3R0LXc/Ox/mP+3yJomNqJkIpM0lVBW7taaxaO+XldWzePIeqKjMeD6xe/cYd4X8JkESRgY6jdLz8IgPHjyCo1ZQ3NDG39UpKKqvQW+QObwC7dg/wk1/8lh7PHnQ6A3WOd6NUgCQqqLRuJpn14o1sJ5kZQyKHUqFBrynDZmxBaylDrSjHYraj1apIJnPkcyIKJahVWuwOPYl4llAoPc0R1NTXWVnbWolGI+B2W/jd73rJZkXKygxcdeW50rlkIsfOXR4SiRw1NSYWLiwlEsnIHGFdNdu2DbJ1az/ZrEg+LzI8HOaFF/oJBlOEQimczjmUWOegUIBGI5BOpxmbGCKSGCGa9NBxZgevnXwBQamlwtnEoublVJS0sGFD9cU5Qq0Fl1Nf/Ntuk8XKgkA6s0xvpmsJKP69aLFzmiOop/OsChxBRndXkEQiS1mZAYNBjccTobd3iuefm+YIaiW9vSFcTkOxE+D5OL/JwB+Kd915LW+7uZXfvbSNR554kjO9ffzupW387qVtuEpL+eHXv8ryJYtZdesd7Pn1gzzzjS9xz1e/g63sjZ8jkiSx81cP0HNoPy1XbaJqXjPq1wkbX3zdTWx/4Mfs/OUD3PaPXyw+/ofyA5DNNd/+9k948MFvEY3K9zj3338/t9zyoT87R7gsTL1JsFgs/OZHD/CO99zBV578Ntt/+ANWrmjmzjvPnSSF3BufP47VFqW7K0BXdxCdVs1ttzXR3FxadIlEIhlWrCjnE59cgccTxWhQXTLoGS5dyiRYrVTecyf5t20mvm8fyWPHGPv0p5n4ip2mjTdwJNlANJpFq1WhVguyBVNZICL/e1ZD8rEY8bY2Yrt2E9u9m3wwiNJqRTd/HqZrrkFdV4/KbmdwMsn9jz/HI9ufI5aWQ5/UWQ2n821E834msyOI5BHQYBOqqNesxqqswqR0YjTInfMikQy5HKQzEiqVRDYri1LydVTE509SXWXC5TKSSuWYO9fBunWVxe8vGEjS3R2QOzBWGdm0qQ6fPz4t2mQIBBKkUnlamktnjR+AG26sw2TSsL9tBI8nQi4rotOpUSohlwOjQc1b39rAyZMBuruDVFXY0Gm1+CYqKVMsZolJgT82zkRqiHB8hKeOPIGExPK58/Err+SW9Ru4+66W4jjs7AqQSGQRBAX9/WHmz3fMugEuKdFhsWgoKdHNci0Bxb9XrpAvzIVx3dhgZ+M17lmdKsdGYzQ22lm6zIXbbebhh7oYHY3JK++LnfT2hiiQFmBWtlVzc+kFmVJvFOefN+/ZvJl7b7qJ42fP8tgrr/DEqzsIhMM01dQUX3PszBkMWi3z6+ou2J5CEBDMZgSzGV1Dw+xA9f5+siMjZMdGmXz4EaT75ZJRVVkZupYW9MuXoV+8BN2CBQimc5+l4GwsBPv+IeHo6XSahx56iG984xv09MjlSpWV1Xz601+gqWkTgUCScDjNiy8O8OMft7/hmvTL+P34xCc+SHDEx8NPfotFi2v40F9/7ILzuZB74/fFsVmjdHUH6OoKotVNzwktpfh9s+eET35iBSdOBgDpdUn3TAfUTMfI+eHrBRQFhOEIgUACpVJJMp0vlnooL+xM/xcLSZI4e8jL3t/2IEkwb005zlozOqMatVYofia/L84rr+7lV4/9hJ6BtuLrd+zZgpizEEmcKgpROnU1Zv1ijLq5GLRNGHQWFEq5U102KyGJgCSRz4lks6BUKtDrVIQjch7Lwloby+ptaFWy+1IdE2lZ5SAQSNLTM0UsmsZq1bBsqWvW997TGyKeyFFZZeb22+de8N1df10dggCHD3nJpEUEZa6YU2Q2a1mwsIREPMvoWJy6OiuTkxomp0pRsZgKu4BCiDHuO0E8fZrOnh3EE09yoL2UgfEbuW7jTdz+jqsJT2XZsWOIrs4A4XCaxiY7sWiWA23jbN5cXxQ9lyxxMToaRxAUdHT4yOfP7Wdhtbqw/35fnEgkg82qY/EiJzar7pxQG0qj1giYjHK+1EMPddHZGSCVtnHjDfV4hiPTAd7ynKCvMhAcjfO7B06y4ZY5pOI5mmot1FyidORSOP+cWdC8mK9+8dt87pP/xkuvPMuW537La8cOUmIvoWq+XQ7If2WAgLKb66+/HoNh9kr84MkAL/zoBEqVgmvePZ95a86tasfD8rgoBKkvu97NoWf62fLNo6y4qZaVm+uL92IX7OdIjFQmT2/vFOmseNGQea1Bja3cwMCJAKveOqcY8H/y5En+8T++yLZdv0OURBQouP6627jrXZ8ELPT1hVi7tpIjR7x8/vN7L88JbxLsdju/vP9B7r73Dn788Nd48sGfsXLlfO6881yGWSH3piAUdXcH6eoKotOppueDkqJLRJ4PyqY5QgSjQX3JoGd4/VKm8/N2CnC7LXQYF2HNbOe6+T1kVYt58cX+4vWzpOR/B0fIplN07n6Voy88Tcg7jsXponH1Olx19VhKnWj0huJn6h/w8eBvnuSZF58hOc0R0tkYI9IeEpkxYikPkpRHqdBh1NTgMl+JQetGp3JiMKrR6QQikSz5nEQ6LaJUiHKDAQBJQTiSJhrLUlVlZu48A6lknrnzHKxrrSx+f8FAku6uIMlklspKE5uurcXnSxRFm4A/STKVp6WlZNb4AbjhhjpMJjX7948yMBAml8szPh6bnp+mOcLbGjlxQuYIlZU2dDodQ0PlmDUrqF5gZHRigHH/WSLRIbbufhhQsLhlAUnxGq7feBV3390sj8PtMkfI5kQEQcmBtjE2b54zSxyazRHOuZbg3JywcuX5HMHGNde4Z3WqHBuN09hkY+lSF263hYcf6mRkNEp1lZklS0rpmW7oUMDMbKvmlpJLjvHfh/PPm7vffht33X4rHZ2dPPPCVp5/+WWmQiHqamXHrUanw9i8lDM7t/Hkl/+ZO//t61hKLr5gOBOSJHHgyUc5vvU55q29kqr5LWgNr89p9CYzc9eso3vvTh7/2XNUL1j2uhxBkiR6Dx/gxI5tJMJTlDfOZfGNb2XL8y/wjW98g4GBAQBqamr5zGe+SH39lf8jHOGyMPUmYsnCOp77/D9y83338bbPfoaXvv0dnHY7cCEBdjmNtB/3EQlnCAbPBWiePOGntyeE1aYtdlArEHuQCfmOHUNFQl7YbjiUwuuVy0QuRtAFkwnLjTdi3rSJ1OnTxA8cIP3iM9yRSrHBWMKJqmVMSFb+/d/34/XKNlRppmT9FwZJFEmfPUu87QCxXbtIHDsGuRyqsjK0c5vQ1F2Ppr4ewWZDaTQSCIX4yRO/5adbniaWlI+TSqFGrVKRzCYZSh2nVFtNvXYNNkUNJmUJarWS3Iw8wmxWRJJyxZttORddwmrTEgmnsFp1qFQKsjkJrVZg2TIXFosWkDh9epK+vhDLlpXR2RVgeCSKoFQgTJeI7d83xq5dHvR6FZVVsng1OZng4YdPMRVKE49lCU4muXaTmxq3mZIzeiYnU2QzeWx2LTXVZmKxHLF4liFPhFgsiz+QJJcTWb26ko4TPkJTChQKBXOtc3CGqqiqNHLbHbW0D57k2T37+NIvHuQL99/Pgtq5rJ+/GkuunlBQIhpLE4vm8AdSAExNpYquqXXrq6hxW4p5aeXlhhnOwDThUEoOZj0wPisj7fxOlfGYXENfOD/WTge2rl1bQWOTnRq3ZRYJn9le9lLZVvD7s6cuVgKoUChYPm8ey+fN4ysf+hDHzpyhovTcufaFh35K26kOmmpqeOv6DdyyYQPL5s69aKcKhUKBQq9HqdejrpA/k5TNko/HyY2NkfF4yI6Nke7rI75/P1ImAwoF6poa9AsXol+2lN6wlSPDOiSDkVxOPiffiDAlSRKrVq3ixIkTgHxj/LnPfY6PfvSj6PXyCtfQkNxa/Wc/6+Do0QngjdWkX8bvR22tlX/+1KcxGvPc970vYTZZuOfO9wIXEuDCz/H22XNCQZwYGIygUQvFrJ9Nm86N5Zlh0wVBo1AW6B2Xr3VvpJSpsA+hcIpSpwGzOUc8mcWskAntX/J8AOAbiuAbihKdTDF0KkhwJEZZvYWaFgeOShMq9TllTZIkdu3bzje/9026e44VH9frrKQzMXyTx9ConJj1CzHqmjFom9CoTSiAvBy5RSYrodUqEEWpKJlnMiJ2h45QKIXdLl/PhvvDLHXbqLDpyaoUVCxy0NsTQh/NcPjFITypDN3dk0gSqFTK4nVu3/4x9u4dIZeXcDjkNuIP/vIUDoeedCrL6dNTbLiyijvvbMYzHKXzVJBUKofNrqWuzoJepyYUTuMdTzAVShVLRquqLPJqek5EqVRQWlqBQedApdrIW986B61hnOe2Ps/+gzt5fMsjWC125jdeRam1FbWyFoVC7vjqGZYXRqzTTqDCGHzPe1o4cTJAJJLGYtHM6igZCqemA/1HOXJkgtpay6xzoAB3rYXR0ThrWytwuoyzStVWrCzH7Tbjrjk3J3T3TBGNpKAP9j3Zi96sxuK6sBsdXFqwhXOuQZh9zljMFt55+7288/Z7GR4ZQlCpyCKhdWh54pfP8/3nPo1er+emm27i9ttv5y1veQs2m42jW4ewlOoQVEp2/KobSaIYRh4NyvOp1iivROtNGlrvaKRz9yivPT9I31E/G98zn/L6C6/10WCKBBL+Tj958Vy4+/mommenc/co3r4wVXPtPP7449x1113F/1/e3Mpblv01//ijd2O0aYvzwYIFJXz+83v/oJySy/j9WLq0gZ/953/wwX/+Iu/9+4/zyE9/VAxXPp8Au1wG2tt9hC/GEXpD8kLVdAe1ArEHmZAXOcK0kOXxRAiH0ox748AbK2UqPK+uoZzTbW4aSwbpT3v47Ge9xOPyvPKXPifEJoO0v/wC7S+/SCYRx1XfwNLr34KjugajzV50RwH4A0EefPQxHn78KZIp+fMJSg2CIJDJJvFFDmE11FJmuQqDuhatyolaoyB3zqBGNptHFCGfl4+LJEJeFDFOu2ZLSw1kc3myWQmdbpojmOXr5+kzQXp7QyyfwRGUSgWqaVfk/v2j7NrpQa9XU1llmuYISR5+uJOpqRSxWJbJyRSbNrmpqTFTUiJzhEwmh9GopqbGTCyWJRbLMjQUIR7LEAjI7uvVaypJJnOEQilUKoHaykY0igrmzbdz9z317D90gG2v7uKbP/wxX/3O95jf2MLKxetRSXOYCkpEYxli0SyBgDxOp0KpYlnpunXV1NRYinlpFeXGWc7AcChNW9soB9rGZmWknd+pMh7PTnME+fxY21oJwNrWShob7dTUWGaJsrM4wussUPy+7KmLlQAqFAqWLlzI0oUL+fw/fJzO02dw2GzFbd33k59zsruTcquFLfsP86kvfZVrNt98yW52ophnzyMPcvSFZ2hYuZqaBQsxWN7Y4nPT6lbOHjnK0J7fcnrURm56PjifI+RzWbb++Luc3r8be2UVWr2Rzj07uedT/4Q/KkcGlZaW8vnPf54Pf/jDaKedWv8THOGyMPUmo8rh4NlvfJNNH/koq9/7d3zvw1/glhsWXpQAr1tXidF0rozP548zMCAr9Aa9Ws6NsEVnEerzCbnHE2Xf3lHi8Qxut5lwKIXPH3/9cOhFi4iU1dNzcABNfyemiX42BXcitG1nU97CVkUJ9r/+V95y/fV/8uP1RiHlcqTPniXx2mvEDx0i8doRxGgUhVqNZs4czNdsRF1bh7qyEsFsRqHXz7oIvLT/CN/89a9nbVOt0FOqrMOmdWMTqlEJalSCfNERRWmWKCUIoFLJPdVnzsUVFUaCwST5PBiNajZurOX48QlSqVzRYt3bFybgTyBJEpGIvNqhVgk4nXrWravE54/T1RXE708iCArmz3ewaJGT8fEYhw6Nk0jIoei5vMSePaN84pMrpomHCp8vQSqdp8ZtodZt4cCBcWqn/06lZIeWyaTGapFt2qlklrNnpxDzIqFQhsG+FFc0rcaSaeKjm1VsP3qQnSfa+Nm2R1AoFNRYGqk3L8ZENUoFCIJCzj4bizE2Gufe97SwckU5R4568XrjzJvvKI49qy1a7Co5OBTBbFIXSwALjqdatwWNVkV9vQWvN4HHI4/380sTzh/PBTFLp1VddLwDs9yHF9sG/P4SQLVKxeoFclaPxxOluzuAQlKhUavpGR7mW4/+hm89+htcdjsbV6zgprWt3H711RfdVgEKtRqVzYbKZkPX0lJ0VZ3tGMbz2mkajEn0+TCJ9nYi27ZRmc9zByBaHaRcbizSAsLiMrRNTWhq3Sh18qql3+/nhRde4J577kGtVqNQKLj22muZnJzkU5/6FO9///sxmeQSm5mtyDdvnkMymcVoVP/BNemX8fvxkb/5NGMTQf7lK5/h2LExPvcPH78kAV7XWonJKJfxFUQprzeBRi1gNqtnle4V0NHhmxU2vW//GIcPj1FXa8Vq1WAwXHyan0nQQR7fhmmBWa9XsX5dJYf2jtLkcvO2a77Ov9y36aLb+Z9GPi+y77c9nNo9CgrQGdWY7FoWrK+gxG3BaNVccEPom4jxz//xeby+weJjClRoVTU4LYvQqlrQqFwoFQoEFZhMGjLpPInkOQuQ2aRCoYTYdDg8yOGtNpuWqckUoVCa69ZW02zUk8uLnJmKc9vfLCSRFelsG0MIpVlRYSEbzaDTqRBUCrl7InIJ3MhwhFA4g1KhwGLWIIoS/X1hhgYjRCJp4okce/eMcuedzaxfV0kwmOTIa17EPLhrLGzaVMu+/WMEg0lq68wMO/QsWOBgZDSO2ayhocGG3qCmv3+KeDyDQqGgry9Ca+tcrlj0Xm6+7sNEYh5e2fUs+w6+QDz5DAZdGZWu9VS7riKbNqPRqigp0dHR4ePwaxOMjsZ5z3tasFm1eMfjuGssxfFts8pj3maVM1CisQyR6LluUt1dAfa3jRVX2MvLjWg18tg9fz44X8hassRFWzSHJCkIjsaYv6Yco+XCEoiZ7sPCdmbijZSE11TXFr8jbyZLRpGixFxOMOply5YtbNmyBUEQuOKKVdizTdx9x71csWkRR18a5NWHuxHUSppWljE5FkejV6Eznjs/NVoVS69zU9EQ5vQBL099/SgpvZIr3lrPlRvl903Fs4hZkZIqI64mK4lLOOnz+TwTyR6GggO0v1JC1Vw7V111FVqtllULr+L6ZXezuvUKel7zkcvkZ80JtbXWPzqn5DJeH1XlZfzyR9/nzvd9kBve/j7+/TNf5sYbWi5KgNe1VmE0nivj8/kSDAzKC8cGg4ZxbxyrTTuLUJ9PyD2eCHv3jpJIZKc5QvqCLnyFbc8k6D5fgpMn/ESiaSx1SxF9E5Qm9zI2uorqmtt56qmvsGHDhfEGfwnwDw1w5LktnG7bg1JQUdE0j4rGudgrq9CZzBcVCF58ZS8/+9XDsx5TKY2YtHMwmuZg0NagVqtRKmQeIIriLFFKEEAQlPK2L+AIKdJpEY1WyaZrpzlCMk8wmMZi1tLbFyIwnVcXiaYJBFKoVEqZI7RW4fMlihxBKaRobi5h0WIn4+NxDh0cJ57IkUxkyeVF9s7gCDqdCr8vQSqdo6bGQm2thQNtY9TWyn+n0vlpjqCivNzIvHl2UqkcJ04EyIsikUiWWERgSfN6tIoW/uodSvYc3M/Bo3t4ZMsDKBUCZSXzqShZhkANCoVcGn+gbWyaI8S49z0LWLmynCNHvMW8tMLYm9lVUuYImmIJYMHxVMhBq6+zMu6N4/FEcLkMtLZW0dp6Lhbh/PFcELN0OuGi4x2Y5T682Dbg95cAatRqli1aCMgiVmenD6VSi0oQ8IYjvHT8FC/d/FacDjs3bn4Lt91+O7fddlvx9SHvOC8/8AOGO08yd8163AsXY3JcXEg73wUGoFQqmbf+OrpeeYr5ti7M8667oAw7k0ry7De/QvexI4QMNq658RaMNjupaJRnO7rp6B/kI3/7t/zTl79adP3+T3KEy8LUnwA+D6yx3cHOscf46A//naVLf3jRG55CFlShjCs83Y6zsclGrdvCkCeC8TxSMbPOvLC9fF4kOJlCp1OhVCovELNgtjMkGEiyZUsPPl8Cp9ONoaSeWGqCFsGLM+PnTmEM0/7HCW1+itS8uehXrsSwciW6+fNRV1Wh+BPXdIjpNJnBQVJd3SRPnSR18hTpM2eQ0mlQqdC43eiXLUVVWYmmugbBbkcwmVCo5W42E74YP/jh05wZHGbJogoOnj3CvpPHATAobZQLLZSqGtArrLMmKEkElVaJ0aghMO0OArmbnNGoJp8XUamU6HUCsVgWp1M3HVAZR5yeiFLpLLF4Fp1WIBbLMDAQQVAqMBrVlJUbsFg0OBx6rFatXALRXMqRo16MRjWNjTZAFrjq663U11sZG4vOckxdeWWV3BI1lqO21sKqVeUMeSLYbVoOHBhHEBQkk3msNi0f+NvF9PZMseXpHvI5eWXbO5EoOp90ujyRcJpXdwwyPh4nGEzhcFSxoewdNKkm8cS6GE+cYVf4SYxqC9e5r6Jl6WbElIpgMEkwmOThh7rYvLm+OK4L3SWXLnFhNKhQCnJ3SZBFrbGxOPFEjvbjcoe9sdE45eXGWXlrBXR3B3hl+xAA111bO8sZ1dxcSjyRY9/eUfr7u4rHcibkcMjsrFX78xEMJOnpmcRoUBXPmUu5rArb+NUN/4ZWL/Hy4UM8t3cvLx8+jG9qise3b2cqGi0KU5Ik8Ztt21jS1MT8urpigHoB57/P8cEcHaNWgksbuevO+XIJYDTKqZ0n8Z4coN6ewyHFyL38HGNP/pq0KHIyleKYUkFbIsGRQABRkigZH2fTddehKi3l85/8B7761a8WVz8KOL8V+R9Tk34ZbwzHjnnJxW6i2unn6Ze+g9Gk4KN/+zHgQgJcyIKaKUqVlxuKoeUXE5lmZlEBBINJIuEMgWASk0lzUTELZrtDuroDHDo0jtttZmoqzeRkCp1WRXWNGZ0kUFe5gNLSxjftmLwZGOsN4R+KcubQOIGROA3LnZTNsaJSKxHUSrR6NUpBvr6fPevhvu/+GJ26AUHbQ9vhbQSnxlAo1Fj0S7GZ1mDUzkNQamZyChQKmWzo9QKR8DkRxWxWodWoMJs16LRZJqeSaNQCGzZUceTIBDq1wJXzS1GHs6SUCp57bYyMRmD5mOxYcDi0TCKRFkVqLDosrVXUz7GweJGz+L1U11hYA/gDSfR6FU6nAa1WSTotznJM+X1xTpwMTOcQVpJOi9hsWnbsGEKrU6HXqSgpMdAwx47bbWZo6Cxj4zEcJTpKSvTs2uUhnsijVMrv1dc/xWuvjZNMZhElaGm5C6v+Zjq7j+AN7qN/+Hn6PE9TV7Oa669+J61r19HXH+bEyQDBySQPPdTF2tYK5s93kM7keOzRLpYscWEwqIr5aetaKwmH0giCghMnA9isUY63+zh+fAKLRcOqVZXF587E1pf62LN3dFZnS5DPm0Qix+muAEaNmte6/KS1ygsy137fnOB0GQkEkuzYMXSBA/F8h1Xh9ddsuptV865kONBLqqyXZ559mu7ubg4ePAAc4M67bkelEVi5uY5Hf/o83/3Xw/zVJ9/GyOkEJrt2Vse8me+17s4mnn+4C3U8T8dv+zBlYfHGao7vlTtEDnvjuJqsrJh2y0iSxOjYMK8dO8jBI/t5dc8rBCf9LJm3ijrnQiYGI5TXlePxeNj7q2HyORG9WYMkSsQjGTrPTl6eE/5M8Hs1zKt+Nx29D/EvX/88y5Y/cFECXMiCKpRxhUNp8nmJigojJSVaLOYLc6Eu5AgWxPwwwWAS3XQZ8/liFsx2hgQDSbY83YNvIo7TaUChVJCZqmGZ6yybVwYYSMwnEqnE6XT+yY7RH4Oxs6c5uOVxBo6/ht5ioX7ZSsob5mF1yeV6BUxMxPnJAy/QPzjKwoUujp08yNETRwHQqkqw6hdj0TWhUdlnbT+fA41BicGgIRg452LTapUYTRpyORG1SolOpyQey+F06igt1ROZjFBqSlKiTpH1J7BLk2hNIsLUKN6ECpNChUKnwuqwYdKJ2O06ViwvY/PmOTS3lHDkiBeDQV3s0G4wyJlU9XVWxsZjsxxTGwocIZ6lrs7M6tXlxQ7fB9rGUApKkomczBE+sJje3im2bJnmCFYtXm+iKNTEohm6u4OMj8cYH4sTnEzicNSxaE4tZeYAvtBJJmOnGA88jEHnYMPqTSxZejPplJpgMEUwmOLhhzrZvHlOcZwWukvKHEHOUGuZFlKUgpKxsRjxRJb2drnD3thojLJy46y8tQK6u4K8sn0QgOuurZvljGpuKSGeyLJ37yj9fZ3FYzkTHo/cCEaeDy4uPAWnS+2NhnPh45dyWRW2cdNN30Snz/Pq3n1s3b6DPW0H8U9O8fAjjzB0uosmm4lsJo3nZAePPvEkjVUVrLv+RqrnzZ/llDr/fS7lAgskrcRwMfraVt711o2UT7ulkskku1/dwc+//lWOnT7LYGASSZJYu+lalpc6Mdrt/Oc3vsmJF58hNjHI+OlTNCxfBfzPcoTLwtSfAAcOjKPKWbim8l0ciz/NjZ/4OFv+8+usXHGuo9FMUjqzW19jg41IJE1X1yR5UZwVdg4Xillut5nNm+vZv38MrVZJebmBTDrHz39+ohiYDbJlslBmtWPHEB5PhFRKduLMmWNDKHUyYqwkZFTTEQixqirNfGOU7NgY4aefYepXDwGg0OvR1NejbZiDuroaTXU16spKVE4nSrMFwWJGodNddEVCkiSkdBoxkSAfCpHz+cn5feR8PrLj46T7+8kMDJLzeinYklQuJ6rycozr1qEqK0NdXY1gtaI0GIpOkQJSmQwPv/QSX/vlwwQi8gS77QzY1BUstF3JfNcCfCOv3z0nL0okoklKhSR2IYVDncauSmEXcjis4DAA6QymSolUKk9yLMc1ZpG8SYFObcA5bsepy5BRa4iEtEQjGvIGI5m4lZxDS2WlCb1RSXWNiVg4z333HWRyMs2CBSW86x65VvzkCTk/ZtFiJ5s2ze6C5fPH5fylsRhXXFGG3a5jyBPhbE+o6EqKRNJ4py3bBw6MM+GNo9WqaG+fIBhIo1CAXi8wd66d48d9RCJZ0ukc+bxEKp1DgQKNysAV7nVkMmuIin76o8d58fhWXjj+EusXrKSldDWKmJ3RsVhRwe/pmcTvT9LTE+LkiQBXXFGOmIdkUp7w5DwCiTOnJykp0WM0qYqOqXAoRcKbnTXe2zt8tLf7UABOp/4C4akgyhb2odA0oCD0nC8GF84XOBfEe7GSwP37xjj82hirrqic1Zb2/ByrO67ZxB3XbCKdyXCos5OdR4+ysOEcWRrx+fi7b9wHyKsqjdXVzHO7meuupaGqCnXWQWpKX9z2zBtKhVKJwmBA1Gp5tk/BGY+DerGUj39kEZ6xXj73s/s55fGQmRniAjTr9Yz96McMTZ+vAH6ttnjOKPR6lAYDDZJAWSyLqUfJ4G8UkM8hJpJYbn4LpR/4wOudIpfxB+L4MbnVcUvDu5nfXMYjT3wbq03iHz7yT7OyjmaS3wKBNpk1OF0GJiYSDA/HcLoMF5DtQki2xxPF74sXXVc2m5ZQKE06k+Ppp3sIBpPFUG2/L04onKa8Qp4Ttm4bYGoqjVKhIC9KKIBsLk/tnFIyfVGsZi2dncE3nG32p0Qum2fv4z107RtDKSiwOPUs3FCJs86Czqie9dzTPV3857e/wt4D25Hk2msEpRF3xWqqS9+N1TSfyclz15wLClMUcgn35GRabiAngaAE5fSKeV29hbo6K709IRqbbHj6wyyoMDO30owI1K10oirTcDwaQBTz9PYO0NXlJ5lUsHx5A0pJgWEyw6K1dnKSmgd/eZLJYJoFC0umu9E1FYWnQsD4+Z0UCzlUOq2KxiY7alWWnp4QA4MRSkp0rFlTQaGcHCAQlEPzDx/ysm/vKEpBgUqYDsJN5WjbL3f6yuckFEo4dHAchVKBq2QhJdYWcvkUydwRRv07uP/hT/Dynh9w1dq3U1GxnvHxLKNjMTxDEZYscfHUlrPEoln8/iSZjIggKHC65LlpToMVi0VT3LeSEj3LlpVNO6bUeOPZC0TVPXtH6esLAcwSpuDcdf54u4/enimiyXzRTVQ4ZoXnGAwqPJ5o8bUzz71LORBXrZo9H8x0bemuFUhsyXLFuqv46te+wuDgID//zqPsfGUPS5cvlcedWuDI6FZ+99KT/PjFf8JiKGFObSMLTrXQ1DCXivIqrMbF9JwNF7c/f20FJ496carUHHi6jyMvDhJLRBkLBjgzriElyPv4T//+SXbv24HXNz7rmJjNFuY01qHSKNn5SDdv/+xKnE4nIe8ZnLVmDNOBttHJZHGV/XLo+Z8eB9rGUEoOlja9lz7vo9z9gb/jFz/4DitXnsuynElKZ3bra2yw0dkVwDseZ+3aygsEpvPFLLfbwubNc9jfNopWK1BRbiSTyZ/jCNMNLcKhdLHMqsARkkn5HLTbdeQlF5I+xPKy00jZRVzkavk/AkmS8Jzq4NDTjzPceRKTo4T5667ENacJs6NkVnh0KpXisaef5YcP/JJQZAqAtnYw62toqLwed8VivKOvwxEUcpleLJouPiQIkMuLZLM5aqrNNLqV5OJByqxJ0uFB1GKUxYvPHSspBGV6ibykJJfMk4qLiGKWUoMOpV9B3A81CjWmklL8Z4K8/LzAeFDNgoVO7rlHzm46eUK+Pi1a7GTTeZ1yfb4EDz/UyehYjJaWEixmLS6ngYHBcNGVFImeK+s80DaG1xtHqxVob58gEEihVIJer6J+jpX9+0aJRDKk03nyokgqlUOhUKISTCxs3EgqvYFUdpzxySPs2P8Mr7Y9w+plrdRVtpKJO87jCFP4/YlzHGFVmcw7UvJieiGzrDAfGI3qWZ0j4/HsrHD/9ulrtcwRDBcITwVRdjZHOCf0nC8GF84XOBfMfjExaP/+UQ4fHmfVqorZHOG8HKtbN9/ErZtvIpVKsX3bNra/8jLlBh3bfvo9FEolMaWaxw+3A+1oX9hBfa2bhro65tTVUueuQSE6iRQ4gstwgegMkM3leGV7F309Vja3RHjiK/9K+VXXc98Pf0xHezvZ3Ow5dFFLM+n0ufFbWlrClXfdy97f/IoXvvt13vEvX6Gyaf7/6HxwWZh6EzE6GmW0O1h0iKxdu5Tapk3c/rl/5LqPfZQffPKfqDLXzxKjQHaZeL1x6utlkn78+ATJZI7GJtsFq3oXy5RauaKceCLH88/3cfiwd5rIxLFYNNRMn2Qzy6wKZVCnTvnx+ZKMjka57ba5xc5pz+0Z4tFRL7duWsPVt96KGI+TnZggOzIsi0mBAMljx4nt2o0YjXIBVCqUGo18xVYoUCiVSJkMYioFonjB0xU6HYLFguBwoKmrQ79kCYLDjqqsHJXVWszoUaguPlwPtJ/hS7/4Lw6faSdTPAkVWJTlNGmuwiw4MagErlhSwyv+ITLpwiQh4RBS1GvCVKpj1GhjlKlilCiTzMwcTYkCUzkBb1yiO6NgQhKZCGe43V6LqFWjUMAjE728PDxOtCNL7iJ196/OacA+oSfX6eCRgJdHBs+iUgqo0aFS6HH229jR70aLlXmOpRi1Zqw23SwhpFCaNu6NEQmnEZSK4kWzsspEXa0FQVBgsWiLmUxr11YQDCbRaAW6ugJIkvy1NDY65DawGhVGo4TFoiYSyZLJ5sikRVSqfNHqa1FW01hRh8l2G6f97ezq2svOjoMsqJ3LmtoryWRK2LKlB++E3DlKq1UyFUrT1RVkzZoKBgbkDhpGk5N1i6uw2i50I/n8cSAwqxR16RJXsZXy0iWuizqZ5syxkc/n8fuTbNs6wMREgmXLyti0yThLSDpy1HvRYPaLXegLjpOZuQ4Xw8z9uXLZsgu69kUTCa5evpyjp08TTSToGhigazpcEOD6hTdwz9W34XabOdHby8ZPfBi9VovqcYFMNksqkyE3LTy11lzHEmsVwxMZDA4Hx6a347LbWbtoEesXLOT65cuptloRIxHy4TD5SBgpnkCMxxATSaRcDnI5pFQKdS6HXamAjBIxJ9vPlUYj+akpJFH8k7si/39BIJigpFTP/OYSNm6sobX1Bu5/sJavf/c/GBkd5tMf+Qpeb2ZWHlQgkOR4uw+nS4/FosE7niCZyiFrWBfeNJ9fnrRiZTnNLaXc/9N2Dr82Tl2tlUQySyScwWRU0dwil4B7x2VbvdNlZOPGGnRaFX5/nOGRGGaTmrpaCwsXlbLn1AjHPDtIGKvZvPlzf8ajNxvxcJqhk0Hat3sI+5M0LHdS0WhDrRXQGFTFcOdcLsdPfv4THnni5/gDY8XXC0oTDvNGXNab0Go1NDbYSKdzTE5Gis9RCwrqXEZqSg1UOHQYtSri6RxHeoP0jss38pIEsVgaSRHjVNcYkYRIMhFAc7qWBssixCo13WMefrv/n8n8Jko8Eb/gs+h06/B638/GddVUZpJsvudaAFSCEUFpYs9RBzsPuFGpSmiqX8ryxRvxjiewWaOzwsML+WPxWJZsVqSnJ8hkME1VlYmqShOCoCiGitus8rVq48Ya4vEsZ04HyeZAKyhoaLCRz0soBQUlJTpi8SyiKBKJZIrli4IALpeJkhIHZWV3E43czlT0DO1dz/HQ499Cq/0J1119J+WuTfj9SZ57vhffRAK7XUsylaWvLzx90y9x/JgPSWI64Pbcvs38bDarXFpa6OzndBmLHS2v3FB10Zw2gK7uIBqtwPhYlPHxGK2tVcVMtsLzjh7xXjSE1+kyXtKB+Hrzgb3ciNmp49j2YUrm2WhoqmPtvM002zeiM5zrZlRZUUl9bQMDQ31EEkHau4O0dx+aPr4qPvt3L1FaKovFH/jYu9l/aA86rQ5RFEmnU6QzMqHQqg3cfNUvi0Ruwu/F6xtHpVKxsHkJVyxfw/o1V7H6inVo1BomBsMc2zrEs985TsNyJ6l4FrNDi9Eqk/aQN8HqVRV/EcLz/2WMjUbp7g4WHSJrW5dRU3sNf/3RT3DHe9/P177wJWxm9ywxCmSXyYQ3zpw5VjQa2b0Zi2cv+h4Xy5RaubKceCLL88/3c+jQOK7pxQ6LRUPNdMfGmWVWhTKokyf9+H1yxMRVV9ewfGUT7c/+CmNqC9u2uamsvI3rr1/7ZzhyF0KSJPqPHebgU4/h7evB4nTRcuU1lDU0YrI5ENTnFikOHO7kuz+9n47OY+Ty5ziCQVNNueU6dGonFrOG5Uur2B4YIpO+kKeA7IxSKBTkcnlUKnCYM9i0cRzGJHZDFBQhJvsShBIpTmVF1sxbyWTWTgYr+07vpX/sJPFEjPx5C4oAC+Z8gRqnlk1r9bzw6m/Ye+IZVEolRq0Gg0bDsVNm2o7UozdUUFe5Bq3GdIHzrVCaNu6NEQ6niUbSHDs+gSRBU5OduloLSkGJxawtZjKtba0kGEwVOQKS7BResthFqdOA1xvHaFRjsWiIRDJksnky6Rwqtcw1NGkBm7Ke+ppGTJY7GRw7wqH2new7vJvmpoUsarqGbNbJlqd78Hrj2O1atFqBqVCKrq5J1qyuYGAwTG9PCKPRybp1zmKHyPM/GzCrFFXmCPLjS5e4LupkmtNgIy+K+P0Jtm2Tu9AvX1bGpmtrZwlJRy4xJ1yKI5yf/XY+zt+Xm9/2Nt7y1reSSSRIJ+NIokTPkIfVpwc42X2aRDLJ6Z5eTvf0Frdx9erbecu1t+J2Wzh24iT3/O3fodVqUatUZLJZ0ul0kSMsm3cro6zCJJ5iz0MPcOTIEQCsRgPLFy5g/fp1XLdxI5XlZRfsq0qjofXOd7Hn17/k6f/8N+7+0jepra3+H5sPLgtTbyJ6ekL4BiNUXVHFpz51bjXvy/d8js/c/y3+6sv/wrvXv4v33rJ5lptjx44h/P4EQ54IyWSOzs4Ac+fa2bSp9pIleeXlRubNd+B2m2lrG2HnzmE8njCxqNxBbdnSsmKYdAGFvwuuq61b+9i+w0NTo21WIPU//uwgu04cxGjUsnHVYlk0sljQNcnKsJTPy86nafdTbnISMRxGSqWKj5PLySvUEiBJKAQBhUaDQqNGodag0GpRmEwIViuC0YhCrZ7+/+mfS4TEgVzideC1IcJ4eGr/S5zoPXciqxRaanSLmGtZRS4pFIPKc3mRyWCKckWEuaYgDdoQ9ZowFmHasppXM6UwMqYs5UjWzITSweHMCB2+s0TTAXJS5IL9aPnwd7HZXAz0hxjbcz9TE0/M+n+lUomgEFBICn6bW8YSrUQDcTJReVs5MU+OOBAnGgzQv0f+HO9fVcsVS0rkbkQvvshLBw6wuKmRdNDMpEdPKq4glxMZHo6xeXM9MLOF8DnhxuePo9GquPfeFsbG4qTTOYYGo9TWmbFaNeRzEhqtkgULyhAEgd7eKfr7QxRWwlLpHOVlBtavr2bII3dBEoJNrNS5CeuHGAkf47/2/BznMRdLylppcizE4dCxrLaM/v4QgqDAatOxbp2pmKV2qe55LqcRqy3K0aMTDAxEqK+XW8h+7KMris8piEvhUJpIZIyurgBGo5pYLMfpM1O4nHpKSgyANEs0gtmOwWAgWSwbLJwLM3F+9tvFxl97hw+dVlVc0b/YZ2qpr+d33/gmoijimZjgjGeIs0Mezng8HOroRUqYSKVzuJxGBv0ZsrncBasbAIJSyfJVJVy7ug6324zF6uBXX/wiixoaaaiquvBcKSmR93FMU2ySIEmSLAqLIlI+X3QkIk3fhSgU5CMRWVC+jDcNoyMxlAoFN95QXyy5+eD7Pko8ZuQnv/gC7SfO8q5bv8ycOZXMn76e79gxRG/PFCajk6xO4LXXxjGZ1KxYWc7iRRcG/Z9fntTWNsKBtnF6eiaLN09XXe0mGEwWyfb5bsJChs/Wl/rYscNDY6ONTZtqKXUaCCeCPL/rR+xrL+Ub3/jzCVOSKOEfjjJ0KshARwC/JwoKcFQYWXh1FS63BY1eRXdXgPb2CUzWAKfO7uTBR+4nN+M8MukbqSy5FaN2Ltnph7MZkUQyi28igQIw6lSsaLDTVGlCJSiZimXwRdKIQhqbVs2VC8rICj3sP/EgydQ4qcwEopSBfuCwvM0rF76NxbetJm/5tTJmAAEAAElEQVRREQsbmAp5L/hMarUaSRKQJCWBQApJLZAQzxHMXD5OLh/H65/A6+8GwOOZYPnia5g/30FllZ67/+ZtNM6Zh0nnJuh3kYjaESUJRVSBs9TB0qUWlixxFV10M4Ubvy+OVqPi5pvnkMvmGRuPUVlhorLSTDSaJhLJMG+Zg82bGzje7mP7K0NkyKFUgMmoIZvJ09RkY+PVbnbsGCIWn4NVfS9zq68nntnNK7seJZt9GHfFVSycdytOVxmrVslh31NTaVpaSli8yEnBfnax4HOYLSAdPTrB8XYf9fUWVqwoLzqlZopLPb1THGgbx1WmZ8KbIBRKEwmnsVrl5iPni1gzywpLS/WzgtkL5bQFzMx9uxS6uwJ0Dkdx69Qc2z1KQ5MD32AUR6VxVqneZz/+L3z24/9CNBalf6CH3oGz9PafZWCwjyHPJH29YcwmDU6XkUQyQSqVJJW6kPyoNQK3vb2epka5lOrvP/APfOh9H2Vh8xIMF+nkNJnIEtcp8Y/EmBiIUFJlwl5pRKNTYbBoGO8LI0nS6953XcZ/Hz29IQaHwsxd7ORTn55TfPwzf/cffOnbX+Yjn/sHbr3ur7nj1s2z3BwyR0gyNCS7mPr6QjTNtbNo8YWldDPdVfKcYqGtbbTIEaLRLIKgZNkyVzFMuoDC3wXX1Usv9c+aD1wuA+FlV/Bf3/sRXWMTuFyOP7swJYp5zh7cz6EtjxMYHsJeUcXCjdfhqm/AZHegFAS6u4IcODRIMtvHCzue4Wxff/H1glJHmW0l1c61xKLKovErnc4zOZlCvNjiORIOc5ra8jx2fQKzJoZVm+BA3wCnRr34IgkiFzlPN7/3u7itpfT3R9F6TxM5E571/0qlEqVShSgKRLIWxpJOuiPljMbk609OFAknU4STKQhH6J+Qy3j//iYV1oaV1NQ08vBvn+TAa6/RMm8e0ZCV8WEjyYSCXE4ikcyzZrV8/V202Mm6dVUX5IhpNMI0R4iRTufo7Q3hcumprZMXujUagZaWElQqJb09Ifr6p6b3Xq6wKC+f5ghDEXp7Q2RjC2lwNpKw9xIIHuK3Pd/HYa1kbu2VVDuXYrfrWbbMQn9fCKWgxGrTzspSu1T3PJfLgNWmlTnCYJj66ZD0j31sBkeYnhPCoTSRaIauriAGg5pYTC59dzn1OEpkB9JM4QhmOwaDgWSxbLBwLszE+dlv56O7Kyh3uBeUbNgwOzRdazSiNcrX6JWuMn59xRXk83lGxsfpHxyib2CQ3oFBjh7vIZM0k0rlcbkM9A2lL8kRVILA6jWlXLW2haqK5bj7O9BVVNMybz6Lli3D6ipDeV6UyPl5VVqDkdY77mHvo7/kt//xee756ncwXyLr6k+Ny8LUm4imJhtiqZ5wKEV3d4D4tI38xPEwSw23oFPs4qG9jxDN+XngX/8Bl1MmKjMV2e9//zihUBqPJ/a6Yc1Gg6pY9nTgwDh9fSFsdh3lZSauvLKKG288J4zJbpQLUeo0smxp2azAapCDXgFs1ouTVIUgoDAYUBoMYLejqaq66PPebETicf7zgSd56tXdTMSHEclT45BtyLUlbkrFhRjTdSgVAmm5yQAGRZaFej8L9EHme4KYS7NkJSXDaSMvRYwcTBo4lcoQYopkrpclLV9j7pJ6JCRO7vgJU6kZE5qgo6ysEpPJSS5nQVRpufr6RqSdw0j7rqKmpoXW1gbuvHMZpaVmYrE8Hk+YvXtHEexadgVSxJY7udGY57rYJHNNQVK9JxjvPIVveJiRQJDhTIYPpfZiCvsxeZLsOvIaL7Tt54W2/fKxR0GZuZIqSx3aiblcn6/h7rtaZh2nQolCQcScN98h22Qdehx2PcuXl2G1adm2dYDJYIpT6SDxWBatTqCh0UZoKoNKrSA0labEoZcDWadFpXg8y9RkCn2+hsW6Om7ckKHD28b2nmfonNrPPbW3smrNZtatr+TkiQDDnggWi+aiImt3d4D9+8eKJaeZdI6hwTD5vMjUVApQFN1VAMOeKMlkjkgkzeHXxpkMpnC7LWQyOcS8hMOhY+P0CvxMRyLIjsHycmPRbSjmKeZdne/euphYNRMFl1pjo52ly1wXzSo5391VV1FBXUUFN6xeU/zshUkBYGlTE92PPU4ynSaXyxGL5Qn4Msypt9Pgdha7NxZw21VXX3L/Zu5j4fMo5LAcEIRiFtv5EJOv7xC7jD8cVdUmwtOkt7srUCwtktKLaKn7LKc93+dnv/4Q3/7Kz1ixcjUwOzNqy9M9jIxE0WoFFi4svWjnrfPLk3buHKavN4TNrmVuif6CPJ7Xg9NpZOnSsqKTCkCY7gp03hD8kyCTyjFyeoqhkwEGTwZJRDKoNErs5UYaV7qwlxsxWDXoTRoUSnj2uZ1850c/whfsIpXxo9NaMBudJJIhqsquRpXfgEYtn8vZGfdzEjA+HiOdlqgp1XPd0nLiySgvH9/PicFTBGODpLMeSkpWcON1H6ZECYvryvjd3sPFbSgUSqwGBzajE72+lLqWxdz5yWUEwime3+uhouKfmDOnnLvuWs4NN8xDrVbT1TWJxxPml7/sRKVSsGRJKcaYjW+pXqRkkYHKWjWTUwEmpybpHxim4+QZ6msXsHiR/N2f7T3NoSNtHDrSVtwPjdpKhXMh7qrFRGOtXHvtyqKwUhCjCq6jQn6VIMCSJWUsX142LWrKreaDwRQ9PSGmJtO89poXrVaJo8RIXZ2FWCzHyHCUnp4QDXPsLFniwukycuZMEJXSQYnpNq6/6r1E03t5cftveO7VHWxY8xZq6z5FTVUd7hoL6UxuVn7TTBS6S7prLWg1KtxuM+lMjsGhMPmcyPh4DL8vwaZNtUVxKZnK4RmO0NUVpK83RCpto6WllJGRKEoluMoMs3K7CsckkZC7646Nx6cXF6Rpx2LgAvfW+ULVxdDR4ePsSISKOQ7EYIrYVIpEJENNi714/swWx8wsWbScJYuWX/D5C+f/D+57gHg8Rjojd67y+3PU1zlwu53o9bOJ2/IlV/ze/WvvDrJ0cQnXXTUHjUHAaJPdVq46C57OICOnp6hpdrzudi7jv4emRhve03rCoTTdXUHiiSxut4WTHVHmuO5CLbzIU1t/Rirn41tf/jQu14Uc4XvfPzbNEaKvG9ZsNKiLZU8H2sbo7Q1hn+YIG66s4qabzgljBTfK+XA6DSxd6poVWL3gqmtQ/ehnALicfz4Kmc/l6N67k0PPPEHIO0ZJTS2Lr70JV109BpsdpVJJJBrl2z98lBdf2cVUdBBJEnEVOEJVI2pxCWppDgqFkth5a835vMixYxPkshIWfYZSYxy1aoJM3ks4GWBsKsTRwSifvvFGlDoHU5TR6R2l1xcsbkOl0uNyneMIklLFNdfUoVAMs2vXNdTULGHdugbuuGMZpaWmWRzBbtcSCKRobnawdu1/ks3+G4sWGdHpMvj9fsZGRji4ez8njx+j1pZG4XuVk891sK3tGAdPnOLlnbsBUKCkxF6Ny96Ab7KZsrI5LFw0W0DxeCLF36dPTzJ/miM4HDoWL3YWhciHH+qcDm4PEIvl0OmUNDbamZpKo1YrmJpKU1KiR6MRpjmCgXgsw9RkCpU4B7etiQ0r45wd2s3BE49R4drNbTV3smbNzaxbV8XJE36GhyNYzNqi8DkT3V1B9reNFktOM5k8Q4MR2WgwKWflFtxVAMPDUVKpHJFomsOHvUxOTnOEdJ58XsJRopt26c52JILsGKwoNxbdhvm8VMy7Ot+9dTGxaibaO3yMjsWoqjRdMrvqfEdVbXU1tdXVbFy/rvjZZ3KE5UsWs+f5Z8lk0mRzeWLRPH5/hjn1DubUu1DOqHKoqLqKxRuuuuT+Ffbx/BJFo83Gmtvvou23j/Dbf/8n7vjCl/8fe+cd31Zhdv+v9rQsW7ZsyzOJncTOsuNMZ0BIgCTsPVqgUOiiE+huaXk7KKWDlra/FnhLSyl7BggrYSVxQhLHzrCdxE5iy1uybEnWsPbvj+t7LXkkgYbSl+Z8PvnYju+SfHWfe849z3kwZU/+QOajwmlh6hQiPz+NQyTYs8fBsWNedDrh7V06Mh64PHoZloM5bNjxBg3XH+Ku675KQY4w+viaqytwOP2kpSlxueTk5OikTJxk0iw6TpJbk8TtL12alzK5RkQySW9tGWT79h5pHbGFUITD6Sc4InjpDR//6eH1+3lp61Ye2vAi9YcOEU8kUMm0TFEvJVtRii6Shk3nQTc8YjmUgUEeZp7WyXx9HzM0AyhkCfqiehqCOTw1OMz2QBvBRCsJwuP2VzhtmOtvmM3f/74fmWwuJSUFTJ1aSm5uCV/84jKWLy/kb3/bz2uvtRGLGWlsdAEJ1OpsTCYdCxbM4NJLZ7Nx41G2b+9GqZQxdaqZadPMguKfrsbjCTNr1mw6O4fY3l/Gmju/wacrMwh3dhGorcW/fTvDTU0M7K3jinCYGbNmc0ipYEdXL539ffQOddE71MWerloqiksJhQRymp2lT/lbj3VFVFXl4PWGEJ9Ur1pViFarpLHJycBACK1WwdQpZi67bAbhUJS33+5ApZJRV9dLdXUuq1cXE4lEGfKFhTHFwIy8aXzn1nW8u7OJp7dt4FfPPMizta/wpYuvwhiaQnPTILFYHJCljLgH4cJY39A3kjMiY9euHgbdIQryjcyfb0XMo/K4Qzicflpb3Gi1SjQaBSqlgmnT0ikry6S9fYi0NA1lZZmSI6qh3iE5BkWHlJi9JboNPe7hcZMyTwbJN4kTCVgnMw3QkqWjrCwTS5bw9EatUpGfFCS6u64XV0+IrHRQTBlVBCYLZj/eMZ7GxwtXfwCPP4LTEZAcnEtr8mhrm02G+Sccsv+Rm75yCV+44Xtcd/VnCASiUracSiXDYFBjTBMyo5LbmkSMbU8qKjKh1ShZWjNxPYDR4HO3R3AfulxBCvINdHb5xzltxSdtEz1JPpVo29/Pm39tIhyMYjBryMw3MGVeFuk5enRGFWqtEmTQeHAfjz/zCK+8/iLeIeEJdLp+PrnmazEbZxCK+JCZ9MjlajhOR2o4lMCSBj0DD/KTJ1sY9PWMW0ah6OLzX6pk30ttpEWMlBZ8GktaLmfNnkVeZj7TKnPoCoV5d0cPq84twTWSDzl7djZHjpSi1RqZOtVGWVl2Sk1YuDCPrCwtZWUZODt8aJQaNFEju9/3M2/edBZVTyyE5Fhzue8Xf6Hp4H72NzZQ17CLcMRDe/c22ru30evoQqO2kJWlIytbuJFOFmWSRcxAIEooHJXyoIqKhfPGmqPjnXc6cPUPo9EqWbeugKuvqRCCx6NxsixaiczY8gyUFKdz7JgHuVxGNKrhigs/z5c/92X+9s+/s+G1/+Wqz67msguv5trLvsg773hpb/fS1eUnK0uXch6L2U5dIwMx7B1DQk0YHKagII2cHANeb1h68LJ3r4OeHh+DA8Po9SoMBhVlZWaKCtMoKTHjD4SpGLnhDoVH4hKmmlLy1cR8q9w8wV3i9gxPOC3zRBDFpCyjhgG7jyN7hBv+tJGn8yeaBgiQNVITskZqQmaGhcwM4fjrdvficg6QbdGkiFKTBbNPdnzz5lmxFBhTfle2KAdHm5cNv2sgI1dPzpR0MnL1GDM1yGQySqutp51Upwi2fOHzV7dHcH1otSMcocYGQEXsenbU57Fx8wYONDdx2xe+SU52NkVFJq65phyHI4ApTTXCEfRSJk4yaRYdJ8mtSeL2l9bYUiaZiUgm6a2tg2yv7ZbWEVsIRbgGwijTsoBOeg9sP8Xv0HjEolGatrzFjmcex9vvxDplGlVrzyerqAS9KZ0hv59nN7zMo888S9OhwyQSCZRyPda0VZi001EpTJiy3ajjZmGDY05luSyOxThMrjlAjslP9+Ahdre3scfuJRwd33LXLF/Ep6+6kMeePEL/sBKbrZKlS+eRlVXEddctZNmyAokjhMO6JI5gxWTSU109nUsvnXVCjhAM6tm8uZ81a4pZt24BAJ8dyf8MeDwc2r6Fpi1vs8hqxlpZQX8kRmuPC8dAP/2DdvoH7Rxs28KM0pkMh+IUFZnIztal/K3HZizNr8oRpjCmCS2+4jnQ2NTP4KAwEGXKFDOXXTadcDiWxBH6qK4W2uPCkRhDvsgIR0gwtaicO75+EVtq9/Lypmf4099+x2tvv8ANV18HkSk0Nw0QjQq2tbF5WQ17HdTXO0Y5ws5eBt1CPaieL7SkHZQ4QoDWVjcajQKNRolKJR/hCBm0tQ2RZtJQVpYhOaIaGhySY1B0SInZW6Lb0OMOjZuUeTJIvv/+sNMABY6QIXEEjVqd0oa3e3cvjt4BMs0gnzZ6ozNZMPvxjjEZ5pxcFl9yJe8//zR/u+NW5p29jqlVCwj6hmje+g5li2qoWLHqJN+JD4ePX3n4xEGGTAYWi5AP4nEPY7MZOePMQsKhKEXF5zHrcCn/3P4In/vd91k/6xIuWrGSwiITHXYv8bhwkSgoMKWQ5rGENFl0sGYbKC3LwG4fGiHwo+JTRoaW2lrB/mnQK3n3nQ727XPicgWZOtVMV7eP7dt7KC3LkCa4dYihoB9TtqHX72djbS1/f+UVth84QDyRSoh0MjP5ynnIZXIScdDJ01EQZ47OySJdB2p5D03Dw/x9IM7e4QiFhnPQFizCHlHRGd9KMLEVALVai9U6jVmz5mEyTSUczmHJkipmzbKwcKGN3t4qSkszsNmMLF1qY/lyIZhy1aoirFYDDoef7du7mTbNzHXXVQAJVq0qAkYD40aFKGEEs1iMAN58s4033mjD7Q6xbPlZ6GbOQDdzBpk3foa4z8dwYyPmN95g/rZaIu3tkJVJ36wK3pEb2eF2M+ANUGSzSOLN3c/eR7rRwOrKFeQXFIxrm1u92sDzz7ewaXM7Xm+ESy4po6amgKeeaubttzvIydGTkaHFoFcSDkXx+yOoNQoKi0YnGHV2Cu67rCwdwWCU/v5h9u9zEnYb+NZlt/KlS67kF488wjf/9FvSNRYWF5zJvMJKJjqZxKwzi0VLR6cXhyOARqsgzaTGZjOOXJD7OXbMg88XJi/PyJQpJo4d8xIOx8jMNGEyaSguBpdrGIczgN0+REO9MN2pqioHa7bgkorHwGTSADKOHfOwbJmNoqLsFEfWyeJEjqqTmQaYLCAezxk5dn27fYgnnmimr9fPqrOKuOnGuR/oGE9W2DqNU4OuTh8+XxRTulqarBcKR9GolVxz7Uzs7Tbm9f6aV9/6E3/8613sqNvGnNKbmDOnGJdrGK83wvQZmWRnaXG7Q7hcgiAsOmGSSenYc0YMQxfbnEShSmz9FpZLsHNnNwMDw+xtECY2FRebWL4sX1rOkhBuzqPRj06YGuz188ZDjZiytBTOspGWqUWtU6LWCqJY48F9PP/SU7zwyrMMul0p68rlWkz6hRh1s4jGQCE3C/8vA7lcRijiIRrrRKXoIhLrJNOYybnzv4TTF2JqtoEfP7YXf0gQuPLyCjEYSsjPn0Fu7nRMJqFVOqMojdhgiNWLLqc8y4hGp2TVtTMonmWhrz9Aflkms2ZZpEk2ZWWZ3HHHIiAxLkQ0uSY0NrqoO+AkX6ugs9XDlgN9+PzRSR066SYzF667lAvXXQpAV+cAb2/ZQVfvPrbueIeZJWdKk+46uur5xzO/5LxzLmfuzLMnbJur291Lb2+Qrq5jrF8/hdvvWIjT4Sfgj7Knvg+jUUVRsUBanP3BkQcbaVLb6YsbjjDoDmGzpREKxQiFYuj1Svp6I0zJX8t9P7uUXQ0v8vBjf+LZF5+kIOdMZpRchkKRjt0+lHIsUpvpiGOqtrZrxPkko3q+lerqXOx2IXdKnFiZXBNUagUddh9zZmczZ24Wx455cDqEmtDUNMDRo27SzRo0aqWUr5YsWFUvyJWyrT5wTRhxVQWHwrz96EG2Pt2CPl0tZTidbE2YTBQ7Xj2oq+vj+ecP43INs+qsQq68snzS4xsL8RoyY1U+gZ4Ag44AHc0uWnb1ERv5vNtKzRjMmnHrnsaHh8QR0tR43KFRjhCOUVR0OTMaZ/DK2//Lt3/yDVYuvJqzz1xJYaGJjg4vsXiCoiIThYVpKaR5LCFNFh2sVj2lpRnY7cJ9VrL4lGFO5ggq3n2ng737nLhcw0ydli5whNpuSkszpAluvQ7h4XV3y2H2bNzA/PUXnvL3KB6L0bz1HbY/8xgeRx85U0spW7yMzIJCojI5r7+7hSeef4H6/QeEqIIkaFRZZOqrJUFVrTRLv1PKw+jVnSDrIhjpY8DvYu2cuWSnmfBF9OxuV9HWL7SradRarNapzJpdiclUSjicQ/WSSuZVF3P4aIgDjbPJzTVy000LWL9+1IF2KjjC0aNuDh8e5PDhQQoK0lLyfvTp6VStPZ9556zjnE47+ze/QcvOWnwDLtyhGP0yDYf63Li9MfJyzZJ48/uHf0q2JYtlC88kP79wXNvc6jXFoxxhKDzCEfJ56qmDvPWWnZwcPZmZWgx6FeFwDL9vhCMUjk616+oSOIIlS8fwcBSXS+AIQV86t37mm9x4zXXc/+CD/Oien5Kmz2F26blML6mc8BwQs84sFi0dHV76HH60WiVpaaokjgDH2oQW1bw8A1NK0jnW5iEcipNZpMOUpqGkZIQjOILY7V4aGhzs2eNg/nxBOLLbvcRiiRFBTsaxNg/LavIpKjKlOLJOFidyVJ3MNMBkAfF4zsix69vtXp544iC9vX7OOquQm26ahCNMcowORwB7r5rZ511L775t1L/2Ertfeg4AY4aFdGvuaWHq/xpKp6WjmZKBQa+kYa8DrzeMwxng0KFBXP1BzjtvCjdesYLpRQU88t5jPLf3MY4MNHLt8qtRoUOrVaLTKamoyEStEezszc39bNx4DIVCxvIVo4KDNdtAbW0nDz6wD5VKRiwOapUCjydEZ6cgLtnyDRw6NIBOKxzPrFmZUhh2IBjBkqklHImxeXM7R4946Or0EwoJRGSsIPRRwuPz8er27bz43nu8uWsn4UhqsKNaZiBHOZ0c5UyM8tEbLJtyiEL1QQ6HDrPJF+CP/SEiY0SQqF5NgT6bFYuymTp1Kq+8ks+VV57FwEAab7/dzdKlRSxcmMc//tFIQ8MAc+e6uOKK6VRUWFKKhoji4nSKi9Npb/dgtbqkgpIM8efGxtTfJ5OUpqZ+srJ05OenPsGUyWQo0tIwLFmCYckS4uEwoUOH8G58leALr3LVYAtXKFUYa6oIFYVpGjRS39jOzkN7AXizrpb7XrBw3bp13HzBhSgSo1kjEwW5XnllOVdeWS658PyBKNu399DV5SM/3yi14TmcfgLBCDqtkrIyMz5fFIVCBsjIzTXgcQ/j9WpYU3wFNuaz5egm3jjyLE2uXeSV3YDDmZ0ycTBZPHn++RZ6enyolAq6u4QJGqtXF+Nw+vH5wuTk6lm9uhhXf5DGJhe2fCMWi5beXj9yhTBNUbzp77APYUpXYxl5Wp18U7/hxSPs2tWD3e7ljDMKmDM3e5xAczLizdhlkn8eKxpPhMmIRvJ2FlTnjlvPoFfS2TFEMBijdlt3ijCV3B44mXB2IkHsNE4t8guMJOIJ0jI07B2pB/Z2L7EY+Hxh2u1eSkvN3HTtd/EGz+X+B39M08FdeANfJ90wn+FglByrnmmlZmx5RqkVsLlptCasWFGQIji89nob+/Y6UKkVWDJ1eLwhOjuEelBTU8D22h6OtLoBsNnSqKiwYLcP4feHGfJGiERj7Nvfz+bN7bQd87C0TLieymQfzZOKYV+EV/+yH7VeSWm1lcyR6+H+pr28+uYGXn3zJeydbWPWkmHUVmA2LsGkq0QuF4izXAblBSbc/tfpcjXT7mjBE0gVstJ0WVy07KtUmDRE5TKWL/oii84s4+tfv5j7729m0ya7RB42bbKzaVM7V182nU37XMzNSQOZjHlrCymrtiJXyCk2pI+7/n+QmgAQs/to39dPRrpaCrQ+GfT2hgl48ynOLeGm+78CCJ9xe4eXJ59/kmPtLfzhwbuRy+9h5bKzuP7qz7Ky5ixc/UFJ5BEnm+7d66C8QmgZ/PwXKiUHnkatlLY7OBii3zUsiTjBgFAPSkvTpXognqNuT4hgMEFR3jquWl/JjvrnaT7yAp19W5BpPs0ZZ3yJut29knurqCiNq68ZbUu3dwzRsNeBTCbD7R6dItTd48PrjQiZgSNib0G+AY87JO3fnK4hHhutCfaO0ZowNt+zq9vH2293SGHQE00+PJErKXkZi82Aq8tPXCPH6wthMGtS9jnZNiarCcfbv16vZGgozJEjboaHY2x5r0sSppJbAycTOpPFsOoFuSTiCSLhGNFwjEgwxnAwSigYOS1MnUJMm2Ym02bAoFeN4wj9/QHOO28qN1y7mtIpxTz32l95Y9tDdPbt4/zVn0Yu06HTKdHpVFRUWFCrFRQVmSbMtBH/1dZ28eCDIxwhlhA4gjdER4eQd2HLN3Lo0CBarYKGvQ4qZlmkMOxAIILFohvlCEc9dHX5CIcFbpCWlc27j/4vRksW0xfXnJL3Jx6Pcah2C7VP/xN3bw/WkmlUrVuMJiOTbfV7ee3Bv7Flx/spOYIAKkUaJu0szLpZaFTi+Z4gTRtBrWzDMbQfT7Afp9dDbIyQ9daRNPSmVZyxppyrz4LEE5u46qrVDAwYeeutLpYsGeUI9fUu5swROILgbkyMm1x2KjhCZWU2zz3XglIpn3QirlyuILtoCmfd+HmWX3M9zz38KoHat5gW6aS00EhWYTGWgiBdbhN1DYdpPLQfgHdq3+Z/n7By5UUXcu1llxCPjU6rmyjY+8orZ3LllTMlF54/EGF7rTC9tSA/TWrDczgCBAIRtFoFZWUZ+H0R5CNDSfJyDSPZT3oWzboBs3YJ9QdfZfu+R2jr2caUss/hcGSnTBxMFk8EjuBHpVLQ3eVP4ggBhoaEejDKEfqx5RuwWLT09PpRKIRzXxSCOjqGSE/hCKMiz4YNreza1StwhJWFAkcYIwydjCtp7DLJP48VjSfCZMJT8nYWLJiII6jo7BgiEIyybVt3ijA1NldqIkiC2MxMFl50GX63G4+zD4VCeHCZbh2/z1ON08LUKUZGpo6c4lx21/VKT8gq51mp3dZNX5+f997r4rrr0jFoDfzi5tt5adtWHn7rn/zk+Z/y2XOvJN08HZVSgVqjlIipePNkydSmTC0DeO21Npqa+jGZ1OTmGhnyRYAEGo2SwkIjc+Zk4/dFhalM3jBlZZl8/RvVko1w1hIbDqefvt4AKpWMsjIz/b1G2o9APP7RWqYGvF5e2vIef3/1VfYcPEg8kWB6/jSqc86kx+HGHq4nSzGNXOVM0uRW/IkB3LEuOiP1LNFZuckSplTj5h3fMPc4R3uFlUo9Fksp6elTyMubQVraDI4cEf4W3//+WXz/++cBsG1bJwqFkjVriikoSOPcc6cgFhmxsBwPJ1pGfHouLjt2nSuumEFFRdYJx3HK1Wp0c+agmzOH1yxraH7uXc7TNqE8uI/4zp1MTc9i2DiD7114Gx2hw7xc+x69Lhf3Pvoov338cc6Ys5jFxStZw9zjBnsn3xgnt4eK55roPMrLM7JyZWFK2LooeLgGgrgGgpRYi8hJu55j/Ueo7XiD2x78CS++v5i5GSsx6yykj+RbiELVzJkZFBalCTlTdi+V86zSU2ZRlLJmG9i8uZ3uLh/zKrPJydGzfXsPs2YJGWmtrQM8+MA+qqutrFldghiCnuwcs1i0qFRyPJ4Qe/Y4xk0+FF/nicSbscsk/7ygOveEos9kIfAn2rc/EKWgMI2+Xj81y2wpvxubKzURJiI/ohhmjPsJBuMUVXkomZJx3OM/jZNDlkWPOV1L8+EBqR7Mm2clEIjyxBPN2DuGCPgjLFmSx4ola5k1s5qf3Ptdnnv1LsrLVjCn7DpisTTM6doUcinVBItWCm3OthrYuq2L118/RiQSJ82oxjck1gMFhUWC4LO0RvhsW3N09Pb4qSjPYu25UyQXSm6uHq83RCwax2rVozWIosCprQd+T4jWOgd7XmsnGokxsyaXY44mfvPXp3h100u4PYOkGc3MLF2ORnYhRzofQK3MGhGjFpAgglzWjUy2mVDEx8KyW5hdlE6aTsnPn66lZ/AQIOTymdPyMaVNwVYwg3PXr+DAoRA9h4c4a1Uhr7z1MykHaM1IK8GapJaCNWuKmTE7m/ctWoZcw5QuyGb+GUXSDXcyPmhNEP91HBzA3tDPujOLmV45PtB4MhQVpdHSMiC1uFUvyCXbasDtCbF8wS0sql5MU8ub1DXs5J0tm3hnyyamFE9j1bIrKcxdzexZOaxfPyUl2yh528lfxcmN4vljtw+h0SiZWW5hyhRTinCabTVgThfcPM7+AIm4imULr8agrKGtdwOb3nuEnQ0vcebSm6ieey6JuBy3JwQI9WDunGyWj1zfxNB+UUTJzTNQXZ0jCUsNDU4qK7NZWpPH9toeQuEoGWYtJpMKuULGI480UVhkZN7cbGbOyEgRcefNs9LV5WfQPczO93vIzNRhTtemCEDHczJNtMzsVQXsfNNOrzdEem+AvALThAHvYzHZMsfbfyAQJS1NzbRpZlyuYVasHG3TElsjgUmFqbF/Y5lchscbkkRLtyNIWoGBzDzjhOufxgdHZoaOabNy2b27V3JNVM6zsm1bF319Aba810XJdekY9Ca+//Uf8urmTTz/2iP86dEfcM3F12NOL0OhVKJWKyRiOloPdClTywBee+0YjY0uTCY1eblGhnx+RmtCGnNmZ+P3RwgERI6QkcoRKrJwOAP0JnEEP3r6PVA4ex7psQAbf38v8m98h9KRnMQPg0Q8zuH3t7HtqX8y2N1JdslUSlesYndrG/f+8rccOHiIRCLBtOIZVJSspbvXgctfj0k7g3TdLLTKHMIxJ3AYf/g9qgoLqS4xolPHaOruY0vStDOVUoctt5R081QyLdNJM5XT2prAH9bwla+exVe+ug4QOIJcrpiUI3zmMx8tR1iwIFcSrk4EtVbH0vWrOdRnpdPRR6Wti0jfXg69vQG5WkeeMp/PXfVtnENNbN7yDr19Dn7/wEP8v4f/ztLq5cwuO4uVzDlusHeyWJLcHiqea6LzyJZn5AyJI3hTMp0GBoYZGBim0DaNrIwv0NnTzL7WV/jxr7/Nm++tpDjnLIx6IfMKkISqmTMyKSxME3Km2kWOIDiPRFHKatWPcAT/CEcwsL22m4pZFqzZelpaB3nwwX3Mn29lzUhcgvhZEV+DxaJFpZTjcYeo29M3bvKh+DpP1OI3dpnknxcsyD1ha+BkIfAn2rc/EKGgMI3eXj/LjscRJhGmkv/GMpkMY0YGgYgGu92LmmHaep0YSzwf6cS+08LUR4Dm5n7e2tyGzxdlztoSysuzOO+8KWzabKe4OI1t27ppbRWsonML53LJdCP7B9/hdy8+jM2czzXLL6eoqFzaVofdi9GgIitLS329g+S8HqNRiVqtFMZRnj+V7dt7aG/3IpcniMUTkivF4fRLYdQe97BgkRy5iXT1G9jYdQy1WskZZ+Rx8A1BRR5rjz0VcA4O8rdXXuHJzZs4bLen/G6qahk2txAGalV4SKhkBOIDtITfJZhwpyyboXSgV5XyXHgej7msZBga+fxXLuGWW9bT3Jzgl7/cidMZZNWqGaxZU8ymTe0pZANg2bICli0bzWA5UZH5oBjbwjEWJyN+iWhv99DY6KK03Er2ly+iaNZN5JvBu/FVHP98gnmt25in1WFYuoR7P/MArzc38efnnmf7gf1sbqhlftlsycEzVrQQzw3RySSKJjU1BTQ39/P4E00UF5kIBmMYjSpi8Ti7d/fhcARShCuADruXcCjGtGmC0PTWZg26aA6JzA62tW1iW2Md5y1YzaVZN2G3D1E/Mso23ayVBC7x3DTolRIBEfdRXGSiu8tPcZGJdrsXpzPAoNtAWZmB/fv7GXSH0GqVnHFmIYcODpBuFpwiowJYJj5fhJaWQXJz9Rj0ynFZbqLrqqHeIU3uGwuDXilN9hPXSf76YXGi7RQVpXH11eUTurFOJldqIkFMFMO0UR/xuAxfo+u0MHUK0doyQH2Dg0Qijs8vPOWtXpCL0+ln82Y78USCnbv6ACgry2RZ1TexmBaxv+URDh+9lRWLruKSS78rba+2tpOm5gFyc3Xk5Rmp3zNaE1yuYVRKOWlGNavOKqTD7qPd7kUulxGPCddzcQKf6KgIhaPY7UPMm2elrEyoCVu3dSFXyKhekIMq4ABOTT0YGhjmaL2T1j0Oeo96kAEx/RAvvv8QW//fZkKh0ae0SoWZwoyfExxUopFDQdY1qJU9BENNtDleIRwdXVYmk/P5c7+GdzjGW7sd+MMLyc2t5vbbL2LKlHJ+//sDOJ1Bzl0/gx/9aBnbtnWyaVM7q9YUS6IUjK8Jyd8vumAKLbv6mHdWIRrdh7t1mqwm5JeZUWsV6JGdVLZRsotm9erilAmkAHPnZGFO12DWziXkvgL3cC+b9zzP0y8+xrH2I0Qij/Pru66WRKRk4ULctl6f+hqTz5uHHtqHRiNnWqlQv3bu7GVoKMz550+Vjl8UzQIBFbm5eubNs+LzRVGrr2Xd6qux9z3D86/+gr1NL3L9Vd8E5lC/x0EiAeZ0oR4UFaYxc0YGgUAUvV4ptRAmC0s+fxSNVklT0wBOZwB7uxeNWkksBvv2O+nt8eMaCDKrIkuaoup0+Nm3X6gJs2ZlUrfHQZZFizXHkCL0iq/D3jFEfYMDvV45ociTPOXPYNIwa3kepg7fv1wPxP0nf53od5dcUjruvEnOlZoME4lhyQH5hOPoc/XMmj9+xPhpfHg0N7l46612fL4Ic+ZMobzCwnnnTWXzZjtFxWlsq+2itcUNwKyyxQz0ZXC053Ue/OcfyM0u4YLV145yhCYXHR1ejEYVFouWPfVCLRHzeoxGFRq1ghyrnvMvmMr22u6RmgCxWEJypTgcASmM2uMOjdyHRaQMno1dR1GplJyxMpdjDuHBolwuZ9lln2Lrk4+y4dc/Y8U1N7Dggks/UCZZIh6nZWcttU8/hqvTTlqujda4ivsfe472zq6UZXNN56AJVxENQ7rWilYpI5ZwMBjYyNDwUMqyBRkKen2LcQZM7GmZiiXdxM23nMf0mfM5ekzBsWMe7PYhzlxV9IniCGvOLsHjsTFr1hoK8vUc3bOL9196iXhrE+lyGeeumM8PvvZF3tu1m78/+RQN+w/w3o63qZw1X3LwjBUtxHMDkBxEVquempp8mptcPP54M8XFJoKBKGlpKmKxBLvr+nD0+VOEK4CODi+hUJTS0gwKC9N46y0NSlkBKsMRGg69yvv121mz/Dyysm/BbveyR+IIGkngEs9Ng141whFGnUfFxSa6u3wUF5tob/fidAZxu0OUlWVwQOQIGgVnnFnIwYMD4wQwrVZJnk3oyCgrzcCgV43LchNdVw0NDmly31gY9Cppsp+4TvLXD4sTbaeoyMTVV8+c0I11UhxhAkFMFMOUiQCxuALzJA6+U4XTwtRHgIa9Dg4eGkQGtNu91NTA2rXTyMo2cOjggBDUmeRaaW4aYH5iHefMO5OX97/Ir1/+HfW92/jOddez8+0Q+/b1j1jQTSQSEbzekESmL7iglMIik9S+U1qWwbatQpituP3a2k62b+9BLocjR9xkZOi46OJSyZG1f5+TQCBCXp4RSLCgcBlnVdaw9szZ//J7kUgkaG5r45nN7/LEa5vpHOwat4wcJRqZkWgilPR/ctojO1OWsyqVlGu05Got6AuXcOiCT5GVk0vZm51cPOtyPve5eRQXp6NQeLjgglK6uoZYs6Z4XHH5d+HDFJWJLL8w+mRl6VJbSi975jVXk3HlFQTq6hh45B/4t2zB/+67LJo1l5KLPsfgp6K8tP1tvnnTpWjVwpTFTbt2oVGpWFFZCSAJRG53iIYGJ+vXT5HEGFFhP3rEw/BwFJlMRlWVVZiCdMQNCITF1R+kpWWA4iIThUUmSTgx6JUj5+digqHz+c1jT/J6/Sa2376LT6+8gqnWCsLhBIaRiWKHDg4gV0Bfb5BYLM769VNSWuWCwSi5uQZpUiAIF1lLlo7Fi23Y7V6WLs1LuZkfK4ApVTLC4RhKlRx/IDrOoWTNNjAcitDaOojBOLEw5Q9EiceQJmMmCz4n01I3GSZzUp3M70+UfTUZxPfKGNcIjqmTeDp3GieP5mYXrS2DyBWCOGQ0COR27bppZGcb2LKli1gszrx5VrKydOTZ0vD5aijKX4hr6HW27HiCy254lc9e90Wuu/qzvPZaG4cODTBjRiY2m5HengBeb4i63b1UVGRKo+3LK7JwOvxs3dYtuU5E1NZ28vLLwsTRffv7sWbrWbGiQGrRcrmEQOlQKI4ynsaXL7iHtTdPnFVwMnD3BXj70YN0t7iRySGk8NHQXsuTm+4nFBk/EUopN6OQG5ARo8CSxoz8NLY129ndujlpGRVmYxFqbRElUyrY4fJxxRVzmHPpVAyPGpk1y8IVV8wD4IILhqV6AOMJx8lg5pI8plZmo1J/+PGEk9UEuUJO+TIb+9/pZMgVZDgWP2772NgWrLHLZFsNBPuHOfBOF2qdgnBQxeKca/nUI19m665XMKdnsHCR8DQ1HAnzyGMPceWln8aUZkoRJnqTrsOiILN3r4Ndu3qIxRJMmWJm1aoChobCdHf52F7bQ01NgST8aLRK5szNktrjrrl6ZpI7awmlRet5Z8df+PEvb2Lx/HWsWHwzaqVZmjApHkcsBnqDitBwRBLMxPenqtLKwYMDWCw66dwXA8QtFg2NjQPMmpVJdlI2p90+RP0eoSbI5TKGvGGmTU2nqNDEwYMDmNNH86+yrQZCwxFaWwalz+5YiFP+ROHLmmPEmjPqMjqZtrrJcDy31fF+dzLTBCdCckC+2xGkrNT8gbdxGsdHw14HBw+OcIR2LzU1wpS87Gw9Bw8OYDCoUlwrzc0ulIrLWL7oHN55/ykefOLntHS8w5dvuYn33gqxb2//SJBzOokEeIdCEpm+4PxSCgtNUvtOaWkG27Z1jeEIXWyv7UYul41wBK3AERYkcYRglLy8EUF4xtmsqlnDmjMrUWo0rLjmeuo2buC9fz7M0T27OPtzXybTdvzra3g4SPOWd6h/7SVcnXZ8MhVP1O7nYOcr45aVy1RolAbSdQMsmtJDVlqQWNzJb998P2U5vdqATm3FmFaKsbiGkjWrmWUyEHq9nVkjHAEgt9FFVZWVAwf6P/EcoWxRDaULl+LqaOf9F56mZWct7fvqyZ42i2/e8n2CsQHe2raZL95yCSqlcG19a8tW0tPSqK4U3i9RIPJ4QjQ0OFi/fqokxkgc4aiH4WAEmVxOVVU2TU0DtI5EBtTU5I9whEGKi00UFpok4cSgV42cn0sIBC/hTw8/wlvbNrLnwDYuOfc6cnIqCIfjGPQqSSBRKGT09gaIx+KsXz81pVUuGIiSk2uQJgVCEkdYMsIRamwpAk+yAKYYqQdTp6azek1xyhABUbCxWvUMD0dpbXFjMEwsTPkDEWKxhDQZM1nwOZmWuskwmZPqZH5/ouyrySC+V2r0BMPjW1dPNT6RwtQf//hH7r33Xnp7e5k3bx73338/ixYt+rftv3KeFaczKH0vYqLsmebmfrzeEIPuYbKyM/jauV9jMH6MR99+gXO+9lWmZE3DGp9NJhVS7lSH3cvbb9mZP9/K6tUlgHBxAIGcXnJJWcrxbN/eQ2NjP8gSDAfjqDXyMS2BMnQ6JVOmpDNnbhbC2IoEeuUHU3YDw8M0t7VRf/gwm3buZFvDAXzBYWKEkaMiXTb61E2GjMRIa0icKMGEm0BiUPp9miaNkvgMqo1wtm6YGRotLkMpgZq1LL9lLSVV06SnMp+/NXVUcnFxOnfccfzxyf9pmMjSm4zkJytjC5RMocCwaBGGRYsId3bi+utfGXj2BbL2N5BWPIN7Pn0F6hFRKhqLcfvvf8ex7m5qZlVxdvl6ls6bQVVVDjt2dNPVLeQ7iS67aCRBWpqarCwt+/f3E40mcLmEEaydXUM0Njl56qlmYvGEZBEVn+CDcD6KLX8N9QMUyBfwo8sWs3H/S/zmxb8wI286Vy29En/AKjmVOjq9DAwE8fkj0rHs39fPO+/YJWFsIvfXddfNSnnPREHL4w4xbZoZAI97mOKRi6xYrGD80+ixTxYmGj7gcYfGtdbC8VvqTja/aqyD7VRi7DGI/6KDg0IP+Uf4JOTjwMddD8rLLSQUMsxmDW53KEUgKipKY8WK/BQBoiDfwI7t3USjcWz5F/LnX1/Pm+/9g/v+dA8P/v2PlNjOgchCVEoLc+dkIwb6Ox0BqqtzmTfPyl6xHlSMrwcA22t7aG/zEIsl0BuEJ3rJhD8eS1BWahZaqJoHSE8soKSgYtx2jodEIoHdbmfzK9t48dHNtPUe4kj3AaKxKKGon0zjdLQqM6FIAJlMTiIp0zAadxONuzl3vpapuTaGghEy06rIzZSRZp5GQcF0IiELhSVmbv1K9ThScfnlM1N+PlX1QK396G6ZFqwv4eCOHva81o4m38CRDmGk90TCQ/K9xEQZRJ0HBznwThe2MjMrripj88ajOPe4OLbLw3VX3ZTiaHj+pSf5+W9+xJ8f/j1XXfxFTLoVWK1GZs7IpKvrWEr+lNPhJxJNoNMq8XpDdNi9NDUNUF5uIR5L0Nfn4847t1JWZqavN0AiAWedJeR1iRMlr76mAqfDzyOPNNHXk811l/2Ozr73eOTJ39DQ+B6rl93E3Dk3MWVKBvaOITo7vBQUCvmIrS3CPUJZWSZ1dX1SaHNBYRrLl9nGTasEWLtumvR/TodfyrWqmi9MqfX5wqSbNSmC1th6MNZ9NNHgAbcnNM5tJeJ4bXUnk2H1rwhbJ8LY/SeLXW6LH5vtk9fG93HXBIEjBKTvRUyUPdPc5MLjCTE4OExWlpUbL/8+3uBBXnjtKS7/zM0U5ZWjV1aSaRnhCGoFHR1e3nrLTvX8nHF/P6tVP54j1HZzoNGFTJZgOBgb4QipLYFarYIpJenMmTvaaqyUC8erUKlYeOGlHKsv4lDtFh6+7YsUz61iZs0K8spmYszIJB6L0dthZ8e777DlrU3s27uPrgE3WWlGBvx+PIEoGfrR/BqZTCa5dOOJCMGIG72mmynZ+QwGNLj8heRnzECtK8GaU05w2EZWbj7r1pdyxRUzUu6jv/jF+SmvV/zdZZfN+KB/uo8N/xJHkMnIKirhvK9+k8Hebt5/7kmatr5H/HAjaQXl/OBrX5ZEqVA4zJ2/+CW9fQ4Wz1/CknkXUV01nflVOex4v2eUI4y47KLRBGkmIRvxwH4f0WgclytN4AidXhqb+nnqqYPEYmM5glDfyissUstfQ8Mg2YYV3Hr9ct7d+TR/+edvKC2ZzbozPjXCEQSnUkeHl8HBID5fRDqW/fucAkcYEcYmcn8JAfSjEAUtjztE6YgA7/NFSDdrpM/lZA6lcRxhguEDAkdI/RzB8VvqTja/aqyD7VRi7DGI/wIeNwql6iN1S8EnUJh68sknue222/jzn//M4sWLue+++zj33HM5dOgQVuu/Z3R6MhkXiS+MOjJE0m7NNtCw14HPF0GtkhONJNi/10VpaTG///xPOORo5A/PPMX79hc5GHwX+dZzuO2Gi/G4NQj3lcLNZcNeB7t29dHd5ceSpRtHZMW8oIHBID09fowGDb29AbzeboZDEYLBKAMDw0QiUazZBtLNQzQ1OVFq4kRJIzA8jC8YZNDrpXdwAJPewNTMGTTsdRCODvPNv91FKBEgwfjRqnIUzNVcSLoiHzkK3gv8iQRxSZTSytIxyDMxyDMxyfNQKGCaFW4oc2JuV5KQKVDOX47ts9ehmzsXZcYns8Xog1h6kyf7JV8ghGIUZtYNX0N/wXX0PvC/mHe9geNnP0M7dy7pl15Kx7CMucWz6Ojro7axnu2NDaxsXM5ff/J1bDaDpOKDcJ729flRqxWUlmZitRpxuYJYLFoCgSiRcBz3YJgtW7q45pqZUovdZPlLGo2C7Gw9VRV5XHHRnTzz5lb+8OLf+NkLd7O/+xx+/IUbGQ5F6O7yYcs3Ul6RmXTTlmBwcJhoNMFwKJpyjosOpQyzhs5OYdz9suX50r57e/3MmJkJwKGDA8yYmck1V48WqImEn7Huo4mynxxOP21t3nEus+PZZcXteNwhaSLgRK11yQ6viaZyfhiI2/C4h+ntDUz62j9J+E+oB6VlmeQVCs696urcCcmzWBOyrQYaGwcIhQTnhW8oQk+Xkq997sesWPQp3tr6KC9ufIpI9Gli6hU0tXwRo2F6StCzmLvj80dTMn+SsbQmj7Y2j2SHt2brOXhokL17HQSCUdraPaxckU95RRYeZ5D+ngB1W9qwFirw+/34fD76ul20H+nkWGs7S+eswTugYE9TP4+/fB+9/VuJxQIkGD9AY+WsG1k991IsJj3PbPsj7xx4ThKl1Eo92elFFGVPwZpejC+oZEuLk+JZ2dz87ZswpGkmfWL8fx1ag4rzvjiXV/+yn4GmQTIVMjwHB9nWPoRSKUehUqBUy1GqFajUCjI0csKDYezdPo51eEkkEmRl6+lsHmD/u13kTjVRdqaNnfucFMyyEAvEGDzopvvwIPkzMqX9qlVm8vOm0NVzjP/38E9JM+RzybqvcPHFNwGk5E/Z7UP09Qr3GdOmmdHphfahgD9Kdrae+oY+IhHhb1lUZBpxcaSNy0my24cIR2JotQpKSsycveYGFlWt5ukN9/PqW3/g4JFN3HTt9wj4bHR1+cjO1rGsxpbiiGppGWD37gGCwSjZ2TrpHBdFHLNZQ2eXUA+WL8uX9nvw4AAzZ2ayenWxFPBeVTnqLppIHBrrPhr7eoR1nOypc9Dd7UOllKeISMdrqxO35faEpImAJxK2TkbMOhHEbbg9w/T2BCZ97Z80/CfUhGQynsIRkrJ6xJ9HOYKCaDTB/n0uSsvK+Mm3fkNrewN/e/yfHLQ/TveghfSc8/jSzZcncYRREuz3R6TWvLFEVswLGhgcFjiCUU1Prx/vUJiWlgEGXMPMmp0lkeB0s4bGJgdKVYQ4JgKBAMHhYQbDcbx5xQT6+lAfOUb73j0MBYf5/eZt+EMRwrHxHGHAH+SHF6xGJoNILMb3nj1MAuHBhgxI06VhUGcgl1npGpzGn96pIDsvg9u+uZzPz8hOmWj3Scap4wjDzDrvJgoWraP2mcfw2/fx+p8PMXX+QsoW19DR5aWibB5O52be37ODnfU7WbJ3Nfffewc2m3EMR/DS2+tDpZJTVppBTo5B4gh+f5RwOI7bHea99zq59tpyqcVusvwljUZJdraOqnk2rrjslzz30iYeefoh/t+jP+RIx4Xc8eWbGR6O0t3lx5ZvoLzcknKfPTgYIhqNMzycmXKONze5eHNTGyDkO4lDA8R99/QKU1oBDh4coLJy1Mk0mQNprPtoouwnhzNAW5tnnMvs+BzBK01RFNsXJ2qtS25xnGgq54eBuA2PO0RPrz/ltfw7IUt8FEFCHyMWL17MwoUL+cMf/gBAPB6nsLCQr3zlK3znO98Zt3woFCIUGm0h83q9FBYW4vF4MJk+mGMo3N7O0FtvcSRgZOPGY4QjMQwGFcPBCFqdirPXFEutQzNmZrKgOpfm5n62bevGYtGSk6OnqWmAQDCCRqOgujqXBdW5bN7RwAMvbODtvbUMh8PMK53B0hkLuPisZSydN4ODB10891wLwWCUVauKUgSGZHIt7isWi6FQKBgYCNA+EmgdCkWZNSuL229fyDW3/ZqNezdK4tFYqNAyU3M23ngfnlgP7njHpO+JQWZhof5a6eeeSCNKmRadzIROnkFJUTozZlooLEjDoIgg2/EuM73NyDVqDDU1ZFx7DbrZs1Gkf7KLzgfBZJZesRglW3ljbjdHf/tnQi8+gyIcJDBtLg3pVahsSv76+hO8u28XACaDgR999mY+e8EFyOVy6VzRaOTYbEbpKZndPkS/009j4wCJRIz2dh8rVuQzdVqGdF6LRMSgV3Lw4CAdnV4KC9IwmdT09gakcx9gOBzm2799iEc3v0hGmonvXvM59NH8ceeuw+mXWlSXLbNhydJJrqJjx7w0NbuIhGOEw3EyLRouu2wGC6pzUwQd8fg/jLgzVhjaXddLXV0f7W0ehkMxFi7MSRG7JlvfoFfiD0QlcSj5vUheprtbCCgVHVPixMTk5T8oxG3k5hpGCl7q+yA5pi6+CJl8fLDz8eD1eklPT/9Q182PEh9nPQA4tKOXaDTO65vb2Lmzh4oKCyCjpWWQsjIza8+dkkKWqxfkCq3XtT0UFhmJxxLS5DGvN0x1dS6ZlgSPPf0Eb297hqNthzGlmVlQeRbnn3sBZ68+E3vbMHv3OohE4/T1Bqian4MtzzDOcdHc1M+22m5i0RgK5Ug9aBfcUqFQTKgHdyzk6JEerrj+bAZ9fZO+zmtXfpeZhQsx69P446vf4VBn3aTLXr/qR2SlzafN6WfPkUYcniNolFbOWzCb6tISAtE46fkGHJEYTS2DXPWpmeMcUJ9kDPsjHNzeg6PNS8AbJhqJE4vGiUWEf9Hkr9FR4U+ukKFUKwgHo+RONbH8qunUNfZLNWHd2ik8e28dri4f5vIMppSZybYaqNvdS2Ojg86+t3hqw5/wDgmupDOWncX/fO+XFBYI7Y/i+SLWBMGtJ0yBtNu9lJWZaWvz4PNFKSszI5fJpXNabO3r7h4iFIpTUZGZck5XJ00X2nugnju+/w2OtDWytPpizl5xC4sXT53QaSS2qS4bIdZ79zpwOoN0dfmIxeK4XMNkZmq55ppy6TiSBZ0PK/BMtN7mze3U7+kjFI4z5A1RWZmdMmVwsm2IUwlFgSj5PRP30d8fTPn8ioKauOyHgbiN3DwD5nTNhO+Bu89PyZwsMnI/uGD1SagJp7oeDHR3crRuF71uDRs3Hh3lCMNRtFolZ68pwR+ISH/bBQtyaW5ysa22a4QjGGhqchEIRNBohAzO6uoc3t5Sx6NPPcuOuq2EIxHmlM+iavZi1p99BnqNhb37nESjcXp7/cyvykkRGJLJtdjSV1iURiyWoKPDy546B7F4giWL87h9xHl6w+d/wra6jUw2EEMhN1BoPhelohutaoAD3YcnfU+yjBZWlF3CYFDDoE+HfbCRWMxEAgvIrMyeW0h5RS7lFVkYjSq2bOni0kvL/k+5nf7dOFmOkEgk2Lt9H+8/9wT+riYUCgXavHL6hnMxWmQ8/sIj7N4rcIR0k4lvffVWrrhwhCOMnJcajQJbXjJHELJfmxpdxBNx2tuHWLmygKlTzdJ5LbbPGfQqDh4aoKPDS2FhGqY0jSQSiW2kweFh7vz5H9nw+vNYMix89bNfJRG1jTt3HY6A1KK6rCZ/hCMIYv6xNo8QmRCNU15hobjYJO0jWdARj//DiDtjhaHdu0WO4GU4FGXhwlyuuab8hOsb9Cr8gYgkDiW/F8nLdHcLUzVFsXh3Uk2YaFrfyUDcRp7EEVLfB9ExVbHyrA+87Q9SDz5RjqlwOExdXR3f/e5oUKxcLmfNmjVs3759wnXuvvtu7rrrrlN2DIMDQTa+5aSt3UuaUYWrP0hXl18IxtSpuPAiwVYuEuWxzoxgMMb27V3k5hqlZVYvqWT1kkqO2p08/cZ77Gyt4+E3nuLPr/yTXIuFlZVVZKjyCAfSCEWsNOz1T9hKVF6eRXe3n02b2zDoVajVCmQjxxKPJ7BadYILpKN/UlEKIMIw+0MvoUSLSZGDTmZGIzNikuegk5tRy/SoZYaRrzrkcmH06ZdurcKafcm47cXDYXxvv83QG2+QiEYxrFhO5nWfRjdnzmlBagJM1pc+0RMVhdlMy+Ir2eOfyxrXZtLrNrM0dgCFdjkX3/MTtjU3843f/p5DHce4/fe/Y3pRIWdUzadhr4PW1kHmVWZL7aKisNHb68fpDDCvMps77liCw+nn9dcEcjJliglrtkEIy9x4jPZ2L7FYnOxsHTk6PW1tHuLxuCTQGPRKLlxwHoumLeDRrU/wjf93N+sWrcThOpeDBwck55M128All5RJ4k33Pif19Q6CwSjpZg2WTC1+f5hwJE5FuUX67IjHsnlzO5XzrB9Y1EkWpJLXFbc/Z7ZFmiJ4PIhOKVFYcjj9kmNK3I84Bae6OpfVq1NDOE9FuLrYfgiJf8l59X8F/wn1oN8VoNM+RGfHkDQ5rafHh6MvQFfXEDZbGnPnCNdo8W8rhkyL2Ly5ndZWN7l5Rok8fv9b3+CWvlt4b+suGg+/wzu1r3LbD55D+WMl82bPZ+nC5SRiNrxDFhKJ7AlbicpHwqA3vnqUQCBCRoYGnVaJVqtArpBjzdHhdPjJsGgZCvqP+zofe+9uqqaeyVXLv8b8qWcQCoWRK7KIRK0M+nRoVGZK8/LwD+t5rT7BnEo/n/7cbH6zar10LYvH4gwNDCOTyzCYNSgmmHr33wCtQUXlGqH9LRaLE48lSMQTJBIIX+MJ4vGEICD6I3icQQb7Arh7AwwHImQVGJm+KIeMXAOzRur4rFkWZHIZ59w8i0d/tIPe/S5QyKQ2NIB1627hy1+8iZ/c83Ne2PgI7257i+/c9Q3++eBzgCD6tLYMUplUE+p299LU1I/XI2Q0fetbSwB47dUjvLelC4tFI72uY8c87N7VC4DRoKSo2MTbb3fQ1NwviTN6vZLocB6//dmTvLjxMR5/7ncc63gfmeqHbKudkeJ+yrYKNUEUcOobHDQ1uTAaVZSWZTA0FGJoKIw1Ry+9RnG95qZ+Nm9uZ9486wcSdpLForHriYHzoXAUe7v3uKHjwDhB2unwS44pp2O0HoCQI5YszJ2qeiBMQkz8S86r/0v4oDXhVNcDEDoXNr7aNcIR1PT3B+nu9qOQy9DrVVx4YSkw2jo01pkRDETZvr2b3Dw14uSss1YuYPbMCg4e6uFY53627dzK4y/8g0ee/is51myWLliAQZOP35tOOJIxaSuRWq3AmKamwz6EMU0NyNDplej1SipmWaTcqo5O4aHgZIjF/bQNPIdSrmfx1BlMzbaQplGjU6UTjlvpdefiC1kIR824fCZeaVSyalURL/7l3BM6n77whaoP+c7/9+BkOYJMJqPbnUandh3zzl2Dom8bx/bWYYjtRRM08/1PXUDnpev41YOP0N7Zxvd/ejdlU6Ywf95cgSO0uAWOMJLdKAobfb1+nM4g8yqz+eY3F+NwBHh95AHG1KnpWK36EY5wlHa7l2g0QXa2npwcJe3tgvtXFGgMehVrV15OVXkNz7/xN35wz/c5+4xzcA2s5+AhF8uWFUiupksuKZPEm+59PvbU9zE8HCM9XU1erh6vN4xKJScv1yB9vsRjkTjCBxR1kgWp5HXF7c+ZkyVNETweRKdUsmAmikPifkY5Qo70no/d378Sri62H4rffxxuKfiECVP9/f3EYjFyclIniOTk5HDw4MEJ1/nud7/LbbfdJv0sPhH5sOjtC6BQyCkpNrF0aR59fUHef7+LYDCGxaI9YbixMMZVKRH8ZAw4Y8T785khz+bW73yWdtcxnnmzlq11B+nzvk0sHuNv78uwmrIwaTNo9GdzYKCI/JxM0o1G0g0Gmo8M0htwkanVkqZS4VMP4Fap6HF6ePmlPh5+N0JY7UaNkTA+ad8KNBjlFozybEyKXEzyHLQyk5RVMX26iWXLCjGZ1Cedi5OIxfBv34735ZeJ+3zoqqvJvO7T6Bcu/MS27H2UOH4xmknerGXkyb6G47f3MfT66/Tsr6fq0kv5+tlf57FNrxHVDHBGldCLP5HVVLwJnjLFlCLG2O1DNDUL5KTd7qW0zM/GjcdoPeJGo5ZTWia05DXsdUjEPBSKo9MJk+3iMZgxs4iNl/2af77+Gnf87g+8Vbeb+ZY1NDYuYvr0DDo6fCxdmodao5RcP1VVORw75iEWjzNriQ2H009fbwClKpXQHi/z6USYqIVP/F78uabm+Nuore3k7bc7hClTSYJZ8vbs9iG83ojUjjUWJ75uTI5kt5nYhpluHkppSbTbhyhMj5GV9ckhJ/8J9aCr08eRI24KCk1kZ+soKjZx5IiHut29aLQKIHESo+RHa0Lych0dPloO6wgNrean37mZvPwQDz38HNt2bOVvjz2Mzy84X557Iw1bbhFKhQWHN58uZxF5edmY0kxEIyoC4V4GPEHSMtLRm4YZdHuQyYNseM3FI0/1YzQF0KrN+INREgyP7F1Gtmkm0/IWMSVnNiXWKeRbMujqD9DcUY47WMRZZxdxwYWlrFpVdFJtFnKFnPTsj+dG6D8VCoVcmI42CdIytWQVjl4v4rE4MrlMqstja4LJoqP64qnsfu4I7gMD7AvGyLQZmFmWgd6kRiaTUT3rerShanY1PcSXrvm2tO5E7WhFRWksWmQbF67f2DhAb4/grF27bhr79jvZt89JOByjoDBNykFLqQdapRR0PnNmJt//1jf4zHVX8IOf3sFd934Ja8YSZpfdwPs7elBrFKxdW0JNTYEk8FgsOvJtRhQKGVWVVtyeYXy+CJmZo61SIo6X+XQ8jG3hS0by5/h4NUF0RM6alSlNGRy7ft3u3uPWgxNfMyZHstNMbMNMDntPFt9UH2oP/7n4oDXhVNcDgL7eAHKRI9TY6OsL8P6OboLBqMARThBuDKDWKJhSkkoc7XYv9vYQ8sR0ZuTnc9XPvkB33xFeevU9tu04gMv9OvF4nBffkpGVYcWgy6TDlUNbbzF5uZmY0ozEY2r6XIMMDAyTEdagUspQGwbIylPx4mv7OHK0B0NaGJlyEIXMSCwxyhHkMh1aVRZaVQ46lY0so5U1szzkpQfoHCyjJzaDBWctx5Jn5azVUz7xrXf/iZiIIySLVUWFq3D39dKys5aj9buw799LJDTMF5ZV89LeIsIqGfPnCUNQJuYIgigydWp6ihhjt3tpaurH4wnT3u6ltDSDjRuP0nrEjVqtYOZMcxJH8NLT7SMUiqHVKlEoZMRiCWbOnMKTV/0/nnz+RX7669/zbu12yvLX09S0lLIyMx32IZbW2FCrFZLrZ35VDsdGsjTPPrsEhzNAb28AhzN14MrxMp9OhIla+MTvxZ9ravKPu43a2q4kjjAqmI39fHu94ZGaMF58OpnrxmRIdpuJbZhii6D4e7vdizUTcnI++qrwiRKmPgw0Gg0ajebEC54kcnP0LM/OSHEkLFtuk9qOHE4/rv7gpFO7BDukTFo2mYwWFaUx5A3T3e3jnbd6iEbVZPqryTUv5IxLbBzp7mT73ia05mFCDHG4s5199gOEoiECw8NMBtk+GWqFBkVCgyWWwdLqUi5YtYgCq5UZRcXMLC4m+xQLRcNNTbiffppoXx/aWbPI+NSnMK5YjjI7+8QrfwJwogkbpxKpxSidgt/+Bn9dHR0/+imDDz/M4ux8DMtXMqOmfLSdzBznf9/7C+e6zgeqKC/PSslIW726WPq5qCiNRQtt0pQXu30IhUJOxsiFraYmXzrPd+3qpafbz759ThYuzEGvV0s33zKZjE+vXUdJRhlf/+3v2O7YQIe/maWda0mEhfHE111fIe1zbPYSZElPFOz2UeElw6xBLpeRYT7+53xsu12ykGTQK6VJmMmfyZPJftq+vYcjR9xotcpJl5loMMKpgt0+xM5d3Xg9Yaqqcqissqa8HmkaYqHyEyVMfRic6nqQX2AkEU9IbVMgOKLWnlsijat3OvzjWnWSYcsz4iwMYMtLDbEtKkqTpqG9/no7FeWZBNzV5JpnUjM/HWtOlNoduzGmD5Bu9tPY3ErDgXfZ1eAjOOwjHh+T/7Rt9Fu1SoNcrkMhN5Edz+PiC8+mMLuMfFMpBkUWUZ+C0MgEMpVWQVqmlvzpZq49s4CfWfXI5Cc/Lvw0BJyKmiA/CZfZ4jXFTCnNYOfLx3C0e+lsFgRMhUqOxqKhIM9I2pQZLJ1yL+EuFT1dXrp7Arz53sMEAhFi8YuBUUGnaILg8aU1eSlfQYZaJSczU8sZZxRI6x456qGnx8euXT0YDEpmTM+ktCxDuh7m5xXw1z88zg/v+gPPvPxbtu75FkU512A2LiLdpKGmpiDl2rl8mU26HheRhtMRkOpBsvASGQnsLSqe/Ony2Fa75HowWeh88nqTuZC2144MowFuv2PauN+L2xe/nmonk90+xM6dI/Vgfg5VldaU15OcOTWt8MM7sj4JONX1ACAnV8+K9NFwZoBly/KltiOHI5DKEcYQ5eTw8eRQZZGsvv56G62tbjzeENGIHnW8hoqCFZzx6TzaO9vZtacRY3qAaMzLkfZWmo80EA4HGU5qWRwLuVyOUqFBhpaMSCaLF5ax7pwabDk5TJtSQunUKViSOILj2BF2vfQ8MrmMqnVXc/OZazBlWT9wRMB/M/5dHGGsWJWRZ2PRRZez8IJLOdTUwZ7N23Ad3Mqlc4fRpGfTfqQb56AcnSHMs6//HofrMqCK8gpLSkba6tXFKefmokV5SRzBi1whJ8OsJVvkCCPn+a5dvfT0+EY4Qi5arRJTmuAcksvlXHPZJRTkVHDnL35JY9uTOD0HmNV+AdGIyBFmSfscm70EJHEEr3R85hGOYD4RRxjTbldUZJK2a9CrJEdhskB0MtlP22u7aW11o9UoJl1mosEIpwp2u5edO3vweMLMn2+lstKa8npE8S1arCIn56OvCZ8oYSorKwuFQkFfX2oWRl9fH7m5H67n8oMiI1PHQEAp2QItWTpef62NHe93QwK83jAdnUM0NAhZCOL0s+T8nHSzhkMHB0g3C4G4+/cJk/tMJjUrV+bT2DhALBajYyToeeo0M6VTLbgHo8zN07NsWQEmk5r6+j6qqnJYvbqYcCSCx+cjHBXIhAzBxmnQ6eho8/PKK0fx+aKsXVtCwTQl7iEfeRbLKRekIn19eJ59luEDB1AVFJD97W+Rfs45KG22lElBn3ScaMLGR4XRYlfK0c//EufjTzL/8MssqH8So+kMWouXcqjFy4v7nmbnof3sPtxEY+cF/O9Pb+Xw4UE2bjyGQiFj+YoCSUAR2+xAEGq69/UzZ44Fm61YEngALFk65HI54XAMlyuIwxFELpdTOHLB3V3Xi0GvRKs08o8f/YgHn3mdx2uf5OX2h1hXcTFLl85JcQ4lT69jRNARJwKK+2xu7ue997oY8kUYdIcmFJ/Em0CtRiAgoosLYEF1bkrGk/h6RUzmqBID2SvnWaXhA+LXiXAyjqjkbYpC38kIY8nCYUGBgZaWAem1ir8HyE8fH0z6fxn/CfUgy6LHnK6lvdPL5s3tFBWb0KiV7N3noHZbNzk5OszpWmpru6gXa8JIuHGyqyF5FL2Y9WOxaFm5YqQexGM0NDixWLToDSpWrsjH2R8kJ2s+ixfnUVGeRV1dHyaTitWri8nK1uMP+PH5hkiQQIbgslEqlXR1hmlqdCNXyOiw+1iw0ELU18XRPS7k8SwUGRoyinRk5OjJKk7DYjOgNajQp2tQqY9j7zmN4+LfWROsJSbOu3UurYcGOLDHQYZWydG9/fh7g8h6gyhVchasK+b9Dcdore9nz9EWHvrH74jHY2Smv8Znrvox5RXnsHVbFzt39rBoUR6XXDJd2r7YjipOwbPlGVi3fiqQkLKpyiuyuBT4058acLmCeNxyNBolCxbkpeQ/6fVKVq24kOrKZTz+3K/YvfcB8nP2MmvOz4FU95DT4Rem4+0fZu6c7HH1wOnw8+KGIxxsdmE2a9ColeMEKLEVT6NVEvBHJRcXCC11ya6midxTk7mqxFD2wiJBYB4V7cbjZB1RE03rO5EwluxyK8gX6oH42sXMKcnJ9YlKoP3PqAmZGTrCMlUqR3i9jR07ukgkwDsUoqNjiIYGJ05nQJp+lpyfk27WcPDgAOkjRHr/PifeoRCmNA3z51vRahTE4nE6OnxYLDqmTUuntDQLtztKWXEay5cXYEpTs6e+j/lVQltQKBzG5/MRjoxwBNkIR9DrsbcFefmVI/h8EdaunUJhsYwhn48ca3aKIAXQ0bSfPRs3kJFrY/m1n6FkbiUqjfbf8t5+kvDxcwQLR+0xmvuLWHL+bUw1d/LWw39h74Z/4jMt5rVdL9FwoJ59Tfs50n4F993zFQ4dHGTjxqPIFXJWrBh1ECVPgnQ4AnTv8zF3ThY2m1ESeCCJI4Ti9PcHcfQFkMkMFBaOcITdvRj0KnTadP54zz38/fGXePmtR9nR9AdWVl/F0po5Kc6h5Ol1FAnHIU4EFPfZ3ORiy3tdDPnCuEcm6I0VnySOoFXg90clFxcIYerJGU/i6xUxmaOquck1yhFGMhLFrxPhZBxRydsUhb6TEcaShcP8fCMtLYPSaxV/D2DNnHD1U45PlDClVquprq5m8+bNXHzxxYAQbLh582a+/OUv/1uOQcyY6hoJJisry+T997vp7fGhUilwuQTnkgwYDkbYXdeLxz0sORoMRqWULyO6Gerr+3C5gmRm6pg/P4epU820tLjIztZiNmtZUJ1Du91LPJZg5kwLJpMKm81AurlIuiFTq1QpIpPD6cfePkRREezb309vX5B8m5GMDC1f/cXveWvfVu645nruvPkzp+R9iQeDeDduxPfOO8gNBjKu+zTmq69GU1yMTPmJOg1PCieasPFRIbnYzZprpVFxLcai69E8/gCe558n19SAaun5zL/lZvwhP1v27+a5nS/Qd8dRLph9JV3dIfJtRsKhKI8/0TTO9SdOwcvNNUgB3hSlSRlKRqOSwsI0bDaD1Jonnud1dX34hsIoFDKMRjUVeXP41voS3jm2kecaHgdzLzNnf41Mk0na19jpdeI/cX87dnQz6A5hMCiJRuJsePEIsXgck0ktiU8N9Q7qG/qYMSOTmpr8FNFKxGSZHpP9f7I1+JqrK1Iygz4oRPGpoV7I/YLRlsTJhLFkJAuHjz/RxN4GJ6WlGVRWWSVBy5ptIDo4+KGP8T8R/wn1QMyY2tfsorVlkK4u4bNRu62bgYEgIJw7tbUCEQgOR6jb3YvbMzyhqwGENqT6+j5MJjVr1pRw5pmFHDk6SHdXNwaDivPPn4pGrSQ4HCM3x0AoFEevF4Jyk8mq0WDEaBBI8iiZ1dHUKLQ5lZZlcOaZhbR3HOWOH1+KRq3jaGM3aZla1FoFKo3ipBw6p3Fy+HfXBJlMRstRD3uaXSxdamP1TRXseqeD4TYfU2ZZmLUyn5bdDvwDISqnlnL7zT/jT4/+jAFPC3/8+83k5P8Cj2s2Xq8wueuJx5vGOf5EkSY3L/XalOzOseUL7XcWi5bZc7Kl83zf/n7q9/RhztASjyWQK5Scs/I7FOYuZdO2+/nhL65GqfkNa85cm7K/+j1CTTCnayUhSRTI7B1emptdDAcjZGTqCIWj0hN0k0lNLAa9vX66un1YLFqWLMnDlmeUHFPJ+KA1QWwfrKzMlkKkPyySc7VaW0ZqQsVoTZis3VD8P7EePPF4k9TSmHzfKa7n7jt+ttz/Nfwn1AQxY2qUI2Tw/o5uenv84znCcJTdu3vxuEOSo8FgUCX9rUzShC4x6L96fg5Tp5lpaRkgO1uH2axhwYLckbxPKC+3YEpTY7MZUzJsNGo1msxR5ulwBLC3eykqkrF3n5Pe3oDAEcxavvnDn7J733a+/vkv8+VbPi2t07Z3Dw2vv0LutOmcdePnyZ1Wdtol9SHxH8ERko6huLiUvNIZPHHXD0i4a7n1U1cyHA6wZ18dG99+HM+XW1k+/1N0dQtcMhyO8fjjzeNcf+IUvLxcgxTgTdFohpLRqKSgMI38fIPUmiee5yJHkCvkpKWpKCup5uYry9jV+Ayvb/tfdOndzJ5zG6a0NGlfY6fXif8cjgCbN7Wz4/0eBt3DGAwqotE4Gza0EhuZciyKTw0NDurrHcyYkTHCEVQpghpMnvE02f+ncIRryk/Y7nc8iOJTQ4OQ+wWjLYmTCWPJSBYOH3+8WeAIZWYqK62SoGW16gl43B/6GD8IPnGKwG233cYNN9zAggULWLRoEffddx9+v58bb7zx37J/MWMq32aU+mutOXoikRj5BSYqKjLp6wtKy9fV9VI6LYOK8izsdi/FRaZx7omqqhzJMeX1hti8uZ1oNEFmppZuv4+3vWESiQS5uUamTDHR2xsg3awdF/QsOi6Ki4SMIDFYs7jIxP59/UQiMRr2OnC5BBu31xP5l9+PRDxOYPt2PC+8QDwcwnjmGWTedBO6WbOQa/97n6JMlgf1USO10CQdw89+SvqFF9Bz54+wvPoP9INLePHnP+bxd9/l23/8A9v27aPpaBs3rLye9evnjI4g9kVTJsiJN+Me9zD19Q5JNALweiPMmJGZ0gaYjNraLux2LzqdMBZZoZBhtRr4xS3foLFnNbf9/ncsuukmbrv0Fi4/ezlFRWlUVeUghrcmQxStPJ4QGWYN5eWZ9PUFCAajwgV3nhV/IEo4FMVu96JUyCksSA04b27ul55qJrcywuSh6CKS++8ncjp9EIjik8Wiw2BUTpj7dbIhuMnH9WGO5f8aPu56IGZMWSw6jAYlZrMGtzvEzJlmDh6Eqqps7PYhysrMhMNxrDk6Dh4cQG9QYcszYsuDZTW2FLI/b54Vn1/II4EEdXV9tLV7cLtDDPnCbK/tIS1NjVwhIzfPSDwWJxCIjgtrTnZbdPf42FPnYH61Vdp+MBChrq4XZ8/IE0fk2ErN/5b37b8RH0dNGFcPbkgnGokRjyVQa5UsumAKrz/YSMgXoVi2kO9e9iBP1P6KA0d28+0ffY01Z1zC8sVfwONO0NDgxOePSiHm4teZMzNxe4ap3+OQBCNAEqzOObtkQndPd/cQbe0epillxGPQ1+cnFk9QXn4Gt9x0Pr/64w/43NeuY9XyS/jBHf/DlCm5Qk2YP74miGJNcDiKXqdELpNh0CtHJgMKWU7z5lkJBKKo1DLa2jxEo3HM6dqUKZZiYHp5RdY4p1ayS2kiQUjM4DKbNROKeB8EyblaRoNyXO5X8tfjITk37F/Jrfq/hI+7JogZU+M4QjRGfn4aFRUW+vpGM3Dq6voonWamomKEIxSbxrkn5lflSI4p71CIzZvsRKNxMjN1dPv9vD3UQSKeIDfPyJQSEz29ftJHBKtkiI6L4mIT7e1JHKFY5AhxGvY6GBgUOIzbPdr+1324mYbXXyF/ZgWrb/wC2SVTP7L38L8B/3EcATDn5HHd3b/m8R9+E1fDuzxw9w/ZuKWWu+/7Pdt27qL58BEuOfdzrF8/d5Qj+CMpE+REgcbjDqWIRiB0FEkcYQIRpba2e4QjKOnsjKNQyMmx6vnB13/AobZd3PXLX7F9Vx03f+pWzjtnBUVFJuZXCXlyY4UhUbTyuENkmLWUV2TS2+tneDhGaanIESKEw7ERjiCjsDAt5TPT3OQa5QhJrYwweSi6iBSOMIHT6YNAFJ8sFh0Gg2rC3K+TDUVP4Qgf4lhOBT5xwtRVV12F0+nkzjvvpLe3l8rKSl577bVxYYcfFZIzpgA2vHgErydMYaGJteuEC3UgEEGvU9Hb68OUrgES2GwG5HIZak3qn0RoTxq9Wdi8uQ2zWYtOp6S62sqgO4TXE6Kt3YvFomXO3OyUaV/JeHNTOw0NDgry08gvSJOyffbvc6LTKcnK0lM5z0rGDi10QWbGvyYchVpacD/1FJGuLrSzZ5N5440Yl9WgMJv/pe2exofH8YqdYfFipm54Ecfvfof7H48y3NzM5TfcQM1fHuD6u37M/iNH+N2rf2T+AguV84Q+bq1GSW1tF4FgBK83TGGRSTj3itIQs9LGOo/GZkOJQqxeJ4xNlsmE6TCxOCgUMg4eHCQSyuXRb9/LXY/8ie/87z1sa9zNX35wG3PmZrF/X//IOTwohbIXFaWRk2Ogt8+PyaTGZkvDZktDFNAA/PYhmpoG8PkjpKdrcLmGaW7ul9prN248Jj3VHCvinMiplDxtU3QpTbSdk0HyNL1lc20ThrA7nP4JM7COd1z/Dfi468HYjKnnnz/M3r1ObDYjq1YVoVAIBF2hgLQ0NaFQHItFjcsVRKNRUF2dO468lldkpbTtOB0B0tKEvJzsLB1lZWYaGwdQKGTMmZstjYIfi02b2qX2wYpZWQid1DLKK7Lo7vFRW9tNXp6RqSPrqlSn2/Q+aZioHihVCsTU62lVVq69y0hkOEo4GOPwrj5yc3/Ni+/8nZd3/41N7z5Pn/MYP/v+oxzY70KjVVJX18fQUJi0NBXTSjMwp2uEfLT5E9eDycSdUChOJBKnu8tHfn4aWp2SgD9CLBqjoT7IbV+4j+lTn+av//wFV9+8k/t/+ScWVdcwd47gttq6rQtAuP7nGdEbVAwMBLFa9cRiCXJz9ZIYlZwj1dIygEqtIBZLUN/gQK9XUl6Rxbbabur39OHzR8d9Jk/kUoLRz22yS+nDClN6vRAUP3NGxrhtiPu324eOezzJx/TfhI+7JiRnTAFs2NCKxxOisMDE2nVTAPD7I+j1Knp7/JjShYgLW55BujdKhtWqT5nQtXlTO+YMDTqdivnzrbjdITyeEO3tXiwWzQhH0ExIVN/c1EZDg5OCAiP5+WlS0PL+fU50eiVZ2Toq51kxv6GBDrBYBCI+0NXJ7peeJ7t4Kqtu+NxpUer/ME4kiBnSzVx558957Ae3s+PZJ7joU59hUXUVX/7292g9eoy/PXMvi5dkUTmvHACtVkHt9m4CgQjeoRCFhSO5TEWj2xzrPBqbDSUKsXq9kuFQDGQyNGoF8biQq3jo8CDDwyX87id/4Dd/+Q0/u+9H7Nl3Pvf+zx3MmZvN/n1O6RwWQ9mLikzk5hrp6wtINULM8RzlCBGamlz4fBHSzSMcockltddu3Hh0lCOMEXFO5FRKnrYpupQm2s7JIHma3rJl+ROGsDscgQkzsI53XB8XPnHCFMCXv/zlf5stdyzcnhAtvQNSO1BPj3DS5uYapTwbuQI0GiFPQa9T0XrEg0IuY8oUU8pN20T5Mcnh6OL0u82b2xkaigAyafnk8ZfJRFQGGI1CW4dBrxyZBhZGp1MyZUo6liwdiYRgX/ywFtyoy4Xn+ecJ7tmDMi+P7Nu+Qfr556PMy/uvypH6vwi5RkPut75F+vr1dH/nO7juv5/ozGoe+/7P+NUzj/BeQwOrqqtJNxolAcflGqanx4fLNSzl4CyozmX1akNKDpTNZpRulicSdpYts9HXJwRBxxMJLBYdObl6XK4gra2DOJ1Grp5/IxW2XTy1/VmWfa6ZOy79An1H1CQSEA7H6O7x4fdFufnmuShVMuJxgVDPmZvqeBIzoywWHQsX5uB0CvswGJWUl2dJAe7JTzVFOJx+PO4Qubn6SUPRk1FcZKK7y0/xhxzjas02kG4eknLnJtrP2PfztdeO8N57XVRWZjN1WsYJBatPMj7OejDgCnLsmJu0DA3ZVgMu1zDeoTA2hMljYp5NUbFpxL0RJjQcxTcUIRYTWvBETJQdk201pLgeyiuyqNvdS1qaT2jpzjMQCETp7w9KYetz52RL64uX47lzxBohhLGDDJ1WicWiw9MtOGcVytPC1H8jzEmTEvOnZ1C4MBvj1K8yZ9Z87n/yh8zNPQurUcfV11TgdAgt1IGA4EKChDQCW2w/cjr80rmo71dK5/RYcWdZjVAPvB6hvTs7S4dbJaffFeLYMS8AyxdfiN9dyM4D93PNZy/m5uu/xKqlN1G/R4g/iETiqNRy1qwpJjQcoavLR2lZhtQaO1FelPh5cjqDtLYMYjQIwpTFosOUrsZiSZ3yJ+Za5eYJxKlud+9xQ8uLik10dfmPG7x+IgQC0ZTcubGYSCh77dUjbN5sp7TUzKWXTv+vcEdNho+zJng8IVraw1I7UE+P0C6Zm2eQ8mwUChkajQK1RoFer6T1iBuFQsaUkvQUEj9RfkxyOPqcudlYrXo2b2pnaCiMwBG80n6S3R4iBI6gGuEIKmEa2FAIrVbBlJIRjhAXOIJcJiMU8LPzxacxZlo468bPY50ycaD/aXxyYMrK5oof/Iwn7vwmWx77Bxlzz+cvv/oD9z/0B/Y3N7O4ej4GvV4ScASO4MflCuH3C9elBQtyWb2mOCUHSuAIwrV9ImFnWU0+fX0B+p0iR9CSK3KEFjdOp4Hzz7yV0uKtvPrOU1z06f189pqv0H5U4AiRSJzubh9+f5Sbb56DUikjHk+gUsmlz4oIMTNK4Ai5OJ0BWlvcGAwqyissUoD7hBzBEcDjDpGXa5g0FD0ZxcUmurt8FH/ImmC16lNy5ybaz9j389VXj7LlvS4qq7KZOtX8kYSqf1h8IoWpjxOHDw+y96gg6KxeXTzSNzoqItntQ8RjYLOlUV6RRTgUZfv2HsKRGAZj6p9j29Zudu7qZtFCm9T/mUxSoZ9085CUJ9Vh9/LO23aqqnJwOP3jXBoLqnOIhOMsXZrHgupciZzn5ho4c5WQR/X8cy1Sjo17cPIpHRMhHg4z9MYbDL3xBnKNhvQrriDz059CM3UqMtUnbfDwJxu62bOZ8uyz7Lz1B6RtfYV4dxu/vvVz+D/3edKNwlOFRCJBXD7MhRdNGxcoLiI5B8rhDEi5ThO1G5SXZ1FRMcjmzW2o1WpKSkysXl2Mqz+IwajE6Qxy5Iibmsoavn7TOj5399189U8/5pqVl3DJ0nX09gTw+cIjLU6pltSxoszYKXjJ7Xbi/y9fkT+hoCPmaM2YmYk/ED2uc6q5uZ/t23tQKFLdkKJwtHJlPiaThu3be1i6NG/SLKoTtWf0O/00NvZjsQiW6Pfe6+LIETeDg8PY7UMjQxDGO9VO46PFgUYXzU0DJBSCE2lZjU1qvRFFpFgMNGqlFNQcCkc5ctRDMBilu8cvORq2butm585uFi0arQeQSlJFkjytNJ25c7JTcnrcg8NSK1W21cCaNcXo9Crp82JOF25szOlDzJ2ThTldw3tbOvDYhXoQj3/CkpBP40PhcKuHA11D1Fy+luu+dj71G3po2GRn+VXTGXQ6sMZk5M+wMHPBSOta+tD4mjCSA+UsDEjB4mOvceUVWVQcGmTnTiHvRKNRUlaqk0TcefOs7N3rIDRs4rpLf40v8i6/vv/nvFf7Lp++7C6mlebR2TGE2xMCZOME3GSMnYJXXpGV0uoKsHyZjaLCtHHXYLt9iN4ePzNnZkoB4jC5U6mvL0C/K5DSrvXaq0d4b0sXK1fkY0rXsL22h6U1H74eOJ1+GptG6wHAe1u6OHbMg7M/SHq6RhIKjxeUfhqnHocPD7K3WTjpV68upmapEHgsEmO73UsslsCWZ6S83EI4HGN7bbfAEQyp99HbUoYPjHCEJJIKQpuUmCfV0eHl7bftzK/KweEMjHNpLFiQK3CEGhsLFuRK5Dwv18CqVUUUFZl47rkW2to9AAwMDrP75ReIRiKs+sz12KbPPP3w+b8EloJCLvnuXTzx4+/RteMF4rH13HvXnXiHhjDoBYEjkUggkwe58MLScYHiIpJzoBzOgJTrNFELWnmFhYpDA2ze1I5KraKkJH2UIxhUOJ0BjrR6WVC5mi/ech63//DH3Hnvd7j43GtYvWw9vX0BhobC0nUxhSOMEWXGTsFLbrcT/3/Fiomn5Ik5WjNnZuIPRI7rnGpucrG9thu5Qp7ihhSFoxUr80lP17C9tpulNbZJs6hO1LLndAZoanRJ93tb3uviyFE3A4NB2tu90hCEkwlL/6hxWpg6xZg+PQOfSS2RYbENT2y1MeiVzBiZeCK4ndoIBCLI5bJxY+5driBeTxiXK5iyD7G159gxDz5fmJxcYdKAxy0QD0ikfOBEqDVKcnMNEkGeaER9S+sg0ZgwRtySmfpkcDIkEgmCdXW4n3uO+NAQ+iVLsNx0I7p5lSiMp292/q9CrtGQ98MfcOTZReQ983scv/wl6RddROKss5DJZPzlhef52cMP89cf/JCzFy2acBvJOVDCBI6odL6JT+yKi0xSCLrJpCInx0BenlHKorJmGygvz0oRj6blZ/Haffdx9yN/59ePPUaH5yg/v+VrlFdkjYRJd/L22x0UFaVhyRo9j5O3kZwNZcnSUVaWKS17vBa5iUiBQS9M4hRFaHGKh9MZpKvbR77NmLK8KBwBWCw6aXz4ZEREPJ6xuVciGhsH6O3109g4wNq106iszGZoKIzNZpCuCXByYemncWow0O2nyKxFVpHJ3JHrsNg6I4Yxixk8ycRw8+Z2gsEosVic5LFYx6sHbk8It2cY+zYvR1rdVM3PGdmek0QCLBYtU6akk9xKVV6RJRHp5MllyTk5TzzRjFkhEA2V6vTtwmmMzyApKMrhHz/cTsOWw3zjnk9RmDmdz5z9bQzLbOjTNeMEj+QcqORg8f7+IC0tA4KLcOR8NJlUZGboKChMo6jQJJ2bNTWpxySITV+mZvEKvvqtz3H3767jru/dw1VXnU9Hh49QOMqmTe0Tvp5kASr5WLNGakLWSE0QPxPiZ1c8lonqgT6pHsydk01/f1Dah8s1jNcblkKuQRCNpHqQeeJ6IB7L2NwrEY2NA/T2jNSDdYKDpbIym8GBYSwWrXSvCZxQSDuNUwd3Xw9lZWYSGrlEhsU2PLHVxqBXjdQEk+R2CgSjSRxhdMy9yxXEM2FNEFp7jrV5GBqKkCtxhNDI/QATcwS1gpxcg0SQJxpR39o6OFKbQBnux9kWZOFFl1O6cDFyxWlX7X8TbGUzWHnzt9j6t9/i3PUce4fnklc2E61SiUav58FHHuWBR/7B/ffczdIF1RNuIzkHKnlKn6s/SEvLIAa9IMaKYokpTU1OroG8PIOURWW1Cu6sZPGodIqFpx9+iN/86c889I9/4Bhs4Vu33kF5uYWiIhO1tV0Tc4SkbSRnQwkcIWOUIxynRW4ikcigV7F5pAalcoRAEkcYXV4UjkC4fzvQ6AKYVJgSj2ds7pWIpkYXPb1+mhpdrFs3lcqqbLxDIWw2o3RNEN/nE4Wlf9Q4fad5ijFlipkZZ5YAqa14IiGcMTNzTFiyjHA4hkwmQ69T0tzUT0O9g4qKTCwWHVVVOSxbNn6EpMPpx+cLE4sl6OsNSAS/oNCIzWaUiPbg4LA0PW2iG6iOkWlfy5bZKC/PYs3qIjYdVYIb5PITP/kId3TgfuopwkeOoC4rI/O2b2A880xUVusJ1z2N/3wUF6dTfNsVRG86m57vfR/Ps88Samkh/brr2LBlCx6/nyu+/z1+/oUv8sVLLx33tMyabWDOXNi/r5/ubp/kHHQ4/Tz3XIv0+SgpEXrahfwDrdRmKm4DxucjqZRK7rzps5xZNZ9b7v4553/7K9xx2ecpKjqD7dt7aGp20dPjo7xitI0veRKG2Ipotw/hcQ/T2yvYb8WMNtHhOFbIGTucwJptYHddb8qEwJaWAfY2OLHlG1m4MCfFtdXc3I9WpyAvzyA5pgCWLp14fHjydST5+AG2bevGYtEya1ZmyjamTssgEkmQm2sYyZNI/eyfbFj6aXx4dBwcwN3uY27lqBg1tm1p5szMlFByu32IY21eQsNR5s7LJhKO8etf7WJpTR4VFZl43CEqKsbP7HU6/Hi9wrSa4HCUY8c8NDf1AzLmV1uZOydb2n5L66BEZseeD25PCPs2LyaTmrlzslm9uojD24XzPx4XRkl/HIGsp/Gfg7EZJMZMLaXVVp59+gUGvA6c7m6cz3VjLvkjy9dXHndbWVk6Sex57vmkejCy/blzsjGna6Xzc2xu0tiMpNnl83jpyc38+O7v8s0ffoXli1/lru/ew/s7vNQ3OJDJIDtbl7KOOC1P3F7yxMDengBuT0hyfWVbDePa5MaGhmdbDdTt7k2ZDtjSMiDtI9k1CYIwptMqyMs1SI4pgKU1E9cDmHgqH8C22jH1IGkb06ZmEAknyM0zjMudO10PPnoEvB5e+s0vMOfmcfmlV6LSaFLcCSIhnDkzc1xYcjgURSaXo9craW520dDgoKLCgsWiY/58K8smIKsOZ4ChoQjxWJxekSMUm0amIhsloj3oHpamp01EqDs6hmhocLCsJp/yCgurVxexY78SbxAG7a0UrD+XynPWo9ae3IPs0/hkYcGqxcyY+wfe/cf/cqyhjraGPQAodXqefXMLbo+XG2/9Knd+83auvfzScetbrXopB0riCFY9Gza0smtXL0ePeliyOI+eXqHlVcxIE9tMxW3A+HwktUrFd772FWoWLeSbP7qL6798C5+/7qsCR6jtpqnJRU+3j/Ly0eDyFI4w0opot3vxuEP09PpHOIJGEqImEnLGDiewWvXs3t2bEvbe0jI4whEMLFyYm+Laam5yodUpyM3VS44pgKU147UASG3pHccRaruwWLRUjDxQErcxdaowcCdP4gipn/2TDUv/KHBamPoIsX9fP/X1fVRV5TBnrnAjNPYGwGYzEIslGPKFcTiC9LsCeD1hPJ4QubkGKqtSnREOp5DhIEz2kCEfeZrt9YZpt3uJx8AfiOK3D7F1SxdHjgxKQSLXXF0hkWNxO3W7+wgGo1K2ztq109jXdRa7DxSQbZj4QwAQGxrCs2EDgdpaFBkZZN5yM+ZLL0VdVITs9FOTTxyUZjMFf/wDAw8/jPO399F/zz08+ZWv8u1nnubR117jO3/6I0e7u7jnS7eiSPr7i+dZa4sbrVZJulkrCT7BYAyVSkZWlha5QnAdiaLPP/5xgPff72Hx4jyuu252yrEk51bNmZvNyqoqah98iGu//xO+/7dfsbtlPzeuvoLh4ShZWVo87mEcTj/WbMO4p4Si8JSbayA318CxYx5iceFpoDV74qfhE2HshMBwKEp3l58F1Tnjnno37HUQ8EdZvCSPtWuFp9k1NQWTBpgni2PJx9+w10F9Qx8mk5rLLpvB7bePZjuMPe5kke+0U+rfg3lnFTLQ7aNpaw8anZLBWJy6uj5aWgaYN88qOaWSUVSURjwOQ0MRQqE4jY0DknvizDMLyc01oFGnlu19+520tLrRaOTotCrM6RrisTh79zqIxYQsKyF4vYWdO7tRqRSEQ0IrydXXVCQ5tdrY9GY7kUicnBwD5nQta9dNI9Tey/pl1xNUaWlsdJ0Wpk5jHKrXlXB451K+de3v+MsrP6TDeZiv/uwafiP/X2K9ZoyZWqZWZpNVaGTffieb3mzHYFBJbaXJ9aCoKI3cPANuzzBFpFG9IJfa2k5efvkoJpOas9eUpAhByZlVQn6akXt/cj/5OZX85e//wzU3r+XbX/s1VZVWgsMRNFolTodf2kZyix+M5jPl5hnIzRNqQnzEITKZQ2osxk4H1OuV+PxRNFolWVlCHpeIvXsd+P1RlizJk9xNYs2YKFcu+RiTp/Lt3eugvl6oB5dfNoPb75g27pgAKehdfD2nnVL/HuhN6az+7BfZ9NAfeftvD7Dk0qvYvy/Invo+5lflSNlQYwmhzWYkFoMhzzCOvgD9Iy4pjztETq6ByspUZ4TDIYhQvb0BFApQKIRoEa83THu70CboD0Tw2yNsGeEI4gPFa64pl8ixuJ3du3sJBmNSts66dVNpPnIOTbuU5FsyWXzpVZiyTj+I/m9GmiWL8772LQJeD46jrfQda8Vpb+Nb6Rn8+cVXqG/v4s5f/BJ7Vxff+sqtyJPyi8XzrLXVjUajkDKSLBYdKqWc4WAU75CQM2jQqyTR5x//aOT9HT0sXpLHddfNSjme5NyqOXOzWbl0Ca88/iif/8YPuPv3d7G/+WIuXXc1w6EYFosWjzuEwxHAatVPwBG8UjtrXq6BY20eqd3QatWftJAzdkJgOByju8vHggW541xQIkdYssTGupGhaTU1+ZMGmCeLY+M4Qr1jhCNM5/Y7RocSjD3uZJHv486aOi1MfaRIEAwKT6/nzM2acKx8d7cPuVxGbo6epUvz6OsL4nIFqajIlNqbkrF/n5PWFjd5I9MDWlsHKS3NoLLKOi7jJxaLE40lyDCrU+y6yeJWUbEJvS51vORnLjyXsyprJrzxSsRi+N59F+8rr0A8Ttrac8m47jp0FRXItf/aFL/T+M+GTCbDctNN6Kqq6PrGbXjvu497Lr+c8uISfvDAX3jghRdwDAzwwHe/h1atBoQb6LY2Lx5viJISU8pN/apVhYitSr29AfxJQa52+xCD7pAkqIhwOP1sePEIBw+60OmUOJyBkZa/dB6588f8/oln+csrj1Hf0sTn19yEImGg9YhbEsRE19VErbV2+xCxeEKaVgknL+SMnZ5ptw+ltM0mo3KeFacziNMZTJkCuHlzuzSeOXmfY1tuk4Vqvy+KxaId91lNPm4xS27sdk/jo8eZn5pJKBDl4PZeiudnYTKp6O0NAA5Wry6ekBSa0lQYjSosFp3kjlpakzchIXY6/FIQdCQCA67RcOfkSWMw2gpYXJJGUXlmyoh5cTsKpRybzUjFLIu0nkGTwY2XfBXdTLPUxnUap5GMzDwDl35zPolEFTf96FzWnbOe1mOHufWH13L7tfcyTT2XXS8fI92qI6aVE48n8HjChMLCNT+5Hsydky0JL+b0IbKtBrbX9tDV6YMC47jz/8UNRzjYLNQDpyMgfa4+deXVTJ82l/sf+g7f+tGnuGjdF1hafTWtLW5MJrV0vT5ee62QCZpaE05GzMm2ptaDbKshpW02eX3xc2g2a3ji8SbmzbOSlaVLcW2J2xAxtu1WhM8/cT1IPu7koPfTotS/F7PPXENGno2XfvsL3n30r6jylzA8rOFYm4c5c7PHOaUcjgANex2kmYQswKU1Nvr6AiMcwYJarRhHiPfvc9La6iYvT/jbtra4KS0zU1lpHZfxE491EIslyDBrUjlCkrhVXGxCr0/lCGsXzGBqoJXpZ15A/owKTuM0ZDIZhnQzU6oWMKVqAQCJeJwLv3qEL994A89u2c5D//gnjv5+fnHnD1CrRlv02tq8eDwh5s0bnVa5bFk+pjS1tH2/P4I/EJF+npQjOAJs2HCE5uZ+9MkcwWrhj7+8lz8//ChPvPAo+5v3cdUFX0Ce0I9wBI3UEig6pca21or5b+K0Sjh5IWfs9Ey73ZvSNpsMgSMEcDoDNDe5sGTpUlxb4vZEjG25TRaq/f7ISE1IvU4kH/fupJrwcYtScFqY+kgxZ242DmdgXHZUKmSYzRqqqsY7KyaGDJ1OmTIZZtky28iJmxpqLLb1LF2al0Jm7fYh+nqDxGIJzj23ZNz4+InIeCKRYPjAATzPPUe0rw9dVRUZN9yAYfEilBkZJ/eGnMYnAvqqKqa+8Dydt92O5/HH+dTSpeR973t84Ze/5IX33sPl8bLh3ntRKBQUFaWhVgljXZUqudTGZ7cLof3+QBSDXnBSiTfTDqdfuogKZGUUQvC4j0RCKIStLW6s2QZsNqFf+9Nnn8fcqeV894Hf8MMnfs450y/kohWrUm7Uk0Wg6urccYLxqQgGTyYO4uvtd/qpq3NIvzt0cAC9TkV5eRb79/XT1OhCJpNhzfamiMyTiWNjWxtP5lgmg8Ppp7PZSX5+Gqf9MKcOMpmMsz87i3BwH/b6fioXWmkAqSaMJYZ2+xAajZIFC3JYvsw2kqczWhcmWj4eS5CXZ0SjkRMK6VlWY5OIbTJxFVsBJwpV3re/n94eHyUl6Vx04bSU/cQicUwZWs457/S0pdOYHHnTzCPfZVD7/jaWVa2mpWsf9z72DZ5//gUKDLOpe7WdqCPI/IJ09nZ6sbd7KSsdqQcjEyQh9ZrldPix5uiZPiODVasKxzmHent8JACZXEZLq5tsqwFbnpjpNIUff/Nv3Pv7X/DcK3+iYf9Ozlj0DSBH2sbY1r2x7bXicfyrIk6yY0nMqKqr65VCzzu7/NTv6cPnj1JVaWXLli4GBoNkZ+nQ65Xj3FNjj2dsW+OJjuN49UDcV6ZRRcmHf8mnMQHyZ1Tw6V/cx0u/vpvuw1uYaSllIFqekh0lwm4XJrWKIc8nSxq1WkUqR6jJl8htsttCbOtZWmNLIbN2u5fe3gDxWJy1505N+V08FqNz7zYsBUUsv+QCVOrRgP3TOI1kyORycqeV8eRb73L79ddy/xPPsuHV13F7PDx032+Qy+UUFZlQq4SHFUqlXMptstu9UuaUQa9KaTdzOALH4Qheent8kBD239rqxpqtx2Yz0rDXwVUXXUHF9Nn84v57+M0DP2RZ1VWsOWNVinAjCrMCR8gZJxifimDwZDFJfL1OZ4A9e0Y5wsGDg4IoXGmlrq6PUEiojx0dqUHyk4ljY1sbT+ZYJoPDEeDoISeFRR893z8tTJ1CDL25iWgwgKjxCi6KYulmYqKJWHPmZqVkwJwI4vJiJo7Y6jeRK0IMO9+/v5+nnjpEpkXHFZdPF0ivPyxMfer2S+RWDIa2FSvJL9STbTaTbjQSbm/H/dxzhFtaUBUWkv2tb5J+7rkobbbTEzj+S6Ewmyl86EH6f/d7XA8+yMqSEp6+804+fffdrFu6VGrns2YbWL9+Sso0C7E1Ta6AeAwpB0mE3T6EXC5jyRIbao1SasMD4WZ66VJh0qXXG6a11Q0kUvqqV6+exR+U/8MfXvo7Gw8+izJjkKKS66XjsduH8HojhEIxGuodhENRyZ04kavxw2Aix1JjYz/tdi89PT6mz8gcM3o8QTQaJxKJ09rqxuUaZnBwmPnzraxebUiZ4ie2/x0PDqefbVu7cbmCLFtmS3ldE12Htm3tovH9I1RW5jDts6fkLTgNIB6Po1DIWf+lOWy4r4G2OifzF1sZiiYmHC0/mRNiMoxmQwmkumokz2oiV4RGLdSDYDDGb3+7m8OHBlh1ViFXXlmO1xvC7Q5JWQYimhqdBIeHOXD4INPbDJSUlJyqt+Y0PsHIzs7ivdq3uPHmGzja3sLCRQvIyspixuJc6t+0s+cNO8tKMkjTqmk76uFwqxuFAmIxRjKdNNJnoG53L3KZjLXnThHEnDHB40trkupBixtIpORGrV5dzBc/+y2aDq3kr4/fyfNvfp3s3J8xd05WSmaU3qAiOBzF3uFNcRuOFak+9HsygWMpOfR84cI8qSYUFaURi8Xp6wsQicTo7vGzd69DctT29welMPc1a4pPSpByOvxs3TZSE2ps49ohk0WvrSPT3hZX5lC18mQemJ7GySCRSJBIJDCaM7nyRz/n7b89yN43N1KQ5sGaefG4iVgThY+fCGIGj+iuEFv9JnJFiGHn+/b18+STh7BYtFxx+QwMehWBQIRgMEJ3t08it81NLvZvrSXQ08OCpWeg0J123J3GiaFQqvjto09i0n+Ge/7+GAtmzpDa+axWPevXTx3DEYTWNIVCRiyWkHKQRNjtXmQyWLI4D7VaIbXhgfBZWToy6dI7FKKlxQ0whiPMx6C9l4ef/DPv7n4Eo3mAkpIbpOMRBeFQKEpDg4NwOCa5E8eKVB8WEzmWmhpdAkfo9jF9RgbpUj0w0dIySGtrAL8/wvBwDJcrxMBAkOr5wjS95Cl+Yvvf8eBwBNi2rWukHuSnvK6x16HmJhcbNx5FLQ8hU3z0stFpYeoUIeb1Uv/HP3LVgf2sW7qUi9au48z581Ome03UqnOyrULJZHJBdS4Op5908xDhUJSHHtqHRiPHaFRL4enLltkk0vLEE83C+MqeAGVlDsrKMonHEwwNhdmxoxubzYAlS8fGjcfo6vax640X2Nu+n99+7nNc7PMTrKtDYbGQeeONpF92KZriYmQq1QmO+DQ+6ZDL5Vi/8XU0M6bT8/0fMHPjq9T+/G6K58xJWW6ss0dqERpxBXncw7z5ZhsuV5B5I3b2GTMz8biHJwweT550WVgktAe2tgzS3eUnw6zBbh9iQXU+G9f+jEdfe5Vv3Pc76g4e4uc338Yla6uk/TfUO2htHZTy3JL3k4zm5n4pZHzZcqEXfKywI2Ii0Ufcn8Wioa5OJXyGF+RKbrHddb3YbEbWrCnB6w1hMqnxesO43cOAIPwmT/E7GWFq/z4nmze3EY0KrZLJ7quJAt1drmF8QxEGB4cn3eZpfHBcd9112O12LrnkEs6/4AKiz8U5ttPJtKU57E4imiJJ/CCZL8lksog0zOlDhMKj9cBmM6LXK3n++RapPXzmzEzcnmHq6nrx+yJsea+LK68slwL4W1vdvLjhCMtqbAQCURrqHYQGjvKr/72V3z9RTFtb20fyPp3GJw+5RRZefvVF+vv7ycoSrv9qrZLFF0xl9sp8dr18jIPbewi6hinK02MpSSMYjOH2DHPw4AC7d/fSbvdSWZmd0lo3NnhcrAdOh1+a3NffH5Qynfr7g5jTNVx9+flcefkZ3PSlG/jVH79Ad9/X+PH3vp0i7h5pHWRwYJjQcJSYEMM24eextraT7bU9LK3Jo6w0Y8IcKBFjRZ9k8XnlCqGerFyRT3V1LkWFQh6V3T7E0po80s2akfHeCbzeiNRSuHlz+6Rh7hPB6fCP5AUJmaKAJLxNFOguTg70eMIf5E9+GidAY2Mja9as4aKLLuKSSy7hrOtvJn9mBZv/+mf2vvh3AmmVuGMCQRSJ68kKUslkcsGCXByOAOlmDeFwbKQmKDAaVVJ4+rKafEn4euKJg9jtHnp7/SMcIUPgCN4wO97vkcLSX33lMIWxAzxRd4ifvvw5HlXr+dSnPvWRvV+n8cmBTC7nzv/3EBa1Epl/iCFXP2kW4bo11tkjnpeiK8jjDvHmm+0CR5iXzYLqXGbOFBzgEwWPJ0+6LCw0UVRkorV1kO4uH2azBrvdy8KFRaxf/1sef/Z5/udXv2HPvv1896vfY/3aedL+GxoctLa4pTy35P0ko7nJJYWML1smCPlj3Ykixoo+ya/XYtFi2KOSeL7oFrPbvSMDlPR4h0KY0jR4h0IMDo5O40ye4ncywtT+fU42b2onGhXyE5PdV2MD3Rv2Oujq9lGcp6Ag/6MflHFamDpFUJhM1K9fx0BDPf/csoV/btmCTq1l1fwFXL76TLI1JSk3Fsmore1k+/Yeli4dbbEYS3BFMilODQuHorTbvTidQRoP9KNSyamszOHI0UG8njAGo5Jrrq7A1R/EZFKTna0jv8BE5TwrliwdNTX57NjRjWtgmIa9glilUMjJtxk5GBKUbN9LLxPKyyP94osxX3MN2ullyHWnJ2+cRirS169HXVJC55duRfnXvxK4/nr0VVV4fD6++Mt7uOuWz1FWWDhOXBUhiLZ2OjuGGBwQxpfOmZvNfneI3Fz9hG7C5G0BtNu9GNNUDLpDuFwhAFpbBulrzOJnn/ouv3vlAb50/w+Ia+7gslWrsGYbMOiVGIxKMswaOjv9dNi90udt7CQ8MWS8cKSATJbZlCz6uPqDbNvWLYkE86tzx4lKoptqxsxMVq8e7T9PFt1AGPU9NBSmsjL7JP8qMjIytGi1KmKxGM8+e4hFC21ccknZhK0cy5bZyFANM+sknryfxskhEonw8ssv4/V62bp1K7fffjszZ86mIncJHc7FkFGCKWN8PYBU4ltTUzBhCLLdPiSFqRcVm7C3C/Xg4KEBdFolKqVwHd+5sxuvJyyFJNc3eCmdZqavL8CKlQIxnjsni2PHPBxsdtHb45OC0zMztPR0CuJmcmDpaZzGyUChUJCTM9o29/DDD3P06FH+53/+hynL8xiUJxg+NsRAuw+ZP8qcVQWEE4LI+o9/NNLZ5SMSjrHqzCLs9qGU/KfjIStLCAV3OgIpIlMoHGXJvB9iyXiaR5/+Dd19B/jVT/9A9YJcnA4/woOABJFwjMbGAaZMHW1tSP4Mbq/tkYYSaNTK42Y2iaKP2xMC+unuHiIUiqPXK1m7bpoUeC6uLzqqZs7M5Oab50r7FqcTZlsNzJtnxd7hxeeLUlR84ulJoku4uNiETq8iFo3xzLOHWLRo4pogTg6cOdV8wm2fxsljw4YN9PX18cADD/DAAw+g1xtZs2Ytl5x/DgO7dqEZ2IlFX0hezoUp69XWdrG9tpulNTYpKHkswRXJpMcdwjsUlpwQLS2D7NrVi0opp7IqhyNHBvF4whgMKq65plziCFarnvz8tFGOsNTGjvd7cLmCIxwhgwyOoZTH0GdYoKfrdE04jQ8EpUrNZ392L4988yvsfPEZ5l54OT/4+T384PZvoFGZU87nZEFHaK0TOcIwtjyRIzjJyzVM2IKW/PkAaG/3YkxT43aHcLmEB7CtrYP0tBVy2y138benf8/37r4NlfZOzj7zDKxWPQa9ShjSYdbQ1eWjo2P0+MZOwhNDxgsLhf1NltmULPq4+oNsq+1Co1FgyzNSXZ07TlTanVQPkjOqkkU3gMqqbLxDISqrTpYjQEaGBq1ORTQa59lnD7NoUd5IPUht7ROdbLPKdGRlffQawGlh6hTi6z/+MbnFFbz0szt5t9uOIzzMxh1b2bhjK0qFgm+s/yorVywdR2a3bx+9yRGFqWTSsXp1sXTDILpIenv9dHX7MBpU5OQYSCQEtdViseFyBSkuMrG7rpfa2i76+gIsXGiTbnIAVq82YLMZ2LatG61GiUGvZGW1idxju3nnvaMA6GbOIP+nP0U3Zw6KtNPjhE9DwJ//XM8TTxzi6qtn8IUvVAGgq6hgyrPP0PHFLzHw0EPELr6Y79Tv4eVt29jZ1MSGe39FYEDHoYMDdNiH6OgUApvPXlNMeXkW558/leeeb0EhlwGykSwpPzNmZk7oYkoWah1OP329AXJy9RQXmWi3CxlN777Twb59TvLzjbz0y/v46T/+wo0//QkvbN7Bz7/0RcnJtbuulwMHXAwODlNYZBrnKqqcZ50wZHwiclRUlEaHfYiGegeBYIRDhwaQIYxYFwPYxy4/0bbGOimnTssgEkkwddqJ+7ubm/s5dszD/Pk5LFuez4YXj+D1CDeqE20bBFdbWa7idGvuKYRKpWL//v389a+P8/e/P0l7+14OHjzAwYMHgIeYO3UZt37pNxOuu722h6MjY+BragrG1QPRedHSMoDXGxbCobt9GI0qZs4QAtO93jDZVgOLFtno7PCi0SrZNjIiOd9m5NZbq1KcWhddOA2LRYfLFaSo2IRGrcSaqeXFfcITtdMk5DQmwrZtnfz1r/sBuOmmOdIT47E4dOgQN998M/F4nEAgwFlnfYk9TS6WLMnDWGikdWsPW59qIXOaiaVrp7B7dw9DvjClpWZJ3Jko/0lEsgDkdPjp7Q0IDzZGRFu9Xslrrx/j4EE3FRVXc+P153P7929l/eWr+Ootv2T1mcukhwNPPN6E0xnA3u6lpiZ1+yAMIxC/niizqagoDXvHEDt2dBMMRnG7h0nEwWhQTuh0mmh7Y52U5RVZUpj6/2fvzMPaqrM//GYhCQmENSlrKBQsS1vobqGtS6u2dW+1U8d9HMf5qeM+LnV3dNRx1NFx361LO6PWddpqW6vV0kVooQu0hVIIZUsIhEACgQC/P8K9JCHQdsa13vd5fAK5S7432Jyczz3ncwKndAZSXtbMjhILBmMoMwsSMRh1vPLKTr+YEOz8Wdmx2JucI55b4ui45ZZbSErKZMWK9/n22y9ob7fxySfv88kn76NSqfj9Wb9njLuO0o9fp3/OPJKyvNPGNhfWs3uPDUAUpsxmx0BMaB3IEbxJZJvdzbZtDWK1W0xMKKNGaenv81Ztx8TEe3OEFD1FRb45Qrx/jjA3hVCtks2F9aSk6ImLlVMnq8Z43HiiGr3f36SYIBGMYDmCQFhUDGfccBvvP3Q3N910C5vL9rJn3z5uvfpeHK1e0cPW3MnaddUAnDJ3NFnZMZxxZhorV1Ygl3u/o5rNDhoanWRmRgetYvIVai1WlxgPUlL01NR4PZq+/qqW0p1WkhLDefv5l3n8uSf4v1tu4/S5Z3HbddeKlVxFRY3s3t1MS0sXyclDq4ryco1BTcaDCWYmk57a2nZKSiy4XD3s29eKDDCl6EUD9sD9g50rULxLS4uku7uPtCO4mVBeZuNgdRuTJo+ioCCJTz6ppM03Rwg4t/A+uNrshz3394EkTH2PhISE0OTIwGp6gIeSvkR36Eu+6O7hG/qobW4mMTJJnDx299Nvs7O8joVzCpg+3QRAVLSae+75lrAwJTNnJuF2eyguasHT00dWdqz3i4opnIjIdlJT9Wze3IBCIWP8eIPoUxXoa9PV6UEGtLe7Wb6ijLxcozgFzOnykJqqp6XGgvzLzRj3FdOvUOAJ00NHOy0T5xAmfCuTkBhgxYp9bN/eBCAGnZqaNvbsaSPrr88S/sxDtH34ITdNnUqxaTR7zdXMv/EG3lj6F8ZmGiksrGPr1gZClHJvG0JWLPn5SaRnRPlVQcHIX/YBas0Odmy30Nffz7RpcajUSvp6va1rM2Z4v4Dp9SparL28uvROkiNT+efHb1JSuY+Ljr+E41KSyMyMZuLEwdHeFquTNp9qrcBJeDD8dDujQUeXu4fKylYSEsOYmDdKrJgKdi1H2so7XPITrHWwpNTboqgLM2A06CgoSEAXpvSbqiPx41BbK6eiIodJk+5h0iQndvsOOjpKKCn5FlPMcbTWujBHtdPe0cbSB+4kcdQk5k2dTVaYmqzcOPr6+/n4lV009/Vjb+ukttZBh9Mjttrl5hpxuTy4uz1sLvTGg/z8RLHtydenRxgvHxOj4dAhBy+9vIuF56b7Jcfurh76evtQq5RMnhJHm7WT/oHJma2tbjZtOjSs8CDx62TduhrWrq1BJvN+eS4oSBqIBzZycmJISfGOUxg7dixPP/001157LU888QRVVVauuOIeIiPVPPduOZu+qePMiXFkymSUbapn4cLjmDIl/ojigbDN3uamuLiBukNO0tMjRY/P3t7B1rWGhg5MpnBOmjWDT//1Jb+7+lLuevhSPv7PZZx/9mXMmpkkTsrLzTWKlVK+1VqHG0rgi8Gow93Vg83WRUyMhrFj43G7+/ymYgbufzT+coHvSWB1ZWmphcqKVsJ0BvG8QkXUcGuQ+GFQqVRYLEk4nWcyb975tLRUEBJSRkXFtzQ0NBGRcR4pWXI6yz/iqSefoL1HxcyTz+H4GV6BajBHCBnIEXopKmrE4+kjKyvGm7yaECumYmI0OJ09nDA7WTSPDvS16erq9eYIjm6WLy/35ggDU8mEKhOVSkHzvu9QKJXMOm8xj3+6AYB9+1p+qrdS4mdMYI4QGA9M43Ip+M1FtDlfora5hUNNFh544k7uvP4BTKbRfPJJJVu3NqJUyjEYvFPm8vMTSU+P8quCguENu4Xna2sHc4Tp0+NQqRT09vbjdPUwIz8Bm63LmyPY+njmbw/z4GOv8tb7r7OrvIzTT7yCtNGJZI6NYdJEb+WvThsyZFpf4CQ8GH66ndGopavLQ2WFnYREHRMnGsWKqWDXcqTtvMMJWMFaB0tKvS2KOp0Bo1FLQX4iOl3IzyZHkISp75m6ug4O1nbwbNRsbjh7OrdseYM/dzg4NP1EQrINg75PX66mqb2BDfs/Rx8azqwJk9DUJ2A3RxAaokWhUBCiknvNOM0d4p0JoQXKbG5nwYJUP+8YGExUdVolYzOj0WqVyGQyXC6PaPyWlRWL2dxOXdFe0lt2c9yhvchClOgKCug++Qxqrr8TqKOsqnPoBUr86lmyZKzfI8CePTY2b64HYP6TT2CJj6fl9dd5Pi2Ty5y91NhqOf/O2/nTadcQpY4jMkJNTEyo3wehr0hjsXrv1FZWtLJ+fY2foLprZzPQz/gJBtrsblyuHrrcvWze3MCCBanExelos3cRGqokLS1SrHSSyWRcs/gcMpPHcMcrj/O3zx5jmnE+i04+kbPOHuMn6o5UrXU4fCusCmYmBj1HoKB0uN+HE7ACK2mMBp34ngqPRzq9T+L7Z926GoqLmwgJkXPNNXmYTDOIiFDR0NBC/deH0IQoSE4K498ffsC2HZ8Bn/Hx53JS4nIwxuSSGJHLzMwJRPRBvbMXT2+fX6udr/fOggWpfr4xQhJqtTixt7mJi9cyYbwBvT6EDz+soNbsoLTUIgpTQruPb7u5p7uX/v4BDwKnh3XraiRhSsKPuXNTMJsd4s/gHw8EYQrgmmuuYf/+dp5+eikfffQWBw7YOPfc2+nq8nBcZhSuWBWxYyOoLm0mwhA6pDrKbG6norIVc42D3FwjWdmxlJc1D0zgMxIZocbS1Embw9vOBN4peAqF93HMmEgsTZ2MGZggmBifxOvPvM81N9/G1pJXOHCwhKqqO7j0ksksuSAbwK+17r81Qjel6KmrcwadiCngKygJ1yr8Ww7WyjucgBUYE3xFNoEjneAn8f1TV9dBTY3XXPnCC09kxozfYre76elpQaWKIScnhqQLCrjumXha25tZt2sHeq2OqZOOR2FOoak+CnVIKAq5nBCVnK6uXszmdrHaecqUOAoKEjGbh07ugsFEVUisdTpvGujq9MkRsmNEA2i9XoUhwkPJhh1kHF9Aj3oUdXXtAOzebfsJ3kGJnzuBOUKweDDt7PNp2L+PKxRKXvhmJ022Bpb+9XYuXfRntGojEREqYmO1/jmCj0hjsbgAbzuemCMMCKq7dnr/Px6SIxTWs2BBGvFxOtrsbkK1StLGRIiVTjKZjKsu+y0Zqcfx6DOP8PKKB8hOWciCU0/grLPSMRq1fq11/60Rum+FVUFBUlDhKbAVMVBcChSchhOwAisrjUbt0BzhCKf3/VhIwtT3zHnnHceOHRZaWrrY6ExmY+r1zKn+mNx9pcgbDhJ27jn0RU9m8Umn8cWWbVTZKnF0tvOfrV8DIENGatRYxvdcQohKzsS8USQl6Wi1u2m2Olm+ogyN2jsxZmxmNFUHWnnzjd3MmpXI4sVZYguSVhtCl7uHFJOeZJOebreHsrIWQkOgYUMh8dsKiaupgrBwwuedyq5Rx/PBDhi1U0+v3DtRbfz4n4d6KvHz4o9/nDikPDcnJ0Z8lMlkjLrtVkLi4+CRR3k7YwyLnL1Yuur55+fPcu0pf2LmrBRRSAmG8P9xY6MTq9UbgARBdceOJvr7ISJSw/gJsTgc3ZSVNaNQyAYqEvvZvt07SaO9vVusHBo0MY9m6dm38tQnr7Kp6SO6vrGQM/6PQ8zKhcdgVUkjkZUVi9PlYd/eFszm9hFbEYEhrYPDGZQHQ2jn2revhV07mznjjDTy85MkIepnwty5KWzYUEtLSxfffddIU5MLnS6Empp2ktU6lE4PYaEqJk8axwlTFrOvcguNdjMHG3ZxsGEX8DariyO5Yu495MSNR5aggYGbFHq9Cne3h2XLylAoZMyalYRWq+T1N3bR0eFh3rzRYhvgrp3N9Pb2kRAfxoTxBhyOHrFlT5hy5vv/fUVlK8uWlTElJ4aBginUaqUoPEhICBQUJA0RK33jQSA33fR/vPPOfmy2N9i1axUQwsKFt3D55eNJSYmgv6+ffz/8Hfu3NTEqVY8yxPt9RGil84sJ2bFDJvAVzEyirKx5wDS2HXtbF7W1HRiMWqwWl1+LnuDldsHCGwn9bAzf7XqWN9+/mpTUpzl/0clA8MqkYELRSAgTMUdqu/NtFQT8fKsCzclHQogJe/e1sHOXNyYIIpvET49vjlBebmPHDgtdXR4mTDBw2WXeipK+vj4W/eZq1qz6jKamnThcTtZ/ux4AmUxO8qhcunsu9eYIE40kJoZht7uxWl0sX16ORqPA6fSQmRlNVZWdN97YzezZSSxenCm2IOl0IXR1eUhJ0ZOcrKe7u5eyMhsajXfKmW8FxsFNn4FSwydbYthirUDo+M/LGzXcZUr8ignMEYLFA5lMxoLrbqGpppprT1Lx+OrvsDsbefODv3Pxubcya5ZJFFKCIfx/3NToxGr1FlEIgup2MUdQM36CAUd7N2VlNuQKOU5XDwDF25vo6emj3dEtVg4NmpjH8X8X3ctrK55lZ9U79K9vZPz4q4dMyhQIVpU0ElnZMThdPezd24LZ7BixFVEg0LMq0KB8OISJfmKOcGYa+fmJPyshKhBJmPqeKShI4qGHZrJuXQ1ms4OdVd0c0J3FaWMKmN+4ipY33kC5ejV3nnEGF809jdXrqqmxVdMT2sD2A7soO3iQcTlxjB6tx+HoJmV0OHcvewxjeDwJYaPR9MYyLjORvIlGTKZw3nxjN3V1HWzYUEvamCixUqpkh4Wychv1dU4WzB+NsqWJaY4iwnfuptfjpifKSOhZ55F40flYlDE8evU37N/fyrhWGRqNN/HJzJSSW4kjIyUlwu/OOED0JZegjItD9udb+XdGAosrerF0NfHB9uWsvfRZP8ElUPwRkoDUVK9nVFSkWpw2NmZMpFjVYTToKJiZgF6vQmjF22V3i20lyhCZeFdAMDEP1SjJzIzhL5feyNqdG/jXpg+4/fUW3km9jySj0a86qby8mVWrDqJQyJg5K2lIZeJwYpVOq0Su8D4Gw3cyYVFxo/jvNjAJEh7Ly5spKbWQYtKjUiv97qrn5RrZtbOZ+voONm9uGHaAgsSPT2A8WLfOzJQpo4iN1dBs6UTXJ8ducTJj+mQ6D+jomHYV7TEdbNn+DQ7HTnbsKKSjw446OQF1n4zQXjnf7FvDpi1fM31qPjERYzlUF0pSotcof/36GnbubKbb3YvH00dGehTC6Pm6+g42FdaTmhqBXh/CzIKEIdUVggn0Z59VUV/XQYRCTh/eiqnoaK1ULSVxRASLB77bbrzx97zwgpJDh15h166P+e1vzyQlZSYAMrmM9FkJbHl3P3uLGhk3w+upI8aEND3FRU1YrZ0UFh5CrQkhPSOK3FwjBqOOc8/NIHNsFKWlFrRaJfY22UAiLRtSPSSYmHe5PZx/7kKyjsth7bePcPfDF9PT91cuOO+SIZVJ5WWDMWHWrCS/ysThxCrfqq3hEK5Pq1VS3+AkLl47bDwQ1lFaahH94HxjQm6ukZ27mqmv62BzYcOwAxQkfnwCY8L+/a3odCE0N3eyZ4+NlJQI5HI5L798P5s2XclLLxXT0lCIu/VLdu7fS5Ojg4xkBaNNOhwdfZiSw/j7iw9iiDYRG5GGot9IdnYCeXlGTCY9b7yxm/p6J19+aSYtLVKslCopsVBWZqO+roMFC7yGy6mjI2hodLJrp1Vs/VP02Gio2Ee1K53Pd3SR2dKIWu3NEbKzj9xoWeLXy3DxQKUJZcm9f2XFvbdy42lTeOLzbbQ5LXy5eRnvXPbSEAN0X/FHEIbS0iKoqXEQKeYICtLTI9GHD7auFhQkog9XAd68YJfdOpgjKANyhB0WNBoFWVkx/PmapWzcsprVX73H319o5tkxD2E0xvqtq7zMxqpVVcgVcmbNYtiKJl8sFhdtdvewxu3COsHbOlhf3zFk30CBrLzM5s0RUvSoVAq/SishR6ir72BzYf2wAxR+LkjC1A+AcAdx06ZDrFtXw7hxsYSGhhCZuYTI3YXYXnyRlldfRR2iZbRsNKPzprDwst8AUGe14urqIkITjdnczs79lZTV7aWMveL5E2tHMb0hm8ljx5KaHQ2EkZYWIU73mjI5Dl2oAkXTIZJb9iF/eSWx7ja65SqcyWNpPW4auxWpjJs5jowJYylbVUVMTCjHHQdTp8ahVJ7AhAnjGTt27DBXKCFxZOhPPRVldDSyq69h5XFJXNMcyY2//T1xo8JFsSUv10h9fQfbt1uYNMnInDn+rWv5+bB8RZk4GW/RorF+U/127bSyfbtFNMlNSNAREWka0uKqUYcwdsAYurevD1NKBPfPupj83HE8uPxpZl71B16+YymnTJsmnnvtuhp27bJi8pmQB/4VT8Lvvq/ndHno64X6eqfYbivsp9MqxeeE8wj/bgUCW/dKSi2Ullipr3MSFzf4vHDsGWekiZM9g63xcMKUxerkULmVxMRwgqeTEv8tgfFg7twUkpLC2VVqpWa1GUdzF6PS+ui0d3PI3kmYIZrPPnsMgO7ubrZt20Zy8ng2/rsCxwEHO0q+orLmGyprNgKgCgklY0w2XUwjJnIMOTlpNDV6WzDM5nYmT4ljwYJUSkstqDVKdmxvwt7mpmSHlRn58ej1ITgc3ZjN7WJ1Rni4ioTEMMakRVDTFcv0KeeTmSNVS0l8P9x5Zz533pnP9denUVS0m/HjTwQQ/410uz1E9fZRu6+NnOkJyOQyP4HIXOOgpMRKd3cfcXE6JuYZ/VrT6hs6qK3tQK1RotermTjJyITxsRiMOrKyY7FanBQXNZKT440HxlGhuJw9LJg3hcsv+5gHH7uXux68he+2b+HBux9Dpw0DvGLQW2+X0draRfqYqCExQTBfj4zwF4BcLo/oc+XrWeVyecRHkymcyVPiKC5qpLHBa+o7UtueUClWFxAThDaTM85IEyd7+q5PON/hsFqcVJa3oIrREBUnCVnfJ8PlCIEVhuvW1VBV5WLu3LO4555HqN+/l09ffQFz2W7CLKsxJmRTVaukylxGlblMPO67fQnsOTiO8dlZjM02AjrGpEX4tSDptCG02d3IFXI2FdbR2OBEH6EmZ6CSYu/eFvr7+3HtXYsyNAK7Zxxp6WFMnRqHTHYSkyZNZswY/ynDEhJHS4RxFIvve4T3HljKTadO5J3iKq6+8iZGjdKJYouQIxRvb2LypFHMmZvi17qWn5/I8uXl4mS8RYuO82uz27XTSvH2JjIyvJP/EhLChniuWSwuNBolY8d6Bwz19vaTYorkzplXMWXiBJ594wnO/O3F/OOhvzBj6hTx3GvXVbNrt5AjDApHgRVPgRM0BeN28Pq9+QpJvi24w5m8B7buDeYIHYwKFg/OTBMnewZb4+GEKYvFRdU+K8mmww9g+l+RhKkfkGAl7qSdScS802j/+msOPvcaU/buQr6tjMbatYTm5hKTmUn86NHIVSqMBh0R0TKurL6M0qpy6tqqqbM1UdfcxMqvmlj51QZuvehi/vnPy2mqt7OzsIS3/7WM796XMbqtjUkeD5EaLY6oZL7pyKYiZgJnXXEC2dNSKXu/grUb6oiI0ZGTE8MVV4wXg+KePUl+pqUSEv8L2ilTSFn2Jt0XXsprkVr2NrhYvqIMq7WTQwPT+YwGnXhXG4ZW+ww3Gc+L9464zdYltrj6ijyBVU++xtBmcztyVzTPXfsQz695jfOW3sGFJ5/N3VdcRvwob6CQK2TEGkL9xB3fO9i+AtD24kY2bqwjL8/A2MxocYqmwL69LcgV0Nc79DwjIdzRCayYEo41GnRDvEuO9NzgTVoOVtqRIUP6qvnDEBgPUlIieHd7M067G3ujCxkQYwpj1imjxX1UKhUzZ3orSS68aRIr/rKNU8f/Bo0mhY7OfRw076Gzy8WevcXs2VuMSqVmV+FB7K1eoamo9GOKd/eQnnYc0/PHoFJEoder2bKlnrr6Dsw1DubMSeHbTfXsKPFWmJhM4Zx6ymivmXRNBz1WE3ec+xfypv93fgoSEsMxe/a5lJensWzZbiIj1XzxRRVffllHTIyGzMhQkjvldHZ04+zy+FX7CBVPgdVCg/jEhIGWJkGMCax4uvmWMX7VRGZzO7OmXk1mxkReefsBSneXcN2Vf6fg+DxKSy10tPcQFaVhwYJUP4FHWIO9rcsvIVnzeTUVFa1kZESK59+7twWFAnp7ER8Bcdqm7/mGY6T3IJhB+9HEA/DGhJqaNrRxWnImSS1bPwRBcwQfhNbpuXNTkMlkJI7N4qpH/0Fj5X62rFzBwZJiwj29LD5xPuX1rTS1VGNpbqShqZ5PP6/n08+/4JZrr+aZZy7BYnFRtL2CT9etwNyYwZjRoznz7CTa7HDoUDuVlXYAMWF3tHdTvq0EvbOOzJPPZkzCLMZPiBPXLeUIEt8XUaPiuejhp3jtjrv4w/FK3AdKWP62HGuLh7pDXj8zo0GL79DowGqf4SbjCXjjgRunc6g/lH/VU6IoCAmPst54HrrtcZa9/yyXXnMd552xhOv+8Dvi4rw3LORyObGxoX7ijm9Fk68AVFzcyPr1ZtLTI4dsAwZig4ze3v4h5xkJMUcIqJgSjjUatWKlVLA1Hg6z2cGBA3Zkih9eNpKEqZ8AmUqF/pRTmDBnDt01ZhyrV9Px1QY6Nmygfc0akMtRxMQQYjBgMBo5V97PxPAxaBPG0Svv4VBnM3ZZK2VN9Yyvqabh3nvpbW6mqb2d1+oO+b1WqEZDfFwHoboWjh89gUaXkiyZjKamJr74YiMdHZVcd90MMjI0yOUONBoNM2fGotX+fMr6JH7ZPPRQIStW7CM76mKu71xGZvFKPgmdRU2omy8OfMaZ597H2DGx4mRJgA9XVrBtWwPTpsVz7sIMnC6Pn0G5QHl5MwcPtjFmTCSZmdF+1UmCuFVYWEd5uY3IKDU6rdKvGsnW3IlcAQmGKJ65fim3PvkK73z5Mbur9/PeIw9wytwUDIbQIdMqgpmRm0zhrPxgPwcO2AFYvDgLi9VJRKT/pEHfiqkjnco3nIH5SMceybl9hyWMSY8kITHssGuR+P6ISQqj6aDDK0zJZVzxp0kYkoMnjnKFnLmXZdPyiIu5qjTCTDpiYjVs+KoYTVgTnn4zXV1dhISEYDCGYDDquPvR5ezdv8fvPIZYI9GRcYSFJnJeyl8xm9ux2TrZvHUTlmY9Z589nohoDV3dbposrXT393B8voFRSVISIvH9IMQEgyGUyko7MhlkZOxn/foH0etzuPjia1H09FP3VT2W6nZs3R4+/ewAtuZOTj89lcmT48jIGJyQ50t52UBMSI8kc2y0WI0E3iqglR9WcqCylZgYjdha51uR1NzciUIB0yadRlpKFn975kZue2AJf7z0HubNORdANF73RTiH1eIUK6bM5na2bq2ntdVNhF7tt9ZgFVOBaxmJ4QzMhzv2SM/rW9GVkhJBRnrkYY+R+GEIJlzJZDLiM8Zyzq33YDlYSeH7K1AXb2NSrBGHfCrtqiTaOptQa1upqqlkal4u4K2I6FdYeef9Fbzz/uD5QjUajAYjutAoZk2dT5s9AUxgtTTSuH8t4eGRTE8fzSiT3C9H0OmkKjqJ74fBeHA8aWodx/XvQdHRxCGrhsKyTZy78FHS0gyiaAqwcmUF321rYOq0eBYuzMDp6hENyn0pL7NxsLqN9PRIMsfGiJVIMChuFRbWUVZuIypKg04b4leNZGvuRKGQkRBn4JG7/8o9f32Gf3+ynH2V5bz89MOcMnc0BoN2aI4QxIzcZNKz8oMKamvbUYUoggpZwJChBUfqWxXMN2qkY4/k3L7DEsaMiSQp8chubPwvSMLUT4hMLkedOhrD1f9H7JW/p8dmo6u0FFdREe4DVXgsFjp37iTF6SLF7UbW5R3c3S+TQ4gKeUIy7e4QzAodMfmTyEqJ5v/Ky9l76BCle/bR0mqls6uLquoqoIoFCxZz4EAbUEtz8z7Kyh6jrAxeecV/XVOnTmXFihXEx8cTGhr6E7wzEscSK1bsY//+VpyJYXy76E7mfv0453R8zaJaC/WtTdz26qOsevIfflVOFZWttDm6vROYAtrmfKfylZR6vdQSE8IYNUpLWVkLtWYHBTMTxRa//v4+NBoFvZ5+Vq06CCCKPE6XB4ejh7Xramh3dJMVOYMxp6ex7NtlzLzqD7x+191csCR3xOvzFYBmz070ewwUh4IJa0KpsrCmwsJDYlue7x3vH8IzyreVMG+8QZzsI/HjEJMYxsHSZjpau9CEhaDRhYy4v3G0HkNmJOy1E2+KoLWrh6iIFCaOn0zqqDCq9rWw4ukdxI7SMjo9khOnzscUn0rZ/nIaLYfw9LqxNluwNlvISHOjVikpLm7C7faws+I1Nmyr5pXl/q8pQ0bouFc4e+GZGAySp4jE/44YE5w9nHKKtypEodjDli0bgA1cdNE0LrroIpaV2rDVdWCabMDW3ElTk5ON39RhMOjEtjnwxoMJ4w0YjDo2FdazY0cTEwfGe+8osWCudTCzIJGdu6w0NTnp6+tHowlh775WcaKfIPLUNzjZs8dGcbGFxMQwll7/Ju99+hj/fGUpza17uee2h1CrNcNeW6AANH16AmazQ2ypG0kg8p0wKKxHMGgPNtHvh/CNEiq6MjOjycqKJiFBulnxc0QmkzEqLYNzb72bz1duYsd/3iPaeYConlqcoakcd/wCZk2V89W6etyuOvLzE0lOSODixedRebCa8n0HsDta6ezqoqbWDJiZf/J8Kg/YsVhdWA99zbJNhQA8u2aV32vPnDmTt956i7i4ODSa4f8tSEgcCYPxIIwTLj0DXehMHDvfY2PxezR3uHjkmQd4+8Vn/aqcKitbaXO4qaxsHVJ15DuVr6TU66XmzRF0lJXZqK11UFCQJLb4QT+hGuVAjlAFIIo8TlcPDkc3a9dV097eQ1rCSZgWZfDx2pc568JLePqvD3LBBRNGvD5fAWjWQG4gPAaKQ8GENTFHGFhTYWGd2JbnWwX1Q3hGCe9tZmY0EyYYUChH/o76fSAJUz8TZCEhqOLiUMXFoT/tNPr7+uhzddLf6aK/u5u+7m76e3tpaHBSeaCN9OOi2X+wg3++sJv6Zg8nhKdzypQ05uT0MGp3M8rQOsrKmpg0ScMNN4zBbDaTkTGZtjYdFosTm62bqKg02tvb6O3tRqnsBTz09HTz3XffMWXKVIqLi0hNTf2p3xqJXzhLloxlxYp9LFkyllvvzMfTXEDNxZfwQl8PF3V3sruqigvuvouVjzxKqFoNwNw5JjZurGP27MQhbXO+U/nyco3U1zlRKGSsWVNNVZWdiAg1XW4PGrUSmQzS02OYPDmeLVvqqa5xsHJlBccf38H4CQZxglFxUQvt7d0cd1w0V1w0lz9eOosrHnqQM265mbsv/x03LlmCfGAa2khMmhxHrI95OwQXn4Tn33qrjPYO75QQYdvmzV5DXoCoKI14rDDpDw7vGTWcuBWIf3tH92GvT+L7JTYxjN6ePloaXWjDQwhRKw57zKJrclnxwDaay1uJSNCSawyj+2AHFWYnrp5eero8tFs7qWzrZlzYfMZlzuesTPD09tLmdqDUdWB3WVAo5dDixqCU4+5VYoxIgF4P7p5OPL3d9Pb14PG46aefK/94BcUlN/D880/+CO+KxLGOb0y48858APr7++noqOaJJ57g8ssvJyYmhpTxaVRsa2J8RBILTknBVukgOkpNVKiSzMxo7G1d7Nhuob8fIiM0GIw6YmI06PUqej29vPV2GQ31TnRhXq8pkGE0hJKRHkl2Tgxle2zs3deC1drpU7XUT6u9i66uXuLidEydksz8+a/w7w/f4b5H7qB093aeffw1UpKP7LtRdlYM804b7ddKGCg+Cc+/9XYZHe0D8WBgm2DQDhAVqfE79kh9o0YStwLxiwn9R3SJEj8xpy0s4LSFBTRWVbD+zWU07iuhaXMNlm4TZXu9lRjp6VF0d0ZzyswLOC7ZQarBRk2NnZTRcuadbqC+sYms9PHsLHXR2dJAv6OB+GgDzQ4Pnl6PX47w7bffMnXqNHbuLCU+Pn7kxUlIHIZg8aC351RMT43lqrvuY/fevVz5pxt488XnUIV4hZE5c0x8s7GOWbMTh7TN+U7l8+YIHcgVctasqaaywjtsQB/uzTW8OUI0kyfFsWVrgzdH+LCC4+uFHME71a6oqIWOjh6Oy4jiiksWcOUVs7n+jrv47R/+jz//6Rp+d+EFR3Rjd/LkOAwGrV+FVDDxSXjemyN4v5sL2zYX1rN7jw3wxoTBHKHniD2jhhO3AvFv9/txcgRJmPqZIpPLUYTpIMz/y0ZqOqTO8v4sT2zjxAYFdXXtJCaGsXlzPVVV9gEDaC0nnJDKrFmJdHVFcNJJk8V+8JqaNmpqZhMVlUttrYO6OieXXJJFVVUbK1fuIyJCwd13z5REKYnvBcHoVkAZG0vK8nfhoot5sa+PS7q72bRzJ7978EHeuu8+lAoF8+aNYd48r9tReXkzJTss1JodZGZGD9wJ7xcrh2JiQ9m1s5m1a6uRyWSEhMhxOLoxjtGJ+4aGKgjXq3C7e2lo6ODdd8s5sd7JxRfnMGdOChp1CDZbJwUFCQOij46P//YYf132Jve/+gqbd+/ixdtuJyYieDuTID5p1N62DPCWAK9dV0PVATu93sFmfsJUSamFVrsbpUJGik+QEgzMZ8yIFw0NwTsKHY7MI8RX3BopEfGt6PK0SsLUj01UvPe973R0E5uoQ6k6vPipDFFwzk0T2fDWXqyHOoiM0ZAwPZKMqaPYuKWOz/5TxZknpaBWKdnxXSO2Bif2RicRWhUTskahViQQ40xFqZDhaHKhQ05oiIyr5/+F7p4+evv66entIyJSja2ti8+21OLo7+XMM0/9od8OiV8JgTEBvBUgjz32GBaLhbfffpvzzjuPFa99SHdXCA0VdlStPSTEalGEyNm7sR6bHNDKGZM+OKUVYGZBIqZkPYWFdViaXISEyIiKDEWoqgKor2/n4EEHKpUcvV5FU5OT19/YxfTpCcw7bTQOR483HuQniILPbxZexIScPK6+5XecuWQOf7v/aebNPWPYaww2vW/N6gO8/34Fcrk3gfEVpgT/KrVajlqjxGpxYjDqxEqrGfnxouG5cOyR+kb5iluHE6Z8K7rsTc4R95X4eRGXlsFv73uAxsr9bHrvHXpLd7AgU0lEykRqqlvZt7+NpkYnVmsn0TFqJowfRXZODCq5ltnH52A0atGHNrLjo8+ITc8mOvsGdlQqg+YI99wzSxKlJL4XgsUDRUgIF95yB1Gjx7Dwtxfy3c5dXPV/V/PKiy+gUCiYPz+N+fO90yTLy2yUlFiorXWQOTaGSQPVskLlkDdHsLJ2bTV9ff0Iivv4CYMV4KFaJeHhIbjdahrqB3KEBicXX5ztzRE0yoGYkDgg+mh5+8XnePzZ53n4H09TXFrKI/fchT48+GexID5pNAqcTt8coZoDB+z0CTmCjzDlzRG6UChkpKT45AgDBuYz8hOGyREO7xnlK26NJEz5VnS52iRhSuIwpKREcMstUwGv2LRnj428PAO7dzczd24KBQVJrFpVxebN9eL+wuNll41jzx4ba9dW09PThMfj/YcqkymQy9UoFD98uZ7ErxdlZCQpb78FF17EM319/KGmmv8UbuKGJ5/knzff7HfnoaTUIk7kSzbpxQ9fAaNBR0RkO3FxYRgMWmbMiGfXrmZWr6kiIz2SsDA1jY1OrFYX6elRuDo9NDd3UbrTwmnW0RgN3hHjAr4VTndf/juOzxnHlQ//ldl/vIo37rmXqVlZQ65HCA7p6VHkTTRiMoWzfn0NJSUWenp6SU7Sk5drpLy8mU8/raSjw8O4cTEYYkNpa3PT1OQSz5WfnyQmD1FR3mQixaRn07f12Gydok9WIL6tfr7i1kj4HhMtRYMfHX2Mxuv33w9hURpvFdMREBal4Yxrc+kcqLbT6JTIFXIWp0Ww+LfZgDcmKEOVdHb2iDHh+OMTWP2fKrZtbWDK5FGcfFIK/f3ez/66Q+289/4+SkuthGqVLD4pjc+e20FZrZOMjMghE6MkJL5v5HI5r732GjabjdWrV3PZ1Rdw/RlPsmcjqDQKTrhwLIljI3l56SbCu/ooqbVz5jnHMdmnxUMQVsy17dQ3dJCdHUtCQhiVFS1s2dKAyRROWZkNR1s3EyeN4rxFY3nvvX1YrZ1UVLRy8cU5fvEAfKuc4vhk+Xpuv+96rr75ci6/6Cpuu+EeVCGqIddSWmqhrr6DxIQwUTja+E3dwNQ+tWheXl7WzKefVdLY6EKvD0GukFNT7cCUrBcNzMV4EOmNB7m5RqwWJ99u8sYErVY5pGLKt83PV9waiR+iNVDix0XwoFp0x/0cKt/N5vfepbb8O9yNu0lKziP1+OMw13aI1RlFRY1ilYVO3U35F+8RolKSe/YFHKdIp299bdAcQS6XvjBI/PAsOG8xH4bqOOvss/mmZBdX//GPPP3006h9bGZKSi3iRL7kZD1z5gbkCEYtEZFqRsWFEa5Xk50dja2lk388WYwpJZywMJUo2KZnROJy9dLc3ElpqYXTThuN0aj1zxF8Kpxuv/5PTM7N5bb7/8LZF13GPx99iHGZmUOuQ8wRMiLJyzNiMukHcgSrf45QZuPTzyrp6Ohh3LhYDIZQ2uxumnxuEuTnJ4piUlSkt5U2JUXPpk11AzlCSNCKKd9WP19xayR8jwlTH+6v9f0gfbIcI6SkRIjC06JFY8XnhWQiMKkQ9o+IUBEZqRanf+j1ahITwzjppOQfaeUSv1aUkZHIH3mW3Gt+z2MeDzeYa1i2ehX5Eybw21O91RkWqxONOoSxY6NJTgof9s6wyRTOzFmJorF4RWUrtWbvNI8lS7JITdVTVtZCe7ubvr4+YmI1hIWpWL++hjlzUvyEHt87EFlZsZwybRrfvvgSlz7wAPNuuJ4Hr/ojfzz3XD/xTDA+9G3Xy8s1YrV2AnDK3BSysmJZvqKM7dstdHf30WrvwtPTR1eXB5utK+h1CabnRcWNbNhgprm5E7PZwbV/mkhlRatfu56vF5dvMjMSvsdEp/1IUUdCRCaXIZfL6OvtJzJOe1QeXzK5DK1+aEIsMFxMGJ9rQK6Uk5MTQ1jU4N88M1rDJREqNmyoBfqZkGfk93/IJTpWy8KFGdIEJokfHOEG2+OPv0Jr6yK2bNnCsm8e4v5LXifz+ERSxsfQ0OSkJ1GLqtrJlJQokpKCCygzCxIwJYej1SopLbWwY4dVbImYNi2BQ7UOYmI0WK1O2jvc6LRKEhN0FBc1DhFm/CuVsnnmsVd5892XefiJ+yjZWcw/H3uFhDj/u86C8JSbaxTPNXtWovgoVEutW1fDtm2N9PX1owpRoNeriNCrg8Y6X8PzDz+s4OOPK+gbKMfNyo71a9lTq5Si4HA08eBIWgMlfv7IZDKSs8eTePeD1OwqYcsHK6jfV4imbicTciaQaIihv78fk0lPX4+bEGclG17fhDJExewLLyNr5omEqDVERoVKOYLET0ZNTRv9siyeePIlrr/+96zfsYsn7r2La/58G3qDEYvFhUajZOzYKJKTw4etFjKZ9MyaNWgsvmLFXmpr2+nu6WXJkkzS0iIoK7PR7ugOniP4CD1+OUJ2DKecOJvMjDf50+1LWfy7P3D3zTeyZOE5w+cIA1VR3hzBe1P6lLmjycqO4emni8V4UFfXQUqKHk9v//A5woDpeVHRQI5gHcgRrp1EZWWrX7uerxeXr7g1Er7HZGf8OH5ykjB1jOObnAQjcOrHSKNrJSS+LzZtOsS6dTXodCF0Tr+Jee7HuLu7h6LYeM4/+WRxP7O5HZerh5xs79S+QHwrfqZMjqOouJHiYqG6Kpy5c0yiqXpnZy/vvltGZ2cvOTkxpI2JoKnRNUSciopUI5fLiPJ5vSSjkdVPPsm9L7/Mbc8+w0frt3Dt6ZczfaoJo0EXdGpesOfyco18+20dtuZOnM5uerr7iIzUkJ0dTVFxY1Bjc4vVSZvdLU6Qamtzs2tnM+vX11Bf3wF4E4/Ato4jMUuXPKZ+emKTw7BUtxOd8OMkgiPFBG81bYTf776iloTED4FvPGhr6wYSuPvul7j66ku4486/sPjC6cgUMkJUCvbssVFT7yQhKgS93UPrwQ5GxQ185jV1UFvbIQpLBqOO9etrqKy0k5gYhlwh46STksnPT2L9+hp2bG+iqclFR7uHxKQwjKN0bNhgZuKkUcyZM+gJZbV2kpgYJopNMpmMyy78A3njJ3P1zVcwb+EJ/O6393Ph4nNEQSfY1Lx588cwb/6YIdevVivo6e6lH1CrlczIj8c8cGMlmEBktTgpK7PR09NHSIjcK7BZnHz2WRX1dd6YcMkl3spJX4HrcBVRR9oaKPHLQS5XkJo7GVNOLtWl2yn+z0dU7fiOim2FyBUKFMoQetxdIJMRNyaDaeecx+gJkwgZMPiXcgSJn4LAmBARMZ55864Hz0Emp4bzzbtvMOWs86i1aXE6R8gRfCp+pkyJo6jIJ0dIDmfOHJNoqt7p8vDuu+V0dnrIGRdLWloEjb45woA4FTmQI0T6vF5yYgL/evUl/vrkU9z98KN8unoTF557JVOnJmM0aoNOzRtukp5araC7u5fOTg8eTx8zZyaSkqKnqKgxqLG5xeLy5gihAzmC3c2unVbWrzdTJ+YI/l5cge/NcJ5UkseUhITEr4J162pYt87MlCmjOOWUsXzgvJ7T2v/GQk87fYcOwejRwOAX5DZ7l5/xtyC6tNm7aGz03nGorGhlw4ZaQkJkjBqlY8GCMaIoVV7ezJYt9YSEKFCplEyebCQlJYJVdQdpanRhNreL4k2r3U17Rw/r1pvp7OylYGYiRoMOVUgIl5y0GOvBUD4q/Td/ev4eHu29hd+cOX3Y6wwUh7KyYrn2momUlFpQyGXU1nYwY0Y8KrVyiLF54DXm5MSiUikIC1PicLgJ16tIIIwZM+L92g+F432roYwGXVATdslj6qcnf2E6e7c0Eh0vVShI/DrxjwejycmJ4Y03GkhK+jN1dVGoQge/qubkxPDddw3UN3eSkBzOwRIrvZ4+7M2d2BtctMu8FUQVla1sLmwgLEyJWq1k0mQjc+aMBgaEnT3NNDY6iYkJJUQlZ/asRDq7erG1dOJwuMXXKy21UFFhR62Ws3dfC7GxoaKokxiXyZKz/snyD//C0y/fwKH6PTzywAMolcG/WgcThubOTcFgCEWukFFr7hhS7eQrIAnH29u6kMvBEBtKQqKOzLHRmM3thIerSEgMI9kUxvr1NX7VWjC0IirQiH2kiYESv2wUSiVjJk8jbeIU2qwWDpYWYamqorvThSYsjOSc8SRkZBEeE4vsCAa9SEj8kATGhLVrq2lvn8acOYu46LosPvjrPWxduYLU4+eSmWmize72M/4WRJc2u5uGRm8bXGVlYI6QxpQpcVgsLnbttLKnrJnQUCUhKgWTJhkZnRLBqroqGhu95xLEG7vdTXtHN+vXm+nq8lBQkITRqEWtUrHkzN/RdCiMr7YtZ39VBXfdcBfnnDV12OsMFIdOmTsag0GLQiGj1twuVjv5ttwK6wi8xpxxBlRqBWFhITjavTlCImHMyE/waz8UjvethjIatUFN2CWPKQkJiV8FQlm44IUWEaFio/5Ozvz2MWzPPUfkn/7EX1f9h9/MPYUpk8dgsTqJiGwXhSpBdNFqQ5ArQKdV8vVXtRw4YGfMmEgmT47zu+tbUmrB1tJFdLSGlNF6Yg06nC4PYeEq9PoQvyojjToEtVqOvdXNtu8aSDbpRTFs1aqDhLpNnJ/9B9YdfJ9rnrkHt+J6Lp4/n717bX6CU3JyGLW1HSgUMmbOShIFIKGSyle0EvD9WbjGuDgdYzOjabN30dTkpLPT2/o3bWqcaN741rIy8c5ITU0bGzfWkZdnYGxmtHjOwBZFiZ8HicdFEZcWccT+UhISxxqB8SDwOYCioiLee+89HnnkEdEjM3NsFPvXH6KqpBm5Sk4X/YT3y7HVt/PdrmYOVNoZkx7JvNNSh3y2trW5CQmRYzB6JyQZDDrsbW5iokMHJvh5MaXo2bSpnubmTrZtaxC9n6wWJ+vX12BpgryxN1FnWc2Hq16lvqmMpx59kWaLgtJSiyg45eREc6jOSWNDBzPyE8SKLN/KKkF40mq9UwcDK5cEYSkuXkfqaD0eTx8y5NQ3eBOvadPiSIgPY9Wqg/7x4Js6Zs9KZPLAjRrhvIFm6hLHPjK5nMhRcUw8dXjjfgmJn5pgOYLQUhoeHcP59z7M4lPnkmP/gFPOPQ/ThBwiItVihY8guuh0ISgUMnTaEL7+qpbKSjvp6ZFMnjzKb9/tO5ro6uolNTWCsHAVBoMWp6tnIEdQ+VUZaTRK1GoFra1utm1rJDlZL4phq1ZVEcJxnDz1T2zb8w5LH7kFlLdzzoL5ovAjiE7JpnBqze3IFXJmzWJIZZUgPFksriHVTr7XGB+nIzMzmja7m8bGDrq6eoPkCHvEmFBd08Y3G+vIm2gYiDPecwa2KP5USMKUhITEj06w8vCCgiR66nKpXnIB991xBy801LPii/V88+LzxBti/drRfCupXI09OF0eP8NvoVJKQOjv7uz0UFlhJ8UUzqSBfXRaJWZzu+jZpFDIKMhPwmbrJCZG4yeGKRRyRqfo6e3VMcd9EQf7NnHt43/nk6+2khc5h6oDTpQKGR5PP9XVbSCTER4Wgk479KPWt6JpyuS4Ie12vm0VgjAGMg4ebKO3r4+ISA1Gg46i4kYUCjlhuhCs1k62bmmgYSBRWbx40Kjdt8dd4ueFJEpJ/JoJjAeBz61atYtzzz2B7m4XUVFR3H777WI7ampaJB2tbmrNDg7UtGFeewhnYyem5HA0A21xvubowIAheCKVFS2YzQ4yMiIxmcIxIQhB/ZSXNVPf4OTgwTYSEsPo6+snOzvGLx44HD2MHh2BXC6jv+90cidMYc1XD3PawhM5/eQ7aLMl0traCciwtXSikMtotXfhcPQEfR8E4SkzM3rImoV1Dz7GDlQ3eadMNTa4yMyMxuXyoFDISUwIIzJSzfvvV2Bv81aAzZs/xq8iytcHS0JCQuLnwnA5gsAf/ngbq7Z8x7aICLQqFfkL+pkyZZq4XRBb2uxunM4enK4eP8PvKT6fryaTXpzkZ2vppGSHFZMpXBTyddoQzGaH6NkkV8gpKEj0yREGBS65kCP0heHp+QOW9rXccs/9rF67mRTjqVRWeG9Wezz9HKxuQyaTER6mQqcdOnDMt6JpypS4Ie12vmKVIIwBHKxuo7e3n4hINUajlqKiRuQKOWFhIVitLrZsqRc7TRYvHjRq/7nkCJIwJSEh8YMj9Iv73hEPRkhiIslvvMEFZy1kta2FGruNxXcuZfU/niLMZwqH0IIWWEmlUiuDm8ZmxRITG8o/niymvr6DPXtamDdvjCjs7NvbQmOjU5yilJkZhdMV7ufPJBism0zhfL6mGrO5nYvyL+DEKXk8/v4rFKv2MSXyDI5LMREdFepXMeV0eYasKdDPI1irnS9Gg445c3RDKq1MpnDGj49ly5Z6qqsdRMdo0GpDmD070W/fYJ5XEhISEj8FRxoTAL77zkFS0mKqqt7gjjvuIDU1ld/85jeA1+8pPFpDdrSG7DwjH9e5qN/byvEnm1CqFJjN7VgtTj9BxmDUMWE8Xp++ug4i9Gpxe2SEVxyyWlwcOtRBZ5eH+PgwUlP1TBhvEPfz/fz9dlM9m749hDEqm6XXv8Wzry7l3Y/+zLjjlhCtO5UwnZrZsxI5VOdE3aBArw8+9dj3nIFtdoEYjDqx6spqcRIZMRgTxk+IBfo5eNCBXA6REWrReN23nTCYD5aEhITEj83RxAOAxMTT0Wg+pLmtiXe3l6NRKpErFKTmTQYGW9AsFpdfJZVKpRhikG40apkzNwWLxcU/niymrr6Dsj025s9PE4WdvXtbaPLNEcZG43T1+PkzCQbrJpOezz+vxlzTzsJ5v6dg+mReffdFwnW7yYhfROpoE9FRGr+KKadr6M2KwCqpYK12w12H0B4oHD9hvJstWxuornYQExOKTqti1uxEv32H87z6sZGEKQkJiR8coV8cDm+eqRmThuqOx3nugWu5+OABSisr+d2Df2H5A39BoVCI+wX6NwkCE4CtuXOIyGM2t/v5MgnotErkCsjJiSYhUUeKSU9JqQWHw9tPLQhTvn5MCQk6UlIiSEjQcdqE+WQkjua+Zf/gK8vb5BVcwQlTZ2EyhYtVWN1uT9A1+1ZJbdpUz46SJpwdHrKyYod4RAkEHmc06IiIbKfH00dPdy/TpsYxb57XYNf3PRnOAF1CQkLix+ZoYoK3reP3lJUp+Pe/X+XSSy8lOTmZ/Px8cR9hop8hVc+hnTZUcgXVPp5KwvhvQejx9WSakT8YD7RaJQqFt4VPqEhyOLrZXmwBEMUgXz+mmQUJuLt6cDi60YdH8de7X+Pzr17l9Xf+ydgxVdxwwcPERntjxt59rRw86KC8rJms7NghvlPCOdevr2Hbd03U1TlFX6vhpuYFekMJ4lqvp49Yg5bZsxJF03Vp8p6EhMTPjaOJBwBnn51HZ+eTvPnm/1FRe4iP9eEolWvQ6MKIz/AObAn0b/L1afLLEQbEGLPZ4efLJKDTetsBs3NiSEgMIyUlIEcYEKZ8/ZgS4nWYUvQkJoQxb95C0lLG8MSLj1J68BWmz7yWgqkFmEx6sQqru7s36Jp9q6Q2FdaxY4cFp7OHrOyYIR5RAoHHGY1aIiLV9PT00d3dy9SpccyfnwYQ1Lvqp+aIhan6+noSEhIOv6OEhIREAIF+IR98sI+VKytYuDAj6NSv4y+aQ0f6Gzx30UVcerCKNVu2cMfzz/O3a68V9wkUbnzvNq9fXzPET8lkCueUU0aL+wlT8JwuD329EGvQMW/eGIqKG3E4egb6ysODVjKNn2AgIlIjCkznLZjC5PH/4OannuLR955n7Zbt3LrkMtrsvVitLmrMDvLzh64ZBsUqtVqOXq8iJkYjrtf3UaCw8BCbNzeQkxNN7MB1m0zhhIepcDi6abUPGvdKU5YkJCR+jhxNTBDaOHp7j8ftbubjjz/m7LPPZtu2baSmpgKwZ4+NzZvrmTrR24bQ2tAxJCb4+imZTOGc6hMPiou88cDl8tDbC2qVkvx8b4K0fn0N3snfMqwWJzt3NQP9YgWVt3opxU9gSh19M/GGbJ555Q7u+MsSTp9zO+ecMRd3Vw+VFa2E6ZSiQBYoFFktTtSaEGJiNCgUMszmdgxGXdDP88LCQ2wubGBGfjwZ6VF+HlU7Siz09fZjl2KChITEz5ijzRG8MeECzj8/kblz57JlTzkxYVpC/vMR+YsvJDohaYhw41tB5JcjDAhTJpOeU05JEfcTpuA5XT309vZjMGiZPz+NoqJG702IAe+pYJVM3hxBLQpMi86ZwaS8l7nrrw/zz1cfY8PGbfzxkt/TavdgtXZSU+MgPz8xqNgkiFVqtSIgRxjqOwVQWFjH5sJ6snNiMBi8120y6QkPC8HhUATEg+Dn+Ck5YmEqJyeHZ599lt/+9rc/5HokJCSOQQL7w1eurGDjxkMAw46jDzt+OgteeJ5HL/8dNxyq5YUPVzIuLY1LFiwAhn7B9q0kSjHpqa9zkiIYFo5QXdXt9lBd3UZfX58o8gjnNRp0QUUu38l3Als2WTg1YyFRyiQ+LF7Jza+Zefj3N5CbZxB7tn3PHTh1LyEhXEyYAq9HwGIdGAle34HN1knK6AgqKlrIyzWSlhZJRISavFyjKF7NmBFPfn4SFqtTFOKEdfu2KUpISEj8mPw3MUGhUPDOO+9wwgknUFxczNlnn01hYSFhYWHk5HgTgpycGJo3N+G0u0mfPGqw9S5FT12dE1PK0C/gvuKQyRROWbmNNZ8fxN3tIT8/iQnjY4mMUGMyhWM2t7NjexP9/RAZoRHPLzyaze1idVZfdzp/vORl3l15H+9+dDNq7bWcPe/3wKCvk/CZrNUqRXHMbG7H5ezh+OMTxNcVXiNwSt9nn1VRX+c1te3s7GXH9ibGpEdhSg4nOzuaMJ2SyEg1r7yyk5gYDTMLEpk8JQ6rxUlxUSNarRKXy+M3KVBCQkLix+S/iQcAs2fP5rXXXuPiiy/mP1uLiQsPI+TjDzjh4iuGiC6+lUQpKXrq6zpISRk0NR+uuqq7u5eaGgf9/f2iyCOc12jUBhW5fCffCWzZ3MysSZcQHmpiw+b3efjZg9xx3W0BOcLguQOn7iXEh5GVFRP0egQsFheffVpFXX0HDY1ORo3SMmniKMZPMJA2JpKISCFH8IpXwtQ/i8VFUVEjOm3IkBbFH5sjFqYeeughrrrqKj788ENefPFFoqOjf8h1SUhIHMMsXJiB09nD6NF6amraRCNboR0jJyeGlJQIwufO5ZLH/86Bq6/hlTY7sv4Q1q+vAfoZP8EgfomHQbGovLxZNDFXqb0fcYerrjKbHTQ0dBAWpibZ5O8tlZdrxNnhQaNWYrE6/UQp4Zy15naKi5owpei55dJFLJg9hb998DxXPH4n915xBWPHni++tuCNtX59DQ5HN+ljosTpeYcTinzbEWfPTqTV7sbh6Kak1EJfL+RN9FZ1Pf74d+zcacVm6yQ9I8pvrQDFxU1UVLQwZ04KtuZONm2qJ07Xw9RpCUT8z39dCQkJiaNj1qxE6uo6mDXghQRD4wGATqfjo48+YurUqRgMCaxZc4D4+Bja2rpFcapfraDN1kVvTx+KEDnlZc1sLvTGBLVqMCb4ilHCo8Gow9LkYv++VpzOHqIiNUOEm4mTRuFwuLG3dfn5VwnnVCjgYLWD9vZuZs9K5u8PvM2Xm97i1befYvvOTTz58POkJHtvcvi27gmtIYHrGY7AdsTOTg/9/WCzdeJy9pCZGc2SC7JZsbyMHTuaCNUocXd5xOouYa29vWBvcxMZ0Y6724O5xoEpRY+sux9VjIaoOEmwkpCQ+PE40hwB4KKLLmLPnj08++yz5M1fTOd3a/li2XKmLbwAk0kvikOC0FJeZhNNzFUqrz3I4aqrzGYHDfUdhIWpSE4O9xNu8nKNOJ09aDQKLBaXnyglnLO2tp2iokZSUiK4/qqLOfXk43l+2T+46b4buf26a8nMOt9vjb6ClDB170jEIt92RFNKuBhTzGYHTmcPeXneqq7H//4dpTut2GxdpKdHiWtVKGT09vbTZneLFV+25k42FdYRo+9l2vTk//VPe1iOWJi6+uqrmT9/PldccQXZ2dm8/PLLnHnmmT/k2iQkJI5RFi0aS2hoCJs317Nnj00MMEI7BiA+F7V4MXc2NHDGU08TWWfjP44m7HY3JSVW0tIicA0YiwuiTkmpRTQoDKyqCta+kJdrpOpA28CIVW9JbW9vHwsWpIqG4U6Xh317W0QRbNfOZhwON3FxWkymcEp2WOjs9K7D6fIwa2omZ8x9jgdff527XnyRdd99xwu33kaCwTu6VZjopNerGD8h9ogrl3zbEQWBy2xup9nqZM+eFtzdHr7+qpaoaDWJiWHo9aohRukAFRUtOBzd7NrZTEmJhf37W0mO6iUxUc+Yo/lDSkhISHwPmEwRzJqVhMk0KI0HiwcASUlJFBYWsnu3h23bmli9up7KSjtnnplOdnYMzc5u9B7w9PSiCJFTepiY4CssAczIj8fW0oler6K01EJjY+dgTMiOZc4cHcUDd9QjI7zH7Nw1EBPitSTEh1FX56Srq5dDdU4MBh1XXHQdp809hRvv+D/OWHwS997+MIvOWoJMJvOLB4FeUyO/Z4PtiAajbsAEXYNWq2TvvlZ2lFg4UNVKWXkLcaO0REZqcDi6/WKCUDFlb+uiuLiJ6hpvLKyrc5JoCEUbpyVn0qj/9c8rISEhccQcTY4A8OCDD/KHP/yB8vJ+/rO1k7SODaxe9hGRGdNwOgdyhAFRxz9H8K+qCtbSlpdrpKqqja5ODzZbJ9XVDvp6a1mwIE00DHe6eti7t0UUwXbttOJodxMfp8Nk0lNSYqGzsxfox+nqYeaMCSw47Q0ee+Y5Hvj7E3xVWMjf7r2b2JhB76ijEaQEAtsRhSqwyspWmhqddPvkCEmJ4QM5wqBRulAx1WZ3s3dvC212tzdHqGglLhYSkiKP5s/4X3FU5uepqal8+eWXPPPMMyxcuJCsrCyUSv9TbN++/XtdoISExLGJb+vFSM8BGK+7jnENjbR9/DEnTNTyfpuK6loXvb29KBQKUlMHg4lQ4ST0YYN/W5xvtRLAlMlxXPmHUMzmdnRaJatWHaSuvoO162rEvnHhS3y328Nby8pobe0iIkLNSSebMBp0FBQkoAtTolErxcqkKZPj+NPCi0iOGMNj77/AtN9dwQX5S/jdOacOaRc8UoIZnxsNOl55ZSdVVXb6KsHt9pCTE8sNN04e1mhduGPeZu9CoZBjMoWTm+a98y4hISHxY3M08QC830fl8jYUCgXvv7+XQ4cOUlc3itRUPfUtnYSFquly9qDWhohtfDPy4/1a7wQxp7ioEXtbF40N3hHa+flJfn5NdXXemLBuXY1ooC58hru7PSxbVkarvYsIvZqTTzaJk+5KSy2oNUrxrvnkKVN449nPeOBvd3LrPdfx1rsfcufND5M62juW/Gjb6QIFLN/fNxXWs2N7E319/bjdveTkxLJkSWZQo3XwtgVaLS7Cw1XERCuYkR+PrLufjPTII16PhISExPfF0cQEbx7gjQmW+adR+K9yRmsPcKgimm65gbS0QRFLqHDyyxF82uIsFpd/jjAljitjQzGbHei0IaxaVTWQI1T75AjeHKS7u5e3lu2h1d6FfiAeGI1aCvIT0elC0GgUYjyYMiWOqy75I3GxY3nhzX8y55wl3Px/NzFv7gkARyVIBbsO4XeATz6p5EBVG32V3ngwLidmIEcIbrQuTDNss7uRK+SYTHqyM7xi1g/NUU/lq6mpYeXKlURFRXH22WcPEaYkJCQkjoSUlAi/Ox7DPQfekeDxDz1IT1MTTV9/wr+bLIwelUG65gIa6p2iuTgwpMIpUPgJvDsNQwWfklILVmun2Dd+wZJsjAYdy1eUUVffQUy0hkmTBpMTobLK18tKeC1dbwIvXPcw97/5HC+ue4Wd5l3867E7mTI5zm9dwUzWD4dwTG9vL/oIFUaDjr6+fmbMiB9yTWvWHGDjxjpmz05k3rwx3qkkOxykpIRTMDORaGU3Mq/Dr4SEhMSPytHEA9/t8fGhPPvs7ZjNnzBhwkfs3t3MgboOjktX42juIsKgRa1SEhenE9v4fBFa2uLihbvTwf2cSgdigmCgvuSCbAxGHSuWD8SEGA2TJvvEhOzYIVP3AGzN/czJvwmVPIsNm//JVTedydN/e5ZZ+Sf5rau8rNlviuCRIhzX6xmICUYdfb39oignXNOa1QfY+E2dOLHPYNT5CXj5+UnYm5wkJEg3KyQkJH58/tuYkJpawg2FKxkTE8l5U8MosWpEc3FgSIVToPhjNjv8zM1hqODjzRFcgznCBVkYjVqWLy8fiAehTJ40SjxeqKzy9bISXitUmco5c27l82+W8cAT91NRfS63XX8tYTr/dQUzWT8cwjEeTx8RYo7Qx4z8BL9rWr26im821jFrdiLz56dhNGq9OUKJhdGjwykoSCJM3Y1CGXJEr/u/cFSq0ssvv8zNN9/M3Llz2bNnD4aBthQJCQmJHxqZQkHSc8+iOOVUHNUHKT64gxRjMjPTTxaNAwVGat07XLWSIDKtWXOAxgYnUZFqcZvwOnm5RmJiQ4f4W9maO6moaEGnVWI06NBplcgVYGv0cELCQpJ0Y/jywGqOv+J3PH3TzZw6fbp47pJSC6UlVpwdHpwDniaHq6YSjklPj2LRorEjHrNxYx0HDtgBmDdvDCWlFiorW9GFGTAadHhau0d8LQkJCYmfGwqFgr6+djweN7fd9jsefvg9mBkPTd04W7uAI48Hw1UrCSLTmtUHaGh0EukTE0QT8xR9UOGreSAmaLXebfY2b7vftEmn4HEnYba8zqX/t5jfLLyIpTc/QHiYdz2lpRZKSqx0OD1HZU4uHJeeEcV5AzEh2HEbv/GJB/O9DdzmGgdWqwtzzeCNHgkJCYlfEh6Phw6ng+2OVhL0Go4fbyA3N9dvn5Fa9wLNzQMRRKbVq6tobHD5xYOhOYK/v5U3R2hFpw3BaNSi04agUMiIiowgN/1Cpk2q4OPV77Fx82YevvtO8qdNFc8t5gjOniM2KBdzhIxIFi06bthjvtlYx4EqOwDz56eJx1ZW2NHpDBiNWlxtP06OcMTC1Lx589i2bRvPPPMMl1xyyQ+5JgkJCYmgKEJDWfjxR9yXX8Cd+/excusn5I0dAySIU4cKZiYGnWgnMNI234qnVrubvr5+WgdGq1qsTpwur3Fs4GQ/we9JaAOEwcqtvl5vv3ljo5PJOdO59f9O5+ann+K8pXdw0bx5/PX/riYyLEwMaEI7oNd8MPj0PGGdUZFqDAYt2dnRQyqwAicRzp7tvVskPPoGUAkJCYlfIgqFguXLlzNu3CTq6g7yxBPXs2NHIW8u3cqe0mbKmzrESXTBOJyfk2/Fk93upq+3H7vd7ff8kguyRc8p4ZzCsb4xISMjmsYGJ5mZ0ZS0WOnz6Jk99R5OnlXE2+8/wcbCDTxy75PMyj9JFLyEVkDBnDyY0CSsRatVotaEkJ4RRUF+gl+lle96DUYdswdM5mf7mM0Lr5krxQQJCYlfKHPmzOHJJ5/kuuuu4z879xIXEU5Gcx6vvFLnzREKkoJOtBMYaZtvxZN9IEewCzmCxYXT1ePNEQIm+xmNWiwWl9gGCIOVW729/dTXuXC5eklLncqbz5zKvY8+wiVX/4kLFgrVU7rBHGGgHdDXoDzYdD6z2UFkpBqDIZTs7Bim+MTAwCmEswbyAuERfroc4YiFqd7eXnbu3ElSUtLhd5aQkJD4gVDGxHDT6lWUHz+Dt60WHv33C/R36qjc3YteryLZpD8q3yZffKfXBX4ojzTZT9iuUMhJTAjzGf3q3RYTo6a42EJYmJKiTe2cn3cpJ0zYy0ur3+XLoiKxeiorK1Zsz3M43FQesIvT83yvSViLXAFxcTpx+uBw12I06Jg3bwyTJsdhNrdjsTrFyjAJCQmJXzKRkZEsW/ZvzjrrZMrKirnxxhsZozwPt6uH3dtaMSXrj8q7yRff6X2+wo3v8wbj0HggHCvEhNxcI7GxoeI+OTnR2Fo60elC8PQczz03L+fTdY/7VU9lZWeLrXkOh5vGBmdQgSpwwt7EvKHtf4HrnTd/DPPmjxE9tkymcLEyTEJCQuKXzLXXXkthYRErVizjnS0lxER+RmnTZML1oSQnH713k4DvpL2hOcLwk/2E7fIhOYJ3W0yMhu3bLejCQij+zsWC2ddw/OQSVny0jK8LN/Pw3UspmD6NrOwYsT3P0S7kCK2iGBa4ToVCxqg4nTh9MNh1GI1a5s9PY/78NCwWF0VFjZhMerEy7MfmiIWptWvX/pDrkJCQkDhiNGlp/PPf/2bf6Qv4zuXilQ2vsij7SjLSYoK2awSjsPAQmzc3MGNGPOkZUaL5+dgBnxGjQSf6RnmNEAen8MHQyiuTKZyZsxL9Kpx894k16Phqg5nOzk7SMyJZOOcsfrdoDn964nHOW3oHi+fM5a9//KNYZaXXq+lye8QpSrbmziFm7DqtUmz7ExAqpXyvRSBQrJKQkJA4Fjj55Cn861/LOeOMM3juuee44rxYxkfNJjsr+uhiQmEDOTnRGAZuPgS2+sUOtHC7uz0oFIgtesEqr0ymcGYNxARf03UAg0FHTnYsnV0e7K1dxEQnsOyF91jxwVv89fF72LjpS+6+9SFiIybTOxAPTMl67G1dXm+U2nbcXT1+RuzChL3A67VanGILYeC2QMFKQkJC4peOTCbjjTde4uDBfWzdupW3Nn7F+bOTiUydFLR9LxiFhXVsLqwnOycGg8ErNAW2+Qm+UevX1fhN4YOhlVcmk55Zs/xbBH33MRi0bNhgpqurl/T0SBYu/A0XLzmNO/7yEJdecx3nnXkGt15/rVhlpQ9X09XVO5AjOAJyBP8pe77XbLG4aLP7r1UgULD6KZCcyyUkJH6RRJ54Ak8v/Qvn3Hcbtc0N7G75lrPO+P2wbW+BLXGbNzdQUtJEdXUbJ59swmLtRCGXeSf8BYg5O3Y00d+POIUvGCO1CIJ3op/b3cvo0XryBu64m0zhPHTJLSRpP+WjLR/z+ZbN3PSbS8g/roDU0RFUVijYvLmBZquTr/e0iCXAghl7MATxaWzm0PY+3yTrvzFbl5CQkPi5cvrpp3P99bfx1FOP8vYnj3H/kjzSTaOHbX0LbItbs6aafftaqK11MHVqPPY298CWfkwMVsb6Vie5XJ5h1zNSm6C720Njo5OcnGgm5hnRapVsL24iJeFkrr40ia+3vsDVN19O/rST+O3CW5kwPoXm5k52lDhQq+WUlTVjs3k9tAQj9uEwm9vFFsJg4pnw+N8arktISEj83FCr1fzjH68xf/5s6u02dh9Yz+Vz8odtewtsidtcWM+OEgtl5TbGjTMwYbx78CDT4I9ms4PtAzmCMIUvGCO1CIJ3ol93d59PjuDAZIrkjmvv49V33mfNlx+wbuNG/njplUzILMDj6cfp7MFoDPWbFgiDZuzBMJsdNDR640HgPr7C239jtv59IAlTEhISv1haJp7DjVO/ZdOe9dwwcVzQO+PDVQnNmBFPdXUbnt5+bLYuFHIZe/faaGzsICJSI+5rMoUzceIooH/I+Y9U3Ckvb+azz6potbvRaJQUFTVSVm5j2tR4utwedK4x3LPwTnbaNnLva88zaeyX/OOGG6kxe7BaXezZg1+b4HBim7Be38fhEEwRAUmYkpCQOCaYO/f3fPllKaeedA5h7gj0ocNP4gP/KqGwMCUhIXJiYjRkZkZjrnWwbWsDOl0IkREav5a9YNVJRyPsFBc1sWu3lTaHm3nzRvPVV7UoFDJ6e/uxWhWcc+p9XHHJ5dz3yB3cfO+5XHvljURoTqayog2DQYtOq0KjVorthcOJbXDkMUEwTgckYUpCQuIXT0uLhjPOuJeDlauYmyin37obGOO3z3BVQjPyEzhY3Ybb3Utfbx+OdjdbtzYSpgshIlIt7msy6Zk0cZT4sy9HKu6Ul9n47NMqWu1daNQKioobKSuzMW1aHF1dvaj6crjmkknsN3/OI08/zqQJXzAj73ya6jTodAacrh6/NsHhxDbfNR6ucswvR5CEKQkJCYnDk5MTA0v/xjnvPED/jg3oZ2SBYazfPsN9Kc/P9/rlbd7cQHZ2NJ2dvTQ2dhAXF4ZOq2T9+hqgn4SEsAGDwaEiUKC4E6w90GQKp6TUQntHD0qFDIVChtncjsPRjc3WRUFBAuDtU78yaxoXnjaPG//xD0685mrOyZ/DjLEnM35sPCq1UlxDoPG6L0LllsXqpKi40W/dI3loSUhISPzSGT/ewCOPPEtWVjRr/r4Dmad/yD7DxYQzz0gnOlpLTIzGa3be5kanCyEiQo251oG9rYuE+DAAYmNDhwhAwYQdoT1wRn48GemDMQHA4+mjze5mc2EDdfUdJCaEMSM/HnONY0DcyiZ/+iz++eLjPPXCY8QZV3DSjCs5fsY8NOqQoD5TMLQlz3efwO3DeWhJSEhI/NLJyYnhggtOJyfnEvZ9voyyjV/SbisgPGZQeB9OqMnP9xqBby6sZ0Z+Ap0uD2G6EOLiw9BpQ1i/rgbAJ0cYKgIFijtCe+CM/ATS06NE8cibI3SjUMiQK+T+OUL+4MCiK6+YzqIzT+feRx/j+bfvY1ruyZybdsWQNsFA43VfhMotXz8pYZ+RPLR+LCRhSkJC4hdLSkoEKSkR9J70PNWLzsP26qt8kJ3NufPnkzzKewdDEGrKy5tZv77Gr7pJpVYSFq6ixuwgL9fIvPlpmEzhfu17Bw86qKlpQ6MJYeHC9IERsN7kIvCDe/PmBvbsaRbPHSgCpZj0qNRKmq1ONHuUZGdHDzEhP37cODa+8AIvfvQhf3vrLdZu38RNF/yWqxctIlStxmJ10mb397sKRrBKMd+ETPDQkpCQkDhWEGICgD42lANVlRTXfc5Fiy8X9zEYdTQ3d7J+fY1fdVNWdiwul4fi4iZx2/z5adjbutix3UJ/P1iTXTgcPRQW1hGqDaEgP0H0nTKleBMbX2Fnc+FgTFCrlOKX/rlzUwjVhhAToyFU4zWmnZEfT35+Evn5g9ej04Zx+433cs4Z5/OXv93FWx8spdK8iqU334/B6G3VHslDSmA44SrQQ0uqlJKQkDhW8I0HhiWXsGfjBh577DGuufkWRhkMwKBQU15mG8wRBiqEVCqFN0eoEXKEVEwmvV/73sHqNmqq29CEhrDw3IyBHMErOA3JEQrr2b3HJp47UARKSdGjUimwWl1o1AqyBwzIfSuWjp8ymU/ffYvX31nOc6+/wR9v28I1V1zOxb85H7VKNaKHlC/BKsWCeWj92EjClISExC8ehU5H8isvc/306bxQXMTKrVtY89TTaFQqcZ9grWsmUzgVFS04HN04XR4/Tyahfa++voP6+g5kchklpRYyMqJFwWfK5Dg/cWfGjHjxcSQRqKi4kbg4t980vcD2vGvPO58LTjmVv739Fg+98TqvffoJ91zxe1IjsmlsdDI2M3pET6tgVQGH88GSkJCQOFbo03Rw26OX0Ol2EmeMZ+6J88Rtw7Wt+cYEl8vD5ClxWC1OQAb0ExqqZHNhAzVmB72ePsJ0SjIyotm7t4XMzGiWXJDtt4YZ+fHi43AiUHGRNx6oVf5fyX3b8zIzsnn7pQ/4cuNaHnnyPs66YC4Lz1zMTdcupb5WPqyHlO91+T4KjOSDJSEhIXGsoNVHsLnFyXvrvmZPfRMrXnuFEOXgZ26w1jWTSU9FRetAjtDDlCmDOcKkiaNwtLuprW3Hau0EOgdyhChR8JkyJc5P3JmRnyA+jiQCFRU1Miquy2+aXmB73lWXXcJ5Z53BUy+9wmPPPMc773/ALddejSEie1gPKV+CVYodzgfrx0ASpiQkJI4JVElJXPf88yxfuJDt+/dzy9NP8cwtfxa3D1eW6hVrtEMEnDlzvF/W16+vISEhDI0mhLxcIzE+I78D8d7tTqKw8BAvv7TTb6oTeL2m1q6roauzh4yM4BPz2uxuIiLbabY62bOnhbNnnMOVZ5/DvS+/xJUP/5WMJBMXnHAOeZr8Ia16Q69LSjgkJCR+nYwdl8bxY09lw84PuenOq/nonbWkjfb6iwRrWxOEoNxco59/lME4GA+KixoJD1eRkR5JqDaE3FwjsYeJCQAbNtRy4ICdeaelikKQ4EklV8hobHSSmhY4Iclb5WRvc1NfX43Z7OCkk7JZ9d7XrFj5Fk89/zc+Xf0hZ81fwtS832Bv02K1OIMKTZIAJSEh8Wvn3kf/zqfrJlNatpeHn3yae/58k7gtMEcQhKC8XOOQyXZGo5Y5c1MoKmrEYukkOycGrTYwRxharZSfn0h+fiKFhXW8/LKQIwzuV15mY+26arq6PGRkRPltEyqcvDmCGqvVRdkeG/NmX8glvzmfR59+huvvuIuMtDGcecr5hGoKhrTq+fJzEKGCIQlTEhISv2hqatrYs8dGTk4MWWedxau33ML5jz7KstWrmZqVzaWnnz7ssWZz+7DVR4KxeYpJz9nnZPgJQMLjSBP/ysptNDR0kJUdK24rKbVQUmJBBiQPBBxBXBKSmjZ7F/v2trBnTzONjU4Abs6fyjv3P8CaTcU89vZbPPDO0yxbt5I5WaewZN4c0VNqOEN0CQkJiV8LQkyI0cg5e9pVtPbWUrKniKtvuoyVb69Bqx2sViottQDeqilBCMrMjGbylLgh5y0va2ZHiQWDMZSZBYl+Qo/BqMNqcVJc1DjEgHxzYQNlZd54kJ0VK24TqrbkChl9vf2UlbWgVinF44WYYG/rYuvWelpb3WjUSvLzk7j4N79j5rQFvLLsZf6zdhkfrVrO5PFncPlvr+bUU/OAkQ3RJSQkJH4N+OYIOePHc/9N13Hbo4+z7F//Jm98DmfNOy3ocYIQlJkZ7VcpJVBeZqOkxILRGEpBQZKfyCP8PNLEv7IyGw31HWRlxYjbSgZiggxITh7IEQbEJUGkarO72bu3hbI9NhqEHOGWqbz85ON88eUWnnvtNZ548RHe/2w0x088nXMWzBE9pYYzRP85IQlTEhISv2j27LGxeXM94O0nX/TII9y6ZQuPfv01tzz9FBPHjmVCevqwrXy+j7747n/BEv/2DEG00qiV4rhwXzEoJyeahsYOMtIj/c6dl2uk1uygo8NDiknv5wM1ZXKcKDBFRLYTE6Nmz54WsT0QIFaTyOKJl3Ny5iE2Vq7n1a9e54uy1Vxz3iJy4iZyqLpryFokJCQkfk0IMWHKBANKRQhL//g419x/PvsP7OXuh27l7w8+g0wmG9LOd7jpdaWlFiorWgnTGYYIPeVlzaxadRCFQsasWUl+23Nyomls7CA9IB7k5hrpcHro9fSiUCqIidH4+UAJ/1ktTurrnZjNDrE1EKDFBilxZ3HD7+dRXf8FKz97nWtu/5TTN5zN5RdehacrflhDdAkJCYlfA4E5wo33PciXa1bzeWkZdz30CNljjyM9NXVIK9/hpteVlFqorLCj0xmGCD3CND6NRoHTOZAj+OyTnRNDQ6NzICYMnj8v10htrYOOjh5SUvR+PlBTpsSJAlNEpJqYGA1le2xieyBAtH4082ddw/Tcaop2reLfnz3L5u0f87uLlpCaMJnq6s4ha/m5IQlTEhISv2hycmL8HgEe+uILtqak8FVjIxfffRcbX37Fr0zXYnWya2czDocbvV4FQRKRkSZSCAEsPT2KvInGIYlMrEHHxLxRQyqxsrJicbo87NvbIk7Zg+F9oObN8x9rK/ifQCIPXXYrMp2d51Z+wF0vvoBapeK0ySeQknUG4H93R6im6nZ7RKN3yfhcQkLiWESIBdnZ0bQWWZG7NDz96EtceOVCPvzs30yddDxLFl0stvGZUvQUFzXi7vZgrnGg1SqDCjkjTa0rLbWIk/WG+DgZdOTljRriASWYrQt35YXBG8F8oC6+OGfIaw76YfVz5qlXcMv11/PeR+/wxjsv88mqD5iQPZkTC85n9qhz/I4TKqmE6/U1gJeQkJA4lgjMEUI0Gu66YylV199ARVMz1962lJVvvuafI1hc7NppxdHups3uZvyEoeLTEeUIGZHk5RmHiFsGg5a8POMQH6is7Bicrh727m1BpVIc1gdq/vw0v/MKnlgwmjuuux+5ysoby1fw4ONPEqrRcMKMuRyXdS5DcoSBaqru7l7R6P2nMD4HkPX39w+dpfsrxuFwEBERQVtbG3r98G72EhISP2+aKiuZNG4clu5u3r7rbhaceKK4rai4ka82mLHZOomODuWkk01+xue+bXxNTZ3YbJ0UFCSIYo6wfTiBRxCCdFolzgGvEkFsEnymAKZMHkVnZy/Q7w18R1DpFKxl75M1O3lh5cfsbPgOh6uDiWPHcuGpp7HopJOIiYhg/foaduxoorm5E4vVRV6ekev+NDng/aqjvt6F6dLzGZ0adVTv9bH6uXmsXpeExK+FDW+Xc2C7lVlLjuPVd57lsacf5PgpBbzzyofIZDLA6xu1d28LjY1OrFYXeXmGISbm5WXNbCqsJyZGw6hR2iGCjuAXFUzkEYQgrVYpelcJApXV4mTN54J/VDIZ6VHs3NUM9DNh/NDKrECCtet9+20Ny//9EQfrV7O3opiwsHDOPO1cFp71GyblTuXLL83s2N6Eu7uPpkYnYeEhXHxRtt+6rRYnlWUt5M5MIGfSqKN+34/Fz85j8ZokJH6NdHd18vfLlvDYf9bjdHfz6lNPkD9tqri9qKiRDRvM2GxdREdrOPlkk187n1ARlZKip6nJ5c0R8hNFMUfYPpzAIwhBOm2I6F8liE2CzxR4q6Q6B7oygoljwQjWsvfJZyUsW/EeFeatOF0d5I0fx8LTF3D6qXOJ0OtZv66G7TuasDV3DeQIBq67zj9HMFc10tDYScFZ88VJh0fK0Xx2ShVTEhISxySj0tNZ8dpr1N1zD1N37aJv1izkCu+EC5MpnIkTR4kVUzqt0s9IXLjbUV/npNnmwtHWjS5MKYpQWVmxI1YcCVVPRcWN7NvbQq25nS53z4CJooeGhg4cbd30dPfhcvXg6uwBEA12RyKYqXnFHjcG92QuzClg/Kw+PtvyFbc9+wy3PfsMBRMmkGHIQutOBjTIfI7zFbnq6p0cONBGxx7bUQtTEhISEj9HsvLjKfu2gdryFq66/E9ERUaz8KzfiKIUDFaspqbpRcEpUPApLbWwY0cTer2K2BgtVqvLe/4BMScrO3bYqiOhJU8QwOxtbmBQfLI0uThQaUejVqJWKSksrMPlOrKYEMzUfOsWC53tx1EwcRpXXy5nx57PWbN+Jcs/WEb8qAQy0wvQqXOZmDsNp7ObjvYeSkstZGXHitdtb+vCeqgDbZz2vxKmJCQkJH6uqDShnLhoMQ02G1NPP9tPlAJv5ZEwdU8frkanDfEzEh/METpotnXS1taNThciilBZ2TEjVhwJVU9FAzGhtradri6PaLTe0OCkTcgROj2D8WBuymGvLZipecXeHrTyAuYdP4eJ07tYt3Ed9/3t7zzw2ONMnzyJ5PjxyHtTGJIj+Ihc9XXtHKjqIHKP7aiFqaPhmBKmRo8eTU1Njd9zDz/8MLfffvtPtCIJCYmfklm//S12lYqGu+7G8dFHRC5aBPhP3QNEAUnYlpdrxNnhQa2WYzSG4nb3iS2AIxmMB1ZSCQlPyQ4LlZWtAMyZk8K0qQnYbJ1kZ0dTVtZCQ0MH+ISDYK8zUhXWjBnx2Gyd6PUqMuNGc9Ff5mJpaeHTTd/y2aZNLPvyPXp6PcRHGRltSGWsbhLl1dG0WUI4UOEAIDlBhwwZppyfpnz3+0aKBxISEnFpkSSNjaJqu5VRqREsWXTxkH18xZ38fO9zgogkbM/NNQ6MBIeMjEjsdp3YAjicuXhgFZWvmfmO7Rb6+yEyQiP6Rs3Ij8dkCic+PswvJgxnYj5cJZZwPuOoUNpa5Sw4+Q/cectdbC0q5Isv/8Pn61fTaHmPtZs0ZKbnERuVRb9iFi2tozCbvW0kcfE6UlIiyEiP/N//CD8TpJggISEhMOWMcyle9THK5ib6+/v9blYIU/cEinzigdGo9eYIzh7UagXGUVrc7l6xBXAkg/HASiqhRa+kxOtXBQM5wrT4gRwhZmBwhtPvPMFeZ6QqrBn5CdhsXej1KtJTslny1AIszc18/uVXrPvqa9777E16e3sZZYgjcVQGcvUUKqqisVlDqBzIERISw5EplH62KT8Ex5QwBfDAAw9w5ZVXir+Hhwc3sZSQkPh1EHneeXTu2cPWN97kic/XsOyxvxMT4a/2m0zhtNndtNm7sFidfl5QYzOjxTa/QAFLQBCNSnZYKCu3UV/nJCY2VKxu0mmV6MKU5OUaMRp0nHtuhnhsekbUEF8RX1N04XWE5+QK6OvFb1t+ftKQ8xijo7nizLO44syzWPtlBStWfUO32sLB5ioeevcFHnynnxCFkiRDPBm7kkg1RnPqpMnM+gHvhPzYSPFAQkJizmVZ/Ouh79j8QSU5JySSkB5JT08Pjz/zMKOMo7j8wquGHGMyhWNvc3srhyxOPz8og0HHvPljhohXvlgtTlatOkhNjYO6OiexsaF+ZuZe0alfFJPy85PEY88+a4zfZ7kwLTDwdYTnFQroHYgJwrny85P8BC25XM6MaTOZMW0mc2ddzaf/2YRSU4XFVs532z9k/bevc+dDEB0VS/yoNEabTCQYEzj57Hu/x7/ET48UEyQkJABUoVomzjuTbR+9h72xgTq7g8f++SzP/O1hwsPC/PY1mfQDOYIbi8Xl5wXlO7UvUMASEESjkhILZWU26us6vDnCQHWTThuCThfizRGMWv8cIT1KFKEEfE3RhdcRnlMoZPT29vtty89PHHIeY2wsFy8+j4sXn8fadfv58JOv6FM2cKihgqde+Qf/eLkfpVJJwqhE0lJMJMXHcvLMgh+0WgqOQWEqPDycuLihYx2Hw+1243a7xd8dDscPsSwJCYkfAd+xsL4fnsalS1n6j39Qbrdz5X338v7jTyCXywe3G3RERHqFn4jIdowG76ju2gGxSadVihVQgc8BfL6mmq1b6xkzJorEhDAUChlmc7soHMXEhpKREU1MbOiQNQdrzQtmii787FsxdbjzgFc027Cugd7mOPLGj+eth27H3tFBWVUVZdUH2XPwINUNDWwoLSUhOoZzj+od/3kjxQMJiV8vvvFg0a2TWfvqHkq+MFO/r5Xa3u289MY/USqV5I6bxKRc/1YOg1FHZIRX+ImMaMdg1OHu9tDY6CQ1TTCkDcdc286OEgtardKvlW/N59WU77WhVsvFeCCISgajjgnjvcJSMALb84abFij87lsxNdJ5wCuY/ec/B2ms0zN+/Ck8eM9S+vr6OFhzgH2V5eyv3Etl1T7qGg6yo3QLDz/64BG/378EjiYmSPFAQuLYIjBHmHbWInas/pS9hd9w77srqaqp4bb7/8Kzf3tkSAVVRKSavXtbiIhUYzRqMZn01Na2U1JiQaf1tvF1d/fS1OgkLc1fvPn882q2bhnMEeQKOWazQxSOvDlCVPAcIUhrXjBTdOFn34qpw50HvKLZhvVNONuSmTB+Ii88MZU2h4O9FZXsP1DF/soD1NbXs+m7IkyJiUfzdv9XHHPC1COPPMJf/vIXTCYTv/3tb7nxxhtRKoe/zIcffpj777//R1yhhITED0XgWFiBLduamLvor1S9di3rdu7k8WXL+PNll4nbLVYnbXY3cXHawYojg44udw+Vla3owpTExIZiNrdjs3WKzwnClNnsoNXuxuXq4co/TGDXzmax+spo0LFrp5Xt2y2kp0eSbNIP2wro28Lna8YurCewSsvXFysYFquT9etrUKnlJCSEMWOGt8UjMiyM/AkTyJ8wQdzX09rqF4iPBaR4ICHx68U3HixYkMbCP0+iZN0htn1WRUhPOjMmncLm7Wv5059/z6f/+pLoqMEWBavFib3NTVz8YEww1ziwWl2YaxxkpDsH40FFK2E6f2HKbHbQ2ekhISGSWbOS0GqVfm1/O3dZ2V5sIT0jElOyfth2wOHa+MBfeBL2E54PhtUyEA9UchISw8SWP7lczpjUDMakZrDglLPE/e1NTr8bOMcCRxMTpHggIXFsEZgjeKumzmDrR+9zyvRzebXuGb7Y8DWvv7uC3114gXicxeKize4mPk43WHFk1NLV5aGywo5OF0JMbCibC+upq++gpsZBfv6giCPmCJ09XHnlBHbttIrVV0ajll07rRRvbyIjI5LkZP2wrYC+LXy+ZuzCegKrtHx9sYJhsbjEHCExIYwZ+QkAROj1TJ88iemTJ4n7utrsKJQhR/uWHzXHlDB13XXXMWnSJKKjoyksLOSOO+6goaGBJ554Ythj7rjjDm666Sbxd4fDQXJy8o+xXAkJie+ZwLGwAuvW1bBjXyQLT7qc5V++ykNvLWPqhAmcOMn7oWs2t9PY6GRsZjRGg47CwkNs3txAcnIYuXkG8nKNYitdTEyo2JYncNJJyWg0SlH4sVidOBzdRERqBkQjGW63h7KyFiwDprnBxCSzuZ3i4iYqKlqYMydlxCl9wdr9gu3jcPQwdmz0sOezWJ1s+raejgYrU6fGMWXYV/xlIcUDCYlfN4HxQKFUMHleCv/ZZEZR6+KcvD9Rb62kpvYgNy39P157doUoxJjN7TQ2OMnMjKaispVly8pINoWRl2cgdyAe7B2IB2E6JbkBI8NPOikZjVpJTk40APUNHTQ2eD/7DUYdDkcPLa2dHKpV4HJ6xOcD2bmrmR3bm5g4adSIRujDtfsF7uNw9JA5EA+GE8K+3VSPzdbJlPGxjB4//JCPXxpHGxOkeCAhcWwRLEeYdvZ5bPn4I6K7Wpk3ewmfffk2f3v6GfLG5TAp13vz1mx20NDojQdGo5bCwjo2F9aTbAr3yREcyBVegScvaDxQiMKPxeoayBHUomjU7e715ggWr5dhMDHJbHYM5Ait3u/0I0zpC9buF2wfh6N7MEcIsp9wrdMm6Zk2PSnIWb5ffvbC1O23386jjz464j7l5eVkZmb6BZAJEyagUqm46qqrePjhh1Gr1UGPVavVw26TkJD4ZZGSEhG0/3nugInh3Ln3Qc9+ln/zDVfcew+b3niTuJgYv1aJ8vJmli/fi93uLeG/+WZvi4fF6hT3CTQkT8+IEj1Cioobqa520O7oZvw475f68RNisVidNDW60OtVQ1ouBEymcCoqWmhq9N7FGEmcGq69I9g+3W4P69fXkJdr6VOMYQABAABJREFUpLW1i82bG5gxI578/CTM5na2fVdPv70NrS7kZy1MSfFAQkLiSBkuHsyZl8qXaw6iaw7h1ksf46bHLmJj4Qaef/UfXHOl93PD9/P1n8/sYN++Ftoc0TzwwEyAAZ8ohjUkz0j3xoTioka++aYOp6ub7OzBWKPXhxAdFUpScrhYMRWcfvr7weFwj2i0fjTxwGQKp7m5k/XrazCl6Glq6hwYd56Ay+Vh27Z6HG3d6NUKThzh/f058EPGBCkeSEgcWwSLCapQLYmT5kDRGi6Zs4g+RQOr1q7nuqV38ck7y4iOjPRrnSsvs/Huu+WDOcItAzmCxcWsWQQ1JE9PjxIrqIqKfHKE8UKOYMBiddEo5gj+bXgCJpOeiopWGn1zhGFEp2DtfsPt093dO5gj2LvYXFjPjPwE8vMT2VxYz+49NpT9nZIwBXDzzTdzmU/LTTDS0tKCPj99+nQ8Hg/V1dWMHTv2B1idhITEL4GCgiQKCrwfqBPXrGFrfBJVjlbOv/4WNrz5il+b3Pr1NXh6+4mMVIsVUBDcwylY1ZLJFI4qREGXu5cas4P8fGEKYMqIE/2Ec8yZk8L69TU4HN1+PlXB9h2posp3n+UryigtsQJQdaCNsnIbbW1uVGolOq2SaVMT6GgIIWeE8bY/B6R4ICEh8b8ixIMPHivG7dRy3+2PcMf9N/DEs4+iVqby+8vP9WuTCwtTEhIiJyxs8CtzMP8mGFq5ZDKF09vbh83WhbvLIx4zYbyByAjNsEKTgLCfva1rxIqo4dYz3D7r19dQUmLlQFUbDQ0deHq8ZrmpqRFkZ8fgdvdx3HFRI57v54AUEyQkJP5XFl17OS/+31d4LHv4611L2V5aTmNTPVdcezsfLHvOr01u/foaeoUcYaACCoJ7OAWrWjKZ9KhC5HS5PWLLn9GoHcgRhp/oJ5zDP0dwjLjvSBVVvvssX14+mCNUtVFWZqPN4UalUpA9UF02adLwAtf3yc9emDIYDBgMhv/q2JKSEuRyOUaj8fA7S0hI/CrQarWMm/kXGlZfh8bRQltdHTEmk7hdKMHNyzWKHlLDEXiX2rcFMCFR51fO6ysklZc3D46MzYr185YKFLEE1qw5wMaNdcyenci8eWOO6pp9r8nT009DQwdhYSHi1MFzz83A0xr7s/eYkuKBhITE90ViRiQ7vzrE2b9ZzJtvf8b+g9+wfXs1XO6/35lnpGNK1g9p1wuGb0woLDzE5sIGkk1hJCbq/I73FYnKy5opLbWQm2sUfap8vaUmT4nDanESGdHuF2s2bKjFZApn3mmphxWlAhHW0uPpo6vTgyY0hJgYDY0NTrKzYpk8JQ57k/MwZ/npkWKChITE/4o4oe/j98mYXsDsSZfy/ueP0dbWTWdXFzrtoMDjlyMc5mZuYNWSbwtgQqJ/y5+vkFReZhvMEbJj/LylAkUsgdWrq/hmYx2zZicyf35wMX44/HIETz8N9R2EhanEqYM335KGq81+VOf8b/nZC1NHyubNm9m6dSsnnXQS4eHhbN68mRtvvJGLLrqIqKif/10fCQmJH49LfjcXTff9LG1aiWfFCvpuvBF5iNfULysr9rCClIAgNAmms5s3N7BnTzMw2AIYjJJSi3h3IisrVqy8arO7iYj0Jh8mU7h4XqNBx8aNdRw4YAc4amHK95piYkPJyo4ZdrrfsYAUDyQkJA6HwRROT1cvLoebP1/3AF9+uZv584Z+bmdlx/oZm494TuNgTNiwoZYDlXZgsN0jGKWlFkqEeJAtDNTwVl7Z29yiIOUbEzYXNlBWZqOhoYPsrNijFqaEa7JavEKUaPAecEPkWEGKCRISEiMx7ezzKPliFeXfbuD0+bOBW1gwb7KfKAWQlR1zWEFKQBCazGbvRE+hLQ5Gjgl+OUJ2jFh55c0R1JhMXoN04bxGo5ZvNtZxoMoOcNTClO81xcSGkpUVPex0vx+aY0aYUqvVrFixgvvuuw+3201qaio33nijX0+5hITEr4vA0bACixaNZdGiu2j/Mp9D11yL/V//IvT88wk9jJ9EYKUT+LfzCa1/UdFqHn/8O9HHKRDh7kRnp4elSzeSl2dgbGY0bfYu8VyAX5vg7Nne/nTh8UgRzM1ttk4KChLIyoo9bAvgLx0pHkhISAQSGA/0A6O5XW3dnHRiBiedmCHu29XViUYzdHS3L8EqnWBQVDKZ9GjUSm88+Pt3zMgPHg+E6iXXQDyYPSuRyQNTWX1b+ADx5xn58XS5PaJgdaQIlVjubg/mGge5uUYm+0x3OlqB65eCFBMkJCQCCYwJMxYt4atlrzB94hT++uA5fvt2dXWh0WiGPVdglZOAbzuf0Po3GBMS/Kb3CQzmCD0sveMb8iYayMyMps3uDhoPjEYtswZyg1lHkSMIlVjd3b3U1DjEtR+uBfCH5JgRpiZNmsSWLVt+6mVISEj8jAgcDRtI+Mkno730Uv78yCNUrV3L56+8gipk+HGogZVO4DUWb2x0kpqqJz8/ifz8JB5//DuxcipYIiJUMC1dulGsglq8OAuL1SlWTAkIP8+bN8avUiqYSBaIxeodD15c1ERnpwddmPKIq8F+yUjxQEJCIpDAeBAW5b0R4Xb1+O23rbiQ62+7iofve5ITZ84d9nzBKp3Ky5rZUWIhJkbDzIJEDEYdj//9MPFgoHrJNx7Mmz8Gg1E3pIUPBg3XA881nFAmYLU4RW+S9vYerAMTYo+0GuyXjBQTJCQkAgmMCRPnncmOz/9D+TdfYUwdg0KhoLOri/sefYzaunqWPfdPlMrg0klglZNAd3cvTY1O0tIiyM9PJD8/kcf//p1YORVMmBIqmJbe8Y1YBbV4cSYWi0usmBIQfp4/P82vUmo4ocyXXTutFG9voqenj3ZH95C1/xQcM8KUhISERCDBRsP6UlPTxpeG6axxOmlvs/Pnh//GU/fcOez5fPuwxXOYHVitLtHoHAYrp3zN04MRWAUV6ENVUdGCTqscUuFksTpZubKS2loHzg7PELHJYnXy+ZpqSndaCAtTYUrRow0NGTLC1hebzUV9vQvTxDZGp0qtDRISEscWgfFAExaCXCGju7MXGKwm+uCTlTRZG7nu1j/y7kurGTcuI+j5hEonX++o0lILlRWthOkMYvXRjPx4v8fhmD0r0e8RhnpRVVS0oNUqh1Q2lZc189bbZXS0e0U2X7HJanGy5vNqdpZa0IWpyBwbxbjxsWLFVDCsFieV5S2oYjRExR2bVVQSEhK/bgJjglyh4KTLruSjRx+gYusmotOnsPW7vaxa+yWdXZ08/OTz3P3nPwU9V7D8AKCmxoHV2ikancNg5ZSveXowAqugAn2oKipa0WlDhlQ4WSwuVn5YQa3ZgdPZM0RsslhcfP55NUVFjajVCsaPN6BUykbMEZptXTQ0tqJLaQt6o//7QhKmJCQkjlmGGxcusGePjapqJWedvZR3Prif179ez8nrpnP23OB3yYP5TwULRkLl1OGYN28MkybHYTa3Y7E6/QSowOosX4N0s7mdrq4elEoZMTFD203M5na2bq3HZnOTmqpgyZLMw7bv1dU7OXCgjY49NkmYkpCQOOYIjAcymQy1VklPt1eYElrwzp1/HcUl31FVU8bNd/+RT/+9GlWIasj5gnlPBROrjjgezB/D5IF4YLU4h4hPgRVavgbppaUWOtp7CAsPGSI2DcaDLlJTI5gzJ2Wg4mr4tZjN7dTUtKGN05IzadRh1y4hISHxSyNYjjBm0jTSp82gYutmYnuMtLVqOGPOpbz3nxd481/vMDt/MicUDP3wHM57KniOkBi0UiqQ+fPTBmKCA4vF5SdABVZo+Rqkm80Oujp7UCrlw+QIDrZuqcfW0kXq6AhOO230Ydv36uvaOVDVQeQemyRMSUhISPwQ5OR4P8wjIhbQ1rSDz779hKv//hjjMjMZk3T4RAK8RoEZGdHExAb3I7FYneza2Qz0ExqqpMbs8JvGJ7RWAH7ikRDEoiLVLF9RhkatxOXyAN5WjhNPNAH9jJ8wdCKRyRTO9OkJmM0OTjopeYgoFawNMDFBhwwZpmGqyyQkJCSONTS6EHq7++jr6xfb5bRaJb+/6GH+8viFVFTt5LGnHuTOWx44ovPFDsSD2GHigdXiZOeuwXggVC0JAtfOXVa2F1uYNNnInDn+n9u5uUY6nB56PH2sX18NQGODS9wmPAaKZYHxIJiPVGAboMkUTndHDxnpkUd03RISEhLHCqdceS2v3XAVroObGJVwMjpdPhZbFV9v+YJb7rmfj99ZRkLckQn23hwhavgcweJi106vwBSqVfp5PVksLv8cwTh0OmBkpJrly8vRaBQ4nUKOoB/IERgmR9Az/XifHCFAlArWBpiQGI5MoRy2A+X7QhKmJCQkjjk2bTrE++/vJzExjPPPHzusup+SEoHRaOPAATtX/vlvNDWV811FBZf8+RbWv7kMjWroXfJAfM3PBQHIt7pp104r69bVoNOFEBoaMujrMTCNz+HoQa9XDTGwFaqznv5nMaUlFsaOjebkOSmYTOEYDbohSYsvRoOOiy/OEddSVNwoHgfBvbJiYrTExuqI+AHvhEhISEj82GzadIh162oYNy6W0NAQv2EYGl0IPd299Pf2i21zxUWN9HZH8qffP8TfnrmeV996nikTp3PanNMP+1pC1RX4G4kL1U3mWgfbtjYMjQeimCRDJvM+BpKVHcvefa2sX19NVGQoJ56UTGZmtOg5NZxXlME4GA981yIcB0OrsQxGHSH9kJAQdthrlpCQkPglcbgcQauPYO7vr+E/Tz1KmKoEZ99Yfn/hldjazOwu38v1S+/i3ZeeJ2QYvylffM3PBQHIt7pp104ra9fVEKYLITRUidXaCQxO43M4ugdyBP/peEKF1tNPb/fmCJnRnHyyCZNJj9GoZc7clGHXZDRqufjibHEtRUWN4nEQ3C8rNkbDqFHhP2i1FEjClISExDHIunU1fPFFNbGxoWRnx474QerbY/7B+vXkjh3LLouFWx98kKcfGLxL7is2+VYgCYKSr7DkK1aBDJ0uhLi4MLKzo8WKKd9jdFqlOAY8WMtdfz9oQpVMmRw3ZNtIawtci7BtuF54CQkJiWONdetqWLfOzP79raSlRQKDwzDUWiVdzh76+vpRDOw/+Jl+Ni2Ofbyy7Dluvfc6ssbmYEoaLZ43mMCTlBRGf3//kBsNgmDV2eXxxoN4bzwI9HmaMF4Ql/qDtvPZbJ309PShCVUwYXzssFP0gq0tcC0wKJ4Fa0GUkJCQOBY5khwhM38Wh8p3U/rFKpKzohkzZjRPP/wQZ190KTt27uLvzzzHHTdcJ+7vKzb5ViAJgpKvsOQrVgGE+cQEoWLK9xidNgSz2QEQpOWun75+0GgUTJkyTI4wzNoC1yJs+ylzBEmYkpCQOOaYOzcFu91NYmIYOTkxQ0bC+iL0mNfUtLFrVw9PPvM6N/7xYqY3NdHT0kJIdDQQXOARfg4Ug/zEKlP4wBQNr2jk6+shHFtU3Bj03ACnzE3BYAgVA0QwEcpfCMNvezDhLJhXloSEhMSxyNyBO8dCxVREhIpVq6rIyYlBpQ2h1+Okv79f3F+onLJanMwp+D1bi7aQYkohOsr/MzNQ4HG1udm1qgalWoF+3NB2OvC2CbpcHp/Jev5rNRh1REZ4zxsZ0T5EVCrITyBMpyQ31yhuCyZC+a5N+F3YHjQmBPHLkpCQkDgWOdIc4eTL/0BLXS2HyjfRPEqPSx7P0htu5e/PPcms46f7nTOYwCP8HCgG+YlVJsRJe0aj1s97Sji2qKgx6LkBTpk7GoNBO5gjBBGhAoUw3+3BhLPh/LJ+DCRhSkJC4pgjKSmcU04ZLQaZVauq/EbCBkMYGztjxlQqSktpvuRSWl56CcPNNyMPCQn6ZX44AsWqwxmPj3TuQBEpmEDme3zg9mDCmYSEhMSvhYKCJJKSwsXEw3dEeFioAk9PH/19XmGqv68fZF5jdLO5ncrKdv589XMUzExDJhtsr+vv7ydaF0JGagQmUzh9vX3s+MJMr6eP7q5eanbZOG7a4N1r3+l6h2PEeBBEQApWARUYE3y3H81aJCQkJI41jjRHkMsVnHvbvbz3l6Xs//o/uMPHM2bKdNZ/+D5husAb0kMFnuEIFKsOZzw+0rkDRaRgApnv8YHbgwlnPyWSMCUhIXHM4Zt4pKREDBkJGwzffWJSIlA99hiHrr6aPa+8wpjLL/+fBZ6R2u2OhmBJi625k4qKFnRa5bBJTWHhITZvbmDGjPgjmhAlISEhcazgGxN8P+sbS2309njNz5sPdVC8uhq5XEZqXizJyV5/JZMpXBSl+vv7OVhzAFlbBOWbGrwnt7k50NePw9bJ9LPS2LelEYe1k76+fuTyoV5RAsO12/lWPfn+PhzBPvObB2KC9nAxobCBGflSTJCQkPj1cDQ5Qohazfn3PMR7D/+VhrLttJfbkR93jri9tq4eY2zM/yzwjNRudzQEE7G8OUIrOm3IsCJXYWEdmwvrmZGfcEQTA38oJGFKQkLimCMwyAQbCRtI4D7hJ57Aztmz+MPLLzP/QCUv//3x/2lNI5mkt9m7aGx0+W0Lhu+EP3ySDF+jwguWZAc9x+bNDezZ00xXlweVejBZERKjaCkaSEhIHKP4xgTfz/qW/W14evro6+2nfFM9mrAQokZp2b+tiYiqUCaeloJW7x2C4XR1cPOd17Jpy1fcdeHLpCSlYcqO5sAOK329/eTOMZGVn4CjuYuDO5vpcfeiDh3+gzWwkslXqBrORD0Q32l6vvv5mpkvuSA76Dk2Fzawc6cVW0snGelRQ9YQcjRvsISEhMQvhKPNEUJUGpbcfR8laz6l8L13WfvSsyRmZlHnkXHvk//k7AXzuP+2P/9PaxrJJL3N7qah0em3LRi+0/R89/PLES7ICnqOzYX17N5jo8vdi0qlEIUrQSwLU/9Pl3fESKmIhITEMceRCFFHgmHxYjpeeol/7dhBwTvvcNmFF/7X5xrJJD0uTsfYgelKwfAVsHbssNDfDxGRGj8zc6u1E6u1k/Ly5qD+UTNmxANgNIb6+VEJP0en/UhRR0JCQuJHZriYoA5V0tvTR1d7D+22LvLmJjNjYToHtlv4+t19fPvv/eTOSWZUagRqlQaHw47T5eSfH9zJS4+8R/7CdKaekYrb5UGtVaLSKIlPj6Ds23q6OrpHFKYCY4KvGDVSO5+veBQ4TU8gMlKNXCEjMnL4z/UZ+fHYWjrR61WYzV4/K981jEk+fNu6hISExC+N/yZHkMvlTFpwNunT8tmycgX7Cr+hvKqaDqeTd977gCxTMr9Z8hu/lu+jYSST9Pg43cAE1uBtgoKAVVJiobLCDuDX3ufNEVxYrS7Ky2xB/aNm5CcAYByl9fOjEn7OztD8V9d1tEjClISEhMQwnHzyydx3553c8+CD3PrG67TYIpl/yvT/yjh8OJP0WnM7Bw+2UVCQMGy1lK+ANXHiKMB/6lNWVqx4R6Sk1BJ0fekZUajUSnRaJc4B813fdUD3UV+ThISExC+ZEI13Fl/rwN3oxMwo5HIZGVNGETcmgtXP76J4TQ3HTRtF+uRR/OORFzj9/JOpbznIvU/fTWT2SxQUJKHSDH6djk3ytgA6mruIMAx/dzvQ60n4THZ3e1i/vmZIFZSAr3g03DQ9u91NX28/drt72NfPSI9izpwUfOOJ32P/sIdKSEhI/CrRxxo49Q9/YuZvLqHiu0JaHnyIlV9v4i9P/ZO28t1kZOYy+ZQTiDAc3US74UzSa2vbOVjdRkF+4rDVUoKAFRMTik4XMmSaXlZ2jH+OEESYSk+PQqVSoNOG4HT1+Ilg3p9/nBxB/qO8ioSEhMQvlDvvv5+5BQV09fXxyurn2LK1eth9LVYnRcWNWKzOIzq30aCjy91DZWUrJaWWYfczmcLRakM4eLCNhAQdc+aMHiJi5eUayc0zDDveVRC3nC4PUybHic/9r55XEhISEr9UhIomR3MnIWoFkT5CUniUhkV/nkT6ZCP7tzZRVWLBaIjjgVv+gUwmp3j3ah577Lkh54wapUMmA2tdB8VFjVgtRxYPDEYdk6fEYa5xUFJipXSYmGAyhZOZGY27+//Zu/O4qKr+D+CfOzsz7PsiIAopkDtZYKW55FaZVpZZaYtP66/VMnvKNCuftHqqp33TVstKzcwyNZcSM5dwQVxwARdwAFlnmP3+/hhmZGDYlwH8vF8vRO7c5cww8OV87/ecY3EO46s5IXq/fqHo3z+kVsKqutzccuTn6eDvp6o1jI+ToxMR1U3t54d+I8fim99+xxWXXw6jxYrFf+xGQe4RbFz8Af789guUFxW6HKPV6rFzZz60Wn2jrhEaqobBYEH2kZIG+gi+0GjkKCqqRP9+oW4TTw33EezJLZ3ejJSUcOe2ls551VSsmCIiquGHHw5h+fIjmDQpATfc0AtLV65Ecs8EnCorwZotH2D6tEFuy3XdzSPVEEeQqCtYOM7lSGBpvGVuK6Jqrt4HAFlZhcjYo0VsjC8qK60ID1e7DBtpaluJiLoSRVViSldiglItc1ZQOUjlUlx9dzJyj5di/9Y8nCmrRP/egzE+ZRpW71iMX3/9L/btm4I+ffpUO0YC32AvFBdUIj+/AkDDE5hXV1cVlIOj0uqbpQfcDuNzfF1zG2Cfk2pr+hkEBanQu1dg1fCQ2kMJmZgiInKvZh/h22XLcPHF/VB4rgB/lsvw3Ixb8M8vP2Hjkg9x0WWXo1faFVUrvdaeR6ohjeojVEtgaTRyt4mpmqv3AefnpIqN9UWl3oKIcI3L3FJNbWtrYMUUEVENy5cfwZYtp7B8+REAQHBwMFb88jNkEgnW5hzF15995va4mBifeueKcicxMRhTbklqcHhgbIwvQkLUiG3EUrQOjtLdbdvykJ+vc5mXytHWwgIdXnppG5b/cAiFRZWNPjcRUWfnGIKnLzNBqZFBJq/9Z7EgCNiZWwqZICBrVyHMJiuuHnArRlw1EkajAVOmTIHVanU5JiBCA6kootdFAU2KB4A9qXTLlCS3iSWHAq0OSpUc8QkB9VZF1bRnjxb//HMWf/+dB73egkEp4c4klKMS6+ixYjzzzBZs23a6Se0mIroQ1OwjRERE4Pvvv4VEIsEva5cjX6LC9NffQ8LgNBzcuhnbVyyD1WpFTIxvvXNFuZOYFIQpUxLdJpuqi431RUiIF2Jjm9FHSD+DvHwd/PyVziSUo60FBXq89NJfWL78CAoL276PwIopIqIaJk1KcPkMAGlpaVjw8svY/f77SNu3D5bCQsiCXTsO7uaRagzH5Ob1DatTKGUID9dAoXT/a9tRHdW/X6gzyeW4wxIb4+uyEl/1tr722g4cyCpCxRkbEi4KQs8mt56IqHNSeNkrpKwWG1QaOWRyqdv9Rk3ogdPrTiMuQgOzwQq5QoaPP1iMW6dNxquvvgqp1PW4oG4anDp4Dn36BEPp1bT17RozpC43txx6nRkD+tcexge4rtZX/fF+/UJRobMgKEhVK2HmqMT6YflhHD1aAm+5FFOa1HIioq7PXR/hqquuwrx586DVajF+/HgoFApc8+gsRFzUG5u/+AR/fb8Ul904BaGh4U2+nmNy8/qG1SkUUoSFa6BQ1I5h1VfrqzkpOmBPalVfiQ84P+fVa6/uwIEDRSg+CyT0avr8uk3FxBQRUQ033NALN9zQq9b2J556Cpbbb8exiZNQ9OGHCHnySUjkLVtUW1ugw4YNOTibr0dYuBojRsS6TU45OhEatQw7d+U7k1iOhFRBQSXOnLYPG0lMDEZ6+ils25aH1NQIpKV1q/P6qakRMBgsSAgTEBnl3aLnQkTUmSiqrZrn5a2AROZ+RaUbb+yNH47rYDFZYTJYIJNLEBIagq1bt7od1h0a7QOLyYbKMlOTE1N79xUgPf0MIiK8MeG6nm6TU454oFbLsGtnvksSK+tAIb748gAqys0A7BVY1Yfw1XVOhyuviAIADBgQ0qR2ExFdCOrqI/z73/+uFQ8GjZsApZcav334P+xavQKXXHdDk1bu02r12LAhB/n5eoSHF9v7CG6SU46kkkYtx86d+c4kVtaBInzxxQGUV9gnL3ckptLTT2Nb+hmkpkUiLS2qzuunpkXCYLQiNlKKblFtv1IrE1NERI0kCALkkZGIenURTvzrXnz24ouYPneuS5BpTPVT9X1yc8tRVmaG1SqirMyE3NxyZB8prpVUclQ47dyV7zI3lKMUNzLKG/36hyA2xhc7d+Vj48aTOHq0BABcElOOaztW54tPCEBaWjdYioubvcwtEVFnJK92d1ntp6j3d6BvkAp5R0uhUlshlUsgkQgu++/btw9WqxX9+/dHUDf7H/BlBQaYBTRYAVW9SgoQoNebkZ9XgdzccoSEauw3GtLzkJpmjwmO6qZdO/NrzQu1Z48WFeVmePvI0a9fKAq0OqxZcxyHjxQjMFCJmGhf576O66rVMuirVmsdM7YnxoztiZKzjZu0nYiI4BIPLBYLvv/+e9x88824+KpRqCwvw5avFmPXug1A4MX1Vj9Vr5DKzS1DWZkJNqutqo9Qhuzs4lpJJUeF085qMSE0VI2MPVqUV5jg461A/36hznNv3HgS2dklAOCSmNJq9di31z53YZ++IUhLi0JaWhT0pSWQylp2I74xmJgiImoizeWX4wmpBL/9+Qfy57+EUePvcSaicnPLsWvXWRw5cg79+4VCV/XHfvUkVfWJx6tXQh08WIyMf7TIzS3DqVPlAFCr2qnmst7VJ0ZMTAzGhg0nsHXrGQQHq6BSBSM1NcJ5bPXqLKtVRHmFESajDddc0wODEznZLRFdWATJ+Y6EJkBZ774+wV7I2VcEk9ECmUIKifT8sRs2bMC1116LkJAwLFq0AoMHd4dULkF5sQEFBrMzJvTrF+pMAFVPUlWfeLxvH8dwCRFGkwXfLD2AA1nncOpk7ZhQMx4ArpOnBwd7YcOGHJjMVsTE+CApKci5b4HWHg/KykyQSCU4fOgcRFHExEkJ9VbZEhFR3Ww2G8aOHYv169fj2LF89O9/HZL7jUTvE8dwMP0PnFNLcORIRFUfwVwrSVV94vHqlVAHD51DRoa9j3DypH2ERM1qJ8f+js8ufYSkIGxYn4Ndu88iKEgFlTIIqWmRzmMd1VmZmYWwWkUcyS6GrsKM1LRI9E9unz4CE1NERE2Qk1OKzMwiDJk8Db89/xQWbf4dcmkMho25GqEhGsTE+ODIkXMoKzMhY48Wtqo5casPu4uN8XVOkl59XqqMPVpkZ9vvaicnuyaVHGrOY1V7NT4BggDExwdixIhYl2P37S3E0ewSCIIEGo0MRYUGlJebsG1bHgYnxrf6a0VE1Fn4NJCY8g1UwVhpganSCrlC4kxq5eSUorAwEEFBIcjNPYE5cx7Ba699Cv9QL+hLjejeK8wZE/bs0cIxT3phYaVzHqjqCaaQUA1GjLD/jnesvBcYVBUT0lxjgqNyqrrqK/Lt2pmPsjIz4rr7YsSI2FrJsPz8SlitNoSGeaHoXCUq9RZsS89jYoqIqBkcfYTBg4di/fr1eP75WZg2zQfAVbj63v9DTuZ++FfsRUGJHzL2aGG1igDgHHbnWCXPMUm6oxIKqOojHClBYJASFye7JpUcqu8PuF+NTxCAhPgAjBhZs49QgKPZJZBIJFAqJcjOLkVR1aJI/ZMT0B6YmCKiC54jkCQnByE21q/efTMzi7Bt2xlcdtkk3DTpL3y3fDk++ONrjLsuFUA4QkM0GDEi1mW4nKPT4Rh2BwBTbkmqde76JitvrD59g+Hnr3QeW33YICBCqZQhPt4f0TG+6N07AJmZ59wmwIiILiTegSrn/93FBJW3fRiDQWeGb7DKWTGVmVmE/ft1mDnzTTz11M04dGgLtm9fhiu6X4fTh4oREKByxoTqQ+Y2bMhBRlU8uGVKktthfo7qp5hYXygVTY8JNRNe1YcMxsT4IDzcC2VlJkRG+mDYsBjk5pbVSn4REV3ImtNHSEubguuu24FVq1bh559fwCOPjIJcqcJ1jz6Fb+c9jZ4BpxDV93JnxRRQo48wJbHWueubrLyx+vQNqeoj2I+tPmwQABRKKZIvDkJ0tC8KCvQ4kFnkNgHWVpiYIqILniOQAGgw6CQnBzk/f7JkCTJ278aREycw6+XnsOKLLyGTyepcnU8qEaDTmSGVuJ/HxFH95JhHqrTECD//+uerqqnmtasPG7QHJJXL+caM6QltgQ57951GVJQP6n/2RERdy2XX98Cx3QUuk5S7iwkqjf1xo94MudIbEqkEQPWY0Acy2et46KGHsGDBHPT5sB90pSoUn9EhJNa3VuJJIrXHg+pDAmtyVD855pIqKTXC36/++aqqq1lRVX3I4KCUcGfCLCbGx1lhW6DVYdfOfAR6y9G9wSsQEXVtze0jLFmyBAMHDsSJEycwd+5j+P7779EtMRm9hwxF9t/p6Hb1EPgEnl+lTyoVUKEzQVpHTHBUPznmkbL3EZT1zldVU82KqurDBqsnrRz7jB3bA1qtHnv3nkZ0TECjrtESkja/AhFRB5ecHITU1EhnQKlPbKwfxo3rgdhYP/j4+OD7H3+ESqHAZq0WLz37bL3HnjxZYR/il1EAbUHdE8tq1DJIpEBZmRGHDp5Dbm55k5+TQ0yMj8uwwZRB4bWSXPv2FmJb+mkczCpq9nWIiDqjQWO649qH+8M/1Mu5zV1MUGrs93JFGyBT2Cc/B1xjwgMPPIDJkyfDYrHg8Tn3wiypwIGteSg+q4coii7XPZl7Ph4UaOufaFytlkFaFRMOtiAmxMT4VA0RsVdShYRqMCglvFbyateus9ixIx9nzlQ06zpERF1Fc/sIAQEB+O6776BQKLB8+XK8/vrrAICr7rgHgkSCA5s3usSFk7nl9pjwTwG0Wn2d19Co5ZBKBZSVO+JBWbOfW0yM67DBlJTwWkmufXsLsG3bGRxohz4CE1NEdMGrHkiaqm/fvnj3/fcBAO/u3IET69fXuW9qagSiorzh66tw6VhoC3TYuSvfmazS6S2wWQFfX6UzqdRcRYWVOHLkHLKPFLtcw5WIGn0mIqILhspb7qyAAtzHBEfFFAAoVFK4IwgCPv74Y/Tq1QunTp3CUdsmWC02bPshG1u+PoRjGVrYquYUSU2LQFS32vHAUbFUPVml11tgrYoJvVsQE0JCNVCrZfhx1VGsWHHYbUIsJsYHvr5y6HRmHKlatYmI6ELVkj5CSkoK/vvf/wIA5s+fj+LiYqj9/HHJtTcgP/swis+cdu6bmhaJblE+VTHhfLJJq9Vj5858Z7JKp7ev5O3ro3QmlZrL3kcoRnZ2scs1ahKr/duWOJSPiKiF7rzzTuTk5GDwjh2Qr14NY3w8lN2719ovLa0b4hMCqs35ZFd9uF1oiMZZMRUZqakxsXnTOcasHztaCqVSip49AxBdNb+Io3KqT98QBMhNiIpqfgKMiKgrU6rP/8ksV9X957OPjw9WrFiBpUuX4vnnn4fZYMPh7Xk4vEOLg9vykZt5DpdcG4e0tG5IiHcfDxxDKxyVTI6KqcgIjXNi8+bas0eLf/45Cy+VDEaDpdZKgfbJ12ORfeAcEuL9W3QtIqIL3f3334+8vDzccsstCAiwD4dLuWYidq/5EYf/2opLJ02GIAhIS4tCfHyAy5xPgOtwu9BQtbNiKjLSu9bE5k3l7CMcK4VCIUF8fACio31chvP16RsCjdLULkP5mJgiImrA1q2nsH59DkaOjMWQIe5XK5o7dy4sZWU4fv1EnPvoI4Q+9RSkfrXvrjiSQY475NUTUZqqjo+jYkqnt7S47Y7JEi1mG/Lz9SgqqoReb3ZpCxER1U8mP18ltXN3PhTdveuMB4mJiXjhhRcAAFKNFH2Hx6DPsGjkHjiH9YszsfuXHKTdEO9MBDmqpByTkpeUGlFSakCBVoeQUI2zYkrfCjGhX79QVOgsqNSba60UWH2C9PBwNSIjvVt8PSKirqyhPoIgCJg/f77LNrlKhUHXTkL6t1+g6PRJBHeLAQBnMshRMVU9EaVR26t2HRVTuqq/5VvC2Uew2JCXp0NRUSV0OrNLW9oTE1NERA34/vvD+O23EygpMdbZEQEAma8voj94Hz9ecy1+eexRvPHBh5DK5bX2q1kh5UhEnTmjg05vgUYta9QQPtcV9+D8f/WEU1CwFxISAp0rBNZcKdBx3PHsEggQ0LNJrwwR0YVn7/5CnLHZ6o0HDkajETNnzsQ999yDfv36YdjU3vj1w/3Izy5BVO9AALUnJff3s8/zVKDVY8SIWJfV9epTfdU9x3mrT5ReoNVBr7dgwnU9nY9XXymwelt6dGMFLRFRQxrbR3D4448/8OOPP+LlF+dj10/LcXTHXwiKioYg2OctrFkh5UhEnTlTAZ3eDI1a3qghfDVX3HP8v3rCyd5HCIBGLXeeu/pKgY7jjh4tgSBt+7QRE1NERA2IivJGcLAXoqIavnusCwzEPSdzUVFZichnnsHsRYtq7ePoAJiMFiz95gBiY3zRq3cgSksMOHTwHHr1DkTKIPtKHVlZhcjYo0X/fqEICvZyST5VT3ABcEl2OTj2qX5Od+2R6PwR2YjnR0R0oZJIBdisIuQqWaPiAQA8++yzePvtt/Hzzz9j586d6DEgBCpvOQpOVSCyVwAEQUBMjA9yT5bjnwwt1GoZYmJ8cOTIOZSVmZCbW+6coDzrQCE2bMhBv36hSEwKdklEhYRqXBJcAGoNCayZAHO3sp8jPgV6176pQkRErprSR8jPz8fVV18Ng8GAuLg49B01Fjt/WoHyogL4BturlxxJIZPJiqVLsxAba5+gvLTEPtl5796BSEmp6iMcKKrRRziffKqe4ALgkuxycOxT/Zw1xcT4wlLpj27tMN0HE1NEdEHKySlFZmYRkpODGpzQ8KabeiEpKbhRK3IEBQXhlVdfxYMPPohXdu9C348+wvgZM1z2CQ3RIDREg6XfHMCejAIAwJRbkpCVVQhtgd45pA84P/4bABISAl2ST+7uosfE+LhUUjXmTntoiAaBshDn3RoiogtJY+OBRGJPTI0eG4fLxnZv1Llnz56N5cuX49ixY5gyZQrWrFmDiJ5+KDqjg9Vsg0whRUioBkaDGdlHiuGtkeGWKUno1y8Ue/bYE1UOe/ZokVEVDxKTgmvNR+Xu971aLXMZJljz8ZocwwtLzta/UiARUVfVVn2E8PBwvPjii5g5cyYeffRR/LL6JwDAsd070f/qcQDsiaPQUDWWLs0630eYkoisA0VVfYTzNw1c+wgBLsknR4KrevVTTIyvSyWVu31qCg1Vw1sZAqms7W9WMDFFRBekzMwibNt2BgAaDDqxsX5NWo3j/vvvx44dO7BkyRLc/90yrOvVC72uvLLWfo6x3Y7P7uaWqr5PULB9OfOaySdHhZTj885d+c4EVktW9CMiuhA0Nh5IpAJgBlIGhzc6JgQGBmLFihVITU3Fb7/9hueeew7XXXo3Th8ugcVkT0wB9rmfqn92N69UzX2qJ5pqVk8B9iTTrp35LlVSwPk5Dt1VTBERXejaso/w+OOPY+fOnfjmm29w27TpeOXBGcg7nIXeQ66ESnO+6qp2H6H23FLu+wiuySdHhZTj885qMaElK/q1BSamiOiC5Liz0Zg7HE0lCALee+897N+3Dzt37cIdC1/Br926IaBHD5f9EhODncPztAW6WneztQX2OadGjIitM/lUWmKEn79rgqr6eWrOZ0VERK4aGw98glQoOq2Dop5V+dzp27cvPvnkE0yZMgULFixA2IvdIauMh7HSAlXVkLnEpGAEV8WDAm3teOCYH2rEiFiXxJPj/44EVEmpEf5+5xNUNc/jbtU/IiI6r637CB9//DEyMzOxb98+/G/FatzYIxw5ezLQK+1y536JSUHO4Xlarb5WdZNWq4dOb7b3EepIPtn7CEqXBFX189Scz8rTmJgiogtSU+9wNJVKpcLyFSswaMAAZBUV4V9Pz8LXH30MeY2V+qonjlIGhbudHwqonVRydDIc81JV38cxVNDd/kRE5Kqx8WDsvX1wZOdZBDZjPr5bbrkFO3fuxGuvvYanX3wUj4x7HYaKWPiFeDn3qW8OqIYSSo7f8SWlBpf9qievqu/HmEBE5F5b9xE0Gg1WrFiBlJQU7PonA17mJASGZyJ+8GWQys6nZ6onjlJSwt3ODwXUTio5kk+Oeamq7+MYKuhuf0+TeLoBRERdVXR0NJavXAm5TAarxYK8d96Bzey6vGtMjE+dK/A5HtOoZdi5Kx/agvNzfoSGaJAyKBx9+obAZhOx9tfjSE8/1ebPiYjoQuUXqkbKuDho/JTNOv4///kPxowZA6VSiUqTDgadxeXxmBifqtWW3MeD3r0DnXNGFWhd54AKCdVgUEo4+vYJgU0U8etaxgQioo6qZ8+e+O677yCVSuEbFo7i/HwU5Bx32ScmxrfOFfgcj2nUcuzcmQ+tVu98LDRUjZQUex9BFIG1a08gPf10mz+nlmJiioioDV1++eX4a/t2fP/995Dk5eHcp59AFEUAcDtPVHWO5JNOb8Ghg+ec84I4ZGXZV2g6cqQYR4+WYNu2vFrncFRd1TyWiIjal0wmwzfffIMtv/+Bi6IGwGKyOh9zN0dUdY7Ek15vwUF38eBAIb5ZegCFhZXQntXjaHYJtqW7jwnujiciovY1cuRI/PXXX/jxl1/g7eeH3P17zvcR3MwTVZ0j+aTTm6t+p5e5PJ51oKiqj3AO2dkl2JZ+ptY5HFVXNY/1FA7lIyJqYwMHDgQAWJ9+GvkvvohDn32G3tOnNzj/k7ZAh317C1FWZkR4uLrWXfSMPVrs2HEWFeVGGAxWqFS17zVw2AYRUcfh5+eH5D4++ANaWC025J/NQ1hoeIND9Qq0OuzdVxUPImrHA8eKffv3F+LMGR28veVITYuodR7GBCKijiMlJQUAkHTlcGSsW4PjR7PRIz6hwfmfsg4UIWOPFrGx7quqMvZo8fvvudBVmODrq0SSm/myGrMqX3tixRQRUTvxuvEGPKtSYvzXX+Pwjz/WO4wPsN/Z/uefs8jOLoGfv6pW8qp/v1BERXqj0mCFyWzF6dO1l/d2VF1x4nMioo5BKpdAIhWwc186xtxwBd756PV6h/EBVfFg91lkHymBv5+qVvKqX79Q9O8fAq1Wj5JSI0QRSEvrVus8jsorTnxORNRxXHTFCCze/Bduve8hFBYV1TuMD7AnnvZkFCAnp6zW/FOAvY9gs4moNNhgNtsQElJ31VVHmPgcYMVUs1itVphrzBND1JHJ5XJIpVJPN+OCZ7FYcMRmQ4HVgmkffoCfIiKQMnhwnfvHxPhgwIAwAKLbzopjVT/v5XJkZRUhNtYH2gJdrSRUQ0MGqWUYE6izYUzwPLlSiry8UygrL8Xr7/wHPXtchLEjr61z/5gYHwwYWE88SApGYlIwJFIBG38/iR49/VCg1dVZfVXfsEFqPsYD6mwYDzoGdUAACitNKCwpxf0zZ+HL999BSkp4nfv37xfq8rmmxKQg3HjjRdiwIRdRkd4oLTFCq9XXSkI1NGSwPTEx1QSiKCI/Px8lJSWebgpRk/n7+yM8PByCIHi6KRcsHx8frFq1CoMHD0ZmYSHuW7AAny9YAHXv3m73Dw3RYMSI+jsN2UeKUVFhxqBBYZBIJMjNLa+VfGpoyCA1D2MCdWaMCZ4lV8kwcvD1qBDy8dnSj/DY0w9APs8PI8Zd4fZ7EhLacDxITz+Fk7kVSBsSCYlgjwfuEk8NDRukpmM8oM6M8cDzAgICsPjd/2HibdPwz779eObFBXj1hefr/J4kJgUhMan28Lzq/PyUiAjXIDjEC3n5Ovj5K2slnxoaMtiemJhqAkfACQ0NhVqt5g8vdQqiKEKv10Or1QIAIiJqzzlB7ScuLg4rVqzA8OHD8VtZKZ6e+zxeXbgIipiYZp1v27Y8ZGYWwmDwx+gxcXWu5lT9s0P1SqpARoMmY0ygzogxoWNQqKSwWUTcNfFx7PgzAwdO7sAT8+/BvPyPMeqGS6Hxb/rKf9vSq+KB0R9jRruPB4D7mMAqqpZhPKDOiPGgYxl1w82YseQTvP3rRvz4y6/oFhmBx+6/t9nn25Z+BvszixBvtGL06O51ru5X/bND9Uoq7+YtRNtk7Io0ktVqdQacoKD6s5NEHY2XlxcAQKvVIjQ0lCW7bSAnpxSZmUVITg5CbKxfvftefvnlePXVd/HIIzOwpKAAkXOew8xFr0IWEtLk66amRjg/pwxyLflNTz+FjRtPIibGB6PHxNVbSRXYo52iThfBmECdGWNC22soJsiVUlgtNpScqcR9183DO+uexKHDmXjli0dhrfgf+l2RgJ4DQpqU4HBMdp6aFoFBNYaAFGh1+HXtCeTmluGqq6JrzT/FKqrmYzygzozxoO01to8gkUpx4+13IL+oCMv+3oN3PlmMiPAw3DLx+mZdNzUt0vm55rDA9PTT5/sIo+PqraRKSlA16/pNxcnPG8kxXlyt7hiTgxE1leO9y7kP2kZmZhG2bTuDzMyiRu0fHz8cw4ffBwB47dRp7H91ESylpU2+bnxCAIYOi0Z8QkCtx7Zty8OBrCJs357ndmnwhiZfp7oxJlBnx5jQthqKCQovGawWG0oLDQjvFoynZ70PX99QnC0+ifSc5Tj8Vz62fp+NinOVjb5mQnwAhg2LRkJ87XiQm1uO7dvP4MCBImxLz6v1eEOTr1PdGA+os2M8aFtN6SMMGHMtBsfFYHj/SwEAC/77Fs41c4hwfHxVH8FNTNiWbo8H2//KQ25uWa3HG5p8vS2wYqqJWJpLnRXfu20ruWoZ1mQ3y7HWtf/jj8/ERRepMPGy/gj939sofPNNhDz+OKTe3o2+bn3zR6WmRsBgsCAmxsdtZyM0ROM8xlJsavQ16Tz+XFFnxfdu22ooJihUUpQV2mCoMCEgXI2UYQn4z38+w9at3+HTT99Dzp5i/LHsMP78Lhs9B4QiPiUUgqT+71l9VU8xMT649NJI5OaWOSurqgsJ1bBSqoX4M0WdFd+7baspfQTvgECE9+6LaxRHEBwTiRuvH4dAf/9mXbe++aNS0yJhMFqr+gi1k0+hoWrnMfrS9ukjMDFFRNQKYmP9GhzC527/iy+ei8zMIsjndodpzuMo+O9/EfLYY41OTtU1f1RWViFycsswaVICEhODG/9EiIioxRqKCQovGSxmG0yVVmh8FYjr4Y9x41IRG3sR8vIqkXBJGKITA7B56WEc2XkW+cdLkTKuO7x8FHWes654AACFhZWQywRMmpiAxCTGBCKi9tLUPsIVN96E7+b/G1NGXA2jKcTtanqNUdf8UVkHipCTU1YVDzrO8GMO5SMi8iBHee9BSTTKn5yJqTt2IPOV/8Cq0zXq+NAQDVIGhdeqlsrYo8WejAJk7NG2RbOJiKgFFCopTHoLAEDpLQfgOtzDZrNh9nOzsL9sLcbcezFMlRb8tfIojAZLnecMCdVgUEq428qnPXu0yMgowB7GBCKiDi06uS/8wyJwMnMvDmYVITe3DAcOHcbUex9AUXFxo88TGqpGSkp4raRWR+0jMDFFRORByclBSE2NRFJSIB54/XXs0FVg+u7dOLxwIax6fbPP279fKPr1D0FsjC927sqHtqBxiS4iImp7cqUMZqMVAJxVUI54kJwchFWrVuGNN97AzJkzsfmf1bjukf4w6CzI/ju/Wdfr1y8U8QkBUKpkKNAyHhARdVSCIGDg2OtgKslH9zADunXzxsw587B9127c+dAjKK+oaNH5nX2EWF/s3JkPrbb5/Y3WxMRUFycIQr0fc+fObdG5V65c2aQ2aDQaJCQkYPr06di1a1eTrzls2DA8+uijTW8sURvIySnFmjXHkJPT9EnLHWJj/TBuXA907+6PZcuWITIyEtkGA2bs3oUTixbB2szgk5gYjCm3JEGhlOHQwXNuJz+nCwvjAVHbaWo8kKvOr3zlVVUx5YgHsbF+mDBhAmbOnAkAmDFjBjb/vRY9+gdDm1MOs8na5PYlJgVjQP9Q6HUWxgMCwJhA1JZa2kfoO2oM1H7+EIoPIixMg7dfeRmBAQE4cOgwZjz6BCoNhma3LTEpCFOmJEKhkOLgwXNuJz/3BCamuri8vDznxxtvvAFfX1+XbY4/etra4sWLkZeXh8zMTLzzzjuoqKjApZdeis8//7xdrk/UFpq6El9D4uLisG7dOgQFBWGvXo/7du/CqYULYWlC2W5N1Vfe0xboXKqnan5NXRvjAVHbaWo8UCjPJ6ZUanmtxwVBwMKFCzFjxgzYbDZMnToVpyr3obLcjPKi5nVIqq+8V6DVYdfOfJfqKXfbqOtiTCBqOy3tI0hlclxy3Q0oyDkGbc5x9OgeiyVvvwkfb2/szNiDB596GqYWrqJYfeU9rVbvUj1V8+v2wMRUFxceHu788PPzgyAILtu++eYbJCYmQqVSoXfv3nj33Xedx5pMJjz00EOIiIiASqVCbGwsFixYAADo3r07AGDixIkQBMH5dV38/f0RHh6O7t274+qrr8b333+PqVOn4qGHHkJxVae7qKgIU6ZMQVRUFNRqNfr06YOlS5c6zzF9+nRs3rwZb775pvPuyokTJ2C1WnH33XcjLi4OXl5e6NWrF958883WfSGJ3Kg+7KK1JCUlYfHi7+Hl5Y3tFRV4OHM/zixcCPPZswDsk5ov/eYAsrIKG3W+6nNQOVbwc9wtr/k1dW2MB0Rtp6nxQF4tMaXUuF+LSBAEvPfee7jmmkkwm834v6fvwdG8fSg9e76jkHWgEN8sPYCsAw3HhOpzUDlW8Kv++9/dNuq6GBOI2k5r9BH6j74GvsEhyPz9N1itViT1ugiLnn8ZSoUSW9L/wmPPPIvMPzdhy9dL8MfXS5D+80Ys/ToTWQcalwyrPgeVYwU/R/VUza/bA1flu4B99dVXmDNnDt5++20MGDAA//zzD2bMmAGNRoNp06bhrbfewqpVq7Bs2TLExMTg5MmTOHnyJABgx44dCA0NxeLFizFmzBhIpdIGrlbbY489hs8//xzr1q3D5MmTYTAYMGjQIMyaNQu+vr74+eefcfvtt6Nnz54YPHgw3nzzTRw+fBgXX3wxXnjhBQBASEgIbDYbunXrhu+++w5BQUFIT0/Hv/71L0RERGDy5Mmt+poRVdfUVTYaSyqNwY03voxvv30SG0tK8GF+Hh547TUEPfQQMvZUYE9GAQA0uNqetkCH3NxyxMT4IDREU2vFJtfP7bMULHVMjAdELdPUeCCrnpjyqvvPcalUinvueQkHD55BdvZf+PC3OUgbNhhxCAFwflJzAPWutlegPR8PQkJrx4Pq/4+J8QHERj8V6oIYE4hapjX6CDK5HKPu/T/88NIc7F33C/qPHg9/nxjcNO4BLF31FtZu3AxFcSFuHDUcomjD2cw/YTb7IsN2VYOr7Wm1euTmliEmxhehoepaK/i5fm6fPgITUx6Sk1OKzMwiJCcHtUnHtjGef/55vPbaa5g0aRIA+zCiAwcO4IMPPsC0adOQm5uLhIQEXH755RAEAbGxsc5jQ0LsfxA57nI0R+/evQEAJ06cAABERUW5lA3/3//9H9auXYtly5Zh8ODB8PPzg0KhgFqtdrmmVCrFvHnznF/HxcVh27ZtWLZsGYMOtbmtW09h/focjBwZiyFDurXKOZOTg3DLLeMxfHg4lix5B8+98w5KHn4EhW+8gUGjbgCqTWpuMlqQk1uG/v1CayWqHBVRgL1yyvEB2CuvMvZo0b9fKEJDNLAUMzHlKYwHjAfUdTQ2JlSvmJLK6x/A0L9/BF555WO8/vqDGBR+NSRWBURRhCAI6NcvFBU6i3NS88LCSuzZo0W/fqEuiSpHNRRgr5xyfDhkHSh0HhcSqkHJWQ7n8xTGBMYE6hpao4/Qve9AXDLhRuz48Xvoy0qg8o9ASkABJJf1w87TBXh+0avonXIplGoNVn/xE7J/+xwoTkd+fg8UnzM6/9avmahyVEQB9sopxwcAZB0oOt9HCFVDX9o+fYROM5TvpZdeQlpaGtRqNfz9/d3uk5ubi/Hjx0OtViM0NBRPPvkkLJa6l9X1pNaem6apdDodjh49irvvvhve3t7OjxdffBFHjx4FYC+LzcjIQK9evfDwww/jt99+a9U2iKL9dpwgCAAAq9WK+fPno0+fPggMDIS3tzfWrl2L3NzcBs/1zjvvYNCgQQgJCYG3tzc+/PDDRh1H1FLr1+dg/fpcrF+f02rndEyAO336Tdi4cSOCk5MR++03UMTFQbX6a1wTmu+c1Hzbtrw6l3ytPr9UTR11qdjG6koxgfGA8YC6jsbGBLny/L1hibT+P8djY/0waVIy/vhjI4ZfPhamSgusFhE2m63WpOaOCqo9NX63V59fyp26jusMulI8ABgTAMYE6hpaq49w5a3TMfS2u6AvKUHegZ3w9ffGfU88hT//2o6BI0ZD4x8AqVyO6+6ciMjLp0CoLEDmls31/q1ffX6pmjzVR+g0FVMmkwk33XQTUlNT8cknn9R63Gq1Yvz48QgPD0d6ejry8vJwxx13QC6X4+WXX/ZAi+vnGG/amnPTNEVF1UpfH330ES699FKXxxwltwMHDsTx48fxyy+/YP369Zg8eTJGjhyJ77//vlXakJWVBcB+9wIAFi1ahDfffBNvvPEG+vTpA41Gg0cffRQmU/1Z2m+++QYzZ87Ea6+9htTUVPj4+GDRokXYvn17q7STqD4jR8a6fG5tjj/K5MHB+HbgAKTv24eXvvsOkZekAn1HIS7O11kxVVP1CqmaHPv37xcKbYEOp7IKEBXlA8/cm226rhQTGA8YD6jraGxMkCvPJ6MkEqFR5xYEAWpfBcoKK3HqdC4eeupOvPDvhYiJSQJgTz6p1fY/7fvViAk1K6Rqcuzfr18oCrQ6ZGedgyJIhYDwuo/pKLpSPAAYEwDGBOoaWrOPkHLtJPQZMQaVZaWQyGT2ZJTsfCpn3rx5OHbsGObOfQPrc/dBd2ofEodcBCDEfR+hWoVUTS59BK0exw4VIDomoMXPoSGdJjHlKMNcsmSJ28d/++03HDhwAOvXr0dYWBj69++P+fPnY9asWZg7dy4UCoXb44xGI4xGo/PrsrL2meCrreamaaywsDBERkbi2LFjmDp1ap37+fr64uabb8bNN9+MG2+8EWPGjMG5c+cQGBgIuVwOq7XpSxY7OFYAGTlyJABg69atmDBhAm677TYAgM1mw+HDh5GUlOQ8RqFQ1Lrm1q1bkZaWhgceeMC5zXFHh6itDRnSrdWG8NXn2LFjeH7+fJjNZoh9+uDlHdsQU1KIoH/9C2lp7q+fnn4K27blITk5EMFVc0w5ElWJicHOoX87d+XjeHYJBAjo2ebPpHW0RUxgPGA8IGqpxsYEx1A+QSJAIm1cYgoANH4KmAxWvPX+Ihw4tB/T75+Mxe9+i0EpgwHYE1Du5ppKTz+Fbel5SE2LQEJ8gMt8U4B9firHcbt25iMnpxTqcDWSB4Y1um2e0pXiAcCYADAmUNfQ2n0EpVoNpbp2MunAgQN48cUXYbVaYbPZ8O7/3sLnj98Pw6lduOWWm503uatLTz+NbelnkJQchJAQtXOuKQBITApyDv3buTMfR4+WQJC2fdqo0wzla8i2bdvQp08fhIWdD6CjR49GWVkZMjMz6zxuwYIF8PPzc35ER0e3R3M7hHnz5mHBggV46623cPjwYezbtw+LFy/G66+/DgB4/fXXsXTpUhw8eBCHDx/Gd999h/DwcGeZdPfu3bFhwwbk5+c7V82oS0lJCfLz85GTk4N169bhxhtvxNdff4333nvPeb6EhASsW7cO6enpyMrKwr333ouzVSuROXTv3h3bt2/HiRMnUFhYCJvNhoSEBOzcuRNr167F4cOH8dxzz2HHjh2t/noReVKPHj2wfPlyKBQK/LxvH2Z6a1B28iTOvvQSjHX8kbVtWx4yMwuxZctpHDp4Dvv2FmLnrnxoC1znDomJ8UHPeH9ERnm3x1NpF82JCYwHjAdE7cUxlE/SxMSU2k8Js8GCZx59EZelDEGFrgLT7rsJf6RvrPe4ben2eLAtPc8539TefYXYtTMfBdraMSE21g8J8f5Nfl4dEeNB0zEmEHUeSUlJ+PbbbyGTyfDVV19h+t33oN/4Ccg/lg3tiWNuj9mWfgb7M4vwx5bTOHjwHPbtLcDOnfnQavUu+8XE+KJnT390i3I/DLw1dZnEVH5+vkvAAeD8Oj8/v87jZs+ejdLSUueHY0WJC8E999yDjz/+GIsXL0afPn0wdOhQLFmyxFk26+Pjg4ULFyIlJQWXXHIJTpw4gTVr1kAisb9tXnvtNaxbtw7R0dEYMGBAvde68847ERERgd69e+P++++Ht7c3/v77b9x6663OfZ599lkMHDgQo0ePxrBhwxAeHo7rr7/e5TwzZ86EVCpFUlISQkJCkJubi3vvvReTJk3CzTffjEsvvRRFRUUud0aImisnpxRr1hxDTk6pp5sCALjmmmuwcuVKeHl5Yd3u3XhAKkG5Ro2CN95A2dq1zjkZHFJTI5CcHIwrr4xCr96BAEQccrMUeGiIBn37hCA4yKsdn03bak5MYDxgPCCqS2vHA2XVkDuFlxQSWeP/HPfyUcBqESGXKvHJ21/jitRh0Ffqcc//TcXqX1fUeVxqmj0epKZFOOebAsSq5cBdY0JIqAaJiYGIjOwaNysYD5qOMYGofh2tj3DDDTfgu+++g0KhwIoVKzDnnY8g1fjg0NYtsNlstfZPTYvExclBuOLKqKp4gKp44FodGhqqRt++IQgObvs+giDW7Mm0o6effhqvvPJKvftkZWU5V2YA7GW6jz76KEpKSlz2+9e//oWcnBysXbvWuU2v10Oj0WDNmjUYO3Zso9pUVlYGPz8/lJaWwtf3/GRgBoMBx48fR1xcHFQqVaPORdSR8D3cdGvWHMO2bWeQmhqJceN6eLo5Tlu3bsU111yDkpISXJyUhE8vS4X31q1Q9OyJwDvvhCww0O1x2oLzy4XXnHvKUlwMQRDgd/0ECJKm3bOo6/dmU3W0mFDf8+LPE3V2fA83TVvEg52/nIBCJUWfod0gNHKeqZMHzmHVWxlIGdcdod19YTKbMPPfD2L12pUQBAFzZ/8Ht998V6POVaDV1RrS51ByVofufYKbNcdUa8QExgOi9sP3cNN11D7Cxo0bMWHCBJSXlyPpogTc1DsWQyfdhJiL+9V7nFarR25umcuQPgd9aQmkMjmSrhze5PY0JR54dI6pJ554AtOnT693nx49GveNDg8Px99//+2yzVHi2dylSonowubpCUjrMmTIEGzZsgWjR4/G/gMHkDVrFq4dOwbaVxbi7Pz58LvhBmiGDKk1pry+ydA7AsYEIuqo2iIepIztDtEmNjopBQBevnIAgLHSvqKcQq7Afxe8jwD/QHzx7adY+v3nmDxxKpQKJQCgRKvH0V1aGCrMCI7xQXxKKKRVqwA2NCG6JzEeEFFH1lH7CFdddRU2bdqEMWPG4MDhIyhKjMfB9D8Q2SsJMrm8zuPqmwy9vXg0MRUSEoKQkJBWOVdqaipeeuklaLVahIbaZ5Jft24dfH19XSbGIyJqLE9PQFqfPn36ID09Hb/++ivuuOMOAIAmNRV5s59ByddfQ5+eDv/bboMiMtLluPqqpjyNMYGIOqq2igdNSUoBgEpjn6jbbLQ4t0mlUsyd/R90j+2B8VdPcCalCnLLsXPNCag0MngHqnDsHy3KCiqRMr6788bF8YNFOHWsDGERaoRH+0Ljp4RU7vmZPhgPiKgj68h9hIEDB2Lr1q3YsmULxl45BEufnYlD6VuQPHREvcdptXocO3wGGqEISpkFKo03Qru3XzVYp1mVLzc3F+fOnUNubi6sVisyMjIAAPHx8fD29sbVV1+NpKQk3H777Vi4cCHy8/Px7LPP4sEHH4RSqfRs44mI6pCTU4rMzCIkJwc1OcAJQgBUqsuxZMk+XHVVDLRaHb4N7oP7Hh0B6xcfQvvyy9AMGQK/CRMgqVrFIze3HIcOngOADpeYagrGBCLqahoTD7y87Xe8LUbXOUMEQcA1o27D3r2FAE4gLMgL3332BVL6XIGx96YhOMYX+zefQvoPR1F0ugLB3XyQf7QUWb+fBgCUnyhH9jZ7FZGXjxwqjRzderX98uCtgfGAiLqilvQRFIpQSKWX4retZnTrexl2//kH1u7OwW1Tb3FbGaUrKcbu1T/BUJgDAJApFLCYTIAgILxHPJKurD+p1Ro6TWJqzpw5+Oyzz5xfOybS27hxI4YNGwapVIrVq1fj/vvvR2pqKjQaDaZNm4YXXnjBU00mImpQZmYRtm07AwBNCjo5OaVYsmQ/du48C41GjoAAGWbNuhWHDmXg2MS7sfTHlSh68y2UrliB8r+2Q5Z6BcKvH4+YGPuqGo7PnRVjAhF1NY2JB1K5BHKl1KViCrDPF7VhQw6OZJdApZRBV7QdX/z+Cn7d8wWuuutXRCj6IPmKKKQvP4r9O84iWSFB9m4tNIFK+CYHIK67H1SCBOfOVKA4Xw99qRFyVefoJjAeEFFX1Fp9hBuuG4WPX3sNp4t/xSmtFq++9BQkEgm0Wj1OHCuCUJKFvMydkMiV8I9PRd/hw5FwcRyMeh0yN63Hvt/XInd/BgaMuaatniqATpSYWrJkCZYsWVLvPrGxsVizZk37NIiIqBU0d4x6ZmYRCgsNiI/3R79+IejXLwLjxo3FoUMZWLHiE4wrPY6lS5fiZOww4OuP0O3PjcjbkQ7NkCEYMHw4pP6dt1oKYEwgoq6nsfFAqZbBbHKtmMrNLUdZmRkREd7oHu2Nk7viEBoQBW3RaVyWehk++ugj3HrrrZCpZSgp0OP40RKUFVQi+YpIDJ3Sq9aQQovZCmkTVgv0JMYDIuqKWquPkJLaDaPGXIslS7/AqnUrUVB0Av959hkc3nUYxUd3QyKaEdd/EAZffwPCeiRArjhfSRoW1xP9x1wD0Vp7Zb/W1mkSU0REHV1zSm6bO0Y9OTkIWq0egIirropBbKwfXn/9ZVx2WX/cdddd+P333zFgwAC8+eYnUD/xIlTys5Cv/Aq6LVtQvmEDzgXEwis1FQmjUyHIGAqIiFpTW8YDlbccFqMVoig654qKifFBSakRgIhQpRzmwBj8uup3PDn3AWzYsAFTp07F1q1bkRp+K4RyAcF+ShQCKDVZ8ML8dIwcGYshQ7o5ryGTS5vztImIyA1P9xEWf/05Lk6Mx+x5L2Db7gxMuO0O3J46CL0u6oOLh4/FJVcPxT/7yvHJtztrxYPAiKgmt6E5OsetECKiTsBRcpuZWdTm14qN9UNoqBpHj5a6XG/y5Mn4+++/kZiYiDNnzuCWW65B1sGV6D7yMnR7523ErfoRRxKGQ1JSBPXPS3Fm1iwUffIJKvfsgU2vb/N2ExFdCNoyHqg0cljMNthsonNbSKgG/n5K5OfpkZddisAIDS7qE4u1a9fi2WefBQC8++67mP/pvajQa6GQ2LsA+4+cw/r1uVi/PqfV20lERHYdoY/wxHNz8OcffyAmKhIlegPe37wd+uhoXDFxPNS+fli/Psej8YCJKSKiVpKcHITU1Mh2Wzq2ruslJSXh77//xpQpU2C1WvHll1/CYrFAEAQou3dH8KynsXHSApQ9OBfeV16JiqMnULpsGU7+uLZd2k1E1NW1ZTzw8lHAbLRCrJaYAuxVU/GxvrDoLeiWGAi1jwJSqRTz58/HmjVrEBgYiMMnMnHs1EHoy0yQSAVcenkURo6MwciRsc7zbN16CvPmbcXWradave1ERBeijtJHGJyair2ZBzBp0iSYLRb88OMq2ER7LBk5Mtaj8YDjN4iIWkl7Lx1b3/W8vb3x1Vdf4YorrsAVV1wBhcK+xLjNZkNaWlS1Et2b8fm/1+Hw+l24JDQU/SS8X0FE1FJtGQ+8fOQwG62wWUVAfn57SKgGxSfKUSKXICEl1GXeqLFjx2L37t14ff57SFIPgclghUwpRcol4Rg5rqfL+R13zQG4DOcgIqLm6Uh9BD8/P3z//ff43//+hzFjxkBWNaVHampkrd/57RkP2AOhVjN9+nRcf/31zq+HDRuGRx99tEXnbI1zEF2oBEHA/fffj4svvti57YUXXsCkSZNw8uRJ57ah4xIRN+4K9L/1ak80k7ooxgSitlFXxZQoijh9qBjB3bzhG+RV67jY2FjMuP0hWM02WExWlFeew6WXD8KXX34JUTx/Lnd3zYlagvGAqGMRBAEPP/wwLrroIue2p59+GjfffDPOnDnj3Nae8YCJqQvA9OnTIQgCBEGAQqFAfHw8XnjhBVgsloYPboHly5dj/vz5jdp306ZNEAQBJSUlzT4HEdVPq9XilVdewcqVK5GYmIhXX30VZrMZQ4Z0w/PPD+Gd8QsEYwJR56b2VVQll1xXSSrO16Oy3IyY5ECovOVuj5UppRBFwGK04tcdX+Hw4UO4/fbbMWLECBw8eBAAGBMuIIwHRAQAJ0+exBtvvIFly5ahd+/eeOutt2C1Wts1HjAxdYEYM2YM8vLycOTIETzxxBOYO3cuFi1aVGs/k8nUatcMDAyEj4+Px89BRHahoaH4+++/MWTIEOh0Ojz55JMYOHAg1q7l3FIXGsYEos5L7WMfmm00uCYPTh08B6Vahrh+Ic7V+mqSK+yr7ZkMVtx69f/hhXkvQqVSYePGjejbty+efPJJFBcXt+0ToA6F8YCIoqOjsX37dgwePBjl5eV45JFHcMkll2Djxo3t1gYmpi4QSqUS4eHhiI2Nxf3334+RI0di1apVztLal156CZGRkejVqxcAe9Z08uTJ8Pf3R2BgICZMmIATJ044z2e1WvH444/D398fQUFBeOqpp1zKwIHaJbZGoxGzZs1CdHQ0lEol4uPj8cknn+DEiRO46qqrAAABAQEQBAHTp093e47i4mLccccdCAgIgFqtxtixY3HkyBHn40uWLIG/vz/Wrl2LxMREeHt7OwMuEQF9+vTBli1b8MknnyAwMBD79+/HmDFjcPXVV7uU7lLXxpjAmECdl6MayqQ/n5iyWmzIyy5FWA8/+ASq6jxWprQnpsxGC5RKJZ6e9TQOHDiAcePGwWw249VXX0V8fDw+/fTTtn0S1GEwHjAeEAHAgAEDkJ6ejvfeew/+/v74559/MHz4cIwfPx5arbbNr8/Jz1tIr9c7S5/bU+/evaFWq5t9vJeXF4qK7MtHbtiwAb6+vli3bh0AwGw2Y/To0UhNTcUff/wBmUyGF198EWPGjMHevXuhUCjw2muvYcmSJfj000+RmJiI1157DStWrMDw4cPrvOYdd9yBbdu24a233kK/fv1w/PhxFBYWIjo6Gj/88ANuuOEGHDp0CL6+vvDyqj03AmAvOT5y5AhWrVoFX19fzJo1C+PGjcOBAwcgl9v/UNPr9Xj11VfxxRdfQCKR4LbbbsPMmTPx1VdfNfv1IupKJBIJ7rrrLkyYMAEvvfQS3n77bRw6dAiBgYGeblqn54mY0NJ4ADAmEHUmXj7297ZRb3Zu054og9VsQ48BwVBp3A/jA85XTJmNNnj5CpBIBMTFxWH16tVYs2YNnnrqKRw4cAA2m63Oc1DjsI/AeEDU2UilUtx3332YNGkS5s+fj/fffx+HDx+Gv79/219cJBelpaUiALG0tNRle2VlpXjgwAGxsrLSZfuuXbtEAO3+sWvXrkY/p2nTpokTJkwQRVEUbTabuG7dOlGpVIozZ84Up02bJoaFhYlGo9G5/xdffCH26tVLtNlszm1Go1H08vIS165dK4qiKEZERIgLFy50Pm42m8Vu3bo5ryOKojh06FDxkUceEUVRFA8dOiQCENetW+e2jRs3bhQBiMXFxS7bq5/j8OHDIgBx69atzscLCwtFLy8vcdmyZaIoiuLixYtFAGJ2drZzn3feeUcMCwtr3IvVhdX1HiY6evSouHnz5mYfX9fvzc6uvufVkWJCU+KBKDImMCbYMSZ0XsZKs/j2vRvEtR/vE4/tKRCP7SkQv/vPDnHx03+KJVpdvcdqc8rEt+/dIL77wO/i96/sFK0Wq8vjZrNZ/Prrr0Wz2dzs9nXFmNBZ4gH7CIwHzcF4QHU5fPiw+Oeffzb7+KbEA1ZMtVDv3r2xa9cuj1y3KVavXg1vb2+YzWbYbDbceuutmDt3Lh588EH06dPHuZQ8AOzZswfZ2dm1xm0bDAYcPXoUpaWlyMvLw6WXXup8TCaTISUlpVaprkNGRgakUimGDh3apHZXl5WVBZlM5nLdoKAg9OrVC1lZWc5tarUaPXueX/o4IiKiXcoPidra1q2nsH59DkaOjK1zEsKcnFJkZhYhOTmo0cvS9ujRAz169GjNpl6wPBETmhoPAMYExgTqzBQqGWReUmTuKYBFI0NiUjCK8/WI6OkHjZ/SuZ+7eCBT2GfxsFlFSGUCBInrXFQymQxTpkxpvyfThbGPYMd4QNT22qqPkJCQgISEhNZsap2YmGohtVqNgQMHeroZDbrqqqvw3nvvQaFQIDIyEjLZ+W+9RqNx2beiogKDBg1yW9YaEhLSrOvXVXbbFhzlug6CINQZDIk6k/Xrc7B+fS4A1Bl0MjOLsG2bfa6oxgYdaj2MCY3DmEDUMjqbDaZyM/ZknEV8zwCYKi3wD1dDVjVUD3AfD6o/LlNI6pwknVqO8aBxGA+IWq4r9BE4+fkFQqPRID4+HjExMS4Bx52BAwfiyJEjCA0NRXx8vMuHn58f/Pz8EBERge3btzuPsVgs9d4V6tOnD2w2GzZv3uz2ccfdGKvVWuc5EhMTYbFYXK5bVFSEQ4cOISkpqd7nRNQVjBwZi5EjYzByZGyd+yQnByE1NRLJyUHt2DLqbBgTiDq3Hn2D4a2UoXfPAFQUGwAAIdHeLvu4iwfyaokpqVwKIsYDos6vK/QRmJiiWqZOnYrg4GBMmDABf/zxB44fP45Nmzbh4YcfxqlTpwAAjzzyCP7zn/9g5cqVOHjwIB544AGUlJTUec7u3btj2rRpuOuuu7By5UrnOZctWwYAiI2NhSAIWL16NQoKClBRUVHrHAkJCZgwYQJmzJiBP//8E3v27MFtt92GqKgoTJgwoU1eC6KOZMiQbnj++SF13gkB7HdAxo3r0SHvhFDnxJhA1PGMnJQAAYC3VIqKYiMAIDDSNTHlLh5IZOcrpBzD+ogai/GAqGPqCn0ERiSqRa1WY8uWLYiJicGkSZOQmJiIu+++GwaDAb6+vgCAJ554ArfffjumTZuG1NRU+Pj4YOLEifWe97333sONN96IBx54AL1798aMGTOg0+kAAFFRUZg3bx6efvpphIWF4aGHHnJ7jsWLF2PQoEG45pprkJqaClEUsWbNmlqluURkH28+b95WbN16ytNNoU6MMYGo4/EOUCEgQo1z+TqUF1VCpZHBy7vu970jHvy9I8+5TSZnN4CahvGAqGvoiH0EQeTAWhdlZWXw8/NDaWmp8xcsYJ/U7/jx44iLi4NKpfJgC4mah+/hC8+8eVuxfn0uRo6MwfPPD2mz69T1e7Ozq+958eeJOju+hzu/Ld8cwpEdWqj97EOdJj4xECqN+0549XgQnGevsOo7vBuumHxRq7erK8YExgPqyvgevvB0xD4CJz8nIuqiHOPM6xtvTkREnVNEvD/2bToNY6UF0YkBLvNH1VQ9HmR8cRgAh/IREV2oOmIfgYkpIqIuasiQbvWONScios4rvId9nhDRJsI3WAVpPUPzqscDR2JKrmA3gIjoQtQR+wi8VUJERERE1Ml4Byid/6858XljyJTsBhARUcfAiERERERE1MkIgoCES8Kg8JIhrLtPk4+XK+se+kdERNSeWMNLRERERNQJjZiWiOI8HfzC1E0+lqvyERFRR8HEFBERERFRJySVSRAc3fRqKQCQylkxRUREHQNvlRARERERXWDqmyydiIioPTEiERFdwLZuPYV587Zi69ZTnm4KERG1I7midjeAMYGIiID2jwccytcKbAYDRLO53a4nyOWQqFTtdj0i6vxyckqRmVmE5OQgxMb6ObevX5+D9etzAaDDLRvbWVlMVlitYrtcSyoVIFNwOA4RNV7v1HCcOlKCnRlaWFVSxoQ2ZDYZYbNY2u16EpkMcoWy4R2JiKp0lD4CE1MtZDMYUL5hA6xl5e12TamvD3xGjOiQyanp06ejpKQEK1euBAAMGzYM/fv3xxtvvNHsc7bGORqyadMmXHXVVSguLoa/v3+bXaetCYKAFStW4Prrr/d0U6iDycwswrZtZwDAGXRyckqh0SiQkhKGkSNjPdm8LsNisuL4nkIY9O1zs0KlliOuX3CHTE4xHngW4wHVZfgdifjphyPYkXEWCh8FY0IbMZuMOLrjLxh0una7pkqjQc9LLuuQySnGBM9iTKC6dJQ+AhNTLSSazbCWlUOiVEJQtn0QEI1GWMvK7RVajUxMTZ8+HZ999hkAQC6XIyYmBnfccQeeeeYZyGRt+xZYvnw55HJ5o/at6xd/U87RXGlpacjLy4Ofn1/DO1epGWCJOrLk5CCXz4A9EJWWGjFqVHfeGW8lVqsIg94MmVza5vO3WM02GPRmWK1io4M540HDGA+oqxMEAf0uCYNMLWNMaEM2iwUGnQ4yhRwyhaLNr2cxmWDQ6ewVWo1MTDEmNIwxgbq6jtJHYGKqlQhKJSReXm1+HRsAGI1NPm7MmDFYvHgxjEYj1qxZgwcffBByuRyzZ8+uta/JZIKilQJoYGBghzhHQxQKBcLDw9v8Ou605utNVJfYWD+X8lzAfSCi1iGVSyBXtn0Vk8VsbfIxjAf1YzygCwFjQvuRKRSQK9tnlIPF1PRqXcaE+jEmUFfXUeIBJz+/QCiVSoSHhyM2Nhb3338/Ro4ciVWrVgGwZ/Wvv/56vPTSS4iMjESvXr0AACdPnsTkyZPh7++PwMBATJgwASdOnHCe02q14vHHH4e/vz+CgoLw1FNPQRRd51UZNmwYHn30UefXRqMRs2bNQnR0NJRKJeLj4/HJJ5/gxIkTuOqqqwAAAQEBEAQB06dPd3uO4uJi3HHHHQgICIBarcbYsWNx5MgR5+NLliyBv78/1q5di8TERHh7e2PMmDHIy8ur8/XZtGkTBEFASUlJo84xd+5cfPbZZ/jxxx8hCAIEQcCmTZsa9bq5e72feeYZXHrppbXa1a9fP7zwwgsAgB07dmDUqFEIDg6Gn58fhg4dit27d9f5nIgaEhvrh3HjetQKRtS1MR4wHhC5w5hwYWJMYEwgqskT8YCJqQuUl5cXTCaT8+sNGzbg0KFDWLduHVavXg2z2YzRo0fDx8cHf/zxB7Zu3er8xes47rXXXsOSJUvw6aef4s8//8S5c+ewYsWKeq97xx13YOnSpXjrrbeQlZWFDz74AN7e3oiOjsYPP/wAADh06BDy8vLw5ptvuj3H9OnTsXPnTqxatQrbtm2DKIoYN24czNUmoNfr9Xj11VfxxRdfYMuWLcjNzcXMmTOb9BrVd46ZM2di8uTJzkCUl5eHtLS0Rr1u7l7vqVOn4u+//8bRo0ed+2RmZmLv3r249dZbAQDl5eWYNm0a/vzzT/z1119ISEjAuHHjUF7efvObEVHXw3jQMMYDIrpQMCY0jDGBqPVxKN8FRhRFbNiwAWvXrsX//d//ObdrNBp8/PHHznLRL7/8EjabDR9//DEEQQAALF68GP7+/ti0aROuvvpqvPHGG5g9ezYmTZoEAHj//fexdu3aOq99+PBhLFu2DOvWrcPIkSMBAD169HA+7ijHDQ0NrXNywSNHjmDVqlXYunUr0tLSAABfffUVoqOjsXLlStx0000AALPZjPfffx89e/YEADz00EPOuwqNVd85vL294eXlBaPR6FLe25jXDaj9egP2Ox9ff/01nnvuOefzuvTSSxEfHw8AGD58uEv7PvzwQ/j7+2Pz5s245pprmvTciIgYDxqP8YCIujrGhMZjTCBqfayYukCsXr0a3t7eUKlUGDt2LG6++WbMnTvX+XifPn1cfgHu2bMH2dnZ8PHxgbe3N7y9vREYGAiDwYCjR4+itLQUeXl5LqWlMpkMKSkpdbYhIyMDUqkUQ4cObfbzyMrKgkwmc7luUFAQevXqhaysLOc2tVrtDBYAEBERAa1W26RrNeccDb1uDjVfbwCYOnUqvv76awD2Pw6WLl2KqVOnOh8/e/YsZsyYgYSEBPj5+cHX1xcVFRXIzc1t0vOiC1dOTinWrDmGnJxSTzeFPIjxgPGAiPGAHBgTGBOIOkJMYMXUBeKqq67Ce++9B4VCgcjIyForbWg0GpevKyoqMGjQIHz11Ve1zhUSEtKsNni1w+TwDjVX6BAEodbY9rY4R2Nft5qvNwBMmTIFs2bNwu7du1FZWYmTJ0/i5ptvdj4+bdo0FBUV4c0330RsbCyUSiVSU1Ndyn+J6uNuOVi68DAeMB4QMR6QA2MCYwJRR4gJTExdIDQajbPcszEGDhyIb7/9FqGhofD19XW7T0REBLZv344rr7wSAGCxWLBr1y4MHDjQ7f59+vSBzWbD5s2bnWW61TnuDlitda8ylZiYCIvFgu3btzvLdIuKinDo0CEkJSU1+vm1BoVCUautjXnd6tKtWzcMHToUX331FSorKzFq1CiEhoY6H9+6dSveffddjBs3DoB9AsXCwsKWPxG6YHDFJQIYD9oC4wF1NowH5MCY0PoYE6iz6QgxgUP5WoloNMJWWdnmH6LR2C7PZ+rUqQgODsaECRPwxx9/4Pjx49i0aRMefvhhnDp1CgDwyCOP4D//+Q9WrlyJgwcP4oEHHnCuWOFO9+7dMW3aNNx1111YuXKl85zLli0DAMTGxkIQBKxevRoFBQWoqKiodY6EhARMmDABM2bMwJ9//ok9e/bgtttuQ1RUFCZMmNAmr0V9z2fv3r04dOgQCgsLYTabG/W61Wfq1Kn45ptv8N1337mU6AL25/7FF18gKysL27dvx9SpU9v1DhN1flxxqf1YzTaYjdY2/bCabe3yXBgPGsZ4QJ0N40H7sZhMMBsNbf5haafqGMaEhjEmUGfTEWICE1MtJMjlkPr6wGY0wlpW1uYfNqMRUl8fCDVKSFubWq3Gli1bEBMTg0mTJiExMRF33303DAaDM8v/xBNP4Pbbb8e0adOQmpoKHx8fTJw4sd7zvvfee7jxxhvxwAMPoHfv3pgxYwZ0Oh0AICoqCvPmzcPTTz+NsLAwPPTQQ27PsXjxYgwaNAjXXHMNUlNTIYoi1qxZU6ustq3NmDEDvXr1QkpKCkJCQrB169ZGvW71ufHGG1FUVAS9Xo/rr7/e5bFPPvkExcXFGDhwIG6//XY8/PDDLndLiMjzpFIBKrUcFrMVRr25TT8sZitUajmkUqFNnxPjQcMYD4ioJolMBpVGA4vJDEOFrs0/LCYzVBoNJLK2HRDDmNAwxgSiphPEpg6q7eLKysrg5+eH0tJSl18SBoMBx48fR1xcHFQqlcsxNoMBYrVlSNuaIJdDUqMNRA2p7z1M1BJ1/d7s7Op7XvX9PFlMVlit7RNapVIBMoW0Xa5FXQtjArWVrhgTmhsPzCYjbBZLu7VTIpNBrlC22/Woa2A8oLbSlHjAOaZagUSlAvhDTEREAGQKKYMrERHZk0RMFBERNYhD+YiIiIiIiIiIyCOYmCIiIiIiIiIiIo9gYoqIiIiIiIiIiDyCiSkiIiIiIiIiIvIIJqaIiIiIiIiIiMgjmJgiIiIiIiIiIiKPYGKKiIiIiIiIiIg8gokpIiIiIiIiIiLyCCamujhBEOr9mDt3bru1ZdiwYc7rqlQqJCUl4d1333U+vmTJEvj7+7dbe4g6i5ycUqxZcww5OaWebgp1YowHRF0DYwK1BsYEos6vK8UDmacbQG0rLy/P+f9vv/0Wc+bMwaFDh5zbvL29nf8XRRFWqxUyWdu9LWbMmIEXXngBer0en3/+OR588EEEBARgypQpbXZNos4uM7MI27adAQDExvp5uDXUWTEeEHUNjAnUGhgTiDq/rhQPWDHVxYWHhzs//Pz8IAiC8+uDBw/Cx8cHv/zyCwYNGgSlUok///wT06dPx/XXX+9ynkcffRTDhg1zfm2z2bBgwQLExcXBy8sL/fr1w/fff99ge9RqNcLDw9GjRw/MnTsXCQkJWLVqVSs/a6KuJTk5CKmpkUhODvJ0U6gTYzwg6hoYE6g1MCYQdX5dKR50moqpl156CT///DMyMjKgUChQUlJSax9BEGptW7p0KW655ZY2bZtOp6vzMalUCpVK1ah9JRIJvLy8GtxXo9E0o5V1e/rpp/Hqq6+iR48eCAgIaNQxCxYswJdffon3338fCQkJ2LJlC2677TaEhIRg6NChjb62l5cXTCZTc5tOdEGIjfXr9HdBWhtjgh3jAdGFhzHBFePBeYwJRBeWrhQPOk1iymQy4aabbkJqaio++eSTOvdbvHgxxowZ4/y6PcYjVy91rWncuHH4+eefnV+HhoZCr9e73Xfo0KHYtGmT8+vu3bujsLCw1n6iKDa/sW688MILGDVqVKP3NxqNePnll7F+/XqkpqYCAHr06IE///wTH3zwQaOCjtVqxdKlS7F3717861//anbbiejCxJhgx3hARBc6xoPzGBOIqLPqNImpefPmAbBPflcff39/hIeHN/q8RqMRRqPR+XVZWVmz2teZpaSkNGn/7Oxs6PX6WoHKZDJhwIAB9R777rvv4uOPP4bJZIJUKsVjjz2G+++/v8ltJqILW1vEBMYDxgMi6nwYD9oOYwIRtZdOk5hqrAcffBD33HMPevTogfvuuw933nmn2/JdhwULFjgDWnNVVFTU+ZhUKnX5WqvV1rmvROI65deJEyda1K7Gqln2K5FIat1xMZvNzv87nu/PP/+MqKgol/2USmW915o6dSr+/e9/w8vLCxEREbWeMxFRa2pKTGiNeAB07pjAeEBEXRXjQdMxJhBRe+lSiakXXngBw4cPh1qtxm+//YYHHngAFRUVePjhh+s8Zvbs2Xj88cedX5eVlSE6OrpJ123KeO622rc1hYSEYP/+/S7bMjIyIJfLAQBJSUlQKpXIzc1t0lhxAPDz80N8fHyrtZWIqC5NjQmtEQ+ArhUTGA+IqCtgPGgdjAlE1FY8mph6+umn8corr9S7T1ZWFnr37t2o8z333HPO/w8YMAA6nQ6LFi2qNzGlVCobzOBfaIYPH45Fixbh888/R2pqKr788kvs37/fWYLr4+ODmTNn4rHHHoPNZsPll1+O0tJSbN26Fb6+vpg2bZqHnwERdUaejgmMB7UxHhCRJzAedEyMCUTUVjyamHriiScwffr0evfp0aNHs89/6aWXYv78+TAajQwuTTB69Gg899xzeOqpp2AwGHDXXXfhjjvuwL59+5z7zJ8/HyEhIViwYAGOHTsGf39/DBw4EM8884wHW050Ydu69RTWr8/ByJGxGDKkm6eb02SMCR0P4wFR59WZYwLjQcfEmEDUOXWGeCCIrb18QxtbsmQJHn30UbdLwdb00ksv4bXXXsO5c+caff6ysjL4+fmhtLQUvr6+zu0GgwHHjx9HXFycy9KuRJ0F38Nd37x5W7F+fS5GjozB888Pabfr1vV7sz20ZUyo73nx54k6O76Hu74LLSYwHhA1D9/DXV9niAedZo6p3NxcnDt3Drm5ubBarcjIyAAAxMfHw9vbGz/99BPOnj2Lyy67DCqVCuvWrcPLL7+MmTNnerbhRETtZOTIWJfPXRljAhFR/S6UmMB4QERUv84QDzpNYmrOnDn47LPPnF87xjJv3LgRw4YNg1wuxzvvvIPHHnsMoigiPj4er7/+OmbMmOGpJhMRtashQ7p12PLc1saYQERUvwslJjAeEBHVrzPEg043lK+tcSgfdVV8D1Nb8eRQvrbEoRvUlfE9TG2lK8YExgPqyvgeprbSlHggaac2ERERERERERERuWBiqolYYEadFd+7RK2PP1fUWfG9S9S6+DNFnRXfu9QRMDHVSHK5HACg1+s93BKi5nG8dx3vZSJqPsYE6uwYE4haB+MBdXaMB9QRdJrJzz1NKpXC398fWq0WAKBWqyEIgodbRdQwURSh1+uh1Wrh7+8PqVTq6SYRdXqMCdRZMSYQtS7GA+qsGA+oI2FiqgnCw8MBwBl4iDoTf39/53uYiFqOMYE6M8YEotbDeECdGeMBdQRMTDWBIAiIiIhAaGgozGazp5tD1GhyuZx3QYhaGWMCdVaMCUSti/GAOivGA+oomJhqBqlUyh9gIiICwJhARER2jAdERM3Dyc+JiIiIiIiIiMgjmJgiIiIiIiIiIiKPYGKKiIiIiIiIiIg8gnNM1SCKIgCgrKzMwy0hIuocHL8vHb8/uwrGAyKipuuKMYHxgIio6ZoSD5iYqqG8vBwAEB0d7eGWEBF1LuXl5fDz8/N0M1oN4wERUfN1pZjAeEBE1HyNiQeC2JVuZ7QCm82GM2fOwMfHB4IgeLo5REQdniiKKC8vR2RkJCSSrjNCnPGAiKjpumJMYDwgImq6psQDJqaIiIiIiIiIiMgjusZtDCIiIiIiIiIi6nSYmCIiIiIiIiIiIo9gYoqIiIiIiIiIiDyCiSkiIiIiIiIiIvIIJqaIiIiIiIiIiMgjmJgiIiIiIiIiIiKPYGKKiIiIiIiIiIg8gokpIiIiIiIiIiLyCCamiIiIiIiIiIjII5iYIiIiIiIiIiIij2BiioiIiIiIiIiIPIKJKSIiIiIiIiIi8ggmpoiIiIiIiIiIyCOYmCIiIiIiIiIiIo9gYoqIiIiIiIiIiDyCiSkiIiIiIiIiIvIIJqaIiIiIiIiIiMgjmJgiIiIiIiIiIiKPYGKKiIiIiIiIiIg8gokpIiIiIiIiIiLyCCamiIiIiIiIiIjII5iYIiIiIiIiIiIij2BiioiIiIiIiIiIPIKJKSIiIiIiIiIi8ggmpoiIiIiIiIiIyCOYmCIiIiIiIiIiIo9gYoqIiIiIiIiIiDyCiSkiIiIiIiIiIvIIJqaIiIiIiIiIiMgjmJgiIiIiIiIiIiKPYGKKiIiIiIiIiIg8gokpIiIiIiIiIiLyCCamiIiIiIiIiIjII5iYIiIiIiIiIiIij2BiioiIiIiIiIiIPIKJKSIiIiIiIiIi8ggmpoiIiIiIiIiIyCOYmCIiIiIiIiIiIo9gYoqIiIiIiIiIiDyCiSkiIiIiIiIiIvIIJqaIiIiIiIiIiMgjmJgiIiIiIiIiIiKPYGKKiIiIiIiIiIg8gokpIiIiIiIiIiLyCCamiIiIiIiIiIjII5iYIiIiIiIiIiIij2BiioiIiIiIiIiIPIKJKSIiIiIiIiIi8ggmpoiIiIiIiIiIyCOYmCIiIiIiIiIiIo9gYoqIiIiIiIiIiDyCiSkiIiIiIiIiIvIIJqaIiIiIiIiIiMgjmJgiIiIiIiIiIiKPYGKKiIiIiIiIiIg8gokpIiIiIiIiIiLyCCamiNrJjh07kJaWBo1GA0EQkJGR4ekmtZru3btj+vTpnm4GEVGnwZhAREQA4wERwMQUdUKCIDTqY9OmTZ5uqpPZbMZNN92Ec+fO4b///S+++OILxMbGerpZTZKeno65c+eipKTE000hInJiTPAMxgQi6mgYDzyD8YBag8zTDSBqqi+++MLl688//xzr1q2rtT0xMbE9m1Wvo0ePIicnBx999BHuueceTzenWdLT0zFv3jxMnz4d/v7+Lo8dOnQIEgnz3ETU/hgTPIMxgYg6GsYDz2A8oNbAxBR1OrfddpvL13/99RfWrVtXa3tNer0earW6LZtWJ61WCwC1flm3hE6ng0ajabXztYRSqfR0E4joAsWYYMeYQEQXOsYDO8YD6oyYvqQuadiwYbj44ouxa9cuXHnllVCr1XjmmWcAAD/++CPGjx+PyMhIKJVK9OzZE/Pnz4fVanV7jgMHDuCqq66CWq1GVFQUFi5cWOt6//vf/5CcnAy1Wo2AgACkpKTg66+/BgBMnz4dQ4cOBQDcdNNNEAQBw4YNcx77+++/44orroBGo4G/vz8mTJiArKwsl/PPnTsXgiDgwIEDuPXWWxEQEIDLL78cgH3s9jXXXINNmzYhJSUFXl5e6NOnj7NMefny5ejTpw9UKhUGDRqEf/75x+Xce/fuxfTp09GjRw+oVCqEh4fjrrvuQlFRkcv1n3zySQBAXFycsxT6xIkTzjbUHD9+7Ngx3HTTTQgMDIRarcZll12Gn3/+2WWfTZs2QRAELFu2DC+99BK6desGlUqFESNGIDs72+33loioqRgTGBOIiADGA8YD6qhYMUVdVlFREcaOHYtbbrkFt912G8LCwgAAS5Ysgbe3Nx5//HF4e3vj999/x5w5c1BWVoZFixa5nKO4uBhjxozBpEmTMHnyZHz//feYNWsW+vTpg7FjxwIAPvroIzz88MO48cYb8cgjj8BgMGDv3r3Yvn07br31Vtx7772IiorCyy+/jIcffhiXXHKJsy3r16/H2LFj0aNHD8ydOxeVlZX43//+hyFDhmD37t3o3r27S3tuuukmJCQk4OWXX4Yois7t2dnZzmvddtttePXVV3Httdfi/fffxzPPPIMHHngAALBgwQJMnjzZpax23bp1OHbsGO68806Eh4cjMzMTH374ITIzM/HXX39BEARMmjQJhw8fxtKlS/Hf//4XwcHBAICQkBC3r/3Zs2eRlpYGvV6Phx9+GEFBQfjss89w3XXX4fvvv8fEiRNd9v/Pf/4DiUSCmTNnorS0FAsXLsTUqVOxffv25nzriYhqYUxgTCAiAhgPGA+oQxKJOrkHH3xQrPlWHjp0qAhAfP/992vtr9fra2279957RbVaLRoMhlrn+Pzzz53bjEajGB4eLt5www3ObRMmTBCTk5PrbePGjRtFAOJ3333nsr1///5iaGioWFRU5Ny2Z88eUSKRiHfccYdz2/PPPy8CEKdMmVLr3LGxsSIAMT093blt7dq1IgDRy8tLzMnJcW7/4IMPRADixo0b6309li5dKgIQt2zZ4ty2aNEiEYB4/Phxt22YNm2a8+tHH31UBCD+8ccfzm3l5eViXFyc2L17d9Fqtbq8LomJiaLRaHTu++abb4oAxH379tW6FhFRfRgTGBOIiESR8YDxgDoTDuWjLkupVOLOO++std3Ly8v5//LychQWFuKKK66AXq/HwYMHXfb19vZ2GZeuUCgwePBgHDt2zLnN398fp06dwo4dO5rUvry8PGRkZGD69OkIDAx0bu/bty9GjRqFNWvW1Drmvvvuc3uupKQkpKamOr++9NJLAQDDhw9HTExMre3V21/99TAYDCgsLMRll10GANi9e3eTnpPDmjVrMHjwYGcpMWB/Lf/1r3/hxIkTOHDggMv+d955JxQKhfPrK664olY7iYhagjGBMYGICGA8ABgPqONhYoq6rKioKJdfZA6ZmZmYOHEi/Pz84Ovri5CQEGdgKS0tddm3W7duEATBZVtAQACKi4udX8+aNQve3t4YPHgwEhIS8OCDD2Lr1q0Nti8nJwcA0KtXr1qPJSYmorCwEDqdzmV7XFyc23NVDywA4OfnBwCIjo52u716+8+dO4dHHnkEYWFh8PLyQkhIiPM6NV+PxsrJyanzeTker6/9AQEBtdpJRNQSjAmMCUREAOMBwHhAHQ/nmKIuq3qW36GkpARDhw6Fr68vXnjhBfTs2RMqlQq7d+/GrFmzYLPZXPaXSqVuzy1WG7udmJiIQ4cOYfXq1fj111/xww8/4N1338WcOXMwb968Nn9O9bWzMe2fPHky0tPT8eSTT6J///7w9vaGzWbDmDFjar0ebaUx7SQiagnGBMYEIiKA8aC+7YwH5ClMTNEFZdOmTSgqKsLy5ctx5ZVXOrcfP368RefVaDS4+eabcfPNN8NkMmHSpEl46aWXMHv2bKhUKrfHxMbGAgAOHTpU67GDBw8iODi4zZd6LS4uxoYNGzBv3jzMmTPHuf3IkSO19q15V6g+sbGxdT4vx+NERJ7GmOCKMYGILlSMB64YD6i9cSgfXVAcWffqWXaTyYR333232eesvmQqYB9jnpSUBFEUYTab6zwuIiIC/fv3x2effYaSkhLn9v379+O3337DuHHjmt2mxnL3egDAG2+8UWtfRwCs3ta6jBs3Dn///Te2bdvm3KbT6fDhhx+ie/fuSEpKan6jiYhaCWOCK8YEIrpQMR64Yjyg9saKKbqgpKWlISAgANOmTcPDDz8MQRDwxRdftKgc9Oqrr0Z4eDiGDBmCsLAwZGVl4e2338b48ePh4+NT77GLFi3C2LFjkZqairvvvtu5FKyfnx/mzp3b7DY1lq+vL6688kosXLgQZrMZUVFR+O2339zeHRo0aBAA4N///jduueUWyOVyXHvttW7v2Dz99NNYunQpxo4di4cffhiBgYH47LPPcPz4cfzwww/OZWiJiDyJMcEVYwIRXagYD1wxHlB743eeLihBQUFYvXo1IiIi8Oyzz+LVV1/FqFGjsHDhwmaf895770VFRQVef/11PPjgg1i5ciUefvhhfPnllw0eO3LkSPz6668ICgrCnDlz8Oqrr+Kyyy7D1q1b65zEsLV9/fXXGD16NN555x3Mnj0bcrkcv/zyS639LrnkEsyfPx979uzB9OnTMWXKFBQUFLg9Z1hYGNLT0zFq1Cj873//w+zZs6FQKPDTTz9h4sSJbf2UiIgahTGhNsYEIroQMR7UxnhA7UkQOXMYERERERERERF5ACumiIiIiIiIiIjII5iYIiIiIiIiIiIij2BiioiIiIiIiIiIPIKJKSIiIiIiIiIi8ggmpoiIiIiIiIiIyCOYmCIiIiIiIiIiIo+QeboBHY3NZsOZM2fg4+MDQRA83Rwiog5PFEWUl5cjMjISEknXud/BeEBE1HRdMSYwHhARNV1T4gETUzWcOXMG0dHRnm4GEVGnc/LkSXTr1s3TzWg1jAdERM3XlWIC4wERUfM1Jh4wMVWDj48PAPuL5+vr6+HWEBF1fGVlZYiOjnb+/mwLW7ZswaJFi7Br1y7k5eVhxYoVuP766+s9ZtOmTXj88ceRmZmJ6OhoPPvss5g+fXqjr8l4QETUdO0RE9ob4wERUdM1JR4wMVWDozzX19eXgYeIqAnacniDTqdDv379cNddd2HSpEkN7n/8+HGMHz8e9913H7766its2LAB99xzDyIiIjB69OhGXZPxgIio+brSkDfGAyKi5mtMPGBiqhWVr18P9eDBkDJgEVEno9+9G7KgIChiYz3dFLfGjh2LsWPHNnr/999/H3FxcXjttdcAAImJifjzzz/x3//+t87ElNFohNFodH5dVlbW7PYW5+tQnK+HIBEgkQgQJKj6bP9appAiqJs3JJLW6bhZLTacO6ODQWeG2Wht9HGCRIAAAIL9jwah6jMEIDBSA42fEqUFepRqKyGKgFQugUIlhcZPCY2/stb5RFEERPt5a9KVGHEuXweryQYI9tfDL1QNvxCvFjxzV2WFldCVmhAUqYHCq/F/4lgtNpRqK2HUm2Gx2JyvhVwpRXA3b0ik7TdPjiiKKNVWorzYAIvJBogiRNF1H4lUgFQugVQqgXeAEr7BTX8NRVFEcb4eumIjbDYRGn8lgrt519qvOF+HUm0lbDbR+R4WJPbvsUQQ4BfqBe8AVa3jrFYb8rNLYTJYIFa9J4Tq77PqX0sACAIEQYBMLmnVnw0Hk8GCUm0lTAYLrBYbRJv9Pe4TaG+7ocIMbW4ZrGYbRNH+/pRIBUhkEvvrLZMgKEoDmVza/DZUWlBebIDVbIN/qBoKLxmsZhvOHC2BxWi1v06O16bq9XW81ud/d0gQFOnt9mesqQpPlaP8nBGiTXT7eFy/4C6VXKLzrBYLCnNPoLKiHGE94uHl3XWq24ioc2JiqpVYy8tx5pl/Q5DJEPr4Y/CbNAlCF5nwkYi6LnN+PrQLF6FszRoETp+OsKdnebpJrWLbtm0YOXKky7bRo0fj0UcfrfOYBQsWYN68ea1y/aO7tdi+6ni9+4TE+OCGWYMgbWHSY//mU9i24ihMhsYnpBrDy0eOMff2wY+v/wObm45rWJwvRs+4+HzHXmfGyv/+g4piAyY+MRBBkeeTHMcyCvDrB/tqJVgAYMiN8eg/MqbF7c3epcVvH++HKNoTSuPu74NuvQPrPUa0ifj75+PIWH8SljoSepEJ/pjw2IBWT5S4U6LVY+1H+1F4sqJJx8X1C8aou5IhVzYuaaIvM2HNe3tx9rhr8nXknUnodWm48+tj/xTglw/3Ae7zFgDsycrJsy9BYKTGZfumLw7i4F/5jX8S1QREaHD9YwOg9lU4t4k2Edm7tSgvMiDyIn+Ex/k16lwWkxV/LDuCg3/lwWZxfSJSmQQ3Pp0CmUKCZS/vgLmBn6GeA0Iw5t4+TX4+RacrsOWbwziTXeJ8Lb18Fbjl2cFY92kmTh0sbtL5EodEYPjtiU1uR3WH/srD+iVZ9e7zwLtXAcxLdSmiKCJz8wZs/eZzVBSfAwDIFEoMu+Me9BvV+Js/REStjYmpViL18UGPn36C9rVXkffscyj+5luEP/tvePXv7+mmERHVIppMOPf55yh49z1I1GpELFgAvwnXebpZrSY/Px9hYWEu28LCwlBWVobKykp4edWuMJk9ezYef/xx59eOcfHN0X9kDJKvjILNKkK02Vd0Em32zrXNJqLkrB6/vL8P2Tu1LomApsrepcXmpYeRdHkkEtMioPZVQKaQwqXIQaj+3/NfiLC3TazKFjn+L4oijDoLlr28A3s3nIRUIcHUZwdDIpXAarHCVGlFiVaP9OXZ2LDkAK5/fCAAIPOP0yg5q4dUKiBzyxlcectFzmvt23QKYXG+GDE9yZ48EQGbTcSuX05g+4/HkHxFVKOTKnX5e/VxRCcF4bLre2Drd0ew4bMs3PZiar2Jv4N/5WPnzycw4OoYdO8TBJW3AjK5BKJofy0Kcsvx28eZOH2oGNGJ9Se5Wkq0ifj1g32wmG0Y/2BfBISrq76X9u+ZIMD5vbRZRFgtNlgtNpw9UYbNXx/C9h+P4fLJCY261u+fZ6G8yIDxD/RFYKQGEqmA3784iP2bT7m8H/dtPoWIHn4YPeNiCBLB/v6oeg9DBCwmG1a8vhuHtucjdWJP53EGnRmHtudj8LVxSL4iCoLk/PvL8b13/N9+zvOf9WVG/PrRfuz4+TiGTul1vs1fHsTB9DzIlFJYVlhx6XVxSBkX1+BzTV9xFIe25+PS63ogMsEfKrUcUrkEok3EDwt34dB2e/JMKpPgprkpUKrlECSAzSpW+7Ahe5cWf/90HAadGSqNvFGvMwBUFBux4vXd0PgpcdVtvREQroFos2HF6//g6G4tTh0sRtqkePRODQeEaj+HVa+z4/eGKNq/PrLjLHavzUXapPhGt0MURXvSTQAUKvuf/of+PovIBH/797bqvSXUzEIxKdWlmE1G/Pb+Wzi4dTN6DxmK/qOvgZePL3av+RHrP34HgiCg78gxnm4mEV2gmJhqRfKwUEQtXIiAW25B/osv4sQtU+B/040IffJJDu8jog5D99dfyJ/3Aky5uQiYeitC/u//IO1Ck9Q2l1KphFJZe3hac8gUUsgUdSdaAiM0CInxwalDxc1OTNlsItKXZ6N732AMm9qrdYfcBAFKtQwlBZUI7uZda6hYSIwPJBIBv364H+fydAiM0CBnfxFikgKhUMmgzTlfiWM123AmuwRpE+PhH6p2OU/f4dHI/OMM8o+VtijxU1lhQnGeDoPGxCIk2geXT07Aty/uwOmDxYhJDqrzuP1bTiO2TxDSJsW7fdwvxAtbvjmMvOySNk9MnTpUjKLTOkx8YiAiE/wbfVxAuAalBZXIWJeLlPHdG0xWFJ6qQM7+Ilx9dzK69w12bo9JCsT2H485h+yJogjtiTIMGB3rdtimQ3gPPxSeLHfZVnS6AqII9BgQ4lL11BiBkRokXx6JrPQ8XHnLRRAEAdqcMhxMz8NVt/VGYloEdvx8HNtXHUdET39E9Qqo81wVxUbs23QKqRN7YuDVtYcph8X5ouh0BSwmK6J7ByAgXOPmLHYxyUH4+6fjKM7X48TeAoTE+CJ+UGiDz2f3rycgCAImPjHQ5XsTEKa2V1ABiIj3g5dP414nyaUCdv2Sg4KT5YhuoCLQZrVhz4ZT2Lf5FMqLDPbrRmhw+U3xKCuoRFz/pn9/qHMyVFTghwVzUJibg2senYVeqVc4Hxt5zwOAIOD3xe8jOrkPAiKiPNhSIrpQcaxZG1APHIi4775D+PNzULbmFxwbfw3K16/3dLOI6AJnrahA3pznkTv9TkiDAhG3fDnCn3mmSyalwsPDcfbsWZdtZ8+eha+vr9tqKU8I6uaNc6ebNmSrujOHi1FeZMCgMbFtMg+M2k8JU6UFSrX7REfMxUGQSAScOVxsry7KKUdkgj/8Qr1QVtUJBoCKEiNsFrHWUC8A8A/1gkQqoOSsvkVtLdVWAgCCorydn7185Dh9pKTOY8xGK7Q5ZejRP6TOfQRBgG+wFypKjHXu01qO/lMAvxAvRMQ3bohadRdfEQWLyYbczKIG9z2WUQCFlww9Bro+78BIDSxmGyrO2b93ZoMVJoMVfg3MX+UbpEJ5sevr4zhHQ8fWpVuvQFSWm53viyM7zkLtq0DvtAgIEgGXXBOH4GhvZGw4We95snedhUQqIPnySLePa/yU0JeZUH7OAN8G5jpzJHCyd9orltZ+tB/HMgrqPcZmteHILi16p0bUShh6ByhRUfVz4hNUe46uuviFVP3M5Nf/M2OziVj7cSa2rTyKbr0CMOruJIy8MwlKLxnWL8lCRbEB3vUkHKnrMOp1+OHl51CSn4db5r3ikpRyGHr7XVD7B2DLV0vav4FERGBiqs0IUikCpkxBj59XQ5WUhFMP/R9OPfoYLIWFnm4aEV2AKv74E8euvQ5lq1cj/Pk5iP38c6h6XdTwgZ1UamoqNmzY4LJt3bp1SE1N9VCLavMNUqH8nKHhHetwYm8RvAOVCItrm4pcpZcUFpMVyjomEZdXTeCuzS2HrsQES9WEzl4+ChgqzM4JlQ0VZgBwWxEikUrgG+zlTCw1l77MBOB88kAQBET09K81h1J1hacqANFe/VUftY8cleXmFrWvMfKPlSIywb9ZSUaNvxJB3byRm3muwX1zM+2VbTWHOGr87EkKx2tp0Nufs1Jdf3G9l68ClVXHOOjLzJCr6q8arE9glD2JWZxnT76cOVKCbokBznm+BEFA78sikHugCKZKS53nOX24BJHx/nUmVx1tN+gsDVaaeXnbHy8tqIRvsApx/YKx6auD9S42UHRaB0OFGT36Bdd6zMtHgcoKMyQSoUlVS5KqCe8riutPlu7ZcBLHMgow9t6LMfyORFx0STh6XRqOS8Z3R2WZCVaLCLmqZcNnqeMzVeqxfMFcFOefwY3/no+wHu6rQ+UKJdJuvBXZO7ah6HT9CV+i1lBxrggZv63BiYxdzikF6MLGxFQbk4eHo9v77yHy1Veh374dx66bgPJNmzzdLCK6QFgrdDjz73/j5IwZUMbFocdPqxAwZUqnW5yhoqICGRkZyMjIAAAcP34cGRkZyM3NBWCfH+qOO+5w7n/ffffh2LFjeOqpp3Dw4EG8++67WLZsGR577DFPNN8tlUYOo87S7D/IzmSXICohoM1WzZLKpbBaRCjq6bz6BnuhrNAAXVVFkXegEl7ecog2EUa9PWFQWWFPWjg69jV5ByhRUdL8BB0AVJabIAiAqto1AsLVKNXWXVVSnK8DAATWM3wLqEoglJvq3acpbDYRRr1rostksODc6QqE92h6tZRDZII/zp6ofyVJq9WGwpPur6P2sydH9KX25+r4/tWV1HEe56uAQWeG1WJzbqssN0HdyKFpdZ1ToZKiRKuHKIo4l69HcDfXBGLsxUGwWUTkHyt1ew7HUMSw7nUnbtW+CujLTbAYrQ0mpmQKKeRKKSpKjPAJVOHymxJgqDDj8N91T/BecLIcggAER9dOfqo0cpiMFshV0ib/DKt9FdCX1Z2YMlVasHPNCfQZ2g1x/Vwr46oPy5XJO1ccoKYxGwxY8coLKDyZgxufqTsp5dD78mHQ+Afgn19WtVMLqTMTRREZv63BDy/PwZG/05t07Nlj2Vgy8wFs+PQ9/LDgeWz45D0mp4iJqfYgCAL8rhmPHj+tguriZJy6737kvzAfNkPL/hAnIqpP5f5MHL9hEsp/+RXh819A9CcfQx7VOeeO2LlzJwYMGIABAwYAAB5//HEMGDAAc+bMAQDk5eU5k1QAEBcXh59//hnr1q1Dv3798Nprr+Hjjz/G6NGjPdJ+dxReMthsIixmW8M712AyWFB4srxZw74aS66QwGaxQVFHxRQA+AarUF5UWS35pICXj72D79jmqJhS1ZGYUnnLYdDVXfXSGPoyE1TecpeV8/zD1KgoNtZZ0aIvNUGlsU+EXZ/WTEwZKsxY9tIOfPLEHziy4/xQ01JtJUTRPryzuUJjfFByVl9vBVFJvh5Wiw0hMbWvo1LbXz9dqT3hcT4x1UDFVFUCyqA7n2yrLDc53wfNIQgCNP72YXa6EiMsRisCwlznJ/ML9YLKW15nYkpfaoK+zITQ2LoTU0q1zLlKXmMmEpcrpTBUmOETqIJvsBeiegUge5e2zv0LcsvhH65xO7G/XCmF1Sw2Kzmk9lVCX1Z3FV/2Li3MBgsGjq49r1b1n0OZnBVT7eXY7h0wm9p+SLCD2WTEykXzcfb4UUyaPQ/h8Q1XSMvkcvQZfjUObt0Ci6n1kvHUNe37/Tds+ORdlBcVYtXrC5CzL6NRx9msVvzyzuvwD4vAAx9/jVH/egh71q3B3vW/tm2DqcNjYqodyYKDEf3BBwh79lmU/PADjt9wIwxZ9S/VS0TUVKLNhqJPF+PElCmQevsgbvkPCLjppjarrGkPw4YNc64YV/1jyZIlAIAlS5ZgU41q1GHDhuGff/6B0WjE0aNHMX369HZvd30cCZ/6Egl1KTpln1w6LK7tElMyhRRWa/3DfXyDVKg4Z3QmblQaubPCxlj1vEwGC6QyCaQy939yqNRyGPVmGPVmfD33L2z++lCdd053/Hwce36vPcykssxUaziUf1Uio7TAfdWUvtTorBKqj8pbjsqK1hnKt+3Ho6goNiAszhfpy7Ptq9vBPjwMsM8f1FzB0fZkU9EZXZ37FFRNUl6z+ggABIkAlY/c+b10VHUpNfUnppRe9veH2XA+AWg2Wp2rvzWX2lcBfanROc+Uf43ElCAICIrS4Fye++9vSVW1XECE2u3jAFyGGiobkZiSyiUwGy3O903PgaE4fbjEJSnn0oazegSGu7++XCWF1WJr1nBHr2rfJ3eO7tYi8iJ/eAfUnkOqepJMqmA3oD3oy0qx+s2FWL7geZgqWzafXmNYzGaseu1lnDlyEJNmPY+oXomNPrb35cNg1Otw7J8dbdhC6uysFgu2fvsFkq4cjmmL3ka3xGSs/+gdWMwNx8r9m9ah6FQuRs14CF7ePug7Ygwuvupq/PH1EuhKituh9dRRMSK1M0EQEHjbVMR9/x0EmQwnbr4Fxd995+lmEVEXYSkqwsl/3QvtwoUIvON2dF/6NRTdu3u6WeSGo0PfnMRU8Vk9BAHwD2u7idxlcgkginUmlAD7BOk2m4jycwbIVVJI5RJnIstcaU9UWM0ipLK6k6IqbzkMFWYc3JaP4nw99m85jVNZtf84LS3Q4++fjuPPZUdgMblWQenLTbXmsPIOsE8oXddcPPoyEzSNSEwpVFKYjdYWDzPQlRiRtTUPg8Z2R+qkeFQUG1GQY08UlRVWQuEla7A6qT5+VSse1jd88dxpHXyDVXVWwSm9ZDBVfd+cFVP1VMwBgFxZlWA1nH8fm03NS7hUp66amLyi2jDRmgLCNHVOnF9W2PDE4tWrlRReDbdXJpfAZhWdz61b7wCINrHOIZQVxUZ413F9qUwCsdq5mkKpljkTvzVZTFacOlRc56T+UpkEEqn955FD+dqH2tcPN8yeB+3xY1i56EVYLS2rEK2PxWzGT6+/jFOZ+zDxqTnolnRxk44PiopGWI94ZP2xqU3aR13D0Z1/QV9agpRrJ0GQSDDirvtRos3HgS0b6j3OZKhE+rKvkHj5MJehpVfedicEQcD2lcvauunUgTEieYgyIQHdl30Lv+uvR/5zc3Dm3//m0D4iapHKPXtwfNINMGRlIfrjjxH25JMQFFwKvKNyJAfq6mDWpzhfD58gVZsOxZHIJRBF+2TLdXHMG1VRbHT+X1GVqHAMobNabfUOl1OqZTDozCjILUd4D18ER3u7rYrK2X9+Yu9zea5VQXo3FVNqXzkE4fycSTXpSk1Q+zW8KplcJQVEwGJq+pDL6g5tz4dEKiBpSATC43whU0hwJrsEgD0x5RusalFVo1whhXeAst4VDssKK+utylJ4yWCsSjAZdfb5j+r7/tuPqZ1gtZiskLWwGsc+j5J9OJ7CS+b2ve4fprbPQ2WrnTQsK6yExk9R789I9aRQzcng69q/emLKL8QLXj6uwwkdCUxRtCdsfQLqTkzZRLFZr5PCSwaT3v3vjYLcctisIiLi/et9HgCH8rWnqN5JmPjUHJw+eAAbP/uoTa5htZix+o1XkLMvAxOefBYxF/dr1nkSLh2CE3t3N6r6hS5Me9b/isiLEhES0x0AEBwdi4sGp+Hvld/Vm3jd+dMKGHQVuPyWO1y2e3n7YOD4Cdi7/ldUnGt4dVnqmlpWZ00tIlEqEfHCPHj174/8efNgyMpCtzffhCI6us2vbTMaYTpxAsbsbJhPnYb1XBEsxcWAxQpABAQJpH5+kAYFQhYSAmXPnlDGx0Pq13bDRlqLaLXCUlQEW2kpRLMZotUKiVoNibcPpAH+kHSijrrNZIJFWwCxUg+bwQhBJoVEo4FEo4E0IKBTTWBtrdDBWlgAm9EE0WSEIJdD4u0NqY8PJL6+HX6YmWi1wnz6NIxHj8J0/IT9Z6akBLYKHSDYqyEl3j72n5mgYChiY6Ds2ROyiIh2eW7Fy5bh7PwXoUpORtSbb0IeFtrm16SWcQx1albFVL4OAQ1M2t1Skqr3raO6wh3HsL3KcpNzjh5HEspirkpMWWz1Vl0pvGSwmGyoKDFA469E1EUB+HPZERgqzC7z4Zw9XgrfYBXKCg2oKDYitNr0OQadBSExrkOxJFIJvHwVzoqbmgw6M8K9G17RUCazd96tZpvbuYIa6+C2PPToH+J8zQIjvVF0qgJAVWVNHQmMpvALVaOknhUOSwsr650MXOElc74fjXpzoyq4zldMWWGqtCez7ImpFlZMVSWm3A3TdAgIV8NqtqH8nMFlUm/Akeyrv6KwesVQfe9zB6nMXjElr0om2YcTeuNc1fBJs8mKr+f+hfhBYRh4dQysZht8AutITMklgIhmJaaUVd8nURRrxZf842WQKSQIiqz794PUUTHFoXztqlvSxbhq2gxs+PQ99BiQgh4DL2m1c1stFvz85iKcyNiJCTOfRfd+A5t9rh4DL8GfSz/DqQP7WnQe6pqK888gd18GxjzgupjMpZNuxhezHsbBrZuRPHREreN0JcXY+dNyDBhzLXxDav+NOnDsddi1eiV2rfkRQ2+7q83aTx0XE1MdgP+kiVAlJeLUw4/g+A03Iur11+F9+ZBWvYZNr4du2zbo/94B/c6d9rmtbPa7v/YEVJA90SGv+sPeZoPxyBFYis/BWnTOua88NgbqSy6BZvBgaK64ArKAgFZtZ1PZdDroduyAYd9+GDIzYTx8GGatFqgrWy+RQB4RAUVsLFTJyfAaNBDqAQM6RMLNfFYL/Y4dMOzfD8P+/TDl5MBSWAjUMXxEUCohj+4GZVwcvPr1g9eAAVBdfDEkyoYrANqSKIowHjmCyt3/wJC5H5WZmTCfOg1bWd2rRUl8fKCIiYEyPh5eA/rDa8AAKBMSPJp4E0URhgMHoNuaDv2OHajcvRs2nb3zIajVkFX9zEi97X/8i1YbbDm5sJw7B2thIcSqO40SPz+oBw2COiUFmrRUKHv1atVElc1oxNkXX0TJd9/Df8otCJ89m1VSncT5OaZqT86tKzFiw+dZKCusRNqk+FrDcorz9YhzswR9axKqfvzq67A7hu3ZExL25yNzJqbsccNmsUFST2LKkezRl5oQGOGNngNDseWbwzixvxC9L4tw7ld4qgLRiYHI2paHimIDygorsePn40i7IR4WoxVyN4kQjZ/SOZl3TY1NnkiqhiFarc2vmCrR6lGcr0fqxJ7ObcHdvHH2uP33olFvgX9oy4dl+od6If+4+9+1oiiirKASCSlhdR6vUMmcc0sZ9ZYGV+SzH2N/DSuKjfj0qT/Rb3g0zCab2+9HUyjV9uSLrsxY50TqjsRTeZG7xJShwTm7qidmGqoMAwCp3JHQOf/cAiI0OJVlr+Y7e7wMFeeMyFiXi96XhQNAnfOYOZK19SVt66JQVy2cYKqdLNXmlCEkxqfe5yNULRLQ0MT/1Pr6XT0Ox3b/jbXvv4m73vgASnXLbzDYrFas+d+rOLrrb1z3xDOIG5DSovMFR8fCJygEx//ZycQU1bJvw1qoNN64KPVyl+2h3XugZ8pl2L7iWyRePgwSqevvpvRlX0Eqk+HS6ye7Pa9SrUGfEaOx7/e1SLvxVshVLb9ZQ50LE1MdhKp3b8R9/x1OP/kkTt57L8Jmz0bgbVNbdE6bXo/yjRtRvvY3VGzZAtFggDwyEupLLoH/5MlQJiRA2bNHg0kZm8kE0/ETVcmG3dDv+Bul3/8AyGTQXHYZfMeOge+YMZBo2vbuvYOluBhlP69B+fr10O/aBZjNkAYEQJWcDN/x4yCPjIQsLBxSf38ICgUEqQQ2vR7W8nJYCgpgzsmB8fgJlKxcgaKPPgIEAV4DB8Jn1Ej4Xn015JGR7fI8AMB47BhKf/oJFZs3w3jAPhG+vFs3qPpcDP/BgyGPsj8XiUYNiVIJ0WqFTaeHraIc5jN5MOXmwpidjYJ334Oo10NQq+F9+eXwGTkC3sNHOJMmbU202aDfvh1la9eiYssWWM7kAVIplBddBFVyEnzHjoU8IhKy4GBIvFQQFAqIFgtsFRWwlpTAdOoUTDk5MB48hNLVqwGrFbKQEHhfdRV8Ro2EJjUVgqx9fl0ZjxxB6apVKPt1LcwnT0KiVsNr4EAE/etfUCUnQxnfE7KwsHqTS6LNBvOZMzBmZ8Owbz/0u3ah4K23oF24EPLoaPhcPQq+Y8dBlZzUoiSVpbAQpx58CIasLES89BL8b5jU7HNR+3N06M1G10S6aBPx64f7UFZkQGCEBms/3o9bnh3srJCymm0oL6ystUpZaxMaUTHl6BRbTDZ4+dp/RgWJAIlMgNVsg2gTq+aYqicxpTifmFL7KaD2VSAoyhunDxU7E1MWsxUl+Xr0GdYNqr2FMFSYsX3VMRz++yyCu/nAbLJC5qaaSeOngL6OiimLydaoihFH261mGww6M/75LRenDxdD4SVDzwEhSBwS6bIaoDu5mUWQyARE9Tp/M8c/TI0jO87ak/l6M5Tqhqu3GuIfpsah7fluK2mMegtMBmu9VURKLynKiyqr9jdD1YiKKUdyoyC3DFazDYd35EMQhBZX4yi8ZBBFQF9qhtrHfXLHkfRxl3ysKDYgqpd/o9oONK5iypHsqX5cYLgamZtPw2q1obBqcnkAKC+2T89Q12p/jvdVc2KAo9rSqLfUSkwV5+sRHlf/e8mRmOJQvvYnCAJG3ft/+PTRe/HX8m9bXBlis1qx5u3XkL1jG659bDZ6DhrcKm2MGzAIx/7Zgaum/6vF56Ouw2oxY/+m9UgaOgJyRe0b4ak33IIvZz+Kg+lb0L3fQEgkUqi8vVGQewL7fv8NQ2+/Cyrvulef7X/1eOxavRJZf25C35Fj2vKpUAfExFQHIvX1RfS770K7cCHOvvgiTMeOImz27PNVTI1kOHwYJd98i9JVq2CrqICqTx8EP/gAfK++GorY2ksHN0SiUEDV6yKoel0Ev2vGAwDMWi3K169H+a9rkffsczi74D/wmzgRAVOmQNkjrsnXaIgoitD98QeKv12Gis2bAQCatFSEzZoF78uHQB4b2+Q/7kRRhPnUKei3b0f5+g0oeO11aF9ZCM2QIfC/eTJ8hg1r8mvfGDaDAaWrVqH0h+Wo3LMHEl9feF95JYLuvAuaIWmQBQY2+ZyixQLDoUPQ/bkV5Rs24MxTsyCo1fAbPx7+kyfDq0/TJr9sLPNZLUq+/RalK1fCfOaMPekyYiS8r7wS6ktSIGnG3Q6bXo/KvftQsWkTyjdsQMmyZZCFhsL/xhvgf8MNkEdFtfrzEM1mlG/4HcVffQX9jh2Q+vvDZ9Qo+M6bC/UllzT5fSBIJFB06wZFt27wGTbMfg2TCbq/d6B87VqULl+Bc598CmVSIgJuvgW+48c3OYloPHIEJ++7HzaTEbFffQmvPn2adDx5nkQqgUQi1Jq76PjeQuQfK8PEJwYgrLsfvpyzDTt+PoGr704GAJSfM0AUW7aCW6MIjnY2XDFlNtvgU62zLpNJUFZYiXcf2IieA0Lqnfzc0bE2Vlqck5F36xWAoxlaZ4KlOE8Pm01EcDdv5wTdRaftFYza3LI6K6ZUPgoUV81HZbXYsH/zaXTvGwS/ELW9YqoRHXNH281GK9Z+tB/FZ/WI6xsMg86MTV8dwqG/8jHugb51JiAA+/xYkfH+LivV+QSqYDZaYdRbYKy0NLj6XWP4BnvBYrJVTezu2mkoK2x45T+Flwwmw/nJzxtTMeVIQunL7HN56UpMUKqlLR7K55h03aAzwy/YfSxRqGRQqKTQlbjOIyaKIvTlJqh9668grv79b9RQvqp9qida/cM19gUACg3O1RUBoLRqSGVd31fH+0poIKnpjuP7Yqq0AP/P3nmHR1H9Xfwz23fTey/03jtSFRvFAgIqTVEQsHexK3axo6IIAhZQFATBglSlI0jvJY0kpPftO+8fs7vJkmwJJJT3l/M8eZTZO3fulJ2de+ac861SeU8URYpzKpxqLXdwEKm+7HMD6h4BoeH0uHkkW39eTPtrrick5vyea8qLi/jj0/dJ3b+HIQ89QdNuPetsjI07d2Pfmj8ozDpz3uNrwOUJk76C1AP7OLb1H4qyM9EFBdOqzwBa9O7ndS51fMdW9CXFtL+mZtIoqnFTmnTtyfqvv8Bk0AMC1099mD2rVxESG0fH64d47D8oMoomXbuz+/cVtLvm+ss+5uP/K4wVFfz93TzOHDlEcscu9Bk9DsVFcGM0EFOXGQS5nKjp01E1bkL2jBmYUlKI+/BD5IHe36RW7NxJ3uwvKN+8GXl4OCFjxhB824h6yaxSRkYSeuedhN55J+YzZyj84UeKliyh8NtvCbjheiKmTUPdrNkFb0c0mSj+dSUF87/GePwE6tatiHr6aQKHDD4vAqcqBEFAlZCAKiGB4Ntuw1pWRumfqyn88QfOPPgQyvh4wiZNIujWW+okl8paVEThokUUfPMt1sJC/Pr1Je7DD/AfOPCC7XeCQoG2TRu0bdoQft9kzJmZFC1bRtFPP1O0ZAm6bt0Im3Iffr1718lN3njqNPnz5lKyfAWCUkngkMEE3TocbaeOF9y/TKfDr2cP/Hr2IPLppzAcPETRkiUULFhI3hdfEjhkMOGTJ6Nu2tR7Z14gWiwUr/iVvM8/x5yejrZrF+Lef4+AQYPq3A4nqFT497kK/z5XEf3Si5T98w9FP/xI9iuvkDNzJiFjxxA6frxP9tiyzZs58/AjKGNjSfpm4UVV+TWgbiFXybBaXImpo9uziUgMILaZdC10uCaBrctOYryjOWqd0qnE8HeTXVNXcHyTZR4stXK5DLlChvUckkeukjsDocsKjR4VU1WVTo7KerHNg9m7Lp2yQiMBoRqK7JXmQmL8pIDuCrMz5Ls0z4DFTf6T1k9JVplkTdu3PoMtP58gZX8eNz3cEYvZN8WUw4aYciCPnNRSbnumqzOnKfNEEb9/vp9Vn+7jlkc71WiNspisZB4rpPuwxi7L/e2EQlmhAWOFxW2lvNrAQTqV5OqrEVMO0iTQDckDrhlThgoLYcG+/TYpVHL09uMs2kR7Vb4LV0yBRAjWpIZzwC+4ul3TWGHBZhHdZlNVjrt2iikHiVRVIRdgrxZYWihln4XG+lGQWU5pvvQ9dVfV8EJsdI7AeaPegmgTObIti6S24diskr0vONKzmtJp0z0PUqwBdYMuw25l37o/2fzjdwx9+KlarXvmyCE2//gN6Qf3O5et/mIWafv30WP4aALDa67IWBvEt2qHIJORfmh/AzH1/wCizca2ZT+wa9VyjOVStqEuOITkDp0pzc1h1cfvcnTrJoY89KRHAmLfX78T36otYfHu55ZXjR7LwicfQBcUTHTT5vzx2QeIosjol99CrvD+sqPTDTexZMazpB/cd94B/g04f9isVn5591VyTp+iWfde7P1zFSW5Zxn26PR6JwobzOWXKUJGjyLxq6/QHzxEyu13YD5zxm3b8q1bSRkzltRx47Hk5hL77rs0W7eWyEcfuShB6sq4OCIfe5SmG9YT/fLLGPbu49RNN3Pmscc9jtsTRJuN4lWrODlkKFnPPYcyPoGkb7+h0c8/Ezpu7AWTUjVB7u9P8IjhNPrhB5J//glNu7Zkv/wyJ6+9jsLFixHPs7yvTa8n74svOTHoWvJmf0HA9dfR5I/fSfziC8kCWQ+ZUMrYWCLuv5+ma/4iftYn2PR60u+5l5TRt1O+Y8d592vOyiLz6Wc4NWQI5Rv/JuLhh2i6cQMxM2ag69ypzm9YgiCgbduGmFdeptnfG4l65hkqduzk1LCbyHjkUUxpaefVryiKlPz2GyeHDCHr2WfRtGxBo6U/k/zttwQOHlzvGU2CQkHAwIEkzP6cpmv+InjECArmL+DE1ddw9s23pEIEblD4w4+kT74PbedOJH3/XQMpdYVDoZS5KKZMBgsp+/No3r0yB6hplyhsVpGU/VKlmrICaRLuH1LPeXI+qiqUGrkUcF5lkq9QyjCUS/dMs8nqk5UPKrN7HMRPbppkjSrNN6DSKlDb//RlZqwWG2Hx/pTYrWcKdfVtaPyVGMolwuTYjmwAzhwrQl9qctmeJzjGnnW8mIjEAJfw8NimwQy5vz05qSX8+3tKjetnny7BYraR2Mb1d8sRil2co8dqtvlkm/MGh02vOK96AHpJnh61TuFRBaXS1D78HCSCx1huxt9O0lhNtgtXTNm37S0LTBekpvwcu6ZDveWVmKpCDvmS9eT4jROqfCf8g6XzWFZgpKzQQHiCv3MMKq3CbdZTpZXP62arQa2tVExlnSpm3cIjrF1wyEngBnnJK3MQbEKDYuqSQalS0/3mkRzbuomCTN+elW1WKxu/ncfil54iJ+U0gkxGvzF3M/qVt+ky5GaO79jCgiemcXjzxgsen1qnI6pxUxfyqwFXFipKisk4fIAtS77ns8lj2fLjd5gNehLbdqBVnwHoi4sRrVZGvvgGNz/xPCl7dvHrB29is1XPvQTITUsh/dB+Olx7o8ftHtv6D3KlCqO+glO7diDabDTq0Jn4lm18GndCm3aExSey589Vtd7nBlw4/vtjJWcOH+LWp17khmmPMvjBJzi+fQtHNm2o9203KKYuY/j17EHy4kWkT5pMyh13kjBnDpoWzZ2fG44dI2fmTMr//gdN+/bEf/Yp/gMGXLLAaJlaTcjoUQTfegtFy34hd9YnnBw8hLB77yXs3nuQaX2znVT8+y9n33wLw8GD+A8YQPysWS77fTGgbdOG+A8+wPjgKfI+n032y69Q+N33RD7zNP5X+RZML9psFP+ynNyPPsKSn0/IHXcQft9kFOH1G1hcFYJcTsCgQfhfcw3lm7eQ+/HHpI2fQMC1g4h84gmfrZ3WsnLyv/ySggULkPn7E/XC8wTfdttFrXAo8/MjdNxYQkaPomj5cvI+/YyTQ4YSOnYs4VOn+KQqBDAcPcrZGa9R8e+/0vX14YdoWrWq59G7hzI2lqhnnibsvskUfvMNBQu/oejnnwmbPJnQ8eOcdkhRFMl9/33y53xFyJgxRE1/5qLlbjWg/iBXuCqmzp4uwWYRSWwd5lzmH6ImPMGfjKOFtOgRTVmhAY2/st7zYZyKKS+TV5VGjslgdZnkK5QyjPZy9haTFbmbAGhwVa04+tAFqdAGqshNK6VxxwhK8w1OIkelVVBaIKlRIhMDOLw1C6BmK5+/EmOFBX2pkbyMMtoNiGf/hgynDVDhg2pFbicWSgsMRCQGVPs8unEQna9PYvefqbToEU3wOdlf2SeLUOsUhMa42nV1gSpkMsGp/FL5YJvzBqVaji5QRUluTcRU9YDwc6HSKrCYbVitNp+tfCAde32pibjmIZQV5DrHciFwKKYsXoLU/YPVTnLSAb2PxFRVG51viqnqbeVKGdoAJWWFBsqLjDTpFIFMJmAo90zsnU/ouQNOxVSF2UmyVpSYnHbNwDDP59mhlGpwyVxatB0wiG1LF7Nj+RJumPqIx7Y2m5QldXTrP0QkNSI/I41hjzxDsx69AYhv2YYuQ25lzVef8tvH71KSc5Yet9YcMu0rElq34/A/62vMrGvA5QN9aQlnjhwiPyONwqwzFGZlUpCZgaFMerEjyGQginS68Sb63jnBmQ3VuHM3Vn38LnEt29Dh2hu5+YnnWPr2K/z97TwGjJ9UbTu7f1uOf1g4zXq4nweJNhuH/llPm/5X02vEHWQcPkDagb0c374Fq8WC3IfnVkEQ6Hj9UNbNm01JXm6dKACvdOSmpbB39W8oVCq63TQCv+DzKz5WXlSIIJOhC6w5X9psMLBj+RLaDBhEfGspBqZZj950GXILWjfr1CUaFFOXOdSNGpG86Hvk4WGkjh1L+Y4dWAoKyHrhRU7fcium1FTiPv6I5B8WE3D11Ze0ipkDgkpFyOhRNPn9D0LHjyP/yy85OWQIZf9s8riepbCQzOeeI3XsOJDLSfpmIQmzP7/opFRVqBs3Ju7dd0hesgRZYCDp99xLxkMPY8nN9bie8dQp0sZPIOvZZ9F26kSTVSuJfu7Zi0pKVYUgCPj3uYrkxYuIffdd9AcOcnLoMHI//RTRZPK4bum69ZwaOpSChQsJnXg3Tf78k9A777yopFRVCCoVISNH0uT334iYNpXCH37g5A03UrxqFaKbCoYgZVdlv/4Gp28djqWggISvvpKur0tISlWFIiSEiIceosnqPwm69VZyP/5Y2q9fV2Izm8l6/nny53xF5NNPE/3C8w2k1P8TyBQy8tJLObpdUvNkHi9C468kJMaV3IhuFMRZhzWuyFj/ailwzlq9KqbUCqwWm6uVTynDbJLeulpMNo+TcHkNqhVBEIhICKhUTBUYCAirJKYcpFdItB/Yv/Y12b20/hKxknWiBERo3kNSouVnSlYGnxRT9kps5UVGt8ROlxuT0Aao2PVHSrXPsk4WE9UoqFqWkCATnIQG4LM6yRsCw7VuFVOebHxQSXiY9BY7MeWrYkqOxWQjpAr5dqFWPgexZTVbPfblF6w6b8WUIAgS2ST4FkLuLAhwzrn0D9FQWmDAUGZGG6BC7afAWG72mDvm+F6dT8aUUi1HJhMw6S3OfdWXmqkolioYerMJ1mRJbMDFh0KlouvQWzn8z3pK8tw/V4qiyNqvPufo1n+IbdaS/Iw0hj7ytJOUckCt0zH4wSfoddudbFq8kN2/r7ig8SW0bkdZYQFF2ZkX1E8D6h5mk5F9a/9k0YtP8dm9d7J85mv8++tSCs5kEBQVTZfBNzPs0WfoMOhGRFHkpiee5+q7JrsElre8qj9t+g9i8w/fYKwoJ7ljFwaMn8SuVcvZt+YPl+3ln0nn0N/r6HzjTR7JpbOnTlCSm0PL3v3wDw2j5VX96Xj9UAzlZaQf3Ofz/rXuOwClRl1tHP+LOHvqBIteeJJT/+3k4N/rWPTik5QW5NWqD5vNypqvPmP2feOYfd84tv28uMY505Etf1NRUkzP4a6k9oDx916UCp2XnsVogFcoIiJIWrgQdZvWpN09kRODrqVk9WqinnmaJr/+SuB1112WbzLk/n5EPv44jVf+ijo5mfRJk8h87jmsJdVLWRf/upJTg4dQuvovol9+meTFi9B163YJRl0ztO3akvTtN8S+N5OKXbs4OXQYRUuXVftSiyYTuZ9+yumbb8Gcm0Pi/K+J//CD8wqdrw8IMhlBw4bS5LdVhN0zkbzPZ3N6xG3o9+6t1taSm0vGw4+QYc8La7xyJZEPP3zRKv15g0yrJXzqVJr8/ju67t3JfPwJMqZOw5yVVa1txa5dnLrlVoqWLJGuyV+W4d/HN+XbxYYiNJTo556lyaqVaNu1I/PJJznRvz/Fvywn9p23Cbv7rks9xAbUIeRygZT9+az5+hCiTSTrZDExTYKq3dOjGwdSmF2BodxMWYER/5CLUUZZur95KjsP0iTZZhXPUT5Jy0AKHfdITFX5rOqEOizOjwJ7cPm5xJTDbhYcVUkU1ayYkoiJvIwyBAEi4gPQBigpzTPYx+lDxpR9/40VFrfEjkIpp+OgBI5tP+tUc4GUt5R9qoSYJjUrOjX+KiexUFfEVFCElpJcQ7XlJXl6r0oah0qpvMiIaBN9DmRXqGRYrSIav0pS5EKtfI71rRbRo/pKF6SmvNjk8ntcUWJCrpQ5w/k9QZAJyHx9hnIUBKhGTKkpzdcjilIwuVqnxKT3TOwJF6BaEgQBlU6BocJChV0xVV5spLTAiJ8PuWCObZ4PKdaAukX7a65HoVJ5nIDvX7eafWv/IKpRU7JPHpNIqe69a2wrCAK9R95JlyG3sH7BHE7uOv/4htgWrREEKWeqAZcHRJuNfWv+YN5Dk1gz51NUGg3XT32ESbPmcf+8xdz5+nsMfuBxeo64ncDwSPat+5NeI+6gadceNfbX5/ZxmI1GJ4nZ6YahdLx+CGvmfsaJf7cDYDIYWPXxu/iFhNLp+qEex5d2cB9KtYbYFq2dyyKSGhEUGeXszxeotDra9B/E/nV/YjGbfV7v/xssJhO/fTKT0Ng47n7vc8a9+SFWk4k/Pn0f0Wbz3oEdW5d8z761f9B/3D10u2kEm3/8lv3r/qzW7uDGtSS160hQpOcCGvWFBmLqCoHl7FkwW8BqRayoIGzSvYSOH1/vWTh1AVVSEglz5xI941VK//iTU8NuonzbNgCsJSWcefwJMp98El3PHjT5bRUht4++LJRf50IQBIKGDKHxyl/x79+PrGefJX3yfVjyJNbaePo0KXfcSd7nswmdOJHGy5fj17PuKqTUJWRaLZGPPEKjn5YgqNWk3H4HOR9+iGi/+ZeuW8epYTdR8e+/xL43k4Qvv0AVf3mGXyqjIon/8APiP52F4dAhTg0dRvGvKwGpAuLZt94mdew4FGFhNP5lGWH3TLxivjcxb7yOulkzrIVFIAiY0tKxeVG4NeDKQlXSp6LUREFmGeHx1UspRzWSJNQ5qSWUFRoIuAiKKQHfVBUqjURCVSWVFCoZNqv00GSzis4A8ZpQk5UPIDhKR2mBAbPJ4mLlU9gD4wWZ4KJgqokIcSimCrPLCAjXIlfKnESGu3XORVXizJMCpnWfWGRKGUe2VpLjBVnlmPQWopsE17iONkDpDA135AZdKAIjqiumbFYbpQVGAr1UcnQEdZfkOVRcvo1JrpQh2kSUGrmTIFReoGJKJhOcles8nSe/IDVWs82pogPsFflUPqugBB+HKnOTzSTlXEnXlMZfiVqnwGS0ejx+zu/Veb5YVNuVgw7bIqJEPp4bel8TnFlZDcTUJYdKq6N1v2vcTsDz0lJYO+9zgiKjyE09xdBHn3FLSlVF/7ETady5G3989kGt1RUOSDlTTRpypi4TFOdk8+OMZ/lrziwS2rRn4odfMOLZV2k7YBCBEZEubW1WK3/O/oiIpEYeLZ3+oWG07jeQvX/9jtViRhAEBk6YTNOuPVkx83V+m/UeX0wdT27KKSwmEwZ7cLo7pB/cR1zL1i6qKkEQSGrXqVaKKYAO1w2moriI49s8O27+P2P/uj8pzMrkhmmPotRoCIyI5Ib7HyPtwD4O+5j5lJt6mu2/LKHXiDvoOvRW+t4xgXZXX8eGhXOpKC5ytivOOcuZIwdp0+/q+tkZH3D5zf4b4ALRaiXviy85dcutWPJySZg7l5Dx48id+R75c+de6uH5DEEQCBk5ksYrf0XVqBFpd0+UQrRvupmyv/8m9t13if/gAxQRl7+PWBESQtw77xA/+3MMhw5x8uZbyH7jTU4PH4GtvJzkxYuJfPQRZzbQ5QxNy5YkL15ExMMPkz/nK1LGjOXME0+SMe1+tJ070/jXFQQNGXJZKvLORcA119B41Ur8r76azCefJP3++zk9chSF339P5BNPkPTtN6iSky/1MH2GJS+P1PETMJ89S+K8eYTdew95X3xByshRGI4cudTDa0AdQVZlvp2XXoq+1ExobHViKihCi0IloyCznLJCY71X5AMq1SE+hJ+Louhq5VPIEG2SAsdmE50EQ01wUUwpXIkpRMhNLcVstDqJKaVKLoWF+ylciCKlm/BzgOI8g7NSmV+QiooSyfrli92s6tjdVVgDKTi8aacIjm7Ldqp3sk4WI8gEl8D0c8fnCGf3VZ3kDUHhGvQlJszGygDbskJJAeXNyucgUhxZRb6quBzXiEqjcIbQX6hiqmofns6Tzp5fVlFcSdpXlJi82vgcEGRCrX/jziVrqxKMGj8lGj8lFpN0jbrtw2Hlq9WWK6HWKTBVmKkoMTktlGWFvimmuDBOrAF1jI7XDZEm4Ns3uyy3Wa388fmHyBVKSvPzGfbodJp16+VTn4JMxvVTHkahVNZaXVEV8a3bkXFov8eohAbUP1L2/cc3Tz9MSW4OI194g8EPPkFwdIzb9gc2rCEvPZXrJj/oNdep0w3DKC8s4KRd0SSTyxn66NP0uWM8KXt3Y6qooMetoxAEgb+/nee2H6vFwpkjh0ho077aZ/Ft2lFwJp3yIvfFfc5FWFwCiW078N/q/80QdIvZzI4VP9OyT3/CEyqdN0ntOtK8x1X8s2gBZmN1dfS52Lb0B4Iiouh20wjMJunZp++ddyGTydj68yJnu5O7diBXKGjS7dKJKhqIqcsYpvR0UseNJ/ejjwi7awKNV6zA/6reRE2fTtjUKeS8O5PcWZ9eUT8WypgYEuZ8ia57d4qXL8dWVkbCV3MIGuZZGno5ImDAAJIXfY8AFC5ciCohgeQfFqNt61vVicsFgkJB+JT7iHv3HQyHDlGyciXBI28j/tNZ9VL9sD4hDwgg7t13CLnzDsrWrsN0+jQxb7whqaTk9RsUXZcwZ2eTOmYs1vx8kr79Br9ePSWF25IfATg9chR5s2efd6XIBlw+qDoxzD4l2ZzPDckGafIcHKUjL6MMk95ycTKm7PBGTClUchBdyQPHOtoAJaJN9GjlEwTB2b6q6spBJGWflo6Lw8onV0q2MaVa7kKc1ESEqLUKBAH0pSZnxTiNn9JpBfSWxQOuZJnKAzEF0KJnNMW5es7ax5x9qpjweH+3VjStnxJThQWZXPDJVugLAiOk41ZSRTXlayi243g6FFMaHxVTMrvKWaWRO/ejLogpx/nxFH6uC7ATU6WVxJS+FsSUTKiFcshN7pouQIWxwkFMKVDrFFjNnhVTF2LlA+lcGSukjKnwOOmeoS814eeh0EC1MTQwU5cFwuITiG/VlgMb1rgs/3flMs6eOoHVbGLYY9NpWssJoy4wiBumSeqKQ/+sP6+xOXOmzlaPSWjAxcF/f65k6ZsvEdu8JePf+YTEttWJn6owGwxsWfIdLa/qT1Tjpl77D09IIqpxM45s/tu5TCaT03nwzQiCQIdrb6TP7ePpcetojmz5m9L8mhV4+RlpmI0G4qrY+ByIbyXNjTKPHvY6nqroeMNQso4d4eypE7Va7/8DTuzYQll+Hj1uGVnts7533oW+pJh/f13msY/CrDMc376F2Bat+HLaXXw8bgQ/vf4CFrOJbjeNYP+61U7VVMreXcS1bINK41uxsvpAAzF1GUIURQp//JFTN9+CJTeXpG+/IfLxx5GppYdqQRCIfPhhIh57jLxZs8iZOfOKIaesRUVkPPAAFTt2EDRiBIJOR8bUaVTs3Hmph1ZrGE+fJn3aNESDgcCbbsJ46hQZDz6EpaDgUg+t1ihds4asF15EFR+PX9++FC35iZx3Z15xxIdoNpP96gwKv1+E/8CBqJs3J+vZZyla6vnGfTnBlHGG1LHjEM1mkr77Fk3zyvB/TcuWNFryI2ETJ5L78Sek3HEnxtOnL+FoG3DBqDIxzD9ThkwuEBRV80NBSLSfM7T74mRMSfCWMeVUtVQhVhyTbl2gClH0TExJ26hOTGkDlKi0CvIzpH2uqpgSbSIKlRyFSu7cVk3kjyATpMp85RanxUmtU2IyWJx9eYOsFsRUbPMQNP5KTu+THtwdmWHuoPFXYjJYUesUdUYSOFRRxVUq85XkG0CoJPfcwbF/jip3viumKteXK7yrnHyFLySXg4ByWtqQFFNaH4kpBHyWLbnLZtL4KxHtghSNn5QxZbN5zsZyqq7O006n1ikx6i3oSysVU0a9xceMKeH8pVoNqBe07n81aQf2Oif9JXm5bFq8EEEQuOnxZ91mBHlDUvuOtLyqPxu/nefVhlUT4lq2BkEg4/CB89p+A84foiiyZcn3rJs3m043DOOWp19ErfOe87p3ze/oS0roc/s4n7fVsndfTv23E2NFhXPZ6f92UlFcRKcbbgKgTf9rkMlkHN+xpcY+clJOgSAQkZRc7bOA0HD8Q0LJPnXc5zEBNOncnYCwCPb8D6qmDmxYQ1zL1oTFJ1b7LDg6hk433sSOFT+5JQoB/v11GQq1mkN/r6NRxy4Muvd+8s+k88NLT9Os51UIMhl7Vq/CYjKRfnA/yR271OcueUUDMXWZwVJYSMb9D5D94ksEDRlMo2XL0HWuOQU/fPIkop59loK58zg747XzluleLBgOH+b0bSPR79lLwpdfEPv6azRe/gvqpk1JvXsihYsXX+oh+ozS9etJGTkKrDaSl/xI3DtvkzT/a4wnT3L6ttswHDp0qYfoE0SrlZwPPyTjgQfxu+oqkn/6iYQvvyDq2ekULFhA+uT7sBYVXeph+gRLYSFp99xL4ZIlRL/8MvGffUryou8JvGkYWc8+S/aM15wZWpcrTGlppI4fB4JA0jeSCu9cCCoVkY8+QvKi77GVlJAy4jaKV1xY5Z0GXDpU5SKkqmla5G6IoJBoHSV2suFiKqa88SXOHKAqVj7HOroAFaIN34mpKu0EQVKJFeVUoFDK0AZI6hMH4eEglbzlEKl1CsxGq1NJovZTYNJLNjdfFFMymeDcH5WXMG2ZTCCpTRip+/OpKDFRkqsn2iMxpcJs8qysqS10gSoUKlk1xZR/sNr7eZAJqDRy53Wm8pGYcpBqSrXcWcXQF9LPGxzj9UTwKO0qrYoqxJS+1ORUUnmDIAg+q5Yc7c79jjq2JVcIKFRyVFo5os0zOedUTPm26WpQ6xToy8zoy8zoAlWodJJyUevLfjeQUpcdmvfog0Kp4tA/67FazCx+6SlEm40bH3yCJl3Oj5RyoP/YiVhMJrYs+a7W66p1fkQmNebM4YMXNIYG1A6iKLL5h2/Y+tP39Ll9PAMnTEIm835PtVos7P5tBa369K9VgHXzXn2xms2c3FUZUH7y3x2ExScSFi89i6p1OhLbdeT4dnfE1ElComNQaXU1fh7VpFmtlU8yuZwO197IkU0b0ZeV1mrdKxkluTmk7t9D2wHXum3Tc/holGoNmxYtqPHz8qJCDmz4C7NBT49bR3PjA4/T4dobuf3ltzHp9Wz6fgFtBwxiz5+rSN2/B4vJeFEq73lCAzF1GaHiv/84PXwE+t27if/sU2JmzPBaAS10/DiiZ7xK4aJFZD3/AqLV6rH9pULpmjWk3DkGWWAAjX7+Cf++fQEprylx7leEjB5N9suvkPXSy4iXcbizKIrkff45GVOnoevRg+QlP6Ju3BgAXdeuNPppCYqQUFLuHOMM4L5cYS0rJ2Pa/eR/OYeIxx8j7qMPkfv7IQgCoePHkzh3LoZDhzh920gMR49d6uF6hPH4cVJGjcZ4/DhJX8+TAvQFAZlaTcyMGUS//DKFP/5I6l13Y8nPv9TDrRHG06dJHTcemUpN0jcLUcZ5DpvXduhA8s8/E3DtIDKfeprMZ6ZjKy+/SKNtQN1BmiGGROuoKDF5VLQEhGokQkUAv4sRfu5j5S6H8kOuqq6YcqhWZB4yppztherZPYHhGsqLjQSEaZzkh4MAc2xPrpAh1LCuAw4VkM6umNLolM78JV/JE0fYtVLjnahJahtG/pkyTu+Vyr97Ukxp/ZUgeie8agNBkELhC7LLWfnpXtZ/c5jiXL1LULwnqHVKSvINEsnkRS3n3GYV1ZrzPNUBMeVQq3kkeAQBbWBldUNRFNGXmp1EpjcIstpb2mpSTIGUsQWVRJpHxZTDDngBVr7inAoQJTLSEZ7vGIsn1EIk1oCLBLVOR9NuPTm4cS0/vf4CpXm5tLvmBlpd1f+C+/YPDaP7zbex76/fKcnLqfX68a3bkn6oQTF1sSCKIhu/ncf2ZT/Sf9w9HsPLz8WxbZsozc+ly9Bba7XNwPAIops0c1ZxtNmsnNq9gybnKPUad+pG5rHDNWYb5aacJiK5idttRDduxtmTx2vt8ml39XWIoo2D6/+q1XpXMg79vQ6lSk3zXn3ctlHr/Ohz+zgO/bOeM0eqCyI2LPwKm9VKi159uGr0WOfyoMgorp44heM7thAWn4S+rJT9a/9A4x/gkmV1KdBATF0GEEWR/HlfkzpuPMroaBotW0rA1b4n4oeMHEnsO29TvHw5Wc8+d1mRU459y3jwIfz79yf5++9Rxce7tBGUSqJfeJ7oGa9StHQpaffdh7X08mPFRZOJrOnPkvvRx4Q/8ADxn3yM3N81pFgZE0PSd98SeP11ZD755GWbAWY+e5bUceOo2LWLhC++IHzSpGoP5n49e5D800/IAgJIvfNOyjZtdtPbpUXphg2k3H4HMq2W5CVL0HXt6vK5IAiE3D6apAULMKWmkjL6doynLi/7m/HkSVLHj0fm70/iwgUoo317yyX39yP27beJefNNSv78004iHq3n0TagTmG/P4TF+2MyWD1W23MEnmv9lT4TBhcGxz3B8z2skjCqPiaHzcoXcqsmYikgRIOx3OK08UElSeHYniATPOZgOcgnh2JKpVVgs4oSEeaFMHOOz66q8VahECChdSgIcPK/HPxD1R5tlw6rnMIDgXE+CIrQknW8mNT9+RzanEVeeimBXmx8Dqh0Cilc3geCwwEnOamUOc91XWRmyeW+kVy6QJUzY8pssGK12HxTDlFZfdLHxkD1jCmH4s1xHuUK7xZE2QUrpqSAdZBIV8d1rvXpvDXQUpcjmnXrRWFmBhmHD+IXEsI1E++rs7473zgMlVbH9qU/1nrd+FZtKMk9e16kVgOqQxRFCrMz2b9+NZt/+IZ187/g7+/ns3/davLS01g//0t2rVzG1XffR9daEEyiKPLvymUkd+hMRGJyrcfVqFM3UvfuxmqxkHPqJPrSEhp36ubSJrZFK2xWK9knXS15oiiSm3qayKRGbvuPSG6MobyMssLavSDWBQXTvFdf9vz122XvDqorHNu+mSZde3jNe2o78FpimrVg1SfvUlFS7FyecfggRzZvJCA8ghsfeLzaHK9Fr74kte/E7t+W06hjF9IO7iOmWYtLnjvYQExdYliLisiYdj8577xD6ITxJC1cgDLGfZUFdwgaNkwip379VVJOXQZfXNFsJvvlV8h55x3CJk0i7v33PFaqCxk5kqR5czEcPETqmLGYs7Mv4mg9w1pSQtrk+yhZtYrYd98l4oH7EWQ1f31kGg0xb71FxCOPkDdrFlnPP39ZWcgMR4+SMmo01qIikr7/Dv++7tl4VXwcyd9+g7ZLZ9KnTKHo56UXcaTeUbhkCRnT7kfXsyfJi75HFe9eZaTr3InkxYsR1GpS7rjjssk1Mxw9Ruq48ShCQqXvf2Sk95XOQfCtt9Do558QVCpSRo6i6Oef62GkDagX2B8CQmP8sJptHpVQDnKmLm1fvsArt26/FdZk5XNUzfP2qCMIQo3klX+oBovJ5lKF0ElM2Sf/MnnN6zqHZydIHCSZQ8WiUMp8fggTZJ63URUaPyVhsf7kppUR0yTYY1uHmquugs8dCAzXUlpgoHHHCEJj/SjJNThziLzBod7y1QoHlcSjXCFznmufA8U9wEEAeVO2aQNUzowpB0HlKzFVq4wpe8NzCUonwaiqvCYBj9UoncfnPCcCVYlDvyC1U0FYtVKl2203SKYuO5Tk5bDlp++lf4giAyfch1xRd/d6lVZHt5tv48CGvyjOqd3zdVxLKbi6qp3vxM5tLHzqQWZPGc+auZ+7ZBM1oGYYKyr4d+Uyvn5sKvMensxfX8ziwMa1pO3fy9Et/7D6i09Y8MQ0/vvjV9oOvJaO1w2pVf9nT50g5/RJOt047LzG17hzN4wV5WQeO8yZo4dRKFVEN23m0iY8MQmVVlctxFxfUoyxopzQWFfxQVWExkmfFWRk1HpsHa8bQvHZbE7v3VXrda80FOdkk5t6mqY+VOCUyeQMfeRpLEYji55/gl2/LWfvX7+x5LXnABjx7Iwa7yOCIND3jgkUZp0hJCYOs8GAX/ClL3jVQExdQuj37+f08BFU7N5N/OefEfXkkwjK8/8RChoyhNi37cqpFy4tOWUtKyN9ylSKfv6ZmNdfI/KxR90SOVWh69aN5O+/w1pWSsro2y8LC5k5M5PUMWMwHDpEwtyvfKogKAgC4VPuI/bttyhevoL0qdOwll16m1XZP5tIvXMMirAwkhcvdgnWdgeZnx8Jn31G8PDhZD33HLmfzLrkKjBRFMn97DOyX3iRkNtHE//xR8j8vE+6VPFxJC/6Hk2rVqRNvOeS2y2NJ06QdtddKKKiSFwwH0VY2Hn3pW7cmOQfFhN0881kPfc8WS++hO0ytsU2wBUO0snTpNLfHmrsyR5Ul/A5d8f+X0e2EOC83yvtJIdXkkKoeXsBzkp61avvOex1glCz2srZ3q4ucxB6DuLFW96Sy/BkvucQAUQ3DsRQZia6sXsbnzQWRa3H4gv8Q9RYzTbiWgQT3TgQm02ssdpjTbCapWcHq8X3ZwjH+ZXJBbfn8nzgVF+pPR8fXRUrn6FMehHkm3II+3hrd7Gfez0rqthKXT730K0v6jtPqBpyrgtUOrftS2D95afj/t/Gqf928s0zj2A2GtEFByOTy2nW3fuktLboeN1gVDo/dv9Wu1xKXWAQYfGJpNsD0A9uXMvyma/hFxxC674DOfT3Opa9/YqzFH0DXFGYncnyma/z+aQxbPxmLsbyMhp16sYN9z/GPR/N4a73PuOej7+kdb+BAIQnJnNg/V/88Mp0inPO+rydAxvW4B8adt45QVGNmqALCubU7p2cOXqQqCbNqpEaMpmcmGYtyDzmSkwVZJ0BICQm1m3/QZFRyBUK8s+k13psMc1aENW4KbtWLa/1ulcaju/YilyppFEn34LIA8Mj6TL0VorOZrFhwRzWfPUZAgLtrr6OsDj3RGFU46Y079mHw5s3AlCYVXvCsK7RQExdIhQt+4XUMWORh4fTeNlSAgYOrJN+g4YNJfatNyleuozsl166JOSUpaCAtAl3od+3j8Sv5hA8YkSt1lc3bUryosXIQ0NJHTOG8m3b6mmk3mE4eoyU0bdjq9CTvOh7/Lp3r9X6QTffTOKcL9Hv2UPquHGYcy6dDLr4119JnzIFXdeuUoZRlO/KHEGhIPqVl6VKkJ9+KllGL1HFPtFqJfvlV8j7+BMiHnmEqBdeQJD7PlGXBwaS+OUXBA4ZQuaTT5L/1Vf1OFr3MKWmknb3RBTh4STOm4siJOSC+5RpNMTMeJXoGa9SvGwZqWPHYc5qKPF8OePcinKeLHqSTaqSkKlvOCav3rbmbFdlou2Y5zv2yxsxJQVQV2+jthN18iqKGbnSdfIvyPDIhAhOO5iDLKs9GSTIaqcAcuRZBbupsOiAQzElq2NiyoHAMK2TkPML9tHadh7ZR848sjq+NB3XhLdzpQtUobcrpRwElc+KqfPAuVY+h+LPsVwmOGx63q/L8z1kVYlGmVxWaTf1weYrDa9BMnWpUVFSzJ+zP2bZW68Q26wF106+n4qiImxWq1ThrI6hVGvoMOhG9q//C2NF7V6WxrdqS8bhg+Slp/LXnFm0HXgtw6e/Qr8xd3Pbc69y9uRxtvxY+3D1/88oyc1h2duvMO/hyZzYuRW1nx9Nu/UirmVrCrMy+H3WTObcfze7Vv3CH59+wOF/NnDjA48z4d1ZjHzhDUrycvjmmYfIOOI9eN5sMnJk8wZ75bzze3klyGQ06tSV0//9S+axI8S1aFVju+gmzck5fdJlWVFWJgBB0e5dPzKZnJCYOAoyfSdAzEYD+9evZtXH72LS60nbv4elb7/CwY1rz6vK5JWAEzu3ktSuo1cbnwPlRYVs+3kxrfoMoINdZWezWek5/Hav6/YeNQa93QKYefRIrYjQ+oBv5VYaUGcQzWbOvvMuhd98Q9CI4US/9BIyVd0+PAXddBOizUbW9GdBkBH98ks+qZXqAubMTNIm3oO1rIykbxaiadnyvPpRRkWS9M03nHn4YdInTSbuww8IuOaaOh6tZ+j37iVt8n0oY2NJnPMlivDw8+rHr1cvkr77jvTJk0kdO47EefM8Ws7qAwXffcfZGa8RNHw4Ma++gqCo/VdfEATCJ09CGRNN5vRnsZaWEPf++3V+/XqCzWDgzBNPULZ+AzGvv07wiOHn1Y+gUhHz5hsoY2PImfke1qIiIh6v7sGuL5jPnCH17ruR+fmR+PW8OiGlqiJk5Eg0LVuS8dDDnB5xG3Hvv49fzwur6tOA+oVDhWjzoEYURVGy1dkujt7B8XXwujXR0b46MeWw23n7agleVDZVP3LaunzkTxxkgdVskyqm2RVTvuZLSeOrmThzB4tJyno0Vngm8FVa+1jq+CfaMVZ9ucmpgHIoibzBZpVOqFiL68yxPce6dQWH5czbsdcGSBlTUvC5CQTfQsBBIo9EHzVEjmG4Uzs5xukgnTz16uhDPM+fHYf90xny3sAzXdYoyctB6x+IzWYl5/RJjm3fzMENa5Ep5FxzzzQ6DLqBX96dQUhMHBWlJRzfvpnoJs28d1xLdLx+CDtX/Mz+tX/SdZjvz1Dxrdqw96/fWDv3cwLCwrnmnmnO6z22eSt6jbyTTYsW0nbAtc4qbv/LOLp1E3989j4Wsxm1zo8hDz9Jo46uGaj5GWnsXPEzGxZKL0gH3jWZ1n0loUJi2/aMf+cTVsx8nZ9fe4Fbnn6RpHYd3W7vxM5tGMvLadP/wuZKjTt34+CGNYBURa8mhCckUlZYgL6sFK1/AACFWWcICI9AqfJcmCU0LoECHxVTx3duZc2cT9GXlBDdtBnRTZtTXlTAmcMHOb17JwqVmha9+tLtpuGExSfWYi99R3HOWbYt/YHis1kkte9E12HDkZ/HHMpXlBcVcuboYa6770Gf19n9+wpkchlX3z0Fi8XEvr9+IzA8gsAI7wKEsLgEQmPiKMg6g0qn5b8/VzJg3D0XsgsXhAbF1EWEpbCQtHsnUbhoEVEvvkDMa6/V26Q++JZbiHn9dYqWLCH71VcvivXKeOIEKXfciWixkPz9d+dNSjkg9/cj4fPP8B84kIyHHr6otqvybdtIvXsi6iZNSFow/7xJKQc0LZqT9J30Jil1zBiMp+r+TVhNEEWRvNmzOTvjNUInTCDmtRnnRUpVRdCwYcR/8jHl/2wiY8qUi1YJzqbXkzFtGuWbtxD/6azzJqUcEASBiIceImr6M+R/NZfsF1+6KIUDzGfPknrX3QgyOYnzv77ga8sdtO3a0ejnn1C3aE7axInkz513yS2YDagZggBGvURgOMKMa4Kx3AIiWMwXWQnr5bpxZgpVmRg7iQSHqskXUqeGNsYKiUyxWirH4LTyVW4ZX8xJejsx41Bx+aIscRlaLSb++WfKkSsE8tI9v9F1qr/qmBSvKDEikwnkpJRSmC3do4tz9T6t68zgOo+qehaTDcQ6tIr5eFx0gSpsFhFjhUWqyOevrJVVzteWopOErfnDavvt4UA4VWY+bvtc5GdK59VkrzBps0nEtc166TNGG+AKm83KVw/cy8cTbmPW3aP58dVnObZtM12G3sLED7+k43WDyUk5xandO+k54naadevFse2b6+U32z8klJZX9eO/P1fVylUR36otABmHD9Bv7EQU50SPdB58M36hoez4pfbh6v/fsPXnRaz88C2sZgsxTVtwz8dzqpFSAAHhEVQUFyGTy9EFBrH1p0VkHK6sfqjx82f49FeIb92WFe+97lFFd2D9X8S1bENIzIW9+E5q19EpZohwE2Qebg9Wz0tLcS4rzM4kJNq9jc+B0Lh4r8SUKIpsWfI9K2a+Tkyzlkz86EvufO09Bj/wOFffPQWTvoLbnn+NnsNHk3ZwL/OfuJ9VH79LQeYZ33bSR+SfSee75x4jZc+/qP382bLkO5a9/QpWy4XlBlvMZnYs/4lvnn6YuQ9NYvUXH1NeVAjAyX+3IyDQpItvL5NFUeTwpg206jMQjb8//3z7NXKlkuLcHGef3qBQqaSK7LEJHFi3GpPBt2eF+kADMXWRYDh8mJQRt2E8fpzEeXMJvfPOeldnBA+/lZjXZlC0+AfOvvZ6vU5K9fv2SdbEoCCSvv8OVWLdMNeCSkXc++8RdNNNZD71FIU/1P8PXum6daRPvg9dp04kfjUHeWBgnfSrio8j6dtvkAcGkjpmLPqD3qW5FwJRFMl5511yP/yI8IceJPKZp+tMORcwcCAJc75Ev3efpJArLva+0gXApteTcf/9VPy3h8QvvyBgwIA66zt0wgRi3niDop9/5szjTyDWYy6TJT+ftLsnIprNJM6f73P1vfOFIjSUxDlzCLtnIjnvvsuZxx7D1hBQellCX2pGEKC82H1GR2mBVJ7Zoca5WBC9SDo8/bLYLNJYBR9uPTX9JJYVSMfDbKhUHp0bFC56Y0LsnzkUQw7CRV4LS6Qg+J4xZbOJZJ8qJiBMS25aice2ZkP9nMvC7Aq0QSqObMsm42gRGj8lxXnVy3vXBJudBDTVYmyOY2M2WaVnjTp73PCtI0ewfcq+PAqzy9H41/Kln68RUw4V4TntrVabq5rR/rzl6bnrQg9ReaH9fNq5BQchZSi/NDb7BnjG8OkvM/iBxxn6yNOMe/tjpsxeyFWjxqILlHLoti1dTHB0DC1796N5z6soys4iN7V+Kgi3H3QjJblnSd2/x+d1/EPDUKo1kh2ta89qnyuUSroNG8HhzRspycutw9FeWdj60yK2/PgdgiDQtFtPRr34BtqA6vOI8qJCfnxlOmeOHmL4M69w1weziUhM5uc3XyLtwD5nO4VKxbBHnyE4OpZlb7/iUnmtal/pB/bRup/vFd3dQa3zIzAiEkEmIziy5mfUkJg4ZHIFeempzmWFWZk+kWKhcQmUFxV6tOHtWvULW3/6nqtGj+PmJ54jOKpyHC2v6k9gRBT71v5Jj1tHcc9HX3LNxKlkHD7A/Mensnbe5zUeo3NhtVg83p8tZjO/vv8m2oBAxr87i5ufeI7h018h/eB+/v72a6/9u0N5USHfP/84m3/4htC4eJp07c6Jf7fz7fRHyM9I4/jOrcS3auO8L3hD9sljlObl0rxnH/b+9TuH/llPv7ETERA4uWu71/VtNisFWWeIb9WWnNRTmPQVHPp7/Xnv34WigZi6CChetYqUO+5EHhxMo5+W1Dqn6EIQPGIE0a+8QuF335H7/vv1Qk6Vb9tO6l13o2rcWMouOo+qYp4gKBTEvP4aIWPGkP3SS+TPnVen/VdF8a+/kvHgQ/gPGED8558h0+nqtH9lZKR0jBISSJtwFxW76qe6hGi1kvXCCxR8/TVRzz1HxLRpdU6E+nXvTuL8+ZhSU0kdNx5Lbv08iJxLSum6dfO+Ui0RPPxW4j/+iLK1a0mfdn+9kDfWoiKJxCstIWn+1xfNzikoFEQ+/jhxH35I2YaNpIwZizkz86JsuwHe4Yh60ZeakCtllBW4Jw8cxJQ3e1jdw/PvRo2WL/vtxmo5Z4E7uPm4tMCAXClzVloDnNXHKrfvWdRls49PXyb14ciaqm3VOF/voQWZ5Zj0FqIbB5KTVurxd9dxLj1ZOM8HhdkVxDYJwmK0IgjYK/P59hbUoVIzlNf+rbDFZMN2DlFyIRBFfGJwHMTU2gWHObk7t9LeVl84Z0xGOxnkuNZE+wXtyQ4pXqDtsaLUoSa0YbPaamXZ/P/i+vv0009JTk5Go9HQo0cPduzY4bbt/PnznZZcx5/GQ6XouoRMJie5Q2da9R1Ii159iUxu7PKiMCflFCd2bqPn8NuRyeUktm2PWufH8R1b62U8sc1bEhafyP61f/q8TmlBHmajAaVK7fZe2HbANSiUKg5uXFNXQ72icHDjWrYs+Q6ZTE6Trj0Z+sjTKGpwxuSlpbDoxScpK8hn9Mtvk9S+I1r/AG595iXiWrRm+cwZ5FZRI6m0Om556gUsZjN/fv5htd+U49u3IMiEOgvMV+v8EEURq5ssWblCQWhcvFMxJdpsFGVlegw+d8BRta/gTM05UxmHDvD3d1/Tddhweg4fXe1akysU9Lh1FMe2/kP2yePIFUo6XjeYez6aQ9877+LQ3+uZ9/Bkdv66FLPRiM0mvSw5e+oEO5b/xM9vvMhnk8bw4Zhb+ODOm5n78CQ2LPyqGpm6d/UqCs5kMPThp5zEYlK7jvQbcze7//iV7JPHve7ruTBWlPPjq8+iLy5izBsfMOShJxkwfhLj3/4YjZ8/S998ibT9e2hai/N4YsdWNAGBZBw+wJq5n9HphmF0un4o8a3acPJf78RUUXY2FqORTjcMQ6XW4BcSyo7lS6oVMtj71+/nFVpfWzQQU/UI0WolZ+ZMMh9/goBrryXpu29Rxnr/0tY1QkaPkuxKc74if/bsOu27fOtWKVC7Y0cS536FPMg3hre2EGQyop57lrAp95Hz7rvkfvxJnZNsRT/9ROZTTxN0003Evf9evdks5cHBJM6bh6Z1a9LuuZfyrXX74CFarWROn07xsl+IeetNQseNrdP+q0Lbri1J336DtaiI1PET6jzc/WKQUg4EDBpEwpdfULF7N2mTJ9dpFUVraSlp907CcvYsSfPmoUpOrrO+fUXgDdeTvHgRtpISTt82koqdOy/6GBpQHY67mL7UjEqjoDTfPTFVVmhAJhMwVliwXgy7juN50Mut1nErrmq3c8BJTviaoH4OSgsMqDRyKoorialKi1ZlFpKn3wObxXXC7sioqhVXXwsrX9aJImRygeT24RjLLR7PqYMEulCSoipEUaS0wEBUoyCGP9mF0c93JyRaR3Ger8SUBbWfwkWl5issJqvTHlTT9VBrOK8tz9e7NrDy99pqsdUq2F6ssh3vqDl4zUHiOdSMDkLK6uG82i4wK86krzw/Rr3Fqb4zlHtX/Z5vrtXlhB9++IHHHnuMl156id27d9OhQweuv/56cjw8hwQGBpKVleX8S01Nddv2YmL70h8Iioqm5VX9AZArlCR37MKp3e6JtguBIAi0HXgtJ3dt9zlA+tjWzQgymTNb6FwYyssoLcinWfdeHFj/1yWtDH4pkHnsCKu/+AS5QkFc67YMefgpZDUU5jm69R++f/4JlGoNd8yYSWRyY+dnSrWGmx5/lqCoGJa9/YqLFSsgNJwbpz3Kqd072bv6t2p9JrbrWKMy63xg0utBFF1sheciNC7BGWJeWpCPxWwi2BcrX6z0UramAHSLycSfsz8itnkr+t4xwW0fbQcMIiw+kb+/rYyoUKhUdBs2nHs+nkN863b8/e08Ph4/gg/uuJkPx9zCt9MfYevPiwDoeN0QrpvyENdMnEJS+84c3LCGrx+bwv51qwEwVlSwbekPtL362mp2xk43DCU8IcmZC+YrRFHkj88+pLywgJEvvuly3v1Dw7jlqRcptxc+aNqtuiKxJpTk5XDon/WYDXq2/byYnsNvZ+CESQAkte9ExuGD2LxElOSmSvbQuJatGXTvNMoK8ikryGd3leqH6Qf3sXbu5z4RXReKBmKqnmAtLib9vinkz/uayKeeIvadt5FpfUvXrw+ETphAxMMPkfvRx+TPn18nfZZv2UL6lKnounWrF3XRuRAEgchHHiHi8cfI++wzcj/6qM7IqaKffybrhRcJvn00Ma+/dsE5TN4g9/cj4csv0HXvRvqUqZRv2VIn/YpWK1nPPkvJqt+Ie/cdgm+5pU769QR106YkfbMQm15P2vgJmM/WTUUHm15P+rRpF4WUcsCvVy8S536F8chR0idNwlp24RU/bOXlpE++D1NaGonz5qJuVvdhpr5C06IFyT8tQd20Kal3T6Rw8eJLNpYG2GG/hxnKTKj9FJQWerLyGdHYlSCG0gvLOPAFjgwnb8HQjvuwC3lgX8ViJye8zoPdEVP5BjT+SmelNaiiShEr/+1JmWI2SaohR8aUIBOkQO1aZhD52jrrRBERiQFEN5Ze1OSkVp/EOeDIFvNGvNQGxnILVrMN/xA1MU2CCI3xIzBc65Egc1m/wkJAqMaufvLtN9ZxLiRiSvr/utgnx/a92VdVGjmCAP4hUvBurdRaNWVDuW1qL1JwDuFkdBBTdtWSY/tWD3lwFxoU70JMlVsw24+R3seQ+zr0W14SvP/++0yaNIm7776b1q1bM3v2bHQ6HfPmuVfVC4JAdHS08y8qKuoijrhm5KWlcGz7ZnrcMsolVLlJ527knD5JaUFevWy3Ze9+WK1Wju/w7fnz6LZ/SGjTHoAzhyujKHJTT7PsnVf59J47mP/YVI5u+YeS3BxS9u2ul3FfjjBWlLPyw7eQyeX4h4Vz02PTq2Vw2axW/v7ua1Z++DZNuvbgzhkzCYqsfv2pNFpufepFrGYzv3/6vgvB17hzN9pfcwP/LJrvvC7KCvLJOHKQFj371Mm+WC1minOyUfv5c/q/f922C4mOpShbqvpckieRwTXtz7lQqjUERkTWmDP1769LKcnL4dpJD9RI6jkgk8vpN+Zu0g/t59Ru6SWr2WQk7cA+Vrz3Oif/rbmae8/htzPi2VfpPfJO2g28jg7XDmbQPVOZ9Ok8Wl3Vn9VffMyWJd9zcONajBXl9BpxR43b7nP7OM4cOehTtcSK4iKObN7Iivfe4MTOrXS+8SYCasiWDYqMIjROUpOZDe6fA0E6R39/P5+vHriXsoJ8ops0Y8LMWVw1aoxTiRnfqi0mfYXX6p65qafxCwlFFxhE8559aH/NDYg2G1uWfE9uWgrph/az4oO3SGjTlq7DbvW6vxeKBmKqHmA8fpzTo0ah37+fhDlfEjbx7otW7csTwqZMIWzSJHLeevuCs5rKNm0mfeo0dD26Ez/rE2Rqz1UY6hLhkyYR+eST5M/+gtwPL5ycKlq6jKznXyB49CiiX3jholUwlGk0xM+aha5nD9KnTqNs0+YL6k+0Wsl67nmKf11J7DtvEzh4cB2N1DtUSUkkLVyAzWgkdfx4zNnZF9Sfg5TS79130UgpB3SdOpE4by7Gkycl612J54wYT7AZDKTf/wDGo0dJnPMlmtat63Ck5wdFSAiJc78iZPRosl9+hayXX67XXK0G+ABRmkzqAlToS0xYzDVPwssKDPgFS/faqkRNvQ/Pyy3WMcGuaRLuzJjy8hMoIta4ndJ8A35BapfsLed2nJYx0SOBYtJbkStlLhYnwYdKb9XgQ3vRJpJxtJC4FiH4BanRBigpyHRPcDssYHWiLrKjrEg6Vo5rBUAXpMKkt3gleCxmK1aLDf8QyeJkNvqWM+X4HbaYbJXXQx0QUw7C0Wz03JcgCAgyAY2/EkHwTAjVBc693pyKKfvxchBUno6fk5g6T/mSSW9BYQ+qN1ZYnNv6X7DymUwmdu3axaBBg5zLZDIZgwYNYqsHFXpZWRlJSUkkJCRw8803c9BD1qfRaKSkpMTlrz6wbdmPBEZE0rrfQJflyR27IAgyj+TAhcA/NIyE1u04svlvr21L8nLIOnaEtv2vISA8wqmkObhxLd9Of5SirEwG3TOVUS++QY/howFY9dG7tcqaKi8qxGzwjTy/GLBZrRRmZ1KQecar6mTDwq+c6qZbnnwBjZ+/y+cFmWdY/OJT/LtyGQPG38vgB59A6cFGGhAWzo33P0bqvv/Y/fsKl8/6jrkLpVrD+q+/BODY9i3IZHKadqsbG1/BmQxEm434Vm04vcf9tRccHUNZQT5mo4FS+3kOCIvwaRshMXEUZrkGlRsrytn561I6Xj/Up6qO0c1aEJaQxO+z3uPb6Y8w665RLJnxLGeOHCI0LoE+d0xg/DufMOK5GU774KZFC/jvz+qFtFRaHdfd9xB9bh/P1p++Z/uyH2jWrRcBYTUXJ2rcqRth8YnsXP6Ty/KclFOs/PBt5jxwD3Mfmcz8x6fx+X3jWPXxu5zYuRVBJmPrz4uYPXkcmxYvdAkZt5hMFJ3NQqXVsX3ZD273WxRFfvvkPXat/IU2A6T73zUTp1arShjdtBkKlZqMQ/s9Hsfc1NMuqrBr7plK635XY7NaWPjkA/z4ynTC4hIY+uh0ZLLaF0SpLRqIqTpG6Zo1pIy+HZlKTaOfluB/1VWXekhOCIJAxGOPEjJ2LNkvv0zxihXeV6oBZf/8Q8a0afj17En8rFkXlZRyIOyeiUQ+9RT5X3xB7gfV/da+omjZL2Q99xzBI0cS/eKLF42UckCmUhH/ySf49exJxrRplP2z6bz6EW02sl54keIVK4h9+22Chgyp45F6hyoxkaSFCxDNZsnWl5V1Xv24kFJfzL6opJQD2vbtSfx6HqbUVNLunoi1qKjWfdhMJjIeegj9nj0kfDEbbYcOdT/Q84SgVBL9wvNEz3iVop+XkjpxIpb8/Es9rP9JOG5d+hKTU+1R5kY1VVpgIDBMepitmrlUf2Ozq528Wfls1Ykpp4rKvkz0MhWWsoRcN2QxW6koMREYrsVssDon3g7Co1K9YpNyptyQUyaDBaVa7qIkqS0p5esvTF5GGfpSM4mtQgEp26kgy70t2GHlq8tA+zJ7KLbjegLwC5T+v7zY83VjsRNAuiDJGueznc9+gMwmq9NmWieKKXtf3o6PaJPISZlcQBTBqK/l8fRZMlW5vapwEFNGvRSo68j28nT8HH2I3r5gbmAyWAkI1di3b8JisqHUyNH7oKb0NbvrckVeXh5Wq7Wa4ikqKopsNy/GWrRowbx581i+fDnffvstNpuN3r17k5FRc9bNm2++SVBQkPMvIcH7ZLm2yD+TztGt/9D95pHIFa4KG21AILEtWjkVIfWBllf1I/3APq/Vu45v34pcqaRxlx7Et2pLxuGD7Fn9G3989gGt+w1k3Duf0OHawSS0aU+v2+6gVZ8BmAx6fnj5aa99nzl6mAVP3M/s+8bxyd2jWP3lJ5iNrgTVxawobNJXsGnxQmbfN455D0/m60fv4/P7xrH5x++qjQvg5K4dHFj/FzarleumPER4QpLLuPes/o1vnnkIQ3kpd7z6Ll2G3OLT709yh850GXIz/3w/36XanMbPn4F3Teb4ji2k7N3NyV3bSWzbHo2/v4fefIeDMGresw+FWZnVCCQHHBX4is5mU5KXi9rPD7WPzpmgyCiKc1zdFXtW/4bVbKLbMPcVt60WC0e3bmLJjGeZPXks+empGCvKsZhMtOjdD4ABEyZz9/uf0+OWkUQkNSK5fSfGvf0xfe6YgCCTsW7ebA5v2lBj/z1uHUWTrj2pKC4isV1Ht+MQZDK6Dr2VU7t3Upwj3W8Ob97Id88+Sk7KSYKjoinOziI/Iw1dQBCNOnVFGxDIlC+/5a73PqP9oBvYtWo53zz1kDNLLHX/HswGAx2vG8zRrf+4/d7s/et3jm3bxNBHniIwPAK1n5/LNeeAXKEkplkLzhw95HY/AHJTU1yIKZlczo33P8awR6ej1GjxCw6hy5CbMRv0GOrAReINlz0xdaUEG4o2G7mfzCLjgQfx69OH5MWLUNXDj9iFQhAEop6dTtDwW8l8Zjolf66u1fplGzeSMe1+/K66irhPPq63HCZfEDbxbiKffpr8L78k9/0Pav3DVbx8OVnPPkvwbbcR/fJLF52UckCmUhH3ycf4XXUVGfffT9k//9RqfYmUeoHiX34h9u23CBo2tJ5G6h2qhASSFn4DVqtETtUyZPtyIKUc0LZpQ9KC+ZjPnCH17olYCn0ruwogms1kPv44Fdu2E//prEu6H54QMnIkSQvmYzqdwumRIzEcPnyph/S/B1GaJOrLzASGS3bvUjcB6KUFBoIipQc//cVUTHn53OqwW1mqElP2z+zLBB/sgOfewh0V+YKipOPiUE05yC7bOYSYxQ0RYjJYUarlGMrq/5ilHy5AoZI5bXyhMf4UZHogpvQWZHKhVhXwvKG8yIggVAaCQyXRVOGh6iPgVOtp/aVJsq/jqrTcVSqmbHWgAnP0ZfZCTJUXG0GsbG/S+251lYoI+mhZtLerrpiyoFDKEG2SWspssiHIBM+KKZtvxK87GPUW/Ozn1VGJT6VROEP+G+CKXr16MX78eDp27Ej//v1ZunQpERERfPHFFzW2nz59OsXFxc6/9PS6D/7dvvQH/EPDnMqHc9G4czdpwmry/L09XzTrcRWCTMbRrZ6fO1P27Sa+VVvUOh3xrdpw9vQJ1s79jE43DuO6+x6qZltrO/A6RJsNk17P8ndfczv+4zu38uMr01FpdQx95Gn63nkXhzdt4KfXXsBsMnJ8+xa+nf4IH9x5M7PvG8f6+V/WmG9VVyjIzOCbZx5m12/LadVnALc99xq3Pf8arfsOZOfyJSx64UkXFZjZaGDNnE+RyeW06N2PVvaMMJAsdkvfepm1cz+jTb9rGPfWx8Q0a1Gr8Vx1+3j8w8JZO/dTlzlO8559iG3Rmg0LvyLj0AEad6m7olqF2Vmo/fxo0rUHcoWC03tqLtIUHB0DQFF2JqV5uQSG+174KigymuKcs5VKW7OZ3b8tp3X/a/APDavWXhRFju/cyvzHprLyw7ewWqwMumcakz+fT5/bx1NwJp1j27fQZsAgOt84rNr6MrmcHreMZNzbH6NQqfht1nsc/qfmynNa/wBkCgW7fluOxYOboEXvvqi0Og6s/4vU/Xv4/ZP3aNG7H4279CDtwF463jCUce/MQqFWcfq/f+l8403oAgIJi0+k/9iJjH/nY5RaLT+8/DSZx45wYudWQmLj6XbTbchkcg5uXFttm/rSEv75/mvaXXM9zbr3JvvkMaKbNHc7f41u0oyzp0+63QezwUBpfi5hcdX5iuY9r2LcWx8SFBnNivfeYM79E9lTg9qsrnFZE1NXUrChraKCkpUriXjkYeI++hCZn99F2e75QJDJiHn1VQJvuIEzTzxB2caNPq1XumGDRLz160f8Rx9eUlLKgbC77yLymafJnzOnVuRU8YoVZD4znaARw4l+5eVLRko5IFOpiPvoQ/z69CFj2v2U/e1dWg0SKZX90ksUL11G7FtvEjSs+g35YkMVH0fSwgUgihI5dabmty3nwqbXkz718iClHNC0bEniggVYzp4lbcJdWAoKvK4jWq1kPjOd0vUbiPvow8tKNVkTdJ070+inJShCQn2+FzSg7lA1syYo0k5M1ZAFZDJYqCg2ERqtk8LALyYx5UX4IlpqyNNxZkzZqv7T4zbOvX87CLqwGOlNsGOfKxVT0v9XzTeqCWa9BbVO6ZOS5EKRfriAuOYhyJXSb0porB9FOXq31jJjhQWFSuaSF3ShKC8yog1UIZNX/q75BfmomLKPU+vvUEz5aOWrkgXlOD91oZhyhIdbTJ77KrWTmM4A8FpUrhQlZsrHxvb/1KCYUmokm4OpQrJMyrwRU1ZHVtp5Kqb0Fud5ddj31DqFT1Y+uKIFU4SHhyOXyzl7Tqbl2bNniY6uucT9uVAqlXTq1IkTJ07U+LlarSYwMNDlry5RkJnBkc1/0+PmkdWIHQeadOmOxWgk46BnO875QusfQHLHzhzZ4v6Z02IykXHoAMntOwEQEhsPokh0k+YMHD+pRvVPfKs2aAMCadylO7lpKfzx6QfVwtCzjh/lt4/epWnXHox66Q1a9OpLt2HDGfXCG+SknOTbpx9mxftvoPEPoP2gG/ALCWPP6t/46oGJHN9Zc4ZQbZB+aD8bv53HpsXfkJ+RRn5GGouefwK5QsmEd2Yx8K7JJLXvSFK7jgycMIkxb36IobyMn157noqSYgC2/7KEsqICNP4BDLpnmrPvo1s3seDJB8hNOcXwZ15m0L3TPFr33EGpUjNo4lTSDuzjSBWVjyAI9B87kfyMNGxWC4071d3zclF2FsFRsai1OuJatXVrJdUFBaPSainKzqI0P5eAcN9sfCARUyZ9hTN4/9TuHVQUF9Fl8M3V2poMen6f9R4rZr5OcEws497+mNtfeZv2g24gIDScLkNvRanRYrOY6XXbnR7VaBGJyQx/9lUQRX6b9R77zqlKabWYObFzK236XU1JTjbblrq31CnVGlr16c/+dav57ZOZJLRpR0h0LLtWLmPA+Elcfdd9RCYlE5HYCEEm4/jOrS5EV0hMHKNfepOw+CSWvf0Kx3ZspVm3nmj8/WnW8yr2r/2z2ndm16pfEG0ifUaPAyAn9TSRjZq4HWNkoyaU5uU6r9dzUWBXw4XE1FwlPCQmjjtmvMtd733G8Omv0KrvALfbqitc1sTUxQg2rCsPudzfn0bLfyF8ypTLIk/KGwS5nNi338K/Xz8yHnqY8m2ek/ZL160n48GH8Ovfj/gP3ke4DEgpB8LuqkpOve/1Ia/4118lUmr4rcS8+uolJ6UckKlUxH/4AX79+pFx/wNeSQKJlHqZop9+JubNNwi66aaLNFLvUMbZySlBIHXceEwZnskpJym17+JnSnmDpkVzkhYuwFJQQOr48Vjy3AeROiyVJb//TtzMmQQMHOi27eUEZUwMSd9/R9jkyZd6KP9zqHq78g/W4B+ipiS3evW04hxpWXCUH7og9UWx8jng7Z5qdWZMVU7Cz1UzeZsF22zVFVOl+QYQIDzBTkzZSZWqAdNVJ/41kRdWqw2L2YYmQOnMXnKMpzaEgDdyDiQFS+bxIhLbhDqXhcb6IdpECs9W1LiOqcKCQiWvU2JKX2ZGG+D6G632UyBTCF4JTcf50tgVU75aDK0WSSEkKabq0Mpn78PiJeuq3H5unWHyJpvvx1T0nqNWtS1UDy43lJtR6+yFCSrMWIxWr0o4p5XPx02fC5PB4qxG6LCEav2VvoWfX+FWPpVKRZcuXVi7tlJVYLPZWLt2Lb16+Za1Y7Va2b9/PzExMfU1TI/YtvQH/EJCaHv1dW7bhMYlEBQZxcld9VOdD6B5j6vIOn7UrXXozNFDWExGkjp0RhRFtv28WJprNW3m9vlZJpfTqGMXclNOMfjBxzm2fTN/fz+fzGOHMRsMFOdk88u7M4hs3JQbH3jcxcYY06wFjTp1oyAzg+a9+2KsqGDv6t8wlpcSnpiE2WBkxczX+On1Fykr8D2CwGqxkHZgL9uX/cj8J+7nx1ems3/tn+z5cyXzn7ifRS88SUBYOLe/+o5TDVQVEYnJjHrhDQzlZfz6/psUZGVKGUOiyPVTH0bj74+hvIzfZr3Hyg/fIrFNeybM/JRGnbr6PMaakNyxC8169ObvRQtclGexzVsSGB6JTC5HV4cV0YvOZjr3v3GnrqQf2l9j9pcgCARHxVKYnUlJXi6BtSKmpLl5id3Od3DDGqKbNq+Wk1ReVMii55/gxM5tDH7wCUZMf8Wlmh1Ayt7dmPQVKFQq1s37HJvN829FQqu2tO53NQqVmr++/MRFmZS6fw+G8jI63TCMbjeN4N+VSynJdS+GaXf19VI2mslIqz4D2LLkO3qPGkOXIRLBlpt6mpO7ttP9llHkp6ey9afvXdZX6/y45akXkCuVmMrLaNKlBwBtB1xL0dkssk8ed7a1mM3sW/MHbQdeiy4omIqSYsry86odj6qIspNW7gLQC+2VER0ZXO4QFp9Io45dCIr0jfS/EFweM/IacDGCDaFuPeSyi2QbrCsISiVxH7yPrmtXe/Wz/2psV7p2LRkPP0zAgAHEf/DBZUVKOVBJTn1F7nvvuZ1wFK9cRebTzxB0883EzJhx2ZBSDggqFfEfvI9f/35kPPCgW3JKtNnIfuVVin76iZg33rgo1fdqC2VsLEnfLASFgrQJE9ySU9VIqa4X9iNeH1A3bUrSwoXYiktInXAXltzqgZ6iKHL2tdcpXiap1wJvuP4SjPT8IVOrL7vvw/8CqiovNAFKQqJ1FGZXJzGK7MRGUKQWbYDyolj5RDeT8HPhICAsNWRMWUy+qULEGirrleTr8QtSowtUIVfIqlv5rKILMVWTKslszxryD1ZTXmisQgaIPpFNVUbodSKfsi8Pm1WkUYfKB/TQGEk9XZBVczaDscKMSi3HbLDWWY6KoczstOI5IAgCukCVD1Y+6aCodQqXf3uD1SIiyCQroIMgrIsAckdfXq18RUZkMgFjFaWUu6y2cyHWgqR0Z+UzlpnR+NntjxVShTyZQuZRMWV1Vg48v5eZFpMNpUqGQiVzEnKaABV6H0jr8821upzw2GOPMWfOHBYsWMDhw4eZOnUq5eXl3H333QCMHz+e6dOnO9u/+uqrrF69mlOnTrF7927Gjh1Lamoq995770Ufe0HmGY5s2kj3W9yrpUD63jbu3J1Tu3fWW85So05dERDcZlml7vsPv+AQwhOSOPHvNtL27yG+TXsyDnueXzXq1JXc1NNEN21O/zF38++vS1n0wpPMfXgSP73+AiqNlpufeA7FOXOKzGOHOb5jCwHhkRzbuomK4kJGvvAG93z8FePe+ogpXyzEPzSMtP17mP/4NFL37/E4jvKiQjZ+O4/Z941jyYzn2LLkO/LTU/ELDsVqsWCsKAdRxFhRTnhiMmqde8dLcHQMNz02nTNHDrFi5muINhtNuvagcadupB3Yx8InH+Tkv9u58f7HGProM2gD6kZl1/fOu6goKuS/3391LrPZrJgMemxWK/vW/FEn2wFJMRViJ6aadOmB1Wzm5O6aidGgyChKcnMozcv1OfjcsR5I+VTlRYWc3rOLNv1d7axlhQX88Mp0DGWljHnjfVr1GVCtH5vNyubFC0ls256hDz/N6f92sWbOp9WURuei54jbsZhNRDdtwV9ffsKZI1IO07GtmwmNjSc8MZluN9+Gxj+Av7+f77YfxzcyOCqGjd/Oo1n33vQcfrvz850rfiYwIopeI26n1213snPFUrJPHHPpQ+sfQFxLqTDS6b2SbTK+dRu0gUEc215ZFOv49s3oS0vocJ1U2MpBNkUmu1dMBUfFoNJqOXuqZlVoQWYGuqDgOssnqwtctrOQixFsCBfHQ345Q6ZSET/rEzStW5E++T705xB5JX/9RcbDjxBw9dXEvf8egocf0EuNsLvuImr6M+R/NbdGW1/xqlVkPvUUQTfdRMxrlx8p5YCgUhH//vuScuqBB6vZ+kRRJPvVVyn68UdiXnuN4FtvuTQD9QHK6GiSFswHmYy0CdVtfVcCKeWAunEjEhcuwFZaKlkUq1iKRVEk592ZFH7/PdGvvHxZqdcacHmj6n1KF6AiONqPwuzqmURFORVoA5Ro/JRoA1S1KAl/QYOT/uOh4h2A1SxKldCqKGQqK7PZJ+beAtRrqKxXkmcgMFwjkSpBKqdiylHBzmYVXaxmNVUzNNnDp/1DNFgtNvRlZinPqgbroMfx+dD01J5cIpMDnYHUABo/JX5BKgrO1JwzZaywoNQqsNnEOqskpy8zVSOmQLLz+ayYspMs7ipEVlvPYpOsa4YqxJQXQtMXOLbvTblVXmRE7adAtImo/SRSzReCBhz5Zj4SUw4BYA1WPm2AdMyMegtmow25wrOVz9nHeRIOFrMVhUqOUi13ElO6QJVvVj57JUBv3+3LGaNHj2bmzJm8+OKLdOzYkT179vDHH3845w1paWlkVSnCUlhYyKRJk2jVqhWDBw+mpKSELVu20PoSVMvdvnQxfsHBtBvoXi3lQOMu3SnNzyXPHpJc19AFBhHboiUnd9XsnMg8dpi4Vm2xWixs/GYuyR270O7q68hLS6E0372CPKlDZwRBRsqe3S7P2/rSEkpyc7j1mZfQBboqfWxWK6u/+ITI5MaYjXoQRVr2GUBi2/ZON4ouKJg7Xn0XtZ8fMoWCn994kb1//UZFSTEHN64lZc8uRJuN8qJCNiz8iq8evNepNBkw/l5sVivXTJzKlC8W8tCCJXQZcgsAKq2Ww5s2MPfhSZzctd3tPSG+VVvaXX0t+RlpIJPTf9w9bFj4FUtmPEtwVDQTZs6idb+r69Q9ExIdS/tBN7J92Y9OW1b2ieMYykpp1KkbO5b/VGMwe21hNhooK8gn2B5sHhwdQ0zTFm7DwgMjIig+m42xorxWiimNfwAqrY7inGyJEBWhRa8+LuNY9vYrmA16Rr38VjUllQNHNm0kLz2VPndMoHHnblw/9WH2r/+L1V/Owmpxfx8MiY6ldd+BlBXkE920OSvef4PyokJS9u6icZfuCIKASqPlqtFjObrlb7eKox3LfkTt509eWgoyhYJrJz/gPO+lBXkc3foPnW+8CblCQbebRhCemMS6BV+6XFuiKJJ17ChRjZuyc8XPFJ3NtldZ7MnxHVucbQ9v2kBcy9bOPKi81NMo1GoniVgTBJmMyOQm5LjJmSrIPOPWxnepcHnOzM8TtQ02hPr3kF8JkGm1JMyejapRI9LvuRfDMYnNLVm9mjOPPkbAtYOIm/nuZU1KORA6YUKlra9Ktb6S334j88mnCBo2lJjXX0OQ13/JywuBUznlIKfsgeiiKHJ2xgyKFv9AzGszCB7hvnrF5QJlTIxk65PJXDKnriRSygF1o0YkfbMQm15P2vgJmO35FnmfzKJg3jyinn2WkFGjLvEoG3AloeqLPbWfkpAoHcU5+ipqCgmF2RUER0nB51p/pc+T7guD9IBl8zJxtpisCDIBq7nKw5ZNBKFS8eJt4m+zSYqkquRUab6ewDApd0sXqKKixKGYkib7NqsNk7FSIVOTlc9BTAWFS2RRaYGhMtunNpNyL+SFUW8h7UA+TTpVfzgPjfN3W5nPqLeg1irsY62bAHRDmRmNf3Vls8ZP6awe5w4OIsipmPKS7eSA1WxDJhdcLKZ1YeVzKKW8jUNfXqlYcuRj+Uze1sLW5mhWPfzc7AybNxmkjCmFUu6xKp9TiXie3JDVZEOulEnbsRNTfkEqJ/nqGTUrv640PPDAA6SmpmI0Gtm+fTs9evRwfrZhwwbmz5/v/PcHH3zgbJudnc2qVavo1KnTRR9zQeYZDm/aSLebR1ZTC9WE+FZtUao19Vqdr3Hn7qTuqx6ybrVYOHvqJDFNm3Po77UU55xlwLh7SHaQTnt3u+1T6x9AdLPmnNq9g39/XUrLPjkUCzcAAOqrSURBVAPxCwnFZrVis1qpSSl4YMMaifABFAol7a+5gT1//FotIycwIpLrpzyMvqSYhNbtWPPVZ8y5fyJ/fPYBP7/5El89dC9z7p/I/nWr6TpsOJNmzaP3qDH8u3IZjTt3c6pOCjIz+O+PlXS7aQTT5i4iPCGJ8sICfnlnBotfetptcLSjopx/SCjL332NPX+upP/YiYx84fVahYDXBr1G3A6I7FzxMwCndu9E4x/AgAmT0JeW1IlqqvisJPwIjqokO1r2GUDKnl015hQFhkdSmi85CAJqsd+CINjVVmdJ2bub6KbNXNRlf305i4LMDG59+iVn9b9zIdpsbFv2I0269iSmqRQq36b/Ndww9REO/b2OJTOeoyjbfXXwzjfeRFlBHm0GDEIURVZ+9A7lRYUkd+jsbNOm3zUER8Ww7efF1dYvzM7k+M6tJHfojGiz0XbAtS77sOfPVShUKtoOvBaQ7K39x91D1rEjHK+ihDp76gSl+bn0HjkGbWAQf38rxRU1796b4rPZ5KaexlBWRuq+PbTo1bdy+1mZhMbEexVZhCcmk5dec952YeYZQuM82/guNi5bYupiBBs2oBJyf38S53yJIiaGtIn3kL/wG848+hiB111H3LtXBinlQNhdd1VW6/vwI4p//50zTz5F4NAhxLzxxmVPSjngJKf69CHj/gco/ftvzs54jcLvFxE941WCR4y41EP0GS7k1IS7MJ48SfqUqVcUKeWAKimJpIULsBmNpI4fT85775P32WdEPP4YoePHXerhNeAKg4McUarlyGQCITF+2GxitZyp4pwKgu0V+bQBPqoiLnx0LmN0B4tZyhdyqqOwW7sEoQox5WErolhFYVVJQJTkGQiwE0p+QepqGVNWi6uVrybbmclu5XMEy5cVGJzqm9pMyr3N849tz8ZqFWnRo/rzSWi0n3tiqsJSaQGro5wpfWmleqcqNP5Kr9eN1Wnlq13GlM1qQyaXuVgFL1QBZrPaEK0g86I8Art90Z6rpfFTIMgEryScA5KN1NdB1fydMJRJxJQgEzDprVhMVuQqz1Y+x/V3PoIpURSxmG0olDIUarmT1PQPUWM127weL2dW1hVOTF2J2PrT9/gFB9P+Gt/s/gqlksR2HTnlJoS6LtCkaw8sJiNp+/e6LM9LT8ViMhLVpBk7V/xMs+69CItPdJJOp/d4HlPjjl1J2fcfZYUFZB07jKGszBnWvG2p62TfZrWybeliIhs3Jef0SQY/9CRX3T4Om83Gf39UrwbWtFtP2g68jsxjR1Co1VhMRkJj45HJ5ZTk5hCemMSkWfO4atQYNP7+7P5tBRXFRQycMBlBEBBFkfUL5hAYEUHvUWORyxUMfeRpbFYrrftdjUlfwXfPPsrf3893IezyM9JI3b8HhVpNaV4OxvJyxrzxAV2HDa9XJ4YuKJhONwxj72pJHXZq9w4adepKaEwsbfpfUyeqqcKzEpFTNWOrZe++iKLIsW2bq7UPiIjEapF+t2qjmALJzleUnUXa/j0uZNDRrf9weNMGrp30gMf8pNN7dlGYmUH3m13nQm36X8Pol9+kJC+X+Y9PZe282eSmpVQj66MaNyW2eSsO/7OBayfdT8ah/cgVCuJatnG2kcnl9Lh1FMd3bCE39bTL+rtW/oI2IJDsE8dQajSU5FbyFWajgX1r/qDd1deh1umcy5PadaRx525sWrzQmYV1YudWNP4BJHfozFWjxnJ8xxZyUk4R36Y9CrWalL27OfHvNmw2K816VBZTKsw6Q0hMzaRdVYQnJFKUnVlNQSbabBRkZRDaoJjyDf8fgg2vNMiDgkic+xWCQk7OG2/g368fse+8jaBQXOqh1Rphd99F5FNPkf/FF2Q+9jiBN95A7JtvXjGklAOCPRBd17s3GVOmSlaxV18hZOTISz20WkMZE0PSgvmIosjp4SPQ791L4pwvryhSygFVYiJJCxdgLSwif84cQsaPJ3zSpEs9rAZcgahKTAGEREsPMVVzpmw2kYLsCkKipewLjb+SilJTvWWOOMfmrEDmuZ3VLFUgq6pqkaxdleomT+RW1QwrB5lhMVmpKDG5KKbK7TY0m6WSxHKx8tVAojjIHv9QDUq1nOJcfRViy3fiRLL/1bwPoihy8J9MktuF4ResrvZ5cLSO0jxDNRUcSBlTTmLKg7qmNuM0VMk7qgrfFFPSGBVKGXKlrFYZUzK5a7j6hSqmHNeTXCHzaik0lJnxC5aIKYVagcZPgaHMN1WhFLzva8aUfZ0q16woipJiy1+FSiMF2ZuNVpRKuWcrn7OP2n+PHcdWoZKjVMkwm6wo1HJ0ga5V+txu2011wQbUL86ePsmRzRvpNfJOn9RSDjTu3JWsY0fQl5XWy7hCY+MJjo7h1Dkh69knjiHIZJTm5lCUnUWPWyoV4Y06dCF13x4nMVETopo0w2KUSB1dUDB3vjaT2199B11wCEc2bXDJvjm+YwulebkUZWXSduC1JLRuhy4wiPZXX8+eP37FZHB9WSOKIi379MNqsTi3UZCZQUKb9vQfdw9nT52gKDsTAGNFBTuX/0T7QTc6SZdTu3eSuu8/+o+715nzFRafSKcbhnJi5zZue/41eo8cw+5Vv7Do+Sec6ps1cz8HwGI0SpXpdDrCE5Jqf9DPA50H34yIFECfm3qaxp2lQkE9bh2NvrSEvX/9fkH9F2VnodRo0QUFO5fpgoJp1Kkr+/76rdp90qEOE2Qy/EJCarWtoMhoCjIzMJSXkdyhCwCGsjLWzP2c5j2uqjFTqir+XbmMmGYtiG3eqtpnsc1bcff7n9P9llEc3foPC598gNn3jeOHV57h1/ff5NcP3mLFe29gMZtIP7iP3b+tQK5QYLPZOLJpPfrSykJorfoOJCgyyqVCn7GinIMb1xLVqAkleTm0HXAtJ3ftcBKYx7ZtxlBWSsfrq1dK73XbnRRmZXJs22Yn4dekaw9kcjmt+gwgKCqabUsXo1AqSWjdjtR9uzm2bRPxLdvgH1JZWKUg6wwhsd5JpbC4RGxWazX1WGlBPhajUaqyeRnhsiWm4MoONrxSUbFtG5bcPAQ/HYajR2sMeb5SoIyLA0EAUUQZn3DFkVJOKJWo4uIkz49cjtIHhvxyhTwkBGVEBKLJhCwgAOUVTBqXb96CraQEmZ8fpevWYc7MvNRD+n+PTz/9lOTkZDQaDT169GDHDveViubPn48gCC5/msuwQIVjgusoNa8LVKENUJKbVjkBKcwux2K0EpkUILUJUGGzuOYr1QccD6FeFVMmycblmjFlr9JWRd3kDlWVNY4+SvKlN79BEdI50waqnIHvFrsyy2rxXpXPQfaotUpCY/3IP1PmbGerDTFlE93SBxlHCsk/U0bbfjU/JAZHamtUwYmiiLGisrJaXSimTAYrNpvorKpXFRp/78SU41zIVTIUSpnPqierxWYPqK8kg2pzfGuCw8anUHpWHoGrlU6uEGqVwyaKvhM0NX0nzEYrNouIxl+BSqOQiCmTFYW6/hRTjmtYoZShUMmxGK2o1HLnedeXetv3ypy2Blw8/PP9fEJi42k74NpardeoU1dE0ebROnchEASBRh27krJvtwv5kHXiKBGJjTiw/i/iW7clqnFT52dNuvbApK8g/dD+av3ZbFZ2/7aclR+8BUjWuztefYfI5MYoVWoGjJ2IKIosee158jPSEEWRf1cuIyAsHIC+d0xw9tVl6C2YDHr2r/0TgIriInYs/4mvH5vKTzOeR7QrTwZMmETvkWNI3fcfCAKhsfFssVdBO7B+NWajge633OYc38Zv55HYtgNNunR3GXu3m27DZrOy549f6Tl8NGPe+ACz0cC30x9hx/KfyLDv74Dx93LTE89RcCado1v/ubAT4CN0gUF0uHYw+9b+gSCTOZVGwVHRtOl/Df/+urSaHbM2KMqWKvKdm4/V6YZh5KalkHH4gMvywAiJmNL4+SOT1W6OFRQZRVlhAWqdH9FNmwGSis5qMnH1RM8V7nNSTpF+cB9dhtzqto1SraH3yDu57/P5DJ/+Cu2vuR7/kDCM+gqMFeWYjQZ0gUEIMhnlRYVYrVZEm40/Z3/M7PvG89us98hNS7HnQ93G8e1bKLJbHY9u+QeLycTZ0ydp0/8aOt0wFLNBT8p/Unj5vrV/ktS+E8FR1RXU0U2akdS+EzuW/cjZUycozDpDy979AKRtDRvB8R1bKc45S3KHzmQcPkjagX0u16lJX0F5YYFPaqfQeHsmVXqay/LCTClWJdQHcuti4rImpq7kYMMrEcUrV3HmiScJGjqExsuXIwgCqXfd5RLyfKWg5K+/OPP44wTeeCMRjz1K/uzZ5H4y61IPq9YQRZGct96i8LvviHr+Ofz79CHj/vsp21RdUnu5w1ZRQfqUqRiOHSPuww+QqdVS5tQVSOgULfuF7JdfJmTsWBot/wUBSB033m3lwQZcOH744Qcee+wxXnrpJXbv3k2HDh24/vrryfFwfwoMDCQrK8v5l5pas8/+UsIxOVWqpIc6QRCIahRE9qnKPIecFImkikiUiCmN3aal91ERct7w0e5jsecLuRJMoqSistiqBaOfi6qfOYmpPInECaiimNKXmV1Cwp2WJfvzq7XG8HMp/0qhkhEe709eRplTWeWJLDsX7sgL0SaybfkpohoFktA6tIY1IThKUroV5bgSUxaTDZtVRBfoUExdONHoyB5z2NqqQuMnWfk8kTAWs3S+ZDJBUkz5aOWzmiViqqpS50LDzx3blsbhJWOqzITC/h2SK2TOffUFok30vTKffRhVvxMOsk/rp0KllWx1FpMNpUbhsdqiow9vGW41wUkgOogpkw2VVlElX8vzvUH8fxB+fqUhdd8eUvf9R987xiOr5YvSgNBwIpIbc7oec6aS2neiJDfHqTICSTEVGhtH+qH9tL/a1XoYkdSIoMgol7wckCqt/fjKdNYv/IrkTl3sSwUXm1uTrj0QZDKUKhVL33qZ9EP7yT5xjIqSYjoPvtlFsRMYHkmrPgP4d+Uy/v52HnMevIetS74nqlETmnTtidrPn4Q27fjv9xV0GXYr3W4awcaFXxHXsg2n//uXrBPH2P37r7To3Y+AUIn4Orp1E4WZGfS9865qBIhfcAgdrxvC7t8llVZEUiPGvvkhofGJ/GOv0Dbonml0GXILcc1b0ahTV7Yt/cFrJbi6Qteht2K1WAgIi0DjV1lNrfstI6koLmb/2tXn3XdRdhYhUdVfGCe160hYfCK7Vi13Wa7x80eQyVFqtbXeVlBkNKLNRmyL1shkcoqys/jvj5V0v2UkfsGe1Vd7V/+Gf1g4zbp7d1DJFUoadezCVaPHMeShJ7ntuRnc9twMRjz7KiOefZVWfQZgNkhB+51uGIYgk9PtphGcOXKQb556iLXzZtO0ey/U/v7s/l3a/wMb/iIsPh5DaSndb76NkJg4IhKTObZ9M/kZ6WQePUS7q90XNuh562hy01LYvuwHdEHBJLbt4Pysdd+BqLU69q35naT2nbBZrVjNJhe7Y2GW9B31JbhcFxiENjDImd3mQEFWBjK5gqBI3+KRLhYua2IKrsxgwysRxStWVFase+MNVPHxJM7/GtFgJG3iRCwFBZd6iD6jdM0aZ2h77DtvEz55MhGPPUbep5+SO+vTSz08nyGKIjlvv0PBgoVEvfgCoWPHEvfJx/j16iWRU5uvHHLKVlFB+tRpGPbvJ3HOlwRef72UOQWkTrjriiKniletIuu55wgeOZKo555FFR/vzM9KGz8ek4cqoA04f7z//vtMmjSJu+++m9atWzN79mx0Oh3z5s1zu44gCERHRzv/zq3yejnAMTlVqCsnKtGNAzmbUuL8LPNEEaGxfqjsIdnOyadXVUTdwHvGlFWyW51DMMkUMqwmKwiCR2VGVbuYw6ZXmm9AJhec1jhdoArRJtnUpPwqaT2zwSrZIAV3GVMWVBo5giAQnhBAYXaFk0iojdXMZicvzsW+9RnkpJTQ69Ymbt/w+gWrUKjlFFWxZ4KULyXtm7SPdWHlc5AxNVXl0/gpEUWcFdxqgtVsQ66SjpeiNlY+q81pRwXsYfh1Y+VTquRO9VRNsNkk5VnVa0zrQ56WY10HfCFpHCSSCzFl347GX4lKKymmHAomm010e505rXzncZgc1kaFUoZSJSnbVBq587x73/f/H+HnVwpEm41/Fs0nplkLmnbzLY7kXDTu1JXTe3c7s2nqGgmt2yKTy0ndtweQ7G/5Z9IxVlSg9vOjaY/eLu0FQaBp996c2LnNOaas40f57rnHKCvIZ/RLbxLfqi2CTEZJ7llK8ipfIqm0OiKTmxDdpDkVxcWsn/8lSo0GmUxO5xur259im7ekrCCfXb+voMvgm5k8ewHXTXmIjEP76XDtjQy69wFK8/PZvfIX+t55Fx2uG8L+9avR+Aew+YeFlOSepcvgmwHpXGxf+gONOnYhukmzGo9FpxuGYTYaOLhxLaIocmD9X2SfOOr83GqtvId2v2Uk+RlpnN676/wOfC2h1ukQBIGKkmIspkoCOiQ6llZ9+rNz+RKX5bVB0dksl3wpBwRBoNtNIzj57zYX+6UgCMgVCuTy2ke+qP0lUi08Uaq4t2PFT2gDAugy5GaP65kNBo5s2UjbAYNqTfDWhNZ9r6assAC/4FD63D4ejb8/FSVFTPzwS/qNuYuDG9aw+MUnada9FwfW/UXm8aNkHT9KeXExLXr3dZJDzXpcxandO9n7129oAgJp0rWn223Gt25LdJPmnP5vF8179nHZD6VGQ5v+17B/3WoCI6JQarUo1RrCqthFC7Kkl+DBPjpowuITyD+T7rKsMPMMwdExdXIM6xKXPTHVgPpH0bJfyHz6GYJuvYWYN153Wt5UCQkkfv011qJi0u65F2tx9YoMlxtK164l45FHCRg0SAptt+djhU+eRMSjj5I3axa5n17+5JQoiuS8O5OC+fOJeuF5Qu+8EwCZSkXcJx+j69mDjGn3U75lyyUeqXdUJaUS5nyJrov0Bk0ZG0vSgvkgihI5leW+esblgpK//iLzqacJGjaU6Fdedk5ElbGxJH2zEBQKUsePx5Se7qWnBtQGJpOJXbt2MWjQIOcymUzGoEGD2Lp1q9v1ysrKSEpKIiEhgZtvvpmDBw963I7RaKSkpMTlr75hs1ZOvh2IbRaC2WAlJ6UEURRJO5hPYhU1jiPYur4r8zmIGG+TV6vJTkK5EEw2ezaQpMDxREzVaOXL0xMQqkEms5cID3SQcSas5kqboMkoVbVTuFHVmAwWVBrpdyC+RQiiTST9cEG17XqDaJOIhNVzD3Lqv1ysFhuHt2Sy+afjdLg6gbjm7t/wCoJAcKSWopxziSmzc9/kCpkzqP1CUJUkORdO0sKDnc9itqJQSI+GCpW8VhlTKq10DTvUVheaMeWwwUmKIPfHxlhhBhEs9vZWsw2Nv9InK5+tSu6XL7Y2R96aWINiSu1XaeWzmG1OItmdnc9p5TuPjCmnlU8ldx5rpUb6f5VG7p20bsiYuqgwVJSj9vOn3513e7QoeUKjTt0wlJaQfeJYHY9OgkqrI7Z5K1L2/QfA2VPHQRTJPnmMVn0GoFRVz89r3qM3FcVFZB47Quaxw/w441lCY+MZ8+aHxLdqS8bhg0Q1aoogk3H6nPD22BYtyU1Poddtd5CXloLVbKbDdYNdKpsB7FvzB2vmfo5KqyW6SXP63D4erX8AJ3ZsxVhRTtuB1xIaG0enG4exY/lPlBcWcM3d99GkSw9MBj2p+/cS27yV04Z4fMcW8jPS6DnidrfHIjA8gmbde7N71XJ+/eBNNiz8Co2/pFhuM2AQ6+d/yb61UhW8uBatiWnagn9/XXb+B78WSDuwD9Fmw2I0cHjTBpfPegwfTVlRIQc2rKl1vxazmZK8XILdVMFr1WcAobHxbPrhG5floigi+lw9ohIOZZ5fcCjlRYUc+nsdnW68CaXac+TCse2bMen1tB0wyGM7X5HQth2CTIbG3x+VVku3m0ZwcMMaygry6DpsOOPe/giVRsfBjWuxmE1sXrwQhUqFobSEHrdU5v0269Ebk76CgxvX0KbfQGdumTsktm2P1WImtkX1jKwO1w1GX1rCqV3bkclkyJVKl/tGYeYZdEHBLoo5TwiLTyL/nMp8BZkZl52NDxqIqf95FP38M1nPPkvwbbcRM2NGtYoS6saNSJw3F0tWFmmTJmMtK7tEI/UOJyl1zTXEvftOtdD28PsmE/HII+R9Mou8zz+/RKP0DicpNW8eUc89R+iYMS6fy1Qq4j/+GF2P7qRPnXZZk1PuSCkHlHFxEjlls0m2vsuYnCrbuJEzjz1O4PXXEfP669W+K8roaJK+WYhMqZJsfWlpbnpqQG2Rl5eH1WqtpniKiooiOzu7xnVatGjBvHnzWL58Od9++y02m43evXuT4UHR9uabbxIUFOT8S0hIqNP9qAmOybBCVXk9RTUKRBuo4uj2bM6eLqGi2ERS2zDn584cmXquzOfM0/FgNXJUB5MrzrHyWUXnMkEm1Bj87WxbhcBwECFFOXqCIirtAQ5iqqLYhMVslayDJismvQWlWo5CKa8xINuktzoJk+AoHUntwvhvdZp97L6pphzB5zabyIldOfz+xX5mP7iBdQuP0LJXDL1va+q1j+AoHUVna1ZMqbQKuwXswhVTDguXu4wp8KymsZhtyJV2YkppV7z5AJulkojxC1ZL5/6Cw8+lbSvVcixG93059sdQIV0L+jKznZjyTtxWJaN8UQ85vgtV13MQUxo/STFlsBOOjuvOXRacs4/zyZiqauVTyrBabU4C1pd9r2k/GlB/0PoHMPL514hv3fa8+4hp1hxNQCCndtdfdb6kdh1JP7gPm9VK1vGjKFRq9KUltOozsOYxNW2BX0go+9f+ybK3XyWqUVNue+5VtP4BiKLImSMHSWjbnriWrTl1jg0xrkVris9mow0IAqSqfJ2uH+rSZutPi/hrziw6XDuYq++eQubRQ07lx6F/1hPXsjUhdiKl5/DRKFQqNi3+BkEmY/CDjxMQFgGi6FS1iKLI9l+WkNi2Q42h2VXRpEt3is5mcfq/f+l7xwT0JcXEt27H9VMepuP1Q/lrzqcc2bwRQRDoOuxW0g/uc1ET1RdO7d5BSEwsTbr2ZNeqX1x+n0Nj42nZux87li+pVoXNG4pzskEUa1RMgVShrveosaTs2UXGISlryma1YrWYsRhr/5Is49ABBJkMU0UF//2xEplcQYdrb/S63v51q0ls26HOLGileXmINhvlhQWINhsdrx2Mxj+AbUt/BCS73B2vzaRVnwGINhvpB/ehUKpI7tCZ8MRkZz9h8Yn4h4RKpNlA9zY+B4pzcxAEGZnHDlf7LDQ2nuimzdm/bjXG8nIMZWUYKyqfH6SKfL6TSmFx8RRlZ2KzVv4WFWRmXHbB59BATP1Po/DHH8l67nmCR4+S1B9uypxqmjcnYe5XmE6fJv2+KdgqKmpsdylRum6dREpdfTVxM99FcMNUh0+5j4iHHyL3o4/Jmz37Io/SO6qRUuPG1thOplYT/8kn6LrbySkPqpFLBW+klAPKuDjJCmezXbbKqfItW8h48CH8+/cj9m33lSqVUVEkLlyITKuVyKmUlIs70AY40atXL8aPH0/Hjh3p378/S5cuJSIigi+++MLtOtOnT6e4uNj5l34RlG+OiaFcUXn/lckE2vWP48iWLDYuOkpQpJbYKoocuVyGWqeod8VUparCfRMH+XCulc9msTmVHILgOQjbUoNiqjC73FmFEHAGhFeUmqT8KoUMUZRIAbVOgUJVs+2sqmIK4Lp72hCRVPlG3pcMpaqqkusntWHUs93oO6o5I57qwtXjWzlVXZ5QIzFlt9SpdQp7HlFdEFNmVFoFcnn133NHpT5Piimr2YbCTkzVqiqf2YZGJ/UvUwjIFbJaZXjVBLPDyqf2rJhyEFP6UhPaACVlhQa0/ioMPlhdbVXG6BNJU4PSyFBmRq6QoVTLnVX5AOfxcKeYcvRxPnY6axUrn1wlx2YVnde5NkDle1W+eq7s2YC6g0wmp1GHzpz6rx5zpjp0wqSvIOvEMbJPHkPj709AWAQxzVrU2N4RwH140wZ0QcHc8uQLTsVLSW4O5YUFxLVoTeNO3Ug7sM/FYuYghvavX+20E5mNBufnu39fwZYl33HV6HFcM3EKLXr3QxsYxN7Vv2GsKCdt/16a9+zjbK/x86f3qLEc/HstZ0+dQKXROjOITu/5F9FmI/PoYXJOn6TrUPeh2VaLhe2/LGH1l7OQK5XEtmjNwY1rQRAY/MATCILA1XdNpnXfgfz+6QdkHDpA0+69CIqM4t+V9auaEkWRU7t30rhzN7oOuYX8jLRqgfg9bh1FaX4eBzeuq1Xfjqpt7ogpkBRykclN+GfxQkRRpKywAEQRQ0XtRAuiKJKyZxfawCCKc7I59Pc6Wvcd6FUBVJB5hjNHDtLWQ35TbZGydzeCIMNQXkbWiWMoNRq6DhvOob/XUVaQD4BCqeT6KQ/Tuv/VUuXb8jLaD7rBpR9BEFBqdQgymVfSyFBWxsmd24hv1YZDG9dVqzgJkkIt7cBe+79EFwKrMCuzVsRUaGwCVotFIh+RvmelebmENhBTDbhcULh4MdkvvkTInXcS/dJLbkkpB7Rt2pA450uMhw+Tfv/92AwGj+0vJkrXrSPj4UcIGDjQIynlQPjUqYQ/9CC5H35E3mz3k9SLDV9JKQdkajXxs6qQU9u2XaSReoetvFwKOvdCSjmgjIsjccECsFolcsqNCuZSoGLnTtKn3Y+uZw/i3n/f6/WljIokccF8ZH5+pI6fgPH06Ys00v+/CA8PRy6Xc/bsWZflZ8+eJTrat7dmSqWSTp06ceKE+zeaarWawMBAl7/6hoOwkcldyY32A+MJitRSmFVB/9tbVCM/tAGq+s+Y8sHuU1kdTO5ipbNabCiUcmcIukcr3znZVFazjZI8AyExOudypUqOUi2nokSy8sntx0tfZkbtp5RIsJqsfHqLU8kDoNIoSGpTaYv0Fqotjaly7P6hGiISA2g/MJ7oxkFe13UgOFJHRYnJpfKew8qn1ilQaeQY68jKV5NaCnwjplwUUyq5z6onq8VGYLg0IQ0I1SCXyy64Kp+DjFJpPGdMOZSDpQUGAsO1VBSbUGokG6I34tFaSyufrQYySV9mRuOnQBAEKWPKrpBS+flo5TuvjKlKK59CKbMTU9LkXhugosIbad2gmLoi0ahTV3JTTlFakFcv/Uc1borGz5+UvbvJOn4UQ3kZzXv2dms/tFmt5KScQrTZ6Dl8NBr/SmIhJ+UkIFUha9SpKxaT0aWCX0BYOH7BIWQdP4LNakXt589/f/wKwLFtm1g//0u6DhtOj1tHARI50P6aGzi4cQ3Htm/BZrXQtJtrjk/7a64nLC6BDQu/wmazcfLfbQRGRlFRXMTOX5ey+49fCYmJcwmSrorsk8f57tlH2bz4GzpeN5irRo0l/eA+CjIzaNy5GwFhknJZkMm47r6HiGvRihXvv0FpXi6dB9/MsW2bJLKmnpCbepqygnwad+5OXKs2RDVuyq5Vv7i0CU9IonmPq9jxy49YLb6/7CjKzkKhUuMfXHMRD5D2u88d48k8eojT//1LaZ5Uud1iNGIo952cyk9PpcxeVS43LYXS/FxnZTpPOLhxDRo/f5qdZ05bTUjZu5uY5i3RBgZxYqf0kr/9NTegUKmc1yNIxFNkUhPnv3f//qvLPhsryinOyZZUVTVUqqyKw5s3YLVa6Dd2opSZtXljtTYtevVFtNkIiIhEFxTsrIgoiiKFWRmE1KJCe2i8REAVZEqOAUd4eoOVrwGXBQq++47sl18hZPw4ol543me/u7ZjRxK+mI3+vz1kPPgQNuP5lyStK5SuW19JSr030ytp4EDEtGmEP/gAuR9+SN6Xc+p5lN5RW1LKASc51bUr6VOmXhbklLWsnLT77sNw8CAJX83xSko5oIq3k1MWi2TruwzIqYpdu0i/bwraTh2J//hjZKrqla5qgjIykqSFC5AFBpA2fgLGU6fqeaT/v6FSqejSpQtr1651LrPZbKxdu5ZevXx7QLFarezfv5+YGPdvAy82qgZqn0tMqXVKRj3bjYkz+9RY7U0b4JtV6YLG50NAstU5QT4nY8oqolDLKq18HtQzLhZAs43iXD2iTSQkWufSTheoqiSm7AozY7kZjU5pJ8ZqrsrnmLA7oNZVElWeCA/nmKoQLLoA335jzoVjX6rmTBnLLShUMhRKuTOb6EJhKDfXGHwOkgJKqZZ7VNO4KKYUvimmHNexX7CaQXe1YuDYlnWaMaXUKNySO1BJtJXmGwiLlVR2jm077JJux17VyufBbuqAWAOZpC8xoQuS8neqnkeHYsqdRbPSyncBGVN2K58oiig1lVbK8iLPz2e+5sc14PJCcscuCEL1vKa6gkwmJ6Fte07/t5PyokIsRqOLKulc/LNoAXlpKfiHhZOyxzX8Ozf1NLqgYPyCQwiLTyQwIrKanU8bGASiiH9oGJ1vHMbBv9eRefwIf3z+ES169aXfGNdMrvaDrsdsMLLnz1VENW5KYHik6/jlcgaMu4eMwwfYufwnCrMy6XnraOdYj2/fTKcbhlZ7GW82GNiw8Cu+f+5xAO58/T0GjL+XNgMGOavt3TD1UZd15AoFwx6bjlrnxy/vzKBpt97IFAr2r/vTl0N9Xji1awcqrY64lq0RBIEuQ24hdd9/5KaluLTrOXw0xTlnq2VQeULR2UyCo6K9ChWSO3QmvnVbNi1a4BJoX5LrewX3lL27UajURDVpRlF2Fn4hocS29GytFEWRI5s30rxnHxQ+Pot7g9ViIe3AXhp16EzTbj05vmMLoiii1ulod8317F3zu4ua6di2TTjKAOecOsHiF59yHoPjO7Zis1dLPL7Nc3GqA+v+onHn7kQ3aUZS+441qtu0gYGSklAUiW/ZhjNHpIzUiuIiTHo9IbUglfxDwlBpteRnSC6AQnt4eoOVrwGXHAULF3J2xmuE3nUXUdOn1zqEUdetGwmff0bFzp1kTLu0yimJlHq41qSUAxH330/4/feT+/775M25dOTU+ZJSDsjUauI/nVWFnNpeTyP1DmtZGemTJmE8cpTEuV+h61zzWyl3UMXHkbhw4WVBTlXs3EnapMlo2rUj4dNPkWk8BzKeC0V4OEkLFiAPDpKUUydP1tNI/zfw2GOPMWfOHBYsWMDhw4eZOnUq5eXl3H333QCMHz+e6dOnO9u/+uqrrF69mlOnTrF7927Gjh1Lamoq995776XahWqoOnE/l5iSlslcbGhV4atV6YLgi2KqiqXIRflktqHWKCQrn0zwOOl3DU0XKTxbDkBwlJ9LO12gCn2JCaulUtVjKLeg8VO6tfKZDRaUWtdjWJUH8EUxVZW8ULo5H94QHCkRU4VVKvMZys1OFZNKWzdWPmO5BbXO/W+hxku1Ouu5GVM+EFNWp+pPRoueMQSGa+0ZUxdGelhMNmQKAZVG7vE8GcrMqDSSnS2yUaBzXfCsDoNzialaZExVKQ1fUWJCGyBNlFTaShJNY6+e6VYxZd+e7TyIKWvVjCmVHNFWmWnlH6zymZg6H7VWAy4dtP4BxDRvWW/EFEBy+87knJaeV7RBwcQ0rdnGd3zHFv79dSn9xtxNh0E3cmzHFpdJfE7KaSKSGgGS2qRRp26c/m+ni33UaM+t7TDoRjpcOxibxcqKma8TEBbOdVMeqjZHCQyPJLljZ3JSTtKkSw9qQnLHLjTq2IUdy3/CPzSM1v2vJiA8ArlCCaJIqz4DXNqn7N3N/CfuZ+/q3+hzx3jGvPGBs1pf+kFJ+aLW+bmowRzQBgRyy1MvUpKXy8ZvvqLVVQPYt+YPlyyfusSp3TtJ7tBZ2hegec8++IeGsWvlLy7tIpIa0bRbT7Yv+8HnsRRlZxEU5f3FnSAI9L1jArlpKZz8dzsqrfTbVmJXT/mC03t3k9C6LcGR0Zj0FTTr3guZzHN1uKzjRynJzaHlVd6VVb4i68RRTPoKkjt0pln33hRlZ5FnDwnvfOMwTHo9B9ZLQfL60hIyjx1BkAmExMQR1aQ5ZqOR759/grOnT3J40wYSWrejRe++nPh3m9vqmZnHjpCTcpJ2djtim/7XkHn0kJMscuDUrp3YrFZK83JR+/mRdfwoFpOJwkypXWiM76SSIAiExsY7FVMFZzLQBgahtQf6X05oIKb+RyCKInmzZ3P2jTcJvWcikU8/dd6VQfx69SJh9udU7N5N+tSp2PTVvbH1jdL1dlJqwIDzIqUciHjwAcKnTSP3vffJnzu3jkfpHRdKSjngJKe6dCF9yhTKt++o45F6h7W0lPR77sV44gSJ8+ai7djxvPpxIacmXBpyqnz7DtIm34e2Q3sSZn+OTKfzvlINUISFkbhgAYrQUImc8mAja4BnjB49mpkzZ/Liiy/SsWNH9uzZwx9//OEMRE9LSyOrSj5ZYWEhkyZNolWrVgwePJiSkhK2bNlC69atL9UuVEPVSX9t78faAKV3u84FolId4oOV75wKblariEqnwGb1buU7N2OqMLsCtU7hrD7ogC5QsihZLFLYOoCpwozaz16VrwYSxai3VCP3rPZKgdL4a6eYOt8qZiqtAl2gykUxZSiXbIjS53KnBexCIJFd7skzjZ8SvbeqfLUlphwkSZWcNClj6sKtfEqV3KeqfHJ7VcvoRkFShUO7Usphl3SH2lfls38nqrStKDGhC3IQU3JnP1p/z1Y+Z8bUedjpnISwvSof4LzO/YLV6EvNXs6d9+92Ay5PNO7UldR9e7CY6+fFRGK7joiiiCCT0aRztxoVNEXZWfzx2Yc069GbLkNuoXXfgViMRo5vryzGk5taSUw5xl2cc9Y5OS7Jy3VaEht17oZfcAjB0TGUFxUy+MEnUGm01ITY5q1BFAmKjKrxc4Deo8Zi0lcQnpCEXK4guX0nrBYzoig6K9ZVlBTz+6z3+PmNFwmKjGL8zFl0v/k25PYMUVEUWTvvcxBkGCvKnWTduQiLT+D6qQ9zbNsmNP7+lBXkc3J33T+DlxcVknXyGI07d3MukysUdLphGEc2b6C8qNClfc/ht1OUncXRLX/71H/R2SyP+VJVEdu8FY07dyN1/x78w8KRKxQ+K6bMRgNnjhwkuUNnzCaJQI9v1c7reke3/I1fSChxrdr4tB1fkLp3N5qAQCIbNyGxbXtUWp3zGg4Mj6RFr77s/u0XbDarXe0nkty+M91uGkH6oX0MeegJ/EPCWPzSU6Tt30vLPgNo3uMqKoqLOHPkUI3b3PXbcoKjY2jcqSsATbr1RK3z49Dfkmoq/0w6v77/JstnvuZcZ/+61disVg5vWk9B1hkEQUZQVO3C312Iqcu0Ih80EFP/ExBFkZyZM8n98CPCH3qQyCeeOG9SygG/nj0lW9/efaRPmXpRA9FL/vqLjIceJmBAf+Lef++8SSkHwh98gLCpU8h5dyb5c+fV0Si9QxRFct5594JJKQec5FTnzhednLKWlJB2z70YT58mcd48tO3bX1B/TnLKbCenzskWqk+Ub9tG+n33oevUiYTPP0emrfnhyFcoQkNJXDAfRXg4qeMnYDhWP6We/xfwwAMPkJqaitFoZPv27fToUfnGdMOGDcyfP9/57w8++MDZNjs7m1WrVtGpU6dLMGr3qDpxF3wI0K4KXwKOLxSV4czu2ziJKbXMGchss0lV7NR2pZIgeK5+d27GlBR8rqv2O6UNVFFRbLLbzSQiwqh3KKZ8t/JZTFbn8a6tle9CMnnODUA3ViGRVBpFnVTlq0p21QSNvxKjl/Bzuf3Y+hp+7gzAV9YtMWU2WVHYs8U8nSdDuQW5XEChkhEQqiEgTOO0uRrKfLfyeaoc6WxfU8ZUqclZNbIqCarWKZHJBfdV+Rx9nE9VPpMNmVxAJhNw8AZK+3XuFyzZCsuL3aumnFa+hoypKw6NOnXFbDQ4M2fqGsFR0cgVSkSbjUYdq0cx2KxWfvv0PbSBgVw/5REEQSAwIpKENu05aCd9DOVllOSe5f/YO+swN8qFi/8mnnV3r7u7U3cFSqEUKUUubkUucPELxbW4lxZaKtTd3d3W3X03Pt8fs8luNlntlrb32/M8PGyTkXcmE3nPHAmoQkyFd+iEQqkivsLOd273dqx3CMoLC8hJTrSpRmqbo+jLSxEEGYmnjte4jDXkOTPuMka9DrlSBaJIy1592fPHrxxds5Ifn3yQ2KMHGfXAo9z80pu2dj8rjm9cQ3lRIR2HDsfVy9tGHDhD6z4D6D52EkfWrMQvPJITG9fWuGxjEXfsEAIC0RWEhhWdh49BJldwfOMau8cDY1oS070X+/9aUqN6xwqzyURRdhbe9SSmALqPm4yupBiVRouHf4Cdra82pJw9jdloJLJLd7ISpJgLrXvtyh2LxcyF/btp03dgncqqhiDhxFEiO3VFJpMjVyiJ6d6L2MOVrpOeE6ZSmJVJ7OEDNrtdpxGjaTdwKFp3D87t3s6tr7yNp38gIJKfnkpAVAxuvn52JK0VRTlZXDqwh+5jJ9kIX6VKTZt+gzi1bRPrv/iQn576F+mxF/EKCiGqaw+CW7UhtI1k3dz87Zcknz2FR0AAigbOfX1Cw8lLTa7IqErFuwGKq38SzcTU/zhEs5mM/7xK3nffE/jC8/g/9NAVk1JWuPbuTcTXX6E7dYrkefdjKS1tku3WhsK/V5P6+BO4jxheryDq+kAQBPwffRTfB+4na8ECcr//oQlGWjtEi4WM114j74cfmoSUskKm0RD2xee4dOsmkVMHrz45ZS4oIOnuezAmJhLxw/doOzW+DrkqrOSUaDSSeOed/wg5Vbp3L8n3P4BLjx6EfdFw+15NUHh7E/HjDyiCAkmcfSflx483yXabcWOj6qSwocSUxk1JebHxqrZqWURAqF1VYSUMlCqFTaFhDb22WcqEhoWf5ySX4Bvm+EPVqpiqauUTLRJJV5O6x1gt/BykSb1V3VMvK19Dm9tqQHViSldmsuUQNVXGlL6KPdAZNC6KOsPPG9rKV9nMWHkNyxTClSum9GaUarlk09TXvC19mRFRlM6vIBPw8NNSWlhBTNWpmGrYa2tdxmqBE0WRskIDLlWsfFYo1XKUGnmtVj5BaKxiqvJ1ssJ6Tbt5Sd9bJbXY+aqOvxk3Fvwjo3Hz9bMRPE0Ni9mM2Sx9FkV2dryZc2DFH2Rcusi4h59CXUVN3ummUSSfPUVuSjI5iQm2sVqhVGsI79iZ2KMHEUWRU1s2gCiiUKnITIhj+8/f4hkQhNbdg7M7t1TfrQ3Jp0/iFxHJhX27KC8ucrrMmR1b8I+KQV9WxpG1qypIPAGfkHBEs4VtP39DeMcu3P3BQjoNG+UwLzIZjez+/SdkcjnD5txH634DubBvV60Ez+A77iYgOoaSgjwSTx5zsGZdKeKOHCS4dVtcPOxLNzRubnQcNpLjG9faFEhW9J0+k7y0FC7WkXlUnJONxWzGK7D+gdoRHbsgVyopLyrE3S+Aouz6/UaPP3EED/8AvIKCSaogF+uyAaaeO0Npfh5t6hGQXl+UFRWSEXfZLgi/Rc8+ZCXE2ki2wJiWhLbtwOHVK0g5fxqFSk1Mt54oVCq6jhrH6e2bMZtMKFQqfELDOLJmBUv+8xxhbTtw6cAeWz6ZFcfWr0al1dJh6AjbY6UF+ehKSyjNz+Py4f0MnTOXO976iKLsTFr06EOLnn3JTIgltH0nlBo1F/fvxs3Hr8HH6xMahr60lNKCfPLSUpsVU8345yEajaQ9O5+CP/8k+M038bnzzibfh0vPnoR/+y26c+dImnc/5pKrR04VLF1K2rPP4jlxIqHvNd6+5wyCIOD/2GP43n8/We++e1XJKdFkIv35FyhYvITgN15vMlLKikpyqivJ919dcsqUl0fiPfdgTE0l4qcf0XZoOoktSORUZAU5lXTn1VVOlezeQ/KDD+HSp3eTklJWKLy9ifzxR9QtW5J49z2U7NrdpNtvxo0Heytfw9Z1cVdhNllqVGM0BUSLiEDtAclVm9NMFUSEuWKirbZayoTag6XNRilLSK6QYdCZyU8vxT/cMc/DxUOFrthgs3hZ4e6jQe4kY8pstmAyWhysfFWb5+pl5bOzezWebPEKcKEgq9xGBuhKjKjdmtjKV2aq08pXm4qoavi5Qim3qeBqg5W4q27lszRBxpRCJbO1A9Z0HepKTZhNFluOl6efhuLcctR1kHDQ8FY+0YJ0PVeMxagzYzJabFY+dRViyqr2qkkJJ1pEBEFoVAB51SwwUZQ+PKyvm6t3hWKqNmKquZXvhoUgCMR07Un88auTM5WbkmST1BmqRXVkxF5i39Lf6TPtFkJa24dVt+ozAK2HJyc2ryUrMR65UukQrtyyV19Sz50l6dQJCrMyULu64h/VgsQTR0k8eYwhd9xDu0HDOLd7h9NGOV1JCZnxl+kwdDhUseVVRWlBPgknjtJ5+Bi6jBzLwRV/kJOUgKu3F4f+XoZCLb0/uo+ZiKuXt9NzcGD5HxjKy+k6ajwqrQtt+w+htCCflLM1q9TkCiUTH38O0WxBplBwYtO6GpdtKEwGAwknj9GiR2+nz3cfOwldSTHndm6zezy4ZRuiuvZg/7LFDiRJVRRkSC1t9bXygXQdCjIZRTlZuHp5U5Rdv4yphBPHiOrcnbTzZykrLEDr7kFhVu2/7c/v3YmHfwDBrZznnTUGSaeOgygSVYV8je7aE5lcweVDlaqpHuMmk3bhLKLZTMve/Wz5Xl1GjkO0WDiwfAmZcZfpf/MdzHz1HfRlpZzfs4OS/DzO7KgkWMuKCjmxaR2dR4xFpdGSk5zI1h++4tuH7yXx5DE0bu5Ed+tF97GTSL14FovZTFSX7rTs2ReTXo+bt7f0uS2KFGSk1amCqw6fkHAAUi+cwagrxye0WTHVjH8QFr2elEcfo2jjRkI/+ACv6dOu2r5cuncj4rtv0V+4QPLcuZiLnN/BuBLk/fIr6f9+Ca+ZtxL81psI8qaTclohCAL+j1eSU9mffNLkdxNFg4HUp5+hcPVqQhYswGvGjCbdvhUyjYawzz9H27WLRE7tdZSUXimMGRkk3jEbU1Y2ET/9hKZt2ybfB4AqLIzIn37CYjRI5NRVyJwq3rKFlIcewrVvX8I++wxZxQ+Xpobcw4OIb7/BtU8fkh96iMI1a+peqRn/s7gSK5+mIn/pajbziRYRBKF2xVSV5rTqiiltRfizQO0TYJPRgkIhQ64QKM4tRxTBP8JRMaV1VyGKkj1Poa78DnDzUTtt5TOWV5BmWkcrn5XYqq3tzYqqBMuVBHp7Bblg0pspLZBeM32Z0UExdSXfOSaDWQqdryX8XO2mrFMxJa+imGpI+HlTZ0wZK14n62tVE4moLzNiMpjxCpSIKQ9/LYU5OlRaOfrShrTy1UcxZbG7nsuKpNfSqpiy2umsNjtVLY2CFrMIssblPElZYNK+rNeMrEKxptLIUajl9SOmmjOmbkhEd+9Ffnpak6tyAFIvVGbjJJ0+YfvbYjaz8etP8Y+Ipu+0mQ7rKZRKOt00ijPbt5AZdwnfsAhbXpMVLXtJLboHli8BQaDTTaPxj4gi7dJ5Qtu2p0XPPnQYMpyywgISTx1z2EfymZMgirTq1Z9WfQZwctM6B8Ll3K5tyGQy2vQfRJ+pt2DSGxBkMkrzpQymu97/koDoFmz/+RunZI2upIRDK5ciVyjpf4t04zi4VRs8AwI5v2dHrefOwz+AsQ8/hcVk4sSmdRj1TVMQlXTmBCa9vsbAd6+gYFr27MuRNSscjqnf9JnkpiRx6dC+Grefn5mOTK7A3a/+ShyjXodJr0e0WDDpdfVSTBVmZZKflkJUl+5c2LcLdz9/vIJCal3XbDJx8cBe2vQf3GSOH5AIMr+IKNx8fG2PqV1cCO/QidjDlQ3nLXr1QV4hhOgxdpLtcVcvb9oNHMqJzetRajTE9OhFSOt23LngM4beeR+CILBh4cd8/8QDrP/iI1YueAOz0UBxTjY/PvUQPz39L87t3k6vyTO499Nv6Tp6AvFHD2EyGkk8cRSvoGC8AoPwCQ3DKygYfWkZhrIyRFGktCCfw38vb9DxegUFI5PLST1/DpAyp65HNBNT/4MwFxSQdO+9lO7bR/gXn+MxZvRV36e2a1cifvgefXw8iXfOwZST02Tbzvn6GzLffBOfu+8m6OWX66wyvRIIgkDAE4/j/9ST5HzxJZlvvFnrXYaGwKLXk/LIo5Rs2ULYJx/jOWF8k2y3Jsi0WsK/+AKXXj1Jvv8BijZsbLJtGxISSJx1OxZdOVG//oKmTesm27YzqMLDbeRUwqxZ6OPjm2zbhStXkvLoY7gNHUrop58ga6Ia2pog02oJ+/QTPMeNI+3pZ8hbtOiq7q8Z1y+uRK1gJX3Kr2Izn6ToqN3uU1UxZTZaEEXRRkioXSonJbUROlb1h1wpozhPj0wm4BPi6rCcNcfHWIWYEmQCLhVWvuqKKatSxZliyrq+vqxu+1yTZUwFSHl11tZBXanJpiqztspdCZmjqyBharXyudafmKopUL46rhYxZTKYJcWU2kpMOd+ersSIyWCpJKZ8tZj0ZtRaRQOtfPU5VhFBVknWFudLE083H+lmhvVas6qXlOparHwWi6SYasQ1ZaeYqhiLIMgq/i/g5qWmJK82K19z+PmNjIiOnZErFMQdbXrVVOxhSWXvGxpO4slKcujY+tVkJ8Yzct7DDoSTFV1GjMWgKyf57CkComIcnnfx8CS0bXtSzp8BUaTTTaMxGfSYjUYG3HqndIM4MhrfsAjO7drusH7i6RN4BQXj4R9A11HjKchMt8uaEkWRMzu32gic3Ut+QRQtiBYLQ+6ci2ixkJ+WzLA595ERe4lzToimnYt+wGwy0mPCFJtVURAE2vQfzKUDezGbav9MadGjNx2HjcJk0HNgxZ+1LltfxB05iFdgcK0qlx4TppCXlkL8iSN2j4e0bkdk527sWfxLjQ19UiNfUIPym4pzpXmef2Q0+RnplBcXYayjqT3hxBEEmYyw9h0lsqnfIDwDAmtVTCWdPoGuuIi2TWjjE0WRhBNH7Gx8VrTs2ZeUc6fRlZbYHrOeN9cqJBZIOVtGXTkBUS1QqqTvALlCQY/xk+l002hcPL0Ia9eB7MQ40i6eQ6FSkZeWQkibdkx++t/cv/Bn+t88C62bO237D0JfVkr88SMknDhqG5vUaNmTnCRp3iNaLLTuM4C9f/5GbmpyvY9ZrlDgGRhMTmI8MrkCz4CGhaf/U2gmpv7HYExLI+H2OzBcjiXih+9xGzToH9u3tlMnIn/5GXNuLgm3344x9cru5IiiSNZHH5H9wQf4PfQQAc8+06RseW3wu+8+gl59lfxFi0h77jnEK2w/sZSWVgSSHyDsiy9wHz68iUZaO2RaLeGffYb7qFGkPvEEBUuXXvE2dRcukHDHbAS1mqjffkMVFXXlA60HVOHhRC1ahEzrQuLtd1B+5swVbzPv199Im/8cnlMmE/rB+1edlLJCUCoJfvstfO68k8zXXif7s8+bsz7+H8JOMdXAda2NdeVXsZnPysnXrpiSbHhKtRxRlBQYVhJKoZQhyKQJf61WPpOU+SRXyCjJ1+Ed4mpTg1SFlZiyKp4EQSK/BJkUfF1dUWMjphwypqTsIgBdPRRnTWXl8/DXIpMLFGSUYTFbMFQEt4OkOAMwlDfezmclnOoipsxGS41h4uYqSpz6K6bsFTvQRIopvQWFSsqYkv7tfMzW4/YOqlRMSeORoa+jIKChrXwWs9ToaFUaFefqQKjMdbJa+WSKKsRUDRZNK/F7xVa+ivWrzik9/DQU5tTcmGwLP28mpm5IqDRawtp3Iu5Y0+dMZcZdQqFWE9OjN4mnjiOKIsW5Oez541e6jhpPUItWNa7r4R9ATPdeFOdk4xcR5XQZn9AwRIsFv4ho3P38SDh+FMCOBGo3cCiXD+3HUG5frJR0+gQRHbsAENKmHX4RUZzYVBk0npUQR05SAnKViu8fm8fZnVuRyeUoNVqKs7PQeniSeOo4Ye060qpPf3Yt+tFO1ZSbmsyprRtRqNT0mXKz3b7bDhiCrrSEhBNH6zyHI+Y+hNrFlUOrltkRHI2BKIrEHjlITI/etc6BQtu0J6hFK46sXuHw3ODb7yYvPZVTWzc4XbcgIw2vBra8WXOhWvXpT25ykt1jNSHu6CHC2nYgKyGO8qJCGzFVW6Pfhb078Q4Js8sru1JkJ8ZTWpDvNNy/Rc8+WMxm4o9JpG/SyROIFgsyuZyTm+xD7a2EVWlBnsNv+NZ9B1JWWECXEWMJ79gFpUbL3E+/Y/Z/P2bUvEdo2auvXYC5b1gEfhFRnN66gcKsTDvSLKpLd4pzc3D38wdgwK134OEXwIYvP2qQpc8nJIyCzAybeup6RDMx9T8E3fnzJMy8DVGvJ/L3RbhcgwYqTevWRC76DSwiCbNuRx/rvF61LogmExkvv0zuwq8IeOZp/B995B8jpazwvvUWQt9/j6K160h57HEs+prvPtYGU24uiXPuQnfyFBHffI3boIFNPNLaIahUhCx4F++Zt5L+75fI/e67Rm+r/PhxEmffiSLAn8jffkUZXH8/elNAGRRE5K+/oAwLI+nOOY1uHhRFkZyFC8l84w185swh+I03EGq4A3i1IMhkBDw3H/8nniDns8/IePmVKyZAm3FjwW7S38DPN42b1cp3FRVTonXiXPMyVpLIOkk2Gy02QkKmkCEIAmaTaMudcgabYkoho7TA4DRfCqoopgxmFAoZgkywkTBypdxRMVVeqeayG7PRYnusPuevqcLP5XIZnv5a8jPKbEot6/ithMaVNPNZ2/bUdWRMATU2OjoopkyWOklzZ4opmUKoF6lVG6wEYm1WPovZYlNS2TKmKpRpgiDUrZhq4GsrBZZXUUzl6XDxUNnZHwVBsvIBFRlTtYWf126VrQkmU2UWmJVcklWxA3sGuFCYXQsxZVVMNWdM3bCI6d6LlLOnMehqfp0birKiQsqLi1BrXMiMu0RZYQGXDu1j9+8/oVSrGThzdp3baN1nAAAmg/PfzJmxlwCppe/Yur8pL5HiP7ITK5Xw7QYOxWTQc/lQpaWqODeH/LQUIjt1RRRFTAY97QYOIfbwAS4f2s+JTWv5+4O3Abi4fzet+/RH6+5B+8E30XPCFE5uXk9I63YknJBUYINm3UVZYSFH164CpO+7TV9/BqJIn6k3o9JWBrsD+EdE4RsWwfk9O+s8B3KFgiGz78ViMrFywZtXdOMxKz6WkrzcGm18VgiCQI8JU0k6fcLWdmdFQFQMHQbfxN4/F6F30qKen57m0EpYF4pzsqGCRBQr2hRqs+QZ9TqSTp0gpkdvLuzbhWdgEIExLfHwD6Q4L8epEs1kMHDp4D7a9BvUpHPA+ONHUKo1hLRp7/Ccu68fgTEtuVzRzndk7QoA2g4aKtkzq1zXF/buRKV1oSAjndRz9jfLw9p3ROPmzskt6zm27m96TZqG1t2j1nG17T+YhJPHkMkVhHeobDcPb9cJuUJhI5O8g0IY/eDjpF++aLt+6wPf0DDKigquWxsfNBNT/zMo3bePxNvvQOHnR9Tvi1BHNx2z3FCowsOJ/O1X5B4ekrLlVMMqbS06HSmPPkbBX8sJ/u/b+N5771Uaad3wGDeO8C8+l9ra5t2PuaRhdz4MyckkzJqFMTODyF9/waVXr6s00tohyGQEvvQSvg8+QNaC98h6/4MGf1GW7NpN4j33om7VisiffkLh43OVRls7FN7eRP7wPdouXUi+7z6Kt9Tc3uIMoiiS9e4Csj/6GL9HHyHgufn/OOlphSAI+N0/j+C33qJg+XKSH3iwwddYM25c2CtKGvZ+lMtlqF0UV1UxVd+MKYVKbiMlzMZKdZRcXqF0MZhtuVPOYJ1kyxQC5SUGAiKd/3hTqKSWM2tYusUs2kKnFSpHdU9NiimjzmyzGerr0YRnb+W7MrLFO9iV/IzSKuomhd0YryTM3krC1KWYAimXyRmqhp/LlTIQqTPE3FKTle8KSQ9jRSufVd3mTDFlff3ULgrbOVSq5Lh6qbGYRZu9scaxN9DKZzGLFWH+0noluTrcfeyLMmRymY0kUrsoMJQ7P9cWi2hTFDYUJkPl62S9Pqt+pXv6aynKLq/xvdusmLrxEdOtFxazyc5udyW4uH833z46V/qHACaDdN3+/f5bnN21jS6jxqF2cbRYV4c1biP28AGH5wqzMsiMj0Uml5OflsrBFX/SZeRYPAODyE5KsC3n4R9AUMs2HFy1jO2/fMfyd15lyX/mA7Dxq0/5cNZkPrlzBrsW/YQoiqx87w22/vAVxTnZhLXvxH2ffU9Ut56U5ufRddR4uo+djEyhwGQ0kBl/mfLiIryDQug6ejwHV/5JWWEBlw/tI/X8GVQuLnQfN9npsbUdMITLh/fXaVkD6DB0OFoPT1LOneLY+tV1Ll8TYo8cQO3iSmhbRxKlOlr3GYC7nz9H1650eG7ArbMxlJVxaNUyu8ctZjOFWRl4Bzespa04NxtXL2+8AoMlNZMg2NrsnCHx1AlMRgNRXbpLZFPfgQiCgKd/IIgixU4iYOJPHMFQXkbb/k3r/kk4cYSITl3sFEtV0bJnXxKOH8ZoMJBy7jRu3j70mzqT8pJim8VUFEXO791J2wFD8A2L4OAqe0eKXKGgZa++nNu1DVdvH3pOrDvruU2/QVhMJryDQ1BptLbHlRoNoe06oi+TYgBKC/IJbdOO7mMnsWfxL+Sl1c+h5BMajtloxDMgsF7LXws0E1P/AyhcuZKkefej7daNiJ9/RuHvf62HhDIggMhffkYVGUnSnDmU7qs5dK8qzIWFJN0715aP5TVlytUdaD3gNngwEd99i+7sWRLvmF3vZjjd2bMk3DYLAYGo339H065d3StdRQiCQMBjjxH4/HPkfvMN6S+9VG+FTsGyv0h+4AFce/Ui4ttvkLs7BhP/k5C5uhK28EvcbrqJlEcepWDZX/VaTzQYSH/uOfJ++IHAF1/E/6GHrhkpVRVe06YS8c3XlJ88SeKs2zGmp1/rITXjH4D9xL3h16HWXXV1FVP1aOUzVqharJNkk9GC2ViReSOXJvAWU+3ZSWajZOUTRUAE/8iaP19cPKQ2wuJcaWLgWqGiksLPqyumnGdMGQ1m1BUEjaGBGVNXSrZ4B7rYKabUNiuf3G7MjYG+1ASCIxFXFRo36bn6KaYqlEp1WPJqypiqjYysD4x6KUtMVYuazBpuXp0c8grQYjKabSqyGsde1cpXD5LGYq7ImBIrFVPuvvb7FuQCFXFPqF2VNeaY2Vr5GpMxZap8naznv+p16umvxWyyUFJDAHpzxtSND6+gYPzCI7l04MrKbSwWM5u//Zy/P/wvKrV0Lc95/0tue30BER27oNK6IMjkHFj+B/v/WuK0La8qshPj0Xp4kn7pAqkXztk9d3ClNHmP7NyNxFPHMJvN9Jt+G/4RUeQkJWA06Dm5ZT2/zH+MjMsXyE1O5OK+XYBEeLl4eNF7ys0Mv+cBxj3yNFOefZkWPfqgdfdg9IOPY7GYuenu+3H18ub4hjUEt2pDYExLNG5udB87kdRzp0EUSTp9EoC+025FEGTsXvIrW3/4Wnps6q12pEBVtO0/GJNeT+wRR9KtOmQyOT3GT0GQydjxy7dkxl2ucx1nuHxoP9HdetaY62W3T7mc7mMmcm631ApXFe6+fvSYMIUja1bYWe6KsrOwmM14BTdMMVWUk427rxSWHtO9NwJQUEtWVNyRA3gHh1CSm4OuuIjW/SSyyUqSFDpRW13YsxO/CqVaU0FfVkbahXNEdXG08VnRoldfDOXlHF29ApPBQJv+g/EKCqZFjz4cXbsSURRJv3Se4pxs2g0YQp+ptxB/7DAZly/abcfd1x+jXk/3sRNtGVS1wd3Pr8Y5SVSX7ugrblxb31cDZ87GzceXjV99XK88ZI8KK6DKxaWOJa8dmompGxii2UzW++9LGTmTJxH+5RfI3eq+m/FPQe7lRcQP36Pt3p2k++ZR8FftDQJSy9sdGGJjifzxB9yGDPmHRlo3XHr0IPK3XzEXFpJw60x0Fy7Wunzpvn0kzr4TZXAwkb8vQhV2/cgmfebMIeSd/1K4YiXJDz5Uq0JHFEWyP/uc9BdfxGvGDMI+/wyZ1vkX9j8NmUpF6Pvv4XXzzaS/+CLZn3xaqwrMXFxM0v33U7R2HSHvvYfP7Dv+wdHWDdd+/Yj6fRGWkhISbrm1STK0mnF9o6rCpzFSf6278upnTAm1T15Neimg2s7KZ7a281WuV1uItsloRq6sJDL8Qp1b+UAipixmkdzUEpRqObIKVZZCJWUaVR2rQWe25U9VhbEiGBuBGm1WVWFpovBzkHKQSgv0ttBsq4LJSp5diZVPV2pErVXYWbqqw2blc6IkEkXRUTEFdVryrBlT1uWhqTKmJNLTSkw5I3isKjGrfc8KzwAXDOVmdHUQj41q5atCJhXnOSqmpHmF9BpoXBQ1hs1bSa5GZ0zZVIqi7TErrLbGwixH2471OKBZMXWjo1WfAcQeOYCpkTEAFrOZ9Z9/yMnNGxg57xFEQO3iitZN+gz2CQnDUF7GiLkP0mP8FPb++Ru/vfgkmfE1x3RkJ8YT3KoNPqHhHFxZGf6tLyvl9LZNKFQquo2ZiGixENOtBy6eXvhFRJN++SI/Pvkgm775HHc/P0Y98BgyhYIe46cy5dmXMer1tB9yE70nz6DLyHG0GziUFj16M+DWOygvLuLYulUExrTEPyKKvLQUkk4dp+voCbb9dx83GUEmR+Pmbmv807p70GfarZzauoGSvBy07h50HVVzMZFXUDDBLds4DU13hk43jUImk+Hi6c3fH/3XpnipL/LTU8lOjLfZI+u1z+GjkSuVHN/gqNLqNWkGKq2Wnb9+X7mPjDSABlv5irKz8PCXSKWY7r0QRbFG8s1sMnHp0H5a9OzLhf278Q4OsYXju/v5gSA4BKAbdTpijx5s0tBzgKTTx7GYzUR3dQw+t8IvPBLPgECOb5Kas/tMuQWAHuMmkZuSRNKpE5zfuxM3bx9C27anTf9BeIeEsW/Z77Zt6MtKObl1A4JM5tQ+6Qwp584giiL5GWkO60R36Y4oiijValIvSPMDpVrDqAceJfX8WY6u+7vuHVSoGYVG3Aj9p9BMTN2gMJeUkvLwI+R+9z0Bz80n+PXXEWqQJF5LyFxcCP/yC7ymTiH9hRdqJA90Z8+ScOtMzKWlRC5ahLZLl2sw2tqhad2aqMWLkXt7k3j77TWqwKoq2CJ//OGaWd5qg+fkyUR8+w3lJ06QePsdGDMyHJYRjUbS//1vcj77DP8nniDoP6/84zlMdUGQywn6zyv4P/kkOV98Qdozz2IxOE7UjenpJM66Hd2Zs4R/9+1Vb0RsLNQtWxL1xxIUQUEk3jGbovXOgyqb8b+BqhP3xmS9aN1U6K5mK59YdwZOpWJKUteYTRYbkWOu56TfbJBCrk1GCyqtAoWq5lBOFw8VokWUsn08VTYix6bYqnJODeUmVBq5wx1IUwXhIZcLGPV1E0FVSbUrJqaCpZtHeaklIFRmham0FYqpK7HylRprtfFJ+5HC4p2RJdbr0XouFRXEh7NsJ7v1jNLzcrvw8yvPmLIRU2q5RCI6UZNZlV/eQfY35TwDtFJbn95c6zga2rgokUkSoWOxiJTk6WsgpiSoXSTFlLPfPRZr62VjMqaMFtv7xHp8Va9Tdz8NgkygIMt5/pClWTH1P4E2/QZiKC8n8WTdgdzVYTaZWPPJAs7v3cn4x56h/eCbKCvIxz+qMgrESlp4BYYweNZd3P7mB2Cx8NsLT7Dr958wOfm9lZ0YT0BUC/pOvYW4IwdJPX8WgP1/LcFiNtNr4nRObd2ATC7HbDJhNhlJv3weQ1kpngFB3P3BQqY88xKdho0kplsvzu3eRl5qCqX5eUR2dJwb+EdGE9SiFRmxl2g/WCoWOrp2JS6eXrTuW5npqnX3oNvo8RjKy4g/fsT2nozq0t3mbR04806UGo3DPqqi7cAhJBw/QnlxUZ3n2MXDk9b9BiHIBMoKC9n4Ve03UKvj4v49KNUaorrVrO6pDrWLK52Hj+L4xjUORJjaxYUhd9zDhX27bKqx/PQ05AqFRBA1AAWZ6bbA9KCWrZArleTV0BKXeOqYpJLqO5DLB/fRum9lZpRcocTdx88hAD326EFMej1tmpiYSjh+FO+QsFpb6QRBIKZHH0rycnH380frIcULhLXvhH9UDEfWLOfivt206T8IQSZDJpPTb9qtxB09REZFhtr2n7/FWF5Gix69uXywfqrG2MMHcPX2wWIyEXt4v91z7v4BAKhcXEmrokQMb9+J7uMms+OX7zhfB2FampcL4FAqcD2hmZi6AWFISSHxttsoO3SI8IVf4nvXXdeFHakmCEolQa+9ZiMP0p97DrHKl1nxli0k3H4HCn9/on5fjDrm2uVj1QVlYACRv/yCtmtXSQW2YoXtOdFiIevDjyQF28SJhH/5BTLX60fBVh2uffsSteg3zMVFJNxyK7pzlR905pISkh/6F4UrVxHyzn/xu3/edXuNCYKA37z7CP3wA4o3biTpnnsw5efbntdduEDCzNuwlJYS9fsiXHv3voajrRsKPz8if/4J92FDSX38cbI++BCxhorfZtzYsE2KhcYRHhp35dW38gkg1hZ+rrfYhZ+bjBabgsZKWEDtx2esyMsxGy22PKGa4OKuQhSljB2Nq7IKMeUYkG3QmRxsfFBJeMgVMoz6+rTONV3GlFegpGTJTy9D66a05XDJFTJkcuEKrXxGmzWwJgiCgNpF4dTKZyU45NZWPpW9Vawm2BRTduHnMtvjjYEoipj0ZlRqOYJMQKVROM0DswZ8+4XZq+y8Alxs464tAN2qWpL+rse1YBaRyQREs0hxbjkWi4invxMVccXkU+OqxGIWneZjiVbFVGOsfBUqQ6i85qtaWeVyGd5BLuSmOFdEW4mpZsXUjQ3fsAh8QsO5uH9Pg9Yzm4ys/ui/XD60n4lPPEebfoO4dEDaRsuefQEoyski6fQJFCo1yWclEiMwpiW3v/0h/WfM4sjq5fw8/1Eb8QRS9k1ZYQEBkdG0HTAE/6gYdv72AwZdOcfW/41CpcY3QrIftuk3iITjR/n95WdJriBJek2egU9IZdZR+0HDyIy7zLnd25DJFYS27eD0ePzCIwFJ0VRWVMiZ7VvoNmaiQ4ZQjwlTEWQySnJzKMhIQxRFtn6/EKEiVNorqO5Cnzb9BiGKIhf3767Xue46ahzFOdl0HzeJi/t3c2LTunqtB3Bh/25iuveqlw2sKnpOmIbJYODoOsdg7HaDhhHSpj1bf1iI2WSiICMNz8BgZLL6t7SZTUaKc3Ns5I5MJsc7JIyywkKny5/fsxOf0HDKigrQlZbQplpmlId/AIVZ9jfIL+zdSVCLVg1uC6wNoigSf/wIUV3qLgdzqQgqD2/fyfaYIAj0GDeZ+ONHKC3ItyPN2gwYjHdwKHv//I24Y4c4vW0TQ2bfS/shw8lJTiQvLaXOsV0+vJ9WvfsR0qY9FyosrFYUpEskscVkIishzq70YMjse2g7cAhrPlnA5u++JC8tFbPJREleLpcPH2Dnbz/w+0vPsGHhxwCc3bWNMzu21GnLvRZoJqZuMJTu3UvCzbdg0euJWrIYt8FNyyRfLVjJg5CKlruk++Zhys8n97vvSHn4EdwGDybyl59RBgZc66HWCbmba6UK7LnnyfroI8ylpaQ+/gS5X39NwNNPEfzmG9elgq061K1aEb1kCQp/fxJvv4Pi7dsxJCWRMHMm5ceOEfHN13hOdh4Ceb3BY+xYIn76EUNsHIkzb8OQmEjxli0k3jYLha8vkYt/R92ixbUeZr0g02oJef99Ap5+itxvv5VC0Wv4wm/GjQtrkLJMLthl3dQXLu6qfyT83FLLHV6TQcoBUjhp5bMSHQqVrFZlhtlotimmqtrBnEHjXvm56uKhstm7rCRK1cm5odxsUyLZjkkUbSovuVJmR57VfIxViKkrIFtAsuy5easpytXZWgZB+o5UaRRXZuUrM9nC1GuDxlXpVDFlVdwoqrTyVX28Jpgqwuir3ryQws8bT+JZTJIiSVFBVKq0cqekXUGmdOfXN9RRMWVFTVY6qMhqUgj1IodFUUS0SMSU2WwhL13at0+Ia7XlKpssbSH7TiyFloptNYYcMhktNkWblfSqfi37hbuRk1Ls/FgqFr1SBWAzrj1a9x1I7OH62/lMBgOr3n+L+GOHmfTUC7Tq3R/AZk9rO0CK0Ti2fjUqrZaoLt1JPHXctr5coaTv9JnMfucTNC6uLH7lWf56+xWSTp8kq8Li5x8ZjSCTMXjWXaRdPMfyd17DbDTSe+rNbP/5W6K69qBVnwGYTUYKMtK55ZW3UajV5FYJQAeI7tYTtasrF/fvIaR12xrVTBnxsSg1Wk5sWsvxDWtAJtBl5FiH5Vw8POkyQnr88sH9nN62iZRzpxHNZryCQtj52491ZvW4enkT2akr53Zvr/NcAwS3aot/VAw5SQl0HT2e7T9/49Ca5wz56alkJ8TRpl/Dg7/dfHzpPHwMR9esdFBNCYLA8HseIC81hWPr/yY/Iw3vhuZLZWeBKNqRRqFt2iFazORWU03py8q4fHAfbQcM5tyu7fiGRdiIRCs8/QPsFFP6slLijx9pcrVUVnwsxbnZtOhee8MhSMHrABo3+8zLNv0Ho1CqUGm1BLVobXtcJpPT/5bbiT92mDUfLyC6W0863TSaqC7dUao1dWbBZSfGU5yTTYuefSXS9sQxdFWiVvLSpYDz8uIiRIuF9EsX7PY99qEnGHrnXM7v3s4PT9zPR7dP4asH57Byweuc270dN18/vAKDUWo0GHTlrP/iQ356+iEuHz5Qp4pPFEV2LfrRITPuaqCZmLpBIFosZH/xBUn3zkXTvj1RSxbfMJPsqvAcP56IH75Hd+4cl0eMJGvBe/jeP4/QDz+4brKL6gObCuypJ8ld+BWXhw6jZOdOwj79BN+5c69bdZEzKPz9ifzlZ1z69SPlgQeJmzgJ0Wgi6o8luPbrd62H1yC4dOtG1JLFiIJA3KTJpPzrYVwHDJBIz4Drn/SsCkEQ8J07l/CvpVD0+JtvQXex9myzZtxYMBstyAQBWSMDkDVuSsqLjVdURV0b6mM1MhrMdoqpqsSUldCwBnvXNAE3GiRiQ8rNqf2zs6pVzd1HQ3mRRMwpnOQh6cuNDkHgJqMFxIqGP7W8TtIF7NvgrlQxBZJqqqxIj4un/V1wiXy5AitfiRG1S903RGoipioVU5UqrqqP1wSzqZIkseJKM6as59yqoFNrlU6D6q0h+B5+1TKmqqiY9LU081lMok2tVtd70Pq8TC6pwfLTS1FppAbAqhArbH5QGW7vrAXRbA1Sb5RiymIjY/XlJgSZI4HoF+ZOTkqJw/uu6vu52cp346NN3wHoy0pJOn28zmWNeh0rFrxO0qkTFcHhlQry9IvnUWq0uHp5Yygv4+Tm9XQePoborj3IuHzRgeDwDYtg5uvvMvZfT1KSl8ufr7/Aus8/sKu1j+rSnfD2nUg5ewpXbx/Szp/FqNcT1KIVqz96B5XWhYDoGELbtMcvPNKumQ9AoVLRqnd/8jPSiHBi4wPIjI8lJzGejsNGEnfkIEfXraLj0JFo3Z23u/aZeguCIHBiyzq2//Italc3wtp1ZNT9j5AZd4nz1ZQqztBu4FBSz591sJ85gyAIdB01jrgjh+g6agK+oRGs/ui/deYONcbGVxW9Jk/HqNdxzEn2UEBUDF1GjWPf0kXkpSbj1cB8qcJMSd1U1Q4X3bUngK21zoqzO7dgNhklAvXQftoPvslhjuQZGExBZmXpz+VD+zEbjY0i5WrD5UP70Li6Eda+Y63LGQ160i9dQKFWk1SFlIUKq7YgEby6UntFastefVFqNJgMekY/+BiCIKBUqYnu1pOLB2pXNV4+tB+V1oXw9h1p3XcAFouZS4cqyay81BS07h4IggyFSm2nVASpHKDH+CnM+/JHpj73CqMffJxJT7/IfZ9/z7wvfmTi4/MRZDL8I6IRzWbu+O/HePgHsnLB6yx/51Wbbbc6RFHkwPI/OLhyKXlpzq2aTYlmYuoGgCk/n+QHHiDn08/we+ghwr/+CoW397UeVqOhDI9AFR6GWFoKKhWa9u1t9bI3EgRBwKVHT+RenlhKSpD7+aFu2fJaD6tRELRaXPv2karh9XrULVqgDLx+60Rrg8LPD3WLFoh6PQgCms6dEK7jBoq64DZwANFL/0Sm0ZBw60wKlq+41kNqRhPBbLKAjEbbebTuSswmi1ObUFPAauWrtZWvojnNSmKYTBbbsVgtRuoKcqimljaTwVw56a/ju8CqQAHwCNDaiDlr3o6pimrEUG52IGpMVQgPpVpeLwVU1dynK23lAylnSldqslNMgZT/5MyuVl/oy4y2zKraoHFTOm2rM1a8XjbFlKp+iimzE6WbXCFgMYmNJk2tY1FWUUzpnajJSgv0yOSCLQTfCoWykjCqSzFlXb/exJRCwGyykJdeinewq8MkS2qilM6ZVcHmLGzebLTUixCradxWMtBQbkImFxxaKQOjPTAZLA52Puv7ubH5Vs24vuAbHolPSBjn9+ysdTlDeRl//fc/pF44y9TnXpGylSpQlJONrqTYFkh9evtmTAY93cZMJKJTV0SLhaQzJx22KZPJaT/4Jma/+yk3v/QmSo0Gi9nMN4/cy5L/PMehv/+yTXgFmYyEE0fRuLiw/68ldB01jgG33kHquTOUFRXiHxHlQEwBBMa0AlHExdPT6XGd3LwON28fBt02B7WrG/rSEnqMq1np7+LpRXDrthRmZmA2mdGXljD4jrsJb9+JFj37sruG7KyqaNmrLwqVut4h6O0GDEXt6sqJzWuZ8MR8SgsKWPvpAiyWmr+7G2vjs8Ldx49Ow8dwZM0KpyTYgFvuQKZQUpSdhU9wqJMt1IyCrExkcrmtlQ+wNefFHTtke0y0WDi2YQ0te/cn7cI5TCYj7QYNddieT0goZYUFNqLnwt6dhLZtb7f9psDlQ/uJ6d6rzobD87t3SOH8XXuSk5xIQWalzTDx1PGK60Pg1Bb7HNidv/2A2WjEYjYTd7TyPLTuO4Cs+FjyK1RPzhB7+EBF+6ISN28fwtt15MLeSpI0Py0F37AIglq2QuXiQtpF5+ollUZLTLdedBw6gla9+uHhF1BR2GEmLy0Fv4hozCYTKq2W6S+8xqSnXiAnOZGfnnqIPUt+sbtWdKUlbPrmM/Ys+YX+t9xOp2Gjaj1vTYEbjw34f4byEyeInz4d3YmThH/9Ff6PPGzzQt+IKD14kPjp0zHl5BLx04+433QTqY8+RtbH9au6vF4giiJ5v/5G4p13ooppQcQvvyBTKom/5VZKdtXPd369wKLTkf7SS2S++ZbU2PfhB5Tu30/CbbMwJF99drwpYUhJJeH2Oyjdt4/Qjz7Ed948st//gNQnn8RSz1aM6xGq8HCiFv+Ox5gxpD//PGnz52MuaVi7SzOuP5isiim5UCNpUxu07hKxcbXsfNb8ndomr/oyE2qtopLEMJhtShmj3oIgE1BW5DzVNAE3Gau06dUhNrVmRqm0Clw91FgsIvoyU6XtrMrkXF9mdLDyGasTU/X43jFVCUhvCuuTd6ALZqMFrbs9iaRxVaIrafxrqSs1oXGpj5XPeVNcpfWyImNKYR+uXRMkO1w1Yqri9Wis9dGos75O0vGoXZwrpsqLDTXmknkFSqopZ2olK8xmaezyethprWo5mVzKQ8tOKnbIthItIhazaHsPWIlRZ0Sg9bxZLGKDCSKToZIMNOjMyOQyO1IWIDDSA7lSRurFfLvHbcRUI22Ezbi+IAgC7QffxKUDe2tU4ehKSlj6xktkxccx44XXHdRHsUcOANCiRx8sFjNH166kdd+BuPv64RUYhHdwCPFVJtrOxhDRsQsKpYqON41i1P2PoNJq2b3oR0oqApdLcnMA8AkN57bXFjDsrnm07T8Y0SJy+eA+/CKiyUtJcsi90ZUUgyCQlRDvsF99WRnndm2n0/DREkFcQYSbTbXbGsPaSblBFpORdgOHEtyyDQCDb7+L4twcjq2vveFMpXWhRc8+nK+nnU+p0dB19HhOb92Exs2dCY/PJ/7YEXb//rPT5bOTEshOiLPZKhuL3lNmYDToObz6L4fnNG5u9BgvEXhGvb5B2y3MysDDL8CmjAPw8PNHEGTkJCbY1HXxJ46Qn5ZCt1HjObVtIxEdu+Du40g2eYdIzeX5aamUFxeReOp4k9v48jPSyElOpGWvup0gxyqyuQbMnI1cqbQLIrfaEdsNGsqxDatt1+uJTWs5tu5vhs2ZR5v+g9mzuJLkienRG7WrK6e2bXI+tvRUshJiadW7cmxt+g8m6fQJyoqkGI+89FR8QsKI6d4bfUkxqRfOYWlA/mx+Rhpmo5HwDpJaLC81GUEQaNW7P3d/8CW9Jk3n0KplfHnfLH5/6RkWvzKfr+6/k/O7dzBy3iP0m35bvfd1JWgmpq5TiCYT2V98QcKs21H4+xO9/C/cBjWtpPGfhCiK5P7wI0l334O6RQui/1qGa58+hH74Af5PSna4lAcfsgutvl5hKSsj7dn5ZL7xBt6zbiPypx9x7dmDqD+W4NKtG8nz5pH96Wc3RGC1ISGBhJm3UfT3aoLfeovA5+bjOXYsUYt/x1JeTsKMmynetu1aD7NeKN66lfhp07AUFRH1+yI8xowh4InHCf34Y0p27CTh1pno4x1/2NwokLm4EPL2W4S8+w7FmzaTMH06urNn616xGdctTAYzgkwipkyNIabcrMTU1QlAt1qNaiMX9GUm1C6VTXpGvRmLSSKkjHoTKq3cppiqaeJvMpgrJ+Z1KGyUWisxJcfFQ5r0lxcbnKp7DOVm1Fp78qcqMaVyUSJaqFPVY1XvNFbdUh1eQZKCUyazZ+G07iqnoeT1hb60flY+tavSqYLHSupZz6Uze6QzOCWm5PULTq8Jla+TtB2VVu5UTaYrM6GuIVfLK9AVQQBdSe1WPlkDrXxyhYBRbyYvvZTAaHsVh/X6MxstiKIoWUkF5xlTVc9bQ/O4zKZKYkpfbkIulzko2+RKGUExnqRcsP9dZbUOSo2bDdptM65TtB98EyajgYsHHG+MFufl8Mdrz5Ofmc4tL79FaNv2Dstc2CuprSI6dSH20AEKszLpMX6K7fkWPfty+fCBWhU+Rp2OvPRUglu1odOwUQyZPVdqdq1QwfqEhiNTKOg5YSohrdsCknopolMXzu/ZQUCkpOSoripJOn0Cr8AgLu7f7UA4ndu9HZPRQKfhozm1bSOG8nJcvX3Zvdg54QNQVljAyS3rAUnR02fqrbbnfELC6DxiLAeW/1Fn6167gUPJSU4kO7F+vyu7jZ6AxWLm5KZ1RHftwZDZ93Jo1TLO7NjisOyZHVvQengS3a1nvbZdE9x9/Og+bjKH/15OcV6Ow/NWpdTJzesaFIRdkJGOZ7VQcplcjod/AKJoIeHEUURRZO8fvxHSpj1ylYr0i+fpOmqc0+1Zx5GXlsKlg3sRLSKt+wyo93jqg8uH9qNQquyUgs5QkpdLdlICHv4B+ISEEdmpK5criCl9WSmXD+6j/eCb6D52EiW5OVw6sIf440fY8v1Cuo2ZSNfR4xl8+10YysvZ9ftPAChVatoPuokz2zc7JU3P7d6BSqslpoq1tlUfKfvt0oE9iBYL+WmpeIeEEtO9F2aTCZNe51RhWBNykhIBCO/QGaVGS15qZRi7Uq1hwK2zufeTbxk06y68AoNw9/Wj/y23c8/HX9N5+Oh67+dK0UxMXYcwpKSQeOcccj77HN959xH1668oQxrm/72eYC4qIvWJJ8l65x18776LiO++ReHrC1SGood/tVBSh02dRtmRI9d4xDVDHxdPwszbKN68mZD33iPohRdsIedyd3fCvvgc/0cfIefLL0m6515M2dnXeMQ1o2j9euKnz0AsLyfqjyV4TZtqe07TujXRf/6Btls3Uh58iMx33rVrUryeIBqNZL67gJSH/oVLr15E/7UMTZs2tuc9Ro8iesliRKOR+OkzKFy58hqO9srhOWkSUcuWIri6kHDrTHK//+GGIEGb4QiTwVIRfi6rc/LvDFbFzdVq5rNUNJDVRC5YLCKGcomYkskEFEoZRr0Zs0lErhAqiCGFTdFSo2LKYJEscvUIoFZV5FUp1fIqijGj01Y+fbnRzvoH9sSU2kVu91hNMOmtShmhSTKmrBa+6nyYxq3xLYsGnQmT0YLWo54ZU072Y1Xc2DKmbGRf7efHuZWvcYSLFdWtfGqt0iH83KAzYTZacHF3bnXxCtAiilBeWvN3l9lkQS4XpBDyOq69qu2D5UUGECEoxj7HxnotWZsjZTIBtbZmhZo1U62hDYYmo8V2zRvKTciVgtPPkKhOviSfy7NTjVlJcKGRbaDNuP7g7utHZKeunNluT3JkxF7itxeepLykmFtffovAGMe4CaNeR/qlC8gUCvwjojiydgWhbTsQ1KKVbZlWvftRXlRoV1NfHdlJCSCKBETGYCgvZ9GLTyKKInKlkmnPv8rsdz4hvH0nlv/3VTu7V5v+g0g+d9qWCVV1sm3U60i7cJZWfQagKykm/vhR23OiKHJi01pa9OiN1s2Dgyv+pN3AIQy+/S4uH9pP2sXzDmMURZGNX9vfOD6/194C2X/GbYiihf3LFtd4rCDlZ2ncPeodgu7i6UWHwcM5um4VJoOB7uMm0XHYKDZ9/aldqLTZZOLcrm20Gzi0TstZfdBnys0o1Wr2LP7V4bnc1GTULq7kpaXWqRKrioLMdKdteX4RUSg1GmKPHOTCvl1kxl1m4K13cHzDajz8A2jR03nouFKjwd3Xn7y0FC7s3UV4h064ejVtZM3F/buJ7NK9xgB9K05v3wxAhyHDAWjRsw+p585SVlTIhX27MZtMtBs0lICoGCI7d2P34l9Y/dF/ie7ag6Fz5gLg4RfAwJmzObFxDSnnzwDQafhoygoLiD1y0G5/oihyfs92WvXub2fbdPHwJKJjFy7s3UVxXg4mgx6f0DD8I6Nx8/ZBEASHnKnakJMUj6uXN66eXviEhDmE1IP0OdJj/BTGPvwU4x99hl6TpuPm7VPvfTQFmomp6wiiKFKwfAXxk6dgyswk8pefCXjssRui3a0mlB09RvyUqZTu2UPoxx8T8PTTCE4+aN0GDyZ6xXKUoaESKffV19eVtU8URfL//JP46dMRDQailizGc8J4h+UEuRy/Bx8k4scfMMTFETdlKqV7a29i+KdhMRjIeONNUh9/AtfBg4hattSOyLFC7uVF2JdfEDB/Pnm//ELCHbMxpNRed/pPw5ieTuLsO8n7+WcC5s8n7LNPkTvJIVC3akXU0qV4jBxB2vznSJv/HJbSG9cKp46OJmrxYrxvv52sBQtInH0nhsTEaz2sZjQQVhJFrnDMh6kPrHlCV8/KJ2Xg1ERMWYkCq0pHqZFXEFOSEsRQbkKpUVQqpmrKmDJKKiulSl73eaiYRyuUcjsro9yJlc9QZnIIP69KeGhcpPXrUik1tWLK+robdfaEj/YKiCnrNWA9J7VB46pEX2Z0sI/ZFFNKq5WvnhlTThRTMivhYmyklU9f3cqncFB55aVLn+FuPs6JKc8ASZlWml+zTcVisiBTyJCr5HWSw1ZSUq6QUVZsQOuuxCvAPr/QWMX2aX1/uHioKCt0fI9WPW8NsfKKoojZaEGhlALmrX87e51a9gjEYhaJPVp5k+zifikvxWIR62VlbcaNgQ6DbyL1/BkKMqQQ6fN7drDklfl4+Ppzx1sf4hcR5XS9xJPHsZjNBES1IDP+Mqnnz9JjwhS7ZYJbtsHV24fLh/bVuP+shDhkcjlKjYZvH52LvqwUDz9/7v34G6K79kChVDLlmZeI7NKd5e+8xt4/f8NiMdOqV39kMjmJp47h7utPThUFUuqFc5hNJjoMvgn/yGg7Eij90nlykhLoMmIsJzatpTQ/nz7TZtJ2wGD8IqLY9fuPDmrYszu3Ent4Py5e3jbi4+jalXYh1i6eXvSefDPHN66pNRNIrlDQpu9Azu3ZUauSrCp6TJhKWVEhZ3dtQxAERsx9kOBWbVm54HXy0qTf1wknjlJWWGAjRq4UahdX+t98O2d2bnFoA8xNTsI/Kpquo8ex989FTlVV1WExm8lPS8EnNMLhOZ+QUASZnNjDB9j83Ze07NUPD/9Azu/ZSdfRE5DJao6i8Q4JJSs+jqQzJ6/Ywlgd+empZFy+SLuBQ2tdTiI71wHQdoC0bIsefRARiT92mLM7txDRqdKO2GXEGAqzMtC4ujP+sWftjq/rmAkEt2zDxoWfYNTp8I+IIrhlG4dcqszYS+Snp9HWydispK2VuPQJDkMQBGK690amUJB2of7EVHZSou0zwCc0zHa9XW9oJqauExhTU0m+bx7pzz+P+4jhRK9YjkuPxjUxXA8QzWayv/iCxNmzUQQGEr18OR6jaw9NUwYFEfnTj/jOu4/sjz4iee59GLPqbry42jAXFJD62ONkvPQynhPGS4qc1q1rXce1d2+iVyxH06YNSffOJev9D7BcB4oj3YULJMy4mYIlSwh86d+EfvABcje3GpcXBAHfu+8iatFvmHNziZ86jaJ16/7BEdeMwjVriJs8BWMFiet79121tiHK3VwJeecdgv/7NkWbNhE/fcYNbYWTqVQEPjefyF9+xpSdTdyUqeT9+tt1Reg2o3aYDGYQG99gJpfLULsorm7GlFyoUc1htSdZVUlKtURMWczSZL+82ICLu9JGDjmb+FvMFiwmEZPRglIjx6Cv3U5gJSxkMilUXSYTKC8x2uxn5gp1j2gRMejNNlLMCmv4uUIltxF7ZUW152tYJ/xSG9uVv7+Kc6X9lRba71frJimZGhMYbrVzutSTmBJFHKxxlRlT0rmUVdhM67TyGWvOmGq0la8i6Nw6FhcPFeXFBrtzk5cmEVNVG/iqwitAerykFmLKbJZa+ZQqmZ3azhmqWvnKiwxEdfJDqGbHrNqqaKg4BhdPldNrrKrSrCHnybqsXCmzkV9ypRyzk/G7eauJ6uTHkfUJmE0WdKVGjqyvvInRbOX730HL3v1QabWc3LKeDQs/Yc0nC2jZux83v/JWreqTSwf3IQgyorv24MialXgFBtu19YEUXN6yZ18uHdxX4+dTZvxlXDy9+OnphykvKkTl4sJdH3xpp7hQqFRMeup5+t88i33LFvPn6y9i0JUT1bU75/fuxD/SPgA96dRxXL198AkNp92gYcQdPmDLLzq67m88A4MIiGnJ/mWL6TR8FD4hochkcgbNmkPK2dNcPlhJpBXlZLH1h68IadWW/LQUBt9+DwAmo4Gja1fZHUv3cZNw8/Fl83df1vp53HHYSEpyc0g4cbTGZarCJySUlj37cPjvZVjMZuQKJZOefhEXTy+WvfUyJXm5nN62Ef/IaFsQfVOg84gx+ISEsfWHhXa/EXOSE/ENi2TArbNRqtXs+Pm7OrdVkJmB2WTCNyzc4Tnv4FAMZaUYyssQLWZGznuYfUsXoXFzo+tI5zY+K3xCwshKiEWhUNK678CGH2QtOLd7OyqtCzE9etW6XOq5M5Tk5eDhF4BPiGQvdPXyJrhla87t3k7q+bM2wrA4N4ftv3yHUqNBFETkCnsRiUwmZ/SDj1Ocl8PWH78CJNVUwsljFGZVhqmf270dVy9vIjp2dhiPlbS9tH83cqUSj4p28ZgevTAbjSSdOVnv3ws5yQn4hUcC4BsaTn5qylVrdL4SNBNT1xiixULer78RO3ES+suXCVv4JSHvvIPc3f1aD63RMCQk2KyIfvffT+QvP6MKq1/jg6BQEPDYY0R89y26SxeJmziJwtVrrtmbp/TAQUn1dOAAoR9/TPDrryOrZ8ObwteX8G+/wf+JJ8j98UcSbr4F3XlHafE/AdFsJve770iYcTMAUUv/xOf222slcqpC27kz0cv/wnXAAFKfeJLUJ5+8Znlg5oICUp98irSnnsZt4ABilv+FS7du9V7fa8oUopctRdBqib/lVrK/+ALReHWsUP8EXHr2JGbFcrymTiHzjTdIvPNO9JcuXethNaMeMBoqJ5h1qVJqgtZddVWtfPJayBirPag6MWU2icjlAiUFely91KgqnjfqHbdjPW6TwYJKq3BQEVWHjWQQBASZgMZdSVmRQSJGhMrtGXQmEHFQTFnJGLVWgbaCmCp1omapChtho2yc5bI6inLLkckF8jPsVZsaNxViRZh7Q1FWJB1D9aY/Z6hsirO/bmytfKrKu741KXGqomrekRU2K18jiSlDuUkKzq+w8mndVVjM9ucmL1VSObh5O7dmePhJxFRZLcStpFoSUKjk9SamLGaJSI3q7Bjiq6timdPbFFNq2+vjsO8KdVqDiCljpXLLug+lSl7j69R3SgzFeXo2fX+G9V+ftttXc/j5/w6Uag3hHbtwePVyzu3Zzsh5jzDukadrbXWzmM1cPrwfUbTgGx7Bxf276TZ2klNlS6ve/SnKziIz7rLDc1kJcVzYs5OSvFwsZumanDr/FZRqx/emTCan3/TbuOXltyjIzODnZx/G0z+Q9EsXcPf1t8tsSjh+hMiOXRAEgbYDBmMyGbl0YC9FOVlc3L+bHuMmc2D5H5jNZvrffLttvZhuvYjp3ottP3+DUa/DbDKx5uMFKDVaclOTaTdoGO0HD8MzIBDf0HCOrFlhC5m2nsvh9z5I0qnjtVr1AmNaEhDVgpOb19e4THX0nX4b+elpnN0l5bdq3dyZ/sJriBaRP15/kdjDB+hSB4nTUMjkckbc+yCp589yattGgIo8rzT8wiLQuLox5I57uLBvF4knj9e6rdzUJKCyha8qvEMq53q+oeGUFuRzduc2+k67tU4LnXew1MzXoldf1E3YpC2KIud2bad13wF1Nhwe27AaBIEOw0bYPd6iZ1+Sz5xEqdHQsldfyooKWfrGvxFFkclPvUhxTg6nK85rVfiGhTP8ngc5vW0T53Zto23/wWhc3Ti6TrJNmgwGzu7eTtuBQ52+5zRubkR16Ubq+bP4hkXYlono0AWZXEF5UWG9Ms70ZaUUZmbgHxkNSCSgrrSEssKCOtf9p9FMTF1D6M6dI/H2O8h84w08J08iZvXfuA8deq2H1WiIZjO5P/5I3OQpmLKyiPz5J/wffcSpda8uuPbvT8yqVbgNGEDa00+T+vgTmPLyrsKoncNcUkr6q6+SNGcOqvBwYlbUrfhyBkEmw2/efUT/+QeIIvE330LOwq8QGxAyeKUwJCeTNOcust57H+87ZxO19E+n1r26IPfwIPTDDwh57z1K9uwlbtIkirf+s8HoJbv3EDd5CiW7dxPy3nuS4svLq8HbUUdHE7VkMb5z7yXn8y9IuHUmugsXm37A/xBkrq4EvfwyET/+iDk3j7ip08h6770buonw/wNMBjOiKFYQHo3LCdO6KdFdpfBzq5WvJpuRvrqVT11p5ZMpZJTk6XDz1tia4nROsn6s9jGj3ozGRSE1mtVChJTk66SxVUyo3bw1FOeWIwgCCoXMtr3qai7bmEtNKFQy5EoZLp4SiVNaUD/FlFJdD6thPVCcq0PrrqIwq9yODLESZY0JQC8rMiAIUrB5XaiazVUVZqP0elcNZZfXg4wzOVNMXWH4ua4iVN9688RKuFUleHJSJGKqeruhbQwKGUqN3GkjnhUWkwWZXCblo9Xx2lptb7qKayu8nWP2hr7UuZXPGflpqrDgQcMsj6YqyjbrtaLU1ExM+Ya4MeLudqSczyc/o5TBt1UqvhvaBtiM6xPlxUVsWPgJsYf2I1osDLj5djpbm+pqQcq50xjKSpErVaRdOIdKo6VjtUm5FeEdOuHq7cPZnVttj5Xk57Fh4cf8Mv9RjHpdRUubQM+J0whr26HWfYe378Scdz8jslM3jq3/G0Emo6yogJK8XMqLiyjKziI7KcEWCO3u40dExy6c2rqRo2tXoda6ENauI8c3rKHPlJsdVGHD5syjrLCAA8v/ZM+SX8iIvYh3cDBypZJhc+4DILJTNwzl5QDsW/q73fox3XrRpv9gtv/0jR1pVRWCINB5xGjijhyqlw0OIDC6Ba1692ff0t9tQdjuvn5Mf+E1irIzQRBo2btvvbbVEIR36EyHoSPY+esPlOTnUZCRhsVswjdcIpjaDRpGWLuObPn+S0y13KzNS0lG7erqVIVnzcTyCg4lMy6W9V98iHdIKJ1HjKlzfNZrNbJT10YcXc1Iv3Segsx02g0cVutyZYUFXDq4F0SR9tWWbdGjNxazmeCWbTCbTCx782V0pSXc/O83iOzcjfaDhrHnj9/QlZQ4bLfDkOG0HzSMTd9+QUFmOl1GjuPU1o3oSku4uH83uuIiutRyftr0H0xZUSFegcG2x5QaDZGduiAIMuJqacu0IiNWulkd1EL67PcJlVoQr0c7XzMxdQ1gys8n/dVXiZ8+A3NREZG//EzwK6/Uaqm63qGPiyfxjtlkvfMuXrfeQszKFbj0vLI2CYW3N6EfvE/ohx9QduAAcRMmUrR27VVXT5Xs2k3cpIkUrlxF4L//TcRPP6IMDq57xVqgaduWqKV/4nvXXWR/8gkJt81Cd67mEMmmgGg0kvvtt8RNnIQxLY2In34k8JlnkKnqvqNeEwRBwHPCeGJWrULTvj0pDz1E2nPPX3X1lCkvj7T580meOxd1ixhiVq10mvHVEMhUKgIef5yoxYuxGPTEz5hBzsKF123Ie33g2rcP0StX4P+vh8j7+RdiJ0ygePPm61Ku2wyJlBEtIvJa1A51QeuuuqpWvtoypqyTcDvFlM5cMeEWKC004OGntRFXzpRAlXlLJjQVpEptdj6rYspq6fMK0FKYJU0sFCq5LajbaqOqrpjSlVU211n/X5uiBirIFcF++1eCohwdHn4aRLEyJwmqZIY1gpgqLzagcVc5NP05g5WQK6tmJTQZKokSK+TKuu2LZpPoZD1pHLU1OtYGa9ujbcwVxFR5BTEliiLZyVZiqubvNK2bEkMtKjyrla8hiilrC6RVzVUVulIjVLwE1veHlDHlxMpnqkJMNUYxpZTZiDqVi6LW8bfuFcS97w/irv8OIDBKCpkWxWbF1I0Oo17HwZVL+f6xeVw6sIfh9z5ERMcuXDpQv2zTc7t3oFCpCG3TjtPbNtJl5FhUGufWWJlcTruBQzm3Zwe6kmL2Lf2d7x+bx+XDB+hSpW3NJyycAbfOrtf+NW5uTHh8PqMffBwQiD18AICcpATijh5CJpfbtah1Gz2BtIvnOLF5HZ1GjGHnbz/g6u1N9/GTHbbtFRRMr0nTObRqKYdWLaNN/8GknD3NTXc/YAtaj+zSjcKsDLqMGsfJzescJurD5tyHxWJm568/1HgMbQcMRa5ScnrbpnodM0D/m2dRlJPF6W2bbY95BgSiUKoQBIG1nyzAqNfVe3v1xZA77kGmULD1h4VkVShtrPYuQRAYfs8DFGSmc2T18hq3kZuShG9YpAPpaTGb2fbjNwiCQItuPRFFC1nxsYx+4FEHm5szZMZLSry6lFUNxYlN6/DwDySsfe1E6altm0AUCWzRCq8g+zlfQaZkvTMaDSx/5zUKszOY8eLreFe0CQ6adRdmo4E9fzgGzAuCwPC5D+EVFMxf77xK6z79sZiMnNy8nuMb1xDZuZttO84Q3VWaS1dv82s7cCiiaOHiwbrf6xmxl1BptTZ7oldQMIJMZtfMd72gmZj6ByGaTOQtWkTsmLEU/b2awPnPErNiOS69ave8Xs+wlJeT/cknxE+ejCkvl8hffibohRfqbXerDzzGjiVm9d+49OhB6pNPkTz3vqsS9GzKySFt/nMk33cf6qgoYlatwueO221Vt1cKmUpFwFNPEvnbr4g6HfEzbibzv+9clRDu8lOniL/5FrI++BDvW28l5u9VuPbuXfeK9YQyMIDwhQsJfuN1irduJW7sOAqW/dXk+UaiKFLw13Lixo2nePsOgt98g/DvvkMZ5NgG0lhoO3UketkyiTT89DPipk6j9MDBule8TiFTqfB78EFiVv+NukVLUh5+hKQ5d1F++sy1HlozqsGoN2OxiCivwCKmcW98YHZdqLTy1ZQxJe3XSv4o1QqMejMmg9n2o9XTX4u6wjrmTLliJZAMOrNN+VKbnc+qbrJuy9NfS0G2lZiqtJ3pSmtWTFmtbNb8ovKi2s+f2SQpiRQqWZMopvLTSwmI9AChUvUDlQSLrqThRGN5kaFe+VIgZUzJ5IKDisdkNCNX2ZMtCmXdpKnVDlcVV2rl05cZ7fLBqiuminJ0lYqkWo7b1VNd6xiszXhVr52aYCWm9KVGZHLnvwv0ZVITpEwhUF7xOrr7aDDozA7WSbPRYrNNNuQ8VW2WLC82gCBZU+v6DBEEAUGoGuAvIja38t2QMOjKObpuFd89eh97lvxCmwFDuPvDhXQdNY5uYyeRfvkC6Zcu1LoNk8HAhX27bFlHJoORbmMn1bpO+0E3oSsu4rtH7+PA8iV0GTWOOQs+I/7YYUAiOsc/8jSKBpQ2CYJAx6EjGHHvg1gq2vJijxwk9uhBwtp1QO3ials2pkcvNG7umAwGPHz9SDhxlOH3PFijRatN34GIFgtqF1fijh2iZa9+tO47wPZ8RAdJdeLhF4Cbjy87f7MnoFy9vBl8+z2c2bHZrkmwKtQuLrTtP4RTWzbaxl8X/CKiaNt/MPv/WoxRJxFQZ3duRV9expiHniD90kVWvPs6RkPtat6GQuvuwYh7H+TSgb2c3bEVD/9AG0lnHVeP8VPY/9cSCrMynW4jNyXZab7UoVXLyLh8Ef+oGFLOn0G0WFC5uNhUOrXBbDISe/gASo2mXta0+kJq0ttFl5Fjaw1eN5tMHN+wGhGchs6f2LgGdz9/0i+cIzshjmnPvWqzxQG4efvQb8YsTmxc6xAwD6DSaJk6/2UANiz8hNb9BnH4779Iv3SBrqMn1H4MhdKN//w0+yD+lj37IFMoyI6PrVHRZ0Vm7CUCo1va5rNyhRKvwGDynDTzXWs0E1P/AESLhaJ164ibMJHM19/AfeQIWmxYj8+cOTd0417x1q3ETZhI7jff4jP3XmJWXLlKqiYo/PwI+/QTwr78AkN8PHETJ5H9+edNEigumkySumTsOEq2byf4jdcJ/+67eudiNRQu3boR/dcy/B9/jPzFi4mdMLHJVC2m/HwyXn+DhFtngiAQtWQJgc8/h8zVte6VGwhBEPCaMYMWa9fgOngQ6S++SOLsO9FdbBpLnP7yZZLuupv0F17AddAgWqxdg9f06fXOxWoIZGo1AU89SfRfy5B7eJA0Zw6pzz6LKTu77pWvU6giIgj/+ivCFn6JKS+XhBkzSH3mWYypNbfMNOOfhb7ciGixKnEaqZhyU15dxVQtwezlJUbUrgqbSkehlmHUmyQlWMXnmVegi00J5EwxZX3MoDOh9VBX/F3zj3vrsZaXGLGYLXgGuFBeZMBQbpKyuiqIo/IaMpd0pZWKKWUFKVBX+LnFZEEQBHQlxjpVNXXBoDNRnKfDL9wNrwAXcqsQU1bCrDFEo7Ulrj4QBMGpisdktKBUOVFM1XHMVUO8betdacZUmcnOlqjUyO0UQpkJlT/Eaztud18NiNT4uhn1ZpRqeb0UU9ZjqYmoBYkQ1bqp0LqpbFZJj4pw9qKc8mrbEytD+xtNTBnRuilrzZiqDqtKShTBbG5OP7+RUJybw87ffuDrh+5i+8/fEtm5G3d/+BUj7n3QZq2K6d4T7+AQDqz4o9ZtxR09iFFXjsVsJiPuEu0GDa21Gj7l3GnWf/EhADKFkrs+WMjgWXex9YeFFOdIv5UGzpzd6NDujsNG4uLphUwm5+i6VSSdPEZM9z52y5iNRswmE4gie/9cROs+AxyC2q3QlZSw6sP/4urtjb6sFNFsYeS8h+1+Q2rc3Ahs0ZKUs6cYdNscYg8fcMhY6nTTKKK79mDDlx/XmMnTdfR4inOzuXhgT72Pd8CtsykvLuLgqqWYTSYOrPiT1n0H0m7gUKY+9wppl85fFXKqdd+BdBgynMSTx2yWrqroN+M2NG5ubPvpG4fnzCYTeanJ+FXLl8pOSmDvn4voNWkangGBZMZdpmWvvhjKyiR7XB24dHAfupJiAmNaOiV2Gguriq3jsJG1Lndx3y5K8nIRBIE2/QbZPZefkUbCiaM2m2L7wTcR0rqtwza6jZmIT2gYG7/6RLpGq8Hdx49p81+hMCuD7KQEyouLcPXypkX32sUpVmVbXlqKTbkFoNK6EN1FKkmzKg1rQkbsJQJbtLJ7zCc0jNxmYur/F0RRpGTnTuJnzCD1iSdRRoQTvWwpIW+8gcLX91oPr9HQX7pE8v0PkPLQv1BFRxPz9yoCHnsMmda5/Lcp4T5sGDFrVuMzZw45Xy6U7H3rNzSa1Ck9cJD4adPJfPttPMaNI2b9OrxmzLgq5EdVCEolfvfdJ6laWreSVC133d3oljjRaJTItTFjKVyxgoCnniL6zz/QdurYxCN3hMLPj9B33yXixx8w5+URP3UaGa+9hik3t1HbM+Xnk/Ha61LjXno64d9+S+iCd/+R94ymTRsif/uV4DffpHTXbmLHjiPnm2+w6JpeUv1PQBAE3IcOJWbFCoJee5XSffuIHTuOjDfexJjp/G5YM/45WK0+SrVUVd+YzzFXTzVlhQZblX1TwmKW1CQ1TZpLC/S4eVXeqVZpFBjKJcWUxSwpqbTuSptFrzZiCrGSRLI2sjlDeYkRmVwAUfrbO0hS5+all6Ko0kxWVmxArnS0W1W1iFlJgdpa20AiECwmC/kZZQ6ql4bCat3zCXbFN9SN3NRKYkoml6F1V9aZeeUMZUWGegWfW+Hiqaa0WiC32VAZxm2FQinDVKeVz0nG1BUSU7pqVj5BEHBxV9lsl5nxRTblV3W7ZlVYSaGqlsmqMBnMKFRWYqp+iimoOZtJXyopprTuSlv+k6eflZiy/x6RFFPSeWqI5dGqKLQqprTuqnopvhzGLtIkCsBmXF1Iyqbd/PXf//DNv+7hxKZ1dLppNHM//Zax/3oSr0B7BblMJqfP1FuJPXyAzPjYGrd7ZudWtO4eaD08KS8qpNfEaU6XK8nPY80nC1jyn+eQyWX0mTaTssJ8TAY9W374ytbU5+EfQO9J0xt9nDK5nI7DRiICcqUSi8WCQW9P5p7YuBaTQY8gl2MoL2PYXfOcbstsMrLqg7coLyqkTf8h0mNGI/pSxwygqC49SDhxlBa9+hHWriObv/3cjgwSBIHRDz6OaLGw4atPnH5PB0a3IKJjFw7//Ve9v8e9AoPoOWEqh1f9xdF1qyjKzqTv1FsAKX9r2vxXSLt4juX/fRV9E+eFDrnzPkREclOSHVReKo2WoXfeR+zh/VzYt8vuudyUJExGA4ExlSSHxWxmw5cf4xUUTMve/WyZRyPve4SITl3Zt/T3OpVkJzatJaxdR8LadSQrPrZJbtSbTSZObFpHm36DcPHwrHE5URQ5uGoZSrWGVn0GOCx7dO1KBJmc0oJ8Ijp1rbEJT65QMOahJ8hKiOPA8iVO9+UfGc2MF1+nMDMdkN7bJlPtvymyE+Nx9fFFpdVyZscWu+eshNuJzTW3pRfn5lCcm01wK/ts4cCYlmTEXrzumrybiamrANFioXjrNhJvm0XyvPuRabRE/voLEV9/jaZ9+2s9vEbDmJFB2osvEjd5CvrYWEI/+Zjwb75GFRX1j45DptUS8NSTxKxYjio6itTHHyfxtlmUHTtW723oLlwg6f77SZozB0GrIerPPwl+9T8ovGuu1L0aUIWFEb5woaRqyc4mfvoM0p5/od6kgSiKFG/bRtzkKRK5NmokLTasx/feexoVOn8lcO3bl+iVKwh48kkKV68hdtRochYuxFJeXvfKgEWvJ/fHH4kdPYbCVasIePJJYlb/jdvAAXWv3IQQZDK8pk+jxbq1eE6ZQvbHnxA7dhwFK1Yg1lOmfb1BUCjwvuUWWm5Yj+8D91P499/EjhhJxmuvYUxPv9bD+38Ji9lSqXzQSGRAYyaJnv5aLBaxTnKlweOziIiiRJbUFH5eWqDH1asyD0LjpkRXKqmKzEYLXoEuCIKAxpoxVV6zlQ+wkVwGfc3vM12p0UZ6lBUZ8AlxRZAJ5KSU2E3Orda26jcZ9GVGmxLHaqMqdZL/UxVmkwXr79C6lq0LeWmlIIB3sCt+Ya7kpJTY/ch189ZQktdwIrysyIC2AcSUq6ejYspoNDtkRdWnidBkMKOoRgA2tZUPwM1bbTs3mfFFuHio0Dp5javCp4K4tOZRVYfRYEGpklfYNGv/fK9K/NSUzaQrNaJxlchYq5VP7apApVVQmF05uRRFEbPJYlPtNUgxVTFOlVpRQUwpkVchZetC1dfTWMt7rRnXDkadjkuH9rH+y4/46oE7Wf3Rf9GVFDP83ge4/8sfGXLHPXj4BdS4fruBQ/EKCmb/st+dPl+UnUXckUOYDAYsJhMtevZ12rJ26cBefnr6XySdPsHoBx5j1hvv02/6rbh6+7D643c5sXGNbRz9Zsy64uiLjsNGIlrMmPR61K5u7F3yK3v++BVRFDHoyjm4ahkRHbsgms2I4HR/ZpOJNZ8sIPX8WfpOm8nRtSvpMWEqbr6+rPv8Awc1S9v+g9CXlZJw4ggj7vsXxbnZ7K8WhO7q5c2oBx4j7shBTmxc63TsvSZOIzPuMslnTtX7eHtPuRm1mxv7/lxETI/edvaw8A6dmf78q2TFx/LHa883aYNaWUE+iCLFudns+v0nh+db9x1Am36D2LDwE7vcrYzLFxFkMgKiK1VxR9asIDP+MgNn3snKBW/gFRQCQE5yIoNum0NuShKnt2922IcVuSlJpJw9TZeRYwmIiqGssIDS/Csvuzq/ZwdF2Zn0GD+l1uUSjh8hJykBo15H15Fj7Z4rysnixMa1CDKB6S+8Tr9pM8lPSyHxpPP5ZlCLVvSdNpP9fy0h7aLzFvaglq3xj5BeZ31ZKYdWLq11fBmXLhDcojVtBwzh9DZ7u2h0t56oXVzJjL1Eca7z8P3kMycBCGtnL1QIadUOfWnpdReA3kxMNSFEo5HClSuJnzyZlIceAkEg/KuFRP7261WzuP0TMOXnk/Xee8SOHkPJ1m0EPv88LdauwWPUqKuuLKoN6pYtifjqKyK+/w6LTkfibbNIeeRRdBdq9tUbUlJJmz+f+ClTMSQkEPrhB0T9/jvajrWH4l1N2FQtK1cQ+NK/Kdm+ndjRY8h8d0GNqiNRFCnZs4fEmbeR8uBDKPz8iP5rGcGvv47Cz7HC+p+CTKXC9957aLFhPV4zppP9+RfEjhlL/h9/1BgqLhoMkqVx9Biy3l2Ax7ixtNi4Ad9777mioPYrhdzLi6B/v0iLNavRdulC+nPPEz99BsVbttywYeIyV1f8H3qIlls24/evf1G0Zi2XR40m/aWX0Mc1nXy6GXXD2mgHoHWTrnN9WcPVOFZFSGF2/Qjg+sKqwFIohBqtSyX5ety8Kt+jGleJmLLmTHkFSmOzkhY1KaZkcul7xN1HIrlqypgSLSKGcpONyCsvMqBQyvEOcpGIKWUlMVWTtU1XoWiBSiufrthYawh01Ym8rrRmNVd9kBlXiG+IK0qVHN8wd/RlJjtS0c1b3WCSUbSIlOTpbeevPnD1VDtkTJkNlQoeK+TKupU4VjtcVcgqMqcam52mLzU5NAx6BrpQkFmG0WAmO7kYhVqGm3ft9d8+IVKpTE5ysdPnTXozCrUMpUpuI3xqQtVjqUmhqCuV7K1ad5VNMSUIAh5+GjvFlFUhZX1vNNbKV5ynw81LY3ft14Wq+zKUX9n13IymQXlxEYmnjrNv6e8sffMlvpg7i1XvvUn6pQt0HjmWuz74kllvvE+XkeNQaevOcJXJ5fSdNpPLh/bbGrmq4vimtSjVaox6HfryMgbeeofd82aTic3ffcmqD94irF1H5rz3OR2HjUSQyZDJFXgGBJGbnEhQi9YU50o2vqoh5Y2Fd1CIjZxp1ac/g2bdxf5li9n41SccXfc3upISMuMuEdW1BwqlioMr/nQY97rPPyD28AFuuvt+9v+1mPAOnRk86y7GPfw0mXGX2b34Z7t1fMMi8I+M5vzuHfiGhtNn2q0c+vsvB7VZy5596DJqPNt++oa0i47lRZFduuMfEVWnhbIqVBotUZ27Y9TrHIgDkMiEW155m9L8PBa/8myNuU8NRfql8yAIDLh1Nof//svBgigIAqPufwQ3H19WLHjDRoplxF7ELzwSpVr6rslPT2XvH7/RddQ4di/+GYVKxfQXXkOhVpMVf5mgFq1oO2AIe//41WljHcDxjWtx8fSiVZ/+BEa3lPYTd/mKjs9iMXNg+R+06NmnVmupaLGw549f0bi54x0cSlj7Trbn9GVlLHnlOURRZPJTLxLaph2h7ToQENWCI2tX1rjNPlNvIahla/7+4C1KCxyLoRJPHift4jmGzL4XpVrDvmWLST572vlxmM2kx14kpE07Og8fQ0leLvHHj9ielysUdB0tFUGd3LLe6TaSzpzEPyLKQQkW1LI1giCrkUC7VmgmppoI5pJSYseMJW3+cyhDQon87Veifl+E25Ah15S8uRIYs7LIfHcBl4ePIO+3RRLhsGkjPrPvQLiGhEF1uPbvT/SypQS//Ta6c+eInzyFlEcesWu908fHk/bii8SOHUvJ3r0EvfIyLVavxmPs2CYLN79SCEolPrNm0WLjBnzuvouCJUu4PGKkHUEliiKlBw+SNPtOku+diyiKhH/7LRE//YimXbtrfASVUHh7SwTmmtW49OhOxiv/4fKYMeQtWoRFL026RKOR/D//5PKYMWS8+houvXoRs2Y1wf/5DwqfmnMO/mmoIiMJ++hDohb/jtzDg5R/PUz8lKkUrVt3wyqo5G5u+D1wPy22bCHgsUcp3r6duHHjyf7ii2s9tP83qForb81gagzp4e6rQZAJTU5MWcmo2lrZJMVUJTGgcVViNkpKMIPejHegNIGyqnCcEVOGcpNNuWQ9lprscmVFBkRLZaC5NW/IL8yN3JRi5MrKnKDyGqxtZUUGXCuyrKwkjChSo32uKmGldlHYKbwag/S4IoJipB+IAZHuAGQlFNmed/PRUNxAYqqs2IDZZGkYMeWlprTafgw6EyqNvUpJqZZjqkNV44yYUqrlINSeF1YTRFGUXidP+9fPK0BLQVY5qRfysZhEBEGok5iyErc1EVNGm5Wv7mD7qo2MosW5akpfZkLjopSy36pkhXn6a+3eo9b3lLKRxJRMJiBTCBRkleMZoK0XgVh5HFWIqSu8nptRf/z90Tus/fQ9Niz8mHWfvc/yd19j0UtP88XcWXwxdxZL3/g3R9euRK5QMODWO7jno6+4+4MvGXTbHHxDHcOm60K7gUPxi4hi249f291MMxr0nNq6UWoeEwTaDRyCX0SU7XldSQl/vf0Kp7asZ8Tch5j01Au2Sa3FYmbrDwtJu3AWmVxBRuxFQtq0xzs4tNZ8qoYgtK10o9hsNNB78gzG/utJzu7cyt4lv+Lq7Y1MrmDsv56k18RpnNi0lqKKfCtDeRkr3n2NSwf2MOK+hzm6diVad3cmPv4cMrmckNZtGXTbHA7//ZfNblb1XMUdOYi+rIzek2fgFx4pNeNVi3EYNmcuQS1a8fcHbzuQDoIg0O/mWSSdOk7iqeP1OlZdSQmXD+/Hwz+AQyuXOlVFBUTFMPO1BYgWkcUvP0PmFZI2IOWFBUTG0GfKzZIy6suPHPKGVFoXps5/GUNZKUvfepmyokLSLp4nqKUUZi6KIpu++RwXb2/y0tMozc9j2vOv4u7jS2B0S9IuSYTH4NvvxmQwsPXHrxzGoS8r4+zOrXS6aRRyhRJ3P3/cfHxJPX9lZT0X9uwkPz2VvlNvrXW5iwf2kBl3GV1JCd3GTrTN18uKClnyn+coysmiVe/+xFTkQAmCQPdxk2wqK2eQKxRMevIFRGDV+29hMlZ+D5iMRrb99DUhrdvRY/wUZr72LgLw5+svcG7PDodtZSfGY9LrCWnVlsCYlgREtXAgoLqNkcZ9dN0qp5bJ5DOnCO/Q2eFxtYsLfuERTknWa4nrY0b+PwC5myved9xB9MoVhH+1EJcePa71kBoNQ1ISGa+9RuyIkRT88Qc+s2fTcstm/B99FLmb27UenlMIcjleU6fQYt1agt96C92Fi8RPnUbCHbNJvHMOcePGU7pzFwFPPEHLDRvwnjnzug2el7u7E/DYY7TcshnfCoLq0k3DSZp7H/FTppJ05xzMZaWEffkFUUsW4zZwwHVLfqoiIgj94ANiVq3EpVt3Mt94k8vDR5D84INcHj6CjJdeRtu5CzF/ryJ0wbuoo6Pr3ug1grZrVyJ//onIX39B4etL6hNPEjdxEgXL/rKRbTca5G6u+M6dS8stWwh+801c+/W71kP6f4OqJI2LhzWDqeGKKblchruPmqImJqasOU9KtcJpQLLZbKGs2ICbt72VDySyyWyUgsnB2gbmfBKsLzchVwgIMgGNqzShLytyrq60Tuy1ripUWkUVYsqdnNRSFErBpmopKzbaWu6sMOhMGHVmXCtUXjK5zJZPVJjlPMOjqtXJN9QNi0mscXx1QVdqJD+9lOAW0iTP1VONq5earMQqxJS3mpL8hln5iivsbe6+9SemPP216EqNdso9Q7nJIa9JqamdjJMsNmYHQksQBClzrBHEh77MhNlkwcXDnnTyCnTBUG4i7ng27j4adKVGu+vPGZQqOXKFjIJM5+8Pk95cYeWT12lrM+rMCDKwft06I5N0JZJVVFOtlMA72JXc1ErbppUcUlactwYRUzozSo0cQ7kJXYkRrwAXm+WyPmreqvtqzpj6ZyBaLOhLSyjOzSE3JYmCrEwQRXyCQ+k2diITHp/PnPc+56FvFzF1/iv0nDit1gr5+kAmlzNszn2kXTzH+SqT3pOb1qMrKSY/PQ0BGHBLpVqqICOdRS89TVZCHDNefJ0uI8fZfl+ajEbWfPQuJzauo/OIMVjMJhAECjPTiezc7YrGWhUFGWkgCCSdOgFIYdORnbshihZKcnMYeNscXDw86T5uEmpXN3b++j1F2Vks+c/zpF08z4QnnuP4+tXoSkuY8uwraKrMW3pMmEpM916s++x98tMri2DaDhiC2WTi/J7tyBVKxj/2LEW52Wz5fqHd2OQKJROffF4iHT54G1M1J0DLXv0IbtmGXYt+qtd7cffin7CYzUx9Vmps2/TN507X8woMYuZr7+Lm68fiV+ZzYd/uep9PZ0g+e4rwDh0lZdQDj+Lm48eq999CX2afxecdFML0F1+nND+PX597jNyUJBvJcWbHFpLPnCQwugXJp04w4fH5+IRIYerh7TuScvY0oiji7uvHsLvmcW7XNrvrEKRsKZPBQJdR4wDpeyO8facG2SGrw6jXsfP3n2jZq6+NRHMGk9HI7sU/4+bjh6uXly2vqSgni8WvzKcgMw1BJmfonXPt1ms7YDCeAYHs/XNRjdt28/Zh0pMvkBl3ibWfLrARRgf+Wkx+eioj5j6EIAgERMUwaNZdiBYLaz9ZwNYfvsJcJXMq7eI5ZHIFgTGSkqzziNHEHz1MYVZlCLqrlzet+w3CUFbG2Z3b7MZRkJlBUXamU2IKIKRNO1IvNBNT/7PwvfsuNG3a1L3gdQjRYqFk1y6S73+A2NFjKFq3Hr+HHqTl1i0EPPH4daVgqQ2CUonnxAn4P/Yoqphoyg8fpuzgQRSBgfg98gjed9yOzKVuGfT1ALmXFz733IPv/fcjU6sp3b0b/YULaLp0IeDZ+bgNHXrdElLVoW7VCv8nHsdzyhTMBQWUbNuOKTcXj3Hj8H/sUdQtW17rIdYbLj17EvH9d0QtWYwqMpL0F1/k8tBhZH34EcaMjLo3cB1CplLhNX0aLt2a7sdlM2pH1bwl6+TamaKoPqiuxmgKWJUuSo0ci0l0+LFckqcDETvFitZKTFWQEV6BlZ+1glxwatEzlJmQyWVo3JQIMgGth8rWqFcd1mN09VJJrXJWYircDZPejMUi2mVMVc9csqqiqqq8XD1VCDLISXFuM6hqdQqKkWq1M+Jqr2auCUlnJOVrSOvKLMPAKA8yEyrVPB6+Wow6s80GVh8U51YQUw1QTNma4qpcN3onxJRKI69V9WQ2WRAtooNiyrpuTbbM2lBWQ6OiVwXRmXAql4iOPlL4fh2KKQCth2QxrU78ihXXi1ItR+OiwGy01JozpS832ZGZ1W2KFrOF8mJJ6aV1V6ErNdlUVQGRHuhKjDabpnU/KpUcmVxoEEFk1JtQquXkZ0pkqmeA1qY6rI91sjlj6p+HIJMx48XXufU//2XWG+9z22vvMnX+K4x56An6Tb+NNv0G4Rce2eQK/oiOXWjVpz/bfvqGsqJCjHodB1f+SXCrNpgMetoOHIpngBSennH5IoteehpEC7PeeM9uMqsvK+Wvt18h7ughek2azultm2jdbxCuXt6U5OUS2blrk4y3MCuDhJPH8AuPpLQgn9yUZDLjLhN/TLIvadzc2PHzt1w+fACV1oUhs+/lwr5d/PjUgxVE1EscXPEnRdmZzPj3G/iE2JN7giAw9l9PofX0Yvk7r1JeLN0UcPf1o0XP3hxbvxpRFPENDWfEvQ9xZsdmh8BpK+mQFXeZNZ+8a6dSEQSBQbPmkBl3iQt7d9Z6rEmnT3Bi0zoGzZqDX0QUI+c9zOVD+zhag03M1cubW155m5a9+rL6o/+y98/fGhVcXZiVQVF2FmHtpddXpdEy+ekXKS3I4+8P/+uQweUfEcXtb34AgnRtZsReoig7ix2/fEdw67ZcOrCXoXPm2lk5w9p3ory4iNyUJEAiF9sNHMqGhZ/YFF8mg4Eja1bQYchNuPv4VVlXCkBvbOD7oVXLKC8sYMjsubUvt3IphVlZlBbk0XPiNJQqNTlJCSx+eT4mvR7RItJ97AQ8/O2z3OQKJf1mzOLSwb21qtdCWrdlwhPPE3v4ABu+/Ij0yxc4sOJP+ky91S5LrMf4KfhFROHu68fxjWtZ8urzNhVg8plTBLVohaLCpdR+0E2o3dw4vHqF3b6G3jkXQRDY9fuPdtdE7OEDyBWKGomp8A5dyE9LoSgnq9Zz9U+imZj6fw5Tdja5P/xI3LjxJN83D2N2FsFvvEHLbVvxe+AB5B4e13qI9YYxM5Pszz/n8vARpD31NHJvH0Lee4+wr79C3aY1GS+/zOVhN5H1/vvo4+Kv9XBrhCiKlJ84QdqLL3Jp0GCyP/4Yt0GDiFz0G8FvvI5YVkryXXcRP3kKeT//jCnf0cN8vUA0GinasJGke+cSO2IkxZs343v33UQtW4bvvPso3b+fuLHjSJo3j6KNG2vMoboeoe3ShfAvvyBm3Vo8Jkwg/9dfuTx8BCmPPU7Jjh2ITupim9EMK6qSUO5+VmKqcY1v3kGuNbaONRZWQkFVkedUvTUsP1360egd7Gp7zNq+ZyWHrEQCSMouvZM8m/ISIzKZYCO1XDwqm9eqIy+9FJlMwMVDbU9MhUl3xE0GyUYoiiJlxVL4eVU4I6ZcPCX1VXYNVi8rQaRUy/GoaFdLu1zgdNm6EH8iB/8IdzsCKSDKnezEIltTmpXMK6hBweUMxXk6lBq5XYtdXfB0kk0mKZ/sCSapabHmz7KqeUfVodLWvm5NsBFT1ax8ngHSmMuLDER29MNksNSpmAJsr1tmFcskVF6nCpXMlmdVW+uiUWeyawGsTiaVFRkQRen6cvNSI1pEG8kaEFFh26xQx1nJPpVWIamfGqAsM+ol+2FWQhEyhYBPiKvNLlsfO1/VZeoKfG/GjY/h9zyIKIps/uZzjqxdRVlRIbkpScgUCkbMfQiA2CMHWfLa83gFBTPztQV2aq2S/DyWvPo8WfGx9Lt5FodXL6dlz76Mf+RpojpLZERZQUGTjPXEpnWoXVwYfs/9AGz54UtWf/QOggAtevbh3o+/IbxDZ1YueJ3N331pC3YWgbH/epJNX39GYZZESvlXsSdWhcbNjWnzX0FXUsLK9960qZ66jZlIbkqSTa3TfvBNdBw2kk1ff0ryWXsFj0Q6PEfskYMOKqfwDp1p2asf2376psZcJV1pCRsWfkJY+450HSmphVr17k/PidPY8ev3DvuzQqlSM+6Rpxk48072Lf2dv955tcGh6LFHDiGTKwhvX5lp5RMSxqQnXyT5zCk2f/uFw40oD/8Awjt0ROvhybF1f/PDkw9iNhrJjL1Ep5tG0W3MRIfzI1coSKqwNAqCwMj7H8EvPIIV771BUXYWp7dvpryoiF7VmhzD23dCFC2NsvPlpiRxcOVSeoyf4tBWWRV5aSkcWL4E39AwNK5udBkxlrijh1j00jNoXF0Jb98JuUJBnxqsgO0GDsU7JIydi36sVRnXsmcfxj78FGd3beePV1/APzKaPlNvtltGJpcz+oHHKC3Ip/2goZTk5vLLs49wYd8uEk8dJ6prJeGn1GjoNnoCp7dtoqyo8gaZm7cP7YcMp6ywgIOrltkev3RwL5Gdu6GuQZAR2bkrgkxmI36vBzQTU/8PYdHrKVq7lqT77+fS0GFkf/ABmvbtiFz0G9HLluE1fRoyTf3vvF5LWEpLKVixgqR77uHy0GHkfvsdbkOHEr1iOVG//YrnhPG4Dx5MxFdfEbN2LR5jx5L/x5/EjRtHwszbyP/zT8w1fHH80zBmZpL7w4/ET5lKwq0zKd23D79599Fy6xZC338Pl+7d8Zoxg+hVqwj/7ltUUVFkLniPy4OHkPL4E5Ts2nVdkCGiKKI7e5bMBQu4NOwmUh97DEtpKcFvvUWr7dsIeOpJtB3aS3bFbVsJfustzHn5pD76GJeGDCXjrbfs8sGud6ijowl68QVa7thB4HPPYYiLI/n+B7g0bBiZ7y5Af8kxeLQZzdCVGKUbkAJoXJQo1fJGK6Z8w9wozCqrM7y5ITDopbGoKxr1qm87L70UpUZup1ixElNmo4jaRWFHVihUMqckRVmhHgRstjsX95oVUznJxSADjZsCFw+VzSqldVfh6qnCZJQUK7oSI2ajxUFNU5SrA6Gy/c+6P7lCRnaic2KqrFgiszTuShshkXK+4TcDDDoTiadzie5iX04REOWBQWe2EVFW8iU/o/5EY2FWOZ7+2gYpaDWuStQu9k1xzqx8kh2v5uvKSmDWpJhqjJXPSiBWV0wplHJUWgUKtQyNqzROK8FWG3yCpebG5LP2TU/W61GlUVTJeauZmDKUm6WWSVel3fpWWNVQbt4a3CrIR6vN0tVLjZuPmrRLBfb71spRaRQNUpZJzX8K0i4WEBDhjkIptxUC1Od8m40Wq/ih0a2Jzbhx4OrlzYh7H+LSwb3sW7oI/8gYDGVl9Bw/BZVGy4lN61i54A2iOnfj5pfetAtJzkqIY9GLT1FeWECvSdPZs+QXYrr3ZNyjzyCTy8lOjMfdz58dv35vZ41rDAy6ck5t20THoSMIbdsRrbsHyadPUpCZjk9oOOMefgqNmzsTn3yeDkNHcGLjGk5v30yHISNAhD9ffxGL2cxtry+wWZ9qgldQMFOefYnMuMusfF8ip8I7dMYvPJJDf0sTe0EQGDH3IULbtmfVe2/a1D9WtOjRm9EPPMbpbRvZ9PWnWCyV7+Hh9zyAyWBgx6/fO+xbtFhY99n76MtKGP3A43YquUG3zSGsXUdWvf8WuSnJDutax9Vn6i22xr6fnnmYhBpa4pwh9vA+Ijp1Qe3iavd4RMfOjLr/EU5v28iu3+2tiGaTibijh+k4bCQ9J0zBZNBj1OtQaV3oOXG6w3ePUq0holNXLh3cV/mYSs3kp/+NXKFgyavPsffP32jTf5CDZdUrKASvwGAuH95f72OSxmhk7afv4xkQRN8Zt9W63LrPP0Dr4UlOciL9b7mDYxtWs/zd14jo2IXBs+dydvc2+s24Da27c3GGTC5n6Ox7STp1nPN1KONa9OyDb3gEJoMeRJGyQkfFdVCLVvSbfhtnd25j+L0PEt6hM6s/egdDeRnh7TrZLdttzAQEQeBQFQIKYMTcf6HUaNn7x2+UFuZTnJdD6oWztOxdc0SHxtWNkNbtiD9+uNZj+CfRTEz9P4GltJSi9RtIfeZZLg0YSOqTT2EpKCTopX/TavcuQj/4AJfu3W8Ia5ilvJzizZtJfeZZLg4cRPpzzyMaTQS99iqtdmwn+LVX0bRt67CeOiaaoH+/SKudOwj98ANk7u5kvPwKl/oPIPmhf1G4ciXmoiIne7x6MOXlkf/77yTeMZvLFSShKiKc8K+/ouWmTfg9+CDKwEC7dQRBwG3AAMI++ZhWO7bj/9STGGIvk3zfPC4NGkz6Sy9TsnsPorFx6ovGQh8bS/YnnxI3dhzx06ZT+NdyPEaPJnrlSqIW/47XtKkONkqZWo3XtKlEL/2T6FUr8Zw6laK164ifOo3Y8RPI/uQTdOfP3xAteHI3V3xm30H0qpVELVuKx+gxFP71F3ETJxE3cRLZn3yK7ty5G+JYmnH1UZKvkybErkoEQUDtoqh1Ulwb/MLcEEXISXJOrjQG1omylRyoTpplJRbjF+pm952h1MhtDXtVVUlQEaJtsDjkVZUWVgR3V+QjaasooapCtIhkJRZhMYto3FQOy/mFu6MvM1JWZLCRPB7VSIvCrDLcvTU225N0fGoEID+jzGkAenGe9JiHr8amSMpNKaEgs2E2g/P7MjAZLbTtF2z3eECk9MPXquZRquR4BmjJSa7/DZP8jFK8g1zrXrAaPPwqLaCiKDUeqqsRU2pXKSeqpha6qpbP6qiL1KoJhdnlaD1UDrlVJfk6DDoTCqWcvLRSBAG8g+u25nsFuIAoknjGvuXW+n7TuCltZFNtFkor6WNte6yuALReP27eatx91BVjrrymItr7knRGIseqkmJ12SWro7zEiNpFSdLZPCI7SkSntdmzPhZQk9GCohEWwmbcuGjddwDufv5YTCayE2JRubjSe+qtbPr6MzZ/+zldRo1j4pPPo1RVfm7HHjnI4lfmo3V3p8Owkexe/DPtBg5jwuPPIVcoyE9PJSshlgG3zsbVy5tV77+FQdd4S/nxDWswlJXRfexkBEHAv6KhTSaXc/PLb6HSupCVEMeyt17mzPbNhLXvREBUDGd2bMZk0GMxm+h40yi8g0Lqtb+Q1u2Y8uxLpJw9zcr33sCk19N3+kwSjh8hpUKtI2VKvYCbjy9/vPYCOcmJdtvoMGQ4Yx56gtPbNrP20/dt6is3H1+G3HEPp7dtdMiD2vPHr8QdO8z4R55xUPXI5HImPfkCbt4+LH3rJYqya7ZYRXXtwZ3vfop/ZDTL3nyJzd996ZARVR1lRYUknz1Ny559nT7fYchwht45l0Mrl7Lj1+9tv1eTT59AV1yEq5cXh1cvR+vhicbNHZlczi/zH2X/X0vsQr5BalVMOX/GLiTezceXW156C11pCeVFhXQfO8lhDIIg0LJ3Py4f2m9H9tWFHb98T05yAuMefsruOna2XHZCHAqVGr/wSC4f2seuRT/Se/IMxj/yNNt+/IqgFq3oNnZijdsAiOnei9Z9B7K9wibrDGaTkb/ff4vCrAxGznuYsuIifn72ES4fPuCwbO8pNxPWrgMbFn7MkNn3EtGpKwCbv/2c7CpB61p3D3pNms6xdasoyEi3Pa5QKhn/6DNYzCYWv/wsp7ZuRKFS0brPwFqPo0XPPiSeOIau9PoQaTQTU//DMKamkv/nnyQ/+BAX+w8g9fHH0V+4gM+ddxKzbi1RSxbjPXMmck/Pujd2jWHKyaFg2V8kP/QvLvbtR8rDj6A/fw6/+++n5ZbNRP7yM94331wv66FMrcZj7Fgivvmaltu24v/kE5jz80mb/xwXBwwkad488hYtwpDs/G7FlUAURXTnz5Oz8CsSbpvFpYGDyHjjTQSNRlIU7d1D2Kef4jZ4MILc8Yd+dSh8fPC96y6iV60iaulSvGZMp3T/fpLnzuXSoMGkPfc8hWvWXBW7n2gwULp3L5lvv03s6DHEjZ9A3s8/o+3WjfBvvqHVzh0EvfRvNG1qDh+sCk3r1gQ++wyttm0l7Msv0HbsSN6vvxE/ZSqxo8eQ+e4CSvftw3Kd2/0EQUDboYONBA37/DM07duR98svEuE2chSZb/+Xkl27sJQ3bS5QM24cFOfpUagq7VdqV2WjFVN+YW4oNXJSK9QYTQGrRctqp6qqDhFFkfTYAoJb2n93CIJgI6Q8qgVxW0mGssLK96+lwupk1Jlt9jYXd1WFJcqewM1JKcFQbgZRUvu4eqooLdDblvMLc6Os0IDFLJKXJv049/SzJ6byM8rwCrR/zMVThVFvRpAJJJzKcTgP1lB07yBX2+RfpZVzYkv9vx9MRjMntiTRopu/Qw6UWqvAJ8SV9CqvXUCkh10gem0QRel4fepB0FSHT4gruRXZWmajBYtZdLDyad1VIGLXMFcVupIK1ZqbY5mIsg4bYE0oyCzDK8BRCXVsUxIKpQxdiZGMuEI8A1xQKOv+nvQJcUUUJftpUU7lZ66VxNG4ViGmamnGNOikHDOr4q76sRVklaGqsFRaLXpWxRRAVCdfCjLLyE0tsdlVNW5KlGqFrWygPigvNmKxSLZVqwLPpviqBzFl0EkEpEIpw2QwN98s+X+AY+tXU5yTbUvu7zx8NEvfeJEzO7cw6v5HGX7PA8hk0ntJFEUOr17OigWvE9GxMwExLTjw1xL6TL2F0Q8+hlwhfZaf3r4ZldaF1n36M/npFynMzmLlgtcxGhpeBqMvK+PQqmV0umkUHv4BJJ46TtIpSQVkMZs5t3Mr67/4kF+ee4zi3BwmP/1vek+ega6kGEEuR6V1QRAE9iz+2UFJUhsiO3Vl6vyXST1/lsWvzCe4ZWv8o2LY+ev3tqwejasbN7/8Fq6eXvzx6vMOuUIdhgxnwhPzuXxoH0v+M5/iXOl7pNPw0VLj3cKPbY13B1cu5cDyPxg86y6iu/V0OiaNmxvTX3wduULB7688W6NyCiQ13PTnX2XYXfM4u3MrPzz5IOf37qzxPX1251YEQUarPv1r3GaP8VO46e77ObJ6OWs+fhejTsfpHVtw8/Fl528/ota6YLFYuPU//+Xej7+m6+jx7Fu6iJ+ffYSMyxdt22nZsy+CIDhkbZWXFGPU6VBqtKz7/AMKszIdxtC6zwDKiwpJPl2/EPTjG9dybP3f3HT3/bWq5Y5tWM2x9X8T0qY9hZkZlOTnkp0Yz/TnX2XQbXPY/vO3FGZlMPr+R23vh9ow7K55UnD5p+85kGi60hKWv/MaSadPMPnpf9N5+BjufPdTQtt2YOWC11nzyQJK8ipvlsjkciY88RwqjYaV771BTnIibQcORZDL+e2FJzi2YbXtde05cSpaTy+2//Kt3WvdokdvOt40koKMdA6u+JM2/QbVaOOzol1F8P/FKwzUbyrUP5CgGdc9TPn5lB06ROnevZTu24cxMQkEAW3Xrvg/+ijuI0egioi41sOsF8wlJZQdPETp/n2U7dsv2aEEAW23btKxDL8JVVTUFe9HGRSE71134XvXXRgzMijetJnijRvJfOttMk2vo4yMwG3gIFz790PbvTsKb++6N1oNxtRUyg4fpvTQIUp37caUmYng4oJr/34Evfof3IcPv+JweUEQ0HbsgLZjB/yffBLd2bMUb9hIyY4dFK5YAYKApnMn3AYNxrVPbzSdOjXYrimazegvXpSusYMHKdu7D0tZGYrAQNyGDCFg/rO4DhiATF13GG2tx6JU4j5sGO7Dhknk14GDFG/cQOGqVeR9/z2CRoNL7164DRyIS9++qFu2bPLA0KaCoFLhPnw47sOHS8dy8BDFGzdStG4deT/9hKBUou3RA9cB/XHt2xdN27bXbVtkM5oWRTnlyOQCrp7S+0Xjomg0MSWTywhp6SXZhMY2zfiMOpMURl5hsdNVyb/KSS6hrNBAaBvHz0Otu5LiXB2+ofYNrpoKlUlRTrmNnCnOLcdiEbHozTYiyzNAi1FvpqzIYDs3INnn5AoBs0lE46pAkLmgLzNRXmzExUOFf4S77fzlJJegrWK9s407pYSYrv52j7n7ajDozATFeBB3LJsOg+xtBVZiyjfEzTbuyI6+nN2bRrfREXj41m0lO7IukZJ8PRMedt46Gt7Wh9jjWYiiKDX1RLoTdzwbs9mCXF77Z1thVjn6MpNNedUQBEZ5cOlQJmajxUaUVG8ytOZ0SaHejp/t5cVGp+sBqF0UdkRQfVGYVeZw/eSklHB6eyrdRkdwfFMyaZcL8Q+rX0uwT4ikJpMrBC4cyKDXeOl1qKqYshI1zlRzVhjKTVhMFtwrXvPqmXA5ySX4hlWqCD39tRRUsWRGdPTFxUPFmZ2puHqrUbsqkCtkklqyAe99XYkBi0mBh7/WdmxWYqomAtHuOMoky6a1UVFfZrIRc83430PiyeNs//lblGoNZpMJUbRw+O+/cPPxZear7xLUopVtWX1ZKRsWfsylA3vpMmocmfGxxB87wsj7HqbziDG25Yx6HSc3r6fTTSNRqjX4hkUwbf4rLHv7FVYueIOJTzxf54S4KvYs+QWT0UCfqbdwft8u1n78LjKZDHdff0oL8tnx6/eoXd0Yfs+DBETHsPeP30g8eYyIjp2Z8eLruPn4cmz9avYt/Z2dv/3Ame2b6TlpOq16969zHBEduzDztXdZseB1Fv37aSnn6ZfvOL5pLd1GTwDAxcOTm19+i7/++x8WvzKf0Q8+Rtv+g23baN1nAB5+Aax8/01+ff5xRj/wGDHdezHq/kdY9O+nWfrmS7TuM4Cja1fSd9qtDrlK1eHm7cPM/7zDsrdfYfHLzzDp6RcJb9/J6bKCTEb3sZNo1bs/W39YyJqP3+Xw338xcOadRHbuZvs8Ei0WTm5eT+u+A+zsms7QbcxEXL28Wf/FR/z4zMMUZUstkgq1GmQybn7hNfzCIwEYcsc9dBgynPVffMSil56m3/Tb6DP1FrTuHrTq3Z/jG9fSbcxEBJkMk8HAus/exy88knGPPsPKd1/n95eeZtrzrxIQFWPbf1DL1viEhnNy87o6g/XP7NjC1u8X0m3MRLpU5HU5w+ntm9n6w1eEtGlnyyaL6NiVm+6+H1cvb05sWsvJLesZdf+j+NWQT1Ydbt4+jH/0WZa+9RK7Fv3E4NvvRhAEclOS+PvD/1KSn8u0518joqMUPq51c2fy0y9ydudWdvz6Pd8/8QC9Jk6j29iJaFzdcPHwZMozL7Ho309j1OvoNGwkIa3bsePX79n6/UISThxl5H0P4+btw7A59/H3B29zdudWOgwZbhvTqHmPknzqJIXZmRRkpGE2GZErav58d/PxJbJLN05t3UCn4aOvuXOqmZi6QSGaTBJJcPw4uhMnKD9+AkOiJDFVRUbi2r8/rk89hWufPte9IkoURYyJiZSfOFHx30l058+D2YwiJBjXfv3wnTcP1/79UPj6XrVxKIOC8Jl9Bz6z75CIsf37Kdm9m5Lt28n/7TcAVDExuPTojrZ7D7Rdu6CKtG9RsRgM6C9eQnf6/9q77/io6uzx/687Pb1XUkgIIdSEXhUQFBuCfRUR3fb7+ENXF13Lui7qFnRdd+3CWnBdC6IuoIDSpHcInRBaSCGNJKRNkqn3+8ckkwRCCW2G7Hk+HpfJ3JnMnPfMZA5z5rzfdy/1OzKp27oNW2Eh4DoyXcC4G/AfORLfgQPRGE7/j/yl0NSx49OzJ5HTfoutpATzunXUrl1HxaefUvbOO6DXu67Tvx++/ftj6tULfWTrI084ampo2Lefhn17qdu6jbrMTJzV1SgGAz59+hD261/hP2oUxm7dLtsbmWIw4H/NCPyvGUG0qmLJzsa8fj2169ZR+trfUW02NAEB+GRk4NM3A99+/fDp3RuNX/untVxuisGA/4jh+I8Y7vpAcOSIaywbNlD23vuceP0fKCYTpl498e3bF5++fTH16oUuIsLjiUJcWqpTpbzQjI+/Hv/GKT9GX/0FL34OENs1mK2LcnDYnWh1F1+obVoI272eTosPzlkbivANNBDXRmFK0bheq9FdWucd1wLUJynLr6VT41HpKkvqT7nctR4QuNawalkIObSthPCEAEqOVuMXbHR3ZlUU1uIbGEpMSrD7uifyaohoXGy6ibnSQk15A9HJreNqWmy8U7cQtv+QS1lBrXsxdYCKYldhKi4tGKOfDp1RS2iMH4WHqlg+ez+3/Saj1dTAUx3cWsy2H44xeHzSGafbxXUPYddP+VSW1BES7Ud0lyAcNielOdWtxtWWpimAkZ3bX5iKTAzE6VApK6h1f+vqe0rxqWnaWlvTKwHqaqxo9Zo215jyCzJw7CyFnrY4nSoni+vo0q85HzkdTn76NIvgaF8G3pxEZUkdR3eeIHVg5FluqZlvoAGTvx7/ECP71xfS78ZEtFoN9bU2FMXVtaZoFAIjfM666HxdlQWnQyUgzIjepMVc2foxKSuoJb5785dM4fEBnGgxJVOr1dBjRCw7l+eR0j/SXfTzCzFSeuz8lxGoq7FSX2ujx4hYd27QG7ToDJrz6piy1Nkx+upQnSpmXGuySWGqY8rbu5t5f3vZ1SilKDgdjWsH+vljt1mx25pfw8cP7OfH9/5JXXUVA267k/2rV6DRavnZS68S07X1Ecd3/LgQS52ZjHHN053ievTi9mf+yHev/5UvX3iKCU89f9r6QW0pyNrLjiULufb+h9i5dBFb5n+NRqslNrUHBVmujhmTfwB6o4mj2zez4qP3CI2NY/y05+g6aJj7b2DQhLvIGHcr8155kYKsvSx5/w2Wf/geyf0GkNx3IJ0z+uMf0vaXwJGdk3ngr/9k0Vt/Y/V/PiIsLoHV//mYTt16uAsmPgGB3DN9BktnvsWiN//GsV2ZjJ7ya3fhK7pLVybPeIMf3vsn8159iR7XXse1kx5m/G+f47PfP0Hm4gX0v2Uiw+554LyeO//QMO598RW+e/2vfP3y8wy7ZxKDJtyF5gyzKQLCwpnw1B/I37+HtV/+m2//+kdiUrrR98ZbSR06gsNbN3Oy6Djj/u/x87r/1CEjUJ0qi9/5O7jzQzB3/+Evp01BDI9P5L4/vcam/85h4zdfcjRzC6Me/BX9bp7AnD/+juxN60gdMpyl/3qbypIiHvjrPwmPS+BnL/+Nea++xFcvPsNNjz5FyoDBgOtzTN8bx/PTxzMpy891F8FaaursW/P5bHqPvp7RU37V5jhUp5NN8+ayYe5n+AQGUZidhcHHl1ufeIakjP4AZK1bxfKP3qfvjePpfd0N5/X4NEnsk8Goyb9k1acfoNXpMPj6sXHu5wRGRnH/n18nNDau1fUVRaHnyDF0GTCYTd9+yZb5X7N90Xz63ngrfcbeRHhCZ4KjYyjLz2XdnE+Z+LsXGPPz/6Nzel+WznqbT558hFGTf0nPUWPpOXIsyz94l+DoWDp16w6AxWzGZrNi9PPn+IH9/Pupqdzx3MtnXQy+/0238e2M6eTu3tHq6IqeIIUpL6eqKvbSE1gOHnRvDYcOYj1yFNViAZ0OU1oaftdcQ/ijj+Lbry/6TudOBJ7irK/HcvgwloOHXOM5dJCGfftxNC4GZ0hKwic9neC778Zv6BD0CQke+VCu9fcnYOxYAsaOdT0HhYXUZWZSt3079dszqfz6G9cVjUb0kZEoRiPOujrsJSXgcIBWi7FbKgHXj8VnwAB8Bwy4oG6rS0EfFUXwnXcSfOedrq6nQ4fc46heuIiKj1yLM2oCA9GGhaEoCo7qahxlrnZkxccHn4x0Qh+agt/AgZj69LnorqgLoSgKprQ0TGlphP3iFzjr66nftdtVAMzcQcXsTyh7621QFAwJCRi7d8eU1g1jt26Y0tLQRUd7TYFHURSMKSkYU1IInTLFVdDcv5+6HTup37GDqvkLKP/gQwC0oaGN40hzj8eQmIjG59ydGsI7VZbWYbc4sOk17qOK+QUZKMi+8Cm3ib3C2DjvCLl7y0/rCroQNosDvdG12LRGo7gLE+YqCwc2FdF7ZCc0bXTzWOtd7ewRia0LQwEhRjRahcLDlaSPiQeg/HgtGp2C06ESHu8qBgWGm9DoFCqOm4lPc32IOJFXw4m8GnqN6kTJ0WoCwkxoNAoGk5bio9XEpYXiG2ggJMaXk0V1VBSZ3ffR5Pgh12N76vTD0Gi/xq4VPSHRvqz8TxZ3PNUfbeNRzsyNawQFRbqmigSGmairtjHulz357q2dfPfmTkZPTjut6NRgtrFt8TF2rcin25Bo+t/Y+YyPdafUEDQ6hWN7ygmJ9iMyMRCfAD05u8rOWZjKz6ogNNbvggoL4XH+6Ixa8g9UEBLt+nDlF9z6CxOfxjXGzrQgfX2NFZ8AfZvvrf4hJupqrO0qlpYfr8VmcXWwNdm5PJ+y/BrufHoAWr2GLn0jOZJ54qzT7lpSFIXopEDqqq3UVljYt6aQPqPjqCmvxz/E5C6mBkf6ujvkTqWqKjVNi5sHmwgINVFT3lxYtVlcC9j3vb65Kz0iPoCDW4pbdb5lXJ9A9uZicnaVuV/zASEmjmaeOK+x2K0O7BbXFKPUga3Xn/Txb3t9tlNZ6u0YffUoCpwsdhW6mgq0omNQVZWdyxbx08ezQFXR6HTYGuoJjonl5qlPEhwdw3f/+CtzX3qOfjdPwFZfx+4VS4hKSiEsLoFt331LlwFDuOHXj+IbFNzqtmtPVrB53ldk3HDLaR92E3qlc9+f/s6Cv/+JT5/+DcPvfYCMcbeiO0MneHVZKd//8xWiOndh94olVBa7vsh1OhzU11Rx7aSH2fLdtzisVhpqa6irqmT0lF+RMe7WNgs0BpOJe6bPYPN/v2L93M/xCw6msriIJbPeAlUlMqkLib0z6JTWk07demDyb/4SwjcomLue/zM7ly5izeef4HTYmfvyc62KC01HxUvonc7KTz4gd89OrvnZg3QfMQpFo8E3KJg7nn2RfatXsOrfH3Bgwxp0Btd0aL/gUPat+YnEPn3dBZFzMfn5c9fzf2LjN1+wfu5nHNy8nrG/eITY1O5n/J34Hr257+XXOLZzO9sXL2DxO6+z8tMPcdhsRKd0Izb19DV4W3I6HBzblcnW77+lYP/e5lj8A6guLeG/r7xI9xEj6TpwKGHxie73fq1Ox/B7HiApYwDLP3yXOdOfJrFPX6KSU1jz+WwOb93EwY3ruPk3T7k7kvyCQ7jnj39l8Tv/YMFrf6LfzRMY8bPJ6I0mel93PdsW/pe1X/6b25/+Y6sY66oqWfHR+xzcvJ5BE+5ixM8ebHPmxPHs/Sx5/033wvz11VVEJCZx359eQ280oaoqW+Z/zbo5n9Jz5NgzFrfOpe+Nt1J0+ACb580FFDLG3cy1kx5GbzzzzBSTnz+jHvwVA8bfydbvvmX74u/YPP9rYlK6cSI3h2vuf4jti+bz2XO/ZcJTz9Ol/2Ae+kcPVn/6IUtmvsn+tSsZfvckqkqLmf/qS0x8ZjqxqWms+Ph97BYLD/7tbX6aPZOjmVv5+IlfM+yu+xlw251t/i0mpvcjpms31nw+m/ievc/aYXW5eX1h6t133+W1116juLiY9PR03n77bQYNGnTG63/99de88MILHDt2jK5du/Lqq69y881nbu3zBs76euwnTmA7fhxrXj62/DyseflY8/Ox5eXhNLtawRUfH4wpKZi6dyd4wgRMvXtj6tHD646g5zSbsRYcd40jv8B9as3NxZaf76q8Kwr6hHiMXbsSMnkyPunp+PTp7VXdXaqq4igrw1ZYiK2oCHtpKardjiYgAE1gIM7qarBYsBUUoOj1qC3WPtKGhqINCMTZYMF2/Dj1Wh36mGj0MTFogoKueIFEtdmwlZRiKzyOrbAQx8nKxjhDcFRWolosOKurcdbWglYLTYsYajToIiLQGE04q2uwHM3BabWij4lFHxPt0eKIxscHvyGD8Rvi+oZFdTqxHD5Mw549NBzIxpKVRflH63HWuBaEVnx9MSQkYEhMbN46J6KPiXF1JXlwCp3GYHB1fWVkwMMPuYuh9fv2YTmQTUN2NjXLllExe7b7d3RRUY3jcI1JH5+APiYaXVQ0uvCw81qj7GrTUfJB3r4KNFqFhlob4Y1TlkI7+bN3bSF2m+O81s05VVgnfyISAti35vglKUxZzDZ3USogzER1eQP1tVZ+nLUHnV5D3xtO/wbT4XBS27imTk1ZA36BLY5+F2TE6VApPFTpnrJWeKgSH38DBh+dew0qjVZDdFIQBdknSR8Tj+pUWf/tYVfBSqMQEGpyPz6xqSHk7i1jwM2dAUjoGUZlcR02i4OopNYdRIe2lhKREHDadDStXkNk5wBKcqq4bkp35r++g4Xv7mL05DR8/Q3YrU4MPjr3e3ZAqInq8npiUoK57TcZLP9kP1+8uJmopED30d+qTtRRdKQKjVbD0Nu70PeGs3/BojdqSeoTwYGNRWSMjUejUUjpH0XWxiIGjU86Y0eWw+bk2J4yel1zYV9GafUaEnuEcnTHCboOjEKn12Dybf0+qDdoMfnrqSpraPM2aioa8A9u+/8gfiFGUF3FzPOZ8giQv78CnV7jnpp4stjMlu9zSB+b4H5Oq8vrUTSwf10hSenhJPQ4dyd1UnoEqz4/QOrgKDbOO0xCj1CqTtS3WiA/ONqXrA1F7tdnSxazHYfNVRDyCzYSEGZqtX5UybFqUGnVqRcR74/TrlJx3Ozeb/TRMe6Xvfjm1W2N0zBtBISZaDDb3MXgs2larD4gzHRaV2BghMl9+dk01FoJivTFP8xI4aEqKkvqiD1HAdRbdZSccCkVZO1l8Tuvu9aUauS020kbdi03/+Z37tf2TY8+yaI3X2P7wnmgKEQmpVBWkEdVaTE3Pfqkq9hyyt+Bw25j8VuuD/VDz3Dks7C4eCa/8hZrv/w3qz/7mMwfvmPgbXfSffioVoWgk0XHmTP9GRrMtdRVVbr3J/UdQFRyCifyjrH+q//gsDsAle4jRpG7ewdbF84jMqkLcd17tXn/iqIw5M6fEdezN0vee4OyvFy6jxhFRGJnSnOOsn/tSvc6VOHxicR2605k52QiEpMIT+hM3xvH03XwcFb/5yMOrF/N7GmP0PPa6xg08W5CY+NQFIXeo28goWc6qz/7iB/e/QdbFnxDv5tuo/s1o9DpDQSEhhMWn0BhdhY2hwONVkdC73QqCgv474zp9Bw5hmH3PEBg+LlztUarZfi9k+nSfzDLP3qfL1/4HZ0z+jPotjuJ69G7zdyiKApJfQeQ1HcAZfm5LHzjVcoL8ig+nM2sR6aQ0CvdtfVOJzA8EqfTQeHBLPYsX8LhbZuwtlj/1DcomPv+9HeCIiLJ3b2DrHWr2Prdf9kw93MCI6JI7jeQLv0HEdejNzq9ntjUNCa/8ibZG9eS+cN37jW5sstO0P2a0QSERWCzNLiLNgYfXyY89Tw7fvyeNZ99zKEtG7j2/odIHTqCa+9/iO//+Qp7Vi6l9+gbsDU0sHvFj2z6dg4oCrdN+32r9bLMlScpOpTNsd07OLhxLfU1rk5UU0AADTU19Bp9PWN/ORWtTkdlSTE/zZ5Jzo5tDL3rPobeeV+7lwWpKi0he+Nadi1bTPWJUsITOnOy8Di5e3ZxPDuLxN4Z5/y81zQtb9jdk9i1/AfWz/kUgK3ff0vnPv0oOXqYL/7wJAPG38GQO+7lxv//t6QNu5ZV//mIOS8+Q0LvDPxCQvn65eeI7daD/H27ufk3vyMoMoqJT/+RHUsWsurfH7B+7mdsX7yAYfdMoteosa2KZoqiMObnj/DFH55k7ZefMmryL9r1OFxKXl2Y+uqrr5g2bRozZ85k8ODBvPHGG4wbN47s7GwiI09v4d6wYQP33XcfM2bM4NZbb+WLL75g4sSJZGZm0qtX229gl4Nqt+OoqcFRWYmzqgp746mjqgr7iTLspaXYT5RiKy3FXnrCVeBootGgj45Gn5iAT+/eBN1yM/rEREypqejj4z2ylo6qqqj19a4umqoqHJVVOE5WNI7jhPvUVlqK/UQZzhaHwlR8fDDExaFPSCDguuswdu2KMbUrxi5dTjtC2xUbS0MDjspK7OUVOCrKXaflZe7zttJS7IVF2IqKWhWbNL6+GJKSMCQn43/NCAzJXTAmJ6FPTERjMOCsq8Ny6BDWY8ew5ORgPZZL/c6dVC1YgNrQ/B9YxcfH9RzHxKCLiUYXFo42NARdaCja0DB0oSGuwlZo6Fmn+6mqitNsxlFRgb28/JRT15hsRcXuohrO5qPvaENDMSQn4dO7D0ETJmBMTsaQnIw+NtY1D7y8HMuhw1iP5WDNOYblWA41K3/C9mlB69sJDkYXG4M+JhZdRHjzGMJC0YaEuk7DwtAGBV32Qomi0WBKTcWU2rzYelOBpyH7INacHKy5uVhzc6natQt7cXGLX1bQhYeji4lBHxWFLjoaXXjj8xISgrblFhR02f8OFUVB36mTq/vxhua2YkdNjet5yc3FmpeLLTeXhn37qV78g7uADYBWiy4ysnksYWGu2E8dT3AI2pDgyzat9FK6WvPBqZwOJ1kbigiP86c0t8b9YTs8zt81xa/AfFpR5Xz1G5fIkg/2cnTniYsuTlUU1xEc5Uve/nJUVA5uKSZrvevb7PGPZbTZobN31XH3ouk5u8taTZtrWjC6odZG8ZEqQmL8KDhQgUarIaVf6+cvsXcYW7/PobaygcwleRzPPsltv8lg8/dHW00R7D4shh9m7qHwcCWxKcH0HBHLruWuhWLj0po7VEtzqzm2u4zRD7T9TXGn1BD2rCpgzJQe3PJoH5Z/vJ/P/rDRPY3N6Kdj2+Jj9LkujsjEAHavLMDpVIlJCea+Pw7m8PZS8rMqKD9ei6q6ur6GTuxC6qBo91ENz6X3qE7M/8cODm0rIXVgNOlj4tm7uoCdy/PdhbdTZW0oxFJnp9uQM7fon0va0BgWvbcbk5+O0E7+7u6hlsI6+VN+vO0j9lQUmok8pUDSJKix6HOyqO68ClNOp8qBjUV0Tg9HZ9DisDtZ8e8s/EONDB7vWhfKYXOyb20hXQdE0WC2sfDtXfQaGUffGxJOW1i+peS+Eaz+MpvgKF/8go0seHMHTrtK14FR2K0OtHoNcWkhZP6YS1l+7WlFnxP5ri84tDoNAeEmgqN8ObK9eV2wQ1uK8Q8xtpoGGpkYiNFXx+HM0la3FxjhirPBbOO/f89k6O2uqULV5fWExZ593axD21wLBfe9/vRiZ3CkL0VH2j46VEvVZQ3Edw/Fv/HxKsmppsfw8zuSmTfpKDnhYtgsDVQcL+B49n72r1nJibwcnHZXJ6FGq0PvY8JaV8fIB35B/1smUFVawrFdmRzN3ELOzu1otDqCoqKpKimmNOcwPoFBDBx/J53TTz9Kd111FT+8+w8KDx3gzt+/jE/AmfOU3mTiuof/P9Kvv4kN33zJyk/+xepPPyKiczJ6k5GKggLMlRWtficoOga9wUjOzu3k7NhGVHIK19z/EN2GXcvGb75g78rlXPvAwxzavJ6vXnyWbkOvof+tE4nuktrmh/+4tJ5Mef09di1dzOb5c8lau5KEXukMueNeIhKTqCwu4viBfRRmZ7Hnp6Xuxc6Do2IIjoklOCqajHG3sH/NT+xbvYJ9q1cQEhtH10FDiUvrSWy37tw27fcUHsxiy4JvWPbBO6z4eCYanRa7xUJYXDy3PzOdqC5d2bNiCbtX/EhN2QkMPj4cWL+a/WtWkjJwMH2uv5mEXn3Oudh2dEoq9//l72RvWMuWBd8w9+XfExwVQ9rwa10dLympp3W62KwWdvzwPeUFeYx75AmCo2M4un0LuXt2krVuVePrRIvT6XRP19NotEQmdaG2ohxFo+H+P/2dwAjX31PnjP50zujP9VYr+fv3cGT7Fo5s28zOJQvRm3zonN6X5H6DiEruit5owj/E9aWBwccXa30dB9atImvtShSNhrC4BKKSuhAWl0B4fCIpA4fQOaM/qz/9kEVvvca6OZ/S+7pxdB08nKWz3ubA+jWU5hzBUmem6+BhdB8xirrKSlb95yNOFhZQeuxoq8XEFY2GoMgoqstOoKBwy+NP023oNa7ne+VSstaudK3p9PQLdOk/+KyPfRNLXR2FB7M4fmAfubt3UHzkEDq9gdQhw+n35PNEJXWhLD+X5R++x7d/eYHoLl1Jv/5mugwYfNa/FwC71cKhTesw+Ppx4yNPUJi9n+yNa6kqLUGj07FlwTfs+HEhvUaPZcCtt/Pga29zYN1qMn/4jvIC15rS+ft2ozcaKT58kKikFEJjO9HvxvEk9x3Isn+9Td7eXfz08UzW/Odjug27hl6jricmNQ2tTkdUcgrXTvo5qz79AI1Gw/B7J7sPdHAlKaoXH45j8ODBDBw4kHfeeQcAp9NJfHw8jz32GM8+++xp17/33nsxm80sXLjQvW/IkCFkZGQwc+bM87rP6upqgoKCqKqqIvA8jvDWRFVVjt54E/aKCneHxqkUk8n14TciAl1kZOMWgb7p5+hoDJ06oZzjQ6KqqmC3o9rtqDZb82mLjdMuazy1NOCsq8fZUI9aX+/6ub4eZ31d6/Nms7sQ5ayqct3mqeMxGl1xR0Q0b5GR6KMi0cfHY4iPRxse3mbCUFUVHA5Uh8N9qtrt4HSi2h3gsDdfZrfjtFhQLVZX/BYLaoMF1WrB2dDQvL/B4ur8MZtx1NbgrDXjrKnBUVuLs7bW/TP209v/NYGBrqJKWBi68HD0sbGurVMs+pgY9LGxaAID2x6L09liDA5wNo7Lbkd1OlGtNlcBr8RVJLIVl2AvKXHtKy/HWV3tiquNxxitFkWnBY3WfTQVnE737XPqn6+ioPHzQxMQgDYw0PV6i4xAFx3j6qaJjkYfG4vWz6/xtnWugpFWh6LTun7W6c5Y4VetVmylpdgKC7EXuYp3ruJXIfayMhzlFTgqKtp8vWh8fV3dZv7+aP390fj7N573Q+sfgOJjQmM0ohhNaExGFIMRxWREYzK59hkNKCYTisGA0hg7jfG3+bNOd9YCkrO+Hmt+PvaSEmzFxdiLS7CVNJ4WF+EoK3dNMT31MdZo0AYGuuL382ve/F2nWj8/NH7+aHx9XGMwGlGMBtfYDIbGfY3njY3j1Ld4HrSa5udGo3GPC632zM+LqrqKrWcaS3kFjpMnsVdWtvk6U4xGNIEBhD74IOG/an8r84W+b7bH1ZQP2uJ0qpwsMrP9h2Mc3l5KZOdAGsw2Jr3kOnKNw+7kk2fXk5wRwahJF7Zum6qq/DBzD/lZFQy7I4XUwdEYfdr/Hwunw8nsp9cTlxbC4e2l6I1abBYHvUd3ov+NnU/rOnLYnOxde5wN3xxGq9cQGG7CXGnlnucHuosF9TVWPv7dOnwDDfgEGvAN1HM8uxLVqfKzFwYTGuuHpd5OdVk9ZQU1rP48G41Wg83iYOR9qcSlhfLFS5sZeV+qe4Fy1any9SvbqK+xMmpSGnqjlvn/yERVYcTdKfQa2YnS3FqWfbwPo6+Ou54Z0OaUsuqyej774yZ6jIhhyMQuVJbUsW1RDrl7XR+cwuL8qSypIzDMxOAJyfw4ay9jHupO2pCYdj+2Z/PjrD3kHzjJ2Ie6k9g7nC3fHWX7klwG3NyZXtd2cj/uqlMlP6uCH/+1l+S+EYx9qMcF36eqqnz7t+2U5lbTpW8k4351+gf0jfOOsG/dcabMGI6+RfeWudLCJ8+tZ/QDaW0WNlRVZfbT64hLC+X6n/c462vaZnWwcd4R9qws4K5nBuAfamT1F9nk7i3n9qf6EZ0UhLXBztq5hzi4uZh7nh9ISLQfO5flkbkkF0udnaikQCITA/EPMWL01aEzaNFoFTQaBUWjsG/tcY4frKTbkGiObC/BUudAZ9BgtzqJSgpk2J0pLP1wLyHRftz4614YW3SPrfwsi6wNxcR3D2H8Yxkc21PGond3c/tTfbGY7fw4ay+DJyTTb1zrTsJ1cw+xf30hE6f1JTIx0DV15PscMpfmMvG3fVn07m6iuwSRt7ecoben0PeGtg9QY7M4OLy9lFWfH0CjVfjVGyPRnFJEPLi1mGUf7Wfyn4e612w7Ve1JC/9+bj03/LIn0clBfPr7DeiNWia9NBi/UzrfLHW2Vo9Be3TEnHA5xqSqKk6HHYfdjtPuwGG34bDbsNbXY6mrw1pfR0NtDbWVFdSWl1NVUkJNeSm1Jyuw1JlxtJHPDT4+oIK1oZ6gqBgiOydhPnmSisICGmprXDMWjCbsVguq00lobBw9R40lODqG/WtWcjRzC6rTSWRSF6KSUzD4+FJbUU7Ozu0AjHrwF8SkdMNhs2FraMBSX4fFXIu5uor66krqq6upq66itqKc2sqTWM212M/jaMp6Hx/C4xKI7daDxF7phMR0wujnh9HXD1VVWTrrLfav+YmE3hmERMdweNtmzCcrCInpRHyP3kR3TSUkKpbAyCh8AgLQGYzu9xy7zcbBTevYu3IZBVl7UZ1OAiOiiEruQnh8Z/xCQkFVaaitofpEKTUny6k+UUpVaTF2y5nXydNoXf83dzZ2dSmKgkanx9G4dpcpIJDQTvGEREUTFBmNU3VSnp/HiWNHqSwpct+OomjwDQ4mKDKa4KhoQmPjCI6OwT80HP+QUIy+fhh8fNzTF1VVJX/fbrLWrebQlvVYzGZ0BiNhcfH4h4Sh0euoq6yk9NgRbA0NRCQmoTeaqDlZTkN1NTZL6w5Yjc615pza4shyWr2e2NTuBEdF4xMYhG9gMCZ/f/RGI3qjCa3B4Hr92u2U5R0jb98eSo8dpq6y0n0bTTHFde9FQ20N2RvXogJhsZ3Q6I001FZTU16Go/H1odHp8PEPRMWJta7uvF43Wr0BVBWH3fW3YPD1w+mwY7dY8A0KJqFnH0LjEjiRe5TC7CzMlScJCIug303jSb/hZvRGE06HA5ulAWtDPbaGBuqqKjFXnqS2ooLak+VUFBZQUZBPZWkxqCo+gUHEd+9F18HDSO4/CIOp9futqqoc25XJtu//S96+3SiKQkRiEtFduhKe0JnA8EgCIyLR6Q1Ul5WSu3sHu5f/iM5gcBUzG48sqKoqpTlHOLZ7B0e2baLo8EH3ZxKdwYjJ3x9VVTGfrECj02H09aO+usWXE4oGk78//iGhBIRHoNVqKSvIp7JxamPTazgoMtpVKOySQmVREfvWrCAoMpoeI0aR1HcAYfEJp42xPdrz3um1hSmr1Yqvry/ffPMNEydOdO+fMmUKlZWVLFiw4LTfSUhIYNq0aTzxxBPufdOnT2f+/Pns2rWrzfuxWCxYWrzpVFdXEx8ff0GJJyvtzHN+rxpt/cdRcf/T9vXO9RJqefnlerkpymmb0vSzRtP6vKKARkFRNK7L2ipetBVni4KQerbi0EWMQTEaUfT65kKEXu8qtDSNAVBVJ6rD6YrDanUVxFoUJC8JbYsiVeN9n/4YNu0HhebzKo2vFlV1Fe1U1dVlpaqugmTTPtWJ6nQVKHE6XZe1vPxSanq9nvr6Ptf5lk6N6WznvfNt9Zz0cXGkLF/W7t+73B9CrsZ88O7//dSu6wshhLcZ/2gKCb3afzTnjpATLmU+sFmtvDX5jnb9jhBCeJsnv1p47iudoj35wGun8pWVleFwOIiKar24Y1RUFAcOHGjzd4qLi9u8fnHLKTunmDFjBi+99NLFB4xrepTaYppTq4JO04d3aPtDcouflVMvb3U7LU7PVGyBFkWDxutoFFA0rjZ9pUUxxn23Le//9H1n/GB/ytWaL2++fsv7VJoKGi3j0Wgai0SN+7Qa1/Wbflejbe4g0WlRtDrQ61ynWo3rcT1nweH0sE+9zmnf5p42VgVFrwNNU9FGi6Jp7Ghq2enSFFdjFxJN19Fo0Biaun6MzR1ARqNrKpW+7QVk20N1OFCtVlcnmdWK2tDYYWaxuDvoaOzsUh3NP+No7MBrc7/rm6DmwlJjAYkWhSeV5mKTu8B06vVoLjyhuopSZxtLUyea3d5cEGwsYrmLXi1/brptp7PVefXUYtcpp+5427is5anqPq82j5lzjEHFfbSrVkU3VUVVnc2PU8vbdN8HqLS4H/fpqftOiaNVfayN+Frta/17ph4X3nlxOV2N+UAIIa523vody5XICZcyH+ivgunyQgjhaV5bmLpSnnvuOaZNm+Y+3/SNyIVI3bD+UoUlxAVRtFoUHx85YpsQF+BS5oOpM6+7VGEJIYS4wi5lPoAL6zQQQoj/JV5bmAoPD0er1VJSUtJqf0lJCdHRbS/0GR0d3a7rAxiNRoxG4xkvF0II4VmSD4QQQjS5EjlB8oEQQlxZV/4Qb+fJYDDQv39/VqxY4d7ndDpZsWIFQ4cObfN3hg4d2ur6AMuWLTvj9YUQQng/yQdCCCGaSE4QQoiOx2s7pgCmTZvGlClTGDBgAIMGDeKNN97AbDbz8MMPA/Dggw/SqVMnZsyYAcDjjz/OyJEjef3117nllluYM2cO27Zt41//+td532fTmizV1dWXfkBCCNEBNb1fXs5jaUg+EEKIq0NHzAmSD4QQov3alQ9UL/f222+rCQkJqsFgUAcNGqRu2rTJfdnIkSPVKVOmtLr+3Llz1dTUVNVgMKg9e/ZUFy1a1K77y8/Pb1x5WDbZZJNNtvZs+fn5l+Jt/4wkH8gmm2yyXT1bR8oJkg9kk0022S58O598oKiqtx5zwzOcTieFhYUEBAS0+whpTQsj5ufnX5bD414pHWUcIGPxVh1lLB1lHHBxY1FVlZqaGmJjY9FovHaGeLtJPnCRsXifjjIOkLF4o4sdR0fMCReTD0BeG95IxuJ9Oso4QMbSpD35wKun8nmCRqMhLi7uom4jMDDwqn8BQscZB8hYvFVHGUtHGQdc+FiCgoIuQzSeJfmgNRmL9+ko4wAZize6mHF0tJxwKfIByGvDG8lYvE9HGQfIWOD880HH+BpDCCGEEEIIIYQQQlx1pDAlhBBCCCGEEEIIITxCClOXkNFoZPr06RiNRk+HclE6yjhAxuKtOspYOso4oGONxRt0pMdTxuJ9Oso4QMbijTrKOLxJR3lMO8o4QMbijTrKOEDGciFk8XMhhBBCCCGEEEII4RHSMSWEEEIIIYQQQgghPEIKU0IIIYQQQgghhBDCI6QwJYQQQgghhBBCCCE8QgpTQgghhBBCCCGEEMIjpDB1mfzlL39h2LBh+Pr6Ehwc7Olw2uXdd9+lc+fOmEwmBg8ezJYtWzwdUrutWbOG8ePHExsbi6IozJ8/39MhXZAZM2YwcOBAAgICiIyMZOLEiWRnZ3s6rAvy/vvv06dPHwIDAwkMDGTo0KH88MMPng7rknjllVdQFIUnnnjC06G024svvoiiKK22tLQ0T4fVoUg+8DzJCd6no+YEyQfiXCQneJbkA+/TUfMBSE5oDylMXSZWq5W7776bRx55xNOhtMtXX33FtGnTmD59OpmZmaSnpzNu3DhKS0s9HVq7mM1m0tPTeffddz0dykVZvXo1U6dOZdOmTSxbtgybzcYNN9yA2Wz2dGjtFhcXxyuvvML27dvZtm0b1113HRMmTGDfvn2eDu2ibN26lVmzZtGnTx9Ph3LBevbsSVFRkXtbt26dp0PqUCQfeJ7kBO/TEXOC5ANxPiQneJbkA+/TEfMBSE5oN1VcVrNnz1aDgoI8HcZ5GzRokDp16lT3eYfDocbGxqozZszwYFQXB1DnzZvn6TAuidLSUhVQV69e7elQLomQkBD1ww8/9HQYF6ympkbt2rWrumzZMnXkyJHq448/7umQ2m369Olqenq6p8P4nyD5wDtITvBeV3NOkHwg2ktygudJPvBeV3M+UFXJCRdCOqaEm9VqZfv27YwdO9a9T6PRMHbsWDZu3OjByESTqqoqAEJDQz0cycVxOBzMmTMHs9nM0KFDPR3OBZs6dSq33HJLq7+Zq9GhQ4eIjY0lOTmZSZMmkZeX5+mQhIdJPrg6SE7wHpIPREcmOcH7ST7wLpIT2k932W5ZXHXKyspwOBxERUW12h8VFcWBAwc8FJVo4nQ6eeKJJxg+fDi9evXydDgXZM+ePQwdOpSGhgb8/f2ZN28ePXr08HRYF2TOnDlkZmaydetWT4dyUQYPHswnn3xCt27dKCoq4qWXXuKaa65h7969BAQEeDo84SGSD7yf5ATvIflAdHSSE7yb5APvIjnhwkjHVDs8++yzpy0Aduomb87icpk6dSp79+5lzpw5ng7lgnXr1o2dO3eyefNmHnnkEaZMmcL+/fs9HVa75efn8/jjj/P5559jMpk8Hc5Fuemmm7j77rvp06cP48aNY/HixVRWVjJ37lxPh+bVJB8IT5Oc4B0kHwiQnCA8S/KB95CccOGkY6odnnzySR566KGzXic5OfnKBHMZhIeHo9VqKSkpabW/pKSE6OhoD0UlAB599FEWLlzImjVriIuL83Q4F8xgMJCSkgJA//792bp1K2+++SazZs3ycGTts337dkpLS+nXr597n8PhYM2aNbzzzjtYLBa0Wq0HI7xwwcHBpKamcvjwYU+H4tUkHwhPkpzgPSQfCJCcIDxH8oF3kZxw4aQw1Q4RERFERER4OozLxmAw0L9/f1asWMHEiRMBV2voihUrePTRRz0b3P8oVVV57LHHmDdvHqtWrSIpKcnTIV1STqcTi8Xi6TDabcyYMezZs6fVvocffpi0tDSeeeaZqzbhANTW1nLkyBEmT57s6VC8muQD4QmSE7yP5AMBkhPElSf5wDtJTrhwUpi6TPLy8qioqCAvLw+Hw8HOnTsBSElJwd/f37PBncW0adOYMmUKAwYMYNCgQbzxxhuYzWYefvhhT4fWLrW1ta2quTk5OezcuZPQ0FASEhI8GFn7TJ06lS+++IIFCxYQEBBAcXExAEFBQfj4+Hg4uvZ57rnnuOmmm0hISKCmpoYvvviCVatWsWTJEk+H1m4BAQGnzeH38/MjLCzsqpvb/9RTTzF+/HgSExMpLCxk+vTpaLVa7rvvPk+H1mFIPvA8yQnep6PkBMkHor0kJ3iW5APv01HyAUhOuChX7Ph//2OmTJmiAqdtK1eu9HRo5/T222+rCQkJqsFgUAcNGqRu2rTJ0yG128qVK9t8/KdMmeLp0NqlrTEA6uzZsz0dWrv9/Oc/VxMTE1WDwaBGRESoY8aMUZcuXerpsC6Zq/VQsPfee68aExOjGgwGtVOnTuq9996rHj582NNhdSiSDzxPcoL36cg5QfKBOBvJCZ4l+cD7dOR8oKqSE86XoqqqeunLXUIIIYQQQgghhBBCnJ0clU8IIYQQQgghhBBCeIQUpoQQQgghhBBCCCGER0hhSgghhBBCCCGEEEJ4hBSmhBBCCCGEEEIIIYRHSGFKCCGEEEIIIYQQQniEFKaEEEIIIYQQQgghhEdIYUoIIYQQQgghhBBCeIQUpoQQQgghhBBCCCGER0hhSgghhBBCCCGEEEJ4hBSmhPBSDoeDYcOGcccdd7TaX1VVRXx8PM8//7yHIhNCCHGlSU4QQggBkg9Ex6Soqqp6OgghRNsOHjxIRkYGH3zwAZMmTQLgwQcfZNeuXWzduhWDweDhCIUQQlwpkhOEEEKA5APR8UhhSggv99Zbb/Hiiy+yb98+tmzZwt13383WrVtJT0/3dGhCCCGuMMkJQgghQPKB6FikMCWEl1NVleuuuw6tVsuePXt47LHH+MMf/uDpsIQQQniA5AQhhBAg+UB0LFKYEuIqcODAAbp3707v3r3JzMxEp9N5OiQhhBAeIjlBCCEESD4QHYcsfi7EVeDjjz/G19eXnJwcCgoKPB2OEEIID5KcIIQQAiQfiI5DOqaE8HIbNmxg5MiRLF26lD//+c8ALF++HEVRPByZEEKIK01yghBCCJB8IDoW6ZgSwovV1dXx0EMP8cgjjzB69Gg++ugjtmzZwsyZMz0dmhBCiCtMcoIQQgiQfCA6HumYEsKLPf744yxevJhdu3bh6+sLwKxZs3jqqafYs2cPnTt39myAQgghrhjJCUIIIUDygeh4pDAlhJdavXo1Y8aMYdWqVYwYMaLVZePGjcNut0u7rhBC/I+QnCCEEAIkH4iOSQpTQgghhBBCCCGEEMIjZI0pIYQQQgghhBBCCOERUpgSQgghhBBCCCGEEB4hhSkhhBBCCCGEEEII4RFSmBJCCCGEEEIIIYQQHiGFKSGEEEIIIYQQQgjhEVKYEkIIIYQQQgghhBAeIYUpIYQQQgghhBBCCOERUpgSQgghhBBCCCGEEB4hhSkhhBBCCCGEEEII4RFSmBJCCCGEEEIIIYQQHiGFKSGEEEIIIYQQQgjhEf8PmZxgwOIQk2IAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxYAAAJOCAYAAAAqFJGJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd1xV9RvA8c9lbxBFEVFQVDRx50RRceAeWa6cmaullVqaA5VyZJpZOcvZsLSfOxeKIqW5zUUORHMvQPa45/cH3SuXe4HLEtTn/XrxesG5Z3zPvQc4z/k+z/erUhRFQQghhBBCCCHywaSoGyCEEEIIIYR49klgIYQQQgghhMg3CSyEEEIIIYQQ+SaBhRBCCCGEECLfJLAQQgghhBBC5JsEFkIIIYQQQoh8k8BCCCGEEEIIkW8SWAghhBBCCCHyTQILIYQQQgghRL5JYCGEEEXA09OTwYMHa38OCQlBpVIREhJSYMdQqVQEBgYW2P6MFRgYiEqleurHLQotW7akZcuWhbLv3FwTuWlHy5Yt8fHxyV/jhBDCAAkshBAvnJUrV6JSqbRfVlZWVK1alXfeeYc7d+4UdfNyZfv27UUSPBSWP/74g8DAQKKiooq6Kc+0mzdvEhgYyMmTJ4u6KUKIF4gEFkKIF9b06dNZs2YNX3/9NU2bNmXRokU0adKE+Pj4p94WPz8/EhIS8PPzy9V227dvZ9q0aQZfS0hIYNKkSQXRvFyZNGkSCQkJedr2jz/+YNq0aRJYkPdrAtIDi2nTpklgIYR4qsyKugFCCFFUOnTowMsvvwzAm2++ScmSJZk3bx6bNm2ib9++BreJi4vD1ta2wNtiYmKClZVVge6zoPdnLDMzM8zMite/l/j4eGxsbIq6GblSGNeEEEIUJumxEEKI//j7+wMQEREBwODBg7Gzs+Py5ct07NgRe3t7Xn/9dQDUajVffvklNWrUwMrKijJlyjBixAgePXqks09FUQgKCsLd3R0bGxtatWrF2bNn9Y6dVT794cOH6dixIyVKlMDW1pZatWqxYMECbfu++eYbAJ3ULg1DNRYnTpygQ4cOODg4YGdnR+vWrTl06JDOOppUsbCwMD744ANcXFywtbWlR48e3Lt3L8f30VCNhUql4p133mHjxo34+PhgaWlJjRo12LFjh85248aNA6BixYra87l69ap2nbVr11K/fn2sra1xdnamT58+XL9+XedYmhqCY8eO4efnh42NDRMnTqRz585UqlTJYJubNGmiDTIBVqxYgb+/P6VLl8bS0pKXXnqJRYsW5XjuhrzyyivUq1dPZ1mXLl1QqVRs3rxZu+zw4cOoVCp+//13IOtrYunSpXh5eWFtbU3Dhg0JDQ3VeT0kJIQGDRoAMGTIEO37uHLlSp31zp07R6tWrbCxsaFcuXLMmTMnT+cnhBAaxeuRkhBCFKHLly8DULJkSe2y1NRUAgICaNasGXPnztU+9R4xYgQrV65kyJAhvPfee0RERPD1119z4sQJwsLCMDc3B2DKlCkEBQXRsWNHOnbsyPHjx2nXrh3Jyck5tmf37t107tyZsmXLMnr0aFxdXTl//jxbt25l9OjRjBgxgps3b7J7927WrFmT4/7Onj1L8+bNcXBwYPz48Zibm7NkyRJatmzJ/v37adSokc767777LiVKlGDq1KlcvXqVL7/8knfeeYd169YZ/Z5mdPDgQX777Tfeeust7O3t+eqrr+jZsyfXrl2jZMmSvPLKK/zzzz/89NNPzJ8/n1KlSgHg4uICwKeffsrkyZPp1asXb775Jvfu3WPhwoX4+flx4sQJnJyctMd68OABHTp0oE+fPvTv358yZcpQv359Bg4cyJEjR7Q33gCRkZEcOnSIzz//XLts0aJF1KhRg65du2JmZsaWLVt46623UKvVvP3227k67+bNm7Np0yZiYmJwcHBAURTCwsIwMTEhNDSUrl27AhAaGoqJiQm+vr5Z7uu7775jxIgRNG3alDFjxnDlyhW6du2Ks7Mz5cuXB6B69epMnz6dKVOmMHz4cJo3bw5A06ZNtft59OgR7du355VXXqFXr16sX7+ejz76iJo1a9KhQ4dcnZ8QQmgpQgjxglmxYoUCKHv27FHu3bunXL9+Xfn555+VkiVLKtbW1sq///6rKIqiDBo0SAGUjz/+WGf70NBQBVB++OEHneU7duzQWX737l3FwsJC6dSpk6JWq7XrTZw4UQGUQYMGaZft27dPAZR9+/YpiqIoqampSsWKFRUPDw/l0aNHOsfJuK+3335byepPOaBMnTpV+3P37t0VCwsL5fLly9plN2/eVOzt7RU/Pz+996dNmzY6x3r//fcVU1NTJSoqyuDxNKZOnarXJkCxsLBQLl26pF126tQpBVAWLlyoXfb5558rgBIREaGz/dWrVxVTU1Pl008/1Vn+999/K2ZmZjrLW7RooQDK4sWLddaNjo5WLC0tlQ8//FBn+Zw5cxSVSqVERkZql8XHx+udV0BAgFKpUiWdZS1atFBatGhh4F144siRIwqgbN++XVEURTl9+rQCKK+99prSqFEj7Xpdu3ZV6tatq/058zWRnJyslC5dWqlTp46SlJSkXW/p0qUKoNMOzTFXrFih1x7N+7N69WrtsqSkJMXV1VXp2bNntucihBDZkVQoIcQLq02bNri4uFC+fHn69OmDnZ0d//vf/yhXrpzOeqNGjdL5+ddff8XR0ZG2bdty//597Vf9+vWxs7Nj3759AOzZs4fk5GTeffddndSgMWPG5Ni2EydOEBERwZgxY3SexAN5Gso1LS2NXbt20b17d510oLJly9KvXz8OHjxITEyMzjbDhw/XOVbz5s1JS0sjMjIy18eH9Pfby8tL+3OtWrVwcHDgypUrOW7722+/oVar6dWrl8577urqSpUqVbTvuYalpSVDhgzRWebg4ECHDh345ZdfUBRFu3zdunU0btyYChUqaJdZW1trv4+Ojub+/fu0aNGCK1euEB0dnavzrlu3LnZ2dhw4cABI75lwd3dn4MCBHD9+nPj4eBRF4eDBg9reBUOOHj3K3bt3GTlyJBYWFtrlgwcPxtHRMVdtsrOzo3///tqfLSwsaNiwoVGfhRBCZEVSoYQQL6xvvvmGqlWrYmZmRpkyZfD29sbERPd5i5mZGe7u7jrLLl68SHR0NKVLlza437t37wJob8CrVKmi87qLiwslSpTItm2atKyCmm/g3r17xMfH4+3trfda9erVUavVXL9+nRo1amiXZ7zRBrRtzlxHYqzM+9Ps05j9Xbx4EUVR9N5LDU3qmUa5cuV0br41evfuzcaNG/nzzz9p2rQply9f5tixY3z55Zc664WFhTF16lT+/PNPvVHCoqOjc3Ujb2pqSpMmTbS1EKGhoTRv3pxmzZqRlpbGoUOHKFOmDA8fPsw2sMjqejI3N8+ydiQr7u7uegFqiRIlOH36dK72I4QQGUlgIYR4YTVs2FCnYNcQS0tLvWBDrVZTunRpfvjhB4PbaGoCnnWmpqYGl2d82v+09qdWq7WFzYb2Y2dnp/Nzxh6HjLp06YKNjQ2//PILTZs25ZdffsHExITXXntNu87ly5dp3bo11apVY968eZQvXx4LCwu2b9/O/PnzUavVObY3s2bNmvHpp5+SmJhIaGgon3zyCU5OTvj4+BAaGkqZMmUAsg0sClJBf7ZCCAESWAghRK55eXmxZ88efH19s7yBBfDw8ADSn7ZnfKJ87969HJ/Sa1KGzpw5Q5s2bbJcz9i0KBcXF2xsbAgPD9d77cKFC5iYmGiLf4tSVufj5eWFoihUrFiRqlWr5nn/tra2dO7cmV9//ZV58+axbt06mjdvjpubm3adLVu2kJSUxObNm3V6WTKnW+VG8+bNSU5O5qeffuLGjRvaAMLPz08bWFStWlUbYBiS8XrSjGAGkJKSQkREBLVr19Yue1FmPhdCFC9SYyGEELnUq1cv0tLSmDFjht5rqamp2snd2rRpg7m5OQsXLtR5Epw57caQevXqUbFiRb788ku9yeIy7kszp0ZOE8qZmprSrl07Nm3apDN86507d/jxxx9p1qwZDg4OObarsGV1Pq+88gqmpqZMmzZN76m6oig8ePDA6GP07t2bmzdvsnz5ck6dOkXv3r11Xtc8zc94nOjoaFasWJGbU9HRqFEjzM3NmT17Ns7OztqUs+bNm3Po0CH279+fY2/Fyy+/jIuLC4sXL9YZVWzlypV675ex14UQQhQk6bEQQohcatGiBSNGjGDmzJmcPHmSdu3aYW5uzsWLF/n1119ZsGABr776Ki4uLowdO5aZM2fSuXNnOnbsyIkTJ/j999+1Q6lmxcTEhEWLFtGlSxfq1KnDkCFDKFu2LBcuXODs2bPs3LkTgPr16wPw3nvvERAQgKmpKX369DG4z6CgIHbv3k2zZs146623MDMzY8mSJSQlJRWbOQw05/PJJ5/Qp08fzM3N6dKlC15eXgQFBTFhwgSuXr1K9+7dsbe3JyIigv/9738MHz6csWPHGnUMzZwkY8eOxdTUlJ49e+q83q5dOywsLOjSpQsjRowgNjaWZcuWUbp0aW7dupWn87KxsaF+/focOnRIO4cFpPdYxMXFERcXl2NgYW5uTlBQECNGjMDf35/evXsTERHBihUr9GosvLy8cHJyYvHixdjb22Nra0ujRo2oWLFintovhBDGkB4LIYTIg8WLF7N06VLu3r3LxIkTmTBhAnv37qV///468xAEBQUxbdo0Tpw4wbhx47h8+TK7du0yavbugIAA9u3bR9WqVfniiy/44IMPCA4OpkuXLtp1XnnlFd5991127NjBgAEDspwxHKBGjRqEhobi4+PDzJkzmTZtGh4eHuzbt09vDoui0qBBA2bMmMGpU6cYPHgwffv21U7K9/HHH7NhwwZMTEyYNm0aY8eOZfPmzbRr1047F4QxrKys6Nq1K48fP6ZVq1Z6Rfje3t6sX78elUrF2LFjWbx4McOHD2f06NH5OjdN4NCsWTPtMldXVypXrqzzenaGDx/Ot99+y82bNxk3bhyhoaFs3rxZL43N3NycVatWYWpqysiRI+nbty/79+/PV/uFECInKkUqtYQQQgghhBD5JD0WQgghhBBCiHyTwEIIIYQQQgiRbxJYCCGEEEIIIfJNAgshhBBCCCFEvklgIYQQQgghhMg3CSyEEEIIIYQQ+fbcT5CnVqu5efMm9vb22gmJhBBCCCGEEDlTFIXHjx/j5uaGiUn2fRLPfWBx8+ZNvYmDhBBCCCGEEMa7fv067u7u2a7z3AcW9vb2QPqb4eDgUMStEUIIIYQQ4tkRExND+fLltffU2XnuAwtN+pODg4MEFkIIIYQQQuSBMSUFUrwthBBCCCGEyDcJLIQQQgghhBD5JoGFEEIIIYQQIt8ksBBCCCGEEELkmwQWQgghhBBCiHyTwEIIIYQQQgiRb8/9cLN5lZKSQlpaWlE3QwghhCiWTE1NMTc3L+pmCCGKEQksMomJieH+/fskJSUVdVOEEEKIYs3S0pJSpUrJPFFCCEACCx0xMTHcuHEDOzs7SpUqhbm5uVGTgQghhBAvEkVRSElJITo6mhs3bgBIcCGEkMAio/v372NnZ4e7u7sEFEIIIUQ2rK2tsbe3599//+X+/fsSWAghirZ4+8CBA3Tp0gU3NzdUKhUbN27UW+f8+fN07doVR0dHbG1tadCgAdeuXSvwtqSkpJCUlISjo6MEFUIIIYQRVCoVjo6OJCUlkZKSUtTNEUIUsSINLOLi4qhduzbffPONwdcvX75Ms2bNqFatGiEhIZw+fZrJkydjZWVV4G3RFGpLIZoQQghhPM3/TRnwRAhRpKlQHTp0oEOHDlm+/sknn9CxY0fmzJmjXebl5VWobZLeCiGEEMJ48n9TCKFRbOexUKvVbNu2japVqxIQEEDp0qVp1KiRwXSpjJKSkoiJidH5EkIIIYQQQhSuYhtY3L17l9jYWGbNmkX79u3ZtWsXPXr04JVXXmH//v1Zbjdz5kwcHR21X+XLl3+KrRZCCCGEEOLFVGwDC7VaDUC3bt14//33qVOnDh9//DGdO3dm8eLFWW43YcIEoqOjtV/Xr19/Wk0WBahly5bPbPd6YGAgKpWKkJAQneUqlYqWLVsWSZuEEEIIIQpbsQ0sSpUqhZmZGS+99JLO8urVq2c7KpSlpSUODg46XyJnV69eRaVS6X3Z2tpSq1Ytpk2bRmxsbFE3s0A8ePCAjz/+mBo1amBjY4ONjQ0eHh60bt2aadOmcefOnafWlsGDB6NSqbh69epTO6YQQgghRGEotvNYWFhY0KBBA8LDw3WW//PPP3h4eBRRq55/Xl5e9O/fH0ifAOnevXv8/vvvBAYGsmPHDg4ePIipqWmht2P16tXEx8cX+H7//fdfmjZtyvXr16lTpw5DhgzBycmJW7du8ccffxAYGIivry9lypQp8GOfP38eGxubAt+vEEIIIURxUKSBRWxsLJcuXdL+HBERwcmTJ3F2dqZChQqMGzeO3r174+fnR6tWrdixYwdbtmzRSzERBady5coEBgbqLEtKSqJJkyYcOnSI/fv34+/vX+jtqFChQqHsd+rUqVy/fp3p06czefJkvdf//vtvnJycCuXY1apVK5T9CiGEECJ7iqKgTlUwNS+2yTrPhSJ9d48ePUrdunWpW7cuAB988AF169ZlypQpAPTo0YPFixczZ84catasyfLly9mwYQPNmjUryma/cCwtLWnVqhWQPjt5Rvv27eONN97A29sbOzs77OzsePnll1m6dKnBfR0/fpxXX32VChUqYGlpiYuLCw0aNODTTz/VWS+7GotNmzbRrl07SpYsiZWVFZ6engwYMIAzZ87keC5//vknAO+++67B12vWrKlX8K+pjfj333/p27cvpUqVwsbGBl9fX/bs2ZPjMTPvR8PT05NVq1YBULFiRW36mdRhCCGEEAUnMTaFtZP/ZMl7IZzYVfCTLBsSH5PMw5txT+VYxUmR9li0bNkSRVGyXeeNN97gjTfeeEotEoYkJycTEhKCSqWiTp06Oq/Nnj2bS5cu0bhxY3r06EFUVBQ7duxgxIgRhIeH88UXX2jXPXnyJE2bNsXU1JRu3brh4eFBVFQU586dY+nSpXzyySc5tuXDDz9k3rx5ODs70717d0qXLs3169fZs2cP9evXx8fHJ9vtS5YsCaSn1DVs2NDo9+DRo0f4+vri4uLCm2++yb1791i3bh3t27dn/fr1dO/e3eh9aYwZM4aVK1dy6tQpRo8ere0p8fT0zPW+hBBCCGHYpeN3ibmfCMAfv12iTtvyhTpATGJcCmun/ElKYhod36pFxVqlCu1YxU2xrbEQRePSpUvaVChFUbh//z47d+7kxo0bzJkzh6pVq+qsv2jRIipWrKizLDU1lY4dO7JgwQJGjx6tTWtas2YNSUlJbNy4kW7duuls8+DBgxzbtnXrVubNm0fNmjXZt2+fNkjQHNOYffTq1YuDBw/SpUsXRo4cSatWrahXr16ORf6nT5+mX79+rF27VvvHaPTo0TRo0IDhw4cTEBCAtbV1jsfPaMyYMZw8eZJTp04xZswYCSiEEEKIQhB1V7dmMz46GVsny0I7XuSZB6Qkps9Ev/3b07y9uPBTyIsLCSyM1GXhQe49TirqZmTJxd6SLe/mP0Xs8uXLTJs2TW95586dadOmjd7yzEEFgJmZGSNHjmT37t3s27ePQYMG6bxu6AY8Y5CQlW+//RaABQsW6K1vZmZmVMH1O++8w/Xr11mwYAHTp09n+vTpqFQqqlevTpcuXRg9ejRly5bV287U1JTPPvtM5wlHrVq1GDBgAN999x3bt2+nZ8+eOR5fCCGEEE/X4/96KzQe3Y4r1MDC0ubFvb1+cc88l+49TuJ2TGLOKz7jAgIC2LFjh/bnBw8eEBYWxujRo/H19WXv3r00atRI+/rjx4+ZO3cuGzdu5PLly8TF6eYT3rx5U/t9r169+PLLL+nRowe9e/embdu2+Pn5Ua5cOaPa9tdff2FpaUmLFi3yfH4qlYo5c+Ywfvx4tm/fzqFDhzh69CjHjh3j3LlzLFmyhB07duicI6QXkxsajax58+Z89913nDhxQgILIYQQohiKeZCg83NcdHKhHi9zmlVSQiqW1i/GLfeLcZYFwMW+8CLbglBY7StZsiRdu3bFxsaGtm3bMmnSJHbv3g2k1160bNmS48ePU7duXQYMGEDJkiUxMzPj6tWrrFq1iqSkJ708jRo1IiQkhM8++4wff/yRFStWANCgQQNmz56tLRDPSnR0NOXKlcPEJP9jDpQqVYqBAwcycOBAAG7fvs0777zDhg0bGD58OKdOndJZP6veEM3y6OjofLdJCCGEEAXv8QPdB8PxMYUbWKjVuvXD9649xt27RKEes7iQwMJIBZFm9CzTPME/cuSIdtmmTZs4fvw4Q4cOZfny5Trr//zzz9oRjzJq3rw5v//+OwkJCRw+fJgtW7bw7bff0qlTJ86cOUOlSpWybIOTkxO3b99GrVYXSHCRkaurK2vWrGHr1q2cPn2aBw8e6KRbZTVpnma5o6NjgbZHCCGEEPmXFJ9CUnyqzrLCDiyUNN3AIuFx4R6vOJHBfIVRHj16BIBardYuu3z5MoBeITZAaGhotvuztramZcuWfPHFF0ycOJGEhARtT0hWGjZsSFJSEvv3789t841iaWmJubm5wdeuXbtGZGSk3nLNeWqGTM4tzWSDaWlpedpeCCGEEFmLua+fxp5YyDf6mXss1GnZj4D6PJHAQhhl3rx5APj5+WmXaWoODh48qLPu/v37WbZsmd4+/vzzTxIT9X/BNU/9rayssm3D22+/DaSPxvTw4UOd11JTU7PsVcjoiy++4MKFCwZf+/rrr4mNjaVatWp6xeFpaWlMnDhRZ3jk06dPs2bNGlxcXOjYsWOOxzbE2dkZgOvXr+dpeyGEEEJkLS5Kf+CdxEw9GAVNyRRYZP75eSapUEJHxuFmAR4+fEhYWBjHjx+nRIkSzJ49W/taly5d8PT0ZM6cOZw5cwYfHx/Cw8PZunUrPXr0YP369Tr7nj17Nvv27cPPz4+KFStiZWXF8ePHCQ4OplKlSvTo0SPbtnXs2JGxY8cyd+5cqlSpQo8ePShdujQ3btwgODiYsWPHMmbMmGz3sWbNGsaOHUvNmjVp1KgRpUuXJioqikOHDnH8+HGsra1ZtGiR3na1atXi4MGDNGjQgDZt2mjnsUhNTWXp0qW5HmpWw9/fn7lz5zJ8+HB69uyJra0tHh4eDBgwIE/7E0IIIcQT8QZ6J5ITCjeweJF7LCSwEDoyDzdraWmJu7s7o0aN4uOPP9bOSQFgZ2fH3r17GTduHAcOHCAkJIQaNWrwww8/UKZMGb3AYtSoUTg6OnL48GH279+PoihUqFCBiRMn8v777+c4lwTA559/TpMmTfj6669Zv349iYmJlC1bFn9/f9q2bZvj9itWrGDLli3s3buXnTt3cufOHUxNTfHw8GDUqFG8//77VKlSRW+7EiVKsG3bNsaOHcuyZcuIj4+nbt26TJs2zajjZqVDhw7MmTOHZcuW8cUXX5CSkkKLFi0ksBBCCCEKgKF6iqT4lEI9ZuYeisyBxvNMpeQ09fUzLiYmBkdHR6Kjo7O9cU1MTCQiIkL7JF0IDZVKRYsWLQgJCSnqpgghRLEj/z9FcXZg3T/8ve9fnWV2JSwZNNO30I55Luwm+9Y8Sbtu3rsqtVq5F9rxCpux99IgNRZCCCGEEOI5lZChx8LUPP22N/MoUQVNr8ciTZ3Fms8fCSyEEEIIIcRzKWMqVAlXGwBSktJIK8Sb/cw1FS9SKpQEFkIIIYQQ4rmkCSzMrUyxdXwymXByIfZaZK4ykOJtIYTWc16GJIQQQjy34qPTh5u1cbDA0ubJbW9SfCrW9haFcszMgcSLNNys9FgIIYQQQojnTnJiKsmJ6RPQ2jlZYmnzZBLcwqyzUDJlWb1IPRYSWAghhBBCiOdOxsnxbJ0sM/VYFN6Qs2q1bmQhgYUQQgghhBDPsGwDi0KcJE+/x+LFGRVKaiyEEEIIIcRzRyewcLTEwtpU+3NhpkLpzbz9AtVYSGAhhBBCCCGeO7GZeixMTFTanwszFUp/HgsJLIQQQgghhHhmxUU9mcPCroQlaSlPUpKkx6JwSI2FEEIIIYR47ujVWNjqDjdbWJTME+RJj4UQQgghhBDPrthHienfqMDG0UJnXqpCHRUq0/xXmQON55n0WAghhBBCiOeKolZ4dDseAIeSVpiammD1tOax0OuxeHFGhZLAQgghhBBCPFceP0wkJSl9cjxnNzsAzK1MUf1Xv124E+RJjYUQWseOHWPo0KFUqVIFW1tbrK2t8fLyYsCAAezevZvo6GhsbGwoUaIEiYmJ2e5r2bJlqFQqhg8f/pRaL4QQQogX3cNbcdrvncvaAqBSqbD4by6Lwp0g78WtsZDAQmip1Wo++OADXn75ZVavXk2lSpUYOXIko0ePpn79+mzbto127drx1Vdf0bNnT6KiotiwYUO2+/z+++8BGDp06NM4BSGEEEIIHt7MEFi42Wq/t/wvHapwJ8h7cXsspHhbaE2aNIn58+dTp04d1q9fj5eXl87rCQkJfP311zx48IChQ4eydu1avv/+e15//XWD+zt//jyHDh2iRo0aNGrUKNtjDx48mFWrVukUVgkhhBBC5EVWgYWVjRkxQHJ8KopaQZVhbouC8iL3WEhgIQC4dOkSc+bMoWTJkuzYsYMyZcrorWNtbc24ceNISkrCwsICLy8v9u3bx9WrV/H09NRbX3orhBBCCFEUNKlQKhWUcLXRLrewTr/1VRRITkrD0rrgb4Vf5MBCUqEEACtXriQtLY0RI0YYDCoysrS0RKVS8cYbb6AoCitWrNBbJzU1lTVr1mBhYcGAAQMKq9lCCCGEEDrUakUbWDiWtsHM3FT7mqXOyFCFU2ehqDP/LIGFeMGEhYUB4O/vb/Q2gwcPxtTUlFWrVqFW6/4Wbd++nTt37tC1a1dKlSpVoG0VQgghhMhKzP0E7SzbmsJtDUubwp8kL3MPxYs03KykQhlrSQuIvVvUrciaXWkYsT/Pm9++fRsAd3d3o7dxc3Ojffv2bNu2jeDgYNq2bat9TZMG9cYbb+S5TUIIIYQQuZVVfQU8ncAic73oi5QKJYGFsWLvwuObRd2KYufNN99k27ZtfP/999rA4u7du2zbtg13d3cCAgL0tvH09CQyMtLg/lQq/SKqFStWMHjw4AJttxBCCCGeT8YGFslPq8fiBUqFksDCWHali7oF2ctn+1xdXblw4QI3btzA29vb6O06d+5MmTJl2LhxI48ePaJEiRKsXr2a1NRUBg8ejImJfrbdmDFjiIqK0lm2ceNGTp06xdSpU/XWr1OnTm5PRwghhBAvqJj7CdrvnUrb6LyWscYisbBqLKTHQuQoH2lGzwJfX19CQkIIDg7OVZ2FmZkZAwcO5PPPP+eHH37gnXfeYcWKFahUKoYMGWJwmzFjxugtu3r1KqdOnSIwMDCPZyCEEEIIATEPnkze61DKSue1p5IKpVdj8eIEFlK8LYAnhdhLly7l3r172a6blJSk87OmjuL777/n8OHDnDt3jlatWlGpUqVCa68QQgghhCGPH6YHFhZWpjo9FJApFaqQJsnTG272BUqFksBCAFC5cmXGjx/P/fv36dChAxEREXrrJCYmMm/ePL1ehWrVquHr68uJEyf48MMPAZm7QgghhBBPn6JWiH2UHljYl7TSe93SOsNws3GFNdysjAolBEFBQSQmJjJ//ny8vb3x9/fHx8cHc3NzIiIi2LNnDw8ePCAoKEhv26FDhxIWFkZYWBhOTk688sorRXAGQgghhHiRJSWkok5Nv7G3dbTUez1jj0ViYRVvZwosMqdGPc8ksBBaJiYmzJs3j379+rFo0SIOHDjAgQMHUKvVlC1bloCAAIYMGUKbNm30tu3VqxejR4/m8ePH9OvXDysr/acEQgghhBCFKTH2SS+ElZ253uuWtoWfCqXXY/ECpUJJYCH0vPzyy3z33Xe52sbW1paYmJg8H3PlypWsXLkyz9sLIYQQQiQ8TtZ+b21nofe6hXXG4u3CSYXSnyDvxQkspMZCCCGEEEI8FxJy6LEwNTXB3NIUKMwJ8nR/lsBCCCGEEEKIZ0zGVChre/3AAp7UWRRWYPEiT5AngYUQQgghhHguJMQ+SYWysi2awOJFniBPAgshhBBCCPFcSE5M035vYWO4lFgzt0VaqprUlDSD6+RH5kBCUSt6wcbzSgILIYQQQgjxXEjJGFhYZhVYFO7s24ZSn16UdCgJLIQQQgghxHMhJfFJoGBuZWpwHcuMI0PFFXxgkXm4WXhx5rKQwEIIIYQQQjwXkpMy9FhkFVjYZJh9uxDmsjAUWLwodRYSWAghhBBCiOeCbo9FFqlQGSbJS8xQ7F1QJBWqiBw4cIAuXbrg5uaGSqVi48aNWa47cuRIVCoVX3755VNrnxBCCCGEeHZkLN7WzFeRma2Tpfb7uKikAm+D9FgUkbi4OGrXrs0333yT7Xr/+9//OHToEG5ubk+pZUIIIYQQ4lmT8l8qlJmFCSYmKoPrZAwsYgshsDDYY/GCBBaG+4iekg4dOtChQ4ds17lx4wbvvvsuO3fupFOnTk+pZUIIIYQQ4lmT/F8qVFZpUAB2GXssHhVCj4WBIEKtVhf4cYqjIg0scqJWqxkwYADjxo2jRo0aRm2TlJREUtKTiyQmJqawmieEEEIIIYoRzXCzWRVug/RYFKZiXbw9e/ZszMzMeO+994zeZubMmTg6Omq/ypcvX4gtFEIIIYQQxYGiKBkCi6yfnVvamGmHoo25n1Dw7TDQOWGo7uJ5VGwDi2PHjrFgwQJWrlyJSmU4R86QCRMmEB0drf26fv16IbZSCCGEEEIUB2mpam1vQVaF2wAqlQpHF2sAHj9MIi2tYNOUpMeiGAoNDeXu3btUqFABMzMzzMzMiIyM5MMPP8TT0zPL7SwtLXFwcND5Erlz7Ngxhg4dSpUqVbC1tcXa2hovLy8GDBjA7t279dZPTExkwYIFNG/enJIlS2JpaUn58uXp06cPBw4cMHiMq1evolKpdL7Mzc0pV64cvXr14ujRo4V9mkIIIYR4jujMup1NKhSAY6n0wEJRK8Q+TCywNiiK8kKPClVsaywGDBhAmzZtdJYFBAQwYMAAhgwZUkSter6p1WrGjh3L/PnzMTMzw9/fn65du2Jubs6VK1fYtm0ba9euZfr06UyePBmAS5cu0alTJ/755x8qVapEr169cHJy4sqVK2zdupV169YxevRo5s2bh4mJfhzr5eVF//79gfRRwo4dO8avv/7Kxo0b2bNnD35+fk/1PRBCCCHEs8mYoWY1HP7rsQCIvpeAo4tNgbRBySJ+kMDiKYiNjeXSpUvanyMiIjh58iTOzs5UqFCBkiVL6qxvbm6Oq6sr3t7eT7upL4RJkyYxf/586tSpw/r16/Hy8tJ5PSEhga+//poHDx4AEB0dTfv27bl8+TKTJ09m6tSpmJo++UW+efMm3bt3Z8GCBTg7OzNlyhS9Y1auXJnAwECdZbNmzWLChAlMnjyZ/fv3F/yJCiGEEOK5k5ryJLAws8ihxyJDYBFzr+DqLNRZpFXJBHlPwdGjR6lbty5169YF4IMPPqBu3boGb0BF4bp06RJz5syhZMmS7NixQy+oALC2tmbcuHFMmzYNgM8//5zLly/z+uuvM336dJ2gAsDNzY0tW7bg7OzMjBkzjK53GTp0KJCekiWEEEIIYYy0lCc39Wbm2d/iZu6xKChZ9UxkFXA8b4o0sGjZsmV6Llqmr5UrVxpc/+rVq4wZM+aptvFFsXLlStLS0hgxYgRlypTJdl1Ly/Rh2lasWAGgTYsypEyZMgwbNozU1NQsP9esmJkV20w9IYQQQhQzqclPbt5Nc9FjUZCBRVajP70oPRZy52ak3lt7cz/hflE3I0ulrEuxrvO6PG8fFhYGgL+/v1HrR0ZGcvPmTcqVK5djalrr1q2ZPXu29hg5Wb58OQDNmjUzan0hhBBCCJ1UqBx6LOxKWGFiqkKdpjylHgsJLEQG9xPuczf+blE3o9Dcvn0bAHd391ytb8w8IZp1bty4offapUuXtDUWmuLtffv2UaZMGT7//HOj2iKEEEIIkbHHwswi+8DCxESFQylrou7EE3MvAUWtoDIxfnqDrGTVM2FoNu7nkQQWRiplXaqom5Ct4t4+MDyd/eXLl7U1Gxqurq6EhoZSuXLlp9U0IYQQQjzj0lIz1lhknwoF4FQ6PbBITVETF52EXQmrfLdBeiyEUfKTZvQscHV15cKFC9y4ccOoUbdcXV0BjCrI1qxTrlw5vdcCAgLYsWMHAPfu3WPVqlV89NFHdO3alb/++gs7O7vcnIYQQgghXlA6NRY5pEIBOJa2AdJHuoy6m1C4gcULUmNRbCfIE0+Xr68vAMHBwUat7+HhgZubGzdu3CA8PDzbdTX7fOmll7Jdz8XFhbFjxzJx4kTOnz/PpEmTjGqLEEIIIURaLmosIL3HQiP6bnyBtCHL4m0ZFUq8SAYPHoypqSlLly7l3r172a6blJQEwBtvvAHAp59+muW6d+/e1RZjDxw40Ki2TJw4ETc3N7799luuXr1q1DZCCCGEeLGlpuSlxyJd1N2CKeCWHgshSJ+obvz48dy/f58OHToQERGht05iYiLz5s3TFluPGzcOLy8v1qxZw/Tp00lLS9NZ//bt23Tr1o0HDx7QtWtX6tWrZ1RbrK2t+eijj0hJSWHGjBn5PjchhBBCPP90i7dzrrFwLIQeC5160gy14FJjIV44QUFBJCYmMn/+fLy9vfH398fHxwdzc3MiIiLYs2cPDx48ICgoCAAHBwd27NhBx44dmTp1KqtXryYgIABHR0euXLnCtm3biI2NpXbt2qxZsyZXbRk+fDizZ89m9erVTJw40eCEfUIIIYQQGrkZbhbAvoQVpmYmpKWqC6XHwszcRBvsSGAhXjgmJibMmzePfv36sWjRIg4cOMCBAwdQq9WULVuWgIAAhgwZQps2bbTbVK5cmVOnTrFkyRLWr1/Pjz/+SFRUlPb1Tz75hClTpmBhYZGrtlhZWTFhwgTeffddpk2bxurVqwvqNIUQQgjxHErNxczbACoTFQ4u1jy6FVdgQ85mTHkyMzfVBhZZ1V48bySwEHpefvllvvvuO6PXt7a2ZsyYMTqzos+dO5dx48Zx8eJFgzNoe3p6oijZ/5K98847vPPOO0a3QwghhBAvrrRcpkJBegH3o1txpKWqefwoEYeS1jlvlI2MPRMZ6zykx0KIfBg7diwXLlzgu+++w8HBgWXLlhV1k4QQQgjxHMuYCmVM8TboFnBH303Id2ChZEqF0pDAQoh8WrRoEVWqVCEhIYELFy5QrVq1om6SEEIIIZ5TuU2FAv0hZ8tXd85XG3RSoTLM/m1okuDnkQQWotCYm5vz0UcfFXUzhBBCCPEURd+Lx9LaHCs786d63NyOCgUFP+SsbiqUqcHlzzMJLIQQQgghRIG4dvYBWxaewtLGjH6BjbFxyN3gLfmRlpr/Hov80i3efvFSoWQeCyGEEEIIUSAOrPsHgKT4VM4dvPFUj52anKHGwsK4W1xbR0ttAFAQPRY6NRY6qVASWAghhBBCCGG06Aw358mJadmsWfDS/quxUKnAxMhhY1UmKu1EeTH3E/IdAKSlZZj920x6LIQQQgghhMg3c0vj6hwKiqZ429TCFJXK+PkoHEqlBxbqNIXYR4n5aoOiU7z95PwVCSyEEEIIIYTImxymqypwmlQoY+srNBxdntRZxNzPX2CRdY3FizEqlAQWQgghhBCiwKWlPN1UKE2PRW4DC02PBUDMvfzVWaizmsdCaiyEEEIIIYTIm4zDvz4NmhoLY4ea1cjYYxF9v+ACixdx5m0JLIQQQgghRIHLOGHdUznef4GMsbNuaxRkj0VWNRbSYyGEEEIIIUQepT7FVChFrWjnschtKpR9SSs0td4x0mORLxJYCFHEWrZsmavRK0TB2bhxIyqVij/++KOom6I1ePBgVCoVV69eLZLjx8TEMHr0aCpWrIi5uTkqlYqTJ08SEhKCSqUiMDDQ6H2Fh4djZmbGt99+W3gNFkIUG0qmau20p5gKlZpxcjwj57DQMDUzwa6EFQDRhVVjIYGFeFEdO3aMoUOHUqVKFWxtbbG2tsbLy4sBAwawe/dug9ukpqayYsUKOnbsiKurKxYWFjg6OtKgQQMmTZpEZGSkzvqenp6oVCrtl6mpKaVKlaJdu3Zs2rQp3+eguTnL6ut5c/XqVVQqFYMHDy7qphSqhQsXMmTIEGrVqoWZmRkqlYqQkJA87SslJYXx48cTEBBA06ZNC7ahz7Dx48fz1Vdf4ePjw8cff8zUqVNxdXXNcn1PT088PT0Nvubt7U3fvn2ZNm0ajx8/LqQWCyGKi8w3z08zFSpjEGNmnvthbh3+q7NIik8lMS4lz+1QqzMGOBlSoV6QUaHMiroBovhQq9WMHTuW+fPnY2Zmhr+/P127dsXc3JwrV66wbds21q5dy/Tp05k8ebJ2u8jISLp168apU6coU6YMbdu2pXz58sTFxXH8+HFmzZrF3LlzOXPmDJUrV9ZuZ2pqyqRJkwBITk7mwoULbN68md27dzN37lw+/PDDfJ/T6NGjcXJyyvd+CtPq1auJj48v6mY8E9577z0AypYti4uLC7dv387zvtasWcPFixdZvHhxQTXvubB161aqVq3Kli1bdJY7ODhw/vx5SpUqlav9jR8/nrVr1/LVV1/xySefFGRThRDFTFqmQOJppkJlPFZuU6EAHEtZcSM8/fuY+wlY2ZrnqR06qVAZJshTXpAaCwkshNakSZOYP38+derUYf369Xh5eem8npCQwNdff82DBw+0yx4/fkxAQADh4eGMGzeOGTNmYGlpqbPdpUuX+OCDD4iNjdVZbmZmppdWsWvXLtq3b8+UKVMYNWoUNjY2+TqnMWPGZPk0tbioUKFCUTfhmbF161bq16+Pq6srI0eOZMmSJXne16JFiyhfvjytWrUqwBY++27evImfn5/echsbG6pVq5br/dWsWZNatWqxbNkyJkyYgImJdJQL8bxKS80UWDzNVKgMQY1pLlOh4EmPBaTPZVHawyFP7dCZx8JCUqHEC+rSpUvMmTOHkiVLsmPHDr2gAsDa2ppx48Yxbdo07bK5c+cSHh5O//79mTNnjl5QAVC5cmU2b97MSy+9lGM72rVrh7e3N/Hx8Zw9ezZ/J1UAMuaVHzx4kJYtW2Jvb4+TkxM9e/bk0qVLBrc7c+YMvXr1onTp0lhaWlKxYkXGjBmjE5RpGKqxWLlyJSqVipUrV7Jr1y6aNm2KjY0NJUuWZNCgQTr7WblyJRUrVgRg1apVOilfmjShxMREvvjiC2rXro2joyO2trZ4enrSq1cvTp06la/36Pjx47z66qtUqFABS0tLXFxcaNCgAZ9++mm+9mtIp06dsk3LMdaZM2c4evQoPXv2zPa9zyyrOgOVSkXLli25c+cOgwYNolSpUlhbW9O4ceMsU7XOnj1L586dsbe3x9HRkY4dO3LmzJls271p0yZat25NiRIlsLKywsfHh7lz55KWpvtUMOM5bNmyBV9fX+zt7bMNsjXpg4qisH//fu011LJlS4Pnrkm/i4yMJDIyUue6y/z+9OrVi8jISPbt25ft+Qkhnm2ZA4vMPxfqsTMEFmZmeQgsMowMFX0v71kEygs+j4X0WAgg/UYkLS2NESNGUKZMmWzXzRg8fP/99wBMmTIlx2NYWFjkqk0FUQuxdetWHj9+jKWlJdWrV6d169a5bgfAoUOHmDlzJu3bt+fdd9/l7Nmz/O9//yM0NJRDhw5RqVIl7boHDx4kICCA5ORkXn31VTw9Pfnzzz9ZsGABW7du5dChQ0ank2zevJlt27bRpUsXmjZtyoEDB1i9ejWXL1/m4MGDANSpU4fRo0ezYMECateuTffu3bXba24kBw0axC+//EKtWrUYMmQIlpaWXL9+nX379nHkyBFq166d6/cE4OTJkzRt2hRTU1O6deuGh4cHUVFRnDt3jqVLlxbb1Jfg4GAAGjduXGD7jIqKolmzZjg6OjJgwADu3r3LunXrCAgI4NixY/j4+GjXPXPmDL6+vsTGxvLKK69QpUoV/vrrL3x9fbP8LCZMmMCsWbMoV64cr7zyCo6OjoSGhjJu3DgOHz7Mr7/+qrfNr7/+yq5du+jcuTNvvfUWMTExWba/e/fueHp6Mm3aNDw8PLT1OlkFI05OTkydOpUvv/wSSO8d1NAEIxpNmjQB0t/31q1bZ9kGIcSzLXNNRdH1WOS+xqKgZt/WLd42Nbj8eSaBhQAgLCwMAH9/f6O3iYyM5N9//8Xd3Z0qVaoUSDuCg4MJDw/H1taWGjVq5Ht/7777rs7PZcuWZcWKFQQEBORqPzt37mTx4sWMGDFCu2zJkiWMHDmS0aNHa/PR1Wo1gwcPJj4+nh07dugcZ/z48Xz++ed89NFHfPfdd0Ydd8uWLYSEhODr6wtAWloabdq0ISQkhEOHDtG4cWPq1KnDmDFjWLBgAXXq1NF7WhwdHc2vv/5K/fr1OXz4MKamT/7QpaWl5auods2aNSQlJbFx40a6deum81rm3pmQkJBcFVp7enoWWjG65nqvX79+ge3z1KlTvPXWWyxcuFCb7uPv78+bb77J119/rVPL8c477xATE8PatWt5/fXXtcsnTpzIzJkz9fa9e/duZs2aRUBAABs2bMDW1hZIH4HlrbfeYvHixWzYsIGePXvqbLdjxw527txJmzZtcmx/9+7d6d69O9OmTcPT0zPH0Z+cnJwIDAzU9uxkt/7LL78MPHnfhRDPJ71UqKdYY5GWzxoL3R6LvI8MlbFnwvQFTIWSwMJIET1fJfX+/aJuRpbMSpWi4ob1ed5eUwTr7u5eqNtklJqaqr0ZSUlJITw8nE2bNqEoCjNmzMDa2jr7HWTDz8+PTp060bhxY1xcXPj333/56aefmDlzJl27diUsLEx7s2OMqlWrMmzYMJ1lw4YN44svvmDbtm3cu3cPFxcXwsLCuHz5Mh06dNALXqZMmcJ3333Hjz/+yKJFi4zqOenXr582qID0gvdBgwYREhLCkSNHjHrirklvsbKy0stvNzU1LZDidkOfVcmSJXV+DgkJ0Umjy0mLFi0KLbD4999/AXLsncsNW1tbZs+erfMeDxo0iJEjR3LkyBHtsmvXrrF//35q1aqlE1RAemCxaNEioqKidJZ//fXXACxdulQbVED6Zztr1iyWLFnCTz/9pBdYdOvWzaigorA5ODhgZWWlfd+FEM8ndWqm4WZTn97NtE6PRR4CCytbcyxtzEiKT83XXBY6gYWZCagARVKhRCap9++TeudOUTfjuZKWlqa90TQxMaFEiRL4+/vz9ttv07Vr13zt+4033tD5uXLlykyePJly5coxdOhQpk+fzubNm43en6+vr95NuYmJCb6+vly8eJFTp07Rpk0bTpw4AeinggDY2dnx8ssvs2vXLsLDw6lZs2aOxzX0RF0TyGW++cyKg4MDHTt2ZPv27dSrV4/XXnuNli1b0qBBA8zN8zbqhUavXr348ssv6dGjB71796Zt27b4+flRrlw5vXUDAwNzNQdCYXrw4AGmpqbY29sX2D6rVq2KnZ2dzjIzMzPKlCmj81lpalqaNWumtw87Ozvq1Kmj17Nz6NAhbG1ttamHmVlbW3PhwgW95Q0bNtT5+erVq3q1I05OTjppTIXF2dmZ+8X44YwQIv8yP5VXP8Uai1Sd4WbzVkLsUMqae9ceE/swkbQ0Naamud9PxvfAxESFiYkKdZoiw80KXWa5HGLxactv+1xdXblw4QI3btzA29vb6G0Abty4kadjWlpakpiY9zzGvBg0aBBvv/12rlMysnqyrVkeHR0NoM1hz2r9smXL6qyXEwcH/VEpzMzSf20zF+xm59dff+Wzzz7jxx9/1NY9ODg4MGTIED777LM8j77VqFEjQkJCtPtesWIFAA0aNGD27NnFdsQla2tr0tLSSElJyXdwpWHos4L0zyvjZ6W5VkqXLm1wfUPXzsOHD0lNTc22xycuLi7HfV29elVvHx4eHk8lsEhISMj3KG9CiOIt881z5uFnC1PGNKy8zGMBTwILRYHHDxJxKp37v1lKhvfAxFSFiWl6YCHDzQod+Ukzehb4+voSEhJCcHCw0XUWHh4elCtXjuvXr3Px4sUCq7MoTJrUn0ePHuVquztZ9FZpljs6OgJPbi6zWl+TPpbVTWhhsbGxISgoiKCgICIiIti3bx+LFy9mwYIFJCQk5GvY1ubNm/P777+TkJDA4cOH2bJlC99++y2dOnXizJkz2sL24lRj4eLiAqTfsGe++db0TKWmpuptpwkK8kNzrdy9e9fg64auHQcHB1QqVa6f+GceAKFly5Z6M+M+DWq1mujo6AKpmxJCFF+Zeyye5qhQGXss8pIKBZkLuBPyFFikZeyxME3vsQCpsRAvmMGDBzNr1iyWLl3KmDFjtDdehiQlJWlHhtKkFQUFBbFq1apsj5GcnJynEZkK0rVr17h9+7bRvTIaYWFhqNVqnXQotVrNH3/8gUql0o7kU7duXSD9Jnr8+PE6+4iLi+Po0aNYW1vn+vg50RRkG9OLUbFiRSpWrEjfvn0pXbo0mzdvzldgoWFtbU3Lli1p2bIlTk5OTJkyhd27d2sL3otTjUXNmjXZs2cP4eHheoFFiRIlAMM9cZpUt/zQXCuaUb0yio2N5eTJk3rLGzVqxO+//14sA3hTU1OSk5OzXefixYuo1Wqj0v+EEM+uzHUEipLei2GSh5Si3NLtschrKpSV9vuYPBZwZ+ylMTUz+e/c016YwELmsRBAeg3C+PHjuX//Ph06dCAiIkJvncTERObNm6eTJz927Fi8vb1ZvXo1EydOJCkpSW+7iIgIunfvzrlz5/LcPk9PT1QqFVevXs1x3du3bxu8KYyKitLeqPbr1y9Xx//nn39YtmyZzrJly5bxzz//0KlTJ20g5uvri5eXF7///jt79uzRWT8oKIgHDx7Qt2/fAg+wSpQogUql4vr163qv3bt3z+D8CI8ePSIpKQkrKyud5bl5r//880+D6Wyap+4Z9x0YGIiiKEZ/5aZ3I7datGgBwOHDh/Veq1+/PiqVip9//lnn3C5evMiCBQvyfewKFSrg5+fH6dOn+eGHH3Re++yzzwzWzmhmHH/jjTcMzoVy+/Ztzp8/n++25YWmdiK7tEbN+6x534UQzydDN89Pq4A7NfnJg7WC6LGIzuOQsxkDHFNzE1Sm0mMhXlBBQUEkJiYyf/58vL298ff3x8fHB3NzcyIiItizZw8PHjwgKChIu429vT07d+6kW7duzJw5kxUrVtCuXTvc3d2Jj4/nxIkThIWFYWZmxty5c/PcNrU6/RdVU1+QnQsXLtC2bVuaNm1KlSpVcHFx4fr16+zYsYMHDx7g7++v15uQk4CAAN577z22b99OjRo1OHv2LFu2bKFUqVI6N5smJiasXLmSgIAAOnbsyGuvvYaHhwd//vknISEheHl5MWvWrNydvBHs7Oxo0KABBw4cYMCAAVSpUgUTExMGDBjAo0ePqFu3LrVr16ZWrVqUK1eOBw8esGnTJlJSUhg7dqzOvnLzXs+ePZt9+/bh5+dHxYoVsbKy4vjx4wQHB1OpUiV69OhRoOc5a9YsbZHyn3/+qV2mKUjWDJmak9atW2Nvb8/u3bsZN26czmtubm707duXH3/8kfr169O+fXvu3r3L//73P9q3b8+GDRvyfR7ffPMNvr6+DBw4kI0bN2rnsThy5AjNmzcnNDRUZ/327dszefJkZsyYQeXKlWnfvj0eHh48ePCAS5cuERoaSlBQENWrV89323LL39+fo0eP0qFDB5o3b46FhQV+fn46s3fv3r0bMzMzOnfu/NTbJ4R4egwVKKelqjG3zFvNQ24UTI9FhlSovPZYpOr2WJhqAgupsRAvGhMTE+bNm0e/fv1YtGgRBw4c4MCBA6jVasqWLUtAQABDhgzRG77Sw8ODI0eOsHbtWn755Rd27tzJw4cPsbKyokqVKowfP56RI0dSvnz5PLUrKiqKGzdu4Ovra9TQtl5eXgwePJgjR46wceNGoqOjsbOzo1atWvTr148333xTZy4HYzRu3JhJkyYxadIkvvrqK0xNTenevTtz5szRmRwP0kf7OXToENOnT2fXrl1ER0fj5ubG6NGjmTRpktGT4+XWmjVreP/999m6dSvR0dEoikKzZs20c1vs3btXGxyWKlWKevXqMXr0aNq3b6/dR27f61GjRuHo6Mjhw4fZv38/iqJQoUIFJk6cyPvvv1/gtSQ7duxg//79Ost27typ/d7T09OowMLOzo7+/fuzdOlSbt26pS2q11i+fDmlSpVi3bp1fPPNN3h7e7N06VLc3NwKJLDw8fEhLCyMjz76SDvXRLNmzQgLC2Pu3Ll6gQXA9OnT8fPz46uvviI4OJioqChKlixJxYoVCQwM1Bu69mmZPHkyjx49YuvWrYSGhpKWlsbUqVO1gUV8fDwbN26kc+fOuLm5FUkbhRBPh+Eei6dTZ1EQNRZ2zlbpozipFaLzOOSsXo+FtsbixRgVSqUURSXfUxQTE4OjoyPR0dHZ3uQkJiYSERGhfeoqio+tW7fSpUsXtm3bRseOHZ/qsUNCQmjVqhVTp04tNkOlFqaifK+ftvDwcHx8fAgMDCy2M4Q/D5YvX86wYcPYv3+/Ti+GeH7I/0+hcfHIHXZ9d1Zn2YCgJjo9AYXljw2XOLH7GgA9PqyHWxWnPO1n7eQ/ib6XgLmlKcO+9NMbBCMnG+Yc5faV9JEfR33bih+nHiL6XgKWtma8+cWz+TfQ2HtpkBoL8QwIDQ2lTp06z/2NbnHwIr3X3t7evPnmm8yfPz9fs4+LrKWmpvLZZ5/RtWtXCSqEeAFklQr1NOR3gjwNh//qLFKS0kiMTcn19pqaEs0cFiYvWI2FBBai2Js9e3aBjMYjcvaivdfTpk3jnXfeMapQXeTetWvXGDhwIPPmzSvqpgghnoK0IkyFSkt5Uryd1xoLAMcMvSvReaiz0JyvyX9t0AQWygsSWEiNhRDihVW6dOkXIsWtqFSqVEneXyFeIIYmgUtLeUqjQhVUj0Up3bksXCs55qkdpmbpAYVmqN0XpcdCAgshslFUE4oJIYQQz5qiLN7OOH9EXmfehkxDzuahx0KdqhlZMT2g0BZvq9OHUs9tzcazRlKhhBBCCCFEvhXpqFAp+R9uFsDBJcMkeXkYGUpzvppeE81ws2C4R+d5I4GFEEIIIYTIt7TiUrxtUTCpUHnpsXiSCvVfYJEhyMnYxueVBBZCCCGEECLfijYVKkPxtlneb28trMywcbAAIOpOfO7bkanHwsziSVpWxrk2nlcSWAghhBBCiHwrDqlQJmYqbV1DXjm72QKQ8DiFhMfJRm+nKArq/4ab1fRYmGXoPUlNTjO43fNEAgshhBBCCJFvBuexeEqjQmmKt/PTW6HhXNZW+/3Dm3FGb6cJKiBjYJGhx0JSoQrXgQMH6NKlC25ubqhUKjZu3Kh9LSUlhY8++oiaNWtia2uLm5sbAwcO5ObNm0XXYCGEEEIIYZDB4Wafco9Ffoaa1SiRMbC4ZXxgkZrhXDXDzWYsJJcei0IWFxdH7dq1+eabb/Rei4+P5/jx40yePJnjx4/z22+/ER4eTteuXYugpUIIIYQQIjtFOUGeJrDIz1CzGppUKMhdYJGmM5dGejtetBqLIp3HokOHDnTo0MHga46OjuzevVtn2ddff03Dhg25du0aFSpUeBpNFEIIIYQQRigO81gURI9FdqlQ965d5caFc6AoVKxbH8fSrk/aYKjH4gWrsXimJsiLjo5GpVLh5OSU5TpJSUkkJSVpf46JiXkKLRNCCCGEeLEZCizUT63HIv2m3SwfQ81qWNmaY+NgQXxMMo9upwcWyQnx7PluEedD9z1ZUaWidpv2tBj4JuYWlpl6LNLbYf6C9Vg8M8XbiYmJfPTRR/Tt2xcHB4cs15s5cyaOjo7ar/Llyz/FVgpR+AYPHoxKpeLq1atF3RTxFG3cuBGVSsUff/xR1E0pFEePHqVt27a4uLigUqmoU6cOkLfrfdKkSdjb23Pnzp3CaawQwiBDxdtPo2BZUeuPxpRfGUeGin0Yx2+zAnWDCgBF4dTu39k4ZwapycmkJD3pkTC3TH92r9NjkfL891g8E4FFSkoKvXr1QlEUFi1alO26EyZMIDo6Wvt1/fr1p9TK58exY8cYOnQoVapUwdbWFmtra7y8vBgwYIBeeppGamoqK1asoGPHjri6umJhYYGjoyMNGjRg0qRJREZG6qzv6emJSqXSfpmamlKqVCnatWvHpk2b8n0OX331FZ06dcLT0xNbW1ucnJyoXbs2gYGBPHz40OA2arWahQsXUrNmTaytrXFxcaFv375cuXIl3+0pjlQqFS1btizqZhS6I0eO0LFjR5ycnLC1taVx48b88ssvud5PUlIS06dPp0qVKlhZWeHm5sbw4cO5e/eu3rpXr17Vub4zfwUGBubq2CkpKYwfP56AgACaNm2a67YXdzExMXTq1Im//vqL3r17M3XqVEaOHJnl+iEhIdm+jx9++CEmJiZMnTq1kFoshDDEcCpU4Y8KlbFouiB6LEA3HWrvyuXp6U+ApY0tzfoMpOlrr2NmYQnAtb9PsmPRlyQnpmi3MbeUGotiSRNUREZGsnfv3mx7KwAsLS2xtLR8Sq17vqjVasaOHcv8+fMxMzPD39+frl27Ym5uzpUrV9i2bRtr165l+vTpTJ48WbtdZGQk3bp149SpU5QpU4a2bdtSvnx54uLiOH78OLNmzWLu3LmcOXOGypUra7czNTVl0qRJACQnJ3PhwgU2b97M7t27mTt3Lh9++GGez+W7774DoEWLFri6upKYmMjhw4eZNm0a33//PX/99Reurq4624wYMYLly5dTo0YN3nvvPW7evMkvv/zCrl27OHToEFWqVMlzewrSzJkz+fjjjylXrlxRN6XY27dvHwEBAVhZWdGnTx/s7e3ZsGEDvXv35vr160ZfY2q1mm7durFz504aN25Mz549uXjxIsuXLyc4OJhDhw7h4uKit13t2rXp3r273vLcBnRr1qzh4sWLLF68OFfbPSv++usv7t69y6effsrEiRN1XsvL9V6iRAnefPNNFixYwIQJE/Dw8CjoJgshDCiqGgudFCSz/Bdvw5MeC3XqbS4eTn+oampuzquTgnD1Sr8f8KhVh/VBk0lJSiT8jwPYlawCOAIZAosMNR8ZezSMpaSlEX/4MNYvv4yJhUV+TumpKNaBhSaouHjxIvv27aNkyZJF3aTn2qRJk5g/fz516tRh/fr1eHl56byekJDA119/zYMHD7TLHj9+TEBAAOHh4YwbN44ZM2boBXaXLl3igw8+IDY2Vme5mZmZ3hPHXbt20b59e6ZMmcKoUaOwsbHJ07kcPnwYKysrveWTJ08mKCiIL774gs8//1y7fN++fSxfvhw/Pz92796NxX+/vP369aNjx46888477Ny5M09tKWhly5albNmyRd2MYi81NZVhw4ZhYmLCgQMHtKk1U6ZMoWHDhkycOJFXX33VqJvOVatWsXPnTvr27csPP/yASpVelLd48WJGjRrFpEmTWLJkid52derUyXXvhCGLFi2ifPnytGrVKt/7Ko40w4i7ubnpvZbX671///7MmzeP5cuXM2PGjHy3UQiRs6IKLDL2BBRUj4VLBXsURSElYb92mV+/wdqgAsCtanU6vP0Bm+d9BsDJHWsxsxmAysRBG1hYWD251U5JSjX6+EkXLxL12/+I2bqV1Hv3cP96IfZt2uT3tApdkaZCxcbGcvLkSU6ePAlAREQEJ0+e5Nq1a6SkpPDqq69y9OhRfvjhB9LS0rh9+za3b98mOdn4WRCFcS5dusScOXMoWbIkO3bs0AsqAKytrRk3bhzTpk3TLps7dy7h4eH079+fOXPmGOwtqly5Mps3b+all17KsR3t2rXD29ub+Ph4zp49m+fzMRRUALz22mtA+vlmtGzZMgBmzJihDSogfeSyli1bsmvXLq5du5bjcTUpMIMHD+bs2bN06tQJJycn7OzsaNeuHceOHTO4XWRkJEOHDqVcuXJYWFjg7u7O0KFDDR7TUM55xtQQTa66vb09jo6O9OjRw+C6APv379dJ0Vm5ciWQ/oR++fLlNGzYEGdnZ6ytrXF3d6dLly6EhITk+D5k5+LFiwwZMoSKFStiaWmJs7MztWvXZsyYMShKwXWZ7927l8uXL9OvXz9tUAHpI85NnDiR5ORkVq1aZdS+NNfHzJkzte8dpPdyVapUiR9++IGEhIQCa3tGZ86c4ejRo/Ts2VPn2BmtWLGCRo0aYWdnh52dHY0aNdJ+lhqhoaGoVCreeOMNg/u4e/cu5ubm+Pr66ix//PgxU6dOpUaNGlhbW+Pk5ERAQAAHDx7U20fLli1RqVQkJiYyadIkvLy8MDc3zza4UqlUDBo0CIAhQ4boXYuZr/fAwEBtgDVt2jSd6zfjdV63bl0qV66s9z4IIQqPoRoL9VOosUhLfdITUJA1FkraFZTUGwCUKFuO2u066a1XpVFTavq3S29HShIp8QeAJz0WFjZPAouk+OwDi7SYGB79/DMRvXpzpUtXHq5YQeq9ewBEb9ma/5N6Coq0x+Lo0aM6T+A++OADAAYNGkRgYCCbN28G0LkpgPSnyy9CbvjTtHLlStLS0hgxYgRlypTJdt2MwcP3338PpD8FzolFLrvwsrqJyo9t27YB4OPjo7M8JCQEW1tbvZsqgICAAEJCQti/fz8DBgww6jhXrlzB19eXevXqMWrUKCIjI/n111/x8/Nj7969NGrUSLvuP//8Q7Nmzbh37x5dunShRo0anDlzhu+//54tW7Zw8OBBqlatatRxjxw5wpw5c2jVqhUjRozgxIkTbNy4kb///pszZ85gZWWFp6cnU6dOZdq0aXh4eDB48GDt9prftQkTJjBnzhy8vLzo168f9vb23Lhxg4MHD7Jnz548//7dvHmThg0bEhcXR6dOnejduzdxcXFcvHiRb7/9lrlz52JmVjB/ljQBULt27fReCwgIANIDq5xo0ui8vb31ejdUKhVt27ZlyZIlHD16lObNm+u8fvPmTb755huio6MpU6YMLVu2NBi0Zyc4OBiAxo0bG3z9vffeY+HChZQrV46hQ4cCsGHDBoYMGcKJEydYsGABAM2aNcPT05MNGzbw7bff6gXfP/30E6mpqTrX+MOHD/Hz8+Ps2bP4+voycuRIYmJi2LRpE61ateLXX381mOrVs2dPTp06Rfv27XFycqJixYpZnt/UqVM5efIkmzZtolu3btprMPPffY2WLVty9epVVq1aRYsWLXSuxcwjBjZp0oQ1a9bwzz//GP07JITIO3URTZBXGD0WZuamKKlHtT837TUA0yz+P/n1f4NLRw+TEBONOuUf0lKuY26Z/jDV0jpDYJGgH1goikLCiZM8+uknHu/ahZJhZFMAzM2x8/PDsUvnAjirwlekgUXLli2zfUJZkE8vRfbCwsIA8Pf3N3qbyMhI/v33X9zd3Qus/iA4OJjw8HBsbW2pUaNGvve3dOlSbt68yePHjzl+/DghISHUrVtXG8RC+kSNt27dwsfHB1NT/dxMzbldvHjR6OOGhoby8ccfM3PmTO2yQYMG0b59e4YNG8bp06e1y0eOHMm9e/dYsmQJw4cP1y7/9ttvefvttxk1apT25jIn27dv5+eff6Z3797aZQMHDmTNmjVs3LiRPn364OnpSWBgINOmTdN+n9ny5ctxc3Pj9OnTeuloWRW/G2PDhg1ERUXx5ZdfMnr0aL39ZgwqTp48ycaNG43et5OTE2PGjNH+rPm8DF2brq6u2NnZGfWZXr58GbVaneU1nvH6yBxY7N69W2fAA5VKxeuvv87ixYuxtbXFGJrfzfr16+u9duDAARYuXEj16tX5888/cXRMz+0NDAykcePGfPXVV7z66qs0b94clUpF//79CQoKYvPmzfTq1UtnX2vWrMHCwkJn+bvvvsvZs2dZtmwZb775pnb5zJkzefnllxk+fDjt27fXC1Ju3rzJ6dOncXZ2zvH8AgMDWblyJZs2baJ79+46ga4hmkBi1apVtGzZMtvekJdffpk1a9YQFhYmgYUQT0FRFW9nDF7MCqjH4uY/F0hJSO+tUJm6YF8q63sSK1s7mvcdxK4lXwGQmhCCmUV7ACwz9FgkZ+ixUCcmErNtGw9/+IGkc+f19mn5UnWceryCQ+dOmJUoUSDn9DQU6xqL4uSXz44QH1N8U7BsHCzoNbFBnre/ffs2AO7u7oW6TUapqanam4KUlBTCw8PZtGkTiqIwY8YMrK2t87TfjJYuXaqTftSuXTvWrFlDiQy/pNHR0QDam7LMNAMGaNYzhpOTE5988onOsoCAAFq3bk1wcDDHjh2jfv36XLt2jX379vHSSy8xbNgwnfVHjhzJwoUL2bt3L9evXzdq6GQ/Pz+doALgjTfeYM2aNRw5coQ+ffoYfQ4WFhYGAy1jbhZzYuizzbzfkydP6qTd5cTDw0MnsDDmczXmM83L9WFjY8PkyZPp3r07Xl5eqNVqjh8/zieffMLatWuJj49nw4YNRp3Xv//+C2CwJ1GTyhUYGKjTvhIlSjB16lRef/11Vq5cqQ14BgwYQFBQEGvXrtUJIM6fP8+xY8fo3r279nO4f/8+69atw9/fXyeoAChdujTjxo3jvffeY8+ePXTurPskbdq0aQVyneSX5j3TvIdCiMJlKBXqafdYFMQEeQAnd217sk/Lety6HE25qlnf4Pu0bEPYL78R9+hflLR73L1yEq+6AVhk6rFIuXWLh2vXEr1+A2mZ/geZOjri0LUrTq/0wKp69QI5j6dNAgsjxcckExeVlPOKwmhpaWnaG0cTExNKlCiBv78/b7/9Nl27di2QYxw9mt6Nef/+ff78808+/vhj6tWrx/bt26lVq1aBHMOQunXrYmdnp7e8efPmBAcHc+LECerXr6+tL2rRooVe6peJiQl+fn5cuHCBkydPGhVYGHqqrQn8oqKijG5/nz59+Pbbb/Hx8aFPnz60atWKJk2a5DvY69KlCxMmTODtt98mODiY9u3b06JFCypVqqS37uDBg3N8el1clS5dmunTp+ssa926NU2aNKFevXr89ttvHD9+nHr16uW4rwcPHmBqaoq9vb3eaydOnAAMjzKlSTPVXGMAVatWpWHDhuzYsYP79+9TqlQpANauXQugkwZ15MgR0tLSSEpKMtgroOntuXDhgl5g0bBhQ52fN27cqNMOTZsLO6U1Y5AkxLPu3rXHXD5xl+pNy+LokreBTQpb0RVvP6mxyDi8a14lJ8Rz8a//5gxSWWJq4c2tS9k/iFKZmFDWuz2XDi0H4Nz+/9GoRxvMLU1RmahQ1AqxFyO51HYgpOqmRFn5+FCi/+s4dOiAyTM+sqkEFkaycSjeQ3zlt32urq5cuHCBGzdu4O3tbfQ2ADdu3MjTMS0tLUlMTMzTtrlVqlQpunTpQp06dahSpQrDhg3j8OHDwJMn0Vk9vdbM3p7VE2tDsqpT0SzXHEuz76zW14yGY+wM8oaGY9akF6WlGT/M3YIFC6hYsSIrVqwgKCiIoKAgrKys6NWrF1988YX2hjS3PD09OXToEIGBgWzfvl07n0S1atWYPn26tri+IBjzuZYwonu5IK8PGxsbBgwYwKRJkwgLCzMqsLC2tiYtLY2UlBTMzc31jm1iYmJwqNsyZcqgUqn0rp0BAwbw119/sW7dOt5++20UReGHH36gRIkSdOr0pDBRk/IWFhamTccyJC4uzuCxM9q4caPBQvnCDiw0BfV5HV1OiOJky8KTJDxO4cqJe/QLNFxzVdSKKrBISc44MV3+A4t/DoWR+l+tg6XtS6hUZty+HIVarWBiknX9p6WtFyrTsihpt4i68y/hf4TiaeeEuTqRZCxJik3SBhUqc3PsO7THuX9/rAvxQefTJoGFkfKTZvQs8PX1JSQkhODgYKPrLDw8PChXrhzXr1/n4sWLxWaeh+yUL1+e6tWrc+TIEeLj47GxscHW1payZcsSERFBWlqaXvpPdrn6Wclqxl/Ncs1NqCYQyGp9TbpZTvO3FDQzMzPGjh3L2LFjuXnzJvv372fFihWsXr2a27dv52voXR8fH9avX09KSgrHjh3j999/56uvvqJ37964ublpC+jzW2ORsfYhc0/O7du3iY2N1XuybkilSpUwMTHJsh4jt9eHJigzdENuiCZoePjwod4Nu4ODA2q1mnv37lG6dGmd1+7evYuiKHrXTp8+ffjggw9Yu3Ytb7/9NgcOHCAyMpIRI0boDMyg2e7DDz9k7ty5RrVVI3Pv28qVK4tkdCZNcGQo8BLiWaKoFRIep0++9uh2fBG3JmuawMLERIVaUUDRnWPCGIqicOP8WW6En8OhdBkqv9wIc0vDIz1q6BZv5z+wOHdgr/Z7N+/G3LoCyYlpPLgRi0t5/d5jjaT4VMysfUmJXQ/Aga/noT55EdNGgWDtQqqZNSaOjpTo1xfn11/HLI8P6YozCSwEkJ52MmvWLJYuXcqYMWOy/UeclJSkvQEZOnQo06dPJygoKMehO5OTk3M9MlRhuHXrlna2b40WLVrw888/ExYWhp+fn876mpvozMuzc+LECWJjY/XSoUJDQ4H0VCl4MvLNgQMHUBRF54ZMURQOHDigs15BMjExMaoXw83Njb59+9K7d2+8vb3Zs2cPCQkJ+U6LMjc3p3HjxjRu3JjKlSszcOBAtm7dqhNY5KfGokWLFsycOZNdu3bp1ZZoPtMWLVrkuF9ra2saNmzIoUOHiIyM1BkZSlEUdu/eja2tLS+//LJR7dT0lHl6ehq1fs2aNdmzZw/h4eF6gUXdunU5ceIEISEhesXYmlGxMl87pUqVon379mzZsoVLly5p06D69++vs16DBg1QqVT8+eefRrXzadL87uZ0/YaHhwPp76EQz7LkTBOrpSSlFciT+YKmqbEwMVWhQkVaijpXxdsJsY/ZtmAOkadPaJfZl3Sh29hPKFOpcpbbZZx4Lr+jQkXfvcP1c38D6UPMVqpXk1tX0oeov3UpKsfAwtS8Amlm7qhT/yVWUXOzhB1mqenBYKq5LV579mBmr58q/bwo0nksRPFRuXJlxo8fz/379+nQoQMRERF66yQmJjJv3jydfOuxY8fi7e3N6tWrmThxIkmZh0kjfX6S7t27c+7cuTy3z9PTU2+c+qzcunXLYHqWoigEBgZy584dWrdurfN0VjMa0+TJk3XmSfn9998JCQmhXbt2uZq9Nyoqik8//VRn2c6dOwkODsbHx0f7BL1ChQq0atWKs2fPaofu1Vi6dCnnz5/H39/fqPqK3HJ2djZY1JqUlMQff/yhtzwuLo7Y2FjMzc0xMXnyp0Mzd4Ex81scO3bMYFqXpscm4+hCgwcPRlEUo78yXxutW7emUqVK/Pjjjzr5/dHR0Xz22WdYWFgwcOBAnW1u3brFhQsX9NKeNNfHhAkTdEarW7JkCVeuXOH111/XCbROnDhhcFS73377jVWrVlGiRAk6dOiQw7uVThP8aAKSjDTzP0ybNk3nfY2OjtYGZZp1MtLUUixfvpxff/2VihUr6g217OrqSq9evfjjjz/4/PPPDZ7P4cOHiY9/+k9PNbUT169fz3a9w4cPY2ZmRtOmTZ9Gs4QoNMmZhimNffR00ohzSxNEmJiZaOeTMDYVKjU5mf/NDNQJKgAeP7jHhplTib57O5ttCy4V6kLYk2HIa7RojVsVJ+3PN/6JynK7xHPniL2W3kZLszra5ZfLlcamQnrquIIKtXn2vS/POumxEFpBQUEkJiYyf/58vL298ff3x8fHB3NzcyIiItizZw8PHjwgKChIu429vT07d+6kW7duzJw5kxUrVtCuXTvc3d2Jj4/nxIkThIWFYWZmlut0iozU6vQ/TMbMcRAeHk7btm1p3LgxVapUoUyZMty/f5/Q0FDCw8Nxc3Pjm2++0dmmVatWvPnmmyxfvpx69erRqVMnbt26xbp163B2dmbhwoW5am/z5s1ZtGgRhw8fpnHjxly9epVff/0Va2trli9frrPuokWLaNasGcOGDWPLli289NJLnD17ls2bN+Pi4sKiRYtydWxj+fv788svv9C9e3fq1q2LqakpXbt2pUKFCvj6+lK1alXq169PhQoViI2NZevWrdy+fZuxY8fqBGW5+WzWrFnDkiVL8PPzw8vLCwcHB86dO8f27dtxdnZmyJAhBXZ+ZmZmLF++nICAAPz8/OjTpw/29vZs2LCByMhI5s6dq9drMGHCBFatWsWKFSt0CscHDRrEunXr+Omnn4iIiKBFixZcunSJ3377jYoVK+r8TgC8//77XL58mSZNmuDu7k5aWhrHjx/n4MGDWFpasnLlSqNrdlq3bo29vT27d+9m3LhxOq/5+fnx7rvvsnDhQnx8fOjZsyeKorBhwwb+/fdf3nvvPYM9bV26dMHR0ZF58+aRkpLCe++9Z3DemG+//Zbw8HDGjx/PmjVraNKkCU5OTly/fp2jR49y8eJFbt269dRrGKpVq4abmxs///wzlpaWuLu7o1KpePfdd7Xva2xsLIcOHaJt27ZGD+0rRHGVeWK12IdJlHAtfte1To/Ff39SjA0sDv9vHbcupfcyWts70LD7a/xz6CC3LoaTEBPN5i9m8vpn8zAxMFphQRZva4u2gWq+LbAvaYeVrTmJcSlcP/eQ1JQ0zMyfHCPl5k3uzv+S6C1bSPT7EkzAJs0W22Q19y1MiDNV4Wh5B6gAQMLjFJ3ZuJ83z++ZiVwzMTFh3rx59OvXj0WLFnHgwAEOHDiAWq2mbNmyBAQEMGTIENpkmlLew8ODI0eOsHbtWn755Rd27tzJw4cPsbKyokqVKowfP56RI0fm+al7VFQUN27cwNfX16ihbatVq8YHH3zA/v372bp1K48ePcLa2poqVaowefJkxowZY3AozCVLllCzZk2WLl3KggULsLOzo0ePHnz66ae5ntSsUqVKLFq0iPHjx/PNN9+QlpZGy5YtmTVrll6+v7e3N0ePHmXatGns2LGDbdu24eLiwpAhQ5g6dWquekpyQzNx2t69e9myZQtqtRp3d3eqV6/O7NmzCQ4OJjQ0lLt371KiRAm8vb2ZOXOmTlqRoiicPXsWT0/PLCdwy6hv374kJiYSFhbGX3/9RVJSEu7u7owaNYpx48ZRoUKFAj3HVq1acfDgQaZOncq6detISUmhZs2azJ49W29Y3uyYmJiwadMmZs2axZo1a5g/fz7Ozs4MHTqUoKAgvdTB/v37s2HDBg4dOsT9+/dRq9WUK1eON998kw8//JBq1aoZfWw7Ozv69+/P0qVLuXXrlragX+Orr76ibt26LFq0iKVLlwJQo0YNpk+fnmWgZmVlxWuvvaYNcjOnQWk4Ozvzxx9/8PXXX7Nu3Tp++OEH1Go1rq6u1K5dm8mTJ+e5kD8/TE1N+e233/joo4/46aefePz4MZB+HprAYsOGDSQkJDBixIin3j7xYrp6+j5nQ29gV8KK5n2qZlvkm1vJibqBRcZi5eJEW2NhqtKevzE1Fg9uXOevTev/29aUnp/MoExFL3xatuXHSR/y6NYN7l69zIkdW6nfqZve9ikZaizM85EKFXPvLnf+S3sqU6kyjqXT0089a5Xkwp+3SUlK498Lj/CsWYq02FgeLF3Gw1WrUJKSSDG3QzFJH2DDoYILDV+fxbrpE9PP79peMB+ASmVK7MNEHF3yP5x+caVSnvNZ6GJiYnB0dCQ6OjrbAtjExEQiIiKoWLGi3mRPomht3bqVLl26sG3bNjp27FjUzcnW1atXqVixIoMGDSqSYtWn7cyZM9SsWZNvvvmGt956q6ib89wKDw/Hx8eHwMBAvflRhGHNmzfnzp07nD9/3uB8LKLgyP9PeHAzlp+n/6X9uceHdXGrUnCTml0/95DNX53U/tzuzRpUednwaIJFacX4g8THJGPnbImpqQnR9xKwtDHjzXnZ1yhu//oLzofuA6Bxzz749nrysOPmPxf4aco4UBSsHRwZtvA7zDNdZ6Hr/uH0vvTU3p4f1ce1ovGjOGZ0bNsmQlYvA6BZn4E06pFeuxZx6h7bF6XXXVRv4kpdy7+5t3AhaQ8eaLeNL1udQ97vpK/jWxb/AdVZ/+lkbWqXmU1bzCxr0npQdao10X1AVNwZey8NUmMhngGhoaHUqVOn2AcVL6LQ0FDKlCnDG2+8UdRNea55e3vz5ptvMn/+fO3TeZG14OBgDh48yOzZsyWoEE9F1B3dWqP4mJQC3X9qpnQiQ8O6FgdPeixMtBPV5ZQKFXX7FhcOptc1WNk70KBrT53X3apWw7tJ+iSfCTHRnNq9XW8fOsPN5iMVKmMaVOWGTbTfl6/urC0Kvxx2hZvTpmuDCpW5Oc5vvIHjp/O169uVSA98mr7WT7ssNfEwipLG44fFsz6moEhgIYq92bNnaycCE8XLqFGjuH379gv7lPJpmjZtGu+8845RAxi86KKjo5k7dy49evQo6qaIF0SKgVGbClLmdCJDM1wXB5p2mZqqMhRvZx8Endy1FUVJ365+x25YWOmnCTV+pTeaoo0jW34jNcMgK1Aww83GRT3iRnj6IDPO5cpTslyG9O24GEqTXpidbGLDA2cfAOzbt6fS9m2UGT+OqKgnbXAum17/4la1Op51/kt/VseQlnyWxw8ksBBCCFHESpcuTWBgoAydaoRXXnmFDz/8sKibIV4gqXqBRWoWa+ZNWoru/nMzhOvTlJahxsLULD0QUNQKarXh9qalpnDuQHoKlKm5ObXbGc5MKFXeg6oN00d3i4+O4p9DB3VeL4jhZi8dOQT/VQdU+e9YilpN1Pr1XOnQEZejv2rXvVm1Ax4//oD7l/Ox+K9+9MHNJ3MTlSj7ZEALnV6LhMNE33u+e50lsBCiAHl6eqIoygtRXyGEECJdxuJhKPgei9RnpsciQyqU2ZNbzKzSoa4cO0LC4/Shsis3aIK1XdZzRNTr+KRo++SubTqvFcRwsxnToKo0bELSxYtE9nudW5MmkxYVhfPD81gn3gfggWUFHjs/mVdDURRuXUofptzM0hSnMk8Ci7KVvalY9795jpTH3L64L0/te1ZIYCGEEEIIkQ+Zb5xTEgs4FSrT/otjj4WiKCjqjD0WGQKLLEaGOhOyW/u9T6u22e7fzbs6LhU8Abh1MZw7EZe1r+n2WOQ+sEiMjeX62dMAOJRywWTnbiJe6UlChjmQHDt1pF7PJz3GYesvas/3ztUY4qLS5/Eq6+WIqanu7XWL/m+AKn1Z/KM/uHU5+zl4MkpVp3I77jbRSdE5r1wMyHCzQgghhBD5oBdYvIA9FhkLyk1MVZjk0GMRHxNNxIljANiXcqGCT61s969SqajdrhN7lqfPQ3U2ZA9lKqYPBa+ZQNDc0jRPw/xeOf4X6rT0z8zlzgPuB3+lfc3C0xPXwKnYNm6Ma6qaM0eiiL6bwK1L0fy1NYKGnStybPtV7fpVXi6tt/+S7hUoW9WPW+EhQBr7ViylX9AM7etxKXFEREdwOeoyV6KvcCP2BrfjbnM77jb3Eu6hVtSMe3kcA2sM1Nt3cSOBhRBCCCFEPqgLObDI/MS/OPZY6AYWOadCXTpySFu0Xc23BSYmOfc0VPP1I2TVMlJTkjkftp8WA97A1MxcG1hYWOfttvafP5/UbLhE/NebYGJCyaFDKfXO25j8NymsqZkJLfp6pw/9q8DR7Vc5GXxdW2Nj42CBVz39wALg5S692fLPX6DEc+viCZb9PIOLbo85c/8M1x9n3YNR8UZ6WtXtl7Keebw4kVQoIYQQQoh8SEvRvdF/EUeFytgmU1MVZuZPbjHVBgKhjDUNmsLsnFja2GqHgU18HMOV40cASPov9SwvgcXj8+eJOJY+B4lFSiol4hKxrFoVz3XrKP3hB9qgQqN8dWd8ez6pr9AEFSoTFS37V9ObVTtFncKJuyfYY7INE/tm2uUPNh/i4Jnd2QYVnkmlaHbGhRanXCgReg9FXfw+98ykx0IIIYQQIh8KPRUq8zwWxb7H4smoUKD//iTGxXLt71NAehpUGa8qRh+nhp8/F8LS5704u38vXvUba2/uLa2Nr69QFIWon3/mxLcLUbs5A+D6OAGXd96h1PBhqCwssty2TpsKOLpYc3T7VR7diaeEqy2Nu1ai/Evp+4lOiubAvwcIvhbMnzf/JD41fZ6TpuV6UC2xOurk85inqWj/Vzl2NL9LxbJVqOxUmUqOlajkWAkPBw9sk83ZMHUij9PuAeBu6Y7KpPj3B0hgIYQQQgiRD5lv/As9FaoY9lhkTM/KKRXq6sljqNPS05eqNGiCSmV8XUSFWnWwK+FM7KOHRJw4QtTdJ7NfG9tjkXr/Prc+mUTs/v3c9ngyg3nt997HpUt3o/ZRsbYLFWu7aH++n3CfH8//yN5rezl65yhpiv41cMx9J1UefojJvbso6gfYJsCrwS/hWPYVHEqVxdTMhHsquP74DHcu/YA6Nb1gW2VahrLeXY1qV1GTwEIIIYQQIh8y3/gXeipUseyxeNJGEzMVJhlSoTIXn0ecOKr93uvlRrk6jomJKdX9/DmyaT3qtDTOh+4H0nsKjAksHoeEcGviJ6Q9fEiaSsVd+/QaBitbO7w6dM5VWxJTE9l3fR9bLm/hj5t/GAwmnK2caeLWhEaujWhctjGWHR3Y+rUj9658D0ocStp9ov79nsf3fFCZlkZJu0Na0t9A+numMnHAwq47EaceUadNxVy1ryhIYCGEEEIIkQ+Zi7czzqtQEDLfmBfHHovMqVAZ55PIOIGgolYTceo4AOZW1pSr9lKuj1XDrzVHNq0HIPzPfUBPIPvAQklJ4e68+TxcsUK77GG5MqT9NzSsV4PGmJoZd1t89sFZfgn/hV1XdxGbEqv3urudO60rtMa/gj+1XWpjmrEw3Q76BbbhxK7SHNrwFcnx94BU0pJO6u3HzLI0lV5+A696lfCq56L3enFU/JO1hBA6Bg8ejEql4urVq0XdFPEUnThxAlNTU3788ceibkqeFZdrd+XKlahUKr2JLD09PfH09NRZFhgYiEqlIiQk5Km1ryjt2bMHlUrF9u3bi7opzxS9GosCDiwy7z/jTXxxkXlUqIyBRXKGeT3uXLlEQkx6io9HzdqYmpnn+lgl3ctTtrI3AI9uRqJOvQuApZXhwCDl1i0iBwzUCSrsWrXicYcnc2dUbeSb7TGT0pLYfHkz/bb1o8/WPvx28TedoMLV1pU3a77J+i7r2f7KdsY2GEu9MvV0g4r/mFmY0qBzXUYuXkS9Dl0xM9et5zA1t6BRj968tfRburzXjJeauWFpk/v3qShIYCH0HDt2jKFDh1KlShVsbW2xtrbGy8uLAQMGsHv3boPbpKamsmLFCjp27IirqysWFhY4OjrSoEEDJk2aRGRkpM76np6eqFQq7ZepqSmlSpWiXbt2bNq0Kd/n8NVXX9GpUyc8PT2xtbXFycmJ2rVrExgYyMOHDw1uo1arWbhwITVr1sTa2hoXFxf69u3LlStX8t2e4kilUtGyZcuibkahO3LkCB07dsTJyQlbW1saN27ML7/8YvT2iqLw+++/M2rUKGrVqoWjoyM2NjbUrl2bzz77jMTERIPbZby+M38NHjw41+fxwQcfUK1aNfr06ZPrbcWz6+rVq3m+ZvKiTZs2NGvWjPHjx5OWVrA3x8+zzDf+qUkF26OgnwpVDHssMoxYZGKq0hkdKSUpVfv9lQxpUBXrvJzn42WcUC8t+QxguMci9sABInq88mSyO3NzynzyCa5fzifizKn/trOhQs06Bo9zJ+4O84/Np82vbfjk4Cf8ff9v7Wu25rZ0r9yd79p9x86eOxldbzTezt5G14yYW1rRavBwRixZTZcPJtD6jVF0/WAiIxavolmfAZhbWRm1n+JEUqGEllqtZuzYscyfPx8zMzP8/f3p2rUr5ubmXLlyhW3btrF27VqmT5/O5MmTtdtFRkbSrVs3Tp06RZkyZWjbti3ly5cnLi6O48ePM2vWLObOncuZM2eoXPnJEG2mpqZMmjQJgOTkZC5cuMDmzZvZvXs3c+fO5cMPP8zzuXz33XcAtGjRAldXVxITEzl8+DDTpk3j+++/56+//sLV1VVnmxEjRrB8+XJq1KjBe++9x82bN/nll1/YtWsXhw4dokoV40etKEwzZ87k448/ply5ckXdlGJv3759BAQEYGVlRZ8+fbC3t2fDhg307t2b69evG3WNJSUl0bFjRywtLWnZsiUBAQEkJiayc+dOPvnkEzZu3EhISAg2NjZ623p4eBi8IaxTp06uzmPv3r2EhITw3XffYfIMjAryrAoODi7qJhQL48ePp2vXrvz888+8/vrrRd2cZ0LmeSUKPxWqePdYmJropkJlrDm5evKY9nvPOvXzfDzvps3Zt2oZqclJpCWfx8zaTyewUFJTuffVQh4sXapdZu7mRrkv52Ndqxb/HDpIUnwcAJVfboSZuW6PwJXoK6w8s5ItV7aQqk7Vec27hDd9qvWhY8WO2Jjr/+3PLStbuxx7TJ4VElgIrUmTJjF//nzq1KnD+vXr8fLy0nk9ISGBr7/+mgcPnozA8PjxYwICAggPD2fcuHHMmDEDy0xjPl+6dIkPPviA2FjdPEQzMzMCAwN1lu3atYv27dszZcoURo0aZfBmzRiHDx/GykCkP3nyZIKCgvjiiy/4/PPPtcv37dvH8uXL8fPzY/fu3Vj8N8xcv3796NixI++88w47d+7MU1sKWtmyZSlbtmxRN6PYS01NZdiwYZiYmHDgwAHtzfyUKVNo2LAhEydO5NVXX8XDwyPb/ZiamhIUFMRbb71FiRIltMtTUlLo2bMnW7Zs4ZtvvmHcuHF623p6eupd43mxaNEirK2tefXVV/O9L5G1zH/zXlTt27enVKlSLF68WAILI2W+8U9NUaOoFVR5mAXakGeix8KIVKjE2FhuXf4HgFLlPXAolfe6AUsbW6o2asq50H2gJKFOuYyldU0AUh894sYHHxD/5yHt+natWuE2ayamjo4A6dv95yW/1trvT987zXd/f8e+6/tQeHJO5ibmtPNsRx/vPtR2qZ2rkaxeJPLoSwDpN/9z5syhZMmS7Nixw+A/WGtra8aNG8e0adO0y+bOnUt4eDj9+/dnzpw5ekEFQOXKldm8eTMvvZRzgVa7du3w9vYmPj6es2fP5vl8DAUVAK+99hqQfr4ZLVu2DIAZM2ZogwqADh060LJlS3bt2sW1a9dyPG7GtIWzZ8/SqVMnnJycsLOzo127dhw7dszgdpGRkQwdOpRy5cphYWGBu7s7Q4cONXhMQ3nqISEhqFQqAgMDOXr0KG3btsXe3h5HR0d69OhhcF2A/fv366ToaHLO1Wo1y5cvp2HDhjg7O2NtbY27uztdunTJd675xYsXGTJkCBUrVsTS0hJnZ2dq167NmDFjUJSCewq3d+9eLl++TL9+/XR6CBwdHZk4cSLJycmsWrUqx/2Ym5vzySef6AQVmuUTJkwA0t/HwvLo0SM2bdpEQEAADg4OBtdZsmQJNWrUwMrKivLlyzN+/HgSExOzTHfLzfWWl/XPnj1L586dtddgx44dOXPmTJ7O/9SpU7z++uu4u7tjaWlJ2bJlad++PVu2bNGuEx0dzezZs2nRogVubm5YWFjg5ubGwIEDuXz5stHHMlRjkdF3331HzZo1sbKyoly5crz//vs8fvxYZ52MfwPOnz9Pjx49KFmypM7v7P/+9z/69u1L5cqVsbGxwdHRkebNm7Nhwwadfa1cuZKKFdNHgVm1apXO72rG38O4uDimTp1KtWrVsLKywtnZmU6dOhEWFqZ3DhlrRlauXEm9evWwsbHRuU7Mzc3p3r07Bw8e1PtbKQwzNLN05mCjIPdfHHssMrYxPRUqQ4/Ff4HFvxfOwn9/57NKPcoNnXSopDNYWJuRGB7O1VdfexJUmJpSevx43L/9RhtUxMdEa0emsivhTHmfmpy9f5aRe0by+vbX2Xt9rzaosLewZ1jNYex6dRezms+iTuk6ElRkQ3osBJD+DywtLY0RI0ZQpkyZbNfNGDx8//33QPpT4JxYZDPZjCGF8Yu7bds2AHx8fHSWh4SEYGtri6+vfldkQEAAISEh7N+/nwEDBhh1nCtXruDr60u9evUYNWoUkZGR/Prrr/j5+bF3714aNXoyvN4///xDs2bNuHfvHl26dKFGjRqcOXOG77//ni1btnDw4EGqVq1q1HGPHDnCnDlzaNWqFSNGjODEiRNs3LiRv//+mzNnzmBlZYWnpydTp05l2rRpeqk6mhvwCRMmMGfOHLy8vOjXrx/29vbcuHGDgwcPsmfPnjzXZty8eZOGDRsSFxdHp06d6N27N3FxcVy8eJFvv/2WuXPnYmbkqBw50dx4tWvXTu+1gIAAIP8Bgfl/XedZtTkqKoqlS5dy//59nJ2d8fX1pWbNmrk6xoEDB0hJSaFx48YGX58yZQozZsygTJkyDBs2DHNzc3755RcuXLhgcP3cXm+5Xf/MmTP4+voSGxvLK6+8QpUqVfjrr7/w9fWldu3auTr3DRs20K9fPxRFoUuXLnh7e3P37l0OHz7Md999R5cuXQA4f/48U6ZMoVWrVvTo0QNbW1suXLjAjz/+yLZt2zh+/HiOPVM5mTdvHsHBwfTu3ZtOnTqxZ88evvzySw4dOsSBAwe014LGpUuXaNy4MTVr1mTw4ME8ePBA+zdwwoQJWFhY0KxZM8qWLcu9e/fYvHkzr776Kl999RXvvvsukP77OHr0aBYsWEDt2rXp3r27dv+aACgxMRF/f3/++usv6tWrx5gxY7hz5w7r1q1j586d/PTTT9oHKhl9/vnn7Nu3j27dutGuXTtMTXULTJs0acLy5cvZu3evTgqrMMxQD0JKUprOU/v8yBykFPseCzMV5jo1Fv8FFuee1Ce4v6T7fzgv3Kv7YGlbkqS4B6hTI4n6cy9JS2ajJCQAYFqyJO4LvsTmZd1ajgth+1H/V0NU+uVavB/yAXuv79VZp7R1aQbWGMirVV/F1tw23219UUhgIQC0T7b8/f2N3iYyMpJ///0Xd3f3Aqs/CA4OJjw8HFtbW2rUqJHv/S1dupSbN2/y+PFjjh8/TkhICHXr1uWDDz7QrhMXF8etW7fw8fHR++cKaM/t4sWLRh83NDSUjz/+mJkzZ2qXDRo0iPbt2zNs2DBOnz6tXT5y5Eju3bvHkiVLGD58uHb5t99+y9tvv82oUaOMzv3evn07P//8M71799YuGzhwIGvWrGHjxo306dNHm54zbdq0LFN1li9fjpubG6dPn9ZLR8uq+N0YGzZsICoqii+//JLRo0fr7TfjDfrJkyfZuHGj0ft2cnJizJgx2p81n5eha9PV1RU7O7tcfaaGaAJrQ8ELpD9tHzFihM6y9u3bs2rVKkqXLm3UMTS/m/Xr6+ci//PPP3z22WeUK1eO48ePa/c5bdq0LAOR3F5vuV3/nXfeISYmhrVr1+qk0UycOFHn9yEnd+7cYdCgQZibmxMaGkrdunV1Xv/333+131evXp1bt27h7Oyss86+ffto06YNQUFB2l7JvNq5cydHjhyhVq1aQHpRf//+/fnxxx/56quv9Op1wsLCmDJlik4Pr8b27dupVKmSzrLY2FiaNm3K5MmTGTp0KDY2NtSpU4cxY8awYMEC6tSpY/B3dc6cOfz111+8/vrrrFmzRvtA5r333qNx48YMHz6c9u3bY29vr7Pd/v37OXz4cJaB7sv/3YiFhYXpfO7CMIM9FgVYZ5GWoruvZ21UqJTE9BqF65rAQqXCvXr+AwuViQklKzTi5vn0UczOb1xJ3f+CCqsaNXD/eiHmmVKHFbWaEzue9HjOS/yRqOsp2p/dbN0YXms4Xby6YGGauweiQgIL8Z/bt28D4O7uXqjbZJSamqr9R5mSkkJ4eDibNm1CURRmzJiBtbV1nvab0dKlS3XSj9q1a8eaNWt00lqio9OHvXP8r4s0M036iWY9Yzg5OfHJJ5/oLAsICKB169YEBwdz7Ngx6tevz7Vr19i3bx8vvfQSw4YN01l/5MiRLFy4kL1793L9+nXKly+f43H9/Px0ggqAN954gzVr1nDkyJFcjShkYWFhMNDKfPOWF4Y+28z7PXnypMGbsqx4eHjoBBbGfK65+Uwz+/3331myZAnVq1dn6NCheq9/+OGH9OzZk6pVq2JhYcGZM2eYMWMGv//+O507d+bPP/80+P5mprmBNtST+NNPP5GWlsaHH36oE6jY29szadIk+vXrp7N+bq+3vKy/f/9+atWqpZebP3HiRBYtWkRUVFSO5wzpqT9xcXFMmTJFL6gA3b87WX3GrVq1okaNGuzZs8eoY2Zn4MCB2qAC0ntUP/vsM9atW8fKlSv1AgtXV1e9vwEamYMKADs7OwYPHsyHH37IkSNHaNGihVHtWrVqFebm5syaNUunl7du3boMGjSIZcuWsXHjRr3e1uHDh2fbe6a53jIGcCJrmWsgoGCHnNWbebtY9lhkkwqVlEZiXCx3r6aPsuhSwRNrO3u9feSFg3NdbrIbSOGOvQnJpia4dO6M67RpmBhIiz7z136ibt8C4GbJBKLs04OK0talGV5rOK9UeQVz02djaNfiSAILI62dMIa4qEdF3Yws2TqVoP/ML4u6GbmSlpamvXE0MTGhRIkS+Pv78/bbb9O1a8FMXX/0aHoO5f379/nzzz/5+OOPqVevHtu3b9e5SShodevWxc7OTm958+bNCQ4O5sSJE9SvX5+T/w1/16JFC73ULxMTE/z8/Lhw4QInT540KrAw9FRbcwNm7A0dQJ8+ffj222/x8fGhT58+tGrViiZNmuQ72OvSpQsTJkzg7bffJjg4mPbt29OiRQuDN1qDBw9+akNs5taRI0fo3bs3jo6O/PrrrwZri+bOnavzc5MmTdi6dSv+/v7s37+fTZs28corr+R4LM1gCU5OTnqvnTqVPlRis2bN9F4zlNaX2+stt+tn1x47Ozvq1KljdI3OX3/9BWTdG5RZSEgIX375JYcPH+b+/fukpj4ZxSW3aZiGNG/eXG+Zh4cH5cuX5+zZsyQnJ+scp3bt2lke9+7du8yaNYvff/+dyMhIEv57wqpx8+ZNo9oUExPDlStXqF69usEHPK1atWLZsmWcPHlSL7Bo2LBhtvvWBPr37983qi0vusyjQkHBDjmb+gzUWOhNkJchFSo5KY0bGeoryr+Uu5TQrCT/e4PHx89jaulDWtIJ1CYqHrzSmVrTZ+n9zUpRp/BL+C+cXrua0qQHDuc8H+Ns5cybNd/ktaqvYWX27A3vWtxIYGGkuKhHxD58kPOKzyhXV1cuXLjAjRs38Pb2NnobgBs3buTpmJaWllnOAVDQSpUqRZcuXahTpw5VqlRh2LBhHD58GHjytDOrp9cxMTE66xkjqzoVzXLNsTT7zmp9zehPmvVyYqi4V5NelJsx6RcsWEDFihVZsWIFQUFBBAUFYWVlRa9evfjiiy8oVaqU0fvKyNPTk0OHDhEYGMj27du180lUq1aN6dOnG8wFzytjPtfMBdnGOHr0KO3atcPExISdO3fmKmXPxMSEYcOGsX//fsLCwowKLDTBnKHfFc11YSitytA1ldvrLbfra97rrNK8cqrfykizL2OGVf7111/p3bs3dnZ2BAQE4OnpiY2NjXZAgszz6ORFdr/TV69e5fHjx5QsWTLH9R8+fEiDBg24du0avr6+tGnTBicnJ0xNTTl58iSbNm0iKSnJqDbl5+9HTp+FJtjJ68h8L5rMN/5Q0KlQz1aNhamBVKjr554M4FAQ9RUJp09zfdRbJHkOw9Sm3n8zVyucv3Ud34R4LG2e1EUc+PcAnx/5nNhrN+l877/fC9tUOrTpz9CaQ6WGogBJYGEkW6fc34A8Tfltn6+vLyEhIQQHBxtdZ+Hh4UG5cuW4fv06Fy9eLDbzPGSnfPnyVK9enSNHjhAfH4+NjQ22traULVuWiIgI0tLS9NJTssvVz8qdO3eyXa656dUEAlmtr0k3y2o0oMJiZmbG2LFjGTt2LDdv3mT//v2sWLGC1atXc/v27XwNvevj48P69etJSUnh2LFj/P7773z11Vf07t0bNzc37ZP2/NZYZKyNydyTc/v2bWJjY3N8apuZZsQttVrNrl27aNCgQa62B7RBWVxcnFHru7ikD8doqLZFc13cvXtXrzjZ0DWV2+stt+trruu7d+8aXD+r/Rii6aG5ceNGtiM1QfpIR1ZWVhw7dkzv9/Tnn382+pjZye53WqVS6dUwZDX4xHfffce1a9eYMWOGdh4fjVmzZuVqgtD8/P3IaXAMzfWmuf5E9tSFmAqlKIp+KlQx7LFIy5QKZWKiwszchNQUNcmJabqF2/msr4jZuYub48ejJCWRXNUeE1NHLGyqkxx/jsTHMfy5/kdaDhzGzdibzPxrJiHXQ0CB9uefBNStXxmMXz2ZcLSgSWBhpGctzSi3Bg8ezKxZs1i6dCljxozJ9p9JUlKSNvVj6NChTJ8+naCgoByH7sycKlBUbt26pZ3tW6NFixb8/PPPhIWF4efnp7O+5iY68/LsnDhxgtjYWL10qNDQUABtzrhmFKYDBw6gKIrOP3tFUThw4IDOegXJxMTEqF4MNzc3+vbtS+/evfH29mbPnj0kJCTkOy3K3Nycxo0b07hxYypXrszAgQPZunWrTmCRnxqLFi1aMHPmTHbt2qVXW6L5TI3NY4cnQUVaWho7d+7UGdkrNzQ9ZTndLGto8uDDw8P1jlm7dm3+97//ERYWphfk/PHHH3r7yu31ltv1NaM+HTx4UO/YsbGx2tQqYzRs2JD169eza9cug2ldGV2+fJkaNWroBRW3bt3iypUrRh8zO6GhoQwcOFBnWWRkJNevX6dGjRpG/23TDH/brVs3g8fITPN3ytDvqoODA5UqVeLSpUvcuHFDr3dHk3aWl78f4eHhALkexexFpKgV1Gr9G/2Mk8Llh1qtkHkk7uLeY2Fimv63wtLWnNSoJOJjHhP9b4b6Cvu8PSxTFIWH33/P3c/TU00VVKRYpO/LuUIb7l2+SFpKCse2b+ZCyYd892g9iWnpvb3e1+xwfZSe6lSibDl828u8QIVB5rEQQPpcE+PHj+f+/ft06NCBiIgIvXUSExOZN2+ezsgkY8eOxdvbm9WrVzNx4kSDXfgRERF0796dc+fO5bl9np6eenM3ZOXWrVsG07MURSEwMJA7d+7QunVrnbx4zagnkydPJjk5Wbv8999/JyQkhHbt2uVquMqoqCg+/fRTnWU7d+4kODgYHx8f7RP0ChUq0KpVK86ePasdYUhj6dKlnD9/Hn9/f6PqK3LL2dnZYGFmUlKSwZvSuLg4YmNjMTc315n9uWXLlnrj6mfl2LFjBtMyNE9cM84/MnjwYBRFMfor87XRunVrKlWqxI8//qhzQxsdHc1nn32GhYWF3o3irVu3uHDhgl761LFjx2jbti2pqan8/vvvNGnSJNvz/Pvvv0lJSdFb/scffzB79mzMzc2NTvvSBD+agCSjPn36YGJiwhdffKGTCx8XF6d3/UHur7e8rO/n58fp06f54YcfdNb/7LPPclXnM2jQIOzs7Pjiiy8MBiQZf8c9PDy4dOmSzpP7xMRERo0aZfBzyIvVq1frjOamKAoTJ04kLS0tV7VAmr8jmYOvH3/8ke3bt+utX6JECVQqFdevXze4v0GDBpGSksKECRN05oE5ffo0K1euxNHRUWeYWmNprrfcBN8vqqwKqVOTC+bm31Bh+LMwKhSAjUN6wB0fdRVFST8P9zzWVygpKdyeGqgNKgAsu7yGoko/llMZV3x79f9vZYW76/ZhHpNea1U1tjRNw5+kaLYaNAzTAhraXOiSd1VoBQUFkZiYyPz58/H29sbf3x8fHx/Mzc2JiIhgz549PHjwgKCgIO029vb27Ny5k27dujFz5kxWrFhBu3btcHd3Jz4+nhMnThAWFoaZmZleMWtuqNXpf5CMmeMgPDyctm3b0rhxY6pUqUKZMmW4f/8+oaGhhIeH4+bmxjfffKOzTatWrXjzzTdZvnw59erVo1OnTty6dYt169bh7OzMwoULc9Xe5s2bs2jRIg4fPkzjxo25evUqv/76K9bW1ixfvlxn3UWLFtGsWTOGDRvGli1beOmllzh79iybN2/GxcWFRYsW5erYxvL39+eXX36he/fu1K1bF1NTU7p27UqFChXw9fWlatWq1K9fnwoVKhAbG8vWrVu5ffs2Y8eO1QnKcvPZrFmzhiVLluDn54eXlxcODg6cO3eO7du34+zszJAhQwrs/MzMzFi+fDkBAQH4+fnRp08f7O3t2bBhA5GRkcydO1ev12DChAmsWrWKFStWaG8WHz58SNu2bYmKiqJ9+/bs3r2b3bt362yXOQ3riy++YNu2bTRr1ozy5ctjbm7O2bNn2bVrFyqVim+++cboWZ5r1apFpUqV9I4J4O3tzccff8xnn31GzZo16dWrF2ZmZvz222/UrFmTM2fO6ASBkPvrLbfrf/PNN/j6+jJw4EA2btyoncfiyJEjNG/e3OBTeUNKly7N6tWr6dOnDw0bNqRr1654e3tz//59Dh8+jKenpzZV7t133+Xdd9+lbt26vPrqq6SmprJ7924URaF27draovL8CAgIoEmTJvTp0wcXFxeCg4M5evQojRs31s47YYwBAwYwe/Zs3n33Xfbt24eHhwenTp0iODiYV155hd9++01nfTs7Oxo0aMCBAwcYMGAAVapUwcTEhAEDBuDh4cH48ePZtm0ba9as4fz587Ru3Zq7d++ybt06UlNTWbZsmV6aljF2795NiRIlctVT+6LKKi2poGosDAUWGdOOiovMo0IB2DimBxZpyU8C47wUbqvj4/n3/feJ239Au6zUe++SGtAPPj8OgIWDio1Ox0gpkUiZR1bYJpnRJawsZuWcMfv3sXbeijoBnahY92WDxxEFQHnORUdHK4ASHR2d7XoJCQnKuXPnlISEhKfUsuLryJEjyhtvvKFUrlxZsba2ViwtLRVPT0+lX79+yu7duw1uk5ycrHz//fdK+/btlTJlyijm5uaKvb29Uq9ePWXixInKtWvXdNb38PBQLC0tjWrPo0ePFBMTE8XX19eo9W/duqWMHz9eadSokeLi4qKYmZlp2zJ58mTlwYMHBrdLS0tTFixYoNSoUUOxtLRUSpYsqfTu3Vu5dOmSUcdVFEWJiIhQAGXQoEHKmTNnlI4dOyoODg6Kra2t0qZNG+Xo0aMGt7t69aoyZMgQpWzZsoqZmZlStmxZZciQIcrVq1f11h00aJACKBEREdpl+/btUwBl6tSp2bYp8/vUq1cvpVSpUoqJiYkCKCtWrFCSk5OV2bNnK+3atVPc3d0VCwsLpUyZMoqfn5/y448/Kmq1WrsPtVqtODs7K56enkpKSkqO78+hQ4eUESNGKD4+PoqTk5NibW2tVKlSRXnnnXeUyMjIHLfPi8OHDyvt27dXHBwcFGtra6Vhw4bKzz//bHBdzXu7YsUK7TLN+5fdl4eHh85+fvvtN6Vbt25KxYoVFVtbW8Xc3FwpX7680rdvX+Xw4cO5PofZs2crQJbbfvvtt0r16tUVCwsLxd3dXRk7dqxy/fp1BVC6deumt35urre8rP/3338rHTt2VOzs7BR7e3ulQ4cOyt9//23w2s3JiRMnlF69emn/rpQtW1bp0KGDsnXrVu06arVaWbx4sVKjRg3FyspKcXV1VYYOHarcvXtXadGihZL5X92KFSv0PmdFSf+7lPmznDp1qgIo+/btU5YtW6b9+1C2bFll9OjRSkxMjM76Wf2+ZXTy5EmlXbt2SokSJRR7e3ulRYsWyp49e7JsV3h4uNKxY0fFyclJUalU2vZoxMbGKpMnT1aqVq2qWFhYKE5OTkqHDh2U0NBQvWNnPJ+sREREKCqVShkzZkyW62T0ov//jItOUr4eEaz3dWyH4d+P3Ip5kKC37yXvhRTIvgvSid2R2vb9c+S2oiiKErz6nPL1iGDli75vKHN7dVLm9uqkxEVH5Wq/KQ8fKhG9eivnvKsp57yrKed9aipRm7coiqIoF4/e0R5zxOyJis9KH6X+klrKpDfaao+X8eu3WYFKSlJSgZ/7887Ye2lFURSVomTO3Hu+xMTE4OjoSHR0dLYFsImJiURERFCxYkWddAxR9LZu3UqXLl3Ytm0bHTt2LOrmZOvq1atUrFiRQYMGsXLlyqJuTqE7c+YMNWvW5JtvvuGtt94q6uY8tx4+fEilSpV47f/s3XV8VfUbwPHPubnuLkZ3IyiotGAHdjci/uxCxcLEVgwwsbsVUFFAurtrzbq3u1vn98fZznZlwDZWsOf9eu3F6fM9KLvnud/n+X4vuqjOE7399ddfjB07lvvvv5/nn3++iVsojiePPPII06dPZ9u2bXXqWWvrn58l+TZmT9HSR01WI87K2ooTzkxk8NkHD6VdXwWZZXz22HKPbQaTwqQZI4/62o1pzdz9LP9Rq6M4/ZbedOgXzvKf9rD6951UFLwFqIQlJHLNCzPqfE1HRgbJN96EvbI2yeDnR9xbb+JbOfDGsrk7WPujlhY5v9PH7Apfg7/Zn9t73krwiny2LpiP2+XE6utLv9PO4qQLL8Vokjkq6quu79IgqVDiGPDvv//Sr1+/Vh9UtEX//vsvkZGRXH/99S3dlONaSEgIU6ZMYerUqTzyyCMe9T7Z2dmEhIR4DEZQUFDAlClTABqUXy/arvz8fN544w0mTZpU53S9tq7mHBZePiZKKgMLR2PVWNRSw+F2qgcNqNDSnDVStkzmqhoLK25nGlrnbv1Gg6rYs4fkG27EWTm6mTE8jIR338WrWzcA5u2fx++r19CFEwEosRZwatypPHrio0T6RkJfGH3tRMqKCvELDsFQhwlJxdGTwEK0es8//7x849pKTZo0iUmTJrV0M9qEO+64g4qKCpKTkz0Ci88++4wXX3yRUaNGERMTQ0ZGBnPnziUrK4trr732iIXmQtS0b98+7rrrrnrVjbR1NWsLrD4mSvK1QUwaq8bCWUuNBWijUSnG1hNY1BypymiqLt52O6oHCYnvWbf6ivL160mZeAuuyoE0zO0SSHjvPSzx8RRWFDJt+TTm7Z/HmcW36OfceuqNnNvnTI9gy2SxEBAmQyY3JwkshBDiGODl5cWjjz560PahQ4cycOBA/vrrL/Ly8jAajXTv3p2pU6dKepqotwEDBjBgwICWbsYxpWaPgtWnOs3G2UjDzdZWvA1a0bihFX0JXzMAMpprBBbO6sLtuvRYlCxaROrtd6BWTgrq1aMH8e/OwhQayoqMFTy0+CGyyrJAheBybbI7s7fxoKBCtAwJLIRoRImJiRznZUuilRk8eHC9JlUTQjSumqlQFu/q16rGmiDP6aj9Om6nGyytJ7Ko+fdQ1WNhMjtRXdqEmVbfSHwCAg97jaLffyft/gfAqQ0T63PSicS98QYubwsvrnqR2Vur58uKcSfiZw8CILJdgAQVrYTMYyGEEEII0UA1U4C8fKsDi6acxwI8X+RbA1eNAKgqsCjM3ktVfYXZO+Gw5xd8/wNp996nBxX+p48nfuZM9jkOcNlvl3kEFUOih/BYfHWKdFy34MZ6DHGUJLAQQgghhGigmvNY1EyFaqyZtw9VY+FuZXNZePRYVKZCZezcom9zOqJQa5mhHCDv88/JeOghqJwXKeiii4h54QW+3PMtl/x6CTvzdwJgNpi5b9B9zBo7i6K91X+/8d1DGv15RMNIKpQQQgghRAPVrLEwexlBAdRGnCDvEDN7t74ei4OLt1O2btK3qcSSl1FKaKyfx3m5739A1gsv6OvBV1+F9z2Tueff+/gr+S99e6egTjx3ynN0DemKrdRB8tY8QCuYD4uv/ySQomlIYPEfkh8vhBBC1F1b/9z872hIZosRR4Wr8YabPWZ6LDyHm7WXl5G5dzcAiiEUxeBD8tY8PbBQVZWcN98iZ0b1vBahEyeSdeVo7v31EtJK0vTtV3a/kjsH3onVaEV1q/z79U69R6jToEgMBqmvaC0ksKhUNQa8w+HA29u7hVsjhBBCHBscDgeAx1wqbYlHCpDRgMmqBRaNNSqUx/wQNSbgc7taV0BXs50Gk0La9m2olalNBnMcAJsXpdFnRBwGk0L2Sy+R+977+jlhd9zOvOH+vDT3apxurc4iwBLA0yc/zYj4EbhcbtJ25rP69/2kbs8HtB6igeOrh98WLU8Ci0pmsxmr1UphYSH+/v4yuoAQQghxBKqqUlhYiNVqxWxumzMa1+w5MJoVzBYD5Rx6NKf6qtljYakRWBwqRaqluP/TY1EzDSosoRuFOVCUXc7Xz6witHQPzg1pKAljUVQV6/BT+NqZzf7vNzJAHYeiGoj0imJYxMmU/mLim8JV5KWXegQvigIjr+yGf0jbm+29NWvRwGLRokW88MILrFmzhoyMDH744QePWWJVVeWxxx7j3XffpaCggGHDhvH222/TuXPnJmlPWFgYaWlppKamEhgYiNlslgBDCCGE+A9VVXE4HBQWFlJSUkJsbGxLN6nF1OyxMBgNmCqHgG2s4u2DajiKtOXW2mOhKNrfQ+qW6sDilMtGMOedPbgcbvIySskjCtqfXX1yKoSlhhFGd49r7ttbUOu9/EO8GH55V9r1Cm305xBHp0UDi9LSUvr27cv111/PBRdccND+6dOn8/rrrzN79mzat2/P1KlTGTduHFu3bsXLq/Ej1ICAAABycnJIS0s7wtFCCCFE22a1WomNjdU/P9sil0eNhaIHFk67G1VVj/oLyprD1lq8ql/bWltgUfX3YKysrziwdxcAIbHxtOsZz9n/82PBjCUU2H3qf3FFCyai2geQ2CeMDv3DMZnbZupda9eigcXpp5/O6aefXus+VVV59dVXeeSRRzj33HMB+Pjjj4mMjOTHH3/k0ksvbZI2BQQEEBAQgMPhwOVqnG8bhBBCiOON0Whss+lPNdVMhTIYDVi8ql94HRUuj2CgIWpOtGf1qRlYtK5UqKqULaPJQPqO6vqK+B69UVUV00/v0f+PD7BbAinziWDX+L58G7gHRTWgKi7iA+K5ud9NhPmGYjAqKAYDRpOCT4AVnwAzBqPMkHAsaLU1Fvv27ePAgQOMGTNG3xYYGMiQIUNYtmxZkwUWVcxms/zCFEIIIcRh/XfGaWuN2bft5c6jDixqDltbc2ZvVyvusahZXxHXoxfZL79M3vsfoABWeyH/nB/CB+1/1I+Z0HkCU4ZMwWq0NnOrRWNrtYHFgQMHAIiMjPTYHhkZqe+rTUVFBRUVFfp6UVFR0zRQCCGEEG2eR/G2ScFSo1ehosyJ31FOCl1zdKmagUWrTYUyeQYW3guXkDv7Y339i3MC+aFDCqBNePfQkIe4sMuFzdtY0WSOu36lZ599lsDAQP0nPj6+pZskhBBCiOOUy2OYVc8ei4oy51Ffv+Z8GFbv1p8KZTA69fkrArx8KKsRVLw/3sQPPUsBiPCJ4MPxH0pQcZxptYFFVFQUAJmZmR7bMzMz9X21mTJlCoWFhfpPSkpKk7ZTCCGEEG1XzZQko1HxqIOoKD/6wMJ5qBqLVjbztrOyx8JZkYa7skY1KDVD3//uOAPz+mvLAyIG8NVZX9E3vG+zt1M0rVYbWLRv356oqCjmz5+vbysqKmLFihWcdNJJhzzParXqBdhVP0IIIYQQTaHm/A0GkwGrT3V9pr3McdTXP3SNRevpsVBVVQ90HOVJ+vaQUhsA751m4M8B2ivn5d0u571x7xHmHdb8DRVNrkVrLEpKSti9e7e+vm/fPtavX09ISAgJCQnceeedPPXUU3Tu3FkfbjYmJsZjrgshhBBCiJbi0WNhMni8/NsaMRXKYFIwW6pHnGpNPRY1h9y15e/Sl0NLyvlotIE/BhowKSYeOfERJnSZ0BJNFM2kRQOL1atXM3LkSH397rvvBuCaa67ho48+4v7776e0tJSbb76ZgoICTj75ZObOndskc1gIIYQQQtTXf+exqJmuZG+EVCiHTbuG2WrEaKqeE6M1zbxdNTKWqtqxV2SBAn42Oz8MVfl9sIFAayCvjHiFE6JOaOGWiqbWooHFiBEjUNVDR9yKovDkk0/y5JNPNmOrhBBCCCHqxiMVytj4xdtVdRpWHzMGU3UGe6sKLCoLt93ONFC097pC33K+H6rQIbADM0bNID5ABtNpC1rtcLNCCCGEEK2d5zwWikeNxdEWb6uqir1cq7GwepswttLAomjJcgDcjuoBcxb1rmBY3Mm8cOoL+Fv8W6ppopm12uJtIYQQQojWznMeC4PnqFClR1e87ahwobq1wMXyn8CitcxjUbpyJalPPA2A21kdWJxy0tnMGDVDgoo2RgILIYQQQogGqtljYTAaPCbIO9oai5rnW31MGGrWWDhavseifONGUm6ZhMuloKoVqK4sAMwRQTwwYiomgyTGtDUSWAghhBBCNJD7P8XbJrMBg1ELAI42Farm+f/tsXC1cI+FbedO9t94I2pZGU6jFbcjFdDa1GvAKS3aNtFyJLAQQgghhGigmvNJGEwGFKV6ZChbydGlQtlrFH9bvU0Yja2jxsKRlsbe66+FomIA9kVZcTtT9f3xPXu3UMtES5PAQgghhBCigdxOz3ksAHwCrACUFdkPO/rlkRzUY2GuToVyt1Bg4czLY/s1l6Pk5AOwOwqWjUqoUV+hENe9V4u0TbQ8CSyEEEIIIRqoqudAUcBg0F78fYMsgFZgbTuKAm6PGgtvE4YW7rFwlZSy/uoLMaVqtRTpITD3f4O4qsvVen2Ff1gs3v4Bzd420TpIYCGEEEII0UBVxds155jwCbTqy6UF9gZf+7/F257DzTZvjYWrooKl156L7+4MAPL8YMl9Y3jlvPcpTkvSjwtL6Nas7RKtiwQWQgghhBANVDXcrNFYnabkG2jRl8sKKxp87YOLt1smFcrhqODPG88mbHMaACVesH3qxUw973UsRgu5Kdv1YyPad2+2donWR8YBE0IIIYRooKqUJKO5+rta35o9FkcRWPw3FaolJsgrd5Tzy23n0HuVVpxdYYIDj13PDefepx+Tm7qtckkhunPPZmmXaJ2kx0IIIYQQooH0VKga9Q++QY2TClVRY1Qoy39ToZphuNkiexGf3Hc2vRdqQYVLgcKpN3H2+dVBRWFWJrZirb5CMcXgFyT1FW2ZBBZCCCGEEA2kp0KZaqZCVQcWxfm2Bl+7vLi68NvL19ysE+Rll2Xz1mPncsrcNH2b7YEbGH7J3R7HJW1cpy8bTe2weBubtF2idZPAQgghhBCigWrrsQiM8NaXCw6UNfjaxXlaUKIoWt1GzXks3K6mCyxSilJ48YUJnP3Dger7Tb6aQdfee9Cx+zeu1ZcN5nZYvCXLvi2TwEIIIYQQooGqiqhrpil5+ZrxCdAKuPMPlDb42iWVvR2+QVYMRgOKQdGHtG2qUaG25W7jibcv4Yqvs/WXRNNVF9Lzf1MOOtbtcpG8aYO2onihGCP1yQFF2ySBhRBCCCFEA+nF2zXSlACCo30ALZ2pvKT+dRZOh0tPhfILrk6tMlQWiTdF8faazDU88uk1TPwiH7NL22Y5ezydHnqy1uMP7NlJRZkWOBlMCRjNRkxmSYVqyySwEEIIIYRoALdbpWpi7ZqpUADBUb76cn5G/dOhSvKrR5PyC/bSl6uGtW3swGJp2lIe+P5m7visGL/KshDr0BPp8Mx0FEWp9Zz9GzzToKySBtXmSWAhhBBCCNEANeeS+G+PRUh0dWCRnVxc72uX5FUXffuF1AgsKlOu3I2YCjU/eT73zpnMXV+WEV6kbbN060q712egmM2HPG9/zcJtcyJefpZDHivaBgkshBBCCCEaoOaQrzVrLACiOwXqy6k78ut97fwaRd8BodWBRdXIUI3VY/Hb3t+4f/7d/O+7CjpkattM0dEkzJqF0c/3kOfZSko4sGsnAIohFMXgj7ffoYMQ0TZIYCGEEEII0QA1h3w1/CewCI3xw9tfe9FO25lf70Agc1+Rvhzezl9frgpgXI0wKtS3O79lyqIHuWGOg377Kke3CvAn4b13MUdEHPbcpE3rUVWtDQZzOwAJLIQEFkIIIYQQDVFzyNeq2ocqikEhrlsIAA6bi/2bcup17cz9WmBhMCmEx9USWBxlKtQnWz/hiWVPcOFiFyM3atdSzGbi33oLa8eORzx/75oV+rLBnAiAl7+kQrV1ElgIIYQQQjRAzZf7//ZYAHQ7MUpfXv37/jrPPVGQWUZBppYKFRbnj9Fcfe3qGouG9VioqsrMDTOZvmo6Ize4uWhx9TPEvDAdn0GDjngNt8vF3vVrADBZvDCY4gDpsRASWAghhBBCNIhHj4Xp4JGT4ruHEBbvB0BOSgn/fLIdh911xOtumJ+iL3ca4JmSVHUft0tFddev10JVVV5Z+woz1s+g3x43N8+pbn/EAw8QMH58na6TvnMbtmKtRyU0vgeKoo0GVXNYXNE2ybhgQgghhBANULNuorYeC8WgMPyyrvzw0lrcLpXtyw+wb2MOcV2DCY72xdvfjNlqomo0V0eFi4w9hexapVVRmywGug+L9rhmzWFtXS43JkPd5o1wq26eXfEsX+74kvYHVO7+wY2xMi4JvvoqQq69ps7PvWfNSn05IKIHhXnacs3Rq0TbJIGFEEIIIUQD1EyFMhprTwKJ6hDImOt6MH/2NlwONxVlTvasy4Z12Ue8/qAzEvHy9UwvqpkW5XaqUIfsI7fq5sllT/Ldru8IL1CZ8rULL23uPfxPO43IBx445FwVtakKLBTFgMW7I6ANp+sfLIFFWyeBhRBCCCFEA9QcFaq2VKgqnQdFEhbnx5q5SexZl42z4vDpUFYfE4POSKTv6PiD9tUsEq/LSFMut4vHlz3Oj7t/xLdc5aGvXQRpk2XjPWAAMdOfRzHWfbbs3NQU8tNTAYjp2p2y4upAxy9EUqHaOgkshBBCCCEawOmoDhBMlsO/nAdH+TLm2h6Mulql4EAZxfk2bCUOHDWCDINRITDMm4j2AZgPcb2a82UcaWQol9vFo0sf5ec9P2N0qdz7g5vYXG2fpX174t6cgcHLs5fBVuJgz7osDEaFDv3Csfp4donsXL5YX+48+CTWzdeiFL9gKxYvea1s6+T/ACGEEEKIBnDaa/RYmOs2Ho7BoBAS40tIzKEnnzvs+R6BxaF7LFxuF48seYRf9/4KqsrN86BnkhaIGENCiJ81E1NwsMc5RbnlfDd9DWWFdgCW/bCHsdf1JL5HiH5MzcAiptsJLP9lBwAhMX4Neh5xfJFRoYQQQgghGqBmKtShehgaW82Uq0MNX+t0O5myeIoWVADnL1cYuUHrGVEsFuLenIEl/uA0q+U/7tWDCoDyYge/vLGe9X8lo6oquakp5KQkARDTpTvFudXPHBbXsEBJHF+kx0IIIYQQogFqpkLVtcfiaBmP0GPhdDuZ8u8U5u6fC8CwHQqXLXDo+2Oeexaf/v0POq+syM6etVkAmKxGIhP9SdtRgKrCkm93k5dRitW6Tj++y4kns2t1lr6e0DP06B9OHPOkx0IIIYQQogFqpkKZLM3zSmU4TI2Fw+3ggUUP6EFF9wwjt/9avT/8zjsIOOOMWq+7b0M2bpd2vd7DYzn3jv4MOiNR379tSQZrfv9LX0/ofQLJW7SCDd9ACzGdgo7mscRxQgILIYQQQogGcNZIhTKZmysVqvYei6qg4o+kPwCILjLy2I8WFLvWWxF43nmETpx4yOum7SzQlzv0C0cxKAw5pwNjb+iB0WTA7czGUa71UPgEteOP95P1QKTToEgUQ92HqxXHLwkshBBCCCEawFVzVKjmSoWqZbhZh8vBvQvu5c+kPwEIspt56dcQDAXa/BI+gwcT/eQTh52rIitJm0nbaDYQ3s5f397lhCjOv2cACtv1bXZ7JwoyywCw+proMzKukZ5OHOukxkIIIYQQogE8RoWqQyqU2+Vi18pl7Fz2L1lJeynJz8Pq7UNEYgdiunSn54gx+IeGHfYaNVOuXA43DpeDexbewz8p/wDgg4U3/0nElLQVAEtiInGvv4ZisRzymi6nm6IcGwBBkT4HTfYXFu+DgR1VT4rR3BWAgDAvzrqtLwFh3kd8dtE2SGAhhBBCCNEA9UmFSt68gfkfvENeWornNSoq2Ld+DfvWr2Hpt5/TfdhwTr7smkMGGDXny7DZ7Ny/6H49qPAyWJm5fiDmtYsAMAYFET/zHYxBQYdtW1FOOapbS2sKjvQ5aP++9WsoL9Z6NDoPPpGBZ52EW1WJ7hjYbClg4tgggYUQQgghRAN4Bha191ioqsry775k6befg1pdbG22ehEQHkFpQT62Ei1lSXW72frvP+xevYLRN0yi+8kjDkpfqhlYfLn5K/4yaAXVVqOVWdlnYv3tawAUs1kbVrZduyM+R/6BMn05qJbAYsuC6qLtXqPGENs1+KBjhAAJLIQQQgghGsRprznz9sGBhaqq/P3hTNbPqx6aKbpLN4ZedAUJvfpgMBhRVZXCzANs/fdv1s39FVtJMfbyMubMeInkTesZe/NtGE3Vs1+ba9xne9ZOiAKLwcLbpmvwmvV29X2eeRqfgQPr9BwFWYcOLIpzc9izZgUAvkHBJPYZUKdrirZJAgshhBBCiAY40szbS776pDqoUBROvuQqBp97IYqh+lhFUQiKimboRVcw4PRz+eejmWz9V0tt2rJwPkXZWZxzz8N4+WkzWxtq3MfksmA2mJkRfSf+976MWtkjEnbbbQSefXadn6OqEBsgOMozsNjw5xxUt/acvUePw2CU1CdxaA0KLAoKCli5ciVZWVm43Z6Ts1x99dWN0jAhhBBCiNbMc1Qozxfu7UsXseKHyrQkxcC4SXfQc/jow17Py8+P02+7h8T+g/jj7ddwOuykbN3EF4/ex0VTn8YnKIiv935JEL0BsKhevNrjEULvfAWXTSu+DjjnbMIm31qv56gZWARFVAcWTrudjfO1OTEMRiN9x5xer+uKtqfegcUvv/zCFVdcQUlJCQEBAR65f4qiSGAhhBBCiDbBo8aiRopSXnoa895+TV8fcfUNRwwqauo+bDiB4ZH8+MI0yosKyUtL4esnp5B+ZiSLDmzk3MrAYmz4SOIef4uK7BwAvAcNJPqppw47rGxtCrPLtfMDLFi8q18Ndyz7l/KiQgA6DxmGX4jMri0Or96DLt9zzz1cf/31lJSUUFBQQH5+vv6Tl5fXFG0UQgghhGh1PGberkxRcrtdzH37FZz2CgB6Dh9D/9PPqfe1Y7p04/KnXiIgPAKA/PQ07J+vwOCo0I8JWL2fil27ADC3SyDujTcwHGZY2dq4XW7Ki+wA+Adb9e2q282qn7/T1/uPr3tqlWi76h1YpKWlcfvtt+Pjc/CoAUIIIYQQbYWjsnjbaDJgqJz7Yd2cX8jYqU0mFxQVzejrb6l3D0KVoMgoLpr6DGqAFwCBpWZO3KSguksBsGXmavcPDCT+nXcwBdd/tKayIoc+WJVPYHVgsWvVMnJTkwGI6dKdmC7dGvQMom2pd2Axbtw4Vq9e3RRtEUIIIYQ4ZjhsTgAs3lp9RWlBPku+/kzbqSiMm3QnZi+vBl9fVVU+Sv2Sbwfupthbu5d/mQF78beo7nJcRiuYzcTNeANr+/YNukdpQXUPiF+QVb/v8u+/0refOOHSBgdHom2pU43Fzz//rC+feeaZ3HfffWzdupXevXtjNps9jj3nnPp39wkhhBBCHGvs5VqPhdlLe51a/OUnOGxavUKf0eOI69bzqK7/5vo3eX/z++AN84Yc4JJ1XXEVlqK6c7GXfIfd1IfoaU/ic8IJDb5HaWF1YOEbpKVR7Vj2L9n79wIQ2aEziX1liFlRN3UKLM4777yDtj355JMHbVMUBZfLddB2IYQQQojjiaqq2Kt6LLyMZO3fy+YFf2rr3j4Mu+Sqo7r+zA0zmblxpr5+58gpDO8ZxbevPUeFyYjqyiLPshHv024+qvvU7LHwDbLisFew6LMP9W3DLr5CeitEndUpFcrtdtfpR4IKIYQQQrQFLqcbt0srTrB4mVj27Rf6zNonTrgUn4DABl979pbZzFg/Q19/cPCDXBB4KsUPT2XI7jRQvAFwOLL4/rnHsVf2kjREWWXhNoBPgJXVv3xPcU42AIn9BtK+/6AGX1u0PfWusfj444+pqKg4aLvdbufjjz9ulEYJIYQQQrRmDlv1l6luZza7Vy0DwDc4hP7jzmrwdb/Z+Q0vrn5RX7930L1cGn8eKbdMwpmdjV+FA3/fM0HRajfSd2zlx+efxFFha9D9yksc+nJFaSYrKmsrFIOBEVfd0ODnEG1TvQOL6667jsLCwoO2FxcXc9111zVKo4QQQgghWrOqNCiAvLQF+vLgcyZgqueQr1V+2fML05ZN09dv7XcrV3e9grR77qZixw4AzPHx+MV2weI3ARSt2Dpl6yZ+evFpnHZ7rdc9HFuJdo6qulj27Tu4nNpzDTj9HELjEhr0HKLtqndgoapqrbl2qampBAY2vNuvNi6Xi6lTp9K+fXu8vb3p2LEj06ZN06esF0IIIYRoCVWF225XDkWZmwDwCQyi95jxDbre/KT5TF0yFRXtHee6ntdxS59byHzueUoXLgLAEBBA/Mx3sPpZMZgisfhdgMVbS4tK2riOH55/HFtpSb3uaytxoKoqzrJ/yEnWCrZDYuMZdunR1YiItqnOM2/3798fRVFQFIXRo0djMlWf6nK52LdvH+PHN+wf06E8//zzvP3228yePZuePXuyevVqrrvuOgIDA7n99tsb9V5CCCGEEHVV1WPhsq3Rt51wzgTMFuuhTjmkxWmLuXfRvbhULVi5pOsl3DXwLvI//Yz8Tz/VDjKZiHv9NawdOmDx3gCAwRTNGZOn8ssrWipU8uaNfDH1Pi548DECI6LqdO/yEgeuirW47BsBMJpMnD757gY9hxB1DiyqRoZav34948aNw8/PT99nsVhITExkwoQJjdq4pUuXcu6553LmmWcCkJiYyBdffMHKlSsb9T5CCCGEEPVht7lQ3WW47NpkeFYfX/o0oLdi1YFV3PnPnTjdWqByTsdzeGjIQ5QsXEjms8/qx0U/8QS+J55Yea/q17fgmE5MeHgaP70wjfLiIvLSUvjkgTsYfeOtdB82/LD3VlWV/LR/cZYv1LeddssdRHXsXO/nEALqEVg89thjgPZyf8kll+B1FBO+1NXQoUOZNWsWO3fupEuXLmzYsIHFixfz8ssvN/m9hRBCCCEOxWFz4qrYCGi9DL1GnYbFy7te19iUvYnb5t9GhUsbFGdsu7E8MfQJ7Nt3kHb3PeB2AxB6880ETbhAP88noLqGo6zYTmzX7lz+1Et8//wT5KenUlFWyu+vv8C2RX9z8mXXEJHY4aB7F+flMP/9tykvWKFvO+nCy+hxysh6PYMQNdU5sKhyzTXXNEU7avXggw9SVFREt27dMBqNuFwunn76aa644opDnlNRUeExalVRUVFzNFUIIYQQbYittAJnhZaShKLUeySoHXk7uOWvWyhzlgFwSuwpPH/K86jZuaTcMgm1TNvuP3484Xfe4XGuR2BRqBVfB0VFc/lTLzL//bfZvkTrgdi3fg371q8hpkt3Yrp2JyQ2DltxMQd272TP2pW4HNUjQoXGj+akCy+v31+CEP9Rp8AiODi4zpOj5OXlHVWDavr666/57LPP+Pzzz+nZsyfr16/nzjvvJCYm5pABzrPPPssTTzzRaG0QQgghhPivtG2rQS0FILrzAAIjIut87r7Cfdz8580U2bUvP0+IOoGXR7yM0WZn/6RJODMzAfDq24eY555FMXiOteMTWCOwqDEPhZevH2fefh8dBw5m0WcfUZyrzUeRvnMb6Tu31d4YxQuz73hiup8kE+GJo1anwOLVV1/Vl3Nzc3nqqacYN24cJ510EgDLli1j3rx5TJ06tVEbd9999/Hggw9y6aWXAtC7d2+SkpJ49tlnDxlYTJkyhbvvvltfLyoqIj4+vlHbJYQQQoi2LXXrv/pyt2Hj6n5ecSo3/nEjeTbti9g+4X14Y9QbWBUzqffeTcVWLQAwx8YS/9ZbGGpJPffosSg6eG6xbsOG0+mEk9j41xw2/DmHvPTUg47xDggksd/J7N2QgGLwxsvPXOdnEOJQ6hRY1HyJnzBhAk8++SS33Xabvu32229nxowZ/PXXX9x1112N1riysjIM/4nSjUYj7sqcw9pYrVasVhnJQAghhBBNIz8jjaLs3QAohmAS+/ap03mZpZnc9MdNZJVlAdAtpBtvjX4LX7Mvmc8+S8k//wBg8PcnfuY7mEJDa72OT0D1e07NHouaTBYLA844lwFnnEtJfh6Ze3dTnJON1deX4KgYwhM7kLK1gH2btNGgvCWwEI2g3jUW8+bN4/nnnz9o+/jx43nwwQcbpVFVzj77bJ5++mkSEhLo2bMn69at4+WXX+b6669v1PsIIYQQQtTVpn/+1JeN1t74Bh75C808Wx43/XkTqSVa70GHwA7MHDuTQGsgeZ9/Tt7sj7UDTSbiXnsVa6dOh7yWZ4/FkSfF8wsOwW/g4IO2l5fUTKOSwEIcvXpPkBcaGspPP/100PaffvqJ0ENE1g31xhtvcOGFF3LrrbfSvXt37r33XiZOnMi0adOOfLIQQgghRCNzOZ1sWfBX5ZoBi09PLN6H/562yF7ExD8nsq9wHwCxfrHMGjuLEK8QSv79l8ynntaPjXp0Kr5Dhx72et5+ZgxGrR6iONfW4GcpL6ku3vb2b9hs4ULUVO8eiyeeeIIbb7yRBQsWMGTIEABWrFjB3Llzeffddxu1cf7+/rz66qseNR5CCCGEEC1l77pVlBUWAGAwd8Q36PAD3JQ5ypj812S252nzXUT4RPDeae8R6RuJbcdO0u68Sx9WNuSG6wm++OIjtkExKARG+JCfUUpBVhlut4rBUP/Ca1uNwEJqLERjqHePxbXXXsuSJUsICAjg+++/5/vvvycgIIDFixdz7bXXNkEThRBCCCFah81//6EvG629PUZo+i+Hy8HdC+9mffZ6AEK8Qnj3tHeJ84/DkZVFyi234C7VRpbyHzuWiHvuqXM7gqN8AHA7VYpyyhvwJJ6BhdRYiMZQ7x4LgCFDhvDZZ581dluEEEIIIVqt0oJ89q1bo60Y/DGYEjzqHWpyuV08vPhhlqQtAcDP7MfMsTPpENgBd1kZqbdOxpmRAYBX797ETH/+oGFlDyck2pe967ThZLOSigiK8Kn385RLj4VoZHUKLIqKiggICNCXD6fqOCGEEEKI48nO5YtRVS1tyWjpjqIY8KmlcFtVVZ5d+Sxz9s8BwGq0MmP0DLqFdEN1u0l/4AFsmzcDYIqJJv6tNzF412/W7pjOQfpy2vZ8upwQVe/n8UiFkuJt0QjqPEFeRkYGERERBAUF1ZpLqKoqiqLgcrkavZFCCCGEEC1t+5JF+rLR0g0A31pSoWasn8FXO77SjlOMvDT8JQZGDgQg68WXKP5TK/42+PoS/847mMLD692WqI6BGEwKbqfKvo05nGx3YbYY63UNW6kWWFi8jBhN9c6OF+IgdQos/v77bwoLC4mIiOCfyjGWhRBCCCHaisKsTH32at+gaFxKGABBkZ4pSJ9s/YRZG2fp60+d/BTD44cDkP/V1+R98IG2w2gk9tVX8erSpUHtMVuMdOgbzu41WZQXO1gzZz9DzulQr9mzy4u14Wa9ZEQo0UjqFFgMHz4cg8FAu3btGDlypP4TFxfX1O0TQgghhGhx25dW91b4hfWhMFdbDo3x07f/vOdnpq+arq8/OPhBzupwFgAli5dw4Mkn9X1RUx/B75STj6pNg85IZPcabbK9NXOSyE4u4dRLOxMYfuR6C7fLTUWZE5DCbdF46tzv9ffff3PNNdewd+9ebr75Ztq1a0fnzp2ZOHEiX375JZmZmU3ZTiGEEEKIFrNjyUJ9WVU6A2AwKgRGarUR/yT/w6NLHtWPmdR3Eld0vwIA286dpN15J1Smi4dcey3Bl1561G0KjfXjxPM66OvJW3L54smVbFqQesRzbaVOfVkKt0VjqfOoUCNGjGDEiBEA2Gw2li5dyoIFC1iwYAGzZ8/G4XDQrVs3tmzZ0lRtFUIIIYRodrmpyWQn7wcgskNnCnO11KGQGF+MRgOrDqzi3oX34lK1wOGybpcxqe8kAJw5OaTeMgl3SQkAfqNHE3HfvY3WtoHjEwmK8GHxN7soya/A5XCz6MudGE0Gepwcc8jzPIaalcJt0UgaNNysl5cXo0aN4uSTT2bkyJHMmTOHmTNnsn379sZunxBCCCFEk3M53GxfnkFOagmKQSEs1o/4HiH4h3ixvUZvRUjcAArzteX4biFsyd3C//7+H3a3Vq9wZoczeXDwgyiKgttmI2XyZBzp6QB49exJ7AvTUYz1K7I+ko4DIojvEcKKn/ay8R+tt+Lfr3bq7a+NrdSuL0uPhWgs9Qos7HY7y5cv559//mHBggWsWLGC+Ph4Tj31VGbMmMHw4cObqp1CCCGEEE2irMjOT6+uIy+99KB94Ql+ZO+dD4CiGMhNrx7W1auzg0l/TqLUoZ13atypTBs2DYNi0IaVfXAKtg0bATBFRRH31lsYfOo/30RdWLxMnHJJF1xON1v+TcfpcLP8pz2Mva5nrcfLHBaiKdQ5sBg1ahQrVqygffv2DB8+nIkTJ/L5558THR3dlO0TQgghhGgyqqoy793NtQYVAJl7d2MvzgFAMcZSlKv1NoS08+aBHbeTX6F1XwyIGMCLw1/EbNBe0rNffpniuXMBMPj4EP/O25gjI5r6cTjpgk7sWZuNrdTB7lVZDL2gE761zLXhkQolo0KJRlLn4u1///2X0NBQRo0axejRoxk7dqwEFUIIIYQ4pqVuyyd9VwEAvkFWzrm9H+ff058TzmpPWLwfLnt1mrehcu4Ks5eBn+NncqDsAABdg7vyxug38DZphdx5n39O7nvvV55kIObll/Dq1q1ZnsfqbaLHKVpthdutsm1Jeq3HlRfL5Hii8dU5sCgoKGDWrFn4+Pjw/PPPExMTQ+/evbntttv49ttvyc7Obsp2CiGEEEI0ulW/79OXh13YifgeIcR0DmbwWe25aMpArF6V+xUjUR0H0PnEcJae+DmbXWsASPBP4J2x7xBgCQCg+O9/yHzqaf2aUY9Oxb9y8Jvm0uvUWH15z7ra389skgolmkCdAwtfX1/Gjx/Pc889x4oVK8jJyWH69On4+Pgwffp04uLi6NWrV1O2VQghhBCi0eRllJKxuxCA4CgfOg7wTFVK27aFsspK7Y4DB3HelMF8Hf0aayqWARDhHcGs02YR5q1Nlle+aTNp99wDbjcAoTfd2CjDytaXf4gXEe38AchJKaEot/ygY8qKq4u3fSQVSjSSBs/f7uvrS0hICCEhIQQHB2Mymdi2bVtjtk0IIYQQoskkbcrVl3ucHIPB4Dlr9fYl1ZPidT7pZB5Y9AArDqwAIMASwDtj3yHWT+sdsKemkTJpEmq59hIfcMYZhN91V1M/wiG17xeuL+/fmHPQ/rKiGoFFgAQWonHUObBwu92sXLmS6dOnc/rppxMUFMTQoUN56623iIqK4s0332Tv3r1N2VYhhBBCiEaTtitfX07oEeqxz+V0sHPFEgBMVitfOf9ifrI2OpS3yZu3xrxF52BtojxXYSEpN9+MK0d7gfceNJDoZ59BMTT4+9ujlti7+nnSdhYctL+8ssfCaDZg9mrc4W9F21XnUaGCgoIoLS0lKiqKkSNH8sorrzBixAg6duzYlO0TQgghhGh0bpebjMqibW9/M8HRnsPA7t+wDltJMQDODoH8kPQzACaDiVdHvkrf8L7adex2Uiffhr3yy1VL+/bEz5iBwXrwSEzNKTTGD6uPiYoyJxm7C1BVFUWp7pGp6rHw8bd4bBfiaNQ5sHjhhRcYOXIkXbp0acr2CCGEEEI0udy0Uuw2babs2C7BB71c15wU7y+fzQAoKDx3ynMMjRkKgOp2kzHlIcpWrwbAGBpK/KyZGIOCmuEJDk8xKER1DCRpUy7lxQ4KMssIjvIFtKDKVqoVb3tLGpRoRHXuo5s4caIEFUIIIYQ4LuSkFuvLke0DPPY5KmzsWa3VUlSYXaSHa3UTj570KOMSx+nHZb/6GkW//QaA4uVF/DtvY4mPb+qm11l0x0B9OWNPob5cXuIAVVuW+grRmFou+U8IIYQQooXkplVPiBca4+exb8+alTgqbAAkRZXhNsAdA+7gwi4X6sfkf/U1ubNmaSsGA7Evv4R3795N3/B6iO4UpC/XDCw8Crf9ZahZ0XgksBBCCCFEm5ObVqIvh8T6euxbOv9HfXlvdBnX9ryWG3rdoG8rWbiQA08+qa9HPvwQ/qNGNV1jGygiwR+lcqSrrP1F+vbyGoGFpEKJxiSBhRBCCCHanNx0rcfCy8/skQ60Omk5OVt3AFBmdXLS4PHcPfBuvQajfMsWUu+6G1xafUbIddcRcsUVzdz6ujFZjIRWBk15GaXYbU5AhpoVTUcCCyGEEEK0KbYSh/6tfWiMrx407M7fzctfTMHo1tZdXUJ5dNhj+n57ahopt9yCWlYGgP+4cUTcd28LPEHdRSZW1o+okJ2s1ZXUDCy8ZXI80YgksBBCCCFEm1KYUz0TdWCkNsxsWkkaE/+cSHRy9avRdRc9iMmgDaDpzM8n5aabcGVXzlXRvz8x059v0bkq6iIisbowPbMyHcpj1m3psRCNqHX/axBCCCGEaGRFNQKLgFAvcspzuPmPmykuyCEq10vbHhFJQpdeALjLyki55Rbs+/YB2lwVcW+92eJzVdRFZI3AoqrOoiTPpm/zDWr9zyCOHRJYCCGEEKJNqRlYmIPglj9vIbk4mXYZvhjQ0p66DxuBoiioTidpd9+DbcNGAEzh4cS/+y6m4OCWaHq9BUf7YrJqM2tX9VgUZmvPrxgU/EO9Wqxt4vgjgYUQQggh2pSi3Opv7N/Z+zo78rVi7a6ZQfr2bsNORVVVMh5/nJIFCwAw+PkR/+4sLHGxzdnco2IwKEQk+ANQkldBaWEFRZWBhX+IFaNRXgVF45H/m4QQQgjRphTX6LFYVbYUgDhXKMG52mtRWEIiYfHtyHnjDQq//Q4AxWwmbsYMvLp1a/4GH6Wa6VDJW3L1GccDw71bqkniOCWBhRBCCCHalKribbvBhs1Uiq/Zl1ut1ZPfdRt6KvlffEHOW29rGxSFmOnP43vikJZo7lGrWcC9c2WmvhwQ7tMSzRHHMQkshBBCCNFmuF1uCnO14WKLvfKwGC28PvJ1ctdu1Y+Jcxs48OQ0fT3yoYcIOP30Zm9rY4lsXx1YpG7P15cDw6THQjQuCSyEEEII0Wa8vfJdFLf2+lNmKeTF4S+SWBFGbmoyAFGxCRQ/MQ1UFYDQm24i5KorW6y9jcEv2FrrsLJBUdJjIRqXBBZCCCGEaBM+2/YZX6/7Xl/vFt+JkQkj2bZ4gb4tbMMWVLs2z0PguecSfvddzd3MRqcoCvHdQw7aHlWjJ0OIxiCBhRBCCCGOe7/u/ZXnVj6Hr736Zbp7fGdUt5vtSxcBoKgqUQe0CfB8TzmF6Kem6bNuH+u6DIn0WA+L95NZt0Wjk8DiGKZWdtMKIYQQ4tAWpS7ikcWPAODjCNS3+wZaSN2+hZJcLZgIKy7D4nLj1bs3ca++gmI2t0h7m0JCj1A6DojQ1wec1q4FWyOOV6aWboCoP1VVmTtzMynb8xhxeVe6DI5q6SYJIYQQrdKazDXcveBuXKo2xOqQgGH6Pp9AK1v/+Utfj80vwdwugfiZ72Dw9W32tja1sdf1IK5rEIERPrWmRglxtKTH4hiUnVzM3vXZOGwuFn6+o6WbI4QQQrRK2/O2c9v826hwVQAwPnE8J/ifpO+3WJzsWPQ3AEaXmxiLNwnvvYcp5Ph86TaaDfQaHidBhWgyElgcgwoyy/Rlu82Fy+VuwdYIIYQQrU9SURIT/5xIiaMEgGGxw3jm5GcoK7Trx+x5+QkcaGnFUeV22r/3Hpb4+BZprxDHAwksjkEFWeUe6yV5thZqiRBCCNH6ZJZmcvMfN5NnywOgX3g/Xh7+MmajmbKiqsBCJTm1ute/3/U349WlSwu0VojjhwQWx6DCrDKP9ZL8ihZqiRBCCNG6FNgKmPjnRNJL0wHoHNyZGaNn4GPW5mwoLdA+M40VmWQHaNt8fP3ocv6ElmmwEMcRCSyOQUU5nj0WFWXOFmqJEEII0XqUOcqYPH8yewr3ABDnF8fMMTMJtGojQamqSmm+1suv2ragVg4l22vMeAwGY8s0WojjiAQWxyBbqWcgIYGFEEKIts7usnPnP3eyMWcjAGHeYcw6bRbhPuH6MVmffIWKgqqq2F179O09R4xt9vYKcTySwOIYZCt1eKzbyyWwEEII0Xa53C4e/PdBlmUsA8Df4s/MsTOJ968uxC789TdSX30bANWViVPRirpjunQnJCa2+RstxHFIAotjjKqqB/VQ2MochzhaCCGEOL6pqsq05dP4M+lPALyMXrw1+i26BFcXYpcsXEj6gw/iMGlzU7jsW/R9PUeMad4GC3Eck8DiGOOwuVDdnjNuSyqUEEKItuqVta/w3a7vADAZTLwy8hX6RfTT95cuX0Hq7XeA04nd7IeqOnHZt2vHW6x0PemUlmi2EMclCSyOMbX1TlRIj4UQQog26P1N7/Ph5g8BUFB49uRnOTn2ZH1/2dp1pNx6K2pF5UhQA07E7dgNqrbeZchQrD4+zd9wIY5TElgcYypKD+6dsEuPhRBCiDbm253f8uraV/X1R058hPHtx+vr5Zu3kHLzzahl2hDtfiNH4jX+PFwVm/RjpGhbiMYlgcUxprbeCUmFEkII0ZbM2z+PJ5c9qa/fMeAOLu56sb5u27GTlBtuwF2iFWj7Dh1K7KuvkJ+VjtuZAoBfSCTxPXo1b8OFOM5JYHGM+e9QswA2CSyEEEK0EUvTlvLgvw+iotUbXtPjGm7odYO+v2LvPpKvvx5XYSEAPoMGEffmDAxWK2nb/9WP637KaSgGeQ0SojG1+n9RaWlpXHnllYSGhuLt7U3v3r1ZvXp1SzerxdTWY2GXGgshhBBtwPqs9dy54E6cbu0LtfM7nc89g+5BqZzozp6SQvJ11+HKzQXAq28f4t55B4O3Nw6bjbyUNZVXMtJrpIwGJURjM7V0Aw4nPz+fYcOGMXLkSObMmUN4eDi7du0iODi4pZvWYmpLe5JUKCGEEMe7Xfm7mDx/MuXOcgBGJ4zm0ZMe1YMKR0YGyddehzMzEwBr9+4kzJqF0U8bYnbbkoW4Xdqs20ZLN4Ii2u67hBBNpVUHFs8//zzx8fF8+OGH+rb27du3YItaXm09Fk6HG5fLjdHY6jughBBCiHpLKU5h4p8TKbIXATAkegjPn/o8JoP2GuPMzib52utwpKUBYOnUkYT338MYGAhoc11s+PN3/XpeQQMwyGemEI2uVf+r+vnnnxk0aBAXXXQRERER9O/fn3ffffew51RUVFBUVOTxczypWWPhG2jRl2X2bSGEEMej7LJsbv7jZrLLswHoFdqL10a+htVoBcCZm0vy9ddjT0oCwNwugYQPPsAUEqJfI237FrL27QFAMUbiH9KumZ9CiLahVQcWe/fu5e2336Zz587MmzePSZMmcfvttzN79uxDnvPss88SGBio/8THxzdji5tezR4L/1Bvfdle7mqJ5gghhBBNprCikIl/TSS1JBWAjoEdeXvM2/iatfQmZ24uyddeS8Wu3QCYY2Jo9+GHmCMiPK6z+tcf9GWTtT9evuZmegIh2pZWHVi43W4GDBjAM888Q//+/bn55pu56aabeOeddw55zpQpUygsLNR/UlJSmrHFtVubuZZ8W36jXKtmj0VAmJe+LD0WQgghjidljjImz5/MrvxdAMT4xjBz7EyCvIKAg4MKU1QUCR99iDkmxuM6eemp7FmzUltR/DBYuuLtL4GFEE2hVQcW0dHR9OjRw2Nb9+7dSU5OPuQ5VquVgIAAj5+WtDF7I7f8dQvXzL2GjJKMo75eVY+FwaDgG2jVt0tgIYQQ4njhcDm4e8HdbMjeAECIVwizTptFpG8kUHtQ0e7j2VgSEg661prffgRVG5rW5NUfRTHi5SeBhRBNoVUHFsOGDWPHjh0e23bu3Em7dsdGbqRbdfPEsicod5azr3AfV825ir0Fe4/qmlUzb1t9TVi8q2vv7TYJLIQQQhz7XG4XUxZPYUn6EgD8zH7MHDuTdgHaZ399goqyokK2LvxbO87qhdHaBwBvP8tBxwohjl6rDizuuusuli9fzjPPPMPu3bv5/PPPmTVrFpMnT27pptWJQTHw+qjX9V+GmWWZXDP3GjZlb2rwNW2VPRZWH7NnYCE9FkIIIY5xqqry9Iqnmbd/HgBeRi/eHP0m3UK6AVVBxXV1CioA1s35GafDDkBCr1NQFK2nX3oshGgarTqwOOGEE/jhhx/44osv6NWrF9OmTePVV1/liiuuaOmm1VmsXyyzx8+me0h3AAoqCrjhjxtYmr603tdyudw4bFqRttXHhNXbqO+rkOJtIYQQx7jX173ONzu/AcCkmHhpxEsMiBwA1AwqtJqLIwUV5SXFrJ3zCwAGo4nY7iP1fd4SWAjRJFp1YAFw1llnsWnTJmw2G9u2beOmm25q6SbVW6h3KB+M+4AhUUMAKHeWM3n+ZObun1uv69hrTITn5WvG7CU9FkIIIY4PH23+iPc2vQeAgsLTJz/NqXGnAocIKmZ/dMigAmDt7z9hLy8DoNeIMaD46/ukx0KIptHqA4vjhZ/FjzfHvMmYhDEAON1O7l94P19u/7LO16g5w7bWYyE1FkIIIY593+/6npfWvKSvPzTkIc7ocAYAzry82oOKw9Rb2kpKWPv7zwAYjEaGnH8xtmK7vl9qLIRoGhJYNCOr0cqLw19kQucJAKhouaRvr38btXLEisOxlVbPYWH1lRoLIYQQx765++by+NLH9fXb+t3Gpd0uBcCRlUXSVVfXK6gAWFOjt6LniDEEhEdQXuMzVHoshGgaElg0M6PByGMnPcZNvatTut7a8BbPrnwWt+o+7LnlHt+2mLHUqLGQwEIIIcSxZmHKQqb8OwUV7cu1q3pcxc19bgbAkZ5O0lVXYd+jzZhtioysU1BRWpDPmsoJ8QxGI0POuxgAW0l1YCHzWAjRNCSwaAGKonD7gNu5b9B9+rYvtn/Bg4sexOFyHPK8co9fipb/DDcrxdtCCCGOHSszVnL3grtxqtoXYxM6T+C+QfehKAr2lBSSrrwKR5I2b5U5NpZ2n35yxKACYMnXn+KosAHQe/R4AiO0uS/KiyvngTIpmK3GQ54vhGg4CSyageqq/aX/6p5X8/TJT2NUtF9wc/bP4X9//48yR1mtx3t82+JnxiLF20IIIY5BG7I3cNvft2F3az3xpyeeztQTp6IoChV795J0xZU40tMBsLRrpwUV8fFHvG5O8n42//2ndp63N0MvulzfZyvR7uXta0ZRlMZ+JCEEElg0OVdhIXvGjSfn3Xdx22wH7T+n4zm8NvI1rEZtbO0l6Uu46c+bKKwoPOhYj1QofzNGkwGjWftPWCGBhRBCiGPAjrwdTPprEuXOcgBGxI3g6VOexmgwYtuxk6SrrsaZlQWAtXMn2n36Cebo6Dpde+FnH6JWphUPPu9ifAICAW1+jKoaCy9/KdwWoqlIYNHEct99F0dqKtkvvcyeceMp+O67g3owhscPZ9bYWfhbtKHwNmZv5Jo513Cg9IDHcTVTobwqR7SoSoeSUaGEEEK0dvsL93PznzdTbC8GYEjUEF4c8SJmg5nyzVtIvvpqXLm5AFi7dyfh448xhYfX6dp7165i//o1APiHhTPwjHP1fQ6bC7dTq+OQOSyEaDqmIx8ijoa9uAgMBnC7cWZmkvHwI2S/9x4Bk27BevJQvTu2oyWBN056hXuWP0BuRS57Cvdw5W9X8spJ00nw08bpLs4r1a/rcBVTmF+OqfL3Y0WZg8L8nGZ/PiGEEKIuDpQd4NYld5BnywOgZ3APpg14DFtRMUUbl5J7932opdrnnLlnD4JffpFSXFCHzzanvYI/33tTXx94zgWUlhZB5cdmcV6Fvs9occvnpTjmWK1eePn4tXQzjkhR6zLO6TGsqKiIwMBACgsLCQgIaPb7L3v/XgZs/pCsDQGUpHt57PMOryCibxE+YdU9EakmIzdHRZBi1iKGYJeLtw9k09Nu55vc6WQ5OgNuJkVehEFx803OdLKc2rZbIy9EUY7r/5xCCCGOQTlGA9dER5Jc+dnWpcLOBwcyCXSrlGRYSV0cjOrSkih8wiuIOzUPo7nun2eLshJZlavVYCT4FHBhwiZqllFk2jvzbd50AHr7/MapAe810pMJ0TyWxVzNSTe/0SL3rs+7tKRCNQNroJP4U/NoNyoH79DqOonybCtJf4WTtjQIR6lWwB3ndPFxeibdKrTj8o1Gro+OYLmXlXK39h/TSynGoGg5pBZDVaG3AYdqbb6HEkIIIeqg0GDgpqgIPahItDuYeSCLQLdKUbIXKf+G6EGFb6SN+OH1CyoOlPuxOjcOAKPiZnTUbv5bm131+QngZSg6yicSQhyKpEI1MXN4RzZmn6CtJADxKkqyDeOaIpQirS6iKNmHwjRf3L38cPf2A5OBe/LdvBxcwDargzKDgUmRkdyYFAyAwWRno5d2zXKTF1TGKhssQ7Gaipv7EYUQQohalStungnJZ69F+7wLdRq4Oz+adEscB3aUYlhWQFUM4G7nRcGpMRQY6z5ik8sFy/daUCuv0i7SRWpgL1L/c1yms7e+nGcJ0T9DhThWGMM7t3QT6kQCiyY26JxJcM6kg7arTicF335H9muv4crPR3GpGDcUY83yI+Leuwg44ww+cdu5b+F9/JPyDyaXL6hawXZYl670+d9fAGTP3kruMq3Iu8P1nxAa0/rz74QQQhz/bE4bk/6axN7MbADCvMOYPX428f7x5M56l+xlr+jHBl44gegnnkAx1m9+ib/ef5uyjb8BENWxM+c8+QJG08GvNuv+SGbn97sB6HjB3XQeFNnQxxJCHIakQrUQxWQi+NJL6DhvLiHXXAOVvwidGRmk33MvSVdcibprHy+PeJnzO52Pf0Wofm6quo+q0piak+Q5ZJI8IYQQrYDD5eDuBXezOnM1AIHWQGaNnUW8fzxZ018g+5XqoCL0xhuInjat3kHF3nWr2PCHFlSYLFZOv+2eWoMKgPKSGsO1y6hQQjQZCSxamDEggMgpD9Lh55/wPfUUfXv52rXsm3AhudNf4tG+93NOxAX6vmUli5i+ajpu1e0xSV5FmQw5K4QQomW53C4e/PdB/k37FwAfkw/vjHmHTv7tyXj4EfI+/FA/NuLee4i49956T1hXkHmAOW+8pK8Pv+oGQmLiDnl8zeHavWUeCyGajAQWrYS1QwcSZs0ifuY7WBITtY0uF3kffcS+s87mxKx2+rHFlnw+3fYpDy9+GItv9X/Cmt/ICCGEEM3Nrbp5fNnj/JH0BwBWo5UZo2fQw78zqXfeSeH332sHGgxETXuS0BtvrPc97LZyfnphGrbSEgA6DhpC37GnH/YcW40JZr2kx0KIJiOBRSvjN3w47X/+ifA770CxaqM8OQ8cIHPOIv2YMq8CAH7d+ytfpXxWvb1QAgshhBAtQ1VVnlnxDD/u/hEAk8HEKyNeYYBPV1JuupmSv+YDoJjNxL78MsEXXVT/e7jdzH3zFXJSkgAIiYnj9Mn3HLHHw3OCWQkshGgqEli0QgaLhbBbbqHDLz/je/LJANi8QvT9U4v74a1qvxjXFq/St5cVS2AhhBCi+amqyvRV0/lqx1cAGBQDz5/yPCcaO5F0xZWUrVwJgOLjQ/zMdwgYP65B9/j7o1nsWrkUAIu3D+fe9whWH58jnlsVWFh9TBiN8uojRFORf12tmCUhgfh3ZxH76itU+EYAoLhdhMz+mg++i6B7rhdl5urxuPNyZWxuIYQQzUtVVV5f9zqfbvsUAAWFp09+mlMrEtl/6WVU7NoFgDEkhHYffYjv0KENus+yb79g/bxftXsYDJx1x/2HrauoqSoVSnorhGhaEli0coqiEDB+PBUhsQBYK/JRUDHuSuKJ98s5b12FfuzapA0kFSW1VFOFEEK0QTM3zuS9TdUzWT8+9HFGZkeQdOWVODMzATAnJJD4xed49+lT7+urqsriLz9h2bef69vG3XIH7fsPqtP5Locbe+Woid5+UrgtRFOSwOIYUF5ix16u/VIM7hSNtXMnbYfLxRkL81Dc2jcxxnIrV8+5mm2521qqqUIIIdqQDzZ/wJvr39TXHx7yMGN2eZFy4424i7UJW7169SLxi8+xtGt3qMsckup2s/CT91nxw1f6thFX30TP4aPrfA3PEaGkx0KIpiSBxTEgN7VEXw7vEknid98RduutYDKhANYKLQUqqMyP4uJcrpt3HasOrDrE1YQQQoij99m2z3hlTfV8FPcNuo+xy2yk3X0PqkN7mfcdfirtZn+EKTT0UJc5JIfNxs8vP8ua337Ut426/hYGnnluva5jK5U5LIRoLhJYHAOyU6oDi9A4PwwWC+G3/4/2336DtUd3LA7tWyGD4s9zH6pEpJRwy5+3MD95fks1WQghxHHsm53f8NzK5/T1O/rdzrif08l6/nl9W+CFE4h/800Mvr71vn7+gXS+fOwBdq9aBoCiGBh78//oP+6sel+rvLjmiFCSCiVEU5LA4hiQvqtAX45sH6Ave3XrRvuvvsI/PlzfFlHsz9OzXZz5r417/76L73d935xNFUIIcZz7afdPTFs2TV+/tdsNjH9vE3mzZ+vbwiZP1mbTPsRM2Iez7d9/+OSBO8javwfQRn86/8HH6DO6/iNJwX9m3ZZUKCGaVP3/xYtm5XaremDh7W8mJNrzmx/FbCawTxfS/k0HwG4JwN9eyGWL3AzY42ZGwaPkj87n+l7X13tmUyGEEKKmOfvm8OjSR1FRAbgl9hLGv7CE4s2btQMMBqKeeLxBc1QU5+bwz+xZ7FqxVN8WHB3DOfc8TFh8/eszqtTssZBUKCGalgQWrVxOSjH2cicAMZ2Daw0OfAKqu3at510Cn78Mbjdd0+CF913MTnqZly7L4+4T7sGgSCeVEEKI+pufNJ8p/07BrboBmOR7OmOfno8t4wAABl9fYl99Bb9TTqnXdZ0OB+vn/crSbz7HYSvXt/ccPoZR10/E4uV9VO221Zwcz19SoYRoShJYtHK712Tpy3Hdgms9xrdGYGEZdTrtzhhA+gMP4EhJwcsBE+e4Wb3rQ56anMmUcc9iNsg3NkIIIepuUeoi7l10Ly5VG6HwtvKhjHhtPs6yMgBMMdHEv/0OXl271PmabpeLLYvms+zbLyjOyda3ewcEMuram+k2bHijtN1jVCjpsRCiSUlg0YrZbU62L8sAwGBQ6Ng/vNbjvGsEFmVFdnyG9qfDjz+Q+dzzFHzzDQCDdqt0mPobL+zP4O6b3sfL5NX0DyCEEOKYtzR9KXf9cxdOt9Z7fm9STwZ/uRi3W+u58Ordm/i33sQUXvtn1H+VFRWy6e8/WP/Hb5Tk5lTvUBT6jhnPyZdeg5efX6O1v2pyPJAJ8oRoahJYNAOHzYbZq/4v8mvnJem5oR0HhON9iC5cnwCrvlxWpP0CNfj6Ej3tSfxGjiRpyv0YC0sIKYFzX1vLJ9vO5OLnviHQJ6QBT9O0KspKydi5nZzUZBwVNowmM5EdOhHXvSdGk3wgCCFEc1qWvozb/74du9uO4lZ5bGUCPf7ZoO/3HzeOmOeexeB9+HQll9PB/g3r2L5kIbtXLsPpsHvsb99/EMMuvpLIDp0a/Rk857GQVCghmpIEFk2svLiI2ffdRveTRzD0ossxW48cYKiqytbF6ayZq82irRgUBp/d4ZDH+wRUv3BXBRZV/EeNpOsvv7H9jkmY1m3FAJz8RzpLd42l/5uzierQq2EP1ohUt5vda1aw+Z8/SdqwFpfTedAxFm9veg4fw4kTLsUnILAFWimEEG3L8ozl/O/v/1HhqsCrQmXaHyG027xP3x96002E33UniqH22r3ivBySNq4naeM69m9Yi62k2PMARaHjwMGccPYEYrv1aLLnqPpcNFmNmC3GJruPEEICiya38NMPKM3PY/Uv37NrxRLG3HArif0GehzjqHBRVmSnJN9GVlIxu1dnkpVU/Qt48FmJBEX6HPIevoHVPRbFubaD9psjIuj16ddse+0Z3O99jtENifvKSJ1wCeXTHqP9WRc3wpPWn6qq7Fy+mKXffE5eWsphj7WXl7Nu7i/sWPYvZ95+Hwm9+jZTK4UQou1ZkbGC/83XgorIfJUnfvIiJKOyDsJkIvqJxwmaMAHQeppzU5PJTU0hNzWJ3NQUclKTPdOcavDy9aPniNH0O+0sgqKim/xZygorAM96RCFE05DAogmpqoqt1AcUI6guCrMy+e7ZxzD7dMcr4FRQAnA7VVxO9yGv0XtkHAPHJx72PiaLEb9gKyX5FRRkldV6jGI00uPuqewZNIAD9z1ASKEL33I3tnsfY9vylXR99BkMlub7pVtwIIO/3n+LpI3rPLb7BYfQafBJRHXsgndAALaSEvZvWMuulUtxVlRQVljAt09P5Yz/3Uu3oac2W3uFEKKtWJGxgtvm34bNZaPXfjf3/2TAq6wUN1AWFoxy7dWsK8kj9+mp5KYmU5KXe8RrWrx96DDgBLoNO5XEvgOaLbXVYXdht2kF5z6BElgI0dQksGhCiqIQ3XUMKTtCcJT9hepMBcBRtg1H2U6M1n6YvIagGA5OjwqL92PwWe1p37duxXBBkT6U5FdQUerEVuI4ZIFax1PPxOeHLiz53+X03FI5o/e3v7F1y3a6vvUu5uhDf3tUnGdjz9osHBUuOg+KPGwvyqG4nE5W//oDy7/9wiPHNrZbDwafdxHt+w48qFu9xykjKcm/jnlvv8r+DWtR3W5+f+NFvPz8SezTv95tEEIIUbtVB1ZpQYWznNNXq1z5D2QFeJER4UdugC8uBfjz1yNex+rrS1h8O+J79qFdn/5Ed+qKscZkeS6nG7dbbfLUpKreCvDs3RdCNA0JLJqYyWzA4h2G1fcynLbN2AoXoLrLAReuijW4HZsIjBxMVOfhBISFEhLjS3THIEJifI947ZoCI3xI3Z4PQEFWGVF+h65DiI7pzJjP/uTDaRcz6scULC4wbtvDznPPpt0rr+E3bNhB5yRtyWXuzE047Vrvypo5SZx8cWd6nRpb5zam79zGn7NmkJOSpG/zCw1j9HW30OmEEw97rl9wCBc8+Dh/vvcmm+bPQ3W7+fWV57j6hTcICIuocxuEEELUbtWBVUyePxlnRTkT57npmO7Poq7BVJgP/arg5etHaHwCoXGeP75Btc+7BLD6932s/j0Ji7eRc+/sT2hs440A9V+lhdVfYEmPhRBNTwKLJjZwfGKNVKbhVJRdy8ofv2Ht7z/jdNhR3XYKMhZTkrOSniPHEtX+rHoHFQBBEdUjcuRllBLV4fAFzkFeQUx8/Eee63gzo2euIaIQDEWlJN94E+H/u42wW27Rew4KssqYN2uzHlSA9m3Tws934O1npuOAw7/Y20pLWPzFbDb8NRdUbbZWRTHQ//SzGXbxFVi869bzoRgMjL1xMmWFBexZvYKKslL+mPkGEx56UmYVF0KIo1AVVFgKyrj3R4Uirxi2xnr2pvsGBRPXozdRHToRntiBsPh2+AQG1ev3b8q2PFb8rBWAlxe7WfbDHs66relq5spqBBbSYyFE05PAoplZfXw55fJr6Xvamaz4/iu2LPwLl9OJ02Fnwx+/seGP34jr0Yu+Y06n0+ChmMx1y0MNi/fXl3OSi+HgToeD+Jh9mHrthzwZfT9dZ8xj4B4VRVXJef0NytevJ3b6dIxBQSz5djeOCi1HNbF3KD6BVrYuTgfgn0+3E5EYgH/IwelcVcXZ/3w0i9KCfH17RPuOnHbz/xo0rKBiMDD+1ruYfe9kSvJySdq4jk1/z6PP6PH1vpYQQghYfWA1k+dPJiqljEm/mtgVGY3DVJ2i1OmEExl45nnEdu1xyBGg6mrPumyP9eSteYdN3z1apR6pUNJjIURTk8CihQSEhTP25ts46cLLWP3bj2z8cw6OCm1Ep9Stm0nduhkv/wC6njiMbsOGH/EXenhCdWCRlVx8yOP+y2ww88T4l5geHMHODz7lkkVuDEDpon/Ze8EEzFNeZP9GLSjwDbQw9oaemK1G7OVOdq/JoqLMyfzZWzn3zv4e31rlpafxz0cz2b9hbfW9rF4Mu+Qq+o8/C4Ox4Xm1Xr5+nDbxdr5/9jEAFn/5Cd2Gnlrnng8hhBCaNZlruHX+rQzYUMoVf5tZmxiNs/L3c2BIGGfc9SAxXbo12v2SNnuOFKW6VZK35tJlcFSj3aOmmjUWPtJjIUSTO7qvHsRR8wsJZcRVN3DTWx8y4uqbCI6J0/fZiovY8Occvnr8Qd697QYWfvoBaTu24Xa7DrqO1dtEYGU6VE5KCS7XoUea+i+DYuCBIQ8SO/l2nr7UQFFlVpUzPZ01b/+hHzf4nA5YvEwoisKIK7riF6L9kk7bUaD3YDhsNv79YjYf3zfZI6joMHAw1778FgPPPPeogooq7fsNpOtJpwBQXlTI6l9/POprCiFEW7I2cy23zbuFi+eUcNNcA+vaVQcVcV26ceWLMxo1qCgtqKAkr+Kg7em7CxvtHgfdU2oshGhW0mPRSnj7+TPwzHMZcMY5pG7dxIa/5rJn9Qqcdu2XcHFuNqt/+Z7Vv3yPd0AgHfoPouPAIbTr2x+LlxYJRLQLoDCrHJfTTV56KeE10qOORFEUJvadSLBXMA+GTuPOH5y0z/ImK1TLfTUrDjr3D9WPt/qYGXllN355XZuBdcm3O7EVbWTNb19TnFvd1e0fGs7Ia26i0+CTGr0OYtilV7Fr5VLcLherf/2BfqedgU9gUKPeQwghjkerD6zmoR8ncd+3JXROV1jWKUpPf4rr1pMLHnqiThO61kduWom+3OvUWLYsTkd1q2TsLmjU+9Qko0IJ0bwksGhlFEUhvmcf4nv2wV5exp7VK9i2ZCFJG9fhdmk9FeVFhWxZOJ8tC+djNJmI69Gbdr374eUbiaq6URQD2cnF9Qosqlzc9WICrYE87P8AV/0zGJNR+4YnMmUx6bd8Tuxrr2IKDgYgoUcoXYaEsW3RIioKV7Dg4+o6CqPJxKCzL2DIeRdj9mrcD6cqwVEx9B41jg1//o7Dpk2gN+ySq5rkXkIIcbxYnrGcNz66lce/LSe4FDbHhlLsrb10B8fEct4DjzZ6UAGQf6B6nqWIRH+ykvzISiomL70UW6kDL9/Gr7Oo6rEwmBSsPvLKI0RTk39lrZjF24fup4yk+ykjKSsqZO/aVexds5L9G9bq9Rgup5OkjeuqJ5pTrBhM8Wz8ay8RCWMJjY2vd7HduMRx+I/1Z/6mvYSUattiMpZStjud/RMuJO7NGdjDQtm84C92L5uDoyzf4/z2/QYy4pqbCYmp+1C0DTXk/IvZ9Pc83C4X6/+cw+DzL8ZskW+lhBCiNktSF/Pb9Mk8+Jcdkxty/LxJDtNGETRZrZx7zyNYfeo/MmFd5GdWBxbBUb5EdwoiK0mrCczYU0j7PmGNej9VVSnO1T4r/YO9ZPRAIZqBBBbHCJ+AQHqNGEOvEWNw2u2kbN3EnjUr2bNmBSW5NYrh1Arcjt2kbd3N7Ht/xOLtQ1THzkR37kpUp66ExbcjIDwcg+HwdQ6dnL1YV6r9Qi607MdOOgU+VnKdZSx84A4KvA/OVVVMcfiGnMrpt12It3/z5LL6h4bR9aRT2LZ4AbbiIrYt+oc+Y2SEKCGE+K+FO/9g15S7uWqL1vvtNChs7hgHaDV5p15xHaFx8U12/4IDpfpyUKQP0Z0C2TA/BYADewoaPbCwlTr0EQ0Dwpqm51wI4UkCi2OQyWKhfb+BtO83kNHX30JeeirJmzeQsnkje9auw+0s14+1l5eRvHkDyZs3VJ9vthAcE0twVAw+QcH4BgbhHRCI0WTSezc2L9yDozwT1V2M276XxV3aY3If3POhKAY6DT4Rh6MXGXt9cToUFn21k9Nu6Nls3w4NPPM8ti1eAMC6eb/Se/Q4+WZKCCFqWLD0CyoemMawbFXfljp2OGUHtBf7+B696Tf2jCZtQ1UqlLe/GS9fM9Edg/R9GXsav4C7KMemL/uHeR/mSCFEY5HA4hinKAqhsfGExsbTf9xZrJmzj6XfLcftTCE4opCyohRK8/M8znE67GQn7SM7aV+d7uFth/8OIOZfXkF0QQmdu/ak803/o0K18vkTy6kodbJ7dRbh8f4MGNeukZ7y8CI7dCK6c1cydu0gJ3k/Wfv2NGiODCGEOB4t/OwF/Kd/QGRlHbPdy0TII1PZ8eMXgFYTd9rE2496jorDqSh3Ulak1TsERWpDg/sEWAgM96Ywu5zM/UU4HS5M5iOPGmgrdbBhfgp5GaXEdAqi14hYjMaD216UU/0lW0Co9FgI0RwksDjOdOgfwfKfIjGYIvENC+Cq5wdSnJvDgd07yNy7m7z0VHLTUik4kI7qruOQtIpCQEQE+71z2e57gC7p5YzbaMeogpq1hKTLLyfu7bcZfllX/nhvCwDLftiDy+lm0OmJKIam7z3oNXIsGbt2ALDpnz8lsBBCtHmq3c7yqZOJ+Gmxvq0g2p9+737G/N9+wOVwADDgjHMJiopu0rYUHPCsr6gS3TGQwuxy3E6V7KRiojsFHfY6pYUVfDd9jV47sXddNllJRYy9vudBx3oEFtJjIUSzkMDiOBMc5UtIjC956aUc2FtEaYGdgLBwAsLC6XLiyfpxLqeDkrxcSgsKKCssoLy4CLfLhaqqrPszieJcFRQvxt5wAp0GdcFssVLmKOOuBXfxa/pS9kcbuOsHN/42qNi1m/0XX0LcjBkMOacDK37eC8DKX/aRuj2fEVd09fggaQpdTzqVfz56F6e9gu1LFjD8quuliFsI0WbZU9PYPOlagnal6tuST4hn9NvfkZWeyo6liwDw9g9gyPkXN3l78jOr6yuCo6onM43qGMj25QcALR3qcIGF2+Vmzjub9KCiys6VmXQdEkVCz1CP7UU1jpPAQojmIRPkHYc69g/Xl/euz6r1GKPJTGBEFDFdutHphBPpPeo0+o49nfhep1JW3BWjpRsRiT3pdlIv/QXdx+zDjFEzOKfjOWxONPDwNUbSQ7TrufLySL72Wjq7NnPSBR31+6TvKuDzJ1bwyxvr2bwwleyUYr2YrjFZfXzocuIwACpKS9m7ZmWj30MIIY4FxfPns/Pcs/CuDCocRlh31QmMmT0Ho68fCz5+Tz926MVXNtkoUDXVHGq2KhUK8AgkjlRnsfGfVDL3FQHgF2z1SLdd8t1uVLfqcXyxR4+FpEIJ0Rykx+I41HFABKt+2w/A7jVZ9BlZ91E+tixK15e7D4s5qAjabDTz1LCniPaNZubGmTx8tZG7f3DTO0lFtdtJv+8+4m+9lfA7ruCfT7dr3yypkLwlj+Qt1bUeXr5mrD4mrD4mjGYDBoOCYlD0Pz3Sp9TqDwuPjw3PzxBK8xP15QWf/MrO1f4HHed5vkpFuQt7uZPwBH/6j00gPKH+c38IIURroNrtZL30MnmzZ1NVqXAgCHbcfTYTL3oeRVHYvmShnjYaGpdAn9HjmqVtBZm1p0IFR/pg9TVRUeokY08BqlutNX22JL+Clb9U1gUqMO6mXkQmBpC6PU+fCyNtZz5x3UL0cwori7fNVmOTzJEhhDjYMRVYPPfcc0yZMoU77riDV199taWb02qFxPgSFOlDQWYZGbsLKcgs8/iG6FDsNifbl2cAYLIY6DokqtbjFEXhtv63Ee0bzbTl03jmEic3/OFmzHrttT3nrbcI2L+PSx6bxpblOWxakEpJfoXHNWylDmyljqN8Uk+qGgCKN6jllOTuIGlzJopStw+TgswyUrfncfUzQ+tUPCiEEK2JIy2N1LvvxrZho75tWTeF0nuu4baT70dRFBz2ChZ9/pG+f/hVN2AwNs/vu6oeC6PJgH+NQmrFoBDTKYh9G3KoKHWSlVRMZPuAg85f+v1uvbe758kxRHXQ5t7oNzZBr+3buiRDDywcdpdeYxEc5SMjBQrRTI6ZVKhVq1Yxc+ZM+vTp09JNafUURaHHsBh9fcvi9MMcXW3H8gM4bNov7i6Do474Dc+ELhN4Y9QbWKw+zBpvYPZoA+7K391Fv88h/ebr6TPAh6ufHsrFD53ASRd0pNuJUUR1CCAgzAurr4nG/F2vKAaM5qqibSduRx1Gvapx//Jih97NLoQQx4riv/9m7/kX6EGFwwjvn2ag/LFb9aACYO3vP1Ockw1AYt8BtO83sFna53a5KczSAovACG8M/+mRSKwxf8Xe9dkHnZ+xu4BdqzIBrbf7xPOq02079A3XP6v2rsvWv7DKSy/Vu6hDYv0a72GEEId1TPRYlJSUcMUVV/Duu+/y1FNPtXRzjgndTopi+c97cDtVti/NYMjZ7TFZDv3NlKqqbFqYpq/3HlG3WbNPiTuFD8d/yOS/JvPb4FwOBMMdP6t42VVsGzay75JLiH/7HcK7dqk1zUhVVdxuFdVV+ae76k/P4zwCEKXqD+WgbSlbAvj5pU0AJHTP4/TJp9R6kaolo9nAln/T+PerXYD2YRTbJbhOzy6EEC3JbbeT/dJL5M3+WN92IAheOc/IOWfeyY29b9S3lxbks/LHrwHtS5jhV17fbO0syrHhdmlv+TULt6sk9g5DUbSs173rsznxvA56MOR2q/z79S792CHntPf40sto1nrXN/ydgsvpZteqTHqPiCM3rUQ/JjSm6WtIhBCaY6LHYvLkyZx55pmMGTPmiMdWVFRQVFTk8dMWeftb6Ng/AtDSjrYuOXyvRdLmXPIztFE7ojsFEhZX91qDnqE9+ezMz2gf2J41nQ1MvdJAboD2oeBMzyDpiisoXbq01nMVRcFoNGCyGLF4mbD6mPH2s+AT4Pnj7V/jx0/78fIzV//4aj8dB/bH21/rRk/atAaD0YXVx6z9eJv0H0vlj9Fk8HjW/Bp5wEII0VpV7N3L/ksu9QgqlndVeOA6I5ef94hHUAGw9JvPsJdrqUG9R59GWEJis7U1/z8zbv+XT4BFL+IuyCwjbUe+vm/9X8lkJxcDEBrrR49TDv7Sq/uw6qFyty3V0nkP1CgEl9o5IZpPqw8svvzyS9auXcuzzz5bp+OfffZZAgMD9Z/4+LoXLh9v+p+WoC+vnZuE01H7aExut6oPEQvQb0xCrccdTqxfLJ+c/gkDIgaQFKkw5RoDu6Mrv3EqKSH55okU/PBjva9bXwajkU4nnAiAs6KClC2bjniOb5BFX7YV25usbUIIcbRUVSX/m2/YN+FCKrZtAypTn8YaePUCE4+MeYZLu13qcU7mvj1smv8HABZvb4ZdfGWztjkvozqwCDlE70Gv4dUBw6rf9uNyuclKKmLFT5WfTQqcemmXg9KoQAs4ItppwUN2cjHZKcWk7yoAwGBSiEw8uGZDCNE0WnVgkZKSwh133MFnn32Gl1fdhoqbMmUKhYWF+k9KSkoTt7L1Co/3p31fLXe1tNDOmjlJtR63fWkGOSlat3FYvB/ta+S71kegNZBZp81iXOI4CvwUnrjcwKrOlR8CTicZU6aQ/eabqKp6+AsdpQ4DBuvLe9euOuLxNbvVG7ugXAghGoursJC0O+/iwNRHUSt7H1JDYcq1Rv4ebOXlEa9wTsdzPM5R3W7mf/A2amV+6ZDzL8EnMKhZ252fUd0THBJde2DRsX84/iHa53z6rgK+eWYVP726Xk+h6j82gZjOQYe8R/eh1b0WS7/bTWG29vcT2S7gsGnAQojG1aoDizVr1pCVlcWAAQMwmUyYTCYWLlzI66+/jslkwuU6+Bt4q9VKQECAx09bNuScDvo3PGvnJpGTWuyxvyinnKXf79bXT7m481HNlG01Wpl+6nSu7XktFRaFFy8wMHdA9fVy3phBxiOPoDqa7gU+oXdfjCatfGjv2lVHDGQs3ib9mW2lziZrlxBCNFTZ6tXsPe98iufN07f92V/hweuMZEV7M2PUDEa3G33QeVsW/U3Gzu0ABMfEMfDMc5utzVWqeiwUBYIiah+h0GA0MOa67hhN2mtJblop9nLt93F0p0CGnN3hsPfofEIkJrN2bur26lSqDjXmdRJCNL1WHViMHj2aTZs2sX79ev1n0KBBXHHFFaxfvx5jMw2TdywLjfVjwHhtEiG3W+X3tzZRnKeN7V1aWMHvb2+iokz75d35hEhiOh994bJBMXDPoHuYMngKGAx8cJqBj0dV/69W+N33pNwyCVdJyWGu0nAWL2/ievQGoDg3m5yU2ntqqiiKgpevFohIj4UQoiU5KmxUlJXqX4ioTifZr79O0tXX4MzQ6gfKvI28eIGBd8cbsfj4M3PsTIbGDj3oWiX5eSz85H19fdR1EzGamnc+B9Wt6jUWAWHeh+09iOkczGk39MRkqf686HpiFGdN7ovRfPjXFauPmT6jPFOfjSYDXQbXPmy6EKJptOpRofz9/enVq5fHNl9fX0JDQw/aLg5t0OmJ7N+UQ05KCcV5Nr58cgVx3ULI2FtIeZFWUxAQ7s3wy7s26n0v7345kb6RPLDoAX4dUkFuANz2q4rZqVK6ZAlJV15F/Mx3MEdGNup9AToMOIGkjesArdci/AiFihYvE+XFDuw26bEQQjQvVVXZtXIpq37+jgN7doGq4hMYRMde/YhduhrD+g36sXvbezP9DDt5AQaCrcG8M/YdeoT2qPWaf8x8HVuJ1kvd5aRTSOzTv9meqUphTjlOu5aGFXyINKiaOvQP5+pOQ8ncX0RAqPchazJqM+iMRHJSi/XJWE++uDM+AZYjnCWEaEytusdCNA6j2cBZt/UlMNwbALvNxd712XpQ4R/ixVmT+2D1bvw4c3TCaD4c9yGhXqEs627gyUsNlHhraUcV27ez/5JLse3Y2ej37dD/BH25LnUWVd+QuRzuIxwphBCNx+lw8PsbL/LLy89yYPdObcxVoKywgE1LFvCHq5jdEUG4jQZ+GR3A1AnQJ+tyxu+/jndHfFBrUFGSX8EnD73DvnWrAfANCmbMDZOa9bmqVI3oBHUfncnb30Ji77B6BRWgzbB91m19mXD/QC5/fAi9Tq3bsOlCiMZzzAUWCxYskFm3G8A30MqFDw6ix7BovUtZMSh07B/OhAcGEhzVdON89w7vzednfk7n4M7siFd4+CoDWUGVw9EeOKANR7tsWaPeMygqmpCYOAAydm6nvKT4sMdX5fU6He4mLy4XQggAt8vFLy8/w/YlC/VtoTFxRFh9MLq0LzncBoWd0aF8PziOn3rY6Z8+jm7ZJ5KY0Y89P9Q+PPaf7/5K9t7f9fXTbrldH4a7uWUlVf/urRq5qSkpikJUh8Am/UwTQhxaq06FEo3Ly9fMyKu6M+yizpQWVOAbaMXSBL0UtYnxi+Hj8R9z76J7WcISHr7awAPfuOiUUT0cbcwzzxB49lmNds/2/QeSl56KqrpJ2bKRLkOGHfJYPX9XBbdLxWhqxCnBhRCiFgs/eV/vUTVZrYwYfQbeH36K68AB7EYDeyKC2RcRBIBPmZlzFkdj8g9AVVQURWHfhhyKcssJCPXWr5m6fSt7135K1bTTXgFDaN9vUHM/mi47qXouKZlPQojj3zHXYyGOnsXLRHCUb7MFFVX8LH7MGDWDS7teSqGvwhOXG1ndqfIF3uEg/b77yP3wo0a7X7ve1fnEVfUWh1KzoFDSoYQQTS1p43rWzvkZ0ObfGRHXCcuzL+I6cAAALx9fgq88jTlDsyj01QaVMLkNULgER8mPuF1aHUHWfq1HwO1ysX7eb3w77WFQteMN5i6ohqEUtNDEn6pb1VOhfIOs+AZaW6QdQojmIz0WolmZDCYePvFhEgMTmb5qOi9MgBv+cHPaOu3btaznn8eZnU3EvfegGI4u7o3r3guD0YTb5SR504bDHluVCgVaOpTF+zAHCyHEUXA6HMz/4G19vVeZC8v3P+vrPieeyNLrBvDM/lkQBL8Ms3F+Wh98txQA4Hbuw160D4OpHWt+3UjqFl/2rl1Ffka6fg2DKR6z7zgURSFjT2GLpAblppdit2nDwjdHGpQQouVJj4VoEVd0v4LXR76Ol8WH98YZ+OqU6v8V8z74gPQHHkS1H90s2GYvL2K6dgOgIDODwqwDhzzWZK4ZWNQ+Q7kQQjSG1T9/R35GGgDBZTZit+8BQLFYiJgyhe8m99KCikoTel7Mw4/MptOJN4JSPQ+E25lE6ta/WPPbTx5BhdHSB7Pf+SiKNrTsgb2FzfFYB0ndnqcvx3Y5+qHMhRCtnwQWosUMjx/OJ6d/QqRvFN+dbGDmeAPuysyool9+IWXSrbhLS4/qHu169dOXkzatP+RxNQMLSYUSQjSVgswDLP/+KwAUVaVnSjYKYO3Rnfhvv+bVTrv4cOtH+vG39r2Vh4c8jNFgxFYWgzXwekzep4DhPz0AikJcj16EJFyD2XcMilI98eeBPS0UWOyonqgurpsEFkK0BRJYiBbVNaQrn5/5Od1DujO/v4GXLjBgr0zQK12yhKRrrsWZm9vg6yf07qcvJx0mHcpo9kyFEkKIxuZ2u5n3zGO4nFoNRGJ2IQF2J6ETJxL56Yc8kPIGP+7+EQAFhaknTmVSv0koioLT7iI3rRRFsRDRYQTxve/CEnAdZv8LOf/BJ5k061MufPgZykvDAAiL99OLpfMPlDX75J/2ciep27TAwifAUu+hY4UQxyYJLESLi/CJ4KPxHzEqfhSruhiYdqmREi9tn23zZvZfdjn25OQGXTuqY2esPtoHWvLmDaju2oMGk1mKt4UQTceRlcWKm64n9YCWAuVld9Ld5EO7Tz/BcMuV3Pj3LSxM1YadNRvMvDj8RS7uerF+fnZyMapbq0WLTAwgNMYPgzEYoymBgPDO+AQEUphVrh8THOVLdIdA/fzMfdWjMzWHfRtzcDm136Ud+4ejKDLSnhBtgQQWolXwMfvwyshXuKn3TeyIV3j0SiM5lT39juRk9l92OeVbttT7ugajkfievQGwFReRnby/1uOkx0II0RRUVaXwl1/Yec45rM2rrvMa1K4zXX74gcyOwVz5+5Vszt0MgJ/Zj3fGvMNpiad5XCdzf3VgENk+gKCo6lqL/ANllX9Wp44GR/kQ2aF67ormrrPY8m+avtxpUGSz3lsI0XIksBCthkExcPuA25l+6nSyo7yYerWRFK1XH1duLslXXU3p0qX1vm58j976cuq2zbUeY5QaCyFEPRzYW8iG+SkU5ZTXul9VVfYt28fyyc+T/OBUdnibsFm0PM+4uHYMfuV1NpTu4Ko5V5FWor2ER/pEMvv02QyOHnzQ9VK2VhdC/3cCuPwMLaDIy6gZWPgS3bG6xyKjGess0ncXkLFbu19wtGc7hBDHNwksRKtzevvTmT1+NsaoSB690sh2bQJt3GVlJE+8hcJff6vX9eJqBBYpWzbVeoyMCiWEqKuti9P5bvoaFn+zi2+fX01pYcVBx6x44w9+n72Pte7BLB9wC/vDtZdro8nMafc9zLykedz0x00UVmgv4F2Du/LZGZ/RJbjLQdeylzv1Qmi/ECshMb4E1+yxqJynIi+9OrAIifHFL9gLv2Bt7ojMvYXYbc5G+hs4NJfTzaIvdurrA8Yl6EXkQojjnwQWolXqGdaTL8/8kg7xfZh2qZFVnWtMpHfvveR+9FGdrxWekIiXrx8Aqdu31FpnIT0WQoi6yNhTyMIvdujr5cUONi+sTvtx5uWRfPtdbFyv9WSoqkqxay1qZY3B4PMu4qecP7hv4X3Y3dqQ2kNjhvLR+I+I9K09ZWjnqkzcLq12on0frV4hINwbQ+ULe1UqVG5lYGEwKQRGaJPxtOutdfs6HW62/Jv+30s3KofdxZ8fbCE3rQSA0FhfOp8gaVBCtCUyQZ5otcJ9wvlw/Ic8vvRxXrrgF26Y52bs+sqJ9J57HmdW3SbSUwwGYrv3Ys/q5diKi8hJTSY8IdHjGJPUWAjRIlRVxe1SKS+2U1pgp7SggoLsMgqzyinILKMgqwy7zUV4nB/dhkbT/aToRv0G3Gl3se7PZHauzKQopxyTxYhfsJWgSB/tJ0L708vXRFZSMf9+tVN/ya+yZ102Q87pQNG8PzjwxBNku8Nw9DsbAJd9E6pLe6E3e4ey0C+Fz9d8qp97XqfzePSkRzEbzAf/3bhVctNLWfXrPn1bt5OiADAaDQRGeJN/oIz8A6XYbU4KK3sugiN9MRq132l9RsaxZZEW+KyZs5+AUC8SeoVithg5Wi6Xm/IiB8V5NtJ25LF5UTqlBVrvjdFkYPQ1PfR2CCHaBgksRKtmNVp55uRn6BzcmVeVVyjwc3HRYu1DPe+DD3DmZBPz9NMo5oM/lGuK76EFFgCpWzcdNrCQHgshjszlcpO1r4ic1BIKs8spK7JjL3diL3fisLtwu1RUt4rbXeNPl/an26Xicrpxu9SDXtIPJWNPIRl7Cknbkc/oa3vo39YfjYoyBz+9up7s5GJ9m73cSV650yOtqDaxXYNw2t1k7isiP6OUXXc+gnPudwDkdhwJgOouQXUsrj7JOJKAnxK4wdAXp6ECb4s3Plt8+OSnFaBW/z1ULToqXB6/jxL7hBHRrrogO6JdAPkHynA7VXavycJdOSJUzaFdQ6J96dg/nD3rsqkoczJ31mYMRgWLtwmDQUFRtPupNW6sukFF26iq2nZtvxYIVu465O9Kk9XIuBt76sPdCiHaDgksRKunKArX97qeTkGduN9yP/l+xdw4z41BhaKff8GVl0/ca69i8D30OOkedRZbN9F//Nke+401hpuVHgshDq0gs4y1fySxe00WDlvT1yN5+5sxmg2U5GnfhO9cmUlguDeDz+5wVNdVVZV5723RgwpF0V7InXY3xXm2wwY8CT1DGHdTL9b9kawP45q+Zi8RlftLE/qiulUcZX/hdti061u7YTQnAGB2WzC7LeCEMux1am9wlA8jr+zmsS0iMYAdK7SRpmqmY4XGev4uHHFFNwqyyvUUJbdLxVbSBPNaKNC+TxgnnteRkGiZt0KItkgCC3HMODXuVD474zP+5/U/XvJJ4o6f3FhcULp4MUnXXkf8zHcwhYTUem54u0SsPr5UlJWSunUzqqp6jKvuWWMhxdtC/JeqqqyZm8TKX/bpcyUcisGkYDAaMCigGBQMRgVF0f7Ufgwey0ajgpefGd8gK76BFgLCvAmK9CEwwgert/YxtXddNnPf3YzqVln9+346DoggNNavwc+zY8UBfaQlLz8z593VX7+e26UFFwWZlelYmWU47S68/S0k9AoltksQroICjP98BwwEoMg/kSj7XiIefoSiv/xwFa3G7dgLQIVVZe6QFXTIV4gr6UJ7SyfMLqv27T/aZHgoWnCjUxRMZgP+oV7EdAqi94g4lUR7NAAATHZJREFUzFbP9KXI9tW9FzV7XaI7BXkc5+Vn5qIHB7F/cw7Jm3M5sK8Ip8ON6lK1Nij/aYOioICeclbVLs91BZPFgE+ABZ8AC2Hx/sR3DyEw3Lth/0GEEMcFCSzEMaVjUEe+OPMLHgx4kKe9/+X+b134VoBt0yb2XXYZ7d5/H0tc3EHnGQxGYrv3ZO+alZQXF5GbmkxYfDt9v9FY/YnuqmNqhhBtyeJvdrHx71R93eJtol2vUGI6BxEc6YNvsBUvHzNmb2OT5NV36B/OCWcmaoGNCst/2suZt/Zp0LVcLjcrft6rr4+5rodHkGIwGggM9yEw3Id2vUI9zlVVleJ58zgw7SlMxQ4YqgUWpQl96fDRnRQ5fbD//CPO8kX6OYt6Z5HvZyMjciMPjb6p1pGfGiIs1g+j2eCRkmQ0G4iskS5Vc3vH/hF07B9x0D4hhGgsUlUljjmB1kBmjJrBKWdN5NErjeRVvg84k5LZe8kl2LZvr/W8+O699OXUrZ7zWRhM1f8U6przLURbsWtVZnVQocDA8e245pmhnHZDT3qdGkts12CCInzw8jM3abFu/7EJ+vCp+zfmUFBZrFxfe9Zm6alVCT1Dadcz9AhnaBxZWaTdfjtpd96FKzcXq70Iq70AgEJrFMawcPat24m95EdAe9nf1KGQtAgbfcP78vmZnzdaUAFasJD4n8CnfZ8wjx5YIYRoTvLbRxyTjAYj/+v/P+655DWeud6ftMoMKDU3jz2XX0bpipUHnRPfs/rbzZT/TJRnqNFj4XZKjYUQVcpL7B7Dq468ohsnntcRi3fzd3ibLEb6jIrX12vWFdTH+j9T9OUB4xKOeLyqqhR89z17zzqb4j//0rf7jRlNdF/tfGeFiz1rt7L065dA1eoq8gIU1nYp4MwOZ/L+uPcJ9a5bAFMfA89IrC5kV6DfmCM/jxBCNBUJLMQxbXTCaN644kvem9yBnTHaNkOZjf03XEfh3Dkex4YntsfirU0qlbp1k57fDHh8yyqpUEJUW/9nMhVl2sRqnQdF0OPkmBZtT/eTojFW9jBuW5aBw16/mqjctBK9HiE8wZ+YzkGHPd6emkbKDTeS8fDDuIu0Qm1jaCixr75C3BtvENU1DFVVcdm389urj+KwaRPeKcZw/hqUxeQBt/Hsyc9iNVrr+aR1Ex7vz1m39aXPyDjOv3uAR92FEEI0NwksxDGvQ2AH3r/4axbfP4Y1HbVv7gxON2l33U3Gxx/oxxkMRuK69wSgrLCAvPTqfHGDqUaPhQQWQgDaHA+bF2lzMBhNBoZO6NTCLdIKkTsP0uoE7OVO9m/Iqdf5O1dl6svdToryGMShJtXtJu/jT9h7zjmULl2qbw889xw6/PoLAePH43I4cJTvwl7yDY7S33E5tPQqxRhFRegInhz3JBP7TjzkPRpLfI8QTrmkyxGDJCGEaGpSvC2OC75mX6aPe50PImex4JnXGLFJRVGh4JkXKEjbT7cHn0BRFOK692Lv2lWA1msRGqulVUgqlBAH27shG3t5dW+FX7BXC7dI0/WkaLYv14ZZ3bU6s86zO6tulV0rtcBCMSh0GnjwefbyMpIXLWDPh+9TnJ2FPcwPVfHH4OWFV8+eGEICcLz1MmUF+eSlp+JyOj3ON5i7YvY9jbhufoxLHHaUTyqEEMcWCSzEcUNRFG7oP5Glr/Tit8dv48zFWp4zs79hefpehrz8IfE157PYsom+Y88A/psKJYGFEAA7ltf4dn9odAu2xFNM5yB8Ai2UFdpJ2pJLRZkDq8/hJ8kEyNhbSHGe9nshvlswPgEWQKuh2L9hLRv++I19a1fhrkqTDAv0vMCeHbCn9msrhmBM3sMwWrTi7O4929V+oBBCHMckFUocd4bGDePSV35hzrkxVIUIQX+u4a+rxuETGoTFWxtnPXXbZr3OQlKhhPDktLtI25kPgG+QlZj/zI3QkgwGhU4DtXQot1Nl7/q6pUPtXFkdKHUZrPVWJG/eyGcP3c33zz7GnjUrq4OKI1AMBuzBZnbFlZAR2xVLwDV6UAEQ1y24ro8jhBDHDemxEMelOP84Jj/zO1/ETGbgzCWY3BC/PoOll44naMhwsnbsorQgn/yMdEJiYj16LNxOCSyESN9VoM+PkNAzRJ8crbXoPChSHwJ39+pMuh+hR8XlcrNnTRYAJrOBqE5W5r71KlsW/uVxnNXhJLKojLhBg0m48mp8w8IxmExA5ZcQBiPpFZncu+wB9hXvBiCyZCftN52pXyM8wZ/gKJl5WgjR9khgIY5bVqOVa+94j7/jXyXo8Zl426FdUjm5ygoI1ManTd22iZCYWI8eC0mFEgKSt+Xpywk9Gn+Y1KMV2T4A/1AvinNtpGzPp6zIrqc21SZlSx62UgcA4fFFfPHInZTmVz+jf3kFnTLzaRcZQ8wrL+Ldu1et11mUuogHFj1AiaMEgABLAE+eN4UynyB2rDiA0WTgxPM6NOKTCiHEsUMCC3HcG3XBneyO60nerXfhX+KifVYZByoDi6QtG+kzerxnj4WkQglBxu5Cfbk1pvUoikLnQZGsnZeE6lbZvSaTPiPjD3n8zlWZ2rCwtpXsW7sUKlOeTC4X3dLziC8uJ3zSLYTdeCOK5eAARVVV3t30LjPWzUCt7L3oFNSJ10e+TnxAPO5rVDoOCCc4ypegSJ+meWghhGjlpMZCtAmdBo+l69ffUxThS2BZBcbKXoltqxaSXJQso0IJUYPL6SYnVZvrISjSBy/fIxdGt4QuQ6pHddpROUpUbew2J3vXJeEo+QGnbYkeVIQWl3Hq9hS6tutIx++/I/zWW2sNKorsRdz5z528se4NPagYkzCGz874jPiAypHlDArt+4ZLUCGEaNMksBBtRmCHLgz4fi4VnWIJLtNGhjHaFV549iL+SPlDP84lNRaijctNK9FrjSIS/Vu4NYcWGuNHWLwfAFlJxeQfKK31uPV/rKE091Pczv3aBlWl84E8TswqJvGRqbT77FOsnTvXeu72vO1c+uul/J3yNwAKCv/r/z9eHvEyPmYJIoQQoiYJLESbYg4Lo++XPxESFKRvO2uhyrwZ96Iq2ouUW2osRBuXlVSsL0e0a90zOXcdEqUv71hxcK/Fln/+ZPHnz4BbmzXb7ILBezMY0G8wHX/7jeBLL0Ex1P5R+P2u77nitytIKU4BtHqKGaNncHOfm5t80jshhDgWSWAh2hyjny/9pzymr+f7enPLHDe4tYmuyirKW6ppQrQKWfuL9OXIxNYdWHQ+IZKqd/yti9NxOlwAuJwO5r3wFHPfeQ1V1bYZlTCG55XRb/qLxL32KubIiFqvWe4sZ+qSqTy29DHsbjsAPUN78vXZX3Nq3KlN/1BCCHGMksBCtElR3XpgqsylzvXTZhM2ubTAIqUwlU+2fqLPcSFEW5OTqo14pCgQFufXwq05PN9AKx0HaAFCebGDnSsyKUpL5bObr2bz6uX6cUZLH/q1O5leP/+C/6hRh7xeclEyV/5+JT/u/lHfdknXS/j49I+J9YttsucQQojjgYwKJdokk9lMTJduJG/eiM1ipsxswqC6cAEhxUZeWfYMS9OX8tSwpwj1bn1DbQrRVFS3qtcqBIR5Y7IYW7hFR9ZvTAK7K+eoWPrlXMozv8Ouz7thwOQzBi/fXpz46CkYD1OIPj9pPo8seUQfStbb5M2jJz3KWR3OaupHEEKI44L0WIg2K657b33Zff3VKJXpEhankYe+crF2z79M+HkCS9OXtlQThWh2xfk2nHatzig4+tiY5C2yfQDR7bxwlC2iMPt7Pagw4oXF/1JM1l70HdPukKNbVbgqeHbFs9y54E49qEgMSOTzMz6XoEIIIepBAgvRZsX1qJ4AK9dqxhwUCICqGOmZDE9+6oLMHCb+OZHnVz6PzWlrqaYK0WzyM8r05ZDo1j/qkep2k/T+e+SsfAZXxWp9u8mUgCnwWgymKHwCLPQf167W8/cV7uPK36/k8+2f69vGJ47ny7O+pFNwpyZvvxBCHE8ksBBtVnSnrhjN2jeYqds2YfL1BkA1atsSsuGZ2S7aH1D5dNunXPLrJWzN3dpi7RWiOeRlVA/Z2tp7LMq3bGH+ZRfyw5zvKdannzBg8h6O0W8CisEHg0FhzHU9sHp7Zv6qqsoPu37gkl8vYXvedgAsBgsPD3mY6adOx9fcup9dCCFaIwksRJtlsliI7twVgMKsTNTK4Sjx8cXcLgGA4FJ44lMXA3a52Vu4lyt+u4KZG2birBxBSojjTc25IIKjWufLtauklJ2PTeWLB+5gA3ZcRu2jzM9kYcg5d+ITPARFUQgI8+Ks2/oS3z3E4/wSewkP/PsAjy59lHKnNgpch8AOfH7m51za7VIZSlYIIRpIirdFmxbXvTepWzcD4LClAB1wuxUSv/yS1FsnU75uHV4OuP87Nx+MhT8GOpmxfgaL0hbxzMnP0C6g9vQKIY5VhVnVwy23tlmkVVWlcM5clr7xMjv8zLh9vfR9PfoOZPRdD2Dx9mHoZSoOmxOLt+mgIGFT9ibuX3Q/qSWp+rYJnSdw/wn3y4R3QghxlKTHQrRp8TXqLOxlSQC4XG5MwcEkfPQh/qePB8Cgwo1/uLn6bzeKqrIxeyMX/XIRX+/4WoalFceVohwtsLD6mg5KH2pJ9uRkNt1wPd+8/RLbAqy4Kye18/f24aKHnuT0h57A4q0FBgaDgtXH7BFUuNwu3t/0PlfPuVoPKvzMfrxw6gs8PvRxCSqEEKIRtJ5PDSFaQHTnrhiMJtwuJxWlSZh8ABXcbhWD1UrsSy+RHRdH7rvvAXDWCjcJJb48f7qNcsqZtnwaf6f8zeMnPU6Ub9ThbyZEK+dyuikpqAAgMMy7hVujcdvtZL87i+Xff82eUH9UH62XQgH6DR/DKTfcgtnqddhrpBSn8MjiR1ibtVbf1iesD8+f+jxx/nFN2XwhhGhTpMdCtGlmqxfRnbsA4KzIQ3VrQ026ndpwm4rBQMQ99xD1xBNg1Mbz77OllNd/CCagVOupWJK2hPN+Oo9vdn4jvRfimFacZ4PK/4X9Q1s+sChdvpw1F5zHj3/8zO6wANTKHoigoBAunfYio26987BBhaqqfL/rey78+UI9qFBQuKHXDXx0+kcSVAghRCOTwEK0eR7zWTi1FAmXyzNACL7kYuLfeRuDj5YuEbonh5nfhNCrVCsKLXWU8uSyJ7npj5tIKU5pppYL0biKc6qHVA4IO3wvQFNy5uSQdM+9zJtyL4t8FEq8tCGfFBSGnD2Ba2a8T0yXboe9Rk55Drf/fTuPLX2MMqc2hG6sXywfjv+QOwfeidlw6InyhBBCNIwEFqLNqzmfhduhBQVul/ug4/xOOYV2n3+GKTISAGNGNo99ZOMW5zD9mBUHVjDh5wl8tu0z3OrB1xCiNSvKrS7cDmiBVCjV5SL/iy9Yef65/L5nI/sigqCylyI8Jo4rn3+Nk6+8DpP58EHB38l/M+HnCSxIXaBvO7/T+Xx79rcMjBzYhE8ghBBtmwQWos2L7dIdQ2WaU1WPhdtZe0qTV7duJH71Jdau2jC1alERo15ZwofllxHtGw1AubOc51Y+x3Vzr2N/4f6mfwAhGklRzR6L0ObtsSjfuJHdl17K/HffZFl0EGVWrZfCaDBw8mXXcOWLbxKR2OGw1yisKOSRxY9wxz93kGfLAyDEK4TXRr7Gk8OexM/i1+TPIYQQbZkEFqLNM3t5EdlBm2FXdeejuktxOQ/d22COiqLdZ5/iO/xUbYPTie+rn/D+lpO4tNNF+nFrs9Zy4S8X8sHmD3C4HU36DEI0hpbosXDm5ZExdSprrr+WvxxFJIUH6b0U0R06cdWLbzLkvIv04P9Q/k7+m/N/Op+f9vykbxsRP4Lvz/meUQmjmvIRhBBCVJLAQgggvodnnYXbdfgibKOfH/FvvUXIddfp20q++Jqr3t/PB0PfIM5PKwqtcFXwyppXuPTXS9mQvaFpGi9EIynKrgwsFPAPadoeC9XlIu+zz9hx+uksXrqAFR1jKLNqKU4mk4kRV9/IpU+/RGhs/GGvk2fL4/6F93PHP3eQXZ4NgK/ZlyeGPsHrI18n1Du0SZ9DCCFENQkshADie/bRl92OJFy11Fj8l2I0EvnA/UQ//TRU5nyXLl1GyG3P8WXvl7iqx1UoaN+87szfyVW/X8W0ZdMorChsmocQ4igV5WqpUH5BVozmpvt4KFu7jn0XXsSOF19gUXQgyWGB+r7Yrj24+sX/t3ff4VHVaRvHv9My6b0B6fTeiRRRijTpAqKuBbGsgopt1dUXdXXFsuviroBd3FVELIDSBSGIdDC0AKGEBNJ7z7Rz3j8GJwkkmBDIJPh8rmsuM2fOOfMMk4nnnl9bQO+bJ6LV1t5Koaoqa5PWMnHFRNaeWevYfn2r61kxYQWT206WFbSFEKKRSbAQAmjVsTMarX1ZF5s1BZul7gOvfW+ZTOTiT9H522eIMicnk/GnGTxsHsgXY76gg7999hoVlWWJyxi/YjyrT6+WqWlFk2KusFJRYu+y53WVxldYs7NJe+ZZztx+O0dy09nRtpVjLIXexYUh9zzIrS+9jl+LVpc8T3ZZNo9tfoy/bP0L+aZ8AHyMPrw26DUWDFsga8oIIYSTNPlgMW/ePPr27YuXlxfBwcFMnDiR48ePO7sscY0xuBjxCoi231GKKMxKr9fx7r17E7VsGcZ27c6fooizDzxIq3UHWDJmCU/3eRo3vb3Pel5FHs/+/CwP/vggKUUpV/R1CHG5inOrTjV7ZcdXqFYreZ99xqnRY8hYs4pdrVuS2CLAsS5FaJt23PXWu/QaPQ6Ntvb/LdkUG18e+5IJKyaw+exmx/abIm9ixYQVjGs9TlophBDCiZp8sIiLi2PWrFns3LmTH3/8EYvFwogRIygtLXV2aeIa4xPa3vFz2vGD9T7eJawVkUuW4Dn0/EBRm43Mv/+d7Ofn8qfW0/h+4vcMDa8cRLojfQeTVk5iYfxCyq3ltZxViMZRlFNl4PYVbLEo3b2bpEmTyZz3OhkahW3twsnzPB9cNBpiJ93K9JffxC+05SXPk5CbwB1r7uC1Xa9RbCkG7DM+vX3j27x949sEugVesZqFEEJcHo3azPpjZGdnExwcTFxcHIMHD/7d/YuKivDx8aGwsBBvb+9GqFA0Vz9+soWD6/8BQKsOvZn+8suXdR5VUcj+13xyP/zQsc3YqSNh//4PLmGt2JyymXm755FeWtkq0sKjBU/1eYqbIm+Sb1ybqeK8ChK2pRHe0Z+WbX2dXU69Hdh0lm1fnwBg2N0d6dC/RYPOZ8nIIOutf1C0ejUqcDLEjxMhfo4Zn7wCgxgz68lq68jUpMRcwrvx7/LlsS+rrQ0zsc1Enuz9JL6uvg2qUwghxKXV51pa30g1XTGFhfaBr/7n+7NfyGQyYTKZHPeLiooapS7R/HkHhoHGDdRyMpMSUGy2353isiYarZbgJ5/AtWMH0p5/AbW8HFPCUc7ccgst3/4nQwYOIbZFLIsOLOLzhM+xqlbSS9N5Mu5J+oX245l+z9DOr91VeIXiarFZFVa8vZ+inAp+3ZDC9Ln98A12d3ZZ9VJ9qtnLb7FQysvJ/fgTcj/6CLWiAotOS3xEMNneHo59Wve5jlEPzcHVs/Z1JVRVZX3yet7c/aZjtieANr5teOG6F2ShOyGEaIKafFeoqhRFYc6cOQwcOJAuXWr+lmvevHn4+Pg4buHhl56qUIjf6PR6tPoIAKymcjJOJTbofN5jxhD11VIMkfZz2goLOXv/A+R88CFuejee7PMk347/lgEtBziO2Z2xm2k/TGPernkye1QzkpVc7FhczmZVSPg5zckV1V+1xfEuY4yFqqoUrlrNqTE3k/Puu6gVFRS5uvBL+whHqNBotAyafhcTnvzrJUPF6YLT/Hnjn3k67mlHqHDVuTKn1xyWjV0moUIIIZqoZhUsZs2axeHDh1m6dGmt+zz33HMUFhY6bmfPnm3ECkVzptVr0BoiHPeTD8Y3+Jyu7doR/fXXeN54o32DopD99tukPvoYtpISYnxjeG/4e/x7yL8da1/YVBtLji1h7PKxLD22VBbXawYyk6qHwNPx2bXs2XT9NsZCq9fg4WOs17Hlhw6RfPsdpD31FNZ0exe/1ABvdnSIpMxgb/Vz9fJm8l9fJnbStFoHaBeaCnlj9xvc8v0tbE/b7th+Q9gNrJi4gpldZ2LQGS7n5QkhhGgEzSZYzJ49m1WrVrF582bCwsJq3c9oNOLt7V3tJkRd6HRadIZIx/3kQ79emfN6exO2cAGBj8x29C8v/vFHzky7FdPJk2g0GoZEDGHFxBU82vNRx+xRBaYC/r7r70xeOZlNKZtketomLDe1pNr9wuxyCjLLnFRN/amq6ljDwsvfFY22buN8LFlZpD37HGemTqP8V/vnRdHA8T5dORAWhO38mIiQmLbcOW8+Ud161ngem2Jj2fFljFs+js+P2rsHAoR6hDJ/yHz+M/Q/tPK89BS0QgghnK/JBwtVVZk9ezbLly/np59+Ijo62tkliWuUVqdBo/VGo/UDIP3EcUxlV+biUKPVEjRrFuHvLUJ7PuyaT58maeo0Cr5bDoBRZ+T+bvfz/cTvGRM9xnHsmaIzzNk8h3vW3cPB7PrPViWuvpJ800Xbko/kOqGSy1NRYsFqsgF16walmEzkvPc+p0aNpnDFCsd2W0w0+2+6nlOWys9N12Ejmf7yG3gHBdd4rt3pu5m2ahqv7HzFsSaFq86Vh7s/zPcTv2dYxDCZ0EAIIZqJJh8sZs2axeeff86SJUvw8vIiIyODjIwMystlek5xZen09o+D9nyrhWKzXbFWi9943nAD0d98jbG9fWpbtbyc9L/+lbRnnkU5P4VyqEcobwx+gy/GfEGv4F6OY/dn7eeONXfwdNzTnC2WLn5NSWnBxcEipRkFi2rjKy4x1ayqqhSt38DpMTeTPX8+6vngrfX2RnlwJj+38iMr0z6+RGcwMOLBRxnxwCPoXVwuOtfpgtM8+tOjzNwwk8T8yvFMo6NH88OkH3iox0OO1jshhBDNQ5MPFosWLaKwsJAbb7yRFi1aOG5fffWVs0sT1xit3v6tqNYQ49h2et+eK/48LhERRH21FN+pUx3bCleuJGnqNCqOV15gdQvqxuJRi5k/ZD5R3lGO7evOrGP88vG8suMVMkozrnh9on5UVaX4fIuFb4g7Hr728QmpiQVYzTZnllZn1WeEqvlivuzXX0m+40+kPvYYltRU+0atFp/pt1L41KOs372VsiL7WBOvwCCmv/wmXYeOuOg8maWZvLT9JSZ9P6naIncd/Tvy2ajPeHPwm7JythBCNFNNfrpZ6VcuGotWdz5Y6MPQ6Y3YrCZO/7oHVVEuuRrwZT2XqystXvkb7rGxZMydi1JWhvn0ac5Mm0bIC8/jO2UKGo0GjUbDsIhhDA4bzLeJ37IwfiH5pnysqpVlictYcXIF09pPY2bXmbJAmJOYK2yObkQevka8A105+ks6NotCamIBkV0CnFzh76u2ON4FwcKcnEzW2/+ieP36atvd+1+H3+OPE7dpDYnffunYHtmtJ2MeeQp3b59q+xebi/nk8Cd8nvA5FbbKFpIgtyBm95zNxDYT0Wqa/HddQgghLkH+igtxnk5n/zhoNHr8WnUAoLyokIxTJ67ac/qMvZmob7/B2MH+fKrJRMb/zSXtySexFVbONGTQGpjeYTprJq/hwW4P4q63r5FgVsx8fvRzxnw3hvn75ssUtU5Qkl95kezpZySyc2WQSD6U44yS6q0wuzJY+ATZg4U1P5+MV//OqZvHVgsVLjExhC1cgMcrL/Pt4kUk7tzmeCx20q1Mfu6laqGiwlrBZ0c+Y/R3o/no0EeOUOFp8OTRno+yevJqJredLKFCCCGuAfKXXIjztPrKj4N/q86On0/v331Vn9cYHU3UV0vxu/02x7aiNWs5PWEipTt3VtvX08WT2T1ns+6WdczoPANXnb0/fLm1nI8Pf8yob0exMH6hBIxGVFpl4Lanr5Gwjv6O8TrHd2dirrA6q7Q6q9pi4empIeeDDzl10wjyP/8crPb6dQEBhL70IjHfryTVqGPJX58gL9U+1sfFzZ0JT/8fg6bfiVZrn162wlrB5wmfM/q70fxj7z8cv5N6rZ4/dfwTayav4f5u98s4CiGEuIZIsBDivN+6QgH4hXZ0/Hx6/96r/9xGI6Fz59Jq/r8cs0ZZMzJIuWcGmW+8iWI2V9vfz9WPJ/o8wZrJa7i9w+0YtPa5/UssJSw6sIiR347kX/v+RU558/jGvDkrqTJw29PPiNFNT9t+IQCYy60c25HurNLqrCjb3orgYlA4d8t4st9+G6XEPoWuxs2NwIcfpvX69XhPuYXNn3/M6n+/hcVkPyYwIoo/zfsXbfrEAmCymfji6BeM+W4Mb+x5o9rv4M0xN/PDxB94pt8z+Ln6NfKrFEIIcbVJsBDiPF2VYKEzehMS0xaArDOnKM5rnAt071GjiFm5AvfrrnNsy/v0U85MmVptYPdvgtyDeC72OVZPWs0tbW9Br7EPmyq1lPLJ4U8Y9e0oXtv1GmklzW8l6Oai6oxQHn72FqQew8Id2379MaVJt1pYLTZK8uwtFsbcs44F7tBq8Z06hdbr1hH06COUmcr56uXn+HXtD45jOw0eyu2v/gO/Fq0w2Ux8eexLxnw3htd3v+5YMRtgeMRwvhn3Da9f/zphXrWvQySEEKJ5k2AhxHlVu0IpVoWYXn0c95MaodXiN4YWLYj45GOCn3kGjcHeEmFKTOTMlCnkfvwJqu3imYZaeLbgpQEv8f2k75nabqqjBeO3i72bv7uZF7a9QFJhUqO9jj+Kkgu6QgEEtPIk4vxYi5I8EztXnHZKbZeiqiql27dz7E9/RsUeqt0q7AHa44bBxKxcQYtXXsEQEsypfbv43zOPkp54DACdXs9N989m1MOPU64x89Ghjxj5zUhe2/UaWWVZjucYFjGMr8d9zb+G/Iv2/u0b/0UKIYRoVBIshDivalcoxaYS06uf4/7JvTtrOuSq0Wi1BMy4h6hvvsbYrh0AqsVC1ltvceb22zGdPFnjceFe4cztP5d1t6zjrk53OfqvW1UrK0+tZPyK8czeNJtd6btkxrUrpGqw+G2qWYDrb22LzmD/E3toyzl+3ZDS6LXVpuzXX0m5ZwYp986kIKVyvQ0vLy0RixcT8f77GNu2xWKqYONHC1jx5iuUFxcB4B0UzPS/vUVI/578c+8/uenrm3hn/zvkVlSeZ0j4EJaNXcb8IfPp4N+h0V+fEEII52jy080K0Vh+mxUKwGZTCYlug6d/ACV5uSQfjMdUVorR3aNRa3Jt356or5eR/a/55H32GagqFQcOkjRpMoGzZhEw815Hq0ZVwe7BPN33ae7reh9fHP2CJceWUGwuBiDuXBxx5+Jo59eOOzvdyZjoMbjoLl7ATNRNaYF9rIFWr8HNs/K98A12Z9DUtsQtOQ7A9u9OYiqz0G98DFqtc1aSrjh+nOz571CyuXL9iPIq0xSH3zcdj+taAZCZdIo1/36LvLRzjsdb97mODrdPYMGZ/7Jq+yqsSmUXL61Gy/CI4czsOpNOAZ0a4dUIIYRoaqTFQojzflsgD+xdoTRaLW1jB9jv26yc2rvLOXUZjYQ8+wyRn/8Pl6gowN56kT1/PknTbqXi6NFaj/Vz9WN2z9lsuGUDT/R+ghD3EMdjifmJ/N8v/8eIb0aw6MAiGeh9mX5rsfD0NaK5IDB0GdyK2PGVCy7uW5fMd2/tIze1pFFrrDieyLnHHydp4qRqocIQGYFu1C2O+z5BblgtFn5Z9gVLnn/SESr0Li5ETLmJtd1TmLrxdlacXOEIFS5aF6a2m8oPE3/gnzf+U0KFEEL8gUmwEOK8qi0Wis3eTajddYMc2xJ3/dLoNVXl3rs30SuWE3DfTDi/YJ/p6FGSpk4j659vo5SV1Xqsp4snM7rMYO0ta3lz8Jt0DezqeCy3IpeF8Qu56ZubeHLLk9JNqh4sJhumMvsFdtVuUFX1GRPFoKltHaEjM6mIZX/fw7avT2Aqs1zV+iqOHePco4+RNGECxWvXwfn3VR8SQujfXqb1qlWYvFs69i8vSuF/zzzKzm+/RLGdn2a2hS9bh5bzt7KP2J6+w7Gvl4sX93e9n/VT1jO3/1wivCOu6msRQgjR9ElXKCHOqzrGwmZTAGjVriMefv6U5udx5sB+TGVlGN3dnVUiWldXgp96Cq+RI0n/6/OYTpwAq5XcDz+kcPUqQp9/Hs+hQ9Foau5qY9AaGB09mtHRo4nPiud/Cf9jY8pGFFXBqljZkLyBDckbiPSOZGq7qYxvPV6mBb2E0mpTzbrWul/3YeEERXqx+X/HKMgsQ1FUDmw6y/FdGcSOj6HToJZXtHtU+ZEj5CxaRMnGTdW26wICCLjvPvxuvw2t0R6ECnPKUZUybBU7+P7tg47woWo1JLQuZl/rZJQqX0G18mzFbR1uY0q7KXgYGrdroBBCiKZNo17jX00WFRXh4+NDYWEh3ufXBxCiJqUFJhY/a2+ViOkRxOg/27/V3/TJIuLXrwZgzKNP03HgDU6rsSrVbCbn/Q/I/eADVEvlN9+eN95IyAvP4xJWt2k900rS+Or4V6w4uYK8irxqjxm0BoZHDmdi64nEtohFd37xM2F37lgeK+fHA9DzpggG3NLmkvvbLAr71iezf30yNovi2B7QypNB09oS1r5hIa780GFyFi6s1t0JQBcUSOB99+E7bRpat8oF6SxmM+8//A6mkp2gVoakHB8Tv3TNJd+78vdqQMsB3N7hdga1GiS/B0II8QdSn2tpCRZCnFdeYuaTp7YBENklgLGzuwNw9shBlv3trwC06dufCU8977Qaa2JKSiLzlVcp3b7dsU1jNBLwwP0E3HtvtQvJS7HYLGw6u4mvj3/N7oyLVxsPcgtibMxYxrUeR1u/tles/ubs2M50Ni22j3EZNK0t3YeG/84RdkW55exYfoqTe7OqbY/pEcSAW9rgE1T31ahVVaVsxw5yP/q42u8AgD44mID778d36hS0rpUtKorNxtFtW9j+9RKKsjMd2y06hfi2BSREFaNqwcPgwYTWE5jeYTrRPtF1rkkIIcS1Q4JFFRIsRF1ZzDY+eDQOgFbtfZn4eC8AFMXGew/eRXlRIXqDC3/+4HOndoeqiaqqFK9fT+Zr87BmVV6s6kNDCX58Dt7jxqHR1n1I1ZnCM3yT+A0rT62kwFRw0eMd/TsyNmYsI6NGEuIRcvEJ/iD2rj3DrpX2NSpGPdiF1j2D63V82skCti07QXZKsWObVq+hx7Bweo+OwsW19t6qqtVK8YYN5H70MRUJCdUe04eGEnD/ffhOmeLo8gRgNZtJ+Pkntn23hPKc6q1TBb4BrO8dT7lRoVtgNya1ncTo6NHS3UkIIf7gJFhUIcFC1JWqqCx82N6FJCTamynPVC6Qt/HjRRzYYO8ONeLPj9J1yAin1Ph7bCWl5Lz7Lnn/+x9UWUjPtXNngp/5Cx79+l3i6IuZbWZ+Pvcz35/6nq3ntmJVL15BukdQD0ZEjeCmyJsI9Qht8GtoTuKWHOfw1lQApjzTh5Do+v+NURWVYzvT2bHiNOVFZsd2Tz8jI+/vQmiMT7X9lfJyCpYvJ+/TxVjOnq32mCE8nICZ9+IzeTJal8ophAuzMolb/SUn4uKgvPqAca0+Ar3bYPZ22knn61syqc0kaZESQgjhIMGiCgkWoj7ef2QLVotCQCsPpv9frGN7+onjLHnhSQDCOnbh1pded1aJdWI6dYqsN9+iJC6u2nbP4cMIfvxxjK1b1/uc+RX5rDuzjh9O/cChnEM17tMtqBsjIkcwNHwo4d516xbUnK1ecIAzh+wLw93z+sBaZ4aqC3OFlX1rk4nflIJitf9Z1mo19J/cmu7DwrFmZVPw1VLyv1yKLT+/2rGunTsTcN9MvEaMQKOzj38oKypk6+ZvSfglDiUlF80Ff+lTA8vBoxeti0YDMO7xrkS0D7rs+oUQQlybJFhUIcFC1MfHT/5MRakF70BX7nx1gGO7qqp8+sRD5J+f1/++/3yET3DT/3a+dMcOMt94E9OxY5UbtVq8x95M0KxZuERGXtZ5TxeeZn3SejYkb+BkQc2rgEd5RzE4bDCDwwbTK7gXBt3FC/k1d1+8uJOCzDJ0Bi0PvnPDRetYXI7C7HI2fZZA+slCx7Zo/RmitsxHY63e2uAxaBAB983EPTYWVJW004ls37GapAP70ZwrQKtWr8emUUkOLUPTO4wbYyeg+SGSjBP2blj3/mMQbp6yUKIQQojqJFhUIcFC1Mdnf/2FkjwT7t4uzHhzULXHdi1fxral/wVgwNQ76D/lNmeUWG+qzUbhihVkz38Ha3Z25QM6HT6TJhL00EMYWrW67POfLjjtmKb2RP6JGvfxMHgwoOUABrYcSL/QfoR5hdU6Je6VVJBVRsLPaRTnVdB9WPhF3YoawmZT+OCROBRFvaiFq6GsZRX8/J/NJCRVtoAE5hygc8Kn6DQK7iNHYJg4nmKDjsRj+ziTeJjy1Cx0JqXG8xW5Wyhp50m3YaMY3WUCwe72sSCf/GUb5UVmXD0NzPzH9VesfiGEENcOCRZVSLAQ9bHkpZ3kZ5Th4qrj/vnVp5Utzs3hg1kzQFXxDWnBve980CgXx1eKUlZG3hdfkPfRx9gKK78Nx2DAZ9w4Ambee1ldpKpKKkxiU8omfj73M/HZ8ShqzRe6LTxa0De0L7EtYukX2u+qjM3ISyvlmzf2YjHZx5roDVqmPNeHgJaeV+T8BZllfPHiTgBa9wpi1ANdL9pHVRSsVguK1YbNakGxWlFs9p9tVqv9ZrFgs5ixWSxUnEul6JdtlOzZg7WslDyfKDKDOqOqJlS1HIOmCI2xjIri4oue60IlblYsbfzoMHAwI/rdQrBH9YHlVadXDuvgx4Q5Pa/Av4oQQohrjQSLKiRYiPpY9toeslOK0Wo1PLRwyEWPf/3qC6Qcigfg1pffIKxD50ausOFsJSXk/fe/5H26GOWCC1TPoUMJuO8+3Hs1/CKz0FTIL6m/sDV1K9tSt1FoKqx13zDPMLoHd6dbYDe6B3WnnV+7BnWdUhSVb9/YS1Zy9dcX0TmAcY90v+zzgr1bXGFWJke3JbB71WFQSggM0+Dha6W8qAhTWSmm8jLMZaWYy8sb9Fz1Ue5ioyBAxatdBD37DmVo97F4utQeopIO5rBm4UEAeo6IYMDkS6/BIYQQ4o+pPtfSsvK2EFXoXexTsiqKis2qoNNXn6K18w3DHMHiyJaNzTJY6Dw9CXr4YfzvuIPcxYvJ/2IJSlERACU//UTJTz/h1qsX/vfcjdfQoWj0l/dnwsfow5iYMYyJGYNNsXEo5xC7M3azO2M38VnxmGyVC7KdKznHuZJzrD5tn3nLqDPSKaATnQI60d6vPe382tHatzWu+tpXt67q6C9pjlDh6WektMCEqkLKkVxSE/Np1a5uC9FZTBXknE0mOzmp2u3CwJBR8zCTq0PjToVRR6p/OmWe4B8ZQedO13Fz+6G0929f51a07OQix89BEV5Xq1ohhBB/IBIshKhC71K5orDVbLsoWLTt259Nbu6Yy8s49stWbrhzJq4eV6ZrTWPT+fgQ/NhjBMy8j4Jly8j77DOsmfbF0sr37yd1/370ISH43joN3ylTMATXb42Gas+l1dEjuAc9gnvwQLcHMNvMHMg+wJ6MPexK38WR3CPVgobJZuLXrF/5NetXxzatRkukdyTt/drT2rc1kd6RRHhHEOkVWe2b+dJCEzuWn3Lcv+neThTlVLDpM/tCdntWJ10ULFRVpSQ/1x4cziSRdT5AFKSnodbSnas2eqMRo7sHRjd3jO4e6I1GtDodOr0eTCZsGZlY0lLRlpShVdXKm6JS7KZyqgWcbAllrvYF60wuChUuCr6mCIacnolBdccV6BirZ8yUfnUOWxequnZGcKQECyGEEA0nwUKIKgzVgoWC8YJ18AyurnQaPJT49auwmk0kxG2i15gJjVzllaXz9CDg3hn4/+kOCletJvfjjzGfsl+YWzMzyfn3f8hZuAiv4cPxnTwJjwEDLrsV4zcuOhf6hvalb2hfHu7xMBabhcT8RA5kH+BgzkEOZR8ipTil2jGKqpBUmERSYdJF5/N39SfSO5KWHi1ptS0WbZl9kHZwdyO6lmYiI/3wWeNGYXY5547lkvDzAVQlh+zk02QnJ5GVfIaK4qKLzlsTr4AgAiOiSE3UoqieGN19mPD4ILz8A9B7uFNkKya/Ip+c8hzSStPISz6B+9b9hO1IIvRc2UXnqzDAL500/NRNy4lWQJUWh5YeLekc2Jlewb3oGdwT/Rk/Nn5kn+ErfYuVs60Ladv38oJF1vlgYXTX4x1Y95W+hRBCiNpIsBCiit+6QoF9Je6a9Bgxhvj1qwCI/3EtPUePb1aDuGujcXHBd/IkfCZOoPSX7eR/+SUlW7aAooDVSvG6dRSvW4cuMBCfsWPxmTAeY4cOV+S1G3QGOgd2pnNgZ27ndsC+bkZifiLH846TmJ9IYn4iJwtOYlEsoIIGDer5xRnyKvIoLC3G60xbtFn2UFGuL+Ed9Xk+fM+Kf5GBmNwwAovcUW15rH23Dq0QOi3aIC+0wd5ogr1Qgzww+etJN1g5l2Yk5Ew/tEBG6CnuO/g4+RX5FFvsF+stclX6Jar0TVQYnHbxqRUgIVLDtk4atnfUYHbVEeEVwWj/jnQM6EgH/w509O+Ir6tv9QMDoTTX4miR2fTfo/i1cCcwrH4tDqWFJsoK7YvxBYZ7XRO/v0IIIZxPgoUQVVzYFaomAWERhHfqytmEQ+SnnSP54K9Ede/VWCVedRqtFs/rB+F5/SAsqankL/uagm++wZZrXwjOlpND3uLF5C1ejLFtW7xGjMDrpuEY29e9f39d+Ln6EdsiltgWldO4pp3J45cfjpOdWIZq0aDqbJiNZZRqC3EvBoOlBIvtZxRrFiZNCpPiAqqcsQyVi1sMwD7wOc/bTJ63mXwvC3neZgo9LKhVe8IVnr8Bg05PIeT85kOuO0gtSKb9OZUep1X6nFAJy635NZ1pqeNYn2CKB3UlJLITN/tEM9snmgjvCIy6ui2u13NEBAVZZRz9JR2bRWHt+4eZ9lwfjO51H+yecapyIL10gxJCCHGlSLAQooqqLRZWc+3favcYeTNnE+yrT+/54btrKlhUZWjViuDH5xA062FKfv6ZwhUrKd6yBSz2hdpMJ05gOnGCnAULMISH4zVsGF7DhuLWvTsalyu72NrR7els+fwYNlsFqjUbxZaNassGWzbuthzARtXl42rqIKQCWm0AGn0QZhd3trbbRJZfCRXGuo+jcLG60TanNwAKZiZsjadrsg1Xc837W6NbYRx2AyETptCxbUdG1/mZaqbRaBg8vR2550rISi6mKLucjYuPMubPXeu8QF9qYoHj55ZtfRtYkRBCCGEnwUKIKqq2WNTWFQqgTb/++Ia0oCAznZRD8WSePklIzLU7XafGxeV8aBiGraCAonXrKFyxkvL4eMc+lrNnHS0ZGnd3PPr2xWNAfzwGDMClTZvLas2wVFSQmXSS3T/sIvnQUVRrJqqSX6djjR4eBEVGExwZQ1BkNEGR0fi3DOeHdw+TfrIQF+BPmlF0HeOHarRispkwK2ZMVhMqKho0aDVae902BWNyJm5Hkzl9wIdUxT74plX6PjqeuGBKWY0Gt1698Bo+HK9hQ3GJiKj36/49eoOOkQ90YdlrezCVWjlzMId965PpMzqqTsenJNibVDRaDS3a+F7x+oQQQvwxSbAQogpD1RYLU+3BQqvV0WfcJDZ+tBCAPd9/y9g5z1z1+poCna8vftOn4zd9OpaMDIo3baJ440bKdu8Bm/3fTC0royQujpK4OPsxfn64deuGW4/uuHbrRqrSiqSjxXj4Guk1MhIPHyOqqlKUncm5o0c4d/QI6SeOkZd67vdnZdJo8A1pcT5ERBMUZQ8RXgFBNYaZYXd35JvX91FRaiHvdAX7F+UTOz6GDj2DMLjoUBUFy9mzVBw9SsWRBCoSEig/eBBLaTlnIseQGtkHAK3NTPQZ+1gbXUAAHgMH4DlwIB6DBqEPCLjoea807wA3RszszA//OQAq7P7+NCFR3oR39L/kcfkZpRRm2cNQi9Y+GN3kfwNCCCGuDFkgT4gqDm4+x89fJQIw7J6OdLiuRa37WswmPpo9k7LCAjQaLffOfx/f0Nr3v9ZZ8/MpiYuj9JftlO7YgS0np8b9kiLHkBR9M6qqoip5aKwpeHuco8yURWlR7YvoAWi0ekKiYwiJaX2+FSKGwIhIXFzrN6tRRlIhqxccpKKksvOUDhs+1kzc8pIxlOWjt1WgaPTYdEbK3IPJ922P1VA5TVgXyy46xwbiOWigfRC7VlvTU111e1YnsfsH+0xZrh4Gpj7X55KzPO1fn+wY/D1gcht6jrjyLSpCCCGuHbJAnhCXydWj8iNhKrVecl+Di5Geo8bxy1f/Q1UV9q5azvD7Hr7aJTZZej8/fCdOxHfiRFRVxXTiBGU7dlC6Yyfl8fHYCgpIChvAiZZRKKVrUCzJoNq/Oc+ucUy1Fo0uEK0uBJ0hmF4d/ejcMwyDpycaFxc0LkY0aFHTMzApCqrVBjYrqtWKUlaGragIpbgEpaQYW1Ex1pwcrJmZWLIysWZm0avERkKHuynwaweADR15+pYQ3PKSr1Ojgf4Touk5augV/he8PH1GR5F5pojkQ7lUlFpYs+ggk5/ujYvrxX/eVVXl+K4Mx/3oHoGNWaoQQohrnAQLIaowelTOrFNRarnEnnbdR4xh94qvsZgqOLx5A/0mTME76PIXkmvurGYbO1ee5sTeTFw9DLTrOwDvezuQmnCAxO07KSnMhLL1tRytR6tviVYfhkbfCq0+FI3GgHtZBl0OfIzn9jTSr2CtrkDPA+9Q4NuWzOA+5AR0wWz0rXV/g1FHdI9Aeo2IJKBV01kUUaPVcNOMTnzzxj4KMsvITS1l46cJjHqgC1pd9VaU1OP55KWVAhAa441vsHtNpxRCCCEuiwQLIapwrRIsTHUIFm6eXvQcNZbdK7/BZrWy/esljHp4zlWssOlSFZWNnyZwYm8iiiWJAstp0o6kAjWPVXFxc6NldBtc8SM9I4QKpSUaTeXgeZ21glZpm4lKXoe+yqrcDabToQ8KQh8SjEt4BEFRUXSOisIlKgolOIziUjCVWTGXW9HptRiMOjz9jPgEu6Ot46xLjc3obmDMQ1355vW9mCtsJB3I4af/HmPY3R0dM0WpisruVZWLC3YbGu6scoUQQlyjJFgIUUXVrlAVZZfuCvWbvuOncGDjWkylpSRs/Yk+4yYRGB55tUq8IgqyyijIKMM70A3f0IZdMCs2G6nHE9i27EfSj/96iVmbNGh0oYS26cLg24bRom0HdOdX8FYUlbQTBeSmloAKPsGuhPhZ0RRHY8sfj62gAGt+PraCAtQKE6rZjGoxo5jN9qlvdXo0Oh3odWi0OrTu7mi9vNB5e6H19ELn5YnOPwB9SDD6gAD7vrXwuOx/CefyC/Vg5ANdWL3gIIrN3uXJVGZh2N2dcPU08OuPKaSftI9h8Q5yo3XPICdXLIQQ4lojwUKIKqouMlaXFgsAV09P+k2Yys9LFqOqCtuW/o+JT79wtUpssF0/nGbv6jOO+3qjjqAwTzz9XXF116M36tAbtOgMWvQGnf2/LlpcXPX4hbrjHeSG1VRB0q97OLVvN0nxezGVltb4XAZXPxQlHK0hElfPKPqO60iP4eEXzdak1WoIa+9HWHu/C87wxx0MfzkiOgUw8v4urPvgMKqicuZQLv99fjvega7kpla+R0P/1OGiblJCCCFEQ0mwEKIKo5sejVaDqqiUFdey4lkNeo4ay/6131Oan8epvTs5c2B/k1w079yxvGqhAuzT6qafKoRTl56RSVUqUCynUayJ2CzJoNbUxUmDb2gMXYdeT+ve/fBvFU5pgQmrWcHL3xWdQS5mr7aYHkGMm92d9R8fxlRqxWKyVQsVfcZE0eqiACeEEEI0nAQLIarQaDV4+LpQkmeiJK/u/foNRlcGTb+L9YvmA/DTp+9z11vvojcYLn1gI7LZFDZ/cdxxP7p7IFqthqyUYopzK2o8RlXKsVlOophPoFhTgBrWlNAY0eqj0Bmi6T7iem64rXu1hz39aloDW1xN4Z38mf5CLHvWJJEUn015sQW/UHd6jYqkfWyos8sTQghxjZJgIcQFvPxdKckzUVFqwWKyYTDW3h+/qs6Dh3Jo03rSEo+Sn57KvlXLiZ007SpXW3dJ8TkUZZ9fGK2ND6Mf7OoY2Gsqs1BebMFUZqWssIgzB3dy9shucpKP1bhAnUbrgdbQFq2hDVp9K7z83ek/qTVt+4Y06msStfP0MzLkjg7ceHt7bFYFvaFuv8dCCCHE5ZJgIcQFvAJcHYNci3Mr8G9Zt+G8Gq2WYTMf4vNn56CqCju+/ZI2ffsTENY0Zt85vDXV8XPfsdGOUAGg06tkJe3n6LYtJP26F5v14oHrXgFBtLtuAG37DSS0TXtKC8yUFZlx9TDgE+RW7Xyi6dBoNBIqhBBCNAoJFkJcwMu/sutOUW55nYMFQHBUDL3GjGff6hXYLBbWLnib2155yzH7kbMUZJaRetw+W5NPkBth7f1QFYVzRw+T8PNmTuzajqns4gHYPiGhtIsdSNvYAYS2bldt0LV3oNslV3gWQgghxB+LBAshLuAbUrloWM7ZEqK61m914oHT7+T0r3vJTztH5ukTbP38E4bc88CVLrNeEn5Jc/zcpo8Xe77/lkM/racg4+Il5zx8/egwcDAdBt5ISEybi2ZwEkIIIYSoiQQLIS4QGu3j+Dkj6dIzJdXE4GJkzKwn+HLuX1BsVvav/Z7Qtu3pOPCGK1lmnZnKrRz5ORWbJQXFfJAdX51GsVXv6mRwdaNd7AA6DLqRiC7d0Gql64wQQggh6keChRAX8Al2w9XDQEWphfQTBZjKrRjd6vdRCW3TjqEzHmDjRwsB2PD+vwkMiyAoMvpqlFwrm9XKhg+/ozhzHaot66LHI7p0p8vQEbTpE4vBKLM3CSGEEOLySbAQ4gIajYboHoEc/SUdc4WN/evO0H9Sm3qfp9vw0aSfSORI3EasJhPfvjaXW19+A7/Qlleh6upMZWUc+mk9e75fQVlhbrXH3H186XzjcLoOHdEotQghhBDij0Gjqqrq7CKupqKiInx8fCgsLMTb29vZ5YhmojC7jC9e3IWq2D8e/i098A5wxdXTgPa32Y9+G3ugAa1Gg0arQaO1ryJtcNXj38KD0Gh3Vv5zLhknEwHwCgxi2tx5+IZcnbUESgvy2b9mJfEb1mAuL6v2mIdfODfeOZ22sQPQ6ZvO+hpCCCGEaLrqcy0twUKIWuz+4TR7Llilur4MRh09hgWRsHUBuWeTAXuLwaS/zCW0Tbs6n8ditpEUn01uagnmchuKoqIoKqqiothUTGW5ZJ+OoyB9H6paffyE1hBDi3ZDmPLceJl2VAghhBD1IsGiCgkW4nKpqsqJvZnE/3iW7LPF0IBPSlgHI3nJn5OXdhYArU7P4Dtm0Gv0ODRa7SWPzU4pZvXCg5QWXLwSuGLNwmrah2I+RvUCdehcOqJz7UOXG7owaFpbDC4SKoQQQghRPxIsqpBgIa4ExaZQUWqlosRC1Y+M/UcVVaGyBUFRqSi2kHw4h4Tt6Y7r/ciunhRnfkPa8QTH8aFt2nHDnTMJ69C5xuctKzKz9JVdlBdbqjynGcV8EqvpIKot7YIjDBi9ehAQfj3hncNp3y+UoAivK/SvIIQQQog/GgkWVUiwEM509lgeaxYcxGpRAOh0fQgaZSf7Vi2vtl9o67Z0umEYkV174BvawjHd64+fHOH4rnRUWy4ePrm4eWaSefIgNqul2vFGDy+6Dh1Dn7Hj8fD1QQghhBDiSrjmgsWCBQt46623yMjIoHv37vznP/+hX79+dTpWgoVwtjOHcliz6JBjIHj3oeG0al9C3H8/JPdcykX76wwGPHz9UWwqJfnloJZQWz+sgLAIeowcS+fBQzG4ynSxQgghhLiyrqlg8dVXX3HXXXfx3nvvERsby/z58/n66685fvw4wcHBv3u8BAvRFBzfmc7GxUcd970DXYnpHkBZ0SFSDm2mID25zudy8/ahXexAOgwcTKsOnWVlbCGEEEJcNddUsIiNjaVv3768++67ACiKQnh4OI888gjPPvvs7x4vwUI0FYe3pvLz0kQUpfpHTlVVVFs2kIxel43NnIe5ogRVVQAtLm4+RHWNoWX7jrRs35GQ6DZodTIQWwghhBBXX32upZv0Anlms5l9+/bx3HPPObZptVqGDx/Ojh07nFiZEPXXZXArgiO92LH8FOeO5zt6N2k0GjT6YCAYBdAYwWi0P+bl78otz/TGw8forLKFEEIIIeqkSQeLnJwcbDYbISEh1baHhIRw7NixGo8xmUyYTJXTchYVFV3VGoWoj+BIbybM6Ul5iZm0EwUU51ZQnFdBYXY5eamlFOdVAKDTa2nfP5R+Y6MlVAghhBCiWWjSweJyzJs3j5dfftnZZQhxSW6eLrTuefEYIVOZhdJCM55+Rlxcr7mPpxBCCCGuYZdemcvJAgMD0el0ZGZmVtuemZlJaGhojcc899xzFBYWOm5nz55tjFKFuCKM7gb8W3hIqBBCCCFEs9Okg4WLiwu9e/dm06ZNjm2KorBp0yb69+9f4zFGoxFvb+9qNyGEEEIIIcTV1eS/Fn3iiSe4++676dOnD/369WP+/PmUlpYyY8YMZ5cmhBBCCCGEOK/JB4tbb72V7Oxs5s6dS0ZGBj169GDdunUXDegWQgghhBBCOE+TX8eioWQdCyGEEEIIIS5Pfa6lm/QYCyGEEEIIIUTzIMFCCCGEEEII0WASLIQQQgghhBANJsFCCCGEEEII0WASLIQQQgghhBANJsFCCCGEEEII0WASLIQQQgghhBANJsFCCCGEEEII0WASLIQQQgghhBANJsFCCCGEEEII0WASLIQQQgghhBANJsFCCCGEEEII0WASLIQQQgghhBANJsFCCCGEEEII0WASLIQQQgghhBANpnd2AVebqqoAFBUVObkSIYQQQgghmpffrqF/u6a+lGs+WBQXFwMQHh7u5EqEEEIIIYRonoqLi/Hx8bnkPhq1LvGjGVMUhbS0NLy8vNBoNE6poaioiPDwcM6ePYu3t7dTahD1I+9Z8yTvW/Mk71vzI+9Z8yTvW/PTFN4zVVUpLi6mZcuWaLWXHkVxzbdYaLVawsLCnF0GAN7e3vJBbmbkPWue5H1rnuR9a37kPWue5H1rfpz9nv1eS8VvZPC2EEIIIYQQosEkWAghhBBCCCEaTIJFIzAajbz44osYjUZnlyLqSN6z5knet+ZJ3rfmR96z5knet+anub1n1/zgbSGEEEIIIcTVJy0WQgghhBBCiAaTYCGEEEIIIYRoMAkWQgghhBBCiAaTYNHI/v73vzNgwADc3d3x9fV1djmiFgsWLCAqKgpXV1diY2PZvXu3s0sSl7B161bGjRtHy5Yt0Wg0rFixwtklid8xb948+vbti5eXF8HBwUycOJHjx487uyzxOxYtWkS3bt0cc+r379+ftWvXOrssUQ+vv/46Go2GOXPmOLsUcQkvvfQSGo2m2q1Dhw7OLut3SbBoZGazmalTp/LQQw85uxRRi6+++oonnniCF198kf3799O9e3dGjhxJVlaWs0sTtSgtLaV79+4sWLDA2aWIOoqLi2PWrFns3LmTH3/8EYvFwogRIygtLXV2aeISwsLCeP3119m3bx979+5l6NChTJgwgSNHjji7NFEHe/bs4f3336dbt27OLkXUQefOnUlPT3fctm3b5uySfpfMCuUkixcvZs6cORQUFDi7FHGB2NhY+vbty7vvvguAoiiEh4fzyCOP8Oyzzzq5OvF7NBoNy5cvZ+LEic4uRdRDdnY2wcHBxMXFMXjwYGeXI+rB39+ft956i5kzZzq7FHEJJSUl9OrVi4ULF/Lqq6/So0cP5s+f7+yyRC1eeuklVqxYQXx8vLNLqRdpsRCiCrPZzL59+xg+fLhjm1arZfjw4ezYscOJlQlxbSssLATsF6miebDZbCxdupTS0lL69+/v7HLE75g1axY333xztf+/iabtxIkTtGzZkpiYGO644w5SUlKcXdLv0ju7ACGakpycHGw2GyEhIdW2h4SEcOzYMSdVJcS1TVEU5syZw8CBA+nSpYuzyxG/49ChQ/Tv35+Kigo8PT1Zvnw5nTp1cnZZ4hKWLl3K/v372bNnj7NLEXUUGxvL4sWLad++Penp6bz88stcf/31HD58GC8vL2eXVytpsbgCnn322YsG2Fx4k4tSIYSo2axZszh8+DBLly51dimiDtq3b098fDy7du3ioYce4u677yYhIcHZZYlanD17lscee4wvvvgCV1dXZ5cj6mj06NFMnTqVbt26MXLkSNasWUNBQQHLli1zdmmXJC0WV8CTTz7JPffcc8l9YmJiGqcY0SCBgYHodDoyMzOrbc/MzCQ0NNRJVQlx7Zo9ezarVq1i69athIWFObscUQcuLi60adMGgN69e7Nnzx7eeecd3n//fSdXJmqyb98+srKy6NWrl2ObzWZj69atvPvuu5hMJnQ6nRMrFHXh6+tLu3btOHnypLNLuSQJFldAUFAQQUFBzi5DXAEuLi707t2bTZs2OQb/KorCpk2bmD17tnOLE+IaoqoqjzzyCMuXL2fLli1ER0c7uyRxmRRFwWQyObsMUYthw4Zx6NChattmzJhBhw4deOaZZyRUNBMlJSWcOnWKO++809mlXJIEi0aWkpJCXl4eKSkp2Gw2x2j/Nm3a4Onp6dziBABPPPEEd999N3369KFfv37Mnz+f0tJSZsyY4ezSRC1KSkqqfYuTlJREfHw8/v7+REREOLEyUZtZs2axZMkSVq5ciZeXFxkZGQD4+Pjg5ubm5OpEbZ577jlGjx5NREQExcXFLFmyhC1btrB+/XpnlyZq4eXlddHYJQ8PDwICAmRMUxP21FNPMW7cOCIjI0lLS+PFF19Ep9Nx2223Obu0S5Jg0cjmzp3LZ5995rjfs2dPADZv3syNN97opKpEVbfeeivZ2dnMnTuXjIwMevTowbp16y4a0C2ajr179zJkyBDH/SeeeAKAu+++m8WLFzupKnEpixYtArjo796nn376u11LhfNkZWVx1113kZ6ejo+PD926dWP9+vXcdNNNzi5NiGvKuXPnuO2228jNzSUoKIhBgwaxc+fOJt9DRtaxEEIIIYQQQjSYzAolhBBCCCGEaDAJFkIIIYQQQogGk2AhhBBCCCGEaDAJFkIIIYQQQogGk2AhhBBCCCGEaDAJFkIIIYQQQogGk2AhhBBCCCGEaDAJFkIIIYQQQogGk2AhhBBCCCGEaDAJFkIIIRqVzWZjwIABTJ48udr2wsJCwsPDef75551UmRBCiIbQqKqqOrsIIYQQfyyJiYn06NGDDz/8kDvuuAOAu+66iwMHDrBnzx5cXFycXKEQQoj6kmAhhBDCKf7973/z0ksvceTIEXbv3s3UqVPZs2cP3bt3d3ZpQgghLoMECyGEEE6hqipDhw5Fp9Nx6NAhHnnkEV544QVnlyWEEOIySbAQQgjhNMeOHaNjx4507dqV/fv3o9frnV2SEEKIyySDt4UQQjjNJ598gru7O0lJSZw7d87Z5QghhGgAabEQQgjhFNu3b+eGG25gw4YNvPrqqwBs3LgRjUbj5MqEEEJcDmmxEEII0ejKysq45557eOihhxgyZAgff/wxu3fv5r333nN2aUIIIS6TtFgIIYRodI899hhr1qzhwIEDuLu7A/D+++/z1FNPcejQIaKiopxboBBCiHqTYCGEEKJRxcXFMWzYMLZs2cKgQYOqPTZy5EisVqt0iRJCiGZIgoUQQgghhBCiwWSMhRBCCCGEEKLBJFgIIYQQQgghGkyChRBCCCGEEKLBJFgIIYQQQgghGkyChRBCCCGEEKLBJFgIIYQQQgghGkyChRBCCCGEEKLBJFgIIYQQQgghGkyChRBCCCGEEKLBJFgIIYQQQgghGkyChRBCCCGEEKLBJFgIIYQQQgghGuz/AYW9ceXB8bNfAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "mapies = [mapie_split, mapie_cv, mapie_cqr, mapie_ccp_2, mapie_ccp_3, mapie_ccp_4]\n", - "y_preds = [y_pred_split, y_pred_cv, y_pred_cqr, y_pred_ccp_2, y_pred_ccp_3, y_pred_ccp_4]\n", - "y_pis = [y_pi_split, y_pi_cv, y_pi_cqr, y_pi_ccp_2, y_pi_ccp_3, y_pi_ccp_4]\n", - "titles = [\"Basic Split\", \"CV+\", \"CQR\", \"CCP, 5 points, s=1 (under-fit)\", \"CCP, 30 points, s=0.05 (over-fit)\", \"CCP, 30 points, s=0.25 (good calibrator)\"]\n", - "\n", - "plot_figure(mapies, y_preds, y_pis, titles, show_transform=True)\n", - "plot_widths(titles, y_pis)" - ] - }, - { - "cell_type": "markdown", - "id": "4a4529ae", - "metadata": {}, - "source": [ - "#### Using gaussian distances from randomly sampled points is a good solution to have an overall good adaptativity.\n", - "#### $\\to$ We just need to find the good standard deviation parameters to have a good trade-off between adaptativity and overfitting." - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.8.18" - } - }, - "nbformat": 4, - "nbformat_minor": 5 -} From 2ddc5433810e1ef6c2a1ecf26b21765a4efba90f Mon Sep 17 00:00:00 2001 From: Damien Bouet Date: Tue, 18 Jun 2024 16:36:01 +0200 Subject: [PATCH 070/165] FIX: typo in docstrings --- mapie/calibrators/base.py | 17 ++++++++--------- mapie/calibrators/ccp/base.py | 7 ++++--- mapie/calibrators/ccp/custom.py | 2 +- mapie/calibrators/ccp/gaussian.py | 3 +-- mapie/calibrators/ccp/utils.py | 2 +- 5 files changed, 15 insertions(+), 16 deletions(-) diff --git a/mapie/calibrators/base.py b/mapie/calibrators/base.py index a3ac6bf48..53cf9f6a5 100644 --- a/mapie/calibrators/base.py +++ b/mapie/calibrators/base.py @@ -14,11 +14,10 @@ class BaseCalibrator(BaseEstimator, metaclass=ABCMeta): The ``BaseCalibrator`` subclasses should have at least two methods: - - ``fit`` : Fit the calibrator to estimator the conformity scores + - ``fit`` : Fit the calibrator to estimate the conformity scores quantiles. - - ``predict`` : Predict the calibrator estimation the conformity scores - quantiles. + - ``predict`` : Predict the conformity score quantiles. Attributes ---------- @@ -40,7 +39,7 @@ def fit( **kwargs, ) -> BaseCalibrator: """ - Fit the calibrator to estimator the conformity scores + Fit the calibrator to estimate the conformity scores quantiles. The method can take as arguments any of : ``X, y, sample_weight, groups, y_pred_calib, conformity_scores_calib, X_train, y_train, z_train, sample_weight_train, train_index, @@ -69,18 +68,18 @@ def predict( **kwargs, ) -> NDArray: """ - Predict the calibrator estimation the conformity scores - quantiles. The method can take as arguments any of : ``X, y_pred`` + Predict the conformity score quantiles. + The method can take as arguments any of : ``X, y_pred`` or any other argument, which the user will have to pass as ``**kwargs``. Parameters ---------- - X : ArrayLike + X : ArrayLike of shape (n_samples, n_features) Observed samples Returns ------- - NDArray - prediction + NDArray of shape (n_samples,) + Prediction """ diff --git a/mapie/calibrators/ccp/base.py b/mapie/calibrators/ccp/base.py index 228683048..04ed0754e 100644 --- a/mapie/calibrators/ccp/base.py +++ b/mapie/calibrators/ccp/base.py @@ -60,7 +60,7 @@ class CCPCalibrator(BaseCalibrator, metaclass=ABCMeta): this column of ones is not necessary to obtain marginal coverage. In this case, you can set this argument to ``False``. - If you are not sur, use ``bias=True`` to garantee the marginal + If you are not sure, use ``bias=True`` to garantee the marginal coverage. By default ``False``. @@ -486,11 +486,12 @@ def __mul__(self, funct: Optional[Callable]) -> CCPCalibrator: return self else: compile_functions_warnings_errors([funct]) + old_multipliers = self._multipliers new_calibrator = cast(CCPCalibrator, clone(self)) - if new_calibrator._multipliers is None: + if old_multipliers is None: new_calibrator._multipliers = [funct] else: - new_calibrator._multipliers.append(funct) + new_calibrator._multipliers = old_multipliers + [funct] return new_calibrator def __rmul__(self, other) -> CCPCalibrator: diff --git a/mapie/calibrators/ccp/custom.py b/mapie/calibrators/ccp/custom.py index 5e805d26d..746f83884 100644 --- a/mapie/calibrators/ccp/custom.py +++ b/mapie/calibrators/ccp/custom.py @@ -58,7 +58,7 @@ class CustomCCP(CCPCalibrator): this column of ones is not necessary to obtain marginal coverage. In this case, you can set this argument to ``False``. - If you are not sur, use ``bias=True`` to garantee the marginal + If you are not sure, use ``bias=True`` to garantee the marginal coverage. By default ``False``. diff --git a/mapie/calibrators/ccp/gaussian.py b/mapie/calibrators/ccp/gaussian.py index 7cebf950e..6a5bdc795 100644 --- a/mapie/calibrators/ccp/gaussian.py +++ b/mapie/calibrators/ccp/gaussian.py @@ -7,8 +7,7 @@ from sklearn.utils.validation import _num_samples from mapie._typing import ArrayLike -from mapie.calibrators import BaseCalibrator -from mapie.calibrators.ccp import CCPCalibrator +from .base import CCPCalibrator from .utils import compute_sigma, format_functions, sample_points diff --git a/mapie/calibrators/ccp/utils.py b/mapie/calibrators/ccp/utils.py index 3922eda71..072b4356c 100644 --- a/mapie/calibrators/ccp/utils.py +++ b/mapie/calibrators/ccp/utils.py @@ -45,7 +45,7 @@ def format_functions( this column of ones is not necessary to obtain marginal coverage. In this case, you can set this argument to ``False``. - If you are not sur, use ``bias=True`` to garantee the marginal + If you are not sure, use ``bias=True`` to garantee the marginal coverage. Returns From 2e5918f7ca8c80010a9d809e4e28935ea6d806d2 Mon Sep 17 00:00:00 2001 From: Damien Bouet Date: Tue, 18 Jun 2024 16:36:36 +0200 Subject: [PATCH 071/165] MOVE: check_calibrator in calibrators.utils --- mapie/calibrators/ccp/__init__.py | 3 +- mapie/calibrators/ccp/gaussian.py | 33 --------------------- mapie/calibrators/utils.py | 39 +++++++++++++++++++++++++ mapie/futur/split/regression.py | 2 +- mapie/tests/test_ccp_calibrator.py | 28 ++++++++++++------ mapie/tests/test_standard_calibrator.py | 3 +- 6 files changed, 62 insertions(+), 46 deletions(-) create mode 100644 mapie/calibrators/utils.py diff --git a/mapie/calibrators/ccp/__init__.py b/mapie/calibrators/ccp/__init__.py index c543da274..c278032e3 100644 --- a/mapie/calibrators/ccp/__init__.py +++ b/mapie/calibrators/ccp/__init__.py @@ -1,6 +1,6 @@ from .base import CCPCalibrator from .custom import CustomCCP -from .gaussian import GaussianCCP, check_calibrator +from .gaussian import GaussianCCP from .polynomial import PolynomialCCP __all__ = [ @@ -8,5 +8,4 @@ "CustomCCP", "PolynomialCCP", "GaussianCCP", - "check_calibrator", ] diff --git a/mapie/calibrators/ccp/gaussian.py b/mapie/calibrators/ccp/gaussian.py index 6a5bdc795..e1740ccd0 100644 --- a/mapie/calibrators/ccp/gaussian.py +++ b/mapie/calibrators/ccp/gaussian.py @@ -294,36 +294,3 @@ def _check_fit_parameters( for i in range(_num_samples(self.points_)) ] self.functions_ = format_functions(functions, self.bias) - - -def check_calibrator( - calibrator: Optional[BaseCalibrator], -) -> BaseCalibrator: - """ - Check if ``calibrator`` is a ``BaseCalibrator`` instance. - - Parameters - ---------- - calibrator: Optional[BaseCalibrator] - A ``BaseCalibrator`` instance used to estimate the conformity scores - quantiles. - - If ``None``, use as default a ``GaussianCCP`` instance. - - Returns - ------- - BaseCalibrator - ``calibrator`` if defined, a ``GaussianCCP`` instance otherwise. - - Raises - ------ - ValueError - If ``calibrator`` is not ``None`` nor a ``BaseCalibrator`` instance. - """ - if calibrator is None: - return GaussianCCP() - elif isinstance(calibrator, BaseCalibrator): - return calibrator - else: - raise ValueError("Invalid `calibrator` argument. It must be `None` " - "or a `BaseCalibrator` instance.") diff --git a/mapie/calibrators/utils.py b/mapie/calibrators/utils.py new file mode 100644 index 000000000..7523ff181 --- /dev/null +++ b/mapie/calibrators/utils.py @@ -0,0 +1,39 @@ +from __future__ import annotations + +from typing import Optional + +from .base import BaseCalibrator +from .ccp import GaussianCCP + + +def check_calibrator( + calibrator: Optional[BaseCalibrator], +) -> BaseCalibrator: + """ + Check if ``calibrator`` is a ``BaseCalibrator`` instance. + + Parameters + ---------- + calibrator: Optional[BaseCalibrator] + A ``BaseCalibrator`` instance used to estimate the conformity scores + quantiles. + + If ``None``, use as default a ``GaussianCCP`` instance. + + Returns + ------- + BaseCalibrator + ``calibrator`` if defined, a ``GaussianCCP`` instance otherwise. + + Raises + ------ + ValueError + If ``calibrator`` is not ``None`` nor a ``BaseCalibrator`` instance. + """ + if calibrator is None: + return GaussianCCP() + elif isinstance(calibrator, BaseCalibrator): + return calibrator + else: + raise ValueError("Invalid `calibrator` argument. It must be `None` " + "or a `BaseCalibrator` instance.") diff --git a/mapie/futur/split/regression.py b/mapie/futur/split/regression.py index d2d112bc7..f21edad86 100644 --- a/mapie/futur/split/regression.py +++ b/mapie/futur/split/regression.py @@ -8,7 +8,7 @@ from sklearn.pipeline import Pipeline from mapie._typing import ArrayLike, NDArray -from mapie.calibrators.ccp import check_calibrator +from mapie.calibrators.utils import check_calibrator from mapie.conformity_scores import ConformityScore from mapie.futur.split.base import BaseCalibrator, SplitCP from mapie.utils import (check_conformity_score, check_estimator_regression, diff --git a/mapie/tests/test_ccp_calibrator.py b/mapie/tests/test_ccp_calibrator.py index 1b90244b8..54b0c5bd2 100644 --- a/mapie/tests/test_ccp_calibrator.py +++ b/mapie/tests/test_ccp_calibrator.py @@ -10,6 +10,7 @@ from mapie.calibrators.ccp import (CCPCalibrator, CustomCCP, GaussianCCP, PolynomialCCP) +from mapie.calibrators.ccp.utils import check_required_arguments from mapie.regression import SplitCPRegressor random_state = 1 @@ -21,7 +22,7 @@ z = X[:, -2:] PHI = [ - CustomCCP([lambda X: np.ones((len(X), 1))]), + CustomCCP(lambda X: np.ones((len(X), 1))), CustomCCP(None, bias=True), CustomCCP([lambda X: X]), CustomCCP([lambda X: X, lambda z: z]), @@ -89,16 +90,12 @@ # ======== CustomCCP ========= -@pytest.mark.parametrize("functions", [ - lambda X: X, [lambda X: X], - [lambda X: X, PolynomialCCP(2)], - [lambda X: X, PolynomialCCP(2), GaussianCCP(2)], -]) -def test_custom_phi_functions(functions: Any) -> None: +@pytest.mark.parametrize("calibrator", PHI) +def test_custom_phi_functions(calibrator: Any) -> None: """Test that initialization does not crash.""" - mapie = SplitCPRegressor(calibrator=CustomCCP(functions), alpha=0.1) + mapie = SplitCPRegressor(calibrator=calibrator, alpha=0.1) mapie.fit(X, y, z=z) - mapie.predict(X) + mapie.predict(X, z=z) @pytest.mark.parametrize("calibrator, n_out_raw", zip(PHI, N_OUT)) @@ -288,3 +285,16 @@ def test_gauss_no_need_calib(ind: int) -> None: **GAUSS_NEED_FIT_SETTINGS[ind]), alpha=0.1) mapie.fit(X, y, z=z) check_is_fitted(mapie.calibrator_, mapie.calibrator_.fit_attributes) + + +@pytest.mark.parametrize("arg1", ["a", None, 1]) +@pytest.mark.parametrize("arg2", ["a", None, 1]) +def test_check_required_arguments(arg1: Any, arg2: Any) -> None: + """ + Test that a ValueError is raised if any of the given argument is ``None``. + """ + if arg1 is None or arg2 is None: + with pytest.raises(ValueError): + check_required_arguments(arg1, arg2) + else: + check_required_arguments(arg1, arg2) diff --git a/mapie/tests/test_standard_calibrator.py b/mapie/tests/test_standard_calibrator.py index b365b5737..348b1fe80 100644 --- a/mapie/tests/test_standard_calibrator.py +++ b/mapie/tests/test_standard_calibrator.py @@ -19,10 +19,11 @@ @pytest.mark.parametrize("sym", [True, False]) def test_calibrator_fit(sym: bool) -> None: - """Test that initialization does not crash.""" + """Test that calibrator has correct sym parameter""" mapie = SplitCPRegressor(calibrator=StandardCalibrator(), alpha=0.1, conformity_score=AbsoluteConformityScore(sym=sym)) mapie.fit(X, y, z=z) + assert mapie.calibrator_.sym == sym @pytest.mark.parametrize("sym", [True, False]) From 64be82e2a7bba4893c8686694e50d82e4b4d2254 Mon Sep 17 00:00:00 2001 From: Damien Bouet Date: Tue, 18 Jun 2024 17:22:29 +0200 Subject: [PATCH 072/165] UPD: docstrings and minor fix --- mapie/calibrators/ccp/base.py | 11 ++++---- mapie/calibrators/ccp/custom.py | 9 ++++--- mapie/calibrators/ccp/utils.py | 1 + mapie/calibrators/standard.py | 1 + mapie/futur/split/base.py | 40 +++++++++++----------------- mapie/futur/split/regression.py | 24 +++++------------ mapie/tests/test_futur_regression.py | 10 +++---- mapie/utils.py | 2 -- 8 files changed, 40 insertions(+), 58 deletions(-) diff --git a/mapie/calibrators/ccp/base.py b/mapie/calibrators/ccp/base.py index 04ed0754e..159bcb80b 100644 --- a/mapie/calibrators/ccp/base.py +++ b/mapie/calibrators/ccp/base.py @@ -113,7 +113,7 @@ class CCPCalibrator(BaseCalibrator, metaclass=ABCMeta): prediction intervals. beta_up_[0]: Array of shape (calibrator.n_out, ) beta_up_[1]: Whether the optimization process converged or not - (the coverage is not garantied if the optimization fail) + (cover is not guaranteed if the optimisation has failed) beta_low_: Tuple[NDArray, bool] Same as beta_up, but for the lower bound @@ -182,6 +182,7 @@ def _check_init_value( init_value : Optional[ArrayLike] Optimization initialisation value, set at ``CCPCalibrator`` initialisation. + n_out : int Number of dimensions of the ``CCPCalibrator`` transformation. @@ -215,7 +216,7 @@ def _check_optimization_success( "The returned prediction interval may be inaccurate." ) - def fit_params( + def _fit_params( self, X: ArrayLike, y_pred: Optional[ArrayLike] = None, @@ -319,7 +320,7 @@ def fit( else: np.random.seed(self.random_state) - self.fit_params(X_calib, y_pred_calib, z_calib) + self._fit_params(X_calib, y_pred_calib, z_calib) cs_features = self.transform(X_calib, y_pred_calib, z_calib) @@ -437,10 +438,10 @@ def predict( X : ArrayLike Observed samples - y_pred : ArrayLike + y_pred : Optional[ArrayLike] Target prediction - z : ArrayLike + z : Optional[ArrayLike] Exogenous variable Returns diff --git a/mapie/calibrators/ccp/custom.py b/mapie/calibrators/ccp/custom.py index 746f83884..3769a8c8c 100644 --- a/mapie/calibrators/ccp/custom.py +++ b/mapie/calibrators/ccp/custom.py @@ -50,7 +50,7 @@ class CustomCCP(CCPCalibrator): bias: bool Add a column of ones to the features, for safety reason - (to garanty the marginal coverage, no matter how the other features + (to garantee the marginal coverage, no matter how the other features the ``CCPCalibrator``object were built). If the ``CCPCalibrator``object definition covers all the dataset (meaning, for all calibration and test samples, the resulting @@ -63,7 +63,8 @@ class CustomCCP(CCPCalibrator): By default ``False``. - Whether or not to normalized the resulting + normalized: bool + Whether or not to normalized the resulting ``calibrator.predict(X, y_pred, z)``. Normalization will result in a bounded interval prediction width, avoiding the width to explode to +inf or crash to zero. It is particularly intersting when @@ -176,7 +177,7 @@ def _check_fit_parameters( self.functions_ = format_functions(self.functions, self.bias) compile_functions_warnings_errors(self.functions_) - def fit_params( + def _fit_params( self, X: ArrayLike, y_pred: Optional[ArrayLike] = None, @@ -210,7 +211,7 @@ def fit_params( for phi in self.functions_: if isinstance(phi, CCPCalibrator): - phi.fit_params(X, y_pred, z) + phi._fit_params(X, y_pred, z) check_multiplier(phi._multipliers, X, y_pred, z) self.is_fitted_ = True diff --git a/mapie/calibrators/ccp/utils.py b/mapie/calibrators/ccp/utils.py index 072b4356c..2abfe5189 100644 --- a/mapie/calibrators/ccp/utils.py +++ b/mapie/calibrators/ccp/utils.py @@ -165,6 +165,7 @@ def sample_points( ---------- X : ArrayLike Samples + points : Optional[Union[int, ArrayLike, Tuple[ArrayLike, ArrayLike]]] If Array: List of data points, used as centers to compute gaussian distances. Should be an array of shape (n_points, n_in). diff --git a/mapie/calibrators/standard.py b/mapie/calibrators/standard.py index 9b8be9edb..30528c48b 100644 --- a/mapie/calibrators/standard.py +++ b/mapie/calibrators/standard.py @@ -62,6 +62,7 @@ def fit( check_required_arguments(self.alpha) self.alpha = cast(float, self.alpha) + # TODO: Partial copy paste of the ConformityScore.get_bounds method if self.sym: alpha_ref = 1-self.alpha quantile_ref = ConformityScore.get_quantile( diff --git a/mapie/futur/split/base.py b/mapie/futur/split/base.py index 451c1cf7b..46e55f9db 100644 --- a/mapie/futur/split/base.py +++ b/mapie/futur/split/base.py @@ -3,13 +3,12 @@ import inspect import warnings from abc import ABCMeta, abstractmethod -from typing import Any, Callable, Dict, List, Optional, Tuple, Union, cast +from typing import Any, Callable, Dict, Optional, Tuple, Union, cast import numpy as np -from sklearn.base import BaseEstimator, ClassifierMixin, RegressorMixin +from sklearn.base import BaseEstimator from sklearn.model_selection import (BaseCrossValidator, BaseShuffleSplit, PredefinedSplit, ShuffleSplit) -from sklearn.pipeline import Pipeline from sklearn.utils.validation import _num_samples, check_is_fitted from mapie._typing import ArrayLike, NDArray @@ -58,13 +57,10 @@ class SplitCP(BaseEstimator, metaclass=ABCMeta): conformity_score: Optional[ConformityScore] ConformityScore instance. It defines the link between the observed values, the predicted ones - and the conformity scores. For instance, the default ``None`` value - correspondonds to a conformity score which assumes - y_obs = y_pred + conformity_score. + and the conformity scores. - - ``None``, to use the default ``AbsoluteConformityScore`` symetrical - conformity score - - Any ``ConformityScore`` class + - Can be any ``ConformityScore`` class + - ``None`` is associated with a default value defined by the subclass By default ``None``. @@ -83,7 +79,7 @@ class SplitCP(BaseEstimator, metaclass=ABCMeta): If ``None``, the prediction intervals will be stochastics, and will change if you refit the calibration (even if no arguments have change). - WARNING: If ``random_state``is not ``None``, ``np.random.seed`` will + WARNING: If ``random_state`` is not ``None``, ``np.random.seed`` will be changed, which will reset the seed for all the other random number generators. It may have an impact on the rest of your code. @@ -102,13 +98,7 @@ class SplitCP(BaseEstimator, metaclass=ABCMeta): @abstractmethod def __init__( self, - predictor: Optional[ - Union[ - Union[RegressorMixin, ClassifierMixin], - Pipeline, - List[Union[Union[RegressorMixin, ClassifierMixin], Pipeline]] - ] - ] = None, + predictor: Optional[BaseEstimator] = None, calibrator: Optional[CCPCalibrator] = None, cv: Optional[ Union[str, BaseCrossValidator, BaseShuffleSplit] @@ -122,7 +112,7 @@ def __init__( """ @abstractmethod - def _check_fit_parameters(self) -> Union[RegressorMixin, ClassifierMixin]: + def _check_fit_parameters(self) -> BaseEstimator: """ Check and replace default value of ``predictor`` and ``cv`` arguments. """ @@ -216,7 +206,7 @@ def _check_alpha(self, alpha: Optional[float] = None) -> None: raise ValueError("Invalid alpha. " "Allowed values are between 0 and 1.") - def get_method_arguments( + def _get_method_arguments( self, method: Callable, local_vars: Dict[str, Any], kwargs: Optional[Dict], ) -> Dict: @@ -395,7 +385,7 @@ def fit_calibrator( X_calib, y_calib, y_pred_calib ) - calib_arguments = self.get_method_arguments( + calib_arguments = self._get_method_arguments( calibrator.fit, dict(zip([ "X", "y", "sample_weight", "groups", @@ -509,9 +499,6 @@ def predict( X: ArrayLike of shape (n_samples, n_features) Test data. - z: Optional[ArrayLike] of shape (n_calib_samples, n_exog_features) - Exogenous variables - Returns ------- Union[NDArray, Tuple[NDArray, NDArray]] @@ -529,7 +516,7 @@ def predict( check_is_fitted(self, self.calib_attributes) # Fit the calibrator - bounds_arguments = self.get_method_arguments( + bounds_arguments = self._get_method_arguments( self.calibrator_.predict, {}, kwargs, ) @@ -575,7 +562,7 @@ def predict_bounds( y_pred: 2D NDArray Predicted scores (target) - z: ArrayLike + z: Optional[ArrayLike] Exogenous variables Returns @@ -594,6 +581,9 @@ def predict_best(self, y_pred: NDArray) -> NDArray: y_pred: NDArray Prediction scores (can be the prediction, the probas, ...) + z: Optional[ArrayLike] + Exogenous variables + Returns ------- NDArray diff --git a/mapie/futur/split/regression.py b/mapie/futur/split/regression.py index f21edad86..8f6ea67a9 100644 --- a/mapie/futur/split/regression.py +++ b/mapie/futur/split/regression.py @@ -1,11 +1,10 @@ from __future__ import annotations -from typing import List, Optional, Tuple, Union +from typing import Optional, Tuple, Union import numpy as np from sklearn.base import RegressorMixin from sklearn.model_selection import BaseCrossValidator, BaseShuffleSplit -from sklearn.pipeline import Pipeline from mapie._typing import ArrayLike, NDArray from mapie.calibrators.utils import check_calibrator @@ -17,10 +16,10 @@ class SplitCPRegressor(SplitCP): """ - Class to compute Conformal Predictions in a ``"split"`` approach for - regression tasks. - It is based on a predictor (a sklearn estimator), and a calibrator - (``Calibrator`` object). + Class to implement Conformal Prediction in ``"split"`` + approach for regression tasks. + It is based on a predictor (``RegressorMixin`` object), + and a calibrator (``BaseCalibrator`` object). Parameters ---------- @@ -104,13 +103,7 @@ class SplitCPRegressor(SplitCP): """ def __init__( self, - predictor: Optional[ - Union[ - RegressorMixin, - Pipeline, - List[Union[RegressorMixin, Pipeline]] - ] - ] = None, + predictor: Optional[RegressorMixin] = None, calibrator: Optional[BaseCalibrator] = None, cv: Optional[ Union[str, BaseCrossValidator, BaseShuffleSplit] @@ -188,16 +181,13 @@ def predict_bounds( y_pred: 2D NDArray Observed Target - z: ArrayLike - Exogenous variables - Returns ------- NDArray Bounds, as a 3D array of shape (n_samples, 2, 1) (because we only have 1 alpha value) """ - predict_kwargs = self.get_method_arguments( + predict_kwargs = self._get_method_arguments( self.calibrator_.predict, dict(zip(["X", "y_pred"], [X, y_pred])), kwargs, diff --git a/mapie/tests/test_futur_regression.py b/mapie/tests/test_futur_regression.py index 616a0e69a..d2ec7a8d5 100644 --- a/mapie/tests/test_futur_regression.py +++ b/mapie/tests/test_futur_regression.py @@ -399,7 +399,7 @@ def test_same_results_prefit_split( z_calib = z[val_index] calibrator = cast(CCPCalibrator, clone(template)) - calibrator.fit_params(X, y, z) + calibrator._fit_params(X, y, z) calibrator.init_value = calibrator.init_value_ if isinstance(calibrator, GaussianCCP): calibrator.points = (calibrator.points_, calibrator.sigmas_) @@ -445,7 +445,7 @@ def test_results_for_ordered_alpha( if cv == "prefit": predictor.fit(X, y) - calibrator.fit_params(X) + calibrator._fit_params(X) mapie_reg_1 = SplitCPRegressor(predictor, clone(calibrator), cv=cv, alpha=0.05, random_state=random_state) @@ -481,7 +481,7 @@ def test_results_with_constant_sample_weights( predictor.fit(X, y) calibrator = cast(CCPCalibrator, clone(PHI[0])) - calibrator.fit_params(X) + calibrator._fit_params(X) calibrator.init_value = calibrator.init_value_ n_samples = len(X) @@ -658,6 +658,6 @@ def test_get_method_arguments(custom_method: Callable) -> None: local_vars = {"local_arg": 1} kwarg_args = {"kwarg_arg": 1} - arguments = mapie.get_method_arguments(custom_method, local_vars, - kwarg_args) + arguments = mapie._get_method_arguments(custom_method, local_vars, + kwarg_args) custom_method(**arguments) diff --git a/mapie/utils.py b/mapie/utils.py index 51cf54b21..99d13dd4e 100644 --- a/mapie/utils.py +++ b/mapie/utils.py @@ -37,8 +37,6 @@ def check_null_weight( Training samples. y: ArrayLike of shape (n_samples,) Training labels. - z: Optional[ArrayLike] - Exogenous varible Returns ------- From cad8e2826e584f0a45ac660a255cb7e44e41cc0c Mon Sep 17 00:00:00 2001 From: Damien Bouet Date: Tue, 18 Jun 2024 17:28:39 +0200 Subject: [PATCH 073/165] ADD: notebook tutorial_ccp_CandC in regression notebooks doc --- doc/notebooks_regression.rst | 3 +++ 1 file changed, 3 insertions(+) diff --git a/doc/notebooks_regression.rst b/doc/notebooks_regression.rst index 24b8ce12e..1ee05bbd9 100755 --- a/doc/notebooks_regression.rst +++ b/doc/notebooks_regression.rst @@ -16,3 +16,6 @@ This section lists a series of Jupyter notebooks hosted on the MAPIE Github repo ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- +4. Leverage CCP method to have adaptative prediction intervals on Communities and Crime Dataset : `ccp_CandC_notebook `_ +--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- + From dca25d37cac50e64182c783db48bd0d42af07ba4 Mon Sep 17 00:00:00 2001 From: Damien Bouet Date: Tue, 18 Jun 2024 18:01:47 +0200 Subject: [PATCH 074/165] ADD: test to check equivalence of new and old implementation of standard split CP --- mapie/tests/test_standard_calibrator.py | 27 ++++++++++++++++++++++++- 1 file changed, 26 insertions(+), 1 deletion(-) diff --git a/mapie/tests/test_standard_calibrator.py b/mapie/tests/test_standard_calibrator.py index 348b1fe80..9a0cb4fe0 100644 --- a/mapie/tests/test_standard_calibrator.py +++ b/mapie/tests/test_standard_calibrator.py @@ -4,9 +4,12 @@ import pytest from sklearn.datasets import make_regression +from sklearn.linear_model import LinearRegression +from sklearn.model_selection import train_test_split + from mapie.calibrators import StandardCalibrator from mapie.conformity_scores import AbsoluteConformityScore -from mapie.regression import SplitCPRegressor +from mapie.regression import SplitCPRegressor, MapieRegressor random_state = 1 np.random.seed(random_state) @@ -33,3 +36,25 @@ def test_calibrator_fit_predict(sym: bool) -> None: conformity_score=AbsoluteConformityScore(sym=sym)) mapie.fit(X, y, z=z) mapie.predict(X, z=z) + + +def test_standard_equivalence() -> None: + """ + Check that ``SplitCPRegressor`` with ``StandardCalibrator`` gives the + same results as ``MapieRegressor`` with ``method='base'``. + """ + X_train, X_calib, y_train, y_calib = train_test_split( + X, y, test_size=0.5, random_state=1 + ) + predictor = LinearRegression().fit(X_train, y_train) + mapie_ccp = SplitCPRegressor(predictor, calibrator=StandardCalibrator(), + cv="prefit", alpha=0.1) + mapie_ccp.fit(X_calib, y_calib) + y_pred_ccp, y_pi_ccp = mapie_ccp.predict(X) + + mapie_split = MapieRegressor(predictor, method="base", cv="prefit") + mapie_split.fit(X_calib, y_calib) + y_pred_split, y_pi_split = mapie_split.predict(X, alpha=0.1) + + np.testing.assert_allclose(y_pred_ccp, y_pred_split) + np.testing.assert_allclose(y_pi_ccp, y_pi_split) From b5ed28979ee9018a2d0494d7aeec13c2da194506 Mon Sep 17 00:00:00 2001 From: Damien Bouet Date: Fri, 21 Jun 2024 16:50:24 +0200 Subject: [PATCH 075/165] UPD: typos --- mapie/calibrators/ccp/base.py | 4 ++-- mapie/calibrators/ccp/custom.py | 2 +- mapie/calibrators/ccp/gaussian.py | 2 +- mapie/calibrators/ccp/polynomial.py | 4 ++-- 4 files changed, 6 insertions(+), 6 deletions(-) diff --git a/mapie/calibrators/ccp/base.py b/mapie/calibrators/ccp/base.py index 159bcb80b..773432d8b 100644 --- a/mapie/calibrators/ccp/base.py +++ b/mapie/calibrators/ccp/base.py @@ -26,7 +26,7 @@ class CCPCalibrator(BaseCalibrator, metaclass=ABCMeta): It corresponds to the adaptative conformal prediction method proposed by Gibbs et al. (2023) in "Conformal Prediction With Conditional Guarantees". - The goal of to learn the quantile of the conformity scores distribution, + The goal is to learn the quantile of the conformity scores distribution, to built the prediction interval, not with a constant ``q`` (as it is the case in the standard CP), but with a function ``q(X)`` which is adaptative as it depends on ``X``. @@ -314,7 +314,7 @@ def fit( if self.random_state is None: warnings.warn("WARNING: The method implemented in " "SplitCP has a stochastic behavior. " - "To have reproductible results, use a integer " + "To have reproductible results, use an integer " "`random_state` value in the `SplitCP` " "initialisation.") else: diff --git a/mapie/calibrators/ccp/custom.py b/mapie/calibrators/ccp/custom.py index 3769a8c8c..90434e6c2 100644 --- a/mapie/calibrators/ccp/custom.py +++ b/mapie/calibrators/ccp/custom.py @@ -18,7 +18,7 @@ class CustomCCP(CCPCalibrator): prediction method proposed by Gibbs et al. (2023) in "Conformal Prediction With Conditional Guarantees". - The goal of to learn the quantile of the conformity scores distribution, + The goal is to learn the quantile of the conformity scores distribution, to built the prediction interval, not with a constant ``q`` (as it is the case in the standard CP), but with a function ``q(X)`` which is adaptative as it depends on ``X``. diff --git a/mapie/calibrators/ccp/gaussian.py b/mapie/calibrators/ccp/gaussian.py index e1740ccd0..2ee6cd4b6 100644 --- a/mapie/calibrators/ccp/gaussian.py +++ b/mapie/calibrators/ccp/gaussian.py @@ -19,7 +19,7 @@ class GaussianCCP(CCPCalibrator): prediction method proposed by Gibbs et al. (2023) in "Conformal Prediction With Conditional Guarantees". - The goal of to learn the quantile of the conformity scores distribution, + The goal is to learn the quantile of the conformity scores distribution, to built the prediction interval, not with a constant ``q`` (as it is the case in the standard CP), but with a function ``q(X)`` which is adaptative as it depends on ``X``. diff --git a/mapie/calibrators/ccp/polynomial.py b/mapie/calibrators/ccp/polynomial.py index 1e55673e9..df3d88d38 100644 --- a/mapie/calibrators/ccp/polynomial.py +++ b/mapie/calibrators/ccp/polynomial.py @@ -15,7 +15,7 @@ class PolynomialCCP(CCPCalibrator): prediction method proposed by Gibbs et al. (2023) in "Conformal Prediction With Conditional Guarantees". - The goal of to learn the quantile of the conformity scores distribution, + The goal is to learn the quantile of the conformity scores distribution, to built the prediction interval, not with a constant ``q`` (as it is the case in the standard CP), but with a function ``q(X)`` which is adaptative as it depends on ``X``. @@ -74,7 +74,7 @@ class PolynomialCCP(CCPCalibrator): will result in a bounded interval prediction width, avoiding the width to explode to +inf or crash to zero. It is particularly intersting when you know that the conformity scores are bounded. It also prevent the - interval to have a interval of zero width for out-of-distribution or + interval to have an interval of zero width for out-of-distribution or new samples. On the opposite, it is not recommended if the conformity scores can vary a lot. From 9bb8863354cdce12173dd257a116a4bcadfc280c Mon Sep 17 00:00:00 2001 From: Damien Bouet Date: Fri, 21 Jun 2024 16:50:43 +0200 Subject: [PATCH 076/165] ADD: perfect width in ccp tutorial plots --- examples/regression/4-tutorials/plot_ccp_tutorial.py | 5 +++++ 1 file changed, 5 insertions(+) diff --git a/examples/regression/4-tutorials/plot_ccp_tutorial.py b/examples/regression/4-tutorials/plot_ccp_tutorial.py index ace5a0802..22568a3a5 100644 --- a/examples/regression/4-tutorials/plot_ccp_tutorial.py +++ b/examples/regression/4-tutorials/plot_ccp_tutorial.py @@ -344,6 +344,11 @@ def plot_evaluation(titles, y_pis, X_test, y_test): width, lw=2, color=c, label=titles[i*3+j] ) + axs[i * 2 + 1].plot( + X_test[sort_order, 0], + test_pi[sort_order, 0] - test_pi[sort_order, 1], + lw=2, color='black', linestyle="--", label="Perfect Width" + ) width_lim[0] = min(width_lim[0], min(width)) width_lim[1] = max(width_lim[1], max(width)) axs[i * 2 + 1].legend(fontsize=10) From 9115a871ad0f8aa184cb6c5362dca66f20f41f76 Mon Sep 17 00:00:00 2001 From: Damien Bouet Date: Fri, 21 Jun 2024 16:51:01 +0200 Subject: [PATCH 077/165] UPD: Change regularization from L2 to L1 --- mapie/calibrators/ccp/utils.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/mapie/calibrators/ccp/utils.py b/mapie/calibrators/ccp/utils.py index 2abfe5189..c91b7780c 100644 --- a/mapie/calibrators/ccp/utils.py +++ b/mapie/calibrators/ccp/utils.py @@ -527,7 +527,7 @@ def calibrator_optim_objective( Scalar value to minimize, being the sum of the pinball losses. """ if reg_param is not None: - reg_val = float(reg_param * np.linalg.norm(beta)) + reg_val = float(reg_param * np.linalg.norm(beta, ord=1)) else: reg_val = 0 return fast_mean_pinball_loss( From 1eed6de4e9cdc2c9460489e81eb562739cb002bf Mon Sep 17 00:00:00 2001 From: Damien Bouet Date: Fri, 21 Jun 2024 18:08:52 +0200 Subject: [PATCH 078/165] FIX: ccp tuto plot --- .../regression/4-tutorials/plot_ccp_tutorial.py | 15 ++++++++++----- 1 file changed, 10 insertions(+), 5 deletions(-) diff --git a/examples/regression/4-tutorials/plot_ccp_tutorial.py b/examples/regression/4-tutorials/plot_ccp_tutorial.py index 22568a3a5..03acc4e4c 100644 --- a/examples/regression/4-tutorials/plot_ccp_tutorial.py +++ b/examples/regression/4-tutorials/plot_ccp_tutorial.py @@ -344,13 +344,18 @@ def plot_evaluation(titles, y_pis, X_test, y_test): width, lw=2, color=c, label=titles[i*3+j] ) - axs[i * 2 + 1].plot( - X_test[sort_order, 0], - test_pi[sort_order, 0] - test_pi[sort_order, 1], - lw=2, color='black', linestyle="--", label="Perfect Width" - ) + width_lim[0] = min(width_lim[0], min(width)) width_lim[1] = max(width_lim[1], max(width)) + perfect_width = test_pi[sort_order, 0] - test_pi[sort_order, 1] + axs[i * 2 + 1].plot( + X_test[sort_order, 0], + perfect_width, + lw=2, color='black', linestyle="--", label="Perfect Width" + ) + width_lim[0] = min(width_lim[0], min(perfect_width)) + width_lim[1] = max(width_lim[1], max(perfect_width)) + axs[i * 2 + 1].legend(fontsize=10) axs[i * 2 + 1].set_title("Prediction Interval Width") axs[i * 2 + 1].set_xlabel("X") From 8247e303b5695bcad0739106eed6e55d4777c99c Mon Sep 17 00:00:00 2001 From: Damien Bouet Date: Fri, 21 Jun 2024 18:23:55 +0200 Subject: [PATCH 079/165] FIX: ccp tuto --- examples/regression/4-tutorials/plot_ccp_tutorial.py | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/examples/regression/4-tutorials/plot_ccp_tutorial.py b/examples/regression/4-tutorials/plot_ccp_tutorial.py index 03acc4e4c..b533aa98c 100644 --- a/examples/regression/4-tutorials/plot_ccp_tutorial.py +++ b/examples/regression/4-tutorials/plot_ccp_tutorial.py @@ -344,7 +344,7 @@ def plot_evaluation(titles, y_pis, X_test, y_test): width, lw=2, color=c, label=titles[i*3+j] ) - + width_lim[0] = min(width_lim[0], min(width)) width_lim[1] = max(width_lim[1], max(width)) perfect_width = test_pi[sort_order, 0] - test_pi[sort_order, 1] @@ -355,7 +355,7 @@ def plot_evaluation(titles, y_pis, X_test, y_test): ) width_lim[0] = min(width_lim[0], min(perfect_width)) width_lim[1] = max(width_lim[1], max(perfect_width)) - + axs[i * 2 + 1].legend(fontsize=10) axs[i * 2 + 1].set_title("Prediction Interval Width") axs[i * 2 + 1].set_xlabel("X") From e04ab4a31ed0264f5110946bb79cbfc1bbee22ec Mon Sep 17 00:00:00 2001 From: Damien Bouet Date: Mon, 15 Jul 2024 17:43:39 +0200 Subject: [PATCH 080/165] UPD: only sample gaussian points where multipliers values are not zero (with indicatrices for ex) --- mapie/calibrators/ccp/gaussian.py | 2 +- mapie/calibrators/ccp/utils.py | 31 +++++++++++++++++++++++++++--- mapie/tests/test_ccp_calibrator.py | 15 +++++++++++++++ 3 files changed, 44 insertions(+), 4 deletions(-) diff --git a/mapie/calibrators/ccp/gaussian.py b/mapie/calibrators/ccp/gaussian.py index 2ee6cd4b6..1a0366c9f 100644 --- a/mapie/calibrators/ccp/gaussian.py +++ b/mapie/calibrators/ccp/gaussian.py @@ -282,7 +282,7 @@ def _check_fit_parameters( By default ``None`` """ self.random_sigma = self._check_random_sigma() - self.points_ = sample_points(X, self.points) + self.points_ = sample_points(X, self.points, self._multipliers) self.sigmas_ = compute_sigma(X, self.points, self.points_, self.sigma, self.random_sigma) self._check_points_sigma(self.points_, self.sigmas_) diff --git a/mapie/calibrators/ccp/utils.py b/mapie/calibrators/ccp/utils.py index c91b7780c..88e2eaaef 100644 --- a/mapie/calibrators/ccp/utils.py +++ b/mapie/calibrators/ccp/utils.py @@ -156,10 +156,13 @@ def compile_functions_warnings_errors( def sample_points( X: ArrayLike, - points: Optional[Union[int, ArrayLike, Tuple[ArrayLike, ArrayLike]]] + points: Optional[Union[int, ArrayLike, Tuple[ArrayLike, ArrayLike]]], + multipliers: Optional[List[Callable]] = None, ) -> NDArray: """ - Generate the ``points_`` attribute from the ``points`` and ``X`` arguments + Generate the ``points_`` attribute from the ``points`` and ``X`` arguments. + Only the samples which have weights (value for each ``multipliers`` + function) different from ``0`` can be sampled. Parameters ---------- @@ -186,6 +189,10 @@ def sample_points( If ``None``, default to ``20``. + multipliers: Optional[List[Callable]] + List of functions which should return an array of shape (n_samples, 1) + or (n_samples, ) used to weight the sample. + Returns ------- NDArray @@ -199,8 +206,26 @@ def sample_points( if points is None: points = 20 if isinstance(points, int): + if multipliers is None: + not_null_index = list(range(_num_samples(X))) + else: # Only sample points which have a not null multiplier value + test = np.ones((_num_samples(X), 1)).astype(bool) + for f in multipliers: + multi = f(X) + if len(multi.shape) == 1: + multi = multi.reshape(-1, 1) + test = test & (multi != 0) + not_null_index = [i for i in range(_num_samples(X)) if test[i, 0]] + if len(not_null_index) < points: + if _num_samples(X) > points: + raise ValueError("There are not enough samples with a " + "multiplier value different from zero " + f"to sample the {points} points.") + else: + raise ValueError("There is not enough valid samples from " + f"which to sample the {points} points.") points_index = np.random.choice( - _num_samples(X), size=points, replace=False + not_null_index, size=points, replace=False ) points_ = _safe_indexing(X, points_index) elif isinstance(points, tuple): diff --git a/mapie/tests/test_ccp_calibrator.py b/mapie/tests/test_ccp_calibrator.py index 54b0c5bd2..6b4021dad 100644 --- a/mapie/tests/test_ccp_calibrator.py +++ b/mapie/tests/test_ccp_calibrator.py @@ -298,3 +298,18 @@ def test_check_required_arguments(arg1: Any, arg2: Any) -> None: check_required_arguments(arg1, arg2) else: check_required_arguments(arg1, arg2) + + +@pytest.mark.parametrize("calibrator", [ + GaussianCCP(20)*(lambda X: X[:, 0] > 0), + (lambda X: X > 0)*GaussianCCP(20), +]) +def test_gaussian_sampling_with_multiplier(calibrator: CCPCalibrator): + """ + Test that the points sampled (for the gaussian centers), are sampled + within the points which have a not null multiplier value + """ + mapie = SplitCPRegressor(calibrator=calibrator, alpha=0.1) + mapie.fit(np.linspace(-100, 100, 1000).reshape(-1, 1), np.ones(1000)) + + assert all(mapie.calibrator_.points_[i] > 0 for i in range(20)) From 909ec93b9606454a10bf011c9a8903b27d2ec999 Mon Sep 17 00:00:00 2001 From: Damien Bouet Date: Tue, 16 Jul 2024 13:46:24 +0200 Subject: [PATCH 081/165] UPD: gaussian default value set to 20 --- mapie/calibrators/ccp/gaussian.py | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/mapie/calibrators/ccp/gaussian.py b/mapie/calibrators/ccp/gaussian.py index 1a0366c9f..34d46b669 100644 --- a/mapie/calibrators/ccp/gaussian.py +++ b/mapie/calibrators/ccp/gaussian.py @@ -96,7 +96,7 @@ class GaussianCCP(CCPCalibrator): If ``None``, default to ``False``. - By default, ``None`` + By default, ``20`` bias: bool Add a column of ones to the features, for safety reason @@ -193,7 +193,7 @@ class GaussianCCP(CCPCalibrator): def __init__( self, points: Optional[Union[int, ArrayLike, - Tuple[ArrayLike, ArrayLike]]] = None, + Tuple[ArrayLike, ArrayLike]]] = 20, sigma: Optional[Union[float, ArrayLike]] = None, random_sigma: Optional[bool] = None, bias: bool = False, From 60bda1a855eacde9000d8a22802c9b9adb1e4fd5 Mon Sep 17 00:00:00 2001 From: Damien Bouet Date: Tue, 16 Jul 2024 13:47:03 +0200 Subject: [PATCH 082/165] FIX: calib_kwargs bug fix --- mapie/futur/split/base.py | 12 +++++------- 1 file changed, 5 insertions(+), 7 deletions(-) diff --git a/mapie/futur/split/base.py b/mapie/futur/split/base.py index 46e55f9db..f9ce29436 100644 --- a/mapie/futur/split/base.py +++ b/mapie/futur/split/base.py @@ -318,8 +318,7 @@ def fit_calibrator( y: ArrayLike, sample_weight: Optional[ArrayLike] = None, groups: Optional[ArrayLike] = None, - calib_kwargs: Optional[Dict] = None, - **kwargs, + **calib_kwargs, ) -> SplitCP: """ Fit the calibrator with (``X``, ``y`` and ``z``) @@ -370,7 +369,7 @@ def fit_calibrator( train_index, calib_index = (np.array([], dtype=int), np.arange(_num_samples(X))) - z = cast(Optional[ArrayLike], kwargs.get("z", None)) + z = cast(Optional[ArrayLike], calib_kwargs.get("z", None)) ( X_train, y_train, z_train, sample_weight_train, train_index ) = _sample_non_null_weight(X, y, sample_weight, train_index, z) @@ -401,7 +400,7 @@ def fit_calibrator( X_train, y_train, z_train, sample_weight_train, train_index, X_calib, y_calib, z_calib, sample_weight_calib, calib_index, ])), - kwargs + calib_kwargs ) self.calibrator_ = calibrator.fit( @@ -418,8 +417,7 @@ def fit( sample_weight: Optional[ArrayLike] = None, groups: Optional[ArrayLike] = None, fit_kwargs: Optional[Dict] = None, - calib_kwargs: Optional[Dict] = None, - **kwargs + calib_kwargs: Optional[Dict] = None ) -> SplitCP: """ Fit the predictor (if ``cv`` is not ``"prefit"``) @@ -483,7 +481,7 @@ def fit( **(fit_kwargs if fit_kwargs is not None else {})) self.fit_calibrator(X, y, sample_weight, groups, **(calib_kwargs - if calib_kwargs is not None else {}), **kwargs) + if calib_kwargs is not None else {})) return self def predict( From d14fa1b2b365552a492d2389befcf2c16ec75e47 Mon Sep 17 00:00:00 2001 From: Damien Bouet Date: Tue, 16 Jul 2024 15:53:04 +0200 Subject: [PATCH 083/165] MOVE: ccp null feature warning call --- mapie/calibrators/ccp/base.py | 6 ++++-- 1 file changed, 4 insertions(+), 2 deletions(-) diff --git a/mapie/calibrators/ccp/base.py b/mapie/calibrators/ccp/base.py index 773432d8b..6ebbc1d2d 100644 --- a/mapie/calibrators/ccp/base.py +++ b/mapie/calibrators/ccp/base.py @@ -324,6 +324,8 @@ def fit( cs_features = self.transform(X_calib, y_pred_calib, z_calib) + self._check_unconsistent_features(cs_features) + not_nan_index = np.where(~np.isnan(conformity_scores_calib))[0] # Some conf. score values may be nan (ex: with ResidualNormalisedScore) @@ -417,8 +419,6 @@ def transform( norm[abs(norm) == 0] = 1 cs_features /= norm - self._check_unconsistent_features(cs_features) - return cs_features def predict( @@ -453,6 +453,8 @@ def predict( cs_features = self.transform(X, y_pred, z) + self._check_unconsistent_features(cs_features) + y_pred_low = -cs_features.dot(self.beta_low_[0][:, np.newaxis]) y_pred_up = cs_features.dot(self.beta_up_[0][:, np.newaxis]) From 89e31b96361a0ba7c03504c85ad3719d9ce025f5 Mon Sep 17 00:00:00 2001 From: Damien Bouet Date: Tue, 16 Jul 2024 17:52:00 +0200 Subject: [PATCH 084/165] UPD: calib kwargs docstring --- mapie/calibrators/ccp/base.py | 2 +- mapie/futur/split/base.py | 18 +++++++++++------- 2 files changed, 12 insertions(+), 8 deletions(-) diff --git a/mapie/calibrators/ccp/base.py b/mapie/calibrators/ccp/base.py index 6ebbc1d2d..acc48cdca 100644 --- a/mapie/calibrators/ccp/base.py +++ b/mapie/calibrators/ccp/base.py @@ -339,7 +339,7 @@ def fit( self.reg_param, ), **optim_kwargs, - )) + )) if not self.sym: optimal_beta_low = cast(OptimizeResult, minimize( diff --git a/mapie/futur/split/base.py b/mapie/futur/split/base.py index f9ce29436..cdb9ac5bd 100644 --- a/mapie/futur/split/base.py +++ b/mapie/futur/split/base.py @@ -256,7 +256,7 @@ def fit_predictor( y: ArrayLike, sample_weight: Optional[ArrayLike] = None, groups: Optional[ArrayLike] = None, - **fit_params, + **fit_kwargs, ) -> SplitCP: """ Fit the predictor if ``cv`` argument is not ``"prefit"`` @@ -285,7 +285,7 @@ def fit_predictor( By default ``None``. - **fit_params: dict + **fit_kwargs: dict Additional fit parameters for the predictor. Returns @@ -306,7 +306,7 @@ def fit_predictor( self.predictor_ = fit_estimator( predictor, X_train, y_train, - sample_weight=sample_weight_train, **fit_params + sample_weight=sample_weight_train, **fit_kwargs ) else: self.predictor_ = predictor @@ -344,8 +344,10 @@ def fit_calibrator( By default ``None``. - calib_kwargs: Dict - Other argument, used in sklear.optimize.minimize + calib_kwargs: dict + Additional fit parameters for the calibrator, used as kwargs. + See the calibrator ``.fit`` method documentation to have more + information about the available arguments. Returns ------- @@ -466,11 +468,13 @@ def fit( By default ``None``. - fit_params: dict + fit_kwargs: dict Additional fit parameters for the predictor, used as kwargs. - calib_params: dict + calib_kwargs: dict Additional fit parameters for the calibrator, used as kwargs. + See the calibrator ``.fit`` method documentation to have more + information about the available arguments. Returns ------- From 43dd4435fab5a4e74f17edb3c8d0daf7a3de271c Mon Sep 17 00:00:00 2001 From: Damien Bouet Date: Tue, 16 Jul 2024 18:21:56 +0200 Subject: [PATCH 085/165] UPD: multiply default sigma value by dnum of dimensions --- mapie/calibrators/ccp/utils.py | 39 ++++++++++++---------------------- 1 file changed, 13 insertions(+), 26 deletions(-) diff --git a/mapie/calibrators/ccp/utils.py b/mapie/calibrators/ccp/utils.py index 88e2eaaef..a7bf52eaa 100644 --- a/mapie/calibrators/ccp/utils.py +++ b/mapie/calibrators/ccp/utils.py @@ -256,24 +256,7 @@ def compute_sigma( Samples points : Optional[Union[int, ArrayLike, Tuple[ArrayLike, ArrayLike]]] - If Array: List of data points, used as centers to compute - gaussian distances. Should be an array of shape (n_points, n_in). - - If integer, the points will be sampled randomly from the ``X`` - set, where ``X`` is the data give to the - ``GaussianCCP.fit`` method, which usually correspond to - the ``X`` argument of the ``MapieCCPRegressor.calibrate`` method - (unless you call ``GaussianCCP.fit(X)`` yourself). - - You can pass a Tuple[ArrayLike, ArrayLike], to have a different - ``sigma`` value for each point. The two elements of the - tuple should be: - - Data points: 2D array of shape (n_points, n_in) - - Sigma values 2D array of shape (n_points, n_in) or (n_points, 1) - In this case, the ``sigma``, ``random_sigma`` and ``X`` argument are - ignored. - - If ``None``, default to ``20``. + Input ``points`` argument of ``GaussianCCP`` calibrator. points_ : NDArray Fitted 2D arrray of points @@ -281,7 +264,7 @@ def compute_sigma( sigma : Optional[Union[float, ArrayLike]] Standard deviation value used to compute the guassian distances, with the formula: - np.exp(-0.5 * ((X - point) / ``sigma``) ** 2) + ``np.exp(-0.5 * ((X - point) / sigma) ** 2)`` - It can be an integer - It can be a 1D array of float with as many values as dimensions in the dataset @@ -291,16 +274,18 @@ def compute_sigma( argument. If ``None``, ``sigma`` will default to a float equal to - ``np.std(X)/(n**0.5)``, where ``X`` is the data give to the - ``GaussianCCP.fit`` method, which correspond to the ``X`` - argument of the ``MapieCCPRegressor.calibrate`` method - (unless you call ``GaussianCCP.fit(X)`` yourself). + ``np.std(X)/(n**0.5)*d`` + - where ``X`` is the calibration data, + passed to ``GaussianCCP.fit`` method, through + ``SplitCPRegressor.fit/fit_calibrate`` method. + - ``n`` is the number of points (``len(points)``). + - ``d`` is the number of dimensions of ``X``. random_sigma : bool Whether to apply to the standard deviation values, a random multiplier, different for each point, equal to: - 2**np.random.normal(0, 1*2**(-2+np.log10(len(``points``)))) + ``2**np.random.normal(0, 1*2**(-2+np.log10(len(points))))`` Exemple: - For 10 points, the sigma value will, in general, @@ -320,8 +305,10 @@ def compute_sigma( sigmas_ = sigmas_.reshape(-1, 1) # If sigma is not defined elif sigma is None: - points_std = np.std( - np.array(X), axis=0)/(_num_samples(points_)**0.5) + points_std = np.std(np.array(X), axis=0)\ + / (_num_samples(points_)**0.5)\ + * _num_samples(_safe_indexing(X, 0)) + sigmas_ = np.ones((_num_samples(points_), 1))*points_std # If sigma is defined elif isinstance(points, int): From 0ab0d77254c4bbf1bbb019244f0ceba75c95b5b6 Mon Sep 17 00:00:00 2001 From: Damien Bouet Date: Sat, 20 Jul 2024 11:37:14 +0200 Subject: [PATCH 086/165] UPD: docstrings and some renaming --- mapie/calibrators/base.py | 11 ++- mapie/calibrators/ccp/base.py | 103 ++++++++++++++--------- mapie/calibrators/ccp/custom.py | 57 +++++++------ mapie/calibrators/ccp/gaussian.py | 122 ++++++++++++++-------------- mapie/calibrators/ccp/polynomial.py | 84 +++++++++---------- mapie/calibrators/ccp/utils.py | 52 ++++++------ mapie/calibrators/standard.py | 2 +- mapie/futur/split/base.py | 98 ++++++++++------------ mapie/futur/split/regression.py | 8 +- 9 files changed, 283 insertions(+), 254 deletions(-) diff --git a/mapie/calibrators/base.py b/mapie/calibrators/base.py index 53cf9f6a5..3e535e09f 100644 --- a/mapie/calibrators/base.py +++ b/mapie/calibrators/base.py @@ -10,7 +10,8 @@ class BaseCalibrator(BaseEstimator, metaclass=ABCMeta): """ - Base abstract class for the calibrators. + Base abstract class for the calibrators used in ``SplitCPRegressor`` + or ``SplitCPClassifier`` to estimate the conformity scores. The ``BaseCalibrator`` subclasses should have at least two methods: @@ -43,9 +44,10 @@ def fit( quantiles. The method can take as arguments any of : ``X, y, sample_weight, groups, y_pred_calib, conformity_scores_calib, X_train, y_train, z_train, sample_weight_train, train_index, - X_calib, y_calib, z_calib, sample_weight_calib, calib_index`` + X_calib, y_calib, z_calib, sample_weight_calib, calib_index``, + any attributes of the ``SplitCP`` instance, or any other argument, which the user will have to pass as - ``**kwargs``. + ``**calib_kwargs``. Parameters ---------- @@ -69,7 +71,8 @@ def predict( ) -> NDArray: """ Predict the conformity score quantiles. - The method can take as arguments any of : ``X, y_pred`` + The method can take as arguments any of : ``X, y_pred``, + any attributes of the ``SplitCP`` instance, or any other argument, which the user will have to pass as ``**kwargs``. diff --git a/mapie/calibrators/ccp/base.py b/mapie/calibrators/ccp/base.py index acc48cdca..6d8379502 100644 --- a/mapie/calibrators/ccp/base.py +++ b/mapie/calibrators/ccp/base.py @@ -21,8 +21,8 @@ class CCPCalibrator(BaseCalibrator, metaclass=ABCMeta): """ - Base abstract class for the calibrators used for the ``SplitCP`` method - to estimate the conformity scores. + Base abstract class for the calibrators used in ``SplitCPRegressor`` + or ``SplitCPClassifier`` to estimate the conformity scores. It corresponds to the adaptative conformal prediction method proposed by Gibbs et al. (2023) in "Conformal Prediction With Conditional Guarantees". @@ -51,10 +51,9 @@ class CCPCalibrator(BaseCalibrator, metaclass=ABCMeta): By default ``None``. bias: bool - Add a column of ones to the features, for safety reason - (to garanty the marginal coverage, no matter how the other features - the ``CCPCalibrator``object were built). - If the ``CCPCalibrator``object definition covers all the dataset + Add a column of ones to the features, + (to make sure that the marginal coverage is guaranteed). + If the ``CCPCalibrator`` object definition covers all the dataset (meaning, for all calibration and test samples, the resulting ``calibrator.predict(X, y_pred, z)`` is never all zeros), this column of ones is not necessary to obtain marginal coverage. @@ -79,18 +78,18 @@ class CCPCalibrator(BaseCalibrator, metaclass=ABCMeta): init_value: Optional[ArrayLike] Optimization initialisation value. - If ``None``, is sampled from a normal distribution. + If ``None``, the initial vector is sampled from a normal distribution. By default ``None``. reg_param: Optional[float] - Constant that multiplies the L2 term, controlling regularization - strength. ``alpha`` must be a non-negative + Float to monitor the ridge regularization + strength. ``reg_param`` must be a non-negative float i.e. in ``[0, inf)``. Note: A too strong regularization may compromise the guaranteed marginal coverage. If ``calibrator.normalize=True``, it is usually - recommanded to use ``reg_param < 0.01``. + recommanded to use ``reg_param < 1e-3``. If ``None``, no regularization is used. @@ -98,15 +97,19 @@ class CCPCalibrator(BaseCalibrator, metaclass=ABCMeta): Attributes ---------- - fit_attributes: Optional[List[str]] + transform_attributes: Optional[List[str]] Name of attributes set during the ``fit`` method, and required to call ``transform``. + fit_attributes: Optional[List[str]] + Name of attributes set during the ``fit`` method, and required to call + ``predict``. + n_in: int Number of features of ``X`` n_out: int - Number of features of ``calibrator.predict(X, y_pred, z)`` + Number of features of ``calibrator.transform(X, y_pred, z)`` beta_up_: Tuple[NDArray, bool] Calibration fitting results, used to build the upper bound of the @@ -116,15 +119,15 @@ class CCPCalibrator(BaseCalibrator, metaclass=ABCMeta): (cover is not guaranteed if the optimisation has failed) beta_low_: Tuple[NDArray, bool] - Same as beta_up, but for the lower bound + Same as ``beta_up_``, but for the lower bound References ---------- Isaac Gibbs and John J. Cherian and Emmanuel J. Candès. "Conformal Prediction With Conditional Guarantees", 2023 """ - - fit_attributes: List[str] = ["functions_"] + transform_attributes: List[str] = ["functions_"] + fit_attributes: List[str] = ["beta_up_", "beta_low_"] def __init__( self, @@ -143,15 +146,16 @@ def __init__( self._multipliers: Optional[List[Callable]] = None @abstractmethod - def _check_fit_parameters( + def _check_transform_parameters( self, X: ArrayLike, y_pred: Optional[ArrayLike] = None, z: Optional[ArrayLike] = None, ) -> None: """ - Check fit parameters. In particular, check that the ``functions`` - attribute is valid and set the ``functions_``. + Check the parameters required to call ``transform``. + In particular, check that the ``functions`` + attribute is valid and set the ``functions_`` argument. Parameters ---------- @@ -174,7 +178,7 @@ def _check_init_value( ) -> ArrayLike: """ Set the ``init_value_`` attribute depending on ``init_value`` argument. - If ``init_value=None``, ``init_value_`` is set to + If ``init_value = None``, ``init_value_`` is set to ``np.random.normal(0, 1, n_out)``. Parameters @@ -200,7 +204,8 @@ def _check_optimization_success( self, *optimization_results: OptimizeResult ) -> None: """ - _summary_ + Check that all the ``optimization_results`` have successfully + converged. Parameters ---------- @@ -210,23 +215,23 @@ def _check_optimization_success( for res in optimization_results: if not res.success: warnings.warn( - "WARNING: The optimization process for the upper bound " + "WARNING: The optimization process " f"failed with the following error: \n" f"{res.message}\n" "The returned prediction interval may be inaccurate." ) - def _fit_params( + def _transform_params( self, X: ArrayLike, y_pred: Optional[ArrayLike] = None, z: Optional[ArrayLike] = None, ) -> CCPCalibrator: """ - Fit function : Set all the necessary attributes to be able to transform + Set all the necessary attributes to be able to transform ``(X, y_pred, z)`` into the expected array of features. - It should set all the attributes of ``fit_attributes`` + It should set all the attributes of ``transform_attributes`` (i.e. ``functions_``). It should also set, once fitted, ``n_in``, ``n_out`` and ``init_value_``. @@ -246,10 +251,11 @@ def _fit_params( By default ``None`` """ # Fit the calibrator - self._check_fit_parameters(X, y_pred, z) + self._check_transform_parameters(X, y_pred, z) # Do some checks check_multiplier(self._multipliers, X, y_pred, z) result = self.transform(X, y_pred, z) + self.n_in = len(_safe_indexing(X, 0)) self.n_out = len(_safe_indexing(result, 0)) self.init_value_ = self._check_init_value(self.init_value, self.n_out) @@ -265,12 +271,8 @@ def fit( **optim_kwargs, ) -> CCPCalibrator: """ - Fit function : Set all the necessary attributes to be able to transform - ``(X, y_pred, z)`` into the expected transformation. - - It should set all the attributes of ``fit_attributes``. - It should also set, once fitted, ``n_in``, ``n_out`` and - ``init_value``. + Fit the calibrator. It should set all the ``transform_attributes`` + and ``fit_attributes``. Parameters ---------- @@ -320,7 +322,7 @@ def fit( else: np.random.seed(self.random_state) - self._fit_params(X_calib, y_pred_calib, z_calib) + self._transform_params(X_calib, y_pred_calib, z_calib) cs_features = self.transform(X_calib, y_pred_calib, z_calib) @@ -405,7 +407,7 @@ def transform( NDArray features """ - check_is_fitted(self, self.fit_attributes) + check_is_fitted(self, self.transform_attributes) params_mapping = {"X": X, "y_pred": y_pred, "z": z} cs_features = concatenate_functions(self.functions_, params_mapping, @@ -413,9 +415,9 @@ def transform( if self.normalized: norm = cast(NDArray, np.linalg.norm(cs_features, axis=1)).reshape(-1, 1) + # the rows full of zeros are replace by rows of ones cs_features[(abs(norm) == 0)[:, 0], :] = np.ones( cs_features.shape[1]) - norm[abs(norm) == 0] = 1 cs_features /= norm @@ -429,9 +431,10 @@ def predict( **kwargs, ) -> NDArray: """ - Transform ``(X, y_pred, z)`` into an array of features of shape - ``(n_samples, n_out)`` and compute the dot product with the - optimized beta values, to get the conformity scores estimations. + Predict the conformity scores estimation by: + - Transforming ``(X, y_pred, z)`` into an array of features of shape + ``(n_samples, n_out)`` + - computing the dot product with the optimized beta values. Parameters ---------- @@ -450,6 +453,8 @@ def predict( Transformation """ check_required_arguments(y_pred) + + check_is_fitted(self, self.transform_attributes + self.fit_attributes) cs_features = self.transform(X, y_pred, z) @@ -466,13 +471,35 @@ def __call__( y_pred: Optional[ArrayLike] = None, z: Optional[ArrayLike] = None, ) -> NDArray: + """ + Call the ``transform`` method. + + Parameters + ---------- + X : ArrayLike + Observed samples + + y_pred : ArrayLike + Target prediction + + z : ArrayLike + Exogenous variable + + Returns + ------- + NDArray + features + """ return self.transform(X, y_pred, z) def __mul__(self, funct: Optional[Callable]) -> CCPCalibrator: """ Multiply a ``CCPCalibrator`` with another function. This other function should return an array of shape (n_samples, 1) - or (n_samples, ) + or (n_samples, ). + + The output of the ``transform`` method of the resulting + ``CCPCalibrator`` instance will be multiplied by the ``funct`` values. Parameters ---------- diff --git a/mapie/calibrators/ccp/custom.py b/mapie/calibrators/ccp/custom.py index 90434e6c2..e8382162e 100644 --- a/mapie/calibrators/ccp/custom.py +++ b/mapie/calibrators/ccp/custom.py @@ -13,10 +13,11 @@ class CustomCCP(CCPCalibrator): """ - Calibrator used for the ``SplitCP`` method to estimate the - conformity scores. It corresponds to the adaptative conformal - prediction method proposed by Gibbs et al. (2023) - in "Conformal Prediction With Conditional Guarantees". + Calibrator used for the in ``SplitCPRegressor`` or ``SplitCPClassifier`` + to estimate the conformity scores. + + It corresponds to the adaptative conformal prediction method proposed by + Gibbs et al. (2023) in "Conformal Prediction With Conditional Guarantees". The goal is to learn the quantile of the conformity scores distribution, to built the prediction interval, not with a constant ``q`` (as it is the @@ -49,10 +50,9 @@ class CustomCCP(CCPCalibrator): By default ``None``. bias: bool - Add a column of ones to the features, for safety reason - (to garantee the marginal coverage, no matter how the other features - the ``CCPCalibrator``object were built). - If the ``CCPCalibrator``object definition covers all the dataset + Add a column of ones to the features, + (to make sure that the marginal coverage is guaranteed). + If the ``CCPCalibrator`` object definition covers all the dataset (meaning, for all calibration and test samples, the resulting ``calibrator.predict(X, y_pred, z)`` is never all zeros), this column of ones is not necessary to obtain marginal coverage. @@ -77,18 +77,18 @@ class CustomCCP(CCPCalibrator): init_value: Optional[ArrayLike] Optimization initialisation value. - If ``None``, is sampled from a normal distribution. + If ``None``, the initial vector is sampled from a normal distribution. By default ``None``. reg_param: Optional[float] - Constant that multiplies the L2 term, controlling regularization - strength. ``alpha`` must be a non-negative + Float to monitor the ridge regularization + strength. ``reg_param`` must be a non-negative float i.e. in ``[0, inf)``. Note: A too strong regularization may compromise the guaranteed marginal coverage. If ``calibrator.normalize=True``, it is usually - recommanded to use ``reg_param < 0.01``. + recommanded to use ``reg_param < 1e-3``. If ``None``, no regularization is used. @@ -96,25 +96,29 @@ class CustomCCP(CCPCalibrator): Attributes ---------- - fit_attributes: Optional[List[str]] + transform_attributes: Optional[List[str]] Name of attributes set during the ``fit`` method, and required to call ``transform``. + fit_attributes: Optional[List[str]] + Name of attributes set during the ``fit`` method, and required to call + ``predict``. + n_in: int Number of features of ``X`` n_out: int - Number of features of ``calibrator.predict(X, y_pred, z)`` + Number of features of ``calibrator.transform(X, y_pred, z)`` beta_up_: Tuple[NDArray, bool] Calibration fitting results, used to build the upper bound of the prediction intervals. beta_up_[0]: Array of shape (calibrator.n_out, ) beta_up_[1]: Whether the optimization process converged or not - (the coverage is not garantied if the optimization fail) + (cover is not guaranteed if the optimisation has failed) beta_low_: Tuple[NDArray, bool] - Same as beta_up, but for the lower bound + Same as ``beta_up_``, but for the lower bound Examples -------- @@ -137,7 +141,7 @@ class CustomCCP(CCPCalibrator): ... ).fit(X_train, y_train) >>> y_pred, y_pi = mapie.predict(X_train) """ - fit_attributes: List[str] = ["is_fitted_"] + transform_attributes: List[str] = ["functions_", "is_transform_fitted_"] def __init__( self, @@ -149,15 +153,16 @@ def __init__( ) -> None: super().__init__(functions, bias, normalized, init_value, reg_param) - def _check_fit_parameters( + def _check_transform_parameters( self, X: ArrayLike, y_pred: Optional[ArrayLike] = None, z: Optional[ArrayLike] = None, ) -> None: """ - Check fit parameters. In particular, check that the ``functions`` - attribute is valid and set the ``functions_``. + Check the parameters required to call ``transform``. + In particular, check that the ``functions`` + attribute is valid and set the ``functions_`` argument. Parameters ---------- @@ -177,17 +182,17 @@ def _check_fit_parameters( self.functions_ = format_functions(self.functions, self.bias) compile_functions_warnings_errors(self.functions_) - def _fit_params( + def _transform_params( self, X: ArrayLike, y_pred: Optional[ArrayLike] = None, z: Optional[ArrayLike] = None, ) -> CustomCCP: """ - Fit function : Set all the necessary attributes to be able to transform + Set all the necessary attributes to be able to transform ``(X, y_pred, z)`` into the expected array of features. - It should set all the attributes of ``fit_attributes`` + It should set all the attributes of ``transform_attributes`` (i.e. ``functions_``). It should also set, once fitted, ``n_in``, ``n_out`` and ``init_value_``. @@ -207,13 +212,13 @@ def _fit_params( By default ``None`` """ check_multiplier(self._multipliers, X, y_pred, z) - self._check_fit_parameters(X, y_pred, z) + self._check_transform_parameters(X, y_pred, z) for phi in self.functions_: if isinstance(phi, CCPCalibrator): - phi._fit_params(X, y_pred, z) + phi._transform_params(X, y_pred, z) check_multiplier(phi._multipliers, X, y_pred, z) - self.is_fitted_ = True + self.is_transform_fitted_ = True result = self.transform(X, y_pred, z) self.n_in = len(_safe_indexing(X, 0)) diff --git a/mapie/calibrators/ccp/gaussian.py b/mapie/calibrators/ccp/gaussian.py index 34d46b669..0d78ed906 100644 --- a/mapie/calibrators/ccp/gaussian.py +++ b/mapie/calibrators/ccp/gaussian.py @@ -14,10 +14,11 @@ class GaussianCCP(CCPCalibrator): """ - Calibrator used for the ``SplitCP`` method to estimate the - conformity scores. It corresponds to the adaptative conformal - prediction method proposed by Gibbs et al. (2023) - in "Conformal Prediction With Conditional Guarantees". + Calibrator used for the in ``SplitCPRegressor`` or ``SplitCPClassifier`` + to estimate the conformity scores. + + It corresponds to the adaptative conformal prediction method proposed by + Gibbs et al. (2023) in "Conformal Prediction With Conditional Guarantees". The goal is to learn the quantile of the conformity scores distribution, to built the prediction interval, not with a constant ``q`` (as it is the @@ -25,8 +26,8 @@ class GaussianCCP(CCPCalibrator): as it depends on ``X``. This class builds a ``CCPCalibrator`` object with gaussian kernel features, - by sampling some points (or set by the user), and computing the gaussian - distance between ``X`` and the point. + which computes the gaussian distance between ``X`` and some points, + randomly sampled in the dataset or set by the user. See the examples and the documentation to build a ``CCPCalibrator`` adaptated to your dataset and constraints. @@ -38,10 +39,10 @@ class GaussianCCP(CCPCalibrator): gaussian distances. Should be an array of shape (n_points, n_in). If integer, the points will be sampled randomly from the ``X`` - set, where ``X`` is the data give to the + dataset, where ``X`` is the data give to the ``GaussianCCP.fit`` method, which usually correspond to - the ``X`` argument of the ``MapieCCPRegressor.calibrate`` method - (unless you call ``GaussianCCP.fit(X)`` yourself). + the ``X`` argument of the ``fit`` or ``fit_calibrator`` method + of a ``SplitCP`` instance. You can pass a Tuple[ArrayLike, ArrayLike], to have a different ``sigma`` value for each point. The two elements of the @@ -51,9 +52,7 @@ class GaussianCCP(CCPCalibrator): In this case, the ``sigma``, ``random_sigma`` and ``X`` argument are ignored. - If ``None``, default to ``20``. - - By default, ``None`` + By default, ``20`` sigma : Optional[Union[float, ArrayLike]] Standard deviation value used to compute the guassian distances, @@ -68,10 +67,12 @@ class GaussianCCP(CCPCalibrator): argument. If ``None``, ``sigma`` will default to a float equal to - ``np.std(X)/(n**0.5)``, where ``X`` is the data give to the - ``GaussianCCP.fit`` method, which correspond to the ``X`` - argument of the ``MapieCCPRegressor.calibrate`` method - (unless you call ``GaussianCCP.fit(X)`` yourself). + ``np.std(X)/(n**0.5)*d`` + - where ``X`` is the calibration data, passed to ``GaussianCCP.fit`` + method, which usually correspond to the ``X`` argument of the ``fit`` + or ``fit_calibrator`` method of a ``SplitCP`` instance. + - ``n`` is the number of points used as gaussian centers. + - ``d`` is the number of dimensions of ``X`` (i.e. ``n_in``). By default, ``None`` @@ -79,39 +80,38 @@ class GaussianCCP(CCPCalibrator): Whether to apply to the standard deviation values, a random multiplier, different for each point, equal to: - 2**np.random.normal(0, 1*2**(-2+np.log10(len(``points``)))) + ``2**np.random.normal(0, 1*2**(-2+np.log10(len(points))))`` Exemple: - - For 10 points, the sigma value will, in general, - be multiplied by a value between 0.7 and 1.4 - - For 100 points, the sigma value will, in general, - be multiplied by a value between 0.5 and 2 + - For 10 points, the sigma value will be, in general, + multiplied by a value between 0.7 and 1.4 + - For 100 points, the sigma value will be, in general, + multiplied by a value between 0.5 and 2 Note: This is a default suggestion of randomization, - which allow to have in the same time wide and narrow gaussians - (with a bigger range of multipliers for huge amount of points). + which allow to have in the same time wide and narrow gaussians. You can use fully custom sigma values, buy passing to the ``points`` argument, a different sigma value for each point. - If ``None``, default to ``False``. - - By default, ``20`` + By default, ``False`` bias: bool - Add a column of ones to the features, for safety reason - (to garanty the marginal coverage, no matter how the other features - the ``CCPCalibrator``object were built). - If the ``CCPCalibrator``object definition covers all the dataset - (meaning, for all calibration and test samples, ``phi(X, y_pred, z)`` - is never all zeros), this column of ones is not necessary - to obtain marginal coverage. + Add a column of ones to the features, + (to make sure that the marginal coverage is guaranteed). + If the ``CCPCalibrator`` object definition covers all the dataset + (meaning, for all calibration and test samples, the resulting + ``calibrator.predict(X, y_pred, z)`` is never all zeros), + this column of ones is not necessary to obtain marginal coverage. In this case, you can set this argument to ``False``. + If you are not sure, use ``bias=True`` to garantee the marginal + coverage. + Note: In this case, with ``GaussianCCP``, if ``normalized`` is ``True`` (it is, by default), the ``phi(X, y_pred, z)`` will never be all zeros, so this ``bias`` is not required - sto have coverage guarantee. + to have a guaranteed coverage. By default ``False``. @@ -125,22 +125,28 @@ class GaussianCCP(CCPCalibrator): On the opposite, it is not recommended if the conformity scores can vary a lot. - By default ``False`` + Note: To make sure that for too small ``sigma`` values, + or for out-of-distribution samples, the interval width doesn't crash + to zero, we set by default ``normalized = True``. By doing so, even + the samples which were in any gaussian tild, will still be linked to + the closest one. + + By default ``True`` init_value: Optional[ArrayLike] Optimization initialisation value. - If ``None``, is sampled from a normal distribution. + If ``None``, the initial vector is sampled from a normal distribution. By default ``None``. reg_param: Optional[float] - Constant that multiplies the L2 term, controlling regularization - strength. ``alpha`` must be a non-negative + Float to monitor the ridge regularization + strength. ``reg_param`` must be a non-negative float i.e. in ``[0, inf)``. Note: A too strong regularization may compromise the guaranteed marginal coverage. If ``calibrator.normalize=True``, it is usually - recommanded to use ``reg_param < 0.01``. + recommanded to use ``reg_param < 1e-3``. If ``None``, no regularization is used. @@ -148,15 +154,19 @@ class GaussianCCP(CCPCalibrator): Attributes ---------- - fit_attributes: Optional[List[str]] + transform_attributes: Optional[List[str]] Name of attributes set during the ``fit`` method, and required to call ``transform``. + fit_attributes: Optional[List[str]] + Name of attributes set during the ``fit`` method, and required to call + ``predict``. + n_in: int Number of features of ``X`` n_out: int - Number of features of phi(``X``, ``y_pred``, ``z``) + Number of features of ``calibrator.transform(X, y_pred, z)`` points_: NDArray Array of shape (n_points, n_in), corresponding to the points used to @@ -188,14 +198,14 @@ class GaussianCCP(CCPCalibrator): ... ).fit(X_train, y_train) >>> y_pred, y_pi = mapie.predict(X_train) """ - fit_attributes: List[str] = ["points_", "sigmas_", "functions_"] + transform_attributes: List[str] = ["points_", "sigmas_", "functions_"] def __init__( self, points: Optional[Union[int, ArrayLike, Tuple[ArrayLike, ArrayLike]]] = 20, sigma: Optional[Union[float, ArrayLike]] = None, - random_sigma: Optional[bool] = None, + random_sigma: bool = False, bias: bool = False, normalized: bool = True, init_value: Optional[ArrayLike] = None, @@ -211,20 +221,6 @@ def __init__( self._multipliers: Optional[List[Callable]] = None - def _check_random_sigma(self) -> bool: - """ - Check ``random_sigma`` - - Returns - ------- - bool - checked ``random_sigma`` - """ - if self.random_sigma is None: - return False - else: - return self.random_sigma - def _check_points_sigma( self, points: ArrayLike, sigmas: ArrayLike ) -> None: @@ -242,7 +238,8 @@ def _check_points_sigma( Raises ------ ValueError - If ``sigmas``is not of shape (n_points, 1) or (n_points, n_in) + - If ``points`` and ``sigmas`` don't have the same number of rows + - If ``sigmas``is not of shape (n_points, 1) or (n_points, n_in) """ if _num_samples(points) != _num_samples(sigmas): raise ValueError("There should have as many points as " @@ -256,15 +253,18 @@ def _check_points_sigma( f"Got sigma of shape: ({_num_samples(sigmas)}, " f"{len(_safe_indexing(points, 0))}).") - def _check_fit_parameters( + def _check_transform_parameters( self, X: ArrayLike, y_pred: Optional[ArrayLike] = None, z: Optional[ArrayLike] = None, ) -> None: """ - Check fit parameters. In particular, check that the ``functions`` - attribute is valid and set the ``functions_``. + Check the parameters required to call ``transform``. + In particular, set the ``points_`` and ``sigmas_`` attributes, based + on the ``points``, ``sigma`` and ``random_sigma`` arguments. + Then, the ``functions_`` attributes is set, with functions to compute + all the gaussian distances. Parameters ---------- diff --git a/mapie/calibrators/ccp/polynomial.py b/mapie/calibrators/ccp/polynomial.py index df3d88d38..63863808f 100644 --- a/mapie/calibrators/ccp/polynomial.py +++ b/mapie/calibrators/ccp/polynomial.py @@ -10,10 +10,11 @@ class PolynomialCCP(CCPCalibrator): """ - Calibrator used for the ``SplitCP`` method to estimate - the conformity scores. It corresponds to the adaptative conformal - prediction method proposed by Gibbs et al. (2023) - in "Conformal Prediction With Conditional Guarantees". + Calibrator used for the in ``SplitCPRegressor`` or ``SplitCPClassifier`` + to estimate the conformity scores. + + It corresponds to the adaptative conformal prediction method proposed by + Gibbs et al. (2023) in "Conformal Prediction With Conditional Guarantees". The goal is to learn the quantile of the conformity scores distribution, to built the prediction interval, not with a constant ``q`` (as it is the @@ -33,18 +34,19 @@ class PolynomialCCP(CCPCalibrator): polynomial features transformer. It will create the features ``1``, ``variable``, ``variable``**2, ..., ``variable``**``degree``. - If ``degree``is an iterable of integers, it will create the features + If ``degree`` is a list of integers, it will create the features ``variable``**d, for all integer d in ``degree`` ``variable`` may be ``X``, ``y_pred`` or ``z``, depending on the - ``variable``argument value. + ``variable`` argument value. If ``None``, it will default to ``degree=1``. Note: if ``0`` is in the considered exponents (if ``degree`` is an integer, or if ``0 in degree`` if it is a list), it is not ``variable**0`` of shape ``(n_samples, n_in)`` which is added, but only - one feature of ones, of shape ``(n_samples, 1)``. + one feature of ones, of shape ``(n_samples, 1)``. It is actually + equivalent to ``bias=True``. By default ``None``. @@ -55,27 +57,27 @@ class PolynomialCCP(CCPCalibrator): By default ``"X"`` bias: bool - Add a column of ones to the features, for safety reason - (to garanty the marginal coverage, no matter how the other features - the ``CCPCalibrator``object were built). - If the ``CCPCalibrator``object definition covers all the dataset - (meaning, for all calibration and test samples, ``phi(X, y_pred, z)`` - is never all zeros), this column of ones is not necessary - to obtain marginal coverage. + Add a column of ones to the features, + (to make sure that the marginal coverage is guaranteed). + If the ``CCPCalibrator`` object definition covers all the dataset + (meaning, for all calibration and test samples, the resulting + ``calibrator.predict(X, y_pred, z)`` is never all zeros), + this column of ones is not necessary to obtain marginal coverage. In this case, you can set this argument to ``False``. - Note: Even if it is not always necessary to guarantee the marginal - coverage, it can't degrade the prediction intervals. + If you are not sure, use ``bias=True`` to garantee the marginal + coverage. By default ``False``. normalized: bool - Whether or not to normalized ``phi(X, y_pred, z)``. Normalization + Whether or not to normalized the resulting + ``calibrator.predict(X, y_pred, z)``. Normalization will result in a bounded interval prediction width, avoiding the width to explode to +inf or crash to zero. It is particularly intersting when you know that the conformity scores are bounded. It also prevent the - interval to have an interval of zero width for out-of-distribution or - new samples. On the opposite, it is not recommended if the conformity + interval to have a width of zero for out-of-distribution samples. + On the opposite, it is not recommended if the conformity scores can vary a lot. By default ``False`` @@ -87,13 +89,13 @@ class PolynomialCCP(CCPCalibrator): By default ``None``. reg_param: Optional[float] - Constant that multiplies the L2 term, controlling regularization - strength. ``alpha`` must be a non-negative + Float to monitor the ridge regularization + strength. ``reg_param`` must be a non-negative float i.e. in ``[0, inf)``. Note: A too strong regularization may compromise the guaranteed marginal coverage. If ``calibrator.normalize=True``, it is usually - recommanded to use ``reg_param < 0.01``. + recommanded to use ``reg_param < 1e-3``. If ``None``, no regularization is used. @@ -101,15 +103,19 @@ class PolynomialCCP(CCPCalibrator): Attributes ---------- - fit_attributes: Optional[List[str]] + transform_attributes: Optional[List[str]] Name of attributes set during the ``fit`` method, and required to call ``transform``. + fit_attributes: Optional[List[str]] + Name of attributes set during the ``fit`` method, and required to call + ``predict``. + n_in: int Number of features of ``X`` n_out: int - Number of features of phi(``X``, ``y_pred``, ``z``) + Number of features of ``calibrator.transform(X, y_pred, z)`` exponents: List[int] List of exponents of the built polynomial features @@ -137,8 +143,6 @@ class PolynomialCCP(CCPCalibrator): ... ).fit(X_train, y_train) >>> y_pred, y_pi = mapie.predict(X_train) """ - fit_attributes: List[str] = [] - def __init__( self, degree: Optional[Union[int, List[int]]] = None, @@ -182,17 +186,16 @@ def _convert_degree( By default ``None``. bias: bool - Add a column of ones to the features, for safety reason - (to garanty the marginal coverage, no matter how the other features - the ``CCPCalibrator``object were built). - If the ``CCPCalibrator``object definition covers all the dataset - (meaning, for all calibration and test samples, - ``phi(X, y_pred, z)`` is never all zeros), this column of ones - is not necessary to obtain marginal coverage. + Add a column of ones to the features, + (to make sure that the marginal coverage is guaranteed). + If the ``CCPCalibrator`` object definition covers all the dataset + (meaning, for all calibration and test samples, the resulting + ``calibrator.predict(X, y_pred, z)`` is never all zeros), + this column of ones is not necessary to obtain marginal coverage. In this case, you can set this argument to ``False``. - Note: Even if it is not always necessary to guarantee the marginal - coverage, it can't degrade the prediction intervals. + If you are not sure, use ``bias=True`` to garantee the marginal + coverage. Returns ------- @@ -235,19 +238,16 @@ def _create_functions( else: raise ValueError("variable must be 'X', 'y_pred' or 'z'") - def _check_fit_parameters( + def _check_transform_parameters( self, X: ArrayLike, y_pred: Optional[ArrayLike] = None, z: Optional[ArrayLike] = None, ) -> None: """ - Fit function : Set all the necessary attributes to be able to - transform ``(X, y_pred, z)`` into the expected features. - - It should set all the attributes of ``fit_attributes``. - It should also set, once fitted, ``n_in``, ``n_out`` and - ``init_value``. + Check the parameters required to call ``transform``. + In particular, check that the ``functions`` + attribute is valid and set the ``functions_`` argument. Parameters ---------- diff --git a/mapie/calibrators/ccp/utils.py b/mapie/calibrators/ccp/utils.py index a7bf52eaa..5a6db1cab 100644 --- a/mapie/calibrators/ccp/utils.py +++ b/mapie/calibrators/ccp/utils.py @@ -36,17 +36,7 @@ def format_functions( If ``None``, return an empty list. bias: bool - Add a column of ones to the features, for safety reason - (to garanty the marginal coverage, no matter how the other features - the ``CCPCalibrator``object were built). - If the ``CCPCalibrator``object definition covers all the dataset - (meaning, for all calibration and test samples, the resulting - ``calibrator.predict(X, y_pred, z)`` is never all zeros), - this column of ones is not necessary to obtain marginal coverage. - In this case, you can set this argument to ``False``. - - If you are not sure, use ``bias=True`` to garantee the marginal - coverage. + Whether or not to add a column of ones to the features. Returns ------- @@ -161,7 +151,7 @@ def sample_points( ) -> NDArray: """ Generate the ``points_`` attribute from the ``points`` and ``X`` arguments. - Only the samples which have weights (value for each ``multipliers`` + Only the samples which have weights (the value for each ``multipliers`` function) different from ``0`` can be sampled. Parameters @@ -174,10 +164,10 @@ def sample_points( gaussian distances. Should be an array of shape (n_points, n_in). If integer, the points will be sampled randomly from the ``X`` - set, where ``X`` is the data give to the + dataset, where ``X`` is the data give to the ``GaussianCCP.fit`` method, which usually correspond to - the ``X`` argument of the ``MapieCCPRegressor.calibrate`` method - (unless you call ``GaussianCCP.fit(X)`` yourself). + the ``X`` argument of the ``fit`` or ``fit_calibrator`` method + of a ``SplitCP`` instance. You can pass a Tuple[ArrayLike, ArrayLike], to have a different ``sigma`` value for each point. The two elements of the @@ -332,12 +322,12 @@ def _init_sigmas( """ If ``sigma`` is not ``None``, take a sigma value, and set ``sigmas_`` to a standard deviation 2D array of shape (n_points, n_sigma), - n_sigma being 1 or ``X_n_features``. + n_sigma being 1 or ``n_in``. Parameters ---------- sigma : Union[float, ArrayLike] - standard deviation, as float or 1D array of length n_in + standard deviation, as float or 1D array of length ``n_in`` (number of dimensins of the dataset) n_points : int @@ -393,7 +383,8 @@ def concatenate_functions( ) -> NDArray: """ Call the function of ``functions``, with the - correct arguments, and concatenate the results + correct arguments, and concatenate the results, multiplied by each + ``multipliers`` functions values. Parameters ---------- @@ -533,6 +524,19 @@ def calibrator_optim_objective( By default ``None``. + reg_param: Optional[float] + Float to monitor the ridge regularization + strength. ``reg_param`` must be a non-negative + float i.e. in ``[0, inf)``. + + Note: A too strong regularization may compromise the guaranteed + marginal coverage. If ``calibrator.normalize=True``, it is usually + recommanded to use ``reg_param < 1e-3``. + + If ``None``, no regularization is used. + + By default ``None``. + Returns ------- float @@ -550,11 +554,13 @@ def calibrator_optim_objective( def check_required_arguments(*args) -> None: """ - Calibrators based on ``BaseCalibrator`` class, can have custom required - arguments in the ``fit`` and ``predict`` methods. They need to be defined - with default value, to match de ``BaseCalibrator`` class signature. - However, if the argument value is None, we raise an error (as the argument - is actually required). + Make sure that the ``args`` arguments are not ``None``. + + It is used in calibrators based on ``BaseCalibrator``. + Their ``fit`` and ``predict`` methods must have their custom + arguments as optional (even the required ones), to match the base class + signature. So we have to check that the required arguments + are not ``None``. Raises ------ diff --git a/mapie/calibrators/standard.py b/mapie/calibrators/standard.py index 30528c48b..36d7c3543 100644 --- a/mapie/calibrators/standard.py +++ b/mapie/calibrators/standard.py @@ -27,7 +27,7 @@ class StandardCalibrator(BaseCalibrator): prediction intervals. It correspond to the quantile of the calibration conformity scores. - q_low_: Tuple[NDArray, bool] + q_low_: float Same as q_up_, but for the lower bound """ fit_attributes: List[str] = ["q_up_", "q_low_"] diff --git a/mapie/futur/split/base.py b/mapie/futur/split/base.py index cdb9ac5bd..6c92fdfc0 100644 --- a/mapie/futur/split/base.py +++ b/mapie/futur/split/base.py @@ -7,13 +7,12 @@ import numpy as np from sklearn.base import BaseEstimator -from sklearn.model_selection import (BaseCrossValidator, BaseShuffleSplit, +from sklearn.model_selection import (BaseCrossValidator, PredefinedSplit, ShuffleSplit) from sklearn.utils.validation import _num_samples, check_is_fitted from mapie._typing import ArrayLike, NDArray from mapie.calibrators import BaseCalibrator -from mapie.calibrators.ccp import CCPCalibrator from mapie.conformity_scores import ConformityScore from mapie.utils import _sample_non_null_weight, fit_estimator @@ -24,14 +23,18 @@ class SplitCP(BaseEstimator, metaclass=ABCMeta): Parameters ---------- - predictor: Union[RegressorMixin, ClassifierMixin] - Any regressor or classifier from scikit-learn API. + predictor: Optional[BaseEstimator] + Any estimator from scikit-learn API. (i.e. with ``fit`` and ``predict`` methods). - By default ``"None"``. + If ``None``, will default to a value defined by the subclass - calibrator: Optional[Calibrator] - A ``Calibrator`` instance used to estimate the conformity scores. + By default ``None``. + + calibrator: Optional[BaseCalibrator] + A ``BaseCalibrator`` instance used to estimate the conformity scores. + + If ``None``, defaults to a ``GaussianCCP`` calibrator. By default ``None``. @@ -55,7 +58,7 @@ class SplitCP(BaseEstimator, metaclass=ABCMeta): By default ``None``. conformity_score: Optional[ConformityScore] - ConformityScore instance. + ``ConformityScore`` instance. It defines the link between the observed values, the predicted ones and the conformity scores. @@ -90,19 +93,15 @@ class SplitCP(BaseEstimator, metaclass=ABCMeta): fit_attributes = ["predictor_"] calib_attributes = ["calibrator_"] - cv: Optional[ - Union[str, BaseCrossValidator, BaseShuffleSplit] - ] + cv: Optional[Union[int, str, ShuffleSplit, PredefinedSplit]] alpha: Optional[float] @abstractmethod def __init__( self, predictor: Optional[BaseEstimator] = None, - calibrator: Optional[CCPCalibrator] = None, - cv: Optional[ - Union[str, BaseCrossValidator, BaseShuffleSplit] - ] = None, + calibrator: Optional[BaseCalibrator] = None, + cv: Optional[Union[int, str, ShuffleSplit, PredefinedSplit]] = None, alpha: Optional[float] = None, conformity_score: Optional[ConformityScore] = None, random_state: Optional[int] = None, @@ -128,14 +127,16 @@ def _check_calibrate_parameters(self) -> Tuple[ def _check_cv( self, - cv: Optional[Union[str, BaseCrossValidator, BaseShuffleSplit]] = None, + cv: Optional[Union[int, str, ShuffleSplit, PredefinedSplit]] = None, test_size: Optional[Union[int, float]] = None, - ) -> Union[str, BaseCrossValidator, BaseShuffleSplit]: + ) -> Union[str, ShuffleSplit, PredefinedSplit]: """ Check if ``cv`` is ``None``, ``"prefit"``, ``"split"``, - or ``BaseShuffleSplit``/``BaseCrossValidator`` with ``n_splits``=1. - Return a ``ShuffleSplit`` instance ``n_splits``=1 + or ``ShuffleSplit``/``PredefinedSplit`` with ``n_splits=1``. + + Return a ``ShuffleSplit`` instance with ``n_splits=1`` if ``None`` or ``"split"``. + Else raise error. Parameters @@ -172,13 +173,13 @@ def _check_cv( else: raise ValueError( "Invalid cv argument. Allowed values are None, 'prefit', " - "'split' or a ShuffleSplit/PredefinedSplit object with " - "``n_splits=1``." + "'split' or a `ShuffleSplit/PredefinedSplit` object with " + "`n_splits=1`." ) def _check_alpha(self, alpha: Optional[float] = None) -> None: """ - Check alpha + Check the ``alpha`` parameter. Parameters ---------- @@ -211,7 +212,10 @@ def _get_method_arguments( kwargs: Optional[Dict], ) -> Dict: """ - Return a dictionnary with ``calibrator_.fit`` arguments + Return a dictionnary of the ``method`` arguments. + + The arguments of ``method`` must be attributes of ``self``, in + ``local_vars``, or in ``kwargs``. Parameters ---------- @@ -270,7 +274,7 @@ def fit_predictor( Training labels. sample_weight: Optional[ArrayLike] of shape (n_samples,) - Sample weights for fitting the out-of-fold models. + Sample weights used in the predictor fitting. If ``None``, then samples are equally weighted. If some weights are null, their corresponding observations are removed @@ -280,7 +284,7 @@ def fit_predictor( By default ``None``. groups: Optional[ArrayLike] of shape (n_samples,) - Group labels for the samples used while splitting the dataset into + Group labels for the samples, used while splitting the dataset into train/test set. By default ``None``. @@ -321,8 +325,13 @@ def fit_calibrator( **calib_kwargs, ) -> SplitCP: """ - Fit the calibrator with (``X``, ``y`` and ``z``) - and the new value ``alpha`` value, if not ``None`` + Fit the calibrator. Arguments of the calibrator's ``fit`` method + that are not in the following list: + ``X, y, sample_weight, groups, y_pred_calib, conformity_scores_calib, + X_train, y_train, z_train, sample_weight_train, train_index, + X_calib, y_calib, z_calib, sample_weight_calib, calib_index`` + nor attributes of the ``SplitCP`` instance, + must be given by the user in ``**calib_kwargs``. Parameters ---------- @@ -347,7 +356,7 @@ def fit_calibrator( calib_kwargs: dict Additional fit parameters for the calibrator, used as kwargs. See the calibrator ``.fit`` method documentation to have more - information about the available arguments. + information about the required arguments. Returns ------- @@ -385,7 +394,7 @@ def fit_calibrator( conformity_scores_calib = self.conformity_score_.get_conformity_scores( X_calib, y_calib, y_pred_calib ) - + # Get the calibrator arguments calib_arguments = self._get_method_arguments( calibrator.fit, dict(zip([ @@ -423,7 +432,7 @@ def fit( ) -> SplitCP: """ Fit the predictor (if ``cv`` is not ``"prefit"``) - and fit the calibration. + and fit the calibrator. Parameters ---------- @@ -433,27 +442,8 @@ def fit( y: ArrayLike of shape (n_samples,) Training labels. - z: Optional[ArrayLike] of shape (n_calib_samples, n_exog_features) - Exogenous variables - - By default ``None`` - - alpha: Optional[float] - Between ``0.0`` and ``1.0``, represents the risk level of the - confidence interval. - Lower ``alpha`` produce larger (more conservative) prediction - intervals. - ``alpha`` is the complement of the target coverage level. - - If ``None``, the calibration will be done using the ``alpha``value - set in the initialisation. Else, the new value will overwrite the - old one. - - By default ``None`` - sample_weight: Optional[ArrayLike] of shape (n_samples,) - Sample weights for fitting the out-of-fold models and the - conformalisation process. + Sample weights used in the predictor fitting. If ``None``, then samples are equally weighted. If some weights are null, their corresponding observations are removed @@ -474,7 +464,7 @@ def fit( calib_kwargs: dict Additional fit parameters for the calibrator, used as kwargs. See the calibrator ``.fit`` method documentation to have more - information about the available arguments. + information about the required arguments. Returns ------- @@ -494,7 +484,7 @@ def predict( **kwargs, ) -> Union[NDArray, Tuple[NDArray, NDArray]]: """ - Predict target on new samples with confidence intervals. + Predict target on new samples with prediction intervals. Parameters ---------- @@ -506,7 +496,7 @@ def predict( Union[NDArray, Tuple[NDArray, NDArray]] - Predictions : NDArray of shape (n_samples,) if ``alpha`` is ``None``. - - Predictions and confidence intervals + - Prediction intervals if ``alpha`` is not ``None``. """ check_is_fitted(self, self.fit_attributes) @@ -554,7 +544,7 @@ def predict_bounds( **predict_kwargs, ) -> NDArray: """ - Compute the bounds, using the fitted ``_calibrator``. + Compute the bounds, using the fitted ``calibrator_``. Parameters ---------- diff --git a/mapie/futur/split/regression.py b/mapie/futur/split/regression.py index 8f6ea67a9..e72f916cc 100644 --- a/mapie/futur/split/regression.py +++ b/mapie/futur/split/regression.py @@ -4,7 +4,7 @@ import numpy as np from sklearn.base import RegressorMixin -from sklearn.model_selection import BaseCrossValidator, BaseShuffleSplit +from sklearn.model_selection import PredefinedSplit, ShuffleSplit from mapie._typing import ArrayLike, NDArray from mapie.calibrators.utils import check_calibrator @@ -105,9 +105,7 @@ def __init__( self, predictor: Optional[RegressorMixin] = None, calibrator: Optional[BaseCalibrator] = None, - cv: Optional[ - Union[str, BaseCrossValidator, BaseShuffleSplit] - ] = None, + cv: Optional[Union[int, str, ShuffleSplit, PredefinedSplit]] = None, alpha: Optional[float] = None, conformity_score: Optional[ConformityScore] = None, random_state: Optional[int] = None, @@ -171,7 +169,7 @@ def predict_bounds( **kwargs, ) -> NDArray: """ - Compute the bounds, using the fitted ``_calibrator``. + Compute the bounds, using the fitted ``calibrator_``. Parameters ---------- From f3d272a91e497f49678b65e205b91e33e4c173ea Mon Sep 17 00:00:00 2001 From: Damien Bouet Date: Mon, 22 Jul 2024 10:23:36 +0200 Subject: [PATCH 087/165] FIX: calib_kwargs bug and linting --- mapie/calibrators/ccp/base.py | 2 +- mapie/calibrators/ccp/gaussian.py | 4 +- mapie/calibrators/ccp/utils.py | 8 +-- mapie/futur/split/base.py | 54 +++++++++++----- mapie/tests/test_ccp_calibrator.py | 85 +++++++++++++++---------- mapie/tests/test_futur_regression.py | 38 +++++------ mapie/tests/test_standard_calibrator.py | 4 +- 7 files changed, 115 insertions(+), 80 deletions(-) diff --git a/mapie/calibrators/ccp/base.py b/mapie/calibrators/ccp/base.py index 6d8379502..135875620 100644 --- a/mapie/calibrators/ccp/base.py +++ b/mapie/calibrators/ccp/base.py @@ -453,7 +453,7 @@ def predict( Transformation """ check_required_arguments(y_pred) - + check_is_fitted(self, self.transform_attributes + self.fit_attributes) cs_features = self.transform(X, y_pred, z) diff --git a/mapie/calibrators/ccp/gaussian.py b/mapie/calibrators/ccp/gaussian.py index 0d78ed906..b2c69a42c 100644 --- a/mapie/calibrators/ccp/gaussian.py +++ b/mapie/calibrators/ccp/gaussian.py @@ -202,8 +202,7 @@ class GaussianCCP(CCPCalibrator): def __init__( self, - points: Optional[Union[int, ArrayLike, - Tuple[ArrayLike, ArrayLike]]] = 20, + points: Union[int, ArrayLike, Tuple[ArrayLike, ArrayLike]] = 20, sigma: Optional[Union[float, ArrayLike]] = None, random_sigma: bool = False, bias: bool = False, @@ -281,7 +280,6 @@ def _check_transform_parameters( By default ``None`` """ - self.random_sigma = self._check_random_sigma() self.points_ = sample_points(X, self.points, self._multipliers) self.sigmas_ = compute_sigma(X, self.points, self.points_, self.sigma, self.random_sigma) diff --git a/mapie/calibrators/ccp/utils.py b/mapie/calibrators/ccp/utils.py index 5a6db1cab..0322b1489 100644 --- a/mapie/calibrators/ccp/utils.py +++ b/mapie/calibrators/ccp/utils.py @@ -146,7 +146,7 @@ def compile_functions_warnings_errors( def sample_points( X: ArrayLike, - points: Optional[Union[int, ArrayLike, Tuple[ArrayLike, ArrayLike]]], + points: Union[int, ArrayLike, Tuple[ArrayLike, ArrayLike]], multipliers: Optional[List[Callable]] = None, ) -> NDArray: """ @@ -159,7 +159,7 @@ def sample_points( X : ArrayLike Samples - points : Optional[Union[int, ArrayLike, Tuple[ArrayLike, ArrayLike]]] + points : Union[int, ArrayLike, Tuple[ArrayLike, ArrayLike]] If Array: List of data points, used as centers to compute gaussian distances. Should be an array of shape (n_points, n_in). @@ -193,8 +193,6 @@ def sample_points( ValueError If ``points`` is an invalid argument. """ - if points is None: - points = 20 if isinstance(points, int): if multipliers is None: not_null_index = list(range(_num_samples(X))) @@ -555,7 +553,7 @@ def calibrator_optim_objective( def check_required_arguments(*args) -> None: """ Make sure that the ``args`` arguments are not ``None``. - + It is used in calibrators based on ``BaseCalibrator``. Their ``fit`` and ``predict`` methods must have their custom arguments as optional (even the required ones), to match the base class diff --git a/mapie/futur/split/base.py b/mapie/futur/split/base.py index 6c92fdfc0..bca6868f2 100644 --- a/mapie/futur/split/base.py +++ b/mapie/futur/split/base.py @@ -133,7 +133,7 @@ def _check_cv( """ Check if ``cv`` is ``None``, ``"prefit"``, ``"split"``, or ``ShuffleSplit``/``PredefinedSplit`` with ``n_splits=1``. - + Return a ``ShuffleSplit`` instance with ``n_splits=1`` if ``None`` or ``"split"``. @@ -327,7 +327,8 @@ def fit_calibrator( """ Fit the calibrator. Arguments of the calibrator's ``fit`` method that are not in the following list: - ``X, y, sample_weight, groups, y_pred_calib, conformity_scores_calib, + ``X, y, z, sample_weight, groups, y_pred_calib, + conformity_scores_calib, X_train, y_train, z_train, sample_weight_train, train_index, X_calib, y_calib, z_calib, sample_weight_calib, calib_index`` nor attributes of the ``SplitCP`` instance, @@ -358,6 +359,9 @@ def fit_calibrator( See the calibrator ``.fit`` method documentation to have more information about the required arguments. + Note: if the calibrator need exogenous variables (``z_train`` or + ``z_calib``), you should pass ``z`` in ``calib_kwargs`` + Returns ------- SplitCP @@ -395,28 +399,36 @@ def fit_calibrator( X_calib, y_calib, y_pred_calib ) # Get the calibrator arguments + dict_arguments = dict(zip([ + "X", "y", "z", "sample_weight", "groups", + "y_pred_calib", "conformity_scores_calib", + "X_train", "y_train", "z_train", + "sample_weight_train", "train_index", + "X_calib", "y_calib", "z_calib", + "sample_weight_calib", "calib_index", + ], + [ + X, y, z, sample_weight, groups, + y_pred_calib, conformity_scores_calib, + X_train, y_train, z_train, sample_weight_train, train_index, + X_calib, y_calib, z_calib, sample_weight_calib, calib_index, + ])) calib_arguments = self._get_method_arguments( calibrator.fit, - dict(zip([ - "X", "y", "sample_weight", "groups", - "y_pred_calib", "conformity_scores_calib", - "X_train", "y_train", "z_train", - "sample_weight_train", "train_index", - "X_calib", "y_calib", "z_calib", - "sample_weight_calib", "calib_index", - ], - [ - X, y, sample_weight, groups, - y_pred_calib, conformity_scores_calib, - X_train, y_train, z_train, sample_weight_train, train_index, - X_calib, y_calib, z_calib, sample_weight_calib, calib_index, - ])), + dict_arguments, calib_kwargs ) self.calibrator_ = calibrator.fit( **calib_arguments, - **(calib_kwargs if calib_kwargs is not None else {}) + **( + { + key: calib_kwargs[key] for key in calib_kwargs + if key not in dict_arguments + } + if calib_kwargs is not None + else {} + ) ) return self @@ -466,6 +478,9 @@ def fit( See the calibrator ``.fit`` method documentation to have more information about the required arguments. + Note: if the calibrator need exogenous variables (``z_train`` or + ``z_calib``), you should pass ``z`` in ``calib_kwargs`` + Returns ------- SplitCP @@ -491,6 +506,11 @@ def predict( X: ArrayLike of shape (n_samples, n_features) Test data. + kwargs: dict + Additional predict parameters for the calibrator, used as kwargs. + See the calibrator ``.predict`` method documentation to have more + information about the required arguments. + Returns ------- Union[NDArray, Tuple[NDArray, NDArray]] diff --git a/mapie/tests/test_ccp_calibrator.py b/mapie/tests/test_ccp_calibrator.py index 6b4021dad..98e344af5 100644 --- a/mapie/tests/test_ccp_calibrator.py +++ b/mapie/tests/test_ccp_calibrator.py @@ -91,20 +91,22 @@ # ======== CustomCCP ========= @pytest.mark.parametrize("calibrator", PHI) -def test_custom_phi_functions(calibrator: Any) -> None: +def test_custom_ccp_calibrator(calibrator: Any) -> None: """Test that initialization does not crash.""" mapie = SplitCPRegressor(calibrator=calibrator, alpha=0.1) - mapie.fit(X, y, z=z) + mapie.fit(X, y, calib_kwargs={"z": z}) mapie.predict(X, z=z) @pytest.mark.parametrize("calibrator, n_out_raw", zip(PHI, N_OUT)) -def test_phi_n_attributes(calibrator: CCPCalibrator, n_out_raw: int) -> None: +def test_ccp_calibrator_n_attributes( + calibrator: CCPCalibrator, n_out_raw: int +) -> None: """ Test that the n_in and n_out attributes are corrects """ mapie = SplitCPRegressor(calibrator=clone(calibrator), alpha=0.1) - mapie.fit(X, y, z=z) + mapie.fit(X, y, calib_kwargs={"z": z}) assert mapie.calibrator_.n_in == 10 assert mapie.calibrator_.n_out == n_out_raw @@ -116,29 +118,14 @@ def test_invalid_multiplication() -> None: lambda X: (X[:, [0, 1]] > 0)), alpha=0.1, ) - mapie.fit(X, y, z=z) - - -def test_phi_functions_warning() -> None: - """ - Test that creating a CCPCalibrator object with functions which have - optional arguments different from 'X', 'y_pred' or 'z' raise a warning. - """ - with pytest.warns(UserWarning, - match="WARNING: Unknown optional arguments."): - mapie = SplitCPRegressor( - calibrator=CustomCCP([lambda X, d=d: X**d for d in range(4)]), - alpha=0.1, - ) - mapie.fit(X, y, z=z) - mapie.predict(X) + mapie.fit(X, y, calib_kwargs={"z": z}) @pytest.mark.parametrize("functions", [ [lambda X, other: X + other, lambda X, other: X - other], [lambda X, other: X + other] ]) -def test_phi_functions_error(functions: Any) -> None: +def test_custom_functions_error(functions: Any) -> None: """ Test that creating a CCPCalibrator object with functions which have required arguments different from 'X', 'y_pred' or 'z' raise an error. @@ -147,7 +134,22 @@ def test_phi_functions_error(functions: Any) -> None: f(np.ones((10, 1)), np.ones((10, 1))) with pytest.raises(ValueError, match=r"Forbidden required argument."): mapie = SplitCPRegressor(calibrator=CustomCCP(functions), alpha=0.1) - mapie.fit(X, y, z=z) + mapie.fit(X, y, calib_kwargs={"z": z}) + + +@pytest.mark.parametrize("functions", [ + [lambda X, d=1: X + d, lambda X, d=2: X - d], + [lambda X, c=1, d=1: X + c*d] +]) +def test_custom_functions_optional_arg(functions: Any) -> None: + """ + Test that creating a CCPCalibrator object with functions which have + optional arguments doesn't raise an error. + """ + for f in functions: # For coverage + f(np.ones((10, 1))) + mapie = SplitCPRegressor(calibrator=CustomCCP(functions), alpha=0.1) + mapie.fit(X, y, calib_kwargs={"z": z}) def test_phi_functions_empty() -> None: @@ -158,14 +160,14 @@ def test_phi_functions_empty() -> None: with pytest.raises(ValueError): mapie = SplitCPRegressor(calibrator=CustomCCP([], bias=False), alpha=0.1) - mapie.fit(X, y, z=z) + mapie.fit(X, y, calib_kwargs={"z": z}) # ======== PolynomialCCP ========= def test_poly_phi_init() -> None: """Test that initialization does not crash.""" mapie = SplitCPRegressor(calibrator=PolynomialCCP(), alpha=0.1) - mapie.fit(X, y, z=z) + mapie.fit(X, y, calib_kwargs={"z": z}) @pytest.mark.parametrize("degree", [2, [0, 1, 3]]) @@ -178,7 +180,7 @@ def test_poly_phi_init_other( """Test that initialization does not crash.""" mapie = SplitCPRegressor(calibrator=PolynomialCCP( degree, variable, bias, normalized), alpha=0.1) - mapie.fit(X, y, z=z) + mapie.fit(X, y, calib_kwargs={"z": z}) @pytest.mark.parametrize("var", ["other", 1, np.ones((10, 1))]) @@ -189,14 +191,14 @@ def test_invalid_variable_value(var: Any) -> None: with pytest.raises(ValueError): mapie = SplitCPRegressor(calibrator=PolynomialCCP(variable=var), alpha=0.1) - mapie.fit(X, y, z=z) + mapie.fit(X, y, calib_kwargs={"z": z}) # ======== GaussianCCP ========= def test_gauss_phi_init() -> None: """Test that initialization does not crash.""" mapie = SplitCPRegressor(calibrator=GaussianCCP(), alpha=0.1) - mapie.fit(X, y, z=z) + mapie.fit(X, y, calib_kwargs={"z": z}) @pytest.mark.parametrize("points", [3, [X[0, :], X[3, :], X[7, :]], @@ -211,7 +213,7 @@ def test_poly_gauss_init_other( """Test that initialization does not crash.""" mapie = SplitCPRegressor(calibrator=GaussianCCP( points, sigma, random_sigma, bias, normalized), alpha=0.1) - mapie.fit(X, y, z=z) + mapie.fit(X, y, calib_kwargs={"z": z}) @pytest.mark.parametrize("points", [np.ones((10)), @@ -223,7 +225,7 @@ def test_invalid_gauss_points(points: Any) -> None: """ with pytest.raises(ValueError, match="Invalid `points` argument."): mapie = SplitCPRegressor(calibrator=GaussianCCP(points), alpha=0.1) - mapie.fit(X, y, z=z) + mapie.fit(X, y, calib_kwargs={"z": z}) def test_invalid_gauss_points_2() -> None: @@ -234,7 +236,7 @@ def test_invalid_gauss_points_2() -> None: with pytest.raises(ValueError, match="There should have as many points"): mapie = SplitCPRegressor(calibrator=GaussianCCP( points=(np.ones((10, 3)), np.ones((8, 3)))), alpha=0.1) - mapie.fit(X, y, z=z) + mapie.fit(X, y, calib_kwargs={"z": z}) def test_invalid_gauss_points_3() -> None: @@ -245,7 +247,7 @@ def test_invalid_gauss_points_3() -> None: with pytest.raises(ValueError, match="The standard deviation 2D array"): mapie = SplitCPRegressor(calibrator=GaussianCCP( points=(np.ones((10, 3)), np.ones((10, 2)))), alpha=0.1) - mapie.fit(X, y, z=z) + mapie.fit(X, y, calib_kwargs={"z": z}) @pytest.mark.parametrize("sigma", ["1", @@ -260,7 +262,7 @@ def test_invalid_gauss_sigma(sigma: Any) -> None: with pytest.raises(ValueError): mapie = SplitCPRegressor(calibrator=GaussianCCP(3, sigma), alpha=0.1) - mapie.fit(X, y, z=z) + mapie.fit(X, y, calib_kwargs={"z": z}) @pytest.mark.parametrize("ind", range(len(GAUSS_NEED_FIT_SETTINGS))) @@ -271,7 +273,7 @@ def test_gauss_need_calib(ind: int) -> None: """ mapie = SplitCPRegressor(calibrator=GaussianCCP( **GAUSS_NEED_FIT_SETTINGS[ind]), alpha=0.1) - mapie.fit(X, y, z=z) + mapie.fit(X, y, calib_kwargs={"z": z}) check_is_fitted(mapie.calibrator_, mapie.calibrator_.fit_attributes) @@ -283,7 +285,7 @@ def test_gauss_no_need_calib(ind: int) -> None: """ mapie = SplitCPRegressor(calibrator=GaussianCCP( **GAUSS_NEED_FIT_SETTINGS[ind]), alpha=0.1) - mapie.fit(X, y, z=z) + mapie.fit(X, y, calib_kwargs={"z": z}) check_is_fitted(mapie.calibrator_, mapie.calibrator_.fit_attributes) @@ -313,3 +315,18 @@ def test_gaussian_sampling_with_multiplier(calibrator: CCPCalibrator): mapie.fit(np.linspace(-100, 100, 1000).reshape(-1, 1), np.ones(1000)) assert all(mapie.calibrator_.points_[i] > 0 for i in range(20)) + + +@pytest.mark.parametrize("calibrator", [ + GaussianCCP(20)*(lambda X: X[:, 0] > 0), + GaussianCCP(30), +]) +def test_gaussian_sampling_error_not_enough_points(calibrator: CCPCalibrator): + """ + Test that the points sampled (for the gaussian centers), are sampled + within the points which have a not null multiplier value + """ + mapie = SplitCPRegressor(calibrator=calibrator, alpha=0.1) + + with pytest.raises(ValueError): + mapie.fit(np.linspace(-10, 10, 21).reshape(-1, 1), np.ones(21)) diff --git a/mapie/tests/test_futur_regression.py b/mapie/tests/test_futur_regression.py index d2ec7a8d5..b5c49f833 100644 --- a/mapie/tests/test_futur_regression.py +++ b/mapie/tests/test_futur_regression.py @@ -82,7 +82,7 @@ def test_fit_calibrator(z: Any) -> None: def test_fit(z: Any) -> None: """Test that fit raises no errors.""" mapie_reg = SplitCPRegressor(alpha=0.1) - mapie_reg.fit(X_toy, y_toy, z=z) + mapie_reg.fit(X_toy, y_toy, calib_kwargs={"z": z}) @pytest.mark.parametrize("z", [None, z_toy]) @@ -98,7 +98,7 @@ def test_fit_predictor_fit_calibrator_predict(z: Any) -> None: def test_fit_predict(z: Any) -> None: """Test that fit-predict raises no errors.""" mapie_reg = SplitCPRegressor(alpha=0.1) - mapie_reg.fit(X_toy, y_toy, z=z) + mapie_reg.fit(X_toy, y_toy, calib_kwargs={"z": z}) mapie_reg.predict(X_toy, z=z) @@ -107,7 +107,7 @@ def test_fit_predict_reg(z: Any) -> None: """Test that fit-predict raises no errors.""" mapie_reg = SplitCPRegressor(calibrator=GaussianCCP(reg_param=0.1), alpha=0.1) - mapie_reg.fit(X_toy, y_toy, z=z) + mapie_reg.fit(X_toy, y_toy, calib_kwargs={"z": z}) mapie_reg.predict(X_toy, z=z) @@ -311,7 +311,7 @@ def test_fit_calibrate_combined_equivalence( predictor=predictor_2, calibrator=calibrator, cv=cv, alpha=alpha, random_state=random_state ) - mapie_1.fit(X, y, z=z) + mapie_1.fit(X, y, calib_kwargs={"z": z}) mapie_2.fit_predictor(X, y) mapie_2.fit_calibrator(X, y, z=z) y_pred_1, y_pis_1 = mapie_1.predict(X, z=z) @@ -341,7 +341,7 @@ def test_predict_output_shape_alpha( predictor=predictor, calibrator=calibrator, cv=cv, alpha=0.1, random_state=random_state ) - mapie_reg.fit(X, y, z=z) + mapie_reg.fit(X, y, calib_kwargs={"z": z}) y_pred, y_pis = mapie_reg.predict(X, z=z) assert y_pred.shape == (X.shape[0],) assert y_pis.shape == (X.shape[0], 2, 1) @@ -367,7 +367,7 @@ def test_predict_output_shape_no_alpha( predictor=predictor, calibrator=calibrator, cv=cv, alpha=None, random_state=random_state ) - mapie_reg.fit(X, y, z=z) + mapie_reg.fit(X, y, calib_kwargs={"z": z}) y_pred = mapie_reg.predict(X, z=z) assert np.array(y_pred).shape == (X.shape[0],) @@ -399,7 +399,7 @@ def test_same_results_prefit_split( z_calib = z[val_index] calibrator = cast(CCPCalibrator, clone(template)) - calibrator._fit_params(X, y, z) + calibrator._transform_params(X, y, z) calibrator.init_value = calibrator.init_value_ if isinstance(calibrator, GaussianCCP): calibrator.points = (calibrator.points_, calibrator.sigmas_) @@ -415,8 +415,8 @@ def test_same_results_prefit_split( random_state=random_state, ) - mapie_1.fit(X, y, z=z) - mapie_2.fit(X_calib, y_calib, z=z_calib) + mapie_1.fit(X, y, calib_kwargs={"z": z}) + mapie_2.fit(X_calib, y_calib, calib_kwargs={"z": z_calib}) y_pred_1, y_pis_1 = mapie_1.predict(X, z=z) y_pred_2, y_pis_2 = mapie_2.predict(X, z=z) @@ -445,16 +445,16 @@ def test_results_for_ordered_alpha( if cv == "prefit": predictor.fit(X, y) - calibrator._fit_params(X) + calibrator._transform_params(X) mapie_reg_1 = SplitCPRegressor(predictor, clone(calibrator), cv=cv, alpha=0.05, random_state=random_state) mapie_reg_2 = SplitCPRegressor(predictor, clone(calibrator), cv=cv, alpha=0.1, random_state=random_state) - mapie_reg_1.fit(X, y, z=z) + mapie_reg_1.fit(X, y, calib_kwargs={"z": z}) _, y_pis_1 = mapie_reg_1.predict(X, z=z) - mapie_reg_2.fit(X, y, z=z) + mapie_reg_2.fit(X, y, calib_kwargs={"z": z}) _, y_pis_2 = mapie_reg_1.predict(X, z=z) assert (y_pis_1[:, 0, 0] <= y_pis_2[:, 0, 0]).all() @@ -481,7 +481,7 @@ def test_results_with_constant_sample_weights( predictor.fit(X, y) calibrator = cast(CCPCalibrator, clone(PHI[0])) - calibrator._fit_params(X) + calibrator._transform_params(X) calibrator.init_value = calibrator.init_value_ n_samples = len(X) @@ -492,9 +492,11 @@ def test_results_with_constant_sample_weights( mapie2 = SplitCPRegressor(predictor, clone(calibrator), cv=cv, alpha=0.1, random_state=random_state) - mapie0.fit(X, y, z=z, sample_weight=None) - mapie1.fit(X, y, z=z, sample_weight=np.ones(shape=n_samples)) - mapie2.fit(X, y, z=z, sample_weight=np.ones(shape=n_samples) * 3) + mapie0.fit(X, y, sample_weight=None, calib_kwargs={"z": z}) + mapie1.fit(X, y, sample_weight=np.ones(shape=n_samples), + calib_kwargs={"z": z}) + mapie2.fit(X, y, sample_weight=np.ones(shape=n_samples) * 3, + calib_kwargs={"z": z}) y_pred0, y_pis0 = mapie0.predict(X, z=z) y_pred1, y_pis1 = mapie1.predict(X, z=z) @@ -531,7 +533,7 @@ def test_prediction_between_low_up( mapie = SplitCPRegressor(predictor=predictor, calibrator=calibrator, cv=cv, alpha=alpha, random_state=random_state) - mapie.fit(X, y, z=z) + mapie.fit(X, y, calib_kwargs={"z": z}) with warnings.catch_warnings(record=True) as record: y_pred, y_pis = mapie.predict(X, z=z) @@ -617,7 +619,7 @@ def test_conformity_score( conformity_score=conformity_score, random_state=random_state, ) - mapie_reg.fit(X, y + 1e3, z=z) + mapie_reg.fit(X, y + 1e3, calib_kwargs={"z": z}) mapie_reg.predict(X, z=z) diff --git a/mapie/tests/test_standard_calibrator.py b/mapie/tests/test_standard_calibrator.py index 9a0cb4fe0..b535e6f2f 100644 --- a/mapie/tests/test_standard_calibrator.py +++ b/mapie/tests/test_standard_calibrator.py @@ -25,7 +25,7 @@ def test_calibrator_fit(sym: bool) -> None: """Test that calibrator has correct sym parameter""" mapie = SplitCPRegressor(calibrator=StandardCalibrator(), alpha=0.1, conformity_score=AbsoluteConformityScore(sym=sym)) - mapie.fit(X, y, z=z) + mapie.fit(X, y, calib_kwargs={"z": z}) assert mapie.calibrator_.sym == sym @@ -34,7 +34,7 @@ def test_calibrator_fit_predict(sym: bool) -> None: """Test that initialization does not crash.""" mapie = SplitCPRegressor(calibrator=StandardCalibrator(), alpha=0.1, conformity_score=AbsoluteConformityScore(sym=sym)) - mapie.fit(X, y, z=z) + mapie.fit(X, y, calib_kwargs={"z": z}) mapie.predict(X, z=z) From 907aec643fb2f56e6900c2210f8014d947c350be Mon Sep 17 00:00:00 2001 From: Damien Bouet Date: Mon, 22 Jul 2024 10:24:16 +0200 Subject: [PATCH 088/165] RMV warning in optional arg in custim ccp --- mapie/calibrators/ccp/utils.py | 41 +++++----------------------------- 1 file changed, 6 insertions(+), 35 deletions(-) diff --git a/mapie/calibrators/ccp/utils.py b/mapie/calibrators/ccp/utils.py index 0322b1489..9f829230b 100644 --- a/mapie/calibrators/ccp/utils.py +++ b/mapie/calibrators/ccp/utils.py @@ -1,7 +1,6 @@ from __future__ import annotations import inspect -import warnings from typing import Callable, Dict, Iterable, List, Optional, Tuple, Union, cast import numpy as np @@ -68,7 +67,7 @@ def compile_functions_warnings_errors( functions: List[Callable] ) -> None: """ - Raise warnings and errors if the elements in ``functions`` have + Raise errors if the elements in ``functions`` have unexpected arguments. Raises @@ -76,19 +75,12 @@ def compile_functions_warnings_errors( ValueError If functions contain unknown required arguments. - Warns - ----- - UserWarning - If functions contain unknown optional arguments. - Notes ----- This method ensures that the provided functions only use recognized arguments ('X', 'y_pred', 'z'). Unknown optional arguments are allowed, but will always use their default values. """ - - warn_ind: Dict[str, List[int]] = {} error_ind: Dict[str, List[int]] = {} for i, funct in enumerate(functions): assert callable(funct) @@ -97,34 +89,13 @@ def compile_functions_warnings_errors( for param, arg in params.items(): if ( param not in ["X", "y_pred", "z"] - and param != "disable_marginal_guarantee" + and arg.default is inspect.Parameter.empty ): - if arg.default is inspect.Parameter.empty: - if param in error_ind: - error_ind[param].append(i) - else: - error_ind[param] = [i] + if param in error_ind: + error_ind[param].append(i) else: - if param in warn_ind: - warn_ind[param].append(i) - else: - warn_ind[param] = [i] - - if len(warn_ind) > 0: - warn_msg = "" - for param, inds in warn_ind.items(): - warn_msg += ( - f"The functions at index ({', '.join(map(str, inds))}) " - + "of the 'functions' argument, has an unknown optional " - + f"argument '{param}'.\n" - ) - warnings.warn( - "WARNING: Unknown optional arguments.\n" - + warn_msg + - "The only recognized arguments are : 'X', 'y_pred' and 'z'. " - "The other optional arguments will act as parameters, " - "as it is always their default value which will be used." - ) + error_ind[param] = [i] + if len(error_ind) > 0: error_msg = "" for param, inds in error_ind.items(): From 3de4ef3e4befd41369cef693073e7220fd6655e6 Mon Sep 17 00:00:00 2001 From: Damien Bouet Date: Tue, 23 Jul 2024 10:41:25 +0200 Subject: [PATCH 089/165] FIX: multiplier impact on normalize and sigma --- mapie/calibrators/ccp/base.py | 12 +++++++++--- mapie/calibrators/ccp/gaussian.py | 6 ++++-- mapie/calibrators/ccp/utils.py | 25 +++++++++++++++++++------ 3 files changed, 32 insertions(+), 11 deletions(-) diff --git a/mapie/calibrators/ccp/base.py b/mapie/calibrators/ccp/base.py index 135875620..c7bcd5247 100644 --- a/mapie/calibrators/ccp/base.py +++ b/mapie/calibrators/ccp/base.py @@ -16,7 +16,8 @@ check_multiplier, compile_functions_warnings_errors, concatenate_functions, - check_required_arguments) + check_required_arguments, + dynamic_arguments_call) class CCPCalibrator(BaseCalibrator, metaclass=ABCMeta): @@ -410,8 +411,8 @@ def transform( check_is_fitted(self, self.transform_attributes) params_mapping = {"X": X, "y_pred": y_pred, "z": z} - cs_features = concatenate_functions(self.functions_, params_mapping, - self._multipliers) + cs_features = concatenate_functions(self.functions_, params_mapping) + # Normalize if self.normalized: norm = cast(NDArray, np.linalg.norm(cs_features, axis=1)).reshape(-1, 1) @@ -421,6 +422,11 @@ def transform( norm[abs(norm) == 0] = 1 cs_features /= norm + # Multiply the result by each multiplier function + if self._multipliers is not None: + for f in self._multipliers: + cs_features *= dynamic_arguments_call(f, params_mapping) + return cs_features def predict( diff --git a/mapie/calibrators/ccp/gaussian.py b/mapie/calibrators/ccp/gaussian.py index b2c69a42c..331f899fb 100644 --- a/mapie/calibrators/ccp/gaussian.py +++ b/mapie/calibrators/ccp/gaussian.py @@ -281,8 +281,10 @@ def _check_transform_parameters( By default ``None`` """ self.points_ = sample_points(X, self.points, self._multipliers) - self.sigmas_ = compute_sigma(X, self.points, self.points_, - self.sigma, self.random_sigma) + self.sigmas_ = compute_sigma( + X, self.points, self.points_, self.sigma, + self.random_sigma, self._multipliers + ) self._check_points_sigma(self.points_, self.sigmas_) functions = [ diff --git a/mapie/calibrators/ccp/utils.py b/mapie/calibrators/ccp/utils.py index 9f829230b..ff42b1607 100644 --- a/mapie/calibrators/ccp/utils.py +++ b/mapie/calibrators/ccp/utils.py @@ -204,6 +204,8 @@ def compute_sigma( points_: NDArray, sigma: Optional[Union[float, ArrayLike]], random_sigma: bool, + multipliers: Optional[List[Callable]] = None, + ) -> NDArray: """ Generate the ``sigmas_`` attribute from the ``points``, ``sigma``, ``X`` @@ -252,6 +254,10 @@ def compute_sigma( - For 100 points, the sigma value will, in general, be multiplied by a value between 0.5 and 2 + multipliers: Optional[List[Callable]] + List of functions which should return an array of shape (n_samples, 1) + or (n_samples, ) used to weight the sample. + Returns ------- sigmas_ @@ -264,7 +270,19 @@ def compute_sigma( sigmas_ = sigmas_.reshape(-1, 1) # If sigma is not defined elif sigma is None: - points_std = np.std(np.array(X), axis=0)\ + # We get the X indexes which correspond to a not zero multiplier value + if multipliers is None: + not_null_index = list(range(_num_samples(X))) + else: + test = np.ones((_num_samples(X), 1)).astype(bool) + for f in multipliers: + multi = f(X) + if len(multi.shape) == 1: + multi = multi.reshape(-1, 1) + test = test & (multi != 0) + not_null_index = [i for i in range(_num_samples(X)) if test[i, 0]] + + points_std = np.std(_safe_indexing(X, not_null_index), axis=0)\ / (_num_samples(points_)**0.5)\ * _num_samples(_safe_indexing(X, 0)) @@ -348,7 +366,6 @@ def dynamic_arguments_call(f: Callable, params_mapping: Dict) -> NDArray: def concatenate_functions( functions: List[Callable], params_mapping: Dict, - multipliers: Optional[List[Callable]] ) -> NDArray: """ Call the function of ``functions``, with the @@ -372,10 +389,6 @@ def concatenate_functions( result = np.hstack([ dynamic_arguments_call(f, params_mapping) for f in functions ]) - # Multiply the result by each multiplier function - if multipliers is not None: - for f in multipliers: - result *= dynamic_arguments_call(f, params_mapping) return result From e704700d401da8d34d8f1ea64ce3382b33e8ba98 Mon Sep 17 00:00:00 2001 From: Damien Bouet Date: Tue, 23 Jul 2024 10:47:24 +0200 Subject: [PATCH 090/165] UPD: ccp tutorial --- .../4-tutorials/plot_ccp_tutorial.py | 430 +++++++++--------- 1 file changed, 224 insertions(+), 206 deletions(-) diff --git a/examples/regression/4-tutorials/plot_ccp_tutorial.py b/examples/regression/4-tutorials/plot_ccp_tutorial.py index b533aa98c..214a421fd 100644 --- a/examples/regression/4-tutorials/plot_ccp_tutorial.py +++ b/examples/regression/4-tutorials/plot_ccp_tutorial.py @@ -13,15 +13,15 @@ :class:`~sklearn.linear_model.QuantileRegressor` for CQR). We will compare the different available calibrators ( -:class:`~mapie.calibrators.CustomCCP`, :class:`~mapie.calibrators.GaussianCCP` -and :class:`~mapie.calibrators.PolynomialCCP`) of the CCP method (using -:class:`~mapie.regression.SplitCPRegressor`), with the -standard split-conformal method, the CV+ method ( -:class:`~mapie.regression.MapieRegressor` with, respectively, -``method="base", cv='split'`` and ``method="plus", cv=5``), and CQR -(:class:`~mapie.regression.MapieRegressor`) +:class:`~mapie.calibrators.ccp.CustomCCP`, +:class:`~mapie.calibrators.ccp.GaussianCCP` +and :class:`~mapie.calibrators.ccp.PolynomialCCP`) of the CCP method (using +:class:`~mapie.futur.split.SplitCPRegressor`), with the +standard split-conformal method, the CV+ method +(:class:`~mapie.regression.MapieRegressor`) and CQR +(:class:`~mapie.regression.MapieQuantileRegressor`) -Recall that the ``alpha`` is `1 - target coverage`. +Recall that the ``alpha`` is ``1 - target coverage``. [1] Isaac Gibbs, John J. Cherian, Emmanuel J. Candès (2023). Conformal Prediction With Conditional Guarantees @@ -34,6 +34,7 @@ import numpy as np from scipy.stats import norm from sklearn.linear_model import LinearRegression, QuantileRegressor +from sklearn.model_selection import ShuffleSplit from sklearn.pipeline import Pipeline from sklearn.preprocessing import PolynomialFeatures @@ -44,7 +45,7 @@ warnings.filterwarnings("ignore") -random_state = 1 +random_state = 42 np.random.seed(random_state) ALPHA = 0.1 @@ -59,6 +60,9 @@ # - between -1 and 0: uniform distribution of the points around the baseline # - between 0 and 5: normal distribution with a noise value which # increase with ``x`` +# +# We are going to use 3000 samples for training, 3000 for calibration and +# 20 000 for testing (to have an accurate conditional coverage). def x_sinx(x): @@ -90,7 +94,7 @@ def get_1d_data_with_heteroscedastic_noise( return X.reshape(-1, 1), y, true_pi -def generate_data(n_train=10000, n_test=4000, noise=0.8, power=2): +def generate_data(n_train=6000, n_test=20000, noise=0.8, power=2): X, y, true_pi = get_1d_data_with_heteroscedastic_noise( x_sinx, -1, 5, n_train + n_test, noise, power) indexes = list(range(len(X))) @@ -139,39 +143,14 @@ def generate_data(n_train=10000, n_test=4000, noise=0.8, power=2): ############################################################################## -# 3. Creation of Mapie instances -# -------------------------------------------------------------------------- -# We are going to test different methods : ``CV+``, ``CQR`` and ``CCP`` -# (with default parameters) - -# ================== Basic Split-conformal ================== -mapie_split = MapieRegressor(estimator, method="base", cv="split", - random_state=random_state) -mapie_split.fit(X_train, y_train) -y_pred_split, y_pi_split = mapie_split.predict(X_test, alpha=ALPHA) - -# ================== CV+ ================== -mapie_cv = MapieRegressor(estimator, method='plus', cv=5) -mapie_cv.fit(X_train, y_train) -y_pred_cv, y_pi_cv = mapie_cv.predict(X_test, alpha=ALPHA) - -# ================== CQR ================== -mapie_cqr = MapieQuantileRegressor(quantile_estimator, alpha=ALPHA) -mapie_cqr.fit(X_train, y_train) -y_pred_cqr, y_pi_cqr = mapie_cqr.predict(X_test) - -# ================== CCP ================== -mapie_ccp = SplitCPRegressor(estimator, alpha=ALPHA, cv="split") -mapie_ccp.fit(X_train, y_train) -y_pred_ccp, y_pi_ccp = mapie_ccp.predict(X_test) - - -############################################################################## -# 4. Plotting function +# 3. Plotting and adaptativity comparison functions # -------------------------------------------------------------------------- def plot_subplot(ax, X, y, mapie, y_pred, upper_pi, lower_pi, color_rgb, show_transform=False, ax_transform=None): + """ + Plot the prediction interval and calibrator's features of a mapie instance + """ sort_order = np.argsort(X[:, 0]) lw = 1 color = mcolors.rgb2hex(color_rgb) @@ -180,9 +159,9 @@ def plot_subplot(ax, X, y, mapie, y_pred, upper_pi, lower_pi, color_rgb, y_pred_sorted = y_pred[sort_order] upper_pi_sorted = upper_pi[sort_order] lower_pi_sorted = lower_pi[sort_order] - + sample = np.random.choice(list(range(len(X))), min(4000, len(X))) # Plot test data - ax.scatter(x_test_sorted[:, 0], y_test_sorted, s=1, alpha=0.3, + ax.scatter(x_test_sorted[sample, 0], y_test_sorted[sample], s=1, alpha=0.3, color='darkblue', label="Test Data") # Plot prediction ax.plot(x_test_sorted[:, 0], y_pred_sorted, lw=lw, @@ -195,29 +174,27 @@ def plot_subplot(ax, X, y, mapie, y_pred, upper_pi, lower_pi, color_rgb, ax.plot(x_test_sorted[:, 0], lower_pi_sorted, lw=lw, color=color) # Plot true prediction interval ax.plot(x_test_sorted[:, 0], test_pi[sort_order, 0], "--k", - lw=lw*1.5, label='True PI') + lw=lw*1.5, label=f'True Interval (alpha={ALPHA})') ax.plot(x_test_sorted[:, 0], test_pi[sort_order, 1], "--k", lw=lw*1.5) if ( show_transform and isinstance(mapie, SplitCPRegressor) and isinstance(mapie.calibrator_, CCPCalibrator) ): - for calibrator in (list(mapie.calibrator_.functions_) - + [mapie.calibrator_]): - if isinstance(calibrator, CCPCalibrator): - if isinstance(calibrator, GaussianCCP): - sigmas = np.log(calibrator.sigmas_[:, 0]) - else: - sigmas = np.zeros(calibrator.n_out) - for i, loc in enumerate(sigmas): - ax_transform.plot( - x_test_sorted[:, 0], - calibrator.transform(x_test_sorted)[:, i], - lw=lw, color=color - ) - - -def need_transform(mapie): + transform = mapie.calibrator_.transform(x_test_sorted)\ + * mapie.calibrator_.beta_up_[0] + for i in range(transform.shape[1]): + ax_transform.plot( + x_test_sorted[:, 0], + transform[:, i], + lw=lw, color=color + ) + + +def has_ccp_calibrator(mapie): + """ + Whether or not, the ``mapie`` instance has a ``CCPCalibrator`` calibrator + """ if ( not isinstance(mapie, SplitCPRegressor) or not isinstance(mapie.calibrator_, CCPCalibrator) @@ -225,31 +202,32 @@ def need_transform(mapie): return False for calibrator in list(mapie.calibrator_.functions_) + [mapie.calibrator_]: if isinstance(calibrator, CCPCalibrator): - if isinstance(calibrator, GaussianCCP): - return True + return True return False def plot_figure(mapies, y_preds, y_pis, titles, show_transform=False): + """ + Plot the prediction interval of mapie instances. + Also plot the features of the calibrator, if ``show_transform=True`` + """ cp = plt.get_cmap('tab10').colors ncols = min(3, len(titles)) nrows = int(np.ceil(len(titles) / ncols)) ax_need_transform = np.zeros((nrows, ncols)) if show_transform: for i, mapie in enumerate(mapies): - ax_need_transform[i//ncols, i % ncols] = need_transform(mapie) + ax_need_transform[i//ncols, i % ncols] = has_ccp_calibrator(mapie) row_need_transform = np.max(ax_need_transform, axis=1) height_ratio = np.array([ item for x in row_need_transform for item in ([3] if x == 0 else [3, 1]) ]) - fig, axes = plt.subplots(nrows=nrows + int(sum(row_need_transform)), - ncols=ncols, figsize=(ncols*4, nrows*5), - height_ratios=height_ratio) - - for ax in axes[np.where(height_ratio == 1)[0]-1, :].flatten(): - ax.tick_params(axis='x', which='both', bottom=False, - top=False, labelbottom=False) + fig, axes = plt.subplots( + nrows=nrows + int(sum(row_need_transform)), ncols=ncols, + figsize=(ncols*4, nrows*4 + int(sum(row_need_transform))*2), + height_ratios=height_ratio + ) transform_axes = np.full((nrows, ncols), None) transform_axes[row_need_transform == 1, :] = axes[height_ratio == 1, :] @@ -281,20 +259,21 @@ def plot_figure(mapies, y_preds, y_pis, titles, show_transform=False): if i % 3 == 0: m_ax.set_ylabel('Y') if t_ax is not None: - t_ax.set_title("Transformation") + t_ax.set_title("Impact of each component on the PI width") if i >= len(titles) - ncols: t_ax.set_xlabel('X') - else: - m_ax.set_xlabel('X') + if i % 3 == 0: + t_ax.set_ylabel('component value') + m_ax.set_xlabel('X') m_ax.legend() fig.tight_layout() plt.show() -def compute_conditional_coverage(X_test, y_test, y_pis, bins_width=0.5): +def compute_conditional_coverage(X_test, y_test, y_pis, bins_width=0.25): """ - Computes the conditional coverage based on the prediction intervals. + Compute the conditional coverage on ``X_test``, using discret bins """ bin_edges = np.arange(np.min(X_test), np.max(X_test) + bins_width, bins_width) @@ -313,14 +292,18 @@ def compute_conditional_coverage(X_test, y_test, y_pis, bins_width=0.5): def plot_evaluation(titles, y_pis, X_test, y_test): + """ + Plot the conditional coverages + """ sort_order = np.argsort(X_test[:, 0]) cp = plt.get_cmap('tab10').colors - # Determine the number of rows needed num_plots = len(titles) num_rows = (num_plots + 2) // 3 fig, axs = plt.subplots(nrows=num_rows, ncols=3, figsize=(12, 4*num_rows)) + if len(axs.shape) == 1: + axs = axs.reshape(1, -1) for ax in axs[:, 2]: # To add a blank column on the right fig.delaxes(ax) axs = axs[:, :2].flatten() # Flatten to make indexing easier @@ -331,10 +314,21 @@ def plot_evaluation(titles, y_pis, X_test, y_test): for j, pi in enumerate(y_pis[3*i: 3*(i+1)]): c = mcolors.rgb2hex(cp[i*3+j]) # Conditionnal coverage - bin_centers, coverage = compute_conditional_coverage(X_test, - y_test, pi) - axs[i * 2].axhline(y=1-ALPHA, color='black', linestyle="--") + bin_centers, coverage = compute_conditional_coverage( + X_test, y_test, pi + ) axs[i * 2].plot(bin_centers, coverage, lw=2, color=c) + axs[i * 2].axhline( + y=np.mean(coverage), color=c, linestyle="--", + label=f"Coverage={round(np.mean(coverage)*100, 1)}%" + ) + axs[i * 2].axhline( + y=1-ALPHA, color='black', linestyle="--", + label=( + f"alpha={ALPHA}" if j == len(y_pis[3*i: 3*(i+1)]) - 1 + else None + ) + ) cov_lim[0] = min(cov_lim[0], min(coverage)) cov_lim[1] = max(cov_lim[1], max(coverage)) # Interval width @@ -360,7 +354,7 @@ def plot_evaluation(titles, y_pis, X_test, y_test): axs[i * 2 + 1].set_title("Prediction Interval Width") axs[i * 2 + 1].set_xlabel("X") axs[i * 2 + 1].set_ylabel("Width") - axs[i * 2].legend([f"alpha={ALPHA}"], fontsize=10) + axs[i * 2].legend(fontsize=10) axs[i * 2].set_title("Conditional Coverage") axs[i * 2].set_xlabel("X (bins of 0.5 width)") axs[i * 2].set_ylabel("Coverage") @@ -378,94 +372,153 @@ def plot_evaluation(titles, y_pis, X_test, y_test): ############################################################################## -# 5. Experiments: +# 4. Creation of Mapie instances # -------------------------------------------------------------------------- +# We are going to test different methods : ``CV+``, ``CQR`` and ``CCP`` +# (with default parameters) -############################################################################## -# 5.1. Default :class:`~mapie.calibrators.GaussianCCP`: -# -------------------------------------------------------------------------- +cv = ShuffleSplit(n_splits=1, test_size=0.5, random_state=random_state) + +# ================== Basic Split-conformal ================== +mapie_split = MapieRegressor(estimator, method="base", cv=cv) +mapie_split.fit(X_train, y_train) +y_pred_split, y_pi_split = mapie_split.predict(X_test, alpha=ALPHA) + +# ================== CV+ ================== +# MapieRegressor defaults to method='plus' and cv=5 +mapie_cv = MapieRegressor(estimator) +mapie_cv.fit(X_train, y_train) +y_pred_cv, y_pi_cv = mapie_cv.predict(X_test, alpha=ALPHA) +# ================== CQR ================== +mapie_cqr = MapieQuantileRegressor(quantile_estimator, alpha=ALPHA) +mapie_cqr.fit(X_train, y_train) +y_pred_cqr, y_pi_cqr = mapie_cqr.predict(X_test) + +# ================== CCP ================== +# `SplitCPRegressor` defaults to `calibrator=GaussianCCP()`` +mapie_ccp = SplitCPRegressor(estimator, alpha=ALPHA, cv=cv) +mapie_ccp.fit(X_train, y_train) +y_pred_ccp, y_pi_ccp = mapie_ccp.predict(X_test) + +# ================== PLOT ================== mapies = [mapie_split, mapie_cv, mapie_cqr, mapie_ccp] y_preds = [y_pred_split, y_pred_cv, y_pred_cqr, y_pred_ccp] y_pis = [y_pi_split, y_pi_cv, y_pi_cqr, y_pi_ccp] titles = ["Basic Split", "CV+", "CQR", "CCP (default)"] -plot_figure(mapies, y_preds, y_pis, titles) +plot_figure(mapies, y_preds, y_pis, titles, show_transform=True) plot_evaluation(titles, y_pis, X_test, y_test) ############################################################################## -# 5.2. How to improve the results? +# The :class:`~mapie.futur.split.regression.SplitCPRegressor` has is +# a very adaptative method, even with default +# parameters values. If the dataset is more complex, the default parameters +# may not be enough to get the best performances. In this case, we can use +# more advanced settings, described below. + + +############################################################################## +# 5. How to improve the results? +# -------------------------------------------------------------------------- +# +# 5.1. How does the ``CCP`` method works ? +# -------------------------------------------------------------------------- +# The CCP method is based on a function which create some features(vector of +# d dimensions), based on ``X`` (and potentially the prediction ``y_pred``). +# +# These features should be able to represente the distribuion of the +# conformity scores, which is here (by default) the absolute residual: +# ``|y_true - y_pred|`` + +############################################################################## +# Examples of basic functions: # -------------------------------------------------------------------------- -# The CCP method is based on a function :math:`\phi : X \to \phi(X) \in \R^d` -# This vector :math:`\phi(X)` constitute features that should be able to -# represente the distribuion of the conformity scores, -# which is here (by default) the -# absolute residual: :math:`\lvert y_{true} - y_{pred} \rvert` # -# Examples of basic :math:`\phi`: -# - :math:`\phi : X \to 1`, will try to estimate the absolute residual with a -# constant, and will results in a prediction interval of constant width -# (like the basic split CP) -# - :math:`\phi : X \to (1, X)`, will result in a prediction interval of width -# equal to: a constant + a value proportional to the value of :math:`X` -# (it seems a good idea here, as the uncertainty increase with :math:`X`) -# - :math:`\phi : X \to (1, X^3)`, will result in a prediction -# interval of width equal to: a constant -# + a value proportional to the value of :math:`X^3` (it seems -# a good idea here, as the uncertainty increase with :math:`X`) -# - :math:`\phi : X \to y_{pred}`, will result in a prediction interval of -# width proportional to the prediction (It is sometime the case, when the -# uncertainty is proportionnal to the value). +############################################################################## + +############################################################################## +# 1) ``f : X -> (1)``, will try to estimate the absolute residual with a +# constant, and will results in a prediction interval of constant width +# (like the basic split CP) +# +# 2) ``f : X -> (1, X)``, will result in a prediction interval of width +# equal to: a constant + a value proportional to the value of ``X`` +# (it seems a good idea here, as the uncertainty increase with ``X``) # -# Note that using :math:`\phi : X \to y_{pred}` is somewhat similar to -# using a standard Split CP (``method="base"`` in ``MapieRegressor``) -# with a :class:`~mapie.conformity_scores.GammaConformityScore``. +# 3) ``f : X, y_pred -> (y_pred)``, will result in a prediction interval +# of width proportional to the prediction (Like the basic split CP with a +# gamma conformity score). + + +############################################################################## +# Using custom definition +# -------------------------------------------------------------------------- # -# Using custom definition: +############################################################################## + calibrator1 = CustomCCP([lambda X: np.ones(len(X))]) calibrator1_bis = CustomCCP(bias=True) +# calibrator1_bis is equivalent to calibrator1, +# as bias=True adds a column of ones calibrator2 = CustomCCP([lambda X: X], bias=True) -calibrator3 = CustomCCP([lambda X: X**3], bias=True) +calibrator3 = CustomCCP([lambda y_pred: y_pred]) -############################################################################## -# Note: -# - ``calibrator1_bis`` is equivalent to ``calibrator1``, as ``bias=True`` -# adds a column of ones ############################################################################## -# Using :class:`~mapie.calibrators.PolynomialCCP`: +# Or using :class:`~mapie.calibrators.ccp.PolynomialCCP` class: +# -------------------------------------------------------------------------- +# +############################################################################## calibrator1 = PolynomialCCP(0) -calibrator2 = PolynomialCCP(1) -calibrator3 = PolynomialCCP([0, 3]) +calibrator2 = PolynomialCCP(1) # degree=1 is equivalent to degree=[0, 1] +calibrator3 = PolynomialCCP([1], "y_pred") +# Note: adding '0' in the 'degree' argument list +# is equivalent tohaving bias=True, as X^0=1 + ############################################################################## -# Note: -# - adding ``0`` in the ``degree`` argument list is equivalent to having -# ``bias=True``, as :math:`X^0=1` -# - degree=1 is equivalent to degree=[0, 1] -# - Warning, degree=2 is equivalent to degree=[0, 1, 2] +# 5.2. Improve the performances without prior knowledge: :class:`GaussianCCP` +# -------------------------------------------------------------------------- +# If we don't know anything about the data, we can use +# :class:`~mapie.calibrators.ccp.GaussianCCP`, +# which will sample random points, and apply gaussian kernels +# with a givenstandard deviation ``sigma``. +# +# Basically, the conformity score of a given point ``x_test``, +# will be estimated based on the conformity scores +# of calibration samples which are closed to ``x_test``. +# It result in a globally good adaptativity. +# +# The ``sigma`` hyperparameter can be optimized using cross-validation. +# It is defined by default based on the standard deviaiton of ``X``. -# ================== CCP 1 ================== -mapie_ccp_1 = SplitCPRegressor(estimator, calibrator=calibrator1, alpha=ALPHA, - random_state=random_state) +calibrator_gauss1 = GaussianCCP(np.arange(-1, 6).reshape(-1, 1), 1) +calibrator_gauss2 = GaussianCCP(30, 0.05) +calibrator_gauss3 = GaussianCCP(30, 0.25, random_sigma=True) + +# # ================== CCP 1 ================== +mapie_ccp_1 = SplitCPRegressor(estimator, calibrator=calibrator_gauss1, + cv=cv, alpha=ALPHA) mapie_ccp_1.fit(X_train, y_train) y_pred_ccp_1, y_pi_ccp_1 = mapie_ccp_1.predict(X_test) -# ================== CCP 2 ================== -mapie_ccp_2 = SplitCPRegressor(estimator, calibrator=calibrator2, alpha=ALPHA, - random_state=random_state) +# # ================== CCP 2 ================== +mapie_ccp_2 = SplitCPRegressor(estimator, calibrator=calibrator_gauss2, + cv=cv, alpha=ALPHA) mapie_ccp_2.fit(X_train, y_train) y_pred_ccp_2, y_pi_ccp_2 = mapie_ccp_2.predict(X_test) -# ================== CCP 3 ================== -mapie_ccp_3 = SplitCPRegressor(estimator, calibrator=calibrator3, alpha=ALPHA, - random_state=random_state) +# # ================== CCP 3 ================== +mapie_ccp_3 = SplitCPRegressor(estimator, calibrator=calibrator_gauss3, + cv=cv, alpha=ALPHA) mapie_ccp_3.fit(X_train, y_train) y_pred_ccp_3, y_pi_ccp_3 = mapie_ccp_3.predict(X_test) + mapies = [mapie_split, mapie_cv, mapie_cqr, mapie_ccp_1, mapie_ccp_2, mapie_ccp_3] y_preds = [y_pred_split, y_pred_cv, y_pred_cqr, @@ -473,53 +526,67 @@ def plot_evaluation(titles, y_pis, X_test, y_test): y_pis = [y_pi_split, y_pi_cv, y_pi_cqr, y_pi_ccp_1, y_pi_ccp_2, y_pi_ccp_3] titles = ["Basic Split", "CV+", "CQR", - "CCP (1)", "CCP (1, X)", "CCP (1, X**3)"] + "CCP, 6 points, s=1 (under-fit)", + "CCP, 30 points, s=0.05 (over-fit)", + "CCP, 30 points, s=0.25 (good calibrator)"] plot_figure(mapies, y_preds, y_pis, titles) plot_evaluation(titles, y_pis, X_test, y_test) ############################################################################## -# Note: The small width different between ``Basic Split`` and ``CCP 1`` -# is just because of the variance induced by the finite number of calibration -# and test points. The two values would both converge toward the same width -# if we would reproduce the experiment many times and average the results. - +# -> Using gaussian distances (with correct sigma value) from randomly +# sampled points is a good solution to have an overall good adaptativity. ############################################################################## # 5.3. Improve the performances using what we know about the data # -------------------------------------------------------------------------- -# To improve the results, we need to analyse the data and the conformity -# scores we chose (here, the absolute residuals). -# 1. We can see that the residuals increase with X for X > 0. -# 2. For X < 0, the points seem uniformly distributed -# around the base distribution. +# To improve the results, we need to analyse the data +# and the conformity scoreswe chose (here, the absolute residuals). + +# 1. We can see that the residuals (error with the prediction) +# increase with X, for X > 0. + +# 2. For X < 0, the points seem uniformly distributed around +# the base distribution. + +# -> It should be a good idea to inject in the calibrator the two groups +# ( X < 0 and X > 0). We can use on each group +# :class:`~mapie.calibrators.ccp.GaussianCCP` +# (or :class:`~mapie.calibrators.ccp.PolynomialCCP`, +# as it seems adapted in this example) -calibrator1 = CustomCCP([lambda X: X < 0, lambda X: X >= 0]) +calibrator1 = CustomCCP( + [lambda X: X < 0, (lambda X: X >= 0)*PolynomialCCP(3)] +) calibrator2 = CustomCCP( - [lambda X: X < 0, (lambda X: X >= 0)*PolynomialCCP(1)] + [ + (lambda X: X < 0)*PolynomialCCP(3), + (lambda X: X >= 0)*PolynomialCCP(3) + ] ) calibrator3 = CustomCCP( [ - (lambda X: X < 0)*PolynomialCCP(5), - (lambda X: X >= 0)*PolynomialCCP(5) - ] + (lambda X: X < 0)*GaussianCCP(10), + (lambda X: X >= 0)*GaussianCCP(30) + ], + normalized=True, ) # ================== CCP 1 ================== -mapie_ccp_1 = SplitCPRegressor(estimator, calibrator=calibrator1, alpha=ALPHA, - random_state=random_state) +mapie_ccp_1 = SplitCPRegressor(estimator, calibrator=calibrator1, + cv=cv, alpha=ALPHA) mapie_ccp_1.fit(X_train, y_train) y_pred_ccp_1, y_pi_ccp_1 = mapie_ccp_1.predict(X_test) # ================== CCP 2 ================== -mapie_ccp_2 = SplitCPRegressor(estimator, calibrator=calibrator2, alpha=ALPHA, - random_state=random_state) +mapie_ccp_2 = SplitCPRegressor(estimator, calibrator=calibrator2, + cv=cv, alpha=ALPHA) mapie_ccp_2.fit(X_train, y_train) y_pred_ccp_2, y_pi_ccp_2 = mapie_ccp_2.predict(X_test) # ================== CCP 3 ================== -mapie_ccp_3 = SplitCPRegressor(estimator, calibrator=calibrator3, alpha=ALPHA, - random_state=random_state) +mapie_ccp_3 = SplitCPRegressor(estimator, calibrator=calibrator3, + cv=cv, alpha=ALPHA) mapie_ccp_3.fit(X_train, y_train) y_pred_ccp_3, y_pi_ccp_3 = mapie_ccp_3.predict(X_test) @@ -527,62 +594,13 @@ def plot_evaluation(titles, y_pis, X_test, y_test): mapie_ccp_1, mapie_ccp_2, mapie_ccp_3] y_preds = [y_pred_split, y_pred_cv, y_pred_cqr, y_pred_ccp_1, y_pred_ccp_2, y_pred_ccp_3] -y_pis = [y_pi_split, y_pi_cv, y_pi_cqr, y_pi_ccp_1, y_pi_ccp_2, y_pi_ccp_3] -titles = ["Basic Split", "CV+", "CQR", "CCP 2 groups, 1 and 1", - "CCP 2 groups, 1 and X", "CCP 2 groups, polynomials"] - -plot_figure(mapies, y_preds, y_pis, titles) -plot_evaluation(titles, y_pis, X_test, y_test) - -############################################################################## -# 5.4. Improve the performances without prior knowledge -# -------------------------------------------------------------------------- -# We can use :class:`~mapie.calibrators.GaussianCCP` calibrators, -# if we don't have prior information -# about the data. It will sample points (are use the points given by the user), -# and only consider the calibration conformity scores of points next to a -# sample, to estimate the prediction interval of this sample. In this way, -# assuming wehave enough points, and the correct standard deviation value, -# we will getan overall good adaptativity. - -calibrator_gauss1 = GaussianCCP(np.arange(-1, 6).reshape(-1, 1), 1) -calibrator_gauss2 = GaussianCCP(30, 0.05, random_sigma=True, normalized=True) -calibrator_gauss3 = GaussianCCP(30, 0.25, random_sigma=True, normalized=True, - reg_param=1e-3) - -# ================== CCP 1 ================== -mapie_ccp_1 = SplitCPRegressor(estimator, calibrator=calibrator_gauss1, - alpha=ALPHA, random_state=random_state) -mapie_ccp_1.fit(X_train, y_train) -y_pred_ccp_1, y_pi_ccp_1 = mapie_ccp_1.predict(X_test) - -# ================== CCP 2 ================== -mapie_ccp_2 = SplitCPRegressor(estimator, calibrator=calibrator_gauss2, - alpha=ALPHA, random_state=random_state) -mapie_ccp_2.fit(X_train, y_train) -y_pred_ccp_2, y_pi_ccp_2 = mapie_ccp_2.predict(X_test) - -# ================== CCP 3 ================== -mapie_ccp_3 = SplitCPRegressor(estimator, calibrator=calibrator_gauss3, - alpha=ALPHA, random_state=random_state) -mapie_ccp_3.fit(X_train, y_train) -y_pred_ccp_3, y_pi_ccp_3 = mapie_ccp_3.predict(X_test) +y_pis = [y_pi_split, y_pi_cv, y_pi_cqr, + y_pi_ccp_1, y_pi_ccp_2, y_pi_ccp_3] +titles = ["Basic Split", "CV+", "CQR", + "CCP: constant (X<0) / polynomial (X>0)", + "CCP 2 polynomial (X<0) / polynomial (X>0)", + "CCP gaussian (X<0) / gaussian (X>0)"] -mapies = [mapie_split, mapie_cv, mapie_cqr, mapie_ccp_1, - mapie_ccp_2, mapie_ccp_3] -y_preds = [y_pred_split, y_pred_cv, y_pred_cqr, y_pred_ccp_1, - y_pred_ccp_2, y_pred_ccp_3] -y_pis = [y_pi_split, y_pi_cv, y_pi_cqr, y_pi_ccp_1, y_pi_ccp_2, y_pi_ccp_3] -titles = ["Basic Split", "CV+", "CQR", "CCP, 5 points, s=1 (under-fit)", - "CCP, 30 points, s=0.05 (over-fit)", - "CCP, 30 points, s=0.25 (good calibrator)"] plot_figure(mapies, y_preds, y_pis, titles, show_transform=True) plot_evaluation(titles, y_pis, X_test, y_test) - -############################################################################## -# Using gaussian distances from randomly sampled points is a good solution -# to have an overall good adaptativity. -# -# :math:`\to` We just need to find the good standard deviation parameters -# to have a good trade-off between adaptativity and overfitting. From 2900605644c435625cd2c3765f35c3d1a4a326b4 Mon Sep 17 00:00:00 2001 From: Damien Bouet Date: Tue, 23 Jul 2024 10:47:42 +0200 Subject: [PATCH 091/165] ADD: ccp in api doc --- doc/api.rst | 12 ++++++++++++ 1 file changed, 12 insertions(+) diff --git a/doc/api.rst b/doc/api.rst index 417bddd26..3c7db4bbd 100644 --- a/doc/api.rst +++ b/doc/api.rst @@ -93,3 +93,15 @@ Resampling subsample.BlockBootstrap subsample.Subsample + +CCP +========== + +.. autosummary:: + :toctree: generated/ + :template: class.rst + + futur.split.SplitCPRegressor + calibrators.ccp.CustomCCP + calibrators.ccp.PolynomialCCP + calibrators.ccp.GaussianCCP From a54aad8b672061281c505074c811dd00bcd959cf Mon Sep 17 00:00:00 2001 From: Damien Bouet Date: Tue, 23 Jul 2024 12:20:08 +0200 Subject: [PATCH 092/165] UPD: add ccp tutorial conclusion and remove typo --- .../4-tutorials/plot_ccp_tutorial.py | 32 +++++++++++++------ 1 file changed, 23 insertions(+), 9 deletions(-) diff --git a/examples/regression/4-tutorials/plot_ccp_tutorial.py b/examples/regression/4-tutorials/plot_ccp_tutorial.py index 214a421fd..8e201e417 100644 --- a/examples/regression/4-tutorials/plot_ccp_tutorial.py +++ b/examples/regression/4-tutorials/plot_ccp_tutorial.py @@ -475,7 +475,7 @@ def plot_evaluation(titles, y_pis, X_test, y_test): calibrator1 = PolynomialCCP(0) calibrator2 = PolynomialCCP(1) # degree=1 is equivalent to degree=[0, 1] -calibrator3 = PolynomialCCP([1], "y_pred") +calibrator3 = PolynomialCCP([1], variable="y_pred") # Note: adding '0' in the 'degree' argument list # is equivalent tohaving bias=True, as X^0=1 @@ -486,7 +486,7 @@ def plot_evaluation(titles, y_pis, X_test, y_test): # If we don't know anything about the data, we can use # :class:`~mapie.calibrators.ccp.GaussianCCP`, # which will sample random points, and apply gaussian kernels -# with a givenstandard deviation ``sigma``. +# with a given standard deviation ``sigma``. # # Basically, the conformity score of a given point ``x_test``, # will be estimated based on the conformity scores @@ -542,13 +542,13 @@ def plot_evaluation(titles, y_pis, X_test, y_test): # -------------------------------------------------------------------------- # To improve the results, we need to analyse the data # and the conformity scoreswe chose (here, the absolute residuals). - -# 1. We can see that the residuals (error with the prediction) -# increase with X, for X > 0. - -# 2. For X < 0, the points seem uniformly distributed around -# the base distribution. - +# +# 1) We can see that the residuals (error with the prediction) +# increase with X, for X > 0. +# +# 2) For X < 0, the points seem uniformly distributed around +# the base distribution. +# # -> It should be a good idea to inject in the calibrator the two groups # ( X < 0 and X > 0). We can use on each group # :class:`~mapie.calibrators.ccp.GaussianCCP` @@ -604,3 +604,17 @@ def plot_evaluation(titles, y_pis, X_test, y_test): plot_figure(mapies, y_preds, y_pis, titles, show_transform=True) plot_evaluation(titles, y_pis, X_test, y_test) + +############################################################################## +# Conlusion: +# -------------------------------------------------------------------------- +# +############################################################################## + +############################################################################## +# The most adaptative interval is this last brown one, with the two groups +# and the gaussian calibrators. In this specific case, the polynomial +# calibrator also worked, but the gaussian one is more generic. +# +# This is the power of the ``CCP`` method: combining prior knowledge and +# generic features (gaussian kernelsl) to have a great overall adaptativity! From 8f12ac40e7187a71408b6dc14956abe0ac1905a4 Mon Sep 17 00:00:00 2001 From: Damien Bouet Date: Tue, 23 Jul 2024 15:24:49 +0200 Subject: [PATCH 093/165] FIX typo in ccp_tuto --- .../4-tutorials/plot_ccp_tutorial.py | 49 +++++++++---------- 1 file changed, 24 insertions(+), 25 deletions(-) diff --git a/examples/regression/4-tutorials/plot_ccp_tutorial.py b/examples/regression/4-tutorials/plot_ccp_tutorial.py index 8e201e417..d00a5ad60 100644 --- a/examples/regression/4-tutorials/plot_ccp_tutorial.py +++ b/examples/regression/4-tutorials/plot_ccp_tutorial.py @@ -57,9 +57,9 @@ # distributions to evaluate the adaptativity of the methods: # - baseline distribution of ``x*sin(x)`` # - Add noise : -# - between -1 and 0: uniform distribution of the points around the baseline -# - between 0 and 5: normal distribution with a noise value which -# increase with ``x`` +# - between -1 and 0: uniform distribution of the points around the baseline +# - between 0 and 5: normal distribution with a noise value which +# increase with ``x`` # # We are going to use 3000 samples for training, 3000 for calibration and # 20 000 for testing (to have an accurate conditional coverage). @@ -174,7 +174,7 @@ def plot_subplot(ax, X, y, mapie, y_pred, upper_pi, lower_pi, color_rgb, ax.plot(x_test_sorted[:, 0], lower_pi_sorted, lw=lw, color=color) # Plot true prediction interval ax.plot(x_test_sorted[:, 0], test_pi[sort_order, 0], "--k", - lw=lw*1.5, label=f'True Interval (alpha={ALPHA})') + lw=lw*1.5, label='True Interval') ax.plot(x_test_sorted[:, 0], test_pi[sort_order, 1], "--k", lw=lw*1.5) if ( @@ -206,7 +206,7 @@ def has_ccp_calibrator(mapie): return False -def plot_figure(mapies, y_preds, y_pis, titles, show_transform=False): +def plot_figure(mapies, y_preds, y_pis, titles, show_components=False): """ Plot the prediction interval of mapie instances. Also plot the features of the calibrator, if ``show_transform=True`` @@ -215,7 +215,7 @@ def plot_figure(mapies, y_preds, y_pis, titles, show_transform=False): ncols = min(3, len(titles)) nrows = int(np.ceil(len(titles) / ncols)) ax_need_transform = np.zeros((nrows, ncols)) - if show_transform: + if show_components: for i, mapie in enumerate(mapies): ax_need_transform[i//ncols, i % ncols] = has_ccp_calibrator(mapie) row_need_transform = np.max(ax_need_transform, axis=1) @@ -225,7 +225,7 @@ def plot_figure(mapies, y_preds, y_pis, titles, show_transform=False): ]) fig, axes = plt.subplots( nrows=nrows + int(sum(row_need_transform)), ncols=ncols, - figsize=(ncols*4, nrows*4 + int(sum(row_need_transform))*2), + figsize=(ncols*3.6, nrows*3.6 + int(sum(row_need_transform))*1.8), height_ratios=height_ratio ) @@ -259,7 +259,7 @@ def plot_figure(mapies, y_preds, y_pis, titles, show_transform=False): if i % 3 == 0: m_ax.set_ylabel('Y') if t_ax is not None: - t_ax.set_title("Impact of each component on the PI width") + t_ax.set_title("Components of the PI") if i >= len(titles) - ncols: t_ax.set_xlabel('X') if i % 3 == 0: @@ -301,12 +301,10 @@ def plot_evaluation(titles, y_pis, X_test, y_test): num_plots = len(titles) num_rows = (num_plots + 2) // 3 - fig, axs = plt.subplots(nrows=num_rows, ncols=3, figsize=(12, 4*num_rows)) + fig, axs = plt.subplots(nrows=num_rows, ncols=2, figsize=(10, 3.7*num_rows)) if len(axs.shape) == 1: axs = axs.reshape(1, -1) - for ax in axs[:, 2]: # To add a blank column on the right - fig.delaxes(ax) - axs = axs[:, :2].flatten() # Flatten to make indexing easier + axs = axs.flatten() # Flatten to make indexing easier cov_lim = [1, 0] width_lim = [np.inf, 0] @@ -397,7 +395,8 @@ def plot_evaluation(titles, y_pis, X_test, y_test): # ================== CCP ================== # `SplitCPRegressor` defaults to `calibrator=GaussianCCP()`` -mapie_ccp = SplitCPRegressor(estimator, alpha=ALPHA, cv=cv) +mapie_ccp = SplitCPRegressor(estimator, calibrator=GaussianCCP(), + alpha=ALPHA, cv=cv) mapie_ccp.fit(X_train, y_train) y_pred_ccp, y_pi_ccp = mapie_ccp.predict(X_test) @@ -407,7 +406,7 @@ def plot_evaluation(titles, y_pis, X_test, y_test): y_pis = [y_pi_split, y_pi_cv, y_pi_cqr, y_pi_ccp] titles = ["Basic Split", "CV+", "CQR", "CCP (default)"] -plot_figure(mapies, y_preds, y_pis, titles, show_transform=True) +plot_figure(mapies, y_preds, y_pis, titles) plot_evaluation(titles, y_pis, X_test, y_test) @@ -526,15 +525,15 @@ def plot_evaluation(titles, y_pis, X_test, y_test): y_pis = [y_pi_split, y_pi_cv, y_pi_cqr, y_pi_ccp_1, y_pi_ccp_2, y_pi_ccp_3] titles = ["Basic Split", "CV+", "CQR", - "CCP, 6 points, s=1 (under-fit)", - "CCP, 30 points, s=0.05 (over-fit)", - "CCP, 30 points, s=0.25 (good calibrator)"] + "CCP 1: 6 points, s=1 (under-fit)", + "CCP 2: 30 points, s=0.05 (over-fit)", + "CCP 3: 30 points, s=0.25 (good calibrator)"] -plot_figure(mapies, y_preds, y_pis, titles) +plot_figure(mapies, y_preds, y_pis, titles, show_components=True) plot_evaluation(titles, y_pis, X_test, y_test) ############################################################################## -# -> Using gaussian distances (with correct sigma value) from randomly +# --> Using gaussian distances (with correct sigma value) from randomly # sampled points is a good solution to have an overall good adaptativity. ############################################################################## @@ -549,7 +548,7 @@ def plot_evaluation(titles, y_pis, X_test, y_test): # 2) For X < 0, the points seem uniformly distributed around # the base distribution. # -# -> It should be a good idea to inject in the calibrator the two groups +# --> It should be a good idea to inject in the calibrator the two groups # ( X < 0 and X > 0). We can use on each group # :class:`~mapie.calibrators.ccp.GaussianCCP` # (or :class:`~mapie.calibrators.ccp.PolynomialCCP`, @@ -566,7 +565,7 @@ def plot_evaluation(titles, y_pis, X_test, y_test): ) calibrator3 = CustomCCP( [ - (lambda X: X < 0)*GaussianCCP(10), + (lambda X: X < 0)*GaussianCCP(5), (lambda X: X >= 0)*GaussianCCP(30) ], normalized=True, @@ -597,12 +596,12 @@ def plot_evaluation(titles, y_pis, X_test, y_test): y_pis = [y_pi_split, y_pi_cv, y_pi_cqr, y_pi_ccp_1, y_pi_ccp_2, y_pi_ccp_3] titles = ["Basic Split", "CV+", "CQR", - "CCP: constant (X<0) / polynomial (X>0)", - "CCP 2 polynomial (X<0) / polynomial (X>0)", - "CCP gaussian (X<0) / gaussian (X>0)"] + "CCP 1: const (X<0) / poly (X>0)", + "CCP 2: poly (X<0) / poly (X>0)", + "CCP: gauss (X<0) / gauss (X>0)"] -plot_figure(mapies, y_preds, y_pis, titles, show_transform=True) +plot_figure(mapies, y_preds, y_pis, titles, show_components=True) plot_evaluation(titles, y_pis, X_test, y_test) ############################################################################## From 44c78fa02f19f392b0de9beca7d96a2879159615 Mon Sep 17 00:00:00 2001 From: Damien Bouet Date: Wed, 24 Jul 2024 17:57:55 +0200 Subject: [PATCH 094/165] ADD: CCP theoretical description doc --- doc/theoretical_description_regression.rst | 142 +++++++++++++++++- .../4-tutorials/plot_ccp_tutorial.py | 3 +- 2 files changed, 143 insertions(+), 2 deletions(-) diff --git a/doc/theoretical_description_regression.rst b/doc/theoretical_description_regression.rst index 09c55e74c..b82c41105 100644 --- a/doc/theoretical_description_regression.rst +++ b/doc/theoretical_description_regression.rst @@ -284,7 +284,147 @@ Note: In the symmetric method, :math:`E_{\text{low}}` and :math:`E_{\text{high}} As justified by the literature, this method offers a theoretical guarantee of the target coverage level :math:`1-\alpha`. -10. The ensemble batch prediction intervals (EnbPI) method + +10. The Conditional Conformal Prediction (CCP) Method +===================================================== + +The Conditional Conformal Prediction (CCP) method allows for better (adaptative) interval widths with +all type of data. The method has a lot of advantages: + +- It is model agnostic (it doesn't depend on the model but only on the predictions, unlike `CQR`) +- It uses the `split` approach (it require a calibration set, but is very fast at inference time, unlike the `CV` approach) +- It can create very adaptative intervals (with a varying width which truly reflects the model uncertainty) +- while providing coverage guantee on all sub-groups of interest (avoiding biases) +- with the possibility to inject prior knowledge about the data or the model + + +How does it works? +------------------- + +Method's intuition +~~~~~~~~~~~~~~~~~~~~~~ + +We recall that the `naive` method estimates the absolute residuals by a constant :math:`\hat{q}_{n, \alpha}^+` +(which is the quantile of :math:`{|Y_i-\hat{\mu}(X_i)|}_{1 \leq i \leq n}`). Then, the prediction interval is: +:math:`\hat{C}_{n, \alpha}^{\textrm naive}(X_{n+1}) = \hat{\mu}(X_{n+1}) \pm \hat{q}_{n, \alpha}^+` + +The idea of the `CCP` method, is to learn, not a constant, but a function :math:`q(X)`, +to have a different interval width depending on the :math:`X` value. Then, we would have: + +.. math:: \hat{C}_{n, \alpha}^{\textrm CCP}(X_{n+1}) = \hat{\mu}(X_{n+1}) \pm \hat{q}(X_{n+1}) + +To be able to find the best function, while having some coverage guarantees, +we should select this function inside some defined class of functions :math:`\mathcal{F}`. + +This method is motivated by the following equivalence: + +.. math:: + \begin{array}{c} + \mathbb{P}(Y_{n+1} \in \hat{C} \; | \; X_{n+1}=x) = 1 - \alpha, \quad \text{for all x} \\ + \textstyle \Longleftrightarrow \\ + \mathbb{E} \left[ f(X_{n+1}) \mathbb{I} \left\{ Y_{n+1} \in \hat{C}(X_{n+1}) \right\} \right] = 0, \quad \text{for all measurable f} \\ + \end{array} + +This is the equation corresponding to the perfect conditional coverage, which is theoretically impossible to obtain. +Then, relaxing this objective by replacing "all measurable f" with "all f belonging to some class :math:`\mathcal{F}`" +seems a way to get close to the perfect conditional coverage. + +The method follow 3 steps: +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +1. Choose a class of functions. The simple approach is to choose a class a finite dimension :math:`d \in \mathbb{N}`, + using + + .. math:: + \mathcal{F} = \left\{ \Phi (\cdot)^T \beta : \beta \in \mathbb{R}^d \right\} + +2. Find the best function of this class by resolving the following optimization problem: + + Note: It is actually a quantile regression between the transformation :math:`\Phi (X)` and the conformity scores `S`. + + .. math:: + \hat{g}_S \coloneq arg\min_{g \in \mathcal{F}} \; \frac{1}{n+1} \sum_{i=1}^n{l_{\alpha} (g(X_i), S_i)} \; + \frac{1}{n+1}l_{\alpha} (g(X_{n+1}), S) + + We use the same adaptation as the ``naive`` approach, to go from the ``full conformal`` + approach to the ``split`` one, using: + + .. math:: + \hat{g} \coloneq arg\min_{g \in \mathcal{F}} \; \frac{1}{n} \sum_{i=1}^n{l_{\alpha^*} (g(X_i), S_i)} \quad \text{where} \quad \alpha^* = 1 - \frac{\lceil (n+1)(1-\alpha) \rceil}{n} + +3. We use this optimized function :math:`\hat{g}` to compute the prediction intervals: + + .. math:: + \hat{C}(X_{n+1}) = \{ y : S(X_{n+1}, \: y) \leq \hat{g}(X_{n+1}) \} + + Note: The formulas are generic and work with all conformity scores. But in the case of the absolute residuals, we get: + + .. math:: + \hat{C}(X_{n+1}) = \hat{\mu}(X_{n+1}) \pm \hat{g}(X_{n+1}) + +Coverage guarantees: +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +Following this steps, we have the coverage guarantee: + +.. math:: + \forall f \in \mathcal{F}, \quad + \left | \mathbb{E} \left[ f(X_{n+1}) \mathbb{I} \left\{ Y_{n+1} \in \hat{C}(X_{n+1}) \right\} \right] \right | + \leq \frac{d}{n+1} \mathbb{E} \left[ \max_{1 \leq i \leq n+1} |f(X_i)| \right] + +Exemple: coverage over groups +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +If :math:`\mathcal{F} = \{ x \mapsto \sum _{G \in \mathcal{G}} \; \beta_G \mathbb{I} \{ x \in G \} : \beta_G \in \mathbb{R} \}`, then we have: + +.. math:: + \forall G \in \mathcal{G}, \quad + \left | \mathbb{P}(Y_{n+1} \in \hat{C}(X_{n+1}) \; | \; X_{n+1} \in G) - (1 - \alpha) \right | + \leq \frac{|\mathcal{G}|}{(n+1) \mathbb{P}(X_{n+1} \in G)} + = \frac{\text{number of groups in } \mathcal{G}}{\text{number of samples of } \{X_i\} \text{ in G}} + +How to use it in practice? +----------------------------- + +Creating a class a function adapted to our needs +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +The following will provide some tips on how to use the method, see the +:doc:`examples_regression/4-tutorials/plot_ccp_tutorial.rst` tutorial for more practical explanations. + +1. If you want a generally adaptative interval and you don't have prior + knowledge about your data, you can use gaussian kernels, implemented in Mapie + in :class:`mapie.calibrators.ccp.GaussianCCP`. See the API doc for more information. + +2. If you want to avoid bias on sub-groups and ensure an homogenous coverage on those, + you can add indicator functions corresponding to those groups. + +3. You can inject prior knowledge in the method using :class:`mapie.calibrators.ccp.CustomCCP`, + if you have information about the conformity scores distribution + (domains with different biavior, expected model uncertainty depending on a given feature, etc). + +4. Empirically test obtained coverage on a test set, to make sure that the expected coverage is achieved. + + +Avoid miscoverage +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +- | The control of the coverage error see above can be very big, depending of the + values :math:`|f(X_i)|` can take, and the number of dimensions :math:`d`. + | + | For example, if you divide 1000 samples into 20 disjoints groups of 50 samples, + you could theoretically have a miscoverage of 40%! + | However, coverage is generally achieved in practice. + +- | Some miscoverage can also comes from the optimization process, which is + solved with numerical methods, and may fail to find the global minimum. + If the target coverage is not achieved, you can try adding regularization, + to help the optimisation process. You can also try reducing the number of dimensions ``d`` + or using a smoother :math:`\Phi` function, such as with gaussian kernels + (indeed, using only indicator functions makes the optimization very difficult). + +- | Finally, you can reduce the value of :math:`\alpha` to enforce higher coverage. + Evaluating the best adjusted :math:`\alpha` using cross-validation will ensure + the same coverage on the test set (subject to variability due to the finite number of samples). + + +11. The ensemble batch prediction intervals (EnbPI) method ========================================================== The coverage guarantee offered by the various resampling methods based on the diff --git a/examples/regression/4-tutorials/plot_ccp_tutorial.py b/examples/regression/4-tutorials/plot_ccp_tutorial.py index d00a5ad60..b6f5dff5c 100644 --- a/examples/regression/4-tutorials/plot_ccp_tutorial.py +++ b/examples/regression/4-tutorials/plot_ccp_tutorial.py @@ -301,7 +301,8 @@ def plot_evaluation(titles, y_pis, X_test, y_test): num_plots = len(titles) num_rows = (num_plots + 2) // 3 - fig, axs = plt.subplots(nrows=num_rows, ncols=2, figsize=(10, 3.7*num_rows)) + fig, axs = plt.subplots(nrows=num_rows, ncols=2, + figsize=(10, 3.7*num_rows)) if len(axs.shape) == 1: axs = axs.reshape(1, -1) axs = axs.flatten() # Flatten to make indexing easier From fea21c40e84bb00b436a776dfe08512cb45b5490 Mon Sep 17 00:00:00 2001 From: Damien Bouet Date: Thu, 25 Jul 2024 10:07:13 +0200 Subject: [PATCH 095/165] FIX: ccp theory doc --- doc/theoretical_description_regression.rst | 13 ++++++++----- 1 file changed, 8 insertions(+), 5 deletions(-) diff --git a/doc/theoretical_description_regression.rst b/doc/theoretical_description_regression.rst index b82c41105..a687f18b0 100644 --- a/doc/theoretical_description_regression.rst +++ b/doc/theoretical_description_regression.rst @@ -343,13 +343,13 @@ The method follow 3 steps: Note: It is actually a quantile regression between the transformation :math:`\Phi (X)` and the conformity scores `S`. .. math:: - \hat{g}_S \coloneq arg\min_{g \in \mathcal{F}} \; \frac{1}{n+1} \sum_{i=1}^n{l_{\alpha} (g(X_i), S_i)} \; + \frac{1}{n+1}l_{\alpha} (g(X_{n+1}), S) + \hat{g}_S := arg\min_{g \in \mathcal{F}} \; \frac{1}{n+1} \sum_{i=1}^n{l_{\alpha} (g(X_i), S_i)} \; + \frac{1}{n+1}l_{\alpha} (g(X_{n+1}), S) We use the same adaptation as the ``naive`` approach, to go from the ``full conformal`` approach to the ``split`` one, using: .. math:: - \hat{g} \coloneq arg\min_{g \in \mathcal{F}} \; \frac{1}{n} \sum_{i=1}^n{l_{\alpha^*} (g(X_i), S_i)} \quad \text{where} \quad \alpha^* = 1 - \frac{\lceil (n+1)(1-\alpha) \rceil}{n} + \hat{g} := arg\min_{g \in \mathcal{F}} \; \frac{1}{n} \sum_{i=1}^n{l_{\alpha^*} (g(X_i), S_i)} \quad \text{where} \quad \alpha^* = 1 - \frac{\lceil (n+1)(1-\alpha) \rceil}{n} 3. We use this optimized function :math:`\hat{g}` to compute the prediction intervals: @@ -377,7 +377,7 @@ If :math:`\mathcal{F} = \{ x \mapsto \sum _{G \in \mathcal{G}} \; \beta_G \mathb .. math:: \forall G \in \mathcal{G}, \quad \left | \mathbb{P}(Y_{n+1} \in \hat{C}(X_{n+1}) \; | \; X_{n+1} \in G) - (1 - \alpha) \right | - \leq \frac{|\mathcal{G}|}{(n+1) \mathbb{P}(X_{n+1} \in G)} + \leq \frac{|\mathcal{G}|}{(n+1) \mathbb{P}(X_{n+1} \in G)} \\ = \frac{\text{number of groups in } \mathcal{G}}{\text{number of samples of } \{X_i\} \text{ in G}} How to use it in practice? @@ -387,7 +387,10 @@ Creating a class a function adapted to our needs ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ The following will provide some tips on how to use the method, see the -:doc:`examples_regression/4-tutorials/plot_ccp_tutorial.rst` tutorial for more practical explanations. +:doc:`examples_regression/4-tutorials/plot_ccp_tutorial` tutorial for more practical explanations. + +The following will provide some tips on how to use the method, see the +:doc:`plot_ccp_tutorial` tutorial for more practical explanations. 1. If you want a generally adaptative interval and you don't have prior knowledge about your data, you can use gaussian kernels, implemented in Mapie @@ -415,7 +418,7 @@ Avoid miscoverage - | Some miscoverage can also comes from the optimization process, which is solved with numerical methods, and may fail to find the global minimum. If the target coverage is not achieved, you can try adding regularization, - to help the optimisation process. You can also try reducing the number of dimensions ``d`` + to help the optimisation process. You can also try reducing the number of dimensions :math:`d` or using a smoother :math:`\Phi` function, such as with gaussian kernels (indeed, using only indicator functions makes the optimization very difficult). From 28ff85b74e30d12c4421ad8e5577929051eec560 Mon Sep 17 00:00:00 2001 From: Damien Bouet Date: Thu, 25 Jul 2024 10:46:41 +0200 Subject: [PATCH 096/165] RENAME compile_functions_warnings_errors utils function and update error message --- mapie/calibrators/ccp/base.py | 4 ++-- mapie/calibrators/ccp/custom.py | 4 ++-- mapie/calibrators/ccp/utils.py | 4 ++-- mapie/tests/test_ccp_calibrator.py | 5 ++++- 4 files changed, 10 insertions(+), 7 deletions(-) diff --git a/mapie/calibrators/ccp/base.py b/mapie/calibrators/ccp/base.py index c7bcd5247..343574988 100644 --- a/mapie/calibrators/ccp/base.py +++ b/mapie/calibrators/ccp/base.py @@ -14,7 +14,7 @@ from mapie.calibrators import BaseCalibrator from mapie.calibrators.ccp.utils import (calibrator_optim_objective, check_multiplier, - compile_functions_warnings_errors, + check_custom_calibrator_functions, concatenate_functions, check_required_arguments, dynamic_arguments_call) @@ -521,7 +521,7 @@ def __mul__(self, funct: Optional[Callable]) -> CCPCalibrator: if funct is None: return self else: - compile_functions_warnings_errors([funct]) + check_custom_calibrator_functions([funct]) old_multipliers = self._multipliers new_calibrator = cast(CCPCalibrator, clone(self)) if old_multipliers is None: diff --git a/mapie/calibrators/ccp/custom.py b/mapie/calibrators/ccp/custom.py index e8382162e..402430ff2 100644 --- a/mapie/calibrators/ccp/custom.py +++ b/mapie/calibrators/ccp/custom.py @@ -7,7 +7,7 @@ from mapie._typing import ArrayLike from .base import CCPCalibrator -from .utils import (check_multiplier, compile_functions_warnings_errors, +from .utils import (check_multiplier, check_custom_calibrator_functions, format_functions) @@ -180,7 +180,7 @@ def _check_transform_parameters( By default ``None`` """ self.functions_ = format_functions(self.functions, self.bias) - compile_functions_warnings_errors(self.functions_) + check_custom_calibrator_functions(self.functions_) def _transform_params( self, diff --git a/mapie/calibrators/ccp/utils.py b/mapie/calibrators/ccp/utils.py index ff42b1607..68de11e29 100644 --- a/mapie/calibrators/ccp/utils.py +++ b/mapie/calibrators/ccp/utils.py @@ -63,7 +63,7 @@ def format_functions( return functions -def compile_functions_warnings_errors( +def check_custom_calibrator_functions( functions: List[Callable] ) -> None: """ @@ -105,7 +105,7 @@ def compile_functions_warnings_errors( + f"argument '{param}'.\n" ) raise ValueError( - "Forbidden required argument.\n" + "Forbidden required argument in `CustomCCP` calibrator.\n" f"{error_msg}" "The only allowed required argument are : 'X', " "'y_pred' and 'z'.\n" diff --git a/mapie/tests/test_ccp_calibrator.py b/mapie/tests/test_ccp_calibrator.py index 98e344af5..3f0200c70 100644 --- a/mapie/tests/test_ccp_calibrator.py +++ b/mapie/tests/test_ccp_calibrator.py @@ -132,7 +132,10 @@ def test_custom_functions_error(functions: Any) -> None: """ for f in functions: # For coverage f(np.ones((10, 1)), np.ones((10, 1))) - with pytest.raises(ValueError, match=r"Forbidden required argument."): + with pytest.raises( + ValueError, + match=r"Forbidden required argument in `CustomCCP` calibrator." + ): mapie = SplitCPRegressor(calibrator=CustomCCP(functions), alpha=0.1) mapie.fit(X, y, calib_kwargs={"z": z}) From 4c560fddcfc88341994fe831305e761d3f056147 Mon Sep 17 00:00:00 2001 From: Damien Bouet Date: Thu, 25 Jul 2024 10:46:58 +0200 Subject: [PATCH 097/165] RENAME ccp calibrator test functions --- mapie/tests/test_ccp_calibrator.py | 8 ++++---- 1 file changed, 4 insertions(+), 4 deletions(-) diff --git a/mapie/tests/test_ccp_calibrator.py b/mapie/tests/test_ccp_calibrator.py index 3f0200c70..00c60fb35 100644 --- a/mapie/tests/test_ccp_calibrator.py +++ b/mapie/tests/test_ccp_calibrator.py @@ -155,7 +155,7 @@ def test_custom_functions_optional_arg(functions: Any) -> None: mapie.fit(X, y, calib_kwargs={"z": z}) -def test_phi_functions_empty() -> None: +def test_empty_custom_calibrator() -> None: """ Test that creating a CCPCalibrator object with functions which have required arguments different from 'X', 'y_pred' or 'z' raise an error. @@ -167,7 +167,7 @@ def test_phi_functions_empty() -> None: # ======== PolynomialCCP ========= -def test_poly_phi_init() -> None: +def test_poly_calibrator_default_init() -> None: """Test that initialization does not crash.""" mapie = SplitCPRegressor(calibrator=PolynomialCCP(), alpha=0.1) mapie.fit(X, y, calib_kwargs={"z": z}) @@ -177,7 +177,7 @@ def test_poly_phi_init() -> None: @pytest.mark.parametrize("variable", ["X", "y_pred", "z"]) @pytest.mark.parametrize("bias", [True, False]) @pytest.mark.parametrize("normalized", [True, False]) -def test_poly_phi_init_other( +def test_poly_calibrator_init_other( degree: Any, variable: Any, bias: bool, normalized: bool ) -> None: """Test that initialization does not crash.""" @@ -198,7 +198,7 @@ def test_invalid_variable_value(var: Any) -> None: # ======== GaussianCCP ========= -def test_gauss_phi_init() -> None: +def test_gauss_calibrator_default_init() -> None: """Test that initialization does not crash.""" mapie = SplitCPRegressor(calibrator=GaussianCCP(), alpha=0.1) mapie.fit(X, y, calib_kwargs={"z": z}) From b31609c60b29e174f949f7fe306ab4ed3d67cc01 Mon Sep 17 00:00:00 2001 From: Damien Bouet Date: Thu, 25 Jul 2024 10:50:31 +0200 Subject: [PATCH 098/165] Try to fix the doc --- doc/theoretical_description_regression.rst | 7 ++----- 1 file changed, 2 insertions(+), 5 deletions(-) diff --git a/doc/theoretical_description_regression.rst b/doc/theoretical_description_regression.rst index a687f18b0..acc3db5a6 100644 --- a/doc/theoretical_description_regression.rst +++ b/doc/theoretical_description_regression.rst @@ -386,11 +386,8 @@ How to use it in practice? Creating a class a function adapted to our needs ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -The following will provide some tips on how to use the method, see the -:doc:`examples_regression/4-tutorials/plot_ccp_tutorial` tutorial for more practical explanations. - -The following will provide some tips on how to use the method, see the -:doc:`plot_ccp_tutorial` tutorial for more practical explanations. +The following will provide some tips on how to use the method, see +:doc:`examples_regression/4-tutorials/plot_ccp_tutorial` for more practical explanations. 1. If you want a generally adaptative interval and you don't have prior knowledge about your data, you can use gaussian kernels, implemented in Mapie From 2babfa2ff4dcca8573b53d4cb4d981f713e15bfa Mon Sep 17 00:00:00 2001 From: Damien Bouet Date: Thu, 25 Jul 2024 13:44:44 +0200 Subject: [PATCH 099/165] UPD: ccp_CandC notebook --- notebooks/regression/tutorial_ccp_CandC.ipynb | 128 +++++++++++------- 1 file changed, 81 insertions(+), 47 deletions(-) diff --git a/notebooks/regression/tutorial_ccp_CandC.ipynb b/notebooks/regression/tutorial_ccp_CandC.ipynb index b997104d1..4ebfa0b31 100644 --- a/notebooks/regression/tutorial_ccp_CandC.ipynb +++ b/notebooks/regression/tutorial_ccp_CandC.ipynb @@ -79,7 +79,7 @@ "from mapie.regression import (MapieQuantileRegressor, MapieRegressor,\n", " SplitCPRegressor)\n", "from sklearn.preprocessing import StandardScaler\n", - "from sklearn.model_selection import PredefinedSplit\n", + "from sklearn.model_selection import PredefinedSplit, RandomizedSearchCV\n", "from ucimlrepo import fetch_ucirepo\n", " \n", "import warnings\n", @@ -178,10 +178,10 @@ "source": [ "- We will try to have an adaptative prediction interval using the ``CCP`` method (using ``CCPCalibrator``). We will compare it with standard ``Split`` CP (``MapieRegressor`` with ``method='base'``), and ``CQR`` (with ``MapieQuantileRegressor``).\n", "\n", - "- The adaptativity will be evaluated by looking at some scores (coverage, but also normalized excess and deficit) on different subgroups of interest.\n", + "- The adaptativity will be evaluated by looking at the conditional coverage over groups of target values, and groups on features of interest.\n", "\n", "- The groups are the 10 target groups (see the histogram below), and the 4 quantiles (with thresholds at Q1, Q2 and Q3) on features of interest (``'racepctblack', 'racePctWhite', 'racePctAsian', 'racePctHisp'``).\n", - "Those features were chosen to make sur there is no bias toward one or the other ethnicity. " + "Those features were chosen to make sure there is no bias toward one or the other ethnicity. " ] }, { @@ -324,7 +324,6 @@ "metadata": {}, "outputs": [], "source": [ - "\n", "def plot_subplot(ax, y_test_sorted, y_pred_sorted, upper_pi, lower_pi, lw,\n", " color_rgb, xlabel, ylabel, title, showlegend=False):\n", " color = mcolors.rgb2hex(color_rgb)\n", @@ -504,20 +503,54 @@ { "cell_type": "code", "execution_count": 10, - "id": "e5f1e425", + "id": "b62c8ad5", "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Best parameters found: {'num_leaves': 28, 'n_estimators': 200, 'max_depth': 8, 'learning_rate': 0.05}\n", + "Best cross-validation score: 0.0856611994572579\n" + ] + } + ], "source": [ + "# Define the model\n", "estimator = LGBMRegressor(\n", " objective='quantile',\n", " alpha=0.5,\n", - " learning_rate=0.2,\n", - " max_depth=12,\n", - " n_estimators=100,\n", - " num_leaves=7,\n", - " random_state=4,\n", + " random_state=random_state,\n", " verbose=-1,\n", - ")" + ")\n", + "\n", + "# Define the parameter grid\n", + "param_grid = {\n", + " 'learning_rate': [0.05, 0.1, 0.2],\n", + " 'max_depth': [8, 12, 16],\n", + " 'n_estimators': [50, 100, 150, 200],\n", + " 'num_leaves': [14, 21, 28, 35]\n", + "}\n", + "\n", + "# Setup the RandomizedSearchCV\n", + "random_search = RandomizedSearchCV(\n", + " estimator,\n", + " param_distributions=param_grid,\n", + " n_iter=30,\n", + " cv=5,\n", + " n_jobs=-1,\n", + " scoring='neg_mean_absolute_error',\n", + " random_state=random_state\n", + ")\n", + "\n", + "# Perform the random search\n", + "random_search.fit(X_scaled, y)\n", + "\n", + "# Print the best parameters and the corresponding score\n", + "print(\"Best parameters found: \", random_search.best_params_)\n", + "print(\"Best cross-validation score: \", -random_search.best_score_)\n", + "\n", + "estimator = random_search.best_estimator_" ] }, { @@ -538,7 +571,7 @@ "ALPHA = 0.2\n", "n_train, n_calib = 650, 650\n", "\n", - "# PredefinedSplit is used to make sur that each method is trained\n", + "# PredefinedSplit is used to make sure that each method is trained\n", "# and calibrated on the same data, to have a fair comparison\n", "cv = PredefinedSplit([-1]*n_train + [1]*n_calib)\n", "\n", @@ -575,16 +608,10 @@ "metadata": {}, "outputs": [], "source": [ - "calibrator = CustomCCP(\n", - " [ # GaussianCCP is used to have a general good adaptativity\n", - " GaussianCCP(100, 10, random_sigma=True),\n", - " ],\n", - " normalized=True,\n", - " bias=True,\n", - " reg_param = 5e-4,\n", - ")\n", + "calibrator_1 = GaussianCCP(40, 7, normalized=True, reg_param=1e-4)\n", + "\n", "mapie_ccp = SplitCPRegressor(\n", - " estimator, calibrator, cv=cv, alpha=ALPHA,\n", + " estimator, calibrator_1, cv=cv, alpha=ALPHA,\n", " conformity_score=AbsoluteConformityScore(sym=False),\n", ")" ] @@ -605,7 +632,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABxYAAAH5CAYAAACs6ttbAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3xT9foH8E/2aJJuaOkEmQqKgiLKVXCCC9wiCji4DnBcxf1T0Xu9ep2IinpFQRFUvAxREFSQ0RbKEFD2aEtL90rbpFln/P44TehImpPdtM/79fJVac45+SYt9PR8zvM8Ep7neRBCCCGEEEIIIYQQQgghhBBCSCekkV4AIYQQQgghhBBCCCGEEEIIIaTro2CREEIIIYQQQgghhBBCCCGEEOIVBYuEEEIIIYQQQgghhBBCCCGEEK8oWCSEEEIIIYQQQgghhBBCCCGEeCWP9AIIIYQQQgghhBBCCCGEEEK6I5Zl4XA4Ir0MQkRTKpWQSj3XJVKwSAghhBBCCCGEEEIIIYQQEkQ8z6OiogJGozHSSyHEJ1KpFH379oVSqXT7uITneT7MayKEEEIIIYQQQgghhBBCCOm2ysvLYTQa0atXL2i1WkgkkkgviRCvOI5DWVkZFAoFMjMz3X7fUsUiIYQQQgghhBBCCCGEEEJIkLAs6woVExMTI70cQnySnJyMsrIyMAwDhULR4XHPTVIJIYQQQgghhBBCCCGEEEKIT5wzFbVabYRXQojvnC1QWZZ1+zgFi4SQLmPRokWQSCQoKipyfW7s2LEYO3ZsxNZECCGEEEIIIYQQQggh/qD2pyQaefu+pWCREBKQv/76C7fccguysrKgVquRlpaGK6+8Eh988EFInq+srAxz5szB3r17Q3J8QgghhESnEydO4IEHHkC/fv2gVqthMBhw8cUX4/3334fFYnFt53A4MG/ePJx//vnQ6/XQ6XQ4//zz8cEHH4BhmA7Hzc7OhkQicf0XExODCy64AF999VU4Xx4hhBBCooTYcxKWZbFw4UKMHTsWCQkJUKlUyM7Oxj333INdu3a5tnPehO38T61WY+DAgZg1axYqKysj8RIJIYT0cDRjkRDit7y8PIwbNw6ZmZmYMWMGUlJSUFJSgu3bt+P999/HI488EvBz/PLLL23+XFZWhldeeQXZ2dkYPnx4wMcnhBBCSPRbs2YNbr31VqhUKkydOhVDhw6F3W5HTk4OnnrqKRw4cAD//e9/YTabce2112Lz5s247rrrMH36dEilUqxbtw6PPvooVq1ahR9//LFDu6Lhw4fjySefBACUl5djwYIFmDZtGmw2G2bMmBGJl0wIIYSQLkjsOYnFYsFNN92EdevW4ZJLLsHzzz+PhIQEFBUVYdmyZfjyyy9RXFyM9PR017FfffVV9O3bF1arFTk5Ofj444+xdu1a7N+/n1otEkIICSsKFgkhfnvttdcQGxuLnTt3Ii4urs1jVVVVQXkOZz9nQgghhBB3CgsLcccddyArKwsbN25Eamqq67GZM2fi+PHjWLNmDQDgiSeewObNm/HBBx9g1qxZru0eeughfPTRR5g1axaeeuopfPTRR22eIy0tDXfddZfrz9OnT0e/fv3w3nvvUbBICCGEEAC+nZM89dRTWLduHd577z08/vjjbY7z8ssv47333utw/AkTJmDkyJEAgPvvvx+JiYl499138cMPP2Dy5Mmhe2GEEBIi06dPh9FoxKpVqwAII7GGDx+OuXPn+n3MYByDeEetUAkhfjtx4gTOOuusDqEiAPTq1cv1/xKJBLNmzcKSJUswaNAgqNVqjBgxAlu2bPH6HK1nLG7atAnnn38+AOCee+5xtQFZtGhRMF4OIYQQQqLQm2++CZPJhM8//7zNBTyn/v3747HHHsOpU6fw+eef47LLLmsTKjrNnDkT48aNw3//+1+UlpZ2+pzJyckYPHgwTpw4EbTXQQghhJDo5ss5yaeffoorr7yyQ6gIADKZDLNnz25TrejOZZddBkAINAkhJJimT5/uuu6qVCrRv39/vPrqq25HRwTTihUr8M9//lPUtps2bYJEIoHRaPT7GMR/FCwSQvyWlZWF3bt3Y//+/V633bx5Mx5//HHcddddePXVV1FbW4vx48eL2tdpyJAhePXVVwEAf//737F48WIsXrwYl1xyid+vgRBCCCHR7ccff0S/fv1w0UUXdbrdzz//DJZlMXXqVI/bTJ06FQzDYN26dZ0ei2EYnDp1CvHx8X6tmRBCCCHdjy/nJAzD4O677w7o+Zw3OCUmJgZ0HEIIcWf8+PEoLy/HsWPH8OSTT2LOnDl46623Omxnt9uD9pwJCQnQ6/URPwbxjoJFQojfZs+ejebmZgwfPhwXXXQRnnnmGfzyyy9wOBwdtt2/fz/WrVuHF198EU8//TS2bNkCnufx0ksviX6+3r17Y8KECQCA0aNH46677sJdd92Ffv36Be01EUIIISR6NDY2orS0FMOGDfO67cGDBwEA55xzjsdtnI85t3VyOByoqalBTU0N9u/fj3vvvRcVFRW45ZZbAlg9IYQQQroLX85JDh06BACitm2toaEBNTU1OHXqFL777ju8+uqr0Gg0uO666/xaMyGEdEalUiElJQVZWVl46KGHcMUVV2D16tWYPn06Jk2ahNdeew19+vTBoEGDAAAlJSW47bbbEBcXh4SEBEycOBFFRUWu47EsiyeeeAJxcXFITEzE008/DZ7n2zzn2LFj21Ry22w2PPPMM8jIyIBKpUL//v3x+eefo6ioCOPGjQMAxMfHQyKRYPr06W6PUV9fj6lTpyI+Ph5arRYTJkzAsWPHXI8vWrQIcXFxWL9+PYYMGQKdTucKVYlnNGOREOK3K6+8Etu2bcPrr7+O9evXY9u2bXjzzTeRnJyMBQsW4IYbbnBtO3r0aIwYMcL158zMTEycOBE//vgjWJaFTCaLxEsghBBCSBRrbGwEAFF3pDY1NXnd1vmYc1unX375BcnJyW0+d88997i9Y5cQQgghPY8v5yS+bNvaFVdc0ebPWVlZWLJkCdLS0nw6DiEkcpqbm3H48OGwP+/gwYOh1WoDOoZGo0FtbS0AYMOGDTAYDPj1118BCDdiXn311Rg9ejS2bt0KuVyOf/3rXxg/fjz+/PNPKJVKvPPOO1i0aBG++OILDBkyBO+88w5WrlzpauvsztSpU7Ft2zbMmzcP55xzDgoLC1FTU4OMjAwsX74cN998M44cOQKDwQCNRuP2GNOnT8exY8ewevVqGAwGPPPMM7jmmmtw8OBBKBQKAMLX5e2338bixYshlUpx1113Yfbs2ViyZElA71l3RsEiISQg559/PlasWAG73Y59+/Zh5cqVeO+993DLLbdg7969OPPMMwEAAwYM6LDvwIED0dzcjOrqaqSkpIR76YQQQgiJcgaDAUDHINAdT6Fha87HWs+KBoBRo0bhX//6F1iWxf79+/Gvf/0L9fX1UCqV/i6dEEIIId2IL+ckvmzb2kcffYSBAwdCLpejd+/eGDRoEKRSakZHSDQ5fPhwm8KLcNm9ezfOO+88v/bleR4bNmzA+vXr8cgjj6C6uhoxMTFYsGCB6/ehr7/+GhzHYcGCBZBIJACAhQsXIi4uDps2bcJVV12FuXPn4rnnnsNNN90EAPjkk0+wfv16j8979OhRLFu2DL/++qvrxorWXesSEhIACL+7xcXFuT2GM1DMzc11talesmQJMjIysGrVKtx6660AhGD0k08+wRlnnAEAmDVrlmscF3GPgkVCSFAolUqcf/75OP/88zFw4EDcc889+P777/Hyyy9HemmEEEII6aYMBgP69Okjamaz82anP//8E8OHD3e7zZ9//gkAHdqsJyUluX6ZvfrqqzF48GBcd911eP/99/HEE08E8AoIIYQQ0h34ck4yePBgAMBff/3l8ZzEnQsuuAAjR470d4mEkC5g8ODB2L17d0Se11c//fQTdDodHA4HOI7DnXfeiTlz5mDmzJkYNmxYm5ss9+3bh+PHj3eoxLZarThx4gQaGhpQXl6OUaNGuR6Ty+UYOXJkh3aoTnv37oVMJsOll17q89qdDh06BLlc3uZ5ExMTMWjQIFdbagDQarWuUBEAUlNTUVVV5ffz9gQULBJCgs55otu6F3Xr3tVOR48ehVar7dBarDPOu14IIYQQQgDguuuuw3//+19s27YNo0eP9rjdhAkTIJPJsHjxYkydOtXtNl999RWUSiUmTpzY6XNee+21uPTSS/Hvf/8bDzzwAGJiYgJ6DYQQQgiJfr6ek3z99de4++67w7hCQkikabVavysHw23cuHH4+OOPoVQq0adPH8jlp6Ok9r//mEwmjBgxwm3rUF+u+7bmqbVpKDhbojpJJBKPgScRUL08IcRvv//+u9t/ZNeuXQsAruG9ALBt2zb88ccfrj+XlJTghx9+wFVXXeXTfEXnDy6j0ejnqgkhhBDSnTz99NOIiYnB/fffj8rKyg6PnzhxAu+//z7S09Nx33334bfffsPHH3/cYbtPPvkEGzduxAMPPIDExESvz/vMM8+gtrYWn332WVBeByGEEEKim9hzkoyMDMyYMQO//PILPvjggw7bcRyHd955B6dOnQrHsgkhxK2YmBj0798fmZmZbUJFd8477zwcO3YMvXr1Qv/+/dv8Fxsbi9jYWKSmpiI/P9+1D8MwnVZvDhs2DBzHYfPmzW4fd1ZMsizr8RhDhgwBwzBtnre2thZHjhxxdbQh/qGKRUKI3x555BE0NzfjxhtvxODBg2G325GXl4fvvvsO2dnZuOeee1zbDh06FFdffTUeffRRqFQqzJ8/HwDwyiuv+PScZ5xxBuLi4vDJJ59Ar9cjJiYGo0aNQt++fYP62gghhBASHc444wwsXboUt99+O4YMGYKpU6di6NChrvOS77//HtOnTwcAvPvuuzh8+DAefvhhrFu3DuPHjwcArF+/Hj/88AMuu+wyvPXWW6Ked8KECRg6dCjeffddzJw5s8NdroQQQgjpWXw5J3nnnXdw4sQJPProo1ixYgWuu+46xMfHo7i4GN9//z0OHz6MO+64I7IviBBCRJoyZQreeustTJw4Ea+++irS09Nx8uRJrFixAk8//TTS09Px2GOP4Y033sCAAQMwePBgvPvuu50WjmRnZ2PatGm49957MW/ePJxzzjk4efIkqqqqcNtttyErKwsSiQQ//fQTrrnmGmg0Guh0ujbHGDBgACZOnIgZM2bg008/hV6vx7PPPou0tDSvXWpI56hikRDit7fffhvjxo3D2rVr8cQTT+CJJ57Ajh078PDDDyM/P7/N4NxLL70Uc+fOxeLFi/HSSy8hISEBP//8M84++2yfnlOhUODLL7+ETCbDgw8+iMmTJ3u8c4UQQgghPcMNN9yAP//8E7fccgt++OEHzJw5E88++yyKiorwzjvvYN68eQCEu25/++03zJ07F6WlpZg9ezYefvhh/PDDD5g2bRp+/fVXqFQq0c87e/ZslJSUuG35QwghhJCeR+w5iVarxc8//4wFCxaAZVn885//xIMPPohFixZh1KhR2L17N9LS0iL8agghRBytVostW7YgMzMTN910E4YMGYL77rsPVqsVBoMBAPDkk0/i7rvvxrRp0zB69Gjo9XrceOONnR73448/xi233IKHH34YgwcPxowZM2A2mwEAaWlpeOWVV/Dss8+id+/emDVrlttjLFy4ECNGjMB1112H0aNHg+d5rF27lm4MDZCEp2axhJAQk0gkmDlzJj788MNIL4UQQgghpI3GxkZceumlOHHiBLZs2YLhw4dHekmEEEIIIYSQKGe1WlFYWIi+fftCrVZHejmE+MTb9y9VLBJCCCGEEEJ6LIPBgJ9//hlJSUm45pprcPLkyUgviRBCCCGEEEII6bJoxiIhhBBCCCGkR0tJSUFBQUGkl0EIIYQQQgghhHR5VLFICCGEEEIIIYQQQgghhBBCCPGKKhYJISFHo1wJIYQQQgghhBBCCCGEkOhHFYuEEEIIIYQQQgghhBBCCCGEEK8oWCSEEEIIIYQQQgghhBBCCCGEeNXjWqFyHIeysjLo9XpIJJJIL4cQQgjpEnieR1NTE/r06QOplO47CiU6FyGEEEI6onOR8KFzEUIIIaQjOhchRLweFyyWlZUhIyMj0ssghBBCuqSSkhKkp6dHehndGp2LEEIIIZ7RuUjo0bkIIYQQ4hmdixDiXY8LFvV6PQDhHwiDwRDh1RBCCCFdQ2NjIzIyMlw/J0no0LkIIYQQ0hGdi4QPnYuQ7qDWUotrV16LM2LPwCdXfgK9kv7tIMSdebvnYemRpbh14K14cuSTkV6OW3Py5mBv1V5MO2sakjRJovbJK8vDyuMr0dfQF99c901Q1hGucxGrg4Wd5UL6HK0pZVKoFbKwPZ8vpk+fDqPRiFWrVgEAxo4di+HDh2Pu3Ll+HzMYx/Bm06ZNGDduHOrr6xEXFxey5wk1iUSClStXYtKkST7v2+OCRWebD4PBQCfQhBBCSDvUDiv06FyEEEII8YzORUKPzkVId2BX2CHTyCBRS6DT62BQ0fcyIe5ItVLINDKoY9Rd8t98juewu2E3BqUMQu+E3lDL1aL2U8eoIdPIoNAqgv66QnkuYnWw+OVABRqsjpA9R3uxagWuOitFdLg4ffp0fPnllwAAhUKBzMxMTJ06Fc8//zzk8tDGSStWrIBCoRC1radwz5dj+Ouiiy5CeXk5YmNjRe/TPkSNdj0uWCSEEEIIIYQQQgghhEQ/lmfB83ykl0FIl+Vgwxdg+eNI3RHUWeuQrk8XHSpGMzvLocHqgFoug0oe+jmONkZ4PjvL+VS1OH78eCxcuBA2mw1r167FzJkzoVAo8Nxzz3XY1m63Q6lUBmW9CQkJXeIY3iiVSqSkpIT8edwJ5vsdCJpCSgghhBBCCCGEEEIIiToMx4BD+FoKEhJtHFzXDhZzy3KhkqmQpc+K9FLCSiWXQquUh/w/f8NLlUqFlJQUZGVl4aGHHsIVV1yB1atXAxAq7yZNmoTXXnsNffr0waBBgwAILdZvu+02xMXFISEhARMnTkRRUZHrmCzL4oknnkBcXBwSExPx9NNPd7gxZOzYsXj88cddf7bZbHjmmWeQkZEBlUqF/v374/PPP0dRURHGjRsHAIiPj4dEIsH06dPdHqO+vh5Tp05FfHw8tFotJkyYgGPHjrkeX7RoEeLi4rB+/XoMGTIEOp0O48ePR3l5ucf3Z9OmTZBIJDAajaKOMWfOHHz55Zf44YcfIJFIIJFIsGnTJlHvm7v3+/nnn8eoUaM6rOucc87Bq6++CgDYuXMnrrzySiQlJSE2NhaXXnop/vjjD4+vyVcULBJCCCGEEEIIIYQQQqIOy7PgeAoWCfGkqweLOaU5yDZkI04dF+mlkE5oNBrY7XbXnzds2IAjR47g119/xU8//QSHw4Grr74aer0eW7duRW5uritcc+73zjvvYNGiRfjiiy+Qk5ODuro6rFy5stPnnTp1Kr755hvMmzcPhw4dwqeffgqdToeMjAwsX74cAHDkyBGUl5fj/fffd3uM6dOnY9euXVi9ejW2bdsGnudxzTXXwOE4/XejubkZb7/9NhYvXowtW7aguLgYs2fP9uk96uwYs2fPxm233eYKG8vLy3HRRReJet/cvd9TpkzBjh07cOLECdc2Bw4cwJ9//ok777wTANDU1IRp06YhJycH27dvx4ABA3DNNdegqanJp9flCbVCJYQQQgghhBBCCCGERB2Wo1aohHTGztq9bxQhZocZe6v2YmzGWOgUukgvh7jB8zw2bNiA9evX45FHHnF9PiYmBgsWLHC15Pz666/BcRwWLFjgmlG5cOFCxMXFYdOmTbjqqqswd+5cPPfcc7jpppsAAJ988gnWr1/v8bmPHj2KZcuW4ddff8UVV1wBAOjXr5/rcWfL0169erWZsdjasWPHsHr1auTm5uKiiy4CACxZsgQZGRlYtWoVbr31VgCAw+HAJ598gjPOOAMAMGvWLFfln1idHUOn00Gj0cBms7VpoSrmfQM6vt+AUJ24dOlSvPjii67XNWrUKPTv3x8AcNlll7VZ33//+1/ExcVh8+bNuO6663x6be5QxSIhhBBCCCGEEEIIISTqMDxDFYuEdKIrVyzuKN8BlmeRZciCTCp+/h8JvZ9++gk6nQ5qtRoTJkzA7bffjjlz5rgeHzZsWJuQa9++fTh+/Dj0ej10Oh10Oh0SEhJgtVpx4sQJNDQ0oLy8vE37TrlcjpEjR3pcw969eyGTyXDppZf6/ToOHToEuVze5nkTExMxaNAgHDp0yPU5rVbrCgQBIDU1FVVVVT49lz/H8Pa+ObV/vwFgypQpWLp0KQAhAP7mm28wZcoU1+OVlZWYMWMGBgwYgNjYWBgMBphMJhQXF/v0ujyhikVCCCGEEEIIIYQQQkjUYXkWPKhikRBPGI6J9BI8yi3LRaI6EX1i+kR6KaSdcePG4eOPP4ZSqUSfPn0gl7eNkWJiYtr82WQyYcSIEViyZEmHYyUnJ/u1Bo1G49d+/lAoFG3+LJFIfK6G9+cYYt+39u83AEyePBnPPPMM/vjjD1gsFpSUlOD22293PT5t2jTU1tbi/fffR1ZWFlQqFUaPHt2mxWogKFgkhBBCCCGEEEIIIYREHZajGYuEdKYrVyxuPbUV2YZs6JX6SC+FtBMTE+NqqSnGeeedh++++w69evWCwWBwu01qairy8/NxySWXAAAYhsHu3btx3nnnud1+2LBh4DgOmzdvdrVCbc1ZwceyrMd1DRkyBAzDID8/39UKtba2FkeOHMGZZ54p+vUFg1Kp7LBWMe+bJ+np6bj00kuxZMkSWCwWXHnllejVq5fr8dzcXMyfPx/XXHMNAKCkpAQ1NTWBv5AW1AqVEEIIiTIsxyPnWPBOBgghhBBCfOKwAlvfA9iue7GSENIzsDwFi4R0pqsGi8WNxSgzlyFdnw6NPHyVaSQ0pkyZgqSkJEycOBFbt25FYWEhNm3ahEcffRSnTp0CADz22GN44403sGrVKhw+fBgPP/wwjEajx2NmZ2dj2rRpuPfee7Fq1SrXMZctWwYAyMrKgkQiwU8//YTq6mqYTKYOxxgwYAAmTpyIGTNmICcnB/v27cNdd92FtLQ0TJw4MSTvRWev588//8SRI0dQU1MDh8Mh6n3rzJQpU/Dtt9/i+++/b9MGFRBe++LFi3Ho0CHk5+djypQpQa0CpWCREEIIiTLf7SzBXZ/nY9nOkkgvhRBCCCE90YkNwIY5wKEfI70SQkgPx/Ksz+3qCOlJHF30JqDcslzIJDJkG7IhkUgivZywszEcmu1MyP+zMeG58UKr1WLLli3IzMzETTfdhCFDhuC+++6D1Wp1VeI9+eSTuPvuuzFt2jSMHj0aer0eN954Y6fH/fjjj3HLLbfg4YcfxuDBgzFjxgyYzWYAQFpaGl555RU8++yz6N27N2bNmuX2GAsXLsSIESNw3XXXYfTo0eB5HmvXru3QujTUZsyYgUGDBmHkyJFITk5Gbm6uqPetM7fccgtqa2vR3NyMSZMmtXns888/R319Pc477zzcfffdePTRR9tUNAZKwvewn76NjY2IjY1FQ0ODz+WlhBBCSKTxPI+r3tuCY1UmvH7jMEwelRmU49LPx/Ch95oQQkjU++VFIG8ecOOnwDl3BOWQ9PMxfOi9Jt1BjaUG45aNgwQS/Hjjj8gyZEV6SYR0Sbf+eCsO1x3GnYPvxHOjnov0clwe/u1hnGo6helDpyNBneDz/ltPbcWyo8twRuwZWDVpVVDWFOyfj1arFYWFhejbty/UarXwOQeLXw5UoMEavsA3Vq3AVWelQK2Qhe05SfRz9/3bGs1YJIQQQqJIfmEdjlV1bO9ACCGEEBI2xdsivQJCCAEA8ODBcEykl0FIl9UVW6E6WAd2VuzEqNRR0Ct61nxFtUKGq85KgZ0NXwtnpUxKoSIJOgoWCSGEkCiyKLcIUgnA9ah+A4QQQgjpMhgbUL4v0qsghBAXO2eP9BII6bIYtusF73uq9sDKWpGhz4BCFt52lF2BWiGjoI9EPZqxSAghhESJMqMFvx6sxKCUnnVHHyGEEEK6kPJ9AEsX8QkhXYed/k0ixCOG73rBYk5ZDvQKPTL0GZFeCiHETxQsEkIIIVFiSf5JKOVSDEujWTiEEEIIiZDi7ZFeASGEtEHBIiGedcVWqDmnctAvth/0SrppmpBoRcEiIYQQEgWsDhZL84txbmYckmJUkV4OIYQQQnqq4u2AXBPpVRBCiIuD7XrBCSFdhZgZpBzPgefDM2+lurkax4zHkK5PR4wiJizPSQgJPgoWCSGEkCjw05/lqG92YGhaLPXiJ4QQQkhk8DxQsh2Iy4z0Sggh3VyDrQGLDy4WtS3NWIxOJ4wnIr2EHkFMxeIzW57BCzkvhCVczCvLgwQSZBmyIJVQNEFItKK/vYQQQkgXx/M8FuYWYnCKHn0TYyCRSCK9JEIIIYT0RPWFQHMtEJse6ZUQQrq557Y+hzd3vomDtQe9bkutUKPP4brDmPTDJOwo3xHppXR7YioW/6j6A8eNx2F2mEO+npzSHPTR9UGyNjnkz0UICR0KFgkhhJAubk+JEQfKGnFOeiwSYpSRXg4hhBBCeqrifOFjXFZk10EI6facAUe5qdzrttQKNfocrT8KAKgwV0R4Jd2ft2Cx2dGMquYqWBgLWJ4N6VpYjkVeWR6yDFnQK2i+IiHRjIJFQgghpIv7Mq8IyToVBqXoIZNStSIhhBBCIqRkO2DoA2gTIr0SQghxCVcrVI7nMOzLYThuPB6W5+vOihqKIr2EHoHnea/BYmFjIQDAylhFVTcG4lDdITTaG5GuS4dKrgrpcxFCQouCRUIIIaQLq2qyYs2f5Tg3Mw699OpIL4cQQgghPdnJbUBsJqCgcxJCSNcRrlaoRY1FAID/7PhPWJ4vkh767SHUWGpCdvyChoKQHZucxvIseHQ+N7GwoSVYZK0hr1jMLc2FWqZGloE6H/RUc+bMQe/evSGRSLBq1apILyck5syZg+HDh7v+PH36dEyaNCmgYwbjGMFGwSIhhBDShX2TXwKZVIKz02KhVsgivRxCCCGE9FQWI1BzVKhYlLcEiw5LRJdECCEAYGNtkV5Ct1JprkROaQ5mb54dsudwhlkktMRUIDq/FnbWDo7nQrqeraVb0Te2L2JVsSF9HhKY6dOnQyKRQCKRQKlUon///nj11VfBMIFVtB46dAivvPIKPv30U5SXl2PChAkBr7V9iNfZds7XJJfLkZ2djX/84x8wmUwBr8Gb999/H4sWLRK1bVFRESQSCfbu3ev3McJFHukFEEIIIcQ9B8vh6+0ncU56LFLjNJFeDiGEEEK8sTYAv/8buPxlQKkVtw/rACQyQNrF7/s9tQsAL1QsSlrWSsEiIaQLoBmLweUMl0IVMnE8h1NNp0JybNKWg/P+d+OE8QQAoaVwKFuhNtmb8FfNX7g883LoFLqQPQ8JjvHjx2PhwoWw2WxYu3YtZs6cCYVCgeeee87nY7EsC4lEghMnhO+1iRMnQiIJ/5ifs846C7/99hsYhkFubi7uvfdeNDc349NPP+2wrd1uh1KpDMrzxsYGHqQH4xjB1sV/cyGEEEJ6rnX7K1BtsuHs9DgY1HQvECGEENLlHV0P5H8CHP9V/D5LbwPWzgb4zluVRVzJdkBlAGLTI70SQghpI1wzFklwVJgr6GsWJmKCxQJjARRSBRiOCenXJb88HxzPIUufBZmUujF1dSqVCikpKcjKysJDDz2EK664AqtXrwYA2Gw2zJ49G2lpaYiJicGoUaOwadMm176LFi1CXFwcVq9ejTPPPBMqlQr33nsvrr/+egCAVCptEywuWLAAQ4YMgVqtxuDBgzF//vw2azl16hQmT56MhIQExMTEYOTIkcjPz8eiRYvwyiuvYN++fa5qxM6q+uRyOVJSUpCeno7bb78dU6ZMcb0mZ+XjggUL0LdvX6jVQncOo9GI+++/H8nJyTAYDLjsssuwb9++Nsd944030Lt3b+j1etx3332wWq1tHm/fxpTjOLz55pvo378/VCoVMjMz8dprrwEA+vbtCwA499xzIZFIMHbsWLfHsNlsePTRR9GrVy+o1WqMGTMGO3fudD2+adMmSCQSbNiwASNHjoRWq8VFF12EI0eOeHx/fEVXKQkhhJAualFeEfon69AvOSYid3MRQgghxEcnc4WPrMg7/nkeOLVTqFpkbF17duHJbUBcFqDSAZa6SK+GEEJcKKSKLkUNRZFeQo/hrQKR4RiUNJUgJSYFp0yn0GxvDtlackpzkKxJRqouNWTPQUJHo9GgtrYWADBr1iwcPHgQ3377Lfr06YOVK1di/Pjx+OuvvzBgwAAAQHNzM/7zn/9gwYIFSExMRGpqKsaOHYt77rkH5eXlruMuWbIEL730Ej788EOce+652LNnD2bMmIGYmBhMmzYNJpMJl156KdLS0rB69WqkpKTgjz/+AMdxuP3227F//36sW7cOv/32GwDfKvs0Gg3s9tM/P44fP47ly5djxYoVkMmE8PvWW2+FRqPBzz//jNjYWHz66ae4/PLLcfToUSQkJGDZsmWYM2cOPvroI4wZMwaLFy/GvHnz0K9fP4/P+9xzz+Gzzz7De++9hzFjxqC8vByHDx8GAOzYsQMXXHABfvvtN5x11lkeqyaffvppLF++HF9++SWysrLw5ptv4uqrr8bx48eRkJDg2u6FF17AO++8g+TkZDz44IO49957kZubK/o96gwFi4QQQkgXdKCsAbtP1uOm89KQEBOc9guEEEIICbEiH39RN9cAtiaAtQMhnmsUEJYByv4A+l4CKClYJIR0LdQKNboUNRZFegk9hreKxVJTKRieQe+Y3jhlOoUmR1NI1sHzPHJKc5Adm01tUAGUl5e3CdcAID4+Hn379oXVasXBgwc77HPeeecBAI4cOQKz2dzmsezsbCQkJKC6uholJSVtHtPr9a6wzx88z2PDhg1Yv349HnnkERQXF2PhwoUoLi5Gnz59AACzZ8/GunXrsHDhQvz73/8GADgcDsyfPx/nnHOO61hxcXEAgJSUFNfnXn75Zbzzzju46aabAAgVewcPHsSnn36KadOmYenSpaiursbOnTtdgVn//v1d++t0Olcloi92796NpUuX4rLLLnN9zm6346uvvkJycjIAICcnBzt27EBVVRVUKhUA4O2338aqVavwv//9D3//+98xd+5c3HfffbjvvvsAAP/617/w22+/dahadGpqasL777+PDz/8ENOmTQMAnHHGGRgzZgwAuJ47MTHR42sym834+OOPsWjRItecys8++wy//vorPv/8czz11FOubV977TVceumlAIBnn30W1157LaxWq6siMxAULBJCCCFd0Jd5RUjQKnBWigHyrj5ziRBCSPBYG4A3MoG7VgD9L4/0aogvmuuA2mO+7ePcvqsHi5X7AUez0AZVRpcRCCFdi52lisVoUthQCAkk4NHFW4C7satiF8rN5bj+jOsjvRRRvIXuBcYCAEBqjFBF2OwITcViYWMhKpsrcVGfi6CRa0LyHNHk008/xSuvvNLmc1OmTMHXX3+NU6dOYcSIER324Vta5k+fPh3bt29v89jixYtx1113YdmyZZg1a1abx6666iqsX7/e5zX+9NNP0Ol0cDgc4DgOd955J+bMmYNNmzaBZVkMHDiwzfY2mw2JiYmuPyuVSpx99tmdPofZbMaJEydw3333YcaMGa7PMwzjqjzcu3cvzj333DZVeP7666+/oNPpwLIs7HY7rr32Wnz44Yeux7OyslzBHgDs27cPJpOpzesCAIvF4poXeejQITz44INtHh89ejR+//13t2s4dOgQbDYbLr/c/9/zTpw4AYfDgYsvvtj1OYVCgQsuuACHDh1qs23rr0FqqvD3vKqqCpmZmX4/vxP9RkAIIYR0MfVmO37YW4YxA5LQy9CFW6IRQggJvsqWO5R3fU7BYrQp3u59m/ZqjwsfOQboyhdYS/IBqRyIy470SgghpAMxc+RI11HYUAiDyoAGW0Okl+Kz1SdWY3v5dlySfgliVeJbLkaKt78bhY2FUMlU6K3tDQAwOUwhWUduaS7kUjmyDdk05gXAAw88gBtuuKHN5+Lj4wEA6enp2L17t8d9Fy1a5LZiEQBuu+02jB49us1jer3erzWOGzcOH3/8MZRKJfr06QO5XIiRTCYTZDIZdu/e7WoX6qTTna5G1Wg0Xr/WJpPw/fbZZ59h1KhRbR5zHlujCV4QPWjQIKxevRpyuRx9+vTp0GY0Jiamw/pSU1PbzI90clZf+iqYr0cMhULh+n/n14PjgnMzIwWLhEQhjuPx459luOGcPvQDmZBu6LtdJeB4HsPSDNAoaag5IYSQCHjzDOD694Eh10V6JdGjeJvv+9S0VCxybNeuWCzeDsRlApq4SK+EEEI6oGAxuhQ1FiFBlRCVwSIPHo32RlgYS1QEi95mLJ4wnkCyJtnVntRkD02wmFOagyx9FuLV8SE5frRJTU11VY+1p1arXW1P3Rk0aJDHx5KTk9tU3AUiJiamTctRp3PPPRcsy6Kqqgp/+9vfAnqO3r17o0+fPigoKMCUKVPcbnP22WdjwYIFqKurc1u1qFQqwbKsqOdTKpVuX5Mn5513HioqKiCXy13hbXtDhgxBfn4+pk6d6vpc+4rS1gYMGACNRoMNGzbg/vvvd7tGAJ2+pjPOOANKpRK5ubnIysoCILSe3blzJx5//HERryw4ItpbbcuWLbj++uvRp48QjqxatcrrPps2bcJ5550HlUqF/v37Y9GiRSFfJyFdzcHyRjz27V78dqgy0kshhAQZy/H4Kq8IZ6fFIT1OG+nldHt0LkIIIR401wBrn4z0KqJLUQ6g8bFNU81R4SPHAHwXrlgs3gbEZgjzFUlQ0bkIIYGjYDF6WBkrqpqrEKeKi/RS/GZ2mEPWMjTYvP3dOGE8gQR1AvRKoaotFBWLVsaKXRW7kGHIgI7OI6LewIEDMWXKFEydOhUrVqxAYWEhduzYgddffx1r1qzx+XivvPIKXn/9dcybNw9Hjx7FX3/9hYULF+Ldd98FAEyePBkpKSmYNGkScnNzUVBQgOXLl2PbNuGGvuzsbBQWFmLv3r2oqamBzWYL2mu94oorMHr0aEyaNAm//PILioqKkJeXhxdeeAG7du0CADz22GP44osvsHDhQhw9ehQvv/wyDhw44PGYarUazzzzDJ5++ml89dVXOHHiBLZv347PP/8cANCrVy9oNBqsW7cOlZWVaGjoeANGTEwMHnroITz11FNYt24dDh48iBkzZqC5udk16zEcIhosms1mnHPOOfjoo49EbV9YWIhrr70W48aNw969e/H444/j/vvv96tPMCHRjOWEiw51ZpojQEh3s+FQJcoarBiWHguDRuF9BxIQOhchhBASFPZmoOJPoarPF86KRb4LVyw2nAKaygFDH0CuivRquh06FyEkcN7myJGuo7ipGDx4xGuiu3KtxlIT6SWI0lmwyPM8ihqLEKeOg0FpACCEpsH2R+UfsHN2ZOmzoJDSNY7uYOHChZg6dSqefPJJDBo0CJMmTcLOnTv9mtt3//33Y8GCBVi4cCGGDRuGSy+9FIsWLULfvn0BCBV8v/zyC3r16oVrrrkGw4YNwxtvvOFqlXrzzTdj/PjxGDduHJKTk/HNN98E7XVKJBKsXbsWl1xyCe655x4MHDgQd9xxB06ePInevYX2wbfffjtefPFFPP300xgxYgROnjyJhx56qNPjvvjii3jyySfx0ksvYciQIbj99ttRVVUFAJDL5Zg3bx4+/fRT9OnTBxMnTnR7jDfeeAM333wz7r77bpx33nk4fvw41q9f72qpGw4RbYU6YcIETJgwQfT2n3zyCfr27Yt33nkHgFBqmpOTg/feew9XX311qJZJSJdlc3TRiw+EEL8tyitCdqIW/XvpIKVWxyFH5yKEEEKConS3UHUYlwmU7xW3D8sAxpPC/3Nc161YLMkXPsZlA3RuEnR0LkJI4Bw8BYvRoqihCACQpE6K7EICVG2pjvQSROksWKy11sLsMCNOFQe1XA0JJCEJFnPLchGrjEWaLi3oxyah4a0TgkKhwCuvvIJXXnnF7ePTp0/H9OnTO3x+0qRJ4N2c795555248847PT5fVlYW/ve//7l9TKVSeXystTlz5mDOnDk+P67X6zFv3jzMmzfP477PP/88nn/++Taf+89//uP6//bvp1QqxQsvvIAXXnjB7fHuv//+Dm1S2x9DrVZ3uq6xY8d2eK+HDx/u9v33V0QrFn21bds2XHHFFW0+d/XVV7tKX92x2WxobGxs8x8h3YWNoWCRkO7keFUT8k7UYnhGHBJjlB63y/3pW1gK94RxZcSJzkUIIYS4VbwNUGiBuAzx+xhPCmGkOk6YsYguGiwWbwd0vQB9L9enlv6yEysP0YX8SKBzEUI6YjkWXFet+iZtnGw8Ca1c62q9Ga2qmqsivQRROpuxWGAsAAAkqBMgkUiglCnRzAS/xevWU1vRN7Zv0L/mh7YcgjHPGNRjEkLEi6pgsaKiwlVm6tS7d280NjbCYrG43ef1119HbGys67+MDB9+0SOki7Mx4obTEkKiw6K8IsRqFDgrNRYKWccf0SzL4pP/vIzv5r4E68l9EVghoXMRQgghbp3MBeL7CuGiWLXHhY+6XgDPdN1WqMXbhEpMpQ48z+PleV9jypwv8csJzxcrSejQuQghHTEcQ8FilChoKECiOhFKmecbaaNB1LRC7aRNcGFDIaQSKXpphBuHlDJl0GdHVpgrUNhYiHRdOrS+nCN1gud5fPfpd/j2uW/R9GdTUCuwCCHiRVWw6I/nnnsODQ0Nrv9KSkoivSRCgsbO0okzId1Fo9WB5btLcW5GHHoZOs4vajabMOeR6Vj59We4ZdaLiB87PfyLJH6hcxFC/MRxwIFVkV4FId6xDFCyA4hN9z1YlKkAbZJQsdgVL4zZTEDlQcCQBgsrx+Qn/4NX5y/F6w/egPnXqiO9OiISnYuQ7o7hGPBdteqbtFHQUIB4dXzUz9qrtdRGegmidNYK1RnyOgM/lUwFK2sNakifV5YHCSTIis2CVBJ4DOGwO/D2M2/jk9c+wd/u/hvS/54OCbVpJyQiIjpj0VcpKSmorKxs87nKykoYDAZoNBq3+6hUKqhUNGCedE92aoVKSLexfPcp2FkOQ9MMiFF1/PH83stP4s9d2/Cv+V9D138kdv56NAKrJHQuQkgY5b4HbHgVkHwNnHl9pFdDiGeV+wFHs9AGVerDr9g1R4GYZECuAni2a1Yslv0hrC02A4+/sQCrN+bjf+8/j5vP7wOs3xTp1fVIdC5CSEcsT61QowHP8yhuLMa5vc6FUhrdFYtGmxEczwUlLAulzlqhHjceR6ImESqZ8PNBJVPBxtjAciykbjoo+WPrqa1I16cjWZMclON9/tbn+GX5L3j23WehvVCLZUeXBeW4hBDfde1//doZPXo0NmzY0OZzv/76K0aPHh2hFRESWRQsEtI9cByPRXlFGNrHgMyEmHaPCX/P7338eby/9Cec/7fLIrFE0oLORQgJI1O18NFYFNFlEOJV8TZAqhBaofqi5igQkyQEixyHLjljsTgfnEwDxGVgzqwp2Pr1m7j56jGRXlWPRucihHTEcAy1Q4wC9bZ6mBwmxKviIZVG1SXpDhptjZ1WA3YVna2xsKEQ8ar4tsEiawPDB6fVOcMx2F6+HZn6TOiUuoCO5bwuMvnhyXjvu/dw9S1XB2OJhJAARPRfcZPJhL1792Lv3r0AgMLCQuzduxfFxcUAhHYdU6dOdW3/4IMPoqCgAE8//TQOHz6M+fPnY9myZfjHP/4RieUTEnE2ChYJ6Ra2Hq/BydpmnJ0eizjt6ZYwm9f9gFm3j4epsQGp6VnI7j84gqvsnuhchBBCSMCKcoH4LEAd69t+tccBTUKXrlhcs3olhn/ShCozj9ReCRgxdECkl9Tt0LkIIYFjOapYjAYnG08CAOLV8RFeSeCaHE2ws/ZIL8MrT8Gi2WFGtaUaceo4KGTCNQi1TA0bK1QsBsP+mv0wOUzI0Ge4wkt/7Mnbg3uvvBdVZVWIjY/F0JFDg7K+cHIGo4REE2837ES0FequXbswbtw415+feOIJAMC0adOwaNEilJeXu06mAaBv375Ys2YN/vGPf+D9999Heno6FixYgKuvprsUSM9EFYuEdA9L808iPU6DAb10kEok4HkeSz55D19++CYuv+5mKKl1VcjQuQghhJCA8LxQsZgyDFDpAEt9x20sRiF0bD0DyGYCTFVAdoLw+S42Y5Hnebw/dy6efG8brj83FVp99F8E7qroXISQwDE8zViMBkUNRZBAgiRtUqSXEjCTwxQ1waIEkg5/P4oaigAACaoE1+dUMhVMDhNYPjjBYm5ZLrRyLbIMWX4fY803a/DeC+/h3NHnQhvjwxzrLkKpVEIqlaKsrAzJyclQKpU0E5JEBZ7nUV1dDYlEAoXC/UzciAaLY8eO7TT5XLRokdt99uzZE8JVERI9HCwFi4REO47jsa2gFudmxCNRp4LdZsW7Lz2JDT8tx7RZT2PKg/+gE88QonMRQgghAakrAJprgNh0QK7u+Li5BnjrDODKfwIXP3r687XHhY8xiYC1sUtVLDocDjzyyCP49NNP8fRFSrz+9K2QGnysxiSi0bkIIYGRQgqGY6hiMcTe2vkWLu5zMS5Ku8jvYxQ2FiJOFQedQgcLYwni6sLP7DBHRStUhmMgk8o6zFosaCgAgDYhr1reUrEYpGBx66mt6BvbFwaVwed9WZbFZ298hu8+/Q433HUDHnnlEcgVEY0x/CKVStG3b1+Ul5ejrKws0sshxCcSiQTp6emQyWRuH4++v5GEEBc7BYuERL0jlU1otDBIi1dDJZdhz65tyN2wFi+8/QnGTpgU6eURQgjxZk4scOYk4LYvI70SEgnF2wBIgLhs94+bKoWPJzZ6CBZ7A/ZmYcZiF7kovnfvXnz11VdY8H/TcZ98FZCQHeklEUKIRzKpDCxPrVBDbfWJ1aix1AQWLDYUIlGdCKVMGfXBooWxoNnRHOlleOXgHJBJZGDQNlgsbChErDIWscrTNw6p5WrYWXtQWqEarUYcqj2Eq7KvQow8xuf9S06U4IfFP2DWnFm46Z6bovpma6VSiczMTDAMA5YNTmhLSDgoFAqPoSJAwSIhUc3BUqsPQqJdfkEt5FIJ9EwDeL4Xzr1wDL5avwPxicmRXhohhBCxDq4CGDsgV0Z6JSTcTuYBsWmAzsPPbWebNGm7X71rjwMqA6CNBxqKhYrFCLfxO3XqFFJTU3H++eejqKgIvXJfAk6mA9oE7zsTQkiESCVSsDzrdRYUCQwPHlbGCo7nIJVI/TpGYUMhkjXJAc3b60pqLDXoF9cv0svolIMVgsX2jhuPI1GT2OZroZapYefsQalY3F6+HRw4ZBoyIZN6Dibaq62sRWxCLLIHZmNpzlLEJ3WPVuzOdpKeWkoSEo38+0lACOkSGJYDx9HJMyHRLK+gFjHV+/HPe67FT8u+AgAKFQkhJBpRpUTPVJQLxGUBSp37x9mWNmntL6pVHwFikgGZCpDIhO+fCF4U37JlC4YPH463334bANCrVy/g5DYgNlOYHUkIIV2UTCK0eeRAP4dDLZA2mQzHoLSpFAalAQppdIcrzmC12lId4ZV45+AcboO9goYCxKvi2waLLRWL7dum+iOnNAcp2hSkaFNE73Nk3xE8cO0DWPjuQgDoNqEiId0VBYuERDGGpfHkhEQzjuOx9tuF+Ovz5zB0xChcft3NkV4SIYQQQsRqqgSMRYAhHVBo3G/jsWLxGKBNBBRqIXTkOSAIrcf8sWjRIlxxxRU4++yzMWPGDOGTpqqW19YHkHt4bYQQ0gVQK9TwsbN2v9/nclM5GJ5BgjpBdMXjH5V/wGg1+vV8oaSVawEAVc1VEV6Jd85WqO0/V9pUijhVHBSy0yGvSqaCg3MEPDuS53nkluUiy5AFnacbr9rZvGYzHrv1MfRO742b76XrIoREAwoWCYliDMeDo3YfhEQlhmFw9/0PoHTtfIy8dgr++eGX0MZQRQAhhBASNYq3CR/jswBPs3+cwWLri3o8D9SeADQJgEx9OnR0bhsmHMfhueeewz333INp06Zh/fr1SEhoaXtaskP4GJ/p+bURQkgXIJPIwHLUCjUcbKzN7/l7RY1FAIBEdaLofaatm4aJP0z06/lCKUYhzAyssdREeCXeOVhHhyD3VNMpIeTVtA151XI1AMBsNwf0nMeMx1BjqUG6Ph0aLzcn8TyPJR8uwZyH5uDiqy7Gu9++i4RkasFOSDSgGYuERDEHx4HleCjEtysnhHQREokEh0+cRNL4Wbjvycc7HYhMCCHdks0EOJoBXa9Ir4QQ/xRvE9qZGlI9b+NqhdrqV29TpfC9H5MISKWtgsXAKgR8JZFIUFJSgrfffhtPPPEEJK0DxJLtQvCp7xPWNRFCiK9kEqpYDBc753/FYrWlGhJIEK/2rb1lo73Rr+cLJblUDpVMhVpLbaSX4pWds3eoWCxsKATQMeR1tkU1M4EFi3mleVBIFcgyZInavqqsCtP/MR1TH5/a9lyEENKlUbBISBRjWD6So1gIIX4oLCxEeXk5LrroIpx//2vQVzQhThvdMyYIIcQvW98Fjv0C3P+r5zaShHRlRblCtWJnbb7ctUKtOSZ8jElqeUzWdtsQKysrw9GjRzF27FgsXrzY/UW8k9u8vzZCCOkCZBIZ7JwdNCgm9Oys3e8Zi/XWeqjlaihlyiCvKjJiFDGot9WD4znRrV0jwcF2bIVa0FAAtUyNBHXbykBXsOgILFjcWroV2YbsTkPkhroGHN1/FOdfcj4ef+1xvwJFG2sDADQ5mvxeKyHEf133Xz5CiFcMx1ErVEKiSF5eHkaNGoXHH38cHMdhR1E9MhK00KnoPh9CSA9kawSaawFrQ6RXQojvrI1A1YGW+YoxnrdzBYutLurVHgckUkDXW/izJHzB4p49e3DBBRfg4YcfBsuy7i/kOaxAxT5AnwYoO3lthBDSBcik1Ao1XGysze9g0WgzQivXQibtHp16dAodmmxNAc8jDDUH7+jwnhcYC5CkSXK1PnVytUINIFhsdjRjT9UeZOgzoFO4vznp5LGTePiGh/HOM+/AbrP7XaXYZBcCxWiYdUlId0TBIiFRjGFpxiIh3uw+WdclfslcsmQJxo0bh8GDB2Pt2rUoqDGjzmxHWpwGKupnTAjxRfF2YE4sYO767Ze84hwAtS7z7s9lQFNlpFdBWju1U/jejcsS2pl64q4Vas0xQJt0uhrQVbEY2ouTq1atwpgxY5CamooNGzZ4bsNevk9YS1x620CUEEK6IGcrVH8DLyKeg3P43Qq1zloHjVwDuaR73FSrU+rQ5GiCPczzkX3lbsbiiYYTSFAnuCoUnZx/NtlNfj/frspdcHAOZBmyIJd2/Frv2rILM2+cCZVGhbnL5kKp6h4VrIT0RBQsEhLFGI4HF/m8hJAuq9Rowc0fb8Oav8ojuo65c+firrvuwuTJk/Hrr78iKSkJ2wvqIJNIkJWgjejaCCFRaM/Xwsf9yyO7jmDgGAoWxfhhJpDzXqRX0bnaE8DRXyK9ivAp3gaoDEBsRufbMUKbrrbB4lGhDapc1faxEF6c/OKLL3DTTTfhmmuuwebNm5Ga2slcyJLtgEwlhKaEENLFSSVSsDxLrVDDwM7awXL+t0LtThWLeoUeJoep6weLXNtWqDzPo6ihCHHquA7BolomVCw6KwH9kVuai3hVPFJjOp5nbPppE56Z9gyGjhiKD1Z8gJSMFL+fhxASeRQsEhLFWI7vEpVY3QnH8Zj6xQ44WLrI2Z7JxsBsYyK9DJ+YrMJ6qxttEV3HZZddhrfeegsLFy6ESiWcvG87UYv0BA0SYugOPUJID0bBojg83/Vbxu75Gvh+GmCqjvRKwqMoF4jPBlReZhC6m7FYewzQJgLOFmTOx7jQnWddcskleOWVV/Ddd99Bq/VyU1PxdmG+ojo2ZOshhJBgkUvlPa4V6spjK1FuCv/Ns4FULBptRqjl6g7z/qKVQWmA2WHu+q1Q2wWL1ZZqNDPNiFfFdwh5XTMWGf9boW4t3Yq+sX1hUBk6PHbWiLMwZeYUvPb5a4jRU6t1QqIdBYuERDGG5ahiMcjWHajAlqPVePXHg5FeSpfz9P/24fHv9oKNom86OyP80hOJu1crKirw4IMPwmKx4Oyzz8bs2bNdswN4nsf2wlpkxGsRQ/MVCSE9GUvBomiMNdIr6BzPAY5moUVod8fYgdLdQGy6iGCx5YKjTH56X2MJoIkHZC03F0lDM2OxtrYWDzzwABobG9G/f3+8+OKLkHbWthUQQuzi7cJro/mKhJAoIJVIwYPv8gFPML2U9xLuWHNH2J/XztrB8P7dBGO0GaGWqbtPxaJSDwtjQbOjOdJL6ZSDa9sKtbChEACQqEnssK2y5bzE3xmLp5pOoaSpBOn6dGjkGuFYTWa8+9y7aKhvQHJqMu6dfS9k8u7xPUBIT0fBIiFRTGiFGj0hTzRwVipGU3gWLvVmBwqrTa4qwGhgY4Q2LeH+au7btw8XXHABfvzxR5SUlHR4vKDGjFqTHX3i1VDTfEVCSE9GFYviMTaAi4L3qiQ/0isIvfK9AGsT2qC6mR/UhjMsdFYLGE8CPCtULLbccOR6LIgXxY8cOYILL7wQy5cvR0FBgfgd6woASx1gSD/dqpUQ0uNtObUFw74cBiaEldX+clZj2bmu3ZIy2KwRuOHIwTn8boXaYGuASq7qVjMWAaDGUhPhlXSu/YzFgoYCyCQyJKmTOmwrkUiglCn9DhbzyvIglUiRrc+GVCJFRUkFHrnpEWxcvRElJzpeFyGERDcKFgmJYiwFiyTMGq0MbKx/v0hEgrNiMZx++uknjBkzBklJSdixYwcGDhzYYZv8gjpIJaD5ioQQwjHREZZ1BazV/xC24RSw8TXAVBXcNblTtqf7f02Lt4mfQeisWHSGiDXHhI8xvU5v4wwnmeAEixs3bsSFF14IhUKB/Px8DB8+XPzOzmA4LjMoayGEdA+f7vsUALCzoutVpTsr4Bxsz6lYjCQLa/F5H5ZjYbKboJFrXF18op1OIQSLVZYwnFsFwME52lSJFhgLkKBOgFbh/lqESqqCxeH71xgAckpzkKnPRKImEQd2H8DDEx+GtdmKD1d+iKEjh/p1TEJI10XBIiFRjOF4UK5IwqnR6ohIWOcvW5jXevDgQUycOBFXXHEFtm7dirS0NLfbbS+oRXq8FokxVAlACOnp+KBWaXVrjF2odPPHkZ+BLW8C84YD2z4KbfBXewywNYbu+F2Bc76iJs77tu3bm9YeF2YrxiSf/pwzWAxCK9STJ09i/PjxOP/885GXl4czzjjDtwMUbwcMfQBdsvdtCSE9jo2N7Ox6d1wVi0FuJx1NGmwNYWvJabH7Hjo12ZvAgYNapg7BiiJDr9QDAKqbu95saZ7ncaTuCHieB8MxkLa6/H/CeAJJmiTXPMX2lDIlrKzV51maDs6B/PJ8ZOozwTQxmD1lNtL7pmP+6vnIHpgdyMshhHRRFCwSEsWoYpGEm9XBockSPReAwxUssi1VnGeeeSZ+/PFHLF++HDEx7ucS8TyPbQW1yIjXQEfzFQkhRAjMiHesHfCz/RjsJiHMSjgDWP888OkYoHRPcNfn1FgONJWH5thdAccJVX2x6YDSy3xFoGNYWHNUCBUVrS6uBmHGIsdx4HkeWVlZWL16NdauXYu4uDjfD1S8TahWpPmKhJAoQcEiMObbMRi1dBT4MFwfamZ8DzCNNiMAQKPQBHk1kROjEH5OdsVWqEsOLcEtP96CzSWbO85YbCxEnCrOY7CokqlgY20+t7zdV7UPZocZfWL6oFevXvjnf/+Jt5e+jbjEuEBeCiGkC6NgkZAoxnAcaBQgCbfKpq53l6onzhmLoVRfX4+rrroKn34qtAe65pprIJV6/vF6srYZ1U02pMVraL4iISRydi4A9n0X6VUIIjAjKCoxNv8rFu3NgEIDnH8/cNFjgKka+OJKoNaH2XuiSADwQMkO75taG4F3hwCFOUFeQ4jVHAGsRmG+olzpffv2rfmcwaLcTbDoZ/WuyWTCpEmT8NZbbwEAxo8fD7ncj5uXLPXC+vR9AA8t0gghpKtxtUKlDghotIe+Y0BAwaKs+wSLcqkcapm6ywWL28u3461dwvlAZXMlGI5xhe821oYaSw3i1HFQyBRu91fJVbAyVjC8b/NUNxVsQsV/K7BzkdAueeQlI6FUiThPIoRELQoWCYliLMeDo2SRhFl1FAWLoW7bevz4cVx44YXYu3cvBg0aJGqf/MJaSGi+IiEk0tY8Caz8O2A3R3olQWn/2COwdv9nLNpMgEwpBFhZo4Hz7xMCr+rD/q/H1iSEg61pEwCp4vScvs7UHAMay4CiLf6vIRJO5gESKRDfV9z2HVqhngA08W2DxZYLfv5U75aUlGDMmDHYtGkThg4NcH7RqV3Cx7gs4TUSQkgI1VhqUNUc+Hw6ZzVWV2zT2h1ZWd9vCHMGi1pl9/odWKfUwWgz+tw2NFRONZ3C7E2zkahOdH3OwTlcNz5XNlcCQJvH21PL1LCxNp9eU2VlJV6/93UYdxsxeNhgP1dPCIk29NsCIVGMpRmLJAIqG6OnsiSUrVA3b96MUaNGAQC2b9+OsWPHitpv24lapMdpkKij+YqEkC7A1hTpFQB0IVAc1hFYK1SZ8nSAJQ1CK+6fnwGWTQPYVne0S6RCi9DKA95DsvpC4WNX+B70RfE2IDYTiEkQt33rYNHaADTXAJoEQNbqa+DnjMUdO3bgggsugNFoRG5uLq655hqf9u+geDugMgAG9zOiCSEkmMYtG4fLv7884EDQWY3FcL5VWBH/+DPL0Rks6uX6IK8msvRKPZpsTV2iWrbZ0YzHfn8MCqkCl2Ve5vo8wzGu8L3SLASLyRrPc5RVMhXsrF3036e//voLI88ficaKRtwx7w5cdcNVAbwKQkg0oWCRkChGMxZJJFRRxSJ4nscrr7yCc845B9u2bcOAAQNE77e9oA4ZCVqar0gIEc/aIFRJdVc0Y1GcQCoW7SZArgpuFZqlHmgsBWztqhYT+gJ1hcL3bWeMJ4WPflygDEhDKQK6M+9kLhCfKW6+IiC0sHWqPS58jElqu40rWPTtwuTrr7+O7Oxs5OfnY9iwYT7t61bxNiA+G1CJfG2EEBIEgVYttm7zSELP7PC924XRaoRapoZSTAvxKKJX6NHkaIr4fE+e5/Fy3ss42XgSE/pNQJY+y/UYwzGQ4nTFYqwyFnql54BXLRcqFlmR7fffeecdKHQK9HupHy4adVGbeY6EkO6N/rYTEsU4XpizSKLLgbIGTHh/Cxotkb+rzR+1pui5ABzsikWO41BSUgKJRILly5dj/fr1SEgQWbEAoKTOgopGK9LiNFDJ6UcwIUSkL68HFk4AjCWRXkloUCtUcVh7ABWL5paKxSD/7GGsHdeUcAZgaxBmEXamvkj46LAEd02dsRiB988B9q/wb39jidC+1ZDWtpVpZ1pf6K5pCRb1KW238WHGIs/zKC4uBgB8+eWX2LhxI3r37i1uLZ2u0wGU/gEY+ogPTQkhpAtwzliMdLjTU1gY339uG21GaBVayCXd6+baWFUsTHZTxL/3Fh5YiHVF63B19tU4K/GsNvMTHZzDFfY12huRpEmCSua5e5JapoaNs4Ht5Jyz9bnI/PnzMendScjKzOq0EpIQ0v3QVU1CopzNQcFitNl4qAqHyptwpDLKWn+1MFrsUTPb08b4eQHWDbPZjFtvvRVjxoyB1WpFfHw8FAr3A8892V5YCwmA7EQtJBJJ0NZGCOnmmoS2Ra5qp+6GLgSKw9oBkXePd2A3ATIFIA12sGjruKb4bOFjsZc5i3UFwkdHGFusW+qF8K6u0L/9i7cLH+P7AmJ/jrf+/q49DqjjALWh7TbOYNFLxaLNZsO0adMwcuRINDQ0wGAwQKPRiFuHN5X7AcYCxGa0bdPqiVG4oIiGbnrDAyEkalDFYnj5EyzWWeugkWtcIXB3EauKhZkxR7QVak5pDubunosxaWNwXq/zEKOIafM4wzFt3vd4dTxU8k6CRbkadtbusWLR4XBg5syZGDZsGCorK6HWqLHLuAvZhuxOKyEJId1P97pVhJAeKFStHkno7CkxAkDUtrFttDCwsxzUUfBLQbD+fpSWluKGG27AkSNH8M0330CtFlml0M72glqkxWmQEEPzFQkhxIWhC4GiBDRjsTmEFYvtZvBo4oTwrHRn5/vWnzx9DJ4XH9QFwlUd6ef5wclcQJ8K6HqJ36d1q9+aI0BMcsdqR4n3isXq6mrceOON2LVrFxYtWoTY2FgfFi5Ccb7QkjUuy/u2wOmvu7/fk4QQEiQ0YzG8LH50Gqi31kMj10AejBnPXYhBaYCFsfg1dzIYTjaexNObn8bA+IG4KPUiJGoSO2zDcIzr7wgAxKnioJR6bkmrlqvhYB1u/z4ZjUbcdttt+P333/Hxxx+jd+/eOFR7CPW2emToM6AW282BENItdK9/0QnpgewsBYvR5s9TxkgvISCNVgdsDAe1ousHi1ZH4Be79uzZg+uuuw5SqRS5ubk455xz/D7WthO1yE6k+YqEENIGBYviBDJj0WEGFEmnA6ygrcnmPlhK6AdUHxVasCpj3OzHAE3lwv8726mKqZILlPNiqL83d53ME4I3X2YQtq5YrDkGaBPdBIsSIfT1ULF46NAhXHvttTCbzdi0aRMuvPBCPxbvRckOoVpRExf8YxNCSAi5WqFy1AEhHCysH8GirR5qmbpNwNUdOCv0qpur0S+uX1if2+ww49GNj0Kj0OCKrCuQpk9zu137YDFBndBp9yS1TA07Z+8QLBYUFOC6665DeXk51q9fj8suuwwAkFuWC5VMhUx9ZhBeFSEkmlArVEKinJVaoUaVigYraqJoRqE7JisTNZWywZixaDab0a9fP+zYsSOgULGkrhnlDcJ8RbWCfvwSQogLBYvicA7/W6E6moVWqEGvWLS7D8OSBwMNxYC5xv1+jaWnK95YN+1UQyWQioLmOqHi0JAGKLTi93MGizwvtGDVxAPuWpBJ5R4rFq1WK3r37o0dO3aEJlQEgMq/hNmPSh9eGyGEdAHO0CTSc+56Cn9azhptRqjl3S9YNCiF1ubV1uqwPi/Hc3hu63MoM5VhQvYEnBF7hmuOYms8eDA80+axRHXHqsbWnPMXzYy5zeftdjt0Oh3y8/NdoSIAbD21FdmGbMSp4wJ4RYSQaERXNgmJcsGcIUdCb1+UVysCgMnGRE2lrL8VizzP47vvvgPDMBgzZgy2bNmC1NTUgNaSX1gHCYCsxBiar0gIIa1RsCgOxwKMnzN87M2ANATBIs8KwWB7yQOFwLHsD/f7GVvaoKr0wtc/XO3rAgkWS3YIH+OyfHsfncGrpV6YYRiT6H5/iVSo5Gzlf//7H2w2G84991zk5eUhK0tkm1JfMXZh5mVMUsdqSkII6eKcoQkFi+FhY23gfaz8b7A1CBWLUTBOxRetKxbD6dM/P8XvJb9jQt8JODPxTChkCrfbcZxw3UbaasZ2vDq+02M725ma7CYAwKpVq2AymTB48GDk5+dj4MCBrm3NDjP2Ve9Dhj4DOoUP3RwIId0CBYuEdEGvrz2E7GfXwCEivBGzDek6or0NKiBUAZqskRtO7gt/Kivtdjvuu+8+3HHHHVi3bh0ABCUI3F5Qi9Q4NZJ0NF+REELa8OPO9x7L32DM0QzIlaGZY2gzdfxcfF8hKCve7n6f+pMAJEBML6GiL1xz+gIJFovzAHU8ENvHt/2cF7qbKoSP2iT320llroCVYRg89thjuPXWW7F8+XIAwTkX8ajmqPDcMb2DHz4TQkiIuSoWqRVqWNgYG1gfOg3wPI9GeyPUcrXbqrpo5gwWayweOjSEwO/Fv2P+3vm4NP1SDO81HNpOuigwvHBeIcPpQNfbHERnxaLJZsL//d//4cYbb8TixYsBdDwXyS/PB8uzyDJkdbvQmBDiHQ15IqQL+u/WAgDA/tIGnJvZ+d1EwWj1SMJnT7ERUgnA+TnaJ9JUcilsDIeqRhsGpUR6Nd5Zffz7UVtbi5tvvhnbtm3DV199heuuuy5oa9leUIvMBC1iVHTCTQghbVCFgXiM73ONwHHCHEOZMvjrAQC7m2BRrgIMfYDyfUJo2P5ik/GkMMtPGSOEfWFrherH++dUlAMkZAMqg2/7Ob+/TRXCjEudhxMoiQzgHGhsbMQdd9yBX375BfPnz8edd97p/5rFqjoofDT4GJoSQkgXIJFIIIEEDg9zaklw2Vk7OB9mPjc5msDxHDRyTQhXFRlyqRxqmTpswWKBsQDPbn0WZyWehdGpo5GgTuh0e+ecxNahn5hgkbNxePmhl5G3Pg9vvvkmHnzwQbfb5pbmIkmThD46On8gpCeiYJGQLowRkT7ZaMZi1OB5HvtLG9DboEZ5gzXSy/FLjEoOG2NHVVN0VJfYfWgVXFtbiwsvvBBGoxEbN27ExRdfHLR1lBktOFVvwQV9E6BRULBICCFtUCtU8exm79u056zSC2ewCACJA4TAytoAaNtd+KotADQJgEIDWI1C+BkOfld8WoSQdOAEIQz1hatisRyISfY8w1Aqg8lswcUXX4ySkhL8/PPPuPLKK/1br68q9wPaxI5fJ0IIiRJyqRwOD3Nqe5JwvAd2zg6GY6AUeV7RYG0AgG4ZLAJC1aLRZgTHcyGtyGy0N+KRjY/AoDLgsozLkKrzPqrFGSxKWxoWxqvioZR2/nWTcTIU/qcQJ8pPYMWKFZg0aZLb7Xiex9ZSYb4itUElpGfqXjXohPRANpZmLIbayj2n0BiE1p8na5vRaGWQYoje2TU6lXA/SmVjdASjvgTvCQkJuOuuu5Cfnx/UUBEA8gtrAQBZCRqar0gIIe1RxaJ4/lTcOcPIkAWLHsLO5EGAqRJoKOn4WH0hoIkXgkXGHr6KRbufwWLpbqFVaFxGx+pLb5wVNM21nc8wlMqhU0ow5c47sW3btvCFigBQ8ZdQSUnzFQkhUUomkVGwCMDiT2cDH9k53yoW6231AACNrHsGizqlDk22ppB+/7Eci2e3PIsaSw0mZE9A37i+okJMZ8ta57Zqufc5lzqNDrGjYvHUwqc8hooAUNxUjHJzOdJ0ad02NCaEdI6CRUKiHLVCDS0bw+If3+3Dgi0FAR9rX8t8xT5x0XvSFaMUTkKrmqIkWBQxg/Szzz7D8uXLIZFI8PLLL6Nfv35BX8f2E3VIjVUjWU8X7AghpANqXSaeP8GioyX4k4coWLR5CBaTBgofi3d0fKyhBFAbAEVMmGcs+nnBtXibEILGZfm+b+vgXJvgNrz75qdN+HK3CeBZPPvM0xgyZIh/6/RX1UGhmrKTOU2EENLaX9V/YdiXw3C8/niklwJAaPXorM4ioeVgHT7NWDTajAAAraeK/ShnUBrQ6GiEPYQ3yn1z+BvklOZgQt8JGJwwGAqpQtR+LNc2WOxM7i+5WPXVKqhkKiRdnYTE/omdb1+aC5lEhmxDNt08TUgPRcEiIVHO7qCKxVDiW7rR1jcHfpL4Z4kRiTFKxGnFnQR2RVKpBFqlDLWm6KgusXcSvLMsiyeffBJ///vfkZeXF9J15BXUIDNB66r4JISQLm/DP4E5sf5XeInhbKHJUitU0bpkxWKT+8/rUwC5BjiV3277ZsBc3VKxqG0JFsN0MdjfVqhFuUB8XyEM9VXr4FyTAMhOnwfyPI85H3yNO2e/ia2FVuF98KEKJCgs9UBThRAship8JoR0OzllOQCA9UXrI7wSgVxCrVDDxdcZi85gUa/Qh2hFkWVQGmC2m0MaLB43HkdqTCqGJg2F1oebgBi+pRVqJ8Eiz/P47tPv8OKMF7E3b68rtDQ7Om+/v7V0KzINmUjQUBt1QnoqusJJSJSzs97nMJLANdsDD3D3lBjRJ04NlTy67+nQqeSob7aD43hIpV37zjRPFb0mkwl33nkn1qxZg3nz5uGRRx4J2RoqGqwoqbNgZFY8zVckhESPP5cJH0/tBPpdGprn2PeN8JGJjptVugR/Ziw6w2GZKrhrcR3fw4xFiRRIyBaq4RgbIG95fmOx8FETDzisQvAWtlaoHtbaGY4FTu0AssYASj9mCLW+0K1NBFru6rdYbbj3+bn4du1mvPb4NDyXuUt4rnAHi5UHhY/6lPA+LyGEBJGzYjHUc+7CpcHWgFhVbKSX4ZaD87Fi0WqESqaCSh6i85AIi1XFwsyYwxJsi51r6eSsWPTU/tRhd+D9/3sfa75dgztn3on7nroPUqkUSqkSzZ3cjGVn7dhVsQujUkd128CYEOJd9P+0JaSHszFUsRgOgQaLDMvhYHkjeuvVUEZ5sKhXy9FoYWAX0WY00jxVLP7973/Hpk2b8NNPP4U0VARazVdM1FKLEEJI9AlH4EOty8Tzp+LOGaaF6oJeZ2Fn0iCgrghorj/9OeNJ4aMmQVgT5wBYkd8DlQeBsj1+L9WvCtzK/cJrjE1vU20oWuuKRV0v1/8+8cZn+GHjdnw/93k8/+DtkEjlLRWLYb5psOogIJUDhj7hfV5CCAkimUQIFvlw/xsaAnmleRjz7RisK1wX6aW45eAcPlcsauQayCTd8yZbg9IAC2PpNIiLFGd7YE9h+8J3FmL98vV45p1nMOOZGZBKhe2UMiWaGc+vZ0/VHlhZKzL1mVD4c25ECOkWovvqNiEEdib6T5yjgdXBguP8f6+PV5tgdXDoHauGLMrDJb1agUarIyrme9rbBe8sK/z53//+N/Ly8jBhwoSQr2H7iVqkGNToRfMVCSHEPV/u8K4rCH/w0pX4c9HKuY+b2X5B0VmwmDxImPFYdfD05+qLhCArJkkIFnlOfDvczW8CKx/0v0WvP+/fyW3CeuOz/XtOZ7AoVwPaRNe5yMsz78SWxf/BLePHCI9L5RGqWNwP6HoDKj+qMQkhpIuQS+VgeRYcuv7vqN4UNhYCAPbX7I/wSjpytpxlfZiNXGetg1auhVzaPZvm6ZVCxV51c7XofQoaCsJS4ehshdo+1HWei0x+aDLe++49jL91fJvHVTIVrIzVY4CcW5oLg9KAdH16CFZNCIkWFCwSEuWioWqsO7A5ODABBIt/ljRAAiAtLvrDpViNHCYb0+n8wq6idavgZcuW4fzzz0d9fT2ys7MxdOjQsKxhW0EtMhM1NF+REEI84RiAE/EzpeEUMO884GjXvIM/LBxW3/dxBn+KEJ2DdDb3MbG/8LF4++nP1RcJLUHl6tNVlDaRLV45B9BYBlgb/FqqX8Fi2R+AIV1o3eoPZ9VvTC+szT+C4ZNmobKmHinJCRg5bODp7aTylm3DHJxX/CUEi3JNeJ+XEEKCSGzF4k8FP+Hrg1/7/TyNtkYAwMnGk34fI5rJZXI4WN9aodZb67t9xSIAVFvFBYs21oZbVt+CZUeWhXJZAE5XLMolp69F7N22F/ddeR8qTlVAH6fH0JEdr4uoZCpYWavHr/PW0q3oa+jrClUJIT0TBYuERDm7g1qhhoOVYcEFUCGxt8SI3gY14rXRP1cgVqOEyRo9rVB5nsdPX36I22+/HUOGDIFGE74LZ1WNVhTVNiMtVkPzFQkhpKEUaKro+HmWEVel1VQBgAfqe+bFPABAJ22pPLKbhHmHoZqx2FlYp9ID2iSgbPfpStO6QiGkk6sA56wghw+zI22NgFl8VUAb/syodFiFFqgBtJLleR7ztltw/ePvol9GKmI0bkJeqSz8FYs8D1QfBmKSQxc8E0JIGMilcteMxc78dvI3rDq+CqaWNuFH6o5g5bGVop/HWUXYYPPzBpcop5AqfK5YrLfVQy1Xe5zzF+18rVg0O4R5jJXmylAuCwBcwaDzvS/dWIrZU2YjKSUJOr3nTgUqmQo21ub261zVXIXjxuNI06chRhETmoUTQqICBYuERDlHAFV0RDwbE1jF4t4SI1Lj1NAoo/9k2qCWw8pwMFm7/kwsq82G2jXvYtWC9/DKK6/g66+/hlodvgtn+YV1AIDMIM9XLDp2GABgamoM2jEJISTk1jwJ/DCz4zw9zgFRVVoWo/CxJ5/6+FWx2CyEiqG6oOewCoGYJ4lnADXHAFuT8Of6QkATJ6zJ2Z7V18Cv5phfS+20utIr/36OO1geD6+x4rFlJ/Dk9ElY8cEL0MW4ucnJFSyG8RvcWCy89zG9hIpJH5RU1AAA6hpNoVgZIYT4xNUK1Uuw6GAd4MG7ApefC3/G3D/moqSpRNTzHKw96HWb+XvnY8WxFaKOF20UUgV48LCJbWEOYcaiWqZuUzXXnfgaLDpnMYZjHqhrxiInRcV3FTj48UFcc/s1eOPLN6CL7SRYlHuuWMwry4MEEmQbsj3ObgwXE52DEBJRFCwSEuUcYWxHubOoLmzP1dXYGA4s69+Jn41hcbSyCb31Kmi7QdWaXi38QlDV5MfFzTDieR6m4oNoPpqHv788Fy+99FJQwz0x8gtq0UuvCvp8xc2//AgAaDY1BfW4hJAeKJwhhtUIWBsBpl24wzGdB1Ot9+/pGD9bocpVQtViKLBegsXkwUIbW1O18P3WUAKoYgG58nTFoq/BYu1x/9bqTyvUQHAc9lVy+OpPBxY8NAZvPj0DMpmHc0GpXPi7EM6KRefsS0OKz7tu2LYXANBkCvN7SgghbsglQsUi7+XuI+fMOSdnQFZndX+tg+d5LD+63PXnA7UHvK5l1fFVWF+0Hg429DP0wk0hVQAAmn3ooNBga+jWFYtyqRwauQa11lpR2zvfu3DMA3UGi7WltajbWIdB0wfhH//+B+SKzkNelUwFO2t37d9abmku0nRpSNYmh2TNvji2388bzQghQUHBIiFRLlztKH8/XIVbP9mGRbmFYXm+rsbGsGD9vPh6qLwJDMcjJVYNqTS8wVYoGNTCLxPVjeLvUgy34uJi2BkO6sxhSHvgc1xwxfURWUfeiVpkJmqDOl+xsqwEB/fsDNrxCCE9nLkqfM/FebjAxjEQV7FYH9TlRCW/gkWTEOKFKlhkbC1fQw+SBgqzA0t3Cl9Du1lohSqRnq5Y9DXwqzvh31oDqlj0zamKWrB2C0b2kaHwrctw3z3TOt/BOWMxnMFi5X5AoRVmLPqguq4BO/86GqJFEUKI72RSmaiKxfatHR2cAzzPQ+rh8ujqE6sxZ9scLDm0BABQ0FDQ6fE5nkO1pRocz4UlOAo3eUt1e7PIn9s8z6PR1giVTBXx6rZQ0il0MNqMXr//gPBWLDbUNIBjOKT3S8fAtwYi69osUTdba+QaoRVqu4pFlmORV5aHTEMm9IrIzle0mC0oOloU0TUQ0tN133/VCekhGI4HF4Z2qOUNwoWsopqeeVeyzcGB4fz7xeCv0gbIJBKkxYZvtl8o6VuCxa5asbh+/XoMGzYMH82fDwCQxcRFZB01JhsKasxIi9MEtQXuj99+Cd7P70VCCOkgkIsavrajZD0EiKxDXJjSVSoWP78KKNsTmedm7eKqO1uzm4TKwFBVCjA2IRDzJC5LCM1KdgD1RcLnNPHCR3lLxaLNx1ZWDad8fx+AsAWLW08yGH7bbLz51psAgF4Z/QFDWuc7OVuhhlPFfkCfKoSLPljw/To4GJrzTggJDoenG498IJfKwXLeg8X2FVh21g4AHkMvo80IQJgr56mqsbV6a72oWY/RylmxaGnffcKDZqYZDM9Ao+ge10I80Sl1aLQ1ivpe9qXaMxCWQguWPLAEVSuqoJarkdUnC2PSxojaVy1Tw87aO3wfH6w9iEZ7IzL0GVAFMHs6GNYvXw+HvftVBRMSTShYJCTKMSwPLpxtzHooO8vB3yynpK4Z8TEK6FoCuWjnbIVa2dT1Khbnz5+Pa6+9Fn/7299w022TvW7P8zxu+SQP8zYEv4VGfoHwi2dWggbSILVgtVkt+Hn5UqRmZAfleIQQ4reGUuDDkcDhn8Xv47FiUWSVVrNR/HOFUkk+sGx6x893Fq4FC+NPsGgW5hmGtGKxkzXJ5EBsBlCxD6htqfTQJgkfnRelfG2Faqr0r62pyAuhgfjq5x24/KtmnD0gCw9Mv1v4pJhQVxKJisUDQrWiDxd8GYbFx9+uRUZK5FugEUK6hwpzRcDHkEvlYHjGaxVY+1aodk4IFsVUcYmZr1jRLLwWChYF9Vah24RG3jWCRaPViPvW34elh5a6bfPpL4PSgCZHkyuo7owlDDc55f+Sj4LXC6BL1iHp6iTIJDI8e8Gz+Fv630Ttr5K7b4WaW5YLjVyDLENWKJYtGs/zWLVoFWITYyO6DkJ6OgoWCYliUgnAsBzCULDY49kZzu9WqGVGCwwaBZTy7vFPrkwqgVYpQ43Jt2DR6mAx+/t9qA5BpSPDMHj00Ucxc+ZMPProo/jhhx+g1MR43e9geSN2FdVjR2EdHEFuK7y9oBbJehV6G4L3S9TvP69CU0M9LrpsfNCOSQghfnFeFKnvvCVYG6yHCzhi58pZQjDr2d4shCs+c1d56f1iUsBYu+/Bk80EyBSAJEQVi6yXYBEAEgcAdYVAzRGhOk4TJ3xe1hIsOnwMFs3VwtfOV47QdVvgOA4vvPclpr22BFPPUWDdJy8gIbblXETMe++sWAzXDYOMDagrEEJeH6oOVm/cjpLyaoy78OwQLo4QQnwjk8iEikUv7Uc7tEJtmYMoQXCCxUpzJYDwtLmMBIVMCBbNIn9uN9gaAABauW+V8WJ9ffBrvJDzguggd2flTuyo2IHXd7yOG1bdgI3FG4PytTIoDTDbzaKCxVBWLPI8jyUfLsHcx+bCcK4B1711HRSxCsh8PAfUyDWwc/YOrVBzSnOQbchGrDKygd4fuX/g5PGTGDB0QETXQUhP1z2uchPSQ0klEjg4qlgMBzvDgWX9Dxb1KjkUsuifr+ikV8lhNNt9asNbXNeM/+0+hfX7A78jtT2JRIKysjJ8/PHHePfddyGTyWBnvP9y8cPeMgCAyeYAG+SEfltBLTITNIgJ0nxFnufxw5IvcMEllyOxV0pQjkkIIQFjfLjJhHO4H6UoOlhsmbHoT6WaJ/v/Byy4HDDXCn+2m4Hv7vLvWOE4H2PtvldGOsJQsehtTcmDgOZa4NROQJtwOsiStbRC9fVram30PWhmGc9Vs0EgkUhwqqIGb8+ciM+uV0OpUJwOm8VULErl4qt3g6H6iPB1M/T26Xvjg69/xJgRZyEjJSmEiyOEEN/IpXJRMxbbVzU6W1eKmf+3v2a/14CmsrlSxGrbMlqNmPfHPJ/3iwTXjEWR4Vi9TTh3C1WweKjuEHJLc0W1qQWAQ7WHYFAaMHnwZHA8h8d+fwxTf56KWkttQOuIVcXCzJjFtUIN5nmsG9UV1bh55s1IfzAdUAjzR8VU5LamkqngYB1gWt0U2GhvxF81fyFDn4EYhfebuENp5aKV6DuoL3ql9oroOgjp6ShYJCSKyaQSMCwXthubezKG42Hzc5ZMRaMVOpUcSln3+SdXr1agwcrA7kOVn8UuvH9MEAO8wsJC5OTkQCaT4fvvv8eDDz7oeszmJVhkOR6r9pS2rI0LasVindmO41UmpMVpoQ3SfMWDe3fh+KG/MHHyvUE5HiEkROoKgTmxwInfI72S8GB8qADzNGORY8SFci3ttMAHr3UVGJtQfWmuFv685W3g0I9A/ifBe45g8mvGolloRyoN0XkIaxe+hp1JarmjvChHmK/oDBYlEiFc9KX6UKoAwAO1J3xbZ4gu5JVV1mLj9r2QSCRY9MYTeHLyZacv4LVUwogOFnkW7tP3EKhqqbzR9xG9y/6jRdi040/MmnJdiBZFCCH+UUgVYDjvrVA7VCy2BEFigpcDtQeQEtP5DZ7OikVfzNk2B5/99Rl2Vezyed9w87UVqnNGpU6hC9WSYLQZRYd1f9X8hZSYFAxNGorZI2bjlgG3YF/1Pnyx/4uA1mBQGmBhLKLWEYqKxYa6BuzYtAMSiQSP/fMx3DLrFkgkErA8C5lEJqoitzW1TA0ePMzM6crU/PJ8cDyHLH0WZKGa2y1CRUkFtv22DZOmTYrYGgghgu5zlZuQHkgmlYChisWwabb7fiGT43hUN9kQo5JD3o2CRYNGjiarw7dg0dHyS1yQvl3z8vIwatQo/OMf/wDP8x1+GfRWsbijsA5VTTbEaxWwMmxQKxZ3FAp3PGYlaIM2X3HVks+RltUPIy4eG5TjEUJCpHS38HH/isiuI1wcPlQsegoExVZpWRrEP5evnBeCnBVm/sy/CUelGevwvWLR3iyEd6GqWBQTdsYkA0qdUDGojjvdAhUQ1uZLQK1NED7WHvdtnSGYabTn4AlccNvjePiV+WAYtuOFaef3k6hWqGGuWKw8AGgThaBXpA+X/IjU5ATcdOXFIVwYIYT4TiaRiapYbN/a0dm6Uurl8miTvQlVzVVI1nQ+X7bMVCZitW1ZW34GVjVX+bxvuDmDRbFBntFqhEKqgFquDtmaWJ5FTXON1+14nsfhusNI1iRDI9NALpPj0oxLYVAZcLLxZEBrMCgNAIDq5mqv2wY7WDx57CQevuFhvPPsO7Bb7W3ORRiOEYJFPyoWAcBkN7k+l3MqB700vZCii2z3pB8W/wCtTosrb7oScolQQStD5IJOQnqy7nOVm5AeSC6VgKVgMWxMNt+DxbpmOxwsD4NGEYIVRU6sRoEmKwObw49gMQiWLFmCcePGYfDgwfj555/dnih7qzBdtacUiTolzkjWwepgg1pJub2gDkk6JXrHBucXqNrqSmz99SdMvPNeSENVcUIIIf5gfQgWA52xaDWKfy5f+TOvr71wtULlfAye7Gahyi9krVBFVCxKJEBCP+H/1bHCzEcnmdK3akK1QXg9Ea5YXPVbHsZMmY3U5ARsXPQ65HI3F7VcrVBFtEWXyoTQOFzBYsWfgD4FUIibBW1sNGHx6o148I5roFAEp807IYQEi0KqAMuz4L3cxcq0+3nl4BzgwXtthVrSVAIAXisWK5qDP/ajK3G2grWy4m4IMtqM0Cq0Ia9wKzWXet2msrkSRpsRSZok16xIAEhQJaDGUgObL+e07eiVegBAtdV7sCh2PqUYu7bswswbZ0KpVuL979+HUq1s8zjDMUIrVB8rFlUtnSWcFYs8zyOnLAdZsVmu1xoJNqsNa79diwm3T4BGq0GGOgMAcJbsrIitiZCejK5OEhLFnK1QgzwajnhgtvkejFU0CCfcenX3ugATp1XCbGN9qli02oMTLL7//vu46667MHnyZPz6669ISnI/46ezVqg2hsXa/eU4K9WAOI0CNgcHxs8Zmu7knahBZoIWuiDNV1yz7CsoFEpcNfG2oByPEEKCxpeLMFxnrVBF/DyxNYp/Ll+JbOnVuXAEiw7fgydHsxDkiama8wfn8B4sAkDSIOGjOl4IGp3kqpZwUux5gkSoWjQW+xayBjFYXLj8F9z0yGu45pLzsXnxf9Cnd6L7DX1phSpTCK8nXDcMVh0EYnqJDhYXrvgVDobF328bH+KFEUKI7+RSOViO9d4KtV3FooPtvBWqs6KxwlwBjVzjtWLRnxmLOqXQJjQULTKDTSKRQClVim6FWmetg0aucc1mDJVSk/dg8WCt0AK8fTicqElEnbXOVTnqD2fYJqbq1GwPTrC4ec1mPDPtGZx13ln4cOWHSMnoGHq7WqH6WLGolqnbrLWwoRBVzVVI16W7HouEDT9sQFNDEybePbHN530NTgkhwUHBIiFRzNkK1dvJMwkOsx+tUMtbgsW4blixaHGwMPtQxRmsisXLL78cb731FhYuXAiVSuVxu85aof5+uBpNVgaDUvQwaBSwMRwYXytAPDA223Gs0oS0OE1Q5is67HasWbYYV068DTF6QxBWSAghQcTYxW/bMseoAzFVWiwjVN6FSjBCp1BXmkkVwnvoaytUh7MVaggvuoip+EwZCkAC6NpdlJUpAdbq2+zImGTAVOlbIBzEVqiXnD8Mrz56F75771loNZ1cYHMG72IuqErCWLHYXAeYqoT3Uab0ujnHcfho6U+4bfzfkJKcEPr1EUKIj+RSOTieAwcvrVC5tlWNzhmLnioWnQFahbkCqTGprkoud3ieF9UKs710XToAcW00uwKFTAEbI+7GsnprPbRyravSMVTEzLY8VHcIOoUOieq2NwMla5JhtBmDEiyKacnaem5hIM4ccSamzJyCf3/xb8ToY9xuw3AMpBKp7xWLzlaoDqEVak5pDuRSObIN2T6HlMHC8zxWLlqJUeNGIS07LSJrIIS0RcEiIVHs9IzFSK+kZzBb/alYtEAmlSC2mwWLhpYKzOom8ZUqgQSLFRUVeOCBB9Dc3IyhQ4di9uzZXk9oO2uFumpPKdLjNchOjIFGKYONYcH4UH3ZmfzCOvAAMhODM19x669rUFdThYmT7wl8cYQQEmysL8Ei474aS0zFojWE8xUBwOH/xSSXUN/oJZOLm2fYGs8LgZrce3gUEFuT922SBwFX/RNIGtj283IVwNh8C0x1vQFztW8tbAMMj+saTPj7i/PQ0GTGGZmp+L+HJntvT+5qhSriPFAqb3kPwnBiXyVUbUDfW9Tm67buxonicsyacn0IF0UIIf6TS+VgeMbrjEWG79gKFfA8Y9HZ8tPKWpGsTXYFLu4YbUbX8XyRphdCkipL15+xCABKqRJW1irqBvd6Wz3UMnXIKxarmqu8rmd/zX6kaFMQo2gbwiVrk2FhLKiz1vn9/HKpHBq5BrXWWq/bip1P6Xbfpma88+w7MNYakZySjHtn3wuZu1bsLfyesSjvGCxm6bMQrxY/lznY9u/aj+MHjuPG6TdGbA2EkLYoWCQkitGMxfBqsvn+S0J5gxWxGgVUnZzsRSPnzEifgkU/W6H++eefuOCCC/Djjz+iuLhY9H6eWqE2Wh3YeLgKQ1IMiNMqoFHIwPGAOUitWvMLapEYo0RqrLjWYt78sPRznHvh35DVf1BQjkcIIUHlS7DoccYi6z2UC+V8RSBIbTJDfD4mVbS0QvXh55XDAoBvO9MwmJwVCC0XnrxK7A9o4tp+TqYSN6exNX0KYKkDbD4EzgFULB6tsuLCu17Ail/zUFDiw/wsZytUMe+/VNbSCjUMFYuVB4QgU99H1OYffL0aI4cOwKhz6FyEkK7Iyljx6MZHe3QnI5lEBo7jvLdCbXdzjisI9JC7tG75maxJhqKTG0UqzBUth/Kv7aSYNppibSzeiG8OfxO047WmkClgY21eQ1wAaLA1QC1Xh7xisc5aBzvX+TnpodpDSNYmQy1v22nAWcFY3CT+WoM7OoUO9dZ6r++Lv8GipdqCZ29/Fr//+DtKCkpE7cPwfs5YbAnQzXYzrIwVuyt3I9OQ6WrbGwkrF61Eet90jLxkZMTWQAhpi4JFQqKYTCptqVjsub9AhFOzH8FTqdECg1oOpbx7/XNrUAu/UFU0ir9IZ/WjYnHNmjW4+OKLkZiYiB07dmDw4MGi9/UULK77qwIOlsPgVB1UchnUCuGXnEaL761u3dl2ohZZiVrolIHflXn0wD4c3LsLk6bcF4SVEUJICLB28ZV6noIjTkT7R4vRp2X5zFn5Zm8JyPw5twp1ICRTCO+hLxWLzotXnVRYBMRZCRlIm1q5yvdKzJhewvtdVyR+Hz/X+PuBClz47mHIZFLkL3sP5555hvidXRWLIs4JpM5WqGE4r688AOhSAJX3C4THikqxbutuzJpyfcTanxFCOrfwwEL8XvI7vjzwZaSXEjFyqRwcODBeblLpMGOxJVj0FHy1bo/ZO6bzKm/nfEWtQut1ve7UNNe4Zj4Gan3Revz3z/+iwZcbcERSSpWws/YO76U7RpsRannoKxaNNiNsncz9rm6uRq21FkmaJCjbtQBP1AjBYkmjuLDOE51ShyZ7k9eqVX9maZ7afwr5z+XD0mzBBys+wLDzh4naz++KRWewyJixu3I37JwdmfrMToP1UKqpqMGWn7dg0rRJ3rtFEELChv42EhLF5FIJWJZDkEbDES9MPswTdCo3WqBXy6GQda8LMf60QvU1mD18+DBuuOEGXHbZZdi6dSvS09N92t/TjMUVe0pxRi8d0uKEX/iccxCbrIH/EtfQ7MDhiib0iVVDqwr8rswfln6B3n3SMerSKwM+FiGEhATrEBeEcO1aPLbeR1Qr1Hq/lieaM4Ar2Sl8NHmf1dNBqAMhZ8WiLwGcMygNRsXi1veAA6vafk4WrGDR5lswq+slfKw9Ln4fPyoWS0pKMP71DRiRocW2r/6FMzJTfTuAM1iUiQkW5cJ7EI4T+4q/hDaocu/dFT5a+hOS4g24/ZpLQr8uQohfnGGUs21nT+QMrrxVrbUPHp1/9lTR5QwWNXINemu8BIvmSkglUmjl/gWLtdZaWNjgzAPmeA61ltqgVkE6KWXigkWe59Foa4RKpvI4wzJYGu2Nnc59PFR3CACQEpPS4TGD0gC5RI4SU2DBokFpQJOjCXYv3Tx8DRZramqw+PHF0KZo8fbyt9F3UF/R+7Ic69eMRalECoVUAbPDjNzSXMSp4pCmi9xcwx+X/AiFUoGrb7k6YmsghHREwSIhUcw5Y5EPxywW4lfFYkWjDTq1AgpZ9/rnVi6TQqOQoSYEMxZZVthu8ODB+Omnn7BixQrodL633HBXsVjZaEV+QS2GpOgR19LO1VmxGIxgcWdR8OYrGutq8PvaVbj+jumQybpXK11CSDfCiWzN6boDn2/3Z7RUaUW4YpFpdyHPr6AsDDMWwQshnFjOSkxpECoW/1gE7F7U9mvnrIQUM2PRE38qFjUJgEQK1B4Tv48Prcec7fQyMjKw+qlxWPvgAMQZYrzv2J7zvRI7YxHwrb2wPzgOqD4ExCQDis6DRZPZgoUrfsWMW8dDrQrxnE5CCAmAs+LQW8Ufy7Ntrp84t/dU0eUM+lJjUr1WIlY2V8KgNPgdotXb6mEJoG13ezx4HK47HLTjOSllStg5u9eWnxbGAjtn9zto9YXJboKZ8XzudrD2ILRyLZI1yR0ek0gkiFPHodxUHlA7YYPSALPd7D1YFHk+wvM8OI5DUlISbn/9dox4aQRiE2N9WhPDt1Qs+hgsAsLXudnRjJzSHGQbsmFQGXw+RjA47A78uPRHXH3L1dAZIteKlRDSUfe60k1IDyNvCRY5yhXDwtcZgTzPo7LRihilDHJp96pYBAC9Wo76Zgc4kd+AzTYRrVKMRowfPx7z588HAEyYMMHvUM1dxeKP+8ogk0owMEUHeUvYq2kJFhuC0Ap1e2Et4rUKpBoCn6+4bvk3kEgkmHDznQEfixBCQoYVUW0ICAGkpz/znPdQKdQzFu3tLuTZGn0/RqhboTrDKbsPd7o7A1J5ECoWbSYhQGx9wczZCtUmcsaiO3K1MGPRl9mRUhmgTQSMxeIrRUVerDWZTLjxxhvxxhtvAACuPqeP/50nXK1QRZzLONvweWmhFjDjSeG90PXyuq7FqzfC1GzFQ5OvDe2aCCEkQM6Kxc7aYQLuW6F2dqO2s2Kxl7YXNF6qvMtMZQEFi3bWjjprnV/7ehKqYNHBOrxWLDrbsLafaRiI//75X3x96OsOn+fAodpc7XG/A7UHkBKT4jEcTlAnoNZaG1DVb6wqFiaHyWsrVEv7m9ncsFqtmDJlCp5//nkAQL/z+0Gm9P26iL+tUAGhHWplcyUKGwuRoc/w+v0fKpvXbkZ9dT0mTZ0UkecnhHhGwSIhUUwmlYDjeNHBDgmMxe5b8NRgccDGcIhVK7rlTBq9Wo4GqwN2VtyFVG8Vi8ePH8fo0aOxe/dunHnmmQGvz8Z0fL4Vf5RicIoeKa2CP7VC+FHYYAm8QiDPOV9RHdgMCZZhsPrbRbjs2hthiEsIeF2EEBIynENcoOasIHCesrS/m7uT9lUAwl+x6E9QFupWqM52pj5U3sHhDBaDcDHIbhKCyjYVi85WqL7PC3KRq31v8QoIwVhjOcCIvAjoaBaqHDtx6tQp/O1vf8PGjRtx9tln+7Yed1i7EN6JucjsDPlCXbFYdVD4qOvYDq41nufx4ZIfMenyC5GR2rHCgxBCuhJZy7+h3qrFWI5t02DA20xGZwiUoE7oMJuvvQpzBXQKnV/VYU7FTcV+7+vOcePxgKrw3FFKWyoWvbTurrcJbeyDFUhxPIdFBxbhv/vazo50zv0rNZd63Pdg7UEka5M9riVJk4R6a32bmZq+ilXGwspavVYkenuOyspKXHbZZVi5ciVGjBjh93oAIUj3pxUqIASLR+qOQAIJsg3ZIW9n68nKRStx3sXnIXtgdkSenxDiGQWLhEQxmatikYLFcLA6OLA+hLjlDcIJo14T2kHlkRKrUaDRwogOFps7CWa3bNmCUaNGgWVZ5OfnY+zYsQGvr33F4vEqEw6WN2Jgih6x6tOVG86KRX9maLbWaHXgcHkj0uK0iFEG9jXP+309qitKMfHOewM6DiGEhBwrMlh0XbhztkJt92+ut/aeFiMQwIU6rxztLvL41dozDDMWAf8qFhUBVgtwrBDgOcytvpZoCTslgD2QVqjqllaoPv4c1qUA5mrx74fdfDoIdWPXrl244IILUFdXh7y8PFx7bRCq9FgHIJGLDBadrVBDXLFYeRBQxpyeU+nBxu37cPB4MR6564bQrocQQoJALhH+DXXwnv8N5XiuQ3UiwzGd/viOU8UBAJLUSV7XUNlcKQSLAdxUXNRQ5Pe+7pSZykRVyPlCJVPBwTrA8J3/3DbajAAQtFaox+qPocnehHpbPfLK8lyfNyiFFp3lpnK3+9VZ61DVXIUkdZLHcDhZkwyjzRhQK1q9Ug8AqG72XDnp7X3bv38/Ro0ahYKCAmzevBm33nqr3+sBhCA9kIpFO2dHhj4DiZrEgNbhryP7juDgHwdx4z03RuT5CSGdo2CRkChUWircieWwWcD28Faovx+uQlVjeIbU2xjfgsWKlmDRoAlC+7EuyKBWwGRl3LYcdcdTxSLP83j11VdxzjnnYPv27RgwYEBQ1md1sJC1akH7w95SaJQyDOqlg7TV5+UyKeRSCRqtgQWLu4rqwPFARoKmzfH9sXrpFzjr3AvQf8iwgI5DCCGhUlNbAwBobGryrWLR9ef2FYteqrQsdYAyhDN62CDMWAx5xWJL8OTLBUJn6BZosGg3nT5emwBQIoSLvlRRtidXip/V2ZqhD9BcK/5r5WjuNFh84403kJmZiR07dmDYsCD9/GVsQmAo5oKes2LR29+FQFX8CehTAS+zwj5c8iOGDsjCpRfQuQghpGsym4R//ysKK1ytUDurWGRbKuOd4SLDMeDQ+TmMTqFDX0Nf9Ivr1+l2PM+j2lLtdQ5jZySQoKSpxO/93alsroTJHkC7cjecgZO3GYvGljb2zsAtULsqd0EukUMtU2Nd4TrX5zVyDeQSOcrMZW73O1R7CADQO6a3x2MnaZLg4ByotFT6vT5XsGjxHCw2M52fL7333nuIjY3Fjh07cMEFF/i9FieGZyCV+l+xCACZhsygfQ19tfLLleid3hujLx8dkecnhHSOgkVColBDg9D2gbNZwANwiKwY647uWbQTV7y7OSzPZWNYnysWpRIgXtt5y5T2WI5H9rNr8PHmE74uMazitAqYbOKDRWu7GZUcx6G4uBgSiQT/+9//sG7dOiQkBK/tp43hoHAGfDywck8pzko1IFnf8eKqWiFDc4AVi/kFdYjVKNAnNrCLt4XHDmHvjlxMmkLVioSQrqupSahQs9usgc9YBES0Qq0PTjtPT9o/v8MMeGnx1UG4WqH6FCyaIIR/qsCe29ka1mHpGBLLlKLnF7olVwthJeNjpZ4+Rfg+ahDZNs7eMVjkeR4nT54EACxcuBC///47evf2fOHRZ6yjpRJRTLDYEhyHesZi5QFA1xtQeP77dLK0Eqs35mPWlOu7ZTt/Qkj3YLEIP3tMDSZXK1RHJ1Xf7WffeZuFBwitUOVSudd2no32RthYG/Qqvd+tUA1KA8rN5V4DO19YGAtOmU4F7XiAMGOR4RjvwaLNCJlEBrUsODMWd1XsQpo+DYMTBmN35e427VD1Sj1qmmvctn09VHcIapkavbWef747K/JKGv0Pdg0qoXKyylLlcRt3bVJbn4t8+OGHyMnJQWZmpt/raI3lWMjgX8WiczZmhj7DaxvgUDDWGrHxx42YePdEyGS+z5ckhIRexIPFjz76CNnZ2VCr1Rg1ahR27NjR6fZz587FoEGDoNFokJGRgX/84x+wWsNTrURIl9NyZ7e7WXI9SaAtLMWyMRxYHy4aVjRYYFAroJb7dhLkDOpW7/E8I6AriNUoYHGwogM5i+P0Lx5msxm33norLr74YlgsFsTFxUGpDO7JqtXBQiYTTqCPVZlwqt6Cgb11bucfqhVSmO1sQPMn8k7UIjtRC706sArV1d8sREJyb4y5Iggt2IgodC5CSAA4RmTFYqCtUOs7DUICxtjbBol2sx8BT5haodp8qKZ0NANy1elqOH85W8Mylo7VpoEGi86LVQ4fq0SdMwJrjonb3m46Hc4CsNlsmDZtGkaMGAGj0Qi9Xg+NJsjfY/7MWORCWLHosAL1RYA2Sfi+8ODjb9dCH6PBXTdcFrq1kA7ofIQQ/7AMe7oVaic/u9l2lfFig0WFVOE1mKkwVwAADAqD12N6YlAZUGup9Tr30an962lPrxCqzJwVe8Gikqng4Bxen9/kMEEtV0MuC3w0DM/z2F25G2m6NFyYeiEa7A3IK23VDlVlQL2tHnY3P0MP1BxASkxKp9WkiWohWAxkxqXz/e6sFWr7ikWGYTBr1iwMGzYMFRUV0Gg00OuDVx3Ig4dEKvEr7NbINVDL1MjUByfk9NWab9ZAAgmuueOaiDw/IcS7iA7++u677/DEE0/gk08+wahRozB37lxcffXVOHLkCHr16jjzYenSpXj22WfxxRdf4KKLLsLRo0cxffp0SCQSvPvuuxF4BYRElqSllYfYijESGDvDgWXFXzQsNVpg0CigkHXPO72dLV6rTTb07+395NfZCrW+phKXXnorDh8+jKVLlwb/Il4LO8NBLpUCYJFzvAZxWgX699JB6uaXQrVCBoudBcPxfn29TDYGB8sacdXQ3gHNVzQ1NuC31d/jtntnQa7oni10uxo6FyEkMBKOEVep57x459y0fTjVSesyAIC1IbTBImtv24rT3ixUm3USvnQQropFX9qO2s1CtaIkwGDR2UaN505XLzrJlcL8RX8rLJzvsa/tZ3XJACRA7XFx27dqhVrTYMaNV1yBnTt3YuHChYiLi/PtucVibC3BoohzC+fXKJQzFmuOCN/n+l4ew06L1YbPlq3DvTddiRhtcKpMiHd0PkKI/1iGdbVCtXVyo5KzFapTZ21TnayMFXKpHFIvN4hUNgstNANpGalX6lFuKu+06rI1O2sHz/MeQ894dTwsrAVH6o/4vSZ3lDIlHJwDnIjODhJIIA1CTUthQyHqbfVIjUnFkMQhiFHE4Oein13vd5wyDjXWGlgZq6uFp9OB2gPI0GdAI/N8HqlVaKGSqXCqqWN156HaQ9DINciOze50jTKpDBq5BnXWOo/btK5YtDRZcO2112Ljxo2YP38+UlJSOj2+v2SQ+RUsjukzBvHqeMSr40Owqs6xDIvVX6/G5ZMuR2x8bNifnxAiTkQrFt99913MmDED99xzD84880x88skn0Gq1+OKLL9xun5eXh4svvhh33nknsrOzcdVVV2Hy5Mle7+QjpLviW+5ks1GwGHJyqcTnisWyBisMajkUsogXh4dEbEtlXlWTlyqTFlYHC3vlCfzz7zeisrISOTk5uOGGG0K2PivDQd7SCvVUvQVn9TEgMcb9BWK1QgargwXjQ3Dc2q6iOrA8j8x4bUDzFdev/BaMg8G1t97t9zGIb+hchJAAia5YdF4ka/l31tdWqFajbyGfr1g70PqCo6PZ94rFILYuc8vZKtOX6kC7WQj+xFTMdcZZsQgI1aOtyVTC18/f1y/zM1iUKQF1rFCBJ4bDAsgUOFTNYtTDH+Ho0aP4/fffMXnyZN+e1xes3fdWqKEMFisPCB/1aR43+WbNZtQ3mvDwndeFbh2kAzofIcR/LMNC1nJzRmdhIcO3rQR0VgbynXQcsLItwaKXy6cV5gpIJVLEqeJErrojg9KABnsDrKy4ymMefKdVgxJIkKRJQlFjkegqSDFUMhU4nhO9zmDYVbkLUokUGfoMSCVSnJ10NnZX7nYFyfHqeDTYGjoEyw22BpSby5GkSfLazjNeHY/K5soOAfRTW57CGzveEFXhqlPoUG+t99gm1lmxaK+2Y/7987Fjxw6sX78eM2bM8Hpsf0mlUr9aoWbFZuGavtcgRhETglV1LueXHFSVVeHGaTeG/bkJIeJF7Gq33W7H7t27ccUVV5xejFSKK664Atu2bXO7z0UXXYTdu3e7TpYLCgqwdu1aXHON57Jom82GxsbGNv8R0m20nPDYHBQshppCJoWdYcH4MG+posEKXTcOFp0Vi5WN4n6hsDpYcA47klLTsWPHDgwfPjyEqwNsDhbyVtWHA3vpEaNyX02oVchgcfj29W1te0EdDGp5QPMVOY7D6m8W4pKrr0dCcsc700nw0bkIIYGT8GzbQM6T9hdj2ocn3i7WWBtDO2OxfcUieD8CnlBXLLZcELP7ULFoaxL2CzRYtLeqUrQa2z4mVwkVi/6+fmdg7GsrVADQ9QIay7wH04DwvkkVsLFArzgd8vPzMXr0aN+f0xesXahEFHNBTxqGisXKA0IbVE2c24d5nscHX6/GhEtGon9Wn9Ctg7QRjvMROhch0UjR0gLcW8tN1nG6YrHTYLFduCamMtCXikW9Ug9VADdBGZQGcDznaqsqhrf3JlWbinJTOcz+/Iz1wBnQtW/rGUo7K3YiTZeGeJVQPTey90g02htxoEa4YSZOHQezw9xhhuHhusMAgF6aXl7DtUR1ImqttW0C01JTKU42nkQz0yzq+0Wv1KPJ3uQxhHSuj2d5qGJU2L59Oy67LLRtx2US/yoWI2nVl6swdORQDBg6INJLIYR0ImJXu2tqasCyLHr3bjs8t3fv3qiocP9D9M4778Srr76KMWPGQKFQ4IwzzsDYsWPx/PPPe3ye119/HbGxsa7/MjIygvo6CImolvlE1Ao19JRyKewsB19yp8pGK3QqeZtwqzvRt8wqrGrs/GIez/P49ttvYbHaoU4fguc+/A6pqakhX5+9VcUiAPRN8jxTQahY5MBy/l0U3XaiBtmJMa6w1R87czairKQIE6fc5/cxiG/oXISQwEl51scZi84/t7vg4ujkZwnPCcGWIoRtGVlHx4DU14AnXBWLjC8Vi6bgBIttKhaNbR9zVSwGGCz6WrEIAPoUwFQlat//7SyFlZNheIoMeR8+hOzsbN+fz1fOGYu+VCwyIZyxWPGX8J55aCuct+cg9h4qwCN3XR+6NZAOwnE+QuciJBo5w0KvwSLbKljsZE6t8zjOCkUxFWhW1gq5RO41lCo3lcOgNLjCUH8YlMJ8xjJTmeh92lfXtddH1wc1lho0tf45HiClVAgWLb6cjwSCFyoW02LSXNVz/eP7I0YRg1MmoXVprDIWPPgOoezB2oNQypRIifHeZjRJk4R6a32b15VXJsxxFFvxqVfq0eRo8hhwb1i7AayFhSpFhZmfz8SgQYNEHTcQUvhXsRgpBYcLsHfbXtw4naoVCenqoqqMZtOmTfj3v/+N+fPn448//sCKFSuwZs0a/POf//S4z3PPPYeGhgbXfyUlJWFcMSGhxbdc8HKwFCyGmlImhZ3hRVe0NVkdaLaz0Kvkbmf6dQcKmRRqhRQ1Js8Xg+12O+6//35MnjwZ9UeFO6rDdVJrYzg4c8K+SVokeGiDCgBapdAK1eFHK1SzjcH+skakxWugDWC+4g9Lv8CAs87GkLPP8/sYJPToXISQtqQQGSx2qFhsP2Oxk2DRGRqFsmLRXStPn1uhhrhiEQCkCh+DxZZWqNIAZyy2nqtoaTc7SK5qqfgMcMaizZ9gsQ/QXNNpFSfLsnj88cdx6+fH8b89wtrDdoGNdc5YFPFrt/Nr1MlF8YBVHQRikj0Gix9+/RMGZPXBVRfTuUhX5+v5CJ2L9CwNtgYM+3IYfi/+3fW5clO5qCCtK3GGdN5CndYzFn2pWOwshHSyMlbIpDKvFYvl5nLoFLqAgkWdUgcJJCg3l4vex2vFYkwqGJ7BMeMxv9fVnrNi0eJLa/YAMDyDGksNUnQpropQZztUQAiKY1XCHL72oeyB2gNI0aZAq/B8k7FTsiYZjfbGNtWdOaU5Pq3VoDTAZDd1+D7kOA7/93//h9ceeg3GXCOA8J2LSKXSqKpYXPXlKiT2SsQlEy6J9FIIIV74fwU0QElJSZDJZKisrGzz+crKSo8Da1988UXcfffduP/++wEAw4YNg9lsxt///ne88MILkEo7/qBXqVRQqUI4j4WQCOJZBpDSjMVwUMglsDeLr1isaBDaZ+jV/v9iEQ30KgXqzHZwHN9htmBtbS1uvvlmbNu2DZ8vXIRXDyeFdW12loPFIfyilaxTQ63wfFFVq5QJMzT9qFjcfbIeLMcjPV4DmZ/zFU+dLMDOrRvx1GvvR9XdhNGOzkW6KZsJUOkivYoeQwrOxxmLLToEjSKCxVBWLHKOjq/Dl5ajAELeChUAZApxbT+d7CZAqhTacQbC3tJSlbV3rFiUq4VWqP4Gq/7OWASE6jvGCjSVA3HpHR5ubGzE5MmTsX79enw0KRl3XZwBlIivBAkY40MrVOfXqJOL4gEx1wLmaiFYdDNnqqyyFv/7JQdvP32f259lJHTCcT5C5yI9S2FDIQBg5fGVGJc5DgBw1fKrcHbS2Vhy7ZJILs0nCpnwu7SneXVObWYsdlax6Kzua/lxJaa1pY21udbRmcrmSqRoUwIKFqUSKWJVsai2VIvex1vFYu8YoRL6cP1h1/dCoFzBIts2WJy1YRb+qvkLm2/fHJTnaU0CCTJ1mW0+d0HKBdhWvg2lplJXsFhqLm2zzYGaA0iJSYFGxM1pSZokcDyHsqYyZBmywHAM8svzfVpnrCoWZoe5TYjf3NyMadOmYfny5bjtidtw+OzD4BC+a3jRVLHYZGzCryt+xR0P3QG5ImKRBSFEpIj9xqBUKjFixAhs2LDB9TmO47BhwwaPsy6am5s7nCDLZMLJAx+OO4QJ6WpaLjzYGBGzjUhAlDIpWI4X/V6XtwSLgbTGjAZ6tRyNVgfs7apm6+rqcOGFF+LAgQPYsGEDbr7tzrCvzdaqFaq3nxEapQw2P2cs5hfWQq+WIz3O/0qan779ErHxCRg7YaLfxyC+o3ORbijnPeD1NKDiQKRX0n14acsoExsstq82aH8xr7Pncc73C+mMRTetUNtX5nkT6laogBAs+lIh4KxYDLgVqglQ6YXwy92MxWBULPoTLOpaWkfWdqzEMJvNuPjii5GTk4M1a9bg4fOVQsVnOPnTCjVUMxarWv5d1LkPqj77fh1USgWm33hlaJ6feETnIyRcKprFz+7rCpxViL5ULHYWFrav2PRWwclyLBycAwpJ5z87eJ5HdXM1YhQxrnX4K0Gd4FNlqbeKRZ1CB51Ch2N1QaxYbGmFam73c3vzqc2os9ahpCn4FdGpMamI18S3+Vy/uH6u/1fL1FBKlagwnf4eN9lNOGU6hSRNElQy7zdWJGoSAcC1/r9q/oLZYfYpLI5VxsLKWmFyCOeudrsd48aNw9q1a7F8+XKMnToWankIb5RzQxZo14owWv+/9WAYBtffSS3ZCYkGEb0V8YknnsBnn32GL/+fvfMOl+Oqz/87bfve3lQtuchNluQiN9zAEKoDhlBNTCc/ME4CCS02mN4SIBQDoQYSjB3AFGMwuMpF1UVXvUtWub3s3m3T5/fHmdmd3Z26u7q6EufzPHqu7u7szJlyd86c97zv96c/xc6dO/G+970PhUIB73jHOwAAN998Mz7+8Y+Xl7/hhhvw3e9+F3fffTcOHjyIBx98EJ/4xCdwww03lDvRFMpfE7pKOtiiQoXF402EJ1+XBTlYtv5IVgQDoDNxaguLbXEBM6JaJyx2dnbi5ptvxoYNG3DVVVeVnYOziazqgR2EcYE4FpUG3L/r9k9iSXeyKXfqhscfwjV/cwMi0dl9yKDQvsgpx8g28vPY0ye2HacC5UEI7wHqwMJi7UBfnbAoun/WGriKJP230yiaAtQOzhUnw62jgckpobFcg0G3JReImNasA03MEmciHwOkmer3+FhzwqI12KeEdYgCSJvC4sS+ureSyST+/u//HuvWrcNLX/pSEiEbwHXSUlSZCIZBnALscXYsju4g10LbfMe371+zCX/7wsvQnj6Of2cUV2h/hEKpxxJ0/MQzXdXBMiTu0UtYrF2Pn4AnmWkKfsLSjDwDURNJlGmTzrDeeG+o5f2ODQAMJAdwJHekvD/NYjkWiy737eMRubswvbBcX9HCHk8ramLZ7Wk5XHdN7QIA9CX6Ap2XrlgXAOBw/jAAUl8xwSdCnZN0JA0AmChOACATR9761rfiiSeewI033oiiUiwfv9nCL8Z3LrH+kfW4+OqL0dXXdaKbQqFQAnBCfcVvfOMbMT4+jk9+8pMYGRnBqlWr8MADD5SLlh8+fLhqFt7tt98OhmFw++2349ixY+jt7cUNN9yAz3/+8ydqFyiUE4phzu6XG6gLRwlHhCPfRXkpmLA4nBWRjvGIR07tB/uOuIChTAmyKcj98Ic/RFtbG97whjfgE5/4RHm5EyMsamXHoh/xCAcDQF4O186SrGHL0SxefG4fktHGbqmT46M4emg/3v6PH23o85TmoH0RCsUFy0Xm43zhmKCORb8ai16OxVkQFp2iUIvTHh9wOC5GsD5CU1hRqIaOQHNElSKQ6G6BYzFHBEAhTtyL9utCiBEBrVGXFMsS8a0RYVFIAJEUMH2g/NLdd9+NYrGId77znfjIRz5CXtQU4pqd5cE8aCGiUI+3Y3F0K4mOdYiKnskX8cz2fXjP6192fLZN8YX2RyiUeoLWWFTNCdccy3mKWlZsqGHew73qMQJAyaxp7OdCHC2SGGNLVGqG3kRIYdEnChUA5qfmY8v4FhSUQiDnnh9uUajHk4HkAGKc+yRczdDQEe1ARspA1mTE+Bh2TO6AwAqYl5wXaBsRLoKUkCrXaXzi6BNY2r4UOTkXuJ3WNfDHP/wRm6RNuPXWW3HrrbeW3w/rgGwFXLNx+LOEIivY9vQ2vONf3nGim0KhUAJywgOLP/CBD+ADH/iA43uPPfZY1e88z+OOO+7AHXfcMQsto1DmPropLErUsXjcESxhUQw2aDiUKaEtLpQ/d6rSnhCQl1SUJAX/+qnb8NWvfhUf/OAH8YY3vKFquVJIwa4VyJqBFB+sEx036y/mSuEG8549PA1VN7CoK9lwfcUtm9YBAFZc7Bx1RTn+0L4IheKA5ezyEQ05BsGEEPsyhuEQjeojLDLs8Xcs1kWhejgWnfb5eAlCdjgrdlRDoEc5uUhcaq0QFvkIoMfJ+bDvq9WmZmpMcpHGhEWA1AzMDsFQZXzm81/Epz71Kbzzne/EO9/5zsoyVnzsbDsWy1GoAY5/2bF4nK6jkW0kOtahVulTz26Hruu4dvXy47NtSiBof4RCqcYS9PxceZpZroRneE9hUa2ZAOTnrLOERb8ai6MFIiy2Rdo8lwtCX6Iv1PJBHIuLUovw+NHHMVGcKLvymqHsWFQbvG83wKLUIl/XYWess+zMtITF/kR/ndPRbx1jxTFMlCawc3In/mbJ32D31O7An09H0ph4YAKfu+dzeN3rXocPfOADVe0uKIVZdyyeLMLi7i27IYkSVl6+8kQ3hUKhBOTUHvGmUE5xdIVEWcgqdSwebyI86QwGFciGsiW0xfhTX1iMC8jn83jHTW/E17/+dXzzm9/EV7/61brl5noUaswUFrMhhcX1ByaRivJY2NF4hOngprVYdPpZ6OwJNzuVQqFQjivWoIePSwAAcdD5YV9PYbxGPGG81yEXiDPteA6MOEWhFjxqLDoJodpsORblehHUDaVEzmVLhMUoEXeVYrUDlY+QY9dMhCcX8Y7D9SI9ADEzjJtuugmf+tSn8PnPfx4//OEPq5exRMtZFxYVIhgGcSwyplB8HCLkoOvAxG4g2eNYq/SxjVsx0NuJs5YsaP22KRQKpUHKjkWf+6slLPo5Fmudj37Comjel4I4Fhkw6Ix2ei4XhO5Yt+8y9jqqQWJH56dIBPbu6eACmRfWeSmFqfncJD2JHt9lumJdJJbWPG/bJ7ejL9EXqqZhd6wbU+IUnjz2JHToWJxeHKhMMgCoioof3vFDjNw9gmv//lrcc889dWJoUSmWa1TOFrX1eOcqm9dvRiKVwFnnn3Wim0KhUAJycny7UCgUR/RyFCp1LB5vLIEwF9CxOJwVkYoJELjmaizMddpiAqb+fCfWPfk4/vCHP+DWW291nEl4IuqAypoeKgoVCB51a7F2/yRO604g1UR9xS1Pr8PK1dStSKFQ5hhlYTGAyBFEELILiXqNCMVy3i4tuUAiONkAwuIzPwWObPBfrhbdwbEoZtyXdxLRgoiwzcJFAF2uF0GdMAwiqPEtENPkHNl2WVi07as1YCc34Vzgo+Q6aqROZXoe/uVXB/Db+/6AX/7yl/i3f/u3+r5IWVg8EVGobMgai8dBWMwcIiJzqt/x72jNpq24bvWKpmuDUSgUguV0ozSH5RSsdRrWUhYWGZ8o1JA1FkUtuLCYjqQR5ZuPGe2J+wtosl7pg9S6Bp3qHg4kB8CAwc7JnU23DyA1+3iWn9XrPMEnfJfpinWhoBRQUAooKkUcnjmMnnhPqPjX3ngvpsVpPHXsKfQn+jGQHAj82Z987Sf4y6/+gqXvXYrV71rtKOgV1BMQhYqTw7E4uH4QF6y+AFzA1CkKhXLiocIihXISYzkWJbWBQZiQFGXSmRf4v84Bh7A1FkdnRKSi3CntWNQ0DW1xHh3X3owv/uQ3ePnLX+667GxHoRqGAVkNISw24FgUFQ1bjmawsCOOZLSxzu/0xDiOHNiLFZdcGepzoyLZr6xIJxVQKJTjhCXABHHhaUEcizXfr3ZhimG9BUzLsRhEWHzsC8Dab4cXqAy9XtARs+7Lq3L9NmZDWOStKNQA+2dFprZCTJPyprCYIiKd/bqw1t9MJBoXMWtHhruvaZoGtM3HHVezePzeH+Pv/u7vnBe0XBVOg3mT+yvvtxrdrLEY5LGbYcjfwvEQFke3k5/p+gHSfKGEp7ftxbWX0hhUCqUV3H/gflz680uxaXjTiW7KSQ9vOrn9aixq5kRrnuWh6mqVo89OnWPR5/vWEs6irLcwNZQfQlukrSWCUULwF9Ds4mHBqkNt4hTbGuEi6Ip1YX92v+uxCUuEjUAK0v9rASt6ViDu4LavpSPaAYCcjz3Te6BDR1+iD2yI1IbeRC/ySh7rh9fjtLbTkIrU1yWuxbr+3vz/3oyv3/N1LLl+CTJiBrpDX62klHyjdVsNF6T/fIJRFRXbnt6GlZfRGFQK5WTi1B3xplD+CtAUGSwDKNrxj0I9Ok061V3JWZ7pPUcQePJ1WQwgkBVlFTlRRToqgD1FZ34//uf78P7X/w04qQC+rQ/xgdM9l5/tKFTrb4IPKOxaUagzIYTFZw9PQ9EMLOqKg28wXmTL02sBACtCOhYVnVxXOk1BplAox4tWR6HWCpRVjkWeCHVuKHniWAwyMFTKmOJUA1+QtbP8pZx75Kjm4BqclRqLEed6kE5Yg40hZup7rqssLJZqolDN9ctNiHN8lFxHQSNeAfxxzSasfM0HMCzG0JdkcclCj/2UXaJQdR34/rXAo19ooNEBKEehBlye4Y5PFOroDnLukvWx6089uwOapuO6S1e0frsUyl8he6b3AAAGxwdPcEtOfsqORZ++iG5OtOYYDpquOQo6AKDpIR2LZiKDX028kcIIUpGUr7OxVRSUiphYUKuFRbd6evOS8zCUH2qZy1BghbKj83jSFetCOpIO5KjvjJEo2uHCMHZM7gDP8JiXnBd6ewCQkTJYmFqIGOcdo7p5/Wa88yXvxMiREaTaU1h+yXKkI2nk5Jzj9VVUi7PuWAwjrJ4o9mzdA7EoYuUVVFikUE4m5v63C4VCcUVTFfAsC1k9/qLNUMacrce5z3baM5rDjNj4YMihiQKu/NLD0BuJwTrOWI7FQgDH4kiWdLDTsdl5sJhNDMPAPT/4Bj77offgtDOWoaczDQAYm/F+qGhUWPyPP+/GG763DrtGZkJ9TirX2Qi2vOVYDBp1CwAbDkwhGeGwoNN/Vqkbg5vWYeGSM9Dd29/wOigUCuW40PIaizX9A7sIF8SxyMcqNejcUEQSpxnEzee4nRphUc57iIVGvQjmE9XWErioWQ8ywD6WhcVWRKHmybajprCoOQiLDvFrgeEixPkawLFoGAa++fM/4ob3fRpnLJqHdP9i8sbEPvcPWW2rjanLDREBeWRrYzGsfmiKKYgH7JCw3PFxvo5uBdLziPO3hjWbtqK/pxNnL13Y+u1SKBRKE1gCTG2EaS2aYnMsGip0OH+f10aqBo1C9YvSHC2OIiWkZk0wssef1kafuomqC9MLMVocRU7OtaQNES4CSZXqxNoTiVXjcig/hO2T29Gf7A/kOLRjRdHyDI/T2k7zFDQf/OWD+PBNH0ZPfw+S6WT5dUtYlB1i84tqcdYEaAs3sXkuMbh+ELFEDMuWLzvRTaFQKCGgwiKFchKjqgo4loGsHX8h7ljGf2bbTT/YgP98cE/D2/j3v+zGUEbEbzcPNbyO4wXLADzLoCAHFxbbmqi7NxfRFBmD//t5/O+dX8HNt3wYH//Kd5BMJBDjWYznvAeVG62xuPlIBhsPTeFV33wSn79/R1kw9MOKBw7qJORYBgLHhKqxuG7/JE7rSTZ1nrc+vQ4rLqH1FSkUyhzEEqOCiByBolBrHYu2wTxLTHGL51IlIiz6faeXpsnPRoXF2ln8SsG5lqJFnWNxFqNQwzgWm635VK7VaNZYVMXq42INuDYTJ8rHzHhZ7/1SVB23/N9h/NNX/hsfevuNuPdbtyHV0Us+P7Xf44OlynbsTJqfyY/Wn/9WYAmLQRMsjpdjcWQbkOpzFRavueR8Wl+RQqHMOSyhzk8AVFVy/+UYrqVRqEEdi1PiFGJ8rGWCUYT13p5dTMzL+ar3DJfEhoXphSipJRzNH22+gSDHRNZkVyHzRBDlo4hxMQwXh7F9cjt6472BIlTtdEQ7wIDB4vTisgOyFkM3sPt/duNbH/8WXv6Gl+PLP/sy0h3p8vttkTbklbyjsFhSS7MuLJ4MjsXBDYNYfsly8MKpNzmfQjmVmfvfLhQKxRVNVcGzzKxEofoJi7puYLIgYbLgMQDnh7kbyizUjGyECM8Gct4Nm8JiZ/LUEhYnD+3A6JbH8eEvfQd///5/KQ9ApWI8pouyZ72GZmosntWXwuolnfjRkwdx/VfXYO2+Cd/PyGVhMfggWYznkAsoLIqKhs1HmquvmJmawKF9u7Fydbj6ihQKhTIrWGJUIMdigCis2sE7+yAhw/m78Piof43FsrDYYL/IPuuf5YiD0Wv/a9s7G1GovBmFGqQWoRWV1qyDQimSfeWigJAk/5dsA5nWtdKMMFcWTL2vt21HMvjZxkn84I5/wL9/5F3gOI6IdsleIHvEXZi0zm2t62TSdDkWJ49PnUVdNqNQA/ZHWK71ArVSAjLPA4neOpG5UBSxceseGoNKoVDmJAeyBwAAqs/3om5OtOZYDpoRPApV1r3HLkpqCSzYcq1HNwzDAAu2ZQJOT4K45twiYKtqLCrVUahuz+Tzk/MBALsmd7WiiRBYAbIu+7pJZ5u2aBtG8iM4mD2I3kSvr9u0Fo7lcE7XOTij8wxXt+PU0Skc+fMRvOu2d+GDX/hgnRjWHm1HQSk4CouiKvoKx62GbbBsy2yhqRq2bNyCVZevOtFNoVAoIZnb3y4UCsUTVVXAcwwUVQ9dhFvTDWghCrRlit6DZXlZhW64d2RPBaI8G0ggG5kRkYxySEROjdlWhw8fhq7r6DtrFa674/9wzcteXfV+W0xAtqR6OmebqbHIcwzeculp+OCLz4KuG3jLDzfgn+9+DtmS+4Og5VjUzZpdhVzGdztRgUVJVqEH+LsYPJKBrOlY1Nl4fcWtT68HEL6+IoVCocwKlmMxiFgmBxAWawfH7PGpZceil7AYAxBUWGxwgpJdWOLjRIzy2v8TFYWqh4xCFbzrA/liiYh8BIiYjjfrWAO2KNQmHYua5LpfR48ehaqquHBpFw5+6gK8+7XXVy+Q6ieuQ7c4VrcoVMuxWJquj8JtBaoCRWew9Pp34NntHlGtFsdDWBzfRY5ruq9O4Fy3eSdUVcO1qy9o7TYpFAqlSSRNwr177wUAKIZ3X0QzU20EVoCqq+7CohGuxmJJLUHgBHB+E5taTHesGwAwJU05vl8VhapW37vcxmO6490QWAG7plsjLEa5KBRNmVOORYA4DndP74Zu6OiL9zUk9v7Din/ACxe9sC7adnh4GJIkoXtxN6658xq8+h2vdnT7t0faIWpiXf1LTdcgaZKvA7bV8OCh6zpufuHN2Lx+86xuOwh7t+9FqVDCystpfUUK5WSDCosUykmMZkahqroeenL+l/60E+/8702BxMUgYmHWFB5DaJUnHRGehajovsdsJCuiLSZACFrgbw7zl7/8BRdccAHuvPNOAEA01VG3TFucR05Uyi5BJ4pNOBYtzp3XjttfeS5efv4A/rh1BNf9+2P47eZjjstabVFF8qAlFQuOy9mJCxxKsg41wEW8/sAUEhEOC5uqr7gW8xctQU9/uILyACCbhzrM5AAKhUIJhTXoEURYbMSx6BiF6iUsxgE/05dd7GoEuzAmJIgY5TXoeEIci2aNxUBRqJaY1qywaNZj4mIkChUAxEx1m4Bg14EbXNQ1CvXJJ5/EqlWr8KUvfQkA0Jt2cGCm5wGFCXdxUCkBLF/vep3cS6JKNRnIjzTefjd0BUVZx6Fjo3h+aMx/eYYjAnUr6z2O7iA/2xbUvfXYxi3o6WzDeWcubt32KBTKXyWSJuGCn16ALeNbWrK+O5+7s/x/vzp+lrBYjkJ1iQNtJApVYIVZj4q2XHZujkW7S7HWsehWX5JlWPQl+nAoe8h1vU64jQVFuAhkXa6rWwnA0ak3W3RFu5BX8mAZFgPJgYbWwbEc0pF01WtT+6Zw9RVX4/bbbwcARNrdxUHrsxPF6qSlkpnsMFu1OC0YloEkSjiy/whGjhyHvk6TbF63GdFYFGevOPtEN4VCoYTk5B/1plD+itEUFQLHQtUNaCGVxQMTBQxlSjg85T87eypAvGmmLCye3ELH3r1kNvnhA3vr3ovyHCRVg+oz2COpGjiWARcihnMu8p3vfAeveMUrcNVVV+Ftb3sbnj90ECNHDtUt1x6LICeqnsJiSdYgcM0fjwjP4XUXL8THX34OulNR/PPdm3HTD9djaLraJVGuxRjioSkmcCgpWiCxbt2BCZzWnUBbvPGHgi1Pr8OKSxuLQR0Tye27qJzcf28UCmUOYwmLPjFhAKrdh27UDjLZf2d4/yjUSIAaOSXnmf2BsYtSQhxQRCJ2uVE70BninuPFsSFSa3rrnufr3+RCRKFadZdC1heqX48pLPIREoUKAKVM5X2WJ+JcM8KiECPXRM1+/exnP8P111+PCy64AO9///uxd/9+HBhyiERvmweIWXdxWSmSY1frXJjcB3SYotr0ocbb74amQA5TsoDlzOuqhff30W0kKjbWXvfWmk3bcO3qC2h9RQqF0jT7pslz9PcGv1d+7TW/fQ1+vefXodc1OD6In27/afl3J/HKjiUs8izvGYVaux7Jp0Z0SS0hwkXmXI26KseiEsyxCADzU/MxXBiuEyOdmJmZAQA8v9ehLwJbjUWHsZEg6z9eWHUR+xJ9deJgowyvG8ZDH30ICxcuxL/8y79g7569mBh2L8/SFm0DAEyUqpexzttsC4sCI0CWTpzY68fgelJfUYicWqWEKJS/BubW3ZFCoYRCNR2LimaEdiyKigYD/pP/Af/6igCQLYWfpb9/PI8fPnEg9OeOJ2NjZDb59OR43XtRnoWk6oEnkZ+sQzSapuEf//Efccstt+DWW2/F73//e7S1tWF6ehqZydG65dsTAgqSdxRqUVYRaaGDc1FXAh/+m2V44+qFGDySwYu+9hj+a83+coypJXIyQRwdJvEIB1EJJhw/dziDhZ1xJCONxeLMZKZwcM9OrLgkfAyqpGqYkE7Wq4tCoZw0lB2LAb5HfQbmyDK1jkXbAEfgKFQfmnYs1giLhgaIM+7L1zkWWyMsTk6SgajJjMO2uQhplxqg3+UW/xmWchRqzBaFWiPichEixDZKjRNT13XcdttteNvb3oa3vvWt+POf/4yuri5MTExibCpX//n0AAADmNrvvH6lVC8saiqQOQx0nU5+nz7YePudMDTA0KCEMR8G+VsIy8hWIDVAXLg2iiURG7fspjGoFArluHE0fxRPjzwd6jOSJuH2J2/HgvSCcl1AP4edqpD3eZaHpre2xiLP8k0LiyW11FKxzS4mlmrqG7u5NQFgUXoRJkoTyEkO99EacnmyTCHn3O4oG4WiK+V42RMpJtrhWVKOpj/Rj3iTE6sMw8DPv/1zPP2Vp7Hg0gX404N/wsDAAEZHR1HIuu+vJWiOFqvHTqzzNttRqBzLQZFmIVWjATRNw9ZNW2kMKoVykkKFRQrlBLDp0BT2j+ebXo+mquBZBqqmh3YKSopV4NxfoBgKICxmPOrdufGG763D5+7fiYMTc6MT6oclLPoJT3ORbFHB92zCmxcMw2BkZATf/e538fWvfx0cVxHPVLn+PHfEBRRlzbP+ZEnRWh4Ny7EsXnLuAD75qvNwzkAaX/zTLrzyW09gx1C2XGPRM8KuhoRgCos+zoItR8n6F3YmwDe4T1vM+oorGxAWNxycgmZQYZFCoRxnysJiEMdikBqLQaJQPb5/hQCDQ8UWC4sAIHq4IC13neX2mo3oL+u8qAHqGcoFsjzXZM1ny/kYSTg7FgFTvGzCZcdHyfEzB48ZhsHQ0BD+/d//HT/84Q8RiVQG4WTFYYA5ZcadTdQnTgAg4ignVAuL2SNke+2LAFYgImMrMQewQ6XBMzz5XCsTQMZ2Aqneulqb6wd3QVZUXHcpFRYpFMrxo6AWApVWsbjzuTtxNH8UL1z4QsTMSUV+Uai6OcGVYziohuq6vbBRqCW1BIEVwDY5dPqq37wKl991uW9Nx6DYRbySViMsehzrBakF0AwNezMu98oQRLkoZF0ui7h7pvc0vc5WYAmd3bHu8vXTKAzDYHJsEsvesAxXfvhKxOOVvqiquovdaYEIi+Ol6snqlmPRSVhcc2QNRgrHJ6aUZ/g561jct30fCrkCVl2+6kQ3hUKhNAAVFimUE8Drv7cO1391DVQPh1cQNFUBz7HQdCO0sFhSNMAA2ADC4tHp4+NYLCmk0zeSbWKG+ywSFTjIqtbSsjezxa+fPYov/WkXHt3tXt/n0KFDePzxx8GyLO655x78v//3/+qWUaR6V0pbXIABYDzn7lghUajH55bTlYziluvOxHuvOR2jMxJu/M5aHLEifsM6FlX/GosbDkwiLnBY3ER9xS2b1mFg4WL0zV8Y6nOGYeDhnWPgWhmRRqFQKE6Uo1CD1FgMMFjhFYXK8v4uLau2nxelSf9lHDH7QnbHneXuKnoIi9Y9huGqfz+eWO5DxT/KHnKBLN9shJvlbBASRJxjueoaiwCpkdgMXBTQFQwNDeGhhx4CwzD48Y9/jH/913+ti+mUFYdB43gHuY5cHYsOUaiT5rLJXiDRBWSHWlvb0PzbCSUsttqxmB8HihNAsq/yN22yZuM2dLWncf5Zp7VmWxQKheJAUSn6RplabB3fip9u/ymuXnA1zu4+G4x5fw4VhaprrnUGNSOcY7GoFltSY3GsSJ7Bj+SONLUeC7uwKKlSlfDqtu8Ayg7QnVM7m25DhItA1dTyMd01tavpdbaC4cIwAKAj1tGw0zQ7lcX6R8hE4Fs/fSvOfvPZYGrGzXRNdxXrOJZDnI9jqmZyWtmxyFbfjzeNbMIHHvkAbnvyNl8RvRFYloUiz03H4uCGQUSiEZy9ktZXpFBORqiwSKH4MJ6TsPFgkzV7XCiEGmmoR1UU4ljUDQQwolUhqToMGOACdJIDORaLc7Oj0kpiPAtZNeoci6/+9pN4z8/CRbzMNo/tIbPldo44R7qtXbsWl156KT74wQ9C13XXhydVkaHVzM5rixEnxOiMu0BMHIvHz2XHMAwuXdKFt1y6CJKqV1ywPrNQ7SQEDlKAGotr90/itO4E0rHGHSBbnl7XUAzq3rE8jmVK6ImehOo2hUI5ueDMOidBvkcbiULVnRyLHt9tQgBh0UsE9ILlADDVLkDLsei1TqNWWJwNx6J5XuSAwiIXrbSvUaQccWXyUfNnvCI2WjQbt8pH8dywhktf8lrccsstUFXVtS+iGwayuZr9Z1giEE4fdhYHLfemfZ1T+4kYmeoFkj1AYby5OpG1mNG4UpiEXJY3r6sWTSAa205+pvrr3lqzaSuuWb0cLEuHBCgUyvGjpJV8o0wtHjnyCBJCApf0X4K2SFv59VpBsJbANRZr2iH7JA2IqtiSKNRyO1skGlUJi5pUfXw8bh+pSAopIYW90y1wLPLVUag7J5sXK1uBVdewI9rR0Oef3/s83v+378dXP/ZVSKLkKSpnJjKu76WEFDJipupatByLUVufqaSW8MmnPgmO4bB5bHNdfGorENi5W2NxcP0gzr/4fESisxsPS6FQWgN9iqBQfHjJ19fgDf+1DmMeosmJQlMVCFyjUaikA+hmWCzJGh7cQTo1R6ZKSPjUkmvEsRgTyDrz4skhSsYEDpKqQas51oNHs3hwx2hDx2A2kFQNGw4QF8e+0foI3rvuugsvetGLcPbZZ+PPf/6z5wCTAVIf0E5bnAxy+jkWG40NDQNvtl2x4kzDCItRHpKqQ/FwEiuajmcPT2NBZxzJaGPCYi6bwYHd27Fy9ZWhP/vwzjF0JyPoS9LbN4VCOc6UHYsBBgObrrFoxT96CIvRIMJio45FEMFOsQmLVl2e2lqCdqz2srPoWAwVhZqvd+k1gpwn9RXNukUQEi0XFn+34SCu+kkBA71dePTRR8Hz3vfY0als/YupPiA/6nxslGJ9FOrkPiJGCgnyszTZWmGx7FgMMRmo1Y7F0R1kv9Pzql4WJRnrB3fRGFQKhXLcKSnBhUXDMCCwQrlGnYWqu8ebAoChG9A0DTzDe4qQdVGoPqkMraqx6Lb9RvESFt1EVYuB5ACO5o5CCtJ38yDCRaDoCnRzMs+OqR1Nra9VvPXct+LyeZejP1E/ocaPpx9/GrfceAuEqIBv/uqbiMa8+zZewmI6ksaMPFN1jVnCYoyrRLR+89lvYrQ4ilee/krIuowHDz0Yut1+8Aw/Jx2LmqZhy4YttL4ihXISQ0cmKRQfLCfe4akAM8NnGVVVwLMsVN0IPf5g1aBzi0K94/fb8J6fPY3BoxkcyxTRbopHbkwVws+A6kuTjpoViTrXIY5F3dXR5iVInUiePjQNSdURE1gcmS5VRfB+61vfwk033YQ3vvGNeOihh9DT01N+b+9oDpli/XnNTFbXCmiLkWtjzEtYPM6OxVqsQTwjSDyfCRGOvYXFLUezEBUdizoTDUe7bn1mAwzDwIrV4RyLUwUZzx2ZxtVn9SDG09s3hUI5zliDaEEGwdQAgxVeNRYZ3r/GIuvdDwFQX/cvDCxfLSpZ9ei8HIvWfluOwBCTWRrGEhaDOBalPMC3QFiUTGHRWk8kQRyA9s5nE3WM/vveB3Hjp+7Gy87k8fj/fgXz58/3/czoZKb+xfQ84jp0Ojayg7A4sQdI9BBRNNlPanQqAQTboJiORVENMfmP4fxF9jCMbiP1J6Opqpc3DO6GJCu4djUVFikUyvFF1MSmnXqa7u5CtFBkBTzLQ9VV12VrRUe/GouiKpIai3NMWLQEKoC4Lu3H1/BxvC9ILcBIcaRKnGyECBuBZmiQdRmKruBA5kClDa2sExyS+an5eNPZb8K85Dz/hW2s+eMafPRtH8X5F52Pb//m25i32P/zfsJiXs5XuWJLZh8jasbHH8gewM93/hzXLLgGl8+7HL3xXjxy5BHfaz0sHMvNScfiwV0HkZ/JU2GRQjmJoSOTFMpJjK6q4DkGqha+xqKoaDAMgHWJdrCiJI9MFjGUEctxl244CVB+DLTHzM/OvdlTTsQiHBTNXVicqzy+dxxtMR5n9aUxOiNWRfBef/31+MpXvoL//u//RjRaPSPv7T/ZhC8/sKvuwWB6cqLq9wjPIsqzGM+7C4uiooMPUM+zVSiaDpYBjBCDvHHLQeuRWbb+wCRiAotFnXHXZfzYsmkt+uYtwMCCxaE+t2bPOHiOxd9dvAjcLB5LCoXyV45PTBgA6EFcXnWOxRBRqKxQcct5UVv3LwwsX+28ZDgilnmt06pzWHYstmbA0JNyjcUQjsVmoy6lrOlYNPdTSJB9t/cPmnAsXnvpBfj0O1+GX74+jgQXbPB5dNLBsZieB5SmSXtrUYvkOqqtsRjvBLgYcTuqJSJMtgozGlcKIyyyPPk7aNWg7MhWID1QifY1eWzjFnS2p7Di7KWt2Q6FQqG4UFJLgWssuqEZ7nUTLVRZBc/y0A09cBSqn2NR1ETwDA+2RUOnzboELbwci37C4sLUQmSkDMabvN9FzIlOJaWEA5kDVcey1cJYWDiWC10Xc/nFy3HTB27CF378BaTaUv4fgLew2B5pR16pFhatmp2c2Z96augpLG5bjIv6L0I6ksaqvlXYPrkdI4WRUG33g2M4yPLcExY3r9sMISrgvFXnneimUCiUBqHCIoVyEqOqCgSOhWaEFxYtx6IbOZF0umVVR6aklOMu3cg0EAM60EaExekG3I4ngijPQdaMk05YfGzXOM7oTWFxVwJjOQkHDx/Be9/7XhQKBZx33nn48Ic/XNfx1nUDIzMipgty3dhWZqr+ISQV5TFVkF1nJ4rK7EShWiiqDp5loQVx0ZjEzbjfGY9o3nX7J3FaV9LXwevFlqfXhY5BVTQda/aM46JFHThnXtr/AxQKhdIqNH+hR1eaFRZ9olCFeEXU8qIZYZETAFVGVXGiSAIQnWsTA7AJiyHcnc1SdiwGcBqU6wo2WWNRzJn1Fc31RJKmsNi4Y3Eqk8N7P/FNZGbyWLpwAJ949w1kspsSLCHEWVgcIPUJp5+vf08umY5Fmwg8c8wUFgVSYxEApg+F2g9PTMdiSQkjLLYwClXXbK7MamFxzaatuPpiWl+RQqEcf0RVbNqpp+qqb+lZWZYhsAI0XXN9Jq0VEme7xqLdadjUemz3yjph0WdcaEF6AQBg1/SuptpgCYtFtYjd07ur3mtWSJ4tivkivvqxr2J6Yhrd/d1457+8ExwfvM+UcUpPMGmLtqGgFKqFRaWICBcpX088w+O6RddhQYqck9X9qyFpEh5+/uHGdsgBlmHnrGNxcMMgzrvwPERitL4ihXKyQp8kKJSTGE1VwLOWYzH45wzDgKzqnn1zS1zJmj/bY95CSrYB16EVhToRUFg0DAOXfv4h7B72GOQ7jkR5FppulOtTNkqpQOocNhMR8sMnDuBHTx70XW4sJ2L3aA6LuuI4rTuB/NB+vPxF1+K+++7D4cOHXT83VZSh6c7XVabGsQiQOoszJcW1jpB4AqJQeY6BqgS/LmMCuSXmSs4PQlZ9xYWdsYbrK+Znsti/a1voGNSnD00jL6l49YXz0Z2kHW8KhTKLGP7fo5osAbqPEOIVhcry3mKKkPAXFlWpuRhLTqh3ZwpJUktQcxkgswb2mFl0LIaqsVioj/80KZaIayKQq0DKVTsfy8Ki3bEYXFjcc/AoLn/jB/HrvzyFA0fMWfmW4zGIYAqXKNSUWU9pYm/9e0qRXGfWRKr8CLneEt3ktWQveb2VwqJ5zYeKQrVEdr8R9CBMHyLxvqm+KteqJCtYt3kXrl29vPltUCgUig+SJjUtLAZxLFpRqF7L1kayBnIssnxo95sbzcaPWlRFoerholD7E/1gwGDz2Gb8fOfPcd/++7BheAMOZA9UCZZ+RFjTsaiWsHNyJ7pj3eX3gjoWFYkcf1WZfSFy9Ngobn3trXj0vkdx9MDRhtbh51gUNREFtXLOC0oBETYCjuUQ5aJ4wYIXYFnnsrKDcSA5gO5Yd0vjUDmGAwOmfKznCrquk/qKl9EYVArlZKaxkVEKhTJnYBkDqq6HEqkkH1ERqDgWrZhSP8eil8vLjagZPTlVCBYJMlmQMZaT8JFfb8HvPnBV6O01S9QUngpSc8Li1mc2AFiC7PQ0gB6/xR15aOcopvIy3rh6EVIeIteTe4kIeHpPEke3rMXIzz+CRactxZMPP4BFixa5fm5sxhxwdFAWpyfH6l5ri/GYERXIqo6owyw/UdUbrknYCIpmQOAYaG6DwQ5YUagzLu7bbceyKMoaFjZRX3Hbsxug6zpWXBLOsfjwrlGc3pPEC87obdmDLYVCoQQiwGCgpsqmKOjx3Vj7fWwfzON44jTzciwyPo8tpWnfdnrCWsKi3bGYBJQCeZ1z2L4VATurUagujsVPtZOfn5yqtEcpEFHWwbH41HM78BIAR4ZGcdq5PtuUc2aNRcuxmDJFXNuxEoIJi4+uH8Tr/unz6OvqwIb/+zrOPM2sp8iFExZHnITFZC8RUSf31b+nlKqjUGeGK58BgHgH2T8nt2OjmNdDSQ4xOMhy5t9CC4TF0e3kZ7q6TtTGLbshSjKuu3RF89ugUCgUHxRdgRgkMt2DoDUWOZ4jwqJbFKoRMgpVFcGxXMsci60SFku2yUWKplQ5Fhl4PytGuAi649144NADyO/NV73HszzufsXdOLv7bN822B2LOyZ3oD/Rj0lxEgCgBnwG37l5J8AChw8dBvz6Ii1kx3M7cPu7b0c0FsW37v0WljYYCz497t73TEdJytBEcQJndpwJwBQWuQgEVsAnLv8EVF1FW6St/BmGYbCqbxWeOvYUxgpjGEgNNNQuO5zZd5trjsWDuw9iJjODVVesOtFNoVAoTUAdixTKSQ5nGK7OMjckhXS0vcRIq87cVEEGA6DLxyU14+LyCsJUUTkp4kVjpmCWl5sbODx22N9p6IdhACM5EUWPeoAA8PiecSzsiEPPDOPrH3k34otX4E2f/omnqAgQpyPgPOMxM1kfhdoeF5ATVcgOEbu6ThyywizGbcmqBo5loYVwLJaFRReRfMPBKUR5Fou6Eg23a8vT69A7MB/zFp0W+DMHJvI4NFnEi8/tw7yOcFFzFAqF0jSa4ity6KriH91YO3hn/53xcSza6/u50aywaEWh2nc1kiRCl9vAo2zN7LeiUJubeBQIy7HoFj87c6zyf7lQX1fQZPfBELPzLcdiVRRqqSYK1b/28NGRCbz8vZ/ExeefiXV3f7UiKgINOBYdolBZDoh3AZnn669ZtUTE4bKwOES2aQmLDEtiUWeOta6+odaEY7EVToXR7UA0XdlHkzWbtqI9ncTKc2h9RQqFMjvklFxTn9cM93hTC0VWwDO857K1zkk/J6WkSWVnXjNY4k5ezvssGQy7sCjrcpWwGA9wP56XnIe8Qtry3gvei39Y8Q94xdJXQNVVbB7fHKgNUXNCUFEpYs/0HnTHK45FJUDaBQAc2nMo0HKtZCYzgw/f9GHMXzwf3/nddxoWFQFvx6IlGI6XKmMnRbWICEuiUNuj7VXHzGL1wGqImohHjjzScLvsWPUmFXluORYH1w9CiAg47yJaX5FCOZmhwiKFcpLDQoOqh6uxKKr+A1/W6qYKMtriQllUc0JWdZSaiAfNFGRIAdp0oonw5CszLzYnLA49f6AVzcFMScVE3t3tqesG1uwexWndCSxbtgyf++7Pcd7Nn8ZQ0XB0ItoZy7mv1ykKtSMuIC+pjlGo1vXGz2IUqqIZ4NmQjsVyjUXnz6zdP4HTuhNN1Vcc3LgWKy65IpTr8OGdY+iIC3j1hQtm1fVJoVAoAALVe9PLjkUPar+Pq6JQOZ8ai7MgLLICoNc6FlMkQtM1CtUc2LO+0o0G+zKKCGz6YTBBizXFsSBRqEqRCKYOE3t2hYn9kvLV64kkiVszYI1F3UzWWDjQg/u+ewf++F+fQWd7Tb3gsmMx2KCro7AIkNjP3EjFTWqhiAAbqUSh5oaARG+10zLRDRTGSKxuKzAHrItyiOuiLCy2wrG4lbgVI9UToh7buBVXXXQeOK7J2psUCuWU4gdbfoA7N995XNY9IzVXykQ1VN+ITysKVTd0V8Gw9nWvGou6oUPSJPBs80FvAkueH1vhWNQNvc6xaHcIagH6IgtTC8v/b4u2YXnPcrxg/gsAADNysHNlORYP5w4jr+TRE68kMUkB76OH9h4KtFwrMAwDuq6jraMNn/3BZ/G1X3wNnT2dTa3Tq8ZiOkL6OWPFStpTQSlA4ISy0OzE/OR8dMW68PDhh1sSh8oxHFiwc86xuHn9Zpyz8hxEY9ET3RQKhdIEdISSQpmDsOagR5C6hSwsx2IIYdEUAYN8YjwvoSMhwKuGddYlOjIo2ZJSdlHOZSxxNdQAUQ3FQh7jo8OtahL2jbsPwG3YfRi7/vvfML7ht4gJHFZf9ULM60hiOCv6isvjXsLilINjMRFBUdJQcjg21muzKYrJqkaExTA1Fs3zm3NwLKqajqcPTWNBR9wzetaLQj6HfTu3YsXq4DGo2ZKCp5+fxpVnduO07mRD26VQKJSm0LyFRVU3YAQRFj1rLPoIi1zUMc6zCktY5BscoOAixLFoJ5omrkQ3x2JtLaJGHYsHHwfu/xdgf8DZ6ZwQrJ6kXDSdhtX3X1XVsPf5oeDtk/PVjkUhSc6VvQ0uxz1fKOG1t34On//e3QCAl7zgIgiCw33UchMGrO80OuUiLKYHgPyYzU1qopbIcbMoTQPJ7mpBNNULFCaDibZB0CxhMWwUqr+YH4jR7URotblXZFnB2ud20hhUCoVSxzef+ya+N/g9ZMRMy9fdtGPRjEJVdAX37r3X0ZFoCYsA8ODzDzqupzYK1cuxKGnkedgSBZvBqqHXCsdibaysAQNFrXLPUzT/598F6QV1r1lOx8DCounk3D21GwAwkKjEdlrHzgvDMGbNsSiLMj7/T5/H97/4fQDARS+4CJFY805UL8diWiDCYpVjUSlCYAXPuFqGYbCqdxW2TmzFRKl+QndYOIY4FueSsGgYBrZs2EJjUCmUUwAqLFIoc5AYH/xPk9E1aLoRamJzGHfheE5CW4wH7yEKNSsszogqJIcIzblGpcZi4/u7d8eWUPUw/Tgw7jzrcf/+/bjxZddDHtmLC5YvL78+vyOGsRmxHHXrxtiMex0MJ8diW4yHATg6KK3rbTYdi7JmgOcYaAEerCxYlkGEZ8v1Re3sGJ5BUdawqCvesEC6/bmNpL7i6isCf+aJveNgAPzdxQsbFjQpFEoN/3E2MLJtdrf5s1cDU83HYJ8QfEQOSQV0vckoVNaMQnWb8sRHK04zN4pT5rL+EWCOcILZJlsbomkinrndS2pFsEYdi5Yomq+vYewIGwG0APWqlBoxzWT7vuchhYnEkgtEWLRco5YDTrINFDs4Fo+OTODqt34YD68bxIXnnuG/HS4STDAFMDqZce5Ptc0HipPVkaqaQq6v2mMR76oWRFP9QGkqcBt8Ma/xohI2ClVHsOl/HsgFUi8y0VO1j09v24uSKOHaSy9obv0UCuWUxYrIbCXNOhatuonbJ7bjjrV34PGjj9cto8hK2Qn2o20/clxPbe0/rxqLloDXCmHREjCbFVgBZ9dj0TaZplY8dWJBql5YtJx0OTlYGy3H4t7MXqSEFLpiXVjStgRAMGFx9Ogo8tnWX2u1TE9M40Nv/hCe+NMTOHuFf+3IQJhd0sJMwVWw41gOcT6OKXGq/FpRLfo6FgHgkoFLUFJLePTwo0031aoPOpeiUA/tOYTsVBYrL1t5optCoVCahAqLFMochENwkc3QG4hCtdyBAT4ykZfQFhPAe9THy5aam/1UkFQUWtTR+cZDe/Bfa/a3ZF21RE3BNyc17ljcs21zi1pDODBR/2DxxBNP4LLLLkNBlHHlB7+HK666tvzego4EZkQVEx6ORAAY8RAWZ6YnoWnVx6DNjAcdm6lfr+WQFWZTWFR1cCwLNYRjESCifsHh/K4/MIkIx2JxZ+OuwcGNa9HV248Fi4PVcVB1HY/uHsfKRR1YvqC94e1SKBQbxSkgPwL8/gOzt00pBxx4DPjl22Zvmy1gaNh0tGneoqGkAVADOKzqolBtvzMcEeV0txqLAVyIpWkiKjrUEwwEFzH31faaFflZG6tpUStANepYtNwhoosLrxZOABSfQTtNIcIWVz8jf9PWPeHaJ+erz0HEvBfaBx9rztHTW/fg0tf/M6ayOTz1i//AK6+71H87XMS9dmQNoqQgV3AQANPzyH5nD1deswTg2mMR76wWG5N9ZF+bjdW1MAeSCz6TuapgefK30KxjcXwXAIOIpTZR/rGNW5FOxoMJvRQKhdIigrrgLCwhzhJtNPP+akVDOjm5ZFkuOwNdo1AdHIusy7CoJSw2G4VqGEZZaGtFFGpRrXf2F9TKemvFUye6Yl2OgmmMjwUWli1hcaw4hoHEABJCAm8+580AKvUXvdg1uCvQdprh4O6DeP+r34+hw0P4z1/+J154wwtbsl6d1WGYk4a84lBTQgoZMVO+bi3HIuvTV12YWoiOaAceOfJI03GoHMOBZeZWFOrm9ZvBCzzOu5jWV6RQTnaosEihzEGmxkcBwLcOHgAwBnEsagGWtRBDOBZzoopUjPd0m2UCRLZ6YQAYybamns3je8Zx96bDjnGWzRK1olDDDBDVsLvFwuLQdAmqra6hYRj43Oc+h/OXL0fvTf+O8845u8rpNtBOHAV7xrwfGEYdBEIAYFkWuq5jZnqq6vW2mCUs1g8IlswIsNmMQlU0nUShquHOVUzgUJTVur+9dfsnsbg7gfZE4zNWtzy9DitXXxm4vuLmwxlkSwpuWDkPvSlae4BCmbNs/y3wqXYg61Kzzpr404pow1nkxz/+MfmPT41FSTWIkOPn1vN0LJozt92cgQ7iWB2laSJ4hahhW7cNrcaxGEmR390Ev1ZFoZYy5GfQ+DlOADTJe3uWY89RWNwbvG2aSq4Bu3AoWMKibYC0Rlj8yo9+hcXze7Hhnq9jxdnBJtSQOFrRt76gVTJgZHyq/s1UP/k5sa/ymiUA1zoWE93VvyfN+lDTh4K11w/zei5KYR2LLaixOLoDAAO0VbtS1mzaiqsuPh+8V40DCoVCaTFBhUXdnGA9UhwBABw9SPpWVhSqhZOrTpXVsgjoVmdQq7lvyroM1mUCtVXHsFlhUdYrgk5RLTYtFBUdIsPtrylGgHI6DIv+RH/d6zEuhqJSDJSwxDJs2XnXk+hBjI+VBcUgAupsCIu//tGvkUgl8N3ffxfnrjq3Zeu1C4tTTn0Rk3QkjRl5puyMLamlQMIiwzBYkFqA0cJoVT3NRuBYDgyYOeVYHFw/iLNXnI14osGUEQqFMmegwiKFEhJdN3BkKlj9Fz/cxEDDLHYtawE6neZsPCXIsiZ+Uai1okp73FtMsaJQI00IR8OZYDPU/TAAHJ0uYarQ+hlZlmOx0ESNxd3bNqOzp7dVTcJYTkJR0aDrOg4fPgyGYXDPPffgtm/+L/RICqd1J6pibAfaTGFxxDvixK3GIi+QAcrpyeo6i21x8sA16vA563qLeLheW42s6eBYJrxjUeBQUogL2ELTDWw6NI1FnY3XVywVCtizfTBUDOpDO8ewuCuO65b1BRYjKRTKCWD3n8jPPX8+se1oMZf1mfdRr9qHMB2LuuovhNS6B+wz6q1BOzdnYBBhsTgJCAn/5dwoR6HasJx5xcnq163v5FrHYoD4MUcsh1xgx6JZD9JrcNIS/XgHYXHbHszr7Qq2LWtAy+4+sKJQ7bWi+BiplzRFjuGPP/9BPPrTL2Eg6HYAIk6qoq9AGxHIQOaok0sg1QeAASZt4mlZZK3pz6Zq+mNJ8/fp54O32QvzeirIJ8CxOLqd7E+8knigKCqeem4Hrl1NY1ApFMrs4hev6Sa2WQKXFYVq4eSqU2QFPMN7rq/WyajqqmssZUkj979mo1DtNRFFVawTN8PiJNrZXwtSYxEA5qfm170W42MoqsVAcapA5dh0x7oR4SJlYdHJVVnL7i270TPQE2g7YRk5QoTpf/zMP+Jbv/4W+hfUi6jNoLN6+bqZHndPOWiLtCEv5yFrpE9dVIvgWT7Qs306kkZBKZQ/2ygsw86pGotWfcWVl9MYVArlVIAKixRKSD5133Zc/ZVHsW+s+Xz8ostAg6GSm34gsdCKCQlRo1DyERZrB0D8hMVMUYHAMU3V0BvKtqieDQBFM7B9KODgXEAMg9TgEzgmXKSVjez0JEaOHg4chRmEybyEyUwOr3/963HllVeiWCyio6MDaw9l0ZWIYGFn9SyweIRDOsbjwLi7Y9EwDMdaiQAgRMjDQq2wGOU5RHjWs8ZiZBZnx5cdiyFqLAJATGAhKjpUWxzfzuEZ5CUVCzoar6+47bmN0DUNKy4JJiwemSpi33geLzqnH/M76Ew+CoUy+1yzwPz+9BENiWOxgShUR8dizT3EchxEAgiGxSlAiKNc+CYsfATQZNQ7FlGp31jG3EatEKrrjTnNLOFSdHd0GLBN/OLMtnoNTlruBbbaSShKMrbuOYRzTl8YrG1WNKmTY9F2j5V0Dm//nYiLv3kU0zMFpJJxxGMh3fZchFwDPu7XiGBOZprIOK8j1l7tOrQEYPvgMB8H4jWOxUQXAKa1jkWW9+13V2E5FputsTiyFUgPVNUcfWb7PhSKIq6j9RUpFMosU5C9HWxu0aUWmqHBsH0vOolrsiz7ugvtgplhGJ7CoiUIRoJMbvKgVlj0qusYBCfRLm+b6BNUFFyUXlT3WpyPo6SWXM+HoRvQbc/J1rHpS/QBqESg2tvjhK7r2LN1D5YsWxKorUHRVA3f+MQ38I6XvAMTIxOIxCJIpJqYdOaCzuplEXtqwt2x2BZpQ17Jl6NwgzoWrc8W1ELT14t1fc8VYfHwvsOYnpjGqitWneimUCiUFkCFRQolJAfNmnY7h5oXFt0wzLo5bmJhyayRyAix8kCdFEJYLNdYdCEnVnckuxPenelsSUEi0piTKxnlwDLAcAuFRYDESLYCy/F2ZN8OAMSVWWrQsbhn2yAABBYW/YaUWAbITo7hVS+9Hg888ADuvPNOJBKk47xmzzhO70uiLV5/7vrbYjiWESGpzvuRk1TX60mIODsWASAd5TFVkOuiU6zjFRFmz3WnqEZDjsW4wKGkqFWOxfUHJiFwDE7ravyhZMvT69DZ3YtFS88MtPwju8aQjvF47UULEOHprZpCocw+UWucTVc9hR5JI7HsvsJiXRRqTY1FwBT2bAyYAkgygNO/NGkKiw3CCqRPVVtjEXAQFk3UGiE0iHPTCcux6DEQJysKntlzhPxiiaBeApy1rhqX3uadB6CqGs5ZGlBYtLZhdyxyQkUMBjAxPYMX/9O3cM82Bd/82250tjVYj5iPkmPq4+YQeA4Cz2F00sUlkOoDZoYq50dxcF0mewEhVv05lieipFuscVh0FWB5iGHix1iO/C0161gc22HuY+VvYs2mrUgmYrjovGB9EQqFQmkVfhGgfvGgmqFVPWM6CYuKrJRrLLqux3Z/scTK4y0sWqJSjIuhpJZcY1qD4hSFaq+xGNQRuXpgNV606EVICpV7dpyPQ1RFV2Exm8ni4LaD5d8jXAQCK2AgMQCAxMYyYHwdi0f2H0ExX2ypsFjMFfGxt38Mv//f3+N9t7/vuLkhASIsMjqDts42TE94OBajbSgoBSiaAsMwIKoiImyw66kt0oaiUoRU29cMyVyrsTi4fhAsx2L5xctPdFMoFEoLoKOVFMocRPeJQp0okdf5th4Y5mxxN5HICb8ai3mbIy8ucEj5OBanizISkcbcaAwYJKM8xlyiNxtlx3AuUG0APzSNHKtCjjggIzyLkqI1tO7d2zYj1daOzl7vKA6ONWsHOdQrtCNknsfIzz6E0dFRPPnkk3j1q18NADiWKeHgRAGLOuOO52V+ewyjMyKKkvN1MOZSXxEAWI5DPJF0FhZjPLIlte66ta63CDeLjkVdB8eFr7EYFziIig5Nq5zfdfsnsbgrgXYfgd2LLZvWYsXqKwLFnuQlFesPTuKK07uxpKfBwVkKhUJpFb6OxaDCou372DCqfy9Hodbcf1SJvNdeP6u+jlKGiCgN11i0olAdHIslN2Gx5j5t6GjIaSbahEXd5TgaBjI5m0Dm51iUzUG9mtqHm7buQUTgcfqiefWfObzBffv29TBM2Qm3a6SEy266DbufH8Ujb0vgpgvT7m3yg7f2y//e3dfV7hyFCpA6i4XxSgSqNQBt34dEV92xAQAku4H8GImabRZNAVgOkhImCpVrvsZifoxcs8neKmH5sY1b8IILz4MgNFcvjEKhUMJSUkuegpdfHTnd0KvERydxTZXVsovMDbtgZjnB3MTIljkWNbKehJCApEm+7kw/7KKdtb92oTXo+pNCEjeedSN64hUBLsEnPIVF3dBRylfOlcAK6I33Im5OYmEYBhEu4ns+rfqKp515WqC2+iGPy7jjzXdg1+Zd+MrPvoK/fevftmS9buisDqhAZ0+nZxRqe7QdoiaioBYgaiIMGBBqY9ldSEVS0AwNWbm5JC6WYedUjcXN6zeT+opJmspEoZwKUGGRclLz1b/sxpKP3Y8xHwHmZKMchar6DCqwQllYlP2WteFXYzEnVjodHQnBt3ZipqggJjQuGqWiPKYLMvQWCIEWz08WqgTSZlFlck6iPAdJ1eBSHtOT3ds2Y9n5K33FJevtTFHxjF1tEwC+YwC3fP0eXHjhheXXn9gzDoYBTu9NgXXY1vyOOCYLMrKi86DZWM7776mjuxeZiXphsS0mICcqdU7bShTqbDoWdXAMAzXkwGAiykNSdCjmwKquG9h0aAoLOxON11csFrB722asXH1loOWf2jcB3QBed/FCtMWaq+lBoVAoTeMjckiaATaIsGiPQq0dsHKLQpVmAD5W5Y6rwjCA/30dsP9R4vrjY87LBYGLkH2wD3wKMQAMIGacP6NK1UJckEhYJ0rmoJFS8nQhypZAxUWIaOXpWDQHGWtcnJu27cHKc06HUBtPnj0K/PhvgGd+6ry+WjeoWc9S1gz0d7dj4y++jCsXNSlY8TFyTAO4OQZ6OpyjUAGgbYEpLJqDr5Zj0S4kxjucr5dkH1CcqETJNoOuAgwPUQrjWOSbdyyObic/UwPll1RVw5PP7KAxqBQK5YTgFwHqV4NR06ujUEtaqW6ib9goVKs9brGUVo3FKBsy1rsGS6BMCkmImhjKsejk5CwqxbLrjWVZsAyLolIEY8a0NxOdGefjvm3UbGNJp7efjiXtSxC3xW5HuAhKtTWoa9i9ZTcWnb6oZeKSoRuIJ+O487d34uKrL27JOr3QWR2GaqCrt8vTsZiOkMlW48XxshgeVKi2PjtZmvRZ0hvr+p4LjkXDMDC4fhCrLl91optCoVBaBBUWKSc1Gw+SGeTPPO9+Mz8ZsYRFPxciw/Ew1EYci96DFTO2KNT2uADBp3bidFFGTGAbrWqEZIRHpqhAa0Stc2E4K2K62LrOkyqTwc4Iz0JUq2vwBcEwDOzZthnLlq/yXdYusO4fq45FMwwDv/jFL6BrKvrPvABL3/7vmNSrXW2P7RnH4q4EelPOD0Hz2+PQdAMHJ5wHzcZN92jcRSzu6O51dCy2xQXkRLVeWJQ1RDjWUeQ8Xii6AZ5loM6QjniCC/b3kYhwEFWtfC3uGslhRlSxsDPecCTpzsFnoKlqoPqKum7gkV1jWD6/DSsXdjS0PQqFQmka+4CQj1gmqQgmLOoBhMXaySDijOlCdBEWVRHY9xCw90FAzJpCUROORWudFgxLBLRSxvkzteKe0WCNRUu4VIqApsAwH9HYGvdj2fnGRwBddncXAs4uPQCbtu7F6gvOql8+Y8asjgw6r0+ojgP/5Q4ZJcXAigUJPPWzz2LJYstV2kRfruzE9O9j9Xe3u0ehpgfIecwNk98Vm3vTGkCOdVScsnaSfcTtV+tGbQRdDe9YZDhyTYXsZ1Yxup2Iz+0VV+pzO/cjXyzh2tVUWKRQKLOPXwSor7BYE4UqqvXilyIrrrGm5fXYJg9ZrrwpcQoz8kydS09URTBgfMVKP6wo1LSQDuxY7E2QCPhD2UN17xWUQlmcYsAgwkZQ0krldjbjiEwI3o5FAFBspUbeePYb8crTX4mYbaJOlItC1ETPeNtdg7tw9sqzG26nxZN/fhIfW/Ex3HzNzfjWb76FxWcubnqdQTA4o+JY9IpCjbQBAMZL42WnadAo1JRAUjMmShNNtZVjODDM3HAsHj14FFPjU1h5+cqWrdMS/qNobgIAhUJpDCosUihzEEMJLizqZREyTI1FP8dipSPZFgvoWKyd+R6CZJRDtqS0zLHYEReg6ga2HZvxXdYwDIxk/QePFMVyLLKQFT30eM/E6DCmJsZwdgBhcSJfGVhds6ci4MmyjHe/+914y1veguGtTwEAelJRDGVLUMz4UU038NS+CSzpTiDt4rAbaCcd/z0jzg9wYzMSojzrKqR1dPdiysGx2JkQkJcUKFr1eSwpGgSemV1hUdPBsgyUycM49v33Ylk62ANWXOAgqTpUcx9aUV9xcONadHR1Y/EZy3yX3XIsi8mCjFeumIe+NO0cUyiUE4S9xpyfsKgZYBHAYWUfpNJqBjesQbtax6IlFrq4CSCZ9zFVJOJRszUWgfo41kiCtMOpj1IbR2poaCwK1eyvKCKgq1AEMhCV4qqFVsnuWFQV72NuORZtLoKZfBG7Dx7F6uUO96PckLnQkPO+msdW0zT88xf+C2/478P45Q5yHhmGAVi2cgwbhY8ScTmAm6O/qx0jboN5KTNyfnIf+WmvsRhNAxe/HZh/kctn+8j5EP37kL6YUaiiHCYK1fxbaCYqb3QbkJ4H2OpmPbZxCxLxKC5Z7iAqUygUynHGT1DLSt5xj7qhQ0flnucmLIZxLIo1E0jGS9XPtyW1BIEVfOs2AsQl6BepmoqkAguLCZ48e+7P7q9zIBaVYpXrzXIIWttvxrGY4BOQNdlzHXbHIsMwZfGs3B42AkmTXIVkRVawb8c+nL2icWFR13X86N9/hE+85xPYcN8GXLXgKsRq6yYfR+yOxalxl7h8ODsWgwrVZcei2KRjkWXBYm7UWNy8bjOpr3hJ6+orzo/Nx9D/DOFc7tyWrZNCoQSHCosUyhzEMAe1JJcai2VYrixCKiGExZIcPAo1FeMh+Di1ZkQFUYFt2CSQjPLIiWrLHIuWcLb5SMZ32TV7xnHNVx7FkSnvyCvLsRgTWEiqFtqxuHvbZgAIJCwOZypOkaf2TUDXDUxNTeGlL30p/ud//gc//elPsWDVtQCAvrYYxnMSiuY5HTyaQU5UsbgrgaiL47DTjLfdW+OGtBjNiWiLuXd4O7p6HB2L7XEBBVmrE65FxXIseu93KzEMgGNZyJIEdXoI89qDDTbHIxxkVS/XiVx3YBKLOhPoaKa+4tPrcMElweorPrxrFPM7Ynjxuf1gZ/OAUSgUip3M4cr/dW83oqQCHGoiRGsxjGqxqHZQjXFxLEozRGxyG4SxhEXrZzPCouVYrBU3hQSpfVgrhgJEWKzarwDOzVoUkWyTYQG1BOgqDLMtKba6LZLVf+NjpB6kZxRqkQh9XOXYPbNtLwzDwOoLHITFGdPdVxivF1e5KMDxmMkX8bfv/wy+/fP78O23LMPNK2vujXxzdajAx/xrR5r0d3tEoaZNYXFiL/kpF8k1ZB2LZS8Del0m+yR7ABjVfwONoisAy0MK4xIoxwI3MQA4uo2Iq7a/hzUbt+LKC89FJEIj1ikUyuzCgvWN15yRvSdzaIZW5YCTNKmuZmMQYdH+mWP5Y1XvSTX3PlEVIXCCa1SqfTlJkxDnnPsgVo3FpJCEqqtlB2NQhvPDVb8X1EKV6y3CRSBqYrneYjOOxTgfh2qonlGmqo8LP8pFHc+PxcHdB6FICs5ZeY5vew5mDyIjZpCMVCbKiCURn7nlM/jfb/0v3vux9+LGt9/ou55WE7TGYlowhcXSeLnuZNAo1KQ5OWiy2JywOJcci4MbBrFs+TIk00n/hUMw9fAU0tEmanxTKJSGocIihTIHsYRFWfEW2hiOh2YOwvm5EO341VjM26NQY7yv0yxbUhDluXKuv8WWoxkcGHcWr+ykojxkTW9ZTcQIz6InFcHO4Zm62gu1HJooQNZ07B31bqflWIzxxNEWVgTdvW0zunr60NM/z3fZIdNBuWJBO3YMz+DQsVFcfvnl2Lp1Kx5++GHcfPPNGM6KyEkqBtqimMjLZbH4iT0TiAsclnS7d9YYhkFvOorDUwXH/RjJikjFBFeduLO7FxmXKFTDACby1bM/i7IGgWPRsPLcIDwLKHK4gTkr/jUnKtB1AxsPTmFRVxzJaGOOXLFUxO6tzwWKQR3OlrBzOIcXnt2HBZ20mDmFQjmBhBEWNYBjfByLtaJc7Ux4NzHFciyybo7FmeqfQhMDFZawqNSkGERSxP3nNHtfk6v326cepSNWDGqsnTjrbAOCaU6uWp9UW2PRS4CT86YoW7l/bdq2B8lEDOecvrB++RnTsVicJAKnHT6GoqTiqrf8K558Zjvu/96ncctLHQYEuWhjUbC27dSJtS6QKNSMcz9PSJDzNn2Q/K4UyTHzGRwGACRJ/Bymnw/RcBc0BWA4iKGERcu92+AAoK4B43uAZHfZrappGp54ZjuNQaVQKCeECBfxjdeckbyFRd3Qq77vJU2qch8CAaNQbfeX2vbUxrFajkU/YdFyW8Zc6jxbjkVLZPITUWtZc2RN1e95JV8lTkW5KGStUl9S1hufmGLVSvQ6H77CIh/1dCzuGtwFlmNx5vln+rbnu5u/i7ZoG87vOr+87Q+96UPY8MgGfOb7n8Gb3//mQJN3W4lhGJUo1N5O5LI5V9GOYznE+TimxKmyYzHGBXNWsgyLBJ/AtNRc2ae5UmPRqq/YyhhUCoVy4qHCIuWUZrogY8nH7sd3Ht13opsSDnOgSNJ8olDZShRqbV07L/yExaoo1Lj3zGbDMJATVcSF+q+Tv/32U3jRV9f4RromzcjOsVy42XteLOpM4NBEwVestLY5I3oP4CimYzEqcJC18MKiVV8xSMd3KFNCTGCxalEHZkQVB3LA2972NmzYsAFXX301VE3H4akinp8sojcdRUnRMDpDBgEf2z2G03uTvg67gfYYRrMSig7xXKMzIlJRDm5N7ejuQWZ6EnqNa7MtRq6V0ZrzWJRVCLPsWAQAnmWgyOFqJFWERRV7xnLIlhQs6Egg2mDU787BZ6EoMlauvtJ32Ud2jSER4fC6ixY0vD0KhUJpCXZh0fCrsWiAYwxvkat2MLGuxqIpptTWtRNniFjlNlAomZOCZPNnpAVRqLUDYdFkufZhHa2IQrXqN8Y6yP5XCYtKldgqWXWN+Ki/AOcgpm3auhcXn3cmOM7heM6Y8bel6XpxVYgiEY/j5ldfj3V3fw0vvfpiItzVwjcZ4c1HiYDrMfjMwIABIiyWRAn5gourItkLZI+R86aUQgiLPeTn9IHw7a9FVwCOhxQqCrVJx+LUAeKATfaXBfnNOw9gJl/EdZeuaGydFAqF0gRRPuobr5mTc64ONwAwYLTEsWgXE2uFxVrBL7CwKHsLi5ZD0XLd+dWTrOWJY09UiaoFpd6xKGlSWVT1Oo5+lIVFxUNY9LmnWUKnm7C4e8tuLD17KWJxb4Ft7/RePHDoAVw2cBnmp+YDAHiBx0te+xJ841ffwNUvu9rz88cLS7g1VAOdPZ0AgMxkxnX5lJBCRswgr5C+ajREXykpJJGRMp71Kv1gGZY4FqUT61gcen4IEyMTVFikUE4xqLBIaRlHpor44D2bT3QzqrBEo7X7m4sPmG1SF74CQACxkOOhm4KX2MIai9lSpdPRkfAWFguyBk03EHOJ3axdnxMpU1iczLduFtWSniSGsyKmi97rHJkhg2dZn+XKUag8C1nVoYWYkW8YBvZsHwwUgwoAQ9MldMQFDG24H6Wda7Bm9wRuu+02nHHGGQCAP20bKS/baQqI+8YKyJYUbDmaxWndifIxdWNBRwxjOanKnWoxnpOQiHhEoXb3Qtc0zGSq6wm0xU2BOFsrLGoQuNmtsQgAPMtCDutYjJDreKakYMOBKXBsc/UVtzy9Fm0dXTjtTO8aEiVZw9r9k7hsaRfO6KUxHhQK5QQzfajy/wCORQD18Zl2agcT62osWlGoNeuQciRe062+kRWBatUTjDTx/cm59HfKjkWHgTRNcXAshhz8KZkz0eOdZP9txybFKVXHpCxQcVHSHq/BQ0Ukgm2VsLjHOQYVII5FhiXH1OZUuGebgh9sLAAsh3991+tw3pmLyRsRB3doK4RFTQE090FLgdGh6Az6uzsAAKNug3npfqAwRgRWuRBcWOQipA6jvc5oozTiWGSaFBZHt5Of6UpCxppNWxGLRtzPPYVCoRxHolwUqqHW1TS0k1Nyvk47uzDp5IgLFIXq4Vi0hB+LsrDoM2xqORbjvPPkJkmTILBCuW5iGGExxsWwbXJbVQ3KglKAYOuzxLgYERZbUGPREke9XJWaz1hSjIsRYdGlj7JrcBfOWeEfg/qdzd9BZ6wTF/RcgOceew6/+tGvAAA3vu1GLDuB97PydWxGoQLwrbM4I88gp5DzHtSxCJC6nDk519Q5ZZm5UWNx8/rNYFkWF9D0BArllIIKi5SW8eFfDeI3zx3DM8+731QpwWAjpNPpJywyLA/NnFUu+Sy7eySHY2btvqJPjcWZkoLedBRXn9mD3hQZJBo5dgQAMDp8pGpZSzT0EhYVzVuES5piTquiUAHgtK4EVN3AjiHvjvvYDBmwy/g5Fq0o1Ej4KNRjhw8iP5MNLCwemcpj5KEf4Udf+hii0wex6fmp8rVgGEaVA7fHPD/7x/NYt38CmmFgSXcCnI89cEFHAiVFw1C2fqb/RF5GMsJ7RqECqKuzWHEsVj80lhTNdCzOrrDIwIDu4/qtxbqOZ0QVa/dPYHFXwldc92Jw01pccMnlYN1i/EzWHZiEoul47YUL0d7E9igUCqUlZGwxkD5imaia90MvYbFWKHKrsVgrOMo5UxAi749PkYG1HftMR2W5xqI5GBh1cNEFxa3mTTRNHG9OQk9tFKqhNx6FGu8yhcWa7dh+l63BPD5AFGoZcu8dn8ri+aExrL7gLOfFcsNAagCkvuBRGIaBz6yR8KZfl7DusAyj9rHxeAmLhu4pqvGMDlljMNBLBvNGJ10iwtLzSb1IuQgoBSIcBxEWASDRQ45Ho3GkFpoCsFzIGovmoHijg4hjO4BoG5DqLb/0mFlfMUrrK1Ioc5YLfnoBXvbrl53oZlSxfXI7fr3n102vJ8qRe4NXvGZeyfuKJ4rtO1nW5DphUJEVX3ehXeyqjVLNy87CYm3ikCSS/o4VCWqJfkmXOHZrPUFiRms5re005OQcnhl9prI+hazPIsJFIGty2bHYTI1FS/y0C5m1BIlClXVnx6JYEnFozyGcvdJ70u2uqV146PBDuLT/Uqy9ey1ue9dt2Lpxq2+Zm9lA1iqOxa6+LgDA9IR7XGlbpA15OY+cnAPHcFXnzo+0kEZBKVRd+2EpOxZPcI3FwXWDOPP8M5Fqa6KvTqFQ5hxUWKS0DNUUj1rpOvtrx1dY5HhoCunYKj5xox+/dws+9fvt0HTD17E4IyroSkTwuosXYqCddID37dhKfu7cVrVsxnT6xb2ERZ/94DnW8/ONsMisUbf5iHcm/ZgpguV8XJWq6XyL8iwUTS9f70HYs3UzAGDZcv/Yh3w+jz9+/cN4/rH/w3s/+lm89n0fx/7xPEbMuouP753AzpGKWBoTOKSiPA5OFLBmzzj60lEs6PB32A20k5lyu4arhVdR0ZCXVCRjPNxqInZYwuJEtbAYEzgIHIOJmu+AkqyB55jA43mtgjHCP1RZ12G2KJP6ip1xX/enG7IkYteW5wLFoK4/MImz+lK4eElnQ9uiUCiUlpKxTSLyifesOBY9oqdrBwtdo1AdHItctCwI7TpIXGQbt+413zcH5+Q8qc/XjLDl6li0hEUHl2WtuKc3EYWa7CaflWpqPtsdi/YaizBI5GVANm3dAwDOrjXDAPJjQPsiAIA4ug9vfetbccdjEj7/oih+dPNZYGrjU60BVPtx4aIIvf92rPNXewzsm2V1yDrQ30MG80bG3YTFeeS6KEwQcTGoYxEgbse86XZsBl1toMZik47FkS1k3wVaX5FCOdk4lj9Wjs2cC/xu3+9w5+Y7MSU2N3HcEhYtx5ZFbbyn7PO9ZxcenaI2FcX/u9YuJvo5FotqETzL14mVmYlM1fayUhYMGCQE52dwSZPAszziHPleDuNYHEgOIMJG8MjhR6raZRenyo5FpnnHYty8d3g5Fv2ERS/H4t5te6FrOs5Z6e1Y/PZz30a30I2nv/M0vv/57+PN73sz7vjuHbNeT9EJUbM5Frv9HYttkTbkFSIsRriIr/htJx1JI6/km6qbyYFcFyfSsWgYBgY30PqKFMqpCBUWKacU2aKCJR+7H6UwtUxqmCrIGJsJV5fteCFrAYRFiTx8SD5CV05UUZRUKJoOKUCNxajAggvQccsWScfVSxhUdf9YsHafWo5hiQkcelNRbB+a8ZzZNl6useh9TJRyFCoHWdWhh5gtd+TQPnT19qO9s9t32VtuuQUTe57F9f/4H3jdW9+NFYs6oWgGntxHRLzvPLoPi2uiOXtTEQxnRTy2exyn9ySRjvkLYQNtMQgsgy1HM1WvWw7OVLT+fBoMCxh6RViscSwCQDomYKogVR3zkqydkBqLCOhW/PVP/wtbn1kPoHId7xrJYbqoYH5HHNEGRe+dW56FIktYcckVnstJiobnJ4s4f347+tJNuj0oFAqlUbbdCzz4SSJkFcYqr+sq4HEfL4cNaB59p7L4ZN4Iah2MZTHFNqBqGCTCUojCteivPQo1knSvxRgEtxnkkSRpl1KqX15XquscGg1EoYoZImpG2yq/27GJW9XCIohgFpBdB44gmYhh6cKB+jeLU0TI6iDC4kf+48e499578cvXx/FvV0fB8LH6Y2uma1QdFyF4vJcj5uCzl6AXYXQoGoPOtjR4nvOIQjX3c3JvxbHokx5Q+azN7dgMugKdYaH59OcB4L/u/iP+8uSzFZG9UXfC6HYg1VcWFrfuOYTMTJ4KixTKSc7R3FGsHVo7q9vMSBkYMJpyS0maVI6OrHXqibZ+Q1Ep+m7HLq4ougK1pi9hryF3Ud9Fjuuociz6CIuiKgausRjjY1V1D53WEyRmtBaO4bCscxmeHXsWJdVMn1KKVVGoVg1LKwq1GcdiWQT2ED99hUU+5lpj8fD+w2AYBkuWLXH9/NbxrVhzdA3kP8t48rdP4qNf/Sje87H3+CYAzRaSNeFLJTUf2zraMO02yQlAW7QNBaWAglxAhIuUBeAgtEXaUFSLvqK7FyzLgmWClYj586/+jCf/8mTD23Jj5MgIxobGsPIyKixSKKcac+ObmUJpEb/YRKKxvvnwPp8l3fn0fdvxgbue9a9veJywCzKy5h25yXA8FJl0MP3aq9gGNUqK97I5SUWEY33jNIFKFKqXq6sg+Qs8QeImrdaIPu23WNyVwPOTBRRcol9VTUfGFEbzPlGoZceiwEI3SLxnUCZGh9E3b4HnMpopgn3iU59B/1u/gnMuvRYsy2BhZxzJCIfH907g2cPT2HBwCqtrXG39bTHsGp7BcFbEoq5EIPcnxzJY0BnH7tFc1bVhOTidzqfBCWA0BfFEArF4os6xCADpKI9sSa2Kvy0pGniWKZ+/ZoqPh4EJ8FA1PTmO73/1M3j8z/cBIOcXAJ49nAHHNFlfcdNapNs6sHTZuZ7L7R8vQDMMXHZ6F3iO3pYpFMoJ4lfvAJ76BnDs6fr3PAb7yrfYIDUWrcG52tn0TlGoqkhETS8XYllYzANCoiLKNIKbY9GKVy3VzEZn+XrHYiNRqKUMabsVLVobkZav3GvlWmExhKPu6MgEFg30Os/2zw0BALRoFyAk8YkbzsATTzyBvztPqGyvTlg026vahEU+Fn7/7VjnWvZwLDI6ZJ0By3Ho6+rAqOkcqSPVT35O7gfkUtU+PPjUs1C8Bkbb5ptuxzH3ZYKgqdAN/750Ll/EB7/0A/z8vkdtInsDA/lygbiNkz1lkfaxjVsRjQi4zCd2jkL5ayEjZnDBTy/AhqENJ7opoXj5vS/HPzz4D5goTczaNmekmaZM6JZz7miepA3UCmol2/1D1EQUVe97ml14NGCgoBYqbzIoRz0KrIB5yXm1HwdQXWOx1tlXkAtVv4uqSByLfjUWxSzifLws7NViOR8tt1qtgOnHit4VOJo/in3TZIyrpJbAM5X+ToyLQdGVlkShsgyLKBf1FBYN3fCM1YxyUSi64igsTgxPoKu3C4JHNPc3n/km+hP9uPl9N+Pr93wdL3v93IoItlzFhlkKoLOn0zMKtT3aDlETMS1NI8JGyv2w59Y+B7HkbWhoi7ahpJaacjJb16+fY1GRFdz56TvxwP890PC23Ni8fjMYhsGKS1e0fN0UCuXEQkcwKZQanp8sIiuqKDbhemyGnK3OoKIans44VohCVWRwLOPrbpRUvfxcIPrEpuZFFRGeDTSxO1NSwABIODjcLKYK/rOjOgMIi5aYt3s0WHzI0p4khjIipgrOHbGJvFw+JgVZhe4h4lo1FqM82c9iiHqQ4yPD6O13frgBgF/96le48MILMTk5CS7dg0jvErTFycMCyzA4ZyCNLUcz+NYj+9DfFsX589uqPj/QHoOo6uBYBkt7koEjQpZ0J3F4qoScWNmXMdPB2RGvn3Gps0RY5BgGnT29jo7FtriAGVGpuh5FRQPPshgfOQYAOLh3d6D2NYsRYFBuzQO/g65pKOTIgy7LMIjyLA5PFbGwK46upEvNrQBs2bQuUH3FPaM5xAUOFy7qaHhbFAqF0jLGHb6jPQY0NMP8jgtSY9EadKursciQ9+zrEM0BSN7DBSeaNYAMnTi0mhEWWc45KtMS0Io1wiInkP0waqNQQ1KaqhYWrWhUi/xI+b+yqpGJSGVhsb5OshtHRyewcMAlOWFmGH/aq+CCW3+KISWNXi6LSy66sPI+F6l3+1lRqEqNsNgMvL9jUWB0KDoAhkF/T4d7jcVomrRnch9xLLI8wLAYm8zgb951Ox5a95x7O9Jmn218T2P7YaGr0AI8bv/moXUoiRKy+UJFwG1kYHhsFwCDiKpmX3DNpq24fOU5iEUb789QKKcSO6d2AgB+tfdXJ7gljTFSGPFfqEks8TIrZWE0oSxOFMl6LCefl7AIAJOlSc/11QqB9pqIHM8FqiFnF91qBbiCWqiaAFtSS+BZ3vfZelqaJsKiixNNUiXifGRZxLgYCkrBcTk3lvcsBwA8evhRAESojNjqQlsOQaudtbUjwxLjYr7ip1h0F8SiXBSaoVWcfTbGh8fRO6/X4VOE3/75t/jZO36GM7QzcPrA6Vh+yfLgDZ8l7FGoANDZ6y0spiNpAMBQfggRljgWJVHCv77lX7H2QW8XckpIQTd0ZGrTLELAMiw0VYPuM1644bENyGVzKOTCXZ9BGFw/iDPOOwPpjnTL102hUE4sVFikUGoYz0kntCi0VUsPACRV83QssrwARZLAs4xvHUNZqwiLko/jL285FoNEoZYUxCMcBAenlfV5N2HPTmcAAWc4Gy6idmlPEqpuYOeQsxBpxaByDIOirEH1ONaqQq6LKE/2Mx/AhWkxMTqEnv75da8bhoEvfOELeP3rX4/zzz8fiUQCwxnygNUeqwitKxZ2YCgj4tFdY7hsaTf626oH7qx6ickIh+4QQtgZvUlMFWQMZSoDeGMzIniWQTpW/2Ckm7FvLMOgs9tZWGyP88iLapWDVlR08BwDqUi2o9VG4B0vAmznkft/AwAoFioPTzHT8bm4K9F4fUVZwo7BZ3xjUAFg58gMlvQk0JmkMagUCmUOkBsBwGDUPq7gIRqWhROv2dR1jkWH72eGr3ZpWW5EzkOssrv7mnUsAs5xqBHLsVgzaGQ5Fu0ufEMPH4VanCKiqCXUiTWOxdxo1a+FkgTwjTgWJ7Gwv6fudcMw8M0f/BSv+kUJZy4aQFtnL1CYrBYMOaHesWhGbVbV1uxeBrQvhFuNZl+sKFTZfVBLYHXIGgMwLPq7O9yjUBmGOPdmjpLjxAkAwyJXIPvlWZs8bbkd9zawEzZ0FQFSUHHXHx4DAMzkiwDnUm80CKPbADBAG0nJ0HUdj2/aRmNQKRRKKKzYxTCRnU6MFsn9y4rtzEnVz+RiTW1mPzdmnbCoVAuLQaIe7S66WmGxqBSrXhM10bHGYi3T0jRiXMxVWLQEShYsYjwRFsOMN6UjaSxMLcTa4bUoqSUoulIVuxrloiQm1lylU23DMMT4GEpKCbpHDH6p6D6xyYpTrXKUmoyPuAuLP/nJT/D6G14PoUvA6QOnV4mnc4myYGpejn6OxbYImRQ+XBiGwAlgGAZiUYSu676xsimzD+onunsRNAb14d8+DADHRVjcvH4zjUGlUE5RqLBIodgwDAOTBampFKdmGcpUOmmK5l3Lj+UjUBQlkGNRUSvxXF6ORcMwUJBIjcUgzrdMUUZc4MA7xKa2my7EqYL/7MHuAKKKXVj0chdaWLUInzvi3NGzYj87EgJKsuZdC9IAJLFUjsoshHEsjg6jd6DasWioCv7jjo/gtttuw6c+9SncddddiMfjOGaef7tTznIodsQFXLCgreyatOhPm/UaRDVUlOaSHjKI+ezhTPm1sZyEdIyHwDnUWDSjUFmWQWdPHzKOwmLEQVgkUaiKPLu1Sw2fWgRDhw9h5+AziCeSKOQrD7oxUzye3xFruL7i7q3PQZZErFjtLSzKqo5Dk0WcM9AWKA6YQqFQjju5YSDegao5SB7fp2VhUfFyLNYIi06OcpYDbPWTIJluxCBRqABxp7nEkAXGaRDL2n6t4McKxK2o2vZF1xqIQp0mIl3UnMUt1vRZ8sNVvxaKYkWAU8M6FquFRVU38Mlv3YV/+o+78MGr0vjNf/wTUt0DxEVpH/DlHepcWg5LO0uvAq78RyDWEbhdVfABhEVGh6wDYFgM9HS6R6ECQGqACLNygZwvhkXRJ3YMABGThSSJUW0GXYHqE4U6OjGNB9c+h1QiToTFsmOxgShUq75ijPQbt+19HlPZHK67lAqLFAolPDk515RjcaRI3JUsw0JgBeSUamGx1rEYVli0O/84nvMVaYCaGos1zr6iWi0sSqoUSFjMSqTGolsUqiVQMgyDKBdFSS2FdhVe0HMB9k7vxZGZIwBQXWORi0I39PI6nSJIwxDn475t9HMsAkSorWV8eBw9NX0RQzdw34/vwzvf+U5c9reX4byPnofF/YsbbP3xx3IsWlGoXb1dmBqfcl3eEhbHS+MQOAEcw/lGoFqkBdI3HBfrx12CwjKsbwxqIVfA2gfXIp6Mo5hvsr50DSNHRzB6dBSrrljV0vVSKJS5ARUWKRQbeUmFqOihx4SCiFxBsTsWFc3wcSxGoMimY9FHWLQLj16ORUnVoeoVZ54f00XiWHSqx9gRN4XFov+s6yCiyki28vDhJ6QCQDzCoScVwY6hGcdZgWM5CQyA7lQEJcXbsQgApWKhLOo5CYtO100hn0Mxn6tzLEoje/HUow/irrvuwh133FEWcYezIlJRHolIxXXRkYhgxcJ2XHFGNwba4nXb6Es35nTrb4shyrMYPJIpvzYyIyIdEyBw9edTZ4XyYHBndw+mJ+sf/jriAgqyCtFWg1JUNAgcA1lqvDZAIxg+jsVH7r8X8UQSV17/chTylQHjmMCBZdBkfcV1SKbbcPrZ53sud2AiD003cOmSTkfXL4VCocw6M0NAvKv6NdV9AES3Hic8lik7FL0ci6yLY1Gov+9VlrE7FmPNOxYd6yxa98Oam7y1rH1g1NDql/NDzBBRNJIk26pxdNhrLAJAvliqbFsONvijaRqGxuodi9vHdPz6L2vx/fddh/947WngIjEg1UvETvu6ncRdNydBrK0+NjUolhNTco9gi7A6FJ2ck/6eTvcoVABIDwCFcbIvHIlCLYoB+yKpPiB7NFD6gSu66iss3vPHx8FxLN74iquRzRcr17Dq7y6oY3QrEVPNv5k1G7ciIvC4fNU54ddFoVD+qjEMw7POXhDGbHVqrQjQPxz4A7ZPbAfQvLDYSBRqrWPRLhpabkALURPBM/7C4ow0gygXrap7aEdUK+uJ8TGIqhjaVbiidwVkXcajR0gcqt3NZwl5lgO0WcdinI+jpJU811MqBHAsOkS+OkWhymMynrr/KXzta1/D8n9YjgVtC5AQGn8OP95Y9Q4Zldzf/RyLKYG4DnVDR4QldTalUrC+iBWj2pRjESwUyftv44kHnoAsyXjxa17ccsfi4PpBAMAFx2mSk2ZoWP7fy1HQW++0pFAo/tBRTArFhlVfTg8xKPTUvgmc/m9/xF+2t6bewXCVsKjDy0TH8AJkWQbPslA13TNSQ7bVWJQ8HIszIul01Lri3MgUZcQEZ2ExFSOd6+kAjkVLhPRiKFN9bIKwuCuBQ5NFFOT6fR6bkZCK8UhGeYiKDlXzPu9isWiLQq0faHJyl06MEqeBVWNxdOgIDF1HbOF5+Ol9j+DNb35z1fLHpkvoSAiI1Ai7H7juTPzNef2IR+rPS6OuOpZhsLAzjj2j+bLDcHSGCJu1zkdF0wGWB6NbwmIvpibG6tbZFhegG8CkLf5WVHUIHAtZnmVh0SNGzDAMPHL/vXjBi1+Orp5eFPOVB9N4hEN/WyyQi9aNwU1rccFFl4FzcH7a2T2SQ0xgceFpnQ1vi0KhUFrKzHC948zDsagzAYTFWseil7Bo3UvLwqLH4FLLHYshnOOWAGSfkW/oDTgWM6TtnEAEPKtupEVxomqd+aJYEfU8nH12Ricy0DS97Fg8MjwOVdOxcoDDkz//Et5zeTsQbSNtSPaS8120DfByDvfDgPWcQ2HF3npEvPKMDtkSFrs7MOIxmIe2+eR4SjPlGovFgIN5SPeT+pYha2FVYRhQfMZ3f/6HR/Hyqy/BkgX9xLFoXcM+qQtO28LoDnL+ePI389jGLbhs5dmIx2jUOoVCCUcjrrparChUAOUI0I8/8XG86f43QdXVKmGRZ3lMie6uLwB1NfvswifHcb6uLN3QqxyYqq5WiYElpUZYVInT0I+snEWUj7o6FiVNKkehxvk4RE2si2H1ozNGnhUP5w4DAAS22rFotRdojWNRVEXP9XhFoVqiZ62wWCqUkJ/Jl4XFiZEJKLKC6EAUt//4dnzwgx/Ezqmd6E30Is57TCo7wZQjfM3D09nbiZnpGVfHLMdy5f0RWAEswwZ2LMb5OFiGbUpYZBjG92/j4d8+jBWXrcDSs5eikG+ttwyAEQABAABJREFUQLd5/Wacfu7paO9sb+l6LQ6XyN/Es+Kzx2X9FArFGyosUig2xmbMzmqIMaFdI6RD+/Qhj4GNEByzRaHKqk8UKicQxyLHQNEMuBnuVE2HbpAxB003oHgIaDmRdIhiQrCvh0xRQUxgHYVF6xVrnV50JPwz9KtjYoOdpKU9SQxnS5gu1HemRmdEpGM8UhEeouIThQpALBXL9fechEUnsdMSFnsG5uHppx7De298EXY89WcAQHtHV93yxzIltMV4CDWz/VmWQTrmP+CpBhRcLZZ0J3FkqoicKSiPzUhIRrk6x2LRFGYZrSIsZqYm6movtMXJw9foDOksK5oOTTeIsCjOchSq6i5o792xBUcO7sOLXvk6JFNtKNqiUG+8cAGuP7cv0PF2QpFl7Nj8NFZceqXvsrtGcljSnayKvqVQKJQTSn6kHKVYxim61MSAOZDmVRMuSI1FlifLWf0eK3rUKXLTwi4stmJ2e5h6Pk6uQUMLX2PRciyyHPlZKxaK2arjXyiJFQehEiwK9egoEQkXDvTgyWe248Ibb8WP/vQMAKCrPU1cqtE02aeE6WqcPlRZAe9zXFoV3MEJABhAdnEsGgYirEFqLIIIi8WShLybcyLVTxon5wE2AjBMcMdi24KK27EJvEqg7z10DBu37MFNN1yH9lSyOgrV42/OkfwouZaSvQDHwzAMPP40ra9IocxVLvjpBfjQYx+qez1M7b3jiVVfsZn2DBcqUd6WU89C1uQqYTHOxzEtTXveT+oci6rNsSj4OxZrxTxVV6vEwJJWKi9jGAYkTaoS8NzIyTnEuJirs9ESKBmGQZzzF+28sMTVqhqLZp/ActI1Kywm+ERTwmLZsVjTnxkfIQkMvfN6sXvLbrzvhvfhwf95EACQak9hrDiGKXEKvfHeOVtfETCPsw4wRsWxCADTHgkKVqSpFa0b1LHIMAwSfMJXdPdcB8t4/m1MjU3h2aeexYtf82IkUgkokuIrRIZhy/ottL4ihXIKQ4VFCsXGeJ7c4E9kd75WPNM8aywKUBQFPMtA1Q1XEdIeG2pFVDrogAAqImDQKNRMSUGM58B7xF7lJcU3LjYd858NOGyLQrULaF5rXtqThKIZ2DFcX3x+xHTnpWKmsOgjVpIoVKvGYn1H20nsHB8dAgCsf/RB3Pa+m3D+hatx1uprXbcxlCkhFRMg8OGcAD0p0vkOEhFr54zeJDIlBYenyMDZRF5CIlIvbBZlcl1YwmJHdy90TUMuW92BbjPFuPEZ0hktmdcbiUKdXWHRa5D7kT/ci47uHlx0+dVIpNJVNRbP6E3humV9da7RoOzZPghJLGHFJd71FRVNx8GJApb1p9EZQFinUCiUWaE0BURrZhV7uKcMa1AuiGOR9RBNWJ4IjpYwJ+WI0OflIrRHZnpFpgYlzEBWObLSNrim6wjVizQMIqAKMSK6CnEiLJqTdmSdMYXFyv2MRKGa7fRw9tk5OkKExSef2Y7r3/5xLD/rNLzxOpvglB8hdQXZCJDoJq9lDlfe52M++9HcIGYZhgEiCeCZnwDfuQK474PAtnsrYqt5X7cS/fvNwbzRyYzz+tIDlf/z5DoKLCym55PtFurTGcIge/R/7/rDY0gn47jhhZehLZWAKMkoB2zoIQf1Rkm0INrIPu/YdxgT0zNUWKRQ5jBWJKgdSxx6zW9fg5f9+mWz3aQyWSnrv5API4VKopPl1LNTKyzm5Bx0j8k5dTUWbcJVkBqLtcKioivgmIqwKKoiZLO/I+syDBjgOe8xClEVIWkS4px7H0TURHAsB5YhjkVJk+r2JSjWMYzaIsotIa9lwqKQgKRJjUehmm0rqDXC4jARFg/uOoh/+rt/Qs9AD66+8ery+zsmdwAA+pP9Dbd9NpA0CYxeGavp6iGTxafHPeJQIyQOVeBMx2KICdepSMr3b8MLDt5u3kd+/whYjsW1r7wWyTYyma9VdRbHhsYwdHgIKy+nwiKFcqrS0Kjp//zP/+AFL3gB5s+fj+effx4A8J//+Z/43e9+19LGUSizzdjMLAsfDlRFoeq6tyDH8VBkGRzLQNU8hEVzurQBUkMRQF3UpUW+7Fj0jhPTdQNfuH8n9o/lEXVxLFrkRA2KjxuQDRCpNZKtDAbZBTTDcJ9Nudisk2evI2gxnpOQippRqKp/FGqpWCiLTUWHBxcnx+LY0DFEYjHc+cXb8Ldvfgc+++2fIRJzd1VYYmfYent33HA+PvrSs9GTChd3tbSHdHKffX4aiqZjuqggFeXA1pxPS0i1R6ECwPRkde2ndjPSdjRHrmPRHCHjOXbWhUVdkQGWQ+f170HJdro0TcOjf/otrnv5a8DxPBLJFGRJhCK3Zmbe4Ka1SCRTOPOc5Z7LHRgvQNUNrKb1FRuC9kUolOOEYQCJjurXvKKlrRgxT8eiQ43F2pn9LE/q2ZWFxRkitHnFm9qdbfwsOxbLUaj2Gosho1CVEnFpWpFfQtx8jdw7c6pABFZbvb18QayIrQEdi0eGx8GxLD7w2e/iphteiL/86HPoSBGxkNVkIl5G06Q2YryDuOYyz1dW4HdcmqznVMWLPgGc8yqyzZ2/A371DuC+fybH1RSv7VGoADDqFoca76ycJ9N1EjwK1RQlx/c0shdl3KJQDcPAz+97FK99yQsQj0XRliLX74zVvrCOxbEdJLLWbPdjG7dAEHhcsercRptOCQDti1COF/uz+3EsfwxjxeYmNzRK2bHYxJRre9tjfKyupqL99xgXQ17Oe4oncs0kp6JaET+C1Fi0BDfGzFWqdSxqhoaiOWHHclfanYFOWMcp6lSL2ETSpHKNxSCinReWeBjl6oVF61xputawCAUQYbEljsWaKNSxIXI9fOMT38Dl11+O//zlfyLdlS6/v2NyB5JCEr3x6hqMcw1RFcFolbGSzl7TsegRzd4WIUkg1nUQ1LEIkBqNOaVxYZFhvB2LD/32IVz2wsvQ1tGGZIoIi62qs2jVV6SORQrl1CX0SOZ3v/tdfOhDH8IrXvEKZDIZaBq52XR0dOA///M/W90+CmVWsWoszhZOY0+jNnFT9XEsMhwPRZHAcyxUXXcdy7KERRhG2bEouAiBViRmIuI9O+/wVBHff+IAVN1AlPcWFguSGji61A3DMMqOUgAo1dRMdNv3RIRHdzKC7UPZOvFxPCchHuGQinLQdKPsynNDLBXBMgwEjkHRwbHo9PnJsRFEIlHcevsXccvHPweOdz+uM6KCoqyhPcYHElrtxAUOZ/WnQwtUPakI4gKHwaNZTJjHNxmtb2OtY7EsLE5MVC0X5VkIHFM+VxXHIgtZmt2/L10RwXcMoO2SV2PPVOXcDG5ai6nxUVz/ytcCABIp8kBTKrpEr4Vky6Z1WH7xZZ7nGgD2jJL6iquX1kfiUryhfRHKXy1ersBWEu0IvF0mSE242hqLmlKJfLRgOcCwCYtilkR+1i5XXqda3a5IKxyLISKwncS9sFGoYob8tByBQoK4EM3BvJxmCos2x2KhJJLjyArVbkkPjo5OIBGP4sv/+g786PP/jEiksp+cZA6EWfG3jCkuzgxVVuAXMxuyVpQnnUuAVW8BrvkI8LIvAel5QG6YXDPmNaZYwqKfY5FhgaQZ7cqFdSyajonJvY3sRRmHEt8AgGe27cXe54fwllddBwAVYbFo/h2FFRZHthJRUSCDgms2bcXq5WchmfBxm1IahvZFKLNB2Fp8rcISzBpFN3RMlCrPiQk+UedYtEejxvk48kreU8yqcywq1Y5F2WeSqHUsrchSVVerHIsASBwrKqKnX43FjJQBQIRRN2RNJlGoYMqOxUbrV1pRqPYahNGaOsiarjUVYRvn45B12fPaE4vu/UIrPrZWWJwcnUQkGsHf/+Pf45N3fhLRmvq/2ya2YV5iHhKtiLY/jogaERYtgbrDnOQURFi0Il6D1lgEiLDoJ7p7wYJ1dSweOXAEu7fsxotf82IAQMLsi7TKsTi4fhBLli0pHyMKhXLqEVpY/Na3voUf/OAHuO2228BxlZvwJZdcgq1bt7a0cRTKbDOSnV1HlVbjRsyZwpKFUq6NaJQFPzsMSxyLAmvVWHTuQEpqfRSqm2PRikKN+zgW7XUT4y4ipLV7BVmF4lVkJgCZYvX+T9XUTPQSYBd3JXBoooiC7dgahoHJgoRkhEcqSjq/WVFBUSUdRNmo3/9SkXSOozznKCLa2yhOjWD7M+swMTaM5Rddhr998zv8dhHDGXL9peP+A5vvuHIJblgxz/c8+cEwDBZ1xrFvLI+j0+QBKuUoLJJjp8dIPF5XTx+AesciwzBIRXlMFWQYhlElLEpSsAHQVsAyxLHIlAeJK9fHI3/4NeYvWoKzL7gQAJBMk46+PQ61UVRFwfbnNvrGoAKkvuJpXQlaX7EBaF+EMqexxLMmZoufcFJ91b+r7oN1HMcR8SRsjcXawTpOIGKK3bFo1R50Qq75zjZjpprCw3FQh9X+qhqLIaNQSxny0xpEE+JELDWdDHlNIK5Mm3iZt1wCnOB9zAEMz6j4y7qtODY6iQvPPQMfeffrwdRMXOItYTFiq6sZ7yL1BcsLnQBximVNF6XtOqlxLHZ3pMFxLEY96hqROouoCItBXQKRFBHpJvaFbrodN2Hx5394DP09nXiRGQ/WbgmLBfNZJGxM3ug2U1hMwDAMrNm0DddduqLRZlMCQPsilFOZGak5YXFKnKoSCeN8vCyKAcR5Z3csJvgECkohsLDIgIGoimWxheM4KFJAx6J5H6yNQgUqQqElevrVWLQiY+MeceyiSqJQGaYiLCphJ4+YSJoEBkxVu+qERUODjsb7oJZoWSsM2vFyLLIMiwgbKTtKlZyCpx99GuPD41h0xiK881/fCdahjM6OyR3oTfRWiaZzEVEVYT+8kWgE6fa0ZxRqu1liwHLAhnEstkXaUFSKjQuLDOsquj/824eRSCVwxYvJ2EWqjfSlC/nWOBY3r9+MVVesasm6KBTK3CS0sHjw4EFceOGFda9Ho1EUCq358qFQThSjsxyFWlsPb7hG2FQ1A7pu4Im9E7j8iw9jLFf9PmNGoVqORbfUVMkWhSqahWl4F4fhjKggyrO+9eXsQmfcZVlLfCtKqm8Uqh+1x6ZWWHQTVQFgaW8SQ9kSMsXKZzJFBYpmIBXly+JctqhgXCL7kkP9IJolLPakIjg0WSxHnwocOZbTZpuO7R7EljtvwU+++mmMDw+hd2B+oH206mu2x/yFxRec2YNXr1rQcB1AO0t6kjgyXcThSdL5b3Ood1k+l33nQ9F0xJNJxOJxZGqERQBIxwRkzeNrOUt5FrPqWOQ5Fpoqg+GrRTtZEvHEg/fjRa96bfmhMpk0O9C55oXFPTu2QCwVsWL1lZ7LKZqO/eN5LOtPoyNOhcWw0L4IZU5jDS75iD5zllgHqXNnR3PfF4HnIGmGj2PRikI1B/B0tV4wZHkiqFkDJ6Wst7Ao1bjMY2nn5cIQKgrVcizahEVdDycolyxRzxIWE0RENNeRU3ny/+Jk+SN5yyXACZ5RqJv3j+DSbx3FLV/6bxweHseiec7RYpw4Rf6T7K68mOwBilOV32uvhxOF+TclmxFkLMuir6sDoxMZ98+kzEhTlgy8FkPUNUKqD5g5imaqr0sOiR2apuHuP67Bm15xDXieXN+WYzGbFwEw4RyLmgpM7AUSPQAfw64DRzA2maH1FY8ztC9COdnZn9mPydKk43vNOhZHi6NVv9c6Fu2xowCQFJIoqkVvYdH2vSiwQlWkqBWF6uXUKzsWzWFQRVeqolABIGMmCQR1LFoCbEpwn9wka3JZCIyZE3XySmNJOaImIspFq9pVK35qhtbMbass7OU19zZ61VgEiDOvpJYwcnAE2+7Yhv/65H9h5OgI+ub1OS6f1/KYFCfRG+8tu/rmKrVRqACJQ52amHL5BNAWJZO3BHOSUxjHYjqSRkEthBYWu2JdOLPjTHTGOh0di4Zh4KHfPoSrX3Z12T1qORYLM83fwyZGJnDs0DEag0qhnOKEHpFeunQpNm/eXPf6Aw88gHPPpTUcKCc39qjNRlE0He/4yUbsGPYveC6r3sKiouvQdAPTRRkFScOekZrOHctBVWTwLANVD1ZjUVQtx6JbFKqKmMD5RnHO2ByLbvUYC5IGlgGKitZ0FOpwtrrzWisseqV9nN6ThKIZ2DFUeUCyYm9TMQ7xCGm/kyvUjlgiDz+rFnVgz2iu3CarruB0UcFdd92Fez79HsR7F+ITd/4cE2MjwYXFbAkMA3TOsoPtzL4UcqKKwaMZMAzQkajfvlVjEXwMkilOd3T3Ymqivu5HW5zHjKhA1vSyYzHCc5DDDOY1Cc8yUGTJ5lgkrH/sQRTzOVz/qteVX7OiUIuF5oXFLZvWIp5I4qxzvQfzDk1Y9RW7WiIO/7VB+yKUOY0lLHqIcXOaeFe9wOYhkkYEDpIKb2HRchlYM9R1xUVYrKmxyHlEoUq272wu2hpXnd2xWOuIrIWzaiwWKyJj2BqLVhRqhMRXQkgSV55hcywCQG6k/JGCNRjFCsDYTuChzwAP3lG12t///ve46l9+hr4Uh8d+cBuGxqawcKDHsQm8NE2OXdQmzCb7gJJtgGyuDPKZDhLF1n3u7+nAiEf8GNrMPhgf0rEIEAdgfrSpqFfZof/7yPpBjIxP46YbXlhppuVYzBfNeqMhhMWpA+TvL9UHsCzWbNoKjmNx5YX0fng8oX0RysnOa373Glz3f9c5inGWE69RRgvVwmJciHvWSIwLcai6WiU21mJ3LAqcUBUpygkcDMOArrmLL7VRqJ6ORS2gY1Emx8ktvlPVVaiGCt6sR20Ji40Kt5ImIcJFyvsAEAemXYzT9OYci2XxU3UXFr2iUAEiLO7buA9f/vsvg+VZfO6uz2FqfAq9LpOchpVhAEB/sr/BVs8e5ShU23hZZ08npsbdhcV0hPSxrOsplGMx2oaSWqqLAvYjwkXwgVUfwKq+VY5u3l2Du3Ds0LFyDCqAco3FVkShDm4g9RVXXEbTEyiUUxnv6TcOfOhDH8Itt9wCURRhGAY2btyIX/ziF/jiF7+IH/7wh8ejjRTKrDHRghqLeVHFo7vHcVZfCue9st1zWUmtnpE3ki2BQWWCmWFULzNVqGkfy0NRZPAcA00yXCfJl9dhoCwKudXiy5mORa+aidZyFnHBeV15SUVHIoKpgoyST/1CO7VOTqBedJ2oEYFrY2XtLO4iHf3NRzL4m/PJzPVxS1iMCkiYwmKm5CMsmo7FCxd34rebh/DorjG87cqlaI8LmMjLuO8XP8Zvv/M5nHfNq9D+N7cgFk8gl51GT/88z/WW9zEjoiMuNB1vGpYl3aQD+eTeCaSjvKPQZTkWdSEO1XSfdnb31kWhAsRxeWCiAFnVy9G7UZ6FJM2isMgxUBUZDF/9MPjI/fdi2fkrsXDJGeXXkikyg7DYgijULZvW4vwLLwUveD+E7h7NIcqzuGQJra/YCLQvQpnTWINLJ6tjMd5RHwnqIRoKHAdJ9XMsOkSh1gqGnADIBZR7QdKMd41Fu7AYSbgvF4aGHIslIpIyrCkINhCFGjWdDhHTsWg6MHKquY18ZYA2b7kEepcBo9uBZ35SOa4Afnb3r/H29/8LbrywBz97qYh4TweOjU5gYb+LsChOAbH26vqSqV5AtA16urlGZxszkteKQgWA/u5O9xqLAKnRCBDxGSFqLAJElBzZUj4fjSAq9dfDz+97DGedNh+XLD+r/Fp7mvTFZgpFIsCHETNHt5Gf5r4+tnErVi9fhlRybsfJnezQvgjlVEHUxLr4SUtga5TR4ig4his7EONcvM6NaI9CtbZv1Th0wi6sRNgIJFUqi6Kc6f72qrNobd+rxqIlqFpt83PPZaQM4ny8HHFZi2ROMrMchtZ+5vwmL7kgqmKdsAiQ42EJt5rRXI3FBG+61hqMQgWA7NNZPPG1J3Du5eci8Y4E+hf1Y3x4HL2vcBEW5WEk+SR6487vzyVEVQSj1zgWezo9o1A7o6QmtFWLUwwx4TotEFGyEbHfcuQ6ORYf+s1D6OrtwoUvqDjvI7EIhIjQkijUzes247QzT0NXLx3voFBOZUILi+9+97sRj8dx++23o1gs4i1veQvmz5+Pb3zjG3jTm950PNpIocwKkqpVufCaZSRArGpt3cChjIh0nEe2KIMxO4sl2S4s1nQIGM6sscgGciwCFceiwLHQHcS4bElBTOACCIuVY5VwqLFoGAaKsoq+dBJTBbkcExoEJ5FwJCuWnZkAMF2sXp9XFGoiwqM7GcH2oSwMwwDDMOVY2c6EUBWF6oUVhTq/PYaOhIBHdo3j5iuWoM10LPadsxpf+cpXMLbkJVh3YAqTY8Rh0BtQWDw6XUJbXChHq84WnQkBySiHAxMFLOiIOYrOBYnE0xlConw9uQmLHYkI8lIWsqqjJJNlozwLeTaFRZaFKstVjsVcNoONjz+Md3/o9qplEymrlkBzwqKmqtj27Ea85b3/7LusVV+xJzVHXCAnGbQvQpnTWM65k9WxGGtzcCy638N5noOoAroqgzUMwCnxQFdM8ct8TzMdi7F2QMySz1iORUvEkXIkktM1CtX2nS3E62s2NgIXpsYiB4Apu+jAcERYDOtY5CKV7UYSRJAuOxbNfbI5FstRqJd/ABCnK9vb8D1A13DtC6/Hpz/9adym/jtYhsHYyBBkRcXCAVvUqY2ysGh3ZSR6UCWQtkK0bQXlGouVfkp/dwf2HR5y/0z/cmDVTUDnaQBCCovp+UTstpylDSCp1ddDSZRw74NP4UNvv7HK7RCLRsDzHLK5AhDhwtVYHNtBzmGyx6yvuBVvszkQKMcH2hehnMrYRQyjgVzN0cIo2iJtZaHQqW6e3Z1ovZ+p/b419SsWbLWwyEUg6mJZLLTqnCqy+3enFZtqfffWCosRNlJ2IFo1Ft0EQ4usmEWcj9cJlBaWsGg51eJcc8KipEloi7TVCYtRLlqOV9UNveF6fEAwx6JfFGrPuT04/w3n473/8l7ctecuyJKM7FQWPS7pCcPyMAbSA67Oz7mEqIlAzXyjzp5OHNpzyPUz81Pz8fbz345FqUUAwjkWU2YNcevabITavwtN1fDofY/i+ldfX1UjGCBxqK2IQh3cMIgLr6iPC6dQKKcWDeWv3XTTTdi7dy/y+TxGRkZw9OhRvOtd72p12yiUWcVysMVaFEs4kZOhekRxAPWuu6FMqa6+XsmW9zRZK86Z4gnPMWaNRRdh0dYOUbaERfco1CjPgvOJQrULi6lovTurpGjQDaAjITi3PSTHMqVy5ChQL8p6GBYBENfiockiCub+j+UkxAUOiUilxuKMTxSqJSwyDIML5rdj8EgGew4eweBdX4YulxDrWYQPf/jD5YeVyTES6dETMAr1WKaItpizY/B4wjAMFneSTnwqKjjW3ywpZt0rlkPedC92dvciMzlRt2x7XEBBUiEpWjkKNcpzkOXK9Z4TFfxi42Hc/KMN2HjQubZHM/AscSxykUo03hN/+QM0TcV1L39N1bLRWBwsxzXtWNy3cytKxQJWrL7CcznVrK94Vn/aMXaWEgzaF6HMWSyBy8ux+Kl24HtXu7+vqeGiEJ249x+AzJHwn4u2VbvXAEB3v4dHzBqLmiK51xfUahyKukJ+f+kXgevvIM4wq8aihZTziUK1Oer4FgmLtU5NT5jqOocMS/Y/TE3pUobEoFptFxKAroBRybkXdY68Z3csWi4BlgUS3UCyB1NKFO+56wCmiypOW7wYn/jEJ8qR9kfHyD3WzbHIidMkBtVekzhZsywzu/0SVyxh0XaZ9Pd0eDsWWRY494ZyJGroKFQAyB4N2dAKJcUo11EEgPse3YBcoVQVgwqQvlhbMmFGoXKVuqRBGNlK3IpCAnsPHcPI+DSuXb284TZTgkP7IpRTFbuweDB7MPTnRwoj5fhHoCJW2XFyLNa6spiHGRz+9mFwLFcWBgEiLMqqXI43tRyLTpGPFpYwWRWFapu8FOWjyMk5GIZRFhYth5kb09I0ERZdJkFJarVjsRyFKrUuChWodlZ61akMgiV+FtRwjsVivoj/+Oh/YGp8Cu097Tj3LeeCNScsT42SmFC3KNS8nkdfos9RgJ5rONVY7OrtwrRXLDuAi/svRl+S1JgMU2PRqt/ZTDyxLMnlvxEAeOapZzA9MV0Vg2qRTCWbjkKdGpvCkf1HsPJyWl+RQjnVCf2UePDgQezduxcAkEgk0NdHvhj37t2LQ4cOtbRxFMpsYgmLyWgLBqYAZEqyY6QngLKQVSssHsuUkK4VFm2jJ7UuPTAsNE0FzzLQNMNVXJMUu2PRjEJlnf/8Z0QFEZ6Fy9tl7FGoMYco1LwpPFrCSbPC4lCmVHYGAiS21B7x4eS+tLO0J4mhTAkZ8xiOzohIx3jwLAOWZRDhWeRK3oM4Vo1FALjotA6MHd6La666EsNb10KbmUBOUqvaNDlqCot9A4H2cTgrIhUVIHAsbn3zK3Dk4L5An2sFS3tJBFcyyrk4FtWyK8JydnZ09zg6FtviPHQDmCxIKCmkzqbAseUai0+MsFj9+Ydw22+2Yu3+SXzrkX1NxbU4YdVY5KOVh5NH7r8Xqy6/Gl291UXjGYZBMtXWtGNxcNNaxOJxLDvfuwN9aLIIRTNwyZIOWl+xQWhfhHJS4BUNCpCIRbfvvgc+Bvz0hsbFRVUCttwN/OLN4T8rJKt/Z1jiWJwZBn79HjOu1LY4T2os6qrsLizW1lS0HIsMA/SdS1x7rFBTYzFPhD63DondscjHWhPXGbaWICsAqoidu/cia/XRjBCCUGmq2m1pztTnNNsxjqaBYmUCTqFGGNt76BiueNOHcO9zEzgwYb4nV/orR8cyAOBaY5FTckAkDdhdGYkad+OciUIl+6cYdsdiJ0YnMoFXEc6xaPbfbI7RsIiqjmik0n+96w+PYfUFy3DWkgV1y7ank0RYZLiQUajbgWQvIMTw2EZSX/EFF53fcJspwaB9EcqpjOWO0nSt7LoLw3BhuCyIAM6ORSdhsbb2IKMymHl6BgIrVDkWo1wUki5V4k3NZypF8XAsWsuiEoVqF+iiXBQFpQDVUCs1FmsnWtWQkTKIcTFXx6K1Hkt4bLbGoqIrEFihbntRW+KCZmhNORYFjqzfOu8GV99Xra2xOHpsFLe+9lY8et+jOHrgKDk/mlSu9Tg5QvoxbsIiAPTGex2jZ+/4hzvwzBPPNLw/rUbSJEADGFTExc6eTsxMz0BTg4m6YRyLlkDf6DUDEMeiYOuLPPzbh7Ho9EVYtmJZ3bLJtmTTUaib128GAKy8jAqLFMqpTugRzbe//e1Yu3Zt3esbNmzA29/+9la0ifJXREFSfQWh2WKs1cJiUYGoOHfoLOddretuJEvELjuirXNSu7xhdihZRodqGK7ijF3glEyhxy3qNB/QsWh39/EOQlReMoXFONmfqby/sGhtsy7yFUR0S9vOTUFSoWg2YdFHmFrak4SiGdg1TAYiR7MiUjG+3Pa4UHHiuVEqVgbqcns3YeR/PwxEU3jRR38AoWcRCpJajmoFgKmxYaTbOxGL+0d6GIaBsRkJqRgHTRaxa8uz+PYXbvP9XKs4o5c8+CWiHHgHN2veLiyatSi7evqQmZyAXuPOaDPF8dGcBFHWEOFZMAwgF7IwdA1Z2cALzujB+649A5ec1oktR7NlwbdVWDUW+Sg59vnsFLY8vQ4vesWNjssnU6mmhcUtT6/DeQHqK+4ZzSHCs7h0qXMsHcUf2hehnBQ0WmNRKQGDvwByw0DJe/azK9Y9MYzIZRGpuWcxHHEsjmwBtv4fcPDJqrcF07GoK7J7LTrNRVi0DcqA4yvComEAct47mlTKVWJnvaJQjz0DDG12X48dPqSwyAnl82zVFA7lNCtOmW5L89gIZGCVU2zxY9G2Si1G2ByLAB7bsAWXvfGDYBgGGz52ES5ebIrCYzvLyxwdz4DnOfR1dzg2gYEBRFLk+FsI8XJbyEJzRFg0BzntNRYHejuRL5ZQKAab/R/KsRhJkn9NuD9KsoFYhFxXU9kc/vj407jphuscl21LJZDNFyqxwEEmXUk5IHuECItcFGs2bcVF552JttTcj5M72aF9EcqpjBXVmVMaez4aK46FEhZZhkWcj5fjPGvhGK4uClXW5PL4B8+Te1gzUahRLoqiWoSqqyipJSLg+UysyUgZxPiYr2NRYITyNgC47mcQnByLdmFRN/SG4mvtxPgYJJ20XU/Uj2nZo1B3PLcD7/vb96FYKOLbv/k2Vly2AlEuWnV+ysLigLuw2J/sd3z98T89jtveNXvjIn5ImuToWDQMAxmvBAUbYRyLUS4KnuGr/l7CIksyItFIedtPPPAErn/19VWR7BaJVAKFXHPC4uCGQSw6fRG6++l4B4VyqhNaWHzuuefwghe8oO71yy+/HJs3b25Fmyh/RZx/x5/xhv9ad0LbsORj9+OqLz+CsZwEjmGQjLZm8CRbUqpqG9pJmNuoFVNGc2KdsFm0iV05UakSYg2zQ8kZhqdj0d6OkqJB4FjHEkgAkJNURHjWt8bijM3d57SsJSxaIupUAOHovPltAICfrD1Utd+GYWAsR4RA+/pVm6Dlp0+f1k0GWJ47QgZpx3ISklG+HAkbE1jiyvPohFtRqMeeP4hP/+Pb0bvsIix719cQ6yQzlInYaYuuHRsOXF9xskAcru2xyqCmESZOrUmWdJuORYEH7+AOIcIiaY8VJ9vZ3QtVVZCfyVQtazlLx2aIYzHCsWAZBvLMBI5+++/xyv4CbrxwAS5c3InLT+9GtqTg6ecbHDx3gWPZKsfirmfXQYhEcdVLXum4fCKZbioKVdM0bH1mA1Zc4h2DCpD6ios74+hJhYnco9ihfRHKSYEmhau3Z7HnASKqhXEsBeGJrxGRzY9ouvp3lgNU20Bdvtq9FQnkWKyJQtXMKFR7Z4QViDBp6GT/YQCCRwSZlCOiHGA6G136bz94EfD9a+uclo6EdSxykbLYVe5q+TlV7ZSmTVHUEhZJX4XXbBFUVh1KE0tYHBqdxMve8wlcdN6ZWHf3V3Fmn23QdmSw/N+jYxks6OsG6xVFEWurfy3eVfm/X4zFbGE5Fm3CYr8pmI5OButHhHIsAkCyz38ZD0RVKzsWf/XnJ6FpOt748mscl21LxStRqHb3rhdju8jPVD8MAI9t3IrrLr2gqTZTgkH7IqcOb7jvDdg2vu1EN2NO0WgNQIvx0nhVvTwnYdFy81nYhchaWIaFZmhlocoSrlSjJgrVQ1i0lrVEuVphMcbFUFSqhcVaAa+WGWkGUS7q61i0nI8sw1bVQ2wEp3ZVORb15hyLADlfVtv1hF6OnLWwolBzmRw+8taPYP7i+fjO776DpWcvBUCOpaRJ5XZMjkwi1ZZCPOkcdRplouiNu4uOze5PK5E0CdBrHIu9nQCAqfGpYOsIMcmJYZima08qsoKIOclp3UPrUCqU8OIbnWsxJ1NJFHPNRaEOrhukMagUyl8JoZ8SGYZBLlffychms9C08LM577zzTixZsgSxWAyXXXYZNm7c6Ll8JpPBLbfcgnnz5iEajWLZsmX44x//GHq7lLnDwYnmCwM3y9HpEo5NF5GK8b5OvaAUZA15l5p91haypWrRsCBpdY5FexRqXtKg2MQmw1wTAx2qbkBzGcCUbK5HSdEdoy7L2xBVIgT5CYu2fXMUFs0o1HiER0xgMR0gCjVqRpjkRBWfvW9H+fVsibg/7cemKGlQ1OCOxUSER1cygm3HsqZQKSEZqcR+xgUORbMupBMMy6FUKMAwDCw4bSk+/92f4113fBtH8wYmTTdmQa52UU6ODqNnoF5YdGrqUIZ0ztPx1jhmw9IeF/CmSxbinHkOg4sAirIGS3QtSJUaiwAwPVEdh2rVCR2dEVGSVQgcC5YBpFIJemkGPekoYmYc8NkDaQgcg4d2jLV0f6woVC5KBqUP7hzE5de9BMlU2nH5ZLoNxULjD9D7d21DMZ/DSh9hUdV17BvLY1l/ulx/lBIe2hehzCpbfgk8/NnwIqHq4eDzYvPd5Gf2aGPCpBsPf5qIbH7rrI39YlgSZWpRqP6+5nkWkgbomuJRY7HGsWgJjfY+F2eLQrViTr2EPilXqYnIRf1rLEoBBvGCCouGThylnEDOM4BySEUYQVjMEGGRsaJQLceirW8c6yjXk+RYFvmiCMMwML+/G3/43qfwp+9/Bp3tNfe24S3l/x4dz7jGoJaJOtz77XGoc8WxaNa8UgwHYTFgHGooxyJQiUNtkKKsI2bWIn/giWdw/eUrMdDb5bhseyqJmXzJdAlrwf7+x7aTv9G2Bdh/eBhDY5O4djUVFmeDVvdFANofOVHsnNqJjz7x0RPdjDmDbujIy40LXyW1BEmTQtVYBLyFRY7hoOpq2YkXYSPQDA2yOZmnHIXqUWPREsfswqJdoIvxMZTUEhRdgaiKEDihHJvqxow8gygfLddQrMUS5+wRnzEuhoLS+BiYo7DIV0ehNkuMi0HUSduNiFE+zgDAsAxKhRI0TUO6I43P/uCz+NovvobOns6q9ii6Uj5fk6OTnjGo3Wx30+LZbCGppmPR1oW19t2vzmJ5HSEnOXn9bQTB7ljc+NhGnLPqHCxwiGQHgEQ60VQU6vTENJ7f9zwVFimUvxJCC4vXXHMNvvjFL1Z1ljVNwxe/+EVcddVVodZ1zz334EMf+hDuuOMOPPvss1i5ciVe+tKXYmzMeYBZlmW85CUvwaFDh/CrX/0Ku3fvxg9+8AMsWOD8hUihhGFsRkI6xjvGATTKcNY74iBbUqCaDrcRc9n2mhqLRaXyt1Yb/wmGARgWrKFD0z2iUG2ORVHVIHCMq2MxL6mI8BzYEFGoTsJizhSfEgKHZIRHtqYmohfnDKRxz9NH8Ogu8l1gHUe7sFiQ1aqIVz9hEQAWd8VxaLKIoqxhIi8hGSE1FgEiPIqy5mpY5FgGh/buxG/+94cAgEtecB0uWtINA6RmHkDEt2rH4gh6++fXrWtcJvsxnKl0KIcyZB874ydObHrxeQO4YEG743sFSQVjDhiXY257TGGxps5iTGDBswwm8hKKMnHIsiwDUayP7xA4Fmf1pbDp0FQlRq4F8CwDVZbBRyoPsde/6nWuyydSKRQcBoeCsmXTOkRjcSy7YJXncocni5A1HRef1okoP0cGak9CaF+EMqvsvA/Y/hsgczjc5zQleITiY18GNv0QKEwC+x+qvD55HGrt+s36rp2dz3LVLrx89d8GcSwaMPyERft6Ndl0wdleY21RqKJZR8bB4VBGzBJHY3oekHaOz6rCp04SWSaAsGjVL5w5RpbXybFRGxEWS5lqt6VVY1G1zRSPd5SFVoblcPDoCD5z510AgBdfeSEEwWEwc7jasegrLMYd7v1Jco9XdMwhYVEyY1BtwqI5mHfcHItt9f24MJRkHbFo5bq66YYXum8qlUA2VyDXg6EFcyyObCOuylgb1mzaCpZlcdXFtL7ibNDKvghA+yMnmmajI08lRFUs18ZrhIyUAYAqYZFlWETY6nusqNY4FiPu4gnP8tB0rSIsmvfronm/tByLsuw+mdkS3CynmWpUOxYTfAIltVTlWPQbG5qRZxDjYq7OxnIUKlvpg8T4GEpKqRzNGhae5X2jUFvhWLSiUIFqdynHcshMZvC9z38PAHDhlRciEqs+tzEuBlmTqxyLXsJiO9vu6Gqdi1g1Fu10dodzLIaJQgW8/zaCIEtyVY3FF7/G2a0IAMl0sqko1C0byOQ2KixSKH8dhLbGfPnLX8Y111yDs88+G1dffTUA4IknnsDMzAweeeSRUOv62te+hve85z14xzveAQD43ve+h/vvvx8//vGP8bGPfaxu+R//+MeYmprC2rVrIZg1rJYsWRJ2FygUR8ZyElJRHj5GvVAMZ71z0HMiEcd4jnUUzwAQscukIKllIdKC4QXAFBbdkjMlpyhU1O+ooumQVB0xwf8gWI5EnmXK4pzT+/EIh0SEQ94URSO8/7pXL+lCtqTgY/duwQP/dE1FdLWJbqUaES9Iqc6lPUls3zKM4WwJRVlDMsqVHxbiAoepooS4w0OlkhlBfs966FIJS886t/x6RyKCBR1xHDPdhkVZg2p3LI4No6f/5XXryyjkAaaoVAYfh7Ml8CxTtY9ziaItCrUka1B1veJYnJyoWpZhGKRiPKYKMjoTEQgcA5ZhIDkIiwCwalEHfrHpCA5O5HHuPGdhMyyc6VhkhVj5sXj1VS9yXT6RTGNqfLTh7Q1uWotzV16MSMQ73nT3aA4Cx+DSpc5uBUowaF+EMquUSF0YaO6z4B3RQjgWH/sC+amI1WKC0ng9lYapHRxjzFhGq5NRrB40ITUW4SMsytXilK4S8cTeJeCEiphiORZ5rxqLM0TYu+bDJEbVD586SaQNAYTFonk9GAapyWg5Fq37f5goVDELdJ9eV2ORV20DOvFOQM7jWE7HPVtFlEQdF513pvs6da2uxuJFK90dbAYYMPHO+jdSZsy7AnTMoShUpUZY7O5Ig2XZ4I5FMdxgHtqaE2kKciUKFQBufMmV7ptKJbDzwBGATQaPQh3dRlyVQgyPbdyCC889He3pZFNtpgSjlX0RgPZHKHOHolodgxhWpMqIGQDVwiJAXGx24U/Sqid6tEWck3MA4ljUjHphsWDeLy1hUVXcJ/cEcSyKqhg8CpUl+xDj3GPbrX2scixa2zFUcAg/ccepXfY22I9To8T5ODJ6pvx7SSkBMUDNqZh8chKqouLcVee6fj7GxyDr1cLiOcvPcV2+nWmvOkZzGSdhMRKLINmWDO5YDJmekBacU5eCIktylfj7Qo9JTs1GoW5evxkLlizwrKdJoVBOHUI/JZ533nnYsmUL3vCGN2BsbAy5XA4333wzdu3aheXLlwdejyzLeOaZZ/DiF1dmSrAsixe/+MVYt8655t7vf/97XHHFFbjlllvQ39+P5cuX4wtf+IJn1IgkSZiZman6R6E4MW7W3GulY9FyobmREyt1GIezJTAAupLVHaqSzcVVlLUqlx4AMJwARlehGYara69KWJQ18JzzPlpiYBAnVc5cNiY412PMSyp4lkGU55COCXU1Eb1gGeAfrjkdk3kZ//abrRjOimAYIuSV90PRoNj2Sw+gLJ7ek4Ki/X/2vjtOjrM+/5m6s/V2r6udiiVXNVuSeyMQIKaH8KP3EkrA1MQEQjHEQGihhIBtCCUhgIFQjSk2trEt2ZJsSVZvJ510vW3f6fP7453ZnZmdmd29O51O9jz++KO7vZnZd8rufOf7vM/zGHjkGGkKJmx5ljGeQUXR61yntm59BCPffz8AINnWhkuvdM5A3rC0RoTZyU7D0JGbmvC0Qs2p9cd3KFtBOsYhwi0QVYALJblmyWURqLF4AnxEqFMsAkAyQlSqJZcVqhc2LE3DMIB7D8ydHSohFmXQHGlKZ7p6wfH+DyvxZBLl0swsfzRNw97HH8WGLf7NQgsHRwroa4+hKxmQGxaiIcJaJMS8opIj339Mi/PxNLl5xaKFJ38CdF9c+30O7KxmDSvvzUIlC/tMJs7MWAwkQnQfK9Q6xaJFLJqfkSBbLCkPsAL53ysjEHCMsylbSbYZYtE2mYbmq0Riy4pFwzD3IVojcxkeoGgwmu1+KbRh52kJ1/1XGaIK8ByLF/zVFf7bnT4B2OzlGikWNS5RJTQdMBWLJQX1ZPPZQpVYrIFhGHS1t2F0MtvUJlq2Qk00oYYNQEnSIJj1B8exSCX8r+m2ZNzMWDTVu40aw4YBjO0H4p0wmCge2L43tEGdR8xVLQLMTz0S1iIhmoXbplNpcWJVVsqCAoU0n3a8bie/dENviVikKZpYoRreikWWJTVaUMaipRC0SDnN0MDYahOLDKuolaaIRYM1quv5oUos2tSaAiNA1ERPxWJQzqAFLwLOfWxnq1iMcTHIeo0EHhfHsW/fPpz4wgloRTLu6557ne/6ESYCVVerKlE/K9Q0k0b2kSx6mNnda+cTsiaD0uv7X+2d7U0Ti60qFpPu/PMWYbdCBYB2H0t2AIglZmeFunvb/OUrFuQCdheIS4eMFib2hQgRYs4wozCvxYsX47bbbpvVG09MTEDTNPT0OG8gPT09OHjwoOc6x48fx3333YdXv/rVuPvuu3H06FG8853vhKIo+PjHP+65zmc+8xl88pOfnNVYQ8wNxvIiLr/tXrz3WWvw3medf7aHU4eJooTuVKSaHzcXaGSFWpRUyKqOX+4axL/+9gCSAoso7ySWRKVWFBKrTWeTgWI4UIYGTTeg+RB3DitUM2PRiz+tkoVNEIuWHabAMb7EovW3RITBaF4imYhNTkRbmonh+esX4Re7hqBoOtoEzjEu3QCmK4rt92asUEkz58HDhAhzEIsRBpKiVR8QLHzpC18A19mHrpUXY2L7b+q2eVlfBnfvHQEAqLqBgmkRq5mzJd1WqJpuoKjVH9/T0xWkopyZ+bgAGskulG3EYklWoWoGBI5CpqPTk1hMRTnkKypiPAuWoaCpKlTV+0GvIxFBdzKCvxyZwDtvXN0w37MZMAxRLIqSDBbAeWsvC1w+Fk+iVJhZg6X/8H4U8zms3xKcr6jpBo6OFfGMC7rDfMU5QFiLhJg3iFnS6G91JrWlWGyFlBneDax7OVEhAc0pls40KMZUa5pjkXKOzEWOYSBphmn96nMv1hSnYlGzMhZty3gRi3wQsVgg5yRIiSjlnT9H0/7LAiSrsREsxSJMxaKZ3VgttbQm60i5RMgjO6lHUQArgNVsM8WFNnxhq4SlKQrPvqgdn/7TBFRVA+tXq43td/xakRQs7fEnFlUuCdZL8WlmLN53ksZrm9ujMw9VhKzTgMt1o6cjfeasUJPWBLGZqT9Kso6KWTO/8BkBhDCAVNxmhWp9FoJQGCGq13gX+ocncGp4HDdevn5G4wwxM8xFLQLMTz0S1iLN42tPfA1berfgykVXnu2hnBW4iUU7wdQMVENFik85cv8AOKwuLYtQO1Jm3q+X2o6lWaLEs4hF2kks0gyptWRZ9u03qEZjxSIA5KRcc4pFa70AxaKoiqAp2pHBGGWjmBanoegtOmGY4Dys3ec6Y9FthTpUGMKvvvYr0BEaS565BCd+cgKVcsVhr+kYj1lPVUznjdxEDp2L6msRnuZx+vbTWPLCc8PCWdM1qIaKiFZfL2Y6M2dMsdjGz87VSZEVMAypGy/c4K8cBYB4ilihGobRsugiN5VD/6F+vPIdr5zxWBthojKBPeN7sGtsF/rz/dXXp/Xmjn2IECHmFk0Ri3v27MHatWtB0zT27NkTuOz69WfuYUbXdXR3d+P2228HwzDYtGkTBgcH8fnPf963mffhD38Y73//+6u/5/N5LFu27IyNMYQ/xgrk5rlrIHt2B+KD6bKMOM8Sy8c5wnhRDLwhFyUVkqrj5h/tAgAsy0RNYomAppyKRVHRIKuuQpHhYJhNLEn1y1isrVNRNHA05WmFauUmNmNXaqkgIz55jEVRQYQlSrWEwOH4RKlObdkI65em8YtdQzg0WkAqylUtV1magqobmCrVCjKtCcViPMKiPcZhx0lSdKSjtaeOOM9CVHQYLFEbSnmiSLjzO/+F677yGLh9v4ZYKUPXddA2S7C+jhgSERaqrkNUdEyVyDG0SLTOHqdicThXge5x7IeyFaQEFjxDL0RekVyHtoxFS32a6exG1oNYbItyODFZQkpmwTE0NDm4eF63pA2P9k9hsiTNiZqPpWgoigSaI+eY5YKbxbFEEuXSzDIW92zfCo6P4MJ1lwYuNzBVhqTquGx5GsICVaYuZIS1SIizBjEHxNoJ8dUKLGvQVohFVgB6LgaebO2tzigsxaJFGkoFwNYQ5DhihUoFZcJpipmpaEJX6zMWq1aoRs0KNVCxWADincH5f6YdGwBiD5ru818WaI48Lk3WfmZqisXqPLBmG4XW2NxqQS4KRiP140RBAoQ07nhBFAwFfOuAaf1WEf3tLkf3AdF2oFKzrA1SLKpcwnu/42SdE/kFolYEAEWEalBuXhG9nZmmrFANw2hdscjHAD4xY5K/JKngTCVNLBpci6QSMaJYpNjaZyEIo/vIv8lePPDYk6AoCtdtDvMVzyQWSi0CtF6PhLVI87h9z+24fc/t2P263U0RS0812PP0gNYViwCxQXUTYHZi0f0eAJDgSI5cRa13uWEoBpquVZV4FnFVtUI1n60USQEVoTzPW0MrVJMgnJamUVErYGnWs2fiRtRL9W9C0qQ6gjLKRjGsDc+YAHRnVQJzn7EYY2uKRXlcxuniafz7v/87/rzmz2COkGNdKVWQSnurTKvEolqBruswDCMwY5FZKFnODVBV2XqcukxXBtPjTSoWW7Rln8uMxUiDWiSeiENVVCiSUped2Qi7HyXqwblULBqGgcHiIHaP78bu8d0YLg2DoRisbFuJl655KbLTWdw7cW9dbRgiRIj5QVMdko0bN2JkZATd3d3YuHEjKIqqzhSyg6KoQCswOzo7O8EwDEZHnZlWo6Oj6O3t9Vxn0aJF4DiuOtMCAC666CKMjIxAlmXwHjZ3kUgEkUgTs49DPO2hG0AiwmDch1uYyTzl6ZICWdM9rUU5hoKiGciJtUI9KXAOYpFlaEg2YtEAkC07ZwxSjGWXxNaTjibEOitUGjsHSNFj/yxbisUoF/zVYM82zMS9Z6nlRRUR0yY1KbCm2nJmBe5kUcaqzjg408JV4Ehm43Spdizsys4gLGuPYffpHFiaQkKonZcoz0BUNSiShIlf/DuGh/aj9IW3oq2tDRTDgTOz8ySxgmis1syjKQov27QUh0cLePjYJKbN86Mq5Lx29ToViycmvP3qh3Mizu9NgGMp+JzGs4qKbCMWRbWqgs10dGFqot7CtC3KoSiqKMsaWJqCIgXnhF3al8a9B8fwaP8Unr9+ceCyzYChAUWSqlaojRBPJFEqzswKdc+Orbh4wybwkWBC9LCZr3jFyo4Zvc/THWEtEuKsQNcIgRXNoOUn1iCizQ+9653WiwtFsWi3OZWKjrxJnmUgqQaoIIWVbikWqdrvTAwO+wSaJetrCiCaNqdB9rNSgeTfBTWjKtnaz8N7gPOfE7ir8FAB1KFsJxYjVSJRtSY4NWuFao2NdTUk2Si0chlv/KWIuw4cwNv/gUE7T45TxKzPSuUgYvFJILW4aWJRY+Le+y1kIKoGZG1mSr0zAk2E7GE/1tOZxvFTIw1XF6UZ2mTFu2ZBLGqI8P5NZzvakjHIigoNNJhmFItj+0gOaXIRHtj+MDZcuBLp1OyajyGCcSZqEWB+6pGwFmkdqq6eM7lvblhKvtFy6xnyFbUCClRVOdiqYhEgmXCcSw1vtwwV1XpixcpkdFukAgBDMw4izjovFgnZTMaiZT1qkYWaoTkILWt8WTFbJRabIZbjrH+uraiJ4GjOMdE8ykYhaVKV6GwVjYhFu7JzpohyUWiahuEfDiP7UBYH1xyEsF4AIzBgzVpELPuTY9Z4ymoZutkDeipk7lnXpqcValc7Bo4ONLedec5YVGTFV13qRsy0bC8VS60Ti9t2Y9GyRehe3N3yGO3QDR3HssewZ3wPdo/vxrQ0jQgTwer0ajyz75l45rJnYllqGdqj7fjWI98ixGKIECHOCpoiFvv7+9HV1VX9eS7A8zw2bdqEe++9Fy9+8YsBkFl39957L/7hH/7Bc51rrrkGP/zhDx2KocOHD2PRokWejbwQIVpFQvD/SOTKrc3UY2gK2YoCSfUmFhMRFtNlBeOFWkGWFFiTPKsp8+ykIABMFp3joBjOtN1ifZs/ko10k1StqvwDgKmSjI4EKfwsG88YHzxjzCIg1y1pw7Mu9C4aCqIKnqFBUxSSERYVRYM0Q8asLGtICGyVdBU4GkWJEI4W/EhVN/pMYpHYjtb2M8YxUApTePj/PonK+Gmsfv7bEY/HiSUVaoo3sVx2EIsAcM3qTpzXlcDDxyYxWSRFoqrKiMWTiMWdDZ7+yXryStV0TBQlbIpkwNI05k4zOzcwDANl2VSrGAZUndihAoRYPHKgfsZ2JsajJGuoyBoycR6yHDwrb3V3AhGWxr0HxuaIWKSgKDKibATNtALjiSQUWYIsS+D55psuuq5jz45tePGr39Rw2YMjeSzNxNCTCvMVZ4KwFglxViDmMFMLRACEmGxlEnbXBc68wBmoBOYcNO3Me5OLVZUeYFmhApSh+mdCVq1QzW9kS7HoJhYBsm2pYGYPBhw8uWhaoQY0/eyKxZEmZKDNNJDtxCLLV89RdR5Ys4rFijmr3aXKnJA4vPTbh7HzlILXXLsC7V09RPVq6Ijw5BgVywGTdUb3A4s3AmYvmaYp9HZmfBdX2ag3sUjTuPG7ZUiRdnyquT0681BEM2PRbYWawdZd3naRdrSsVrSwaCOQPz2jVQuihkSmuWaelb+o6gBDaWj43TOyl1i1cjHc/9gevOSvG2c9h5gdzkQtAoT1SIi5R960Ah8pNZ504UZZKUNghSppJ2utE4txPl5HLMbY2v3OS7FoEYteYCmWZCzCO2PRIthl2X+sFjFpVyw6iEVTsZiVshBVETzDN0cs8v7EoqTWKxZjbAySJnlmLDaDRlaouqF72sm2AkqkcPLLJ1HcX8Ti1y5GJV6pkpWsWYtUAmoRazyWYhFAoGLxXEGgYrFJK1RVUQMJcC8EfTaagSzJaMs0Z6caT5HruVwsIxNQP3ph17Zd2HDV7NSKT048if/Z/z8oqSUkuAQuyFyAzb2b8Yxlz0BPvAftQvvTUkkeIsRCRVOfxuXLl4OiKCiKgk9+8pPQdR3Lly/3/L8VvP/978cdd9yB733vezhw4ADe8Y53oFQq4Y1vfCMA4HWvex0+/OEPV5d/xzvegampKdx88804fPgwfvvb3+K2227Du971rpbeN0QIPySFucs9S0RY5CuKg9SzI27m+43nJcdrDsUiTUFWnTPOpkouxSLLwTCbWn7Enf11UdHB2t5DshGXVm6iO+fRDYuAXLekDZcs8S5QCqJCbFJpCokIC8OoV1u2gkSErRKilo3khO1YSGpzM8l5lux7MsJWFZAAMHXqMEa+/36IxWn0vvrf0H7+Zsd6nPmAXil7B1knTVLaOj+qoqDdZYMKAMfHS2BcVNdIXoRuAKkAYvtsQlZ1ECGGDsqcXWoR7ZmOLmQnJ+rWSQksNN3AZEkGx1CQxWDFIkvTuKA3iZ0npwiJOUvQNA1ZkkCxzc7MI8V6udiaHeqJIwdRyE1j/ebgfEVdN3BktIg13YkwX3GGCGuRpyju/ZRJ3i1QVImpGTZoWrW5Si1xWqfOoJk356gqFi1iseQkFjkGktrAClV3WaFqLgUjUCMWVdlULEYC8hMNQC6TZYJgqQKTvcD0cUBpYD3FNmOFalPpM5EqsVjLWGzynFvXVqQ2Aeng8VO48suHcGRcwp9fH8MVqzsI+Roh9yies4hFn/2QCkSpaFO9LupI+ecxAlDZhK9d76ODGkraArpnqRax6ERPRxqjTTTzWs5XtLDh5cCmNwIBzWM/lEQVEa5JYjFOmu6yDqdK2A+jTwKJHpwcL+Hk0Bhu2LK25fGFaA1nqhYBwnokxJmBl/rPDbdtZlktO/MQm9iGG3E27sgVBJxWqF52p5YVqhcYiigWdfM5mgIFlmJRNjOJKYoCy7FQZP/JPW4rVE3XwNAeikUp66k09ILACHUEqh1eyscoRxSLM7GYBeCponVYoZrWozPF8MAw/vMt/4nysTJWfGAF2p/RjmlxuqpctdShlVIAsWizQjV0A0JMQNzPaeEcQlWxqNVfF5nODHJTOWgNJrxLM6hFLCvUmRLGiqyAizRXi8QT5DwV8625OeWzefQf7MeGK2ZHLD5w6gHEuTg+uOmD+N5zv4d/f8a/410b34VLOi9BZ7QzJBVDhFhgaOkTyXEcfvazn83Zm7/85S/HF77wBXzsYx/Dxo0bsWvXLtxzzz3V0PKBgQEMDw9Xl1+2bBl+//vfY/v27Vi/fj3e85734Oabb8Ytt9wyZ2MK8fRGeg6JxaTAIi8qEH1mI8XNmV5W9iRAlIL2vEKWoSGrhiNixZ4rCBDFoqFaxKJ3A8L+uluxmK3UmoMFUQVLU54KSzssxaLA+X+FFEQVPEuDoaiqEtSttmwFCYGtFvYsTYGlKQdRac+ibAbxCOsgWFloYNt6cOlbPgO+57y65auKxYq3lWmUZ0ABmK6YDUZFQUe307pI0XQMZUUkWedYf7tnGCxNoTe9MJVsZevYGgYYhex/1iSX0x2dyE5O1D28pKLks5SrKIQglxrnCGxclsbAVAVHx2ZmSWoHSwOKLINqpkkMIBa3iMXW3nvPjkfAcTwu2rApcLlT02WIYb7inCCsRZ5CKE8Bf/kC8KNXne2R+MNSlc20QdPqbPS4y7JyIRCLNEP2w2o86qZVqQmiWDRAQw/OWLSrD3WVkFleikVVJKQbJ/gqFjlKJ6RtI2LRIu/aVwO507XsRj80lbFom0zD8jYrVPO1Zs+ZRXracnNUVUN3KoK/vK0LVy+zNWQjRMUaMe8fpYrPPbVoKlOStYlNS7vSgcPQAizcFhzUirdisTONQqmCSoNm3YwViwDJWW3QYPZCUVIgRJqrRSzFoqIZjTMWNQWYPArEOvHAE4cBANdtConF+cJc1yJAWI+EODOQ1Mbfe27isCgXq+o9r783gwSfqCMA7IpFr21G3dbgNrA0S5R4tu9FnuEdyseGxKKhgjL/s363KxZZmgVLschJOYiqCJZmG2b/xbgYWMp/crBFUNK21muUjUI39Cop2irs58aC2wpVb8qzxxu6riOWiOG8fzkPiUsSgAJMi9NV+9pWrFAtxWJHb0dDkvZcQCNi0TAM5KaCJ0y2aoMK1Ej3mRKLsiSDb7IWsaxQy8XWrs89j+2BYRjYeOXGVodXhW7oOJk/ibWda/GKi16B89vPR1pIPyWunRAhnqpoWR7z4he/GL/4xS/wvve9b04G8A//8A++9h73339/3WtXXXUVtm3bNifvHSKEHTGegdBAqdcKkgKL09MGpssKfrf3GJ59cS9WdJLmzbHxEtIxDhTqiUU7WJqCrFlqMYKpkuz84DIsDJU0sZQmiEVR0dEer92YR3O19y+ICgSOAUMH37jzJqkkBBCQJVlFnGfB0FRVnelWW7aCNhfpG+MZZG32tH7KUD/EIwxYGrjvt/+H6/76ebh4/Sb0vOqzoAUJsNV6uvnwopvWdH6KRZqiEOUZZEsyojwDTVXQ0e1ULJ6aLkMzDGQ4HVmTb1Y0Hd95uB8blqWxNB3z2PLZR1myiEUdtFIG0IGS+VqmswuKIqOYzyHZlq6uk7KdL5amoTRQLALAelP9eu+BMaxfmg5euAFoioIii8QquAnEkyaxWGpNsbj7sa24cP1liAjB+UmHRgtgaQpXrfTPuQrRPMJa5CkCa6Z2E02vs4aKTQVVGAYSLdo4NatYXHwpIRFcs/sXDrFos0IFgFIts4mmKSg61ZhYpGnAasToqr9iUZMBKVixGKHMmyjThGKRiwKZ5cDJh4D8YPA5dB9/LziIRaFmhVrNWGxyEpWYJeuzPO665y943g1bsPb8FXj4YzdC7X/EKZIVUkCulrHoa4Wqq8RCNlmb2LS0O+29qNkIVfiU598XJFSJEIuuMrWng1h1jU5ksWJpj8eKBDNWLM4UNAtJ0RBpMtfIys2UVABUA2Jx8hi59pI9uH/7Xqy/YCU6MufQuXwKYK5rESCsR0LMPVSjdSeYglJw5CHOxAo1wderD6Nc7XnJK2MxiDxgaIYoDm1fixEm4iAWeZ6HIvnfgzVdq5KdlkrTTX5G2Sjych6SJoGhmCoJ6QeBERyqRzcsgtK+bxYxWGg02ckHEY9JVQ7FoqHXqVCbwUO/fwgbr9qIJSuW4Nb/vRWf3f5ZAABVopCL5aqkWjNWqJaqUlRF6BohFp8KqBL1Hoc300VqkamJKbR3t/tuQ/SbHBYAnuFJtuYM5zkqUvMZi5aytFT07nv5YffW3ehZ2oPeZd65wM1grDwGURNxUcdFjms6RIgQCxctE4tr1qzBrbfeiocffhibNm1CPO6c5fqe97xnzgYXIsR8IiU4bUhni6RpNTCUFXHb3QfxrQeOY+e//HX179myghjPOHIC3UQdS1NQVL1KblEApssK7C0xiuGgN7BCtecPSopTsTiarxWEeVGFwNHw4hU1zbQOoemqYjEoi7EoqUhHOdA0sTEFgMnSzBs6KRexGI+wKEi1ByW5SStUCxHawH986h9xz89+CP4r38HFVz2LWBu5NqOYYeNaJJhYBMjxyIsKojxDFIsuK9QTE2XQFNApAP3mYf/tnmGM5iU8f/0ipKMLyG7MBitPEYYBSpPB0hRKUi1jEQCmJ8edxGK0dnthGQpipTGxmI7x6E5GsP3EFHTdAN2A4A4CQ1EkY6NFK9RSId9gyRp0XceTO7fi+S9/fcNlD44UsDQTRXfb3BTIxWIJQBQVsbWC/6mCsBYJMaf49c3AupcBK66t/5ulKgOcJGOz0GZp7awuAGKRYgBNdJIcpXEAtYkSGmhi8+1rhao2VixaE0E0mdjjsvWKRdWsZwTGrGvYBkr/SpZkGKb7yO/Du0n+4Gxgz1hkOA8r1CbPeSULjYnig1/6Mf79f/+A/7rtfXjD3/41qEgCrOE670IaAKqOEr5WqADQtsShgvRTLOYji7HljiJ+9I2+5sa7EGARiy70dKYBAKOT0w2IxdabebMCzUCUpZYVi5KqA2yAtTAAjO0j/yYX44HtP8Lzbrh8tqNtGdl8CcsB5FpsPj5VENYiIZ5KsCsB50KxmOLqJzo0skINgtsKFSAEm0UsihDB8RwUJdgKlaZoUBRVzVt0qw2jbBQlpeRJCFrQbJbnUTYaqGq0tmMnMC3SNq80/9xpRyPFom7oLRFQuq7ju1/+Ln7wlR/gXR9/F/7uzX/nIIGpMoWSUqoSoa1YoYqaCF3X0d3b3fyAFjCqnwUagOsSb+8kZGKjnMWZWKECQJyLz6tisZRvkVh8dPesbVBP5E4AADZ1B7tB2VEuEWWlLC2AZ6YQIZ6GaJlY/Pa3v410Oo2dO3di586djr9RFBUW0CHOWSQEzpG5N1tYmXvDOSv0vL45EI+wmLbZeVrKPgssQ5uKRVJARDgauYqCLps4iuYikFXSxPrZ44N48aVL697HruYTVd2hSBwv1N4/VyG5iF6KxezkBJBeg7b2ziqxGI0EKBYlDTzLECvUWSoWKQrIxJ2FUCLCVsktwJ9UdUPTDWiVAv7875/A2JHd+Mfbvoprn3UTRNPuU9W9yWXatNT0s0IFyPkrSRo0TYeqKuhY5CQW+ydK6EkJ4Nnacbj9weM4vyeB1V3JBWvxUJZrikXAQDrGVcnG9k7ykDA9OY6+VWuq60RN5aumG+AYGlITxCIALE5HMZyroKxo1etmJqBgQNc0ICDzwo64aYVaasEK9eSxQ8hNT2H9lqsDl9MNkq94zZoOZGLNFfSNUCwWAUSbImyfighrkRBzip3fBR7/AfDxKfL7J9qIJea/jM+MTLRjBs045/oL4CHZnbEIAIUxQKgRizoYsJQO6EFWqHRNaVYlFm33XLsVqlQgakTaeU8eGSfnoyvJkdniDTMWpwixmFxE9mN4dxM73ACVqdrPDA8YGhgaqDqyN6lYLEwM45U/mMQ9h/+Er//LO/CGvzUnn3ExUO7GkUBmwVsZi6UgYjHZS1SaJvwUi6Ao7BjSicXnuQJVhGzUW6H2dpqKxcls4OqzskKdCSgWkqw2rVi0iEVRNUwb5YAG4ug+QEjjVIHC8VMjuPHydXMw4NaQM23ScoWZ2fmd6whrkRDnCtxZgm4YhgHFdu8qKSV0RGsKs5kQi2lzQowddmLRS7EYBIYmxKKdABUYAaKZnVyiS+AiXKAVqmZoVRJQM63qaVedEeNiKCvlqoWpF7K2e02EjQQrFjWToLTdt6zjUJRbj/9gKKZxxqKhN01ASaKEz77/s7j/N/fjbbe8DS9900sdYwQIsQgAg6VB8jsoCDEhULFIUzRYmoWkSsQKteepoVi0iGxpuQTqPAqyJlfPh6VYnB4PfnaYiWIRIMSilXPZKhRZAc8314fgIzy4CNeSFWohW8DRfUfxkje8ZEbjs9Cf70dntBO9ieZVj+VySCyGCHE20XLXtr+//0yMI8QCwAUf/R0+/7L1eOGGJWd7KGcFcZ4BS9PVEqwsa5iNM6VFigxn/QuHBM+iINaKX551FrYsTUHR9GovL8oxKIgq9EitccfwQpU43Dvo7ecu2UhNUdEcyswpG7FJrFBpT2JxemIMSAOJZBIFUQHHBGcxliQVHENmBHIMBZ6hHSSqF/xCxlMCV5fnGI84j12zGYvjk9MY+e8PgpVL+Lfv3IV1m64EAERYGhQAxacGp0zlW5BiMc4TsrNULgMG6qxQ+ydK6OuIgauQ2X4npiXsH87jFVuWIRNfmGpFADUC15w53x7nUZY1aLpRUyxOjDnWoUxCOVdRCLHYhBUqACxJCzgyWkBZUpGIsJiYmMBkNgdNWwmgeatiQzfH3IytHWZmhbpn+1awLIeLG+Qrnp6uoKJouGxZZs7yFVNUBTCAJDtDP5RzHGEt8hTG9Ekg0e0gRuYFbmWQJgOlSadiUZlB81xusI5hBOe2LQSbWJo2MxZdikXbhHmNYgAY/kSoblqhWo01Xau3OXVYoRZMMtD5HT40Pgl0AZ1xDiig8XVSmSZZjaxACLfxQ4T8pGfoUKFrRE1pwWwmCSxlUyw2JhYrlQqu/ccf4cRYGb/92j/hOX91Xe2PvEfmYTQNgNjOChE+WLEY73YoOX2JxXMRqgTVQ7HYmUmBpukq8eyHmVqhPvDYk9h39CTe+rLnguNaeHxmWIiyAqFJYlGI8OA5FqKiO3NNvTDyJJBchAd2k/vh9VvCfMX5RliLhDhXoBs6mIDnKM3QHArCklLC4sTi6u8zsUL1yku026tKmgSWYpu2auUoDpquOQizCBNByXRvMWAQxWJQxqKpWARQVSzW5UByMRSUAnRDB+vzHDk1MVU1bRAYYeaKRal1xWKEiXjas9rJRh16lTgNgqqoeP8r3o9j+4/hk9/6JK7/m+sd72OBKpnEYnGw+lo0Hg3MWAQAnuYhaRIM3XjqWKGaJLtBG6CSFCpqpXrsI0IE8WQcU+NTQZuYUcYiAFAVCvlintj9tjhXuRXFIgDEE/GWrFCf3P4kDMOYtWKxP9ePpYmlSJ1LNv0hQjzN0dJT9bZt2/CRj3wEH/rQh3DPPfecqTGFOEuQVB3/+psDZ3sYZw1xngXLUHh8IIv+iRJG8rOzS2IZClGOqduOYiP5EgKLvFgrpt2KSYamoGhGVbEY5RiUZNVh6c7yAnSz8ahq3iSDZRNqgCgn7cTidEmuEnr5iooI600sTo5bxBGFgqiSLEZXM7SYz+LkkQNQNB2SqkOwEaXuTEQvHDtIbJ3KRSdB2hblwLtsahMRtqakA8mObAYVRJBY+0y8/rP/XSUVAUKECRwD1fD+WjQoBgzLQgwgFq0xFU3VW0dPbaaVqGgYzYtY1RkHYz5YPHIij8VtAi7sTYKdaZNzHmCRtpR5nVjEoqrpiCWS4PgIpicn6tZLmapdjqEgNk0sxlCSNQxlyfIDJ0/g5KF9+Kc3vAjHD+1vftCWFR3THJHH8RGwLNeSFeqeHVtxwbpLIUSDZyAcHi2AoSlcdd7cPVB1U4QATXBPP2IxrEWe4vjKeuDrm8/2KAgMHSgHNwcaQpmlReCCIBZZM2PRdp8tO7/zNathqfh812seVqi+xKJCiEWWryMAB0fJ+ahmLHL137+D49PYfXiA/CJmSeYgzRA71NwAIDc3gWRwwuN+UMk6yR6zmRRlAbWFjMVoNIrXX70Ij3xoA55z7WXOP3o0Yy1iEQDiUcE/YxEAkj0OstrPCvWchCZD1qk6Mp5hGHRmUhidbEAszrCZ980f3Y133foNbHnZe7H9ycNNr2dQDDRNb9oKFSCqxYqskXzWoIzF0f1AogsPPHEYl6xZjs5MW9PvEWL2CGuREOcSvMg794Reu4KwrJZJnpuJmRCLXmo/t2KRY5qfWMtQTJ0ST2AFh9KS41onFt1WqHE2XiX8/BSLdkVahI14EpAjAyM4eehklUC1E4vWcQiyQj267ygAYPjYsON1juE8iUyaoqFLOgyzH9QMYctyLJ790mfjKz/9ioNUtLYXoQi5WFUsFmzEYjQaaIUKEHJS1mUYeOoRi5RBgYpSJPfThkxnpqEV6kwVi9P905g8NYmbX3Az9jy6p6V1ZVluOmMRIDmLrVih7n50N7oWdWFR36LGC/tAVEWMlEZwXtt5SPLJGW8nRIgQ84umO9k//elPcc011+ArX/kK7rzzTjzvec/DF77whTM5thAh5hWxCOPIHsxVmrOycsOyiDw9XUFblMNk0dnEsG83JbAo2ohFN7nEMbRTscgzKEkq7K6qNC9AV8k2FR8LMotY1HUDhgHHfmbLCslyAVEs8iwD2kM9MWVTpOUrCgQXAWkYBjRVRSGXrSrcImzt71YmouphCVsdp0SKLMWVgZMUWLAuYjEpsCjLKgyzwSc2sEL93c9+iHt/8zPkRRVtV/0/LFq2om4ZgaPhw83CoGgI0VigYjEhsCjJKoolsoxdsXhysgwDwMZl6WqG5emcjE3L29GdbJARdZZRs5wlx7orGUFZUqHoBiiKQqajE9OT43XrWbmYHEM1bYW6KE2OxeHRmjVMNJGAWCnjnf/v2fj2v9/WlPrRMIlFI2AGqR0URSGWSKJcas6SxjAM7NmxFeu3XNVw2YMjeSxNR9GTWtjn+VxAWIs8TVAYPdsjqKEy2XiZIDRSLDZCi1ZhZwQU41Qs0ixRAtqakobVmPMjQnXFaXvqzlwEAMbchiICcpFYobqUBEPj5Hwwuvk+HopFUVIwnTePeyVLFIs0A2RWAvlhpwo1AMWKRyO17LoeLGKRs2U06/7NvB//+Mf41re+BQB4/40duKSvo55g5T0mqwg10igRCyAWKRpIOS3xn1qKRbEuC9tCT0caoxPZwNVnqlgEgPNXLAFD07jy5e/He2/7FooNGqpArQZp1goVMIlFRSPKWj/FopgH8qeBWBfu374fN26ZfxvUpzPCWiTEuQYv9Zpl6WjBUiwyFIOKWnGoC2div+hJLDK2jEWt4iAv3XCTZyzNelqhymYmsU7pDRWLmqGRjEVQ1WPitjGNc3EUzAlIfsSnnTiKMJE61SNAyKNyoUyIRZcVqpWRaGUWeqFUIP2EStF5r+Fpvs6+1YIu2ojFgLznrX/aip/c8RMAwIte+yJcsP4Cz+Ws80NpFOJcHMOlGskpxIOtUAGnivKpRCxSoAADoDgKZZebSaYz09AKdaaKxczxDEq/LKEt04abX3YzvnjLF1HMNde7aFWxGEvEWrJC3bV1FzZeuXFW0T4n8ydhwMDGno2en6kQIUIsTDT9af3MZz6Dt771rcjlcpiensanP/1p3HbbbWdybCFCnHHIau2BXeAYx41Q82OYGuDoGLm55yoK0jGuTqWXtxGLSYFz5AS678MMTUFRdViT4GM8a1pQOq1QDZkUdRaR44a1n5Za0q6MzFVsxKKkgme8FYvZyTHHOhGOgX0xQvaQgRbNfeJtVqnxCIOSqEKZwXFNRNg6xSIhFjUYJqkq+XSaNE3DHV+4FV/62Ptx6MldVWI37pEPKXAMNJ+vRQMUhGg8MGMxGWFRkTWUiiVQNI14stYIPDFZAsdQWL80XX0tztNYtyRZZ4G70FCWNfIoZD7IdSUiKNpI4kxHlzexGCXXI9uCFWpvSgAFQsZZiETj+PL/3oPXvuMD+Nl3v4m3veSv8MS2hwK3UyUWm7RCBYgdarnYnJJl4PgRZCcnsH5zMLGoGwYOjxaxujsxZ/mKT2eEtUiIecesFYuzJBZnm9E4F7AUi1Yzj4sRO1Cj1qisEovf/Rtgx3fqt1ElFu1WqK57XzVjsUKOG1c/GWNwlBB7rC6T5V0Zi4ZhOGokiDmAEYilavtKMo6xWbhzuJSaYO2KRfM1j2aeYRi49dZb8YpXvALbtm0jjVExRyxLXWoJT3tXO7EYj6Lk15SKdwER5yzvxZ1PISWbKkHRbdeRDT2d6TOasbi0txOP/uTL+LcPvgl33HUPLnnB2/Hb+x8LXEc3a8pWFIttyTgqkmoqFn2IRfMaHlPjODowhBvOQr7i0xlhLRLiXINm1BOLbhtOi2i0lrXILwBQNAV6kDWzC0k+6UnK2cnKiloJVCy6rVQ9MxZZwaEYa8YKtZqx6GOFas+x81Ms2q0u7cfJDs2c9CxpEhiacbwPQzPgaA5FpfWMRZ7hfUkXu2JRMeqPg2EYuOvOu/CRN38Ee3fshe6Xi23CboeajqQxaZtsF41FGxKL9vWfKhmLkkqIYqsMcZ/DM6lYZBUWaTqNr/3sa3jvv74X9/3qPrz+r16PB377gG+kEECuRV3TwUVaVCw2aYVazBdxdN9RbLhydjaoJ/InEGEiuLj94lltJ0SIEPOLprvZhw4dwgc/+EEwpq3cBz7wARQKBYyNjTVYM0SIhQs7qRfl5obcOTFh+vwbQCbG1Skf3YpFUfUv6FiagqIbVcuPeIQxVXq1woHhIqDN2W7PW+dtPSBrTmKRsTXz8qICySx8S5JphdpgplFBVCGwjIOALOZr9qUWsRix5cklIkTNJwcoFv0QjxCbWjsSEdYkKcmxkD0Ui5VSCbe+98346fe+iXd++NN4xy234vnrFyEeYZDwKKyiHAPNo1kFADooRGONFYsVRUOpXALLcQ6i+vhEEb0pwZGluLYnit62ec4RmwFKsgrezKAEgK6kgKKkVq+nTEcXshP1xGJbzLJCpZu2QuUYGpk4j+PjJcd1znE8Xv329+Fb/3cfOrp78I9v/jt8/iM3I5/1bvrrpmWP0YLjdyyebNoKdc+OrWBYFpds3BK43FC2grKsYWNfGlF+bvIVn84Ia5FzDHIZeOyOsz2K2aES3BxoCD9r0GaxIKxQTcWiZYXKx4hVqS1L0DGJY9s367ehqU71oaEBFIPf/PlRfO6Ou8z3Me+PYpb8yzhJQwAYGjMVi4ZMSDmX0qBUFgGbTRoh7yKmFepy8trw7gY7HAAfxSJD2xSLroxFURTxmte8Bh//+Mfx6U9/Gt/5zndA7fkJMH3CtHt13Rs87F2rxKJhIB6NeCsW+64ClmwC+ITjZb6VTMCFDk0KUCxmGluhzkKxCAAsy+ADb/pb7P31f+KiVX14/ts/gZe/7zMY8clT0s1rviXFYjyGomRaocKnUTi2D6Bo/Pkwqf9vCBWL84qwFgkxnxDnwLnAk1iUXcSi633cikWvbfghwSU8STn7NkVF9CXuvMBSLDRdg26zZRfY1hSLiq5Un8+t/XFnT8a5Ws6xX8aiXZHmlSWp6zp08znZskJ1K7kiTASlGdjlczQH2uf5VhO1GrHoqkVURcWXPvwlfOPWb+AVb38FPvGfn/BVPloQ6Nr5ykQymJZs+x1rzgoVAChQSKQTgcueK5A0CRzNVRWoBZe9fqYrQzI4g7Yxi0lOAEDTNF702hfhu/d9FxdfdjE+8Y5P4KNv/ijGhrzvQbJMPiMtZSy2YIVqkdQbr9rY9Pa9cDx3HIvii5AW0rPaTogQIeYXTXdcy+UyUqlagCrP8xAEoZolFuLcwlhexIpbfovbHzx2todyVlG0EYvxyNw0XvonajfgTJxHTvQnFhMN3pNlKCiaDt2ULMYtxaKtrqc5AYpZLLAeSkPArlgk27Gr//KiCtHMKiyKKniWAu3ajptMy4sKeM6pbCzkstWfLXvXiE2JR9SZmiNjslmkBLbOntU6drSpaPAiaL9+2z/jiW1/wa1f/x5e8pq3gKIoXLO6E59+0Vqs6Kxv3MV4Bl6z4AFCLEaiMVTK/uqTOM9CNwBRNeoK9f6JMvraY0gJHJLmM9TSNhYxfuE3/CqyZp5Lcmw6EjwUzUBJItdNutNbsZiOkuKVZ2hIlQo4rrlitjclYDhX8czNXLZyNb7wXz/H+z75RTxy3z148wuuw32/+XndLD1LyWq0YKMRSySatkLds/0RnH/JBkTj8cDlDo2QfMWr5zBf8emMsBY5x/C7fwTu/iDQ/+DZHsnMYZFcM4U8y4zFhaJYtOe98QmTWKzVUA3V4bpSsz61mpM0g1//+TH88Df3194HqJG5LjWifWY9o0um2s/ZEJzK2Ro8hmFmNUaJJYSQAiIpYPTJhrvsi/IkHHWCjfysZiy6co1uueUW/PznP8dPfvITfOQjHwG17T+B/3tbbR/dk7m8FIt8EpJKMrcTsSiKJY9G88rrgfWv8LZSfapAVaDo3nVaU1aoFWlOiNaVS3vxuztuxX9//kO4b9tuXPS8t+PbP/19XS1SUyy2ZoVaEhXTftinZh7dByR6cN/uk7jovGXo7kjPdFdCzABhLRJiPjElztI5Ad5WqG5i0bJCtWBXm8ma3JJiMcElPFV19tcqWqUlYpGhzYxF2/esndQzYDTMWNR0rZaxaFmhMs46Imab3OObsWhTpHkpFsvFcnViuKRJYCim7ngIrICyWm7puAKmFarP823h8QJK+0nd6c5Y/MFXf4B77roH//iFf8TbPvy2hqQiAETo2jXQLrQjK2Wrv0fjUYjlYNLbskKlKGpWFpkLCbImOwhnNznclGJRFFvKO/RDV28XPnXHp3Dr7bfi0J5DeMMz34Cf/9fPoWnOz7v1mWjlPVuxQt21dRc6ezqxePni5gfvgmEYOJE7geWp5UjxqcYrhAgRYsGgpSerO++8E4lEbaaJqqr47ne/i87Ozupr73nPe+ZudCHOGIZypAh4rH8Kb7v+vLM8mrMHO7HYFnXeaNUG1hB+OG4jFjviEcd7AITIs9CQWKRpqJpRnZcX4xkomgFFrxXUNMdDVYMbl27Fol39p+kGJooylmZiKMuaQ2VoYWx4EDCtSjTdQEGsVzYW8tnaz+Y+R21WqJZNqJ1YNAzDEcDuhkVctkXrCSk3ESzZiEXDfFB4480fxt+9/u1Yef5FjmWTPpaxsQBFmQ4akWgs0ArVOp8qzQOoneeCqGCqJGN1dwIxnkG7+fzR7jOOhYaSrIFnaVhXWWeCnI9sRQYQR3tHN3ZOPFC3nmXNy5tWqJFoFIrSOKNjcVrAjhPTdZ8dCzRN46a/ezWuvOGv8Y3PfhSf+ad34k+/vgvv+djnABBVh6bIAKiWiMV4IoVSE1aohmFgz/atePaLX95w2YOjBSxJC+eEMvVcQViLnEMQTSV79tTZHcdsYM/j81KSNcJsiUW19VyjOUc1Y9FSLCaA3ClnlmCj5qBuUyxaDU6KQUWyEadVYjFL/mWdzboRm0KA1WUgItRlME7ni6h+28oFQmLaibq2pcBUP8lxNCcmWU3KplpepQmy/9YMdZuNW7W80UkDR9M0MAyDj370o3jNa16DzZs2Afd9Gnjw84CQJqS1hyrT8zqjaTznhxJe9aLFSMTGUfKz0WKf4pbbmgRZ997H3q4MRho088qihFhUgDwD+zk3KIrCq1/wDDz32k34wOfuxFs++hX84Jf34fZb343zTTda3SBXVYRrvt5rS5rEoqE7ckwdGHkSSPTggScO4xlXbpzlnoSYCcJaJMTZwkRlovFCLjRlhepSLNqVe4queJKTbiRMxXxntLPBkqYVaouKRd3QHUJuO6lnUAbYCFtVZ3lBNYgVKgWqekxYlx25fb/tGYHVcbscA6Iek4HsuXeyJnurNxkBFaVCyE6m+edVlmHr8ictjP1iDIm1CbRd3lZVLFoKxv/3tv+HLTdswdrNa5t+L7tisSPa4bhmhJiA3HTOa7XaMj42secyLMWiDHKduQn59q525CZz1RrQcxsVCREhEkiCt4LrnnsdLr36UtzxuTvwtY9/DX/6xZ/wwc99EKsuXAUAkMUZKhabtELd/ehurL9y/azI44nKBMpqGRdlLnIom0OECLHw0TSx2NfXhzvucNpZ9fb24gc/+EH1d4qiwgI6xKzwiV/tw6V9abxo45J5eT+HYtGlHKvIzdt92HF8vHYDbotydT0Bh2JRaE6xaPXyLCvFkk3JxXARKHI2cDuK5lQsum1Fh/MVrJYTMADPvL+xodOIrtoMADieN1CQFPSkBIeykSgWyf5YikWBtysWWZQVDbJt7HfeeSfyHesBrPQc9+I2Aa+7ajlWd9erwtykrGWFOvjE/Tjw2+/glet+ge6eXnR293pu2wtB6kEdFGLROMQgK1SLWKScxOLJSUJGblqecRRc7DxmKxqGgaGBE1iy3PtYB6EoEStUq+vaESeN0HyF7GOmsxPZyXEYhuHYv4sWJXHFynZ0JHhCLApRh2WuH5ZmYvjTgTFMlYKVOu1d3fjoF2/HM5//d/jap2/BW190A276h38F6PMBVQbFtkbcxhNJjI0MNlzu9IljmJoYa5ivaBgGDo8UcMXKdmRi5waJvNAR1iIhGqL6HTSznGQHrBy82WDWGYsLgFikaSeJyCcIYWp7jQrISQJgWqFS5H+9plisiLb9Y8x7sNW4cjUWBoZryniiWGyrsxGdyhZQrSAr5rmzZzVmVgAnHyFKRvP17//g+3hFWoEHxVeP0iQQiduIxVqTxgAI0ampuOeee/C+970Pf/zjH7F06VJ0trcT9e72O4ELn0+ui2P3OdavwkuxCGDraR0vSy5FPJpvSKAtZBw9OYTVM5nVbhiAJgcoFjPIF8sQJdk307AsiogJEWTzc6cs68ik8N3Pvh+veeEz8Pcf/xrWv+hd+M93PwdvTACa0XrGYioRQzEfoFg0DGDsAAodG3DoxBA++Z7XztWuhGgSYS0S4lyDPYfQQp0VquYkFu3KvWYVi5aCsF1ob7isqLZmhWplLNqtUO2qSkuxKJX9nx9VXSVqP6pGtrrtTmNsbb95uv67e2zQaTcZZ+v7FPlsvjomSZM8LVUFVoCoiVB0BRzD4ac//SnQi4ZkE0dzvopFoEYkqoaKU7tO4YF/ewAv+v6LcP7557dEKgJOYrBdaIdqqKCjNJBr0gqVbaqyOisYPDGIJSta7zlWtApYmq1aoZZVZ52f6cpA13XkpnJo7/L+HIgVEUJUQHEOa5FEKoH3/ev78KwXPwtf/Kcv4m03vQ2vePsr8Lr3vG7GisVSoTGxWC6WcfjJw7jp5TfNeOwAyVcEgE09m2a1nRAhQsw/miYWT5w4cQaHESIEwXcfOYHvPgL8zdpFngTXXKNoUw9yrverKK0Ti4ZhYDBbK7C8yIR8K1aoNAVVN6CZ7GSMs4hFm2KR5aFUghuPNStU8i/vsr4YyYooWGSgF7E4PFibym8QomkZ67JCzWcBkNmJFmEr2DMWBRaabjgUm4ODgxA61vuOm6IoXL+my/Nv7mMnKTo+85nP4LE7P4rFlz0TQqx1ZUk8ULFIIRKNolLyV7TFI2R9olisFZmnpsuIsDQuWpRseUxzhYf++Ft8+oN/jx/e+zg6unpaWrckqeBsMyk7TMWilVGa6eiCosgoFfJIpNqqyyUFDm+6ZiUoChBNYrEZLGojDzGHR5ortq96xrOx4fKr8V9f/Sx+dce/YcnL/gWIMg4lSRAGpytIRVnE4gmUm7Cx2rN9K2iGwSWXXR643FBOREnWsH5Z+pywvD0XENYiIRrCajJp3ornlqBUiPqshcZX/TbmgFicoYPCnIFiTCtUS7EYB1QRlE3d0HAih67WSEDLnouiUbFn3lmqAYvMdSn3Tg6NVn9mddm0EXXet6fzxRqxaNnY2vOP2lcBh+4GcqeBBKkvBgYGgHTw8KsojQE2NUOdQpCi8bVfP4H3fuc/cNNNN6GtrY1kLv7f24F9PwcueSmw6gbgwK/I8l7EIs1Co1gwhvc1nIhFUSwPNznghYU/PfIE/vpNH8Hhe+7AmlYbeqYtsGL4W6ECwOjENJYv8a5zyhUJseiZaXQ+6+pL8eSvvoFbv/G/uPOu/8Mb3xiDbDZ4W81YLIwq/jao+SFAymPXMHmeCPMV5x9hLRLiXIOi15NVQRmLNGgHqaToSksZi0GIMBFckLnAl3DzA0MxMGA4xmFXNunQwfM8FFkB69PmVHW1Lp/QrVi0E6oRD1eB0cFRx+9xvp5YLFi27OZbsUz9eKJsFEW5WN2f/v5+oLemLvNDs8Tib370G9z1z3chc1EGqczMrCXdxCIAUOYE9WasUBeqYvHArgN45wvfiW/+5pu4YP0FLa0rqZLjmikrZcfk6vZOcpymJ6Z9iUWpIiFyhmqRdVvW4fbf3Y7//c//xf98/X/w4N0P4pYv3QKgNcViIplAudD4GWbvjr3QNR0brtww4zEDQH+uH5lIBkuS8yMwCREixNxh/uQyIUK0AMu685rP3ofz/vnuusySuYJdsci5yLaZKBanSs5CMB2rv3lny7VlGJpC1MN61FJaWNackqnGsxSLFTexGGAvqWo6LOfUKrHIOt9zKFex5SLWj2d0+LTj96JErFDtuYf2jMWSpEJgaQcZZRGBkw1UaM0iyjM1rlNV8Kdvfhz//M//jAtveiMue8PHmyax7IgFEL26QSESjXtaoT5wzy+x85EHqvasqqtROFmS0RblEG8hY2euse2BP0LXNJw8eqjldcuS6sjlTAkcWJpCUSbXTLqDNGe9chYZmgJNUZAqFQgtEosHR/MNlqwhFk/gXR/+NN73oQ/j5B3vQlyabEqxqGo6Pvf7g/jx9lOIJZIoBxDHFvbs2IrzL16PWDw4hP7wSAE0BVwT5iuGCDF/sIgejyZay5A8FG+tQgmezd0QquRPMDSDuaifrMafpXgwm2iMVFPNNVQs2jMWLaKUZlC2E4s0TRR/FrHoatY5FIuGRIhFt2LRnrFoWaraMwczy8m/w7uCx+uH8oRzXLb7vaYbeNdvy3jPnQ/hve99L37xi18gGWGA/30lsP+XJP9w9TOBRDcgmZNYfKxLNcr/eCZigqcV6m/+/Ch+8adHZrZfM8W6/wcsv8ZXZenGb+5/DACw51B/6+9l2gIrmg+x2JkGAIxOZn03URYlxIQzp6CIRQV89gNvxG3vez2AWs3fimKxLRlHviwDMAgp7cbYfgDAH/Zncf6KJej1aVyGCBEihAW3qgoIzliMclEH6afoSstZgH5IcAkIjABRFVsmFq2xWHAoFikDLN/YCtWdLRikWPRSVLqJRa9lCllSixiM4btMlI1C0iRPNWkQWJoNJBZ1VcfIT0bwxX/8ItY+dy0u/+jlSLQFP7P6IcqQe7sBAxkh4/xbLFpnCwsAjz/8OP70iz8B8CZmFwK23bsNAHDswLGW1xU153UraqLjs5HpJMdpetzfWUKsiGeMWAQIgfj6974en/v+53Dq+Ckc2nOo+nqziCVjKBVLDfuwu7ftRqYrg2Wrls1qzMdzx7EsuQypSJivGCLEuYZQQhFiQcNS/w1mK1iamUG2UQM4iEWXPWh5BsRi/4TTLiApsKApwBaJiGxZqVvGTx1pkZ2SaR9qqZ4sK1SaIioBRfYn62RbpqFqDoRna/sqcDTG8hIKomL+Top2wzCgyBL4iICx4UEwDFHb6QBERa8jIAu5LGDWKgVRRYRjHIpGi3SbLtX2v5nQcD/QFIUoz6Asa5BHj2Jox334wQ/+Gz/Pr6juZ6vwJnkJiGIxhoqHFeqnP/D3AIA/7B0GQ1HQXLYpUyaxGJlH61M7DMPAzkdIBuLA8SO47KrrW1q/JGvgWLpK5NI0hUyMR0ki123GRiwuW7nacxuSWAHf1oll7/sphosagua0xXgWSYHFsbHW7UEynd0AAE2VGze6ATw5mENZ1lBWNHTEkyg3yFg0DAO7tz+CZz7vbxtu++BoAYvTUSw+A99dIUKE8IE1e92rId8qLIJrNlkfsyUWNQUwNOTyObS1cgup5hXOgWWm1cBSzVrDzFBiKlO1RbyUd3bYMxYttQHFOq1QATJuqUAsU01C17K2PDk4ViVoKICQelQAsWgpFnlbQy25iKwzvLv60qYuBRGWgq4qjWdcllzEIs2ZozEwWjLw/V0SvvW2q/G2L36REJs/fDkhMTe+Gui7EoimyXpW9qbPtaXSEfC697UTjwkoejTzXvCOTwIAjIN3N9qLucPaxvdCO/7w8OMAgIP9pxss6QFTTeOvWCTNvNGJrO8mypUzSyxa6EingCygmratLSkWEzEUKhKAiLcV8uhegBXw88cGcOPll87NgEOECPGURskj7znnsnp3EIusi1jUiGJxcGiw+rw/W4iaiHa6+YkR1njsxKJbschybKCVqKoRxSJlS1V2E4t++W6yKIMXeIwOjjosJd2KR8BmhWoSi16ZiDE2BlETq4pFiyzU1OAeFEdzgVl2uqhj6s9TeNOH34TMszM4OHUwcHtBsNSdap+KBJcAS7FQTTcFISZ4EosfeOUHAADPevGzFmxW3o6/7AAADBwdaHldNyEuqiJUXQVjTnTLdJnEYoBlvSRKEKJn/thYiknrM8HzLRCLiRg0VYMsyYgE1E27tu3Cxis3zipfUdZkDBWHsLlnMxLczEjwECFCnD2EisUQ5wS0GRJFjVCyEYusKzTbTjo2CzexSFMUkoKzmWDPWAQIsegHKwvRIh4FjpA7FdUqUk1iUfEfq2WDav/ZrlhMRFhMlmRkzXFZdqu/+fH38LzLVkCslDE2dBrxJCEWLZ5SYJ3FQ9GmWCyISp2iMemhWEwkSOEQRIwGgS1NwDB0RJZchBd95ud4xStfOaPtWIg1sELlhagnsWiBoijPbUyXZKRjnMMadj5x4uhBTI6NgGYYnOo/2vL6JZdiEQDaEzzKsgpNNxzEoh9EsQw22QmaFzBWakza96YEnJ6eeUNekWVQPkoQO7YdJ41xTTcgxBIoFQqBM/OGBk5gcmwE67c0zlc8NFLA6q5EmK8YIsR8gplDxaKleJtNY0QNtolqCE0CdA0VD4WaA7oGfH0LILtUCcXR2ZOslirQIjk8FIt0o+9bzWaFWs1YpFGR3MQiQ4hFNgrQLH56z0OIbngxRsancHJoDEu6bQpwJkJUjjZM52wTUqrEop0IZIHUImDicHUcm7vJ8ZkYPhW8DwBQmXKq8ygKpwoUFM3A4iSN/g92423PXA0Ux4Dv3kRIoMteB6y4pkYqAjWrbp/8IY32b+IkYlEUS7O8rs4CTg2P48CxU2AYGgePN3Gs3TCJbdknY7GrvQ0URWF00r+ZVxbPnBWqFywrVKEFx4pUIlZzTfEiFkf2Qol2Y/+JEdywpbW8rBAhQrQGYy7ymhcASkr982tWzjp+t2csCozgIMMsxeL09Nzl+0pq61aoACE5LbgzFlmehSr790VUQ61T+zEu5wMvNeCurbvwnPOfg5NHTmJ0cBTt3TVC1L0+ABTNWsSg/RWLESYCRVOqisVUG1Fq5SaDs739ciknRycBABRN4fx/Ox/Pe+PzZkX2ADZCNEr6HG2RWuSJlbEY9NxcPT+zG8acopAt4OCug6AZGqeOtV6LuC18K2qlSrYCgBAVEI1Hg4nFihRI1s01ZLPW5oXWrFABoJT3731VShUc2nNo1jaoA4UBGDCwsXuj5+cpRIgQCxshsfg0wkysPc81HBohM9Univ5E1X/efxT7h0nBVrDl/bmJk1JAUeoHN7EIAOmos/jLuojFlODfbLCsREXFmslGQeAYVMyhMRSxH1MV//2V1GDFYlLgkC0ryJo2rpbd6oO//zUAQNM0jA6dQjxBiEXF3EaEcz4IkIxFgnyAYtF+blIpUkDnJ50h6M1g5yMPYP833o7C9l8CAOhYG2bLP0cdpKCzAjZAgRMSnlaodsQiHsRiWUEmxp81xeLOhx8AHxGw+ZobWyIWpyfH0H94P8qyViW5LXQmeJRlDaqmI5FqA8fxmJ7wJxalSgV8lDR3m3nGWdQmYDQvzfhxXpbEhorFiqxh9+ksGZ+qIZpIQFWVQKJ79/ZHQNM01l52ReC2R/IiipKKDWG+YogQ8wuLqJlLxWKTNo+eUEVgNo1JTW7OCvXQ7whZdvcH6/8225xHq4ESRCxyLSgWLWKRYlB2E6aUqVhkBYBm8NsHiHXmdL6IgeFxLLYTiyznoVi0EYuVLNmOm/RM9wG5U+R9AKQ4cnwHx7NkeEGnqzwF2GzSHtq5D5d9M4dPP0juG50JnuzrHz5Kchwvex2w7Eog4spYvuLtwEUvBFLeWTLBxKK3FepCxx8efhw0TeMFz7gCB483r1jsHxzDrsMD1YxF1YdYZFkGnZlUsBXqPCkWLViPXhGueWKxLRGHYn3kvSzyRvdioES2d8PlYb5iiBBnEq3aVC5UeBGLecllhWpzWBBYwdHgr1qhmvfHoeLQrMckamJLJIK1rK9ikdLB8sGKRU3X6ohDL8WhG0888gQAYHRoFGODY1W7S8BbjehWLHoRqBbpZxFz7RlCVk6NTdUtawfn8Xx7+MnDePvz305+0QA2yc7Jtcu7XJjsdqjReBS6pgceb4tYpLiFwyw+/vDj0HUd1z77Wgwca16xOHh8ECcPnawSi5bqtayWoenOPmt7Vzumxv3Po1gR50WxaMGyB+ZacE+IJUmtWyr6E4t7d+6FpmrYeOXGWY3vRO4EOJrD2s5wslSIEOciQmLxaYLfPTmMiz52Dx487N/4X8gYKzSnaLOIQnfWoYW8qOBz9xzCfz10wlzevxCybB5bwbHxItpcRGKbS62UdxGL7uXtYE1iTlJqTcUYz0AyFYu0SSwGFXR2xaK1TdY2w79NYJGrKJguy6ApoooEgJJpCWnoOibGRhCrEotkPd6lWCzkarPrCqKCCEPDxisiwtJgaArTNivYmRKLQ1t/iX9++6vQvnItEhueA8DKkpwds2i3QpU8nKLZaAJigGIRAOIuEknVdBQlFV3JSJ0qdr6w4+H7sW7TlVh94bqWiEVFllAq5FGWNUdeJgB0JSIoSSoUnYSVpzu6golFsQI2Wh9u74elmSgmSxKMGd6mFFkGHw220nj81DRU3cAli1OQFB1CjFzjpQA71D07tuK8i9Yingz2/z80UgAV5iuGCDH/sIhF1T9jp2lYijd2NsRik8SgH0wr1Iaw3sPrPuhWMbYKyqVYZEi2ISPV7vsMF0DW6BoAo6ZYtGZ2Ux6KRYYly3ICQDHIFcnYE7Goh2JRqJupMp23W6HmAC5WRz6CTxL1m6kmFWhyfIcmSSNQNXzuO5q5jpnZ+IOdBTzzDR/GxT083nOF2XyjaZIhWZ4EUkuBxRudGY8WhBSw8VVAarHnW6kBxGI8KkCSlUC3ioWI3z+0E1vWrcHVl16Eg8dPN52fXqpIyBUrDRWLANDTkcZIQK7R2VMsNq8SSCViqCYkuBWLmgJMHsXO0yJW9y3Ckp7OORppiBAhgvCLo7/Ar4/9+mwPY8YoKvXxEu6MRXsOY4SJOAg4VVehGRqYk+R++oUdX8APD/xwVmOSNKmOuAqCReDZCTOBqbdCDcxY1J2KRYZiAslNy6a0VCDP/4lkAqODo05iMUixGEAsupHOpAEA2bGs599jbAzPWPYMrGpb5Xh9esc0bv67m9HZS+4Hhnnfkb0U7y0i4qpF2oWaUlOIkWPvZYdaXd8iFvmFQyxuf2A7+lb3YfP1mzE0MFRV8zVCuViGWBIhaZKDTC4rZYdiESA5i0HEolSRzmjGohuyGTvQSsZiPEH6NuWC/zPE7m27kenMoG9136zGdzx3HIvii5CJZBovHCJEiAWHpmQU+Xy+8UImLKIgxMLCQVPJ98TANK4/v+ssj6Z1tKq2zPkQhvuHyLWsmH6edsVi/Xu23rA5Pl5Ce5x32J22x5w38LxrbG7i0Q5LJSbavPbjERbTpqKKoShoDAtZ8S+IJBexyDG0ow/XFuVxbKKEXEWFwDFV8qtUIMdqcmwEuqYhkUhhEjXVY7QuY7HWyCmIKniWcigWKYpCnGeQLdfGmkymgAqQm3SGoPtB0zRM/el2FHb+Ci9+9ZvBXv16bB+wzqkxe2LRplgUDa6u6UULcYiVCnRd982HtJSZFiyF6qK2uZ2VdnDP4+AjAlZdcHHgcpJYwZM7t+GN77kFmc4uTIwOo1wqIhYPJt3KpWJ1/0VFA0c7Hwi6kgJKElEsAkCmozPQClUSK2AjzROLi9NR6AagRNrAlCeaXs+CLEtgheBsw23HJtHXHsMFvUk8dGQCkbRp+VEsVO1d7TAMA3u2b8UNz31Bw/c/NFLA4rYoFmdmQUiEcCCsRUI0Bct2SZ8DYrEyRYipWeQBEyvTWRKL+iwdJ0rjxP5zprD232pSURTAJ8DINWKR53noBkB79Y4s9WhVsWgeD9rMWGyzLWs1a1gBoGjkzGZeoVRBrlDC4l67YrG+KeNULFrnrznV+OCEWU8YDHh4nDPRVCBwMfzLfSL+9S95vOElz8K3thwHL03Uxm9vMDWhhPBCIytUAChVRKTPchbNrgPHoKoaNq87P3A5TdPwp6278O5XvxAXrVqGYrmCobHJhsSYpmlQNA1gUCUWlSBisTPT2Ap1XhWLpg0e2/x1kErEquvVEYsTRwBdxe+enMQNl2+co1GGaAVhLfL0xL88/C8AgGcsewYS/Nn93p0JPBWLLmJRtFm3R5iIQ8mn6Ap0XQdVId+/q9pW4TOPfWbG49GhQ9EVT/WdH6zx2BWLdltQAwY4PnjCtWqooCiqqjZjKMaRt+iGpUSziEVe4DE+Mo6O7g6MYrS6DTfyObNeMK1QmyFQo0IUMIDpMe97GEVReMnqlzjsecd/O47Ru0Zxw0034JYv34K/ueBvqsTiXCgW7VazgJNYjJq1SKVUQVumDV7gzXgCyrM4nDucOHwChVwB67YEq/gNw8COv+zAtc+5FstXL4eu6Rg6OYQV569o+B6KrAARQojH2FjV3ErUREiqUwSR6coEWqHOt2LR+ky0oliMJ0nfplion5RgYfe23Vh/+fpZWe4ahoETuRPY0L0BqUh4zwwR4lxEU0856XS66S8LTXvq222GWPjwIwz3DpImmGVzVQjIUSzLGvQWvDUNw8Cp6TIuXpRCv+319riLWKw43zNIscjRTitUgGQijmbJzzQNaAwLVZF9S2JJtWxUyX5zLAVdq40hFWVRlFSUJBUMTVVzEUtFUhCPDQ8CAGLJJCABplgSUReBVsznqtqykqSCZxkwru+NGM+iIJJcPoamIAgRQixONEcsVsolaJUcuq97Od71z/+KH20fAGAqDHR91laodstKEVw129ICzZMCWqpUEI17k2RJ13GZNtWzS9NzSzB992v/BpZj8elv/HfgcnsffwyyJGLTNTdAMWdwnjp+BBesuzRwvanx2jkpyxp4l41rTyqCoqRWieZMZ1dwxmKlAibS/DFY1EaW1SKpGRGLiiSBE/zfL1dRcHCkgL/btBRdyQgkVUckZs7M81EsjpwewPjIINZvvjrwvQ3DwKHRAi5dlkEm1vzMwBDBCGuREE1hLq1Qi2NEbeaRt9MUKJqQIc0oDv3QrBVqECaOAIvWz3x9q2lmV4HySTC2RiXPsZA1wDM2WncTi5afO4uK5HKksEhANgLQbJVYHBgmzgaLu9oBq/fJ1H+/OjIWy9NE+dgysehzvi3bOC6G8ZKBD10bxeduex+ouz8IWLtB07MnggFojH/DKREnfytVRKRTZ7fBfdu3fozh8Wn85X8+H7jczn1HMZ0r4tnXXoqeDjIj/cCxUw2JxYnpfM1J2Gx6+54fEMXi6RH/mqFcmV/FoqQaECJ8UxbwFlKJWM0KVXV9j43tBwD8ctcYvvq3s/hMh5gxwlrk6Y2iUjwnicWiXE8OFGTn805FrSnPIkzEocTTDA2ybcLWDctuwPmZ8/Hr4zNTcVrkYDM2pBa8rFApigJHcVAMBTqlg+GYlqxQGZoJ/DxrcBKLU2NT0DUd6Y50bRsexKJbsch71Ct+mA5Q3dtJUQBQCyo6/6YTH/vGx6qTni1iUZmDrPEI5bxfdkRrk7uicfKcLZb9rdkjPjnSc42f3vlTHNh1AN/+w7cDlzt1/BRGB0ex+frNVZXdyaMnGxKLkihBNydTS6oEJuokpAtyAYtQm8CX6cxg6KS/XfC8Kxal1hWLlhVqueitWBQrIg7uPoh3fuydsxrbtDiNglLABZkLEJ2NQ0yIECHOGpq6k//5z3+u/nzixAnccssteMMb3oCrrroKALB161Z873vfw2c+M/NZSyFCzCX8LE6fHMw1tRwAlBWtSpo0g2xFgajodQrFjI1Y1HUDJReZGZSxWFUs2qxQExEGsvkrQwEKzUJRFPiVCZYVKkNT0DUDHE1DtTXykgILwwAmSuQ1q0QqF0lBPDpMcnDiCZNYNN87xrsVi9mq6KAoqeiIR0C7ZqfFIwyxz9R0RyGfb6BYHB06heFTJ9GxbDU6n/9BsJPHydhtJJ6iGdBmySzarVANikbRRVDTZq5UpVzyJRbjroxFy/p1aSZYPdcqDEPH6RPHGy634+E/o6O7FytWXwixTArDgf6jDYnFSRuxKCr1xGJXMgJZ01GSVHQmIsh0dOHEkYM+YzUgia0RiymBhcDRjmu/FciyBC5AsfhY/xRomsLzNyzG4ZECREVDNE6sUP2Ixd07HgFFUVi3KThfcbQgIS+qWLc0VadgDTFzhLVIiKZgNW/mKmORi2HGyQE0R4jBQKKpwX1rLhSLk0dmt747YxEAIkmwhcnarzwHyY9YtM6FtR2TKDXAoFxxEYuMuQwTAWgaebOhMTBEJq4s6ekATprLcvXk21TOboU6TWxsm8xwsisWvTA8PIw9R1U85/oUvvl8AYenaVLH2BuGFEP2b6ZktIlGVqgAUCyd/ZxFXTdw+MRgw+V+/9BOpBIxXLH+QgCEiD54/DSedXVwLTJstxIzr79AxWJHGjv3+Vu+E8Xi/KkECLHYvEIAANqSNitUt/J6dB8qVBzTYh43NFBmhDgzCGuREOci7DanFoKIRZ7h67IIJc15v372imfDgIHfHP+Ng3ACQPIYA6CYdYFdcdgIFoGnuOo7juagaErVClVRAhSLphWqNT6WYj0ViwIjQNTEOsXi6CB5Pm7vrk1y8rJCdWcstqLM9FMsWshN57Bvxz5c/ddXo/flvdDLTieluVQsVoke89KwW1W2YoV6pqEbOk73nw50lQKIDSrHc9hw5QYIUQGpdAqnjp1quH177qWkS1VC3NANUDSFguL8LLV3tgcSxKJ4dhSLLNd8XyIWNzMWC94xQPt27oOqqLPOV+zPE0nGpp5Ns9pOiBAhzh6a+ma54YYbqj/feuut+NKXvoRXvvKV1dde+MIXYt26dbj99tvx+te/fu5HGSJEiyiaqjg33MRiUI5iRdagtmBfNpon1WUm7iwc0zZFYkFS61qIKc8uHIGVhSi5rFCNqn0HAJoheXI+27ATi4pmgGNoqHKtGZUyxzfuyrFUTHvVseFBJFNpsBwPQIeqk5xGwWaFqus6ioVclVgsSRoWtVF1isWkQBSLsqZDsJF4uYCMxf27d+Lj73492jt78M9f/YFjVmHSRsqqmt50Xo8fOIYCafKS9zg9XcbSVO38ULxVQPvnLCZdRPF0WQbP0sgk5l65NjI4AE1VwQRYbO185AFsuvoGUBSFaDyOrt7FTeUsTo2PAWChUwwM1NSzFroS5EEhW1GwHCAZi9v+4rktRZZgGAZojyawHyiKQk9SwMmpmWWDKbIEhvcnMrcen8TqrjjO70lgKFuBpOpVItIvY3HP9q0478K1SKS87V4sHDbzFa9dE2YfzSXCWiREU2DN7xlXA2xGELOEmJqpxQ/DNs5IbHTf0pXZKxanjgX/PdEd/Peq0tDWrBNSYKYHqr9GOA6iaqAt4nGsrOaWdRzN3z1LMLti0ZaxeHJoDCzLoCuTqhGLHg0rQiya71PJmYrF1ojFYSWOLq4MxTZTf/eIhhd8/VfgdRH73xoDb78m7A1DmiH714I6wQsa43//sqxQiwHNvPnE2GQW+WIZqYT/ZJ4/PPwEnnnVRrBm7bhmxRIcPN64mTc8PoVe65eqFWqAYrEzg9HJrO/fyxVxXq1QRcVApAXrMQBIxm2KRXdjeGQP+gssVi7pwrJF5160xVMBYS3y9MZkZRK98d7GCy4wuK1QRVWsU7TZrVC9FHYVpf6eY+X9WSTkUJGotIZK/motAFX1YytKPi/FIkBsRstaGQYMMDwDRQq2QqVBQ4fVH/FWLMa4GCEWDR9isbMdOA3fuWGFbAEJJKrz0lrJkpwe9SekBo4N4MNv+DCkioRLr7nUc+xzqVisbZT842eF6of5IhYBosqbGJlA92L/mnbHgzuwdvPa6tiXnbcMA0cHfJe3MDlWm0gna3JNpSoCiNV/vjKdGWSnsr5Ep1SREJlPW3ZJBh/hA21/3eB4DnyE9yUWdz+6G6lMCsvXLJ/V2Ppz/WiLtKEvNbucxhAhQpw9tDydduvWrdi8eXPd65s3b8Zjjz02J4MKEWK2KMlaNUfRQllWcWLCeWMsBlihiooGRWueqBorSKApoDPhLBLsVoj5Sn2BlwqwQrUUi/acRDtxRZvEoqrK7lWrsNa1SD6OoaDItYarRWxOFLybsGNDp9G9eGn1d1UHBI5x5CeWCnkHqVeUVPAsXadYjLAMZFWH6jqueR8r1D/f/Qt88A1/iyV9q/C5O39cV5jZ1WCqbszaCpWiKDC2J4R9Q87sCYprTCwmrDGZx3uqJCMpsA4ida6gqSpGBv0bcxNjI+g/fACbr3lG9bVlK1fj1PFmiEVyTnSzcHYrFjuT5DrPmYrMTEcXpicnPMldsUIeOKgWiEVgdrmUiiyD9VFIjuRFDEyVcfXqTnQlIkianwGDI8v7KRb3bH8E6zdf1fC9D44U0JsSsCQ9tyrVEDWEtUgIX7CWYnH2M7Uh5gFuFsRiU4rFBmhETDaD7OngMTRS11nEnL3WENrA2G3TeA6S6nMTrmYsWopFMhZPRTptVywyVSvUk0NjWNbbBdpOErLOe4SqalWFI3mDrJnV2JoV6pRK7gXW/e/XDz6Ba75TQlecxQNvzoCPuTJgHIpF2iSCZ1eQBCkWE6ZKoBhgPzbfOBKgWswVSti66wCec81l1dcuXLkUB/tPN9zusH3Gv9n0lhtYoWbzRUgeVniqqkFW1Hm1QhVVHQLfGskc4TlQ1nXuzlgc3Y9HB8q4MVQrLgiEtcjTD3NK1swj7GpEoD5fESBZcRa8lITubXjhVIE8lzZSy1mqQ7ZJq3IAYMB4btsi7XTotQw5n1uwpVi0ZyzqWn0tEmPJM5xqZibbicVUOoVkjLjcxDTvZ72C6Z5QVSy2oMycsiv1bdj50E6860XvAsdz+OrPvlolx+pglntzoVh0Iy2kAZBjbVmhLhRiEQBOB9QVsiRj19Zd2HLDluprfav7MHCsdWLRum6NCjm/bkVwpisDXdORn/bO5D0bGYtci+4JABBPxX2tUHdv3Y0NV24IVIg2g/5cP5YmlqKND564HSJEiIWLlr8Fli1bhjvuuKPu9TvvvBPLli2bk0GFCDFbaLoB2VUkHhgu1BFPQcRiRdFastYczYtoj/OIuiwG0jFyEzcMkuvmRqAVKm1ZodYagnb7T4aiYFAMVNmfWLQrFgGAZWgoUq0AjEdYUAAmS97bGBseRPeiJdXfFd2AwNGwc4aFXNaxTllWwTP1Xy9Wb9ZNPpWm67P5fv2j7+K2D70d1z/nBfi379yFdHu9+ithJxbnwAoVAFjUrpt6YpEUx2LFX0VXJTtNEm2qJKMtyiHCzq7o8sPggL8d6uOPPACKonDZVddVX1u2cjVO9Te2xasjFl3n0yLQizL5DLV3dkGWRE9SThLJ9UZzrTXXlmZm7rMvSyIY3rtgf/T4JCIsjeevWwSWoavXkUqx4PiIp2JxZHAAo0OnsX5LMLFo5Suu7ko4bJBDzC3CWmSe8Ik24GdvOdujaA0WSeZuyM8EUsEkFmdqhcrOPiNRnwMr1OIoIPtPiPFDdSY85UFyCG2gbPdLnmPhE2/tkbFI9qfsSSyaNRHLARRTJYgGhsfQ51Zocc57RLbgypCS8mZWY8DEHhsBPTRR/93/37+6Dy/6wFfx7PNYPHjz+VjSmarPbLQ3ziimXmU2A2gBzTjLCrVUWUDEYkCW0J8f3Q1N0/Hsa23E4qqlTSsWq6gqFv2J/t4uYtM2OlGv+KiIZP35VCxWFL1lxSIARKyMaHvGopgDCkO471AeN1yxcW4GGGJWCGuRpz7OBDnTKhrZivrBnolYUSuO5++8VE942IlDLyLMy07VjeHSMADAaDC5ppqxaLuf+qmprFw43expyK76rkosUjooNngimGZoDpUfTdFQPfpBW3oJ+UQZZFmLWBwbHEP3ku7quONafTSKqqg1so0ix9LLLtUPhakCdJdr1kN/eAj/9Lp/woUbL8TX/+/rWLx8se/6c2mF6gZHcxCPi2BEpmqFKgbUIguJWNy3cx/Eiogt19uIxfMIsdjI9cpuhSprcu3zIZNruKw4PxvtXUTZ6UUSG4ZxVjIWW8lXtBBPxD0Vi5Io4cCuA9hwxYZZjUvRFQwWB7GybeU5mV0bIkQIgpbDn7785S/jpS99KX73u9/hiitIztRjjz2GI0eO4Gc/+9mcDzBEiJlCUZ0F2b6hnENlBwDlQMWiDtVjBpsfpssKLuhJ1Cm7LKVahKU9FYvu5e2gKAocQ1XJQcCp0mNokgVo2ZZ6wSJYrX3nGAqKLWORpigkBRa5iuKZBzc6dArnXXhJ9XdVBxKsU7FYyGerP+tgoBtEndgspidG6wq6S6+8Dm95/0fx/970Lt9QdQexqBMr1HwuB2MWTVyaMqqzHI+Pl2AXVxqmKqEpxSJHZjBOlWR0JPgzolgEgMGT/cB13n/b8fD9WHPxerRlarkXfavW4Lc/+UFDC9XJiTFgMaCZSg/OdZ2moxxoCtXM0EwHafhOT44jnnSqOSxiEQwPtPCMszg9c2JRkWWwvFD3doZhYNvxKVy8KIW+DvIwaCkWy7KGeCLhSSzu2b7VzFe8MvB9x4sSchUFa5e2Oa7PEHOLsBaZRxz41dxta/wQ8B+XA2+4G1hxzdxt1wtzQizmgfQyp1KvFTCWYnEWxKI2AytUMQf88eO130vjgNK6rTS59xpQDAoc4MpYdH7PBysWzW9iV2Otongsby3DRBxK0ZNDY7hxy3rnsrxTKTCdqxGLFAyiOG1kZSvWLPIn82WIkvNc37BlHW79+5fgn7v/CNooAnyinlhkbc0ammQsTk1ngXIJ7ZgZtCDFYnxhWaECwJGT/orF3z/0ONYsX4yVS2v2gRed14fB0UkUimUkAyxUh8emAKvXZNobq4ZlW1+Png6TWJzMos9lh1a2iMX5VCwqBoQZNPMIsVh2WjqPHQAA7BnV8KlQsbggENYiT33MlNSbSzRD6HmhKNfuiZImVdV3gI9isYEVql3R6AfLCrURLNJTYGqTQO02m3bwAhmLJpNJSX6KRQBgGjxva7oG2jZZlqVZKGJ9f+YZy56BdZ3rqmRH0Zy4NDo4itWXrA58j0LO+RzJ0mxdXmUj5Kac8T2XXHYJXvWuV+H1N78eTIMei90KdXpq2tfKcqaY+I8JXPH6KxARIqAoKlCx2IoidS4wGOCesP2B7ch0ZbDqolXV15avXo5KqYKJ0Ql09frbi0+OTQIJwKANYrlrq2dTfKpOzZvpJLXI9Pg0cKFzW4qkwDCMeSUWFVkB36J7AgDEEjHP62f/4/uhyAo2XrVxVuM6XTgNzdCwvmv9vF8rIUKEmDu0PAX7pptuwuHDh/GCF7wAU1NTmJqawgte8AIcPnwYN91005kYY4gQM4Jbsfjk6RwWtQlVS1DDMFCS/VUAkqJBaVEBl47x4BnvBtblK9o9FYtBMAwDLE079sVOVtAUIRZV1Z+tsfIZLSKQoSkosvPBoC3K+dqIToyNOBSLxAqVdhKLNsWi6mOdGQRFllDITUMt5zH5u69CFstYuuI8vPzN/+BLKgJAPFIr6lSNWKEODAzg5OH9Tb+3G6zZrGJ1GYPZiuMaMcwcJTGAWKyOycz3y1YUZOL8mVMsnvRWLOq6jse3PoBN19zoeH3ZyjVQVQXDp096rmehkWKRpilkYnyVWEzbiEU3LCtUo8XMqUVts1AsyhJorr5g758sYbwo4brzO9FhKgote+GKoiEWT3qqLvfs2IqVay5CKp2p+5sdh0YKoABct7ojcLkQs0NYi5yjOGVaw+3/xZl/r7mwQpWKppXmTK1Qm8hYbARdbU2xOLgT+PoW4Ikf1F6T8kBpouW3tu6/FdmsQTRbDSN4EIt+w6wqFpsgFq3mG+NUSwyOTqJvca3pYwB1isUpWzOPpzVy3BtZcFecyrahsUkURA1v+VUFubKMZYu68NG3vBA0RRESko+R7Ew76hSLGo4e68e+4801WL0QZIUaN5tRC8oKNUCx+IeHH8ezbTaoALFCBdDQDrVOsUhzgQrino40AG/FYvkcUiwKlmLR/pkb3QvNoFBh2rBiac8cjTDEbBDWIiH8YKnvGin3ZoOj00fx7vve7ft3OyEpqqKDJG1khdpsxqIbg0V/YscOywrV/j5+z/yWZaRq2iIoRn3GYu0X8o+fAk01VAfJx1AMZA/nJ4qi0BXrQpQl38VWbuP4yHhghh9A8hXd46NbbLtOjExAERUM/tcgxLyITGcGb/rAmxqSigAAg1x/qq7i0MFDGD453NJ7NwOBFUDTNISYgMoCmuQUpFjc8Zcd2HztZod1Z99qkus3cCTYDrVqhWoefjsJ1sa3QVRFaLZaPWO6J0xN1CsWRZF8zubTCnXGisWktxXq7m27kUqnsPKClbMaV3+uHyzFYn3n+sYLhwgRYsFiRtMCli1bhttuu22uxxIixJxCdlls7RnMoScVwVieNBYkVQ+0zhQVHVoLGYsAIejcyi6AqBVZhmqZWFRkiSgMVW9ikaEAAzR0zb/p6LZC5WjaVCzWiou2GIdT07Wi0F6M65qG7sVLYc2bU3SyP3ZisVhVLFLQzMahwLVWQO9+bCtO/OLL0A0Dhal6csoL1rEwdA2qzkIzDAAGSvlsQ0sLPzCUDhgAZ8gYK4go2s6ZYar3gqxQ7edH0w3kKwo64zw4D2vYucDgyX7P148eeBK56SlsdhOLq8gsy4HjR7F0xXm+260Ri2R/vIjRjgSPikwsg6uKxYn6c2cpFg13M7YBOuI8oCkzOpeKLCPi0VB+9PgUEhEWz7mkt5oBap0zSdUQT6ZQLnkTi1fc8NcN3/fQSAE9KQHL2uutcULMLcJa5GmCz68GOtYAb/pda+vNRQ6SWiHkleSdu9oQVcXiLK1MW1EbThwCejcA618OPPLVWubfZONsXTeqxKKiIwU4SY6WFIsuK1QTZa/JXZYSwWXDpmk6ltuaeRrFg3UtM50vVscdpc3tcA0mqIhZx6/bdh/ELT86hpKo4pmTrklESpm4ETRULGowYCBfqkBVNcefm0VVsehxSBmGgRDhUVpIxOIJb2Lx6MkhHD81gudcu8nx+gUWsXj8FLasO993u8Pj04DVt1KlelLXha52ktEzOpmt+1u5Mv+KxYqiQZhBrlE1O8uuEh7dh/48jasuvXiORhdiLhDWImceV/3wKvztmr/Fh7Z86GwPpWlw5uSYM2ml+tGHP4p9k/uwe3w3NnTVWxLaFYuyJjuIDy9iUbIppO1KQgvNZCy2qlhsxirTUiyqZvyGojnru4htIg7FNbBC1YkVqkX80hQNWZRx8isn0f1X3YheEVwz6JqOXpv63guWYtEisFiaDZwo7YWj+47iL1//C4rTRZTWtq44pCkaqqHCgAG5IqNSqpwRq0khJkBsshY5kyS7hcF+b2J7anwKR/Yewcve8jLH671Le8HxHAaODWDTdZs81wVMK9RVtcxM1pbdnYoQxaJmaNUc0GgsCiEmYNpjkpNk1iLzbYXKzWCSUzwZR6lYf/3tfnQ31l2+bk7yFXviPeiIhhOyQ4Q4lzGjb4K//OUveM1rXoOrr74ag4Pky/sHP/gBHnrooTkdXIgQs8F0uVZ0qrqOo2NFdCVrRXJQviIAaIaBkly/zMjICPm7R6OwI84HFo55UWmKcLO2oEgieJaGbCM47So9hgL0Bh9jWdXB0LUCmmUoyJLLriHq7HrJkrNA7F60tPqzqgM8y5DZ+yYKuSwYlhTNmjlfoRXFIgB87sPvAh2Jovd1X0LH4uVNrcMyNHSpDENVoOk6dJMoVmQJ4yMzUwqwlBmyrstQNAP9E7ViSjMosCwXaIVqt5MtiAoMAIvSZ25Gml/G4s5HHkA0FsdF651FckdXD2LxRMOcxanxMQCoEcV8/fnsTERQljWomo5kWxosy3kqFi1iUadaIxZpmgJTmZ7RY4gsiaBcmY6abuDR/imsX9qGJTab1YRgEYs6YvEESgUniTA2PIjhUyexfnOT+Yrd8Wq2aogzh7AWeZqgNA4MPOKwrGwKmkLCjWcLzt+msSFolhCcs1EsAp7E4tAwmYFuqbCQNvO8ll8DbHo9sMRUiEVNlfWE6ztfbkxWWrf5clWxaLNl9CIWfRWLHlaoFI2y5EH+Wg1DhqubVNK3qEYsqjRfR1ROmSoBhqYRpc3BsA2IxUrW8evff+xrAIBH3xLHJcs8FOpexKJDsUhXrW81XceB48GKPD9IbAojRR051fu+mYgJC8wK1bvm+sPDj4NlGdx4udO6MxGPYmlvJw42OD5OxaJoEs7+dTbHsehIpzA6ka3729lQLJalmSkWo1Hze8fWQFdOP4Htp8S6Yxni7CKsRc48ikoR39//fc9n74UKS0Vntx+da1gKxJzkXR+VlNrzap0VqpSvy1GU1No93ovwq2j195xB0wbbUulZGYuN4KVY9EPE/M62shDrrFDt22jwqKkZmkOxaFmhFp4ooPjjIhbFFzUcTyPFYj5LSFvLcrVVK1RDN/D1T34diqhg1UdXoeO81kkXhmIcn5fjB7z7BbNFNBYNtEK1w49YFHURy9+3HCV19patQwND0Dwm3O98aCcA1JGHDMtgyYolGDjWnGLRIhY5m6tGJpKBqIp112V7ZzuxQnXByqQUhIWvWIwlYijlnedFFmXse3wfNl65cdbj6s/3Y3lqOVJ8qvHCIUKEWLBomVj82c9+huc85zmIRqN4/PHHIZlZbblcLpytF2LOICreDw7P/vIDWHHLbxuSggDJOrMwOF2BphvoSdWK5KLYeBtemYjWQ6PkoVprjwc3D3IVBdEA73/WlQGpSCI4hobia4VKQQ9osACELLFvl6VpKC7isD3uLDTcxEqPjVjUUa9YLORzSKbILPGaYrG5TEEtTwisJctXYcULbwab8ve390Jx9+8hntwFVTccPeSjB/a0tB0LjEUsmjYrB0Zrsz0VXYcQjQUSi3ZlYta8fpZmZtGYboDRwVNQPCxcdjz8Z2y84lpwLj99iqKwbOVqnOr3V6/IkljNzbSsUAUP65WuZAQlWYWiG6AoCumOzkArVJ1q7pqwIzq0E9z4YbQ6IU6RZdAsD7vc48BwHkVJxTMv6kY6VjsuCZ58pmRVRyyRrFMs7tmxFQCwfnNwvuJEUcZ0WcHaxWG+4plGWIs8DdGqtak+g2xCLzRSvAWB5si4Z00s1s8GP3bsGABgcNS0OLUI0PRyILW4RrpxUYCNAFPHais/eRfwNZs1pa2ZaEfNCtUcv71pIiQdy/IcC9/SzItYpFlUvFawlKY0W5d36FQscnWZjdP5IniOdSkWG9x/TSvU4QK5VhZ1teM/XnEeVrf73HQ4oYFikXWc750zbOZpjIBFXyxiFJ2ef0/EogvKCnUym8d0rl7Z+/uHHsc1l17smaN44aqlOHj8lO82DcNwEouabB774Lq3pzON0UkPK9SzoFgsyzqEGeQaRWMWsWh+BgwDGDuIJ0c13HDlZf4rhphXhLXI/ELH2c87bBYW2XUmFYuNYCcWvRSLUdvEG1VXHcSjFxHmZYW6d/teAMCxg8eg6RqUJt0iVEMFS7NN5apViUXRm1i0KxarxKLPvDJVN61QzduIpVgMgnuSU08DK+qimffMMKRG4WiuacWiVtIAnSjFbrz5RghLZ0Y+0RTtOE7H9h4LWLo1MO0MNIpcS9F4tGkrVL+80nF1HMkNSQxUgsm9ZqDICsaH6nsR2x/YjtWXrEZ7V32OZ995fRg4GvzeU2NmLWLFgNvqz4yQQVkt100iyHRlFoxiUZGVGSsW3VaoB3YfgCIp2HBlvUq6FWSlLHJSDmvSaxCbzSTOECFCnHW0TCx++tOfxje/+U3ccccd4Ljal9M111yDxx9/fE4HF+LpC93HovSwSfIcGmlsSzZZqDVcTk1XQFPAYltmWzPkpN26NMg21UJnMrj4my4piPL+5EqkSsaR4lOWpTpikWdpUGa1zNBwEIsRDzWkpOpgbbmPLEOZVqg1ZNzEYrFmj8JxPNIdzsYWz9LVrEoAKOSmkWwjM/stYjHaIANA0zSSIZnuRSzZhqv/6rmemXiNIKzYCL1SgKoZphUqwbH9MyMWOZNYpA0NMZ7BkTEbsagZEGKxQCtUO3JVYrG1xjRN0+AXX4BcLlihk+7ohK7rGBl0FsPlUhH7n9iBTVff4LneslXBxOLUxFj1Z51iQVP1GYsA0J2MoChp1c9GpqML2cn6HK+qYhGtE4uxiQPIFPoRaSZTwgZZlkCxvOMdt/VPoj3O4/o1TvKapinEeAaSqiOeTKJcLDr+vmf7VqxYcyHaMsEzRg+Pku+la1Z3tmx5E6I1hLXIUwxzoSx0Q5sjYtGueGu2QZgzyRKpQEgmNbhp1RCtWKHWgQLiXbUxAcD//T2QsDXGfParRiyqJDvQbj/GJ2DY6w+eg+RnH6/VyMLaxhlUghSLbAS5gnMSz7JFtVpEo7i6zMapXAHtaUJ4RhlznyLBttR6eQq6YWBRksbSzhT+5vrNSAoB9xs+Xp/x55GxaGHn/lmqBHxs4uIxAaXK/BCLk9ngmrvbzDV0qxYVRcV923bX5StauHDlssCMxWy+CEm2XSOqSK6hBrfXno60txWqmWsUm0eVQElWZ6RYjMfM69b6POROg9MrGJFjWNm3xH/FEPOKsBZZmCgrZewa23VWx2CpAd22nfOJomKzQtVlaLZJL1kpC4GtfRfabVABJ3FioZEV6niluSgTCzzNN6Xks4hFRSTHMihj0WBJHeKnjtMMreriBBBln+JVi9gguyY59SwOJhbz2Tz4CA/KnITN0mzDjEXDMKDrOpg4g65lXbj0mksRSc6ceGJoxkEsHt3buh2+H7re3oWBJOk9CNHmrVD9iMWyTmrcRhMHGp2nTCfpRblzFg3DIPmK1232XK9vdV+gYlFTNWTNmsLLCrVdaEdZLdcpqjOd3sRiVbF4jmQsuq1Qd2/bjUQqgVUXrZrVmE7kTgAANvX4W9CGCBHi3EDLxOKhQ4dw/fXX173e1taGbDY7F2MKEaIOsupdaGSz5GbtlcE2UXIVgSkBKaH20NcqsXjPvsbWHrEGKr1sRfZUfvlBFivgGQqKrVlHURQsV8oqX+hR/Fe3oepgbXIvhq63Qk1HnU2PcrHWROpatKTOP51n6Go+HUCsUBOmYlE1C60gAjWXzeKmm27CkW1/BAD0LF7mmc3XDPjulYivfSYMwEHAHj3w5Iy2Z1mhAsCiNgGnp2vFsqLpEGLxQMWiHdmyApam0BFv7cFANygseu0XkVvxjMDllvSRgm7wpLNxufuxR6CqCjZf473+spVrcOr4Ud/sQssGFSBEcYSlwTD1nTxCLKpQzeOe6exykJIWJJE8MKiNuoE+oOnW11NkCRTLgTbPp0ExeGIgi8v60liUrid64zwLSdEQiydRKjqbqLu3P9LQBhUADo4U0JOKYHlHmK94phHWIk8RqOb36/ATc79tXZ19tiEA8Ika8aZ5E4RTU2Qms/VdWCXxrNnLTeQSBWK26yd6gcJo7fdNbwQ2vaHhapbleVlSSJ1hVyJQNDSm9l1KMhZ9NmStZycCaSbYCpWNIm+bJd3V3oaYrQmjUhzcUvapXBGZFMkQitLmdgIyhUqlMl76oa/hE/eThuqapZ2ehJQDXrOqHYpF2kFo79w/dyoBO+bTCnXKQ4lox5rliwHUE4tbdx1AsVzBc671IRZXLcWRk0NQVe/P6bDbQkypkNzSBujtzGDEw36sqlicTytUWYMwk2Ze3EUsju0HAKR6VoQTlxYQwlpkYeI9970Hr/3dazFY9M5bmw9YisVmFXxzgVyWTEi1iLCybVKSpEkO4iMn5Rw5inXEomviDkMxENVgAqnV480zfEPCDagRi5IogaGYesWibQIOxTbOWKQp2pGxKInerg0WSrZJTlyEQ7ozHbh8IVtAsq3m6tAoY1GSJLzuda/DvT+8FwCwaNUiZD3svFsBQzEOBd1cEosUT0FiJBiGQRSLTVqh+hGLJX32FqgA0LOkBwzL4PQJJ7F47MAxTI9PY8sNWzzX6zuvDxMjE3XKPAtTE1O1nol5udrJ7HQkjbJSrptE0N7Vjim764KJc0mxGEvEUC44j8uurbuw/vL1VUXuTNGf60eST2Jl28rGC4cIEWJBo2Visbe3F0eP1t+YHnroIaxaNbtZCyFCNAvr5n7i5EkAhERwY7zgfK03JTjIrmasUO3E4q92D2PrsXo1loX2ON8wVzBXUZq2CAUARRbBexCR1m5YfAsV0GiRVM1lhUrVZSi68+DsxErP4qVww62MLOZzSLalAQAaGLA05aswEyeH8DfPuhGPPfYY0r0kEyrT1YOJseYyGYIg2Sx0j+7f40ucBYGxEYvLMjGM5GvXkazpEKJxiOXm1CPTZRkpgQ0kWb1giWOZVBdkj2vbQkd3DyJCFIMn+x2v73zkfvQu7cPivhWe6/WtWoNCPuupLgSAyXHSgKYpCqDoukxNC11JAbKqo2Ta5GU6unytUDk+Ap/5AWcEsiQBDFcl3wvRHkiqjueu7fW0KU0ILBTNQDSeQNmm2J0YHcbQQD/Wb2lMLB4aLeC8rgQyDSyRQ8weYS3yFIHVHDoTuUmaPDeKxUiy4SL7D5Cm/6lh8/vPyoO0FHpN5Bli6Alg/ID33+RZEkjJRSSr0sJ5zwCSvQ1XqyoWJYXsi6tporE1ki1YsWieZ8b23Uv7KBatJiwbQc7W5FnuyjQiikXnd/l0roh2s5kXpTWAFYgNrAcGcyque+6L8Mcdh7FlMblHL+5MYnB00nsfLPAeE0cYfyvUXYdO+BJns8F8W6HmfRpuAJCMR9HTmcGRE86m8h8efhydmRQuvfg8z/UuOm8ZFEXF8VPe9Z9lg1qd3GYpFhtaoWZ8FIvzb4VaFDVEeA6sWROzTTbi4gmTEDc/D+LJnciJBtauC/MVFxLCWmRhYrRMnmP6c/0NljxzOBtWqLt27wIAnDxM+iMFpfY8L2tOxWJOyiFiuz+6SUO3RSlLs3XkoxtDRe+sXT80ItwsNCIWHYpFJvjZXzVUh0qSoZmqEtIPdmKxZ3FP3YRrNwq5ApJpG7FI+WcsKjkFL3vey3DXXXdhyWqiRs90ZjAx4t9zagY0RTvO9+DxwaYtS5uBwRjQDX1OrFDLWvOuHJMBNRrDMljctxiD/c5aZMeDOyBEBazdvNZzvb7VfQDgq1qcGjVrEYb2zFhMR9IwYDgUwoCpWAzKWIwKoDjKV107l6gqFs2PW7OkoKVYtHpqsiRj/+P7Z22DCpDv56WJpUi5MttDhAhx7qFlYvGtb30rbr75Zjz66KOgKApDQ0P4n//5H3zwgx/EO97xjjMxxhAh6pAtN579N112Kgu6khGHorAkt0YstkU53PLzJ2H4fGzaY1xDu8Z8RfW0K/WDIkngPJRikapikfwtmFh0WqEyNAVJdBGLUXfGYo1Y6V5Ub7kkuAjUfG4ayVQaAKBRLASOcWQwWhg/uhu7/uNdUFQF27ZtQ/fKiwAAma5eTIyO+O5DsxBN5orlOOSmJzE+0toDDgCwtuKurz2GgmQV5QYUVUckGm3aCnWqJCMVbXxduGG3oj2wa4fvcjRNY3HfijrF4o6H78fma270fVhbtnI1AGCg/4j3uMdHwbIcKFMJy7O0J7HYmSAPelnzs0asUOuJRUmsQBCiUJqwE54rKLIM0ByECBljIbEMS9ICtqyoz1YAgHiEWKHGEkmUbFaoe7Zb+YrBxOJkUcJUSQ7zFecJYS0SoiF0dfbEIsOTTL1WUcmSf00rtKatTFWppuK0Y1ZWqCCZixbZCdRnBPqgnlh01k0aVyPZeI6D5MefeSkWG1mhMrzDCrVvkdPC2luxWKgqFhnKIPmSHtm+O/uncflXBzAxOYWH//WFeMEF5Dwt6Uw1Jha9FIt2YpGiq0Q5xzKoiHJgjuBMkYgJKJ1hYtFuQ/rnR3cHLrtm+eI6xeLvH3ocf331pb5N2AtXksllfnaoFrHIWTWUKjVHLHb4ZyzSNA2em797dFFUIUQ4rFq2CM+6eiM+98E3NbVeKhmHbhgwTJX05P4HsHdMw42Xz76ZF2LuENYiIfxgkV3zqVh0oySTeyhN0VB0pS5j0a5YFDXn/cSevwg0RywOl1qbJMzTfJ0y0nM5gRxLWZLrLD6t7VioKhb95jmZikULDMXUWZ26YScWu12TnLxQp1hkvK1QJ/on8OTHn8SJ4ydw//334+IrLwYAZLpnTywyFFM93zRDQ9d1HN03d6pFndYJsRiLztoKtagXPV+3YJ8ovuMv/n0RAFiyYkmdFer2B7Zjw1UbfK1A+84ziUWfnMXJMVIXshxbIxbpWu+tLUJcu/Jy3rFepiuD6clp6Lpzvy2FLCuwuODLF+AUNfc1ohuyJIMXePARHtc+51p84LMfaGq9eDIOXdOrZOih3YcgidKsiUVVV3GqeAorUiuQ5BtP4AwRIsTCRsvE4i233IJXvepVeOYzn4lisYjrr78eb3nLW/D3f//3ePe7330mxhjiaYi5oB+yZcWR1didijjtO0UVjSbJFWwz2J55YTcGJsuopJZ5LtsW4z1JQDtyFQWRBqpGOxRJ9FRB8mbRzFQVi/5NEknRwdC12VAsTUFyKRbjEaIytOo2O7HlqVh0EWV2xaJuWmd6uVcevOe/EetZid/f+yAuuOCC6nlu7+rB5BwoFiumci6eJGM50kTO4smjh/ChN76UEFFwKhaXttceqhgYxAo12oIVakVBOsZBaIFMBohKzsKORx4IXHZJ3yoMDtRm5A6fPonBk8ex6eobfddZvGwFaIbxzVmcGh9DprP24MQz3uezM0kKdIuAJ4rFiTqlqCRWEIlGoZwBUZIfVFUBGLZKqiuagc0r2tGT8iYJkhEOsqojGkugXCpU92HPjq3oW7UGmY4uz/UsHLLyFdd0hDZl84CwFgnREHNBLHKxpkk4BywSz7o3BxGD7u8Lrzym2RKLyV7MpLKyhlaRVdMK1UUssjViMdAK1StjkWZQkT321Wr4UbSDWKxXLLJ1pOF0vqZYBECIRY/z9+XfHcbSNhaP/fl32NBTO/5LOlMYGpsMPlRCW/1rdYpFHTAMpOKkhtjZRDPv5OAorn/Nh1Bs0lIsHhXOuGJxcLTW2PzDw8F5cW5icWI6h537jvrmKwLAou52JONRX+J1eHwKqUSsVru3kLE4nStCdl1fZVFCTIjM6z26rOgQeHJ9/PE7t6Gr3eP68UAqHoOsoZqJTk8cxPECi/NWLT9jYw3ROsJaJIQfLEXTXCkW/UiZIJRUcg/laA6aoTnIw7ycd1iISmowachSLGQfO3gLpwv+mble4Giuqe9j1pwMIokSaIquO6Z2kkenyXEKyli0k5k0aMhiA2Ixb1MsLg3OVwS8FYte+7nrl7vACAzuvv9uXHnlldXXMz0Z5LN5aLNwO2AopqpYjEQj4HgOh5883HC96YlpvPtv343cdC5wOUuxKMSEphWLdgWlHVbGoh/y2VpfqhGxuHTlUgza3BPEiogntz/pm68IANF4FF2LunwVi5Njk6BpmlyH5qXD2+o+i1j0Uizqmo6CK6faIukojgKbYJHXnYTkmYCmalUr1E/d8SksNi3sGyGWIJPpLDvU3Y/uRjwZx+pLVs9qPEPFIai6inVd6xyf3xAhQpybaJlYpCgKH/nIRzA1NYW9e/di27ZtGB8fx6c+9akzMb4QT1OUmsg/bISCpEK1FeGL25yEQklSA/MOOYZCvlIbR09KwA3n+5MLKaGxnUdBVFpSr8lSBTxT/zEVzJeqk8ADiEXRtELVTJKVoWlIFWcBSFEUUkJtG2WbYqvLQ7EYcdm52jMWyd9pMDQFVVGgyDJGBkmhduWbP4G1b/4c2js6oOsG+pU2aNNDaO/qRXZqsm5GV/Mw7RnMApwXBKQ7unBkX2Nicd8T27HrsYeRnSINNI4iY6AALGmrEYs0RdSfkWisaWIxX1GQifEtKxYtpWUs2Yadj9wfuOyS5SsdisWdjzwAmmFw6RXX+q7D8TwWL1uBU8d9iMWJUXR02YhFlvZUoHaZikXr85ru6IIkVuqOj1SpICJEoc6jYhEAQDOOfNHnr1vka0WcFFhIqoZIPAFNVSGJ5DOyZ8dWbNhydcO3OjRSQHcygpUd/nleIeYOYS0SoiE0ZY6IxRlkiIhZ8m9VsRjUdHF9t3q935wQi63DyiAqi7JJmLkVi7Xvu0ArVEuxYbdeolmUKx7NvGo9YzjsN/tcxKIKro5YnMoVkGmzfQezUYBmoCgqZFlB/2nijHD7mzfh/ncsRW9Pd01dCkIsSrKCiq96gfK2xnUQi0zVCpVlGJy/fHFTxOKjew7hLzv24eRQfU6xF4gV6pnNWBwYIg4Ef3XlBvzh4eAcVItYtCbl/OmRXTAMI5BYpCgKF65ahoPHfRSLY1NY1GVzGVAl8/pobIUKAGNTzsZoWZTm1QYVAGSNfDZaRSoRg6IBYqUEqDK6qCyUaBcorj4jOsTZQ1iLhPDDXCsWW1UDAkBJqRGL9t8BoCAXHOSIW7HoBkuzkPVgAm6wOIg2vrnJE9Y2/SxC7bD6K1JFAkuxdQRVhLZ9rzco2TRdc/RraLqJjMWi0wq1EQq5AlLpmr0jQzPEmlTVoMgKhgfIubzxnTdi7cfXYmmfcxJ3povcw4qFYCVfEGiarpLRFEVhxYUrmiIWj+w7gr079uLUsWAVncEY0AwN0VgTGYtmaegXUdMoY3FskNRFl159KXb+ZWdgv2jJyiUYGhiqkrK7t+2GIiu4/IbLA9+j77w+fyvUsSmkO9KkJjYvVzspn46kAQAVVx56xqxF3DmLUkUCF+GgYR5nXAO+is0gxBNkAqGl2t29bTfWblk7+3zFfD8YisGlXZfOajshQoRYGGiZWHzTm96EQqEAnudx8cUX4/LLL0cikUCpVMKb3tScvUuIEPOBoqRCtNlsZWKRur8H2ZJGWAZFF8H58i31asULe0mTybKF9IMBopJ024gGQZYkT4Wj5bRYUyz6Ny1kVQdL01A1i1gEZElEfudvgInjVeIyFeVgVX4OxeKi+n12j6mYzyLZlqn+ThRuFG66bDledt0leM8rn4dKqQQuGgfNkrH+avcQJvUYKo/dhWXLlpr7O7vZ95ItxG/1RetweH+wdRdQyxO09jlGmxZmhoQIxyAdJQebgQFZ1RERYk1boRYlFR3xSMPsTTcsYjGZ6cTR/U9WSU87Ht/6IO7/3S+xZPkqjA0PVo/dzocfwEXrNyGeDParX7ZyNU75WKFOjo+ivav24MQzlCdpnonxoClUPyeWqm96wmmHKoqEWFTmMWMRAAy6plhkaAoXL/F/2CXEoo5ojHyey8UiJsdHcar/aAv5inGkw3zFeUFYi4RoiDlRLHor3hqi4sxYNCTyQD6db2JSileTbbYZi0LaSX41iapiUVK9rVBt9kXBikXzD/ZMRIpGRfZoUpozv2EYDTIW2TorVHvGIgDz/DFY9ozXIX35y3DpS96Nyek8YhEWUav+s0hgEGIRgD9hx8e9jyNrt0JlAFvTa9PFq7Bzn/e91g7L9tOu0gxCIiagVDmzisVTI+Re/uaXPhtHTw55ZiH+7A8P456/7MSa5UuQzRcxaSoL/vDw41i7ZjkW93QEvseFq5b6E4vj0y5iUazL1fRCT0caADA64bRDLVeIYnE+ILFpPDGs4VROhzCDZl5bMg5FJxOzSgO7wNJA5+JV3t8PIc4awlrkqY+Z5p8x5iShuVIsHsseI9ttwjrUgkV0WMRiUSZEVaVUQVEuOhWLDWxOWdpULAYcjqHiEJJN5FJb4GiuKWLRgiRKYGimjlh0ZCzSFovlvQ3N8LBCbaRYLLSuWEzYJjlZBOpbb3ornr3m2Xjjs96I8eFxsDwLJlp/PjPdpKdSaqZm9IHdChUAVq9d3RSxODVGapFSg1qkaoUab2yFShvkePspFit6cI07Zk64uukVN2F6YhrHDxyvW+Z3P/4d9u3ch6UrlkJTNYyYE8l2PLgD3Yu7sew8b8cxC32r+wKtUDtstQxN0Y4M0iSfBE3RKLsmAbab9cu0qxYRKyIEQahOOqAa2TDMEbgZTHKKp0xisViCqqjYu2MvNl65cdZj6c/2ozvWjY5ocI0YIkSIcwMtP51873vfQ6VS/+VfqVTw/e9/f04GFeLchKVo0uZbleSDkqji2LGaRWTUpVTKV9RAW1KepVF25TByDA3h9HYAtf2N8mS7rJdXpA2KqkPVjSZtMckxJFao9QWnYL5EN0EsSiqxQlWrikUKklTB9J++ifjj/4MOkxBNx/hqDV4q1CwbvDIWY3xtTLIkQqxUkLQrFlkG2ckxGLqOUrGA93zsc4jGa5Zpsqrj878/hHZlAtrYUXT3LiJjnSWxKNqYq9UXr8eR/Xt8Z8dZmJ4gxWoxT5ph1lm0/l2UIseHpgzIWmuKRd0AFrW1ns81blqhxlJpGIaBJ7Y95Pj70QN7qz8vWb4ShmFg+NRJaKqKJx79CzZfc2PD9yDEor8VartNscgxdDXP0w6appCO8SiZFrSZzk4AwLQrZ5FYocbgJ2Y5UzAoBrJJNm/qy6A76d9QTAocJFWHECcPguVSAU/usPIVgxWLUyUZE0UZlyxuQzLMV5wXhLXIUxAzVqw7Uf3OnzMr1JkoFs0mgqm+qxTJ717ETB1Yj+8pdZbEIkUB8WA7Zy9Yk7Mqspmx6LZC5VzEYkPFossKVfRQclz/IeDC5wHxzuCMRZcswTAMR8YiAIAVMJmrYHQii4oo4+v/8g50ZFyTbipZ5HSiAlvSTRocgcSiF9Hso1gECLG46+BxaFrwzPSRcXKNZJskFuOxM2+Femp4Ah3pFJ534+VgGBp/dKkWj9qsT9esILZaR04Q1eLvH3ocz7l2U8P3uHDlMhzsP+VZqw2PT2FRV23SGjTZ/Dw2p1gcncw6Xp9PxaLCJXHZ7SVMi7NRLBqQpAqOPvJLAMBF68KZ/QsNYS3y1MdMLEiBGlkwV4rF41lCpqT44ImjXrBsWS1r1FwuB1mXHRmLDa1QaRaKrgQSraPlUaS45sfHMc0RixYhJomSgzAryKRfkbTVIjrlf750Q4cBw5F32BSxaCP4ms1YtCsWWYpFuVBG/8F+wADe+S/vRNci/5rMIhZno1i0W6ECwHmXnIeBowMNbUstYrGYD35vndGhg2QsNmuF6gVN1yAawbXM2PAYWI7Fdc+9DkJUwPYHtzv+PmnLxl66kkxWt+xQtz+wHVuu39LQVWzZecsweGLQ0352cmwS7d21SU4czTnIQJqikeJTvopFN7EoVSREopF5z1+djWKxXCjj0J5DECvirPMVAaJY7Ev2IRVp/fssRIgQCw9NE4v5fB65XA6GYaBQKCCfz1f/n56ext13343u7sY32hBPXRw9uA8AIM5nkFoASrIKxdaoFHjn5V6Qgm1JIyyNsse+sCVCRLU6t8jalsA1Jh6skl2RxWqeIlBT5FnEokX2BGcsaiaxqJvr1KxQ7faW7XG++salYh4cH8Ell17uTSza9qGQJ8oMK2MRAMTR4/in1z2/+vu1z7rJsf5dO09hOFdBd/EoKAro7CbE4uwVi7aZeRetR3ZywpFX6IUpk1i0qzTtWJImD12WYpGLxiA2SSwCwJJM67ZV1phZjseKNRfW2aH++Ntfr21/+SoAwOBAPw4++QRKhTw2NUMsrlqN0aHTnurLqfFRtHfWZmRyPpmZANAR51GWVOi6gXYzl9Eiay1IYgWR2PwHcxsUU53o0J2KgPOwFbbQFuUgKRoiMdKULhXy2L39ESxbudpBsnrhsJmveO3qzjBf8QwjrEWewvCZydwq7rrrLgCApspzo1hsQiFVh6pikTTzKLmByt2uBGRd9wyanT2xCACJxrPs3bAsQSuSD7Foy1jkObZBxiLltC6lGJS9LEdj7cClrwVSi5ErlMBxLC5ffz4uWOm0CtNcxGJFlCDJCtptuUaHxlVc8ap/qv7+mhf+Vf37SXnskfsQua2M3gs2g6Iof8KO98ncZFyKRcOpWCxXJF9VnoVhk1hsRbF4pq1QT42MY9miTrQl47hyw4V1OYtf+M7Pqj+v7jOJxZND2H90AENjk4E2qBYuXLUU07kixl22pYBFLLqsUJvIWOw2cwxHzqJi0Q4hMkNiUSd18fTBhzFYAFaff/4ZGF2ImSCsRZ4+mCmx+Pvf/x4AkMsGZ9U1iyNZonyfyXOGpVi0FFWUQLYhsDVisZEVKkdzkDXZl1gUIULRlZaIApZiHSSfHx437z1iWQRDM1Bdtux2kkc1VHA85zlOSz1K29wOKIpqbIVq3pfPX3c+zrv4vMBlDcNAPpt3KBZLYyW8+29rmasvfO0LA7cRTUQRjUeruXYzAU3R0AytehxWr10NXddxbP+xwPUmxwhJ10gtadC2jMVSpeFEbj+4cwm9MD40jq7eLkSECDZctQE7HnTmLP702z+t/ty1uAscz+F0/2mMDY3h5NGT2Hy9f76ihb7z+qAqKoY9JgBOjU2ho7umrGPp+vijdCSNilpxfF9E41EIUaHOClWsiBCiQu16nCcnAp5vnViMJUnGYrFQxK6tuxCNR3H+2tnVIgW5gClxCqvTqxFjY7PaVogQIRYGmu6WpNNpUBSxwzvf48GGoih88pOfnNPBhTi3UM5PA12LIMpzY/kxG0Q5BiVJQ1YkjUpKFR1ZawBQFBsoFhkaFXnuSFJrW0H2q27Iogje5mGeryjm2CgAhs0K1f+jTKxQKYiiBDAcGMZbGbh+SRsmixIoikKpkMf6zVfhs3f8qG45CnCoLou5LACYVqiEnGMoHT1L+jxJPVHVcedf+rF5eTuYnAwKQCLVBj7SurKvbts2Inj1xesAAEf270FXr39AddUK1abStGOpSQzSlAFdB3gh3rQVqn39VjA+MgSsJT9vuvoGPHDPr2AYBiiKwtDACTz4+19Vl23v7EY0FsfgyeM4sn8Pkqk0zr+k8UyyvlXnwzAMnD5xDKsvWld9XVNVZKcm0NHVA5j8IEfToH2YxY4Ej1xFgaLrSKTSYFi2TrEoVirgzgKxqFN01Qq1EZICC1HVqwRoqVTEnu1bsX5zYxvUgyMFdCYiWNkVb7hsiNkhrEWewtA1IEB93ywGh4aAxYChzYFikY3MzArVnbHYiBiUAxorNEsIldkiuaj2s4GmZkeRRhGFcpVYdNZEGuciFv1KJl0lSjOKwpPHhrCuDQDFBGQZEuSKZVx28XnY9uMv1/1NdT3CTJuz69vbEsCg+bY0h57ODI6dGvF+A1UCVBGiQc4TFxHQ3ZGGJJcBeBBQXNw709qhWHQep0svXAkA2LnvKC5Zs9xnT21WqMVmicUoSmdYsTgwPI5lvURV8exrLsOXvvt/UFUNLMtgeGwK//XzP1aXjccELO7uwJGTg5iYzkGI8Lhu8yUN3+Mi055s/9EBdJsWphaqxKJ1+asiUY02uHh5nkN7W7LeClUUzwqxOBPFYlsijqwGyLIEbuoYRrk4lnALrwEnmp8TkZp9DX8uIaxFnj6YKbF4+tRpYDlQqszcztKOo9nGWb1+sIhFS+FXJRbtikVNAk3RWNW2CpImOexFrW0EKayKIPfgJN/8816zGYvjw+S5UqyIRGGo+dcOqk6IRS/+s0rkgEb//n6gpznFYrFQRN/qPnzrt99qOFaxLEJTNaJYNE89S7GIJ2v1kvVM78YEJmBoBihQ6OzpRDFfRAKJuuWaAUuzjizCvjV94HgOh588jLWb1/quVyUWG1mhMjp0nVih6roORVLAC60TV3nZe2K3HaNDo+haTGqRzddtxu2fub1KzhVzRfzqv2t9EYZhsLhvMU73n8b2B7eDpmlcdm3jSU7LV5P67MSRE1XVo4XJsUlsuWELBkCsUr0sfNORNERVhKZroM2JzBRFIdOZwfS4S7EonoOKxWIZux/djXVb1oEJEGY0gxO5EwCATT2bwgnZIUI8RdA0w/HnP/8Z9957LwzDwE9/+lPcd9991f8feughDAwM4CMf+ciZHGuIBQ7KLPLsOXfzD1JFRjkGqm6gLJuh1R7VZUFUA7PveJaeU/VlxdyW25I1CESxWD9GwcpYtP4UZIWqEStUaxmaoiCL9c2otUva8JZrVyEd5VAqFRFPej8YMBTA2MiagkksxpMplA4/AkNV0LPyInz+uz/3XH+8IEFUdFyxsr2acURRFDq7e333oVlUbFaoHd2LkO7oxOF9wTmLU1Vi0XtG6WLTCpUxryEmmkCl3ByxyFAUulOtN7EmRmv2YpuuvhETo8MYOEZsYO767jeQSteswSiKwuK+lRg82Y+djzyAS6+6rqlA7RWrLwBFUTh6cK/j9empCRiG4bRCZSmbFaqzAOxKRFCWNKiaAZqmkW7v9LRC5WMzezCaDXTQdRMK/JAUWFORSgrooYF+DBw/0hSxeGikgPO6YkjHWi/YQ7SGsBZ5CmO2JKALlKHNEbE4gwdoyWyUmLaNlNqAAGpELCpzQCClbMQiWjsufopFlbW+1ynQNA3F8Pm+1RRTrUjVVIo07W2FakO+WEZbwjlhQ+fiODCuoUw77ylTWdIwzaSSuPuwgpJs4KLlPXjoh1+oLlM3o14k933JqNVQS2yz0uvANaFYpGnHddeWjGPN8sUNcxYtYjHbZKZSPCpAVlTI8plrTJ0aJopFgBCLuUIJ201Luq/84Jd1hNma5Ytx5OQQ/vDwE7h+81pEmyDxVvcthhDhseugMzOpVBZRKFWwqLtesaj7NGXt6OlM11uhVubPCtUOYQYqgWQ8CkUzUC6V0ScUiOJ4ARKLJ6jleMMvKjhF953tocwrwlrk6YNmicXjueP4ys6v1C2vt3i/9YJhGOjP9Tde0LWOBSsPrqw6n18jNut1URXB0zxedeGr8K6N76pTHlpWqH5OqCWTRWuPtHsv4AEv5ZcXKiUyOUsW5TqLTzc0XfPNkrPWoykaoplRTFN0Q8ViuVh2EINByJs5w8m2JPL78tBKGjoWd+BrP/9adRnRIx/5kaFHsE3fhvHfjiPBJ9DZ2+kgBlsFTdEOZSfHc1h14aqGOYtNW6HSOjRDQzRGJlDP1A41LzUmFseHxqsWtFuu3wJFVrDn0T0AgF/+4JdQFGcdtGTlEgyeGMSOB3fggg0XOGxp/dDR04FUJoVj+5yKTl3XMTU+5bBCZWkWFCjHZywjZFBRK3Vq2kxXxjtjMSrMO7E4k4xFhmUgRAXkp/PYu2MvNlwxNzaocS6O89LB6t8QIUKcO2h6GvYNN9wAAOjv70dfX184uyBEHWiN3BzPJrF46tQpABFALgHgkPWdPg8UJRV8gDVihKVRKM2d+rJsKhbjLWSwyZLoOcZOc4JhJtLYClVWdYcyk6Vp3yxDKy+yXMh7WqCS9eHI27OsUH90x1cx9fufgY6mwF/8Ygeho2kaGIbBdIlcI1ed146VnXHss22no6cXTaRPmfB+qpFtVqgURWGNmbPouxXDwPQEIcH8FItdCdIQEigVQAR0JA5JrFT3KQhJgUW0CetbOzRNw+T4KKy5cus2XQGOj2DnIw8g2ZbB7//vx3jNO96P//rKZ6rrLFm+EgeffAL9h/fjb1766qbeJxZPYNnK1Ti8dzee+5JXVl+3iNb2rh7APCMsTYOiAF3TwPHO/elOCShKk9UMz0xHF6YnJxzLSGIFbdH5V/MZoMA1qVhMWFZlpi3Qtvv/AABYvyWYWMyWZYwXJbxgwyKkhBkom0K0hLAWeQpjjqxQLVC6WqewaxmsQPIJW4XZWHz8yBAu4zmitAqC1IBY1OZYsdgiKpJCJie5GiZybBHe/KsK3vg2sm3dIhbd51JXqopF3crhphlUGtif5woltLmaeTobxcXfKOHP377Y8bqlWPzWj+/Gd+8uI8oKeNMmwfEdkS+WndszG1oOYrGnA8Ap7wFxUQexWK1EPK1Qa/XBpkvWYOe+YLVJVbHYghUqAJQqIvgZNIuawamRCfQtIs28zWvXIJ1K4A8PP46LV/fhP//3t3jHK5+Hf7uzZkG2ZsViPPLEARw/NYJ/fe/rmnoPjmOx8cJV2LHXSbxax2NRV6Z2OjQZoBiUKhLisWCFXE9HBqMTWcdrZfHsWKHORLHIcSxUg8LU+AguW0yD7jkPYBfm5KXv7VZw/Wvn35XibCKsRZ4+aJZY3D68HXfuvRMvWv0irGhbUX1dMzTohj4ru8NpaRoVtYJMJNN4YRP2vLfRI6NAV02xaMFuQyhqIsmOoyjEufpnNo7moGj+REgJJQiM4LmuH5pVLFqQRAlROhpMLBr+xKKlWKQoCoZZizAU09gKNV+qKrcaoZAjx/iBux/A6R+dRq/aC24tOa6pdAr5bB756XyVkAOAsfIY/unBf0KH0oG9/7cXbZ9tQ2dPJ04WTjb1nl5gKIbsr61lcv6687F3x17/lVBTLDbKdzRoA7Im14jFUgVtpg15K2hGsTg2PIZ1lxN3pb7Vfeha1IXtD27Hhis34Gff+Rme+3fPxa//59fV5ZeuXIr/z953hjtykFef6er9lu1919u8LuuKccOYZgi99xLgIwlgCJCEUEIP4ISETsCmhRZMN9U22Ma9Yq+3993bdHWvuqbP92OKpmt07zYvOjw83iuNRqPRaOad97znnNt+fRta9Rae99rnRdoOgiCw7sx12PmXnc7tm61DkRXdCtWYmzYVi4qsgDB6cYVYAdsr261jzES+5CUWhY4ALsZ5lj3emItiEQASqQQevuthdFodnHXRWfPejn3VfViUWoQs1//xMsAAA5ya6LvCueWWW/B///d/nsd/9KMf4Zvf/OYx2agB+sdUncdDh2Z7L9gHlr/vV/jbb9/fe0EDpmKxcxIzFgVBLwxJowlX54NvBprCiVUsmutKsuFklCh2i1tJEMDQ3ptVM0sgnzBUiExwg0WUVUeWIksRVsZiEFrNBpIp/yYBTTizGcsTuufYn37zcxSuejOS654EliYdN9mmGnCnkUW3fkEGmbiz6DdzFkNhFMeN2Yrv025Se+2GLdi97S+Bvv+NWhWSpB+3QRmLpgVonDSmHFm9gI5ih5qJ031Z3wJ6PqGq2LJB4wlsPvcCPHDXn/CT73wNDMPgOS99reM1i5atxN4dj0FVVZx78WWR32vdprOw67GHHY85iUUdLK3bPamql0wdyXBoCjJkY5vzxRKqPlaoNHfiiUUFBOiQ4QE70gYpKGoUWC6GB++6HQuXrkBpJPy43DnIVzwpGNQipyFORcUiNb9GfqMjAhQTQbEYQiZRDCCH23RFQro/VwD7dbMTYIUKgsA3HpKgGaSlauZRKq5miSJZ6k2LWCQotHvYj9WaLWTTASot2ln3HJ3UB1q+9bOb8aHLY3j92ayVV2kSO5Wq6zrfqQIABNucpU4sBoCO6Yo5Q0VgWf/TLitUTYG9m3fuxtV4aPteKIp/TSlJMqZn9W2rNaM5IqSMZl5gHiSAWdncR/1fmxrNNqr1JpaM6opFmqbwlAu34Pd3PoQvfe9XEEQJ73j1cx2vWbNsIR7fcwi8IEbKVzRx3ua1lhLSRJdYtKlfFBEgKTTbvEWsBkFXLPpkLJ4MxeIcm3kqSAxT+nGxcMW6Y7lJAxwjDGqR0x9uVVFVqIYuP91xDlcqUOZsp2pioqXbeedj0YnFltStK6S2BJIgrYxFEymmq/znZR4M5bV4NGFaoQZlLLbQQpbLgunD0p7u02peEARdsRgyNGYqFv3u/e2KRfM6ThAEhE7vjMWoikWTmLvp+zdh+OnDKF5dBGU4X2TyunKuZssUVjQFH7n7IyBAYMXMCqt0KBnX3ijw+6wU6VV2rt28Fgd3H/RVTJow8wB7WaEC+jETT85Psegmu91QFAXTE9OWYpEgCGy9dCseuP0B/OZHv0FtpoaXvPkljtcsWr4IE4cn0Kg1IuUrmjhjyxnY8Zcdjv1pfp/ujEWSIKEoipXXWYwX0Zbbnn2eL+U9GYtCRzg5isU55D0DQDKTxAN/fgCxRAxrN88vX1FRFRxuHMaKzApk2Oh5rAMMMMCpjb6JxU984hMolbwXuuHhYXz84x8/Jhs1QP+46JO34HlfvBOV5jGYarfhd9smI5NrhHFxPJZk3FzBEvo21PngbWn1UCzGaAqCdOwanW1RAUMR4HpYoVYmu1lAotAJ3UbzKZoJblq4iUWGClYsmmg16kim/C/2NNklFluNOr71Rd1m7FNf/yGS6y8FAHCuba5Xnc2d0Yy3IVQa6d30rExPhj7Pu76vNRvPxGyljMqUf77SjG19zQArVBMsqReZhEGQRSEWswkWXJ8+9FPjRz2PnXPRpfjLfXfi59+/Ade85DVIZZwTXouW6hlOxeHRQKWpH9Zu2oJ9Ox+HJHabuzPlKT0ToNA9z5s5n7pK03kTOJTmIMgqWoYiN1cc8rVCpWMn3sJL1fpQLBrEYluUkUylIYkCtpx3cc/X7ZxooJhisXLoxFu9/jVjUIuchpivutAFAtoxIBbnQEK4STWK7a1YDGuskLROqMwX8egNSaBrLQqgm7HYA4p5W+FulqiyruQjCKhal1jsmbHY8Fqh+qHDC3jvZ64HAPz8ix/Eq88yvjdGb3gVDRusStW1n03FIro1SSixyOrbMuWy2ATJ2D4X6Tnuzt24Gu2OgJ37vdd3AA7LzmoP+zETSZtiMQifmLgE669ngEz0usDE4Qm9Ob5kwZD12FMvPht3P7ID193wE7z2eVc5bUoBrFnWfZ+wPEk3tm5ag10HjjrUmiaxOFqyHbeyAJAMWh3eIlaDMFL0sULlBSRiJz4LcC6KRQDQQGLDEAFZBYjM3BXHAxw/DGqR0x/9Nv9rgvN+UoUaOOAaFROtCTAkE6jw8SMum5LzWsKSrEPFyJCMxwqVIRlQhP99K0OFZyyaxCJN9K4VzO0Nei87JJvdt9ARfAkzO2RNBh3gFmQqxChQFkEaxQq12Wgimeldiyiygi986AsAgPd+9r0oXa4PnZoZlyaxWJ/tDjm15Tb2VPfg6SuejiG2e72NQiyGEYQUQXmOi7Wb10JVVex9fK/va9rNNnhjWKmXFSqgq1xjRi0yV2KxJob3X2bKM1BkBcMLuhEtW5+8Fft37se3P/dtXH7N5Vi03Fnj2DMSN5ztdLcIw9oz12K2PIvpie5wgEksFmxDTjShW6EqsgLC6IkVY0W0pJZH1RtkhfpEyVgE9JxFSZCwaeumwN9WVIy3xiGqIjYUN/Q1hDDAAAOc2uibWDx06BBWrFjheXzZsmU4dOjQMdmoAfqHYkyAH56d20U9DGaz5MrP/BFnffh3gcuRpmJRPAZZAvN8PW3kGdSF4G1pi4qlBlyci4N08Q8sTYKXj12jsyMqSLC0w0bUD2Vbvp4k8GBCiEVTcEmxwQ0WQVEd78nRFMRexGKzgWTaRSwaXwpF6jmNgJ6ruGLNehRKw44sOs7YryYBVpt1TmqRPvsgimIxiCDU1wmIiotY3HAmAGDXNn871JnyFABgZOHiQCtUEzRh3ICwZgHde5Ivn2AQ61OxaCpA7Tj34svBdzqQBAHPf/Xfep5ftGwlAKA246/kDMLajWdBkkQc2LPDemxmegrZQhEU3S0cWeP7VFUFpEuxWErpN6W1jv77zxeHMDM95VhG4DuguBNPLCoaQol5O9KGRXFHUpAw1Lq9bFABnVhcWUoif4LzFSXDZk+d78nyCYpBLXIa4hgrFo/JOoNueqd2ALd8zP85d14MxVqODoEItUJlolmhmuRlEEHrUCH0GLggSByZ7DZWOhGJRc1cxt0sUSTj/YluZhAZgVhseq1Q/RCPcTh7w2ok4hyedfn53SeMTLqS0cybnnU1sHj9u+LRI2PR3HesPkByeGLa9TwB3uSTSQpw5SKds3E1AATmLJok2rKFw30oFvVapNkKq/sJqGQMCHG1CMLhcX1AaMlot9F59SXnQFFUVKoNvPv1L/C8Zs2yhd137kPBv3XTGgDAgza72InyLDiWQS5jG9pRRICi0Wx1eisWi3lMlF2KRf5kKRbn1jxTCRI0SaCGDMD9dVmNPlEwqEVODfz56J/xlUe+clzW3S8p6FY0KlD6zll0Ew7jrXEMxYcikXYm7IpFAOAozpGxGKNjDnWiSSwGnbsZkgm1bmyhhTSTBh0Sz2LCzKGL8nkqkxWkz05j0w2bwHd40AQdqgCVVbmnFSpJklAJfR0kehOLURWLFE3hjC1nAACe+vyndh83FIvZvN4XMXMYt1W2AQCesvQp2FTcZBGQQDRisTxeDnzOL4tyxboVYFgmMGfRJNFGFo+gFSHvWVAEhxXqXFATamARfA9dHtM/49DCbi1y7iXngiAIVKYqeNlbX+Z5jZ1YpPoY8F53pu4MYLdDNTMnHcSioViUZdlSLBZiBSia4lEFm1ao9rxMgRdOCrE4l4xFQLdCBYAtF84/X/FA/QBIkDhnJLqrxQADDHDqo29icXh4GH/5i7dJ/8gjj6BYDJnyHeAJj33TLVQ7Esaq/oUDYRRrx4KMa4dkI0YBCU3PSAwhOduiDI4m8dVXnYu3XL4KHEM5bEg5msQ8BwwdEBUVMYZ0qAf9UJ6wE4tCqF2rSRhSbHCjRHIpFilSt6YMgixJEPiOxwrVFH8yBHDLz3+A3//shwCApSvXIFdwFr+sUcRlsvqkuVux6IdiFMViCLFIkyREl1p2aHQhcoUidj/+iP/6DNvPJSvWBFqhWus3bgoJo0HHRyAWCwk2MrFlYmpiDLGEk4RbuW4DSiML8LTnvxRFm0WpiUXL9KaGLPdXoK5ctwEkRWHXY939M1OeRKHkfA+T3FZ9ciUtYrGt//4LpWGPFarQ6YBiT7RKgIAKIpSYtyMd04ttUVaRSOmNTDtZ7odaR8JkQ8DGhVnLSvVEoaLp29iU/zrtVwe1yDHAxKPAh7LA/ttP/Hv7XVyPB7HoVg/2Czrg2vrt5wK3/btOMAJIkua5VwP4qnNZiu2tODStUJ/0DiCWdTYyKUYn5nrh3q/q/20GXye76HHeoFiLWAKAjigFk6w2aIFWqGI3Y9Gm7OtlhapnIgYPpfzw17fhS9/7FQBg05plGMq71ByGwrCY0+sZj2KRrwIUC5WwZyz6NPOSJeC8NwGjmwAAR9zEIoCO1FViuo/lbDqJ1csWBuYsmsTiGSuX9JGx2NsKdT44PFEGQRAOBeeKxaNYv2oJXvKMJ2O1jUQ0sWrp3FR161YsQjIRw/024nW8PIMFQwWryU1Ac1ihJuPhNcXoUB4ztQYkqXsstjtPnIxFAPqxBIDKLbRI8gFOLQxqkVMDb/nDW/D5hz+P8eb4MV93mDrODzO8c5hW1dS+rVDdBN5EawLFeNdSMwrcxCJLseBt7gkxKuZQDPIKrxMmAe1B0wo1CCpUpNhUJLLQXE8UK9SpsSmUnq5flxvthq5YDBigIjQCiqaAZmnfKXXzuyRAQCOiKxbbjXYosXjXzXfhB1/5AQBgxRkrkMwkHffLjFFjmLahphXq4YYeILwiswIZzjnQPW9ikdQVi3brWoZlsGLdip7E4tJVS6NZoSrRrFBzjRwA/4GjulBHnAwekJ8aM4fAu72JbCGL9WevxwVXXoDVxuCWHf3YyDpeN1JCYajgIRbT2TTYWJf8pEkaBEFAkbqKRdOmuCE568zCUAGKrFjZm4CuWDwZVqhzViwax/6WC+ZPLO6v7cdQYgjDieHeCw8wwABPGPRNLL7sZS/DP/zDP+DWW2+FoihQFAW33HIL3v72t+OlL33p8djGAU4xKIESGf3xU8EKFQCSHI2W5L+toqJC1XT1HkkQljXnrE1p1cuy1MTUpE5OdXoQUwAQY6j+iEWRDyemCIChiFBiUVTcxCIZqlhst/TCJ+EiFpuSBk1TcfQP38B/fehd2Glk8zXrNaSyzmaeue/S2RwAoF513mT5oTjUm1g0FYZ+oEjCk7FIEATWbDgTux8PUixOIpnOIF8aQrMe/v0xxg2ImaXEt3urCooptu/cvfL4GIZcuX4kSeLzP/gN3vref/N9jZvYjYpYPIHlq8+wvktAVywWh5zFHkvpWRSqqoJ0TaKaxGLTsKrJF4fAdzrotLo3JDzfsQjZfqEwCShM//mMBK3fxIUR83aYVqiCrCKZymDBkmU9bWV3GfmKT1pVtLI4BzgxGNQixwCH79X/u+OXJ+49zVw8P6LsGFuhAuhtQdoLTECzQzaaUE39+n92Uv8vJbet3D4LURSLYkNXxWUXAwThJJcopjcxydeAh74DAJhpRFO8hYJiXYpF+RgqFrvEYieEWJQkGe2OgEzSn1D51s9uxkve+Unc/bCehzNbbyKfdVlSc/rfcYNM8mQs8jWASTrUnAuHC7hpt97UbZO2Omj1U4DcUgABxKJdsejTRD534+pgYnFqBiRJYvXSBahGJBZNYi3MCnU+ODw+jQVDBTAu26s/futT+J+Pvt33NfE5knYUReHcDasdOYvj5VlHviJl1mAkjWa7E8kKFQCmZqrWYydNscjO0dHAzOUaXjIn1ekAxx+DWuTUwqzQe5C1X/SrWHRvgwKl73W47RQnWhPIx/J9ZRK6rVA5ioNgcz+I03EHUWkqFu0qRsU2LE6TNBRNsQg5P2TYDGRjmKM1G3wtM4nTKJ+nPNElz0RRtLbDDxQoS7HolwVpEpIkSVpdUIIgoikWfWzZNU3D4T8cxvvf8H48dv9jUFUVzVoTmayTJLQsH41bRbsVKgDEfWrNkt+Qkws9FYs+dfXazWsDiUVTnbd01dJIVqiiIlpWqHzIkNOaI2tw+F2HsSS9xPNcQ2ogToQQi+NTiCViSLnqu49f/3F84PMf8H2NqSLsFwRB6DmLj3SdnCpTFRRctu80YVMsGn26HJcDADRF534rlPTXztocFISOAC7GhSqAjwdMxeIfD/8RNT7cgtaOZDoJLsZZatz5YH9tP5aklwzyFQcY4DRD32fdj3zkI7jgggvwlKc8BfF4HPF4HFdffTWuvPLKQZbAAAAA4RQhFlMcjbbsX/ya5KebtKvYiKuhlH/zQU7qpMuX7zyKf/zRI/jkL3S118HtD/fcpngEYnF6sjttKfIdMD2IEYYiQQapKmBkLNrekoAGgQ+eKjMtQd1WqPVmB+WffBxH/vxTvPk9H8bb/lm3gWvUZpE2lIkm6cYZ22xmP0YhFksjo6Ayus2FHEBeT5eDMxYZivBYoQLAmg1bsDvACnV2uoxCaRjJdAbtHsQwRWggABDGZ4xihVoKOIbCMDVxFKURrxKgODQClvNvLPVLXtqxdtMW7NrWVSxWypMouFSRLE1CMFSubsViIcmCJICWoTLOlfTv0MxZVBQFkihYFrL9orHiSoxvfAV+8tARyGr0iV/CuImLqhhNMBQI6MTik57ydDzvlW/q+ZqdEw0UkixWjwwsyk40BrXIHLDtJ7pCsX3sG2+RYTZP/Ai/PlUBkSD3Y83kc92h5kAIuG/WaS6aFSrNWeSdqWDTt8FULIY0Ju/8b+uff9kXnkUcCMm2rwjSQZ61eVG3ZO0BzWxSuhWLqtTNWDSv7z2sUOuGJajbClUwhliuv/H3+MjbX4UbPnktCILATK2BQrZ7LhZV0pOROT3rJharABu3lGGAnrF46wEFxIfrkPNrfLfNTrqaaIoaFBXGujSQru/r3I2r8dD2vVAU73E+MT2L4WIWhVy6D8WiYYU6x1yjXjg0PoUlC3yy44o5JHqoBeeCrZvW4P7HusSrrljs5isyhm2dRlBodYQIVqg5AMDkdNV67GQpFmNzVAkU8zkAAJkajUTsD3DiMahFTn/0q1isu+zQVeiKxabYxOZvbsYDkw/0XIekOYlFXuGR5/IgerkN2OBnhWonFjmK81Us2u8p7dlwFgkYMned4TIYO6gPSE/sC3ZPMAkVJkJdYSfPRF4ERVC+pKG+aTqxGJQDZyrEKFAWQUoRFMSQISdZksF3eE/GoizLGPvmGPb8aA9e/Lcvxoe/8mGQJIl6te4hwVhXLVlz27L7wG69GQQ76eqGX8YioBOLB3Yf8CVTZ6ZmwMU4DC8cjqRYFFURXIwDQRA9rVBJkgTnk1veEBtIUsEDxFNHpzC8cNjT68jms5ZF57HE2jPXYtdfdlnDAJWpCooui3yKpKyMRbsVKuD93eWNOsb+WzqZikVREfHj3T/Gn47+KfLrzr/8fLzoTS+as5WqiZbUQrlTxurcaiTnMDQ+wAADnLrom1hkWRY/+MEPsGPHDnz3u9/FjTfeiL179+Ib3/gG2LlOZA5wSqMj9ldQ83I3pPxogG1qL9y7v4LpZu9MISVk2iUdo7sT5O5tlPRCi3Pl39kVi0nOv3JWkgb5paj4895pHBD14rET4g9vgqP1vBQTMR9VpF2xKIpCT2KEoUiQTPB7S4rqaHCphl1m0DSXaQnqtkLdc9NXwB98BGe/6l/wwte82SrwGvUa0kaWoqlKi7s+VyQr1KFR0Cm9cAs65CpTwRY3NEVC8iMWN56JmekpTPvYqFbKkyiUhpFKZ9BqhmcsAvrxopHRicUgcjoM5fGjKI3OzU5sLli7cQsO7Nlhkc0zPsQiR5HW53UrFimSQC7OoCXoP7Z8UW9EmsSiyOsEAhFCfodBI2kQqoSbHp3AB3+2Dbsne39PAIA+FYskSSDBURBlBc99xRvxvFe+sedrdhj5ioUTnK84wKAWmRMe0W2asPu3J28bQonF42CFKgtAe0YnVGcO9P/6uQxt+Fmh9moeiC1dzWkoBRzZcCQbaoVKS03gri+gScxzwKE+5vjz8LhNsSjKQITcJIt89FMskhQApxVqhxcCa5FaU7/muInFz3zjxwCAD/y/l+P9b32ZVYvM1prI2/L42irlIWM8VqidKkDHHYpFR6Yf69+0OuyjEnjTL3h88T7RUplRhJdYbLV57DrgzVE2bT9z6WRkYtFU3h0/K9RpR77i8cbWTWuw/8gEKgb5a+4TEwyp709R1XM6U8keisWS3sybrOi/JU3TdMXiE8gKdYlp/Zbu7egxwMnBoBY5/dGvjWlDdF5nzIzFHTO6Cuo7j3+n5zpE2Ut0DcX7Ox97iEWag2gbcorRTitUQRGs7DgTM7YhJ5ME1OjgISdTtRUVTASLddMKEwAkQQq1WrWIxV5WqARhdUFNK9Tgvoi+H91WqDfdcBNmb5/Fuletw5v/+c3W6xu1BjI5l2LRRaBGIRaDyFE7zPxB39cHKDvXbl4LVVGx9/G9nudMEi2ZSaLdbPsOQtkhyiIIgkA8GQ+1Qg18vSJCUASkyFTgMlPjUxhe0L9tZjo7t5p43ZnrUK/WMXFY7xvNTM14iEXzd6LIXSvUXCwHAOgozv2QL3mJRaFzcjIWWZa1hgv6UVFf8ewr8IZ/fMO83/9A/QAA4Ozhs+c1FD/AAAOcepibThzA2rVr8aIXvQjXXHMNli1bdiy3aYBTDP3GDPKyCkXVcNOj43jSJ2/Bbx7rP+/gI7/ajq0f/UPP5WTjIu5nz5rmaMgB9wKC7K9YnLEp4vxIPzuevCKD91x9BlbJBwEAWoQpQs6lWPS7ppYn7RmLfE9ihKVIkEyAutKwfIXNakES9YInSP3WahjEoqFYVGT9telLXoXRV/w7Fqzfai37+CMPoFopI53NQVZVq0iIuQjbKMQiE+EGfGYqXLEo+ShU1244EwB8VYsz0zqJlkxl0Kz3LvITLA3VaBrynd52c5lY/82k8sQYhnwUi73wlRtvwce/8r2+X7d24xYosox9u7brdnKGitMOjqYsYtGtWASAQopDS1SgqhryRadikeeN/RTh5jEITGMMX3zFOWAZEp/67U5c/+f9PS2XCWM6NCqxCABJlgYfdNJwod6RMFHnsWFB5oTnKw7QxaAWeYLBzAmTfQaHjosVqgDs/r3+7zs/13t5N4FHz0GZ5atY7NE8EBq6us64vngUi2rwNP3QxC0ACOwi1/a/rXbUjjj+dFqhSpEUi6ZSHG57J0UECH3EyVQsqiAhSjLiMf9rf82wdM0aE+myUbe97eXXAACuuOBMa9n7H92Fo1MVh2Kxo9DW/jThb4UaBxx1We9azr5vzObMHYcUHKxpFplJu1ZzzgY9B8jPDtW0/cymk2i0Oj2beYB+LY7HOLR8iMV+bff8cHi8jKUL+icWd9z0Vfzsi/72ZGHYuklXh5r7Z7w8gwU2+zHaUCyaWZbJHpamwy7FoijJUFX15FihzlGxCJLSz0Epb7b2AKcWBrXI6YugPL8gNKWmw+JQhdr3OdlNCtIkjVK8v9iLXopFlmSdikWZ1y0ebe1BM3PP3Ab9H8HvmWWzwU/6gCN7n4+nbe4JkiCF5kxSoCBrMhjGv14xv0uKoCzlJQkSfId3ZOjZ0ao7iUXTHvbql12Nle9biYWXdO/Z92zbg8mjk0jnnKSWW7HotkKdK+xqTrcCMUixuGLdCtAMjZ2P7vQ8Z9p+ptI60dfuYa1vEmOxeMxhhUrRZq8kfPCpLur7IcMECwXKY2UML+qfWPzqTV/FB77Qfy2ydrNeS5s5i35WqBRJQZEUqJpqEcoMySDJJNGRnMRiIpUAy7EOkp7ndcWi2MvN5BiDjXWJxX7Uz8cKB2oHEKfjWJdfd8Lfe4ABBji+iNQNvfbaa/GRj3wEyWQS1157beiy11133THZsAGeuBAkBbKqYf+0XohtG6vj6Zv6U2C9+qJlaHQk/OThsd4LByATD26CdRWLrqZTeRLIbgIAxCIQEqkY3RdxwdEkqB5Nq/LEGMzyShJ4MFT48gxFgKRZXwLYzBwkbDdFsqgXFPHhZVDS3mZFq6l7wydTadz221/gW1/4ND59/Y9BJAtgkwVQ0Nc1U57C21/+LABAOpt3KFvdpGwtghVqFFTKkzDntlVVdUwX0iTha6E6tGARsvkCdj/+CC664mrHczPlKazZcCaS6Qw67VbPZl6coSCrBBiG9VUsurep39w9URQwWynrisXe0QYOrFy3ASvXbejvRQBWrF0Pmmaw89GHsGjpckiSiKJbsciS6FT8FYsAUEyyaPAyJFVFJlcASVEWsWjZ7tLzm9y+ZE0Jv117KT7zu5349t0H8ejRGl5x/lKcu9zfKsbMWOT6+H2mOBqSrEJVtZ7f3a4pI19x9SBf8URhUIucgtjzB6AxCZz9imjLmzlhyokiFvtUc8m8cwgiykCEe7s9GYtcKDEIQCcWac6y5BwvzwKmIIsKVyymGvuAtc+AeFgC5uOKWXcq6eyqvI4gOfdFpwJfBO0vVVcsCmK32Wper+MBpIvdCvXXt92Hd3z8q/jD9R93Kgqh222f96J3AACuufz87iYqlMPiFPCzQjWIxTBvNx8cmeh+/marg7TdjitAsZjLpLBq6QI8sG0PXvmcKx3PjZdncOa65cgaGU7mZ++FVCLmq1j0bFOf0DRNVyzOgVhct3Ix1q1c3PfrVi1dgGw6ifse24XLz9+M6dm6Q7FIG/uzI+r/7ZWxyLEMcpkUJitVAEDbaHA+kRSLYDNAekGgcnaAk4NBLfLXhX5VRS2p5SEW+7VTdec0DsWHfHP43LBbhLqz3mJUzGuFSroUi5RLsTg1Axi3hJZikfEnSQmN8LW6DIObcPPD1NgUcLb+b4mXQnMZaYLuKhZ9IGv692InFgmCgMiLHjLQRNu4HqfSKTx898P47Hs/i0/c8AnEkjEk1iQAWzn7pmfoMRprNjpt1N375ZgRixNlxBCz1jlku2ZTpD+xyHIsVqxb4ZuzaKrzTBK1lx2q+duIJ+MOK9RMPoPZ8iwa1QZiIdbppro3T+cDl5kam8KFV14Yuh1+GF0yitEl/av9C0MFDC8cxo5HduCyZ12m75MRl2KRoC0i1d73yXE5tOU2NE2zhtQIgkB+KG8pFhVFgSRI4OIcmmqfzZ55gmEZi8w8GYrBfbV9WJRahGysvwGEAQYY4NRHJGLxoYcegiRJ1r+DMJA0DwDomX5qH5N5frl4q0opLMrHsW287qtGBNBTsZQJURGZr024CLCZ8hRgXOtYmgSB/hWbYeBoMpSEkEQB1cq0RSyKAt/bCpUmQdIs/PaGaKqv7MSioFfAifOej1Z2FG1RRsJWgJtWqL/64bfwzc9/Gpc/42/AxrtNDcqwo6rOdCcIU5mslbFHaAoYY5vNCc0oGYu9wHfakKRuc7bVqCOdzVl/MxTpeywRBBGYszhTnkRxaAQpQ53Z7mGHGmcpSIqKWCLpSyy6t6kf0hkApid0de/QyMKexOL6LeeiODR/eyyW5bBy3Qbs2vYItpx/MQB4rFBjNIVaiGJxKM1hos5DVjRwNIVcoWTZCpvZjCpBz/v3lOBofODZG/Hcsxbhn3/yKL502z5s3juNV1+0HHmXHSnpyvuMglSMhiirUDQNZI9Jvp0TDeQTDNaODsLHTxQGtcgpiO+8QP/v2qcDyWL4skDXctJPsXg8Jnf7JhZFwN7/ISIQTrXDzr/nrFhkrf0zXp7BM25v4+r1ObxzXSqUWAQALD4fGLu397aGodYlFjVNw5HJCgRZrw3aghQp440MGiBR9IxFewa3+c8gBZlphfrD39yOD/zXd/DMS7cil05iasa5f+0knN0KtWOzQrWyctxWqEIdiOf6srxVVdVQLCasdfoRiyThvdqdu3E1Hti22/P4eHkGT7vkHOSMDKdaD5WAiVQi7shYTCZiaLV57zb1iUq1jg4vYMlob4XMs6+4ILJ9axhIkjRyFndbZKAjY5HU67uWMRjYi1gEgNFSHhNGM69tqDlOimJxrsTiOa8EqocBblBnnEoY1CJ/XRD8BqFC0JE6DjJSgdK3nWpVqDr+LsaLiFG9HRQUQr+w0qDRlFzEIh2DaBty4ijOQSIKigCacGYsVqYqFrHYS7EYRzyStakdUYjF8ngZWXSJCFILvq+jQaOtthFn4745jCbhSxKkRSxqqgZVVQMJsGZD34/333E/brjuBmw+bzMy+YxDoQfAMZzsIClV274zNimKFWoUTI1NYSmWWut0EIsEBUVTfJVpazevxfaHt3ser0xVsHT1UisjstlomqWOLwRFgKZpHivUTFYnFt3b5IapWMwxOd/nRUHETHkGQwt7Dzk9/cVPx/aHvJ9pLli3ZR12PboL7WYbfIf3zVg0v3/C1tfLcTnwMg9FUxyWvYWhgqVYNPM8T1bGYkvR67UTfX1SNRUH6wdxyaJLkAmJshpggAGemIhELN56662+/x7g1MWf90zjDd+8D49/+Ol9qWkmG97iWYxoDWhCkFVf5VgQGrwcqBAiQqiIhw9XQ9ebDlEsmlaoMdbZNJydngJWG+9NEOAY0lI3zgcm0erOHnTDnvEI6IpFu3Wq6qOoYykSBO3/U7aINlvhYlqhkmwCIEjUeSexWJ+dAUGQ+ObnP41XvvVavOr/vRuz7e7rzc0xCUgAyGRzaBlKBFLTrG021WqNCFaovTA96bTUrVdnHSQeTZGQFdX3aFmz8Uz89iffdzzWabfQbjWRLw1btq/2z+SHBEtBVlXkiiVMHDnked7cJlaoQqSTgTmdQShP6I3doZEFwN7wm47/+t9f9bXuMKzdtAWPPXCPTqwDKAx1LUcITQFDk+gY1q8k7f1Mw2kOLUG2fvf54pDNCtUgFkkKNKniGPyccOaSHH76tifh63fsx3/dsgfv/+ljeN7Zi/CUM7rbzcT0Bi3rs71BSHE0ZluibtXX42VmvmI+Mb8g8wGiY1CLnMJoV6IRiyb8iEUpGpnSF2SxPxtmdwMxApmGisvasuMapKG5CBmLhmLRmHyemJ7Fb/bIKHM5vDOW9X39CK2TZJXsZhTzywDMl1jsEqSz9TY6vIC/+b6EN5zDoCNIet6t8bwgKvClZ4L2tSIBJOlQLIqKqVj0J3pmDBLw/f/5LbzzNc/Fp9/zBlAU5SEW7SSc0wqVtL6/dkf/Xr1WqHVDKRp9AKU8U4MkdT9HpVrH8sW2YRyDjNYVds669tyNq/GRL37f4W6gqiompmcxWspbeZImqdoLI8Uc9h3p5kcXc2mDWHRtU58w8zWjKBZ//qUPzvl93Ni6aQ2++4tbLStgR8aiYYXaFk1isXeTfaSYw6RJLBrHQCI2B3vjeWLOikUmAQwNLMNONQxqkb8uiL0cB1xoy+15W6HOdpz3zXkuH0kNKFL6tnIEh4bYAAHCIthiVMyTseh4rSJGylgMuj+Kq3GwZH/uNL0+kyzJmJ2edRCL9klqoeOy/zQyFimGCs1YVBUVhOEIpRiOS2yMhSh4v+uGUYv8z6f+B8966bPwjo+9AzRDo2I4N5hEp9021J7vRyiERe6Z1qBRFYuJkAEhgRcc63GvkyZp3arTJ/lq7ea1+PUPfw2BF8DZVPwzUzMoDBccisV4yBCPrMpQNRX5Uh7jh7p9mkw+47tNbtSFOkiCRJr2V4uaNrhRMhbf+5n39lwmKtZtXofvfel7qEzq37HbCpUhGV/FYiFWwFhrTFfN2u4f8qWuYtE8BrjYic9YZFim70GJY4XJ1iQERcCGwoZIAwUDDDDAEwtzzlgc4NTGv/9mB3hJxd37A+yq+kCQYnBvuYnfbpvwPC4YVoL9gJf7t0C7Z1+4Ci7NhSkWVVAkAc6lBqxMOzP8ehGBYVAVW66h0UDjmPCf3Myk0/pVEnnHRFG76SWbWJq08uTcEAwWR5O7hYtphUoalnRuPvfwgb3QNBXv+9QX8Jq/ew9IkkSl1S20U5T+WcwsRgBIZXJoCfrnJaCCNLa53dKL8dqs/3d1iFqI7Ju+Gel4KU+MA8Y+VcU26jXnTVeQFSoArNlwJmbKk7rVrYHZaZ340jMW9YK2WQ8vgJMsDUnWcPaFl+Le22+2bhQzOb3gbBjblOCngfoElhaSgevyw9SE/v2XRvqzDp4v1m48C4f27cbYof0A4LBCJVUFFEGAtxSL3t/VcCaGpiBDNohsnVjUbwZMclkFhT4FnKGgKRJvvmwVfv32S3DBigK+f99hfOym7ZgR9WOPiev7vh/FYjpGQ1B0xWIYGryE8RqP9Qsyc8rRHGCAJyw+lNX/P98MN78bW6lPdWEU9KtYNLNRCquAkY066dQLlb3Ovz1WqCyIXs0DoWkoFgMyFm31hIlRg1iss6OhVolShLw+AEC1OyxzeEq/lu2sqHjP7/XvSla7xcLRaf9rZS/FIi/ZhpxMYjEg12jXAX3Q5ssf+jtc909/66uWB5wknKlYVDWgLVOWerDe0ht+DitUTTMsaBMexSLlcl2w44gt7wnwUUEGWKECwLkb16DZ7lifDQBmag3IsqJnLBpNxGo9GrF49ZPOwW/veNDKnyzmMtY654PDE3p9NJeMxflg68Y1ODIxjYe37wMAXyvUpuGOEUWxOFLKda1QT5JikSAIMMwgh3mAAZ6o6FuxqDgViyrUvhWLbivUDJsJzRY0YRKLJEg0pSZom4YgRscg2dwP3MSioAhd8tDAzFS3FrGIkoDbHk7jQhWLqo+rkJ2UAbzX3OpU1Xsdtq2mMubsc5nEYlDGokn4aqIGgtGv+6pgxOME2GSPHdTvzd/03jfhXZ96F2jjfF7gCpj+7TSWtnXFoN021KFYVLrqMNNWtdPq+JKYbrhzHe2YdtUiJom3/B+XY+SFIyAJMvC4W7d5HVRFxd7t3fpVFETUq3WHFWqzFm6fJKkSVE3F1ku34qG7HrJUiyax2HDXRy7UxToSdCLQ3nZqXB94nkvG4nyw7sx1aDVaeOSeRwDAq1gkKOuz2o/hfCyPjtTxWB/nS3nMlvXftEmGnyzF4skiFg/UD4AAgXNGzjkp7z/AAAMcX0S603n+858feYU33njjnDdmgGMPe+5dVNh9wcPw4weO4Nt3H8R5ywsoJLuNIVHpT7EI6ARYos/hlbv2TYc+nw5p+AuyghhNgnLlF86Up2BP79GzAvvMVjAIt+r0OICNjufiPZoLM1NOolaWJIe1Rrte9byGpUiQtP9nFY3XaqoM8+duEosEw0IjYJGAE0cPYWh0EZKpNEYXLcVTrnmBtZ5Ks1v8dhWL3WIxnc2hYhxrpKZaisVOq4nSyALMVsq+Dbr9tF6M76+0sGqou+cVn6yt6ckxqEILs7dej8bDN6H+rLM9+4GXFd8JxbUbzwQA7N72CIqX6zmLMwbJWCwNgzIUnz0VixyF6aaAC558FX7+v1/Hvp2PY9UZG5HO5lCvznjIzn5dJsoTY8jkCuDivRtm/eLwTBtf//N+XPvUNci4GrlrN26Bqqq497abkcpkwXLdm01Sk0ESsKxfST8r1BQHXlLRlhQUAeSLJRw9dABA1wpVAQmGJNA5pubCwNJCEt98/fn46UNH8bGbtuPHlSQy5z8fNK/fbPZDLGZijG6F2uP8tXtKv9G6eNUgX/FEYlCLnELozAIJ/3zTSJBFQHU1PI6LYrEDcP6T0L5olYHiKoBN6gRRFCXbtMva0qU0AB3zWpkeuEP/b3aJ/l+xqdsd+hKLLKBKPcyZvZBlBTSAqWoLi3osqygKqPoR6+8jBrFI05RFWolqt5842/QPcwwkFlUZIEgItprUVCwmYpwjJ/DweBmjpTxSiTiKuTTe/NJnhm673YazkNPriH+9k8OmM0ZxqdGIbbQ6WDRSxNHJCtodXnf2UkRAU7q5nzYsGini0FgZs3VvU023Qe3Co4I0jhk/YvGcDasAAA9s24MzVurf/fhUV51nVyza1ZdBuOaK8/FvX/xf3PnQ47j0vM3WazxkZ584PF4Gw9AYLubmtZ5+sXWTnkv1i1vvAUWRGCp0VSq0oVhsCPp+TUZSLOaxbY9OmHcViyeWWORYZmCJeZphUIv8dUHwc1gIAS/zDsWiZvyvH5gWkSbSbLQ6xiQWAT3rkQEDyehjcBTnsUK1Q1IlD7FYmaqg/H9llJ5aQpzW7001WnPYayqUfl3nVKe1qhtC27sf3cu3G22H9ebMpH59pOzuM7YWQafurEUo6PafFOtPwpr9BUVSLMWiKnWJxYZtKKcyWUEqmwIbY0EzNF7+tpd71jfxvQmsfMpKAF3LVMClWFQJ63O2m22URkuYnpiOpFpMppMQIaLT8NZcZVsONtAlFlMbU0htTAGartCkfdq9K85YAZqhsevRXdhw9gYAsBR1xeEiUmm9lmo1WhhC8ICRqIhQoeKip1yEL33kS3jozw/h4qdebCkte1m+1oQakkzSYRvq+Ixj+mccXnhiicW1Z64FANz1h6eq7LgAAQAASURBVLsAeIlFhmSsTEm7FWoxVkRH7jh+/4BuhepRLMZPvGKR5ViIrf4U2McK+2v7UYqXMJqcf4zPAAMMcOohUsc1m81a/89kMrj55ptx//33W88/8MADuPnmm5HNDoJYjxUm67yl/jnRMKfIe0HVNDR4GRM1pyIgSmPeDaFPu1VZUfHQoap3m2yFbjo0Y1EFR1OgbDf7iqJY9o0m5qJY1IzpMIn3KiVitLO50Gw5G6kz5XHLltOEaFtPu+Et0BiaBBEwIWjtV8WuWDQ84Rn9hoIkCDx41214ywuuwo+/+WW0mg2kcznHeiot782AXbGYzuTQdigWjWWaTYwuWgpFlkPzCyXXsa6I3vcz1Xz1e38MTeyg7rJXZSgCcsCxO7xgMTK5AnY/3s1ZNNWphaGRrhVqI7wZl2RpiIqK9edcgHgiibv/9HsAQDpXAECgUauGvr4XpsaPYmh04bzWEYR79s/gyGwH2456P+Py1evAcjE8ePftKJScxTupKSBJAp12CwRB+N40DqX1Y6nW1ovVfHEIVZcVqgLymCoW7SAIAs87ZzH+cO1l2JxXkL/i9aCzeuHajxVqOsaAlxT0On3tnGggF2dwxoJBRsCJxKAWOY1gkjp2yP5k1bzQZ0MQ9bHey7gxvcv5N1+DZG/k0CwIe1NR04CbP6L/e2Sz/l+xpSsTSTNj0XZ9MxwJAvpkPSH2yKMGgOnKLFDv2lgdmaqCokiMlroZd4Lc/QyzPk0uAKAZg1jc9ALnE1bGYrfZYq4vbiN67nzwcZz7gn/Ah7/wXdSaLeQjkGt2K9R8Rl/+/ikaVXaBRfLVm22sWKxfEyzVoqlOZbyDPJmk3hRrtryf8/D4tEOB5lUs6s/5EYv5bBorl4zigce6ZLT5XTuIxYiZheduXI2RUh6//KNug2vag85XsXhovIzFIyWPmuR4Y9miYZTyGfzhrocxUsw73p8x8r0blmIxArFYslmhniTFYowbWH6dbhjUIn9dEPvMfxYUAbzLLaFfxaI7HzHFpgKWdEIku9vaFJ2KRTeRyPk4MriVY5WpCsq/LKN2XQ1L00uNhZyvERj93Moo4Q4uvopFVyuyOl11/D07qZ+/GZudtGrL1Og0vcQiAFAxynegWdaMGkQGCNpphWpXLO56dBfe8uy34Csf/wpajRZSGf/9nz4rDdWQUNoVi5lc9/6QUJzE4oIluitR3T2U5APWuH5IopeAmhpzxuf4rU/VVN+Ba5ZjsWLdCux6tFu/Vqa6tp9sjAXDMY7P5AdTsbhk5RIsXrEYd92sE3HmtTuKYjHNpD2EtonJsUlkcpnA/MvjhUwug4XLFuKBOx5ALBHzWNLSJG0Ri/Y6pRgvoiW3PMRivpRHtaKrb+2KRfdyxxs0Q580xeK+2j4sSS9BZpAZPcAApyUi3TFef/311v9HRkbw4he/GPv378eNN96IG2+8Efv27cNLX/pSlEql4729fzW44OM342VfvTvw+UeP1HpmDM4VsltF0AMHK86iQ1T6JxZbQn8TOwcqbV8ysmEUtTFCRirEClVRNXAM6cgvrFdnPBmGibl28gCIgpdYtGcZAsDMtJPInJkc9xBLgtAtmls+xCJHkSB87CmBLrGoyt0bDVUyFItGs/IPP/kO/unNL8OGLefiWS96FVqNOpJJZzPPrli0tsWlWGwZhTlhKBZFUYAkChhdrE/lu4lAO6IcctOTYygOd6ec3LmNNEUGKmUJgsCaDWdi17YusThTngLDckhlsjZiMXyyLslRkGQVFMVg65Muxz0Gsdh5+oew7L2/CLR8jYryxPEjFh8b0z/bZMN7XFI0jdXrN0EUeBRsNqgAQGgySIIA32mDDLDhKaUMYrGjF8i5Ujdj0bRClTQCjEvdN1sp4zc/+d68CVkTuQSLy5boxzXJ6TcBHBNdKZCJ0RAiDEbsmGhgRSmJfL8y6wHmhUEtchpBFgC3Mv1UsEJtTPZexg23FSpfg2T3CnNnCO29GThs1Hfm6ckkFgkSvCCiWm92CQmj+RcyKxUKO5kXhPL4IV01ObwRWHoRDleaWDhcBGVrmNgNMGYCiEUrS86tZlX1jEVelCwlv1mfxI3P+d1f3IorXvM+rF+5BO98zfNQa7Qsgi8MdivUQta/+acTi/q1zSICzeYK7X2PMIXZkclpLB7pnmOCFYv+rz9342o8sK2by2mqU0eH8ohxLDiWiWyFSpIknnXZeRaxaG63Z5v6xOHxMpaMnvjzKEEQ2LppDXhBxIKhvOM5M2Oxwev5lFEIu5FiDpWqbjUbplicqTbwzZ/8wSIhjyXmnK84wCmLQS3y14W5NOKrQtXxd7/EYktqOV4TpgS0w61YdFuh2pHwufbZCR5N0zBTngHLsbqlsznE7KpFTMUipYX3THyJRdfnqlWc9+EzEzNIpBIOK3TV1v9xK/nMz0ty/vvLJHIUUQFpxNPIvP6YSSze8ds78PYXvh2lkRJe8bZXoFVv+WYd1sU6lr1jGe6SdDKtVQ+2QjUJ1FazhdElei+jNhPecwDCa5HyeNlBYLrVgRRJQdXUQLXs2k1rHcSiaXtrqvNS6RSaPq4NdkiKZB2nFz7lQtx9890OQrcXeVoX60iz6UCb3/JYGUMLT6wlu4l1Z66DKIgetSIA0ARtKQ/tisVCrABRET3njHwpD0mU0Kw1wfPBisVmvYnf3/h7D2l8LGD+jk8GsdiRO5hsT2JlbiVSTLQhiQEGGOCJhb5HUb/xjW/g3e9+t+MCT1EUrr32WnzjG984phv3144j1eDp/Wd//g489wt/npPVaS9EVSyaODjjVN1Jc1Asjtf7a/7tmmwg5pNXOKsauYFQe1ogsjRp2YACOtHkxnyIRcmPWHSRnbUZp6XWzNQ4hlz5enbFIt+setbJ0qQ1Ie+GaBbfNmLRtELVCAozd/0fvvaJf8ZzXvpafOQL30YynUGrWUcyncHhmTY+87udEGUF000BSdr5ndoVi4lU2paxqIEiCHRaejE6ukifcKxXvaQbDf01UTI2pyec+8ZNVLIU6VE+2rFm45kOxeJMeRKF0hAIggDLcmBYrqcVapLTFYuqpuH8y67Cjr886FC5Tlfml2lanhjD8IJepnX9o9aRcGRWP59Umv4F5dqNWwA48xUBPWPRtEL1s0EFgFJab/A1jAGBfHEInXYLnXYLQqcDgtDzL82f5KFd2/Dht78BL7vybHz2/e/ET77ztXl/RjcoVj8XcAHb7IdMnIEghZ+/moKMsWoH6xdkkI0PGoYnC4Na5BRDn00zX8WiZK95jpFjg9TnDXRjvPcydsgCUD/qfEyoQ3QQi10ChAB0tWJhFWC3NpNaOgFJkJiwKdjsr4/PmVjsfX2tjxvk6LKLgCe9HUcqbQd5BjgVi9Wmf83GBtm9K6YVqgyzdDMzoGMcg4npWbzyHz+Nl19zOX7/jY+hmM+g1mgjm45ALNom6v0UjqIogRdErFikN/M8pJuPYjEMRyamsXi022jqR7EI6DmLDz6+F6oxUTVenkEuk7KIsmw66SBLe+FZl52H7XsPY++h7rE7byvUiWksPUnNPNMO1Z6vCHQzFmsdCalELJK96EgxD03TUJ6poW3U0nZi8c8PPo6XXfspLLz0lXjtP12HT37tR8fqY1iIDYjF0xqDWuT0R7+KRcCbkeinngtDS2rNySZRprqDRG25HapYTDJJz+vtisVmrQlJkCxihSRI/fk51iKRiMVpJzk2OzmLIVfWr2arRdzEoqlYJFj/64NlhWrrOyiGCp6NsWg1WvjA334AF1xxAf7jh/+B4kgRrUbLyhy0Q1D1+lIg9f86MhbtVqgK0c1YbNgUixGsUMNQniijtKBbp7nXRxKkTioGXCrXbl6LA7sOQDDU/JWpCkiKRNawIE+mkz0Vi6IqWnmCF155IaYnp7HHNjjV6zPWxTrSXDCxODU2hZGFI77PHW+sO3MdAK8NKgDQlL9iMR/TB6LqgvNz541BqdnpWd+MxfLRMj7+jo/jhVtfiI+/4+O4/rrrj/GnARhOr0Xmcj6bLw7WDwIAzh46O/KQxAADDPDEQt+/bFmWsWPHDs/jO3bssG6SBzhxGK8de+uwfi1YD1WcxKKoaKHr8Cutx6r9EYs7JxtYWvAWeXb0ajpwNOnIRzMz9+xwKwz7gR+xGHeRoR5isTyB0ohbsdhdT6vunW5jaRIIIE+6xGL35sRUUmo0C5Vv4U3v/Qje9s8f6+YMNhpIpNL40QNHsGOige3jDVRaItIu5ZedhCNJEk2TWDSsM9tNJ7FY8yEWOU0vbtwEueLOo4JuhWpX87mJSoYiQrM91244E5WpCVSM73lmesqhzkulM9GsUGUVqgZc8OSroGka7rv9Fuv55jyVd2XXZzxW2D6uf1eL83HMtiVfAtYkFgtDNitUJgYVhK5YbLcDC/9CggUBoG3cnJl2qtXKNAS+Ay4WhyhrYCj9+L/rtz/B2KH9ePM/fggXXHaVYx8eK1CG1S/bh/9qKqYTx2EE9e7JBjQAF68qDPIVTyIGtcgphtn9/S2viD6KRVst4ZOzOyf0O5nb7FOx2JiAp6pxKxZtdmPnFDvA+MPAisu6zR5N1UlVI5/QVLBZii1qfspoMYJisVPWb/oRywEwVHmjzmYKb7dCDchYDFRnabJlhWrOa5nrS8RiUBQFn3zX6/CNj78TrLGOWrNlWYOGwW6Fmk56ScKG0fwxFYvT7kZXSAan377T1XzdRmc/GYuArlhstjvYdUAnpCemZx3qvFw66fhMvfDUi88Gw9D4laFaBOZvher+jCcSwcSifl6vdSQkI9qijRr7dWJ61lIsxmOcde3+9//5Pzyycx8+9o7X4MXPeDJ+fdv9geuaKwaKxdMbg1rk9Ic9lzAqqnzV8bfiHqTqgbbUhqRI2FzajDW5NX2/v7kOk2gDvMRijPKeR+3Eot0a0wRDMseUWHT3atwqPj9iMYoVKsmSvg0n83uwr0M2+hexeAyqquKVf/9KfOCLH7DsN8OsUO1wZCy6FYsECVmSIfAChhcNgyTJnvmDdqg+Ll3lsTKGF3Tv2d0kHmVkdmsBtcjaM9dCkRXs3a4Pls1MzaBQKlhEWSrTQ7Go6WpeU7F45vlnIpFKWHaoQLhiUdM0NMUmclzOY8FrYmp86qQqFgHn8W/CtEKlKMpB3JrEYkNy1mAFo56ZKc84MhZNa95td27D4w8+jlf9w6vw9Bc/Hffeem/fwwi9YNrqum2aTwQO1A4gRsWwvrj+hL/3AAMMcGLQN7H4ute9Dm94wxtw3XXX4Y477sAdd9yBz372s3jjG9+I173udcdjGwcIwVTj2MvZw8gZP4xVO56LX8tHSWmqexq8lzQam+2PIN0z1cTifO/GQljfn6VJUASBf3vHG/CjG75kZe7ZEZ+XFar3M9GUm1h0W6F6iSXTShIA2o2qZ50cTYIIKMhMqzHFljNVmRwHw7AASaN0+avxjBe/1vGadquBZDoD3lA5CLKK2baItKu36SbhLMWipoIiCMsqdXSxqVj0Wkxxmr5dJilJM/oxct/vfuJZdnpy3EG61ms+Vqg9FIsAsHvbIwB0haqdWEymM2j2sEJN2RSL+dIQzth8tpWzCACNmvczRkW71USzXsPw6LFXLD42VsNwmsO5y/KoNEXru7Vj7aazAACFUnefEGwCKsmAJIhQxSJNkcgmGLRE/XvMF/WbgNlKGTzfQSweh6ioSBtWMq9890fx5RtvxvNe+UZcevWzsfOxhz35pvMFycZAEnDYHfdC2lAUt8XgRvzOyQYyMRrrFw6yc04mBrXIKYrmFLDn5t7L+SoWo5MpkdEvsdiu6BmIUeEiVAlVAlQ5ULEIABg6Axjd1P1b1CfCv/LL+/Gvn/uWjVgs+L++T0RRLCq1MQAEkNSn3/2IJV7sXl9nfSy1gRASRZF0m1dRghldfXRGr20ScQ4Lh4t475te5Ggy1pttZFMRiEWbus9voKxuZFkvGimCYWgvEch5G4ZnrlsBAPjIl77neU4nXe1WqG7FopHxFNDMO2fDagCw7FDHyzMOEi2bTqLaCLcfsyOdSuDy8zZbdqi+29QHFEXBkclpLFlwcpp5521aC8BLLDKkBpA0moZiMQpGijkAwGRlFm1eAMvQoGkKpXwWX//YO3Dn9z6Lbb/8Mt71+ufjZc+6DDv3H3EoP48FBhmLpzcGtcjpj7koB92KxX7JybbcntP7mtCggVd4MET3muwmFv2GRVmSxZc/9mV87l8/ZxGLdsUWQzLAHGclVFWF4oqccauX3BmLMxMzGF447HhMsdU0bdcQjl2x6GcBalmhCt11NCr69ZKLcUhlUnj9u1/vUKG1mv6KRTfs6j5HJqAKECDQNmqRVCaFdC4dSbGYM65hj//5cU+vrTxRdpCubhLPJBaDur0r160ERVOWHWplquIg0ZLpZCixSKokREW0iEWGZXDepec5icWQz9iRO1A0BcWYVxFoYurolIM8PZFYs2kNCILwVyySNDrtDija+RsqcPr+a0lOpWfeyCufKc90FYuxbsbiNX97Db79p2/jFX/3Clz9/KsxU55xKD+PBVhWr0VOhmJxX20fFqYWIsflTvh7DzDAACcGfROLn/nMZ/Ce97wHn/3sZ3HppZfi0ksvxXXXXYd//Md/xKc//enjsY0DnGCEqXX8UG4KnrxDv8a8aU1a63QLZVXUm1P9Ki8FWcXinNMiy88WNhEyVcdSJEgSuP33v8JXP/1hzE6Xkck5GxnJeSoW3dOqlHsyb9ZpnVmbmcbQqNMKVbBZoXZ8iC+GJqEFKMksxaKkFxHC2E78/Ltfg6IoUOHfhGs1Gkim0mgbhbsoK5AUDYVYsGIRAFpGkc6pHZAkgU5bL0YLpWFwsXgAsWgoFo33ooysyP2P3o8H7vyTbR90UK/OOPaNxwqVDs5YBICRhUuQzuYtO1TdCrVbrCZT6Z6KxQRHQZBVi8C84LKnOrZzPsRieVxXLwwtiKZYFOVwZZ0JTdOwbayOM0bTOHNRFpWWgLbPb2Xx8lW4+Mqn48zzLgKgK5cJkgQBzWaFGnzJKCRZtAQFqqYhV9SbrrOVMoSOrliUZNVSD44sWWkde+ddciU0TcP9f/5jpM8dFQTNgqZIRHBLs5CO6XfLnZBG/I6JBlYO8hVPOga1yCmKr10JfOf5QO1I+HKK5A3XlVx1wLFQLfZrhdqp6qRnVDTGASYBXtFPNJSsN47EAMUiAGDZJUDKZu0k6tfKn9+9Gx/90vcxMT0LhqFRMK205kksyoqKdid8Qplsl4FYFqBj0DTNQ54BTsvynhmLbqhdK1SWIvDIhIL/d8ND+nsTpG8tUmu0+rZC9YOpWMymkyjm0k7SjY7r2ZYujBpNoH2HJ/Dj395hPa5pmm6FGpax2INYLOTSWLF4FA88thuAH7GY6PmZ3Ljm8vPxp/setT7rfDIWJ6ZnoSjqSclYBICFI0W87FmX4SkXbfE+STFodgSkfJSpfhg2icXpKtq8gISt2fv6F1yNi85ebx17T7nwLDAMfcxViwPF4umNQS1y+mMujfia4Lxfl3yceMLQltsW6RAVduJJgv5+YRmLFvFkA0Mx+MFXfoCffvOnmDGGnI6VYhGalzh0b4MnY3FyBkOuISfFdg/bqftnLBKGy5KbjJM1GQQIi5wUxgX8/L9+DgAgKf9apFWPSCzW/YecCIUASZBoN/X6MJlKIpPPRFIscjbr7l//8NeO58rjXWJROCr4WqECwYpFNsZixboVFrE4MzXjINF6WaG6iUVAz1nc+chOzBp5xWGKxbqoPzeS8Lc67bQ6aNabJ02xmEwn8cyXPBNbL93qeY4hGHRaHdC088eQM1w/2q5ByWQ6CYZjMDs9C77D65mlHGP9xhesWGAdM5u2bkIilcA9t95zTD+PpVhUTqxiUdM0HKgfwNL0UmS4TO8XDDDAAE9I9E0skiSJ97znPTh69Ciq1Sqq1SqOHj2K97znPY58gQGeuBB97BbCUGmKHlKvyQc3BKttCapFAOn/nWoKfUn+WYrE0oKz4bS37J2qStDBrIKpWDRhZu7ZMR/FoqZpHrtOt3qqVnFaoQLAkEux5rBCDVAswufmAABEYzJQlQW0tt+Gif99H5LpDPKlIRDuZqf5Hs06kqm09Z02DcKwlHC+h0exaJDJrKpvb9tQLCZSaWRyedRnvVaojKbf+LiJnPzQAnzm/e9Aw7AWnZ6cAAAURhZi2Xt/idSWp6HmWh9L6cRi0FFEEATWbDwTu7YZxOL0pCNPMJnJ9sxYTLAUNA0QDULvwsufan1OAGjWq6GvD8PUxBgARM5Y/Pqf9+N/bt8Htcfv5shsBw1exjnL8tiwMAtVAyZq3qKSoih8+L9vsCxRzQEAQlNBkgT4ThtkgDIWAEpJDm1JgaxoyOR0K5XZSrlrhaqo4GjvcZovDWHtxi2497Y/RPrcUUHSLGiS8JD5YUjF9M8XlF3bFmUcne3gjNFBvuLJxqAWOUXRMq5pswfCl9MUr2LRbc8zT2JRAwH0a2Em1PTcxKiojwPJYf29AJDGDbsIGxnoJgZHN1nkk76w3rhpivq5fLw8g5Firmu1bBBfVtk0sy/69hkYm/Jef+3ghAoQzwEUi9laE+2O4FEstsXeVqgsE6JYJEkIkow7D8u45PoWUjEayXgMVMDASq3ZRiYVhVgMV7rWjWZeJpVAMZdxWqGyicCMakAnpt78wc9j3Nh/07N1iJKMJbZcI4+1KmESi8HbdO7G1TbF4qyDWMylU31ZoQLAsy4/H6Ik488PPg4AmJmHYvHwuP4bXrrw5KgEAOB/P/teXHreZu8TJI1WR4ysWIxxLLLppK5Y7AiOfEU30qkELt26Cb/6072By8wFMW5QK5zOGNQiTwxMtadw/nfPtzL2+kE/pCBFUKAJ2mOFKvTpntCROn0rFjty97osaV5ikXXVIn7Eon2ZmakZJFIJh/qOpdi5E4sApiedfQ+PFaorY7E+XfdYodqJRd6V92wpFg1i0W2/qqiKZUvafLyJvR/Za21DEHnYarSQiFCLBJJwhhWqSSwm0glkcpm+MhYpmsLnP/R5jBuKepEXUa1UMbRgCNvfth37P7XfYyNrKlKDiEVAz1kMUiymsqlQYpFSKcia7Ph9XHDFBQCAh+96GADQCKlFTGJxOOFfa0yNTQHASctYBIB3//u7ceGVF3oeZykWfIf3EItxOg6O4jx2owRBoFAqWBmLXJwDQRC+v3GGZXDuk8/F3bfcfUw/C2MMOfV7Lpovyp0yOnIH6wvrParpAQYY4PTBnNJTZVnGH/7wB3zve9+zLsZjY2NoNqNb99jxhS98AcuXL0csFsMFF1yAe++NdlP3/e9/HwRB4LnPfe6c3ncAf9Q70QpZs8lVbYseYijMSrDWkTwKx9mWZJE1UbCsmEA24bxZ3zPlQywyIcQi5cxYrJQnHdaYgE4kzQcmIWbCQyzOeInF0ohTsSjyHRAGXdb2yVjkaApaQBCyYGQI7Lj/Dkz//N+RPOMSXHzVsxBL5XyXV1UVnVYTyVTGIldMi9PhpLN4Mkk40y7ErYJrGeeDRDKFTK7gIVmBri29m8h5ysvfAr7Txn9/9J8AAOUJXc2XLulqvviq8z3qQJoioCjhJNvaDWdi9+N/gSxJqM5UkHcpFpuNXsSivg94Y7+uOmMTisOj1vONeWQslifGdMuNodHeC0O3FD402/FVH9qxbawOmiRw+dohrBrWb5rGIiiETWKRVnjLCjWsSTKU5tASZMiqCoqikM0XMTutW6Fy8TgkRUUsIO/w/Eufgvv//Ecocn/TuWEgaU7/vfWhWEwZVqhBisXdU01oAC5aXezLYnWA44NBLfIEh7vB5yYWtf6GnNzQCAqQ+yQW+Xr/isVkd8LbVCw6MxZdxGLS1UQR9OO1IXSJRYcNpNHou3PMOOfs/HV/dq0Ajk5WQp9PaQ1DscjiiNH4cysW7efF2SDFokEsejZP1TMWb73nUfzDrwVctZLGP//NGUiGEES1RqtvK1Q/WMRiMoFSLuNU8zGJwMEsAPjKh/8ONE3hjf/6OWiahsPjumX3fBSLgE4sPrR9L1RVxXh5xlJIArpisR8rVABYtXQB1q9aAl4QjW2aB7E4oX/Gk6VYDAVpKBYT0RSLgG6H2lUshje1nnnpVtx6z196Knz7QYwduBuc7hjUIqcOptpTvo/fsO0GdOQOvvX4t/peZ78EX4yOWaSJiX6b+aIqOojCKKgKVevfforFSFaoNmKxMlXx2EAyJAMiZGi7F6YnnH0P0tWKrFaqjr81TXMo1giCcBCLQVaoJKOv1229KqsySILEjvt34MBnDyC+Io7LX345GI5x2J/aETVj0Y+EUx9UwR5iQRGU9XwylUS2kO0rY/G8Z52HbCGLT177SSiKgrJxnR5aMASlpQAq0Kw3HZ+XUA3VJhlOLB7YdQAiL+oZi/1YoSr6/uoo3eM0X8pj/dnrIRq1SL1aDxQO1AX9NzKU8FckTo3rv2W3Fe6pAJZi9YxFxvsbynJZtGXvcFi+lNcVizyv53lqamD26gVXXIDHH3zcQxbPa5sNxeKJJhb31/TIiK2jXuXnAAMMcPqgb2Lx4MGD2Lx5M/7mb/4Gb3vb21Au6xe2T33qU3j3u9/d9wb84Ac/wLXXXosPfvCDePDBB7FlyxY87WlPw9SUf2Fo4sCBA3j3u9+NJz/5yX2/5xMR//6bHbh1R/g+OVaYbfdXQPOyirIr67EhBBMEsqpBkJ0X0mpb9JCNYVicj1skgAk/YjEZQiwyFAnSoVicQmHIWbzEfQqGflCZcma10K6i1Z2xCMA3Y5E2iMVO01tgsDQZSCyKigqaJDC0cAlyl78WxWddC1mSwCb8C+ROqwlN05BMpy2itynIoEkC+bjzPUzFYjqbg6ZpHnKw3WqAJEnE4gldsRhiE2oSUiaS2SL+/l8+gVtv+gluvemnKE/q+9H+/bitUBmSdKzDD2s2nInK1AT27dKn+ou29SXTGbR7EIumNa6ZWUUQBC687KnW8815EItT40dQGBqxciajoNoWe+ZnPTpWw/JiAqPZOIZSHJIchUqrd+PcJBY5pQWCAPgeVqgmsSgZ5G6+OGQoFtvg4imoGsAF/J7Ov/QqNOs1bH/kgZ7bFRk0A5okHL/xXkgbisWgc9HOiQbSMRobFgysPE42BrXIaQBPxmIn/Pl+V09QBknYBwkn1L0EZxga40C8SwqRxmtFwtbAc0/ouptXhhVqwzgtuxVsJjHJmi87dDcw3V/2ytFJ7xCTHXmaB9g0QLE4MuFPLLaFCMSiMRHtbuZBlQCCwIrFI3jHhSx+/OI4VI1APCB/TlVVNFodZCPYj/WyDTWJxXQy7rVCZWKhisVSPouvf/TtuOlP9+GrP/i1L+naaHUgira6mYhGLDZaHTz0+F602jwWDNmIxVSyb8UioNuhmpitNz1W/FFxaKyMZCKGXIRG6gkHSaPZEZCMR1MsAsBIKYfJSrWnYhEAnnnZeRBECbfe85f5bqmFgRXq6Y1BLXL6Iygf8b8e/C9c9aOrPMRJjIqhJbWgonsO7jdjEQBmOuFOA270IhZJgtStTA34KRY5snuOdCvYAK/qsV+4FYu06/pbr3jvw+1WqEyMgWzrMXVctYhJLJqzXYqr36RoCiiCwtCiIQxdM4Tl1y4HAHBc8LWh1eg/Y9HCTqDUKoEiqa5iMZVAJt+fYpHhGLzvuvfh0fsexQ+/+kMHsWhC0zQ0a91emGYOW4fcBq/dvBaKrGDP43swM+1jhVoPVywC8KjzLnrKRda/FVmxPrcbdbEOhmSQ5bK+z08dnQJBECidgkNODKlbofoNXOe5PDpKx6OOzpfymC13FYthVscXXH4BNE3Dfbfdd+y2+SQpFvfX9qMQK2BBakHvhQcYYIAnLPomFt/+9rdj69atmJ2dRTzenRh93vOeh5tvvrnvDbjuuuvwpje9Ca973euwYcMGfPnLX0YikcA3vvGNwNcoioJXvOIV+PCHP4yVK1f2/Z5PRHzxj3vxuhvus7LdTDT5cIVPn0PtAJwZiFFxsOIsPFq8dx280L2Q2e1WNVVBvSOD70GQ2DGc5sC4SI6dE94JbT/FommWyTHO189OT6FQcioW52OFCgCVqUnH370Ui4lUGomks5kj8LzVoGr7ZCxyVJdYtH/fU1NT+OpH3wNC6iCRTCJ7wQtBEAREgQebTPtub8uyL+0SJ3VeQibOgHXtb1OxmMrkIMoqFNfB1m42EE+mQBAEMrm8x7rUjqYgQ3apDa941vNw2dOfg//6yHuxf9fjSGfz4LhuM0ngOxD47g0FQ5GGija4gl6z8UwAwD1/0m037QrVZCptff4gmMeDPWvqAhux2G7W56y6K0+MeUjlXpAUDZVWcIEoyAr2TDWxYWEWhSQLgiCwvJjETEuEEpJHCQBV13mg026BDMjyBICRDGd8j/pvO1cawuy0nrHIJvTjLYioX7fpLOQKRdxze//XkCAQFKNnLPYhWTSJxSA76B0TDawoJlFMDaw8TjYGtchpAPdNtduCNMiyrLxLJ9d6QCMondByXZtM+2iPhSUASG1LQRgJQh1I2BSLiqFYJGzNN7di0Q2DWDStUCfKsw6iySQmY7TxOTQFuP9/om8jeluhjsQUIJZBsyPjwcf3gKJIxzbEYxzatmbebNOffOWM4RvJRizOzs7iDd8fx3RTRiIew7UXsSAJAm1BDlSQNds8NE2LlrFoNK2CCJx6sw2CIJBMxAwrVFsdRSectrQ+eNbl5+NNL3o6rv3U13DPIzvBMLSV3WdiptatHczLR4BAHwBwzobVAIBf/UlvGjkzFpM9VZh+sBOLmqahGtIQDMPhiTKWjA75Zk2ddFAMmm0hshUqAIwU85iYntUViz2IxXUrFmPlklHcdAybebEA8nyA0wODWuT0RxAB8LVHv4bJ9iT21Zz25DFaJxbthGNYTmOQKmxWCB7I9YOdWBQ1/f1Ywnn+sRODbmKRAOEg+mbLsx7FIkvO73xWcbknuO/R3IpFwEmeMZyTWBTaAmSp+7eVsWioKu1DTs1mE1//wNchz8pgORYjzxsBQRGQBMlh92qHqqpoN9uRiMWg79G8lprEYyKVQDaf7YtYBIAtF2zBi//2xbj+s9fj4TsfBgCPTaxdBaka7kphisVVZ6wCRVO477b7oCpq3xmLgJeouvApTuvQoM9ZF+tIMslAe8ypsSkUhgqgmXl47x4nMCSDTrsDyifiJRfLgZd5yJrzvJEfymOmPAO+wyMWi4UqoUujJazZtOaY5iyaisW5ZMbOB/tr+7EkvQQZdjCUPcAApzP6JhZvv/12vP/97wfrsnZZvnw5jh492te6RFHEAw88gKuuuqq7QSSJq666CnfddVfg6/7t3/4Nw8PDeMMb3tDzPQRBQL1ed/z/iQy5BxlwLFBtR7/gcEbn5FDFOY3U8rFn3LVrl/VvO4motWdR5yXwPSwd7cgnvIXt7qloxKKpqHLnvc1MT6JQOraKxWmbYpEkvEIFN7GYHzameYxCmCQpCAIPitCLw3aj5pmMZBkSmvFTVo1G7GOPPYbzzz8ff7nrVmjNaUh2Ulfgwcb8J9FNsjCZthGLHQm5OAPG1SUzswXT2Zzv991uNpEwCEzdCjX4BqnBy5BcpDlBEHjx69+GZr2Gv9x3l4N0M4t0+zppyrT8CP7ORhctRTqTwz1/+j0AJ7GYSmfR9LGatSPJmcRid1vPvvASxzJhyswwlCfGIucr2jFRDyYWd002oagaLlldAmt8f6uGUphpiR7VsBvuAQO+0wYZaoUaAy+pll1eoaQrFnm+SyzGAoh6kiSx9ZIrcO9tx45YBEXrisU+rnJxhgJJdK1u7eiICg7PtLF+wSBf8VTAoBY5DeCxQnWdy4IUi184D/jG04BONXT1GkHq2X4uS9VaTT/P7zsy4fcyoDnp/3gQ4t1palLmAYqBQtgaIb0m/E3Fos0K1W6NaWYsxiigxmtAcQ2w7SeWRXoUHJ0Kt0KNM4DKppHe+kL86+e+jQVDBcckdpxjHdf5Ni9BEL1NEZPck43ry549e3DhhRfip9ta2D/dAS+KMGe62qKCeIBKwFQhRrJCNZYtZP0HpurNNtLJOEiSRCmf8VEs9q7z3vPGF6LdEfD7Ox/CouGixzLNvs4oQ3LFfAbLF43gl3/ULQ4X2FQhuXRyTqTgxWdvQC6TsuxlPRatEXF4vIylrmblKQOSRqtPK9TRUh6T00bGYg8rVIIg8MxLz8NNf7q/r9z3MAwUi6c3BrXI6Y9ejXhecQ7axOk4OnIHqq32CMtp9CPTgP6JxZrQvYeVoZMaDOE8/9hJHLcVKkMyjscqUxUU7O4JABhqfuczU2kXBKEtoNPuDg3HkjGHDSkbYx3EIgA0bIM9lrWqUYKZGYuHDx/GJZdcgvt+ex/EKRGS0P0+JEECG/Ov0zqtjuHkNEfFog2mci+ejCObz87J5vKlb3kpJFHCPbfeg3Q2jbjrWmgn8Uy1ZljGIhtjsXztctx9sz6s58hYzKQg8ALkgIFpStGPFbdl76r1qzC0YAgxoxYJIhZrQg0pJhWogp0an8LwolPPBhWK/tvh296MRQAoxoroyF7FYmHImbEYplgEdDvUe/94r9cBZI4wFYsnklgUFAHjrXGszK5EmvWv0QcYYIDTA30Ti6qq+p7gjhw5gnS6vxPG9PQ0FEXByIhTJTYyMoKJCf+Gzx133IGvf/3r+NrXvhbpPT7xiU8gm81a/1+yZElf2/jXiNk+iMUUpzfvD844icVmiBUqAIfKSmtVIasappu93/fKM/QCg3ap5xRVw+GZDljFWdyEZyw6n+M7neOaschSJCjXBHizXoUsdYvbokEsakaDleE4iDwP2igKFUkE33Hua5YioRoTf4os49e//jUuvvhiZLNZvP2/f4TU6ArIUnffCjwPOq4XyJ2Wk4w17U2TNtVkjZdRSLIOhajdYiudyaLlk6nZajWQTOnryeTynkxEO+q85KsSMxVy5clxDI12LRQowy7UTixSRpNVI2loASo1giCwZuOZ2PnYwyBJErlCtyGcTGd6KhZNK1RJ7hbpsbhTUTHXnMW5KBYBoNIMJha3Ha0hE6Nx9tKc9djakRSmm4LHutYN93mg026HZiyWUvqNQc2wUu5aoXbAxvXjIIyoP//JV2Hfzm2YnhwPXKYvULoVaj+aC4IgkGBpiD6k6+6pBjQAF64qDPIVTwEMapHTAO78Q0VwqgvdVo7uzMWZveHrD1As9kS/xGK62/ig5Lae22c/8/QiFoUmAAKmC/1kpeq0QiVIgKQRM/sXC88CmpNIU9FrtV5WqADQULsT+0tGncRSPMai5XLIqPg0i1jj2iwrCv70pz/hggsuAADc/ZYSzls9BEGUrNqrKSiIx1jc/9hu/GXnfsd6TLIwk+qtWDStTvNZ/4Gpeqttrafozlikw61QTVBG/XNkYtphg2oOOdnXGaR4d+Pcjatx36P6wJ1bscgLIkSpP/cQmqbwxhc+DVecrzsz2FWU/eDwxDSWLDj1rMcAGFaofH+KRdMKNYJiEQCeedlWHDg6iR37Ds9nSy3EuAGxeDpjUIuc/pBUqa9BgwSTQFtuO14Taj8YcIqY7cxDsQh/xaKdWCRdMSoMxTgeOy5WqBO9a5HZcvdz50fyjucYjoHsqkXsxJWlujRuNxVFwb333ovzzz8f1WoV115/LfIb8pBtfQuRF8HFOOzfuR+TR5z1n5WLGIFYtBOHQc8nUgmQJIlMPhOaXxgEM5KkPF72qBUB577QzF5Fj27v2s1rseORHQDgUCyahK47x9LaFkOx6CaqCILANS+/Buc86Rx9m2rBisUUk3LY89pRHitjeMGpSSySBKkrFn36GvlYHm2p7SEOrYzFtp6x2Ivgu+CKC1CfrWPnIzuPyWafjIzFQ/VD0KBhy9AWz/lmgAEGOL3Q9y/86quvxn/+539afxMEgWaziQ9+8IN45jOfeSy3zYNGo4FXvepV+NrXvoZSKdpN7z/90z+hVqtZ/z98+NjcKJ7O6NcKNRNjMFbrEnoE9En0MIzXuhc1tV01HusdUr5uJI1CwluATDVFKJqGuOosfhJmwLjP/QDr41PlyVicB7FIAKiUuzeCBEH4WktVZ7tKgoJFLOrFBs3GdMWi7QM0XMo/ju4Si+UjB/Cc5zwHl112Ge644w4k8iOgSMJBXoo8Dybm36wLUiwWkiwYG5nSaTWtz/TW930ELR8iudNqIpHSb6qz+WKoFSovqb6qRxOz01MojXRJN4ryEoumrZ4ay0FKDgVqOdZsONPaJjtRlkylIQo8FCWYFDeJZlEJbhyGKTODoGkapsaPYni0f8XiTEhe4qNjNawZTqFks+5cO5IGL6mhFqoAUG33Z4VqvkeN7xKL1YpuhWoS2WFE/bkXXwaSJI+dapGkQLtyVKMgxdEORaqJXZNNpDgamxb6Z0EMcGIxqEVOA4iu6W5FdKoY3YpFd5PNncnogkZSumIR0YgeC/U+hhtiOSDWPSeQCg8wcZ0MNNHrZlpsATRnXbNUVXUo2AAAFNMlFrNLgFR/zZZeVqgAMMV3z8+LR532Z/EY5xkg8lPEmeqso9MNPOMZz8CWLVtw1113YU0BAEFBECWYfZiWICMeY3HXw9s96zGtQHtlLJpZjADwrU++y3eZRqtjEYulfAaNVgeKSVpTnJWJGAUT07NYPNL9zZtDbnbFYieirf+5G3U71BjHOghU0/51LjmLn37PG/DlD/+dZ5v6waHxsodYPmVA0roVakDj1g8jxTymZ+uoN9s9FYsAcPn5ZyLGsfjVH4+NHepAsXh6Y1CLnP6QVRlKH5nPCTqhKxbtGYshJALB+d+nzMcKVYKkKxDhvL6FEYMsyTqa/61667hbofphdrr7uQsjLsUky0Byxe24FXEcxVnEYqfewdOe9jQsX74c99xzD0ZWjYAkSId9qiRI4GIc7vjtHZ5t6YdYNJf9xA2f8H3eJBYBIFuY373kTHnGQSxa6kBbXWZZoYYoFgGdWDSRt7llmJ+53QonFmWfvsmr3/5qvP+/3q9vU5AVqlBHmk0HKxbHpjC08NSrRQiFAAECnVbHV7FYipXQltteK9RSHpIooTJVARfnQq1QAWD92euRyWVw9y29ox+igDGGnOaS9zpX7K/tB0uy2FTadMLec4ABBjg56Nu0+jOf+Qye/vSnY8OGDeB5Hi9/+cuxe/dulEolfO973+trXaVSCRRFYXLSOR00OTmJ0dFRz/J79+7FgQMH8OxnP9t6zFRO0TSNnTt3YtWqVY7XcBwXGsg8gBe1Trja0G2hmI7TmG6I1mQeQxFo+yjY7JiodW1DNINYHKt2m4RaHxZf+vp0kiSmtlFDtwjOGsU6JXjtJjgfYrE4NAJs7xa07lzBfkCznEOxGIRqpWsLkh/Wj3tVEkABYONJCJ0OqFR3f7itNlma1H8HBIlMaRS//vWvccUVV4CiKAiyApoiIInd/S0KPBIBxGK7qROGyVQGgG7hI6saRjIcKKr7nbYaepH4sS//L5asWI0HDurbpNmawu1mw2aFmoco+GcymZgJIbo0TcPQiI9isTYDwCAczckwkoRKxNESZMR8JslSGb2Yd6tTzcd5Png7E5Zi8dgSi/XqDESBn5NisdqWICmqJ3N0piVisi7gWZsXOKw7Vw3rE4hjVR5rR4L97u0DBrIkQRKFHlao+nm2YUyS5opDaLeaqNdmsYzTb07CFIuZXB7rt2zFvbffjGe+6JWBy0UGaVih9kksJjkakqJCVTWQNjJ9+0QdK0pJFJKDvKRTAYNa5DSA1AJgm0ZXRKcq0a1Q7BN6xqLcv2Kx0QexmBwCaJu1mNwG4inAdd7RCBJE0OcRm451AE4FGwCAZBCjOvpHIQhg9VOBh78baRNZmsLRHs08SdFwtNHdZjt5BgCJGIeGa9ikUm1goYsAZWgKqqahmObwy1/+Ek9+8pPBMIz+PZAkeEGwrFBbgoJErKs80zSta3NuTP73ylhsGDZlP/iP9+HcTWt8l6k328gkTcWiXpPwgoAkoO/3Pq4RmqY5FIsUqQ+M2UlWXox23JoKywVDBcfQWS6tP17rYasWhGJOv67PxQpVECVMTs9iyalqhUrRaLZ5JAPysPwwUspB0zQcGp/C8gi2avEYhysv3IKbbrsP737DC+aztQCAGDuoGU5nDGqREwtFVQIVTscLPRWLrqcSjE4s2l/jtkt1gNM/l92GlKM4B1EYBVW+u7ykSeBormsNaiBGBZ87aZL2qIqKw0XstzkKBOXhRQFJkdEUi5VZq0OZH3UpFmMMRJejTq1aQ3Zxl6hjSRaKpkBTNdAcjZ/97Gc477zzEI/HIR2WQBAERKG7DpmXwdmGTkRBtNRdUYlFM4vxXZ98F7ZcsMV3mVazhaRh757JzS9vTtM0lGy1CMMwIFOkTuIZbTDFGHIKy1gEgLRhI89wjPW5AZtisdkGfC5jlGoMWwcQVbFEDAzLBBKLDamBDJfxJas1TcPU2BSGF57CisWWf8ZiIV5AR+547I/zRm75xOEJrNqwqqcVKkVR2HrZVtx9y914/btfP+/NZjkWmqadUCvU/bX9WJBagByXO2HvOcAAA5wc9M2aLFmyBI888gj+5V/+Be985ztx9tln45Of/CQeeughDA/3d/JnWRbnnnuuI9xcVVXcfPPNuOiiizzLn3HGGXj00Ufx8MMPW/9/znOegyuuuAIPP/zwwM7jGKHBh0/QHJh2Ti5lYgxm2yLM+EeGInsqFifqXRJRbddAADhqIxaFiFZSJsYbAlIcDQ7Oi7RpWUgJ3qLGj+TIuzIW/RSGWgTbLABguBgqU70blLPTXWKxOKwTS6ZikUmkIQidrmKRpDzEldhuYOpHH0L93hshyxKuuuoqS4knyCpoknQqFgUeFNdt1tmfazXrICkKdMw5Db4472zumZahprLRJJI1sXtstFpNxJNGAZ113hj4oVe2p510oygKJOXcF4RVoBHQKLanpa9bnZo01JUCH6wSiDEkCIQrFsMsX4Pw2IN6ztLiFat6LOnFbFuC4JMJuG1M/11dvnbIQZAtLSRAkQTKPayH6zZi0bTfDVMsFpIsCMBSteSLemNyavwoKON4MonZIJx/6VPw4F23QRTnb9OhERRoiuinZwwASHEURFmFYm8ISHq+4rrR9CBf8RTBoBY5DSC6zrWK5FQpujMY+8SciEU2CTSnoi+fKOp2mgYsxaLbhDmsESo0PMSiI2MRACgWcfvpc9WVkTeRYyiMTVVCG6NHGxombQNfbmIpHmPRENzEorOuarV5fPDz38W/3iJAllVceeWVOqmoacbgj65Y5GjTClVXLJqo2mzBTLVer4zFKFmMZsYi0CXdxLah5qP7J32W2K1QAeQySYc6UIioWDSxYMj5XZsqzeocicUYxyIR5+ZkhXrng48DANat6N894URAA4U2L/RnhVrMAdCVmFEUiwDwzEu34vYHtlkE93wwUCye3hjUIicWZm5hTag5MgWPJyRVcqgP3Sh3nLmBcToOQRGiKxYpwqNuitNxNMT+zuGzfPf+U4Kkk4CuUiSMGGRIxkNEHksrVJIi0ag1IPDB93gESTisUN2KRZZjeyoWaZXGPV+6B5M/nISiKLj00ksRj+s1gKIqoAjKYYVqKhZNzNgcHixiMRNei7Sb7Z5ZjO1mG/GUvh2ZfDRiMSPoy8Ulr0rfTbpl8hnUZru/CVOxGDUTxK1OtRSLAddBQtVtZ4OObYIgkMllUK/WIVESYutjVh2qqApaUguFWMGT9QkAux/bDYEXsGTlKXgOk21WqD7EYp7Ta7q66DwuCyX9WJ4cmwQX5yIpBy+84kLsfmx3JKVvLzAs01MleSyhaRr21/djaXopMtz8iPQBBhjg1EdfikVJknDGGWfgl7/8JV7xilfgFa94xbw34Nprr8VrXvMabN26Feeffz7+8z//E61WC6973esAAK9+9auxaNEifOITn0AsFsOmTU4pdS6XAwDP4wPMHS1RgRxCnLiRidHYMSEiZvSsaIqEIClQQ5pYU3VbUakpSHI0JutzJxMmagKG0xzURnQWIe4iOWLxOBK2bMEgKAm9MJB67COWi6M2O9OTJJmtlAHoF9yCoVi0iMVYCiLPw+SFCJJCvToD5PXtnJ4Yw2f/8U0Qx8eQueAFUFwB24KsGlao3W0Q+A4oplugVitl5NPLAOhKxGQy7SGqlhUSqNsGaE3FoknGtQQFHE2iY1NktJsNDBtkYCbvUl/YoEkCCIazlG5BKDnUfAQy2ZxOLBofRZONYslgkg5U2lg9HJxvUnQpFk2SVOjwQEDPiiAIxFkq8LuPJ1OGorQ3kWrHj7/5FWw46zysWLO+r9cButKTl2SkYs7j+bGxOhbmYlgx5DymGYrE4lwcMy3BoRCxQ1U1x/dhEYshikWGIpGJM5YtrkksKrIMitW/pDgbPsty/pOfgus/9wk89uC9OOfCJ4cu2wsaSYGhSN/PF4Z0jEGlKUBRNcuyb89UE6oGXLSy4Ml3HeDEY1CLnCaQ3cRiDyvUPqERc7BC5TJApwJf/3Q/xHO6naYBUm7rJCHpPE9oFAMiKNdEbDjWAXTJEAsUo5+PzJ4A29uWywTL0BAlGZVqHUFmeUcbGibZLpFlV+UBQJzj0Ox4FYsmyjM1XPrK92D7vkO49rkUJLuzhc1NQBC762h0ZAyPdJuURycryBuT87VGCyRJItmDQLKIxZBmXr3ZdlihAoDCG9s+hyape9+4cxt5UdLtbyMqbt3q1K4V6tyIRQAoZNNzskK97oafYNOaZbj47A1zfu/jCdnokKYS/VmhAoAsOxWyYXjmZefh7z7yJfzhzofw/Kuf1P+G2hDjBorF0xWDWuTk4ZLvXwIAeOhVD+mZescRsipD6WPQKWYMG4lklzjopRJSVAV219I4HUdL6u8aMCvMgpRJqLQKCRJYirVUZe5t8wNDMp57JjexaCcm41T08zDQzQcMUy1m8hndCtUwKfLLWHQrFu3EYrvexsNffBi1vTWMvmoUistlS1Il3QrVRixqkgYu2f1c5YkyRpfo/RiTWEylw/tDUQjIVqOrWIxqhZoRM3jstY/hqs9e5XnOnbGYyWUc+0IRoykWTXiIReOztBttIKCNE6fioQRZOpdGfbaOzhkdFF9fxH888B947cbXWmRiMV70fd2P/udHGFk8gvMuPc967O9v+XssSi3C+85/X6TPc7xAKASgAXyb9ycWY/ox6x4MMG1mFVkBF+N6KhYB4LzLzgNBELj3T/fiGS9+xry2m+XYE5qvWOEraEktrCusQ5zu71wxwAADPPHQV4eUYZhQm8C54CUveQk+85nP4AMf+ADOOussPPzww/jNb35jBZcfOnQI4+N92FL9lWO6Mf8LRluQIavRJ/wzcQaSokFh9GYIQxHgJTVUJFBpiVBs75GNM6FZcb0wXudRTLF92R66FYuF0khEEkJfptceYji9eJ8p64xcp+WjmkylDWLR2IYRU7Gof490PAnBZSFqqvT4I9vwH//0ViiyjNFXfRbx5Wd58gEFSQVNEpBs5KauWOzeWJjbB+hKxEQq5ckIWlxwKxadWYwtUfbsT7cVahA0WUCcodDgw2/a7FaoAJDOFRx5k5p106Z/P70yOwulAGJRCH9djKECFbXpbB6NWjX09W7sfPQhPPrA3Xjha99iPUYYn0Ht8TtkKRKiomHapT5UVQ3bx+tYN5pBMeVtaq0cSmKmJUIM+BwNQXYc3522fsNEhRCLgK5abIv6UIFJLAKwEYvhr191xkYUhkbw0F23hS4XBRpBgiHJvhWL6RgNQVEdgxE7JxtIshTOXBztRnCA44tBLXKawFexaDsnzVuxSPavWIxlAb4W/TWxrINEJDXFUDC6yuuwXCKXYrGUz4B1q5x8CLCdLf36qpDhKizOuDaH2aFO8zQmZ7tNEHfGXjzGohOiWHzzB/8b5dka/vfT78Gz1zFQFNt3Z9pBkRR4sXutagiyQ0Fmz4GsNVvIpBI9a7JaBMtUO7FoKhYhGOrIOVjqeYlFJ4nHC2LvXE0b3MTifK1Q9W3KYKZPYnHHvsP45R/vxbWvfV7fAzknCpJqEov9WaGaSMSiKRZXLB7FuhWL8Ye7Hu5n83wxUCyevhjUIicf053e1przhaRKfUW0JGj9eiNR3Wtmr4a+W0k0F2KxJtRAyvq1Zy6KRbcVKsMyHstOuw1tmg0e3vUDYUxJT08Gf2fZYtaZsTjqvD7SMRpix59Y5I/y+OFHfoj2eBtX/NsVyJ6XheoaBFY0BSRBQrINOUm85LBCtavDmvUmSJK0MgyDEIWAbDfbSBi1Sr9WqEnGS1gOueq0TN6fWIyqWHSTyOZnCcpYBHTbX7flp3ubGtUGNGhQJRUVvoKP3/tx3HxIV2UPx72q7vJ4Gbf+4la88PUv9BB3E63eEUPHHQogiRJUVfXNWCzE9P3o/v2msikwRj0Qi8dC95uJXDGHdVvW4f7b75/3ZrPsiSUWD9QOAAC2jmw9Ye85wAADnDz0Lb1429vehk996lOQ5d5TFlHxd3/3dzh48CAEQcA999yDCy64wHruj3/8I2644YbA195www346U9/esy2ZQCgLSk91Xh2ZGL6RVKJ6U13hiIhyGqoYrHWlhykRj7B9LTCDEOlJSGfYN0igVAwroxFd+befGESi2bOoqp4m6SZfAnVmW6BXRgyFIuSSSymIfBdoouNJyziqn7PjRhdshxf/MFNYIqLAQBjhw861m9mLMq2Zp4o8CAYO7HYLdJajTqSqQw6NivbFEcj7VLDtRqGFaqhWGwKMmIu0qjdaiKR0ovSTC5YsQgAuQTjsVlzo+QiFjPZPGrVbvGvuhSL000neW3BeMhrhaoX+Xw7nFhMsBRkRfO1lUtlcn1nLP7fN7+MhUuW4+Irn249Zh7HE3U+9HdkkoYTdWdj48BMC21Rwfkr8r72o6uHU6i0RPABxGLNlaXFG8Qi2eMHVkrpxKKsaMgWitbyBKvfsCVCMhYBXRG6at0GHNizM3S5KNBAgqYIkHMhFiXVcezsmGhgeSmJfDJaU3KA449BLXKS4WMv3v86ms6/e1mhagogR68TdMVin8RiPGcQixFrIL/Gmk9unxamjBMaDuLQk68I+BKLU6J+Hdd6dI04Rr8GhBGLNYXF1Gz3+3CTZ4kYh3an25BIJVjM1LrLl/JZ3POD/8CWM1YAAB7fe7j7YrNhSlAexWKcsxOL3e2rNdrIpsLzFfXlIlihtrrEYi6TBEmSIBXjOs9EJ6hMuEnXYi6D6dk6GGM/86IIEOHXOjvc37e5rXO1QgWAQjbVt2LxP274KUaH8nj5s6+Y8/seb5ilaT8Zi/EYZ+3TqFaoAHDW+pXYtvtg7wV7IMYNiMXTGYNa5PSHrMpQ+nBQMFWBdmKxlwWhW72UoBN9E4tVoQpK1q89kiaBobzWpmHKIYZkHMRiwZX/C8zPCtUcTg1TLGZLWYcVqluxyMZYh2KRjbOoG0NOM7fOgOEYXH3d1civ1V+3d/tex+tlVfYQi6IgOnJH7cRnq9FCIsKQU6veO4ux3WxbikWKpnraq/ZCLytU2XAQ0oi5KRYpmkIsEQu0QgX040lURcui2A3TChUAtI6Gz1/5eWwZ2oJbD98KABhJentvP/7GjxFLxPDMlz4z0nafcCiwjsEwxWJbcu43giAs1WJUK1QAWL1hNQ7sOjCPDdbBcuwJz1fMc3ksSZ+CdrYDDDDAMUff3hH33Xcfbr75Zvzud7/D5s2bkUw6L4o33njjMdu4AU4OOgYxEPa8HRmDdFJiOQC6YlGQlcBeHqGIqPMSBJs9RT7BYvdU0/8FEVFMsdjfezELlKtIzJeGApacG1jDcknPWfTPq8kWSpitTANGXRU3rFhNK1Q6loDAz1htw1gijfHDB7HoLKB0zbvw1gvzGBoqAdAL51t//TPgA2+w1i/KKkiCgCR1CwmB74BkujcGs9NdxWK71UAynXEoFnMJBjEXIWRmMcbierOmJcge0kgnFvWmayKZAk0HN1dyCQZNIfimPJ3JIZ5IArZGWSaXd5J4sgT7WN5knUdHVDwWoWYGYqHkJhaNjEUhPFMnYVihKpoG2nUMpbM53ao2nEe1MDs1jtt+90u89b3/5qsGVDWgxctIB+T65RMsJus8Ki617+NjdXA0iSet8je+O2M0g2pbQoOXfDMDq8Y0qGYoYE3FYpgVKgCUUhy2j9chqypYlkYmX0C1Mg2S5kAqXjLfD0tXrsVdf/xdz+V6QSVI0BRpqT+jIhNnIMiKRSwKkoKDlRaed/Yi5E6hfEWWYwEe4GJ/nfYig1rkJGOeakIAgLtppoqAamtOuCdrO1Wd9IsIPWNRQGRbUwCI5YHpPUAqIgER85k6p2MA4bqeUSHnDrHlIA49+YrAnCw7TbA0BYIgQonFNuKYnOnuW/c2xGMsyrbncwkOB452h5L++/1vwYLhAo6M6w4MP7vlHvyN+aTppEAQDmKx3pEcGYt2xWK92Q61NzURxQq10epYxBJJkihkU2BUXh+t7MNSFgBomsJw0alcL+bS2Hd4AjGWgSTJ+mckSaDHT0Q0rNhGXRmLNE0hmYjNW7FYqdaxZEGQ+a0T5ZkavvWzm/H+t770lFbYibL+W04l+7vujRRzqDfbkRWLALB+5RLccvcjfb2PH07l/XksYOaXZnrkoZ6uGNQipz8kVQrNKHZDNq55ImW79+6hFHITl0kmifHWOPJ9RGvUxTpISb/PEiGCIzkPIdZTsWgjIvND3vdm5qDyN0GQBBKphE4sBogdc8UcZqeCMxYZjoHQFhA3clDiqTgmx/Q+xuhLR3GpdCk6Czto8npPafdfdjtebxKLvNgdyBU6AlhbLWJXLLab7UgEYLOhv18vYjFhG5jK5ufnglNyDYBl81ns37EfSejboJi9nB633uaxXfAZakulU2g1g2uRJJOEpEqWEtSNTD6DfTv2WcfxSHIEX7v6a/ju9u/i1sO3YkHSOTQudkT88nu/xDUvu8axr04pKPoxAwA0TUOA87edYlKgCRptxdtPypfymBqbQiwei2SFCgDLVi/Db3/8WyiK0tM5Kgwn2gp1f30/FqcXI8OemHxFczhgPvtogAEGmDv6Vizmcjm84AUvwNOe9jQsXLgQ2WzW8f8BnvjoiAokNXha/8is80LJMRRiNNklFslwxSIld1DvSA47yUKSRa3T2xIgDENRG4EG3Eomd+befEFRDLhYHJWpScfjqm3fZvIlhxWqCTuxKBpWqKokQKjP4NabfgKh0wbJJUAzDFhb5pssO/ehIKugKZcVKs+DoG0F9JRdsdhAMpX2EouuiSx9uYx1w9ISZCS47jKqqqLTaiJpWKHqAd7BN0f5BGtl8/mhNLrA85ibWFRtOZLQdHvQWR8VbGV6CoBXoUrRNGLxBIROuGIxzujEot/hnerTCvWPP/8+EskUnvbclzoetxP7+yrBBT1FEhhOxzDbFh03vY8erWFFKYmRjP9U/6phncA+WvX/rNZv0cih4o190qtYG05zaIkKJGP7LTtUmgNDkR4y3w9LV67BxJGD1nE/V2ggwFIENi3SC9pzlkS7Oc/EGAiSClOwuKes5yuev+LUyle88MILAQBLV6w5yVtycjCoRU4DSD2sUN1WqQDAV7v/7tHo04lFObr6EAASBT3z0IQQoPo6w5ikJn3OiT4ZRuGKxSZAexWLj+zYjwe27THWOXdikSB0O0i7ItANmU5islK1/qZd1/w4x6Ej6NdTUdEwXpfw0z/cjZmavn9M8sSXRDGVGiQNXrATi07F4tGprkqg1myF2pt2l2uDoshQJVq92UYm2V1XMZdBjDC2g+6vcbVwuOC5DuokXsP67LwgRbJCNff3Ap/mbTaVtGxe54JiLm19N1Hwpe/9CgRB4C0vOUUVAgYEozTtxwoVAEYMorwfxeL6VUtQnqmhMjs/dXaMPb0zFl/6rMvwL6+5Gi941lNO9qacFAxqkdMf/SoWzXlGh2Kxh+2hm2RIMkm03TnUIVBUBS2p5bBCZShvZmJYxiJN0o7lTQXbob2HcPTAUQDzUywCQHGkGG6FWnJaocbTziEShmMgtszhVw2d6Q4euP0BVCYqIGkSbJwFR3FQAiZ7ZFUGCRKS4FIsxoIVi2FkoX05IDxjsd1sO9aVyc+dcElmkh7izZ2xGFWxaCoS3VaogE6UdlrBfZEEnYCkSqGKxYbLPYEkSLxqw6vwpau+hBXZFY7nHrr1IfBtHs9/3fNDt/mkQQEIiYDQ1ntOfopFgiCQ4TLoSN79Zlcs9lIxm1i6ZikkQcLE4fnZwDIsc8KIRVERcbR5FCuyK/q2TJ4rVq5cCcBLuA8wwAAnBn0rFq+//vrjsR0DRISoqB712LEGLzkVi+68xf0+REchyWJMzAHQFYstMVixSMkdNAQZguQkFt25fv2AInQbxr5e42IWj5UVqunnL4kCisOjmJ4aB2ziuHazW2Cl80Uc3Oa1WjIzFik2AYHnQTRnMfmDz0Bq1bD6jE3g4gkA+vuwNhWYO6RclFVQhNMKVZYlvUlpPDTryFisozS8wKFKLSY5xFhnk6zVrCOZ7hYKLVHBwnh3//OdNjRNsxSYgE4EBpW2uTiDx8flwIlQtw0qAGRzBdSrszDbmIrMA9BvmEhFhEpz2D/dxBJXPqSZKWlaobZFGffsn8Hla4eQymTB853QE2OSo1FtS3r+oeunmM7mMH5wb9AgpgcP3vZbvOAlr0bcNeFsJ0S3j9exZXEucB1LCnFU2xIkRQNLE+iICvZP6wq7fNL/N7FySH+/qbo/eVfrSEiwFFpN/TiwFIt+TXQbRjIxNHkZsvEbyBeHsB/bAZoxbEkjEIur1kJVVRw9uB8r1q7vuXwQVMMKtZjk8OiHrg5VYduRjtHgbYrFXZNNJFgKZy/JzXlbjgf8JkP/mjCoRU4DeDIWZacVqlvRSLNOxaIY7nLQJRb7zFiUBUARdYLQTmTaUVwDMAGkFBMH4Nq2EJUApJb+vgYWGM2dux/ZYXt9/80883raEWUsGi7qikWb05WiKN1LGJvC5HSw7WM8xqLDC6i0Vbzghx1MVBWsWrYIhazzascyPldPs6FKkA7FYicsY7HhJAODUGu0kE0lA23KNE1Dvdm2VFWATroxhNF8o/q7DVo84m1YlPK6OjDG6d+RnrHYu04fL+uf18/6NpdJolqfu4tHIZvuywr1ezf9CW984dNQnEej80SANxWLif4Vi0D0jEUA2LBqKQBg+77DuOTcjX29nx3mcXG6giAIfPRvr/HYP/+1YFCLnP6QVTmQOPEDTdKgCRoy1SULe1qhKi4rVCYBXo4+YGmSkKZiUYYMhmRAua5F/WQsmsTinb+/03psPsSiLMkojZTCrVALuhVqFnpN5L62MywDgRegdBQc/tJhNCeaKA4XURwtAlV9GY7iAr8vWdMVi7LY3d8iLyJms9d2ZywmI6ixW40WSIp0rMdvmbitFsnms2hhbs4E7nxFQN939WodC6D3TKzP2ON2ccaovdxWqICeC2javPohySQxw8+EW6EGDOf4HYuP3fEYLr/mco/N66kC4nYCXIaDtEX/PfsRiwCQ43LgFR6qpjp+U6YKOBaLQVIlkCChIvzcsnzNcgDAoT2HsGi5vwNaFLgVi9sr23HNymvmvL4wHGkcgaqp2FLaAqpH7+hY41TNCB9ggNMdkTuTqqriU5/6FJ70pCfhvPPOw/ve9z50eih7Bjj2UP0y444xeFmFZFMTCi6y6mCl7dmOUoqzJvd7ZSxSUgeSoqFqy+vJJ+Z34z2UYhH3yZILA0USUGy5h25rzLlicuwIAKBZm0VpZNTKWDTRqFetf2eDFItmxmIsjnp1Bo9+45+gNKax6tzLQLmCop3EovPGRVRUUBQBSXQp98ju/p6xE4s+isVSinWoIvXl6lYmIQC0RQVJm2LRJE/NjEUAyOSD/UFzCRb1jhTYmBge9RZS6VweDYdisfsZSVUES5E4WvXelJmf11SoPnKkhu/ecwj7yi0kU2mIfPh5LcFSEA0rVDf6VSwCwN+84g2ex2aMacyhNIcDlZZF1PlheTGJmZZo/U53TNShasBla4fABCjsMjEGxSSL6ZZX0QkA1baEFNc9zviIVqhDaQ4dSQFvHD+mYlEjGTAUCTJC4OHSlboC79C+XT2X7QXzPdMxJpBkdSMdYyApGgTj3LB9vI7lxcQgX/EUwaAWOY3gViyqbsWi63uVRd0O1Y1fXgt8KAu4poPnpFg0nBf6sVz1oF/FothyWKX6KdhCickATExXAQC1Fo9FIyUcdSkWa43u/meSeYdi0Y1EjEO10cKFX2/j8bKKZ29dDsonczdUsUjQTmJRlBC3kS7OjMVWZCvUsOVabR6apllWqICeB2mB7K9uXLLA28wz1YHmZ9etUOdHLM5fsZjpS7Eoywre+Zrnzvn9ThQ6kkks9qtYzAHoT7G4ZvkikCSJ7fa80DngdLdC/WvFoBb564Gs9UcsAkCciUOmbeRVjzy1huw8XyfoBDRo6MjRjikzj9HMWNSggSW9dUc/xKKfgs1vnb1gKt4kQUJp1Ess2oeis6UsmiFDNWycRbvZxr6P7UN7dxvrLl3ncbuPUTHImr8LUlDGot0KdU6KxXoLqXQqdMjJnrEIzE+x6Ee8ZfIZx+dSeGO/9rj1rhi1lx+xmEwn0W4F1yJJJhmesZjPoFlvRv79KIqCF7/pxZGWPRkgGyQyagaiERlD0/41ZD6WR0fueJTIDsWiIkUi3YYWDCGejOPgHn34TyVVc46+LzAc48hYPNQ4FPn80i/21/eDJmlsHtp8XNY/wAADnHqITCx+7GMfwz//8z8jlUph0aJF+NznPoe3ve1tx3PbBjhJUFQNTdskFy85i4Ejs23H84BOKJigKRKi0rUSdIM0LmLj1S6xmEvM78a7kGTAheS3aT5VFUkQFmECHDticWLskPXv4tAoKmUnsdhqdCe3MoUSarNeezLTCpViYxBFAVxuGKOvvg6lhcucuYKAg/S74pnPdTwnyCpogoQoOq0PNFshM+NSLLozFhfl4p5CudVsOBSLbVFGkqOtvdwyiMW/tDL47Tb982eywcRiPsFA1YxGsA/8FIuZXAHNhj2kXHB8yyuHkpis85byzMSqMzYBAFhOr8qqhjqwzktIpjMQ+PAJ0SRHQ5JV+LkFp7N5NGoz3icCcM6lT0NpeNTz+GxLvzF42sYRHKy0fS1dd002sXOygZVDScy0RYvM2zZWRz7BYNOicAum5aUkZlsiJB/ScrYtIhPr/iY77RZYLtZzCqxknAdqHf38kCvq6g6NpHWSL8IUWSaXR65YwqF9u3su2wtuQjwKTEKVFxUIsoKDlTbWjWbmfY4a4NhgUIucRpBc51pFcmY3+tmA+SkIH/0//b9HH3Q8bBGL/WQsxnP6fzvzIBYZr5qqF7Go2nKLfDMW52CFuufgmPXvhcMFjxVqtdFt3mULJV1pF4B4jIMgSBhJErjnjUmsX1pEpeqdQjcVi0+75Ozug7aMRd425KSqGuI2BZk9A1K3Qo1ALDbboZapdYOcsxOLxZxNZdnnJLWfYrGYy0BRVLQ6+vHMi9EUi+tXLgGgKx7dyKYT88xYTKPebEOSozmBPOfKC7BmHpPwJwomsZgMUYX4YaRoWKH2oVjkWAarloxi+95DvRcOQYwb1A6nIwa1yMlBEGF0XN+zT8UioBODCt09//bKU6sLzutp3KgjWm7nhgCYy5lWqAB0K1RX/yOUWCRcxKJr6EVVVTBhedEBMG1UAaA0UnIoAoFuPiGgZyyGgeEYSIIEKkZh1b+uwoLVC1B31SIxuptft3rTasdziqpnAYq2ekfsuKxQJ1zEYoC9qWarLXsRkHyHh6qqSNjqlflkLPopFt1EpegeKg/AwqULAQAji73OXT2JRTYJUQknFjVNg8hH25blG5Zj7ea1kZY9mei0jYiYAMVingsnFmNxXbFIRxhuIwgCS1cttYjF6qoqqBdRPe2V3fDLWPzz0T/3tY6o2F/dj9HkKPKx6BmxAwwwwBMbkbuu3/rWt/DFL34Rv/3tb/HTn/4Uv/jFL/Dd737XkRc3gI6XffVuLH/fr3wb9qcKTAVbvVr1fb7a7l6s3FTARF3wEB12YpGhCIg9MhYBYLzWnZKZr2IxH/fmAAJAXdC/AznhbQZRJIF2q1vMHisr1MmjR6x/+yoWa92GZSZf8v0Nkck8Wo//UZ+m1zRsfNWHQadLiKezDpUeAIcqLV9wfk5RVkGR8CgWNVsT004stptNJFMZtG3E8dKit2nXanYVi6qqgZdUZOPddZr79Z4yiR89cAQdUQnNWMwZ378W0OQLyli0W6dKEu+wt92wIIOJOu+wdQWAd33kOnz39/dbf5t5gi1RQTKdgSyH3/wlWdogzn0Ui5kc+E4HqhrezDMDpq987it8n59pi0hyFC5fOwRJ0fD4uHOStcHr2yzKKhbl4pAVDeWGXiw+erSGtSNpFHso7FYPp3Slo+Q9/qodCZm4TbHYaSOe6G1LZ+acVo1JPlOxqBAUWIqAj8DFF0tXrsHBvfNXLIYNGwQhHdM/d1tQsK/cgqJpOH95PlD9OcCJxaAWOY4Q27ry787/7r1sj3NcJMgd53lUdVuh+kzSBlmTAs7XAnrOnar4WKHq1wnfX7SpWIyYfeILP4vUoGaeBkBqQ1S71z63gk1V1TlZoe451CUWF40UHcQdAMzWuvXPSCl48AcASJKApCi4/XUJrMiTKKRjmKk1PLvWHD5ZaJ98tzIWKYdiEXASPRPTs5aLRL3ZRjbV+5pjWqEGod7yIxbnrhJY7JPdYhKVpvVo1IzFT77rddj/h+t9s4tz6RSq8yAWC8Y2zfSwQzUVfO86VfOMXGhLKhiGBtunCtCyQu1DsQgA61ctxeMDxeIAPhjUIk9smNcqdwSHn+3jfIlFQiMgq7KDiHKjIXoVi0D/xCItd+/d/NSFYRmLFEk59odbwdZpdcCQ/Z/Pjuy39UVGS5iecioWm7ZaJFsKJtvqD9R1kkoUseJfVoBbyCGRSUASJfDt7qBajNKJRQIEhlwuA5YVqmSzqRUlcLZrQ6fVsXIH3bmIdpjqL0qj0Gw0w/MVDYeIY6VYdH8uQLcdtUMW5EixGS9+84vxndu+43k9AKQyKWvb/ZCkw4nFtFGLCHx4tl8sph+XFz/n4p7beyrAJBaDFIvFeBEdqePJZjXJei7OQVTEyL+npauX4tAefchJoRRQwxT21fb1tc0MqysW7cfEnWN3QpSjkb79YH99P5allyHDntr2+gMMMMCxQ+RO6aFDh/DMZz7T+vuqq64CQRAYGxsLedVfJ+7apzdvdk5EtyE60di9W1cD7d+93ff5qo04jLPOpoeiatjpIjocikWSgKSogXl5fsRinKXmpC4ykY7RvjaLlqOrT2FFEoQj79DM3DMx15vDyaPd6ebS8AJUppzEYtNmhZopeJtUsiRBOPI4pn/xGdSO7IUg8NYNUCKdRbNRcxRwYeSJqKggSQKy5CzoFNs0fatRszIRzezEtkHG0SSBZQUfYrHRVSyay9qJxU7LaWMiyEqoFWreVIMFTG75WaG6iUpJFEFT3WNg8+IsKk3RcSwDulJxeOFi62+TRBckxWHvGoQkRwUSi+ls3tqWMGzerFtDLFrpP5VXaQrIxhlsWJhFLsFgz5Tz93bLjinr3wvz+lTrZEPAVINHpSXi7CU5BzHoh3UjaUw3RXQkL5Fa70jO77PdQjzRWz1SMojFphEYb6qAVVBgKBJURN/7pSvXHBPFIjMfYlFSsHOygThD4exlg4m7UwWDWuQ4om0QT9t/2XvZ+ViFmpB5VKZtDSbFbYXqtkqV/d/XnFgQnA04jfS3QtVo/Tw1FPMhD7lUJFIoFKz3XGm+pweqCGgq2kr33OgmFpttHgh6fQh2H+yqBBYNF1Gece672bqdWPSe4xRFsew0H99zCB1esGqRfCoORVFRa0ZoeloZi4SHWIzb7McURbW2sdZoHxMr1IZhwea0Qp17o2OJL7Gor08yrqVRrVBZlsFyH4UAoCsWJZ9rc1SYZGcvO9TzNq/F9pu+gidv3TTn9zqRaIlq3zaoADA6ZCoW+3vt+lVLsH3fPBWL7OmdsfjXikEt8sRGnNbvnXjF6Zxgt8E0oahK/8Qi0yUWSZA9ycm66FIs0nNTLJpWqIC/OrGXFaqdoHMTi61Ga04Zi25iURKcdUDDdp3yIxY1TcPkHyZx6L8P4dC2Q9A0zdYX0a/tjXp3HRzNhVqhEgThsAwF4FAsAt3jwLQ49UNT1msoVmV7KhZN1d8xUywu9MlYdK1PEiVPxqYfKIoKzO7rpVhMsSmIqugh0NzbJHTCicXly5YDANaec+qrFQGdfCZJEmRA77IQK6Attz2KRZNYNBWLUfMHl61ehoN7Djp6q9sq2/raZlOxaA4cECBQ7pRxz8Q9fa2nF2b5WdTFOtbm1yIRlEU/wAADnHaI3D2RZdmaJjHBMAwkaR5T3ac53BaMTyRUO+Hf61+OOhtUJqEA6IpFSdEgB3x+QpXAUiSmGk7yJRtgNahpwP7pFv7j97vwpT/txUzbu21prj87KwJ6L7Jts0LN5p0FNN+Z27S4mbEIAMXhEQiuzL5G3aZYdBGLrXoN//Tml6H56B9QfOY7MLT+fAi2zI5YSreUsBN3bBixKKugSBKi4CzoVNdPf6Y8BYHvQJFlJFJpdEQFy4sJfP7lZ2PlkLegtisWW4a6MW/7/lpNZzNLVrVQxWImxoAk4GnoLlq2Ak973kuxbvPZ3te4iUVBAGOTxK1fkIEGYN90+PdoEo+CrCsWeyHF0YYi1/tcOpvTt0UML6DJHtK9SktELs4iwVK4aGURBypty+qUlxTcbCcWszGQhE5GbjtaB0kAl60b6mlbumYkBVnVMFF32eRqGuq8bKlIAT1jMRaBWCym9Ne0DGJx1RmbMLpoCTSKAUuTiBCxCABYunItjhzY58hAnQvmolg0rVAFWcGOiQaWFRM91Z8DnDgMapHTCLLgVD5qCmDPCXZnMIpN/4zFdUZzd9dvHA9rBKWTigHqykVxsUt6mSBIgNWveR0h5Jh6/Kfe7TPB+jShgpp5sn7+bcvBxGKt0ZpTxuKeg+PWvxf6ZOc4iMUhZy3SbHXwvL/7qEXMXXXx2Q5SMJfSf4ORcvzMxgrJeOxW7cQiAIxNzUDTNNSaLQcZGIR5W6FGxKLhIt7wwqtx6XnevBi3ApIXolmhhiEKqRqGQtapogwCQRA4w7BkfSKgJahIJbxWw72wee1yLB4t+SpOw7B+5RIcGiuj2Zp7DtFAsXh6YlCLnBoot8tzel2S1s+xvBwefwHMLWMxySStLptJLAYNXANATXD2VUzFoqIpkWwkW1ILMSoG0nZ/70cChhGLFEFZSj0AKIw4a5FWozWnjEUHsehjJ24nFj12nryIj/79R1G+pYyRF47gzCvOdDwfT+nXA7vqMU7HIQW4TvhZoQJeYtG0a202mkgE1CImschoDFr1HsTiHBWLAiVg0w2b0NH0a1AyncSzX/FsbH3yVs+ynn0niJEUi2FIZpJQpOB78SSThKAIwYrFbDTF4hMNfJtHPBlcixRjRbQlL7G4dNVSDC0YwuiSUYiqCIaIVh8sW7MMrXoLM1PduJ39tf2Bx7kfGJaBIAuWSnJVbhXWF9bj9qO3922rGoYD9QMAgHNHzz1m6xxggAFOffQ2djagaRpe+9rXWhZ+AMDzPN7ylrcgmexeJG+88cZju4UDnBRUfcg7E+kYjR1jdawc7n7vpWS30DQtA90WlO51zLScRUYuzlh2jqaN7M5Jvdj82E3bkWB9GjWqApCUR1XZCyytq6fsikU32dNu1AGb1UQy4ntMHD0MU/tYHPZaeLYaNcBY1chwVyWpCm186E3PQ6s2i5GXfhSxJZtAKGMQhO5NTzKtT37pxF3K+ixBEGUVtI8VqkqQALpF4PTUOLi4XiAlU7piMc5QuGhlyZfwbTXqSKT0YtEkFgs28qXtIhYVVUMmmwcCelwkSaCY5FBuOo+JeCKJd3/0P31f485sFAUBdKLbnF1RSoCjSYzVwhtCZh4gL6tIRSAWkwax6Dc4kDIUi6IggPQfcIyEmZaINSMpxBgKV54xjF8/NoHxGo8VpSRu3z1tkYyAnmm6MBvHTFvEeI3H4nwCS4u9m5JrhvXv78hsG5tteYxtUYGiag4VcqfdRiye8DoKusBQJDIxGi1B376V6zbg27+7D5/53U4wFOGwqg3D0pVrIIkCJo70rxRIJBMA9Ju9ORGLhmKxJSo4MN3Cs85cMMhXPIUwqEVOExAUoAgeNSHsTT4/4q4z632saGToPP4T4Ip/th62MnsV/4YGTQIQW91cRROxLCDU8eNbH8QrNz7Df/vHHvJ/HAB8MogCMxaNz9sQuifXlKtZUa03scT++oik1W5bxuKiES+xWLVZvuULBVAUCcWovZ78yn/E3kPjeNHTn4wf/eZ2xDnn9ufT+jb2Iq4A2BSLpI8VqrMxf3SygjNWLoYsK5EVi5lkBGIxaScWM4BXlBIKlmXwPx99h+9zbqKSF0RE9v0OQG6exKJJdvrlYD6R0RTkvvMVAWDlkgU4/Mdv9f269at00nWnrTEeFZlUAgRBzMt6d4BTF4Na5NSAirm5C5kEm1ux6PsemtpXAx8AUkz3JpBA/1aoDMWAJmnIqoxH734UT1v7tND3a0ktxOm4I1ORpVhIcCnzeigWWzYXgnzROcDbrDWxiOo/i/fI/iPWdpV8hjuatSZg/GQYlrHIKE3R8Jk3fQaHdxzGur9dB+ZiBrGa8/yfyOjX9nqtDhinWo7iAjMtZU0GCdKrWHTZZE9PTOtOTiEZiw5isdHC6OLRoF1g7Vc7SZnJZ4AefFs5oRPnuxQ9HoSiKFz7iWt9l40n46CZbmtXFMRIisUwpDLhzYwEnYCsyp79/YOdP8CRxhH8/ea/B6ArFhmcPvfSnVYHsZBaJB/LQ4WKptTEELq9xMJwAT+854cAAOmxaBmLgG6FCsDKWQSAw43DqHQqGE0GH3eAflwQBIFcMYc9yh49J9U4/N+65a34h1v/AQ9OPYgLFlwQaVt6YX9tPzJsBsszy4/J+gYYYIAnBiLf+b7mNa/B8PAwstms9f9XvvKVWLhwoeOxAU4P1Fz2kXYio5TicHCmDdnGG3JMt3BhDDvKdgixmI0zHvLSnrPoJm1esnUx3vVUH3sEo2FlqrM60NchauGFFEUSIFzEohsd93MROBG+03ao1Uoj3ou9XbEYTyQRMwg9kkvg8me/BP/9vZsQW6LbUhEUC1VRoBnN17hJLDa6zaIwC1lJ0bWJsuzc14rrp1+ZmrT2RTKdQUdSEGcph7WoHa1mA0mDWGwbJFLBRi63W02wXLfgkhQV2RArVMBppxsFpjrQeg9JAG1r5tEkidXDKUzU+FD1cN3IKxRkNZJiMcGaxKL3ZtZSLEpzn8zTNA3VtoRikgNHk7hsrV6QbhurQVZU/HbbhIMIBPQczJmWiB0TDaxfkEYx2XuidCTDoZBkMV5z3lSbmZOjme73Z1qhSqoKmiJCfwrFFIeWKDusYkVZBUuRvnbFfli6cg0AzMkO9Ywz1lv/5gJC1cOQ5vQbn33lFmRVw3nLC4N8xVMIg1rkNAFFA7LozUWUbYMgos9QiB+xaIKvA3f8p/WnRSyGKRJEH0V7zHv87Dw4gYMTM95l/eBnbeRDNurbpl8r7MSiG7VmG6Bt5/SMd2DJDVVVse9I14bdj1icrTsHq4YLOevv1z//atz5vc/ih//5T9B23ORRFhZMYnE2AnFlZSzSoVaoJElibKpikYGRMhab4Vao5rrSNrJ2PlaofojHOMRtagdBlE4ZxWIkRekTCA1emZMV6lxhqjm37+s/Z3HD6qXY/4dvBNrdDvDExqAWeYLDuB2JolgEunl6UZFkuudwEmSg6lGT9Wu/2woV6KoW7Ti6/yiq5arn8bbcRpyOOxRqvlaoIbbqNEk7FIt2kgrQ1XtRiRA77IrFwlDB46jTcF2n8oZ1NUEReNLfPAmf+9HncMYzztC3KeZ8/7hRizSrXcVijI4FE4uqnjsYZoWazCQxPTkNURChyEqgEtFuUxtGQAKw9qudWMwWju35gSAIR06iJErzVyz2qEXM47wjO+v1O47egQP1A2iqTcQSMfB8tN/ZEwWddidUsZiP6cewe2DADkmNTiwuWrYINENbxKLW1qBoCh6bfqzna4cXDuN///y/WLV+FXiFd6iOL19yOVZkV+C2I7dBCXB36Rf7avuwOLV4kK84wAB/ZYhcHVx//fXHczsGOIVAk4Sl4jLxyOGq9e9SisXjY3WIATaFph1lWwzOh8klGMy6iMVCMniSaSgdwzIfFRYpNKAyMZj8V4fQGw58xEO77coCtKNW6z9DauzQAcffhSFvQ6FZqwK2IUA2Fsehz70MVDKLV958j5ELp1twELS+T8y8x3jKRiwaQ2QUqRM97rakpmkQZRWEzzSnrHaL+lg8gcrUBBYs1qehkqkMOocVLMjGfBVmmqai3WxYJJypWLSrutrNBhKp7pRbR1SQyRWAEAHaSIbD4+PBzwOAeS+iJotgWBaJZPc9REGwSG0TmxdlcfP2KXRExVKi2SFICgQjiJOXFBRTvS3SkhwFDbBeZ0cilQFBEBAFEXM1z2yJCkRFxWg2BoIgMJyJYWUpiX3lFu7eX0G1I+Gd5yzGI0e6x+fKoSTu3KsfMxeuLCLG9G5qEgSBjQszGKt2dOLPUPeZxOKCbLd5x3faiCeSECQVXIoKVR4Wk6yleiSN78NcPxkxY7E0sgCJZAqH9u0CMNxzeffnMjEXYjHGkKBIArunGogxJLYuH+QrnkoY1CKnCUgGUER4ZND2XEXZh1jkq/7rY1NAfjnw8HfAafq1rEsshjQE62NA1jWB71YwArjt4d04c5jCMsC7zTaoJAPSh1TSAq1Q9WZLjQ8hFhstoNCf/djh8bKlPgSAXCblIL8AYNamEgAAlu1eI//+Vc9xLBs3VDmKRoIi1LkpFkkKvCgBtql1uxJytJTH2NQMaoZlWDTFYm8rVI5lwNrsKI+HgqyYS+PIhE4S8xEzFsMwX2KRpilkUglUqg2LZDwdoBOL/VuhzhWZVAKLRorYvrd/YhEAli0akIqnKwa1yOkBIcDRwA03cdILHmIxgOjSoIEA4ZulmGASHsLx3pvvRfos7zndVCzK6L5PjPYOYdBEcH+EIRkHseh5j0YLJEFCkzQQTLT7uUa1gdpMDUugD2nQDI18yauExMLu3xRFofyrMoaeNYTLXngZVmRX4NcP/FrfRs7ZK+LiHCiacpCTHMUFW6FqCmiS9uQ82onF0nAJlckKWoarQ6+MRQA9MxZbjQDFYo++R7+w26FKQrSMxTAEfXYT5nEeRNCLqohMLgOhIyCN06cW6UUsFmL6MH1TDO4zSqpk2ZL2AkXrOZiH9hwCVgNqXcWSoSXYW9uLK7UrexLIpppWUASHRTJBEHjzmW/G+25/Hx6dfhRnDZ8VaXuCIKkSjjaO4urlVyPNnj7f9wADDNAbAxnGKYJHj/RPYh0vxBnKUnGZuP9gVyVQSnFoiQom6wH2YgaZ0AnxZM8lWM97FOaQY0YYVmm98uSC4EcsilMHwB/dAVXoP2PxyIG9jr9ZlvMo9ZqG2lDTVHz3859AfXYGGt+AXDkCjqFQt+dbGgWHapC4TitUHQRB+CoLZVU3XSF8JpBkWw8zPzSC6alxa53JdBq8pFuh/n/23jtMjrS+Fj6VQ+fpSRpJo6xdaVfAsiy7sOxiWJKxScY2XANO2Nfp+vraOKdrrsH3OnM/B2yDDbbxBYwxtskYk/PCeqM2aCWNtBqFCT0dqyvX98dbVV25q2dG2lTnefRouru6urqqut5f/c57zklSaumaCsdxRhmLmgWaGmXTAS6xWBoVFD3VyMxYBIAdtfHNor5GGqWO2/itBvatrmlgI9v79MU61vqan6MYRSdwDuqmHdrmNEguaZdELDIMg3K1jjjNmx8bA7Ktu+qj/XHLoWksrQ/w0Xsu4vBcGc+/Oky2HXRzMAWWxo374sqUNDxtdx0XOioGgRssL191Rz1ALLqKRc20ILB0JrE4XRGg6KZvZwwAumX79sN5QFEUdu87uCnFYhAiN/kQR1EUSjyDgWZhz1QppMQtUKDANoFm4xmLQJhMNJIUi+30dS4+C9D7uK3mzugdY4UKAFh9MP6cOGYyQf9S6ks2LZDvFkWqFSrZtraabufW7g3S35+Ch5aWQ48pisLCbLgWabuNLsdx8JZ3fAhnlleQBtm1CfPcDiSeg8Bz+aw23YaqDQaGEW6uBsnOnXNNLK+soeNaho0j12zHRrevoFbOUCwOlFhW42YyFschqIIkGYtbu73Ko9Ych2a9mpnp9XhEZ2hcUcUiQOxQN6NYLFCgwGMfmqXlUurkVTZ6SCIWs3Ia+0Y/dr32ciDzYGAMCJEYuM2S2Ph9tdcvsXrx7zyOWOx7uczp88ZjOLcUt5FuRhwUvPU6joOPvvujOP3gaSgPK3AS3Ib4iC07KKBar8aIxTRYtgWGYjIVi9Pz01i7uIZ+j2xXGmHYM0af2e/1szMW+wo4ngttf62+/YrmoApyWzIWcyoWsyyF82RJPt4wHAwhZUxy8hSLAzO9l2hY+RWLALDn4B6cOTGyQr1p4SYsdZYyycsoosQiALxk70uwUFrA5859buIs2SiW+8swHRPHpo9tSt1coECBxy8KYvExgFOrfbzsT7+E3/7I8cv2GaareMvTY5B4BgMtXDXevjSyAJsuk+LrxKXITHW3MM+TsdiQOfRVM/bcVuFlCZp68kw1H+6OSLJCpaUKHEODPsw/UHtYPns69pyXs2j13CDwbhu2rmL1Q7+Dj7znL7H34NWh5UNKToY0Rj3FIsPyECU5ZIUKAFwC0aO7xFcisRioG5oz81hfueSvUy5VMDQslIRkZZo+dAPIK64Vqm5C4piQOkxR+iiVK76CsK+5isUMLNTHN4s6kXOmWhs1gA09QbG4qw4HwOn15MKu4+7rEs9AN21IASvUtN9KySVQ1RTiPGrROilaLgm6ODVqLD7/6ll0VROrPQ2veNoCFurhYnafSyxSFNAs529AP32xAUW3cL49uiHoKAYElkZVHP0eh8oAolyCbtoQOSaTIJytCBhoFkwrYIVq2RAmUCwCxA51y8TiJjIWgdExPjxXRl0qiMUCBbYdDAfYenbGYlIjT8sgsqQ6sHgTriqTcd3xGipmBrG49kDCelwbrjTT59WE97iwGBGgGQyGZNu7CvnspIxFw7RhuQrNlpJ+M9/ZBLEYzFf0sHM23Mzb6Pahmg7e8CEVv/Hn/4SnXr0vdX2estB0yD6hKEJcTaJYTCoJ5UAzb2F2ylUskvE6KzsRAPoKmeSURUD2BsMYsXg5FHxBFaSmG8nk8gSoB3KNNksOTtW2EPT8GEVHMa+oYhEAjuxf3LRisUCBAo8u0pSCHlRLhRW1ZE+Abk9mhSpzo3GHdsYTi0NjGNuOEj8hsciIoAOtPZERfQJN7YfrKSfBfp2lWV9Zl/gZXi7zJMRiQj7tzPxM6HGv04NjOjj/t+fx7v/9bhy69hAWf3oRVEIPgvPuTd3NdxwH1XqVqB5deMRiUqal6ZigQCUSi9IBCc0XNdGca2Lt0tpIZZjiiuCTRg6g9JSxxKIcqUV4cfvvL0OKRd0Aswn3hPXhOt70uTfhfP88ymPqCI+81jLq7MoTyDXBg6qomYrFGl8DBQrDpAmSLgzbiJF8WdhzaA9RLLq4ddet6Bt9PLzxcO51aJYGgQ4T7wzN4EeO/QhOtk/igVb6/U0eLHWWwFDMlpWPBQoUePyhIBYfJXzrzIioW3cVSo+00meJbRVfOE5mr5++RJSHujsLTEuYDSfzDAaBDpDtOLgjoFisSSwElsbSemR73eLdIxazMhbrEg/NtEFxo8EtmLG4GQtDAFCHZABXeu3E103DbXBppMCOKhZt2wFTqpPXMvIX03Bu6STkiJ3m9Nw8zv/NT6Pzb78DgGQsbvzHX0FduhM///vvxNGnPSO0/EZAXee4liV2wHa2Wm+EFIsAEpWFvqIuclPFMCyMQD5gY2YO66sX/XWKpTJ00w4pEIPwiUVXsdjXTIhcOI9R6fchl8o+QaPoFsrV7Jl5eRSLbXW0HyzbCZGVuh5XLB6aLYNnaCy3kws7z/ZzZ12CZtoQA4pFdZB8/GWenJtpxOI4ZeY4tAY6aAqYD1iR3ri/CY6hsGdKxrdfuyNG+O5zbYJVw56IvDu2ixyTM63RjWR7qKMksKHc1OFwAFEi+0jimMysxNmKgL4WViwaE2YsAsDi/sNbJxb5zTV3vXP/hn1TvkVsgQIFto6V1VUAgGbTgGnEicVgrmISsaiOcXc49lr/z5FiMaMhuH4y/pyriE+N/U1SObqwGQGgGbRcwu38mkuERjIWHcfBpXbfn9DTGqbXS5shFh9aWsaehXDzLpqzuNHp49c/o+Gfjht47//+b3jhs5+euj5PWWg5o2t4s17JqVh0c4yteJMvmLG4MNuMWKFmE4seATnOCjVKLHLc9s+iDqogt1uxuLyyvslteuKpBNqKgZK8WaP5zeHIgd14+Ox5GOYE3fQCBQo8ptHrkTF6qA3Hko9AfstUD0HFIgUKpjOe4IxuR5nLPzlkYAwgMIKvSGTBgqEZXw3YWx/f0+BpHsog2woVABwj/2SXc6fOYWomPLF4en469LjX6WH1o6vY+OIGfvwtP45bXnILzF7y/vKsUCm3FnHgoNqooheY5JRkAevBU6cmEYu1Z9TQfFET0pSE9ZXxVqgesWhoBhzHQbmafryUvoJShruCBwcO+LnNE47BjEVd0zdlhbo2XINu6zjdPR0iS3U1Xkt757lmp/8+nqiKRVFKP88YmkGFr2BoZROLWdbEUSweXMT6yjpM1/nj2ua1KHEl3L9xf+516JaeSGa+8tArMS1N47OPfHZLqsVTnVOYk+fQFPO7ZxUoUOCJgaJj+ijgPV87g1e//av42D2TG6ubCbYQebC6SiyuHnBnsffdmWpdcT62rMyzUAKKxUdaCroBpZjAMjHFFAFZJ5fDCrUmuYVhoPkSzOjbpLOpD0NLHsjPnHzI/ctVLEbIo55mgnJnd6URi7Tb2PRUgt4RcQAsnzmN+Z27Q8s3Z+ZhrJ4G5+iwTBP9bgf1W9+A+df/Hq6/5QVoNMPNv9ZgVLjZVFixCADV+hQG/XAzj41sCzBSLCKSM8CLIoxAg29qZg7rK5eg9HuQ5BJMm4IDoCIlK0g1lRTSnmJxoJmQ+Six2INcrqDkknBDwwJNj/F/r02mWDRtO0TiJWUssgyNQ3NlXOyqsBJ+O+2hAYamMF8ToZkWRHl0U9BdT7aFk12yKskK1cH2EIsVkfVJWQAQOQb/82VH8aO37sPuqXgTNY/aMwnTZQFzFQHnO6MGflsxUBVZ8AGSVlWGvmJR4rNvUmYrIhTdCu0f3bJz5T4GsXjgEJR+z1chbwbiJicolAWW5CvuyVbZFihQYDJ85StfAQCs9XSX8ItcR41AU8vSgcDYB8cBtDHNscosOob7u/cVi1kZi8uAESEwXWJxvpwyZq2ku0tYNA8EGgV9txETzVg8e34Ftu2Ap0yA4dEZpG9jp68A7OSKxYN7FkLPLQQUi6ZpYaPbx6/dIuCLP1TCa1/yLMw166nr8whAI0QsVtHq5FEsknFbNeNjsCgEicUpnF9ZR9dtbEYJwSh8AjLLCrWvjFU+bgeCJJ66DYrFoArznoeWNrlNTzyVQFsxHgXF4m6YpoWHz25zGFaBAgUeNdx9990ACGGYp5E+KbEoswHFImhYtpWtWDTjBOckxKJiKBDYEbHIgQvZYOpaco0RJOR4hofSG08sTmqFumv/rtBzQStUy7TQ7/TRfHET+395P277ntvQmG7gxC+ewIM/9yBm5XD0h2clStkRYrEb/h5kofj2WI7lk5JBCKIAWib7qzxdJhmLPa/fkVxjKBbZVx7hlpmx2B+kKh+DuEe6B4d/9zAuKJsbb2qN0SRuVVU3ZYXq5YkalhH6TlHVKzAiFg0r3SksuE1PFIzLWASAmlDD0Bym/u5N2wTH5Hdr23NwDwD4tr8MzeDGHTdiqbOU+/qkWzoENj45i6M5/MDRH8CDrQdxuhN3X8uLpc4SFquLqAlPvGNeoECBbBTE4qOA86566uTK5FabumnjWwH1YO73OaTR1taTlG1R6w0mRAred76LqNBodyN9MPXUc2mKLiBMInoIWi9uFYaW7PV+4v67Q4+Hg7DlRzDfcNBLVkbQrorCK97bIEXVAAKWz5zE3EKYWJyeI+Strmv40Vc9D93OBphSA/zsfgBAvRmeubcxCCoWyb60A3amlVo9RnryLAXHtqFYowPlEYtOZJY1L0gwA2oyQixehDpUIEqyf+wraYpFlZy/I8WiBYlnQkTUYNCDXCrnOhc8zFXHz0JvD6OKxaAVqg4ugbw8trOGSx0tkejuDg2UBQY1mYNq2JDLo+Zgt5VGLJLfkpFAVFq2g0pta8Tiel9DTeIgRPIBX3/TXrz+pr2J6tSgUjPJ+iUL1+ys4lJXg+bun7aioxL5fHU4gCCX4WD0/dMwXSE3dJ4a1HEcGJYzObG4/5D72ZtXcvPs5mYoLNQlXLOjiukJbGULFCiQHyZolzjMyFg0tbCi0RzGFY4JuK/rEiresik33H2DAnqXwmQmAIh1AMB8OeX6cSmdWLRpHgiMQ/2hO55HZgjfcZwoJXnKAlgBvWF6U6Dd7W9KsRglFj3F4icfNnH0ZT+B1VYbDYnCDTvJtXluup66Ps+y1LBH+2SqVs5nheo2SyMO+xB5LjThaOdsE6utDjY6fYgCD4bJHjO6fU/ZmE0sVsY0f7YDQRKPWKFublKLh6AV6vGA9dUkuByWr482Ngb6o5KxCAAPJlj6FShQ4PENh3ZyWaFuOWPRMWFHJ1JF1h/djjKfn1g0HTOUqciCDanVnATHAAA4cd/IGYZnshWLm8pYPHUOu/aFiUVPsTh4cIAffeGPorXSAiMykA8R4q0x3YCt2TBaRmg/AgEr1MCurNQroYxFkUkfI0zbTNwXgiSAkcn+mpqbgqEbWLlA+gCiO+bolo6PnvooTMsM5XLmIRaVngI5xySnAU36Uuf7cTv7PAiqA03d3JRi0ScWbQNyWfb7XbYVP389y98sq+DKE3CSUx5isSE0yO86JcPVsA1wdP7e5+4Du0FR1MiSGMBtu2/DReVi7vMlKWPRw2uvfi0qfAX/cfY/NmXB39W62NA2cKhxKDHftUCBAk9sFMTi4wyqYeG3/u2+id/Xd0hTqGvQIVIJANb64YZWSWBDNqb3LHdCCkXNtLG36c1QihcZNAUwNAXNSC+gawlquElsEsdB15KbdA8fvwcAwLoFUNRStBMkFnNaoTrulDjdMNFurceIxeYMIRaVfh/7Dx3BoBtWGzamw4rF9aBi0V13WLHYiGcsMjRsbYCWzvjFgE8YW2Zo9jwvyQhyYlMz89DUIfq9DiiK8rMx62mKRT9jkRSvA92EzLMhcsuzQvWUp6qZh1gc3yxqD0d3M1FiUdfVmGIRAJ6+WMdaX0M7QRGyoegoCxwaMrHmFQKKxWFEFerBUxLqCee3ZTuh3MfNYH2goy7zm7cD1iezsHja7gYutIfo62TfdoYmahI3IoodB0NlAE4iNwalMcTiTFl010P2t6eOlbjJhpsdu/aA43g49uYtOYQJyUwPf/A9T8Vvv/JaNMtX1nKtQIEnC0yHIdl7MSvUiGIx2GjT800y8MZkjMlYXFZYQFmL5zaKZKZtIrHoOMBauhUqUSzGicVoxuIdx0kmCk0BYEV0B+lNy05PmYhYtGwbp89dxKEEYvHPvqHjpf9PweG9O9EdhJ0d5prpY5dnhRqcn0MyFvNboUYnGElCuMbwFJUXVlt+IysLnb5nhTpGsThG+bgdCCkWt8EKtSyLufZB3m16oqA10K+4YnG2WUejVibHtUCBAk845LFCHZrploZJCBIGnmIxrVnvWA40S4MRcRgquXE1dM77J4kJEIsOm4tUOnFvgFikeSj9HIrFdHFaCA4cLC8tJxKLG1/awNLvLWFmYQZDJbxvGzPptYhnheoRi47joNaoJWYsJsFyrBixSNEUWI4FI5H95Skq1y6ukdfdsfh05zQ+sfQJHG8dR98YfZ4+zKlYvAK1SJBY1HV9UxmLQcUiTdMQy6P+jGWF6zie5sFQDPSMyIHtsEL1fjvsFt0gtgvqQIU0phZpiA2iRE6xQTZsYyLFoiiJmNs1F+oJ3rrrVlCgcM/aPbnWodt66DoRWj8r4nVHXofj68dxrjf5RKrTXaJ0vH72+i3XrwUKFHj8oSAWH2f41H2XcM/ymIyhBOggA/HQpqFEmjtRBWSJZ0INoHuXO9gVsT5dbJLiKGiRGgTP0L6y6vRaPAhc5hnfvjMJwhZzzdKsUB++/15c/Idfwv4eUS5GrVDbAWJx0oxF1SWi5gJWqIau4/Of/DcAgCBK+Nn/9YewrPA+y7JCtXxiMZCxWGv4WZIeeIaCrSnomgxUl/DyrChtSwfFjgoX3s0RtA3SbJ2amQMArK9cAgAornd7EvkLAPpwAJqmIcmkgFY0K3Y8lUEvlDWpGTbsMTa+lRyK1XbICjWgDqQo1wo1QbG4qw4HwOn1+HnYVgxUJRYNmcNQt8CJcqgY0tT4eeQp9nQrTpZGyc7NYEMxMCXzECck4n7mtoN49oHmxDbC1y3WoZo2ljfId+2qBuoS5/8GHduGZZpgRXK8y2J2Ue8pFntuHqannB1noRoFw7LYuWffRO+JYrPXEYlncHShFsuyLFCgwPbABE0Ip5hiMUCwmRFFox6/hmfByyhOy1hcHrBETdeK2P64M7D5hIkq0LqZOY82HSYADc8Smk5WLAIAGD6bWOxPlrG40R3CsmwcXBwRi6Zp4f0f/yL+28dV/MyNPP7lT37Nzyj0kKVYlFz7saBisVmvoDfI0Wy1DICiY/bhwXxFgFihAsD5nJmCfsZiRrOuO7hSxGIkY3GLzS+apkPbvbLe3tI2PVGw3tNQysg1uhygKApH9u8ev2CBAgUel8ijWJzUCjV4L0mBIoRWGrGoOlCtuLKpxJP7Lqac7/5J5EbXRhZsLhvMh+59yP+boZkReZiASRWLhmZg0BuEiEXbtvH5j34ey+9cRv3mOt7yrrfEyMyp6fQYCoqiiB2qu6scOKjWqyGlpWf1mERuWLYVc+DnRR4URYGWyP5qupOc1i6thZbzyETTNtHTRz0iT7E4LmMxjxXqVhHMWDQ0Y1OKRU+d65GFpdKIML0QsQSnKAoSK2VaoXrbNKmjUhCKSY7vJPbAlxNDZegrWdMwJU5haA5TFYumbUKgJ5vA7NmheqiLdRxtHsXpzunUz/HgOA50S89UE37/0e+HwAj49NlPT7RdALFBLXNl7K/vn/i9BQoUePyjIBYfZ/jLL5zE03bV/cd6Qs7bOChaeOD5ysPhJk5JZH1yCgAudbVY/t3OxIzFEQSWRlUijZWP3XMhlNkIkEKkkkFQsAkE0SQw9HiTzrIsnHzgXmjn7sPuGmloRa1QOyFiMcdM/ACGLkk5tzAqoE89eB+O3/lNAIAkyxgO4va3UWKxrYy2wbLj9hPVerzg5hgajjFEz2IxcJVnuvsexzJABWZEcRIpyhw3d6rhEotrK6RY9I59asbiUIFcrkAzbfzI330TF7sqykI4k2846IeIRdW0Np0PGkRXHZ27puX4+4KiaBh6MrF4aLYMnqF94iyIztBATeRQl3lopgUbgCCNzu1RJucIAkuDphDKqfRgWBYqtfomvhmB7TjoKAaa5ckViz/7wqvw5697OnZl2BQn4Sk76wCApfUBNINkI85URjkdpknOR1ogN0QlPrth2iyRInmghc/DSYlFANjt2qFuFtImFYsFChS4vDAdhpB6UaWAEbhOxxSLkfFTyCZOPCvxNCvU5YF7LVt5IPxC1uyMTmQWb2RmvEUlj5tpikUAxApVyVIsDhIzFg3HnfwRaRytdUkD5uDiDv+5h5aW8akvfQtv/w4Rf/RiEapmwIo4TmRlLHIcC5qmoQfGvTRFnGk7YIIztG0ToBjfbtuDJIS/0845Yo+2fCkvsaiApmmUM+yoeoPhFVcsaroBbKKZF0V9izmLUy6xOHwCKe26Q/OKW6ECIzvUAgUKbD821A0c+9tjuOPSHY/K549ryAOTW6EGQYMmFpwpxIqjOdBMLaZs8mxA8xKLwVzHvMRiULFIUzSGGZOFJs1YHPbIuoLE4sryCj7/0c9j/jXzWPihBbAcOyIsXdQzJjkBJA/RVx06cUVclmLRdMyQ4gsY5TZ6Vqg+sXgxTCwOjFHPKIlYTFIsUgcoqFUVSl9BqVxCT+9hQ5080igvgvvC0DdHLHoknmdvGlRannrgVGx5mZOzFYsesbgJe00PLbUFgJDGW1nPdmE4GI5VLDalJhRDSZ24YNhGqi1pGhYPLsaee97u5+FM9ww2tOzzylNEi2x6DVXmy/iew9+De9buwYXBZDmfpzqnsLO8E1X+ieeWUaBAgfEoiMXHGfqaiWcdHIVetxLsHaMIkmUAcLETLhrvPtcJEZQyz/pkgIdopmISgROEwI1mp9sO8A/fOBNbpi5dvvwyy4zPnFo+cyqW1xa1O20ro/0ZtRsdB3XQQ6M5A0kuwexcgmPbuOrYdXj7P/27v0yv2w69xwFQnxplLNqOEzpeHhkXUiwmKOI4hoJjaBg6LHru+z0rWseMKBblivs8abY2pkkwuqdY9KxQUxWLqoJSuRI698oiG7KyHbhWqB6GugVzC5aWAFEDquaomBzqVtgKVdMSrVBZhsbBuTIu9lRYEXKzoxqoy8QK1XaAoWFBEEYF16mH4llaFEVB4hjoCfauqmH7ZGf0xiUPukMDluOErIcnQV3mJ7afqMkcFuoiLnZU//wP2tJ6vyXGJRbHKRZ5lkZFDBDc7nVAHkNIJmFxi8Qit0Xlc4ECBS4PLLf8pIL2YhQdVizaetgqNZqFOAY+4WYm10krKksIoLX4BJJUdM4RNVrKjXlUsehvizuD/lyfwYWVFi6uBhoAjJCpWGz3khWL/3xpN959pw5dCk9OWusokEQBC7NTeKRjw7AcHD24iAc/8Q78+DPIeja68UlO041a6jZQFAVZFBA0qUhUxFEUHlyz0bBbgDcGWiRzUNXDdZmX2+ihUStD4DmcX22lbkcQnf4A1bKcOealWaGeHLqNjy1alnoIKRa3IWMRCFu8boZY9Lap1ZnMfeOxCt2daJdFJF8uHNkfb+YVKFBge+DZ+L3/wfc/Kp+fZlUYRBZxMg60Q2crFjUHuq3HVJGeFSpbznf/FMxkZBxmLKmk9BWcOzWaLEVT9LYqFtW+CoqisLBnAUbbgK3bmN89j/d88T2Y/vZpUBQFpa/E7pfFMap0QRoRiw6ciYhFy7bgmOHjIEhkeU+xKPACGtMNrEcmOQWJxagVKk3TiZl71LMptOZbvhXqv578V/z1vX8ds73dLtQCddxmFYseseipEIPE4ukHTseWl1gJhmPATslA3w4rVI9Y5Gk+1+81D/p6H39x11+grbYnep9t21CH6tiMxWlpGgNzkHjtsB0btmNnnqtJiCoWAeC2xdtg2AbuW8+OyvKuL14uZhreeOyNoCgKnzn7mdzbZdkWHuk9gn3VfagKBbFYoMCTEUXX9Qrga6fWcdP//o+xVpB5cPPBaRyaGRWOq/3xM+jObYSbcSdXw0XjqbU+WsqomJUjyqKGzGGuNtmNPM/QPrFVEVi860tLo8w/FzU5v6/4dsDLV6SZ0feLWaEqm7dCVfpd7NyzHw/d/U2cf9d/x8Y9nwUA7NwzsgTod8MWaqbtoFwdFYE91YQVuPEwbAcsxyPI81YSiEWeoWGbGhxQOOVaz/rksKGHFYuiq1g0SKEjiBIqtQbWVy4CIOQaBaAsJN/IaEMFpXIVw4D6IEhC2pYFQ9dQKld8Im+oWzFSb1JECfKuaqDWGKk3dU0Dn0IkHdtZw6WuFtpm07ahaBamSrx/LiqaBUEcnetLDz0QWxcQzyH10NdMX7FoJ1iljkPLJfZ25yAWH37rt+PvfviZmNmGHMBrF2q42NWw2iefvxBQKFsG2e8UT7apLIz/3U6VeAw0C7bj+MTiuGzGJCzuPzzxezwwFJVpt1ygQIFHD6ZDrgchYpHhwsSiZWzRCpUZrScBtgOgNA1sxBslqeguA+XZVOLIotIagORadGlIh9WKgGuFmq4S6KQQi6rN4of+VQWmDoQ3UdFwcHEHvn7PCVz/VwP8xTfIur0MQyCZWGTHqOQlkQ8rFlOaRXddsjHltACvCWcToi2mWIxYoVIUhYXZ5gSKxUGmDSrgEoul+DJ/cvF6XPv3JaC2K+FdkyNIyhIr1O0gFkfbvSnFYo0Qi4MMNezjCZ6RSqFYLFCgwHZCT5l8FMSkVqgAQFvkntTLWLSjHpwuHI2Mq/2IK4OnWKSF8e06mqLDGYs5FIsnj58MkZ00RW9rxqJlWphdmMWZE2dw8s0nsfLhFQBAfaruLxNVK6bBm0DkOA5RLLrkoOPEiUWRcceIhFtAy7F8G1UPvmLRzVikKArNuWZMsRgkE0OKxaEOOWWSEyVRAAUoPQWlSgm6paOn91IVsLTbms1jz5uE2lSEWNxMxqLrHOKRhXJpjGKRlWFYRuo2V7ch79lTeVKgcmWi5sE9a/fgvvX7cucTetCG5FowjlisC3WYtpl4rD1ieVJiMUmxeKB+ALPyLE5snMhUc3rXMO+6koaG2MAz55+JS8olaCkZ9VGcH5yHYRu4ZvqaUL5sgQIFnjwoiMXLCE/R9eYPH8fFjorbl/LNws7CkR0VVAMkzqXu+Av+I61ww+rhlTBhpho2/vNs238cJRZ3T8kTkwICx/jE1jP2NnC+o+Kzp8JNwfoVJhZP3H835nctQpRGBVLUCrW9BStUOA5s28Zfv/UXICxcjeqRZwMgWTkA8JwXfgf63fA6TcsOFaIbEQWqYdngBRHO+hIAgEJyhh/H0oCb3fjwCil89WDGYoBYZEXy/Z1AsdCcnfPzBBXdhMDSqapUbaigVKn6ykYAqAfOSdMlLKVSGUO3E6QYW7dC3VDC+6avmaF9YRh66jZft7uOtZ4WUqT2VBMOgNmKgKqrwlN0C6JLLIqlCk6fuD9xfU/ZVceZluI3Sr0sv+A2RbM088C7ZuyaGm/dxjI0bj08sy0B2dct1nGhM8SlHil+5wMTCXwrVFdxk+da0CzxUAwTlu1AcwnWK61YZGiqyEgsUODRQgoJyNvkGkO5lmBU8Iab5oHgTawVUSzqA4AN3IRrYyb/UBRRpGUpDSo7gN4Edj+dc0BpFokdK6QrFoO44/jDmKpVwLi1AVg+M6uw01NIRuEEfSZR4PCS//pmXD1N4/VPixMx7QxVQhokkQ+5BqRl+N11yUIDnVEWpeVaoerhMVFKmKSyMDuFoZqvkdHpKyFVXxS6YULVdFTSmj8Mv+UsRA/BfbFdVqi1MvluC7PNTSoWn1izxnXLVSyOsR+7HCiIxQIFHrvYqjVikDBKAkMxmyIWGZOMAzTGKBZV8nxHC08+zspCi0JmZXCBe30GTIxYjCoDH7r3IXCBcZgCFcoqjGI4GMKyrNyKRYDkDv7Md/8MuDqH6RdOx14fdPPVIh5ZaNgGIRaNkWKxFnFbGKtYjESZ8CIPy7ZCBG5zrgktUosEid+u3gXv1nuaqqFUjdcitmMD7iFU+opPRGmWlkqOSTZZJqiOnATl2kh8YOhGLjvcKIbuhD/TMgmx6E5y4gQOpx+MT8QrcSUY9uVVLHrEomIq20Ys3rdGFH5RQn8cPLvgcVaoDZH0g3pG/F7FU4NOrFg8FFcsUhSFW3begqXuEpQMZxdPORm0TE7DQnkBfb3v2+GOw+nOadAUjevmrsu1fIECBZ54KIjFy4ioQmugb20g3FETMV0KD0CrvfGFblSxuLQ+eswYAzA0ha8+PJqVFc1Q21EVQ6SAkMNeUGRpX6G4UJewtynj4yfDM3Ya8uWzQk3Cw8fvwaEjx/zHpmH4ZJqHboBYjNqkZsGxLSgPfQXH77wdz3zhyzH73b8JujRS01WqdezYtQf9iBWqGSluW0qUWHTACQKsNml8chyTmLHIMxTgOGBg4+QqKZB8haiugQrkM3EiKX5DxOLMvP/30LAgcDTYBFtRANDVAUrlSkj91yiN1m/qnid/BaphQeIYKNpkisUkt80o6aroJqq1oGJRTSUWn7KrDgfA0tro3O+46tT5moSK6CoWDdPPWKw2Z3H6oWRi8cXXzOF8W8Vym5w/HhmvBO1ZN3Gf2xroYGkKM5WtqxAnwdN2N2BYDh662AdLU2gESH/TJNctxz2HytL4Rux0RcBAs2BYdsAKdRMZi/sOjF8oBSxDgd4G0rVAgSc9cs5YDSGlwdAwzgMAZIpczykjqlgMEosJisUJGm0ACHGURSxWdwL9lfzr6ywDcjP29P190jgxmfgNu2GEa787jp/E068JXNsYLlOx2FeGME0rZEOaBsdx8KWzJm6/5wS+9yU349/fIKMhxcfFjc5kjRQAkATBd6IAnFTi6q6LFnjKBFYeJE+4ikU1sh+iVqgAsHMuvm/T0OkNQqq+KDyy9kpkLNYqJTBu/bFdisW626g8dngv7nv4DGnoToA04vfxCu/8L42xybsc2LMwCynhfC1QoMCjj3U1n8o9DUH1WRIYitmUFapHLFKgYDnjFYtRAmKSiaMSK4VsLxmbianVourAE/eewIGrR7UITdFQetmW80pPyU0s9o/3cfL+k7jxeTdi3y/vA1uN3z/2XKvujS9voHtnN1Xt5OXC6ZYOXuRhu/eWDpyYIo6lWV/5F4XlWP57PQii4JNpHqbn4iRoVLHoKUR1VU/MVxyaQ1A0Bdgu+eguo5laqrqvZJdinzUJmIArl2mYm7JC9faFbuuEWHRrKLEsYnlpGeow3M/zMhbTiMVKbeu1iGeFOjAG20IsWraFBzaIK5Vn/ZoXQ4XsH3GMe8KUSHpUSdeXPHmHSajWq+DFeP/0BYsvQEfr4FQnrij14E2OKHPl1GU87CjtQE/v5d7XS50lzEqzmIlEMxQoUODJg4JYfJxgoS5icSpus7DW12IWo1E80goPmOfbQz/vjnIs7G5I+M9HRrPkogRAsyJMrPwROCaU2/iKpy1gEBmbPJUbtU0zxqPQ1CEkjmw3bao4cf89OHj0Kf7ryiBctDmOg646IhZVZQDLzFm8UDQcU8dLXv19eOkP/gwomgHY+MDf63ZCVpvRY7cx0GP7WpCrMA1SDKiG7VttBsGzNCiGQ4k28UhLgW2PLChtUwPNjRoijEA+37NCBYhi0YOiWxBYBiydX7HYDJDEhu5aLZTK0AwbzRIP3bJDROQ4WE78fIuSrkPdgiiPGoa6rqUSi4fmyuAYCufaoxsHT526UJdQdYlFzbD941OdmsXG+irarbjS+LYjc6AA3HWO/G5Krm2salio1OKK0rxoDXTUJA7SJki4reDanVVQAB681ENZYCFyo8+3XcWi41rxiWPs8gBgriJioJkwrdF5KHGTfydBlMCLm2siMjSFglcsUGAL2ITqehx4m4wPpp+xGKhPGC5MAloGEGy+GAowJhskBpojxFYaqjuB4Ub66wFMyxSgdYDSDKKKRcVyr28J15z1dtip4I7jD+PpRw/6j22KgzLMJm+7fSUXsUhRFFQTePWLbsZf/dZPQmCTL4JJVqjjIEsCFI9YdGzfajOKuy65y1y4k/xvGURxGVMsxmukoF3rOBAr1HTFYte1dLsSxCJFUZiqVSAK/PZlLJZHxKIy1HDqkYuTvT9Dzfl4hKeWfTSsUGmaxlX7dl7xzy1QoMB4LPeXt/T+gZmtDmNpNrdyJ4igYhFIz2n0iMWuNqFTUgAyK4OhGdgUGX+TCKX2ejv0+MS9J3Do2pEzDE3RGPSz90W/289NLNq6jeufcz1+889/M9XOte9Oclp+xzLOvu0sakJy1rOn3tQtHaIkwjZGPaZKZBINRVHgE+zjbceGAydGLPIin4tYDKoIu1rXV34ZqoFyJU7WeMtbbq/HI+hMx0xVwPI22e5Jya40UAn9lHFQLUIcGjaxN/W2WypLsG0bZx46E1q+xGYrFpkcfYNx8CYPDIzkzMJJcbp7GpqlgQaNgTGYSPWsuvby46xQGwLpByWpTzdLLAJEBRzFDTtugMAIuL+VPCEeyJ+xCADzpXmolppbOXuqcwqL1UVU+SeWU0aBAgXyoyAWH2eIDnytgQ5VTx7IPZwJKBRFysJqT4MRUMpdPV/xVW5A3LIwaHOZFwJLIyhQu3ahhjLrPUGKHC+Xj5IuzyDUaa1Dcptq5sZ5DHrdkGJxqIQba6phw7AcOAGFxDjV4sr5c+gs3QuKoiAfeS6+6/U/6r/mJBCm/W4bpcro+/YincLWQEdFZEO9SU6uwHRz7hTDRDWBuOIZGmBYlBkTl7oaFMPyCR3L0MAFyEzGzcpzApkS07M7/L+HugWRYzIUi0PIEcVivRRUuLnFUqkM3bIx7arvesP8Teqk8q410ENNUsWwQkS7rmmpmXocQ+PQbAWXuqqfddoZGqAAzFQEVFyJpGYGiMXmLABg6eF4zuJUicc1O6t4eKUPy3Z8sm1o2JBL42eCpWG9T4hFcRMk3FZQETnsnpLR10yURTakSvbOPZtmwWdY5AYxWxXQ10yYtuNbIstJMlQQ5WlWQV+p1sELkxfeLF0oFgsU2BImsQjNCc52LZa8jEUjMPM5RizqEcViH+AmvBYwbDZBWt2BvPLyA1Puta80i6Gev7Gx2hpN3NJNC2fPr+LpR0cqAc0af53q9AeZxOLF1Ra+fD9Rg962j8H/+IFXZqodNrp9yNJkCixJ4KEa3qS0dGLxYt/B0BGAi25ujaUTK1QjnxVqXvQGw0zy7EoqFgHg8N6d2D0/DcMwR/meW4D33Y4d3gtg8pxFOmVy2OMVmk8sXnkrVAC49RnXYvd8MRu/QIFJcf/6/fiFz//CZVv/ud65Lb1/MCa/maHjisU8RARrkvsej1g0UvKet0IsbrTJxCiRFcFSLNpTbQDA0Im7IHTWR7WIYztYOrEUIhYd2/FJkzQMeoMYsTjdIiRc3ayj2+7i/q8TcqPy1Ape/cZXZ45F/ZzuCR4B41mhBolFXuAhRpTsPMPHJnp56ivHDB87TuBixGIzwT0hSLL0jB5KDBmj0xSLnsWmRyyWAhOhxtlv9s1+KlE3ETaxCi8T0LDCGYtiWQRFUTj1YFgVV+bLmYrF7cCGuoH50jwcOInWopPi/vX7IbES9tT2YGgNc2daOmUHKu0SizmtUKPnFjA6F/080AnQnG2C5cI9FYERcP3c9TjdOZ1KvHrPj8tYBIA5mQgOPAvaLPT1PtbVdRysH8y17gIFCjwx8cS663wSYkPRoY5RLJ7bGA1oMm1ibaBDD7znyI4qlID6TOToUC1WSSEEshAlRiiKws0L5DldIo2jmmu3SMnJs9OykGeb2hsjaxSlSwbGgwFiUemHi7qOq2CzBm3/uUFGzuLyiXvx31777Tj7H/8AxyYk18LiXv91h2ZhWuEiq9/tolIdfd9upFO4PtBRE8PNNlYqwXDJHdVwUK7WQEcINJ6hQDEcqoyJ1b4GRTehmTZYmiLEojAa6GmXWLQjGYseFN2CyNGpJB2AmGIxaGvrWaEyIiHY5qousajlTHtPQWugo8KPLlnBz/c+N4v0OraziktdFYpLiHaHBmSe8f/RFCGXvYzFUq0BXhCxdCJOLALAC4/M4fTaABsDzVfG6aa1pczD9YGOunzliUUAOLaTnJdVkYMQmF1omgYoioINBjxD51Ivz1YEKLoFNUBwBxWLpm3j66fW8QefehD//X134pP3XUpd157DR7B48MjE34fNua0FChRIQSejWae2N7VK3iE35MmKRZ6o2zzYZiRjUQG4TVihZioWFyZbH8UA1fmxCsMgVjdGzbyeq7wPKhaHeYjF3gD9lJDFB0+fwzO/92fxhx+6A5rpgKIoHN6bra5qdwdoJMx6zoIkChh6E9kcCyzLpBJ7LaoOtE4Sa1vLtULVzVCDUUqwc9o5gWIRQKYV6pVQLN6zPhrXPv2u38Gv/8R/AQCY9tbHHs8Kda5Zx3SjuqmcxScSFDdTqzxGJXC58LZf/TG8+//83KPy2QUKPJ7x85//eXxi6RO4b/2+y7L+rRKL44gKlmJjpGAeJY+nWPQsUFMVi2qyFWoeXLxIlOwiK4KhGThefnWCUq3davt/25YN27Jx+NrD/nNajrqm3+uje7KL4dKot8SbPO79wXtRHpTxU6/4KXzkLz4Ca0juh3fvz86n7Xf7Y5VfwIiAMW2TZCJGegBRu02e4UFFmEWPzAmSkkCKYnE+rlgMqgj7eh8ldlT/JGUsenamvmIxUK+MO396es9XtW0FkyoWHceBaqmgQMWsUGmGxo7FHTj1QJhYLHElf9nLAcMy0Df62F0h51IaAb8+XM+tXr5v/T7sr+3HrDyLoTHMbflpP88GfyupXcedtzzDQ2blRGLRU0BvRrF4+CmHMbd7Lvb8bYu3Ybm/jEuD5J6Kp1gMnrdpmJXJ5Pq21h677FJ3CQBw3ex1W+qBFShQ4PGNglh8nKOvWWgr6TPnHcfBcnsI2h0wZZo0+lvD0eB/YKYcsgykKCpEbEQzF/NASshhnC+R5yy3OPStUKX6xOvPg05rRCyapoHpuR1oTI9mG0etUNtDsh+twWh2zqA3Kl4evOOro+fv/yL+7rd+Ajt278XVr/1lYn0KhGxOQbMhZShAFIvlat3/DCViDbahEGIpCE4q+aqxoWGBpmlIpUgBzdKgWA4VxkRPNbHW06CbNliGgmnoYEOKRbL/g4rF5mwgY1E3IXEM2AySrlSu+AQdAEiBc8SzbfUIzPkq+TxF25qtXmugoyqOzkvVsGAHZoyapgGGSp9B+rTFBlb7mp+t2FZ0V53HgKIolAUWmmn5GYs0TWPPgcNYevjBxPW9+Np56JaNe86PzhHNtEPbNCnaio6pEp8rx3S7cd1iHQBREvOBz7dMA4IoQTXt3MTidJmQyR3VIOchTYVI3w988xze8aXTUHQLM2Uedy23fXvmKDZborKFFWqBAltDFrG4yQYCb7vEoqdYNLMUixErVH0ATHoTTnNhsjIKoTrZOsuzAD8ZIRdULAJApSThwOLIJUAxx1+o2t0B3KEL//K5O0Kvff8v/yGa9Qr+4ief76v6Z6ayJ2xtdPuTE4sC7zsVUO7xT8vxa1FNoPMIoPVCikUxoFKUE4jFSaxQAWRboQ5cYrF0eYhF6s1dvOUbo9pKFHiUXBWouQ39Ne+7URSFY4f3FsSiS2qXJlTabheKhlmBApuDpwZquxOSDMvA2+98+7at/5HeI1t6/ziSh6VZmE74HnZlOD6bmbbIfY9PLKbYqTqmA4Zi0NM2r8QSGAEsNboXp534fWTUCpVhGey7ap//WOvnIBa7fZz74jmc/K2T+OZHvxl67S/e8hegGRpv/J03gpFIjTe/az5pNaH15cngiyoWrUi8StQOVWDIOOEEHCm88zCaVyyIgm//6SFqhWraZogY7ht9VLjRZyYqFl1i0XTdGoKKRcXItjrtGJ1tsfykJpzk5FmaVviK/7ccmJy1/+r9OP3A6dB7ylwZmpWeG7lVeOTWgRpx+kjLn/zUmU/hnfe8M9Vm1kNX62K5v4xrp6/FjtIOKKaSm1h0ag4cmpxT4zIWAaAm1KAYSkzhbLpOKpshFtPwbbu/DQ4c3Lt+b+Lr3n4RuPE1lEcsjsufBUi+oszKONQ4NHbZAgUKPHFREIuPAqwtEA9JeGQjvTjpayaGhgXOIrNlZJoMZBcHQYUig1318KybYM5iVB2XB2KOjDgvl44qbT6TLgtBxSIQVisCgOLanAo7j4Ct7xgpFvujTL0gsfj3v/crUAZ9dI5/CWv/9ru4+sbn4ff/5gPgSqSBx0XsGh2ahRFRLPa6HVSqNV8VqUa6TxsDA41S2L6DFcuwXdLFa+oF7VQBYoVKMRzKDDm+J1cH0C0bLE3D1HWw/GjbaM7NzAwQOc2Z0cynoWERYnGsYnFUhAWXNXQdNE3DdvMNFmrkswc5MhY5dzbg+V582Q3FQC2gVFUNG5Yd+S1lFLVP2VWD4wCn1wb++qriiEQrCSxUww5l+u09dHWiFSoAXDVXwWxFwAMXe/5ti2pY8W3KCdOy0VNNzFbEXHaj2w2PWKzLXIjYtC0LklyCalrgWCrzvPDgE4uKAd2ywTEUGIrCXFXAdbvruPXQDH731cfwnjfeiNfdtAdLawO0B1u/gQqisEItUGCL6GQ06zZJLHJ2VLEYmMnL8GFi0bEAM0AKGgOAnZBUYFiifEwDRQHl+MzfVJRmJ7ZjXW2FZ1dfd+RASLk3yDEpvdMfYOjad/34//5brG90cfIssap95rGr8MX3/D5m66PmzzgSZKPbR31CYlGWBN9K3EOznmxl36KnSXZl5xzZ/zTJWBT4EbGYnLGY3woVyM4RvCIZi5Hz0ft+xnYQiwF1Q0EsEsWiKHBgmCvv6FCgQIHtw5/d+Wf487v+HB899dFtWd9WicU0osIDS8cVi6vK6tj1eoo57/+snEaBEdA3J88+Dr6fpkZ1RVStBwCdyCSnvYf3gg9M8FEH2TaoADDojkjYt/+vt2P14ioeOUn2/869O/FnH/ozTO0YjeNRy8Yo+p1+YmZcFBztja1xK1QgWbEICiGne1+xqNuhGixJsRi1Qg2Szx6JVufr/nNZVqgesRhULEaJzCi6ete3JB2HHW/YAX5XvJ4CAEzI9Xn7oS7UoVkabMcOEaL7rt4Xs0ItcaXLaoXaUklf7mjzKIB062LTNtFSW+iq2ZbCXg7hLTtvwaw8i4ExiE0cSIJlW4BM1L7AeCtUgOxH1VJjpKufsbgJK9Q0zMqzOFg/iJOdk4nHQrd08DQPjhofcSWxEspceey1ESD5ijvLO1PzUQsUKPDkQEEsPgr43AOkGN3IUBpOgrPrcYm9h7U++QzezTWSaDKwXRyEB5yr5sIFmZSDGMyCkCOo2Wv606V67DV+G4iVoGIRAA4djRCLA0Iszr/+97Hzx96BtmKAYyg4gcynYMbioLOBd/7hb0PedRXq3/ZDeOVPvzmU/SaVww22JGJx0OuiVK35akE1RLZR6AwNNEvh4pAVRoWoZtiwbQelcoJikeFQpkihcnK1D82wwNIUTEMDE1gHxfIxcmh6bqSeUA0bEs9kKtNKpUrIPjdIhJmGDqlUhuaSpnM1kdiMjskCBYCKSmaA3rliYLk9Iswt20FPNdCQRjcowwQSj7LTK+jDcxVwDIXlDvkttIcGqhLrE4sVkYVuWRAC+2r/4aM4d/pk4vooisK3XTWDU6t9fztUM4HszIn20IADYKG+fUXmJDi6owaJY7B7SopNJhDlEjTDhsDSuSYa+LmamqtYZGjQNMlvfe9/vQn/3/ddh9fcsIjFpoyXXDsPw3JCys/tAMvQBbFYoMBWkEUsbhJeLWKDBkBFFIsRYhEAgrO69QHATEgs0lw2sQgAlewZ9SHITYCdzIpxtdUB3IbfuuLg6dccDL3e08aPGZ2eAnfuE3TDwn9/619gfoZMynrbr/zXkD1kvTx+DGn3NqNYjO/7dMWi21i8cJevWFR1IwexOJliMYs07PYVUBSFUo5Z5dsF0f1O26FYrFdGx+cpV+3Dw2cvxOz1n0zQTAflK3gsCxQocHngkTTrw/UxS+ZDXvvDNITUYwm3DQzFxGwpV5SRYnGcZaWXsZilQJNYKUResfRkblECI4CiKJ9QZBDvw0QVi8F8RQBj8xV5gScZiy5EUcQf/fIfYWYHcYP6wZ/9QZRrk9UV/W4/13u872VYhFiM5iRGiUUhoVb0FYumBS5Qi/ACHyPx6s06mEAvK3hsvPNlShgRqKUE9wTvPZ66Ug64J+QhDT1CbRyatzUx82Mp+b8TlgwesdiUmj5ZGCRED1x9ABurGyEFXokrwbCNRNXfdpCNXs7fgdoBiIyIgZmuMLYdGxeU7Hz44+vHMSfPYX99P6alaQyMQWr+aRBtrQ3K7YGwHBs6h9LQEBtQTZWQkgF4kwySztOt4Nt2fRvOdM6go3Vir2mWBo7hQhMQsjAjz6BvZGd92o6NM90z2FPdgxpfEIsFCjyZURCLjwIeWiFk1WYJiCAoAGfW0wfYNdfWQnAViwzloCFzWB+GB4mjC2FSTN4ysTjJqRWv4rcjGq0TUyw+JfRYGYT3W2ugoyywQKBY8hSL1qCNHfsO48Pv/1uoDovaja+OKQI8e9KylwNI0ehH7D973XYoY1E1LL84o+UaLMfBfC3cOGHFYCFqw7QdlCIkpsDSAMOCo2zIPINTq32ovhWq4dufAgA4IaaIazRn/O8zNCxI/DjFYpRYHC1rGjrkUsXPQKxKHGoSh6ExmRXqu7685DfRuqoB2wFmyqMibmhYMCNWs1lZWhxD4+BsGRc7KmzbQXdooCaNbEcrIgfdDCsW9x0+AtNMX+dLrpnHhmJgpUduEIa6BXOTv+uWq9hbnLqM6ooMSDyDT/6PW/G6G/fEX5NLUA0LPJt9XnjwyPGBZkEzbXABC1WRY1AN5IheNVfBTJnHg5d6MauQrcBTSRYoUGCTaJ/d9lV6xCIAl0iMEIvRxkSIWFQmJvVIxuKYsae2a+xqpkT3WiJPEctWD2MslwA3Y5EV8IYPDfEjHx7i6UcPhF7vjiEWRYFHp0cUi23VwbEDO/H/PvI5/PuX7wQAMJHxfLqWPYYc71exsamMxTgRmKZYbFN1kkd54S5iRetZofKjdSRZoZZL0kQKw1rGsr3BEJWSdEUtLD1i0diG+j6oxjx2eC9s2/bdK56MUE2gnEMhUKBAgScPTNsMkXybQZBYpOfi/QuO5mKkyepwpFhMauIH4RGLWeSFyIoh1VyS4jARxLEQPE3GHk4n9QnvxMfXYMYigFC+IgAM++kT1QGSIxgkFvddtQ9f+8zX8IWPfwEAQkQcAEiV8dfrfiefFaoH3dbBizwc9/7fszqNkpNJSjDvGDqGAz4wsUmQhJhikaZpNAMTnULEouuu1BBGjltJGYtdnfSQTJN8bjCTb5xiEQDWhmtjl/FAMcnnixPtk4yBtx+mxWnolg7LtkKE6L6r98XeI3Pk9SSy1NvnW6nDWloLJbaEslBGQ2wkWosGcXFwMfU127Fxf+t+XNW4Ck2xiabYhOVYuZR5HsEJ5LNBBYApcYpYrUYUkd5+2U4rVAB4wZ4XQLVUPNCKu21ppgaO5nJPWpiRZoiaM+Me6uLgInRbxzXNa8Ax44nWywnvPKzyyfclBQoUuLwoiMVHAdvphFoWWJxvZykWNYgcDTYwoM1UBLT18AB/cDZckMkZuYpTpRS7hcAXE7hH/9SKWqHGFIv9HkRpVCy1hwYqAatNXhDQ73Whry7hwt+/CesXz+HwNU9NLWZEl+wTAsVdK2Lv2O92UA4Qi4o+Ut2xVeLnv7sRbpR5WYXAyP6zVA4fL46hQDEcHAAzZQHLbRWqYYGhKZi6BpYfzYiiGA5spABlWBaN5oz7GRZKAptZBJbKVZ84BBDKY3Qcsn2eGrMicqjLPIa6hX0PfxD43J/451C7tZb4Oa86UsXSuoJ/u+s8AGDD3Y87qqPvQUi8SJNtzIyza3fWcKmrYqCTLMqGzPkka1VkCQkWUKHuO3Qkc33PPjgNnqUx0Cx/mzY7YcA7V3bWHx1iEQAWmzL2NOM3R5IsQzPzKxZFjkFZYDHQTGimlUnyURSFWw/P4PTqwLf63Q4wNIWck/IKFCiQhPb2KxY9K1QAAMuDMgPEHMPHr+FBYtHSUmxInXRrVialXgmiunPsIkdm3IuJMPkNq5ex+J67DSgG8PSjYcVie5hNFtUqJbR7fZzesPGiv1dwz8llPOf6a7DeTlZ5z9TS7UH3vVPEP6wfIxmLEyoLkhSGUykNQYeigcoOYPVBoljMaYUKTKZazLJCtW07N0l5/OTZbbFM9a1Qze0gFkfbc83BPU/6jD/VdFCWCsVigQIFRlgbroVy9DYDjyhKA0uzmYrF1jBbWeYrFjOsUEVGzG19mQSvqR+1Xw2isx4mQKOKRaWfvR/KlTL63REBc98d9+H651yP82fOJy4vlXMQizkzFj0YtgFe4H3FopdfmWqFGoBHkFhGRLEo8onnQNAONUg8eUR0Uxy9npWxCAeQy3LIfjXtWK9dGpGJQSJr05hwLpK3XdPyNBw40GwtlLG4c+/OECkLADJLXg9mG3qquKErbKC34ETWGrZQFaqQGAlT4hSG5jAzzzGLkD3TPYOhOcQz5p8BmZPRlMgxHDc5AAA2tNHxCJLEWWiKTQzNYYyc8yYZbKcVKgAcaR5BQ2jgoY2HYq9plgae4XMrFudL8+jr/UxF9unOaVCgcP3c9Zve5u2C93uckyeItyhQoMC2oWi7PgbhETIXOvGiI8pZVEQWq/30QnWtr2NK5kOWgPPV+CDmEYmOSoqgkpCuWEyzF6QHhMijKApiDivUy43uRrjQD9p9AsQKVQ5YinYUA5WAkkouV/HQvXfi4nt+ATQv4Zfe/kH8+h/+VexzeFcNWK7Fs4HaSpRYbKNcGRGLQYUbUyHE4q5GuFhhhDCxaNp2asYiHGCuKmClq6KvmWBpmmQeBpqxDu2SaZHD2JydBxgetgNUhezZTKVK1SeBRJYOKRYBQC5X/NerIou6xEE1bLDmACWtBZFjcPKB+3Dqwfti2ZQAcKgp4Luu24lP3X8JD6/00HL343x1VMwOdDNG4jlmtjLl6bsbWO1ruNhRYTkOZiojorIictAMG40ZYotXqk2hMT2DWiM980nkGDxz7+j1oRHfprxoDXSIHI1G6dGd8ZUEUZJ9K9Q8ikWATEDwFIs8k01IvujoPNYHOk6tpauvJwVXWKEWKLA19JKbRVsB74QVipQVJRajVqiRiVNcYHzk3UbOt/42TEAGweSYmVvZMXaRozNuTSNNbvWzthEmAK/aF1ZIbgxtyFK6HVKtLOO+E2fxG5/VYMPB19/96/jHP/6V+HJuY2v3bNY2UoBQxUanj3oGKZcEScxvhQoAaCwS1aupJluhuorFxYWwhdckOYtZxCKQL1/x5NkLeMcHPok3/dB35f7cNIh+xuLWicV9u+bx6hfdjGsP7UFJFrF/9wSWvU9AqBauqK1tgQIFHvvIk3U4DpqphRr/UWUhR3MxxdGlwSX/73U129KVctyMxTFWqJMSi0ELWD7HJKrORpg8ORBxTxhHLJYqJSyfHn3mn37oT/Gbf/6bseU80qU6M34ilpexyM1w4OfHfwfd0sEJnK/E82wao8RikhLMt0LVLXBC2Ap1GK01AUzPTft/BxWLA3MAmqJR40a1VlbGIoAQOQe4OY0Re8z1S+u4/fO3k/VxJXT08WTXOEyqWPQI1mmJfHfN1FBrkO8pV2QwDIM9h8LORiWOfPeg6rPCkeMxLu8wD1pqCzWhBoEVRgrADBVdS22lvn58/TgERsBNO24CMCKjenovcfnoej2IOSc5NaUmBsYgdqwN2wAN2s8O3S7QFI1nLzwbS52lmApXtVTwdH5icUdpB3p6byyxOCPNYLY0u6XtLlCgwOMfBbF4hTHO6s9xHPzmv96b+npUoVWROKz306241voa6jKHYH99Ry19MHTcQORShmIxDZQ7Y9CxrUwrVCevvccW0Y5kLEZneyuDPuTSaMZ+VzVQk0YDvCBK+I+P/DPE3ddi/nW/h6m5BezYvcdXHNI0aTTyouQvH0U3YIVqGAbU4TCkWBxopp/DyFamwdAU5qrh5l1Qsai4uYJyxAqVZylQLAcbwI6ahLW+DkUnGYuGoYMOKBYdhgVHU3j1a16Hq5/2TP/55uw8KPezqlJ2oVMKEIcyz8SsVeVSBaphg2Mo8CxDFIuGFVLr/vUfvwXV+hR4Prmh+pZXXovZsoB3f+UMVnoaWJpCQwqEzBu2n+PofzfTu2lL/p0d21WD4wD3uXl+QZK9KrFQTcsnOnlBBEVR2Hvwqsx98eJrRjOjFN2CYW1Oddca6KiKHETu0SfloxDlElST/K7zknXNMo+hbrrnAZ1pS/qcQ9NgaQr3Lm/9JsoDR9PbYqlcoMCTEmoH0MbfaE8K3gkTiVSw0cYmWaFGmj3BZpF3c9w+E1rEu9RYtkMyFschB7HoY8LcI8C1Qg2AjUy8aik2KqV0AqwkC/jgp76MnVUa//76Eg4tzmPH7BRe+9Lnuq+TfVJxm3nT1fFkWrs3mFixmER+plmhAgAa+wk5rQ8AmoGmmxADzTzPCvXMZ/4WzgMf85/fOTeBYnEMcVjN2K8efu1tf4vZqRp+5vtfkftz0+BZoerboFgUBR7/9P/9Ghbc/XHs8N4tr/PxiuU+jYdbdpGxWKBAgRBWlJXcjfI0qJYaUkBFbSpZho0RFZeUALGYlhXp1iJ5iEWZk2NEwDh84MEP+H/nyWqLZixKEWvpYX8YU6NFl//6577uP95/9X5U61W85sdeA2BE7gluHnOpPn7ykpexOPddc1h4w4JvH5oG3dLBSyPFoqdWjRGLCUowj9wxdTP0PXlppFic3TkiSKbnk4lFxVAgsRJ4drSOciVeTwXfk0gsRlR37/7jd4NlSY3ZFJvoat0tq3Edw31/znLPVyyK0/5j2u3pCTI5rvuv3h96j0csBn83FZ4cj56x9fuIltpCQ2hAZERMS9NQjPHEopYSU3Df+n3YV9uHGZlMaPMUi0ra5MTIej2IpfxWqJqlxa4phm2AoZktX7uS8II9L8CauoYz3fC9kadYZKh8fab50jz6Rh+amd5nPt05jd2V3YX9aIECBQpi8UojSYUYxHu+dgb/+M1zuddXFVm0lfSZJGt9DVWJCysWa+Pl++UxirUkeBYPuqZCSFAstt0cIUMa3zRiI0SVp4jr3v4vAODntcXe5844MrtrsYzFKJR+mFjsqSbqEgfHseE4DqqNKdzwnOdh5rt+HbQwKgin5xYAjIjFLPTVUeEz6JHmYqVWH72umTBtB3Ov+11MvfDHURFZiNxo31MAmIDacGi4GYuVcAHN0TQomoHjEOJ4aFi41FWJFaqhgQkUvzbFgGNpRHme5uw8kJdYrFR9Za0ssDEVm+xaoQpuJl+zzIWIxTu+9kXc/qXP4vpnPxexDfHWIbB48yuuwcWuiv88u4GqyELgwstGMyydjJs2ADg8VwHLUHjwEjlPFuqj30Jd4qEadoz833Pw6sx1vvAoUREwFAXbAQb65ohFbxLAY5FYlOQSdNOGwOXLWASIJe9At6AZFvgxFqolgcV1i3WcXhv4RPtWwTJUoVgsUGCz6CyPX2ariBKLjJBghRolFsfXLyxDrqFDzQjnIaYh0V51++BZoaZhfWCimmGrNF2v4eanH8EPP41FQxpd0/7Ld7rE4oT2kJpuYKhqaFTz248Bydal2YrFvYQobp0CKBqaYVxRK1RgvGLx9nsewvs/9gX8r//+hkRF5qTwvp9ubn8W4pOZWPz5r9Twe1/WUc5BFBe4wrBt4M73pttRFyiwCfzRN/8opApMw8pwBXWhvvkPsuPqsahykKO5mGonaLfY0loxRRIAnySyDfLbyLJClVgplQxJgmEb+OCJD/qP82S1tVvtzAnuSl9JVN55qDaqMZUjANx0G1F/1aYmd3TwMhYplgI3zeFsNznb+0T7BAByrDiBA+X2AzR3slq5HmbOBFaIOTN5x9A27LAVqsAnqkWDGYtB9eHAGEBmZbAY9WuSMhaziEXVDJPZ50+dx8fe9zHc/OKbARDFYEfv+IrMzcL2apEyxpK2AFEdCozgE4NJWZBRYtGzQg0qfb33T0qWR2E7NjpaB1PiFARGwIzs5v456cTiuroeOl4eenoPj/QewTXNa/xrRpkrg6M5DMzxjklBy+MoKZ+GhkhyOKPbY9gGWDo7dmizePbCs8HSLI6vHw89r1kaeJoHk6N/CRBLUQcO2lo78XXFULAyXMGB+gGfXC5QoMCTFwWxeAVh28DDK+nhwA9d6uG3PnwcNx9Ib6pEbRYrIoeeljG49nVURDbE3cxWxjdPSlshFodKYsaizxfkmJ2TRl5sfOadOPO734nFRnJzgdFI0cQYA3Q21jHsk/3NJNihKYN+yAp1aFgoURq6X/8glPu/ALlchSBJoHIOwEnoqSZst4jvdUlzMahY7GsmdNOGuOsaAEBN5EL7jmNoUNzoeGmmDc20YlaoHEv2l+UAc64K7/TqACxDwdB0UNyogedQLDiaRndooBcgPvccOIxyk6jvqmJ6M5aiKIhyybflTcpjlEtlKC6hxNAUpkoCFN2C7ThwHBvv/MPfxpGnXo89Y9SAHvG3MTBQkznwLmFNuTcAwe0HRcM2s4lFnqVxcKbs/w7naqN9W5M4qIYVsxveO4ZYnK+JuGq+4luYBsnkSdBSdDRkHuJjIJ80CkkuQTNtiO7xzIOZioCBbhIr1Bzve8HROZxZV7CeYe08CdjCCrVAgc2jk2OC01YDo1kBVLBZxwpA1HJHj9zs85GbVy1eU3nEoqLmJBYvM9bbXehG8gQw06HQVowYATZQRs2cWqUEnuOg29tzPdtwM5LqCY2wLCRboWYpFl27rP4lgKKhavmIxaMHFjHdyDf7eRyxWMkgbB3HwS/+/t/gmkN78AOvvC3X542Dr1ic0H4sD7aFWDSGwKX7tr6eKw331C/nbOYVuIJY+iKwch9w37882ltS4AmEd933LvzEp39i7HIXBxe3RCzSFh1TjwXz9ADXCjWgkHIcJ0QsttV2IinIuhOFLZWse6wVagKJk4a7Vu4KNfzzKJ8MzcBwkE70KAMlRoDp2mibS9XSthMhhm6gXCWkIDfFpRJpj/RI5rdHLNI8+b6KTZRmiYpFB7Do0XH1jrGpmeD5gGJR5BMJsD2H96BcLYOiKfSNvp9bqZgKIaQC9WWUkDUsI0QkRzP5VEsNnVP//H//GbM7Z3H9zSSrrik10dbaWyYWPStUiqHwSHd8bvrQHIJneJR5ckw0O35e77t6X+ixzJFzJvh9veey1G550Df6MB0Tc6U5MDSDGYkQi1G7YgB4sPUgAEJGXhxcTH391p23gnXdRyiKQkNo5FMsapsgFgVCLEaVmx6xeDkUizIn46kzT8XpzunQhAjN0iAwQm7F4qxM1LtpWZ+eIvJps0+7LN+jQIECjy8UV4ErjCxicWldwf7pEp571UzqMhEnVFTFbALQtB3UI+qz6fJ4YlHahGrKI+C04SDTCnU7kKV+AgBBrqDf7UDTSJFOM/Hvowx6IcWi0b6I9/zaD8DcuABuaifkcgWD/qgQMDZhbTXQTZhuUTfwiEU3Y9FSOrAdoKeOBv1aRLHGMRQoNtx866kmSlErVFfhaToj4rg9NHzFIhXIXrBAg2MpfOXkOtYHup/x+PLX/iB+6jf+AABQl9ObsbwgITgZ/1n74nlIcqmCoW5CdDP5pko8FN2E4wD33/UtnDh+N/7rm34z9w1KTzNRl3gIrnKVdonFvjbadxTDwdbHF7DHdtbgABBYGlVxtF8qIgvNtGFGFHN7D2WTnwDwju+/Hj9z2yGyTZskFtuKgakSn6j2fbQhSjJ004bEM7mP2VxFRF8z/YzFLCtUAHjhkTmYtoN7ltvbsMUAz1CFFWqBJxe0HqC0wo9XHtjcujqPAONuPpe+ONk6o0Qkw4MKzuBnOMCKWqFGbvaFCJGUQJJ4VqMDVc9nherC3ipRmgCGpmBZdixn0YNmM+gqasgK9fyldTz3Db/oP65VZHT6AyjG9mxf2yUWG9XJrFAnViwKFUCsk79pGpphQgw089KIxde//Hm478NvH7s9FEVlEodAtmLx+MNn8blv3I3ffdMPgUmoETcDj1iM2rRvB7aFWHz408Bn3gK0xzcYH4uYVJ1b4ArAa1wmNHoLFNgKsrK9PKwoK6gJkyvlPFAWFVMsLvfCjg0szYZeV0wltG0drZNNLGrkvVnfR+bkiRSLX1z+IvbX9sO6RNZN5YyZidqhBqH0w8Rip9XBz3/fz/uPS5USBr0UZdcW7rc8UpDm6FRy1VP/aZYGVmChXSD7ylMNVmvhvojIinBsBxo7Orb+/7oVtkJNUSze/MKb8d6vvBcMw6Bv9H1lnmIoKPNln5wC4sRiVAEXfV011RBpeOdn78Qbf+GN/jkzLU0TZR61uZ6CB8sYnbdne8lq0CAUQ4HIiChzpD5MIvD2X5VshRokzr3zcRKyPAme/eiuMskmn5amYcNOzEQMZlImEYv3rd+HWWkWhxqHQs83xAYUU0lUHXtwHAdtte0/FnPasnuKxaB6FSD7iqUuD7EIAM/f/Xw80nskZNOsWzqxQp1AsQgAXSP5/uV09zRERsSRqSNb3+ACBQo87lEQi1cYJ1ayvcZfeu089k7ln0VeyVCWeahL4eZNHsVRSRgNOnmb875iUR0+6naOokz2Yb+bbkGm9PuQy6RwUs/dj4t//yY4loHac14Hfv4gSpUqlN5oMNUntGikLR191fTfF1UsWgp53BmOisYpmQ+RsjxLx4jFvmpi915iRTI3T2xZPWLRdigIHIOaRApTxs1YpNjReWJTtL88QHIeAYBhWVju7LtKBmHNS7Kfr/jjt+7HTz7vYGwZuVzGULcgcIyrWCQ2o5pOis5nPe/FuPb6G1M/IwrLdtCQeV+x6BGLw0DBTDEs7Bwz4/ZOk3OjLLDgA/vas39VjfBx3nPgMABAKqX/LhenSrjtCCnAFGNyK1TNsKDoFmYrQm5F4JWEIJegWzYkLr+SebYqQNEsklvJ0qDHjDb7pktYqIt4aKU/Nos2D1iGekzuywIFLhv+/X8C7/s+wFNu/8VzgD+/EeivTL6uziOA1Eh/3XGAz/4O+buxN986Y7amAqhg04JJylgMEIsUDXARouji3bGP8YhFRTPIOh9FlN36K80OVXcYdAdqiAB75vf+D1wKNP/qlTI6PQX/ftLEX35LTyV8TbcRpNPZDY+NTRKLSRmLV+/fje/99ltw9MBi8ptqu8n/FMlYDCoWZSn52NA0jcoYC1OAqBHpMQNLGrFouXXZc284hpc+94axn5UX3ve7HMTiwcUFzDbrudWciVh/GICT+Lt5PKDIWCxQoEAQa8M1VLjJbL2DoC0auqWHrBWX+2FikaO50OsdLTyed/VuJrFouhNOk0gaDxIrZebGBSHsEHCqcwrXNK/JTSh6aLfaqa9FicWffPlP4tzpkXtFuVrGoBsnFs+YZ3Dtu67F6f7pibbFX28g73kQdalw4alIPcXi8CSpJ3m3xvPyEBcWSV/EUyxqrOYfG+8YWroVskIVJCGRAKMoyldTDowBJI5MZFItFRWu4n82RVExpadnfendz0ZfH5rDEJG1eGQRz3/58/3HTZG4lw3ZzVuJcjzn2/ACwOpwNZM887YraIWaRIZPzU6Bpmk/c1FgBNAUnajIHZrDLakuPbXcYoXUmF4mYpBE9DAjzeCZ889Eja9hTV0LvWY7Nu5v3Y9DjUOYksIT4ptSE0NzmPn7G5rDkCIzL7E4JZLPihKLhmWAo7nc6sFJ8bzF58FyLNy7dq//nG7p/rHKg5pQA0/zibayAHC6fRo7yztR9yYQFihQ4EmNgli8wjhxKX5xbpZIYfJth6dxeL6SqcaLhjiXBTZUUg4SbFGTFIoSk924l/kRgcAx+U4Tb8a3rg5DxNWjAVEmhWC/205dRhn0IbnLdW//Z3DN3fjrD34SbIUULaVyNaRYnBSsOUBPNX0FnEdyVqp1AIA9INvWU0eFSrPEh/Ydz8SJxYFu+haukkQK1aAVKgDMVEjBw9I0DC2iWHSo0DENZgGpOvk7ywpVCBCLczURs9V4cSWXKxgaxDqTZWg0ZPL53/jy5wEAb/wfv5q6/jQ0yzw4lwj0icVAniHF8r5iMevs9uwxKyIbInE9MlUxwr8hySWp9x/OnpHlqTyHm8hYvNAl32dX47Fp88W7v5PghINxmC4LcAB0hwaEHIpFiqLw3MOzOLU6iGVnbgYcTV+W7IICBR6zUNvEwlR1b7g9VdLaicnXtXEGkOrpr1+6Dzj7VYCb4JqlRWa9MhErVIZH7OodJCM5GaAjkxsuJBCLjyEr1LHEos2gp2gh5d3CbBPf+Me3+Y89xeK3Ltj4pU9rgBx3CQCAYWUfXvk+BaulbPvukRVqDmJRHwCrxD5KEuK1ZEkW8f4//hU008guj3SmaKi6nssKNS/G2aAC6cTi//vI5wAAv/cLP7yt4wTvNpL1TThcjAPLMjj173+D73nJLZtfSesk+X/jzPZs1BVGYYVaoECBIIbmEFV+85MtkhSLUWUXS7Mh0iFKLKqWmmgXyHFkvDNVExSoTOJCypEfHUSFr+CqxnhHHQ+sG3HTWU+fcD3sDyEH3BMEScCf/9uf+4/TFIsth6jKzirjFXFJKAdqkTRLSo+c0iwNDD+6F7VAjhvr9q3qU3UAo8xJndV90tDb/6ZmJmYsCky6o9fAGIRy5CpCBZzriMEJXGySk2+n65awsYxFSw0RVd/9s98dWse0RIhSndt8PAgncKOMRRDCPEpwRaGYCkR2pFhMIgspikK5XsahY4f8xxIrJWaIjiPsxqGltsDRnE8oeoRrPxKDYDs2WmoLc/Ic9tX2oaW2QqToud45DIwBnj739Fge4LQ0DcVQMnMbNzT39+0uErW2TYPESuDpuNWubuuXLWMRAHZXdmOxsoiT7ZOh3w7P8GCpfJPEKYpCU2qip/diE75tx8ZSdwmL1UWfhC5QoMCTGwWxeIVxcjVOLAquuq+RYYN4vq2ipeixjEWGpnylFQB86eHV0OslgUE5QX1WF7IHMjlQtHHjpEYuKHc5baiApilwzKPX1BdkMsh1O+3UZQb9LhzXW3b6O34OO1772zi0Z4f/ulyuZCoePXg8cLQ2YM0huqrhz1zv9zpgWBaiTIpLSyHb1tdGNzPNCh8qMjiWBiL5kEoCceUdI8sh752rkuKYoQHD0EPrsBwqpNTrBqxYFcMEz9D+OZkEXpR98qwmJTdtS6UKVMOCyDFgaQoNl3RjJHJcxmUrJmFHLUBgOjZKAoNhYCYexfIwdC137ldV4kL7wVP/DvXkmXXjij+JY8AxVIyYzIPPPbiCssDihr3JDeNHG5zkEot8fsXitGvJa1gOeDZf3uGLj86hMzQSr5OTIu+EiAIFnlDQB/Gcws2g8wggZtiL3ftPhDRqhC2RPFV6ItQIsRjNWIyqCykaCN6Mc1ICsXhn7GN8YlF79InFkphNLGo2jU5fCd20f+7v/g92zI7Gglq5hHZQJZAx2/hfHzRH2YYp8NaVS7G49CXgs28FlHVI4iaIwKZ7flA0NN30rUKBbSAWc6gaq6XkZVodMmnsmU+ZvBbJAkVREAUe6iacC/KgJItjVZqp0HrAYI38zjqPAAnWb491lEuFYrFAgQJhJClm1tbW4gsmwFMsBjMWozaKUSvUJLXU+f75+Lo9JydNB0MzmVaoIpPv2kaLZJ1PmXkKZuT06JwoOIHUQuMUi8HO4J9+6E8xv2vef1yqlKCpW8vMS0IwHzEp6zCGAP+XlAEIEBUdKELMeeRYKGMxUH8wAgPTMTPJXcVQfCtUAKgLdb8vwCe4L/gqL3eYjRKLQFjFdvSmo6HXKjxRROYlFplSvG/DCRwsr2fkEGXthcGFzPUMzSEkVoLESWBpNlNlG+yLSKyUSEIqprIlYnFD3UCVr/pEsUcw9s1wn6CltmA5FhYrizjUOITWsBXKdzy+fhw8zePmhZtjn+HbzmZspz9xwP3YvIpFiqJQE2qx89rLWLxcikUAuHXXrTjdPe3bxuq2DomVJiIzZ+XZRNJ1RVmBaqk42jyaScgXKFDgyYOi83oF0VMNbCjxAXq9TwY+O4UPWemRquTEpX6itd9UaVTQfPbBVfSGo88g9pHxwzw1ZjwMEot5exieZ7euktlmm1Et9u76JNY+9jawW7QwlEqeYjG5mWcaBtZXLuHTH/4AbE0BzUsoSxJEdtS0jGYspmGHWys2InUlayiwHaCjGJj6iffA2PUMlCtVUBQFYeEqlI7cCo6hMNBHg3WzFB6ceYaOZUQlNax4T7Ho6lcXaqQ4ZigKhh4mFk0nfGzagXNyqFvg3VzENAhSyVcsRvM7PcjlMoaGBZEnVqgN9xylpc3PKo2q+WoSF7ZCZXnomkss5uAWaxIX2g9eXulmG4IURaEmcTEr1XHoDA189VQLzzk4jf2zk1nTXSkw4mYUi6MfhMgxY3NRAeCmA00ILI3j55P9/CdBQSwWeFJCHwDRm3tnE9e0zjIgRK7XQYuq1QeAvbfEcnWsaEZiEFHFIitGiMXIeEJzgBEgPzgJCGaD2CbZjghY97c/0PRH3QpVFslM9tWN5Fqkb9I4eW4F//TJL43eE8mRq1VKULXNz1qPYqPbB8exidamMdgWOZ9aS8nEom0C//keQE2ZDFJ3SU6KhqYbYSvUzRCVAWxFsXg5cTmJxS2hdYr8f+A2QiwqcYXNYx1PaMWiqQL3fQi4cNejvSUFCjyu4OWYBdHr5XMcoiwKuq2HiMPV4WqIBGRpNmaFGlU9JRGLXn1kaAZYis0kFvMqFms3kQlf+6v7IUet4TNA0zTK1XJqxqJjOThz4gy+/pmv+89FybDyhPbpeVEJZDUrVrJiMQiHH93k69AT7T1FRgTFULAZG60hUVR6xJGlWT7RCgCUO9k+SBwGYdkWVEsNKWM9RSEA8Am1zMAYENLILd2C+9Kzr81SD1KgsKO0AzqfXfslkXn+dgn8KGPRPX0fbj+cuT7VVCEyIliahcQkqxCTILMyDNuI2Z6OI+zGYX24jppQ84lFmZXBM3xM2bqqEGHF/vp+XNW4Ci21NVKNguQr7q3txaw8G/uMWXkWA2OQuS9bags0RYMakmOXV7EIwCcWg+epZ4V6uTIWAeAFe16AgTHAwxsPw3Ec6JY+sTJ6Tp5D3+jHjuFSZwkAcP3s9du1uQUKFHico+i8XkFc6JAGmUfa3H+hhx//+2/h5X/6ZQDAuY3kWVp/9flT/t9JYqxmgFhc6+v4yD2j2Uh1mUtssE+NVSyOVybtc7PqPAtJX7HoEotCAqE5Dq1P/AkG93zabwxuFiwvgON49BMUi45t48Pv/1uYho7nvfRVoAVS7JXFcOZeqVKDro2f0Z2uWCT7oaUQ4lh6xneh7NqgeqhJHAYBxeJMxLaWZ2k4AYUGS1OJikWPIDNcxeK8q+5jaIqo+ALrsOwREQlEFIu6BZGjwWaoTXlppFispBCLUqkM1bAguSSlZ4W6FWJxZyNc8NclHmpgX7CiDMPQkItVBNn3QoJicSvZSFWJm7ih+NkHV0BTwPfesCvTgvbRBCOQQjRPpquHoAVz3muByDG4ar6ClZ4G095aRlXWOVygwBMWlgbokVoiJbMmFY4F9C8BQsTeZhBQANT3APNPmWy9MWJRABVsQkRJQIYPq6rYCLG4+mCcRAX8Zp6iGrGJOVcaFIBmvZKoWNwY2viB96+ir6h4+fNvwpnPvBsXvvie2HL1av7c7Tzo9AZoVMuTWTCZQ8hiwoy0/grwwEeAk59Ofl95nhwDx4GqGVfcCrUyQfNny3jva4FP/DIEnoM24QSjK4LWKYAVgGPfQwjhvBbJ6ycfM+rGkvQEVSwufwv46JuAu98P3PW+5OtagQIFYhAZEVVua1aotmOHFEUb6kZI7cRF6oiO1onlOp4fJBCLLgzVAEMzI8VcguVi3oY/I5EaSJrEht5FbaqGTkItYg0tnPm/Z9BpdXDds67DB77xAfzj1/8xttzlIBY5noMgChB3kWu7oiuZBCwA2NxofNXtsNrUA8/woNwGjXdsPGLH0IyQFarDuTmIKUSt4vZzgsTijDRSiyYRi32jHzqmQWLRI8nG2ZLuLO/MfB0gyrE0sBw7yli0gYXSApb7y5mZh0OLKBYZioHESZmKxSBkToZhbT+x2FJbqAt1X9FLURQaQgOKGXb6WB2ugqZo7KnswcHGQdiwfXWmYig40z2Da5rXJKqbm2ITpmNmHo+W2iKWn+5HihPUIg2xAdVUQ+epp1i8nMTiU2eeijJXxv0b9/u/qUmJxR2lHejr/dh5cLp7Gk2xifnyfMo7CxQo8GRDQSxeQVzoqKAokhUHAN9YauGuc20c20kKlajNKQCs9TX8/deys1BmK6MG/lSJx/u+cdanVqoil9jUb7rjIZ1y85qkjIzi1156BL/60qux2yV8vCaVr1jMsNMMwbw8N9C1qSa6kYzFUw8ehzpUMHCVjMeuv8l/LZq55+UYbhYesdgJKEgr1bC1XF3moQQUi1HbWo6hQ41Uz/4z6nXec4Ph71OJfdqcm3tIJxCLumWDD1juBhV2im5BZJnM4y9IMhSXPKsm2OwCxApVM22IPAOWoVGTOFAAGHlzN38sTYXOc4CQ5kESjxNLI8ViBrz93ZC5UGPVI8hVc/NKg/qExKJhOfjsAyu4frGBYzvrm/7cyw2aJ7/xkpDfClXkGJRc5bPE51c6HpotY32gb7kxGyTPCxR4UiEh62ciDNuEXIzegCsBYnHvc4DKhDeUMSvUyI15jFjkwoQGJwLBbJCNpcyPI1ao+a9ZlwszU7UYsfjQ6XN42XsVPLxugGMZ3PqMa7G4MIv5mbgddq28vcQiANRdUs60HZxp28A4OyZLz7ZC7aXYa9E0cPQVQPMANMOAGCQWt6pYzGOFeqUVixtLEPnJJxglwtIJWbldeYjrJ4HqLmDXM8hvz8tbHIfPvgX41t9tzzZsEeWc9mOPWTzy9fA9j7IOfPEPgS/8PiA1gEMvBrrnyDW4QIECY9EQGxDYzVvx0Ra57/etKwG0tbafywcglknW0Tso8yOSTWZlXBpcSv0MQyeKRa+pf7pzOrbMpA3/zaDerMcUixfPXcSpt56CckJBqVLCU296KqbnpzGzI26zWsoxmWdSeGSlsIMcw57RixFRsXw3NkAsOnoicSUG6svl3jKAEaFrqmErVI9YjKpQPXjKt6AyNmhDm0Qs9vQeZFb21YlBYtE71uNsXxcri5mvA3Hb3iB4gYcZ6DEdbR7Fcn8583M1U4PMyWBplqgQnThZmIRpkdiJRtWjmqXls7dNQVtrx37jU+IUUQAGiLpVZRU1voayUMbB+kEA8H+TD7QegAMHNy/cHJskAIzsVbt6ultSS22hxtf84zmJYnFKmIplTRr25VcssjSLG3fciKXOEnoaUXBPonIGgPnSPLp6N6bmPN05jd2V3VvKty1QoMATCwWxeAVxoTPEdEnAgRlSRD3n0DR+4rn78YIjc6nveccXTiHI8SRNMJ8JEC7HdtZw97kOzrYIqVUR2URby5JbI/NqK/Q8JU5Gpu2fLsesVvWhq1jMqTp0tAnVFDlRazRjVqiO44CiaNz2su8GECYPaxIHgaNB8RJosQSkDL6WSYjCb33mX3HHV7+Adis5x4G1VNDUiPQDiAoyWCA3ZC6kQIxmG/IMDTtQdJQFFpphwo4U2Zb7UAd5/3SZd88bYoXqBJqGpu2ECNRhoOgcurmIWbmaglTyLVP5lExQT7HoEVEMTaEisqAnPL88VEQWYmTfNGQ+ZIXKCjIhFscoFld7ZBbqVMR2VnQzErdCaDVkfiIr1LvOtaHoFr7r+p0h69DHGmiO3KBNYoUKjGyapbyTDABcNV/BWl8LEe6bAc9cvtyCxwJec8NuAMCB2e2/0S/wOIfSGr9M5vvdMU2KZCwO1kd/V3ZMnl8YUywmEInRx8GbWVYMKxY3loDSTJyg9Db3MaBYBICZRi3RCnW2ROGvXrMThmllEmBpyrzegDRr3vmBT+JTX7oDD5w6l3ubGjVSh3K/3cPe/9sHxDHNAVPLVhgO1oC0me3Hvhs49KKYFSqXUj/kxaNthXpVkwZPx+sNUeB8V4ctwbMuvfcDW18XQIjExl6gNA3seCrQOQtkWRd7sAxg49RlmwQ4CR7XVqj9FeBLf0zUvbYFPPAx4KM/B6zcDzzjh4HX/ANw6y+Q/Z1g8VygQIE46kId/BYszymL9EiCmW1dvRuyWmQj2c5drRsioUpcCevqeqJyDnCtUAM5jWe6Z2JWjleCWKxN1WIZizRNg5EY7P+N/TB0IzEL0EMasWi5E3Lv//L9+MbnvoELZ7Nz/IIo18IqyJ7ei6mjosSUTY/uszVHS9zvfu6bAywPXGLRJXYMzQDPj84ZmyHrSyMWPSVbXaj7z02LASvUhIzFnt4LkThJxGJQFZuEPdXsvGwgm1jkBA5moAf11NmnoqW2sDJIVjnajg3VUlHmyv52GpYRI3aTsFBZIARUgnVqUiZpHmiWBsVUMCPNhAjBptSMZTdeUi5hSpyCxEqoCTU0hAbWh+Se5fj6cTTFJo40jyR+TlMkxKKXRZgETznpOaLkzVgEgCnJJRadMLF4uRWLAHDb4m24pFzCUm8JQPo5noa50hxMxwyRrqqp4uLgIvbX9hMVZ4ECBQqgIBa3BQ9d6uGhS6PByGui338h3ES70FExXeYhu69Pl3gs1OXMLMK//eoSbtg7msHOJhA+QcvBq+Yq4Fjaz80r8Wy23VW0VtiGPCLfCpXb/OllmflIhaxipzbVRL/TgeM4GJ47Dl1TceDqayBIo+Ldy2IERpl78sFnQpg/CIpPLvI7G6Rp++G/+j/4pR/5Xnzmo/8MAFD64ePtgGQm9gJWp5VaDXrAarNZFkLEohghaXmOhh34mVZcxaIdUbfyru2j7VY8LE3jJdfMY19Thq5rcALNWMt2QiSdolv++oa6CZGnwWRZoYoShoYFISOLkZfLsB1ChHqoSRxoaXMFSE3iYsTiVIkP7TtWlEie5JgCeMUlFpuleMO5LLBbUiw2SuHcx3H4xukWrpqv4NkHpiezpbvScInF8gSKRYCc38BkxOKhuQoMy/GP02bxRM9Y3D0l44HffgleeLSwISkQwVbVLkNX8ShHZqwHFYubuV5FFYtMRGWQaIWqhZcPEYtngMpC6rYoqj45+RmBkXM8yKpFZqZqaHc6cP5nFa+6mkGvr+Dwvl34p++VUXWvqVmWnbVKcqPvc9+4GwDwa2/7W7z4R34d3/XTbwEAnFhKt2Tz0JjU0swyIIkZqpDBCpA1K53hYlaoWx3zHlVi0TZxx4+V8KJd8YlxAsc+9jIWh23yu565CuBLwOKzgPYjgJYnh4wimatbVUJvAx7XisWOS/xvLAGf+jXgP/8eWHg68Oq/Bl7wZmD2amDhOmL5vJ6dg1WgQAGCCl9JVCHlhadYDNog2o4dImyixGJH64Ty+Mp8GRvaRqLFKTCyQg2+vtxfDi3D0Ezoe0TtQE1j632RerPuW6H27+uj2+5idmEW+351H8QFEbqmZxOLKbbsqxdJvt1dn7kLv/T9v4S3/cbbAACDjfETx6PEYlfvQrPC939Ri0qLHY2vqq0mKhY9YpExGF+55luhqmErVIsmz3uEWhTe53uKRZ7hUeJH+yKJWOwb/RCJE9yvLM2Co7mQKjYJuyu7M18Hsi14OZ4LKRavbV4LADjRTrZB9/a7p8aVueTcxLRt7WidkLLNOwbd6KTCnNhwa46oJWxTbEIxwsTi6nAV0/K0T9ruq+1DS21BN3Ucbx3H4cZhTIlxRxBgpFj0LG/TtqUhNjalWJyW4mpOwzLA0zzJ4byMuHXXraBA4a5Vkt08qWJxTibilw1tVP+d6Z6BAwfXzV532YnRAgUKPH5QXA22AS/64y/gRX/8Bb+R8N3X7wIAvPNLp7G8MRqkLnRUTJX5TNImCscBnr5nZL2QlBvWDCideJbGDYHlJ1UYJYGZsPnjKRZtjfyvdCefqfTKmw7hTT/4qrHLKX3SFHESgrvrjSb6vQ5an/wzdO/4GL7ymU8AIM0sZUBmJsryqOiry3w421HIblr98rs+jb/7xNdx1bXXARh9755Oivq+vIDZqoCBNro5KFdrvo0oQPIxB9qoMIpmS4psmFisiqRhFY0B9FSjDkbH6lXX7cSzD0zBMs2Q6hEAxADp29csGBZZ4dCwILHjFYuKRixT03LsvNzKoFVqTeY2bYVal/kYUT1d5jHULb+nzAgydF3FOMXiSk/11xkFUYRuXrE4VRImUioMdAsve+oO7Kg9xmfhs+QGbFJi0csMncQK9aCr6D7f3rx1CgBwTwIrVJFjYorxAgWgrI9fZhz4EiBEmiyD1a2tMyFjMYQkYjE4c50VwpadG0tAeRZA8m99oBohYjEp53Acqi97C2553S+MXW5pmTSu+sP4bO2ZqRq67Tbe9EkVH3rAwns/+nkAwP/6KotPnSd1RqZiMcUK1Wsg3vHPf4LTn34XfvXHXgMAWIkoEpJQr0xOLMqZxOIaoGbvX003IG4mV1FZB778NsAIN+EeVSvUwRpkjoLIxOsFkedCThCPCXjqx903kv/33QLo/fw2q7YBrDz6KrrylczM3G503Qbw6S+Qc/n5vwF81zuAwy8eKYYZFtj5dKB9Jl0BfLlg6sDJzwIf/0Xg/W8APvQTwMd+AfiP/wV86W3AN/8GuOefgBOfAs5+Dbh0HyGnx/zuCxS4nChz5U0Ri+smqZP0Ehmzg1aoAHCuN3IAiBGLeifUoC9zZXS0DswUBbiu6WApFpo+Isy+uvzV2HJCcLJV5Fb2F2/5RfzUK38q4xsRnD9DrjODdpzUq0/V0V5r49KHLuHCey7gY+/7GIDwJB+5TMikpJzDkluLlJ9SxrXvvnZElLjb+pIffQne99X34TU/QWoR1cgmzgCgHKlFLMeKKdyixKKJ0X4eSyyaDFpqC4ZtpFqh6g45B8YpFmsCcfEosSXwdKD3lmCFOjAGZH3urvXUnpZtgQKFMlceaxG6q7Ir83Ugh2Ix0GNqSk3Ml+ax3F9OJKC97fFUaDJLzoU0JW4QO8s7ods6Otro2Hn7c1yWZBo8YnF3NUywzsgzJLvRPZ6WbaGltjAnzflZjAfrB7GurmOpu4Se3sN1s9eF7IuDqPJVsBSbup2WbaGn93xlIwBIE7gneNatQdLVtE1wDHfZJ5XXhBqumb4G/7nynwDSyfM0zMqzABA6rkvdJfA0j6PNo9u3oQUKFHjco+hIbiPWB2TA4BgKAktDNSz8zPvu9Afv1kDHlMxPRNQ9c98U9kyNitekt05FCJIXHh1Zq5b4ZCJAcp9mzfTB3uyuoHv7v4DOkbcYhOYSbN01YoVx4fTkzYjv/6lfQK0+mllUlbJvGpIKJEkuw+quoH/Pp1F92ovxbd/+Sv+1oUss8vJIQdeQw58hlrLVdSzHYcfuPZieCyuG1hS3AKNozFVF9AOKxXK1DiXweLosoK+lN6AEloHljPZ/VSTWqVbk+067lpNNekRkUxQFx7VtdRAlFkfN2b5mwLA8xaINic/OWOQlGYphQuToRAUtAFBuqHxFGO3TKZkHPc5uLQUNmYPIxhWLA930f08sL7oZizayyEXT/a7RPEvvOW0risWIte04LNRFvOTaHbkyTR9NODQHmopb9Y6DZ9NcmoBY3FmXILI01vpbs117oisWCxRIxXAblEViI070DZJtv3MjplhMIBKDYPmIFaoQLoKMQWbOo6IaoXzh4yfPTrrF+J03vhA755pjl/NqENOKE021sozTF9t429d1/OQzOPzX13w7AOCTZ1icVMhN/masUD1wLIO9u+Zw/TUHx26nh0ZtUmJxTMYiHEIyZEAzworF3LhwFyEyWmEVVy7FYiknsdi7ANz7wbGOBz58kj0+dosCh2FGXfeooHWK2PvPXE0e77oBAAWsPZh/HevJKocriZL0OFIstk6TjMw1d795+1puAq/9B+DZ/w2o747f2O29Bdg4G5+IcbkwWAPufC/wrz8JfOOvyHlyzauAPTcDjT3ETnqwSn6HD30C+Na7CdH/md8GPv4LwD2uVe9wixbcBQpsAiWutKnmfNtqAwAo27VCjRKL/XRi0XZsVLhRj6DEldDVu4lkHACYmgmWZjEYjHouX7v4tVjvIpgLGFU/vuJ/vAI7FneM+1porZLfYZLCsVQtYfXCKlb/dRXT3zGN17iTkULLlEv4uc/9HH7ucz8Xy8tjORaiLGL2FYRsiCrfKIbC3M451PfXAQBWdfz9cFSxCIwIJQ9exiEAcDQX2s827ESCztuXrMmirbWhmVqqYlG1VF9FmIS+3ofIiD6ZWOJK4AKT1tKIxTJXjmUsDs0hJFZCmS/HlJlRLJQXMl83bANrw/S6nOM5WFr4GFw3cx2W+8uJaknVzTSv8YRAlTk5vxVqiWzrujqa2CixEihQmyYWW2oLFCjsKIXP+xmJEIueZe6GtgHbsbFYXfSvBVdPXY2W2sLda3eDozk8Z+dzUj+HoijUhFrqdna0Dhw42FEebYcgk/6GYioQWTFTudcQG3DgoGeMHCI8K9TLrVgEwmTipFao09I0aNChfXOqcwoL5QXUxfp2bWKBAgWeAJhMflIgE7Y9aijVJA63HJrGB+8IW100ywJWuuNncHl4+mIdFXFUvNCRJgbP0DGV265GwG4hpbleFyj07/k09orpDcjlt/8wAIBj3pJ7ewFA10iBx+SwTkjD9/zQTwIAfuTvvgkAoUxAD1mFjqVr+OKnPwLH1DH32reGs6EwUjpSggyAzMKZKYdn4wvyhI03F+vDURE3XxVx/PyoOVCuVDEIzGSfKnE+qZcEnqURfLkmsRgaVswK1VOmztHhoohkDiKkegQAOUD09FQThj1SLMo8k2pxCgCCJEPRSRZj0nIMw8JwydCqNLrENEr8pq1Qm2UhpsyqyzzIbiD7guZF6LoGSmmBd/RUJddfvuF6vPsrS9jTjBdXVTH7eIzDVInkPlJ0vkLxRUfnsavx2J+Bb9PEJjjrvEjCbJX8puQJlI40TWGxKWN9oMfO80mQN+O1QIEnHNT21tch1eMZiP3kXJbciG5XTLEYzVgUwsRiklV7Jb3RpmjGlu3df/a7nw3svJ4QBJuAYTl4z799Fobl4GPfJ8UmkXT7bh52hhKLZRmUZBEDJX/tOA4TW6E6JphxubWd5dSXbNuGYZiEWJxUiOVZSNrhmjKLWCxzDjg6e7+GcOFuQpDsvJ7kEI5Dxm9B4NjABKPNj2HbivWHgdou8rsGALEGTB8iyjjHBvLYWW2cJb/HbYhM2CweV1aoK/eT/x/5uruvXeJ99iiw6xnp79v/XODz/4cQkovjJzVsCo5Dchwf/Diw/E1y7d11I/CU1xA1a3UnUU9aJjnmlk4UlJZOLI+VDUI2DtaA//w74NztcWvrAgUuA6Jk16SNcg892+0DeBmLAfJKZMSQVWkS4RS0wixzZZi2GbILBEZ9Cj9j0VV+MSqDB1oPhD4TACQmfbx67mufi2PTx/DTn/npXN8vCsd28PH3fxyWZWH3T+1G5bpKIiErl2WgTf7e0DYwLU2HXg8qDNOI1ElQrpVj/Zy21g49DpIaEivFSLG+0Y+RHJ5ikbVYdLQOVEuF6ZigQBFiMTDxWbM0CIyQSg4NjAEkVvIJ5qhKNmqF6jgOBsbAJ+iAkXWmYiqYk+fAUMxYYnFc7uaqsgono8bgeA66Fp6ke+OOG/GJpU9gfbgeU0R6VqCeMrPMlaHbei4rVI90awfqfAouYZchYsjChrqBMl8OkfgAUV5ajoW+0ccMZrCqkIle++v7/WUONg7CgYOvXfga9lT3YK40hyw0xAaG5hCWbYGJ9HBaGiHrg9a0nmKxq3dR42uZqumGQJzkgpMXTNsEz/BXxEr0ZQdehq9d+BoAhCyc84ClWTTEhp8/6TgOljpLuGH+BlT5zYkFChQo8MRE0XndBnhl2eceJAOb5TbDd9QkPCNgSwoAc+XJbrz2TIUL5pgdZGVzN/irQwflY7ehNbX9MnZ9SAoIBvmUW3aCjWkenD35UOprDC/gqc94Ntj6PMTFY7HXBwMyQNIBK5P5WrhhQdMMRGlyG63WcFSALdRFdNVR4V2p1kOKtkaCHWcQIkfDDJArVZE0rKychIuhk4LSIxbNHpnZJnEjoqenmb6Nr2ZaKAlspkqVF0sY6hYkPtkKleV5P2cwqDSdKvFgpM0VITuq8WaSt++8XcHwJGORsk1QtpWqAtzTLOE3v/MoDszEG6uVBBXjJPDsVWkxm0B95r4pvO7GRXzP9bsgsJd/ttpWQFEUTIcCx9KgJ5wVPFshxy1NOZ2GgzNltAY6tKjn7wTgCovQAk9WbIc1nVhNUCxOboVqWYHxPbpd4xSLDJ9NLAoVoJzeLFBUPaRYBABsnEHpP34FAPCUqa3luHpYvpQxY5yh8MKbr4PMAt9+KN548IjFcZadaXaom0U9JSspFXlsGfuXUhV/mk7evykrVC9vLtLcyrJCfe9Lh/ilW0TwkyokN5byLTdIJxZFnn3MKBb373YVva1ThDAVR41OLN5ESFs9PVfIh1gnJOTw0bW9LE9gP/aYguMA/XTLuhAWnk6udWvp9zibhm93+kvAf7wZ2DgFXPvdwPf9E/A97wKuex1RKTLudZNhAV4mhHR5BqjtBJoHgd03AFe/FLj++4GnvY4sy2/vNapAAQ9GYPyJ2jLmJRadyH1zzwoTi0Hyqi7WsaKMrvFRxSKAENnhWSx6WX4eWiCEhCM7YGkWNsgYxm/wWB2u4lT7FGiWBrOD3AdK3Naub/1uP/U1iqZw0/NvAgDUbqilLpeVsQiMLD23C6VqKWQRyVJsjHANHhuRFWOEZlRtCgSIRYdFV+9CNYllKk3RMAwjZIWqmioERkhVj/WNPmRWHhGLfBl8oB6NKhaH5hAOHDSkUQ/Q26+KoaDElVATamMzFsfhwuBC5uucwMHQwvvqhvkb4MDBwxvxHF9PsegRRjInQ7d0/7zNQkNoQGAEdPWw0r4m1KCYCmZ2zKS8Mx3r6jqqfBVCZBKiZ0nqZTeuDldBUzQWK4v+MgfqBwAQ0vjI1BE/HzMNTbGJoTlMzElNynr0iOKe3kOFr4TOhyi8zw6e14ZthOx0Lye8bE1gcxMxpqVp9I0+LNvC2nANiqng6sbVIYV1gQIFChSd123ALYfJbK6/++oZP6vOww8+a4//d03iUJXzNzlqEhezAI3a+6XZqrK97GLD69fbVLRYzj+7WtdUdDbiWU6eFSrrFiLyBDaIk+Dub8bzCTZO3Y3eXZ8CADz/O78LVFQB4WI4GBCrUHb0umfb6MGyHZQqkxNhvhUqCLkcJBLL1RqUgGKxUcouKgSWgR44pyoiC8t2MMwZ4m4YnmKRnCdWnxRHcoCgdhygrRgwbRuG5aCUoi6bmSZFYX1mnmQxckyiFSrH8VDdnMKg3eh0eXLFYrMkQOIYXDUff1898ltieAG6lq9IT7PNGWe5Ow519/1X3/R87Dv6lPTlZB5veeW1OLrw2J/txXAcNNN21dGTEYsLdREUgLI42TXg8HwFa30t93mehMIKtcCTFlo3pu6aGHwlTuQpk1uh3nnXXQCAVqcfJxajN6U0i5C1JBvJWIzOCK7uBHg5tWoZaOGMxZtwJ/AnTwd/guQKNfjN214H8flv3BN77msnVvH/fZ2Mv69/+fOQdjnqDdxMmzGWnbXK9mQFWu55MbFi0RxjTc3JgLIaJoID8IhFgQsew5z1pkewLN8OAJhuVHFwzwKOHFhMXl7t4KqGjbkyO/nvoJeT/OldSn1J5DkojxFi8eS//w2cO95DrgkzR4Bg43rvLYQgzfOdZ64GLA1YncA6dRshszYElhpjx/sYxiSTPTgRmH8KIXITssM2hcEacFfA7pSXgee8Cfj+fwNe9jZg/61AaTo5b6NAgUcZZ7rpWbBRdVEavvGNbwAAzp8lGYR9mzT5KVDEpjRAXk2JUyE7TiriFkWBQl2o+4+9Zv2lwaWQ+s5wyLhnszZYioXlTrjm2+Q69qXlL5HH+8njrTbq7/3mvbHnztx7BqsfIZPCXvCqF4xdx1hicdJJSWNQqVUwtEZWpnWh7qujPETVpHqkzvCUdkH4GYsWA8uxsKKswLIt0BQNy7BCVqhDawiREVN7A329D4kbKRYrXAU8zaNUIvtiasdUeHl3e6dE8jxFUz6ROTSHKHElNMQGNHNrk9suDi6ixKYfD17gYahhYnF3ZTcaQgNn+/FoAM9S1iMWJ1EsUhSFOXkOXb0bWr4hNDA0hnjJ974EtWY6oZ2EdXUddaEezh4FUSwC8K1FV5QV1PhaKEMxqKa7eefNY3NYm1ITiqEk5nVuqBsQGTFEToque0Jf76PKVzPX750HijE6T03HjBGmVwIiK/rXs7zZtHOlOWI9axtY6i4BAJ4xl+G6UKBAgSclis7rNsC7QJ9Y6eNjd1/w1V4VkYXIs/i2qwghM1MRQtl245AkuEqyBE1CSCUwAax+/oyMf/67d+Dnf/C7Ys8bKilM2IhiscKTL8RkeK3v+aWPYPY1b831+UFi0bZtvPOP3oLlr38U+qWTAIB6I91CSOn3IJXKUAOKqLIQHmA100Z5E8RiULE4F1HalWthxeJUCrE4776PZ2k/ExAgikUA6Gn5jq9nheqtguLI50kR8nBD0TF0t6uaotqbnp52v8MUUSxyKYpFbqRYrAWIuoYsgBbL+Sy3XMzXRHzll5+Hmw+Sz56aIsXZzsV9MVKWZgUY2taK9NoWiUVvm/LkLFIUddlDu7cDDMNBNWwILD1xFuSth2bwZ6+7DgdmJiOUr5qrQNEttAaT2+x4W8g9xnMrCxS4bNCVrTekxVr8Wr2JjEXdVc3rhgFoPYREA1GrVYoKKwwZIUwsRpcvzwOcTNadAJKxOLqmC5QBHH4xOk/9sfxfoDQ7dpHP3z5q5jmOg7f+xfvwto89gG8s23AcBzON9GZKd0AaDeMsHuuVCYnAFHR6pP6amFi09GySrr5I7EGNeNYRAKiuHVcoY3HYHv+5RmCy0Pk7AdtErVLCid9/EQ7sSlGrugpHfkKlPADyHfLkLLqKxZfffG3sJYFjCKn9WEGL1MTYfWP4+UWiXsHq/ePX0dhLJgKs51DRnfsm8J/viSlMt4I/u7WLNz9Pmtg14TGDbrpNcCL2PgfYOAOovfHLpsFxiB3rF/8I+PB/J/mIC08HXv4nwPf9I/C8XwXmrimUhgUe83i4E1dXTQrVnXiqDcl9YtcaKasERgiRU02xGbLjjCrZylxYsSazMmiKxpmVM7BMC3ZkkrljhxWLjM5gVprFNy99M7TcpDaFUdz1tbtGn+k4+ODffBAfe/vHoJxU4DAO6s362HWMIxbLk9YOY1CulkMZiXWxjoEe7hMFFYkSK8WIxayMRdoidez5/nlYjuUfS56PKxbTbCn7Rh8lrgTWnYxfFapgaAaCQIih6Z3TseWBEaHEui5RtmNDtVRU+AoaQsNXCGaBt5PzGx3HwYXBhZhVbRAsz8IYhmsRiqLwtNmn4Xz/fMyKdWgOQYOG7Lp5lTiiJs1DLALAfGkePb0XIuempCkoppJ7HUG01TYaQiNmCesRi955sqKsoCk1U61jD9bH5497uY1JxGJLbRHlZIDgFGVCcOu2jobYyOznVPgKaIr2z1PLtmA7NgT6yhOLHM2BZ3i8ZO9L8Lojr8v1njl5Dn29D8M2cLpzGg2hgZ2VnePfWKBAgScVCmJxG/CaG3bjDc9axEyZx1984aTfk2i6JMOuuuQ/Frdoz5eWG5eGSe/BHSt/M3LQ7+Ls6YdhmeH3eIpFJmKd4AkXs4hFAJD2PhWamU3MOI6Du28nxKKtq/jHP/gl/OPf/Bnmr3s+pl744wCA2lQGsTjooVSu+Mo6IG4zq5v2xIpFy3agmKOm1HwtXDSUK1UMAjPZKyKbSNZ8/Gduwa+99Ah21ESYtgPKVQZ6Vp2DnLPhR1ao5DMod3aUFCG4u6qRaF+aBtVwrVATtp3lBaiGBZoKf05D5kDRDGhhsiZGoyT4hB3t7YdaHY2IYpHmBOjGGFXFGNTELSoW3W0KnlePd7AcB9WwwLN0qkI6DTRN4aXHFmI2w+NwcJbcuC5v5LBoi+CGvcRm9uDc9t78FijwuIE+ALaafSMlkGHD/BOPEqF1YSBwjU3K5Aq6DLCRjMXobP7SNMAKfs3V6YebNFHF4r/0ngpc82o4Uwfyb3OOS97nbyeKRc108Bv/8DX8+tv+Dt990yL+/lVkBvzMVAax2FdQKUn+2JaG7VIsetarjdqkxKIGOBl12dR+YLhB/iVgZIU64RgbJGSUdZKFuPogcN8/A7f/VfJ71k4AIFmHE2O4Dlg6eMrEm57FA2lW/a4t8FMOxpsrIs+GnClyQ1kHTvx7PmIzDf/6U8AHfyT8XOsUwJdJzl8Qtd3ESridrgbyQTPAwnVk2SxbXMcB7nwPsPSl7bFkBgDbwtGGidkyk348Huvonp9s+f3PBfQ+sHF68s+K2p22XLvT//IB1+709WG70wIFHuM41T617ev0rFABQiwGyalpaRodbXT9ilqhVvgKuEBtQVEUqnwVA2oABw46q/FrH0uPFIsAcHjqME5snAgtEyRG7E24Ttz1dUIsOqaDez98L/70t/4UV7/gaiz+9CL4XXwqsdj/0z4e/llC3kpjcom32wq1XCuHCLaG0IhZoYYUi2xcsZhELHrE7+oMGavP9c/BsA1fDBC1QhXZdMWiYigosSVfHTsuW84jvKZFQvp5xKK3nXW+jppQCyk101C1yWfZFDkfenoPv/Hl38AdK3fgwuACZuX0yW+8wMesUAHgmfPPxMXBxVAeord9Aiv4SjaPxM1LCu4q70JP74WsaptiEwNjELMwHgfbsdHRO5iWpmPKugpXISpjN7txdbiKaWk6Rix6JHKeLNAZOZ1YXFfXURNqEBmXrGZoMAzj275mkbsAQFM0anzNP/7e9uRVLN69ejcebG2PW4RHnv/+c38frzj4ilzvWSgvoGcQwvhU5xR2V3ajKjz2HbcKFChwZVEQi9uA5xyaxuG5Cl5y7Q7cf6GH25fCzTcvI68ucxMRg8NeN/acVxC94w3X41dfenVM8VaVSPHCnCGWH5MSAZPCtiysXgrfMOuuYpGeoIiIBndH+yqGGX5i+cwptNbIjPGNz7wTJ+/6Gt78J3+L0uK1oCgKglxCLUOxqA6HkOSST6YBAB/xKtNMG6XyZEqr1iBc7EYVi9GMRZqiYgQZQKwyf/TW/b49K+UqNTw1Yd6mlaFrIQWItx4xQKIyFIWeakLVSeFYH0MsOnCgGjZKAptYhBMrVAsCS4fsKH1ycEI71DRIHAMuoJikOT63FWoatm6F6lqdGI/T5lcCGJaFarrE4hVSAe5plkBTwGp/cqJY4hm89VXHcP2eqfELFyjwRIQxSLWkzESQxInmkRjDVDVabmg96Ag06KIKRCBMLDJ8mCCN3oSL9dDDpUthUkvVjND4Zzo0sQDMwFCdTPV+sdXDg6fPAQB+87MaPn3XI3jvH/4SXnjNDCiKgizyaNbTb8CVoTbWBhUAaptp5rnf/asXE2qMSRWQlp5NLNb3kv9TSCrfCnXSzMOo0uvkf4xUjGn2rK51Kr8ZYrG/ChhD7BU6+IMXiSi1H4gvY6qAlq4kkziKqGUnwbnbgY//IvDNvwaWvzXhRgegrBNCSgnch6w9TEhEqR5elqKAXc8A2o+ElaFp2HcrUdFp8XsTHxfvIdaqNLN9isX+JfAMwD3G86gz0V1GrlkKHnY9kyjGJ7GejdmdSsTu9Adcu9MDzy3sTgs8LhEl4ADgaPMormpctel19uwwsRgkt5pSM5S1FiUWy3w5RnbUhTosmoyR68vxmBiWYkNZdUemjqCjhwnIoGKx28q4ziZAUzQ8eDe5Xqx+fBWPfPMR/Pzv/jyufvHVoGgKFE1BEAXfwjEIqkdB3VAhyiIYJvs6u+3EYkSx2BAbsZy+qGJRszQwgfEgiVj01GU2Y4OhGFwYXCBWqG7rM2SFag4hsZL/WhQDc4AyX/bPg5qQbenpEaGedaa3rZ4VZk2soS7UMcxRU5cdUqvpDKl3ljpLMGwDq8oq1oZrWCgvpL6X4znow3iddMP8DbAcCw+3w0rgoTmEwAj+9yxxJThwYkRuGnZVdqGttUPLe0rASRWL68N12I6NXeVdsV4TRVFoCA0ohgLLttBSW5iT53ziz8M/v/yf8dqrXosaP96CtSk1odt6yK7UQ0ttoS7WfSKQdntbnmXvnJye9e6hJhBi0XZsn1iMbm8SHMfBPz70j/jwyQ+HsmY3i6S82HGYk+cwNIfoaB2c75/Hvto+lLli8naBAgXCKIjFbcT1i3VMl3ncdz5cEK30SKOqKnITWR8q/fTZvi+6dgd+7LkH/fWt/tvvYXD885Bd6yf23B0487vfmZhNt924eC7s066rXsZifnKl285WQrQjhdHd3/ya/93rt7web3zrX+NZz3sR2utkZpool1GuZhcScrkCNUgsRkhf055csXipG27OVEQupNorV2voR9SGaXaowEjx5ykNK66F6TCH1SYA6LoGKpAjSXOuYjGQe1mTOfRUE4qbZzeOXLNsB5bj+OrJKFieWKHyLBMiohqyRyxuzywniqJC1qUUy/vWr5tF2nfKC56lIXEMLHsLioPHGFiWh27aECLH83KCZ2nsbshY62sTpL4WKFAAAGAowATuAz6++Iejv0uRiTkpNqj/7zP34It35rQp0/rQnTGKxWCzjhUjGYuRhldEVXn6Qlwt5+TMEPFwfmUyVeYX7xkRab9yi4C//unb8NrveC7OXST7q1mVwXFspiKxOsZ6DABq5U008yga1Ju7eP/peC2UpljcXaXwjIWEbTW1bCvU2i6AYoBesjJL3Syx2AkQizuvJ4pF14Y0EbYNrBPrT2GC6AEfw1ZIaVfWE7IU+6uZq6gIFPrDnA0gUwdufyf57ZXnyXN5cx6z4JHAjgNsnAKm9gFJM8z3PAfonMunRt7/bYRUXc2wQ33oE+T/CSzvx8Illx/XxGLnEaA83lbZh1AGZq8B2kvZv7tMu9MPFHanBR5TyKMcSkKUANkOKM6IQOAZPmQL6VlYeqApOmSTKXNyrEEfzFxcPx8nFimbChGLhxqHYtmNUiADt3Vpslrk1F2nYFs2BEHA9IumcdOP3ITv+C/fgZZb03CuW0Atw0GhFKkzkgil7SQWbd1GuRYmFptSkxA2gV3jKdMAoljULM3/PgwYaJYWI66Cx6sm1LCirMC0zVG+XMA9Qbd0QiwmjFu2Y2NoDlEVqpiVZ1ETapgvzWd+r77Rh8AI/vH0FIve96gLRLFow4bRzv5NMA4Z9xyK3A17GXdtrQ3bsbG/vj/1vWnE4qHGIZS4Es72wv27oREmFj2iO28W5M7yTqiWGiKCp8QpaJYWs10dhwuDCwCAI80jia9PicRidW24BtuxsbuyO9Zj3V/fj1+58Vewu7p77Oc1RXLPEyW1HcdBW22jKTZHuZ1uLeK/mIFBAAD2m0lEQVQRizPyzNj114U6huYQlm1NpFhcUVbQ0ToYmsOJ92ES0ux+s+ARp8dbx+HAwdNmn5Y727ZAgQJPHhTE4jaCpim87CnxmUMXOqRg2ippkQXl/i9g7cO/72fzeeCY7TvE59/5Ezj/Nz/tqyI9XFwOFyYjK9T8xOLapexGSvR7fPrD/wSW42ENe2BKdczvPQxgpA4FqLHWYlFiMWoPqls2SpXJgqajxCIATFcCOQzlCgYRtWGznF5YiD6xOFIasjSFYU6rTUPXQTFh8g0A5MBM/imZw0A3fcJznB2o7uZSpmUxshwPRSeKRTZwDDxlJrNNxCIA1KTRvqVY3rd+3Sy2qlgk63hi2UsxHOtnLLJjflPbif0zZbQGemZPrUCBAgkwhpNbobbPAic+NXoctR1VkolF3chHYFK2BVhaWLHIJFxvA7lFYPhs20UmPCnn9MV2bBHVnGxqwvKlyXIk//7f7wTHMtjQaNRFCtcsNt31kMaiNxljupE+7lXL2dZjAFCvbqGZl0DgpmUsnv3ZCm7/0TJRvQVhaoBj4hvLpGayuQgZyvAkZ7GXTPqNrFDTJ1IlovPI6O8Dt5H/T302ffnuOWLbCoBnNzkWBz6zZLTiFhpZxCaAKk9ByZOxONwAPvkrwKnPAce+B3jNewixHrEn2xIGq8QaefYowCXMjp+7hpCQecjMndeT47yWQiz2V4Dz/5lMYAbRPQ987OfDpHEWOkQRfNmJxa//JXDujsuz7u55oLJjsvfsfTZRiOoJ6ljP7vQTQbvTVxd2pwWecDBsA4/0Hhm/4ASIuiSJjJhJLAJhpU+JHeXtJb0nSbEICyFiUWIl7CrvCi0iMaNaYONSfKJUFm7/6O2gaRqCI4AWaEwtku1ZXyHbQrm1SH2qnroOOWK5HrUkBYh16Xbgvjfeh+M/dhxTU1MxxaLlWGCro/0bVJF5x8pTHEqMBNVUYWXYZNeFOjbUDWi2lmiFqts6RFZMJF28z24IDSyUF/DRV30Uz198fuZ36+t9yKwMniafwXBhxWJDbPhWkmf+8Awe/p8PY0YaT04BwKkOsQVeV8lxPdJIJt4AQp4aSrwWoSkax6aP4Xz/fIg8VkwFIiv6pJGXtaha+dygPPXk2nBUR3uqzaRzKQsXBhcgMmJqlt+USM6biwNSu6TlKOYl0rzcxiixODSH0G0ds/Ksvy5P1dvTe6BA+e/Ngre9pmP6dqt5FIsPtIhrRs/obXpiRhDRvNg8mCsRYvGB9QfA0RyubcazxQsUKFCgIBa3Gc/a38RUiYftOPA4rr5KBpAoceXBUxlGXzcf+sLl29BNwFh/BMbqaQiRm/uLy+GC37ZMGLqOsj3A4P4vQHatQXiBDKCWGR8Y11YuZH52lPC555tfxeyOnaAjjRJ+nhQWfSe5eeU4Durf81ZIh58FWS6HLCtZJjzTybScia1QL3bVmNnRXGW0jQzDhKxQAWAmD7HIke9DURSqIpfbatOIKBY9kjGozmyWBQxU089trIwh1zSfWExejuV4DF1iMahwq/uKxe1T0QZtZClm61aoQfLfI1AnRV2asHH6GAfDctBMCwLH4Aryijg8V8baQIO9lbypAgWejDCG2YRcEr7wh+HHUTJqkNAomwCU25gwgsRi0g1/KGORBxLyTnxErVAvxhtxfS0+VnLuuGomzFrwCME8+PPbdXz4qw9ibrqB63eQsY61SXNyMAyPRdMZdqi5rFA3o1jMwFiVZPR4u4rFf7jPBvXmLuypw/H3zB5JJaA3bYXqkkoAALEKHPlOQqKkYe0EQNG4pFCbs0IFgO6oHpWtDvnuQfRXiM1sigNJmQf6eaxQl79F1Hgv/G3gJf8HmDsKVBeAYXtrOYtBePtq943Jr3u/wTw2ZawA7Hiqq6JL+F2e+HeyzIHspivOfIUc17vem+97tsk9BjvGom9LMFRCWH/znYSI3Ra4383SCYm88DTyeN9z8719//MIydwO3GOF7E7/EuCCdqf/t7A7LfCEw9nu2Ynz2cYhSnIIrBAiFoOkEEBUa0EiUWKlmGLHIxcoikLrQoLaMEIsAsBVU8TK1XGvFcGMuPUJapGNL2/g9o/fjkq9AqYU3i6PWPSQlrMIAHKOWmS7FIuO5QAOsUKNZiwCADdFagXHcTAwRtdkzwrVUwHKjEyIxYxzpCE20Nba0EwNlOMqFvmwYrHElmIKUgD+Z3vbVRNqqPDZfYye3oPMyn4OJ+tOcvKtUIXayE6VBtQzaq7MOtuxcbZLJvOvD9chsRLmy+nqSV7gExWLAMlZPN8/76vuAEKiiYwYVyzmVMp5xGJLG53/HuHej05WG4Pl/jKmpelUy81paRqKoWBluAKGYrCrsitxubzwFIvBcw0ANjRyX7GzPCI4PcViV+9CYqXQhIA0+MSibfpkbjQTMgn3t+4HQI5Nkk3rJOBpflPEopfjeaZ3BvOleZ8sLlCgQIEgCmJxm0HTFL7/pj14yq66T6q86Boy6PsS/UjdsrMh4TuOzeOZe0cX6jO/+51gTn9127ePugxN+iixCABDZQAeJtb+7fcwU3bVdhIpUAw1Tv6sXcwmFtf7WkyN9iM/9xsh0syyRkWlATJwlqvhQq010MHN7gdbm4dcLkPNsBQlisXJ1HUXOyrqQvgAz9fC5KcSaXR6OYpJ8LIQqYBdQk3mMrc7CF3TQEVUHRxDgQ0oQGcqAnoaUSwyNAWZzy46PMLNIwqDoGga5WodQ8OCGMlA5FkatqaAkbdPsdgoBRWLLHR9azYRQbJ0I6+VWQT1hMzMxzNYlnOtUK+sYvHqHRV0h+YTKq+yQIErAlOdLGNxsArc+R5ioechMm5gkG3/OA60OyNdd8aQPVHFYpYZcqSxdzqJWEwgeBh3/NMSsorP5VAsmqaFX/m0ip/6GKll3vIzb8DOijuT2UkeN7IVi3kyFscvk4Q3PYvHtJAwY33Sa7mpAo4FyZvlLydk2M4dS1W+qRo5HyciFi2DnHfBc+LZP5P9nrUTQHkOusOiUQk0be7/MHDvP2W/l2IAuRk610vmepxo6q+4pHYasehgqBmwxpXbjkOIvUMvImQQQCxl1fbkiuM0tM8AfAWYSrdLmwh7byEqOjWS/2VqJP9y901AeUze0PI3yTE9/5++bW0mXAVpSLG49CXggY9OuPEZ6Lvn7bBFzpWtwtSAe/5x9DcAzD0F+NXzwDN+ON86Fm8CQAErx4nd6Zf+OGB3eh3wssLutMATHyfbOa4RE2J9GCbboopFiqJC1qaGboQyFZOURl6znWKoRMWiYzg+gejhaPMoeY2OE4t5rFBt28bKJ1aw/I5lUKDw+v/2erARN6GhEs7x86xQHT0+QMkptYh8WMbUbVNwHAflSfOZU1A6UgI/x0MuyyHFokdEsQ03+sUchvabxEowbAOcOwlaZmQMraGvAktCU2yio3WgWSNikedHdYXlWCjzyd/Lsy/No0rz0Df6kDkZHM2BZVlIriuFYiqgKRplruzn/kWJ4CxcHFyEbpNaqqW20JSaKHHp132WZ6EpyX2RZ+54JnRb9xWQwChr0iPRPcWiZufrrUxL02BpFt1ADrN3PKOE3Tic75/HnDyXelym5WkMjAFWlBXUhFrqcnlRF+qgQcfIuw2V3FfsrozsVL2Mxa7eRYkr+QRyFppSE4qpwHJGVqjjiEXLtnBi4wQO1A4AIMd8K+AZflMWphIrocyVYTs29lT35CLBCxQo8ORDQSxeBly7s4bvfcYuP//tWfubeNv3Pg3XLpAL8YuOzEPiGCzURwPKq67bhWO76qH1XI44MyfHLNaoRcg4RDMWAUAdjgZmj2D1iFVdi4dVj1MsAsDpE/f7f1MUhafe8KzQ65cCBKfpEouVaj20zNnWaLvkUhlKBmmhm/bEisWVnoaGFP5ZRYnFKFEyV00nFqMZiwBQlyZRLOoh8hUAWJoGEzgPZisCeqqJoZ6PPPKtUBOUjY3GFBavOgbVsCBydCyTzx52QYvVic+xNEwFyU2G27oVaoBYbPV12JvISnyiEYuMSyyKLH1ZrklpODhDfnvr/a1nChQo8KSDMoGN1n0fIk3pXc8cPRclFpW1uD3qBKDcxpGB8PXRic6eDXyuZk9WoiYRi4OhDjuFANISbFzHKhZZEQ+fPY/33avj7d9B9sfzbnxqaJHVVjAfm4whWcRiRR4/a7mWohLIvCbbFv7gRSJeMJ+e150bpgrYFmQp4xyYvxaUMcBsKb5RvhUqP4Giv3cBgAPUAvk4O6+LL+c4wLfeBWyc/v/ZO+8wSa7y6p/KndOknjyzYTZqtZJWOSMJCYkoghDBIEwG85kMxuRsbDC2MRgwBmOCAZsMAiwQUSBQQmElbd6dHHumc1f6/rhV3VVdsXtmNtbvefbZ6e6q6upUdes995yXxHSmRzHQl8WerUONZaYfBI7+nvQfdSMxQL7rmoOPU6pAoWl8WpghAiQA2MSvxTjyen0PH4zj8vQwERYln2OZ+X1AyaXYJIvERci3J0yjMEtEzpDmrthwFXkPF/aZlzvyW+KU3vUc4qJzorQILB0m0a98FNj7PXfXoqJo34MmYfHY3cCD33R/7a2gPQf6zgP230Echu0iVYFf/V1DUNT/z2riX3P/WifCaaBzMxE673gvEWHrcadfBM59YRB3GnDacyB3wNG11C56jKROiA1Z+gkaXTnllbIpCjVkMxbSHW0AsDhpPS6pNrHsI8kRAADN05bt+hEWZydnsfj7RWRvyUJVVZx72bmmx6sV6/WT7liUlq3jHydhMfucLDqu60BezK+ZY3H0raMY++gYQJmjTqNcFDzN1x2LzYKU/h5xMfJ4jImhLJYtPRaNZEIZFMUiSpKhr2ZTLLujsKhNLGrFpVUQC0Rwojls2LQBoztGAZDXGWJC4Bm+7lhsRVjU+ysCRAztCfe4Cou8wJMhqM0pdntmO3iax+HlxjbLUhkh1upYtOu1aQdN0egOd2O51hhzJvgEaNCmPpleyIqM+fI8+mJ9juJbd7gbRbGIudIcOkIdvtx/bjA0g6SQtOznYmURNEWb+mrWHYtVIizyzddLNnSEO1ASSxBlsS6Ce/VYPLRyCDWlhisHSMpBrppr5SVZ4GiuLcciQERjABhLj636vQ4ICDg9CYTFdaJZnImF2LpLLBZi8c+3noNzh05OK3m1YhX+3JiZtHcsOlGz2f78rHN/F2l5BrIsYWxHo3g3OrYd8WTKtNyRA42+L3XHYvMyJmExjrKL80+UFURj/mflKKCwWKyhI2w+afclzSfgUpNLwt2xSLZFcwZhMcL7FhZrYrUef6pqhSqOoUyRlp0xAaWajIoog6LgGXdZlcngPenQS5CioAmLjOV3IJdXQIfjkNdKWDQ6FmkWYnV1IpQxCnWuUEVFat0tZ9ynUx2aphEKR1GVFEQE1tIYfT3Z2E0ulvz2Ew0ICDDQysxWVQFGLgMShh5gzcXq4jwgtF/cqzsWm4VFumkihmHmb9EmxtSNw9M5y6SVQqkCGfYX0pLcWhTqsWUFVSqMrRsGce8r4njlHh4j2TSG+rpNy+09cBR7+shz9rIkZmq1jsWUTTHvqvQ05HclwOTde9VtTEiOkbJ3viiCbzzLR5FAqgCK2HAs2tFN3Bc7u62DiLaiUPUY1Ga33e7nk//L2ne8NA88/hMiCOUnga4toCi66XylEuehl2CX7CdimjFWbemIeZnibMNhaITRe1gTh6akUHB13NqR3kBELT/RYwsHgP97D/DLj7YefeyXI78lfR+33ERuD5xPYmDnHmsso6rAY7cDXVvJccSNyXsBUMD2m4ELXwFM3uMebVucrX93oyHjd08l38mJe9p6WRZWpgAuAlzzLkAqAw/9T3vb0UXFuceBnc8i91VyRJiN+uuhZeK8F5OI3MveEMSdBpyR7Mvtqxe114pmx2KYCVvEE6NDrZgvmh2LdsKiQXjKzeYg1szHZMXmWoZrGv8YC/ZuPRbFnIhquYrsQBab37IZnU/qRCQZwcjYiGm5Ywet9RnXHos2Y5GpwhQim8j9siIj5tCf2Q+Vh62JVaIsmhyLFEWhM9wJrsMsLOoil+4W1QW5CBMhTjCXHovpUBoqVEwXp22jUAHUHYTNNEeh+qEgFhDjYuBoDhRF1cciRbGIEBsCR3OIclHQoFsSFg8tHzLFsPbGel1FnvprtBmGcAyH7R3bMVmcrAtdFblCHIu02bEotjC+yEazKNQKdaFXF+xaifGcLc9CVmVsSm9y7JHYEe6ApEqYLE6iI9xR/36shnQojZJUMonUS5UlxLl4/X1mWRa8NhZZqa0gzsdNsclu25ZVGUWxWHedevVYfHTxUYSYEK4bvq7+fKtBYIS2HItAIw71vJ7zVrUPAQEBpy+BsHgKsaEjdFyuIwsrrc1uX5idtkRQVlyERVm0FnYWZuwdi+XD92PqP16Hn//3503372pyKwLA0YMGYVG1dywenm/sVyQWQ8VFoKtKCkItOBYr4KAC6E+YB6u9BseiJCsQm/KxOqLOwqKgRaEyQmPgmIlyroKoEbFaBc2T51e1gSHLmJ2EHVpUbc5n9GfNo8ciQMSgMMfYOBbzYMIJyJ4ZYf7Q9x0AQK8+CjXWFCHT3A/TDxmbiNhTle6eLIa2ngVJURH2iMhdayI8ix4X0T0gIMAGvTdiOdfaev3nE4cMYB9lWJgFVhE1REl6j8UmYbF5pq9hBu9KhRx/cxUV//2QSAQNFwrlGhZy5gvvQqkMpYWhrpOw+LtjEs77bBHv+uz3AADpMDm3XXk2Eb1WquScJlEc9h44Bu3UDZoi93esOgo1iv9+VhjquxOA1qtmOEzGM6xhxrkdG5IS6SFnw5UjLJ69gwOqPvrf1CoIh1zOb5lRqAyPs7qt54q2olBXJjSHV1NRuV9zZegRpYuHyP96DOvQRfbbqxa8I4IT/UBpAawx0jZvGJ+qKhHZY93WdTVRPMKSz7ytYU56hLyuah71qFWbXqColYDffpKIYbkjpG/hWqOqwOFfk5jNTtK/HHwE6NoGrEw23JrzjwHLR4n4mOh33h5AhMD0MNA9BlzyOoANA49819m1qInLCp/Anm3D1sen/rw2/ShXJsn3rGuMCNeHf03uawWjqHjZ64HdzyP3F2aBaHd7x8+LXwO88DvA1e8I4k4DzkgO5A7U4xQB1EUQqSZBskkd8IOtY1Exnxs6Q43zTnG5aHIs2ok5RmFDVVTMTs6aHpd9XE/66bFYPlLGgfcewHc+/h0AABMh59tN526yRJwf3W9NlEp22AtogH3/xLumGm15ZkuziCbaOwY9/JcPo/QTe3HJKCwCQE+0B1yanE/1fpi6oFYXeKLk84gyUYiK6NoHUBcFZ4oz0NtcNguLCd5+jFYQCxAYAWE3J34TJbGEOB83fWcAIizqwh1N0YjxsZaFxYFYo5fgaHLUUXgDAE5wFhYB4Pzs+ZjIT9T7H1akCiJcpL7NumNR8Rg3GeiP9SNfy5via3VRzS9TWkrEtsw2x2X0yQZlqYxsNAuhuS98G2RCGZRFc6zuQmUBCSFRn0yweWwzRraNACC9NONc3JdjMSNovSbFQsOx6LHPexf2YiQ5gmwsiwSfMPXDbAee4V2/L270xfrQEerAcMJmHBYQEBCAk0RY/NSnPoWRkRGEQiFceOGFuPvuux2X/dznPofLL78c6XQa6XQa1157revypwtHPvpk/PodN4Jj1v8jy6/kWlpeVVXMTo6b7nNzLNph51j84Te+jNlvvAt87xgue9rzTY/tOs9aODI6FmugISkK4knzALo5CtXNDVWTFISjrQiLZGAxmDQPVrsTDWHRTqjqjHk7Fhm+sY1MlPc9B16s1cCFyMDQ6Fg0RqHqz7/SgrDIMRQEznkw3HAsWoVFOhyH1EbEqB3GPo8qzUCsVVs2CBjhGBohtvEbm8y15t4FzH0fT3UYhoasnSaix1lYBIDRrrWNPwoIcOO0GIvoxQ8/EYG6YBLvBVJDpN8boPWPa6I4R0SMNqE1YbEG8/HRzbG4rJ2TVBWo2MSI2XFofMZ0u1AqOzoW7eZpTcxaeyx+9fu/wBO+VMKWThpvfsH1pseu0ITFh7XVZFrAIwesxTzXKNSovyjUy4a016ELac3bkRagvjuBYdn8+FBMBqoeM5399PQTiwgLLoUQmgE6NhLHYpMY1pZjMXcMiPaYvhO26I635WNEqMrusl9OETXBzoXkAAAVXSwZK1bYFIk+1QtNtQJxyhnjWXW077Ie5kAciy2S0rabn2kI/QXDd/przyXuwD9+FqguA098P9C1BXjsx46u1LbJHSXi2oariDCm070VKC2Q9wEADt5JomHPutk9llOqAtMPAb27yfZCCeCClxMX49Jh+3WWxwE2BDraAY61uf6Zf5S8D6slPwnEskS4u+bd5Fj4oEdPTiNSFfjVxxqi4kWvAvQ+ROUlINHXvuM7kgniTs8wTouxyBogqzKOrhw1ucX0VIJ7fnMP7r3zXss6flptWHos2kShZsINMbO4YhYW7dJbmu+bPmaua8g+Ehi8olB/89Pf4OAHD4JNsrjh5TeYHtt4zkbL8of3Hbbc5+pYjJrHeLIi4+6pu6Fq1+w1pdZ2FOrmj2xG6Bx7h5YxohQAeiI9lihUXVjU3yMm3HAsAkBedD63p7Qx7Vx5rl4j4JsmSSVD9oKrLgY2u0ud0EXOhJCwfCeatxXn42Bi/q6tZUrGTGkGG5KNBIet6a2u6+jiqQprf08AuLD3QpTlMo6sHIGskN5/MbZxnuIYDizNtuRYHIgPYLm6bHKQGicG+GGqOIUIG0FvtNdxmY5Qw1E8FB9ak0SlznAnSlLJJCwuVZaQElJ1EZBl2XoUakEsICEkfH039O9gvpavv59ujsWSWMKx/DFsy2xDSkihO9KNglhwjfz1QmCEev/MVnnN7tfgjee9cc3d4wEBAacPJ1xY/O///m+84Q1vwLvf/W7ce++9OPvss3H99ddjdnbWdvk777wTt956K37xi1/grrvuwuDgIJ74xCdiYsI9Cup0QLJx+q0HxRX/VntW6983behvCJh7LHpB0TTmpxszwlVVwef//j34x/e+GfFznoTuZ7/HIvCdtccqLB41RqGqDGRZRczgWMyValipNAYLkVjc1bFYEWWEIv4LAWVw4BgK3THzAMPYY9FWWIw7C1F6j0WaNzoW/QtXtVoVnOZ21B2LHGOOCNMdk/mqv6JUTVYgsFbR0EhVVBDhGdBNy6iKCNAMlDWKQk0b+hnqvbrUVQy6ALNrcaIdYVETO+U1Ek9PNLpDNcof/8LWWE8gLAYcH06bsUhdWPToFQg0HF6JPu8ebKX5VbllKLkM0Bzkpv4eFsei4fZyiZyTbNr5OnJ4wiwsFsvV+uSIOpogclYPA1k2n5MnZxehaKKYqqp492e/h+e/+WO4ZSeH/3thBJ0p8zFJdywasRcWrUUrvQDqy7HoY5m4TKLTemAWRzkaRHRbLWIJkbDHrPCubZqwaC5EVUURDEODZVuYoLIyQeJ5vYo2C/vJ/5VlIsxFXIpYXr8LzXHXw5MxbDHcR0Q+PcaroB0POqxFXF2YD2uOxbYmUKW0vpCl+YbQvzJhjnC994ukX+Q5LwC2P4242XKH1961eOQ3ZDLBtqeaM/K7t5OJBqI2PqoWSMxn3LkICACYeYh8LzZdB3DauPiyvya9W51ci8tHiTvULr6LCxOhePKBtl5eHVUlkyziWYDTeiBe+Cpg/A+N75YbdVHxsYaoaPoOqkSwXsXEjIAzh9NmLLIGzJfnIamSKZbUi2b3m9N2jQiMYBFejGJIfiXvW1gCAIqmMD3eJCx6OBZLhZLJTVQulFEuNl7LHf95B971snchflYcG96+Acku85hi83mbLds88vgRsKz52k3vsWhEeJqA9BVpSxTqweWDKEpF5P/cEO1i8fauy9gEC3YDaxtZWpHMiQp9sT6TsMjRXF3Y0R2LdFhz1WnCYnMvRiNhNgyBESAqoqNjMc7ZTyQv1AotCYt65Kfdd7YklRBhI3WROsEn6s5Lz+1qY5Kzu0hbIIER0B93Twjwcizu6toFhmJwaPkQKnKlvk9GwkyYvG8+GYgPoCgVTS7HVsWoicIEuiJdrv0jje/vxpTNeKwNOsOdKIkNYbFQK2C6OI1MKGMRAXUBOS2kfYma+vGkJJXq72eIcxYWH196HCpUXNJ3CViaRU+kB8VasaXPohme4dsWYLPRLJ6y6Smun0lAQMCZzQkXFj/+8Y/jZS97GW677TZs374dn/nMZxCJRPCFL3zBdvmvfOUrePWrX43du3dj69at+PznPw9FUXDHHXcc5z0/fcm3EIXa0d0DmmEwPWEupJVL7sKisY8jTTPIr+QM91EoFfJ4zd98EJnrXgXKUFDIDpCiSypjHqSoqoqjB/eB4xpFSUlRTX0YjW5FgPRYrErOIhSJQvXfY7EMHpkob3HydWtxjhRFWforAu7RmRxDg6bMPRZbERbFWhWsoDsWpfo2jRGlUYGBwNIoVPwNVqqSjBBHg2XsByeKSsTHqOBfiNqS9e8MNWJyLGoXZH5mq7oRM+z3bL71aNWUJnb6jas92RG1PmTNMbHHg3a/FwEBrXLajEV0YbGSW9vtFueBVfQwoaWytm9Nk02ae5MYooGWiuT4G2L9XQgnogIONRXzCsUylGbHolbYEhhgfsk4kYqCJMmYXciRWxSF5UIZH3r9i/DFp4UgGPaD0dIjNvRZRay9B44hGTe/V50p61hClmqg4LPH4ir6GgEAcuPuj3s5+QBALLv3WASA7FnY0cVYIkcrVbE1t6IiE+E7OejuWFRVYMng0OzYZO+41Sk5960CQFxlkQ708KTIVowMEhGtrI2Li3ON53EgxOjCovtT2RLLksjfctN+Nv+eBy8ELnoNEbC2PRXoHCOuRZ3VTt5SFeDwb4m7MD1ifqxrKxHni01Ch1fBavxPxNk4dGHjvlASOP9lJCI1ZxXksTxOJj5QNsJiYoBsb+r+1b3eWp6IpOmRhjPwijcBfBx49Ifu25ZqHqKiRueWoCdigC9Om7FIC+huwWZRUL/dijDhJy5wrjwHWm2UwOycQ0ZHVHG52JKwmOpOYeqYucWLVHGfvLswa530Mjc9V/+7Uqjg1lffisHXDIIWGvvOa+fk/jGryHRk/xF0dJsFrmTGOsmJ3c6i/yX9CMfM6QmPLDyC3mgvqhONa+FIvP1xIN/P1wUsI8339UX7wKU4gCKusDAbrgsi+mdFh7SJPBTZZ68efikhRf7QLs153jyWcYtCjbAR35+//v3Toy+NNAuLSSHpOwq1xJcgMAK2ZohLsSvchRjnPi4MhbTvtcNYJMyGMZYew0SxEYcaF8zX3WHO2n/UDd1lmKvm6vd1hVvrLzxVnEI2knUVsRJ8AizFgqEYDMZtEiTaoCvcRaJKVQmKquBLj3wJFEXhhpEbwDWNQ/XPuTPi79iUFMjvriyVISoiGIpxdQ/uXdyLtJDGtg4SB5uNZpEX8y25R3X0SRNePR0DAgICVsMJFRZrtRruueceXHvttfX7aJrGtddei7vuustlzQalUgmiKCKTsZ+hXK1WsbKyYvoX4E6hhShUhmHR1dOL6fFmYdE9CnVxrlGQoBkyqHrswftRPnQvKIrCX7377/H05/+lZb2rb3wGsv3WAcTK/AzKpSLC0cYgRFJUU4/Fo4slhDgaSpUMPiPRqLdjMeq/mCeDQVdMMEVpAqjH18pL47aORdYj3lZgGVAGYTEZbsWxWAMb0h2L9lGoFEWhMya4xsKatikpCLHW/ok6uhAVPw5ClNmxqAmLdv2IWkAX0ASWxny+Wn89ftHFznb6M56M1HRh8QREoW7uDoTFgPXn9BqLUMQBVFnj7ZcXAT7svZwDlFQm+9VUXHdzLC7kW0tpGOlJ4dD4DFi1sV6hVHGMQgWIQ7GZBx49hB88Ti7eP/H65+Dtr7jFMsuX58h5ovn+fKmGiZkFZJLmIpVdFOrka4D7XxltRKF+7bnAt19Zf/wj1wr4n+eEAUX2FZfqSsEaN2/CxkVgQaogHCJjEUetpWcn4gKFmJwz3V2tiQjxDmOX7/8/8tqNBZPCDKDKRDCzDa3VKM03ei1qzw+XWeCo+fhddGxCty4shvsAqI2ozsIM+R7b9SHV4Gny5vgcUpmhaSDeR3qkGt/kuUfNy139DiCjuWUpCrjq7WaBtYVCoC1zj5Hf/OZrrUJZ1xbyv5dYbURVSORp9izibjRy2V+T13DgF+b7FQVYmQISgw33phGKAjZdC8zu9dcj1IkVTQDoMsTK8VHSy7OcA5x6d0k1rafiY+Q1OImKAHndAQEenF5jEf8cXCZx1hN5q8syykVbilL0IywulBcgoHFdLbBWJ37M0BO1uFIE6yOOmJPJNWmmN2MRFkWPybt2PRWP7DuC5T+RSS03vupGvOytLwPVdO0djmgOvqZagiIrGD80jky3+b2zcyzqCBHz+3A0fxQX9l5ouq+5j2MrMJ0McjaT3podi9loFhRLgU2ydccgpY0DWJolwpy2q6xEPpfmONVmdGFRVVXQDF2PswRAHJE23wFAExa5iEVYckJ3TnZFrGJaSSyRbWkiZZL3LywCRLTThb+eSI+neyyit8JxmRxzXs95mMhPYKlKJjM1C6wRNtKSS64/RgTuFUP8vt174YSkSFgoL6A/3m/by1SHoigkhSQyocyaueg6I52oylVUpAp+duRneHTxUTx3y3Nx1eBVlmV1IbYn7DwWNMLRHGJcDCWROBYZmgFjN2EK5PPau7AXm1KbkA6RGOj+WD9WaittORb1/qN+ekEGBAQEtMsJFRbn5+chyzJ6eswH5Z6eHkxPexRBNN761reir6/PNAg38uEPfxjJZLL+b3BwbWa1nM4U8q1dZGT7h0yORU4Io+IhLC7MNeLKaM2R+J7X3YalOz4PVZFbturPHiMXJWFDdKkkK0h1kJlELMfj8EIRvckQ9EyIcDRWj3m0oyIq4EOtDVa6EyEInPVnJZfzqB17EEUbx6IXAkeDMgwGjGKaF2KtWu/PqEpkMMIzNJqvC7oT/pte1yQFIY4B53BxURWPn7BodG8q2uFsNfnzAJAIkfd3MBPBXKHqKj7boX8+a9VH8kSj/0ZioRbcJmvEpm7yew7m+QesJ6fdWIQLe/fUa5VacVVRqLRUAVjBW1g0FHcWC9aZ7W6MZtM4ND6DpEwKdBs7edJj0eHiHQCm5qzC4gve8jG89kcVVCS15bHIgSmyvY6myNQuG5cAAOzqYZAwioaVHBGFZREvP5fHUJIGqnlzMa8d0agwSyIb/WLXr0+qIqz1JaqJDsWNbjK7Oq3mTHdXay6ORb2H4IqhqKz/7SXINPebHL7UfXk/zsyubQgz5LxfCvUSUWtZE9EKs6T3Iedc8BLqjsU2xwCpARLraiwgLRxo/L3pOmDoIvNvafvTzS7Kcq6959Y5/Bvi/By7weq0Sw2TeNrijO2qtiweIq9p+DLiUjQSTgGjVwKzD5u/o8VZ8h50WiP+6mx/OvnNzPzZ/740o/ea1QVTneQg2We735tFVHy1s6jIhrXenQEB7px2YxGfLFWIqGHXB64z3GnqPejFcs07dWmhvADe0O/ZzsljjCUtrhTBN6cr2MArZJmO/g5Tj0WWYyGWPYRFG8fiJ97xCUz+5yTkcut1keW5ZciSbHEs6nGnQq/1ur+5fyJHc3jKhqe09LxuUDSFwyuHTfepqloXPnSy0Sx5/jSHglhAlIuaXn+Ui4LiyW1KpEBTtEWcbEYXaCBbY1B5hncUeYpiETEu5tuxWBCJ4GTsCwqQ11mWyohxsfp3KxlqTVgcTgzXI1t7Y72uwhvQcLM6RaECwEW9FyEv5nF4+TAAg7NTI8y2FoXaHekGTdEmoVd3HEs++kAvVhahQsWm1CbP73wmlEFXpMvzffCL7lJ+cP5B/PDgD3FZ/2W4deutpkkGOvoEhlZE05SQIo5FWQRLsY6vb748j6XqEnZ27qx/3tloFmWp7OnMtUNfp5XjaEBAQECrnPAo1NXwkY98BF//+tfx7W9/u2H3b+Ltb387lpeX6/+OHVuDPjOnOa04FgESTzpj6LEohCM+HIuNgkRx3x8AAIlUGj23fsgUfeqXmaMHIYTCEEKNwUVVUhCJkRNyLNWJIwslDKYbER5sKO421kJFkiG3WBfqS4bAMc77X6rJLachhVgGFKv37ZORbqXHYrUKRp+9rzkSmqNQAaAn4X+wUZUUhHgajEMUqh4vmzwOQlQixIGmAIamoGjyk7pKQU8XFkc7Ilgo1JD3iK9pJuUSbXsqojs2wyfAsZiJ8kiGOUuvzoCAk4mTbizCRVbn4HHc7ip6LEplzUnm37E4t9xaj9vR3rSpx2KEZ1EoVeqTTuwwCos/1FyKIYHHb14S9R3BauTAxAIoikKqqQ8Rz2lOhoS1AGKJQtXcXenw2hz35ioMcSyKLbyf43c3/tYLalIFEc2xWKo4iJSJPgBAiDI/XqnWvKNQjY7F5QniDEwNu6+zeBDQo7uiXUB6yH35ap68v2707Kj/qdAc2YfCDHEQFmZI/KZLvzyOImOttkMLUsNELDO+H7kjgCyRXoPxHpMAD4A4Ha96e+N23uyWaQlZIj0c+8+r95w0wbDkfS7Oe7+XOhP3kM9z03X2kaBnPYf0ATX2NNTF5d6znbc7cD4RQCfu87cfduSniNjZLAymhsjnIDUJi62IigDpESkE/aID1p+Tbizik8WKdYKPTkeoo95fzw/LVW9hcam6BF5tjDW8tl9aKfkSlnRXXaYvYxIWGZ5BreQ+IcgoLBb2FgCKuA43/O0GMGHn668aTbbbLMouTRGxtllYNIoZzRGXkVjE1ANxe8d2bEhZ+0ivhsnCpOl2Va5a9r0nQoR1roNDoUaiSGnDOC7KRqHrwtVKFQk+4dlbUxeNVFm1CIshJlSPJ22mJJYQ5aKOjzdTEAtgKAYJwez8ExURsiqb7k8JqZaExa3prciEM9jVuQt7uveA8aiXefVYBIDd3btBgcKjiyQVIc6bk4IiXGuORZZmTTHCQKMforHvohN6/9Ptme2ey75696tx4+iNa+ZY1J3RPz70YwzEB/Cas1+D3ph97+i8SITF5tfqRiqUQkWqoCpXwdKso5i9d3EvaIrGZX2X1X+vutjudqx0Qhd5A8diQEDAenJChcXOzk4wDIOZGfOs15mZGWSzWdd1//7v/x4f+chH8NOf/hS7du1yXE4QBCQSCdO/AHfyy/57LAJWxyIfCqNSdp9RszhPPvP8/bdj5gefAMOyuO7pt4CJplzXKzIx0GNXWu6fGz+IwdFNpnqFURBSWQFLJREbuxoX97TgPsNJVdGyW21jl/vgplSTEeJaE2gEjq73GBJrtXoPPz+IYg2sEAJLU/WBO8/SoJsKO9kWhMWarCDs4lisSeQ9Ox49+WiaQiLEQWDpugisrtaxGCb7PdwRhQpgfKm14nYyfPydfeuJ7lg8Hg5UOzZ2RcGzp/QcmICTnNNuLMJFANF9ck97212FY1GuAEzIEmmoNhf0DHFTc8utzcwdzWrConYuCAksimX3KFRdWPz6QyKe/t9lhAQez73xCgwkHI45HueXA1OLGOnvQYUnBYqcZD632kmF8YiNSHXwl67P0woHVzjivCrN+1/p8G+BmnbuoygiZMnVujhYrTkVmhwmHNVEhJr7MzYXxQ4YeoItHyOCTMgjDnthP+m1BwCZje79FQHivJU9Jgt1b226vZ0IilKFOBajXa6ORV1YFFudmaaTHiU9FnVhsWsL6T9YdyE7CM47biYxqoC1/6EXRqfg9APk+LH1JuImtKNjM1BasIpuTkz8iUSNJvvsH996I5lUcMwgaC+Pk+9detR5uzQDjF0PzO0Fqm0e81Ymtc+06fiWGgLEktnlauqp+NfeoiIAxHsBG8dDQEAzp91YxCe6Y9GOlJAyFcQVp4ZxGisecdeiKqIqV03CopeTp7jSWo/Fjv4OLM4t1iMo/TgWF7VY9pX7V3D47w8jFA7h0usvhdBNxkiUw3FfpO23uzSzhEQqgbBLjPrd03ebboejYRSlxnH0sv7LWhJO/DBTmjGJl3Y9F5NCEkpVAZfhUJSKto5FldUix2siEnzCdjtGdNFIlVXwAm+KBxUYwVY4VFQFJamEBJ8wOVjd0KNbm0UcXdzRe+0BxNXYirB4Xs954GgO/3HDf+CGDTd4Ls9o9Sa3CddJIYmR5Eg9jtgiLLKRlvv6NYtxrXyHFioLiPNxX07Aa4evxYt2vGjNBDNdABUYAa/d/dp6f0M79M857DIWbCYtpFGWyqjIFbA0a/udUlQFD80/hN5oLwYTDTd5NkKO/27HSic2p0jqw65O5/NCQEBAwGo5odVanudx3nnnmRqM6w3HL774Ysf1/u7v/g7vf//7cfvtt2PPnj3HY1fPKAr51oTFnv5B5BYXoGgDRT7k7VhcmCUXTaGR3ei44gXoGxxBbrFR9HIS9B5IXAzugudivmCeDT977CCGNpjjkvKGfgZihAwWzh5oDOgoH/2iii1OOR/Lul+gFasSwqzzINJOvAmxDFRDb4eUS49FpqnHglirgeYEk0ORY6zCYl/Kv7CoqkCYc+6xqDsWE8dJYPvos3bh+h1ZyCrZH2WVPRZ1YXAwEwEFYHK5tTg+p/flVEV3LMaEEyMsfujms3DbpSMtC/IBAX457cYifMTcd26tCFmL4y/ezePyYe9jA+mxKKAVx+JSvtRwy/lgJJtCtSZC1s4BEZ5DoVSG4hKFqvdYvHKYwXuuFHD2llHMLboUJj3Euf0Ti9i+cRBVmowviqq30yIRaxqLVAvA1P0oi2sTp30gr72Hep9AP5Tmgb3fa9zmIoBYbTmOTcc2ClVIkD56Ood/QwQbgAiL8V7v+N2lQ0BmlGyr92xrzKZlR/KA16x5Y689RQH6dgP5afKbKi8AsSxx3znAYrXC4ghQK5B/ANBzFhG4jG4+O2gaeMlPyN9+e6zGe8lv7vefAn75UWDyAeDQr0kPyVHrJL463duB4hwRW70ozhNhdPB84va0Q4hZ41Bzx8h+eLn9dj6LiJxzj3jvix0rk+R5mr9ruluzOEf+r4uKj/oXFQEg2b+qGOmAM4fTbizik1w15/hYR7jDVID3usbL1/Im4aqZskomzJh6LHo4FgsrhZaExUwfOS6IVVKHYDkWtaL7eWd+howtIpsi6HpyF7acswXLC416jF1cqxv5xTyGNw87CpIA8OvxX5tEo0gsUu8RCBDXWDvn/DRDYkDZFfPYUBVVzJZmTe5CO6chRVEQl0RwaY44Bvmo6XXE+BgUpvE9SAkp31GoqkIci8ZYzhAbAkuxmCxOmr6LFakCFSpSXhOWDDw4/yAoirJE5+pxlMaI1KSQBC3QoDh/73F/nJyTeIb35dJjee399xiKnNt9LlSoYCnWEisa4SK+nIZG+qLmCUS6YOeH+dI8usJdiLikQqwXHaEOXNx7MV6y4yW4cvBKV0dovpZHlIu2JGpmQhmUpTJqcs0iLJbFMv7vyP/hvXe9F3sX92J3127T96472g3Ae+KEHb2xXtx16114+uant7xuQEBAgF9OuA3kDW94Az73uc/hS1/6Evbu3YtXvepVKBaLuO222wAAf/EXf4G3v70R7/PRj34U73znO/GFL3wBIyMjmJ6exvT0NAqFdYj9OkMprLQmLPb2k+gpsUYGHl5RqEqtjF/95PsorCyDS2WRvvDp6Ortx8KM/+im5aaZf7PjBzG0ccx0X77aWEbhY+AZGlv7GsKfTHkXQ0uGnoiFqnckZo9Hr8JiVULIpgejDmsjSgkcDRhm0vEsjYjPWMpatWIRFnnWGoWaTbaWTx/hGdt9BRrCYvw49eS7fkcWF4xmDI7F1RVjdWExxNLoS4Uxl29NWDSyyl05KahJKliaAsecmNPF1mwCT97Vd8KeP+DM4LQai3DR1mIv/eIl2rjgu8eiUVhcLpgcjF6MZknBRtImQ4QEDoWSs2NxuaLih3fejdmFHHrjNP72CgGDvV2YmDWIhy0UEwFguVjF9k0ecZxNxKNNBZSJPwIAfriv9Z7MdkwUOfK+rkyiM0JB8DN8GL4UOPB/gNZHBmwYkKv+T2pNzs5KrQaBtxlz5Q2xaNEu4O7PErEqP0360rk5vaorROzr3ga86jfAha+0uiDt1vFyLEYNM+Wry0SwlMrA7KMkUj41ZB/nqcGqZPtVqd0ei9r3p6C5DjvHyBhw/jHvddNDQP8eLUrVx/encxPw6t8D57+MRIL+8sPAsd8DAxcACfsIMADkPa8sA2UfsVyT9xKn8tiN7p/PrluIS1EXUHVx2UtY3HAV+Z6M/8l7X5pRFfI+x/us8bZ6X8SSFlH45/9uXVQESO/LNlo8BJyZnFZjEZ+4xft1hf33MAOIk8hNCCkpROARDJN+vMSB0koJnMtYpPm6s6NPi37U6iIMz6DaNCHaiFJRcP/v7sfs5CzYGIueZ/Sgs68T89ONsUhZbn1MN7zZPUp8sjiJe2buqd+OxCIoGial6UJWq+hiJCWZz5PStISl6pLp83YSBMVFEVwHV3cMGolxMchMQzxOCknPKFRdWFQkBRzPmRyOehTqDw7+AECjT6IusupuRy9UVcVEYQL5Wt7yfdEdi8Zt6e5FX65FFZb3wQuG93YsAsDurt1keZqxiGlRNmqJzPViIG7uKdzcb9KNolRENppds3jTVmBoBp+69lN44Y4Xej7/Sm2ldWExnEFJKqEm18BRnElYvHP8Tvzg4A/QF+3D6899PV599qtNIq/ACEjyyfp3s1VifKzl709AQEBAK5wYC4qBW265BXNzc3jXu96F6elp7N69G7fffnu9cfnRo0dBGyIXP/3pT6NWq+FZz3qWaTvvfve78Z73vOd47vppi5ewKIkiWK4xYMoOkCJIrVYFeIALhx2Fxdr8Uazc/b8oSGXMTk3U7+/szuLYIefZ2F4zv2VRxPDGMTw03rivWJNhLBNkk4LJ7VcRvZ1tJYNj8ZePz+LiDc6DSwYKoh6urmJNbrlXXZhjTMIiQMSvkg83pVirgeEEU486nqHQrAn2xP33rwCAqMA69r2raUXdxHGMzhT0qEyGXbWaZ3RajvXEcGCufeePtEr35MmAHn3LOkTfBgScDpxWYxE+ShxOawkruPaV84pEpKSyJho2Ldc0qxusQVhc0YRFhxSmlUIZCYPWOdqrCYuSDLBARGBRKJah2AiLBxYVPPlrZUwsl3FofBrd2v39PR14eP+RxoItxBzpbN84BOCI53I6kXDT+ffoXUDnFsyXHsBIquWntyCrIOJGYQZzb47jSM7HeWn384Hv/wF4/KfkNhcmn7HaXuRUtSYixNusu3io8feVbwN+8NfAXZ8G5Jq3IFPRxqoDF3j3YjSuIzkXeAFYRcOeneT/6QfI/x2bXFenVfKFlRQVnJdVwA5dWNTdsaxA+j7mjjqvY6RjI3Dkd4BHNJxp+Rv/DrjmXcBjPyZO1d3Pc3fZdWoT+XLjzsvojN9DPp/Oze7LbXkSwAgkDrV7GxE6B/bYi8tihYj+FEWOGZuuJb8bsdzab7a0CCgi0LGBOD6NJPoAUI3vWWkeSA8De17iT1RMjwDZs4HBC/3vT8AZz2k1FvGJW7xfK6IEQEQht55wumMxRDUcgDRFg6d5R0HSKwpVWpIAg/6Z6k6R+FMtMpzlWVSKFbA2ZTdxUcSRTxxBda6KicONukimJ4P7f3k/euEywcOD4c3DrtGxG5Ib8KuJX9VvR2IRzFYbMdqt9Lb0gzQhgRvkcGi5cd53ijAVF0WER8JQVAUpIYWjaJz/4nzc5FhMh9KejkVdxFMkBbzAoyo3xgEhNmQS1JbKSxiMD9ZFHL/ColHcbP6+2EWh6kKPH2ExJaUsMaVe0PpEdo9hiC6O8TRv2e8oH23ZsTgYHzTd9uoFabd+qw7dtYKjOV/u5HwtjzgXtzhT3egMdaIkllBTamAZ4ljkaA43bbgJsiLjxtEbsaNzBzrDnbYxqV2RLuTFPCLs8XdzBgQEBHhxwoVFAHjta1+L1772tbaP3Xnnnabbhw8fXv8dOsPxikI9dng/Rjc3csczXT3gOB61ahWIAUIoioqNsPjovXdh+stvAxOKIJvtxoYt24E/kBnGnd29uO/3v4bfU2XZRlQb3jgGjB+s3y5VZcAwNhhIR0xRoxXJW5jT+8sBwKH5En7y8IzjslFaRMRuRr6BUlXy7TbUsYuATIY5TPmI6BRrNVAsD9bg9uJZ2hJt0tNCj0XA3Y1YlRRwDAXeJfJ1rdF78FFrkLNv/I5s70vgroMLbW9LbNexcJLBs7Sl5hYQcLpx2oxF+HVwLPIxywQXEx493SioRDSgzAU/i2PRcEGfyxcAxnmG7YMHJnBpf0OsiIUFdKYTkGRybg8LHArzFciUeWTx2wf24bmfLyIZotDdkcSFZ28FtBTF/p4OjE/PwzR4aJFtGwchH/IvLFqixnJHgYteBeCBlp6XAXGo8ZTN2KZ7W71/3XCKJhGfbgf1eA9w9vOA+/6T3ObCgFIDBRYX9rd+breNQgVIlKlO/znAntuAP32B3O7x0Q9GiHsKfQ0oQJEMvQqdWVSiyNDaODbRR6JWZ7UvSWaD67q0FrEmygDXzhAgniW/tbKh2D58GXDflz0LhACI6PfI94j41gpCDNj1bOCsZ3lP0NJFwsK0+3JShcSbbnua2Qnq9PwbrgRmHibxpHJNc2vafN8K0yQiVo+kPevZwCPfIY7CvnPcn8dIXktK6bLppcRwQLSjISzqePRjqxPrAl5yu6u79bRg4xPI/9mzTux+nEacNmMRn7gJFyGutevTolh0dViVlBJoijZFoQJEXHHaj1K+5OpMmnh8AueOnVu/TTM0uvu6IdZE0KDBciwK+QJiME+SeOyBx3DgfQdA0RRCkRDOueQc4OfksUxPBotzi6sWFg/hkOPjrzr7VXjzr95cvx2KhFAsrEOMvoa8KCPCRjBdbJw3nARBaVlCaIB89s3CXrPApkdMusHRHGJcDDWpRhyLhucNs2FTj8X5CpnUozsW/fYIXK41zhXN4lRZG5OnhFT9Pj+ORb0XaKfc2bJAB4rE8PpNchJYa6/JGBczxcb6oTfq/J2VVe/a25b0lrZj948X+VoevdFeVydzM+lQGjWlhpJYqkehUhSFD176QYiK6NnrNRvJYqo4hTDT+oTHgICAgPUmKBUHWPByLB549GHTbZqm0d03ALFGZn/xoTAqZfMAb3ZyHF/44BsQGtyB3mtegpUlc+xJZ08WC3POol0zkk2sQ9/giOl2s6NvQ2fUJOqVHfo4GqkahMWLN3TgRw9NQXaYxR2jvUXDYk32FB+bsYtOTUX8DWRqtQooljNFnwo2gp8uLLr1YjASDzm/zpqkQGCdo1LXA/01Uezq41cTBtF0R1/Sl7PVCfE0cCwCAM/QgWMxIOBUgY9ovc/WcGKDl7C44iPK3KZAaBEWjY5FjyjU+x8/ZrlvpL+HOBYBhHgWxbI5CnVucRlPf9O/YFcPjZ++MIr5pbyp6NLf3YF80TB+aaNX5baNrUWhWmBDwI5n4OIBBnv6GG/xRiNbOwwAuCQ+QcQZ4+ffu9v3dupc++7G31wYkKoYi+Tw+5dGwS0fbmlTlaqDsLjYVPS8/sONv1PmOC1bEgNAyGe8kz52K3lPFppRdJeMQoShrq1kPT4GRNwdNJRWnJbaPf3TDIkALeca9224kgiiPopy6Bwj0a0+XqctFOUuOgPkvYxnSf9Et+PM9INEzN18ne3v38JZtwAr48RxCRDxsBlZIq8t0d8Q+TZdQ/6euMe6vBv5KRLT2rHR/vF4PxEWWyys1uEjbbmeTynSw8BbjwDbnnKi9yTgNIMC1bJrrigWTX0DmymrZcS4mEWkcXueUr4E2qVkdvRRq5s8O5BFrUrOBSxHHIumbRZKeMsL3wIuw2HDOzagXCyjUm4sk+nJrLq1x8jmEaj68dlm95848kQMxRvjFYqiUNB7+64HKrA1sxUzpUa9pyyV7WsPhvOnRVjkzMJiWkj7ctWNJkeh5lRwAmdyLIa5MFhDexz9PdDFSqMY6MZy1VlYLEkl8DQPgW18z/w4FlMKee6k0norAlmVwQu870uBEBMC09STvJ1I0r5Yn+Njbr9NnS3pLS0/5/GmKBaREBItORb17/FKbcUUhcrQjKeoCAA90R7kxTwU9fSoLQUEBJxeBJXiAAv55Zzr4wcefchyX7Z/CLLWz4Vv6rGoqiq6+wbw8nf/M7pu/lsI8RRWcov1nowA0NnTB0VuFExkjzz4Zjqyg2BYc9GzIsqmNj9nD6ZMM6CqomLpNWiEpsxxqbecP4gQy0BxmHWdYCTPPnBlUW7ZsRi2cSymI/4GMmKtBprhwdEUKG2wyLPW1xzmGcQ8YlyNJEPOzy8rKgSbPo52lGuyTynTHWFNHYuNi4Et2dZiR5qRPCJ8TxUCx2JAwCkEFyG9w9by4pOPuvc7XJlwfkzH5sJZbb4oNxzD88UyVGNxRjGLKvfvswqLowM9ULRiXFjgUCiRKFRFVSErKroySXz7Y6/F7S+IoCPKQBQlLOQaDraBbGfTDvoQcppIxFYZU9R7DpDZiLOz2rnfp7gZlw0Ot5+/H/xP3gQA4BmVuIl8FHRMRDsbn4cmLHKaG5LL+4zl1KjWRISEps9aVYHcYfN9XAh45W+Ac14AhH1E4KVHiJvQD3qPUKMT0IF5rYjHS9p7r7uxIhnnSGCtSETJVXAs076wCADJQdInUWfwQsDvaEkXyVYm3ZdbLR2bSDyoW/F7/B7iVBw43982t2pxqPt/Rv63E/yKs+TY1rGx4QbkwsCGq4HZvdqkCp+sTALhjHP/2GQ/UM0T92SAM+EU+RcQsIYk+ETLwmJFrri618pqGVEuaoka9HoepeZ8QD/ymDWhoHewF4rWGoTlWZRXyD6pqgpVURGJRfCBf/8ARt82Ci5JxjkLM43JIB09/lxybnRmO1FRyfFQDlnHMjRF4xW7XmG6T3fprRc7O3eahMWKXPF875sdg4mmc77eP9GLl571UoQfCyMkhEwRrGEmbKoP6e+BLuCwjL/6yIqWhvCm895kEa7LUhkhNmQSHPXX4avHYhuIsgiO53wL1CE2ZHEsGvv8+SUbzQKAbZynlwCcElJI+xn7nUBkRUZFriAtpFtyVurfU70HZ7OI60V/rB/5WiAsBgQEnJwEpeIAC5VyCZLoXIA6+Ngjlvv0PosAIISIsFirkkHbL2//HgBg0649oGgGfIgMUpbmG9FpnT1Z0/bEFoXF7iFrNFVJlE0C5Y4+c+GgLMqN3nw2hDkGVUNcakxg8YFn7LQsR2tTwVKcd9GuXJM8+zA2YxeFmo76FxbBcmAYChSnZeg7RJR2xgXfiU3JsPtrEFja07FYrEr41b45bO9LQLBxZbZCXVhcA8difzoMlqYQD3MY6YiC9xCL3VDX0jF0AiGfZ3C6CAg4JXDrjdYuXMTdsZifIvGabrDW4pFbFCoASKbEfvPx9IF91v5uowONsURE4FAoVVAQaTz7m2V85TckKv2y3Zu1XsPkHDU120hQ6O9pEhZbpL9zdZNRAAAbrwYi1qKiawFDkZCSSXzXnbWdwNM+BTU1CgC4oqfU6BPYKjHt/eQ0F6z2EfBKaz08baNQy4v2kb3Zs4Cn/DNxQnnRs92fEw5oCJA+olBl7fKI0m0TerymEHd2oNEMEWKlKkICh0M5BQvVNguGqSZhMZxq9DX0Ik0+d6944lXTtZU4Fp3Ed1UBJu8h372YRwyqDh8FNlxFxLxYN3m/m9HjS7ub4kvPehaZ4LBwwPdLwMok2TenY2ZqiHwOHj1kAwICnNEL6HYFcVmxHj9+N0kcywIj2IoTXsyX5x0fKyklIiyiNWFRqji7lo89Zp3klB1qjEVYjgiLiqhg4vMT2HfHPgDAWeefBZqn63NGFg1jkUyPv75+nOp83UtRFKK0dmxzGL7dtOGm+t+qqtb7ChoR+gQI2cb7Ewq33//u7K6zsVJrnIMrkrew2Cwcxpr67vp1FNIUDUgAx3OoGnotR5omCxXEQlvizXJtGQIj4LKByyyPFcWiRbjjaA5yWQYTWx9hsSJXWnIsNkfCAtb3xg8CIziKbm4xxQDQHeluyyV5PClqE846w61dL+j9YkVFrEehtkI2mkVZKjv2JQ0ICAg4kQSV4nXg9m9/De953W0nejdWhVufxQOPPmSZ/ZTtazRq5sMRFPIr+OE3vwwAGBw1zzjmBDIgXTAKi93t9xAAgK5Bq7BYrkmmpuXN8aHlmlTvzWdHhGctMZhP3mWNd0iAFMY6WK+oJAoVUUEi1JqwaOdw7PApLNZqVYBmwdI0KK2oK2hC2bdeeTH++prN6IqT+7vj/meFJj0ckwLHeDoWf/TQFERZwYsvGUFXbHUN4vXPkQ2tvqF1fyqMX775KlwwmgFDUxjtPLkHuMcDnqXBnOT9DgICAjTWI3qPi1hEPxOFGRK/6IadY9ElChUAaopzweXBAxP12FOdkf6e+t9hgcVKsYQX//sD+Ml+Cdv6zZOL9HPU1FzDwdbX7a+Yx0B73iZRZVOfv/Vd2XiNuS+b5jR0FRbnHjPfPucFEG/9FgCApUHEExux0jd8DJCq0CtUnFJ1X76JSq1mFRZzLq5H40SWPS8h/6dshMaBC/zvBM0ScbGa97+OTlYTZhXZ2bEIEPFcVZAMc3jNjyr4zL5se7/H9Abrfg5f7G9dPgLEeoDSoveyq6F7O3EsOoluS0fIaxi5wtkRaMfZt5D/472k72Iz+WlyLGoWnsduIMLusT/6e57J+4DlY0Cs111YLOcCx2JAwCqIieR3vFC2xjPnqjnT7apcxQd+/wFyw+WUFz87juQe++OK3iPPjpJaQoSNWNxCXlGEYsl58vDMkRmUi+bxT9YwyYnhGNSKNRz+2GEs/2EZqcGUeQPa61yYbbw/yXQSnOA9WZaX7a/HY2nynhsjPu1EXIZmUJ2qYuFnC1Cg2EahJs4hk3L02s9q+t/t7DRPcipJJVM8aDMczVmEphjXJCyGUr6fv1YlPRaNUagR1nxOX64tewpgduSqOcS4mGV7ABEWI2zEItzJRXndHItlsdxyFKrx+wIAUba9GkhPpAcUqHp/Rl089npfs5HsyS8sao7W7kh3S+sZBXKe5tsSFgGYhPmAgICAk4VAWFwH/uFvX4/f3vHjE70bq8Ktz+Ly0iIWZs29erIDg1C14kJheQnLiwuQJTKY2LjVPIjkBVJkWTT0VExmOsCuwm3WYyMslmoyZEMUZbxJ0CuLirtjkWdQk62D8O6jpLN6Q2jxN2KjhDBUAIlwa6/TzrGY8e1YrIJiOHAMBUor2PKaO3DPSAZ/fd0Yktr+ZBOC71hSY1yo7T6zNFgXp99SsYY79s7i8s2duGhDx6qbdOs9FtdCWASA/nQEnZrYuaV3DRwopzgCS4NhAmExIOCUYD0uyrkwcWQ5UZwDah4uNj/CYtPtquJ83KlURTx+2BzBOjrQEBanl6uoVGpYKIj4zUuiOH+jeXZx3bE41xBgwiEBmaT3MZ/XhcWm3msb+1cfXwah6fPzE4Vq11uu2WXe6dK35vCvAdHl86s7Fsl4h5fLLUXtkijUpnHD0mEiWHrRNQb8zRQRjppx6o3nRLQLqLbRQ0r/TYWSFvHbhFY8y0QZvO9qAZ+9+Cjwq48BD/8vMPVn/8+dGbHeN3qV//3NjBJH6HpGZnVtIdsvORTxpx8kx41NT2htu2M3EKGvY5P99yM/SUTy5seEGDByOTD3iLfDcGUS+OVHSSxust/22ASARNIqIlDxjs8NCAiw5/477gcATOStkelLTb+tLzz4BUwWVhfjvODRXzbMhluOQnUTFlVVxcFHD5ru6x1sTJiuLlUBFahOVzH6tlF0bzULEhQo8AJvEhYZmkFXj0+ntw2ZrHWSk1MMpSqpddFQd2PZka+1MSmnid5ob723IEAiQt3e+zAbBtcUw28RFn06FgFArIngQ7zJ9dXsystVcm0Ji8vVZcT4GHibtiwlqUReS9MEPblAhEVZkaGoCr7+2NcB2Lt7vWiOsa3KVfACD6WqAA7BAkbC3No4FgFgMDEInuFR0aLJ9T6aXklOg4nBluOPjzf6+9wVae33GWJDCDFkrNGWYzGiCYs+UjcCAgICjjeBsBhgi5uwCAAHHnvYdDvbPwS1RgYPR/beD0DFTc/5C9t1OV4Aw7ImcZKmaWS6nGf+qKqKQ/v2Oj7ePWguLtFQUarKqBrGZVG+SVisyXVByg4ShWod2NFKi32K9PW0GdHJFoVFo2Px2CKZEdlKj0WVZsDSFCjO7Fhspi8V8S3wpTyiUEMc4xqF+qOHpsGzNG67ZBQdq3QrAqhHqXLC2giLRnb2+ezfdBojsO6fZ0BAwEkEv/bHQfBRuGZll5fM0Y122BQorD0WzefHiux+3HmgqZg32t9wCfzi4TkAwL+9dA92Z63neooC0skYJmfNRch+l95GqqrisYPjjqWRNXEsNs/e14oYlh6FRibuQRUe51K9T6CBqbw2xnn8duDbr3Rel49osaW6Y7EEyF4pDQ2qNREC1zT2WT4GJKwpEI7Pbyfo+XXCVfMAJxAnn40jw/v5NWFx+BL35bTPLh1mcXYPDYZSSfTqw98F7vwQ8L8vBb77GiI2TvzJeTupIet99ef2cS7u2ASUFizC95qiR7M6FfGn/wx0bQMS/a1tl48CL7sTuPiv7CczLE+SmFQ7l+HOZxIn7NIh9+cwxqV2bHI+tiW1fS/M+dr1gIAAK2qenDeOFayRoUvVhrA4V57D5x78HC7qvch1e3bORyNzZfffa5gNW653vRyLtZKz0ESzNA48Yo5gNgqLs/eThKbN79yMyCb78VlHd4epxyJAeiS6MXF4ArnFnO1j6V5rnzrRR59ltx6LixUyCSuW9DEhyAGKorAt04ixLomluthih50YF+fNk79aFRYtUahNDsOV2oprn04nlqvLjn1BS2LJNmpULspgoyxERcRX9n6lLmjKbfT3fmj+IQANkbwslcHxHCpHKsCS9X1rJsJa60B27ks/vGnPm/CSHS9BZ8RfXGhXpAvdkW6c03VOW893PNHdrp2h1lsnJAWtfzfTumOxO0rqpHZxxQFAb4wcc/tiPq8rAgIC1pRAWAywJe8iLEbjCRx41CwsdvcNQMwRofC8m14IAJbG1XUoCpnObizOmfu/dPY4nwg+/KJr8PKnX+34eEefuQgTohUUa1I9ypSRKqANwgjLciiLMkIuvf3CPIOajbDYLpQmevntj6hj51hsjnV1olatQqVZsAwNWivKCTbbA4AXXzKCV1+9ERHeXTRkacpxG/V95p2jUPnuUfzpyBKeuD2Ls4dS3i/CB3ofRGaNHItGtvUGwqLA0XV3T0BAwEnOekShevVtVBVg0aOYb+M+8nIsll10kaFsBvc3CYtDfV04nCPn7dfdQBx6EZc4sb7uDkzNLUFWVOwvJwBVxYCxmNfkfBp70T9i640vR3NSQUiL+dzc71NY1NwBFUm1bMuC1ocwFbf/DARpBSjMYIofcd9O79nWdTtHsBDZBLzo+8COm53X5SIAVPAUeW85qdhSPGSlqvVYNM7CX5mwjzdtBcHH+VkWgdwxILORCEXtRKEm+4HX7wUudBFfgYawGCFjpIN5AXjRD4DX3Qs875vAFW8B+veQeM3Zvc6OTTthMd4DXPMuYIPzWLhO5xaguM7CYrSLvP92zorKCumFOHhBexG8XWNAdrv9Y4VpIJ61PyZtvRGgGO841EWDCNDt8DwAkBgg/5cDx2JAwGqZKExYxC2jYzFXzSHOx7GnZ4/rdh6cf9DxMZZmiQBm1dXqRLlo3UGlE2acx00URaFScO5rlh3JYv8j+033pbvSEBfJa936tK0AAKHDefJPpjtjcixKioTOXmfh4oM3fxAvuOIFqFXM52EhTJ6jc9C6rh+xrOSSXKCLwMUIER/bdU6d1dWY5FSWywizzu99lItahMXmqMwEn7B8nk7oUai6k85ueypUzJZa71G8UltxFhYl0tvTNgo1weDLj3wZf5z2GePtwANzD0BV1bpQKyoiiULVaI7/1dGFMrvPoV3HYl+sDzdtvMn1szXSGe7Ed5/2XVzS7zF56yQhxITaem90EZyjuZaFRYERkOSTbYnOZwKjyVF848nfwJNGn3SidyUg4IwkEBYDbGl2LCpKo3CwYct2HDQ4FquVMv71Q3+L5d98BUq1CCFORvPlkvOst0xnNxbmZ0z3dfZkHZYGtl90NT70ma9a7o/GSVGJ5c2DuBCtQFGBsmRfsGM5HhVRthXtdCI8g6q4lsIiGbhmfLoNdez2caQjCo6hLPGuzYi1KkAz4Gi6HoXqFP+aTYbwiis2esasChwNziXmFCBuTyeHG82HkY5weNHFQ0h4RKr6RXcssuvgWNySJTP8zuQegwJLB47FgIBTBZq1CHSrxktYBID5fe6Pc9Zii6q5BMqSdnwx7DdFUSiJzqLb2ZsH8MCjDTGzJkp47fs/jSd/tYSZgoJklDxfqeosrvR2pTE1t4jZElCQeUCRzY5FyVxMvOacjfj+p99t2U53B5mFnIi6ux7qaC6vR+YU7zR10bmgCQDx8jGA5jAX2+a6XL1PoIFMMoaOZAzo3Q3c/G+NB8JNAqkmVodo8l7ycqElYZFEofJmt2A1D3Ru9r2NOvp3JD0KcD7e79wR0guz71wSbdlujFSyjwharvtGvnOpsGHcxkeA5AAw9kTgCe8AnvffwCt+BbzuPuC2HxEXZTPxXnu33uVvBHY+w3tfOzcDcnV9BTGKAjLWNgQAyHNTNDD2JGsk72qQtNeUHLQ6ewEgnAaGLgJmH673JrVlwSAC2Im4OtEu0s/Ry40dEBBQ5+H5h3H7odst908Vpyxum+Yo1CsHrsRgYtB1+3+e+7PjY2E2jFw1B0q7ZrETyuzEDrc+f+FYGJW883m4b6wPB/Y2JisosoJPvfdTGP+3cdTmauC0a13KJdq9o7sDi7ONWHYVKrqyzlGLY+eO4X2ffZ+lD2O6g9RgYinrpBUvJ6eiKq7i42J50SQM//DgDzFdnHZc3omzuxqTnKpS1dUtGmEjno5FhmYs8ahOiFUitpXlxuu0+z7Ml537dNqhqipWqitICSmLeAgAFamCCBex9DBUqgpi22J4aOEh3Lr1Vpzfc35Lz2vk8aXHsVRdqn+Xa3LNJCw6of8m7dyJ7ToW2yHGxzxdlScLUS5qG3nrhd5nsZ11gdb7Op5pbOvYhi0Zl7YPAQEB60YgLAZYoBkGhfwy6HCiHp957GCjYLhx6866Y1GWJbzpxTfj97/8GcJbLgEtREHzZIDmKix29Zh6LAJAZ3evw9LA01/9Tpx/ubVPSygc0fbZ/FUO0UQQdCpKUjRFHIseUagVae1mBVFaPF2rUai2wmJnFL9+y9XYPeQyJROAKNagUgxYQ3883qWvpK/9YZ3diPVlOPsei6FhcjHx1LP7sLXXZ4SZD/RIW4b3WdRtge54CB+++SxctbX9XhenOiGOMTl+AwICTnLanGXsvD0PYZGigcWD7svYFFtUrWD050WhsR2NVCKKQtV8Dp+YaRR7dm8erDsWF8sqrn/rf+LL3/s53nu1gJ4YjbBWUClUnScI9XZl6j0WY6wIKCL6uw3ComAucnzm9U/Fk6++EM1xlOkEKWolYz7PQcskEu7hWR9jDLfehwDilXGgYxNk3uOc6tZjsZmmSFr9+xRiyP6yUqHupPRDtaY5FstNaRj97s4UW/RozT6fkVkL+4mLbfB8Er1aWfHdT9oTVSGf5aFfkV6YWkEvKbiMsyiK9ANMDpB4WsGmIEozQMxBxPQzySmjtQcotO66aIkul+9UerT1Hphe6K+nY5PzMjueSfp3LltjFwEAikzEZh2791+HpolTtPl7GxAQ4Mi3938bH/3jR7FcNf9ulipL9ThNncWq+fbOzp2ePdbun7vf8bEwGzb1ArTr1xi1mSjl6ppLRFFZMQuLhZWGQDqwZQAH9x6EqqqQyzI++/rP4ttf+jY6ntgBvosHqyUBuQqLPR0mxyIAdPY4OxZve+9tuPyGy0E3TdxIZsg4IJaxHtfmnfrhalSkimsPvJnSjEmQ4xke/3zfP6PKVR3XsWN7R8MlXpWrtu/9057xNACaY9GjxyIAJPykF0DrscjzJsdis7DJUAxy1Zyv7emUpTIkVUJXpMsSJ6qoCipyhTgrmx5LXkA+rxdsewFetutlbQtOAHkv7525F7zWYqCm1CzCsx3676XZuQm071g83bFz0vohEyKT9trtI9kTsZmIFhAQEHASEAiLpwnRnU9A183vXJNtxeJJFFaWMfi6r2Lwr78BVVXx8H2NeIaNW3dg4shBzEyOY35mCrPTk/j4f34HXJIUQRjBn7C4MOvfsehE//Aoec6mgmVdWHRJgar4iEKtrKFjkdYci35jTHWc9jGbDLu6C2VZhixJUCize9DNpekHgaNNQqUdUcHeSckmyEyrG3ZmEeZXtx+mfdLEUpZfhwhAALdeMISLNrSepX+6EFnDzyogIOA44Mdh2Aph90ksCCVJMd8BlWLsHVj64zb3pRMxFKpm4e239z5S/3v32CBm5pewb17CRZ8v4sHDM7jjPz6EZ20j59iwVswrVJ2dS71dGUxqLoEoIxFh0VjMcxBxmnYLOzaRSM9MzOc5aHkcAHBkuemVD15E3GpGakXXSEtWqQH953qLySZ3n5dNsnld8rrCmmORApx769lQqdWIY9Ho/GIEoHsbMHIZue0Q0+WI3xSB+X3kPY12E8ehKqMjsgbSoqoAj/8Y+NGbgd//K3FSamJnIrwGl1dJd9eOK+kRItK38Bm1RbeLS7bvHNILcS0pTHk/746nke/GsbvtH18eb7gZac77d5PQ4nPtIl8DAgIsqKqKXCVnEvgA4sJ7fPFx032L5YawuL1jOzrD7tdasirj4fmHHR8PMSHT8x7JH7EsE+esrii3Qn8sGUN52TyR5pH7GmOR/rF+VMoVFKeLOPjBgzh4/0F8+IsfRudF5LXwnHatro0b7BxtrfZYdOqzNjpG6iKp7pTlseWa+wQJt/6K+nMaxcnXnfs6cDSHhQ6y3zLsJ0qpqgpaoMEOk9dtdF1V5aqtK27bVnKMj/JWAcdO7PLbZ7FWJS6+itwQFpsjKTOhTMvCov7e2gk/etRoirfuI61NQrpy4ErP774bETaCzanN9T6LgH/Hov57sXtfj6dj8VQixsfaEoFXKyzqfQQDAgICTjYCYfEkYCW3hOt2ZPHgPb9vexudN70Bkc0XYmrZ/wxyJ2LxBArLOQAARZM+gw/ddzfoaApMrAMbt+yAqqqYOHIQDMviX77+Y4ztOBuMNqCkNZdjpew8y77DzrHo0mOxVQSGFAAqDlGoAFCVFFdxK8qzqIhr6FgUohBYGryLS9ION1elG2KNDGRVmKNLw6sUFknMqfuhI+YgLOp0xtobUDlR77G4Do7FAHj23QwICDjJ4FsvBlRqJNpyfN6m+OS1vVCK9D5zQGFCLQtHqXgMK01NFo3C4tmbSf8zRZHRE6Pwh0//FS7fsxOsds4Ma+ehQsVZlOvrbjgWo7QIyBIGst494Up1rbJNgSpH3FSKPkTRhY7u7dYemWIRkD165W25scXIyVaFRc2xSBvElaKL+6GpUNdwLOYadyZ6gXAKePEPgVf/wV0sWg0L+4HMCBG/NdG2L76GDvxr3gO8+AfAy+4ArnwbACDh5lj0i1tEpxcsD8T7LFG+a06Xy2c2doN9XOlqyE8DbKjhWrUj2gn0nwfMPGz/uzH2V4z3OPe51En0A9XlQFgMCGgBSZUwX7GeIx5dfNR02+hgDLNhk8izsmCNrR7Pj6MkOdcXwmzYJJCN58ehNP12jXGLukPPNY4zHkFx2Sy6PfSnhoDTP0aOR6IogokweP0XX48LrrwAworuYNfSBFxKCh09HVjJmV9vV+/aJuXkqjmoqvO53+191TmWbzjBM6EM/v36f6/fLjL2wuSRFSLucn1mgbDwSAFVuWrrINU/lxgXswh/dr3p6u+xB7Ua6bFYlZxdlp3hTqzUViAr/mtAer/JbNQ6SV53RyZDzvtoJza3ylM3PhWHVw7XRefmHotOuEWhNrtFAwgJPtGWsKiLx3ofzFbpjQbCYkBAwMlJICyeBBw9QGbv/e7n1n4ErVJ2EMKWFkiufilPCob6sFKxueiOJZIo5M2D24fvvRuDr/0v9L/6i9i39yHQDIPJY4fR0ZVFV5YIgvEoKYZRWiGh4uJY7OjqQW7RfMFhdCzKSotFryYESgVNARWXMWFFlBHhGbzgoiG87PLRepymToRnUJXWppDAchyYcBwhjgHn4fZrpl1nn6gViRVQpudcrbAY4hhPx2LCo/fjWkPT5DXSgbC4LkSFwLEYEHBK4RVdasPCEjnvH5u1ERa9ih7hFFCcQ4TTzg1HzROlVFYAaAZzizkAwMySebZ9relcKysq0skYckZhkWbxm3sawuIfHzmMWCSEkSSFX704go395IKdZRjtfzLEbRYnjfR2ZVCp1qCqQJQRAbnJsehFu7FVzTGNumsjOWBdtloAFGfXpUIxQM+O9vZj9hFg6n54Co1aGoAehQrAd985WZYhSTIRFo3rpIYAPb6se6uro7VtagWgMENiYIV4vUdiX3yNLn9Sw8DlrwdGLif9BuM9AEUjLqyBcJkZPbHr+8GuR2bHJiC7i7ho15r8FBDp9HZk77iZCIh5awwiFvY3xPv0KBFh3UgNA5VAWAwIaJUp3WEM0ksuzsexL2fuxbxYWaxHNzZTXLLWER5bfAyUy4SeZmFxsjBpceJxNIfpPJkIlQdxa3k5Fpv35aE/NoTFg/cfRKY7AzWkYvTto+jdQIr/sRiZtCBrbVVUl8nOme6M5T43x2I7rFRXILqMJbwciyEmZOmpuDG1EYN5zV3v8LHcN3uf5T4hL2DDKOnRa+cg1fdFF4E3pUj8dXOUqE5a8EjV0BBrIjiBq7sI7eiJ9mC5ugzJJSnCCE/z9djfnqjVsajHx/p1VbbLUzY+BSrUuttSlEVwnH9h0Cn21E7IPdNJ8InVRaG2OekqcCwGBAScrARnihPAQ/fejet2ZOti3/GgViWzpRamSDFrJUeKWHPjhyzLxpIp5Fdy9dtLC3OYPHYYqixh8aefwife9QZ0dPWgsLJsGuAJvHZhoF2ku0ehdltmzRl7LIry6i7gKQCJMGeJK2ssQEGUVcQEFh94+ll4x03bLb0HnQS9sbExAADL+y8ohiNRqKAQ4szuQT+4xbW6UdMciwrM/Q6ZFoXNZohj0X0bcR+Z/msNx9B1t2zA2hJEoQYEnGJ4uXAA5HI58n/BR9KBp7CYNscu/vYfga88B3GGFLEUWgAoBuUKmfByRBMvS9rt+SY3gKiQKNRcsVa/r1Cu4YHHDkJWVLzppxXc+s7Po6czDUlRTWMRvR+sft9KuQYnervIRb6qqmApFajlzT0WVwllJ9ipCrAyYb5Pf+9Sw9blq/mGo9FAbwcR5cSO7e1FTpaXGn979UvUeiCZHIsVf33nqjWy7yGeMz9neuPaR/Y2o/f9HLyIxGPGSNFvTR2LRigK4CKI8Wuw/fQqhUG3PoRrRXqExIkaC4/nvhB43jfsv8urJT8FxLq8HdQ7nk5+Z8f+aH1sYT/QsxO45HXAha/wfs70EHHaermGAwICTDSLUJlQBpOFSchq4+J8qbIEgSbXbrnZnOc29y7tde0zFmbDKEqN8cRseRYrNfNkaZZmUaySZaratbKbgyiaiKJgmAwlizL23rcXqqpi9juz+PwbP49oPApFUUBRFGitvKaktPSkWgVCSIAqOguLdv0UO9oYi0iq83FqubbsKiyWPPo5D8QHMFe21q62ZrcCAOiYtV6hqirunb3Xcn9XbxcSvWQMk+Ct/RGXKkumx95x0Tvwz0/4Z1N/RqDhbEyH/AmLehSqm7DYG+1FrprzLSwC5L0VGMH2teiORb/72C4d4Q6c33N+/baoiGA9EqQA4E173oRbttyCsfSY7eNu/UfPVFKhVFuCq/4dcHNIu5GNtN42KiAgIOB4EAiLJ4A//Or/AACH9z3W1vrtCJKK5gBcnifxo7qoJ9s5FuMJFFYaBaO995ML89lvvhuFP/8ML3/H32HX+ZdYn0QbL1MMGcR49VhspqN7bRsSp8Kco2OR0mYrO/UCBIBk2F4ce+rTng4AkFvtBwQiVnqJcs00Oyltl9GiLqRaY6As1oVFqh4VCgCM375EDpDX4H7oSIaPf3QmzwbC4npxIoTigICAVSB4C4tT06ToNzmf91gSAGM9pi/nDef4UMrcB3DrTcChX2FnjBSHVIY4FosVcl7SHYtOsVwcDaQSUSwWGue0PxzKQ5YV3PyNMj7x+xr+6Y3PxfWXnounfb2Mbz2qWMRUjmXAcSxWiu49Fk2UcsikrLPnWyUhk9e9SbDpcVecB+QmsbOkORbTNn31qnnApgi2KUref2HDJe0JdPvvaPzt5cZiOIAR6o5FiQkD1RXA4fOr1iTD3+T9F5qFxa4x/30S22XhAInOzO4ktxkOCGfWT1gEiLDIrcH2VxOFChCXJrC+TjuaAdLDluhbJHptjxmrJj9D4mw940v7iGty5iHAGGcn10iPxY7NwLXvBbY9xfs5EwMAVBKHGhAQ4Jup4pTpdiaUwUxpxiRu5ao50DVy/Jg76l3f2Luw1xI3Wa00zo9hNmwShCRFwv6l/fXbHDgiLBbI+VN3E7o5iJqFxcKRAirlCsb/bRyz35nFk1/zZFx+w+WW9SSO7EeFqiAUCUERnY/FdiIiy7V+DP3V+K/IPtr0YMxVc64RoEWp6OgeBYCBmL2wuHkzca7X2JpFuDyycsSxX6Eu7hmjaY37anyMpmhcNXiV5bPX40p1J5gbiqJAlmQShWoYU0WbEj6ykSxERUSuZr/fdixXlxHlorbvXz0K1Wdc62p4+uan1/+uKTVwPq7fk0ISf3vR32Jbh320eSAsWukItTcBsS4sthmFaueIDQgICDgZCITFU5Av/tNHW16npEWbriw490DSiSdSKOQbF9AP3P07MAyL2sxB9Nzyflz1lFuwcSuJ3VJs8udligFN0+49FrutM254YW1jLNNR3llY1GK94i6RnYMZ+xnRd+wl4uwXfnsYr/3qvbgLZKaepHr/nCIcY3IPegl0AIke9VwmRF7P8mJjwK9HocqAyY3JtChsNhPxIY7GHUTZ9YRnaNBekVYBbeEmwAcEBJyE+HAstoRN5M8HPv31xo1wyvxg93bgie+v31TYMEAxmF8kY4vFFatDTlEaRTeaIo7FhUJDgPvlffvA0DR+cUjC928N46+e8wScs30jfntMxou/LxGBo4lYJISjyyKqkoqyaj2OWYTFypJj1FYr6E7FPi5vFXaWx60rlBaIABa2KVaoMlC29ppCTRtjRdvow6RIwP7/a20dPoqw5lgU+RQRPJtm9Ovv3WyuUdQ0C4u5xsIpGxF1rVnYByQHiaNWJ9ZtE4WqAlgjAY6PIMKvLs4fAIkZZXjzvre6PuDbWdo2gxeRvobrjVgBankiuPrp+7TjGcSdWDD0c186Qn6P/ef670mqxxOXA2ExIKAV5kpmESoTyqAgFrCoRX+rULFcXQan+L9mPJY/ZnEsfuOz36j/becEemSxEaEeokJgaRb5nHlClbHQX6uaJ/5EE1EUVhrntEfveRQURWHlnhUMvmYQT/zLJ2LzDptYaA0JEsLRMBQtjakcsY5/EulEW0KiEVmR68Ke3aStqlx1FPkA4lh0c1INxAdMPTGbyVVzqDVNmrpv9j7b3n0A6iJnKpSyPKZHi9qJjgDAKtokdqnsuI1mRG0s0iwsNn+fuiMkAWKhbDMxzIFcNYc4H7ftu1dTaqApGjFujcflNlw7dG1dCKzJtVV/pwD73otnOt3hNlJCAIylx3Dt0LXYlGwvUUL/rq7FdUpAQEDAWhIIi6cY+/c+iB//z1daXq9YIAPo5flZy2Mzk+ZeP7FE0uRYfPzh+zE6tg3ZF/49QkO7AAAbt5LZ39MTTX2CAEiyilAkClFW0fO8j2Bp0TowS2U6Qbtc1H/rnnH87JEZx8fr+zajuR5sHuuI8qjYpFjQNIPN510GAEi4zOSKOYgphSrZ6PMvHMKNZ/VCUMngtKB4C4Bh3txj0U//xFZ6LC4vND7fWlVzLKqUSVikVy0ssp7biB3nHosAEU+pwLG4LrgJ8AEBASchRseiYF+YoVWnrHC7hc3HgH3jC/jkl7/buCOUhKXBTnIAH3+ciEcyGybuJk3k6I5azyEP7Ttiup1OxDC/Uqnf/sNDB7B14yB++5IobtxMzt27t5IePcVSBXbEImEczSlIfiSPg5WU5fFoJIREzFA0qVln+a8ao5gGkP6KjIC5CotnX72b3FecJ+8h51DUa6HA5YuJe/31SDzrmeR/igGEWN2xWBMyQGXFNqIVAGYWG0JopapFoQq8+Tkd+vmsKYsHSe9Do/Adz+JVe3jc/4oo8J1XA9+8Dbjni47uy5bhooiwa1D0iXUDr3sAGLu+vfU7yG8DrfzO2+Ep/wQ8+RPAersx9LjgDvu4Ngs7bya9SY/d3bhv8QD5Lvfv8f+8yX7yf81G3A8ICHBksbJocrDprrKDyySiuiJVIKkSONW/sKhCRTbWmJycm83hq5/6av22HquqE2EjeHzxcUg0uXbnVR4szWIlZ/49Gx2Lj97/qOmxeDKO/HJDiNx//370Dfdh9O2jSJ5PjnubdjgLBRIlIRwJQ6XIOabMW4VFiqLaij41cs/MPZ7L2DkOo4kodly8A4VawVVEGojb9IA2UJWrZkckBdw7ey+2ZrY6Lg/Y91hcqpJ0gyRvf15pFqP99FisadH7nMBZBFAjXZEu0z74Ybm6jASXcOzVGWJCtqLjWhNiQ3jbBW9DT6QHNdmfY9GLQFi00q5zMMyG8bErP4Zzsue0tT7P8EgJKdc+swEBAQEngkBYPMX41w+/E0MbGrPiZHn1BYM///Eu0+1YPInC8jIKD/4f8vffjkOPPoQbbr4VXKa/vszGLdubN1NHlBWEI1F0X34LQoM78bUf/tyyDMMwSGWcZzgXqxK+da/NrH4H7OpBHTHBVnAMR6IIJ8lzx10iO71cWheNduDjt+zGhXH/s5gjPOvLpWgkxPpfPmcQjsVatR5FZXIsrnKWkx+RySlGdj0RWBo0G0R2rgcRPhAWAwJOKUyijf0xf0uF9L1ZVn0UDZqExTd+5sfoM7j98hXZ6lpEY9KPSvMARSMbIoWkLR00VFWFohVh7p2S8cu7HzStm0rEML9SwrceEfGTAxLuenA/nnfTVTirpzHZZsdm9z5usUgIA9lOVGXg4//1Y9tlTK7FmnOEe9tMPWC+nTsGxLrRlUli24hWnCjOEWeak1ugsgwIWu+eZqGyHfb91F8PvGvfA/zVvcDAHoCP13ssikIHEQkd+jVNLzSKsCbHotE9J1h7Ea0plRyJa+3ZAXCGKK94HwBgIEEBgxcAW25c2+flo4is1VAk2QfE2+ypk1xllKpfGIaIty2ObVumNE/+77YvUltIjwBdW7U4VM2NunCAvJ+tOCxDSRI1vFbCc0DAGcJyddkk4CSFJBiKwXiBXN/rcZ08/AsuAiOgN9Jbv/29f/oewtHG8V1aNs8ozoQyOJY/hpUwERIpUGAp1uRAlCXZ5Fh84A/mc3YsEYMsycg/kMfs92bx+H2P4/IbLkdkQ2Ps1Dfc57jPEkUci3pPtvmJeVtHYabbO87TCVVV8X9HnVMI2CoZw+m9C4309PVgYOMAilIREZcJP9lIFpxNeoWRZUNktJSUkKvmcHHvxbbL6sKiXV/CnDYJyWl/msVoPzGjumOR4Zl6b0Y7BEZAJpQxvRYvVmorSAgJR/EwxIY837u14ubNN+OqwauIY3ENrt/DXBCF2kxnuP2UBpZmV/Vd6I50B47FgICAk45AWDzFePCe3+NVb2vEiy3Mekeb1mrmPP1a1Tyz/8/3/N50O5qII7+Sw8KP/hG12YOQJBE7zrnAtEwy7TyrTpRVhMIRSDIZtOXmpnHo8b2W5ez6LOr843N34//ecCWk5VnU5o86LudGV8z5QqUqkSJDwkUAiwk+nYItnNxjQus9Fv1EoeosL8zWL1ZEsQZKi4sS1jAK1UtYpCkg3MI+rxU8S4M6DrMBz0Sc3LsBAQEnKcaee3bOtJlGNJjsEeNdqKmW89z373oMf/+Wl9ZvH5nJAVFrNFBEc7ipNGcp4yzkVqAyAvj3r+CDv67hV396yPR4Kh7FvnkZz/5mGYdzCvLFCi491zCpSaoiHHJ3qcciYRTLZMyzUijhd/c+YlnGJCxW18GxOGN+XVg+Whe36pQWgHDGWVisFYgIBgBT969+n+YeBTZf52/Zjo3k+2RwLIqhDhKFKto7RReWC3VBsSpqjkWWAkRDRP56C1F65OxQU1EzQSbJTRVU4rR79hca/QjpNTjX8VGEmHXsa+gXY4/D00EUE8vke9iK0Lr9acD844AeybiwnwiOoRbdlfFe72UCAgJMrNRWTJGTNEWjK9yI7i5oCQG86v/arS/Wh6hhfPOnH/0Jf/mWv2xsc8Z8Du8Id2CqOAVFi7pmwYKiKJQKjXPR9Pi0qdD/5z/82bSNSIKIW0f+8QjKh8pYml3Czj07Tcu4pTCJEBGOhE09Fu++827LckbHIt1UohMd0gF0xgvjlp6Wpv2TaCT4hGsUalEsurrTGJrBSGLEdT+Mjkg5JSPCRnDl0JW2y1blKmjQtuJhTdHchQ4CTLOw6OZYXF4iAmFNaxEDH5pOf6wf+ZqP/uMgLtqV2gpSQspxf8NsGOxajC98kuATqMrVIAp1HQizYVcBfr3pjnQHjsWAgICTjkBYPA4U8yv47R32M+Vb5aKrnojzLmkM0JpjTO2YnZow3Z46Zo4bMzoWVUXGT75N+ialr/5LZK57FcLRGEbH7Bs62yHJCoRwBJLYmKX41c/+o2W5TBcpQsqUdRAWEziMdkZRnXoMcn7e9nmWy+6D7M6Yc8GxpvU5cBNMeNYcW7oWxEJcy1GkrQiLUq2KhTkSIVurVkFpPQcFprGN1U5y8nIjCiwDjjn+hxaBZUAFjsV1IeJXZA8ICDg5MPZYfPjbAEj/nTo/fz9WwxW7RvDM6y+t3z48nbMt+F/TTWbHq1Axt2ie/b3v8CQAQK+1/epPD9UnxlQlFZ//1k8wWVDx3qsEvPxcDizL4PyzDH2MfER5RsMhFEoVPHULOde//9NfsyzT22UoSIlFwKZ39KqYe6wuqFEAkJ8CUk2RYuUlINJhdtbp8FEi4ukRW9MPAnlrrH1L8FFg13NbW0doOBZrfBqA2oinbEJRgYPHSJGzovWrijHO0WPrQnkJCKWIMGokSURdhgJArcNYhY8izJxkQp5kLwCfckS6WovQ3fksQK4B438iwmR+Gugca70HbcLZjRQQEGDPSm3FEjnZF2v8lnTHogD/bSyykaxJ6BjYOoAbnn1D/XZuMlfvMQcQx+JKbQUSQ5yMLFhUK+YJ1xOHJ+oOIKWq4KF7HoIkkuVVScUd37wDANB5fSeG/oo4wZuFRTdESoQQESDXGmOLL//Tly2uRaNjkaHJdVd1muzrbMn9nP/A3APIRrLYkt7iuExftA8rLpHOJbGEKBd1fBwAtna4O8abezBuzWxFNmI/GUSFCp7hXd1btMM5mlfMYnR3tBs8zdu6HycOkTpYvXemDx17MD7o6mo0UpNrkBQJXeEuRydZmA0fN8ciQHpTVuUqmBba6Tjh9Z0404hzcfD0iZvIfmH2QgzFhwJxMSAg4KQiEBaPA+97/UvxntfdtibbesVb3mO6bdfjEADELddh+K0/QKEqYXrc7PgbP3LQdHvy6CHMa87H/D3fr7sLExc8AxRFYdPOc8Ew/gcmNVlBKByFpM1S33HxNfjl7d/D9IR5Pzq6yEBToRhISuuzu/fNuM8ky7gJi5pj0UskWyunlv58iVDrg0qjwzAU8o6jmDh8AACJQq07FrnGNtp1LIZ5crjocnlfASDE0at2RbYDcSyeHMLiN15xEV5++QbP9+pUgGfoEyIUBwQErAKjY/HxnwD5GTz4IIkaLR57CHjsR5iSvXvSOPHJ19xoKqAcnlmyuvAAcDQpzCigcWjcnLDw+OEJQFUx/voYxjpozC7k8OhBMqZ59501/Oaeh9EZAd51pQCKonDe9o2IhK2OvmfsCOO7zw0DsrWpciwSwjnpIr773Aj+4y/Pxu2/vgcPPnbItEyfsa+RWDLHexZWJ+DVVBYozYNeJOOubEQmfQk7DX3ipBpxJMZ6SB/KZkIpzUmpFbnkGrD/Z6vaLwxfCnQ694SyRUhAP7UnekfJHw7CIqB9vmhEoUZUa1+pdSc1ZHWnaf25umz6fK4JQgzCyeBYNLIevUNPBLFugG9BWOwaIzGt0w+SGFSoQP95rbtlk4OtLR8QEICqXLXESQ7EGpNqphfImKAVx2JnuNMUN/nMNz3TVKNYnFpEjGtMHOgIk/N7TSCiEgsWM+Mzpm0eO2iupVRKFTz+4OMAgPnb53H3HcRdmH1uFhRNoWe0B8mM1fXM8fbXoCJEhCKhumOxZ6QHD9/zMO797b3m19ZjjVesThFhcb5sP8laZ7IwiauHrnbs8QcA/fF+13jPkuQtLJ7VcZbr4819CS/uvRgpIeW4vMAIbTn5etIk9ap3iLjJE3wC33/G9/GEoSdYltU/Xz0KVeW8BcPhhI+oeA1dIHfruxdhI8fVsRjlosSxuAZRqHrMrNF9fCYT5+PgTmC96cU7X4wPXPYBpEPtX8MFBAQErDVBtfg4kFt0Lry0ysDwBtPt2Un7PoRKJ5mhfXCuYBH0JgzCIqM52h74w28BAKnLX4A3vO/jpuW37Npj+xyRsUuQueGvoDTNuBNlFaFIBKLmWNx8zsXo6M7WnZA6umMRQD02tRUe8xAWO6LOFyo1SQHHUOBZd8F0rYRFSSGvb7W9B3nBISZNh6Ywfph8vmLNEIVqcD2222NxU3cc//HiPTh/1L0HRIhjWu4jqZNOk0FSOGZt5A40Po+xHuvjAkvbF2VPABeMduBvbtqGjtNBWGTpluN7AwICTjBGV091BbjnC6hqs7WFvd8EkgPYL7fvwtm9yRwNeGQmBySscYEsRc59KsXhUFMxb9+RCTBiHv0JGh++RgDD0PjF70kE2dsv4/GVj72lfr560W4el55jP1N+Vw+Dp27hgMl7LY/FImHEaPK6r9ySwZbRAXzqKz8wLWPpsWgjULbLMaUbYARwc+R19UU1wal3d2OhsjZGTDmIF+EUEYZUhbgWBy4Ajt5FbrfLWc8hPR1bwSDQpfs056hDkTLEsxZhMXQihMWOjVZhUXPWdkacxynFTU8BAKSGdrT+nHwcPHWSCYtr+J0+ocR7gVbdE9ueQlzD0w8CDG/+7fnFTz/SgIAAC5OFSdPt/nh//e98NY8wG6678/zQLFJtPNfsSG8WFlNCCgxluAYGg6lj5sjQicPmZKdQJIT77roPANBxXQfe9q9vMz/n2U0ueA0nt5oIEaFwqO5YTHQmsGXXFnz5n75sWs62x6JWHpkpzbjGoSb4BJ628WmuvdeGE8OOwqIKFWWpjDgfR1+sD3EubiuEbetwT7Baqa5AMYxNrhy60nWfQmyopc9fZ+MA+Qy6Bxq1pL5Yn624N36I1Mp0YVFhvc/PQwn/PYqLWm9uJ2cm0L6w2NtLxtWt9t+McTHiuFwDY53eT3CiMGFOPjkD4RgOqVDKsZfm8aIr0uXo5g0ICAg4EQRHpFOEkU1bcPMLX265f9ojClUFMNPkatSFJwDgQyF0dGfxzx98O6T8AphIEmNnnWNafmzXebbb5rObEd12JZaK5piTqqRACEchao5FhuFwy1++Bo/+2Vz06zD0WBTl1oswj017OBYNwmLzoLYqKeAZb8Ek5tFPsFXSkfWd4ZRIdWDiqEFY1KNQDQJqq1GsRq7e2oOBtPtscYFt37G4dSspHEci9oWjEMfgj++4Fi+9fIP1MZY29xQKWBN4ll7VdyYgIOAEYIz6y2wA7v0yKL3HUHEa2HA11DXsEXJ4Okccd00wurBIszg8YRYWH28q5m0a6sVb/+ELOLikIBmicOUFZ6EkNiYdXbrTo7g//ifyXCo5XlGqjFg0hIrWV4eiKPzNK27Br+992LSaKQq1WjA7FleJBAYYuRTs0v7GnWwISI82bpe06LD0iHnl224HLv4r4paqGSJatzwJKM2vzoU2eH7r6wiGiDE+QlyxFfsiZU8mXo+6bQiLReB4Rzf17gaaZ5b76Jd300veCvnNhzB05Qtbf04hDp4+SYpvrfYSPNlJD7c+zjvr2YBUBg7cQSJNI60VaAEQ52tAQIBv9NjH6ZI5qcAYhVpWyohyUUs/QTe8HHWLk4uIGcY/zX0dAdJT0UizY3F40zC+/MkvozJRAS3Q2H3pbtPjG3Zbr0HdEEGiUKVqY4LHC173Ajzw+wdMy5l6LDaJBpOFSeRF57rHFf1XYDQ56vg4AIwkRhyjUGtKDYqqICWk8JNn/gRfvemryEatQtlYesxmbUKEjWC5tgxJabxON7ENaN+xqIvHFR8x33Vhsao5Fn1ElQ/G/bvUiyIRFt0ci2GuvSjUsTHyfvcNtTYRsP4bWIP5zcbfnFck7+nOOy58B16848VB38mAgICAJgJh8SSl46Y3AHHnAYpOs2hoh9GxKESideFJVVXk992NhdlpKIoCOkQGDuGo2Q22aYdZaDRC8yEslszCoigrEEJhyFKjOPekZz7fsm7GICzqUaF+KYsyJpetg0kZREBjKNXkWAxFzAOAqqRAYBlPASzeRnSpG5nI+s5wSnb01IXjWq0CSivAhNjGT51ebZNFD8L82vemNNIVF7Ala3Us8iwD9TjGjJwpCIFjMSDg1IM1nGv69wArEzg7kQMASOFOIHv2mvaXOzyT8xAWzY5FiqKw70jDyXD7fgmPH56EKMnojJDjTSoeRdlgtLr0bOeCFgBgbi9QK6KmCYuMXEY0HIIoNkSe5z35KvRkUqbVdMdiSaJJL0Nljd1d254KpmgQVWPdQMhwDtPjRJvjFocvBq7/ABEcq/mGsNg5BnT773tti01srScW51+vo7CYzSTqwrHeY5GXCuaI3nWHAoYust4d7bLeZwMTzbQWu6nDx8DhJHEIvv4R4Gn/au0zearS5d7fy5aenUBigAjx6ZH2xNZkv/cyAQEBdfRed1NFszswyTd+fxW1gggbacl5E/Poj7o4uWjps2cUMwFg6miTY/FQY5JT7q4c9j28D6Iogk2Sa0pO4CCEGgpNq8IiAPBhHrJhLHLpdZdiwzbzdozCotFlKRdl1JQaDi8ftmxXzZEx1pWDVyLiMVlsID7g2DewLJFEAT1ecSQ5Yruc23N0hjuxVFlCQSaTnpgK4xqDCmiORap1x6L+PdD32w1dWNR7LCo+ospbERYLYgECIyAhJByXiXPx4+ow08VAlV99v2djz9IH5h5wWfL0Z2NqI64avOq4xtoGBAQEnAoEwuJJSmznE6Be9BeOj2ee+Gp0POl1/oRFQ49FXXiSJQkLP/4k8o/8Gpc84QaUiwXQHInZDEfNA6OQg3tMZy5vzlyvSQqEsHngKYTCuOYpzwQAVMslAGbHYrHW2uzuqZz9QLJIkcFPlJGRNkWhWoURnvMWTOJr7FhMRtfXsZjq7K730BRrNTBadKoxCjW1yjhWL8Kct2C7HggcDbRxcRLgjsDS6y5GBwQErCOpISDRB0Hrd1jMXgQk3GeRt8rh6SWAs0Z116NQGdbUYzER4bHvyCREScL/+3EFn7tXxFOuugDVmoiEQI43HMdCCDW22dPhIQgU54DZvagqZGjLSBXEIuZ9YlkGL3ve0wAABZEsp/dYXKjSgFzV+hn6xE/PmS03mm8n+syO0vIiia4Np+zXT/STOFs9XoyigIte638f7WgnNjzUVDSL9xLB04aeTNwShcqKeUCwjzlfFxJ99dhTE3aON3YNY8uFk0hYFGLAOc93/m6danR6TC6wg6KAbU8mf3dtbU/cTg54LxMQEFCHozkIjICZojmpwJggVFbKCLNh16jMZrycQovTi4hz5vNMs0g0fawxFmE4BjMTM6iUK5j5nxlMfnES519xPhRZARtrnCviycY2B0cdRCdtuKHAKlwJEQGKYRI1RVH4i9eROo+qtZTp6OmwrAcA5UNlsBSLIytHLI8pRxSoiooQ69EqBeb+lpbnEEldRY+9bIfOcCcKYgEVhUz8plTK87MNM+05+XRhR/ERCT9+cByqqqKmpVfIlHfNKS2kTYKaGwWxgCgXBU87Tx53Ex3XA93R6aefpBdGMfnxpcfbikM9kT0JAwICAgLWn0BYPJlxmdkUP+dGxHY9EbNTE5Bl9xP89OQx6OO6RGcPFudmMH30AEqP/Rapc5+E177jQ6blVZpBJOo+I9DIokMUajN7LrkKAFDK5wCYHYuLxdYaQk/kykiGrcWhKkUGdRQAjnH/eod8RHautidiM+l1dyx2Y+roYciSBLFWA6e5UENc471Yb40ovIoei6shxDJQgrz5NYf0zAyExYCAUxaKArY+pX5T5JNAC7Nt/cyvmV8uoVB0njmugsbhiRnwHNlYIhpCsVTBvXsP4UsP1PCyczl86aNvtBSh0gl/Y5HlikrEuYk/QdSFRaWCWMRaGHrqtZcDAA7myO1erXfNTEErUDm48Nom3gN0bmncTg6ZhcXiPHFRORUGYz2AVCFxjjq7nrO2++iHZlEwOQhUcraL9mTimJpbRL5QagiLteXjJyzSLNCxCQil3JfT3am3fBnY9lR7IbJV+CgYyGCD4cjaEk4DUfvCuyfn/gX5Lgxf1t4gOKE5FoNJVgEBvonzcSxWFh0fL6tEWGTgf6KLl+tLFmUwVfP2BuJmQW16fLouFPICD0VR8Mi9j2Dx54vovrkb7/2394IXzNfrsaQhXtXhGpeKOB8fuDAHNJVrLn8SGYuo2gSsVEfKdl1FUjCYGLT0q2yV7kg3WMp+QFeWzY7FdtAjZ5dl/2OoEBtad/dXpVzB/Mx8vceiTMueYiZFURanqxNFsYg4F3ftu5cUjm8sue5Y9NNP0gtdzB+MD+LwymHX37QT/3H9f+DG0RtXJVwHBAQEBJy8BJe9pziSJGJxbsbx8WqlhNzCPKJxMqAReDLoUWkW/a/8AiKD29GV7UPvYKN3kaKo9eX9kCub+xFJigo+bJ1RyOhCn3ZRkO5oxFEtNcWpejGZq2C0Y3WRWiEfAlhijR2LYW59HXXJjm5IkoiZyXHUqlWwAvkc+ONY4QrzJ86xqAbC4prDszSYdYy2DQgIOA6MXN72qn5//kcmnXuvKKqKI5OziEeJ0FeSyblQlkQc/H9x3LCJRSoRw24tGkwXGFNxw3leLDluvyarwMilwOxeHCkSgY5SJVthkWk67+v7NLGsiUzlJbeX6QteJTP29Xh2bL2p8WDXGGDch9I8EU04h9nxeiy+UfA0Rt0eL7HDKAqWF4kTVrKfFJbNkNn5+45MolITwbIMqMry8ev59+SPAxe8zNwX0g59/9MjRFzMnrX659Zm90e54Ly5psR6AI/+ao707ABedx8w2uZxkBWAcAbBZXNAgH/ifBw5u8knBq0jxIYchTo7GB9u+9qyuabQHzNHGU8dm6oLi2qViHqlYgmbP7oZndd3QggJ2H7udtM6MR+TnNSKszuMiTBQZfPj+uumaAqiLLq+DxuTGzFRnHB83A8MzTj2AdR7FWYE7x60G5L2UbC6aLSi2vdxtCPMhtuKQm2V8YPj9ShUkRJdRUAdN4enEVmVkeATEBjn5IO00L5g2w71vohrUMbSt3Vu97kQFREPzLYeh7olswUfveKjnn1AAwICAgJOTYIrpBPAgUcfAgAUVnJrsj23ONSlaTIIjSWSKB++Hw98598AAHNTk2DCjSLRWec1+tDIqop4wn/xZ6UsQlHMg2UmZB2Ah1lSZJG1aAmO56FqERYrldZio+YLVWzNesdKRHnnwWqI8xZMkuG1dRh6uShXS6qjGwAwfuQARLEKVo9CZY9PRChDU4gK7AlxuIVYBmpwSFtzQiwDJpilHxBwamOKfyS/57lFIlQtFaz9ir2xHhMOTzhPcppbLqImEqHvrmMSXvR1suzB8Rlkwo1tXbFnZ2MlVUXa4BKAV/zSlicDhRms1PQeixXEfJzDdRFzUhcWW4lCdaBPIhH082qK3LGt4RhF9mzzwqUFIlo4xXHGbIRFANhJ4uU9xbO1wigsihXXeMieDFn28cMTqNZECDxH3I1eDsK1YsNV5D33KlhL7Xz3PdDcqDE+OG+uGUIcSI+21/NSJ5JZXSRsoi9wLAYEtECST2K5tlyP+tRhq43xSIgJIb9EIrWLuaLnNmkf13nleXN6QpxvnLvkmoyVpRXEk3GUj5Sx/5/2g2EZTByaMEWf7rpgl3kbhihUx31wnvsERABVchYeqx6x6huSG5Cv2UePt0KzyKpTlkjcatRHVLQes2m5n48hxIZQVLw/R50IF/ElFq8GmqFx7OCxumNRhOgaW6ozlBjy/RwJIeEqVmZC3oLtWrIejsWucBc2JDfg0aVHV73NgICAgIDTi6AKfwJ4+L4/AgAKef8zutyYmRp3fGxxhgiL5cnHMPvNdyMzsBHxRAqz0+ZZb7v2XFz/W5JVxJL+hcXlsoiabB640CHrwFS/HFcMmfWqSAbS+RaFRRXARRvNkUj5imhZztxn0UyI9Y54TLQRhRqNktcuhKzuA3adnV/RZBocL2D88EHUajVwITIYNEahricfe9bZePo5/aBPhLDI0ZBtit0BqyPEe0cGBwQEnPz8aZGcm1StiHNQ63mYL7UWRW4HxzI4MjlLnIM2TC6Qgtjvjoi4+ksljGY4DPd14+CxKdNyV55vcIwpEtKJFqIzhy8BuAjOz5CxFSsWEBX8F6zmyypJVKgZhMVS65FPABBVyTZU/ZzUbXA/pIbNC5eXgGgn4NTPRxcWm/sZcu4iC8OQ185zaxTpbolCtS9QAkAkxKMrk6wLiyGeByorxJl5MiG3lpbhC60wG1vf5Pszi+d8GbjiLeYI4eNNemRte3EGBJzmpIQUVmrutY4IF8HkERLxWfUxFvHq2RdJRrAy5fycpRWi/pWnyjj0oUNgYyyGNg7h2EHzJO2zLzJPADJGoXrFWtoJj6qgWhyLpv1ySWQAsGZOr+Z+k0ZCbKitfoc6FCj0RftQVO2FRdpmcrXfPoaroXewF+OHxiFWRTAsg6pc9eVY3JTcBIZiQPmoLaSElOt7d7yjUHmGB0dzUOg1EBb1sSYFXDd8HQ4tH4KknCR9pAMCAgICTgoCYfEEUCqsfsaZTiyZxrSLY3Fh6hgoisbRX38bsbOvx8XPfyMGN2zC3FSTsHh+Q1gUZQWxFqJQl8sialKTsOgy401hQ5AU8/KFigRF9d9gOiaw2NFnnqU/mbPOPM+4CYs+IjvbiULt6iIRr5u27bQ8tt69B2mKQv/wKCaOHIRYrYLhiGMxdJyiUK/e2o2rt3Qfl+dqhmcZKGoggK0lFDTHYiAsBgSc8shNx8fpuVVEfjY5h4a6kzg8MQPJoYYxMUsKfe/68RSes4PDF5/Xj20bB3Fw3OxyvHzPDsMO18xRqF6wArDpWozEiFjESAXEQv6LZLIC4qgzCot//jqwcMD/PgDAik1cmbEYGjIIdLJIIl5j3c7uunAaoDnzfvmAY8lr37rBX5yXJ83OyISzsAgAYyP92HdkApVqDR1RFlBE8jpPd7TxbzRwLK4diSwwcO6JdQze8BHg8jfXP9+AgAB3UkIKJbEElXa+vg8zYcxOOceot0qmN4OlI85jG11YvO+/7kNsZwxjrxvDyNgIJg6bz9tuUaheYqkdakh1dSzOlJwTHwDiBhyMOYuCfhlODDs+FmEjqxIWASJcVmCfBNDRbe2Rq7vh1pOBDQOYODSBWrUGjudQkSu2saWfuuZTuCB7ARLaWOcpG5+CD172QV99J7vCXa6id0pItb3/7RLhIpBpj6QPP9vRPiMaNG4cvRE1pYaasg6TsgICAgICTlkCYfEkRvWK/QKQ7ul3j0KdmUA4EsWGq56FzHWvAs0w6B8aRaVijgnJ9jfiHvJVCbEWolCXSiIqkozLrruxfh/NO89Ak7kIpKZZe8WqBFH2P6tqtDNqEQ0nl8uW5TpchMUwR3s6FuMtFCWboWz6/XFtOhaFFoTBgeGNGD9yELVaFQxPhEV2nSNYTwYENnAsrjVvvn4rrt+RPSHRtgEBAetLsbyKGEg2ZLo53JNyjUKdWiogHOLx+if04UtPD4FnaWwe7rc4FjvThrGHLJqjUP1w1nMauygWEGt1clC0E6gZZtuHM8AvPtTaNsb/5PwYw5tdV3q8acolcouiyH41OxZ9smYJAs2ORR/Cou5YHEhqn0O8d2325WQmiEI9PUkNAtufErgWAwJ8kuATUKGCijkfC8NcGLMu/ZlbJdObwewR6/YomexDOV8GzdDYceMODL5mEIzAYGB0AOMHzelPobB5jGOMQpVVf2JNqiPVuMHB1bE4XZr23N7u7t31v5vjZf0yFHcea4S5MDhmdcKim3BpJ7zFjoMLfXB0EMcOkShUnudRkeyFxSsGrsC/X//v9R6SHMPhpg031XtHutEddZ40JTACBJ/nDV3Y9XLm+iHKRtfEsRjn46ApGgIrYENqg6vrNSAgICDgzOT0VxtOQX7+g/8FAMhyY+CqPvMfsC95rmXZTE8/ZiatwqJUWET54D1YmpnAll3noH/3lfVBSv/IRsvyxgFMqSohnkj53l9ZUbFYqGFwZFNje0LIZQ1YRMR8VYLoMuBuZktPDMmmmNLJnFVY7Iw5D+SiAuc5cGvHsehGuwJfiPMf5zYwsgEThw9AFGtghBBYmgKzzk7JkwGBo4njJOiBs2Y8/Zx+PPO8gTW5wAkICDi+PPlrZdxxUCLxnm3wg1/8wfnBpiLJSE8Khydm8bWHtXO75uqZLSr43mMiJuZXsHPzMF55RbZ+PBkb6YcouhTopCrSBpcAaB/n483Xmm4muBbjmiKdxEGoc807W3fZHbvbep8+USzR7yAsjrhvM9oFnOjoqWZhUYhZ7zNAhMVJVKo19CW1MYyHGHlaoH3340EUakBAwBmM7vyiE85jkCgbRWHF3Y1//1331/+mPcYzmb4MZsetwiI9T2P5j8soThfRN9yHPbfsAaVNuhkYHcD8zLzrdo3CYjM1h0htlm+MWRRecRUWF8vm2HUV1mUv6L2g/vfexb2O23JjIO6cYBBlo6t2LI4kRlpaPsGZkxDWw8E4sGEAk0cmUS6XwQu8o2NxNfRGnCdNhdkwWD/jVwDvuvhduDB7IXqjq5+EFeEikKnVOxZjfAz/du2/4erBqwGQONSAgICAgAAjp7/acJJR9OiruH/vg/j4u99o+9hKdMAiyCW7+yxRqI/++V5MffsjWPr557EwNY7efvPstIFh95z+Yk1GNJ5wXaaZ2by5LwLFegmLjQGzWitjpSxCasGxuLM/aRHpjMKiECaOyYxNkxs9hjXKew/yVuNYtKNd51crPRL7RzZgdmoCxZVlMJwAlqZwJhjOeIYml2Hr3AQ+ICAg4FTg9gMyrv1yCeg7x/KYKFpFKlUrfJRlGo8dHMfz3/wx38810t+NwxMz2LeondvTI3jwsUN44pdW8Fc/ruDY3DJGB7JYpDMAgEU5hs3Dfe4bLeeQShhiB0X7vj0muLBJgExSNn2LtPMhQ9kU+WLdZseikABe8hPLYozTJKFaEVg8iDmOzOgOC9oYRBcF+Zg58rQuLHrElep9Fk8kduO6WNZx8bGRfuRWChifmUdvTHvNceflT0nsnKaasBhEiAcEBJzJJHmSQEDFnY+FXo61mYkZvOdV76nf9up319HXgekJs/tv/NA4Hv2HRzH5n5NYmVtB76BZtBkYdT//UqBMPRabObJyxHV9AJBoCXDReJaqS5ANSVVV2dpv8tzuxgTzP07/EVPFKdt4USNCiAhoen9DN2Exwq1BFGqiNTdboilivSPs/nraYWB0ALIk4+j+o+B4DlWp6ttB6JeeqPMYrZWI2a5IFz5//edN7tR2iXExSFibCWkX9V2EzenNAIAbR2/0WDogICAg4EwjEBaPM0cO7nN8bHlpEe953W0Y2rDZcZnm5ItMT7+pX+I9v/gR3vjim8HGOtBz64ewNDuJ7IC58NE/bHUsGimLEuJJf1GocoH0MVgqm2frUZz7gK0qGdyYpRzyVQllN+dCE/0pa9Tq1HKlXsjZMEZ6I9hFoeqiZizkLUAlwmvnWOQZGtzxcCwOb4Sqqjh84HHQrACGpkCfAY4zQXuPqFXGuAQEBASc7uw/Omm5T+ETeOcvKvinP4fx9Ne+H30eBSsjIwO9mFtcxrsuJ8fhH/34dlxy65uQDlH4zW1RzCwVMTqQhQhyThbBYmzUw71Wmkc64ewScGRTYzZ1DFZhUdUKPAneTljssfYyjPfgi/fX8PBsY4ySjDnMql/cDwDoOu9pAIDzd42ZH28+FVfzRGxs7l/YzMkgyNmNIxLO4vDYCPl8H3z8CLIxigi+4cx67d3x57V/Aq56u/X+oAdfQEBAAMJsGAzFuDoWy4vWtCEdVVXxzpe9E6GI+2RlI5m+DMSqWL+970/78OqnvhqggA1/uwG1Ws0qLBr6ENs5BRmK8RQWZY/2NQqjQHGZQL1UWTKJiSXROnYxRlByNIdvPfYtPPFZTwTtkkrU3UcSF5IZUteJcs7npxgX8+2sc8ItatWOON/GGK9FBjeQ9+3QY4fACRyqchUhxv93yguBEVxfR4SLrPp99aI7Yk3WiHJRSKpkHXeukrH0GC7svbBld2pAQEBAwOlLICweZ44efNzxsZ999xuoVsp4zye/4Ht76Z5+iCIR9fIP/BSffc/rcOk1T0LPU94AJppGubBs6p8IAP1D7o7Fiqgg5jMKVRHLiIdYLJdE8wOsewaUcXm1lIOqArnmbdjwhK1doClr9nxNUrBSkdCbNA8UM1FngTMuHF/HIs/Sbc9gD7cgLPZrjtSJwwdAc5qweAbMnNf7UFJsICwGBAQEuLH3gH1v5g/8qobv/v4gJmcX8N1PvdN5A01FkpFUYzj5jYdFPOWtn8MTLjob339BAoNJGqIoY7TfPKN7qLfLfSfLS+YoVMk6g98Wg7ATpZyLlhlBts7WivU09TIk505RAQqG+VNUs/ioM78fSI8A6SFtba9zrwqEksRp6cbJ2psw6ex+2DhE9vnxwxPoiYIIqNzaFfNOOJ2bgZFLrffTDNSgD19AQMAZDkVRSPAJV2Fx+pBzb8FapYaj+4/iA5/7gOMyPG2uN2R6G5NX8g/k8alXfwqbd27G1jduhdBDjsvZQfNEnUQqgUSKTO4R5+1rEW5RqEdWjmC66N4jsYaao2NRlVUsVBZQkRp9r/M1a09lY+3j5s034/Hc43hg4QHX53XCSYharQDWE2ktXeF49FjszHaCF3iMHxwHL/CoytU1jUKNcTHX7a3F++rG12/6Ot6w5w22z1uTa67CcztQFIXPXPsZvHD7C9d0uwEBAQEBpy6BsHicOXbA2bEIAO/8xOfR3ecRiWUg09OY8R8e2Y2bX/EWvP3v/hW0QVzp6TfHUoSj7rOpK6KCeMKfYxEgrsDlighFK9CxNAWVcRcWjQ5HtZQDACyW7HsUGOFZ2lbs09cd7jC7CDq0KFTbifZhbwEqvoY9FldjGhRaEBZTmU5E4wkoigKK48Ey9JkRhaoLix7fvYCAgIDTklDK3L/Phb0H7YVFna/+/Vsw5hYP1hSLOZJN1/++YpjBe2+7Hv/7z+9AjG+cfEaahEWGYcxRp81UlpE2ugTa6DEoKM7CYkpQrNuM95h7LDZTLQC//aTz45Uc0HeutwMRACjtvB5O28eMGkmcrMKiszshHBIw1NcFRVHQFVLJe2IU3Np1KnRtJf/37Ghv/eMAxa19n6iAgICAU42kkATFOl+ETh2ccl3/zR97Mzbt2OT4OM84C4uRTRE88SVPxEf/86NgI43r+eyANQFAdy2qNfs+iG7CoqIquG/2PsfHAaCqVME5JepIJPp0obJQv2u2ZO0TaWRPzx7s7tqNfUv7bF2W7bAW7kGmhXYkDMUgchzOlTRNY2B0AIqikChUuYow6zGZqwXifNzyPdRJ8Al0hjpXHTHrxo7OHfX+h837VVWqay4sAgBLs0iFUmu+3YCAgICAU5NAWDzOHLFxLIYipLB28dXXY9eei1vaHieQgZFcKYBNduO6W/7S4uZr7rEIADzvPLOqIkqIxp2FxULVXIjrjAmkR6JCBrYCS0Ol3AW5fLmxDV1YXCk3ZgnqfRD9slSsgQIw0mEuUuoOxq1Z62A54cON2G506VoT1nos+rl4oCgKA8MbAAA0w2k9Fk9/ZTFwLAYEBJzRPPH9wJ6X+Fr0kf1HLfcJPDl2nrN9I2666oL6/X5KVhGBBUVRmC4oyMZovOm5V4JhGIyXyTl4pqhidMA6k93uvjrVFaTiq4iV5KKga3nwnP14hKEAKE3uhKh1Fr++7IUDDPCnfwem/uz+vGPXA34iufViTyTjLSyeDD0W7fDoDanHoXaEZSCUAIzFN6FNp0KyH3jTPuCs57S3/vHAJW4uICAg4EwhJaQcHxMoAeP7xx0fpxka1zztGtN9zTUOyzosDZZjUZuvgYkyuPr5V4NtGgP0Dlkn6vSPuEezxwzpCYpqrlFsSm3Co0uPOu8TRaMiVcAy9mMRVWvRMlWcgrhIxiS5as51fyiKwvsvfb/rMq2S4H1MiPJBjPF3bg8xIbAe9aK1Qu+jyfIsREVcU0EzKSQdHYufuPoTeNXuV61p9KpfYnxsXRyLAQEBAQEBzQRnmuPMUZsei4lkCgDw1Ftva2lbtfmj+OzbbwNFUZBXyMy2B3//C9MynBBCqqPTsm5X1rkvTlVSEEs4Dy6Xy+ZCXGdMQK4k1sVAgWMgqhRol1lrRnFSrRbAMRTylcZ9FbE1YXGxVEMqwlniTfUYMoG17ktsDd2I643eY1GS/c1KHBjR+miyPFiaWpVb8lRB/4wDx2JAQECAO3aOxZBAjp1vf7lZsCl7pJQfWFRw2V9/HhSAo8vkHPXNO4n4VpIbw8zhfqs4tnHQxYlXzSMdb2FWea5JLI1kgFqhLpjaIje9uJh9POtLztHOK33nAM/8d+sCR35L/mfDwMAenzus72enD2HR4LDwik09HugF0oR7MVYXFjOCQiJf1yoiNNYNpAa9lztR8IFjMSAg4MzkG49/A9OlaahQkQ6lHZcTIGDi4ITj4+msdV2aci5diYsiPvmXn4Qsy6jOkOj0P/7wj5blmnssAo0+fE4YHYtlyZyEcG7PuTi6chRwOOxHuSgqUgWMTK5TGTTVJGTiAFuoLEAuk7zUvGiNQm1mJDliEQN1Z9x8ed5z/WbcPqtW6ObsJ2gZYWgGITZ0XByLQMORymtJVm69JlslwSdcHYtbMls8BfH1IM7FUZWroE+SSfIBAQEBAacvwZnmOFKtlDE9bnUJeCGJ1qpe+eA9mP7ym8CHIhjeuAV8N3Go3fntr5iWS/f02w5munqdi0FVUUHExbFo2VZcwHJZhCg1HIuyooLjnQWevMn1qKIzJiBf8e6x6MRSsYbueKgeh+mHtYo53bFjOwBgaMPYmmzPDt1x6DfspF9zLFIMC5ahwJwBymLDsRgIiwEBAQHNjJeIqKOAxaMHnV0CzejnHcUmSeDXRyRc+PkiZFnF+WeN4YJ+UjD71+/8zrKsncA3ahNJVqeaRzrawvG8ue9hOANUVhDiXc71zcJi1KPv42WvB7bc0PS8JUB3MHRtJaJXK8SzDfeiE/o2KQCpYdtFtm3dBgDYsdH+cV9c+nogsxFwKvYJWnFVn33fuZlEujq4D3VhMc1J/iJfTxf4wLEYEBBwZjNTmkFacBEWKQHH9h9DKNzaeUFt7o0MoHyojAPvO4BirojdF+1GdAs5Bv/6m7+2LJ9IWydPezkWQxHnfdzdtRsURYGO2Z/Ho2wUJalUj0LlVOtYqD/Wj8XyYv12vpqHrMhgGMbVcdYfM+/3rq5dAIC9i3vx5zmPdIUmOkIdLS3vxOauzQCAcMR5EhRLswixoePm5NOFYy5C3vu1FBbTQnpdo07bJcbHUJWroM6EfjgBAQEBASeUQFg8jowfPmga3Iq1Ku788Xfwtpc/FwBw8LGHbdf7v+9/03R7dmoCs//zfoQGd+A1H/9qw50G4JE//hoTRw7Vb2d67GOqvByLoYiPnH1tnNIR5aGowEKJzA4UWBo1SQHLOQ+yilXJFHfanRAsEautsFiqIZtsVVhcm0FgZycpRLbSl3K9qX8nGA4sTZ9ZUagOUTMBAQEBZzJfOtSFgY/ncaQSR7lSrceMyoqCb//sd7jpFe8GAPz6T/ZjkW//zCwWzi8t40lfKWFXD43f/8vLsX1TI3b99w8fwb0P76/fHuqxPz9ucBUWVxDmvM9dYcFBfIxkgErOXVhsch54CouAtWHyQ99q/D10YUN8M6Lft+MZ1sdSzn0K6/gQK5NJ8h53ZVYxFrnuPcDL7wQ6Nto/rvdgUmXtSQeA1/wR2Gjt7wMQYZGmgAQnAZEOoIX+S6c0gbAYEBBwhiMpUt0FRwvW63NaorE0v4TuPnJ+U1UVd91xF975sncCAMp5+x7J9/7mXtPtcrGMw/9wGFyGwxv/843YuK1x/po5NIMHfv+AaXm7CdcDbj2lHdbRifExnNt9bv12TamZHo9wEVSkCviQ80SpkcSIKf40V82hKlex/fLtOOeKc1z3zQhDNc6xX3r4SziYO+h73bXqmbchQyY3c4J7nSXMhlvqybga6lGoWq/NGNtmFLsB3T3bHek+IY5EL2JcDJIigeaCcm9AQEBAwPoSnGmOI3oMqu4m++cPvB0ffNMrkVsgcRVLC3OWdSRRxFc/+0kAgKrIUFUV3b396Lnlfei6+W8RisTQ098YDIdjSfzgG1+q385k7Wfg9WiORbuBUEWSwQrOM8h0cfTGZ70QyUwXOuPEBbFYIAPpEMdAVBSwnPMAulST67GekVgc2UQYharsuLwXFVHBYDoMtoW4h5Olf+J60D88Sv6giWPxzBAW9SjUQFgMCAgIsEJhIq9i7xRx9mW7MgCAO+47hJv/6gOYnCWz5afnFy1rKoqC9/3r18jfqgpZVtCZTuLHz4/g9hdEkElEMGKIOu3vTODTX/9h/fZQl4OwOOgiLJZzoJodhTa88rk3Ih61GbNoUaiu6QRaj2cAiEfDJKrTThh0ojgPPH5743anQ3IBRQHvXAAufKX1MQcHoglWIFGiOA7n8pBLnyX9vTH2puzcSFyXNmwe7kdnhAJNwbF/5WlJICwGBAQEICk4T3QRl8l5pKuPTOhZnFzE39z2N5genwYAyKq1LiArMr70j6TOoaoqZElGOBrG8P8bxujbRhHriKHH0Lu5Z7QH3/nP74CWyDU/T9nXJtyExeaeinY8eeOT63+P582JEFEuChUquISz0LYptQmLlcbYa6m6hKpc9XxeJ1561ksxmBjEryZ+5Wt5mqI9eyxmQhlf2xqME3cg5TFeCbNhsPTx7bHIREitIMavXlhMCkn8zYV/g6uH7CdWnWhiHHmNdOj0rXcFBAQEBJwcBGea48jRg48j3dGFLTt3AwA2b9+Ff//+r/G+f/mS4zo//+H/YurYESjVEmb/53342r99HAAQGtoFSpvlle1v9AU4//qb8ZP//TpUzQ2Y7nEQFvvJDPlExlroqYgyZMU5dFN3FsYSSQjhCDqiPCgAOa0Rk8DSECUFnIOwyEplFKoSRFkBx4dw/TNfiN5kaFVRqAAwlm1tkMiextEQungNmiU9Fs+AX7oQzMgLCAgI8GTvwWOIhAV0DZDzxEKVwQPf/RTu/M+POK7zvZ//Hn9+7BBKoornfLOMN3/8vwAAlw+z4BlyLjUKi6948h585ft3QpRIYXDQQVjs7SJuhq6UjRAjV4HqiufrScajCHE2xakwKYL1xV3O9Vr0WFcqilc9+xpyX6SFOLADd5CIz9GrvJdlWBvBiQKSPnsFerkpk9p4z0HkWxN00dEmFteOkf4eDCT1fowu/TRPN9agaBkQEBBwqpMSUo6PleZLoCgKG7ZsqN/3mR98Bp/78ecAAHTKel330B8ewoN/fBCKqGDi8xP40vtIDYWO0KB5GvlaHlnDhKXLnn0ZfvOT30CdI3UNpwjMSIzEfzOc1UGnwPt8d93wdfW/D68cNomR+nOyMes4RVVVSI9J2JTehJXaClL9KcTYGMpSGblKzvN5nRAYAf9x/X/4Xj7CRhz7BLbKaJJMbt6U2uS6XJgNg6WOj7CYzCQRS8TAhMnnG29lApkLt269tR4/e7IR1cabdm7hgICAgICAtSQ406wjC3MzpttHD+7D0IbN6O4js6Ze9sZ3YWjDZtdtfOXf/hHnXXIlpv/rTahOPIptZ++xLNPd2yhKXXzTc5FfyaFaqQAAMln7GXh6mY22cXdVRMVVWFwomiM+OIZGZ4xHrqQLiwxqsgqGtR8ssnIF+YoEUVZBMzQ4nkd/KoSVcvtRqACwrdd9pp1lP5jTV1iMxuLYdvZ54MJRsMyZEYXKn8YO1ICAgIBWiWp9iw5ps/919h44hi2jA8gnt2D3Zwp45jOfhV1bRl239b5//RouOWcbrvxiET/eL+GK87ZZlhnua0xUeumNeyBKEmYXcgCAQYcoVB3HBIHSgut6rkSIsJiNunQnrhDhkmcZREIkfQHRTv/PkTsKnPMCINbCOkaEBCD4dLd5Of76zwNu/Tqw/ant7Ysf9GKcDwcHALAsg+vP04rGSfceVqcVgbAYEBBwhjIQJ7UHCpTJBTd1YMq0XH4yj97BXkQT5By4+fzN2LJri+u2/+uT/4WN2zbi8McOY/kPy9h2ARmLVCeJuy9XySHb3xAWL7jpAnAch/EDxEWY6HSvFdBtXksaX+eh5UNYKDfGLhFWEy1jRNRSqMb5U5VVKPNKXYyroIKuCJlENFM215FaJR1K4x+u/AcA1l6MzUS4yJq5B3WnoptQeV73eRhLjx233oQUReG8y89D5wAZq61lj8WTFd2xSAmnfw0oICAgIODEElTi14BkmMdfXNwoyl3zlGcBAD72N/8PimFWty4stsLk0UN47KEHoEo19L7g77Hjgsstyxgdi519w9hzaSOSwanHohvlmtmxKMrmApIuIBrpS4XrTkaBpSHKzlGoRFgUUZUaESe9qTBqsr9ClR0RnkFXrLUG4Mxp7FgEgH/66g8RTWbA0TSYM0BYDByLAQEBZzK9wxtBnX9b/fZLn3U9AOD5b/oYJMP5du+Bo9i2gYwbHphRfPUVvO+RA9h3ZBJTeRW/uS2Kpz/hfMsyI/0N4au3I46br7ukftspCtWT1QiLmmOxJ+Iytqjlrfe1EtnZtRU45y+AdmfdR9IAG/a3bDwLzyjULU8C+vz3Y2oZoanHog8+9Kqnkz9i6+ikPNkQAmExICDgzGTmgzN46MUPoSfaY+qh96W/+RJqlcbk5NyRHIY2+egxbODBPzyIpfklVKeqGH3rKC5+8sUAAClHahArtRVkB7KAVsYIx8O49hnX1tdPdq+iB7EHowlSCxIVEffN3le/Xxex1AzZqWlm2nFdAMhoYxejONku3REynnGLpKUpGlE2WhdAjwfvuOgdeMWuV4Bjjo+wCADv+fR7sOdaMkF/LXosnuxEOO3zFE7sfgQEBAQEnP4Elfh1IJUhMVr3/O5OfPvLn6vfP37oAIY2tiYsZrp6MLp5K7Iv/AdwnfZxWT19ZvHwqbc2CotOPRYpmnz0dnpTRZRNIp/eC1FnvlCF1CQCDmYag1GBo1GTFLCc/WCRlctQVJgcitlEa6JgM11xAVGhtcIeS5/+X39JVsEylO3nfLoROBYDAgLOZKanzbPbk3FSzPrDnx/DBz79tfr9+45MYtvGQYTUCtR3J8DLJc9tZzvTGO7rxt0vi+KcXgYozFqW6e8xu/Ze87xGz6FBrZhXoEgxJ0WT56T1sYjTE7tFoYoVYGE/cPg3gGjzGrgwwEXQIbgIi9WC9b5Yj/U+J/a8BMi4uz1diXSQ/ol+aI44HdDE3XCLhdJE6xPO6ujColj2v04lR8TTNYoeOyXgz6DXGhAQEGDgvnuJqNYcczlzeAaf++jnEFoh1/wrh1cwvHm47nDT+yC6kcwkkUgnsPFdGxHZHEFJO/erKqlV5Ko5hONhSMuNGsPTXvi0+t9ejkVqFRfMrJYCNZwYxt7FvXVxUxd4qDDZtkzJqErm/okRLoKuMJnkxdM80kIauWqu7X1pBY7mEONjCLGrq8W0Ak3RSIVSx+35dKpyFRQohDmfE7pOYXTHIo6fdhsQEBAQcIYSVOLXgRodwuD51+HmF74c//6JD+LgYw8DACRJxNCGMc/1VVWFuDQJAPjbf/gsPvL5/wYTcS4cRePmQfIFV1xT/zscs19Pd04ObrHmwqsASrXGbHSpKfJqLl9FWTTPVh82CIshlnEVFjmJxLTmSo1Ziz2rFBaziRCigrUvghutOhaTkVNvZCYpKrgzJAqVRL6Sv7v6VlE4DQgICDhN6O3K4J2vei7e/+mv47f3PlK/f9uGQWzAUQDAUPF+23VVVcX+RXL+/48Pvx6//PJH0RfXho02UZgsaz4HX75nZ/3vdIwUcbpVIkhu5qYBVUFnmoxRztpg42YLZ+pRpbbc9c/AT/8WWD7mvEysBxneJWa9VgCUJvedH2FRL8ClhgC6tbGHiUgnEUD90LPTLCKe9yLgVb8Dhi/z/3xvHwdu/rf295nRRFClhej68hJx8K1R/6ZTAs2xONiTPsE7EhAQEHBy8NS/eiq+9e/fwvzheQCAqqgY2jSEKojIJpScJ9lUZ8gyr3zvK/Ev3/6X+mykRxcfNS23WFlERa5AFRuTojftaPT6C8fcz7f/v737DpOqPP8G/p3eZ3a2F7YvvVcFxEVEQWzYBRU0lqiYqCQaoiJ2jLEmakxijPqqsSRq/IkaW4yCWAFFpUgHYYFlF7ZPPe8fZ6f32TMzuzvfz3VxMXPmlGfODsy95z73/eSW5Mb1XtxR2oGPKxyH7Ue2o93ZDkBMFKrlagga35i+O/RdyHaV5krv41JjadoSi4BYVZmutqSZ1OXsglqhzor36k0sqgFLsl1DiIiI4sDEooQO7vsJAPBt4QmQz7gW5119I8qDWp/GaoVq6+rEPTdciYZnfwW3rQMjxx8FtTqxHgYKhe+CUcQ777oXqyLsu8Puu2iklAV+TA612wOSggBQme/rVa9RyWFzuaFQRmqFKt7p3mLztVTtaWKxNEcLXZgJ16NRJphY7IupOafbDaVchn7e9dVLrRQ/q9aCLGq5RkTkZ8O2nwKe33LVPBw9ejCajvjafg6tjd5+zG534PKlj2DME21oaHNj1jHjodf5fU9HS/h1848/VEo54LRjvGsNAEArcwRUGeo1YS7ymIoDKxa7b0rymvRz4NRHAFmU735TCYzKKEkwRzvgDmrvbvJPLEaYn1ElQcuwY28EhpzsS1LGMmY+cPFbgYnPouGJzV2oMQFVfonIxRuAs56Mqx1u0jqbxbkk01gNkXFqMSYuzc/J7DiIiNIsP1/sXrD5m80By+vn12Ni/US0t7Z7l1XWVeKgcBAAws7x53K58Njtj2HLzVtgO2DD5FmTYTAZYPtJTDR+2/gtuvxig0Odh9DpDK2o1+rF7x+VOnpCSaWNL+G048iOiK+NLRwLl+BCU1eTd5lJbYJb5UtGfrX/K2+VpUeNpcb7uMJUkbbE4vwh8zG1bGrUORH7C5vLBpVcFdCit7/SKXViNbAMsOQxsUhERKnDxKIEptVPBwC8+szjAcuP2GW46T7fMr3BiLzCyAmPro4O/PqSs7D6v+8id/Y1UGiTn1haq+9Zi4d2m+8OfoUiNCu181Bg0D7A6juexlOxqIzUClX8BaCty3cMtVIOaxwVgY2tdhzpDJ3jsTxXn3D7kngrFi26vntXm8MlQKWUZUXFIiB+9oiIstE5Z50BALjnydcCliuVCjz/+xsDltVVlITdx7/P10Hj7sSsy5bi2X9/iMdP1qLYKPd+v+5v674wtueLuMZUViS2hteolMCGfwe+2Lo/zBZ+zKWArRXQdl8Q2bEK8L8QV3scMP5iQB1lrhxzacSXbC6Z2ArVFZR4TGSOxZ6YeCkwbkH4nvThyGRAXi2gjjOp6blIWHt85HXMpcDIc3pWdRlL52HxZxjhZrN+KdpnkoioHzvzrDMBAC8//jIAQObubnUql2PJA0sC1q2sq8RBHAy7H1eXC7dcegteffpVFJ9fDE2hxts+HQAchx1o6mrC6r2rvcucghP720Nji/LueaU1RvGGak/71Uj3DsXy9f6vI75m1VoxIm9EwDKzxgy3wpdY3NS0CY2djQHrDLSKN5+7BTeqLdVo7mpObnAJOn/o+bhw6IVhE7v9gcuvK0WnsxMahQaKaDek9RMymcw3zyIREVEKMbEoAaNRTAC+++o/0Lh/X8BrlXWDMWTkWABARe2gqMmvD1a8igP7fsIDz7wGw+CpUERIzMWnZ4mkTnvkO/wVchn2tQQmFsutfnMsKuVwuQXIg6ohDSZxzhmzxQKLToU2W2CCsMAUWj0pkymgrRiFlVsacdNr6/HVzvBBdoU1scBJKZdBFeecfO8tPhY3nDg4YB7JnhpfacUpI0ugUab2n6BYsSiHPEtKFlVhkuBERNlAoxG/Q194exV+3BFYtVg1oAhnnDAFgNgeVR3mrn2F7TCG5svx0efrsH7zDnzw93uwYHRgMsjTGhW7PwdaGuIem9LRAvzwb3QKft/zBzdG3gAAzGViZaRnvrq9a4G96+I+JgDAEtoWW9P93ltdKrEi0hXYgQHGNCUWgfiTismQy4GbG4Cp16buGJE0bQPWPAt8eCfQtBXQ5fjaqGYDdfI3BhIR9WWezklffvglfvzuR6hdvjgitzAXg7qnhXG1u6AyqnAER0L2YT9kx/bfbcf6L9dj+dPLkTczL2Sdji0dqMupw6f7PoVMJoOzTbx2sa99X8i6wZdFrBDbVKvbYt/w4gxq/e0W3Fh7YG3UbU6uOTnguVlthkshJrg00MDpduKzfZ8BAAzd82HX5tQCENu5VpgrYHPZwlZfpkJ/TSoCYpWih6cVan9+v/70SiYWiYgo9ZhYlMCIkaNw4rkXQ6PV4eWnHg95/cQzzgcQuw2qwWjCoy++jcEjxqRimAnpdEaeO6DUosX+FlvATX4lFl+LK42q+2OlDLyIVFgiXuA7dtZpKDBq0GELnNfIvx2qpxWrfvAUyBRK/HigFeW5oVWYw0vF+SUNmsQCRK1KEXfFYqFJi0Uz6nrcrtXfv66agvvOGQVtgu1bE+V0Cd72oNkgm94rEZG/4cOG4qqzjkNRXg7u+fNLIa+fM0tsgTlyUFX4HQhuKOQy5Onl+PzlhwLmSPS3YnP3TUHrX4l7bOaGTwGVAes0k3wLm3dE38hSDti6LziWjhNbfn7zfNzHBADklIcsMnS3dM0tKhcrIl1BXRAM+X5P+vjNKipdehOlgFitt+9bMfkMiBWTI84JiQn7NSYWiShLDRo0CDPOmoHiimL8vz/8P191YLdZNbOwbfk2FJgKsKtlFwRZaNmgTC6DQq/AH1/9IybVTwp53eOEyhPQ0N4AwxADnIed0Cl1aOxshFIZ/bqA50ZvmZD4d3xDewNaHa1R15ldPTvgeY4mx/vYAAMmFk/Et43fQqFQYPY8cd1qSzUAoLGzEeUmMXY5YgtNukoh+GfSn/m3yu1yiYnFbKhYBMS5M4mIiFItO27XSbFblt2Of6/7CXm5ufjX3x9HyXWnB67Q3borOLEoCAI+ePNfsOaKc9vUzz4NBcWR23YlQq3RwBZ7tYhsjsCkn3/70fJcPXYd6kCewXeXn9Kv+k/raUepVIdvMSKTocCkwZHOwCoB/+Rk0LQDeOjcMZhQlYtxd74XsDzXkFxrrXiTiqmkV/v++Q2w6rCnuVPycTndQsqrInsTtkIlomy15IZfAd9WYFBNOX794HO46LQZYdcbWhuabHv57Y8xukSDwVY53r7QiJIIrVIB4EC7AAw9Ffj+1ZhjMhl0AFqg7moEJv0czs2NgOer/8huwNUVeWPLAMDeLlYsyhXAhEuBD26PeczAAfhiKp0r8AKdXGcBmp2B8zgC6WuF2h/JZMDVnwKtBwFDnjino9oIqLJofkWArVCJKGstumYRKk6qwEevfoQ//vaPGH3aaEAFyGXi76MyyNCxqQPjZ4/H9iPbA7Zd+Z+VGDFhBFRWFap+XYXqwdVRjzU0dyiqLdXYju0wwYQCQ4E4t2HQr9NmixnNaIbB0vNEy9bDW2FWm9FijzzXdL4uP+C5f2IRAM4ffD4W/28xIANUKrGLQp5WrMpstjWjzCjOnexfbSeVoblDMadmjuT77a0auxqRq8sFICYZNQpNVsyxCDCxSERE6ZE9GYc0OGXez8LeIde4X2wXVtHd+sPjtef+int/swjrvxbnBkh0jsBoSgZUJr2tXq1AlyOwYnHLgTbv4wFWHRpaumCLUNXoSWQJ8shJvyKLBm1BFYtlOZHbNchlsrBJxPvPGY0ZgwtRmtOzOSUDxmYW76pXpHFewpW/mYF3rpuGCgnbrQqCAJdbiLvla3+gzqL3SkQUzhVnHY+8HDOef/OjgOUtbR0AgKE1vsSiyy3g8f/uwnnX34v/W/EWAKBEH/jdHNaQkwGNJWSxUhF4sWZ4dXeC0lgoJgbl4gW0JuQAR/YAnd0X5g7vApxBF9A88yPauysDCocCQ06JPbZw+wBQ1PmjON+fhy5H/LuzKXAbDZNCEdXNFP825EdeJ6cSKJ8A5FaL62VbUhFgxSIRZb3pp09HcXkxOtvFdp5uQbxu4HSKXYkq6iqw/ch2aN1aCIKALau2YOnlS7HiHysAxHddRCaT4fKRlwMAWtGKYkMxmrqaoDcG/j5dM7QGAGDJD41b/LU72mMec9uRbRiRH76jgz9PMlEuk8OqtQa8Nr1iekiy0f/9qhVqFOgKYh7Dw5O0jcfLp76Mi4dfHPf6fV1Du69tv81lg0ahgVKWHbUVnGORiIjSgVfhJWQ052DuBZeFLN+5bTMAX8Wi3SZePPvikw+w+I4HMW7ydJRe9ic4ZT2ZU1E6Jq0SnUEVi1sO+Fp+VOTq4XQLONAavtLAUzXmjtK/vtisRWtXYPuxkpzELz4VmbV46pKJGF2ek/C2kXx+00y8c920sK1XU2lIsVnS5LLTLZZ9ZlN7UG8bXiKiLKXXafDrn50JhyNwXqAN23YD8FUsdtidOOvlTrz0xT48ctPPcc3IjvgPotQCx94QslitCvzelzV8Kz4YtwDIr/Mu3y8rBNxO4MD34gKXDfjnJcA7S3wbexOL3Rf6ZHLg5AfjH6P/PjxWPQII3efFkxjtOBx5e3WEizJj5ic2jv5iyBzguvVATfhqWOrmSSxmvjkGEVFGKFVKzL96fkj3ok0NmzDi6REorinG9pbtsNgt2PPnPdi6cisuveFSzF8U+ftV6N6ZdoAW2jLxusFJ1Sd5Xy8xlOBQ5yEYcqLf3NEsNAMAHAbxWkRjZyMARJzTcEfLDu9jm8uGaQOmRd0/AJxWexoAMcEYnERUyVU4tfZUAIDdbQ/eFG7BjQGm0Dmie6NhucMAAAX6+BOh6eT52QK+xGK2VCwaVbxRjoiIUo9X4SV25oLLQ5bt/0m8mFc8oAKdHe14/42XAQCXL16Kk86aj32dgCqvHFtVVQHbKVXJtfkMxy4T9+WKYy4Bs1YFe1A14o8BFYvihbb9LYHVBeVWMRHnSe7I1WLAr9aFJujExKIzoOVpsd8chsoMtyqVOskHAMfURbnDPwUcLvFnmE2tULMpiUpEFMlV55+MvBxzwLJBzo0QlplRW2CA3e7AtU9/hQ+2O7H8rEH45fxZ0LbvDrsveaTvwklX+B4H9y/3Lu+OJUylYjvTbk2yXDE52bQ1cH8GvwtTpqB2rMYiwFQU/jiR6H3fuy6lATi4AVj3grhA251YjDZXkjzCDV+z7gYufguonJLYePqDnAqxzSlF5m2FyswiEWWvWWfPgjzod7PtMrH96V7rXrTZ2rD+ofVo+boFI04bgQt/cWHU3789cwOq8lTQlIgdhpR+NzIXG4rhFJxo7upOHLodoTsB8KP7RwCAWyHGKBubNkY8psvtwjvb3/E+z9HkYHLJ5Ijre/iPy79i0dPdav6Q+VGPXWWuinmM3qC+vB7/Pv3fmFLaO+Ohpq4mb7WszWWDVqFNqMKzL2NikYiI0iE7vlXTyGINvdhSPWgoAEChUECnN6Bq6GgUzVuOmsFiG42KWrFFalldYFsNS36CF9CiUFjFXv1uUzEAoKO7DemuptAKBZNWiS6nr2LR4XJjd5PvDr4CkwaFJk3AvIue5YAvkSVTiQlFrSHw4iYAFJq1cLoFb1UdABT7zbGoUfXeO8kM3XMjJpL73HjnbNw0Z2iKRhSe09V9V2cvPpdS07AVKhERjAYd7vrFeagf7qvYm1Ehfq/ndG6HWq3CqeMG4NOfGTClzgrsXRdxXzpNhOSawq868cd3AVfsFqoDB4qdG2oqBwAlY4DmXb4XT/odcEn3xTu5SmxJqjHF3GdUct93gqJ8gpi83PK+uECpBlQGoKstwsaI3ha1aqovOUnkz1uxyMQiEWUvtUYNsyXwOoC5+6anLkMXZHIZjp5+NKp/W42iwYHXPZJp41hiEG9IMqnF2GFNw5qQdRxuBw7jsHgMs3iMDYc2BKyzv32/9/He9r34/tD33ucj80eiSJ/YNRqL2hcrqLXizd6eisQuZ/gOUDU5NQkdI5NqcmpiVlhmqi3n4a7DsLvEqlCbywatUps1rVA9/w6IiIhSiVfh0+CGux/Btcvuw/+99AwAYOCZ10NbMRJb3GISUtF9cU6jjz0ni9PlhssdoTIgCqNRDCxs3e1W7d3VbM0dDghBlQYWnRo2vzkWfzrcCZffOjIAg4tDAxVPVYOnFaqnYi6cwu4kpL8ic9+Yh+d3Z4/COeMHoDI//jl0tCoFyiWcPzGYJ8np/9HwJG01yuy5sNWbE9JEROl0Zc4n+Ef9LqBLnMdwcPUA/PMHB/70pnihbfGZkzCySIHaslxg9+diq9Ew4voG2f8d8NE9gCt8dYBHcZF4Ma6kIBeonAy0HwhcQRF0scdYHM/RA03q7hyhD1NVN/teoGS0+LjzsDgHoD1KYjHe4w88QfxbZ42+HmUHhbq7Qjd74i8ionB0hsDORVWDqtD6bSvWvbIOVo0Vl115GfQ1epQPKw9Yz2QInxRpi/KdbVabYVAZ4HKLNzp92/gtvm/8PmCd7xq/8z7WGrVwuV3Y1LzJu8zlduHZH54FAIwpGINVP60KaGV6dMnRMKoTqwSzhJmTOpa+UrEYjxsm3oCrR1+dkWMf6joEm0vssmVz2aBT6iTvStVbMbFIRETpwMRiirndbjz18D145PYbsW2TGNgWFovVg3pT4kGm0y3g480HE97ucKd4p1ZwlSEAdDkCE4A5ehW6/OZY3HWoI6Sd5ojSyGP3tKMMbqfqr9AUmkQ0a/vG3WMWnQq/P2c0RpT1nkoFo0YJvVrh/TkD/q1Q+8Z5lUI2tX0lIoqqtUH8u+UnCIKA5W/vxDmvdGLt1v0QBAGlOeJd8yW5JmDvGl/CLRnTfgU0bkbIZErRVMWeowimJBKLFUcDS3b7kn3+5Arg7KfFx42bAWNh9MRivEaeDVz7DVAzvef7otS7Zg1w3M2ApTz2usmQyQCVHkwsElG2+e0nv8Wy1cu88yH6EwQB3772LXY+tBONmxtRqi9FVVkVAKC0NnBOZE9yMFhDR0PEY8tkMlSZq9DubIcMMpQYSvDqj6/C6fbNOb167+qAbXa07PAmngDgvZ3vYXer2Br+sO0wNjVvwoxy37zCFeaKiMePJJnEYjLH6a0WDFuAU2pPycix2xxtOGw7DJfbBafbCb0yM5WTmcDEIhERpQOvwqeQrbMDd15/OV7626O44oZl+OXS3/V4n61dDry27qeEtzvUJiacmtsdIZWEh9oD50q06JQBycadh9pRZvXdbdhhd2HUADFAbreFBv0yGaBVyr1Vke4wcy8VmkMrFv3vHlOkeI7FSdW5Kd1/uslkMlTm6tHcYYe7u1LR0wrVM+dlNsim90pEFA9blw0LlzyAm1/fjtvqNXjuxlPF79s9X3av0AI4bUDt8ckfpGw8cO6ziW0zYGLsdSxlyY1HawaU3XGGIWh+Y12O+LdMJs7baG9P7hjBrFWAvju28MwV6TkW9S75tUD9jaGfDSmp9MwrElHW+c/O/wAAGtoDE4AupwuPLH0Eqx5fhbwT81BxbQVqc2thUIXvAHSo65B3bjx//m1Kw6nLqQMAyGVyzB86Hwc7D+KTnz4BALQ72rGxaSPKDL7YYkPTBmgVvhue397xNqaUTkGhvhA7WnbArDbj7EFnx/HOI/OveIxXubEcMsiyproulfa27fUmjw3q+DtOpVquNrXXoyL92yIiIpISr8Kn0L+e+B2+WvVf3PaHp3HOxVdJEhh+uPGAN2EEIKSNaSSetph2lzugzSkAbGxoDXhu1asDKhZ3N3eitiCw5cewUrN3f+Ho1ApYdGLb1R8PhFYDaFUKGDWRK+kM6tS1tPzhjllpn+8wHarzDWjucMDWXSnqcIt/a7Oois/ThpeIiES3//0dvPz2J3jhsmFYNl0jxiJuF9C0TVyhcTNgKATKJsTc18QhAzD/pMnhXxwyJ7GBac2APkZix5LAHfuRLhaZSsMvBwBTCWBrjfx6smrqgeNvBwafJP2+qW9gxSIRZTGXEHjz8YfPfYg3X3gT9dfXo2ReCWRyGUYXjIZCHvl3t+C2p27Bjf0d0ROLg3MHAxCvkVSaK3FG3Rne1zY3b4ZCpsCx5cd6l/1w6AdUWaq8z/O1+fj5qJ/jQIfYqv248uNQm1Mb8XgF+oKo4wGSq1hUKVTI1eZCHqFNfX/2QP0DGFs4FmaNOfbKURhVRsghx8HOg77EorL3JNteO/01LB6/GOWm1HRPMKoSa9lLRESUjOyLVNJAcIntNk695Fo8/Nz/YcqMWZLt+7PtTZgxxBfA2qK0G/UIrhjsdDgDnu84FHi3fo5ejQ6/xKLN6cbIoLaf5dbobSR0aoW36nDLgTbsb+kMWafApI64fSorFvVqJaoTmB+xr6grNOJQmx02p/iz81SmarNo3sFsSqISEUXj6L4Jacm8afjk+d9j3qQi34v7fXMMob0RKB0LGPzmJBQEYPvH4mO3r4W6WimPby7bbR8Bjo7Y65XHqFq0DIi9j1jMUaoeTSVixWYqTLsOqJySmn1T76dmYpGIyN19raL+/Ho8/PLDGDZnmPe1kfkjo267vWV7wHOH24F97fuibuOpWHRDPO5vJv3G+9qu1l0YkjsEJYYSAIDNacPu1t0Ylusb0yUjLsGI/BHe5/UD6qFXxd8+M1wiUK2IfM0jmrqcOmgUGgzLGxZ75X7kxKoT8exJz6LGUtOj/ajkKhQZitDU2YROp3gtKtH5MVMpV5uLS0ZcEldyOhmsWCQionToFVfhH3vsMVRVVUGr1eKoo47CF198EXX9V155BUOGDIFWq8XIkSPx1ltvpWmksa364G3s/dtVcLY2wpSTi9ohwyXdv0WrwqXHVHuft3SFzpkYLHhexYOtga1P9zR3BlQomnVKuNy+ZKRMBhwd1DpUHiPxp1crA1quvvN96N2FBcbQeRYpebWFRrTZnN6ft7cVahZV8cV1wZuIKIz+FIu8t2oNhjzaiq1NbpgNWkwcOShwhZ2Bcwxh4AmBFX+f3A989njiB/ZcUNu7Dnjjl7HXjzXPojlKtWG8ou3DXCImQCPM5RTCUNjz8VB2UBuZVySihPWnWGT9F+vx5eIv0bWnC2qtGiMmjICj+2YljUITsxXkj80/hiyLtxWqh16lh1Vj9T4/tvxYb8Kl2dYMAJhaNtX7+uzq2VApVN7ntdbI1YqpdsfUO3DFyCtg1Vpjr0xhVZmr0GxrRrtDvJHepMqeeQeZWCQionTIeGLxpZdewuLFi7Fs2TKsWbMGo0ePxqxZs3DgwIGw63/66aeYN28eLr30UqxduxZz587F3Llz8d1334VdP10EQcCrz/wJt1/7M6gLqiHX+u6GenXNHlz27FfosDuj7CE+Z4wrw4iyHO/zcHMcBmtsC0wk7g9KLO493Inmdrv3uaeFqUeRSYuSHB0SoVMpYO++Q3FEmRlf7mjyzvPoUWxhYjFenraxyigJXU8V5r4jXQB87W9Vyuy5sqVhxSIRJaG/xCIA8KeX38VJV9yKQXlyFBjC/P8vuIE9XwAFQ3zLqo4NXOfARuCoKxM/uKJ7XsNTHgJKRsdev8LTVjXC91S0pGBOUJtUR1f49crGhV8fAIzdiUJnaFeFsFSJxUKUxQwFgJKfFyKKX3+KRT5/83P8av6voMnTQJnjm/7k24PfAgCG5A6J2epyV+subyISABwuhzcZGEm+LrTFun8Cc2b5zIDpafK0eRiSK8ZD5abykO2TmR+xp1Ry8VpMqbEUx5Yf631OiavLqUNTVxPaHGJbXaOm91QsphoTi0RElA4Zvwr/4IMP4vLLL8cll1yCYcOG4YknnoBer8dTTz0Vdv1HHnkEs2fPxg033IChQ4fizjvvxLhx4/Doo4+meeQ+drsdf7tnCZ55+G6cf/kvkT93CeQqrbdybP1PRwAAWw+2R9tNXKbW5kHnN/9gexzJysaghF5wotEtABv3++YYCk4sVufrkaNPLKA1aBTeNmyzhxfD6RLw/obAOwyLzUwsxuvuM0bg3AkDUBWlhavntYPdP19vK9Q+VLHoaduqVCT3X1M2tX0lIun0h1jE5XLhugdewNV3P4VF80/B/80zwKyRAcqg79rmHWKVXk29+LxgCGAuDlxv7uPAcTcnPxhDPrDwTUDXfZd98Bg8PG1KS8dEeN2TWAzznSAL+v9eiHCjleeCnCJMHGMsDr8Npc68l4CZt/k+G/3VKQ8Dx90E8MIeEcWpP8QiglvA/n/tx7NLn8Xxc49H1Q1VUBrFxKLNaUOHU2yTXmuphS7MzRdC9xQueqUee1r34IjtiPe1Q12HYh7fP2kYbJB1EEqD5l2uy6mLWhGo8dww1S3ZRKMiOGaJtm6UeSf7o6dnP41fjv0l8rR5sVdO0EDrQByxHUFzl5iQNiqzJ7HoafsqY/sEIiJKoYwmFu12O77++mvMnDnTu0wul2PmzJlYvXp12G1Wr14dsD4AzJo1K+L6NpsNLS0tAX+ktnHDD/jyv2/j2jsexs+u/S1kESbZFoLmOkyEUi7DhEorynMDL1C0dTlD5lAMFpxIbG63e8dSaNLAolNhe6Mv6WnWBl58G1xk8lbMAYBeHTvY1auV3orFHL0ap48pxZc7A+8wLDRrwm1KYZi0Ktx39miMKIs8+btZq4JVr0JTd/WppxVqX0q2LTttGGYNK0J1QXIX4lixSESJ6i+xyLZt2/HMilV47Kaf4ZGbr4RS0X0hwROT/PS1+PeBH8RqKs+cLmXjAa0F8MwBVH40MPQ0QBu9kiAmuTx2q1Pvusrwy7U5YhWkXB7YqlUqxqLwyxe8Acy5H9DlSH/MbDd4NnDM9f2/+tNYAFRPAxQRPttERH76SyziPOxE03+bMPfauVhw2wK45L6bfr5t/Nb7uMIcposAgHUH1wEA7G47HG4HNjdt9r7W2NmY1Jg8c9hNLpkcUsU1pnAMjKrIyabgORO1kW6UisGiifw7fLYbXzQel4+6PKG5LGPJ0+bh3MHnoianBgIE7G7dDSC7qvg8n2smFomIKJUyehW+sbERLpcLRUWBF3aKiorQ0NAQdpuGhoaE1l++fDksFov3T3l5uTSD9zNq9Bg8+OonmHHq2ZLv28OsU0GrUgTMWwgArV3OkGXBGv1anyrkMhzudHjbZMpkwNiKHPx02NcGLLhicWipOerdf+EYNUrY/cZ13cxBIesUdlcsdjmij78nPO1BZwzJjnmRKvMMaG63w+lyw+EWz6umD7VCNWtV+POCCRhXkVwlAxOLRJSo/hKLDBxYh22v34erzzsx9EVHh+/x4V1iMtGTqNOEmW9G3kv+L5XJAH2umByNdTEvmcSjPi+08hEQqzknXR6+ypGIiEhi/SUWmT1mNkbcPwLnX3k+nt/wPABfYuOLBt98keHae7Y72vHyppcBAKWGUpjVZmw7ss37emNnI/TK2MmnUmNgVeJA60AAQJ4utCLumNJjol7nCK40TLZi0aJmYlEqMypmAACqLFUR1/nw3A9xxagrUGOpAQDsbd8LOeRJJ4b7IikTtURERJH0kitHqfPb3/4WR44c8f7ZvXt3So5jMGcmWDzS6fBWBkZywC+xWGTWoKnd7q1mA4Cpdfn4qdmXWDQHJRaLLYnfVR5c1Vieq8eUWjGY9yRCC01ixWJLlwOJMmrjuwNcrZRj810n4fxJ0v/i1BvV5BvQ3OGAzemG0yVAhuTbivZFmj7U9pWIske6YhGrOUxyzdEBrH8lcNngOYCyj3QNqDoGsFT4qgd/+Q0w+3fR51+Ml1wuJi6JiIj6uXTEInnaPBTkFuDLhi+xs3UnRheMhlKuRIejA5uaNoVUAPp77cfXvHMqymVyjC8aj12tu7yvH+g4EDY5GEwtV8c93uIILdG1Ci2OrzjeO94/Hf8nXDvu2oiVh1pF9IRVjjYn7jFRdDWWGqyat8qbYAxHLpNDrVDDpDYhV5uLA+0HoFaos2q+SpVcBbVCnXCBABERUSIymnHIz8+HQqHA/v2Bc+/t378fxcXhg7zi4uKE1tdoNDCbzQF/+pPDHfaYicVDfnMsFpm0aGq3w+a3zZTaPG8FIyC2zlQpfAFIji7xAMygCU38XVkv3jG29YA4eXZRd8Via1fseSKDqRJIlqmVcujV2dGKqq7QiENtNnQ5XHC43FDIZVD0lsqTNNCosue9EpE0+k0ssvkdYM+XocvbDgCb/+N7rjaJybqeCG5dmso7wM/4CzDzVl9lZW4VcPSVvlato88PP6Z4GQp6PEQiIqKe6DexCIAWewve3/U+jio+ClNKpwAAth7eCrlMjknFk8Jus6dtDz5v+ByzKmd5l00rm4aGdl/1ZWNnIwp10nUhUsvVyNWGv7no8ws+x9Kjl0LZHVscM+AYXDbysrDzQgLAg9MfxElVJ6FIL1aQmtRizOKpkIuUkIyWaO2Lyozi3NlD84am9DhmtTnutqaV5ko4BSdUClXWzV9pUGZP61ciIsqMjEYyarUa48ePxwcffOBd5na78cEHH2Dy5Mlht5k8eXLA+gDw3nvvRVy/v+tyutHSGTkx53YLONxph6m7wq/IrIVbAA76VTEOKTbDEFRhaPKbZzHe6kB/xjCJxVyDWB3hmRLSU7HYmkTFIoVXU2BEl9PtrUpVymVQZNFdauosqs4kImn0m1hk4wpgV5h5lba8J7b89CgbD5jCX3SMmyKoGsBcFn49TzKwJ/PMyeXRqxPn3Af8Yg1QOi786znd8zhFmk8xQrVCgBu2Aac96tsXERGRhPpNLAKgw9kBk9qEK0ZeAbNaTF7+ePhH1FhqUKgPnxhcc2ANyo3lWDh8oXfZMWXHQIDv5uemriYUG3oYvwDe5OTYwrFQB8cz3eQyeVzVkR7FhmLcV38fBucOBgBcMvwSnDXwLIzIHwEgfAvVqaVTA95vT5WbxA5NmWy7mqPNwf/O+x/OGnhWxsYQrNZSCwDQKDQhrW37O71KzzkWiYgopTJexrV48WIsXLgQEyZMwKRJk/Dwww+jvb0dl1xyCQBgwYIFKCsrw/LlywEA1157Lerr6/HAAw/g5JNPxosvvoivvvoKf/nLXzL5NhLS0l2h5/KrEuyJA61dEV9rsznhFoACowatXU4UmsVk3sE23zYKuQxjK6xYucU3IbpZq0RTu1jpmEwoEi6xGMxT1dhmC02MsmVDcmoKxLvS9rV0weF2Q6GQIZtOJSsWiSgZ/S4WcXQCQndngpa9wLG/AT7+nfi8+tjk5iP0F+FCXIiT7gPcTrGVaSrl1UZ+rXIyMO+lyMlJU4SEoz9DHjDuouTGRkREFIf+EovIIMOFQy/E6KLR2Hx4MxxuBxo7G3FS1Umwu+0Rt7t4xMWoyanxPi8xlqDUUIq97XsBAC7BhSpzVY/H50kmWrXWHu8rEoVcgdum3OZ9Hi7Z98QJT0h6zDMGngGNQoNB1kGS7jdRkapAM8VzPtRyddZVLOqVejiFxLuDERERxSvjicXzzjsPBw8exK233oqGhgaMGTMG77zzjnci8l27dkHu18pxypQpeOGFF3DLLbfgpptuwsCBA/H6669jxIgRmXoLCft+7xEAQLvNJcn+mjoiB+ie+QtLc3TY1tiOXL0aaoXcmzT0mFqXF5BY9K9YTIZeE3/QJoTJrwZXUPYlmUyKVuTqIQNwqM0GQAalXA65PHsyi5xjkYiS0a9ikX3fAute8D0vGQ2MmQf89CWw9UPAEqG60JNsDDfnYPN2wFrte64xht/HqQ8D7y0FFCrfemdGucDpqWjMHxx5HSkMnh35NZMEczUSERH1UH+IRc6oOwN6lR6n150OjcI3l7NGocGJlSdixfYVAesf6jwEAKiz1OH4iuO9rUc9jio5Cq9tec37fGDuwBSOPnXSNcfinJo53scDTAMAAHU5dWk5dm9Vm+OrWFTKMn75M60MagNabC2ZHgYREfVjveKb9ZprrsE111wT9rWPPvooZNk555yDc845J8WjSp3mDulaf6oVchzpjLw/T3VkiUXs7y+TAQOsOhzwa4UKAJNr8wFs8j63RJlXUaOKnbzR9+HEYE9V5elh1aswd0z6L1ZqVQoUWcR5NE0aFZRyGXpTXrEm34Btje0pS3aqlaxYJKLk9ItYpHkHsPpRIG8gUD4J2P4/YMJlQE4l4HeBLyx9LnDaY4DRr01Z/RLg0z8AH94lVj3GMvp8YNjpkY/lSV565mRU64FfbQbaD8bet1Q8yczKqeLf5pL0HZuIiCiKvh6LjCgYgeH5w0NutB2aNxTl5vKQ9dscbQCAgdaBYVuP1g+o9yYWlXIlKkx9syW5pyVsNKPyR2FQ7iDJ5l3M1+Xjw3M+RJczcnerbOCpgtUoNVlXsWhUGdFqa830MIiIqB/rFYlFSl6eUR01sdja6YBRowxI9FV1J3f8jSgNDHajJRY9cyMGmzawAF/tbIZcBujV2fvRkslkWHvriRDClWKmQVWeHs0dDqgUcijkMsh7US/UD389HRsbWlCdl5qJxDVMLBJRttLnAyotMPJsYNJVgLUS2LsGKB4pzlMYj3EXBj4/7rfA+IXA0ycDHy0H5ArAv5vX7N8BO1cCWr8YQqWLvP/hZwAb3hDbsXqYikLbkVamcH4ohQr47R7Ac6El0tyLRERElLBw3XumlU6L2iIzUsefiSUTvY9ztbkwqiJ0TOjlPC1cqy3VEdd5/uTnYXPZoJL3rHOUvwJ9gWT76qvytHkwqAzQK/VZN8diuakc7Y722CsSERElKXuzP71YQ4t4V1m4yka7yx3wPM+o9lYlhtPS5USOXgWVwndRsbbAgA83Bq6n7H69qDtpaNEnHtBeO3Mg5owsRoFJg+9+YsuFTLVErck34P0NB2DReSoWe09iEQCGFMe+YzNZbIVKRFnrxLuAcQuBnAGAtjv7V3VM5PWHnwGsWAwMmBR9v+ZS4NL3gKfnAAc3Bb529JXin3jJZMA5T0df5+YG4PCu+PeZDI3JV7nIxCIREVFKDM0birGFYzG9fHpSvxv7V/oV6AqgV+mlHF7aeKoQNTG6R8R6HUDWJcd6SiaToX5APfRKfUir3f7uNxN/g12tu+KqmCUiIkpGdn2z9gLOoMRgsE67C49+uCXi6253YBVcvkGDTfsjtzdo6XKgwKSBUuEL5AcWmmKO06pXx1wnnIFF4r4TmWMxHore1M+zl6srNOHlr/ag2KKFUiHvVa1QU83TCrWX5VKJiFJPqQaKh0d/HQA8F6T0ucAtcbYgNeQDl/wHeO5MILcGUKewYkClAwpSPOeiP2+1JL84iIiIpDS+aDweO/4x6JRRuhnEUKArwMHOgyjSF/XZxKKUrFprpofQ5yyfthxNXU1QK5K7xtVXKeSKqFWyREREPcW+gWnkFoD9QXMb+hMEAU+u3IbmDnvc+8wzqqOu39LlQL5RA6VfG7Sq/NhtKK1JVCz66+kci3pNYM7bk1j855WTceqoEuQbwweFZ44rAwAML83eu7JqCgxwugU0ttp6ZcViKnlaoWbPOyYiitPJDwJ1M8UWqR5KtS/hGIveClz6LjD8LCC3H12k8FQsSjSnEREREfmY1CZJKsVKjCWStgkNNjJ/ZNzrLpu8DGMKxsTdmnVM4RgAwPTy6UmMLLwcTY5k++rv5DI58nX5mR4GERFRv8OKxTTbd6Qz4mvf7DkCALj0mGr8beX2sOt0OYJaoRo0Icv8tdtcKDZrAyr+quNILJq1PQvaDSmaY3FCVS4mVEWen6HQpMWmu2ZnVTItWE2++AvOwTYbqvMNWXUuOMciEVEEhnzgwn/1bB8KFTDoRGnG01uodGIFZrzzUBIREVHaVZsDb2qSsnJv9bzVaOxsjHv9swedjTPqzoBCHt/N1Eq5Et8s+AZuIXr3qkQ8MP0BPLn+SZSbyiXbZ7ArRl2B5354Lq4WrURERJR9mFhMs31HuqK+PmNIAX4WJbEYLFLlnr9yqw5dTl8QG882Zl1mKxZ7Itvn2Suz6qCUy+BwCVAp5Fl1rVSjEn/22ZNKJSKiHpuxVEwwEhERUa8jgww1lpqAZVaNdIlFo9oIY4Jt3uNNKnrIZXLvXIvJ0Cq06HL5riWZ1CZcP/76pPcXj1+M/QUuGnoRzJrs7QZFREREkTGxmGZ7D4dWLHomMlcpZPjViYNQlhP/xa08Y+y7x6ryDdjY4JuHMZ6J0y1+iUV1ElVgBg0/WpmikMtQZtVh56GOrGuFqlZ0f1az6D0TEVEPHX0lIAix1yMiIqK0s2qtsGgtAICvL/wan+37DANMAzI8qvT68JwP8d6u91BhrkjrcXO0OWk9HhEREfUdWVTL1DvsPRxaseiZz/DiKVUYWmyJur3THdg+w6xV+pIpAA61Bc7hKANQkRs6yfkAa/TkpVnnSwyqFIl/TDRKOeTM7WRMVZ7Y7lYpl2dVYlGlkLFakYiIEpdF35VERER9SaG+EAaV+PutWqHGsQOOjVn9J8W8jr2JSWPCmQPPhFmduerBEypPAIAeVV4SERFR/8GIII3cgoD9LZFboepUCsgjZOOa2u34fu+RkOUymQwlFq33+Q/7WiD43XVv0ilhCjNfYqx5Fv0rFrWqxFuLymSypLbri2oKxHNZYOo9cw/Udo9JpZRl1bVSmUwGtVLO5CIREREREVEfp1PqUGmqjDuhVmmuTPGIstfFIy7GW2e+hfFF4zM9FCIiIuoF+tdtXL1ca5cTTndgq60OuxP/+/EgAKClyxF2uy0H2gAAzR2OsG1My6w67GzqAABsaGjFwVZf1aJVp4ZWHZo/ri0w4pMfI09QbunhHIuAmCjtsLsS2ub1RVOw9UA79H0oKXnc4EL84/KjkB9HW9p0qSsU54jItopFoLvCNrveMhERERERUb/zt1l/w/Yj22FUxTcH4kPTH8LbO97GwJyBKR5Zdio3lWd6CFnh+Irjce8X92Jw7uBMD4WIiCgiJhbTqLndDgDI0alwuNOBT7YcxCdbDsLhEpONP4VpkwoAb3yz1/tYCDMHkH9bU6fLjU+2HPQ+zzWqoQuTpItVsWhQx/5o3HbqMDy1agfKw7RaBQC9WoFD7TF3E1BRN6bcijHl0k3Eni6Ta/MzPYQANQXiL14qhQyKLOtJy4pFIiIiIiKivq/YUIxiQ3Hc66sUKpxWe1oKR0SUesWGYnw+//NMD4OIiCgqJhbTqKnDDpVChqp8A9btPgyHS8CsYUUYWGTCo//dEjYZsu1gG37Y1xJ1v5V5viTh6PIcfLXzsDeZmG/UhG1JOqjIBAAosYSfazFSS1Z/F0+txnkTK6BVhe+oq48jOTm0xIxTR5XEXI8SU9OdOFYpsm+uS41SDs60SERERERElB3UCnWmh0B9xH/O+g8+2/sZCvWFmR5KVHpV+Bv4iYiIegvOsZhC7qC2p80dduQbNRhZZgEALJ45CPefOxr1gwsi7uONb/Yiz+ALktWK0B+Zf8XgcYMKcbDVhl3drVELjRqxNWQQndqTeOxZAK5TK8K2Z/U/RjRvXzsNV02v7dEYKFSBSQOjRgmTVhnx59Nfhfu8ExERERERUf+Uo8nJ9BCojyg1luLMQWdCq9RmeihERER9Gq/AS+D+/2zC2+sbvM+r8sRE39e7mgPWa253oNCk8SYHZTLApI0+l+F3e1swe4Sv9Ue4tpb+rVCHlJgCnhdZeh4sJVvxZogjsQgg6xJf6SCTyfD0JRNx3sTsmwNBo5SDHykiIiIiIiIiIiIiIukxsSiBZ1fvxKdbD6Hd5gIA1HbPb/fljias3e1LLjZ32FFi0UGljD/rkWtQBySHNGHamvonEuUyGS44qsL7vMisif+NRJDsHH16jXSdduXMFCVsQlUuJlXnZXoYaadR8r81IiIiIiKivmhy6eRMD4GIiIiIYuAcixKyOcXEokwG5OpVsBrUeP6zXd7EnM3pRlW+PqEk2ezhxRhYaIq6ToExMHk4f1IlfvfOJgCAVRe+1Wl19xx8Y8utEfd766nD4HS5oVHGV3kYzKBJbrtw/JOnRNHUFhrhFgTOs0hERERERNSHfHHBF2i1t8a9vk6pQ6ezM4UjIiIiIqJwmFiUUJdDTCwKAiCTy3D9CYPw61e+QZfD7V1nSLEZm/fHHyifP6k8YK5CZVD1YK5RHdJK1KL3tVeVR6g2tOhU+GbZid5kaDg/m1od9zjDMail+3ixYJHi9dC5Y7D3SGdcc3wSERERERFR76BT6qBTxn9T8ap5q/Dx7o9RZa5K3aCIiIiIKAR7BkqgMlecU/HTbYcAAIIgAAC0SgWWnjzMu55cBgwsNCa077qg9Q1B7UULTeFbncbTAtWiU6HQlLoJqz1jzdFHn0eS0uMP54/BLScPDfkM9TdyuQwDrPpMD4OIiIiIiIhSSCVX4fjK46FX8fc/IiIionRiYlECA7oTi+t2HUZrlyPgtQuOrvQ+thrUMOviT7KVWLTQB1X9aVXx/ciKzcklDIss0iUajd0JLJU8cMysPsyM08aU4bJpNVAp+M+eiIiIiIiIiIiIiIgSxwyDRApNGrR2OfHehv3e9qM1BeI8hreeMsy7Tk+rxYITjbEkksR745qpWHzCoARHFFnwex1eaoZVr8Ipo0olOwYRERERERERERERERGlR//uiZgmf75wHL7Y3oTnPtuFVVsOYfQACwBfYk2tFPO3JRYdDJqezfum6d7XgqMrsedwZ0ii0VMcqEyiKm3UgJwejS2YIWiOO5lMhrW3nijpMYiIiIiIiIiIiIiIiCg9mFiUgFGrwoyhRSi2aDHnDyuxZlczNCpfUq21ywkAKLNooVH2LLHoccfcEbA73d6kpVoph93pRq5BnFvxoXPH4KbX1iPfGHuuxVTRqaV5r0RERERERERERERERJR5TCxKaFipBfWDCvC/zQcDEotbDrQBAMpzpZ1Q3JNUBIDVS2bgjW/2oqL7GBV5ejx32VGSHk+rkqPL4Y67vaohwbatRERERERERERERERE1Hsx8yOxX504CP/bfDBg2bZGMbFYlqNLaF9KefwTJOYZNbhkanVC+0/UxjtPwnc/HYn7fZi04sdLkcD7CPa3hROwZmczrAZ10vsgIiIiIiIiIiIiIiKinmNiUWKjBuRgck0edja1w+50B7zmX8XorzJPrDIcUmzyLjt5ZAmm1OZJNq7SHC0AwKxV9Wg/I8osca87oSoXt506DHWFhqSPd/zQIhw/tCjp7YmIiIiIiIgoswbnDgYAmDVmAMDI/JEAgFEFozI2JiIiIiJKDhOLKfDY/LFYve0Qcrur7B6dPw53r/gBJd3JvRKL+Lenoq/QpMWXN89El8Pl28cF4yQd03kTK2BzujG+0irpfqNRyGW4OMVVlERERERERETUu5096GzUWmqRr88HAFi1VqyetxouwRVjSyIiIiLqbZhYTIFcowYnjyr1Pi/L0eHxC8Z7n194dCUOdzgwwOqbc7HApEn5uBZMrkr5MYiIiIiIiIiIgo0tGhvw3Kg2pvR4nmrIXG1uSo9DRERElG2yLrEoCAIAoKWlJaPjWDixKKFxuG0d3vXtEVqqEhERJcvzfeT5nqTU6S2xCBERUW/CWCR9siUWmZI7Bc8d9xz0Kj1aWlrQ3toOV6cLtnZbv3/vRESUOMYiRPGTCVn2L2XPnj0oLy/P9DCIiIh6pd27d2PAgAGZHka/xliEiIgoMsYiqcdYhIiIKDLGIkSxZV1i0e12Y+/evTCZTJDJZJLss6WlBeXl5di9ezfMZrMk+8xWPJfS4bmUDs+ldHgupZGK8ygIAlpbW1FaWgq5XC7JPik8xiK9G8+ldHgupcNzKR2eS2kwFunbGIv0bjyX0uG5lA7PpXR4LqUj9blkLEIUv6xrhSqXy1N2x4HZbOYXgkR4LqXDcykdnkvp8FxKQ+rzaLFYJNsXRcZYpG/guZQOz6V0eC6lw3MpDcYifRNjkb6B51I6PJfS4bmUDs+ldKQ8l4xFiOLD1DsRERERERERERERERERxcTEIhERERERERERERERERHFxMSiBDQaDZYtWwaNRpPpofR5PJfS4bmUDs+ldHgupcHzSMH4mZAOz6V0eC6lw3MpHZ5LafA8UjB+JqTDcykdnkvp8FxKh+dSOjyXRJkjEwRByPQgiIiIiIiIiIiIiIiIiKh3Y8UiEREREREREREREREREcXExCIRERERERERERERERERxcTEIhERERERERERERERERHFxMQiEREREREREREREREREcXExGKcHnvsMVRVVUGr1eKoo47CF198EXX9V155BUOGDIFWq8XIkSPx1ltvpWmkvV8i5/Kvf/0rpk2bBqvVCqvVipkzZ8Y899kk0c+lx4svvgiZTIa5c+emdoB9SKLn8vDhw1i0aBFKSkqg0WgwaNAg/jtH4ufx4YcfxuDBg6HT6VBeXo7rr78eXV1daRpt7/Xxxx/j1FNPRWlpKWQyGV5//fWY23z00UcYN24cNBoN6urq8PTTT6d8nJRejEWkw1hEOoxFpMNYRBqMRaTBWITCYSwiHcYi0mEsIh3GItJhPNJzjEWIejmBYnrxxRcFtVotPPXUU8L3338vXH755UJOTo6wf//+sOuvWrVKUCgUwn333Sf88MMPwi233CKoVCph/fr1aR5575PouZw/f77w2GOPCWvXrhU2bNggXHzxxYLFYhH27NmT5pH3PomeS4/t27cLZWVlwrRp04TTTz89PYPt5RI9lzabTZgwYYIwZ84cYeXKlcL27duFjz76SFi3bl2aR967JHoen3/+eUGj0QjPP/+8sH37duE///mPUFJSIlx//fVpHnnv89Zbbwk333yz8OqrrwoAhNdeey3q+tu2bRP0er2wePFi4YcffhD++Mc/CgqFQnjnnXfSM2BKOcYi0mEsIh3GItJhLCINxiLSYSxCwRiLSIexiHQYi0iHsYh0GI9Ig7EIUe/GxGIcJk2aJCxatMj73OVyCaWlpcLy5cvDrn/uuecKJ598csCyo446Svj5z3+e0nH2BYmey2BOp1MwmUzCM888k6oh9hnJnEun0ylMmTJFePLJJ4WFCxcygO6W6Ln805/+JNTU1Ah2uz1dQ+wTEj2PixYtEmbMmBGwbPHixcLUqVNTOs6+Jp4A+sYbbxSGDx8esOy8884TZs2alcKRUToxFpEOYxHpMBaRDmMRaTAWSQ3GIiQIjEWkxFhEOoxFpMNYRDqMR6THWISo92Er1Bjsdju+/vprzJw507tMLpdj5syZWL16ddhtVq9eHbA+AMyaNSvi+tkimXMZrKOjAw6HA7m5uakaZp+Q7Lm84447UFhYiEsvvTQdw+wTkjmXb7zxBiZPnoxFixahqKgII0aMwD333AOXy5WuYfc6yZzHKVOm4Ouvv/a2BNm2bRveeustzJkzJy1j7k/4vdO/MRaRDmMR6TAWkQ5jEWkwFsksfu/0b4xFpMNYRDqMRaTDWEQ6jEcyh987ROmlzPQAervGxka4XC4UFRUFLC8qKsLGjRvDbtPQ0BB2/YaGhpSNsy9I5lwG+81vfoPS0tKQL4psk8y5XLlyJf72t79h3bp1aRhh35HMudy2bRs+/PBDXHDBBXjrrbewZcsWXH311XA4HFi2bFk6ht3rJHMe58+fj8bGRhxzzDEQBAFOpxNXXnklbrrppnQMuV+J9L3T0tKCzs5O6HS6DI2MpMBYRDqMRaTDWEQ6jEWkwVgksxiL9G+MRaTDWEQ6jEWkw1hEOoxHMoexCFF6sWKR+ox7770XL774Il577TVotdpMD6dPaW1txUUXXYS//vWvyM/Pz/Rw+jy3243CwkL85S9/wfjx43Heeefh5ptvxhNPPJHpofUpH330Ee655x48/vjjWLNmDV599VWsWLECd955Z6aHRkQUFmOR5DEWkRZjEWkwFiGivoaxSPIYi0iLsYh0GI8QUV/EisUY8vPzoVAosH///oDl+/fvR3FxcdhtiouLE1o/WyRzLj3uv/9+3HvvvXj//fcxatSoVA6zT0j0XG7duhU7duzAqaee6l3mdrsBAEqlEps2bUJtbW1qB91LJfO5LCkpgUqlgkKh8C4bOnQoGhoaYLfboVarUzrm3iiZ87h06VJcdNFFuOyyywAAI0eORHt7O6644grcfPPNkMt570u8In3vmM1m3pXXDzAWkQ5jEekwFpEOYxFpMBbJLMYi/RtjEekwFpEOYxHpMBaRDuORzGEsQpRe/J8pBrVajfHjx+ODDz7wLnO73fjggw8wefLksNtMnjw5YH0AeO+99yKuny2SOZcAcN999+HOO+/EO++8gwkTJqRjqL1eoudyyJAhWL9+PdatW+f9c9ppp+G4447DunXrUF5ens7h9yrJfC6nTp2KLVu2eH8JAYDNmzejpKQka4PnZM5jR0dHSIDs+aVEEITUDbYf4vdO/8ZYRDqMRaTDWEQ6jEWkwVgks/i9078xFpEOYxHpMBaRDmMR6TAeyRx+7xClmUAxvfjii4JGoxGefvpp4YcffhCuuOIKIScnR2hoaBAEQRAuuugiYcmSJd71V61aJSiVSuH+++8XNmzYICxbtkxQqVTC+vXrM/UWeo1Ez+W9994rqNVq4Z///Kewb98+75/W1tZMvYVeI9FzGWzhwoXC6aefnqbR9m6Jnstdu3YJJpNJuOaaa4RNmzYJb775plBYWCjcddddmXoLvUKi53HZsmWCyWQS/vGPfwjbtm0T3n33XaG2tlY499xzM/UWeo3W1lZh7dq1wtq1awUAwoMPPiisXbtW2LlzpyAIgrBkyRLhoosu8q6/bds2Qa/XCzfccIOwYcMG4bHHHhMUCoXwzjvvZOotkMQYi0iHsYh0GItIh7GINBiLSIexCAVjLCIdxiLSYSwiHcYi0mE8Ig3GIkS9GxOLcfrjH/8oVFRUCGq1Wpg0aZLw2WefeV+rr68XFi5cGLD+yy+/LAwaNEhQq9XC8OHDhRUrVqR5xL1XIueysrJSABDyZ9myZekfeC+U6OfSHwPoQImey08//VQ46qijBI1GI9TU1Ah333234HQ60zzq3ieR8+hwOITbbrtNqK2tFbRarVBeXi5cffXVQnNzc/oH3sv897//Dft/n+f8LVy4UKivrw/ZZsyYMYJarRZqamqEv//972kfN6UWYxHpMBaRDmMR6TAWkQZjEWkwFqFwGItIh7GIdBiLSIexiHQYj/QcYxGi3k0mCKypJiIiIiIiIiIiIiIiIqLoOMciEREREREREREREREREcXExCIRERERERERERERERERxcTEIhERERERERERERERERHFxMQiEREREREREREREREREcXExCIRERERERERERERERERxcTEIhERERERERERERERERHFxMQiEREREREREREREREREcXExCIRERERERERERERERERxcTEIhH1WTKZDK+//nqmh0FERERZirEIERERZRJjESIiygQmFomylEwmi/rntttuS9tYpk+f7j2uVqvFsGHD8Pjjj8fcbt++fTjppJPSMEIiIiKSGmMRIiIiyiTGIkRERMlRZnoARJQZ+/bt8z5+6aWXcOutt2LTpk3eZUaj0ftYEAS4XC4olan7L+Pyyy/HHXfcgY6ODjz77LNYtGgRrFYr5s2bF7Ku3W6HWq1GcXFxysZDREREqcVYhIiIiDKJsQgREVFyWLFIlKWKi4u9fywWC2Qymff5xo0bYTKZ8Pbbb2P8+PHQaDRYuXIlLr74YsydOzdgP9dddx2mT5/ufe52u7F8+XJUV1dDp9Nh9OjR+Oc//xlzPHq9HsXFxaipqcFtt92GgQMH4o033gAg3rl3zTXX4LrrrkN+fj5mzZoFILTlx549ezBv3jzk5ubCYDBgwoQJ+Pzzz72v//vf/8a4ceOg1WpRU1OD22+/HU6nM/mTSEREREljLMJYhIiIKJMYizAWISKi5LBikYgiWrJkCe6//37U1NTAarXGtc3y5cvx3HPP4YknnsDAgQPx8ccf48ILL0RBQQHq6+vjPrZOp4Pdbvc+f+aZZ3DVVVdh1apVYddva2tDfX09ysrK8MYbb6C4uBhr1qyB2+0GAHzyySdYsGAB/vCHP2DatGnYunUrrrjiCgDAsmXL4h4XERERpQ9jESIiIsokxiJEREShmFgkoojuuOMOnHDCCXGvb7PZcM899+D999/H5MmTAQA1NTVYuXIl/vznP8cVQLtcLvzjH//At99+6w1wAWDgwIG47777Im73wgsv4ODBg/jyyy+Rm5sLAKirq/O+fvvtt2PJkiVYuHChd1x33nknbrzxRgbQREREvRRjESIiIsokxiJEREShmFgkoogmTJiQ0PpbtmxBR0dHSNBtt9sxduzYqNs+/vjjePLJJ2G326FQKHD99dfjqquu8r4+fvz4qNuvW7cOY8eO9QbPwb755husWrUKd999t3eZy+VCV1cXOjo6oNfrY709IiIiSjPGIkRERJRJjEWIiIhCMbFIRBEZDIaA53K5HIIgBCxzOBzex21tbQCAFStWoKysLGA9jUYT9VgXXHABbr75Zuh0OpSUlEAuD5wCNngswXQ6XdTX29racPvtt+PMM88MeU2r1UbdloiIiDKDsQgRERFlEmMRIiKiUEwsElHcCgoK8N133wUsW7duHVQqFQBg2LBh0Gg02LVrV0LzBgCAxWIJaNGRqFGjRuHJJ59EU1NT2Lvzxo0bh02bNvXoGERERJRZjEWIiIgokxiLEBERMbFIRAmYMWMGfv/73+PZZ5/F5MmT8dxzz+G7777ztvMwmUz49a9/jeuvvx5utxvHHHMMjhw5glWrVsFsNnv7+KfCvHnzcM8992Du3LlYvnw5SkpKsHbtWpSWlmLy5Mm49dZbccopp6CiogJnn3025HI5vvnmG3z33Xe46667UjYuIiIikg5jESIiIsokxiJERESAPPYqRESiWbNmYenSpbjxxhsxceJEtLa2YsGCBQHr3HnnnVi6dCmWL1+OoUOHYvbs2VixYgWqq6tTOja1Wo13330XhYWFmDNnDkaOHIl7770XCoXCO/Y333wT7777LiZOnIijjz4aDz30ECorK1M6LiIiIpIOYxEiIiLKJMYiREREgEwIbgxORERERERERERERERERBSEFYtEREREREREREREREREFBMTi0REREREREREREREREQUExOLRERERERERERERERERBQTE4tEREREREREREREREREFBMTi0REREREREREREREREQUExOLRERERERERERERERERBQTE4tEREREREREREREREREFBMTi0REREREREREREREREQUExOLRERERERERERERERERBQTE4tEREREREREREREREREFBMTi0REREREREREREREREQU0/8HVXSp5BjTlrQAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABxYAAAH5CAYAAACs6ttbAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3wUdf4/8NfuzPZsEtKBAKGDiiIWRP0qeJwCFrAfoICFs3fP+vME7yynh4IF8cQDRfT0DsSGgKKAAoKgFCEkJJAC6T272To7vz8ms+wmW2a2b3g/Hw8fkd3ZnU82bXZe836/FTzP8yCEEEIIIYQQQgghhBBCCCGEkACU8V4AIYQQQgghhBBCCCGEEEIIISTxUbBICCGEEEIIIYQQQgghhBBCCAmKgkVCCCGEEEIIIYQQQgghhBBCSFAULBJCCCGEEEIIIYQQQgghhBBCgmLjvQBCCCGEEEIIIYQQQgghhJCeiOM4OByOeC+DEMnUajWUSv91iRQsEkIIIYQQQgghhBBCCCGERBDP86ipqUFLS0u8l0KILEqlEgMHDoRarfZ5v4LneT7GayKEEEIIIYQQQgghhBBCCOmxqqur0dLSgpycHOj1eigUingviZCgXC4XqqqqoFKp0L9/f5/ft1SxSAghhBBCCCGEEEIIIYQQEiEcx7lDxczMzHgvhxBZsrOzUVVVBafTCZVK1e1+/01SCSGEEEIIIYQQQgghhBBCiCziTEW9Xh/nlRAin9gCleM4n/dTsEgISRjLly+HQqFAWVmZ+7bx48dj/PjxcVsTIYQQQgghhBBCCCGEhILan5JkFOz7loJFQkhY9u/fj+uuuw4DBgyAVqtF37598cc//hFvvPFGVPZXVVWFefPmYc+ePVF5fkIIIYQkp9LSUtxxxx0YNGgQtFotUlNTccEFF2DRokWwWCzu7RwOB15//XWcc845MBqNSElJwTnnnIM33ngDTqez2/MWFBRAoVC4/zMYDDj33HPxwQcfxPLTI4QQQkiSkHpMwnEcli1bhvHjxyMjIwMajQYFBQW45ZZbsGvXLvd24kXY4n9arRbDhg3Dvffei9ra2nh8ioQQQk5yNGOREBKybdu2YcKECejfvz/mzp2LvLw8VFZW4ueff8aiRYtw3333hb2PDRs2eP27qqoK8+fPR0FBAUaPHh328xNCCCEk+X399de4/vrrodFoMGvWLJx22mmw2+346aef8Je//AUHDhzAv/71L5jNZlx++eXYvHkzrrjiCsyZMwdKpRLr1q3D/fffjzVr1uDLL7/s1q5o9OjReOSRRwAA1dXVWLp0KWbPng2bzYa5c+fG41MmhBBCSAKSekxisVhwzTXXYN26dbjooovw1FNPISMjA2VlZfj000/x/vvvo6KiAvn5+e7nfu655zBw4EBYrVb89NNPePvtt7F27Vr8/vvv1GqREEJITFGwSAgJ2fPPP4+0tDT88ssvSE9P97qvrq4uIvsQ+zkTQgghhPhy9OhR/OlPf8KAAQPw/fffo3fv3u777rnnHpSUlODrr78GADz88MPYvHkz3njjDdx7773u7e666y689dZbuPfee/GXv/wFb731ltc++vbti5tuusn97zlz5mDQoEF47bXXKFgkhBBCCAB5xyR/+ctfsG7dOrz22mt48MEHvZ7n2WefxWuvvdbt+SdPnoyzzz4bAHD77bcjMzMTr776Kj7//HNMnz49ep8YIYREyZw5c9DS0oI1a9YAEEZijR49GgsXLgz5OSPxHCQ4aoVKCAlZaWkpTj311G6hIgDk5OS4/1+hUODee+/FypUrMXz4cGi1Wpx11lnYsmVL0H14zljctGkTzjnnHADALbfc4m4Dsnz58kh8OoQQQghJQi+//DJMJhPee+89rxN4oiFDhuCBBx7AsWPH8N577+GSSy7xChVF99xzDyZMmIB//etfOH78eMB9ZmdnY8SIESgtLY3Y50EIIYSQ5CbnmOSdd97BH//4x26hIgAwDINHH33Uq1rRl0suuQSAEGgSQkgkzZkzx33eVa1WY8iQIXjuued8jo6IpNWrV+Nvf/ubpG03bdoEhUKBlpaWkJ+DhI6CRUJIyAYMGIDdu3fj999/D7rt5s2b8eCDD+Kmm27Cc889h8bGRkyaNEnSY0UjR47Ec889BwD485//jBUrVmDFihW46KKLQv4cCCGEEJLcvvzySwwaNAjnn39+wO2++eYbcByHWbNm+d1m1qxZcDqdWLduXcDncjqdOHbsGHr16hXSmgkhhBDS88g5JnE6nbj55pvD2p94gVNmZmZYz0MIIb5MmjQJ1dXVOHz4MB555BHMmzcPr7zySrft7HZ7xPaZkZEBo9EY9+cgwVGwSAgJ2aOPPoqOjg6MHj0a559/Ph5//HFs2LABDoej27a///471q1bh2eeeQaPPfYYtmzZAp7n8de//lXy/nJzczF58mQAwLhx43DTTTfhpptuwqBBgyL2ORFCCCEkebS1teH48eMYNWpU0G0PHjwIADjjjDP8biPeJ24rcjgcaGhoQENDA37//XfceuutqKmpwXXXXRfG6gkhhBDSU8g5JiksLAQASdt6am1tRUNDA44dO4ZPPvkEzz33HHQ6Ha644oqQ1kwIIYFoNBrk5eVhwIABuOuuuzBx4kR88cUXmDNnDqZNm4bnn38effr0wfDhwwEAlZWVuOGGG5Ceno6MjAxMnToVZWVl7ufjOA4PP/ww0tPTkZmZicceeww8z3vtc/z48V6V3DabDY8//jj69esHjUaDIUOG4L333kNZWRkmTJgAAOjVqxcUCgXmzJnj8zmam5sxa9Ys9OrVC3q9HpMnT8bhw4fd9y9fvhzp6elYv349Ro4ciZSUFHeoSvyjGYuEkJD98Y9/xPbt2/Hiiy9i/fr12L59O15++WVkZ2dj6dKluOqqq9zbjhs3DmeddZb73/3798fUqVPx5ZdfguM4MAwTj0+BEEIIIUmsra0NACRdkdre3h50W/E+cVvRhg0bkJ2d7XXbLbfc4vOKXUIIIYScfOQck8jZ1tPEiRO9/j1gwACsXLkSffv2lfU8hJD46ejowKFDh2K+3xEjRkCv14f1HDqdDo2NjQCAjRs3IjU1Fd9++y0A4ULMyy67DOPGjcOPP/4IlmXx97//HZMmTcK+ffugVquxYMECLF++HP/+978xcuRILFiwAJ999pm7rbMvs2bNwvbt2/H666/jjDPOwNGjR9HQ0IB+/fph1apVuPbaa1FUVITU1FTodDqfzzFnzhwcPnwYX3zxBVJTU/H4449jypQpOHjwIFQqFQDh6/LPf/4TK1asgFKpxE033YRHH30UK1euDOs168koWCSEhOWcc87B6tWrYbfbsXfvXnz22Wd47bXXcN1112HPnj045ZRTAABDhw7t9thhw4aho6MD9fX1yMvLi/XSCSGEEJLkUlNTAXQPAn3xFxp6Eu/znBUNAGPHjsXf//53cByH33//HX//+9/R3NwMtVod6tIJIYQQ0oPIOSaRs62nt956C8OGDQPLssjNzcXw4cOhVFIzOkKSyaFDh7wKL2Jl9+7dGDNmTEiP5XkeGzduxPr163Hfffehvr4eBoMBS5cudb8f+vDDD+FyubB06VIoFAoAwLJly5Ceno5Nmzbh0ksvxcKFC/Hkk0/immuuAQAsWbIE69ev97vf4uJifPrpp/j222/dF1Z4dq3LyMgAILx3S09P9/kcYqC4detWd5vqlStXol+/flizZg2uv/56AEIwumTJEgwePBgAcO+997rHcRHfKFgkhESEWq3GOeecg3POOQfDhg3DLbfcgv/+97949tln4700QgghhPRQqamp6NOnj6SZzeLFTvv27cPo0aN9brNv3z4A6NZmPSsry/1m9rLLLsOIESNwxRVXYNGiRXj44YfD+AwIIYQQ0hPIOSYZMWIEAGD//v1+j0l8Offcc3H22WeHukRCSAIYMWIEdu/eHZf9yvXVV18hJSUFDocDLpcLM2bMwLx583DPPfdg1KhRXhdZ7t27FyUlJd0qsa1WK0pLS9Ha2orq6mqMHTvWfR/Lsjj77LO7tUMV7dmzBwzD4OKLL5a9dlFhYSFYlvXab2ZmJoYPH+5uSw0Aer3eHSoCQO/evVFXVxfyfk8GFCwSQiJOPND17EXt2btaVFxcDL1e3621WCDiVS+EEEIIIQBwxRVX4F//+he2b9+OcePG+d1u8uTJYBgGK1aswKxZs3xu88EHH0CtVmPq1KkB93n55Zfj4osvxgsvvIA77rgDBoMhrM+BEEIIIclP7jHJhx9+iJtvvjmGKySExJterw+5cjDWJkyYgLfffhtqtRp9+vQBy56Ikrq+/zGZTDjrrLN8tg6Vc97Xk7/WptEgtkQVKRQKv4EnEVC9PCEkZD/88IPPX7Jr164FAPfwXgDYvn07fv31V/e/Kysr8fnnn+PSSy+VNV9R/MPV0tIS4qoJIYQQ0pM89thjMBgMuP3221FbW9vt/tLSUixatAj5+fm47bbb8N133+Htt9/utt2SJUvw/fff44477kBmZmbQ/T7++ONobGzEu+++G5HPgxBCCCHJTeoxSb9+/TB37lxs2LABb7zxRrftXC4XFixYgGPHjsVi2YQQ4pPBYMCQIUPQv39/r1DRlzFjxuDw4cPIycnBkCFDvP5LS0tDWloaevfujR07drgf43Q6A1Zvjho1Ci6XC5s3b/Z5v1gxyXGc3+cYOXIknE6n134bGxtRVFTk7mhDQkMVi4SQkN13333o6OjA1VdfjREjRsBut2Pbtm345JNPUFBQgFtuucW97WmnnYbLLrsM999/PzQaDRYvXgwAmD9/vqx9Dh48GOnp6ViyZAmMRiMMBgPGjh2LgQMHRvRzI4QQQkhyGDx4MD766CPceOONGDlyJGbNmoXTTjvNfVzy3//+F3PmzAEAvPrqqzh06BDuvvturFu3DpMmTQIArF+/Hp9//jkuueQSvPLKK5L2O3nyZJx22ml49dVXcc8993S7ypUQQgghJxc5xyQLFixAaWkp7r//fqxevRpXXHEFevXqhYqKCvz3v//FoUOH8Kc//Sm+nxAhhEg0c+ZMvPLKK5g6dSqee+455Ofno7y8HKtXr8Zjjz2G/Px8PPDAA3jppZcwdOhQjBgxAq+++mrAwpGCggLMnj0bt956K15//XWcccYZKC8vR11dHW644QYMGDAACoUCX331FaZMmQKdToeUlBSv5xg6dCimTp2KuXPn4p133oHRaMQTTzyBvn37Bu1SQwKjikVCSMj++c9/YsKECVi7di0efvhhPPzww9i5cyfuvvtu7Nixw2tw7sUXX4yFCxdixYoV+Otf/4qMjAx88803OP3002XtU6VS4f333wfDMLjzzjsxffp0v1euEEIIIeTkcNVVV2Hfvn247rrr8Pnnn+Oee+7BE088gbKyMixYsACvv/46AOGq2++++w4LFy7E8ePH8eijj+Luu+/G559/jtmzZ+Pbb7+FRqORvN9HH30UlZWVPlv+EEIIIeTkI/WYRK/X45tvvsHSpUvBcRz+9re/4c4778Ty5csxduxY7N69G3379o3zZ0MIIdLo9Xps2bIF/fv3xzXXXIORI0fitttug9VqRWpqKgDgkUcewc0334zZs2dj3LhxMBqNuPrqqwM+79tvv43rrrsOd999N0aMGIG5c+fCbDYDAPr27Yv58+fjiSeeQG5uLu69916fz7Fs2TKcddZZuOKKKzBu3DjwPI+1a9fShaFhUvDULJYQEmUKhQL33HMP3nzzzXgvhRBCCCHES1tbGy6++GKUlpZiy5YtGD16dLyXRAghhBBCCElyVqsVR48excCBA6HVauO9HEJkCfb9SxWLhBBCCCGEkJNWamoqvvnmG2RlZWHKlCkoLy+P95IIIYQQQgghhJCERTMWCSGEEEIIISe1vLw8HDlyJN7LIIQQQgghhBBCEh5VLBJCCCGEEEIIIYQQQgghhBBCgqKKRUJI1NEoV0IIIYQQQgghhBBCCCEk+VHFIiGEEEIIIYQQQgghhBBCCCEkKAoWCSGEEEIIIYQQQgghhBBCCCFBnXStUF0uF6qqqmA0GqFQKOK9HEIIISQh8DyP9vZ29OnTB0olXXcUTXQsQgghhHRHxyKxQ8cihBBCSHd0LEKIdCddsFhVVYV+/frFexmEEEJIQqqsrER+fn68l9Gj0bEIIYQQ4h8di0QfHYsQQggh/tGxCCHBnXTBotFoBCD8gkhNTY3zagghhBB5rA4O5/z9O/AAnpt6Cq4ZE5mTQm1tbejXr5/77ySJHjoWIYQQQrqjY5HYoWMR0hPUmGow7YtpAIDFf1iMMblj4rugHqS8tRw3fn0jzsk9B2/84Y2IPe/Na2+GUqHE7aNux5HWI3h779sBv3bnfXQeWCWLn/70U8TWcDKa8fUMHGk9gvvPvB8zRs7AkZYjmLF2Bm4acRPOyDnDvV1Jcwne2f8OlkxcgtE5o+O23oW7F+Lzks/x3AXPBdzuyR+fhJN3AgB+nvFzRPYdq2MRq4ODnXNFdR+e1IwSWhUTs/3JMWfOHLS0tGDNmjUAgPHjx2P06NFYuHBhyM8ZiecIZtOmTZgwYQKam5uRnp4etf1Em0KhwGeffYZp06bJfuxJFyyKbT5SU1PpAJoQQkjSqTjeCoVGDwUAjc4Y8b9l1A4r+uhYhBBCCPGPjkWij45FSE9gVprB6IQT5Sq9ir6XI8jIG8HoGKgN6oi+rjaVDXn6PBiMBug4HRgdgxRjit99MDoGjJKhr224NMJrqUvRITU1FR2mDjA6BrmZuTAYDe7N0lxpwmuui+9rbmWtSElN8VqbL4yOAc/zAJBU50WsDg4bDtSg1eqI2j66StOqcOmpeZLDxTlz5uD9998HAKhUKvTv3x+zZs3CU089BZaNbpy0evVqqFQqSdv6C/fkPEeozj//fFRXVyMtLU3yY7qGqMnupAsWCSGEkGR2uK493ksghBBCCCGEkIRh5+zxXgKRwGQ3QZ+mj/cyTjp2l/fPR31HPQAgXZPudbuKEYKYeP88tdnboGN1cV1DNNk5F1qtDmhZBho2+nMcbU5hf3bOJatqcdKkSVi2bBlsNhvWrl2Le+65ByqVCk8++WS3be12O9RqdUTWm5GRkRDPEYxarUZeXl7U9+NLJF/vcNAUUkIIISSJFNea4r0EQgghhBBCCEkYXYMTkpjMTjMMqsBVaCTynC6n178bLA0AgDS1d6WVWikEFRanJTYL86PN3gYNo4nrGmJBwyqhV7NR/y/U8FKj0SAvLw8DBgzAXXfdhYkTJ+KLL74AIFTeTZs2Dc8//zz69OmD4cOHAxBarN9www1IT09HRkYGpk6dirKyMvdzchyHhx9+GOnp6cjMzMRjjz3mrjoVjR8/Hg8++KD73zabDY8//jj69esHjUaDIUOG4L333kNZWRkmTJgAAOjVqxcUCgXmzJnj8zmam5sxa9Ys9OrVC3q9HpMnT8bhw4fd9y9fvhzp6elYv349Ro4ciZSUFEyaNAnV1dV+X59NmzZBoVCgpaVF0nPMmzcP77//Pj7//HMoFAooFAps2rRJ0uvm6/V+6qmnMHbs2G7rOuOMM/Dcc0Ib4V9++QV//OMfkZWVhbS0NFx88cX49ddf/X5OclGwSAghhCSRQ9VtYJXUIowQQgghhBBCgPhXWJHgzHYznC4nBYtx4HB5t9xssDRAx+rAMt6NDFXKzorFOAf1bbY26FVU2ZpodDod7PYT3xsbN25EUVERvv32W3z11VdwOBy47LLLYDQa8eOPP2Lr1q3ucE183IIFC7B8+XL8+9//xk8//YSmpiZ89tlnAfc7a9YsfPzxx3j99ddRWFiId955BykpKejXrx9WrVoFACgqKkJ1dTUWLVrk8znmzJmDXbt24YsvvsD27dvB8zymTJkCh+PEz0ZHRwf++c9/YsWKFdiyZQsqKirw6KOPynqNAj3Ho48+ihtuuMEdNlZXV+P888+X9Lr5er1nzpyJnTt3orS01L3NgQMHsG/fPsyYMQMA0N7ejtmzZ+Onn37Czz//jKFDh2LKlClob49MJzRqhUoIIYQkkeJaE7KMGtS0WuO9FEIIIYQQQgiJOwoWE1+TrQkAkKJKifNKTj5dKxYbrY0wsN0DXrFi0eqM77mGdkc7snRZcV0DOYHneWzcuBHr16/Hfffd577dYDBg6dKl7pacH374IVwuF5YuXeqeUbls2TKkp6dj06ZNuPTSS7Fw4UI8+eSTuOaaawAAS5Yswfr16/3uu7i4GJ9++im+/fZbTJw4EQAwaNAg9/1iy9OcnByvGYueDh8+jC+++AJbt27F+eefDwBYuXIl+vXrhzVr1uD6668HADgcDixZsgSDBw8GANx7773uyj+pAj1HSkoKdDodbDabVwtVKa8b0P31BoTqxI8++gjPPPOM+/MaO3YshgwZAgC45JJLvNb3r3/9C+np6di8eTOuuOIKWZ+bL1SxSAghhCSJDrsTVS0WZKXEv5c6IYQQQgghhCQCChYTX2NHIwAKFuOha8Vis7XZZ0WgmhHOM9g4W0zW5Y/ZYZZUsejknUG3IaH76quvkJKSAq1Wi8mTJ+PGG2/EvHnz3PePGjXKK+Tau3cvSkpKYDQakZKSgpSUFGRkZMBqtaK0tBStra2orq72at/JsizOPvtsv2vYs2cPGIbBxRdfHPLnUVhYCJZlvfabmZmJ4cOHo7Cw0H2bXq93B4IA0Lt3b9TV1cnaVyjPEex1E3V9vQFg5syZ+OijjwAIAfDHH3+MmTNnuu+vra3F3LlzMXToUKSlpSE1NRUmkwkVFRWyPi9/qGKREEIISRIldSbwALJTev68AUIIIYQQQgiRIt6tG0lwzbZmAECKmoLFWOtasdhsbfbZkpZlWCigiGuwyLk4dDg6qGVuApgwYQLefvttqNVq9OnTByzrHSMZDN5fI5PJhLPOOgsrV67s9lzZ2dkhrUGn04X0uFCoVCqvfysUim7zH6PxHFJft66vNwBMnz4djz/+OH799VdYLBZUVlbixhtvdN8/e/ZsNDY2YtGiRRgwYAA0Gg3GjRvn1WI1HBQsEkIIIUmiuNYEAMgxauO8EkIIIYQQQghJDA7OEXwjEldNVmqFGg+ciwPHc163NduaUZBa4HN7VsnGNVhssbWAB0/fJwnAYDC4W2pKMWbMGHzyySfIyclBamqqz2169+6NHTt24KKLLgIAOJ1O7N69G2PGjPG5/ahRo+ByubB582Z3K1RPYgUfx3Hd7hONHDkSTqcTO3bscLdCbWxsRFFREU455RTJn18kqNXqbmuV8rr5k5+fj4svvhgrV66ExWLBH//4R+Tk5Ljv37p1KxYvXowpU6YAACorK9HQ0BD+J9KJWqESQgghSeJwbTsyDGqkaJl4L4UQQgghhBBCEoLNFd/WjSS4dkc7AFAlWoz5quZts7XBqDb63J5VsLA54/fz1GARQg8KFpPPzJkzkZWVhalTp+LHH3/E0aNHsWnTJtx///04duwYAOCBBx7ASy+9hDVr1uDQoUO4++670dLS4vc5CwoKMHv2bNx6661Ys2aN+zk//fRTAMCAAQOgUCjw1Vdfob6+HiaTqdtzDB06FFOnTsXcuXPx008/Ye/evbjpppvQt29fTJ06NSqvRaDPZ9++fSgqKkJDQwMcDoek1y2QmTNn4j//+Q/++9//erVBBYTPfcWKFSgsLMSOHTswc+bMiFaBUrBICCGEJIlDNe3IMWqgZujPNyGEEEIIIYQAsatYbLW1YtT7o/DZ4c9isr+exOwwg1EwUDGq4BuTiLE4Ld3+beWsSFX7roxilExcKxZPppa5NqcLHXZn1P+zOV0x+Xz0ej22bNmC/v3745prrsHIkSNx2223wWq1uivxHnnkEdx8882YPXs2xo0bB6PRiKuvvjrg87799tu47rrrcPfdd2PEiBGYO3cuzGYzAKBv376YP38+nnjiCeTm5uLee+/1+RzLli3DWWedhSuuuALjxo0Dz/NYu3Ztt9al0TZ37lwMHz4cZ599NrKzs7F161ZJr1sg1113HRobG9HR0YFp06Z53ffee++hubkZY8aMwc0334z777/fq6IxXNQKlRBCCEkSxbXtGJhlgJqhikVCCCGEEEIIAQCHKzbB4vH24wCAHyp/wNVDA58MJ946HB1QM+p4L+Ok07X6sNZcCwBI06T53J5VsrBz8ZtZ2mQRWub6Cz57AjWjRJpWhVarA1an/xaekZSmVcm6QH358uUh3Z+Xl4f333/f7+NYlsXChQuxcOFCv9ts2rTJ699arRavvvoqXn31VZ/bP/PMM3jmmWcCPkevXr3wwQcf+N3nnDlzMGfOHK/bpk2bFnA+4vjx473ul/Ic2dnZ2LBhQ7fnCva6Bfp6pKenw2q1+rzvzDPPxC+//OJ123XXXef1b7lzJD1RsEgIIYQkAbPNiepWK84e0Asso4j3cgghhBBCCCEkIcQzCCHSmB1mqJUULMaa1ekdONR2BA4WGQXjs31qrIizOP21au0JtCoGl56aBzsXm0pCQAgztSq6QJ1EFgWLhBBCSBI4XCf0is8yauK8EkIIIYQQQghJHLGqWCShMzvMVLEYB13bmtZ11AEA0tXpPrdnlWzcW6GyChZaVht023RNOlpsLdFfVBRoVQwFfSTp0ZAmQgghJAkU17ZDAaB3avADbEIIIYQQQgg5WVDFYuLrcFIr1HjoWrFY31EPIHFbobbZ2iSFigCgVFCsQUg80U8gIYQQkgSKatqRmaKGUUvD7gkhhJAe5T8zgfVPx3sVhBCStKhiMfFZnVaolPReNtZsLu/qw0ZrI3SMDirG99ci3q1QW2wt0LG6uO2fECIdBYuEEEJIEiiqaUe2UQOtiv50E0IIIT1KxXagei/gsAbfNlFYWoA1dwOW5nivhBBCEipYbLA0wGQzxXsZCafDQRWL8WBzdgkWLY3Qq/R+t2eVLBxc/H6e2uzSKxYJIfFFZycJIYSQJFBc245Mg5r68BNCCCE9id0MdDQCnAPgXfFejXQl3wF7VgofCSEkzuIZhHR1z8Z78I9d/4j3MhJOh7MDGkYT72WcdKyc90VLjdZGGFQGv9vHe8Zim62NKhYJSRIULBJCCCEJrs3qQF27DRkGNVQM/ekmhBBCeozmcuEjZ0uuYLF8u/DRxcV3HYQQAsDBJ06w2GxthtlujvcyEo7FaaFgMQ66hoTN1ubAwaIivjMW2+3t0LP+KyoJIYmDzk4SQgghCe5wrdBKJ9tIb8QIIYSQpHPwC/9tTpvLhI+cEwAfqxWFr3xrvFdACCFuiVSxGM9QJpFZnVYKFmOE53lsKNsAzsV1+35ssbUgRZXi97Gsko1ra+F2R3vAVq2EkMRBwSIhhBCS4A7XtkOhAPKMNGuAEEIISSrNZcCnNwOf3+3/fgBwOZOnYtHSAtQfivcqCCEEAKBUKBNqxmIirSWRWDkrtAy9n42F3bW78cjmR7Crdle3isU2exuMaqPfx7LK+FYsmh1mGFj/FZWEkMRBwSIhhBCS4Ipr25Fl0CBFq4r3UgghhBAih03oOoCOZt/3i8EizyVPsHjsFyRVdSUhpEdLtGBRbiizvmw9Rr0/ClwPby1t5+zQsFSxGAsHGg8AEF5zz2DRwTlgcVqQqk71+1iVUhW3nyeb0wYbZwvYqpUkv3nz5iE3NxcKhQJr1qyJ93KiYt68eRg9erT733PmzMG0adPCes5IPEekUbBICCGEJLhDNe3INmqgVdGfbUIIISSpiCeYlazv+5uOCB9dToBPkrCufFu8V0AIIW6MgkmoVqhyQ5n3D7wPAGi1t0ZjOQnB6rSC4zmqWIyRkpYS9/97BouN1kYAQJomze9j49kKtcnaBAABW7WS2JgzZw4UCgUUCgXUajWGDBmC5557Dk6nM6znLSwsxPz58/HOO++guroakydPDnutXUO8QNuJnxPLsigoKMBDDz0Ek8kU9hqCWbRoEZYvXy5p27KyMigUCuzZsyfk54gVP+9uCCGEEJIoimvbMTIvFVoVE++lEEIIIUQO8WS30s/FQe5WqFwSBYtbAX0m0NEY75UQQggYBQOnK7yT3ZHi4Bzg+J5deRiKNlsbAEDLUrAYC0dbj7r/387ZwSpYOHmnpGBRpVTFLagX15eipmAxEUyaNAnLli2DzWbD2rVrcc8990ClUuHJJ5+U/Vwcx0GhUKC0tBQAMHXqVCgUikgvOahTTz0V3333HZxOJ7Zu3Ypbb70VHR0deOedd7pta7fboVarI7LftDT/P3OxfI5Io9IHQpJUo8kWfCNCSNJr7XCgwWRHRooaKob+bBNCCCFJJVDFIs8DrZXC/7uSpBWq0wZU/Qak94/3SgghBEBnxWKCtELtcHbEewkJqc1BwWIsVbZXuv/fztnBKIULlJutQlv2dE2638fGtWLRIlQsBpoBSWJHo9EgLy8PAwYMwF133YWJEyfiiy++AADYbDY8+uij6Nu3LwwGA8aOHYtNmza5H7t8+XKkp6fjiy++wCmnnAKNRoNbb70VV155JQBAqVR6BYtLly7FyJEjodVqMWLECCxevNhrLceOHcP06dORkZEBg8GAs88+Gzt27MDy5csxf/587N27112NGKiqj2VZ5OXlIT8/HzfeeCNmzpzp/pzEyselS5di4MCB0GqF31ctLS24/fbbkZ2djdTUVFxyySXYu3ev1/O+9NJLyM3NhdFoxG233Qar1ep1f9c2pi6XCy+//DKGDBkCjUaD/v374/nnnwcADBw4EABw5plnQqFQYPz48T6fw2az4f7770dOTg60Wi0uvPBC/PLLL+77N23aBIVCgY0bN+Lss8+GXq/H+eefj6KiIr+vj1x0hpKQJHS0wYxznv8Ov1X6mdVCCOkxiuvaAQDZKZG5UooQQgghMSSenFP46DpgqgOcVkCTmjwzFqv2CGFper94r4QQQgAAjDJxKhYtTku8l5CQTJ3zhnWMLs4r6fnabG3ulqKA0AqVUXgHi4EqFtWMOm4/T022zlaoVLGYkHQ6Hex24YK5e++9F9u3b8d//vMf7Nu3D9dffz0mTZqEw4cPu7fv6OjAP/7xDyxduhQHDhzA66+/jmXLlgEAqqurUV1dDQBYuXIl/vrXv+L5559HYWEhXnjhBTzzzDN4/32hTbTJZMLFF1+M48eP44svvsDevXvx2GOPweVy4cYbb8QjjzyCU0891f2cN954Y0ifEwCUlJRg1apVWL16tbsV6fXXX4+6ujp888032L17N8aMGYM//OEPaGoSvl8//fRTzJs3Dy+88AJ27dqF3r17dwtGu3ryySfx0ksv4ZlnnsHBgwfx0UcfITc3FwCwc+dOAMB3332H6upqrF692udzPPbYY1i1ahXef/99/PrrrxgyZAguu+wy97pETz/9NBYsWIBdu3aBZVnceuutkl+fYKgVKiFJqM3igIsHimvacWa/XvFeDiEkiopr26FUALmpdHUnIYQQknTcrVB9vPUW26AasgCbCUAStEKt2A6wWiCNKhYJIYkhkVqhmh3meC8hIZmcncEiS8FitBU2FXr92+FyuCsWW2wt0DJaqBn/Fy2zSqFtKs/zMW9VKQafqarUmO43HjyDNVGvXr0wcOBAWK1WHDx4sNtjxowZAwAoKiqC2ez9u6agoAAZGRmor69HZWWl131GoxFDhw4Nea08z2Pjxo1Yv3497rvvPlRUVGDZsmWoqKhAnz59AACPPvoo1q1bh2XLluGFF14AADgcDixevBhnnHGG+7nS09MBAHl5ee7bnn32WSxYsADXXHMNAKFi7+DBg3jnnXcwe/ZsfPTRR6ivr8cvv/yCjIwMAMCQIUPcj09JSXFXIsqxe/dufPTRR7jkkkvct9ntdnzwwQfIzs4GAPz000/YuXMn6urqoNFoAAD//Oc/sWbNGvzvf//Dn//8ZyxcuBC33XYbbrvtNgDA3//+d3z33XfdqhZF7e3tWLRoEd58803Mnj0bADB48GBceOGFAODed2Zmpt/PyWw24+2338by5cvdcyrfffddfPvtt3jvvffwl7/8xb3t888/j4svvhgA8MQTT+Dyyy+H1Wp1V2SGg4JFQpKY3ZkEVzUnmcqmDvzfyz/gv3ech3MGZsZ7OYSguKYdWSkapGhU8V4KIYQQQuQK1Aq1pVz4aMgBLC3JUbFYvg1ILwComoAQkiAYBQMblxijYqxO3yeSA+GTZb5uGEx2IVikVqjRV9Tk3eZQnLEIAG32NuhV+oCPVyuF0NHKWWMeBLdYW6BhNGCZnh9XvPPOO5g/f77XbTNnzsSHH36IY8eO4ayzzur2GPF3xZw5c/Dzzz973bdixQrcdNNN+PTTT3Hvvfd63XfppZdi/fr1stf41VdfISUlBQ6HAy6XCzNmzMC8efOwadMmcByHYcOGeW1vs9mQmXniPKparcbpp58ecB9msxmlpaW47bbbMHfuXPftTqfTPVNwz549OPPMM92hYjj279+PlJQUcBwHu92Oyy+/HG+++ab7/gEDBriDPQDYu3cvTCaT1+cFABaLxT0vsrCwEHfeeafX/ePGjcMPP/zgcw2FhYWw2Wz4wx/+EPLnUVpaCofDgQsuuMB9m0qlwrnnnovCQu+LCzy/Br179wYA1NXVoX//8C8S7Pk/qYT0YFYHDQWPtF8rhCukPvutioJFkhAO1bQj26iBVkXdywkhnVwuoOQ7YNil8V4JISQYd7DooxVqcxmgMQr/8S5h5mIic7mAyp+B/HMAFVWdEEISA6NkwDkT49xIKK1QXRAuKnFwiTEnMhpMDiFY1LOBQy0SvsMth73+7Tlj0eK0IEubFfDxKqXKvW3Mg8XOisqTwR133IGrrrrK67ZevYSOdPn5+di9e7ffxy5fvtxnxSIA3HDDDRg3bpzXfUZjaDMrJ0yYgLfffhtqtRp9+vQBywoxkslkAsMw2L17NxjG+/g2JeXEhWc6nS5o1avJJPxuePfddzF27Fiv+8Tn1uki9304fPhwfPHFF2BZFn369IFa7V29azAYuq2vd+/eXvMjRWL1pVyR/HykUKlOFCmIXw+XKzIXM1KwSEgSo2CRkJ7vcJ0Jp/VJhVbl44QkIeTktOkFYMsrwE2rgSGhX+lICImBQK1Qm44A+kyA1QAuZ+JXLDYUAdZWIK0fwFAnBUJIYkikVqgdzg7ZjxErxDoc8h+bLMRgkVqhRt/R1qNIVaeizd4GALC7TlQsAoBBZfD3UABwVwtaHBYghhmfg3Pgp6qfkK3PDr5xD9C7d2939VhXWq3W3fbUl+HDh/u9Lzs726viLhwGg8Gr5ajozDPPBMdxqKurw//93/+FtY/c3Fz06dMHR44cwcyZM31uc/rpp2Pp0qVoamryWbWoVqvBcdLOj6vVap+fkz9jxoxBTU0NWJZ1h7ddjRw5Ejt27MCsWbPct3WtKPU0dOhQ6HQ6bNy4EbfffrvPNQII+DkNHjwYarUaW7duxYABAwAIrWd/+eUXPPjggxI+s8iIa/nDli1bcOWVV6JPnz5QKBRYs2ZN0Mds2rQJY8aMgUajwZAhQ7B8+fKor5OQRGV1JPhVzYSQsDSZ7Wgy25GRooGKoYrFaKBjEZKU2muEj42l8V0HISS4QBWLTUcAXQbAqjsrFhM8WKzYDiiUQitUUUdT3JbTU9CxCCHhYZQMnHxiBIuhVCyK8+5CCSWThdluBqtgT4oWl/FW2V6JLN2JqkTPikUASAnSylwMui2c/O/lcKw4uAJ1HXW4fNDlMd0vkW/YsGGYOXMmZs2ahdWrV+Po0aPYuXMnXnzxRXz99deyn2/+/Pl48cUX8frrr6O4uBj79+/HsmXL8OqrrwIApk+fjry8PEybNg1bt27FkSNHsGrVKmzfvh2AUK159OhR7NmzBw0NDbDZItcae+LEiRg3bhymTZuGDRs2oKysDNu2bcPTTz+NXbt2AQAeeOAB/Pvf/8ayZctQXFyMZ599FgcOHPD7nFqtFo8//jgee+wxfPDBBygtLcXPP/+M9957DwCQk5MDnU6HdevWoba2Fq2trd2ew2Aw4K677sJf/vIXrFu3DgcPHsTcuXPR0dHhnvUYC3E9S2k2m3HGGWfgrbfekrT90aNHcfnll2PChAnYs2cPHnzwQdx+++0h9QkmpCewJki7D0JIdBTXtgMAslP8D1cn4aFjEUIIIVEVqGKxpQLQpgGMFnBxiR8slm8H0voDhvBn3JAT6FiEkPAwCgaci0uIWYWhzFgUW0/26GDRaYaKKt2jrs3WhiZrE3L1ue7bHC4HGMWJYNGoDtwWU/x+tDljN7fUbDfj3wf+jRG9RmBIuvRqMhI/y5Ytw6xZs/DII49g+PDhmDZtGn755ZeQ5vbdfvvtWLp0KZYtW4ZRo0bh4osvxvLlyzFw4EAAQgXfhg0bkJOTgylTpmDUqFF46aWX3K1Sr732WkyaNAkTJkxAdnY2Pv7444h9ngqFAmvXrsVFF12EW265BcOGDcOf/vQnlJeXIzdX+Dm78cYb8cwzz+Cxxx7DWWedhfLyctx1110Bn/eZZ57BI488gr/+9a8YOXIkbrzxRtTV1QEAWJbF66+/jnfeeQd9+vTB1KlTfT7HSy+9hGuvvRY333wzxowZg5KSEqxfv97dUjcW4nqpyOTJkzF58mTJ2y9ZsgQDBw7EggULAAilpj/99BNee+01XHbZZdFaJiEJy07BIiE92uHadjAKBXJTT445A/FAxyKEEEIiqr0GWD0XuOY9wJjjP1h02oRt+43trFjkAMT/pHhAFduAXoMAdQpga4/3anoMOhYhsTDq/VG45dRb8PDZD8d7KRHHKlnw4OF0OaMSXjk4h+TnDadiMZTHJosOR4f78yTRU9hUCADobTjRYtPO2cF6HIMECxbj8f24dP9StNnacOfpd8ZsnySwYJ0QVCoV5s+fj/nz5/u8f86cOZgzZ06326dNm+bzIpAZM2ZgxowZfvc3YMAA/O9///N5n0aj8Xufp3nz5mHevHmy7zcajXj99dfx+uuv+33sU089haeeesrrtn/84x/u/+/6eiqVSjz99NN4+umnfT7f7bff3q1Natfn0Gq1Adc1fvz4bq/16NGjI3oRTlL1Vdu+fTsmTpzoddtll13mLn31xWazoa2tzes/QnoKmzPBr2omhISlqKYd2UYNUjTeJyO3fvUfWI7+FqdVndzoWIQQQkhApT8AR7cA5T8J//bXCrWlEgAP6DOE0NHFAQlQbeNX63Gg9RiQ2hdgtfhowy/4rNAR71WdlOhYhITqm6PfxHsJUSFWY0WjwmpL5RaM+XAMDjYclLS9lZNfsehuPdmDg0Wzw+z+PEn0FDUVAQD6pPRx32Z3eQeLaZq0gM/hrljkYlOx2GRtwkeHPsIZ2Wcg35gv67ENuxrQsq0lOgsjhASVVMFiTU2Nu8xUlJubi7a2Nlgsvv8Av/jii0hLS3P/169fv1gslZCYsFOwSEiPdqi2HdlGNbSs8GaZ4zgs+cez+GThX2Et3xvn1Z2c6FiEEEJIQNV7hI9iSCgGi4oub71byoSPugxAwQDgT1Q3JqIKIbTi0wfg2TdWYua897GhNDFmmp1s6FiEEG9iaGJ1yQ/1gtlRswMAcLjlsKTtQ2qF2lkN2ZODxQ4nVSzGwuGWw0hVp0LH6ty3OTjvVqhp6iDBYuf3Yyjfy6FYvGcx7JwdVw2+SvJjeJ7HJ+98goMLDqJ9X3tCtEEm5GSUVMFiKJ588km0tra6/6usrIz3kgiJGAoWCenZSmpNyDCooVUp0WE2Yd59c/DZh+/iunufQa/xc+K9PCIRHYsQQmThHMC8NKCpLN4rIaE4/qv3v/2Fhc1lQqCYkn2iTWpCB4s/w6LJwfSX1uC5xR/hxTuvwuLLqVV7sqBjEdKTicGiXbyQI4LE59QwGknbhzNjsScHixaHxf15kugpay1DpjbT67auFYvpmvSAzyFWlsaiYrHaVI3PDn+Gs/PORrY+W9JjHHYH/vn4P7Hk+SXoN7Uf8v+cD4VCEeWVEkJ8SapgMS8vD7W1tV631dbWIjU1FTqdzudjNBoNUlNTvf4jpKewcxQsEtJTNZhsaLE4kGlQg2WUeO3ZR7Bv13b8ffGHuGjazfFe3kmLjkUIIVF3bJfwccNTgbeTw2YCKn6O3PMR31wuoHa/923+TnQ3lQltUFndiTapUTgpHjHlW/HgOgu++HEP/rfoKTwx61I6kRcndCxCiLdotkKNRbAoVvLFqkIsHjqcHZJfw5PRioMrsL9+f/ANg6hor0COIcfrNqfL6RUs9tL2Cvgc4vdjLILFRb8ugkKhwJWDrpT8mPdeeQ8bVm3AE68+gYF/GgiFko5FCImXpAoWx40bh40bN3rd9u2332LcuHFxWhEh8eXgXHC5qOSfkJ6ouLYdAJBpEA7sb33wKSz66Cuc83+XxHNZJz06FiGEJKUDq4FlU4DG0nivpGdrKgUcXSpO/AaLRwB9JsCoT1QsuhKzYtHV0QzUFWLejPPx44cv49rLLoz3kk5qdCxCThbLDyzHqPdHBW1zKIYm0QhCHJ2/l6W28bS55K/hpKhYdFqoFWoAb+95G/8r/l9Yz2GymdBkbUIfQx+v2x2cAyrFiWrRYF+HWAXdpS2lWFe2DuP6jEOqJvjFLi6XUFgx/e7peO2T13DZdZdFdX2EkODiGiyaTCbs2bMHe/bsAQAcPXoUe/bsQUVFBQChXcesWbPc29955504cuQIHnvsMRw6dAiLFy/Gp59+ioceeigeyyck7hxOHhz1EiekRzpca4K16Ce8+8ifYGprRe/8ASgYMiLey+px6FiEEHJSsLYBPOeek0eipGpP99tcfuYQNpcB2nSA1Z4IFqNQbROur7/+GqPHnIU6M4feA0firNOGxXtJPQ4dixDi21elXwEQKq4CESsW7a4otEJ1Rb9iUdk5g7cnVyxanBZomcRpn83zPCraKrD2yFq8s/cdNFmb4roeC2eByWEK6zkONB0AAPRN6et1u8Pl8KpYDEYMIUMJyeV4bfdr0DAaTB4wOei2v237Dbf+8VbUVdUhrVcaTjv7tKiuLRrEYJSQZBL0wp4YrcOnXbt2YcKECe5/P/zwwwCA2bNnY/ny5aiurnYfTAPAwIED8fXXX+Ohhx7CokWLkJ+fj6VLl+Kyy+gqBXJysrtccFGwSEiPw/M83nvjFdSuWYwLJ02DWkNtY6KFjkUIIScFsQqi6jfgzJukPWZeGnDBQ8Af50VtWT1O9Z7utzl9nOjmeaClHBhwQWfFYuK1QuV5HosWLcIjjzyCK88bBr0hFUjLj/eyeiQ6FiEkPFGtWORkViyGcYGIlQs9WCxrLUOKOgVZuqyQnyOarE5rQlQsNlmbcPd3d+NI6xGvClGj2ogZI2fEZU02pw1OlxNmhzms5ylqKgIA9EvphwZrg/t2h8sBRjzOkIBlWCihjEprYdH++v3YcmwLJhVMgl6tD7jt1x9/jdeefg1njjsTekPgbRORWq2GUqlEVVUVsrOzoVarqZU8SQo8z6O+vh4KhQIqle8ZuXENFsePHx8w+Vy+fLnPx/z2229RXBUhyYPjeNBFL4T0LFarFbfffjt+/M9KDL/8Njz83DyoNTToPlroWIQQclKwd548qzskzAFUSmxcs+9jChblOP4roEkDbK0nbvMVFlqaAbsJ0PUSvhZiJUGCBIsOhwP33Xcf3nnnHTz22GN4cchvUHIWQJMS76X1SHQsQkh4xGDRHoXfoWLFolhVGEw44WY4FYtXrhFm1O2fHf6cvmiwctaEqFj8veF3HGg8gLF5YzE0fSj6p/bHiztfDLtaMBxt9jYACHsNpS2lSFWnCkGdx7eS0+V0t9uVilEyUZ2x+OruV2FUGzFxwES/23Ach3dfehefvPMJrrrpKtw3/z6wqrjGGCFRKpUYOHAgqqurUVVVFe/lECKLQqFAfn4+GMb3xQnJ9xNJCHFzcFSxSEhPs23bNnz22Wfod+2TOO/yadCppV9dSAghhPjk6BA+tpQD9nZAmxbf9fRELhdQsw9I6wfUewaLPk7MtZQLH3UZwkd3sJgYMxb37NmDDz74AEuXLsVts28CXuwHDJlIwSIhJCFFM1h0yPy9HE7VYTiPTWQ8z8PG2aBh49+Fp76jHgBw5eArkaYRjoVUSlVc51u22oVjhnArFo+0HkGmNrPb7U6X0/0zIjVgZJVs1ILFrce3YlftLlwz5JqAVayVpZX4fMXnuHfevbjmlmuSuspPrVajf//+cDqd4Dgu3sshRDKVSuU3VAQoWCQkqVGwSEjPUVlZifz8fFxyySXYua8Ql7+7H5kGNVipVSWEEEKIP2Kw2F4NdDRRsBgNLWVCFaIxD6gvPHG7rxPdzWXCR33nCcAEqVg8duwYevfujXPOOQdlZWXIyckBKncK4Wh6vxPrJISQBMIqOoPFKMxYdLjkBYvhhDHRbD0ZT1bOChfvSoiKxQZLAxRQIEV14kIZVsnC4ohfsNhuawcAdIjHaiGqbK/EkF5DvG7jwcPJn6hY1LPSWokyCiYqQT3P81i4eyEytZm4KP8in9s01jYiLSMNBcMK8NFPH6FXVq+IryMexHaS/lpKEpKM6GwlIUnM6aJWqIT0BOvXr8dpp52Gd955BwDQ7BIO+HOM8b+qkxBCSA/gMAMKBnA5gdoD8V5Nz1S1R/iY2tf7dl8zFpvLAJUe0KUL/xZnH7mcUVpccFu2bMHo0aPxz3/+EwCEUBEAKrYDrBZIHxC3tRFCSCDi/LhoVFiVtZUBODG/LphwwsFotp6MJzE407G6OK9ECBb1Kr3XzEEVE9+KxXZ7Z7DoDD1YNNlMaLQ2oo+hj9ftYjgofr56lbRgkVWyUQkWN5RvwKHmQ5hcMNnn3MeivUW44/I7sOzVZQDQY0JFQnoqChYJSWIOjqeKRUKS3JtvvokpU6bgoosuwsyZMwEAxbXtUDEK5KTG/6pOQgghPYDDCqTlC/9fRXPZoqJ6r9Da1NClDZmvapfmMqFaUWwLJ1YCOuJzUnn58uWYOHEiTj/9dMydO9f7zvJtQqhIVa6EkAQlVmNFIwhpswnz73bW7JS0fThVkz21FWqbQ3gNtWz839s225q7Ve2plKq4vvZiK9RwZmweaBIuGuub4n1xk/gzIVb1MgppY1ai0QqVc3F449c30NvQG+f2Prfb/Zu/3owHrn8Aufm5uPbWayO6b0JIdFCwSEgSc7qoFSohycrpdOLee+/FfffdhwceeABr1qyB0WgEIASL2UYN9Cqar0gIISQCHB2AxgjoegG1vwN0/Bh5x38FUvsI1X2efJ3objwifC3Ebd0Vi7FthepyufDkk0/illtuwezZs7F+/XpkZGR4bgBU/CzMjVTTfEVCTmYlLSV44PsH4r0Mn6I5Y9HJC5XkhY2FQbYUhBPGRGP9icBkMwFAQrRCbbY2w6AyeN2mUqrCCvXCZbILr4+Ns4FzhTZ/r7i5GACQn5Lvdbv4/Sh1tqIoGq1QVx9ejfL2clw5+EqveYk8z2Plmysx7655uODSC/Dqf15FRnZGgGcihCQKGpJASBJzcjw4OjFESFJSKBQ4fvw4lixZgjvuuMPrvkM1QrCopWCREEJIJDgsgFIlBERNR4SgUW0I/jgiDc8DNfuAvmdLCxZbyoD0AoBVC/+O04xFhUKByspK/POf/8TDDz/sdaIPANBQDFhbhGpXca2EkJPSE1ueQFGztHagkcJD2rmOaM5YFB1tOyppu3DCmHiGW9HU7kicVqjN1uZu7UBVShUsXPxaoZocQrDIg0ervRUZWvmhWklzCYxqIwxdju3EYJGVOSOZVbKwuSJXsejgHFiybwkKUgswKmtUt/vrquow56E5mPXgrO7HIoSQhEXBIiFJzOni6YJzQpLM0aNHUV1djfPPPx+rV6/uduDM8zwO17Xj3IEZ0KiosQAhhJAIcFgARgWk9gcOfwtY2yhYjKTWSiGAS807ERKKuC6tUF0c0FYF5J0hhL2AMP8S8D2PMQqqqqpQXFyM8ePHY8WKFf5P4lVsBxRKoFdBTNZFCElczjjMgHXxLgBCC0UV47/iSqlUQgEFHF1/30ZYjbkm6DbhBIs9dsZi5wzBRGiF2mprRUFagddtrJINazZmuMSKRUBovRtKsHi07SiytFndbndXLAb4+fGFVUR2xuKKgytQ11GHB8acqHpubWpF8e/FOOeic/Dg8w9SoEhIEqIzloQkMSdHrVAJSSbbtm3D2LFj8eCDD4LneZ8HzzVtVphtHDINarBK+jNNCCEkAhwWIfDqNUioVmwsifeKepaqPcJHY9/u93U9Mdd2HHA5AX0GIB4HMLGrWPztt99w7rnn4u677wbHcYFP5FVsF6pc9dSSjBASe0qF8F5IbEcaSDRaN3b1c/XPQbdx+JqrK1E0Ky7jyewwA0C32Ybx0GZvg1Ft9LpNrVTHtVrU7DS7/7/N3hbSc1S0VSDHkNPtdvFnQnYrVCUT1veyJ7PdjGUHlmFErxEYkj4EAFB+uBx3X3U3Fjy+AHabnUJFQpIUnbEkJIk5XTw4FwWLhCSDlStXYsKECRgxYgTWrl3r9+C5uFa4YjEnRRPL5RFCCOnJnFahOk6sPBODMBIZ1XsBbRpgzO1+n/tEd+ff/eYy4aPOI6yLUSvUNWvW4MILL0Tv3r2xceNGMEyQluvl24D0/oCG5isSQmJPVrAYwSDEn99qfwu6TTjhYE+dsSgGZ/FuhWp1WmHlrEhVp3rdrmJUsHJxDBYdZig7T8+32lplP95kM6HR2oje+t7d7gt1xiKrjFzF4tL9S9Fqa8XUIVMBALu27MI9V98DjU6DhZ8uhFpDrdYJSVYULBKSxJwctUJNRjzPo6KxI97LIDG0cOFC3HTTTZg+fTq+/fZbZGV1b1MiOlzbDjWjRHZq/FvFEEJIVHEOoZLOH6cN+PbZ2K2nJ3NYhKo4Qxag0gPVe+K9op6l6lcgta/w2nbFdZ4QV3gGiwrAkH1iG4UYLEbvpPi///1vXHPNNZgyZQo2b96M3r27n4D00lYltHhNzQcSYC4WIaTnOf+j8zHq/e7z1kRisMhxXNDnYhRM1Cv+9jfsD3g/z/NhtYztscGi3QxWwYJlIj+Nq7SlVFLgC5xoZds1WFQz6ri2oTU7zO7ZiKFULBY2FwIA8o353e5zVyzKbIWqUqoi8v3YZG3CR4c+whnZZyDfmI9NX23C47Mfx2lnnYY3Vr+BvH55Ye+DEBI/FCwSksScLhdVLCahjYV1uGTBJpQ3moNvTHqESy65BK+88gqWLVsGjSZwJWJRTTtyUjXQq4JUERBCSLL78VVg+RX+58pt/gewdSGw5+OYLqtHclqEikUlI7S2bCyJ2Ty/Ho/nhYpFYx6g9hUsdoaF7mCxHND18t42BhWLF110EebPn49PPvkEer2EdnQV24WPvQacWDshhERQu6M94P1M5/xZBx/8ogtGGd1WqH0MfXC09WjAfXQ4wrt4ONoVl/FidpplB1tSvfXbW5i3fZ6kbest9QCANE2a1+1qpTquMxbNDrM77GyzyQ8WDzUdAgDkpwQIFhXxqVhcvGcx7JwdVw2+CgBw6lmnYuY9M/H8e8/DYKRZ34QkOwoWCUliLl4IF0ly2XesBU4Xj5q2+LXbINFXU1ODO++8ExaLBaeffjoeffRRSbMDDtW0IytFDS0Fi4SQns5cL1RFdTT6vt/eeYKuoyF2a+qpnDYhWASAjAKhEi2Ek1fEh/Zq4Xs4JQ9gfLTzcnVphdp0RJhZyHp0JlAqhfsjfFK5sbERd9xxB9ra2jBkyBA888wzUEqd31y+HUjJ8d3elRBCYsDdClVCFSCjYOCIYtV3/9T+cPJO7GvY53ebDmeYwWIU1x9PZrsZal9/HyOA4znJ7UPrOuoAAOmadK/b412x2OHogEFlgAKKoGG7LyXNJTCqje6qR082l/B5yX39WSUbdgVwtakanx3+DKcbT8eKv61Aa3Mrsntn49ZHbwXD0rkOQnoCChYJSXI2BwWLyaawRv7BIkkue/fuxbnnnosvv/wSlZWVkh/H8zxK603INGgoWCSEnBw4O8DTsUxUuTjhdRZbkPUaLARhbVXxXVdPIc6rTO3r+353xWLnW++mI4C2F8B2OcmnZCLaCrWoqAjnnXceVq1ahSNHjsh/gvJtQHoBoDZGbE2EECKH7GAxihV/+cZ8sAoWe+r2+N3G4gzQ3l0CF1xw9cALxzucHVArozdHz+yQ1gmqwSJcqNa1YlHDaKLeRjeQDmcHtIwWGkaDdrv8c0VH244iS+t71IoYVrNKeW1oVUpV2D9Pi35dBHuDHZuf2Izvv/gelaXSz4sQQpIDBYuEJDmrM/i8AZJYiihY7NG++uorXHjhhcjKysLOnTsxbNgwyY+tarWiw84hM0UNRkltxwghJwGXg4LFaHN2dkhgPCoWAZqzGCnVewGN0X9lX9dWqK2VgC6te3WjgjkxjzFM33//Pc477zyoVCrs2LEDo0ePlvcE1lagvhBI6+u7vSshhMSA2Ao1EYJFVsEi15CLg00H/W4TbitUALBw4YWTiajD2RG1ikUAsHJWSdWeDZYGaBhNt7WolWrYOTt4Pj5jhjocJ4JFk8Mk+/EVbRXI0ef4vE+sxAylYjGcCtrSllKs+m4VSp8rhd1ix5ufvYnTzj4t5OcjhCQmChYJSXJWJ52MSyYWO4fKpvDfcJDEdPDgQUydOhUTJ07Ejz/+iL59/VQv+FHcGTpnp0TvjRchhCQUzgHwdJFUVDk6T1KKJ5VS+wghllhpR8JT9atQreijBRkA7ypEm0moFtWln5irKFIyHm1TQ1deXo5JkybhnHPOwbZt2zB48GD5T3LsFyHwTxtwotKSEEJiTFbFojK6wSIA9Df2x3HTcb/3h1uxCAAWR88LFi0OS1QrFgGg2docdJsmSxP0bPeLZdSMGjx4WLn4jKqxOC3QsELgabLLCxZNNhOarE3obejt837xZ0LujMVwKxZf2PgCjrx8BIOGDMLiLxajYFhByM9FCElc9C6BkCRns1OwmExK6kyIz3VwJJo4Tjgpfsopp+DLL7/EqlWrYDDIH0ZeXNsODatEtlEbfGNCCOkJqBVq9IkVFGKQpWSFcLH+kNAmlYSnei9g7A2o/FT2uU/MKYCWcuF/dRndt1OGV7HocrnA8zwGDBiAL774AmvXrkV6enpoT1bxM6BJBdLyQ14PIYSES24rVDsX3XaWg9IGBbxfnLHIKuS1nfRkdkpr65lMol2xCJxocxpIk60Jeh9/qzWsBoD0lqqRZuWs0LG6kCoWC5sLwYNHvtH332s7Z4cCCjBKeWNWVEqVpJ+7rniex97avfjF9Auuff5avPrxq0jPTJf9PISQ5EDBIiFJzkatUJNKUS21Qe1pmpubcemll+Kdd94BAEyZMgVKZWh/Xotq2pFj1ECvDv3NKCGEJBWXE+iB84QSiqNLK1QA6DUAaC4HbHRcEpb2WsBUC6TkAp0nJrvxPDHXXCZ81Gd2307JeoSQ8phMJkybNg2vvPIKAGDSpElg2TCOJcp+AnoVAJqU0J+DEELC5G6FyidGxeKwjMAjLqydrcflzrPz1CMrFp2WqAeLTbamoNu0WFtgUHW/+FfDCH+/5VYLRgLn4mDjbNCyWqgZtexw81DTIQBAforvYNHhcsgOFYHOVqgyf54sFgtmzJiBWQ/MglFtxO3X3g61hjoxEdKTUbBISJKjGYvJpaimLd5LIBFUUlKC8847D3v27MHw4cPDfr6i2nZkGTXQqujPMyHkJNIDT6IlFHfFosfJnV6DgfZqoCP4iTgSQPVe4WNqH2nbN5cLLWl1PoJFBSNUkMoM2isrK3HhhRdi06ZNOO20CMwvctqB478K1YoULBJC4khuxWIoFVZyZGgz3CGUL+6KxXCCxQi0U000FqcFWia6HXmarBKCRVvgYDESMzLlarcLF3jpWB20rFZ2sFjSXAKj2giDn3bsds4eUgWtSqkCx3PgJHa2qK2txSWXXILVn61Gc1YzJvafGPUwmRASf3TmkpAkZ6VWqEmlsLodSkW8V0EiYfPmzRg7diwA4Oeff8b48ePDej6Xi0dpvQmZBjW0rPyrCgkhPdiXDwDz0npudZkzPjNtImZeGrD88nivwj/3jEWPisW0vsJsy6bS+KwpVOZGwFQX71WcUL1XaIFqlBosHhWqFVU+TrAqmc7qRulN83fu3Ilzzz0XLS0t2Lp1K6ZMmSL5sX5V7wU4G5DWr/scSE+WznlW1pbw90kIIT7IboUagTm1wfibZQcANs4GILxgUQwne5JYVCxKmbHYam+FUW3sdrs7WIzDa99mFy4817E6aBn5weLRtqPI1Pq4WKlTqBWLqs5jRquEY/T9+/fj3HPPRVlZGS58/kIM+r9BuCj/Itn7JIQkHwoWCUly1Ao1uRTXtiPT4P8qR5IceJ7H/PnzccYZZ2D79u0YOnRo2M95vMUCq8OFzBQ1lJQ+E0I8Fa0TPh7/Nb7riJaecHV+2U9CpVciEl9fz1ad4kkmLrpt4yJuw9PApzcnzmtd1VnZp/YzX5HvEhI2HRHmK/o6wSq2QpUxc/TFF19EQUEBduzYgVGjRslYeAAV2wFGA6QPCLydGCxaWiKzX0II6UIMFjk++DkPRsnAEYO/aQNShd+NvI+LQMRqQ5VS1e0+qXpixaLY6jOaWmwtAe/nXBzMdjOMqu7BolhNGcuKRRtnA8/z3sEiq5X99a9sq0SuPtfv/eFULAKAhQu+ngULFqBXr154ZdUrqMuqw+SCySGFmYSQ5EPBIiFJzuKgisVk0drhQF27DVlGagmRrFwuFyorK6FQKLBq1SqsX78eGRkZEXnu4s75mzkpFDwTQvyQETiErb0G+PWD2OzLkeQVi6JYfn3kcFcs9oC/L7Z2oPU4YEuQ1vJVewBjnv9gsWuVTXM5oEv3PY9R2dkKtWsY2QXP86ioqAAAvP/++/j++++Rm+v/pKJs5duEGZy69Mg9JyGESFDSXII1JWvc/xZnLEqZ9cYq5M+EC8XgtMEAfK9JrO4SA9FQJHKwuKtml6SWo554nheCxSi3Qg0WLDZaGuGCC6ma1G73idWUJkdsZizaOBsu/uRibCjfgFZbKwBAz+qhY3Wyvv4muwmN1saAVbShViyqO9vn+6tY9DwWWbx4MTZv2Yz/1PwHvQ29cW7vc2XvjxCSnChYJCTJWR1UsZgsijqDo2xjDzixdxIym824/vrrceGFF8JqtaJXr15QqUK/GrWr4loTtColsihYJIQkgg+vBb64D2goif6+EvgkWsKo/AWwhXjCy+GjYjGZWVsBpy3eqxDasrZXASl5gL9KjK7VMy0VgDbduy2tSMkKQWSAgNpms2H27Nk4++yz0draitTUVOh0utA/h654XqhYTOsHqGm+IiEktq798lo8s/UZ979ltUJVRn7Goq8KyD4pQuvroendO9ZYOStUShUUCL37TCIHiw9tegjLfl8m6zFWzgoX7wo4mzIS2oJccFRnEdqop6nTut2nY4W/o7F67dvt7TA7zKjrqHOHmTpWBx2rg9VpBR/kAiPRoaZD4MGjb0pfv9s4XA53QC+HWLHoK1h0OBy45557MGrUKNTW1kKv12ND9QaUt5fjykFXQqGg7kuEnCxCb/xNCEkIdmqFmjSKatvBKBTIMUb3aj0SecePH8dVV12FoqIifPzxx9BqI/81PFTThhyjFjo1/WkmhCQAa+cJmtYKIGtIdPfVUyoWo+mDqcB5dwJ/+Kv8x/a0YNHWnhhhdPUe4WOg+YqcR8tWS7Mwu1CXDviqZlGIFYu+g8X6+npcffXV2LVrF5YvX460tO4nR8PWUCzMTEzLB1jqsEEIiS1Xl99/coLFaFQs2nxcxCKGJr4q8KxOa1jzFYHEDhadLmfQAK+r9s754GJ4Fy1iS1F/as21AIA0Tfe/nWKb1ljNWPRsudpuF14fsWKRh9Ae1dc6uypsKgQA9DP287uN0+UM6XvSPWOR8z5Gb2lpwQ033IAffvgBb7/9NnJzc+HgHFiybwkKUgswKjtCbdkJIUmBzl4SkuSszgRtu0W6KapuQ7ZRA52K+s0nk99++w1XXHEFlEoltm7dijPOOCMq+ymqaUd2ihpaFTUTIIScZChYDI6zA23VoT3WYRGq4XrMvBteqBbMjHLgHUz1XoDVAWn+W5B5VSyahGoJ6Py0UGc6KxZ9zO0qLCzE5ZdfDrPZjE2bNuG8884Lfd2BVGwXQs9eA6Pz/IQQIoNYaeXkJQSLSjbiFYtWl7zjk0gEi/5aTyYKs9Msa3sx8Iv2jMVgwWKDtQEAkK5J73afWGUqNdRde2QtjpuOY+7pc2WvE/ATLKr00LNCW/VWW6ukYLGkuQRGtREGtcHvNnbOHlKo66ti8ciRI7jiiitQXV2N9evX45JLLgEArDi4AnUddXhgzAOy90MISW509pKQJGejYDFpFNa0I9uogZqhX73JxGw2Y9CgQdi5c2fUQkXOxeNIgxkZBjW0bE858UsIIRIl8NX5CcUu72Sem9MCMGrfVXLJylQT7xUI8xXT+gJqo/9tPCsWTUK1BAw5vrdVMADvu2LRarUiNzcXO3fujF6oCADl24VqRX1k5kcTQkg4otEK9R87/4GnfnxK0v59VSwG3J6zuQOZUCgVyoQPFj1DMSlM9hOtPqNJDOj8aehoAKNgYFB1D+EUCgVUSpXkYHFD+QZ8fOjjkNYJeM9yNDlMUClVYJQM9KoTwaIUR9uOIlObGXCbUCsW3TMWPSoW7XY7UlJSsGPHDneoaLabsezAMozoNQJD0uN8wRchJOZ60LtLQk5OdpqxmBR4nsfh2nZkpqihYqnnfKLjeR6ffPIJnE4nLrzwQmzZsgW9eweoSAhTZVMH7E4XslI0UCrp+4MQcpJJ8JNoCcNpEVplyuXogcFie128VwBU/QYYewOdJwJ96hosalIBrZ/ZhUpVt1ao//vf/2Cz2XDmmWdi27ZtGDBgQIQW70fFNiB9AKCh+YqEkPhjOivtOQl/+1iFtIrFDws/xJdHvpS0/65tIKVsH8o8OxGrYGHhEvtiK7mtWtsdsWmFKgaY/jRaG6FX6f3O/1MxKlgc0j+3JmsTnFxoFbKer6HJboKaEUI8d8WiXVqwWNlWiVx9bsBtHC6H++dIDnFNVqcVa9asgclkwogRI7Bjxw4MGzbMvd3S/UvRamvF1CFTZe+DEJL8etC7S0JOTnZO2mBnEl917Ta0WZ3ISlGDoWHWCc1ut+O2227Dn/70J6xbtw4Aoj6AvLhWeMOVZewh868IIYmv7hDQWBrvVQhknMg5qTksna0yQ3gco+pZwaJY/RcvlmZh/mhKbuDZlV6tUGsAfSbA+NleyQhfX94Fp9OJBx54ANdffz1WrVoFIPrHImirBloqgNS+QotXQgiJM9kVixJapsph97w4RIJwKxZZJSu7SjLWzA553RPESsJoB4vB1tVsbXYHd76wClZWaMrxHKrMVZK39+Q5y9HsMLurA8VqSilzLE12Exqtjcgz5AXczulyglWEMGNRqQLv4rH05aW4+uqrsWLFCgDexyJN1iZ8fOhjnJF9BvKN+bL3QQhJfj3o3SUhJyebkyoWk0FRjXBAnZNCwVEia2xsxKWXXoqVK1figw8+wBVXXBGT/R6uM0GvZpCdoo7J/gghBIvHAm+MAZzyTppFhdSKxeZyYF4a8NvK6K4nUTmtoVUs2s09L1g0x7lisWa/8NHYBwgU+Lk8gkWHBdD18h9EKlnAxaGttRVXXXUV3nrrLSxevBgzZsyI3LoDqfxZ+NhrQODPiRBCYkQMFjk++N8+lVIV8RmLobRCDWfGokqpkl0lGWtyKxbFwE/LRHfGot1lD9hGNliwqGLkv/ZlbWWythd5voZmh7lbxWKweZEAcKjpEHjwyE8JHOg5XI6Qvid5O4/KxZX49O1P8fLLL+POO+/sts3iPYth42y4avBVsp+fENIz9KB3l4ScnBycCzyfGFWLLR12ODia+ehLUU071KwS2anRPaAmoWtsbMR5552HAwcO4Pvvv8fNN98cs30frG5DjlEDnTr0N6KEEBISS1O8VyA9WGwsET6WbozeWhKZ0xZixWKH0GYz2sFi6ffA+qeBWByXdjRGfx+BVO0RKg/T+gbermu1izY9QMUiC5PVjgv+MAXbtm3DN998g7vuuisSq5WmfLsw/9EYuPqBEEJiRWwrKrViUUrL1K7KWsvwXfl3Pu+zuWQGi87wgkVWySb8jEW5waI4TzDaFYsA0Gjxf2zQbGuGQd19vqJIpVTJfu0r2ipkbS/ynFNpdpqh6Twu0Kv0UEARdF4kIASLANDP2C/gdjx42e157TY7nrn5GbTva8eDix7EX/7yl25dE2rMNfjs8Gc4O+9sZOuzZT0/IaTnoGCRkCTncPJwJUauiKlvbcUb3x+O9zIS0qGaNuQaNTBIDI6azPaECYxPFhkZGbjpppuwY8cOXHDBBTHbL+fisa2kAfm99NCpQp/JQQghSSvBT6IlDKcVkFC10Y2jIzYVi0c2A9vfBCp+lrguK/Cfm4CGEI4drS1AKLONnDbg35OEYDAcVb8JoWKwWYSerVABQJsGMH6OBZUsUlTAzBuvxfbt2/HHP/4xvDXKVbkDSO8HqGm+IiEkOIvTghlfz4jqe1Y5FYuskoWTd8pez8rClfjbz3/zeZ+Nk1+xGHYrVIn7nPH1DKwpWRPyvkIlN3wzOUxgFSxYf3/7IqjR6j9YbLW1wqgy+r1fpVTJnm95rP2YrO1F/ioWFQoF1IxaUrBY0lICo9oYMCwVyQ271Ro1LrnqEgx6ehBGTRjlc5uFuxdCoVDgykFXynpuQkjPQsEiIUlMqRAqFrkESRbr2myoaOwIvuFJ6FBNO7KNGmhVwX/tOjgXxvztW9z70a8xWBl59913sWrVKigUCjz77LMYNGhQTPe/91gLmjscGJilh1ZisNjaJLxpstvoZDwhpAdwJPY8oYQRaivUWAWLor0fS9uuei9w6EvgwBr5+7C2ATJP+AIAzA1AxXahujIcVb8Bxt6Ayn9bNQDdKxb1vXxu9vFXm/D+tuOAy4knHr4PI0eODG99cjltQN0BaZ9Tp/YO4cRoh5V+fgk5Gb3525vY37AfG8o3RG0fCghVUlIqFlUKIdCzu+S1eHfxLr9hWTxmLEptx3mk5QgONR4KeV+hkhu2WpwWd3AWLWKb1aYAXTja7e0wqv0Hi6HMt6w2V8vaXuQ5Y7HD0eGuWAQADaNBuyN4sHik9QgytZmS9if1e3Lrhq1Y88EaAMANc2+AocDg8+td2lKKdWXrMK7POKRqUiU9d7TwCXIulJCTFQWLhCQxRqmAw8XDlSCVbTYnh8RYSWLhXDxK6kzIMKihZYMHR05OeBWP1MsbjE7k4TgOjzzyCP785z9j27ZtcVvHxsJaGDQMBmYFv9pQVHxwLwCgpSnOreAIISQSQgmITkZOW4gzFi1CK1RlhN/6bfoH8NXD3VufHv5WmOsYTG3nnEJb8FlC3djauod2Uognj11htO63tgHNR4GUXIAN0uK+6xp13icBeZ7HvDc+xIxHX8aPxU3C15ePw1iB2t+F6sq0voBS2kVOh8uqAAD1Ta3RXBkhJEGJYV+k5xp6EoNFKS1Omc7fXXLDIUCYQ+dLSBWLTOjBokqpkrx+HrzPVq3R7npk42yy9mG2m6MfLHb+LW62Nfu832Qzwe6yI1XtPwRTM2rZ1Zg15hpZ24s892NxWrzmT2oYDUx2U9DnqGyvRI4+R9L+mCB/13mexyfvfIJn5j6DPdv2uL++rMJ3Be1ru1+DhtFg8oDJkvYfTXZrAsyKJ+QkRsEiIUmMUSrg5FwxGWUTjINzwcVH/0A2GVU2dcDmdCE7RQOlUhH8ASTqTCYTrr76aixcuBCvv/46FixYELe1fHuwFkNzjEjXSX/DVXu8MoorIoSQGAslIDoZhTpj0WkRKhYj/daveg9QvlVoS+qpvQo4skXC4/cJHx3yWo8BAGwmwBlKsCieIAsjvKv9Xfho7AMoghzXebZCVTBASpb7nxarDTMeeRnz3/oIzz84G+/++Tyh1W08gsXjvwJKFkjrL/khVXV0cRMhJDacvISKxc6qLLlhICAEi77CS7kVi3bOHlbFokqpkrV+u4+/g6HMmZSDBy+pVaeow9kR1msihRjMNVt9B4s1FiEADFSxqFKqJFeLiuo66mRtL/JshWpxWqBhT1Qsqhk1zI7AF2eZ7CY0WhrR29Bb0v4Cvf4OuwMLHl+AJc8vwfS7p+Ovi//qnqfIKJluPwP76/djy7EtuDj/YujV0jocRJPTHr0LGwghwVGwSEgSY5VKODgeXAKEeRaHcAAb/5UknqJa4cA7J1UTZEsSaa0dDpz3wkbsO9bidfuf//xnbNq0CV999RXuu++++CwOwPEWC4prTSjIMiBFK332QW0VBYuEkB6Es4dXQRZr89KAz+6M/X5DDRYdFiE0ikYrVIfFe9ahrpdQxbfvk+CPrekMFkOZsWk3hVexGM6xc9UeoQI0rW/wbT2DRX0GwOrc/3z4pXfx+fc/478Ln8JTd94IBaPqrFiMw9H0sV1Aar4wA1Ki6nr/LecIISSS5FQsyg0DRRYfF7nIDSkdLkdsg0UfbV+lhLDhkhUsOjqiXrGoVCihYTRosbX4vL/WXAsASNP4/xunZtSyv95NtiY4Q5j33LViUcecODbQMJqgweKhpkPgwaNvioTjEASesbhswTKsX7Uejy94HHMfnwulR3cLXzM/X939KoxqIyYOmChp39HmsPuuNiaExAYFi4QkMaEVqishWqFaxWAx/ktJOEfqzdCpGGQaontATbqrarWgps2K3WXC1YscJ3yfvvDCC9i2bRsmT45v+47vC2vBKBQYkm2AMljVg4ea46ENiieEkITE2eNTpRWO8ji00OZsQkWbXE5r9IJFp9U77FSyQN7pwNFNQEeA4MnFAXWHTjxHKPuV0Cqs++Mi0Ha36jchVNT4r3xw8zzBresFsBr3sciz98zAlhX/wHWTLhTuV7Lxa4V67Bfhc5JRfVBVS8EiISSw+7+/H1uPb5X9uK5BopyKRblVZyLPuXeikCoWw2mFyqhk7dPXtqEEXXLJrVhUK6N/HkTLaNFq892au8HSAABI16T7fbxGqZHdRtfFu3DMJP99uWewaONs7laugPB5SAkWAaC/UVqXAV9ht3gsMv2u6Xjtk9cw6fpJ3bbp2gp16/Gt2FW7CxP7T4x6WCyV00YVi4TEEwWLhCQxVqmAk+PhSoCBxVa7cBIk/itJPLVtVqRqWWgkzFckkWXuPNB0gcenn36Kc845B83NzSgoKMBpp50W59UB3xbWYWC2Adkp0qtZzaZ2tDY1RHFVhBASY5wj+YLFeOBdgCOEE6aOzlao0apY7Bp2DjgfsDQDxev9P67piNCiVXyOULTXyn9MKCFmV1W/Acbe0kI4z4pFXTrWbv0do6fdi9qGZuRlZ+DsUcNO3K9kO1/LGB9NW1qAplLAmOdVURmIw+FETaPvlnOEECLaenwrdlbvlP24Vrt3QCSlYlEMTxxcaBVMvsIc2cGiyx5WiCa3YtHXtjGpWHT4DhY3lG3AJ0XeHQssTktMQigdq+v2fSNqtAitu9PU/isWVYy81178fitrLZO+yE5i+G1z2uDiXdB5/O3VssGDxZKWEhjVRhjUBkn761qxuGf7Htz2x9tQc6wGxnQjTjvb93kRVsm6fwZ4nsfC3QuRqc3ERfkXSdpvtPE8TxWLhMQZBYuEJDGWEWYsRiNXtDo4bC2RHl5YnZ0H+zJKFncebcKzX/yeEMFoNNW1W2HQsmAZ+pUba2Y7B57n8dX7b+LGG2/EyJEjodNJO2kWbR12J34ubcTALD1SddKvbC0vLY7iqgghRIZItS/lHKFV4p2MbNKrBNycFmG+n4zKeOnPbe3enjVzMKBNB/Z/6v+4sGa/8JHVyG+Fq+o8kWYOYbZRuBWLdrMQwhlyhJavwXickHt9Ux2uvO9FDOrXGwadj8eKwWKsQ/aq34SPqfmSv0dKKqrAcXQxACEkuFAqCFut3gGRlLCMVbAh7w/wXbFoc0n/m8HzPJycM6xgUa1Uw+GSHpT42jYWwaLJT8eADws/xEeFH3ndZnFaoGEiNxLmu/LvsKtmV7fbtazWbyVlg7UBOlYHlvHfElTDaHy2lvUnVZ0KAKg0yR9RIgaYJofwOnpVLLJarxmMvpS1liFTmyl5f54Vi8c2HsOjMx9FVl4WUowpAR/HKE7MWNxQvgGHmg9hcsFkd9vheGusbQTfw88lEpLo6Cw3IUmMVSrhdPFRaYW6sbAONy3dgbKGwFdLiSx2+TMWfylrwqe/HEN1WwSuHk9g9e02GNQMVEwUTuiRgFrazWj8+lWsWfoa5s+fjw8//BBarYQTgTHw0+EG2DkXBmWlQCUjdC4vKYriqgghRCJzA/BCb6BSfiVCN1SxKF1IwaINYNTRCRY5O+DsciJOoQT6jwMqfgbaq30/rvZ3IXzUpAnrk/P113SeCItHxWLtAWGtaX2kVYBydjg4HnevteGBD/fhkVuuxuo3nkaKwcdFTkpGCFhj/bNwfDeg0gmfk0QHDldEcUGEELnMdjNuW38b+AScSyJ3bh0ANNu8K6IlVSx2tiANZX+A72BRTvWjnbPDBVdMW6H6rFgMZRazTP4qFi0OC/guZ4QiHSz+7ee/4d3973a7Xcfq/LZCbbI0Qc8G7jKgZtSwc3bJP0MqpQp6Vo9j7fJboYrBoRgseq5Nx+iCBovl7eXI0edI3h+rZMFxHGo+qcHvb/+OKTdOwUvvv4SUtMDBolixyLk4vPHrG+ht6I1ze58reb/RVlZcFu8lEHLSo2CRkCQmtEKNzoxFk80BHkCbRdrBtDhjUS67k4PD2bNPJjaa7NCrWbBK+pUba7/t+gUdxdvw52cX4q9//SsUPk6q/lBUJzlAj6TvCmuRa9SgX4b0eUYABYuEkARhaRFCmuO7w38ul0OYLUeCkztXkOeF9qlhnOgMyleFwOAJgKMDOLDG92Oq9gCpfU5ULMqpWFV3nggzhRIshlmxWLVHqCxMzZe2PefA3nolPtjPY+nTc/DyX24Dw/i50t9dsRjjYODYL0Baf0AtYWZkpwMl5VFcECFErtd/ex07a3Zic+XmeC+lm1CCvq4BESfhb4RYsSin4s+TxUdbbjkVbGan8H4ynBBNpVTB4XJIDrd8BZ+xCBb9VSz6CmctTgs0bGSCxZKWEjRZm3xWJupZvd+KxSZbE/SqIMGiUg0evKyK1zRNGqrMVZK3F4k/E2LLU53KuxWq1Wn1+z1gtpvRaGlEniFP8v7USjWqyqrQ9H0TRtwyAg+98BBYlf/qTRGrZGF32bH68GqUt5fjykFX+jyfEi8ULBISf3SWm5AkxjIKoWIxCrmc1SHvSS0hBosc79FGtYdqNNuhUzNgqWIxZioqKsDzPAacdjb63vEezp14pc/tSuracfv7u/DSN4UxbcnrcvH4/lAdhuSkIFUb/KDe09GSQ9Do5IWRhBASNeEGNQBVLMohN1gU28wq5f2tkcXq40Reen9hDuGBz3yHxrW/n2gn6rTLC5aVjPA4c738tYZYyeJW/Rtg7ANoU4NueqymEZzdirP7aXH0i1dw2803BH6AkhF+DmIZsvO8cHFAah9A4qwmAPj9cDl0mujPzCKESCOGaXKCsFixhXCc0HVWnpSwTGxzGcr+AN+hmGf1YLDAUAwmw6lYVDNqcDwnOYz19fWORbDobwagr0o7G2eLWMXij8d+9Lt/vUrvd10t1hYY2MB/48TwM9h8Q09p6jTUmGokby+ydnZPcAeLHjMWdSodXHDBbPe9jsKmQvDgkZ8i7QInR4sD4IB+g/th2CvDUHB5geRwkFEysDgtWLJvCQpSCzAqe5Skx8XK0eKjUCjpHBsh8UTBIiFJjFUq4OCi0wpVbgWi3CDSk8XWc4NFB+dCq8UBg5qBMoGu7urJ1q9fj1GjRuHtt99Gh50DY0j3uR3P83j28wPgXDyaOhxwxjBY/L2qFQ0mOwoyDdCr5Z3sLS8pQl7fflFaGSGEyBSJYNFFwaJkvkK8QMSTfEwUQyBbm+/bCy4U5vc1HfG+3dwoVBum5AoBodyKRUCoWrQ0ya/uC/f79fivQGpvIEjlw4/lToy+4VG8vHIDoGSRk5ke/LnF8FdGG7ywtVUJAa2xt1A9KtGBknL0yZE+34kQcnKSWwEmCqViUZwjF3LFoo9QzME5kKZOw+js0Tgr9yxJj9coQw/RxMcGa4Up8tU2NZGCRZ7nYXPaoGUiM4rkl5pfAJxoIerJoDLA7DD7rPRrsbUgRR247acYfvqrxvSll7YX6izy5z13rVj0DD3FkLHF3uLzsYeaDgEA+hv7B92P5agFpfNK8d2/vgMAsKnyzjuwCha/N/yOuo46TB0yVdZjY6GsuAwqdRQ7chBCgqJgkZAkxjJKcC4XuCgEInKDQlsYVYcme/QPfuOlySwc7BtkhkckNIsXL8bll1+O//u//8PNN98Mk9X/G8t1v9dga2kjtKwSVgcXlZ8jf74rrINezWBgtvTqAAAwtbWisa4GuX0oWCSEJAiqWIwtP22+/BJbu8W6FSoADLxICI33/c/79tr9wkdjHsCqAZfMikVAmLNobRW+d+QIZ8aiwwo0HBYCUZWPGYmdPvhmJ/7wQQdOHzoAd1x+NqBgpM23jEewKLYyTpd+XGG3O3C4vAq9czKitChCiFxiBVQsQiW5QmmF2mb3vmBFyoxFtvN3aKgzFn2FeXaXHaySxW2jbgta5SU+Xh3GhTxitaPUqjlfIWq8gkWe57u9hlbOChdc0LLhB4s8z2Nf/T4oFUp0OLpXl6aoUuDknT7X1mZvkxws+npufzJ1mWixtsiaxQmcCITFKlnPNq1iyOhvXmRpaylSVCkwBOky8Mu3v+DIi0egylBh4s0TZa1PxCpZcDyHEb1GYEj6kJCeI1p4nkf54XKwdJ6NkLiiYJGQJMYqhVao0RjFYnXIOyC12EMPFjvCeGyiq28X3tjoNX7m6ZxE2q0OXP3WVhypl9nGTQKn04n7778f99xzD+6//358/vnnMBqNaLf6/j622DnM/+ogTu2Tin4ZeticLjij0VPYj+8O1mJoTgp66eW98SzrnK+Y21fibCdCCIm2cFtLAvGtWOxoAg5/K/9xcivsIsVPayy/xGAx1q1QAcCQDWQMBg594R0A1vwuVFCm9RE+Ou3yv/6aVMDaJv/7L5xgse6A8HVP7Q0our+NdrlcePq19zH7+ZWYdYYK65Y8jQw92/naJ3CwqMsQwlKJisuOw+nk0IeCRUIShhhUWD1+x/1a+2u8luMlpGCxSyW8lIpFtVJ4XxXJikU7ZwejlPY+XgyJwgkWxcdaJf6t8hVoSXmtwuUrvOtwdHTbd7tNOD6IRMViUVMRWu2tGGAcAIvT0q0yUQwOGywNXrc7OAc6HB0wBpkj7A4WfbTE9SdLlwUXXKhor5D8GODEz4TFYQGjYLy+Z8R5iy22Fp+PPdpyFFm6LL/PzfM8Vr65Em8+9CZSz0zFwCcGIjM7tA4DKqUKCigSslqxvroe5nYzBYuExBkFi4QkMVaphJPjwUUhWbTIrFiU2zrVa189uGKxwSQcNBq11KLheIsFv1W2YGtJCDORglAoFKiqqsLbb7+NV199FQwjvAFst/n+3lq8qQSNJhv+b2gWUnUq2BxcVGaV+lLTasXB6jYUZOph1Mhvg6pkGGTn9YnS6gghRKZIhCCcM7Zz5Twd+Az4eDrQXivvcc44zbGSO2PRHSzGoRUqIFQt1hUKYaKoZp8wp1BlEFqhhhIsa1MBW7v8r0M4FbZVe4RAMdV3dZ9CocCxmgb8856pePdKLdQqlRB8KhmfQWQ34snrWAaLlTuBtHxZ8xUPlJQDAAWLhCSwoqYizF43G4v3LI73Uny26wyma6tLKWGZWLEYyv4A34GSw+UAo5AWLIozFsOZJyg+dkP5Box6fxR21ewKuL2vGYuhBqty+Hqtus7FBE5UnnrOEAzVj8d/hAIKnJp5Kjie6xZupqiEYLHZ2ux1e72lHjx4pKnSAj6/GH7KqVjM0eUAACra5AWL4teow9nRLYgWKxbb/XSDqGivcO/Xn/qaeky7axry78yHUq10twmW6/w+52PakGnINybeRc1lxWUAAJWGzrMREk8ULBKSgDYcqMHsf+8Muh3LKMBDmOMXaXIrEOUGkZ56csVig0k42E+jYNH9PcVF8Mt99OhR/PTTT2AYBv/9739x5513et1v9hEsljWYsWRzKS4YkoWhOUboVExMKxa/P1QHpQIYkpMCpcxh42WlRejbfyBYNooniAkhJxdrgFBIiojMWHTGr2KRdwnBVkeTvMfF4MSdT6FWLLJRvKLbFiDsHHCBEKrt/c+J26r3Cm1QVXqhYpFzhNAKNU1owSr3BLJD2twqn6r3CoGoNtXr5qraRnz/8x4oFAosf+lhPDL9khMt8zi70ApVilhXLLo4oHqPMF9RJSdYrEBedi8YdJGZmUUIibx6i3Ah57H2Y3FeSWgVi11DFSmtUMXwJNRWqL6qBO2cHaxC2t9PcZZkqCEOcKJi8fcG4WKc4ubigNt7tj1Vdl7AEotWqL6CxRZrS7fbxK9jJFqh/lLzC3INucjUCdV3zTbvAFGsWGy0NnrdXmcWZiCmarz/dnclvva+5jf6k6PvDBZlVCxyLs4dLFqclu7BYuff467tgAHAbDejwdKAvJS8bve1NrVi56adUCgUeOBvD+Dqe652H4uoQmyHPzJzJC7pf0lIj422suIyaHVaMCx1BiMknihYJCQB3fnhbmwursehmsAn+5jOUMIWRrWgP1aZMxPDqVg0+akq6wkaTDboVAx06uQ/4KlptaKuPfQWYpYIf59u27YNY8eOxUMPPQSe533OvTDZuu9z/pcHkKpV4dyBvZCmU0GrUsLujM6sUl++PViDgkwDcozy32CVlxRhwODhUVgVIeSkJePKbJ/khCCHvwVKN3W/PZ6tUEVyAzunHd160cciELLL/HqJrd3CqKAIKtDcR00KkHsKcHidEOo57UBjidAmVaUFWI3wuslt3aZNE75mclubhtMKtepXILUPoD4xC+m3g6U494YHcff8xXA6ue7HIk67jIrFzpPXzhiF1g3Fws9/ah+AkR48HzhcjlOHDIjiwgghPUlIFYt2+RWLjJKBEsqQK/Z8BYsOl0NyK1SxlWo4FYtiO1cp4WiHs8Mr4FN2nt6NRStUX1V9YtCn8Gj93e4Qjg/CrljkhbB1UOogd/DWNchMVQnBYdcWorUWoSNFuiY94C7ENfpqieuPhtXAoDLICvAtHhc4WZ1W99e86zp8VSwWNhWCB4/8FO8KwvLD5bj7qrux4IkFsFvt3Y5Fuu6jJzhafBT9h/SX1GmeEBI9FCwSkoDE01T+5sOJ2M5g0eqM/Mk4uUEhzVj0rb7dhhQN4/5aJbOn1+zHg//ZE3KFrC2MqtauVq5ciQkTJmDEiBH45ptvfIaKQPeKxY2FtfihqB6XjMjGgF7CmxKtioGdc0WlpXBXFjuHbaWNGJRtQKpO/pWD5SVFKBhKwSIhJIH4mO/j17bXgU0vAI7Ok3eHvhI+upzxm1kokjFTB0BnGNbl71osPgenpXugGYi7YjGKwWKgikUAGHgx0FwGVPwMNBQJX29jrhC2MZoQKxaNwvNYmoNv68kRYrDotAP1h4CUHIAVgsU1323DhTMfRe/sDHy//EWwvq6a58RgUcqMxc7H+2htFxXHdwNQAOn9ZT3sQEkFThtKwSIhRBpf7TqDCaUVKgAolcqIViyGEiyGU52n6fxbLedzEGcNxrJi0Vf41moTWqF6vi8XA+Jwg0Un70S7ox3DM4afaHnapWJRr9JDAUW3VqiNFqGCMV2bHnAf4tdNzoxFAEhVp6LKXCV5e8/nt3LWbkE0oxRmLvoKFsUK1n7GEy3Zd23ZhXuuvgdqrRqL/rsIam33EDGcKtpEVVZchoHDB8Z7GYSc9ChYJCSJsUrhRzicUM8f2cFiGNVoHT14xmJduxUpWhVYJvl/3XbYOFQ2dcAUJPD2J1IVi4sWLcJNN92E6dOn49tvv0VWlv/h5WaP7y2rg8O8Lw5geJ4Ro/qmQaMS3iTqVAzsThecXPSDxe1HGmBzujAo2wCVzO+JtpYmNDXUoWAIBYuEkAQipxJBrPITqwnaqzufI46tUEVyKzddPsKwGFygAodVCNQkbx+LisUg1Z755wgtT/d9AtTsF25L7bzantV0VqyGECwCgKlO3uNCrVisLxQCUGNvQKnEslUbcM19z2PKRedg84p/oE9upu/HuVuhSgkWxYrFGAWLx3YJn49e+qxEq82Ow+VVVLFICJEsIjMWJV58wipYOLnQ3quKrUw9OTiH9FaoTv+tUCvaKlDcFLitKXCi2lFOsCgGt2KwGK+KRbF1p2fFojgHMRIzFpUKJUZmjoReJVzc07UykVEy0LLabrfXW+qhUqqCrkGlVEEBhayKRUCohKw1S5/TLVZxirq2QgWE7wNfweLhlsNIUaW4275u/nozHp/9OE4dcyre/OxN5PXr3iIV6HnBosvlQllxGQqGFcR7KYSc9JL/TDchJzGW6WyFKrNtqRRWmdVl4YSDFnucTyZGUX27DQZ1z6hYBIBGs112m1xRpALwP/zhD3jllVewbNkyaDSBT5R6VsO+u+UIqlutuHhIFvJST7yx0LDKzmAx+t+H3x2sRXaKBv3S9cE37qKspAgAMICCRUISm6UZmJcGNB2N90pig3NID9T8tSfjOSFcjCe5LUYBHxWLMQgWnVZ51X3uisUotsFyWIBAc4pZDdBnDFCyUaiSM+QAuvQT6wolWBZnJZmkn8wDcKI1rFxVewAo3IHoReeMwnP334RPXnsC+kCzBuVULIqzGGNQbQIAOPYLkJYva75i0dFjcLlcOHWIvCpHQsjJK5TWpF2DK8kViwplSBWSgJ9gUU7FImcBo2B8bv/Krlcwb/u8oM8htqwMFsZ6Bo9ioMl0/g2RGsKGw1d1p69gUQyIIxEs5unzoGN17opFsULSk5bRdru9ydIEPRv8vbdCoYBKqZIdLPbS9kJdh/SLnLo+v6/WuRqlxuesx6OtR5GlO3FR9SlnnYKZ98zEC/9+AQaj/7/lvsLLZFZ3vA7WDisFi4QkAAoWCUliJ2Ysxr8Vqtwg0lPPnrFoh17NukPgeHG5eByo6n7wLVeHnUOTKbQ3a+FULNbU1OCOO+5AR0cHTjvtNDz66KN+25966uj83mpot+HNH0owbnAmhuUZofQIerUqBjyi35KX53l8V1iHITkGpOlDa4PKsCz69h8UhdURQiKmZKPw8cdX47uOWJEzH9HlxImG711IqSQTt4nGldehBE7dTnTGIli0yavuc3QAUAgVg9HilFBFOWg8YK4DDnwGGPOAzooDMGrh85FbpeeuWJQZLDpCa5GH6j1oYrLx59fWoLXdjMH9e+P/3TUdSmWQt9NygkVxzqEzxDXK4bAIrV09vxYSHDhcDgA4hYJFQohEDjkt0zt1DV+kBouMkgmpQhIAbD5+9zpc0isWbU6b38owB+foNjfSFxUjPD5YxaJYCSjuFzhRsRjqjEmpWAXrM4Rts7V1u83kMIFVspLD2UAGpQnvgTWsBqyC9bk/HatDq71LsGhrclc5BqNiVF4zEKXI1GWixdYiucrU82sH+G6dq2F9B4sVbRVId6VjwRML0NLYguy8bNz66K1gfLVi98AqWbCdXRHG9RknaZ2J7GixcPEmBYuExB8Fi4QkMbEKzhaNGYsynzOc0MgWoRaZiajRZINOrYQq2ImnKNtcXI8rXv8JByMQLlY2hVDVAflhtWjfvn0499xz8eWXX6KiokLWY8WwcMXPFdCpGYwdmIF0vffJVQ0rfG3MUW7Je6CqDXXtNhRkGaBTyX9zVVZShPwBg6BS96wrDgkhSU5OtVmg8EnKiRxxnp5aeoWVZLYQ/rZ1a4Uagw4MnMxWqE4rwKhOzO+LBqcl+JryRgHqFKCjUahYVHVWL4iBp9xWtGoDAIX8Vqghzt4q/m0rznvzOFb/8CuOVNbI2J8dULCQ9LZbrFgM8aS4LDX7ha9Zal9AxjHqgZIK9M3NRHpqShQXRwjpSRwuh3sOoFRWzurV0lTq3EBGwYQ8Y9BvK1SlxGCRswXcVkolpQIKsAo2aDjqGX6JM/tiNWNRzah9vla+WndandaIteEckTHC/f8aVuOukPSkZbVot3mvo9naLDlYZBWs7IrFLG0WePCobKuUtH3Xalwt0z1YVCvV3bYz282oqqzC+sfW44cvf0DlEWn7YxUsFAoFGCWDNy55AxflXyTpcYmsrLgMOoMOuX1z470UQk56FCwSksTEGYuhBjaByA37wgkW7ZxL9puNZMC5eLRaHNCrWa8KuXg41mIBD6C4NviVksFUNocWLIbSCvXrr7/GBRdcgMzMTOzcuRMjRowI/qBONicHp0v4vjLZnJgwLAcFmd1PRms7Qz6TNboB9/eH6qBTMRiclSKp2rKr8pIiaoNKCEk8cioWOaf/oj4pFYvRDBYdQeYE+hKXVqg2ma1QO4TwThHFt31SKhaVDNBvrPD/xlwh7AROBItyW9EqlIAmBehokL9WmX747juc9+IuMKwKO/6zAGeeMlj6gzmHsFYpf/fFE9KxCBaP7RIqf9P6yXrYgZJymq9ICJGFBy9rZqDIs/JMcsWiggm5FWq4FYtWpzVwsCjxdzurDB4sela9iW1JYzVjUcWo4HQ5u1Widp0dCAhfe4WUGcMSeAWLfmYQ+qpYbLG2wMBKO25UMSqfoWkgOfocAEBZW5mk7bu1QmW7t0LVstpuFa7/++5/KHmuBC6rC2+sfgOjzhklaX+RqBZNNGXFZRgwdAAUCgW0igDt6AkhUUfBIiFJjOlsrxmNYFFuxWI4a7A5XOBcPS9YbDLb4eIBgyb+B3MN7cIbpZq2EGcLeQi1YlFu+Hzo0CFcddVVuOSSS/Djjz8iPz9f1uM7bN77O6NfmjtE9BSrisVvD9ZgSE4KehlCqzgsLy1CAQWLhJBE45JTsRigPZecYFHGTDjJ5FbMAT6CxRhULMoOFi1CiBfNYNFhk1ZFOfRSQNcLSPNooymeUAvl9dcYgY7mwPMdu5LZZrSyshKTLp+Cs3orsX3BTAwukHcsAs7RWS2agMFiWj6gTZX1sAMlFTRfkRAim1hVJ0ezrdn9/1LnBjJKJuRWoL7CT6fLKbli0cpFJlhUKVVBw1HParZYB4sapfB3u2vFoK/WnRHdr0cAp2W0PoNMPavvFsi12lthVBsl7UOlVPmcHxmIGCxWtkusWHQGr1jUslqYnSfC44aGBtx5/Z3Q5Giw6LNFGDh8oOT1ibM3e5Ky4jJ3G9QsVVbgjQkhUUXBIiFJTGyFmggVi2EFi5wLXA+sWGwwCW9OUtTS3oxEU327cIBc2xb+3J7qVvlX+wPSg0WOE7YbMWIEvvrqK6xevRopKfJbbnnO7jxrQC/0TvM9NP5ExWL05lHUtVux/3gbCjL1SNHI/35obqxHS1MjBgymYJEQkmDkViz6K1mU0wo1Gu3F5VbMAT4+7ygfyzDqzmBRxoUwdkuMKhYl/I3vNQCY8gqQPfTEbaG2QgUATSpga5PX3lRisOhyCd00+vXrhy9efQhrZ+iR3neI/DWKwWKiVSwe7wwWZVT/Wqw2lFZU49ShVLFICJFH7tw6QKg0E8mpWAxlpiPgO1h0uBySK75snC1gdaPUSkpWyQb9HDxDJ6urS7Ao5+KjEKg7/253rRiUMkMyVBpG0+3fvvZnUBm8Ak6e52Gym2QFixZO3veqmlEjRZWC46bjkrbvWrGoY7ufo9AyWlgcFvA8D5fLhaysLFz/4vU47enT0Ld3X1nr62kViy6XC+WHy2WFq4SQ6KFgkZAE5uACn6hzB4tRmLEod26j1RH6GuzO0CsW7165G1uK60PedzSJwaIhhCAp0mo7KxbFNYWj3mSHPYTvua4VhL60tLRg0qRJWLx4MQBg8uTJYJjQDoY9KxCVABg/7WjFisV2W/QqFjcdqocCwJBcg991BFJeUgQA1AqVEJJ4ZM1YDFSxKOHvk6VF2n5CIXOmDgAfMxZjECxydnnBosMc/YpFKa1QReoUwHPWkRgshvL6a9M6g0UZQZyESgSTyYSrr74aL730EgDgsoEuqNLyhGpLuTi7/FaozigHix1NQEs5kJIHsNJbiBWWVoLneWqFSgiRTe7cOgBosbW4/z8WrVB9VRQ6eRkVi0HmCUoNPFklCycv/E3193l7vp5Wh3ewKD42WvwFi+ZQWspLoGN1OC3rtG63+WqFalAZ0OHscI/ZabY1w8k7kaZOk7QvVsn6bIkbTJomDdWmaknbSgoWWS1MHSbMnDkTTz31FAAg6/QspBjkX2zd0yoWqyuqYbPa3BWLhJD4omCRkAQkBobBghiWEX6E5VYXSiE3OAqnYjGcYHHt/hrcsvyXkPcdTWKIl6aLzMDycNR3BovNZjtcYbadbe6whzRTM9hjSkpKMG7cOOzevRunnHJKqMtzM0sMCjVixWIUg8VvD9ZiQKYeuUbfVZPBlJUUQaVSo29/ujKPEJJgZLVCDfB3wCGlFWqTtP2EIoRqCnQ94RftVqisRgiq5LQ5c1iEWXrRDBblhp2e2M5g0RZqsNguL4gLUt147Ngx/N///R++//57nH766cKNplqhOtIzEJXKZQcUDCS97RarCkJs4yfZ8V+Fj2n50gLPTgdKygEAp1ArVEKITKEEi602jxmLMlqhOkP8e2Rz+W6FGigs9GTn7AFDSCfvlPR5eO6vtKXU5zae7TTFdYsBUrQrFsXqwa6tUKMVLLJKttucRi2r9dl6NUWVAhfvcn/v1JnrAEByxaKaUctuhQoAaeo0VJslBosOi1fY5ytYdLW5cPCFg/jss89w1llnuW8PZV5lTwsWy4rLAAADhwnnRaLd+pcQEhgFi4QkIDUj7UdTrHySW10YDOfi4ZQZPoWzBruTkzUepys+QduoNrTboWGV0CdAxaIYcrZanLAHqYQNptlsDynM7ggww3DLli0YO3YsOI7Djh07MH78+DBWKDBJqJAEAK04YzFKwaLVweGnkgYMzk5Bqja0kLm8tAj5AweDVcU/pCaEEC+ygsUArVClnHTsSLRgMQ6tUDmH8J9UMalYlNme1ZO7YjGEVqjadMBmktkK1X8IuWvXLpx77rloamrCtm3bcPnllwt3iF/WUF5DdytUCdvGqhXq8d1C5WiqvHZqB0oq0L9PNlJTQghYCSEntVBmLHoGVy6JxxmMIvQZi74qCuXMWLRxtqDbSmkJ6/kcjZZGn9v4mrGo6LxQJNRgVSoxWOwa7HWE0tI8RDpW53N/hs723o1W4XWrswjBYromXdLzqpQqWDn5wWIvbS/UW6R10bI4LV5f467B4tGio/jwrg9hr7Pjm+++wfXXXy97PZ56WivUsuIyGIwGZOUJsxWl/m4ghEQHBYuEJCAVK+1HUwEhXIx0sOir+nD/sVYUPPE1vj9U6/Mx4VRN2jm+R85YrDfZkKJloQqh9WWkNZmFk1RtVkfY3y/tVmdI1X3+KhZ5nsdzzz2HM844Az///DOGDh3qczu5OiSukWWUYBQKmO3Rudrt5yONsDg4DMwyQC3xZ7ur8pJimq9ICElMLqf0FqCBTvbJmbEYDSG0vureCjXKJzcYNQBe3jzIWMxYdMkMOz2Jc5PsIVQ66NKF2YxyQuEAIeRLL72E/v37Y+fOnRg1apT89fjcn6PztZfw+otfo2hXLB7bCaT3BzTS5ysCwIHD5dQGlRASErntJdVKtVewKLUqScp8Qn+6tlDleR4cz8kKFlVM4ItApQSsnhWLnu1gPXlWgIqzId0Vi1Gu4HIHi11mHIZSlRoqPav3+VqmqIRWoU1W4UK0+g4h7EvTSGuFqmbUPmdtBpOpy0SrrVXS97mV826Zq2e9L9b579L/Qp+ix6BnB2Ho6eGfF+lxFYuHy1AwrMAdpBNC4ouCRUISkNSKRUBomxrKvLtAfAaLx4V2EluKGnw/JqyKRRec4ZQsJqi6NhtSNKy7ZW28mG1OWB0upGhYtFudsDlDf7OhZpTgARxvkf/GoescTpfLhYqKCigUCvzvf//DunXrkJGREfLaupITfqpZpaQZkKHYWFiHDIMa/TNCa4PK8zzKSopQQPMVCSGJSNaMxQAhpJTWU9YWycuSzWmF7PYJ3VqhxqBiERDaf0rltAiVcNE+ASNnTZ7EzymUilFNKgAeMMmYtd3lpB/P8ygvF1p8Llu2DD/88ANyc3Plr8Ufl0P6jEWFQqhudEYxWOR5oRWqsTeglhksllRQsEgICYmFk/c7XsNqvGboxaJi0cW7vEIl8f9ZhYxgMUjbVLnBor/2ol6tUDvXKbbJjHorVFbTbW0WpwVO3hlSq85Q6FV62DhbtxBZbHkqBosNlgYooJDcClWj1IQ0YzFblw0ePMrbyoNua3FavL7GOlYHnudRc6wGAPDA3x7Aw8sehjpT7dUOOFQ9LlgsLkPB0IJ4L4MQ0inuweJbb72FgoICaLVajB07Fjt37gy4/cKFCzF8+HDodDr069cPDz30EKxW+aXqhCQysarJ39xBz9afbDQqFmU+n4MLfUai+PgemCui3mSFQc26Z2bGbR2d8xVzUzUw2ZxhBdFpeuEguKJRfqsTz8DabDbj+uuvxwUXXACLxYL09HSo1eqQ1+WLnNamGlYJS4BWraHieR7fFdZiaE4K0nShfX7NDfVob23GAAoWo4aORQgJHS+nFSoX4PeslGAx1PBKCs4hb3Yh0D2IjEnFIgB797lCfjks0W+FCgC2tuDb+OIOFkNphdpZgWD23U2jG5fLq2WrzWbD7NmzcdZZZ6GlpQVGoxE6XWgXAfnFOYQZi1KDXQUT3YrFlgphVmlqnxOvvQTmDiuOHqvBqTRfMaroeIT0VHKr2bSM1itYDFaF5+r8e8woQw8WAe+wTGwxGqwKUSQlWJTyOnjuz1+w6DkHsGsQ5uSj2wqVUTBgFIxXK9Rmq9BRQi3j70o49J0zj7tWdBpVRq/1NFmboGf1ktuBhlqxmK3PBgCUtZUF3bZry1wNNFj0zCLcdultaKprgkarQUaacLF1i71F9lq66kmtUDmOQ0VJBQqGFcR7KYSQTnENFj/55BM8/PDDePbZZ/Hrr7/ijDPOwGWXXYa6ujqf23/00Ud44okn8Oyzz6KwsBDvvfcePvnkEzz11FMxXjkh0SUGi/6q+EpLSwAADVWVYBllTCoWI7l9V3bO1SNboTa026FXM2CZ+AaL4nzF3FQt7E4XWi2hv9lK1wlvdCqb5Z8AFFuhNjfU4uKLL8b69evx1ltvRf4kXic5rU01KiWsjvACcl+KattR3WpFQaYeenVoB/VlpUUAQBWLUULHIoSE5njVcQCAxWKRHqgFOjEoJViMJs7WvbVpMKFU2YWDFYPFUCoWo/S2L5QqSk9KpVCl5wjh669NFT62+/593Y3HycKGVjMmTpyITz/9FG+88QbS09Pl71/SPjtnLEqlZAMH8OE6vkv4mJov62GFpRUAgFOHUsVitNDxCOnJrDL/xmsYjVerTZef8yItLS0AgKMHjwIQqgvlBoueYZ/nDER757xbqRWLDs4BtTJwsCYpWPQIJ/1VOPpqhSqKdsUiIARwnqFnS2dHCbFNarQZWKHiXgwQRXqVHkqFEs024fZGa6M7hJRCzai7tcSVIlsnBIvH2o8F3dazYpEzc3juz8/hq4++wl3/7y5k5AiBorjmdjnHe370pIrF6opq2G12ChYJSSBxDRZfffVVzJ07F7fccgtOOeUULFmyBHq9Hv/+9799br9t2zZccMEFmDFjBgoKCnDppZdi+vTpQa/kIyTZiK1QnZzvkMNuFw6WrdYOqBgFHC4XXBEMROQHi+EFmw7OBc7P55rMGs026NUMVMr4FoeLFYu907QAgLr20E/eqlkldCoGVS3yn8Pq4GCvLcXf/nw1amtr8dNPP+Gqq64KeS3ByKtYZGB1Rj5Y3FhYBw2rxODslJDnAJSXFEGl1qB3v4KIro0I6FiEkNDY7Z0nXlwOacGiy+V/O4UyeLAYzbAFAJx2+RWLXavsYtYKVWbFYjSDRVackRjGyS+lKrRgWZyZZJJYsdi5j8J6DmPvfgvFxcX44YcfMH36dPn7lsolM1iMdsXisd2APgsw5sh62IESIVgcOahfNFZFQMcjpGezcjKDRVaDdkfwikWHQ/h9abN2zhlUMnC65B0vfHnkS/f/e1UscvIqFu0ue0RmLHqGk/6296pY5GJbsQgIa/RcmxjkaRlt1PcNACnqFK/9ihQKBXSsDq1WoYVos7VZfrDI2b06hEl9XIoqBcdMwYNFsbLVXm/H0eeP4tCeQ3h5xcu4YsYV7m3E4LQt1G4QHqTOCE0GZcVlAICBwwfGdyGEELe4ne222+3YvXs3Jk6ceGIxSiUmTpyI7du3+3zM+eefj927d7sPlo8cOYK1a9diypQpfvdjs9nQ1tbm9R8hie5ExWLgAxqnww4VoxRaiUbwZJbcoDDcikUHxydMxWJ5uXDipKqiLKzncbl4NJsd0KkZKOPcCrXBZAOjVCDXKBzo14YQCnpK16tQ126VHcJZHS64HHZk9c7Hzp07MXr06LDWEUy7VV4rVJuDi3iw+O3BWgzJSUGGIfS2MGWHD6HfwCFgmJ5ztWGioGMRQsKn4AMEhp7cYYmP37NKBnAEaT1lDX/OTEAuu/yKxa6VBxFqhVrbWaFUdPS49x2hVAc6rFEOFjtPIlrC+L3GqEMLFlmNEEqaJVYsdraLs3FATnoKduzYgXHjxsnfrxycQ3j9pVJGO1j8BUjrB6jkzVf8/XA5CvrmIsUQnS4TJ7tYHI/QsQiJp1BaoXpVLAb5++p0CO/7WAUrO1j05BmWieGd1IpFO2cP2gpVSuWmZzgpVk12Fahi0V91p1wmk/D6l5d2nxvYtWJRnAUozl+MNkPn3zBfMwi1jBatduH2FluLO6STQsNowIOXHYQDQJomDdXm6qDbWZ1WqBgVeI4Hq2Px1udvYcwFY7y2iWTFotTv32RwtOgojGlGd2UnIST+4hYsNjQ0gOM45Obmet2em5uLmpoan4+ZMWMGnnvuOVx44YVQqVQYPHgwxo8fH7Ddx4svvoi0tDT3f/360VWWJPGdqFgMfFDIOexglQo4OB6RzENsPoLCQMFluMEi5+Ij3s41VMeOCVeZ1ddWhfU8LRYHOJ6HQRP/A7l6kx0pGtYdbtW1y2/v4amXXo1Gk13y153nefznP/+BxWqDNn8knnzzE/Tu3RuAMKsx2Pd5qNpt0k/MaVVK2Jyc3/bDoWg02bC3sgUDswwwaqVd6epLWUkRtUGNEjoWISR8Cp6TFqhxAX4nK1mvNpU+WZoD3x+uUCoW7V1PlEbmYKy2Vvj9U13f5H0HG8KMRacVYGJQsRjOVfVisCj3IjOFAtAYgY6m4NsC+N+q1bA6eYzOY7DtzbtQUFAgf62y8MJMRzltyJSM8JhoXHDHOYGafUBqHqCWXsEBAAdKymm+YhTF4niEjkVIPHWdAxiMjtV5BVfBZixyne9Lw52x6Bksii0xpVYsOlyOoDMGJVUsSphT6Bl8dW3dGamKxdbWznCuqaXbfWpGjQ6Prg1tduEYIGYViyqhYtFXsKhjde5KvxZbi7u6UQrxtfc32zKQdE06asy+f197Orr1KGAFNHkajPn7GPQf3P1vK6NkoFKqItMKtQfNWCwrLkPBsIKQO0ERQiIvvv35ZNq0aRNeeOEFLF68GL/++itWr16Nr7/+Gn/729/8PubJJ59Ea2ur+7/KysoYrpiQ0KgYiRWLTgdUjBLOSFcsOrsfuIvtNFN13YMyS5jBovAc0W/ZEUviXENDiHP1IqmuzYoUDQujjoVSAdSG0QoVADINarR0OCQFi3a7HbfffjumT5+OpiLhimrxQJBz8bh04WYs2XwkrPX4Y7Y5IfWQU8sysEW4FeoPRfXgAQzONoAJsWqV53mUlxahYOiIiK2LhIeORQjxppQaLIon+nz9mlUkQLDosgvtWuXoWnkQoYpFv0Jpheq0AkFmPoVFnKckJ+zs9hyq0GZcAkKwaG0JGFxzHIcHH3wQ199yD/53UNguJielxM9HTkt8ccZiNL6X6guF74fUPvKqKCEEi6fRTKOEIvd4hI5FSDzJnbGoY3VeIVzQikWncC5BpVSFNWPQc8aiuOZgVYgA4OSc4HguMhWLEvbnGdR2DW2lfv5bj2/FZf+7DE1WaRfneFIpVd2CRQUUkkLRSNCxQvW8z4pF9kTFYru9HUaVUfLzijMiTSEc0/TS9kJ9R73f+10uF/7f//t/2PnSTlT+IPz+DVThqWG82wGHqqe1QqX5ioQklrj9hsnKygLDMKit9Z6JUVtbi7y8PJ+PeeaZZ3DzzTfj9ttvBwCMGjUKZrMZf/7zn/H0009D6eNNm0ajgUYTm3J8QiLF3Qo1yNxBzu4Aa1DEpBVqZZNw4Jim636gG+6MRQAwWaM/ZDyWGjqDWKMm9Eq1SKlrtyFFw0LNKJGiYdFoknfFaFdZKRq0WBqDBsqNjY249tprsX37dvx7+XLML8zyur/D7oTV4cKvFU3geT7iJ/nMNg4aVgmrhGpYjSryweJ3hbXon6FHXmrobcMa62pgbm/DgMFUsRgNdCxCSPiUkNoKVfyb4acVKucQgj1/IUzUKxYlzor0ekzXVqhRbuuuYIT/pJ7w4vnOisUoHoswKgAKoT2rNi3E51ADnD20ME2bKrTJ5ew+P8+2tjZMnz4d69evx1svPImbbG+FtsZQiGF6SBWLLgARvjjt+G6hcjVVXuVhu6kDFVX1VLEYRbE4HqFjERJPNpf8ikXPYDFYxaLYCpVRRK5iUWwxKiXoEx8XLFiTEiyK4VbA5wlQsRjstRJVtFWgylyFlYUrcd+Z90l6jOcaPV+rNlsbNIwGCsmX9YaHUTLQMlp3paQnHatDu70dVqcVFqcFqZpUyc8rVlx2dJ2hLUGmNhOt9lZYnVZoWe/KzY6ODsyePRurVq3CoBmDcNrU07C7bnfAr7WG0YRUOdlVTwkWOSeHyiOVuHz65fFeCiHEQ9wqFtVqNc466yxs3LjRfZvL5cLGjRv9zrro6OjodoAszpySO1yXkER2YsZisFkC4oxFPqKBiM1HxWJ5Z7Do62Ax3FaokXqORFLfGd6l6eMfLNa326BXM1AxSqTqVGjucITVfjTDoIKD41Hb5v8NYlNTE8477zwcOHAAGzduxLU3zui2TYdd+JpXtVgjUvXalcnmdP8sBaNTKSMaLNqdLvxYXI/B2QakakM/mC8rKQIAaoUaJXQsQkgA4sUeQdqXMXBJq/TrWlHm+RglGzxYsrYE30c4uFBaoXY98RSD3wGsBnBInFUlnsBkonxSidUA9jBOfjHq0FrRAoA2XQg1fXyfms1mXHDBBfjpp5/w9ddf4+6bpoW+xlBwnd045JzUU7BCCB+NvyfHdgvVivpesh52sFSYP37qkAGRXxMBQMcjpOeT2wpVz+ph5+zukCxYxaLYCpVVsmG1AvWcXSjON5QSzIiBoTpIhwApsyaDPYfn/oDucxjlfv6fHf5MdpWnmlF7fS4mhylm8xVFGkbjM1jUq/Qw2U2o6xDmL6eqpQeLYjAspWVtV9m6bABAWWuZ1+12ux0TJkzA2rVrsWrVKvS+orf7tQoULKoZNUyOMLpBdOopMxaPlx2Hw+6gikVCEkxcW6E+/PDDePfdd/H++++jsLAQd911F8xmM2655RYAwKxZs/Dkk0+6t///7J13mCRXefVP5U6TZzavNmgVUEICrIAECBDJn4UNxhgQJoMBIZNBIIIBC5GTEGCSsbAFIkuADMp5tcpppc07Ozs59nSsXN8fVbe7urpid8/uaHV/z6NntN0VboWZunXPPec9//zz8f3vfx+//OUvsX//ftxwww349Kc/jfPPP7/WiaZQjgRIjUUtQvwhwqIdhdq5/fs5EEfmgztXRBRqZ35aWT3SolBViByLrHj4O3KzJQUZiQPPMehOCShUNahtCYt2h/tgyD3R19eHN73pTdi2bRvOOeccyGrzy0pZsa/5VEFGWem8sFhOICymBA6abkbGD8fl3v3zKKsGNg1mIQmtP58O7NkJKZXGqnXUJbBU0L4IhRJAzDgrhkF4/USC10Hg/jfH29sIGzhc8ihULXkUZ5Nj8RDUi04i4hEBcimjUIH2hUVesoXdVuLrUj22sGg014/OZrP4l3/5F2zduhUve9nLmqNrlxpyjyeKQnU7FjvM6H1A9zpAzCZabfueETAMg+M3r+t8myg1aH+EciTjdtjFIStkG9aLEhY13f57y7N8e1GobmGR1FjspGMxxnnw1nT0O54Gx6Ln+WcmjHWfqc7gL8N/SbROiks1nKuiWozltOwkEi/51iAkbtepiu0A75Hipym041hckVkBADhQPNDwuSiKeOMb34g77rgDr3rVq6Caak08jnIsttIOL0eKY3H/rv0AQIVFCmWZcVj/wvzzP/8zZmZm8JnPfAaTk5M49dRT8Ze//KVWtHxkZKRhFt6nPvUpMAyDT33qUxgbG8PQ0BDOP/98XHrppYfrEChPA67cOozv3boXd3/8RWBbrJOWFCKGaBFRqJqmIsUx0EyrozNT/dyDpMZi2PI81/r5qShHmLBYlNGV4ts6J53AsizMlVWcuKYbPMuiJy1gZL4CVTeRaXGcsc9ZcXShuaP74x//GN3d3Xjta1+LT3/607XP/RyJxLG4UNGQr6gY6ursy0hZNWoifRQpgYNqdM6xeNOTU+jLCNjQn2lrO8N7d+Kozcc0zUinE9E7B+2LUCgBkJnnsdyIMZwINfHR8vwbjmNRC3esLbWwGLV/P7zOwUPxx5mTbEEzLDaWQNq3lFGopE1atfXj50Rn/RYdi2qpQVj85S9/iUqlgre97W342Mc+Vl82oWOmbUynb5soCpV3zkOH7yWlBMzuBJ7xSkBIFtG+ffcBbF6/Cpl0KnphSsvQ/gjlSEaJ009wkRHsdyhS89CCFVo6w+1YNCyjpTIbLMM2iGW1KNQYz1AiAEWJa3HOg3cbeSWPgfRAw2duMdErLMaNQiX0p/px1ZNX4f9tjh8x6edYJKLcUkCEZjcpLoWiVkSaa3ymsWBhwarVO0ziWCQRpq04BQfTg2DA4GDBrp/4xz/+EcPDw7joootw0UX1qFnVUGsCdNg5EzmRCosuhncNo7uvG32DyVIXKBTK0nJYHYsA8L73vQ8HDhyAoijYtm0bzjjjjNp3t956K372s5/V/s3zPD772c9iz549qFarGBkZwRVXXIHe3t5D33DKU4KirGHjxX/GL+8daXkbn7lmOyYXZTwx0RyzsFTEdyxqEDkWhtnZKFSvYzFKtKwJi0lmZHsoLYFjrROYpoV3/fx+PDySbEBzuqggK/Hg2xCjO3FFS4oOVTeRlewOZW9GQEnRoMSoOxhEV8o+roML9ZcJwzDwkY98BO985ztxzz33NK3jJyyWXWLynun2Yz6a9qkaEBI4FlXdbCsilmBZFm54cgrHrMihp1X11uHAnp3YsOXYps+nZPu+Ki7T35unGrQvQqH4QAbSzBgTf+I4wch2yMPNPRDGCtFRqJU5e7mlwmjBsah6hMU2XBKx4SX7fMe5LjXH4hILi3zKcW+2+Axt17FoqEB1EZZl4XOf+xxe//rX46677mpe9lA7Fol4niSGjOWXxrE48Yi9ze61dp3FBGzfM0JjUA8RtD9COVLxil9RECGpoc5iyDOC1FgksY9J9wfYzkS/iFGB6ZxjMU4UqldYXJCbxyHcAmWrNRYJZ60+C4/OPoon556MvU6KTzW0oaSWltSx6FeOJ8WnUAqpOT1TtYXFXqk39n7IMcS5Tl4ETkBOzGG0NIpvfOMb+Pu//3vcfvvtDWNpiqHAsIzafRIWH+utY9kqR5KwuOm4TYknDFAolKXlsAuLFMpSMp63O4Z/enSi7W0dyhqAAm8/LKPiKg1Nc2osdjoKtfFYw9yK9vImeJZBO8/4yjKNQlUNE9dvn8IfHxlPtJ4tLHLgYzrm3HCOGNmJe262ZL9o5CR7tnxfRkRJMaC0sW2GYdCbETC5KMOyLJRKJbz61a/GN7/5TXznO9/B17/+9aZ1qj5RqBVXG3ZPNceYtEtF1SHFFBYlnoWFuouyHfbOlDC6UMXGgSyyYutRVJZl2cLi0c31FQuafY9EmJopFAqldcgAkTfC1I84TjBvXKrXsWjq4cJSZR4Q23OBh9JSFKpHqGqjrlNs+JR9vuMMHJKZ7kvtWOQlQJPbcyxGCctBpGwngjx/EBdccAH+/d//HZdeeil+/OMfNy97yB2LzjVKHIVqdF5YHHvA/p3uWZ941cd3D+PELTSSnUKhtE5SxyIRFt0CT1jtQE2z+xQktjQocjRMnORZ3rfGYhzHItlfVH3EOLUmveLkgtIsLIY5FvU4E49cPHfNc5Hm0/jZ9p/FXifNpaHoSk00K2mlmtvvUJHiwoXFueocJE5KVPuRHEOrgl4X24Wr/+NqfPjDH8bHP/5xXH311Q1CWFmzY+PJfZLmgxMEJE5qSeAkmM5kryOlxuL+nftpDCqFsgyhwiKFsgwRnboYUfXedF0FzzHQjc5GoXrdZWH1FcnycWvZeSFRoZ0QdJaShUqMgVUXsyUFGZGH0IJjkfQ9Sx2IhyWicM5xLHaneRimHY/aDv0ZEXMlBYpu4t3vfjduueUW/OlPf8JFF13kO4vMr25nxXHbcSyDPTOddSyqugnNsBJFoQJAqQMC941PTkPkWGweyrY1o25mYgyVcgkbtwQLixQKhbJk8M7AVpz6iXGcAbWBLqe/0lRjMUJYqs4DwhIKi0BdiIuC/G33DvgYh0JYlGyBLImTdMmFxZS9r1bFME5szTEK2I5FAB/+/Lfwhz/8Ab/+9a/xyU9+0v/5e8iFRVJjMWEUqql3PlZ39H6gdz2Q6kq0Wr5QwtjUHE48hjoWKRRK6yQWFvlmx6Ie8ow1nTQe4s4KEvC0kMlSXsdiLQo1To1FEoUaIWLFqbGY2LHYZhSqwAl41opn4aaRm5CX87HWSfEpmDBrx13WyqEi2VKQFtIo68H1nefleWT4ZP1GgRXAgGlZ0Dv424PYecNO/Nd//Rcuu+yypnImJNqX3CdhYqzESQ33Y1LI+GAcYXy5o6kaRvePUmGRQlmGUGGRQlmGEJEuKpbRcKJQddOCsYQ1FqOERVkzILTgzAPqsa9+UZnLiaKsJRJv50oqMmJrjkVCWTHajridLdkvHT0p0flpdyynCu0Nrg3kJMyXZMiagS9+8Yu466678IpXvCJweT/3ZdkR8QZzIkYXqh2JIa1t2xFl4wrexNlYkjsgLD4xhaNXZDGQay8OZnjvTgDABiosUiiUw0HNsRhHwIrxTPFuxxuFGhX/WM0nrg2XGK1ii4N3fTtiQedvsOYZ8DkUwqKQShCFShyLSxdPVm+T0rqwyKdadiwafA4A8NkLnofbb78dr3nNa4IXPtRRqOQaJRIWl8qxeD/QvQbwqVMVxhN77HIS1LFIoVDaIWk0aa3GottBaAVvgzgWibDojQclhImTPMs3CH+qoYIFCy7G3/CaYzEiCrWVGouLymLDvy3LahBIvcdqtvD8ePFRL4ZmavjfHf8ba3lSG7Co2alDFb1y6IVFPh1ag3Benq/dR3FhGAYCKyQWFg3DHus46w1n4cRPnYi3vOUtvssRx2KWz+LsNWfjlMFTAreZ4lKxhOgojgTH4uj+URi6QYVFCmUZQoVFCmUZIjouvsgai7oKkWehdzgK1RtbGelYVA0IXGtCB8sw4FjGNypzOVFSjEgHKcGyLCxUVKQFrhZr2gpVzYi8B6KYKSrgWQa5lP1C1J0mwmJ7ndT89tvx4HfejYnpWRx11FE4+eSTQ5f3E44rig6BY7CyK4XpooJyB+8BIlrGFhYFe7lymzULF8oqHhxZwKbBLLpS7XXiD+zZiVQ6g5VrGmPLTNNCWafCIoVCWWLI4FgcASuOE6EpCtW1XZa3vw8VFhdsAWopUSvAnd8AbvgM8NBV0ct7jztObGy78GnHsRijf0BqLCaIAWsJId2eY5EX7XOX0GVx3W334Zmv/xQmiiZWCBU85znPCV/hUDsWW6qxKNiRup0UFkvTQGEMyK1OfC9s3zMClmVx/ObkEaoUCoVCiBMB6oZjuaYoyLAYU8N51yTCYpAgEyZOCqzQVLswjqgIoOYsk9jwv7FxBNYoYZGIUwTN079K6lgEgKHMEI7pPQa/2/270PNMIE67glIAYAvAh1pYzPAZVPUqLPiP0eSVfGLHImA7/IizMA4P3/Mw3vaSt2Hy4CTWDq0FNgJl1d9JWXO2chJed/zrsDK7MnC7Ei+1VCuUQATmI8GxOLxrGACw6dhNh7chFAqlCSosUijLEJYlwmK4kKU5NRZ104LZQWXR6y47MFcBHyKQVTWjLWcezzLL3rFYUfXYIl+hqkMzLGSl9meHtSsszpYU5CQeghOv29OmsGhZFq7+0bfxl+98HFz/emhWvGP0E47LqgGJ57CyJ4WZooKy0rkBWSIQxo5C5TlnvfbacNuuGZgWcPRQFnySmko+DO/ZiQ1HH9sUoTJdUmD6FLCnUCiUjkKiUGPVWIwTheoVFl3rcIIjLIU88+TFpRcWtYq9HwAoT0Uv73XAJaxr1BJ82hY0YzkWnYGxpXYs8u0Ki6lEUaiWZeE7/3sdzn/P53D0UWvQlc0AldnoFQ+XYzHJoB7L2aJxJ6NQxx60f/auQ9KC6Nv3HMCWo1YjJYW7cCgUCiUIBkyggzAMiZMaBJ6w2oG6bn9HYks/dtvH/JeLcizqjY5FjoknLBIBNMqxGCfa0ruNRbVRWPS69LzxrnGEQT/OXns2pivTeGz2schliYhY0kqo6lXopt6SiNcOWSELwzICReQFeQE5MZd4u36OxYenHsbO+Z1Ny1539XX46AUfxeDKQWS7shhKDwEARoojvtsm0a1x6lGmuJR9fC32XYjgGifKd7kzvGsYfYN96OnvOdxNoVAoHqiwSKEsY/QIYVHXVAgcC8O0YC5hjcXhuTL6ssGdZNux2PqfE4FjoehGR8XRTlNWjUihlzDjxI92Rlj03+cjB/N4cqIQuf50QUEuxdccpSmBg8ixtdqLSTA0FY/8z6X4nyu+gr99879h8PyPYKoabxDRTzguKzpEjsWqLgmKbmJsoXMDfqWEUaikxmKhzSjUG5+cwvq+NFb3tD9j88Cenb4xqOP51ou4UygUSmyIGBUn3tMbCepHk2PRE4Vq6MHCkmXZgt9SR6EmraljqI3OwTj1KNtFSNlCbhxHwqF0LBpK62IYR6Jwo49J001c+KsRvP8rP8OH3vIq/O7yS5Dr7gEq89H71xUg5iBxRyD3A5vEsejUWAxwYLTE2AOA1A10rU686vY9B2h9RQqF0hY8y7fkvPI6FnUrRFjU9Nq+AGB3frfvcmECZ5Nj0UjmWGTBRrrDWnEsElcgocmx6BUWW3AsAqiJYn41Hb3UhEW1VKvLmDR2tF2IkFlSS77fF9QCckJyYdEbiQsAl9x1CS5/6PLavy3Twu7/2Y2vfvSreMVrX4EvX/lldPV2YShjn8MDhQO+2yb3s/ca++F1hSaF1Cntk/paWn85MbxrmMagUijLFCosUijLGC1CaNM1FTzH2DUWOyjKKXqjWDQ6X0VvOriTXNUMCCzTsoeKZxkomtnROpGdpqrqsWsAkrqGWbH9waugfX7lrztw8W8fhaKHvzhMF2VkRb7BPdeV4jFXVhLVjASAueEnMPXo7fjol76HN77nw2AYBgfn4w3C+tZYVAyIPIuVPXanefd0a51mP0iNxVTCGotkvVbQDBO37pzB5qFsrZZlq5imiQN7d2EjFRYpFMrhgjgW44hlcaJQvaKh23nARdRY1GVbdFpqYVENj35vwivwHYooVCGBY1Gv2g44bonr6/CScy5adCxyon08MUTsxw/mceW9c/jRZ/8VX/3Y28FxHCB1Acpio1jthy4ncw+2C7nnkwqLVodrLI7eB/QeBbTg3Ni+e4TWV6RQErJ9djtO/u+TUVL8BY+nGzzLN4lfcUhxqQYhMMxt6BUWg/DGhroRWKHRsWjGdyzKugw+xrM2Ts08r5hZVIsN/67oS+NYJMIgqZsYBhEWi1oReSXfsH4SRNbua5JtJCHr1Az2Cq2AnWxQUkvoFrsTb9d7Hyi6grHSWINgmx/LY/T6UVz4mQvxwS9+ELxgX/vB1CAYMIGORXLtopytgEtY1FobI1mdW41LzrgEx/Yf29L6y4nh3VRYpFCWK1RYpFCWMVFClqFrNaegrHVuAELWjJpIqOgGZkpKLULTDzsKtfVoRoFjoepmR8XRTlNR49dYJMJimBgbFzXgHtANC2P5KooRDruZooKsxDVcn64Uj3xFj+3AHBkZgWmaWHHMqTj3s7/C81/+9+jLCGAAjC7EG4T1i0ItKRpEnsVQTgIDYPeUfy2CVqg4NRYlId7LIBEWS20Ii/cPL6Ck6Ng0mIu93yCmJ0YhVyu+jsXRhSo66mSgUCgUP7gEwmKcmKawKFQ2IgqVzEZf6tnwSYVFb5sPSRRqgthQrQqwIsAs8Ssfn7LPRavHT2buh9Q0Gh0dha7rOG1TP/b/+8l4x6tfXP8y1QMohegailo1mcjXLmarjkWjc1GolgWMP2i7FcVkvz/z+SImZuZx4hbqWKRQkvCrnb8CANw/df9hbsnygGO41qJQPW77MHHSG4UaRNg2BFZoEP40Q4sUKgmyIYOPUU+3FeemV+jzCoveiNhWHYtRDkA37ijUBcV2OBKHXBLW5tYiw2dw59ididclbkQ/YVHWZZgwWxYWq0a9P/Lk3JO1czoxMQFFUdC3vg9nf/dsvOYdrwHjihjnOR5dYhfGimO+2yaOxRQXHYWa5pxz3MYEhVXZVS2vu1xQFRWj+0epsEihLFOosEihLGOihEVdUyE4tQ/VCOdaEmTNrAlRUwV7kKYvEyIsqm3WWOQYKLrZ0TjXTlNVjdj1DmeLCniWQVZq37Ho5/QjzJVV5MvhA76zJRVpsVFY7EkLKMhapNsRAK6//nqcfPLJuOKKKwAAUq4XAMBzLLpSPMbz8eJLfaNQVQMix0LkWfRlReyfLSd2UQZRcmospmMKfDzHgmMZVHwE0Ljc9OQUetICNgy0P/A9vHsHAGDj0c3C4li+igy3fH9XKBTKEQIRe+IMBkYJOkB4FCrHh0dhqs6gEb/EjkWfwalQdLVR4DsUUai8ZJ+rOPGzWtUWiJdaWBScATK1xQlCxB2r+Qu7d955J0499VR86UtfAgAMdXn6pKkeQC4uQ8ciqbGYQFis/S50aMLg/D47RrhrTX2yQEy277Gj3KhjkUKhtAPP8qFuwyC8dejCBDPDedeMEhbD6jQKnCcKNYlj0ZBjiZCtCKxex2LZ86zVTb3hHbpVYVHiJLBgUVCjHXLk2pTVci2qkzgIk8CxHDb1bMK2iW2J182K9v68NScBwIT9DO2WkguLPMtDcfVrH5uza07O7JrBc57zHHzqU58CAIjd/s/UHqkHE5UJ3+9IW+PUWHS7Qp/OHNx3EKZhYtOxmw53UygUig9UWKRQljGaaYXWHdQ1rSboddqxSKIzJxbtWVV9meDBCMWJQm0VnmWgGmZsR+DhQNZNKDHP8WxJRVeKh8C1LywulINfPiwL2DMT3NG0LAvzZRUZkWuIQu1JCyjKGlQ9/Hi+973v4W//9m9xzjnn4M1vfnPT930ZETMlJZbgWtUMcEzjPVJWdAg8A45lsLJLwmRB7th9XFZ08CzTcNxRiBzblrB4w5NTOGZFriNO1eE9O5HJ5jC0em3D54ZpYbqoIMcv398VCoVyhFCLQu2QsOgdzHMPMrK8/e8gMYXM1k7ouEpMgLAViKkeHsciUHdxhqFVbSHtUDgWgdaFRSJ4+ax/5ZVX4sUvfjFOPvlkvPe97/VfP9Vrn484wuKhdCzWaiwm6BewvF23s1PC4tgD9s/edYlX3b7nADiOxbGbkq9LoVAoBIEVYMJsEO3iQBxbhDBRMG4UapiwJ7Jig6NQM7TYwqKiK5GiJtCaY7GkNT7vvY5FC1bDdlsVFhmGgcRJsRyLHMtBYAWUtBIW1UUAaKmeIQCcMHACRkujGC2OJlqv5ljUg/sevVJv4vaInNgQhbpjbgcW71/ENR+6BuvXr8eHP/zh0PV7pV5Mlad8v6vqVXAMF6t2JxEfvcLy043hXcMAQB2LFMoyhQqLFMoyRjesUBefoakQHCeanyOsVRTdrG13YlEGzzKhwmLV5XBsBRKFGiaihnGoJJbFarwXgbmygozI185hO8yFCIsAsGcmuONfVHSohomc1PiS05sWUZL1wJhVwzDwb//2b7jwwgtx0UUX4dprr0V3d/Nsv/6siPmyGuqqJFQUAwLPeD7TIXIsWIbB6p4UpotKLcK0XUqKDpFnkUBXREpgW97/vpkSDsxVsHEwg6zU/qDlgb07cdTRxzZEqwB2zUzDtMA7Qn5B7mANJgqFQnFDHItxXAZxBsrCHIukrlzQvsggVws14uLh/K1VE9awNbRDX2MxkbBYPsTCYotxXURY1Ovn3zRNXHLJJXjzm9+MN77xjfjrX/+K/v5+//XTvfa+o1ychzwK1bmfYwwg1mB5wOqgY3H0fiC7AsgOJV51++4RHLNhLSTxELo8KRSKL4vKIoYXhw93M1qCiH3VkLhrP9KeusqhUahavCjUpthQV+qAr2Mx5t/v2I7FFoRFb9RnVW8+j1XP87NVRE4MFeqaltVsxyIDJpYLz49TBk8BANxw4IZE64mcCJ7hYYY8L3vEnsTtEVmxFolrWRb++OM/4uB3D2LDWRtwyy23YNWq8HjR/lQ/pivTvt/JuhxLgAbq0bReIfnpxvCuYQysGEBXb9fhbgqFQvGBCosUyjJGNy2EaW2aptZqLMaJtYyLotejTScWZfRnRYh88J8LWTdsoaNFHY3nbMdiqzUWD1WC6kJE7CjBMC0wDMAy7QuL8xHC4t7p4I7/TNF+McqKjS9EvRkBZdUIFNEYhsHk5CS+//3v45vf/Ca4AOflUJeEfEWNJWpXNaN2rxLKqv0ZyzBY05vGQkVFvtKZQdmKqkPi2UTXQORZyFpr9+HNO6YhcAw2D+Y6ct0P7NmFjT71Fcfy9ktjLlmaGYVCoSSHREbGie2K40LwOg3cA4RkMC6oVqNaAhgGEJPHbMWC5WzxLengjbfW4aGIQiWxo0qMGezqIYpCJYOJSR2fBCIsugadGYbB+Pg4vvrVr+LHP/4xRDHkwSd120JcZT58P7qSzD3YLqZWv7fiQhyLnZo2N3of0LOupd+d7XsO0BhUCmWZ8KJfvwjn/+H8w92MliBCip8gFkaaT+5YjBJtvI5F97+bHItmAseiocQSFsPE0SC8UZ9+QpO7NmSrjkXAFuviOBYB+3yVtTIKagESJ8UWYb30pnqxOrsad4/fnXhdbx1ONxzDIdfChDSvwDw9OY2hvx/CeZ84D+l0dCT/QGoAJa3kex6rejV23U53HcunM8O7hqlbkUJZxlBhkUJZxuhGeN1BXdNqYo2qd05dUzSz5ogay1fRlxFD3XeKZrZVY1HgWGi6CaMNhbBVt2MS8gGOxV/eO4K/bp9ckn1GCYsHFyqBtThnHWEx56n12O1EdU4XGgeCh4eHcfvtt4NlWVx99dV497vfHbrvwZyIxaqGaoz40IqqNwmLFdWAwDFgWWBVTwqWBeyd7UzHuSjrkHgOSTQ+ieeg6Ab0FmZ53vDEFI4eymEwF/xyExfTNDGybzc2bjm+6bvxvIyMyCEVIvRTKBRKRyCDNXqcKNQYy3gH09wiHBkIDHIzqGVAyC6t24zl49UtdGNojbObDkmNxSSOxYp9XJ0SFm//OvD473za5NwrLddYJOtXMD4+jhtvvBEMw+CnP/0pPvKRjzS595tIOY6EgOixGobi7x584GfA3L7EzY7E0AEm4fkn7t1OOBZ1FZh6HOhaDQjJY4S37xnBScdsaL8dFAqlbVpxui0XiJCS1HlFHFuEUMeiHi8K1e1QBBrFTpETG/axFFGomqk11EOMQuIkVPVqQ7urehWMZ0a3O7qzHWFR4qQmh2QQIieiolVQVIuQuPbegY/pOwaPzDwCLWE/KsUFuyTTfDq6/+CDxEoozhdx3XXXYbQ0isHXD2Llq1aCiVn6ZyhjJwQcKBxo+k424jsWeY4Hz/BNNTWfblBhkUJZ3tCRSQplGaObVqgbz9C0muAnd9SxWI82nViU0ZMRmkQhN7JTP8/bwY0LqbHYqmMRQKgA2ykWAtx0F//uMfzrzx+IFQmalChhcaogoxKw35mSLRz2pBtn+fcQYbFYFxbvvvtunH766fjgBz8I0zRjdcIHchJMCxjPR88+tR2LnihUR2y0o1DtGXm7p1oXFsuKjs9c8zhOv/RGjOWrdhRqgpcJiWehaCaS6oqLVQ33H1jApsEsulPtD3pPjo5AkavY4ONYHF2oYKhLAt++KZJCoVDCIYNpceoGxnI1emssutbhIhyLSskWRlqcDR8LVgjevx8MY4ulluE6V4dQWFRiCoudjEK9/yfAg1c2C6gdciw+9PhOnH766bjwwguh63r8AcGUE9deihAWNZ8ai5YFXPdR4OYvJGx0DEzdcSwmeGiznO2C7YSwOL3d/j3rXpv4d2d2YRHTc3mcSIVFCuWI5YLrLsAVD1+x5PshQoqc5BmLZmExTDAzdROmaUYKi17Xo+7qmxBhkYh4qqnGdpfFdSwCje7CKCROggWrVscQsIVFrzjVICya7TkWvQ7JwGVZERXdERZDnINxOGXwFFT1KrZObE20XpigmRVaS7kojZbwwKcewLve9S7cd/A+MAyDLjF+DOdQOlhYTOJYBGz3ZNxo2iMRVVYxfmA8VFgktVgzWOI67BQKxRcqLFIoyxjdjO9YlGO4xtwYpuXrdLMsC4puQHCK080UFfSk+NAaim4hshUEjoXWtrDY8qqxyVfCB05LSmfqAzbuM3yQcraooqL4X/vZogKeZZD1OBaJsDhVsF9ArrrqKrzoRS/Ccccdh7/+9a9gYxYm7M/aA4Gj89HCoqyZtXuKUCWORYZBd4qHxLPYM92asHjXnlm89Ju348qtBzBdVDAyV0kchZoWOMgtOBZv3zUDw7Rw9FC2LecuYXjPTgDwjUIdz8tY3ZMCF3PGJIVCobRNnNnjeoxlQh2LUVGoZUBcYmGR45MJiyxfj0Ilz7c49SjbpebuiyMsdjgKtTIHKIXmmpoknjVh/awanIhrdmg45z1fx6pVq3DLLbeA5xNM1JEcx2IxQljUlWZhUavaxzO/N7ljNQoShZpk4l3NsdiBju3YA7bo3Zs8znT77hEAwIlbqLBIoRypPDrzKH7wyA8Cv19UFrE3v7ft/bTqWMx6IpyjBDNN1SLjOL1RqG6RT3QmuRAXo2ZEb4+QRFiM6wgE6o68BXmh9llVaxan3MIiqTn4m12/wWXbLkvskIzbPoETUNErKGmlth2LW3q3IMWlcMvBWxKtF1bX0StMx+H+2+/Hb//tt2AEBnfccQf2lvdC4qREtRoH04NgwWKkONL0nazLtfssDiIrPq0diyN7R2CaJjYdtylwmRXCCgDAcXzz2AmFQll6qLBIeUqj6Aa27p073M1YMnTDihAW1VpkaTWhY/HoT16HLZf8H1S9UUTRDLuuo1so7MmIobPGZZ/6eUngWcbebxuTsw+FYzFf7YwTwdDjDzwW5OB9cgyDqmYEOgZnSyq6UjwET43ELsdVN1WQcfnll+OCCy7AP//zP+PGG2/E4OBg7LYNOMLigfnol0RZMxruKcuyUNWMWu1OhmGwoksKjXb1oyhr+MTvHsUFP96GtMDipSesBFB3SCbR3ySBhaonF7hvfHIKa3tTNddluxzYuxPZrm4MrGgsDK8bJqaLMtb1ZTpSx5FCoVBiEUMsM7UYNRa9AqWfsBgYhVqyXXExI8laghPs6Mi4/QlWcByLph13CRxax6Ico8ZiSBSqkbTTpZZt4VUpNV9L1nFFtigs/uxPd+FVV1fx8udswe233441a9Yk24CYsfdfng5fzvBxLFadwdrFsXhibRJM3Tn/SYVFE211igmj9wM9a4F0/AFRwvY9ByAIPI7ZkPBaUCiUI4aX/OYl+Idr/qHt7bRaYzHLNwqLUfUJVTk6PcHrWHRHzEqsLY4Rx55mauCZ+I7FuBGXSc4DEc7cwqJsyBA4j2PRbI5CvXnkZly14yp85LaPxHYxpvhUbIecxEmoaBWU1FJoJGkYlmVh641bwTIsNvVswr0T9yZaP2y/XmE6ituuuw0ff/PHsfaktdh8yWZs3LgRuxZ21RyIceFYDl1iF8ZKY03fJRGgAcdBmrT+9xHE/l37AQAbaHoChbJsocIi5SnNx37zKF7/o3uweyrG4MpTEN20Qp14uqbWBD2lxRjOEY8oRCJVeZci05cO7iTrhgndtCC04aCqORbbEAcPga6IQoeExe0P32dvbzEfuWxR1qEFCG3EMbh3xn8gbKogIyfxTRGkAsciLXCYKSp48YtfjK985Sv42c9+BklKNtMwI9ouw7F8dGe36hGfFd2EaQGiS/Rc2Z0KjXb1cuvOabzkG7fj9w+N4W9PXoU3nHEUjl9lx5TImgGR5xIJiymeg5JQWNQNE7funMHRQ7maE7RdhnfvwIajj2sS86eKCkwLOGZlLtEYJYVCobRFjJhTI47Tyzsg6P43GYzTAwRKtQQI6SWOQhXtGnyIKyw6jkXLqLfrUDgWiStAi+tY9BcW733EdsePT0aIcYTyrP1TLTXH4zKM7aRsUVh8wRnPxOfOlfDri1+JTKaFKCuGBcRcvY1B6D41FomwWJkDSjHPRVwMzRHDEwqLQLMrtBVG7wO619n1SRPy+O4DOHbjWgjCEtY1pVAoy5qkQmAQLQuLnr9dXlHQi6rU/27+7aa/9V3GK04qRr3fQZxkRMjRTC22CKQaamxhMW7UKGDXCQSAvJKvfeYbhar511gUWRHXH7geH771w7HExRSXin2dSP3HklYKdQ6G8di9j+GTb/sk9u/cjxMGTsBIcQTjpfHY65Pz40eXED++FABOevZJuOB9F+CCr1wANsNCNmTsX9yPldmVibYDAD1SDybLk02f+127MJJE0x6JDO8cxtDqIeS6c4e7KRQKJQAqLFKe0kwu2h2oVuMTlzuGaYVGV5imARa26CRr4TOb9ZhRo4qzHbcINJgLFpxkvXn5pPCc7VjUjNbrARwKx2JR1hNFiQQxOXYQAGDGcOaVFR264b/PgZz98rMrQFifLirISjx4TwTp/Mw05v5yOWYWCjj++Gfgox/9aEuFzQGgLyNiqqDAjLi3vI7FshMbSxyLALCmNxUa7UpYrGj4yK8fxlv+6z70pAW87exNeOkzVuGo/mzNyUdiVpMcV0pgEwuLD47ksVjVsHEwi5TQmQHv4T07A2JQ7Ze8k1Yndx5QKBRKy8QQy3RNiXZYuQe0LMu/xmKQQGmoAL/EwiIn2PuJW9uOE2yBzTzENRZZ1o43jRONpcuBjsW9B+0Br9h9LyLaaRX/eFwuhdiiLID5fBHv+vR3kC+UsOmodfj0uWmwZhuD2FI3UM033mde/KJQ5bzzPxYw/UTr+/ejVmMxQR+Z7ZD7VV4E5vYCXavqUbUJ2L77AE7ckjxClUKhULwQd13SGos5oVFMCKuxCNSFRZEVA6M5veJag2ORa3Qs6qYeOwpVNdUmF6EXIlJWE0zCIYLdolKvsagYSpOTUjGVWltNVz9mRWYFXr3l1bj54M34wC0faKgpGbS/uNdJ4iXIuoyyVq7VuUvK3h121K6u6Thl6BQAwI0Hboy9fpig6b1//KiUKvj6xV/HwuwCBlYO4G0ffhtSkr3NqfIUpivTWJtbG7s9hF6p11dYVPT4zlagXsfy6crwruHQ+ooUCuXwQ4VFCuUw8Nftk3h0NB+5nG6YkbUDLWdwR9HDB8K2XPJ/OPqT10UKY7LjFiM13ESORS4VPFOvtnxbwqK9blVtPfbpUAiLZcWA3oFijtPjo/H3qepQAwRInmXQkxawf9Z/cHGmqCAjcg2C3r6dT+Ci178CizvvweT4aOC249KfFTBfVmtO1yBkzWwQOCtOTVC3IL2mJx0a7QoANzwxhfO+eRuue2wS55+yGq8/fT1OXdfbdI/KmgkxYY3FlMBB1c1E1/imHVPoSvHYNNBacXgvhmHg4P492BAgLGZFDqt7W5sRSqFQKC1hapGioaHFEOTcYlR5JqDGYshgm5CqR44uBYmjUHlbOLJMl2PxEAiLgC0sxpnBrlWdmNLmZ+G+0eYBr1AqRFis+otefPzUg137R3HmP38Qv73+LuxzBE5wQns1DlNddv3HINcr4C8sVuvxcph8vPX9+2FoLUShOvdS2HHEYfxhABbQvT5xjU3LsrB9zwitr0ihUDoCEVLc9Qzj4BWN4gqLYTQ5Fs3OORZFNrx2HhEDK0b085vslzjy3MKirDdHobpdht7z9MKjXoh/PPYfcdvobfi3W/4tVFxM4lhMcSlUjSqqehVpoTVhcf+O/bX/70/1Y2VmJe4cuzP2+l5Xq5tuqTt03amxKVz06otwyx9vwei++vgMEZgfmHoAFixs7N4Yuz2E/lQ/ZqozTZ/LhpzYsdgp5/BTESosUijLHyosUiiHgX/9+QN45XfvCoy4JNhRqOEDXKamgAGgxqyxWKg2diR1z2ChQqJQHTGqPys2uMq8VB2BSPQRFv/77mH89oFoEY3EqFaU1iPEWtX77h+exzM/dz1mitEvOhU1OJY0CdMTzXn7fog8i4pqhO5zRZeE8UW5JvC6mSsryEh1YXHbbTfgA288H109fXjRx38Mq2dtqCD9nZt247ad4bFggzkJC2U10jHrdSxWfO6blT32y+NuHwfyfFnFRVc9iHdeeT+GciLedvZGvPgZK+16gz55p4ZlgWfZRGN5aZGDGtPZS7jxiSkcuyKH3kxnYlAnDg5DUxVfx+LBhSpWdEvISTSWjEKhHEKIeBa6SBxh0TXgZxoxayy6/h7zqWQCTVKIYzGuSEhq4emudSJi2joGnwLUSrQIGuJY3J9UWCzP1LfpJwDGdMXdcs8jOPN1HwLLstj2q2/iWSdusb/gRHvbrZLqsYXFsAhRI0RYFHPA7M7W9++HqTvn/jBEoY49YLt8e5PXSJyey2MuX6CORQqF0hFqwmLCv/Fet2CSKNQgvMKiqtfXIfX6iLCom3rsGotRUai6qdeEyziORbJfFixETmwUFl3iFOM8X9yRrqbPZLAXrHsBXnvsa3Hn2J248OYLoQX0cdJ8GoZlxLpWEidB0RVbWAyJJA1j/879Df8+pu8YPDzzcGD7vGR4Oz7d9OmDdovBwuITDz2B97zyPaiUK7j8d5fj5NNPrn1H7oMHph4AAwZHdSV/Fg6kB1DWyigohYbPFUOp3QdxeDoLi3JVxsTBCSosUijLHCosUiiHESKuBGHEEBY1TQPPMZGORYLlianKVxo7bbInCrU3I0AKERaJEOlnWPzstdvx4V8/glKEYEgci1HnI4xWI0q3jxewWNWwYzK6Tqct8rXnWCwXC1hcmIu1bFrgUFGNwChUwK5LOFNQms6dZVmYL6vICHYU6ujwXnzmfW/GqWecg29eeQ3WrF2HoqxDDblvfnzHPlx9/8HQczuYk5Cvar7CphtFNxvqcJZV+57g+fpnK7vsTrw32vW6xyZw3jduw807pvEPp67BPz9nPU5Z1xspsEk8U3vZioPEO47FmOLxyFwFe2fK2DCYRbZDYt/wHntQc+OW45u+G89Xsaon3bF9USgUSgMPXglc877mzw2tQ8KiZ5DI7ciqORY9A1lucaXFQavYcKK9v3S//W95MXz5Wl3IqisK9VAJi6J9/qLqJWmyr2NRVTWMTDTPpA+l7Fq+Fh/qblO0sDg6OYtXvOszePaJW7D1l1/Hlg0u0YsIi60mUKR6AKUYLsjpqo+wmLfrd3atBvIHWq4T6YuhOVGoCYRFpkPu19H7gd71gJisxhQAbN9zAABw0jEb22sDhUKhwBYIWbCJhUUvUcKipkb/3fRuQ3XVka4Jf46Qk8SxaMECG+IOlw255sCM49wk+7VgIcWlUNDqApWs14VFspzi6lOZ8O+PnbPuHLzuuNfhnol78J6b3gPdaj6fRCD0CmJ+pPgUVFOFZmo1gS8JlmVh/65GYfGUwVNQ1avYNrkt1jYygr1ft7BK6JH8y4cU8gV89IKPYs1Ra/C9a76HTcdtavie3AdPzD2B/lQ/pASJDISh9BAA4EDhQMPnqqEmEhaTOEiPNA7sPgDLsqiwSKEsc+joJIWyjNFNK3J8RVMUcGx8YbFpfY+IQgQiwYmt7EkLvm7E+vLRNRarqhEqAhHBiYhNrdCqY3GyYHfsi3L4vgWOQVUzYotOQezfvSP2smmBw2xJCXUsrupO4e69s1isqujP1juphaoOzbCQFhhYloV1G4/Gf3z/f/Gss54PjuPQlymgpATHrMqagYKsO3U+g8fEBnMSFN3ETEnBml7/QV/NcQG67xFSRzHtEq1FnkVvWsDIXBmWZYFhGHznpt34xg27cPLaHpx73BCOWZFDRoz36Apz2vqRcpYvxxS4b9oxBZ5lsGUomyhyNYwDe3aiq6cPfYNDDZ9rhonZkoJzjxtCRlzCGmMUCuXpy7UX2T+f/1GgzxWBaIYLi4ZpwYwhPjbFZ7oFoJpI5xlsczvjxEMkLGYG7H9X8xHLO88itVJ3BEbEtHUMPuWIcAZCX+f0qu3E9LBreAxG0v4MqbEIANX55u9DYtBM0wTDMFi3ahB//P5nce7pp0AQPO0m598y6+JaElJ9gFoKjhC1LNuxyPk4FoUM0L0WmHwUUEqhx5IIs5Uo1E45Fu8HVpwAiMkHe7fvHoEo8Dj6qNXttYFCoTztePcN78bXnv815KTG+nY8yyeOQvXSCceidxtuQYpEYBIhRzf12MJiFKqh1kS7OAKre78SJzUIfbIu16JHGcaeSOs+Dm8dSTfPXftcsAyLX+z8BXbMN49LkDbmlXxkG90uxVaExZmJGZQLjSVdjuk9BizD4tGZR3HO2nMit0GiUP3urV6xt+HflmXBsix093bjCz/6Ak569kkQU80iH3EsDheGcWzfsXEPp4EVmRW1bZw8VHdDKoYSGZnr5unsWBzeNQwA2EgnOVEoyxrqWKRQljFxHIuqIkNg2VDnWRia7hUW7X+TMZCuFF9zFPpR1YKjUAlR0ZJk+79/eAwbL/4zRub9awaG0WqNRVLPr1gNn+GYEjhU1fZrLA7v2QHLGShdrIa/HGVEDrppoSAHt21ltwTTAobnGms1zJQUmHIJf/zyRbjmqp8AAP7mnBeC4+zBup60CEU3A497pmi/nERdu4Gc3TEenQ+uFUHuEYFrdiymhMbBw6zEoeQ6z/fun8exK3J4zbPW4uS1PbFFRQCQEtb9lJy2xBW4b3hiCpuHshjMda7m4fCendi45TgwnkHIyYIM0wKOXdnV9B2FQqF0FO8s9YgoVMUALD2GsOit6eMWGrkAx6L73y0MWiWCCFuS4/DyE8/cuOtCkj/LUQ7CTkGExbBBVkO3v/cRFh/ffcBnhQhKU/Y5AoDKQvP3AY7SUrmKV1/0H7j0B78EALzk7Gc1i4qAU+MyhgsziFSP7TZUA/qQxAHoHSSuzNnCYu96+5qXwyPgE2HqjkiaoD9Si+JtQ1gsjNvXq2t1LCepl+17DuD4zevB83QiE4VCic/D0w/jrvG7cNm9lzV9x7O8r6ssCZ2oseh16bmjUYmjsKK5olA7JCwqhlIT30jUahgkCtWyLKT4FIpaPdHHLU4xYMCxXIOw5hcL6ubMNWfigmdcgJLaXH6EOAALagzHIld/vmRamMTijUEFAJ7j0SP1YKQwEmsbRFiMciyqsopL338pfnjZDwEAzzr7Wb6iIlC/DwzLwJpc8jhxwK6xyDIsRkuNZYFUM6FjkU+1/XvzVGV41zBWrluJTC7i3qJDIxTKYYUKixRKQv7y+CQ2XvxnlNuoBxgXW1gMX0ZVFfAcA1U3W4oD9UZoEsci+TwqdrHmcAwRcbx1HL0QwemBYXugauueeFGhbloVFicXiWMxXFhMCxyqWni9wzgM794BZWwHLF3FPQfCY9bSjtA1Xw5+SVrZbXd890w1vhg89PgOTPz8I5jcu903VrM7bV9X4tj0Mu0Ii1GnlbgkDy4Ez6STVXKP1AeoKo54J3mExZTAQVaNBkGT4xj0Z6XErkAhqWNRsJcvRbhXAft+uXf/PDYNZtGV6pz5/8DendiwpXlmJBHAT1rrH+lCoVAoS0aUsKgDlhFdh7FJKHE7yxjWFmDChMUWBq0SwYuN8ZPVuFGorjYeyhqLUSIcmeHuKywOJ99neQbIOm76qo+w6FNjcXRyFs9740dx09ZHcNozjg7fPuec/1Zdn6nuejv9INfJr8aikAZ61tv/ntre2v79qEWhJliHtM/r8E3C2IP2z551La2+fc8Ira9IoVASQwQQd7wogWf5tqNQw5x4QPuORW8tSMM0IDDBdROT4HYsKkHOehfeKFS3COit08czPFRXHytKgAWA01edjn854V9wbN+xDQ46IiwW1egyMW7HYpbPRi7vxU9YBIA+qa9JkAuCCItuMTUrZNEtdoN3Jq0tzC7gQ6//EO74vztw3CnHRW6TOFcBYH3X+ljt8MKxHLrFbowVx2qfWZYFzdASR6EqutJy2Z+nMsO7hmPFoJLrFVbjlEKhLB1UWKRQEvK/2+xZ3rfu7OCM5gB004QZoSyqigKBY6GZZktxoF6BVHZqJpK6iNkIh1jVEY3C6jBG6Io1x2Krrkug9ZI8RFgrRIhJKYGFops1R2erDO/eAYFjII88hofGSrUalX6kncjLhRBhsTcjQOAY7J6ud/7vuOMOvP0fXwpYJj5+xW9w6hnNMSI9abvjNR0gLM4UyefhJ7YnLYBjGByM4Vjk3Y5FxQDLNLsKiYDbrjMUSB6FKjkz8+NMGrhj9yx008LRQ9lQUT0Juqbh4L492HB08wvPeF5GTuJrQjKFQqEcMiJEQ8WwYEXEpQLwiUL1/JvjAc0z2Oaudyc2xqp1HFZ02ugch5xvdlk2LO9MjHG3MeocdIo4jkXSLp+Blsd3H4AoJhyAKc8C2UH7/32FxUbh9/7HduH0f/oA5heLuOsXX8P/O/f08O1zoh1V2uo5TDkTb0pT/t+TgdwmYXHeERYdEW7q8db270dLjsUORKGO3W9Hw3atSryqZVl4fPcBnHjMhuiFKRQKJSY8y8cS1IJgwPjWBHQTS1j0PNfdghzHcuAZHlW9Ct3QYcLsXBSqqUJgBfAsj6oRHW0pOJOCLFhI8+kGoc9bp49nG4XFKMci4dkrn42LTrsIHFuf6FursRjHsehyxBOBLwn7d+6HKDWLbIOpQUyUJmJtIyc09w1ftP5F+MTpn6jt471//16Mj4zjW7/+Fl54/gsjt+k+rk09m0KWDKdH6sFEuX4csiHDgpUoCjXFp2DCrLlon07s37U/UQwqQ62LFMphgQqLFEqLRIllncCIUWNRVWzHoq5Hx6b6UfIKi45wRhxjYYIhAMiOGBgm4kQ6Fp0ai63WiQRadywSZ14xQkwikZ2L1dYHeizLwv7dO7Dh6GNR3fcARhYUjM4Hv1ikYjgWWYbBYE7CwfkKTNOuG/Af//EfWLPpOKx/yzewacsW3/V6M3aHdizvv39yXqJgGQbdaR4Ti3LgTLqqj6u1ouqQeA4s29gBTAscFN2AYXRAWEwahercw1H1NgHgpiensLonhbW9nXPQjI3sh65r2LilWVgcXahgRZeErERjySgUyiEmQjRUDUS6GgE0C4le4YQVbGHJjdvdIC2xsEgci6TPoiw2t8cNcQK6hcUwIbKTCCm7bW73xr/32P+RZ7EW7Fh8bNcwNq5ZkWyf5Vkg3QeACRAWG6NQv/KT3+CoNUPYdvU3ccpxMQbmiGOx1ShUyXEsBgqLIY5FPgWIWSDdD8zsam3/fpg6wLKt1VjU2xAWD94H9K6zjykhE9PzyBdK1LFIoVCasCImnIbRao1F4kZiGbYhttSPlqJQPX0TgRVQ1au1tvLeurwtohoqeJaHwAjxaiwy9f2mhTTKWj3m21unj2O5BuelidbHVIjzMI6w6K6r6CfwRbF/535s8JnEMpgZxKw823Rt/Ej7xLDzHI+cMxnttz/5LTK5DL5/7ffxjFOfEatdAiuAAYMMn0F/qj/WOn70Sr2YKtf7JOQaSrwUtEoTJG7Wff2fDlTLVUyNTsVyLFIolMMLFRYplGVMnBqLmqbYNRZNsyVxzSuoyZrtJOPZeIMgJOYyTFiMW2OxHSmpFYNbUdZqjkuvwOqFiHz5cuvRVAuzMyjk57Fxy3Go7n8AhhXufM04jsXZEGERsONQJ/JV7Ny7HwzD4Oqrr8abPvef6OntgxhQHycrchA4BhOLAVGohfgzSvuzImZLCtSAmFhyjt23SFkxIPIsOM99lhI5yJoZKUbHIS0kE+HINY66FwzTws07prFlKIfuVOciNw7s2QkA2OAjLI7nq1jdk0IuIpqYQqFQOo5pREShWmBMIzo6oMmx6Hm2cT7CIhHHeMn+bympRXESYbHYGNfqhQhADY7FQ1ljUfHf3+JoY7s8wmK5ImPfwUlsWrcy/v4sy3H2ZW1RU/aJiRXSsCwLw/P2df7ppR/ELf/9Jawaijkox0v2PdFuFGqkY9Hz3JYX7fPJckD3WiB/oPGatgNxLCYSFtussWiawMRDQNca+3olZPseO5nlxC3UsUihUBqJ64Tzg2daq7FInHkMwyxNFKrZ2CaeswVQ0tZORaFqph2ByXPxzgNxAEqchAyfaRCWyLZqbWZacyz6IfESOIZDSWuuv+jFLeqlEtbzNQwDw7uHscln4tHKzEqYlol9i/sit+N2W7qZPDgJAPi3z/8bLv/t5Vi5Nn6fh2EYCKyAFZmEE7A89Kf6MVOtx7OTOFt31GoU5LzGEXqPJIadyP5Nx0ZPTOsT+gAAq8XVS9kkCoUSABUWKZRljGlFu/3sKFQGumG15KIsVBsH+mTNSBTtKOsGeJapiYN+RNUl5FgGMXXMQKIiY/2YdIlqlQgxiYhU+TYci8N7dgAANh37DOjzY+hJcbht10yg00/iWbAMkK+E73MoBTz4X5/Bi899HiqVCnp7ezEvW+hKCYECMcMw6EkLmCr4Z/ZPLMYfVBvISlgoq5BV/+tMXLBukbOs6BB5tqluYkbkoGhGpBgdh1RCYZE4FqOiUB8+mMdCRcPGwUwtrrYTHNi7Ez19/egbGGr4XNVNzJZUrOvLJBZLKRQKpW1MPVQ0VAwAVhzHoudvq1doZIVGxyBQrxMoZJ1IySWEFWxRiww6KsVwcYcIi6ornqpVUcyy6nXx4iCk7bb5RqE610r3j0J9Yu8IAGDzugQxmeRciFl730qh6Z5QLAFvuUbGs78zioVCGblsGulUAjGYc4TFVicW8SlbHC7N+n9PHCKc5z6qEmGRB3qPAooTgBI9oBoLQ3eEwkPoWJzbDahloHuNHS+ckO17RpCSRGxenzxGlUKhUILg2RaFRceZx4JdEmHRz7Eo63VhMa5jMaoGnmZodhQqE6/W5LouO557ZXYlMnwGsm6nAymGAsMyGsSpJsdim7HsIic21HQMggiLEicFCnxBjB8Yh6Zo2Hz85qbv1uTWAAD25vcm2iYAGLqBb3/623jrS96K2clZiCkRmVzyhCGJl2rtaJWB9AAqegWLij0Zq+r0y5LUWCTnOE7NyyOJ4V3DAICjjolOT1iRWoHt79qOM7rOWOJWUSgUP6iwSKEsA1TdhKz5d5RVvbmTWnQEHFbKOlGoLDSjNcei152l6CZ4jgETc3Z1VbWFyDBhsKJGD7S1W6eulSRUUl+RZew2hr0QpAS7fQuV1h2L+3c9CVFKYdU6exb4cUNpPDa2iMWQbaYFDvmQ7+emJ3Hdl/4Vpb334+IvfBWZjN1xni7IyIpcqODbmxGxUFF9I2inEjgWB7tE5CtarT6nF3Jvu12tJUWH6HPf2FGoJrTDISw61zgqFvfmHVPISTw2DSZ3AoQxvGenr1txclGGBeD41V2xfy8pFAqlY0TEnKoGwFrhrkZ7OzFqLBpq43Y0Z/BNzDRHWHYab7SpZYY7FsnyuktYjBBhAxm+E/jRC+0IyzjwRFgM6V8FOBYf2zUMhmFwVJIo1Ioj1olZW+RVSg2i5uxCAed96je4+nEN33nlIPq6W3g+kijadlyfUhdQnfO/Bn41Fk0DUIv1GNfeo+xo1CDXY1Jaciy2WWNx7AH7Z8/6llbfvucAjt+8DpxXgKVQKJQ28NYBjIvgTI5hGAZGxPNBU6Lf073CordNJLKV1IN0R5KG7tvUam31YllW3bHYgsCaETIwYWJRWaw5F5sci2ajYzFK6AxDZMVY0ZsiJ4IFm8iBR9i3w3Yj+jkWh9JD4BgO+xf3J9pmqVDCxW+5GNf+z7V4z6feg8FVg4nbRXjXye/C+ZvPb3l9AFiRtvtZ5DjIOSXxpnGoCYva009YXL1+NdKZ5qhbPyy1/bEjCoXSGlRYpFCWAcd+6v9w/Kf/AtVH4FF9xJq8bC/H5QagqrLjWGxRWPTUk1M0AwKbwLGomRA4psl55ibKAQaER6kSVN3E2V+6GTc+2Tzg08qxE8dib0Z04jfDhEV7gGUhwj0YxvAeu74iGaw5aVUGCxUND4/mA9fJSjyKsubryFwc3YUPv/H/obo4h1UXfAVHnfb82nczJQUZia/Vr/SjPyMiX1GhaM333XQxfg2MwZyEoqKjKPu/zJEai+56ncSx6I1CJcJiuzUWOZaBFBADGwTPsuBZJlIIv/6JKRyzIofedPzZhnE4sGcnNm45vunzMcc9euKa7o7uj0KhUGIRISwqugXGMpPXWPQ6sohjsUFYJI7FdHxhce/NwHyywSgAtisPADSXUFjNBy9fi0J1PS/jRML6QYSsud3xlhdS9vkLqz9EjsMz4Pf4rmFsXr8KaSnBM6zsCItCxhYXtXJt3zsmqzjjgkuwc3QeN785gwue1RV/u25IFGqrNRYBW1iUF/2dnDXHouu4SaSr4LgZemyHCKYeb70NbkiNxSSv3O1GoY7eD3StArIDLa2+ffcITvKpeUWhUCjtILBCS45FYvhmGbZJFPTSkmPRDHcsCj51ir0ouu0iDIoDVQwFFiyIrGhvP2GtSRKLuiAvoOI82xuERZdoyzgnLMrdGYbIibGiUBmGgciJLQmLwzuH0dPfg96B3qbvOJZDj9SDA8UDsbenzqh436vehx0P78BXrvwKXvnGVyZuk5uNPRtrdRpbhQiLI0U7KaLiTERLcr6IsBjHQXokMbxrmNZXpFCeIlBhkUJZRowuVJo+83OTERiOh6YoEDgWWotRqCVFbxCtqpoBgWNihzbJmg6BY0OXLynRHVsxhmNxrqxgLF/FQwcWmr4zWjj4qYKMnMQjK3KoOvGb5HQbVuMRSbx9jGHuwSiGd+/AxmPqwtGWwTQ4lsFNT4bXWSwpBjSf4zN1DavWbcA3//c6iCuPxq6peodztqQiE+FY7M8KyFc0KD7i9Uwx/ovfQNZ+sRld8I9PJTUWJVdbyqoBkWObHHgpkYNuWqhq0WJ0GBLPIoE+XkPkWVTU4H2PLlSwe6qEDYNZ5FKdc89oqorRA/uwMaC+YneKx4quZLUrKBRKAL9/N1DskCPp6UCUsGgALOI4FiOiUDkfxxoRg/hMXXCJ4o/vB27+QnKBz+tYBOxYzCBqkZVuYTGGwOpH1enXVObjLc+nAFiNIqgXInh6alM+vvsATk46WEOExVSPLSyqldr1VA0LKwd6cO8PP4jnrm/juchJdnRoOxFuUo8tFvo5Tcl1cjtKyHkXnOdrz1r759T21tvQgHXoHYuj99luxRbqK1qWhe17DtD6ihQKpeO0LCw6sGAjHYuxhEXL41g0G9ch7STiX5wai6T+XZCwSASlVh2LOcEWuBaUhZrrTWJdUagMVxcWneeN9ziTIHFSLMciYAuvSRx4hP0792Pz8ZsD03j6U/0YK47F3p5lWsjkMrjiD1fg2c97duL2LAW9qV5wDIeDxYMA6lGoLQmLMYTeI4nhXf71NykUyvKDCosUyjInTFgExzs1FlnoptViFGqjaFVVDVuMijEGcvfeWeQrmh2F6uOMEzj7s3KIUEOQYjgWF8r2IKThc5yKT2RsFBOLMrpTPNIiB1kzoJsWxqpOLUU0ZvEzsF2L3pqUcTFNE8N7dmKTS1iUeBabB7PYtn/OV9wDbMdiWdGhOQ4+y7Lwi1/8Aqaho2/jibjsJ7/F2rVrkJN47J8t15ZZKNvCotcR6IY4Dcse4Vc3zEQC6kDW7hwfnPcf4KxqBlgGDSJnWdEh8Aw4ptmxCDQ7aZMi8WzTtuOuVw1xLN68Yxocw2DLUDbUpZuUsZF9MHTdNwp1dKGKFV0SstISxwBSKE8H5EXgkV8AV19wuFvy1MEMFw1VA+AQQ1CLjEIVmqNQiRgkpOILi3LBXi+pQFVzILqExdBITMZeR3ctb+qo1ThMgpy3f1bm4i1PBi/DZrDX3J7NwmJiR1p5xv5JhEWtgl//+jeoqjpOWZvBXVd+ARvXr022TS+8ZN8j7UShpnqCa2MSsdHtWCTCIu/0+fgUkBkAZna25jz1g00qLBLHYgv9TU0Gpp8AcqvqLswEjE3NoVCqUGGRQqF0HIETWopCJbAMGymWxREWveKkt8Yiz/KJHYtEWCQikJeq8zwWOKGlSFjiWMzL+dq23CKme5usM8Qb5e4MQ+TEmjMycllWhMQndyzu37U/1JE2kBrAeHk8cjt3/vVOGFUD0koJV/zhChy1Jbom36GCYzl0i901gZScU+pYDKdcLGN6fJo6FimUpwhUWKRQljl+UagEhhOgqgpEjoVuthaFWlHrohVQdyxGUZQ1XPCjbfjzYxPgA6JQM6I9SBcnClWIISzmnRhSv1hQzUg+EDW+WEVXSnDiN43I+M2MyKGo6C3VLJgaOwi5WmmKujxlXQ/2zpQxnvd3++UcYVE3TKiqine84x14wxvegInH7gJQn5W4okvCeL4KVTexWNWgmxZyYrgQ1ZcVYVnAZKFx37MlNdGwaL/jWBwJEBZlza7D6b5FiGPR6yokwuJitT1hUeT9xe4oJJ6DrJkwAmJxb3hiCpuGshjKJX+BCmN49w4ACHQsru5NI0eFRQqlfUg0VBsDLk2UpoGfvrxz21tuxIhCZeMIi4bnnPsJi6beGIVJBt/4VLwoVMuyxbZWRCHiZHMLhcXJ8HU4odEdF6fWpB8VR+CqNicy+EIG8ZSQmjvkOFxC2txCARMz860Ji2IO4CUYfAYf+O1BvPZNb8ev77Fn4TMMU3f9tSrIEcdqO1Go6R77+vsKiyQK1e1YzNs/JVfcWfcaYHGkUWBuCwaxZusRao7FFoTFycfs36HutWgltuHx3cMAgBOPWT4DsxQK5chAYNoXFs2IhKJORaEqhlJra1DdRDdF1X4Wp7kAYdF5HteiUPVkUajEsZhX8yjrjmPRJU41RKESx2Ib/dwUl4rtWMyJOfSIPYm2r8oqRvePhjrShjJDmK/OB7o7TdPET776E3z6nZ9G/s48AAS6H5cCzdDAx+iX9kg9mCzbfUlyHwQ5W/3gWA48y9eu+9OB4V3DAECFRQrlKQIVFimUZY4WInYxnABNVZwai5avky8KIloRZM0Ez4ZHmwJ2hKoFWyASOBZ+Gk5GtEWiYgz3WRzHYj7ELdiKY3FyUUYuxSMj8k6NxfCXlbTIoaIYobUYg9jvCEebjn1Gw+fPXNcLw7Rw684Z3/W6UjwqqoGpmVm87GUvw89//nP893//N9ae+oKG5VZ2S5grqaioei3GNMrh1pexBxvHFhpfbpLUVwRsES8rcZjI+69HhEW3+FxR9abPgHoty5LSeuQsYAuErTgKJZ6FrBu+90JZ0XHPvjlsHsyiOx39kpmE4T070TcwhO7e/obPFd3AfFnF+r40UgJ9ZFMoy5Ib/x0Y2Qo8fNXhbsnSECMKlWOsFqJQPQOAfo5FAp+yIyWj0BWnvS2IW1xSxyJsMdItLLZaY7HqRKAS52IUcR2LnNAgyD6+265XdPKxCeOlyrOAlEOhouGV39iK724t4Ltf+QLe9HzXdgKcGrHhRNux2I6wmOoDlJJ/FCoZ0PZzLIquupA9RwGFifBzm4SkjkVyn3sdvnEYe8C+3r3rk68Lu75iJi1h49qVLa1PoVAoQfAc3xQ7moRYNRbVFoRFw19YrDkWYwiLJKYy0LFIhEVObCkSlgiLi8qib5wmz9bPLcs4jsU2olBTfCq2Y/FfT/5XvPbY1yba/sjeEZiGic3Hbw5cZlVmFUyY2J9vrpktV2V8/sLP438u/x+86+J3of+8fp8tLC2yIccSFnulXkxWGoXFpDUpRTa+g/RIYHjXMFiWXVbuUwqFEgwdpaRQljlBEZmAXWNRVRTwHAvdMFsay6qoBlSXsFjVDPAcEzm5msRFGqZl12RkGBi6DlWpi0tEWAyrWUeIFYVaCX5ZCDtPQUwXFGQlDlmJg6IHu9QIGZFzHJ7J3QjDe3Yg192DgRWrGj5f3ZNCb1rAbbtmfJ2QOYlHqZDHK178Ajz22GO46aab8KY3valpOYFjYVgWNMPCTCmusGi/KI3lGzuq0wV7/bAY1eZtiZguyg0iNaGiGhA5pkF8rqi2MzYoCrXQCcdiC5MWJYGFEuBYvHPPLDTDwqbBLIQYNUGTsG/nE74xqBOLMiwAx6/qOqSzMCkUSgKIENIxh9MyI0YUKs90IgpVDBYxOTGeOOM4+CrVZBNkAPhHoZb9J/3U29UpxyIRFguIVTC7JiyGzGDXKs55qz+vHt89DEHgccyGNcnaV5pCBRmc847/wJ07pvDnN2Rx4dte37iMkLzGUgPEhdnO4Fmq277P5MXm72qORVffSM7b193d9r4N9udRbtW4MAnTBhjGFhdbcfaM3gf0rLMjYVvgkZ378IzN68G2UqSaQqFQQhBZsUnESwLDMJ2psegVFq3GNomc2OBYjCMekZhKtxNNUzRUq3Z/wl1jsZVIWJ7jIbIiCkqhXmPRFT8qsELt3NaExTYdi1W9Wnv3tJjgMZIuqQsZMVn09v6dtlgY5khblbXHTHbndzd8rms6PvS6D2Hbzdvw+R9+Hq9/7+sPyzuyYiix7o3+VD9mq3ad6opeAc/yidubJJr2SGDvk3ux+qjVkFKdTYiiUChLA31roFCWOWE1FhlOgKooEHkWmmlFCmN+VDUDussVKWt2jcWo7k7FVYeOY23RqFwqYM8Tj9Y+TzvCoreGnx8SH+1ECKv7p4bVovRBM0zMl1XkJNuxqOjRTsSsaLsHw1ykQezf9SQ2bjm+qSPJMAxOWNONx0YXm8Q0XdPQlRKgsGm8+rVvwLZt2/C85z0vcl/EsdiTCe/s5iQePMs0xbBOFxUwTF0YjsNAVsR8WYXscx2qmgGBZxuOndTy9MaVEldeoU3HosgxiYTR2v55JxbX51646ckprOySsL4/ed2iMFRVwcPb7sSpZ5zT9N2Yc21OWNPaICGFQqG0jRUdhcoxaI469dIUher5N+tEYfrtS4zphlPsOkcPPLkv3vIN+ydRqI4AxadsR1vYcXFiowBkGmitxqLjnFNL8ZxqcaJQNblJWHxs1zCO37QOguDTPzB04C+fBAqNgpphmEB5BplsF950/rnY+s234GVHc4Ds2TcrOPtqIwoVaFNYdJ6Vfk5TXbGFYNf5QHXBrhnpFht7HLff1PbW2+Embm1Q7zotORbvB7rXAQkHeQE7Vu76ux7Ci858ZvL9UigUSgQCKzTFjiaBZdhIYVGL8f4YVWNRZB1h0YwfhUocixm+/rd3ZmwGTz72JIB6jUWJlSAwyR2LgC0kLqp1x2KK9dRYdNrLoP0oVImXUNErtdqORrqNJAEf9u3Yh5VrVyLblQ1cZjA9CJ7hMVwYhqZokCt234wXeLzk1S/Bt3/zbTzv5dHjIkuFoiux7o2B9ACqehXz8jxkXY61jheBFZ42UaiWZeHeW+/Fac897XA3hUKhxIQKixTKMidMWGQF0VVj0WqpxmJVMxrqOCqaAYFlap3SsPUIAmtHWlqWCdNV65C40TrlWJwvB8/uSyosThcVWAC6JB5pgYMaw7GYlThUNMPXlRfF8J4d2HTM8b7fnba+F3NlFY+M2gOLimK/bFz73U9j99a/AAyDC979fhx99NGx9jVbUiFyLLJ+A4cuGIZBT1qwz4Xr3pkuyuhK8YmiRAeyEhYqGmSt+cWjojRHoVadGoteOuZY9IlZjYMksL7uVdO0cNOT09iyMofuVGdrHT52/z2oVso48wUvafpuPF9FT5rHUBedsUehUA4TlhVa702znL+1UQNl3gFFvyhUM0BY5GMKJY5rwGih7nJTFKqYs51vYcdF4lsJVqtRqHn7p1qOV1uPOOyUsCjUiuPCrD8LH999ACcHOQTm9wL3XGH/5+IHt0/gR9c/AYgZfORtr8YJxzjry/ON6zNMXfBsBSIsqm04f6Vu+6evsCg74rE7PmEeENKNMbvda+xlph5vvR1uWhUW9YQD8JV5YGEY6FrVUizt/Y/vxtTsAv7u3NMTr0uhUChRCJzQXhQqWBghUdksz8ZyLHq30VRj0XEUJolCrdVYdP3tNQ2z1heRDVsUI47FVgTWFJdCUS3WnGtuxyLP8rVtdsKxmObTDeKnnu1gXXIA+3ftD62vCNi1BXukHowURlBcLOKar1+D3/zkNwCAV735VTj25GM72qakqKYa695YkV4BADiweAAVvdKSsPh0ciwe3HcQY8NjOOvFZx3uplAolJhQYZFCWeYoWrCIxYkpqIoMnmNgmFas9CwvlgXkXSKOrJvgYkShuh2LPMcAsAIH0+SQYyDEExaDB/fUhGLf5KLdwe9K2cKiZlihIi5gR4vKavIai5qq4uD+PdgYICyesLobPMvgukdtl4Cqqli45acYv/8GTO21Z8zPleK/gMwW7dqRQoxz2psRMFdWG459alFGlyQ03QJhRz3UJWKxqqHqIyJXtcY6nIZlQTVMiFzzTSbytlu2KLfnWBR4tiXHYlrwj8V9bGwRc2UVG/uzyIidFRbvufV6DK1ai83HndD03ehCFSu6U5GxthQKZZnzyNXhsZXLHT14sM4kwqJfXbuGBSMci7xof+Y3cBjXgUUcfK2Y5mqORZewqBTCj4sVGoXAiNjYQGrCYiWmY5EIiyGORcsCwNQcepZl4fHdB3DSMRv8lyfRn+MPA6YJy7Lw+dsUvO/PZWzdPQuLT9nHKzoOg8qCf7taNCyCd4RFfQkdi6zXsTgPCJmGOpTgJSAzAMzuak0k9tKKsMhwzb8vUYw/ZP/sWZespqPDH2/Zhr6eHJ57WnNfhEKhUNpFZEWYltlyHGqUY5Hn+XhRqJ7ag16RT2RFqIZaiysVuHiORZ7hwbvc76ZrYIYIixIntRSFCtSFxapRBc/w4FzPFrcblCQEtVNjMc2nYVhG7VpZUgeehS6Gdw5HCosA0Jfqw2hxFPO3zmPmthk8du9jvqVjDgeKEc+xuCLrCIvFA1D0ePGpXkRWrDlVj3S23rgVoiTiWec863A3hUKhxIQKixTKMoUMCYTVDuQECZqqQHBqLLbiWAQaBTtFN8Ez0VGobgGJZ1mYITOrZc2I7ARKQvTAy3y5c1GoUwW7g9+XkWrxm6UIMatL4lHVjMQ1FsdG9sHQ9UBhURI4nLCmG3fsmcH0fB7/8sYLULjvDxg88bn4lw98GkB4fUkvUwWlFnMaRX9WRL6iNQiLkwUZOYlvEpdlzQjc5kBOgm5amCw017WqqDp4lqm96CiOq1H0ET4ZhoEksCgr7c2M9Dok4yIJrK979aYnp5AROWweCo5saQXLsnDPbTfgzBec51tvYTxfxZqelH09KBTKUxO1Avz+XcD/vOZwt6R1jOCahQac53eksOjpz3gFtLAai6ne4O3O7q7vO0xoi4JhbIGJbCvVZdc8DBsE5T1RqJaJlpQ1pWALXlpMxyIRyLT4YvXY1BwWi2WcRByHXogYt7APcmEGb3zjG/HZWxV85GwJP/k7HoyYBVjWJSzON2+Dl9B6FCqpsdiOY7ELAAOUppu/02TbleoWFolj0TvQl+4DKnPR93QcHDfk7MJi/AFRlk8ehTr2ICBkHcdlcv506714xfOeAz5GaQIKhUJJChHoKi1OHmEYJlQs44WYwqK3xqI3CpUToZlaXViMIR5VtApE4rp3cP+9J1GoIivawmULzs0U7wiLWrVJnBJYoXZcrDPEq0fF04eQ5mznJYl47STlYhlTY1OxhMV+oR+3fes2zPxhBpljMvjs9z97WOop+qEYStM196NP6gPP8DhYPNhyFKrESR1zLC4uLDaI3suNrTdtxbPOfhZS6TbrdlMolEMGFRYplGUKcVuFiVisIEFTVQgcC9MKXzaMBVfEqKwZtmMxAq9jUVOCB1/kgJp1btwikxawbJi4pvpEcIYxuShD4Bh0pTikHFGzGCFmZSQeim42ODDdLw0C6/8ndf+uHQCAjVv8hUUAOGvTAMbyMt789n/FHbffjhX/+Gn0bjoJOcnufM6X4g9uzZQU5CQOvE/UqJeBrO00VFznzxYmuSZxuazogU7AgazdsT443zwgaDsWmdoEelKHUQhoX4rnUI4RnxsGcUgWF/MAgGJ+LtZ6JBbX60q94ckpHLMih95M9AtEEg7s3YnJ0RGc+cKXNn0nawYWKhrW92dq9yiFQnkKQgax1DZEr8NNiMBikNeJEPERQLNQ4hXQOLE5CpUVgHWnA73rA7ZpAj84B9j2A/uf8mJ4G6LghPqxSt12tGpoFKrYeFxBwmgYmmzHdKZ67PjSOMIiw9j7VuILi4/t2g8AwVGoxQn7Z2ECH/voR/G73/0Ov/6nND5xjgTGMmwHJ1AXFqt+jsXkEZw1OlFjkeVsd2t5tvk7vWoLdt4ai3y62VUodTmxtK3H9rnbVChVcNQL34Lb74sZr8o6jsUkEwZH77N/T6SuxE08ODGDh5/ch/NfeEbidSkUytKwP78f+/P7D3czOobI2n/jW3VesUx4FGpcYTEqClXkRBiWgYpeAcdwsYQsX2HR9S5ZcyzyEkRWhG7oiZ13KT6FklaCbMhNwqJfFGpUPcow0oL9LC9ohdpnrTpNvezfad/Tm46PFhZ3/GoHJm+dxKo3rkLXiV1gA8ZaDgeaocVyHzIMg26pGxOlCVSNautRqO2kOTjomo4LzrkAW2/c2va2loJivojH7nsMZ51HY1AplKcSy+cvM4VCaZjjzTviXlSNRUWxBbKoZcOYr9Q7irZjMarCYqOwyLEMNCX4JUHWTBhRjkWXsDhf8n8pyFeCO7RJj32yIKMnLUDkXcKiHC5mZZ0IzEWXwDldtAccRY6FwPuftfGR/ejp60d3b1/gtk9ck4PAMdj48rfjL9ffgPTRfwMANafaXALH4kxRQUbkIcRwLA5kJRRlreF6zpQUZHwcchWnLqKfE7C/Jiw2d3plzQTvikKVQxyLAJASOFTV6JqXYYg8C4ZhUFy0Bz41JWLA27Vv1Wjc9+SijCcnitg4mEVXh52D99x6A1LpNE49/eym78YX7d+p41d1d3SfFAqFkhg9+G+oRV4nQuJSATRHn3qjHmuORed5ZJq2aNe9xnaQ+aGW7LYVxgEAWtHHRZcETqwfq5izhaWqn1hpuZZvs8ainLd/Zvptt15cpxovJRLh9hyYgCjwOGrNkP8CxUkYJgDLwKff+ALccccdeM0JAvrJpHESR0uERdlPWGzHsegMtqltDp5JXXbEqXdGPqmx6O7CyHm7zd7BQanLEZU7MJDKcJjLF1CVFcwvxpxcwCQUFi0LGLvf/l0Rkicr/Pm2e8FxLF5Go8colGXDK695JV55zSsP6T4ny5OYKE0sybaJ8FZt0ZUeFYXK8VxHolAlxz1fUAoNcaNhlPVyk2DkFRZZhgXHchA4ASbMxHGoaT6NklZCVas2iZgCZzsWLcuqCYut1HEkZAT7ee8Wsw4UDsRal2XY0PqOY8NjAID1mwMmjKFeJ/uVb30lNl28CYPnDcba96FENdVYjkUA6Ba7MV4ebzkKVeKkjkShVsoVlItlFOP2RQ4x9952L0zDpPUVKZSnGFRYpFCWEXMuVxrvzMgKi/hkeRGqotSWlUNiU8NwC3mKZtiiZsTsvKpLiBI4BmqIY1HRYjgWXe61hap/R3uxGiIsJnRrjuer6EoJEDi2FoVaDNk+AGRE++ViwSVw7pi0O2YruyXfdQBgfnYafYMrAr+//a9/xAde9zIc023h4XkOm485rvadyLMQOCZUVPUyV1KREeM5FvuyIkwLmHRELNO0MF9WkRF5eOXlsqo31Ep0k5N4CByDgwvNnV6Z1Fh0tkccn2KQY1FgUdUM6G3EdEjOtpWYgmJt37zjWHTdTzftmALLAFuGsmBbqNsYxrbbbsSzznoBRKk57mM8b7f9GauTuw8oFAqlo4S49kziAIsaJHMPNFmWj2NRsMVH4vgjAh8XMgijOjFdzjq6X92/JHCuaFPJcegVxxuXsZya0rO7fByLrdRXdNqcHrDPUdw4V84RFmPuc3J2ASsH+wJn/P/fbffh5B8qGC9aGKrsxnOe85zGBQTnfLC8fdykLmTDMm04FnmnH9W2sNjtRNh67ket6txLrud4NW/XhfQOHqe6O+pYLJYTDgiyfOPvQhSLB+3o1q419VqVCfjTLffiec8+CX09tL9BoTydufiOi/Gx2z+2JNsmgt1NIzdh1/yuxOuziHYsakr0+7J3G14RjES2FtQCOCaesFjRKrXjA2xnmOWaZOMWlMhyZT1Z3e0Mn0FFq/g6FgXGbrNu6fUai0nr9LpIO+kDJaMehbp3cW/sdcOObX5mHtmuLKSU/9jJw/c8jLee91aMHxjH5lWbkTkmZo3tQ4xmaLHdh32pPkyVpyAbcmwx0o3ES1DC0jNiUil1Jk51qdh601Ycc9IxGFodMAEuAM3UsOoNq1A2nsK17CmUpzBUWKRQDiO6RwzbP1N/GBL9IjwK1RYWa47FhHGgZD/uiFFFNyFwDHQtfDClIQqVZaHIwYMmik+0JABs374d5aIdsSG5arrM+TgWTdNC0amBqLrOCce05tacWJSRS9liWLrmWAx/Gak5Fl3C585Ju/192eBO4sLcDPoGmjtIlmXhqh9+G1/40Dux4ejjcNaxazCxKOOhg43uiIzIxxYWTcvCfEVFWuR9I0u99DvRnuOL9gDufEWFYVrokppfpCqqAZFnfCNhGIZBb0bEVEGG6bnWVac2I+NxLEoBdXxSAgc5hhgdhui4R8PuSz8kUm/TdX/f+MQUNg5ksaKrs1n/hfw8nnj4Ppzxgpf4fj+er6I3I2AoR2sMUCiUw0yIG9EiA28hrkYAHmHRQJOzjRXsz4mz0dnetXfvCI4MIyIcERbLyYXFHTt2QNWcfXJC/VhJpCSpPUggDkOl4AiRruezZSSPQiUCXabf/ulXu9CPTL8tJsUUv6bmFrByoLfpc8uy8J3vfAd/9+WbsGVlDt0Dq4Cpx5sFy3RP/f+FjL8AyqdbNizWo1AjBoZMvTHO1Euqx7423vOiy54oVAuQF20x1Ls9qdsWONtwfNRgeZQSC4tcsntp7AH7Z8+6ZPsBUKnKuOmeR/B3556eeF0KhXJkUVbLiZ10cSGCyrcf+jb+8Y//2PR9mGgI2O+aYY7F2DUWoxyLrC14FdViTVhUFRW//MEva046L1W90UUoV+Wm74n4R4RLr3OTOPmC9pERMqjoFd86fWTfmqHVaiy2E4Wa5W3nu7vG4khhJNa6GSETWg9wYXYBfYP+KRT/96v/w0cv+CiGVg2hq6cLg+nBlhx+S41u6NAtPbZI2J/qx2x1tuUaiykuBTmqjx2DatK+yCHE0A3ce8u9OPPFZyZe90DlAAZfOoj98pETHU2hPJWgwiKFchhxi3MAsHe2PpjCMAw4lgl1LDKcCFWRa7Xqqlq8AQj3AF1K4GpOQMuyoOgmOJbFwpxdn0aV/TuGFVcNPIFjIoVFw2geaZqZmYGh2/t2x2L61VIsyjr8dCZSDzLsPPkxVZCRE3kIHAvJERYLEVGoGanZsfjEuC0shkl4+blZ9Ps4Fi//j0/iv759Gd504Ufwya9+H88+ehUEjsF1jzcOYmZEDkVFjyW0FaoaDNNC1kcY9KMva3duRx2n4XTBng2XSzV24nXDhKqbkLjg7Q5kRcyV1CaRV3ZcsCRCtSYsCsFRqLJm+IrRcSH3k5rQsUjEzrJzL1RVA3fvncPmoSy608lfBMK4946bYZomznjBeb7fH1yoYGVXKva1pFAolCUjZKZ0TViMdCy6+jx+M+lJFCYZPHF+fv/aezE+HVAnVyGORft5YVby4W3wYWp6CpZlwTRN2wVIBhlJTcHiZOMKpZn6PjmpUVg0W4hCJY7FjBP1VY0pLHavtesiqvFmaE/N5rHKM5inmxY+c/lVeP/7348PnjuI37//DORWHQ3M77PFOQLDNNbuI8Ki91iFNFqPQnXcC1ExebrSXCvRTarHbluTsOis547uNTV/l6XUZd/z7bonAQAtOhaT1OscfQDIDABdKxO37qatj0BWVCosUiiUtuIzoyA1Fr0QoWWsNBa6flQUaqs1Fr3/Jo7CklqqiVo7Ht6B//zif+Lg3oO+2yxr5QaRSZUb26EYdcdiUK3J+Rn72R8k/mSEDEzLxIKy0CROEbFSM7VaFGo7jkW/KNSRYkxh0XFWBk0IW5hdQP9Qf9Pnv/3pb/GVj3wFL/+nl+PLV34ZXb1dYBgGfVJwKRnCxadfjItOvShW+zoBEfniCouD6UHIhowFZaElx2KKS9mOxdaHRgAsb2Hx8QceR3Gx2FIM6qQyGb0QhUJZMqiwSKEcRubLjZ3OPVPFhk4Yx4QLiywvQFWVmrCoxRTX3I6/tMChKGswTasmCAkcCzNgthyhrLiFxSjHohFYY9GyLFiW1VBjcaGsNrne/MRGAODZ5MKiZVmYLirIShx4lqlHoSoRwmItCrXelicnoyPLFuZm0DvQXBvg3ttvwCe+8n38y3s/AoZhIPIsTlrTg6378w3LZSUeZUUPda8S5px7KhdTjMpJtrNxPO8Ii0W7o9yVanxhKSukLmKwhDqQFbFQUWvCIUHWTPAsW3csOteKOEW9ZATOdrn6iNFxIb8TshwtLP7uyh9i+0P3AUDtXiD39917Z6HoJjYPZWvb7BT33Ho9jj3xmRgY8h8IHM/LWN2bQrbDdR0pFAolMVpIBBOZTa6F/L21rHrtRKC53iLgcqxVG35WtZBngdr4DG5FWCRUFM2OkSSORSFji1dFj2Ox7AiLsOzl3QOxlpncsUgckDkn2aAcIKJ66V0PlGfr60cwNZfHysHehs+2T5v4ISTqnQABAABJREFU7fV344c//CG+9mIeXKoLGDzWFlNrxwlA7KpfH8Cut6iV0TTKlR0EhBZd9iwHgIl2vtZqJQb0R1K9tuCse+7ZmiDprEfuHT9hkYjKldm4rQ+GZWMJi//5y+tw09aHnXWcGotxRxFH7wN61rdUX/GPt2zDMRvW4LjNyd2OFArlyCKpsEgEljguxyBBZSA9AADYl98Xuj7LREehxhIWPeKk95hFJ066pJVqjsWo98mqXm2IQvU6Ft3CIlkuqGaeUvXvbxEX4bw83ywsss3CYjuORZETwTFcg7A47o2FDyAn5GDCREEt+H6/MOPvWLz9utvx3s+8Fx+67EPghfq7b18qWlhcm1uLY/uPjdW+TkDOC3G3RjGUtvt3c9W51hyLfAoWrLbjUONEof71N3/F1hu3trWfVth641b0DfXhuFOOi17Yw7Q6vQQtolAocaHCIoVyGPEKRftmyw0uRpYFtBDXFsMJ0FS1FoUat8aiuz5iWuBQVg2ohgnFcTwKLOyZ+yGU3VGoHBtay07VzVC3naFpDY7FxarWIH4CnRUWF6saVN1Ed0oAwzDgWRY8y6AUISymBA4MUIsl1Q0T+2ZKoesAjVGoU+MHa+f2e7++AS/6f69qWPbMzQOYLTe+4OQkDmVFbzonfpAY2ZwYr9PKMAx60gKminJNcAWAXo87r+Q4VN3XyctgTkK+ojXdh7JmgGdRi1AlwmPQttIicSy2UWOROBYjolAfvX8rvv/lz+DWv1zjrOc4Fp3jvfHJKQzlJKzv7Wx9B13TcN+dt+DMc/1jUCuqjsWqhg39GaQCBFgKhUI5ZISJPTXHYsiAh7eeYgLHYjXs0eyN41T8B7LiUJE1gHXVWGRYW2AqewYs3IKbNwrV9Il4jaK6YG+HDJ7FjULtXmuLtbN7Yi1uR6Ha+zg4MQPdMPHMVRzu/N8v4Z1ver1dr1HMAQNH29sdf6i+spitXx/AXk4tN4uox58PPPciW4hMCsPY+wiJUANgC4RciGMx3WuLnt571huFStyufIBjEbCF23ZhOBTL4cf04PY9eM/nrsDPr7nZ/iCJY9HQgYlHgK5VtuCbAMuy8Kdb76VuRQqFAqBZZGPDYqeBmtAhG9ETOYOExf6U7V6LcsRFOhZ5Hqqa3LHodfbVHItaCRxbj0L1W4e0xyssKnJjf8hdY5GcB7do17CsHCAsOhNHFuRmxyJxQTYIixHRslGInFivlagAE5WJWOsRt+OC7B9NvzC7gL4huy8yOzkLTbXvuUt/cin+6R3/1FRyZSA10ErzlxRy7QQu3njLyow9idiC1XIUqnu/rVKJ6Isc3HcQX/v413Dd1de1tZ9W2HrTVpz5ojMD64CHMa/H7DdTKJQlgQqLFEqHUXQDr/jW7bhvf/QDzuvsGstXMV+pdyajolDB8U6NRcedpcYTYtziZVq0RSvdtGqCEMexMCM6ow1RqCwDpRos4KgBNRZr3yuVJmFR8cS6BtUYJJ3PMAHWy2SBuPLqs+FSAodKhLDIMgxSAoeCEx27f7YMLcJVpyoyysUC+gaGcP9dt+Jdr3oRtt12AwCgu7d5Bt4p63pqQjEhJ/GoqEYsRypxwfZk4nda+zICFsq2mDtTVJCT+CYxizj4wlx7g10SqpqBBY8watftrK8nawZEjg3cVlq0HYvt1Fgk8bZyyH1p6Dq+e+kn7eUq9otTzb0q67AsCzc+OY0tK7KJzmccHntgGyqlIs4896W+3084NS+PX93C4CyF8nRGrQB3futwt6J9xh4EdrT5Yr/rr9GxknEJcyMQx6LXIebG64Lwc0WwHmHRcUCGOhYVz+QeNXqyTxBlWQN4qbFtUrct/Ln7RG5hkZeaa0cmjkLN204zImZV/Qfjmuhea/+ceSJyUcuyMDWbx8qBXtz5wHac9qqL8JP/s+vy9fd01etIprqA3g22+DZ6f30DYq5+nQFbaNQqzcfK8UD/0baTsxU4Mfw+Auz7g+GCHYtSty3Ied2GumI7AWuORedeEXzEOHIt4oq8YXA8SpXgQXfTNPG+L3wflmWhVHF+Xxkufqzu7E5ArwJdaxqvUQwe3L4HEzPzOP+FZyRaj0KhHJlonklArYggQbiFNzdEFDtY9I8ZJXAMFyoscjwH0zBhREy09m7DW3MxxdoiTlkr12sseqJNvduQdTlcWPSLQg3on8kBz4ucYDvpK3qlSaQl10k39Zqw2G6srcRJqBp2G5kSg+nKdHC9axdEAJ2X/Z+fpMbizkd34j3nvwe//9nvAQC5npzv8kOZoVaav6SQGpJB97SXHqmnybGahBRv35NBLte4hEWhWpaFyz97OXRNP+SRqWPDYxjZM4LnnvfcxOtW9SoKRuuTCikUSvtQYZFC6TAVxcCTk0X8dXt01ne+2tjh0wwLj40u1v7NMQx00wzsxDEcD02t11iM7Vh0CZoZkauJVkTo5Dkm0rHodj1yHOPrWCRiomr411gkqLIM0SUyFWQdiudYghyLtW3EPHYAmHREm25X3KfEs47gGt5hJvUOLcvCDicGdTAXPICWd2pV7nz8YVzyngtw4ml/g9POfH7g8gLH4sRVjR3rXMoWFuPUHJwvK5B4Flkx/uBSX4ZEmJqYWpTRleKbRD/i5pRCHIsDWfs8jMzXZ8Nphi0QNgqLJiSerdVc9JIRW49CPWZFDi95xgqs7LI77WE1Fq/95c8wvHsHhlatRdURFoljsajo2D5ewExRwcbBbGBsa6tsu+0GDKxYhS3PONn3+7F8FQyAZ6zq6eh+KZQjnr9+Erjxs8DuGw53S5JRnm0UlLb9ALj+EkBeDF4nDEMDrnot8PNXRS8bh5CYU4aznzdWmIjpdSx6/w3UHXFkO84ASqhj0SMkslq8eoN+VBS1WRBL9djXwC12NTgWBY+w2EIUanUeENO2SMlL8Wsspvvs5Wd2Ri5aKFWgqBp27h/Fi9/yCZx0zAb887mu5w+pIyl12+egazUw9Xj9ezFbF34BW2jUKsmPNQpOiBGFGqPGItAcYet1LJJ7R/KZwCM5/TCvW7UV2PAaiz+/5mZsffhJbFizoi5AcrwjLMY4v2MP2MfUe1Tipv3p1nvRncvgnGefmHhdCoVy5OEVo2oRm37P7IRE1ZYbL4dHbcaJQgWa3YVemoRFr2ORt98hK3qlJiwGuQgJsiHXXGV+yzcIixGOxaDY1axYj7pucixydccimXRttvl8FjmxJiyyJRaKoWCmMhOxFpBzosT9HIuGYWBxfhGzk7N4/2vej8FVg3jpa/wn2RJWZVe10PqlhVy7oLqhXhiGQY9o901aqrHYIWExzLF41/V34b7b7sPKdStRrRxaYXHrjVshiAKefc6zE6+7f3H/ErSIQqEkoSVh8ec//znOPvtsrFmzBgcOHAAAfOtb38I111zT0cZRjiwKsoaNF/8Z1zwcXpj7SIFESoax4KmxyDDAAwfqnTCOZaAbFgL1JNZ2LPJcY8RkFG5RMEPccKYJuRaFGl1j0e16FDgWqk8nuKToSAksNMMKjfFU5UqTYFXVvMKihuDqfoh0DrqZKshgYAtqhJTAQtbMyACztMihohjQDAs7J4voSQuhIt7cjD1Yd+0v/guvfP1b8YXvXolU2id2y8XfbGgUk7pTAqqqESvudbasIifxTa7HMPqzIhYrGhTdwERB9l2fOBbDYjmJsDg6Xx/YJddR4BgU8va9vVgqQ+RZsEHlkQQOqm7Gin71Igkc/vlvjsIaJ7o0qPbnwuwMfnb5l/H/XvsvOPbEU2rCorvG4k1PTiMtcDh6MNcUy9Iu99x2A854/nmB2x1fqKIvI6A/26Lr42kA7YtQfCHRmIV4tWCWDV89GvjyxrozrjRtu5Wi3FtBkO3ErL8XSUjMKREWDTVEEPJGn/pGoTp/78gxx3IsNkahcm3ERJVlDfDOJE/32PGq7uN3C1ac6ERWOm1sJQq1Mm/HcbKc7VyMG+fKMEBuFTC/379mpYvJGVus/N4v/owLzn8hrv/Jf6A356qFWHQiztJOkkL/ZmBhuP69mGl0w0k5RwBuPVnAF+JYDJvcZjjOw6DX2FS3/bPsGQDVFYDhUXaSQfKzREz1cUkIOQAMUIlZ7zIMVgiMQl0slvGxr/0Ur/9/L8C5p59SdyyyvON+jdEPGr3fFoIz/Ymb9qdb78XLn/dsCEIypyOlDu2LUI4kgoTFdiMYybaYkLf5iVJ41GZUFCon+MeWevGKk95tEkeZbuo1MTBMWLQsC6qh1sQfv+X9aiwG1ctTKv6f80z973STY9EVycmiQ45FVmoQFgFgd3535Hpdgj1ZJ6/km77Lz+Vhmib++L9/xJkvPhPf+vW30NvfG7q9NZk1yRp+CCACXxL3Ybdo903ItTN0A695zmvw0N0Pha0GAMjw9riGHDXxKoJqKaCup6zgu5/7Ls540Rl47nnPjVWLsZNsvWkrTj3rVKSz4WNkfgwvDne+QRQKJRGJhcXvf//7+NCHPoS//du/RT6fh+GID729vfjWt77V6fZRjiBG5uwH1O8ffHoIi/NlNTDKkbifCnJjh28gK+LxsUJtfKouLAYM3LAcNFWp1RmMLSy6lsuKHKqqLZQRl2Asx6JrGwLLQvYRcMqKji5JcP4/uHOrytWaU4wwXWzsOOUrKtJisKjlrVcZxuSiglyKhyTU/wRKPIeqZkSmTtkOTx26aWL7+CJWdktggxQyAAuOY/Gt7/8ELvzEf4DjowdvTliVg3zwcTAle0ArK/JQDbNJbPVjtmgfGx8SWeplMCeiIGuoqgamHWGR9+TblxV732HOvZ6MAAbAwYX6vSCr5J5isbgw52zLrqnJBZw3so+S3P7s2KDanz/51qXgOB5v/beLkcpkUS03OhZLio4bn5zElhU59HVY3Du4fw/GDuwLjEEFgNF8FSu6U8hKtL6iH7QvQjliITXdKrPouGjTCsTdpQcP1LHOgJamhAxEeIXEUMciqbFoP0vkBDUWOaP1Wdblqmo7AN2kegG52Hj8JY+wCNTjUy2zhSjUeTuOk+VsZ6BSBCImd9XoXmOLghFOzam5PADgw299FX5y6Qcgeuswl6ZsUdVxGmBgS11sBBzh0x2F6giLHXcsOjUuQwaPmyJNvUjEsehJDtEVgOMwX7DPlVEt2Ofdr0YSywJCGqjEjKUNg+MDHYv//t3/Rbkq46sfeztymVR9uSQ1FkfvA3rWJa6vOD41h/sf301jUNuA9kWeugTFNB5JEAFNDYsy99AkLDp/H5VWJzm5YBimJq75MV0Jd4hHCYuCYLc1iWPRMI0mZ5/ACTVxjsSKeqNQ3RTVIixYjcJitfF8qYYKgbHbF+U+k6vJ61W6nXOkRl3YuYqDyNcdi1zZfh89UDgQuR6JQl1UmhM38k5f5OX/9HJ85orPQEpFC3P96X4YVQPocHejHWrCorfPGEKfU0ebiJHVchVz03OYmYh2gdbumTb6uECwY/EX3/sF5qfn8b7Pvg+ZXOaQOhZLhRIe2fYIzjrvrJbWHy2NQmKTx8tSKJTOkVhYvPzyy/GjH/0Il1xyCTiuPuD5nOc8B4899lhHG0ehPJVZrKqBDrNup7aft27gqu4U9s+Wcettt2FuegIcw0AzzRBhkYdlWTB1p4B4zJp0brdhRrQFNUUzao5FkY1TY7H+vcQzgY7FXKou1AShKXJDjUUAGM83bm+upCLTIWFxPF9Fd0po2Gda5CDHEBZr9Q4dx+JgToLAMdBNq2FdeX4S2x/YisUF+8X1tW99b+z2CRyLqasuRrpiD15mJft+mS9HvxjOlhRkRb4mNsehLyPCtGwn53RRQUbkWnIs8iyL7rRQqw8IuB2LbE3k0wxA5NlAt15deA93YMTBz7H4xCMP4K+//yXe9oFPoLu3H5lMtuZY5FgGPMtgYlHGY2MFbBrMICd1dib/PbfdAFFK4bQzzwlcZjxfxZredO3aUxqhfRHKEU9lLrlA1WG23rO1/qwPcSwKPA/TsqCHCYs1IdH5u+/rWCQ1Fp2/28SxqIc5FhvdfYLZ+mzuiuLnWOwD1GLj8bvjMWsuS7ewmDQKNQ8IKVtMErN2RGfcbfSst0VBb61Jh4mCjuu3PobpOXuA75P/+jr/Z29x0nb6kWswsKWxDULWFtsIYta+hiERuS1BhMWwPqiu2LGsQcKi4Lg/vTGmhgIwHKqqfa0EU3YE3YDnrJi1Hb/t/h4y/jUWH981jMv/51p8+j2vx9qVg+jKpl2ORS78HBDUsh2F27XKv1ZkCNfdfh9YlsUrnvecROtR6tC+yFOTHXM78IKrX4Crd159uJvSwMn/fTJe+KsXdmx7xN2kmvGERcuymmJBkzoWiSOxHDDZJUxYLKgFX0dWddERtxiuJgLuWdjTvO0WolCDzg3vJDHEcSwWVXuCU5hjUTbkmkhLzmmQ+ywqdhXwcSyyzY7FsNjYODTUWNQYpPk0RgojketxLAeJkxqERa2oYeuNW7EwY0/WedP731QTQKNgGAYj3xnB4tYWSwMsAURYTBJr2p+yUwWICBxHQCZ0zLHoM8lp/MA4rvr+Vfind/4T1m1ah0w2c0hrLN5/+/0wdANnvbg1YXGyPInV0uoOt4pCoSQhsbC4f/9+nHbaaU2fS5KEcrn1uiYUypHGYlVrqhNIIM47b43F9f0ZTBcV3HH3NgAAyzIwPIJVA2QWnZpsFmFDFKpIRE615ngUneLnodtwuedEnoMsN75w6IYdrUoci8UQkUiVK01C1vhCY4cmXwkXFnXTghlTWJ1YrNp1BF0d2hTPQdENWJE1Fm1hMV9RMb4oYzAnojctoijrtZqAYzsfwaNXXIj/+vrnMD87je7efvCCz4z4CIijjwhbc6Xo6zxfVpGVuFo8bhyII290oWoLuBLX5HgsqzpYBpga3hW+rYyA2ZJSE9VrwiLLQnVelFQTEDkWXMCgIBEvw+6ZuHgFb8Mw8N1LP4FjTjgFr/jHCwAAaZewCNh1JB8YXgDDAEevyAY6K1vlnluvx2lnnoNU2n8QsKzoKMg6NvSnQ4XcpzO0L0I54qnM43A7Fm+44QbYXQEm1LEo8BwUHdBDatrWHH3EAeknLJKBMW+NxTDzutuxaJoQ0brTvSwHOBYNFai6BrSIqxSoC3HEEWK1EIUq5wE+BTBEWKz4nx8/etbZtQMXXC4CJ3Hi4b2TOP3yUVz4pZ9hfHoWgsCjr8cn9hOwo4Ol7rpQ2ru+sYahlG1cntR6Uhsdo23DRzsWTU3GyEzIfhkGELuaY0x1BeB4VJ1BZ9Gs2iIkE/CcJSJvu7XFOK4pCtWyLFz0Hz/A0etX4wNv/gcAQC6brguQrBCvxuLEo/a56l4bXHMygD/eci+ee9ozMNDXnWg9Sh3aF3lqMlK0xZHdC9Gxjoea2eps9EJLhGqoTe/BRLCKW9utS7RjMGeq/i6sIGGRZVhYsHxjDRembDGKsRgYpoGHph7Cq699NXbNN76Txo1CdTsUg46LHDeJH40jLKb5eoyjr2PR2SbHcuAYLtB9JvtMRPES6lh0ngW61d57dIpLQTHrx9Er9WK0NBp73UXV7jdND0/jic8+gW984huYHrcn/PQN9SVqS/nJMoxCe0JpJ5EN+xrte3Rf7HUG04MA6i7HOAIygYjWQfG5cfFzLH7vC99Db38v3njRGwEA6Wz6kDoW777xbmw+fjNWrUteS1M1VMxV57A6ZQuLxU73SSkUSiwSC4ubNm3Cww8/3PT5X/7yFzzjGc/oRJsolEPKO/77Plz65ycil/PGlkYvrwc6Fsls8YJntGxtr90hFVcdDcAWlrSQKFTLGQzRtYTColbvaBJ32HxZqwmLAs9EOhblBsciC9UzoEgcil2OO9PtcPSiKnLTDPqJQuP25itqqMiiGSHOTg+TPnUEbceiGcOxaDs8d03ZHZehLgk9aR4lWYdiGLjqqqtw9efeifTQOnz6iv9Ffn4WfQODsdoVvM/4jsX5soq0wDWIplGQWpO7popQjboY7Kak6LDUKn79g6+EbmsgJ2GurEJ2RHXiguU5QFXsTqpm2jUXg5pI7sli6GhyPLyOxb/89irs3v4o3nfJF2uzy1MeYVHkWcyUFGwYyGBlV/Ks/zCKi3k8/uC9OOMFLwlcZjxvt/n41XSwLwjaF6Ec0agVWyw6zI7FY3oNdEmME8sY3M8QBR6KARhhfRFSA5CIH75RqMT9R6JQFWgmEy7TyS7Hourv2otLRdaahcV0r/3TXfup4hYWSRSqah+b2YJjUV6098tygNRlx5rGjTDrXmv/nNlRb8uem3DttdfinA9fiRU5Drf+6BLM5otY0d8TXC+4OGnvmwilnGjHrBLEAGFR6fAgTpRj0bLAmip+ecuj4duRumwnqLv2pKEALI+qE2lnOxbTIY7FLieWNn6MoC+s0BSF+qv/ux233vsovnPJuyE5sbS5TKrRsWjFiEIde8A+Zz3rEzWpKiu4cetD+LtzT0+0HqUR2hehHEmU9WYxPKmwSJ4xc1X/+rRuZ50bUpdv32KwUMMyLEzLRFGzo0e9ywp88ijUoJhYIoByrP2uGCosaj7Comd51VQbjl1ghcB42bDYVYI3+tEtNBJhsV3HYopP1QQ0wBYWx0vx6pdLvISCWsBNN92E7739e2AFFt/57XdQKpSQzqaRSqeiN7KMIb8P3/vU92KvsyprC2c192ECxyLHchBYoSm2NyneGovbbtmGu66/C+/51HuQztj3bzqbhqZo0LX2J3hHYRgGtt2yDWe++MyW1j9QOAATJtan7T6Q13FNoVAODYmFxQ996EO48MILcfXVV8OyLNx777249NJL8YlPfAIf+9jHlqKNlKcIl9+0Gxsv/jPyMcSPpWK6IGPjxX/GQoI27JwsYudksRb1GEREycEmirIeWfOwIOsN8aUDOREix0JcfRwAgGMY6KaJICOeRRyLER1oL1W1fjDEBThfViE7QqjIsbCczi4bMAjVUGORYyFXGzsqxG2Wc4TFMJFI9YmrnPIIiwsVLbS+n2FYgefJy3RBcYRFVxSqwELRTVgRA7k5iYesGdg5VQTL2PG1vRkRJVXHD7//PVxwwQU47qyX4sR3fBU9fQPIz82gb2AoXsMCIHX2ooRFy7KdslmJC6376KUrxYNjGeyYtF+M/KI/y4oOGCpmJ8NrpA7mROQrdZGauGNFnquJz7rFQOTYwHsr5dS+TCrm+6G4HIuF/Dx+8q0v4qX/8M844dR69Fc6k0W1XB+QJnUWjx7MoTuV3Gkaxn133gLTMHBmmLC4KINhgONXUWExCNoXoRzR1JxWh1dYfP2xzjOH5epRnz4IAgfVsGCoMRyLbIhjsRaF6mxHq0I1I55lbmGrTZGrLGt1cY6QIvX6pmptguoafK0Ji4YtLFpGMkHYsmxxlE87TrucLSzHFRa7Vtr7nX4S2HwuAODK738V//AP/4CXPXszbn/PWqxd0Y+p2TxWDoQ4BIoT9r7dg759m+r/HygstifmNsFJtjs26PidQeDx+Qg3WKrbFmzdg8a66giLdv+WgxEehSp12de6w8JiqVzFh7/8Y/zDeWfhZc97du3zXCaNSlWx6/SxvONYjLiXRu+zRUWpK1GTbtn2KCpVhdZXbBPaFzly+Op9X8VYMfwd50jHT+gi8Z1xhUXCnOwvLHIBDvGcmAMDBgeLBwO36a2x6BW5WCF6XMSyrAZxJkhYrDkWnedDmNhXciY1RTkW3W5NnuXbqrEoeWLbeY6vxdDWhMU2ayy6HYsWLAykByLrYBLSXBqP3fIYXvayl2H9ievxjM8+A6uPWo35mXn0DSZzKy5HZF0GTGBqdCpy7IiwuWcz3nHSO3Bs37EAmu+RKNyu1FZxOxZVRcV3//27OO25p+Hcvzu39jkRGA9FHOqTDz2JwkIBzz3vuS2tv7+wHyxYbMxu7GzDKBRKIhIXb3rHO96BdDqNT33qU6hUKnjDG96ANWvW4Nvf/jZe97rXLUUbKU8RbttlR17cd2AeLzkhuZW9E/zuIfuF4Ie378PHX3F8rHWqmgELwQJaqximhbmyiqMGsoHLlGStwdXIMgzW96exd8aEKRfBOVGoQU480+lAqgkdixXV5Vh0hMWFsoI+xu6kijwL6cnrMCU8hqFzP9S8X9OC4rSbZQAh1LHoRKGG1lhs7LhwLIP5sgrNMGvi32JFQ+9AcP0YLeQ8uVF0A/mqhpxHfEuLThRqRPJkRuKh6CZ2ThaxoiuFnCSgJy1A1U2ceubz8JWvfAXTG1+Crfvs2ooLszPoG1zRsI1ZlcOad/wAJdlAT2SL63G1UcJiRdVhWkBWTPannWUYdKd47J22X4z8hMWirIPRbWHRsqxA18NQTkJB1lCSdazoQk1glHgWilK/T3meDYwYJfdkR2osKjLInMiffefLMAwd7/jgpxqWyWRzkKsVmKYJlmUhObU3Nw9mm2p/tsu2227A0cefhKFVawKXGVuooD8joj/b/gvEkQrti1COaIgj7nA6Fg9srf8/y4WKK5IThcqF9UWIkEgGFU0foZL1CIu6DMWI6Ju5XYptCosVxcexWBMWJ+2fZU+8G+cS4hjWPs4k100p2iIaqY8nddniZVynAcsDmUFgfm9NIHtBzzg+9/634pKXrgL7+K8AAFNzC1g52Bu8nfIMMHA0wLme/4PHAsN3OO3yrCuQKNQSgMY+Tlvwou3+DDqHzr0xsVCBpukQhID+TqoHKEw4tTEztnPRsgW7invQmThF/ZC6gLnd8WNpg2C5uhMRwKU/+CXm8kV84+J3NizWlbUH88pVBd1xo1DHHgD6NtqicAL+dOu92LRuFZ5xdDKnI6UR2hc5crjyiSuxbWIbfvPK3xyyfZ511Vn4wtlfwHkbzjtk+wzDr45iVD3AIIKcVUFRqAwYdIvdoVGbXmFxojzR8L0gRDsWvTUVg46LRKDGiUItqHZyQpNj0fUap5lag6uQZ/lAUTOOsOhX249neWimVo9CbfPZlebTtWhcZaOCofQQFtXFWAJXik+B28Lhk5/8JNKvSOMP+/4AAFiYXThihEXGYFApVVAulJELipl3wTAMnrnimfVtJHAsAvY193MVJ8EtFv7mx7/B+Mg4Pv/DzzeM66RzjrBYqaKrN9mkpaRsvXErevp7cPyp8cZtvYwWR7Equ6rJwUuhUA4tLY2YXnDBBdi9ezdKpRImJycxOjqKt7/97Z1uG+UpymFO7orkGzfswr6Z+kAUib/ssK4IAJgqhAt+RZ+41M2DdSGSYxnohhU4rkAci3pCx6LbSUkci3MVDYpmgGMZ8BwLrbyI/G3/jU0DzR2lhvqKHAsGzZGTxLHY5YhUZSUkCtWzbk7inRqV9QNfrGqQhOA/WboRHWMK2G5FAMh5nGhpgYeqm5H+ECLaPXJwEUNdEpTCPK773r/DVKvIrdyAj370ow2dswUfx+K4IkIYWIepYjxBmGMZpAQWixHRoGXHHZj1EQYVuYqb//z7wHX7MiLG83YHtzfjE4Uq62AMFXKljFIhuHj6QE6CZdXjPKu1up2N4rPAsYG/cym+czUWlYo90Fyan8KffnUl3vy+j6FvsPF6pDJZWJZVu4dTAofetID1/Z2NQTV0HffdcXOoWxEARvNVrOxO+V5HSh3aF6EsW0jcZ6uzxcv+M/0PKbd9uf7/DBdaZ64WhaqrwfEOcaJQWdbel8uxGCksdtSxqDY7FsUuAAxQChIWXcvXRNMEz66qXTsKgjMFRszZx5+krl/3asxPHMA7f3wfFtKbsGEoh08/p9gwecp2LPb6rs4aKqAUbCHNXaevf3P9/yVPX5A4FhO6+TRNx/9ce3PwDH9OtI89SFh1HDUVzcLYVMjvSarXvh9IbVBSl8gVhQrAdooGCYupbts92o5jkeUBlq05FncNj+HrP/s9Ln7nP2GTp55QznEJlMpVJwo1ol5neRZYPAh0rW4WxEOwLAt/uvVe/N25pwdH41JiQ/siRw7t1i9LSkkr4ev3f33Jtq9Z9nOkFDMm3E9kqwmLRjIRBIDv3/mgKFQA6JF6QqM2vcLiVGWq4Xued9yFIeMimufZqvlNckKzYzFMWCxrtthDIi6BZtFIM7SGY+dZvq0ai17HIlAXQYlzsd0oVLdQaokWVmZWAmgWZ91UShV87eNfA4qAkTXw+c9/Hhxff8YuzC6gf6i/rXZ1AtM0cf1vr7cTAlpA1mXAWXVybLKlbSR1LApc+ylKxLE4MzGDn3/n53j1W1+NTcdtaljmUDoWt960FWe88IxaeZqkTJQmsKVvS4dbRaFQkpJYWNy/fz9277YLXWcyGaxYYc9S3b17N4aHhzvaOMrTj3f89/34z9v2Luk+vnPTbrz2P+sz8WXNgAWrJnI8OLKArXs7M6g3tRjeMSwpOlSjcRDumJX2zCC+axAsy0CPcuJxfJNbMAp3vUOBY8GzDBYrGmTNhMDZ3VFVCe7suNfnnUhLd+QkAJQUu6Pe4wh4ZTXMsdi4blbksOgInYDtMqxqBjJBM9OBUGenm0knYpXUfiSkBNauZxkxOZwIsSPzFXD5EXz8zX+HJ+69FUZhtim+FQAW5mabhKx51d6GlSDmbkVXCo+PF6AZwQ0ksbp+jsNtt92Iyz72HkxP+Mf89GVFGJaFtMAi47N+yYlCBYCp8eDZpMRld3De7riSKFSJZ6Gq9XtKYBlwAQNaLGtHpZYi4omjsCwLhT0PoLzjTtz7vQ9iw5bj8Pevf2vTcumMPUAqV+w2P/foAZy5eQC9mc46Brc/fB+KhTzOPDdcWJzIy1jdm6pF4FKaoX0RyrKGuIcC6udE4q7hdziYehzYd0v93yxnu8gCHpAib0ehWrqKQCGEDN4xIVGogO2YI85HrQI5aszHHUuq2sKirLc2w63iF4XKsrbgRgTFUoiwyIaIpkHIefsnGZCUcgAs8Almpe+u9OCsrz6K3903hn0LBrD5+cDem4FC/Xk/NZfHygCXAKc6k4W8cZq9R9X/n/ecF04MFuRCuPXeR/EvH/satu8+4L8An7LPX5Ao7wx8y7qFA+MhkWypXttNSURB8rvICpDd/VshFR6Fqldb/z0GnHPE1ITFi7/+X1i7YgAfe8drmhbNZWxxuVSp2u7dKMfi2IP2z551iWZHPrpzPw5OzOD8F9L6iu1C+yKU5Qxx9A0XhmMt7xfN2apjEQBmq819mSDHImDX8JssB4s0HMM1OCG9sZycUzIlTFj0uviCxGTSzloUasg2S1oJDJgGsc+9vGVZtmPR5fTjmWDHYqwaiz6TSTjXM5llWOhWe+/RKb6xDiIRFoOYGpvCRa++CLf88Raok2pNcHWzXByLOx/dics+eBmeePCJltaXDduxCNhxqK0QJlb70YkoVFJj8adf+ynSuTTe/IE3Ny2TztYdi0vJ5MFJ7N+5v+UYVM3QMFOdwfH9rbkdKRRK50gsLL7lLW/B3Xff3fT5tm3b8Ja3vKUTbaI8jbnxySlc9n87oOjtzbCKQjMs56cJ3VOY7/N/fAJf+NMTDXGhrTJRCH8glxWjSVjc5HYsMgwM0wwVzBhOhKYlm03tFgYBWyzLV1XImgHBEQrDxMpqgzDJgGXsyEk3xG2WkTiIPBtaw1KVG6NXshKPgqzXHIv5ij1IRyIy/YgUYB0mHbG33yMakfqNUeORxLFY3XsfrvviO9HV04evXvknCIPrmxyquq6huLiAvoHBhs8XtOSDcS87cSX2TJdw/RPRndeedPOMtvlZe735Gf/1BxxBsCslQPCJKC0ptmMRQKA46d7OwQVHWNQMMAwgsCxU2etYDB4Ik/j2hUVVkWEaBmav+RJg6HjfJy8Fxze/0KYz9oButWK/AJ29ZRB/f+qaWgRtp9h26w3oGxjCsSedGrhMSdZRVHRs7M/Waj1SmqF9EcqyRnREIq3Fl/LyYRYW7/8Z0L0G48TkwHBOlGSAsCjwUHTA1LVgIcSIKSyyQt1dplURWWrXLSw6jsWi0pqw6OtYBGyBqTJvCz2hUajO3+wkDjfiWBQdZ4AjSvNaPPflrdsexRmfuRGMZWLbJ56FZx+VA455GQAL2P672nJTcwuBjkVOdtrgFRadY9u3yDSLbwxTj29NwMTMgvNz3n+BmI5FWQdGJsKExR5bhCT3BxkUb3IspprXJUhd9v1czQcvEwXDAQyDomuA7luffBfSqeZB4ZpjsSLbArsVJSzeb7exOzha3Y8/3Xovcpk0nv83Jydaj9IM7YscuXz0to/i2r3XHu5mtAXrDPUFufK8+LkSSeRm0hqLALBvcV/TZ2HC4kB6ADPVmeYv8vYPr7DoFS55IYZj0XMugtx3xB0Wp8ZiWS1D5MSG91q3aKQYCixYDfGlAisEirVxIjJTXPOzy31uWbBtOxbdDkzAvj7EFenliYeewHte+R5UyhV89/ffxeZnbfaN7VyYWR7C4ty0bSKYnw7oi0SgGEpNWJwOm+QUQitRqO3irrH4r5/4V+S6m5PJiGOxUmqORu4kW2/aCl7g8ZznP6el9Q+WDsKwDJw8QPsyFMrhJrGw+NBDD+Hss89u+vzMM8/Eww8/3Ik2UZ5GbLz4z7j0z80zhYjwt9QQgY3oUQVZw2Oji9AMsymiNIiHRhaw8eI/4559zS7HmZCoS4axRZeqRzzpcwleXM2xGLx/hhehqcmERa/Il5F4lBQdFc0AzzpCoRz8AlHR6usLHAuWZaBUm6NQGcZ2Akoc2yRmuvGKmFmJR1UzUHRGFBcq9vGlwqJQI84TYaogQ+TYJldfyhEWNSt81ndG4qAtjGP6t1/AMaeegW9eeQ02bDgKLAPMFBuPY3HefuFxR6EapoVFPblg9Tcb+zGYE/Gft+2tORP9kHh/x+HCrN2W+VmfFzbUnYa5FA+eaz7PZUWvRYpNTxwM3H9K4JAWOIwuOK4CzYDo3CNuF6wYci0BQBJYyKqeyNXppVKuR//0DQzhmac3P7uAumPRvbzgcw7aZettN+CMF5wHlg3e9vii/Xt0wuqlrWnwVIf2RSjLGhIT2cJAHIDD71g8eA+w4Zz6M5XlnNqBwY5FxbBgmSGCkNexGOTq4xqFxWrYbB/LAjQfYbHF5ErfGouALVLJi7aoVZ5urGfXEIUaIZr6QUQrIuo59w6vR0fXjU/N4eXv/DSedfxR2Pr2LLaIs/VtHXVWrS2lioxKVQkUFnnFaUOqebCvolmYKKFe/9JNC8Li1JwtLE7OLvgv4OdYdE8ai+1Y7LZ/lqYa1gMroNrgWAw5BtG5Jl4xOQksD1UzoLn6za980Zm+ixLHYrFctYXcKMfiwfuAnvWJ6yv+8ZZteNk5z4Ikth+r9nSH9kWOXP4y/Bdccuclh7sZbUFq7QU547z4CV21KNAWYmJHCiNNn4VFoQ6mB30FTPZ2Fjs/uhM8yzdEoS7ICw1xqyRyU1ODhdQmYVEPEBZJFGqMGotlvdx0XG7RiNSu9NZYDDqncSIy/aJQOaY+IZVhmIZz1QoZz/ORYRj0SD1NyxXzRXzsjR/DmqPW4HvXfA+bjtuErJCFrMsN4qZpmliYW0Df0OEXFhecSU7zQZOcIpB1GXAez1Njh8ix2GFh8SWv9k9QqjkWlzgKdetNW/HMM56JbFc2emEfhheHAQCnrji1c42iUCgtkXjklGEYFIvNs2gXFxdbyqi+4oorsHHjRqRSKZxxxhm49957Q5fP5/O48MILsXr1akiShGOPPRbXXXdd4v1Slg+/ezDY/bTUVD3C4rZ98zAsC0aCQpEPjuQBADc/2TzAMVdSA+vIEOfbTCm4U0GExcBaNAAYXmiImIyDu0ai3RYOJVlHRdVrQmGYY7HS5FhsXr6k6EjxHDiWhcizqGpG4HH41VgE6iLLQtl+CQhzkNk1FqOvm2ZY4DmmSTwjwmKYnmwYBtICC6FvDda+7vP4yJd/iHQ2C5ZhkJV4zJYaX06IsNjrEhZnigpMJK9pwzIMXnHSKjw6uog7dgcPcnWleF/H4cKcvc7CrP9AXE1YlHgIXPP6ZdUAo0c7FgGgLyNguijDMK0GF6zb1SqGiGuAfT2qWry6mUGQaFMAePk/viFwuXQ25yzfXkH0MMYO7MfBfbtxRkR9xbGFKlgGOJYKi6HQvghlWUNe/luIDgPQnpDRCXIrgTWn1f/NcrYwGCQsijxUA45YGBSF6vxesnEci5odu6pVUdVCHgJapbFNShFVnWlKoohLoGMx1WPXIDQUOwpVihAWEzsWmbo4FMOxaJp2f2fNygH86Qf/jv/7z8+jL8003jcn/IOz/XlMzdlRp4FRqErePu9EjPMwL/s4FoHWhMXZPIAQYZET7XvNLVD//FXAjZ+z/9/tWBwP+T1JOYOfNWGRRKFyjY5FIaSWMhF7K22UR2A5FCv1Pvob/u7cwLSGrqx9PkuVqu10tMzgwvWWBYw/aLsVxfjXYWp2Afc+ugt/dy6NQe0Ene6LALQ/Quk8cR2LfqIeqdfXSo3Fg8XmiahhwuKK9Arfz1mLhTajgWXYBseiaqqYl+vCEMuwEEQh1LHoFVnJcb3rlHfhzSfUYyGJiBOnxmJFqzSJPm6HY9VJr3DXyAsTFuM42XxrLLodi0znHYsA0OeagGRZFgzDQFdvF77woy/gG7/4Rs2NmOWzsGAhTyYuwRYgTcNcFo7Fhdn2hEW3Y7FlYTFhjUW/a54EQzegOaWKTv6bkwMnOmdyJMlp6YTFSqmCh7c+jDNf7D/RKg4HiwexIr0CvanezjWMQqG0RGJh8fnPfz4uu+yyhs6yYRi47LLLcM455yTa1tVXX40PfehD+OxnP4sHH3wQz3zmM/Gyl70M09P+A9+qquIlL3kJhoeH8Zvf/AY7d+7Ej370I6xduzbpYVAoAOp1/4gr6k5HsGlHzHCTr6pNUacEUj8tzNXIMQzMOI7FkHqIfnjdgzmJR0U1UFEM8E6NRW/NRDeyu8Yiy4JlANkjDpZkHSnBrt+YElgoWnPsLEFTGtcl52bccb0tVu3OeZePE49EexoxHYtBEDekHuBYVMpFfPLdb8Bfrv4vMAA2n3oWsul6B68rxWOhoja4CfNzzY7F0XzrsRJnbxlET1rA927ZE7hMTvJ3HBJBcT5IWHScslmR83XrlWPWWARskXK+bEfrVlQDohOX6xafRT788ZMWOFuMDl0qHLcDMcwlSByL1SUUFrfddgMEQcSzz3pB6HJj+Sr6syJ6052t73ikQfsilOWN8xzRnqLC4sbnAd2r6/+OiEIVOBaKDlghy9SjUJ0Z9aZWF+LccLz9rLFsYbGshcz2UUpN/y7rySfuECqy1lxLEADSfbYbUleB0mTdyQbYoqtzHDMk/t5I4FiU87ZARwYca8Kiv2OxLOv4x3+7FJ+/4ioAwHnPPQ1CthuQPKJgT/3v0dSMLYwFOxYXbFExYDb8XBX2dfEiJp9lTgTFyZkgx6InCjV/0K73OfGIff5rjkWEOxalIMeiNwo1TFh0xN52oolZHsVK/e8AF5KG0FBjkYtwLC7st++drjWB182P6267DwDwty/4m9jrUILpZF8EoP0RytIQV1gMcyUqLdSaHSs1T0QNFRaz/sIigUWjsAgABwuN4mWUsOitO0jOzerMajxnVT2SUWAcxyIXQ1jUK02ij1scJIKtu0aewAmB5ztOjUVv/UOgLizuemhXR2ospn2ej32SLQrqqo4vfuCL+MGlPwAAnPbc0yCm6seXFez+wVy1PjGHiHjLQVgkbTmcwmLSKNR2hUV3tCkb0heRUhIYhllSx+IDdz4ATdVw1ovPankbE+UJHN17dAdbRaFQWiVxHt+Xv/xlPP/5z8dxxx2H5z3veQCAO+64A4VCATfffHOibX3jG9/AO9/5Trz1rW8FAPzgBz/An//8Z/z0pz/FxRdf3LT8T3/6U8zPz+Puu++GINgP+40bNyY9BAqlhtexeMfuzsWPcQyDQtWuE+hXK812LCq+wqJlmWAYFiwbXTuQ4USoThSqEjYA58JbPzLnuO0qqg6BbXaXNa/vEhY5BgzDQJWrcL8qLFY1SAIHlmUg8RxkzYBhWhB8ysZ5HYvEzTlBHIsVDQzsWpBeiEsxbo3FIEiNRb9TqOUn8at/vxRacR6ve/tFSA9z6M+KtXUAoDsloFjVGyJ08/P24HCvq8bi2ELrnTSeZfGyE1fi1/ePYmV3CoO55sGkrMSDb8Gx2Oc4FtMi57t+RTVqwmKUY3EgJ+GJiQJkzUBVMyDwPlGoEVGjacG+Z9qpc1gtR0fJAYdGWLznthvwzNPPRjobPhA7mq9iZXeqKaqX0gjti1CeErQwEAfg8NdY7D3KjqRkGABWpGORYRhoJmO7EGNHoeq2C87r7iOORcsE9CrKSki/RvUKiwWUW4xBBYCyrAF+AzdEWDQUoDTdLKg5dSEn5ksYWskBSQbzKgt2fUXW6U/wEsCw4H1qE40uGnjl527A7mkZb3v1Sxu/7Fptuyp9mHJEiWDH4oLtzuP8B3znZfg7FhNGcAIxolA5EYBVj8Pd8Sf7JxGmXVGoIxNhjkVHWCx6HIucgIp7Mp4UcgxEQG4nmpjhUKrGuykzzmS1UkUGGKfGohlw/489aP/sWZeoOX+69V6cccpxWBEgMlOS0cm+CED7I5TDS1DNPyB5FCrLsJgsTzZ9HiYs9kl94FkeuifRgEScwoItLLpe9w+WDmIDu6H2b1ESw4VFz8Qf4mAUPM8/znkmE4ExtMaiVm4QDb3L14RFT43Fsub/3ilXogUnv/NIolDH941j/eb17TsWfVIJBtOD0As6/vDVP2Buzxw+/vWP+66bc/oHC0r9WU9cgv1D/W21qxPUolBbrLEoGzLgnN7psdZqLB5qx2JcByLDMEhn00vqWLz7xruxYcsGrN3Y2iQYwzQwXZnGSze8NHphCoWy5CR2LJ5wwgl49NFH8drXvhbT09MoFot405vehB07duCkk06KvR1VVfHAAw/gvPPOqzeGZXHeeedh69atvutce+21OOuss3DhhRdi5cqVOOmkk/DFL34xNGpEURQUCoWG/ygUglsgmyrI2Ddb9hVVWiErcSjIGlTdxMaL/4yLf/to0/dAvCjUUGGxlShUr2MxxaOi6qiotmPR1HWYIb9XFc3tWPSvyViQNUi8LVKmBA6KbgTWBvQKiyLPQuRYTBbs41qoqMgEOOkIRpvCokSiUD2OxbvuuhOTV34Ipq7j8l9ch9POPAevOGkVTlzTA8lVJ7AnLaCoaFD0+rlZnJtFrrsHoljvCI62ISwCwLnHrkBG4jBZ8H/pyIgceJ8oU1JbcX7OfyCuK8XjuJU5rOlJ+8Z0VVQdjDMwNx3hWBzKiVisaKhqtguWRKG671OBD/89SwkcZC1evG0QlUoyYTHu8kkpl4p49P6tOOMF50UuO5GvYk1PGlkqLIZC+yKUpwS6HCwMhNFO9GI7nPxaIDNYqzNIItAshous92aAAWMZCIxCNTzCoqnVxTQ3nFivsacrKKlhjkXP75G8iILa+jMjOAq11xZAq4u26OuNnnQGJGvzihJFoc7bjkUi3DEMIGQgGI0Djg888ADO+NEiZosK7vrF13D+i85o3E5P8ODM1HwBHMdioNc/YptXFmyHn89A5Y8eVHH7KOvvLm3FsTgTR1gEoDoz65+41vnCua5ao2MxsI/AibY4TkRBMmDOiZDdA8Si/zkBYLsnWQGotDbwCKApCjUMjuOQSUv1GotAcGTw6P1AdgjIhTt83Ciqhuvvegh/90Iag9opOtUXAQ5Nf4T2RShhhImHYaKjH11CF6YqzU4ur4DnhmEY9Iq9TZ+LkvNccG5rd+3AifJE07JhwmJTjUXTXpbUUnS3BagLeEGORcuyfKNQo2osiqzYFMtKXIhxnGx+7+ruKFQG7ddYFDkRrGe42Jwwsffze7E4vohv/uqbeNErX+S7LnEsuqNQibB4RDgW9bpjcW56LvSeC9xGwhqLnXQsRpHOpFEtLY2waJomtt28ra0Y1PHSODRTw0mDyZ6zFAplaWhp5HLNmjX44he/2NaOZ2dnYRgGVq5c2fD5ypUrsWPHDt919u3bh5tvvhkXXHABrrvuOuzZswfvfe97oWkaPvvZz/quc9lll+Fzn/tcW22lHLmUXc69rXvtgby1fSGxSAnISTzmKyoUZ6Tpz49N4Ev/eErte4GzY0LnQqbXkyjUMG2FT2WghbgL/fDWWOySeFRVA1XNBM+x0NTm7e145EEAaex8/CFkn1OPCuFJ/TxZhnved0nWkeJZcCwDiWdRkLXAKFRVae64dKd5zBQVWJaFhbIa6KQj6BHnKYqgKNSvfvlLEAaPwms/9W2s22jHLbzipNUwTQusq1Pfmxawa6rYEH2bn59piEEFbEdahtVRMVsTjkSexXnHr8Q1j4z7fp8ROQie2E/LspCPcCyyDIMPnncsNKP5JKq6Cc2wIDovQPOz01BVpUEwdTOYk6AaJqYLCqqaUROf1f/P3nuHS27W1+NHdfrtvWy1d917N7hgWgAnJKRA4lADgUAwLYApITj8IARCJyGYTpJvQgebaht377r3smtvvb1OH3Xp98crzUga1bn37hqj8zx+1ndG5R2NRvroc95zjs1el2c8GsquzyGpa7NCjapAZFgWfCq9YRmL995xEzRVxXmXBOcrVgQFdVnDlsFsqFVsgqQWSfA7AFUiBFlcrIXIWAtYHuBa9lrWLc4ADSpAsQgAqkET8tFXsWjWW3bFIuVFLHJNK1RDEVBzKRb3HpzBDgDX3/EAXrDJZaEkVVCRDAy2O4RFQkPysUJt5vXNE6KqZ7J9zACapZUWzXaO7HSV2HHaSVY+B0ohxytFkY1++tOfxkQXg59+6EUY2bm1fTvdk+2vmVgoVjHY1+1rCc5IZYA/1lOx+I5fSTh2c7/3hoPUfn5jWSkBCCAWTVIbSoPkWU7tdr5vUywKsoSVUgUDvd0+4ysQkt4wHIpFwVQsaqDBcCEnC58jlqNe52oU0IzDCjUMhVyWWKHSZu3oR1JP30PUijHyFW+5+xHUGgIuv/Tc8IUTRMZ61CLAkalHklqkc5z+3dPBUAzuveLeoz2UDUNQjmJcxWKBL2C+Pt+mmgtSLAJAV6oLy6JTJc7xZB3D7CO0EYu2+SF8ig9UF7YRiz6KRWtiVTNj0RU7U1klpPytv7gV+il6G+kjiRIYkPuGZSObolvLcDTnSyzGJZwsuDMW12qFChDFpmS0xvPAjx8AnabxZ//6Zzjh9BN81ytw5EtxEItLRaTSKWRy69NrWwvWmrEoa3KTWASApbml2Oq7uFaoXva3cdCoRycWs/nshikWn3zoSRSXi7jg+Rd0vI0DlQMAgNOHTg9ZMkGCBEcCkTrbDz/8ME466STQNI2HH344cNlTTjkl8P21QNd1DA0N4atf/SoYhsGZZ56JmZkZfOpTn/Jt5l111VV417ve1fy7UqlgctL/4TvB7xfsyr07nl7BRE8GhRSLury2GV4AUQHOlkXURP8GU5ZnUAwgFmkqXLHIpbNQVCWW/thNLOZSLERVR0NSwdIUFA8F5PLiPICtWF6cd1qh0sQqzW2dWhEV8CwNhiIZi0s1PbJiESAKwKJJzK7WZWR5FoyHEs+CpVi87uFZ3PA4mSFJ0+SxgKYogCL/PjnnPTuXpQnRq+oUDEOHVCEPNd/+7n/jnE/eikyhx7E87SI5uzMcapLqsKMtry47bFBlVcdyVcIor6Ehd65Ie8EJw/j1Y/OepFuWZ9vGVq9WoCgyxia3+GYsAoQk9nDtbRLwlCaj0NWDaqWEpblZjG/2aG4C6DMtWqeLDWKvy9DELtd2jqS5ECtUnoG0RsViVCtUAMhksxAanedfBuGum6/HlmOPw8j4psDlZk3r3xNHfZqkv+dIapEERw33fA2YfxR46WeAgLzWNmiSv+LIdx2FKPG8FGJhMIwWG7gOsGbEa6BBRyAWaWj+IdVtikXV216T4ZqWqoYiQFCc21tYKWEHgJnF1XYrVLGCstg5sVgXZU/VXpNYrMwCQhHgPKxQAShWjRPnOxeLAJch1pcW+BygyDAMA9Ua+YzXXHMNmE/+Bpken4ZcgCXmwmoVw/3+CgFalwlBFaAk8USQ2s8DqqphuVjB9k2j/hmLdsXinl+078ds0KYzWdTkBg7NLAYTi2KZnHtNYpFvZiwqVAqMV3akHXweECtApifCJ/QAFY9YzGfTxArVIpq9mvmaAsw/Ahzz/PZzMQDX3Xw3JkcHcfKOLZHXSdCOZ0otAsSvR5JapHOougoVaydq3HBnBh5NBOUoWiTYVJVkGhqG4amas1DgC5iuTbcrCkMyYfvSfdhf3u94jeXM67TZfrCsUtNMGot153Mtn+KhyP69FzexqJi1iZvwtKxQLbLOTVbWK2Qy6sriCtJqGl28M+dYFmVkQO7XguZhhcpwTbWkG1GsUL1gV13SFA29E8cMj21KhgR5lYz1nVe/E3M3zaFruCtwvSyXBQUKZancfK24XETvYG/geXOkUFwuYmzzGBZmFqDruu/EKz9ImgRKp1DoLqBarmJhZiE2sRiXQF4rsRhHgZjOpjcsY3H3jbtR6C7gxDNP7Hgbh6uH0Zfuw2B2MHzhBAkSbDgidbZPO+00zM/PY2hoCKeddhooivJs9lIUFWgFZsfAwAAYhsHCgtMiYWFhASMjI57rjI6OguM4MDaly/HHH4/5+XnIsgyeby9UUqkUUqm1ycYTPHtRl0hhagC4c98ydg4XHCrGtcDKSJsv+xcNWZ5FWfAvfmkQMs6PkAMANpUl2XUxJn+1WaGaY12pyxjI81BDFJANWQNDU9B0AwxDQdfarVNrkmqSXDCtUHWoPgWu4qFY7M3yWKpJTWIxwzFgzEK02HAeM0PXoOksdAP45h0HsWe+iv4cbxJvRMloAOa/Bo4bKcBL/JjmGMh1GcvXfh5zs4+j/uk3oru7G1SEZlt3loOiGY7vs7S67FAszpdFGACG0jpm15ADleYYvO7CrSg25DYVp2Wxa4dFJm7beSLuuf23oQ+Dbli/E2gyhsYmUK2UsDg340ss9ufINXdqtQFR0cExpmJRthOLURSL+ppUqI16dAViJpvbkIxFTdNw92034g/+9IrQZWdLIhiawo7heM3a3xcktUiCo4b9NwMLjwOlg0DftujrqZK/gs8PYon8a9lMRr0I1peBL58LvOLrwPZL4u3TB9ZdQgMFTlcDx6KBBh1khaqrZIuhVqgcoAhNxaIQVJJJ1ba/i4IG9HTWtGqIijcxa6naytOEXHUr9cxmYdMKVY+hWBRKpg2pXbGYh1acwet+KuIne6ax/xOr6OvrA7iAz9U1Rv71+I4IsdgTPI5UIT6Z3TxHozUvl1bLMAwDp+7cih9dfyckWUGKd9VXVuNVFYAnfgb0bQdk2/esitAMYGK4H8vlBg7PLeHMk471+UzdhKTXpBaxyHIQJItY5JH2Ircd28iT/aeDm6i+oBnUYuQo5bMZ1OxWqKpHsbj4OPlMXWPevyEPGIaBa2+6C5dfes4zoqn7u4yNqEWAI1OPJLVIgiAEqRKt9yy1YF2uIx+gWi+YE0IOlA84Xg9TLPZn2hXyTcWi6apjkYN5Po/FRjuxGJix6Jr4I+kSGIppuy5av2nrdxxEVoqqiDTjJH1EUWwRi2bGol3VyNFck9R0Y70Ui2u1QgUARmcw+91ZlG4rYemPlzA4MohTJ07Flq4tgetRFIU0m3YQi6vLq88IG1RRENGoNXDmc8/E7KFZVEtVdPfFm9Qr60SxODg2iGq5isXZ+DmLcTMW3edYXMRRIGZymQ0jFnfduAvnPu/cVnZqB5irzWF79/bm3zVlY+JsEiRIEA2RiMUDBw5gcHCw+f/rAZ7nceaZZ+LGG2/Ey1/+cgBk1t2NN96It73tbZ7rXHjhhfif//kfx6ySvXv3YnR01LORlyBBGCzl3lJVwnJNxmXHZ/D0wvrcmCyybqHqT9LlUgyqon/XjAJp1iiaf9OGSWWgynIsYlFUnNvLNYlFCSPd6dDMRkHWwDM0BF0DS9FQpfbla5KKngwHhqaQ4RjIquYbNeWlWOzL8di3VIOkaig2FGR4uqncfGSm7FjW0FRoOmfaxhrYNpjDFeduBmcqHK3nfftjf8Ejw44Wijj83x+GvDKFY172ZuRyOYhKtKK8K00eehZs2YfllSVsO2ZH8+/pElHEjWQNYI2xJmdu9i7M8x6fq2jaoG7beQJuv+HnaNRryOWjk1c1k1ikVBmDw6PY9+SjWJib8l2+kGbB0hSmSgKxQrUyFkWx2agOUyxauZwBnHoo4igW0xtELD758P0oF1dx3sXBNqgAMFNqoD/HoyuT5Ct6IalFEmwYPncKcMHbgHPe5P2+YKqr4s7+thSLcQgbywaVNW/qK08BhWH/5ZvrrRCbzps+Bmx9brxx+sFSLFo2pwEEkk4xoKEHW6HaSRBN8bFC5cmyhg6oYpti0QGpSo6tOS5DqqIk6ABc2/35ewClDvzRvwcqOuu+DhPmOhbpy7mJRbcVaoxmnlgiOXm2huCyxOPl35zBPdMKvvyyPPq6IliOZvoAJgWg/TtaKFaxbeuW4PVjqg/JOiaxqERTVyyskN/Rqcdtw4+uvxOLKyVMjrpmm1vEYmMZOHALcOyLgNkHWu+rEhSdxkBPAZl0CoeCmnmZbmBlyVQstjIWBbOZJ1N8uMUpnyeqx05VRTSDaj0OsehWLHqck9P3kvO+J9gFwY7Hnz6MgzMLeNklSb7iWrERtQiQ1CMJjj6iEIsWlsXlQGKxJ9UDoKVwtBCmWBxMtyuQrHPZIhYtwqyL78KK6Myk5nguOGPRdU2VNRm0R41mWbhydPD2AGIhm2KdhL1d4SgopmKRtmUsMnyberI5RlmJNSnBwnpnLNYqNTzxmSdQfLSIsZePYXCEfDd/e+rfRlo/zaRRkStNkrm4XHxGEItF0zFh+/Hbcdsvb8Pq0mp8YlGTQes0+BSP3sFeLEy354mGIa4VaoaN0ezzQKyMxVwmlnVqVCzOLuLpx57Gq97yqo63YRgGFhoLuGjiIsdrCRIkOHqI1OnYvHkzKIqCoij46Ec/Cl3XsXnzZs//4uBd73oXrrnmGnz729/GE088gbe85S2o1+t43eteBwB49atfjauuuqq5/Fve8hasrq7iyiuvxN69e/Hzn/8cH//4x/HWt7411n4TJLBgWXoeWK6DpSls6YtuKRSGXFOx6F805FNsk7Sxw2p78RS5ScpqELGYdSjBosBNllljFRWd2IGGbK8uq80MOJahIHkoDmuiCp5lTCtUBrJqBCgWyf4sUoyhKfRleVREFaKsodSQkWaZpsXnspm92ISmQNOdE/VzPINCmkMhzaErQ/7rtv3ntgt9+olHseerb4daK2Lkr/4VfTvOQhx0ZUhjcdFGLLoVizNFAd0ZFvkg1cEakec9iEVTsbj9uBMdf0eF9TuhNBlcKoW+gSEszk77Lk9TFLozHObLIgRFA2cRiyYBTcMIzVjMcAx0A5DVzh+K4hCFmWwuFhEZFbtv/g26e/tw3ClnhC47tSpguCvlSQ4nSGqRBBuI0iHgF+/1f18sAzCAMNtEN1Q5PiEhmMQiZzYQ/DLW/DB9L3B4V7x1fGBxcKpBtcg+H+hgwCCAfHQTiZrsrbaiebKsoYNSJQTMvSJWqDZrKEOqoiJ5NBdmHwAO7QIqMwEbIxmLgc0JoUT+bVMsuqxQ43xnYpl8BvNYPLl/Cud9/C7sXVJw02uy+JvT6BYpFgSKIgS0R50VZoUKgCgW46JJLEZrPlm5iqcet9XxtwNWxuX+m8l5MLDTScyrImSdAkVR2DQ6GEwspnsAqUbUiqpJ1lFMS7EI3tuO145UAZDrnROLsa1QM6jWG61xeTX6Z+4FusZbFr0RcO1NdyGbSeHSc0+NvE4Cb2xULQIk9UiCo4s4xGJR9LGzNsEzPDJspp1YpEOIxVw7sciaz7a62Q+xSL/uVDeKUhGGbepwqGLRlTuoaIrDQrS5nKlsjEIsSqrUlrFoJ42s7Eo7+cjTPDRD81ctxlSzWWO1QFN0mzozDuYOz+Ftf/w2VJ+uYsu7t6Dv/L7Y20izaVRtjgPFpWcGsWjlKm4/gSjeVhfj5ywqutK05h0eH8b8zHzsbcT9jtdMLMYgCjPZjVEs7r5xN2iGxjkXdz7JaaGxAEmTcNLASes4sgQJEqwFsTxvOI7DD3/4w3Xb+V/8xV/g05/+NP7xH/8Rp512Gh588EH86le/aoaWHz58GHNzLV/2yclJ/PrXv8Y999yDU045BW9/+9tx5ZVX4v3vf/+6jSnB7xcaNlJvc38W/fn1s4fJcgxoyqlgc6OQ9iYWLVBmQSgFEIssnw4teO1QNB2qSwaW41vNPcYnY9GOukQUi9byXorFuqyBZ0m2XppjIGvhGYs7R0hji6Up9OQ4aLqBpZqMsqAgZbNCrYiq45gYmgJV1wOzKMOgKjIyfaMYefW/gR/eHr6CC91NxSI5FoZhoFpadRCLU0UBw13pJim7EejOtlvMFFeWwfEpjG8mFn5BOYtesKxQKfPhZ2h0HItzwQ3avhyPlZoEQdbA0qYVqkkgs3R4TJlllbqWvNNGnIzFXH5DFIu7b7ke5zz3ModNlRcMw8BcWcRYT6ZJ9CfwRlKLJDjiEMtk5kqIhVc7jPgZi5ZikY+gUvPb5x1fgK8laQxQ5jQn1aBNYtH/eqxTDBhiOu6zgOK88PsqFjmyrKEDmgRBDVIs1gC7SsCPWFQaQG2hZYfpA8MwINrrKXdNYSkW3YSO2wo1KrGoKYS04lrNIlXVMNSTxV1/k8MFk5YdZsTm05aLgd4tbQrZhdVKuBVqOuR9L1jEohqt+bSwXAIAnLLTJBa9chat5uz+W4GezUCPK/9NlaDo5LzcNDqIw4GKxR5CPqsiOYY0B1A0GmbNqoALJxbTXUTt2ml9STOoxrAfK+QypmLRHJfX9WP6XqBrItY14rqb78YLLjgd6VSiYlsvrHctAiT1SIKjiyBiUXbd11bFcDKmm+/GbG3W8RoXEi8ykmm3/W1aoZr1gEUO9qR6oOoqVqXWWMKIRffnUHSlmadoh7UPlmbb8hXtMGgDqqE6SB9VUaHZJsaKmgiaoh37sY5DQ/UmezrJWVxPK1Rd15Er5HDB1Rcgf2Jn9WiKSaEitSyaistF9A3GJyjXG0VzUtMxxx8DoEU0xoGsyaA1UmsNjw1jcSa+FeqRViwKNQGpdLReZzafjWWdGhV33ngnTjnnFOS7O33GQTOD9fSh09drWAkSJFgjYne3X/7yl+MnP/nJug3gbW97Gw4dOgRJknDXXXfh3HPPbb53880341vf+pZj+fPPPx+7d++GKIrYt28fPvCBD4Q2bBMk8IOdtNjUl0U+xcJ02cBKfQ0heABAAYU0h+Waf5FeSLOt/Dr3ygAk089fCrJC5dOhRKAdXtaediKDpammgtAO3WxuUBSFhqw2bUY5hoIoOotiWdUhqzrSJoGW4mhoutG0nnVDUxWoigK7jq83S5ofs6UGKqKKDEdUbxYatu/O0FToBnwVkX4wDAO//fmPocgyjjvlDJz/9i+CLQzE2oaFbIoQyUvm961rKgzDQI+NWJwtCRjrzoBjNoZY5FkaGS/F4soS+gYG0T9IGhNxFYtNK1TzYWxobAILAYpFAOjP8SjWFQhmHqddschRRpMkvu/OWzwJwIxJLLrzQONAaMQgFjfACnV+5jAOPvUkzr0k3Aa1LCgQFA1bB3Ibdn48m5DUIgmOKMQKiGIxLrGI+MSisEqUVWyHE516twH7fgss7e1sfRuszKEWsRhArtAsGCrACtVNJLqtUS2wPKCpgCqDNjS4Y6g1qx6iAEhlh2KRUurexKJcJ+Rifdl//CYa9hnkbpWaUCLEV5tikXxXzRInasaiaNq6s2l8/1e3oSGIOGnHFtzxqVdia69TpRcJx78UOPVVDqISAKoNCcMDPb6rGRRNbEPjoqlYjEgsrhTR05XH5MggKIryVixaNnlyFRg8jpCDdqiiSSxS2Dw+FKxYTHWR80wsk2PIEGJRNJvEMrjmOXjzXQ9jtVT13obcWJNisdaQ2rMkfUCsUAV/xaJUBZafAgojrezPECwXy9j14JOJDeoGYL1rESCpRxIcPQQSi7qzL1KSSqHb6051Y64+53gtzAo1y2fbXmtaoVrEokbqqr40Ians+4irWJR1bytUu2LRK/NQN2sRgyVjsuffuZeXVMlB+gEt5abgMzEniHSifVq4dsUiBQp6B/et2399O2qVGsa3jONLP/4S+iY7JwIzbMahWCytlJ4xikWaoTE4NohsPhubWFQ1FZqhgdJIjTw8MYyFmfhWqF7n1aP3PuqroFyPjMVsvv335YWNUCwKDQH333E/zr/s/DVt53DlMLr4Lozlx9ZpZAkSJFgrYssijj32WFx99dW44447cOaZZyKXc1pHvv3tb1+3wSVIsNGwk3pj3RnwbCvHr+LuZnWAQppFseG/nRzPQdH8G3WGWdTKin9hSHNpyLJHM8QH7nxFAOAYGjxDQ9Z0sAwF2WOWXHFlGeg+Fj39g1iVNXCWFSpNQxady1tElKXMS5vhzN4kKoHkylnsMa1F9y/VoelGG2HWkFX05azMBXKM5SBlgwuKLOOLH7sKv/zhf4P//DfwnOe/BFnbPgwHzRkOmqKQT7FYqUnoynDQVPJZewcGm+MtCQo292fBrW4McZTlGXB0+7iLy4vo7R9ErtAFjk9hdXkp1nbrUssKFUhhaHQcTz/xaOA6A4UUHpktg6NpsDQFwHAoFimKgqaq+MDfvgpvft/V+OMr/saxvkUsNmQVvbkOmvkAhHodLMtBVcN/y5lsFpVi/BmLQdh98/VgWBZnXXhp6LKzJXJsThjtWtcxPFuR1CLPEqgS8LEh4IX/H8k4fCbCMEgzP90DxLwvAPAn2vzQWCV5d37Zb2Ek0+bzgYengF1fan/vn7qBM14N/OEXIw3Fmsuj6AjNWDRoFixl+C+ja04iUfexQrUyFk17Tbdicc5sAA32dgFitUXA6gooXUXFqy8qm5NMSoeATed6LNBCXRDR3/xQrs8ilgip6Fa5Na1Qzb99rM3aIJSg6Qbe86278bmfPYBvfvydeO2fvACUW4nWKLYr9/zg0ZQFEGiFqrF5sJ0Q2Zx53Y3YvJxfKmK4vwcsy2Cwrxvzyx73XNbWdB7Y4SCOAQCKANmgAArYPDaEn96423+HlrK0Om8qFlmAokwrVNpULJJz8A//7qP4hze8Ah/+u790biNVIERxRFVmG2ga1YaAQi7TnCwYhHw2E5yxOPsgAAPonoic3frLW++Frut46RqsxxJ4I6lFEjyb4Fbz2eEmHaMQi33pPuwp7nG8FmaF6gWWM61QTTLPIgf70+RuvSC2SB0+xaO4UgTr0+bUXDWZoiltpJ99HxzDQRTb667VxVWABbJ9WRRRRJr1JxZFVWyzW7UIVsFnYo4oiIDPofIar/v1uIpFXdfxrc9+C9/9/Hfx1o+8FX/6hj8FRVGeNrFRkWEzWGiQ78YwDCiy8owgFotLRfT09YBhGPQN9sUmFi2VKWW6JwyPD2NxbtGRdRsFXsTi1W+9Gpdefine8qG3tL23HhmLmVymqdgMQia3/sTiA3c8AEVScP7z10YsztZmsa172zqNKkGCBOuB2HeKr3/96+jp6cF9992H++67z/EeRVFJAZ3gdwp2omtzH2nGPDZb8bXsjIvuDIdyELGYCplRqikAGAiKhuliAxO97Q0jmk9BrUdXLPqpBrM8A1nQwdI0JA/F4sriPNAN5AsFTItqU1XFMhREFylYM0ORUiahmOZox+tecG/DsvR8arHm2IaFuZLYOh7mzMWoeXyVUhH//M6/waP33433fvwLeM7zXwIAyNgsYQW/aj4AhTSHkqCgkOGgWsRiP1FAzpTI5zthrAtPrS9/BQA4Y1MvGJrytFktriyhd2AIFEWhb2CwIytUlqZAgzzQDY9NYGluJrCAHsinUJc0cIwOjqGgqkqTtGcpAwxNQWjUoes6Du9vV9akebJdv/M1CoRGHZlsDtVKKXTZTGb9FYt33XIDTjnrfOTy4dlVs2UBDE3h2OEOcq5+D5HUIs8SWJl1j//kmUssynXTArTDuqATxSKfb7F6ccFlgc0XAE/81Pv9+78DvOzz4X7UaCkWFZ0KtUIFzYKlg4hFd8ainxUqT5Y1m23uOV5T88vAMIi1p1RtWWcqpG6p+ikWAWB1v//4TTQcjR63YrFIiCa3cpW1rFCtjMVoxGJ1aRqv+l8Bv9r3IL704bfgtX9iqtvdisjKNDB2SqRt+iFIsahyebCxbX4RWTFnYWGlhBGzqTgy0OutWKQ5ABSQGwT6tnoMVoSi0wAobBodwtJqGQ1BRDbjMZa0OVGntkjOJ9MKVRAlABnIFPlb0zRU6wKe2DfVvg0re1Iox/qsTVAMqvUG8tkMlouV0MXbFYuuc2nmPkKmd09EHsJ1N9+Ns046FqNDR9+C7tmGpBZJ8GxCELHofi8Ksdif7kdJLDVrCQBtWYRRwKXI/UlTNIBzZizSFI1FsfVcy6d4KLLiSywqLkcBRVc8FYvWPliK9SSAlmaWgM1Aro9MJrCTPu7sPEmXHGpCoHUcfK1QOyAW3RmLbhLVD5Io4V/e9S+4+bqb8ab3vwmveP0rmu91QgRbyLAZ1BVSfxlmfdQ7ePSJxdXlVfSZ98NOiEXRnOBnWaEOjQ9BkRSUlkvN7UaBV8ZivVrHoacPeS6fdk+0iolGnRCLUbARisU7b7gTE1snMLkt4kQ5DxiGgYXGAs4ZTSZKJUjwTEJsYvHAgQMbMY4ECTxx1Y8ewXJNwjWvPmtDtm+30+wyiSyLVKwGkGBR0ZPhcGDZn6zIh2Wp6SoABrv2reDK/30A17/zImwZcDacaC7dtJiMAi8rVICQaiVBAUOjTYEIAMvzc8CxAEBBkDXkUywu2TGIbQM5yAedy1dEUrSnWMr8lzQPg/IkxYazsGZpGrkUg4Mr5PhleWcD8uByHWdvJcVbU7EYoP60UKuUceVfvQyVUhH/+o3v4+Qzz2u+l7GRlw2DgxJgQeuFrgyLiqBC142WYtG0Qp0tiaAo4LiRLjwVLPbrCCeNd2PnSMHTRnN1eRHHHk+akr0DQyitxFMs1mTVzDwk3+fQ6CQURUZpZRl9g0Oe6/SbalJFM8AxNCShVZyylAGaQpPImz6wr219S+UapOgNQ6NeQyYXkVjM5WNlMkbZ90N334G/efeHIy0/UxQwkOfRlelMnfn7hqQWSXDEYOXqHSlisbFCVGcR1UhtkOvACX8MHLglYKF4n0XREKpYBMMFKxZVl0LRzwrVUiyaCjG3YnFqbhEYBliGAaRKS7FoLt9mhaprLZVnMfy6Ubfy7bysX8UykB9qz9pss0IN/84FQcBz/vgNOHhYxc8/8Vq86I8ub73pVixWgjONo2AkQCWgsbnObH5jnqPzy8UmwTky0NvMXHRukyKE5eDOdhtUwGaFShSLADA1t4yd2zyItpSpWKwvkHOAZqFpBiSZfD+K2bW17G/3HPA4ztZ3IZVbJHYcUAyqdaJYjIJCLotqXWj9NlRXo3/6XqB7U4vwDIEsK/jVbffh3a/7kzijThARSS2S4NkELyvUFXEFQDshZ8/O88NAdgA6dEfJEZax6AWHFSrXUhNSoFDgClgWWzbnfJpYoWbgfc1VXfdnRVPAeExysisWvTIWLWKRTpP7oINY9FIsuq1QmRAr1IYI+DiUu0nK5uuMi1g0NM/PZoeqqHjXK9+FfY/vw0f/86O46A8ucrzfCRFsIcflmsSpRSw+IzIWl4pN5WTvYC+KXnnPAbDIUkuxODJOckEXZhdiEYtuu1vDMCDUBUx5TXICwNCM73cfBY1aA9lcRCvUfGZdMxYNw8DuG3fjeX/0vDVtZ0VYQUNt4KSBk9ZpZAkSJFgPxCIWd+/ejWuvvRayLOOyyy7Di1/84o0aV4KjgC/c+BT+5IxxT1Xc0cL/u/swAGCxImKoK3yWTlmwCKZohJA9Y9FNXMlqh3kqNvRkeVRF/1nOOY88PDt0VQGQQllQoGgGdu9fbScWWT4WseiXWZcylW405a1YXF6ch2XS2JA19GQ5/MXZk2BoCnfuMWdupXJoGHKTQEy7FIuWpaYXRKEBwPkd92Q4zBRJUeM+VgdWWiSQYSoWpQiKxVyhCy98+V/g4hf9IcY2bXG8Z1csqhSHckNGPh29gOtOc5gpCdB0A5qmIJsrIJUmDxpTxQb6cnzTvnUj4JfNV1pZblqy9g0MdaRY5Fka1tEdGh0HACzMTfsSi/bPyTG0w+qWpYl1rEUsTh1sJxYzfIiaNwKEeg3ZXLRw8Ew2B3EdFYv377oViiLjvIvD8xUBYM9CFZN9GeRDrgkJklokwRGGpao0DKJ4yw8GLt4GqQ5EuwwRNFZIdl2nikUA6BoBhk8EFh4LzkUMgaUykJuKxeCMRZ4B4Jd1rCtOIkpTvIkpiibb8FEsHp5bAk4z/5BrrUw+xU4s2o6dbJswUp4h2w5Qa9YFkRBIutpOkmoyIZrcagFTsRjHCjWTyeA1L7sQL2os4MQLz3C+yTvtFFFeG7FI0xQGev1ttlU22xmxGBMLKyWcdOxmAIRY3Dc1573gc95NyFvO43lEaZDzERQ2jZHf4qHZRW9ikc8DoIDqopmxyEKQVZQlAzcdUKHvII3Fmmn/v/fgDAzDcKhrmgSeWCEqyrigGNQaYmRikSgWRf+MxZl7gYGdvpa3btx+/2Oo1BpJvuIGIKlFEjzb4EUsPrD4AIB2xWJFDicWh7PDba+l6PhEVdMKVdGBjNPOtMAXsCKtNP/meC4wY9FNkMq67E0smgQkT/PeisVZMklXAdmeF7FImbWIV8ZiqGLRI5bGgi+x6KFYDMtbZTkWL3zFC3Hc1cdh5yk7295PUWsjFmVNhqIpzbzHZ4IV6urSKia2kpqhb7APh58+HGt9iwy2MhaHxkkvZGF6AcefdnykbRiG0a5sFSUYhoH5qXnIkgw+1d4zCssoDYLYEGNlLCqyAkVWwEXMiA7C3kf2YmVxZc35ivsrxHnk1IFT1zymBAkSrB8iTzX9wQ9+gAsvvBCf//zn8bWvfQ0vfelL8elPf3ojx5bgCOMz1+/Fq74akFVyFBHVDvGpBdJAmi+HZBCZaMitWWtUJ9lJNhgeCoDeLIea7D9zPRtihcqbVI5Fcj464yQpKQAUy0OR165Y5E1Syk+xWK+29i0oGliGBk1RoCmqRRoxHBSKa1qeWrmIlmKxKvk329wZiwDQneGbGZWFlLOoObzSWr6VsehPBv/yh/+DG6/7ISiKwqve+PY2UhEAMpyz6N+7GE/B1p3lUBVV6AagqSq6TRtUAJguChjtSoerVAHohoHN77sOjaETY+3fC4ZhoLi81FRO9g4MoRgzY7EqqkixdLPPPTxGivHFuWnfdZzEotMu126FChCbXbdakKUpMGtprANo1OvIxCAW19MKdffNv8Gmbcd6nmduLFRELFYlnLmpF4V0QiwGIalFEhxx2CcHheUbesFGbEXi+BqrAJtpI92qtehZygCIahEAlp6Mt54NTWJRAwAjkDCjrGaHR2OSvO6yPtVVbyvUZrAjOdZtisX5ljIBkhexSCauOJYBCFFVX2xmN/qhIUqtnD8v9SWXARh3xqJlhWr+HXCc/u///g//+Z//CQB41589ByeOpMg27XArFquzgWMOw0B3PrC5qDGZdhVmXPgRyjaQjEXTCnXQxwoVAEZOAobaG5wAAMVULFLAxPAAKIrC4TmfyVI0TUjaxjJRtNIsGpICWQOe950G6l3HAACxHjX/nV1ccW7DsqWVYv7+bGOoNkQUIqoE8rkMBFGCZpjnsL2ZX50HqnNAYbQ9e9IH1950N8aG+nH6CdvjjjxBAJJaJMGzEUrAvcut9ItCLA5l2yefdmSFytusUNFSEwJAF9/VVFU2jAb4FB9ILLo/h6qrYDzcE54z9hwAhDD0IhYXZ8h9RwXZXpZtXeMtwoiiTWJRaycWQxWLgn+9ybprEBN2YpEC1STzvLDrhl343jXfAwD80V//kSepCKzNCjXHkklSVbkKQzfApTjkCrmQtTYedsVi31DnGYu0Tur0QncBmVwGi7PRJ24rsgLdVTdZ1qO6rmP2kHfdt5bvw8pYjAJruSCCOw5237gbua4cTj775DVt53DlMLJsFlu6t6zLuBIkSLA+iEwsfuITn8Ab3/hGlMtlFItFfOxjH8PHP/7xjRxbgqOA9VDpPRNgZSeurpJC0yvDDfBX78WBZfm4Wm8vYrsznGcj0Wp5FdIcMpx/s6dl8Um+l6eXatBt+Y80ZSoWZf8C2g0/ktbK5mNoqk2xqGnOdURFA0dTMOtlSDYikkKLQLSI00gZi0J7s68vRwpkjqHaFGxzFbFlVRpALGqahms+fTU+84/vwp5HHvTdv32cFu45sArd/OzzU+F2R71ZHjVJhWpaofb0EWLRMAzMlgSM9WSQi0AsWh9LGjwhdNkwVMslqKrSJBY7yVismYpFC/mubmSyOSzO+hOLHEM3STKWph1kNQMDFAWHQnDapVqkKAopLp7NmhuimbEYBZlsDqLQaCvyO4Gu67jr1hsiqxUfmi6BoSlcdvwwaHptZOqzHUktkuCIo2mF2iHkGiTzHv20T6OgbX9cO7FYrwcTYm3oPybe8h6wrkbN/GLVfxITbSne/MhXXXUqBTXF2wq1+b5JLLr6nOWqbQKIXG2RgOZ+q7LRbOaRZUxiMT8M1JebBKQf6g2xRVZ6Eou5dsWiZYVq1WdGe61jGAauvvpqvPKVr8Tu3bthGAbJbOSy7USlW41WWwJ0HbKi4LH9Piq/AAz3Bdtmqmw28LvQozDiIfaviqJipVRxWKH6EotBUCVTsQhwHIuxoT4cCmrmpbrIcVYlgGYh2Ce4medOzdY423PAVddwWQBUcL5oEGhihZrPRiMCreWaUQ12K9QZM8OvZzzStgzDwLU33YWXXXKOU4WZYM1IapEEv2uwqxGXF5Y9l5H16Eq/qhw+2YJneOQ550SZFBufWGTMCcq6aQtgVyx2p7pRVsgEsCqqkYhF2tYCVXRvK9Tzxs7DF5/3RTA045+xiBax6FAsStGJRdGnZgoiFv3IJbsVKkVR0DzuW4Zh4Ptf+z4++IYP4tF7Hw197vX6vt7x5+/Ab3/228D1ACDHO4nFvoG+Nd2LDL1zBw47VpdXm1mPfYN9KK+WoSrRYwssMtjKWKQoCkNjQ5ifno+8DS97XXum4dR+bzvUtSgWY2Usmss14j57+ODOG+7EORef01Qfd4qZ2gy2dm9NapoECZ5hiNy13bNnD97znvc0Z7y++93vRrVaxeJivAZ1ggRHApYV58oqmYFULnrPRGoEEItRSdbJPtIA2rvQXmB3++Sl2e+FXgq2ofIT5H/MIl4xxzJdFBwKSJYGKJaDHEOxWPXJObRUhQ4FoonlBWczVJA1cAzVvKlLooBUJtf8uyaqoCkgZaog01yEjEWhvdnXlyXFU5ZnwbgIl+Wa1CRJLStUtwWuUK/j6ne8AT/49lfwd1d9DG95/9W++wfQRvLef7gEWSGF3+pCeEO4K81B1Q3UJZUoFvsImVcRVTRkDVsHcg6Czg+M2WSMGroehKKZp9g3QGaN9g4MobiyFItAq0sqeIZuqnopisLw2AQWAohFgBCtACEZ7YpFhjLA2KxQAb+cxc6JRcMw0GjUIisW09mcaUuy9jyBvY8+iNLKMs69JCKxOFXGlv4sNvU/c2yon6lIapEERxyWFWqnkGvNJlMlygO6WCbk1RpdFNYDzXu8dSsKUGzSrEUs+jT0NNmlWFQCLUktEtOuWCxVXC4Cct3TCtVTsVgYJd9lSC5UQ5RaWXpehJrbphRojkHzUSyKoogrrrgCH/nIR/Cxj30M3/jGN8ixFYpmnqarqUmzUClb/SisAhqxyJpe9rfX98NwbzCxqLHBE3AcZK4fQojFpVUybivrcWSgF/WGiFo95j23mbHYylkMJBbTBfKbkhumYrH9/KzZcoTachYpOrLtqCcoOlbGYj5LlqtajLruIhbT3UB+NNK29h6Ywb7Dc4kN6gYgqUUS/C7Abl9q5cIBLeLLjSDFomZoULXWdT4KsQgQ4s+OTjLirFqkqVi03W96073QTIcnDVo0YpFyEYtBk5zQTgKpitpUcilQwFKsQ0UYRbFoWcL6KRbdNplAS6np3pYF+7FlKKaNWFQVFZ+56jP496v/Ha988yvxT//xT6CD6jB4W6EeeuoQnn7s6cD1ADRJ5apcha7ra7ZBjUP++UGoCxAbYjPr0fq3uBJ9opOlWLQyFgFgZGIECzMLkbfhRRzbMw39chbXkrEo1IToGYtmLSLErdE8sDy/jL2P7F2zDSoALDQWsLPXx9EiQYIERw2Ru7aNRgNdXa18Dp7nkU6nUavFswpMkOBIoOFjP2qRhZYyLchi1W8bblj9qwPLjTYFpB+xaIeX9eEmYR8OffJl6OUtGzIy7vmyiHKjVfQzFEAxHNQYikVR9iaUrM/B0BQU1wPH3NQhx9+Cojny/CRRAJ9tNa6qkooMx4BhyEZZU93ombFo7thLsdhrqkFTLA2WcTZZV2syRNkiFr0Vi1/6+AfwwO7bcPWXvo0/vuJvQmc3pW3EIqvLeHqxhpo5Zi+rVje6MuS7XK3L0FQFPaYV6nSRfLaTxvwzjrygq2svoIumOrHHlrGoaxoqpei2H03Fou3wDY6OY3EuOPfJUvNyDO0g7BiKNH6t7zyTzeHwgafa1k8HqHnDoMgSNFVFOldA/0veASkkUjibI43V9bBD3X3z9Sh09eDE084OXbYhq3hqsYpTJ3rQn+s8x+L3BUktkuCIY82KxZjXFEMHUkffKgpA85ovKibB5mdzCoDmzOuXn6rRyli07sN+VqgWzO3YjQ4OTLuaNnK9RQIqAnRQkHTXo43V/OwaJaqzkn+WDk1TJGMxyAo15TFZxVQJGICZEem8d7///e/Hj370I3zve9/DBz/4wVYt0lgB2Gy7AhKAShPlWkVlyTlokroNj1nuYQhXLAafbyulDm1AbbDUicP9PQBaBGNs1aImmcQiwabRIRyeDbB3T3UTG1PFtEIV2xvndbPBl89m8KSXSsBtTRsHFI1aQ4hshWoRkDWLWLQ3+qfuAbonvcltD1x7011Ip3hcdn6SRbTeSGqRBGGwSCDVQ8F+pGDP7xNC1PpAu2KxJjnPZ/v2akq0c91NLK5FaaSZz/12wqwv1dd63yQWlYDolTZiUSPEYBDcRKXd8lKlVIdSEGhlLFr7kTUZHOVcxrKEFbV2gimVSnlaUFoTjt3H1IJdyWhlLNrx3S98F7/6/q/w3k+/F2+66k2hpKJ9nG5Uy+F1gUUs1pQaDMN4xuQrAq2sR4tYXF2M3hexVKa0rd4cGhuKZYXqpYK1vvNMLoPD+7xr1bUoFoWGEDlj0VrOTnZ2irtuugs0TeOcS9c2yakkllCVqzhhYO2OXgkSJFhfxNIif+1rX0M+33q4UlUV3/rWtzAw0MoRe/vb375+o0uQoEN4ElgADq6QBt9wF2nYBFmh1mPapNYkFSt1CTm+9bPqikAs5j2IRY4nRQNlFviKRpp6qm7gqcVWIcdQFMCwkKUw2qQFQgpSeN7OIcxXxKZKzyIvaardCnVuulXcaAagGwDHOonFdMEqcilUBQUpjmlm5FEUBZ6lPclau+oRrt6NpXhTdaMtb68qqSia9rOWYlGyFIxmIf26K6/Cn77mzdi6I1qQtp3I4g0Jc2UBi1VyLGQxXGnSlSbf92pdhmpTLM6VRbA0hWOGg5t7bmiq/4NRVBRXiN2NXbEIAMXlpaZVaxjqkmYqFlsYHpvA4w/eF7hef558fywDSLbjx1AGaJqC0CCvbT/upDYrVGBtxKKV2ch0DyM/+nwsrdwduLxlmbouxOIt1+Ps5z4PDBv+q3xstgLdAC49biiSmtXCaJ4GoKM7vTa72N9FJLVIgiMKe8ZiR+uH5xC1gXtmqJeta35LsehPLDIWGReasWhZmEcjFgWlpRrcP9WyAaUMjRB4bEuxKBsssmlX08VqjHaZ9pEr+4Htl3ruMpfm0RBsikUvcP6KRTIwpkksapoGhmHwoQ99CFdccQXOOuss53pCEeDS/sSiVkVZ5dEllJrHYz2JxTrXjx89oeC0E9pzsOwwIoWDBmPBVAOMmE28kcEWsXjM5rHoG7KsUM2acPP4EHY/FJAjmukhZHIq70ss1uqkzjvjhO3tikUgMpHnBc2gIclKbMViTTC/Z0txpOvA3APA5PmRx3PdzXfjsvNORTYTzYY1QTwktUiCIFjXTbtq8EjDbrNpVyz6wW13erjqJDfs22uE5BVb6Ev3hS8UEV6Kxf5sf/P/dUoPVSwqutKuWAyqRdBOAs0dbtUiCpQ2a1JLjUbRFKATxWLWVdexDAuaoj0Vi6lsCqIgogvOCcmD2UH8yTF/gvPGzvMcp13NRlN0k4A1zD7Sn7/pz3H2xWfjpLNOCvy8dmRock+iDFcfJgqxyNuIRd1o2o8eTRTNyUxuxWKcnEXrO6O01jEZHh/GzdfdHHkbnopFUx147EnH+lqhpphUZFLfjVgZi+uoWLzzhjtx4pknorvXmxCPiv3l/QCAUweSyVIJEjzTEJlY3LRpE6655hrHayMjI/jud7/b/JuiqKSA/h3CN+84gL8+bzNY5tnXmG7Immcj5OlFciMeLKRgGAbEAMViPcC20w8PT5Vx/vZWgcsxNDIcE6iMtMgoO1jODCk3LU4VW8bhI9OtJidDAzrDQVFiKBYVQhJdsnMIA3m+SexZdqusR8bi3HRLsWjGG4C3nTeyKILPtB6uK6KKFEs77EtTLONrPcvyKU/FoqXm1A0DLENBNQvjFEtDUnUcXDXXsSkWZx64GU/8/Bt41ck/wdDwCAaGRsIPigl7xiKvS2gYBTxwuGx+xvDCylKolhoyNK2VsVisyyikWU/b2yCsR95fcXkRqXSmSZz1mcrF1eXFyIRrXVIxkE85LHyHRidwyy9/FrjeYJ40Z3mWQdV2/Fii64DQqCOdyWDz9h144uH729ZfC7Eo1MkDNJuJRuam14lYXJybwb4nH8VfvOFtkZZ/cKqEoUIKJ4/HK7aP6Sbnane682P0u4ikFvk9wKFdwOBOILt+zag1QeggB84OuYMGwFoUUhsA0bp1BygWGS4CsUjThCABWgpGP5gNTMFWiu235dewhln3WPk/qgBJZ5BJuYhF6/h3jQGggNX2SSwWsinOqVj0QsbjWm1fniaKxV/96ld45zvfieuvvx4TExMOsqEJoUjyND1s2FQmDShAReVaijvAmREYEX7EosLm8YrvCXj6dZOxtxkX80vkdzTUR45fU7G4FPP3pYrNOhQgVqjTC8tNErcN6R6iWlV7Ab6Ahsfxs6xQzzzxGPz4hl3t2+DjTQqzw3rOiJuxWHUrFlf3kfOga7SpkA1CsVzF7fc/hi9/+O/iDzpBKJJaJEEYLLtKN1l3JGFXw3kp49xwj3Wq5iQ37IpFWZd98wHtGEiTe5/dRrVT6Kbrkl2xaG3fep03awAD3hNivKxQeS5YBeYmFmcPt+JRVKjIM86aTRZlcHzrOi1rsqfKkKVZSB4TttLZtG/G4qWbvCdGAU41G03RUHQFsw/N4rbP3Ia//t+/xviW8VikIgBkGJNYFJ3EYq0cXtum2TQYikFdqa+LFep6wCIQLUKxp78HFEV1RCzaFYvDE8Oolqto1BqRVIFeVreWOnDHyTvw6+//GoZhtCl8e9O9vva5QdBUDZIoHfGMRUmUcP/t9+PV73j1mrYDAIcqh5BiUji299g1bytBggTri8hd7oMHD27gMBIcaTy9WMVHr30cDxwu4QuvOv1oD2fd0VBUqB4Bz08tkCIox7MQFd2n5CQIygP0w10HVhzEIkDsMYOIRS+7VMuaokUstgi1J+eq2Gr2JxgK0CmmzbrUDTvJKsgaOJYGTTntSKx9sDQNWTRn2vGkqJibOoRUOuNYjrNZk4qiAD7bBR1E4VAVVaQ5xpFzlGJpiIoGXSdqNQCQDAagWfDpjGe2nTW+DMeAoVvEYleaw1JNwoFlQgIZmgrDMPDT7/w77v7av2HsjMuQzsZXfNgzFjldBs/QuH+qRMYaIXsvy5Nx1mUNMIBu0wq1LCjIpVikuCNP4hdXltDbP9A8lr39LWIxKuqyijE27VQsjk6gWimhUa8h65NjONqdAU2R47JkO37WYRAadaSzOUxs2Y4brv0BdF132LK4My/jwCII2Uy0Br1FvIprJBbvuvUG0AyDsy68JHRZXTfwyEwZ52zpw0AhsUGNgqQW+T3AN18M5AaBfwjPbzkiaERvNnjCj1hc2gsURoC0h0V2unMiYyPQFHkFKBZpLgVogKFI3umQuqVYNGsrXSOE2jl/Cxze1a7C8rBC3Xd4DnlTfcXo5lhsVqiiziKbTgGwTbaSqmS/XJbk05Wc1u525NKcqVi0mnPuKpEi1prtH962CIMv/vxhvONbX8dLXvISdHcHTBoRS0B+2JtYNFUCZZUnFq41YgPbkWIxJGMRTLxJT51gYaWE3u48eLPZ2tOVB8+x8a1QVQmKTsPS024aHYSqaphbKmJixIO8TXeTfEW5AaR70Gi0n8O1hogUz+HEYzfjc9/5KQRRQiZtuyen1kIskkZ4VCvUlmJRJMS7RSzOmA4RPZsibedXt90HTdPx0iRfcUOQ1CIJwmCp4KIQehsFh8JQDSYIDMNwKAEBYKbqVHC7icRVMbw+Gsyaz53SGmspAKrpfGS3+OxOdYMGDR06dEp3EHpe0AytjVj0yyy04M5YnD00i3SO1CIKlDZ7SlEQkbLdQyRd8szG42jO+R2hAU3UkGJTvsRiEOyWrDRF48ANB/DQfzyEnuN60NUTL47FDQrxFYsAIRcbSoMoFp8BxGJxuQiaoVHoIfd1lmPR3deNYoxJTqImgqEY0IaNWBwbBgAszCxg686t4dsIUCzuOHkHfvC1H6C8WkaPaR9v4U+P/VPoXjb9IbC2HTljMbc+isUH7nwAoiCuS77iTG0GW7q2eGaidkK2JkiQYP3w7JOqJYgEKzcuao7g7xoEWWuSUHbsXWgVQWGfPS6xyNIUHp2tQHMpJb0UiXYE5TCqigyGahFqg/kUDq7WoZoz/hkaMGgGshJMLEq27EHBVCy6Z0BZVqgMQxSL6c2nYuLvvo2KKGN++hAGhkcBtBSLdqWrLIngs62mYEVUwLN0k0AELGJRdxC+K1oaFJ8Gn856KhYtWMSihWyKAUtTTWtbXRGx8ovP4mdf+zcc95LX4YzXfqRJhMZBykVkbe7P4sl5sg8pghUqRVEOVWKPaYVaFhQU0qxD5blW3Pab63D3bTeGLldcWWranwJAKp1BrtDVzF6MgoZsZWq2voOhUWIrtzg37bve8aMFvOcFOzHanYFsU8EyFDkHxEYdmWwOk1u3QxIFLM/POtbP8Gu3QmXT0YhFixxtNNaWj7P75t/g5DPORaG7J3TZfcs1NGQNFxzTH1vNmiDBsxpC6WiPoIWNylj88tnA573sfCggtbYG0HpDsG78qtxSHLrAmhmLsuBzDdVUouaz7iOaqVjcdjFw6QeAvMuOUzMtL23YPzWPyVGyHGNlQVnEoiajodLtikWpCrBpQt7lBoHqHPkcHsiledTtVqiuJitSBW+1mNlU1HQDb722ird/4y684x3vwE9+8hMUCgGklFAiiksvK1RTJVBRzf1VSIPXS3EXhrCMxSOBhZVSU6UIkHppZLAX88sxm82aBLv5xeYxcj4c9ss2SncDMIDGMkCznorPWkNAPpvBzq0TMAwDTx+adW2j89+jqFrEYrSa1FquWhdMW11zvNP3EhI62x+wdgvX3nQXTj9huzfZmiBBgg2HRVath1KvU9ib7WEZi14E6Fx9zvG3u3kfhVgcypoRHKI/cZNiUqHkHgCoZm/GrlikKApZhpAlVsYigPZ5QdY2DNVhfarqamjGopcV6tA4+Vwq1DYrVFmUHcSirMmen4+lWMdxX8ISpCkJmWzGM2MxDNY4DMPAQ996CA988QHsfOFOnPWhs5pE2nohimIRANJMGqqhwoA/sdhQG5h86+SaSPgH7nwA1//4+tDliktF9A30OSYy9w32xVIsiorY9n0OTxBiMWrOolfGotAQwLAMth+/HQAwta/dDpVjOKTY+JORLTVk1IzFVDoFmqbXTCzuunEXxjaNYfOxm9e0HQBYaCxgR++ONW8nQYIE64+EWEzgi3JDCbQKfSZDNwDFo/llzyf0s+W0EJdYHOlOY/9SrWVfZKInJGexyyNj0YKiyGBoCopJ+o10pzFbEiGbjQqGomBQDFQluNFkt3UVTJKIdkkKrH3wDAVZFMB0DYJOZVGsK5jzIBbtJJkkiuAsZRgF1EwrVNZOLHIMJFWD1qYkpcCn0hADiLsUR4O1FYAUgL4cj5kiKXbU0hwae+7EK9/7KRz/0jd0HAyfdikKjxnKY8rcRxQrVKBl3woA3aYVakVU0JXmYmXoheG6730HP/jWV0KXW11ebKoULfQNDEVWLBogvxX32IfGJgAAC7P+xCJFUdgxUkB3hoNot0K1KRYzmRwmthwDAJhy5Sxm+M6Pl2ASi3QqvJlXFhQwpjp3LVaoQqOOB3bfjnMveUGk5R+aKiPLM3jOMYPhCydIkODoYK0kpxwwKUVYBdy27XzOmdn3DEAz53D+UeBfJoFiu+qP48nsfVnwuYbqrkxFQzOtUH3u16oEWXfeA/ZPz2NylNxXWYtY5FoWkw2VRjbjarjINTPHkCHkZX0ZcGVNMYaGFEshm+bQEG1WqG3EYt6bWDSXX6gb+M4DDfzn35yNf/u3f/O25mx+fgOQKsQK1cMSVjEbpWXVHEuJ3GvXM2PxSGJ+qYjhfmdTcWSgtwPFogzFRjhvMonFQ77EokkKynWAYjyPHyEW09i5ldQ1bTmLayD6BXMiZ1Ri0Tp/aw2BnLOWYnH6HqB7MpJNsqpq+OVt9+FliVoxQYKjBkuhdjStUCWbNXmYYtErM3G+Me9cxrWNKMSiZVValltRLj2pHlw4dmHoum5oZu/GTiwCQJYl90sdeotY9IHbClXV1VBS08sK1SIWQRFi1L18ylaLKHq7qhEwrVBt39EyliFMCUhlUp5WmWGw9qFVNTz1i6dw3GuOw8XvuBj0OvYfLMRRLFqw7EfdWFAW0H12N1bUldDt+cXEXP/j6/Gdz30ndP3VpdW2rMe+wT6sLsYgFrV2YrF/qB80Q2NheiHSNjytUOsCMtkMxreMg6IoHN5/2GPNztCokd9uVCtUiqKQyXVGcFswDAO7b9yN8y47r+PenIWqVEVJKuH4/mgxPgkSJDiySIjFBL449erf4MSP/PpoD6NjuBWLmm7g4EqrIA4jFuNmLI50pVFsKI59AEBPNphYLAQoGhXZJBbNImq8J4OyoKAqWcQiYARlFJmwf1ZB0cAxlEMBCNiJRRqSJIIxm4RCo45ycRX9ZlahbNmyOohFAWy6NQOqKqlEsWgrItIsDVHVm2pLCxRFmYrFduLOWjbNtjfnBvI8Dh86CMPQweb7Mf7mr+OE574k9FgEgaVpUGiNb+dwofl5oygWAadCtcck9Kqiiq51ViwCwLSLiPNCaWXZoVgEgN6BQRSXlyLtQ9UMaLrRRiz2D42AZhgszs34rOmEJAjQaisQ9t+Hbpacj5YV6sj4JFiWw9QBp/VhlutcxWcpDylb09kLNUnFR372GH76+GpzTJ3iwbvugCJLOO/iiMTidAk7hgsY7kpsUBM8Q/GbDwNzDx3tURxdrFWx6NGsC0Qq76lgO5poKhZrc4SoO3h72zIsT65jiuinWDQVipTtb5oB/JoNqgRJAxjzvqmqGg7NLmLTKLmvMs2MxVaTpK7AW7HIpAipWRghyjWXcmOn9AAAU7HYkFrkoeZqCPN5p+2pianlOhTNwFiBxoH3TeBNl25tJ4zdUARAkx3jd3x8U7FY01gAFFAhKrqOFIu9a1fAqmpwzeyVa27HwkrRoVgEgJGBvs4yFo3WOdOVz6KnK4/Dcz41jZ0UpP2IRRH5XAYDvV3o7c5jz0HXhKk1WKFa9bdlcRoGmqaRy6ZRa4jk96GrxBZ48TFy/nLhaoM7H3gcpUotIRYTJDiKsOz6ZD3+ZJD1gp208spDdESlWLlxtr7CYsM5YcO9jSAVogXWtNq225cyFOPYz8PLD+Ng5WDothSZ3P/clq05hrgm6VSLWPS7J3kRi3RIL0USJdC2Z/i5w3NN60sAoVaoiqZ4WqGyNNs8ppImoUpXIR4WiWKxAyvU2koNuqyD7WLxJ1//E2y+fPOaCR3ffVVqviSfHXbS1U+xKBrRP2u94v+cPnt4tnmO+KG4XGwjOHsHe+MpFlWxTeXKsAwGRwexMBuNWPSzQs3kMkilUxieGPZULHYKKysxKrEIAJlspklIdoJ9T+zD4uziutigHqgcAACcNnjamreVIEGC9UdCLCYIhKYbv7N2qarmLHZmikJT6QeEW6E2ZJIHGBWj3YTAuPegszDpybbPUJNUvancKwQpFmUZLNOyQh3pIvuYq5GxMzSgd0QselihmseGpinIogg2TYr05XnSYBkccSoWUzayTxJFMKlWs6MmquAZGjaRIdIcA1nVPF3U2GyXJ3HXMGd6e2UTKocfwh2fegNqD/0Ghq6CyXZDUcML3DDY97RtsGXvGiVjEWhZ21I0jXQmC90wUJNU9GR5h31sVCiy/wPp0vxsKBFGFItOK6w4ikXLRtdNijIMg8HhUSwGKBYd2xEFGIqExe9/BJt6yG9CMK1QGZbF2KYtbUTpWqxQreNCscHE4k8fnEFNUlGXdaKcXQOxuPvm32B88zZMbj0mdNmlqoS5sogzN/ei1+MakSDBMwJ3fgH45h8c7VEcXYjl8GWCoAq+9qGe4J95xGLDuvFr5v1odX/bMlyKXGv77voX4AdvaN+IrjgVim4FoxuqBFGjmkTh9MIyVFXDpEUsWs1avtUkqclwZuMBgFghdqMUDRRGiXKt7pwVn9MqAIBsikNDlDwVhGRfubY8wtvvewxnvO6T+NitpIE7UODJZwsjFi3COoRY1AyKEFs1YkknSDI0LZ6byGBvNEvwIBQrwbZn8yvBv5P55SKGB3ocr8VWLOoaoKuQNWf9uml0MECxaMu4pM3v1wVLsUhRFHZumcCeA+tPLEZVLAKEhCSKRZb85uYfJSR39zgchbUPrr3pbgwP9OKsk47teNwJEiRYGyziQXFPUDmCkNRgxWJVbqnOLILLTpgsN5ad29Oc18+SVFqPYUbOR2taoerOe2CeJfc4HTr4dHzFohfpZ4fd2rRarqJWqWFoojVpN82k25e3FIuUqVikgxWLjy8/DoMyIE4RUjIusbj3kb248o+uxML3CbGV7cl2lMUXFYZhBJJ8FjK2GsetFLQg6dHVmZVSxfc9XdMxd3jO933AVCwOeCgWYxCLkiY58iwtDI8NY2EmomLRxwrVIv4mt01iav/6EYtxMxYBQkJaFqqdYPeNu5HJZXDqeV6xD/FwqHIIHM3huL7j1rytBAkSrD8SYjHB7wRKjfhFueIiBZ9eclo2RFEsetmp+iGfYtGVZnH/4ZLjdS/F4nRRwEPTpAkTlMGoKjJYmmrmEvbneTA0hfk6GTtDAXqEn3HdRqKKpmKx3QqV7IOmSMYiZ1pILs+RomZgiBCLFndnJ/skUQBrs5ysSyo4hgZjVyxyDCSlXbEIAHyuC6JH4WJ97hzvbOTN7vopbvzcO8GPHYfciZcAhgGaauVErgWMTbGY5VkM5cmDgCpLoZazANCdJWNlWfJvXVKhG8BAoTNVWqUc3HSbOdTe4LWg6zpKq8ttVqi9/UORMxYlU6WQ8lCNDo1NRFYsiqIAzlS0cCZJaWUsAsDktmPbFIsZbg3EYr0OPpWGCv9tHF5t4OY9S6BAzrVMNodGvTNi0TAM7L7l+shqxYenS6Ap4LLjBh1ZpFEhSuSBRFOPXsMiwe8J3HaQv2+Qotk9+UIRie1nVHDZNvLqaEOQbRmLAFA80LYMb881nn+kfSOa6iTsdI0osvygChDVlgJx/xSxZLOIRdZqRNmaVhXJQDbjmkwiVYlVqZWxCACrzkksKXO2fC7NoR7UzOOyDtL3u/dVcdlrr8IJ28bx9nPNpiHFECI5rKEnmPd2PphYBEDIsXqrwVuK0MxzDNvj/h0XKwHNPADYczC4mbewXMJwf4/jtdjEotmAlQ1n3bt5bMg/Y5FNt74zhkVDlJDinXV3rSE2FYXHbZvAk/vdxGLnxKzlfhKHWCzkMiRjkWbJ72TmXvL/3ZsirX/dzXfjpRef7ciQ2igoZo2ohChaEyT4fYNllfhMViwuCq3rpkXuWUpLwzCwKjnJFjsByNP8uhCLbrIyCF4ZiwDQxRFlukEZoVaomq45iUVDbX5m3zGKUpNYtIirphUq0JZ5J4otxaJBGTBgeBJRHM01P/8jy48ABiBOiUhn07EsKIv3FnHln16JwZFB9L+I5PDSNL2hxCIQzQ7VsqmlQKHQ7T1JR9Sjf9ZyMXgSU5h9aHGp2E4sDsXMWNTaFYsAMDw+jMWZiP0VQQKXcp4TlhUqAGzavmlDFItRMxYBk1hcQ8binTfcibMvOhscH0zcR8F0bRqThUnP3xEAaGYNIgdMyE+QIMHGIdITR6VSifxfggQbgbIQv3kuufIhn1qoIcXS4BjSxA8jFgVZa7NTDcPWgRz2LTlndXe7MhbtGYOqpiOb8i9mZTNj0VJfMjSF4UIKK4LR/FszwkkJS/kHtBSLtEuxeN62vuY27QrEpbkZZLI55LrIrG/Zi1iUhGZGHUCIzDTrVEWmOdqh1LSDTecgCu0zKU8Z78aLThjG6Zt6AACapmH1hq/iqR9/Hhe87FUYfMU/gusZgWEYYGm6aee6FjCUc3xb+m1qiGq4cqUnQx5oaLMxXBHJQ9BQvjNisRpCLE4d8LdDrVVK0FTV0wp1NaIValOx6JHPMDQ6EZix6NiOICCdyaH7uVc07WWFRgOZLDnPJrdsb/ss6TUQi416DdlcDpLPKWEYBv77rkPoz/M4abwbiqYjnc11bIX61OMPY3VpAedFzFd8cKqELf05bBnorGH5xOOPAwBWIhLEzwYktUiCIw5VAlQxWFkXBIomZEgsYjHjabd5NFG36iVLsViZI0ShDVbGoi90N7GohhCLIkTVcBCLFEVhfIg0zRhDJqSRjYStSHq7YlG2WaHmTeuyFeeEHAbk82XTPOpBzTwuA9AsDMPAh34r4tX/t4i/fNkluP4rH0B/1vxsNAMYKkhCcQCs7E4fa0sHsZjpaxGRCFcPbgRWS8ENxD2H5n3fk2UFq+VqmxXq8EAPFlZKkezUAJDfI+DIWARCFIsU1VIc0iwagtSWw1mrE8UiAOzcShSLDhs9vnPFYk1UwXMs+BjW7vlsmigWKYYofafvBbomnOpLHzx9aBZP7p/C5ZceGRvUWTOXai5GU/Z3HUktkiAKLGLxmZKx6KUKXBZaE1YsRaNFmCw1ltosR+3bS7NplKU1OjoAeGTJYyKSDyybSzexWGDJNVqH3iIxfG7BqtFZxmIgsejKWLQrHA3a8FwGcCoWn1h9AmktDUM2kM5EJxaXfr6E/Z/fj3MvPRef/d5nweRIXUWDbjtO641IxKJZ41AU5WvLKhvRyaBqSC0SRMYZhuFthTrQC6EuRCbRJE3yPGeGxociKxZFQUQ6ncboFaMog/yOHIrF7ZOYPTwLVVmfyZ1C7cgqFleXVvHkg0/i/Oev3QYVABbqC9jRu8P3/ZVF4kRy+On1y6VMkCBBdER6yunp6Ynszx3XnidBgo1CRXQW8k8t1jBYSGGxQgq4UCtURYtNVO0YLjSViBbcxOLUqpNAcxN8diiyDI6hIdhI0PHeDO4tm7MKKSCKW6tTsaijO8O17fcvz9mEF5wwjN4sD1kSkbEpFkcnNoMy7csUnagDecZmhSq0iEUDFBTNAO+yLyVWqDo0D3swNluAVG5XvtE0hT87a7L5N0VR0IQyjnn52/HGf3gnPvKzx8gbhgGGptZJsegc37FDOdx9iHyntUoZPX0DXqs10fy+zWy/ikmKj3R3qFgsBROL0wef9n3PsjttUywODKJaLkKWJfB88LgkxdsKFQCGRyfw8D13Bq7f3I4oID28BdkLXok9q3WcjVbGIgBMbNmOpfmZpj0qQMjoTiHUa0hnc03rXjd2H1jFvqU63nbpMdizUMX+pRrS2WzHVqh33XI9svkCTjrj3NBlRUXD3oUaXnbKKPrziQ1qVCS1yO8p7v8uyRY7Nhppv65okj8hpJkfGI4Qk3pMxeIzzAq1LrusUOuLbdmRqVQYsagAtG0ihaEBAYpyqCIExUAm3SIWJ0cHwJluAIxuEos20rck6B6KxRrA8MRCkusmpG3Re0JOLu1tldkEnyfkqGFgqW7gX/6gD+/9+DtBKbb7BsWQ7zuyYtF7colKm5/DAJDtA5b3NN87GsTiyhqIxcVVUkMNt2Us9kJVNayWqxjoDSfN/IjFzeNDOPTTRRiG4X2PSBXI8aaJYjGbTqFYbh3DWkPExAip7XZunUCl1sDCchEjVvOxqViMN9kQAGqiFjlf0UI+m0GtbmUsmorF7nGAD28IXnfz3eA5Fs8///TYY00QDUktkiAKmsTiUbRCtaslvZSBS42ltvct9d6h6qG25e2qxzSbRlWugul04pWJBxcfjLysKqugQbcRnt08uX84MhZ9rtduK1RN1zzVZ3bIkty0WJ09PItcVw65Qg4whfppV+yGKBDVYRVV6DSpBXwVi+Z97enS08gp5vNvNg1RjEYsqlUVI380gn/8/D+CpmkYiuVAtfGKxVo5vBbJ+Ni92xHFCjXXlUO9UkelGDxhI8g+VKgLEAWxzZLVIhpXl1YxnhsPH69KiEX3OTY8Pozl+WWoigo2ZDKRJEhId6fR//x+LFWWmuOzFIuT2yahqRpmD89i0/ZobgVBaNQboBm6TSUZhEy2c8XiXTfdBQA499LwvkgYBFXAqriK4/uOX/O2EiRIsDGI1Lm46aabmv9/8OBBvP/978drX/tanH8+mYGwa9cufPvb38YnPvGJjRllggQdwG2funehioE8byMWwxWLiuZUF4bh2KH2BpFFNFl82pPz4bO7RCqFzI7zoVqKRRt7uLkvh3sOkoYUsUKlyIzsADRcVqgDeb7NCpWiKAwVSGEsSxLyfBoGgOW5aYxObm4up2jEFtO+S1kSQXGEoLKsWVMuhVuGYyBruqcKlE3lUPVQLFpYmJ3C3NQhbDvlXAy87D0YH8hhwEXIsDQVW2HqBYYyHL2jYwZaOYvVivfMzE998EoMjozhtX//vpa1rdmIsgjuoa7OGtPhxKK/FWpxmcxE7XMpFq2/SyvLGBoNLqAtK1QvW9Kh0XGsLM5DVRSwXHChKkki+Cw5JpYSwE4iWrmEM4cO4JjjT/LdZxgMw0BpdRlCo45sNt9U2NohyBq+f+8UThjtwp+dNYEv3Pg0JFVHOtO5YnHXzb/B2c+5NPQ4AMBjsxVohoFLjxv0tJhN4I2kFvk9xc/eRv794ELnBF+naObgdbhfmif2oUF2sobhvIdzmWAl31FA0/XAapA2VgDF2WxIpUOaR03FItVScDJBxKKEhmJTLE7PY9vEaPNtVpcBPuVQQZYEHZl+12QNuQZkB8hyFAXkBoDyDLErdVlFZtO8txWq+f3MVQ08fNt9eNFzz8RXXpYGle8l7zG2fdK0SSxGzFj0sdmUuC7UZQNVjQWy/Y6sz6JPM+9dn/gqFFXDFz/8luB9xwDD0NA0PdQKde9hf2JxwbQ7dSsWrb/nl4oRiUXy3chuYnFsCNW6gHK1jp4uj+OZMrdNsxBEqU3VamUsAoRYBIA9B2ZaxKKlWAz7Tm0wDAMUgJqkxLJBBWyKRZohVr6r+4Gx033zOO249qa7cOm5pyIfc58JoiOpRRJEgUW4HU3Foqy1iEUvxeKKuNL2vkWITledjjQMxUDQWttIM2lU5Ap6U965eVHx6MqjkZdVFUIKupV4Q6nWc26YFapqqA4yVIceqliUJdmhWBzbNNaMiwbaiUVJlNDdZ5KdJrHolbHI0RxqSg2GYeBQ5RCGVeKqEKZYLBfLeOzex3DBCy7AyF+MIM2mm9bXdmLRnUW53vBTLH7n89/B1P4pfPDzH0SeI/dkivPvVUlGOLGYSqVQRz3UCnXabWVuQ9GsRdyKRQexuCUCsahJ4GgOMpxKy+GJYei6juWFZYxMjARvQ5SQyjlrEaEuNG1aJ7eTifVT+6bWTCwWl4sQ6gKyuWxTKBAFmVwGpZVSR/vcdeMuHH/68W22s53gYPkgDBg4ZfCUNW8rQYIEG4NIxOLFF1/c/P+rr74an/nMZ/CqV72q+dof/uEf4uSTT8ZXv/pVvOY1r1n/USZI0AFKDaV1glMU9i/VcfbW1s2tIWtIsXTT6lFUNWT4VqEpKJrDtnOlHm7TsKmvfTaxRY5YRN6eCMTifdmzMPTH56P24DWOjEUA2Nzf2oclIqN8/MYt2ElUSdHB0lRgrpssCaC5NDQAS3PTOOWUk5vvKTqxxWRs60tiO7GYdhEmlmLRTtAuauSzsJkcRNF7RtTjD92Hj/z9a9A3MIxPfvcXzVnCKZZBIc2ialqNsgy1IVaoQwUexVu/A/Hww6iVS57r/OYn/wcAeO3fv89DsaiCpak25WpUhBGLUwGKxaKPYtEiFovLixGIRXJM07yHFerYBCmgF+cwMh5c9EqCAD5TgP0bsmcsTmzZDoAoMC1iMa4V6tz0IXzmH9+Nx+6/G2deeAkyuXybsgEArn14FoKi4Q3P2YLJ3iwKaRayqiOVyXZELC4vzuOpxx7Gn/z1myIt/9B0CQN5HqdOrr3Y/n1CUov8nkOuHzli8WPDQN824PLPk7/ZzhTnYDhAE0PUay6yolMScwMhKrpp62rWQULJQXQBQDqdgqIZTbv5NmhKiwS0ml1UgCpdEdGQnYrFFz/3zObbjC4BbMGh7iwKepvNJeQa0DXWUjbmBoHaAqAKAJ9zLJpL82gIHg2u7AAe6noBLv/gdeBTaTx+3VfA28lgu3UtzZjEaQgJpUrk8zPeTVCVyaL7X6p4xxUDhFiU67DmaxUr3nXkZ7/9EwBYV2KR5zgImrQmxaKVozg80ON4fcRUDcwvF3HSji3hg/G1QiU1zaHZRW9i0bIQZVqKRTvsGYvbN42CpmnsOTCNi885ubkemBSiKhZnFpbx2U9/HZ8+A3hqttQBsZhBpdYg53bRnDzWNRE6ibBcrePWex/F566KVosk6AxJLXLk8efX/jlevOXFeP3Jrz/aQ4kM63nVra47krATi14Zi6tCy8K4qVg075WztVkwFNMk8Viahay2tmcpFtdKLO5Z3RO+kAlZksFTfJsSjzUt0R0Ziz6Xa3fGIkAIviBIotTMB5w7PIcTzjjB8X6acdZtditUnbGcf7yJRUmTcLh6GIIqoFsn96p0Jg3JqxYBcHjfYVz12qsgCRJOv/D0NvW0blr1MBRz1DIWv/lv3wQAfPDzH0SOI3UWnfGv9xQjOvleCZnkFKRYXDWtu70yFgFEzln0JRbHCDG8MLMQSiyKggg+6zwnhIaAsewYAGBgeACZXCbw84ShuFzE5z/8edzy81tw8UsujpWvCBBicW4qOD/bC7Ik495b78VfvvUvY6/rhYOVg2AoBicPnBy+cIIECY4KYvvM7dq1C2eddVbb62eddRbuvvvudRlUggTrgVKjdbNXmTRqkoo+2w28IangbPaO7onIossKdbESbknBMjSGCmYhaW7PKvjO2ESKmCfnwzM3VJMSbQgiWIZ2EJwTva0GhdW/CyUWbRmLoqqBZWgszBzGgb1PtC1rGAYkUQRtEoXllUWMTtgUizppHNqtVCVRAMWSY6ubr7sz+VIsDQO2rCYAFvXLpjIQG+2KxZt+8RO857V/gvFN2/DJr/1fczaehf5c6/tk6PUhFlnXkwhFUajs+h602qqvYtGOroxzvkZFVJBLsR0r0yql4CJ3+sA+ZxaQDcWVJaQzWWRyzuaplbkYJWfRskJNswyqx7wAS2MXNPdnkZKLc+02tm3bEQVwWWfDz65Y7OrpRXdvnyNn0SL6w0QCuq7jJ//9Nbzp5Zfg8QfvhaLIKC4vIpvLtSkWZ0sCbnhiAZfuHMIlO4dA0xRyKRaypiOdzUOox7eYu/vWG0HTNM557vNCl9UNAw9Pl3HCaFeb6jZBdCS1yO8I6svAD95wtEcRH6oILD4OlMwH+k7JPoYzFYsBs8bdFzgrh6c8BVTCr61HApKiEpKjqbwwgJLTJi2d4iEFTY63Zyxax4NmMLOwjPsefap9eVVEXdaRNpuEs4sr2DbZatQwhmxmJ7bqgpWGikzKTSzWCfFnqUDzw+S8VNonM2VTnKdi8dqb7saFH/45Bvv7cct3Pwmed9VcFAVBsYo+NpoVqm1dP2gGCKmdIfWjNaHr6FihBteuB2aXIMvezcEFc8b7UF+P4/Xh/haxGAlmY7zNCnWM1DSHZ31qmrS5XytjMUCxmOI5bJ0Yxp4DLtUDnwstRgzDwNd/8Guc8NI34+5H9gIAZlZqKMTINAKAQi6Dat3MWGysEnvk7rHQ9X5zx/1QVQ0vu+TI5CsCgARyLCWqw8kXv+NIapEjgydWn8Bn7//s0R5GR3imKBa9rFBXxdYzpkU8Wuq9ufocuviu5vssxULUWvfHLJtFRV5bjmhNrmG2Nht5eUVWPBWLFjRooVaomtFOLLI0i9JKCY/f/7jnOpIoNbe7vLCM0U2jjvezrPMaLwpiW8aiJ7HIcJA1GQ8tPgQA6NMJwZXOpiEKYtvz/X2334e3/tFbwfEcvvDDLzRtM+1wKBY3OGMxihWqRSwGwU3QBSHMCrW0UvLNYVxdJue7RSRaKHQXwHJsPGLRo/dm5W4uzvhkPtu34aNYtDIWKYrCxNaJjohFwzBw409vxGsvey123bALACE7MzEnOWVz2Y6sUB+66yEIdQHnX7Y++YpT1SmM58eR6nSSZ4IECTYcsYnFyclJXHPNNW2vf+1rX8Pk5KTHGgkSbBwUxb8QWbUpDGXTe3/Q1shvyKrDrtNNhCma4bAQnYtALALA9kFSQKl6q6mUYmkU0qRQf2LOf9a3W6GlKgpYl7KwkOaQMotU1mxIWaSeH+ouK1SeofDqF52LN/3xpW3LKopMLJxs23RboXIM7bBSlSSRNFDhr1i0jrU1lvly63gyfBaSS7F47f9+Cx//hzfjohddjn/9xvc9sw0tEhcAWJqGqvs9RkSHW7FoR61SCl3fbd9ZFhTkU0ybNWxUVH1UkgCQzmQgNOpYWfIOCi+uLKF3YLDt9Z7eflAU1VQ0BkFSNXAMBY6loaW6IGcHmwpYi1hcmPW3HbEgig2w6dbDha7rEIVGk1gEgMmtx2L6oI1YNI9l0Hc6fWg/3v2aP8aXP/4hvPDlr8T7PvFFAEDDzG+0NyANw8D/3H0Y3RkOb3zuVvTnyfmTTxHFYjqTheBBcIdh982/wQmnnY2unr7QZQ8s11GTVJy/rR+FdGcq1gRJLbIuWHgc+Kdu4PDujdvHL98HPPoD4Mlfbtw+NhJWDl6IBaGi+jQOGZ6orOLYUVn33uIB8q8abhHVEWLYOsqKRohFe1bUijOnMM1zCHSY17WWHalh1iQUg4mLX42z/vTK9uVVCTVJb1qhAsA22wxwVpcJ6WabcLRSV5sKx9bg607FaWEEEFaJktGFXJpvy1j8r5/9Fn/01qvxwgvPwK3/9a8YH/bOWRasMoumiWIxxvENRdZ5b/GzQt1IrPooEyxomo59PjPbF5aL6O/pAufKHMpl0yjkMphfikosku9GNpz11PBAD3iOxaFZn5om07JCbYhSm6rVrlgEgOO2TngTiwHVyKGZBbzoDR/C33zo83jFCy/EB656H678lYiHF7QmaRkV+WyGWKGaKhx0T7bsWANw7U134eQdW7B5fDjW/taCA9RmvOlaAYfpzeELPwuR1CIJwnAkMxbd1pf2jEU7KWihKLWuvRaxaCkWFxoLKNiuOyzNOsjJLJtFXe4sPsLCA4sPQEf0ScGWFaqfClSndFAMFZiB6s5YBAhp+ppLX4O3vvytnuvIYitjEQCxQrXBbYUqizLSZt6zZYWaottJEZZmoegKHl95HBk2gxzIM3HKvEdpauv7vP03t+N9r34fjjvtOHzpx1/C2GbvySa6rAMGIRbX3hUJhp9i0Q7LCjUIshGdWPQjDQE0j7kfGVdcLoLl2Kb61AJN0+gd6EUxYi1iKRbdyGQz6OrtwsKMd1/GsQ1BalMsig3RQf5tOmYTpvbFIxZXFlbw4Td+GB/7+4/hzOeciX/9r38FQDIW4xKLmVwm0JLXD7tu2IXh8WFsO25b7HW9MF+fx7G9x67LthIkSLAxiGSFasdnP/tZvOIVr8Avf/lLnHsuCWO9++678dRTT+GHP/zhug8wQYIgPPnkHiA/Dllub7yVBQUwJ5ApXB4MTWGo0Lqh1mUNnI3sYTyK0JLQehiYL7fPHPPCjuECdu1fbVp02iEqGqZWW8SFW8XGuEhEVZHBetiKdfPAotiyQkWIYrEutcZCrMr81XOyGRZO2RpxoxObcWCJNLJkHcgydFOxqCoKNFWFQXOA3iIWs7xzHxZpWjO7b9c/0Sq66FQGoitj8fTznou/edeH8Oevf6vvA4I9t7CZsbjGGjqIWIyiWLSP1QA5Dwtpro24jopK2b/IHdu0Dfv3PIbpA09jYKjdcmN1ebHNBhUAGJZFd18/ViMQi7JmIJ9im78PPVVoKkMz2Ry6evqiKRYFAdlUa0anJAowDANpG7E4sXU79j3RytrgWZokAXh8JZqm4Uff/Sq+9YVPYmBoBJ/+1o9w6tkX4J7bSfaN2Kgjm8tj1fa8et/hIp6cr+JNF23DyRM9zddzKQaSqoPvwApVEgU8sPtW/NWb3xVp+Yeny8hwNC7a2f69JIiOpBZZBxwms1jx2I+BTedtzD6a1pnRZgE/4yBVCKEWco+99977cH4WmFlYgcNcmuHIMYhDLHJHIBvtF/8APPnz1t8hs9qbikV7g7R4ABjc3vwzneJRUw3AL79F97BCDciSNDQZNVl35OERxSIZA2MopmKxtY2lqkLUaFY5oUpEKekmFnUVKE8DvVsArVUf5TI8VFWDpumwtnrx2Sfj6rdfgQ/87V+0uSbY0VIsMiS/cT0tyDJO266jo1gMbyDuOTCN4z2ygOaXi202qBZGBnpjKBa9rVBpmsbk6CAOz/nUNGkbsShIGOhtqXAMwyCKxVyrnty5dQI//a1rwkUqD8jtE490Xcd//t8v8d5PfQO93Xn88pqr8eLnnoXdDz6JL9wlY2LEwHEdZSyKRP0KAN3jbba9bmiahl/cci/e9OcvjrWv9cA19ys47y/Dic9nI5JaJEEY4tg8rhWP3/84MAjsfWIvsMP5nuQxSalkZf2CkCUUqCbptthYRFeqCzAv/W3EIpdFXV07schSLFQjml2sIiugQTfH0VDbr8mSZqoLfR7nVd2ZsQgQK9Ugi01JlJCyuSGMbnYqFjOuyWeiIDaJSIMhA/FSuFl5d3uLezGYGWwee4sgU5TWuXPiGSfiL9/6l3jNla8BE+CCNP+/89BqGujXbLxiMQqxmAu5dwGI/P0DwYrFsS1j2P/Efhzed7jNrhYgVqc9/T2efaW+wb6mVWoYFE0BT/NQOAVGwXmiDY8PRyIWRUEE189BQ+s7EuqCQ4U6uW0S9956b6QxGYaBX//g1/jyR78MLsXh6q9ejee++Lk49NSh5rYHfCbG+SGTzaBRizfh2jAM7LpxF8677LxAgj8qZE3GirCC4/qOW/O2EiRIsHGI3el+yUtegr179+Lyyy/H6uoqVldXcfnll2Pv3r14yUteshFjTJDAF82ZeR6EX1lwFvIDeR7ZVKsQq0kqeL8sIBN2O9WlqkRyhkKwpT/XXN6NfUs1aLaxBvSoABBikbMtZOXd9aXJuJtWqGxw07MmOQs23wwkmOpDALBtc3hsovn/im6AY1tWqM3lTesU3SySMy5iMcU5FYu/frSVx0NzKciSCKG8gpVffgGSUMfElu34ize8LbAoGS7YiEWGWhfFIrtGxaIdumGgIigopNmOicVqQMbi6ORm0AyDqYP7PN8vrSw1bU/d6OsfikQsAkRtanHeBpdDQ2mdT8NjE1iMoFiURAFMukUsWta3DsXilu2YPtiydqUpCjzbPuPy0NN78I4rLsc1n74al//Fa/CfP/4tTj37AscyjXqNZCwaJiFKMfi/e6awYziPV5496VAH53gWmm6AS+diE4sP3n0HREHA+Ze8MNryU0UcO1zAcFc8BUMCJ5Ja5FmGNc563zCIFWJDGJQFCEAzySlZcTVHLGIxTnNno4jF+krr/x//CTBgm/2rBM9IblmhtpSGKB12LMOyTAQrVAY1QYJoqQIp//mNhiJCUAwXsehs5oHhHOTkUk1xLN9UJTK21/LmPdFSXEqtJlU2ReqexbKAv/mZgNWqiMnRQXzoLa8KJBUBu2IxYsZiHPB5Z5bkM9AKtZBLY88B70lGCysljLgyjSyMDMYgFjXLCrX9u9g0OuivWGwSi1ybYlGSFWia7lAs7tw6gQPTC5Ds1q5d4+RaYMO+w3O47LUfwN999Mv4q8svwaPX/gde/FynLWa1LsS2Qm0qFq3vPD8SmvO6+6EnsVKq4PJLz421rwRrQ1KLJAjDkcxYtBRudkLKgpdisSyVHe+ztvvMirDiyE9kadZBTma5LARVWBN59djKYxjMRp9oKcsyKIpqZgd6ZQiKqgjObVdug59iMQiSKDWtTYF2xaKbWJQkqUkOWlao7hxGO/aX92Mk15ogbK0rlAXMfHMG1eUqegd68fp3vz6QVASAxlMNSHMSaIo+ahmLdhS48EkncaxQy0X/Sd6ZbAaDo4P+isWlIvoGvd2F+gb7oluh6sQKdXXbKugXuxwUIhKLkiCByzjPU6EhIG2b5DS5bRLl1XJoruTi7CLe/5r345Pv/iTOf/75+NaN38JzX/xcxzKNeiN2xmI6l4bQiGeFenDvQcxPzeOC518QvnAEHKocgg49yVdMkOAZjtiKRYDYfnz84x9f77EkSLCuqIoqYLNLGsynHPacDVkDH6DcA4BSvVWYL9dlhzWqHywVpKq1N5X2LoQXYHa4rVArJlnab9YclmIxLGOx7ur22bMl3bAUi5ZCI5MvgE+1ihxFN61QzU1IAik4dNoKTqfB0lSbGtM69lVRRVlQsGt/q8lJmXmON33qTZAlCZXleQBbAj8TAAzarFAZmoKq6bFnRxmGgcW5aQyPEcuiYCvUcMWiHapmoCKq2DHMgQ845kGoBBCLHMdhdGIzpg94E4ury0s4/tQzABALzs/dsBcfufxE9OV49A4MoRghYxEgysGmmpaisFJVMGb26YbGJqIpFiURNN86jywCL51pFbkTW44h1q6L8xgYJg3kNMc05w2oioLvffPf8V///m8YmdyMz/3XtTjhtPZsG2v72WweqqlsWMpvgyyqeN+Lj2uS/xZy5oQDLtcFMSaxeNfN12NkYhM2bd8RuuxKTcJMScQLThh25L0m6AxJLfI7iOoC8G87gLc/APRtaxE/i965NkcdYpkQfbFn3ZoXLZojKr84GUse9krrgj02heJF7wVy/cDB2yKt2rRCtRqkmR6gOu9QMFIUhcC5V5oK0Axue3AfJrspnDTEBM6uMlQRggoHUTjQ24XD9tsWyztI34oEp82lVG0tZyFnEour5n1TaN1jc6Y99UVX/xarFRVvXqgi3OCa4N92SXhkQce7aZYQtR1YoR6aWfC2saQoQo41SN10NKxQwxSLOzePttuHmphfKmJsyPtIxlIsmgS4bLT/HjePDeHJ/T6TnAaOBTadDxRGIIiSI4ezZjbNchmnYlHXdew7PIcTjjEVmGe8DqjPA1wWmqbhi/91LT7w2W9jZKAXN37r43jeead57rrWEFCIqVgs5DJEsWiR5j3hlprX3XQ3Bnq7cM4p4bVIgvVFUoskCMKRtEINgj1v0YI9I1FSpSbBphkaKnIFvWkXsai3iEXL4lJQ42ewWXiq+BQ2d23GXN3bRtsNVSZqwyDCTNRF8Ck+MGPRbWNpJ1Tbllc1aKrmsEIdGhvCoaVWznTWNelEEqTm8pYVKk97P/cJqgBJk3Bx/mKoIDVW2rTP/sn7f4LyQhkrUyvAab5D9ETYcQrC/PQ8RmzW836IkrHopdR0I46qN4xkm9w26Ussri6tonfQe5JT32Afnn786UhjUDQFHM3BoA1QBWc9Mjw+HEllKIkSui2bdhA1riIrDsXiJtMBYmrfFE4888S2bRiGgev+5zp85f/7CrL5LD7+zY/75hra8xujIpvLQlVUKLISSNbbsfvG3Uhn0jjNpyaKiwOVA6BA4dTBU9dlewkSJNgYdNTpvu2223DFFVfgggsuwMwMaSh/97vfxe23376ug0uQYC2oyypUvVVU9ub4pmoOABqSGqjcA5yKxdW67Mgq7ARPzlfRl4tOKPhZoQ5nyWs5jvxLc8Ezmd2EKBtAckmS+YBgFt2Do86GRpNYbCoWTWLRtBXRQSPNMWBoCv905evxlU9+BIDNClVScfOeRWi272b1wGMAAC6dw8irP4PByZa9WhDsxCLL0NB0I5JdrR1333YjXveSC9Gok+I4iGoOyjv0gqxqqEkqerJc4DH3A8OwqJSCZ89NbtmOqYPehXBxZQl9pmJxuthAXdaw37S07RsYDFUslovLACzFYus8XKq3Zr0OjYxjYS6CYlEQwPCtgtYiFjPZ1sPY5FbyvU/ZiNI0S8MAcGDPY3j7X74U3/7iJ/GK1/wtvvKD631JRQDQNQ2pbA6aqaAV+F5cdOwALjt+GLTLcjjLkwdKJpNvngdRYBgGdt9yA867+AWRCO2HZ8qgKeD5HmNIEB9JLfI7iKd+Q/7d/R9HdxxRIRZNBWHM6/fSHvKvUARggApRBDrAbNCkg8d+3Pr/7kmigosIyZ2xmOkF6ktt+Y9ui0oHdLVJAjZLMSrgjqvKENWWYrG/p6v9Osvwjm1UJcORyQiJXM//+bs34w0f/Bx5jU0BqQJQNJuCNiu4vdOEuKNg4K6/yeGsY6IrKb5yr4I7pszjZGixrVDvuP8xbHvBGzDvN2PeZocalne43ujtzocqFnduHvElFgMViwN9ocTi1PwKHj8w28pY9FQsDvkrFrkscP7bgN6tbYrFmlnP2HMQd24lhsaOz8MwQNc4njw4g4uueC/e9S/X4I1/9iI8/NMv+5KKAEw1ZNyMxTQEUSJ1daoLyIdnJl578914yUVngwmZMJlg/ZHUIs8ebIR1pBJnYlEArAzETmG3MQXIM0xVqTreZ8zJDCWpBAMG+tP9zfdZinWQkxax2FDiZ9MDxMZ0SVjClq4tkddRZAU0FWzxKaqmDalPO0DTtTbFoldengXJdFiwKxYdJIvhVCNqqgZVUZvLW1aoKTaFL3/0y/jHv/1H5/bN72VTV8tGfH6KuDpJdQnbPrQNW07f4js+P9B0Z4rF/U/ux6sueBWmfe7ndoSRfFEgqVLknM1CdyHQChUAJrdP+uYSFpcDFItD4YrFpekl7N+7H4qugDdrdSrjrEuHxoewMLMQ2o8SBRFsqkVoW1mGdmJx3KxFvIjSucNzePer3o3PXPUZXPqyS/HNG77pSyoCgK7pHWUsAoilWrzzhjtx5nPPdBDxa8F0dRqjuVHkYzyzJEiQ4Mgjdqf7hz/8IV70ohchk8ng/vvvhySRm2G5XE5m6yV4RqEha9BtdUpfjnco9dwZi14o2uxUNd3A9Grns/IA4PHZCoYKwSSgHaoie6oLsywpYnrSptIqFVwo1NoUiwFWqKZi0TAfLgZGJxzvKxpZv0ksiuSYaCYlZ1B00zrzjht+gR9+5z8BEHKKjEXFrx6dx2RvBpShQynO4aH/+zcAwHlv+yzYruiNvK40C10m4+VoykEkR8XMwf1QFBlVM8uQCShuqzGtUBuyBk030J+P/p3bwbBsKJk5sXU7Zg7ub3td13WUVpfRY2YsVszMz4pIzunegSGUVoIVi7L53fIs7SDCKrbfxfDYBJbmpgMLaMMwIIlCU5kKoJmpabdCHZ3YDIZlMW0jSlMsjflDT+NdV7wEiiLjC//vF3jDOz/oUNH6gc867Vfe+NxtDjLagqVYpFM5iEIDuh7tAWf/nsexND+D8yLboJawqS+LrYNJcbxWJLVIgiMCsQywGSDuRACLrLJILyVkwoL9+sm4Zs6vh41aYxU4cGvHq0uKSsZljSU7QNRzWkxi0VQoNm3oAzIWKV2GoLQUiyRf0QUm1VSTGhQLRXcpFk1F7P/c9Ci+8cPftF7PDgCVOUKUisSJYK6q431f/RUA4Lp3X4Bj+jpzGQBFx8vUNLH3wAx0Xcfiqo8zgo1YPNJWqP09XVgNUSbs3DyCvQf9rFCLGPYlFnuxEEIslusNLBWrgNlYVz3Os83jQ5hbWnXal9pBE4VsQ5RIDqeJumARi606enigF135rINYVFUNn7zm+zjt5W/D0moZt/7Xv+LzH3wz8hEadbGtUM1tigMnAxNnk3zHAByYnsdjTx1KbFCPApJaJEEY4uTHBaEklda0vptYrMpVh02r3Qq1KJFr8mCm9Uzuzli0svM6zVk8XCF26tt7ok0mBtqtUL3QzFj0gWqoTQLVAuuuu+zbcxGLbsUbA8Yx6cla3rIzBQ3QFA2GZvCDr/8At/2y3SmCoRhsKrSIxS999EsAgBd/5MVIT3QWncGYfZm45KJFKEbJG4yiWAxDnPOnq7cLQl2A4nefB1Eszhyagaa112HF5SJ6fWqR3sFeFJeLgf2MWrmGUqkEzdCaClSKoxyq3eHxYYiCGEq6SqIENmMjFs1axE7+ZbIZDI0NOYhSXdfxo2/+CK9/wesxe2gWn/qvT+E9//oe5LvCewvZmLWINZaoOYvl1TIev/9xnP98f4IzLuZqczim55h1216CBAk2BrGfmj/2sY/hK1/5Cq655hpwXGu2zoUXXoj7779/XQeX4HcLlrJO64DcCYPegaVUQ1ah2YqpgbyzyBRkrUmwDeT5NqczmnISKACaaq9OsXehiv589Bk8muq0QnUjy5OfMJsODsZ2KxaDiEVZsohFUuy4iUUDAEu3MvcsIlK3HUBLsWiHpRYtNWTcsncJ2wYyMAwDXO8oTns1mb1Hh2RFukFRFFZ/82XUn7wNLE1D1eLPzFteJPYrjZqpWPSxQs0VulArx7NCtbIthwqdzdqiGRaVUnCRO7nlGMzPHIYsOx8YK6VV6JqGXpNYtDJHrTH1DQRnLAqNevN3xzM0GMpOLLbOp6HRcYiCEKisVBQZuq47iMWWYrF17rIch+HRCcxPt7K7VqefxsLBvfiz1/89vvy9X2PnSaf57scNzkYsDkgzOG1Tj+dylmKR5knBbdn7hmH3Ldcjk83h5LPOC11WUjTsma/ipPFu9MdQLSfwRlKLJDgiEMsAmwYQk1iUzYdw0wKK8s2QNLdrV/65Lbk87MtiY88vOyK7LMiqRlwMmsRiP6A0QNvUfgCgelhUAiDEqaE1idZmBLMt18h9n6M0BYLaUiB6E4uta6lm/r/d5tKyQq1KrntofhioLwJKA3p9FbphYLRA49+v/EMAQI5fg6KcZolaMWYzb2aRqCUrfg2cLJlln0nxR9wKta87D0GUIIiS7zI7N49iuVjBqssyVZIVFMs1DPf3eK43MtiL5WIFijuf1ISu61DN3DBoEkCzMDweXzePme4M88uBn6UhuBSL5kx8u6qQoigcs2kMB6ZbOUkf/vx38IHPfht/f8Uf4sGffAnP8bAl80NcK1RrLMX+M4DT/5qoFgPw85vvAcexeOFzzoi1nwRrR1KLJAjDelmhllz328B96oojDxFoJxYXBeczoKzJTWLRUiYOZAea77uJRSs7r1PF4pKwhBSTwmhuNHxhE6qihmYHiqoYSCx6Khap1m9Xct3n3MSiO1+RMRjP5e2KrSCrVQDoT/eDpdnmxNZ3feJdZFyZeH0RO6zPGFeFu2zeQ+u1YMIv15WLlLEYhnqMjPVCDznnqgHW7JPbJ6FIChZnnOe3YRhYXVz1JRb7BvugKmrgZ1JltalAtVu82rNKR8ZJrbpgqx+8IAmSQ7Eo1EktYlcsAsD4lnHMTbWsgv/3P/4XX/zIF/GiP3sRvnH9N3DWRf7uTW7EzVi0xmKNLQx33XQXdF3HeZeG90WiQNEULAlLOK7/uHXZXoIECTYOsYnFPXv24KKLLmp7vbu7G6VSaT3GlGCD8PTixlon5c2bo6is3UbETSR65RWGQZB12CcrDRecM74asgqWpvHvf3kG3nrJMU2rTgsplmmqvCwcWOmseAYAQdGwUJEwEINUUGQ50ELTIh2ZEPVWQ3Z+J/b8Q7c6SzZn2+rm5cFthQo4FYsWEana8ixT9ky+5lhJ9uJ9h0uoVcq488vvQeWenwAA+neQomjfk8QSVahFP1e1Rhm6VAfLEMVi3DNlad4kFk0LzBRFjgcD5zErdHWjGjNjsW6SeCNdziKx0EWaRCvzwdmEDMtCVZUmCeeFia3boes65g4fdLxeNNWIlhWqZetr5W32DgxBFBoQ6t7bXl1qFeREsdh6ryIqzQkEQ2OEeF6Y9bdMsYg6ytYEbmYsZl15h11dqNvsSPnHf4HR2l685u//ATwfT/nJpFuz9zKG3CQQ3bCuXRaxGHS87dh9829w1oWXRBrX43MVqLqBS3cOtV1rEsRHUoskOCIQKwCXduT4RYLVKLGIRcV1TbHuu6kCUdzJNqLI3YBS/cmcyHj8x0B/dFWAG5JsKRbN+6JJcnFVpz2TvQ5wwCIkLStU6xJoUwnU7I0LQwMFHYICpEzLsW1eeT9s69qrmY3BjN1+yTyuVdlVGaS7AKWBemkFr7jy4/inm8kxvuwMcozue4yo5qeX4t3zAZhZlFrsjEWLEKvW/YhF0uDNprh1UywO9pF8n/22ppUX+nvMmiWgmbdzM/l+3HaoiyslAIRA9IJlkbq4WvJ8f6VUbR1KVSIEtwfvu2mUTKI6NOvfzNM0DZKsOBSLNdN+zK087OnKOUjegzOLuPjsk/Cp974B2Uw8BUl8YpEsX6uL5PoTgmtvugsXn30SumI2DROsHUktkiAM6nq4DgAoyaXIyyqagprLKcFNcC42nMSLpLUyFgFi75lhW9cujuYcVqgF3iQW1c57I8PZ4Tb1YBBURQWNYCtUWZNJxqLPPVgzNDAuG3Y7SeS22pQl8pktonB0k5MI9SMW0+nWtdt+XL0wwA/gE+/4BG74yQ0AgDMuIJNEDjxxAAAwe2A2cH0v0OaDe1zF4tIc6R+EkUmF7gLq1Xpklx8/2M+f5ZCJQd29pGYpF/1rs03bzFxCl31oo9aALMn+Vqjm635KTVmSoWt6y9qWbtURdmJxaJz0XRZmgolFURDBpFrnTpNYdNUL+a68QzE4Pz2PY086Fu/42DviE4UbbIW668ZdOO7U49A/3B++cARM1aagGRpO7j95XbaXIEGCjUNsYnFkZARPP92e53X77bdj27Zt6zKoBOuPH90/jed/5lb8+rH5DduH1bQXlbUVGABRE659G07FYiHtnPUlKESxyNIUJvvab8wplkZVbBXhhRSLwyt1PLSfFHe79y3FIlHny6R5EccKVfGxQrVgObnas+u84FYspmwWsA0XiddUIJqXh4GR8fb9Mi1rTNEkjezcL+/K5LO//tDje7H0P+/F7NOPgh8m1wwrn7FmEneyGP0hZfjPr8boa78AlqEI2RWTWVxZJL8J6zikzJB11mVdk+/qQS2mFWrNPO5DXc7G0I5jjwUAPHHfnYHrM2bTNUgNOLmF2ENMHdzneL24TB4MLMVixaZYNAwDfQPkdT/V4upyqyC2Z2oCQFVUoZjq0KFRcn4szvmTpJZdrsG2Gr6ih2IRAHK5guOcZJUqumgZLB37dgU6Fa3gzpryGdr8HTUa4U3b4vIS9jzyAM69+AWR9vHQdBl9OR6n+6gmE8RDUos8C9GBM4EnLBKwg2yZNkhVQl5FyFB1QHESi3DPyBZM68eUqaq2E4tu1sSHWNy/nzScyiGzygEA+24CBjuf8SspKlEXWg3SjEks1pzNLl9i0Wpo0pZi0bJCbTXbHLmB5ncnqEaTzPJULNqIRRXkWNtJI+u41tpEnxRmyiqe++I/wvV3PYazxxhzXXKPskiu1WoH9vcUTdSZMYuRmYUQxaJ5zLNpHpVaw9PmKy5OOGYTxof78avb7gtcrt9UCQTlLB67ieQAuolFKz9xuD+YWJxf8rZDnbNnHqmiSUa3/x4nTWLx8Ky/xbsgkhPBSSxaikVnHd2Vz6LiInmjZCl7wb3tMFhEpC/JbEO11sDNdz+Ml11yTkdjS7A2JLVIgjCslxWqnbyIAjfhJ+vOG+GKsOJ836ZYBFrEoQWOcRKLaTYNlmJRaZD7wvJSMCnkhYnCRPhCLlCgAsksSZOcGYgueBGLduLPbWEpm/cN1VTVhxKLQnsmo59iUTM0qBUVt3/4dtz8i5sxvoU8U6dN1bpFclVW42cZWp8xtmJxwVQsVoNry0J3AYZhoF7pzArXQt028e7x+x8PXLbLnOQUZDM6ND4EPsXj8L7Djtet/MRQYtEnZ9F6XWfIuWcno6tyq37t6e8Bn+IDiUXDMCAJEhjeRiw2vInFbD7b9l10WovEJRYt69QoikVFVnDPLffgvMvWR60IAAfLBwEApw2dtm7bTJAgwcYgdqf2jW98I6688krcddddoCgKs7Oz+O///m+85z3vwVve8paNGGOCdcAhU2n35Fz8wsStdvNDzlIsqmtvdtQlFbLaKhq9ctGCwDEUBEWHbRMOMg2wrFCd2XF2pDgaddtn78pwWKhKqGik8fTf90zjrI/dgA/9+NFIY5ori2AoCsPd4Td12sz50xQl0LbUUiyyfFzFYutYVErOZo4sCQAo34xFwNYUhE2x6DrWbsUiAMjTj2P+O+8CR+n41HeuRWbzqQBaxKLeoVUbk+0GR9MdKRabVqghZFK+qxtCow5ViW5pU5c0MDSF3qzzAYdhyOd9/N5gYtGyhnV/R3b09A8gV+jC9AEXsWgqFnv6icqhbKpvG7IGVTfQayoZV5a8JxtYhCtAiEW7FWpZUJq/z56+AfCpNBYDFIuiRSzaHqyERh0sy4HjnQrebL6ARn191NV0COFuwbp2WVatYgTF4l23kVml51x0WeiyumHgoekSThgtYCDmtSyBN5Ja5FmI9SACAcBUHq+L0k+qrNEK1cxgcROLDbMBx5uqaing/uPzOWZmyWQOSxEGy45M81heV4HBE8JG7QtZ1QhJahGLfB5geHB1J7Go+z1W6OZ9k7IyFs3XbUoFLzWcoADzy6SZ45uxaI3RINfxjJ1YlGoAw8Pt0H/fgSLO+cJhLK+s4o7PvBaX7yT32pw5AU1dSx27RivUql8Dx1SJZlNkjKU1NvMA0px68XPPxC9vuzdwuZZi0f8ZIptOYdPYYBuxaOUnjgRkLALArI9KYHbR1vy2FIsev8d0isfwQC8OzfpbvDdMJUnGS7GYddbRXbmsP8kbEx0rFs2xBeH6Ox+ArKh42SVJvuLRQFKLJLBQEku4dao9y1hbgw25HXGJRbvFJE3RDlIQAJYFJxEoaVIwsUhxbdtIs2mIBrlOzU9Hn7xukUlburZEXscCBSqQLGtmLPo0BDytUAMUi5YC0SKWolqhpmyW2xztTXTu37Mf+67eh8psBZ/7v8/hxDOIxTbLsmBYBtoaXMCaVqgxzz9LNRhGJlmZfmu1Q7XnEz5x/xOB8S9dvSaxWPSvRWiaxsTWiTbFYtGcvORLLA6R11cWVjzft143aFOxaKs/K3JrPBRFYXh8OJBYVGSFRMTYbPf9rFCz+WzkjMMwdJqxGEWx+Mg9j6BereOC51/Q0di8MFWdwlBmCD3pnnXbZoIECTYGwbp8D7z//e+Hruu47LLL0Gg0cNFFFyGVSuE973kP/v7v/34jxpjgdwQ5s1O0HlaoQEvh1wlSLIO6rEKzzWizMv4sEMWiP7eeYhk0pNZn6c5wWK62GnYvO74PKxKwa785m0wMnpG4Upcx0pVu2i4GgYYOHQxUJVipRVMAQ1PQTStG92e04P5O7Fao1XIRwJbm35IogrIpy1IZUoQ01FahxzGt9S2bSzuxyPsQi7O3/i+4gU14wz//O3bs2AHsuhsAoJm5TGuZgd9ULMaAYRhYXrAUi8HEYqGL2G/UqmX09A0ELmuhJqnI8Yyv9eWhpx5FpbSKrh7vIpdhyblSLZd890FRFCa3bMfUQeeM6eLyEjLZXFMRWDPVt3VJhaoZGBwhD0bW53eDWKGSZXiWchDwpYYCSdUAcKAoCkOj44GKRVm0cjs5mJw5hEa9Ta0IANl8Hgsz/iRlHFBcGkD4dSTFmpmhpvolihXqXTffgONOOaOpCA3C4ZUGqqKKc7f1oyvtP4s2QXQktcizELrmIJo6BmdeV7wItrhQGoRYlGI2TqyGHu1jhVq3iEVzrHJ8YrEN8486t21H33agp919ICp03YBOMaCtTh1FAdl+cIJTHab5EYuaywrVWsxPsWhCUA10m//vqfri7MSipTpMta76cs0khp347C/3YqKbxU9/+0uMPH4NYN4G06bzhqJq6GDuJUGHVqjhikVCwFmqymKlhv7e4Oy9KPiD556Fr//gNzg0s4DN48Oey1iKxdVScJ20c8sE9hx01gILKyVQFNW0XXVjeKAHDENjZtFb7TK3uIrmqFSRHF8fnn/z2CAOzwUpFslvyZGxWBdA0zTSrkyurvzRJBbJOVuL0My77ua7cfz2SWx3qWgSHBkktUgCCz966kf4wgNfwH1X3Oew91T09clYrEjtZMpVt12F6/Zfh0de80jbe3YrVJZmIWsyVK3Vq1gVV5Fm0hA1cse0iEXLurUn1ePYHsuwbarHNJtus1yNAmufx/QcE3tdyqCgI1ixyKd4CPC+fmqG1ma/GqRYdGcuuokf2uXUEEWxqMgKOJ7Doz97FHSaxuf+63PYvm07Zmz3z3Q2DSXGZGY3aKwxYzGCYhGISCzq8C2p6mprP+WVMg7sOYBtx3mrva19BikWAWBy2ySm9rmIRXOSk1/GYiabQb4r72vHumJOcrKsUHlbvItdsQgAw+PDbRmPdlgqWNrWt/NTLOYKudC8y6jo1DpVqIXXIrtu3IWB4QEcc2L837Qf5upz2N7TeYxDggQJjhxiPzVTFIUPfvCDWF1dxaOPPordu3djaWkJ//zP/7wR40vwOwRL9RPXxnSl3uZRBQCYLnX+QJ9iaRgGUBJahSdvIxF1w4CiGeBZfxVCiqUhKK0CvDvDOcbanWbxhudsw8tPI+SLZQ0ZhMFCCmk2vHFKmQ0pTZHBBigWAaLOZAIyWDTdcNjTMjQFzq5YdJFWsiSCTbcXHtO1VpPMPiapqVhsve+2Qp2fIXYUA5f/A4b/4p9xwlbnbD8trhrEA2xTsRi9mVctF6HI5AFAqIcpFnsAtOxao6AmqsilWPCs96XW0A3cd2f77FYLdNMK1V+xCADjW7Zjus0KdbFJeimaDkHRkeFo1GViY5rN5ZHNF7C84J3bsLLUmmln/+1AJ4rHYr31sDM0NhGYsWgpFnXKbvlRb8tXBIBsroB6jIzNQLDR1IEURSHDM9DNB78wYlGWJdx3580xbFBLSLE0Lj42nIRMEA1JLfIsxLopFs3ritL55CQHONtDvuZdr7ShzQrVdX+xFIuWFWqgYjHi56haOXke98DB44C0dzMlKnT3XMTcIDhp1bWMT31jKR3NZl7TicE2i9+TWFTQRvg4wLZqFUkn9ylHxqJUc9wHnj5EmnZffcOZuPktExgZHgKEUvN9mqaRzaRMYrFD0ExsK1RZVprKU1/FokksZsxae71yFi87/zQwDB1oh9qVz4Km6UDFIgDs2DLuaYXa31MA61P7MgyDsaH+ZsakG3N2i1RFaP2mPLBpdCiSYtGdsZjPptusxY4usRhNsajrOn5+yz2JDepRRFKLJLCg6Ao0Q0NRcj6zrVfGol0VZeHhpYd9l7crwSzFnN0etSgWHRmKbivU3pSzZuBori2nMc3Ey5t1YyATbaKuA0ZwbmAzYxEG0h4Ti8IyFqsu9wSLWORdtYhFLHHgPJe3Kxat42pZtB7cexAA0Pfnfdj2wW3Yvq2dPEmn02tSLFLmpO04GYuGYTSJtUaIFbdF8tXK4bWINRYvCErrPOVTPO666S7fZWmGRr4rH6hYBICJbe2KxdWlVXA8h3x33ne9wdFBLM17T05yE4v2c7/umjw4ND4UqFgUBXJvp3kbsWjWfvbzBjAVi9Wjo1jkUzxomg5VrxqGgV037MJ5l53XsU2rG5quYbGxiOP6Oo9xSJAgwZFDbGLx9a9/ParVKniexwknnIBzzjkH+Xwe9Xodr3/96zdijAl+R5AzA4iFdVIszpbWoFg0ZwAtC6SYp1XBcaOzbBz5AMViPsVCkFvFWHeGg6S2F2epCEShhf48jzQf/rOzrFB13ddYzLF/mvcnUNzfB8dQsIsJqy7SShJFpLJO+xM37MdNEhvg01knscg4FYtvf9VLIdTroFNZUAyHfMpZhCuaAYZdm5KL6yBj0a7WCyOzLMViNQaxWJVUFNKs73k2vuUY3HPbjb7r0zQDluUCMxYBEMWihxWqZXdq5StO9mVRE9XmdzU4PIqleW9i0Z6xyNvOccZskK/UWzM4iWLRn1i0VK12YlFsNJDJthe462mFajABDWn3fjkWhvlgGUYsPnzPLgiNOs6/5IWRtv3gVAnHDucx2hOvuZjAH0kt8ixEzFnVvrCsUJXwGbaRwKZbxFjUBqFFFNIkD45SXWOxVIWcOVY54JrnXtcPFe9rOQBg8HiAjX499ILmsg5Dfhic4rwfGpQfsei0Qm3C5n7gaYWqGsikAiaI2CZVCSqpORwZi00rW4IzX3ElVooVZFMsMtZMccFZA2XTqcD8plB0YIVqzxH0JbPYFD69S8G8Rpq9xQjNvCjo6crjgtOPD7RDpSkafd15z+/onQ9ux9tu7wPS3di5dQJPH5p1uE8sLJd8bVAtTAwPYGrOj1h0ZSzS3hmLALB5bAiHg4hFwYtYFDzVsOtLLMZr5mUzKVAUFapYvOeRvVhcKeHySxMb1KOFpBb5/cVcbQ4PLjzY9ro7u3C9iMWqEu/ZyE4iWoo8N7GY5VrXJlmTHZadfRmnmw5Hc23qSy/iLg46IiGMYBWeRSwCQJ5rJ5E03YNYtH1uN2llqcvsCkQ7eDhrK9F06fFSLKYz5Hi97Y/fhqW5JdAcDSbjXTels2kocueKRd3sWcVRLNYr9SbpFWa/aRF062mFuuOUHbj75rsDl+/q7QolFie3TWJ5ftlBiBWXi+gd6A085wZHB7HoU0NYeZcWsWgno92q3eHxYd/tAC3ymbIJHIS6gHQ2DdrlVJbLE8VikEVsVGTy8foQFEUhk8+EWqFO7Z/CzMGZdbVBnavPQdEVnDRw0rptM0GCBBuH2MTit7/9bQhC+8VFEAR85zvfWZdBJQD+6WeP4eDy+sjejxSypoVUJ8Si7mFhOVNsP8/e8l/3Ycv7f27aMPrDUgXWJO/GjkUQsgHEYiHNOj5Ld6Zz4sva30CeD7Q2tWARixTLgUbwZ+UZGnSAYrEhOR9o3GrCStlFLEoi+FwcYrGdiEyxtEPx9ub3fhSZXEudpruKI0XTkc6sjXRhGQpqzGagla+YzmQghGQsFrpJY6wWYEvqRl00iUUfxeJxZ16Ae+64yb+JSQFdPb2hisWJrdtRLRcdBOTq8lJTsWjZ9G4fzKMua01r3IHhMSwtzLVvEJYVKoF9/LTZAC82Wsqd4dGJYGJRJA8ndps8PyvUXK4QaksbFRrFhi9kIsMzMMzlw9Srd91yPQZHxrF1x/Gh2y02ZEwVBZw20YO+3Noa+wlaSGqRZyHWKYeoaYUaVekXur0O7k322cssD0p2NWgaZuPRuhe7MxjtiGqFWvW+lgMAeicjbaJSraEueO9Pc9l9oTACykWe6X7XXEvl4H6fClYsqmB8c7ABtIhZAIJGgaZpcJxtH1IVK2Jr3P985V+324eKTnI0l4neKPVq8+igY1uhWjao2UzKX7EI4IM3KZD7dgAAipV1UvaD2KHeuOshyAFNzP6eLk/F4pSQxT65H2BT2Ll1ArKiOlSD88urGA4hFidHBzC9sHZicdMosUL1q6kaXlaopmLRja58FpV6Y12aeflcvOY7TdPIZdKB5wJAbFB7u/M4/7TwWiTBxiCpRX5/8cIfvhB//au/bnt9RXQRi8Y6KRY9rFCD0FBsxKJJbNmVVSWphCzrJBZZmm2SbP3pfsf2eIZvIxbtiscjBcqgAlV4kh6csagbusMKlaEYB9nkZ4XKp72f4dyKRS8ikqVZ1Kt1SBLZ1ivf/EoMjga72KQyKWgR3RO87lOGZrpfxSAWLbVeOpMOJRZzhRwoilpXYvH4M49vZvX5oau3K9wKdTupeadtDgqri6u+NqgWBkcHseRjpx5LsTg2hOJysc1G14JF3lKcjVhsCG02qACQLWSha7rvtuLAbeMbdZ0wxeKuG3aBT/E4/cLTOx1aG/aX9wMATh9av20mSJBg4xCZWKxUKiiXyzAMA9VqFZVKpflfsVjEL37xCwwNDW3kWH+v8K07D+Kvv+5vBfBMhEU2dUIsyh42otPF9oLml48Shdnjs8EFRcokQmqyd+FpKRZTPoQPQIhScZ2IRQtDhYjWjFaBSLOgQpqtPEuDDlAi1F3WtDzjJBarLmJRFkXwGX+bCABgbTOsJFFoIyIrM/vw96/8g+bfp557oeN9d/0razpSHvarbkimpWbNQ8HHMTR0PY4RKlEsUhSFsU3bQsmsfHd8xWJdVtGV5nyJxRPPvBCllWU8/UR7NoaFrp7eNvLXjcktxM/erlokikXy0FI2FYvHDuUdfw+OjmHZT7FoI4ZTNiKZViWkWRplofWgPDw2gdLqSvP7ccN6XY9ALGbz+VBiLwo4PgUlBs+c5RmouoFUOg2h4f8wZRgGdt/8G5x3yQsizbR9eLoMCsALTxj2zB1NEA9JLfIsxrpZoZr3kvUiFvn261Qo7EQik2pXHdZdjYsgK9Soyku3YtF+uYlog/rd//c97Dnknburum1O8+15fAbtQyxaig33NdPW3FvxmoHutz2YE0dsM8brCrFBtV+X9xycxbmf2ds8FC+88Iz2DbmJRQ+SyQ2riVeqtZ9jqoHYisUZs2F13NZJVMLsx/IFMAy9blaoAPAHF52FWkPA7fc/5rtMf0/BU7Fox86tJMfTbocaVbHob4Vqq/csK1S/jMXxIUiygqVV7zotrmJRVTVIa1CMWIirWAQIGRmmWLz2prvxkovO9rWZTbBxSGqRBH4ois5nNm2dJk3FzTK0kx0WWWgnccpSGTmuVd/IulOx6LYp5WiujaSyE5NHDHo0K1Q/uK1Q3epFL2KRoijwvPc2WZdNvEUa2YlFeVHG2/74bU0F4rnPC1eZxyGBvCxTLWIxjgPDsjnBZ3L7ZCixSNEU8l35SFaoQRBVsUnSnXDmCdBUDfffcb/v8t293aGKxU3bNgGAww61uFxE32Cf3yoAgq1Q3YpFnm6dD4Krxh+ZGAEAX9WilcNJMU7Fotd3nsuT32jY9xEFcTMWAZKzGGaLu+vGXTjzOWc2FbnrgUPlQ+hN9WIwm8TIJEjwu4DIxGJPTw/6+vpAURR27NiB3t7e5n8DAwN4/etfj7e+9a0bOdbfO6geKr6jAS/7zyCIPmReELzyCac8FIsW/A6NpYRLcaRIrPswCxaRyQUoFjMc7fjsPEsjx6/t4X2oEO2Ga1cshtnDpVgadICNaEN2zpTkGNphherOWJQkAVwIsdimWMw5FQAMpWNkfFPzb7e1ZJtiUTXAp8MLaItg07T2Rg9Nxf/NLC/Mord/EF3dPWiEkFnpTBYMy7YRsUGoyxp6srzvebb1xFORzeVxz+03+W6j0NOLaohKcnzzVlAUhamDTzdfs2csVkRyvI4ZtohFMpsyyAp1xaFYtHfxDAx1pVERleb3ODRKmomLczPwgmjO5lZtX49vxmK+AEWRIctrm5mXzeViTXLI8QxkzUA6kwu0Qj20bw/mZ6Zw3iUR8xWnSpjoy2DbUPBvKkE0JLXIsxjrRSxy62yFynVCLNruJ2wKlJvkrLmaDYFWqB0qFi3b0a6xNdugAoDqVizm25vmvlao1j3bRiSCZgGbg8OqV3OK9q9tNIpzbK8uU04bVAC6VMdwVwqD/WRiUM1r1rWLWHRvwwtlcza95tGw03TKPJej1yPT88vIpFOYHB0IValRFNBTyGO1tH7E4qnHbcPIYG9gzmJ/T5enqtSOydFBZNIp7DnQqgXml4sY7u8JXG9iZABT88ueqgtHxqIqhVqhAvDNWbQUi5k2YtFDsWiSgWu1Q+U4Fik+/sTEfDYTmLE4NbeEh57cn+QrHiUktUgCP6yKzsmvcRRjQai5s5pDINrqDkux6CAWZSexqOhKk1ikQLUpFjmPfFu7leoRQ4gVqqIp4HjOV22uGzpomy27m1j0yljkU7zvhBbOaM9YZDkWjD1GhGaQK+Sw7bhtABCqAAMQiaSxbMfXTbFoqvWiEIsAyVkMUw+GQdTEpvK1f7gfk9snA+1Qu3rCFYv57jx6B3oxta9FLK4uraJ3MFyxWFwqQpba89QtxaJ1HqRs+d12dTBArFABYGHaO2fRIp8tkhIIViwCR5FYDFEsVktVPHLPIzjvsvPWMjQHDMPAnuIenDl85rptM0GCBBuLyD5xN910EwzDwPOe9zz88Ic/RF9fa8YHz/PYvHkzxsbGNmSQCY4uvGxKAWChImKmJOCMTc6btKXyMwwDP3toFn902njoPmQP8nK2FL8puFQlTYOeLCny/BSLlpVqILHoQSIO5FOor3Z+Y7fsYsPQJBYZLtQejmdpUAFZcg23YpGlHTP63RmLsiiCy+QCDVgtpefP/t83sbK0AD6bh24YaDxxK7I7LsCWnSfh1d/+MV525lbIkggxJLPOUiyGmcUEEWy0oUPrQLHYPzyCTC4fmutHURQKXd2oxVAsarqB/rz/d8MwLE4//yLcc9tv8Vd/+w7PZbq6e0MzFlPpDIZGxzFtKhY1TUO5uII+W8Zilmcw1k0KVssadWB4DMWVJSiyDM42E1OWJVTLRVg6VN41G360O42SoEDRdKRYBkNjEwCAhdlpTG49pm18siSCYVnYf+Zio97MgLQja6pfG7Uq+L5oCl8vZHL5eMRiikW9KiGdDSYWd990PdKZDE4750LfZSzIqo4n5it4wfHDGMh3/lkStJDUIs9irBexaJFN66JYpLwViz/5O+DB/waumgFSHpMG7E0GNtVODsZRLEb9HO5tWvAj+2JCNVxdtZyHGsej8QjAlk1pJxYZ2Dt1XjabvtuDSSyan+1JfQvunDWQMa3KfrFXwbYtOo7vN3D7VWfjuP/vCSyulNuJGsMAJOe9P4oV6kqpih6f9xQDyOha63zWFGD1ALC8B1h6Elh8Elh6AljZ11RkziysYHy4H135LA74NKLs6OvOr6tikaIovPg5Z+KXt96Lf/2HN/jss4CnDnlPHrJA0zSO3TzmVCyulDAS0sybGBmAIEoolmvo62k5YBiGYSoWzfOgSSx6qwg3jbaIxXNO2dn2viB6KRZF5D2aeV35FrE4FEKMBqHQgfUYAOSzwYrF626+GwxD48XPTRpvRwNJLZLADyWp5Pi7k4xFwzDaXFHiKhbteYpNxaI14Yoi2yvwreutorWIxTyfB8s4exZ2hZaFHNuqj+6U78Rt07ehJ9UTa5yxoQM67V0vUgYFWZeRTXkTKKqmwoDhVCzSLsWiR8aiX74i4LRCvf5H12Nq3xRSpt129bEqCl0F9G3tw7t+9C78w1/9AwCEZtYBxAo1rKkRpBY0FFOxGKO2Xp5fRk9/D7p7u3Fwz8HQ5Qs9hTVboUqahCyXRVEi/ahzLj4Ht/3qNs/fgLXPpx57KnS7k9smcXj/4ebfURWLALCysILRTaOO91YWV9BjVn4MxTjOG7dicWBkABRFYWHGu55r2praTr0wxWKQPWwU0AwNPsVDkeK5MGRywRmLd99yN3RNx/nPP39N47Pj6dLTKMtlvHjri9dtmwkSJNhYRCYWL774YgDAgQMHsGnTps7ClhM8q/DdXYfwX3cdwi3vuRTd2VZRJaoaNN3A9++dwvt/9AgasoZXnbMpYEuAojkrJ8MwMF9pNYCikkVzZXLjS7MMUiwNQfFe0yIyMwH2QWmu/b3BQgqH1kAsprloImHK/MQUwwJa8AMJz9KgOP/mW92VscjRFJiQjEU2nW0jFiXbC2mWQaVUxBc/dhWy+QLGT7kQc7/+EmoP/RoDL78KqUuOJYHP2SxkSQxVAwIA68pp9AIhFr3VI5ShQzcAQzeAiJaTy4tzGBgaRTZfCMwItJDv6kG1Uoq0bQth9rfnPOd5+PzV70W1XEKhu6ft/UJPLw7ufSJ0PxNbjsH0QUIsVkqr0HXdYYWaS7EY7kqBQuucGBwZg2EYWF1ewPBYK4OruOyc7Z9x/RbGutOYWm1AUQ2kWGBgaBQURfkrFkUBqXTGYU0qNOoYzebw4Z8+ij88ZQxnbyXFfi5PmvSNWg09fQNem4uETDbnsDIOQy7FQi4JyGRzgVasu2+5HmecfzH4VHjz+cn5ChTNwEU7Bz2vJwniI6lFnsVYr4xFC+tBLHIZb3Jrzy/JvwdvA3b+Qfv7ditUNg1KcxGLDddkkaDsJPe6XlhrDlyEHEnFrVjk0lCZLFit9VkpX2LRbGQwtusgxTisUb3UcL7bA6BSPEDR0DQNx//zw+jKZzE62Id3feKr+OwvGviH55fxBzt4UOmeptVlmxpQqbe5Qtjz9/ywUqpgu9+4NIOQio/9GHjof4HV/S1ilc8B+REgNwhsfx7QPQnwOUIsDvWjK5cNVSwCQG93fl0zFgFih/qtH9+AqbklTHpkP/X3FLD7ofB97tw63iQWRUlGuVrHcH9IxuII2d/0wrKDWCxX6xAlGS1iUSSENOVdF/d255HPZnB49v9n773jJTfr6+Gjrunlzu273uayLuuCu3EF01sgCTWQEEhIQksM4U2AhABJCCkkJL8kJIQSCAECcQglgMHYhoW1ve51vfb2cuvc6TPqev94JI3aSJp777osc/jw8d4ZjfSMpJG++p7nnBNOstuKRVHon1ftbg/lQrD+dBOLa8Gw+Yo2cplU5Lnw7VvvxFUXnoNifuSG8FRgVIuMMAgN2TsBdTWKxbbSRk7wXpf8OW5xcJMdttrQJhspjoJmaF5i0aVYzHHBayIfMok545p4tYxl/M7Nv+P83YpyYlgLDMCgwskyBgxUQx1ohaqapBZxE4tu9SIQboUalq9IW8ZvbmLxE+//BBiGAS/w+NzffA5H/+MopvQpcNs40hexJrH02gkUi2kRiDnkjVpwsvM5nz8Hekd38hl1Uwc1SG7pw/L8MipTFaSz6Vj7S4AoFtdqhSprMsqpPuF3yXWX4L8/+984uPcgtpyxJbB8vpSPtUIFCLG496G9AGD1OuIzFiesyUlLc0seYlHXdNSX6w6xyPps+hVDIRa81m+E4zmMTY5h4fgAYrE3gFgMUyxm10exmMqkVnWfSmfSkYrFXTfvwmnnnIbxqfWzLN09vxsZNoPnbHzOuq1zhBFGOLFIbIVq40c/+hG+/vWvB17/2te+hn//939fl0GN8MyAZhiod1UcrHoLCkk1oBkGqh1iI5BEeSj7CIB6T/WoGJdbyazAlttkmxRFMtO6WnizzbY45SOIPj+ZAgCT+dWrjkSWhpgwB4U23YrFaGJRYJmhFIscQ7vdx4KKRVkGGzLTr63096XAMpB6pMCRel0cf/QetB+8GWMv/j1kzni2Y0WbypCGR5QCzFlnJp5YjFILUtaD2zB2qNWFeVQmp5FOZ9DrxI8xO6RiEQCm8tFNpYuveg4Mw8A9u24LfZ8oFuPtV6dmN2JxnhB7tWXSVCuO9YnFnMAizbMopDi0HWKRFM1L814LPbcNKhAkxDeU0+Q3alsK8zzGJqaweDycnJV7PYipjMfCuNftQMjkMdeQcO+R/vdLZy3FYoyCNA6pdBaSaoClkp0PGYGFqhkQIhSLjVoVj95/Fy69JqEN6tE6iikOF54S/SAzwvAY1SInIdbJLszBehCLfNpr35kUbsUiI4QQi1Xv327Foq+ZCE0G4jJyoojJJBALsYuoRrBeUgXftW0QEWhPkHKrJ32Wlv78PsMEWC4iJ4kmVqgdq0HT6UmYW1rBJ7/4TfzJtSJefHYJUDoAwyNnNWsCCjApuN+SKRYH72/NtkJ9/IdArwac/iLgojcD1/whcP1HgKveA1z6m8D5vwJsuw4Q8ji2uIwNUxWLTIpvHpXyOdTW2Mzz43lXXACapgfaoY4V85Hf28bm2UkcsfISF5bJvT2JFSqAQM6iJ18RcCkWw0FRFE6ZGR9shdqTkRIF0K4iuN2RBmYsAmsnFleTrwhEW6F2uhJu3nXfyAb1aYBRLTKCH35icTWoStXAa24FYhJIev/64c9YpDLk3hsgFhkOz559dmhDP1Sx6LJSPU0+De+64F04Z+wcAMBSb4CLwloRYYXKUixUXSVEYMjjn2rZsrvVZn6SKKBYlMMVizk+h6P/ehSn0GTyvGmakHsyet0eet0evvDJL2D8BeMYe/6Ysw2b8BxE1MiQUbiU1GNJrFAHEWxMhoGprU6xOD41jnQmnYjIyhaya1csGrJH+Xr+pedDEIWBdqj5ErFCHWR1a2Nq45Rj7dppdqDKaiyxaCsW/TmLteWaZ3tciE2//3c/OTsZb4Xq6lH0ugMUizlLsdhem2IxvcpaJJUZbIWqazruvOXOdbdBfaT6CC6fuTzUfnmEEUZ4emJoYvFjH/sYKpWgimRiYgJ//ud/vi6DGuGZhb0L3uaGrBLF4jCo9byy/IXm2huCKZ6BNICTs0nLKAVhGLE4VVidpRFAGh50QiWdbYWKBMSiyNJE2TgAfsUiy9CgPYrFuud9RZbACsHv2XIdIp6jHGLR0HVI7QYmX/unyO54LgAgbROLVoZenBUqADCpJIrFCILNUruE5XUOwvIiIRZTmSy67fjCeFgrVACYiCGjx6dmsPm07QNzFvPFUkBVGgaapp2HqFqVFMRll2IxJ7LgWRpjWR4dWYdhmhifJDZN/pzF6uI8Wad1nvjVdjPFFLqKjrbLTmNienag6lOWehCy3hzOXrcLzlKp2raqQJ+M7iQ4HlFIZ7KQVB1cQmIxK7CQNQNiKj2QWLzzJz+CYRi49JrrY9dnmibuP9LAmdM5TMSQyyMMj1Et8jSB3Aqq71aL9bJCtaFKa1dBsqnVWYm679ucCOiuvBbTBHrufUZ57Th9s+ehyfGka3Mu+v11gCey2vp+quC1laLjFIuejEXG8139ikXVoD1ZeH7oIFaoHYt80XUDna6E7/zLn+BN51ufUzoAKzjrCRA1IYRsWhSwt0q+rEKFX7v9JKh33CYAkxyzzARw9i8Ap70AmDkPKMwC6TLJAXWRW7YVai6TTkRklfLra4UKAKVCDpefvx3f+8ldoe+PFXNYabRhxJDcDE07DbiFah0AYq1Qpyol0DSNI3PeZt7xRfI7cYhAXQaowRmLAMlZPDw3OGPRn6E5KGPRJqObCYjeKKzJCnVAM+/m2++DrKh42XUjYvGpxqgWGcGPhrIOxGIvSCz67Rbj0HPlTAeIRYZcQwt8f1KRburgaA4XTl6IS2cuDawvTLGY5fqKaQoUTiudhitmrhhqnEMjohxiwTqKxbBwFNWqRViq3zfxKxZbjZaHRJIleaAVav1ndXAU5yxnmiYM3YDck/Hhf/kwKtcSS0xn31m3rkHWkkeZo9j42xvRVbtrIhYBwLB6XcMoZpcXiGIxlU0lzlhcM7GoyR7lKy/yOP+K8wcSi4VSAZqqxeZU0q5aZGWZ1BLliWgr1HQ2jUwug0Xf5KTqQtVZJ+Alo02r5+n/3U/OTgbWY0OWZDAs41HeDlIs2q91W2urRVZNLEZkLD5090NoNVq44vr1+83bNqgv2hLiBjPCCCM8bTE0sXj48GFs2RKUpW/atAmHDx8O+cQIJzv2zPtCrjVjKNUYAFTb3tn8C81kCsUopHkWsh4+DkUzwNAUeGZwwzAsYzHO1nK94LZCNbRoL3SeoyNncHcVHayL0OQYyu0+FlAsypIEhg8WNm3LVpahAJamHWIRALY/95cgbjzH+dvOkhRTln1DAjUgl4q3c2o3I2bLO8RisnNPkSU06yuoTEwhnc2h241v0g1rhUpTwFhmsOLCxsVXXofdO28JnX2XL5bRbjaga8kzOlYsK9OSpVhs9jTkUhx4lkYlK6CraNB0E+lsDql0BssLXmJxZWkBLMuBohnQhhbIIp0pkvNjudVvlk9Mb8DCAGJRknrgM15iUep2nGNe76qObWnGyVhcW9M0lclA1nSwdHJiUdEMCKnMQCL8jtt+gNPPPg9j45Ox6ztS66HeU3HpljLyYmLX8RESYlSLPE3wsQ3AX24B1OEaXqFYbytUXV77OrlU5P01EfxWqHIzOGFIjmjMaAm+R+vEE4se8wNrZrYqehvqFGvf73zXXUsl4CFpfYTtir+ZZ1BIDbAzAwCNYgGaRqfXJwsvPvc0vPCqi8jqKZMoR1neaQYF1ICWYtFw5Udm0iI+fY+KU/++BSm3KXTbK1HEor2fnGMWPaHMNM2+FWp2GCvU9SUWAWKH+sNd90FVg/XGWDEPwzDQGCLnZz6hYpFlGcxMlHF0IVyxyNluH5rstdMNwSnTEYpFSQ5Y3ba7J1qxuFpicbBi8du33InTNs3g9C0b1jK0EdYBo1pkBD+aa3UQAJy8ORs9rTd0VmOYYlHyOTm4iUUgnDz0r8MNt+LxyYIZ0WPiwHmsUP1qPZtYdJOJjK8WURUVkuvaq0hKqBWqH+7PnLLtFFz9oqv74/Ltu0GknV0DSbqUjFiMcBFwiMUh6mDbCjWTzUBTNSiyErn8Wq1QdUOHYigeghoALr32Ujy4+8FQQitfJP2EJHaoNlasWiJOsQgQ1eKSb5JTdZEQi6zV3/KoXK0h+n/3EzMTAxWLck+GmBI9x6bXDScWeYEHx3NrViymsqurRaIUi7t+uAvl8TJO33H6Wobmwe753chwGVy38bp1W+cII4xw4jE0sTgxMYEHHngg8Pr999+PsbGxdRnUCE9P7F1o4eHjwVl4B5ba3maQZsAYklhc9hGLi00JAjv06elBhmc8uYBuyJoB3mcJ6gfP0oF20Hj2ySEWPVaoejSxKLJMLLHIu/YlS3sVi+1WA7re31GKLIEJyY9r2xFJFPDjb/8Xdv7gO857mTFiqWmaJijTAGdtj7bUCUmsUBkxPDvRjUhSz3pY0OIs4yxUF0mxV5mcRjqTTURkZfMFtBvJZ6JmeBYCG9+UvvjK52JlaQFPPPpg4D07d7HdSr7denUJ6WwOgmjlSskqiikWPENjIiego+hQdQMURWF8aiZghbqytIhSheQM0KbmOV8AkrEIACvd/u+WKBbDMxblXg+8jzjudTtgrddWOopDLKbtjMU1W6FmIKkGuIRxAlmRhaIbENMZ9LrBBz5VUbB75y247NrnJ1rf/Ufr4Bka126fGGXvnACMapGnGepH1r6O9VYsanKs4j8WbGp1VqiedfiIxc5ycBkl4v6jJ1AsPhnEohG8jqkpL7FIs1bzzD9e+zi43RV8ikVdNzwkjqwDqYhmnk6x+K/v347P3fgD57XxUtH5N09ZY2D6ddsgxaLsipy3FW37aibJQgxBpGLRntyU8NxbqbcgK6qlWExBVlQoSnTdV8pn190KFQBeeOWFaLa72Hn3w4H3ykXrfj3EdheW66BpGuPleKvdDZOVUCvUfDbdd/vQ5EA2px+bZiYGZyz25ABZPUixKPAcOI5dh4zF1TXzcplU0LoXgGEY+Patd+Jl1wUVRSM8+RjVIiP4sR7ZgiuS1wmiLtWHXkdP6zmkGQUKLMUGVI95wTvpM4w8tBFGOoZlMZ5wJFQsAnByBm04ikVX38RvhQp4CTtZHqxYtLHr5l34+r/1LZELYz7C1mcjO0ixaEMyJJKxGIMoYlG3nquTWqGqioracs3JWATic/3WaoXatWIDsry3R3DJtZdAVVTcvTNozZ6zcpijvrsftSVC1JfH+4pFSZPwhYe/EPhNjE+PY9lXi1QXq6BpGow1ycmteLWJRf/vfnLDJJbmlzw9NmfbPQm8yEMz+3VirxNuhQoQJeVaFYuD1h37uWxq4Pm66+ZduOy5l3ns5dcC2wb1iukrRjaoI4zwDMPQV4HXve51eNe73oVbbrkFuq5D13X86Ec/wrvf/W689rWvPRFjHCEEm//gO9j8B9+J9RdfTzz/b3+Ml/z9TvR8mX3H6hIkl0eWrOlDKxaXfBmK800ZxfRwNxR3JiNASB17GKaPIlR0AwJLBwgTN2iKClhA5p4k5ZFthUqxXKxiUeDoyMZnV9E8JC3HUp7vbZomOi1XAS31QHPhxaxpGqje8ln865+9Dwce3+O8zjoKR0IsMr792uvEN6LYRMRiBLmmD6dYXF4kjdixiSmkM1kosgRNDd/X2QteAtmgkcsXo8fgQ8ayH43DjgsvRa5Qwo9v+nbgvXyRzK5LkrNoo1ZdctSKqm5AUg2MZQRQFIWJvIi2pDm/0crUTMAKdWV5AWPjNrGog/FZ+I7nBNAUsVi1MTmzAUvzx0MLaEWWwKf7D5+6pkHTVCfLUzNMzFsqZV4QwbBsImvaKKQzWciaAS6hYjHDM5A1A0IqjW7I+frQPXei227hsmuT5Sved6SOUycyjrpzhPXFqBY5CbHeisUkFqJx4IThiUV/XcalvBOE/PmKQDSxqCnx+6Z5PPr9dYASMoSgFSppnpm6j1SzSbYIxSLgtUOVdQoiH14HmqaJT/xoHq9571/jnkeecF53q9EE2how238toAa0FIuy2d/OajMW7caKagxHLB6zZsLPTlYclVycavFEWKECwLPOPhWnzIzj6zftDLw3ZqkEkuQs2lio1lAp5cHEqAwBkrN4xE8sLq5g2tUIhC4DDBs5efGUmQmsNFqhNqI9OblikaIo5BNa00Zh9VaoqdDz4N5H9mFuaWWUr/g0wagWGcGPthq8NpumiaXuEnb8+w789NhPY9dRl+uRfyeBrMsBAs1NooiMGGjeRykWBSZIrqW51dkrrgVJFIucVTtoPvW9YtnSuxWLfitUAGi5Jg/JkuwQlWH42Q9+hg++5YN45L5HnNf8RKR/P8cRdj2tByEVP5k9SrVnqsNlLNqqvGGIxVwhh06rE2uRPgj2byXPeQnu2c2z2HLGFtz2f7cFPlMoEdJ2GMVibbkGTuCcvEIA2N/Yj90Lu7Gvvs+z7Pj0eMDCdGVxBcWxomNA4SHgNfJ3S/URizOT0FTNUUu6IUsyRFH0HJtBikUAyGQziaxpo2Af02ExyAr12MFjOPzEYVz+3MvXNC43Hq89jobSwAu3vHDd1jnCCCM8ORiaWPzoRz+KSy+9FM997nORSqWQSqXw/Oc/H895znNGWQJPAY43wm1yTNMMEG3rBb+6cKEloaP0CzdZM4bOWPSvc77RQyE1HLHoz2XMCP1GhumbjaZqRFUXRSwCQTvUJ0t55Fih0ixMLdqGQmQZmBGNz7asecgthqbhj3p0Z/gpsgSa8xazHVmDofSw9D9/jpU7voFf/b0/xvUv+yXnfZoXnXXSMAJEVCLFohBf8LSbg8k102rcagkzFm2Vnq1YBBBKKKm6gbHn/zYebrDIFgpoD2GFmhOSEYssx+HK61+MH3/vmzBN09mXBqhVEYsry0suG1SyX+ycv6m8gLasOftpfHI6YIVaXVpA2bL7pAytPx5dB80wYBka4zkBjV7/dz8xPQtd01BbDlqQSVLPY3WrKuScplyWu/MNK/eDopDO5NacsZjKZCFrOviEd7k0z0I3THBiuBXq7bfehLGJKZx65o7YdTV6Kg5Vuzh/YwnldLx9zgjDY1SLnIRYDztVN5JYiMaBEYe3QtV8Vu6sCMqdsWgrFt3NLCXiHqkr8STVCVIsKi7CLcxaXk7P4IEFHRJDru8MZxGL/glRNrFKD1YsAkDV1SiSNIRmLEqKijf+j4S/+cFRfPRdv4Lf+9VfcN5zq9GEUMWi7xyTmwArwHA9DvmJpzCEKRZ5jnw3RbOJxWTnnq3SsxWLQHyuX6mQRbPdDZ3IsxZQFIVffsFV+Pr3fxpY92qIxfmlWqwNqo2NU2GKxZqXWNQUgOLQ6UnIDFBzbJohk6IOzwVVi92eN2NR1w1IsjJwXfnsOhCLq7ZCFUMVi9+65Q4UchlceeHZaxrXCOuDUS0ygh8dNXg/V3QFDy8TJfhNB2+KXYefSPRboyZBT+t5CBCWZiG73BNSbPDaNKxi8cl2ZKEZGmbEBGKe4qEZmmNZqfliRGw7WTfh6rdCBYBGrT+JWJGUUMWiTVp+96vfxat/89V4y++/xXnPb2Pq33exisWkVqgR5Jo9vqTEom3/OT41PhSxaJomOs3V2XR2NPI5v3IWAK596bX46U0/hSx5a+p8ybJCHaIWWVlaQblS9pyvLSuCoKt5v+PE9ESoFerYZF+Bbp8/uqaDpmlkuWyoYhEAFo8F+yJyT4aQEjyKRak7WKWazqXXbIW66ozFTArdTjcgZtn1w13gBA4XXnnhmsblxl0Ld41sUEcY4RmKoYlFnufx1a9+FXv27MGXvvQl3Hjjjdi3bx8++9nPgudHDdQnG4MUix/4xkM4/YPfxWIrnHhcT9S7KmrtftNMWUXGYq3jJc/mmzLy4nDE4nyAWBzcDDQBYoUaUw+nQ3IWnwzYVqhIqFg0rZ+yHkKqtSVvRh5LU4EHgVaj7vxbliVQrLeAXmrLWPnhv0I6dD+2vOaP8LI3/AZkqV8U07zobIMyjcB+TUYs9h9wFCm84I6yITUtexM14blXXZxDKp1BJptDOpuzxjlYAaCAQa5QRK/b8Sgbo2bp5RIqFgHgmhe+HMePHMQTjz7oHB8dLPIF0lQbWrFYIcSirSqcsvJBJ/IiZM1A25oMMD41g6WFoBVq2VEsag5RrBs6GMvKbiovoiWpDkE5ObMRALBwPJizKPd64FL9WYKKYpGIFrFIAai6rgGZbDaU5B0GYjoLVTfBMwkVi9ZEBDadC5yvpmni9ltvwmXXPC/RQ/SDR8l5+twzJ8AyQ99mR0iAUS3yFOErbwB+8CcnZt3rTSzqCZR+cWCFUGVdJFRfI4ZLgTLcisVl53UHSgfIzQDn/BLgVwDoSrxNbCM833at+IZ2NW64iVybZS14LTW4DM77VAdKnmQRMtakJNNv4W5/f7dyjQ5aWrptNnuaGZqx+Fdf/B7++1EVn3z92fjg77weXVfTKVSx6FIKBIgaqRHY327F4sJy+H03jFwTLIWEMqQV6rGFKiiKwlSlNJRiEQDqq2zmReHVL7oKi9U6frz7Ic/rY5b9WJQNrB8L1TqmEmQaAUSxeHRh2fNcM7e0gulx8nkKpqNYbHV6Awk7m1g8dDyYbeTPWLTzOcOsUIGnmlgMz1j89q134oVXXQiOG2U3Px0wqkVG8EPWZci+CUbuvMMkaEje593V5DZKmuQh0Dia84wjTG3ot+x0I0yx+GSD5/lIYpG1bM1pa1bpIGLRTSYyIZOzA4rFEFv2r3+GWJ/+wq/+At72/rdBkfrPsf7l/cSi1Ik+H2RN9lhXNqrh/Y8oYlG3bCb0hM4dtv1nZXI4K1QAq7ZDta1Qw7I6r33Jteh1eth9227P66lMCizHesjfONSWayiNe2uRpkr2Xc/37FGZrqC2XIPqsqSvLlZRnuhPcrIVqDaxmOfzgQkFk7OEWFw4FqxFpB4hjh3S1yDE4gm1Ql1txmI6BV3TPfsDIDaoF1x+wUCV5bAY2aCOMMIzG6vueJ5++un45V/+Zbz0pS/Fpk2b1nNMI6wDHj5GbrZ2g/tEY89Cv6BQNAN6QjtKG/We6rE2WmrJkbajRgiherzuLQyiiEWAZCj6lXV+PFXEIoV+xqKhypHLiiwDwyqQ9RASsqNo4F3kBhfynZv1vk2DLEmg2H4BrOsallsyile/EVNv+EuMnXExaAqQev0Ch2IFsAxZLw0zqFgcQBKxrplalMt+tbkSnN0FeAlQP2zrtaTn3vLCPCqTJBsyZSsWI3IWNZNYoQLevMOF4yRbLFcINs/yIufZ91E4/5JnI18s47bvfdN5TQWDTMGy/KgHrTQGoba82FcsSmS/TFi5iHZOaL1LzpXxyRmsLC14yNKVpQWUK6Qgpg3NIdMMXQNjZUbOltJoShoUi1icmNkAAKE5i7LU81jdqjI5p20Ce6ogYqWjOL/rdCa3ZitUWyEpxM0esGBfL5hUNkAsHj24D8ePHMSl1yS0QT1ax2wxhdMnn4LskZ8zjGqRJxl7vg389G+jFXarhRb30Gxd2zUZUBI8YCfJJowDK4TnueXIvSPUwtS/b3wTddBZBrhMX61nmoSMnL0Q2PFLAOtrYCUhSJvHvUTlOqGNDD59PwWGoUOJRQcsub+wvPVdDb9i0bZCddVlFAP4bOrdhF1PNT2KRc1S0L3z1c/FT96cwQvOnwUAdHouBYYQQiy69kvQCrUBsCns0Tc5Y3ITT/uPzod82XByzSEWtWGJxWVMVorgOLavWIxp5tnEotsOtTqELVgULt5xOjbNTOC/vvcTz+spUUBKFIZTLC7XMFkpJlp2w1QFna6ERqv/+yHEImnm0RQIwU5HE4vT42UwDB2as0gUi/1a0yaaw6xQASCfTcWqR+Ow2ozFbFqEJCvQXBlhxxequPvhJ0Y2qE9DjGqREdyoSl7Lc0WPdh/yo6E0Iv9OAlmXPUQhS7OQNBexyIYQixFWqFFqxicLLMfCjKhFeMpyTeDJMn5iUbUmPbmJRU9eHogq0k3YyVI/Y5Gf4h01/yve+AoAwIVXEcWW5JoIIoo+xaKPsO3G3FdkXfZYodYGTHKKUu0ZVkxRUsXi8sIyBFFAtpB11G1xKrlcgTznuolFN8EaB5tYLAjBHOZTTj0FW8/cilu+fYvndYqikC/mh7JCXVkkikU3Olat7lcsjk+PwzRNxxrW/vzYxADFIkOjIBQCxGIml0EmnwklFmWJHF/dqu01TYNpmpFWqGtVLK46Y9Eak1tl2262cf8d9+Oy5162pjG5MbJBHWGEZzYSTXe84YYb8NGPfhSZTAY33HBD5LKf+MQn1mVgIzwzkOYZdBUdexda2Fjq56UpCe0obTQlDapL+dWWNeQiFIuNbpBAm/PZwmb46NObY4LKPT/SEes4EeYftvqNtq1QGRZ6HLHI0U6GZFhGYMdvhcoER+4m7BRZcmb4d/bsxN/+51fxyj/6N7DZMpAtg6ZI/qSXWOTB0X3FYtAKNbyAntXnsV8pg0vlPLmOrZXl0OVbrQbKoe8ApqoAED3nURSWF+ccYjETYYVqQ6cYZwZfq1FHsVwBABzY+ygAYMvp2wOfyac4cCH7OwwMy+Kq570Et33/m/iV3/l9AIBGMaAZDql0JpJU9aNWXUK5QmbtN3sqKPQJxXFLuWj/hipT0zBNEytLC5iY2QBd01BfWcbY+CSwSIhFxiEW+4rFjaUUfrZvGYpmIM0DmWwOmVzeIVrdkKQuCi6rW1W2fqusAJpSsbmSwVy9B0UzIHIM0tl1IBbTOaANCAkVi/ZvnRGykHpdGIbhZGbdfutN4AURF1x2Zex6VN3AI8ebuG77OCrZp35278mEUS3yNIImA3x8Lu5QUGNm9HdXgEwF+FNybcMHFoABecAArGzCZOTOQAyaNTtzPrD4MFA9EHwvQCz6xthZBoRsX9moy2ScfkJxw8XA0d2WYjGGWGwvAEJu3VSfkqLCPWqB59DTzNinBta2Uffvd5topAcrFjmOtTIWyT7vKoRY7Cjknv66Gz6Onf/51yjm0tg0w+BhyqpTXM08j2KRChKLAQWYVAe4FO41tuO6P98N+ZfPQCbVb+AdWwjJw0S4YtG2QpXtGIKEatlji1VsmCT1RF+x2EUuwraqZKkE3JmUD+49CADYsmEq0XYHgaIovPpFV+Hz//ND/MMHf9vzXrmQxUo9uZvAwnINl50XrI3CsHGKTIY6MreEokWcOsSiDHCUtV8ZDu1ub+D+YVkGGyYrOHQ8OEGtK8mYKBedv9udGMXiU5ixaH+/Tk9CwcqF+s5tu0HTNF501UVrGtMIa8OoFhkhDtXe2ohFv61iU26CAgUTySdu+4lFv2IxwwVruChikaEZMBSTWAG3HmjWm8gX+zaZnMBFKhY5qy6wyoggsWhaxKKrFvFboeYKOTQbQWKxztYx+2uz+IeP/ANO33G6Q6rZcBMvtmKRKpIaJ2CFGuNKIOkSSun+hOV2I/y+26g1kEb4vXA1isXx6XFQFOVkEfY6PRQQJP1sOMSia7LVoScOASAEbRxsUi9MsQgA1730OnzpH78UsEPNFXOebcahtlzDqWef6nmtrZF96s4dBYgVKgAsHV/ClFVPVReruPiai3EQBwH0iWJN05CiUygKxcBkAoCoFkOJxZ4MMSU6x0aRyfVhoGIxl0Z1QD2aFHYPyzRNzP76LPTjyc4Lm2TudXpOvuVdP74Luqava77iyAZ1hBGe2UhELN57771QLcLi3nvvHbjck+2zPsJTjxRHirF9i22HWASAthwkuGyyKcwmtS1pgUzIfGo4m5/jNW9hEKc25BJYoWZC1sHWD0MrngL6BDgczh/ej5niOf2MRVawCLPBEDgGhk0shigWu4rutUL1/U4FMeWx2ZQlCSbNorHrv1D/8Rdw3pXXo666C/AgsQiGB2eRlxSMQHblICtUGiZgGuBZGhTVbwi26kFiUdc0dFrNwcSiNQtxgDtwAMsL85g9ZTMAt2JxcJGqgUE6RwqqVrM/c9QmFsfGg828Qoob6rp49Qtfju987Yt4/NEHrVco6IaJfLHkycGMgq7raNZWHMViQ1KR4hknL9QmuzqyZYU6OQMAWFqYw8TMBtRWiBVZeXwCWDRIxiLdXzdtEYunjKXR7KmQ1P7vdnJ6AxYHWKGyrjxFxSIWTYYDz+rYWsngoWMNSKpuEYtrt0JlxCwhFtmkikWyfyiLAJV6XSd78/bbfoALLrsSYio+n+Cx+RYU3cBVp1UCGa0jrA2jWuQkQtiFelhSrHYQmIggLdbDCnWQ9dfYNvLf6t7ge/58pQCxuEhIWZtYlNvh27rqPcC9/wHsvyXye1CmQcjK8hagHa72Hxb3PTGHy1yiG4HniGIxjlgUrO8aIBZtxaLrmkh5icWxYs5SApK7fEc1kMoI+On9JNQeRwQAAQAASURBVJfqlOlxFHMZrFj9Pt0mFnv9RqknY9FRLLpq04AVapOQ0/Y4WMFjhTqYWOwToM72/FaoZlLFYhWzVnaPTSY12zHEoq1YdDUbbWLxtE0zzmv/uHAROofuwftePrgxGIZXv/Aq/NVn/hu37X7Q8/pYMT+UYnGhWk+csbhhipCrRxeWseOMLeh0JbQ6PUxPlIEjLmIxRrEIAKfMjIcTiz2vFWq8YjGN+QFKkaRYtRVqhpyHrU7PIRa/feuduOKCMzFWCuZRjfDkYVSLjBAHP7E4rBVqU2kG/hYYYaj1yLrsIQ/9GYthxGKcKpGl2XXP9o3Cnvv34JJr+gptnudhRExe52EpFllyH9Y171hVI4RY9Fmh5kteNZydsbj3vr04+M2DmN02i3wpD9PXz5JctYidj0hxA4jFJBmLbnX9AGKxWWsOJhZV8t0HxSb5sTy/jIp1HxbTIiiKQqc1vGJx/579AIAtZ2yJ3WZX64KjuYEWvNe85Bp85q8+gztuucPzeqFUGEqxWFuuoTwerlh0q3gBolgEgKV54npgGAbJaHRboVq/E13VwTAMikLRUV+6MTkziYWj4VaoqXTKIRZVq28apVg8/MTh+C8aAZsg1E0dpatLMH6WbCK+o1h0keG7bt6Frdu3OsTrWmGaJh6uPjyyQR1hhGcwEjE3t9xyS+i/R/j5RFv2NkvGswKO1noBxaEfhRS5UbSkIPnVljWovhloxdRw2RTHfFaoaSGeWGRiHvrC7FSphJYSw6B60z+DzZZxJPUsPOvcc5ymK8sL0LRoxaLA0i5iMbjfuwoha2wwDOUpMnOFIloWaWWaJlRFxhP/92+oP/QTFK54HV7/e+/EzYdUpBgTPZ0CQyNghWoyrGOxGq5YjCaJCLHYP95hisVWsx65jjjLWD+qi3M492Iy0ypjZSx2u20A4eedDgapLGnmtF1jOfA4IRbDGgilzHDF0XkXXY5ieQw/+f63gJmXASBEfL5YDmQsGqwAI+QBsLFShWEYKNrEYldFVuhnPRZSHFiacn6j41OkCbm8cBwAsUEFgLGJKeDh4yRjkaKgKgpM0wRjZWTNFFMwTKDakTFl2axOTM9icT7cCpXm+w9ItmLRpDnwjIItlQxakoZGT0UxzSOdyaE+QLWaFIxlvSom5PZshTPNWzPzuh2kM1m0GnU8dM+deOcHP5ZoPfcfraOQYnHplkEU+AirxagWOQlg24L6M/gAQFsftZ0DU1+7YnFQk80myKr7gt8l1gp1iVihYsm7vF+xCACpEll/xPdgtTb5rsL6kQ13PnoElz23/zfPceipBhAhEAX6ikXKP15dJQpF94wsmoE7kaFcyFkKPCtXuKfjuw/di5/d9xgA4C/f9xbksmks8Tn8+JAG7jwym99DLLqsUwVaJ4Sha/8PskJ1E55u4imMWFQU1SKkvOcGa90bZXuyzRAZi1deeBaAvnIuNmPRaua5rVBtYpFj+9/lkFrC/z6awfsy44nGYuPCc07Dlg1T+K/veu1Q++RvPHqSjGa7m9gKdapSAk3TODpP9vncErF/nxknxCJLW3WrTSxGKAE3zUzg4LFwxaKbfLYVrFEZi3sPBmuaYRBFEEfBJjtt8rMnyfjBz+7Fn7zj9Wsazwhrx6gWGSEONdn7zKaG1TwR8CsWW0praGJR1dWAFao7+zFMJRaXo8hSLGQM97y9Fuy5z0ssJrVCNRhyHx6UsegoGwFPDiUA5Iv5QMbiQ3c9hIfvfhilq0t4+S+9HPliHo0Vrz2t2wrVtk617a0E2rtf47ILFV2BmE5GLE4hnNzRFCsiZgjF4sQsUetRFIV0Nh2rrEzn0qAoykMsHniMOHmkE9z7eloPKXbwvXzj1o049exTceu3b/W8ni/lI21g3TBNk2Qs+vKebbWkX7GYyWWQzqaxNEdq9GatCV3TUZmsAFZZ4c9YLImlwHoAYHLDJB6444HA63JPRrFcRMsk+83OLxxELKaz6dhzJg6BjMWE8838xKKu67jjljvw0te/dE3jcePx2uNoKk28eOuL122dI4wwwpOLE6C5GuGZDDuPLQq1jldBN5kXMN+UPIrDVi+4HtYim5q9cLtO1TUDjaaAcmY4YvF4w1cYJLBCpWMki9mYnMb1Qvve76D+ky/i0J77Pa/TnAhViVEssgxsTlYLUTd2Fc3Z9wDA0LSjGAOAfKHkkFb269W9uzH20vegeNUbQNM0ltsystasOwYmaJqC5LY3pbm+YtHUA4TtIMVi/zvQnlzHMMVinBVoWL7kIBiGgeriAioTpBgX04SEispYVEEjlSVVWLvRf5jYbykWw1AekhxnWBZXPu8l+MkPvuO8phsmcsVSIGOxfdoLsTB1uSebFCA2qABQrpBGYr2nIieyTtYjTVMoZXi0rQeOTC4PMZXG4ryXWCyPT0LfexsynTnQNOWQw3bG4oYiKTSr7f45NzGzAQthikVZ8mRoqgp5KNXAgGdpbKmQ/T9XJ+dfZh2sUGlLIZlKrFgk38sep33O7t55Cwxdx6VXXx+7DtM0cd+ROrZP5TGei+nAjzDCk40DPwH+pAAo60zgDQPbllILaY65x+XP6IvDoBnZayUWw8g+N+qHiOrNDX/+Y5gVKu9quNgNxLCGHitYxOLgxhBrKxvWkVi841GvpbXAs+gp8ZOqeIEcX8qv1jO0YKYixXj+JKRVf18+vqLj7kf24zmXnQeA1C4AYDICrvl8F3KBzIb3WKG6iEWe0sm+dzUNA4pFuRXI0XQrFo8vBolFt/2oG/bkoqGtUBeqmJ0gKgGappFNp2LtN3OZFBiG9hCLD+wNseVdJWw71P++6acedcowisWF5ToAQhgmAcexmKqUcMRSCdjE4rSlErAVi5pBQ5KVaMXi9ESoYrEnDa9YXKsVqq08HPpzVlO5bTXzbrnjAfQkGS+99tI1jWeEEUY4caCsm1pN8hKLijGcFao/r62pNCH4JylFwIQJRVc86h+e5j3EZBixOEg5ZsNPwlkbO2F49F7vMzbHczC0wbWITRiaVgyGpoZnLNKuSU7+jEV/fp/UlfD4Q4/jrBedhZk3zzgTbP1wE4u2Fapd4/hVWHGKRVmXHdUj0Fe0eZaRZMdCMwyOYjHhAVqeX0ZlsoKu0sXnHvocUsVUrGKRpmlk81kP8bnv0X2B5cRO+H1QUqXQrE83rn3Jtdj1w12Q5T6hnS/l0aglyx1tN9pQFTWgWLSJwDCyfnxqHItWDWFnLYYqFq2MxbJYhqRLgQkEEzMT0RmLtmLRJhYH1CKZXGbtxKJ/3UmJxbSXWHz03kfRWGmsqw3q7oXdyHAZXLPhmnVb5wgjjPDkIhFr8qpXvSrxCm+88cZVD2aEwdj8B9/BObN5fPudVw31uaS2kDZ66vD2FlMFEXcfrqOr9D/bUQY385qSBsMwPaReV9Ehu7ZdSHGOzWpSzDckcAzlKB/jrFBZhg5YdvoRplg8kXjsQa+lDsMLxG4n4qsIrDtjMVyx6M7542mvjSlRLNYxf+wwBJEUd+e941NY4UijyzCBWlfB5hywJLmsUKV+UWzQLHiaBjQFotELELa9GFtLnqVhmv2iu70SbOb5FXt+GDGWsW40VqrQNNXJWGQYBmIqTcaZCVeaaWDACiIYlnXUk4os4dih/QO3U0gPb+dwzQtejm9/7UuwDWo03UC+UES96iVbTUaAKubQVXRkxf55urJMCuGSRSw2eyryKc6Ts1nJ8ujKOjTDAEvTGJ+awfL8HACgurgAmqZRLFdg7LkZGza9AjRFOdakdsbijEUs1nsuYnF6FotzIYrFXg80138gVmQJFEVBNSnwDI0t4+TbLrZJcb8eVqjgBAAyYoTLDuzrBcWTcUoWsXj7rTfh1DN3OMrOKByr91Drqrh4c9lRaI+wfhjVImvErn8k/93zLeDcV6/vum0l/96bgDs+BbxxwP63bSnDiEVtlQ/N938F2PkJ4Dd/HMxc9JN8w8JPCvrRrQJN32SKOCtUOyvShm2FGrYtRgBg9m1TQ8CpVgNMDO8SmE6FMBimrnmWuXOP9zsJHIeeGl9QcpZ1V2B7tmLRDZqG6rLSJorFNo4stTClmyiJFP7qvb+KfUeX8KPb70cAlrVY15W9kxL7TVGaAtmnVP/eF1ACyk2A2eJZxk1OHgshFuMUe5JqkJotAbHYk2RU603HChUgZFacYpGiKBRzWccK1TAMPPT4odjtDYNXv/AqfPzTX/O8Vi7ksP/IfKLP2xaikwmJRQDYOF3B0XlS69ik7vR4GXPoE4td65yJUgJumpnAsYUqNE0H61JwdiXZc3wdxeIAkjKfTaMZcyzisForVPv72WP81i13YOvGKZy5beOaxjPC2jGqRUYYBIqiwNM86nIdY6n+dX3YjMWu2vW4C7XVNkQm+SQFw/qfJ2OR4Tx2jXk+OBkpKmMRCNqGAgCt0TC4/r3cn1k4DKSe5CHU9ty/x7Mf4ohFwYpV0Vly/w0oFq1JT+4x+snSXDGH44eOo7pQRbaQhaqqeOM734j5sXkcogbfZyXJa4WqGzooeoAVarsXaVGqGF7FYhjirEC1EPewQTBNE0sLS6hMVbC/uR/3LN6D7OYsup34GjpXyHkVi3uCk5zOPXIubvz8jcDd3td7eg9pLoZYfOm1+Le//DfAdSvOFXKJrVBXrElKAcWi9VuQQ5zBxmfGHStUO9twbKL/e+ZpHrquk4gYmnZ+602l6fndT85OotPqoN1sI2tZ2AP981w3klmhprPpWJI3DnbGog2qkGzitf05mwzf9cNdKI4Vsf38ZPnZcTBNE49UH8EVMyMb1BFGeCYjkWKxUCg4/8/n87j55ptx1113Oe/ffffduPnmm1EoDJfhMcJweOhYE9IqiL8TjcmcCN0wcbjaLz7aEcrHlqRB8fnja4bpUUsWUpyHDIuDppuodVXkxf4NKR2nWKSp0IzFM6dzKKd5sDQVS06GQbYIt3aI6s4Pf07B/sce8agJGU5w1F2D4CaMBlmhujMWOZaG3OtXZ/liCUcP7sNv/eL1+MZ//BvZbqbgKD1asgHDBIqipXijzIAVqkEx4FgKpiaDM/rjt4vmJIpFuIqJVn0psEwcsagrye1hlhcJiWYrFgEgncmiE5WxaDIwTCCXL6BtZSwe3v84DF2HIA6YYbYKYnrHRZejWO43nVXDQK5QQjNEsamLBfR8ZHLdUizaGYtNSUVeZD3nyXhWQEfRoFkk/PjUDJZsK9TlBRTLFWdGpk0S9zrkGNqKxYzAIi+yaLjUyZMzG9Btt5z9A5BzQJZ6HuWPKksQU2nImgGBY1AQOYxleFQtNXQ6s3rFIsuS84ixFEFJo1oFlmSuUpZqqNtpQ9c07N75I1x6TbxaEQAeONoAx1B4zvbxUbbOCcCoFlknnAA7b9SsRsLXfhXYdzMw/2D4crw1ZSKMWPRnLBq+cQ4i15rHgaW9QCMkf0RZ4wSFJAqBI3d5/46zQu2tAO4Z2koEsWh/NoJYZNUmIe1Eb5PQsPbfSjOeGGkuH/f8/cSxKqqupg3Pc+gp8fWnwA9ohBmqpVB0PXZQDLqu2fZjxTwOHlvAhTd8BR++TUZPNTFeLsZu022F6iaNABBilmacWqTd9Z13ctubsQgg42rmaVrwO8cp9pxJcgnUsscXScPLTSzmMvGKRQAoF7KOYvHgsQV0upLHCnatuOCsbdh2yrTntbFibqBi04+FKqnZkioWAWDDZJ9YnFuqISUKyFtNLdsKtaPYxGJ0xqJhGDi24K3DuwMUi5lU+H7LZ1avWLQtaUv5oCooCdy2uKZp4tu33omXXnvJqLZ4GmBUizzz0FSa+PXv//qTsi2REdGQvWoqd7ZhEhgwUJfrzt9tpQ0xbqKTe3sm2Z6b0OJozkNw+olFGjRYJvqhKUyxSGt06DJ+IlTuxu+DerUOAFj8xiIM1UC9Wse8azJLUsWiTocTi/b3d6sUaYp26iWAqOGW55fxWy/7LXzqzz4FRVKQL+eddQ6CX7HotsYUaWtfWFyiYRiRakNZJ4q2KMQp9rSISf5+NGtNqLKKylTFsQgVckIilVyu2CcWGysNVBerfSvYGEiahCyXjVxmdvMsTjvnNM9rhVLBY1cbhZo1ycmtOAQIqQmE/zbHp8cdK1RHsehSPHIM5yj4aIZGJUX6Ng3Fe0wmZycBIKBatBWLhvU85hCLAxSL6WwaiqyECgjiwHLkXLfzMG1QOSqQLxkGe0z2ubDr5l249LpLByp3h4Vjg7plZIM6wgjPZCQiFj/3uc85/5+cnMSrX/1qHDhwADfeeCNuvPFG7N+/H6997WtRqVTiVzbC0x5aRCh2GCbypFjav9xv4LUiiEVFN/pWUS4st10WBz6F1WBYliOWvWrepRLy5/z5wTF06AP6e553Bt7/4u0YywqrIhZtIrDXiS947GxDG5qm4ok9Dzt/05yQwArVTSwGl+35iEWepdFzkYK16hIef+QBnHXehbjyeS8BABhgnIykhkQK6bEU2RcMRWZkeohF0I7VphuqlXvY60YXpjxDw6RomJbqsF0LIxZXAq+5YYR890FYXiAPKWOT/aZZOpuLzIJUQUMzDGTzRUexuP+xRwAAm7ad7lk23V0AdG1VxCLDMLjy+n5x1ZF05IulwLkCAKBZLLS8BXGtuoRMLg9esJpSkoZCivMcn/GcgI6sO8RiZXIaywuWYnFpEeXxycCmbAUh7SokpwoiWpLq2LFOTG8AAI9qUVUV8sDGcI6KRZFlpNIZSJoOnqXB0jQ2j6VR6yhQdQPpbG7VisVzL7oMH/vXr4BN50ABTvZnHCiKQopnYFoEd6/bwcP37Ua72cBl1zwv0TruO1LHtkoWs6XVZSqNEI1RLfIMgD0DWxrQ8LAbY2oCYtFPgPrf9y4MtIJ2Q2smFkNm5ztgRZLBePwe3zYHW6GKjElIVSGEWPSrLYE+segnK13glAYgFDyTcwA41+WOFH9vrO27O/Da7of2Ov8WOM7jSjEIfGrAtc/QvaQiANC0Z2zzyzU8+sRhnLmhhN+7jIekASkxvpHa6boVi75mFisAFAPZsplSVQ2K9W8YGqDLAULXT076VQXxikVrPyXINbKJr2EViwBQKmRRa5KxPGBlGu04fVPs55KCoii8+oVel5RhrVBpmsZYMTmxtmGqgqMLNrG4gunxklOn24rFthxPLG6aITlRh+e8tWS3JyPtOqfaFhk7qEGWz6bRk+RQgjkOzzr7VHz30x9ZtcLQnbH4wGMHcHR+GS+99pKYT43wZGBUizzz8Cc/+xPsnt+NnUd3nvBtpdhUgGAYVrEIAFWpr5jvqJ2hFIu2Ms9DLDIcZKN/vyzwXuI71ObUBy4kd9pPLA4cUwJSxE0sPvIb5Bn70fv6dqgcz8FQEygWKXLN1n3Xbtt60v1dOZqD7HI+qC3VMH90HpXJCl7zttfAMAwIogCDiu6PuYlFMSV6iEXbxta2vAQQmV+o6ApSKe89zv1ZIIFiUdVA++uuAbDVeeNT4864ExOLhZxjhbp/D3Fx2rJ9S6LtyrqMLB9NLALAdS+9zvN3vpRHu9kOTNAPQ5hiUdEVso/ZVDixODWO5TlSi1QXq8iX8uD4/rkvMEKfWKT7xGJL9taHNrG46Mt8lnvE6tZvhTpIpZrJWZE9CRSkfsxsmsHHv/BxnPWsswLvzXfiHSg4gQPN0Oh1e5g/Mo8Djx0Y2aCOMMIIAQydsfjZz34W733vez0PYQzD4IYbbsBnP/vZdR3cCE8NbCvRpMiLLASWxuGV/s2uE2K/sLjUf8BXYohFdyZc5FhTZPZQ01JN5cXkRA7PDV5/MU0K8TjVY+TY5PhZQI0V72xqjhew54F+kzIRseiyjNVUb9GpaAY0w/SQjwLDOKpKAHjonjuRzmbx0X/8IlhLjaaD8hCLFIBSqq9YBLyKRR20h7y00Wm1UCiVocgS9BA1pTMmloFBMVj54b+gufsbMDr1wPLNRs1DavmhKUog23EQlhfnQDOMo+oDgFQmE5mxaIJCT9GRdSkWDzz+KKY2nIJ0xlsUi2oDaC9h23h8sRyGq17wMuffbVlDvlgeqNic92WLriwvOt9L1nTImoGxLO8h0SfzItqyBs2aoTk+OYMlV8ZieXwisB2/FSoAzBRSaLoUyBMzhFh05yw66liGg30aqkoPYjoDWTUgsDQYhsLWiSxWOipkzUA6k4HU6yZ6YPCDYVlc9OxrIasGeDbe7tiNNMfCsB42pW4Ht996E0pj4zj9nPNjP9uSVBxY7uDcjQWMDZkPuxqsWGa5Xe3nU70wqkWeobB/j2Gz9/1kYwJixoPWXPC1EEJOsnJaHj90PPDeUKBoIDsBLPlydv1kpkuxWOCs78RlXMtbYwyzg7KbgiHfI02R2oBTm0StOKApqCRwupCOPeT5u5xP4Y77H3P+FngO3QQZi4PU+44Vql+x6LLS/r/bdoPjWPzgI6/EWJpGTzMhCvGz3t2KxZTgu/ayAkDTaLQ6qJSIOsMh7ezzzUfoujMWAQQUa9V6M1I11rObngmsUI9ZFluzk30CIpdJoZmgeVTK5xwr1Af3HkS5kMO0L0NorXj1i/zEYg6tTq9PzkZgfrmG8XJhqFntG6fGcWRuGaZpWsRi//uwVlO3ZRGLg+xLAZKxCMCTs6jrOmRFDSgWsxF2czZ52VpFM4+iKLzwqotWrTBMiaRua3clfOuWO5BNp3DNxTtWta4RThxGtcgzA5r1TGurlE4kRFZEU/aSPlEZizap40e15yUWU2xyW2XFJNtzW6HyNO9VLPpymZMQi/48QgDg21bPBNGTKg2/C0UIbGLRxvTG6SCxGKFYpECBpVmopjWZSPPeq+zzwG2FytAM5F6/Jr35mzcDFPCJr37Csa/kBT6gWJR1Ged8/hwcNcgzr5tYFEShbztr9i1k2802CmVC6EaRdqqhghO8JK5NkNmIIxYVRQGdsNW7bDkFVKYqkKzaiM/wiYjFbCHrKBb379kPTuCwYcuGRNuVdAkZdz08ANe8xEs65Ut5mKbpyXYchJWlFfAC77ECtX+fE+mJUGJxYmYC1cUqNFXDyuKKxwYVIL8le98wDIPxNOm7tBQvsVieKIPlWMwf8xJ4Uk8CJ3JO/qWiKOB4zkNeupG2rNG7rdXVIpcMcDtIQixSFIVUJoVep4ddN+8Cy7G46OqLhh5HGEY2qCOMcPJgaGJR0zTs2bMn8PqePXsSFQwjPP2hDnkcKYrCRE7AQrN/Y26FEIvz8/2blxqiilx2Ka+yAgs2AbFoWMVIrUsKx+IQmXY8Hb/+1SgWbcRZmAIk68+N087a4SUWWR5KzHqECCtU27qMd9nKCqxXbXjFc14IiqLBsKxDOOqmi1iUdeRTHFLWduyteYlFKlRh2u20MDZBVIFRdqg8S0M3aZhKF7UfETvWWtX7oNWs15DLBfMgAICiGaiqEqtStVFdmEe5MuFpBKTT8bl+bVn3WKEe2LsHW08PzgAzQAOGlng8fpxzQX9WOiEWS5ClnocQtrHS8T6s1qvLrnxFcgwnct7G2VSBEIu2crgyNY2VpQXommYRi0HFYi+EWNxYTqPZU53fc7kyAZblsDjnIhatMRs02ycWLcWirOkQWRoMReH0iRyqHRk9RUM6k/NsczWw1ZDDHIK0wMCwHpp73Q5uv+2HuPSa60EnuFY8eKwBE8D1Z00munatFYpJxqkNmaN7smBUizzDEZJpAs13fUtAzHjQDCMWg9eQnjXZwbaRXBNyU0DtkFdd6bctdSkGCnwIsSi3idow7KHaUXgGmwkXpokyXOzOAUKeWI2GQE6gtqJsK1sLl2zfiDse6BOLPMeiIyewQh1ILCrB8VE0Oi6VwCuvvwKKqjnXz57qzUwcBI8Vqt86jCGKxWa765B3tv2lc76x3maofx02+WejWm+hmB/cCJOHUixWkU2nHLtPgJBZiRSL+b4V6oN7D+LcM7asu03medu34t1vegWuuuhsAESxCCCRHepCtTaUDSoAbJgaQ7vbQ7PdDRCLnGWF2kygWMykRYwV8zh8vF9H9ix1rJt8bnclRxkYBvu4rNYOdS2gaRqZlIh2t4dv33onXnDls8APaDqO8NRhVIuM4EeaTaOp+IjFCMWim9Ryw22F2lW7QxGLNrHmViz6iUV/Iz8sP9GPsGUYzXI0QvTnjQSOWH5i8cwLzsSj97qIRY6DHuOewNO8Qxb5+yKqTvaLP2PRTQpe+YIrAZOMV7HuG2GKxWWJkHH7KaLSk1y1iJASHEtRuD7WbXdRmSK1iJ1ZFwbVUAP3c5v8s9GsNUFHPG9qqpa4JlieXwZFUSiPlx3FIpthEysWbWLxwJ4D2Hza5sQTimRNRo6LdzWY2TSD17/99bjgigsAEGIRiLeDBYgVanmi7NkX9u9zOjMd+tscnx6HaZqoLlZRXagGiEWO4Rz1IE3TKAklMBQT+N3TNI2J6QmPYtE0Tcg9GZzLZU2V1YE2qACQzpFapNNeW86iHwvdEKeXEKTSfWLxvEvPcxSUa8Xe2t6RDeoII5wkGLr7+eY3vxlvectb8IlPfAI7d+7Ezp078Td/8zd461vfije/+c0nYowjPMlQI2aCDcJ0oU9ccAyFboyvezeEeFxyEYuZBErBOZdSq9ZTkeEZiJy3kBGiXMwSZDgmGccgaEkUizVvw+qMcy7AYw/e6/xNiMXkVqjwWXZ1rOPAuZZpLs/h4Xt3O39fdu3z0Wk1oWsaZGvMukk5+UD1no5SmnP2V59Y7O9/3aRCFabddhtjE4SkiiLteJaGDl8BveBtErfqNWQLg5tUiiInJvKWF+dQcdmgApYVagyR1ZE15Aolxwr1wN5HsOW0M8HkK+ioQYZntT0+94NCV9GQKxQBhOdMVjsqDNdxdysWmxJ5gJrKexul41kBumGiZb0/PjUDwzCwsryIleVFjFVCrFAtm1ia7f+oNpZSqHdVp5FK0zTGp2ew6FYsWmH2BsWAtY6PIkuEWFQN8CwDhqZw6kQWqm5iqSUjnSUPGavNWQQIqS6wtJMRmQRpniEKXzGFfXsexpH9j+Oya5+f6LP3HaljpiBi+2Q4+T3C+mJUizzDEaZY9Gd9rIdiUV4H8jAK2Umgu+yoBwEEyUyKgmk1sXKcVV8JrkaK0rJsVUMKFjubVh7cTKBgkPWtQbGY6s15rGYv2b4Bdz6w17EBFXgu1InCD9pSZzbhU+uHKBbnmypuvv0B5+/Xv/RaAH1FaU8zE2UGehSLAStUnhCLnR5mrHwdh7SzyWCfFaq/IebP6avWmw7BFgYnizKJYnGxig1TXrtEYoWaQLHoylh84LGD2HH6ZqQEHp0BTerVgKIo/N3734bzz9wGACgXyXGNs4MFgPmlGibHikNtz94XR+eXMbdU8xKLVlO32SP7NYpYBIgdqlux2LPyrDyKxU60YvGpJBYB8h33HZ7DnQ/sxcuuu/QpGcMI0RjVIiP4keYIsei2wlyNFepKr69Q62m9oYhFDeR+LTD96x3HcFCNwWrzMJvT1SwzCEmIRTsPz8b287fj8Yced2xUOZ6DHlPTCIwARVdAgXIyDW3YFrHuLEmtqeFnP/yZ8/crfuUVAIBWveVYpAqi4NirDoKbKBQEoX/8XWPotruoWJOcwkg7+zwJU7gGiMV6E/mIWkSV1cRWqMvzyyiPE3WdrerlUlwi6023Feq+Pfuw5YwtEETBQ7QOgqIryPHJ7NJ/4//7DZxz0TkA4HzvONUmQBSLJd8kJ5sA3JDbAMVQoPvqtfFp0kdZmltCdbEayGfkmb5ikbailbJcFm01+MwxuWHSk7GoqRoMwwDrcllTFRWpqMlSWculaBWKxSgs95bjFwLJeKwuVnHfrvtw+fXrZ4N618JdyHLZkQ3qCCOcBBiaNfnrv/5rTE1N4W/+5m8wN0eaONPT0/j93/99vOc971n3AY6QDLv2VXH7/ip+73mnxy8cA80YXgIzW0oDB0kxyDF0bBbPUlvGqZP9QkJkaax0+sVuKoFS8Md7+zORa10V+RQXsMIUaGDQJHvBIkgatSp4XkQqE5x9k2Qcg6DISRSL3hv69nOfhf/5j09jo9QDBIBiOWjtaMspgR08RpvgtW1K5eOP4S8//TGPvVi+SIqtVrMOxSKBNBOgrCKrLmnYNpkBS1uz/KxZ45IrN1EzCTno3vuqokCRJVQSKhb9593yoteeoVlfQTZfwKCSSlVVh7iKw/LCvDMuG+lMFovzxwZ8gqCjasjmCzj4+B7UV5axsryILadvx87icwEAumGuWqU4CD3VwIai1RBt1DE+NeN5v9ZRPNbCteqSk/nYtLJH7RxUG+M5cvwblqJxfJKsc3HuGFaWF0OtUKVuBxRFex5SNpTTUHQDDUlFxVJFTk5v8OxHR7FI9RWLiiwjVUlD1gyIHA2WprB1nPz+5hoSpi1isZMgp9SPew/XcPfhGkyDZHcOQ+6meRaKZiCVzuC2730THMfjWZddHfs5TTfw8PEmrj6tgkruxNugjjCqRZ7x0OQg8eJXMQ6rWGwvBl9ba8biABWggyyZhLFJdDU3wshMhvcqMsWCd3lGwEqzBxZdj3oNdlPQ36zwTSICnxmYB6kkUCyWzBog9b/DpWduxEe+8CPsP0LuwwLP9ZV4UbAuuA9QZ+NK9+uG6iEV75/X8bJ/+Ck0pp/taGfxdXoy0rAUi35r0xB0XEoDfz4iGN6xQrVzDNtdX7NLyAIItxoHwhWLZKzh55aUZD8561725CsClhVqO6FisdFGT5Lx+KHjeM+bX4VH9x3GfVbG0YnAcIrFOrZtnI5dzo2NU6SZd2R+CXOLJGPRhkMsyjaxGG27d8rMOA7P9a8JXavJ6T5H2l0JMz4lghsOsbgKK9T1QDYt4us3/RQA8KJ1sh4bYX0xqkVG8CPNpQMEQxShFwaaolFX6s7fmqkhHWaXPgA2sehRLDJ85DhsFV+70YZpmsiF5OOuiVhchRXqmeefCUVWcMDKEeYEkrFIYfDDnU0shsGvWJTnZHzhg1+A3unft91qOMG6X/AiD4NOnrEopAS0NOs+6SrX2q22QyyGKRbt4xN2nPyWuY1awxlrGFR1OGLRVlLKVi3OpJihrFANw8DBxw7i2pdcC6krobY0uK4CiHJP0qXExKIbNrHYSjDJqbZcQ9lnE9+2ng02ZkkGclftIuea8GcTi4vHF7GyuIJzLznX83mBEbDSJcS/7WqU43OhxOLEzASOHnBHxFj7V+zX7KqsDsxXBODYuK63YnFFWolfCESx+LMf/gyqoq5bvqJtg3r5zOUjG9QRRjgJMLRikaZpvO9978OxY8dQr9dRr9dx7NgxvO997xsqR2OE9cXrPn07Pnnz4ziysvaH3zCb0jjMFvuzbHiGhqTqHhWVH251IgBkBBY1V9ZOEqXgLY/5iEWRC6iTolZjK/A+/LtvwX/889+ELrMWkkhTkmQsehtWZ577LAB9Uo1muVhL1TALUhu2dRnP0ug8+mPM/+cfYHzmFLz6zb/jLGOr4VqNuqNY1AwTtKVYbMoGxrMCOGt/2XvEbYWqGsFxdC1SqDI5RZaPIBYFlg5ke1YDxGINuXxx4DpURU6kQiXrnnPGZSOdyaLXiS7YJNVALl9Eq1nHgb3E+miLywo1iaJjWPQUDXlLqdmsBwvAakdxLE0BoF5dQtFRLGqgAFSyPsWiRSw2rd+crd7ct+ch6JqGsQnvvgGAbqcTuMbPWL/75Vb/tzs+PevJWJRse13Q4KzfkypbGYuaAZFjQNMUNpTS4BgK1Y6MjJVZGZV56UdLUvEvP96Hf7x1H27fv4JjjR4EjhnqN5zhGai6ATGdQa26hPMvfXbohAM/9i60IWsGrjxtfE25rCMkx6gWeYYjCbFoDlmLdKuAYTgqOwCh2YRDIS5zKF0GGB5jnFuxGNym6VINgBW9uX5yE2AF/NqffBq//5ef8X7QzmdUfLXdio88EvLe/EIXkigWc4wC1A46f19yJmm23PkgsUPlORZyglw9G6Z/v+kqIWkpGncc03Hl5zqo5Hj86e++yVmkbDUxbQIouWKxf94ErFMZHopqQJIVzE7YxKKvmcdHZyEfX/Ted+MUi90ElrE2ji1UnXHZyGcSKhbzWaw0WnjkicMwDAPnnrEZk5US5pejm3lrgf29q/V4lcBCtY7JSnGo9U+PE7uyfYfnsNJoeUg/YoVKodFVwHEshBhbUL9isWspT4bJWHyqFYvZTAoLyzVcdt52TAyp/hzhycGoFhnBjwyb6efrWRhWsZhiU6hLdc9rqyEW3YpFN8kYBjtj8e//+O/xtx/428hlVgNTN6HHTHTyKxZPO+c0MCzj5CwmsUIVWXFgpqVu6qBAgaEZtB9pY99H94FhGbzzw+90lnGTVm7Fot8K1Q+PFao4QLHYclmhRlieh42/6pvk1KzFKBaVIYjFhT6xKOnke7BicivUdrONYwePQepJ2HrmVpQqJawsr0SSyT21BxMm8vzwTj9DWaEu1QKKxZbaAkMxmM3NAgA6mrduz+QySGVSjmJxzDcBjGd49KwJYLbLVEEooKMG6//J2UksHO0rFu3zZCjFomU9muR4JEbHa7cchVQmhdpSDZtO24SZTTPxH0iAkQ3qCCOcXFhVEJSmafjhD3+IL3/5y45f9fHjx9Eeognsxj/+4z9i8+bNEEURl156Ke68885En/vKV74CiqLwC7/wC6va7smIamd4qw0/ejEFWxi8Vqg0JNVA1MS0RR+xmBVZtKQ+KRNFlgFEGbbz8WVQXVKA1roqciKLppXL123VAQBCBNFk5w7WlpfQWUOW2yCoihw7O69R8yoWpzacgkKp7NiAUsyQVqg+2MrRe7//NSx/8y+R2X4l3vd3XwLNsph83cew8Xe/ipxDWtWIYpGiYZikkQgAhgnMlERkLPUmbysWXcSippsBG1qbFLKVgd0I0o5naSg+QtuvWGw16sgVChgEVUmesbi0MBcgz1KZbKz1pqzqyOYLaDXqOPD4o+B4AbOnbHHeNyPI9NWip+qOqjRghWqaaPRUR5moaxoatRWUK0Rx2OypSAtMQHlrE41tiwjNFYoQxBQee+g+ABiYsUj7miT2hIKVbv8cnZzZ4CEWZcsyVzMpR7GoaxpS6QxRB1rnDWORi9WOCtEhFuNnIpqmid0HV/BH//swHjzWwKVbyKxEWTWIFWrErFY/MgJRLIop8vB+6TXPS/S5+4/WkRNZXL61HL/wCOuGUS3yDIauOHbb/ddkeAqHYYlFqQ7oMr729a/3X1utYnHiTGDmAi8BGAaKBgobvK+5iMX5Gtm+6W7o8VlvnqJCFIvz1WaQwLCbgn6y8tDPvH+Lg2d864aBdoLMPhzv27BXChls3TiFOx/YC8BSLA5BLAZgaABN40v/txMfuU3G9VtZ/OSD1yLlck+wSSvb2tRWLG6wZveXC+Hf0ZOxGFAscmh1Sb1pZyx68gspJvYYH1v01mkrjZajrgxDXBSAG0dDFYvpRERWqZBFq9PDvY/uAwCcfeomTFVKqDXaaztWUdvMD2eFOmzGIsexmKqUcNdDjwOAxwqVoUzreCrIRWQR2ThlehyHji86dVnXIqDTYv94y4qKbEQzL595iolFi/R86bWXxCw5wlOJUS3yzINh1Re2gm09keWz0E0dt//4due1YRWLIiMG8toybPJcM9vy05TJ9W9lcQUCHT1RxyYNV5ZWBhIYa1EsAkHi0A+/YlEQBWzdvhV77iOTeTk+nliMVCwahGz76U0/xcG/OYjUlhTe9q9vQzbfn2Bkk1bNetOTsWgrzPLlcCLMo1gUBYego0xyTdBUDbIkOyRVFLGo+etjEPLPjVa9hXwpj95jPWw7ui34XRU1UtnpxtLcUl+xaEUV0AKdmFgEgAd3PwgA2HrGVpQnyjB0I1JRaJN5eWF4YpHjOaQyKTQTTHJaWVoJKBZbSgtZLuuoJf2EIEVRGJ8ex8G9B6HISiBjUaAFdDtdUBTlkLdFoRiYUAAAE7MTqC5WoVp1mU1WM668Jl3TIzMWxbQIiqLQaa2fYpFqUmgqzUSTHuyxrZdaERjZoI4wwsmGoYnFQ4cOYceOHXjFK16Bt7/97VhaIkTOxz/+cbz3ve8degBf/epXccMNN+BDH/oQ7rnnHpx33nl4wQtegMXFEEsrFw4ePIj3vve9uOqqq4be5smEE8BjoNZNRk7a215uyx5FFMdQkFQdpt/Y3gW/YjEnsGi7iMU4gmj/UpuQIlazbaWrICuyOH6INFiWjh4EEE0sChah4SbI1hOmaYYqzNyo+6xQKYrCGTsu6P/NstDUGGKRiyIWyT49+6IrUbz21zD2khsgiCKkXhfiKTtACxkoLGmctBo1KIoEysp02nbaac56NpczGEuT/ZViAF3XHSUlxwnQDBOibxydNin2xixlYJQVqsDSnmzPdCaLqi9jsdmoIZuLJhZZOv6S1ut20Gk1QzMW7RzBQZBUA9lCAVKviyceeQCbtp0Ohu3POIvLaFwNJNVAKpMDTdNoNrwPZIzVNJ9vkIeXeq0K0zRRGiMPB/WeiqzABuxyMwKLFMc4ilaKojA+NePke45Vglao3U47MPt6LMODYyjPpICJ6Q1YWVqAYp0fskR+X7pJOYpFABDSWeimiYzQ339bKhnUOgo40ZqZF2OF2uip+Kdb9+FffrwfG0sp/PUvn4dfe/ZmAICiE5vVYaxQswJLPpcmD5iXXRtPLJqmifuO1LF9KofxXAwJMcK6YVSLPMOhycEMRV31vjasFapUBzQJx465LK39Sr8TgfJW798uMvOxI9Y9nnU19PiMVwkptwB2QDYewwGgAH+z4tBPvX8LxcghxqnYuhoFzN3vee3Sc8/or57noKhraMDqCkAxuOais/Ar53L471enkEnzHlKwXCDX3Y6lpCeKRR7v+fVX4ebP/zlOHTBLOjJjkRHQsNR/fStUVzOPT8eqUsOsUAeRnEByK1TDMHB8cSVALJKMxWRWqADwk7sextaNU8hmUo5CcNHXnF0vsCyDYj4bq1js9CS0uz1MDkksAsDG6QrufJAQ2m4rVAAAzaLVlWPzFQGiWOz2ZKxYjU1Hseg7R6IUixmrmZfEmvZEwLZ7fel1I2Lx6YpRLfLMREsh14UwhdFakeXItXl+uT9BdpCCbhBSbAoN2avGGlaxSIHCyjHSh5g/PB9rN8hS5F4YlY23VsvC6mI18n0/sQgQO1Rn+wkyFkVWHEjkaoYGmqJx9oVnY/yl49h8w2bk8jkPKZjKpMCwDCEW5T6xmBkjz6annXNa6Lr9VqiSnRtutcNsG8tCuQBO4CKJRdVQA7l/gzIWl/55CePSeHAdwygWQ6xQKYGCpmpQY2q/rFW73X/7/ciX8ihPlB2F4MrS4D6Y/dsrCIN7O1HIl/KxGYumYaJeraPkqyU6agdZPouSQF7vaiGE4PSEo5T1E4t2xiLj6q8UhaInV9XG1OwUTNPE0hy5N9i/LzexCCBSsUhRFNK59LoqFukmOTcWOgsxSwKp7PoSi7YN6hUzV4xsUEcY4STB0MTiu9/9blx00UWo1WpIpfoXwFe+8pW4+eabhx7AJz7xCfzGb/wG3vzmN+Oss87Cpz71KaTTaXz2s58d+Bld1/GGN7wBH/7wh7F169aBy/08YK4Rb7c5LFYSqh5t2rCr6B4ikGNoyJqBqKjGpba3gZYXOUc9RdYRzQY8dLyJrMDCtGaay5qJvMgFSASBDa7HJjpEqxiIIrzWipWl6AdBvxUqAGx3EYuguQSKxXCrncXFRfzF+38XhtzFxs1bULj0l0BRFCiqryIDgFTWnplXgyxJ4FOkQBS5frNt24TXKsxNxvJWHp7oG0fHUpuNjSexQmUguxSLYxNTIRmLNUddGQZVURJZodoWqxWfYjGdycZab/ZU3bFjffDu27Hl9DM97/uJ4vWApOkwQCGbL6JR8xbojGWTs9CSPNsvWVaojZ6CnMCF/p7GsjzaiubM5q9MTuPwfqISKIUQi2GKRZqmMJkXUe8pznomZ4h6Z3meEMN2xqJmen/XQoacd2415akTWVQ7Ciie3Fs6A46HaZrYta+KP/rfh/DYQgtvunwT/vENz8KLz5l2rEgVzYDAMigUyHbEVHwj0lEsZjLYcvqZmJzZGPuZuYaEakfBRZvKKKZHxfGThVEt8gyHrgSJQ13xqhT9xGMc5Bag9e+XJkV7cw1jscqZWmO+JpPahQrvtdJjhWoRi4v1Dh7Zf8wiFgW0w5p5FEXIRT+xeHCn9+9UNIEzF9HcAYA9KxSwvNfz2iUWsaio6tBWqG7UajW85f/diuWOiQ1TFbzuHA40RQGgHRUZAKRTIkSB9yoWRQEUReE5l50fum7TNJ11UBQVtMdkBUdtNl4ugGUZb8Yim4okFlOiEJGxGI6unGw/La00oGl6aMairKixRK5NLP74rodw7hnEOWFyjJwHCyfQDrVcyGI5ppm3tNKwxlMcev0bJit4dN8RAMD0hM8FgOHQ6kqJiMVTZkgdY9uh2ueJ3y43G6ESoGnayrxcezPP3o59jJIgl0nhlJlx7Dh985q3P8KJwagWeWbCJv+GJfyGWbfO9muYSGVkyKODyIYoFrkhFIvQAralblvUMNjLRxFea1UsrixG1yJhisYzL/ASi1qMK0CKTYXu73a7jf/8yH9Cq2kojhUx+cpJUAwFlmE9ZCpFUQ5pZavLeJEPqAh1q0a13al6rt6KIAaJxW6L3Ecy2QxS6VTkfgb6BJ+NALFYa0ZnLCYkFmVJRrPedLIfZcOqqTjyzB43Tlux+MCdD2DbmdtAUVSAWDyeO47x3x33ODvZxGIxZmLcIOSLeTRWoq1Q2602NFULWKF21A4KfMEhNcOUhpXpCg4/cRgAUPbVIgIjoNfpgXVNLi+JpXCCcpbUIgvHCIFnZyzSvgn5UcQiQM6b9chYtK1bczo5bsc7x2M/k86kkS/mcfaFZ695+0DfBvVFW160LusbYYQRnnoMTSz+5Cc/wQc/+EHwvPfBbPPmzd5Z4gmgKAruvvtuXH/99f0B0TSuv/567Nq1a+DnPvKRj2BiYgJvectbYrchyzKazabn/89k+BWKUTmGq0U9hljsxlhQcAwFWdNhRjCLtY7iKS5yKdaTT+e3QvXPAH/oeAPbxjMeg4ecGCTY+BBCxbSamQJLk+Bon2Lxtu9/Ezd946sDxz4MVpbjiMUgEbV9x7Ocf1MMC3UVVqgPPfQQLrnkEuz+8c3QmoseVSNNU57vzPECxFQarUYdiiyBz+QC653IeR9G3J8XM6Qo89tt2iRduTIBmqYj1YA8Q5NzmyEF2tjElCdjUep1ocgScvkIxaKmgE1ghWrbzAYUi5ksFFkKzBB0Q9Z0pC0idv7YkSCxWI0+3qtBT9GhGybO2HE+fvy9b3p+N7Quo5DiHAtkQydjt4nBRldDTmRDrYXHsjy6sg7N+p2OT07DNE3ki2Vwvus7AHS7wYxFAJgupNCWNGc9E9Mkr2BxjtihSrYVqgG4a2g2Tc6zrGvG3umTOTR6KtqybhG9QcXiSkfB3//oCXzmpwewbTyLT/zyefj9F5yBreNZT8YqUSwyON1S3p5xzgWBdfmRs4jFV/36u/CuP/p47PIA8MDRBliawnPPHHcssEY48RjVIs9w+ElEgJCCxhoUi3KL2KnaH6c4QO0NZ+1gNYh23bcHP7rrsWSfGfMrFjvQ4G3omW7FIpcGaA6SouHrP7yTOC8wQcXid269E//85e8ADO8lSLtVoHHEu00hOicwTrF475weWOelDrGordoK9YknnsBll12Gb+w+hAM1FXBXbRTtURsCxO7UzliUdMTm6PUk2bknpkQ+eA1meIcUKmTTyKZT3vxCLppYnJ0c82QsmqYZm7GoqNrAvEs3bMLStmi1Yef6xakWS5ZK4OCxBYd4sq1HT2TO4iU7zsB/3/RTaBFZWbo1UWxYK1QA2DBVgWma4Dg2uJ9pzlIsxit3NlnE4uE5i1gMyVgEohWLADke60EszkyO4euffD8+dsOvJf7M7//6L+Jzf/57o9riaYxRLfLMRNbK1jWGtVxPANteUWP7fY0ou0FKCP6+U2zKUVXayLLR93k3NGgBEjApsehW3vmxZmIxZpJTY6URiBXZft72/vZ5DpocTSyGKRaPHDmCK6+8Evf98D4oi95jwVJsQKWZL+QDGYv+ddrEGGNYDlgDrFBhnWI2KZTJk/y+bkyWslv9xjAMlheWPfumUWtEZixqqpaIWLQJy/EpMinZOVet0shNmIbBJhbnj8xjizXJyVYI2sdb5mTwszwWun11nP39VqtY3H7edvz0Bz917GrDYFi1iN8Ktaf1UBALKPAFz1jcGJ/uE6H+jEWBFQKKxbJYhqQF+0iTMyRexiYW7XON5n3EYozFezqbdsjptcAmQ9/4mjeCozksduN7V69686vwgb//gOf7rgW7F3aPbFBHGOEkw9DEomEY0PXgw+TRo0eRyw2ewRuG5eVl6LqOyUlvntfk5CTm5+dDP7Nz50585jOfwac//elE2/jYxz6GQqHg/H/jxngFytMZckzo9bLPYnQ1qHajm0ftAQUdJZGHE561FYuDm3mNngZV779fSHHouGag8Yz31HznV+7F9Z+4zfn7ULWLU8bSPmIxWOyGcI0OBI6GqirQNe/3+dKn/hY/+ObXBn9wCKwsRdsLNGpBxeIZHsUiCy2GMPMTi9/97ndxxRVXoFAo4P3/eiOyU1s9FqGKZjgqMoD0XPPFUl+xaBE+dmZiKc157CoBQOq6FIsZW+EYtELlp09Hy+QhpjORylCb+KItBWpl0qtYtLMF7YzFsAsXsUJNQCxa67UzFhdbEv7p1ifApchMUEUa/EAlawbSLjvWraef5Xm/UV1fxSLHUOipOjTDwGve8g7s3/sI7rjtB55lNpZSqHUUuB+Ni5YValNSkU9xoarWiayIjqJBs36H41OEECyP99WK1NQZkGhyTHqdNmg6uJ4NpRQakgbZsrIdnyJ2dXbOoiJLYFhiMepWLHIiOW+yQv93u3WcHIPjjR6xpnVZoZqmiZ88voQ//uZDOLDcwVuevQV//7oL8IJzpkJ/+7phIsXRfTV1gr5cRiTjPH3HhTjnWcmsx+47UsfW8Qw2lJLPJB5h7RjVIs9wGFqQODTUtSkWdQXoukggmgVUaTiC0rIxlRUVx5fryT6Tm/X+rXah+4hFMC7ygvPZbyptgOG8SjoAf/Hpr+EzX/8+sVFVXe8t7gmOgQlOBnFjLkYlcPthGWZ7EWnXsC44q5/ZQ6xQk2cHAsBtt92GSy+9lKz/w8/FxZtz8NhK0IxD9tgYK+YcgtWkmFhCxU3GuvMaHbACGlYjJp9NI5dJefczlwIiLNRnJ8Ywv1xzSLRWpwdN0yMVi7KikuzGGDjE4kRQsQjE5/qVXJlQ555Omnnj5QIoisLCCbJCBYD3vfWXsP/IPL763R/HLrsaK9QNlh3bVKUUPP40i1ZXiiUDAbIvRIF3FIu9gVao0c28fDaNZkwDOCl+8QVXgh2iMXfhOacNVOs+XTBuLsP8UB5jvQNP9VCeEoxqkWcmROueHEYorBV5npA9HsViVMZiyK0rzaU9xCIFCikuXqltI4xY5GPqBHv5XvfEKRbjrFBVRQ3kyJ1y6in97SexQmW8xOKdd96JSy65BPV6HW/7l7ehdJb3vsQxnKMis5Ev5dGoNSKJxaZK+l6syUJVVOhWncCwDFiOdbIKbdjfK51NI51JxyoBe3r//WwhC6krOeswDAPtRjtSsagoSqKMRTu70Z+xaJexUjvaHS3nsobfeiaZaJdKp5DKpAIK1Mdq/Ql7dsZiiR++TgCA17ztNWhUG/i///q/2GVDiUW+gDSXBkMx4cSiRbRmchmIKW/NwdM8up0gsWjCRFv1TqTnRR6l8VJfsWidUwFiMU6xmFsfxaINQRAwkZ7Aci++d7XljC24ZJ2ynk3TxKPVR0c2qCOMcJJhaGLx+c9/Pv7u7/7O+ZuiKLTbbXzoQx/Ci1/84vUcWwCtVgtvfOMb8elPfxqVSiX+AwD+8A//EI1Gw/n/kSNH4j/0c466L2PRzw8+vhCee0ZJxI6ApSnIaoQVqqGjJatQXNaXOYHzEI3+Qug5Z0wg41PEba14G/ljmWDBLAx4fjdVGSxNewgyAKgtL+HA3kcHDDwch/YR+7Dq8UOB9+IUi912C4rsmyVXdBVYNANVUSIzJymqn13Xqi7i5S9/Oa655hrs3LkTqeIkeJa2bMcsmF7FYVvWkCuU0GrUIMsS+LSXKCxneKQ47450E5N8mhS1tgWl+7tNv+kT+Oj3nkAqnYnMH7TJUYojT1eViWl02y30OqSAsonFiXIR3b27sAVBwlZVVDBM/CWttryIdCaLVJqcP3vmWrjncB0tkxSNdjZgGCTVcKxjAWDLaV7FYq26FLv9YZARWEexeO5Fl+PsCy7Bf/7rJz0zFrdUMljpKtCtH1wuXwTPk/3YkjUUUuFWqBN5AR2ZkJYAUJkiCs7yeL+hwV3+qzhEkWyAbqcNmgkqO04pp9DoqlCt37MgplAcq2BxjszUlqQeBDEFVTc9mae0QPZ/1kVab6uQc2+pJXusaTU+h0/8YC/+fdchbJ/K429fcx5ueP7p2FLJRDaeRY5JHFwPkP0tqf19Eoe2rGHfUhvnbihiLBv9wD7C+mJUizzF6K2DIspnK0VUjK6G0WqUBM1+Nq9JsUTBOAxB2Ysm4ELhJ6bUXtAKNaBYdL2vdGBQXkVgu9PD7fdbBCLDk0xKG0t7gOwUmiq5dqpMBmA47D9CvvvDB4N1R7xiUQMFE+dM9MclCv1r2rBWqNWWjBe96EU477zzsGvXLpw2kbLINrdikUKnO1ixaCZoYHZdKgO/Eg0AwAgOKZTPppFNi14lICvGKhYNw8BClew/O1swVrGYIO/ZPiZ2LqKN5IrFfjPPViyyLINKKX9CFYsXnLUNL77mYnzsX//LsYALA8PQkQTsIGy0mnmBfEUAYNjEVqgUReGU6XEcPk7qMpvEdp/XAJBJRZOU+cz6KBZPVoyBXDPL5iqunScBRrXIMxO2kstP/qwH0lwaNOg+sWhGE4tUyDNahs148h9FRhxKuayZwysWw4hFzTehKAkRYKvUjuwNnltxikUgmLNI0zTYEouxF46B4zioMXbjaTbt7G+lp+AFL3gBNm/ejDvuuANjW8cCKj6WYgMqzVwxh1a9BUVSQDM0WI4NWKE2VKvvZbAeYtImoZysQoMcN48VagLFoqN4BJAtkudjW13YbrZhGEYksZhUsWjb09o5grZi0WRIXyFKwQoA6VzaOTe3bu87eJTHywHr2/31/c6/u2oXNEUjw69uYu7s5llc+7Jr8ZVPfSVwnvrhJxa7WhdFoQiKoiCyYiixOGG5HvhtUKEDDM0QxaKrPzaeIrVLUw6qwCdnJrFoTXJyzhVf6SnGTJhaL8WiGzOZGaxIT+69e2SDOsIIJycGP00PwF//9V/jhS98Ic466yxIkoTXv/71ePzxx1GpVPDlL395qHVVKhUwDIOFBS9JsLCwgKmpqcDy+/btw8GDB/Gyl73Mec1+qGVZFo899hi2bdvm+YwgCBDCZjGPMBA1n2JR8qkkHzreDNhUAHAYSJ6hoegGjAF5RYwuoS1loGguYlGMPhXPnM7j3A0F/OYX7wZAVFJT+X5jIc3RAWKLjCW8CDc1CTRFBWxQ771jZ+jyUWjUlgFsRLsevDHHZSwCQD0kZ9GBRSxmGApRzh8MZUAxgdzYBL773e/iuuuuA8Mw6CpHIbA03LwkRfftKQGi7MoXS2g2auB4AbxICjxbsVjJCgGbU0/GYioDBUDaRz52221nFqYgpolicUCPiXeIRVJUjU0Qcmt5cQ4bt5yKZoM0yfLFMpb+589w+l/+c2Adqio7BGsUdF0Hw/YfjGo2kW4VtrIkheZd0DAgqTpEi1gslMooVbxh6Y2V9SUWswKLpZYMzTBBURRe95vvwgd/+1fwwO6fOctsm8jipkcWkLGIxaI1JlnVoWgGxrIh9nAApvIiWrLqEPrjljXsmGWjqhsmIOZhqkswQRSL2RAr1A2lNNqyho6soZQmDbvJ6Q2OFarc60FMZaAbpseSlRHSgOz97RfSHEppYu2azubQ6bQgl7aiefqL0a338Lart+INl27CxnIq0QN2JuSaEL08A8MEVC2ZdeJDxxowAVy/fQJcAlJ7hPXDqBY5CeAn/HTVqy7UVpHp1+6rOgyaAzTJIjAT7vu5B4DS5qE3W1U4jPHWeJUudHgbJSbrahjwaa9yT+lAMb3Xjx/f9VDfapLhPRavWHqUjLFOGkwamwHHcFis1rEVwFIj2HiIy1h8eMmACQo7Jmk8smQAaV+eDM9Bjsn8A8jvgDJNjOUEfPvb38ZVV10FjuPIsaVo7/emBikWye/QTKD68yoWQyZ3sAKa7TpYlkFKFJBNp9Du9uDc5FkxUl04YzXaji1UMTtZQbXmIhaDc8kAJFcs6oYOhqEDFuNJFYu5TAoMQ4NjWZy6qW/tPjlWxEJSte0q8f63vRpXvv738a1b7hi4zES5CDoBweqHrVic9jUCARAr1E4X0z5F1yBsmpnwZCymRCEwpqRWqGxI/TPCCKNa5JkNJwdvHWGTFTaxSIOOViyGIMNnPGSHwA53zDRoSDNpwNU7iFMssgwLwzA8JNmj93knW8etAwDadTIptNMMqqviMhaB8JzFicsmUH5NGfR+Groco1hkRSi6AtMwwad4/O///i8uvvhipFIp6E/oQWKRCbFCLeVx+InDkGUZvFVbBKxQLcUda7Ieu1DeyvG18ztpiWzPY4WaIGNR0iRHEZfJk5pyeX4Zm0/fjKZVixRKERExcrKMRfuawXAMFF3pZ0fS5PVutwsUB3+epmlk81m0m21sduUBlyqlwLE80uqTzT2tNzRh7sfrf+f1eOsL3oqb/3dwnq2YEj1qQNM00dN6KKdIjZFiU6HXgfFp0k8Z87lKwDr9ep2eR7FYSZHapaE0sBFeJfjk7CQWjvqsUP0ZiwmsUDvNDgrl1VnHhmE2N4u9tb3xC64jRjaoI4xwcmLoJ76NGzfi/vvvxwc+8AH83u/9Hi644AL8xV/8Be69915MTEzEr8AFnudx4YUXesLNDcPAzTffjMsvvzyw/Pbt2/Hggw/ivvvuc/7/8pe/HNdddx3uu+++n1s7jySw79lJooaavejid+9Ca6AdKgBwDA1FM2AMkCzSmoS2rA1FLALwqO62VjJeQiLFhjb2M1bwNOVXRqgKaAoBe857b4+3dhoGK8vRVqgAUA/JWbRh0gw0VfFYmQY+X6/j2Fc/hOadNwIArr/+eqdR1ZZ18CztUTxyDO0hBnXDRK5QRKtRhyxLYC1LUHt/jueEgN2qJ6MxRWbR+YndTrs/Y0vMZNDrDm6S2YRTasuF2PT/fRv5MfIAbecstizSNlcMmcFuQVUUsKsgdxwinScFnV9B6oyRIsQiJ6TAsCy2nH5WoBiOOpZusBbhrerRipyswELWDMcC+ZKrnott28/Bf/7rJ51lto1nIWsGFIo8dJYcG1RyzvvzMW1M5AV0Zd3JL61MEgtTW7HYklRQNO3oS3rdDuiQxtpsiey3arv/IDoxs8FRLMpSD4JFxnoUizxp5vltdssZAZLaz1jsTp4HulfHJ197Pt59/WnEAjnhQ0gmwXXFDfsc7sVYTtu4/0gdU3kBZ84MnjE6wonBqBY5CRBqheqqG9QhZubaRE7zuPOSSbNE6TeMFeqxu5Mv68K+jmVLSVGALkPzKRbhIRb7pCNFAVC7kHTv8j/82b2uzwpexWLjKFDY4PypMhmAjrFCXYpWsEka0GGLEFnr2mplRJ0yQxorAs9BUaJnhHe6En75dz+GP/oRGetznvMcQioChNylQxSL/ozFYl+xSLHxDcxOnGKRS6HR6iCfIfeNXCaFdse1TVbwqkd9mLVydY5b9m3VOnHsWA8r1EFIqlikKArFXBZnn3qKh5ycrJQcheWJwrOfdTauvugc/Nmnvho+0RBBJWZSbJiMIhZZtHtyIsUiQM7fw3N9xaLfBhUAsjHrWq+MxRFOToxqkacnvvjIF7Hj33fELheVfbgWiKzoZCxSoKDqwxGLWTYL0zVBO05t6EeYFapIR0+i4GgOsiu3GADu2XmPZxk+ptaIQ5wVKhBULAJAxoqboDgqVrHIGzye+KcnMP9fpIdw9dVXI5Ui13nVCJJtHMUFicViP2NREAWYphkgFrta/77gz1cE+ucW2yXPlp1WBzRDQxAFpLPpWCWgpElgrefSrGV9btuW2sRilGJRVdShXHsAODaeaTYNk7YUi5148j1XyGFm04yHHCuNB4nF5d4yOgrpvUmahDQXn5cchW1nbsMV11+B//yn/4Q5oO9Y8lmyd9UuDNNAWSQ1RppNR1qh+hWLlE72qZ9YHE9bikUlqFicmJ3oKxYlGQzLwKC8PaAn2woVADblNqGpNE/YddCPkQ3qCCOcvBiq66qqKrZv345vf/vbeMMb3oA3vOENax7ADTfcgF/91V/FRRddhEsuuQR/93d/h06ngze/+c0AgDe96U2YnZ3Fxz72MYiiiHPOOcfz+WKxCACB139eMIi882MsS4qchuQtisL6AW1Zc2wVwzDXkHBkZfBDNsdaxOKAVTCahI6sQXZ55IdlpEVhupByFHUAkBXZQC4jACdzj9a8s+JNTQZNexWLpmni7p/FE4tmhG2WGzTNYGUhXrHYiFAsmhTJgRyUHbg8fxxXXPHb6B07grGLXhV4vy1r4FnaQ8TQlNfKVFJ15IslHD98EGPjk+DEDDT0szQn80KAyPEQi5bC0a9q7LRbgDXJS0gls0LNX/qLAIBFkELZzkNs1mtgWBaZzOBmnqaqiTIW/VjpWMWUZcMqy+HNPJ420FV0GCZQKJYDNqgAUI+xvrVx7oYiAGDfUgfnzBYHLmeTbi2LJLRVi396w29iZuuLkUuL2DxGinKZI/umbCkOG9YEgal8+IPkeE6ACXJNmEEKE9NeYrFufd4+9L1OJ6CsAIDZokUsdvpF6cT0LG5/7BEAxArVzu0MIxazPmIxKzBQNAOpTM6yQjXBKC1ctLkcqkqOQk4YUrFoeSdLMfkdAKAZBh463sQV28ZQyY5mfz+ZGNUiJwnCFIvu15S4B2hXkcGliDrRrVikLGJxGCvU+QeSzcCyYc3ev6NewiWlGkxrvp7mK6/NAcSiwAAwNEiG9971w133ubYhAJrvob+4yfmnxqaAEJtqGzRNJbLGXDbLyMK7nN2U4jlbsRjeVFxaaeDqX3kfHjtwFG9+RQipNkix2PMrFvPoHLKIxQTKCLeVanjGYgrNdtch67LpFFpu+zFWiCQBK6U8OI518hCTW6GuvmGSy5CxJiGzKqW8Y4NqY6pSwpG59XVPCMMHfuu1eMFbP4jDc0u44MytgfenVpGvCAAzE2VQFBVOLDIsWp1eYmJx08wEvnXLnQAIsZgSg+dUEsXi0flllAuD68+TCvt+BHSWgXNf/VSP5GmPUS3y9MUXHv5CouVkY/2sUBtyw/l3ik2hyZL7xWoUi1k+6/l7NcQi6+tXxKkeOZoLkF1377wbOM+7zKpBxVuh0jQdqlh0+hAcYGiDJ+V2mh188Xe+iNpDNcy8aSbwvmYG7UE5JpxYbNQaUCQFgiiEEi/uDMQwYtFvs9ttdZHJkggPMS2GEqhuSLoEliPHkOEY5Et5h1hs1BrOOAdBVZMpFt2wCbaCUIBmaKAoKjRzUzxfRJfp1yj5ct4h4myUx8t46K6HPK+ZMPFY7TE8a/JZ6Gk9ZNjV2aC68YZ3vAFv/4W3o9VoYeaU4DH3E4N1pQ4AGBNJkyrDZUIVi9lCFmJaDCoWrTl23U4XZba/7rJYBg3ak41qY3J2EgvHFmCaJuQeIav91rpJFIvrbYW6pbAFJkwsdhexIbch/gNrhG2D+uItJ9YmfIQRRnjyMVTXleM4SNL6Wka85jWvwdLSEv74j/8Y8/PzOP/88/G9733PCS4/fPjwqqx0fl7QVZI1zGYK5MF5qUWKHDtH8dH54KyajqzFKql2Pj5YmcUxFLFOHNCcp3UJhgmsuLIckygW3fDnKeYEFhybnFQy1aAV6rHDB7A0fwzZfLTFgJ4mBUbcPuIEwWOF2uuEZ1NGKhYpBpqihGbkSUcfxt/+859jemIcO37rk6gJkzBR9yzTUTRwDAUmghiUNMOTscgIRQBAzSKKpvPBQsedTcmIpAkmBqxQ+99XTGUC6lA3bFLYJps4XkA2X8DyAsmMajbqyBWKiJp4pyqyowQcBvZvgbIav6oc/pApUAbaVv7eH3z8n7Bxy7bAMo2EisVKVsD2qRz2LbVhGCboAYSoTbq1pX7xeeX1L8HGLadC1lQAIjaU0qApQLUUJsUxa8acNYlgsjCAWMyS1xvW988VSnjNW96BS6++nrxuK5cpimQsdsMzFqcKIigA9V5/jJMzG7E4d8yy1CHEogJA4Prfk2SOGQFCOiuyWGkrSGWyqCVQ/EYhO+R1xSZykxCLTyy20VN1PPvUSkB1OcKJxagWOUmgyoBblaar3lzFkBnEHtQOAhOuCR58Fmj3CRWT5khu4zCKxZX9gDJ4EkwAWXJ+GNbNibaalH5iEe6mINdvpOQEa+az2j+35pdW8ODegyhaM9TBCoA7syVdBgqzzp8qHd2M4Fkm1gpVFDgcVXLYPIBjE3grA5ISQ7Mv3/ahf0BKFLDzS3+J8+//IH7iX8DQCLEYUCx677flQhbLkgzdpMHxwykWw0gj8Gk02h0UcmSf5zIpHJ1fhkNKs4KX7PSBpijMjJcdYnGl0YbAc+HqSAuyogIxypAo2ERXnGIRAP7tT9/tqCptTI4VcddDj696+0nxvGdfgAvPPhV3P/xE6PuTY6sjFnmew4fe/nq88vqgQgt08oxFADhlegKL1Tp6koxub4BiMaaZl8+mnZzOkx6NI8Duz5DJGJkKsO05T/WIntYY1SJPH/zk6E/wSPURvO28t0Uu584tBADFP2lnDXATSSk25bFC9ZMIcchyXmJRZIe7p+jQA+pChmbAUIxjdemHn1jstrt45N5HcCb6dVYSK9RBoBka1cXqQJU7ABTGCpGEG83TMPXwz0vHJHz6k5+GoRvY8gdbIM6KgO/w6kaIFeqAjMV2ow2pJ0EQhdAszjhi0U9Gtlttx9I0nU2j1+1BxODjKmkSWLZfS1amKk7GYstyT4gkFpXhicWu5RRSFIqY78wjlUmFKitLv1DCfKc/ke9dH3kXMjkvSViqlFBzuWXobR25Yg5P1J/AsyafBUmTkOHWTiye9ayzcMEVF+Den90bSiz6FYstmey7ikjcEbJcFku94GQsiqLwpne/Cedffr73dVux2PYqFhmaQZpLox3yDDE5OwlFVlBbrpFzKiUEJhvEKhaz669Y3FYkvaz5zvyTQiyObFBHGOHkxdCV6dvf/nZ8/OMfh6YNVyBF4R3veAcOHToEWZZxxx134NJLL3Xeu/XWW/H5z39+4Gc///nP4xvf+Ma6jeVE4Mt3HsbmP/hOomb1iYKt9LHtCiWVNIaO14PFQlfRI0mznMDi9gMrwIAMRdtCszvALpW2ZgUtNmXPZ3g2+enoJ2IyLDNUxpmpEStUyUV23bvrx2BYFudccEmydcS8z/EiVpb6xIihB/dHKpOLJhZBEyWe9d3clqbNO27E1MbNuP3225GfJuoFf7HekTXwDA3/M6jc8ykWCyW0GnUokgTGIvdsYriYDs5OdBOTrECIxXSYYtGCkE7HKBbJZynXbMqx8UmXFWoNuUJ0k0rTVHCreNi2lXmGZckgD2gScBRR4XYVHRdcdiUqk9OBZWrV5CqBa88Yx8FqN6AidsNW0HVcFnQMw+A1b3mH8zfP0pgppqDy5OHCViw2eyooCqhkwx8CJ/OWitlRJlJ46w0fxOymLeR1V9aqqsjQNS1UsSiwDMoZHs2eV7GoKjIaK1UosuRSLLqOD8ODZ+jA7zYncJB1A2I64yGnV4P8kEpoO5PRvj5G4YGjDWQEBlecOha77Ajrj1EtchLA//Bt+DIWYxWLPghZoLfiKA4NmiXZhD5i0XYdSDEhv/PGMaAbnwE0CLTVSPJboZpupYDYn7yUtS5Rbddt4Ee33w8AuPYSy8aNFQhBalcdpS3ku1pQY0gsgWOwtNLoZzaGYKKUx+PNwQ1DgeegafpAx4ZKqYA7vvq3OG97ULkGoE8sehSLNLq+++1YMY+d+3vYtZRBKoQE8sNjhepbXjUogOEsxSJp2GTTIiHsVKsGGtAkZV3NopmJMY9isVzIRdpxK6pNoq4ONE0jm04lIrOuvPBsbNngzV6bGi8lUqgmRuNoUDELUjN84LdeO/BjU+OrIxYB4EPveAN2nLEl+AZtKxaT2adtmiH10JG5JfRkOZQQjlMs5jKpnw8rVMMA7vgXIF0CJncA938F6J1YS92TAaNa5OmB37n5d/D/7vt/Q39uPRWLbqTYlGMlSYFy8vaSIsd7FdIiM/xklTCrQb+K0Q2e5j3qtPvvuB+6pkO8VUTv9p6zzGpBMzRUWUW7MbgfUBorRSv5eAy0vFy5ZQW8yOPjX/s40qeG3yN0UwfjcyngGM6TKwmQ7ELDMLCyRNYZRixKRr/+cGcsiikRpmkGiMVuu4u05Z6QSqfQjbmvyLrsWKECQGWyTyw2a02IKdHJcwzDahSLNrFYFsvQTI0QoAMmOel0v6Y88/wzccq2Uzzvl8fLqFfr0HVrOQM4o3wGDrcOAyCKTL8yNwrv/NE78ff3/H3oe7/yzl8Z+Lmyz/2gqZKJepU0IRYzfCb0+ALA6377dTjzfJ9DlfV1up0uGN+k+hyfc+xk3ZicJRNDFo8vQpZkiKII3fdsEkcsprPp2HNmWGzMbQRLsVjorm0idxK4bVDZCJeVEUYY4ZmJoX/Vu3fvxs0334ybbroJO3bsQCbjnWly4403rtvgThZ8YdchAMDugyu46rTxmKVPLKodJWBz6ldMEWJxMG02U0xhz3wTm8rhRZutPhukpmQsYnGp7W0oZXkGKxH2FlFICbQngzEWmgzGZ4V6z66f4MxzL4SYzkCSomaKJ7NJ4wQRvW4Hvc7g5mihNIZ6dTCxaFCUxwpV13XMHSXnU+Wl78FvX1bC2NhYqA0sAHRlHRwT3DdSrwv7cUPRDOQKRXQ7bXQ6LXCzpLCxycywBpp7vzFWNmHKF0LddSk0BTGN2twRDIJNKlOuQmNschrLC7YV6gryMcQiyVgkY31g1y343X9+Oxia2MBS9n8pGssL/QwuVTec81Q1ADGVisxYBAhZOwiNleXImZhuPO+sSXzqtv3YM9fE5dsqocvYSrie4v1dPPelv4ivPPZlUBaRuqWSwd1HCLFoZyw2eioyPAuRDb/Mj2UFMDTl2KwGvosra7VrkcJhGYsAMF0U0ZQ0aIYBlqYxOUNmvS0cPwJJ6oFLkUa6+xwxaA4cG7SvzYksFM3AWDqLTruNtUSU+21W42CT41HXPxv3Halj+1QOE7nVK1NGWD1GtchJAKVD1Hc2dM1rWxpiTRQJoQBIDcAk5IFJcYQQ8c/Otxprk2LIpA5DBeYfHG67LlCGTSz6rFDdTUE+qFh0OUnjh7vuw47TN2NyrEgsLVmfFWp+A8BloZnkeqoycYpFFqZpYrFaR3AuN8F4KY+HlgAMuM3ylh0XaBbQFZimiQNH5pz3/+GDv4XpiTJMY0ANZ6gAnYbXdoBGp+tXLOaw66iOD+4uIRVD+AA+K1Rfg002GHA0g2a7h3ymb4Xa7vb6pPWAJmlaFBwyaXZyDMdcGYtR+YqAN2Pxtnsfw3v+8X2gGRYUBdAUqUXi7GlzGZ9l6xCYHCuh0epAktdJifODDwGnPhc4//WBt17x3Mtw1qmngOeCDezJseL6bN8FHTQUVUtuhTpLiMVDxxdXr1jM/JxkLD5xE1B9Arj2D4GzXwn8y9VEvXjVeyJVvT/vGNUiTw1+90e/C4EV8PGrP76m9QwiFNYKd3ZcEsWiaZqe520/sZhik13z3AhTF3I0N/A7c4xXsXjPznswOTuJbcI27PzeTuD9g9cJAHxMLrKttI2yQy2UoxWLFEM5VpQ2jh86DrDA1Gun8ArmFdi8eTNwGKEuR0kzFnPWfX55fhmCKIRaZUp6/zX3frOJSAPeeqjT6iCTteJjMqlQi1EbAk1UkjYBQ5kUKlMV7HtkHwCgWW9G5isCgCqrzjl18JGDeNuH30aOAUWOBemLUI6tKtC3Qi2LZWi6FpkFaWeIDkJpvATDMJw8SADYUdmBr+z5CnRDh6zLAWVuHPY39oe+fsEVF+DMC850rGM94/ApFm1F4XiK9GSzXHaojEFbsdhtdz2KRQAo8IWAKhoAJjcQYnHh6AKxQk0JUE0VNGjnPElkhdruwhhUZ68CDM1gPD0eqthcb4xsUEcY4eTG0MRisVjEL/7iL56IsZz0iLPOfDJQ66iQfbPWu6ruacB3FQ1axFhnSyn8aE8Ly51BhandKBtshQp4FYsAIVFWuoPVW1Hwk1pxsK1QexZBZug67rtzJ171xt/A4f3htk42mG4VWiE9kMyzwfGkgbESkbuXL4+hFqtYJMSiocr4z4+/F0ceuQtv/fCnQAtpsFYzh7f2uX8SX1fVkRNYj9IRILl3DrGoG5gskuZudXEBM+eIYGkKUXGFvV4XvCBCkSXQggiKAnjfrK1Oy61YJFaog1bJMSTJyT38ysQUjhwgx6LZqCFfLDnF1IHHHwXwSs86yH4ix0TXNJx55g7QFAXDNADThGEYME0T0xtPwdYzzgYA1Fx2vIpmIJ3JQZalUCl3n1gcrPpQFRmdVtBeOAznbywhK7DYM98aTCxaMxV7qrd4ZzkOW7fvgGCd96eOZ3G79RBasqxQGz0VWYEZqARmaAqVLI/mAGKx7to3NjnO0OHE4kwhhccX21A1EyxPFIsAsDh3DHKvB26CtLMFl12xQTHgGTpwbuZEDrJKMhZ73TUSiyI7VFyaTeQqMRMc5psSFlsyfuH8GRRTo/DxpwKjWuQkQJhi0W2zqQzZzBfzQO0QYBIVsWmRYBjQ0JsQNUCVAM5HYB27e7jtutBXLPrKa7di0aUiyPHk+teySh8TJn646z780vOfja5k1UisaCkWLWTGAZrGo+08nl1ahhZnhWrdm+eWVgYSixPlPPYvdXB0KvzaJ/BkzCbNQtVN/Nbffhf/vev/4fv/9lHP+wOhayAmKa7rPU33v6MFm7Q7tlTHOadtQhw6PdmxaU2L3uMomwyyFINGq+PYheYyKbS7EmA3fgbMms6kRA+x+PATZEJXtd705Ct2fY4DLMtYGYtknyuqjgvP2gaTYmCYBkwTVi0CbN04hV975fWh289nV09m2dmGC+ulWtRlj8WwGzRN41v//KHQvPcTQSyqVkMvKbE4OzEGiqJweG4JXWl1isV8No1Wpwcz4aTCZyQ6y8D9XwZOuZwQyMVTgOs+APzgj4CDO4EtVz3VI3zaYlSLPDW4+cjNALBmYnEYQmEYuLPjKFCxxGJH6SDrciIQWREsxUIzyecGEYuGz5rcoPt/h6kLh1Es3r3zbjzrymd5CM9QK1TK/k/0BATa6ptUrYk6YShVSqEZi86mOMpRLJq6if/6y//Crv/ZhY9++aOgWRqCKHhIXT90Qwfte8pnGTaYsWiRdsvzy5iYmQhVtrpfs8k3XuAhpkR0teD9u9PqOHah6cxgJSBAMjVlTUbmUAYr+1cwVh8DP8njTiszuFFrOGNs1pu4e+fdeN3vvC6wHsokx0RTNWzfsR2mafb/b5D/Tp8yjateeBXElIjeMhlTJVWBaqjRikUm2onNVgq6ieSLJy/GFx75Ag42D0LW5XWxQgXIJPgPf+rDoYq+ks89oaW0IDKikzma5bLDTTDQAV3TociKx6oWAIpiEXPtucBHcoUcxLSIheMLkHoSxJQIzdDA0IzT20qiWAQQOFfXipnMDFZ6q3dqSYrd8yMb1BFGOJkxNLH4uc997kSMY4QnCfWeErD56yqah1jsqTrUATYTADBbJDe++w7XQ9+3rQ17SngRTesqGJrCUtt7E8+JHID4TJkwiGw44TEIpqaAclmhPvHog2g3G7jgsqtjiUUqYV4TJ5BmRW15EQCDzp1fB97mzSsplCqRVqgAAJqF1lrBwpf/EPMrR/CBv/onqKk04JoJZ+9zP4nSVTSU01xgsrHU68KeCylbikUAqC7OYyMnWkTf4AcEqdeFmEpDkSUwrAiOoQM5jt1OC/bjBydm0et2MKjUpygKIsd4cjkrE9O49/adAIBmvYZTtp7mqAnv3fVj4Hff71mHqvazKLOFEt7x9r+EwEWfF3WLyKas/ZDKZKHIUmjigU0sdtXoh8OkdqgMTeHybWN4+HgDsqqHjpWmiequF2LNKaRSjoXsaZNZqFwGYFiULCvURk9FVuQiLYYn8yLaEplIwPqI8lo3uWJxYzmNuw7VoOgGUmCQK5QgptJYmDsKWeohK5IHB9G1DRXE/thPLOZFFrKmQ1gHK9SswA5UZIbBtp5V9Ojf+ANH62BoCtefNTkwH3OEE4tRLXISQPU1AAzNa1vqfz8OFE2yCE3SRDAcYjHi96x2vcRiugLM3T/cdl2gbcUixXpmypjujEVXY89WLDZksvDjB4/jyNwSrr/iAnzzR7eThVgR0FUcadGYyhhAqki+X0wTzwZv3SeiFHIT5TweP7qM++Z1zOSC9wybOFzuAq/+Yhe7jj2Cz37sBpQL0eo9B4ZKyDafFWrH1yCx13dsoYqLzzktdrWdnoRMSoSsqCGKRRqgaDQ7XZyZ3QiAqNNanW6ftGaDRBMAZFxk0+yk2wrVq1hs+hSXPMdCkvuKxXwmhX95z9sAPpl1pw2iWFxdPTxZKQIAFqLs5IaFLpHfUcjkoq0bg7bwwNqsUAdBttwEkhKLPM9hZqLsUiwGq7skGYumaXrUsScVTBPY/W8kB/bK9wAF8lvB5e8AHr4RuO9LwPS5HgvnEfoY1SLrg08/8Gm8dcdbI22mn0nIuJwJaJOOJTDrSt1DLAKEXLRtFZMqFt0qsjASMIpY5GjOIRZXllZw4LEDeMM73oAnXDm6a7VCtdeNAWK74lgR+/eEq9LIIAmhqPd0HPnnI3j04Ufx7o+8G2NTY4AlvEuzg++3mqEFMkrtbElapMHkrHt3sU8sbti6AbLmvderundSkdSVQNM0OIEDL/KOpagb3XYX5QlCtg3KLrQhMESxmBJT2P+R/bjsdy5DZaqClaUV6JqOZq3pyVe8e+eACXFWHcqLPN7zF+8ZuD0bPa0HlmKR5/PQTI2MsyeBQfDeb2eIDkK5Qr6rO2fx4qmLwVAM9tb2QtbkgDJ3LRifDneF81uhdtSORymZ5YcjFimNcghMv2KxKBSxr74v+BmKwuTsJFEsSkSxqBvEllcFOZdsxeKKtIIMm3GITxs2Kd1tra+Dwmx2dqASdL1gmiYeWXkEz5599sgGdYQRTlIklnkZhoGPf/zjePazn42LL74Yf/AHf+DxEx/hmQFVNwNZj7WOt9iVVAOSS23Y8ykP8yKLvMjiSC38+Nsk1yDFImAiK7Cotr3bzYmruNFYM/VS/JDEoiqDoShIVgH9+CMPIJXOYPuOC4YfwwBwAikIqssLOPTxl0J/7LbAMvnSGOory5h64yew8fe+Hm6jSTO445O/Db21jN/4iy/g2c99UWCRQeRRTwlaoZqm6bEyVTQd+SJpAMlSDxQngGXoSOcjQiySAojiBLA0FSCI3KQQl86h143OyxJdqlOWFzA2MYmV5QVio1G3FIumibEXvQsLzeC5pynKUDmbQF+xOJbloeoG0pnswIxF3poFGpe/F6VQ9eN5Z03ieF3C8cbgh4tCikNP0SMtVreOZwGKBlec9igW8yIbSSxOF1JoyVqo9WfdZYXa65IH27CMRQDYWEqh0VOdawtFUZiYnsXi3DFIUtexy+WtY8ywLBQdEEKIxVyKg6wZENNZGIYBIyGR7weFYO5nHGwFpRyjWLzvSB1bxtLYOMAOeoQTh1EtchJB9ikWTcOrzPM3ZqR69Pr4DKB0QFuTbkyaI2Sl3Ab+YlO4AtKf41jeDNQOJBp+GGirORGwQvUoFl3EotWja0jkGnzPI0+AZRlcfdE5/eWtjMX/O0CT5YZsvPIsA4qiMBdhPzZRzmNxpYF/uVvFFx9Q4Q9mtq1Qn/3PC3hkycCP/uK1eMPLrks+CDtj0aNYZAJkja0G7Ely4oxFmwT021zKOgPQjJWxSK7VtmLRtI/7gNny27cQO+9yMYeZiTE02120O72AYtHv7iHwHFEkriFjESBkltTtwPxQHmPM4DyqMNhKwfXLWaQATR6o/B08jhNBLJL/xpGBbpwyPYHDx4li0U8+A0A2hqS0z52T1g710E+BufuAC94IbLq8f32haeCVnybX4btG5Jkfo1pk/fDTYz/F39/79/jUA596qoeybnATF0kUiw25EXjNTSZGqfDccBOLAhO8h9q2pWFwW6E+/tDjAIjFpBuhisWEoCgK6WwaK4uDa5FSJTpj0WRMGJqB/X+2H93Hu3jH/3sHXv7Gl3uWcfZ9SKmkm0HFIkVRkLoSys8tY/N7NgPoKxZlSYYgCAHiqSl73YmkngQxLYICRZR/lqWoOw/Sb4UaBYERIBsyZk4hPhOl8RIqkxWS+7i8QojFGCtUoK9YTIqe3oPIihBZq64qpNEdYMsep1i0lYJuxWKGz2BTfhMONA5A1mXk+fjvsFYErFDVNvJCf7s5LgfVUAOZh6FYAtg66+yTMGLRPvZ+TM5OkozFngxBFKAaqofot8+Jv7v77/DN/d8MfN5WLHbaQ+bPx2BTYRMacgOavn45wX48tvIYWkoLL9oc7GGOMMIIJwcSP/n+2Z/9Gd7//vcjm81idnYWn/zkJ/H2t7/9RI7tGYuVjoLHFwYrbUzTxI33HH0SR+RF1acUfGIxeINq9PrNPRPwkJEUReG0ycEzjGzVmJ+QdCMrsGj6LKTyqyAWKZXcvP3kRBwcK1QX2XXexVc41qLrAYbhwPECVpYI0RTWC8yXyqhXqxBmTgfNi1huB2c0UjSDVHkKU2/6BKZPPSt0W7YVqh9dRQfHUB5iUddUGC5FlqyZyOaL/e2xfCD3zg+p14WQSjvLcwztUW6ZpumxQqUsxWIU3OQww7CoTE5D1zTUq8uEWCyU0VEMZM99PpTMZODzmqo6GYtJUe+q4FkaY1kBiqNYDJ+1ZisW/cR8YJ0JFYsAcN0ZRF344LH6wGUKKQ6SqkOPJBbJgwpbnkWxTGxVW5KGvMhFWvbOFEW0JBVKiPVx000sOorF8N/ohlIaumF6rGUnZzZg8fhRyL0eGMHK4bSsUDkhBUnVwbNMMGNRYCFrBvgUeTDUtdURixxLD000UxSFFMdE2lZ3FQ1PLLZx7oYixjLxje8R1hejWuQkgp/UAwDV9UCuDNmk5TMATOQZch0yKOt6teebhJS86QPBz7TmvX+XTwUaRzHkrcSBnbGoU75aYoBiMWtZodZ6/WvO5edv95IdrGDZxK5yTBQwXi7EEIsFLFbr+PZeDX93uwL4ZpELVm00nmVwx1szePbZG4YbhKGRgfgUi34r1LJLDZgS4huYna7kEIoBxaJJA5YVasFq5mXTIpmkY597A5SEZ1jEYjadwuwEsVE9tlCNzVi0lZ1G8serUOQyKZyWJw3ey8VoFw0/xssF0DSNheX6msbggdaLVv6GYKqy/sSipA6nWASATTMTAzMWWZbp54cOgEMsrjLz8mkNuQnc/Xlg6lzg4rcAPsUUxk8Drn4fcOR24PCup2SIT1eMapH1Q12uk//GTR56BiHH9e8TNGioRnTUi70P3LDJHWAIYpFbvWKRZ3iP7eXWM7cG1F5+FdWwKI+XI61Qi2NFNFaCJKsNkzUBHWBEBtv+aBu2X7Y9sIxbLeqHbT/phyRJoAUabJ7sH0EUwAmc82+/4rSu1D1/97o9CJbVtiAKfXLJ9TG3FWocsSiyIhRdcVR4xbEiKlPk+X55fjlRxiKAoetGWZORYlMOqS3mxIHKSoONnoQriAIyuUzA2vbssbNxuHUYmqmtq2JxEPzncFfreghNm2QMU5n6wd3Oobi/2Fcs+tymyqkyulo3dDL45OwkFo4RK1QhJUA3dQ/Rb58TXa2Lw83Dgc87isV1nuS0Ob8ZBowTmrN418JdIxvUEUY4yZH4yfcLX/gC/umf/gnf//738Y1vfAPf+ta38KUvfWldA2RPFlz0pz/A8/72x56MMjc+s/MAbviv+58ycvGoT2m4bzFIgq50vAXwE4v9GdMcQ+HsaXITDiNZ7GZ+FAGTF1k0e96ZMYUnMavM1GTQNOVR7l1w+dXruxEKGBufiM5Y9Fmh2uSRaZroPHIrTE0FzYu4+Lf/GmwuPIcPIMovP0zTJIpF33uyb0atpGrI5PoWRzZRGKlY7BLFIsUJAMODYyiPFaqqyNA0FZRV0dJ8BroWPRNK9BVnYxNTAICl+WNoN+vIF0voRpDVumkG7FjjsNJRkBNYZHnWIRYHwVbARSkWOV7AynLywmw8J+D0ySz2LXVCM4oAoJi2iMUQVaGznqwAxlCRmT4VHE8eJJuSikKac4j+MGwoplDvqVB95J1hmh4L0V6X/E4GWaHOlkgx7CbGJ6Y3YHHuGLHLtRWLFrHICwJkzYDA0gEr0aw1wYC27FP1GFvSQQhTQyZBmmciMxYfOtaEYQLPOXMiUg06wonBqBY5iRBGLLpVhSEZNZHgyfW7yBKyyrQbaHLEpJaqj7QZ2wboCk4fW91vm9YVgKKhU37FosuC0W+FSnNou66311/uc05gBMDQMOQ8CQ+mx8vRVqilvFeR5buX6tbv64e/vRlbSqsYiK4Re1D3JCeTgiR762SB5xwFYmLFYip8eVmnAZr2KBZtwpay1QcJ1Bd2PuPxxWpAseiHTVIZa7Tzy2fT6PbCnyHiwDAMKqU85pfXMTNHlYZSLLIsg1JhcD21WvS04YnFU2bGcXhuET1ZCRCL2XQq1nrxpFYs3vNFQhhfeQNQ2hK+zFU3AJPnAPf+ByCtzZ7+ZMKoFhkhCh4rVNBrViy6Mxuj4LFCDbEtjVQs0pwnv+3CKy8MLLMWK1QAKE+UPQo2P4qV4kCHnubdTWd8Wz6wBcLMACvziNw+3dRBhzgK2OQZk2agGzooikKhSHojvMgHMhb9x0vqSkhZTk68wKNnT5Jzfazb7iYmFlNMKkBm2sRidaGKZq2JQslrTx2234ZWLGo9L7GYH0ws6oweq/IrVUqB433h5IXoWDnXbuXgiYI/Y7GrdlEUi87fNrnZ0ZIrAW3LYH/G4pg4BsM0nO/nxsTsBBaOEStUUbQyFql+X0Ww6hNVV7HYDfYObcXielmh2na+24rbAADHO8fXZb1+jGxQRxjh5wOJuwOHDx/Gi1/8Yufv66+/HhRF4fjxE3MReibD5gcOVcMv/CuW9egxi+BrdFVs/oPv4JY9C0/K+I7UvOM6EDLOuquhkeIYPHK8b/lAUxS2T1s34RCih6YI+RhJLKY4tHyKRZKxSCCvUqWUBCs3/xvU/bsBwEMsPuvyq9Z9W+XxSawsDT6uhdIYVMVbrGqqCmnfbix/66/RfeIOUAwXyE70I4xYlFQDJgDBRwbJkpdYlFUDoBmks9asMSaajLLXIWTy2PD2L2IReUux2H+/Y9mgspRFLArxMy3TPmKxMklyew7t2wvTNJErltBxkXr+h3eK4UCZw503ta6CfIpDLsVC0Q2I6f7DiP+4AEBe5Dw5kH4Ux8YTZyzauPaMCRxY7gQUvDZKaR49VYcWkXtKURTSRhupyS3QDWJ3rOomKlkhsmk2XUxB0000fNvuyJpHIWkrFsNmeQLAjJW72nDlMk7MbMDC8aOQpB4oK7fTJn55QYSsEmLRr1i0814pgRwLY5XWHDxDD61gBYhyVtNNGAN+dPcfrWMiJ+CcmVHe0FOBUS1yEiGMWHRbCKmrUSwCRcYiFm3VYNQs5KovC6VMmuuT2VUSi4ZiqRO9156BxCIPgBPRkfvXzusvP9+7UkshkGJXKVkEMD1ewtxSBLFYDjZ3dF3HSoPcy2+98wEAgEmtsingWKH2IQ2YwGHnLIbZVvrRlWRk0mT/BKxQDRqyakBRNRRylhWq30JzwD3NjRlLsXjo+CKa7W5Asdh1NWJtZacRkkc0DHKZlNMkVGJcEsIwVSmtr2JR7SYmFimKwuRYMZBjtR7oKTaxmNyGfNPMBI7ML6Pd7SGd8hOLYYnaXuQzJymxePw+4OBPgB2/CGy7LmB/7IBmgFd9GpCawD3//qQO8emMUS3yzIZmnjjbPwDIc/17KgUqVrHYUoOkvTsrMIosc8NjhRqiLoxSLAqM4CGRwojFQc+BSTE2MYbqwmDFYinEQts0TSw/sIzD/3AYj976KEzdjHy2dfZVyCKaoQWIRdM0Iff6z/y2ci1n3evDFItNxWuFKksyROt+IqZE9PQQxWK7r1hMx9zDRFaEaqjoUT2c8/lzIJsyCuUCWI7F0vwSUSz6JjnVwmq8Iec5yLqMDJdxiEUux0G16tOAgxAVr/Irj5cD47p85nLn3wX+xD1LUxSFVCblZBfakDQJRaHYH4NAxhBGBg5Cr205pvmsUMdEUi82lOBEgcnZSTRrTTSqjYBikRM4UBQFRVdgwEBX66La8/5ObBvdtVqh2ufyrUdvBQBsym0CQzGhZOZ6wLZBfcmWl5yQ9Y8wwghPDyR+6tM0DaIv9J7jOKhqdKE0Qjz2WorBL995JHbZYwNyDYeBX7F4tNYN5MSsuJRHFAU8MuctoMaz0TPJeYaOVHYVUhzasreod2csnkglUOfBH4Dukpu1255z07YzAAC3fvcbuO+OneuyrVJlwrFCDUO+POYdW7OBP3zb66AsHsDYi38Xme1XAgwLXYv+nYXtr65C9m9AsSh5i0CbtLJzFk2GI4rFsIrcgtTrQsyXQQtp9MAF7FZtYtGOTaT5+Nnloi8Pr1iugGYYHHj8UQBAvlBEV+mfU9VFr4UdxbCgzOEq6FpHRTHFIS/2c/1sBV1tMdgcyKdYyJoOfZC6sFwZmlh83lmT6Co6HpsPnwlezhBicdA2bZy3dQYTZzwLsqajYdmYjueif6fTBXJNr7a955c7XxEAup02BDEFaoACsJDikOEZNCSvFWqrUUOrUQdt5Xba5wgnCJA0HQLHeM4boK9YBEfOmTil6yCsVrGY4QnJHKYg1Q0TDx5r4OyZPCox+3aEE4NRLXISIewhXpPC/50EllVYkSMNIsNuoEU1Pvx5inwWSI+FL5sAlKE4RKD3DXJ/21NnPQQbQ1MAI6Dtcri4eMfpAIDP/PdNuPvhJ1zE4qqHhalKCXMRuUZ+YrHd6eGV7/hTtCxbtNe8iDg6qEPOfndgaAESryOF369t4k7kk1mhZlIiGIb25O6ZACSdRqNNziG/YtEBFd8kzaRFFHIZPPT4IQBeu1YAOHC0P3mMt61QV7ufLOQzaTDWxJi5leFVYpNjRSxE5FQNDSU5sfjmVz0Pn/qTd6zftl3oWDXgUIrF6XGoqoZDxxdDFYtxsM+dxpNBLMbNIlwvqBKw+9NAeRtw2duBVDF6+cmzgGe/m+QxHr3rSRni0x2jWuSZDTeJcCKyxdxKrCjFomm50bTk9SEWTbp/DVlNxqLbCvXcS84FANz6nVtx7OCxRNuPQ3m8HJmxWLQygm3Ikow/feefYuXBFUz+0iTO/YVzPWRZmEpPYASPEswN3dQD7/3/7L13uCxpXS28Klfn7p3D2fvkPDkww8zAkCSDKCqoICYMKF4V/fR6DXBNV7he9F5QuV5FMaMIKIIoIjlNjifHfc4+Z+fQqXJ9f7z1Vq7q6t77zMBQ63nOc3aHqq6uqq73V7/1rrV0VQ9MVqbKNWo1KkpihFhsasHj1e10IRdlsByLQqmArtEln+NwcZqqQVd1V3XWU7HIE8XilcIVAMAl9hJYlsXw2DCuXLwCpaO4xCfF/MWYSQ19EouKoaAklFzrXbEour+P1kY077mlp2dAN0YaESvUqfIURmSivqSk3rXAC771BfiF3/2FyPMdoxMgFusi+TuLFaq7DpqxGJoUP1ok1rXhDE4AGJ8iMT6Xzl+CXCCKRUr0U9tdxXffc24jeH/iZiw2t0YsrmnkeNDcUJ7jMVIYwVLn2lih3r9wPypCBc+Z3n4BR44cOb5+kLlNYds2vv/7vx+S5BUpiqLgx37sx1AqecXOP/7jP27vFuYI4Pve/zX8zZvv3NI6rmwEm3WLTTWiwloN2bg+fjk486aXdZAkcGhryTZOtYKAthr8TL9iMUxq9VLQDQq/YrHXdypJ/c/SGxoZwxMP3Zf4eq3h2Ztaagdvf/O3ob2xhtLR56N8/YvIdnEC1KtngcJuKM01ANGmpxTjkUZtQ8MZe2HFIiWtSmVSQNsMD76XFWq3g8mdh7AEkiUkcGzAhrTjEIsSz6JjAhB7zwovicHLEcdxGBoZw9mTDrFYH8LVjlchz8+dx+jElPt4EMXielfDrpEi6kUBmkMsUkJp9UrUqpgqFk3LjiWt6sOjWFteBEazb8PNM3WUJR7HF5q4Y0/02A6XRHS0dMUiAMxMjODcpg3dtF3142Q1fb9P1siNTdi2mSoPbcfipNtpoVBKv6kdr8nY6BqwbBssw2BschqAQwzyIgSWAd1lglgg+ztFsWgLZNuTLHF6QRK4vq1xAWKFqhoWTNuODJBnl1roaCaevXfY3c4cTy3yWuQZhLibeL9KUe+TWGQ5QCyhzjvXL9pAi1NGUmxeJjadftR3Ap3gTOGPf+kxDDNN3PFypII1VWKvaYTGZGfSSzuu58xLaPsmZQiOnaZBZ4c7dp3FLSkWh/CZrz2W+HqYWHzOG34eZy5eIdmLqxtuduDieht1CTg7v4Y9Cc6JsbCMCInXSVDi9VIscloT9q9VcX/rLNpdFeWijI+851dwz61H3ff85ldFHNg3hilHfUFVZxGFWsYxYnp8GI+eIE2esBXqmbkrOLp/JwBPsWimTMzKgkqp6NqfL63330SaGG3g3KUF7N4RzaMeCJaeTtD7sH/XNPbvmt6ez3VQFsi+aGsWJFFwfyNZsHOKZFkbhjmQYpGSmLp+bRVOAIDP/g5QHgdu+4Fr+zmP/R1RIL7w7cDowWzLPO+/Asf/magWxw67CvFvVuS1yDMHLb2FOlff1nX68w1ZsIkKSdu2wYCJEFVAMFcxK7HoRxyxGJe76L7GigErVEp+XZ27mrRI3xgeG8bq0ioqiM/Wa4Syed/23W/D6SdOY/I5kxh+5TBsznbJWAC4dOoSjowciaxH5EToTLTgMiwjsl8UJVhrUoKJKgLjFIstrQWJlVyLVKWjQC7I+OX/88vYd2QfPrP2GUicBAPkuNNcPNcKtceklgJfgG7pKCD4vpGJEZw7TmqRcMbi/IV5XHfbdYHn7B69gzA0S0ORL3qKxZLg7m8zpmZrak1MYjJxfUNjQ5g7O4cqgtt6ePgwPn/589eUWByfHsf4dLAG0k0dqqliSPZyF+k29EUs0oxFngN8P+3RQgqx6NRjpmFCKkjQLM0jFp0au+tzbbnYvIjbJm5zH3M8B7kgB36jgyAuy3ayNIkVJVlJPCioDepd03flNqg5cjzDkVkW9qY3vQljY2Oo1Wruvze84Q2YmpoKPJdj+xCnULIsG9/5R18aeJ1FkcNyS4Xhm5m13FQD2XUcy2DNZ2lo2zaOJ6ipkhBnzelHtSBAC6kk/YrFXkh6L1XKaUo2ZaefWLwWGBoZw+pyshVqteERSaxUxPNe9Tr8n7/5OPjamPs8wwkYW3sMF9/9ncDK+dj1xO3vtqNYjBCLoYzFrkNaSTIpIm2Wg8Cl6RXJfuMLXn4OsUKNIxZJI5EVequ7CkKUuB0Zm8C5E08CACqhjMUrly4E38zxJCsmIyzbxkZXx1BJRK3gKRYpNCUavl0rClBT1IO14VGs9ZGxCAA8x+KOPUM4u9yGGlO0NyixaGaZdkiOAc0vHaum7/fRigSWQcSGlSoeaZ5Op91G0bdv4jBVK6Cp6NAde7vxyR3ei44Klp4j/ozFMEHrEnZxqp8+QGxW+1c+lySiWIzjMx+5tIGiyOGefX0wxzm2FXkt8gyCETNO+1WKptq/gkeqoiaQ65enWEypB1qLUcJkZB8ABNTUl5fWM308a2oAJ6Ll2GpRxRwcG7TpUsx1nAsSixE4NqpbViym5BqNhhpUP/jtL8aX/uZ33dxC0SHM6HywJy70ad0fY4UanlxG0YtYFNtEOTGy/oibsfjK59+BetUboz4/L2BFnMZmm+z/mtPM68dC04/psWE8evI8AESsUM/6mq40Y9G0t+a6QVVyFJrWnwpqfLiBhZRMzYHwNObrjRbI76alGH2pFQFgp6+xWAwpzLIoFgWBz5T3uWUYGnD1MZL72u+kin6wfAo48a/AwZcDh16eyQ4YAKmxv+2Pge4q8NBfXLvt+wZBXos8c9CPBeIgYMD0zFiMs0L1k4n+vMWskDgJujN2dDZJnZOmWJQ4yc2Ou1ZojDbQ3EgeSwqlgqveAoCXfudL8ft///uozJJx12RMYkng4NLZ6CRggJCkcZ0M04oqFsMZgh0jSixSdRdFU28Gci+VjgK5KOP2596OxkgDiqlA9lngU5WZa4VaTq9F4jIWAWBkfARnjhML/3DG4pWLV6Ir6rOEVk0VJbHkqmW5QnBftTaDCsVBFIsAcMvYLWDAoCFHrW8B0nv8xLlPxGaPbgX0d+YnFmneYqePXPdOuwNe4COW7yMFIhjY1KPE4sj4CFinJycX5IAVqug4dNDzTGAFzLeiCtRe500WxO3THZUdWFfXt7zuMHIb1Bw5vnmQuU3x/ve//1puRw4faDbhYjOa8fb9d+3CX3/tIja6/c2ctZ3KoiLzWGtr0H0kRVszA59VFDls+qwQFzbViG1pL/QkFmOIwco2KICaGxtADWiuZiN3/FaoW4UdU70NjY5jYzV5BlClRgqq1mOfQvn6F+EVb/hRTIRUZgzHw9BU2FoXSxdOAnhRZD2iEEMsOk07ng8W1mHSlZJWshM6bjEcsUJNmcmvdDsQZK+gFkMEkWuFKnAATNgxsybDKIrR5sbw+CSOP/YQAKBab6DtyzS4Oncx8F6GEzJbdQFAUzFg2cBETXasUM1AxiIAXDp/BkPjniqyXhBwwrAcYj66vfWhETyysoR+b/++5fA4Pn1sEVc2FOwaCW5DvSjAtGx0+pgtv9nVwTLAcDndSo5jGYyUJWwqwXVvdHUUBA4dZ3922y0USunE4o5GAacXW9BMC5LAYXhsAizHwTJNx16X8VmhymgbFgoiFznPqBWqCRai1FtNkARJYF0ruX5QkjjohhVLHj88t46D4xWM9yBsc1w75LXIMwhxzXPNd2NvaK7SLzMKddQF0lxx8wATmoZXOxwm5OUosThEiMX9Q2zfn0+sUEWsNTvAEHB1zWm6ONfSWNUhL6LVidZ7FDYngEF2YjFO5T05NgRV04GE0UkSBRQkEV2VNLLe+sZXR14HADr35fiFRbwq2+YQcrgPYpGSagWp93W23VVQSlGdbTjNPNcKNYNCLQ7T48P49y+RWiSsWPQTi3Q/mX0288IIk2cPHTuDO248lHn58eE6rm43sRhj1fdUgZaXTcXomxyulouoVUrYaLYjZHXW86FaLqKrJP9GtwWrpwHbBLQWYGqAMHj9kwjTAL72PqA6BdzzX4DSSO9l/Ji6EbjzLcCX3wvM3AlM3bT92/gNgrwW+fqG1YcHZJxacDuRZoVKEUfQlAXvvquXqxIQtFEEAJmTCaFVBjZXyf1zGrEocmLACjUMTdEgZsg+dhEzDg6Pp1vNMwyDYqnokh+v/J5Xkhf+1lkltXq1ALDA/Ln4TNO4fEmAZGuGMxbDCjBKMFGrUVEW0bGCdWJbb6PMl7GqrbrrGBrzyCrFUAJkMCUWKTEk9xh7inwxNpdzZGLEzSyMKBbjrFBNxGZNJkEztUDGIh8qPI89fAy3P/d293EWYnF9ZT1gNQsAbzzyRuyu7Q4QfH6cXj+Nj5/7OGzbxsv39LAK6QNUSThc8M7DAl8Ax3ABtWAvdFvd2JxMgRNQ5ItoadH9wvEcRidGsXB5AaIswrAMFDhHGRqyQt1T2xObeViqlLCaMkkwC+LyH2ers/jEuU8Q4n2LOap+3LdwX26DmiPHNwmuXZBdjoHxyNx64mtliccvvtRrLtAcvV74/KllAGTW3HpHh2YEB/jTC15RXRQ5NH0KpjNL6UVDHOQY9ZkfVTla2Eo9lukH4RzBJKQpFrNaMJardQDAZky23vDoWOJ6bNvC3/zhOwEA2tVTietnOAG6Tpp9Z08+GfuesCoR8M6NQo+MRcOyoeiWq1i0GA4ix6YrFjsdcJKPWEywQqXFCcMn38hQxBKLo2SmuVwoQhQltH2Kxfm584H39kssUvvPqVoBJYmHqlsQC0FS74mHgza29aKIrpaSsTiAYhEAXnCYKFQfnos2AhtFchPXUvogFhUdJYmHzPfuRI9XZbRUI6BiXu9oAavPbruFYg9icXaoiPWuBt3pqHI8j5GxCQCAzfIBslqUCtBMC8UYOzNqiasaForl9M9Mg8xzEZvVLCg7ikUr9Ltdaqq4uqnglp0N95jkyJFjCzCUKHHnJ/lMtS8VOgBArrskhGuFmqBYvNLliR1gN3TdHSIen7dMsn2TKa4VqoOumkFpxktop5AWiknG8EIPK1Sa/be0Ea1rJkfjmzcAqXV+448/7JKKcaCEGeUCT80lZ0dHQI+hr1lhWDbaSvy+oTl4SYpFP2jGYhI2nRwcj1jsX/UBAFNjXhOKKiopzswRIvvYGzfw/ucQNaW51YzF0Kz0Lz10rK/lJ0YbaLa76HS3kQy7xs33NNA5QpuK2bdiEfDsUAfJWASA6gCf2TcWj5P/u+uAcY1IzGMfBTbngTt/HBi/frB1vPDXgMZu4IH3A9q1VTflyPFUoB+l0iBgbAZmj6iOOCKiLPZ3D7TUDd5/+m1PDdfFKHlcFVgh1WYxTWnoR7lOtjsuC254LJlYtG0b//D//gEbq8kqNZOGFjrl0PzZBGKRk2IJtSyKxa5TM/oVi2GSr6N3AopSpaOgUPDGCdVUAxmZYStUlmVTycWCQKxQbSZY9/mJ2Tgr1Aj6nJunmioqQgUFgXwXTg7uqyfufyLwuJfad2h0CLZtQ+sG60uJl/DCnS9MXO7+BZLle6kVVKTGTeLvB5vOBHWa8UhR4AvomtnHs067g0I5vi6oiJVEwpVas8qyDMu2XKKfWqEqJjkXrx+9HmvqGtqhKIftUCzGTaTYXd0N0zYj15CtwLZtHFs9hrun785tUHPk+CZATix+HeJr59JnovizCM+vZFPcPXaJFGlFkcOmokN1iEVK5vjJw5LIBwicM0utvtWEcoyCzo9etqdbLRyoKq8mkaqST7BSSCMWlU62G41SmTSZli+fj7zWGBmLPAcAlqZg6cO/hY/95fvQGB5F40U/Fnj9OS9+pfeAF6DrpKA9ezyeWJQcVaK/fqRqgDDJqyrRm4amqkNyLKJIZiKTOsNN6XbASV5BJXBMIKqo3WpCECUwTofXZnufP6WYc2xknPj2V+tE2dnWvG8YtkJlOB52OCsrBdTud2aoiLLMwwYC9q4A8ORD9wceN4pexmIc6kOjMAwdekq+aBzGKjJunKnj2NVmgOAjn0luApt9qIbXO4RYFHsohwFgsiajpRjQDe87rXX0wG+002lBLhahm1ZstiQATDcKUHQrYKs65tihWgxHVK3OopxMCuNSzHWAYxkUBJJzWCzFZ3BkQZzNahaUJB6aYSF8iB+5tA6WAV50aCxg+5sjR44BwLBEkRieDOKfMWxqRMHTDwqerZLNcACYRGLxaocDYAMrZ4IvSOS6Q64f/f3WWUsDOAG0vO5kIRY5Ee0UAmjdGauKPebnUNLk4sJ65LWJUG4RhWLYeOOHFfzKH/wDZiai6qX3veOtOLRnxrX41JyJI2cv99F8oA05n2WUbibvG0oouopFyyQWkTEgVqjJysZNp5lHrVB5noMs9T8xZNpp5lVKBfB8sKbyKxZ3V8j5bGyRWAyTZ19+uD9icXy4DgBYWFkPvrB4DPjUOwCjP2tVAJkzFrcdpu5OFtjoGgOpTmcniX15JGOxlF2xeM2x+CTJITVVQNlmtSkAbFwGnvgwsOf5wHWvBfgBJ0hxAvBt7wPaS8DDf7W925gjx9OAa2WFyujkwpVFsRi3DRWhv3ugpU5wXPYr5gy9N7HIsVyEZPMjK7FI7R43lqO9l6GESU62YWP+z+fx3v/+XkzORDP7bnnxLQAAi7GI/aRzqzx/bj52ArfMxV/bLduKKLLUUP1FiWZK/AmiAM3UAkrHjtEJHJ9upxsgClVTDWRkhq1QAS/DMg6UlDSZYA084qvTytVgzyLOCtXuwz7Btm1opoayWHZJU0YM1jJPPBgkFnvlEjZGSe2ZpoSN245jK6TmudoO5ntaKS4iDyw8gE+c+0TquimpNloMRpoU+EJE8ZuGTquTmJNZESuJ15SxadIXlAoSTMuzQnUViw6xePs4UYWe3zwfWP5aEYt7ansAAFfaMXa6A4LaoL589/YpTnPkyPH1i5xY/DrEV85lD889u5StGH5inhR3ZYmHZQMLm2TgkngWJYnDuWWvMChJHNo+EuP0Ygvjtf5u5GVf4+XUQnTWTkUWUtt1/cYqhaE5qjxKLDBOsUCtTylRpaRYoTY31/v6zDhicWh0PPpGAGv/8X+hnH8Yv/TuP8Xsnv0Ri5Pd+w97287y0DVS9F48eyqWtKLE77wqugV217mJCCtB1RgytaUaME1SvJpgIPDJikXbtqF0O2BFr6ASeS5ihVryqc0ssOB7qBb9BCg9/FTxJhdIIeUnvK+GiUVeIDZPGbHe0cAwwFhFQllysiB9KszayASeDCkWa0URim5GyD+KxggpVFW1/1ncr75pCueW25hfCy5bd7rJnQTbuDhsdHVUshKLdRmbih7IPF3v6qgWvOPVbbdRLJVJDqUQrwTc0SDnw5LPVnl8ihKLQcUiVbuWYlSqALkGqYblkvaDoCByARVtVpQlHmqMFeojc+vYNVzCzpBVbY4cOQYAKxDFYvhaqvlu7A2tf8ViMTQbnheDuY0+XO06ExtWz8S+Tpbvz/aYcTIWKZIUi3S8BQBwAlopzby1NllHVivUxfVoXZOkWPzlT6v4hyd1/M1v/yRuvW5/5PWXPOdWHPv4+zzFojMBZXm9hfXNjG4WJt0H3nikmUhULJrOWOQqFhefBP7zNwkpFkK7q/awQu1AFHh3+4HB7FApsRhWsgPAuUtXIzZfW1Us+onFsXoJX3zwWGYXDcAjkhdWQgTV/IPA0jFgNdklIxFpWaXXEr7G5UZHHygnc8uKxWtNLFomyT6cuI48bm2fagAAUYZ/7X2AXAPueRuxQt0KZm4HnvVm4Ox/Ysjc5m3NkeMpxrUiFlmdjHksWJg9apm4behXsbjcXQ489mf8UYhs+oSCNAIoK7FIYRpmZNyqNqrg+Oi939K/LGHt82v4uXf+HG6444bI68PTZAw2LIOou2xvexfnow4KMi/HzguLs0LtdoPfmVpi0jpNEAXolh7Ydx2jg5rgZRwqXSVCLPoVjS6xWPYRiynjD81vtNhgbTE64RFi4Xy/lcWViOLUTpgIHQfFVGDDRkWoQOIksGDBCN5OLFaKOPbQsUD92otYpERyGmEdxsXNi1hT13Dj6I1YUVZisybj8MDCA/j4uY/j0aVHE9/T1JpgwaIu1QPPF/liX8Rit91NJPnqUj3xmuIqFp2MRd6ZeE+JRc0g3/W28dvAMRwuNoOxP35ielDEqSl313aDZVgstvtwI+mB3AY1R45vLuTE4tcZDNPCQxfXM7///Eo7kJeYBKrOovllV9a9wXO0LGF+wyuqSiKPjl+xuNjGWKW/5prsIwz+9YmruLgaHGA5lkEhgVQAACEDIZKGOPIMIJl5ALBz7wEA6YrF1mZ/gdG6rkFTg0VJY2gkQBqaBiG+6s99Iybe8E48695vQX04PuPEJRZ5wSUTDUPH3LnTkfdKjkL0kipjuUXe21ZNsAwghWxSNbXr5ilStFXD3XbTZhwr1PjGmGlosG0bjOCdEyLPRKxQ/WozzbB6ZvT5rVA7OimEhx3FIrWC7eg+8mt1BZ22rzhiBdgxeQRJWO/oKEs8iiLv2m8ykreNQxM7cOHMSbQ2vRupWkGAZSPw+/DbEY+MkuZVnCq0F155wyRsAA9cDDYCKbFIs1ezYKOroypnIxZnGkVsdg3ohrf+za6Oup9Y7LRRKJWh6GaiEnCqTs6ptY53AzA6OQ3AyUvkWVfpR0lput/DoKrBQnHwArogcAMpC8uuYtG7GetqJk4utHD9jlrP3MqnCgcOkGvY1Myup3dDcjxzYNvAr48BVx8PPn8tbPk4Pl6RGFEs9unjJNdDnyMlbv+KygEsH1UsbgGspRHS1BkPOwlK8/OXfTfvPRSLqy3yWi8rVD/WQg3AUlEOkFWGc73/b8+R8PkfKOH1L302xobqievjeZKHa/hmvz964hxgW/iV54pgzZQxjyo1fCoBzbTdffOFv34X3v9bP+O+Ri1ZXWKRNmRXz0VW3e4qEbLIj81WJ0IKDUJMTTv2bSSnMghV0zG/GHQaMfo8bcPwb/PUcBXziyuYu5KdwBl3iMWrSyFice08+X/jcv8bpT1NikWfFdhGVx/ICnV2Kl6xmKZ29WOQc6YvrF8kSsV9ToZ6N/sE00w4/Slg+SRw+5uBHbdszzq/5deB2jSuY8k9yaHdO7ZnvTme8fji5S/i+j+/3s07ezrgz1O7ZsSiQe7BeJaHBSvRDtW27XjFoth7cqWfJFtRvOsGYzOxeYrh58K2o2lWqK2N/qNxwqQfy7IB1aLp1CLDLxnGnl/cg1e8/hWoO4r7OOiWTohF3xh75sloDedXa/oRZ4VKFYu3v4KoxCjBpCmkFhFlEbqpu2pPxVRgWAaqgmdFqnSCxKJmai45CADtVhu8wLsEEpCuPqOkpMEEa8iRGGcJP8KqxX4Ui9R2kxLaAicAvlvecr2MdrONC6e8id29bIQbw6QWUVNyxMO4f+F+SJyEH7ruh2DZVoRc64W/O/F36CTUKy29hZJQiqhWS0Kpf2IxoS6oS/XEvMaxKU+xaNiGS1YLQlCxOCQPYao8hUvNoBVsmso1K+KuNQInYFge3jYrVKo6fSptUHft3wUAOHLLkafk83LkyBFETixeQ7Qz5h/68eSVzQBpEYYZmvk1t9pFs0f2WsvX2KL2hlccItG2LExUZSxuegN+WebR9W3DUkvFSJ/N9EJIJfdr//RERIbYr71qP6BWqGFcPEtmac/s3gfLsqB0U2bm9alYBIBTTwbtujieR22INKQ0TcWbv+35WFteAldqQBwjtgP1Ia9I9O93l1jkBBi6R9acORG0oQC8jEUdHD57khTxHc0IkDkUarfrKgApFN1yyTBKLCZJFql60q/kCH9Op91EqeIV3LppQS6mN2b8RHPHUUVUa3UAcElOSiwWiqTovTLnFbcML/Rlhbra0VCVeUgC6xLuELybgqEJ0iQ5/viD7nM1h2zz/6Yur5NzaLQioTFMmlfaAIrFsYqMm2fqOHalCdN3I1CWeHAsg04fxOKmQhSHUiYrVJJ3uOGoR2zbxqaio17yKxZbKBaJYjFJCThWkcGxDDa6XuOVKhYN55yiR5gSi0mWyJTc60VGpyGJtOyFosRDNUyYPgXKk1c2Ydo2nn9wFFLMTNunA1NTRHFQKld7vDNHjozYuESa2//ytmv/WaxACD8/ccjyQWLR0vvKzQUAFOrBx7yUqFi0bQDFEWBjrr/PSAGxQhVdYtFImPh17IyvUcIKaHWSx4zVZhdgOBT7uKR95ZHjkeeoiu2Tpw0cedWP48LlBTQKDG6fJte0seFaZBkKhmEgCnxAmffoifMQlBX89+fLqK0+krwx9Bj6GqC6BbQVDaLA4+5bjuL7v/1b3Ne6Tt6ka4VK0QmSLaZlQ9eNnhmLtdAM70EUizS/MuwuQR+enQs28wxrq4pFP7FIPrsfO9ThegUsy0atUNed8649QPPI6PRP9G8HfIqI1fZgxKKnWAwe++yKxWucsbh0nNigHngZmQzRXd++dbeXgYf/Gpi5A7jpewBhm74LLwGv+SP34ehQ8vUjRw4/PnL6IwCAY6v9WTxvJ/wqKD850k3oHwwCqljkQQZvw46vZ2zFjiVo0mxL47Da9Sa4sGAj4xXgZA/64CeJgO1VLALAEw9EexaUWGyfaONNL3gTLp65CE7mUNxPxr1GgnU74FMs+oais8fPRt6XZIVq2skZi/WxOnnskDuqU4vQjEW67zY0QsY2pEZgHXIhRCyKXu3RaXZQqpRwbuOca/OZqlh0iEWTDd77V+rpZPNWiEVKhtUkci0XWRHw1Z2lWgksxwaOaS9iUZRFlKoldFNq3DCeXHkSt4zdgtvHbwcDBuc2opPKkjAkD6FrdPF3J/8u9vWW3opVApeEknvcsyAtY7Eu1xP3y8QO6sQlw7Q8xaLoWPSrpgqe5cFzPPbW92KhsxDczkoJ4rgIe3Jwa7ekiRSTpcnA5ISt4PjqcTT1p9YGlf42ZvfOPmWfmSNHDg85sXgN0Y91IcXXzq2SfLsEhO35VtqaSxIm4cRVb0agyLGQeBYXFsgs5vbmOiZqMlZaPmJR4tENkRhj1X6tUL1T68YdNfzn8SV89VJwIPNnRW43NCV+0Lxw5iQAoFiuQE0hFQGg3ex/JmXYOhMAGsOkodFptbDnwGEU/RahVpBYXPYdB0reMJynWGwMj+LcyWjOIiWQBBj4xONXyexH1YTkWJT6m4Gq0oUke8UQwwAd3VMsGpangIyDrlJi0bvhkUNkS7vZRNFHCmmmBbmQrj7zk9Eeb0f2QaVWh23b6DrEYqVB9tmVSxdgO9+NYXnYPgK2F1bbGmoO+VamJLfoneflWgO1xhCOP/yA+xwlFtu+3/Ylx7p0tCyhUCpDkgsw9AHyi0DsUM+vtDG/7p2bDMOgJgsB0jkNtm2jpRqoF0UIXO9L/IRjc7zq2O11dRO6aWO07N18dtptFEolqLqVqATkWAZjFQmbXd21vtl/5AZUqnVYDEfsdZ3NoWrXchqxaFoobCFjsSgNRgCWJQ6WjUDm5MNz6xgpi7hxJvlmN0eOZxz6mKjRNzgBMDWsLPusu1ie2J9SGFr/vuhhYjFFsQgAKI0CzavJr/cJxlSJGrMHjp2dc+fu2JyUnrG42QZ4EYU+SqYvPRRt2E6ODuG9X9Pw8r/u4MCuaQzVgtfXNMUiAEii4E64GK4W8cgJr5knGyn1ErVCDSgWiZqzGEMKRhSL7gsrAWKLquzTrVDbEcViVjLJD9qgDe8zkSfH2p+zCBDidCvwb3NRFrB3djL2mCaB4ziMDdfcjEkAgLoJKI46pbPa/29LV/q3Jt4O+BSLq63BiMWbDu1FtVzE1FjQEvjrxgp18RhQ2wFUJoDqJKCsbz0TAiDruP9PyESO57wNqG9zw23X3QBt0irr27vuHDmeIvjtHJf15ZR39geasWg7vp2qGT/O26qdqHDqB6uKRyzyiK9DwmTlhdNBYjHNsrKV1f7ch8fvfzzy3PDYMNa+sIbz7zyPsamxiEIxTbFo2iYEUXAJs0qjgtNPRp2ckqxQY4nFrgKGYVxrUXosXGJRkmBYhrvvqNK2LpLttG0bqqIGiELNCikWm22UyiV88vwn8dEzHwWQrj5zrVCZYDERRxYDJG9RlETMX5x3n2M5tj/FokM4USWmwAmwOMuLMeE47D28N0AsJp3TfgyNDsHIKLZY7CxisbuIF+18EcpSGePF8YhqLw0NqYEfvv6H8eDig3hkMTrhraN3UBOjk2DKYjnTd3HX0+okKhaH5CF0E6zjdx/cjVKlhLGpMVi2FclYVE3VJbAPNQ5hubsM3fR6SsVyEcMvHobwaqGnvXLitifY105XprG2TfnO9y/c/5TboPozTXPkyPHUIycWv87wlbOrmB3q78L4SA/r1CfnvYYPwzCoFwVsqKRQsWFjslaA4vNtKktBxSLPMpjsk1gs+NRCR6dqmKzJ+KvHgwNZNWtg0ADQEkhDqlgE0m1QAaC5sd7XZ0qFIp70kVAAoGsaNtdJoS/JBfzSu/4oQOppphWwQg0SSoSs4UQZmkMs7jl4FGdORIlFank5zHRx//k1bHR0tFUDIseAZRiovhmYqtIJKBZLIg9F8xSLhmVHiMLgd3JuOnx2KnJIodppN1H05eNlsbUs+s4ZJVQIV+sNqIYFyquLhRIKxRKuzJ131RAML8AyshOLax0N9aIIWeBcYpHx51EwDI7cdDuefNQ7ptQelOZXAh6xyLMMGIZBI8HaNgteecMUbAD3h+xQa0UBim7G5juFoRoWdNPGcCnbTNepOvnO1MJ03bFNnvDlqnY7LRRKZWimFThOYUzWZDQVA4ZzoA5edxP+8cvHYdrEkpelN0SO2rWUoFouy1tXLJalwSYu0O9HFaKWZeOxyxs4MlntW7mdI8c3NHyz37cdnACYKiw/ecmF8hCtGKvUXghbofIisVRNQmWCKHqS0KdikrVNoEeGEQA8efoi6OVPBx/J6PNjbbMJcGJmxWJJFvDlh4OKRcMwMb+0gp/8hIL/coeIj77nl1EJkSVpikXAIRYdBeaBmWFihepANFOs5FyLcs6ddKKbNtqKHmtF2XXsxyKKxe564FhqTs5PqmKx1UE11PwZhJiiGA6pBViG5C+eCSkW+zAYiEVYVXnXzYf7IhYBYHw4NBFmzVErlsbIb9vscwKU3u1fQbwd8DXBVlrqQMfv4J4d2Lj/H1yLWIqs6tXwObStsG2iWBzZDxSHgOo0oDT7Pz5xuPhlYP4h4OY3ADvv8iS224nrXkv+306VZY4cTyG2g9SLA1UsGiDXTT3hN20rNhRD6StHNw5rqnfvyCH+Pj5CLIYUi2lWqP0qFgVJwJMPBnsWlmVhYX4Bl//fZdTvruN3PvA7qNaDzitpikVqhUqzA2f3zsYqFpOsUC3bithguvmIzuVRdSajac4kJ6pYpCrIpkb2w5BMJqpQ0kzy1TOqqQYUi+1WG8VKETZs9zxIJRbFeMWi+/1CyzIMg8nZScxf8IhFQRBgG9nPKaqyq0ikzpE4QqhKRe97XXfbdQFiMctvJ+14hvHI0iPgGR4v2fUSAMDe+l5caV/psVQQP3rDj+JQ4xA+ePKDEUvUjtFxFZl+lIX+iMW0jMVheRiGbcTum9HJUXzsiY9haucUDNsgdrMgOZ5AkFg8OnwUpm1iruW5qpTKJTAsA7bM4tRatqxs0zLxa1/6NSiGgq7RTVRO76zsxIa6MTBh6f+8p9oGNUeOHE8/cmLx6wi2Ddx3fhXTjew3zTzL4OFL66nveWI+OJN8qCiibXg3l+PVUOaIxMNfhkzUZE/RlRF+C0aGAd707J3ohMax6jVULNqIL6T8xGK3k56p0G/G4sj0TqJY9H302RNPYH2VNC0LxWIkaLulGAHF4mo72ADlWQasILlWqHsOHsa5GGKR5iiOCio2ujq+eGYZbc2AyHNgGUDpeIWV2u1C9KkHqUJVVbsAS469JCQTi4ajbLT8xGLIcrPdbKJU8RpwxAq1h2JR9NbRNezADVa1PoS2z36UYYDJHTtxZe6Ca3/KcALsPojFja6ORlGAyLEuwWVxwXPyyI23BextqWJR8ckR5laDRWtjZCzzNoQxUpZwy2wDx68Eb97qBQGKbkUUy3Gg1shj1WjDNg6jZQks4y1HrUynKLFo2+i2WxCK5MYvSWUIANONAjYUPZL7qhkWsct17tps58Y26bpSkXmohgW5ODixmGSz2gvUQlV1OsPnVtpoqQaevWf4mqqsc+T4ukNneyxxYsEKjiLRdwPLCUF1oan3r5AKz1jl5XT7xupkOoE6CJHC9yYWj52dQ0Uk10PFTG/2r220AE5E1rlYs2N1fPWREwE755PnL+Pi/BL+8BUy/tdLZHBcdIwfG6rjybeUYP9aNfZ7+61QD0wP47GTF9zHst1NVrjS51nWzSjUTGKFGpePSK1Q5fDkkM5K4PxwFYspxOJGs70tVqgUYWIRAPbMTAQUiwzDbFmxyLJsYN88+6bDePj42URr3ThMhJt56xeJKnjnXc6+7DMLWu88PcSiT7G40tS2Ne/w60Kx2FogatLJmwCxRFSFynr6hIgsUJvAA+8Hxq8Dbv9hQBrcASIV14KszJHjKcS1ylhk7OBvQ0v4TduqDRs2NrWtZU6uK+uuRShrx7f4IlaoPsWioRvQY3KEKfrNWKyP1HH6ydMBsnLx8iLmzsxh4nUTmPqBKZdQCSyXpli0TPACDzil4Y49O3D53GVXXUhR4AuJikV/LiUQtTGlBBNdpyiL0C0vY7GltcCAQUMkYywlFmnGomEaMCwDZcG7h2032yg5tYhmOZOnUojFMk+Wtdj4Mb/aiMZgTM1OBaxQ/crOLKBEWF2qAyAktG7pASXmkVuO4NK5S7BtG6zFZsol9Gdq9sKZ9TO4YfQGl/w7PHQYS92lvsgujuXw28/5bSiGErFE7ejxxGJJKCX+PuPQaXcSj99wgUQgbajpfUTTMj3FovM70E3PcveGsRsAABc2vN9oseLVIg8vPZxpW++7eh9WlVX82/l/I9eIBOyq7YJhG1jubk21fXLt5FNug5ojR46nHzmx+HWEK5tdbHR1TNWyE4sjZQknF9ILvcfngwPbUEh1M1oJEYshRdJYRQrk32VBWMG2b6yCXc49reXMIqsVn9omvaHrmL/ozbDvqVjsM2NxdGo3VpcXsbx4FcbGAmzLwsHrb8arv/sHEpfRLStALC421QApI3AsOFGGrnuKxbWVJTQ3goo2kSfVc5nVUBA4fOLxq2irJkSeBccyge+qKV3IZa+oIiSOCU1RwPDkmMhpVqjOtpg+KxE5dH50Wk0UfTaWqmFB6kUsCt5519FtGJYNzclzrNQbgVxDAJic3YUrly56s7o5HlZGK1RVN6HoFkYrEliWgcSz4FnSDBRF7/dx5ObbvExJAFVXsUgKXNu2MR+yIqY5i4PiW2+awsUQWVkvClAMMyOx6CgOM6qMeY7FcEnCprMcJRYnnOuQZZqwLAtCkRzPtEkGM40iNrsGNCNELJoWZIHDzCzJXCzUSNFdSriuVGQBqmFC3oJicVBikVqoKk7T+pFL6ygILJ57cGvHNUeObzhcS2KRE4iSzU/6cWJQpWPq/SsWw01uvsd1sDy+LWRJhfNtN5de29i2jWNn5lAQyLZ2exGLmy2Ak5DB2RoAsHO8jlaniydOXcDchgXNtHFk3yx+4c3fiR+7LZn0HB2q4fCoc03enI+87rdCPbBjBF1FxcUrJKtPstrJRAhVLDIc2o7NGrFC1WNtTD0r1JiMRd/sc90ZZ+JUjxSb7U4kH28QYopOdBoOKSsY2Ng7MxkgFkWBh95HMy8JfmLxrpsPwzDMVGVrGOPh5uz6BXK+jx8hKt0EO6xYsLxDLD4dVqg+m8KmsiXFKcVIo4pfePN34t5nXZ/p/deUWFw6DoABdt9LHjd2Ad21rROLD/4FuYbe87PA0J6tbmWOHM9Y9JOtNghYp92mWwmKRZWMF72IiF7Y0DbA6WQMT7JCDROLF097ec9pNqhA/4rF2kgNpmHixKMnoK/rMFUTEzMT+MGf+0GMvGwk0dYzjVg0bAOiJLqE2Y49O2BZFi6dDdplFvn4a7ZlWeAYDobPeUjp9iAWJRGGZbiKxZbeQlEougQlJRYLBTI2UYKuInp9kE6zg1LZIRada3uSlSbgKRYTicV6DLG4M0osWkb2moFud1Uk65Y4CZqluYQpAFx363Xu37zJQzF7K237USxqloYXzr7QfXx05CgMy8B8K1qTpmFfYx9etfdVkRzXrtFFQ45uT0WsbJsV6rCcjVi0bAuyQPbt7AFiU66aqnueDclDGJFHAlaw9BwCgBNrJzJtq+XMNrBgYV1dT3zf3tpeAMDV9tbiIZ4OG9QcOXI8/ciJxacR7/3MaTz3nf+J7/yjLwMAHr+8CY5hsLMPK9SxihRRTPlhWjZOLrQCCkJ/dhoASDznKrEAoBTKJhspS6nWmHGII6buniLr0BzriFo/gUHbgMsXz8E0/IVkelMlq2LxsFOfHN09CQD47Mc/hPn3/xTmv/oxAERZlwTNMFEfGnYfz290A8o8jmXACZKbsbjnwBEAwKULwSBrenxtANdNV/HVc6vY6OoQOWLP6VdnqkrHJYkAQsAoOrFCZRyLykKqYpEUXqbv8lEME4vtJkoVr+jVDCtgvxoHP3nd0W3opoWmYyNbrcUQiztmMT933m1MM5wA0yA3bb3cZNYc8mzSIc8YhkFR5IiyTvIK6ANHbwTHezdnHMugJHKuYnG1rQXUi8DWFIsA8IrrJyO98UZJRFczYWRoVjad/TTeh33xWFVCSzFgWBY5b3jW/X1StSwvkWI2jbCbHSpis6ujowePlW7ahLx1iGuLIdmfScrYqixA3aIV6qDEIiVO6XF9ZG4d+8crfe3PHDmeEdgKsaj2aECxJGMxQFSwxB7VRZh4HAR8D+V2eWJr63dwZ8OneuTSFYtXFlcD2XcdPQOxmEEFSbFjtAqe5/DX//I53Pp/2/ifnyW1zN6ZydTlxvzNvJhB1G+Fun+a1C3Hz5GGh2SmEYvOeMCwaHVI40q3gLaipyoWC1LoO9tWIA9Ty5CxuNnqolbeumKREqKuYtE5LysiUSz6rVAlUdiyYhEAin77sf07+86GnBgNW6GeJzabo0cIYd/qo3kkloly8GlULFo2maS2HcQiy7L4H2/7AYwOpdv/Umwbsbh2IUrOLh4nhG99hjyu7wS0FqD118QP4MqjwPnPAUe/Hdj3AoDNb/dz5EhCUubYdoHakqYpFoFtIBbVDdd+Nc4K1bKsALHYbXexOL/oPU6IkaHol1gs18solAr47Mc+izPvOIPL/3gZADC9azp1uXpK3rNhGQEl3vSuabAsiwsng5auBSE6Tti2DQvECtVPoiodJWJjCgCaErRClZx6sq23XfINCCoWV5VVbOpEeeonFtstT7FICeY0xSLHcBBYIWKFSkm8WiM6dk3OTmJ+zmeFKgqw+nA56BpdiKzo2nNSK1T/do7vGMfwGKn/eJOHZVuJeYIUQ2PZFYssWLx8j6d0u2nsJgDA2U3P7jarstCvGAXIvlMMBQ0pnljULR1Gxmz5NCvUsSLpAzV7jOGGbbi/x4pTW2qWFrDx3VPbgysdr770f+Zyd7lvEjCNWNxd2w0GDBa6C32t04/cBjVHjm9e5HcaTwOOTJFiZLJWwFRd9iwHQawEhzJmowFEbbjSTh5gFzYVaIYVsDsdLkUbOX7VYjj3rF4UwLL9Wd1IMUQkz9IQc4JraYUaB78NKpDBCrWZzZKkwDO48DuvxG0HZlEfGsGn/u7/QZo6hNpNxB9+aDSZaOpqQcViWzUDOYsCR6xQqUpwcmYn5EIxoLwEvIxFCwyetWsIS00VT8xvgOdYcBFisQvRRyxWC4JjhaqAcZqXYcWpH7pGts/wXT78akOAWKEWS2U3E1E1LIhyr4xF7zNbGskJFCVSXO3cewBtNVhcT+7YiYV5z3eeEySYWrZZp+tOnuAOn+1wSeKd7fR+j3Kh6JK5FBWZ5B0CwGXnWI35fj9byVgEgOGyhFt3BoveoaKIjmbCyKBWaCoGOJbp6zoyWZPRUg3oho31joayxLukn+GQtaxMitlKimJxql6ADWC15c3KNS0bpmUHzinNtCByLPiEZlfVyVgcxAp1/1gZt8zWXdK4X9DzUDMtrLRUXF5XcMtsHUPFPF8xxzcZ0rIHTQ3oQz0VASdErU7pc+5nGFtXSPVULI4i1i+rTwTWECIWwyqzY2fnAo+bPXok65vt3gSpDyLPYWZiBO/+i3/GoREWP3onGe8ne9hRxdl8BtYreIrFoWoBE6MNnHCJxRaQlLVDjynLoeUqFm2iWIyxMaWKRUGIGWuaXoMlqxVqmBQqD0BMURv7Gw86yi/H/othgD0zk1ha9RrCosBHVPuDwE+6chyHO2482NfyAcWiZRIVamMnMOGo9Db6UABIZZKxuFUV3SDwEYvA1jIyB8W2EIudFeBffxE4+5ng80vHgOG9JF8R8AjG5iIGgqEA9/0xUSne9VagkF0tkiPHNyOy2DluBVTZRi0ww7AVh1jUtkYsNrUmOIPcw8QRi51WB6IvA9qvVgQIWZKG1mZ/VqgMw2ByZhIf/YuPQqgLGHsl6Yf0IppEOfl+i1qhUmJRlERM757GxVPB71Lki2AYJhCNQwkpjuHQ7XjfVe2qAVUefZ9fsahbOmSnnmwbbdREj9jzE4vvuu9d+NSFTwFAxAqV2ljqlg7TMgMWo3GQOCmiWKTZkgduOBB5/9TsFHTVq6F5gYfVxywnxVTc70g/Xzf1wL5hGAZHbiV9EcEifbymnk6g9aNYPDx8GCMFr48yUhjBkDyEuaZXNw86EaCrk3zBOMUiJYppzmQadE2HrumJxDAlFntZG5uW6ZK4FJqpBY7BgaEDWOwsuoQyJaftNRscw+GBhQd6bq8fm2ryNkm8hCF5CMudwa1QcxvUHDm+eZETi08DGk6D+jn7RvD9z96Fl13vzSLf0ShEiD0/wpPIxyrpzaa5NTJA+tU2cYSD3zYxbIU6iLIwTrFIB0WLJeuvDqgoygrTDDYkL545iUqtgaKjguqtWFzv6/M++P73Yn11GcXGBMa+41fByKRJNzwyHngfVR8CRF3mV/YBwNlljwTkWRasILrLsCyL3QcO4/KFYFC56HikmTaD66ZrEDgGyy0NIseCZYIkKslY9IrdekFAVzPxvT/5ixieJA2NNMWi7igWDctrpRb9x9sG2u0mSuUKVN2CwDHQMlmhep9p2qRpeNMdd+Pdf/FPeM6LXxlVLM7sgmkYbtOWFWVYGTMW1zpOjmDdKwqLIg/dDCoWAeDwjbcGHlcLxDrWtGxcWutC4tkAMb9VK1QA+NabgrM5h8uEWMxqhVoUuVRyOIzpegGbXQO6aWGto6Mi8d455ZDarDP7s1fGIgAst3w5WM5sSb8i1c1cTBiByjIPRTcDWaBZMVUv4K9++E4cmhwsT4he/zTDwqOXNsAywIsOj/c9uSJHjm94dFKyB9UWyQYbFJwA2BYYP1HBi0HiwhogYxHAhu67RvUiFjkRkLOpljIjRCz61YkAcOzMHEQfadbS00txaoWaBbZt43/92wWcu7SAsizi399YxHCRXHsnQwq2sH1VXO6iH5LIB3Ibbzy4B8fPkGYPAzuZiKYqN5ZzFYuaCbS7GooxNqa/9KOvQ7VcjLdJ8zU8tAzE4marEyGFBiGmju7fiS/+9f/ET77hVc6H02PKRJSgkihsixVq+HvddfPhvpYfd5p5rY5C1ImWDowdIRl+nNifIlksA7B7K5GvBTTSzKa7tF/l5naguh25jqtnAdju9wEAdNfJdXTiekBy7gVqDrE4qGL80b8nVqp3/RQwEm0+58jxVOMdX34Hrv/zbLbDTzU4hrvmVqiU5OtlhZrW9E/CikKuE4ZlEFIkpWRqbbRc1R0QzFcEeluh9puxePaTZ3H2+FmwHIvdv7gbQp30k6jibRAYtgFRFANKvL2H9+L8qfOB9xWdvG3Tt0Po/udYLkCidrvdgBWqZmkwLROvedNrwDAM+BKp16hFZUfvoC7XvW1yiEVJltDW264qzJ/l57dCBQiZnaR4o5A5OUIs1ofreO9H3osffNsPRt4/tXMq8LjfjEVFVwJqOYkjSs2w5Se1QxVNJ3NSTz8vhkYIkWxlcCB5/szzI8/tre3FlZY3qaxtDJaJSpWkNAPRD6ouzZK3Ss+dJGJR5mVInJSqWDQtEzbsANEPkHPUfwyODB+BaqpY6JD7LfecUUn+ZNjqtRc2tI3A+sOYLE1uKWPx/qv3oypWcxvUHDm+CZETi08zeI4NHISpeiGVELBCjaBGUYSQ0vCeW+2iURQCKqM4YnHSp5qUBUJGUcSpD3shbplVp141HCvUyjVWLLZDisOLZ09hds9+N4OpZ8biRn8zB7vtFp73sm+FIZbBsBxsMLBsO2KNeenCGVg62RldzQw0z0bKIubXu27Dj2MZsLwYICP3HDiCpauXA+v0FIssBI7FkUnSoBA4FiwbVCxqShe8j7CpOcTii7/jTfitP/4gAKRmauqaCkEQoflIrqLv/DINA5ZpolSuoqubqMoCbABCIV19Fv7Mpkr2zXW3PAsMw6CtGhA4b19NzgQtZjlRgqFpmRrR6x0Nss/uEwDKErVCDTY6j9x4S+BxVRag6BZMy8bcWgdjFclV4wKeFWqY2O4Hr7h+EjLPouyEeTeKIhTdhJbB0qSpGChLvHtOZMF0vYANRYdmmFjv6qgWeEgOWWxQ+2AnByCNWKT5sDSnEYCr3Cj4yGfdSFcsliUelg3w8mBWqAWRG+i6BXgZi7pp4eG5dcwOFbF7dHBL1hw5vmHRa9bq+oX019PAOtde/+xgVvDy+CgGmJm87icWY+ywIihtc35qiFhcC83yP3b2Ivb7rMB6KRaJFao3LqXl2TAMg42ugde//F4oigqJ98amiZBi8dJV//HtPXFCCtlq3XBwF877bNQSiRBXsci7ikWdZizGkILf+6rnY+P+f4iuRygSwsRRILgZiwnWprZNMhZrla1boQLAXbcc8eo1zaup9swE7XQlkYdqbEPGYoh07ZdYnHCIxYWVNWDdUXNM3UxsMeuz5HhltRoWnTFQeRqIRafRR/uj37CKxVXqNOL7rS2fJP/vusfLh61OAQwLKMEs9UxYOQOc+Dhw4GXAoVcCuRVZjq8DfGbuM0/3JiSCZ3k3W+5agXZ6Eq1QqWKxTyvUi5sXXSJkpUvGX1Mg956GHbV0bG40A1aoF05fwOikV//0m7Goa/FEqft6W8fzX/V8GLoBVmJhM+R7hhVsfiVkr7y+sBUqQIjFq76cY8DLWPQTi1QxyjN8gFhUu2qAWAQIefjsFz4bn77waXdfUiVZOKeP7gde5mHDdq1U/XapfitUgBCLaVao9PNs1na/N8WRW46A893jVm6qgKtxmAjVIqIkwtSz9yIUUwlkU8q8TLIlQzXT0VuPAvAUiy2tB7HYwy0DAA40DuDeHffitQdeG/vaYserNdvaYMQi/X3RDEQ/KAmcRbFIz500YrgiVFJJSkpyi6H7Bd3UA4pFagV7fuM8AATOoefseA7mmnN97Y+W3goQ3mHsqOxItUtNg2mZOLZ6DHdN3ZXboObI8U2InFj8OsPsUHqREXYeY1kGk/XkZeZWO5ioyeA571A3ilFCb6IWtDnwq8fi1Ie9kGWZaiF50BG5rZ+a4YxEl1h00O20E4PDyfLrgceaGi24F+cv4cRjDwEA3vTW/w/f8yM/7b5mgoVp2REr1HMnj8PqkG1TjWDBt2ekjCsbiqtMI1aooptzBwB7Dh6BFVKueTaz5P9n7SJFnMAzYBkGSsgKlfPZklYLAtqaAcO0XOIqXbGoQC4UA1ZfflLQ0ElBXSyXoegm6s75xslRBZllmbCt+M9cC1n8NlUDBV+TdHxyh2tPBgAcL0HXVcAy0Kult9rWUJGFQMZfSeIjGYsAcOiG2wDAVazVigJU3VMsTtYL4DnWJf2pYtGf59kvGiUR//Yz9+K1t5Lmc71IyNm22nudG10dFZnv6zc0WS9AMyw0VRMbXR21ougu7557TmO7IiVPCCiIHOoFIUgsOueU3+pWM3soFh2imhmQWNwKRI4FxzJoqQaOLzRx3XQNw33YyubI8YxBeyn99bUtEIuO/Q/rb+jxIhBWnQ9ELNJrlN1bsQgAlfHe70lCnIIr9JlroVn+x87M4fCeGffxupI+Yq1tBInFpfVoE+Hq0ir+4+HzAIC3v3oPfufnfiCS1Ru2On3s5Hkw79gE847NZNXm2c8Af/N6wDIDVqgAcOOhPcFapJtAhFCymPErFm20lXjFYiKqk0B3lVjkgigWWZaFJMaPSV1FhWGYUSvUGMXbYfsk1F8qBq140+A7L0eHaoF1ioKwLVaopdC+ufPGQ2AYBlzGsZ1aoZqmRYhFqUIIRQBo7HH2ZUZrU0os9rD2uiZw1KGU065sh3qwT2wPsXgm+tziMUCuA6M+0pgTyGSH7np/67cM4Kt/BFQmgHt+2rF5zpEjRxoEVogQiy21tzLPT4CZPSa0UmLRSMiotXUbDJielpJ+XGldwQ9+0lOtLXVJvcY4bkJxVqjNjWbAevHi6YvYuc+bpOu3B40DJRZNhXzfhctERSXq5B6piCI21zfxxBeeAAAc+LYD+Jnf/JnIesRQfvK5E168Sy+SyrRM8CIP2wgSi2HLeZdYZLxjQ/PzWIYN5EmGMxaBoCqOEoVUsWjDxpA0BMGZIEcVi4xE9j0lkAPEos8KFQC6ZjfWCtV/XvkJJjNFirrjR3egeGsRkixhZMKzEe3XClU1VZQErz8kcRIM24hs5/7rSC9Nssk+66VYbITznmNQlap4zwvfE7BBpTg6cjSgKh5UsUgVhNSq1A9qbZvFZrXTJu8JKzn9qErV1P2iO7WmFHIj0SwtQO7uKO9ASSjhYpNMDvOTmS/b9TJYtoWHlx7uuc0ULa2FulRPfH2mMoM1da0nwR8HaoP6it2v6HvZHDlyfOMjJxafBpxZIgNNnPpotNz/TOqdw8kD29xaB6NlKaD04mOaEuOV4OcWHTtAfeUS5AGUP1lsGNMURUkizF986UHcsXsIlQw2qk0/MWjbmDt3OkAsKp0OCin2nGFictmX5wcAl089jp98/cvw4b/8YwCEkJ3dewCWQo4vCxu6abmfIcmkMDt/+jjMLilulFDBd2iygisbChSnKcWzbKxisRdunKmDYxkILAOWCaozNaULXvLOmaoswLKBjkYy9oDeikWpUIDqa5z5jzfd1kKpAs2wXOtfLkax+MjXvuT+HSEWO8GGV0vRA4S1IIoYnfBsP1hBgpZRsbja1lAt8JB9qr6KzEMzLQhisMgbmySfsecQsf6oFwQohgVFN7CwqWCmUcBoWSJWpbaNIUexaG8lfwzA7HARO4fJuVN39mFL6U0sNhUDVVnoS7E4VSe//+WWis2ujnpBgMRTK1RS/FqcCAZBgjAOEzUZTcVwyXHaYC36rP80w4LEpysWAQDiU69MYBgGRZHDyYUWTMvG8w+O9WUrmyPHMwZpxKK6CaydH3zdjiU645/Ry0mebSaFFrrJz3Cz23YyhlhLz5ZNWJns/Z4kKOvR50KfGVYsPnlmDof3esRiS00fs4hi0avRTs8HLWqPX1rDs77rZ/Arf/45qIYNhmEwMzmK8ZF64H1s6Hr7uN86LGmS1eOOcnD5JCQxSCzecGBX8L1JRIjpWaG2Owos24ZqAh3VTLUxdUFVdbVZoL3iniO6YaIoS2SC2Kl/iygmN53mT9jGMk7xNtu8n/yxdLz39gCuYvHcJgOGYQKqRUngoW6DFao/YxEA6tUyPvZHb8d3viSbxdSEv5m3dp6c55QgHD1A9pee0QLQJRYHyzbaEpx9bbjEYgFoXgU2Lj1lm7C9ikUfaL5iOAexOg0om95vJwuO/TOweRm48y3AxA1b29YcOb5JwLN8JGORknRp8KuErrSvpLyT2K0CyRmLsNHTOjGMH/zkDwaIi6VOkFhkY1p8fsWhbdm4cOoCZvfNus/1UiwqHQWG7l2TLp8n7klTG1M49zvnwC6x+Ilv/Qn847v/EWaXuA5V6hXs3L/T+Zrx46KfWKTWrkkwbIMQZr4exJ7DeyLvK4nk/tmC974kK1Slq0TIMz/BRM8Pv4XkcGE4QiyaPKnlKBFJ7TUty4JpmAEr1K7RRaEcrUXOPkSibnRdT7WsdL+TqYMrcK4QfmrW64sIohDYT72gmqprIQsQIlU3dUilYC0iSiKKlSJuuv4mMGB62ofW/XnPA+DmsZsDj7v6YApj+vuKUyxSa9tMVqit3orFmlRLVyza5Fyk55D7vBVULDIMg5nyjKvY9J9Du+u7saO8A48uP9pzmylaegtDcrKCdFdtFwzLcBXQ/YDaoN4zfU/fy+bIkeMbHzmx+DTg7+4jBJUSY09QkvpvYO8d8QaZphKcbb2pGBitSGBDTSMmVNyNlIOzx6gdYPfcg5Fls4B3CK0ssFrZB699YxW8+Tl7MFbp3YzyE4Oq0oWqdDG7N6hYlAtFVJ/9XSgevDuyfDNELC5e9tQZ7WOfxwfe/uOYnNmFn/il33Kf5zgOu3aSIp1hEMjZefFrXgcAOHfymEt+hRWLBycqMCwbl51sTJ5jwPAiDMM7rrsP9iYWZYHDW5+/DzfPNsAwQStUVemAFb39R5WjLdVwye40IsXQYhSLQlSxKBQrsEHyAQGAlaIFsuUjAcMZds2QOq+lmiiGyLLJHd5MSzeLMgOxuNbRUSsEFYtliYdqWBDE+HNLlsnz9aKIrmbiyoYCywYOTVQxVpXQUg0Ypr0tGYthUHI2vE/i0FINVAv9EYsTjoXpUlOBalgYrUiumtdwFEQWQ+xVhR5qiel6AZuK7mYrusSizy6XKha5hIuEa7ea4abqWqAgcLi01sVQScTNs/WnZRty5HjakZaxaBnAWkyjPCvorHk/scGJUQVV2JbIn+PHxSuJbb/V4LUmFuMQsl/1KxYt28bC8hqO7PWaea2uhoKcvJ1dRYXBeM2HMz5i8V9O6vju3/03DNcr+NCvfLtrfcowDO644WDqZj528nymrwMAMHVihepTKB7aMwPRXysoG/HWmm7GIrFCfftnVfzG51S0VT1CnsXiqtM0YTmguwrGadpphklsUA0FuP9PgROfcBf59n06RixSW9YqweZPnGJRo83SBEVJBE7T8T/myHHxE4uiIAQmXg2KQgzp+vJ7b8dwoxrz7iiGaj6F6vpFolaUnWVHDpDfd1YLLcm5z8jQdNt2OPvacOrpSqkAPPpB4AvvjiqcrxEGJhaXT5H/O6tkMoYfukKOy+ghoFAPvlafAdSN7IrSzXng8Q8Bu+8Frv8Oov7OkeMZgl6KwK1AYAWXCKJYVnpnjC10vYzpcxvptRAl+fQURbzIiT2VX34sd5fx4zf8uPuYEnKsRT4rTrEYyEi0gMsXLrukH9BbsQgEycn5C/Pu3+1jbfzhr/8hWI7FW/73WwjZ5YBaZyY5rvuJxVUlpe50IMhBK9SxqbGARSQAlPgUYpGJEoupikXLUSz6CB+/sk7XdIiSCAOOm4KpQeIkcCzZB5SMDVihmlEyEwCunCUktWVamYjFMHk1OevVs4Ig9GWFqpoqyoI3CVzm5VjFIgBwAodKpYICX+hJxoUVqv1iujwd2K5BFYstvQWRFV3S2Q+q4stii0wVi2lWtnWpnrouei2Is0L1KxYBQnpScluQhIDb2l1Td+Hs+llXjdtz2/VOKrG4t7YXAHClkz5ZIozcBjVHjhw5sfgUw7ZtPDEfvLmkhEpZ4lMtKJOw00csfvr4YuT1iWq0cVMOOUdRFaPt5KeURG9QSLIrDIN1mpC2TWbMZyY2BpDbJ6+LDKy2rgasTJU22ecBxWK3A7lYQunwvZB33hSxrtI1NWB/emWOEIsbT34By//0Ozh0x/Pxrj/9e1Rq9cByB68nM6tUi4PhkCuVah1ygRQK5097M+IV3QzkZu4eKYFjGVxaJ8UIzzJguODBKpUrGB4L+ujH4brpGo5OEWuHILGogPU1PmnWZVM1XDIo1QpVUwmx6FPc+lVsVLHIOqrIYWemGysFC7m5c6dTtz9MkrdUI5DTBwCTM7vcv1lehK5rYOzeRfRGV0ejKLqqPIDshzgr1DAaRQFd3cS8c4xu2FHDWMUhFi0bhVKyCnZQUPvijpb+3WzYaKkGagWhJwHox1hFAgNgfoOc734Fs6HrkAtFqD3IQIodQwVsdg339xRnhaqbNmQheV2u3arQh03eNoJu65HJCkYqT8825MixZXzx94G31zJNtohFGrEIAKtnB1sv4Fmh+m2HODFqRRmemewnM7M03bNYoZajtkiZUZuJPhe2QvUpFqmS269YbKt6z9w/xfCu55RY/NSJJl79t13ceXACn//Ld2FyKOgKcOdNhwBEs7kpHj/Vn5WtJARrEUHgsdeZHW8wIiFO4hqn1AqVJVao989beGTBQkfREvMRA6BKxOIIYFvgnQaqbpjELjRGKfnzt6p4VoVkLlXLReDil4ELxCEhrFi8sti7kRlByC5r74zXzJNEHlof9mNJKGUhXcN47O+Bh/8agKdQrUkg+3Boj0d6D+8DYBOFWxawPMm4HFApsCU4n6k7v51ysUDOqebV5FzPbYYsieD7dW+Z+xrw778CnPl0/CSM5ZOEiJ+9m5DmftR3kfM6yzXOtoCvvQ+QqsA9P0syGnPkeAZhTR0gbzQjeJaPEItZ1DrLXY98vLCZPpZSkk8PZ0j7IHFSTxtQP37khh/BzppHCq4qq2AZtqcVKoUNG5ZpRYhFIcFanMKfh0iJxbkzZML89K5pvPfD78XwdFAR5hKLiM9Q9BOLaxmyZTmZCxCLDMMEvgcAV3kXsEJ1Jg7xDB8gUf0Zi1Rd6lcsqgY5P/xEn59YNDSSQ0jJH83SXNtUwCMWA1aoRjeieGs3g4SZXz2YhDAZPbUzqFjsl1j0W6HKHMlYjCMWKcpCOVMu4VbAMAz21DxValhhnBUtvYWyWI59TeZl8Ayf6bt0Wo4VasqEo4bUSLVVpbmdYStU3dJRCE1OrIpVdE1yvjIMA97nAPUtu74Fiqng+Fo2t4220Y5VbFLsqe8BAwYL7YXE98Qht0HNkSNHTiw+xXhobj3yXL1Airi9o6XUzL8kTNW8AejTJxaxuOkNuLLAxqr7qmL859iOzVHZp5zsRSRQWEUyA4Z+hzSr02sFhk6HY5iA4lBTupALBYxN7nCfU7odyIWiq96LK3b961ied/zNdxxE/Xk/gNe89R2xJNTBozcBAAywaIeIoE67hauXLnqPnaw+ConnsHe0hLZjjcZzLBg+WuRP79wdvwMS4CcWdU0F4yNsqK1sVzN9GYssfuoFhIRtlEI2DaoCqVCE7hBHDBAgkQ2NFOCsSAquUYeYYYTgvvrif3wCSWBAFIp+dURbNVAUw8SiT7HIZ1MsWpaNpqJjuCwGyLeKTBSLvJjezKsXRSi6icvrCqoyj/GqjLGqjI5mxqqQtwM1h1jstX5Vt2BaNkbL/c0OFDgWw2URVxxikVqjAoBlmiiWyuhqJkSOBc+lXw9mG0WsdzVojhqXEoxhFazEc242aBhUsWiyQuIM12sJagV9x55hVOX0m+wcOb5u8al3kP/nHx5s+W4K4WI7uW2DwrH/Yfw38bzokVAUEWLxvPd3hqZLJsVieQsZi3EIkQRrm75mnjPx6sCuafe5dlfraQna9uUJnb5Mmp43TRfw9nslvOdHnoNyzMzpO24gxGKrGyUnDMPEsTNzkefTIArRWcgHd5OaShVqjnVjDBFCyUaGKBY/86YiPvr6AtpdhSgWl44Dp/49+YMVpw6rkAlVgkMsaoZjpUqzHel+N1QMFwDVaeZVy0XgzH8Sq0hDiSgW/+nTX8Huep+3QyGlX1CxyLt29ltBJjVnGI9/CDj2T4Hsz+vHnf0yeaP3vuF95P9mH80juT5Q5umWYGruNcGwgILsI/hsMz638BqAYZhYC91UUHX15jy5bjGhe6LlE+QaNn1LdNnGTmKznGV/n/k0sHQCuO2HgJnb+9vGHDm+AbDYjk6a3ipMZxJqnGIxi2rOTz5eaqbbMruKxV7EYh+Kxf2N/YHHq93VAPHVi1ik8GcsKh3FJdiS4F8HtUIdnSJOPd//M9+Pci1K3By9xVMshtVttm3j3HGPWFzX1lM/HwBYiYVtBXs2s/tnA48pgZTJCtX3vakq0a82o+eHf/+OFjx3IkMj5Bt9n2EZwXxE597db2OpGVqEsPvqf3418DiLYpGS0dRmNqBYFAVYWvZaRDO1ILEoyMSaM2UCWFksZ8ol3CoODB1w/x6UyGzr7UDuZRgyL2ciLTWV1LlpGYsNuZFJsegnFg3TgGmbgWMAkLxG/3Zxvn7K7eO3oypWM+UsqqYKwzIwUozmWFIU+ALqUj2THbQfuQ1qjhw5cmLxGsKIyVj72CPzMe8kGIRUBILEX1s18edfOu8+nqwVAhaEFNUevEPJt8yggkKpDyvG7YLt3LgzvIjWRtDKdMeufWBZFmxlFBYY1wqVEl5hK04AaG2sAwDM9jqe+PKn0G5uQqiOonbHaxOP1879nv1YOCfw/OkTgccdzXRVghQ3zdTdv3mWAcNGj9/0bH/EotIJFmF+YpESJ13NhG5YYAAIPIvrd9Rw/NdfinsPBNUcuqZCLlVdM12eYwJZeYbufGdnv45X44nFL336XxO3tyqxaPsUlADJgCyF8v0md3g3EoxrhZpuB7Gp6LBsYLwa3B5CLJo9FYu1AsmkPL/SxnhNRlnmMVom33Gjm3zTuBVIPAdZYNHtoVhsOhmMYzEq5V4Yr8ousThRC97MFEplKLoJKYNicbpRhG7aWHP2RZxiEUCq+pFaQmuGBe5psNQoSWR/P+/A9tva5sjxlGOQ2b1aJ3050yCKoUHhKBYZP3HIib0zFv05ZWGVTxyyKBYTZjAPAhuIEosbwWbh7h3jAevTVlftqdxrq2TEXVds/Nv9Z7C0uoGRMo9fuVcCl2ArQTMQO2p0XDp1YR6q1t94JcUoGQ7tocRiA1DW4olFekw5Hq1OF/fu4vHqgwI6XZUQg596O3D/nyQrZCmxWBwGOBGCRohE3bCCxCKFQ+jQyS21cgmATbbNjKpDP/ypL6MgOGORErKrTEIKsSiJQiQ/exBkUnMmwffbvWGcJaTW+PXe6+UxQCgBnd6Wfy4KdUL0Z7WL3Q74fv+mZaMS3idbyXntE+Gszr6wcsYlxl0sPAk0dgHFGFuy+iyZvNHr+HRWgYf+CthxO3DLGyI2zE8J6PUzyySOHDkGgF8duN3gWR6aqQUmF/fK+Qu/Z76d3NsBPJLPSLl2ipzYl2IxjDV1LUBExWUstkK1SLVRDeTfdTvdVBLJvw5TMfHYfY9h6cqSp/ZLmFA+43No2NCCvZmVhRVsrnvj7oYafD0OnBRULALAzgNBxSK1zrSYeCtUf56k0lXc7y2wArFK9ZFCmlPX+BWEYyWvN6JrOqSC5KrKAATsLOOsULtmN2Kl+YVPfiHwOGyJGYewLWg4Y9E0+lMs+hV9Bb4Ay7Ygl9KJxTgC7c+e+DO88753Zv7sXjgy5MUADapY7EUsFvli4BimQZCEgHIwjCF5CJqluedOGFSxKPhcyRRTcbfDj7pYD3xnnvc+l2M53D5xO06unuy5zTRj0k+Kx2GyNNlXxqJpmXhy9UncPX13boOaI8c3MXJi8Rrg9l0NAMAXTwcLYdOy8bFH+/Os7hd7Rkr4+wcuwXBmco1VpFhby2oPEQ5VsQHxhFsWpOX0PRVo+qxQAWDnXjLbafj7/je+ZO6H0u2gUCwFSDYAYAtVcKWGs44NaEvnceUv3obm2jIWr/S2jfIP+BudYOPu/Knjrj0VQIhFMzTr7radpMmgGhbJWIwZpKd3RoPK0+BXLAIIZFMVRQ4cy6CjW9BNO0AUygIXIX90VYFY9AozgWMDOZy6pkKSC9AcOxaqmGUECXO//3q8YGgDTHcNxx55IHF7qxKHpmK4GZWmZaOrW6iGMkgDVqicAF3rbYW65hyTHfVgQV+WBKi6BV5MZ91rjsL48noX07UCyhLvqjI3YpQh24XRsoSFphKrrKWgJN5Etf/m0kRVhmZY4FnGtV6lKJRKhFgUuACJHIdpZ78uN2kOFs1YDB47WWDBJZDzEs9B4BiohgWO29p15JaddQDA3XuTZ+iFccOOOu7eNxIhWHPk+KZBL4vBzhKAAWcdAT7Fop9YlKJWmuEMuH7tV7M0uwec1BUHmxEAJniN9FuhAsDhPUH71Lai9bRC3VQtnF618OK/6GB5s41zl67iRJuMwwYX33wSUmqwfm1QgSRikXwXVayTY6VGFRGeYpFDy9fMs207SJ4pCQ1F+jzDALUZCE5jUtOdjMWwFaqjblGdiTiu0swkjgZ+5dlGq4tPf/URb9mNdOWJi9B5GbRCFaBug3vBQIrFGNwwzgHlUaDY8J5kGKKK66wAMZMg4zdomOQCPpXEok8JYdpRG1tsXs6+/VvEwDmLALFCrfsUNZYBrJ4GRg8ChUb0/dRiuZWiGrBtQsizHHDP24D6zuT3XktQ9et2Z9XmyOGgX/VMPxBYATbsADmyrqz3XM6varzaTp9kxTAMGDCJJAOATFl1aVhX1wOEBI9o7yCsWPSrFQGi3EvLjaPr0Fd1nPvNc2httjB3trfzgb/vsRnKmj13MmgTTcmP1PVJLBC67O/avyvwWOIk2LYdsEKl+59juIAVqp9YZMBA5uWgYtHJWPTv34bkXbcN1YBckAPH109CGkaUWFRNNWClqalaRLGYxQo1fM6ErVANLdt4bVomdEtHRfCymamdqz8vM4yqWI0lFh9YeABzzf5cMdJw46jnuJAlBzEOXaPrZinGoSAUMpOWaWpFABguELvRJKI8TrFIv1dYsViX69AszV2GC9X2z595PtbUtZ7KaaqIHi+mu7RMV6b7sp8+uXYSLb2Fl+96eeZlcuTI8cxDTixeAxycIIPyPz1yBcstz17j9EILi00VM43Bm9W9+l83z9Sx2FTdHMfhshirHKwkWKFSlKUezGMGbEWxWBSDBTHN6esHrc3gYD7jy1dUORlKtwOpWAIbUtINv/StGHrpWwEAD335c7j6lz8PViwAYAIZjZm2QQ0WdOdOHQuQgkSVF2zOUiKEkDwsEEMsHrzuJgDAxOR05LU4KN2g6sNmvePLMAyqMg9FJwpBPkQUhqFrKsSSN6NN4FhwPntMXdeIdabTWGuUBIg8C5sTYSkt7K3auP9z/w42hTCqSCyaig7daRh1nMK4KocVi95NEcML0DJYoa47KtLp0O+wJHGwATBi+u+TEouWDeweKUIWOIw4isWmcm2sUAHgdbfP4Mn5Js6v9L7xHKv2r3SYcgjBssRHJgUUiiV0dYsoFntchOh+pfvZtULlw8QilzppoSTx0AwTHL+12W9FkceJ33gpXnNztt8KAPzyKw7jN19zPUb6tJTNkeMZg17EYmuL1mQsB4AJEot8jGIxbLHktz6MI7HCyKJYdJCURdgPLFaIWB5GiMW9QcuuLFaonz92BXf8vzZs2LBtQuh9ZWMUzDs2YQ7ti1/I+T4yF/1ej506j4nRBk7+ZAmf/f6UBknbmyAXZ4V60yFSz9QnnbqmHdMApseU5dDuBJs2mcgzf6NnaA8ExyrNUyyGlI7ONqiGAVkSIVJC1FAB2wpYoX7iy09A133nXPMKUYr1QkhZsnPKUy+IAu/WP1tBscc5kRU3jLFAdRqQKsEXhvYStaeZcfZ/cchRLF67OicCh8C1bWKFGiHgN+efMnvWgYlFvUP284jv/mH1HCHcd9xOrnth1JzYhrAa14+5rwKXHwBu+l5g9z3bOkEiR46vJ2SxJh0UgnM/7FcLhpvqcRM619V19++FTm9LaY7hUhWLMidvKatuXV3vqVgME4uz+4K1SC8rVI7ncOqJUzj3P87B7JBxYMfuHYnvj0NTD27DuePnAp+ZhVhkRCaiWKTfZfce4uhEXaVs3wQ4qhILW6EauhHYhgIfJJgoYegngZjAhGpiF0qzGIEgOUStUP1EomqoECXv2v/Qlx5Cp9VBseq9J4sVatiG1K9A5QUeZg+no/B6KqJXJ9DP5wvJ9+FVseoq7dLAcltrOe9v7EeJJ/s0bF2cFV2ji5pUS3y9JJQyE4u9CHiawRlW6FLQa4H/nKLfi35PCkqG0t9OWCn5wtkXgmd5PLjwYOo20WvceCmdWJytzGJdWU+dyO7HfVfvy21Qc+TIkROL24Hf+/eT+LWPPh64ALMMsVx8z6dPuc/dd2EN9aKAncOluNVkQq98s4maHCAu6wUh1rJzyBnHhIQCruRTFwn9KhZpM0vIeHpxURIz3ODrIZKKRVixGCYFlU4HUinYaDEsC/Kum8A4Koe//KP/BXnmOkx87zthW2asYrGl29j5Cx9DS402o5ohYvH8qePYtc+zSm2rBjQzWPTtGfFIO55lgBgr1IJD7MlyNpI6rFi0QuusFgR0NQuqYUFgmdT9bWgqhKK33wSOgf8UsUwTpUrVbayVJR5FkXPJTKXTxpf+419xw23PBi/EEzdViUNTNdxMQUrQ1kNKukqtDsbZWIYTYBgahEsPQFw9nUharXV0sEzULtRV6fZoRFNiEQCOTJECddghoFoxlnPbhR+4ezcKIodPPrGQWuxxMYrDLNjhXDfKMg8p9NstFMtQDJOoDHtcgxpFARLPYsOxZdVMCwLHgA/dVIStUcMoiTxUwwa7DbYaEs+h0OPz/GAYBhM1eWB76hw5vuHRi1hsL0WUeZlAFYfKBsCJYPw38awQQyymZCz2gG3j2tnztRZiCQ2L5aOKxZD92JG9QcVii1qCJkDgOfz8+7+IG8dZfOWHydh/5qLP/SJMGFE4BFlFiI4Xj5+6gOv278T+YQ7P3cn3JmltK1axWJTJ2FcYdpqLcXamlk7IVoZBqxM8nr0I1QhG9oFxGoW6aaJUkBKtUE3TQs1PBpkqYBkoFrxz4iOfexS3HvURsxtz2YiqkGJR9O0bYoW6HcTi1ie2MHAyFuuzgBg6T0YPkt+xkbFJVxwG9PbTolg0bcC0gEookwqtxd7Xqm3CwMRiyyEdpm71nls6Qa53s3fFLyOVAblGchbjoLWA+/8UGDsCPOvNydeAHDmeAbiWxCLv3A/7lV9hlVFchtya4o0768q6qyaKg23ZYFnWJbbiIPPylrLqNtSNAJkVp1gMW6GGVX69rFDLlTI+/GcfhjgsYu+v7gUAzF9It4GNbENoUs65E+ew64C3HVlyJjkxaoUqOGNwYyhGAe6Akjk8wwcUiwACxGKRL0asUAVWAOvUdgIbrIVM3UShWAgQbH61oWVaECXR3UaAkEj+e8wvfPILmN41jfpY3X2O2rmmIUxG+9cpSmJmxSJdTxyxyMnpisUsZNxW76cZhsGfvuRPccvYLQNboXb1Lhpy8vlRFsqZScteikVKLIYVuhTUlldkvTrPVSyKwT4x3Wb62wkrFstiGdePXI9jq8dSt6mjd8AxXEBtG4ddtV3QLC2TatG0TBxbPfZ1YYNK7VvPb55/WrcjR45vVuTE4jbg4bl1/P0Dl3B10xvoRsoSjkxW8cH7L7n2iA9cWMPhyUp2wm0AMAyDl17n5XjQ/Lww6CZwYZsxByWfYjBMCIRRdvIYGYfIoRl7Wa1QGX7r6sg4hBWLEWKx24FYIlZiE46K8NxSGwwvwrZtiJKEV73+TRj99l8GK5ECYn7ufORzTq6T/78yF92X7QixeAy7DxwGAJidDVg20FKC7/ETYjzHRNQPgyBMLJqhddYLAlTDhGqY4Ln0HD3btsHLXtEjcFEVW9HJ5BM5FiLPoShw7mcuL1zFw1/9Au5+4UsTP6Mms7BtYN2xLaXE4lCIMGMYBsUKIfcYjoemaZAWHseodhVCwnmrGiQrUA4p4eg5b/doRFNikWWAw5MVdx9UCzza6rWbyV+SeLzhzlk8cmkdl9eTbUBKIjeQDfGko1isygKkkJq0WCpD1U3IPEfI7hQwDIOJqoyNrg7btonyNu4cEdML0LLEQzNNiJIE/hpdI3LkyJGAnorFBaAQkw3WC9Rq0lABPkQscmEihQmq1Qw1XhEXAh2/NN24dsTiV99H/g/bdzIxxGJPxaKKclHGTYf34NUvuDPyUUP1Kn7mNbfik28oYqhAvluAWOwBgbMjYdmPnTyP6/1NxV5kkanFEosuiiMAmHgixDSIQpVhA1aoAAIkXyYMH3D/tG0nhzBMZrY89UiADDJIBrPflu3jX34Sr3nRs4PLbmbYtykNYJHnoGRUCaShb9I1BrsbDMoiA4weirpfjBwA1M1kC9owiiMk8zB8rvzTTwF///1b3tZYOPcobZ3BxU0LFf/xlGsAbGD5VPyy24ydU2MYrg9A4LUWyIS1scPec4vHgPoMybpMQnWKHJs4q9cH/5JY+979M0R5miPHMxh+Ei8O/3nxPwdeNyUW/YRWmFgMq+zC77Fg4UIzai9Ox5qu1gXHcD2tUAe1eASI0s9PLLIxE78iisX9UcVioVTAbc+5DUdvPRpZvtqo4p4X34PZn5kFX+PBMAwuX+gdERPeTj/OHj+L3Yd2u487egeG2aMeERCxQs0C10oypFgEAMlXi5SEUoAkVE0Voq8+rYQm6di2HbFCDavO/DaodJ1+fPHfv4h7XnIPmQ3k245eSFO59qNYpFmNccQiIyXf91elbMTiduDIyBGMFccGUiyalomu2cWQnHzf0g+x2EuxOF4gqsAkBS6dZBCnWAwTynSb6brkohzJM713x7243LqcmlHaMTooC2VwPfLp99RIT/RKq3ct/PVkg0qtitMmeeTIkePaIScWtwE2SFbe508FMxVv3zUEzbAwv04G3I2ujn2jlUTCIwsY9J7xc/tOb9CkpGBWOTtFSfIaEEJIodQoBZt/lC+gA5XaJcVJ2PowCbZ6bWyMwsTi9OzuwGOl24FQIIP3gRvvAAA8dOYyFv/hHegc+xxKlRpqjREwzvdiOR7zF4NZAL3Q1gwYTlNgbWUJ66sr2LXfIxYBYKObXEDzLAu7RwGQBUpYsRj66deLZIa9qluOAjH9PPMTiyLHRtSBxXIFXc2EJLDgWQZFiYdpA5Is4zP/+lEYho67np9MLNIsxVXHTpMSdrUYOw6Okk4s75LavbYfiLpGlR3FIlcgZHOhHB/wXXWIxdGKhHrR+y0MlyS0NWNb7PSS8GP37gXHMvjkE8m2O2WJhziADfFkjTQx60UhqlgslaDoVmzmZuy66rKbkaklqGBLPRSEZYmDZtiY3XsIs/sPp743R44c24zOSgzR50NriVgj9gnbITFs2AAngfE32sKWgJwQVCy2s9mv0pzjlqIB3PbYSUZAs3xDai+L5SMWC1FiMZSx2FVRKsp46MPvwUf/4FfJcz4Crl4pYaxRcWuxWknG6YvZVQICC6Ia9OHM3FVc51MJ9IShxFqhumB5oDQST1JRxSLQv2Ix3CAYDpIopYIcJTN95HNQZWYDocZts6PgNS98duA5LDyZvk0AIdgSIAk8uoMSiz715dhQHQBQLw9+Dt8w7oyzfrUcBc3G28zYGC6NEMVi+Ji0F8kEgPZy/HJbgd4BwOBql8PZNRsVv0qgNAoIBWC9/7zQQfDu//oj+LPf/tn+F2wvE5LQVRXawPJxYHh/fL4iRW0GUDYJgejH1ceAc58Bjn4bsP9Fg1m65MjxDQS/7WgYqqHit772WwOvm2ccxaLh3SdvakGVUZzqKLxN5zfOR95DlUWaoiVaobI8C/GoiAJfGNjiESCKSz8pxMVMSs6SsSgXZLzrr96F93z4PWTbVR9ZVi1BLspgRXLNGZsaw/z5/hSL4UzA8yfPY/dBrz9jw+6plGKEqBVqFlCVGMdwUEKTnAo+NXxJKAVsTTVTCyjLamLUTlMuyoHjFyYFiyHFe/hYry2t4e4X3x14Lgux2A27evjQT8YiXY/fKpQSi4IzqVsuRWuRulSHYRtPGblYFrOTf35QUi6NWCwJpeyKxR4OBmWpDIEVYiclAHDJc8k3+ZHuw/BxH5ZJXiOd/LDnuj2Y3hmMd3nprpfCho2HFh9K3CbTNlMzJikosZjF4vnrygY1N5nKkeNpRX43so341LHgBbgs8bhn/4j7uFEUsHe0tKXrXpjki0OcBeTxR4nv9sLFM5HX4uC3Qg2TmVR59I5XHcGLDo+h4ZArrEsskoaLLAZPL4/IuXbEix9hK1ReCM6273ba4GVCLDIMcPXSRfzVL78J6vwJCEPTKFVqAXJyaHwa83Pn0WmRIuE//uYPcWUupaFhW+ioJgyn+D1/6gQAYPf+QwAAyyEWm0p0Zg3dV0SxmP1naprxU/jCikUj9NNvFEV0daJYFNj0jEUA4Hw5hEJM7l6pUkVHI8pAnmNQFDnopoVCsYzjjz6I/UdvwNhUci5DRSLbt9kl+4YqPxuFFMUEy0PXkmeD9gJV3tqONa9cjLcg4VgGJZHDdL3gLgMAI2URHc2EaV2787teFPFdt83gwYtrierIiixAHGDygkssFqLLF0plqIYF2SGKe2FHo4hNRYdmWFBNi6haQ8v5Jy/EoSwL0EwLDMu515YcOXI8ReisAGKKDVN7Mb0pnoAzT5Ba5IGT88QK1fLdxIeJTE4IKhYz5joKzqSmjqLHZhRfS1hxisWQ/VgtNHO91VECBNv8wgrufeP/5z5uVMtYbnr7ad/0EM7MXcHxs0T9+Qu/+34cPzuXuE0iiwg5Yds2ru+HWDT1dMUiQMiTONsnU3cUi0xUsdgrYzFMVIaIxaIsAd314Ht8BFct3PwJEYL7dozi6H5fc7U8DqydQ886NU2xKLDoDEIsPvER4CNvAVbPA/DUnFshFq8fY7HYtoChXdEXh51czGbGvNTCEFErJjUys2RT9gutDQiyK7it+FUCDAuMHiY5i70ULoPg6mOewhqALImD517Wd3nEYnuJfK+pmwExpTlZnyWkuf+3a6jA1/4v0NgFPPsnBprckSPHNxrSiKb3PvxeLLR7N8DDOP3EaQDAmftIX8Rv0Rm264yz5wwrkeaa0TGYEou6ohNiMcEKlWtwKPLFQB5gvzBtExWxAlYh9YdkRcfW1mYrMNF8bCqomO52uigUC/jQyQ/hgyc+iI3VDfzc9/yc+3qlVgmQk1M7p3D5wmUszZPJPH/w3/8AZ4+fTd3OMLGoqRr2HNwTeK6X9S0jMLAHuNd2rVDZqBVqWLHoJ5h0Sw8oFuNy+uSiHFBKhVVnYcViWL3aGG3gyC1HgsvwGYjFFJWrIAgwMzop0fX4vxtVgJmMkxFZiY5XlKgK/2auFapCdSBikU4WGC4MJ76nIla2zQoVIOdAkmJRtx0rVN955SoWxXjFIv3tsCwbcN4AgOnKNHZVd+Hx5cdTt6ku13tvt1hGTaxhsZNeG3492aDmyJHj6UdOLG4jHrqwjqaiB2i419zozSg5MlV1SbjtQiHB8nDXcHDA0zQyWOkqKRzGnHvz8vrp2OX9VqgCH08kTDeKeP3tsxhyFIw0mJkSi+Fta8hkPUI3W1aC0h1cyShKckSxGLd+qrxbPfs4fvp7XwFN1TDxhndBnNiHcrUWICeHJmdwZe4CDIMUA1/+l7/F9730Dnz0b94PIOI0Bs5Q0FIN6KaF6uv+By4qIkRJxuTMLgCA2SHrTmtA8SwDe1usUIP70rCjKlQ3Y5FPt0IFAFbyEYscE1UslsroOtaZhIjjoRk2OEdJcvcLXpa6/pJDYDUdm9iWakDkWUhpSjyOg6EPbn9ASUItgZz14zn7R3H7rqEQsSiho5HjfS3xky/YB8u2E+1QK/JgisXxqoyKzGP3SCl6PItlqIaJgshlykmYaRSx0dGhmRYhqzkmQj5XehKLPDTD3NKNdo4cOQZEewkQU5oarUXHirA/UMViV9UBPqRYDOXWgBODxGJzITaTOQzeIRZbyuATTfywwlaESnxmCgDYLB+xL19vtqPr8KHdVVB2co0efOI0nvVdP42FlXX39UatjKVN73q/d2oIZy5ewcnzRGn28c/eh8Mv/1H8t3d/gGxDqBgRWDuiMmMYBkdClqyp6GWFCgC1HYCyCc20Idi+z7NMh2yNyVhMyXMCECUqK1PBjywKQRWioQWWieTihez/X/PcG4Jj2thhooBLI6psO5lcA8n0VTKqBFxcuh949G8B2A6xuT0oiwzWujYgxDTBCg1ArgPdjErDojORICEz6JpAawO8V29GMhanbiaKy1CzesswNeAL/wt48APk/N0qRvZ7x2D9IgAG2P3c9GUau4mC1X8NfOwfyHN3/RQhVXPk+CZAmr3fXx77S9w+fnvf66SKNaNDrtV+S8m23g6Mo3HkgP+5slDGpealyHuoXaGmaODYeMUiRUFIt1bMgorgKRbjHK4s00Kn5X3P8P1ct9NFoVTA6fXTePzJx/GWV78Fl85536tSqwRyGqd2TmH+wjzmHQeFubNz+KEX/xDe/XPvBoBY8i/OutOvWAR6W9+Cx0CKRUrsxlmh+jMWw5aYuqUHLCvjyBm5IEP1TZQLk0MRYtEK1qd3vegucKEYkvA64uC3bA1DEAXoWra+CD0uVdFza6I5kf7vFQYlvbJkY24HKmIFmqnB7HNcpsTiiDyS+J5+1JCFcu/fa1WsRoh0Crr9Muudd/Szw4pFiZcgcVLiuijunrob5zbOpVouU/VjL0yVp7DUTY+eOLF2Ai29hVfufmWmdebIkeOZjZxY3CbwLIOlloqHL64H2uDUXhEAdg2Veqp0+kXYsjArOJbBhd95JSbE+MGnIHKwQ7OPD09UMFGVE1WTVFWkUcViiFikSzF2tmJg6Wp/9hp+iHIR7eZm6oy2bqcNzslOPPWpv8bw9G5MfN/vwtYdK4KQYnFkahaXfVaoP/dH/4xf+B/vgWWS77O5FhyAebOLlmMHyQ/tgPjsN2Ln3gNu4WipHXAsE8lh9EPgWFh9KBaTECZp9VCPc7gkoqMZxLaSY9BLlMaKXiEk8Wzk/a5iUWAhsCxKEgfNtLCyeBUAcFdKviJAFJsjZcnNVmyrBgoCl67YZTno2uA2MvS3qRq9icH3fM/N+PHn7Q3kj45VJbRUE/oANzv9YKwi41tvnEp8vVYQBiIWBY7Ff/zsvfjuO6LNZqlUhm7agQkHaZgZKqCtmWir9JyK2uX6r41xqEg81PCJmiNHjqcGrR7EotYaiFgULV8TJEwshq1QWSFoNdpedLL80sFzPsXiNmDRR/IBAJaOJ77XDikWGYYQk+1OcvPHr1j8P3/5T5gaG8bXPvh77uuNahkLa14TbN/UEE77Mhb/5X3vwN+9+xfBOzXXpeUg8SOwCJATbc3Gnh0TvUk9P0wDotCDWKzvBNQNPLpgYdha9AgZS3czFtvd4Bjdt2IxNEt7tBAabztBkiysDg0Tgq957g3B18eOAM0rKCKlgWMoSFM0SgKHTj95y2sXgC/9H2DIUW2o20ySAVHvd4qh3SSjslfGJuBlqj7VxKKv4V4J5xpN30pUfVlyMfvBpfvJuWKqUevXQTB9m3cM1s4D1UlCxKehPkMITtpkXz0HHP8YcOAlwOFXPeVq7Bw5ni4kqX4Aovj59v3fPvC6GZP8Ljs+FboFK6CaC1uj6qYeUIpVxSrm29GeBe/Yh1Mr1LTsL6oOS4PSTbebrErxER5+hO1QA+tvEytUwzJw8d8uQipI+IN/+gP39XKtHFh+etc05i943/vH/tuP4df/+NdRqjmTthejE8nDCrvaUA2NUc/9gmO4nlao4LCljEWe4SNWqH5iMaxc00wNMu9lKA5JUaV4oVgIEDr9KhbveUnUSjK8jjikWZAKkgAjpccUXg8DJvCZWTLr3Py/BMvP7UZVqsKG3bf1qkssFpLvISpiBYZlZMroy6JYrEm1RDJQt3QwYAJKP9VUwTFcgMR2P48v9iQWX7LrJdAsDU+sPJH4nqFC9NyNw3Uj12GuOZcapXX/1ftRFau4e/ruxPfkyJHjmwc5sbhNmBkqgmMY/NuTUTsO2k+vF3vPtO+F8OyyXqqfXkiyvGQZBpYSnH30thcfxM+/5GAgVy6wDBefsVjrQSBYCbOOFuajs/+yQpSLsG0b66uE7AtbBsAGTMNAt02+423f9yu456d+D0NDQzDWCflVrtbQanpNreHJWVy95Fmf8lIBL3rVd+CuF7yErNIMfg/e6KKlGlAN7/ldjg0qWcBGVebRTlEsciwDe4vEomkY0FSvABNEKUJ+1YsiOrpJFIsxJFAYLO8V4LE2lyWSsSgLHDiOQVniofkIu137DqEXCFFnwDAtNBUDRZELEHkRMBx0XYNZHMZmbS++dGYZXz67gq+cXcFXz63ga+dWcd/5VVxai1caSDxRSWoZiEWeYyO/g/GKjJZCtvda47+8aD9YJt5Ovl4UBs5xHavK2NGIFstSkcyC7UUGUkzXSfNvuaVC1S2IMXa5ZSn9eliReaiGFVEC58iR4ylAZyXQ0I9FxhtUP0TTd/3lRDD+WdthK1ReDNoAthYyfSa1Qm11t0exeGE+ZAe0mJzBZzEcwHAY5kgddPMkuc6Fcxb9aHW66Do5Rn/waz+Bz3zgf2ByzPuejWoZCxtBxeKlq8tQnZnosiTgu172XLz5O0gtErbjZhgAHdKoe+PHBRx8T6s/G1QAsAxIooD750m9YsUp4Oo7ge4a7ps3MWKveKSgqbtka9+KxZjMRsuXmzkih+onJ1+R8nrVcPMn1Iy682hQKYExogLbLaY0NlNsUAFA5Fl0XJVAjwFM2QQ+9y6iHnzpOwEwQEoTfdsxvI8Qi0aGSVnUdlO7BsRnEiix6JQPEWJx0iGGV+LdVwbGuc+S/3Ulkk86ECaOen+bGtnvvayka04Wa3OJEL9f/SNi1Xv3zwDlsfRlc+R4hsC27dSG+it3vxKltElQPcBYUWIRAJY63mTh8OevKqsBN5W6XMfV9tXIul3FoqqBZViYKROrs+TpLV5OtyaMy/4Lo7WRXIt0u13oug7d0nHo+w7hPR9+DyZ2TKB6axUT3zNBFIubQcViu9nGxhoZpzmewz0vuQevf8vrAUQVi7ZtR4jFPYf2BHpbVbGamqnJMuzWFYtMjGKxKGO+NY81dS2iXKOKxWVH3R+X0ycXZTfDEYiqDcOZfGHy6pa7boms05+ZmYQ0hZ0gZCcWu0YXEieB80WPUGIxiwKu7asL2tewRqCKyn4Vki2tBQZMasYiVfzGqWopzHET0g7JPZ5hm1w/6lI90arWsAzwbLCnohpq4rrKYjl1uwDgprGb0JAaeGTpkcT3pCk2/bhr6i50jS4ubMZHPlEb1Hum7wmcMzly5PjmRU4sbgM+e3IJ55bb2D1awlfOriDMK9AmexYLwV6QHYXia2+Zxt17hyOqwO2E1Y0O2rWUjDtK3rnE4ha3bfHK5eg2WVYmu0uxQAb8tRVSBHJ8cLtNjTSXPvnHvwVL7YCXizi5pGDfaNn1NC1VqgHF4vDkLJRusv1VGLzRhQ1go+tt7+4DQeuiakFAV++hWNxiGnFYrSjJcoQ8axRF2DaxHI2zrYyAF93J1yIXzWQslstQdBMFgQPPMihKfMBiNMtvgRJ1ummjqRJiUaAEZqgYYwDYDLFCVQ68FIvTz8GffvE8/uQL5/D/vnAOf/z5c/i/nz+L933uLL56bhVlOXoeMwzJgsxCLMZhrCqjq5tQ9G2wzeqBmaES3vzcPbhxphbZ98PlHgqQAcAXSLGdVbE45VzzVtoqNDOerC6J6deHakEgxOIA25sjR44torMSb5/oRwb1YBii7RuPeBmMv7kStjnl4ojFes/PoIrFtkPW9ZNTHIeLV0J2QAvJs4FJxiKDIks+e6JCrpnLa/EqL820oWo63vUnH8LiyjoKshTJcWvUyriy5pFNe6eGYNs2Nlt92MU7Sr4vzPO43LRx3YGdPRYIwdIhiTw+8IiO576/DWvoQPQ9tR1gLAMnlk3U0fRUZKYGMBws2w4oN1mWgSj0GFNiiEW94im9GmKoHmwvAQyLxQ4ZbyJWqCECjQtPwimNApUJ7C2kkHta+n6XBB7dLIpF0wC+8LvEyvWFvwrsuZec37SJTS1Atex1p4usM3JGDpBMyizEIiX1e3z/bYXWcq5D5HhGiMXKFNmujcEnIkbQXQOuPApIVUJsZlFzpkEoREnE8eu9zMUk1B33iM4KcPxfiIXqnT/mkak5cnwTYE1dSyXktqqWYcCAZ3m0jSAZsqKsuH+HicWwReCQPJSaR0YVi9QKNS7iIYticWE+PUsyjYhinHuwJMWibdrYXNvEh//sw2guNMHyrEueVG6uoHJDJZKxOL2TxP34VYupsIFuyDVgV2iSU0NuRBSifgisQIjFjBmL/n1NyTyO5SIZi3JBxkKH7N+KUIFu6a5dpW7qkDkZy4pDLMZMcJOLcoCA89vSAr2tUEU5SihtixVqRueOrtGFzAdrT2rPq6dMrmnIZGzzE31nN0nOpshub/wT4Klyw7/XXmjqTRSFYmoWIM2XDE8yoNBNHfaLbYy8bMRVLLa0VqIKsC7VE9dlWAa4UGyCaqmxakWA/LaT1kXBMAzumLwDp9ZOJSoNRzLetz178tngGR6Pr8RnNlIb1FfsfkWm9eXIkeOZj9xHZRvAMQxs2Dg6WcU/PzqPPaO9C4GsWGmp+OxJr4ClJMLLrpvcts9IwsZXPghj9TLYjMQWy3KADagKGfgGtWmlWJy/BNQPBp774Vc/F3PnTuPfn4jODPRDlEkx1Gk1I2e52VrD0ofeAQC44zt+FBekIlqqjqubCl5ydByfc95XqhIrVFrqj0z1kUcEgHNmKa13vOIxrNSrF4SeGYsAQxqj9mCEV7cTLL6kQjGSI0jVtE3FiFUghmFzIkSOhWo4arQwaVSukoxFgQPPsqiEFItZMFmX8fCldeimhZZqoCTxoPcR+mjwvOBYBrbFQtc02CyL4toZ/M0vfx8EjoFl27BsMlOS/E/OzdFKtHgrSXzq8UjDSJkU0BvdLTahMuK/vuwwNhUdhRBBN17dfmKRc7JIK4VsQ8ZETQbLkH2hGRYKIhc5R8o91lWReKL2zSWLOXI89eiuAo0U8omTvMw1IPPvNGKFmqZYjBCLS8Dkzb0/xLnUuFaovJSaidcLFy4vIqADWIi/0QbIBBe/7aTg2FJvtKJNkJWOhdd+kGzXD732xRi7/52EzHjeLwbeV6+UsbbRhmXzYBkG+6ayZaQE0F0nn7lOGnaDKBZFQcDzd3P49zeWsBinqnOsHa+2bLILLt9PlFomsUINW9OWClLvSUbOdvuhV3dCWj8NgQPqvEYmGlHyp70ESFUYNvmetQixmME+a+bZ2LP0yeTXe9hRiTyHtqqD+LWl4OKXgaUTwPN+CTjyaqLQLY4QMsu2PCvi9hL5ffUzOTFrvThygHyfzoqnSPTDUMi+5URChLFcT8XmtkLvACVPnRchFhkGmLoJWJ8j+ZphO+VBcP4L5HseeiXwxD9unViszZDftf9atvve3sezOEyuXWtngcsPkkzG67+LPJcjxzMc1//59Xj9wdfjtftfm/q+fidtx+U1CqwQURb5icWwOsqvZgSICmhT20wkYHRFR5ktu4o5/7opsqguFy4tABPxr8mcDCElg1pwXGJamy0gdJk0uybm/nAOpmHihd/6QmwOB4k9cYQsUK6W0d70xr+pnSSWI2wrmggL6JrdQD7enkN7Am8ZKYy4BF/s92AFWKwFZLlVtwGN9a67rmIRUWJRKnjXVUpedfQOKhIhGSVeconDAh9185ALQcVi2JY2TCxmsdvsZYVqWmaqmpATuMwErGIqEXKbYznwLB8hQf0QOAEyJwfI9/Mb5wF4pON2oiGRdfYi2cJoa+2e+5MS80mk5QMLD4ApMWAYxs1YbBvtRBVgQ24kKxbtqGJRM7REYrEqVnGl1dvy/YWzL8S/nv9XnNs8hz21PZHXxwrZ3A5KYgn7G/txZv1M7Ou5DWqOHDnCyBWL24AHf/Vb8I5vPYqbZmqwbOCBC1FP+UFx2298Cj/7QU/S3svisBKyKtyKSLL92KegXj7W0xbT+yzyPqpYpOpGYYC8NwBYvBKdgTx3LpvdkSST4qjTDt4MnD3xJK584GdhNElRP3vTc8nzy2Sb7z0w6r63XKmjubHuPh6a6JGHEgLvFBObiteUCCsWG0UR3RQii6o+mZSbhV6IEItyIULyUWKxq5sQOLbneWOxnt1mnM1lsVwhikWR2IuWZR6akeEuwGlOM2AwVSug2dWhmxbaqoGSyLvnohVSrfCOZaxhaO569o+XcWSqhuum67hhRx03zjRw82wDt+xs4OhULVZRWxT7J0ApRhyl4Po22e9lQTVGeTlR7SM3KyNY0Zm12sO+lELgWAyXJWx0dWiGBZELniMMPKvkJJRlAbppw8h4U5QjR47tgkUInbQZ9KVhwD+7uQfZQiFavptsXgbjb8T1IhYtPUhm9oBrhZpwo54VAcWibQOLxyLvoVc3O9QoEJ3r3EYzuH9OnruEO/+kgyeWyHjzsufeBqyeBa48TFRaPjRqZTTbXZe7nRwuQ5b6JFCcZmrTsf+6bv+u/pY3dUiiANHJOWZDjVUArnWjYQGGzZGcOoAcN4ZFq998RcDLl/NBr5BJXrvrLCqsGlR+tRYD6rBeisVY7H0epqQOakmb18PmSxLYbBmLhkImjR39Nu87lEYImWb6yKz2Isn66wcJEQMRUDIxKTdx8TgAG9hxO7mhkOtbVyzaNrARdSSJhdYBRO8YluOsc3fcDmxeivxuBt62s58hWZuT15NjNIhi1I/Gnmhe7ci+3ssxDFCZBOa+Ckhl4Dk/C9Smt7YtOXJ8A+G+q/e5KrHtghUz6UJkxQgB4M9YbIWuLf7XAGC0SHoHazHjFeApFmXHxnu+FVX4yZwMpsdE7sWwLbsPvRSPguhMIA4pFq9euoqzv3kWnVPkun7nC++MkFXCCFm2XIvaezZG+iCPnBrGn5m5+2DQjny0MIqW1oK0Q0Lj3ui6BVYAuIyKRRvQOO+7UELT0i1YvgnWoiQGInPCBJNu6Shw6dEAYStUatlJEbZCTSPrKHpZTPayA2VEJnMWpWqoKMa4lAis0JMELQrFgE3nXHOOfP42OLWF4aoKe9iChtE22u6yiesW0xWLX77yZffvQpGcDy29lZjbOCQPQTGV2P0XZ4WqWVpENUpRESvomr1rkefNPA8SJ+HhxYdjXx8vjvdcB8Wt47fiYvMiDDM4uSq3Qc2RI0cccmJxG0DHzeGyhPGqhOXW9hELr7hhEj/9wv3uY7kHSUe35VuOkIGDd4iYrEO7rWw920VzrDd3DZfw/73kIGZiMtuyYCGGWOwFmtcoF0nx22kFmyW2bYOvj2Pye36LPHYIO920MVaRsG/Ma1CVq7WAjaggyRgZz64U5cwuGABtn7/98GhwQG+URLRTGlBFiRKLg4uLI1aohVKErPHnBYZJoDhYLOc2GEU+anNZLJehGJZLBpYlkpfXC/UOKUYlnsFkXYZiWGhpBtqqgbLkZSzahTp0300Bz7GwwcLQtvbbK0lcIBOzH4w5Csim8tQoFpMwXrkWxCJZZxyRmYSpmoymohMrVJ6FP+ZU5NmekyTKTn5slvMmR44c2witC9hmoKEfQWEoqA6KsayMg2j7CBJeBuNXA4Un0PAiUSGFP5eih5VgQLG4BQQyFpUNYpUYAsuQMdVyVGrUhkh0JrBsbEbJqIkyg7/8LtI4K/la44w+AAEAAElEQVTtT0M38Y0qqWfoqM2yLPbMJMgWkqBsBlSl+x2lQWZYhFikYOIUoMUh2LyEHVUWK6iTLEpTdxWL7dCkm1Ihw3HpRs8rw1GwTVUYlOwOUYNRtBaJ0stBlFjMoKzY9RywDHDPbELd1YNYE3m2v3HL35gpjwFqO5rrp/aZWZRZZefUbkmK46uPkf07fRt5LNeJdeuADhoAiJXwx98GXE1W/rrQOwFSrlKMae7OPIsoktfjs4D6wupZYPMysPdFhBAEMl/bIpCd83L8SHCWp1Dsna9I4aiAcesPAjueNdh25MjxDQyaa3ctIbBCwKJT4iSs+cb5MNGwoqwESMCx4pj7fBw0hWQsUsXcQjuqyGMYJlGtRHH1UrJbUyEhE9s0yT0tyxJr03DGIsuy4Aoc9vwKud4JBSFgPaubOoQhMvZXak7N5RsupvqpJZzl/FanYSvU0eIoWnoL+39jP6Z/IDqRQuCIYjFLxqJt2dB4za3HdEsHy7BQusE6QA5NWKEEFFXhGZaRSPi46wgrFkPEYqkcnFxi2ulqwyzomTMoZM+iVEwlllgUWTHVChUgykr/byQub3S7QFWQ/SoWO3qnZwYpzV+MW/dSZwnnNs65j4vlIhRDgWZq7sSCMIYLpBaNs/Y1LTOasWiq7uSDMGpSDUqG+lXmZdw4eiOOrx6PfX28lJ1YvHv6bmimhjMbQdViboOaI0eOOOTE4jbjxh11928+o9IvCdbGVbzqhilcN+0NhFln/9yxexi/91034cA4KQKntEsw2+sY4pKLmIUP/iqU//zDzNt37uQx/MfHPhR5nioWdU3D3/72T6fmMqZhcf4S9NXLsNRO78w/B50WIUarw2NgGAadVouEhV96EpqqYO+hoxj/7t8GXyKFiekb1A+Ml9EoedsqlYJFIQBMze7KvP2MbaNWENDyEYvh4zdcEgOvh+ESgPxg+xCIKhbFUrQZ2yh66xd5pqcVqgneVaLGKf8KpSo0w0LJIYdKIg/dtHtmXbG+ZtWYQ5CttjV0NBMVWQhsF1UWcizZXothM+VvpqHss1vtF0MlEQyAjvb0EYsCx6BWHPxcSV4xORZlKfvMtKl6AU3FgGpYkEJktZjBbpeqr3NiMUeOpxiqM8EozZpLrgeVgDGWlXFg/B2pcKMmoliUogSLzxaRYnllBV0teu1vKaTesR1i0bIGu5YEiMWNudj3cA6xaDtldcuxBpNFAbVKCRtOHuJHjutotjo4sHsHzqt1vPcUacqVYpRYL97L4QduEjxi0bfr9s32SQyqzQDZJPTKNgzD1AN5iGxcro+jsJqtMVhmR4C1c4TQNJMUixlUlzG2df5bF9luAbKvWdRZJjmJDiJWqKbWmxQb2oMNU8a9uxLGO70NsHyimr7Ak8lqA6E0RpR3YWKwmTHDiqJHIzAzrj4KjBwEys4+LTYAXdmaPeiSo/i9+ljv9+odwJcbVinFTHaYuoX8v3J28G2iOPdZ8nlHv5WQvECymrMXyk4Dz1HyukrX4f3k+pkF130HcOQ1wC1vTJ/okSPHMxQr3XiybjshcEEr1AJfwKrqqRLD6qg1ZS1ghzkij4ABg4XmQqySTlVU8CzvKuaaevwkbqnHJKiFy8kWoXH2nACwuUquX1JRCmQkbj64ic31TYxNjWH3L+2GPEVqEFYO3qcvd5fdfEZKLGpLXi+pH2KR7hs/0UItQjfu20DzsSbGi+NQfQr9sFpUZEXYjJ1NiWcDNmu7CjpKLHbb0XxFP1zlmnPcqRVqGuSiHFCmRaxQq9F6Ws3ioJCCdg/3BEZgMluhaqaGkhDdRomTeioWK2LF/f20tTbW1Hjl7nagwBfAMVzfxGLX6KIu1VPf05AbKAtlPLDwQOS1z176LFHLOmYdxVLRnUiQpAKkSsYNLWaCnGWQ9fmgW3ri77gu1jMRiwBRLV5pX4m9dlLyNAtun7gdIivi2ErQpSW3Qc2RI0cccmJxm3HLrDcLdaqebpvQC9b6fM/mexrKMu+qggQYuPSeN2DfWLK/uHLuQUh29mbEp//lH/Ge3/ylSEAwJRY/8td/gs//+7/gwS9/Lm7xVJimiaWFK5j/4x/F3O99F4bL2RQH7SYpVgVJRrlSQ2tzE6uffC82H/w4vvTpfwVAyD26zZYvOPm66ZqrkgIAO2b239TMrr6+x0hFSlUkNkoiunry6/QHyrDbRyxKxeiMrYLAQXAViFxPAtsEC9E5twoxxKJQIOcZJYdc5aWQXU03USPvXWqqMCzbtWul8OdEUhLftO0tZfIFjn+fy/IcGyGSn2pUZCGW6N0qaGO+0sckgZmhgmeFyrNuPiyA2FzOMOixyGShmyNHju0DbfrEzF52IVeDRGBnAAv48HjA8sHJJ7wUtEKV68QSMITHH38crbYCwwxeKzoOsbjcJP9/5eH4Gbx+hOsZALh4xUcsrs8BnIh1Jfg+ejmznMlK1HJUFjk0qmVcWe/ibZ9U8OZ/VvE3//JZAADDsmib5HodsXi0LbznZTLecruIRsFR6vte3tuvYlFtEoJvUFgGJJ99NWMlNMSq05itsVjGCMntW7/oWKFyEWKxlMkKNZ3UkYw2QK3RLZOoy6qes0SsFapl4ef/XcEXLxpRchsAGAZnzAncu5OPt07VOvHLOSjyxA52IFQmAC3mWK2d7289W7UrBchkgY05kmFIibDiMFEsbolYPEH+37ycTvKaGvkc2WvQRjIWAWLnWttB7FC3ksls6sCFLwIzt5N82ZJjbzYosUhBiW96LslVBCwc0nDbDwCv/j/A0O7e782R4xmIVWU1sdm+XRBYIWAzWOALgSzGXsQiz/GoilWsdFdgmibaIetzXdUJGeJzEDJj7Kr9ikVNjU4ET7NCjSOFAGBthZA8clFGuVbG5vomFj68gEt/cAkf/9uPAwhOemYLwWuTP++QEou27l1np3f2Yc8cY4UaxkQpWNuESR6REzMrFin5+PgyUceblkmIxVC+YpJikZJXhmX0PAf9ikWe4SMKx7AVKtC/nWcYPRWLfHbFomqqKPPR+lrghJ62rX5ikarbZiozmT53EBT4QiZbUD+6Rhc1Odr/8kPgBLz15rfi+NpxfO3q19znTcvEQ4sP4e7pu8Ho5LdSKBewrqwDACZL8W5mlFhsqtHzPTZj0Uy2Qq3JNWiWlimb8yU7XwIGDB5cfDDyWj/2tBIn4dDwoYBiMbdBzZEjRxJyYnGbsWekhILAwbLtgEVqv7j47u+C/qUPbPPWbT9amxtYWw5m7fgVi+T/3jOywkqCteUFmEb/jQtV8WbzFCtlnLr/M2g99ilUb3oJnvey17iv2U51a9jeoHjPvhEwDANhZBbSxF4UK9ECZLJPYnG0LKHtKNiYmEZCmCwLg3eWYbagWFRCxKJQjBaODMO4NpdShkxM3SbkEBBPLDISKaDpOqlykRWz3xzSrMDFTXL+DJWC6oaNrldcuZa/nBDbGM4Kf0bpeqf/JuxQWUQnJTPzWmL/WAWHJyqZjl+/sDmRxCsJ2dc9M1RyiUVZ4AJ2uSLP9lR0l3PFYo4c/eHyA8CZ/9z6eqgleprVqFQJ2vvF2INGEL42hxWKACEX/a/7b6KLw0Fb08DNuo0z80Fys+VYoerOOK+bva/N7U5wRnBTA9b81mEbF4HKBMK9mqhikTQ9GIZBtVLERz/7EH7vqxrecpuAH3ndy7zPcyy5SqEZ87jyKPYPk+2ul8h39u++vbPZbdl1C4Rw24rtlqlB8isWk2ZO12YwU2WxZDuT7C7d51qhtkL7tmfGomUSlVfceeKAN5qePa7T5EF9p/t6hFg0NcA28D+/pOGe93eAarza4qw5jVsmWbDqevRFrZ1KLBY4k+zzQVAeI+sPE5qbGRSL/hNkO/IGF54g/+99kUeEFYcJaTkosWhZwMppMoGgOU8sTJNAyVHZm7DpEothQnLqZrKPMs7oj8X8Q2TfH34VsSqllroZ82OvGeSoe0qOHN8MMG0zQuJtFxSbXCsM2SCKRT2FWAypo9bV9cg21aQaTJbUGBfPXAy8pikaOJYLWIxSFZ0fEuuNiRurQZWTaZpYurIUXsRFErG4uUwmRnAih1K5hK98+itY+ugSxr59DK/70ddFF3CGW2r1utT1PrNcjfYP+rVCZcAkKjYBYLocJCofXX408FhgBViMlTljkbEY1xZSt3Rw4CKKRSlUi1DFIiXL0pRk/nVQYjGOHKJWqLZtu0q1LAo0xk6+V6bEZJg8pMfOFjIqO+EoFmNcSiROgtFjvK+KVSiOi8X5jfMQWKGvLL9+URSKkUzUXugYHTSk3hbk333ou3Hd8HX4yOmPoOPUII8sPYJNbROvO+j9XoqlItad+nCyHF+PU4vUOCI9SbGYlJVKtz3tt0MxVhrDvvo+PLnyZM/39sLt47fjUvOSa9t7fPU4sUHdk9ug5siRI4icWNxmsCyDo1NVsAwD1eks/Ohz9+ANd8xipkGKkm85Mg6BY1xF485hMpAfnfJuHm2tA5n3ionDExU87+Bo5kmuTyUunj0ZeKx2+5+B1dpcDzxeunIZACDvuQ3Fg/1L7Q1VwerSEpT2JsZf9+sozF4ffINNiUVvH087WZDi2G6wchlCMdpUne7DChUAxqpSIGMxjJ7EoqMilGeuw+QPvRdttX+yK6xYFArxzeKqo0aTemTfMQwD3WJQknhcN13F3tFoIcqKlFj0rFABgOmDWCyIHMoSj8VmPLFICUcArvpt68Sidzyubiqw+lzXSElC+2kiFn/wnt149+tuwsgAExl6wWQ4SFzvXEQ/dtQLsGyiLA2TnVIGxWLFIaMHtpTLkeObDV/5I+BffjZEuIHkJfYDaqOY1tAON7EoqZOGsHVRnLWUP2eRl4PEYmEoNS/x2IVg063jjJcGk31izuLqeuDxxYXgY2zMeRaHPrDOZCXbmcFLSTTVsHH24hUsrGzgY99dwLceCm4LfV+EWDz1SffPhmOh5b8S9mOFqlsMOT5bsd0ydYi+mjSRWKzPYrbGYNMukuN3+X5HsRi1Qo1kLIabV2oTgJ1oGynzAGt0PetTasc7tMd9Ty2Ua0QVi72wigp4loEQ18TRWkBCnhUAFDh7cMUitfoN/56aV9OJYdsGHvoL7/GguYB+XH2MnOtjB73niiPkdxyjtsmEzUuE/Jt9NvlOaUpnSugVY4hFrUMU1XTG/MydhFjsoXBNxdnPANVpYPe95LFYIteb7VB/5siRYyCsqWuJzfatYBPkWmFKJkRWDJA8RaGYqljcUDcieXR+m8ULp4J5r7qig2d4WD6WJy4DzW+3ubYcnKy1urgKM8XBpSLG39uvm+sAgG6pi/Mnz2P5yjJmfmIGIy8fiVUv2WLwnstvp1isFCPLTO/qT7FYFIoRe1M/psrB2ubcxrkA6StyIizGAjIOQZzB4fT6aQCOYpGNKhYLxULk+HMMh67RhW3bhFjk0vsXfqVnLLHo1HGqqbrnShZyjLOSVWFtvQ0GDCwlWHBQJZzN25mtUFVTRVmIEscSJ/XMWKxKVXf/zbXmsLO6E2yP6JutoMgXM9uCAoTANSwjkw0owzD49bt/HYqh4EOnSNzTl+a/hKnSFO6ausvbhjIhFnmGx7A8HLuuhtQAx3DxGYu2GUssJikWabZkL/tbinum78H5zfPB83qA6+g90/fAsA2cXCO93gcWHkBNrOHuqdwGNUeOHEF8HdJU3/j47ttn8cobJl3SSOBYPO/gmKtcrMgC3vs9t+DmmToAot75w++9BXftjR+YAOBtLz6I198+4yrYwqgPmGPoB1ce7pmBF4eLZ08FHlPFYj9YXw36gC86xOL4d74do6/5r9lz65z9w0sFjE1Oozy5B3KYVIQzY0yUoPpIi0aI5GPlaIHVr2JxvCqjpSRXv/VCesaQQL/P8A6IIztx7Gr/+7bb6UCUvEKFL8TPaiyKpHgVeijeeFGCZlgoCBz+6ofvxMuuj87UotaZtaIYWDcrZrdCBYiV7JJDLIYJs+W216TkHcKL4XjYA+ZoAUHF4lJTRbdPknC0IqHzNFqhjlXlgDJwO8ALomtn2o81s98KOqx0zGSFKvOpr+fIkSME2yT2k2FiMeONaABCKZXEgxxqYnXXe1tthpv+cTfQfnUaL4WIxVow1zGEYxeDxGK767gm9EEsLoVUAhcWSHNvpMhgqABg4xIhV8KbzVB7dXLdMh2rbolnsG92CtfvncTL9ke3gyoky36Lx/YyMP8wNhy71UqpAI5jt6ZYtAwgTn2XFaYGyedOwFgJBF19FpMVFqytAfVZYPG4l7HY6ZGxePpTwceUHCvGN4Mmy864Qq1Pu+sAmHTFoqEAdpYxmo5PMU05rZ1KLMoc2S8DkYsuSeo7D+u7gOYVou774u8DD/55kKS3beDRvwVOfBzY84LQ9g8I2wauPgKMHvKUe4BDLLYHVywunyT3GTd9D1EdrpxOfi8l9Are8Xctg7UmIf5oY27HbYTAXh0wZ1FXgCuPEMLTr2ItDA12/cyRI8e2II7E2w507SBZpfhyg0tCKaAy6oaU1RvaRkQhOOS7Tl08naBY9LFhp9aDvRMgaIW6HprkdPXS1bSvE0sKAUCrTUg8hmcwu38Ws/tmUbs9xRKSKhYdAnFV8SZ/sCwbUS32pVh0trOdogKvSbXAftAtPaBalDgJFmO5RF7bTL8+czqH85vnARD7yTgrVKkgBY43wzAo8AV0jI6r1EoifCj8hGycupEqFhVTcS0ylbis6vD228nEYkfvoMAXIhOqXWKRtTMTsJqpDUws+vP/FtoLONg4mPr+raIslPsiFukkgaz5gvsa+/DGw2/EfQv34YGFB3Bq/RReufeVAVK9WCpiU9tEVaom2osyDIOyUI61rDWtKLGomVritY5uexxJGYeX7nopDMsI/HaoxW8/uGn0JhT4Ao6tHoNpmXhy9cncBjVHjhyxyInFa4BaUcBde0dSs85YhgkMRALHBvJr4uAnFdvNTbQ2vcbDO197A976/L2Yqg1uF7LjJ/4cuPuHEl//zCc+gn/7yN9Fng8Ti1qn/9m9G2tBYnHp6mWUq94AmDW3zta6aD7yb2jbAvYeOgpNi5/hbds25EIRmq/zEyY6RLkIlgsek34zFieqMpopKsNaD8ViWXayCR0Vx9XN/hUHSreDQtErVAQ5nliklqZUJZkEQZRcFVpR5AIqPwDgecElbClRR/PymJRmXBzGKxKWWvGKxfWOd2zdY7eNVqgAsNLqzzpurCo9rRmL1wIcL6Crm459afYhY7rhHeuCGNyvEs/1JBYLAodt5khz5HjmQ9mMEouDwN+0j0PYnlLd6K2IC6uo4ohL/2dyoqeeBACp6imUfLjefBSjJTZCLLYcYtHA4MTixRUFPM/h2w4JxJrUUIldZYi4cYlFp6x++KqJ//1Vsj9uu34/dC2+Dmh1uuA4FqLPZhTnPgvwEj56gizDMAzqlXKA4to5NZb5O+mWs62t5czLRBAiFllTjSfoaiRXp2S1gOF9wPp5QogxHNqKCsH3PSOKxfNfAK4+7j2mqr0kYrHifK+qo5hQ1ojKNi2TL6NiMRVaO6rY9WFLxGLZIRZ9ahkM7yP7or0IXPoacOITwD+9lRCJlgU88Y/Akx8FDr8a+Jb/Tpbp0yYsgtZVYm+84/agcrk4RI7noOrXpZNAeYIQeLwErF9Ifi8l9JxcJIHjwNIaRGuT6wG9Dk3cADAcsDYgsbj4JJmYse+FQdK4OOQoNJ9ZdV2OHN8oWFfXE20+t4IOvF5FWLFY5ssBy8FwnltTa6LEB7eJkkUsz+LC6ZBiUYsqFs9tnItsk5+82lgJ1iJp+YpAsmJxc24TSx8jtdGRm494qseE8clyxi9qp+lXbgJeziJFbag/sqIqVlOJRSCo/pwoTeDhxYfdxyInwoJHLK5q6fnegiHgSusKdFOHYTnEYsgKVS7KkW0q8ETFqJqq+zgNjOAjnWKUYcUKeU4xFNciMws5lqZY7BrdWCKKdya4WXw2y1jN1GDYBspilFiUeTk2D9QPmv+3rqxjTV3D0ZGjkHkZ7DVqM5eEkntcsoCSccOFZAFHGG+5+S2YLk/jA09+AAwYvO5A0Da4UCpgU9sMnKtxqIiVWGLRsIkFsx9pVqiUWOyZq+ng8PBhjBZG8djSY+5zvbY1DjzH4+jwUZxdP4vjq8fR1tt4+Z6X972eHDlyPPORE4vfoHjNnQfwbc/2ZgSxLIMbZxqpZGYWsNXkZtVv/tyP4V3/7b9Eno8Qi0r/xGJEsTh/CWOTOzIvb1kW3vfOt6P54MegLZyBAQ6Vah1WUkHlEItp+W0Mw6BSDRbM5Wq0gOac6txAdN+PVaVUK8eRkpSaWyeLQWJxsaX1TZx1O20Uit4NECvFF8cF57PEHgS3IMnQDAuSwIKLmaUliBIUxwa4WiDFbVGiisX+iMWJGrnJYhmgFlLlrnd016rUy1jkYYWzd/pAWQp+xqnF/hr041X5GUcs8oKArmZB4rm+rJjLEu8StYXQOZ7FCpVhGBTFXLWYI0d/sLPlsfWCWArmHfaCstk7w08NzbSNy87jwsSi73oazn9hecCyMGyTxtKxi0HirKOS7TGZ7N8joli8uood4yGFYnkicXkbwG/84d/gzx4x8LXLFmzbRqNaxnozvpHW7qooFeTgjOcLXwRm7oA/5rdRKwcUi36CjmJZIATbqW4wR0ajxCK1Ch0EhgrRZ4XNmGq8HWaN1G0luwWMHCBk8uY8wBLFoqs4Q0zGYnUa+Nr/9QglV7EYVYgCgEgnQVWdWlFrkzw+hxgSeA58uJ4xuv1bA4ehd4C4WsYhxSWW1CCkDOpzohNVLPpVctTadcUhzQ6+HJi+DXjwA8BHfwJ47O+BAy8DXvR2YOI6QrClZRdmwdXHiLJw3wuDz1OSN/xbzorlE8DwHvI9x44Cm5eTSTuqynSsUAX/sdTahPDknN+BWARG9pNzbZAa8OqjhMCcujX4fHGE7MucWMyR42nBprrZF7GY9R65Y/uIRU4MEBUlsRSwqQwTQC29FSFhRguj7t9hxSKAgGKR0Rlc3Iy+R+a88TGsWFy4tBAh9fyoikHretu28aE//RDaj7XROdOBbdmo1CpobpD7Wn0tfrKTwQavdRtasCYq14LfO0mtlYSaVItkVobht5a8Z/oenNk4497bi6wIE6ZLmLWtdJJSMAXXytGwDLAgxCLru6GVZTmSXUftNul5kHYOMizj5msCiCX7/IrFieKE+3cvpCoWjU7sdgUUizZ6kov0eITPIYD8NnoqFh3C6vFlMjHs5rGbwYDp+9zIirLYn2KRqlHHCtkn5EmchLff9XbYto07Ju/AWMlbluVYcDyHltZKtEGlSDrf4xSLuplshUo/pxcpT8EwDO6cvJPYADuHvyE30hdKwO0Tt2O+PY8vX/lyboOaI0eOROTE4jMUSreDB7/y+afksyJWqJ1sg54fcYrFsclsvv2WpuDv3vlz+NAH3ofS9S/C0Lf8GEywsSQghW3bKBSLUFPyCkzLRrla7/n5ZZDipsVEi4GxSrp1BssCjWK0uXrrrNNI8Vl8AsBKWw+oLLOg22lD9hGLXAKxSO1Kw3l4YQiOFSohmqJFIy+I6Opkv1KizlUs9mmFSu00ZYGDGNquja63LwIZixnzBOJQkoIF/MW1/kjy0TIhVZm4hvk3KHhegKKbkPpULAJEsQt45xaFJGSzVQ0fjxw5cmTAxqWtr0Ms9kcsqs1YFVMgpzaiWOxhhcqJQZJACjU9hAJw9j/dh8cvLgWaiq2uk7GIpO8RHSuW1kKKxYVVzE56DUMIRU9VFoJq2PjpP78fv/L7f4GX7uXwF99GCMNGtfz/s3fe4ZKb5dm/1TW9nH7Onj3bq9e79q4rruBGM8aYGNN76L2HGpJACAGSmECAQAghAQKfQ7ONKbZx72Vdtvdyep2u9v3xSjPq0syc3T271u+6fHlnpNFoNDqjV8/93veDGQ9hsVypIhm3XZOlErDhlZancumkY2/PXcRA+1y63u+wRsdAfWEWU7Ehy3qyCiI22ZwHTaHUIJhm5NNKxV1Y1GMkE1S5IYhN7QMoBoVSxfJZHY7F898DlCeBh39AHldmyTlgF5TN0GxDjAOAREddWBRcxFfIHvvdDFLJ3bHIGH2q9R7erYxFuBjZtrkHVbofYGONCQPxDuD1vwSu/28i5K5+EXDFF4GO5QBFAUKqfWHx6JMkyjZrPZfqsaRuruhDDxPX6b57gCkXJ2J1FiiMAN3ryD4u2kI+k1eRuVYk4qZe7KzH9Cs18p+992b/Gf7b82N4K9C52vm33W70a0RERMto0FCQCkhx3oKananqlOvzdsHR7FgUGMEiLNrfzy4AyarT3dUTa/RePrL/CGpV60QrxjT5mC2yOFw47NhHs1tpemLasmzkyAi6B7yFEbMopMka7vmve3Dj52+EMChg8XsXg6IpJDPJurDo5lgU4yJqKtlvChSqchVFqQh5pvH75yduhiEjZAJ7C5qdZS9a8iKU5TJGSiMAyHelaEp9/+1uUjuiTMaZT088XXcsVkoVxExpBmJcdPSuS3AJVORKPQrVrz8dx3OWc8S+LsMyYFgGmqbVHYs0aFRDOP+DHItufxuGsKjqk5y83Knm7QDurleRESEHxMfnBTIueGbyGfA0jzW5Nf5v2CYpPtWUY9EQFs3ifxjO6TsHX7vka/j8eZ+3PE/rY5GiVAx0QWaFrLuwaOuxqEGDrMkOJ7SBwArgGT60sAgAlw9djoJUwP45Mh4LGwVr56JFF0HVVDw59mQUgxoREeFJJCyeovzdR9+Jj7/llcErzgMTo8MozjVmL1dbcCzO2ByLY0cPo6c/nGNx6k/fw+7H78Mb3/txxFeeC4qiIINxFRbrRU5VdkSh2qnKisOx6Aall/vmEINsi9jqSvn0qNLpSDhFqJ+/83z8/B3nYU0vGeTVHYtz1fD9JnUqpSLEWGOQS3nMhjJEzEBhURBRU9R6dKpzuYByjQhRhsNBZBlQaN6x2K87FmMcU98/g+mSVHecmh2L8xWFmomxODJdaUrINb5vJpFteR8WGgynC4shxUAzhjActxV4RZZxdbvaMQTpiIiIJpgPYZHzcCzySaBjpfP5WoGINjaeeOIJACCOvTBRqGbHImu7NrpFaT/0vfo/C+UaDg03XIvGtcAQFo10AWM/L+5zFqTGJq1OrP1HJzBkLual+4m46MJnb6/i5kcP4e8++AZctYKtz9bOZZzxUmYcAlvnKmDpRZansqkE7Je2t5xBjlVs4inrAlu8EnmTrtZdZgAgV609FuWKu9iijy9oaOQ9uTgAjfRYLFeQiDXGH47PnV8GXPRRYP/dRKCqTJPzjfIpYvBJgDNtJ9FFRDh4CYtVa7xuK0hld7FTLxLxhmOxVf0ynid/T8YXTlGk1+Hc0cY6FAWsfTHw9tuBq/+FuPUMxAzZx1bHQqoKjDxNHIVxW9Es7iMsPvafwH03Avf9C3DXV50C37g+CXHx+WT/B88lPWHnRtz3QyqR84nVjyurf59VXXS179vgucDcMFByFxacn1P/gkqTxDnZv8kpViY7icCpRMJiRMTxpipXoWiKq5PKi/GSe+T3jq07AAAjh8nvjd2xWDMlLtgFFlmVIdl6SNsFHXOPRVVVcXifVTiktMY9D1tiUZAKGC9b9zVmGuPYo1BHDo+gZ6AHXphjDsduGcO2u7bhLR97C2LLY6D0e7dUJtWIQnUhFo9ZBLLREolfrY03jo29x2KzZIVsoLBoFoA2925GVsjWo2N5hidClz6cK6n+NScGDBJsAtsnt0PRlHqPRdE0FnGLQk1wCVSUCqqqHoXq08qF5Vmr49U28YjRx04lqQQNGrJC1tHX03P/fRyLFbniGl9KU6ReYgiLQROuizL57J7CYsDEGsMJt3dmL4bSQ2CZY3vvnuSSzQmL0hw4mkNSaP7cvWzoMvQlrT3NWX0sUpAK9QhkL7JCFiXZw7FoGqsbn8evn2yCTTQlLJ4/cD5ibAx7pknaRX+yuX6oBus71iPFpaBBi2JQIyIiPImExVOUyTGPG/VjxIG9u+r/rpabdyxOt+BYVGQy0Mle+Fq89Uv/ga7exgVTBo2Ui9vQ6JknTR1BLJ5ATfETFtVQjkWDksajWLEOvrrDCItJd3fbliV55BPk9YawWJJUjM4119vGHoVKcSIYmsL6/jQElganx4kZIp3dGWiHFWJQVK0enepYzvF1h5shRNE0BZFjQNmExaDvuEd3vGkaHMLiVKmGco3cILGGs5PloLURhZowRW+u7knj8HS5qWjTzuSpJyyyLI+KrEBkmbqAG5ZFep9F+7kicsE9FgFEUag+GL8bkaszwsGscyZ807Axd2Ex3V/veWZBlUlPNhuVCimcVKo1p7DoGoXKey+3T0YojAI7brU89ezug5bH1ZqEuEbGJBdQjwCqSkQxAB2C81rh6LFodywmuh0Cp6wX6j55oYCff+hirFux2LI8F1CIS9r7AK66qtE30NhGxulYbIpUH1Bpo/emUoU50ZqWK8GRohQF5Jbq/6Z1x6I5CtXl+7/oY8DAZuCJ/yGik5By7atZR0xbna/J3rogzXu1Bqi14ebTNCJ4CS6uDX0/OZp8U1KrQ5FEF1ArWZ2VfaeTvof2k4DhgIStsBXLtufMnNpDImOXnA9wtoloRvG8ZiqUDWwmovDrfwW87U5g46vJ83bX5PgOIgR3ryOPF21uPO9GrUi+W12w5Yzv0xA17RG5i7YA0IAJa4qKK+Up4KevAfbcCYzowvzyy+HIe090k/2IHIsRES3T6oRPo5+YV/9AN8bKY67Pl0vk96hUIL9dZTR+n+yurIzgHOMYfdoM0rYEBXvs4/6dVte2JjWOAVsiY6ttk9ss61gci7Yo1NHDo67CorFdgRXqomHnFZ146cdeitM2n2ZZN8htGIvHLBGTo2UXYdFlolTfGX047T9OQ4UKFspyQi5QWOyOm2InKRrn959fj+PkGR6K2ohCrajB79kZ78SemT2QVRkMxaBcLFsdizHRIf4keNLHz3AVBjkWze7DJGc9Rqw+ycmIW82JOYis6CqOdS7qrO8T4O9YrCgV378NhSLnQ5CwWNav1Rneed4LrBAoLJr7/63JH1u3ItC8Y7FQK8xrn1aaoSEpEspyOdAFmRPdz3dFU8BRDWHRmNjgt59JPukqUnohMALO7D4TExVSY93UtSn0a81QFIXTu05HVshGMagRERGeRMLic5r2s8/znWTwd9AUh6pIEmSpuRnhdsdiqTDn61i8+w83423XXAK5NAMmkUXv0tUYHW70lZJBI5lxDpCOzpCLuzR+EEI8wLEoqUimvWdJ0ozz+B2etg4eEgLr6ewzMMQoN+ruQdPsr4NTzRXFnMKiAI6m8K+vORO//+DFWJzXG4rr0+sFJqDHYowMmO3xlgYsx6NUUyDYXIZxngFtK1Jdde0NSOW8YyS6dWFR0bS6AAoAUGWoGjBeJAPLukjFcNDU1oXFpMmxuKYvhZqsYt94eKG8M0UKmnSitRz7hQhxLKoQW3AsGudW3CZ+xXg6VO8Fs4M0wsobz1+C91y6AluWtBZtEnEKUxhp3a1kwMX8BR035ob9l9sdc2GiUP3YfgvACjBqJgLHYtseq7BYKJZRo0zX2D/9je8m7VGoh8emMdRvKubFOyxOy989uB1rX/yXODCtICtS2Lgkj4NHrS6EXNq98HPg7VV86QWCxcUHAFjzYss1n2wjiZJk/U5TCcOZF+J7Sve17VikTaoWrYTsO9exgvyfMnos+kShAkTY2fBKIh4Vx0n8LeVzqyJkrM7XbEPU5e2ORSN2yhwz2ixKlcTzuonrOhylC4s+/bV9SXQS8dIcPzawGSiMhesPKWaJsBgQX+bJ8FaAEYClFzuXxfSxjcWNSJG/1b7TgYFNQNIjrm9sG5Bb0nA9ZofIvs4cdF+/ViC/Q/rEunqPReP7S9qExa415Ddl2tm7zMEkcb9geCuJfU31AV0uTmxD5A3qH2tnbhh48qcAKP8o34iICE/qwqLbRA4PjCJ6EEa/Q4CIJ2bcHJJGnKKBmwhTf30ujQO7rb9DqqnewFfI2GbnlHUSRIxtXB8dUagejkV1gmz3yQeexOsvfT3KY2XQAo2eFT0YPTJqWdcsCgp9zuuvGBctzs3x0jho0JCn/KNQuy8iv/nldHB9Iifm6nGrXvQmrH2sr1xyZWMfWd1Bpx/OMMJiT6wH+2b3QdbkumPRLizanWBJLomaUqsLWH6CD8uz9f2gKRoJ228+o1+7jPfIClkSv+sShbrpBZsAAIKgT1Q2HIsuw4mqUvV186qUfpAChg1GVKeboG4+J70wu3XXdawLXL9dUnwKiqaEipIFyHFvZnJCEAzLYLo6DQDoSXi7iAEiupblMhTbRC9F83As+gjYKT5VF4HDcsngJYE9MsPw2fM+i29d9q0oBjUiIsKTSFh8jjJX0zD08V/jCNcXvLIPYiyO7r4BR5/FskufRUaPDlAV5wjH3mMRALr6vIXFL7z/zVi6aq0lWnPMJCxKGo140k1YJAM/ZW4cYjwJv0lckqq6xqmms6SwQru4OXaPOT+3lyPRwC8ulTM58QAS+TkyG75hNUD6bZqFRTA8OJYGTVFY3BGvCzxVfXo95yKYmmFFcmOS8HCTcbyAkiRDZK1CVJx3OhaDMPYlxtEWkZLVC6Sj+rFgTT0W28EcvbmiKwmGprBnIryw2JEQQFOnmGOR41CVVIhcK45FXVi0nSthnYhRFKo3FEXhI1euxsbB7InelYiFRmmi+UK4HT7mdAgGUXB3CtQph4lCdRcWHz6iOB2UO34HDGxGTSPPr1rUgWdtwuJcsYw5mlzHaxoD3P01CHt/D8DW/1HH7lhUVc3qWBSzdaHrXx+q4cWf+AFWLRlALtY4VgeHrcfBLwr1ExcIToHNcPmZn0qbxiv6cenvJsWchJvzz05mUXvCoqZazilKlQEpxFjEiOikaBTLIRyL+roAgNoccST6FTJiWSKCGXQsr/9TsF9njIlN7fQfNJx69shME6zuEmhZWEz2EPHMXAzq2wjXyqIbsVx7jsWjT5DjmHQpmDEscR02ewxVmYh5nSvJdwaQ35e+jaQvotvvVa2oT3Ag3yNvFxbtjkWGJW7I2cPBondR/xsVs8Dwk0D3WqfzE9Cf05xuay8UGXj6JuDmj5JI6vPeSyJWIyIiWsZPxLMzUQ4WFgu2ySUCY70GJ7gEKNvka7uw6CfoDK0Ywv5dNsdirfH7TSkUMnwGe2ZIRKGm/7abRYUZ21ikVCihu9990sbUPVP48Ks/jO7+bnCJxn3w6FGrsBjkWBTjVhfdRGUCOTEHzXQtc9tGrofURdzcjHaCetIBTmHxwkUX1v/NMzwUTam7YGta8Fi3P9mPifIECrUCERaLZcRMk5yEmOBwlRlxm2F7LBrH7XVrX4crhq6wLufId2KcdzlBdyyq4Xssurl+q7K/sCiDXAe1gLGIsR9u4qno0T7HTIyN1fsFntl9ZuD67WIIoEaEaxAluWSJCm4XhmUwWZkEAPTEg4VFo1esGUVVwJvucYzzzC3a1iDNpwPdvnauWHJFPRq3HfqT/Tit87TgFSMiIp6zRMLic5SCXq8osNm2t7V42SqnsFh0zghPJMlgVK45i1HTk84bAbtjUao1Bo+v+csP4q+++m+gTT2YxoYb8W+SRiOechEWdUehpmkQEv43KpJnFKp3sfXQdMkx+PNzJAYtZ2gKNNUQzPqzAkbnqlCacOWVS0XwcdONAMOBY5zus4oeoRIUhcqIZOAZ9xB9WJ4nPRZtQlScZ5vusVh/rcBahEWmOgeaAqZK5ERmTD0W28EsZAksjVU9SRxpwiHK0BQyMQ7UPAziFgIUAI7jUZWVlhyLL1jbjQ9dvhJLO603K2EFw8ixGBHRAuUp136HTdFKbJC5B5wblWnrY7eoVbOwqAuPZUnD06MuIkl1BujdWBdA1w51OaJQ54oNZ9UD5SVA50rE7vgCgEaEqRm7sAjA2mMxnoUsK/jkHyp4980VvPfa8/Grf/0sUkLjN//gUZuwGBSFGrddF10cTkF9Gt0hx0VWKSAzGF4c8cJe0Ajj/Msv03fFiEI1OxYDClbVAnEG+vVYjOWsztfcUP2fjh6Lxnr23n/NYLgaDOeeC6zuEmiiPbOVZA/57OZJeN1rwzuIYznyGVuJ75QrJEq0d0Mj9tSx/azuqGxCOJ0+QMTD/s3WHqCLziYCXNXlXKoVSY/OurBo9FicA0A1nI9mFm0hQmUt4Ds2hMXaHBHcF53jHm9riJdh/nbGtgG3fhzY+r/AkucBr/whcOkngFRv8GtPZoyeUG4TRSIiQmA4puzinUEzPRanKsE9Vo8Ujlgei4z1WsTQjENQMUehcjTncDkCAFcjv22LVyzGgV1Wx6JStY438mIe+2eJ+GhEVZqFHbtjEQB6FllFDFVVMfq7URz+7mFcfu3l+MqPvgI23rjujR2xjkXsouC+mX2Wx7F4zCIsTlYmLbGkQDjx0I8wwuJA0hoFb4hWQKPnnyGWhREWB1OD0KBh3+w+0BSNSqlidSzGnVGoRtymIbr59b5jeRY1pQaO5vCRsz6CTd2bLMuNHouGYzEfyyPOxi3uUC8Mx6Jmm1ikqAoqSsXVZWggazJohg6MQjWgXcrC9r8NLxJcAgIjYHV+daj12yHNkd+DYi2ksCiVmvoNCYJhGUzr9zNBfQuNqNRZ28Q+RVMs53UYZ2yKT6GsNCcs5sU8VueO/XcSERERcWpUv58D1KqVek/BY0kr77F42cpQjkVDbKlVnQVPu2OR5XjkOqy55Xt3Plv/9xvf93HQtl4o48ONoqYKGvGkcxBxeKbx3lzcf+ZeTVGRcnEsepFnazgyXan3KjToTrcuLAIAz9B1wWxpRxxjc1XU5PAFnUqpBCHR+KwqzYJjKKewaEShcv4/C7RABtdJnyjUsqQgxtFgTe7HhMCAsvfrCUmSZ61OSk1Bd1rEtC4szpdjMWETvDYvzjnibYPoCPg+Tyay+TwGV6xFVVYR59lQ8aVmRI7B+16wCkMd1oGyPRrVi5TY3vcZEfGcpDITzk3mh8fNrapprk4/UDRQDOjtbBcW3X5PWKdjMcZ5/O50rm444gCsXdzlcCwWSo3joIICLvoYNL1A5NaP1x6FCgCDvaaxCCti14Ej+MlTNXzrxSK+/p6rwdjiww+NjIM2XV+DhMVAgQ3ecaq+6NfDWw7FgcwAIFeQCmFu9MTem7DqXgS2EM8TgYpmiLCYCOFYBIhDslYkr/WbqJPoavTFE9KWiFJHj0WjUBwiPovRc9aY8qR1gSFYeYluAFg9d6zlHoupXnJszY5FVgDyK8K9Pt5BHIWtOBbHtpPXLbvEEcdbJ7MIKE82J1yO7yAC8eJzrc8vPpeIlNMucaiGsMhw6O/txYYVegGvWiDuU7eo5MFziWO7EPBbVNSdPFN7iXC5/FL39QwXY8XH7VstAA98B/jD58lv2uVfBK75FrD8kudGDOrpfwGsvAJYcmHwuhERLhj9DVWXa7LIiJbIwCCmqsHC4nDRGttudywCzghIs+PIKx6S1si1aGjlEA7uPmiZaKxIjd9jBQq64l04OEd+9wzhx+yKK8wWIEvW39iefquwOHpkFFP3T6H3+l589CsfBcdbj9PY0TEIYuOzJW1jkT8f+rPlsT0KdaY6g76ENdkqyPUYRKfo4gy30Zd0pmktTZMkB8OxaDhKq1rVETNpZ3GaRKSPl8frjkXRlJ4gxkRLb0mAiDiSKqGij6X9IkFZnkVVqbqeR0AjCrUgk3Moy2cRY2Oh+gTWHYs2YdEvvtRAUiXwPB8YhepHGMciQASxJeklxyUq03Afhu03WJbL8+ZY7Bvsw8DyAUzXpkGBQnfMI/pdxxDSZ2rWewu7sGjEA9v7c5rJCBnHeRoGs+M3IiIi4lgRCYsnCS8+cwmuu3D9cX3PoY//Bt2v/HzgeouXrcTRg/ssRbqSi7BoIFWdA6mZyQnLALyrt78uHMozI1BkGavWb/Tdj7HhI2DZxkU6ZhMWNU3DsElYZGP+xb6ap2PRnS62ipHZCuZssxJ7Uv6DsqCoVJah64LZiq4ExgtVFKrhCzrlUrHeFxEgwiLv5ljUq2AC6z8oNPokujkWE8kUFq9cj3JN0aMzzT0Wm3csGsbMpOAUtRblYpgp2x2L7QlRgi2+9ZxlecxWmhPbOxLtVG4XFvF4HLFUBrKqeTpUmyEtshBYGv2ZcDcq6cixGBHRPJWZ9uIeAUBwL4jf99iz+OFv73Mu4OKkJ17QfgXRTI/F/k2WOMS1i7swOjGNmqkYN1e0HQchidrmtwMA8qJTIC2WKihXGmOUzmwSCb0AdXBGRbUmY82yQTz6lym8Y4v7/h08Oo6EyZmXTfuLC669Bm0EbcOPOYkF0sQBMPvJNO5+k/fMe1/sBY2wzr/nfwZYfhkK5YpFRPX93KoMQAOSXd7rAKQ3nkG8A9CLf10dHdi0whanXxcWg/82ljKk8Hzm3G3AY//VcGcaM+Rj3sU8SpNBURSkVot5iU7SS9HuCO3dEO718TwRQFtxLA5vJc69gbO81+nbCMwebe43Zmw7kO53uvcG9Ni0iV3O10glgI8DNId0KomOjP43UJ3TBUeXvz9je+M7ncvMFHRhceYw6fuY8Wi9EO9o7IsdTQP23Q389kPAgXuADX8BXP9j4Jy/JJ/1uQJFAa/5X2DVFcHrRkQ0SZgeb2bCOBaPlqzpCm7v4RAWTb/HfrGYAIlCrVaqqBQb10zZdi/Zm+h1xLbae/OZ41A5nkOuizjlpWkJ5VIZvYt6seKjK9D5wk7XiZ+jR0ctDkOWYy1Ova3jWy196sS4aOl/OFNzCovtOhY7Y8HCoptAZ8RGGg46udA4nnbRxo7IisgJehsbo8eiaYzmJiwaDreZ2gw4mvMVzFieRU2uue53V18XBlcOAiBiYIyNgWVYxNgYJCW49123QoSrrJa1PG8I3X5OPEmVwHKsa4xqWML+/V0xdAWuWXFNy+/TDFk9it7eF9OLslxGTvROmWiGVDqFZCaJmeoMUnwKbEBSVt2xWLM5Fj2iUP0ci1k+i4rSvLD40mUvRYfYgUVJ7xZTEREREe0SCYsnEYXZNmOsWiC2bAskxX/a9eLlK6GqKmomwdDNsWgguTgWZVlCqdCY/d7VR4pg5X2P4+gP3off/Ne/+e5DrVLC3Ow0eLFRtDK79ABgtiKjbKr0GL0CPbcpq0ikwkcndHI1qBpwYMZ28xAgonQkAhyLLF13HizriEPV0JSLrlwqWkRUFQx4lgZDuTsWg6JQDXEw4eJYFAQBiXQGFUlBjGMsIl1SYJvusThbIYPupIvANJSPY7pcg6YR8RWA9wz7kFAUZflcm4e8XQledPv0zDwZMRy4Xg7VZuhICrjnE5fiolX+M/wM0rHIsRgR0TSq3Ij6axWhydggPk4iWP1wERZV2iYOWKJQA4TF9IDlN3/tYv0Gfq4hAhRKzmulpveO8/Jfm+NQh3rJNeDegzI2f6eIz/7HHwHA0lPRsm1Nw+HRCRyqEeHpqJRyOBrtmPsOmnneeechrwuKFtdjK/0zTULH8xazjVk7zeCIQg05Dkn3AV0rUSiVw/VYNJPw71+DzKBp3U7Skw9AMhFvCFEGrACACnX8aN2xOCMuJr08f/luq8DoE4VKqTIEnms9CjWhXx/L09bnBzaHe30sByhV8l+zHH2COIETPnF1/ZuJYzFoIoGZ8R0kFtfor2gQzxNRb/awM1pVKpF+jvbI5OoscVS7CYu5JcS1OnvIf3+M30dNAbrXNwREO2KGRNDaI9fmhoHb/xa470YSv3v1vwIv/Hsy2aHNCW4REREN/CIo3ZipBtdKRmzpCrzLb4ldPAzjWDRYvII45IrTjd8NexRqf6Lf4UKzC1PTk9P1f3f3d4OmaZT3l7H7C7vxrS9+CwDAxL3HF2NHxhxCoNlxWFEqeGD4gfrjWDxWFzhqag1luYxFqUU45/nnQNAnAoVxLBriH1N17ltGyIDxizcPwPiu1HLjAhtGTDYETYZiiLCYsAmLitOxCBBByO38MMMJHKqqu2MxmUoilSPbKkml+nkVZ+OoqTXMPu7f+5oFuf7ZY0qN89FPMJNUCZzABfZY9COssPihLR/Ca9e9tv44xacwWhrFHQfvgKZpoJpspeJHWr8/CdNvUNO0eRUWDeZqc6FckB2xDlCgHDHPimYVFg2R2Tjv3MiIGdSUGhStuVlrSzJLcMf1d2Bp1tm/PSIiImK+WBDC4je/+U0sWbIEoijinHPOwYMPPui57ne/+11ceOGFyOVyyOVyuOyyy3zXj2gfNSCbffEyEkVWrTQu8G49Fg00j8iKqclGkaKrdwC//dmPMPqzz4LvW4VLrnmt62uMQsTMOLlJEIRG0UqzlQ2PzlgHIKzof7NSlRXXOFUvMoyMOM9guGiLQnURmoT+1UhtugoA0BngWOQYqh6FuqQjBgrA0ZlwM5Y0TSPCoklEVUCDY2hLVBvQEBbpgLhLiiOfx8/BVpFVxHlrj8WEEOxYjMXIckEk/58qkRsct157y7qSmCpKADTQFCy9KNshzjfeqz8bQ1eT0aZdevRtvscZ5XIyUjOExXlyD3YmxcD4X4OwvRgjIuaDU2IsYsyqnnGJFvSiVgQm9wJHH288JzQ5K51L6MKhz3ihMgtJsxaUNPtvtrlvUZBj0SburBrsAE3TmCk0inkOx6IPxtVq1NTbaHFvHv/969vx/B+WsLqTxkevv8D1tcanni5UIEkychkydlD1YbZfj8SEh7C4YcN6LBsgYmlQnGogyXno82YX5EIUdcwUik32WASCnV9p03U20V0XFt2hSDSlFCy4JZPkeE8tfTHw9juA5S8Atv0G2H8vifTkfb4PRQLPsZBUDb5/D14kdJemXYjv3xTu9fpsflTncP0LL3QKrF5UZsjvRv8ZjW240aenh0zuDrfd8hSJJ+1Z737c+s8A5o64OGLLurBou1WtFsj36DbeoyjdUXnYW0DWNKtQuPRCEq3qBkUBYq6xviIDT98E3PwR0hvyvPeRXoqnXeve8zEiogVOibHIPBHkDrQTRlgcK1snXrm9h9k5xFCM1bEYIHZ293dDjIkozjR+Z+SyddLxopTTPWR3HU6PT1u2efdtd2PP3+4Bm2Hx+ve/3vW9DXeaVJMwOz2LhC3twCw0rs6txgNHG8KiGBch6RHcRk+4xenFWLZ6GTJdZLJUGGGxi+vC/n/ej66DzsQBiqJ8XVlBGEIXZYrIn65OB76uN0HGQDRFo1KsWB2Lcadj0YgYnavNgbdPgLNh9FgMig0ty+V61GWMjUFSJRz4xgE89canPF+T7cgCAFJ563E33HqGE9MNSZHAcRzQ6iQnNP/3Z/CRLR/BOb3n4Bc7f4F/eexfcO4150IMM+YLQYbPgAKFohzsWKwqVWjQ0CEG9/ZshtnaLPJi8DWfoRkkuITl9wNwj0KlQXvG6QKNCNhW4lAjIiIijjUnXFj86U9/ig996EP43Oc+h0cffRQbN27ElVdeidHRUdf177jjDtxwww24/fbbcd9992FwcBBXXHEFDh8+fJz3PMIgk+tAJpe3Cos+jkUvZiZJJIimqTi0dxe+8YWPInXGC9H9ys+j5tE82ohcnZskNwm8SViUbU7Lo9MV0BSg6UWlIJGrIquIp8L3WKSgYcNABmNlm7CYtu67OZJCUjTkAqIzOVMUqsgx6M/GMDoXblAhSTWoilLviwgAskY7Ij8BYGUPGbQGCot64Tfh0yevIimI8axFvEwIDCjef1B5+sbTAQBJvbflRau6sK4vjeetcA4IhzriKEtKPcKVY2gwAdsPg73P4sbB8OcA0Ii+zXQ4b6hORmr631FaOP6z8OdLzIyICOKUGYsY/VZmQuzHrL7OYz8C/nkT8FPTBJ5mJ2nwceIk8qM6ixqs29X8HItBwqJNRBJ5DksX9WC24O9YDMLos6hpGo6MzeA1H/0HXH8ahz+8Lo5OD5GmWiPFuEqNTNDpyFmLQNmUdyEtVI/FNuPHwPLerizAPabW3otQbkJYdOmVVSxbhcVQjkV7dKYd3X0KIQ3kl1qFaTf4BBAiSmrzZuIOXDLQA/SeBlz1JbKgOqv39/P5+1BqEDiWRKG2YhQw4l/tUag9pwGgnA4+O4bgXi1gqL8bnWHPnZGnyf9XXOYU88x0riTHeTbkb50RSzr0PPe+qoPnkt8rcx9DpUac16LL5L7aHIlq9voOBs4i26t63IeYf6e4ODB0vv/+x/OAXAIm9wG3fgzY+r+kn+Bf/BC49JNAx3L/4xUR0QSnzFhknmhWhLJHDroxVrIKi4LLdcMsHvIMbxExgvaJpmkMLh+0OBalsjX2MiNkLG4wt7hKs2OxVCjhs2/7LFIbUlj2yWXo7HWPFJ0dt37+hDFm0X+izMLgNSuuwYG5A/XHZsfinEQcVkszVpdTmChURVMw9L4h1AT3yR1+rqwgDDckZ0q08ROTjb6dA0mShOXmWOQF3tHvMMOTsXShVgh2LPIcJEWq75sXZbmMpD65Js7FLf0svTj3QtKXeMUGa4/lurDo48STVRkc355j0e1vIwwdsQ586/Jv4XPnfQ5HikewU9kJhW+j2aMJhmYgMALKIeLYDVdwGBGwGYpSsd4/MYgUn7I4nhVVgaqpFsFaUiTwDO8aaWxgfIYwTs2IiIiI480JvxP62te+hre97W1405vehHXr1uHb3/424vE4vv/977uu/+Mf/xjvete7sGnTJqxZswbf+973oKoq/vjHPx7nPY8ws3jZKtRqumBHM76ORS9mpoxeAxQYlsW7P/W3yF/+TlAeufaapkHT47xmJ4hjkRcaA6CypFh6Lh6ZKSOX4OuOyUBhUVIRbyIKFQDOWpLHaMk6gLM7FmdMNxeapoFj/P8MeZOwCACre5MYmwsXcVXRhVdGaHxWWYNrFOr333gW/v4VG7CyJ+CmQY+nEz16MSqqBknRHKJQSuRA+7oJyExCM2mRw/+9+3l48elO18LiPLnpk3VHLcfQoLn2Y0jtgunZS5sbjHbrjkWpjYH8QsKIQk3Fjr/IFzkWI44Xp8xYxCjEzwREAQKNPmOJLuDMNwKnvaKxLEi8sMMlgMqc/zrVOdQ063Y1e8HG/Jiim96PtcsGUSyT6yND04GORUVxFjrGJklhjqIo8ByLv/vgG/AfLxMhsN43/JLe13Fcdyh0ZK1jBz9h0SsK1Uwox6Km4d43x8HAo3jjJ9LZi5qlSeD3n7U+Zyq8aaCa6rEnSTKqNcnyWQN7S9Ksb+QogIbT7B13A1veHLwjfMIpmLrg+U1LFdLH0VdYJI7FlqNQxSz57Pb4TTENvOxGYM2L/V9vxI3ahckgjj5JXJ9dq/3XoxkSlzo3DHgkkFgY204iRbvWuC9fdBagSlYHZE2fHOBWNK0WAD7lPfFg8Tnks896uLbNMdFdqxvRs17EO8i5/uwviVh5xd8C1/wrsOwSMqEiImIeOWXGIvNEs8KiuYDvxUR5ApzW+A3nGd4RNWk4ywCAp3kUTb/H5mVeDK0cqvdYpBkatbJTRDKLHcU56+89x3OYNqUnCKKAG951AwbfPQha8K4bTBwmtZTiLNkelyWfUxHJb7VZWHz5ipdbxM1YPFZ3LAJEhOtPWO+/k6kkxEXkuuvVu+9I9QgAYHJw0nW5X1/AIAyhizXdk/o5Fg3xbnGKxNPSNI1ysQzRNBbRBM0RS2s4FotyMVAwZHkWNbWGWECNoyyX66JqgktY+lk2S1EuggLlG8cpazLpsRiQPOZHq45Fg+tWXYebrr6prW24EefiTQlsYXp7NkNRKobeZppPW/pBynr/a0uPRdW9R6eZSFiMiIhYyJxQYbFWq+GRRx7BZZddVn+OpmlcdtlluO+++0Jto1QqQZIk5PPuxf9qtYrZ2VnLfxHzjxGHCgB8LB7oWKy59Fk8sGcXynsfBUVRuOEvP4hrXvMW320c2tcoQkyPjSDb0QnaNGu4UJURTzYG/0emyxaRj/KKPtKpSApipijUMM2v3USoLpuw2Ex/RICIgJSpj9Rp/Zm62BNE/XswxXPIqgaeZRyOxUyMw/VnLQ6OqWQ48Azd6Gtow3C4pWyiUCs9FgHy+QUXEXMob73Z5BhqXhyLdjHr7KXNxWcYx69YlQPWPDkwolBT4vF3LLpF4EZEzDen1FjEiGksHA3/muxiYPVVwOA5jeeaFRb5OHESee2WpgJSyelYdAiLnP/jANYub/TcS4hcoGNxYtq6z8l4DLsPHMVvdpDi2vuvvxSf/MvrfWcRHxmZqP97bKYIUeAtzjwAyPoIg2Eci+lkcHFnUW0HzhtkcYl2v/sKKb9YUdv45t5/tjq7KMYSLamxMSKyhRgXAcStCFhjX52ORdsx5pPBDkRjbJMbIs6xIIRUaz0qDeQyccrSfsJiDQJvRKG2AEUBsby7MHjGa4GVl/u/3hBjw/bABMj3OPwk0L2G9KoMou90oDAcTlwe3056H9r7K9a3tZGItaPPNJ4zivhu8aK1Aolq9voO+s8k/5/wiGotmJxffZuCI0wTnUToVCTiJj39+uCI3oiIFjilxiLzRNIvdtqFqlINjAqcrE6C16zXH8421rAIiwyPktxIQgizT0MrhhrbFjhIJcmxjlmYMIuIAJDJZzB6ZBQzDxM33pWvvBJv+/jbfHvVFWYb14xZfYKUkNCvofpttNlxmOATuGTwkvpjPsZbhMUOsQOMbXI3wzJ1YTOMO9QNQ7RrBUPoYkSyXzRoR/86N/qT/WAoBjRoVMrWKFSFc06Qyepx4EWpGOjaY3k2lGOxolQswqLRV68VSlIJIis6vh8zkiqBF/gTEoVqpi/ZZ4n9nA/ibHPCYld8/lKkNGgoSSV0xcJtMytkUZIavx/G35ilx6IqBZ5nhrBo7wcaERERsRA4ocLi+Pg4FEVBT0+P5fmenh4MDw+H2sbHP/5x9Pf3WwbhZr70pS8hk8nU/xscHHRd72TnV//zA7z/NS89Ye9vFhaFWAKlAMfi9OSE5XE8mcZ//9vXMfXH70FTFXT3OXsP2Hno7tvr/54ZH0ZXr/VGv1iVEU82ZuYdnamgL9MYSFKsYOkBaERqNh4r4GONAXixFjwze9PirOO5fNx689KssMgxtKW4un4g/IDcEBYpk5OvpmgQGMohLIZFo1lwDGU5dmaq+nFM20ShhMCAtgl/24ZnUQpxXN3IxDmLCMizNBguRLRaAHZhcV1fGhsXZeoOySAMIbnVz7XQMITFBH/8Rb7kCYhfjXjuccqNRcQMUBwPXs8PD2HxeYtZ3LDB5e+SixPBxqOgR+nP19CEY9HtcQBrl5mExRgf6FgctRfzUnF8/Yc34T03V1CRNQz1BU8sue2eR+v/HpspYlFvJ1iQiSUCRf6fTTfhWDQEPcMNVhwDw3gXjwwSCnnd5uSwaxQpMj7jKruLL7MIuPqbjdewoiUKVeXi5LvWwl3nCiXy/Zs/a0ywfbd295eQDP7+mzw/wCdDORY9kSrEJeknvOtRqL/fo2DrJO8e/xlEotPpWAyL0R/RVAgPpDQBlCeJe1AIEVM3sAWYGwHK0/7rKRIwtQ/oWOndt5ETgWUXAWPbGt+N5CEsahoglXRXp8ctbLILSPUR17ab8F0cI+fzCz5PnNo+hVkAxNFdKzT+plr5PiMiQnDKjUXmgVZiM0dLo6iUvIvvM9UZCJq1iG8XPszvy9GcRRhIccH7tHjF4vq/eZFHreSc0NIT179nCpgam7IsS6QS+O3//BZH/vMIlLKCnoEex+vtPHbvY/V/z07Nkv58xs+k/rNl75H46tWvrv+bTViva91xfze3vVdlWNoRFg1XF6vfqyeYRChhkaEZ9Cf7kaDIWMwchSqxToEvxsbAUIzlPb3geA6SKgX2WKzIlbpbM8EloEEDxVuvJ4cKJG1EdRvDmSjL5UDRL2wU6mhJn2zjcmkL6id6okhwiaYEtvnssViSSlChoicR/DcJEJHaPDHBzbEoqVLgeWZ8hqjHYkRExELkhEehtsOXv/xl/OQnP8FNN90EUXS/mH/yk5/EzMxM/b+DBz2icU5y/uVvPolnHn/ohL3/oEVYjKNc9C+ITE00BqOlXQ+hXJxDLJFEzw1/B4pm0NkbPBv4obv+VP/39PgwunsHLMvLkoKELixSfByzFRmDOVM/A5a3xJBKtp6MZUkhcV86My6zDe2kRQ5ZkWzTGMYZfQalw2Q29qHJFhyLpkjXdX3hI0TKJX0gYx68KCoEjkaLuiIRFlna0j/RjOGmTMesN2kJniWRrib35bNHg28G/BgwfZ8sTYNusReAGbtLjmdp/Owd5+FlZwx4vMJKoOPzJMMQFk9Ev0PjPaMyXsRCZsGNRWJZEmXZDj7CiegWCcoH9BzSb6prmt2xaPu9NF+rJNnfGebC2uWNYl5c5AKFxRGTsPjbHTKOjk2CY1nc/eYERJbCUG9wMeKWux7G48Pkd3Lr0QoGezuRVInI18+R/2dTPo5Fu7BoFA2MwlITkaN1Rp5xPpexFZBVk6veLkS/4PPA6heifpvACYBSrU9I0jg9UlQNNxXecI6anZw0TVtfb48RE9LhHYthEVLtCYtyhYjojL+wyHMsvnF/Db8a7nV+rjAkuhpxoM3CieS4NXPeTO4m0cPLXxBu/b6NADRgao//elP7yHm26Gz/Y7buWiIETu0jjw1R1e5ylMrk7yIoIrf/DGD2iPt3XRglrz/9lcDAJv/tACQqtVZEW7aPiIjjwIIbi8wDrcRmjpfHMTU+5bpM0iRUlarTsWgba5jfl9EYizAQRuw0OxZ5gUe14Pwt6kv0AQAohsLURGN/C88WcGjvIaiqimWfXgYmxqB3UUC/YQAP3P5A/d9zE3Po6nM6quzC4qaeTQAAVVLBxIiQxurjP2P/vBgvtTaBLScE/H77YES30nqtJcWmQsXfAsAHz/wgruy+kmzHNBap0e4pBsZ7hY1CDRL6qkq13rvREOzMsbYVuYKdUzvr6/pRlsuBMcGy6h+Fqmka/m/n/+HOQ3fiqiVXuTpxF6qwmOSSoQW2GBtzOJLbwTjfgoR3g5yQs7gr645FU49FWZUtscRuCKwAnuGhhJzQFxEREXE8OaHCYmdnJxiGwcjIiOX5kZER9Pb6D6C++tWv4stf/jJuu+02nH766Z7rCYKAdDpt+S/CH7eY0iCGbI7FoCjU6UkyGJ17/FZM/eHbSOfyOP2s88EksgAAXvAfxFUrZTz58H0QY2TAMzvmdCyWJRXxBBkkMTmybHVvY0Ct0Sx4tvEnILDWP4eKpNZjPQGgUAsXWbGmi+y7ahrIKeU5yOP7AACHpr2LRSLn/JPkGRqUqffgolwMcT7YvQAAFV1Y1EwDKiIsMr7Rbm50dpLIFooVwDPOHo0GhrCYsQuLeu9Co89iRWp/YGR2EfIsDXo+HIsuAprAMkiHjALNxdvfh4VETVFBU0As5Dk3nxju0cggEHEsOeXGIrE8UJlubxtuwqKfOymg+ODtWLQLi43f2anZQvOORVMUalLkA6NQDcfiT56S8LKfltGVy+Cc01djUZpcczuz/pFnsqzg9/c+Bj5GCjzDEwUM9jaKeRmGFIfajUJtmmducroW7Y5Fs5h44F6ru4sXrY4wVgQUCSxLvj+VT+qOxXCR38W6Y9FWOCmZHA+2HssQ0q7ffyJBjrUGOlh4tCOkPV214dDIuR4Uhcrp53mzkcIGye7meySaEdLNCYvjO4nwnBsKXhcAuteReNzpAFFifAc5BoNn+6+3+iqyvYP6BEmvHovGMYkHCP6DZwOzh61xvgaFUfL6sAVTwz0aUkSPiGiVU24sMg+0Iiz6OemKGqlPBEWhpoXG+9IKbXEshnHcDSxpTEYVYgJqRad4tShFrskUR9WF0NnHZ7Hvq/uQyWWwbPUyCN3kGtfV6xQJAQD6z5imaXjozoeQypM6x+zULLr7ncKHOQrVQBlVMHn7JCiR3GwZQlp/0n+S93iFjCFKcXJsxjRy3I1+hfa+hQZZL/d6CAxXIKPXFFJsyvLd+MExHCp6LLvZsVjR3McEhlDo5USMJ8jybE820LGoqAoRFvVzx4jaNSJdAeCXu3/peJ3RP7LuKtQpS+XASF5ZlcHzPNzabiuqgh898yP88eAf8arVr8JXLvqK6zYSbHM9To8XCS5R758ZRCuuZz+Mfon2/qNe5MQcSnKp3lLJ6K1pdygGOV6Bhft9LARYioy3/eKBIyIijh0nVFjkeR6bN2+2NBg3Go6fd955nq/7yle+gi9+8Yu49dZbsWXLluOxq88p5mZnmn6N2WHIxWIol/wLIoZjUVyyCelzrsNpZ5yDwsx06Pd78qH7UKtWkMpkAQDTE6MOYbEiNaJQmSxZtqa3caOgUiTS04BnnX8O5j55hZA98zb0ksGq6lIQU1UNR2caA1h778AY57wYcjZ3CEVRWNEdrueEIfAqVKO4JSka4lzzxa6uTnJTQ6JQac8o1ZpMRrAOx6IhEulxqE8daf48s7OkwyQsMjRotn1RL6yA6EWrEbMLlZqsQmBpz+jbY0lCFzMjYTHiWHLKjUXieaDS5u+r243Z6LPe6wc6FonI4eixSNt+s03XzcmZOaDJ3/RMKoGOGPnBSAhsaMfixUMMPn8xj6su2kIETZ2gCTgPbT+EqZkC+ruJ0DE8VcBgX6NvUoapAJqKbKqJKNT5YORpUCNbrc+lbe4Dc6+5o08AY9u9t8fGAEUCp49ZNC5FhKvQjkVnFCoA4irzQsy6CodxXZykYtngGEs7Qro9xyIAcAnv3p+MAMg18C6TxJoi2dOesChmdeE3ZJ/HwjDQsy5YsDPgRCC/jLzOo3gMgJxTmUUkntSPWBZYfA4w9iyJT5WKRGi2F06NyLtEgFNg0VkkmtlwQJopjunCYkgnaaKTRP624hyOiGiCU24sEhJDGHITogyHVzNMlCc8l5VU8l5BUahprlEvoCTK4lgMI3aypvtsQRRQKTjFK6NHG8VQmB6fBgDEV8TR9ZIuXPKSSzA320j14R09iQl0jFxr9u/cj9Ejo+hcRMYfXsKi3bFo2ZbuAjRiOA3h04upChFDNYp8b0cp0tubp8i+SqL7hOy8ENDX1oe6Y5En+5phM3WhJwxlfUxodiwWpSIol2ycGOfvWBREcg51DnRCVvwdZ4bLrS4s6tc245gfmjuE+444+6gaMa+/3P1Li0OvolQCI3klVXJ1LNaUGv7tyX/DwyMP492b3o2/OvevPMe6fLNx88eJJJ8MHYXayuQEP4z3DXL0GnTEOqBqav08VfQ2B/ZjG2OCxyTm3q8RVoy/1+gYRUScGE54FOqHPvQhfPe738UPf/hDPPvss3jnO9+JYrGIN73pTQCA17/+9fjkJz9ZX//v//7v8ZnPfAbf//73sWTJEgwPD2N4eBiFQhs34BEW5mbc40P8oE0z24Mci2qtjF/99w9QmJ0Bl+1F6owXItvRiZkp7xsBOw/dfTu6+wYgxMhFRKqW0WWLQq1Ial1YpGgamRiHjqQpdgAMeMb/T6BYbUzzmi3JjrhUN9Z1k32qxpwFmrFCFZIp695NzLQjmPbRGBuGjUOtGMIirMU3N2dkWCRFJf0Mg6JQbQJdXO/RR+t9lB7dP93yPhgs7WwMHjiGmhfHoj0KtR0Uj/iRkwkNAM8yJ0QwZRkaIksjCkONONacUmORWI70IWs2LsfuGLMz6hKvacDF4Pd3StWFRWsxT7MLR2ZhcXqu+R56AFZ3ks+xOMvWBS03ZioafvCL2zA6MY2+FI1PXySgpyOLsanwouytD25HLpNEZ45ck8tV2eJYBAAoNV9hcb4di7vlHiA9AHbHb60L0rY474LJFSNmgad+7r1RVgSUGji916PKJ5s6x9yiUAH4C4uxrLuAZ5ynQXGYbojtOhZBRHQ3JyJF6UK4hpTQ5jgi2WONqm2WWEb/nE247Baf11xsa+8GYG640QvUjqYRx2J+ebjvat3Lgam95Jyolcg5x9q+/6r++5rodL7eTN8mcp5M2qJaNY30k0z2hI/Rjevv1WrPy4iIJjilxiIhMQQTzWUihNk5GAaWYjFR8a4nFFV3xyJvm+QUM/8W1mCJMgyKoDRg9Ik4giigXHBOTDCcNWpFxZ9+/SeMHhkFm2TR8/Ie5LpymLb1gPbjwTsfBC/wyPWS31qpKoWKQrWgHwJDRB1M+fffNNx0BgWGnHO0Xl5UUu7XhnysdWHREPkMYTHLZ1FTa6iGnDBU1sciZsdiUSq6ioLG9xzGSSapkm8UqiEsZoUsgEafTiMK9afbf4qskMXyzHLL68yC54+e+VH93xW5EujEUzQFLM9aeiwWa0X882P/jB1TO/DZ8z6Ld2x8h+82mk23Ol4k+WRgXKxBK5MTgoizcQghEzOM3ogzNXJvUY9CtQuLIcZf8+2+jIiIiJgvTriweP311+OrX/0qPvvZz2LTpk14/PHHceutt9Yblx84cABHjx6tr/+tb30LtVoN1113Hfr6+ur/ffWrXz1RH+GUY64J56AbQiyOUtH9hqY2fgCzD/4CB/bsxOjRw/Xns7kOTE963wgc2L4VstSY+fbQ3X/CWRc83zLg6uqxzhwqS0o9ChUAulJCXdwCABk0BBeHoBmzY3GqXKuLZn5k9FgLzSUq6/B08zOeeZOr8dAkGeyf1h9ukFQuFUFRFCRbwTdslKobkqoLiz5RqBTlfA8jCpXiRciKiicPT7e8DwZDHdYoVGoeHItJYf5y+GshzpeTAZ6lwdIn5nIRF9hIVow45pxSYxF7X7KwGMWTjhXuy/2ERYr2dS16OhZ9eixOzvgLi25FSABg9N+qmI9jcfekipf8Twnb9h7C3kPD9ee7chmMTXoLiw88exBVUyz6LQ9sxxXPO9NSfFnUaxM95BqyLvFjBvMtLKqggUs+AWZyp3VByu5YNAmLZ74eGHnKe6OcLiyyhrBoOBabExYd/SRnD7usrePlcsvqfTR7Tgv13hbajkIFESfdxj80Wz9fU0KbV61kuN49nsRygNSEY5HhgaWXNPceA5t1YdGjTUB5ikQy95wW6GgGAKy7msT3HnqIiHhczBk5W49CDShMC0niqJw5bI0ErsyQ/c0uDh+FkJgnYdHY59zS9rYTcUpzSo1FQjJbI5HFt+y7Bb/e/WvLtb1Zx1SMi2HaJwq+qBXBMzwY24RbexSq+ZquVTWLW8wetSdL7pNAElnyu8eJHCqz7tcdaVLCvn/Yh8N7D+PwPlNdJJ/F3PSc62sAYOtDW1GrNKIgH7z9QWw6bxNo04Rlu7CoaZqvsKjx1uvFsswyz3UBYKbqHCsdLTTOTS3mfv0xhJZWML4nQ1jMcURInaqGmxRvCIuiaSzi1a/QcD4FCYuapkHWZN9+hAX92pUXyXXAeD86RiO9OY19s/vwwc0f9DzfT+s8DU+OP4k7Dt4BgLjm/KJQDQcuG2Pr84smK5P4+qNfx3BxGP948T/iulXX+X4uA5aavwnX80WaS4cWFtuJ3vXcphB+m50x3UWsR7NLChkzOaJQA3p5As1PtIiIiIg4XiyIK8V73vMevOc973Fddscdd1ge79u379jv0HOcIGFxfOQoOnuc9n9ej7gUYglMjhxwLN/26H0Y/tEnQPMiNp/9PCxbvQ544GEAQCbfgZmpCXgNyb72nuvwTbExk+fQvt14ywf/Cr811cW6+vqBrY1Bbs3UYxEAetOipWebpAI8419YKMuNotlksYZqm30BD0+VEeMYlJvYjpurcfOSHGiqES/qRblUhBiLoypZBS6zwNossqJBYGkwHseuqkdn2vc7YTgWORHbR+ZQMe1T0Ocw4Hky4Gb1WezmHoscQ4NmOEBp7zsyBND5IIwQfTIg+DhUjzVJgY2iUCOOC6fMWMTel6xZKI/fQD/hCSCCi0d8IyWXAYaHqlq3rdmLKKbi3uRMAch5zwh+du9RrDvDOaOeZlgAMlICg4JLLPs9T+zEq75XREYEzj9jHc7ZuAbQNdOufAazhRIA95v3c9/zHQj8D3Do/QIAGg9vP4R3vf46APfU1xns6wLM86TkMnEsTrt/jmTiGEShbnoN1Du+DNos3PG2EdZcQ1DFljcDT98ETO933x4rAJUZcBwDQIbGJwGlCqjhetwYztFEzPZ9zhzyflGix2OBfkFgmhjH1IrElSkkAaUGlgZavjybCjsJwT3KNy20OREnERAdGoSYA+Sdzj6bXuSXAymv4+1B/yYi0s2NuDsIp/aS/y+5INz2Ur1A7+nA6NNAspdMdLA7VmtFIuCGKa71nwHsv5cIrMa5X9R7r+X9C+YWDMeiVATQxvcSzwPveaS9iNuI5wSnzFgkJGaB4FN3fwrff+r7LW8rxsaIyORx31BSS65ReXbHohmlpKCS9p6Qsv3J7Vi/eb3j+XhvHAoUKLyC0lwJHbAKatuf2I7df70bFE1h2ZplOOP8M4A/kWXZjqzn5CkAeN8r3geWY7HqxlWgQOHJB5/E2z/5duzF3vo63X3deKbYmBBWkkqkx+K0+zZVznq96E349/U0YjpVkzP+kdFHkEFj8rOmaXWRVtpBBBVDaGkFChRYmoXGkWOT54lQZ3dPeuEWhVqSSkhwCUdvTkP884s4BRo983yFRd2xmNPH54ZAxKZZdF/bjTO6z8DLVrwMP372x66vf+myl6JD7MCvdv8KyzPLUZWrlohP3jYW4RkekiqBERkShcoAX3/k61A0Bd++7NvY0hs+MpljOMhyGwkKx4AUn0JNqUFRlbrQX5ErYF3SJI6FY9EQiMPQHScTxerCouYuLPo5Xg0ix2JERMRC5YQ7FiMWHrMBUahPPuTMgAcAliMFAF6MORyLo0cO4ft/+yGIg+uROfc6VMrWRtuZXAdqVe9B+/v/6Sd40/s+UX/MsCzOOPfC+mOKotDRZR0AV2QVYqJxAV6Ui9UjQBmWR1VWLW5AN8xCYkVSMVP2mJkdkoNTJXSnw0UnGLgJi2v70vjdBy7CxsGs72vLpSJi8QQqslVsa0c8kxQVPOPtWCQ9+ZzRmY0ei3E8dmAamRirx1yGJ50mg+hlq9cBAPoyIhiaAktTumOxfbdhst0IMxNyyP5TC50T1WMR0M/VSFiMiAhPq45FPzQNGN3mv47gffNOy2WAjSEBPRKT0qPPHMJi+B6Ldz62w31X9SJDjFGJY7FenNMwNjmDaz5yI07voXHzqxMolq3jjq687TPIVuHswW/+Jb7ykTc33kvTcOUFmy3rDNodi4Ux3yjUuNjcmCAUNAP5go8BANZm3WZ1a1bHIisAl33Be3t6FCqrR7Orxuz+ajiRpFAqIyYKYBjb2GPuqPsLACDd772sGeQqMLUf6FxVF4lS7YQbiOQcoWkab3/ZudZleqEoJdB40yYOb1t2FCi30O+0XWExnieO0rDCYs9p4fsrGvRuIP8vjbsvn9gDxPJAx3L35W6suxqY2EX6f3Jxp2OxOkecjGHSKQbPJedXebLxnCEsNuMajOcBUO1F0xp0riCCbEREhIP+RD/etP5NdcGqFeJsHDPVGTAd5Fqj2Fz1RbXoLiz6OCOVkoKa4j2J5on7n3B9ntVba8i0jNKste5RKpTwsdd9DFyew9JPLa076Qwy9rGIjX/77b/hXZ99V/2xVJNwzqXnWNax91icqk75OxYZzZIEFRSDWZJLFicnADw7Ye3FPVoivZzVqgp1mFyPzMLicHEYzcLRHCiO7JshLLq5J90whEW7Y9FNsAnrWDSiLf2EIaO/niEsGqJlxxUdYNMsPnvuZwP3/csXfBkdsQ78+1P/jrJSrvdrjCViuOC6xgQemqLrQjkjMqA4ClQXBY7m8J9X/WdToiLgL7qfKAxh1ujPOl2Zxp6ZPbhgwDmRqRkRMCzNxPl26K2RZiUiLMr6WMIRhRogYAONHp0RERERC41IWIxwEORYfOKhez2WkOKdEEtaeixqmobu/kV4++f+BV3XfhpCIo2pCeussGzev6CxdN0ZeMUb/rL+eP0ZZyGRbAwCU/nOurBpUJUVxOKNm4cV3cn6IJllOV0A8/4ToACUbU6/YY8ok7AcmiqjP9OcO8FrH1f2pNCV8i9IVsoliPGEw7GYaMOxqGpkn/ySMQWX6EwjGpUWYnjs4DTW96dbzu43enqyDI0Xb+jDqp4UeIYG5daPqUnmU1g8VRA4xtOheqxJRlGoERHNwcXqAse8URghsYZ+xAKERS6GJKVHYtKGsNh6FOodj2x3fV7RyC9GNkajUCojr45D1TR0UrPoymdw0z+8B7e+No6OOI2RCetEKqewaL3mn7VmEd73+pfhD3tIsXLTin70dTcKDHGBQzZtK1rODTufM+EQ2+YJde3LAABDSRdBRFMbIovB+mu8N8bGALkRhaoZEVwh3VfFUhVJewxqrUSEIi9S/m6J0IzvIL0gF59fF90zYhtXlTgpDNIU5XQsskYUKnDNGhYvXTQN/Ob9wLO/ApqZaNR2FGqH3gMzIApVTJMY42WXuPez9H1tBkgv8l4+uZsIeM30wlx/LaBIwNg2IizaXam1OYBLOAVHNxZtIef5xO7Gc8Uxci43c3xppi4mR0REtI8hsthFKVDAmT1n4q/O+auWt20IiwYH5w5alpe0kmuEpN09ZEYqSNDg/Vv6+P2Puz5viHRsnIVUkUBpFDRNg6ZqiCfj+Jt//xss/cRScBkOU7axSLYj6/l+ALBqwyq8/A0vrz/uG+zDoqWN32OKotBpm+Q0XZ32FRYVWmk6ena83JhYkkYahwqHUFEb36v9+AOwHP8nRt1FWT94mq8Li2kuDYZiwguLpTI4ngPHN64hXv0K645Fxl/wMYRFN8HaoCgVQVN03WUoMAJYigXXwUGZVbAi59GCwERSSOJLF3yp3kPUEJk4joOQsJ6/xvdICzSEHgGURuHHL/pxqPex0+w5cTwwjmNRJr8ldx66EwDw6jWvdqybazfFxYVOMbzrVmAExNhYPQ7XOF/s0ad+jleDLJ8Nv5MRERERx5FIWHyOQFF6I20leMZtq8Iipc/s5xJplIuFugPxzlt/BQBYcfoWUDQDTohhesI6wzmT8xcWJcU6oD/rec+3PM52OqNZK5KClEmwXN/fiIxgOa4e2Xnz+y7AP12/ySG2xXgGFVtk6UQhXOyXGxTDYbxQxWA+eOBghmda/zM1HItVm2Mx3mbcp+DTYxEARI4GaxOiBJaGpsgQF5+OmbKE85Z3zkvE5Teu34Q3XbCUOBabiUbzIJ/Q41bbOO6nGuIJdCz+5UXLcPm6HnDR9xEREZ75di369Vc08OljQsllgBPrk0kMI5VmnwltFhan54iTzoM7HtnmGhUmq7qwKNIolauoVKt45f+W8fU7ybjjgk0rwTMUaJrC6MSMZRtduXACwg2/KIP6wiyuutjqEOjrSDonzJTH645FrkmXvhm62T63fhfYWsHZa9C8vr3wysUAuQJOF0FVo4BWs7owvCiUykjGbcU5s2PSDMOR86BZB50Xo88SkWpwSz1CM230QJSrwEP/3tz2jJnqmgps/61VcNfP3wRPtv/0tAAMXQA8/j/AzR8GRp4O9x7tfvZ4jnw3QY7Fvo3AW/8ErLy8tfcxXIt2lBrpn9m1ujlRrmM5iSnVFN2xaBvTVedIrGmYQmfPerKeOd63MEp+G7lgZ4CFZsTRiIiIUBhineEGZPQY9lYnnQJEDDKLTDumrMkGKlQSjai/haaSffATT2qzZP/Ke8uYfXTWsXzrQ1s9+ywCABPTJ+RIGg5/7zB2/XEXAGDDWRtIr0AKKM4WLT0Ts/msz6d0ctYlZ1mOWyKTAMtZfz9nqjOO5wxomkYNtVB93swYjkQAGKKGoGoq9tX21Z87XPDpowzg2clnfZe7wTFcvZkTBQppPh3a5VopViwxqADpV2iOFTUwxOYgwcdwoPmtV5JKiLNxy3cksAJosblx3ZLMkvq//fr8mYVFAIAC9CWdtbIwLERh0RBVi1IRiqrg4ZGHcV7feehOOCcNHRNhMd5cnG+KT9XjcI3zRbDd34SJQs1Ek5wiIiIWKFGl9jmC1rEUQx//DXYfGrU+71J0mAuIQj28fw/GR53RFZRxYyASx+Jvf/YjAMDgUmsMEscLmJmagGLqhZexORaDetOddaFVWMx0OHvDlCWV9NzT6Uk3BssMx6MqKxA4Bqt6UnjZGQOg7dGdPGvpA5gSWUyVavXotlKtuZhLJtsHVQNW9zaXj+7nqgyiUhcW56/HIgAInH/PPZFjHEIURVFQpQoS6y9FjGNw6eo2Z+Tr0DSFtMiR4+SSrd8sK3tSuPGGM7B5KNv+zp0iiBwD+gQ1OrxsXS/edckKiNyxcfVERJySzHchfPTZ4GK+z3uSKFQRMT32s1QlM3b9eyzO+TovR6eL2L7X2aPPcCwmdfHotf/+LH63S8aWQWsxiaYoVKo1Epeq43AsBvDCS6xRmL15lxnrpam6KzEdb91JqtYTXechYttL1DPgbdGtXNwWhap/TqmMMBRKFadjseARgXbadcBLvuHet68VRp4mYlW8kzj0AGQECht7aOB3nwT23N5Ylwox3rKf57/9MLDvbvJvQ1jU3RQFiQGu+3fgVT8mcbJ/+iJw19eAkv84GwznK9SH2kdNcYrHbgyc0Xx/RYP+M9yfr8yQ83TRWcTx1wxrXkL+z3tEofLJcO5KhgO61gIzhwEjDrEwQs6DZoXF+RK5IyIiHExVye+h4RBrhwSfwJzUEJl2z+x2rJMW0oinSRG/ovf/9XMsVqbJOnTM/fpQKVWw4yn3aHagIe7s/Ye9mHlgBplB6zjDcDZOT07Xn0tmkmAC2rWYOecS6ySndN4plM3WnKJofR9ZGjWlFhj7aYYCVXfPAUCKTmFxajEOyY1x2dGiT9w5gP1z+31jZt3gaA4Uq09S0zRkhWxdtAmiXC4jlnAKi26ORaNfX5CwZjjQ/M7fklxyLBcYAXQbNR4/YdE4nymegjwrA26J+CHx+9s4URh9E0tSCU+OP4np6jRuWHuD67pd8Taj5V0w+iaGJc2n607tehSqbWJlKMeiz3ceFmPywGvXvrbtbUVEREQYRMLic4RijBQNth2ZBtBwJU4OO4tydsei3S0IePRZ1B2LMxNEvJRlMtBavuY0y2qcIEJVVYuAmclas8qrsgLV5CKwx1MaPfbqr++yFkVoaKjUlEYhzrYNluNQU4hj0UsgiwuMxenXlRQwXZYg631/fr51HP9423YMa1nX19th8iSiZMNAc4VLtx6LYSmXShBjcRdhsT2RRuQY3xmlIufssQgAWq0EimawpjeFviYjYYPgWNoZm9UiL9nYjyWd3pEmzzVOpGMRaG/2ckTEc5L4PPcUGXkaSAXMdvaZSUvpwqKoR0cW9Zn5FcV2fTP9rU/OFKyORVtxh6Fp3PHgk473UvUi3eFJUgycKEi4+80JvGCltahjGABHJ6brzyXiDfHT7T0Nzuqn8b2rRZy3aa3l+d68y8Sh8jSJd2yTh47qx2bGOW5rmsJo8DpmuBggV8FzRhSqfizlsMJiGYmY7Zo/d9RdPBPTwBmvmR9hUa6RSM6uNeRvQiDfz/WncXjgrQkiOF3xt0CHHg8WRlg077OYAbrXAffdSI6pfr4mzKcNRQFrXgy8637g4o8Do08Dv/kAsP9u//dp52/YcCzXir6rtc3Amd7LGJ7EkTbLadeS//MJp4BYLbg/78WizcDcERILC5Ao1EQLwmIiEhYjIo4V07rrO4xjJ4gUl6r3XQOAfTP7HOvkhFzduVeZI+MEP/GoNEW25+UuE+MinrjPO9KzPEOuk9XhKpZ+YilyZ9kmp+iX9qmxRl2EoihkQiYoAMAZ51sneaRzTmHRLy6UYRlUlWpTjsU0n8ZkZdLy3Pn952MS5DmmymCsNOb20jqyKuOp8adCvydAhEXDsSjLMvJivh4zGUS5WIYYEyGZxmQVueLau66mknFqkLBmCEUJtjlhMUxPPT9CORZ5GrWRGqhC6/fRC1FYNPomFqUi7jp0F/oT/bhw4ELXdZuJLQ1LT6y5yVhZIesQFh2OxRDCYl5o/96OoihsfcNWvGzFy9reVkRERIRBJCweB777j1/E5evnqVdMixiz5QvTZGaZ0cy8WnYWHezComqLGlu8bCWefNgpLFIKmQ61+9G7AAAXXPZi133hBDJoNfdZ5HgeiVRjEKxqwGy5Meizi1R2oSFtcywKtIqSpEA1KYtxu7Aoq4j5CGRxnrEIcl0pAdOlxj69aF0HClUZeyny3VZVf7GOyS9CJsaiO9WcoMY3MWORscVFkijUOGrz7FiMeUSpNJYzrtGVTIoM7rYsySEXn99oDeJYjFxtxwKRY6Jo2IiIk4mYqRCu93bbs3cPAKBSbUHkGnkKSAbcSLsIixxFxhrEsSjUhRtDWFQob4FgcsYWhWqbSX/W6gHc+aB3QeoXj5Pi1r+/dik29TqvDbS+L0afRWO00GWe6c+5X69//eoE3nIGD84W89Xn5lgsTwFqC9PFn74JmDlY37MnxvSxyuTe4N55QRRGiQsxLJwIaApiHDlmGiMCFNOEY7GMZMJ2LGePAIn5n0luYXIXoMrA0PlEjNKFxVeuY3G0oAGv+Hdgy5vJZwkDRVtjYsUs8KbfAZd9gRyjJPk8cbchEicCl34KeOd9wIrLgDFvhwuA9o6NEf0lhYuqbZne072XZQZbE4f7NgHLLiUxrfbxuVQE+FS4KFQAGDyXiImFUeKgLE2Q37EmXDkAgGPgeIiIeK5yZP8RAMDMFBG6pqvTAJz39kzY32UTKT5l6Yfo1uPPLMhUikRY9BPUiuOkVuIlLG44awOeeMBbWBx5hCQErPzUSsRXxCElbWMwQ1hsss8iAFB6fcTuwkvlnJOc/Fx9hrDYjNjVFe/CVMW6z1cuubL+b77IY6IyUa85uZERMnh6PGREuI7ACIB+akiShHwsj5Ic7lpXLhLHotnVKqmSq7BY1idOBR2Teo9Fl96dBm59HJuNnbVjiGtu1B2LXPsTcxeisGh8X0eLR7FreheuWXmNZz2vMzb/wmJvorm6blbI1s8nWZVBgXI4Fv16dBrkY/M8afQUYnFqMQBgdX71Cd6TiIjnJlGl+Djw8D13nOhdqFOYmQxcJ6jH4ulnnYcnbX0WVVWFNE0Gzudc9y79OfeBJMeTgdT0BBE56Rgp4mXz1gv/RDF8NIa9xyJPa1BUDRWT2zJuilJkOB6SoiHm49yL86ylx2J3SsBUqbFPF67owO8/dDHWcaRvU1nz/3OiKBo9aRFJsTlRrz3HYhFCPGERFimQHojt4HfcACIsujkWjV6fz1/T5YiebReemZ8o1AgncSE6rhERJxXmgv4cKeKNjZFr1VyxBbFhbEdwHKCL+2yJSApZlFSyxJoWKx5RqCZIFKq38HjxxiW44yGrY1HTNOyfIrOBv/QScuOfEdyvd8Y1aHTCOou/O0Rvo7qDu2rt69PrUsxDeQKQmxBzjeNkxFjqs5vrWuL4DqBaAM+RYxMTQrq3zBRGwjniuvQbdF2ISepvpagqEemaikK191gcDXbBAkB2kPxfaC5GHgCJ8GVFYFCPiePiAMUgI1Ao1DSgcyXANjHJiRUB1na8GQa44APAB54Cnv9ZgGIQ9yvm5YZINOpr/hc4/33e7rl2hEXDsXishcVUD/ldcBMAOpa3FudKUcBrfg6c/TbnsloREFPhHYsDm8n/x3eSeFZVJudTsykIyfmJ7o+IiADGh8lYZGSE1A2MKFQ7HbHmncL2XnluPf7Mgky5QK5hfuJJYZyMYxjR/d534zkb8eSDTzp6PlfGyTV8ybVLAAB83uNaYwiL480Li/BIRk93OB2Lfn0IDWExjGvKoDvejdnqbH3yuiAI2Nyzub5cKAhQNAVHikc8t7GlZwt2Tu8MfK/z+s8DQCaE8QxvERY7xI66GyyIcokIi7NVayysm/uvKpMJYWF7LDYrLLbrWMwJ3u0H6ufzPMzhXojCosAK4GgODww/AJZmcf3q613XYyjGVTRul/5kf1PrZ8VsXfyWVRkM5TQ2hDkf/MTk5zprO9bizuvvxHWrrjvRuxIR8ZwkEhafYxSnwwiL/r1fNp51Pg7u3YWJMXJDUK2U8XcffQcO/ulHUKtF8KksAKBcdJ8ZxwlkgGI4FmmeXEgzOesNxEQhvLBoj0LlKTLSnqmSQT6jVCxCFsOTQWLCRzBJidYei90pEXOVRnN2UYxB5Bh0iuGdA/2ZmCPWNYh2hMVKuQQxkYZ5DzmGBku396cfFKUa4/2jM3sz7cfd2BFYJlyMWUTTNHvORkREnGDMotHErva3J5eDi+sujkXjvpnWJCLg6E8UdMeiSrtXPTRNs/RY7E06ryeXnLESw2NTUHVHZk2S8dZP/xOu/a9xjBRUZPVaiCTLjtca+8YwdN2xaNBsn0UzfR0u4letCKriHUEGoO4qBeCcIGOfpFWZBka2YstpKwEAi7qcBcRACiPhXFg3/AT4i/8iUaIAkvrXVZMk8n2H6eEHoGj0WJRM65cniastiHPfRXouGuJgM4w+A+SWNkQ6igL4BAS2xYlNXMzZ988g0UmESi6GGBswLqQoYOXlwOVfANIeBaogh7AfRh9IKdz30xZ9m9zF0d7TSZ/EVmBY5++JqpLzrRmxMr+MCNIzh4hzEQByy5rfn0hYjIgIzd7pvXjg6AOh1w8rCoXBLixOVabqTiGDvJiv9zXU9GQjeyyhmdnRhgjl1mdx03mbUC6WIelpEIqi4MbP34inv/40amM1UKL+Xi6tZQxSmRSmx6ctz4URFtVpd2XRiEKNU43f4JLPRBOGZSApUlNiV2+8F7O1WWR7yH4ODA2Aoigs48lvLF8kA4aDs07XqMGFAxdiqjoFvtNfAfvwlg9j6xu2gqEZi7BYq9XQFe+yuFT9qBQriMVjjn6TbiKdcd4ERfQaDjQ/B2JFrjjOzWZEXDdYn/YvRhQq1epYx8RCFBYBQGRFFKUiLlp0kavgdkb3Gbh08NJ5b6ciMALSQnPj7ryYR1lqOBZZl4nwbn0+3bYT4U10fCIiThxRFX6BwnUuPiaxjoWZicB1ZoMci1vOBwBsfeR+KIqMj7zxWtx/x+/Rc/rFoIUEaD06rFxyH8AyLAdBjGF6crz+nKZpyOZtwmLRGR2W3HgV+t74z45ZgdlOaySBQJPlZVlfzzbeNMRMs4vRTndKsDgWu1KtD6wYkcxiW9IZh+jznm7wTGNApGoeUxM9qJSK4OPWwQ/HUJ59JcOSCBAW4zzrO5A7Fu36eJaC1kJsTkQwCSE6rhERJxUxm7DYbnQmACQDon/EgBttU/ygUcxT9SLWH/fIdYHQYHq2CFW/+b5yBQeoVtff887aBIahIcsKJssarvz4f+JHv/oTPvOCNHqSNASaXL8l2T09gQIREe2OxS5zX6MmCyr2KNRpjfTUoUu2nob6Zy3KFBmf+PQ+MrsiizWNRHEeeQyMeYKQqmBN+SGyjhYiXqswGk4sYVhg3UuBDOkRbfQOrFZ1YTGkcFV3LJZNk9s0lQhxQVAUsOVNQPfa4HXNqDI597vXNoQ2oDXnowEXC3bLcTGIzHH4e/PDEOVCOkrb4mU3Apd83BoRCwBL3PsdtYxRFA9yTpuhaaB3AzB7GJg9Sp7rWN78e8fnP0otIuJU5Ttbv4PP3POZE/Le9oK/Bg07p6yOOMPtVF9H0yyiULVirT8oFaUuRCbXOl1pq09fDTEmolauQSkr+Ku3/BVu+uFNGHzJIPiuhgimqR7XBQrIdmYxOW6d/J0JM8nJY5NpPdJdoBtjGL+4UIZlUFNrTfW57Ev2Ya425xD11ifWAwAUTkGSS+Jw0ekaNXjB4heApmjEloYXNHmGh6bXeWq1Grrj4Sd+lEtliAnR4d7MiU5hsaKQ8U3QMZEUCQIj+NY9KopTWBSbjeT2oCSXoGjWcS5Hc6ApGhrX/ljET3Q/kRjfy2vWvsZ1+QuGXoCvX/r1eX/fDN/85MMOsQOyJqMslyFr7sJiGKFZZEVHhGpERETEQiASFhco/W/5V6jnvmnet6sqikOUKxasg6tSYQ6y5B3ble/qxuDSFRg+dADjI0cxOnwEX/vP/0Oqd4iswJEBSMnDsQgA2XyHpceirGpOx6JLFGrHVe8B37MMh6b16BJRj+eyvZanSdGu6hHrT+lxrH6CSVrkULZFobaMPthc19/8YMTsWPT7Xtwol4rg4tYiGsfSbceQJgJ6NKZE/8Kb4nVz1QY8y0CLHIvHBD9nb0RExALE7Fic3EsiBNuBT9T7x7kvTwZHUduKKNVa43o2U9VweMQ68UnTNCKk1V9gHaukEiI2r1+BnRMKzv1eEVv3juCPP/g7XLOO3JxzIE5Fh2NRd1cVtRh6OnL+jkXV3e1oJ6X3N1rUZb3Gz2ikCEmXxq0vKJPPOlrVxxXlae+NmyK7ZBUk3nFse2PfNBW475tgQMYrhpjpS2UGyAwEr2fAk20m9K9YkmXiHAvpWCyUyrqwaEvE6F4Xfh+aZfYwEaMXn2uNO/WJKwuEi3s7Fg1YEU0m3ruTasMlRzPkc4b8ftoi3Q+svKIhuGaHyPeaWzy/72MIi832bRzYAsweIucDF2+t72OY2OCIiAgAxJEzUZ6o1xsMQWW4OOxY116TaJckl6yLgAZ2YdHO7PSsxZV1eJ9TCON8+kGzHIvTtpyGylgFe/52D5566Cl86T++hO7zyG+4SqugGRqaPtnZvn8AkOvMtRaFaiOeIuOfzn7n71xRKnoeb5qlIakS4lwcW9+wFVvfsDXwvQaSA1ChOgTLoRipB8mijMHUoOv3bpAVs1iVXRX4XmYEWqgLi7IkNy0sxuIxFGrWGpWbsGhEoSY4/zGVpEp1h6AXFbniEL39BMtm+4s+MvIIfrPnN6iYrvk83RC126HdXpDHihSfwpL0EpzVe9ZxfV+3cyUII9Z5pjpTj0K1k+bCuSCDzseIiIiIE0FUhT8G7Hp2K3530088l1fKJXzm3a8PHExTyeZ7C4TBHnV6eP8exzqFucbseUXTHCLh6WcR1yLDsrjxJ7dg1fqN9VlzlF5cqJS8C5m5ji6LY1FRNWRsjsXxOadj0cDoGRhPEtGM1t2dxhHlKfKvqkfsCKWLn0FRqGZhMSWyiDXpNrSzprf5mfI803jPZm/AyqUiWNE6cOUYGkybsRCJgKpZKsDhdiyERYGlI2HxGJGOhMWIiJMLc0+RmUMkPtOGql9PQl1Xkr2kKO/5fiHEGs5anDg8Mk5EMQD5GIWd+53FvNmKdXaQbHMfXnL26aAooCdJ4YFv/iUu3HJafRkDCRRFOYVF/TpRAY9uN8eiWVjUPGYn2cilyecXbZNuqhoP8EnQ9h5Sc6TQNinrs/TLVqeCdSO2sdSis4DiKPleAWD7zcDB+3GQbSbiUSMRoWHRxTiRId+Xpmmkj58czhFXKFWQiAlWYZHhgdyS8PvQLDOHiON08bnW590ci2foM96DkkK4OHFxBqwjzIdjsZ0ei4DuWpz/sVYgZ72Z9EgME3PbDHXHYpPC4OJzyaSE8e3EudqKS6QVMTIi4jlMTa3Veyf2MCTW+f6j9zvWGys1JhmrSnOpPG4wNGNxggmMgD0zjToHC/L7bS7sjx4etUSAHtp7yLldm0JjHzdtPG8jKIoCE2dw40034uyLzwY33RAj44k49Lk/7sJiR84ZhRqi37OdWIp8DjHu/J1TNMUzdpZhGdSUWlNRqENpIiDaRTrz51uaWYqx8hj8OL+f1JRoLtw9PM/w9b6UKlT0J8L3uysXdWFRsu5zXnBOHjGcmEFCjqzKvnGhkipB1mRHH0c3YdFwsrUS3/n7fb/H5+79HKYq5O+OozloQbHsIViojsVPnP0JfPnCLx/X9xRYAT2J5mPqO8SGsKioisUxbRA2GjfJtTE5LiIiIuIYEVXhjwHvvO5yfPXTH/Bc/rPvfxP333Ebnn70weO3UyZGj1qLd4f2OYXFOVMcqqxo2Lvj2frjP/7mF1i3aQtAM2CEBLp6rQM6I7qsVPJxLHZ0YXrc5FhUNGRtrsNJF8diELJ+w5BkyOi95uVY1AdJKcF7BmJS5CzpcRRFYVGuzUbb8ebjCzimNRFQVVVUyiUwgnVAzDP0PEShBgiLsYAZ/ccAjqGhRj9px4R0LIrdiIg4qTDHZCpVYORpxyo7d5JZ/NsPjjuWOUj2uPdRawbG+voDR8bAyKTItTJPY4eLS2CmZHXpbzcV/H72h4dx9oaVWJaj8ec3xrG831oYopUqknEBNcnbddjTma07FmmKAjTNKizKzY9DzGgAkF0M2i7szpFYxiL0QoLdyWfGVrRD7+lEHJnaSx4Xx4Etb8Hhroua27nOJlwCurAo0KbCbywbOmrT1bGY6CKC9Nlvb13w8UNTgfwSIGFzM7j1xnne+4EPPAUMnutcZoaLBztz+Xg9jr8t7PvdLC49T48bmYHgyNhmqbXqWNxM/j++k8SotvI7Vhczj0GOf0TEKcrhOXJNv/NndwIAHht5zLJcURUcmDtQf7z3yb3z8r5mwSYv5rF/dn/9sQBy/2/uTzdyZMQinhza4yIsKlZhcXy4MW66+3d3Y8W6FWAzLJZ+cimWrFpC3qtCtilDRiwRg6J4T1TKdTkdi5mO4N/wsL0FDQzRyQxFUWA5FjW11pRosThFXOn2GE4zq3KrMF2ZBsV5/3a+YOgFAIDEmnBOLLOIV6wV0ZsIHxteKVUQS1iFRZZikeCd7/3F530RbzntLch69PVlKXIOyZq/sGj0aswI1u/T7T1bJc7G8Yurf4Hz+s+DpEpIcklLL8p2aEZsPp6c03cO1neuP67v+eULv4zPnfu5pl9nuGrnanOuPRYpUKGdiGF6MUZEREQcb6Iq/AlA0uMsjf+PjxzF5et7cfcfbj4u7z969Ijl8eH9ux3rzNn6LO7e9lT931/++LtRKZeQ3vIyZF/xhbp70EBWATEWh5QdwtDHf4PDBeegN9vRaXEsyqrqcCxOlpov6FUo3YnIKBBZGlWXyY9iLIZ0FxFD/aJQUy6uvMX59hptJ1twfpmjUJuhWiYDWVqw7jPPti8sxgMcidkTICzyhmNxnpt0RwBJMeqxGBFxUnPoEcdTRk9DVXeQF0skQmnXYZdezPEOoN1Zy7bXHxy2zmLfsdcpLE7bxgGPb9sDRdXwkdsquP6vvoMDR8k4gqIohzBFK1Wk4jFIknfRqzuftToWVcXaY3E+oiRzQ6DtPRR1x+KZa/S4SD9hsToLqDJWLtEncbE8sPTixvKVVwIXfaQeVxoKmgWyTURV6tsWGNOxjOUBJXicpmka6bGYEIGS6dxK9QJ8HHjRPwDvebg5oTMsnWudMZaiR1EmO0j2xw8+ESIKNQaead95Q6JqKX+nsB+x5uO6FjSt9FgEyHmW6CZCc7yzteNpiJnR+DIiIjSHC+SaLtfI5J4nx5+0LJdUCYcKDRHP7licGva5LvpgFkLyYh6H5hrvYQiLZsaOjFkdi/ucwiKlWP/2dz29C5qmYfT/RvGZt30Gu57eRdZz+Y2QISOeiEOTvEXAbEcWU7ZY9laiUD3R33q6Nu1Y1NnbiUVrFkFSpNCuKYDEmAaJTmvya6BBA+VTd9jQuSH0ewJwiHgiK4YWvwzHotm56fWZF6UW4QObP+C5LcN1JimSb79EI540J1ivye0Idm6vXZFbgW9c+g38/rrf4xNnfwI8w0Odh7GIEWUc5Dx9LjCYGkR3C5O+DGFxtjYLWZMdjkWe4UO7VCNhMSIiYiESCYsLgOFDZLbe048FOxh3PvNk4DpBjB61DpgP73fOELTHpW7f2phl+OEvfg1Xv+qNoMUUuK4hjBeskaWSrCKWSELNkhikw0XnoCbX0eXbY7EiKahIjdfNlMP1FqyAOKsokD5/bo5FhmGh6hEoMR/nXcpFBFza2frsMoGlkWyh8U6rwmKlTIowNG8dfPIM1XYUapz3F5rSJ8ixCABUkJsgomlaEcQjIiIWCEIaGH4icLXpOTKDe2zGJSor2V2PEAWAu7fud64ThE34OnDUWqTYud866QkAJgtW4eqhrTtw7c/K+Pr9Nfzzh1+FD7zhGs+3o6AhFeedUagmiGNxuvGEWrM6FueD/HJQduFwlnzWZEwvkJV8CqiVGUCp4dUvvgSZhF68Wv/yxvJFZxHxpBli2eaESFYAKAai2bEYsu9ctSZBVVXiWCyZIl9T/Y1+h4nOYyPaLD7bKYgLbXy/fCLYiccnwFPzICym+4HX/wpYcVlrr49l29+HhYQqk++yFcdh/yby/2RPaxMkWAHgEogcixER4TlSsF7T983ss/SAk1UZR4tHPV9fKQRP7Hnozw85njMLRV3xLst7uAmLI4dHSD86HbtjkWZowFaG2L51Ow792yGM/t8o3vKxt+A173mN5z7KkBFLxqBK3teFXGcOM7ZY9laiUL1ga+Q+bsY+yQkAL/JgRAYatKb7t+VF/3HA+o5gR1mzsZ9u/QztMaNelEtliAmx7iIE2u9ZJ6uyr0hYUXRh0dabL8Hq79tCmcdvn7viXUjyxLGozUN6QoYnY6bJyiRKRnJARFOIrAiBETwdi0E9Os0MJAcc/TojIiIiTjSRsHiS8ZE3XosnHrq3rW2MOaJQnY7FWZNjsVIq4o5bf1l/fNW1r67/m6JoHJ62RmFJqgYxHocie4uB2XwnpicbM9dLNQVZk2NxuhROSHRgGpymYyxqHmN4w2Xp5ko0cFu2tKv1wSfP0nXxq6nXmV4Ti4V//7Le49LoJ2neD7rNv/wgocnvuB4r6gJsUP+jiKZxE9kjIiJOElI9wMRuWPqtaRqWVJ8BAMhhhoIpa+T5FR//IW5xKej5YhcWj9gci7YoVJ5jMWHqtVytyfj+L27D7Xtl/PqGGN77F88PLEh1pQR/YbEjh+lZU9SoIs+/sNi5ErRsK8bojsU6ZReXqEFl2hnJuvqF7e1TvLM5YZGiAC6Gviwpni3q6wY84sHsFEpkjJiMi9ZektlF8x+XaYbhgcXPcz7fTkSokAoWQPk4uPkQFgFg2UVARzO9M03Ewgm/JxVcvLVzZtHZ5P/ZwdYF7HgucixGRDTBSGnE8ljWZDwy0khPkFQJw4Vh+8ua4lNv+hTu/O2dlufMoktvvBcluYRajFxDHcIiBYweGQWj99dVa6rDsZjOpqFVG+MnRVFw03/chNlHZjH47kG89j2vBUVRoL0mAlOAmBGhyt7XhUxnpp4iARCn/3w6FmmFBkuxrsIiQL4LAEjyzfVv64n795vLilmHU69dzO7A5SuXA3C6Ad2QJRlSTUIsHkPJNCZrt2edChUiE+xYtIuwxrGmheaLMmHEUIERoNLtj0Vipsk8vz/w+7a391wlxaVQlIpQNAWcbRzjd/7Y+eQ5n8R3LvvOfO9eRERERFtEwuICRlOdg4HVG87Ap/7y1S5rhyOZ7cDosLV4d/jAXksTcjEWw9x0Y/Y8L4hQfBqqD89aZxTWZAWxuP8gLdfRhWqlIUjOlmsWx+J0ub2+RgCQ9nAsAoCkqKBAXIReuIlnSzvmLw8/LGbHIseHn9FkCItgBUsthGeYtqJQGZoKFEgzJ6AnnyHAUseyUPkchKUpCFwUhRoRcbKh6BGnSPYAMwdBaeQ6TkEDbvkYYiq5RsyqIaKvEtaCyOWbl+Pqd/21YzVJ8ZkdbXLPJ2I8DhwdtSzec2gYsty4aHdk0xibaRR/eI6Bpmm4580JvGhl43fe72rWm+Yg+xTzuu09jFRp/oXF3BLbe6hAyRYp5ReFWp5yRrK260ZLdDfv/OLj6EyS457NpEPvQ6FI9j0RE62fMzPU3Ps3S8cKIOUSWdWWsBhiljifAEd5x+8eN05JYTFBBONmWXIB+X/XmtbfO96ByLEYEREes7CoyipYisXDIw97rtMKF7/4Yvz1u61jEbPo0pfoAwCUMmQsYQiLo1Uy/kivS2P0iGksogFTY1MozjWSG9K5NNRKYxzBMAxomsbSTy5F5qzG9YT2mbUr5ARfx6KYswoLJamEVHYeIw81EqE4V5tzXWwIi3UXnYlHRx/FTG0GP9v+M+yetk5GNyIe/RhKz++13uwu7esn36/dDehGRY/7j8VjFsfifERL+jkWqwqZIGcXFo3zlBbDl2ONel0YMVRgBKjzMMnJ+GwiI+LeI/eiKlcDXhHhRlpIoyAVIKvOKFS/Hp12RFZEUmhPDI+IiIiYbyJhcQFSnJsFACiKc5b933zrv3D2hS9oeptGw/BEJodRm2OxMDuDmanGbPlUJofZmSkUtv4Bc4/fiqMH9/q6DyfsUaiKBjHAWZfNd1oez1Zki2NxpiShzTaAyMT8hUUuwEHoFlu6uKO9Hout0GoUal1YZHiL65FnKdBtzLrmGMpXmGQoCiJ3/H9aeJbsExU5FucVgaXBtmtxjYiIOO7UJb5kLyBX0CuQokr6ye8BD30P46q/SFKrma77tqLJLz7/Krz6xZfUH6suE6Gs+0IBNAdjDlNc4BxRqLKsYN/hRpExn01hdKaMnz8j4ev3VTE8WUChVMGGnvATHbqTDCRdYFVdNM+eDlsxSqoglTB91vkooOSWWh+XxgHVNjgpT3u/XlOBok9vG7qFiR/JHsd3GgiXsPZU9HMsmmJz647FmEjclwaZfhwzll9KIkTdxLV2hMUwYiqXAIsFICw224vwZICPB/e4dGPoPOCNvyX/b5VYR+RYjIhogjHzBBoF6E304smxRksXWZUxXh4Ho/lfw/zGF5/6xqdw9euurj+uVWoW0aU/Sa4zGkMGALRe+pL1GgsrsBg57BQ3D+1tuBZTmRSUsoK5J+Yw+qtRlAolzEzOIL4sfE2AT/FQvIoSALis9XdttjbrK1S2QkbIBAqLbo7FyQpJGnho+CF849FvWJb1J4Kv48syLbruPRBc4qw7Y50ua1op62ORWCKGsjS/wqJfj0VFU8DRnGOdFEfe16//pB0jVjVM9Ou8ORb1seJfrP4LlOUybj94e9vbfC6SETJ1x6I9CtXv/ImIiIg4GYiqxQuQpx/3jhfjeQGf/sd/Q9c1n0LXdZ/D1Hi4RsqH9u8h/9A0h7AIWPssJlMZPHDnHzBx8zdQG92D/TtJXNrQx3+DoY//Bqpmrc5NFmuQTI7GmqxCjPsLi7lO6wCwWFXAC42L6nRJarpPn32/MnEOsod5QlI08AztL5DRtKOXYF+m9UbbrdJKfCrQEBZVmrWIkwLLgG1DteUCjpvAtRb52i48Q76ryLE4vwgcA4aJimkRESctSTKjfHGcFCT4qZ3AxhvwjLbc92UPP7Wz8cDmbmMZBj/40gfrj3cdtLoP7WiMANAMhsdIgaomKzhwZAy2yzZ27m+MT3LpBP7w4LN45f+W8chRFY/tdPZgBIBf79I34lL0706yeOgwGZ+MKE4htdseNVaZssWrttafRtDIsa6BAzKLrAvnbD2lVAWouhf76hRcju9GPb2iyegyACQSstmiJW8TFsM6FnWXQEZQrYJqs8JmM7z468BFHwE4l2KNQIp5QjN6bKoPWHE50LcxeF0+CQbe8bvHjVOtxyJAzvVWx3hLLiB9K1tl46vINqI+3hERoZioWCO+F6cWY9vktvpjRVMwXh6HoPq7dfbv9O7pTNM03vfX76s/3r1tt0UoElnR8rgGcg2bHSOTuGVJxsTIBGTJ+pttFxaP/vko9n9jP8p7y9j19C5L0lN9X1Le11Q2zUL1SX9iEtYL0mxt1nPdZqBNpb68mEdBKriuJylEWEzz3hPO7n7V3fjqxV+1PDeQGgjch5W5lQAASpife0k3d2AoYbFIxEQmxkDWGt+332duZ5/MxFmnCG3uBRqWRclFeN261+GLz/ti4Lrz5Vg09n1JegnO6z8Pdx2+C6o2T3HvzyGyQhZluQxFVSyuWyD4/ImIiIhY6ETC4gJk6yMP+C5nWBbx1ecjvvwsPP7Yo6G2OTVOilLxdA4To8NQ9Zl6gu4sNPosqlIVk2Mj2PXsVuQufQvyl78T+3c8g67exsBxsmiNKZ0o1lCVrMKiEDMNllwG33bHYqlmHdBPlWrINikszlWs28jGG68XY9YLdk1RA513gLNXYDsRoq3ChxDpGF1Uk2qNuLRKmcS+KDRrcyz6C4Nh9sfv9SLHgD0BwiLHGI7FSFicT4hjMRIWIyJOWviExV02s/QlwNKLAyMF73rk6cYDl3XNs+kf2UYKf/U5LE/8xNIXUGVEgGIwOUMEtITIoVAqY7bYiDoVeK7eZ7FY07Dv8Cge27YXX7hEwI9eLuKJPcNIJ52FmPfcpoH6wiyQd86Kz8foujSoaS7Coz32tDTtWKcVMioRUKe1FHEU6s651Ys6gcIIcfTFdLdkdRaBAqa5N6FBK05Fg46Vzb+GT1gdnD6OxappTFcs605Z1hZx30yPx2ahaW9noi4spv2KnJvfSP6f088pVgBu+B9g2SXB780nwGgLQVic375WCwIh2VoU6nyw8Xrgsi8AYvtF6IiI5wKG081geW45ZmuzkEQ9DUEDpqvTgcLi1ge3+i43TwbasXWHw4Fmj6AEgOmxaQAAy7PQNA3jw+P1ZdmObF1Y1GQNh/YdwpE7jqDzyk4sfu9i7Nm+ByznnGBAcT6TleMMND0qXnO53susDEEUoJTI5BsvZ6HBbftv811uYDijKIpCTsyhKBVd1wvTY1FgBVy55EosSS+pPzeQDBYW13WsAwDQ3fNTG3CLjXQVFilYBGNDWFQEq3P0eAiLbj0RW+ntSFEUPnbWx9AV7wpcV2RFqJg/xyIAvHPjOzFbm63Hu0aEJyfkUJJKrj0WI2ExIiLiZCcSFhcgWx++P/S6O595wvV5eXAzhj7+G9T03kKGsJjM5qFpGqYnySxCmmHQ1duPwweIY3H2gZ9jbm4GK9ZuQPrsl4OiKBzY+QyWr1lf37ZdJxwv1CzCYFVRIZp6LO59+jHH/qWzeUtRsmSLB5kqScjFmyse2AXPnKnPH2UrwGlaOIEtLZ54kcqvD6RBMkmO90HdXQoAFd2xKIO2OBZFlrY5MpqDZ2kwPq8XuRMjRNU/YxSFOq+IHN1WdG5ERMQCINvocSPxmVDF8T8//BQAvadLwG/AI9sOWJ949lfAt5+HGE3GBirNAzSDiWldWBTI9dlwMALAiqF+7NxHXImfv7OGo6OTWLG4H5+9WABFUXhi9zA2rfGJ1NKjhEpK43qfTzSufY/ucjoeeZ5DNm0q7lRmfD9nWNIK6SWoGsPsHDn+yRgPzB4lQqMRF+rXXxEgQpg5QnQ+6GghmoxP2qJQncKdMbbYuqfhyqxHoaJsXdnNTXg80M99X2GxcyXwqaPA6qsazzEcERiD4OOgNe/2AceNU9KxmGrdsTgv73/82yFERJyslOUyCtWGQ25VdhUAoJIhk01KGimy85r//f4TD7rXOtzYsXWHQyjqFJ2iU11Y1AXCkSONONSBJQN1YXH81nEc3nsYnVs60fuqXlA0hd3P7MbQyub6BjIJBoaRfWrYec0vykVkO7NQCuGExZv33IxnJ55tah86xA6U5JLrMkNYNOI5w2IWGb2oC4td81N2FBnn2KE30et4jqZpjOxtfK/lMhmDyLx14k86TO/kANwciWbc4lbn4339EBgByjzEsps/26buTTiz+0wAgGKP9I/wJSfmiGNRj8Y143ZOR0RERJxMRMLiAqNaKWPHU4+HXn/vtqdcn1cWnwUA2DFCBqaSpM9Ey5JZe+YI1YGhZTi4h0SepTZfjfMuubLugAOA/TufwfLVDWHR8V6qhuHZhlPO7ljc/cT9OHrQGmNC0zQyuUb/l1JNtsSKzJQl5JPtCYtmx6IbQc47wOlYPBE0Eyu6f/tTqFXJd1EuFcGypM+kJQqVa8PlgOAo1BgXPmp1PgVI4zhFjsX5RWwzOjciImIB0OEfe2pHURTc8+gzPmtYfxMMx2KdTa8GShOIM6TwoLFEWJyeIxNeEvqknaNjjQLbqiUD2KYX8z56Po9Xvegi0Kbfnsd3D2Ojn7Coc9dEw52QNYlHOw9N4Kkd+xzr93RkMVrUZ3UHFPPCIsA2m9vcZ3HuCJAwFToNYXH1C4Gz3kpcWWYS3UB5hvRanC9a6b/HJ6z7IKRhPw8Mntk3jBn9uzaiUOOau1PiuKM7FmM+7hIAREQKIyTa4eKgVdnjyBxHTkXHophpz6kbERFxXDlUaESKZsUscmIOKkeuI0WVXBP8HIuapuHJB570XG5nx9YdyPDWSS9u7q6pUXLdZXlynz96uBE3PrhsEAf3HAQAdFzegRde/0LwHY2axK5ndmH52ubGVFSMqjsWq6UqnrGNr0pSCbnOHFQ9AcorstRgaWYpfvjMD0EnwtcIOmIdKEn+wmKzLjo3Qc+O0T/Oz9HZDG49FnviPY7nGJbB5JFJTIyQyfSGY1FirRN/wvQrDCLG+TvO3ITFVhyLzSAy4rwIi3a35Ts3vRMAcO+Re9ve9nOJvJhHTa2hptQcwmLQ+RMRERGx0ImExQXGtq2PQZJqwSvq7NnmHw+iaBpmpxuOgERaFxYnGsIiw7J44M4/QJ6bABNLYWBoKeZmpuvLpyfGLI5FM6oevXl0pjETvSqr4GPWQciNf/cpRz+CXEdjoF+WFCim5YWqjJ6U9+wde+wpQOJTzWSChMUA5x0AZGInKHLJBB/CsWgg16p47P67ABBhUYzHUZVVi+uxme157U9gFGrI3k0/ess5eP6abnQ0KSK7YXxGKnIszisiH/VYjIg46WlSWNy6Y19dGArDo9sOQFVNolOqD7jqyzBS0lU2jkpNwcFZ8oTCJcFxLHaPkuLZ02MqWIbGnQ9uxZ4pFRmRwroVQ/XoVADYcWgCm9YGC4uqHnmqUSwytvrTO7/wTaiqdSzS3ZGBZNReav7FvFC4xL+jY0Xj33PDQNJUBCtPEffipZ8BXvyPzojQVA9xUmrzODu8lSKGXfCk6bpIZ0dRVPz2jgcBAIViGRRFgZPmjm38aViOsUsAfAIUtGDh8ljjE1V70nIqujAjIk5BjMK5WVgESI84gzmVXN/9HIvDB4ctMaVB7N2+F6JmrR/0Jfosj1VVrYtMNE0jnU1j9EhDWGQ4Bjue3IHK4QpogcaK9StQmmoIcnu37cWK9SvQDJTQEBYB4Guf+hoUuXFNL8kl5Doak0GChMUbn38jGIrx7etopzveDcVjHCGrMjiaA9vkPTTjMtHDEBLdls0HMcY5flmaWYrB1CCWZRpjRIZlQDEU7r7tbgANYbFG2yaiz4Ow2Ipj0S0edT4RWdHz+26GvJjHZYsvw5aeLQCAc/vOBQAcLh72e1mEjY4YmdA3V5uLolAjIiJOOSJhcYHx1CMPIJEKX/SYHD1qEQnd2L2tMSuOEwSkMjlMjY9C0zTM7XwQj9xzBxRFBi2SAU4qk7UIiwCwfM1prttWilMQORrjBesgjYs1ClBbLr8WD/75j3jyoXss62Q7TcJiTYWsWItxA9nmYgHsjsVMQI9GnqUtbgg33FyPa3rJ4DCseNYuzQiBmc5u3P2HmwEQYTEWT6AqKRZhUeTa228h4LjFuPBC1MbBLL7/xrOwqqe56BU3+EhYPCaITThQIyIiFigu/Qf9uOvhp8G79BCqY4sEnC2WsfvAUes6Qgp7i+RmWaUFPL3nMPZPk+t8ETEs6unE4REy8ennz0j4xW33QFYUdMYpiCyFfDaJyZlGcU3TNGsUakAMk8rGkOQb44prnrcWdz/yNH56y58t6/WYinmozrXvDHSLUzWOf60IFMeAtKkvUWWaxIx6xSymB8g68xk7xbUQ6WgujKn65C6PSN2l/Xn8v9+T2eyFUgXJuAiqPHnsRb0wHOt90I9twNy2Y4/hWDyVosxbcdpGREQcdww31tGidVywNNNw7xeUAhiKAad5/1g++WB4tyIAKLKCQ7usYmZ/st/y+KhtrNI90F0XFqfvm8atP7sVmqaBzZAxUDqbhlRouNyqlSpWrAsvLDJgoPEaNH1S06JVi7Dn2T246Yc31dcpySXkuhpjEa9eiAYDqQH8/UV/H3ofAKA71u27fL7jGKlj5Nt3cywm+SRuvvZmrO9sTISnKApdi7pw1y3GhGsiLFZQsTjGsiEn4fzFqr8AAFw+dLljWZBI6BYxe6yEVwOBESDPQ79nlmHx9Uu/jqXZpcErR3hi9AGtKBXwtHUyRZAwHREREbHQiYTFBcaTj9yP0848u6nX7HzGf9C92xaX2t03gInxEUzc8k+Ye+YuXHzV1VBVFbTe7yadyaEw1yiMifEEehctrj9WLLPxNQzm4pgo1izNyNlYYwC1eM3pOPfiy/E///oVAICkn3a5fCMKrFSTIdtcBEMdzc3kmmhSWAwT8egmLHalWojGCuDsJXlkYpxr7Gkzos7SdZtw759+B0WWUSmVIMYTqMgqBLYxeDX/uxV4xt/pGedPjBDVTGRsRHjEEL1IIyIiFjhNxiL++eGncPbpq71XoJzXkUee3uW5usbweHy7tQ/j4r4uHBwex/tvqeC7j0q49vLzATR63+XTKYsLkqFprFvRGIug5O9iUNkYklxjXLFqUSde89JL8bl/+S/Let0dpti0WglQ2uyPN3PQ+VxeL8iUxolwaRZ6S7rgxnoU9dIDxNXY7n6ZaUVYNLsTC7q7w6XPIgBsXjWIW+56GOVKFYVSGcl4DChNWF10cWffq+OCh8ty3tDdoIkT7VjkE6debGjCGWkYERGx8GBpFjEmhuHisOV5o88iABTUgquTy8yTDz6JZSEi0A1ohsaOrTssz3XFrL8bu2xjle7+bgwfHsbIL0Zw5D+O4NznE0cWmyTCYiqbglq2Tjhavi44BcKIoeTBk/hXXeNJZBK4+nVX4wf/+IP6umWpjGxHtv7YK7LUzAUDFwSuY6Y7HiAseo1BFhjNuLv6Vvbhsfsew+z0LMrFMsSYiKJctAiBeSHvswXTtpJ92PqGrcgIznFP0D4d636KboisOC/C4nxw9fKrT/QunHAMYRFA5FiMiIg45Ygq8QsIRVbwzGMP4bQzzwn9mkQqjZ1PBwiL253C4uzEKErb70H2zBfiDe/5WH0ZRTNIZbKW2NLFK9aCNrnzpmwC3lBH3OEWpMWGY5EChXd96m/qsamSRgod2Q6zsKhAVqyD9kX55i6yk4XmHYtBgknuOEWh/uwd5+Hm91+Iwbyz2Ec1Mdt82dpNmJ2exFOPPoBKuYRYLI6qpFpcj/PhWPTtsXiChMV2I14jnKzuSWFJZ+K4uXMjIiLa4MD9wOTutjejAbjrkadx4Wbv3sp2FvfmfYVFlebw+La91tf0d2HvkTH88Ika3nYmh3/59Dsty/Np6/Vw7VAnRMF5TaYA9Kcoh6NPZWOIM9YJS1/92FsgSdZCi8WxWCsAarvC4iHnc0lb/58uk2hbniQCnVc/v1QfcQhWptvbLzOt9CJ2E+Q8ZvqfuXoQpXIVt93zKIpl4lhEecoaZXmi+iG30jexGfS41wR/goVFigKEDLz6YJ6URMJiRMRJQ5JPYrQ0anluUaoRhVpQC65OLjNbH9yKDWdvCP2eS1YucQiLdmfYrmesY5WegR4c3X8Uk3+aRPe13fjUP33KsjydTUOtNGoU3f3dSGfDC0UCJUBl1bpjEQDe+tG3QhAb16KyXEauszEWKclWYfG+I/fhl7t+Gfo97zlyD27aeRO2SdvqzwX1Q2zVsXisnIleNLOf/cv7oaka7v39vaiUK4glYihKRYugnRfDCYt+BPVLdBMjjzUiQ6JQqQUwOfjz538eW9/g377pVKcn1rgPcDgWW5nsFxEREbGAiKrFJxhZkjCj90DctW0rKuUSTt9ynmO93td9DelzrnM8v2T1ab6ORU0Ddm97uv64ODWGzp4+0JyIgXd8H/HBdegdWFwXDtlsL1KZrGUbQyvX+n6G5V1JjM9VYTYcUrxVFOxbNIQrrnkVANJPUdM0ZE2OxWJNhmLaQJxnmu5vOFWqgTJFmKUDhMUggQwI7tMIACxDblgYpr2Z4QPZ9mcrdQ0sRldvP+7+w82NKFRZgWgS3eJ8e1GhPOd93FZ0JzGUj58Qh1vkWJx/vvv6LXjnJcsjx2JExMnArN7vpBY8092OLCuYmiXRW4VyDSPjU7joLPcIdDc2rxnCI0/v9Fyu0Rwe37an/nhktor+rjxmZwvY8/4UrlrBoqczR5xtOvmU9Zq4cZl7UeyNp1M4/KEU8LPXAb98Nz64ggiYKhODSFvFxt6uPD79jhsAALPFKgCbY7E6ByhtzvB2cyyaRTmKsToWDcHNLngZIkpa7w8V4NBkWTJeOWbxWm79ET163vV2pLF+5RD+3233kijUREz/nO0X8NpmPqNB3RweCyUKFWhE1br1/TwZiaJQIyJOGlJ8yiEsmq9PBbXgcHIpioLZ6Vnyb1nBwT0HcfrZp9eX/+nAn/DO31snIZlZtWGVQ1i0s+vpXfW6hzQjIdeZw+TYJFb+/Up0XtmJeCKOzt5GjSKVSUGpNMYSy9eG61ktpckkJY7ioDCKpcdiMpPEO02TqSpKxSIsluWyZVv/ve2/cdfhuwLf0xDM9s/ux/1H78c4yLiBr/HICBmwtHcNINZK72UAOdGaiMHqMfr0MZqU2oyzMpVOYd2Z63DXrXehXCwjFo+hJJcsfRXt+98KQcJQhj/+wqLhgqOFqD6yEEgKyXoEr/F/hmIQY2OW3rMRERERJyPRleYEQFPksH/sLdfhhZsG8fn3vQkAsPXh+yGIMaxcd7rjNUL/KuQueSNk1erqW7ZmA3b4OBblWg0H9uxELB5Hed/juP3bn8GRg/sAAIweV8rxPHoHGvFiqYx1gDW00t+1sKyLxG1qpsIZLTgHWBe/kMQg1DQGsqoh19GYeVyRVFSkxqA9E+MQ48IXxzQAsxUJgtZwLQZGoXL+kZ5UiG0AwLnnESF49WlnhNrXYwkFCs+77EW4+w83o1SYQyyeQE1WIZiOZbvCosh6H7cfv/VcvPWiZU25LOcLIXIszjssQ6M7dXJE40REROi49fgDMFHVf/v1GFPjd/p7tzwK7rSX4kVv/ywAYLpQAU3TOP+Mdd7vYesHuHlZHo8+4+2WVCgWT2zbg97OHO47KONtP3ymvn4+RtX3Z9WSRu/BfNIqtG1a0ee67YwAzFU14Mw3AANbGgsoQKCc7sMbXnIxAGCuTMYLhmNxuqIRYbEZx6JSdT43fQCq3wz+eN4qNJanSVStvVj20V3Am38HDF3QWM+HzZvPBACcf4b/ZLCW4V1m5Pv0Jrr28vPxq9sfwNRMAZmEQI7tQnOctSO4nfde4IIPOp/XC4wnPAoVIN8PRQFKLXDVBQ9F+55vERERC4s0n8Z42XtCjAIFGSEDWi9H7XxoJy5behledvrLAACyni5gFhbff/v78dTEU86N6azasAp7t+/1XA4Qx2K2K4vy/jK2fW0bHrv3MRTnivXoUwAYXDbY+Bw2x+KK9f79FZ+ZeAZfffirKCwlPaIlTYJMydBk6/XmspdfVv93Va76Cou3veI2PPSah3zfF2gIi/906T/hgdc8gPf0vAcAEC/HQVEU0ry307LVOMaeeI/l9cuXE+F14+aNLW0viGb2M8bGcNELL8JDf34Ik2OTEBMiSlLJchzssZStEORYnA/xslkMoZgRT7FI9JMY4zwxzjmO4fCH6/6AFy594YncrYiIiIi2iSrxJ4C1G0nx55rXvhUf+Ztv4LKrG07ENRvOAMd7O/VsuiKWrtmAseHDnuuPHNgFRZaB6cMY/d/PITewDJdc5cw5HxhqNGROpK2zqoZW+RQXASzReyGqicbsPpp3ihGGoKoyAmRFs0ShAsBsueESyMX5piI7SzUFqgbEqEbxJKiXoMAxoF2cWHu/9CL899vOwWA+HkpYNJyKJ0JMc+OCy16E8ZGjePrxhyHG46gpKuK8WVhsb4DpddwAEkd6ooSoheRYXNdPblj8hOuIiIiIeeWje4AX/oOneLOrQH6bNf13aaCbuH+et34xvv+3H8BH3/KK+rob1yxFOukzA9vmMti8cgAzc0XP1UdnqpgrljFc4XDpD0tYnBfx5uuucKy3ckl//d9527Vk03J3YREAKrJGRJ5X/xT3zJD1VCYGDk5BxRiLGBiOxeGCSoTC6pzn+4Ri5jBmqKz38kRnw/2nqSR+NdHl3g9v8blAooMIkeUp37c14siYYxVd7epY9HYgXnv5+ZieLeC2ex7FQJoDoAEp/yi2447ahjv1yr8BNt3gfF4X3RPHJ0nfH8NR2s7nXCjwCYBdCAc1IiIiDBkhg8nKpON5qty4N8oJOWS7sgCAniU9+Og/fBSf//bn68v7F/db3INvP/3t+Ovz/9rzPVdtWFUXJC3oc5dr5RrGh8ehzWjY+3d7wSZZvOLNr3CsPmCa5JRIJ6BVG6KgZ39FvUbzrSe+BUmRIJTI5Cie4iFDri83MOoGmqpZHItKRUFFrkAxxbv3Jfvmpc5gdurZaVVYXJYhCQxdcevY03AuzjfN7ucFV14AqSrh3tvuRSweQ1ku+x6HVki4jY9MZE/ApJi6Y5FfOPWR5zqGoM0zjbFMWkgvmBpiRERERKtEV5oTAC+SC/21r3sbrnz5q3DW855fX7Zhy7lNbWvZGv++A4d3kxjU4YduQXLjlTjvNR/G4NKVjvUGljQGyYlU1rJscNlq+NGfE8ExFLSkSSjk/MUlWVUtjkUAmKk0XAL5BAcxhGNxpkxeU6ySm4i4izvBCy+BjaIonL+8EwxNBcapLkROO/McZPMdmJuZghBPQlI0y2dtxgnqhhgg2LbDOy8h52FHqvniEUNTWCiJnTe/70L87gMXYVmX/wzGiIiIiHmDEwGGB5hwxRxGn4xx5Vkr8KZXXIHLz2+47i/aEj4GFQA2r+r3Xb79yDQA4Ad3H8ZfrOfwtetXY8PKJY71zI7FFN/YRwDYuDyEKEVR9ahLlY2BUYOdWoZj8eicXjgs+Qt4ANDhVdeqFQC5jFnGJ7Ix2VN3taFaABHcvEVTAEC6H5Caj7idV9wKZ3FvYXHjmmVYuqgXkzNzGMzo44bMoOf6J4RjIbjp3+2J6DXtIJYDQAFKm31DFwJ88sT15YyIiGianJBDQSoAtiEJpTV+G/OxfL2ovmTjErzo+hfh4hddXF9++jnWFKcNnRt8i/DL1y13jeBkyuQaVBgmLsJd/7cLydOSWPW+VVi1YZVjfbNjkaZppNKNlIEV69wdi7UdZLzxufM+h5uvvRnpaV1EoHjUtJolCtWCBlSVhmNRKSjQoJFjN8/kBG/nXILzF8cWCgLTSLMII8j0D/VjxfoVmJ2ePXbCYsCx8zvux4oYE0WhLjSMXpsCfYx7fUdEREQcZ6IrzQJjw+bmhMWeRUNIpLxjLY7s3o5EMoVll1yH/OXvBM0w6O4bcKy3aKjR74fhRXBcQ9jhRX+RkKVpLMrFgaRJKGT8hSFZtfZYBBriIAB0JIVQ0ZYjsySGrKC/NtGEsBgLMZMujGNxocEwDM679CoAgBAn50ZCaHzWWJuOxbhw7ITF0wYy2PbFq3DJqu6WXs8vINfi6t5U1JswIiLixBPQ+8WNCzf7R6Db6comMNjnHXP57OEZxEUBb3vBKvzwGhE8S7uubxYWqcoU8plGMa8r21zRS2VjoJVKYEu97o4sAGC4oBf9KtMBG1a8lxVJ7NsM7yOCpgcAo5eR4Y5MO8dlFjKL/ZcfD9yiUD16LAKk4Hft5ecDAPpS+peQXWB9ZI6FsBjgXDiuxPKnThQqnwy8t4iIiFg4GPGPbNr7frtD9O+buuFs/wnUdsSYiKGVQ9BUm4inuwVnhmfAsAxWXrkSg+8eBCMwyHfnQev3j8brFi21XqtS2cZYpG+xdSJQRa4AAOSDMlRZxXWrrrP0khQgoKb6CIsqERbjaTJWU+bIGGOuhfQEo3ebV0+/vOg9GahVx+LxhqXZekKDIdQEceFVFwIAhLiAslxGfp77PQcJi37H/VhhRKHSTSSARRxbDEF7PuJ3IyIiIhYS0ZVmgbF24+am1qcoCivXOgfdcmES5T2P4Ojebdj8vEswsOni+qyufFePY/0Bk7CoakAqk21qP5Z3JeoziXmGhsb4z8SpyaojCrVYaxR4upJ84Cy0cq1R3CtUZHAMBYG2FvxSovfNTJhI0HTs2MR4HGsuuPxFAAAuTm6EzH0VY21GYrTreAxC5BiwLQqErb4uIiIiIqLBhU06FgFgs0vfofGigl9tl/D4/glcsHk9Xnfxivq13S1qdeWQyflYtgqLzaKyMVCaioTH/TtNkSJfKkGKL8NFvfJYnfXf8M7feS8rjQM0hyLv00swv6zuqqy/V5Dgll0IwqJL4Swg3ssQFnvjGuntmXSOP08ox0JYZDj3WNsTwTnvAM58/cKLoG0FIXIsRkScTHTGyH0+lfa+nzfW8WLjOf59+jSXPrmrNqxyCItyUcbMQzOYGp7Cqg2rsO4V60Dpkz8ZhkGXPtGpNkYmYfgJi3ZH5E+2/8R3H3mKhwYNrOBRUzDmNKm6QFkg16WZmnu/bC+mK9N4apz0n1Q09wlQfoJanG1+Etqxwujb6AZFUWDp5uozdWExK0CDNq9CH0MxFhelGyfEsagLxRQfTXJeKBhCOB9NkoqIiDjFiKrwJ4BnHiPNtwuzzgFjLN78TOeV608HLSbBdpBB8LYnH8XRm76MqT99D4d3b8MKm/Bo9AQ0s2hJQ1hUNK1pYXFVT2PALXA01ICiymxZAs83BmECS1uEwp4Qffq2DTeKf3NVGWmRA2MbO6VF7yJEIoTzrhXHYlcXuTnp7AmINjuGbDrnAqSzeSTzZF+SppsZts3+Swl+4YqtfAiXa0REREQEcGhkAgAwOVd2LDNcfM2wef0KVEw6zdbte/GK/57Ce2+p4N5t4zjDpS9RZ96auLByyOTcK8+0LSwCQFfSes3S9KjYFEeqeYbQOVMBcUTVfOLHKrPAkz/1Xl4cB5Jd0PyKBl1rG/+uzgEUHSy45Zf5L3eB48j4pSPnnWrRFEJzjkUAOHfTGizu78JAmiav5xaYI+JY9R5cKM6PrlXApZ86RYTFNEBHwmJExMmC4UakUt7CRppPY3ac3M8Xp5x9mvuH/GPWJ8oTjufM0aaapuHQ3kPY9fVdOPKfRzA7NouV61dC1awND3v69WuwXoqwuxLTWe/r6CMjj+Dx0cc9l/MUGQ9wcY/fL31X5iTiUKw7FmvhHYtfeegr+Oy9n8Wu6V0AgENzh1zX8xNyj3UUaiwe/rr4u1f8Dg+/5mHP5VyT14Ilq5ZgyaolSPaQcUyQU7YZgkQikRHBhmxRMJ/UhUUuEhYXCoaLO0iIjoiIiDjZiKrwJ4DbfkmKUoXZgFnxIVm5biMG3vUfGHjrt/GzH34PH37jtWCTHei54e9QLRWwfI0z0oxlrQOyrt5GMU9WVKQyzc2sWt3bKP6JLANFo8H4DKJmK9ZiTi7Oo2gSFrtCCItbDzeE2UJVRibGgbG5HP2EwYTXzEETQgv9BBMJMjDvHThxDgOeF/C9X96J8y57KQAgaRJR2xYWQxy3EwVnV5YjIiIiIlx54IltAIBCqRr6NZu+XcDSf5pzjVfdvH6FMfEe3/z1Izj/ho8gJdC4+00JyKqGTWuc4tiibmtxJ29yBaA2h3ym9T61KkP20S4sQo/Q6hAVwO52iHcCFVMx74mfAL/+QOPx7j8CtE8RqTQBpPr9IxvzSxr/lkqAkALYgDFPC45FI4ptsNffERIatyjUAMciTdN4+Of/jHNWdRFhKOhzhkHQC7zzUQQ9VsJiC/HDET6c925g5ZXzc/5EREQcFxJ8AjzDg85433dSFIVdjxIxrFp2jkWC0osOFw47njMLizf94Ca86+p3AQCWfXoZKJbCcpdJTt0D1hYcHG+tH5gdi3bW5tfiZzt+Bkp031ceAcKiPgwp1oiwqhR1YVEKLyzmhBzed8b7cPEi0p8y4RHJ3RXzTlOIH+PrVrqJSU4MzUBgvcWXZh2LFEXhG//7DVzy6ksAAB2x+RMWg0Sido6rIUS1sr+GA/VYCYt54fjHu57sGII273cfEREREXESEgmLxxlZknD04H7Lc0KMzChasmJ1S9tcuf500JyIuSduw3e/8mk87wUvRM9LPwQmQQYjy9c4I81yndaBpdnFKKlq047FFd2NgpPA0agpimNQbma2Yu33kktwKEsNYTHITahpGrYenqn3YSxUZWTjHDIZMmhNpknUgJ+wmFzAzrv5INfZBYUixzFpioRtVVc0+gX6xcueaLgoCjUiIiIiEE3TsGOftSDHhphI88SIin3TmmvU4+b1KwEAP3tawnu/8X94/rkb8a1ruzCoFxU3rXUKiwM9PsWS6pxVaAximoytli8nRcNsJykUdibcP1enqDqFpWQ3IJlcE4kuoHtN4/HELmDTDd77IFeAzCCyOTLGyqRcintCyvn4GAiL845boTK/FMgv93XEdeUzYCvTQCwH+BQKQzN4FrDlLcCaF7e/rWMFFwlg88qZrwPOfSdwAlwfERERrZPkkqBT7vdmLMjf845HdgBAvW9eMwwXhx3PrdBj2eeemMONX7gRK09biRUfWgGhR6gvFzXyG82WyT5093c7tmPGz7H49xf+PWpKDfHnWwWkxSvIdXtRP0mUYvX2Khrc+z8WJJKWoCkaYmysLjT6sShJtv3jF/8Ybz39reiOk89hHMu0XheJJ8i+GcvdONaOxfmkFWEmk8ugBlJ/chNYW3UxBgmLSa71CXKvXvtqfGTLR3Dlkiubfm1d0DwGl83vXfE9/PSlPukdEa4YUcRRFGpERMSpRlSFP8489sDdjucyWXKR2XLBpS1ts39wCQAgtmQTGJbDe/7q70DrjsRktgP5Tucg0u05g2JFaUpYnCpKWN7VGDTFOAaSooHlvC+axao1+z+f4C1RqEyA82yqJGGqJGF9PxkwFyoycgkemzeTHpWDS8lNRdZrdiCsYtupSlUmdyvmHouGQNgsa/tS+MLV63Hm4ux87NoxIRIWIyIiIgj3HFQ9lz3wxHbHc0KCTMipCq053Iz41IuGGFA0hRs//U7ETT19V7pEmg34uelqBeTTTRRk9CJcbw+JNOPiZHyQj/lcFxTJ+jjZXd8OAODijwE3/BQ/eUpfr3M1sOWt/vvRuRLrTiNJEW4uTYfTTswGC26GsEjhxMWJuomfsRzwjruAZRf7v7Y8RWJT58tx9pKvAauvmp9tHQsix+L802baRkRExPEnxafqvQztiBCxf+d+yBKZ4GN3J/Kx4OL7SGnEud0Yuc7EV8ShaRre+9fvBRtv3AcvW7MMHEh9gJHIxKN6FKrX5/CJZV+aXYp3b3o3AIA2teTIdZIJ3tlkliwTyDJ7X0jjcUkuNd6PS6Eg+8Syh2Rw8SAA4LRNZJK5n7CY4luPnj/etBotarhA3XpN/vblv8Ut197S9DZFxn9ck3RLe2iCN6x/Q0uvqzsWj0Ga0zl958xrn8rnCkYUcSQsRkREnGpEd2nHkHLROdPszlt/Oa/vcWh4GF/99AegVApgM92gaAo3/+9/1Zf3L1vjGiOS7fAu5hWqMtLZ8FGoR6bLELmGI0BgaUiyCs5HWCzVrMJiR0KwCItigHPiwGQJLE3hnKVkUFOWFHQlBYdo5icsxvnmY05PNqq6C9TsMrTHxYaFoii84fwlWN69cG88+EhYjIiIiAAAXP1zDdQXZjFBOW/+f3rLn7FvmgiPBX3mvsbGQH1hFr8+2rywOF0o402f/BqGCyp6kzSSMQH/+j+/qS8f6Ey59nfu7/IpTNSK6Mj4CDRBMZY8eW0u5nPNU6zpCUj2AlVzMY8COBGvOk0fS5z9dqBzhf/79p4ear/qiNlgwS2W08UqCsgO+a97rPAaO/AJQLS5OeyCbWUaiOWB50pfmUhYjIiIiECab1wbxo6OWZaJlIg7fnNH/bE93jKMg3G8PG55XC6V8Q8f+wfUJmpgEgxynTnc9B83Wd835rzedvV7R4QCwTGeb1z/Rs9lRq87RnSvOyh7FVCgUDSlJaT4lOXxfNGb8E4XMISok4FmeywaFGoFxNiYq8swwSewKLWo6W2KAeM389/A8YRjODDUqV/rOpnY0LkB5/Wfh/UdzjZVERERESczURX+GHDhFS8BAPy/H33H8rxUq+GePzY/E8qL2vgBfOkdr8BDd/8JyuwoAODcy6/BTT/+Xn32W9+yNa6vzXd4D6CLVdm3x6Kiap7LAEDkGNQU1dexWKhaC4KdSR7FWuM5gfMfCO2fKGKoI46OZGNg2J9xDuzSbfZYPNmp6I7FBG+OQj11+xDybPSTFhEREQEAr3/ZCwAAX/7BbyzPaxrwv7fehT/uBzZ8q4BhdtD6QlvkpW0ekIPdkyrOe+938Ms/3Y8DM2R88LaXnINv//QWyAq5Bq0bcp8lP9DjI2JWC8infApdk3v9d4zmAIZH2k/LsguL6T6g6tPXKDPgGgNroXOly5Om6669CBUmIpSigLTT8bngoChg8XnA4UcBWe+XJddIL8lk93PHdWYXjyMiIiKeg2SETP3fP/zGDy3LRIi4/de3gy+TekGi3HwU52Rlsv5vaVLC+697P27/9e2QRsnklmvecA1u/dmtUPWxiFevxJ4Bf8eiXxQqQCbfqqPuKREszYKhGNB6ggNtKr+psgrtCIk+LUkNx2JGyFgezxd+IlerzjojcvN4CpNB8aNeFORCW9GkbvgJixkhg4HkwLy+XzO0KsBGHBsyQgbfufw789rjMyIiImIh8By5wz+2qKoKWW7Mzu7uIwOIn/3gXzE73RjwPnr/n1GYncG5F1/e8ntJ+sC4vOcRDP/oIxDEBG78yS3gu0nc1gUvfyMmx0ZQLZcBAAPL3YXFXKf3ALok+UehViT3KqPRz1DkGNRkFSznPZgp1xTIamMA3pUSLPGodjfhzx85hP9+oNGb8shMBev705ZejIN554DWt8fiSSQssi2KgVVJAUNTFsGtVcfiyQBnxH2cuh8xIiIiwhVVVSHJjQk6XXlS0Lvxx7/G4ZFxPDhBiin3bR/B4ZEJXP/Ci/DUqEr6CPogeSeq4q79Ms75XhGKouH+n3wNZw+Qa/L7r7sQhVIZI+NTAID1S9yFxUW+PRZnkU/5zASf2AWoPjsHAEIKab/EIbuImOoFqrP+2/Qj3uHsoQgAjD4W6VrtdP4lu4LFSgDIND+T/oRw0ceAuSPAPj36v6yPg1MngTA6X+iF1lN4uBURERHhiTHBOSc0Jirf8rNbcHDPwfpjeVLG/l37ceF5F+KpNz6FrqL/WMSNmdoMqnIV5b1l7P7r3ZidmsW//L9/QXItGe+87HUvA0VRKM0QkS7f656S4NdjsSJXPAXJMFCgEGNj9ShUXnMOSuJcHGW5XH+cETKWx/OFkWLVG3c6F1t11hnild1xeixpVTArSsV5dxAajlQ3vnvFd/HJcz45r+/XDBwTCYsREREREceeSFicB9737nfiO3/9YctzqUwOqqLgp9+7sf7cnbf8EoPLVmLJSnexLwwagNGjhzH6iy9CHFyPD/3zT9DT33AbdCxahnMuvqz+uH/ZWtft9OiNxJNZZ1GvLClI+wiLI7NV1+eHOkghhWdpVGV/x2JJUqAoDedjR0JA2SRY0rZqTG9GwKMHp+uPFVXDhSu7wJpmvw/mwguLLE2dVP34WnXiVWUVPENbjlOrPRYXArk4OacuW+sujBvHaWBJQFRdRERExCnGRz/xV3jZh//Z8lwiLiIRE/HX3/wf/H44B+oLs/if+w9hoKcD15zRBe1zaeSrB1p6v/GpGbzwxyWc3kPj/hvfjlVLG8LXYE8Wf3HVhfXHXsJinx6Fmk26CIjVOeSTPrPSx7cDhWH/nRTSSHI+4mNpwvo42Qsy0mqR/9/efce3Ud//A39pnbbkvVfs7L0TZxACgYQQIECBBgqBUigQWgirQICwSvixd/ky2kJbCNCyCiEFUmYIM4OkQCCLTNtxEsfbkqX7/XHWOG0pJ8u2Xs/HIw/7pNPp4yNEb9/73u+3tRDQR7gb3n+uiqdFVawJt4xy9Iq7ZqpmAnlDgS3vS+1q26TkMuylkV/Xl3QlFgeUhr9YTUTUF21ctxF1u6ROSv5z2LLzsvGX+//i3d737T5YbBaMnz4+5HFUptg+77bv344d9++ALkuHJ954AlVDqrzP2bPsmH3GbO92uMSipWuec6h5kHua90StWIzGpDMBEcIZs84sm7GYrMRiJEpX8iVToonFVmerrIpWCZEqFsO1Xe0uerX03oWlhSlbAxER9X29J7PSg9Xvr8M3H73rrRIEpBmGvzj/Erz+wp9xoG4fAGD1f1fi6DknJ3wLs+h2QRRF5BUWI/+s25F72k0wmIKDwDPOv9T7fU5JRchjeWYd6YTgYKjd4ZK1QvVUSXrUNLaHPKZnvp1Bp5ZaoQqhE4saVztaOzrh9GupmmWOPMT48pkD8N+rj/Zu2406jC7N8L23Vo1MS/AxwiUWBa082dbTJZoE7eh0Q9CqZd3HenNiUaNWYfOdc7BwakXI5z3nyWzL6L5FERH1AHX79+M/n2/CwcO+GYE2swk3/vZMPPuv/+DHHXsAAK+t+hJnzJmOPJWU8Mnq2B33e7lcLuRk2vHOOSas/JUJWbaAG3ucbbj6gtO8m1VFoS/meVpzm/QhPqtFF/IiddZyOYGdX0ReqMEGkyZCYtFTTacCjq8eAVgCb1qJM8loLwFibSfm+WC2x9gmq2BEUJvalDFFqDRVqYCjrgEObQd2f+1LLGb0kopLJXT9d8q09pD/XkRE3aS9rR0dbR2o3VMrSywuXLwQH/z7Azj2Si3It3+yHdPmTINWF7rSLVpiURRFiC4RB90HUX5FOfpd3w9ZecGxxhm/OcP7vS07coJQKwSvZU/zniOqWAQAs9YMRLjUYdVZ0dbZBo1Gg8GjByNLn9VtiUVPa1arcGQ/Y7yOZP6foIl83Sicts425ROLmigzslPIU7FotXXvf1siIkovvSez0sM5HR3Y+PVnssd+cf6lMBhNOHxIunDV2tyEGbNPTuj47o5W1P3rdrz81IMAAEPZSKjCtM4aOWGK93uNRh4gx3KJrC2gFWrga/YdboOj0w1BH/oOLINWI1UsasNUC7ra0dLh8s5eAoCsEEnBQP7Jx4H5FuRafe9vM2hhCDGXMdss7RNY8Sdo1HGP+knlTEYhwcRiu9MVVLHYmyo1Q9FrNbAZQv/d0nPGIhGlMbdbxMrV62WPXXb2PBTmZmHzdimB6HB2yqoJE3HtPc8CAKaXayFoQl/8GzvMVzmuTfBzJ0dwhH8yewBQswGZtgiJPL0dOnWEyKddantanG3DlFEDpTmAiXB1dXLIKIutrak/W4yJxXEXAOe8ApgjzKU8UguWA6MWRE4cAoA7yuDNoadK5+Kn/0hVoRoBMIZOLvdJPSUBTESUIp//93PZLLE5v5iD0qpSHN5xGIA0X3DmvJkJHdvtdGPPM3tQ+3wtalprYBpg8s4wDFTi103Bc2N1PPa17IupYjFcghSQ5he6ha5xNurghKFFsKC9sx35FfkYMWEEMg2Z6HCF7hCVLInOWEzEml+uwRdnR7kxLIKelFjsztmS8UpltSQREaUPXoVX0Fcfvy/bNlus+OVFv/NuVwwYjPL+g+I+bs2enaj5+zXo2PMDBo0K3S7EnypERaRWlOYudYpdg8O7AutQLT/aO90RK752H2pDQ6sDJ555HrLzgy+I+WYsyoM+vVHqQa9HJ5o7OtHp9m+FGl+AOKokQ1aNmGEUYAiRVPIkIwcXyO/USqRiURfm4ml3SLQVapvTBUGrkiVRU/lzJFtvT5oSER2ptz5eK9s26AUsXXS2dzs7w4bJo+Nvyb6v7iAG56ghaICjJgyP6TV6QfqcNoaoAgD8YpEwnRwydM6QjwMAyqcA9T/h0lMmITOwYtLDEHwxUKf1u7DYHjBPMdHE4q4vu14fZ7splSZElWQYGi1QPDb0DEelDDoBOPVJwBamPasnYebuDP28h1oNTL0SqPse2LsO0NsAXc+9q19x3XiBloioJ1qzag1sgg0qt/T5rtFq8Ourfy3bZ+zUsXEf9/DBw9hx7w4c/uIwysaUoa61Lupr9AYpwWIyRk4ChYpF6lrrvK1SI8kvDv9ZbtaZIWqk6x71mnrZc4JegFVnRbvL1xEqq5tvxNGqtAknoWZXSK1mx+WPi/k1Fr0Fem3iSa8jSSxm6ZU9t5FmLKYaE4tERNQdeBVeQV998r53WLnHyb883/t9ItWK363/Gr/75QkQOx0o/NV9GD35KNnz/nMJ/RlM8sBZL0p3vTlE6YJaXmklAMBSNizotR1OF8zW8HdzdbpFbK5tgk7QQ6MNvlio16rhcotQ6eTBTFFpBQBgQP8qOFxutHb41h6tFWqgUaV2WfCfYdKFrFj0CJzZqNfGX7GYSokmAzucLghaTa9q+3okWLFIROnunU83wOmUJ37OP/U47/dnzJkWNpEXzvrvt2LimVeiqUPE5xeaMX9GbBcDczKlxJ4mzGdQTlcVwMjK0BfkzKrQrdcBAGWTAYgQ6r4N/xlnyAh6yGr2i48cTYDbr1WqVg8YjuBudmOcrzXYe1fCTdeVWBSjVCwCwJhfSdWVdd9JCd4Ic4j6HFYsElGaW7t6Ldrb2qFz+m4EPmqu7zrG4LGDI1b5hbJzy05cdspl6NjXgX5/6IfJ8ybjYPvBqK8zdUif+7mm3Ij7ZYVo217fVg+NNnqlY6S4Ktz8Qo1Gg3nnzINVsKKj01ehmG2I0jVAYUeS5BubPxYbF25EgblAwRVFlkhi0elyosPVgUxjZvSd42DUMbFIRETpjVfhFWI0W3Ggdh+2/vA/2eN6gxFCfhXyFyzDjDnxJxZf/dtTKO03AAXn3g9dTmnC69OJ0l3/HV2JRU9Csq45uBqg3emCYAx/UcSo02B7fUvY5z0JPlWYi2V2kxTkNLT5WpxZ9Nq4kmfGgF9EssxCXEklQauGJsFZl6mg7/qFRhtngrG90w19L/tZj0SilZ1ERH2BzWxEQ1MLPlv3vexxrd9FsZOPmRT3cZ944W0U5GTiy4vMGFOoATojJPwSYBRCtLfW26B2ho81YMwEisdLrTYj7RNJRzPgDmi3aoqz1WhbQ3z7+zPYe1fCTYgjsajVA5O6Zn4bMqXtdMHEIhGlMbVaDWeHE2s/XQuNUyN7XNc1U3ng8IFxH3fFSysg6AVU3VIF0wATKmwVssSi0xWhywEAV5Q23roQ854b2hvgcEVoyx6DwDajuxp3AZA6R5nMJtj0NlnFYrcnFntZAkqvjn+9jQ6pQ4X/3E8lsBUqERGlO16FV0j/4WNgsljxxUfvBT2XO+8qGMpGoCPGO7lEUYTz0F4AwNV3PIi7n3kJGpMy/eDbRY2sqtLlFoOqLNucbrgijCQamG/BroOtcImhd/Im+MJcRLIapKRgY5uvokKlUiHDmFhbC0BqpRrPDCd9Aq1QU8mTMHOHOefhdHgSi324/ak/JhaJKJ2NHFCCgpwMvPXhl0HPVY8eAgAYO7R/0HOhiKKILQelar5Hb74UH/3t/6HI2vVvrCNCwi8CLaTPfQFRWmkCgDlXqij0aNkfvM+oX0pfna2hjxEpsagRgI5GwBWwlnjboe75Or79/RkzpXX0Fvqui6PRZix6TPqt1LrVkt+7EqhHqgdXMBARJVNGfQY6v+pEaWUp1qxaA22n/GbgUkg3Sk8aHftNTh21UjXfRX+4CI+99hiEXOlzs9JeiQ5XB9r3Skm5dfvXRT5OAnML3XBjX/O+uF/nzybI27J/VfuVbNsu2NHh6vBek4lWWam0ntzOM5REKhYPO6TZnkonbc26nnsj0ZFUohIREcWKV+EV8M7bb2PjFx9jTPUMfB4isajVSXe/tTqiX0jraG/DXddegprnr4a7oxVGkxmCoFxQ0O7WwBmQNXS43LLtNqcLLnf4BNagAit2N7ShzRGmDWtXxaIYJuizGaTz0eyQ31WYGWc7VH+51vjOkV6rSbgV6vlTKgAAJn38A+AT5anmdLuj7Bigw+mCXquBNsQszb5IH0OrGiKivujvLyzHp+t/wryjxoZMLHraksbSBtXhcOKimx/G6CebUdPshl7QwWT0Sww5mhNao12ULuwUahui72zJBxyt2Fjf9e/6vm+BwJtrhp0a+RiRWpMaM7oSiwGVCLHOPPTY+UV8+/szZaU24XbpZ8BJjwCmGC+0CXEmFvVW4NfvAlN/37sSqEeqB19oJCJKpveeeg/b39iO6lnV+HzV59A65InF3M5cbDp/U0wJGZfLhcdvexxblmxBR10HNFoNzFbf6wZmSlWPecXSDUFf7guOfWTHC6i2d5qcQTdYh7K7eXfUfcJRq9SwCvLZyN8d+E62bddLsYon8Zmhz4C6Gy/TKZlY1Kl1sq/JkEglXlOHdKNajjHOrhTh1qDVQ61SI9vYvdWl8WDFIhERdQcmFhUwfcbRGDKuGuOnz8LmjevQcKA++otCaG9txTUXnI41H7yLrDmXQ6034duv1+Dp++9QbK2tLnVQItHRGZBYdEROLA7Mt8LpErHzYOgKAb2uq7ouTEBp1mugVgEtHfLgPsuceADaPy/6UHV/ep0amgSTbccOycf6W47DtAHxBabDixKvOvVU4olIoGJRpw6aMdlXCXFUrRIR9SVnnH4qhlcVY95RY/HDtl3YsnNv3MfYeKkZFrRi9m9uxvNv/BdPnGhAgUWNz9Z+h5sees6344d3A58+kPBaszUxJCatBUBHE8oLutpW1W4Cmmrk+5iitLQKMWPR91wm0N4IONuC3zdWznag7n/R9wul/3FA0bjUJhbzhwHjFgKaGOMvIb5YS3qPoUB5NZAmcQgAQOi5rdGIiJJp/lnzYc+xo/rYahyoOwDnVic6doevFOwUO1Hy2xK0a+Qt1l3tLtx04U149a+vouCXBdDn6fHDhh/w1wf+6t1nQOYAqKBCC6QuClsatngTSJHoRSnh0p7djmVfLsOGug1h9zXrzNjXIq9YbImja4NZMAdVLNa21qK2pda7HZhY1Kg1MOm673NEycTi2PyxGJEzAtdMuEaxYwbyVCy6xdjvuG52SnGnUtWgdr0dr8x7BceXH6/I8ZLBoEmjThFERJQy8U3MppDeWvku3li/B2iVerd/9ekHsGfFf/fSqrdfhdFkxv3PvYZ713bCUb8TVy88FRnZObD/5gRF1uoQ1XAGJBZbHS5YDTq/7U50+u0TuH9ZpgkmQYNdh9qQaQq+GGXQ+s1YdIrQm+R3JKpUKtiNOrQEVHBmm+O/q0rQqqFWAaVZ8QXfBq0m4cQiAGSY4rvzftNts7HzQJhWbTEQus5p3BWLXa1Q06dikYlFIkpPL7/wN+DbV9DcqYJe0GHFR19D0MUe5mnaD0GvAd5bswFtKjNW/eUuTP/pTjQ7REw9+xpkZ9hw5xVdO/c/FtgbueVYJGZVR3ClYCBbIbD9Y9hMBkAYBBzYAmx5P3g/wRK+gtLgu6HHZgw4F8YMACLQfijgfYujrt/r4FZAdAOFo4F962N/HSBVCjqakXD7hFTwzA50x9DKNp2xFSoRpaml9y7FcVcehxJTCcw2M7575Ts43U7gotD7N4qNyKjOQO0eX6LNccCBnx/4GdpGLZb9dRn+5vobAODSky6FxWZBxSMVAACD1oBsQzbq2+th0prQ1tmGz2s+R7T7cFtV0u/k9gY79DY9ntn0DACgPcT86BJLiSwJCADbG7fHciq8PIlDAMjQZKDJ3YSva31t1DMNUtt2/4pKq2D1JsOUlmWU35QVKbH44NEP4tM9n8Z1/BdOfCGhdcXKU4kXT2KxydEENdTI1EeZvR2HgVnxzwntTqxYJCKi7tCLrmb0fPasbAwZNQ6NDQej7xyC2WLFY8vfwaDho72PPbb8Hbz04bdxHyuvsES2rfNrp9rSIb8gVNcov4vQLUKW9HOLItx+FYxqtQpjy8IHZQadfMai3hR8h3umWUBrQMVijiX+NlnHDy3Avb8YheLM2C/iqFVdFYvdePe8Ra/F0CJb9B3D8IxIDDfXMpyOThcMOg3UaZJY1DGxSERpzmIyYOakkTjQ0BjnK0Vo1Cpkm9T44uUHMX38cO8zn714P2pX/8O368SLgUXRW4AO618OAMjPlOIArcavXbUjys021iKpVSlEwGADSicCu0K8pypCC2y/xGJW0/dSEtDDM3+xNSBmk7VCjfLZWf8jYC8D7CWR9wtFrZZ+rkQVjJC+6q2R91OSp2IxgTlVaYWtUIkozWl1WkycMREZ52Sg6qGqsPsdcks39+wv3O9tS6pSq6AxafDoq49i4oyJ3n0feuUhvL7+ddnri6xFAACb3oZh2cOwtnYtXI3yawxlQ8sAAIWVhQCA7YKUGLQ4LXhz/pu4fcrtABAykVduK0d9u7wb1Y7GHRF/9kD+FYtWkxXDsofhf/W+bgehkl2BVY5KefzYx/Hscc96t1UqVcTqyFnls3DrlFuTspZEGbo6PcRbsWjWmWMaB9BXGNJptjUREaUMr8IrbPLRxyP/V/dCfcaDQZV+Hgd1uSj/w1vY0+TAqrf+BUeHdIFmxpyTkVtQ5N1PqxMwaMQYqBO4m91okgeIRx1/kvf7Ay3yKoGaxoA2YACaA5OPzfKLSFP7SxWZoVqmemYsBrZc9Zdj1qPNGZBYjHNOIgAYBQ1OH1eCPGt8gZNBm3gr1FRINAh2dLphFtJn7iArFomIgJNmTopr/5ff+RiNLW2ozFTjiVMyUVVWKHu+eswQaDQBnyUxJLRsFummH89n2IAKX4yDlv2+70MlqqwFUlWjp7Jx4GygNc5W836JRbQfBn7+zLftSSy2NchfY8mL/fiHdgDFYwFdCi7eTPotcME7QPkUabv/LOlr1dHJe09t1w1gLmfk/dIdW6ESEaF6VjUMpZE/H79Vd91ArQb+9dq/0HCgAbpMHcouLkO/Qf1k+46aNAoarTwWKbeWe7+fWzkXu5t3Q2OX76M3dlW4wY11deu8FYvDxg6DSqXCqQPCz2uuzKjEoYDOBrub4pu5mKHPkG0fU3YMdjfvhlt0I8eY461Y9Odf5aiko0qOgkXvu+lbr9EHra+n06tjq1isb6uHq2smdLOzOWjWZV/HVqhERNQdeBVeYZNnHAdD8RAAwJ6G4IQdADRr7RBdnfj3P57F3X9YhG+/XoOS37+ATrU8saY3KnfHs38QfjAgSXioNbgdmX9iUadWY7ffPEWToMHU/tJ8wcb24HZYGrUKOo0qaHajv2yLEFQ5mWPx/fwdna7AlyjmqIG5GFJoizlZ14vyjzKdLjfcImAU0qfjscDEIhERTpwxIeix4woaIC61SQm2Li63iCc+2ImzFt+N1z5YCyD4RhZtqNm1zsRae6v8KwAPbPUlFBt2AoEV+Z5Zh55ZRjmDgOz+8b2hf2JRpQI2/Qvo7HpPwQKotV1VkX5kFYtRuDuBQScAqhR9zpZPATK7LqoKJuDmA8Cw05L4hr00IOpunuoPni4iSmMTj54Y9O+gG25kHi0l0jbVb0KruhWiKKLujTo8fuXjePvFtwEAKmds/4BW2CsAAC63C6dUnQJBLUCllV7rDLgJRoSIf2/9t3dbHSq+CTAoc5CsRSkA1LTUhNk7tIyAec8nVp7oW4NKjQx9hjw+AmAXkpNYDPTwzIexeNzipL/PKVWnKHYsz4xFMULP21nls7C2bi3u+eoebG3YilZna9KqQFOtyFIU8nFDKm56IyKitMOr8AqrGDDY+73nGpnBKL9zWXQ6UPfKrdj+zYe46vYHUDT2GGiMNmwT5HflWTLk/e8BwOWKrxVmKIHJwAMtTrgDLui1OXwBtFqtws5D8ouIQwsjB2ZGnSZixWKeVY9WhzxIzzL7WqEms5rw0QVjcM7k8ug7dnlj0VScNqYYuQlUVKZSe1di16xPn4pFXQy/IBIR9XXlxfkYMbBC9tgJldJXa/NWAIDTBZz+chte+nIfHr7xtzj/pGlde8o/fw1xzGmMS9MeeTLx59Xy5z0JPk8SU6UCJl0S33v4JxbHLASa9gHf/9t3PHMu0H4EiUVLAVASnMQN4mlHlTc09mMnQqMFNMGzr2UyYo9/KEHetnLMLBJR+rJn2qENuMHVNdGF4vOL4bQ78ebWN+F2uLH7/3aj7rU6lJ1ZhgWXLZB2jPGfzyq71Gb1QPsB2PQ2TCr0dWxYuWOlbN8tDVuwv20/5vabG/PPMCRriGy7vbMdB9tjH3sjqAVkCvKKxAJzAQZkDvBua9SaoLaVgcnIZKmwVyDLEHzNSUkbF27EleOuVOx4scwOvHv63Xjo6IfghhsPr30Y2w5vS1oVaCqtPG0llp+4PORzrFgkIqLuwKvwCgtVBZeb72sp1tbagu9ffwyO2i04bcmfcMLpZ3uTkWWDRkY9/uMfbkG788iq+Q63ye/ea2h1BFUXBrYp/fmAPLEYsoLBj0nQRqxYzLXqg9qtZvslFrUB7V8T6AYbllajhtUQ5cKbnxElGXjgrNEoz07dzByzXvqlLJ65kB1d/w3N6VSxyMQiEREAYNHcEbiu2ndjSf9y6Y5mo6CFw+HEdS9uwKrtnXjj6mn4/XmnoChPanE+qqqgexbYVCNV/HlsWA50tPi2QyX4Rp8d33toDYC66/M+uz8weB7wk9+FRksB4AiYqWQMbknmZcqWbxePiS0RqRWAa7cCU6+MadlJc8Me4NT/A9Tpc8NRSrAVKhERAF8bUo/sftLn6Ma2jdjbtBcNjzWg8ZtGTLxmImxzbfjh0A/SfsXZQccKZXCWdB3F0xZzfv/53uc+2PUB9rf62q5/d+A7TCyYiH52+c3ckRRZimDUGr3bOw7viFgpF0jQCDALwdcQji49GgDQ4pTiHpNW/rkRqj0qSWx66Qb3wHMW6NjyY/HW/Ldw/rDz4RbdKLYUd8fyulWxtRh6behEq//fWyIiomRJn4xDD2E0mTHs2NOx3TgQJUPHA/DdkKcVot99tetQK+75zw8Jv79J0KCpvRNuv9mIB1sc6PBLAqpVQJtDnhTcfSh0W9dI7xNJntUQsWIxUGCiMcMUe2KwL7jr1OEQNCr0y409uen5b2rRp8//5jq2QiUiAgBcnPU5VPYOqUrPKp+ZKAg6XDx7BKa4P8eIMfILLSZ94p+v0hzGyDNvvJpqgM5233bbIWDDC75tvVVKDPrvE+LiXEQqlXSctq7qghPuATav8D1vKwTqf5K/JtKdTIJFvl0+HdBbQu8byJwj/UklvQUor0789equeIKJyci8rVBZsUhE6c1gNsDpDJ7L+9m+zzAqbxT0Z+rxkeMjzDhmBj7b9xm+2PcFAKDB3YAbPrkBTnfkmb6BbSCPKT3G995aA17a/JK3dSYAXDv+Wny4+8OY169SqVBsKcaWhi0AgB2NO6BWqaPO9ws8RqB5/ebhqW+fwhc10s9r1plxoP2A9/lMPROL4cwsnYn7Z9yPwdmDo+6r1+px1fircOGIC2OqdOxLAqtgiYiIkoFX4btJ88b38dlbUpuCkbMXQJcV/o4pT9LvUGtwIH3zvKHY3xQ8EzFW2WYBTe1OuPwSiw2tTtm8Q6tBhzanb7ulozOoyjEaU5T2mznW4CRitjn2YC/W+Yh9hdWgw/1njsbw4thbeLR3zak0p1FikRWLREQSlediXFuD97F/fufEff+ULmL99oSRGJEf4rNaTLwrgj7WtqkaAWjZLyUTPSb8Btj+oW/b06r0SBn8Wrfbi4HJl0rfN9cBtuLgGYv+oiUys2Kveuh2nuSfMbaqj5jMvBEoGAVkD4i+bzrT6LqSsOkVqxIRBQn4Z7Dd1Y6mb5tQ93odrh1/LcbNHQdTpQkqlQozimfgh4PSDdRGrRHzKufhnMHnRD580FxoLXRdnQouH305Nh/ajN1NuwEAo3JHxZSMClRu87UQ39W0S5HKt34ZUvzQ2BWDWAJuXEp2e9JEaVSpv7FIpVLh+Irj43qNXW9Pu0QbKxaJiKg78Cp8krndbuxY+QwOrHgIe7fFVmm4pyF8deDYskw89+uJ3m3/BGEkuw5KxxS0ahxu74TT73UigJpGX0WAzahDu9N3F57/c7GK1n4zVBLRZkyfBFh36Oj6b2g1pM951bNikYhIztkKURRx14odOOOVNqzbWgtRDBE71H0nfT24PXlrOSjd8Y8saSYSDu3wPXfcbYA5T76/xW9bE76rQUT6gJnQU67wvbetOHjGoj9DmHnSxq4LfroefJFKowNOexqYfJlyxzRmAJd8DFTNVO6YfZXOCCYWiYh8RFHEj2/+iJ8f/BnqPWoMzx4ue37+gPlo7ZTGr8zvPx9LJi/B4vGL434fTxvRBYMXYHDWYBzqkG5imlMxJ6F1V9orvd/XtNZgQEbwzTVqVWy/g6rCfC5YdFJi0ayTbmjKVvKmIEpLTCwSEVF34FX4JOpoa8Udiy/C7o+WI3Pmr3H675bG9Lqf6pojPj+xn+8OtvrmjpiO+WNdEwDAqNPgcKsTLpfbuw0AdY2+49iNWnR0+ioWag63Q6eJ7+JItCq5HGtwYjEZVYh5Xe8zID/GVmW9nP+lYk8r1HSqWNSxYpGISKbD0YmF19+PJa9vx60z9Pj7dScFf96KbmDd37u+T6BisfVA5OdFN7D+ReDAVmm7vFpKFB7e49tHZwROfED+OovfvMfANqSxMgRU+mu6Wr2qVFIFY2cb4ArTlSFcMnNqV3LSc9HGk2gzZiS2xmQZeSYw5MRUryI96YzMKxIRdXF1uvDwzQ9j/dPrkX18Nh557hFotfLfUcfnj0eeMS/MEeKnUqlwa/Wt3m1P0i6ShvYGvPbTa7LH+mf0935f31YfU9Wjp/2qp/2mp9IvXALSKlilNXd9cOQYU9w6nXq9aDMoiYiIlJA+GYcU+NeT/w9fr/4AQ869Ha2FY2JOnG2uaYr5PQ62xNYWdddB6e6/LLMAh8uNxq7Wp55qtoOtvuNkGAVZwrLmcDvyrIaIlZSB/Of6NbUHX7DLjjBPEYi9EjOaTLOAL288Fo3tndF37kZv/W4aNtc0wapQ0s8saGDVa2XVpZ7kcDrNWBRYsUhEJHPb8x/g5XfW4IXfDMWC4t2h5779vCZyS9BofnwX6Hd0+Of/9yrQUg9Y8oHmWqlNZHZ/af6jv8Fz5ds2v9mQ2gRn4wQmFv15Zk+6wtykZcgI/fi0K4FRCwBT141eo34JlEyI/F7Uc0y7WprnqUviRTctKxaJiDxefuplvPXCW5h+xXQcGnMIGSFuxFGpVDim7Bgs37w86mzFWA3LGYYSSwl2N+9Guyt6F6Zb19waVFU4NHuo93u36MbInJFRj2PQSB0NtCrp93CT1oQmZ/hrPJ7EokeuUYFW8JTWWLFIRETdgVfhk0B0SUmsky64Ag/9/d/IHjol9teKore6MBYHWjrgDtXSLEB9s5Q4zOpK6B3s2lapgLIskyxBmWHSod3pq1jYe7gNxZnxBSb+yazVWw/IjgcABp0GZiF8j369Trm/mnk2A/rn9ayKxeHFdpw+rgRqtTIXnbQaNWYMysVPtc1oc0jn2tMK1RjhPPc18VbWEhH1VU6XFBtcv2A6PvnHvVgwMT/0ju5OYMOLgDFT/ngMsYVX425g0z+DH28/LH1t2Q9MvRKY8jvfc4UjgxOLHl3zkWAtin0NHp65iJ7KxHDJQcCXWAxHHeHGHGu+7z0AILsKMHdVGHgqHTXpc2NPrzLrFuCyz4Gcgcl7j2QmLYmIegl3Vwed0359Gh56+SG0jGsBAG970kCn9j8VALyzFpUwIFNqXdreGT2xeO7Qc/Gf0/8je8x/xqIKKozKGRX0OiFKu3ZTlM8EmyBvvR6YaCSKFysWiYioO/SIxOLjjz+OiooKGAwGTJo0CV9++WXE/V955RUMHjwYBoMBI0aMwIoVK7pppdGtXvUO9j57KTqb6mG2Z6Jq8LC4Xl/X1IGmCNV1gdf56ho7gpJ2gTpdvnmJnsRiQ5svkViRY0KDX8VipklAm98xD7Y4UJ4VX2Bi8Zvr53KLeGPD3qB9MiNULTI9FL+TRxVhf3MHtuyXWum2d7qg06jSqj0oKxaJKFF9KRZ5b/VaDH6sCVsPumEzGzBhRIgESv3mrq8/Am0HgbELfc+JbuCbv0jfm2NoxzXgeODHlYAroIvC/q73OOpaYPpieZKveHzw/oFsURJ/ocy+Cxh+ui9pFJgwPdLjx2LwPKBwFFB1THKOT0fOmBG6elcpgim5xyeiPqkvxSIbv9yI9desR/vudugNemQMyoDDHflzf2iOVB3Y7Ig8GiYR0Sq4SiwluHr81cgLmPfs33WqwFwAiz74huWHZz6MswefHfbY0RKLdr2844ESI2IGZQ4CABxTxlgkHRl1rFgkIqLkS/lV+JdeeglXXXUVli5dirVr12LUqFGYPXs26urqQu7/2WefYcGCBbjwwguxbt06zJ8/H/Pnz8emTZu6eeVyoiji1ef+hNuu+DWE3H5QGywRE4Th/FQbOYj2n30IALWNHWhqi9wqZJ9fe0ybQQedRiVrDdo/14IDfhWLWWbBW/UGAG4RGFIov4suGv+KxWGFNny0eX9QK9Vo7VApPkcNzIVBp8aGXQ0ApBmLgkYNrUJVkb2B0JVETZ+fmIiU0FdiEQD408vv4oSLb8HAbDVyzWH+NXR3Ajs+lb5v+BkomQhUHu17/rNHgZ/ek77Pj+EGqVELorccDXy+cHT041rimLXkaZWqtwC/+DNQMl7ajpRYFMyJz26MRK0GfvsxMOQk5Y9NvYPOBEYjRBSPvhCLbKjbgE31m/Duv97F1WdfDSFLgDZDui7wzvZ3vPuJ8XRFUIhBa4j4fCzJPP95i/4q7BW4YdIN3u0Lhl8AAKgurgYQfr5jqa0UQHBiUQm5plxsXLgRs8pnKX5s6vlYsUhERN0h5YnFBx54ABdddBEuuOACDB06FE8++SRMJhP+/Oc/h9z/4Ycfxpw5c3DttddiyJAhuOOOOzB27Fg89thj3bxyH4fDgWfvuh7PPfRH/PKi3yNn/vVQ6yIHruH8WNeEfFvsc4RcoogdXfMTw9l90JfQU6mAPKsBjX7JyKo8eRI006RDq0OewBxVGl+w659YnD+mGEZBg1e+2S3bJ9uS4LwkCsmg02BqVQ5+rG1Ch9OFdqcLglatWLvV3sBbsZg+PzIRKaAvxCIulwtX3v8CLvvjn7Ho7Hn49wIzbPow/xj+/Jl8e9IlgNlvns+uL4GJFwH6GG8q0hmBeQ/6tresAloPRn5NLAlLS0Fs7w+Eb1tqjBK/WMK0iKXkmPEHYNz5yUno9iTDTpUS9pHa6RIR+ekLscgXe7/APx/5J5YtXoZj5x+LoTcOhdaixf7W/dh0wJfw7Ag327iHGpI1BAAwOGtwTPtX2CuwceFG6DXS9Q6zNjixuOoXq/DEMU8AADL0GcoslHqNWWXJTfgysUhERN0hpYlFh8OBb775BrNm+T5U1Wo1Zs2ahTVr1oR8zZo1a2T7A8Ds2bPD7t/R0YHGxkbZH6X98P13+OqDd3DF7Q/h11fcAJUq8dO6uaYJlbmxX2xRq4Ddh9oi7rPzYItsu9BukFUs9suRB7oZJgGdbt9dhFlmAbmW+BKlZr1vrp9R0OCGEwYHrTPXysSi0k4aVYS9h9vx88EWdDjdELRpVrGoZcUiEcWnr8Qi27Ztx3Nvr8bjN/4aDy+5BNqwM2dF4Ls3fJsFI4F+0+VtG6ddBRx1XXwL8K/O2/898O/fR95fMEWucgQAqyexqA5uKxnttd79MmJ8D+oWM28ETnoYMMTXCaPXmXAhcOzNvpmfREQR9JVYpLm+GXvf34uLb7gY1917HdRdv5u9s/0d6DV6TCyYmPCxV25fGdOcxGiiVS6GUtcqVY2OyBkBALhj6h2YVzkv5tdbQtxMk2fOg7ZrFjMTi+nnwZkPYuPCjUk7vlajhUalib4jERHREUhpYrG+vh4ulwv5+fK7xfPz81FTUxPyNTU1NXHtv2zZMtjtdu+f0tJSZRbvZ+So0Xjg1U9wzEm/OKLjtHR04kCLA0MLYx/WXWg3ouZw5AD754CKxqIMI1x+icPAxKLdpJPvbzfIZibGwqyX73/WhFKUZkl93p1dMx9zWbGouGOH5EGrVmHtzga0d7ogaNTQpFFiMZ3mSRKRMvpKLDJgQH9se/0eXHbW8ZF3PLgdaNwDlEntuVA6WZqjqO+KPSz5wJRFgCU3/DHCUXfFDyc/Dow+x/d4uBuu8odHPp4xC1BppNcbs4Kfi0XU5GWS5iwShZjDRUQUSl+JRax5Vkx6aBIWXLoAKpUKqq7bPdftX4dTqk7xVvAlYsX2Fbjls1sSfr3LLXVk0ql1UfYMdqD9AABgVN4oAMD8/vOxbPqymF9vFSJf30nnxOLGhRuTmmBLZ4n8XSciIopHn78Kf8MNN+Dw4cPeP7t27UrK+5ht8ffFX7uzAc9/vgNPfbINALB1vzRfcWpVTszHKM82obYxfGJRFEXsPtQmq+DyJPg8MkwCbH6JwwyjPAApyTLBGm9iUZDvr1KpsHSeNIx9a530c8bT8rUnm1KVDSA4QZsKVoMOE/tl4cfaZrQ5pFaoGgWGv/cWrFgkop6ou2KRTFuYzyFHM7DnG+n7XV8AGWVAvxnSttoTCnb9y5nZL/Jcwkg8bR8FE3DyI0DFdGlbE2amctGYKMdTA8YMqVpRneBd19ESi/aSxI5LRETUi3RXLKKzBCcz1FDj4pEXe7ezjdlxH/fVk1/FjJIZCa/Lk+Q0aoxR9gwvyxDjTU0BoiUWEznudROui3pcSm9CuPibiIhIISkd/JGTkwONRoPa2lrZ47W1tSgoCN2aqqCgIK799Xo99PqelcDyzBbcebAVjk4XDrVK8w7dotR2NJ5WqOVZJnyxPfwco+aOTrQ6XCjLMmFnV+ViaWZwv/WyLBM27ZXaoWSY5AFIRbYp7kqwwIpFACiwS0G8Z1Z7Th+pWBxSaMNXS2ahpxQGzhtZiCWvbYKj04Assw6asO3w+h5BE3CBnIgoij4fi6x/AWja59tuOyRVE5riv6gXli7MHJdoCcrC0dGPbSsGNDpfS9PcIVKr1VgTjbmDgOLxgDXMLMVQicVBJwIaLZDgvGwiIqJ49KVYxC268e3+b7GhbgMaHdL1hRP6nYBck68TQouzJdzLw+qf2R/3zrgXK3esTGhdanXq7qmPlgDM1Md/Q9fMspn4rOyz6DtS2hLUTCwSEVFypbRiURAEjBs3DqtWrfI+5na7sWrVKlRXV4d8TXV1tWx/AHjvvffC7t8T5XXNFlx26gi8cfk03Dnf1wqsX7YJGabwLQv8OpgCAMqzzbK2poHqmx0AgAF5vmRlUUbwXXr9cn1VDoEVi1UJVOKZhOgX/LL7SGIRkOZF9pSfZ87wQqhUQE1jO/RaTVpVLHoT4OnzIxPREeqzsYi56wKewQ6MWuB7XGeSthOtAAwl0XaihSOlr9oIn59z7wXG/MpX9bjoc+DSNUBWlbRtK4r8HgY7cMEKYMjJoZ8PtfYFLwCnPuVrD0tERJREfSkWOdB+AE9vfBo/HPrBWyV4yahLQu6bLhVVRWYpVsk1hm4zr9VoYdD0/JuZEqk07YlOqToFR5UcleplJF26/P9FRESpk9KKRQC46qqrsHDhQowfPx4TJ07EQw89hJaWFlxwwQUAgPPOOw/FxcVYtkzqYX/FFVdgxowZuP/++3HiiSdi+fLl+Prrr/HUU0+l8sdIWL7NIGszOqjABpshfGJRFOVJxNIsI9Sq4ISjR31zB4w6tSyZWJQRHLRW+VVJ2ow6qAB4DhlYwRgLS4iKxUA5FgY6yZBlFjC6NANrdzZAr0uvGYsatQpqFfOKRBSfPhGLvPMHYOfnwIxrpe1+RwGb3wGOvQXoPwtY/w/p8QGzgaxKqSVqPNoafN97Ziae9Aiw45Po7UbD8VQLDjkl/D5lk6U//vKH+r6/8D/A2r8B2f3DH8M/celp1+qZ82QLkxRltSIREXWjvhCLnDnoTGQbsjGzbCbG549HW2cbNh/ajBKrvDtAh6uj29cWbb6j2m8e9C8H/RKTCydH2Ds+dkGKk0qt4edamsJ1f4jR7IrZeOXHVzA6d/QRHSeSx459DN/UfpO043eXO6fdmeoldAsmFomIKNlSnlg866yzsH//ftxyyy2oqanB6NGjsXLlSu8g8p07d8raVkyZMgUvvPACbrrpJtx4440YMGAAXn/9dQwfPjzcW/QqUyqzoI6QCHK65BlEvVaD8mwztteHbidS39yBfJsBeq3vHBbagysW+/tVNGrUKlgMWjS1dwIADDFUHwYy6Y+sYjHe1qskd+LIQqzd2QCDVpNWiUXAvx0qEVFs+kQssu5v0tctHwDDPIm6rn//NTogZxBQvxnof6w0AzFWzjZg/YvAj+/4HvNU+Y1bKP0Jx9MKNdyFDcEM/H4D0H5I/vjw02Jfn8EOTLk8jv1twIgzpAQrAFg9FY/p9VlJREQ9S1+IRSYUTMCEggnebYtgwbj8cUH7RUvyJYNWHfnSl8ovDlgyeUmylxNkftV8DM0ZGn3HMCYVTsLGhRsVXFEwo9aIacXTkvoe6eqiERfh9x/8PqG2uOGk4v8zIiJKLylPLALA5ZdfjssvD31R6MMPPwx67IwzzsAZZ5yR5FUlT3OHlLBzi8FlhoOLbHEfb1iRLUJi0YERxXYIfonFUPMPK7Ll7U5tBp03sWiNUEEZTiwVizZD+H38E6H+rp8zGI9/uAUGXc9NHhl0mq6vqVvj3BGFuOOt76HXqaHtSixmmnSoyDFD28cTbzqtmteHiShufSYW+fZFwNXuq8zzyKqUEouaOD7TOxqBn1cDap1UAbm1q+VaqLmEAFA0BtjpN+/nhHsArUGacxhOVgWACt/2zQeAtvCzoxVx+jO+7825UgVmpNlLV3wLbF4B2IuTuy4iIkprfSYWiULT1Y7dpD2yKr2+ZPH4xaleAqXQzLKZiieG9Rp9SqqDiYgoffSIxGK6+XRLPQDgYIsj6LnMBNqOjinLxFvf7gOAoHmLh9ucqMg2QaeJnGnpFzBH0W7UYU9DG6ZWZXsTU/Ew6jSydqqhqLpm/5njqIi85OgqLJhUBmsMictUKcow4uyJpZjWP/QMhe5QaDdi0cwqFNoN3vO89ubjUNPYHlPStzfTadTMKxJR+hpyCvC/1wBDRuT9CkdJXzPKpa/2EkClAkacHrzv6c8CFVOBe6siH/OCFVIiMr+rWkJnAObeE9fyodEClrz4XnMkNFppXqMxK/w+meXA5Eu7b01ERER9mKc1qFYj/V6qRt++8TURya4+pL7PoDUwsUhEREnVtzMMPdT/9jaGfFzQqmE3xl8dOKrEN9vop7omjCuXt08YXmzHvsPtssdyLALqm32JzcAqRrvJtw61KrY0TWGGEfhZamemUqlgFDRodbiivs5T4RerRM5Rd7vrtJGpXgKunT0YnS63d1ulUoVsg9vXREuiExH1SZd/I1UUjj5HqhD8+F5AsACmbOl5T7Wdpy1pyXjg9+ulZCIgfb35ICAGfG5nlPlaq445V6qE1IaZP6hSARW9sEXWRauAlvpUr4KIiCgteNqSWnTSOBabPv6uTeHkm/JR11qn2PGU4EmgRmvHGolNsKHREfo6ElEoOcYciCG6pBERESmFicVuVtfUHvRYvk26QDeuLDOhNpVD/dqnfrv7ME4d7bsoqFGpMKzYFpRYLLIbZYlF71qsUh/2DL/kXawtPe87YyRGl9oxuEBajynGxKKSThtbjLvf+QHDEmgp2xf19banoUgVi0wuElGayekv/QGAY5ZIicStH/jals75f4C9FLD5tfPM6ic/hloN+FcN/GYVcHivb/uUx5Ky9JQz2KU/RERElHIaVXw3Hvv7y5y/YF/zPgVXc+SmFk3F0OyhWDw28XanH535ETrFTgVXRX3dbVNug8vdvdfjiIgovTCx2M2+3nEo6DFNV6tRa4SZg5GYBN/r6po68Pl232yiHKsQsr1qcaYR3+45HPaYmWbfa5yu2O5y0ms1uHBaZcC6gpOXyZRnNWDznXNirrKkvkfQcMYiERHGnQ+M/CWglW4YgkYLTLsyvmOUjAfCjFNMyJB5wJuXA6UTFTwoERERkUSv0aPCXpHqZcioVCq8NO+lIzqGVqOFlpfvKA6GcB1GiIiIFMLIJAmyzQIOtDiw+1ArRpdmyJ770i/plwzl2SZ8umW/d7ZhcYYRVkNw69DijMgtMbP8kpGJtpY0xTE7UUl6bWrel6J7+rxx+OSnemSZ458lGivOWCQi6qLrYRcUjJnATftTvQoiIiIimQJzQaqXQERERNSrMLGYBMOLbfjox3p8sf0gZg/N9z5+oMWB3Q1tyLPqUdeUnCHKxw/Nx9OfbEdXESTKskyw6IP/MxdGSSxmKpD4MSeQWBxXnomqXHPQzMcci/6I10Opd9zQAhw3NLm/tAna9Gv/SkTUa2iTd2MJERERUSie9qo6jXTTtU7tu/n6lXmvoF9Gv5CvIyIiIqLQmFhUwKrva7Fpz2FMrcoBAO98t32H2/HRT/Xe/bbUNUPQqDG5Mgtvbkis778+yrzDceWZeH39XuzvSlz2yzF7W63665djAoCQSUdAPmNRq04sUROYHIzFvy6dAkenOyg5ZNazCpFiM7LEjo5OF+csEhERERER9WK3TL4Fw3OGe7enF0+HQRN7RwaLzgJAapHq/9WkM3n3GZw9OOIxHpn5yBHNfSQiIiLqi5hYVMCra/dg057DGFOS4Z13mG0RkGfV4/3va6WZb5ASi4MKLEfUBjJaqkSrVmNhdTnue/dHAEBFjinkfllmKaDul2MO+XyGyZdYjFYBFq7laayJxXyb/BcDVpzRkbhz/nDsb+qAMUWteImIiIiIiOjInTHoDNn2E7OekG0XW4qxp3lPUtcws2xmUo9PRERE1Bsxg6MAtwgcanVi6/4W2eOnjSlBfbMDew+3A5BaoU6uzIZRl9x87sIpFd7vzULwfMVY+CcWAxM0gW1SDWESOOGqIf29uWgqrp09MIEVEoWmUqmQZ+thc8WIiIiIiIhIUStPX4mNCzfGvP/o3NEAgFnls5K0IiIiIqL0wMSigr6vaZRt98sx46gBud5tQavGnGEFUB1Bh8ZYqvmshsSSif7sxq7kYYi1ehKGy04bgYH5lrAJxFgqFkeWZmDm4Pyo+xERERERERFR33B0ydEAgHOHnttt75lnzsPGhRsxuXByt70nERERUV/ExKKCdh5shaPTLXvsphOHeL8fUmBFWXbo1qOxUgdkJS2G0Mm7QfnWiMcpz5JapA4rsod83lOxqIIKRl3oisQFE8vw799Nw8Aw72UNWFtlrvSzV1dlR1wbEREREREREfVdZsGMjQs3osRakrT3EDTSDdOe2YpEREREpAzOWFTQroNt2He4TfbYwAJf0m1SvyxkH8F8xVC06tDljwZd5JxxplnANzfNQntAItTDbpQSi2oVIlZY6rXh59gFJhZNghbf3T4bzk4x4tqIiIiIiIiIiI7ENeOvQW1rLcYXjE/1UoiIiIj6FCYWFVKRbcKOA634dk9D2H3GlGVAHSYRmKj8I5gll20Jf9eeTqOGSdBA5ZdV3L5sLr7YfhDFGcaYjm8SpL9euX7vYxK0gLK5VSIiIiIiIiLqA5RsU2oRLPjTrD8pdjwiIiIikjCxqIDdh1rR0elGZY4ZP9Y2I88qT/YNKbTh+32N0GnCV/fFyiRIxxhZYkdDqxP6GGYuJspm0MmqFVUqFSZXxt7GNNzsRSIiIiIiIiIifxsXbkz1EoiIiIgoBsz8KODnA60AgPOqy/Hy17tgM+gUPf7BFof3e51GSiS+efk01BxuR94RVCxGU12VDXuYGY6x8CRBiYiIiIiIiIiIiIiIqPdjYlEBa244Bmu2HEC/XDOeX/MzdhxoUezYS9/8H/Y0+OY2ehKLAFBgD04qWgISgZHmI0Zz/xmjcLDVIXvPeHjWciRrICIiIiIiIqK+QadW9kZsIiIiIup+yeujmUYK7UacNq4Eo0szkG0WUNvYodixcywCFlaXe7fN+shVgAad9Pz4iiwA8Sf1/GcqqtUq5ESYwxjNhIosLD5uACpzzQkfg4iIiIiIiIh6txsm3QCj1qjoDEUiIiIiSg0mFhWkUqkwY2CuYsfLt+nx7PkTsPSkYd7HYq0evHneULz1u2kYXZoJADhuaD4AoCzLFPY1Eyoy8Zvp/Y5gxXI6jRpXHDsQ/fOsih2TiIiIiIiIiHqXUmspvjznS2jUHJlCRERE1NuxFarC5gwvwKvr9gAABuRbjuhYJkF7RBWDw4vtsu/X3nwctJrwJYyvXDIl4fdKlk23zsaHm+tQlGFM9VKIiIiIiIiIiIiIiIjSGhOLCps2IAc6jQoq+NqSChGSeeGcPbEMY8syFF1blllQ9HjdwWLQYt6oolQvg4iIiIiIiIiIiIiIKO2xFarCTIIW48szoVap0OF0AwAeWTAGRw/MRb7NAMDXlrQkU6rCK+9qTzqowNcy9K7TRuAX40tlxx5TmhH3zEQiIiIiIiIiIiIiIiIiJbBiMQmuOn4QVm7cB4NOytuWZ5vx119P9D4/piwTX980yzsvMc9mwJdLjkW7wx32mFvvmoudB1uh13IeAREREREREREREREREXU/JhaTYEJFFsaVZUKtDl9eGDg7Mc9qiHhMjVqFfjnmsM+/e+VR+Nfa3Si0Rz4OERERERERERERERERUSKYWEySSEnFZBhYYMUNc4d063sSERERERERERERERFR+uCMRSIiIiIiIiIiIiIiIiKKiolFIiIiIiIiIiIiIiIiIoqKiUUiIiIiIiIiIiIiIiIiiirtZiyKoggAaGxsTPFKiIiIeg7P56Lnc5KSh7EIERFRMMYi3YexCBERUTDGIkSxS7vEYlNTEwCgtLQ0xSshIiLqeZqammC321O9jD6NsQgREVF4jEWSj7EIERFReIxFiKJTiWmWgne73di7dy+sVitUKpUix2xsbERpaSl27doFm82myDHTFc+lcngulcNzqRyeS2Uk4zyKooimpiYUFRVBrWan9GRiLNKz8Vwqh+dSOTyXyuG5VAZjkd6NsUjPxnOpHJ5L5fBcKofnUjlKn0vGIkSxS7uKRbVajZKSkqQc22az8QNBITyXyuG5VA7PpXJ4LpWh9HnkHXndg7FI78BzqRyeS+XwXCqH51IZjEV6J8YivQPPpXJ4LpXDc6kcnkvlKHkuGYsQxYapdyIiIiIiIiIiIiIiIiKKiolFIiIiIiIiIiIiIiIiIoqKiUUF6PV6LF26FHq9PtVL6fV4LpXDc6kcnkvl8Fwqg+eRAvHvhHJ4LpXDc6kcnkvl8Fwqg+eRAvHvhHJ4LpXDc6kcnkvl8Fwqh+eSKHVUoiiKqV4EEREREREREREREREREfVsrFgkIiIiIiIiIiIiIiIioqiYWCQiIiIiIiIiIiIiIiKiqJhYJCIiIiIiIiIiIiIiIqKomFgkIiIiIiIiIiIiIiIioqiYWIzR448/joqKChgMBkyaNAlffvllxP1feeUV57ADKQAADvNJREFUDB48GAaDASNGjMCKFSu6aaU9Xzzn8umnn8b06dORmZmJzMxMzJo1K+q5Tyfx/r30WL58OVQqFebPn5/cBfYi8Z7LhoYGLFq0CIWFhdDr9Rg4cCD/P0f85/Ghhx7CoEGDYDQaUVpaisWLF6O9vb2bVttzffzxxzjppJNQVFQElUqF119/PeprPvzwQ4wdOxZ6vR79+/fHX//616Svk7oXYxHlMBZRDmMR5TAWUQZjEWUwFqFQGIsoh7GIchiLKIexiHIYjxw5xiJEPZxIUS1fvlwUBEH885//LP7vf/8TL7roIjEjI0Osra0Nuf/q1atFjUYj3nPPPeJ3330n3nTTTaJOpxM3btzYzSvveeI9l2effbb4+OOPi+vWrRO///578fzzzxftdru4e/fubl55zxPvufTYvn27WFxcLE6fPl085ZRTumexPVy857Kjo0McP368OHfuXPHTTz8Vt2/fLn744Yfi+vXru3nlPUu85/Ef//iHqNfrxX/84x/i9u3bxf/85z9iYWGhuHjx4m5eec+zYsUKccmSJeKrr74qAhBfe+21iPtv27ZNNJlM4lVXXSV+99134qOPPipqNBpx5cqV3bNgSjrGIsphLKIcxiLKYSyiDMYiymEsQoEYiyiHsYhyGIsoh7GIchiPKIOxCFHPxsRiDCZOnCguWrTIu+1yucSioiJx2bJlIfc/88wzxRNPPFH22KRJk8Tf/va3SV1nbxDvuQzU2dkpWq1W8bnnnkvWEnuNRM5lZ2enOGXKFPGZZ54RFy5cyAC6S7zn8k9/+pNYWVkpOhyO7lpirxDveVy0aJF4zDHHyB676qqrxKlTpyZ1nb1NLAH0ddddJw4bNkz22FlnnSXOnj07iSuj7sRYRDmMRZTDWEQ5jEWUwVgkORiLkCgyFlESYxHlMBZRDmMR5TAeUR5jEaKeh61Qo3A4HPjmm28wa9Ys72NqtRqzZs3CmjVrQr5mzZo1sv0BYPbs2WH3TxeJnMtAra2tcDqdyMrKStYye4VEz+Xtt9+OvLw8XHjhhd2xzF4hkXP55ptvorq6GosWLUJ+fj6GDx+Ou+66Cy6Xq7uW3eMkch6nTJmCb775xtsSZNu2bVixYgXmzp3bLWvuS/i507cxFlEOYxHlMBZRDmMRZTAWSS1+7vRtjEWUw1hEOYxFlMNYRDmMR1KHnztE3Uub6gX0dPX19XC5XMjPz5c9np+fjx9++CHka2pqakLuX1NTk7R19gaJnMtAf/jDH1BUVBT0QZFuEjmXn376KZ599lmsX7++G1bYeyRyLrdt24b//ve/OOecc7BixQps2bIFl112GZxOJ5YuXdody+5xEjmPZ599Nurr6zFt2jSIoojOzk5ccskluPHGG7tjyX1KuM+dxsZGtLW1wWg0pmhlpATGIsphLKIcxiLKYSyiDMYiqcVYpG9jLKIcxiLKYSyiHMYiymE8kjqMRYi6FysWqde4++67sXz5crz22mswGAypXk6v0tTUhHPPPRdPP/00cnJyUr2cXs/tdiMvLw9PPfUUxo0bh7POOgtLlizBk08+meql9Soffvgh7rrrLjzxxBNYu3YtXn31Vbz99tu44447Ur00IqKQGIskjrGIshiLKIOxCBH1NoxFEsdYRFmMRZTDeISIeiNWLEaRk5MDjUaD2tpa2eO1tbUoKCgI+ZqCgoK49k8XiZxLj/vuuw9333033n//fYwcOTKZy+wV4j2XW7duxY4dO3DSSSd5H3O73QAArVaLzZs3o6qqKrmL7qES+XtZWFgInU4HjUbjfWzIkCGoqamBw+GAIAhJXXNPlMh5vPnmm3HuuefiN7/5DQBgxIgRaGlpwcUXX4wlS5ZArea9L7EK97ljs9l4V14fwFhEOYxFlMNYRDmMRZTBWCS1GIv0bYxFlMNYRDmMRZTDWEQ5jEdSh7EIUffiv0xRCIKAcePGYdWqVd7H3G43Vq1aherq6pCvqa6ulu0PAO+9917Y/dNFIucSAO655x7ccccdWLlyJcaPH98dS+3x4j2XgwcPxsaNG7F+/Xrvn5NPPhkzZ87E+vXrUVpa2p3L71ES+Xs5depUbNmyxftLCAD8+OOPKCwsTNvgOZHz2NraGhQge34pEUUxeYvtg/i507cxFlEOYxHlMBZRDmMRZTAWSS1+7vRtjEWUw1hEOYxFlMNYRDmMR1KHnztE3UykqJYvXy7q9Xrxr3/9q/jdd9+JF198sZiRkSHW1NSIoiiK5557rnj99dd791+9erWo1WrF++67T/z+++/FpUuXijqdTty4cWOqfoQeI95zeffdd4uCIIj//Oc/xX379nn/NDU1pepH6DHiPZeBFi5cKJ5yyindtNqeLd5zuXPnTtFqtYqXX365uHnzZvGtt94S8/LyxDvvvDNVP0KPEO95XLp0qWi1WsUXX3xR3LZtm/juu++KVVVV4plnnpmqH6HHaGpqEtetWyeuW7dOBCA+8MAD4rp168Sff/5ZFEVRvP7668Vzzz3Xu/+2bdtEk8kkXnvtteL3338vPv7446JGoxFXrlyZqh+BFMZYRDmMRZTDWEQ5jEWUwVhEOYxFKBBjEeUwFlEOYxHlMBZRDuMRZTAWIerZmFiM0aOPPiqWlZWJgiCIEydOFD///HPvczNmzBAXLlwo2//ll18WBw4cKAqCIA4bNkx8++23u3nFPVc857K8vFwEEPRn6dKl3b/wHijev5f+GEDLxXsuP/vsM3HSpEmiXq8XKysrxT/+8Y9iZ2dnN6+654nnPDqdTvHWW28Vq6qqRIPBIJaWloqXXXaZeOjQoe5feA/zwQcfhPy3z3P+Fi5cKM6YMSPoNaNHjxYFQRArKyvFv/zlL92+bkouxiLKYSyiHMYiymEsogzGIspgLEKhMBZRDmMR5TAWUQ5jEeUwHjlyjEWIejaVKLKmmoiIiIiIiIiIiIiIiIgi44xFIiIiIiIiIiIiIiIiIoqKiUUiIiIiIiIiIiIiIiIiioqJRSIiIiIiIiIiIiIiIiKKiolFIiIiIiIiIiIiIiIiIoqKiUUiIiIiIiIiIiIiIiIiioqJRSIiIiIiIiIiIiIiIiKKiolFIiIiIiIiIiIiIiIiIoqKiUUiIiIiIiIiIiIiIiIiioqJRSLqtVQqFV5//fVUL4OIiIjSFGMRIiIiSiXGIkRElApMLBKlKZVKFfHPrbfe2m1rOfroo73vazAYMHToUDzxxBNRX7dv3z6ccMIJ3bBCIiIiUhpjESIiIkolxiJERESJ0aZ6AUSUGvv27fN+/9JLL+GWW27B5s2bvY9ZLBbv96IowuVyQatN3j8ZF110EW6//Xa0trbi+eefx6JFi5CZmYkFCxYE7etwOCAIAgoKCpK2HiIiIkouxiJERESUSoxFiIiIEsOKRaI0VVBQ4P1jt9uhUqm82z/88AOsViveeecdjBs3Dnq9Hp9++inOP/98zJ8/X3acK6+8EkcffbR32+12Y9myZejXrx+MRiNGjRqFf/7zn1HXYzKZUFBQgMrKStx6660YMGAA3nzzTQDSnXuXX345rrzySuTk5GD27NkAglt+7N69GwsWLEBWVhbMZjPGjx+PL774wvv8G2+8gbFjx8JgMKCyshK33XYbOjs7Ez+JRERElDDGIoxFiIiIUomxCGMRIiJKDCsWiSis66+/Hvfddx8qKyuRmZkZ02uWLVuGv//973jyyScxYMAAfPzxx/jVr36F3NxczJgxI+b3NhqNcDgc3u3nnnsOl156KVavXh1y/+bmZsyYMQPFxcV48803UVBQgLVr18LtdgMAPvnkE5x33nl45JFHMH36dGzduhUXX3wxAGDp0qUxr4uIiIi6D2MRIiIiSiXGIkRERMGYWCSisG6//XYcd9xxMe/f0dGBu+66C++//z6qq6sBAJWVlfj000/xf//3fzEF0C6XCy+++CK+/fZbb4ALAAMGDMA999wT9nUvvPAC9u/fj6+++gpZWVkAgP79+3ufv+2223D99ddj4cKF3nXdcccduO666xhAExER9VCMRYiIiCiVGIsQEREFY2KRiMIaP358XPtv2bIFra2tQUG3w+HAmDFjIr72iSeewDPPPAOHwwGNRoPFixfj0ksv9T4/bty4iK9fv349xowZ4w2eA23YsAGrV6/GH//4R+9jLpcL7e3taG1thclkivbjERERUTdjLEJERESpxFiEiIgoGBOLRBSW2WyWbavVaoiiKHvM6XR6v29ubgYAvP322yguLpbtp9frI77XOeecgyVLlsBoNKKwsBBqtXwEbOBaAhmNxojPNzc347bbbsNpp50W9JzBYIj4WiIiIkoNxiJERESUSoxFiIiIgjGxSEQxy83NxaZNm2SPrV+/HjqdDgAwdOhQ6PV67Ny5M665AQBgt9tlLTriNXLkSDzzzDM4ePBgyLvzxo4di82bNx/RexAREVFqMRYhIiKiVGIsQkRExMQiEcXhmGOOwb333ovnn38e1dXV+Pvf/45NmzZ523lYrVZcc801WLx4MdxuN6ZNm4bDhw9j9erVsNls3j7+ybBgwQLcddddmD9/PpYtW4bCwkKsW7cORUVFqK6uxi233IJ58+ahrKwMv/jFL6BWq7FhwwZs2rQJd955Z9LWRURERMphLEJERESpxFiEiIgIUEffhYhIMnv2bNx888247rrrMGHCBDQ1NeG8886T7XPHHXfg5ptvxrJlyzBkyBDMmTMHb7/9Nvr165fUtQmCgHfffRd5eXmYO3cuRowYgbvvvhsajca79rfeegvvvvsuJkyYgMmTJ+PBBx9EeXl5UtdFREREymEsQkRERKnEWISIiAhQiYGNwYmIiIiIiIiIiIiIiIiIArBikYiIiIiIiIiIiIiIiIiiYmKRiIiIiIiIiIiIiIiIiKJiYpGIiIiIiIiIiIiIiIiIomJikYiIiIiIiIiIiIiIiIiiYmKRiIiIiIiIiIiIiIiIiKJiYpGIiIiIiIiIiIiIiIiIomJikYiIiIiIiIiIiIiIiIiiYmKRiIiIiIiIiIiIiIiIiKJiYpGIiIiIiIiIiIiIiIiIomJikYiIiIiIiIiIiIiIiIiiYmKRiIiIiIiIiIiIiIiIiKL6/3g5xzfBujAjAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -617,12 +644,12 @@ "name": "stderr", "output_type": "stream", "text": [ - "100%|██████████| 50/50 [16:46<00:00, 20.13s/it] \n" + "100%|██████████| 10/10 [00:40<00:00, 4.08s/it]\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAC7AAAAPgCAYAAACx8HFwAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzde1yb9f3//ycJp6TUHkgP1BbDrC10bM52bqzIpHU6nTgwxakz087DdJs70jlRp/UzLTtI99X587SpVWtxn1GKKx43bRU7nSvqHC7UOo1pLVaDpSfCMfn9wS35lEJCgEASeNxvt94I1/W6Xtc7lENyXa/3653g8/l8AgAAAAAAAAAAAAAAAAAAAABglBmiPQAAAAAAAAAAAAAAAAAAAAAAwMRAATsAAAAAAAAAAAAAAAAAAAAAYExQwA4AAAAAAAAAAAAAAAAAAAAAGBMUsAMAAAAAAAAAAAAAAAAAAAAAxgQF7AAAAAAAAAAAAAAAAAAAAACAMUEBOwAAAAAAAAAAAAAAAAAAAABgTFDADgAAAAAAAAAAAAAAAAAAAAAYExSwAwAAAAAAAAAAAAAAAAAAAADGBAXsAAAAAAAAAAAAAAAAAAAAAIAxQQE7AAAAAAAAAAAAAAAAAAAAAGBMJEZ7AAAAAAAAAAAAAAAAAAAAAACiz+fzqaurS16vN9pDQQwzGAxKSkpSQkLCsI6ngB0AAAAAAAAAAAAAAAAAAACYwHp6euR2u3Xw4EF1dXVFeziIA0lJSZo8ebIsFouMRuOQjk3w+Xy+URoXAAAAAAAAAAAAAAAAAAAAgBjW09OjXbt2qaOjQ1OmTFFaWpqMRuOwu2tjfPP5fOrp6dGhQ4e0f/9+paSkaN68eUMqYqeAHQAAAAAAAABi1OHDh7Vp0yY999xz+uc//6mPP/5Y+/btk8lkksVi0ec+9zmdcsopOv/88zVnzpxoDxcAAAAAAAAAEIf27t2r1tZWZWZmymQyRXs4iCMej0cul0tTp07VrFmzwj6OAnYAAAAAAAAAiDE9PT363e9+p1//+tdyu92DxhsMBp133nm69dZbdfzxx4/BCAEAAAAAAAAA44HP59N///tfpaWlafbs2dEeDuJQc3OzDh8+rOOPPz7srv2JozwmAAAAAAAAAMAQtLa26oILLtAzzzwT2DZ//nydeeaZysnJkcVi0eHDh7Vnzx5t3bpVL774ojo7O/WnP/1J7e3tqq2tjd7gAQAAAAAAAABxpaurS11dXUpLS4v2UBCnJk+erNbWVnV1dSk5OTmsYyhgBwAAAAAAAIAY0d3dra9//euqr6+XJM2aNUt33nmnVqxYMWDXkuuvv15ut1u33Xabfv/734/1cAEAAAAAAAAAcc7r9UqSjEZjlEeCeOX/3vF/L4XDMFqDAQAAAAAAAAAMzXXXXRcoXs/MzNQrr7yi0tLSkEtuWiwW/epXv9Krr76qT3/602M1VAAAAAAAAADAOBLqOjQQynC+dyhgBwAAAAAAAIAYsGfPHt1xxx2Sei/2Pvroo7JarWEf/+lPf1q33nrrgPs8Ho/uvPNOnX766crIyFBycrLS09N18skn64YbbtCePXsGPK61tVWpqalKSEjQ8ccfH9Y49u7dq6SkJCUkJCg3Nzdo3P79+1VZWamvfOUrmjNnjlJSUjR9+nQtWbJE5eXl+uCDD0KeZ+XKlUpISFBCQoKcTqckqba2VjabTccdd5xSUlL67JMkn8+nbdu26cYbb9Tpp5+uuXPnKjU1VSaTSXPnztXXv/51PfDAA+rs7AzruUrS5s2b9fWvf10ZGRlKTU1VZmamSktL9dxzz0mStm7dGhjn6tWrw8p38cUXa/78+Zo8ebLMZrOysrJkt9v1t7/9LexxAQAAAAAAAAAQqxKjPQAAAAAAAAAAgHTXXXepo6NDknTmmWfqlFNOiUjef/7zn1qxYoV27drVZ/snn3yiTz75RNu3b9fvfvc7/f73v9ell17aJ2bq1Kk655xzVF1drXfffVcvvfTSoOOqqqpSd3e3JOniiy8eMObPf/6zrrrqKn3yySd9tnd2dmrfvn167bXX9P/+3//TPffco0suuWTQ59jZ2anS0lJt3LgxZNxll12mBx98cMB9H3zwgT744ANt3rxZv/3tb/WXv/xFJ5xwQtBc3d3dWrlypR599NE+23ft2qVdu3Zp48aNKisrU1FR0aDj9x93/vnn6+WXX+63z+l0yul06tFHH9WKFSv08MMPy2w2h5UXAAAAAAAAAIBYQwE7AAAAAAAAAMSAp59+OvA4nKLtcLz55ptatmyZDh8+LElatGiRvvWtbykrK0uffPKJamtr9eyzz6qtrU2XXXaZfD6fLrvssj45LrnkElVXV0uSHnnkkUEL2B9++GFJksFgkN1u77f/D3/4g6688kr5fD4lJyeruLhYX/7ylzVr1iwdOnRIL730kjZs2KD29natXLlSycnJuvDCC0Oe88c//rGeeuopHXfccbr44ouVnZ2t9vZ2vfrqq0pJSQnEtbW1KTk5Waeccoq++MUvav78+TrmmGPU0dGhd955RzU1NXrzzTfV1NSks846S6+99pqOOeaYAc951VVXBYrXExMTZbfbdeqppyolJUVvvvmm7r//flVWVvabODCQXbt26Ytf/KKam5slSSeddJJKSko0f/58GQwG7dixQw8//LDeffddbdy4UYcPH9aTTz7Jkr4AAAAAAAAAgLiU4PP5fNEeBAAAAAAAAABMZIcPH9Yxxxwjr9crqbegee7cuSPK6fV6deKJJ6qxsVGSdPnll+vuu+9WYmLfvib333+/rrjiCvl8PpnNZr311luyWq2B/d3d3Tr22GP10UcfaerUqfrwww/7FIUf6a233lJubq4k6fTTT9ezzz7bZ/+bb76pk08+WZ2dnTrhhBP0l7/8RdnZ2f3yOBwOfeUrX9GePXs0efJkOZ1OTZ8+vU/MypUr9dBDDwU+LykpUVVVlVJTU4N+TV588UV95jOf0bRp0wbc7/P59Otf/1rl5eWSpF/+8pe64YYb+sVt2bJFy5cvlyQdc8wxevbZZ/XFL36xT4zb7dZXvvIV/etf/wpsu+mmm7R69ep+58zPz9fLL78so9Gou+++W1dccUW/c3Z0dGjlypV67LHHJPVOBLj88suDPlcAAAAAAAAACEd7e7vee+89ZWVlhby+KkkftHq073DnGI1s9EyblKxjp5qiPYyIslqtev/99/Xggw9q5cqVYe+LhKF8D/nRgR0AAAAAAAAAouzDDz8MFK+npKSMuHhdkp544olA8fpnP/tZ3XPPPTIajf3iLrvsMm3fvl333HOP2tradPvtt+t3v/tdYH9iYqIuvPBC3X777WptbdVf/vIXnXfeeQOe85FHHgk8vvjii/vtX716tTo7O5Wamqonn3xS8+fPHzBPTk6O1q1bpzPOOEMHDx7UH/7wB/385z8P+lyPPfZYPfLII4NeGP/yl78ccn9CQoKuvfZaPfHEE3rppZf00EMPDVjAfuTX57e//W2/4nVJslgseuyxx/SZz3xG3d3dQc+5efNmvfzyy5J6vz4DFa9Lvd8XDz30kF555RU5nU5VVlZSwA4AAAAAAABgzHzQ6tHy27aqo9sb7aGMWEqiQc+vKhyVInafz6fq6mpt2LBBr732mj766CMZjUbNmjVLGRkZ+sIXvqCCggKddtppQVcAHUv+pisrV67s09xmtBnG7EwAAAAAAAAAgAG1tLQEHk+dOjUiOWtqagKPy8rKBixe97v22muVkJDQ7zi/Sy65JPD4yCL1I3m9Xj366KOSpLS0NNlstj77W1tb9fjjj0uSzj333KDF636nn366MjIyJEnPPPNMyNhLL71UaWlpIWOG4pRTTpEkvfPOO33+b6TeTjJPP/20pN7/q1DdarKzs3XWWWeFPJe/i3xKSop++MMfhoxNTk7WhRdeKElqamqSy+UKGQ8AAAAAAAAAkbLvcOe4KF6XpI5u76h0km9tbdWyZcv0jW98Q7W1tXK5XOru7lZKSopcLpe2bdum3/3ud7LZbANeix8txx9/vBYuXKgpU6b023fzzTfr5ptvltPpHLPxSHRgBwAAAAAAAICo8/l8Ec/5j3/8I/D4jDPOCBl73HHHKTs7Ww6HQy6XS83NzYHicUk66aSTlJubq8bGRj399NP6+OOPNWPGjD45tmzZot27d0uSVqxYIbPZ3Gf/tm3b+nSZr62tHfQ5TJ48Wc3NzfrPf/4TMq6goGDQXH7d3d2qqalRbW2t3njjDe3Zs0cHDx4MjO1ou3fvVnp6euDzf/3rX+rq6pIk5efnKzk5OeT5li1bps2bNwfd/+KLL0qSZs2apeeff37Q8e/bty/w+D//+Y8yMzMHPQYAAAAAAAAAMPouvvhivfDCCzIajfrxj3+sK6+8Uscff7wMBoO6u7v1n//8R08//bQ2bNgwpuN67rnnxvR84aCAHQAAAAAAAACi7MgC6dbW1ojkbG5ultRbBD579uxB4xcsWCCHwxE49sgCdqn3wvs111yjrq4uVVVV9esWfmRn9osvvrhf/iO7t6xbt07r1q0L96nok08+Cbl/7ty5YeXZsWOHbDbboAXxRzpw4ECfz/fs2RN4fPzxxw96/Kc+9amg+w4fPiy32y1JcrlcOvfcc8MelzT41wUAAAAAAAAAMDZ27twZaGZyyy236Nprr+2zPzExUZ/97Gf12c9+Vtdcc408Hk80hhkzDNEeAAAAAAAAAABMdLNnz5bB0Hu5tqOjI9DJfCQOHjwoSZo0aVJY8Wlpaf2OPZLdbpfRaJTUt1hdktra2rRx40ZJUmZmppYtW9bv+JEU5vs7ngdjMpkGzbF//34tX748ULw+Z84cXXHFFVq7dq0effRRbdy4UZs2bdKmTZt0/vnnB47r6enpk+fw4cOBx0d3mR9IqK//SCcrdHZGfolbAAAAAAAAAMDQvfHGG4HHxcXFg8YffV3barUqISFB69at08GDB1VeXq6FCxfKZDLJYrGopKSkz8qrQ3Fkbr+VK1cqISEh8PmyZcuUkJAQ+Ge1Wod1rnDRgR0AAAAAAAAAoiwtLU0nnXSSGhoaJEnbtm3rU0Q9HJMnT1Zra2ufgutQDh061OfYo2VkZOgrX/mKnnnmGW3fvl0Oh0M5OTmSpE2bNgWOt9vtfS56+x1ZIH/HHXfoBz/4wZCez0jdeeedge7pF110kR544AElJycPGLtt27ageY4sSG9raxv0vKG+/kd+TRYvXhz4/wcAAAAAAAAAxK/du3cHrp8P1b59+3TyySdrx44dSk5OVmpqqlpaWvT4449r8+bN+sMf/qBLL710xGOcMmWKZs2apb1790qSpk2b1uea+YwZM0Z8jlDowA4AAAAAAAAAMeCrX/1q4PFDDz004nwZGRmSerup+y9Ah/L2228HHs+ZM2fAmIsvvjjw+OGHHx7w8ZExR5o7d27g8a5duwYdT6Q9++yzknqXaf39738ftHhdkt57772g+4782vz3v/8d9Lzvvvtu0H1TpkwJFLFHous+AAAAAAAAACA6Tj755EBzl7Kysj7X3Ifi5ptv1kcffaT//d//1eHDh7V//3795z//0amnniqv16srr7xSr7322ojHe/vtt+vDDz8MfF5TU6MPP/ww8O+f//zniM8RCgXsAAAAAAAAABADvve97yklJUWS9PTTT4fsAh6OL37xi4HH/uLtYFwul5qamiRJmZmZmj179oBx5557ro455hhJ0qOPPiqfz6fm5mY999xzkqQvfOELWrhw4YDHFhQUBC7eP/3000N7MhHgvxCfnp6uadOmBY1rb2/X1q1bg+4/8cQTlZSUJEn6+9//rs7OzpDn3bJlS8j9p556qiTpo48+ogM7AAAAAAAAAMQpq9Wqyy+/XJL073//W9nZ2Vq8eLG+//3v64EHHlBjY6N8Pt+gefbv368///nPOu+885SYmChJysnJ0VNPPaUTTjhB3d3d+sUvfjGqz2UsUMAOAAAAAAAAADHg2GOP1dVXXy1J8vl8+uY3v6n3338/7OMdDoeuv/76wOcrVqwIPK6srFRPT0/QY3/9618HLpwfedzRTCaTSktLJfV2Ud+yZYs2bNgQyB2s+7okzZw5U2eddZak3ov3VVVVYTyryJk0aZKk3kLxAwcOBI27/fbb1dLSEnR/ampqoFv+vn37tG7duqCxTU1Neuqpp0KO65JLLgk8vuGGG8K6gQEAAAAAAAAAiD133XWXfvGLX2jSpEny+Xx6/fXXddddd+myyy7TZz7zGc2ePVs//elPQ66amp+fr9NOO63fdpPJpJ/97GeSepvE7N+/f9Sex1iggB0AAAAAAAAAYkRFRYXy8/Ml9XZFz8vL08aNG0MWNX/yySe64YYbdPLJJ+utt94KbP/a176mz3zmM5Kkf/3rX/rud7+r7u7ufsevW7dO99xzjyTJbDbrRz/6UcgxHlmk/vDDD+vhhx+WJCUnJ+uCCy4Ieeytt96q5ORkSdLll18+aBH7J598orVr1+pvf/tbyLhwnHzyyZJ6JwccWeh/pKqqqrA61/zkJz8JPP7Zz36mf/zjH/1i3G63LrjgggG/5kcqLS0NdMt/+umndfHFF+vQoUNB43t6evT000/rlltuGXScAAAAAAAAAICxk5iYqP/5n//RBx98oEceeUSXX365TjzxxMB18Y8++ki/+93vlJubq1dffXXAHMuXLw+a37/P6/Xqtddei/wTGEOJ0R4AAAAAAAAAAKBXUlKS/vKXv+j888/X3/72N3344YcqLS3VCSecoDPPPFOLFi1Senq6Dh8+rD179qi+vl5bt25Ve3t7v1wGg0Hr16/X0qVLdfjwYf3hD3/Qyy+/rG9961uyWq365JNP9Pjjj+vpp58OHHPHHXfouOOOCznGL3/5y7JarXI6naqqqlJnZ6ek3oL59PT0kMd+7nOf07333qvLLrtMbW1t+uY3v6nf/OY3Ouecc3TCCSfIZDJp//79euedd/Tqq6/qxRdfVHd3tx555JFhfDX7uvrqq/XAAw+ou7tbd955p1577TWVlpbq2GOP1d69e/X444/rueeeU1pamr7+9a9r48aNQXMtX75cl112me6//34dOHBABQUFstvt+vKXv6yUlBS9+eabuv/++/Xxxx/rG9/4hv73f/9XUu//ydESEhK0ceNGfelLX9KuXbu0fv16PfHEEzrvvPO0ZMkSTZ8+Xe3t7dqzZ4/+9a9/6a9//as+/vhjnXbaabrhhhtG/HUBAAAAAAAAAETWlClTZLfbZbfbJUnt7e166aWXdMcdd2jz5s1yu91asWKFdu7cqdTU1D7HHnvssUHzHrnvo48+Gp3BjxEK2AEAAAAAAAAghkyfPl1PP/20brvtNv32t79VS0uLdu7cqZ07dwY9xmg06sILL9Qvf/nLPts/+9nPasuWLbLZbNq9e7caGxv185//vN/xZrNZd9xxhy677LJBx5eQkKBvfetb+uUvfxkoXpf6dmYPZeXKlcrIyNCll16qPXv26I033tAbb7wRND4lJUUWiyWs3KF85jOf0b333qsrr7xS3d3d+vvf/66///3vfWLS09O1YcMG/f3vfw9ZwC5J99xzjzwejzZs2KCuri49+OCDevDBB/vElJWV6cwzzwwUsE+ePHnAXMcee6y2b9+ulStX6qmnntK+fft03333hTz/3LlzB3vKAAAAAAAAAIAYkJqaqq985Sv6yle+opUrV+qhhx7S7t279fTTT6ukpCTaw4uK/u1eAAAAAAAAAABRZTQa9fOf/1xOp1MPPfSQLr74Yi1atEgWi0WJiYk65phjdPzxx8tms+n//b//p927d+uRRx6R1Wrtl+vkk0/W22+/rTvuuEOnnXaaZs2apaSkJE2bNk1LlizRddddp507d4ZVvO53dLF6enq6zj777LCP/+pXv6p3331XDzzwgEpLS5WVlaW0tDQlJiZq2rRpOumkk7Ry5Uo9/PDD+vDDD3XmmWeGnTuUSy+9VP/4xz900UUXae7cuUpKStL06dP1uc99Tr/4xS/05ptv6owzzggrV2Jioh599FH95S9/UVFRkWbOnKnk5GTNnTtXK1as0N/+9jfddtttamlpCRwzffr0oPlmzpypJ598Ui+//LKuvvpqfe5zn1N6erqMRqMmTZqk448/XkVFRfrVr36lxsZGrVu3bqRfDgAAAAAAAADAGPvOd74TeLxjx45++z/44IOgxx65b+bMmZEd2BijAzsAAAAAAAAAxKi0tDRdfPHFYXc3D8ZkMukHP/iBfvCDH0RkXPPnz5fP5xtRjpSUFH3729/Wt7/97WEdv27dumEVcS9evFjr168PGbN69WqtXr06rHznnHOOzjnnnKD7X3311cDjE088cdB8eXl5ysvLC+vcAAAAAAAAAID4kpaWFnickpLSb/+WLVuCHuvfZzAYdNJJJ0VkPAkJCfL5fCO+5j9UdGAHAAAAAAAAAGAU7N+/X4888ogkacaMGcrNzY3yiAAAAAAAAAAAo+G9997T22+/PWjcQw89FHi8ePHifvtfeuklbd26td/29vZ2VVZWSupd5XTq1KnDHuuRjjnmGElSa2trRPKFiwJ2AAAAAAAAAACG6L333tP7778fdH9ra6vOO+88ffzxx5Kkyy+/XImJLIoKAAAAAAAAAOPRW2+9pZycHJ199tl6+OGH5XQ6A/u6urr0+uuv69vf/rbWrl0rSfrCF76gU045pV+eKVOmaMWKFaqurlZ3d7ckqampSWeffbaamppkNBr1P//zPxEbt7/xyqOPPqq2traI5R0MV8sBAAAAAAAAABiihoYGXXDBBcrPz9epp56q+fPna9KkSdq3b58aGhr02GOPBTrWzJ8/X9dff310BwwAAAAAAAAAGDVJSUnyer168skn9eSTT0qSkpOTlZaWpn379snn8wViFy9erE2bNslg6N+H/KabbtK9996r8847TykpKUpNTdX+/fslSQkJCbr77rv1+c9/PmLjvuqqq7Rt2zZt3LhRf/nLXzRz5kwlJiZq7ty5eumllyJ2nqNRwA4AAAAAAAAAwDD09PToxRdf1Isvvhg05qSTTtLjjz+uSZMmjeHIAAAAAAAAAABj6atf/ap27typJ598Ui+99JIaGxu1e/dutba2ymw2a86cOTrppJNks9l03nnnDVi8LknTpk3Tq6++qoqKCm3cuFG7du3S9OnTlZ+fr/Lycn3pS1+K6Ljtdrsk6d5779W///1vNTc3y+v1RvQcA0nwHVnSDwAAAAAAAAAABnXw4EH9+c9/1l//+le99dZbcrvd+uSTT2Q0GjVz5kydfPLJWrFiRcgbEQAAAAAAAAAQbe3t7XrvvfeUlZWl1NTUoHEftHq0/Lat6uge/eLm0ZaSaNDzqwp17FRTtIcSYLVa9f777+vBBx/UypUroz2cIQn3e+hIdGCPAV6vV3v27NHkyZOVkJAQ7eEAAAAAAAAAAMJQWlqq0tLSkDGHDh0ao9EAAAAAAAAAmCh8Pp8OHjyoOXPmjFkDjWOnmvT8qkLtO9w5JucbTdMmJcdU8fpERAF7DNizZ4/mzZsX7WEAAAAAAAAAAAAAAAAAAAAgTuzatUtz584ds/MdO9VE4TciggL2GDB58mRJvb9IjjnmmCiPBpGUnZ2t5uZmZWRkqKmpKdrDAQAAAABgXOL9NwAgXPzNAACEg78XAIBw8TcDABAtBw4c0Lx58wL1p0C8oYA9BiQkJEiSjjnmGArYxxn/0hwGg4H/WwAAAAAARgnvvwEA4eJvBgAgHPy9AACEi78ZAIBo89efAvGGAnYAAAAAAAAAAAAAAAAAAAAAiBKn0xntIYwpQ7QHAAAAAAAAAAAAAAAAAAAAAACYGChgBwAAAAAAAAAAAAAAAAAAAACMCQrYAQAAAAAAAAAAAAAAAAAAAABjggJ2AAAAAAAAAAAAAAAAAAAAAMCYoIAdAAAAAAAAAAAAAAAAAAAAADAmKGAHAAAAAAAAAAAAAAAAAAAAAIwJCtgBAAAAAAAAAAAAAAAAAAAAAGOCAnYAAAAAAAAAAAAAAAAAAAAAwJiggB0AAAAAAAAAAAAAAAAAAAAAMCYoYAcAAAAAAAAAAAAAAAAAAAAAjAkK2AEAAAAAAAAAAAAAAAAAAAAAY4ICdgAAAAAAAAAAAAAAAAAAAADAmEiM9gAAAAAAAAAAAAAAAAAAAAAAxLjWXVJbS7RHMXLmdGnqvGiPYkKjgB0AAAAAAAAAAAAAAAAAAABAcK27pDuXSN0d0R7JyCWmSFc3jGoRe09PjzZu3Ki6ujq98sor+uijj9TW1qapU6dqwYIFKigo0EUXXaTc3NygOV544QVt2LBBL774opqbm9Xe3q4ZM2boxBNP1DnnnKNLLrlEqampQY9fvXq1br755n7bk5OTlZ6ers985jM677zzdMkllygpKSkizztcFLADAAAAAAAAAAAAAAAAAAAACK6tZXwUr0u9z6OtZdQK2F955RVdcsklevvttwPbkpKSNHnyZLW0tGjbtm3atm2bfvWrX8lms6mqqkrJycmB2JaWFl188cV68sknA9tSUlKUmpqq3bt3a/fu3XriiSd06623at26dVq+fPmgY5o1a1bg8cGDB9Xc3Kzm5mY9++yzuvfee/Xss89q2rRpEfoKDM4wZmcCAAAAAAAAAAAAAAAAAAAAgHFq8+bNKiws1Ntvv6309HRVVFTo7bffVmdnp1paWtTZ2al//vOfuvbaa3XMMceopqZGbW1tgeP37t2rvLw8PfnkkzIajfrBD36gt956S+3t7WptbdW+ffv04IMPat68edq1a5fOPPNM1dbWDjquDz/8MPDv8OHDev/993XFFVdIkrZv364f/vCHo/UlGVBcF7B/9NFHqqur04033qizzjpLFotFCQkJSkhI0MqVK0flnFVVVTrjjDM0e/Zspaam6rjjjpPdbtfLL788KucDAAAAAAAAAAAAAAAAAAAAENt27twpu92ujo4OLVq0SG+88YauvfZanXDCCYEYo9Goz3/+86qoqNB7772n4uLiwD6fz6dvfvObeuedd5SUlKRNmzbpjjvu0KJFiwIxU6dO1cqVK/X666/rxBNPVFdXly655BL997//HdJYMzMzdd999wW6t//v//6vDh06NMKvQPgSx+xMo+DIdvajzePxqLS0tE87fklyuVx69NFHVVVVpRtvvFE33XTTmI0JAAAAAAAAAAAAAAAAAAAAQPTdcMMNOnDggFJTU7Vp0ybNnTs3ZPz06dNVW1srn88nSaqrq9Pzzz8vSbr++ut1zjnnBD02PT1df/7zn/XZz35WBw4c0E033aT169cPecxnnnmmnn/+eXV2dmrnzp066aSThpxjOOK6A/uRMjMzdcYZZ4xa/ksvvTRQvL5s2TLV1tbq1Vdf1f3336/jjz9eXq9Xq1ev1n333TdqYwAAAAAAAAAAAAAAAAAAAAAQW/bu3avq6mpJ0kUXXaQFCxaEfWxCQoIk6a677pIkTZ48WWVlZYMed8IJJ+jCCy+UJP3pT3+S2+0e6rADxfOS1NPTM+TjhyuuC9hvvPFGbd68WR9++KHef/993XvvvaNynueff16PPfaYJOmcc87RX//6VxUXF+vkk0/WpZdeqldeeUWZmZmSpJ///Ofat2/fqIwDAAAAAAAAAAAAAAAAAAAAQGzZsmWLvF6vJOncc88d8vHd3d2qr6+XJJ1xxhlKS0sL6zibzRY4/sUXXxzyeZ955hlJvUX0WVlZQz5+uOK6gP3mm29WUVGRZs2aNarnue222yRJiYmJuuuuu2Q0Gvvst1gs+vWvfy1Jam1t1R//+MdRHQ8AAAAAAAAAAAAAAAAAAACA2PDWW28FHp900klDPt7pdOrw4cNDPv5zn/tc4PGbb74Z9nEul0vf+c539Pzzz0vqbfCdnp4e9vEjlThmZ4pTBw8e1HPPPSdJ+spXvqK5c+cOGGez2XTMMcfowIED2rRpk372s5+N5TABAAAAAAAAAAAAAAAAAAAAREFLS0vg8fTp00d0/FAKyS0Wy4A5jjZ79uzA44MHD6qtrS3weXZ2tu66666wzxkJcd2BfSz885//VGdnpyTp1FNPDRqXnJysvLy8wDFdXV1jMj4AAAAAAAAAAAAAAAAAAAAAE1tHR0fQfXv37g38O7J4/eKLL9brr7+uY489diyGGEAB+yD+85//BB5nZ2eHjPXv7+7u1s6dO0d1XAAAAAAAAAAAAAAAAAAAAACi78iu6Z988smIjg/VSf1obrc78HjatGlB43w+n3w+n7xer/bs2aN77rlHU6dO1cMPP6w777xzyOMdqcQxP2Oc2b17d+Dx3LlzQ8bOmzcv8HjXrl1atGjRgHEdHR19ZjkcOHBghKMEEAva2trU1NTUZ5vH45HT6ZTVapXJZOqzLzs7W2azeSyHOGHwfwEAAAAAAAAAAAAAAAAAGCuf/vSnA49ff/11zZkzZ0jHH3fccZo0aZIOHz6s1157LezjXn/99cDjhQsXDhqfkJCgjIwMXXnllVq4cKGWL1+ua665RosXL9by5cuHNOaRoIB9EAcPHgw8TktLCxk7adKkwONDhw4FjauoqNDNN9888sEBiClNTU1asmRJ2PENDQ1avHjxKI5o4uL/AgAAAAAAAAAAAAAAAAAwVpYtWyaDwSCv16tNmzbp7LPPHtLxSUlJKigo0NNPP61nn31WBw8e1OTJkwc9rqamJvC4sLBwSOcsLCzUt771LT388MP6wQ9+oDfffFNGo3FIOYbLMCZniWPt7e2Bx8nJySFjU1JSAo89Hk/QuPLycu3fvz/wb9euXSMfKICoy87OVkNDQ59/69evlyStX7++377s7Owoj3j84v8CAAAAAAAAAAAAAAAAADBWZs2apRUrVkiSNmzYoLfffjvsY30+nyTpe9/7nqTeJtpr164d9LidO3fqsccekySdcsop+tSnPjXUYevGG2+U0WjUf/7zHz300ENDPn646MA+iNTU1MDjzs7OkLEdHR2BxyaTKWhcSkpKn2J3AOOD2WwO2sU7JyeHDt9jiP8LAAAAAAAAAAAAAAAAAMBYuuWWW/TUU0/p0KFDstlseuaZZ3TssccGjd+3b58uv/xy3X///Zo6daqKiopUWFiorVu36tZbb9WSJUtUVFQ04LEtLS0677zz1N7eroSEBN1yyy3DGvPxxx+v888/Xxs2bNAvf/lLfetb31JSUtKwcg0FHdgHcWT7/UOHDoWMPXz4cOBxWlraqI0JAAAAAAAAAAAAAAAAAAAAQOxYsGCBHnnkESUnJ+utt97S5z73Of3617/WO++8E4jp6enR66+/rhtvvFGf+tSnVFNTE9iXkJCgqqoqfepTn1JXV5fOPfdc/ehHP5LD4QjE7N+/Xw899JAWL16sf/3rX5J6u6ifeuqpwx53eXm5EhIS5HQ6df/99w87z1BQwD6IuXPnBh7v3r07ZOyuXbsCj+fNmzdqYwIAAAAAAAAAAAAAAAAAAAAQW0pKSvT8889r/vz5crvduvbaa3XCCScoJSVF6enpSk5O1uLFi/XLX/5S+/fv14UXXqhJkyYFjp89e7ZeeeUVnXHGGeru7tYdd9yhRYsWyWQyadq0aZo6dapWrlwpl8ulpKQk/eY3v9Hq1atHNObc3Fx9/etflyTdeuut6ujoGFG+cFDAPohFixYFHjc1NYWM9e9PTEzUCSecMKrjAgAAAAAAAAAAAAAAAAAAAMaEOV1KTIn2KCIjMaX3+YyS/Px8NTU1qaqqShdddJHmz5+v1NRUHTx4UNOnT9cpp5yi66+/Xg6HQxs2bFBSUlKf42fMmKFnnnlGzz33nC6//HItXLhQycnJam1tDcTMmTNHjY2N+tnPfhaRMV9//fWSept933vvvRHJGUriqJ8hzp188slKTk5WZ2enXnjhBV177bUDxnV2duqVV14JHHP0NxMAAAAAAAAAAAAAAAAAAAAQl6bOk65ukNpaoj2SkTOn9z6fUWQ0GnXBBRfoggsuGHaO5cuXa/ny5X22/elPf9KFF16oPXv26JFHHtEvf/nLoMevXr067O7sJ598snw+37DHOlQUsA9i8uTJOu200/TUU0/pb3/7m3bv3q25c+f2i6upqdGBAwckSeeee+5YDxMAAAAAAAAAAAAAQmpra+u36rTH45HT6ZTVapXJZOqzLzs7W2azeSyHCAAAAACIZVPnjXrhN0I7//zz1dzcrJ/85Ce65ZZbNHnyZF1zzTXRHtaQTfgC9nXr1unb3/62JOmmm24acKbBqlWr9NRTT6m7u1vf//73VVNTI6PRGNjvdrv185//XJI0depUXX755WMydgAAAAAAAAAAAAAIV1NTk5YsWRJ2fENDgxYvXjyKIwIAAAAAAEP14x//WB988IFuu+02/fznP1daWpq+973vRXtYQxLXBewvvfSS3nnnncDnbrc78Pidd97RunXr+sSvXLlyWOdZvny5LrjgAj322GP6y1/+otNPP10//vGPNWfOHP373//WrbfeKpfLJUn69a9/rWnTpg3rPACA2ERHGgAAAAAAAADAeJCdna2GhoY+2xwOh+x2u9avX6+cnJx+8QAAAAAAIPb89re/1W9/+9toD2PY4rqA/Y9//KMeeuihAfdt27ZN27Zt67NtuAXskvTAAw/owIEDevLJJ7VlyxZt2bKlz36DwaBf/OIX+s53vjPscwBDRVEtMDboSAMAAAAAAAAAGA/MZnPQ69c5OTlc2wYAAAAAAGMirgvYx5LJZNITTzyhDRs2aN26dfrXv/6l1tZWzZo1SwUFBbr66qv1pS99KdrDxARDUS0wNuhIAwAAAAAAAAAAAAAAAABAZMR1Afu6deu0bt26EeVYuXLlkDqzf/Ob39Q3v/nNEZ0TiBSKaoGxQUcaAAAAAAAAAAAAAAAAAAAiI64L2IGJjqJaAAAAAAAAAAAAAAAAAAAAxBNDtAcAAAAAAAAAAAAAAAAAAAAAAJgY6MAOAMPkcrnkdrtDxjgcjj4fQ7FYLMrMzIzI2AAAAAAAAAAAAAAAAAAAAGIRBewAMAwul0sLs3PU7mkLK95utw8ak2oya0eTgyJ2AAAAAAAAAAAAAAAAAAAwblHADgDD4Ha71e5pU3pRmZLS5wWN83V3qnv/XiVOmaWExOSgcV0tu9RSVym3200BOwAAAAAAAAAAAAAAAAAAGLcoYAeAEUhKn6eU2fNDB81dNDaDAQAAAAAAAAAAAAAAAAAAiHEUsAMAAAAAAACDaGtrU1NTU59tHo9HTqdTVqtVJpMpsD07O1tms3mshwgAAAAAAAAAAADEBQrYAQAAAAAAgEE0NTVpyZIlYcU2NDRo8eLFozwiAAAAAAAAAAAAID5RwA4AwBgbSudGie6NAAAAQCzIzs5WQ0NDn20Oh0N2u13r169XTk5On1gAAAAAAAAAAAAAA6OAHYgzLpdLbrc76H6Hw9HnYygWi0WZmZkRGxsQLYP9XEix9bMxlM6NEt0bAQAAgFhgNpuDvi7PycnhNTsAAAAAAAAAAAAQJgrYgTjicrm0MDtH7Z62QWPtdvugMakms3Y0OShiR1wbys+FFBs/G0Pp3OiPj1d0mwcAAAAAAAAAAAAAAADGh+ZDzdrXsS/awxixaSnTlJGWEe1hTGgUsANxxO12q93TpvSiMiWlzxswxtfdqe79e5U4ZZYSEpOD5upq2aWWukq53W4K2BHXwvm5kGLrZ2MidW6MdLd5CuIBAAAAAAAAAAAAAACAsdd8qFlFtUXq7OmM9lBGLNmYrLqSulEtYu/p6dHGjRtVV1enV155RR999JHa2to0depULViwQAUFBbrooouUm5sbNMebb76pRx99VFu2bNH777+vffv2yWQy6dhjj9XJJ58sm82mr33ta0pKSupzXGFhoV544YV++cxms4499lgtXbpUV111lfLy8iL+vMNFATsQh5LS5yll9vzgAXMXjd1gJiiPxyOpt9g5Evx5/HkxdIP+XEj8bERBpLvNR7ogHgAAAAAAAADGM5fLJbfbHTLG4XD0+RiKxWKhMRIAAAAATFD7OvaNi+J1Sers6dS+jn2jVsD+yiuv6JJLLtHbb78d2JaUlKTJkyerpaVF27Zt07Zt2/SrX/1KNptNVVVVSk7+v6asBw8e1FVXXaWqqir5fD5JUkJCgqZMmSKPxyOHwyGHw6GHH35Yxx9/vB599FF98Ytf7DeOpKQkTZ8+PfC52+3Wzp07tXPnTj388MO66aabdNNNN43K12AwFLADwDA4nU5JUktdZcTz5ufnRzQnEE2R7jYf6YJ4AAAAAAAAABivXC6XFmbnqN3TFla83W4fNCbVZNaOJgdF7AAAAAAABLF582add9556ujoUHp6ulatWqUVK1bohBNOkNTbmf3111/Xxo0bddddd6mmpkZtbW2BAvZ9+/apoKBAb731lhISEnTBBRfou9/9rvLy8gIxe/bs0VNPPaU77rhDb775pl5++eUBC9iXLl2qrVu3Bj7v7OzUCy+8oO9973t65513tHr1an3+85/X2WefPfpfmKNQwA4Aw2C1WiVJ6UVlSkqfN+J8XS271FJXGcgLYGCRLogHAAAAAAAAgPHK7Xar3dM26L0MX3enuvfvVeKUWUpITA4a57+X4Xa7KWAHAAAAAGAAO3fulN1uV0dHhxYtWqRnnnlGc+fO7RNjNBr1+c9/Xp///Of1s5/9TJdeemmf/RdddJHeeustJSYmasOGDTrvvPP6nWfOnDm67LLLdOmll+qee+5RQkJCWONLTk7W6aefrscff1wnnXSSOjs7deedd1LADgDxwmQySZKS0ucpZfb8iOcFgHjT09Oj+vp6NTc3KyMjQwUFBTIajdEeFgAAAAAAADDhhXUvY+6isRkMAAAAAADj2A033KADBw4oNTVVmzZt6le8frTp06ertrZWPp9PkvTUU0/pqaeekiTdeOONAxavHykhIUHf/e535fV6hzTORYsWacmSJXr55Zf1z3/+c0jHRgoF7AAAABiRmpoalZWVyel0BrZZrVZVVlbKZrNFb2AAAAAAAACICW1tbWpqauqzzePxyOl0ymq19mvukp2dLbPZPJZDBAAAAAAAGJG9e/equrpaUm8X9QULFoR9rL+D+p133ilJmjJlin7605+GfbzBYBjCSHv5i+sPHDgw5GMjgQJ2AAAADFtNTY1KS0tVVFSkqqoq5ebmqrGxUWvWrFFpaamqq6spYgcAAAAAAJjgmpqatGTJkrDjGxoatHjx4lEcEQAAAAAAQGRt2bIl0An93HPPHfLx3d3devHFFyVJp59+uiZNmhTR8R3N36hy+vTpo3qeYChgBwDENY/HI0nqatkVkXz+PP68AILr6elRWVmZioqKVFtbG5jNmZeXp9raWpWUlGjVqlUqLi6W0WiM8mgBAAAAAAAQLdnZ2WpoaOizzeFwyG63a/369crJyekXDwAAAAAAEE/eeuutwOOTTjppyMe///77OnTo0LCPH4pXX301cK0mLy9vVM8VDAXsABCjhrKk6kReTtU/E6ylrjLiefPz8yOaE7GHpYtHpr6+Xk6nU1VVVf2WIjIYDCovL9fSpUtVX1+vwsLC6AwSAAAAAAAAUWc2m4N2VM/JyaHbOgAAAAAAiHstLS2Bx8Ppaj7S48OxZ88ePffcc7rmmmvk9XqVkJCgH//4x6NyrsFQwA4AMWooS6pO5OVUrVarJCm9qExJ6fNGnK+rZZda6ioDeTG+sXTxyDQ3N0uScnNzB9zv3+6PAwAAAAAAADB2WMEUAAAAAICJ7YUXXlBCQsKA+5KSkrR27dqoNaWkgB0ARmCwi76+7k5179+rxCmzlJCYPKQ8Q1lSdSIvp+rvkJ2UPk8ps+dHPC/GN5YuHpmMjAxJUmNj44DLCTU2NvaJAwAAAAAAADB2WMEUAAAAAICxk56eHnj8ySefaM6cOSM6PhKSkpIC3dwTEhJkMpk0Z84cLV26VJdffrkWLFgQkfMMBwXsADAMFotFqSZzRC/6pprMslgsgc9ZUhUYffycjUxBQYGsVqvWrFmj2tpaGQyGwD6v16uKigplZWWpoKAgiqMEAAAAAAAAJiZWMAUAAAAAYOx8+tOfDjx+/fXXh1zAftxxxyktLU2HDh3S66+/HpExLV26VFu3bo1IrkijgB0AhiEzM1M7mhxyu90h40J1cj6axWJRZmZmJIcJAAFtbW1qamrqs83j8cjpdMpqtfZbdSA7O1tmszlkTqPRqMrKSpWWlqqkpETl5eXKzc1VY2OjKioqVFdXp+rqahmNxog/HwAAgNHmcrnCes935MdgeL8HAACAaGAFUwAAAAAAxs6yZctkMBjk9Xq1adMmnX322UM6PjExUV/+8pf15JNP6q9//asOHz6sSZMmjdJoo48CdgAYpszMzLALEOjkDCDampqatGTJkrDjGxoawvq9ZbPZVF1drbKyMi1dujSwPSsrS9XV1bLZbMMaLwAAQDS5XC4tzM5Ru6ctrHi73R5yf6rJrB1NDorYAQAAAAAAAAAAxqlZs2ZpxYoV+vOf/6wNGzbommuu0YIFC8I61ufzKSEhQd///vf15JNPav/+/Vq7dq1+8YtfhHW81+uVwWAYyfDHHAXsAAJGozsvEK8G66AYbqdFiW6LiA3Z2dlqaGjosy3UKhHZ2dlh57bZbCouLlZ9fb2am5uVkZGhgoICOq8DAIC45Xa71e5pU3pRmZLS5wWN83V3qnv/XiVOmaWExOQBY7padqmlrlJut5v3BQAAAAAAAAAAAOPYLbfcoqeeekqHDh2SzWbTM888o2OPPTZo/L59+3T55Zfr/vvv19SpU/W1r31NZ5xxhp599ln9z//8j3JyclRaWhrynPfdd598Pp+uvPLKSD+dUUUBOxBHPB6PpN6b3yPlz+HPKY1ed14gnvQc2idDwuAdFP3CiTObUuVo2kGxCqLKbDYH/Z0diVUijEajCgsLR5QDAAAg1iSlz1PK7Pmhg+YuGpvBIIAJ+AAAAAAAAAAAIBYtWLBAjzzyiM4//3y99dZb+tznPqdVq1ZpxYoVmj+/955TT0+P3nzzTW3atEm///3v1draqvvvvz+QY8OGDSooKJDD4dA3vvENXXjhhbrqqquUl5enpKQkSVJzc7OeffZZ3XHHHXrttdf0u9/9LirPdyQoYAfiiNPplCS11FVGNGd+fr6k0e3OC8QLb8cheX3S+nNNypkRfFkVT7dPzlavrFMNMiUmBI1zfOyVfZOHbosAAAAAECFMwAcAAAAAAAAAALGqpKREzz//vFauXKl33nlH1157ra699lolJycrLS1Nra2t8nq9kqSEhARdeOGFmjRpUuD49PR0vfLKK7riiiv05z//WRs2bNCGDRuUkJCgqVOnyuPxqL29PRCfk5OjgoKCMX+eI0UBOxBHrFarJA26hHk4/EuY+3NKo9+dF4gnOTMMWpxhDBmTP7IfQwAAAADAMDABHwAAIHawOg4AAAAAAP3l5+erqalJf/7zn1VXV6d//OMf+uijj3Tw4EFNnz5d2dnZOvXUU/Wtb31LCxcu7Hf8Mcccoz/96U+67rrrtH79em3dulXvv/++9u3bJ5PJpKysLH3hC1/QeeedpzPPPFNGY+g6t1hEATsQR/wX+cJawnyIOQEAAAAAAOIBE/ABAABiB6vjAAAAAMDEMS1lmpKNyers6Yz2UEYs2ZisaSnTRvUcRqNRF1xwgS644IJh5zjxxBN14oknDvm4rVu3DvucY4UCdgAAAAwZnZUAAAAAAACA+NDVsivkfl93p7r371XilFlKSEweUh5WxwEAAACAiSMjLUN1JXXa17Ev2kMZsWkp05SRlhHtYUxoFLADAABgyOisFLt6enpUX1+v5uZmZWRkqKCgIC6XiopXQ5ncwcQOAIhdHo9H0uCFPuHw5/DnBAAAAMaKxWJRqsmslrrKiOVMNZllsVgCn7M6DgAAAABMLBlpGRR+IyIoYAcAAMCQ0VkpNtXU1KisrExOpzOwzWq1qrKyUjabLXoDm0CGMrmDiR0AELv8f0sjWejjdDqVn58fsXwAAADAYDIzM7WjySG32x0yLtR1vaNZLBZlZmZGcpgAAAAAAGACooAdAADELJfLFdbNlSM/hsLNlcihs1LsqampUWlpqYqKilRVVaXc3Fw1NjZqzZo1Ki0tVXV1NUXsY2AokzuY2AEAsctqtUqS0ovKlJQ+b0S5ulp2qaWuMpATAAAAGEuZmZlhXxPluh4AAAAAABgrFLADAMaFrpZdIff7ujvVvX+vEqfMUkJictC47v17Iz00DJPL5VJO9kK1edrDirfb7YPGmE2pcjTtoIgd405PT4/KyspUVFSk2tpaGQwGSVJeXp5qa2tVUlKiVatWqbi4WEajMcqjHd+Y3AEA44PJZJIkJaXPU8rs+RHNCQAAAAAAAAAAAEx0FLADwATQ1tampqamPts8Ho+cTqesVmu/Qors7GyZzeaxHOKwWSwWpZrMaqmrjPZQoMh2THc4HGrztGv9uSblzDAEjfN0++Rs9co61SBTYkLwfB97Zd/kkdvtpoAd4059fb2cTqeqqqoCxet+BoNB5eXlWrp0qerr61VYWBidQQIAAAAAAAAAAADAKOjp6VF9fb2am5uVkZGhgoICGnsBQIyjgB0AJoCmpiYtWbIk7PiGhoa46RCbmZmpHU2OsIqm7Xa71q9fr5ycnKBxb7zxhi677DI53D0RGZ8/j8fjiUi+WOZyubQwO0ftnraw4sPpmC5JOTMMWpwR+o1l/rywUgHjVnNzsyQpNzd3wP3+7f44AAAAAAAAAAAAABgPampqVFZWJqfTGdhmtVpVWVkpm80WvYEBAEKigB0AJoDs7Gw1NDT02RaqoDs7O3sshzdimZmZYXfUzsnJCVmc7+8Kbq9pj8jY/JxOp/Lz8yOaM9a43W61e9qUXlSmpPTgFeW+7k5179+rxCmzlJCYHDTO8+527a9fPxpDBcadjIwMSVJjY6Py8vL67W9sbOwTBwAAAAAAAAAAAADxrqamRqWlpSoqKlJVVZVyc3PV2NioNWvWqLS0VNXV1RSxA0CMooAdiENdLbuC7gu3MDRUDow/ZrM5aNH2YAXdE43VapUkrbelKscy8uWkHO4e2WvaA3kngqT0eUqZPT900NxFg+bh99TE0tbWpqampj7bPB6PnE6nrFarTCZTn33Z2dkym81jOcSYVlBQIKvVqjVr1qi2tlYGgyGwz+v1qqKiQllZWSooKIjiKAEAAAAAAAAAAAAgMnp6elRWVqaioqI+90jz8vJUW1urkpISrVq1SsXFxTIaR17/AQCILArYgThisViUajKrpa4yIvlSTWZZLJaI5ALGC3+RbI7FqMUZkXsDc3TxLYC+mpqatGTJkrDjGxoamHxzBKPRqMrKSpWWlqqkpETl5eWB7gIVFRWqq6tTdXU1F2YAAIgRTN4DAAAAAAAAgJGpr6+X0+lUVVVVnwZfkmQwGFReXq6lS5eqvr5ehYWF0RkkEGd8Pl+0h4A4NZzvHQrYgTiSmZmpHU0Oud3uoDEOh0N2u13r169XTk5OyHwWi0WZmZmRHiYAAEOWnZ2thoaGPttC/U3Lzs4ey+HFBZvNpurqapWVlWnp0qWB7VlZWSyNBwDAMA22KlA4q6ANlIPJewAAAAAAAAAwMs3NzZKk3NzcAff7t/vjAATnnwTS09MT5ZEgXvm/d46eUBQKBexAnMnMzAyr6DwnJ4eb23HG5XKFnJwg9RZzHvkxGCYnAIg3ZrM56N8t/qaFz2azqbi4WPX19WpublZGRoYKCgrovA4AwBCN9gpoTN4DAAAAAAAAgJHJyMiQJDU2NiovL6/f/sbGxj5xAIJLSkpSUlKSDh06pLS0tGgPB3Ho4MGDge+jcFHADgAxwOVyKSd7odo87WHF2+32kPvNplQ5mnZQxA4AE5DRaGQJPAAARiicFdCk8FdBO3qSMZP3AADAeBfJhi0STVsAAAAA9FdQUCCr1ao1a9aotra2T9dfr9eriooKZWVlqaCgIIqjBOJDQkKCJk+erNbWVk2ZMkUmkynaQ0Ic8Xg8OnDggKZOnaqEhISwj6OAHQBigNvtVpunXevPNSlnRvBlNDzdPjlbvbJONciUOPAve8fHXtk3eeR2u7mgDwAAAADDFO4KaBJF5wAAAEdyuVxamJ2jdk9bWPGDNWyRele02dHk4Jo3AAAAgACj0ajKykqVlpaqpKRE5eXlys3NVWNjoyoqKlRXV6fq6mpWqwbCZLFY5PF45HK5dMwxx2jy5MkyGo1DKkjGxOHz+dTT06ODBw/qwIEDSklJ6bMacTgoYAeAGJIzw6DFGaFfOOfPG6PBAEPk8XgkSV0tuyKSr3v/3t683b6I5ANiSVtbm5qamgKfezweOZ1OWa3WfjOZs7OzZTabx3qIAAAAAAAAw+J2u9XuaVN6UZmS0oNf0PZ1d6p7/14lTpmlhMTkoHFdLbvUUldJ0xYAAAAA/dhsNlVXV6usrExLly4NbM/KylJ1dbVsNlsURwfEF6PRqHnz5sntduvgwYNqbW2N9pAQB5KSkjR16lRZLJYhTxiigB0AAESE0+mUJLXUVUY2b6uXiRsYd5qamrRkyZKwYhsaGujoCgAAAAAA4k5S+jylzJ4fOmjuorEZDAAAAIBxy2azqbi4WPX19WpublZGRoYKCgrovA4Mg9Fo1KxZszRz5kx1dXXJ6/VGe0iIYQaDQUlJScPu0k8BOwAAiAir1SpJg3ZWCpfn3e3aX79e1qmGEecCYk12drYaGhoCnzscDtntdq1fv145OTn9YgEAAAAAAPB/jl7dTmKFOwAAAGAiMxqNKiwsjPYwgHEjISFBycnBV0sDIoECdgAAEBH+m0JhdVYKQ1fLrt68icObpQfEMrPZPGBX9ZycHLqtAwAAAAAADGIoq9tJrHAHAAAAAAAQayhgB4BR0tPTo+3bt0uStm/frhNPPJHliQAAAAAAAAAAGKGjV7eTWOEOAAAAAAAgnlDADgARcuSSpc8//7zWrl2r5uZmSdKVV16p1atX66c//amWL18uiSVLAQAA4gnL0wMAAABA7Ai2up3ECncAAAAAAADxgAJ2AIiQwZYsbW5u1s9+9rPA5yxZCgAAED9Ynh4AosflcsntdoeMcTgcfT6GYrFYlJmZGZGxAQAAAAAAAAAAYOgoYAeACMnOztarr76qr371q9q3b58KCgp00UUXKTExUd3d3Xr00UdVX1+v6dOn6+mnn2bJUgAAgDjC8vQAEB0ul0sLs3PU7mkLK95utw8ak2oya0eTgyJ2AAAAAAAAAACAKKGAHQAixGw268CBA9q3b59OOeUUbd26VQaDIbD/iiuu0Je//GVt27ZNBw4ckNlsjuJoAQAAxre2tjY1NTX12ebxeOR0OmW1WmUymfrsy87ODvn6jOXpASA63G632j1tSi8qU1L6vKBxvu5Ode/fq8Qps5SQmBw0rqtll1rqKuV2uylgBwAAAAAAAAAAiJJxUcD+/vvv64477tATTzyhXbt2KSUlRccff7y+8Y1v6Pvf/35EikTfe+893XHHHfrrX/+q999/X16vV3PmzNHpp5+u73//+/r0pz8dgWcCIN5t3bpVknTzzTf3KV6XJIPBoNWrV+v000/X1q1bddppp0VhhED88PV0SZIc7p6I5PPn8Xg8EckHAIhtTU1NWrJkSdjxDQ0NFKEDQAxLSp+nlNnzQwfNXTQ2gwEAAAAAAAAAAMCIxH0B++bNm2W323XgwIHAtra2Nm3fvl3bt2/XH//4Rz3xxBOaP3+QG1wh3HffffrBD36gzs7OPtvfeecdvfPOO7r//vtVWVmpq6++etjnAABEzkAdVx0OR5+PRxqs4yqio+fQJ5Ike017RPM6nU7l5+dHNCcAjIZIdxCfaLKzs9XQ0NBnm8PhkN1u1/r165WTk9MvHgAAAAAwcv4GEl0tuyKSz5+HxhQAAAAAAADjR1wXsL/++us6//zz5fF4lJaWpvLyci1btkwej0ePPfaY/vCHP+jtt9/W2Wefre3bt2vy5MlDPsdjjz2mK6+8UpI0ZcoUlZWVafny5UpJSdHrr7+u3/zmN3rnnXf0wx/+UDNnztQ3vvGNSD9NAHGksLBQt9xyi2666SYVFhb26cLu9Xp18803B+IwekJ1XLXb7f220XE1NhnTpkuS1ttSlWMxjjifw90je027rFbriHMBwFigg/jImM3moF+PnJwcvlYAgAAmjQEAEFlOp1OS1FJXGfG8NKYAAAAD6enpUX19vZqbm5WRkaGCggIZjSO/vwgAAIDRE9cF7D/60Y/k8XiUmJioZ599Vl/60pcC+5YvX64TTjhB11xzjd5++21VVlZq9erVQ8rf1tamH/3oR5KktLQ0vfTSS8rNzQ3s//znP6/zzz9fp5xyiv7973/rhz/8ob72ta8pLS0tIs8PQPwpLCzUjBkz9NJLL6m4uFjXXXedcnNz1djYqDVr1uill17SzJkz+xWw+zvHONw9Ix6DP8dE7kYzUMfVwYoPEDmDdVbydXeqe/9eJU6ZpYTE5KBx/g7sORajFmdE7gLT0f//QLyj4Gr8ooM4ACBcvB4YGSaNAQAQWf4GEulFZUpKnzfifF0tu9RSV0ljiggZ6QqmLpdLbrc75DlC5TuaxWJRZmbmoHEAAARTU1OjsrKywCQ6qff1SGVlpWw2W/QGBgAAgJDitoD91VdfVX19vSTpsssu61O87ldWVqYHH3xQDodDt99+u66//nolJSWFfY4nn3xSH330kaTeYvkji9f9jjnmGK1du1ann3669u7dq3Xr1unqq68e5rMCEO+MRqPuuecerVixQs8995zq6uoC+/wXeO++++5+s739b6btNe0RG8tE7kYTrOPqRP16jBWLxaJUkzninZUAhEbB1fhFB3EAQLh4PTAyTBoDACCy/JPnktLnKWX2/IjnxciMZAVTl8ulnOyFavOEdy9joHxHM5tS5WjaQRE7AGBYampqVFpaqqKiIlVVVfVpLldaWqrq6mqK2AEAAGJU3Baw19bWBh5/+9vfHjDGYDDo4osvVnl5uVpbW7VlyxadccYZYZ9j+/btgcdnnXVW0LjCwkKlpqaqvb1d1dXVFLADE5zNZtPGjRv105/+VO+//35g+8yZM4PO8vZ3jllvS1WOZWSdph3uHtlr2ulGgzGXmZmpHU2OsLrvBCsEGSgOQGiRLriigysAAPGHAuyRYdIYAACYSEaygqnb7Vabp13rzzUpZ4Yh6Dk83T45W72yTjXIlJgQNM7xsVf2TR653W4K2AEAQ9bT06OysjIVFRWptrZWBkPv36a8vDzV1taqpKREq1atUnFxcb8GcwAAAIi+uC1gf+mllyRJkyZNCtlh6tRTTw083rZt25AK2FtaWgKPZ82aFTQuMTFR06dP1549e/Tyyy+ru7tbiYlx+6UFEAE2m03FxcWqr69Xc3OzMjIyVFBQEPSNsf+CcI7FqMUZkXnzTDcaRENmZmbYNxooBAEiI9IFV3RwBQAg/lCADQAAgHBFYgXTnBmGQe9l5M8b8tAAABiS+vp6OZ1OVVVVBYrX/QwGg8rLy7V06VLV19ersLAwOoMEAABAUHFbZe1wOCRJ8+fPD1ksfmRXAP8x4UpLSws83r9/f9A4n8+nAwcOSJI6Ozv1zjvv0MkKgIxGI2+EAQBxhw6uAAAAAAAAE0dPT0/YzXgAAIglzc3NkqTc3NwB9/u3++MAAAAQW+KygL29vV1ut1uSNHfu3JCx06ZN06RJk3T48GHt2rVrSOc5sjjnhRdeCNqJ8vXXX9ehQ4cCn7tcLgp5AAAAEJfo4AoAwMDa2trU1NTUZ5u/WcLRTROys7NlNpvHbGwAAADAcNTU1KisrExOpzOwzWq1qrKyUjabLXoDAwAgDBkZGZKkxsZG5eXl9dvf2NjYJw4AAACxJS4L2A8ePBh4fGSX9GD8BexHFpmH46yzzlJiYqK6u7u1du1aXXzxxbJYLH1ivF6vrr/++qDjG0hHR4c6OjoCn/u7twMAAACILy6XKzC5NphgxY1Hs1gsyszMjNjYAACR1dTUFLS5gd1u7/N5Q0MDk74AAAAQ02pqalRaWqqioiJVVVUpNzdXjY2NWrNmjUpLS1VdXU0ROwAgphUUFMhqtWrNmjWqra2VwWAI7PN6vaqoqFBWVpYKCgqiOEoAAAAEE5cF7O3t7YHHycnJg8anpKRIkjwez5DOM2/ePF111VW688479cEHHyg/P1+/+c1vtGzZMiUnJ+uNN97Q6tWr9cwzzyg5OVmdnZ1hnaeiokI333zzkMYCABhbjo+9Ifd7un1ytnplnWqQKTFh2HkAAPHL5XIpJ3uh2jztgwerf3Hj0cymVDmadlDEDgAxKjs7Ww0NDX22eTweOZ1OWa1WmUymPrFHiuSEJ4lJTwAAABiZnp4elZWVqaioqE/BX15enmpra1VSUqJVq1apuLhYRqMxyqMFAGBgRqNRlZWVKi0tVUlJicrLywMTsioqKlRXV6fq6mr+lgHABDfQ6qrBru1LrLAKjKW4LGBPTU0NPPYXjYfi73Z+9C+bcNx2221699139eSTT+rtt99WSUlJv5jPf/7zOvnkk3X33XdLkiZPnhwyZ3l5uX76058GPj9w4IDmzZs35LEBACLPYrHIbEqVfdPQJj2FYjal9lvBAxhtFEkBo8/tdqvN067155qUM8MQNC6cSU+Oj72yb/LI7XbzswYAMcpsNg/YVT0/Pz/kcZGe8CRNrElP/kYRXS27IpLPn2eojS4AAADGk/r6ejmdTlVVVfXpVitJBoNB5eXlWrp0qerr61VYWDimY6O4BAAwFDabTdXV1SorK9PSpUsD27OyslhNBAAgKfTqqgNhhVVg7MRlAfuRBeKHDh0aNP7w4cOSpLS0tCGfKyUlRZs3b9YDDzyg/+//+//0r3/9Sz6fT5I0c+ZMXXHFFbrhhhv0k5/8JHDMtGnTBs3p7woPRBPFjUB/mZmZcjTtCOtnw263a/369crJyQkZ29HRIbfbHTJnuD9r/JwhHC6XSwuzc9TuaQsrPpwiqVSTWTuaHHz/AQPImWHQ4ozQHVzyma8KABNWJCc8SRNv0pPT6ZQktdRVRjzvYJMPAADAyAw2Ac3X3anu/XuVOGWWEhKDr7gcqYls+D/Nzc2SpNzc3AH3+7f748YSxSUAgKGy2WwqLi5WfX29mpublZGRoYKCAjqvY1Qw2Q6IPwOtrhqq5ufoFVYBjJ64LGBPTU1Venq6WlpatHv37pCx+/btCxSwD7fLucFg0OWXX67LL79cBw8e1N69e2U2mzV79uxAV4KdO3cG4hctWjSs8wBjiQ5wQHCZmZlhfx/n5OSEvDjeW0i8UO0R+llLNaVqBz9nGITb7Va7p03pRWVKSg/++mcoNwlb6ionTJEUAADAaGDC0/BYrVZJGvS1bbj8r239eQEAQORZLBalmswRnYCWajKzymUEZWRkSJIaGxuVl5fXb39jY2OfuLFEcQkAYDiMRuOYrxqCiYnJdkD8Cba6qjR4zQ+A0RWXBexSb5F4fX293nnnHXV3dysxceCncuSst8E65IZj8uTJfTrAS1JPT4/eeOMNSdKnPvUpLqAhLtABDhgbvYXE7Zr7nblKmRN89Q1vp1dd7i4lWZJkSB74Z7JjT4d237ebnzOELSl9nlJmzw8dNJeJdwAAAIhd/q5VYb22HUZeAAAQeZmZmdrR5IjoKpesTBlZBQUFslqtWrNmjWprawMNuyTJ6/WqoqJCWVlZKigoGPOxUVwCALGDTtNAf0y2AwAgcuK2gP2UU05RfX29Dh8+rIaGBn3xi18cMO6FF14IPB6tZYG3bNmilpYWSdL5558/KucARgsd4ICxkTInRSbrIAUSC8ZmLAAAAAAAAAAwmiK5yiUiz2g0qrKyUqWlpSopKVF5eblyc3PV2NioiooK1dXVqbq6WkZj6PtHAIDxjU7TQH9MtgMAIHLitoC9pKREFRUVkqQHH3xwwAJ2r9erhx9+WJI0depULVu2LOLj8Pl8Wr16tSQpKSlJV1xxRcTPAQDAROb42Bty/1BWigAAAAAAAAAASDabTdXV1SorK9PSpUsD27OyslRdXS2bzRbF0QEAYgGdpgEAADCa4raA/Qtf+IIKCgpUX1+v+++/X5dccom+9KUv9YmprKyUw+GQJP3oRz9SUlJSn/1bt24NFLVfcsklWrduXb/ztLS0KC0tTSkpKf329fT06Ic//KG2bdsmSSovL1dWVlYknh4AABOexWKR2ZQq+yZPxHKaTamyWCwRywcAAAAAAAAA8cpms6m4uFj19fVqbm5WRkaGCgoK6LwOIKra2trU1NTUZ5vH45HT6ZTVapXJ1HfF4+zsbJnN5rEc4oRBp2kAAACMprgtYJek22+/Xfn5+fJ4PDrjjDN03XXXadmyZfJ4PHrsscd03333SZIWLFigsrKyYZ1jy5Ytuvrqq3XBBRfo1FNPVWZmptrb2/Xmm2/qvvvu0xtvvCFJOuuss3T99ddH6qkBADDhZWZmytG0Q263O2RcqE4PR7NYLGEvXQwAAAAAAAAA453RaFRhYWG0hwEAAU1NTVqyZEnY8Q0NDRRSA0PERBEAABAL4rqA/aSTTtKf/vQn2e12HThwQNddd12/mAULFuiJJ57Q5MmTh32evXv36vbbb9ftt9/eb19CQoK+/e1v66677lJycvKwzwEAkuT42Btyv6fbJ2erV9apBpkSE4aVA4gnmZmZYRech9PpweVy6bXXXgsZ41+9xf8xlIlWED/Y14SvHQAAAAAAAAAAGIns7Gw1NDT02RaqmVF2dnbQXBTpAgNjoggAAIgFcV3ALknnnHOO3nzzTd1+++164okntHv3biUnJ2v+/Pk677zzdPXVV4/oDUZBQYF++9vf6vnnn1dTU5P27t0rg8GgOXPmaNmyZfr2t7+tL37xixF8RgAmIovFIrMpVfZNnojkM5tSZbFYIpILGC9cLpcWZi9Uu6c9rHi73T5oTKopVTuadoz7QuyeQ/tkSAjvayKFF2c2pcoxAb52iH3cwAAAAAAAIPa5XK6wVmo88mMwNFYAgNhmNpuDFsqG08zoSBTpxhaux8eOSE4UAQAAGK64L2CXpOOOO05r167V2rVrh3RcYWGhfD5fyJhZs2Zp1apVWrVq1UiGCAAhZWZmytG0I6wL8MHeNB6JC/BAf263W+2eds39zlylzEkJGuft9KrL3aUkS5IMyYagcR17OrT7vt1yu93j/ufN23FIXp+0/lyTcmYE/5qEs0qE1LtShH2TZ0J87RD7uIEBABhtHk/vRGWHuyci+fx5/HkBAADGO5fLpZzshWqLUGMKGisMH69tAcQbinRjC9fjY0ckJ4pgZJjYAQCYyMZFATsAjAeZmZlhXzDnTSMwfClzUmSymkIHLRibscSbnBkGLc4whozJnzdGgwEihBsYAIDR5nQ6JUn2mvAKroaSNz8/P6I5AQAAYpHb7Vabpz0izRVorDAyvLYFEG8o0o0tXI8H+mNiBwBgIqOAHQAAAMCExQ0MAMBos1qtkqT1tlTlWEJPBgyHw90je017IC8AAMBEMVrNFeh6GT5e2wLh4fcKMDCuxwP9MbEDADCRUcAOAAAAAAAAjBJ/YUKOxThowdVw8gIIX09Pj+rr69Xc3KyMjAwVFBTIaIzczyUAID7R9TJ8vLYFwsPvFQBAuJjYMXxMGAOA+EcBOwAAAAAAAICY1tWyK+R+X3enuvfvVeKUWUpITB52HoxfNTU1Kisrk9PpDGyzWq2qrKyUzWaL3sAAAFFH10sAkcbvFQAARh8TxgAg/lHADsSxgWYTOhyOPh+PxGzCicPlcsntdoeMCfW9cjSLxaLMzMyIjA0AgPHC4/FI6l3ueqT8Ofw5AQBAL4vFolSTWS11lRHLmWoyy2KxRCwfYl9NTY1KS0tVVFSkqqoq5ebmqrGxUWvWrFFpaamqq6spYgeACYyulwAijd8rAACMPiaMAUD8o4AdiGOhZhPa7fZ+25hNODG4XC4tzF6odk97WPEDfa8cLdWUqh1NOyhiB+KEvwA2Ut0lu/fv7c3b7YtIPmC88HfvtNeE9zc33Jz5+fkRywcAQLzLzMzUjiZHWJO0g92cOhqTtCeWnp4elZWVqaioSLW1tTIYDJKkvLw81dbWqqSkRKtWrVJxcbGMRmOURwsA4xcNeQAAAABEEhPGACD+UcAOxLGjZxP29PTolVdeUVNTk7Kzs5WXl9fnxhuzCScGt9utdk+75n5nrlLmpASN83Z61eXuUpIlSYZkQ9C4jj0d2n3fbrndbm7wA3HCX1QbyS6VkuRs9Sp/XkRTThiDrYzBqhjxyWq1SpLW21KVYxlZsZPD3SN7TXsgJwAA+D+ZmZlhv/7h5hSOVl9fL6fTqaqqqkDxup/BYFB5ebmWLl2q+vp6FRYWRmeQADAB0JAHAAAAAAAAR6KAHYhjR84mrKmpUVlZWaBoUeotqqqsrGQJ5AkqZU6KTFZT6KAFYzOWiczfCbtjT8eIc/lz+HMCwfgLYNOLypSUPvKKc8+727W/fr2sU4NPdkFwvStj5Kjd0zZobHirYpi1o8lBEXsMMJl6/87mWIxanBGZbp3+nAAAAIiM5uZmSVJubu6A+/3b/XEAgNFxdEMeqfc6p9PplNVq7fd+mIY8AAAAAAAA4xsF7MA4UFNTo9LSUhUVFamqqkq5ublqbGzUmjVrVFpaqurqaorYgSjxTyrZfd/uiObMz8+PWD6MP/4bfknp85Qye/6I83W17OrNm5gw4lwTUe/KGG0hJxT4ujvVvX+vEqfMUkJictBcXS271FJXyaoYAAAAQJgyMjIkSY2NjcrLy+u3v7GxsU8cAGB0HNmQ50hc5wQAAAAAAJiYKGAH4lxPT4/KyspUVFSk2trawFLIeXl5qq2tVUlJiVatWqXi4mIZjZHpDAogfP5O2HO/M1cpc1JGlKtjT4d237c7kBNAfBl0QsHcRWHncjgcYe0fLE6SLBYLxfAAAAAYtwoKCmS1WrVmzZo+184kyev1qqKiQllZWSooKIjiKAEAAAAAABBNbW1tampq6rNtsFWjzGbzWA4RAMYdCtiBOFdfXy+n06mqqqo+N+AkyWAwqLy8XEuXLlV9fb0KCwujM0hgAvO/iUmZkyKT1TRI9NByxoOB3uSFKqzlTR4QWs+hfTIkSHa7Paz4cOLMplQ5mnZQxA4AAIBxyWg0qrKyUqWlpSopKVF5eXlg9cKKigrV1dWpurqaxg8AAAAAAAwThb8YD5qamrRkyZKw4xsaGgZcZQoAED4K2IE419zcLEnKzc0dcL9/uz8OAMZSqDd5AxXW8iYvNvl6uiRJDndPRPL583g8nojkm0i8HYfk9UnrzzUpZ4YhaJyn2ydnq1fWqQaZEhOCxjk+9sq+ySO3200BOwAAAMYtm82m6upqlZWVaenSpYHtWVlZqq6uls1mi+LoAAAA4kNPT4/q6+vV3NysjIwMFRQUMAkQACCJwl+MD9nZ2WpoaOizzeFwyG63a/369crJyekXDwAYGQrYgTiXkZEhSWpsbFReXl6//Y2NjX3i/PxFgxQjAhhNR77Je/755/W73/1Oe/bsCeyfM2eOfvKTn2j58uWBeMSenkOfSJLsNe0Rzet0OpWfnx/RnBNFzgyDFmeEvjmUP2+MBgMAY4xuPgCA4bDZbCouLqboCkDMojAUQCyrqalRWVmZnE5nYJvValVlZSWTAQEAFP5iXDCbzUEnVuTk5Ax50gX3MgBgcBSwA3GuoKBAVqtVa9asUW1trQyG/+vG6vV6VVFRoaysLBUUFPQ5zn+BiWJEAKPJ/yavpqZG11xzjYqKirRx48bAcu1r1qzRNddcQ8e7GGdMmy5JWm9LVY5l5DdOHe4e2WvaZbVaR5wLADDx0M0HwEi5XC653e6QMQ6Ho8/HYCwWCyvZxBGj0ajCwsJoDwMA+qEwFEAsq6mpUWlpqYqKilRVVdXn+n5paSnX9wEAES/8BcYD7mUAwOAoYAfinNFoVGVlpUpLS1VSUqLy8vLAhaOKigrV1dWpurq6X6cWf9EgxYgARltPT4/KyspUVFTUZ6JNXl6eamtrVVJSolWrVqm4uHhUu0r5V4jo2NMRkXz+PBNh5YkEY5IkKcdiHLTr91AcPascAIBw0M0HwEi4XC7lZC9Umye8Cf12uz3kfrMpVY6mHYEidjorAQCGisJQxCPHx96Q+z3dPjlbvbJONciUmDDsPIi+I6/vb9y4Udu2bdPmzZuVkZGhjRs3asWKFWNyfR8AACDecC8DAAZHATswDthsNlVXV6usrExLly4NbM/Kygp6cdt/w5RiRACjrb6+Xk6nU1VVVX1WiZAkg8Gg8vJyLV26VPX19aPaCc/fwWr3fbsjnpeVJwAAGDt08wEwEm63W22edq0/16ScGYagceEUXTk+9sq+ySO32x0oYKezEgBgKGKl8QMQLovFIrMpVfZNkWvqYTalymKxRCwfIst/ff/KK6/UggUL+q0U8Z3vfEebN28e9ev7AHA0JpADiHXcywCAwVHADowTNptNxcXFqq+vV3NzszIyMlRQUMBFbQBR19zcLEnKzc0dcL9/uz9utPhXiJj7nblKmZMy4nwdezq0+77drDwBADHC5XLJ7XaHjHE4HH0+hmKxWALFiACA8SdnhmHQCf3584ael85KAIChiJXGD0C4MjMz5WjaEdb772Cvf47G++/Y5r9uX15ernPOOaffShHXXXddn7h4RSEsEH+YQA4AABD/KGAHxhGj0chFbAAxJyMjQ5LU2NiovLy8fvsbGxv7xI0W/wXmlDkpMlkjt1oEK08AQPS5XC7lZC9Um6c9rHi73T5ojNmUKkfTDm6iAwCGhM5KAIChiJXGD8BQZGZmhv1emdc/8W/mzJmSpFNOOWXAlSK+/OUva9u2bYG4eEUhLBB/mEAOAAAQ/yhgBwAAo6qgoEBWq1Vr1qzpc4FbkrxeryoqKpSVlaWCgoIojhLRMFgHZDolAwiX2+1Wm6dd6881KWeGIWicp9snZ6tX1qkGmRITgsY5PvbKvskjt9vN7xYAMYvXUhiP6HwJYKKJlcYPADBcCQnBr6/EEwphES7es8QOJpADAADEPwrYAQDAqDIajaqsrFRpaalKSkpUXl4eWGK0oqJCdXV1qq6ultFojPZQMUaaD3mlhPA6IEvhxaWaUrWDTsnAhJczw6DFGaH/nuTPG6PBAMAo4bUUYkmkizfofAlgoqHxA4BY99FHH0mStm3bNuD1/W3btvWJi1cUwiJc4/09i8vlktvtDhnDhHkAAABECgXsAABg1NlsNlVXV6usrExLly4NbM/KylJ1dbVsNlsUR4ex1truk3zS3O/MVcqclKBx3k6vutxdSrIkyZAcvKNyx54O7b5vN52SAQDAhMBrKcSSSBdv0PkSwERD4wcAsc6/AsSaNWt077339ru+f+utt+q6665jpQhMGOP5PYvL5dLC7By1e9rCig9vwrxZO5ocXG+IALr/jx9MFBk+vnYAMP5QwA6MIz09Paqvr1dzc7MyMjJUUFDAhW0AMcNms6m4uJjfUwhImZMik9UUOmjB2IwFAABgtDk+9obc7+n2ydnqlXWqQabEhKBx7+3zSeK1FGJDpIs36HwJYCKi8QOAWOZfKeLvf/+73n77bW3bti1wfT8/P18rVqxgpQhMKOP5PYvb7Va7p03pRWVKSg++jKWvu1Pd+/cqccosJSQmB43ratmllrpKJsxHyHjv/j9RuFwu5WQvVJunPaz4cCaKmE2pckyAlRWZZAMA4xMF7MA4UVNTo7KyMjmdzsA2q9WqysrKqF3gZhYwgKMZjUYVFhZGexgAAADAmLFYLDKbUmXf5In2UICIG8/FGwAwlmj8ACBWHblSxIoVK1ReXq6ioiI1NjZqxYoVrBQBjENJ6fOUMnt+6KC5i8ZmMAgYz93/JxK32602T7vWn2tSzozgKyaG2+jC8bFX9k2eCTFRhEk2ADA+UcAOjAM1NTUqLS1VUVGRqqqqAkuMrlmzRqWlpVHr0sIsYAAAAADARJeZmSlH046wlrcNdtNxoDgAADC+0PgBQKxipQgAiD4mkI8vOTMMWpwRevJXfvAa7QmNSTYAML5QwA7EuZ6eHpWVlamoqEi1tbUyGHpnaebl5am2tlYlJSVatWqViouLx7z7AbOAARytp6eHTlIAAACYcDIzM8Pu5MNNRwAAJiaumwEYqdFcGZmVIgAAAAAAkUYBOxDn6uvr5XQ6VVVVFShe9zMYDCovL9fSpUtVX18/5t1bmAUM4Eg1NTUqKyuT0+kMbLNaraqsrKRDCxAmX0+XJMnh7olIPn8ej8cTkXwAAAAAAGDoampq9NOf/lTvv/9+YNtxxx2ntWvXct0MQNhGe2VkVooAAAAAAEQSBexAnGtubpYk5ebmDrjfv90fB2DoBupa4nA4+nw80lC6lkwUNTU1Ki0tVVFRkaqqqpSbm6vGxkatWbNGpaWlLDOKcc1fHN7VsmvEuTo/3ClJste0jzjXkZxOp/Lz8yOacyJxfOwNud/T7ZOz1SvrVINMiQnDyjERjGaXMAAAAACIVTU1NVqxYkW/9zwfffSRVqxYoY0bN3LdDEBYWBkZAIDIc7lccrvdIWNC1Q4MFAcAAHpRwI6oo1BlZDIyMiRJjY2NysvL67e/sbGxTxyAoQvVtcRut/fbNtSuJeNdT0+PysrKVFRUpNra2sBqEXl5eaqtrVVJSYlWrVql4uJilhvFuORfdaClrjJiOX+5LFlfOyFpxHkc7h7Za9pltVpHPqgJyGKxyGxKlX1TZDrYm02pslgsEckVj0a7SxgAAAAAxJqenh5dddVVkqTTTjtN119/faDxw6233qq6ujp997vfnfDXzfzNASKxIh2r0WE8Y2VkAEAwkSzClnrvj2RmZkZkbLHM5XJpYXaO2j1tYcUPVDsAAACCo4AdUUehysgUFBTIarVqzZo1fQpDJcnr9aqiokJZWVkqKCiI4iiB+DZQ15LBJtrg/9TX18vpdKqqqqrP7yhJMhgMKi8v19KlS1VfX8/yozEuEl2mJem9fb5IDy2m+YvD04vKlJQ+b0S5PO9u1/769VqWlajFGZG7cX307zGEJzMzU46mHWFd9A3W6epIHR0dcrvdIfON5wvIdAkDAAAAMNFs3bpVH3/8sU455RQ9/vjjfRo/PP744zr11FP10ksvaevWrTrttNOiPNro8TcHiOSKdKxGBwyOJmQAMD64XC7lZC9Umye811LhFGGbTalyNO2Iq3sQw+F2u9XuaRv0Hp+vu1Pd+/cqccosJSQmB43z3+cDAAC9KGBH1FGoMjJGo1GVlZUqLS1VSUmJysvLAx1aKioqVFdXp+rq6gndnWWi8XeO6djTEZF8/jwTuSNNsK4l3OAIT3NzsyQpNzd3wP3+7f44xB5DSpoMCYpYl+mJxn8jJyl9nlJmzx9Rrq6WXb05Q0wQQGij0WUk3MmVoTpd9XbxWKj2CF5ATjWlakccXUCmSxgAAACAiWbr1q2SpJtvvnnAxg833XSTTj/99AlfwO5vDrDelqocy8judbAaHRA+mpBhrETymm28NfUAxoLb7Vabp13rzzUpZ4YhaFy4jaocH3tl3+SR2+2eMD9vYd3jm7to0Dz++3yjiQloAIB4QgE7hizSL3YoVBk5m82m6upqlZWVaenSpYHtWVlZqq6uls1mi+LoMNb83Wh237c74nkp2B6+wSYUeDu96nJ3KcmSJEPywBcOIjUpYaxlZGRIkhobG5WXl9dvf2NjY584xB5j2jR5fRq0e3S4Xab9ccBYG42lHlNNZu1ocoz4Im1vF492zf3OXKXMSQkaF87fC6n3b8bu+3ZPqAvIAACEwz852+HuGXEuf46JPOE71nHTFgDGB//v6xyLMWIr0rEaHTA4mpCFbzSaZkyUa3qRvmYbqeu1wHiUM8Mw6Gup/JEtJIwYwAQ0AEA8oYAdQ8aLndhks9lUXFys+vp6NTc3KyMjQwUFBXRen4D8nWMGK4ALl78Ajo40w2OxWJRqSo3YhIJUU6osFktEco2VgoICWa1WrVmzRrW1tX26SXm9XlVUVCgrK0sFBQVRHCXCEe7EMiagIVZFeqnHrpZdaqmrjGiReMqcFJmsg9xEXxCRUwEAMCH5J33ba8Jb9STcnEz4jk1cxwQQ6woLC3XLLbfopptuUmFhYb/rZqtXrw7EAcBYowlZeFwul3KyF6otgisrmk2pcsTRyoojEclrtv7rtfX19YM22TnyYygTaTIBgPGBCWgAgHhCATuGjBc7sctoNHIhexwZqEtYsAsqR3YI83eOCasAbgjoSDM8mZmZ2tG0I6zOG+F0ro7HC2VGo1GVlZUqLS1VSUmJysvLlZubq8bGRlVUVKiurk7V1dVMuAEwZiK11CMAAIg//snZ622pyrGM7D2Iw90je007E75jGNcxAQxlJYZorMJQWFiomTNn6qWXXlJxcbGuu+66wHWzNWvWaNu2bZo5cybX/QEghrndbrV52rX+XJNyZgRfMdHT7ZOz1SvrVINMiQlB4xwfe2Xf5JlwKytG4pptz6F9MiSEN0lAYjIBgPGJCWgAgHhCATuGjBc7wNgI1SXs6AsqdAiLbZmZmWFf2Bqvv0dtNpuqq6tVVlampUuXBrZnZWWpurpaNpttzMbSsacj5H5vp1dd7i4lWZJkSA5+sXmwPAAAAABij79QMcdiHHTZ7KHmROzhOiaAoazEEI1rrEajUXfffbdKS0v13HPPqa6uLrDPbDYrISFBd999N40fACAO5MwwDPoeIz94g/GQhjIhS4rOpKxY4O04JK9PTCYAAAAA4gQF7AAQowbqEhaqOxAQ62w2m4qLi1VfX6/m5mZlZGSooKBgzG7AWSwWpZpStfu+3RHLmWpKlcViiVi+SOtq2RVyfzhLboaTBwAAAAAAIBYNZSWGaF1jPbLxg9PpDGyfNWuWbrvttjFt/AAAiE1DmZAl0fhqNCcTAMBI+Hq6JPWu6hcJ/jwejyci+QAAGGsUsANAjArWJSw/Pz8KowEiw2g0Rm3J48zMTO1o2iG32x0yLtRy8kezWCwx2XWjt1jfrJa6yojlTDWZY7pYHwAAYKLw35CK1IpA/jzc6AIAjEfxshJDtBs/ANHkcrnCumZ75MdQYvWaLTASQ5mQ5Y8HAMSenkOfSJLsNe0Rzet0OqkjAQDEJQrYAQDAhJGZmRn2zYtYuok5VL3F+o4JUawPAAAw0fg7s0ZyZSF/3ni50dXW1qampqY+20IVNWVnZ8tsNo/J2AAAGK5oNn4AosXlcmlh9kK1e8Ir4rLb7YPGpJpStaNpB9cyMa7Ey4QsALHJ37SArt/RZ0ybLklab0tVjmXkk1Ud7h7Za9pltVpHnAsAgGiggB0AAGAcmijF+hOV42NvyP2ebp+crV5ZpxpkSkwYdh4AABB7/Dek5n5nrlLmpIw4X8eeDu2+b3dc3ehqamrSkiVLBtw3UFFTQ0MDr3cBAEAfg3XypuP32HC73Wr3tA/62tbb6VWXu0tJliQZkg1B4/yvbd1ud1z+n/T09LASAwAg4vzNEOj6PXT+Iv2ull0RyefvwG6datDijMj9jTeZTBHLBQDAWKKAHQAAAIgThpQ0GRIk+6bIdbUwm1JlsVgilg8AAIwu/w2plDkpMlkjd3Mqnm50ZWdnq6Ghoc82j8cjp9Mpq9Xa77lkZ2eP5fAAIKYNtIrFYL9DWcUC40nzIa+UEF4nb4mO32MlrNe2C8ZmLNFSU1OjsrKyQJGh1Dt5tbKyUjabLXoDAwDEPX/TArp+D53/73JLXWVk87Z6lT8voinHvUhPJvDnYSUBAIguCtgBAACAOGFMmyavT1q/fr1ycnKCxjkcDtnt9kHjJKmjo0Nut1tutztkviM/hkLXMQAAMNrMZvOAHdXHe9cvIJroCDt+hFrFYiCsYoHxprXdJ/kGX81monT8joSBJsaEupbExJj+ampqVFpaqqKiIlVVVSk3N1eNjY1as2aNSktLVV1dTRE7gFFHcej45Z+kmmMx0vV7iPxF+ulFZUpKH3nFuefd7dpfv17WqcFfX2JgozaZYAKsJAAAsYwCdgAAACDO5OTkhFVAMFicy+XSwuyFaveEt2wkXccAAACAiYeOsOPLQKtYhJoEzSoWGK/o+B05oSbGDHQtiYkxffX09KisrExFRUWqra2VwdBb0JaXl6fa2lqVlJRo1apVKi4uZvJYBLlcrpANPaTwm3qE0/QDiAcUhwL9+Yv0k9LnKWX2/BHn80/sMCUmjDjXRBPpyQRdLbvUUlc5IVYSAIBYRgE7AAAAMEG53W61e9rpOgYEEe4NysHiWJkAAADEKzrCjj/BVrGQwp8sDQBHGmhijMfjkdPplNVq7dedlYkxfdXX18vpdKqqqipQvO5nMBhUXl6upUuXqr6+XoWFhdEZ5DjT29QjR+2etrDiw2nqAYwHo1Uc2tHRoddeey1oHCvAAghHpCcT+DmdzpCrCfA7CgBGFwXsAAAAwARH1zGgr+ZDXikh/BuUg8WxMgEAAIhHdIQFAIQj2MQYuu2Gp7m5WZKUm5s74H7/dn8cRq63qUfboEW6vu5Ode/fq8Qps5SQmBw0zvPudu2vXz8aQ50QPB6PpP/rSjwS3fv39ubs9o0410QU6eLQnkP7ZEiQLrvssrDiw7kWazalysF1VgAR4P8dFan7QBK/oyKpra1NTU1NfbYNNknWbDaP5RABRAgF7AAAAAAAHKG13Sf5FJHVCViZAAAAxCs6wgKINY6PvSH3e7p9crZ6ZZ1qkCkxYcCY9/ZR1IjYkpGRIUlqbGxUXl5ev/2NjY194hA5YRXpzl00aJ5IFF5PZE6nU5LUUlcZuZytXuWPvIE4RsjbcUhen7T+XJNyZgRf2TWcv99S7+sA+yYP11kBRAS/o2JbU1OTlixZEnZ8Q0MDK8oBcYoCdgAYpzr2dITcH07BVTh5AAAAos3fqcnh7olIvvf29RZFJFmSWJ0AAABMWHSEBRArLBaLzKZU2Td5oj0UIOIKCgpktVq1Zs2aPiueSJLX61VFRYWysrJUUFAQxVECo8dqtUrSoB3xw+Hvhm+dGvy+J8ZezgyDFmeEXrGJCQcAooXfUbEpOztbDQ0NfbY5HA7Z7XatX79eOTk5/eIBxCcK2DHusIwIJjqLxaJUU6p237c7YjlTTamyWCwRywcAABBJ/k5N9pr2iObtcndRoA4AGJTD4Qhr/2BxUu97ero0IVbQETY2cL0bkDIzM+Vo2iG32x0yLlRBw9ExQKwwGo2qrKxUaWmpSkpKVF5ertzcXDU2NqqiokJ1dXWqrq6W0Ri6sAqIV/7XMmF1xB+Evxt+qA65AAAg9pnN5qAd1XNycui2DowjFLBj3GEZEUx0mZmZ2hGhi/l+3EBHrBjopm2oYhBu2gLAxODv1LTelqocy8hv6D65s0u/2NKpJEvSiHMBAMav5kNeKUFhF8GFE5dqStWOph0x+x7c5XKFdb3hyI+hcL0httERNjZwvRvolZmZGfbfDAoaEG9sNpuqq6tVVlampUuXBrZnZWWpurpaNpstiqMDAAAAAGB0UMCOcYdlRAAu5mP8CnXTdqBiEG7aAsDE4O/UlGMxDrrUYzgc7h5JkiGZ5YYBAMG1tvsknzT3O3OVMiclaJy306sud5eSLEkh/7Z07OnQ7vt2y+12x2RRt8vl0sLsHLV72sKKD69g36wdTY6YfL6gI2ys4Ho3AEwMNptNxcXFqq+vV3NzszIyMlRQUMDfWQAAxiHHx96Q+z3dPjlbvbJONYRcVWKwPMBERRMOIH5QwI5BxdsvdZYRAYDxa6CbtoMtm43Y4/F4JPUW6ESCP48/b6zyL186EF93p7r371XilFlKSEweVg7Et4n6cwEAwHiQMidFJqspdNCCsRnLaHK73Wr3tCm9qExJ6fOCxg3ltW1LXWXMFuyjFx1ho4/r3QAwcRiNRhUWFkZ7GAAAYJQYUtJkSJDsmyJ378ZsSpXFYolYPiDe9TbhWKh2T3tY8eNh1UwgnlHAjpBGo7NSSkqqNm6sVkZGRtCYWCqIBwDEjmA3bfPz86MwGgyX0+mUJO2+b3fE88bi94LFYlGqyayWusqI5Es1mbkQNUz+Yu5ITQTw54lEkfhE+7kAAADxKyl9nlJmzw8dNHfR2AwGY8bn8/X53OulyxsAYOSY0I/xwNfTJen/VvQbKX8evo+BiS2SjSbDqbvB2DCmTZPXpwFX0zpSqFW3jkbNFGJFW1ubmpqa+mwbrBmh2WyO+Dh6m3C0T5hVM4F4RwE7Qop0Z6X23W/pwPN/UFFRUVjnD6cg3mxKlYNZTsPG0kQAgLFmtVoladA3jeHyv2n05401mZmZ2tHkCHmhkQtRY8NfJB6pyQRH5h1pkfhE+7kAAABAfKipqVFpaamKior02GOPKTc3V42NjVqzZo1KS0vpwo4JJVZuxgPjCRP6MR70HPpEkmSvCa/LZ7j4Ph46JhNgvBiNRpMYmcEaIw11peVwV9Ni1S3Ek6amJi1ZsiTs+IaGhlH9/p4oq2YC8Y4CdoQlUp2Vulp29c4mPNeknBnBZy8NpWjavsnDLKdhsFgsMptSWZoIADDm/Dd0w3rTOIy8sSgzMzOs1ypciBpd/mLuwSZnhqurZZda6iojUiQ+EX8uAGAiG6gALlTXLArgIi8SE/rf2+cbcDswXvT09KisrExFRUWqra2VwdB7PTcvL0+1tbUqKSnRqlWrVFxcLKPRGOXRAqMv1m7GY3jo+B1bmNCP8cCYNl2StN6WqhzLyF8TOdw9ste08308DEwmwHgR6UaTnne3a3/9+tEY6rgX6VWWJVZaxviVnZ2thoaGPttCNXHLzs4ey+EBiFEUsCMqcmYYtDgj9Bv4/JHXFCGEzMxMOZp2hLXsFB1hAQDAeOAv5g5rcuYw8gIAEK5QBXADdc0aqABusKKroSyBOpGMxoR+YLyqr6+X0+lUVVVVoHjdz2AwqLy8XEuXLlV9fb0KCwujM0hgDHEzfnyg43dsYUI/xoMEY5IkKcdiHPT+91DwfTx0TCbAeBPJRpNSZCbzh5NnPAlnlWWJupp4xKodkWc2m4NO4qaJG4Bgxk0B+/vvv6877rhDTzzxhHbt2qWUlBQdf/zx+sY3vqHvf//7EelS5XQ6dffdd+tvf/ub/vvf/+rw4cOaPHmysrOzdeaZZ+qqq67SzJkzI/BsgLERbjdYiRcTAAAAAABEykAFcB6PR06nU1artV+hwpEFcL2dn1IjWnSVOoFWVIvkhH5/DDBeNTc3S5Jyc3MH3O/f7o8LZaCVJwb7vcfKE4g13IwfH+j4DQDjF5MJgIEZUtJkSFBEJ/ObJ9i1JOpqxh9W7QCA2DAuCtg3b94su92uAwcOBLa1tbVp+/bt2r59u/74xz/qiSee0Pz5w++y+Mgjj+jKK6/sN1Nq3759evnll/Xyyy/r9ttv12OPPabTTz992OcBAADh6+npUX19vZqbm5WRkaGCggKWLQcAAEDMC1YAF87Njd7OT6yoNhLceIwtDocjrP2DxUkT73t5tGVkZEiSGhsblZeX129/Y2Njn7hQQq08MZCBVp4AxhsmdkQHHb8BAMBEY0ybJq9Pg14j4loSJhJW7QCA2BD3Beyvv/66zj//fHk8HqWlpam8vFzLli2Tx+PRY489pj/84Q96++23dfbZZ2v79u2aPHnykM+xbds2rVy5Ul6vVwaDQZdccomKi4s1Z84cuVwuPfTQQ9q8ebM++eQTFRcXq7GxUZ/61KdG4dnGP5ZgAQBESk1NjcrKygLL/kq9HZQqKytls9miNzAAAABglFGAjfGg59C+3g5wYXaxDyfObEqVo2kHN9EjpKCgQFarVWvWrFFtba0MBkNgn9frVUVFhbKyslRQUDBoroFWnghVHHHkyhPAeMXEDgAAMJ5RGxJ7wr1GxLWk+OJyucJqdHHkx1AmyuQEVu0AgNgQ9wXsP/rRj+TxeJSYmKhnn31WX/rSlwL7li9frhNOOEHXXHON3n77bVVWVmr16tVDPkdFRYW8Xq8k6fe//72+973vBfadfPLJWrFihcrKyrR27Vp5PB6tXbtWd95554if23jEEiwAgEioqalRaWmpioqKVFVVpdzcXDU2NmrNmjUqLS1VdXU1RewAAAAAEMO8HYd6O8Cda1LODEPQOE+3T85Wr6xTDTIlJgSNc3zslX2TR263e0LcaB0LRqNRlZWVKi0tVUlJicrLywPvvysqKlRXV6fq6uqwVkILtvKERHEEJi4mdgBAdPiLX7tadkUkX/f+vb15u30RyefHSkWIlsF+Nnzdnerev1eJU2YpITE5aFznhzslURsyXlE0HRtcLpcWZi9Uuye8n7NwmgOkmlK1g+YAAIAxEtcF7K+++qrq6+slSZdddlmf4nW/srIyPfjgg3I4HLr99tt1/fXXKykpaUjn+fvf/y5JSk9P71O8fqQbb7xRa9eulSS9/PLLQ8o/kbAECwBgpHp6elRWVqaioqI+HeDy8vJUW1urkpISrVq1SsXFxWHdRAcAAH21tbWpqampzzaPxyOn0ymr1dqvg0h2drbMZvNYDhEAMI7kzDAM2ukqf94YDQb92Gw2VVdXq+z/Z+/O49uq7vz/vyXZsa0kBIhYHBIhfwmJDKaUmMU4CJy20CUGu0LQAVQoXaCl8GVAKTOG0hlaHnYXTEpnhn4boFBwMe0I4xanZRhaFiWlhKgUUEdKgCIc/+ImKGS37Niyf394pMZ4k+1rS7Zfz8cjDyv3Hp17HEXbve/zOT6fysvLU9uLioqYPA5MEBM7APD9OzOSq7ruaqk3tt89vYZ8bm0/0CsZvFIRYUSkw2azKb/Aavhzg2zIzENoOnvEYjF1xju1+LrFyluUN2y73kO96o51K9eWK/Oc4YsIdG3vUtu6tqwuDmDUJJvkBDQAQGZN6wB7c3Nz6va11147ZBuz2ayrr75aNTU12rNnj55//nlddNFFYzrOoUOHJPWflB/OggULZLPZFIvFUu0x2GQtwRKNRkdchoWZnZgJEomEAoGA2tvbVVhYKJfLRTgXs1IgEFA0GlVjY+OA5cul/vf9mpoalZeXKxAIqKKiIjODBABgGotEIiotLU27fTAYJFwDALPAdKlUCeO53W5VVVVxXgoAAINN9Ps31W/HJxl+XVjpU+7CiSfO43/drL2BBjmOHD4QOBZ7OvukPs2qMCKyg91u15ZIOK3XleFWjBmq3VRmQ3jNmxqzMTSd7fIW5anAMXxmSpK0bGrGMlkma5INACCzpnWAfcOGDZKkuXPnjvjl/oILLkjd3rhx45gD7MuXL9ef/vQnvfvuu8O22bdvX+qD/PLly8fUP8aPGeiYLZqamuTz+VJVIaT+E2z19fVUusKs097eLkkqKSkZcn9ye7IdAAAYG6fTqWAwOGDbSBemnE7nVA4PALJGMtDdtb3LkP6S/ST7zTbZXqkSk8tisTBJHAAAg03k+3dra6uKncvVYWD1W2tBvsKz4BppMviau3CJ8o5fOuH+khM8C3JME+7rcLMhjIjsY7fb034NmOoVY8aSDSEXMjV4ncJUmqxJNgCAzJrWAfbkrMmlS5cqJ2f4X+XwL/PpzLT8sK9+9au67rrrtGvXLv2///f/9NWvfnVQm+985zsD2o9LLCZ1GXPByyg5u3fLJmlh5wHN6dg74f7yujpkkpQT75MO9k64v/jeXtn6pEWfL1Te8aPM7PygW7lHjzKz829d2v5Yu/a89ZbsI1R0T9fRiYS6/ven3n9/wv1lQvL/QM7u3Yb8Dkb3Nxu0tLToq1/8oi666CL95/33y+l0KhKJ6Ic//KG+eumlmvPTn6qysnLM/fJYZBcej/TZCwpkkxQJBHTmmWcO2h959VXZ/rfdeP4tZ9NjkanX+GS7ow8mlL+vZ8LHLTiY0N40jpvNMvVYdLe360hJeX/tUO7BxISP27ujS0f+b7/Z+FgY/dn2UOcB9Sj9//MjteN5MbSxvq4Y9T0jr6vPsMdjOj4WVkkrlgxMEib/jU87/nh95EP7dPBg/58Mmk3v3xjaTPj+bTSeFxOTzr9f25tv9v9c12bosdvefFNaln1XeJceeaSOlHT0hTco9+hFE+4vHv2z9r3i19I8kyHv3znxvrF9buC5kXGZeixmwnsG52wnxsjfl8ciu/D9e/rJ5sdjKt4vJvL9e89bb8ka79TPPpOvZQuHv/YZ7+nTtn29WnKEecSA9dZdvfrabzpHvUY6E16nsv36t5HnpaTsf51KPh5HbN+i3M4Dw7br6zmknn3vK+eIY2TKmTNkG8v77xn6WPAdY2iZOmebTjZkpuRCktdurNu3jvi8SJflg+1pXbvhOt/4cc11atgLCmT/8OejDxnxs9QQ7XjPmFyZ+P49254X2r8/0yMAJsTU19c3Lddo7ezsTM2OXr16tVpaWkZsP2/ePB08eFBlZWV6+eWXx3SsRCKhL37xi3r00UdlNpv1xS9+UZdccokKCwvV2tqqxx57TM3NzZKkO+64Q3ffffeY+t+3b58WLFigvZKOGNM9J1+HpMgk9OtU/0kZAAAAZM6fJKW/SHH6gpKmru4KAABAZnDeDAAAAAAAGI1rNwCAdO2TtEDS3r17dcQR2ZY8BUY3bSuw7z9s9si8efNGbT937lwdPHhQBw6MfXaixWLRz372M1188cWqra3Vgw8+qAcffHBAm1WrVun222/XJz7xiVH76+rqUtdhldb37ds35jFNlYj4YAwAADBTOdX/uWwy+gUAAJjprOL8FgAAAAAAMBbXbgAAwGwxbQPsnZ2dqdtz5gy9RNTh8vL6lxCKx+PjOl44HNajjz6qN/93aeAPe/nll/XQQw+puLhYJ5xwwoh91dXV6a677hrXOKYaH4wBAABmLkJXAAAAAAAAAAAA2YNrNwAAYLaYtgH2/Pz81O1Dhw6N2j5Z8bygoGDMxwoEArr44ou1d+9enXjiibr77rt14YUX6uijj9aOHTv061//WnfeeaeeeOIJvfTSS3r22Wd16qmnDttfTU2Nbr311tTf9+3bpyVLlox5XFOBD8YAAAAAAAAAAAAAAAAAAAAAjDJtA+zz589P3T5w4MCo7Q8ePChJmjdv3piO09XVpSuuuEJ79+7V8ccfrz/+8Y86/vjjU/sXL16sG264QRdccIHOPPNMbd++Xddcc402b948bJ95eXmpivADvPOOdNjvlQ3eeOMNffwTn9Bxn7tbc44tmnB/ByMb9MF//1i/+7xVHznOPOH+/OFufW19l4q+4VD+kvzR7zCKzm2devcHUf3uuef0kY98ZML9feQjH1H73/6mwuOP1xtvvDHh/jIh+X/AqH8To/ub6RKJhM4++2wVFxfr0Ucfldn89+dNb2+vrr76akUiEb3yyiuyWCxj6pvHIrvweGSP2fRYZOo1PtkuW9+/M4HHYmoY/dn20M53teMX30z733mkdrPtsUjXWP8vZ+P3jNn2WGRKto8Pk28mfP82Gs+LieH9e7BsP0/4xo5effyxDv34/vu1bNmyYdtt3bpVX7vhhlHbSdLRRx+txYsXT3hsGFqmXqdmwnsG52wnxsjfl8ciu6Tz79fW1qZzy89VZ2eXYcfNz8/Ty394mfeMccjmz1OZer/I1LmQ2fRZyujPtfF3X9MHLfeo14CxHS4bnxeZlIn372x+jcokztkOZvR7RjZfyzi8Hc+Nv8vU94JXNm3SpyortejqQuUdN0QObYy6dnRp+6PteqalReecffaE+8uEmfAaJc2M54XE+/eU2L9fOumkTI8CGLdpG2DPz8/XwoULtWvXLrW1tY3Ydvfu3akA+1grnT/zzDP6//6//0+SdNNNNw0Irx/u1FNPldfr1YMPPqhgMKjXX39dp59++piOJZtNOuKIsd1nkvUcdZRiknLy5ynPumDC/R3Is2qXpJ4CkzR34h8AuvJMiklaMNeigiMm/t85PteimPp/bx1zzIT7+8DS31+exWJIf5mQ/D9g1L+J0f3NdBZJd/zwh/J4PNr3la+opqZGJSUlCoVCqqurU8t//7f8fr8sw7w2jYTHInM6OjoUiUQGbAv/7W+KSXrzb3/rf0wO43Q6ZbVap3CEs9tsem5k6jU+2S5b378zgcdiahj92bYrf96Y/p1HajfbHot0jfX/slHfM/ZZpJik/L09ypvbPaG+uvb2KCZpf37+rHgshjLUZ594PK5oNCqHwzFopbTxfPaZTe/fGNpM+P5tNJ4XE8P792DZfp5wWyKhmEm67IYb0mqfTrv8gnxtiWyR3W6f6PAwhEy9Ts2E9wzO2U6Mkb8vj0V2Seffb/Exx2jjlq2KxWIj9hUOh+X1etXQ0KDi4uIR29psNi3mvWJcko/ZaN+/ew/1qjvWrVxbrsxzhv/ckPwObsRzKFPvF5k6FzKbPksZfo5w4WLtlEZ9vUj3dSXZbrZ8z0hXJt6/Z9t3vnRl6nXKyGxItudCsvlaxuHteG78Xaa+F7y9Z4/2SNrzaPuEj/nhfs+Z4Y9FNr9GSTPjeSHx/j0lhiqiDEwj0zbALkmnnHKKAoGA3n77bfX09CgnZ+hf5/AL5aOdZPqwcDicur1ixYoR25aWlurBBx9MHXPMAXYAGILb7Zbf75fP51N5eXlqe1FRkfx+v9xudwZHh/GIRCIqLS0dcp/X6x20LRgMjvoeBADIDkNOUvrf7xSHf7eQmKCUzbbv75Mkta0bebL0WESjUa1cudKw/qaTkT77DIXPPgCA8djT2Sf1SYuvW6y8RcNfuEk7ALe9S23r2hSLxbIudAUAmBi73Z72a3txcTHfTyaRzWZTfkG+od+/8wvyZbPZDOtvtuCz1MSl+3rB6woAwCgOh0PS6O/f6Uq+fyf7BQBgsk3rAPt5552nQCCggwcPKhgM6pxzzhmy3Ysvvpi6PdbAwOGh+J6enhHbdnf/vTLAcGF6ABgPt9utqqoqBQIBtbe3q7CwUC6XSxaLJa37jyVMJxGom2xOp1PBYHDAttGqkAIApoexTFIipJu9Fs03STLmpC8nfIf+7DNS1TE++wAAJiJvUZ4KHAUjN1o2NWMBAAAjs9vt2hLZYnhF/NkSmJ4MfJbKvHg8Lqn/nJIRkv0k+wUAzBzJXEFa79/j6BcAgMk2rVPW1dXVqqurkyQ9/PDDQwbYe3t79eijj0qSjjzySK1atWpMxygqKkrdDgQCqqysHLbt4UH5w+8HAEawWCyqqKgY132p+J1drFbrkP++s7UqayYxuQOA0cYySYmQbvbKy+kPsBt50nc2n/Ad7rOPlF7VsdbW1rTCDIf/HAlhBgDIDn2J/mIg4VjCkP7e3d0rqb8qKAAAmD6oiA8MFI1GJRm7MmCyX65DAQAAAMgm0zrAfvbZZ8vlcikQCOihhx7SNddco3PPPXdAm/r6+tQF7Jtvvlm5ubkD9r/wwgupUPs111yjRx55ZMD+j3/847Jarero6NCPf/xjeb1enXbaaYPG8tvf/lZPPfWUJOmEE07QRz/6UYN+SwCYOCp+A0NjcgcAozFJCTBWa2urljuXqzPemVb7od6/Pyy/IF9bIlsIsQNAhiUOfCBJ8jal9xqfru5YN1VBAQAAMKruXdtG3N/Xc0g9e3coZ8FxMuXMGXc/Y5Vcxc+IlQElVgcEAAAAkL2mdYBdku677z6tXLlS8XhcF110kW6//XatWrVK8XhcTzzxhNatWydJWrZsmXw+35j7P/LII/XP//zP+ta3vqX9+/ervLxcN910ky688EIdddRR2rFjh371q1/pgQceUG9vf3Wf7373uzKbzYb+njNN+P2RKyHFe/oU3dMrx5FmFfxv9cOhvLu7z+ihATMSYTpgaEzuAAAgu8ViMXXGO0e9aNt7qFfdsW7l2nJlnjP89/HkRdtYLEaAHQAyzDLvaElSgztfxTbLhPv7zVvduvP5Q8q15Y7eGAAAALOWzWZTfoFVu1rqDeszv8Aqm81mSF/J6xJGrgx4eL9IXzwel9R/PskIyX6S/QLTFc8NAABglGkfYD/jjDP0i1/8Ql6vV/v27dPtt98+qM2yZcu0fv16zZ8/f1zH+OY3v6kPPvhA9913nw4cOKC6ujrV1dUNapebm6va2tq0Kr7NVua8eTKbJO9TfPAEAGQekzuMk0gktHnzZknS5s2bdfrpp8timXgIBQAAKc2LtlTbBYBpxWTpD5oX2yxaUTjx7w7hWEKSRpzIBABj0draqlgsNmKb5ArAyZ8jsdlsTKI0UEdHhyKRyIBtIz0eTqdTVqt1SsYGTIVkyC/5GWii3t3dX3ys99DIRchmArvdri2RcFqv8V6vVw0NDSouLh6xLa/xM1M0GpUkta1rM7xfrkNhOuO5AQAAjDLtA+ySdPHFF+uNN97Qfffdp/Xr16utrU1z5szR0qVLddlll+nGG2+c0Ekpk8mktWvXyuv16sEHH9SGDRv03nvvqaOjQ/PmzdPSpUt1wQUX6Prrr9eyZTPzirlRS6j1dh1Qb59G/aKf7gmBZDsAADC1Dr9I+Pvf/15r167V9u3bJUnXX3+97rrrLt1yyy362Mc+JomLhMgu2bo8MAAAwHRg1Gepnr07jB4aABimtbVVxc7l6oh3ptU+nesU1oJ8hSNbCDgaJBKJqLS0dMh9Qz0ewWBwyEIWwHSVDA96m9J7nUpXd6x7VkwQt9vtab8eFxcX8/oxSzkcDkkadWXAdCVXBkz2i7Hp6unr/2lA1W8qfk8Mzw0AAGCUGRFgl6QTTzxR9957r+69994x3a+iokJ9fX1ptS0tLR32ZNhMNVlLqLlcrrROCnBCAACA7DTSRUJJ2r59u77xjW+k/j7URcLRTjL2HupVd6xbubbcEasoGrVEIWa+bF8eGAAAIJtNxmcpAMhWsVhMHfFONXy2QMXHDH9OIt7Tp+ieXjmONKsgxzRsu/D7vfI+FVcsFiPAbhCn06lgMDhgWzweVzQalcPhUEFBwaD2wEySDPk1uPNVbJv4ajbNkUP6zkvd6u3pVTw68UAn4VDMBMn3krRWBhxHvxib7fv7cz1GVv2m4vf48NzATBJ+f+TVZ9L9zvfu7vSyhwCAgWZMgB2TI9uXUEue9DAquMbJFAAA0uN0OrVp0yZVV1dr6dKlqq+vV1dXV+oiYV5ennw+n9555x099dRTAy4S9gdf8g09yZhfkD9rQ8QsmZ2+bP9sCwAAkM2M/izFyooAJkNra2tar1OH/xypTfExZq0oHDkYunJJ+uMb6Zjpji1ptn8ftVqtQxZAIoSG2SIZ8iu2WUZ9nUrHb97qD2Rt/+n2Cfd1OMKhAIwKhx5K9P80ouo3Fb8B2Gw2WQvy5X2KfNhMQ5YQmF4IsGNU2byEWnJ5PCMDcMl+OZkCAMDwrFarDh48qO3bt+vJJ5/UGWecoUAgILPZrO7ubpWVlem73/2uysvLdfDgwQGB6f7gyxZCxAZhyeyxyebPtpg4KmUAADJhNq0sxGcpANmstbVVy53F6ox3pNV+KifRtB/olUzpHzOddvkF+doS2TJrz4cAMNai+f3nSYwIhkqEQwFMXjjUyKrfVPwGZi+73a6wgderKdQwMUZNRpek559/XhJZQmC6IMCOaS150oOTKQAATL329nZJ0jvvvKMrrrgiNbFM6n+Pvvvuuwe0OxzBF+OwZDZApQwAQGawshAAZJdYLKbOeIcWVvqUu3D4suh9PYfUs3eHchYcJ1POnCHbxP+6WXsDDYaNbU9nn9Q3+rWMsUx6alvXplgsRoAdgCHy/neiv5HBUIlwKDCbEQ4FkO2MvF5N1e/xa21tVbFzuTrinWm1T/e9gCwhMD0QYMe0ljzpwckUAACmXmFhoaT+L4kXX3yxGhsbVVJSolAopNra2tSXx2Q7TA6WzAa4GAIAHR0dikQiA7aNVJHG6XQOWCEH48PKQgCQnXIXLlHe8UtHbrT4lBF3d+/aZuCI/i6taxnLJuXQAAAAU45iRpiJOA+HoSQLvVH1e+xisZg64p1q+GyBio8ZfiJ3uqss/+atHt35fBdZQmCaIMAOAACAcSkvL1dOTo4WLlyopqYm5eT0f7QsKytTU1OTFi9erF27dqm8vDzDIwWmj9EqM4ylGt9sw8UQALNZJBJRaWnpkPuGmpATDAZ5HTQI7z8Asp2Ry3BLTLQBAAAApspokyrTWVlouH4IYY8f5+EwlGR1bqp+j1/xMWatKLSM2Gbl8IutpYRjCYNGBGAqEGAHAADAuPzhD39QT0+Pdu7cKbfbrZqamlQF9rq6Ou3cuVN9fX36wx/+oIqKikwPF8hqNptN+QX5hlZmyC/Il81mM6w/AED2cjqdCgaDA7bF43FFo1E5HI5B1WGcTudUDg8AkCGtra1a7lyuTgOX4c4vyNeWyBZC7AAAAMAk6b9eYNWulnrD+swvsA64XkAIe/w4D4ehJB93qn4DwNgQYAcAAMC4tLe3S5Iee+wxffOb3xxQab2oqEiPPfaYvF5vqh2A4dntdm2JbEmrMqLX61VDQ4OKi4tHbEtlRACYPaxW65AXEWf68rIAgJHFYjF1xjtHrQA3lpWe2ta1KRaL8V0DAAAAmCT91wvCk3q9gBD2+Bl9Ho5q+ACA2YwAOwAAAMalsLBQknTSSSfp7bffViAQUHt7uwoLC+VyubRp06YB7QCMzG63px0CKS4uptoJAAAAgLSkVQFu2dSMBQAAAMDoJvt6AcUQsocR1fC7tneNeIyxTFoGAGAqEWAHAADAuLhcLjkcDtXW1qq5uVkVFRWpfb29vaqrq1NRUZFcLlfmBgkAAABgVujq6ev/adDF1mQ/8XjckP4AAACAsSCMCACzw0Sq4dtsNuUX5KttXZth48kvyJfNZjOsPwAARkKAHTMCX+ABAJh6FotF9fX18ng8qq6uVk1NjUpKShQKhVRXV6eWlhb5/X5ZLJZMDxVAFmptbU1rCdTDf47kw0ugAgCA2WX7/v4Au5EXbSUpGo1SgQ4AAGSt8Pu9I+6P9/QpuqdXjiPNKsgxDdvu3d19Rg8N40QYEQBml4lUw7fb7doS2ZLWtRav16uGhgYVFxeP2JZrLQCAqUSAHdMaX+ABAMgst9stv98vn8+n8vLy1PaioiL5/X653e4Mjg5AtmptbdVyZ7E64x1ptR9qmcwPyy+wakskzIlVAABmqUXz+wNZi69brLxFeRPur2t7l9rWtcnhcEy4LwAAAKPZbDZZC/LlfYrVYmYawogAgLGw2+1pv8YXFxcPGZYHACBTCLBjWuMLPAAAmed2u1VVVaVAIKD29nYVFhbK5XJReR3AsGKxmDrjHVpY6VPuwiXDtuvrOaSevTuUs+A4mXLmDNuue9c27WqpVywW47M8AACzVN7/VhTNW5SnAkfBKK3T9+GlumeLjo4ORSKRAdtGW8LcarVO5RCBSdWX6JYkhWMJQ/p7d3d/heTeQyNXSgaAdNntdoUNvEaabIfsQBgRwFRLJBJc5wMAAFOOADumPb7AAwCQeRaLRRUVFZkeBoBpJnfhEuUdv3TkRotPmZrBAAAAICUSiai0tDTt9sFgkPOumFESBz6QJHmbOg3ttzvWLS0ztEsAsxjXSAEARmhqapLP51M0Gk1tczgcqq+vZ6VlAJMuHu9fUYgJ5MDsRIAdAABgFhiqel44HB7w83BUzwMAAAAwFcLvj3wxKd7Tp+ieXjmONKvgf6usD+Xd3X1GD21WczqdCgaDA7aNVMHV6XRO5fCASWeZd7QkqcGdr2LbxCtP/uatbt35/CHl2nIn3BcAAABglKamJnk8HlVWVqqxsVElJSUKhUKqra2Vx+OR3+8nxA5gUiUnzzCBHJidCLADAADMAiNVzxtqaViq580uXdu7Rtzfe6hX3bFu5dpyZZ5jHnc/AAAAQJLNZpO1IF/ep+KZHgqGYLVah/1OSAVXzAYmS3/QvNhm0YrCiQfYk5XkRvpODQAAAEylRCIhn8+nyspKNTc3y2zu/6xaVlam5uZmVVdXa82aNaqqqpLFMvHPxIDRKOA2MzgcDklMIAdmKwLsAAAAs8BQ1fPi8bii0agcDocKCgoGtcfk+fAJlUydTLHZbMovyFfbujbD+swvyJfNZjOsPwAAAMxMdrtd4cgWxWKxEduNVPV7qHYAAAAAAGB0gUBA0WhUjY2NqfB6ktlsVk1NjcrLyxUIBFRRUZGZQQIjoIDbzJDMKTCBHJidCLADAADMAsNVz1u5cmUGRoPhTqhM9ckUu92uLQaGhqT+ULzdbjdymAAAAJih7HZ72p8dqfoNAAAAIBNYwRQzVXt7uySppKRkyP3J7cl2QLahgBsATH8E2AEAAIAp9uETKpk8mUJoCAAAAACAydXV09f/06DgWrKfeDxuSH8AAGAwVjDFTFdYWChJCoVCKisrG7Q/FAoNaAdkGwq4AcD0R4AdAAAAmGJDnVDhZAoAAAAAADPT9v39AXYjA3CSFI1GOZ8ATCOtra1prYR4+M+RTMZKiFSaBv6OFUwx07lcLjkcDtXW1qq5uVlm899f13t7e1VXV6eioiK5XK4MjhIAAMxkBNgBAAAAABiCERdtuWALAAAAYNF8kyRp8XWLlbcob8L9dW3vUtu6Njkcjgn3BWBqtLa2armzWJ3xjrTae73eUdvkF1i1JRI2JAw72ytNd3R0KBKJDNg20mQCp9Mpq9U6JWNDZrGCKWYyi8Wi+vp6eTweVVdXq6amRiUlJQqFQqqrq1NLS4v8fr8sFsuQ92fSEzC7GTU5M52JmwBmLgLsAAwzHSpHAAAAAKMx+qLtdLpgCwAAAMB4eTn9Afa8RXkqcBQY1m9BgXF9AZhcsVhMnfEOLaz0KXfhkmHb9fUcUs/eHcpZcJxMOXOGbde9a5t2tdQrFosZci1ttleajkQiKi0tHXLfUJMJgsEgQWUgQ0YKOxOYHju32y2/3y+fz6fy8vLU9qKiIvn9frnd7kH3me2TnoCRzJaJHZMxORPA7ESAHRnHjPaZof/DyXJ1xjvTap9e5Yh8bYlsmTYnt4DxSiQSCgQCam9vV2FhoVwu17Az2QEAwOQz+qLtdLpgCwAAAExX8XhcUn+oc6J69u7o77Onb8J9AcDhchcuUd7xS0dutPiUqRnMh8zmStNOp1PBYHDAtng8rmg0KofDMWjCkNPpnMrhARBFRyaT2+1WVVVV2terZ/ukJ2Aos21ih5GTM+N/3ay9gQbDxzhbJhMA0x0BdmQcM9pnhv4PJ52jLoE6lg8AbevaDKscAWSrpqYm+Xw+RaPR1DaHw6H6+vohZ7QDAICpMZsv2gIAAADTUfL82q6WeuP63NOrlcNfiwcAzBBWq3XIczsrV67MwGgADCWd0DSB6fGzWCyqqKhIuz3nz4GBZuvEDiMmZxoxCf1wR+abJJNmzWQCYLojwI6MY0b7zJLWEqjLpmYsQLZramqSx+NRZWWlGhsbVVJSolAopNraWnk8nmGXZQMAAJgtklU0japwkewn2S8AYGJYWRFANnE4HJI0agW4dCQrwDmOHL4ICwAAAKZWuqFpAtMAMoGJHdmhcJ5Z6tOokwRm2mQCYLoiwI6MY0Y7gNkokUjI5/OpsrJSzc3NMpv7L4aVlZWpublZ1dXVWrNmjaqqqoZdng0AAGCmS1bRNLJSRrJfvnMCwMRl48qKLA8MzF7JYjhpVYAbRbICXEGOacLjAgAAAAAAUyvdSQJMJgAyiwA7AAAZEAgEFI1G1djYmAqvJ5nNZtXU1Ki8vFyBQGBMy7UBAADMJMkqmouvW6y8RXkT7q9re5fa1rWl+gUATEw2raxos9mUX5DP8sCY9lpbW9Nacvzwn6O1AwAAAAAAAIBsQ4AdAIAMaG9vlySVlJQMuT+5PdkOAABgNkoGH/MW5anAUTBK67H3C8xUiURCgUBA7e3tKiwslMvlYmWnEXR0dCgSiQzYNlI41Ol0ymq1TsnYsl02raxot9u1JbIlreAvywNPPiND2NLseSxaW1tV7FyujnhnWu2HWukAAAAAMArflwEAADCZCLADAJABhYWFkqRQKKSysrJB+0Oh0IB2AAAAAJCOpqYm+Xw+RaPR1DaHw6H6+nq53e7MDSyLRSIRlZaWDrlvqHBoMBhkWdksZbfb0w45szzw5GltbdVy53J1GhjCzi/I15bIlhkfYo/FYuqId6rhswUqPsY8bLt4T5+ie3rlONKsghzTsO1+81aP7ny+azKGCgAAgFmA78sAAACYTATYAQDIAJfLJYfDodraWjU3N8ts/vtFyd7eXtXV1amoqEgulyuDowQAAAAwnTQ1Ncnj8aiyslKNjY0qKSlRKBRSbW2tPB6P/H4/IfYhOJ1OBYPBAdvi8bii0agcDsegVRucTudUDg+YdmKxmDrjnVp83WLlLcobtl3voV51x7qVa8uVec7wYe2u7V1qW9emWCw24wPsScXHmLWicOSVM1YuGb2fcCxh0IgAANMBlZKBwXheTIzR35d5PAAAAHA4AuwYM75UAMDEWSwW1dfXy+PxqLq6WjU1NalwSV1dnVpaWuT3+2WxjHyxEgAAAAAkKZFIyOfzqbKycsAk2bKyMjU3N6u6ulpr1qxRVVUV3zM+xGq1DlkhbuXKlRkYDTBz5C3KU4GjYORGy6ZmLAAAZFo8Hpckde/aZkh/yX6S/UpUSgaGwvNiYoz+vszjASCbkYcDgKlHgB1jxpcKADCG2+2W3++Xz+dTeXl5antRURGVEQEAAACMSSAQUDQaVWNj44AVniTJbDarpqZG5eXlCgQCqqioyMwgAQBTqqunr//n9i5j+vvffg4PS2JsRnssxrIyAYxDUAVTIRqNSpJ2tdQb3m8ySMrKQpgpjHxd5nmRXXg8AGQz8nAAMPUIsGPM+FIBAMZxu92qqqpSIBBQe3u7CgsL5XK5qIgIAAAAYEza29slSSUlJUPuT25PtgMAzHzb9/cH2NvWtRna7+FhSaTnyHyTZDL2scgvyJfNZjOsv9mMoAqmgsPhkCQtrPQpd+GSCffXvWubdrXUp/qVWFkIM4eRr8s8L7ILjweAbEYeDgCmHgF2jFm2f6mgUgaA6cZisVABEQAAAMCEFBYWSpJCoZDKysoG7Q+FQgPaAQBmvkXzTZKkxdctVt6ivAn317W9S23r2gaEJZGewnlmqU9qaGhQcXHxsO3C4bC8Xu+o7STJZrPJbrcbPdRZiaAKpkLy/1HuwiXKO36p4f0iu3C9emJ4XQYAZEK25+EAYCYiwI4Zh0oZAAAAAABgtnG5XHI4HKqtrVVzc7PMZnNqX29vr+rq6lRUVCSXy5XBUQIAplJeTn+APW9RngocxgUcCUuOX3FxcVrXI9JtB2MQVAFgNK5XTwyvywAAAMDsQIAdMw4zsgEAAAAAwGxjsVhUX18vj8ej6upq1dTUqKSkRKFQSHV1dWppaZHf75fFYsn0UAEAALJaIpFQIBBQe3u7CgsL5XK5+AwFYEy4Xg0AAAAAoyPAjhmHGdkAAAAAAGA2crvd8vv98vl8Ki8vT20vKiqS3++X2+3O4OgwGxD4AwBMd01NTfL5fIpGo6ltDodD9fX1fJYCkDauVwMAAADA6AiwAwAAAAAAADOE2+1WVVUVIWJMOQJ/01tra6tisdiIbcLh8ICfo7UDgOmmqalJHo9HlZWVamxsTK1mU1tbK4/Hw4RAAAAAAAAAAxFgBwAAAAAAAGYQi8WiioqKTA8DswiBv+mttbVVxc7l6oh3ptXe6/VO8oiAienetW3E/X09h9Szd4dyFhwnU86cIdv07N0xGUNDFkskEvL5fKqsrFRzc7PMZrMkqaysTM3NzaqurtaaNWtUVVXFxMBJ1tHRoUgkMmDbSJOonE6nrFbrlIwNAAAAAAAYhwA7AAAAAGDG4YI3AABTg8Df9BeLxdQR71TDZwtUfIx52Hbxnj5F9/TKcaRZBTmmYdv95q0e3fl812QMFRiRzWZTfoFVu1rqMz0UTEOBQEDRaFSNjY2p97Iks9msmpoalZeXKxAIMFFwkkUiEZWWlg65b6hJVMFgUCtWrJjsYQEAAEwLXBsBAEwnBNgBAAAAAFMqHo9LGr0yYrqS/ST7lbjgDQDAVDk88NfX16cXXnhB7e3tKiwslMvlIvA3jRQfY9aKwpEnGaxcMno/4VjCoBEBY2O327UlElYsFhuxXTgcltfrVUNDg4qLi0dsg9mjvb1dklRSUjLk/uT2ZDtMHqfTqWAwOGBbPB5XNBqVw+FQQUHBoPYAAADox7URTAUjr/MlV0CL9/RNuC8A0w8BdgAAAACzFpUoMiMajUqS4ZURo9GoVq5cKYkL3gAATJVkkO+dd97RFVdckXqflySHw6G77757QDsAmEx2u112uz2ttsXFxQQ1kFJYWChJCoVCKisrG7Q/FAoNaIfJY7Vah3xuJr/vAwAwG3EtA+ni2gimwmRc54vu6U2rcAKAmYUAOwAAAIBZi0oUmeFwOCRJCyt9yl048bNR3bu2aVdLfapfiQveAABMlWSQ7/Of/7wqKyvV2NiokpIShUIh1dbW6vOf//yAdgAAZCOXyyWHw6Ha2lo1NzfLbDan9vX29qqurk5FRUVyuVwZHCUAAJituJaBdHFtBFPByOt88b9u1t5Ag7q6pT+1D7+qX7ynT9E9vXIcaVZBjmnYduH3eyc0HgBTiwA7AAAAgFmLShSZkfx3zV24RHnHLzW8XwAAMHXKy8uVk5OjhQsXqqmpSTk5/aecy8rK1NTUpMWLF2vXrl0qLy/P8EgBYOxGu/DNBfSZw2KxqL6+Xh6PR9XV1aqpqUlNyKqrq1NLS4v8fr8sFkumhwpgFqLyMgCuZQDIJkZe50sc2C2zSfrS051GDE2SZC3Il81mM6w/AJOHADsAAACAWYtKFAAAwEizMVjyhz/8QT09PdqxY4fcbvegwN+OHTtS7SoqKjI7WABIk81mk7UgX96n4ob1yQX07Od2u+X3++Xz+QZMvCoqKpLf75fb7c7g6DBTdO/aNuL+vp5D6tm7QzkLjpMpZ864+8HMQuVlAFzLADBTWeYdpd4+qaGhQcXFxcO2C4fD8nq9o7aT+r/T2+12o4cKYBIQYAcAAAAAAAAAA8zGYEl7e7uk/otM3/zmNwcF/hoaGuT1elPtAGA6sNvtCke2KBaLjdiOC+gzj9vtVlVVlQKBgNrb21VYWCiXy0XldUyYzWZTfoFVu1rqDeszv8A64sSYRCLB/+UZgsrLAABgpisuLk7rPGm67QBMDwTYAQAAAAAAAMAAszFYUlhYKEk66aST9Pbbbw8KSW3atGlAOwDDi8f7q32HYwlD+nt3d68kqfdQryH9zTZ2uz3twDkX0GcWi8XCqiEwnN1u15ZIeMomxjQ1Ncnn8ykajaa2ORwO1dfXs5rANETlZQAAAAAzEQF2AAAAAACQ1bq2d424v/dQr7pj3cq15co8xzzufgBgomZjsMTlcsnhcKi2tlbNzc0DAn+9vb2qq6tTUVGRXC5X5gYJTBPJkKG3qdPQfrtj3dIyQ7sEAIzDVE2MaWpqksfjUWVlpRobG1VSUqJQKKTa2lp5PB75/X5C7AAAQ3V0dCgSiQzYFg6HB/w8nNPplNVqnZKxAQCA7EWAHQAAAAAAZKX+Jdbz1bauzbA+8wvyR1xiHQAwNhaLRfX19fJ4PKqurlZNTU0qJFVXV6eWlhb5/X5ZLJZMDxVTpKunr/+nQRPHkv0kq5PPZA6HQ5LU4M5XsW3iz5nfvNWtO58/pFxb7oT7AgBMD4lEQj6fT5WVlWpubpbZ3D/Ju6ysTM3NzaqurtaaNWtUVVXF57MRJBKJQSsL8e8FGI/n2swRiURUWlo65D6v1ztoWzAYZAUjAABAgB0AAAAAAGSn/iXWt0zZEusAgPFxu93y+/3y+XwqLy9PbS8qKqLC5yy0fX9/gN3ICWhSf3XymbyagSQVFBRIkoptFq0onHhwJxxLSNKIK9QAAGaWQCCgaDSqxsbGVHg9yWw2q6amRuXl5QoEAgNWzsHfNTU1yefzpVZGkfonmdXX1/O5FjAQz7WZxel0KhgMDtgWj8cVjUblcDhS33UObw8AAECAHQAAAEAKyzwCyDZTtcQ6AGBi3G63qqqqqJ4HLZpvkiQtvm6x8hblTbi/ru1dalvXlqpODgAAhtfe3i5JKikpGXJ/cnuy3Uhm43nCpqYmeTweVVZWqrGxMbWyUG1trTweT9ZMzqRqNaa76fJcQ/qsVuuQ52Vn+iRkAAAwMQTYAQAAAKSwzCMAIF1DhRlGq6w03cMMAEZmsVio5Anl5fQH2PMW5anAUTBK6/R9+H0FAAAMVlhYKEkKhUI666yzBoWcQ6HQgHYjmW3nCROJhHw+nyorK9Xc3JyqYF9WVqbm5mZVV1drzZo1qqqqymhYnKrVmO6my3MNAAAAk48AOwAAAIAUlnkEAKRrpDDDUKZ7mAEAZqp4PC5JCscShvT37u5eSVLvoV5D+sPEdW3vGnF/76Fedce6lWvLlXmOedz9AAAyz+VyyeFw6KabbtL777+v9957L7XvxBNP1DHHHKOioiK5XK5R+5pt5wkDgYCi0agaGxtTgdoks9msmpoalZeXKxAIZGzSJlWrMRNMh+caAAAApgYBdgAAAAApLPMIYKJaW1sVi8VGbDPSkuMfZrPZZLfbDRkbjDVUmCEcDsvr9aqhoUHFxcWD2gMAsk+yeqe3qdPQfrtj3dIyQ7vEGB2Zb5JMUtu6NsP6zC/Il81mM6w/AICxLBaLLrvsMv3gBz/Qcccdp3Xr1qmyslItLS268847tXnzZn3jG99Iq6rxbDtP2N7eLkkqKSkZcn9ye7LdVDu8avWTTz6pjRs36umnn1ZhYaGefPJJXXrppVStxrSQ7c81AAAATB0C7ABShlr+faRgCcu/AwAAADhca2urip3L1RFPLwA31JLjH2YtyFc4soUQexYaLswgScXFxVRbB4BpwuFwSJIa3Pkqtk087PSbt7p15/OHlGvLnXBfmJjCeWapT0NOLDvcSBPQPozJhQCQ3RKJhP7zP/9TZ555pmKxmK677rrUvqKiIp155pny+/2qq6sj5PwhhYWFkqRQKKSysrJB+0Oh0IB2Uy1Ztfr666/XsmXLUpMQpf7Pc9ddd52efvppqlYj62X7cw0AAABTZ8YE2N977z396Ec/0vr167Vt2zbl5eXppJNO0uWXX66vf/3r4w7ZRqNRFRUVjek+J5544oAvjMB0MdLy70MFSw5f/j251LBRy8gm+0n2CwAAACD7xWIxdcQ71fDZAhUfYx62XbynT9E9vXIcaVZBjmnYduH3e+V9Kq5YLEZQCgCASVJQUCBJKrZZtKJw4kG2cCwhSTLPGf6zAKZWuhPLmIAGANNfMuTc2Nios846S4FAQO3t7SosLJTL5dKmTZtUXl5OyHkILpdLDodDtbW1am5ultn8988yvb29qqurU1FRkVwuV0bGl6xGXVNTo4svvliNjY0qKSlRKBRSbW2tbr/99gHtgGyV7c81AAAATJ0ZEWB/+umn5fV6tW/fvtS2jo4Obd68WZs3b9aDDz6o9evXa+nSpVMynuXLl0/JcQCjDbX8ezweVzQalcPhSF3MOrx9UnLShpHL0Sb7nalLEQIAAAAzVfEx5lEDcCuXTNFgAAAAAACYJZLh5ZKSElkslkEh9ZKSkgHt8HcWi0X19fXyeDyqrq5WTU1NKiBeV1enlpYW+f3+jFWuP/bYYyVJ55133oDQb1lZmZqbm3X++edr48aNqXZAtsr25xoAAACmzrQPsL/22mv63Oc+p3g8rnnz5qmmpkarVq1SPB7XE088oQceeEBbt27V6tWrtXnzZs2fP39M/Z9wwgl68803R21XV1enxx9/XJJ0zTXXjOt3ATJtuOXf0wmQJ5caXnzdYuUtypvwWLq2d6ltXVuqXwAAACCTOjo6FIlEBmwLh8MDfh7O6XSOeyUwAAAAAACA8SgsLJQkhUIhlZWVDdofCoUGtMNAbrdbfr9fPp9P5eXlqe1FRUXy+/1yu90ZHN3ITKbhV7gDss10fq4BAADAONM+wH7zzTcrHo8rJydHzz77rM4999zUvo997GM6+eSTddttt2nr1q2qr6/Xv/7rv46p/9zc3NRM9OEkEgm98MILkqT58+frs5/97Fh/DWDaS1Znz1uUpwJHwSitx94vAAAAkEmRSESlpaVD7vN6vYO2BYPBISeHAgAAAAAATBaXyyWHw6Ha2toBVbolqbe3V3V1dSoqKpLL5crgKLOb2+1WVVWVAoGA2tvbVVhYKJfLlfFq0Dt37pQkbdy4UVVVVfrUpz6lgoICxeNxPfPMM9q4ceOAdpgcFLkwzkSfazwWAAAA09+0DrBv2rRJgUBAkvSlL31pQHg9yefz6eGHH1Y4HNZ9992nO+64Q7m5uYaO47nnntP27dslSR6Ph8AtAAAAAMwwTqdTwWBwwLZ4PK5oNCqHwzHoe6DT6ZzK4QEAslQikci64AsAAABmLovFovr6enk8HlVXV6umpkYlJSUKhUKqq6tTS0uL/H4/n0lHYbFYVFFRkelhDJCsmn/llVfqF7/4hVpaWlL7cnJydMUVV+jxxx+nuv4ko8iFsSbyXOOxAAAAmP6mdYC9ubk5dfvaa68dso3ZbNbVV1+tmpoa7dmzR88//7wuuugiQ8fx6KOPpm5fc801hvYNAAAAAMg8q9U65AWOlStXZmA0AIDpoKmpST6fT9FoNLXN4XCovr6e5dCHQQU9AACAiXO73fL7/fL5fCovL09tLyoqkt/v57PoNOVyuXTMMcfo5z//uVavXq3PfOYzqQrsv/nNb/T444/r2GOPpbr+JKPIRfbgsQAAAJj+pnWAfcOGDZKkuXPnDjuzUpIuuOCC1O2NGzcaGmDfv39/KkjvcDh0/vnnG9Y3AAAAAAAAgOmnqalJHo9HlZWVamxsTFW9rK2tlcfjITg0DCroAQAAGMPtdquqqorVgGYYk8mU+nnGGWekvmf89re/zfDIZg+KXGQPHgsAAIDpb1oH2JNVd5YuXaqcnOF/lcNnUg5VqWci/H6/Ojo6JEmf//znU18aAQAAAAAAAMw+iURCPp9PlZWVam5ultlsliSVlZWpublZ1dXVWrNmjaqqqggQfYjRFfSo6A4AAGYzi8WiioqKTA8DBgkEAtq5c6fq6ur0k5/8ZFB1/draWt1+++0KBAI87gAAAACmhWkbYO/s7FQsFpMkLV68eMS2Rx11lObOnauDBw9q27Ztho7j0UcfTd2++uqr07pPV1eXurq6Un/ft2+foWPCQIlEguoCAAAAAAAAmBKBQEDRaFSNjY2p8HqS2WxWTU2NysvLCZYMwegKelR0BwAAwEzR3t4uSbrxxhv1jW98Y9D1746ODt1+++2pdgAAAACQ7aZtgH3//v2p2/PmzRu1fTLAfuDAAcPG0NraqhdffFGSVF5erqVLl6Z1v7q6Ot11112GjQPDa2pqks/nUzQaTW1zOByqr69nmWYAAAAAAAAYLhkYKSkpGXJ/cjvBkslndEV3AAAAIFMKCwslSaFQSGVlZYMmw4ZCoQHtAAAAJlv3rpELCff1HFLP3h3KWXCcTDlzxtUHgJlt2gbYOzs7U7fnzBn6Be5weXl5kvovUBiloaFBfX19ktKvvi5JNTU1uvXWW1N/37dvn5YsWWLYuNCvqalJHo9HlZWVamxsVElJiUKhkGpra+XxeOT3+wmxAwAAAAAAwFAfDpZ8GMGSqWN0RXdgqoTf7x1xf7ynT9E9vXIcaVZBjmnc/QAAgOnD5XLJ4XCotrZWzc3NA1Z76u3tVV1dnYqKiuRyuTI4SgAAkNTR0aFIJDJgWzgcHvDzcE6nU1ardUrGNlE2m035BVbtaqk3pL/8AqtsNpshfQGYXiYtwN7W1qa//e1v6ujo0FlnnTWoms1E5efnp24fOnRo1PZdXV2SZOg4HnvsMUn94fjPfe5zad8vLy8vFajH5EgkEvL5fKqsrBzwBb6srEzNzc2qrq7WmjVrVFVVJYvFkuHRAgAw/SUSiUFLlvIeCwAAgNmIYAnQr2t714j7ew/1qjvWrVxbrsxzzMO2G62fmcRms8lakC/vU8YV4rEW5HMRGACAGcBisai+vl4ej0fV1dWqqalJFXCrq6tTS0uL/H4/5+UBAMgSkUhEpaWlQ+7zer2DtgWDwSELMWQju92uLZGwYrHYiO3C4bC8Xq8aGhpUXFw8bDubzSa73W70MAFMA4YG2Pfv36/vf//7euSRR7R9+/bU9jfffFOnnHJK6u9PPPGEmpqatGDBAj3wwAPjOtb8+fNTtw8cODBq+4MHD0qS5s2bN67jfdimTZtSs6QuueQSHXnkkYb0C2MEAgFFo1E1NjYOuEgoSWazWTU1NSovL1cgEBi0vBoAABibpqYm+Xw+RaPR1DaHw6H6+npWOwEAAMCsQ7AEs92R+SbJJLWtazOsz/xZEsK22+0KR7YYdgFY4iIwAAAzidvtlt/vl8/nU3l5eWp7UVERq48DAJBlnE6ngsHggG3xeFzRaFQOh2NQEV6n0zmVw5swu92e9vmG4uLiaRPOBzC1DAuwv/XWW/rMZz6jv/71r+rr60ttN5kGL19ZVlYmr9ervr4+XXPNNTrvvPPGfLz8/HwtXLhQu3btUlvbyCfCd+/enQqwL1myZMzHGsqjjz6aun311Vcb0ieM097eLkkqKSkZcn9ye7IdAAAYn6amJnk8HlVWVqqxsTEVzKmtrZXH4+GkOQAAAGYlgiWYzQrnmaU+jRquJoQ9NC4AA8Ds0dHRkSqYlhQOhwf8PJzT6ZTVap2SsSF7ud1uVVVVsSIqAABZzmq1DvmdfeXKlRkYDQBkJ0MC7J2dnVq9erXeeecdzZ07V1//+td1/vnnq7Kycsj2DodDq1at0u9//3v9+te/HleAXZJOOeUUBQIBvf322+rp6VFOztC/zuFf/Ec7EZ6O7u5uPfHEE5KkY489Vp/61Kcm3CeMVVhYKEkKhUIqKysbtD8UCg1oBwAAxi6RSMjn86myslLNzc2pVU/KysrU3Nys6upqrVmzRlVVVZw8BwAAwKxDsASzXbrhakLYAIDZKhKJqLS0dMh9Xq930LZgMMh7JiT1r/rEKuMAAAAApjtDAuw//vGP9fbbb2vu3LkKBAL66Ec/Oup9Pv3pT+t3v/udXn755XEf97zzzlMgENDBgwcVDAZ1zjnnDNnuxRdfTN02YhbT+vXrtWvXLknSlVdeOWxwHpnjcrnkcDhUW1s7IFAnSb29vaqrq1NRUZFcLlcGRwkAwPQWCAQUjUbV2Ng44L1Wksxms2pqalReXq5AIMDJdAAAAMxKBEsAAAAwHKfTqWAwOGBbPB5XNBqVw+FQQUHBoPYAAAAAAMwUhiSvm5qaZDKZdPPNN6cVXpek008/XZL01ltvjfu41dXVqqurkyQ9/PDDQwbYe3t79eijj0qSjjzySK1atWrcx0tK9idJ11xzzYT7g/EsFovq6+vl8XhUXV2tmpoalZSUKBQKqa6uTi0tLfL7/VS8AgBgAtrb2yVJJSUlQ+5Pbk+2A4AP6961bcT9fT2H1LN3h3IWHCdTzpxx9wMAAAAA2aajo2PACsKSFA6HB/w8nNPplNVqnZKxAZgaVqt1yIrqRhRkAwAAAAAg2xkSYE+eSLvooovSvs/ChQslSXv27Bn3cc8++2y5XC4FAgE99NBDuuaaa3TuuecOaFNfX58a380336zc3NwB+1944YVUqP2aa67RI488MuIxP/jgA61fv16SdNppp6Ud2MfUc7vd8vv98vl8Ki8vT20vKiqS3++X2+3O4OgAAJj+CgsLJUmhUEhlZWWD9odCoQHtACDJZrMpv8CqXS31hvWZX2CVzWYzrD8AAIDZJvx+74j74z19iu7pleNIswpyTOPuB0C/SCSi0tLSIfd5vd5B24LB4JBBVwAAAAAAAGA6MiTAfuDAAUnSvHnz0r5PV1eXJA0KlI/Vfffdp5UrVyoej+uiiy7S7bffrlWrVikej+uJJ57QunXrJEnLli2Tz+eb0LEk6YknntChQ4ckUX19OnC73aqqqlIgEFB7e7sKCwvlcrmovA4AgAFcLpccDodqa2vV3Nwss9mc2tfb26u6ujoVFRXJ5XJlcJQAspHdbteWSFixWGzEduFwWF6vVw0NDSouLh6xrc1mk91uN3KYAAAAs4LNZpO1IF/ep+KG9WktyGdyITAKp9OpYDA4YFs8Hlc0GpXD4VBBQcGg9gAAAAAAAMBMYUiAfeHChfrb3/6maDSadvWHv/zlL5Kk448/fkLHPuOMM/SLX/xCXq9X+/bt0+233z6ozbJly7R+/XrNnz9/QseSpEcffVSSZLFYdNVVV024P0w+i8WiioqKTA8DAIAZx2KxqL6+Xh6PR9XV1aqpqVFJSYlCoZDq6urU0tIiv9/PxDEAQ7Lb7WkHzouLi6k0CAAAMEnsdrvCkS1MLgSmmNVqHfJ7zsqVKzMwGgAAAAAAAGBqGRJgX7FihX7zm9/opZdektvtTus+jz76qEwmk84999wJH//iiy/WG2+8ofvuu0/r169XW1ub5syZo6VLl+qyyy7TjTfeKKvVOuHjvPXWW3rllVckSRdeeOGEw/cAAADTndvtlt/vl8/nU3l5eWp7UVGR/H5/2p8NAQAAAACZw+RCAAAAAAAAzEQdHR2KRCIDtoXD4QE/D+d0Og3JmgIYnSEBdo/Ho/Xr12vdunW69dZbRz3R/cMf/lAvvfSSTCaTrrjiCiOGoBNPPFH33nuv7r333jHdr6KiQn19fWm1Pfnkk9NuCwAAMFu43W5VVVUpEAiovb1dhYWFcrlcVF4HAAAAAAAAAAAAAAAZE4lEVFpaOuQ+r9c7aFswGKR4AzBFDAmwf/7zn9fatWv1xhtvqKKiQv/xH/+hT33qU6n9JpNJfX192rx5s374wx/qiSeekMlkksvl0qc//WkjhgAAAIAMslgsqqioGPf9mfUMDMbzAgAAAACyB9/RAAAAAACYfEZ//3Y6nQoGgwO2xeNxRaNRORwOFRQUDGoPYGoYEmA3m8369a9/rfPOO0/RaFSVlZWyWq0ymUyS+quc79+/X11dXZKkvr4+nXTSSfrlL39pxOEBAAAwzTHrGRiM5wUAAAAAZA++owEAAAAAMPmM/v5ttVqH3L9y5crxDxKAIQwJsEuS3W7Xn//8Z91000365S9/qYMHD6b2vf/++6nbJpNJl19+uX784x/rqKOOMurwAAAAmMaY9QwMxvMCAAAAALIH39EAAMCHJRIJBQIBtbe3q7CwUC6XSxaLJdPDAgBgWuP7NzB7GBZgl6Sjjz5aP//5z1VbW6v169dr8+bN2rlzpxKJhBYuXKgzzjhDF198sZYtW2bkYQFkka7tXSPu7z3Uq+5Yt3JtuTLPMY+7HwDAzMKsZ2AwnhcAAAAAkD34jgZgsh06dEj333+/3nnnHZ100km64YYbNGfOnEwPC8Awmpqa5PP5FI1GU9scDofq6+vldrszNzAAAKY5vn8Ds4ehAfakE088UTfccMNkdA0gS9lsNuUX5KttXZthfeYX5MtmsxnWHwAAAIDJFY/HJUnhWMKQ/pL9JPsFAAAAxqKjo0ORSGTAtnA4POBnktPplNVqnbKxAcDhbrvtNq1du1Y9PT2pbd/4xjd0yy236Pvf/34GRwZgKE1NTfJ4PKqsrFRjY6NKSkoUCoVUW1srj8cjv99PiB0AAAAYxaQE2AHMPna7XVsiWxSLxUZsFw6H5fV61dDQoOLi4hHb2mw22e12I4cJAAAAYBIlK055mzoN75fKGgAAABirSCSi0tLSIfd5vd4Bfw8Gg0NWeAOAyXbbbbfpBz/4gY477jjdfffdqqysVEtLi775zW/qBz/4gSQRYgeySCKRkM/nU2VlpZqbm2U29686XlZWpubmZlVXV2vNmjWqqqqSxWLJ8GgBAACA7EWAHYBh7HZ72oHz4uJiLgYAAAAAWaC1tTWtiaiH/xxOV1eXJKnBna9i28Qv0IVjCXmbOuVwOCbcFwAAAGYfp9OpYDA4YFs8Hlc0GpXD4VBBQcGAtgAw1Q4dOqS1a9fquOOOU1tbm3Jy+i/ff/nLX9YXvvAFLV68WGvXrtXdd9+tOXPmZHi0ACQpEAgoGo2qsbExFV5PMpvNqqmpUXl5uQKBgCoqKjIzSAAAAGAaMCTA/tJLL435PiaTSfn5+VqwYIEcDgdfuAEAAAAAmGKtra1a7ixWZ7wjrfYfrlI5nGKbRSsKjaswdXiwCAAAAEiX1WodspAKq/sAyBb333+/enp6dPfdd6fC60k5OTn69re/reuvv17333+//vEf/zEzgwQwQHt7uySppKRkyP3J7cl2AAAAAIZmSIC9oqJCJpNp/IPIydFHP/pRfeELX9CXv/xl5ebmGjEsAAAAAAAwglgsps54hxZW+pS7cMmw7fp6Dqln7w7lLDhOppzhJ6DH/7pZewMNkzFUAAAAAABmnHfeeUeSVFlZOeT+5PZkOwCZV1hYKEkKhUIqKysbtD8UCg1oBwAAAGBohgTYJamvr2/c9+3u7tarr76qzZs368c//rFaWlpkt9uNGhoAAAAAABhB7sIlyjt+6ciNFp8yaj/du7YZNCIAAAAAAGa+k046SZLU0tKiL3/5y4P2t7S0DGgHIPNcLpccDodqa2vV3Nwss9mc2tfb26u6ujoVFRXJ5XJlcJQAAABA9jOP3mR0zz//vJ599lmdc845kqRFixbp5ptv1mOPPaZnnnlGzzzzjB577DHdfPPNWrRokSTpnHPO0TPPPKOnnnpK3/nOd1RSUqK+vj6FQiF95jOfUU9PjxFDAwAAAAAAAAAAAAAg69xwww3KycnRN7/5zUHXx3t6evStb31LOTk5uuGGGzI0QgAfZrFYVF9fr5aWFlVXV+vll1/W/v379fLLL6u6ulotLS265557ZLFYMj1UAAAAIKsZEmC/4IIL9KMf/UibNm3STTfdpLfffltr167VVVddpYsuukgXXXSRrrrqKq1du1bvvPOOvv71r+uVV17RD3/4Q1VVVemOO+7QG2+8oTvuuEOSFA6H9fDDDxsxNAAAAAAAAAAAAAAAss6cOXN0yy23aMeOHVq8eLHWrVun7du3a926dVq8eLF27NihW265RXPmzMn0UAEcxu12y+/3680331R5ebmOOOIIlZeXKxQKye/3y+12Z3qIAAAAQNbLMaKThx9+WC0tLVq9erXuu+++Edvm5eXp3/7t3/Tuu+/qt7/9rdatW6frrrtOkvSd73xHGzZs0IsvvqimpiZ95StfMWJ4AAAAAAAAAAAAAABkne9///uSpLVr1+r6669Pbc/JydE3vvGN1H4A2cXtdquqqkqBQEDt7e0qLCyUy+Wi8joAAACQJkMqsP/0pz+VyWRKBdHTcf3116uvr08/+9nPBmz/whe+IEl6/fXXjRgaAAAAAAAAAAAAAABZ6/vf/74OHjyotWvX6sYbb9TatWt18OBBwutAlrNYLKqoqNAVV1yhiooKwusAAADAGBhSgT0cDkuSFi9enPZ9km0jkciA7cXFxZKkDz74wIihAQAAAAAAAAAAAACQ1ebMmaN//Md/zPQwAAAAAACYEoZUYO/s7JQktbW1pX2fZNuurq4B23NzcyVJVqvViKEBAAAAAAAAAAAAAAAAAAAAALKEIQH2k046SZL04IMPpn2fBx54YMB9k7Zv3y5JOuaYY4wYGgAAAAAAAAAAAAAAAAAAAAAgSxgSYPd4POrr61NLS4vWrFmj7u7uYdt2d3fL5/OppaVFJpNJl1122YD9GzdulCQtXbrUiKEBAAAAAAAAAAAAAAAAAAAAALJEjhGdrFmzRo899pjefvttrV27Vv/5n/+pyy67TKWlpalK6u+//76CwaD+8z//U21tbZL6q6/7fL5UP4lEQo8//rhMJpMuuugiI4YGAAAAAAAAAAAAAAAAAAAAAMgShgTYCwoK9Pvf/16rV6/Wm2++qW3btmnt2rVDtu3r65MklZSUaP369SooKEjta2tr07XXXiupv6o7AAAAAAAAAAAYWUdHhyKRyIBt8Xhc0WhUDodjwHl4SXI6nbJarVM5RAAAAAAAAMxQQ52bCofDA34ejnNTACSDAuyStHjxYgWDQf3Hf/yHfvKTnwx6QUpatmyZrr/+et14443Kzc0dsO/EE0/Uv/zLvxg1JAAAAAAAAAAAZrxIJKLS0tK02weDQa1YsWISRwQAAMYqkUgoEAiovb1dhYWFcrlcslgsmR4WAAAAMKqRzk15vd5B2zg3BUAyMMAuSTk5Obr55pt18803a/v27QqFQtq9e7ck6aijjtKpp56qE044wchDAgAAAACAWYQqHgAADOZ0OhUMBgdsC4fD8nq9amhoUHFx8aD2AAAgezQ1Ncnn8ykajaa2ORwO1dfXy+12Z25gAAAAQBqGOjc12uqAmcLEUSB7GBpgP9yiRYu0aNGiyeoeAAAAAADMQlTxAABgMKvVOuz7XXFxMe+FAABksaamJnk8HlVWVqqxsVElJSUKhUKqra2Vx+OR3+8nxA4AAICsNty5qZUrV2ZgNMNj4iiQXSYtwA4AAAAAAGC06VTFAwAAAACAkSQSCfl8PlVWVqq5uVlms1mSVFZWpubmZlVXV2vNmjWqqqqiKiQAAAAwAUwcBbIPAXYAAAAAADBtTJcqHgAAYHbq6OhQJBIZsG20yXZWq3UqhwgAyCKBQEDRaFSNjY2p8HqS2WxWTU2NysvLFQgEVFFRkZlBAgAAANMcE0eB7GR4gH3//v167rnn9PrrrysWiykej6uvr2/Y9iaTSQ899JDRwwAAAAAAAAAAAJhSkUhEpaWlabcPBoNDTs4DAMwO7e3tkqSSkpIh9ye3J9sBAAAAGDsmjgLZybAAe29vr77zne+ovr5eBw8eTOs+fX19BNgBAACALJZIJBQIBNTe3q7CwkK5XC5mnQMAAADAMJxOp4LB4IBt4XBYXq9XDQ0NKi4uHtQeADB7FRYWSpJCoZDKysoG7Q+FQgPaAQAAABg7Jo4C2cmwAPsXvvAF/fznP1dfX58sFosWLlyonTt3ymQyafHixdq9e7cOHDggqb/qus1mY1lMAAAAIIs1NTXJ5/MpGo2mtjkcDtXX18vtdmduYAAAAACQpaxW67AV1YuLi6m2DgAYwOVyyeFwqLa2Vs3NzQOqQfb29qqurk5FRUVyuVwZHCUAAAAwvTFxFMhO5tGbjO6//uu/1NDQIKk/yL5z504999xzqf3vvfee9u3bp3A4rP/7f/+vzGazjjrqKP32t7/Vu+++a8QQAAAAABioqalJHo9Hp512ml5++WXt379fL7/8sk477TR5PB41NTVleohARiUSCb3wwgtqbGzUCy+8oEQikekhAQAAAACAacZisai+vl4tLS2qrq4ecB6uurpaLS0tuueee1gREQAAAJiAwyeO9vb2DtjHxFEgcwwJsD/88MOSpFNPPVU//elPddRRR8lkMg1qt3z5cv3whz9UU1OT3nnnHX3mM5/R3r17jRgCAAAAZhCCoZmVSCTk8/lUWVmp5uZmlZWVad68eSorK1Nzc7MqKyu1Zs0aHhfMWk1NTVq6dKlWrVqlK6+8UqtWrdLSpUuZ2AEAAAAAAMbM7XbL7/frzTffVHl5uY444giVl5crFArJ7/ezEiIAAAAwQUwcBbKTIQH2P/7xjzKZTPr617+eVvuLL75Y11xzjd577z396Ec/MmIIAAAAmCEIhmZeIBBQNBrV7bffPmDZYkkym82qqanRu+++q0AgkKERApnD6gQAAAAAAMBobrdbb7/9tp5//nk9/vjjev755/XWW28RXgcAAAAMwsRRIPvkGNHJzp07JUnLli1LbTt8NkpXV5fy8vIG3Mfj8einP/2pnnrqKd15551GDAMAAADTXDIYWllZqcbGRpWUlCgUCqm2tlYej4cvjlOkvb1dklRSUjLk/uT2ZDtgtvjw6gTJCR7J1Qmqq6u1Zs0aVVVVUaEBAAAAhujo6FAkEhmwLRwOD/h5OKfTKavVOiVjAwAYy2KxqKKiItPDAAAAAGYst9utqqoqBQIBtbe3q7CwUC6Xi+t6QIYYEmBPOvroo1O358+fn7q9c+dOLVmyZEDbY489VpIUjUaNHAIAAACmKYKh2aOwsFCSFAqFVFZWNmh/KBQa0A6YLZKrEzQ2Ng67OkF5ebkCgQAXnAEAAGCISCSi0tLSIfd5vd5B24LBoFasWDHZwwIAAAAAAJiWmDgKZA9DAuzHHXecWltb9cEHHwzYNmfOHHV3d+uNN94YFGB/7733JEmdnZ1GDAEAAADTHMHQ7OFyueRwOFRbWztgMoEk9fb2qq6uTkVFRXK5XBkcJTD1WJ0AAAAAU83pdCoYDA7YFo/HFY1G5XA4VFBQMKg9AAAAAAAAAGQ7QwLsp512mlpbW/U///M/WrVqVX/HOTk644wztGnTJj388MNavXr1gPv8+Mc/liSdeOKJRgwBAAAA0xzB0OxhsVhUX18vj8ej6upq1dTUqKSkRKFQSHV1dWppaZHf76cSPmYdVidIX/j93hH3x3v6FN3TK8eRZhXkmMbdDwAAwExntVqHrKi+cuXKDIwGAAAAAAAAAIxhSIC9oqJCLS0teu655/T1r389td3r9eqVV17RU089pWuuuUaXX365Dh48qJ/97Gd67rnnZDKZVFVVZcQQAAAAMM0RDM0ubrdbfr9fPp9P5eXlqe1FRUXy+/1yu90ZHB2QGaxOMDpz3jyZTZL3qbhhfVoL8mWz2QzrDwAAAAAAAAAAAACQWYYE2D/72c9qzZo1euaZZ7Rjxw4dd9xxkqTrr79eDz/8sP70pz+poaFBDQ0NA+5nt9v1T//0T0YMAQAAANMcwdDs43a7VVVVpUAgoPb2dhUWFsrlclF5HbMWqxOMzjLvKPX2SQ0NDSouLh62XTgcltfrHbWdJNlsNtntdqOHCgAAplBHR4cikciAbeFweMDPwzmdTlmt1ikZGwAAAAAAAABg6hkSYC8qKtJf//pXJRIJHXHEEX/vPCdH//3f/63/+3//r375y1+qu7tbkmQymbR69Wr9+Mc/1lFHHWXEEAAAADDNEQzNThaLRRUVFZkeBpA1WJ0gPcXFxVqxYoVh7QAAwPQWiURUWlo65D6v1ztoWzAY5DMCAAAAgLQlEgmK8QAAAEwzhgTYJcnhcAy5/aijjtJjjz2m+++/X2+99ZZ6enq0dOlSHX300UYdGgAAADMEwVAA0wGrEwAAAIyN0+lUMBgcsC0ejysajcrhcKigoGBQewAAAABIR1NTk3w+n6LRaGqbw+FQfX0915UAAACymGEB9tHMnz+fiikAAAAYFcFQANMBqxNgNmptbVUsFhuxTTgcHvBzJDabTXa73ZCxAQCym9VqHfL6wMqVKzMwGgAAAAAzRVNTkzwejyorK9XY2Jha2be2tlYej4fiSAAAAFnMkAC72WyW2WxWbW2tbrvtNiO6BAAAwCxGMBQAgOzS2tqq5c7l6ox3ptXe6/WO2ia/IF9bIlsIsQMAMIU6OjoUiUQGbBtpAprT6ZTVap2SsQEAAABjkUgk5PP5VFlZqebmZpnNZklSWVmZmpubVV1drTVr1qiqqooiSQAAAFnIkAD7nDlz1N3dLZfLZUR3AAAAAAAAyCKxWEyd8U4tvm6x8hblDduu91CvumPdyrXlyjzHPGy7ru1dalvXplgsRoAdAIApFIlEVFpaOuS+oSagBYNBVtcFAABAVgoEAopGo2psbEyF15PMZrNqampUXl6uQCBA0SQAAIAsZEiAfdGiRXrvvfeUk2NIdwAAAAAAAMhCeYvyVOAoGLnRsqkZCwAAGDun06lgMDhgWzweVzQalcPhUEFBwaD2AAAAQDZqb2+XJJWUlAy5P7k92Q4AAADZxZDE+fnnn6/HHntMwWBQZ511lhFdAgAAAAAAAAAAwEBWq3XIiuorV67MwGgAAACA8SssLJQkhUIhlZWVDdofCoUGtAMAAEB2GX4t5zG46aabZLFYdM8992jfvn1GdAkAAAAAAAAAAAAAAAAAg7hcLjkcDtXW1qq3t3fAvt7eXtXV1amoqEgulytDIwQAAMBIDAmwl5aW6t/+7d/03nvv6YILLtAf/vAHI7oFAAAAAAAAAAAzTCKR0AsvvKDGxka98MILSiQSmR4SAAAAgGnGYrGovr5eLS0tqq6u1ssvv6z9+/fr5ZdfVnV1tVpaWnTPPffIYrFkeqgAAAAYQo4RnXzxi1+UJC1fvlyvv/66XC6XlixZoo985CM66qijRvwwaDKZ9NBDDxkxDAAAAAAAAAAAMEEdHR2KRCKpvycSCTU3N0uSnnzySSUSiQHn/Z1Op6xWa1p9NzU1yefzKRqNprY5HA7V19fL7XYbMn4AAAAAs4Pb7Zbf75fP51N5eXlqe1FRkfx+P98xAAAAspghAfZHHnlEJpNJUn8gva+vT62trdq2bduI9+vr6yPADgAAAAAAAABAFolEIiotLR1yX21trWprawdsCwaDWrFixaj9NjU1yePxqLKyUo2NjSopKVEoFFJtba08Hg8BEwAAAABj5na7VVVVpUAgoPb2dhUWFsrlclF5HQAAIMsZEmC32+2pADsAAAAAAAAAAJi+nE6ngsGgfv/73+u2226Ty+XSlVdeqZycHPX09Ojxxx9XIBDQ97//fX3sYx+T0+kctc9EIiGfz6fKyko1NzfLbDZLksrKytTc3Kzq6mqtWbNGVVVVBE0AAAAAjInFYlFFRUWmhwEAAIAxMCTAfvhSnwAAAAAAAAAAYPqyWq06/fTTdemllw4KnEvSV77yFVVXV+v+++/XLbfcklbgPBAIKBqNqrGxcUBfkmQ2m1VTU6Py8nIFAgGCJwAAAAAAAAAwwxkSYAcAAAAAANNPPB6XJHXv2mZIf8l+kv0CAIDpy+jAeXt7uySppKRkyP3J7cl2AAAAAAAAAICZiwA7AAAAAACzVHJFtV0t9Yb3u3LlSkP7BAAAU8vowHlhYaEkKRQKqaysbND+UCg0oB0AAAAAAAAAYOaatAB7b2+vPvjgA3V0dOiEE05IawlRAAAAAAAwdRwOhyRpYaVPuQuXTLi/7l3btKulPtUvAACYvowOnLtcLjkcDtXW1qq5uXlAVffe3l7V1dWpqKhILpfLgNEDAAAAAAAAALKZoQH2RCKhRx55RI888oheffVVdXd3y2Qy6Y033tApp5ySatfS0qKXXnpJCxYs0B133GHIsd977z396Ec/0vr167Vt2zbl5eXppJNO0uWXX66vf/3rslqthhxHkp577jk1NDRow4YNam9vV05Ojo477jh95CMf0cc//nF9/vOf17x58ww7HgAAAAAAk6GgoECSlLtwifKOX2p4vwAAYPoyOnBusVhUX18vj8ej6upq1dTUqKSkRKFQSHV1dWppaZHf76cYDgAAAAAAAADMAoYF2Hfu3Knq6mq98sor6uvrG7Gtw+HQJZdcIpPJpNWrV+ujH/3ohI799NNPy+v1at++faltHR0d2rx5szZv3qwHH3xQ69ev19KlE7sYv3v3bl177bX61a9+NWjfvn379NZbb+nJJ5/UueeeO+HfCQAAAAAAAACATJmMwLnb7Zbf75fP51N5eXlqe1FRkfx+v9xu92T8KhhBIpFQIBBQe3u7CgsL5XK5mEQAAAAAAAAAYNIZEmBPJBK6+OKL9eqrr8psNuuyyy7T+eefrxtvvHHI9iUlJTrnnHO0adMmPfXUUxMKe7/22mv63Oc+p3g8rnnz5qmmpkarVq1SPB7XE088oQceeEBbt27V6tWrtXnzZs2fP39cx9m7d68uvPBCBYNBSdJnP/tZeTwenXTSSbJYLNq2bZtefPFFPfnkk+P+XQAAAAAAAAAAyBaTETh3u92qqqoiNJ0Fmpqa5PP5FI1GU9scDofq6+uZTAAAAAAAAABgUhkSYP/Zz36mV199Vbm5ufr1r3+tT37yk5I0bIBdki655BK98sor2rBhw4SOffPNNysejysnJ0fPPvuszj333NS+j33sYzr55JN12223aevWraqvr9e//uu/jus4N910k4LBoPLy8vTLX/5Sl1xyyYD9Z555pj772c9q7dq1SiQSE/mVAAAAAAAAAADICpMROLdYLKqoqDBukBizpqYmeTweVVZWqrGxMVVdv7a2Vh6Ph4r4AAAAAAAAACaVIQH2xsZGmUwmXX/99anw+mjOOOMMSdKWLVvGfdxNmzYpEAhIkr70pS8NCK8n+Xw+PfzwwwqHw7rvvvt0xx13KDc3d0zH2bBhgx577DFJ0t133z0ovH44k8mknBxD/lkBAAAAAAAAAMg4AufDa21tVSwWG7FNOBwe8HMkNptNdrvdkLENJ5FIyOfzqbKyUk8++aQ2btyop59+WoWFhXryySd16aWXas2aNaqqqqIyPgAAAAAAAIBJYUjS+o033pCkEYPdH3bsscdKknbt2jXu4zY3N6duX3vttUO2MZvNuvrqq1VTU6M9e/bo+eef10UXXTSm4/z7v/+7JGnBggUjVpUHAAAAAAAAAACzQ2trq5Y7i9UZ70irvdfrHbVNfoFVWyLhSQ2xBwIBRaNRXX/99Vq2bJmi0Whqn8Ph0HXXXaenn35agUCAiQsAAAAAAAAAJoUhAfY9e/ZIkhYuXJj2fRKJhCRNqHrHhg0bJElz585VaWnpsO0uuOCC1O2NGzeOKcB+6NAh/epXv5IkXXjhhcrPz5fUP/7t27crkUjo+OOPT20HAAAAAAAAAAAzXywWU2e8QwsrfcpduGTYdn09h9Szd4dyFhwnU86cYdt179qmXS31isVikxpgb29vlyTdfvvtqqysVGNjo0pKShQKhVRbW6s77rhjQDsAAAAAAAAAMJohAfajjz5aO3fu1LZt23TGGWekdZ+33npLknTMMceM+7jJ5TaXLl2qnJzhfxWn0znoPul6/fXX1dnZKUk67bTTtG/fPn3rW9/Sz372s1Rwf86cOTr//PN1xx13UI0EAAAAAAAAADCpWltbFYvFRmyTPBeezjlxm802qYHpmS534RLlHb905EaLT5mawaQhuULuypUr1dzcLLPZLEkqKytTc3OzLrjgAm3YsCHVDgAAAAAAAACMZkiA/dRTT9XOnTv16quv6pJLLknrPr/4xS9kMpl01llnjeuYnZ2dqRP0ixcvHrHtUUcdpblz5+rgwYPatm3bmI7zP//zP6nbvb29OvPMM1Ph+6RDhw7pueee0+9+9zvV1dXpn/7pn8Z0DAAAAAAAAAAA0tHa2qrlzmJ1xjvSau/1ekdtk19g1ZZImBA7JEl9fX2ZHgIAAAAAAACAGc6QAHt1dbV+//vf69///d9166236qijjhqxvd/v19NPPy2TyaRLL710XMfcv39/6va8efNGbZ8MsB84cGBMx/nggw9St7/3ve+ps7NTn/rUp/Ttb39bH/nIR7Rv3z49+eST+ud//mft3btX//zP/yyn06mqqqph++zq6lJXV1fq7/v27RvTmAAAAAAAAMaqo6NDkUhkwLZ4PK5oNCqHw6GCgoIB+5xOp6xW61QOEQCQhlgsps54hxZW+pS7cMmw7fp6Dqln7w7lLDhOppw5w7br3rVNu1rqFYvFCLDPEjt37pQkbdiwQdXV1aqpqVFJSYlCoZDq6uq0cePGAe0AAAAAAAAAwGiGBNi/8pWv6J577tG2bdt00UUX6Wc/+5lOOWXwcpg7d+7Ufffdpx/84AcymUwqKSnR5ZdfPq5jdnZ2pm7PmTP8yfekvLw8Sf0XZsfi4MGDA4554YUXqqWlRRaLRZJ0zDHH6Ktf/apKSkp0wQUXqLe3VzU1NbrkkktkMpmG7LOurk533XXXmMYBAAAAAAAwEZFIRKWlpWm3DwaDWrFixSSOCAAwEbkLlyjv+KUjN1o8+Dw9UFhYKKn/WsVPfvITlZeXp/YVFRWptrZWt99+e6odAAAAAAAAABjNkAB7Xl6efvWrX6miokLBYFCnnXaali9fntrv9Xp14MAB/fWvf1VfX5/6+vq0cOFCPfnkk8OGvEeTn5+fun3o0KFR2ycrnn+4mthYjiP1V2FPhtcPd95558ntdsvv9yscDuvNN9/URz7ykSH7rKmp0a233pr6+759+7RkyfCVcgAAAABgphuqMnQ4HB7w83BUhgbGzul0KhgMDtgWDofl9XrV0NCg4uLiQe2TkgUBurZ3yQjJfsZaaAAAAEycy+WSw+HQH/7wB23dulUbN25Ue3u7CgsLtXLlSl166aUqKiqSy+XK9FABAAAAAAAAzFCGBNgl6fTTT9err76qa665Ri+//PKA4MHrr7+uvr6+1N/PPvtsPf744/o//+f/jPt48+fPT90+cODAqO2TldTnzZs37uMcc8wxOuOMM4Zt+8lPflJ+v1+S9Oqrrw4bYM/Ly0tVhAdmMkJIAAAASNdIlaG9Xu+gbVSGBsbOarUO+7wpLi4e8TkVjUYlSW3r2gwdUzQa1cqVKw3tEwAAjMxisai+vl4ej0eXXnqpampqVFlZqVAopEsvvVQtLS3y+/1DFvMBAAAAAAAAACMYFmCXpKVLl2rjxo3asGGDfv3rX2vz5s3auXOnEomEFi5cqDPOOEOXXHKJLrzwwgkfKz8/XwsXLtSuXbvU1jbyxdPdu3enAuxjrXR+ePvFixen3fb9998f03GAmYgQEgAAANI1VGXoeDyuaDQqh8MxaDWtwytDA5h8DodDkrT4usXKWzTxSfld27vUtq4t1S8AAJhayRVlfT6fysvLU9uLiork9/vldrszODoAAAAAAAAAM52hAfak8847T+edd95kdD3AKaecokAgoLfffls9PT3KyRn61zm8AvSHl8Mezamnnpq6nUgkRmx7+P7hxgLMJoSQAAAAkK7hKkNTmRnIDsnvb3mL8lTgKBil9dj7BQDMLolEQoFAQO3t7SosLJTL5aLadwa43W5VVVXxWAAAAAAAAACYctM6ZX3eeecpEAjo4MGDCgaDOuecc4Zs9+KLL6ZujzX8cOKJJ8put6u1tVXRaFR9fX0ymUxDtn3nnXdSt0844YQxHQeYiQghAQAAAAAAADhcU1OTfD6fotFoapvD4VB9fT1VvzPAYrGooqIi08MAAAAAAAAAMMuYjejkH/7hH9TS0qKenh4juktbdXV16vbDDz88ZJve3l49+uijkqQjjzxSq1atGvNxLr30UknSvn379Lvf/W7Ydk1NTanbU1GBHgAAAAAAAACA6aKpqUkej0ennXaaXn75Ze3fv18vv/yyTjvtNHk8ngHn2AEAAAAAAAAAM5chAfZf/vKXqqqq0vHHH68bbrhBGzZsMKLbUZ199tlyuVySpIceekgvv/zyoDb19fUKh8OSpJtvvlm5ubkD9r/wwgsymUwymUz6whe+MORx/vEf/1H5+fmSpFtvvVX79u0b1KahoUEvvPCCJGn16tVasmTJeH8tAAAAAAAAAABmlEQiIZ/Pp8rKSjU3N6usrEzz5s1TWVmZmpubVVlZqTVr1iiRSGR6qAAAAAAAAACASWZIgH3+/Pnq6+vTBx98oJ/85Ce64IILVFRUpDvuuEN/+ctfjDjEsO677z4VFBSop6dHF110kerq6vTHP/5Rzz//vK6//nrddtttkqRly5bJ5/ON6xh2u13f/va3JUlvvvmmzj77bD388MMKBoN6/vnnddNNN6XC70cccYTWrl1ryO8GAAAAAAAAAMBMEAgEFI1Gdfvtt8tsHnhpwmw2q6amRu+++64CgUCGRggAAAAAAAAAmCo5RnSyc+dOtbS06PHHH9dvfvMbdXV16b333tN3v/tdffe739Vpp50mr9erf/iHf9DixYuNOGTKGWecoV/84hfyer3at2+fbr/99kFtli1bpvXr12v+/PnjPs43vvENffDBB/re976nLVu26Itf/OKgNscee6yam5t18sknj/s4AAAAAAAAAADMNO3t7ZKkkpKSIfcntyfbAQAAAAAAAABmLkMqsOfl5enSSy/Vk08+qR07dujBBx/Uxz72MZlMJvX19emNN97QP/3TP8nhcGjVqlV66KGHtHfvXiMOLUm6+OKL9cYbb+iWW27RsmXLZLVadeSRR+rMM8/U9773Pb322mtaunTphI9TV1enjRs36vOf/7wcDofy8vK0YMECnXXWWfrOd76jrVu36txzzzXgNwIAAAAAAAAAYOYoLCyUJIVCoSH3J7cn2wEAAAAAAAAAZi5DKrAf7ogjjtAXv/hFffGLX1R7e7ueeOIJPf744woGg+rr69NLL72kl156STfeeKM+/elPy+v1yu12T/i4J554ou69917de++9Y7pfRUWF+vr60m5/7rnnElIHAAAAAAAAAGAMXC6XHA6Hamtr1dzcLLP57/V1ent7VVdXp6KiIrlcrgyOcmzi8bgkqXvXNkP6S/aT7BcAAAAAAAAAZirDA+yHKyws1C233KJbbrlFb731lhoaGvTEE0/orbfeUldXl5qbm/XrX/9aPT09kzkMAAAAAAAAAACQQRaLRfX19fJ4PKqurlZNTY1KSkoUCoVUV1enlpYW+f1+WSyWTA81bdFoVJK0q6Xe8H5XrlxpaJ8AAAAAAAAAkE0mNcB+uJNPPll33XWX7rrrLj3xxBO64YYbtGfPnjFVPwcAAAAAAAAAANOT2+2W3++Xz+dTeXl5antRUZH8fr8hq7VOJYfDIUlaWOlT7sIlE+6ve9c27WqpT/ULAAAAAAAAADPVlAXY33//ff3iF7/Qz3/+c23atGmqDgsAAAAAAAAAALKE2+1WVVWVAoGA2tvbVVhYKJfLNa0qrycVFBRIknIXLlHe8UsN7xcAAAAAAAAAZqpJDbAfPHhQTU1Nevzxx/W73/1OiUQiVXHdZDJp5cqVuuqqqyZzCAAAAAAAAAAAIItYLBZVVFRkehgAAAAAAAAAgAwxPMDe09Oj3/72t3r88cf19NNPKx6PS1IquH7KKafoqquu0pVXXqkTTzzR6MMDAAAAAAAAAAAAAAAAAAAAALKUYQH2QCCgn//85/L7/dq9e7ekv4fWTzjhBF1xxRW66qqrdPrppxt1SAAAAAAAAAAAAAAAAAAAAADANGJIgP3EE09UW1ubpL+H1hcsWCCPx6OrrrpKF1xwgUwmkxGHAgAAAAAAAAAAAAAAAAAAAABMU4YE2Ldt2yZJysvL0+rVq3XVVVdp9erVmjNnjhHdAwAAAAAAAAAAAAAAAAAAAABmAEMC7KtWrdJVV12lSy+9VAsWLDCiSwAAAAAAAAAAAAAAAAAAAADADGNIgP13v/udEd0AAAAAAAAAAAAAAAAAAAAAAGYwc6YHAAAAAAAAAAAAAAAAAAAAAACYHQypwP5hwWBQzz33nEKhkD744ANJ0tFHH62SkhJ94hOfUGlp6WQcFgAAAAAAAAAAAAAAAAAAAACQxQwNsL/55pu67rrrtGnTpmHb3H777TrnnHP0k5/8RKeddpqRhwcAAAAAAOPQvWvbiPv7eg6pZ+8O5Sw4TqacOWPqp6OjQ5FIZMC2cDg84OfhnE6nrFZrOsMGAAAAAAAAAAAAAExDhgXYn3vuOV188cU6dOiQ+vr6JEm5ublauHChJGnXrl3q7u6WJP3xj3/U2WefrZaWFn384x83aggAAAAAAGAMbDab8gus2tVSb1if+QVW2Wy21N8jkciwK7F5vd5B24LBoFasWGHYeAAAmGni8bik0SegpSvZT7JfAAAAAAAAAAAmmyEB9lgspssuu0xdXV0ym8360pe+pK985Ss644wzlJPTf4hEIqHXXntNDzzwgH7605+qq6tLl112md56661UyB0AAAAAAEwdu92uLZGwYrHYiO3C4bC8Xq8aGhpUXFw8YlubzSa73Z76u9PpVDAYHNAmHo8rGo3K4XCooKBgwD6n0znG3wIAgNklGo1KkqET0JL9rly50tA+AQAAAAAAAAAYiiEB9vvuu0979+7VnDlz9Ktf/Uqf/OQnB7WxWCw688wzdeaZZ+rSSy/VxRdfrL179+q+++7Tt7/9bSOGAQAAAAAAxshutw8InI+kuLh4zNXRrVbrkPchIAcAwPg4HA5J0sJKn3IXLplwf927tmlXS32qXwAAAAAAAAAAJpshAfb169fLZDLpxhtvHDK8/mEXXXSRbrrpJt17771av349AXYAAAAAAAAAANKQXL0kd+ES5R2/1PB+AQAAAAAAAACYbIYE2N99911J0iWXXJL2fS655BLde++9+utf/2rEEAAAAAAAAAAAAKZc965tI+7v6zmknr07lLPgOJly5oy7HwAAAAAAAACYKQwJsHd2dkqS5s6dm/Z9km27urqMGAIAAAAAAAAAAMCUsdlsyi+waldLvWF95hdYZbPZDOsPAAAAAAAAALKRIQH2448/Xq2trXrttddUWlqa1n1ee+01SdJxxx1nxBAAAAAAAAAAAACmjN1u15ZIWLFYbMR24XBYXq9XDQ0NKi4uHrGtzWaT3W43cpgAAAAAAAAAkHUMCbC7XC41NDTou9/9ri6//HIdccQRI7bfv3+/vve978lkMsnlchkxBAAAAAAAAAAAgCllt9vTDpwXFxdrxYoVkzwiAAAAAAAAAMh+ZiM6uf766yVJ7777rs4//3xt3rx52LabN2/WBRdcoHfeeWfAfQEAAAAAAAAAAAAAAAAAAAAAM5shFdhXrlypG264Qffff7/efPNNnXPOOTr11FN1zjnn6Nhjj5XJZNKOHTv0yiuv6C9/+UvqfjfccINWrlxpxBAAAAAAAAAAAAAAAAAAAAAAAFnOkAC7JP3bv/2brFar7r33XvX29ioUCg0Iq0tSX1+fJMlsNmvNmjX67ne/a9ThAQAAAAAAAAAAAAAAAAAAAABZzmxURyaTSd///vf15z//WV/72td08sknq6+vb8Cfk08+WV/72tf05z//Wd/73vdkMpmMOjwAAAAAAAAAAAAAAAAAAAAAIMsZVoE9qaSkRP/xH/8hSTp06JB2794tSTrqqKM0Z84cow8HAAAAAAAAAAAAAAAAAAAAAJgmDA+wH27OnDk67rjjJvMQAAAAAAAAAAAAAAAAAAAAAIBpwjyeO/32t7/VihUrtGLFCj3++ONjuu/jjz+euu9zzz03nsMDAAAAAAAAAAAAAAAAAAAAAKahMQfY+/r6dMstt+j111/XMcccoyuvvHJM97/iiitks9n05z//WT6fb6yHBwAAAAAAAAAAAAAAAAAAAABMU2MOsP/+97/X1q1bZTabtXbt2jEf0GQy6Yc//KEsFotCoZBefPHFMfcBAAAAAAAAAAAAAAAAAAAAAJh+xhxgf/LJJyVJF154oU455ZRxHfSUU07RJz/5SUmS3+8fVx8AAAAAAAAAAAAAAAAAAAAAgOllzAH2TZs2yWQy6eKLL57QgSsrK9XX16c//vGPE+oHAAAAAAAAAAAAAAAAAAAAADA9jDnA/t5770mSli9fPqEDL1u2TJIUjUYn1A8AAAAAAAAAAAAAAAAAAAAAYHoYc4B97969kqSjjz56QgdO3n/fvn0T6gcAAAAAAAAAAAAAAAAAAAAAMD3kjPUORxxxhHbv3q09e/ZM6MDJ+8+fP39C/QAAAAAAAGBqdG3vGnF/76Fedce6lWvLlXnO8HUTRusHAAAAAAAAAAAAwMw15gD7Mccco927d+t//ud/VFFRMe4Dh8NhSdKxxx477j4AAAAAAAAw+Ww2m/IL8tW2rs2wPvML8mWz2QzrDwAAAAAAAAAAAMD0MOYA+9lnn60tW7bo6aef1g033DDuA//qV7+SyWTSWWedNe4+AAAAAAAAMPnsdru2RLYoFouN2C4cDsvr9aqhoUHFxcUjtrXZbLLb7UYOEwAAAAAAAAAAAMA0MOYA+6c//Wk99thjevbZZ7Vhwwadd955Yz7oSy+9pGeffVYmk0mf/vSnx3x/AAAAAAAATC273Z524Ly4uFgrVqyY5BEBAAAAAAAAAAAAmI7GHGC/9NJL5XA4FI1Gddlll+mll17SySefnPb9t27dqssvv1wmk0kOh0Mej2esQwAAAAAAAAAAYFbr3rVtxP19PYfUs3eHchYcJ1POnHH3AwAAAAAAAACA0cYcYM/NzdU999wjj8ejnTt3qrS0VN/5znf05S9/WXPnzh32fgcOHNCDDz6ob33rWzpw4IBMJpPq6+uVkzPmIQAAAAAAAAAAMCvZbDblF1i1q6XesD7zC6yy2WyG9QcAAAAAAAAAwEjGlR53u92666679C//8i86ePCgbr31Vt15551yuVwqLS3Vscceq7lz5+rgwYPasWOH/vSnPykQCOjgwYPq6+uTJN11112qrq428ncBAAAAAAAAAGBGs9vt2hIJKxaLjdguHA7L6/WqoaFBxcXFI7a12Wyy2+1GDhMAAAAAAAAAgGGNu/z5nXfeqcWLF+umm25SR0eHDhw4oGeeeUbPPPPMkO2TwXWr1ap///d/1xe+8IXxHhoAAAAAAAAAgFnLbrenHTgvLi7WihUrJnlEAAAAAAAAAACkzzyRO1977bXaunWrbr31VtlsNvX19Q37x2azyefzaevWrYTXAQAAAAAAAAAAAAAAAAAAAGAWGncF9qRFixbpnnvu0T333KO//OUvev3117Vr1y7t379f8+fP18KFC3X66afr1FNPNWK8AAAAAAAAAAAAAAAAAAAAAIBpasIB9sOdeuqpBNUBAAAAAAAAAAAAAAAAAAAAAEMyZ3oAAAAAAAAAAAAAAAAAAAAAAIDZgQA7AAAAAAAAAAAAAAAAAAAAAGBKEGAHAAAAAAAAAAAAAAAAAAAAAEwJAuwAAAAAAAAAAAAAAAAAAAAAgClBgB0AAAAAAAAAAAAAAAAAAAAAMCUIsAMAAAAAAAAAAAAAAAAAAAAApgQBdgAAAAAAAAAAAAAAAAAAAADAlCDADgAAAAAAAAAAAAAAAAAAAACYEjMmwP7ee+/J5/PJ6XRq7ty5Ovroo3XWWWfpBz/4gTo6OibU9yOPPCKTyZTWn0ceecSYXwgAAAAAAAAAAAAAAAAAAAAAZpicTA/ACE8//bS8Xq/27duX2tbR0aHNmzdr8+bNevDBB7V+/XotXbo0g6MEAAAAAAAAAAAAAAAAAAAAgNlt2gfYX3vtNX3uc59TPB7XvHnzVFNTo1WrVikej+uJJ57QAw88oK1bt2r16tXavHmz5s+fP6Hj/dd//ZcWLVo07P7FixdPqH8AAAAAAAAAAAAAAAAAAAAAmKmmfYD95ptvVjweV05Ojp599lmde+65qX0f+9jHdPLJJ+u2227T1q1bVV9fr3/913+d0PGWLVsmh8MxsUEDAAAAAAAAAAAAAAAAAAAAwCxkzvQAJmLTpk0KBAKSpC996UsDwutJPp9PxcXFkqT77rtP3d3dUzpGAAAAAAAAAAAAAAAAAAAAAEC/aR1gb25uTt2+9tprh2xjNpt19dVXS5L27Nmj559/fiqGBgAAAAAAYKhEIqEXXnhBjY2NeuGFF5RIJDI9JAAAAAAAAAAAAAAYs2kdYN+wYYMkae7cuSotLR223QUXXJC6vXHjxkkfFwAAAAAAgJGampq0dOlSrVq1SldeeaVWrVqlpUuXqqmpKdNDAwAAAAAAAAAAAIAxycn0ACYiHA5LkpYuXaqcnOF/FafTOeg+43Xttddqy5YtisViOuKII7R06VJ94hOf0Ne+9jWdcMIJE+obAAAAAADgw5qamuTxeFRZWanGxkaVlJQoFAqptrZWHo9Hfr9fbrc708MEAACSOjo6FIlEBmxLXpcY6vqE0+mU1WqdkrEBAAAAAAAAwP/P3p3HS1nXjf//XOewLwqCKAaKiggGbqgpRIKl3d1uSJZZ5NJmuXxdcAm7c7ldUBNNK0uTbHUpbsMSK3dFxQUyEQNRFEXFBRXZDts5798f/s50Dvt6zuccns/Hg4fDzDXXfGZe3fcwM++5JhcNdoB90aJFafbs2SmllLp06bLabdu3b59at26dFixYkGbOnLlBt/vwww+XTr///vvp/fffT0899VQaOXJk+vGPf5xOOumkDdo/AAAAQLXKyso0bNiwdNhhh6UxY8aksrKPf0xv//33T2PGjEmDBw9OZ599djryyCNTeXl5Pa8WAJg6deoqfzF26NChK5w3ceLEtPfee2/qZQEAAAAAZKXBDrDPmzevdLpNmzZr3L56gH3+/PnrdXs77bRTGjJkSDrggANS165dU0opvfLKK+n//u//0ujRo9OiRYvSd7/73VQURfrOd76z2n0tXrw4LV68uPT3uXPnrteaAAAAgMZt3LhxacaMGem2224rDa9XKysrS8OHD0/9+vVL48aNSwMHDqyfRQIAJT179kwTJ06sdV5FRUWaMWNG6tatW2rZsuUK2wMAAAAAbG4a7AD7okWLSqebNWu2xu2bN2+eUvr4jeJ1ddRRR6Xjjz8+FUVR6/x99903HXPMMenuu+9OQ4YMSUuXLk1nnnlmOuKII9K22267yv2NGDEiXXzxxeu8DgAAAGDzMmvWrJRSSr17917p5dXnV28HANSvVq1arfSI6v3796+H1QAAAAAA5KlszZvkqUWLFqXTS5YsWeP21Uc8X/7oJmtjyy23XGF4vabDDjssXXDBBSmllBYuXJhGjRq12v0NHz48ffTRR6U/M2fOXOc1AQAAAI1f586dU0opTZ48eaWXV59fvR0AAAAAAABA7hrsAHvbtm1Lp+fPn7/G7RcsWJBSSqlNmzabZD3f+c53SkPujzzyyGq3bd68edpiiy1q/QEAAABY3oABA1K3bt3S5ZdfnqqqqmpdVlVVlUaMGJF23HHHNGDAgHpaIQAAAAAAAMC6abAD7C1atEgdOnRIKaX0xhtvrHbbDz/8sDTA3rVr102ynk6dOpXW8+abb26S2wAAAAA2L+Xl5WnkyJHp7rvvToMHD07jx49P8+bNS+PHj0+DBw9Od999d7r66qtTeXl5fS8VAAAAAAAAYK002AH2lFLabbfdUkopvfzyy2nZsmWr3G7q1Kml07169dpk66k+AjsAAADAxjJkyJA0evTo9Pzzz6d+/fqlLbbYIvXr1y9Nnjw5jR49Og0ZMqS+lwgAAAAAAACw1prU9wI2xKc//ek0bty4tGDBgjRx4sT0qU99aqXbPfLII6XT/fv33yRree+999Ls2bNTSiltt912m+Q2AAAAgM3TkCFD0pFHHpnGjRuXZs2alTp37pwGDBjgyOsAkLnKykrP3wAAAAAAy2nQR2AfPHhw6fQtt9yy0m2qqqrSb3/725RSSu3atUuDBg3aJGu56aabUkSklFI68MADN8ltAAAAAJuv8vLyNHDgwHTsscemgQMHGn4DgMzdeeedqXv37mnQoEHpq1/9aho0aFDq3r17uvPOO+t7aQAAAAAA9apBD7Dvt99+acCAASmllEaNGpXGjx+/wjYjR45MU6ZMSSmldPrpp6emTZvWuvzhhx9ORVGkoijSCSecsML1Z8yYkZ599tnVruPuu+9O//u//5tSSqlly5bpxBNPXJ+7AwAAAAAANAJ33nlnOvroo1OfPn3S+PHj07x589L48eNTnz590tFHH22IHQAAAADYrDWp7wVsqOuuuy71798/VVRUpEMOOSSdf/75adCgQamioiLdfvvt6aabbkoppdSjR480bNiwdd7/jBkz0qBBg9IBBxyQDj/88LTHHnukTp06pZRSeuWVV9Lo0aPT6NGjS0dfv/rqq9MnPvGJjXcHAQAAAACABqOysjINGzYsHXbYYWnMmDGprOzjYwntv//+acyYMWnw4MHp7LPPTkceeaRfVAEAAAAANksNfoB9r732SnfccUcaOnRomjt3bjr//PNX2KZHjx5p7NixqW3btut9O+PHj1/pEd6rtWrVKl177bXpO9/5znrfBgAAAAAA0LCNGzcuzZgxI912222l4fVqZWVlafjw4alfv35p3LhxaeDAgfWzSAAAAACAetTgB9hTSunwww9PkyZNStddd10aO3ZseuONN1KzZs1S9+7d05e+9KV06qmnplatWq3Xvvv27Zt+//vfp/Hjx6cJEyakWbNmpdmzZ6dly5al9u3bp09+8pPps5/9bPrWt75VOjI7AAAAAACweZo1a1ZKKaXevXuv9PLq86u3AwAAAADY3DSKAfaUUtphhx3SNddck6655pp1ut7AgQNTRKzy8rZt26avfe1r6Wtf+9qGLhEAAAAAAGjkOnfunFJKafLkyWn//fdf4fLJkyfX2g4AAAAAYHNTtuZNAAAAAAAAWBsDBgxI3bp1S5dffnmqqqqqdVlVVVUaMWJE2nHHHdOAAQPqaYUAAAAAAPXLADsAAAAAAMBGUl5enkaOHJnuvvvuNHjw4DR+/Pg0b968NH78+DR48OB09913p6uvvjqVl5fX91IBAAAAAOpFk/peAAAAAAAAQGMyZMiQNHr06DRs2LDUr1+/0vk77rhjGj16dBoyZEg9rg4AAAAAoH4ZYAcAAAAAANjIhgwZko488sg0bty4NGvWrNS5c+c0YMAAR14HAAAAADZ7ZfW9AAAAAAAAAAAAAAAANg8G2AEAAAAAADayO++8M3Xv3j0NGjQoffWrX02DBg1K3bt3T3feeWd9Lw0AAAAAoF4ZYAcAAAAAANiI7rzzznT00UenPn36pPHjx6d58+al8ePHpz59+qSjjz7aEDsAAAAAsFlrUt8LAAAAAGDje/3119Ps2bNXu82UKVNq/Xd1OnbsmLbffvuNsjYAaMwqKyvTsGHD0mGHHZbGjBmTyso+PpbQ/vvvn8aMGZMGDx6czj777HTkkUem8vLyel4tAAAAAEDdM8AOAAAAlCxcuDBNnTq11nmrG3Lu2bNnatWqVZ2sjbX3+uuvp149d00LKxat1fZDhw5d4zatWrZIU6a+aIgdANZg3LhxacaMGem2224rDa9XKysrS8OHD0/9+vVL48aNSwMHDqyfRQIAAAAA1CMD7AAAAEDJ1KlTU9++fVd62cqGnCdOnJj23nvvTb0s1tHs2bPTwopF6fdHtUy9ti5b5XYVyyLNmFOVurUrSy2bFKvcbsp7VWnonyvS7NmzDbADwBrMmjUrpZRS7969V3p59fnV2wEAAAAAbG4MsAMAAAAlPXv2TBMnTqx1XkVFRZoxY0bq1q1batmy5Qrbs2ms7Gj4a2qx/NHwe21dlvbuXL7a2+nfdeOsFwD4WOfOnVNKKU2ePDntv//+K1w+efLkWtsBAAAAAGxuDLADAAAAJa1atVrpEdX79+9fD6vZvK3uaPgr42j4AJCHAQMGpG7duqXLL788jRkzJpWV/efXUKqqqtKIESPSjjvumAYMGFCPqwQAAAAAqD8G2AEAAAAytLKj4U+ZMiUNHTo0/f73v0+9evVaYXsAoP6Vl5enkSNHpqOPPjoNHjw4DR8+PPXu3TtNnjw5jRgxIt19991p9OjRqbx89b+SAgAAAADQWBlgBwAAAMjQqo6Gn1JKvXr1crR1AMjYkCFD0ujRo9OwYcNSv379SufvuOOOafTo0WnIkCH1uDoAAAAAgPplgB0AAAAAAGAjGzJkSDryyCPTuHHj0qxZs1Lnzp3TgAEDHHkdAAAAANjsH9K84AABAABJREFUGWAHAAAAAADYBMrLy9PAgQPrexkAAAAAAFkpq+8FAAAAAAAAAAAAAACweTDADgAAAAAAAAAAAABAnTDADgAAAAAAAAAAAABAnTDADgAAAAAAAAAAAABAnTDADgAAAAAAAAAAAABAnTDADgAAAAAAAAAAAABAnTDADgAAAAAAAAAAAABAnTDADgAAAAAAAAAAAABAnTDADgAAAAAAAAAAAABAnTDADgAAAAAAAAAAAABAnTDADgAAAAAAAAAAAABAnTDADgAAAAAAAAAAAABAnWhS3wsAAAAAAABojCorK9O4cePSrFmzUufOndOAAQNSeXl5fS8LAAAAAKBeOQI7AAAAAADARnbnnXem7t27p0GDBqWvfvWradCgQal79+7pzjvvrO+lAQAAAADUKwPsAAAAAAAAG9Gdd96Zjj766NSnT580fvz4NG/evDR+/PjUp0+fdPTRRxtiBwAAAAA2awbYAQAAAAAANpLKyso0bNiwdNhhh6UxY8ak/fffP7Vp0ybtv//+acyYMemwww5LZ599dqqsrKzvpQIAAAAA1AsD7AAAAAAAABvJuHHj0owZM9L555+fyspqfwxTVlaWhg8fnl599dU0bty4elohAAAAAED9MsAOAAAAAACwkcyaNSullFLv3r1Xenn1+dXbAQAAAABsbgywAwAAAAAAbCSdO3dOKaU0efLklV5efX71dgAAAAAAm5sm9b0AAAAAAABg/S1cuDBNnTq11nlTpkyp9d+aevbsmVq1alUna9scDRgwIHXr1i1dfvnlacyYMams7D/HEqqqqkojRoxIO+64YxowYEA9rhIAAAAAoP4YYAcAAAAAgAZs6tSpqW/fviu9bOjQoSucN3HixLT33ntv6mVttsrLy9PIkSPT0UcfnQYPHpyGDx+eevfunSZPnpxGjBiR7r777jR69OhUXl5e30sFAAAAAKgXBtgBAAAAAKAB69mzZ5o4cWKt8yoqKtKMGTNSt27dUsuWLVfYnk1ryJAhafTo0WnYsGGpX79+pfN33HHHNHr06DRkyJB6XB0AAAAAQP0ywA4AAAAAAA1Yq1atVnpE9f79+9fDaqg2ZMiQdOSRR6Zx48alWbNmpc6dO6cBAwY48joAAAAAsNkzwA4AAAAAALAJlJeXp4EDB9b3MgAAAAAAslJW3wsAAAAAAAAAAAAAAGDzYIAdAAAAAAAAAAAAAIA6YYAdAAAAAAAAAAAAAIA6YYAdAAAAAAAAAAAAAIA6YYAdAAAAAAAAAAAAAIA60aS+FwAAAABAw7Nw4cI0derUWudNmTKl1n9r6tmzZ2rVqlWdrA1gc1dZWZnGjRuXZs2alTp37pwGDBiQysvL63tZAAAAAACQUjLADgAAAMB6mDp1aurbt+9KLxs6dOgK502cODHtvffem3pZAJu9O++8Mw0bNizNmDGjdF63bt3SyJEj05AhQ+pvYQAAAAAA8P8zwA4AAADAOuvZs2eaOHFirfMqKirSjBkzUrdu3VLLli1X2B6ATevOO+9MRx99dDrssMPSbbfdlnr37p0mT56cLr/88nT00Uen0aNHG2IHAAAAAKDeGWAHAAAAYJ21atVqpUdU79+/fz2sBoDKyso0bNiwdNhhh6UxY8aksrKylFJK+++/fxozZkwaPHhwOvvss9ORRx6ZysvL63m1AAAAAABszsrqewEAAAAAAMCGGTduXJoxY0Y6//zzS8Pr1crKytLw4cPTq6++msaNG1dPKwQAAAAAgI8ZYAcAAAAAgAZu1qxZKaWUevfuvdLLq8+v3g4AAAAAAOqLAXYAAAAAAGjgOnfunFJKafLkySu9vPr86u0AAAAAAKC+GGAHAAAAAIAGbsCAAalbt27p8ssvT1VVVbUuq6qqSiNGjEg77rhjGjBgQD2tEAAAAAAAPmaAHQAAAAAAGrjy8vI0cuTIdPfdd6fBgwen8ePHp3nz5qXx48enwYMHp7vvvjtdffXVqby8vL6XCgAAAADAZq7RDLC/9tpradiwYalnz56pdevWaauttkr77rtv+tGPfpQWLly4SW5z4cKFaaeddkpFUaSiKFK3bt02ye0AAAAAAMCaDBkyJI0ePTo9//zzqV+/fmmLLbZI/fr1S5MnT06jR49OQ4YMqe8lAgAAAABAalLfC9gY/vrXv6ahQ4emuXPnls5buHBhmjBhQpowYUK6+eab09ixY1P37t036u1ecMEF6dVXX92o+wQAAADYUBUVFSmllKbMrtwo+6veT/V+AcjXkCFD0pFHHpnGjRuXZs2alTp37pwGDBjgyOsAAAAAAGSjwQ+wP/vss+mYY45JFRUVqU2bNmn48OFp0KBBqaKiIt1+++3pl7/8ZZo2bVo69NBD04QJE1Lbtm032u3++Mc/Ti1atEhNmzZN8+bN2yj7BQAAANhQM2bMSCmlNPTORRt9v/3799+o+wRg4ysvL08DBw6s72UAAAAAAMBKNfgB9tNPPz1VVFSkJk2apHvvvTcdcMABpcsOOuigtMsuu6Rzzz03TZs2LY0cOTJddNFFG3yblZWV6dvf/naqrKxMF154YRo1apQBdgAAACAb3bp1Syml9PshLVKvjht+xN0psyvT0DsXlfYLAAAAAAAAsL4a9AD7008/ncaNG5dSSumb3/xmreH1asOGDUu33HJLmjJlSrruuuvSD37wg9S0adMNut3rrrsuTZw4Me26667pvPPOS6NGjdqg/QEAAABsTC1btkwppdSrY3nau/OGD7Avv18AAAAAAACA9VVW3wvYEGPGjCmdPvHEE1e6TVlZWTruuONSSinNmTMnPfTQQxt0m6+99lq64IILUkop/eIXv0jNmjXboP0BAAAAAAAAAAAAAGwuGvQA+2OPPZZSSql169apb9++q9zuwAMPLJ1+/PHHN+g2Tz755LRgwYL09a9/PQ0cOHCD9gUAAAAAAAAAAAAAsDlp0APsU6ZMSSml1L1799SkSZNVbtezZ88VrrM+br/99nTPPfek9u3bp5EjR673fgAAAAAAAAAAAAAANkernvrO3KJFi9Ls2bNTSil16dJltdu2b98+tW7dOi1YsCDNnDlzvW7vww8/TGeccUZKKaUrrrgibb311uu1n5RSWrx4cVq8eHHp73Pnzl3vfQEAAAAAAAAAAAAANBQN9gjs8+bNK51u06bNGrdv3bp1Siml+fPnr9ftnXPOOemdd95JBxxwQPr2t7+9XvuoNmLEiLTllluW/nTt2nWD9gcAAAAAAAAAAAAA0BA06COwV2vWrNkat2/evHlKKaWKiop1vq1HH300/epXv0pNmjRJv/jFL1JRFOu8j5qGDx+ezjrrrNLf586da4gdAAAANnOvv/566dfmVmXKlCm1/rum7QAAAAAAAABy02AH2Fu0aFE6vWTJkjVuv3jx4pRSSi1btlyn21m8eHH6zne+kyIinX766Wn33Xdft4WuRPPmzUsD9QAAAACvv/562rVnr7SoYuFabT906NBNvCIAAAAAAACATaPBDrC3bdu2dHr+/Plr3H7BggUppZTatGmzTrdz2WWXpRdffDF17do1XXzxxeu2SAAAAIC1MHv27LSoYmHqcNiw1LTDqn+lLZYtScs+eic12XKbVDRZ9S/SVbwyIX007vebYqkAAAAAAAAAG6TBDrC3aNEidejQIb3//vvpjTfeWO22H374YWmAvWvXVX8IvDJXXnllSimlz33uc+mvf/3rSrep3veCBQvS7bffnlJKqVOnTumggw5ap9sCAAAANm9NO3RNzbftvvqNuuy2xv0sfX/mRloRAAAAAAAAwMbVYAfYU0ppt912S+PGjUsvv/xyWrZsWWrSZOV3Z+rUqaXTvXr1WqfbWLJkSUoppVtuuSXdcsstq9129uzZ6dhjj00ppXTggQcaYAcAAAAAAAAAAAAAqKGsvhewIT796U+nlD4+8vnEiRNXud0jjzxSOt2/f/9Nvi4AAAAAAAAAAAAAAFbUoAfYBw8eXDq9qqOjV1VVpd/+9rcppZTatWuXBg0atE63ERFr/LPDDjuklFLaYYcdSuc9/PDD63WfAAAAAAAAAAAAAAAaqwY9wL7ffvulAQMGpJRSGjVqVBo/fvwK24wcOTJNmTIlpZTS6aefnpo2bVrr8ocffjgVRZGKokgnnHDCJl8zAAAAAAAAAAAAAMDmqkl9L2BDXXfddal///6poqIiHXLIIen8889PgwYNShUVFen2229PN910U0oppR49eqRhw4bV82oBAAAAAAAAAAAAADZfDX6Afa+99kp33HFHGjp0aJo7d246//zzV9imR48eaezYsalt27b1sEIAAAAAAAAAAAAAAFJKqay+F7AxHH744WnSpEnpzDPPTD169EitWrVK7dq1S/vss0+68sor07PPPpu6d+9e38sEAAAAAAAAAAAAANisNfgjsFfbYYcd0jXXXJOuueaadbrewIEDU0Rs0G3PmDFjg64PAAAAAAAAAAAAALA5aBRHYAcAAAAAAAAAAAAAIH8G2AEAAAAAAAAAAAAAqBMG2AEAAAAAAAAAAAAAqBMG2AEAAAAAAAAAAAAAqBMG2AEAAAAAAAAAAAAAqBMG2AEAAAAAAAAAAAAAqBMG2AEAAAAAAAAAAAAAqBMG2AEAAAAAAAAAAAAAqBMG2AEAAAAAAAAAAAAAqBMG2AEAAAAAAAAAAAAAqBMG2AEAAAAAAAAAAAAAqBMG2AEAAAAAAAAAAAAAqBMG2AEAAAAAAAAAAAAAqBMG2AEAAAAAAAAAAAAAqBNN6nsBAAAAAGwaU96rWu3lFcsizZhTlbq1K0stmxTrvR8AAAAAAACAtWWAHQAAAKCRKWveJpUVKQ39c8VG22erli1Sx44dN9r+AAAAAAAAgM2TAXYAAACARqa8TftUFSn9/ve/T7169VrldlOmTElDhw5d43YppdSxY8e0/fbbb+ylAgAAAAAAAJsZA+wAAAAAjVSvXr3S3nvvvdG2AwAAAAAAANhQBtgBAAAA6llFRUVKKaWl78/cKPur3k/1fgEAAAAAAAByYYAdAAAAoJ7NmDEjpZTS+3eP3Oj77d+//0bdJwAAAAAAAMCGMMAOAAAAUM+6deuWUkqpw2HDUtMOXTd4f0vfn5nev3tkab8AAAAAAAAAuTDADgAAAFDPWrZsmVJKqWmHrqn5tt03+n4BAAAAAAAAclFW3wsAAAAAAAAAAAAAAGDzYIAdAAAAAAAAAAAAAIA6YYAdAAAAAAAAAAAAAIA6YYAdAAAAAAAAAAAAAIA6YYAdAAAAAAAAAAAAAIA6YYAdAAAAAAAAAAAAAIA6YYAdAAAAAAAAAAAAAIA6YYAdAAAAAAAAAAAAAIA6YYAdAAAAAAAAAAAAAIA6YYAdAAAAAAAAAAAAAIA6YYAdAAAAAAAAAAAAAIA6YYAdAAAAAAAAAAAAAIA6YYAdAAAAAAAAAAAAAIA6YYAdAAAAAAAAAAAAAIA6YYAdAAAAAAAAAAAAAIA6YYAdAAAAAAAAAAAAAIA6YYAdAAAAAAAAAAAAAIA6YYAdAAAAAAAAAAAAAIA60aS+FwAAAADAx5a+P3O1l8eyJWnZR++kJltuk4omzdZ7PwAAAAAAAAD1xQA7AAAAQD3r2LFjatGyVXr/7pEbbZ8tWrZKHTt23Gj7AwAAAAAAANgYDLADAAAA1LPtt98+vTh1Spo9e/Zqt5syZUoaOnRo+v3vf5969eq12m07duyYtt9++425TAAAAAAAAIANZoAdAAAAIAPbb7/9Wg+c9+rVK+29996beEUAAAAAAAAAG19ZfS8AAAAAAAAAAAAAAIDNgwF2AAAAAAAAAAAAAADqhAF2AAAAAAAAAAAAAADqhAF2AAAAAAAAAAAAAADqhAF2AAAAAAAAAAAAAADqhAF2AAAAAAAAAAAAAADqhAF2AAAAAAAAAAAAAADqhAF2AAAAAAAAAAAAAADqhAF2AAAAAAAAAAAAAADqRKMYYH/ttdfSsGHDUs+ePVPr1q3TVlttlfbdd9/0ox/9KC1cuHCD9j1lypT005/+NB1//PFp7733Tl26dEktWrRIrVu3TjvttFM65phj0l133ZUiYiPdGwAAAAAAAAAAAACAxqlJfS9gQ/31r39NQ4cOTXPnzi2dt3DhwjRhwoQ0YcKEdPPNN6exY8em7t27r9f+L7vssvSHP/xhpZe9+uqr6dVXX01//OMf04EHHpj+7//+L3Xo0GG9bgcAAAAAAAAAAAAAoLFr0APszz77bDrmmGNSRUVFatOmTRo+fHgaNGhQqqioSLfffnv65S9/maZNm5YOPfTQNGHChNS2bdt1vo0mTZqkT33qU6l///6pT58+adttt01bb711+vDDD9PUqVPTjTfemCZPnpweeeSRdPjhh6fHHnsslZU1igPbAwAAAAAAAAAAAABsVA16gP30009PFRUVqUmTJunee+9NBxxwQOmygw46KO2yyy7p3HPPTdOmTUsjR45MF1100Trfxs0335yaNFn5w/S5z30ufe9730tf/vKX05133pnGjx+f7r777nTEEUes710CAAAAAAAAAAAAAGi0Guyhwp9++uk0bty4lFJK3/zmN2sNr1cbNmxY6tWrV0oppeuuuy4tXbp0nW9nVcPr1crLy9M555xT+nv1mgAAAAAAAAAAAAAAqK3BDrCPGTOmdPrEE09c6TZlZWXpuOOOSymlNGfOnPTQQw9tkrW0bdu2dHrRokWb5DYAAAAAAAAAAAAAABq6BjvA/thjj6WUUmrdunXq27fvKrc78MADS6cff/zxTbKW22+/vXS6Z8+em+Q2AAAAAAAAAAAAAAAauib1vYD1NWXKlJRSSt27d09Nmqz6btQcKK++zsYwe/bs9NJLL6Wbb7453XLLLSmllDp27Ji+9rWvbbTbAAAAAAAAAAAAAABoTBrkAPuiRYvS7NmzU0opdenSZbXbtm/fPrVu3TotWLAgzZw5c4Nud+DAgemRRx5Z6WUdO3ZMf/7zn1O7du3WuJ/FixenxYsXl/4+d+7cDVoXAAAAAAAAAAAAAEBDUFbfC1gf8+bNK51u06bNGrdv3bp1Siml+fPnb5L1/L//9//SlClT0qc//em12n7EiBFpyy23LP3p2rXrJlkXAAAAAAAAAAAAAEBOGuQA+6JFi0qnmzVrtsbtmzdvnlJKqaKiYoNu95ZbbknPP/98mjRpUnr00UfTNddck3bZZZf005/+NJ144onpnXfeWav9DB8+PH300UelPxt6ZHgAAAAAAAAAAAAAgIagSX0vYH20aNGidHrJkiVr3H7x4sUppZRatmy5Qbe744471vr7gAED0ve+9730pS99Kd19991p3333TU888UTq0qXLavfTvHnz0lA9AAAAAAAAAAAAAMDmokEegb1t27al0/Pnz1/j9gsWLEgppdSmTZuNvpYWLVqkW265JbVq1SrNnDkznXvuuRv9NgAAAAAAAAAAAAAAGoMGOcDeokWL1KFDh5RSSm+88cZqt/3www9LA+xdu3bdJOvp2LFj6t+/f0oppbvuuistXbp0k9wOAAAAAAAAAAAAAEBD1iAH2FNKabfddksppfTyyy+nZcuWrXK7qVOnlk736tVrk61n6623TimltHDhwjR79uxNdjsAAAAAAAAAAAAAAA1Vgx1g//SnP51SSmnBggVp4sSJq9zukUceKZ2uPkr6pvDmm2+WTrdp02aT3Q4AAAAAAAAAAAAAQEPVYAfYBw8eXDp9yy23rHSbqqqq9Nvf/jallFK7du3SoEGDNsla3njjjTR+/PiUUko77LBDatu27Sa5HQAAAAAAAAAAAACAhqzBDrDvt99+acCAASmllEaNGlUaIK9p5MiRacqUKSmllE4//fTUtGnTWpc//PDDqSiKVBRFOuGEE1a4/rRp09KDDz642nV89NFH6atf/WpasmRJSiml4447bn3uDgAAAAAAAAAAAABAo9ekvhewIa677rrUv3//VFFRkQ455JB0/vnnp0GDBqWKiop0++23p5tuuimllFKPHj3SsGHD1nn/b731VvrsZz+b9thjjzR48ODUt2/ftO2226YmTZqkt99+Oz3++ONp1KhR6e23304ppdS7d+/0/e9/f6PeRwAAAAAAAAAAAACAxqJBD7Dvtdde6Y477khDhw5Nc+fOTeeff/4K2/To0SONHTs2tW3bdr1v57nnnkvPPffcarc59NBD0y233JJatWq13rcDAAAAAAAAAAAAANCYNegB9pRSOvzww9OkSZPSddddl8aOHZveeOON1KxZs9S9e/f0pS99KZ166qnrPVTev3//9I9//CPdf//9acKECemNN95I77zzTlq4cGHaYost0o477pj233//dOyxx6b+/ftv5HsGAAAAAAAAAAAAANC4NPgB9pRS2mGHHdI111yTrrnmmnW63sCBA1NErPLypk2bpkMOOSQdcsghG7pEAAAAAAAAAAAAAIDNXll9LwAAAAAAAAAAAAAAgM2DAXYAAAAAAAAAAAAAAOqEAXYAAAAAAAAAAAAAAOqEAXYAAAAAAAAAAAAAAOpEk/peAAAAAACb3sKFC9PUqVNrnTdlypRa/62pZ8+eqVWrVnWyNgAAAAAAAGDzYYAdAAAAYDMwderU1Ldv35VeNnTo0BXOmzhxYtp777039bIAAAAAAACAzYwBdgAAAIDNQM+ePdPEiRNrnVdRUZFmzJiRunXrllq2bLnC9gAAAAAAAAAbmwF2AAAAgM1Aq1atVnpE9f79+9fDagAAAAAAAIDNVVl9LwAAAAAAAAAAAAAAgM2DAXYAAAAAAAAAAAAAAOqEAXYAAAAAAAAAAAAAAOqEAXYAAAAAAAAAAAAAAOqEAXYAAAAAAAAAAAAAAOqEAXYAAAAAAAAAAAAAAOqEAXYAAAAAAAAAAAAAAOqEAXYAAAAAAAAAAAAAAOqEAXYAAAAAAAAAAAAAAOqEAXYAAAAAAAAAAAAAAOqEAXYAAAAAAAAAAAAAAOqEAXYAAAAAAAAAAAAAAOqEAXYAAAAAAAAAAAAAAOqEAXYAAAAAAAAAAAAAAOqEAXYAAAAAAAAAAAAAAOqEAXYAAAAAAAAAAAAAAOqEAXYAAAAAAAAAAAAAAOqEAXYAAAAAAAAAAAAAAOqEAXYAAAAAAAAAAAAAAOqEAXYAAAAAAAAAAAAAAOqEAXYAAAAAAAAAAAAAAOqEAXYAAAAAAAAAAAAAAOqEAXYAAAAAAAAAAAAAAOqEAXYAAAAAAAAAAAAAAOqEAXYAAAAAAAAAAAAAAOqEAXYAAAAAAAAAAAAAAOqEAXYAAAAAAAAAAAAAAOqEAXYAAAAAAAAAAAAAAOqEAXYAAAAAAAAAAAAAAOqEAXYAAAAAAAAAAAAAAOqEAXYAAAAAAAAAAAAAAOpEk/peAAAAAAArWrhwYZo6dWqt86ZMmVLrvzX17NkztWrVqk7WBgAAAAAAALC+DLADAAAAZGjq1Kmpb9++K71s6NChK5w3ceLEtPfee2/qZQEAAAAAAABsEAPsAAAAABnq2bNnmjhxYq3zKioq0owZM1K3bt1Sy5YtV9geAAAAAAAAIHcG2AEAAAAy1KpVq5UeUb1///71sBoAAAAAAACAjaOsvhcAAAAAAAAAAAAAAMDmwQA7AAAAAAAAAAAAAAB1wgA7AAAAAAAAAAAAAAB1wgA7AAAAAAAAAAAAAAB1wgA7AAAAAAAAAAAAAAB1wgA7AAAAAAAAAAAAAAB1wgA7AAAAAAAAAAAAAAB1wgA7AAAAAAAAAAAAAAB1wgA7AAAAAAAAAAAAAAB1wgA7AAAAAAAAAAAAAAB1otEMsL/22mtp2LBhqWfPnql169Zpq622Svvuu2/60Y9+lBYuXLhB+164cGG688470/e+97207777pvbt26emTZumDh06pAMOOCBddNFF6e23395I9wQAAAAAAAAAAAAAoHFqUt8L2Bj++te/pqFDh6a5c+eWzlu4cGGaMGFCmjBhQrr55pvT2LFjU/fu3dd535MmTUr9+/dP8+fPX+GyDz74ID355JPpySefTNdee2266aab0jHHHLNB9wUAAAAAAAAAAAAAoLFq8Edgf/bZZ9MxxxyT5s6dm9q0aZMuu+yy9MQTT6QHHnggffvb304ppTRt2rR06KGHpnnz5q3z/ufOnVsaXu/fv38aMWJEuu+++9I///nP9I9//COddNJJqaysLM2dOzd97WtfS3/729826v0DAAAAAAAAAAAAAGgsGvwR2E8//fRUUVGRmjRpku699950wAEHlC476KCD0i677JLOPffcNG3atDRy5Mh00UUXrdP+y8rK0pe//OV04YUXpt12222Fyw855JD0hS98IR111FGpsrIynXbaaemll15KRVFs6F0DAAAAAAAAAAAAAGhUGvQR2J9++uk0bty4lFJK3/zmN2sNr1cbNmxY6tWrV0oppeuuuy4tXbp0nW6jX79+6Y477ljp8Hq1I488Mg0ZMiSllNL06dPTs88+u063AQAAAAAAAAAAAACwOWjQA+xjxowpnT7xxBNXuk1ZWVk67rjjUkopzZkzJz300EObZC2DBg0qnZ4+ffomuQ0AAAAAAAAAAAAAgIasQQ+wP/bYYymllFq3bp369u27yu0OPPDA0unHH398k6xl8eLFpdPl5eWb5DYAAAAAAAAAAAAAABqyBj3APmXKlJRSSt27d09NmjRZ5XY9e/Zc4Tob2yOPPFI63atXr01yGwAAAAAAAAAAAAAADVmDHWBftGhRmj17dkoppS5duqx22/bt26fWrVunlFKaOXPmRl/Lc889l8aOHZtSSqlPnz4G2AEAAAAAAAAAAAAAVmLVhy3P3Lx580qn27Rps8btW7dunRYsWJDmz5+/UdexePHi9K1vfStVVlamlFK67LLL1uo6ixcvLv197ty5G3VNAAAAAAAAAAAAAAA5atBHYK/WrFmzNW7fvHnzlFJKFRUVG3Udp556apowYUJKKaXjjz8+HX744Wu8zogRI9KWW25Z+tO1a9eNuiYAAAAAAAAAAAAAgBw12AH2Fi1alE4vWbJkjdtXH/G8ZcuWG20NI0aMSDfffHNKKaV99903/exnP1ur6w0fPjx99NFHpT8zZ87caGsCAAAAAAAAAAAAAMhVk/pewPpq27Zt6fT8+fPXuP2CBQtSSim1adNmo9z+jTfemM4///yUUko9e/ZM99xzT2rduvVaXbd58+alI8IDAAAAAAAAAAAAAGwuGvQR2Dt06JBSSumNN95Y7bYffvhhaYC9a9euG3zbt912Wzr55JNTSintsMMO6b777ksdO3bc4P0CAAAAAAAAAAAAADRmDXaAPaWUdtttt5RSSi+//HJatmzZKrebOnVq6XSvXr026Db/8pe/pOOOOy5VVVWlzp07pwceeCB16dJlg/YJAAAAAAAAAAAAALA5aFLfC9gQn/70p9O4cePSggUL0sSJE9OnPvWplW73yCOPlE73799/vW/vgQceSF/+8pfTsmXLUocOHdJ9992Xdt555/XeX7WISCmlNHfu3A3eF3mpqqoq/VdfAAAA2DS8/gZgbXnOAGBteL4AYG15zgCgvlQ/71TPn0JDU0QD/l/v008/XRpaP+mkk9IvfvGLFbapqqpKvXv3TlOmTEnt2rVL7777bmratOk639YTTzyRDjnkkLRgwYK05ZZbpgceeCD17dt3g+9DSim98cYbqWvXrhtlXwAAAAAAAAAAAAA0fjNnzkxdunSp72XAOmvQR2Dfb7/90oABA9K4cePSqFGj0vHHH58OOOCAWtuMHDkyTZkyJaWU0umnn77C8PrDDz+cBg0alFJK6fjjj0+//vWvV7idf/3rX+nQQw9NCxYsSK1bt05jx47daMPrKaW03XbbpZkzZ6a2bdumoig22n4bsrlz56auXbummTNnpi222KK+l7NZ0yIveuRDi3xokQ8t8qFFXvTIhxb50CIfWuRDi7zokQ8t8qFFPrTIhxZ50SMfWuRDi3xokQ8t8qJHPrTIhxb50CIfWqxcRKR58+al7bbbrr6XAuulQQ+wp5TSddddl/r3758qKirSIYccks4///w0aNCgVFFRkW6//fZ00003pZRS6tGjRxo2bNg673/69Onp85//fJozZ05KKaVLL700bbnllmny5MmrvE6nTp1Sp06d1vo2ysrKfANmFbbYYgtPOpnQIi965EOLfGiRDy3yoUVe9MiHFvnQIh9a5EOLvOiRDy3yoUU+tMiHFnnRIx9a5EOLfGiRDy3yokc+tMiHFvnQIh9arGjLLbes7yXAemvwA+x77bVXuuOOO9LQoUPT3Llz0/nnn7/CNj169Ehjx45Nbdu2Xef9jxs3Lr377rulv5955plrvM6FF16YLrroonW+LQAAAAAAAAAAAACAxqysvhewMRx++OFp0qRJ6cwzz0w9evRIrVq1Su3atUv77LNPuvLKK9Ozzz6bunfvXt/LBAAAAAAAAAAAAADYrDX4I7BX22GHHdI111yTrrnmmnW63sCBA1NErPLyE044IZ1wwgkbuDrWVfPmzdOFF16YmjdvXt9L2expkRc98qFFPrTIhxb50CIveuRDi3xokQ8t8qFFXvTIhxb50CIfWuRDi7zokQ8t8qFFPrTIhxZ50SMfWuRDi3xokQ8toHEqYnXT2wAAAAAAAAAAAAAAsJGU1fcCAAAAAAAAAAAAAADYPBhgBwAAAAAAAAAAAACgThhgBwAAAAAAAAAAAACgThhgBwAAAAAAAAAAAACgThhgJ3uVlZX1vQQAAAAAAAAAAAAAYCMwwE7WlixZkn7yk5+kM844o76XAgAAAAAAAAAAAABsoCb1vQBYlSVLlqTf/va36Yc//GFasGBBqqysTD/5yU/qe1kAAAAAAAAAAAAAwHpyBHaytGTJkvSb3/wmnXnmmWnBggWpefPm6Wc/+1n6xje+Ud9L2yxFxEpPU/e0yIcW+dAiL3rkQ4t8aJEPLfKhRV70AAAAAAAAAOqSAXayU33k9WHDhqUFCxakrbbaKi1btiyllEr/ZdNafmChKIoVThtqqBta5EOLfGiRFz3yoUU+tMiHFvnQIi965GP5x7mqqqqeVoIW+dAiH1rkRY98aJEPLfKhRT60yIse+dAiH1rkQ4t8aJEPLfKiBzR+Tep7AVBT9fD6WWedlebPn5/69++fevToke6444609dZbpxNPPDGl9PETVM0P2Nm4qh/bGTNmpEmTJqUXXnghzZo1K5WXl6eePXumffbZJ/Xp0yc1a9YspaTHpqRFPrTIhxZ50SMfWuRDi3xokQ8t8qJHHmo+ruPGjUu77rpr6tSpU1q2bFlq0sRbdnVJi3xokQ8t8lKzx8svv5y6d++eysrKUmVlZSovL6/n1W1etMiHFvnQIh9a5EWPfGiRDy3y4TVfPrTIhxZ50QM2D/6vmWwsP7y+zz77pJNPPjn97Gc/SwsXLky77LJL2m+//VJKyQfnm1BEpPnz56cf/OAH6dFHH02TJk2qdXlRFKmsrCx9/etfT//93/+djj766FQUhYGGTUCLfGiRDy3yokc+tMiHFvnQIh9a5EWPPNR8PB988MF06aWXphdeeCE99thjaZdddqnn1W1etMiHFvnQIi81e9x///3p0ksvTfvuu2/60Y9+ZMinjmmRDy3yoUU+tMiLHvnQIh9a5MNrvnxokQ8t8qIHbEYCMrB48eL45S9/GW3bto2iKKJPnz5x2223xa233hpbb711bLXVVvHkk09GRERlZWU9r7bxmj9/fowZMyYOOuigKIqi9GebbbaJ7bbbLrp27Ro9evSIoiiirKws2rZtGxdeeGHp+lVVVfW3+EZGi3xokQ8t8qJHPrTIhxb50CIfWuRFjzzUfBzvu+++OPzww6O8vDyKooiLL744Irz3UVe0yIcW+dAiL8v3GDx4cOn5+69//avn5jqkRT60yIcW+dAiL3rkQ4t8aJEPr/nyoUU+tMiLHrB5McBOvVt+eH333XeP22+/PSIizj333CiKIg4++OCYNWtWPa+0cfvoo4/i5z//eey1115RFEU0adIkOnXqFGeeeWY88cQT8eGHH8bcuXPjo48+ihtvvDGOOuqoKCsri6Io4vTTTy/tx4vLDadFPrTIhxZ50SMfWuRDi3xokQ8t8qJHHlb25nv1B7bf/va3S5dVvwHvjfhNR4t8aJEPLfKyuh7nnXfeCtvrselokQ8t8qFFPrTIix750CIfWuTDa758aJEPLfKiB2x+DLBTr5YfXt9jjz3itttui6VLl8bDDz9cehK69dZb63upjdqCBQviV7/6Vey2225RFEU0bdo0jj322BgzZkyt7Wr+Q+GVV16JH/3oR6WBhh/+8Id1vexGSYt8aJEPLfKiRz60yIcW+dAiH1rkRY88LP/m+5FHHlnrSPif/OQno3379tG/f//4n//5n9IX+ZctW1ZfS260tMiHFvnQIi+r69GkSZM44YQT4pBDDolLL7007r333tK2emx8WuRDi3xokQ8t8qJHPrTIhxb58JovH1rkQ4u86AGbJwPs1JuVDa/feuutMWfOnIiIOO+886KsrCy++MUvxqJFiyJixSO9+SbVhql+PB988MHo27dvaZDhjDPOiH/961+l7Wo+2ddssGjRorjuuuuirKwsmjdvHr/97W/rbvGNjBb50CIfWuRFj3xokQ8t8qFFPrTIix75WN1PZffs2TM+/elPx5lnnhmf+tSnYptttomiKKJv377xyiuvrHB9NowW+dAiH1rkZXU9OnbsGF27do199tknmjRpEkVRRJs2beKqq65a6fXZMFrkQ4t8aJEPLfKiRz60yIcW+fCaLx9a5EOLvOgBmy8D7NSLVR15fe7cuRERMX369OjUqVMURRFXXnnlGvc3ZcqU+NnPfhannXbapl56o1HzyfvQQw8tDTKccsop8eKLL650u5WZNWtWnHTSSVFWVhZf/vKX48MPP/QPg3WkRT60yIcWedEjH1rkQ4t8aJEPLfKiRz5W9+b7N77xjXj66aejoqIiIiI+/PDDuP/++6Nfv35RFEV07949Pvzww3paeeOjRT60yIcWeVldj2OPPTb+/Oc/x3vvvRfLli2LJ554IoYPH166/MILL6y/hTdCWuRDi3xokQ8t8qJHPrTIhxb58JovH1rkQ4u86AGbNwPs1LlVDa/Pnz8/IiIqKiritNNOi6Io4oADDigdCa76aOvV/124cGHMnj07hg0bFvvtt1/pycsQ+7q59NJLoyiKKC8vj0MPPTSeeeaZdd7HXXfdFU2bNo2ysrK47777NsEqNw9a5EOLfGiRFz3yoUU+tMiHFvnQIi961K/Vvfl+9tln19q25pHwH3zwwdh3333jzDPPjLfeeqvO1tuYaZEPLfKhRV5W1+Oss85a6RfIKioq4vzzz49mzZrFWWedFR999FFdLrnR0iIfWuRDi3xokRc98qFFPrTIh9d8+dAiH1rkRQ/AADt1ak3D6xERs2fPjn79+kWzZs3i+uuvj4iPf7a8psmTJ8dJJ50Ue+21V+mD+KIoomXLlqVvYLFmVVVVMWTIkCgrK4uiKOI3v/nNeu/ri1/8YhRFESeddFIsXrx4I65y86BFPrTIhxZ50SMfWuRDi3xokQ8t8qJH/Vrdm+/nnHPOSrerNm/evHjggQfi1VdfrYulNnpa5EOLfGiRl9X1OPfcc1e6XbV///vf8Yc//KH0s9lsGC3yoUU+tMiHFnnRIx9a5EOLfHjNlw8t8qFFXvQAIgywU4cWLVoUo0aNWu3wekTERRddFEVRRIcOHeL555+vddldd90V5557bmkfLVu2jM6dO8fXvva16NKlS+mJ7MQTT4w5c+bU5d1rkJ577rnSYzZ06NDS+evyc/DV33D7wQ9+EEVRxJlnnlk6Sj5rT4t8aJEPLfKiRz60yIcW+dAiH1rkRY/6s7Yf2NY8aszyan5R4O9//3t8+OGHsWTJkogIDdaBFvnQIh9a5GVtP7BdXY+aP5e9/JHH9Fh7WuRDi3xokQ8t8qJHPrTIhxb58JovH1rkQ4u86AFUM8BOnaiqqorf/OY3pSeb5YfXq5+Ypk2bFn379o2iKOKnP/1pRHz8rakxY8bEd77znSiKIpo0aRJFUcQXvvCF+OlPfxq///3v4xvf+EZp32eeeWa8+eab9XZfG5IHH3yw9HhWP96re/JfnTFjxsQxxxwTH3zwwcZc4mZDi3xokQ8t8qJHPrTIhxb50CIfWuRFj/p33333xZAhQ9b5zfeaqr/of8ABB8QVV1wR77333jpdn49pkQ8t8qFFXh544IH1+sC2ptNPPz122GGHOP/88+PRRx9d5+vzMS3yoUU+tMiHFnnRIx9a5EOLfHjNlw8t8qFFXvQADLBTZ6ZOnRpFUcT2228fd9xxR60jr1cPsN96661RVlYWe+21V/zhD3+I++67Lw444IBo165d6cnqmGOOiRtuuCGWLVsWjz76aHzlK18xvL6Oqh/v2267LYqiiNatW8fkyZM3aJ+vv/56LFiwICL8I2BdaJEPLfKhRV70yIcW+dAiH1rkQ4u86JGHqVOnxoEHHrhBb74vWbIkxowZE3vvvXe0atUqiqKIgw46KF5//fV12s/mTot8aJEPLfLy8MMPx0EHHRTl5eXrdITKmt5555341re+FWVlZVEURey8886lL7Cty342d1rkQ4t8aJEPLfKiRz60yIcW+fCaLx9a5EOLvOgBRBhgp45Nnz49/u///i/mzZu3wmWvvfZadO/ePYqiiC5dusSgQYNim222iaIoomvXrnHYYYfFX/7yl9L2zzzzTBx22GGlJ7KzzjrL8Po6+vvf/156/B566KGNss91+Sl6/kOLfGiRDy3yokc+tMiHFvnQIh9a5EWP+nfKKaes0we2q3p8Z86cGb/85S+jT58+URRFdOvWLWbMmBERfg51bWmRDy3yoUU+Zs6cGVtssUUURRHf//73S+evzweto0ePjq9//eulfwNccMEFpcv0WDMt8qFFPrTIhxZ50SMfWuRDi7x4zZcPLfKhRV70AAywU+dW9WTyz3/+M9q0aVN6AVI9yD548OCYNGlSvP322xHx8RPLo48+GkcccYTh9Q307LPPll5A3nXXXRGxcYcRfJNt7WmRDy3yoUVe9MiHFvnQIh9a5EOLvOhRf2q+KT5mzJjS6VU9Zst3Wbp06QrbLF68OJ566qnYf//9oyiK2GOPPeKtt97aSCtuvLTIhxb50CJPzz33XFx44YWlv69tj5V544034vLLLy+9fz5ixIiNtczNghb50CIfWuRDi7zokQ8t8qFF/fOaLx9a5EOLvOgBVDPATlZGjhwZRVFEmzZt4txzz43HHnus1pNOVVVVPPLIIzF48GDD6xvJ4YcfHkVRxGGHHRbvv//+Rtnngw8+WDrtm2xrT4t8aJEPLfKiRz60yIcW+dAiH1rkRY/6s/yb6Kt68736MZw5c2b89re/jRNPPDGGDBkS11133UqPnP/444/HJz/5ySiKIk4//fRYtGjRRl97Y6NFPrTIhxZ5W1OPd999Nx5//PG49tpr4yc/+Uk8++yz8cEHH0TEfz7UnTdvXlxyySVRFEVsueWWtT4QZu1pkQ8t8qFFPrTIix750CIfWtQfr/nyoUU+tMiLHkCEAXYyUfMD70ceeSQeffTRFbapqqqKRx99dL2G16uf5KqqqmLevHkbb+ENWPULvlGjRkWHDh1i++23j7vuumuDhw8uvfTSKIoiTjvttI2xzM2CFvnQIh9a5EWPfGiRDy3yoUU+tMiLHg1DdacXX3wxPvOZz0SHDh1q/TJdu3bt4qKLLqp1nfnz58c555wTRVHEAQccEBUVFfWx9EZHi3xokQ8t8lL9HD5t2rT4whe+ENttt12pRdeuXeOzn/1sTJs2rdZ1XnzxxRg0aFCUl5fHsGHDImLj/hrL5kqLfGiRDy3yoUVe9MiHFvnQIh9e8+VDi3xokRc9oPEzwE42VvYhevW3rdZneH35Fyzz58+PK664IgYOHBgnnHDCxl18A/buu+/GIYccEkVRRL9+/WLy5Mnrva/qbz4XRRGf//znY+bMmaUOXkCumRb50CIfWuRFj3xokQ8t8qFFPrTIix75mzFjRulnTVu3bh3dunWLo446qnSUmKIo4nvf+17pCGQREY8++mjpsscff7weV9+4aJEPLfKhRV5efvnl6Nu3b+nx3WqrrWLbbbeNdu3aRVEU0alTp3jggQdqXee8886Loiiic+fOMWfOHM/ZG4kW+dAiH1rkQ4u86JEPLfKhRT685suHFvnQIi96QONmgJ1s1fwQfF2G15f/SZGJEyfGNddcE7vttlutb2Edd9xxm/w+NBTTp0+PnXfeOYqiiAEDBsT9998fc+fOjYj/fLFgTUfp+9///d/SYztw4MD44x//GG+99Vat6y2/Dy8qV6RFPrTIhxZ50SMfWuRDi3xokQ8t8qJHnqofr2uuuSa23HLLaN68eXzrW9+KmTNnRkTElClT4uqrry497t/85jdj1qxZERHx73//O7bYYosoLy+PZ555pt7uQ2OhRT60yIcW+Vm0aFGcdtpp0axZs9hiiy3iG9/4Rrz66qvx5ptvxp/+9KcYMGBAFEURHTt2jL/85S+xePHiiIi46667olmzZtGzZ89YuHBhPd+LxkGLfGiRDy3yoUVe9MiHFvnQIg9e8+VDi3xokRc9YPNggJ0sre/wek3jxo2Lq666Ktq3bx+tWrWKoihK39gtiiK6dOkS77zzzqa+Kw3G1KlTo0uXLlEURey6665xxhlnxKRJk0pHwV+d6p+Qr/6z5ZZbRrt27WKHHXaIr3zlK/GHP/yhtG31FwxqDjL89a9/Lf0jAi1yokU+tMiLHvnQIh9a5EOLfGiRFz3ydeSRR0ZRFPGJT3wiXnnllRUu/+Mf/1h67L/zne/EzJkz4/vf/34URRG9evWKefPm1cOqGyct8qFFPrTIx/z582PvvfeOoihizz33jNdee63W5e+9917893//dxRFER06dIi///3vsWjRojjuuOOiKIrYf//962nljY8W+dAiH1rkQ4u86JEPLfKhRV685suHFvnQIi96QONmgJ3srMvwevW3raqv8/7778ekSZPihBNOiB122KF0va5du8YXv/jFuPPOO2PHHXeMoijitNNOi0WLFtX9HczYyy+/HAcddFBp4L958+YxcODA+O53vxv333//Sq9z2WWXlR7nNm3aRN++feNb3/pWDB06tNZR7y+++OKVXv+2226LfffdN9q0aRMvv/zyprx7DYoW+dAiH1rkRY98aJEPLfKhRT60yIseeamqqoqFCxfGvvvuG0VRxKGHHlq6bPmj2Y8ZM6b0WA8YMCB69uwZZWVlceaZZ8bixYvXeAR9Vk+LfGiRDy3yM2nSpGjbtm2Ul5fHlVdeGREr/+LY4YcfHkVRxFZbbRUnn3xydO/ePVq1ahU//vGPI2LNv7rCmmmRDy3yoUU+tMiLHvnQIh9a5MFrvnxokQ8t8qIHbB4MsJOlqqqqeOyxx1Y7vF79IiYiYs6cOTFu3Lj4r//6r9h1112jKIpo1qxZtGnTJk4//fR47LHHIiLikksuiaIoomXLlvGvf/2rzu9XQ/D222/HDTfcEP/1X/8VRVFEeXl5HHTQQaWfl6+p5iDD5z73ufjZz35W6/Lp06fHFVdcUdrmJz/5Sa3L33333Rg0aFDp8l//+teb9L41NFrkQ4t8aJEXPfKhRT60yIcW+dAiL3rk5//9v/8XRVHEbrvtFlOnTq11WVVVVeko+aNHjy49lkXx8Zf1J06cWB9LbrS0yIcW+dAiH/PmzYu99toriqKIY445JubPn1/r8prvlx966KGl98GLoohPfvKT8cILL9T1khstLfKhRT60yIcWedEjH1rkQ4u8eM2XDy3yoUVe9IDGzQA7WXriiSfioIMOKj2pnHXWWfHGG29ExH++dVv97agbb7wxvvKVr0SLFi1K27dv3z4uueSSuO+++0r7nDJlSvTs2TPKy8vj7LPPrrUPVm7MmDFx2223xZw5cyKi9ovFmoMMQ4YMiQcffLDUpuaR7efPnx/nnntu7L777jF27NgVbuPee++Noiji+uuv38T3pmHTIh9a5EOLvOiRDy3yoUU+tMiHFnnRIw9/+MMfSo/1VVddFQsWLChdVv3m+7x58+LWW2+NHj16lLb9+9//Xms/q3qPw3sfa0+LfGiRDy3yUVFREd/4xjeiKIrYY4894qmnnqp1ec3n8V/+8pfRsWPHKIoimjZtusIvrdQ8siXrTot8aJEPLfKhRV70yIcW+dAiL17z5UOLfGiRFz2gcTPATpZmzpwZZWVlURRFnH322fH666/Xunz27Nlx9dVXl75xW15eHkVRxP777x9nn312vPTSSyvs86abboqiKKKsrCz+/Oc/19E9aZhW9kKv+kk/ovYgwxe/+MXSEe5Xdd0nn3wyJkyYULr8ueeeq3V5zSPr+4dBbVrkQ4t8aJEXPfKhRT60yIcW+dAiL3rk57zzzis95hdffHE8+eSTERGxYMGCeP311+Ob3/xm6RfniqKIv/zlLxHx8eNd84PdiIj33nsvZsyYEW+//Xat8z32a0eLfGiRDy3yMX369OjatWsUxcc/if3oo4/Ghx9+WLp89uzZMWzYsNhzzz3XqkfEx/8GqPnvgAg91oYW+dAiH1rkQ4u86JEPLfKhRV685suHFvnQIi96QONlgJ1sPf/88zF8+PB45513Suc9/fTTcdNNN8Uuu+wSTZo0KT3xNGnSJIYMGRIREQsXLoyI2k8sU6ZMKb0AOuGEE+r2jjQyl156aelxP/roo+Pxxx8vXbambzhXVVXFbbfdFnvssUf8v//3/1a4nn8MrBst8qFFPrTIix750CIfWuRDi3xokRc96lbNN89/+MMfRtOmTUtHFdt7771jt912i/bt25eaFEURd999d0R8/LguWbIkIiLeeeed+NWvfhWHH354dOnSJcrLy2ObbbaJww8/PK6//vp47733Vrg9atMiH1rkQ4s8vfjii6UjinXp0iUGDBgQZ5xxRpxwwgmx00471fql0upfR6nZ4/3334+HHnooTjrppDj00EPjU5/6VBx00EExatSoGD9+fOl29FgzLfKhRT60yIcWedEjH1rkQ4v65zVfPrTIhxZ50QMaPwPsZK36Q+6HHnoorrjiith6662jbdu2URRFbLXVVrHDDjvU+tbto48+GhEfP6HU/BbVL3/5y9hyyy2jU6dOpaOv++B83Y0YMWKdBxlqPs533HFHfPazny3to+YLR9aNFvnQIh9a5EWPfGiRDy3yoUU+tMiLHvWj5pviY8aMiXPOOScGDRoUu+++e3Tu3Ln0q3NFUcRf//rXiKj95vtLL70UBx10UHTu3DmKoohmzZrVesO+VatWceCBB8Zrr722wu1Rmxb50CIfWuRpxowZccYZZ8Tuu+8e7dq1i+bNm0fz5s3X+IHt9OnT44tf/GLsvPPOURRFrX7NmjWLnj17xvXXX1+6HT3WTIt8aJEPLfKhRV70yIcW+dCi/nnNlw8t8qFFXvSAxs0AO9mbPXt29O/fv9aTx1577RW/+MUvYtKkSTFx4sQ4+OCDS5fdd999EfGfJ5QlS5bEvvvuG0VRxP777x9z585d421WVlaWnpj42NVXX73Ogww1z//jH/8YgwYNKu3jhhtu2ORrbqy0yIcW+dAiL3rkQ4t8aJEPLfKhRV70qF/Lf8n+vffei+uvvz723nvv0mNa82dPq998f/HFF6NLly6lbdq0aRPnnHNOXHXVVTFq1KgYMmRI7LTTTlEURXTr1i1mzJix0tvjP7TIhxb50CJPS5YsicrKypg4cWL84Ac/iF122WW1H9hOnTo1unXrVtqmefPmcdhhh8Xxxx8fRx11VHTv3r102QUXXFC6HT3WTIt8aJEPLfKhRV70yIcW+dCi/nnNlw8t8qFFXvSAxssAOw3CCy+8EE2aNIn+/fvH+eefH4sWLSpdtmTJkrj//vtXOsReWVkZ1157bRRFEe3bt4+///3vpfNXpbKyMp555pnYbbfd4utf//qmvWMNyPPPPx9lZWVxyCGHxBNPPFE6f02DDFVVVSsMMvz85z8vbVdZWbnGn6GnNi3yoUU+tMiLHvnQIh9a5EOLfGiRFz3y8sQTT8SOO+640jffq7+wP3369NIHth06dIgjjjginn/++Vr7mTNnTjz44INxwAEHRFEUsffee8esWbPq/P40ZFrkQ4t8aJGH6ufX3/zmN9GrV6+VDvksXbo0IiKmTZsWn/jEJ0rvkw8cODCeeeaZ0uUREU8//XT88Ic/LO3nqquuqvs71UBpkQ8t8qFFPrTIix750CIfWuTHa758aJEPLfKiBzQeBthpMN5+++14/fXXS8Pny5YtK72YWbp0aTzwwAMrHWL/0pe+FEVRRN++fWP69OmrvY3q4fWDDjqotJ9TTjll096xBmTmzJnx1FNPlf6+PkfhW36QYWVfJvBzLGumRT60yIcWedEjH1rkQ4t8aJEPLfKiR15OOOGEKIraP5Vd/di///77cdRRR0VRFLHVVlvFCSecEK+++mpE/OfxrfnYT5w4Mfbcc88oiiLOPvvsWLx4cd3emQZOi3xokQ8t8jF9+vTS8/A999wTEbV7vP322zFw4MAoiiI6duwYJ5xwQul98prvsUdELFiwIK666qpSu+q+rB0t8qFFPrTIhxZ50SMfWuRDi7x4zZcPLfKhRV70gMbBADsN0so+RF/ZEPvZZ59dOn3jjTeudp/Vw+vVL3patGgR5eXlURRFnHbaaZvqrjRYG3uQYcSIEfH9739/0y24EdMiH1rkQ4u86JEPLfKhRT60yIcWedGj/tR83F544YWI+M+b79WP/4MPPhg777xzFEURgwYNKn1gu6puixcvjp///OfRrl272HXXXePNN9/cxPeicdAiH1rkQ4s8vfDCC/GPf/wjIv7To7rVzTffHNtuu20URRFHHnlk6QPbVfV46623YujQodG0adM49dRTax3NkjXTIh9a5EOLfGiRFz3yoUU+tKh/XvPlQ4t8aJEXPaBxMcBOo7L8EHtZWVkURRGf+9zn4u23346IlT8ZLT+83qxZs/jqV78aP/jBD0r7OPXUU+v67jQ46zvIcP3115e2u+aaa+p0zY2VFvnQIh9a5EWPfGiRDy3yoUU+tMiLHnVn+aPUL/9exre//e0oiiKaN28ezzzzzEq3Wd7rr78ebdq0iU6dOsWiRYs27oIbMS3yoUU+tMhXzQ9rqx122GFRFEW0adMmJk+eXNpude64444oiiL2339/v5yynrTIhxb50CIfWuRFj3xokQ8t6pfXfPnQIh9a5EUPaDwMsNPoLFq0KJ5++uno169fafj83HPPXeX2KxteHzp0aDz55JMRETFq1KjSfoYNG1ZXd6PBWd9BhmuvvTaaNm0aRVHEvvvuW2vb6u1ZN1rkQ4t8aJEXPfKhRT60yIcW+dAiL3rko6qqKj7/+c9HeXl5HHnkkVFZWbnGD2Gr+91zzz0xb968iPDYbwxa5EOLfGiRl7fffjs6d+4czZo1i+HDh0fEih/y1lTdYtGiRXH66afHRx99VOt81p8W+dAiH1rkQ4u86JEPLfKhRT685suHFvnQIi96QMNSlqARiYjUvHnztNNOO5X+3qtXr/SDH/yg9Peaqqqq0j//+c90zjnnpEceeSQ1bdo0ffnLX06nnnpq+tSnPpVSSum4445LN9xwQyqKIl1zzTXpqquuqts71QBERCqKIqWU0p/+9Kf085//PD388MMppZRuuOGG9N3vfjel9PHjnVJKZWUf/7+e6667Lg0fPjwtW7Ysde7cOW277bapffv26bHHHksvvfRSadvKyso6vkcNlxb50CIfWuRFj3xokQ8t8qFFPrTIix55WbJkSXrnnXdSVVVV6tixYyorKys95qtS3e8LX/hCatOmTVq2bNkar8OaaZEPLfKhRV7mz5+f3n777bR06dK09dZbp5RSKi8vX+X2RVGU3mP/8Y9/nLbYYou0bNmyUiPWnxb50CIfWuRDi7zokQ8t8qFFPrzmy4cW+dAiL3pAA1On4/KwiVV/Y+pvf/tb7LjjjlFeXh7nnntuLFmyZIVvRq3pyOsR//mG1fvvvx/nnHNOlJWVxR577FH6eRH+o6qqKkaPHr3WR+G77rrrolmzZqVtW7ZsWTrSfVEU0b179/jxj39c6/qsHS3yoUU+tMiLHvnQIh9a5EOLfGiRFz3ysXjx4ujXr18URRHHHnvsOl+/+r2OmkcdcwSy9aNFPrTIhxZ5mTlzZmy11VZRVlYWt956a0Ss23Nu9WNf8zpVVVWarAct8qFFPrTIhxZ50SMfWuRDi3x4zZcPLfKhRV70gIbFADuNRs0ni6FDh5aG0lc2bF49vD5gwIDSdl//+tfj8ccfX+n+IiL+8pe/lD5ov/nmmzfdHWmgxowZE3vttddaDzI0adIkiqKIDh06xIknnhjjxo2Ll156Kf70pz/FaaedVtrPxRdfXB93p0HTIh9a5EOLvOiRDy3yoUU+tMiHFnnRIy/Vj3GvXr3iX//611pdZ/n3OaZOnRrPPfdcPPTQQ/Hwww/H4sWLY/HixRHhCwXrQot8aJEPLfJy0EEHlT60rf4Z7DVZvsfChQvjgw8+iAULFsScOXNqXabH2tMiH1rkQ4t8aJEXPfKhRT60yIfXfPnQIh9a5EUPaDgMsNPo/Pa3vy19EH7BBRdERO1vz1YPrx944IFRFEWUlZVF3759Y9q0aaV91HxSqn7S+fDDD2PrrbeOoiji6KOPXmG7zd2MGTNKAwo33nhj6fzVDTLsscce8dOf/nSFfc2bNy+uvvrq0pcLRo8eXSf3obHQIh9a5EOLvOiRDy3yoUU+tMiHFnnRIy8PPvhgbL/99lEURVx22WVRUVFRumxl71VUN6qsrIzHH388zjnnnOjQoUO0bNmy9B7KgAED4rzzzotZs2ZFxH9+5Y7V0yIfWuRDizxUP9YjRoyIpk2bxq677hqPPfbYGq9X3aOqqipeeeWVuPLKK+OAAw6IrbbaKrp27Rqf+MQnYvjw4XHPPfeUrqPH6mmRDy3yoUU+tMiLHvnQIh9a5MdrvnxokQ8t8qIHNBwG2GlUPvroo/j6178eLVq0iC222CLuuuuuiKj9k1DPPPNMDBw4MIqiKH2oXhRFXHPNNaX9LP9NqWXLlsWtt95a+vnzr3zlK7X2y8cmTZoUv/rVr0p/X90gw5577llr25pP7JWVlTF9+vTYc889o7y8PC688MI6WX9jokU+tMiHFnnRIx9a5EOLfGiRDy3yokdeLr/88tJ7Gtddd128++67pctW9sX8pUuXxmWXXRb77LNP6Xo77bRT7LPPPtGyZcsoLy8vtZsxY0ZEeBN+bWmRDy3yoUU+3njjjejbt28URREDBw6MSZMmxdKlSyNixfe3a/a49tprS0e5rP7TqVOn0kFh2rVrF1dcccUK12XVtMiHFvnQIh9a5EWPfGiRDy3y4jVfPrTIhxZ50QMaBgPsNCo1j5J+4okn1rps+eH1Zs2axbHHHhvf/e53S088V155ZWn7mk9Wb775Zhx99NGl7X75y1/W2X1qqNZlkGFVLwL79+8fRVHEQQcdFMuWLfPEv560yIcW+dAiL3rkQ4t8aJEPLfKhRV70qD81H89hw4aV3qv41re+FXfddVetx7H6vY2lS5fGOeecE9tss01p+9tvvz0++OCDiIiYNm1aXHPNNdGnT58oiiK6d+8eM2fOrLUPVqRFPrTIhxZ5mjZtWunx3W+//eLXv/516Yhh1Wp+YHvuuefGdtttV+oxatSouO++++Kdd96JG264Ib70pS+VLrvoootK+9BjzbTIhxb50CIfWuRFj3xokQ8t6p/XfPnQIh9a5EUPaFgMsNPoPP/887HnnnvGn/70p9J5KxteHzp0aDz55JNRVVVV61tX//M//xMffvhh6bpTpkyJ4447rnT5oEGD4vnnn6+He9awrO8gQ1VVVVRWVsYLL7wQu+66azRp0iTOOeecNd4Gq6ZFPrTIhxZ50SMfWuRDi3xokQ8t8qJH/ar5Jvv//u//Rrt27Uq/GnfeeefV2raysjKuuOKKWh/YFkVR6+hiEREVFRXx1FNPxf777x9FUcRRRx0Vc+bMqZP705BpkQ8t8qFFnl588cXSB61bbbVVdOzYMR544IFa2yxbtiwuuuiiWh/Ytm/ffoXHesaMGTFixIhag0CsPS3yoUU+tMiHFnnRIx9a5EOL+uc1Xz60yIcWedEDGg4D7DRKs2bNKn0LalXD6+PHjy9tP3/+/LjwwgtLT0IDBgyIY445Jg499NDYe++9S+fvvPPO8fOf/7y+7laDdMUVV0TLli3XapCh5t8vueSS0uN+0kknxT/+8Y8YNWpUPPDAA/HKK6+UtnOEvrWnRT60yIcWedEjH1rkQ4t8aJEPLfKiR/2p+djcddddccopp8Q+++wTc+fOjYj/HPll8uTJ8elPfzqKoojy8vI4/vjjS4/98OHDS/uo3v6ee+6Jzp07xw477BDPPPNMHd6jhkuLfGiRDy3y9Prrr8dZZ50V3bt3j44dO8b8+fMj4j+P73333Rd77bVXFEURzZs3j09+8pNRFEVss802MWXKlFrbzp8/P84999woiiL+67/+K95//31HHVsHWuRDi3xokQ8t8qJHPrTIhxb1z2u+fGiRDy3yogc0DAbYadSWLl0aTzzxRHzuc5+rNbz+5JNPlrapfoJ5+eWX4+CDD671baqaf/bZZ5/46U9/usL1WLUPPvggOnbsGEVRxL777rvWgwy//OUvaz3222yzTTRv3rz091133TWuv/76Ve6LFWmRDy3yoUVe9MiHFvnQIh9a5EOLvOhR/2o+NpWVlaU35ZcuXVo6/6KLLio9tjfffHNERPz4xz8unfeDH/yg1j7ffvvt6N27dxRFEZdddlkd3IvGQYt8aJEPLfK0aNGimDVrVixatCgiavc49dRTS4/97373u3jvvfdKB4bZZpttYtq0aRHxnw+B77333mjSpEk0b958nX611HvrH9MiH1rkQ4t8aJEXPfKhRT60qH85vOar7r+5HwRDi3xokRc9IH8G2GnUKioq4vDDD4+iKKJ169arHF6vdvLJJ5c+LD/qqKPi4IMPjj322CMuv/zyGDduXGm7lf0E+ur+vjl74YUX4jOf+UzccMMNpfNWN8gwatSo0j8CevToEV//+tdjwoQJMWXKlPjzn/8cp5xySunyCy+8sK7uRqOgRT60yIcWedEjH1rkQ4t8aJEPLfKiR36q35OorKyMefPmlX5ZbsiQIaU35isqKlb7JvwJJ5wQRVHEpZdeWufrb0y0yIcW+dAiLzWfoydPnhxbbrllFEURp512Wun8F154YaXDPhEff+Dbu3fvKC8vjwcffHC1tzVp0qS49dZbS3/3HnptWuRDi3xokQ8t8qJHPrTIhxb5qMvXfM8//3ycddZZpS8dGA6tTYt8aJEXPSAvBthp9J577rno1KlTHHnkkfHUU0+Vzq/5QmLJkiUR8Z9vUH32s58tnVf90yHVHPlt3c2ZM6d0em0HGQYMGBA333xzrW+9RXzc40c/+lFpu9tvv33TLr6R0SIfWuRDi7zokQ8t8qFFPrTIhxZ50SNfH3zwQXTo0CGKoojvf//7tS5bsmTJSt+EnzVrVvTo0SOKoogrr7yyPpbdKGmRDy3yoUVenn322WjZsmU0adIkbrnlloj4z3voU6dOXemwz4QJE6JFixZRFEXcc889q9z3v//979LBY0488cTS+YZ9Vk6LfGiRDy3yoUVe9MiHFvnQIh+b8jXfv//97zjttNOiKIpo2rRpPPfccxFhOHRVtMiHFnnRA+qfAXY2C2+++WZMmDCh9PdVHTF9yJAhURRF9OrVq/SEsbInjurt33///Zg2bVr8z//8T5xyyilxzDHHxDHHHBOXXXZZPPLIIzF//vxNdZcapLUdZPjMZz4Tt912W+ny5X/S5aWXXopPfvKTURRFDB8+vG4W38hokQ8t8qFFXvTIhxb50CIfWuRDi7zokZ+FCxdGt27dolmzZvGrX/0qIiIWL15cunz5N+HPPffc+Mtf/hLbbrttdOjQIR566KHStsu/l+IL/utGi3xokQ8t8vLggw9GURTRvn37ePbZZyOi9uO4/LDPc889F3/4wx+idevW0adPn5g1a9ZK9/vvf/87TjnllGjfvn2p5SmnnFK63LDPirTIhxb50CIfWuRFj3xokQ8t8rExX/PVVN2i+kj7RVFEu3btHOF4NbTIhxZ50QPqnwF2NjureuGwdOnS6NevXxRFEQcffHBUVlau9oOOJ554Io4++ujYcccdS082Nf+UlZXFCSec4Ghxq7C2gww1e9U8PWDAgCiKIg488MA1tmL1tMiHFvnQIi965EOLfGiRDy3yoUVe9Kh/lZWVMWfOnNL7Fuecc85Kt1uyZElcd911pUbbbrttFMXHR8mvqKiIiNptHnjggZg5c2ZEeKN9bWmRDy3yoUVeqqqq4rHHHoui+PioYKv6ALbmsM9WW20VO+20UxRFEUcddVQsWrRohe2rP7Bt165dFEURO+ywQ5SVlUVRFHHqqafWun0+pkU+tMiHFvnQIi965EOLfGiRj031mm/5Fj169Ij99tvPcOhqaJEPLfKiB+TBADv8/373u9+VnmxuuOGGVW63bNmy+M1vfhPNmzcvvShp06ZNdOzYMQ455JDo27dv7LvvvlEURZSXl0fr1q3j4osvrsN7kr+aT9xrO8hQ01NPPRVdunSJoiji/PPPr5M1N1Za5EOLfGiRFz3yoUU+tMiHFvnQIi965KH68b300kujKIo44IADSj+NvbwlS5bEtddeW2q1yy67xJQpU0qXVfv73/8enTt3js6dO8err766ye9DY6FFPrTIhxb5WbZsWWmI57TTTlvlr4tOnTo1PvOZz5R69OjRY6VfGlj+A9vevXvH3//+9/jFL35h2GcNtMiHFvnQIh9a5EWPfGiRDy3ysLFe8y1durS03cpaPPDAAzFlypT4/Oc/XxoOnTx5ckT4Za5qWuRDi7zoAXkwwM5mr/oJ6fvf/340bdo0WrduHQ8++OBKt50zZ05cffXVpSekoiiiW7du8fvf/77081MLFiyIRYsWxahRo+Loo48uvWg588wz6+ouNRg/+9nP1nmQYcmSJaV/PBRFEb/+9a/rcsmNlhb50CIfWuRFj3xokQ8t8qFFPrTIix55eOCBB2K77baLoijiqquuqnUksZodlixZEpdddllsu+228Ze//CUian9gO3bs2Ojdu3c0bdo0iqIofVnfB7NrT4t8aJEPLfJQVVUVS5cujUsuuSTKyspi9913j6eeemqV20+dOjX69OkTrVq1ivvuuy8i1vyB7f3331/a5uabby69b37eeedt2jvXwGiRDy3yoUU+tMiLHvnQIh9a5GdDXvPVHOxcWYv77ruv1OLll1+OQw45JIqiiB133DFeeumlFW5jc6dFPrTIix5QvwywQ0S8+uqr0alTpyiKIg455JBVblfzJ0G22WabOPbYY+Odd95Z5fYzZsyIq6++uvSiZfjw4Zti+Q1OVVVVzJkzp/S4HHTQQWs1yBAR8atf/arU4LjjjqurJTdaWuRDi3xokRc98qFFPrTIhxb50CIveuTnsssuKz2u1113Xbz33nuly2oOgC5dujReeumlFX4ue+zYsdGnT58oKyuLTp06xQknnBBvvvlmrev7ydO1o0U+tMiHFvl44403Yq+99oqiKGLgwIExadKk0mO3/PP3yy+/HI888kgsXry41vnVH9huueWWtT6wrXm0/KVLl8YNN9xQ+rfCjTfeuOnvXAOjRT60yIcW+dAiL3rkQ4t8aJGXDX3NtzYtqrc74IADoiiK+OIXvxgffPDBpr1jDZAW+dAiL3pA/THAzmat+sPzP//5z9G+ffsoLy8vHZ1n+Q/W//jHP5aerLp27RpnnXVWvP/++xGx4gcgNV/0LFy4MH7yk5+UXrTcfPPNm/x+NRTPP/98HHroofHrX/96rQYZfv3rX5cafP7zn4/nn38+IvykysagRT60yIcWedEjH1rkQ4t8aJEPLfKiR/2r+didc845pcf35JNPjn/84x9rtY+xY8fG7rvvXjqqcVEU0aFDh/jEJz4R++yzT5x99tnx1ltvRYQB0dXRIh9a5EOLPE2bNi06d+4cRVHE/vvvH7feemu8++67EbHmo4Itf7SxT37yk7WONlbTO++8E8ccc0w0adIkhgwZEnPnzt0k96ch0yIfWuRDi3xokRc98qFFPrSofxvjNd+///3vOPnkk0tDoatrsWzZsrjmmmuiKIrYaaed4l//+ldEOLpxhBY50SIvekD9M8AOEXH00UdHURTRpk2b0gfkNf3zn/+MrbbaKoqiiI4dO8app54ac+bMiYi1+yD9gw8+iLPOOivKyspiwIABMWXKlI1+Hxqqjz76aJ0HGQYNGhT/+Mc/Vvkt6ZqqL/Nkv2Za5EOLfGiRFz3yoUU+tMiHFvnQIi961L+aA5sXXHBBNG3aNMrKyqJDhw7xjW98I8aPHx8LFy4sbVPzsbznnnuiT58+pcHQHXfcMQ444ID43ve+F5/61KfiE5/4RBRFEb169YoZM2ZEhC8crI4W+dAiH1rk6cUXX4xdd901iqKIbbfdNg4++OD4xz/+sdpfI63+wLZNmzZRFEXsueee8eCDD0ZFRcUqr3PJJZdEURRRXl4eTz/99Ka4Kw2eFvnQIh9a5EOLvOiRDy3yoUX9W9fXfDUt36JXr14xYcKElW5f/VpxwoQJ0axZsyiKIi655JJNc6caKC3yoUVe9ID6ZYCdzd6HH34Ye+65ZxRFEV/60peioqKi9EFGZWVlLFmyJM4999xo2bJlFEUR//3f/x2zZ88uXb62Hn744dh+++2jKIq45ZZbNsVdadBWN2xwyy231BpkuOeee1b4mZWIiPHjx8eYMWPioosuiuuvvz4ee+yxmDlzZulyH1CtHS3yoUU+tMiLHvnQIh9a5EOLfGiRFz3qV8034X/3u9/FEUccUXrMr7jiitLjvfxgaO/evUu/KHfooYfG9OnTSz9r+sEHH8QjjzwS+++/fxRFEXvssUfMmjWrbu9YA6RFPrTIhxZ5mjFjRhx33HGxww47RFEU0blz5/jVr3610ufbF154IU4++eTYYostSu2+/e1vly5f/uj31fu48cYbS9vfddddm/YONWBa5EOLfGiRDy3yokc+tMiHFvVvbV/z1VR9FPzqIxoXRRHbb799vPnmmxERKz2ycUTEvffeW9r+oosu2jR3qAHTIh9a5EUPqD8G2CE+fiFSFEWcf/75K1y2YMGC6N27dxRFEdttt128/vrrEbF+H4yfffbZURRF7Lzzzj4wWUtrM8hw7733xrBhw6IoimjRokVp+xYtWsRnP/vZuPnmm0vb+qng9adFPrTIhxZ50SMfWuRDi3xokQ8t8qJH3an5Psabb74Zf/vb3+Kyyy6LBQsWRETtx27s2LHRp0+fKCsri7Zt28Zpp51W6/KaQ6QPP/xw7LTTTtGsWbO49tprV7icFWmRDy3yoUWePvzww3jooYfi1FNPjTPOOKN0BLGaj+ELL7xQ6wPbzp07l56rf/SjH5W2W/799DfeeCP+67/+q/Scfv/999fNnWqgtMiHFvnQIh9a5EWPfGiRDy3q35pe89W8vHootF27dlEURXTv3j123nnnKIoievbsGe+++25E/Od1YnXHd955J77zne+Ujmx81VVX1bqcj2mRDy3yogfUDwPs8P+bOXNm6VtQNZ8Yxo4dW3qxUf3Np5V9IL66J5PqJ7Fx48ZFu3bt4hOf+EQ8//zzG3P5jdLaDDKMHDky9tprr1rbHXHEEXHYYYdFp06dVvqtNUflW3da5EOLfGiRFz3yoUU+tMiHFvnQIi961L1VvXdR83EfO3Zs7L777qU30U8++eTS+yArez9k9uzZsd9++0VRFDFkyJBNs/BGSIt8aJEPLfJWfeSwmkcQW37Ip0+fPjF27Nj43//939Jz9JVXXrnCvmbPnh0//elPS0NBO+ywQ+lXT1kzLfKhRT60yIcWedEjH1rkQ4v6s6rXfDVbLD8U2rt377j//vvjySefjD333LM0HPrGG2/U2sc777wTP//5z2P77bePoihi6623jhkzZmzS+9OQaZEPLfKiB9Q9A+ywBqNGjSq9KLn77rtXuk31h+Pvv/9+6ZtXK/Phhx/GjjvuGEcdddQmWWtj8vOf/zzKy8tXO8hw+eWXR5cuXUp9hg8fHhH/+YfDI488EmecccZqX1SyZlrkQ4t8aJEXPfKhRT60yIcW+dAiL3rko+bA/z333BN9+vSJpk2bRlEUMXDgwNUOhla/oX/yySdHURTRr1+/mDt3bt0svBHSIh9a5EOL+lfzw9uaPV544YU4+eSTaw353H///bF06dJYvHhxXHrppaXn6PPPPz8mTZoUlZWV8dxzz8UPf/jD6NatW+kD21//+tcr7J8VaZEPLfKhRT60yIse+dAiH1rkqWaXlQ2F3nfffaX3AidMmFAaDu3evXv8+te/jnHjxsXDDz8cJ510UmkodKuttoqRI0dGhBbrQot8aJEXPWDTMsAOa3DjjTeWvi371ltvRcTKv3H10ksvxW677RZnnHFGzJkzZ4XLKysrY968efG73/2u1nmr2t/mbM6cOaUXiAcffPBKBxl++9vfRo8ePUovFovi45/xmj59+gr7uuqqq0r/APj73/9el3elwdMiH1rkQ4u86JEPLfKhRT60yIcWedEjH8v/At0nP/nJ0uO99dZbxxNPPBERKx8MrTZ79uzYZ599oiiK+MIXvrDJ19xYaZEPLfKhRb6qP7Bdfsin5vP5woUL44orrig1+8QnPhE9e/aMli1bRps2bUrP3eecc068/vrr9XhvGjYt8qFFPrTIhxZ50SMfWuRDi3y88MILcdppp622RUTEc889F3379o2iKKJly5ZRFEWUlZVFkyZNoiiK6NChQ5x99tnxyiuv1NM9afi0yIcWedEDNg0D7LAGt99+exRFEW3bto3Jkyevcrt777239KJlVUPsNVV/sFL9Qczrr78et91228ZbeAP33HPPxRFHHBFjxowpPdlXD/zPmzcvjjnmmNLj/T//8z/xuc99LoqiiE6dOsW0adNqbf/WW2/F4MGDo7y8PC677LL6uUMNmBb50CIfWuRFj3xokQ8t8qFFPrTIix71b1WDodtss020bds2tt1223jttddWef3q9zVefPHF0tHGTjjhBEeMWQ9a5EOLfGiRr6lTp8Zxxx0XHTt2rPWBbc2f065p1KhR0bZt22jevHmtL6Z17NgxLr744nj55Zfr+B40HlrkQ4t8aJEPLfKiRz60yIcW+Xj77bdj6NChscUWW6xViw8++CCOOOKI2G677Wq12GabbeKaa64xFLoBtMiHFnnRAzYdA+ywBg8//HA0adIkmjRpEvfdd99qt/3d735XetI5/fTT1zjEXv1BzFtvvRUnn3xylJWVxde+9rWNtvaGbv78+St9sv/jH/9Yepx/+MMfRkTEtGnT4sADDyw94S8/0PDDH/6w9I+IxYsX+7BqHWmRDy3yoUVe9MiHFvnQIh9a5EOLvOhRf1Y2GFpWVhZbbrllnHbaafGZz3wm9t1331Vev3owdOnSpfH5z3++9OWCp556apOvvbHRIh9a5EOLvM2aNSt22GGHKIoi9tprr9V+YFvtscceixEjRsSnP/3pOPTQQ+PYY4+Nf/7znzF//vw6WnXjpEU+tMiHFvnQIi965EOLfGiRl3POOSeKoojevXvHAw88sMoWNV/v3X///XHVVVfFeeedF1dcccUKA6E1X1uy9rTIhxZ50QM2DQPssBaqP+gYPHhwzJ49e4XLaz6hVB+xvSiKOPXUU+PDDz9c6T6rr/Pmm2/GySefHF26dCldb9KkSZvkfjR01Y/ZWWedVfpHwYsvvli6bOrUqTFw4MAVBhoiIn7/+99HURSx33771cvaGxst8qFFPrTIix750CIfWuRDi3xokRc96saqjmq85ZZbxjnnnBMLFy6ML3zhC9GsWbOYOHHiCtevfgN+yZIlcfLJJ0dRFNGiRYs4/vjj4+23317r20aLnGiRDy0ahueeey769+8ff/vb31Y75LOqx7T6/OovnC2/nRZrT4t8aJEPLfKhRV70yIcW+dCi/tV8jC6//PIYO3bsGr9IsLoDV6zpoBaarJoW+dAiL3rApmWAHVaj+knh5ptvjvbt20e3bt3i7rvvXumTRfV5y5Yti6985SulYfQLL7xwhSeu5YfXO3fuXPog5q9//esmvlcNV/Xj9tnPfjaKoogDDzxwhW2WH2iYPn16RER8/etfj6IoYsiQIXW55EZLi3xokQ8t8qJHPrTIhxb50CIfWuRFj7r1t7/9rdZg6Nlnn10a/Bw2bFiUlZXFZZddFosWLVrhukuWLInvfOc7pZ9M3XnnnePBBx9cYbtly5bFsmXLVvm+CB/TIh9a5EOL/C1YsGCNH9jWVFlZWXpsFy9eXOuyV155Jf7973/HtGnT4q233lrheqyeFvnQIh9a5EOLvOiRDy3yoUX9q/n4r8vjVPO125IlS0qnFy9eHA8//HCMHj06fvOb38To0aPjo48+ioqKinW+jc2NFvnQIi96wKZjgB3Wwttvvx2f+9znoiiK6N+/f60jpNd8snn99dfjsssui6222iqKoohu3brFjTfeWHqCqbn98sPrbdq0Mby+lo4//vgoiiK+9rWvRUTtJ/mI2gMNnTp1iltuuSX22GOPKIoiLrvssojwZL+xaJEPLfKhRV70yIcW+dAiH1rkQ4u86LHp3XvvvbHddttF8+bNS4OhNR+z0aNHl76YP2LEiHjmmWciImL69Onx8MMPx4ABA0qXd+rUKf7v//6v1v6fe+65+NOf/hSDBw+Ogw8+OA4//PA45ZRT4oEHHogPPvggIv5zlOTNnRb50CIfWjRuNR/b3/3ud/Htb387mjdvHuXl5dGmTZto3bp1nHbaafHnP/95pddh49EiH1rkQ4t8aJEXPfKhRT60yEfNwdIf//jHceSRR5ZeE1b/2W+//eK0004rfbFAi01Di3xokRc9YNUMsMNamj59euy0006lo8BNmDCh1hF+Zs6cGZdddlm0b98+iqKIXXfdNX7zm9/EnDlzStusy/C6I/2s2tlnnx1FUUSPHj3i3XffXek2U6dOjQMPPDCKoojWrVtHURSx/fbbr/BN5/X9lhwf0yIfWuRDi7zokQ8t8qFFPrTIhxZ50WPTmz59eunL9+edd17psan5eP3gBz8ovXnesWPH2H///aNDhw6xzTbblB733r171/ogNiLiD3/4Q/Tq1SvatWu3wpvwXbt2jSOPPDJmzpwZEd6Ej9AiJ1rkQ4vGq2bDb3zjG7HtttvWatCmTZsoiiLKy8tjiy22iCuuuKK0vR4blxb50CIfWuRDi7zokQ8t8qFFPmq2OPbYY6Nly5a1Xit27tw5ysrKSuftueeeMWPGjIjQYmPTIh9a5EUPWD0D7LAOpk6dGl27do2iKGKvvfaKn/3sZzFr1qyYO3fuCsPrt9xyS3z00Uel61Z/0LKuw+vjxo2Lm266qW7uYOaqH5enn346dtppp2jXrl3ceuutq3zCnjp1anzmM58pPenff//9EfGfJ/jqfyQsXLgw/v3vf0eEgYa1pUU+tMiHFnnRIx9a5EOLfGiRDy3yokfdmjp1alxwwQWlx6T6cav5GP3whz+MrbfeeoUhz2233TbOPPPMePzxx2vt89prr621Xc+ePeMLX/hCnHTSSbHrrrtGp06doiiK2GWXXeLVV1+tdbubMy3yoUU+tGh8aj6WRxxxRGmgpyiKOPXUU+OGG26IRx99NC655JI47LDDSp0uuOCC0vU8j28cWuRDi3xokQ8t8qJHPrTIhxb5qNni8MMPj6IoomnTprHlllvGxRdfHI8//ni89dZb8fTTT8cll1wSu+++exRFETvuuGO8/vrrEaHFxqJFPrTIix6wZgbYYR299NJLccABB0RRFNGyZcvo3r17fO1rX9skw+tPPfVUfOlLX4qiKOKkk06qmzvYAMyZM6f0uPTr1y8mT568ym1feOGFOOSQQ+Kmm26q9a22moMMu+yySxRFERMmTNjka29stMiHFvnQIi965EOLfGiRDy3yoUVe9Kh7yw9o1vz7ww8/HL/4xS/iu9/9bpx11llx9dVXx6uvvhoLFiyodZ3rr7++9KHsHnvsEWeddVZ89NFHpRZvvPFGjB49Ovbbb7/S4Oibb74ZEX6FriYt8qFFPrRo+Go+hscee2wURREtWrSIfv36xR//+McVtn/ttdfiyiuvLDX72c9+VpfLbdS0yIcW+dAiH1rkRY98aJEPLfJ04oknlloceOCBcdddd62wTUVFRUyYMKE063PwwQfH7Nmz62G1jZsW+dAiL3rAqhlgh/Xw5ptvxve///3Ya6+9an2jdrfddttow+tPPvlk6QP76j/n/X/snXdYFMf/x2eOKqICKmJBEbtg773GrlETW6ImJvYWjb33rlEjdo0aRRN7+6qJsXdjF5COBRUUbHQ47v37g99N7ugIdzccn9fz8Ii7s3uz82JvdmY/MzNlin4uMBcQGBgIZ2dncM7RokULXLt2TbyYSv5S6ePHj4iJiUlxjsjISOGQc46SJUvi/fv39FIqi5ALeSAX8kAu5IJ8yAO5kAdyIQ/kQh7IhVyQD8OT0cwumvsPHTokyrlRo0b47bffEB8fDyAp0FRd5iqVCg8ePEC9evXAOcfAgQPx6dOnFOfWdES+yIVMkAt5IBe5k9WrV8PS0hJmZmZo2bKlWD0FSHKmOTghOjoac+fOBecc1apVw/3791Ocj8r/8yEX8kAu5IFcyAO5kAvyIQ/kQh7IhTzs3r0bxYoVg4mJCZo0aZLCRXIuXbqEihUrwtraGtu2bUuxP7kLWpUr85ALeSAXckE+CCJ9KICdID6T6OhoPHv2DBMnTkTr1q1Rvnx5bN++PceC1/v06SNerFhbW4Nzjg4dOmidP6/j4+ODEiVKgHMOV1dXzJs3D35+fpk+fsOGDVqBDPv27dNhbo0bciEP5EIeyIVckA95IBfyQC7kgVzIA7mQC/IhF5oBnpo8f/4cLVq0AOccFSpUwJYtW0SneWod8CqVCocOHYKDgwPKli2bYmb81DrcNWfXJ8iFTJALeSAX8hMTE4Nu3bqBcw5bW1scP35c7EsrYMfT0xNt27YF5xxbtmzR2qd28eLFC3h7ewOgZbUzC7mQB3IhD+RCHsiFXJAPeSAX8kAu5GLIkCGi/+/AgQNie1ouPn36hOnTp4Nzju7duyM2NlbsU7t4+vQptm7dmmI7kT7kQh7IhVyQD4JIHwpgJ4gcICoqCq9fv0ZkZKTYlp3g9b59+4rKS30c5xzu7u76uaBchJ+fH5o0aQJTU1NwzmFnZ4dff/1VNO4yYubMmeCc4+DBg2IbjXD+PMiFPJALeSAXckE+5IFcyAO5kAdyIQ/kQi7Ih/zcuXMHdnZ24Jzju+++E4Gc6ZXzmzdv0K5dO3DOU11iGwAmT56MwYMH6yTPxgq5kAdyIQ/kQh7OnTsn+rkXLFggtmdUL0+ePBmcc1y6dAmA9oCBoKAgDBgwAEWLFsXff/+tm4wbIeRCHsiFPJALeSAXckE+5IFcyAO5kAd/f3+YmZmBc44xY8aI7Rm5uHbtGiwtLXHq1CkASYMS1BNJBgUFYfjw4eCc48svv9RZ3o0NciEP5EIuyAdBZAwFsBNENkirQsmp4PVJkyZhxIgRUCgUcHBwwIMHD3R3MbmYV69eYcGCBahfvz445xg5ciTev3+f7jGao888PT3F7xTIkD3IhTyQC3kgF3JBPuSBXMgDuZAHciEP5EIuyIfczJ8/H5xzlCpVCoGBgQAyN1PY0aNHMWPGDPH/v/76S3idP38+ihYtCs45fvrpJ11k2yghF/JALuSBXMjDvn37wDmHvb09bt68CSB9F+p94eHhePToEQAgIiICK1euxObNmxEVFYURI0aIvveaNWsiJiaG6vpMQC7kgVzIA7mQB3IhF+RDHsiFPJALeXj8+DEUCgU459i8eTOAzM9eHxISAiBpssqlS5fiiy++wNWrVzF+/HgUK1YMnHOUKFFCpCPSh1zIA7mQC/JBEBlDAewEkcOoGxLZDV4fOXIkbt26hQoVKtCoqUwQHx+P8PBwHDx4EG/evAGQcWBC8ocCagTmDORCHsiFPJALuSAf8kAu5IFcyAO5kAdyIRfkQ17UM4iVKlUKISEhn1XO58+fR/HixeHo6Ijx48fD3t4epqamqFChAn777Tcd5No4IRfyQC7kgVzIw+bNm8E5R8mSJREaGprl4xMTE/HgwQNUqlQJnHPUqlUL9vb24Jyjbt268PHx0UGujRNyIQ/kQh7IhTyQC7kgH/JALuSBXMjD48ePYWlpiQIFCuDGjRsAtCe1yAxv377FoEGDwDlH/vz5xQpetWrVgp+fHwDqU8wM5EIeyIVckA+CyBgFIwgixwDAOOfs9evXbNGiRezIkSMsJCSE5c+fn+3bt4916dIlRVrGGLt16xZbs2YN+/PPPxljjA0ePJjNmTOHWVhYsJiYGKZQKFibNm0YY4wlJibq/8JyAWZmZszOzo599dVXrGjRokylUjHOOVMqlVrpNMtPodD+ClT7ILIHuZAHciEP5EIuyIc8kAt5IBfyQC7kgVzIBfmQDwCMMcYsLS0ZY4wVL16cFStWjHHOxb7MkJiYyKpUqcLKly/PgoODmZubG3v79i0rV64cmzt3Lhs0aJDW5xEpIRfyQC7kgVzIh5WVFWOMsbCwMBYSEpLl4znnrEaNGqxXr16MMcYePHjA3r59y+rUqcMOHjzIKlasSH3nmYRcyAO5kAdyIQ/kQi7IhzyQC3kgF/JgbW3NlEoli4yMZFeuXGGMMWZiYpLp4wGwIkWKsH79+rFixYqx6Oho9v79e1alShV24cIFVr58eZaYmEh9ipmAXMgDuZAL8kEQGUMB7ASRg3DOWUhICJs6dSo7efLkZwWvDxs2jM2cOZPZ29uz33//nb18+ZLly5ePtW/fnjGmXZHRi5G0USgUTKlUMlNTUxYVFcV++eUXxlhS+VGDT7+QC3kgF/JALuSCfMgDuZAHciEP5EIeyIVckA/Do+7XaNiwIWMs6YXrmTNntPZlRGJiIjMxMWEODg6sRo0azNzcnCUmJjJTU1M2cuRI9s033zDGmBiwQKQOuZAHciEP5EI+2rdvz6pVq8aUSiX766+/WHx8fKaPVfenBwcHs9DQUGZtbS3KvF69eqxMmTIiXXrnIJIgF/JALuSBXMiDoV0Q2pAPeSAX8kAu5AAAc3JyYgMHDmQKhYLdunWLvXr1KkvHq10cPnxYy+O7d+/ExBjkImPIhTyQC7kgHwSRSXJ2QneCIF6/fo3KlSuDcw5bW1ucOHFCa7/msh03b95E3759wTkH5xzDhw/H06dPRbqOHTtCoVCge/fuiI+P11r+XPM8Bw4cwPz583V8ZbmLhIQEAEB0dDTq1KkDzjnGjx9v4FzlTciFPJALeSAXckE+5IFcyAO5kAdyIQ/kQi7IhzwEBASgQYMG4Jxj0qRJiIiIyNRxmn0cCxYsQJEiRcA5R758+cA5h6OjI549ewYg9WVVNY8nkiAX8kAu5IFcyENERAS+//57cM5Rr149PHz4MFPHqfvBnz9/jmHDhqFo0aLgnKNUqVKiX33atGkivdqHSqXCx48f8ddff6U4V16HXMgDuZAHciEP+nZBpA/5kAdyIQ/kQi727NkDMzMzcM6xZs0axMTEiH1p1a1puahcubLoZyxZsiQCAwMB/NcPCaRs61Hb7z/IhTyQC7kgHwSRPhTAThA64NGjRyhVqhQOHTqktT2j4HX1Sw8AOHfunNi3fPnyNM9z8uRJuLq6gnOOwYMH6+iKcifR0dEoV66cKEfOeaYbkOmR2gOEUqlM0Yikzsb/IBfyQC7kgVzIBfmQB3IhD+RCHsiFPJALuSAf8rBmzRrhwM3NDZ8+fRL7UusgTyswtHz58li+fDlatGghXuIGBQUB0H5xqz7+woULmDNnjm4uKpdCLuSBXMgDuZCHoKAgVKhQAZxztGzZEjdv3kRUVBSA1OtV9bYXL15ovbCtWbMmvLy8sH37duF29uzZ4ji1jzt37oBzjr59++rh6nIX5EIeyIU8kAt50JcLInOQD3kgF/JALgyPZjnPmjVLlN/SpUvh6+ub4XGpuQgICMCrV6/QuHFjcM7h5OQEf3//VD/z+PHjYl9eH2xALuSBXMgF+SCIzEEB7AShI5LP5pOV4HUAWLVqFSwtLVG2bFl4enqKc2ie58SJE3B1dYWFhQU45+jUqZMOryj3ERgYKMq4ZMmSOHjwYLbPqVmpR0VF4Y8//sCMGTPQqVMnfPnll/jll1/w999/izQU0JAEuZAHciEP5EIuyIc8kAt5IBfyQC7kgVzIBfkwPJpBnpMnTxY+pkyZgitXrmR4jGZgaLly5bBv3z4AwJMnT9CkSRPhVh0gqnn89evXoVAowDnHunXrdHB1uQtyIQ/kQh7IhZx4e3ujePHi4JzD1dUV8+fPx507d1KkS++FrZ+fH4CkwWyaAxRmzZoljg8LC0P9+vXBOYelpSUuX76snwvMRZALeSAX8kAu5EGXLig4NOuQD3kgF/JALgyPZvtt0qRJovw6deqEOXPmaA1eBjLnQqVSwcPDQwxcdnJyQlxcnNbsxkePHkW1atVQqFChVJ3nRciFPJALuSAfBJExFMBOEHogq8HrMTExqFevHjjnaNCggVg+JLXgdVNTU3DOMWDAALE/r79A18TLywvOzs7Yu3ev2Pa55aMOZEhMTMSGDRvQs2dPcM6FA/VPkSJFMGPGjGx/nrFBLuSBXMgDuZAL8iEP5EIeyIU8kAt5IBdyQT4Mj2bQ/4wZM0Q5lSpVCsOGDRMzkAHpz2qsDgxV4+npKQJEf/31V63Punbtmlh2tUqVKliyZAni4uJ0eZm5AnIhD+RCHsiFnPj5+aFly5bInz8/OOcoWLAg3rx5I/Zn5oWt2ld8fDyWLVsGzjnOnz8PAIiNjcWCBQtQsGBBmJiY4KuvvkJwcLCerzJ3QC7kgVzIA7mQB127ILIG+ZAHciEP5MLwaLb5Vq9eDRcXF9Hu8/DwEPsy40LzXA8fPkSLFi3wzz//aH3e4cOH0bRpU1haWoo4ndRW9sqLkAt5IBdyQT4IIn0ogJ0g9MitW7fSDV5XVxgPHjyAo6Mj8uXLBzc3NwBJDRY1yYPXv/32W1GR0bIfKdEcsfa5gQWaDce+ffuKBwX1S6xmzZrh66+/Rr169cTsSpMmTcqR/BsT5EIeyIU8kAu5IB/yQC7kgVzIA7mQB3IhF+TD8Gj2RezatQvdu3eHmZkZRo0aJbZnNjBUM52npyd27dql9VmagaGurq5Yt24dPn78qIvLypWQC3kgF/JALuQkJCQE27ZtQ5cuXXD69GmxPStBPmri4+Px+vVr8X/NWfItLCxw8+ZNPVxR7oVcyAO5kAdyIQ+6cpHW+9TUgnvy+qBlTciHPJALeSAXhkezrO7fv4/NmzeL1U1UKpUon+DgYAwfPjxTLoCkmfE1UQeFmpiYgHOOvn37Ijw8XFeXlSshF/JALuSCfBBE2lAAO0HoiTt37qBz585pBq9rsnTpUpHu4sWLWvsoeD3r5NTM9KGhoWjcuLFww3nS8l23bt0SDwpPnz7FunXrREDDpk2bsp1/Y4JcyAO5kAdyIRfkQx7IhTyQC3kgF/JALuSCfMiBZgf6hw8f4OXlJf6vuXzp4sWLRWBouXLl0gwMTY3kgaFr164VgaF5/WWtJuRCHsiFPJALeVGXf2JioiinkJAQjB07NtMvbJMzdOhQUZevX78eADnIDORCHsiFPJALedCFC02Sp9+zZw82bNgg/k+OtCEf8kAu5IFcGJbUylPTxdu3bzFhwgTY29tn2oXm9uRBob169cL79+9z/kKMAHIhD+RCLsgHQaQOBbAThJ4IDg4WLzBGjx6davB6YmIiYmJi0LFjRygUCnTv3l2roXH8+HG4uLiI4PX+/ftT8LqOUVf2gYGBqFevHjjnyJcvH1xcXPDHH3+kesynT58wbNgwcM7Rp08frQcO4vMhF/JALuSBXMgF+ZAHciEP5EIeyIU8kAu5IB85S2rloNlfsWXLFpQuXTpLgaHq7VevXhX9Ki4uLli7dq2YfZ/KPyXkQh7IhTyQC/lRqVRISEiAm5sbypQpA845atWqBX9/fwCZC/LZunWrCAzt3r27OJbIGuRCHsiFPJALecgJF+rzaPLp0yds3boVffr0EZ4GDx6c4/k3NsiHPJALeSAX8qAu6z/++APly5cH5xw1atTIMChUs+wpKDRnIBfyQC7kgnwQeR0KYCcIPfL48WNMmDABQUFBaabx8vKClZUVOOf4+eefxXYKXtc/6lHS7969Q/369cE5R/78+dG2bVucO3dOpEvtJZSbmxs457C0tEzXN5E5yIU8kAt5IBdyQT7kgVzIA7mQB3IhD+RCLsiHfnnx4gU6dOgAzjkcHBzg7u4u9mUUGHrlyhURGFq7dm2sXbsWkZGRAKhP5HMgF/JALuSBXMhDRESEqJdLly4NX19fAJkL8nny5Ak6d+4MhUIBc3NzbNu2LdV0qdXtNNAgJeRCHsiFPJALeciOi+RpPD098eeff6JGjRowNzcXQaGWlpbgnGPp0qU6uQZjgnzIA7mQB3IhF23atAHnHEWLFs1wIEF6QaFff/01BYVmE3IhD+RCLsgHkVehAHaC0DOaS9Jqon6ZsWLFCnDOUaJECXh7ewMAjh49mq3g9awuP0X8V2YJCQlo3rw5OOewsrJC586dcfXqVZEueadhfHw8AODPP/+EtbU1ChcujBcvXugv40YIuZAHciEP5EIuyIc8kAt5IBfyQC7kgVzIBfnQP4cPHxYvWN3c3MT2rASGlilTBpMnT8bNmzehUqkQGxsLgAJEswq5kAdyIQ/kQh6OHz8ugnGOHDkCIOMyVPtwc3MTL2x//PFHsV+zPlefS6lU4vLly9ixY0eK8xBJkAt5IBfyQC7k4XNcJMfb2xvr1q2Ds7MzbG1twTlH8eLF0bBhQ7i4uIDzpBW6bty4oYMrMC7IhzyQC3kgF/Lw6tUrFClSBJxzzJo1C0Dmg0IbN24MhUJBMxrnEORCHsiFXJAPIi9DAewEIRldu3YF5xxVq1ZFQkICTpw48VnB68lfsoeGhuLUqVM6zbuxkZiYiCFDhoBzDgsLC7Rs2RJXrlwR+9Ob8WL48OHgnKNgwYJ4/vy5PrJr1JALeSAX8kAu5IJ8yAO5kAdyIQ/kQh7IhVyQD/1y7NgxcM5RsmRJ3L17F0DGgaFXr14VgaHql7JWVlYoUqQIatSogVGjRuHly5cAKEA0K5ALeSAX8kAu5MHHxwdlypSBlZUVfvvtt0wfd/fuXeTLlw+cczRp0gTPnj0DkHrZx8bGYtKkSahVqxY45xg6dGiO5d+YIBfyQC7kgVzIQ1ZdqNt3ERERCA4OxogRI1CvXj1Rj9vY2KBJkyb466+/cOXKFfTr1w8KhQKDBg1CTEwMDSDIAPIhD+RCHsiFPERHR6NTp05iEJl6gorkJA8KbdKkiQgKdXV1Fe27zJDaADWCXMgEuZAL8kHkZSiAnSAk4vbt27Czs4OJiQl27tyJS5cuoUqVKlkKXk/eMHnw4AF27dqFcuXKpZjVgUifw4cPo3z58mJZrzNnzoh96QUy3L17FzVr1gTnHF27dkVcXBwt75hNyIU8kAt5IBdyQT7kgVzIA7mQB3IhD+RCLsiHfrl9+zacnJzAOceqVavSTKc5q7G6P0ShUKBo0aLo1asXRo4ciVatWqFUqVLgnKNKlSp4+vSp1rFE+pALeSAX8kAu5OHdu3fo0qULOOdo1aqVCPJMj5cvX4qJYYoUKYLly5cjLi4OgHadHhYWhgsXLohAIBMTE/Gid926dTq7ptwKuZAHciEP5EIeMuMied17+/Zt/PDDD3B1dQXnXNTlQ4cOxd69exETEwMA+OOPP0TA6O+//66X68ntkA95IBfyQC7kYsOGDaLMUhtQoFknHzp0CE2bNhX1sPpn/vz5iIyMzPCz1Oe6dOkSHj58CICCQzUhF/JALuSCfBB5FQpgJwiJ2LVrlxg9O3jwYFSvXl0sJ5jZmdeBpIrG19cXS5YsgbOzs5jVwdLSEpxzjBs3Th+Xk+sZOnSoqOR37doltqcWmKC5bf78+eK45cuX6yWvxg65kAdyIQ/kQi7IhzyQC3kgF/JALuSBXMgF+dA/ixcvTrcTPrXA0HLlyuH7779HUFCQSPfx40dcu3YNDRs2BOccNWvWREhIiL4uwyggF/JALuSBXMiDv7+/GATQsWNHrfLVRO1k7969KF26NDjnqF+/PkJDQ1Ok/ffffzFs2DBxXgcHB5QpUwacc9SqVQvh4eG6vKRcC7mQB3IhD+RCHpK7CAwMBJDyPaq7uzuGDx8u3rlyzmFra4vRo0fjyJEjWmn9/PxQo0YNcM7Rp08ffV2KUUA+5IFcyAO5MDyafXpTpkwRAwM2btyYaprkQaEDBgzQaivOnTsXUVFRaX6euv6/cOGCOObx48c6uLLcB7mQB3IhF+SDyOtQADtBSEBiYiIiIiLQtm1bEWheqVIlEXCe2eD1iIgIBAYGYtCgQahdu7aoaEqVKoUyZcqIJW1Hjhypr0vLtdy4cUO8iBo1apTYnlEgw/79+0W5d+7cGREREWkeR2QOciEP5EIeyIVckA95IBfyQC7kgVzIA7mQC/KhXzRnFJs4caIowx07dqRIoxkY6uLiguXLl4uAneR9ImfPnoWjoyMsLS2xYcMGAOQiI8iFPJALeSAXcuLt7Y3ixYuDc45OnTqJ2YrVqJ3ExMSgcePG4DxpYph79+5ppQsLC8Pu3bthY2MDzjkKFiyIXr164ejRo6hZsyZsbW2xceNGKJVKmiU/DciFPJALeSAX8pDcRUJCAgDg/fv3cHd3R69evcA5FwE+ZcuWxbhx4/D48WMxkzEA4fCvv/6Cg4MDLC0tsXnzZgC0ikpWIB/yQC7kgVwYHs222qRJk0Rw6Js3b7TKLnlQaK9evfDx40cAwOrVqzMMDlW3986dOyfScs7x3Xff0czG/w+5kAdyIRfkg8jLUAA7QUhCWFgY7O3tYWpqCoVCIV6EpBW8nrziuHDhAgYNGgRnZ2dRkXHOMX78eOzbtw9Tp05FgQIFUK1aNfj6+gKgFybpcfToUZiYmMDS0hL79u0DkHEgw+nTp8UggQoVKuC3336jxmIOQC7kgVzIA7mQC/IhD+RCHsiFPJALeSAXckE+9I9mP8b48ePBOceiRYsA/Pei9fLly6I/o3Tp0liyZInogE/NT3h4uBjA37dv3wzzkJiYiBcvXuTE5eRqyIU8kAt5IBdy4unpiRIlSuD8+fNpplGvqJIvXz7MnTsX8fHxYt+BAwfQv39/8UK2Y8eOot4fN24cOOdo0aIFnj59qvNrye2QC3kgF/JALuTBw8MDJUuWxL179xAeHo79+/ejevXqsLOzE+VbuHBh8fvhw4cBQPhQ1+Px8fFo0aKFGKj24cMHg11TboZ8yAO5kAdyYXiSB4deuHBBa3/yoNDevXvj/fv3WmnWrFmTZnCout2oGRRqY2ODb775Bq9fv9bZdeVGyIU8kAu5IB9EXoUC2AlCEp49eyaWhFLPvP7tt9+Kxoh6JG7ylyE7d+7E8OHDtUZGOTo6Yvz48fjrr78AJL0sqV+/vnhZEhkZqd+Ly4WoK3VnZ+c0X0Rp/v/vv/9GkSJFwDmHtbU1Ro4cme6SLETmIRfyQC7kgVzIBfmQB3IhD+RCHsiFPJALuSAfhkGzE/6ff/7R2qcZGMo5R7du3RAWFgYg9cBQdT/JN998IwJ+0iMxMRE3btyAi4sLxowZk91LyfWQC3kgF/JALuREPetkajOBHT58GOXLlwfnHNWrV8fDhw8BAJ8+fcLIkSPFjMb58+fHzJkzxcopmzdvBuccJiYmuHHjhv4uJpdDLuSBXMgDuZCH+Ph4HDt2DLa2tiIg1NTUFFZWVli0aBHWr18vVsLmnIt3qCqVSvhzd3dHwYIFUahQIbi7uwOgWY0/F/IhD+RCHsiF4UlrduHDhw+nGxSqeVzy4NDIyMg0g0L79OmD0NBQAP95UrcV8zrkQh7IhVyQDyIvQgHsBCERXl5e4oX4wIEDxcuP2NhYrXTBwcH4/fff0bFjR63A9UaNGmHo0KF48eKF1iwO6lmDihQpAi8vLwA0+3pGrF+/Hpxz2NraIjAwMN20p06dgq2trfDQo0cPMdqZGozZh1zIA7mQB3IhF+RDHsiFPJALeSAX8kAu5IJ8GI7UOuGvXLkiBvObmJjAysoKnp6eANLvv3j//j2qVKkCzjk6dOiQZrrExETcvHkTLVu2FB7v3LmT/YvJ5ZALeSAX8kAu5COtAWYxMTEYNGiQKLODBw8iNjYWO3bsELNSWlpaon///jh27Jg4/t9//0XdunWhUCiwdOnSVD8DSPm3QP3p5EImyIU8kAu5ePToEQoUKADOk2Ym/umnn3D37l0ASWV28eJFfPHFF8LL33//rXX8sGHDwDmHk5MTHj16ZIhLMCrIhzyQC3kgF/Lh7u6OJk2awNzcPNWgUDWafYCawaFz5swBkLWg0MjISDEAgfgPciEP5EIuyAdh7FAAO0FIhqenJ4YMGSI6mzQrGA8PD+zbtw8VK1YUMzNYWFigYcOGmDVrFgIDAxEXFwfgv+WkgoOD0bJlSygUCvz4449aI6uItPH09ISzszPs7Oy0Og81BwbEx8fj999/FxW8qakp2rdvj3fv3gFIe2QckTXIhTyQC3kgF3JBPuSBXMgDuZAHciEP5EIuyIc8BAQEiDJ2dXWFg4MDqlatioiICC0fmqj7TI4ePYrixYtDoVBg/vz5WvvUqANDmzVrJjrnN23aJGbeJ/6DXMgDuZAHciEv27dvF27Gjh2LgIAAdOrUSfSb29vb49ChQ3j16pXWcQsWLIBCoUCjRo1w//79dD8jJiYGBw4cEP+nANHUIRfyQC7kgVwYDi8vLwwePBjPnj0Tq2ap227x8fE4d+6cVnDo2bNnAQCHDh0S21avXm2o7Bsd5EMeyIU8kAu5WL16tSjXvn37phoUqkYzzkbzuO+++y7DoFA1kZGR6Nq1KzjnWLBggU6uKbdCLuSBXMgF+SCMHQpgJwjJSUhIQFBQEObPn4+qVavCwsICnHNYWVmJymXNmjVax2hWLhs3bhTpDh48qO/s51revXsnZrhv3rw57t69q/VS6tSpU/j5559F2dra2qJXr17iQYECGXIOciEP5EIeyIVckA95IBfyQC7kgVzIA7mQC0P4oICStBk4cCBKlCiBFStWoGrVqqhXr16aaTVf6vbo0QOcJ82IfOPGjRRpkweGWltbY/PmzYiIiNDZteR2yIU8kAt5IBfycf36dZQuXVrU0Z07d0ahQoXAOUfZsmXxww8/wMfHJ8Vxly5dEnW7m5ub1j7Nevrjx4+4e/cuGjZsKF70EqlDLuSBXMgDuZCbhISEFMGhhw8fxty5c2FqaoratWvjyZMnAKgNpw/IhzyQC3kgF/pn4MCB+OKLL9INClWjGYuzY8cOcM6hUCjAOUehQoXSDQoFgCVLloh4n7Zt26YYzJbXIRfyQC7kgnwQxgwFsBOExLx+/Rrdu3dH8+bNReOEc46mTZti/PjxaNq0qdj2zz//AEhqpKgbKt7e3nB1dQXnHIMGDTLkpeRK/P394ejoCM45qlSpgh49emD06NHo1KkTChcuLMq+WrVqmDx5spgZiQJLch5yIQ/kQh7IhVzo0wd1SKYPuZAHQ3xPqVcjIrQhF/KgTxeaHY9U/6eOoZ6nNDt883pdolmWFy9eRHBwMFq0aIFChQrh8ePH6R47ZMgQERg6d+5cANrlSYGhWYNcyAO5kAdyIScJCQmYNm0aOOfIly+fKGfOOdq3b4/Tp0+L1VI0n4cCAwPRoEEDcM7x/fffi+3J6/W7d+9i6tSpcHJyAuccZmZm4Jzj0qVLeb7eTg65kAdyIQ/kIneQWnCoenb8oUOHZulcVO7Zh3zIA7mQB3KhHzTr2ejo6Ewfp54E4/79+8KPlZVVqkGhqfUj9uvXD61bt8bdu3ezk32jglzIA7mQC/JB5AUogJ0gJMbf3x+mpqaiMmnZsiVmzpyJhIQExMbG4urVq6kuH6WuiI4ePQo7OzuYmppi8+bNADJuoHh6emLHjh06va7chK+vL2rVqgVzc3OtQQTqDse+ffvi2LFjiImJAZD66DQiZ9C3C/Xx1KhPCbmQB3IhF/r24eXlhYcPH1LdkwrkQh705SIxMRGenp74+uuvsXfvXjx9+lTso++sJMiFPOj7O2r37t3YtGmT1vLz5OI/9O3D09MT/fr103rZmNd9JC/TkSNHgnOO5cuXi3JXo1Qq8eHDB/zwww/gPGnmmC5duuD27dspzkmBoVmHXMgDuZAHciEn3t7eKFCggKizq1atismTJ6eZPi4uDqtWrYKVlRVq1KghXsBqDrqMj4/Hvn374OTkhIIFC4JzjmLFiqF3797466+/tM5Hbb//IBfyQC7kgVzkDhISEnD+/Hm0bt1atAMrV64s+jGS94V//PgRfn5+OHbsGO7du4ewsDBxLirz7EM+5IFcyAO50A9ZLRt1+rNnzwovBQoUSDcoNDo6GiEhIVrnCQwMzG7WjQ5yIQ/kQi7IB2HsUAA7QUiOl5cXypcvj3Xr1sHPz09rX3x8fIqRt+qOqvDwcFSvXh2cczRq1ChTMyD6+PhgwIAB4JyjX79+Orme3EhwcDDWrl2Lnj17okGDBnB1dcXMmTPh7u6ulS6vBx3oA126SD6q8NOnT1AqlSmW4CHPSZALeSAXcqGvOsPX1xfffvstOOeYPn06rl+/nmPnNhbIhTzow4WXlxe6dOkiAoW6deuGXbt25ci5jQlyIQ/6+o66ceMGnJ2dwTlHs2bNsH379hw7tzGhLx+enp4YM2aMaL+PGjUqx85tTOzbt0+U0YIFC3D16lVEREQgKCgIbm5u6Nixo/iOadWqFY4fP651PAWG5hzkQh7IhTyQC3nw8PCAtbU1Bg8erBW8mdoqNM+fP0eNGjXAOce0adMQFRWlda5Tp06JwQnqnwoVKuDPP//Es2fPtNK+ePEC69evT7E9L0Mu5IFcyAO5yD388ccfsLe3B+dJs99/+vRJ7FO30wIDA/HDDz+gbNmy4JzD1NQUHTt2xNatW0VaWvksZyAf8kAu5IFcyIO6Hj937pyok21sbDIMCm3RogUKFCiAoKAgg+TbGCEX8kAu5IJ8ELkRCmAniFxA8mVANDu4Uls+6syZM/jnn39QsGBBFC5cGH/++SeA9Bsl6uB1dePH1NQUAQEBurmgXE5sbKzW/2nEsuHQhYt//vkHa9asQePGjVGnTh1UrVoVEyZMwP79+0UaCi5JCbmQB3IhF7rwkZiYiPPnz6N+/frgPGmp4KZNm2LdunUiDflICbmQB124ePfuHRYuXIh+/frBzMwMCoUC5ubmmDZtmkhDLlJCLuRBl22MX3/9FbVr14aJiQlMTU0xd+5csY9cpI4ufHh6emL06NGi3W5mZgbOOUaPHi3SkI//mDFjhiirwoULo1q1aihSpAjy588vZrL86quvcPLkSa3jKDA05yEX8kAu5IFcyMO7d+/EaqSAdp2tWa9+9dVX4JyjatWqWjOKKZVKjB8/HlWrVhVOq1SpgkGDBiE8PDzF57169QorV64UaV+9eqWjK8t9kAt5IBfyQC5yB+rBASYmJrhx40aK/SEhIejZs6dYtcvOzk4MVuOca7Wx6X1h9iEf8kAu5IFcyMHnBIVGRUWhW7duIv0PP/yQqYknifQhF/JALuSCfBC5FQpgJ4hcgLojK62X2akFsatfhJQpUwY+Pj7pnl8dvF64cGFwzlG6dGlcu3Ytx68jN6NZ9hRUYFh04UKlUuHdu3cYOXKkGMSR/MfS0hJTp07N8c/OzZALeSAXcqGPOiMmJgY3btwQM3+rOyJHjhyp88/OTZALedCli+TnO3jwIAYNGiRc/PTTTzr77NwIuZAHXX9Hab6Qun37NsaPH08u0kGXPpIHr3///fdYv3698EFB7P+h+Xc7Z84clChRQuv5s0CBAihQoADWrFkDDw+PFMdmFBia18s3K5ALeSAX8kAucicbN24E5xy2trY4f/48AOD169c4evQoWrdureXwm2++wbFjx8RgtoSEBHGeV69eYdmyZShSpAg4T5r9+OnTpwa5ptwKuZAHciEP5MKw/PPPPyhevDgUCgWGDx8OIGV9fPbsWRQrVgxmZmYYMGAAvLy88Oeff2rNir9w4UKRnoJDPx/yIQ/kQh7IhRyoy/xzg0Lz58+PXr164datW4a5ACOCXMgDuZAL8kHkZiiAnSCMhNSC2DnnWstCpUby4PWSJUtS8DphNKS36oD6AS46OhqnT59Gu3bttAIP27dvj++++w4TJ05Ehw4dxPYpU6boK/tGBbmQB3IhF5+zZGPyzskVK1agdOnSMDU1Becc/fv3z6ns5SnIhTx87lKmmh3vISEhcHNzE99TS5Ysyans5SnIhTzkhIvXr19j9erVwsWMGTNyKnt5jox8aNYPyYPXBw0ahMjISADA1q1bKYg9FTTL99q1a9i9ezemTZuGyZMn4+jRoymCQoHMBYam9YI2r5d3epALeSAX8kAucgfqcgsICMAXX3wBU1NTMYDv8ePH6NevH8qXLw/OOSwsLFCpUiWsXLlS6xyarpMHhjZo0IBWL80k5EIeyIU8kAvDo3YwZ84c0VbbvXt3qmnVs9oXK1YMQUFBYvubN2+wfPlycfzGjRv1kXWjhHzIA7mQB3IhD+q22vnz5z87KLRnz564e/euYS7AiCAX8kAu5IJ8ELkdCmAnCCMiNjYWZ8+eRcWKFaFQKFCrVi14enoCSP1lBwWvE8ZIdHQ0Hjx4IP6fWnCJ+n749OkTtm/fjrp164JzDlNTU7Rq1Qrr16/XSv/mzRsReGVubo69e/fq9iKMBHIhD+RCLjLjIyM06/U7d+6gWbNmYnnIGjVq4Pnz5zmSV2OHXMhDTrgAtH3ExsZi8eLFUCgUqFy5Mm7evJntfOYFyIU85JSL5OdcunQpFAoFrK2tsX///myfM6/wOT48PDwwatQo0Wk8ePBgvH//Xusc27ZtoyD2VMhoNjDN8slMYKgm586dw7p16/DgwQNERUVl6vPyMuRCHsiFPJALudEs/4ULF4JzDicnJ+zcuRMHDhyAjY2NqJvz58+PyZMn49KlS1rHa54jtcBQf39/vV5TboVcyAO5kAdyIQ///vsvLC0twTnH119/LbYnb4u5ubmBcw47O7sU/XzR0dGYPXs2OOeoWrVqhjNWBgUF4c2bNzl3EUYE+ZAHciEP5EIeTp8+nWNBoYmJiXpZPdhYIRfyQC7kgnwQuRkKYCcII0Fd4Vy+fBkWFhbgXHtZ+ORQ8Lp+US/lmBNBJ0TaxMbGYv/+/TA1NcWPP/6YbtqIiAi4ubmhWrVqIkh33LhxuHHjhkijuQRnWFiYeIgbO3aszq7BWCAX8kAu5CIrPtJCs5F4+fJlfPPNN2LG7y+++AL37t2jhmQmIBfykBMu0uL27dtwcHAA5xzbtm3L0XMbI+RCHj7XRWrfOcm3+fv7i6Xo1QHT9F2VPp/j48WLFxg0aJDoNG7WrBliY2MBAPHx8SJd8iD2wYMH6+QajJWsBoYGBgaiR48e4JyjQoUKGDt2LF6/fg2A2uvZhVzIA7mQB3JhWE6ePCnq4QYNGmDkyJHIly+feJnr6uqKy5cvIyYmRhyTfLAABYbmDORCHsiFPJALw5KQkCBWynJwcMCuXbtSpFG3k0NDQ1G1alVwzjF9+nRER0drpfPy8hIrmS5dujTNOtvX1xc9e/aEqakpzZCfDPIhD+RCHsiFXIwZMwaccxQqVAj9+vX77KBQzT7B5NDA5cxBLuSBXMgF+SByMxTAThBGRGhoKNq2bQvOOWrVqoWXL18CSFmJUPC6YXj06BG+++47PH361NBZMUpiY2OxZ88eODs7i47f33//PdW0MTEx+P3331GjRg0RpLt48WK8ePFCpEktiGfGjBniJWJYWJjOriW3Qy7kgVzIRVZ8pIWmg2vXrqFfv34UMP0ZkAt5yAkXGdG0aVNwztGnTx+tQTiENuRCHnLCxbFjx3D27Fnx/+TfR7NmzQLnHLa2tnj27FmO5NtYyY6PtWvXon79+rCyskKBAgXw888/i32a94BSqcT27dvF+TVnWCTSJquBoWouXryIHj16oGTJkuCco3bt2qKdTgGinwe5kAdyIQ/kwrAEBgaiffv2sLCwgLm5OQoXLgwzMzNwzlGvXj3Mnz9f9Hek1W579eoVli5dKvrQGzVqBB8fH7Gf2nuZg1zIA7mQB3IhB76+vuCco3jx4ggPDwcAPH/+PEXQZmRkJH766SfhR73ytWabbsWKFeCcY+fOnal+VkxMDAYMGCDafEuWLKEAoGSQD3kgF/JALuRi0qRJaNeuXbZmNAaSJr0YO3Ys+vXrhyFDhuCPP/4Q71epzZc5yIU8kAu5IB9EboUC2AnCCFBXEP/88w/KlSsHzjl++OEHREZGpkhLwev6R6VSISYmBsWKFQPnHL1799YKCCVyhk+fPqFKlSqiId+vXz88fPhQK4260/bq1ato2LChCNJduXKlaPinhrqBP3LkSHDO4erqqjXzCaENuZAHciEXmfGRHhQwnXOQC3nIrouM+PDhAypUqADOObp06UJe0oFcyEN2XTx+/Fi09w4dOqS1Tz17xuLFi2FhYYEiRYogODg4R/NvbGTXh4+PD1asWIH8+fODc45vv/1W7NPs7FUqldi7dy/c3NwQEhKSo9dgjGQmMDR5Z7pKpRLfPWFhYTh48CDq1KkDzjnKli0rBnPQC9qsQS7kgVzIA7kwPG/fvkWZMmXAORernHDO8c0338DHx0fMSplWeaoDQ21tbcE5R8WKFeHj4yNWU1FDPjKGXMgDuZAHciEP3t7eOHHiBADg1q1bcHFxgbu7OwDt/r8nT56IVeW+++47sV1dn8fFxeHvv/8W21Pr8zhz5gw455g4caJYYYXQhnzIA7mQB3JheDTbbuo2XVaDQtXvVO/cuYPSpUuLul89wUibNm3w/PnzFJ9HaEMu5IFcyAX5IHI7FMBOEEbEl19+KSqbR48eAdDuoKLgdcNy6dIlWFlZgXOOr776ioLYdcCjR49QtmxZdOnSBU+ePNHap74XEhMT0bVrVxGku2DBArx9+zbNc2o24Hv27AnOOerUqYN3795R4FU6kAt5IBdykZ6P9KCA6ZyHXMjD57pIC/V3W3x8PHbu3ImiRYuCc45Ro0Zl+9zGDrmQh+y4+PDhA0aMGCE6F3/77TetGZeio6PRp08fcM5hYWGhNUsfkTqf40OzLoiNjcXevXthbW0NzjkmTZqU5nHJg06IlKhUKly+fFms6pDRrMYfPnxI9dk2MTERDx48QIMGDcA5R5MmTcTsNETmIBfyQC7kgVzIg4eHhxhA1qlTJ2zYsCFTx7169QrLli0Tfeicc9jZ2aF8+fJwcnLCjz/+iD/++EOkpxe3GUMu5IFcyAO5kAd122306NHgPGmFa82B3uq+jaNHj4o+wK1bt6Y4Xo1mmSdfsTQgIIAGLGcA+ZAHciEP5MLwaMbcqMszs0Gh6vShoaFwcnISg8+6du2Kpk2bolSpUuCcw8nJiVbfygTkQh7IhVyQDyI3QwHsBGEk7NmzB5xzWFlZYfTo0QCSKgx1RUPB64ZF/bBw/fp1sRQkBbHrhuDgYHh7e6e5f/r06eCcw8TEBEOGDEmxzFpa7Nq1S3QIL1y4MKeya9SQC3kgF3KRkY/kUMC07iAX8pDcRWbLUTOd5u/x8fE4cuQI2rVrJ76nDh8+nHMZNmLIhTyk5SIzTsLDwzFs2DBR5sOGDYObmxv27NmD7777TmwfOnSozvJvbGTHB5A0cGDRokUwNzeHk5MTzp49q5N85hVWr14tOty3bt2aIjD07du3OHr0KJo2bQonJycULFgQQ4YMwe7du7XSJSYm4sSJE3B2doaVlRXc3NwAZN4rQS5kglzIA7mQB09PT6xbtw6+vr5iW3ovWdWBoUWKFAHnHKVKlULDhg0xadIk9OvXDzVr1hTPUfPnzxfH0SzHGUMu5IFcyAO5kIuzZ8+iXLlysLGxwebNmxEXFwfgv1VS3r59i549e8LExASDBg3K8Hx+fn7o2rUrRo4cqeusGyXkQx7IhTyQC3lQt8mioqLQo0ePNINCNdm6dSs457C3t8f+/fsRGxuLT58+4eTJk6hfvz4456hZsyZevnwJgOrvzEIu5IFcyAX5IHITFMBOEEbC06dPUaBAAXDOceTIEa19FLwuB5pB7Obm5uCco127djSKWY8EBQWhTp06UCgUcHV1xblz5zJ13L1799C+fXuYmJigSJEi+N///qfjnBo/5EIeyIXcUMC0POSki+TpyKE2aXV4JA+KViqViI2NRWRkJKKjo/Hy5UvcvXsXZ86cQa9evVC1alXx4vbnn3/WmoGayBzkQh40g6V9fHwyNQNrYGCgWKVL/VOoUCHxe+PGjXH8+HFdZ90o0fQREBCQ5qy6yblx44YINlmyZIkus5gnmDBhAlavXp2i/ENDQ7FgwQI4OzuDc458+fKJwZrqGfA1A4Pevn2Ljh07gnOOL7/8Us9XYRyQC3kgF/JALuQkvbZX8sDQOnXq4NSpU1oz5Pv7+2Px4sXieWrZsmX6yLZRQi7kgVzIA7kwLO/fv8egQYPAOUft2rVx7949sU/dPzJr1iwxmZjmwIPk+Pn5aQ0eP3PmjM7zb2yQD3kgF/JALuQiPj5erLxVqFChdINCAWD9+vViBuPkM+jfvXsX9erVA+ccPXr0wLt37/RxCUYDuZAHciEX5IPILVAAO0EYEQ8fPsSoUaO0tlHwulxoBrGrR7g9evTIwLnKOxw9elQ0xBcsWCC2p9cx/Pr1a0ydOlW8UOzfv3+KNGqvISEhWkutUUBi2ujKBZF1dOkiqzOT5lXUs2MAqS/vBeRcwHRUVFQO5tz40KeL+/fv45dffkn1M4ikmYovXbqEwYMHY+TIkejXrx+6deuG3r17o1u3bmjevDlatmyJ5s2bo3r16nBxcUGZMmVgbm4OKysrrYDdUaNGwdPTM8Vn0H2ROfThAqA6I7PcunULbdq0wbZt2wCkX17x8fFYsWIFOOfo1q0bLCwshIvevXtj//79Im1qM+iTi4y5ffs2WrdujT/++ANA5sqsU6dO4JyjefPmiIyMTDetZr1EPv5DcxCMerYx4L/ZKt3d3VG2bFlwzuHo6IhffvkF06dPR+/evbVWJdAM9tmyZQtMTExQrVo1hIeH6+9icjnkQh7IhTyQi9xJ8sDQBg0apDkjclRUFKZOnQrOOSpUqID79++ne26qw7MGuZAHciEP5EJ/PH/+HHXr1gXnHC1btsTdu3e16vO5c+eCcw5LS0s8fPgw1XP4+flhwIABol6fNm0aXr16pa9LMCrIhzyQC3kgF3IxdOhQEcypOaAgNc6ePSvKfN++fSn2nzp1CuXKlUOBAgXg7u5OdXQWIRfyQC7kgnwQuQEKYCcII0PzJYmPjw/69+8vgtdLlSpFwesSoA6Iu3//Ps6fP4/4+Phsn1OlUtHyLOmgLptx48aBc46qVauKQPP0yu3Dhw9YvXo18ufPD845mjZtKma7TL6U54ULF+Do6Igff/wRp0+fFtvpoU0bXbtIfg4q/7TRhQt1HZQ8KPTTp09a5yAv2qjL48qVK9izZ0+KGfquXr2Kvn37ihn52rVrh/v372e5HO/fv4/WrVtj69atePr0aYrPJ3TvQp3Ow8MDrVq1AuccQ4cOTbGfAP73v/+JWSk/56dIkSJwcXHB1q1b050FgO6LjNGVi+R1zfv37xEfH58iKItcaKMORGjUqFGmZmEPCAiAmZkZ5s2bh2fPnuHKlSu4efOm1out5O2Rjx8/QqlU4sOHD1rbyYU28fHxGD9+PDjnaNOmjVagYVpER0ejTp064Jyjfv36Wh7UJL833rx5g8jIyBTnJx+pk5iYiNq1a4sB/EFBQWLf27dvsXnzZvH99OOPPyI0NBRKpRI///wzOOdo2LBhjrTRCXIhE+RCHsiFnCQPDG3YsCECAgLSPebgwYMwMTGBubm5Vj9gctT1enR0NN6/f5+T2TZKyIU8kAt5IBf6x8/PD8WLFwfnSTMcL1iwABcuXMDatWtFPd28eXO8efMGgHbbzM/PD/379xfpZsyYkam2O5E25EMeyIU8kAvDo9l/t3XrVty8eVNrf3R0dIpYgsjISPTp0wcKhQJ9+/bFixcvtPa/f/9ezIo/d+5cavtlEnIhD+RCLsgHkZugAHaCMFJ8fX3x5Zdfik6tEiVK4N9//zV0toj/J7vBBpkJVqeAhpT8+OOP4Jyjbt26ANIvo3fv3mHjxo0iSLdatWo4duxYmsfMmzcPCoUCJiYmcHJywsqVK8U+cpGSnHKR3oyUSqWSAtozga7ui7///hvdunVDs2bNULduXSxYsEBrCUJyoY16RHP58uWxd+9eREdHA0gKpM6J4PU3b97g+++/F52S33zzTZoz7+Z1dOUiefC6paWl8DF69OgU6fI6gYGBMDMzA+ccZmZmaNSoETp37oz+/ftj0KBB6Nu3LwYPHozJkydjzJgxGD9+PJYtW4bVq1dj9+7d8PX1zbDjne6LzKELF5pl++bNG+zduxe1atVCtWrVUK5cOUyZMgVHjx5NNX1e5/jx43ByckLRokWxa9curQHMmqifgTw8PFCoUCF079491XSaHYznz5/H0qVLUatWLdSpUwfVq1fHvHnzcPLkSZGGXPyHUqnEjh07UKJECRQvXhx79+7N0Mfr169Rq1YtcM7RqlWrFCtAaHYY79u3D2PHjkWpUqVQrlw5lClTBhMnTsShQ4dEGvKRksDAQNjY2MDKygqzZ88GAMTExGilOXz4sPjuHzJkCB49eoQ2bdqAc44RI0ZAqVRS2eYA5EIeyIU8kAv5yGpgqLrsr169Ktp0mzdvTvczIiMjMWXKFNSrVy/DoNO8DLmQB3IhD+TCcPj4+KBq1aqiTtbsxytevDgWLVqU4piMgkJpEqrPh3zIA7mQB3JheJIHfqqJjo7G6dOncffu3RTptm3bBhMTE1haWooVHTXL/d69e+jVqxdOnTqlw5wbH+RCHsiFXJAPIrdAAewEYaS8fPkSpUuXBucc1tbWNPrJiNB8SeXj44Pff/8d06ZNw4gRI7Bnzx6tgQr0QkubCRMmgHMOFxeXFLPqaj50PX/+HCtXrhRBupUqVcLGjRtTzCKdnCNHjqB3795QKBTgnGPq1KliH7nQRhcunjx5gm3btqFXr15o37496tevj/bt22PLli24ceOGSEcutMkpF+oBBUqlUmuWB80fBwcHzJkzR5yTXPyHl5cXzM3NwTlHzZo1sX//fvz999/45ptvsh28DiQ1RA8cOIAOHTqAcw6FQgF7e3v6nkoFXbhIHrxuamoKCwsLNGjQQNQZFMSeEi8vL/GStkWLFvD09Pys86RVnnRfZB5duXj58iUmT56cap1hZ2eHmTNnpnlsXuXdu3cYOHCgGHyW2pKPmmW1Zs0aMSgnNjZWa59mPb98+XJUqVIlVRe2trbkIg3CwsLQq1cvcJ40o/r9+/dTpNHs/J09e7Yo1+XLl6eZbuLEiShQoECqPvLnz0/fU+ng5+cnymry5Mlppjt+/LhIp15lwsLCQnTaE9mHXMgDuZAHciEXL168wIoVK7I0qzGQ1I6YOXMmzMzMYGdnh8uXL6eZNjExEXPmzIG9vT0456hevXqKQQsEuZAJciEP5MLwPHv2DGPGjBGDkDlPWo10/vz5KdphGQWFaqZPHkhEbbrMQT7kgVzIA7mQkz/++AOcJ02Yo0azH1Y9qU7hwoXh7e0N4L93rEBSn7ma5PE9aQWjEqlDLuSBXMgF+SBkgwLYCcKI8fDwEJ1bNWvWhLu7e4rgRCL3oVQq8ebNG/Tv319rZLX6p3z58pg/f75IT43K/8rgf//7H4oUKYKSJUtqddxqltHVq1cxevRoWFlZgXOOKlWqYNWqVXj37l2a59d8mPPx8cGcOXNEQOL48eNT/Zy8ii5ceHl5Yc2aNbCxsREzDKiDTDXvi6VLl6b6OXkVXd0Xmi/a7ezs4OTkhA4dOsDZ2VncFz/99FOqn5PX8fb2FvV2xYoV0ahRI62A6Xv37mWrvFQqFT59+oSxY8fC1tZW+Bg2bFgOXoVxkJMu0gpe7927N4KDg7F3714KYk8HzcDp1q1bi44SQLuM0vo9I+i+yDw56UK9fdOmTaLOKFOmDGrWrInevXvD1dWV6ox0eP78OerVqwfOOVq2bImHDx+KTkLNzsGTJ0/C1dUVnHP06dNH6xyaZblo0SJYWlqKMm/WrBl69uyJYcOGoVGjRmL7hAkT9HOBuYynT5+ievXqwsfdu3dTDfpYtWqV+HuvVq1ams9d48aN03qO7dSpE0aPHo1Jkyahbdu2wsfEiRP1cn25jcjISLRr1w6mpqb46quv8Pr1a7FPpVJptd12794tytPS0hKbNm0CQDOO5RTkQh7IhTyQC3lQKpVioF9WAkMB4Pbt22LgX+3atTPsb79+/To45yhYsCBOnz6dE9k3KsiFPJALeSAX8hAXF4fIyEhcuXIFV69exZs3b1KkySgoVJMHDx5gwoQJ2LZtG7y8vMR2qt8zB/mQB3IhD+RCPn777TdwnjQT/tmzZ8V29cqNwcHBqFu3ruj7jouLS7V8NYNCly5diqdPnwKg4NCsQC7kgVzIBfkgZIMC2AnCyHny5IkINKlRowYFsedy3rx5g127dqFOnTrgnIsXWZUqVULNmjXh4OAgAuw0A6eJJEJDQ9G8eXNwnjR76NWrVxEZGQkA+PjxI9auXYtatWrBwsJCDPzYunUr3r9/n+G5NYNOPn78iA0bNgg/K1as0NUl5VpyysX+/fvRvXt30elSsmRJNGjQAGvXrsXGjRsxefJkNGnSRLgYN26cOJaC4JLIyfvi3bt3YqaHypUrY/78+QgJCQEAPHz4EIsWLRIuZs2apc/LzDU8efIEhQsXFjPsqQNFPTw8st1BqPk3v2DBAhQoUEDUGfPmzctu1o2OnHCRVvB6r169xL0RFxeHbdu2URB7Omg+z7Zu3Ro+Pj45dm66L7JGTrp4/fo1SpQoAc6TZq7+/fff8eHDBwBJg0iWLVsm7ou5c+fm1CUYDX5+flrlt3XrVrx69Urs37lzJxo3bixWlNCcQV2T/fv3o1SpUlrPSvHx8eLeeP78Odzc3MT+X375RS/Xl9vw9fVF8eLFwTlHrVq1MH36dNy4cQO+vr44c+YMxowZI55XLS0ttVak0WTdunUiXalSpbB48WKt/a9fv8b69euFj3Xr1unh6nIfv/zyiyjHtWvXpli9KTIyEh4eHmL2fHNzc8ycOVMrkJRezOYM5EIeyIU8kAt58PHxEf2qmQ0M9fHxEf0epUqVEiv+qZ2o/00+A9nVq1fxzz//5GDujQtyIQ/kQh7IRe4gK0GhHz9+xPr160Xaxo0bY8eOHWI/BfpkH/IhD+RCHsiF/vHy8kKrVq3E+563b9+KfUqlEgkJCRg2bJgYbKYOGNVEs82nXtHRwcEBz58/18s1GAvkQh7IhVyQD0I2KICdIPIAFMRuHDx79gxTp04VSwcXKFAAbdq0wY4dO0Qg6cOHD7F69WoKMEkHzWCf0qVLo0aNGmjatClq1KghGuTqoKzz58+LQN60UAf3JA8yfP/+PSZNmgSFQoGaNWvCw8NDZ9eUW8muiy1btqBatWri771du3bYs2dPilnBfXx8sGLFCpEurYChvMznukj+d//hwwdUqlQJnHOMGjVKBCKqiYiIwMqVK6FQKFC0aFEcP35cb9eYm/Dy8oKdnR04T5rFftGiRfj48SOA7AU0qxuSPj4+cHFxEV5dXV3x+PHjHMm7sZETLu7evYsWLVrAzMwMlpaW6NOnjziH2olSqdQKYteccZpIQldB7HRfZJ3sutAMjC5WrBjMzc2xfPlyREVFaaWLiIjA0qVLoVAoUKpUKa1ZIIgkvL29UaFCBXDOkT9/fjg4OKB58+Zo1KgROOcwNTUF5xydO3cWx2g+u6pUKgwePFh890yePFmk03whFRMTg3nz5kGhUKBFixapzuREJH2PaK6QZWJiAltbW9ja2opthQoVws8//yyOUX8HqVQqvH//Hh07dhQ+Vq5cKdJpBphERUVh2rRpUCgU6NixIz5+/EgDnv4fzXKYOHGiKPfhw4dj//798PT0xM2bNzF58mQ0bNhQDFKbMmVKmkFBt27dwv79+3Hw4EEcOnQIHz58QFxcHAAKIE0PciEP5EIeyIWcBAUFISgoKFNpfXx8ULt2bfFSdtOmTVqrrqjLPCoqChMmTMCSJUtSPQ/V26lDLuSBXMgDuZAPzfLJSlCoJitWrEDHjh3FcZoTKFD9nTXIhzyQC3kgF3Kwfft2mJmZgXOONWvWIDo6Wmu/5kqN9+7d09qn2S87ffp0sQJ5sWLFcObMGbGP6uzMQS7kgVzIBfkgZIIC2Akij0BB7LmbwMBADBs2TMzqZ2dnh6VLl6YIilapVIiOjsasWbNgamqKtm3bIiwszEC5lhc/Pz80adJEzKyr+VOjRg2MHTtWq3M3NdSjDNUvBoGUD2Dnzp1Dvnz5wDnHnj17cv5CjIDPdbFt2zaULVtWBPh06NABd+/e1Uqj6SY2NlbMHmptbY39+/fr/NpyGzlxX4SGhopA+CdPngBI2Znl4eGB0qVLi84yInU8PT2Fixo1auCPP/5IMTNfVlB78PT01Aquc3V1hbe3NwCaPSMtsuti/fr1KFasGBQKBczMzDBt2jSxTzMgUR3Erp4tefDgwTl6HcZA8sBpX1/fbJ2P7ovPJysu0nqp8ezZMxQqVAgWFhZiRYLkae/duyc+J/lM1EQSQUFB6N27txjkmvyne/fuYkBZ8r9nX19fWFpagnOOLl26iO2p/d1fuHBBBMRfv35dtxeVi3n27BmGDx+eYhAg5xxt2rTRCkpPXs537twRab/99luxPbV76OTJk+A8aUWuhw8f6u6CciGa5bpkyRKUKlVKlGvRokXFqirqwNCpU6fC399f6xxhYWE4e/Ys2rRpIwayqdsdDRs2xOTJk8WKB1RPpA25kAdyIQ/kIveiGRharFgxrFq1Siv4RzMwdN68eaLfY/78+SnORV6yB7mQB3IhD+RC//j7+6cbFJpaOWrOXPnkyRMxU2VyFxTok3XIhzyQC3kgF4Yh+Yqv6vJbtmyZeOcQFBSEIUOGpBoYmjwotGjRolAoFHB2dsasWbMQEBCA9+/fi0BTqrfThlzIA7mQC/JByAgFsBNEHiK1IPaMZpcmDM+LFy8watQo2Nvbixdahw8f1gqeS95QPHbsmHiYuHXrlr6znCsICQnBsWPHMHbsWHz77bcYOXIk3N3dtQKwMhpF/vr1a5QsWRLu7u5a2zWPa9q0KTjnGDhwIFQqFY1MT4XMuNB8sD1w4ACqV68OhUIBExMTcM5RpkwZlCpVCl9//XWaM6y/ffsWw4YNg4mJCfr27UuDO1IhMy40A25DQkJw4cIF/P777zh58iTu37+PcePGgXOOq1evpvk5HTp0AOccTk5OiIiIoPsiDTTr7WrVqmHPnj0pRj9nhvSCdNMaaEBok10Xf//9N8aNGycGNQ0YMEDs0+wUViqV2LRpEzjnWLt2bY5eg7Gg6aJFixafPRM73RfZJzMuNOvvBw8e4MCBA1i0aBHc3d1x/vx5DBkyBBYWFnj06JHWcZrPtupnqZo1ayI2NpY6u1Lh3bt3uHz5MoYOHYoWLVqgTJkyGDRoEFatWiXSpPZi6dGjR8ifPz/Mzc0xc+ZMAEixFKTmUvOurq7gnOPEiRM6vJrcT2RkJEJCQrB+/XosXLgQixYtwpEjR/D69WuRJq1BAiYmJihQoAC2b98OQPu5S/O4N2/eoGzZsrC0tMTNmzd1eDW5E83yvXXrFnbv3o2ffvoJY8aMgbW1NTjnMDc3x5QpU1IEhj59+hRTpkwRqxuoZ6FxcHAQAz7U30lPnz5N8XmENuRCHsiFPJCL3EdqgaHqAZjAf2UcFRWFOXPmwMnJCZxz2Nvb43//+5/WuTSftQIDAwFQuyMrkAt5IBfyQC70T0BAAL788ss0g0I18fT0xIMHDxAXF4fY2FitfVFRUVi2bJk4j7odSGQN8iEP5EIeyIVh0aw7J02aJMqvdu3a6N69O9q3by+29e7dW6RNHhRarFgxkY5zLt4vlS1bFgMGDEBwcHCK4whtyIU8kAu5IB+EbFAAO0HkMTQDTWrXro1du3YhKirK0Nki0uDdu3eYO3cuSpYsKYLXz549m2Z6dWCKn58fbGxswDnH8ePH9ZVdoyIzHbOaI88PHDgAQDs46N69e2LW/BEjRugsr8aOpot79+6hS5cuYnYxzjlsbGxQvnx5FClSRGsW0RcvXgDQ7ng/evQoOOfo1auX3q/DGNAMovrtt9+0Gi+ccxQvXhylS5eGlZUVVq1alWLG9sTERLx69QrVqlWDQqGAi4sLvQTJgCdPnsDW1lb83aa1dHxaUJBuzvE5LjTrhHfv3mHXrl0oUKAAOOf48ccfxT5NB0qlMtszixs73t7e4jln8uTJWX6Wpfsi50jPhWYZLl26FNWqVdOqM2xsbFC4cGFYWlpi06ZNWiunqHn8+LHoAGvVqpVerskYSD5IOa3OwRs3bggfGzZsSPecly9fFs9fx44dy7G85kXSmqXq7NmzwkdGqzcdOXJEpL106ZIuspnrSf49/u7dO/Tt21cEhk6ePDlFYKh6Bn11G65IkSKYNGkSjh07Bk9PT9y6dQvTpk1D9erVRUf8s2fPUv084j/IhTyQC3kgF7mHzw0MdXBwwLlz59I874QJE8A5x/nz53V+DcYCuZAHciEP5MIwvHz5UrTHZs+enSIoNCoqCidPnkT37t3FSmZ16tTBjz/+iKCgIK20L168wA8//ACFQoGuXbvSytmfAfmQB3IhD+TC8Gj2xy5atAiOjo5a77Y55+jYsSMuX74MQPv964wZM0Q8j/qd98iRI7FlyxZ8++23qFSpEjjnKF++vBi4TG2+tCEX8kAu5IJ8EDJBAewEkQd58uSJCARp3bo13r9/b+gsEclQPywcP34cFStWFC+m/vrrr0wdt2vXLpibm8PS0hLXrl3TeX5zK5rBI5oPTJld+uzt27cYNWqUeDBbvXo1/Pz8ACQFdM2bNw/58+cH5xzTp0/P2cwbGWm5SL5/8eLFYtZ1R0dH9OzZE48fP0ZoaCj8/f1x+PBhEUjXtWtXcbzmA/i2bdtS/VwiiYxcAMCOHTtQoUIF4aJixYpwdXVF2bJlUahQIXDOUaFCBZw/fz5FQOLhw4dFAO8XX3yh02sxFp48eYLmzZtj9erVWTqOgnRzns91oUapVGL79u2wsrIC5xxubm7ppic/afPkyRP06tUL+/fvz9JxdF/kPBm5WLZsGSwtLUWdUbduXTRv3hy1atUSHVyVKlXCP//8ozXwKTw8HGvXrhXPUn379tXXJeVKNOvvzM5mER4ejgYNGkChUGDcuHEAUv/7VyqVWLlyJfLly4eiRYvi4cOHOZPpPEJmnzdfvHiBatWqwczMDHPnzgXwn0vNc4SGhmL06NEwNzeHi4sLXr16lfOZNkI2btwoAkOnTZuWIjD006dPmDdvHkqUKCGCeq5fv57iWTYqKgo3b95Eo0aNxOCat2/fpvvZ4eHhOX49uRlyIQ/kQh7IhZz4+vp+dmDoP//8o3WunTt34tdffwWQNCGG+qVw48aNM3REkAuZIBfyQC4Mi4eHBxYuXKi10hYAxMbGYuvWrahbty4456IvRP1TokSJFO/sdu3aJfYnX6GOyBzkQx7IhTyQC8Oj2Ud7/vx5rFy5EnXq1EHr1q0xceJE+Pr6pujHnTFjBuzs7MA5R+HChbFu3TqoVCrRNxgVFYVbt26hYcOG4JyjYcOGePPmjV6vKzdCLuSBXMgF+SBkgQLYCSKP4unpiSpVqtBy4xKirthjY2PFCydbW1vs3bs3U8cBELM25c+fXyz1SGQOzXLMzIPU27dv8f3334uGe9WqVdG+fXu4urqKpZ9r165ND2U5wM2bN8Xy2BUqVMDixYsRFhaWIt2///6LggULgnOOSZMmie3JA7I0Z2YnMs+DBw/QokUL8SJj0KBB8PHxgUqlwuvXr3Hx4kURFFqlShWsWbMGjx49wu3bt7FhwwbRoHF0dIS7uzsAChbNDB8+fBC/ZyYQjoJ0dYemC83R5ql9H6VGcHAwOnfuDM45vvrqqxTLchKZJ/ks0xlB94XuSMvF6dOnUb58eVFnTJgwQQSph4eH4+bNm8JFpUqVsGTJEty4cQOnT5/GtGnTxKC0SpUq4caNGwDIUU4zZswYMVhW/QIqeRmfPn1a1N9t27Y1RDbzDEOHDhU+PDw8Uux/9+4dtmzZIgYMfvXVVwbIZe5l3LhxGDVqlFZgqLoD/tGjR+L7yMHBAd7e3gD+e+5Kfl9cvXoVVapUgYWFBdatW5fmd5Ofnx9GjhwpBiUQSZALeSAX8kAu5MLPzw9ly5bNkcBQHx8fsb9x48bgnEOhUKBZs2b4888/9XpduRFyIQ/kQh7IhRxoBvOo61oPDw9RjpxzrF+/Hn/++ScWLFiAevXqifbeiRMnxDGfPn2Co6MjOOf4+++/DXItxgD5kAdyIQ/kwvAkb4tpvlMCtN/3TZ8+HUWLFgXnSbMWJ58wRvNcx48fR7FixVC4cGEcOXIkxbmIlJALeSAXckE+CBmgAHaCyMOoA6YyO0MfoV8mT54sgtCnTZuWbmCcZkXv5uYmRkz/9NNPKfYTmePKlSv47bffAGRcfteuXUO1atXAORcB1uqfGjVq4ODBg0hISCAPn0liYiISExPx888/g3MOGxsbTJs2TQSRaparOij9p59+gqmpKVq1aqU1myuRfTZv3iz+vr///nutfWoXoaGh4uW6iYmJGFCgnkXX0dERY8aMSTHzA5ExmQncpCBd/aBZhgcPHsTOnTsBZK7OXbVqlfBy69YtneUxr0CDOuQhuYt58+aJsv7555+10qVWZ3DOYWFhofVvxYoVsXLlSnz8+FGv12IsqMv506dPWuWu/ntPSEjAF198IQIfLl26JJYV9vDwwLZt20TweqlSpUSHJN0vn4e6/NWroCX3ERsbi7Zt24JzDnt7e/z1119iic3Lly9j1qxZIni9YsWK+Pfff7WOJ1JHc+BqWu3q3r17g3MOOzs7EdSTXl9JZGQkZs2aJQZ0pubAz88PU6dOFYN49u3bl80ryf2QC3kgF/JALuQkMDAQnHOYmppi9erVnxUYqlKpRNpNmzaJ8ykUCrRo0QLHjx/XSkukDrmQB3IhD+RCXsaNGyf6N44dOya2K5VKBAYGokOHDmK2ymPHjiExMRFnz56FlZUVLC0tacWzHIZ8yAO5kAdyYVg022aaK2pNnz4dxYoVA+ccVlZW+OOPP1I9Rs3z58/h4OCQot+dyDzkQh7IhVyQD8IQUAA7QeRhqNNJXmJiYkQDsXLlypmeKf/s2bNo0qQJOOewtrZOMeKNyBxPnjxB8+bNYWVlhbt372aYPi4uDh07doSTkxN27tyJunXr4osvvsDAgQPh6elJs+vmEOq/7apVq4oZ7dP6HtMMmFMHJhLZQ6lUQqlUomXLluCco2zZsmLWN80X5+rfL126hKJFi6JEiRIYPXo0ChQoADs7O9SvXx/r1q1DcHCwQa7DmIiMjERQUBCioqIAaL94oiBd/XHlyhWULVsWhQsXFvdEWqiDU/bt2wdra2uYmpri3Llz+shmnoHuCzlITExETEwMKlWqBM45qlWrJpykVmf89ddfsLGxQfny5TFjxgwUK1YMFSpUQPv27XHy5Em8e/fOINdhLPj7+2PcuHEi2FmNuvwDAwNF0HT+/Pnh7OyMNm3aoESJErCyshL3TIcOHfDixQtDXIJR8fDhQ/Ts2TOFD/X3UEBAgPBhaWmJIkWKoE6dOsifP78Y2GFtbY3hw4cjPDzcEJeQK0mv/+Pdu3eoUaMGOOfo2bNnpsv17t27qFOnDjZs2IC4uDitz/Dz88PkyZNhbm4Ozjm6d++Ot2/fZvs6jAFyIQ/kQh7IhZz4+PjAzc0Nr169Ets+JzAUAKZOnSpmNeZcexUVzRfCROqQC3kgF/JALuRDpVKhZ8+eYhDAp0+foFQqtfqclEolunbtKoJDDx06hLFjx4LzpNXnqM885yAf8kAu5IFcyINmmU+fPh1FihQRfbDLli0T+9JrKzZt2hScc/zwww8ZpiXShlzIA7mQC/JB6BMKYCcIgpCQK1euiMp/6dKlaabTrODv3buHAQMGiOPUs68TWSc0NFQ8TP30009ipu/UUDtQz1p1584d6tTVAa9fv0bx4sVhamqK5cuXA0h9tjH1kkYLFy6EhYUFrKys4OPjo9e8Gjvt27cH5xwuLi4plpDS5PXr13BxcUHBggVx/vx5vHz5Ek+fPqWGSQ4REREBNzc3dO3aFTt37kRERITY5+HhQUG6euT+/fuoWbMmOOeYN28eIiMjMzxmzZo1qc5yQmQPui/kQ73sbNOmTQGkXdbPnj2Dk5MTHBwc8ODBA7x9+zbd5y8i8yQkJGDt2rUwMTFBly5d0hwMEBcXh4kTJ6JZs2aoXLmymOVbHdhmY2OTqYGdRPrExsZiypQp4Jyjf//+af6dK5VKzJ49G506dULTpk1hb2+v5aNGjRo0SDMHuX//vqgf1qxZk6lj1M+0Xl5e+PTpk9a+5IGhWQk4zeuQC3kgF/JALgxLaoMvsxoYOmPGDBEY6uzsLHzOmjUr1c8hUodcyAO5kAdyIR89evQQk/AkX1lFsxy7desGzjkKFCggynzbtm1a6VPrRycXWYN8yAO5kAdyYXiS18M2NjYwMTEB5xx16tQRK6uk997i0aNHKFmyJDjnmD17ts7zbKyQC3kgF3JBPgh9o2AEQRCEdMTHxzMLCwtmbW3N6tWrxxhjTKVSaaUBwDjnjDHGPD092datW9mePXsYY4z17NmTLV26lDHGWGJioh5zbhzY2Niwrl27MisrK3bq1Cl2586dNNOqvbx69YoxxtiLFy+Yubl5iv3E56NSqVhCQgKLi4tjiYmJrECBAowxxkxMTLTSAWBmZmYsPDyc7d69m8XHxzNHR0dWokQJQ2TbaClVqhRjjLEPHz6wDx8+pJomMTGROTg4sGLFirHo6Gj28eNHVqJECVamTBnGOaf7IgdQqVRs165d7OTJk2zt2rXs2LFjjDHG/Pz8WO/evdmTJ08YY4y5uLiwAwcOsMqVKzOVSsUUCnr8z2kqVKjA2rVrxzjnbP/+/ezevXvppn/27Bn7+++/Geec2draMkdHRz3l1Pih+0I+nJ2dGWOMhYaGsg8fPqRa1omJiczW1pZZW1uzsLAwFhYWxooUKcIKFSrEGKNnqeyiUCiYnZ0dy5cvH/Py8mL//vtvijRKpZKZm5uz5cuXs8uXL7MtW7YwV1dXlj9/fpaQkMAUCgU7ePAgq127NgNggKswHkxNTZmzszPLly8fu337Nrt//36KNAkJCczExITNmzeP/e9//2OrVq1i1tbWzMLCgiUkJDA7Ozu2ZcsWVrlyZfKRQ9ja2jJbW1uWL18+Zm9vzxhL8pAe6rZ4pUqVRPuEMcb8/f3Z1q1b2Zo1a1hCQgLr0aMH27p1K7Ozs9PdBRgR5EIeyIU8kAvDou57SkxMZCYmJiw6OpotX76c7dq1iz179owVK1aM7dmzh7Vp04YxltQ3pVKpxHEzZ85kixcvZpxz1rBhQ7Z06VK2fv16xhhjCxcuZDNmzBCfQ/V6+pALeSAX8kAu5KNFixbMwsKCffr0id28eVOr3DT7xQ8fPswqVqzIIiMjGWOMjRkzhg0YMIAxluRJ8/3fgQMH2MaNGxlj5CKrkA95IBfyQC4Mi7rOZiypHt6wYQP79OkTK1++PGOMscKFC4t2X2p96eqyvXfvnohNUL+3JbIGuZAHciEX5IMwCLqPkScIgiCyysGDB8Wo5gcPHqTYrzmS7d9//8XQoUPF6Od27drhzp07+syuUfL69Wsx03TTpk3h6ekp9qlHlCckJAAAfH19UaxYsSzNhkVknbZt24JzjuHDhyM2NlZrn9rJx48fMXPmTBQsWBCcc/Tu3RvR0dE063cOoC7DkydPokSJErCxscH+/ftTlK36/8+fP0eJEiXAOcfChQu19hE5g6enJ4oWLSpGOy9btgyVK1emGaYNQHBwsFi5o3nz5vD09ExRVwDAhw8fsH79evEd1bZtW0Nl2Wih+0IO1H//e/fuhb29PYoWLYoTJ06kSKd24OXlBTs7O3DOsWXLFq1zENnnzZs36NChAzjnaNasGTw8PETZJ58VydvbG3Xr1oW1tTU45zA1NcXBgwcBkJOcIiQkBG3atBF1xuPHj0Vdofm9FBUVhQsXLohZSjjnsLS0xNWrV1OkJbLH8+fPYWtrC8455s+f/9nnoVmNsw+5kAdyIQ/kQh6ioqIwadIklC9fPsuzGjdu3BiHDx8W6VavXi3q9yVLluj9WnI75EIeyIU8kAs5eP78ueiHat68OR48eICYmBitNJ6enpg0aZIo4/79+2u9f9Js6x0/fhyNGzcG5xwTJkzQ23UYC+RDHsiFPJALw5G8Hla38ypXrozNmzejSpUq6NOnT5rHq/tmb968KVbPbNmyZYpVt4iMIRfyQC7kgnwQhoIC2AmCICTk5cuXqFKlChQKBdavXy8CGpJ3Mh4/fhy9e/cWDchWrVrhn3/+oeW5coigoCBUrFhRNOIvXryY4uEqMDAQ1atXB+ccpUqVwu3btw2UW+NFpVIhMTER8+bNA+cctWrVwqNHj8QDcHx8PAAgPDwcK1asEB0v5ubm5EMHvH37Vmtwh5eXl+isUrsICQnB999/D845rK2tceTIEQPm2Lh58uQJihQpkmIpx+rVq8PLywsABbjpi4CAALE8c9OmTXH06FGtgJBHjx5h5cqVsLGxEUt0Xrp0CQA5ymnovpCH0NBQtGrVSgROe3p6iudUdZ3x4sULtG7dGpxz2Nvb48aNG4bMstESGBiIsmXLgnOORo0aYc+ePXj9+rXYf+3aNfz6668oXLiwuGdMTExw8uRJA+baeAkICECZMmXAOUeDBg2wdetWPHv2TOw/ceIEJkyYIOoMMzMzODo6ivuDvsNyDnWbYuTIkVAoFOjYsSOeP3+e5fNQYGj2IRfyQC7kgVzIxdu3b0UfoKOj42cFhqrTxsfHY82aNbCzs8PMmTP1eh3GALmQB3IhD+RCHry9vVG6dGlwzlGtWjWMGzcOR44cwcmTJzF27FjRT8I5x8CBA7UmpNL0dOzYMTRp0kTU36NHjwbwX3uQBplnDvIhD+RCHsiF/kkvKPTo0aNQKpWwt7dHxYoVERAQINImL8t79+6hfv364JyjaNGiWLZsmehnJzIHuZAHciEX5IMwJBTAThAEISERERH49ttvRRDcw4cPxehn9YPDwoULUaNGDdGA7NChAy5dukSVfw7j4+MjZj2sXLkyhgwZgvPnz+PEiRPYvn07ihcvLjp7O3TooBUIROQsz58/R7Vq1cA5R4sWLXD8+HG8e/cOERER8Pf3x4ABA1CuXDkxW+j27dsBUICPLvD39xedW82aNcOBAwfw9u1bJCYm4sWLF/juu+/g6OgoGia+vr6GzrJR8+TJEzFzsbm5ORwdHUWHoubs34Tu8fb2FgGJ9vb2cHFxwcCBA9G3b184OTkhf/784JyjXLly+OWXX/DhwwdDZ9looftCHvz8/FCqVCnxXLt7926EhITg/fv38PLyQqtWrcRAgzp16iA4ONjQWTZafHx8UKFCBXDOUbBgQZQoUQLNmzdHq1atYGFhASsrK3DOYWdnh1q1aolgaXrZpBt8fHxQqVIlMbO6ra0tqlevjlq1aoFzDgsLCzFItkePHmJlLnq21Q379++HpaUlOOf45ZdftFZ8yugeoMDQnIVcyAO5kAdyIQ8eHh6oVKkSTp06JbapJ15Qk15gqGa6+Ph43L17Vz8ZN0LIhTyQC3kgF/IQEBCAbt26wd7eXryvUK90pv4ZMGBAukGhzZo1g4mJCfLly4d27dohMDAQwcHBeP/+farHEGlDPuSBXMgDuTAMs2fP1goK1ZwArHfv3lAoFFi1ahWio6NTHHvt2jXUqlULZmZm4JyjW7du1LbLBuRCHsiFXJAPwhBQADtBEISkaM6SWLduXYwYMQK///47RowYgS+++EKrAdmvXz94eHhQMIOO8PPzQ4MGDWBqaio6dznnyJcvnwg4cXFxwf379w2dVaNHc0CBnZ0dypUrh+rVq4sliNR+3NzcEBUVZejsGjXe3t4iINHW1hbOzs5o3rw5ihYtKlyYmpqKmVsp+E23eHl5iWDdKlWq4OTJkxQcbSD8/f3Rtm1b0fGrrjPU/1arVg1ubm54+/atobNq9NB9IQ+as/rkz58fJUqUQOXKlbVeilhZWdHs63ogMDAQffv2RZUqVbTaE+qfBg0aYNmyZWLwGbUvdEtQUBC+//57rYHJ6p+CBQuiTZs2OHjwoBjYQc9TumXWrFmi/JcvX47AwECxL62yTx4Y2qNHD4SFhaV7DJEx5EIeyIU8kAt50OxvUqlUWmU5d+7cdGc1TgsaZPt5kAt5IBfyQC7k4f3793j48CE2b96MnTt3ipVjOef49ttv0w0Kbd68uXgfpR7grO5bbN68OTZt2pTqsUTakA95IBfyQC70y8KFC0VZJQ8KBYDt27eL8pw5cyZOnjyJT58+4eTJk1ixYoUICOWco3Xr1ggJCQFA/befA7mQB3IhF+SDMBQUwE4QBCExPj4+Wo1FzQrf1NQU5cqVoyUc9cTLly8xc+ZMNGjQQCuwpHTp0ujbty8ePXoEgF4A6gN/f3906NBBBLKrf2xsbODo6Ijjx4+TBz3h7++Pdu3awcHBAZxzmJiYgPOk2Y4LFiyI//3vf4bOYp7Cy8sLhQsXBuccNWvWxN69e/Hp0ydDZytPEhoaCnd3d/Ts2RNly5aFpaUlGjVqhIEDByIgICDVUemEbqD7Qh78/f3RqVMnMfhJ/ULD1tYWVatWFcHr1JGlez5+/Ah/f3+sXLkS06ZNw9ixY7F27VocPnwYSqVSPEfR85R+iIyMREhICLZt24aVK1di5cqVcHd3x61btwydtTyD5vfOpEmTRPuia9euWLx4cZrH+fn5YeLEiaKd3rdv3wwHSiUPIiK0IRfyQC7kgVzIR1pltGXLFhQqVChTgaGZfeYlH+lDLuSBXMgDuZCTadOmiTr8m2++ydSMxpxztG/fHvPnz8fZs2exbNkyfPXVV+I8c+fOFceRi6xBPuSBXMgDudA93t7esLOzg729PY4ePSq2a5bvlClTtN59Ozk5afWlOzo6ok+fPiIolAYHfB7kQh7IhVyQD8JQcABgBEEQhLQ8f/6cbd++nV28eJH5+/uzfPnyMWtra/bjjz+y6tWrsxYtWjDGGFOpVEyhUGT5/AAY51z8X6VSMc651rbkafIqCQkJLCEhgZ08eZLFxcWxiIgI1qZNG1asWDFmY2ND5aRHwsPDmZeXFzt16hSLi4tjcXFxrH379qxatWqsbNmyhs5enuLNmzfsypUr7MiRIywkJISpVCrWvHlz1rNnT1a9enW6L/SMt7c3a968OQsLC2NlypRhGzduZO3atfus+oHIGT59+sQiIyOZvb09MzU1NXR28iR0X8hDeHg4u3v3Ljt06BB7//49UyqVrEuXLqxZs2asQoUKn/08S+Qs5EEuEhMTmYmJiaGzYfRolvMvv/zCNm/ezPz8/JitrS07ePAga9asmVY97u/vz7Zs2cLWrFnDlEolq1ixIlu5ciWrWLEi45wzhULBChUqxMzNzZlSqWTW1tbM3NycxcTEsHz58pHXdCAX8kAu5IFcyE9kZCTr168fO3XqFCtXrhxbtGgR69WrF2Ms9b5X9bNWUFAQe/78OTt37hz79OkTy5cvH2vRogVzdnZmFStWZIzRs0BWIRfyQC7kgVwYltDQUFa8eHHGGGPfffcdGz16NKtTpw5jTLv8jh8/zlauXMmuX7/OVCoVGz16NPv111+1zvX27Vu2a9cuNnnyZMYYY7/++isbPXq0Hq8m90M+5IFcyAO50B8BAQHM29ubde7cmTH2Xz2sWc4LFy5k7u7uzMfHR+vYTp06sS+//JL16tWL2djYUB2cTciFPJALuSAfhCGgAHaCIIhcgEqlYiqVij1//pzZ2NgwhULBbGxstPZnNcgk+TG7du1iQUFB7ObNm0yhULC2bdsyFxcX1r59e8YYBbETuQf6WzUcSqWSmZiYiPInF4bB29ububi4sCJFirAzZ86wWrVqGTpLeZK0/v4pMNQw0H0hP1RnGA76XpILuhcMh2aH+q1bt9ijR4+YlZUV69KlCytUqJBI5+/vz7Zu3crWrFnDEhISWJEiRdi7d++Yubk5UygUTKlUMpVKxezs7JipqSmLjo5mhQsXZoUKFWLx8fHs+PHjzMnJie69dCAX8kAu5IFcyM3Dhw9FG2PWrFls3rx5jLH0n7O2bdvGduzYwe7evcvi4+PFds45q1GjBhsyZAgbMWIEY4wCRLMCuZAHciEP5MLweHp6Mjc3N/bdd9+xhg0bMsbSDwqdNGkSW7ZsmUinHoDGGGMfP35k48aNY7t372YtW7Zk+/btY0WLFjXMheVSyIc8kAt5IBf6J3k9rFne3t7ezN/fnz19+pQVLlyYFS1alLVt21b0G1J7LWchF/JALuSCfBD6ggLYCYIgcgE5HcSgfrD4+PEjO3z4MDt06BA7deoUUygUTKVSMcaSOiJtbW3Z8OHD2cKFC3WSj9wOlYdh0Sx/9eMM+TAMye8FujcMz9OnT1lISAirW7cuzfpNEP8P3RdyQHUGQRAyk1HHevLA0P79+7PatWuzyZMnM6VSyYoXL84iIiJYbGwss7KyEqtFMcaYiYkJS0xMZJaWlszLy4s5OTnp6apyJ+RCHsiFPJALeQkNDWXNmjVjr169YuvWrWODBg1KEdCp6W/atGki4KdYsWKsYcOGrHz58iwkJITduHGDBQYGMsYYmz17Nps7d26K44m0IRfyQC7kgVzIQVxcHLOwsGCMZS0oNLXBAfPmzWPz5s1jhQoVYnfu3GHlypXT34UYCeRDHsiFPJALw5NRffq59W1qffA0AC19yIU8kAu5IB+ELqC39gRBELmA9IJ60lviMTXUlXxISAibMGECu379Onv27BljjLGiRYuymjVrMgsLCxYSEsL+/fdftnjxYhYXF8dWrFhBwUXJoPIwLJrlTy4MS/LyJx+Gx8nJiQIOCCIZdF/IAdUZBEHITPK2tGZ7OyAgQCswtFu3bmzDhg3swIEDTKlUsrJly7KrV6+yuLg4FhkZySwtLVl0dDQLDw9npqamDAB7//49CwwMZIGBgVQnZQC5kAdyIQ/kQl6srKyYq6sr8/f3Zzt27GBt2rRhpUuXFvs1+2snT57MVq5cyRhjLF++fGzy5Mls/PjxIu39+/fZn3/+yZYvX87mz5/PChQowCZMmECBoZmEXMgDuZAHciEHORUUyhhjZmZmjLGkYNOoqCg95N74IB/yQC7kgVwYnvTafKntzwya5zh//jwLCAhgQ4YMYSYmJjQALR3IhTyQC7kgH4ROAEEQBJFrUalU4veAgADxu1KpTDW9evuLFy9Qu3ZtcM7Fz8KFC3HhwgWR9unTp1i3bh0UCgU459i4caNuLiIPkZiYaOgsEP9PWvcIoX/IhVwkJCQYOgvE/0Mu5IFcyAO5kAd6rpULep7SPd7e3pg8eTLy5csHzjl69uyJsLAwAMC2bdvAOUeJEiXw4cMHJCYmarXVNX9PbxuROciFPJALeSAXchAQEIAyZcqAc462bdvi2bNnKdIsW7ZM9MUWLVoUnHMUK1YMQUFBWuk+fvyI5cuXg3MOR0dH3Lx5U09XYRyQC3kgF/JALuTjwIEDaNWqFUxMTMA5x+TJk8W+9Np4Dx48QK1atcA5R4cOHRAdHa2P7Bo95EMeyIU8kAvj4tq1a+jTpw845/j2228NnZ08DbmQB3IhF+Qj70JDFAiCIHIx6lFoly5dYm3btmWTJk1ijLFURzurR0G/ePGCtWjRgt2/f59xzlmxYsXYmTNn2IwZM1jLli1F+jJlyrDvvvuODR8+nHHO2aVLl/RyTcaMQqFgKpWKnThxgoWGhho6O3ka9dLYO3fuZK9evTJ0dvI05EIuTE1NmVKpZKtWrWLBwcGGzk6ehlzIA7mQB3IhD/RcKxf0PKV7vL292YoVK1hsbCz7+uuv2datW1nhwoW10piZmTGVSsUYy3i1KFp94vMhF/JALuSBXMiBs7Mz++uvv5idnR07d+4cmzx5MouIiBD7L126xH799VfGGGNNmzZls2fPZi1atGBv3rxhDRs2ZH5+foyxpJmQCxYsyL7++mvWoEEDFhwczB4/fmyQa8qtkAt5IBfyQC7kIjIykv3222/s4sWLWZrRODg4mO3fv5/5+/szxhirV68ey5cvn97ybayQD3kgF/JALoyL27dvswULFrCTJ08yxhi7desWe/jwoYFzlTchF/JALuSCfORxDB1BTxAEQWSPs2fPokmTJjA3NwfnHEuWLEmRRj1D4osXL1ChQgVwzpEvXz7Uq1cPt2/fBpD27Epubm7gnMPc3BxPnz7V3YXkEVavXg0zMzN8+eWXePHihaGzk6eZMGECOOfo0aMHuTAw5EIu1CObv/rqK/JhYMiFPJALeSAX8kDPtXJBz1O655tvvkGrVq0QHh4O4L9VIdRt5sqVKyMuLs6QWcwzkAt5IBfyQC7k4cmTJ3BxccG0adO0tq9fvx6WlpbgnGPVqlUAAH9/f7Ro0ULMcuzr6wvgv37aoUOHiln1ExMTadWVLEIu5IFcyAO5kAcvLy8UKFAAo0ePFtvSK8Pg4GAsWbIEdnZ24JyjXbt2Yh+tnpJ9yIc8kAt5IBfGQ2hoKEqUKAHOOVq0aIFjx44hJibG0NnKk5ALeSAXckE+8jYUwE4QBJGLiY6ORqtWrcSyjpUqVcK9e/e00qgbhCEhIWjUqBE457C0tETTpk1x//59rTSaqF90nThxAvnz54etrS0FsOcA9+7dE76+/vprCi4xILdu3RLL3lEQnGEhF3Jx9epVMSiKfBgWciEP5EIeyIU80HOtXNDzlO7QfDkbFRUlfle3ozds2ADOOcqXL4+IiAi95y8vQS7kgVzIA7mQk3fv3onfExMTERcXh2bNmoFzjpYtW2ql9fb2RsuWLVMEiALApEmTwDnH999/r7e8GxvkQh7IhTyQC3kIDQ0Vv2clKLRJkyZ4+/ZthscRWYN8yAO5kAdykftRT3To6+uLzp07Y//+/YiNjTVwrvIm5EIeyIVckA9CYegZ4AmCIIjPJ1++fGzDhg2MMcbs7e3ZoUOHWK1atbTScM5ZREQEmzdvHrt//z5jjLEqVaqwX3/9ldWsWZMBSHVpYFNTU8YYY8eOHWPR0dHMzMyMlvjKJgBYrVq12NWrV5m5uTk7dOgQGzduHAsODjZ01vIcKpWK1a9fn12+fJmZmZmxw4cPkwsDQS7kQqVSsSZNmrCLFy+SDwNDLuSBXMgDuZAHeq6VC3qe0i0mJiZMpVIxxhizsrIS29XtaPWy2SqViiUkJDClUqn/TOYRyIU8kAt5IBdyYmtryxhLKneFQsEAsNjYWMYYY87OzowxJlxUqlSJbdq0ibVo0YK9efOGNWvWjL18+ZIxxtiFCxcYY/+5BaDX6zAGyIU8kAt5IBfyYG9vzxhjLDExUdTZyXn16hXbvXs3W7FiBXv//j1r1KgR27NnDytSpAgDkOZxRNYhH/JALuSBXOR+FAoFUyqVrEKFCmz//v3syy+/ZBYWFobOVp6EXMgDuZAL8kFQADtBEEQup3LlyszPz4+dP3+eubi4aO1Tv8C6efMmu3TpEouLi2MFChRgGzZsYLVq1UozeF19nL+/P/Py8mKMMVa1alVmZWUl9hFZh3POVCoVa9y4Mbtw4QIzNTVlhw8fZqNHj6bgEj2jUCiEi4sXLwoXI0eOFB3whH4gF3Kh9tGoUSMtH8OHDycfeoZcyAO5kAdyIQ/0XCsX9DylexSKlF2o6raxOtjHwsKCWVlZicHghG4gF/JALuSBXMiL2o2JiQmzsbFhnHNWqlQprX2MpQwQrV27Nhs1ahR7/Pgxs7e3Z999951B8m9MkAt5IBfyQC7kIb2g0N9//10rKNTd3Z05OTkxxliq7/eI7EM+5IFcyAO5kJ/0BpKp24FWVlbM3NxcX1nKs5ALeSAXckE+iLSgAHaCIAgjoFy5cqxq1aoptqs7GXfu3MmePHnCGGNs9+7drGHDhukGr6uP27FjB7tx4wZjjLG+ffsya2vrVF+KEZlHM/Dq0qVLjDHGjh8/zn777TcWHx9v4NzlLVJzcfLkSXbs2DGakUzPkAu5SM3HqVOn2PXr12kQk54hF/JALuSBXMgDPdfKBT1PGY6EhATGWJIDai8bFnIhD+RCHsiFHJiamjJHR0cGgJ06dYq9efMmhQ91gGjz5s3Z27dv2bZt21h8fDxr1KgRK126NGOMAoByAnIhD+RCHsiFnGQUFEroF/IhD+RCHsiFPGjGfagHMScmJhoyS3kWfbugFXDSxhD3BflIG336UHug78HcA/VYEgRBGDk3btxgx48fZ4wxNmLECNaxY0fGWOqdiQBEx+SWLVvYkiVLGGOMde7cmX355ZcijSYREREsOjpa6xxE+mgGl1y/fp21b9+e1alTh0YSGoDkLoYMGcLq1q1LM5IZAHIhF5o+bty4webPn8/q1q1LAQ8GgFzIA7mQB3IhD/RcKxf0PKVf1N85+fLlY4wltYVjYmKy3TGu2aam9nXmIBfyQC7kgVzIg7qcevXqxYoXL85evXrFbt68mWr5VapUiW3evJk1adKEJSQksPLly7NJkyYxBwcHfWfbKCEX8kAu5IFcyMmLFy/Ynj17KChUEsiHPJALeSAX8qAZFHrhwgU2evRo5uvry0xMTGjCFz2jTxeRkZGMMRpAmBb6vi/evXvH3r59yzjnFDSdCvr08f79e7Z582bm6enJTExMyEduAQRBEIRRc+DAAXDOwTnH7t2700ynUqnE7/v27YODgwM45yhevDg2btyY6jGPHj3Czz//jJ9//hmXLl1K9VxE2iQmJgIAPn78mK3zUHlnH7WLqKiobJ2HXGQfciEXah/x8fGfdbzaA/nIPuRCHsiFPJALeaDnWrnIqecpAPjw4QN+/fVX7NmzB2/fvhXbydV/bN26FZxzVK1aFXFxcdkqG6VSmaltROqQC3kgF/JALuTh7du36Ny5MzjnaNq0KTw8PNJM++TJE3Tu3BknT57UYw7zDuRCHsiFPJALeVAqlVi9erV4r9e4cWMEBQUZOlt5FvIhD+RCHsiFnFy+fBn9+/cXXp49e5aj51f3N6pUKvG7+l9CG127CAwMxLRp0zBgwADcvXtX9MmTj5To2gUAhIWFYfbs2XBxccG9e/cAUF9JWujah0qlwpEjR8A5h6mpKR4/fgyAfOQGOEDTZBAEQRgz69atYz/99BOrUqUKu3HjBitYsKDWCDfGGFOpVGJmpoMHD7Lp06ezwMBAplKp2PDhw9mGDRsYYyzFcUePHmU9e/ZkjDHm4uLChgwZwsaOHZtqWiJjslJmms4YSxrV+eHDBxYeHs6sra1Z2bJlmaWlZZbPS2Sd5C5evHjBXr16xcLDw5m9vT1zdnZmdnZ2jDFyoWvIhVxo+lAqlczHx4f5+vqyDx8+sLJly7Jy5coxR0dHxhj50DXkQh7IhTyQC91Cz7XGQWxsLDt48CAbOHAgY4yxIUOGsK5du7IuXbowxsiHJoMHD2bHjx9nr1+/ZiYmJp91jsTERHHsqFGjmJWVFVuxYgVjjMo6K5ALeSAX8kAu5CEwMJC1atWKvXjxgjVt2pTNnTuX1atXjxUoUCDFM1F0dDSzsrJijFEZ6wJyIQ/kQh7IhTz4+PiwKlWqsCpVqrD//e9/OTajsVKpZKampil8EulDPuSBXMgDuZCLwMBANnz4cHbu3DkGgFWuXJn98ssvrEOHDtk+d/J6/t27dyw+Pp45ODgIT+TrP3TpgjHGwsLC2Lp169iKFStYbGwsq1q1KmvevDmbPHkyc3Jy0mq753V07YIxxsLDw9nWrVvZjh07mJ+fHytYsCC7cuUKq1atGrlIhj58qD/n+++/Z1evXmWFChViV65cYa6uruRDdvQSJk8QBEEYjLVr14JzDjs7O/j7+6fYrznzkru7O5ydnWFmZgbOOb766iuxL60Rm9u2bcOXX34JhUIBzjlmzJiR6rmJnEPTxbVr17Bq1SqUKVMGRYoUgZmZGRQKBXr06AE3NzeRjlzoniNHjmDChAkoVKgQrKysxMjRdu3aYfXq1SIdudA95EIuNm/ejL59+8Lc3BwmJiZas3KsWLFCpCMfuodcyAO5kAdyYVjouVZu4uPjsXPnTjRq1AiccygUCpQrVw6zZ88WafL6zD6as7ds2rQJwcHB2f4bnTlzJooVKwbOOQYMGJDdLOYZyIU8kAt5IBdy4u3tDUdHR3DOUblyZUyaNAl+fn6GzlaehFzIA7mQB3IhD0FBQTk6K+XLly+xevVqPHjwAAC15bIK+ZAHciEP5EIuxo4dC845GjVqhJMnTyImJibHzu3t7Y01a9agU6dOKF++PIoVK4Y2bdpgzpw5CAwMBEAzHGuiSxcAcPr0aSxduhTly5eHhYUFOOdwcXGBp6cnAHKhiS5dhIWFYcmSJahQoQI458ifPz8457CxsaGZv9NA1/eGmoCAALRv35585CIogJ0gCMLIefz4MZydnWFnZ4cjR46IF1UJCQla6X799VcULFhQBO507txZ7MtoiWAPDw9MnTpVBLH/9NNPYh8FmOiOZcuWwcXFRQw44JzD0tJSLInDOcfPP/8s0pML3RAbG4vJkyejYMGCwoWZmRkKFiyo5WL8+PHiGHKhG8iF4VGXp1KphI+PD4YMGaJV9oUKFULRokWhUCjEtnHjxqU4nsg+5EIeyIU8kAt5oedaeYmPj0doaCiGDx8ugtg55xg+fLihsyYNOdnxvXDhQigUCtEuHzNmDP29ZwFyIQ/kQh7IhZz4+/ujTZs2yJcvn3j2WbFiBUJCQgydtTwHuZAHciEP5ML4eP36NdasWSPa1+rgUMIwkA95IBfyQC4+H81A/1WrVuHPP/9EbGzsZ59Ps4336tUruLu7o3DhwuK5QN03qP6pUqWKCJzO64MOctpFRjx79gwrVqxAnTp1wDlHkSJFyMX/o2sXyYPXbW1tcerUKXTt2pWCplNB3/cGkNSmoSD23AMFsBMEQRg54eHh6NixIzjnaN68Oe7cuSMeBlQqFS5cuIAxY8ZoNTT69Okjjk8e6K6JZgPm/fv3cHNzE42WBQsW6O6i8jhhYWEYMWKElrPWrVtj9uzZuHbtGnbt2oWJEycKF3PmzDF0lo2SxMRE3Lt3D3379tVy0aNHD2zfvh1eXl44fPgwZs6cKVzMnz/f0Nk2SsiFHKjrhLi4OBw9ehQdOnQQLooWLYoffvgB58+fR3BwMP7++28sWLBA+Fi0aJGBc29ckAt5IBfyQC7khJ5rcxcLFy5EmTJlROAi+ch5nj59Cjs7O1G+ef1lkyEhF/JALuSBXOQsISEhWLNmDRo3bgxzc3Ps378fEREROXZ+GlyQeciFPJALeSAXxkNERATmzZsn6nBLS0vMmTMH8fHxhs5anoR8yAO5kAdykX004zmyE5ypWT9fv34do0ePFjN8W1tbo2TJkpg4cSKWLFmCH374QQROlyhRAj4+Ptm6BmMhp1xkhNpVTEwM7t69i7Zt24JzjurVq+foygi5mZx2oS7z1ILXPTw8ACStVtCuXTsKmk4Ffd0bmlAQe+6BAtgJgiDyAP7+/ihdujQ456hatSq6d++OKVOmoHXr1nB2dhbBIhUqVMCECRPEcekFr6fGx48fRbCPs7MzLl68mNOXkucJCAjAt99+K5yVKVMGU6ZMSZEuMjIS69atg0KhQPHixXH+/HkD5NZ4SUhIwIULF9CpUyfholGjRvjll19SpI2KisKaNWtgYmKCcuXK4datWwbIsfFCLuRA3WiPjY3Fzp070bhxY+GjZ8+e2Lt3b4pjoqOjsWLFCpiYmMDV1VXMCkBkD3IhD+RCHsiFnNBzbe7i1atXWLhwoZhtqUqVKti2bZvOZ0rJS6g7zv38/LB48WLqSDcg5EIeyIU8kAvdoFKpEB8fj0ePHuXY0tlBQUF48eIFAHopmxXIhTyQC3kgF8bD4sWLwTmHvb095syZg6dPnxo6S3ka8iEP5EIeyIXh0QxeP3PmDLp16yZWy6xVqxZmz56tFRgdHx8PDw8PtGzZEpxzfPXVV/j48aMhsk4AuHfvHlxdXWFqaoq5c+ciMTGRBp3rgNDQUCxfvhxly5YF5xx2dnZ49OgRgP+ebSloWi78/f21BhUk90XIAQWwEwRB5BF8fX1Rs2ZNMUpW/aOePW/gwIHYt2+fSJ9ehR0VFSV+Tz5Txp07d1CmTBkoFIpUA0iJz+fZs2fo3bu3cNeyZUvs2LFD7NdsiKhUKvj6+qJKlSrgnGP9+vUGyrXxkZiYiMuXL+OLL74QLvr164fTp0+LNEqlUtwbKpUKjx8/RokSJcA5x65duwyVdaODXMhFXFwc9uzZg7p16wofP//8s9ZSj8nrllu3bqFAgQLgnOPQoUP6zrLRQi7kgVzIA7mQC3quzV08e/YMs2fPhrW1NTjncHFxwd69e3N0BkYiiawOIid0B7mQB3IhD+Qi58npGYiDgoIwcuRIlC5dGjdu3MjRcxs75EIeyIU8kAvjYtmyZRg7diyeP39u6KwQIB8yQS7kgVwYDs06/9SpU2jdujVMTU3BOUfbtm3xzz//IDIyEoB2H3piYiL27NkDc3NzlCtXDoGBgXrPO5FEXFwcBg4cCM45mjZtaujsGCVxcXFYs2YNHBwcwDmHhYUFTpw4IfZpDhjQDGLPnz+/1nsoQv8EBASIyRALFSqEhw8fAqAgdpmgAHaCIIg8RHBwMNatW4fu3bujcePGqFWrFiZOnIjDhw9rpUtvNKavry/GjBmD48ePp5mmW7du4JyjXr16iIuLo+Ugs4HaRVRUFAYMGCCCfDp37iweiDXTJadVq1bgnKN79+7ppiMyRv137OXlha5duwoXgwcPxr///ivSpVXG6mXUhg4dmm46ImPIhXyoVCqcOXMGTZs2FT5mzZqF4OBgrTSpoQ5InD17NgDykV3IhTyQC3kgF3JAz7W5k2fPnmHu3LkieL1atWpwd3en4PVsoPm3S21lw0Iu5IFcyIOuXZBf3eHn54cJEyaIVTidnZ0RGhpq6GzlSciFPJALeSAXhkMzMIdmxjU85EMeyIU8kAt5uHTpEjp37iyC17t06ZJhUPrTp09hZ2cHzjn++OMPPeWU0ER9D61duxacc1hZWcHHx8fAuTJOnj59ij59+sDV1RWcczRs2BCXLl0CkNSfotnnERAQgDZt2oBzjvHjx9OkAHomeXD6jh07xCSH1tbWIoidkANTRhAEQeQZSpYsyUaPHs1Gjx7NEhMTmUqlYmZmZinSKRSKVI8HwB49esTc3NyYm5sbO3DgAPvqq68YAMY5Z4mJiczExIRZWFgwxhiLj49nnHPGOdfpdRkrAISL6dOnsz179jDGGOvQoQMbO3Ysa9euXYp0msdyzplSqWSMMWZlZcUYY+TiM1GpVKKMly1bxk6ePMkYY2zQoEFszJgxrHr16oyxlC4AMMYYi4iIYNHR0YwxxmxsbBhj5OJzIRdyofbx5s0btmHDBnbt2jXGWNJ31ujRo5m9vb1Iq1nO6uO8vb3Z+/fvGWOMFS1alDGWdh1EpA+5kAdyIQ/kQh7ouTZ38vz5c7Zjxw62cuVKFhUVxVxdXdnUqVNZt27dmLW1taGzlyvRfJYNCwtjRYoUEe1oQr/o2oXm+VP7P/Ef+rgv1HVJap9J/Ic+XKg9REREsAIFCtB3YA4SEBDAfvnlF8YYY2XLlmXDhg2jv3MDQS7kgVzIA7nQL5rPPiYmJuL/BQsWNHDO8ibkQx7IhTyQC/kIDAxku3btYn///TdLTExkXbp0Ydu2bdPqQ0+NV69esQ8fPjDGGDM1pRBEQ6BuU4eFhTHGGIuJiWGxsbGGzJJRolKpWJkyZdj27dvZv//+y5YvX87OnDnDvvjiC3b+/HnWpEkTEY/AGGPOzs5s48aN7MyZM6xLly50f+gZdd1y4sQJdvHiRbZ+/XpR70RFRbFJkyaxY8eOMUtLSwPnlGCMMWoZEgRB5DHUD00mJibMzMxM6yEqIzjnrHXr1mzQoEGMMcZ69erFtmzZwsLDw8U53d3d2cGDBxljjNWuXTvVAHkic6gfoDZt2sR+/fVXxhhjjRo1YsOGDdMK8kkteIdzzk6fPs2uXr3KGGOsRo0aWucksoa6M33BggXs999/Z4wx1qNHDzZ06FARMM1YyvJVD+A4efIk8/b2ZowxVrFixVTTEpmDXMiF5mCCEydOMMYYGzlyJBsyZEi6nVrq4/755x8WGhrKGGPM0dFRx7k1bsiFPJALeSAX8kDPtbkPCl7PeRITE8X3y5gxY1izZs2Yt7e36Ewn9IeuXWgGAd+/f58x9l/dQq610cd9oVm/XLlyhfn5+TGFQsESExNz5PzGgj6/o/bt28f69+/PHj9+zExMTMhFDtG+fXv2008/MVNTUzZ27Fj2ww8/sCJFihg6W3kSciEP5EIeyIV+iIiIYIwxMeGUGmo/GwbyIQ+6dJH8WZnafOmjz/tCpVLl+DmNEXU5nT59mrm7uzOlUsnatWvH1q9fn24futpfYGAgs7KyYgqFQkwcRugHze+b+/fvs2PHjjHOOatUqRIrUaKEAXNmnCgUCgaA5c+fn7Vs2ZJt2rSJ9ejRgyUkJLABAwYwDw+PFN9lFSpUYCNHjmRly5Y1UK7zBsnr3uDgYHblyhXWqVMnNnz4cLZmzRqWkJDA4uPjWY0aNdiiRYvY8uXLKXhdJnQ5vTtBEASRe0i+hEp6hIWF4ccffwTnHJxztGvXDoMGDcLo0aPFNjs7O6xfv16HOc4b+Pr6ok2bNjAxMYGtrS02bNgg9qW37HJISAiGDh0Kc3Nz2Nra4u+//87wGCJ9rl69iooVK4JzjurVq+Pw4cNiX3rl+uTJE7Rr1w4KhQJVqlSBt7e3PrJr1JALuTh8+DAsLCzAOUf79u1x/fr1TB13/fp1lC9fHpxzNG/enJaGzAHIhTyQC3kgF/JAz7W5h2fPnmHu3LmwtrYG5xzVqlWDu7s7IiIiDJ01o2DKlCkoU6YMOOcwMzPD27dvc+S86nuC7o3MoysXarZu3YpKlSqhY8eOOHz4sDh/YmJijn6OMaDr+wIALl68CGdnZ9jY2ODBgwcAstYXllfQ9X0RFRWFKVOmiCWbHz9+DIBcZBfN75UbN24gJCTEgLnJ25ALeSAX8kAu9MPr168xd+5czJw5U2yjtoHh0IcP6qvKHPpwoVQqtd430b2XOvpwcePGDcydO1dn5zdW7t+/DysrK3DOUb9+fdy4cSPd9OpyDQsLQ6VKlcA5h4uLC2JjY/WR3TyH5rNUam3na9euYejQoShQoAA45+jevbs+s2eUZLbv7vbt26hevTpMTU0xbtw4xMfHU7+fntH8nn/9+jUOHjyI+vXro2TJkiJ2jXOOrl27Ys6cOYiKijJgbom0oPUJCIIgCKZSqcTSQn/++Sdr1KgRc3R0THO0c+HChdnYsWOZh4cHu337Nrt06RKLj48X+62srFiPHj3YiBEj9JJ/Y+bx48fsypUrTKVSsT59+ogyTWu5a/z/zGKXLl1ihw8fZgkJCax27drsiy++YIzRzA7Z4fHjx+zp06eMMca6d+/OevTowRhLe7ZQxpKWHzp58iS7desWA8CqVavGKlWqpK8sGy3kQg7U5f3w4UMxQ8OXX37JGjVqlOGxwcHBbN++fez169eMMcZq1apFS0NmA3IhD+RCHsiFfNBzbe6AZl7XLcePH2fLly8X/x85ciSzs7PL1jnV94r6nnj79i2LjY1lAQEBTKlUsnr16jFTU1NmbW2d5v2WF9GFC03u3bvHTp48yfz9/Zmvry/z8PBgDRs2ZIsXL2bly5dniYmJoh8mr6MrF5rtw4sXL7IJEyaw169fs9jYWNayZUt25coV5urqSi400PV9wVhSn+HgwYPZ3bt32blz51izZs3IRQ6gUCjEd3zDhg0NnZ08DbmQB3IhD+RC97x69Yrt37+fubm5sfDwcKZQKNi8efNyrN2sfq5Kr/+d+A9d+4iNjWXnzp1jU6dOZWPHjmVNmjRhVatWZYyl/44kL6JrF4wl9WtdunSJTZo0iVWvXp3t2LGD7pdU0IeLd+/esQEDBrCAgAD27t07tnbtWnKRAQCYUqlkmzZtYjExMaxYsWLs22+/ZTVr1kz3GM45i4yMZAsWLGCBgYEsX758rEuXLszMzIz6nrJAen+bSqVSvNdISEjQKvfY2FimVCrZjRs3mI+PD9u1axcLDw9nMTExrGbNmmzdunWMMe1+9+TtbWp/p82zZ89YbGwsq1SpUoZ/zzVr1mTVqlVjjx8/Zn///TdbunQpMzMz02Nu8y5qN+p7ZeXKlezatWvszJkzIo2dnR2rXbs2++abb1jfvn3FjOuaf/90b0iCXsPlCYIgCKlRz6p+8+bNTKe3sbHB9OnT4eTkBAcHB3Tu3Bnz588XI91ohOHnoVKpEBcXhy5duoBzjtq1a4tZr9KalUq9/dGjRyhRogQ456hQoQJu3bqV7nFExnz8+BF16tQB5xwtW7YU2zP6+z5x4gTs7e3FTOEvX77M1HFE2pALuQgJCRGz83Xr1k1sT29Wi48fP2L9+vWws7MD5xwNGjRATExMhscR6UMu5IFcyAO5kAN6rpUH9XPPhw8fxEwjmn/XNPO6fhgxYgQ455g+fXq2n0U1jw8NDcW2bdtQt25dODg4iNllqlWrhm+++Qa+vr4A6P7RJCddpIanpydOnjyJZs2aibaIk5MTPDw8AFBbRJOcdqH53XbhwgXUrl0bCoUCVlZWcHZ2BuccNjY2NPt3Kuj6vlDj7++P9u3bk4tsQuUlD+RCHsiFPOjaBbXRk1AqlVi3bh0UCgU453BwcMCYMWPw/v37HDm3Js+fP8fr16/x4sULrecEcvEfuvSh5uLFi6hWrRo45zA1NUXr1q2xZcsWsZ98JKEPF4mJiTh37hw6deok2uCjRo0S+8lFEvpwAST5cHNzg7m5OTjnGD16tNhHLtImKipKvHetXbs2Xr16leExsbGx2L59OypXrgzOOezs7HDv3j095NY4uX79OubNm4cvv/wSHTt2RLdu3dCmTRs0bNgQTZo0Qb169VC1alVUqVIFTk5OsLOzE+8vNH/q1KmDq1evAtD+m9esz6dOnUqr0qWDv78/hgwZgj59+ohtaX1/qMtv9+7d4nsnsysAE59H8n6qwMBAzJw5E82aNdO6F8qVK4dWrVrh+vXrIiZEDd0bckIB7ARBEAQA4NOnT6hbty445+jfvz/CwsLSTBsfHw8A2L59OzjnOHXqFD5+/IiXL19qVeb0MjZ7xMbGigZj586d013ORl3uQUFBKF26NDjnsLe3x5w5c/Dhwwd9Zdloef/+vVgCbciQIUhISMjwwfXSpUsi4KpMmTLYsWMHlEoldZJkE3IhF8HBwWIJrgULFgBIv1EXFRWF33//XQTwVK5cGRcvXszwOCJjyIU8kAt5IBfyQM+18vDvv//iyy+/xO7du/Hp0yex/enTpxS8rmM0v0dOnDiR7e8VzePd3d3Ru3dvrY76QoUKQaFQwNTUVAROe3p6AqC2ek67SE7ydkZISAjc3d3RpEkTcM5RrFgxPHnyJNW0eQ1duEgreN3a2hqjRo2Ch4eHCDChwOn/0PV9kRoUxP55+Pr64tixY+L/VF6GQ9cu1N9neb2uyAy6dJFa+ZOTtNH1fREXFyeeowByocbHxwecc1hYWGDOnDl4/vx5jp07KioKv/32GwYNGoSyZcuiRIkScHBwwKBBg/Dbb7+JdOTiP3TpAwDCwsKwY8cODB8+HDY2NiIoePLkySIN+UhCly5SC15Xt78pcDolur4v1CiVSmzbtk3cF+QiYy5dugQzMzOYm5vD3d0dQPrPP/Hx8Thy5AgaNWok/vYPHTqk1zwbE0+fPkW7du3E90dWfiwsLMA5R/PmzTFkyJBUB4VoPotNnDhR9Bk+fPgwxX4iqR/J0tISnHMcPnw4U8esXbtWODl37lya6TLqj6XvqLRJ/nf6zz//YPHixShcuLC4d0xNTWFjY4Nhw4bh4sWLWu8+gJTlS/eGXFAAO0EQBAEgqcLeuHEjChcuDCcnJxw7dizDh6jly5eDc441a9akej4ie4SHh6N69eowMTHBypUrAaT/YOvv7y9mGS1UqBB69eoFf39/fWXXqAkKCkKpUqVgamoqOmXT+xs/d+6cCJhzcHDApEmTEBISoq/sGjXkQi4ePnwIa2trmJmZ4eDBg+mmff/+PXbs2IFixYqJIKr169dTYFwOQS7kgVzIA7mQB3quNTzqmfAbNGgAzjlq1qyJvXv3Ii4uDq9fv8acOXMoeF0P5FTHt+Z5Zs2aJQZ4cs7RsGFDDB48GJcvX8aFCxfg5uYmZqFxdnZGQEBAjuQht6OvlxDqtkpCQgI8PDzQpk0bcM7RrFmzTM1qlhfQlYvkwesjR45EbGwsgKTgCQqcTokhrp+C2LNGUFCQeLH6448/5vj5NQOm8/pgp4zQtYuPHz/i6NGjuHbtmtb9QH3uKdGlC81VZnfs2IFly5al2Ef8hz6+o/766y+Ym5tj0KBBWtuJpMEDCxYswNOnT3PkfHFxcbh//z4aNmyIAgUKpAiaUweHTpo0SRxDLv4jp32oSV4/nzp1CqNGjRI+xo8fL/aRjyR04SK14PW1a9di+/btFDidDrq6L4xbcagAAP56SURBVJJDQexZ48qVKzA1NUW+fPlw9uxZACnLSf3/2NhYHD9+HC1atBB/+wsXLqS2Qzb56aefwDmHiYkJbGxsMHjwYAwdOhTfffcdfvrpJ8yYMQPjx4/HjBkz8Msvv2DlypVYs2YNzpw5g+vXr4u+DkC7ntBsR0yYMAGccxGcTe3v1PH19UXnzp1hZmaGgQMHIjg4OM20SqUS8fHxGDlyJCwsLGBhYYE7d+6kSJf8fjp79iy2bduGRYsWYeHChbh9+zbevHkDgCYdSY/ExERcuHAB48aNQ8GCBcXfcr58+WBra4slS5aI7zA1Gc2eD9C9IQsUwE4QBEEIQkND0b17d3DO0ahRI7GstRrNByZvb280b94cnHPMmDFD31nNM3To0AGcc/Tp00drpsrkyzPeunULjo6O4JzD2toabdu2FQ9WRPZRKpWiMT5kyBDExMSIfZouwsPDceDAARQvXhyccxQtWhSDBw9GYGCgIbJtlJALuYiJiRGzLEyYMCHNThJ/f3+sWrUKRYsWBeccjo6OWLhwoWiQE9mHXMgDuZAHciEX9FwrB15eXuJvvWbNmli7di2mTZsmAhIoeF1+NDvOx4wZoxVMMmbMGDx8+FDrvkpMTISnpycaNmwIzjl+/vlnWo3IgJw/fx4lS5ZEkSJFsG/fPgD0ckoXnDlzBvXq1YNCoUCBAgUwfvx4Ufeoyzt54LS6D4xeTukff39/fPHFF8IFzXaVOk+fPsWIESPECjUmJia4fPlyjpw7M99DVG/8hy5dAEl9Whs3boSdnR045xgxYoTWjNbk4j906UIzeP3PP/9E48aNRX9k8jSE7u8LNQcOHBDPvhSQmJKEhIQcOc+rV6+wadMmMbDczMwMlpaWGDt2LJYuXYpVq1Zh4MCBIjiU3hGmTk75SI3k70I2bNggfKxatUpnn5tbyQkXmvVC8uD1devWAaDA6cygy/tCE3KReR4/fgwrKytwzkU/hSbq75uoqCjs2bNHrC7HOcfEiRPx4sULfWfZaND8Lh87dqwo1+3bt3/W+TT/tlML0DU1NUX9+vVRt25dCtRNB3d3d+TPnx+cc6xYsULrvZK6nNTuHj58CAcHB3DOUaNGjRTlqE4XFhaGo0ePolOnTmLmfPWPo6MjWrduLVYZIhfaxMbG4tSpU/jiiy9Qrlw5rbKrX78+5syZAy8vL61j0itDujfkhALYCYIgCC2ePn0KV1dXcM7RsmVL3Lx5E5GRkVppgoKCsHDhQtjY2IBzjuXLlxsot8aLuoGxatUqmJmZoUaNGrh3716KByR/f39s3bpVBOna2NigY8eOuH//vgFybZyoVCqoVCrMnTsXnHPUqVMHDx8+TOHizp07mDVrlggIKl68OEb8H3tnHRbV8sbxM7uUhCAiCiqKXWBjd+e189peW+xuvXZid2N3d7fiFRAWkEYRQVEaYdnv7w9+Zzxngw6F+TwPj7JnzmF23jP9nfcdOxZeXl65lPO8B7PF70dCQgKd3NnZ2cHZ2VllAfLOnTsYMmQIChUqBEIIrK2tsXr1auZxMothtvh9YLb4fWC2+D1g49rfD5lMBjMzMxBCULx4cepdxNbWFkePHmXi9d8Y4cbWuHHjRAv2q1at0phWLpdj7ty5tD3MqQ1jhioxMTGoUaMGPdDDyHp+/PiBDh060A3BsmXL4vXr1wCSPYkKN3SFInZCCFxcXHIr2/mewMBAdOnSRUXEzg54/OLLly8oX748jajh4OCQJRHm+Dohl8vh6uqK7du3Y+rUqRg6dCgOHDiA58+fq6TN72SXLXiio6MxZ84c2NjYUC/HFhYWWLZsGU3DbJFMdteLpKQknDhxgjryYcJpzWR3veCRy+XMw3E24+vri0WLFlExVrFixTBw4ECVAwk/fvzA1q1bIZFIYGJigitXruRSjhkAEBsbi/nz50MikaBu3brw8PDI7SzlSeRyOe7cuUOdNBBCsGPHDpX5t1A4PXHiRHqNtVM5i7Itxo8fT68xWySjUCjw7ds3dOjQARKJBNOmTVPreOTbt2+YN28eHZ/yER9YW5N5hGvkkydPFrUtP3/+pNeSkpJE721K77AmgW7Tpk1x9epVfPr0ibZjTKj7C2GZrly5ktpi06ZNaveLPD096eHNIkWKYMOGDQB+lSP/r4+PDwYNGoRy5crRg4FaWlqoXbs2LCwsYG5uDkIILC0t4ebmBoCthSizcOFC0Xysc+fOWLZsGX7+/EnLKi3tOqsbvy9MwM5gMBgMFTw9PUUnBWfNmoV3797B398fV69exdChQ6kHmOrVqyMsLCy3s5xnCQoKopPBpk2b4ujRo/D29oaXlxcOHTqEdu3aUcGVpaUlBg0apOI5n5E1BAQEoHLlyiAkOdz7zp078f79ezx8+BAbN25ElSpVqPfDMmXKYMGCBdkeBi+/wmzxe+Hv74+KFSuCEIKGDRti7dq1ePXqFRwdHTFv3jwYGxtTYVzVqlWxb9++TPUbbGFRMzlpC7Z4kjLMFr8PrI36ffgdxrXMPr+QyWQoXLgw9Y5YsmRJ7N27V7Qxwvi9EL6/s2bNQoECBUAIga6uLvX2ppwO+LXAfu7cOUilUpiamrKxcS6RkJAAAOjUqRM9TMDIHoKCgrBo0SLY2dnRA2oPHjwAoLrp6+PjQz3I8WkYOQM/jo2NjYW/vz+GDRtGDx5oa2szMYQaXFxcULlyZaxatSrL1mMTExMREBCAbt26oUKFCqJNYUIISpcujSVLltD0bDyVTHbYQgjv5W/btm1o164dFV5NmjSJpmG2SCarbaEsXucjQRJCMGzYMCacToHsrhc8zKtu9uHv748ZM2ZQxzClS5fGpk2bRPMH4TrUx48faaQnYV/ByB3u3LlDx1Lnzp3L7ezkSdzc3ET9Qv/+/ek1fr4H/GqnpFIpCCEYMWJEbmSXgWS7HD58mPYZY8aModdYn/GLbdu20fd63bp1VLTp6+uLJ0+ewM7Ojq7bEkKwcOFCtraUhQjFsVOmTKHlvHPnznQ7oRD201OnTqUC3SZNmuDSpUv0mpeXlygqHRPqJiMsv5kzZ1Jb9OnTB1u3bsW7d+9w+fJlrFy5EpaWliCEwMjICF27doW3tze9ly9Hd3d32NjY0P5ZV1cXM2fOxIULFxAfH4+goCBcvXoVLVu2pA5mAgMDc/x7/wnMmjUL9evXx/Hjx/H9+3f6eVr3SFnd+L1hAnYGg8FgqMXLywvVq1engzIDAwOULl0aUqkU2traIISgUqVKOHHihMrmHyNr8fT0pKEaDQwMULhwYZQsWVK0mVSlShVs2LABAQEBuZ3dPI2npydKly5NhT7GxsYoWLCgyBa1a9fG+fPn8fXr19zObp4mN2zBvJFqxtPTE2XKlBH1Gcqb3s2bN8e7d+9EodYyw7dv37LkOXmNnLCFsM8/e/YsXr16pfF6fobZ4vchN9ooZ2dnUfhUZotkcmNc6+bmhhMnTtDfmS1+4e7uTg8mW1tbY9++faINV8bvya5du2g9IoRg27Zt9FpKC/aLFi0CIQQ6Ojrw8/PLgZwyhAht07BhQxBCUKpUKURHR7PDaFkMX57x8fFwcnJCt27dQAhBgQIF8OzZMwCqfYG3tzeN+MH6iexFWL4/f/6Ep6cnBg8ejFq1aoEQQoUl1tbW2LlzJ7OHGsLDw7NsnePTp0/YtWsXdRLAl3+1atVgZ2eHEiVK0M+mTJmSJX8zL5GVtlBG+O57eHhg9erV1Bbz5s3Llr/5J5NVtkhJvL53714AYMLpVMjOeiGEidizni9fvmDZsmXUC2jZsmVx6tQpREREpHjfsGHDQAhBo0aNEBcXx8a2uQD/zkdFRdEI23PmzMnlXOVdtm3bhs6dO0NfXx+6uroYO3YsvSYUmvLtFO+ogRfAMbIf5XZIJpOhS5cu9EDBqFGjcilnvx/KzhL4cY+lpSWaNWuGYsWKUeG6RCKBlpYWDh8+jMjIyEz9XWUbsb47a0XsAPDPP//QPfT69euLDuzz5S2MSicU6uZ3ewhtMX/+fEilUjrm5J2A8o5FTE1N0aFDBxpFTqFQ0PtdXV1pekKSI8Y/ePBA7fv/+vVrVKlSBQUKFMCOHTvo5wxx3/rlyxfRtYyUEasbvydMwM5gMBgMjQQGBmLixIk0vLXwp1atWrh69WqmJyiMtOHj44Nu3bqhbNmydEDFn8Ls27cvfH19MyW44gdbbNCVOr6+vujfvz8qVapEBSCEELRp0waTJ09GdHR0pp6fFhswOyWT3bYQ8vTpU3Tr1g179uwReRVgtviFn58fhg8fTr3r6uvrQ09PDwMGDMDatWuztKyuXLmCmjVrYtu2bfjw4QP9nNkjmZyyhYODAw15N3nyZFy9epVeY7ZIhtni9yEn26i1a9eCEILevXuLPF4xWyST3eNaIZ6enrC3t6feEnmYLX7h7u5OPbHXrFkTR48eZYf2fkP4d9bNzU0Uqnz9+vU0jSahiEKhQHh4OLp37w4tLS3Ur19fFA6akb0oFApRm8P3EYSIQ8kzso+AgAB06dIFhBDUqFFDNH9QRtlejKxD2VPV+fPnMXr0aHqQiv+pVKkSJk2aBA8PD9ZWZTNeXl6YPHkySpQoQTfeO3bsiDNnztCxwPv37+Hg4EA36zdt2pTLuc5fCNuj+Ph4bN26FRKJBCYmJsyzbjaSlJSEkydPokmTJrRt2rVrF73+8+dPjcJpJtzNWZiIPWvg31tHR0fqSbRMmTK4dOlSinPzhIQEJCYmok2bNiCEoEOHDjmVZYYG/vvvPyqoYwfPshc/Pz84ODjA0NAQhBAMGjSIXhOOe+VyOS5duoRLly4hLi4uN7Kar1Bu+589ewYHBwcUKVIExsbGonXIx48f51Iufz+E7+zy5ctFjmD4nzJlymDAgAF4/vy56F4/Pz+4uLikq98VRuJ68OCB6N783n9nlYg9ICAANjY2dM23Ro0acHd3B5AsBhaWs1Coq6+vz5wl/h+hLQ4dOoQePXqo1ItKlSph3rx5kMlkAJLfX95Obm5uMDMzo2L3Ro0awc3NjaYT/gsAcXFxNGJj9+7dc+pr/jFk1aEXVjd+X5iAncFgMBgpEhMTg8DAQKxbtw4LFizAnDlzsG3btiwVhjLSxo8fP+Dp6Yldu3bB0dER586dy/IQQhEREfDx8cGxY8dw6NAhPHjwgIl11RAVFYWgoCCcPHkSt27dwoMHDxAbG0uvZySEkHLZ+vv7w8nJCevXr8eGDRtw9epVOoBWlz6/kh22UObjx48YP348nZAOHDgQp06doteZLX4RGxuLr1+/4vbt23BycsK7d+9E17PCHj4+PqKFgt69e+PYsWP0OrNHMtlti6ioKMydOxd2dnYgJDnMWsmSJbF8+XKahtkiGWaL34ecaKMAYNKkSTA2NoaOjg7Mzc2xatUqeo3ZIpmcGNd6eHjA3t6eLhQzQYNmZDIZDRFva2uL06dP4+fPn7mdLYYaVq9eTd/nGTNm0M9TEq8DwMWLF6mwh4mmM0ZmDhonJiYiMTERixcvhqWlJSQSCfT09HDo0KGszma+QPi+p2UDV6FQ4Nq1a7CwsICJiQm2b9+u8hxG9qBcJ5KSknDgwAEMHz4chBAa4bFQoUKwtLTE9u3b4eTklOIzGFmDu7s7hgwZQvv/4sWLw8HBgR7w4OuHQqFATEwM5s6dCy0tLbRv3x4/fvzIzaznawICAtC0aVNIJBJMnz49t7OTJ1EoFNi/fz/q169Px1wHDx4EkNzn8HUjJeE0I2dJTEzE7t27qS2EnpBZH5I6/Dvt6+sLa2trGiXo+PHjojV2TfdFR0dTj9+9evVSEf4wsh++vMPDw7Fo0SIYGRmpHHZmZB3C9zshIQGOjo5UxJ5ShBTmRCz7UC7bqKgouLq6Yvz48SpCbDMzM0yePBmXLl3KzSz/lgjXxd+8eYPDhw9j4sSJmDdvHjZu3IhPnz7ReQB/8DssLAz//PMPChUqhCNHjqTr/Y6KisLSpUtRuHBhtGzZEkeOHKGelfP7XF2TiH3z5s3p2r/4+vUr9uzZg6ZNm9IDy7ynaeXD+97e3mjZsiXq1q3L1oQFCN/FHz9+4MWLF9i/fz82b96Mw4cP4+vXr/RwktDz+ocPH1C+fHkqfG7bti08PT1VnsnDr23x9m7ZsmV2f7V8DasbvydMwM5gMBiMDMMm2r8PGZnMKdvv+PHj6Ny5M9284k+iN2jQAGvWrNF4H0NMRspHaL/v379j+/btqFKlisgTmUQiga2tLVasWJGpv5WfyKryiY2NxdmzZ6k3GYlEAnNzc8yaNYumye8LKjlJTEwMLl68SE+i897HhJu3rG7kDHFxcYiNjcXGjRvRqlUrulk4efJkmobZImdgtvj9uH37NoYMGUJtwdqotJMVfSovXuc9aVSoUIF55UsFmUxGx54bNmzI7eww1ODm5kbDNnfs2JF6fUlNvP727VvRAYX//vsvxfsYqgg3CIODgxEcHIzPnz/Dz88PMpkM3t7ecHNzw/Pnz/Hq1Su8evUKly9fhqOjI3bt2oUePXqgQYMGdOyq3Eerg/d2mVWHq/Iip06dooe8U3uf4+PjUbt2bRBC0Lx585zIXr5G2R4fPnzAmTNn0LhxYyrwEa457d+/H15eXik+A2D1Iqvw9vbGiBEjaL9fqlQp3Lx5U+TxXnmMdPr0aWq3t2/f5nSWGQLGjh1LBVihoaG5nZ08R2JiIvbu3Qtzc3NIpVIYGhpi8+bNous8crkc+/bto55cN27cmAs5zr8o9xNr1qyh46xRo0blUq7+TGJjY9GhQwcQQlCkSBEsX74c4eHhGtML+4hp06ZRcRYThOYeAQEBcHBwQMWKFakdfXx8cjtbfzRp9XQcGRmJOXPmQEtLC9WqVVM5jMnIOSIjI/Hff/+he/fuqFq1qmj+bWdnh1GjRsHHx0fUf7B1ETGplYe6ddRhw4aBEAIjIyMcP348zWutjx49QteuXekco2jRoujatSudF+b3OZ/w+/N9balSpeDh4ZGm+3lbJiYmwsPDAz179gQhBMbGxnj16pXae0JCQmjbl9/LX0hqB5CUr4eEhOCvv/6iax7NmjWj73VKdSw+Pp4eom3cuDFrn7IJVjd+X5iAncFgMBiMfIhw0Pvq1StMnjxZdArdxMQEhQsXho6ODl2EF4YcZGKftJNaWQltcf78eQwYMEBki2LFiqFUqVIwMTFhtsgkmSmrpKQkREREYNKkSTAxMVHr1YeRPjJiD+E9sbGxmDZtGooVK0btMXr06KzMYr4hK9oRd3d3rFixgtpizpw5WZCz/Aezxe9DRm0h7Nd9fX3x77//UltMmzYtq7LHSAFevM6Lsho0aIDo6GgcP36cidhTwcvLC4sWLWJl8pty7949mJiYgBCCZcuWpbihztvQ09MT7dq1g1QqhY6ODsaOHcuiqWWCBQsWoF69eihRogQsLS1hYWGBQoUKoVChQjA2Noauri709PRgYGBA53NaWlqiQ8lFixYVec9Xt/Hh7OyMunXr4s2bNxrT5Hd27doFMzMzjBs3LtW0vIekgQMHQktLC2XLlhUJddMKaxvTj4eHB/bv349y5crRgzT8usagQYOwdetWUVuWUhmzepE1fPnyBbNnz4a5uTkIIShdujSeP3+uMT1vk3fv3tG27datWzmVXYaAhIQEAMD8+fMhkUhgZmaGz58/53Ku8i6PHz/GggULUKBAARBC0L9/f3pN2P7I5XJs27YNTZs2xePHj3Mjq/mejx8/4saNG2jYsKHIGczcuXNzO2u/PXwb//LlS+p9vXXr1iqHyjRx6dIl1KxZE4QQlCtXDs7OztmZ3XwBf1gPSF77/vnzJ+Li4vD9+3eEh4cjNDQUAQEB8PHxgZOTE44dO4aNGzeiRo0aKFasGPUiunv3bgDiNSp14yw2vlXPz58/8d9//6UYhUDI7du3aWShnTt3ZnPuGIDqXOD48ePo378/ChYsKNpfrVu3LubNm4fg4GDqJZnVi7STkoBWWE5Dhgyhh5nSI2L38/PDgwcP0KFDBxQvXhyEEJQsWRLv379P9e/nB4Tv+bJly7BhwwZ8//49Q8/y9vZGu3btQAhBq1at8OnTJ41p83u5Z5SkpCQoFAps376dvs9ly5aljhdSE8DfuHEDpUqVgkQioeNY1h5lP6xu/D4wATuDwWAwGHkIfjMD0LyZJxxcHT9+nHrX4L1T9u3bFy9evICXlxdu376NpUuXUrHP8uXLs/07/Onwkwnh4lZabLFu3TrqEY4QgkaNGsHe3h6+vr74/Pkznj17hpUrV1JbrFq1Knu/SB4gPbZIDaGtZs2aBVNTU+jo6IAQgkWLFmUqn/kF3h6RkZH0s4zaQ3jf1KlToa+vT4UQmzZtylxG8wFZaQvhAkpcXBy2bdsGiUQCAwMDnDp1KnMZzQcwW/w+ZJctoqOjqS0IIdiyZUvmMpqPSMu4VhlPT0+R5/X69evTDeC4uDjs3buXidgZfywLFy4EIQQlSpRIUbDGv8/e3t7o378/9dpuY2NDF+HZO59+rl+/LhKiCzfF+c90dHQgkUigp6cHfX196OnpoXDhwihdujSqVauGFStW4MqVK/SZ6to2Nzc31KhRg4pPXFxcNKbNr/BiQb4+PHz4ME338R6wDAwMEBISkua/xwsdeNiGlRi+PeHLJSYmBl+/fsX06dNp5AHhAf1Bgwbh/Pnzomek9n6zepF5+LI6efIkrKysQAiBlZUVnjx5kqb7du3aBW1tbRgZGdFDBIycg69noaGhqFWrFgghKF++vGjuwsgahG18VFQUHB0dYWRkpOLEQjiWSkpKQlhYGOsfcgC+TUpMTERsbCw2bNiAVq1a0TVavp9v164d9u3bl8u5/XNYvHgxLb9r166l6R43Nzf06dOH3ieMVMBIP58+fcKhQ4fQqFEjtGnTBk2aNEHVqlVRs2ZN1K5dG2XKlEHp0qVRvnx5WFhYwNTUlM7zhD+mpqbYtGmTylhX2GYdOnQICxcuVHuNkdy+HDt2DCVLlsTVq1dTTMuXXWJiIuzs7EAIweDBgyGXy1m55gCJiYnYsmUL+vfvLzo8XrRoUVSpUgWOjo4pHshh9SLzCA8jDxo0KM0idmWP1aGhoThz5gyaNGkCQggsLCyop/H8bgvhnFe4NsGPO6OiokRr6JpITEzEnj17oKWlBQsLC9y5cwcAK9+sRi6Xo2nTpiCEoECBAnj58iUAzetIws+HDh1K+3N2aDzjsLrx58IE7AwGg8Fg5BFiY2Nx5MgRrFu3jn6mPLgS/r5r1y7Uq1ePDoZ79uyJM2fOqHjyi42Nxdq1ayGRSGBjYwOZTJa9X+QPhi/f8PBwLF68WCT4V7aFcFKycOFC6uWE9yL94sULFVvExcVRr7p2dnYICAjIxm/zZ5MeW6T1WQDw4sUL1K9fn3pgqly5MsLCwrIm03kYvgw/f/6MwYMHixYDM/osINm7SdGiRWndadu2bYY9EOQXstIW6vj06RNatWolEoeyib56mC1+H7LaFsrlHBYWhrFjx0IikaBFixYIDg7O1PPzA2kZ1yrj6uqKCRMmUA/VDRs2pNeEIR6FInZ7e/vs+QIMRjawdOlSEEJQqVIljeMdoef1v//+G2ZmZnQD98OHDwCY+DYzTJgwgYrV7ezscOjQIZw6dQpHjx7F+fPncefOHVy/fh337t3Dmzdv4OTkBDc3N0RERKh4vldnBzc3N9jY2NCoaPy/rq6uAJhYV8jr169Rv359SCQSTJo0Cd++fUsx/bNnz1CyZElIpVK0aNFCpSyFfUxoaCjevXuHCRMmoGfPnmjdujX69OmDAwcOIDAwEACzhSbc3NwwcuRIKrDlf2rUqIFevXpBJpPhx48f6X4mqxeZg3+/f/z4QcvSwsICFy5cSPE+YTvVsWNHEEKY1+8sRKFQiNoeodgtMTGRvtu8HUJCQvDvv//SNZAWLVqk2TMsI+MkJiZi586dKFCgAAwNDbF///7czlK+Q3keGBoaitmzZ6N169aig4WlS5dGw4YNcefOHTbnTiN8+9KzZ0/ariQmJqY69w4ICMCYMWNEexn8s9hcI/0kJSVhx44doshNmn6EB2klEgmkUil0dXVRs2ZNdO7cGS9fvqTRh3iE9jxz5gwqVqwIQghGjRqlNk1+JzIyEj169AAhBL1798bXr19TvScgIID2z3369NGYLi31g9lCFeVyc3Nzw549e1C7dm3q1IgQAkNDQ7Ro0QJnz56Fv79/is9g9SLrUCdi19bWxosXL9J0v/BAtJubG1q2bEkjgnz58iVb8vynI3RcMXXqVFpOqb2z4eHhsLCwACEEw4YNS9M9jPTBO1vQ0dGhztbSIl5fsmQJbcvGjBmTI3nNy7C68WfCBOwMBoPBYOQBYmJicO7cObpJOG3aNJU0woHW3r17qfcqQggmTpwIb29vFc9ZPC9fvoShoSEIITh37lz2fpk/nG/fvmHTpk0oX748CCGYPn26ShqhLZYsWQJLS0tqiyVLlohCRSoPkO/fv08XKm/fvp19XyQPkBZbpIcnT57Azs6OiterVKmC8PBwAFA5bMBQ5dOnT5gyZQoNZ5oRewjrw/Xr12nYc168HhERAYDZIzWywhYpMXPmTBBCUKhQIQQFBWXps/MazBa/D1lhC+EmuXL/ffr0aeZBI42kZVyrTFJSEs6ePUs3DCUSCVavXk2vC/sFXsTOe+mbOHFitnwPBiOruXDhAqRSKSwsLETeb/m5G9/uvHv3Dl26dIGpqSkVr79+/RoAE3pmFGG52dvb0/b88OHDaX5GahsfQpGupaUlFixYgBYtWjCxbgrs3r2b2sLBwUE0jxYKd758+YK5c+fSeXRKffyDBw/Qv39/lChRQkUwZGRkhBo1asDNzQ0AE2gJ8fLywsCBA2FgYEDLWUdHB2XLlsXs2bMhk8mot7j0bAKyepF1KBQKjBs3DoQQGBsbY+nSpSke/hbaadWqVSCEQFdXF3PmzFG5zshePn36hKdPn6Jbt24oVaoU9Wz59OlTlbQpibMYYn78+JEmUSKQLIDgncAMHz48m3PG4FF+nx8/fozly5eLnMDwY93+/fvj6dOnKjZVKBSsXqQAXz5839q3b1+N6Xh8fX1F4+HOnTvTuQYj43h6etI1Ch0dHfTv3x+TJk3C3LlzsWrVKixZsgTLly/H7t27sWvXLmzbtg2nTp3CzZs38ejRI0RFRdHxr9Bewv+fPn0aFSpUgLa2NrUfi0ynSkJCArZt24YiRYrAysoK586d0zju58egb968QfHixWk/kVq78/TpU5w6dQrjxo3DhAkTcOTIETx79kxjekYyTk5O2Lp1KywtLWkEAr7ejBkzBo6Ojml6DqsXWY9w3XXAgAFo3bp1hp919epVFC5cGBYWFjQKApt7qxIVFYWuXbuCEIKlS5emmv7nz5+Ijo6m++W9e/fOgVzmP6ZPnw5CCIoXL57iIQ7hO719+3aR07zUDpozUobVjT8XJmBnMBgMBiMPcPHiRZQpU4aGSevcubNG79znzp1Dw4YN6WR85syZiIqKSvVv2NraghBCPVmzCaMqSUlJ2LJlC4oUKUIXT8aNG6dxQ2TLli0oV64ctcWaNWs0PptfKImPj6f3HDx4UHSN8Yv02iI1njx5gnr16jHxegaRy+WYOXMmdHV16cb36tWrRSKT1EhJvN6uXTvqyY+JF1ImK2yhCX6jZN68edDR0UHhwoXx6dOnTD83r8Js8fuQFbY4duwYCCE4ceKE6HOh5+8KFSqAEEK9irP+Wz3pGdcqc+7cOUyYMAF6enoghODvv/+m15RF7LyHs3nz5olCsDIYvyvv3r1D5cqVQQjBypUr1XpdvXv3LsqUKUPrQNGiRfH8+XMArM3JLMIx5pQpU+g4dOfOnSpeDtPL+/fvRSLdTZs2ISwsDIGBgWjXrh0T6yohfJf5yASEEKxatYqGGedxdXXF4sWLqai6WbNmCAkJAaBajocPH4aenh71flmsWDHUqlULEydORKtWrVClShVqIxbOXBW+XpiYmKBkyZLYt2+fiqAtPeXF6kXWEhUVhebNm4MQAltbW7x7905jWqGdLl++DDs7O1reV65cyYns5km+fPmCx48f48KFCzh27BhOnDiBAwcOYPPmzdi4cSNWrFiBuXPnYsaMGfjnn3/QtWtXtG3bFqVKlaLiLN676IEDBwBoFinyoeqVP2ck8/XrV+zatYvO3dJSRrwYRUtLCz4+PtmdRYaAmzdvYu7cudDT04O+vj49xKGrq4vFixfj2rVrovSsXqSfwYMHgxCCJk2aICYmRnRN2L++ffsWo0aNou1RixYtcPXqVVaeWYS7uzsKFy4MQghatWoFLy+vdD8jNfE6IQSmpqb466+/6PiYiXVVCQ0NRefOnUEIQf369eHi4kKvCaOl8LRv35720Tdu3BA9i99HlcvlePnyJaZMmQIdHR06Z+edMJQuXRpLlixR+TuMZIch/fv3R82aNUUHmCwtLWFvb69S5inNC1i9yD7U7ZNmZI4WERFBhaQjRozIiqzlSaKiojBjxgwQkhyF9L///tOYVhiRi3fe065dO9E1RuaRy+V0zt2rVy+N6YT6mn379qFEiRK07RH2A4yMwerGnwsTsDMYDAaDkQfw9fWlk/Zhw4apnOrkB1kymYyGv+M9jyUkJKT4bIVCgdevX6NgwYIghGDHjh3Z9j3yAt7e3rR858+fr3FT486dO2jcuLFos50npUHx5cuX6T1nzpzJ8vznJdJqi9RQFq9XrVqVidczgJeXl0jow3tLTwtMvJ61ZMYWmhCWPd/P6OrqwtfXN9PPzsswW/w+ZMYWiYmJmDBhAr2fF0IIFyOPHDlCr2/bti3L85+XSG1cqw5hWYeFhWH//v0wMjJS8ZIoTCeXy+Hq6pqi91EG43eD94LLj28vX76M4OBgHDhwAPb29qKQ8uXKlYNMJsvtLOcpUhKxZ3Re4ObmhqpVq1IPTRs3bqQCawD48OEDE+uqQdie8xtThBDUqVMH9vb2WL58Oezt7WFnZ0frRc2aNXHkyBGVNZCIiAhR3dLX10fjxo3x33//UVtERkbizZs3aNWqFRVssXDmyQhtsX79euzYsQN+fn4a06QFVi+ynps3b9J3fPv27RrTCefez58/R+/evel9ixYtyoGc5k2CgoIwevRoGi0oIz9mZmYoU6YMbt68qdKOCe3m6OgIQgj++ecftdcZwJUrVyCVSmFmZpbqQVm+f1+7di11kPH+/XuN6fmyZmWePpTLKyQkBK9evUK3bt1gZWUlqgtVq1bF0qVL8erVK9E9KXk8ZvVCPXwZHDx4EEZGRihfvrzo8JlyGfLeLAkhaN26NU6fPs3e+SzG3d0dZmZmIISgZcuWosOZ6SnjlES6ixYtgkKhwOHDh5lYNwX8/PzoAdbmzZvjxYsXKgc8FAoF+vfvD0IItLW10bJlS9HBA35sGh8fj1WrVqFRo0Yq7VmdOnVQpkwZaoupU6fm6Pf8E/D39xeVW/369TFixAj4+vqm6zA5qxfZj7AvzogTPH6My0e+6dy5c5blLS9y584d+h7PmzdPrbNCoXO85cuXQyKRQCqVYtmyZaLrjMwjl8tpVBtNAnZhvdi5cydKlSoFqVQKQghGjx6tNh0j/bC68WfCBOwMBoPBYOQR3N3dMXr0aDx58oR+pjy4WrRoEZ3kjxkzhoo+NSFcxOTvO336dNZnPo8hk8mwZMkSFS8ZQnuMHTtWJD7h0TQp4e9dtWoVXUB59OhRNuQ+b6HJFmmFeV7PWmQyGfbs2ZNq2yNEWbwu3PBl4vWMkxZbKC84Cjel+GvK/cyaNWsgkUggkUjQpUsXxMXFsYl+KjBb/D6os0VaFwvDwsIwfvx42j6tWLGCej0+d+4cunfvTq+dPXs2W/Kfl1A3rk3Pwq1cLsfBgweph74NGzZkRzYZjBxD+P7PmjVLtHlbokQJEELohke5cuXQr18/fPz4MUv/LiOZrBSxy2Qyaj8jIyPMnz+fPl/YZ3t7e1OxrpGRkcgDYH5GaItly5bBzMyMzpV5j4b8740aNcKBAwdURCfh4eFYsGABtWOlSpUwbdo0tZtbSUlJuHbtGszMzFCsWDE2HxcgfPc1jU3TCqsX2cOVK1egra0NExMTPHv2TDSP4BGW79u3bzFkyBBaN4YMGULtwPqG9BMaGko9SfLj0xIlSqBkyZIoWLAgLC0tUblyZZQuXRplypSBnZ0d6tWrh/r16+Off/7B3Llz8fDhQ7VRtYR2O3bsGExMTKjdxo0bpzZdfufevXuwsrKCvr4+1q9fn2I0JoVCAblcjqFDh4IQAmNjY3h7e6tNJyQiIgKfPn2Ct7c3fHx8RPWG2UIz4eHhuHr1Kpo1a4ZSpUqJxrwdOnTA3LlzERkZmWoZsnqRPoKDg2m0jWbNmuHGjRsIDw/H9+/f4enpiSFDhojs0b17d9y4cYOJ17MJmUwmErF7enpm+FlnzpyhAq7ChQuL9qHi4+Oxd+9etWJd1tcn4+npCQsLCyo2HzNmDK5du4YbN25g9+7dIkG6ubm5aO+UHx/HxcVh+PDh1LMrIQQDBw7Ejh07EBsbi58/f+L9+/fYsGEDtcXGjRtz6Rv/vri7u6Nx48ZYuHAhQkJCqHA9I+8qqxe/J/xcIy4uDmXLlqWHFYR7IQxVHBwcaNuydetW0ZoHH102ISEBV65cQcOGDWnax48f51aW8zRr166FVCpFkyZNEBgYqDZqBwCsXLkSpqamtK0RRpFle91ZA6sbfx5MwM5gMBgMRh5CuOCuPKG7fv06HXx17NgRzs7OaXrmu3fv6OJK48aNMx0ePb+Qkmf748ePU1sMHjwY3759A5D6Yu/Tp0+hra3NTp6nk9SiDGiCidezh4x6i8lKz+tswSsZYTlkZlHk27dv8PDwwIQJE0Sbglu2bMmKbOYLmC1+HzTZIjXPfECyl7iBAwfSci9cuDBsbW1haGhIPxMuRjJSRjiuFdoirYegQkJC0KdPHyp2UCdGZDD+JIT1YNOmTTQsLf9TpEgR9O/fH1euXFGJLHDo0CGRyCQt8GmdnZ2xatUqfP36lY6r8/tYSpOIfdeuXemaJ3h5ecHOzo6KGmvWrAknJyf6N5TFuq1bt6bCovQcCM3LCG1x6dIlTJ06FcbGxjQKR6lSpTBixAi4ubnRDSr+nsTERCxfvpzar1atWti8eTPtf9SNycLDw1GuXDmVg+iMrIPVi+yB9z5sYmKiNjqHUJDz5MkTDBo0SCRU5L3cMzLO+/fvqSCxSpUqePLkCWJjYxEWFkbHqT9//qRtFaBeKCWsA8oiXX7eIQxDz7yHqhIREUEjaFWvXl1jxCe+H/j8+TNq1aoFQgiKFi2Kr1+/qk0HAB8/fsSmTZvQqFEjFCpUCMbGxtDS0kLv3r1F0Q+YLX6RlJSEiIgIODg44K+//hKNbwsWLIgWLVpg165diIqKonUipXUTVi8yhpeXF4oXL07XMkqXLg0rKytYWlqKbDJlyhTIZDJabhkRdLIyT52sELEfPHiQjqdMTEywZMkSek1Yl4Ri3UmTJmXVV8gzeHl5oUaNGqJ6QAihbYuuri6srKxw+PBheg8/b46NjUXPnj2ho6ND79uwYQPCwsJU/k5MTAzmzp0LqVSKtm3bsnGtGpTX9TLSlrB68Xsi7FN45296enpYuXKl6DrjF8L+V3gof+HChSKHMPHx8dixYweaNWtG0yxfvjw3spwvuHbtGt2Xc3BwELXlcrkcLi4uIgeHhBCMHDlSlIaROVjd+HNhAnYGg8FgMPIgwskcP1CbPXs2dHV1YWpqil27dqVpwhcUFIRhw4bBwMAAEokE06dPz7AYmJFsi9jYWPTq1QuEEFSoUAHXrl1L070eHh5UpGJmZoatW7eq9ZjFyBoyK15nAvfMkx2e14WeSNmi1y+EZfjo0SNcv34dV65cwfHjx3HkyBEcOnQIDg4OWLt2LTZs2IDFixdj4sSJmDBhAvr06YMKFSrA2tpa5OVy+vTp9JmsrNMOs8Xvyfbt27Ft2zYAKZehQqHA9evXqSdF/tAZ/9O3b1/4+PgAYF570oOwzF+/fo3z58+rfK6JnTt30vJ/8OBBdmWRwcgxhP1EaGgoXrx4gevXr+PevXtwd3cXpeXbmYcPH8LIyAh6eno4duxYuvqCt2/f0rDpDRo0wKpVq+h4Kr+3Y5pE7Bs3bkxT2fB2iIyMxMWLF9GmTRu6Sct79la2lbe3N8aPHy8SwDFU38XAwEB4enrCyclJ5QCaMO2uXbuo3erUqYN9+/al6MkvMTERP378gI2NDQghIrEDI2tg9SL78Pf3R4UKFaCtrY09e/aIvNoL27OTJ0+ia9eutG506tQJT548YfOILMLd3R2FCxemgsQPHz4AEIt2+PUkhUIhWltStoHw9+PHj1MhXaVKlbB+/Xrs3r2biXVTIDAwEPXq1aMHYFxdXWl5K6/pdevWTaOQSliXHBwc0L59e7UCRzY/10xMTAx69OhBy5gQAmtrazRp0gQPHz5EUFCQKH1qc3IeVi/Sj7e3N9q0aaMiWtfX10fr1q1x8OBBUfrY2Fg4OTnh8+fPaf4bwrJ++fIl3r9/r/F6fkdZxJ7eCLPr16+HtbU1pFIpdHV1sXTpUnpN2M7xYl1dXV0QQjBjxows+w55haCgIEyfPh1169YV1Q0DAwMMHjwYV65coWn5/dO4uDj07duXptXT08Px48dT/Dtnz56l6fkDnAxVMtNOsHqRfWTGLhEREfj8+TMGDhyIQoUKgRACU1NT3L17NwtzmPcQzuNmzpwpcqrTrl07tG3bFhUrVhQ5Opo4cSJ8fX0BsD43u1i0aBEt7+HDh2P16tU4duwYevfujZo1a9JrVlZWmDNnDr0vo+J15fuYCJ7VjT8VJmBnMBgMBiMfEBkZicqVK4MQgiZNmog2QzTx9etXrF27lnreKFu2LL58+ZJTWc6zhIWFwcrKCoQQdOvWLU2D4ICAAIwfP55ucjVp0kTFazsbTKePnz9/IjAwkIaMUvY2lhnxOj8x+vHjB+7du8fCBKeBr1+/QiaTITo6GoDYHlnlef3du3cwNjbGgAED6GfMHmLGjBlDxc8Z+ZFKpahevbrolLo6Gzk7O+P69espRg3J7+SULdTBbCHmxo0bMDY2hrGxcZo8XsXGxqJGjRpo3Lgxbt26hX79+mHatGnYvHmzKF16xI2MZLy8vNCqVSvo6OjAxcUlxbR8f/3s2TM6fjp58qTatKycGX8amt7ZlLwg8tEhDA0Ncfz48TS/946OjujduzcKFiwIQggKFCiAxo0bU++9+X1TRJ2IvU+fPmk+9C2cy/n6+tKDzhYWFnj79q3ae/jxsvB+xi80CTyV68WNGzfouKlatWrYvn07Fa+nVK7//fcfFTEsW7Ysi3PPAFi9yC4iIyOpiKpJkyZ49+4dYmNjASSPm+RyOWbNmkUPLRFC0LNnT7x48SLfH1jKarLCq67QJkIP0xUrVsTGjRtpPWBi3ZTx9vZGyZIl6UG9AwcO4NOnTwCA79+/4+XLl+jcuTMIIdDW1kaTJk3w/Plzer9wfX3YsGGitaumTZti3LhxuHHjBnbs2IHx48dTW7AIHqq4uLjA1NQUWlpaGDp0KO7evasSUSi195bVi6zh69evePr0Kf79918sWrQIq1evxrt370QeoxUKBRQKBa5duwZCCNq2baty0CA1zp8/j5YtW4IQgjlz5uDOnTui5zOSEfYZjRs3pgef0srjx48xb9486OvrgxAiWhcXzmXkcjm2bt0KU1NT/Pfff1mV/TxFfHw8YmNjce7cORw+fBiOjo7w8PCg+0vAr37h58+fGDduHN1fMjExwdmzZ2k65Xect4W3tzfMzc2hpaWFhw8f5sC3yp+wepH18OUWGxsLT09PuLm54f3793j79i0ePXqEJ0+e4OHDh7hw4QLOnTuHixcvYu/evfj3338xf/58NGrUCGXKlBHtb+zatSvFv8l75GfrUr++/9q1a1GpUiWNe0bz589XOUArbMMyQnR0NNUr5HdbCMeic+bMER1i5deR+J8+ffrgyJEjovuF+6UZYdeuXfRgYH63BZD7dYORfpiAncFgMBiMfEBgYCCKFSsGbW1trF+/HkDKQtzv379j165ddMJYrFgxGk5V6FlGE2yRUTPOzs7Q19eHgYEBTp06BSDlicTHjx8xZ84cWFhYgBCC4sWLw8/PT+W+xMREBAYGYs+ePdizZw/u3bvHvE1rID4+HgcOHECrVq1w4MABREZG0muZFa/zREZGolixYiCEYNasWdRbHMBsoUxoaCjmz5+PZs2a4dChQ4iIiKDXskq87uzsLNqIHzduHL3G7JFMaGgoypYtC0IIdHR0IJFIYGlpCUNDQxQsWBAlSpRA8eLFUbx4cVSoUAFVqlSBra0tmjZtio4dO2L8+PE4f/68SFSqzkYymYx60Zg6dSru3btHrzFbJJMTtvDx8cGdO3cwYcIETJ8+HSdPnhSlZ7b4hTBU8JIlS0QCKU106dIFhQoVwsePHzVuSvE4OTnh3LlzmDZtGhYvXoyLFy9SYSjAbCFEJpNRr7ezZs0S9d+a2L9/P237jx07lmJab29vPH36FCtXrsSWLVtw+/ZtkedeZgvGn4iwzRk8eDD1oHjixIl0vdNubm4YM2YMXewvWrQo3RTJ78JGYRkfPnxYRWyVHlxdXdGwYUMQQjBw4MAU2znWJmUcX19ftGjRgnpfWrBgAeLj4wGkXK7h4eEYMWIEnZe/fv06p7Kcr2H1Iuvw8fFB6dKlQQhBrVq1MGzYMOzcuRNDhw6lZcz/jB49Gp6enplq45k9NJMVInYAOHr0KPUaV6lSJWzZskUUSYL3HsrEuprx9PSk9cLIyAhWVlbo2rUrqlatSj/X0dGBra0tXccFfnnYTUpKQqdOnUT1Z+nSpdR7H09kZCS2bNkCiUQCMzMz3Lx5M0e/559AUFAQbty4IfosI+8pqxfZgzonOk5OTqJDT2kVscfGxmLp0qV0rVZLSwvlypXDmjVrVP4eIzkyL38gY/369fR9Tglh/x0ZGYmjR4/CyMiI9vE8ypGc+XV3Fl1WldQOkgsPzm7fvp32IVpaWjhz5kyqzwGAjRs30jr15s2bLMw9A2D1IrsJDw/HkCFDUK5cOZiYmMDAwIBGA9TV1aVRVviDgepEpIaGhihXrhz27dtHn6tuPnLx4kVYWlrSSAX5Xawr/P7Pnj2Dg4MDqlevjsqVK6NatWro37+/2mjwnp6eaNiwIRwdHTPU70ZFRcHBwQHFihWjh82ZLX59//3792Po0KEwNDSEubk5rK2t0alTJ5w8eZKK/nn8/f3Rr18/nDp1KkO2uHjxIgghKFiwIFxdXVXykl/JrboRGRmJO3fuIDQ0lLZhbGybOkzAzmAwGAxGHkehUOD9+/d0cqh8olOZsLAwbNu2DeXLlwchBGZmZti/fz8SExNVJooJCQmIj4/Hixcv8PDhQ7x69UrFCwQbkP1CoVDg+fPndDJ+8eLFFNP7+/tjxowZKFGiBD1IwHsjEQ66/f39sXbtWurZnT/V27p1azg4OIj+PiN5Us0vkNeqVQuOjo4AksOW2tnZZVq8DiSLV3gBqkQiQb169bBhwwZ6ndniF+Hh4bS9qVmzJrXHnTt3sky8LhRbsQ0qzbi5uVFxuZWVFR48eAA/Pz/4+fkhPDwc4eHhCAkJQVRUFOLj4xEZGalx00TdwmJSUhKOHDlC659EIkGtWrWwevVqmobZIpnstMWTJ0/QqVMnKpjgf5gt1BMTE4O5c+dCKpWiSpUqePLkSYrpQ0JCULt2bejr66t45xGWaUxMDLZv346CBQvSzRL+p06dOli7dq3a+/IzMTExWLhwIXR0dFCpUiXcv39fY1q+zHiPyIQQtYuRPCdOnICNjQ1MTU1FY6mmTZuy/pvxxyMcxw4aNIgKsVILX67suToiIgL37t2jnhKtra3T7QEwr6JuriDsfz99+oTExMRU25CfP39i1qxZIISgTJky6fZkyUgZ3iYXL16k84xOnTqpjQKljlu3btHIdra2tiobjozUEdYBVi9yB09PT9HhbqlUSv+vp6eHSpUqicahQLJXPd5be1oR1id+Hs8Qk1kR++vXr6n4R0tLCz179qTXhN77lMW6Y8aMybLvkFfw8fFB9+7dUapUKZGnREKSo8907twZ58+fp+mFYmh+XKSlpQVLS0scPHhQ9GzhGMHPzw9169aFRCIRrdcyVMmo4IbVi6xBWbyZUppnz55BR0cn3SL2qKgofP78GStXrkT9+vWpLSZPnqw2H/kdT09PTJ48Ga9evcrQ/YmJidi5cycKFCgAfX19HDhwIGszmA9Rfj/5uhIYGIj27dvTfkS4H6vuneY/k8vlGDJkCD0s6+vry+pANsPqRdbi6OhI33u+X5BKpXS/VVdXFwULFoSBgQFMTExgbm6OIkWKoFSpUmjQoAHatm2LI0eOiA6Kq+uDbty4QcfQhQsXpk558rtYV7msYmJikJiYiISEBJU1K75tWbBgAQghMDAwSFe0RiC5H9+zZw/dwzI1NWW2+D/K3z84OBifP39GZGQkdZ7Aw9vNwcGBzsnTawsg2VFD27ZtQUhy1A8mYv9FTteNmJgY7NmzB4QQ2NnZ4eDBgwgNDVWbF4YYJmBnMBgMBiMfIJfL0ahRI+rxVhgam/8Bkge4S5cuhbW1NZ38bdy4UWVjNjw8HM7OzujWrRvq1KkjmpTq6elh+PDhqS7M5FdiY2NRt25dEJIccpwfHCufwHR1dcXw4cOpF++iRYvi7NmzKmUZERGBZcuW0XTa2tp0oZ7fiJw6dSpNz2yRzPv371G0aFEq2ly4cCHq1KmTJeJ1INnO79+/pyIhfhGeef5Wj5ubG7VH7dq1MXPmTBQpUoS2LW3bts20eL1kyZJwcHDApk2bmIg9Bdzd3VG4cGF6aMDDw0NUNsL6IJxsp7X84uLi8OHDBwwdOlRj3WAkkx22cHNzQ+vWrWFgYEA9MhQtWhRaWlpsszAFPn36hObNm4OQ5FDwbm5u9BrfJvE2cHR0pGUpDIEN/CrP8PBwzJ07VyRat7CwQIUKFWBsbMxskQKfPn1Cs2bNQAhBkyZNRLZQHlPxnkcIIWjdurWoDIX/37x5s8gWpqamsLCwgI6ODh1LMVsw/nSEfcaAAQNACEHz5s1FEZvSiru7Oxo3bgxCkkNtpyUaQn7m4MGDaNSoEfXUmprnvv/++4/20zt27EjxHkbGaNOmDZ0fBAYGAtC8icT386GhoWjatCn1Cnfr1i0AzDYZhdWL3CUwMBDLli1Dq1atULp0aVStWhUNGjTA/v37afRFnu/fv2Pjxo0YO3asKDJNWjlx4gQ6duyIw4cPw8fHh37O7JeMUMTepk0beHh4pOv+w4cPo2/fvtRpycSJE+k1Yd8vl8uxb98+unb76dOnLPsOeYWvX7/i5s2bGDZsGFq1agU7Ozu0a9cOp0+fFh0uELZbXbt2pWVauXJlnDt3jqbT1K907twZhBD89ddf2fp98jOsXuQc/Hv+7Nkzuh/Rp08f+Pv7p3ifch/w7t07LFmyhK6FzJo1K9vy/CcjdFzBv8tyuRyfP39O0/3e3t6ws7MDIQTDhg3LljwygGXLltH1pWXLltHPUxv7CMW/9vb22Z3NPAnfJrF6kXtMmDCBvscdO3bE1atX8ezZM9y7dw9PnjyBq6sr3r17B2dnZ/j5+SEgIABBQUE0QooQdXXmxo0bNMoKfyidiXXVIxyLpiSaFUZrTKtQlxevFyxYkDrfY7YQo6kcU7LFwIEDMyyaBpLbs3bt2jFbpEJ21g0A+Pz5M8aPH0/bwtKlS6NPnz50TsnsoRkmYGcwGAwGI4+jUCjw8+dPTJ06FYQQ1K1bF66urioDpFevXqFHjx50olGkSBFs2bIFISEhonSvX7/GpEmTqFdwLS0tuvnLe1GWSCTQ0tLC3LlzRflgJAubR48eDUII6tevD1dXVxWB9J07d1CjRg0YGxtTUdvFixfVeteVyWTU83qpUqUwY8YM3Lp1C/v378e4cePowu+0adNy6iv+MQg3Co2NjalXgGrVquHr168AMiZeV37XN27ciIoVK1IRnFA0zfiF0B76+vp0cte+fXt8//4dQObE61u3bkVYWBgAsFDBqZBV4cyVUS7ftWvXoly5crQfmTRpUpb8nbxEVtmCL/tjx45RD9PVqlXDlStX4OXlhatXr2L27Nm0XsycOTMrv0aewNfXlx7wa9KkCa5fv07bJh6hYLpBgwb0IJQy69ato+mqV6+OSZMmISgoCF+/fsXjx4+xbNkyaovFixfnwLf7s/Dx8UGZMmWoLa5duyayRXh4OE6cOEHLmD/AJJfLVdqhQ4cOidL16tULLi4u8PPzw82bNzF//nxqi4ULF+bwN2UwshbhuHbJkiUqHkLT85ytW7eCEIIKFSqIBIkMMZ6enrSNOXToUJruuXfvHr1n69at2ZzD/MePHz9gY2MDQgiGDh2KhIQEjXMM4SG1jh07gpBkT7xTpkzR2MczUofVi98DhUKBpKQkBAYGIjIykkYi4OE3ckNDQ+laX69evdLlAf/ixYv04CE/t9+3b58oD4zkOR9/oL9du3Z0PSolhGUXGBiIHTt2wNDQEIQQDB48mF4TbsjL5XKcPn0azs7OWfsF8iA/f/5EfHy8yjqssL/gBVpSqRQVKlQQRdlM6d1u1aoVCEmOAMLqQNbC6kXuIBSx8+u5o0aNSpOHSeUodTt27KD7SocPH862PP/p8OX28+dPrF69GkePHhV9nhJ8VBttbW14eXllaz7zGwqFAkFBQahatSoIIWjVqlWay/jevXvUmU+1atVoxEHWT6QfVi9yB+EYyd7eno7/hWP/1EjNVkLxeo0aNbBp0ya0bt2aiXUziLpojQYGBjhx4kSKtlAWrzdu3BinTp1i3r8zgbCc0mMLdTARe+bJaN0Q4u/vjxMnTtB6wuuu+DkH88SuHiZgZzAYDAYjn+Dv70/FnA0bNsTGjRvh5OSEI0eOYMmSJdDT06MCHQsLCxw7dkxFmHXr1i3Url0bRkZG9NTglClTcP/+fXz//h1JSUk4c+YMxo8fT581ffp0ej9bcEnGz8+PbgDWq1cPS5cuxd27d7Fu3Toqbud/rKys8PTpU43PWrRoEQhJDit4/PhxUWjmb9++ibxNs/C0qshkMirmlEqlKFGiBPUqxntVyij8JCcwMJAK7fT09NCwYUP4+vpmOu95EaE9dHR0YGtrSz2Dpucwwbt371C5cmVah3bu3CnyupGYmCgSsQu9MbF2KpnsErELefjwIT2AU7BgQfz9998qh6YYWSti7927NwghqFixIoKDg0XXo6Ki4ODgAIlEAolEgj179mRF9vMUHh4e9J0tXbo0OnfujAMHDmD58uUYM2YM7bvNzc2xYMECtf3IzZs3abo6depg//79KqEj4+PjsXXrVkgkElhYWNCNK8YvPD09UbJkSToGatSoERYsWIBRo0ahQ4cOooXBkSNHqoxpAeDFixe0zylTpgyWLFmC2NhYUZrY2Fhs27YNEokEJiYmuHr1ag59QwYje1A3nsrI2OfDhw90Trhp06asyFqe5OPHj+jXrx90dXXRo0ePFMX+/ObF6dOn6Rh18+bNOZXVfIO/vz+NcLN7924A6uuA8DOhh902bdqoeKhmpA9WL34P0tP2P3r0CLq6uiCEoGfPnmkWsX/79g2HDh1C//796ZqjRCLB7NmzM5SPvIy7uzssLS0xcuTINHsMFZadXC6Ho6MjFesuWrQoxXvZhrl60vo+Hj58mK7zFSpUCGfOnEnTM27fvg1zc3NoaWlhxYoVmc4vQxVWL3IHvuwePHgAa2vrDB9wDQsLQ8+ePemhg6SkJNZPpMCJEyegr68PCwuLVPca+AM5K1asgK6uLgoUKJDuqB+M1HF2dqZtjnC8kxIvX75EixYtqHOlsWPHqnVkxUgbrF7kHkKB7JQpU+ja7M6dOzPkKEyIsnj9+PHjiImJQWBgIBNOZwJ1Ql1CCC5duqQ2vbJ4vVGjRnj+/DkUCgV8fX2ZcDoTaLLF+fPn0/0sJmLPPOmtG5rw9PREy5YtaftFCIFMJsvq7OYZmICdwWAwGIx8hKenJ0qXLk0HSXwIZt4zdKFChVCrVi24u7ur3HvlyhWUKFGCbhpWq1YNb9++pSHjhSKt8PBwbN++naZdv359jn3HPwVPT0+UK1eO2oJfoOI9EZcpUwbdunWj4l1h+DsehUJBvQM0a9aMbnIJF3bDwsIwZswYSKVStGnTJs0bYfkJd3d3kUfiy5cvZ5lHPZlMhjp16lCv4n/99ReeP3+eJc/OqwjtYWNjg4sXL6oVHqpDoVDg48ePsLS0pG1b//796cEOYTsll8uxd+9eWufGjx+fHV/njya7ROwJCQm4ceMG9UhjbGyMiRMnsol7CqTXFnw/IOwP4uPj0aNHDxBCaIQU5cXjoKAgdO/eHVpaWujfv3+mF5fzIt7e3mjevLnIe4JwLFW8eHEMHz4c3759E93H22L27NnQ0dGBjo4OFi9eTMXrypuy/v7+aNCgATuAlgIfPnxA8+bNUahQIRBC6LiTb9fLly+P8ePHU1soCxK2b99ONxZHjBhBxevK6YKDg9G+fXsQQrB8+fKc+XIMxm/Oq1evqJiRzfVS5ty5c7QPX7FiBeLi4ug15f7ax8cHtra2ICQ5upaLi0uu5DkvExwcTO2xevXqFNNGRkaiU6dO1BtfrVq1cPny5RzKad6G1Ys/B6FnXW1t7TSL2JXHtpcvX8bo0aPpeG3y5Mka0+ZXwsLCqEMFIP0Cg4iICEyfPh1aWlqws7NTu7bLyDxJSUno378/nQfyh6GA1A9ELVy4kN537NixHMlvXoPVi98Xvr/gBaEZXU9atWoV3SvJDmcaeYlHjx6hQoUK0NHRwfr161UO5Ktj2LBhdGzL6kPWc/XqVerY4r///gOgusYk7BecnJzw119/0cPhDRo0oFFx2KGajMHqRe6SHSL2Gzdu0GjltWrVgqOjI9UlAEysm1mEduEPkR04cEDFXpGRkdizZw9dS2/atCmePn0q2nNltsgcwjLv06cPCEmOzpuWdkwZb29v0eEOfh2F2SLtpLVuKKMcYWjWrFk0SpGpqSmOHDnC+ngNMAE7g8FgMBj5DF9fXwwfPpyGzeY933br1g1btmyhoWqFA7Bbt26hVKlSdBJvaGiI7du34/79+3QCAogHvnFxcVi5ciUkEgmqVauGly9f5tyX/EPw9/fHhAkTULt2bRgYGEAqlaJs2bIYNmwYLl++jIiICAAQeVz4+fMnEhMTERMTAyB5E1BXVxeTJk3S+Hd27txJbf3gwYNs/U5/Ku7u7nQDvUaNGnB0dERUVFSmnunl5YXatWuDEAJDQ0N07dpVJF5nm7SaEdqjZs2a6bbHxo0b0bt3b+jp6YEQggkTJtBrwrZNLpdj9+7dIISgaNGicHJyytLvkRcQCqdbt26d6c2jhIQE3Lp1C1WqVKGLJxMmTGDi9TSQEVt8+vQJwcHB+PjxI6KiorBr1y4QQrBhwwaN98yePZuKgNmivXo+f/6MjRs3omXLlrSdIYSgRYsWWL9+PT10o7wQlZCQgEaNGlEv+Pxiu6b+YPDgwSCEoG3btgDYAqM6QkJCsGPHDrRv3x5FixaFlpYWLCws0LdvX5w7d46WsbItkpKSqCixZMmS+PLli9p0PJMmTQIhBLVr10ZiYiKzBSPfwr/7p0+fpptWvAdRNrYVIyyPNWvW0L5i69atosOyfLvj6+uLYcOG0Y3ZFi1aZNmhWoaYkSNHQktLC8OHD8ePHz+orfiN1+joaDx//hwtWrSgAqrq1avj1KlT9Bnsfc8YrF78magTsXft2pWOn1JCOGb68uULjTJECMGqVauyLc9/Ony5KRQKnD17FjExMWna5L58+TKtV4cOHcrubOZLjh8/Tst4xowZ9PPU7HPp0iV6X7du3bI7m3kSvoxZvfi9yegYid//2LdvHwwNDVGgQAE4OztnZdbyHBEREZgwYQIIIbC1tU01StCbN2/oXoW1tTWCgoLYmDaLOXfuHN1DVWcPYXm/ePECnTt3pg4yqlWrhtDQUABs/S8zsHqR+2SliP3OnTv0fnNzc9GehnAMIBROGxgYiHQLjNQR2uXBgwdUJ8Lz8+dPHDlyhNrCwsICJ06coNc12UJPTw/v37/P/i+QhxDa4vTp0/Dz88vws/z8/KgtjI2N6biK9TFpJ7W6kRIfP37E8uXLqcO+8uXL49ChQ2l22JcfYQJ2BoPBYDDyIXFxcfj69Svu37+Ply9fqkzmhIPXV69eoU6dOpBKpXSTSfhjbGyMQYMGUbG1cHLv7u6ORo0aQSKRYP/+/Wzir4aEhATExsbC1dUVMplMxUO6cHB88+ZNjBgxArVr10a1atXQo0cPjBkzBlZWVmjatCld4OLhJ423b9+mm4x79+7N/i/1hyKTyWBubg5CCMqVK4dbt25l+BQsE69nHqE9rK2t8eDBg1TLTXjdz88PW7ZsoeKqwYMH02vCNk4ul+PixYuiBReGGJlMhqJFi1IvFyEhIRl6Di9e5z2vM/F6+kmrLWJiYrBr1y6ULVsWFhYWKFy4MOrWrYuOHTvCzMwMAwYMoJEJgOS6w/c3GzZsgFQqhZaWFp4+fZoj3+tP5uXLl3j27BkeP36MhIQE2m+o6z+io6OpV/WOHTtqTMcL6P755x/q5ZKROoGBgfD29qbRa3jU9R1JSUno3LkzCCGws7NDXFyc2nR8vVi8eDEIIWjSpEn2ZJ7ByAWE73xa/s/j6emJ4sWLgxACKysruLm5ZW9G/2CEbTx/QIwQgnHjxuHkyZNISEhAQEAAHjx4gCZNmqBw4cLUIw8/PmLzhqzn4MGD1BabN29GYGAgvebj44NFixahevXqdMO1adOmuHjxIk3DbJI5WL34MxGK2Hl7ZGReGB8fj+XLl0MikaBGjRpMnJgKo0aNQtGiRfHmzZs0pf/+/TtKliwJQgjGjh0LgNWXrIIvR3t7e0ilUpQvXx6PHz8WXdPEkydP6GH0smXL4vDhw2m6j6EeVi/yHsKxAS88JYTg1atXuZirP4OgoCDUq1cPhCRH6H3//j1d9xY6RQoMDKQH8wkhmD17dm5lOU/z+fNnVKtWDXp6etizZ4/aqMpAskfpBg0a0H2LKlWqUEclTFiYeVi9yH00idh37dqVLhG7h4cH2rZtS/eTbGxsaP+flJQk6s+9vb3RqlUreliQdwLHSBuptT0+Pj7o1asXjY5WtWpVuuetbAsfHx/qEGDChAk0Ai0jbWS2HxDa4tq1ayhXrhydwzMnbuknI/b49OkTVqxYQSMHV6xYEQcOHBDtyTJUYQJ2BoPBYDAYFGURVUhICEaNGgUDAwN6ctnKygqzZs3CvHnz8M8//1APAR07dsS3b98AiEXXq1evRvXq1VMNL8wQozzhO378OCQSCbS0tEQHCPjfrayscO3aNZGXJgD4+vUrRo4cSdMzkW7KyGQy6OrqwtraGo8fP87QhgYTr2cdMpkMUqkUtWvXhre3d5ruEZZvYmIijh07RheD582bl+r9LHSXemQyGQghaNmyJeLi4tJ9PxOvZx2abMG/+9HR0Zg7d66oryhQoAAIIdDV1QUhBGXKlMG9e/don8G/9x8+fKDe8S0sLFi45hTIaFs+ZswYEEJQr149Om5Sh4+PDywsLEAIgb29fUazmS/QZIvU2vPp06fTjcJPnz5pTBccHIyaNWuCEIIBAwZkKq8MRm6TkbZLLpcjPj4ejx8/xtatW2nbZGxsjBEjRqh4Q1b+G/l97Cvc6JgzZ46of65QoQIKFy4MqVRKPytUqBCNmpWVm1YAG+cKEdqifv366NOnD3r27AljY2M6bjI0NMQ///yDhw8f0vsy+z7zNs3vwpTcrBeMjMO3Ie/evYOPjw+AjNWJx48f0xDaR44cydI85iWCg4PRvn17EEIwaNCgFKMP8Hb48eMHPWTWp08f0TVG5omPj0e1atVACEH79u3TdM/Lly9Ro0YNSCQSSCQSDB06NNMRH/MzrF78OSgfiuV/VygUIm/6Qk6cOIESJUpAIpHAxsYmxXk64xfe3t4oUaIECCFo0KABjhw5InJ0dPXqVboWxbdfHz58AMDqQlYTGRmJvn37ghCCRo0awdnZmTqpAJIFbTt37oSenh51FlatWjX4+voCYPbISli9yH00idgdHBzSVMZ8XxEdHY3r16/T/l9XV1fjIUIfHx/Mnj0bly9fzsJvwuBtERMTg7t376Jjx47UFk+ePAGg3hYbNmxINQoCI+sQ7g+GhIRg/PjxaNiwIQhJjiwodOTDyD6YeD3jMAE7g8FgMBgMFfiJ5a1bt6hAoVixYpg1axZcXFxEaV+9ekXDOfft21flGQDoYjLbMM8YV65coZu3urq6aNiwIY4cOYIDBw5g/vz5KFu2LAghqFy5Mi5evEjDOH/69Anbt2+np2sLFSoEf3//XP42vz/+/v64ffu2yBtDWmHi9awnKCgIHh4etOzS245ERkZi9uzZ0NLSQvXq1VnIukwQHByM6OjodN/HxOtZT0q22Lx5M10Qrl69OiZNmgQPDw88ePAAe/fuRYUKFWif4ejoiICAAACAi4sLevfuTft0Ozs7Gl2FkXVs3bqVCj95QRx/8I8fOwUHB2PKlCkwNDSEkZERzp8/D4CNo7KaAwcOgBACIyMj3L59GwBUDnX8+PEDDg4OKFasGAghNFQtswXjT4R/v11dXXHgwAFs3boVu3btwqZNm7Bw4UIsW7YM//77L+zt7TF27FhMnjwZ/fv3R7NmzVC/fn3o6upSYa+pqSnat2+f4rjK1dWVHmLO74JT4fffsWMHmjdvrhLZrEiRIrC1taXeiJW9V6V3HiFMf+fOHSqKYLb49f0XL14MExMTFVvo6+ujRIkSOHHihMg7O5A8x87onC44OBg9e/bE27dvVfKSH8ntesHIGMIyzMx4iJ8b/v333yrPZSTz8+dPbNy4EUZGRihTpgwuXbqUajnxcw2pVErHrYysIzExEXZ2diIHCcpeRIU2evHiBerXrw89PT16YIoPO8/mExmD1Yvfk8y04bGxsYiKisKqVatga2tLRb0zZsxQm15Yd1jf8QsPDw+UKVOGrnFYWVmhZcuWsLOzg6mpKR1bNW3aFGfOnMmWNojZIxkfHx9YW1uDkOTomePHj8f+/fsxZswY6h2adzbSqlWrFA/iZBRmi2R+h3qR3xHO+ezt7UEIwdy5c9N8v/Bd9vf3R8+ePUEIQcmSJfHu3Tu196hz+MPIPMKyDAgIoLawtrZW0Y3wCA/wMLIH5Xbr5cuXGDlyJJ1v8z82Njbo378/3QtkZA9MvJ45mICdwWAwGAyGWn7+/EkX5c3NzbFixQrq9YKfqPCTz2vXrlHvSceOHaPPSC38PCNlFAoFQkJC0Lp1a0gkEujq6mLUqFEq4bYCAgKoByArKys0btwY9vb2qFOnDg2Rampqit27dwNgmyTpIT3vLROvZz/Cd9fJyQmfP39O0303btygE/U9e/ZkV/YYamDi9ZzFycmJ9se2trY4ePCgyoZ6cHAw7TPMzc1RqVIltG3bFoULF6aeGMzMzNQKhRhpIzVBWufOnWn5Ky/w+vv7Y86cObCysgIhySHm+YNpjPSTmi26du1KbaEsxA0JCcGuXbtQqVIlKqJjEYUYfzoPHjyAtra2ikg0PT8VK1bEzJkzU+zLXVxc0KdPH+jr6+O///4DwMS6wu8fEBCAS5cuYezYsRg6dCgmT56MixcvIiQkBIB4zLtq1Spoa2vjyJEjae6Thelu3bqFRo0awcDAgG7wMlv8+v5Xr17FihUrYGdnh7Zt22Lo0KE4fPgwPn78qHLfsWPHoKWlhcOHD2dIOD1v3jx6sNzV1VUlL/mRnKwXQi5cuIB///0XMpmMChzYmDf74W0YGRlJD9V269YNACt/TXz58gUdOnQAIQQNGzZUGa8K69Dr16/p2JYQgrNnz+Z0dvMFfBn36tVLtD6r/A4/fPgQNjY2dI5duXJlOq/L721/ZmH14vdC2D97e3vDyckJb9++xbNnz3D37l3cunULFy9exIkTJ3DixAns3bsXa9aswYoVKzBlyhQ0adIEtWrVAiGEitcHDhyo9vn8+pZQEMf6j1/4+PigS5cudD+IL0/+3x49euDSpUuiOpKUlJRpUZVwfZ7ZIxlPT09UrlyZtj3KtmjUqBHmzZuHmJgYeo9CochUhI579+5h7dq1oucxcq9eMH4hLNtr166J2vX07lW/ffsWdevWBSEEo0ePRlxcHHvXc4mXL1+ievXqkEqlmDx5MhITE5ktchDlunP8+HFMnjwZWlpaIucMlpaWWLhwId69e0fHUUwjkj0w8XrmYQJ2BoPBYDAYann16hWKFSsGqVSKfv36UY9tyigUCgQGBtLNpyVLluRwTvM2Hz58gJmZGQ11FxsbC+DXQi0/+ff396ee2EuWLEm9I/Li9a1bt6ZZ7MsQw0/mkpKSNJ4YZ+L1nGXXrl0ghODu3bspphOWu42NjcjDG5ukZx6+/ZHL5WojFjDxes5z9uxZKkwcP368imdv/l+ZTIZSpUqBEILatWtT0XuhQoVQoUIFODk5AWD1JCMIPXffu3cPgOrBv+DgYOp1qXDhwpg+fTo2btwIBwcHVKtWjXqDLViwIPO+ngn4MouKilIJZ8rbIiQkBC1btqQC9X///RdHjhzByZMn0alTJxpu2MDAAJs2bRI9l8H4E5k6dSoNHaunpwcrKyuUKVMG5cqVQ4UKFVCzZk3UqFEDtWrVQosWLdC6dWu0bNkSAwYMwMKFC7Fjxw6EhISoHKgV4uzsjH/++YduCJuamjKx7v9Jy5xAOc2AAQNon3D8+PFUnyG8fuPGDXTp0oVG82LC6V8ot+XqyoNPw5dp//79aRSVtNhCGU9PTxr23MTEhNni/+REvRDy5s0bdOnShY6D161bh+DgYADMFtmJsGw3bdpE16uWL1+ei7n6M/D19aUHKps1a4bHjx+rbII/fvwYI0aMoOU6ZMiQ3MlsHoZvZzZt2gRtbW1UrVoVTk5OKu1PfHw8Tp48KVqXtbGxoWuyrJ3JGli9+P1Yt24dGjVqJJpr8GWf1gO0JiYmGDt2rEpkNOCXeD02NhalS5cWRQJm6+6/+Pr1K65fv46hQ4eicePGsLa2Ru/evbFx40bExMSIykoul2PgwIEYNGhQhg/ru7u7o2jRohgwYAD9jNkjmcDAQCxcuBDNmjWDlZUVzMzM0LZtWyxfvhze3t70nVYoFEhKSsL8+fMxYcIElQhQaSE0NBT169cHIQTjxo2jnzNbJJPT9UImk+HWrVspHnTLb6gb/wg/8/DwQFJSUqprrnFxcRgzZgwIIahQoQLCwsJS/dsKhSLD0Z3zG/Hx8fD09ASQelnFxcXh77//pgc1M3MAh5E2lNuR8PBwnD59Gv369YNEIqFrf0ZGRrC2tsbevXvx6tUr0T3K61ysbmQNTLyeNTABO4PBYDAYDLVs376dLh7euXMnxbRRUVHUo0CvXr1yKIf5g6tXr9KTsrwHdWVvunK5HAqFAtOmTYNUKsW4ceNw48YNzJw5E6tXr4abm1tuZD1PERsbi927d+PixYt0Is5P7Jh4PWf59u0b9bLQr18/Gn5ZEwqFAp8/f6YixN69e9PPGZknKioKS5cuxalTp0SLVEy8njts2LCBigV5EbryAnFSUhJiY2PRo0cPEEKwcuVKvH79Gnv27MH9+/fpwi9btMo4MTExsLKygoWFBRVEKfP161f06tWLHh5Q/tHT08OYMWNo9BtGxoiLi0PTpk1RtmxZjZuAX758Qbdu3TRuomtra6NTp05UaMhg/OlMnjyZvt8zZ87Ex48fERERgfDwcERERCA2NhaxsbFISEiAQqFQmXsAmsdRzs7OGDVqFH0+f8CWiXXVI+xrlctU+PvQoUPpnDAlsa468brQcz6zhWaUPe5pIq220IS3tzfatWvHbJECWV0vlPHw8MC0adOoZ7KiRYuiRYsWdN2E2UIzyuIeHr6/AJLXq/hrQrEIz86dO1GqVClIJBIUKVKEHtZkpIynpycsLCyoQKRPnz44efIkHB0dMWXKFBpBkxCC9u3bs4gb2cjHjx9ha2sLQgiaNm2Ks2fPwsvLC9++fcP+/fvxzz//iLweNm/enHpeVzemyghsPSsZVi9+H378+IHGjRuDEEL7V1NTU5Ew3cjICAUKFIC5uTksLS1RrFgxlC9fHnXr1kXHjh2xZcsW3Lhxgz5T+J4Lxeu8SJcJddNGdHS0xmt+fn7UcVKPHj3SLdaVyWSoWbMms0cK8OUQGhqKsLAwFedI/PXg4GC6v9q9e/d02yIpKQn79u2jtpgwYYLK32D8Ijvrhbe3N4oVKwZCCKZNm4b79+/Ta8wW6pkyZQrq169Pf9dUTvw88f79+/SQ1MmTJ1NMy6PsEI7te6jy8+dPDBw4EK1atUo1LV+O586dg46ODqRSaarOxhgZR7lOeHp64sKFC7C1tUXRokVF+xgdOnSAg4ODyp6UunWWiIgI7Ny5Ex4eHgDYGFkTfNkJ+3BheTLxetbBBOwMBoPBYDDU4uDgAIlEAltbW3z//h1JSUkqg2R+gBYcHEw9ufbp0yc3sptnuX79Og1pd/To0RTT8otU6mzAJuSZY926dZBIJKhatSocHR0RGRkJIHmiyMTrOUtCQgK2bt2KIkWKoFSpUjh//rzG95sv//v379MJvL29fU5mN88zZcoU6lHM0dGRRom4efMmqlSpwsTrOczOnTtBCIFUKsWjR49STLt48WJIpVLMmzdP5RrrMzLH8+fPUbx4cZiammLv3r0qQgVh3+Dq6opz585h1apVKFiwICQSCbS0tNCsWTM8ffo0p7Oe53B1dYWtrS309PSwZcsWjZFUAODhw4c4efIk1q1bh4IFC0JHRweEEFhbW+PSpUs5mGsGI3sQbkTY29vTsdGOHTvo58L2Sd04NqWxrbJ4ffz48Xj//j0T62YCYf8xaNAg6klJnVg3JfH6/PnzER4ezrx/ZwJ1tjA0NGQi9lwgPfVCExEREbh+/TqKFy9Oo0WYmJjA2dkZAJvHqyOl91N4LT4+nnqy/PHjBzw8PODs7Iw1a9Zg4MCBdH2LEIJRo0al6W+zuUkyHz58QJ06dagnYy0tLTpe5X86d+6MBw8eUEcXWYGw/JktkvHy8oKVlRWNbmJsbEwjk/I/tra2mDRpEr59+5bpv8fbUhgdlbVTyeRWvWCo4ubmRqPJFS1aFOfOncPr16/x5s0b+Pr6wsfHB+7u7vj06RO+fftG/01MTFSJ6ijsV4Ti9Xr16tF6x3sZZUJdVTTNE9SVz9OnT2n96dmzZ5rFujKZDNWrVwchBGZmZsweGkivLfgDIOmxBY9cLsfevXvpOIvZQkxO1AuFQgFHR0d6GEEqlaJ27dpYs2aNxnzkd54+fUr76xMnTqSYli+748eP03vUCdiF49Xbt29j8eLFqF+/Pjp37ozJkyfjw4cPANj8W5nbt2/Tcj137lyKaXlbrF+/nt7DR6JVR2pzCFYvNCMsm+DgYDg4OKB27dooWLAgLXuJRIJBgwaJ1ncB9eXOPy8qKgrbtm1D0aJFoaWlRddCWL0QI3RkuGrVKrx//150PbPidVY3xDABO4PBYDAYDLWsW7cOhBAUL14cHz9+VLkuHFTxQgV9fX04OjrmZDbzPJGRkahTpw4IIRg9ejRiYmJU0vBiLN7zbo0aNdSmY2Qcb29vGBsb0/I9efIk3r59qyJef/HiBb0nv00scpIvX76gc+fOIISgQYMGIq+4vJc3vo3y8vKiXoDMzMyohze28Zo1eHp6Uq9KNWvWxKFDh3DhwgXqeb1QoUKYOHEiE6/nEH5+fqhSpQokEglWrFihUawbHR2N7t27gxCCbt26sfqQxURGRlLPe3Z2dnQBEPjV9vAbtJGRkXj69CkaNmxIN9yrV6+Oq1ev5kre8xrR0dGYMGECCCGoU6cO9boH/OoveFskJSUhJCQELVu2pAvAhQoVwpEjR3Ir+wxGliPciJg6dSp913fu3Jkpr6DOzs4ij6Njx45FXFwcgGRhERPrZhyhXQYPHkzL+MmTJ/TzlMTrc+fOpdc8PDyYLTKBJlsIveqlFSZizxxpqRcpwZezv78/GjZsSOf6hBAEBARkS57zCnv27MGQIUPQvXt3dOjQAW3btkXDhg1hZ2cHOzs7VKpUCaVLl0aFChWoZ2QDAwORmFRLSwtDhw6lz1T33n/48AErV66kv7P1lWSCgoKwZMkSusbBl6elpSUmT56MoKAglbndli1b0i2C40lMTMSNGzewdOlS+hmzRTLe3t7o1KkTjTbD/xgbG2P48OG4d+8ePeDP4+jomOEIW7zAa8yYMfQzZotkcrpeyOVy5lFRA+7u7ihcuDD1eu/l5SW6rinijaZ3WShe5z3qm5mZwd7eHsuXL2dC3UzC2+DZs2dUrNurVy+N0et43N3daSQKCwsLrF+/Hhs2bGD2yAQZtYUyTMSeeTJri7i4OHh6etJoUbwthBEKGL/w8/NDr169oK2tjQEDBqRpLrZmzRra3ytHcxL2Ldu2bYOhoaFonMa3W7wIle2J/MLLywtdunSBtrY2hg4dqlYXAojbkunTp9NyffjwYYrP//HjB968eYNVq1Zh+fLlWLhwIZ48eYLQ0FAAzBaaSExMREhICOzt7dGkSRPRu1ymTBn89ddfuHfvHl2DBTSXpVC8vmXLFtjY2Ij2QNi6lHrCwsJoZI6JEyfC3d0dAPD582csX748057XWd34BROwMxgMBoPBUIuzszOsra1hYmKC06dPiwZIws3CTZs2Ue/rZcuWxatXr3Iju3mWuLg4TJ48mQqn3759K7outEWzZs2oiJQJ2LMemUyGIkWKgJDk0LTW1tYi8TrzvJ6z8EJdQgiaN2+O58+fIyoqSpTGw8MDgwYNogJrW1tbOuljZB3CulGuXDkUL16cLnowz+s5S2RkJBXx1K1bV+VwB4+rqyuqVasGQgh69+7NFqWygYCAALoI2KxZMzx8+JBG7+Dx9vbGv//+S9syPT091KtXDxcuXMilXOdNAgICUKNGDdpfPH36VKW/+PjxI44cOUIPDfKCh/379+dSrhmM7EPY5vORVDIjYndychKJ1ydPnqwyFxGKdYWbIvlpET4zCO3StWtXNGjQQO2GyKVLl+ghT0IIli1bRq/xdme2yBxCW3Tv3h0VK1aEi4tLhp7l7e2Ntm3bUhE7/xw2Lksbaa0Xygjf9cuXL9O+nxCCLl26qIzXGL/YsmULFeGk90dPTw9aWloYOHAgtm7dSp+p7n338/OjXnbHjh1LP2frLMkkJiYiPj4eN27cwOXLl/Hw4UMVT3B8WY0YMSLDnlwTExNx//59OqdhtlAlPDwcMpkM27dvx44dO3D58mW8efNGlIZvcxYsWABCCHr06JEh4fSJEydofWKCRFVysl7cvHkTtra2WLNmjWi9i9kiGZlMRkU+LVu2hKenZ4aew/fzMTExIvH65MmTqTCeCXUzj1Csq6enB0II+vXrh/DwcLXp3d3dqed1CwsLbNy4EV++fAHA7JFZhLbQ1dUFIcmRlsPCwtL1HCZizzzprRc8yuW7Zs0alCtXjnrWnzhxYrbl+U/mxIkT9EDx6tWrER8fT6/xzkd4Hj16BEtLS7pfrulgwebNm+m4qUePHli0aBEWL16MRo0agRCCKlWqpPuASH7g6NGj9PDx2rVrRbZISkoSzaWvXLlCy7hVq1aiaCpCm/348QP3799HrVq1UKJECdEc0dLSEi1btoSHhwcAthaizJ07dzB58mS6d8T/VK5cGQMHDoRMJqPtUkpRJYSf8+J1/iCaVCpF/fr1mXOFVJg4caJo3fvevXtYtWpVusXrrG6kDBOwMxgMBoPBUEt4eDi6du0KQgiaNm0KFxcX0WQFgEh0RQiBg4NDLuU2bxMQECAS6r5+/VpFePX333+DEAJdXV1Mnz4dAFuQyg5kMhn1JCORSKCnp4eOHTvCycmJpmHlnnN4enqiWLFidNFp5MiRuH37Ns6dO4cDBw6gQoUKNJSaubk53NzcADCBTnagXDcMDAwwevRo+Pj45HbW8h1+fn4oX7487TMePXqE79+/A0heoHr37h311mBkZJRqSEhGxvHy8qKL6uXKlUPPnj1x8OBBrFu3DgsXLoSFhQVdoDcyMkLPnj1x+/bt3M52nsTLy4t6Aa1cuTKGDBmCy5cv4+jRo9i5cydq1apFbaWvrw87Ozu1YWgZjLxCVonYv3//jhkzZtD7K1SoQA/cyuVy0ZhLKJyWSCR0EZ6RNoR2UfboCgChoaEYPny4aEOL9/L68+dP0RxFaAtCSIaFRfkVoS0CAwMzPP9TKBQIDg5G69atQUiy114Wtjl9pFYvlBG2SSdOnECDBg1oPRgwYAATr6eCl5cXPRxeoEAB1KlTB/3798fo0aMxbNgw/PPPP5g5cybmzp2L+fPnY926ddi2bRsOHjwIJyenFD3x8vj5+YkiExFCMH78eHqdrbekXAbKax1PnjyBjo5OusW6vHi9Zs2azBYZRNkWr169ouWYEeE0EySmTE7UCyA5ckevXr1ovejWrRsOHz6cpnzkJzIrYufLUVm8Pm3aNOr1Ekhuq1i9yDx8HXny5AmMjIzQpUsX+Pv7q6Rzc3MTide3bNki8tCrbA+hWJfZI20IbaGvr48qVaqoHMZJC6zPyDxprRcp8ezZM+oEy8DAAH379s1wJJa8iPBdXLVqFZ2XbdmyRe3BjWfPnqFLly4oUKAACCEYPHiw2vnEhQsX6LOWL1+Or1+/0mvOzs6oWrUqjIyMcOXKlez5Yn8gQlusXLlSpPkIDg5WSX/9+nXY2tpCIpFAS0sLc+fOVSugfvXqFaZPny6KeKatrY2qVauiTJkydD/R0tKS7d2qYdq0abTcjI2NYWFhgeXLl6scmE0NTZ7XpVIpHj9+jKioKJFzBSZi/4XwfeSdTRJC0KhRI/peV6xYEfv370+XeJ3VDfUwATuDwWAwGAyN+Pj4wMrKCoQke3KdMmUKTp48CQcHB7Rr146ePieEYP78+bmd3TyNUKhra2uLwYMH49ChQ1ixYgWaN29O7WBhYYGrV6/mdnbzNO7u7nTTtnDhwliyZAm9lh8mEL8bXl5eqFWrFq0DUqlUxdububk5nj17BoDZKDsR1o1ixYph7dq1tLzZ4njO4unpScW65cuXR+vWrbFs2TJ06dKFHojS19dH7969mWgtm/nw4QOaNWtGD9Ooa6ssLCywdetWZots5sOHD2jQoAEdv6rzIGpiYoIZM2aIoqowGHmVrBKxBwUFYfLkyahbty4IIbC2tsajR48AJI+7lIXTjRs3BiEEBw4cYOOydJJaeQUHB2P+/PnUc3HJkiVx//59eq/QFj4+PmjQoAG0tLRw9+7d7Mx2niSj767ymDgiIgLTp0+n0YyMjY3x7t27rMhiviGtthCmO3nypEi8/vfffzPxehpxc3Ojm6lt2rRBQEBAhp6jbn4oFK+bmpqid+/eTHiVCYTeQ9Mj1lUWrxcpUgSjRo1itsgEvC2ePn2aYeE0wASJWUFG6wVPbGwsTp06he7du4scOEyePJmmYbZIJrMi9oSEBJQrV46un7Rr1w6+vr70Gg9fL/g1FuFBG0ba4euGt7c3PVApJDg4mEZhlkql6Nu3L/X6qs4e6g4+MdIGbws3Nzc8ePAgQ89QKBRISkoS9RmjR48WXWekTmr1QhOJiYm4c+cOHUsZGRlh7NixokipjGSEc7RZs2bR+dmwYcOwf/9+hIWFwcXFBfv370flypWpd3BhFHL+fU5KSkJiYiKNtDJy5EhER0fT5ysUCkRERNAIXEuXLs3ZL/ubI7TFzJkzqS369euHrVu3wsvLC9euXcPq1auhr69P2/lWrVohLi4OgHid8fr162jbti21WYUKFTB06FC8evUK4eHh+Pr1K65cuYJWrVqBEILq1aszr/hqGD16NMzNzbFjxw6NkZ5SIiXxurCP+fDhA3V0wUTsYoRlIBSxE0JQunRpHDp0SMXppDLCfpfVDc0wATuDwWAwGIwU8fT0RMWKFUWCK21tbXoakBBxaHJG9uHp6Ylq1aqJbMEvtuvo6MDS0hIHDhzI7WzmC9zd3emmba1atXDs2DG24Z2LBAUFYdasWVQ4xf+UL18enTp1ol7A2eJs9iOsGzVr1mR1Ixfx8vJC3bp1qVcSoVjXyMgIffr0oQJDRvYSEhKCQ4cOoW/fvrCxsYGxsTEqVaqEHj16YPny5RkKIc/IGMHBwdi2bRu6dOkCKysraGtrw9zcHM2bN8c///wDd3d3UchTBiOvI1yEnzp1Ku0njh49mq774+Li8OLFCxrBS09Pjx4eVB5/BQQE4Nq1ayIvWIzMw9siPj4eb9++Rbdu3agt+EM5yrYIDAyEk5MTa/dyAHWeeLds2YJy5cpBV1dXtL4yZ86cXMpl3iUlz+uDBg1i85V04u7uTkWJzZo1o6JEuVxO2xnh/9MyD1cWr69cuRIBAQE4ePAgE+tmAqFYl29jOnXqJPKYK0RZvG5ubg5HR0dERkZi3759zBaZQJ0tunTpwkTsuUB664U6FAoF5s2bhyJFilBbDBs2LLuy/MciFLG3bt063SL2ZcuWoVOnTtDT04NUKsW0adPoNeGBW7lcjj179tC+/c6dO1n2HfITym2I8u/r169Hz549qVMAYfujyR5mZmZ49epV9mY8D5KaLdJ6b1BQEEaPHk3bqaFDh2ZZHvML6bUFP5aqUaMGCCEoWLAgxowZw8TrKSBcl5o3b55oH8PCwgKGhoaiPb+aNWvSA03KzhfCw8NRunRpEEJw6NAhtX+jVatW0NbWxvHjx7P5m/15CMtp/vz50NLSogfEzMzMVJyHNWvWjIrXhetK586dQ+3atelaR8OGDXHjxg18+/YNwC+7JSUl4c2bN6hatSoMDQ2xb98+AGxMC4htwR/W4Elv+URGRmL16tXUsZW2tjZ1nCCsQ8JojYULF4aLi0uG/l5eRGiPiRMn0jrQpk0bvHjxgl5TV1bCz1jdSBkmYGcwGAwGg5EqAQEBmDVrFho1agRtbW0ULFgQFhYWGDp0KE6cOJHb2ctXBAQEYNq0aTR8Ju+lrV+/frhw4UJuZy9fIVyEr127Nvbv368ykWTkHAkJCYiOjsbp06dx7NgxHDhwAF5eXlSMwDx85hzCulGjRg0cOXIEsbGxuZ2tfMnHjx+xatUqtGjRAkZGRihWrBjKlSuHHTt2ZCgELSPzxMbGIjQ0VKW/YG1UzvPlyxf4+fnRUKi8DZgtGPkN4SK8vb09CCF4+vRphp7l7++Pv/76C4QQVKtWDTKZTG26vL7g/jvg7+9PDxTUqlULHz58yO0sMQA8f/4cy5YtQ5EiRehGPO+5bPLkyTh58mRuZzHPwcTr2UNmPesK8fPzo3YxNTXFv//+i0+fPgFItt+ePXuYWDcTCMW6woNqymNeZcGVubk5Dh8+TOfyvCCR2SLjqLPFpk2bRN6L0wITsWeetNYLdQjHzuPHj6eRCAkhuHjxYrbl+U9FJpPB3NwchCRH+E3PQQEg2TnDhg0bqJfKQYMG0WtCW8jlcjg6OmLt2rVZlndGMsJ2xdfXF5s3b6bj2MGDB9Nryva4cOECjhw5kqN5zc/w5Z+YmIiYmBhs2LAB7dq1ow6w+J+MenVnpA4Tr2ccYfuxZ88edOzYUfTe8p6Ou3btioiICADqxzxhYWEoVaoUJBIJzpw5A0A8H9y0aRMVyLPDNeoR2uLgwYPo2bOnii1q166NcePGIT4+HoBYvH7lyhVUr16dtj1t2rRBSEiIxr8XFRWF1q1bgxCC3r17Z98X+wMRvruZ2a8IDAxE165d6dyhUaNG+Pz5MwDxwXMgWcTeoUMHauv84vk7LahbP+fX8tKy18rqRuowATuDwWAwGIw0kZCQgISEBLx+/Rrv379HcHAwnZwAbIE8J4mPj0d0dDRu3LiB27dv48OHD/j+/XtuZytfIpPJYGFhAUIIWrRokWqYKEbuwNqnnEcmk6FIkSIghGDAgAHscEcukpSUBIVCAVdXVwQEBDCPt7mEJo89TCyd82jqE5gtGPkZ4SK8v78/AHFdkcvlaQ5Ne/v2bZQpUwaGhoZYs2YNAFa/spL4+HgVL2PqUCgUuHLlCiwsLGBiYoIdO3YAYLbICZS9Tn/79g0eHh4YMGAAKleuLNr4rVixIuzt7VUOjbAwzVkDE69nL1khYvf29qaR1IyNjbF69WrqfYxHWaw7bty4rPoK+Qa+Ljx//hzz5s1TsZVcLsetW7dQtWpVEEJQqFAh6rBEWI+UbTF27Nic+xJ5BKEtBg8enOGoaImJiRrrBevr00Zq9SIlfvz4gVOnTlGRopGREebPn08jQDLEyGQySKVSVKpUKc1lJJyLJCQk4Pjx41Q0PWPGjFTvZ2OprEVoj8TERBw7dozaY+7cuanez9ql7EF5fevLly9YuHAhFbzxfUSpUqXQtGlT3L59m3pLZmQtTLyeeYTtdlhYGO7evYvFixdj+vTp2LRpE54+fUoP/alr4xUKBX78+IG2bduCEIKJEyeK5hXbtm1DoUKFQAhhh51SQdhmR0dH4/nz59i+fTs2btyIo0ePIigoSHRohufx48do1qwZ9S7dvn37FNev+DZs8uTJdE7JHGFlD6GhodiyZQsaNWpE53sPHz4EkGwHZRF7o0aN0KxZMxrtgJGMsO3h31v+QLGHh4fG+1jdSBtMwM5gMBgMBiNNqAv9yxaefh+YLXIPV1dXVKpUCe7u7rmdFQbjt8Ld3R2tW7dmG3i5jLr+mx3qYDAYDIYyyhuAwv7DxcWFinpSm3fExMSgRYsWIITAzs4uxfRsDpM+YmJicOPGDfj5+QFIvfxiY2Np5K6mTZvmQA4ZQpvExcXh7t276Nq1K8qUKSMSrjdu3Bjjxo3D58+fUxWR8NeZECt9MPF6zqAsYvfy8krzvQqFAtu2bQMhBHp6ejAyMsL06dPpdaEnP7lcjn379lEbLl++PEu/R36ArxPCcuWRy+XYvn079PX1oaenB2NjY8ybN49eF3oIV7bFli1bsj/zeQzeFtHR0Rm6Xzif37x5MzvckQlSqheaiI6OxvHjx2FrawtCCAwMDLBgwQJ6CJShnqCgILx//17tGlVaiImJwdKlS6GtrY0KFSrg2bNn2ZHNfEt67REVFYW5c+dCW1sbNjY2cHZ2zqacMdShPC94/Pgxli9fDisrK9Gcw9TUFP369cPdu3dVDggysg4mXs860tIWpbYOcvjwYVoHevTogSFDhqB///70s7Fjx9I1FYZm0tJfC699/PgRo0aNQoECBUAIQdu2ben1lNYyQkND6YHmbt26ZVHuGUL4OpOYmAg3NzfqVd/Q0BAvX74EoP5AFB+1liFGnYjdyMgIp0+fVpue1Y20I+EYDAaDwWAw0gAhRPQvx3GcRMKGEr8LzBa5R7Vq1TgXFxeucuXKXFJSUm5nh8H4bahcuTJ3/fp1rkyZMrmdlXyNuv5b+H8Gg8FgMDiO46RSqeh3vq948+YN99dff3Hz5s3jOC7leYdcLuf09fW5Fi1acFKplPv48SMXGBioNi0A+qzv379zHh4eXGRkJBcZGclxHMcpFIpMf6e8hEKh4K5du8YNHDiQW7JkCcdxKdsiMTGRK1CgAFenTh1OKpVyX7584b5//57q3wGQ4u8M9fDvK2+TnTt3cqNHj+Zat27NXb58mfPz8+MKFizI1ahRg9uwYQN36tQpbuvWrVyxYsU4XV1djc99+fIl17VrV87FxYWTSqVsvpkCwvc7KSmJ2uLkyZOcg4MD9+LFC47jOO7vv//mtm3bxhkZGaX52axeaKZSpUrc48ePucKFC3P379/nxo4dy8lksjTdSwjhxo0bxz148ICbOHEiJ5fLufXr13ODBw/mOI7jdHR0OLlcznFcch81ZMgQbvfu3Vy1atU4bW3tbPtOeRW+Tujo6Khck0ql3NixY7k7d+5wU6dO5RITE7kVK1ZwgwYN4jiO47S1tWn7w9ti165dXOvWrbkiRYrk3JfII/C2MDAw4Dgu7W0KbwN+jHb+/HnOx8eH09fX57S0tLgdO3Zw48ePz4Yc511SqhfqiImJ4S5fvsytWrWKc3V15fT19blp06ZxI0aM4EqVKpWdWf3jKVGiBFe1alWOEMIpFAr6HstkMi44ODjV+/X19bnmzZtzhBDuw4cP3PPnz1O9h80n0g5vDxcXFy4kJCTV9IaGhlzz5s05uVzOvX//no6zGDkDP3e/d+8eN3/+fK5jx47c8uXLuaCgIE5PT48rUKAAN3/+fO7o0aPc8ePHuZYtW3Kmpqa0v1HX77DxbcaQy+XckydPuClTpnDOzs6ckZERN2DAAG78+PFctWrVcjt7fxzKexYKhULlvdW0DsJfHzRoELd582aOEMJdvnyZO3z4MHfixAmO4zhu8eLF3NSpU7nSpUtzHMdpnF8nJCSkeD0/oLynpK6N4Pt0juO4Fy9ecCdOnODi4+O5xo0bcydPnuQIIVxSUpLKeiPH/SrbL1++0HGApaVltnyX/A5fZ7S0tLgqVapwa9as4Tp06MDFxMRwM2bM4AICAlTqnrm5OWdhYZEb2f3tEa7Nbdy4kZs1axbXuXNnrmvXrqJ0rG6kH63czgCDwWAwGAwGg/Gno6WVPKxWN9lgMPIzfN1gMBgMBoPxZ/L+/XvO39+fi4mJ4e7cucO1bt1aY1q+3/f09OSSkpK4+Ph4jYemCCFcXFwcN3fuXO7hw4fcu3fvuIoVK3LW1tbchg0buEqVKmlczM+vfPnyhQsPD+cePHjAPXz4kGvWrJnGtNra2hwAztvbm0tKSuKio6PTJEoghHAAVDYrFQoFOzSthLBMJBIJ9/nzZ+7cuXPctWvXuOvXr9OyMzc354oWLcotW7aMq1ixIlexYkX6DGFZK/P27Vtu9uzZ3MOHD7lGjRpxz54942xsbFi9UMOWLVs4mUzGjR8/nqtatSotn6wQr3McqxepUalSJe7Jkydc06ZNuXv37nGHDx/mVqxYkeqhWb78mjZtytna2nI2Njbc+PHjuaNHj3L6+vrczp07OS0tLVr2UqmUGz58ONekSRNRPWJkHt4WDRo04KpVq8ZVrVqVGzNmDOfo6MgVLFiQ27ZtGyeVSkW2GDFiBNe+fXuuZMmSuZ39P56U6oqw7ZFKpVx8fDx37tw57s6dO9zBgwc5LS0tTi6Xc8bGxpyOjg7XpEmTnMp2vkMoXndxceH09fW5qVOncsOHD2fi9XTC952XLl3ixo0bx+3duzdNwpwmTZpwderU4Z4/f85duXKFs7e3p22Spr8DgIuOjuYKFChA5yopjb/yM0eOHOGGDBnC3bx5kytWrJjGdHz5tWnThqtevTrn7OzM3b9/nxs1alSaxkYARIeZGSnDlzf/75cvX7iAgABu9erV3Js3b7igoCCatlKlSlzv3r25rl27crVr16af8/MH5bHsw4cPOZlMxo0ZM0ZlvMv4VW4AuMTERJXDTlkpXmf1Qj3C8kjt3eTF1BKJhJswYQJnbW3NvX//nnv9+jVXpUoVrlmzZlyrVq04juNEY1oeDw8P7suXL9ylS5e4T58+cbNmzeJq1qyZPV/sD0RT+UskEu7Lly/c9OnTuaioKK5q1arc6tWrORMTEw6A2j5aoVBwUqmUi4uL4yZOnMgFBwdzFhYW3MiRI7P7a+RpwsPDOWNj41TXi6ysrLh+/fpxjx8/5jw9PTkXFxeuVKlSrA9IB7yIXSqVcitXrqT/F67XsbqRfpiagMFgMBgMBoPByCRsUsdgMBgMBoPByIvUrFmTa9asGffo0SPuwoULXPXq1dV6WxUu1n/+/JnjuGQRtSaPlq6urty8efO4K1eu0EX7jx8/cp6enpyTkxP34MEDrnLlymwD5f9IJBLOzs6Oq1+/Pvfy5UvuwoULnI2NDWdqaqqSlt+09ff358LCwjiO4zgTExMVj8XKApMHDx5wd+/e5Z48ecJpaWlxBQsW5Nq3b08Fikw4LYYvu//++4979+4dt3TpUi48PJyLioriJBIJp1AouL59+3Ldu3fnWrduLbIV/16nJF63t7fnXrx4weno6HAxMTFc06ZNucePH3PVqlVjthDw5MkTbtKkSRzHJbc5EyZM4MqXL8+dPn06Q+J1Vi8yRsWKFbl79+5xS5cupYLC1BCWs4mJCTdgwADu58+fnL29Pbdv3z6uevXq3NixY1UiQfLidXaAIOsQlqORkRHXt29fLioqipsyZQp38OBBrlatWtyIESNUbMGL11lfnfUo9xPe3t6cl5cX9++//3JeXl5ceHg4x3HJ4rnGjRtz/fr149q2bcuVK1cuN7OdZ9EkXmee1zNOdHQ0d/DgQS44OJhzcHDgatWqxZmbm2tML5fLOUIIFxsby3Fcsndc/pCTEL7uyGQy7v79+9yFCxe40NBQrkKFClyTJk24iRMnMqGuGn78+MFt376d4ziO27t3L1ezZk3OzMxMbVpeJPr161faFv38+ZNeU0a5v1Y3Bmb2UI+wXL5//869fPmSW7t2Lefr6yuKdNa2bVuuVq1a3IwZMzgTExOVsuTHqsLnvXjxgnNwcOAuXLjAvX37ltu9ezerG0pIpVLu58+f3MaNG7ly5cpx7du35wwNDTmOy7x4ndWL7IGfh0skEq5Tp05cp06dRNf5Mk1MTOTCwsK4d+/ecffv3+fev3/PPX36lIuPj6fej93d3blHjx5xxsbGzA4a4Mv69u3bXGhoKKenp8d1796ds7Gx4ThOfZ/AH9RISEjgFi1axL169YqTSqVc48aNRYfZNM31WL1QT2BgIHf79m2uU6dOXLFixVKcK2tpaXEdO3bkihQpwvn5+XFHjhzhunTporFcmS3Uo3zAWyhKz866kZdhAnYGg8FgMBgMBoPBYDAYDAaDwWCoUKNGDe7vv//mHj9+zG3fvp0rV64cN3bsWE5XV5fjuF+hTflF+sWLF3P379/nOI7jhgwZIgo5yy/gf/v2jZs9ezZ3/fp1rmDBgtyePXu4IkWKcBEREZyDgwP34MEDbsKECdypU6e4woUL5/A3/n2pW7cuN3ToUCo2sLa25kaPHk1tkZiYyGlra9ONpXXr1nHv3r3jOI7jhg0bJhLuCkW3V65c4W7evMlt27ZN5W/euHGDK1++PHf8+HGucuXKTDAq4OfPn9zMmTO5ixcvcj9+/OAiIyM5Qgino6PDTZgwgbOzs+P69OlD0wvLLqVNPmXxert27bjIyEju/v37XJMmTZiIXYnGjRtzY8eO5Xbs2MFt2bKFk0gkXIkSJbhz586lW7zO6kXmqFq1Knf8+HFaFryokI+4UaBAgRTvl0qlXJs2bbimTZtyt27d4p4+fcqNHTtWY3phmef3zfO0AoCLiYmh4itNSKVSrnXr1lzt2rW5p0+fci9evOBGjBihMT0r+6xF+D4HBARwd+7c4TZs2MCFhoZy3759o+n69+/P1alTh5syZYrKvcrtEqsjGUedeH3atGnM83omKVCgANe1a1fu+fPnnKurK3f//n2uV69easc2ADgtLS3O3d2d8/T05DiOo3MM5feaEMI9f/6cmzhxIufu7s7Fx8dzHMdxLi4u3JkzZzhfX19u48aNrD4oYWBgwA0ePJjz9fXlXrx4wT1+/Jj766+/NArWJBIJ5+PjQw8uFy1alOM4VXvwaQFwMpmMe/r0Kefl5cV9//6da9q0KVexYkWuXr16TDithHIbvnHjRu7x48fchQsX6GfGxsZcjRo1uP79+3P9+/en41yFQqFRGMd//vz5c27jxo30eXv37uV0dXW5LVu2MFsosXDhQm7t2rWcjY0Nl5CQwHXv3p0rUKAA9/jxY27q1KkZEq+zepG9EEJU5srfv3/n5HI59/DhQ+79+/fcgwcPuHfv3nGRkZEcxyX3SSVLlqSRobp06cJxXPIhW4Zm+Hbq4cOHXFxcHGdoaMj9/fffGucawgMEe/fu5a5cucLFxcVxOjo63D///EP7Ev7ZX79+5dzc3Dh/f3+uSpUqXIkSJTgLCwu2FqJEXFwcd+jQIW7RokXclClTuPXr16e4PpGUlMQVLlyYK1euHOfn58dFRERwcrlcYzRtZgvNCNtn5cPeHJc9dUNTv5An1qXAYDAYDAaDwWAwGAwGg8FgMBgMhgCFQkH/v2zZMhBCQAjBunXr4OPjo5J+yZIlNE3ZsmVx/vx5tc8dOXIkCCEwNzfHf//9J7p269YtFClSBNbW1vD398/Kr/NHI7TF0qVLaTmvXr0aMplMlPbHjx+wt7enaRo3bowXL17Q63K5nP7/33//RZUqVWjakiVLok6dOrC3t0f79u1RuXJlEEJgaWlJ/44wL/mdIUOG0LKzsbHBqFGj8Pr1a1EaYXmnhpOTExo3bgypVIoCBQpg0KBB+P79O0JDQ9G2bVsQQmBiYgJXV9d0PzsvIvz+kydPprYoXrw4/f/gwYPx48ePdD2L1YusgS+TW7duYenSpQCApKSkVO9bsWIFCCHQ1tbG27dvM/W3GWIOHDiATZs2AUibLWbPng1CCAwMDODp6Znd2cv38O9tXFwcwsPDMW3aNDRt2pS2RXz71r17d5w/f15kQ2EbJnz/nZ2d1X7OSCa1ehAdHY3jx4+jevXqtC4sXLiQjVGziLCwMPTo0QOEENSrV0/0vvLw721ISAhGjhwJbW1taGlpYdWqVQBUbfjy5UuULl0ahBDY2dlh8uTJ2L17NyZNmgSJRELnMgxVQkND0aVLFxBCUL9+fTreBH7ZgS9vPz8/tGzZEoQQmJqa4tSpU6LrPImJifj48SN69eqFihUritozQgisra2xZMkSlb/DAIKDgzF16lR06NBBVGalSpVC/fr1cffuXQQEBIju0VR+ws+fPXuG3r170+f16NGD1o0JEyak+qz8hqenJ0xNTUEIQc2aNXH48GFcvXoVNWvWBCEEBQsWxJgxY0T1JTVYvcha1PXlMTExCAsLw6FDh7Bs2TLUrVsXVlZWonKuU6cOBg8ejP3798PZ2Rlfv35V+1xW/qnTrl072p4AQEJCgkoavjwTExNx8OBB1KlTh9pi//79orTfvn3DxYsXUbZsWRQoUACEEBQpUgQ1a9aEm5ub6HmM5LnDvHnzQAhB7dq18erVq1TvCQoKQvny5UEIQdu2bTWWJ7NF5sjKuqGunL9+/aqy3vUn24MJ2BkMBoPBYDAYDAaDwWAwGAwGg6GCcOF7xowZdBG9ZcuWmDt3Ls6ePYt///0XPXv2pNf09PSwePFitc9zcXFBkSJFoK2tjdu3b9O/wW8Kuri4wMjICIQQep2RjNAWM2fOpOVdt25dTJw4EVu3bsWYMWPQokUL0UGCnTt30vsSExPp/8ePHy/awB04cCCuXbuGmJgYAMmbYK9fv0arVq1ACEGLFi3w5cuXnPvCvzHKhzvGjh2LsLAwxMbGqlxPK7x4XUtLCwUKFMDff/9NN9EVCgW8vb3p5hcTsf9C+P0nTZokeqe7dOlC3+eUbCJ8BqsXWYuTkxMIITA0NMTHjx9TTMvbaNeuXSCEoECBAnj8+LHatHx7+PnzZzx//hyrV6/GsWPHcO/ePZXnMZK5efMmPTwWHBycYlq+7P79919qv5SEWWkRzDHUoywwcHZ2hr29PRXG8T9Vq1ZF9+7d4ebmpiKwEiIs80uXLqFGjRoYOXKk2uv5HWHb/+zZM0RFRQH4VUbqxOsLFixIs3id1Yu04e/vDxsbGxBC0Lx5c7x+/Zr2uXz9+PTpE5YsWYJSpUrRdszX11flWZ8+faJjpc6dO+PNmze0vGNiYrBgwQJoaWmhZ8+eOfcF/zD8/PzoIb7mzZvjxYsXiI6OFqXx9fXF8OHDYWZmBkIIKlWqhE+fPqk8Kzg4GHv37kW1atVACKEi6SpVqqBOnTooXrw4pFIpCCGYMmVKTn3FPwZ/f39YWlqCEAJdXV0ULFgQQ4cOxZ07d1TEaim1K8ri9T59+tC+ZenSpUhISMDevXuZiD0FZDIZihQpAkIIypcvT9uijIjXWb3IHmJjYxESEoJjx45h6dKlsLW1pfWHL+M6deqgV69ecHR0xOvXr/Hz50/RM5QP6jBSRy6XIykpCfXr1wchRGP/yo+5fv78iZ07d8LOzo62Q//++68obWhoKNasWYPChQuDEIIKFSrAysoK1tbWIISgWLFi7GCtGh4+fEjHU3PmzEFERITadLwteOchhBD069dPbXvPbJFxsrpu8Gu5CQkJiIiIwPLly9GnTx+YmZnB2toazZs3x6JFi+Dn5yd67p8GE7AzGAwGg8FgMBgMBoPBYDAYDAZDLcKF7yVLlsDExARaWlp0M10osLKwsMD8+fNpeuXNv1u3blHPcUFBQQCSNwr5v3Hv3j0ULlwYFStWxOfPn3Pg2/1ZCG2xdOlSmJub0w1ubW1tkS1q166NrVu30vTCDdphw4bRzVw9PT2RzYBfmyMKhQLXr19HsWLFUKJECZEn9/yOug2hjIo8nJycYGtrCy0tLWhra6N79+70mtBDk1DEXqRIEbx79y5Dfy+vIbTFxIkTaR0YPXo0PDw80nwvqxdZz4MHD1CmTBno6elhxYoVVJSoDt4WmzZton3MlStXVNLx/cqbN2/QtGlTuvFOCIGxsTFmzJhB0zLh1S9u3ryJUqVKwdDQEBs2bEBcXJzGtPy7Pn36dGhra8PAwECjJz9hP69QKCCTyeDn5wdvb2/Ex8eLrjF+oTw+On/+PGbNmgU9PT0qtNLT00OxYsUwe/ZsvHnzhpZnWoTRly5dQvv27WndGD9+vNp0DKB169aoWrUqHB0dERkZCQCIiorCsWPHMux5ndWL9OHl5YVixYqBEILq1atj+vTpePXqFV69eoW7d++iQ4cONLpKwYIFcfnyZQCq3nEfPnwIU1NTlCpVCnfu3KHX+X/3799P5yvfv3/P+S/6h+Dp6UntUbVqVYwZMwb37t3DlStXcOzYMVSrVg3Gxsb0UCUfLUU4pvLx8cHUqVNRsmRJmq5du3Y4ceIErWeurq7YtGkTbfM2btyYG1/3t8bV1RVFixbF/Pnz6XvPk16R7fPnz9GrVy/aLyxevJjWncTERI0idibmTUYmk1ERp0QiQYECBTBixIh0iTdZvchaXrx4gVOnTmHRokWoV6+eKAoXIQQNGzZEz549ceLECdy7d0/lXebbLNYXZ56VK1eCkOTIJwEBAbRMhWt9cXFxWLx4MWxtbamN5s6dS4XWfDpHR0ca9WDEiBH48eMHPn/+jDdv3qBZs2YghGDYsGGIi4tjtlNiy5YttGy3bNlCHSwAyeXLl1dYWBg9RFOsWDE8fPgQgOohDmaLzJMVdYOfm4eHh2Pt2rVo3rw5CCF0LVj4U7FixT/aMz4TsDMYDAaDwWAwGAwGg8FgMBgMBkMjQkHC6dOnMXr0aCq25RfKhwwZgkOHDqm9h+fFixcoUKAArKys8P79e9G1xMREKs7t0KGDRo9B+R1huV68eBFTpkyBgYEB9PX1oaurCwMDA8yaNQu3bt2i6YTi9TFjxtDNjhIlSmDz5s30mroNjo8fP6JEiRLUSx/jF8JNusxs2MlkMrRv3x4WFhYghKB+/fpUeC2MUAAki9g7depED5BERESwzUKI64W9vT1tl+zt7VXaGh7h+87qRfYQFRWFKVOmgBACGxsbPHnyRG06/h3++PEjKlasSD28hYSEqE33/PlzGBoaghCC0qVLo06dOqhXrx7dxJ09e3b2frE/kIiICBphoHr16hoPXvDvu6+vLz0cUKNGjRQF79HR0ZgzZw7++usv6OnpoVChQtDX10ePHj2wfft2mo61VWLCw8Nx/fp1DBkyBLq6unRMZWhoiJIlS2LHjh149uyZ6B5NQgRl8To/niKE0AMhzKuuKsHBwVSIW716dZw6dQqfP3/G6dOnqYgkveJ1HlYv0oeXlxf1HEoIgY6ODnR1dUXiHCMjIxw+fFh0uA/4VYazZs0CIQRt2rSh14R1Zs+ePSAkOXqRUNTFUMXLy0sUCYK3g9AeJiYmuH//PgCxMM7T0xPDhw+Hubk5Fcdt2LCBCn2F4q2YmBjMmzcPWlpaaNeuHTtYoAblw38ZEaQ9ePAA3bp1U/HqKozOJZfLNYrYGcm4u7tTMWfRokWxatUqlYMymmD1IutZu3atSLhpa2uLAQMG4NixY3j69CkAqHhZB5LHX8Cv9/9P9VT8O3Ht2jUUKlQIhBBs3rxZFCUiISEBnz59wl9//UUPgfBz6G/fvomeExgYSOfY48aNUxkjbdu2DYQQNG7cmI2fBAjbn4ULF4rK+PXr1/RaREQEnJyc6HjL0NAQAwcOVBspjdkia8hs3eDbp8+fP6Nr1670gCEhBLVq1cKoUaPg4OCAMWPGoFatWiCEoESJEip9y58CE7AzGAwGg8FgMBgMBoPBYDAYDAYjRZQ3Zb28vPDw4UPcvXsXLi4uKablkclkKFOmDBUY+vj44OvXr3BxcUGHDh2oZ2levPunLbbnFMrlGxQUhPfv3+P9+/cqAiuhMGH+/PnUa5yVlRV27dpFrylv3PJln5CQQMPYMqFu9hEREYEzZ86gVatWIIRAX18fjx49AqBaD7y8vNC8eXPs3bs3N7L62yJ8hydPnkw39iZMmIDAwEBRWmGZsnqRvQQFBaFhw4YghKBp06Zwd3cXec3l///582f8888/MDAwACEEvXr1QlRUlMrzXFxcqPinR48eePr0KWJjY/Hp0yds2bIFEokE5ubmGj2G52cCAwNpGPNmzZrh/fv3oj6Ct4W/vz/atm1L26IZM2aIDtPw/3758gVHjx5FgwYNRAKiAgUKiH5nXvFVkcvlaNu2rYrnvFatWmHDhg0qbVZKwriUxOsrVqzAqVOn1AoSmS2SkclkMDMzowdtJkyYQL1SGhgYYMGCBWkSr7N6kXkCAgIwfvx41KhRQ1RWZmZmqFy5Mh48eJDi/UuXLgUhBF26dEF8fLyo3rx48QLly5cHIQSLFi3K5m+SNwgKCsL06dNRp04dkT2sra3Rpk0buLu7AxC/v76+vhg1ahStU8WLF8fVq1cRHR1N0yi/72fPnqXPfvPmTc58uT+IzLYPCQkJcHR0hJ6eHhUsrly5UnSdRy6XY9++fbRvWr58eab+dl7E3d2dCg1r1qyJY8eOUe/pmmD1IvtYsWIFdu3ahVevXokO0vD/CqOeODo6YtKkSahQoQK6dOmC6dOnq4hEGRln8eLF9J0dOXIk1q5diwMHDmD48OGwtrYW9SPbt28XzUF4e23fvh2EENSpU4deF6Y7ePAgFeiGhIT8kR6mswvhOzxz5kxRn92rVy+MHj0arVq1opEKDAwM0LhxYzx//lzt85gtso6M1g2+TD9+/Cjyzk4IwbZt26indSDZ/i4uLtQ7e7du3f7Iw09MwM5gMBgMBoPBYDAYDAaDwWAwGIw0k9JGemqb7Lt27aKL7tWrV0flypXpor2ZmRkV7Qo3QJRD2abl7+QX0loOx44dg5WVFfWYuHXrVnotpc2mq1evUq+wO3fuzHR+GaoIPff5+PigV69eIISgcOHCcHJyUntPSoKH/Ixw43bixIkghKBTp07UA5UyrF7kDN7e3ihVqhQIIWjUqBFOnDgh8vT24cMH9OvXD5aWllTo+fbtW9EzeI+UI0aMACHJkTo+f/4sSuPv748KFSqAEIILFy7kyHf70/D29kbJkiVBCEGDBg1w4MABKs6NiIjAf//9h/r169ODBKVLlxaJFPn2xsfHBxMmTKCH0vT19VGhQgXMnz8fR48exe7duzF69GgqnJ4/f36ufeffFVdXVxpJoH///tiyZYvoelqEICmJ11etWkWv7d69m4nYU0AoYi9YsCB9p5csWQI/P79U72f1IuuIjY1FSEgIduzYgQ0bNmDp0qW4c+cOvnz5AkD9O8t/dujQIUgkEpQuXRqPHj2iY6WHDx/SQzlt2rTBhw8fAGTMk3V+4+fPn4iMjMTx48dx+PBh7Ny5E+7u7lQUJRx3hYWFYd68eShatCgVtT1+/Fjjs3m7vX//HkZGRiCE4Pr169n6ffIzt2/fxsyZM+lhmr///pteU/bEvn37dtjY2GDPnj0qEQ8Y4j6jRo0aOHLkiMaoDqxeZA+aBOfCzzVF6BIeKqtWrRrCwsIAsD4howjLbc6cOSDkV/Qf5cNoTZs2xeXLlzU+a/r06SCEoGPHjirPjouLw9SpU0EIwbBhw7LvC/3BCN/5VatWoWzZshpt0a1bNxqpQB3MFpknM3WDt2VQUBBKly4NQgi0tbVRpkwZ3Lt3T/R3+D5coVDA0dERBgYGqFixosqB6D8BJmBnMBgMBoPBYDAYDAaDwWAwGAxGtiIUnGzfvh0WFhbQ19cHIQTm5uaoX78+3r9/D+DXQr+6jckfP35QEQvbZEwb4eHh6N+/P90gEXqM1lSGvGfkOXPmQEdHB7q6urh582ZOZTlPkV6BoJubG/Wc1LdvX3z9+jWbcpY3EbYbe/bswaVLl9SmY/UiZ/Hw8KAidjMzM5QpUwb9+/dHhw4dRCGzdXV1cfXqVQCqdoiKioKtrS20tbVx+PBhlcNNSUlJ1DP+xYsXc/YL/kF4eHjQjXBjY2NYWlqiY8eOqF27NhXv8td4T/ZJSUm0nD08PNC9e3dqNxMTE6xYsULFQ2hUVBQ2b95MveLfvXs3x7/r746Hhwdu374t8hCakbHNxYsX0aZNG2q7devWiZ4nl8uxd+9eJmJPAXd3d5iamoIQAj09PXTv3p2OSwHN5cR/zupF9pNa3YiKikKjRo1ACEGZMmXQvn17jBw5Erq6uiCEoG7dujhz5kyKInhG2uHLjB93nTlzhh5KLl68eKoe8/n79u7dC21tbRgYGLDoKdmAsN58//4dhw4dosLo0aNHq02XlJQEX19fxMTE5Ghe/yRkMhmKFCkCQgh69+6tEjWI1YucRbkNF/4+ZswYEEKgo6ODhQsX4tq1a/D398fff/9NDzuzdz1zCOffvGfpwoULw9TUFFWrVkWrVq1w/vx5eHt703Tq+t29e/dCR0cHLVq0QEhIiOj558+fpwc/hRHTGGKEtrh79y5WrlwJa2trWFpaonz58qhXrx6OHTvGbJFDZKRu8AfHgoODUaVKFXootl69enj58iUAzeNWZ2dnGnHl+PHj2fjNsgcmYGcwGAwGg8FgMBgMBoPBYDAYDEa2I9wYf/PmDW7evImtW7fixYsX1PMVIF6MT0hIwNu3b7Fv3z6MGzcOVapUgYWFBVxcXHI0738y586dE4Ws5dEkBOI/f/r0KfXC27p16xzJa15DWMYeHh5ISkpKVSQVHx+PRYsWUQGWTCbL7mzmOdQdflEud1Yvch4fHx907NiReloX/ujp6cHU1BR37tzReP/r16+pyJ33GCesU7du3aLPS00glN/x9fVF9+7d6aECZS9wNWvWpMJbuVxO339PT0+0a9eOCt3NzMxw48YNkedRoSdXPz8/VK9eHYQQbNq0KWe/5B9IRkS0b9++RZMmTaj9unfvTq/FxcXR//MidqlUyjwmasDNzY2K2KtUqYKTJ0+KIp4ow9uL1Yvch+/3v3//jkaNGtHDGvxPnz59cO3aNZpO+V8eoZ2YqD11+DKKiopCzZo16cHks2fPpnifcKz1119/gRCCQoUKiaKzMLKHxMRE7N27FwUKFICWlha2bduW21n6Y3F3d0fTpk3h5uYm+pzVi9+HtWvXUvH6sWPHRAcGAcDGxgYlS5aEr69vLuUw76Dcn3769Am+vr74/v17igcMhNy9e5d6x582bRru37+Pu3fvYvny5fTgzfDhw7PtO+QVlNczvn//jtDQUHz79k00zkkJZousIz11g0/79etXtG7dmrZfDRo0oBHqUjqI+eHDB5ibm4MQghMnTmTH18lWmICdwWAwGAwGg8FgMBgMBoPBYDAYOQK/maJu0Z0XWr18+RKOjo4YNGgQbGxsRGFWCxUqhMqVK2PRokUspHkqJCUlIT4+Hp07dwYhBNWrV4ezszO9pukeAPDy8kKJEiVACIG1tTXOnDkDACplrmxH5hVfPfv27cOYMWPo76mJotzc3GBsbAxCCJYvX642TWobwcwW6smOesHKOu2Ehobi0qVLGDBgAGrUqIGyZcuiVatWWLp0Kdzd3QForh9fvnyBjY0NDAwMcPjwYVG5P3/+HJUrVwYhBKNGjcqR7/Kn8/XrV9y7dw8jR45Ey5Yt0aBBA/Ts2ROOjo5UyCM8IODn54c+ffrQtqlIkSJ49+5dqn+nZ8+eIISgX79+ag+XMDLPnj170LFjR+jr60NfX1/kYV0oVJHL5di3bx/1EP7hw4fcyO5vjbu7O8zMzEAIQY0aNXDkyJEUReysXvw+8O96ZGQkDh8+jOnTp/+vvfsOi+Jq2wB+z+7SRRBRaSJVARELGsGOGgs2bIlGY0tssURjTPe1pBl8o4maYhJbjK+9F+xiRcSCCkhRKYqoKEpvu5zvD7+dgICaqCzo/buuXFl3zgxn5pmZM7PznDNi1qxZYvny5SI7O/uxbUtwcLCYNWuW6Nevnxg/fnxFVvulMHnyZCFJkqhevbqYOXOmSEtLK7ds8Tj897//FZIkCT09PTF9+vRS0+np5efni4yMjKcqm5iYKLp27Sqfg+jf094bl3Ue53GhW2lpaeL1118XSqVSzJ49u8T1UG5urlCr1aJVq1ZCkiS+Ues5edx++rT3y4sXLy7xNiiVSiX/Hjhs2DC5XPFjrqzjj/fn5WMsKt4/OTZycnLEZ599JszNzYUkSaJhw4YiLCzsicsRQoivv/5abncefQtUVaACEREREREREREREdELVFRUBIVCAYVCAQCQJAkAoFarcfLkSaSmpmLjxo1ITEzEqVOn5PlsbW3h7e2N119/HU2bNkXTpk3h6OgIIYS8DCqbQqGAWq1GdHQ0AMDJyQnu7u7ytEdpYxQfH4/Ro0cjOTkZ+vr68PX1Rdu2bQEAenp6AIA7d+7gzJkzOHjwIHJzc9G4cWN06dIFjo6O0Gg0UCqVFbSWlV9cXByWLFmCsLAweHh4YNKkSeXuu9r9WqVSwdDQEBkZGcjPzy+3HMBY/FMv4rjQzsft/WS1atVCr1690KtXL2RkZECtVsPCwkLepx93bjc3N4enpyciIiLw7bffAgCsrKyQmpqKDz/8ELdu3cLrr7+OyZMnA/g7dlS2mjVrws/PD35+figoKEBRUREMDQ3l6UIIefvdv38fS5YsQXBwMDIyMmBpaYmjR4/Czc3tsds5MzMTcXFx8vJ4fLwY7777Ljp37owdO3bgs88+w08//YQHDx5g1apVUKlU8rlJqVRi+PDhqFGjBiwsLODg4KDrqlc67u7uOHbsGNq2bYsLFy7gxx9/hK2tLTp06FDq3MTjonLR7uumpqZ4++23yyyTnZ0NSZJw/PhxXLx4EYcPH8bZs2dx584dAJDbIT8/PwwcOLAiq19lZWdnIzIyEgBgb2+PPn36oEaNGmWWLd7GBwUFYePGjQAAIyMjtG7dGsDDGDzueor3gKWp1WocO3YMKSkpGDp06BO3kb29Pdq1a4d9+/Zh3bp1+OSTT9C4ceMyyzIWj6dSPUy3e3QbvYjjgv6Z69ev4+jRo1AqlWjdurUcK7VaDUNDQ6Snp+P+/fuwsbFBgwYNdFzbl8Pj9tMn3ZNpr5smTJgAY2Nj/Pbbb4iPj0d+fj78/PzQoUMHfPTRRwCAvLw8GBoayvNoj7+0tDRcvHgRtra2cHV15b1gORiLivc0x4Z2GyUmJuLAgQNIT0+Hnp4efvnlFzRv3rzcNlc7X3p6Ok6fPg0AMDExgZmZ2YtZmReICexERERERERERERE9Fxpf0TX/siu/VG+sLAQZ86cwbVr17B582YkJyfLP7IDgI2NDZo1a4Z+/frByckJ7du3h7m5OYyMjEotnwk/T5adnY2srCzo6emhX79+0NPTg1qtlh/gahVP0p04caIcEycnJ8ycORO1a9eWy+7ZswcrV67EunXr5O8UCgXs7e2xY8cONGzY8JV/QFVcjRo10KhRI4SFhWHfvn3o0qVLuQ/JtQ+kzp8/LydTPfrgqfiDK8bi33mex0VRUREkSYIkSfI5KTo6Gnfu3EFRURE8PT1hbGwMY2NjxuL/afdhU1PTUt89rnOHvr4+fv75Z8TExOD8+fMYO3Ys8vLy5DI9e/bEtGnTSnVIKO9hLxOv/t4Genp68rYoHgtt4trZs2exZcsWpKamwsLCAkFBQXBzcys3sU37fXJystwJx8nJqcTy6fnQbk8HBweMHz8elpaWGDNmDFavXg0HBwd8+eWXJWKkVCrRt29fHda48nNzc8OxY8fQsWNH5OXlwdHRscQ+y+Oicirr3iA3NxeFhYU4ePAgbty4ge3btyMxMRFXrlyRy7i7u6NVq1bo0KEDfHx84ODgUOK6lx4vNDQUhw4dAgCMHj0aTZs2LbNc8X08LCwMf/75J0JDQwEAEyZMQJ8+feRy2jgeOHAAiYmJqFatGqysrNC+ffsndnZ7FUVERGDAgAHIzc1FmzZtHts5SXsecnZ2lrflgwcPyi3PWDxeeev+vI+L4orfT7zq2/9xtOcSQ0ND+Z5DCCHf740ZMwbR0dFo1qwZqlevrsuqEh7et2n37ZEjR6Jr164oLCxEZmYm7O3tS8RI2+H27t27uHr1KkJCQnDkyBFcvnwZV65cgUqlQmRkJFxdXXW1OlUaY6Eb2vP6L7/8grCwMADA0qVL0bZt28f+nqGd76effsL27dsBAOPHj4eLi0uJclWhrWACOxERERERERERERE9F48mrN+7dw83b97E2bNncejQIURGRiI8PFwub2NjgyZNmqBfv35wcHBAz549oa+vD2Nj4xLLfTTxk8nrT6eoqAg5OTkoLCzE9evXAaDcJN0rV65g7NixCA0NRV5eHiwtLbF27VrUr19fLrtz507MmTMHZ8+eRbVq1dCnTx/k5OQgMTER586dQ8+ePXHo0CE4OjpW6HpWZpaWlggICMCePXuwa9cu+Pj44IMPPijVKUMrJSUFBw8ehFKphEajgY2NTYnp2gdPjMW/97yOC41GIyf6Xrt2DYcOHcKff/6JqKgopKWlAXiYCNmiRQt88cUXcHV15Sjt+HsfLv4Q9UmJ/dpkanNzcxw6dAiTJk1CdHQ0Lly4gAYNGqBnz56YMmUKatWqVerhbPFE7KNHjyI7Oxvdu3evEg9xX7SyYlH8s3Zf/fbbbxEbG4vq1atjyZIl8Pb2LrcjWfHvf/jhB8TGxkKSJLz++uullk9Pr6xONkDJ7alSqdCzZ09MnjwZgYGB2LZtGwICAuDt7V2RVX0puLm5ITQ0FPn5+XBwcCiR+MHjonJ4tD3VdpzNysrCoUOHEB8fjw0bNiA1NbVEwnrDhg3h7++Pvn37wsXFBU2aNClzlEp2Ons6BQUF0NPTg5GREZo1awag9LYrfvxcuHABS5YskTtfvvXWW5g9e3aJZcbFxeH999/HwYMHUVhYCOBhh84xY8bgu+++Y+L0I/Ly8mBubo7s7GysXr0aU6dOLXUv/aiYmBgAD89nj+s8eOXKFcbiX3iex8Wj7b/2PKdWq5Gfn486deqUucxXnampKRwdHREVFYVDhw7B1dUV1apVQ0FBAcaMGYMNGzbAwsICP//8M2rUqMFtVwlo35SmUqlQp06dUtdTV69eRVZWFnbt2oXIyEgEBwcjJSUFwMPrKCsrKwQEBMDFxQW3bt1i0vQzYCwqnhACqampOHLkCACgV69e6NKlC4Cy7xOKn7NWrlyJL774AgDQunVr9OjRA8Df18racgUFBVCpVPJvWJXtWpcJ7ERERERERERERET0XEiShOzsbHz11Ve4c+cOQkNDcfXqVXmkyZo1a6JNmzbw8/ODu7s7OnToAAMDg1Kv1BZClBhNpjL9qF6VWFlZYcCAAVixYgXi4uLw4MEDmJmZlUocPX/+PAYNGoSrV6+iqKgI5ubm2LNnD7y8vOSHHrGxsfjtt99w9uxZdOnSBe+99x569eoFtVqNuLg4DBs2DGfPnsWOHTswefJkPgTG3w+VevbsialTp2L69OmYMWMGzM3NMXTo0FIJU3fv3sXGjRuxevVqaDQatG/fHm+++Wap5TIWz+Z5HBfFkxGPHz+OqVOnIikpCampqfJIZMbGxoiOjkZ0dDQOHTqEvXv3wsPDo9I9KKwqtJ06zMzMsHTpUmg0Gty5cwcmJiaoWbNmqfKZmZm4cOEC4uPjsWXLFiQmJuL8+fMAgJEjR2Lp0qUVvQpViva8sWzZMhw+fBgGBgYYPXo0OnbsCKDsdrl4u/3LL79g+fLlkCQJAQEBaNSokbxMHgP/TFZWFi5dugRvb2/o6+s/tqypqSn8/Pzw/fffIyIiAmfOnHlsAjtjUb66desCKJkg8iKPC/pntG3wjRs3EBUVhQsXLmDv3r24du0aEhIS5HKenp7o3Lkz3nzzTdjZ2aFTp05lJu0+eizwuHg66enpKCwshJGRESwsLACU3HbFt+upU6ewZMkSrFy5EsDDN6dMnz4denp68v1GSEgIpk6dirCwMFhYWMDR0REajQYXLlzAvHnzIEkS5s6dy2OmGE9PT/Tv3x/z58/HunXr0L59e7Rp06ZUueKdPo4ePSqPUG1nZ1einDZmjMW/9zyPC23yelFRETZs2ICdO3fixIkTKCwsREZGBvr37482bdpg1KhR7FBQjJOTE958803MnDkTn332GYKDg6HRaJCWlobz58+jRo0a+OGHH/Daa69xm+nQo/cG2v1dqVQiMTERd+/exdatW3H9+nXs2bMHGRkZyMvLg0KhQM2aNTFo0CB4eHigQ4cOcHV1LdGhg/4ZxkK3JEnCrVu3cPHiRQBAy5Yty30jUPFz1oYNGzBjxgwAQPXq1dGzZ0+545RSqURBQQEuX76M//3vf7h06RLUajW8vb0xatSoyjfAgiAiIiIiIiIiIiIieo7Gjx8vJEkSBgYGolOnTmLatGli+/btIjk5WeTk5JQqr1arxZ07d0RYWJi4e/euyM3Nlb+nZ7N8+XIhSZKQJEn8+OOP4vr16/K0sLAwsWjRImFqaiqXcXJyEuHh4UIIITQajSgqKhJCCLFy5UqhUCiEg4OD2LNnj7yMgoICIYQQQ4cOFZIkiXHjxlXg2lV+Go1G/vzpp5/K2/mDDz4QO3bsEBqNRmg0GnHgwAHxySefCBMTEyFJkmjYsKHYtm1bqWUIwVg8D896XAjxcHv/9ddfQqFQyOVq1aol5syZIzZt2iTCw8PFzz//LNq1ayckSRKurq7i6tWrOlnfl0lhYaEQQsjnJq3bt2+LkJAQsXjxYtG/f3/h6ekpx0Ubw86dO4sffvhB/Pbbb7qoepU0bdo0uT0/ePBgueWKx2PHjh3itddeE5IkCZVKJX7//fcy5ykoKBC3bt0qcY57NK6vutzcXLFkyRLh5uYm9u7d+1Tz5OTkiObNmwtJksSIESOeapsyFv/Mizwu6PGSkpLE2rVrxezZs0XXrl2Fra1tiXO9u7u7CAgIEL///rvYu3evyM3NLfPeQ9uW0LNJTEwUDRo0ECqVSixZskS+dysqKipxH7dhwwbRt29fOU7dunUTR48eLXHOuXfvnvD19RWSJIlGjRqJqKgokZWVJZKTk8WPP/4olEqlsLS0FMeOHavw9azsrl+/Llq1aiUkSRLt2rUTERER8rZ99H563LhxQpIkoa+vL8aPHy+E+PtcpZ2HsXg2z/O4EEKILVu2iBEjRpQ41xkaGgpJkuT7kI8++kgu/6q338W338cffyyUSqVQKpXytrOxsRFBQUEiPz9fh7V8NT16rinuzp074vTp02LWrFnirbfeEtWrV5f3c0NDQ2FqaiqGDBkiZsyYIc6dOyeSk5NLLUO73LKWTyUxFpXP+fPnhZGRkahZs6YICwsTQpS+Xi2+PTdu3Cjc3NyESqUSkiSJ4cOHlyibnZ0tvv/+e+Ht7V2i/ZAkSdja2oqIiAghROVpMzgCOxERERERERERERE9F+L/R4L5+eefMXDgQNjY2KBBgwYlymg0mhL/TklJwYQJE3D58mXExMSgfv368PT0xK+//gpLS8vKNSJMFaKNxYgRIxAbG4u5c+diypQp2LRpE6ysrCBJEk6ePInU1FTk5+fD2toazZo1w7x58+Dm5lZiZLi8vDysWrUKQggMHDgQXbt2BfAwlnp6egD+HlWuqKiII7oWo1Ao5H34m2++AQDMnTsXCxYswIIFC+Dh4QEA8ijfhYWFcHNzw5gxY9C+fXt5GVqMxbN5XsdFRkYGVq5ciSlTpkAIgdq1a6N58+ZYtGgRHB0d5b/XqFEjdOjQASNHjsTp06excOFCBAYGQqVSMS5PQZQxIqJ2NLjk5GSkp6cjKCgIFy9exNGjR5GUlCSXs7S0RKdOndC5c2c0bNgQfn5+kCQJxsbGj10+PaTRaFBQUIDdu3cDAPr27SuPMv2o4tvx0KFD+PXXXxEWFgYAGDduHN59990Sy719+zZmzpyJyMhIXLp0Ce3bt0e7du3w0UcfcfTQR+Tn5+PIkSOIiYnBH3/8gebNm8ujuZYnPT0dKSkp8ufytiVj8c+9iOPiadtpxuIhPT09vPfee7h//z709PRQq1YtDBw4EK1atULz5s3RvHlzKBQK+ZpIKzMzE5IkQZIkmJiYQKVS8RrpOahRowaaNm2K2NhY/PXXX2jZsiUaNGgAQ0ND+Y1aX3zxBbZv347IyEgAQJ8+ffDRRx/htddeK7H9p0yZglOnTsHBwQFBQUGwtbUFAJiYmKBfv35YsWIFLly4gNTUVJ2sa2VmZ2eHP//8Ex07dsSxY8cwduxYTJ48Ge3atYOVlRXy8vKQnZ2N6dOnY8WKFZAkCdbW1ujSpQsAyOcWbTwYi2fzPI+LWbNmYcuWLbh06RIAwNXVFW5ubujevTvS0tIQHR2N1atXY968eVAoFPj2229f+bai+P333Llz4ePjg+vXryM+Ph6NGzdGp06dSr15gCqGdt/UaDTIzMzEmTNncObMGYSFhSEkJES+flWpVLCwsECPHj3g5OSEgIAAWFhYwMnJqcTytNdG2v/zDY5Pj7GofPT19ZGfn4+8vDzExMSgefPm8m8fWtrtuXr1anzxxRdITk6GRqNBr169sGLFCrlcfn4+Fi1ahAULFiA9PR2NGjXCO++8g8TERJw+fRonTpxA//79ceDAgUpzPmQCOxERERERERERERE9F5IkyQ8L/fz8AJR+Fa02Gb2oqAjBwcGYOnUqLl26BEtLS7i6ukKtVmPz5s2Ijo7GkSNHULNmTSbt/AvFY/HNN99AX18fP/zwA06cOIGioqISZX18fDB48GD0798fNjY2pRJ6FAoFcnJyAADm5uYAgMLCQjk5KDg4GMHBwVAoFOjRowcfUj1CqVSWiIW1tTXWrFmD0NBQREVFlSjr4+ODCRMmoEePHjAzMyu1LMbi2TzLcaGdLz8/H8uWLcO0adMghED9+vXRv39/TJ06tUSnGyEEFAoFXF1d0b59e5w+fRphYWHQ09Pj+ewJtOeg4tspMTER6enp2L59OxISErBnzx6kpaUhLy8PAFCzZk306dMHXl5eaNu2LRo2bIg6deqUOAYe7UDFOJRPoVDAwMBAfmhes2ZNAIBarS7xIL14e3HgwAH88ssvcnLvG2+8gR9++EEum5ubiz179iAwMBChoaHQ09NDYWEh9u7di927dyMlJQULFixgXIoxNjZGq1atsHfvXoSGhuLo0aPo3bt3med2bSwiIiIghAAA1KlTp8xrKMbi33nex0VBQQH09fXl+U6fPo1r167h+PHj0NfXR9OmTVG/fn20bNmSHQr+n5WVFY4dO4adO3eiQ4cOcHR0RK1atUqUKSgokD8fO3YMR48exaZNm6DRaODs7Ix+/fph6NChUCgUTGJ/Rqampvjmm29w6tQpHD9+HKNGjULTpk3h4+ODkJAQXLlyBceOHZPLjxo1CtOnT0f9+vVL7MsZGRmIiIiAsbExfv75Z9ja2pY4royMjKBWqyGEQFpaWoWvZ1Xg7OyMffv2oUuXLjh58iRiYmJgaWmJtm3bIi4uDvfv38fFixehUChgYmKCDz/8EAEBAaWWw1g8u+d1XLz33ntYs2YN0tPTATzs/PTmm2/KnZwB4MGDB/Dx8cGkSZOwePFi+Pr6onfv3hW3spVU8fvvsvZznvt1Jzw8HEOHDkVWVlaJzsc2Njbo27cvmjVrhi5dusDS0hKOjo7lXvsUj+Grfm30bzEWlYcQAvXq1UP37t2xe/dunDt3DgEBATAxMSlRRpIkzJ8/Hx9//DGKiooghIC/vz+2bdsG4GHiuoGBAY4fP45Vq1YhKysL48ePx9ixY9GgQQOo1WpERUXhzTffRHx8PM6cOcMEdiIiIiIiIiIiIiJ6+Tw6WvqjI7ppHyRGRUXh/fffR2RkJJo2bYr//e9/sLKygpmZGYYPH45Vq1bhiy++wMKFC0uNokhPp/iD21mzZqFFixaIjIzEzp07IUkSvL294ejoiLFjx8pJtdqk2+L09PTQuHFjhISEICYmBvfv30eNGjUAACdPnsSSJUtw/fp1eaRjKq14LCZNmoTOnTvjwoUL2LhxIx48eAAXFxfUrVsXU6ZMgbGxcbkP/hiLZ/dvjguNRiPHZPXq1XLyesOGDTFy5Ei8++67qF69OoqKiuRzoLa8SqWS30Rx9uxZxMXFwdXVlQ93H0Oj0SArKwvXrl3Drl27cOXKFezYsQMFBQXIysqCUqmEUqlE79695ZHgrK2tUbdu3TIT1rUPe/k2j6enHanY2dkZERERSElJKZWkW/wNKZs3b8bvv/+OvXv3AgB69+6NwMBAKJVKeb5jx45h5syZiIiIgJubG77++mtkZmYiMTERs2bNwo8//ogGDRpg3LhxOlnnykhPTw9vvPEG9u7di507d+K7776Di4sLPD095TLa0Vy1+/7SpUvlURP9/f1LnGu0CSaMxb/zPI+LwsJCOXn90KFD2L9/PwIDA2FkZCR3VAOAevXqYcSIEZg5cyaT2P+fh4eH/AYb4O/9WttxQ7tdtaNTJiUlQQiBGjVq4NKlS9i6dStu3bqFDz/8kAmMz4GjoyP27t2LgIAAnD9/HufPn8fKlSvlNlhfXx8ODg4YPnw4Pv3001LzCyGQlJSE8PBwAJDv+1QqlXx8Xbt2Dffu3UOtWrVKnP+opAYNGuDw4cOYNGkSzp8/j5iYGMTGxpY4Nho0aID33nsPY8eOBVAy8ZCxeH6e9bgYNWoUVq5cKccuMDAQH374oTxd2wHK3Nwcffv2xebNmxEcHIwLFy4wgf3/Pe66n+d+3WnSpAl8fX0RFBSEzp07o2vXrmjatCkaNWpUqkMa8PDaKyoqCtevX0diYiI8PDzQuHFjmJqalroGo3+Gsag8tG8I0iawL1iwADY2NvD390f9+vWRm5uLbdu24eDBg/JI63p6eujfvz/+97//AXjYodbAwAAAsGbNGkRFRaFjx45477334OLiIt8venl5wcbGBjExMYiPj9fVKpcmiIiIiIiIiIiIiIgqUEFBgWjVqpWQJEm89tpr4t69e0IIIfLy8oQQQqSmpooaNWqI9u3bC41Go8uqvhQe3YaFhYVCrVY/tsyj1q1bJyRJEpIkieHDh4vvv/9eTJ8+XTRt2lRIkiScnZ3F1q1bn3vdXzZFRUXPXIaxeD7+yXGhjcn+/fvlbe/u7i5++OEHkZmZWaJMWfMvXLhQ6OnpCTMzM3Ht2rWn2g9eVTk5OWLixIlCpVIJPT09IUmS0NPTE+bm5qJfv35i2rRp4uTJkyI2NvaJy2L78e9p99H58+cLPT094e7uLs6fP19m2cDAQNGwYUP52Ojbt6+4fPlyiTJ5eXnCz89PSJIkunTpIuLj4+VpmZmZYvLkyfI5jUqLj4+Xt3H79u1FSEiIyMrKKlGmsLBQvPvuu0KSJKFQKERAQIBISkoqtSzG4t97XsdF8bbmq6++Et7e3nI5U1NT4eTkJFq1aiWcnJyEQqEQkiSJadOmvfD1e5msWbNGGBkZCUmSxMCBA8Vff/0l7ty5IzZu3CjMzc2FJEm8VnrOkpKSxJw5c4Sfn5+wt7cX7u7u4rXXXhO///67OHnypFyurLY5IyNDNG3aVFSrVk2sWbOmRJnU1FTRrFkz+ZyVm5tbIetTlWn39TfeeEM0adJE1K9fXzRu3Fj88MMP4tixY3I5xuLFe9rjoqCgQP48adIk+RrY0NBQLFmy5Il/Z+TIkUKSJNG6dWv5NxWiyqb49c/NmzdL3BNrPxcWFsrf3bhxQ/z888/CxMREKJVKIUmSqFatmujQoYO4c+dOqWXS02MsKpfi2/+TTz6R7wtcXV1Fq1athJubm6hevbr8fZMmTcSMGTPkeYrH6tatW8LR0VEoFAqxY8cOefna9jw3N1d4enoKSZLE4sWLK2gNn4wJ7ERERERERERERERUoXbu3ClUKpWwtbUVV65cEUKU/MH97NmzQqlUijp16ojk5GQmIVYSixYtkh+YaP8zMDAQrVu3Fps2bZLLaTQa+QFMWQ+x+GDrb/82kZmxqHiRkZHC0dFRSJIk6tatK+bMmSMyMjKEEI+P4927d0WTJk2EJEnCx8eHyetPITIyUtjb24tevXqJzz//XBw/flzExMSUKFN83718+bLYt2+f+OSTT8Rff/31xOQseno3btyQ99+2bduKrVu3isTERHHz5k2xefNm8eabb5Y4Dw0ZMkTcuHFDnl+7v8+bN09IkiSsrKxEXFycEKJkuz9//nwhSZLw8vISWVlZjFsZYmJihI2NjZAkSTRs2FC8++67Yvv27WLfvn1i3rx5wt/fX05ed3d3F2vWrClzOYzFs3uW46L49nz33XeFvr6+XG7w4MFi2bJl4t69e6KwsFBERkaK+fPny0nsCxYs0NEaVy3nzp2TE3PGjx8v32to/fbbb0KSJDFr1iwd1fDlpU2QSkxMFOnp6fJ1klZ555P8/HwxePBguYPgypUrRVBQkFi1apXw8vKSv7958+Zjl0OlpaWlifv374v09PQS3zMWFedJx0Xxa9rAwEBRu3ZtuQPn0qVL5WmP29ZvvPGGfK/BBHaqzB7dj8vbr69evSref/99+RqoZ8+eYtSoUaJ169ZyAu/9+/croMYvL8aicnm0g2u9evXkbS5JkjA2NhaSJIn3339f7Nmzp8z5hHjYia1OnTpCkiSxatUqIcTfsc3JyRG//fabMDY2Fi4uLiIhIaEC1uzpcPx+IiIiIiIiIiIiIqpQV65cgUajgbW1NWrXrg0A8utmNRoNQkNDIYRAhw4dYGNjo8uqEv5+tfzEiRNRp04dHDhwAFFRUVCpVBg6dCiaNm2KZs2aAQAKCwvl180DQH5+PtLS0nD69GmcO3cOffv2hbe3t65WpdKRJOkflWcsKl5RURE0Gg3WrVuHe/fuAQDatGmDCRMmwNTUFEKIcuOoVquxa9cupKamAgCaNm0KjUYDhULBV9c/hoeHBy5cuABzc/NS04qKiiCEgFKpBABs2LABX375Ja5cuYK8vDwAgLGxMebMmYMPPvgACoXisTGix7O1tcX69evRsWNHHD9+HBcvXpT3X7VajYyMDEiSBEtLS4wYMQLfffddifm12/3mzZsAgDfeeAMuLi7QaDRQqVQQQkCj0eD69esAAE9PT5iYmFTsSlYR9evXR3BwMAYOHIiLFy8iKioKS5cuhVKphEqlQn5+PiRJQqNGjTBx4kQMGjQIAErt/4zFs/u3x4VGo5HPXYMGDcL69eshSRIkScLMmTMxY8YMAH8fNx4eHnBwcMCdO3cQGBiI3bt3Y+TIkTAzM9PNildy2n39woULiImJgZeXF8aMGQNnZ2cAQF5eHgwNDeX9+ty5c2wfXgCFQgF7e/typz1KCAF9fX38/PPPiI6ORnh4OMaNG4e8vDwYGBggPz8fHh4e2LBhA6ytrUscR9rP2uvj4st81eOq3QY1atQoczpjUbGe5rg4cuQItmzZIt83LFy4EKNGjQKAUtu1uMuXLyM6OhoKhQKNGzeGgYHBC1gDoufj0f340X9rzxlr1qzBokWLUK1aNXzxxReYPn26XObNN9/Ehg0bsHTpUkybNo3nmX+JsahclEql3JZ+/vnn6NixI65cuYLQ0FAUFhaibdu2cHBwQJs2beR5ioqK5HZYy8TEBC1atMCuXbtw5swZdOvWDZaWlsjNzcXGjRuxePFi5ObmomvXrrCwsKjo1SwXE9iJiIiIiIiIiIiIqELVrFkTwMMHJDk5OTA1NQXw8AHJyZMn8e2330IIgZYtW+qymvT/FAqF/NB84MCBCAgIgBAChYWFpZLbcnNzkZWVhd27dyMuLg67du1CQkKCnPj7448/4tq1a6hVq5YuVqXKYywqnkKhQH5+PrZv347MzEzY29tj3rx5sLCwKDeZRPt9UlISVqxYgZs3b0JfXx8jR46UO+sATOp5HG2CZvHkKOBhYqd2m69YsUJO7PHz84ObmxssLS2xcOFCfPjhh6hWrRrGjBnDbfyMXF1dERwcjClTpiAqKgrx8fEAHnY8MzQ0xLvvvgs/Pz/07dsXQNlJVrm5uQCAlJQUOYkUeBjPqKgo7N27FwDg4+NT7jLoYSx27tyJxYsX4/DhwwgLC4NGo4FGowEAjBkzBj169EDPnj0BMBYv0j89LgoKCqCvrw8AGDJkCNavXw+lUglra2t88cUXGDNmTJl/x9jYGM2bN4cQAgcOHEB8fDyaNGlSIetYFRUVFWHbtm1Qq9Xw9vaWt5VarZb39TNnzgB42EGA7cPz9W+2pyRJ0Gg0MDc3x+HDh/H+++/j8uXLOHPmDFq0aAE3Nzd89913qFGjRqkkae31QXp6OhISEhATE4NBgwYxrmAsKpMnbQPt9G3btuHUqVMAgC+//BLjxo0DUH47rL2POH78OC5dugQAaNCgwfOsOlGFkyQJR44ckTv1zZw5Ex988AEAIDs7GyYmJpg8eTI2bNiAa9euyfPQ88dYVLzi7aqvry98fX3x9ttvl1u+rLbB2NgYAwYMwK5du7Bw4UJcuXIFzs7OCA8PR3R0NFJTU9G9e3d88MEH8m/xZano36qYwE5EREREREREREREFcra2homJiYICwvDX3/9BX9/f2g0Gpw8eRLffPMNbty4ge7du2PixIm6rir9P4VCIY/orR3VW19fHw8ePEBeXh7279+PpKQkbN68Gbdu3UJKSoo8r4+PD7p27YqAgABYWFjIHRjo32EsKt7u3btx4cIFmJiY4JtvvoGtrW2pxGqt4t9/+umnCA4OhkqlwsyZM9GiRQtoNBo5CbuoqAgFBQWIi4uDlZUVjIyMYGpqyoRR/P3w+9FtrP1+69atcvL6tGnTMHHiRNjb20OSJLRt2xZdunTBr7/+ij59+qB27dp8mP6MnJ2dsWrVKty+fRvHjx9HQUEB7O3t4eLiUiJZqrx9t1GjRgCA8+fPIyQkBL6+vlCr1Th79iw++ugjXL58GS1btsRbb70FoOyH8fSQnZ0dZs+ejVmzZmHv3r3IzMyEqakpHBwc4OXlJe/rjMWL97THRWFhoZy8PmHCBKxZswYKhQIODg74z3/+IyemPBozbXtSv3591KpVC+np6fKbJqg07Wj22mQc7TWSEELuPPbbb7/hhx9+AAB06tRJJ/Wk0rSjjpqZmeG3336DWq1GfHw8XF1dAUA+frTXBKmpqcjIyMDu3bsRERGBw4cPIykpCWq1GmFhYfj+++91ti5VHWOhGwcPHpTPTUOHDsX7778P4PGdyCRJwokTJzBp0iQAD98QpW1PhBByGaKqZsuWLQCAgQMHygnTarVa7rAfGhoKALh79y6KiooA8Hr1RWEsKt6zbD9t0vnw4cORmZmJyZMnY/fu3fJ0e3t7jBw5Ep9++imcnJzkNqas37a07Ud5v3s9b0xgJyIiIiIiIiIiIqIK1alTJ0yaNAlz587F9OnTsWjRImRlZSE3Nxe5ubnw8/PDli1boKenx0ROHdJue+1DEG0iUGJiIo4fP47o6Gjs2LEDaWlpuHHjhjxfmzZt4OfnhwEDBsDa2hre3t4lRp2mf46x0C1tJ4CCggK4uLgAKJ1YDZR8hfPw4cOxYcMGKBQK9OjRA/7+/gD+HkE8Li4Oq1atQlBQEC5fvgxbW1u4ublh7ty5cHd3r7AHhVVRSkoKfvrpJwDA+PHjMWvWLPkhuhACnTt3RuPGjRETE4OsrCzUqVNHl9V9aZibm8Pc3LzU6J7FR2crr71+++23sWrVKoSGhmLkyJFwc3NDdnY2EhISkJycDFdXV2zatAk1a9Yss90v/jf45oKHCYSSJKFPnz4lvtcmrAGMRUV50nEhhJDb7IULF2LNmjUAgNq1a+OLL74oN3kd+LudOXz4MFJTU1/0qlR52v3f2dkZAHD27FlcvHgR9vb2MDc3x4IFC/Dll18CAGbMmIHOnTvrrK5UmvY6V6lUQl9fHw0bNpSnXb9+HTk5OdixYwcSEhKwa9cu3LlzB7m5uVAoFKhevTr8/f3h5uYGd3d35OTkwNjYWIdrU7UxFhVH21ZcvHgRenp6MDAwQLdu3eRt9rjfQS5duoTp06ejoKAAZmZmeP3112FmZlaqbS4oKIBarS4RB7bfVFkJIRAdHQ0AsLCwAPAwYVr7G0ZMTAwOHz4MAPD39+dvhS8QY1H1SJIk31NMnDgRLi4uOHv2LK5duwYzMzMMHjwYDg4Opd7CqL3nSE5ORnh4OM6fP48jR47gq6++qrA3o/JXSiIiIiIiIiIiIiKqMNof07/55hvo6elh5cqVSElJQWFhIZo2bYrWrVvj+++/h56eHhM4dUz7UDs6OhqxsbE4duyYnCydkZEhl2nWrBnatGmDfv36wc7ODj4+PmXGjp0R/j3GQje0yR3aEW8bNmyI1157rcS04rTbdOTIkVi1ahUUCgUaN26MYcOGoXHjxnKZS5cuYdSoUTh37hyEEDA2Nsb169cRFxeHU6dOITg4GO7u7kwuKUd6ejrCw8NhZmaGPn36yAk52n397t27csIUk6ZevCftoxqNBqampggKCkKfPn1w6tQpJCUlAXiYxOvv748//vgDVlZW8tslHj1HSZIkx1SbFPwqHxvlrTtjUXlot4n2/5GRkdi2bRsePHgAAPj8888xfPhwAI9vk+/du4cTJ05AoVCgQYMGqFu37ouvfBWl3dYjRozA8uXLcfbsWQwePBgGBgYwMzPDkSNHAABjx47F0KFDdVlVwt/XUdr9v/ibV9LT03H9+nXs2bMHV65cwc6dO5GTkyMfPyqVCr169YKjoyP69u2LOnXqyB0M6Z9jLHRLCIEdO3agsLAQXl5e8htQHic6OhqzZs1CZGQkAMDLywvvvfee3GEKeJiIuGPHDqxbtw4pKSlo0aIFmjdvjvfff5/tN1VakiShcePGOHDgAHJycpCdnS13VL527Rp+++037Nq1C+7u7vL9Nb0YjEXVpH3Tn0KhQLdu3dCtW7dSZbTTr169ipSUFOzduxfnzp3D6dOncf/+fblceno6Dh8+LMf9RWICOxERERERERERERFVmOKvJ509ezb69euHjIwMZGdnw9PTEzY2NvIP7kxer3hqtRrh4eG4d+8etmzZgri4OISGhiInJwcAYGRkhAYNGsDb2xvt27eHi4uLnNCrjZv286OYMP3PMBa6p03qcHV1BQBcvXoVYWFhaNGihZz4oS0nhEBqaiqmTJmCtWvXQqFQwMnJCe+//z769u0rLzMmJgZvv/02Ll68iJYtW6J3797o1KkTrly5gmXLluHQoUMYO3Ystm3bhho1alT8SlcBFy5cwL1792BrawsPDw9IklRiNLhly5YhLi4OXl5eUKlUTNDRMaVSCbVaDXNzc+zevRu7du1CQkICAKBly5Zo2rQpqlevDgBy4pVCoUBOTg5SUlJw4sQJREVFYevWrWjdujWWLl3KeP5LjIXu7N+/Xx6l8uOPP8aECRMAlJ+8rv3+2LFj2LJlC4qKitCyZUvY2tpWaL2ronr16mHfvn3o27cvEhMTkZOTI7cPc+fOxcCBA+Ho6KjjWr66Hk2SFkIgKysLUVFROHPmDMLCwnD48GHcvHkTarUaSqUSRkZG6NChA5ycnNC/f3/Url271FsPHl0+PRljoXvabW9oaAgAcHNzAwC5E1lZLl++jK+++grBwcHIzMxE3bp1sXr1atSsWVMus3//fvzxxx/YsGGD/N3Vq1exevVqJCQkYMGCBWy/qdJyd3dHUVERVq1aBXt7e3h7eyMxMRGHDx/G9u3boVKpMH36dDRp0kTXVX3pMRZVjxCixO/uxV26dAkPHjzA5s2bkZCQgMOHD8sDYhgaGsLOzg59+/aFt7c3fH19UadOnQpJXgeYwE5EREREREREREREFUypVMoPtMsaqUf7gztVvHXr1uHtt9+WE6BNTU1Rp04d9OjRA15eXmjTpg0cHR2hp6dXIkYFBQXQ19eXv2MHhGfHWFQeDRo0QMOGDREZGYmDBw/C09MTRkZGcuLH/fv3ceLECSxevBj79u2DQqGAp6cn3n//fQwbNgzAw5GP8/PzsWDBAly8eBFt2rTBvHnz0LhxYxgaGqJ58+awtrZGeHg44uPjkZGRwQT2cri6uqJ27drQaDSIiYmBnZ2dnJz4888/45NPPgEATJ8+vdTrsUk3VCoVNBoNTExM8MYbb5Sarn3AHh4ejujoaBw/fhynTp1CfHy8PAqcnp4e1Go1goOD0aFDhwpeg5cHY1HxkpKS8OOPPwIAunTpgg8//BBA+cmd2uvg8+fPY9iwYVCr1fDy8sLkyZMBoESHnbKw0w5Qv3597Nu3D2fOnEF4eDicnZ3h6uqKli1b6rpqr7zc3FyYmJjg4MGDiI+Px969e3H58mVcvnxZ7hhoaWmJzp07o0mTJnj99ddhZWUFd3d3eRnacsU7EmrxHvLpMRaVh4WFBQDg1q1byMvLkxPatbTn9fDwcMyaNQtHjx7FgwcPYGtri927d8POzk5uv48fP47AwEAcPHgQtWvXxoQJE2Bubo6kpCTMnz8fP/74I+zt7TF16lRdrCrRE40YMQJRUVH473//i6+//hpKpVLev+vUqYPZs2djxIgRuq7mK4GxqPy09xNlvUXl2rVruH79OrZs2YL4+HgEBQVBkiQUFhbCxMQE1apVw1tvvQVXV1f4+/ujTp06MDc3L7H8irqvYAI7EREREREREREREVW4xz3QftWTbnRpyJAhOHXqFBQKBZydneHv749atWrBzMyszPJJSUnYs2cPzp07BwDw9PTEkCFDUKNGjScmWNHjMRaVh5ubG95++2188skn+Oyzz5CVlYXWrVvDxsYG9+/fx/z58xEXF4eYmBgolUp07NgR77zzjpwcqu1EoH0Fs76+PkaMGIGmTZtCX19ffgjs6uoKSZKQnJyM27dvo169ejpe88rJ3t4ezs7OCAkJwezZsxETEwOVSoXIyEgsWrQIAPDFF19gyJAhOq4pAX8/VC/ekUY7smhYWBhSUlKwdetWREdHIzQ0VE6CMzU1hYuLC95++220a9cOjRo1gqurKwoKCnS1KlUeY6EbWVlZ8uiG3t7ecqJiecnrkiQhMjISo0ePRlZWFqpXr45OnTrB2dkZAOT2XKPRIDQ0FPHx8VCpVKhXrx58fHzkt4K86tfTtra2sLW1RZ8+fXRdFfp/BQUFGDt2LPbt24e7d+/K31tbW8PHxwddu3ZF8+bN4eXlVSIh91GSJHF072fEWFQO2nN1p06dsHXrViQkJODChQt47bXXSpzDJUlCcHAwJk6ciISEBOTk5MDOzg4bN25Ew4YN5fgUFRVh9erVOHjwIFq2bIn//Oc/6N69OwAgJycHSqUSgYGBOHz4MMaNGwcjIyNdrTpRmbT7cmBgIGrVqoWgoCDExcVBT08PAwYMgJ+fn7xP04vFWFRu2vZD2/4WFhbi1q1biIyMxJEjRxAREYEjR47Ib3CsXr06bGxs4O/vDwcHB/Tu3Rs1atRAnTp1SixX26Zrl19R9xOS0N55EhERERERERERERHRK+txSc7ahxjFkxdWrlyJVatW4dChQyXKNm3aFHv27EGtWrWY0PAvMRaVR/Ht9sknnyAwMBDAwxGITU1NkZubi9zcXAAPkxGnTZuGgIAA+Pr6lpp/y5Yt6N+/P+rWrYvQ0FBYWVlBo9HII2UdOXIEfn5+UKlUCA8Ph4eHhw7WuGqIjY2Fn58fUlJSSk2bNWsW3nvvPVhaWuqgZvToKHBaQgiEhobi9u3b2LhxI5KTkxEcHCxPt7a2Rq1ateDv7w93d3f4+vrC0dFRPs9pH6LzXPb0GIvKYfv27QgICIC5uTmOHDmCRo0alZlgrv0uOjoa48ePR0hICAoKCtCqVSusW7cOtra2ctk9e/Zgw4YNWL58ufydubk5Ro8eje+++67E8ogqk4iICLz99tswNDREQEAAHB0d0a5dO9SuXVs+nxTfd9PS0nDixAlERETA2dkZNjY2aNOmDYDy32JAT4exqDxSUlLQp08fnDlzBu3atcNnn32Ghg0bwtbWFvv27UNoaChmzpwpl3d0dMTu3bvRoEGDEssJCgpCjx49AAAbN25Ev379APydiLp27Vq89dZbqF+/PkJCQvi2J6qUiv/Ocf/+feTn50OlUvHeTgcYi8rt6tWrCAsLQ0xMDA4cOIDo6Gjcu3dPnu7k5AQ/Pz80bNgQ3bt3h5GREezt7eXpQohK8wZUDrdBRERERERERERERERlJkw/OqqP9uHVkiVLEBgYiKSkJHh6emLMmDGwsbHBqlWrsG3bNvTt2xdBQUEwNTWt0HV4WTAWlUfxzgJz586FlZUVNm3ahNDQUKSlpQEAXF1dYWdnh08//RTt2rWDvr4+AJR6GGhjYwMDAwMADxNVateuLccxMjISs2fPBvBw9H0mrz9e/fr1cfToUcyaNQtxcXFITU1Fo0aNMGzYMDlZhyqWNnmt+ChwsbGxiIyMxO7du3H16lWEhITIo0PXrFkTbm5uGDBgABwdHeWH6o++ZUJ7/GkT6CrDA/bKjrGonDIzM5GXlweg9NuGtDGLiIjAe++9h3PnzqGgoAAODg5YuXJlieT19evX47vvvsP58+cBAO3atcPt27cRGxuLefPmQZIkzJ07l8nrVCl5enriyJEjAB6OBlpc8XOMWq1GaGgo3n33XcTExAB4eH1sYGCAL7/8ElOmTCkxQij9c4xF5WFtbY3Vq1ejU6dOOHr0KGJiYqBQKGBjY4Po6GhkZ2cDeHgv0axZMyxZsgTW1talOg5cvnwZANC/f/9SyevAw2RHADAxMZHvSYgqG6VSKZ9PzM3N5fMKzzEVj7Go3FavXo1Zs2bJ//b09ESnTp3QoUMHtGzZEo6OjjA3Ny8Vr6ysLBgYGEClUpUaHENXmMBORERERERERERERERlKv6QQ/vQ4/jx41i6dCmuX7+OoUOHYuLEifD29gYA9OvXDx07dsTx48dx7tw5tG/fXldVf+kwFrqjVCrlh3pTpkzBgAEDcOPGDaSkpKCwsBBt27aFsbExzMzMUPzFx48+1DUzM0PdunVx5coVbNy4EWZmZnByckJoaCjmzJmD4OBgeHt745133gHA0SyfxNnZGUuXLoWenh7y8vKgUqmgp6en62q9shQKBRITE7Fx40YkJiYiJCQEZ8+elafXrl0bjRo1Qo8ePeDk5IQePXrA0NCw1Oifjx5Dun6YXhUxFpVLy5Yt4eHhgatXryIiIgLNmzeHJEklkkUUCgXCwsIwfPhwXLlyBWq1GrVr10ZQUBCcnZ3lN7OcPHkSCxcuRHh4OHr06IF33nkHAQEBSExMRFBQECZOnIilS5eif//+aNGihY7XnKhs2mTpRxOqtIlyALB161a8//77SElJQbNmzdC8eXOYmppi8eLF+OCDD2BkZISxY8cyge4ZMRaVh6urKw4dOoRx48YhNjZWvtfQ6tmzJ/r06YP+/fvD3Ny8zITDjIwMAMDt27eRkZEBExMTOZYxMTE4evQo9PT0MGDAABgbGzMJlSot7X5ZfP/kvqobjEXl9Z///AeGhoawsrKCs7MzvLy8SgxcodFoADyMV1paGqKjo/Hzzz8jMTERJiYmaNKkCT766CNYWFjoPImdCexERERERERERERERPRE2odUO3fuxJkzZ9CiRQtMnjwZTZs2BfBwFJ9q1aqhZcuWCA4ORkJCApOmXxDGouIVH33M1tYWdnZ2ZZZ73MNcNzc3TJs2DePHj8e3336LTZs2wcLCAqdOnQIANG7cGJMmTcJrr70GoOToxkxmL5uenh4kSYKRkRGKiop0XZ1XXmFhIT7++GMUFRVBX18fvr6+8PHxgbe3N9q0aQNTU9NSSdKFhYUoLCxEeno6atSoAUNDQwAP93kmR/x7jEXlYWxsjIYNGyIqKgpLly6Ft7c3PDw85LetxMTE4OTJk3jvvfeQn58PAHBxccHOnTtRv359aDQauey+fftw8uRJtG7dGh9//DHatGkD4OGovN26dYOLi4uc+MgEdqrsynsTwYULFzB16lSkpKSgT58+WLt2rTxadMeOHdGjRw/88ssv8Pf3h52dHc9PzwFjUTm4uLhg7dq1uHr1Kg4cOIDCwkLY2trCxsYGPXr0kMsVFRWVmWjo6ekJfX19XL9+HRcvXkTLli2hVCpx+vRp/PLLL9i/fz+cnZ3RoUMHAExCJSKqqrSdWz/66KNS07TJ6Nrfj27cuIFFixZh/fr1SExMlN8YuG/fPgQFBeHgwYOwtLTU6W9OTGAnIiIiIiIiIiIiIqKnkpqaivXr1wMAxo4dKydMazQaVKtWDUIIhIWFAYCc+EYvBmNR8coafexpaZPfx44dCyEEZs2ahdjYWHn6m2++iREjRsDPzw/6+vryQ8dHHz5qR1asXr26zkfJqgyKx4IJ/rrn4uKCK1eu4Ny5c/Dy8oK9vb38gBz4exQ4AMjPz0dsbCw+/vhjJCUlITExET4+Phg8eDBGjRoFhULBjhvPgLGoPExNTfHtt9/i9OnTOHnyJEaMGIHWrVvDzc0NcXFxOHnyJMLDw6FWq1GrVi00a9YMP/30E5ycnEqc55OTk/Hjjz8CAIYNGyYnr6vVaujp6cHBwQFmZmYAgOzsbN2sLNEzUCgUyMjIwOjRo5GcnIxOnTph06ZNUCgUyM/Ph4GBAbp3745WrVohOjoa+fn5TMB9QRgL3bG0tISlpSVatmxZapr2fqK89rhbt25o0aIFTpw4geHDh6N58+YoKirCpUuXEBsbC3Nzc8ybNw++vr5lzs+2noioatB2bi2L9t5BkiTcuXMHgYGBWLZsGYyMjDBo0CBMmjQJ+vr6+O9//4t169ZhyJAh2Lp1K4yMjCqq+qUwgZ2IiIiIiIiIiIiIiJ6KEAJZWVkAHo4oCvw98k9+fj5++eUXHD16FHXr1kXHjh11WdWXHmNRtUiSJCeFjBs3Dr6+vkhJSUF6ejqqV6+O7t27y0kpwN8PHTMyMpCVlYU9e/bg0qVLOHjwIO7evYudO3dydF2qlBwcHODg4AAA8qj42n1bu1+npaVhw4YN+Prrr3Hjxg3UqlUL1apVw8GDB3Hw4EGkpaXhww8/ZBLVM2IsKg8nJyfs3bsXAQEBCA8PR3h4uDxN20GgZcuW6NWrF0aNGgUrK6tSI+zm5uaioKAApqamcmKjtt0XQmDDhg04c+YMDAwM5E5tRFXNrVu3kJKSAmtra8yfPx8KhQKFhYXyqN+XL19GQkICMjMzkZOTo+PavtwYi8rncZ0EtJ2Yd+zYAX9/f5w6dQrx8fEAAAMDA/j4+ODzzz+XR3LXXhcU76T2aFtf/N6EiIiqDu15PSgoCBs2bICpqSmmTp2Kd999FxYWFgCA//3vf4iNjcXZs2dx/fp11K9fX2f1ZQI7ERERERERERERERE9lWrVqqFZs2Y4ePAgoqKikJWVhWrVqqGwsBB//PEHlixZApVKhVGjRsHc3JwPvV8gxqLqKZ4g0rhxYzRu3LjEdEmScPv2beTn52PXrl1ISEjAtm3bcOvWLXnk9WrVqsHBwQEbN25kAjtVetpEKO25RwgBANi+fTtmzZqF27dvo3fv3pg/fz7Mzc1x9uxZDBkyBB999BGaNGmCzp0766zuLxvGQvfq16+PvXv34vfff8eJEycQGxuLzMxMdO7cGe7u7pgyZQqqVasGAwODMkfBNTMzg4ODAxISEnD+/Hm4u7tDT08PABASEoLVq1dDCIE333wTDg4ObPepSoqOjkZycjJMTU3lDhza/VwIgaNHj+Lu3bto3749HB0ddVnVlx5jUbUolUqo1WqYm5tj7969WLduHRISEnD//n34+/vDxcUFDRo0AFB6pPWUlBTcunUL+/fvR0hICMzNzbFy5Uq2IUREVZT2HP/777/j9u3bGD58uJy8XlRUBLVaDX19fTg6OuL8+fNITU1lAjsREREREREREREREVV+xsbG6NSpE/bt24evvvoKV69eRb169RASEoIzZ86goKAA/fv3x+DBg+UEB3oxGIuqp6yExOzsbCQnJ2P//v24du0atm/fjszMTNy5c0cu0717d9SrVw/9+vWDlZUVPD09K7rqRM+FJEmIj4/HnDlzcPv2bYwaNQoLFy6EsbEx1Go1Xn/9dXz++eeYOnUqLl68yKTpF4ix0I26deti9uzZkCQJaWlpUKvVqF27dqlyZY14b25ujkaNGuHy5csIDAxEfn4+mjVrhkOHDiEoKAhHjhyBh4cHhg0bBhMTk4pYHaLnrkGDBrCzs4Narcbdu3fl77Ozs3HgwAF89NFHKCgoQMeOHWFqaqrDmr78GIuqR6VSQaPRwNTUFO+88w4kSSqzM1N8fDwyMzOxdetWXLt2Dfv27ZPvPfT19VFQUIDBgwejW7duulgNIiJ6DiIjI3Hu3DlUr14dn3zyCSwsLOS3N+nr6yMqKgrHjh0DABgaGuq0rkxgJyIiIiIiIiIiIiKiJ9I+/J4+fTpSU1Px3//+F2vWrJGn29raIiAgAOPHj9fpyD2vAsaiatBoNPKIlVoFBQWIiYnB2bNncfr0aRw8eBDJycnIycmBJElQKpVo164dnJycMHDgQFhbW8PT07PM5BOOrktV0ddff42EhAS89tprWLx4MQwNDeUH6cDDxCkAuHr1KoCyO37Q88FY6JaFhUWJfz/unC6EgJ6eHn799VdcuXIF586dw+TJk2FgYIDMzEwYGBigRYsWmDFjBjp27CjPAzzsrFBW7BhPqoxq1qyJunXrIiQkBJ9//jkGDx4MfX19hIeH488//0RWVhaGDBmCTz75BACvhV4kxqJq0W5/bQyK///GjRtISUnBtm3bkJCQgKCgIBQUFCA7OxtKpRKmpqZ4++234erqil69eqFWrVqoWbOmLleHiIiekRACeXl50Gg0uH37NlxdXeX7vMTERCxYsACpqano06cPvL29dVpXJrATEREREREREREREdETSZIkJ+QGBgbCw8MD4eHhSEpKgrm5OcaNGwdHR0fUqlVL11V96TEWVYM2ef3EiRNISkrCnj17EBUVhUuXLqGgoAAAYGZmhhYtWsDLywtdunSBra0tmjRpUubyHk0MYpIQVUUpKSkAgAEDBsDQ0BAFBQVyovTNmzdx6NAhAJDfNMAE2xeHsdCN8s7djzuna9t9c3NzHDx4EJMnT8aFCxdw48YN1K1bF2PHjkXHjh3h4+MDACViCTyM3b1793D37l1ERkaiX79+jCdVSpaWlli+fDn8/Pxw4sQJnDx5Uu6MAQDDhw/H8uXLAbATxovGWFQN2ntCbRui0Whw7949xMTE4MiRI7h06RL27duHBw8eAHj4Fi8jIyMEBATA0dER/fr1g6WlJezs7Eost3isiYio6rGwsICXlxciIiIQFhYGDw8PWFpaIjIyEr/88gvWr18Pe3t7DBo0SNdVZQI7ERERERERERERERE9HaVSKT8kHzFiBICSI3xSxWEsKq/79+/jzz//xLFjx3Djxg2cPn1anmZhYQEPDw907doVzZs3R+PGjeHs7AwhRInEn6KiIggh5CR4xpReFnl5eQCAu3fvQgghJ9lmZGRg+/bt2LdvH5ydneHr66vLar4SGIuqRdvum5mZYenSpXjw4AEyMjJQvXp1WFpaliirr6+P/Px8hIeH49y5czh79iyOHj2KW7duISsrCyNHjsTSpUt1tCZEj1e/fn0cPXoUs2fPxtWrV3Ht2jV06dIFvr6+GDduHAAmTFcUxqLyebRDq0ajQXZ2No4dO4aoqCgcOXIEERERSEpKksvY2dmhW7du8PDwgL+/P8zNzeHk5PTY5fPeg4ioarOxsUH//v1x8eJFTJ8+Hdu3b4eNjQ2CgoKQkZEBKysrjB49Gr1799Z1VZnATkRERERERERERERET0+bUKvFh9u6w1hUTjVq1MDVq1exefNm1K1bF40aNUJAQACcnJzQqVMn1KlTB3p6eiXmyc/PR2ZmJhITE2FlZQVLS0sYGhrKnRSIqjptBxsvLy8cPnwYx48fx6lTp9CsWTPExsZi9+7dCAwMRGZmJsaPH1/umwjo2TEWVZdSqYRarYZKpYKlpaWcuJ6bmwsjIyMcP34cV69eRVBQEC5evIjo6Gh53ho1asDX1xfNmzeHl5dXqSRIosrE2dkZS5YsgYGBAe7cuQMrKyt5GhOmKxZjUblIkoSioiL8+eefyMvLw9q1a5GYmIjExES5jIODA3r06IH27dujdevWsLe3h62trTy9qKgIAOT25NHlExFR1aZtn2fMmIHs7GwEBgbi2LFj8vQOHTpgwIABGDFiBIyMjHRY04ckwfd+EBERERERERERERERET2z4gmBO3fuxGuvvQY9PT3UqFGjRLnCwkI5if348ePYsGEDtm/fjuTkZNjb28Pb2xs//fQTLC0tmcROL5X4+Hi0b98eN27cQL169VCzZk0kJSUhMzMT+fn5GD16NJYsWaLrar4SGIuqobwE0fz8fBw7dgy3bt3Cpk2bkJycjDNnzsjTHR0dYWdnhy5duqBx48bw8vKCvb19RVad6Jlor6mKHwPseKEbjEXlcuPGjRLn80aNGsHKygp9+vSBi4sLWrRoUereAwCys7Oh0WhQrVo1OY7shEBE9HIq/jvSzp07ERsbK4+8/sYbb6B69eqlOjHpChPYiYiIiIiIiIiIiIiIiJ6TJyWcF0/42b59OyZNmoTr16/D2NgYjo6OyM3NxbVr1+Dh4YEjR46gZs2aTBKil0psbCwGDhyIq1evIicnBwDg4+ODrl27YubMmTqu3auFsah8tOf7R8/7eXl5CAsLQ1xcHDZv3ozk5GRcuHBBnm5vbw9ra2sMGDAATk5OaNeuHapVqwYDA4MSy2enKCKiqi8mJgYnTpyAra0t2rZtC6VSWeJ8r21D1Go14uPjsWzZMhw+fBgpKSnw9fWFv78/hg0bBoBJ7EREL6uqct3PBHYiIiIiIiIiIiIiIiKiCrZ//34MGTIEd+/eRb9+/TBs2DB07twZhYWFmDRpEv766y+MHDkSS5YsqTQjYxE9L7dv38b58+dx48YNWFpaonnz5rCzs9N1tV5JjEXldO/ePcTHxyMsLAzBwcGIiopCZGSkPN3BwQF16tRB3759YW9vjx49ekClUsHIyKjEcpiYSET0anh0pPyCggJs2rQJv/76K44dOwYAMDU1RWZmJgAgMDAQH374oS6rTERExAR2IiIiIiIiIiIiIiIioop069YtjBo1Cnv27MGgQYMwc+ZMNGjQQJ6elpYGd3d3ODo64sSJE1Vi1CwiInp2RUVFmDx5MlatWoXCwkLk5eUBAGrVqgUvLy/4+fnB3d0d7dq1g0qlgpmZ2WOXxeR1IqJXT1FRETZv3ow5c+YgIiICzZo1w5w5c+Dq6oqoqCiMHDkSDx48wLZt29CrVy9dV5eIiF5hHK6BiIiIiIiIiIiIiIiIqAIlJSXh+PHjMDc3x9ChQ+Hi4gLg71c8Z2RkQAiBpKQkZGVlPTZBkYiIXh4KhQLvvPMONm7cCB8fH3h7e6Ndu3Zo1qwZzM3Noa+vX6K8EAL5+fkICgrCnTt3YGZmBkdHR7Rs2RIKhYJJ7ERErxDtKOxpaWlYtmwZIiIi0KtXL8yZMweNGzeGEAKurq749ttvMX78eISGhjKBnYiIdIoJ7EREREREREREREREREQVQJtUcuTIEWRlZaF58+bw9/cHABQWFkJPTw8AsGvXLty9exetWrWCvr6+PB8REb38mjZtimvXrsHY2LjE9xqNBgCgVquhUqmgVquxZs0arF+/Hrt27ZLLGRsb48svv8TUqVOhUCjYhhARvSK05/rly5djz549MDc3x4wZM9C4cWMAD+839PX14ejoCOBhp1oiIiJdYgI7ERERERERERERERERUQXQJpXY2toCeJiEeP36ddStW1dOXl+/fj0+/fRTAMCoUaNgZGSkm8oSEZHOFE9e146irlQqAUBOXl+0aBEWLlyIpKQk2NvbY9CgQSgoKMCSJUswbdo0GBoaYvz48UxeJyJ6xcTGxgIARo8ejebNm0MIASEE9PX1kZ2djfXr1wMALCwsdFlNIiIi8F1RRERERERERERERERERBXIxsYGpqamCA8Px5YtWxAZGYl79+5h8eLFGDt2LLKysjBmzBgMGjRI11UlIiIdUyj+TusQQgAAtm3bhl9//RW3b9/GqFGjsHXrVsydOxfz58/Hjh07oKenh99++w137tzRVbWJiEhHHjx4AAC4efMmCgoKIISAQqFAbm4utm/fjoMHD8LKygqDBw8G8HfbQkREVNGYwE5ERERERERERERERERUgTp06IAJEyYAAKZMmQI/Pz/4+Phg8uTJSE9Px7Bhw/Dee++VGIGXiIhIO5r6li1bEBcXB39/f3z44Ydo0qQJioqKUFBQgI4dO6JFixa4dOmSnMRIRESvDm9vbwAPR2KPiooCAOTm5mLFihX47rvvkJiYiK5du8LJyQkA+KYOIiLSGUmwGxURERERERERERERERFRhSgqKpJH0505cyaWL1+OGzduwMDAAEqlEv/5z38wePBg1K1bV8c1JSKiyuj06dPw8fEBABw8eBB+fn4A/m5f7t+/Dx8fHyQkJODSpUuoX7++LqtLREQVLCEhAX5+fkhMTET9+vVhZWWF27dvIz4+HgUFBejWrRt+/PFHuLq66rqqRET0imMCOxEREREREREREREREVEF0mg0UCqVAIDLly/j1q1bMDExQbVq1eDh4aHj2hERUWV2+PBhdOrUCXZ2djh37hwsLS2hVquhUqmQlZWFb775BnPnzkWTJk0QFhYmtzdERPTqiImJQZ8+fRAfH4/CwkIAgJOTE7p27YqpU6fCxcVFxzUkIiICVLquABEREREREREREREREdGrRKlUyiPluru7w93dXddVIiKiKqJWrVqwtLREXl4eLl26hHbt2kGlUiEzMxMrVqzA2rVrUaNGDUycOBFKpRJCCEiSpOtqExFRBWrQoAEOHTqE48ePIykpCSqVCn369EHNmjVRvXp1XVePiIgIAEdgJyIiIiIiIiIiIiIiIiIiIqoS0tLS0KNHD4SGhqJt27bo3bs33N3d8fvvvyMkJAQPHjzA22+/jZkzZ8LOzk7X1SUiIiIiIioTE9iJiIiIiIiIiIiIiIiIiIiIqojY2Fj4+fkhJSUFAGBgYID8/HxYW1ujT58++OCDD+Di4qLjWhIRka7xLRxERFSZMYGdiIiIiIiIiIiIiIiIiIiIqAq5cuUKvvzyS1y8eBEFBQWwsrLC1KlT4e3tDWtra11Xj4iIiIiI6LGYwE5ERERERERERERERERERERUxRQUFKCwsBAFBQWoUaOGrqtDRERERET01JjATkRERERERERERERERERERFTFCSEgSZKuq0FERERERPRECl1XgIiIiIiIiIiIiIiIiIiIiIieDZPXiYiIiIioqmACOxERERERERERERERERERERERERERERFVCCawExEREREREREREREREREREREREREREVGFYAI7EREREREREREREREREREREREREREREVUIJrATERERERERERERERERERERERERERERUYVgAjsRERERERERERERERERERERERERERERVQgmsBMRERERERERERERERERERERERERERFRhWACOxERERERERERERERERERERERERERERFVCCawExEREREREREREREREREREREREREREVGFYAI7EREREREREREREREREREREREREREREVUIJrATERERERERERERERERERERERERERERUYVgAjsRERERERERERERERERERERERERERERVQiVritARERERERERERERBVLrVZj27Zt2Lt3L0JCQnD79m3cv38fxsbGqFWrFho1aoRWrVphwIABcHR01HV1iYiIiIiIiIiIiIjoJSIJIYSuK0FEREREREREREREFWP79u2YNm0arly58lTle/Togblz58LT0/MF14yIiIiIiIiIiIiIiF4FHIGdiIiIiIiIiIiI6BXx1Vdf4T//+Q+045p06NABPXv2hJeXF2rWrImcnBykpKTg6NGj2LlzJxISErBr1y7Y2dnh119/1XHtiYiIiIiIiIiIiIjoZcAR2ImIiIiIiIiIiIheAcuWLcM777wDAKhTpw7Wrl2LDh06lFteo9Fg7dq1+Oyzz9C9e3cmsBMRERERERERERER0XPBBHYiIiIiIiIiIiKil9z169dRv3595OXloXr16jh79ixcXFyeat4HDx7g2LFj6NWr1wuuJRERERERERERERERvQoUuq4AEREREREREREREb1Y8+fPR15eHgDg66+/furkdQAwNzcvlbyekJAASZIgSRJWrFgBANi8eTP8/f1hY2MDlUpV5ujuO3bswIABA2BnZwcDAwPUrFkTvr6+mDt3LrKyssqtw6xZs+S/9zjBwcFyueDg4FLTO3ToAEmS5LrFxMRgzJgxcHR0hKGhIaytrfHGG2/g1KlTj/07Go0GK1asQNeuXWFlZQV9fX2YmZnB1dUVnTp1wjfffIOoqKjHLoOIiIiIiIiIiIiI6FWl0nUFiIiIiIiIiIiIiOjFEUJg1apVAABTU1OMHDnyuS9/2LBh8t8oS15eHt566y1s2bKlxPdpaWk4deoUTp06hUWLFmHXrl1o0qTJc61feYKCgjBw4EBkZ2fL3926dQsbNmzApk2b8P3332PKlCml5svKyoK/vz+OHTtW4vvCwkJkZGTgypUrOHToEM6dO4eNGze+6NUgIiIiIiIiIiIiIqpymMBORERERERERERE9BKLiIjAvXv3AABt27aFiYnJc13+Dz/8gIsXL6Jt27YYP3486tevjwcPHiAhIUEuM3z4cDl5vXHjxpg2bRrc3d2RlpaGtWvXYsWKFbh58yY6deqEixcvwtbW9rnW8VE3b97EW2+9BZVKhW+++UYekf3w4cP47rvvkJGRgalTp8LBwQEBAQEl5p01a5acvN6zZ08MGTIE9vb2MDQ0xJ07d3D+/Hns3LnziaPFExERERERERERERG9qpjATkRERERERERERPQSu3jxovy5WbNmL2T5w4YNw4oVK8pM2t61axfWr18PAOjUqRN2794NfX19eXqXLl3g6+uLMWPGIC0tDR988AHWrVv33OtZXFxcHMzMzBASEgJ3d3f5e19fX/Tp0wetWrVCRkYGJk6ciB49ekBPT08uo12XAQMGYMOGDaWW3a1bN3z66adIS0t7oetARERERERERERERFRVKXRdASIiIiIiIiIiIiJ6ce7evSt/rlWrVrnlioqKEBERUe5/hYWFZc5nbm6OxYsXlzvi+E8//QQA0NPTw/Lly0skr2uNHj0anTt3BgBs3rwZKSkpT71+/9aMGTNKJK9rNWzYEJ9//jkAIDk5Gdu2bSsx/datWwAejmb/OBYWFs+ppkRERERERERERERELxcmsBMRERERERERERG9xDIzM+XPJiYm5ZbLyMhAo0aNyv0vOTm5zPl69eoFU1PTMqep1WocOXIEwMOR1uvWrVvu3x89erQ8T3Bw8JNW65lIkoThw4eXO33kyJFyQv6BAwdKTLO2tgYArFu3Djk5OS+ukkRERERERERERERELykmsBMRERERERERERG9xIonl2dnZz/35Xt5eZU77dq1a3KSd8uWLR+7nOLTIyIink/lyuHo6AhLS8typ9eqVQsODg4AgEuXLpWYpk18P3nyJBwdHTFx4kRs2bIFqampL6y+REREREREREREREQvEyawExEREREREREREb3EatasKX9+XJK1ubk5hBAl/nvcKOVaNWrUKHdaWlqa/Ll27dqPXY6VlVWZ870IT6oLANSpU6fMusyYMQOjRo2CJEm4c+cOfvrpJ/Tr1w+1a9eGp6cnZs6cidu3b7+QehMRERERERERERERvQyYwE5ERERERERERET0EmvcuLH8+fz58899+Uql8qnKSZL03P/2v/UsddHT08PSpUsRERGBL774Aq1atYK+vj4AIDIyEnPmzIGLiwu2bdv2vKpLRERERERERERERPRSYQI7ERERERERERER0UvM09NTHoX92LFjyMnJqbC/bWFhIX9+0qjkt27dKnM+AFAo/v4pu6ioqNxlZGdnP1W9nmaEdG2ZR+ui5eHhgS+//BInTpxAeno69u/fj5EjR0KpVCIrKwuDBw9GSkrKU9WHiIiIiIiIiIiIiOhVwgR2IiIiIiIiIiIiopeYJEkYOnQoACAjIwMrV66ssL/t5OQEY2NjAEBoaOhjy54+fVr+7OnpWWKaqamp/Pn+/fvlLiM2Nvap6hUfH4979+6VOz01NRUJCQll1qUshoaG6Ny5M5YtW4Z58+YBAHJzc7Fz586nqg8RERERERERERER0auECexEREREREREREREL7kPPvgAhoaGAIBPP/0U8fHxFfJ3VSoV2rdvDwDYv38/bty4UW7ZP/74Q56nQ4cOJaY5OjrKn8+cOVPuMtauXftU9RJC4M8//yx3+ooVKyCEAAB07tz5qZap1alTJ/nz3bt3/9G8RERERERERERERESvAiawExEREREREREREb3k7O3tsXDhQgBAeno62rRpg+PHjz92HiEEHjx48Mx/e8KECQCAgoICvPPOOygsLCxVZtmyZdi3bx8AoF+/frC2ti4xvVWrVlCpVACABQsWyMnlxc2bN6/EKO5P8uWXXyImJqbU95cvX8bXX38NALC2tkafPn3kaWlpadixY0eZf19Lux5AycR7IiIiIiIiIiIiIiJ6SKXrChARERERERERERHRizd69GgkJydj9uzZuHnzJtq2bYuOHTuiV69eaNSoESwsLKDRaHDr1i2cO3cO69evR2RkJABAqVRCX1//X/3dHj16YODAgdiwYQP27dsHHx8ffPDBB3Bzc8P9+/exdu1aLFu2DABgYWGB+fPnl1pG7dq1MXDgQKxZswZ79+5F7969MWHCBNSpUwdJSUlYtWoVNm3ahFatWuHkyZNPrJOLiwtSU1Ph4+ODjz/+WB7xPTg4GHPnzkV6ejoAYNGiRSXWOyMjA71794aDgwP69euHli1bol69elCpVEhJScGOHTvkkeRtbW3Rs2fPf7XNiIiIiIiIiIiIiIheZpJ43FAxRERERERERERERPRS2bJlCz788ENcu3btiWUlSULXrl0xb948eHp6yt8nJCTIo4svX74cI0aMeOxy8vLy8NZbb2HLli3llrGxscGuXbvQpEmTMqffvn0bbdu2RVxcXJnTBw0ahHfffRedO3cGABw+fFhOTNfq0KEDjhw5gvbt22P69Ol44403kJOTU2pZCoUCgYGBmDZtWonvi6/341hbW2PHjh3w9vZ+YlkiIiIiIiIiIiIiolcNR2AnIiIiIiIiIiIieoX07dsXvXr1wpYtW7B3716EhITgzp07ePDgAYyNjVGzZk00atQIvr6+ePPNN58qYftJDA0NsXnzZuzYsQMrVqzAqVOncPfuXZiYmKB+/foICAjAxIkTUa1atXKXUadOHYSGhuK7777D5s2bkZSUBBMTE3h6emLMmDEYMmQIgoODn7pOPXr0wJkzZzBv3jwcOnQIKSkpMDc3R9u2bTFt2jT4+vqWmqdevXo4ffo0du/ejZMnTyIxMRG3b99GVlYWzM3N4eHhgV69emHMmDGoXr36v9lUREREREREREREREQvPY7ATkRERERERERERESvhOIjsP+TZHciIiIiIiIiIiIiInp+FLquABERERERERERERERERERERERERERERG9GpjATkREREREREREREREREREREREREREREQVggnsRERERERERERERERERERERERERERERFQhmMBORERERERERERERERERERERERERERERBWCCexEREREREREREREREREREREREREREREVCEkIYTQdSWIiIiIiIiIiIiIiIiIiIiIiIiIiIiI6OXHEdiJiIiIiIiIiIiIiIiIiIiIiIiIiIiIqEIwgZ2IiIiIiIiIiIiIiIiIiIiIiIiIiIiIKgQT2ImIiIiIiIiIiIiIiIiIiIiIiIiIiIioQjCBnYiIiIiIiIiIiIiIiIiIiIiIiIiIiIgqBBPYiYiIiIiIiIiIiIiIiIiIiIiIiIiIiKhCMIGdiIiIiIiIiIiIiIiIiIiIiIiIiIiIiCoEE9iJiIiIiIiIiIiIiIiIiIiIiIiIiIiIqEIwgZ2IiIiIiIiIiIiIiIiIiIiIiIiIiIiIKsT/ATvgklZg27clAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAC7AAAAPgCAYAAACx8HFwAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzde1zb5f3//ycJp6T0SLSlthhmbUmHU1u7MZDZOvXjJq5I6dQNtZ6m29zhMzon89Rtruwg7qPz55yuHiqKm0iZYj1MrYq1zhV1HS7UdhqhFqvB0hPhmPz+4JusFBICBJKQx/12663h/X69r/eVBHK43q/rdcV5PB6PAAAAAAAAAAAAAAAAAAAAAAAYY4ZwdwAAAAAAAAAAAAAAAAAAAAAAEBtIYAcAAAAAAAAAAAAAAAAAAAAAjAsS2AEAAAAAAAAAAAAAAAAAAAAA44IEdgAAAAAAAAAAAAAAAAAAAADAuCCBHQAAAAAAAAAAAAAAAAAAAAAwLkhgBwAAAAAAAAAAAAAAAAAAAACMCxLYAQAAAAAAAAAAAAAAAAAAAADjggR2AAAAAAAAAAAAAAAAAAAAAMC4IIEdAAAAAAAAAAAAAAAAAAAAADAuSGAHAAAAAAAAAAAAAAAAAAAAAIyL+HB3AAAAAAAAAAAAAAAAAAAAAED4eTwedXd3y+12h7sriGAGg0EJCQmKi4sb0fEksAMAAAAAAAAAAAAAAAAAAAAxrLe3V06nUwcOHFB3d3e4u4MokJCQoMmTJ8tischoNA7r2DiPx+MZo34BAAAAAAAAAAAAAAAAAAAAiGC9vb1qbm5WZ2enpk6dqpSUFBmNxhFX18bE5vF41Nvbq4MHD2rfvn1KSkrS3Llzh5XETgI7AAAAAAAAAESoQ4cOacOGDXrhhRf0j3/8Q5988on27t0rk8kki8Wik046SaeeeqrOP/98zZ49O9zdBQAAAAAAAABEoT179qitrU3p6ekymUzh7g6iiMvlUlNTk6ZNm6aZM2cGfRwJ7AAAAAAAAAAQYXp7e/W73/1Ov/71r+V0OoeMNxgMWrlypX75y1/quOOOG4ceAgAAAAAAAAAmAo/Ho//85z9KSUnRrFmzwt0dRKGWlhYdOnRIxx13XNBV++PHuE8AAAAAAAAAgGFoa2vTBRdcoGeffda3bd68eTr77LNls9lksVh06NAh7d69Wy+99JJeeeUVdXV16c9//rM6OjpUU1MTvs4DAAAAAAAAAKJKd3e3uru7lZKSEu6uIEpNnjxZbW1t6u7uVmJiYlDHkMAOAAAAAAAAABGip6dHX/va11RXVydJmjlzpu68806tWLFi0Kol119/vZxOp2699Vb9/ve/H+/uAgAAAAAAAACinNvtliQZjcYw9wTRyvu74/1dCoZhrDoDAAAAAAAAABien/70p77k9fT0dL3++usqKioKuOSmxWLRr371K73xxhv67Gc/O15dBQAAAAAAAABMIIHGoYFARvK7QwI7AAAAAAAAAESA3bt364477pDUN9j78MMPy2q1Bn38Zz/7Wf3yl78cdJ/L5dKdd96pM888U2lpaUpMTFRqaqqWLFmiG264Qbt37x70uLa2NiUnJysuLk7HHXdcUP3Ys2ePEhISFBcXp6ysLL9x+/btU3l5uc444wzNnj1bSUlJmjFjhhYvXqzS0lJ9+OGHAc+zatUqxcXFKS4uTg6HQ5JUU1OjwsJCHXvssUpKSuq3T5I8Ho82b96sm266SWeeeabmzJmj5ORkmUwmzZkzR1/72td03333qaurK6j7KklPPvmkvva1ryktLU3JyclKT09XUVGRXnjhBUnSSy+95OvnmjVrgmrv4osv1rx58zR58mSZzWZlZGSouLhYzz//fND9AgAAAAAAAAAgUsWHuwMAAAAAAAAAAOmuu+5SZ2enJOnss8/WqaeeGpJ2//GPf2jFihVqbm7ut/3TTz/Vp59+qq1bt+p3v/udfv/73+uyyy7rFzNt2jSde+65qqqq0nvvvadXX311yH5VVlaqp6dHknTxxRcPGvPYY4/p6quv1qefftpve1dXl/bu3as333xT//d//6e7775bl1xyyZD3saurS0VFRXr88ccDxl1++eW6//77B9334Ycf6sMPP9STTz6p3/72t3riiSd0/PHH+22rp6dHq1at0sMPP9xve3Nzs5qbm/X444+rpKRE+fn5Q/bfe9z555+vLVu2DNjncDjkcDj08MMPa8WKFVq/fr3MZnNQ7QIAAAAAAAAAEGlIYAcAAAAAAACACPDMM8/4bgeTtB2Mbdu2admyZTp06JAkaeHChbrooouUkZGhTz/9VDU1NXruuefU3t6uyy+/XB6PR5dffnm/Ni655BJVVVVJkh566KEhE9jXr18vSTIYDCouLh6w/95779VVV10lj8ejxMRELV++XF/60pc0c+ZMHTx4UK+++qoeeeQRdXR0aNWqVUpMTNSFF14Y8Jw//OEP9fTTT+vYY4/VxRdfrMzMTHV0dOiNN95QUlKSL669vV2JiYk69dRT9YUvfEHz5s3TlClT1NnZqZ07d6q6ulrbtm1TY2OjvvKVr+jNN9/UlClTBj3n1Vdf7Utej4+PV3FxsU477TQlJSVp27ZtWrduncrLywdMHBhMc3OzvvCFL6ilpUWSdPLJJ6ugoEDz5s2TwWDQ9u3btX79er333nt6/PHHdejQIW3cuJElfQEAAAAAAAAAUSnO4/F4wt0JAAAAAAAAAIhlhw4d0pQpU+R2uyX1JTTPmTNnVG263W6deOKJamhokCRdccUV+sMf/qD4+P51TdatW6crr7xSHo9HZrNZ77zzjqxWq29/T0+PjjnmGH388ceaNm2aPvroo35J4Yd75513lJWVJUk688wz9dxzz/Xbv23bNi1ZskRdXV06/vjj9cQTTygzM3NAO3a7XWeccYZ2796tyZMny+FwaMaMGf1iVq1apQcffND3c0FBgSorK5WcnOz3MXnllVd0wgknaPr06YPu93g8+vWvf63S0lJJ0i9+8QvdcMMNA+I2bdqk008/XZI0ZcoUPffcc/rCF77QL8bpdOqMM87QP//5T9+2m2++WWvWrBlwztzcXG3ZskVGo1F/+MMfdOWVVw44Z2dnp1atWqVHH31UUt9EgCuuuMLvfQUAAAAAAACAYHR0dOj9999XRkZGwPFVSfqwzaW9h7rGqWdjZ/qkRB0zzRTuboSU1WrVBx98oPvvv1+rVq0Kel8oDOd3yIsK7AAAAAAAAAAQZh999JEveT0pKWnUyeuS9NRTT/mS1z/3uc/p7rvvltFoHBB3+eWXa+vWrbr77rvV3t6u22+/Xb/73e98++Pj43XhhRfq9ttvV1tbm5544gmtXLly0HM+9NBDvtsXX3zxgP1r1qxRV1eXkpOTtXHjRs2bN2/Qdmw2mx544AGdddZZOnDggO6991795Cc/8XtfjznmGD300ENDDox/6UtfCrg/Li5O1113nZ566im9+uqrevDBBwdNYD/88fntb387IHldkiwWix599FGdcMIJ6unp8XvOJ598Ulu2bJHU9/gMlrwu9f1ePPjgg3r99dflcDhUXl5OAjsAAAAAAACAcfNhm0un3/qSOnvc4e7KqCXFG/Ti6qVjksTu8XhUVVWlRx55RG+++aY+/vhjGY1GzZw5U2lpafr85z+vvLw8ffnLX/a7Auh48hZdWbVqVb/iNmPNMG5nAgAAAAAAAAAMqrW11Xd72rRpIWmzurrad7ukpGTQ5HWv6667TnFxcQOO87rkkkt8tw9PUj+c2+3Www8/LElKSUlRYWFhv/1tbW3661//Kkk677zz/Cave5155plKS0uTJD377LMBYy+77DKlpKQEjBmOU089VZK0c+fOfs+N1FdJ5plnnpHU91wFqlaTmZmpr3zlKwHP5a0in5SUpO9///sBYxMTE3XhhRdKkhobG9XU1BQwHgAAAAAAAABCZe+hrgmRvC5JnT3uMakk39bWpmXLlunrX/+6ampq1NTUpJ6eHiUlJampqUmbN2/W7373OxUWFg46Fj9WjjvuOC1YsEBTp04dsO9nP/uZfvazn8nhcIxbfyQqsAMAAAAAAABA2Hk8npC3+fe//913+6yzzgoYe+yxxyozM1N2u11NTU1qaWnxJY9L0sknn6ysrCw1NDTomWee0SeffKKjjjqqXxubNm3Srl27JEkrVqyQ2Wzut3/z5s39qszX1NQMeR8mT56slpYW/fvf/w4Yl5eXN2RbXj09PaqurlZNTY3efvtt7d69WwcOHPD17Ui7du1Samqq7+d//vOf6u7uliTl5uYqMTEx4PmWLVumJ5980u/+V155RZI0c+ZMvfjii0P2f+/evb7b//73v5Wenj7kMQAAAAAAAACAsXfxxRfr5ZdfltFo1A9/+ENdddVVOu6442QwGNTT06N///vfeuaZZ/TII4+Ma79eeOGFcT1fMEhgBwAAAAAAAIAwOzxBuq2tLSRttrS0SOpLAp81a9aQ8fPnz5fdbvcde3gCu9Q38H7ttdequ7tblZWVA6qFH16Z/eKLLx7Q/uHVWx544AE98MADwd4VffrppwH3z5kzJ6h2tm/frsLCwiET4g+3f//+fj/v3r3bd/u4444b8vjPfOYzfvcdOnRITqdTktTU1KTzzjsv6H5JQz8uAAAAAAAAAIDxsWPHDl8xk1tuuUXXXXddv/3x8fH63Oc+p8997nO69tpr5XK5wtHNiGEIdwcAAAAAAAAAINbNmjVLBkPfcG1nZ6evkvloHDhwQJI0adKkoOJTUlIGHHu44uJiGY1GSf2T1SWpvb1djz/+uCQpPT1dy5YtG3D8aBLzvRXP/TGZTEO2sW/fPp1++um+5PXZs2fryiuv1G233aaHH35Yjz/+uDZs2KANGzbo/PPP9x3X29vbr51Dhw75bh9ZZX4wgR7/0U5W6OoK/RK3AAAAAAAAAIDhe/vtt323ly9fPmT8kePaVqtVcXFxeuCBB3TgwAGVlpZqwYIFMplMslgsKigo6Lfy6nAc3rbXqlWrFBcX5/t52bJliouL8/2zWq0jOlewqMAOAAAAAAAAAGGWkpKik08+WfX19ZKkzZs390uiHonJkyerra2tX8J1IAcPHux37JHS0tJ0xhln6Nlnn9XWrVtlt9tls9kkSRs2bPAdX1xc3G/Q2+vwBPk77rhD3/ve94Z1f0brzjvv9FVP/+Y3v6n77rtPiYmJg8Zu3rzZbzuHJ6S3t7cPed5Aj//hj8miRYt8zz8AAAAAAAAAIHrt2rXLN34+XHv37tWSJUu0fft2JSYmKjk5Wa2trfrrX/+qJ598Uvfee68uu+yyUfdx6tSpmjlzpvbs2SNJmj59er8x86OOOmrU5wiECuwAAAAAAAAAEAH+53/+x3f7wQcfHHV7aWlpkvqqqXsHoAN59913fbdnz549aMzFF1/su71+/fpBbx8ec7g5c+b4bjc3Nw/Zn1B77rnnJPUt0/r73//eb/K6JL3//vt+9x3+2PznP/8Z8rzvvfee331Tp071JbGHouo+AAAAAAAAACA8lixZ4ivuUlJS0m/MfTh+9rOf6eOPP9Zf/vIXHTp0SPv27dO///1vnXbaaXK73brqqqv05ptvjrq/t99+uz766CPfz9XV1froo498//7xj3+M+hyBkMAOAAAAAAAAABHgO9/5jpKSkiRJzzzzTMAq4MH4whe+4LvtTd72p6mpSY2NjZKk9PR0zZo1a9C48847T1OmTJEkPfzww/J4PGppadELL7wgSfr85z+vBQsWDHpsXl6eb/D+mWeeGd6dCQHvQHxqaqqmT5/uN66jo0MvvfSS3/0nnniiEhISJEmvvfaaurq6Ap5306ZNAfefdtppkqSPP/6YCuwAAAAAAAAAEKWsVquuuOIKSdK//vUvZWZmatGiRfrud7+r++67Tw0NDfJ4PEO2s2/fPj322GNauXKl4uPjJUk2m01PP/20jj/+ePX09OjGG28c0/syHkhgBwAAAAAAAIAIcMwxx+iaa66RJHk8Hn3jG9/QBx98EPTxdrtd119/ve/nFStW+G6Xl5ert7fX77G//vWvfQPnhx93JJPJpKKiIkl9VdQ3bdqkRx55xNe2v+rrknT00UfrK1/5iqS+wfvKysog7lXoTJo0SVJfovj+/fv9xt1+++1qbW31uz85OdlXLX/v3r164IEH/MY2Njbq6aefDtivSy65xHf7hhtuCOoCBgAAAAAAAAAg8tx111268cYbNWnSJHk8Hr311lu66667dPnll+uEE07QrFmz9KMf/Sjgqqm5ubn68pe/PGC7yWTSj3/8Y0l9RWL27ds3ZvdjPJDADgAAAAAAAAARoqysTLm5uZL6qqJnZ2fr8ccfD5jU/Omnn+qGG27QkiVL9M477/i2f/WrX9UJJ5wgSfrnP/+pb3/72+rp6Rlw/AMPPKC7775bkmQ2m/WDH/wgYB8PT1Jfv3691q9fL0lKTEzUBRdcEPDYX/7yl0pMTJQkXXHFFUMmsX/66ae67bbb9PzzzweMC8aSJUsk9U0OODzR/3CVlZVBVa753//9X9/tH//4x/r73/8+IMbpdOqCCy4Y9DE/XFFRka9a/jPPPKOLL75YBw8e9Bvf29urZ555RrfccsuQ/QQAAAAAAAAAjJ/4+Hj9/Oc/14cffqiHHnpIV1xxhU488UTfuPjHH3+s3/3ud8rKytIbb7wxaBunn3663/a9+9xut958883Q34FxFB/uDgAAAAAAAAAA+iQkJOiJJ57Q+eefr+eff14fffSRioqKdPzxx+vss8/WwoULlZqaqkOHDmn37t2qq6vTSy+9pI6OjgFtGQwGVVRUKCcnR4cOHdK9996rLVu26KKLLpLVatWnn36qv/71r3rmmWd8x9xxxx069thjA/bxS1/6kqxWqxwOhyorK9XV1SWpL2E+NTU14LEnnXSS/vjHP+ryyy9Xe3u7vvGNb+g3v/mNzj33XB1//PEymUzat2+fdu7cqTfeeEOvvPKKenp69NBDD43g0ezvmmuu0X333aeenh7deeedevPNN1VUVKRjjjlGe/bs0V//+le98MILSklJ0de+9jU9/vjjfts6/fTTdfnll2vdunXav3+/8vLyVFxcrC996UtKSkrStm3btG7dOn3yySf6+te/rr/85S+S+p6TI8XFxenxxx/XF7/4RTU3N6uiokJPPfWUVq5cqcWLF2vGjBnq6OjQ7t279c9//lN/+9vf9Mknn+jLX/6ybrjhhlE/LgAAAAAAAACA0Jo6daqKi4tVXFwsSero6NCrr76qO+64Q08++aScTqdWrFihHTt2KDk5ud+xxxxzjN92D9/38ccfj03nxwkJ7AAAAAAAAAAQQWbMmKFnnnlGt956q37729+qtbVVO3bs0I4dO/weYzQadeGFF+oXv/hFv+2f+9zntGnTJhUWFmrXrl1qaGjQT37ykwHHm81m3XHHHbr88suH7F9cXJwuuugi/eIXv/Alr0v9K7MHsmrVKqWlpemyyy7T7t279fbbb+vtt9/2G5+UlCSLxRJU24GccMIJ+uMf/6irrrpKPT09eu211/Taa6/1i0lNTdUjjzyi1157LWACuyTdfffdcrlceuSRR9Td3a37779f999/f7+YkpISnX322b4E9smTJw/a1jHHHKOtW7dq1apVevrpp7V3717dc889Ac8/Z86coe4yAAAAAAAAACACJCcn64wzztAZZ5yhVatW6cEHH9SuXbv0zDPPqKCgINzdC4uB5V4AAAAAAAAAAGFlNBr1k5/8RA6HQw8++KAuvvhiLVy4UBaLRfHx8ZoyZYqOO+44FRYW6v/+7/+0a9cuPfTQQ7JarQPaWrJkid59913dcccd+vKXv6yZM2cqISFB06dP1+LFi/XTn/5UO3bsCCp53evIZPXU1FSdc845QR//P//zP3rvvfd03333qaioSBkZGUpJSVF8fLymT5+uk08+WatWrdL69ev10Ucf6eyzzw667UAuu+wy/f3vf9c3v/lNzZkzRwkJCZoxY4ZOOukk3Xjjjdq2bZvOOuusoNqKj4/Xww8/rCeeeEL5+fk6+uijlZiYqDlz5mjFihV6/vnndeutt6q1tdV3zIwZM/y2d/TRR2vjxo3asmWLrrnmGp100klKTU2V0WjUpEmTdNxxxyk/P1+/+tWv1NDQoAceeGC0DwcAAAAAAAAAYJx961vf8t3evn37gP0ffvih32MP33f00UeHtmPjjArsAAAAAAAAABChUlJSdPHFFwdd3dwfk8mk733ve/re974Xkn7NmzdPHo9nVG0kJSXp0ksv1aWXXjqi4x944IERJXEvWrRIFRUVAWPWrFmjNWvWBNXeueeeq3PPPdfv/jfeeMN3+8QTTxyyvezsbGVnZwd1bgAAAAAAAABAdElJSfHdTkpKGrB/06ZNfo/17jMYDDr55JND0p+4uDh5PJ5Rj/kPFxXYAQAAAAAAAAAYA/v27dNDDz0kSTrqqKOUlZUV5h4BAAAAAAAAAMbC+++/r3fffXfIuAcffNB3e9GiRQP2v/rqq3rppZcGbO/o6FB5ebmkvlVOp02bNuK+Hm7KlCmSpLa2tpC0FywS2AEAAAAAAAAAGKb3339fH3zwgd/9bW1tWrlypT755BNJ0hVXXKH4eBZFBQAAAAAAAICJ6J133pHNZtM555yj9evXy+Fw+PZ1d3frrbfe0qWXXqrbbrtNkvT5z39ep5566oB2pk6dqhUrVqiqqko9PT2SpMbGRp1zzjlqbGyU0WjUz3/+85D121t45eGHH1Z7e3vI2h0Ko+UAAAAAAAAAAAxTfX29LrjgAuXm5uq0007TvHnzNGnSJO3du1f19fV69NFHfRVr5s2bp+uvvz68HQYAAAAAAAAAjJmEhAS53W5t3LhRGzdulCQlJiYqJSVFe/fulcfj8cUuWrRIGzZskMEwsA75zTffrD/+8Y9auXKlkpKSlJycrH379kmS4uLi9Ic//EGnnHJKyPp99dVXa/PmzXr88cf1xBNP6Oijj1Z8fLzmzJmjV199NWTnORIJ7AAAAAAAAAAAjEBvb69eeeUVvfLKK35jTj75ZP31r3/VpEmTxrFnAAAAAAAAAIDx9D//8z/asWOHNm7cqFdffVUNDQ3atWuX2traZDabNXv2bJ188skqLCzUypUrB01el6Tp06frjTfeUFlZmR5//HE1NzdrxowZys3NVWlpqb74xS+GtN/FxcWSpD/+8Y/617/+pZaWFrnd7pCeYzBxnsNT+gEAAAAAAAAAwJAOHDigxx57TH/729/0zjvvyOl06tNPP5XRaNTRRx+tJUuWaMWKFQEvRAAAAAAAAABAuHV0dOj9999XRkaGkpOT/cZ92ObS6be+pM6esU9uHmtJ8Qa9uHqpjplmCndXfKxWqz744APdf//9WrVqVbi7MyzB/g4djgrsEcDtdmv37t2aPHmy4uLiwt0dAAAAAAAAAEAQioqKVFRUFDDm4MGD49QbAAAAAAAAALHC4/HowIEDmj179rgV0Dhmmkkvrl6qvYe6xuV8Y2n6pMSISl6PRSSwR4Ddu3dr7ty54e4GAAAAAAAAAAAAAAAAAAAAokRzc7PmzJkzbuc7ZpqJxG+EBAnsEWDy5MmS+l5IpkyZEubeIJQyMzPV0tKitLQ0NTY2hrs7AAAAAABMSHz/BgAEi/cMAEAweL8AAASL9wwAQLjs379fc+fO9eWfAtGGBPYIEBcXJ0maMmUKCewTjHdpDoPBwHMLAAAAAMAY4fs3ACBYvGcAAILB+wUAIFi8ZwAAws2bfwpEGxLYAQAAAAAAAAAAAAAAAAAAACBMHA5HuLswrgzh7gAAAAAAAAAAAAAAAAAAAAAAIDaQwA4AAAAAAAAAAAAAAAAAAAAAGBcksAMAAAAAAAAAAAAAAAAAAAAAxgUJ7AAAAAAAAAAAAAAAAAAAAACAcUECOwAAAAAAAAAAAAAAAAAAAABgXJDADgAAAAAAAAAAAAAAAAAAAAAYFySwAwAAAAAAAAAAAAAAAAAAAADGBQnsAAAAAAAAAAAAAAAAAAAAAIBxQQI7AAAAAAAAAAAAAAAAAAAAAGBcRHUC+8cff6za2lrddNNN+spXviKLxaK4uDjFxcVp1apVY3LOyspKnXXWWZo1a5aSk5N17LHHqri4WFu2bBmT8wEAAAAAAAAAAAAAAAAAAADARBEf7g6MxsyZM8ftXC6XS0VFRdq4cWO/7U1NTXr44YdVWVmpm266STfffPO49QkAAAAAAAAAAAAAAAAAAAAAoklUV2A/XHp6us4666wxa/+yyy7zJa8vW7ZMNTU1euONN7Ru3Todd9xxcrvdWrNmje65554x6wMAAAAAAAAAAAAAAAAAAAAARLOorsB+0003acmSJVqyZIlmzpwph8OhjIyMkJ/nxRdf1KOPPipJOvfcc7VhwwYZjUZJ0pIlS/S1r31NixcvVlNTk37yk59o5cqVmj59esj7AQAAAAAAAAAAAAAAAAAAAIRFW7PU3hruXoyeOVWaNjfcvYhpUZ3A/rOf/WxcznPrrbdKkuLj43XXXXf5kte9LBaLfv3rX+vCCy9UW1ub/vSnP+nHP/7xuPQNAAAAAAAAAAAAAAAAAAAAGFNtzdKdi6WeznD3ZPTik6Rr6sc0ib23t1ePP/64amtr9frrr+vjjz9We3u7pk2bpvnz5ysvL0/f/OY3lZWV5beNl19+WY888oheeeUVtbS0qKOjQ0cddZROPPFEnXvuubrkkkuUnJzs9/g1a9YMmmudmJio1NRUnXDCCVq5cqUuueQSJSQkhOR+B8swrmeLQgcOHNALL7wgSTrjjDM0Z86cQeMKCws1ZcoUSdKGDRvGrX8AAAAAAAAAAAAAAAAAAADAmGpvnRjJ61Lf/RjDSvKvv/66Fi5cqPPPP18PPfSQduzYofb2dk2ePFmtra3avHmzfvWrX+mEE07QihUr1NXV1e/41tZWnXPOOVq6dKnuueceNTY2qqOjQ8nJydq1a5eeeuopXX311Zo/f75efPHFoPo0c+ZM37/4+Hi1tLToueee05VXXqmcnBzt3bt3LB4Kv0hgH8I//vEP3y/Gaaed5jcuMTFR2dnZvmO6u7vHpX8AAAAAAAAAAAAAAAAAAAAAwu/JJ5/U0qVL9e677yo1NVVlZWV699131dXVpdbWVnV1dekf//iHrrvuOk2ZMkXV1dVqb2/3Hb9nzx5lZ2dr48aNMhqN+t73vqd33nlHHR0damtr0969e3X//fdr7ty5am5u1tlnn62ampoh+/XRRx/5/h06dEgffPCBrrzySknS1q1b9f3vf3+sHpJBkcA+hH//+9++25mZmQFjvft7enq0Y8eOMe0XAAAAAAAAAAAAAAAAAAAAgMiwY8cOFRcXq7OzUwsXLtTbb7+t6667Tscff7wvxmg06pRTTlFZWZnef/99LV++3LfP4/HoG9/4hnbu3KmEhARt2LBBd9xxhxYuXOiLmTZtmlatWqW33npLJ554orq7u3XJJZfoP//5z7D6mp6ernvuuUenn366JOkvf/mLDh48OMpHIHgksA9h165dvttz5swJGDt37lzf7ebm5jHrEwAAAAAAAAAAAAAAAAAAAIDIccMNN2j//v1KTk7Whg0bhsw7njFjhmpqajR16lRJUm1trV588UVJ0vXXX69zzz3X77Gpqal67LHHlJycrP379+vmm28eUZ/PPvtsSVJXV9e4Fu8mgX0IBw4c8N1OSUkJGDtp0iTf7UCzEDo7O7V///5+/wAAAAAAAAAAAAAAAAAAAABEnz179qiqqkqS9M1vflPz588P+ti4uDhJ0l133SVJmjx5skpKSoY87vjjj9eFF14oSfrzn/8sp9M53G7L4/H4bvf29g77+JEigX0IHR0dvtuJiYkBY5OSkny3XS6X37iysjJNnTrV9+/wyu0AAAAAAAAAAAAAAAAAAAAAosemTZvkdrslSeedd96wj+/p6VFdXZ0k6ayzzhqy6LZXYWGh7/hXXnll2Od99tlnJfUl0WdkZAz7+JEigX0IycnJvttdXV0BYzs7O323TSaT37jS0lLt27fP96+5uXn0HQUAAAAAAAAAAAAAAAAAAAAw7t555x3f7ZNPPnnYxzscDh06dGjYx5900km+29u2bQv6uKamJn3rW9/Siy++KEk699xzlZqaGvTxoxU/bmeKUpMnT/bdPnjwYMBY7y+OpIAzH5KSkvpVawcAAAAAAAAAAAAAAAAAAAAQnVpbW323Z8yYMarjh5NIbrFYBm3jSLNmzfLdPnDggNrb230/Z2Zm6q677gr6nKFABfYhzJkzx3d7165dAWMPr6Q+d+7cMesTAAAAAAAAAAAAAAAAAAAAAHh1dnb63bdnzx7fv8OT1y+++GK99dZbOuaYY8ajiz4ksA9h4cKFvtuNjY0BY7374+Pjdfzxx49pvwAAAAAAAAAAAABgNHp7e/XSSy+psrJSL730knp7e8PdJQAAAAAAotLhVdM//fTTUR0fqJL6kZxOp+/29OnT/cZ5PB55PB653W7t3r1bd999t6ZNm6b169frzjvvHHZ/Ryt+3M8YZZYsWaLExER1dXXp5Zdf1nXXXTdoXFdXl15//XXfMQkJCePZTQARoL29fcBEF5fLJYfDIavVKpPJ1G9fZmamzGbzeHYRAAAAAAAAAABAklRdXa2SkhI5HA7fNqvVqvLychUWFoavYwAAAAAARKHPfvazvttvvfWWZs+ePazjjz32WE2aNEmHDh3Sm2++GfRxb731lu/2ggULhoyPi4tTWlqarrrqKi1YsECnn366rr32Wi1atEinn376sPo8GlRgH8LkyZP15S9/WZL0/PPPa9euXYPGVVdXa//+/ZKk8847b9z6ByByNDY2avHixf3+nXrqqSouLtapp546YN9QqzoAAAAAAAAAAACMherqahUVFemEE07Qli1bdODAAW3ZskUnnHCCioqKVF1dHe4uAgAAAAAQVZYtWyaDoS8te8OGDcM+PiEhQXl5eZKk5557TgcOHAjquMO/wy9dunRY51y6dKkuuugieTwefe973xvXldliPoH9gQceUFxcnOLi4rRmzZpBY1avXi1J6unp0Xe/+90BT5DT6dRPfvITSdK0adN0xRVXjGmfAUSmzMxM1dfX9/tXUVEhSaqoqBiwLzMzM8w9BgAAAAAAAAAAsaa3t1clJSXKz89XTU2NsrOzlZKSouzsbNXU1Cg/P1+rV68e14vWAAAAAABEu5kzZ2rFihWSpEceeUTvvvtu0Md6PB5J0ne+8x1J0sGDB3XbbbcNedyOHTv06KOPSpJOPfVUfeYznxlut3XTTTfJaDTq3//+tx588MFhHz9S8eN2pjHw6quvaufOnb6fnU6n7/bOnTv1wAMP9ItftWrViM5z+umn64ILLtCjjz6qJ554QmeeeaZ++MMfavbs2frXv/6lX/7yl2pqapIk/frXv9b06dNHdB4A0c1sNmvRokWD7rPZbH73AQAAAAAAAAAAjJe6ujo5HA5VVlb6KsN5GQwGlZaWKicnR3V1dcOu3AYAAAAAQCy75ZZb9PTTT+vgwYMqLCzUs88+q2OOOcZv/N69e3XFFVdo3bp1mjZtmvLz87V06VK99NJL+uUvf6nFixcrPz9/0GNbW1u1cuVKdXR0KC4uTrfccsuI+nzcccfp/PPP1yOPPKJf/OIXuuiii5SQkDCitoYjqhPY//SnP/nN9t+8ebM2b97cb9tIE9gl6b777tP+/fu1ceNGbdq0SZs2beq332Aw6MYbb9S3vvWtEZ8DAAAAAAAAAAAAAMZSS0uLJCkrK2vQ/d7t3jgAAAAAABCc+fPn66GHHtL555+vd955RyeddJJWr16tFStWaN68eZL6Vkbbtm2bNmzYoN///vdqa2vTunXrJElxcXGqrKxUbm6u3nvvPZ133nn6zne+o6uvvlo2m02StG/fPtXU1Oimm27yFd++6aabdNppp42436WlpaqsrJTD4dC6det09dVXj/KRGJph6BBIkslk0lNPPaWHH35YZ555po4++mglJiZq7ty5+sY3vqFXX31Va9asCXc3AQAAAAAAAAAAAMCvtLQ0SVJDQ8Og+73bvXEAAAAAACB4BQUFevHFFzVv3jw5nU5dd911Ov7445WUlKTU1FQlJiZq0aJF+sUvfqF9+/bpwgsv1KRJk3zHz5o1S6+//rrOOuss9fT06I477tDChQtlMpk0ffp0TZs2TatWrVJTU5MSEhL0m9/8ZtT5y1lZWfra174mSfrlL3+pzs7OUbUXjKiuwP7AAw/ogQceGFUbq1atGlZl9m984xv6xje+MapzAgDGVnt7uxobG/ttc7lccjgcslqtMplM/fZlZmbKbDaPZxcBAAAAAAAAAAiLvLw8Wa1WrV27VjU1NTIY/lvzzO12q6ysTBkZGcrLywtjLwEAAAAAEcecKsUnST1jn9w85uKT+u7PGMnNzVVjY6Mee+wx1dbW6u9//7s+/vhjHThwQDNmzFBmZqZOO+00XXTRRVqwYMGA44866ig9++yzevHFF1VZWam6ujq1tLSora3NFzN79mxt2rRJ8+fPD0mfr7/+ev31r3/Vrl279Mc//lHf//73Q9KuP1GdwA4AwGAaGxu1ePHioOPr6+u1aNGiMewRAAAAAAAAAACRwWg0qry8XEVFRSooKFBpaamysrLU0NCgsrIy1dbWqqqqSkajMdxdBQAAAABEkmlzpWvqpfbWcPdk9MypffdnDBmNRl1wwQW64IILRtzG6aefrtNPP73ftj//+c+68MILtXv3bj300EP6xS9+4ff4NWvWBF2dfcmSJfJ4PCPu63CRwA4AmHAyMzNVX1/fb5vdbldxcbEqKipks9kGxAMAAAAAAAAAECsKCwtVVVWlkpIS5eTk+LZnZGSoqqpKhYWFYewdAAAAACBiTZs75onfCOz8889XS0uL/vd//1e33HKLJk+erGuvvTbc3Ro2EtgBABOO2Wz2W1HdZrNRbR0AAAAAAAAAEPMKCwu1fPly3zLkaWlpysvLo/I6AAAAAAAR7oc//KE+/PBD3XrrrfrJT36ilJQUfec73wl3t4aFBHYAAAAAAAAAAAAAiEFGo1FLly4NdzcAAAAAAMAw/fa3v9Vvf/vbcHdjxAzh7gAAAAAAAAAAAAAAAAAAAAAAIDaQwA4AAAAAAAAAAAAAAAAAAAAAGBcksAMAAAAAAAAAAAAAAAAAAAAAxgUJ7AAAAAAAAAAAAAAAAAAAAACAcREf7g4AGLn29nY1Njb22+ZyueRwOGS1WmUymfrty8zMlNlsHs8uTmhNTU1yOp0BY+x2e7//A7FYLEpPTw9J3xBa/K0BAAAAAAAAAAAAAAAAABAaJLADUayxsVGLFy8OOr6+vl6LFi0awx7FjqamJi3ItKnD1R5UfHFx8ZAxySaztjfaSWKPQPytAQAAAAAAAAAAAAAAAAAQGiSwA1EsMzNT9fX1/bbZ7XYVFxeroqJCNpttQDxCw+l0qsPVrtT8EiWkzvUb5+npUs++PYqfOlNx8Yl+47pbm9VaWy6n00kC+wiMdTV8/tYAAAAADGdlJlZlAgAAAAAAAAAAAPwjgR2IYmaz2W+VZ5vNRgXocZCQOldJs+YFDpqzcHw6E6PGoxo+f2sAAAAAhrMyE6syAQAAAAAAAAAAAP6RwA4AiGpUw48tw6l6KVH5EgAAAKEznJWZWJUJAAAAAAAAAAAA8I8EdgDAhEA1/NgwnKqXEpUvAQAAEDqszAQAAAAAAAAAAACEBgnsAAAgagyn6qU3HgAAAAAAAAAAAAAAAAAQOUhgBwAAUYOqlwAAAAAAAAAAAAAAAAAQ3UhgBwAAAAAAAAAAAIAY0N7ersbGxn7bXC6XHA6HrFarTCZTv32ZmZkym83j2UUAAAAAABADSGAH4MOgJfBfdrs9qP1DxUmSxWJRenp6SPoFAAAAAAAAAMBINTY2avHixUHH19fXs/IlAAAAAMCn5WCL9nbuDXc3Rm160nSlpaSFuxsxjQR2AD4MWgJS78G9MsRJxcXFQcUHE2c2JcveuJ0kdgAAAAAAAABAWGVmZqq+vr7fNrvdruLiYlVUVMhmsw2IBwAAAABA6ktez6/JV1dvV7i7MmqJxkTVFtSOaRJ7b2+vHn/8cdXW1ur111/Xxx9/rPb2dk2bNk3z589XXl6evvnNbyorK8tvG9u2bdPDDz+sTZs26YMPPtDevXtlMpl0zDHHaMmSJSosLNRXv/pVJSQk9Dtu6dKlevnllwe0ZzabdcwxxygnJ0dXX321srOzQ36/g0UCOwAfBi0jy3Aq4sdyNXyXyyVJ6m5tDkl7XR//R26PtO7cZJ2UZvR/3h6PHG1uWacZZIqP8xtn/8St4g0uOZ1OEtgBAAAAAAAAAGFlNpv9Fiey2WwULgIAAAAA+LW3c++ESF6XpK7eLu3t3DtmCeyvv/66LrnkEr377ru+bQkJCZo8ebJaW1u1efNmbd68Wb/61a9UWFioyspKJSYm+mIPHDigq6++WpWVlfJ4PJKkuLg4TZ06VS6XS3a7XXa7XevXr9dxxx2nhx9+WF/4whcG9CMhIUEzZszw/ex0OrVjxw7t2LFD69ev180336ybb755TB6DoZDADsCHQcvIMpyK+LFcDd/hcEiSWmvLQ9puUoK0KEACuyTlzg3pKSek4UzEkGJ7MgYAAAAAAAAAAAAAAACA6Pbkk09q5cqV6uzsVGpqqlavXq0VK1bo+OOPl9RXmf2tt97S448/rrvuukvV1dVqb2/3JbDv3btXeXl5eueddxQXF6cLLrhA3/72t5Wdne2L2b17t55++mndcccd2rZtm7Zs2TJoAntOTo5eeukl389dXV16+eWX9Z3vfEc7d+7UmjVrdMopp+icc84Z+wfmCCSwA0CEGk5F/Fiuhm+1WiVJqfklSkgdfUa5672t2ldXIes0w6jbwvAmYkixPRkDAAAAAAAAAAAAAAAAQPTasWOHiouL1dnZqYULF+rZZ5/VnDlz+sUYjUadcsopOuWUU/TjH/9Yl112Wb/93/zmN/XOO+8oPj5ejzzyiFauXDngPLNnz9bll1+uyy67THfffbfi4uKC6l9iYqLOPPNM/fWvf9XJJ5+srq4u3XnnnSSwAwD+i4r4wfFW8E5InaukWfNG3V53a3Nfu/HBvamPRCxVJR/ORAxvPAAAAAAAAAAAAAAAAABEmxtuuEH79+9XcnKyNmzYMCB5/UgzZsxQTU2NPB6PJOnpp5/W008/LUm66aabBk1eP1xcXJy+/e1vy+12D6ufCxcu1OLFi7Vlyxb94x//GNaxoUICOwAA4yyWqpIzEQMAAAAAAAAAAAAAAADARLdnzx5VVVVJ6quiPn/+/KCP9VZQv/POOyVJU6dO1Y9+9KOgjzcYDMPoaR9vcv3+/fuHfWwokMAOAMA4oyo5AAAAEPmamprkdDoDxtjt9n7/+2OxWJSenh6yvgEAAAAAAAAAACCybNq0yVcJ/bzzzhv28T09PXrllVckSWeeeaYmTZoU0v4dyeFwSOqrAh8OJLADwAi4XC5JUndrc0ja87bjbRcTG1XJAQAAgMjW1NSkBZk2dbjag4ovLi4OuD/ZZNb2RjtJ7AAAABh3oZyYKTE5EwAAAAAAf9555x3f7ZNPPnnYx3/wwQc6ePDgiI8fjjfeeMNXgDU7O3tMz+UPCexAlBlqoJFBxvHhnX3UWlse8nZzc3ND2iYAAAAAYHicTqc6XO1KzS9RQupcv3Geni717Nuj+KkzFRefOGhMd2uzWmvL5XQ6+Q4OAACAcRXqiZkSkzMBAAAAAPCntbXVd3skVc1He3wwdu/erRdeeEHXXnut3G634uLi9MMf/nBMzjUUEtiBKDKcgUYGGceW1WqVpCGTGYLlTWjo7OzUm2++6TeO5ekBAAAAYPwkpM5V0qx5gYPmLByfzgAAAADDFMqJmRKTMwEAAAAAiDYvv/yy4uLiBt2XkJCg2267TUuXLh3fTv0/JLADUSSYgUYGGceHyWSSFGQyQxB6D+6VIU66/PLLg4ofaoKC2ZQse+N2nlsAAAAAAAAAAGIcEzMBAAAAABh7qampvtuffvqpZs+eParjQyEhIcFXzT0uLk4mk0mzZ89WTk6OrrjiCs2fPz8k5xkJEtiBKDTkQCODjFHH3XlQbo9UcZ5JtqMMfuNcPR452tyyTjPIFD/4zCj7J24Vb3AxOQEAAAAAAAAAgBjmcrkk9RU1CgVvO952AQAAAADAf332s5/13X7rrbeGncB+7LHHKiUlRQcPHtRbb70Vkj7l5OTopZdeCklboUYCOwBEENtRBi1KMwaMyfW/yicAAAAAAAAAAIAkyeFwSJJaa8tD3m5ubm5I2wQAAAAAINotW7ZMBoNBbrdbGzZs0DnnnDOs4+Pj4/WlL31JGzdu1N/+9jcdOnRIkyZNGqPehh8J7EAUCWWlDKpkAAAAAAAAAACA8dDe3q7GxsZ+21wulxwOh6xWq0wmU799mZmZMpvN49nFCclqtUqSUvNLlJA6+uo43a3Naq0t97ULAAAAAAD+a+bMmVqxYoUee+wxPfLII7r22ms1f/78oI71eDyKi4vTd7/7XW3cuFH79u3TbbfdphtvvDGo491utwwGw2i6P+5IYAeiyFhUyqBKBtCfp7dbkmR39oakPW87TBYBAAAAAAAAEKsaGxu1ePHioOPr6+u1aNGiMexRbDhyYoA/np4u9ezbo/ipMxUXnxiydgEAAAAAiDW33HKLnn76aR08eFCFhYV69tlndcwxx/iN37t3r6644gqtW7dO06ZN01e/+lWdddZZeu655/Tzn/9cNptNRUVFAc95zz33yOPx6Kqrrgr13RlTJLADUSSUlTKokgEMrvfgp5Kk4uqOkLbLZBEAAAAAAAAAsSozM1P19fX9ttntdhUXF6uiokI2m21APEbPYrEo2WQOaWGkZJNZFovF9zPV9QEAAAAA+K/58+froYce0vnnn6933nlHJ510klavXq0VK1Zo3rx5kqTe3l5t27ZNGzZs0O9//3u1tbVp3bp1vjYeeeQR5eXlyW636+tf/7ouvPBCXX311crOzlZCQoIkqaWlRc8995zuuOMOvfnmm/rd734Xlvs7GiSwA1HEO8iXkDpXSbPmhbRNhFcoq37HasXv7tbmgPuDrSDj6e2RJFUUJstmMY66X3Znr4qrO5gsgojT29ururo6tbS0KC0tTXl5eTIaR/87DwAAMBF4v08N9T0jGN42Yu07GgAAwOHMZrPfiuo2m41q62MkPT1d2xvtcjqdvm3eiQPBOnKCgcViUXp6uu9nqusDAAAAANBfQUGBXnzxRa1atUo7d+7Uddddp+uuu06JiYlKSUlRW1ub3G63JCkuLk4XXnihJk2a5Ds+NTVVr7/+uq688ko99thjeuSRR/TII48oLi5O06ZNk8vlUkfHf4uz2mw25eXljfv9HC0S2AFgFEKVNN310Q5Joa36HSsVv8eigowk2SxGLUoLXTIvk0UQSaqrq1VSUiKHw+HbZrVaVV5ersLCwvB1DAAAIEJ4PyeF8ntGrHxHAwAAQGRJT0/vl3A+WDX80VRMp7o+AAAAAAAD5ebmqrGxUY899phqa2v197//XR9//LEOHDigGTNmKDMzU6eddpouuugiLViwYMDxU6ZM0Z///Gf99Kc/VUVFhV566SV98MEH2rt3r0wmkzIyMvT5z39eK1eu1Nlnnx2VRStJYAeAERirpOlQVP2OtYrfg1WQGUygAfPB4oCJqrq6WkVFRcrPz1dlZaWysrLU0NCgtWvXqqioSFVVVSSxAwCAmOf9PpWaX6KE1Lmjaqu7tVmtteUx8x0NAAAAkc1fNfyRTrakuj4AAAAAxI7pSdOVaExUV29XuLsyaonGRE1Pmj6m5zAajbrgggt0wQUXjLiNE088USeeeOKwj3vppZdGfM7xQgI7AIzAWCVNh7LqdyxV/D6ygkwgDJhHl6ampqD+zg7/P5Ajl7eNNb29vSopKVF+fr5qampkMBgkSdnZ2aqpqVFBQYFWr16t5cuXR+XMTAAAgFDxfp9KSJ2rpFnzQtomAAAAAAAAAABANEpLSVNtQa32du4Nd1dGbXrSdKWlpIW7GzGNBHYAGCGSpoGBQplw3tLSopVFK+Tq6Azq3MFUzjebkmVv3B6zSex1dXVyOByqrKz0Ja97GQwGlZaWKicnR3V1dVq6dGl4OgkAAAAMob29XY2Njf22uVwuORwOWa3WAZMFMjMzZTabx7OLAAAAAAAAAABMSGkpaSR+IyRIYAcAACHR1NSkBZk2dbjag4oPJuFckirOM8l2lMHvflePR442t6zTDDLFx/mNs3/iVvEGl5xOZ8wmsLe0tEiSsrKyBt3v3e6NAwAAACJRY2OjFi9eHHR8fX09k8oBAAAAAAAAAAAiCAnsAAAgJJxOpzpc7UrNL1FC6ly/cZ6eLvXs26P4qTMVF5/oN8713lbtq6uQ7SiDFqUZA5471//pcJi0tL4ZsA0NDcrOzh6wv6GhoV8cAABArOtubQ64P5jPtkO1geHLzMxUfX19v212u13FxcWqqKiQzWYbEA8AAAAAAAAAAIDIQQI7AITIYEuY2+32fv8fjiXMMVElpM5V0qx5gYPmLByyHRJ9Qi8vL09Wq1Vr165VTU2NDIb/VrZ3u90qKytTRkaG8vLywthLAACA8LNYLEo2mdVaWx6S9pJNZlkslpC0BclsNvutqG6z2ai2DgAAAAAAAAAAEOFIYAeAEAm0hHlxcfGAbSxhDmC8GY1GlZeXq6ioSAUFBSotLVVWVpYaGhpUVlam2tpaVVVVyWgMXPEeAABgoktPT9f2RrucTmfAuEBVvw9nsViUnp4e6m4CAAAAAAAAAAAAUYkEdgAIkcGWMHe5XHI4HLJarTKZTAPiEbnsn7gD7nf1eORoc8s6zSBTfNyI2wHGW2FhoaqqqlRSUqKcnBzf9oyMDFVVVamwsDCMvQMAAIgc6enpQSedD7fq92AreA31/ZEVvAAAADAWent7VVdXp5aWFqWlpSkvL48CFwAAAAAAYMyRwA4AIeJvCfPc3Nww9AYjZbFYZDYlq3iDK2Rtmk3JslgsIWsPGK3CwkItX76cC1MAAABhEmgFr8GwghcAAADGQnV1tUpKSuRwOHzbrFarysvLKXQBAAAAAADGFAnsQBTqbm32u8/T06WefXsUP3Wm4uITR9QGEMvS09Nlb9wup9MZMM5ut6u4uFgVFRWy2WwBYy0WS9CVG4HxYjQatXTp0nB3AwAAICYNtoJXoO8YrOAFAACiTVNTU1BjrIf/HwhjrKFXXV2toqIi5efnq7KyUllZWWpoaNDatWtVVFTEao0AAAAAAGBMkcAORBGLxaJkk1mtteUhaS/ZZKYqNDCI9PT0oC+G2Gw2KiECAAAAGBZ/K3hJfMcAAADRr6mpSQsybepwtQcVX1xcPGRMssms7Y12kthDpLe3VyUlJcrPz1dNTY0MBoMkKTs7WzU1NSooKNDq1au1fPlyVm0EAAAAgBji8XjC3QVEqZH87pDADkSR9PR0bW+0B6xaQlVoAAAAAAAAAAAQLk6nUx2udqXmlyghda7fuOGsKNtaWy6n08k1jRCpq6uTw+FQZWWlL3ndy2AwqLS0VDk5Oaqrq2MVRwAAAACIAd7vhr29vWHuCaKV93fnyHGGQEhgB6JMsJWhqdiGWNbe3q7GxsZ+2wItR5uZmSmz2TwufQMAAAAAAACAWJCQOldJs+YFDpqzcHw6g35aWlokSVlZWYPu9273xgEAAAAAJraEhAQlJCTo4MGDSklJCXd3EIUOHDjg+z0KFgnsQAxramoKWM1dCpz0eyQquiNSNDY2avHixYPuG2w52vr6eiZ8AAAAAAAAAABiQlpamiSpoaFB2dnZA/Y3NDT0iwMAAAAATGxxcXGaPHmy2traNHXqVJlMpnB3CVHE5XJp//79mjZtmuLi4oI+jgR2IEY1NTXJlrlA7a6OoOIHS/o9ktmULHvjdpLYEXaZmZmqr6/vt83lcsnhcMhqtQ74kJWZmTme3UOQPL3dkiS7MzTLE3nbcblcvm2DVesf6neFav0AAAAAAAAAolleXp6sVqvWrl2rmpqafst7u91ulZWVKSMjQ3l5eWHsJQAAAABgPFksFrlcLjU1NWnKlCmaPHmyjEbjsBKSETs8Ho96e3t14MAB7d+/X0lJSbJYLMNqgwR2IEY5nU61uzpUcZ5JtqMMfuNcPR452tyyTjPIFO//zcj+iVvFG1xyOp0ksI+C/RN3wP3BPB9DtRELzGbzoBXVc3Nzw9AbjFTvwU8lScXVwU20CZbD4fD9LgSq1j8YqvWPHSYTAAAAAAAAAOPDaDSqvLxcRUVFKigoUGlpqbKystTQ0KCysjLV1taqqqpKRqMx3F0FAAAAAIwTo9GouXPnyul06sCBA2prawt3lxAFEhISNG3aNFkslmGPI5DADsQ421EGLUoL/MKRO3ecOhPDLBaLzKZkFW9wDR0cBLMpedgzmoBIY0yZIUmqKEyWzTL6CyV2Z6+KqztktVp92war1m+321VcXKyKigrZbLZ++6jWP3aYTAAAAAAAAACMn8LCQlVVVamkpEQ5OTm+7RkZGaqqqlJhYWEYewcAAAAACAej0aiZM2fq6KOPVnd3t9xuCqnCP4PBoISEhBFX6SeBHQAiQHp6uuyN2+V0OgPGBUqsPZzFYqESPqJenDFBkmSzGIecaDMch1fy9letX5JsNhsJ0uOIyQQAAAAAAADA+CosLNTy5ctVV1enlpYWpaWlKS8vj8rrAAAAABDj4uLilJiYGO5uYIKbEAnsH3zwge644w499dRTam5uVlJSko477jh9/etf13e/+12ZzeZRn+P999/XHXfcob/97W/64IMP5Ha7NXv2bJ155pn67ne/q89+9rMhuCcAYll6enrQSeck1iISuVx9Kwh0tzaHpL2efXv62u3xhKQ9RDYmEwAAAAAAAADjz2g0aunSpeHuBgAAAAAAiDFRn8D+5JNPqri4WPv37/dta29v19atW7V161b96U9/0lNPPaV58+aN+Bz33HOPvve976mrq6vf9p07d2rnzp1at26dysvLdc0114z4HAAARDuHwyFJaq0tD227bW7lzg1pkwAAAAAAAADGSKgLXXjb8bYLAAAAAACA6BfVCexvvfWWzj//fLlcLqWkpKi0tFTLli2Ty+XSo48+qnvvvVfvvvuuzjnnHG3dulWTJ08e9jkeffRRXXXVVZKkqVOnqqSkRKeffrqSkpL01ltv6Te/+Y127typ73//+zr66KP19a9/PdR3EwCAqGC1WiVJqfklSkgdfca5672t2ldXIes0w6jbwkC9vb0sDQwAADAM7e3tamxs7LfNbrf3+98rMzMzJCsCAgAARKMxK3ThcCg3NzekbQIAAAAAACA8ojqB/Qc/+IFcLpfi4+P13HPP6Ytf/KJv3+mnn67jjz9e1157rd59912Vl5drzZo1w2q/vb1dP/jBDyRJKSkpevXVV5WVleXbf8opp+j888/Xqaeeqn/961/6/ve/r69+9atKSUkJyf0DACCamEwmSVJC6lwlzRr5yide3spKpvi4UbeF/qqrq1VSUuK7mCj1TUAoLy9XYWFh+DoWo5hMAABAdGhsbNTixYsH3VdcXNzv5/r6ei1atGg8ugUAABBxQl3ooru1Wa215b52EVqMTQEAACAaDVZwxOVyyeFwyGq1+vIXvCg6AgCRJ2oT2N944w3V1dVJki6//PJ+yeteJSUluv/++2W323X77bfr+uuvV0JCQtDn2Lhxoz7++GNJfcnyhyeve02ZMkW33XabzjzzTO3Zs0cPPPCArrnmmhHeKwAAot9QSwN7errUs2+P4qfOVFx8ot+4nn17Qt01qC95vaioSPn5+aqsrFRWVpYaGhq0du1aFRUVqaqqiiT2ccRkAgAAokdmZqbq6+v7bfN3QSQzM3O8uzehNTU1yel0BozxVw1/MBaLRenp6SHpGwAAGOjIRBF/gh0nHG67CB5jUwAAAIhWgQqODIaiIwAQeaI2gb2mpsZ3+9JLLx00xmAw6OKLL1Zpaana2tq0adMmnXXWWUGfY+vWrb7bX/nKV/zGLV26VMnJyero6FBVVRUJ7ACAmGSxWJRsMod8aWCETm9vr0pKSpSfn6+amhoZDAZJUnZ2tmpqalRQUKDVq1dr+fLlVFkaB0wmAAAgupjN5kEvcOTm5g55LAnYI9fU1KQFmTZ1uNqDij+yGv5gkk1mbW+0x8xjCADAeBuLccJkk1kWiyVk7YGxKQAAAES3wQqO2O12FRcXq6KiQjabbUA8ACCyRG0C+6uvvipJmjRpUsDZVKeddprv9ubNm4eVwN7a2uq7PXPmTL9x8fHxmjFjhnbv3q0tW7aop6dH8fFR+9ACiBCDLXfkL6GBpY4QCdLT07W90R5UYo6/L42Dxdk/cQdsz9XjkaPNLes0g0zxcf7bG6KdWFBXVyeHw6HKykpf8rqXwWBQaWmpcnJyVFdXp6VLl4ankzGCyQQAAMSOpqYm2TIXqN3VEVR8MAnYZlOy7I3bYyIB2+l0qsPVrtT8EiWkzvUbF2wF1+7WZrXWlsvpdMbE4wcAQDiEepxQiq0JfONhNGNTTM4EAABAJPBXcESSbDYb1dYBIApEbZa1d8Bj3rx5AZPFD589FcwgyeFSUlJ8t/ft2+c3zuPxaP/+/ZKkrq4u7dy5k1lbAEYt0HJHRyY0sNQRIkV6enrQFxuG+tJosVhkNiWreIMrVN2T2ZQc05WaWlpaJElZWVmD7vdu98Zh7DCZAACA2OF0OtXu6lDFeSbZjjL4jRvOxMziDa6YS8BOSJ2rpFnzAgfNWTg+nQEAAEMK5TghQm+kY1NMzgQAAAAAAKESlQnsHR0dvpn9c+bMCRg7ffp0TZo0SYcOHVJzc/OwznN4tYeXX37ZbyLpW2+9pYMHD/p+bmpqIoEdwKgNttyRy+WSw+GQ1WqVyWTqFwtMNOnp6bI3bqdSUwilpaVJkhoaGpSdnT1gf0NDQ784jB0mE2Akent7VVdXp5aWFqWlpSkvL48K/QAQRWxHGbQoLfDrdq7/AuMAAABAyIx0bIrJmQAAAAAAIFSiMoH9wIEDvtuHV0n3x5vAfniSeTC+8pWvKD4+Xj09Pbrtttt08cUXD6ja6na7df311/vt32A6OzvV2dnp+9lbvR0ADudvuaPc3Nww9AYIDyo1hVZeXp6sVqvWrl3bb2lgqe8zTVlZmTIyMpSXlxfGXsYGJhNguKqrq1VSUiKHw+HbZrVaVV5ersLCwvB1DAAAAAAARJ3Rjk0xORMAAAAAAIxWVCawd3T8d1m6xMTEIeOTkpIk9VUuHo65c+fq6quv1p133qkPP/xQubm5+s1vfqNly5YpMTFRb7/9ttasWaNnn31WiYmJ6urqCuo8ZWVl+tnPfjasvgDAaLS3t6uxsbHfNn/V3KW+iu5ms3k8uwiMi6ampqAquh/+fyDRVtHdaDSqvLxcRUVFKigoUGlpqbKystTQ0KCysjLV1taqqqpqRBWdqQw9PEwmwHBUV1erqKhI+fn5qqys9P3drl27VkVFRaqqqiKJfRB8/gEAAAAAYHCMTQEAAAAAgHCLygT25ORk321v0ngg3mrnRyYoBOPWW2/Ve++9p40bN+rdd99VQUHBgJhTTjlFS5Ys0R/+8AdJ0uTJkwO2WVpaqh/96Ee+n/fv36+5cylDAGDsNDY2avHixUHH19fXU8kaE05TU5MWZC5Qh6tj6GBJxcXFQ8Ykm5K1vXF7VCWxFxYWqqqqSiUlJcrJyfFtz8jIGHESLJWhh28sJxNgYunt7VVJSYny8/P7XVDOzs5WTU2NCgoKtHr1ai1fvpzflyPw+QcAAAAAgMExNgUAAAAAAMItKhPYD08QP3jw4JDxhw4dkiSlpKQM+1xJSUl68skndd999+n/+//+P/3zn/+Ux+ORJB199NG68sordcMNN+h///d/fcdMnz59yDa9VeEBYDxkZmaqvr6+3za73a7i4mJVVFTIZrMNiEfohLLqd7RV/I4kTqdTHa4OzfnWHCXN9v8+7O5yq9vZrQRLggyJBr9xnbs7teueXXI6nVH3nBQWFmr58uUhqZhOZeiR804m+NGPftRvMoHVauVxg09dXZ0cDocqKyv7VUOTJIPBoNLSUuXk5Kiurk5Lly4NTycjFJ9/AAAAAADwbywKXQAAAAAAAAQrKhPYk5OTlZqaqtbWVu3atStg7N69e30J7COtcm4wGHTFFVfoiiuu0IEDB7Rnzx6ZzWbNmjXLl0SyY8cOX/zChQtHdB4AGCtms9lvRVGbzUa10TEU6qrf0Vbxu729XY2Njf22BUrWz8zMlNlsHtM+Jc1Oksk6xKos88e0CxHBaDSOOtmVytChERcXF+4uIIK1tLRIkrKysgbd793ujcN/8fkHAAAAADASvb29ISn8EA1CWegCAAAAAABgOKIygV3qSxKvq6vTzp071dPTo/j4we/K4UlzR1bYG4nJkyf3qwAv9Q1kvf3225Kkz3zmM7JYLKM+DzDWXC6XJMnu7A1Je952vO0C6BPKqt/RWPG7sbFRixcvHnTfYMn69fX1JBRGESpDjw7V6xGMtLQ0SVJDQ4Oys7MH7G9oaOgXBwAAAABAJIrEQheDqa6uVklJiRwOh2+b1WpVeXn5hB2nCUWhCwAAAAAAgOGK2gT2U089VXV1dTp06JDq6+v1hS98YdC4l19+2Xc7Nzd3TPqyadMmtba2SpLOP//8MTkHEGrewdfi6uCqQg+n3bH6WwOiWaxW/c7MzFR9fX2/bS6XSw6HQ1arVSaTaUA8ogeVoUeO6vUIVl5enqxWq9auXdvvd0WS3G63ysrKlJGRoby8vDD2EgAAAACAwKKh0AXFBgAAAAAAAMZP1CawFxQUqKysTJJ0//33D5rA7na7tX79eknStGnTtGzZspD3w+PxaM2aNZKkhIQEXXnllSE/B+DPaCqWWK1WSVJFYbJsltEnxtmdvSqu7vC1CwCSZDabB73QxESXiYHK0CNH9XoEy2g0qry8XEVFRSooKFBpaanvAnpZWZlqa2tVVVXFRAcAAAAAQESL9EIXFBsIDqv7AgAAAACAUInaBPbPf/7zysvLU11dndatW6dLLrlEX/ziF/vFlJeX+5J4f/CDHyghIaHf/pdeesmX1H7JJZfogQceGHCe1tZWpaSkKCkpacC+3t5eff/739fmzZslSaWlpcrIyAjF3QOCMpqKJd7BYJvFqEVpoRtsPXKQGYgEvb29qqurU0tLi9LS0pSXlxfTFxmAUKEy9MhRvR7DUVhYqKqqKpWUlCgnJ8e3PSMjg+pvAAAAAICoEOmFLig2EBxW9wUAAAAAAKEStQnsknT77bcrNzdXLpdLZ511ln76059q2bJlcrlcevTRR3XPPfdIkubPn6+SkpIRnWPTpk265pprdMEFF+i0005Tenq6Ojo6tG3bNt1zzz16++23JUlf+cpXdP3114fqrgFBifSKJUAkqK6uVklJiW9gXepbgaC8vJyEP2CUqAw9clSvx3AVFhZq+fLlTMgCgChElUoAAIDQG2yF2qGuj3hXqB0MxQaCw+q+AAAAAAAgVKI6gf3kk0/Wn//8ZxUXF2v//v366U9/OiBm/vz5euqppzR58uQRn2fPnj26/fbbdfvttw/YFxcXp0svvVR33XWXEhMTR3wOYCQivWIJEG7V1dUqKipSfn6+KisrfYm1a9euVVFREVVrgRCgMvTIUL0eI2E0GmO6yhsARCuqVAIAAIReoBVqB3P4CrWDodhAcFjdFwAAAAAAhEpUJ7BL0rnnnqtt27bp9ttv11NPPaVdu3YpMTFR8+bN08qVK3XNNdcErKgwlLy8PP32t7/Viy++qMbGRu3Zs0cGg0GzZ8/WsmXLdOmll+oLX/hCCO8RACAUent7VVJSovz8/H7JodnZ2aqpqVFBQYFWr16t5cuXU70WGCUqQw8f1esBAIgdVKkcHW+l+e7W5pC0522HCvYAAES3wVaotdvtKi4uVkVFhWw224D4QCg2AAAAAAAAML6iPoFdko499ljddtttuu2224Z13NKlS+XxeALGzJw5U6tXr9bq1atH00UAwDirq6uTw+FQZWVlv4sNkmQwGFRaWqqcnBzV1dVRzRYIASpDDx/V6wEAiA1UqRwdbwX71trykLfrr4J9b28vkzMBAIhw/laolSSbzRaw2vpgKDYAAAAAAAAwviZEAjuAPlxgBf6rpaVFkpSVlTXofu92bxwAhAPV6wEAAALzVppPzS9RQurcUbfX3dqs1tpyvxXsq6urVVJS4kuc9/ahvLycCYYAAExwFBsAAAAAAAAYPySwAxMEF1iB/tLS0iRJDQ0Nys7OHrC/oaGhXxwAhAvV68Orvb1djY2N/ba5XC45HA5ZrdYB1W0zMzNlNpvHs4s+TFYEAMQi73txQupcJc2aF/J2D1ddXa2ioiLl5+ersrLSV3V17dq1KioqInENAIAYQLEBAAAAAACA8UECOzABcIEVGCgvL09Wq1Vr165VTU2NDAaDb5/b7VZZWZkyMjKUl5cXxl4CAMKtsbFRixcvDjq+vr5+2MuQhwKTFQEAGFu9vb0qKSlRfn5+v++Q2dnZqqmpUUFBgVavXq3ly5eTwAYAwARHsQEAAAAAAICxRwI7EOW4wAoMzmg0qry8XEVFRSooKFBpaalvckdZWZlqa2tVVVUV1N/FYNV57XZ7v/8PF87qvACA4cnMzFR9fX2/bXa7XcXFxaqoqJDNZhsQP96YrAgAwNirq6uTw+FQZWVlvwnQkmQwGFRaWqqcnBzV1dWR0AYAAAAAAAAAADBKJLADUY4LrIB/hYWFqqqqUklJiXJycnzbMzIyhpXsF6g6b3Fx8YBt4arOCwAYPrPZ7Pc122azhf31nMmKkWOwCW0ul0sOh0NWq1Umk6nfPia0ATiS/RN3wP2uHo8cbW5Zpxlkio8bcTsYvvb2dr322muSpJ6eHr355psDXuN7enokSa+99po+//nP8xoPAAAAAJjwGBMFAADAWCKBHYhyLS0tkqSsrKxB93u3e+MQG5qamuR0OgPGBKogfiSLxaL09PSQ9G28FRYWavny5aqrq1NLS4vS0tKUl5c3rCS/warzDjU4AwBAKDBZMXIEmtA2GCa0AfCyWCwym5JVvMEVsjbNpmRZLJaQtRcNulubA+739HSpZ98exU+dqbj4xGG109jYqOuvv16SlJeXF/A8119/vc4++2xe4wEAQExjciYAxAbGRAEAADCWSGAHolxaWpokqaGhQdnZ2QP2NzQ09IvDxNfU1KQFmQvU4eoIKn6wCuJHSjYla3vj9qhNYjcajaNK6vNXnTc3N3cUvcJIDFbpIdBkDCo9AIh2TFaMHINNaLPb7SouLlZFRYVsNtuAeACQpPT0dNkbtwc1ydjfa8qRjpxkPJErolksFiWbzGqtLQ9Zm8kmc78JAJmZmXrjjTdUUFCgefPmqby8XNu3b/c9HwsWLFBJSYn+85//aMOGDbzGAwCAmMXkTACILYyJAgAAYCyRwA5Euby8PFmtVq1du1Y1NTX9KnO63W6VlZUpIyNjyApimDicTqc6XB2a8605Spqd5DfO3eVWt7NbCZYEGRINfuM6d3dq1z275HQ6ozaBPZxcrr6B/M7dnaNuy9uGt81YFKjSw2CTMaj0ACDaMVkxcvib0CZJNpuN9xsAAaWnpwf9fWokrykTuSJaenq6tjfax3QCgNls1pIlS/T73/9eRUVF+vnPf67CwkJJUnd3t37+85+rrq5OVVVVWrJkyejvFAAAQJQaj8mZAIDIwZgoAAAAxhIJ7ECUMxqNKi8vV1FRkQoKClRaWqqsrCw1NDSorKxMtbW1qqqqktFoDHdXMc6SZifJZDUFDpo/Pn2JZQ6HQ5K0655dIW0zVqu/D1bpYajKkrGqqamp34Uk7+MUrCMfTy4kAeHBZEUAQDAmekW0sZ4A4FVYWKiqqiqVlJToySeflCRdeumlysjIUFVVlS+pHQAAjL8jx7oGE2ilxsMxzjU64/XZDAAAAAAATGwksAMTwOEXWHNycnzbucAKhJ/VapWkISviB8NbDd/bZizyV+khVhP6/WlqatKCTJs6XO0hazPZZNb2RjsX96JAb2+v6urq1NLSorS0NOXl5TGRLYoxWREAEAwqooVOYWGhli9frnXr1umqq67SH//4R11++eW81wIAEEZNTU2yZS5Qu6sjqPjBVmo8nNmULHvjdsa5AAAAAAAAwogEdmCC8F5gHW7Cmv0Td8D9rh6PHG1uWacZZIqPG3E7QKzyVrAOqiL+MNsE/HE6nepwtSs1v0QJqXMlSZ6eLvXs2xN0G/FTZyouPlGS1N3arNbacjmdTi7sRbjq6mqVlJT0q7ZvtVpVXl7OhLYoxmRFAADGl9Fo1CmnnCJJOuWUU0heBwAgzJxOp9pdHao4zyTbUQa/ccFcz7B/4lbxBhfjXACiGkVMAESa9vZ2NTY29ts21CraZrN5PLsIAAAiEAnswARiNBq1dOnSoGItFovMpmQVb3CF7PxmU7IsFkvI2gMAjE5C6lwlzZr33w1zFoavMxhz1dXVKioqUn5+viorK31VuteuXauioiISnaPcSCcrAgAAAAAwUdiOMmhRWuDvwblzx6kzABAmFDEBEIkaGxu1ePHioOPr6+tZMRAAAJDADsSq9PR02Ru3y+l0Boyz2+0qLi5WRUWFbDZbwFiLxULFEgAAwqC3t1clJSXKz89XTU2NDIa+amTZ2dmqqalRQUGBVq9ereXLlw+Z8EyVjMg1nMmKAAAAAAAAACYWipgAiFSZmZmqr6/vty1QrklmZuZ4di+icV0OABDLSGAHYlh6enrQCec2m40ZsAAQJVyuvtU1ulubQ9Ketx1vu4g8dXV1cjgcqqys9CWvexkMBpWWlionJ0d1dXVDJkBTJQMAAAAAAEQS75iU3dk76ra8bTDOBSDahLKICQCEmtls9nutiFyTwLguBwCIZSSwAwAATDDepUNba8tD3m5ubm5I20RotLS0SJKysrIG3e/d7o0LhCoZAAAAAAAgknjHuoqrO0LaJuNcAKJJKIuYAAAiB9flAACxjAR2AACACeaUU05RYlKyujpDd1EvMSlZp5xySsjaQ2ilpaVJkhoaGpSdnT1gf0NDQ7+4QKiSAQAAAAAAIonVapUkVRQmy2YZXVVhu7NXxdUdvjYBIFqEsogJACBycF0OABDLSGAHAACYYBYsWKAd726X0+n0bXO5XL5qVcGwWq0ymUy+ny0Wi9LT00PZTYRQXl6erFar1q5d22/5WElyu90qKytTRkaG8vLywthLAAAAAACA4fOOUdksRi1KG10C+5FtIvK0t7ersbGx3zbv2OaRY5ZSXxVSs9k8nl0EwiKURUwAAAAAIBKQwA4AADABpaenD0g4Z1nkictoNKq8vFxFRUUqKChQaWmpsrKy1NDQoLKyMtXW1qqqqkpGY2gu8gIAACA4vb29qqurU0tLi9LS0pSXl8dnMgAAgAAaGxu1ePHioOPr6+upTIqYQBETAAAAABMNCewAfAaramG32/v9fziqWgAAEDkKCwtVVVWlkpIS5eTk+LZnZGSoqqpKhYWFYewdAABA7KmurlZJSUm/lZCsVqvKy8v5bAYAAOBHZmam6uvr+22z2+0qLi5WRUWFbDbbgHggFlDEBAAAAMBEQwI7AJ9AVS2Ki4sHbKOqBQAAkaWwsFDLly+nyicAAECYVVdXq6ioSPn5+aqsrPQllqxdu1ZFRUVMMAQAABNGqIsjmc1mv9eebDYb16UQ0yhiAiBUBnv/drlccjgcslqtMplM/fZR3BAAAIwFEtgB+AxW1WKoLykAACCyGI1GLV26NNzdAAAAiFm9vb0qKSlRfn6+ampqZDAYJEnZ2dmqqalRQUGBVq9ereXLlzPREACACEAC1+hQHAkYXxQxARAKgd6/B8P7N2IB3wsAYPyRwA7Ax19Vi9zc3DD0BphYOnd3Btzv7nKr29mtBEuCDImGEbUBAAi/4QxuMbAFjAyDyAAiXV1dnRwOhyorK33J614Gg0GlpaXKyclRXV0dEw8BABgG+yfugPtdPR452tyyTjPIFB8XdBskcI0OxZGA8UcREwCjNdj7t91uV3FxsSoqKmSz2QbEA+HW1NQkp9MZMCbQSkBHslgsSk9P9/3M9wIAGH8ksAMAMIYsFouSTcnadc+ukLSXbEqWxWIJSVsAwufI5EsSLyeO4QxuMbAFjAyDyMDYX6zB6LS0tEiSsrKyBt3v3e6NAwAAgVksFplNySre4ApJe+YjxlhJ4BodiiMBCDWKFwBjz9/7tyTZbDbGUxFxmpqatCDTpg5Xe1Dxg60EdKRkk1nbG+2+cVG+FwDA+COBHQCAMZSenq7tjduDSi7x98XncCSW9Nfb28symYgKRyaZef/mg3Hk6wKvA5FtOINbDGwBI8MgMmJd38WaBepwdQQVH9zFmmRtb9zOZ4wQSUtLkyQ1NDQoOzt7wP6GhoZ+cQAAILD09HTZx3CMlQQuAIgskVy8gOR6AAgPp9OpDle7UvNLlJA612+cp6dLPfv2KH7qTMXFJ/qN625tVmttuZxOp++7Ad8LAGD8kcAOAMAYS09PDzoRhC8+wauurlZJSYkcDodvm9VqVXl5uQoLC8PXMeAIw60IcKQjk86OrAaA8AqmAq4/R17oYHICEBwGkRHr+i7WdGjOt+YoaXaS3zh3l1vdzm4lWBJkSDT4jevc3ald9+zqd7EGo5OXlyer1aq1a9eqpqZGBsN/H3+3262ysjJlZGQoLy8vjL0EACC6MMYKALEjkosXRHJyPQDEgoTUuUqaNS9w0JyF49MZAMCokcAOABOMy9W3jGrn7s6QtOdtx9suEAmqq6tVVFSk/Px8VVZWKisrSw0NDVq7dq2KiopUVVVFEjsiRjAVAUZTDQDh09TUJFvmArWHqAKu2ZQsO9VvAQBBSpqdJJPVFDho/vj0Bf0ZjUaVl5erqKhIBQUFKi0t9X1nKSsrU21traqqqlg9CgAAAAAGEcnFCyI5uR4AAACINiSwA8AE461GveueXSFvNzc3N6RtAiPR29urkpIS5efn96tmmJ2drZqaGhUUFGj16tVavnw5CSGIKENWBKAaQNRxOp1qd3Wo4jyTbEf5r2zr6vHI0eaWdZpBpvi4QWPsn7hVvMHF5AQAAIIw2JLtdru93/+HC8eS7YWFhaqqqlJJSYlycnJ82zMyMphwCwAAgKgw2Odul8slh8Mhq9Uqk6n/hNpwfO4GxlskJ9eHQjArjgb6/n0kVh2NHDy3AAAgEpHADgATjNVqlaQhl5MPlnc5eW+7QLjV1dXJ4XCosrLSl7zuZTAYVFpaqpycHNXV1Wnp0qXh6SSAmGI7yqBFaYEnzOQOXnwfAACMQKAl2wdb8SRcS7YXFhZq+fLlqqurU0tLi9LS0pSXl8dEWwAAAESFQJ+7BxOuz91AIEzECF5TU5MWZNrU4WoPKn6oFUclKdlk1vZGO4nOYRbq1WQlVpQFgsF7EAAMjQR2AJhgvB9yg1pOfgTtAuHW0tIiScrKyhp0v3e7Nw4AAADAxDLYku1DXfwJF6PRyMRaAAAARKXBPnfb7XYVFxeroqJCNpttQDwQaZiIETyn06kOV7tS80uUkOq/Iounp0s9+/YofupMxcUn+o3rbm1Wa205q45GgFCuJiuxouxoUQ0/dvAeBABDI4EdAABElbS0NElSQ0ODsrOzB+xvaGjoF4exwYzxiYOBMgAAEG38Ldmem5sb1PGh/PzDZx8AAABMVP4+d0uSzWYjwQpRgYkYw5eQOldJs+YFDpqzcHw6g5BiNdnwoxp+bOE9CACGRgI7AACIKnl5ebJarVq7dq1qampkMPy3UoDb7VZZWZkyMjKUl5cXxl5OPEcm+Xi/XAfryC/hJPqEzmgmE/QtCbpAHSEcKEs2JWs7A2UAACBChfpCIRcJAQAAACByMREDQCShGn5s4T0IAIZGAjsAAIgqRqNR5eXlKioqUkFBgUpLS5WVlaWGhgaVlZWptrZWVVVVMhoDVxBA8Iab5DOYIxN/YinRx+VySepbLnO0vG1425RGt/xc35KgHZrzrTlKmp3k9xh3l1vdzm4lWBJkSPQ/oNa5u1O77tnFQBkAAIhYobxQyEVCAACA0WN1QACIHazuC/ShGj4AAH1IYAcAAFGnsLBQVVVVKikpUU5Ojm97RkaGqqqqVFhYGMbeTTxjVQ2grq5uwNJo/eImyIUph8MhSWqtLQ9pm7m5uZJCs/xc0uwkmaymAdv7mT+6PgMAAEQSLhQCAACEH6sDAkBsGU1BHgAAAEw8JLADADDOBqsuEChRl+oCgyssLNTy5ctVV1enlpYWpaWlKS8vj8rrYyhUST4tB91SXHAXnKTovzBltVolSan5JUpIHV0WVHdrs1pry31tSiw/BwAAAAAAYg9jrBMDqwMCQGwJRUEeAAAATBwksAMAMM4CVRcYLFGX6gL+GY1GLV26NNzdwDC1dXgkj2LmwpR3ycuE1LlKmjUvpG0C+C+WHAcAAACA2MEY68TC6oAAEBsoyAMAAIDDkcAOAMA4G6y6gMvlksPhkNVqHZCYSnUBTFRcmAIQKk1NTbJlLlB7CJccN5uSZY/QlR0ARD8qhk5cgz23Q33f47kFAGD4GGMFAABAODD2AwBA6JDADgDAOPNXXSA3NzcMvYkdLpdLUl+17lDwtuNtFxhKd2uz332eni717Nuj+KkzFRefOKI2EJxQVukOpoo3xofT6VS7q0MV55lkO8r/ig2uHo8cbW5Zpxlkio/zG2f/xK3iDa6IXdkBQPSjYujEFei5HQzPLQAAI8MYKwAAAMKBsR8AAEKHBHYAABATHA6HJGnXPbtC3i4XxhCIxWJRssms1trykLSXbDLLYrGEpK1Y09TUpAWZNnW42oOKD6ZKNyKL7SiDFqUZA8bkzh2nzgBAAFQMDR/vBFS7s3fUbXnbOHxS62DPrd1uV3FxsSoqKmSz2frti/bnlqpjAAAAAAAglsTa2M9EF2wxq2CKWlksFooiAcAwkcAOAABigtVqlSTN+dYcJc1OGnV7nbs7teueXb52AX/S09O1vdEesOp3oIGtIzH4MXJOp1Mdrnal5pcoIdV/FnOwFfFd723VvrqKsegqAGCCo2Jo+HgnthZXd4S0Te9z5++5lSSbzTbhKm5RdQwAAAATARMzAQDBirWxn4mq9+BeGeKCL2YVTJzZlCx743au4wLAMJDADgAAYoJ3gDlpdpJMVtMQ0cNvFwgkPT2932DFYBdE/OFiSOglpM5V0qx5gYPmLByyne7W5hD1aHBcOAMADMZb7btzd2dI2vO2c3gV8YnMOwG1ojBZNkvgVTuGYnf2qri6I6YntVJ1DAAAIHIwljRyTMwEACC2uDsPyu2RKs4zyXaUwW+cq8cjR5tb1mkGmeLj/MbZP3GreINLTqeTBHYAGAYS2AEAABCQN5nJ7uwNSXvv73VLktxd7pC0F438XRAZbPY+F0Niy+FLEHqTv4J1ZJIY1foBYGLyVhDfdc+ukLcbCxXgvUk7NotRi9JGl8B+ZJuxiKpjAAAAkYMk7JFjYiYAYDyE+pqrt51YKUwxFmxHGYYcI8z1v6gzAGCUSGAHAABAQN4kqeLqjpC22+3sluaHtMmoceQFkaEqIWHiaznoloaxVOFgjjw22ZSs7SxVCAATjrfa95xvzVHS7KRRt9e5u1O77tkV01XEAQAAgImAJOyRY2ImAGA8jNU111gpTAEAmHhIYAcAAIhBvb29qqurU0tLi9LS0pSXlyejcfDZ5d5kporCZNkso69SuXFHt27c1KUES8Ko24pWg10QYWAptrV1eCTP0MmI7i63up3dSrAkyJDof0lDbzIiSxUCwMTjneyWNDtJJmvoKn/HchVxAAAAYCIgCRvRqqmpSU6nM2CMd+XKw1ewHAyrUgIItVC+RnV2dkoK3TVXu7NXxdUdFKYAAEQtEtgBAABiTHV1tUpKSnyz/KW+JPXy8nIVFhYOiPcmM9ksxiGXUAuGdzm7QMm3QKwKKhkxRlcuAAAAAAAAADCxNDU1aUGmTR2u9qDih1rBMtlk1vZGO0nsAEIi1K9RXqG65upFYQoAQLQigR0AACCGVFdXq6ioSPn5+aqsrFRWVpYaGhq0du1aFRUVqaqqatAkdgAAAAAAAAAAgFByOp3qcLUrNb9ECalz/cZ5errUs2+P4qfOVFx84qAx3a3Naq0tZ1VKACETytcoSXK9t1X76irGoqsAAEQlEtgRdu3t7WpsbOy3zeVyyeFwyGq1DpgpmJmZKbPZPJ5dBABgQujt7VVJSYny8/NVU1Mjg6GvAnp2drZqampUUFCg1atXa/ny5TIaQzfrH5ioPL3dkv67qsBovL/XLUlyd7lH3RYAAAAAAPCvqalJTqczYIzdbu/3fyAWi4VESQAYpYTUuUqaNS9w0JyF49MZADhCqF6julubQ9QjAAAmBhLYEXaNjY1avHhx0PH19fVatGjRGPYIAICJqa6uTg6HQ5WVlb7kdS+DwaDS0lLl5OSorq5OS5cuDU8ngSjSe/BTSVJxdUfI2ux2dkvzQ9YcAADww/5J4Eljrh6PHG1uWacZZIqPG1EbAAAg8jQ1NWlB5gJ1uIL7Ll9cXDxkTLIpWdsbt5PEDgAAAAAAMAwksCPsMjMzVV9f32+b3W5XcXGxKioqZLPZBsQDAIDha2lpkSRlZWUNut+73RsHIDBjygxJUkVhsmyW0a1asHFHt27c1KUES0IougYAAPywWCwym5JVvMEVkvbMpmRZLJaQtAVWagQAjD2n06kOV4fmfGuOkmYn+Y1zd7nV7exWgiVBhkSD37jO3Z3adc8uOZ1OEtgBAAAQdhN1bMXl6hvLC1UV+559e/ra7fGEpD0AwMiQwI6wM5vNfiuq22y2YVdbn6gfxgAAGK20tDRJUkNDg7Kzswfsb2ho6Bd3pFBUqZSk9/cyEIDwCPXglrcCu3WaQYvSRpfAbnf2SlLAi+IAAGD00tPTZW/cLqfTGTAuUHGFw1ksFpLVQoiVGgEA4yVpdpJMVlPgIFZIAwAAE4D32oj3OsRoedvxtjuRRWPS9EQdW3E4HJKk1trykLa76f2egNe1gxVLfxcAEEoksGPCmagfxoDh6tzdGXD/cCrIABNJLP9t5OXlyWq1au3ataqpqZHB8N/753a7VVZWpoyMDOXl5fU7LtRVKjE6TU1NQSVcHf7/UHGxYqwGtxxtbuXODWmTAABgDKWnpweddD6S4goYOVZqBAAAAIDwCHWirrcdkjnDz3ttpLi6I+Tt5ubmhrTNSBON15Um6tiK1WqVJKXmlyghdfQP3sFtz+rgW0/rxk1dunFT16jb84qFvwsACCUS2DHhTNQPY0CwLBaLkk3J2nXPrpC1mcyS6JgA+NuQjEajysvLVVRUpIKCApWWliorK0sNDQ0qKytTbW2tqqqqZDT2ryQd6iqV3jgMX1NTk2yZC9TuCm6Qkce5v1APbrne26p9dRWyTqNqOgAAQCiEeqVGAAAAALEn2MIuwRR4iaVVt8YsUZdkzrDzXhupKEyWzTK61WSlvkrTxdUd6uzs1Jtvvuk/bgL8rUXjdaWJOrZiMvWtnpSQOldJs+aNur2uj9+T9HTI/y68vzMAgOCQwI5ha29vV2NjY79tLpdLDodDVqvV96HBKzMzU2azedz6N1E/jAHBSk9P1/YQJppKkfuFERgO/jb6FBYWqqqqSiUlJcrJyfFtz8jIUFVVlQoLCwc9jiqVkcHpdKrd1aGK80yyHeV/cMvV45GjzS3rNEPAZe827ujRjZuibzWBkQr14Ja3gkwolhYEAABA6EX6OCYAAACA0Ok9uFeGuOALuwQTZzYly964PequBY1EqBN1u1ub1VpbTjJnBPB+97VZjFqUNvpE3ZaDbilOuvzyy4OKD+ZvLdmUrO0R+LfGdaWJK86YICl0fxdeR441AQACI4Edw9bY2KjFixcHHV9fX08SGzDOSDQFBsffRp/CwkItX75cdXV1amlpUVpamvLy8gZUXkfksh1lGHIwJZilB+3O3hD1CAAAAIg8jGMCAAAAscPdeVBuj0JWAMb+iVvFG1xyOp0Rl1Q7FkKdqHtku6HGhOXwaevwSB5pzrfmKGl2kt84d5db3c5uJVgSZEj0/zfZubtTu+7ZFTN/a2OBlSeAwHjPACIXCewYtszMTNXX1/fbFqhabWZm5nh2DxGEDwAAELmMRqOWLl0a7m4AAAAAwJhhHBMAACB4TU1NQa1gevj/gURyAly03VeuuQ5PqArAILIxYTn8kmYnyWQdYoLC/PHpS7Sxf+IOuD/YiTZ1H/RIIV55IlKr4QOjwXsGELlIYMewmc1mvy/SE7laLYaPDwAAAADB6ezx9P2/uzM07f2/dlwuV0jaAwAAiEaMYwIAAASnqalJCzIXqMPVEVR8NCfA9d1Xmzpc7UHFB3dfzdreaB+z+zqRr7l6xy+7W5tH3VbPvj19bf6/sdZQobJxZGLCMsbTUK9Rnp4u9ezbo/ipMxUXn+g3rte1X4Y4qXhDaK/dUA0fCIz3DCByTZgE9g8++EB33HGHnnrqKTU3NyspKUnHHXecvv71r+u73/1uSGYYOxwO/eEPf9Dzzz+v//znPzp06JAmT56szMxMnX322br66qt19NFHh+DeABMDHwAAAACCs/tA30WVXffsCmm7DodDubm5IW0TAAAAAAAgFLyJq0zoH5lQVhG32+3qcHXERAKc0+lUh6tdqfklSkj1X4Y72GTE7tZmtdaWj+l9ncjXXB0OhySptbY8dG22uUNSYb3loJvKxhGMCcsYDxaLRckmc0hfo5KSkvX441VKS0vzGxPoNX6wOKrhA4HxngFErgmRwP7kk0+quLhY+/fv921rb2/X1q1btXXrVv3pT3/SU089pXnz5o34HA899JCuuuqqAQMee/fu1ZYtW7RlyxbdfvvtevTRR3XmmWeO+DzARMIHAAAAEAtCsdRjV2/f/0NdJAyW9yKh1WoddVvjhaWQAQAAAACILd7EVSb0D19TU5NsmQvUHsKK6ZJiKgEuIXWukmYNkT8wZ+GI2g71ONdEvubqHb8cakJBMFzvbdW+ugpZp/mfXDEcbR0eyUNlYyCWpaena3ujPagJY8EknEvDW4kh2l/jAQAYStQnsL/11ls6//zz5XK5lJKSotLSUi1btkwul0uPPvqo7r33Xr377rs655xztHXrVk2ePHnY59i8ebNWrVolt9stg8GgSy65RMuXL9fs2bPV1NSkBx98UE8++aQ+/fRTLV++XA0NDfrMZz4zBvcWAAAgNHp7e1VXV6eWlhalpaUpLy9PRqMx3N0CooohKSXkSz0GdZFwGI68GBbJJvJSyAAAAADCYzgJhEySBcafN3E1lif0j5TT6VS7q0MV55lkO8p/wmwwhRUkaeOOHt24KTSV8ME413B434uDmlAwhO7W5r42A/yuj0QsTewAMFB6ejoJ5wAAjJGoT2D/wQ9+IJfLpfj4eD333HP64he/6Nt3+umn6/jjj9e1116rd999V+Xl5VqzZs2wz1FWVia3u6+q4u9//3t95zvf8e1bsmSJVqxYoZKSEt12221yuVy67bbbdOedd476vgEAAIyF6upqlZSU+CocSX0Xi8rLy1VYWBi+jgFRxpgyXW6Pgl7CMVCcNyaWTeSlkAEAAACEx3ASCGM5eRAIF2/iaixP6B8t21EGLUoLXJgkN4ii1nZnb4h6BIlxLgAAokUoVlkOph0AwOCiOoH9jTfeUF1dnSTp8ssv75e87lVSUqL7779fdrtdt99+u66//nolJCQM6zyvvfaaJCk1NbVf8vrhbrrpJt12222SpC1btgyr/VjT1NQU1PI6h/8fyHCW1wEAINZVV1erqKhI+fn5qqysVFZWlhoaGrR27VoVFRWpqqqKJPYI5nL1VfoO1QWl9/f2Daa4uxhUGY1gK2pQeSOwibwUMgAgsg1WnTfQ2BQVegEgegwngZDkQQBAqDDOBfzXUDkf5IYACIexWGXZbEqWxWIJWXsAEAuiOoG9pqbGd/vSSy8dNMZgMOjiiy9WaWmp2tratGnTJp111lnDOk9XV5ckKSMjw2/M1KlTZbFY5HQ6ffETRSgTzltaWrSyaIVcHcEtQRdMFUqzKVn2xu18UQEAYAi9vb0qKSlRfn6+ampqZDD0LS2bnZ2tmpoaFRQUaPXq1Vq+fLmMxsBVexAe3qr5xdUdIW2329kdU0ucepeS9cfT06WefXsUP3Wm4uITR9wOAACIDoGq8w42NkWFXgCIHiQQAgAAhEfvwb19yaFBrjxKbsjYC1Wl6ff3ekLdNWDchXKVZS8m2QDA8EV1Avurr74qSZo0aVLAJSBPO+003+3NmzcPO4F9wYIFevPNN/X+++/7jdm/f78vyXvBggXDat/H6ZQ6g0vsHi+7du1Sbk6uOjqGnnFmkfTDIL5UTJK0/qvJmp9q8Bvj6vGoeb9bc6cE/mD8bqtb397YobYdO5QeYDnA+L17Zfl//+uTT4bsY6jM6O1V5//7fzzPG8nC9VxgIJ4LYHAT+W/j9c2bddDh0E133SVDa2u/fQZJN159tb56zjl6/cknlZubO+z2g33svHEzDvUqeX/PsM9zJNOhXu0L4rwTwbxp0zRN0t1fTdbxqf4/IwXr+fd7VPZqt442GzQpBp6Lo+PiNCfZpI7acg11b+MkDVXnPk7SnGSTjo6LC+p3PtDj4o2Z9J92JR3qO7O7y63uT7uH6MV/JcxIkCGx7zO24aPOCfFaNtzXlXiXRzo0+hUF4l2e4Z03yh/n8dbb26vXX39de/bs0cyZM5WdnT3qiVM8F4il7998lgq9zNRU/fP55/ttc7lcam5u1ty5c2U6YsxpXmrqsB6rWHuNCvX9jfT2EH1i6T0Dg+N1ILbxWSqyRPLzEenvF6EeC0nq9ETscxFq3scuteOgEtv3jbq9ro6D6tH4jyNNlPezUD4fCe371Ctpx65eyTX6v4sPP+7VNElT27o1aX/CqNuL5L8L6b/PxZTd25XQcdBvnKenSz37P1H8lKMCFoAx7npHHo/0h3HMDZnIeSHt7e3auXNnv20Bxy7mzfOtHnd0XJzSk5P0wxBWmo6V94xghes1PpI/S4XaWL1/nzBrlj43d+6Q5x0qzmeIx22ivH9PBBPmuThwINw9AEYlzuPxRO3UuKOOOkpOp1Mnnnii3n77bb9xe/fu1YwZMyRJK1eu1F/+8pdhnefee+/Vt771LUnSH/7wB1199dUDYn784x/r1ltvlST97W9/0xlnnBF0+/v379fUqVO1T9KUYfUMAAAAAAAAAAAAQDDaJTWOQbuZksxj0C4AIHhvSvJf9nDk6iWxZgsAAIhE+yVNlbRv3z5NmULmKaJP1FZg7+jo8FU8nzNnTsDY6dOna9KkSTp06JCam5uHfa7LLrtMr776qtavX6/vfve7qq+v19e+9jWlpaWpqalJDz30kGpqaiRJ119//ZDJ652dneo8rNL6/v37h90nAAAAAAAAAAAAAMFrFMmNADBRZarv9Xgs2sXwMWkMAAAAQ4naBPYDhy1/kJKSMmS8N4H94EH/Sx35YzQa9eCDD+rcc8/V2rVr9ac//Ul/+tOf+sUsW7ZMP/3pT4OqvF5WVqaf/exnw+7HRMCXFAAAAAAAAAAAAIQDyY0AMHGZxWSiSMKkMQAAAAwlahPYOzo6fLcTExOHjE9KSpIkuVyuEZ3Pbrdr/fr1+te//jXo/i1btmjdunWy2Ww65phjArZVWlqqH/3oR76f9+/fr7lz546oX9GGLykAAAAAAAAAAAAIB5IbAQAYH0waAwAAwFCiNoE9OTnZd7urq2vI+M7OTkmSyWQa9rnq6up07rnnat++fTr22GN1yy236Mwzz9SMGTO0Z88ePfHEE7rxxhv16KOP6pVXXtFzzz2nz372s37bS0pK8iXU9/Of/0iTJw+7f2Np27Zt+vIZZ2jm+bco8eiMUbd34J1Nmvbin3T3V5N1fGrcqNvb0erR1Rs71F1bK33+837jvPfjheef1+c+97lRnzdYn/vc59Ty0UdKmzVL27ZtG7fzRrJwPRcYiOcCGFws/G3U1tbq5ptvVlNzs2/bsenpWrNmjfLz80fcbrCPnTcu48dWJc9N9hsXrI7mDr3/W8eEfs68fI/xRWZ9bqZh1O1V2bv17ac6eS6OEOrXgVh4XRkrw31dCdXfxrY9bn35ofbgz8tzO6Tq6mpddfXVev+99wZdRe3gwYPK+Mxn9Me771ZhYeGw2+e5QCx9/+azVOTYtWuXvpjzRXV0dIaszeTkJG15bYvmzJkTsjZDJdTjhF0fv689f74hZO+3sfZ8YORi6T0Dg4uUz47t7e3auXNnv23vvvuuvv2d7+gPd92l+fPn99s3b948mc2sRTtafJaKLJH8fET6+wXjhCM3Vp9rB3vtPlyg1/gjzZgxY8jPoP8/e/cen3dd343/lUObAy2nBqS1DWFWSKAeaFGBWmndxG2Ug7Xob5KJzFu8fx5+TMu9rXize87fTXWzKDvc3kMQh53gVmudrTpvHGDwp2Izp3RLCk5D2sGAlEOhuXpMfn+wxMYmadpcOT+fjweP6+r3+77e308amnyv7/X6fj7j5ffZcBXz+7G79YE8/X8+49/FCBvq/3s//clP8uZRvmY71XIhY/VZxnj+/T1WhvO96HntUB16jKn2vdixY0eefvrp3j8XCoVsP+Tz7iRpb2/Pmo9/PKv/4A9SW1vbZ9+8efP65AaL+ft2qn0vJoPJci6V559PXvaysR4FHLMJG2CfeUjQ+4UXXjhi/e7du5Ok3w/KB7N379781m/9Vp577rmcdtpp+f73v5/TTjutd//cuXPzvve9LxdddFHOO++8PPbYY7n66quzZcuWozpOkqSmJjn++KN/3Qg6cNJJ6UhSXjkjFdUnDLvfC9Un5NkkL59bloWzy4bdL1UH82ySabNnJ6ecMmBZz9dx4KSTBq0rtqfLytKRpKKsbFSPO56N1feCw/leQP+mwr+N5ddck9945zvT1NSUxx9/PLNnz86SJUtSVja8381D/bvrqTvhuLJUHT/809HCcWWT/nvWo/fvuKokOW74F3z3VpT4XvSj2D8HpsLPlZFytD9XivVv40BV99Ed1/f2iE4+66x0JNn6xBM5/4zDP4x86Kc/Tcd/1h3L36XvBVPp/bdzqfHjye3bs2PP3sy9dm4q5vQzWcV/6trXlf0d+zOtZlpKpw/8e2rvY3uz49YdebK7O3PH4fei2NcJ91bOSEeSh/7jP178/28ALf/xH0Ora2mZUt8Pjt1U+p1B/8bLuWN1kleefnqfbT1j+5XXvS6vXGie8JHgXGp8Gc/fj/H++8J1wmP3fGVlOpJ0734m03YdXXagP3ueas9zSa583/uGVD+UuuqqyrS0bjsseHeo8fL7bLiK+T7jhYrq7Ix/FyNtPF+znWq5kLH6LGM8//4eDZ2dnWltbe2zbbBrF/X19YPeiDr/ggvyD8191ysoFAppa2tLXV3dYRO1zq+vT/6zX8/vtMrnDqTiuP3H/kX9p73PHUjHf/Ydj9+LuaeckkPj5v/0T/+UKy+9tN/aVR//+GHbmpubj/p9ln8Xk9dkOZdKf5MowwQyYQPslZWVmTVrVnbu3JkdO3YMWvvMM8/0BtjnzZt3VMf55je/mX//939Pknzwgx/sE14/1DnnnJPGxsbcdtttaW5uzo9//OO86lWvOqpjAQCMlrKysixdunSsh8Exanmqa9D9hQPdaXu2K3UnlqaqfOBVb37+THexhwbQryVLlqSuri433XRTNm7cmNLSX3xo1dXVlTVr1uSMM87IkiVLxnCUAMemYk5FquqOsOrj4BMsTkkHX3gmpSVJY2PjkOqHWuf7AYPrL2wxWDjiSGELAJho2trakiQ7N60tat+PLavIb7584PjFUK/ZtjzVlcavFNLR0TFogB2AsdHa2ppFixb1u6+/axfNzc1ZOEhourq6ut/9ixcvPuJYen6n7bh18Nzc0WpraxvS8cdafX19mo8i/F9fXz+awwNgCCZsgD1Jzj777DQ1NeWnP/1pDhw4kPLy/r+cQy/GNjQ0HNUxWlpaep8PdkKRJIsWLcptt93We0wBdgAAiqmmpibVVZVp/EphrIcCcFTKysqydu3arFy5MldccUVWr16dBQsWZOvWrVmzZk02bdqU9evXD3s1EAAmjq69L6SrO1n3lqo0nDLwbHxDDfp8/ZEDufHevSMxVJhUBgtb9OdIYQsAmGjq6uqSJLOWr8q0WUc3+V1/Cj/bkuea1mXZGUdegXzx8A8Ho6rfmab/M0NzaJamh5sfmQrGU2i653fakVajG6qe1eh6+o53wwn/AzA+TOgA++tf//o0NTVl9+7daW5uzute97p+6+6///7e50f7S+rQUPyBAwcGrd2//xfLsQwUpgcAmAxctBwbtbW1aWndlo6OjkHrWlpa0tjYmHXr1g16A2dPHcBoWLFiRdavX59Vq1blwgsv7N1+xhlnZP369VmxYsUYjg6AsdJwSmlRgj4tHQeLNCKY3PoLWwz2HtIMdQBMNj3Bwmmz5qXitPnD7rd/5/YX+w5ysyVMVMWeaZqha29vH9JnQYc+DqampqbPqg4+5zt24yk03fM7bUir0R1DXwAYaRM6ZX3FFVdkzZo1SZI77rij3wB7V1dX7rzzziTJiSeemGXLlh3VMc4444ze501NTVm+fPmAtYcG5Q99HSPvSCfkwzlxBwAO56Ll2KmtrR3yuUpDQ4O/d2BcWbFiRS6//PI0NTXl8ccfz+zZs7NkyRIzrwPAJNdfOOJIM9QJR4yMgcIWifeQwNjZ+9jgq6h07evK/o79mVYzLaXTB1655Uh9ADg642mm6amkvb09Z9U3ZE+hc0j1Q5moqLKqOttaW3o/X/I5HwAwHkzoAPtrX/vaLFmyJE1NTbn99ttz9dVX54ILLuhTs3bt2t7Q8nXXXZdp06b12X/ffff1htqvvvrqfP7zn++z/1d/9VdTXV2dzs7OfOYzn0ljY2Ne8YpXHDaWb3zjG/nKV76SJHnpS1+aV7/61UX6KhnM4y90JSVDOyFPhnriXpltrduE2AFgEC5aAnCsysrKsnTp0rEeBgAwigYLR/RHOAJgaqipqUllVWV23LqjaD0rqypTU1NTtH4AU9l4mml6Kuno6MieQmdmLV+VabMGXpKs+8C+HHjuiZSf8JKUlE8fsG7/zu3ZuWltOjo6enMwPucDAMaDCR1gT5JbbrklixcvTqFQyMUXX5wbbrghy5YtS6FQyN13351bb701SXLmmWdm1apVR93/xBNPzB/8wR/kD//wD/P888/nwgsvzAc/+MG86U1vykknnZQnnngiX/3qV/PZz342XV1dSZKPf/zjKS0d+O5/iufZPd1JdzL32rmpmFMxYN3RzMyw49YdfU7cAYDDuWgJADC2zFIJTCT9hSNaWlrS2NiYdevWpaGh4bB6ACa/2trabGvdlo6OjkHrBvud8custAwT0/6d2wfdP5Sg7oHnnhiJocGYmTZrXipOmz940dyzj6m3z/kAgPFgwgfYzz333HzpS19KY2Njdu3alRtuuOGwmjPPPDObN2/OzJkzj+kY//2///c8/fTTueWWW/LCCy9kzZo1WbNmzWF106ZNy0033TTk2cApnoo5Famqqxq86MzRGQsAE0d/S5j3rNzS83goS5gDADDWzFIJTEQDhSOSpKGhwWzrAFNYbW3tkAPnfmfA5PPie9zq7Ny0dqyHAgAAjLIJH2BPkksvvTQ/+clPcsstt2Tz5s3ZsWNHpk+fnvnz5+fKK6/MBz7wgWGFzUpKSvKpT30qjY2Nue222/LAAw/k0UcfTWdnZ2bMmJH58+fnoosuynvf+96ceaaU9FC0PNU16P7Cge60PduVuhNLU1VeMmDdz5/pLvbQAJhCBlvCvL8b0ixhDhzJ0dwY46aY8a+/m5n623+kOrO/AcVklkrGSqFQSHLkmRGHqmd2xMIB1/eAiaG/93uFQiFtbW2pq6tLVVXfSXa85wOYGroP7k+StHQcLEq/nj4959+T3YvvcVuK8h63pwZgqrFSIwAT1aQIsCfJ6aefnptvvjk333zzUb1u6dKl6e4e2ockixYtGjDkxtCUVsxIaUnS+JWp8YYbgPGtvyXMj/TBI0wmPR+CFOuCVE+fqfLhSn+O5sYYN8UUT8//c8X6oLCp/UCS/m9m6s+R6iqrKrOtdZtwKFA0ZqlkLLS1tSVJ0WdGbHu2K4vnFbUlwIgY7P1ef375PV97e/uQwnmHPg7GDWjDI+QDFMvBF55OkjRu2FPUvvfee+9hn1EcajL9zvAeFyYWny2NH1ZqBGCimzQBdkZGsWdW6tr7Qrq6k9tvvz2vfvWrB6wb6ixh7qIGYDgGWsJ88eLFYzAaGH09IaRiXtjq6TtV/x0dzY0xboopnp7/l4v9QeGpK07NzFfOHHD/UAINex/bmx237khHR8e4/qAQAI6krq4uSTJr+apMmzX8xHnhZ1vyXNO61J04cCgQYDzp7/3eYJ9lHPqer729PWfVn5U9haG9ZxnK5x5ulD02Qj5AsZXNODlJsm5FZRpqyobdr6n9QH73m3tz44035sYbbzxivd8ZwGjz2dL4YaVGACY6AXYGNVIzK1VUVAzpzmh3UAMAjJzzzjsv0yumZ9/efUXrOb1ies4777yi9Zto3BgzNnoCdcX6oPDrj+zPjffuy3H1x6WqbuCZrpIkZw77cABMUFNtxrGeG/GmzZqXitPmD7tfz4QZVeUlw+4FMBoGer+XHPmzjI6Ojuwp7Mnca+emYk7FgHVHM+u3G2WPjZAPk0WxV6Pb9p99Cu3FORcd7+e2xVRSNi1J0lBTloWzh39dqud76ncGk0XLU12D7i8c6E7bs12pO7F00PeHR+rD6Om5Hn+kn1ND1fNzqqcvR8cqFsXT2dmZ1tbWPtsGW/Gkvr4+1dXVozI2gMlKgJ1BFXtmpf07t2fnprVOPAFgCptqQZ/x7KyzzsojDz/iQ1smvJ5AXbE/KBzswz8AMOMYAEerYk6Fm2THASEfJoORWo3usc89VtR+zm2Pnd8ZTHQ1NTWprqpM41eK99lNtVVPxoWe6/FD+jl1DH1hrLS2tmbRokX97utvxZPm5ube9wo+/wY4NgLsDKrYMyv9cl8AYOoR9BlffGgLjHft7e1DutHm0MfBuNEGKBYzjg1P98H9SYo3a+jPn3lxNr6ufWblAwAmv2KvRrexdV8+9p39mfM7c1JVO/zPcafauS3jS7Fm/P75M93FHtqUUltbmxarnhyTnsBqz8plw9XTRxAWBldfX5/m5uY+2wqFQtra2lJXV3dY1q2+vr73uc+/AY6NADsAAKNK0AeAoWpvb89Z9WdlT2FoM8r1NwvKL6usqsy21m1T4sMuYGSZcWx4Dr7wdJLizxq6v2O/mSgBgEmv+KvRlSXZn6raqilzbnukYGj3gX058NwTKT/hJSkpnz5g3YHnnij20DhGIzHjN8NjAp1j0xOE3blpbdH7CsLCwKqrq/v9OTSUfzc+/wY4NgLsAACMKkEfAIaqo6Mjewp7jnjRt2tfV/Z37M+0mmkpnV46YF3PRd+Ojg4BdoAxVjbj5CTFmzX064/sz4337su0mmnD7gUAwORVU1OTyqrqogdDGXvFnvG7p47x40grNU6WVRp7Aquzlq/KtFnzht1v/87t2blprSAsjCCffwMcGwF2oGiO9IYxmTxvGgEAGH8sDzx5Demir9l2ASaUkrIXg+bFmzX0YJIMeiMTAADU1tZmW2uLkPMkZcbvyetoVmqc6Ks09gRWp82al4rT5he9LwDAeCHADhTF0bxhTCb+m0YAGC86OzvT2traZ9tgN4zV19enurp6VMY2Efj7mxwsDwwAE5cb0AAAGG1CzgxFofDitca9j+0tSr+ePj19OTpDWanRKo0AABOLADtQFEN5w5h40wgAxdba2ppFixb1u6+/G8aam5t94HIIf3+Tg+WBAWDiKa2YkdKSuAENAAAYl9ra2pIkO27dUfS+ixcvLmrPqeSIKzVapREAYMIQYGdI9u/cPuj+7gP7cuC5J1J+wktSUj79mPsw8R3xDWPiTSMAFFF9fX2am5v7bCsUCmlra0tdXd1hS0LW19eP5vDGPX9/k4eZswBgYimbcVK6ujPkG8vcgAYAAIymurq6JDniBG5D1TOBW09fOBI5HQBgshNgZ1A1NTWprKrOzk1ri9azsqo6NTU1ResHADCVVVdX9xvENYPL0Pj7AwA4OsX+AH2oN5a5AY2pqrOzM62trX22Hemm2+rq6tEcIgCQpOWprkH3Fw50p+3ZrtSdWJqq8pIB67Z1vNhn72N7izKunj6FgpWPjlbPedaQJnA7hr4wEDkdAGCqEGBnULW1tdnW2pKOjo5B64Y6E1Ly4sn2UGdGBAAmryNdgO/a15X9HfszrWZaSqeXHnMfjk5/4YiWlpY+j4cSjgAAprqpcl7rA3QYG62trVm0aNGQ65ubm6f0zR7t7e1D+jzj0MeB+CwDgKGoqalJdVVlGr9S3ID4jlt3FLVfW1ubSTtggpDTAaY6N/PD1CHAzhHV1tYO+UTWTEgAwJG8GHypLOoF+MqqSsGXIhksHNHY2HjYtqkejgAApq6pdl7rA3QYG/X19Wlubu6zbbB/Z/X19aM5vHGlvb09Z9U3ZE+hc0j1/b3HPVRFRWW+/OX1mT179oA1Qw3DH2k/wLEq1qzfP3+mu9hDmzJqa2vT0rqtaOfJ//zP/5x3v/vdmXvt3FTMqRj2+PY+tjc7bt2Rurq6YfcCRo+cDjCVDfdm/mLe3J64hgkjSYCdMTecWT57ljqzhBoATBwvBl+Kd0E/8aaxmPoLRxzpjnYAgKloKp7XjvQH6FYDgsNVV1cP+G9JUKWvjo6O7Cl0ZtbyVZk2a96Add0H9uXAc0+k/ISXpKR8er81e3b8S3b942ezfPnyIR37SGF4gGIbqVm/OTYjcZ5cMaciVXVVR6wbql++rgsAMF4N52b+F29uPyt7CnuGdKyhvJ+vrKrMttZt4/q6LUxUAuyMueHM8tnW1pbEEmoAMNGYOWL8Gigc4dxo7B08eDBNTU15/PHHM3v27CxZsiRlZWVjPaxjZvYDACYD57XFZTUgoBimzZqXitPmD1409+xBd+/fuT1d3cm6t1Sl4ZTSAeuGOrPx1x85kBvvLc5EPABJ8Wf97qkDAICxNpyb+V+8uX3PEVez6drXlf0d+zOtZlpKpw/8vr9nNZuOjg6fQ8IIEGBnzA1nls+epc4soQYAwGS2YcOGrFq1qvcGzuTFc+G1a9dmxYoVYzewY/Ti7AcN2VPoHFL90GY/qM621hYXjwBgFBV7xnSrAQHjTcMppVk4e/AbhxcPPNl7r5aOg0UaETCZ9HcudaRzn0PPpdxMyWRlZSYAYLiGtJrNmaMzFmBgAuyMueHM8tlz4cYSagAATFYbNmzIypUrs3z58tx1111ZsGBBtm7dmptuuikrV67M+vXrJ1yI/cXZDzoza/mqTJs1cNqj+8C+HHjuiZSf8JKUlE8fsG7/zu3ZuWmt2Q8AYJQVe8b04VwnLBQKSV6coKIYevr09AUYjr0Hul989DMKOMRg51L9sfoMU4WVmehPMd/zOZcCABgfBNgBAADGqYMHD2bVqlVZvnx5Nm7cmNLSF5ewO//887Nx48ZcccUVuf7663P55ZenrGzwWQHHo2mz5qXitPmDF809e3QGAzCBmZ2OsTKeZkzvWalmx607it53KAH6yWa4M8ICfT32/IsBdj+jgEP1dy7V0tKSxsbGrFu3Lg0NDYfVw1Qwnt5nMH6MxHs+51IAAGNLgB1gChBmAICJqampKW1tbbnrrrt6w+s9SktLs3r16lx44YVpamrK0qVLx2aQAIw5s9MxVoYzY3qx1dXVJUnmXjs3FXMqht1v72N7s+PWHb19pxozwkJxzZlZksTPKKCvgc6lkqShocHvVqas8fQ+g/GjmO/5nEsBAIwPAuwAU4AwAwBMTI8//niSZMGCBf3u79neUwfA1GR2Okjv/+cVcypSVVd1hOqj7zvVmBEWiqui/MUAu59RADC6TPI1eYzEez7nUgAAY0uAHWAKEGYAgIlp9uzZSZKtW7fm/PPPP2z/1q1b+9QBMDWZnQ4oNjPCAgAwGZjkC0bO3sf2Drq/a19X9nfsz7SaaSmdXjpg3ZH6AACTlwA7R81dyjDxCDMAwMS0ZMmS1NXV5aabbsrGjRtTWvqLi7xdXV1Zs2ZNzjjjjCxZsmQMRwkA9HDdDBhv2tvb09HRMWjNYD+nfllNTU1qa2uLMjYAgJFmki8ovpqamlRWVWbHrTuK1rOyqjI1NTVF6wcATAwC7Bw1dykDAMDoKCsry9q1a7Ny5cpcccUVWb16dRYsWJCtW7dmzZo12bRpU9avX5+ysrKxHioAENfNgPGlvb09Z9WflT2FPUOq7+/n1C+rrKrMttZtQuwAwIRgki8ovtra2mxr3TakG2UbGxuzbt26NDQ0DFrrRlkAmJoE2Dlq7lIGAIDRs2LFiqxfvz6rVq3KhRde2Lv9jDPOyPr167NixYoxHB0AcCjXzcaeJczhFzo6OrKnsCdzr52bijkVA9Ydzb+LHbfuSEdHh3AJAABHzaplk0dtbe2Q3xM0NDS4eR8A6JcAO0fNXcoAADC6VqxYkcsvvzxNTU15/PHHM3v27CxZssTM6wAwzrhuNnYsYQ4Dq5hTkaq6qsGLzhydsQAciXDj2HIzIDCSrFoGAMChBNgBAAAmgLKysixdunSshwEAMC5ZwhwAJgfhxrHhZkBgNFi1DGDy6u9G1CP9jHcjKiDADgAAAADAhGcJ8/Gjvb19SDcTHPo4GDcTACPJjN/ji3Dj2HAzIDAarFp27JyvAOPdYDei9seNqEAiwM4kYTk7AACA8cmsGwAwtbS3t+es+rOyp7BnSPX9zab7yyqrKrOtdZsQHDAizPg9vgg3jh03A0L/ZBEYD5yvAONdfzeiDnbzoxtRgUSAnQnOcnYAAADjm1k3AGBq6ejoyJ7Cnsy9dm4q5lQMWHc0QZ8dt+5IR0eHADswIsz4DUB/ZBEYT5yvAOPdQDeiJm5+BAYmwM6EZjk7AACA8c2sGwAwNVXMqUhVXdXgRWeOzlgABmPGbyaL/lZAa2lp6fN4KCugweBkERhPnK8AAJORADsTnuXsAAAoloMHD6apqSmPP/54Zs+enSVLlqSsrGysh8UoKxQKSYqzrG9Pj56eE0F/H3gfaTafwT7wNusGAAATTffB/UmSlo6DRen382e6kry48gDASBlsBbTGxsbDtlkBDY5MFgGAo3Gkz5WOZjU6gKlAgB0AACDJhg0bsmrVqrS1tfVuq6ury9q1a7NixYqxGxijruf/gWIuD9zW1jZhZsMZ7APv/vjAGwCAyebgC08nSRo37Clq3/0d+608AFNYe3v7kGZyPvRxML88k3N/K6Ad6YZ0AACGr6amJpVVlUX9XKmyqjI1NTVF6wcwHgmwAwAAU96GDRuycuXKLF++PHfddVcWLFiQrVu35qabbsrKlSuzfv16IfYppK6uLkky99q5qZhTMaxeex/bmx237ujtORH094H3YEsh+8AbAIDJpmzGyUmSdSsq01Az/FW5vv7I/tx4775Mq5k27F7AxNTe3p6z6huyp9A5pPr+Zkz/ZZVV1dnW2tIbYh9oBbSJckM9AMBEVVtbm22t24Z0s+JAn7X8sl++WXEyK+aNnv/8z/+cpHiz2E/ElZZhIhFgZ9Lpb7n7wX6JHWm5ewAAJreDBw9m1apVWb58eTZu3JjS0heX7Dv//POzcePGXHHFFbn++utz+eWXp6xs+MEFxr+eGckq5lSkqq7qCNVH13MiGOgD78RSyAAATA0lZS8GzRtqyrJw9vDfB7Z0HEySQZeIBya3jo6O7Cl0ZtbyVZk2a96Add0H9uXAc0+k/ISXpKR8+oB1+3duz85Na9PR0TFlgk0AwJHJTI2d2traIZ+X+azlF9rb29NQf1Y6C0NbAW0oN3omxV1lOZlYKy3DRCLAzqQz2HL3/f0Ss9w9AMDU1tTUlLa2ttx111294fUepaWlWb16dS688MI0NTVl6dKlYzNIAAAAACa8abPmpeK0+YMXzT17dAbDuHakWUO79nVlf8f+TKuZNugNUsWafRSAiUFmiommo6MjnYU9WfeWqjScMvA5TeFAd9qe7UrdiaWpKi8ZsG5j6/587Dv7irLKcjIxV1qGiUSAnUmnv+XuC4VC2traUldXd9jMh5a7BwCY2h5//PEkyYIFC/rd37O9pw4AAIDxp2c57/07tw+714Hnnnix54HuYfcCgKNRU1OTyqrKos4aWllVmZqamqL1A2D8kpliomo4pfSIK6AtHngho149K6AVc5XlZGKttAwTiQA7k85Ay91bxgMAgP7Mnj07SbJ169acf/75h+3funVrnzqGr5jBkkP79PQFAACmnra2tiTJzk1ri9fz2a4hfUAOAMVSW1ubba3b0tHRMWhdS0tLGhsbs27dujQ0NAxaW1NTk9ra2mIOE6CPzs7OtLa29tnW0tLS5/FQ9fX1qa6uHpWxTTUyUwBMJALsAADAlLZkyZLU1dXlpptuysaNG1Na+ovl6bq6urJmzZqcccYZWbJkyRiOcnIZiWBJT18XYQEAYGrqWc571vJVmTZreKnzws+25Lmmdak7ceDlywFgpNTW1g45cN7Q0NBvUBFgNLW2tmbRokX97mtsbDxsW3Nzs59dAIAAOwAAMLWVlZVl7dq1WblyZa644oqsXr06CxYsyNatW7NmzZps2rQp69evT1nZ4MvWMXTFDJYkL87AvnPT2t6+AADA1NOznPe0WfNScdr8YfXqWeWpqrxk2OMCAIDJrr6+Ps3NzX22FQqFtLW1pa6urvdc/dB6AAABdgAAYMpbsWJF1q9fn1WrVuXCCy/s3X7GGWdk/fr1WbFixRiObvIpZrCkv74AAAAAAMDoqK6u7ndGdSumAgCDEWAHAADIiyH2yy+/PE1NTXn88ccze/bsLFmyxMzrAAAAAAxLoVBI8osVHoarp09PX4ans7Mzra2tfba1tLT0eTxUfX19qqurR60fAADAZCTADgAA8J/KysqydOnSsR4GAAAAAJNIW1tbkmTnprVF7ztSs9tOpRB2a2trFi1a1O++xsbGw7Y1Nzf3O9PwSPUDAACYjATYAQAAgHGpZya5vY/tLUq/nj5mqAMAYChanuoadH/hQHfanu1K3YmlqSovGbDu5890JznyeW3Xvq7s79ifaTXTUjq9dMC6Yp0fA6Onrq4uSTJr+apMmzVv2P3279yenZvW9vYdCVMphF1fX5/m5uY+2wqFQtra2lJXV5eqqqrD6kezH/ALg50HOZcCAJhYBNgBAACAcalnhrodt+4oet+RmqEOAICJr7RiRkpLksavFPHGx5LintdWVlWmpqamaP2AkdUTWJ42a14qTptf9L4jYSqFsKurq/sN3x/rtYNi9wOSmpqaVFZVFu18yrkUAMDYE2AHAAAAxqWemeTmXjs3FXMqht1v72N7s+PWHSM6Qx0AABNf2YyT0tWdrFu3Lg0NDQPWtbS0pLGx8Yh1SbJ3795UVAx+Tns0/WpqalJbWztoDcBwCGED40ltbW22tW5LR0fHgDXOpQAAJhYBdgAAAGBc6pnNrWJORarqijer3EjOUAcAwOTR0NDQb3jzWOuKfVwAgKmktrZ2SKFz51IAABND6VgPAAAAAAAAAAAAAACAqcEM7AAAANCPvY/tHXR/176u7O/Yn2k101I6vf/7w4/UAwAAAAAAAACmGgF2AAAAOERNTU0qqyqz49YdRelXWVWZmpqaovSaCNrb29PR0TFoTUtLS5/HI9UBAHD0CoVCkuLdVNnTp6cvAAAAAMCxEmAHAACAQ9TW1mZb67YhhbAbGxuzbt26NDQ0DFhXU1OT2traYg9zXGpvb09D/VnpLOwZUn1jY+MIjwgAYOpqa2tLkqLdmHlo38WLFxe1ZzHt37l90P3dB/blwHNPpPyEl6SkfPox9QAAAADGr2KssjyUPsDwCLADAAAw6XR2dqa1tbXPtsFm/a6vr091dXXvn2tra4ccOm9oaMjChQuHMdrJo6OjI52FPVn3lqo0nDLwBb/Cge60PduVuhNLU1VeMmDd1x85kBvvdXEQAOBY1NXVJUnmXjs3FXMqht1v72N7s+PWHb19x5sXV1Kqzs5Na4vSr7KqekqtpAQAAAAT3YmVJUlJcW/mn2orLcNoEmAHAABg0mltbc2iRYv63dffrN/Nzc1C6EXUcEppFs4uG7Rm8bwj92npOFikEQEAo6VQKCQp3gxVPX16+k527e3tQ1oJ6NDHgfTMwF4xpyJVdVVFGV+SVFUVr1cxvbiSUouVlACYdIY7UQMAwHjVc72nWJ8HPbunO+lObr/99rz61a8esG6o1wYS1wdgJAmwAwAAMOnU19enubm5z7ZCoZC2trbU1dUdFrqpr68fzeEBAExaPaHpYs501dN38eLFRe053rS3t6eh/qx0FvYMqb6/GzOnOispATAZmagBAJiseq4jNW4Y2rWQoaqoqBjS+ZBrAzC2BNgBAACYdKqrq/u94DTZQ08AAGOtrq4uSTL32rmpmFMx7H57H9ubHbfu6O07mXV0dKSzsCfr3lKVhlNKB6wrHOhO27NdqTuxNFXlJQPWff2RA7nx3uLMhA8AjB0TNQAAk1XP9Z51KyrTUDP4yr5D0dJxMI0b9kyJ60gwGUyaAPujjz6aP/uzP8vmzZuzffv2VFRU5GUve1ne9ra35f3vf/8xL5HV1taWM84446hec/rpp/feHQQAAAAAAFNFT4CqYk5FquqqjlB99H2ngoZTSrNw9uAf2i6ed+Q+xVp+GwAYWyZqAAAmq57rPQ01ZUe8FnIsfYHxbVIE2L/2ta+lsbExu3bt6t3W2dmZLVu2ZMuWLbntttuyefPmzJ8/f1TGc9ZZZ43KcQAAAAAAAAAAAIDxo7OzM62trX22tbS09Hk8VH19/TFP0AswUU34APuPfvSjvP3tb0+hUMiMGTOyevXqLFu2LIVCIXfffXc++9nP5uGHH84ll1ySLVu2ZObMmUfV/6UvfWkeeuihI9atWbMmX/ziF5MkV1999TF9LQAAU5U38AAAAGOnvb09HR0dg9YM9h6tvzoAAACAqaq1tTWLFi3qd19jY+Nh25qbm/tdcWW8Kta1JNeRYGqb8AH26667LoVCIeXl5fnWt76VCy64oHffG9/4xrz85S/P7/3e7+Xhhx/O2rVr80d/9EdH1X/atGlZsGDBoDUHDx7MfffdlySZOXNm3vKWtxztlwEAMKVN9jfwAAAA41V7e3sa6s9KZ2HPkOr7e48GAAAAwC/U19enubm5z7ZCoZC2trbU1dWlqqrqsPqJor29PWfVN2RPoXNI9a4lAQOZ0AH2Bx98ME1NTUmSd7/73X3C6z1WrVqVO+64Iy0tLbnlllvykY98JNOmTSvqOO6555489thjSZKVK1ce9gsGAIDBTeY38FAsBw8eTFNTUx5//PHMnj07S5YsSVlZ2VgPCwCACa6joyOdhT1Z95aqNJxSOmBd4UB32p7tSt2JpakqLxmw7uuPHMiN9+4diaECAAAATAjV1dX9Tsi2ePHiMRhNcXV0dGRPoTOzlq/KtFnzBqzrPrAvB557IuUnvCQl5dP7rSn8bEuea1o3UkMFxrkJHWDfuHFj7/Nrrrmm35rS0tK8853vzOrVq/Pss8/m3nvvzcUXX1zUcdx55529z6+++uqi9gYAmAom8xt4KIYNGzZk1apVaWtr691WV1eXtWvXZsWKFWM3MAAAJo2GU0qzcPbgN0guHvgzyV4tHQeLNCIAmHz279w+6P6hhHyG0gcYGZ2dnWltbe2zraWlpc/joerr61NdXT0qYwOA0TZt1rxUnDZ/8KK5Zw+623ktTG0TOsD+wAMPJEmOO+64LFq0aMC6iy66qPf5d7/73aIG2J9//vneIH1dXV3e8IY3FK03AADAhg0bsnLlyixfvjx33XVXFixYkK1bt+amm27KypUrs379eiF2AAAAgHGspqYmlVXV2blpbdF6VlZVp6ampmj9gCNrbW0dMJvS2Nh42Lbm5uZ+J+8BAAAmeIC95w7W+fPnp7x84C+lvr7+sNcUy/r169PZ2Zkk+e3f/u2UlAy8dCoAAMDROHjwYFatWpXly5dn48aNKS0tTZKcf/752bhxY6644opcf/31ufzyy1NWNvhsmQAAMJr2PrZ30P1d+7qyv2N/ptVMS+n00mPuAwATQW1tbba1tqSjo2PQupaWljQ2NmbdunVpaGgYtLampia1tbXFHCZwBPX19Wlubu6zrVAopK2tLXV1damqqjqsHgAA6N+EDbDv2bOn9w3+3LlzB6096aSTctxxx2X37t3Zvr24y07ceeedvc/f+c53Duk1e/fuzd69v7jovmvXrqKOCQAAmByamprS1taWu+66qze83qO0tDSrV6/OhRdemKampixdunRsBgkAME51dnamtbW1z7aeCU76m+ikvr4+1dXVozK28aRQKCRJWjoOFqVfR2d3kmTHrTuK0i9JKqsqzTALwIRXW1s75MB5Q0ODWZthHKquru733+bixYvHYDQAADCxTdgA+/PPP9/7fMaMGUes7wmwv/DCC0UbQ3t7e+6///4kyYUXXpj58+cP6XVr1qzJRz/60aKNAwAAmJwef/zxJMmCBQv63d+zvacOAIBfaG1tzaJFi/rd19jYeNi25ubmKRkUa2trS5I0bthT1L4f+9jH8pu/+ZsD7jfDLAAAAADA1DVhA+x79vziYvr06dOPWF9RUZHkF7PJFMO6devS3f3ibDJDnX09SVavXp0Pf/jDvX/etWtX5s2bV7RxAQAAk8Ps2bOTJFu3bs35559/2P6tW7f2qQMA4Bfq6+vT3NzcZ1uhUEhbW1vq6upSVVV1WP1UVFdXlyRZt6IyDTVlw+7X0nEwjRv2ZNmyZUO6IcAMswAAAAAAU8+EDbBXVlb2Pt+3b98R6/fu3Zskh30oMRxf+MIXkrwYjn/7298+5NdVVFT0BuoBAAAGsmTJktTV1eWmm27Kxo0bU1pa2ruvq6sra9asyRlnnJElS5aM4SgBAMan6urqfoPRixcvHoPRjF8918wbasqycPbwA+y/3BcAAAAAAH7ZhA2wz5w5s/f5Cy+8cMT63bt3J0lmzJhRlOM/+OCDaW1tTZJcdtllOfHEE4vSFwAAoEdZWVnWrl2blStX5oorrsjq1auzYMGCbN26NWvWrMmmTZuyfv36lJUVL2gEAAAAAAAAMFpanuoadH/hQHfanu1K3YmlqSovOeY+wPgyYQPslZWVmTVrVnbu3JkdO3YMWvvMM8/0BtjnzZtXlOPfeeedvc/f+c53FqUnAADAL1uxYkXWr1+fVatW5cILL+zdfsYZZ2T9+vVZsWLFGI4O+ioUCkmSlo6DRen382devNDYtc8FRwAAAAAAgMmktGJGSkuSxq8UitazuqoyNTU1ResHjJwJG2BPkrPPPjtNTU356U9/mgMHDqS8vP8vp2em9CRpaGgY9nH379+fu+++O0ly6qmn5td//deH3RMAAGAgK1asyOWXX56mpqY8/vjjmT17dpYsWWLmdcadtra2JEnjhj1F7bu7dXdKp5cOuL9rX1f2d+zPtJppg9btfWxvUccFcCQHDx70+xtgDHV2dvb5jChJWlpa+jz2qK+vT3V19bgcWzL64wMAGM+cSwFMDmUzTkpXd7Ju3bpBc50tLS1pbGw8Yl2S1NTUpLa2tthDBUbAiAXYd+zYkf/4j/9IZ2dnXvOa16Sqqqrox3j961+fpqam7N69O83NzXnd617Xb93999/f+3zx4sXDPu7mzZuzc+fOJMk73vGOAYPzAAAAxVJWVpalS5eO9TBgUHV1dUmSdSsq01Az/IBmU/uB/O439+bJDU/myQ1PDrtfklSaeQMYJRs2bMiqVat6b+5JXvw5uXbtWiuoAIyS1tbWLFq0qN99jY2Nff7c3NychQsXjsawkhzd2JLRHx8AwHjmXApgcmloaBjSz+mh1gETQ1GT188//3z+5E/+JJ///Ofz2GOP9W5/6KGHcvbZZ/f++e67786GDRtywgkn5LOf/ewxH++KK67ImjVrkiR33HFHvwH2rq6u3HnnnUmSE088McuWLTvm4/Xo6ZckV1999bD7AQAAwGTQc/N6Q01ZFs4u1gzDe828AUw4GzZsyMqVK7N8+fLcddddWbBgQbZu3ZqbbropK1euzPr164XYAUZBfX19mpub+2wrFAppa2tLXV1dn8mX6uvrx+3YeuoBAHiRcykAgImvaAH2Rx55JL/5m7+Zn/3sZ+nu7u7dXlJScljt+eefn8bGxnR3d+fqq6/O61//+mM65mtf+9osWbIkTU1Nuf3223P11Vfnggsu6FOzdu3a3uWBrrvuukybNq3P/vvuu6831H711Vfn85///KDHfPrpp7N58+YkySte8Yq8+tWvPqaxAwAAAENj5g1gIjl48GBWrVqV5cuXZ+PGjSktLU3y4jXRjRs35oorrsj111+fyy+/PGVlxbrZB4D+VFdX93t+WIzVeodrPI8NAGC8cy4FMHYKhUKSZP/O7cPu1dOjpycwtRQlwL5nz55ccskl+bd/+7ccd9xxef/73583vOENWb58eb/1dXV1WbZsWf7xH/8xf//3f3/MAfYkueWWW7J48eIUCoVcfPHFueGGG7Js2bIUCoXcfffdufXWW5MkZ555ZlatWnXMx+lx9913Z9++fUnMvg4AAAAA9NXU1JS2trbcddddveH1HqWlpVm9enUuvPDCNDU1ZenSpWMzSAAAAACAY9DW1pYk2blpbVF7ugkJpp6iBNg/85nP5Kc//WmOO+64NDU1DWlW8t/4jd/It7/97Xzve98b1rHPPffcfOlLX0pjY2N27dqVG2644bCaM888M5s3b87MmTOHdawkufPOO5MkZWVlueqqq4bdDwAAAACYPB5//PEkyYIFC/rd37O9pw5gpO19bO+g+7v2dWV/x/5Mq5mW0umlA9YdqQ8AR6ezszOtra19tvWsLN7zeKj6+vpUV1ePytgAAGAgdXV1SZJZy1dl2qx5w+q1f+f27Ny0trcnMLUUJcC+YcOGlJSU5LrrrhtSeD1JXvWqVyVJHnnkkWEf/9JLL81PfvKT3HLLLdm8eXN27NiR6dOnZ/78+bnyyivzgQ98oChv5h955JH84Ac/SJK86U1vymmnnTbsngAAAADA5DF79uwkydatW3P++ecftn/r1q196gBGyomVJUlJsuPWHUXrWVlVmZqamqL1A5jKWltbs2jRon73NTY2Hratubk5CxcuHOlhAQDAoKqqqpIk02bNS8Vp84vaE5haihJg77kD/OKLLx7ya2bNmpUkefbZZ4sxhJx++um5+eabc/PNNx/V65YuXZru7u4h1b785S8fci0AAAAAMPUsWbIkdXV1uemmm7Jx48aUlv5iNuOurq6sWbMmZ5xxRpYsWTKGowSmgtkzSpPuZN26dWloaBiwrqWlJY2NjUesS5KamprU1tYWe6gTgpmSgWKrr69Pc3Nzn22FQiFtbW2pq6s7LMRTX18/msMDAACAEVWUAPsLL7yQJJkxY8aQX7N374tLTU6bNq0YQwAAAAAAGHNlZWVZu3ZtVq5cmSuuuCKrV6/OggULsnXr1qxZsyabNm3K+vXrU1ZWNtZDBcaZQqGQJGnpOFiUfj196urqhjRjb0NDg5l9B2GmZKDYqqur+/05sXjx4jEYDQAAAIyuogTYZ82alf/4j/9IW1vbkC/G/cu//EuS5LTTTivGEAAAAAAAxoUVK1Zk/fr1WbVqVS688MLe7WeccUbWr1+fFStWjOHogPGqra0tSdK4YU/R+wpDDp+ZkgEAAACgeIoSYF+4cGG+/vWv5zvf+c6QP3y58847U1JSkgsuuKAYQwAAAAAAGDdWrFiRyy+/PE1NTXn88ccze/bsLFmyxMzrwIDq6uqSJOtWVKahZvg/K1o6DqZxw57evgyPmZIBAAAAoHiKEmBfuXJlNm/enFtvvTUf/vCHU1tbO2j9pz/96XznO99JSUlJfuu3fqsYQwAAAAAAGFfKysqydOnSsR4GMEH0zODdUFOWhbOLd7PLL88MDgAAAAAw1kqL0eS3f/u388pXvjJ79uzJ0qVL841vfCPd3d29+0tKStLd3Z0f/vCHueqqq7Jq1aqUlJRkyZIl+Y3f+I1iDAEAAAAAAAAAAAAAgHGuKDOwl5aW5u///u/z+te/Pm1tbVm+fHmqq6tTUlKSJFm6dGmef/757N27N0nS3d2dl73sZfnbv/3bYhweAAAAAAAAAAAAgFGwf+f2Qfd3H9iXA889kfITXpKS8unH1AOY3IoSYE+S2tra/PM//3M++MEP5m//9m+ze/fu3n1PPfVU7/OSkpK87W1vy2c+85mcdNJJxTo8AAAAAAAAAAAAACOkpqYmlVXV2blpbVH6VVZVp6ampii9gImlaAH2JDn55JPzN3/zN7npppuyefPmbNmyJU8++WQOHjyYWbNm5dxzz82ll16aM888s5iHBQAAAAAAAAAAAGAE1dbWZltrSzo6Ogata2lpSWNjY9atW5eGhoYB62pqalJbW1vsYQITQFED7D1OP/30vO997xuJ1gAAADDqOjs709ra2mdbS0tLn8dD1dfXp7q6elTGBgAAAAAAAKOltrZ2yKHzhoaGLFy4cIRHBExEIxJgBwAAgCPZv3P7oPu7D+zLgeeeSPkJL0lJ+fRj7lMMra2tWbRoUb/7GhsbD9vW3NzsYhwAAAAAAAAA9EOAHQAAgFFVU1OTyqrq7Ny0tmg9K6uqU1NTU7R+v6y+vj7Nzc19thUKhbS1taWuri5VVVWH1QMAwHhjZSEAAABgKnEtBMavogTYv/Od7xz1a0pKSlJZWZkTTjghdXV1mT594Nn0AAAAmDxqa2uzrbUlHR0dg9a1tLSksbEx69atS0NDw6C1NTU1Q16q8FhUV1f3O6P64sWLR+yYE1nLU12D7i8c6E7bs12pO7E0VeUlx9wHAICjY2UhAAAAYCpxLQTGr6IE2JcuXZqSkoE/cD7iIMrL8+pXvzrvete78l/+y3/JtGnTijEsAAAAxqna2tohB84bGhpcKJogampqUl1VmcavFIrWs7qqckRn1+fY9TdryZFWJjBrCQCMLSsLAQAAAFOJayEwfhUlwJ4k3d3dx/za/fv354c//GG2bNmSz3zmM9m0adOIzpwHAAAAFF9tbW1aWrdNqNn1OXaDzVrSH7OWAMDYs7IQAAAAMJW4FgLjV1EC7Pfee2/279+fG2+8MT/4wQ8yZ86cXHnllTnvvPNyyimnJEmeeuqpbNmyJX/3d3+Xxx57LK973evy0Y9+NIVCIVu3bs2XvvSlbN26NVu3bs1v/uZv5p//+Z9TXl60fD0wwgqFF2dY3PvY3qL06+nT0xcAAJgYzK4/dfQ3a8lgNyeYtQQAAAAAAABIihRgv+iii3LZZZflwQcfzAc/+MF84hOfSGVl5WF1V111VT7+8Y/n+uuvz1/+5V/m05/+dL7+9a/n8ssvz0c+8pHceOON+Z//83+mpaUld9xxR97znvcUY3jAKGhra0uS7Lh1R9H7uuMNAABg/Blo1pLEzQkAAAAAAADAwIoSYL/jjjuyadOmXHLJJbnlllsGra2oqMif//mf5+c//3m+8Y1v5NZbb821116bJPnYxz6WBx54IPfff382bNggwA4TSF1dXZJk7rVzUzGnYtj99j62Nztu3dHbFwAAAAAYOS1PdQ26v3CgO23PdqXuxNJUlZcccx8AAAAAAChKgP1zn/tcSkpKeoPoQ/He9743X//61/PXf/3XfV73rne9K/fff39+/OMfF2NowCipqqpKklTMqUhVXVXR+wIAAAAAxVdTU5Pqqso0fqVQtJ7VVZWpqakpWj8AAAAAACaXogTYW1pakiRz584d8mt6altbW/tsb2hoSJI8/fTTxRgaAAAAMIj29vZ0dHQMWtPzvr/ncTA1NTWpra3t/XNnZ+dh7/0H61dfX5/q6uojHgcAKI7a2tq0tG4b0vlAY2Nj1q1b13sdfyC/fD4AAAAAAACHKkqAfc+ePUmSHTt25Nxzzx3Sa3bs2JEk2bt3b5/t06ZNSxIfVgMAAMAIa29vz1n1DdlT6BxSfWNj4xFrKquqs621pTe01tramkWLFg25X3NzcxYuXDik8QAAxVFbWzvkwHlDQ4Pf1QAAAAAADEtRAuwve9nLsnXr1tx222259NJLh/Saz372s72vPdRjjz2WJDnllFOKMTQAAABgAB0dHdlT6Mys5asybda8Aeu6D+zLgeeeSPkJL0lJ+fQB6/bv3J6dm9amo6OjNwRXX1+f5ubmPnWFQiFtbW2pq6tLVVVVn3319fXD+IoAAAAAAAAAGO+KEmBfuXJlHnrooWzatCnXX3991qxZ0zuT+i/bv39//uAP/iCbNm1KSUlJrrzyyj77v/vd7yZJ5s+fX4yhAQAAAEcwbda8VJx2hPfhc88+pt7V1dX9ztK6ePHiY+rX2dmZ1tbWPttaWlr6PB6qvr7eKm8AAAAAAAAA40hRAuzXX399vvCFL+SnP/1pPvWpT+Xv/u7vcuWVV2bRokW9M6k/9dRTaW5uzt/93d9lx44dSV6cfX3VqlW9fQ4ePJgvfvGLKSkpycUXX1yMoQEAAACTSGtraxYtWtTvvsbGxsO2NTc39xugBwAAAAAAAGBsFCXAXlVVlX/8x3/MJZdckoceeijbt2/Ppz71qX5ru7u7kyQLFizI5s2b+ywVvmPHjlxzzTVJXpzVHQAAAOBQ9fX1aW5u7rOtUCikra0tdXV1fa4z9NQDAAAAAAAAMH4UJcCeJHPnzk1zc3P+8i//Mn/1V3912HLePc4888y8973vzQc+8IFMmzatz77TTz89/+N//I9iDQkAAACYZKqrq/udUX3x4sVjMBoAAAAAAAAAjlbRAuxJUl5enuuuuy7XXXddHnvssWzdujXPPPNMkuSkk07KOeeck5e+9KXFPCQAAAAAAMCk0fJU16D7Cwe60/ZsV+pOLE1Veckx9wEAAAAAGCtFDbAfas6cOZkzZ85ItQcAAAAAAJg0ampqUl1VmcavFIrWs7qqMjU1NUXrBwAAAABQDCMWYAcAAAAAAGBoamtr09K6LR0dHYPWtbS0pLGxMevWrUtDQ8OgtTU1NamtrS3mMAEAAAAAhk2AHQAAAAAAGDGdnZ1pbW3ts62lpaXP46Hq6+tTXV09KmMbb2pra4ccOG9oaMjChQtHeEQAAAAAg3PtBzgWRQ+wP//887nnnnvy4x//OB0dHSkUCunu7h6wvqSkJLfffnuxhwEAAAAAAIwDra2tWbRoUb/7GhsbD9vW3NwsmA0AAAAwQbj2AxyLogXYu7q68rGPfSxr167N7t27h/Sa7u5uAXYAAAAAAJjE6uvr09zc3GdboVBIW1tb6urqUlVVdVg9AAAAABODaz/AsShagP1d73pX/uZv/ibd3d0pKyvLrFmz8uSTT6akpCRz587NM888kxdeeCHJi7Ou19TUWAYCAAAAAAAmuerq6n5n1Vq8ePEYjAYAAACAYnLtBzgWpcVo8g//8A9Zt25dkheD7E8++WTuueee3v2PPvpodu3alZaWlvw//8//k9LS0px00kn5xje+kZ///OfFGAIAAAAAAAAAAAAAAONcUQLsd9xxR5LknHPOyec+97mcdNJJKSkpOazurLPOyqc//els2LAh//Zv/5bf/M3fzHPPPVeMIQAAAAAAAAAAAAAAMM6VF6PJ97///ZSUlOT973//kOovvfTSXH311bnjjjvyZ3/2Z7nxxhuLMQxgHNj72N5B93ft68r+jv2ZVjMtpdMHvofmSH0AAAAAAAAAAAAAmHiKEmB/8sknkyRnnnlm77aysrLe53v37k1FRUWf16xcuTKf+9zn8pWvfEWAHSaBmpqaVFZVZsetO4rWs7KqMjU1NUXrBwAAAAAAAAAAAMDYKkqAvcfJJ5/c+3zmzJm9z5988snMmzevT+2pp56aJGlrayvmEIAxUltbm22t29LR0TFoXUtLSxobG7Nu3bo0NDQMWltTU5Pa2tpiDhMAAAAAAAAAAACAMVSUAPtLXvKStLe35+mnn+6zbfr06dm/f39+8pOfHBZgf/TRR5Mke/bsKcYQgHGgtrZ2yIHzhoaGLFy4cIRHBAAAAAAAAAAAwETQ2dmZ1tbWPttaWlr6PB6qvr4+1dXVozI2oLiKEmB/xStekfb29vzrv/5rli1b9mLj8vKce+65efDBB3PHHXfkkksu6fOaz3zmM0mS008/vRhDAAAAAAAAAAAAAGCCam1tzaJFi/rd19jYeNi25uZmk6jCBFWUAPvSpUuzadOm3HPPPXn/+9/fu72xsTE/+MEP8pWvfCVXX3113va2t2X37t3567/+69xzzz0pKSnJ5ZdfXowhAAAAAAAAAAAAADBB1dfXp7m5uc+2QqGQtra21NXVpaqq6rB6YGIqSoD9LW95S66//vp885vfzBNPPJGXvOQlSZL3vve9ueOOO/JP//RPWbduXdatW9fndbW1tfn93//9YgwBAAAAAAAAAAAAgAmqurq63xnVFy9ePAajAUZSaTGanHHGGfnZz36WrVu35vjjj+/dXl5env/zf/5PrrrqqpSXl6e7uzvd3d1JkksuuSRNTU056aSTijEEAAAAAAAAAAAAAADGuaLMwJ4kdXV1/W4/6aST8oUvfCH/63/9rzzyyCM5cOBA5s+fn5NPPrlYhwYAAAAAAAAAAAAAYAIoWoD9SGbOnNnv0g4AAAAAAAAAAAAAAEwNpUVpUlqa8vLy/Mmf/Ekx2gEAAAAAAAAAAAAAMAkVJcA+ffr0dHd3Z8mSJcVoBwAAAAAAAAAAAADAJFSUAPucOXOSJOXl5cVoBwAAAAAAAAAAAADAJFSUxPkb3vCGfOELX0hzc3Ne85rXFKMlAAAAAONIe3t7Ojo6Bq1paWnp8ziYmpqa1NbWFmVsAAAAAAAAwMRRlAD7Bz/4wXzxi1/MJz/5ybzjHe/I8ccfX4y2AAAAAIwD7e3tOav+rOwp7BlSfWNj4xFrKqsqs611mxA7AAyis7Mzra2tfbYNdsNYfX19qqurR2VsAAAAAADHqigB9kWLFuXP//zP84EPfCAXXXRR/vIv/zIXXnhhMVoDAAAAMMY6Ojqyp7Anc6+dm4o5FQPWde3ryv6O/ZlWMy2l00sHrNv72N7suHVHOjo6BNgBYBCtra1ZtGhRv/v6u2Gsubk5CxcuHOlhAQAAAAAMS1EC7L/zO7+TJDnrrLPy4x//OEuWLMm8efPyyle+MieddFLKysoGfG1JSUluv/32YgwDAAAAgBFUMaciVXVVgxedOTpjAYCpoL6+Ps3NzX22FQqFtLW1pa6uLlVVVYfVAwAAAACMd0UJsH/+859PSUlJkhcD6d3d3Wlvb8/27dsHfV13d7cAOwAAAAAAQD+qq6v7nVF98eLFYzAaAAAAAIDiKEqAvba2tjfADgAAAAAAAAAAAAAA/SlKgL2tra0YbQAAAAAAAAAAAAAAmMRKx3oAxfLoo49m1apVqa+vz3HHHZeTTz45r3nNa/Knf/qn6ezsLOqx7rnnnrzrXe/K/Pnzc9xxx+WEE07ImWeemZUrV+Yzn/lMXnjhhaIeDwAAAAAAAAAAAABgMijKDOxj7Wtf+1oaGxuza9eu3m2dnZ3ZsmVLtmzZkttuuy2bN2/O/Pnzh3WcZ555Jtdcc02++tWvHrZv165deeSRR/LlL385F1xwQV796lcP61gAAAAAAAAAAAAAAJPNiAXYu7q68vTTT6ezszMvfelLU1ZWNiLH+dGPfpS3v/3tKRQKmTFjRlavXp1ly5alUCjk7rvvzmc/+9k8/PDDueSSS7Jly5bMnDnzmI7z3HPP5U1velOam5uTJG95y1uycuXKvOxlL0tZWVm2b9+e+++/P1/+8peL+eUBAAAAAAAAAAAAAEwaRQ2wHzx4MJ///Ofz+c9/Pj/84Q+zf//+lJSU5Cc/+UnOPvvs3rpNmzblO9/5Tk444YR85CMfGdYxr7vuuhQKhZSXl+db3/pWLrjggt59b3zjG/Pyl788v/d7v5eHH344a9euzR/90R8d03E++MEPprm5ORUVFfnbv/3bXHbZZX32n3feeXnLW96ST33qUzl48OBwviQAAAAAABgznZ2daW1t7bOtpaWlz+Oh6uvrU11dPSpjAwAAAABg4itagP3JJ5/MFVdckR/84Afp7u4etLauri6XXXZZSkpKcskll+TVr371MR3zwQcfTFNTU5Lk3e9+d5/weo9Vq1bljjvuSEtLS2655ZZ85CMfybRp047qOA888EC+8IUvJEn+3//3/z0svH6okpKSlJeP2MT2AAAAAAAwolpbW7No0aJ+9zU2Nh62rbm5OQsXLhzpYQEAAAAAMEkUJWl98ODBXHrppfnhD3+Y0tLSXHnllXnDG96QD3zgA/3WL1iwIK973evy4IMP5itf+coxB9g3btzY+/yaa67pt6a0tDTvfOc7s3r16jz77LO59957c/HFFx/Vcf7iL/4iSXLCCScM+DUBAAAAAMBkUF9fn+bm5j7bCoVC2traUldXl6qqqsPqAQAAAABgqIoSYP/rv/7r/PCHP8y0adPy93//93nzm9+cJIOGvS+77LL84Ac/yAMPPHDMx+157XHHHTfgbDBJctFFF/U+/+53v3tUAfZ9+/blq1/9apLkTW96UyorK5O8GNp/7LHHcvDgwZx22mm92wEAAAAAYCKrrq7ud0b1xYsXj8FoAAAAAACYbEqL0eSuu+5KSUlJ3vve9/aG14/k3HPPTZJs27btmI/b0tKSJJk/f37KywfO4h86+0vPa4bqxz/+cfbs2ZMkecUrXpFdu3bld3/3d1NTU5Pa2tqcccYZOeGEE/KmN70p991339F/EQAAAAAAAAAAAAAAU0RRAuw/+clPkrw4q/pQnXrqqUmSnTt3HtMx9+zZk46OjiTJ3LlzB6096aSTctxxxyVJtm/fflTH+dd//dfe511dXTnvvPNyyy235Nlnn+3dvm/fvtxzzz154xvfmE984hNH7Ll3797s2rWrz38AAAAAAAAAAAAAAJPdwNOWH4WeMPesWbOG/JqDBw8mScrKyo7pmM8//3zv8xkzZhyx/rjjjsvu3bvzwgsvHNVxnn766d7nn/jEJ7Jnz578+q//ev74j/84r3zlK7Nr1658+ctfzh/8wR/kueeeyx/8wR+kvr4+l19++YA916xZk49+9KNHNQ4AAAAAAGB86+zsTGtra59thUIhbW1tqaurS1VVVZ999fX1qa6uHs0hAgAAAACMuaIE2E8++eQ8+eST2b59e84999whveaRRx5JkpxyyinHdMw9e/b0Pp8+ffoR6ysqKpK8eKH4aOzevbvPMd/0pjdl06ZNvcH7U045Jf/1v/7XLFiwIBdddFG6urqyevXqXHbZZSkpKem35+rVq/PhD3+498+7du3KvHnzjmpcAAAAAADA+NLa2ppFixYNub65uTkLFy4cwREBAAAAAIw/RQmwn3POOXnyySfzwx/+MJdddtmQXvOlL30pJSUlec1rXnNMx6ysrOx9vm/fviPW7927N0kOm93kaI6TvDgLe3+zxr/+9a/PihUrsn79+rS0tOShhx7KK1/5yn57VlRU9AbqAQAAAABgOMz6PX7U19enubm5z7aWlpY0NjZm3bp1aWhoOKweAAAAAGCqKUqA/Yorrsg//uM/5i/+4i/y4Q9/OCeddNKg9evXr8/Xvva1lJSU5K1vfesxHXPmzJm9z1944YUj1vfMpD5jxoxjPs4pp5wy6Azzb37zm7N+/fokyQ9/+MMBA+wAAAAAAFAsZv0eP6qrqwf8u21oaPD3DgAAAACQIgXY3/Oe9+STn/xktm/fnosvvjh//dd/nbPPPvuwuieffDK33HJL/vRP/zQlJSVZsGBB3va2tx3TMSsrKzNr1qzs3LkzO3bsGLT2mWee6Q2wz5s376iOc2j93Llzh1z71FNPHdVxAAAAAADgWJj1GwAAAACAiaQoAfaKiop89atfzdKlS9Pc3JxXvOIVOeuss3r3NzY25oUXXsjPfvazdHd3p7u7O7NmzcqXv/zllJSUHPNxzz777DQ1NeWnP/1pDhw4kPLy/r+cQ5dO/eUL9Udyzjnn9D4/ePDgoLWH7h9oLAAAADBeFAqFJMn+nduL0q+nT09fAGB0mPUbAAAAAICJpGgp61e96lX54Q9/mKuvvjrf+973+oTGf/zjH6e7u7v3z6997WvzxS9+Mb/yK78yrGO+/vWvT1NTU3bv3p3m5ua87nWv67fu/vvv732+ePHiozrG6aefntra2rS3t6etrS3d3d0Dhu7/7d/+rff5S1/60qM6DgAAAIy2tra2JMnOTWuL3vdo338DAAAAAAAAMDUUdZrw+fPn57vf/W4eeOCB/P3f/322bNmSJ598MgcPHsysWbNy7rnn5rLLLsub3vSmohzviiuuyJo1a5Ikd9xxR78B9q6urtx5551JkhNPPDHLli076uO89a1vzac+9ans2rUr3/72t/Nrv/Zr/dZt2LCh9/nrX//6oz4OAAAAjKa6urokyazlqzJt1rxh99u/c3t2blrb2xcAAAAAAAAAfllRA+w9Xv/6149KgPu1r31tlixZkqamptx+++25+uqrc8EFF/SpWbt2bVpaWpIk1113XaZNm9Zn/3333dcbar/66qvz+c9//rDj/O7v/m4+85nPZM+ePfnwhz+cBx54IMcff3yfmnXr1uW+++5LklxyySWZN2/4H/wDAADASKqqqkqSTJs1LxWnzS96XwBgcjh48GCampry+OOPZ/bs2VmyZEnKysrGelgAAAAAAExQpWM9gOG65ZZbUlVVlQMHDuTiiy/OmjVr8v3vfz/33ntv3vve9+b3fu/3kiRnnnlmVq1adUzHqK2tzR//8R8nSR566KG89rWvzR133JHm5ubce++9+eAHP5h3vetdSZLjjz8+n/rUp4rytQEAAAAAwFjasGFD5s+fn2XLluUd73hHli1blvnz5/dZkRQAAAAAAI5GUWZg/7/+r/8rjY2N+fVf//WUl4/IpO4DOvfcc/OlL30pjY2N2bVrV2644YbDas4888xs3rw5M2fOPObj/Lf/9t/y9NNP5xOf+ES2bduW3/md3zms5tRTT83GjRvz8pe//JiPAwAAAAAA48GGDRuycuXKLF++PHfddVcWLFiQrVu35qabbsrKlSuzfv36rFixYqyHCQAAAADABFOUGdj/9m//NpdffnlOO+20vO9978sDDzxQjLZDdumll+YnP/lJPvShD+XMM89MdXV1TjzxxJx33nn5xCc+kR/96EeZP3/4S6GvWbMm3/3ud/Pbv/3bqaurS0VFRU444YS85jWvycc+9rE8/PDDueCCC4rwFQEAAAAAwNg5ePBgVq1aleXLl2fjxo05//zzM2PGjJx//vnZuHFjli9fnuuvvz4HDx4c66ECAAAAADDBFGW69JkzZ+b555/P008/nb/6q7/KX/3VX6W2tjbveMc78o53vCPnnHNOMQ4zqNNPPz0333xzbr755qN63dKlS9Pd3T3k+gsuuEBIHQAAAACASa2pqSltbW256667Ulrady6c0tLSrF69OhdeeGGampqydOnSsRkkAAAAAAATUlFmYH/yySfzd3/3d3nLW96S6dOnp7u7O48++mg+/vGP55WvfGVe/epX55Of/GR27NhRjMMBAAAAAAAj6PHHH0+SLFiwoN/9Pdt76gAAAAAAYKiKEmCvqKjIW9/61nz5y1/OE088kdtuuy1vfOMbU1JSku7u7vzkJz/J7//+76euri7Lli3L7bffnueee64YhwYAAAAAAIps9uzZSZKtW7f2u79ne08dAAAAAAAMVVEC7Ic6/vjj8zu/8zu55557sn379qxduzaLFi1Kd3d3urq68p3vfCfXXnttTjvttKxYsSIbNmwo9hAAAAAAAIBhWLJkSerq6nLTTTelq6urz76urq6sWbMmZ5xxRpYsWTJGIwQAAAAAYKIqeoD9ULNnz86HPvSh/PCHP8y2bdty4403Zv78+enu7s7evXuzcePGvO1tbxvJIQAAAAAAAEeprKwsa9euzaZNm3LFFVfke9/7Xp5//vl873vfyxVXXJFNmzblk5/8ZMrKysZ6qAAAAAAATDAjGmA/1Mtf/vJ89KMfzbZt2/LFL34xJ554YpKku7t7tIYAAAAAAAAM0YoVK7J+/fo89NBDufDCC3P88cfnwgsvzNatW7N+/fqsWLFirIcIAAAAAMAEVD5aB3rqqafypS99KX/zN3+TBx98cLQOCwAAAAAAHKMVK1bk8ssvT1NTUx5//PHMnj07S5YsMfM6AAAAAADHbEQD7Lt3786GDRvyxS9+Md/+9rdz8ODB3hnXS0pKsnjx4lx11VUjOQQAAAAAAGAYysrKsnTp0rEeBgAAAAAAk0TRA+wHDhzIN77xjXzxi1/M1772tRQKhSTpDa6fffbZueqqq/KOd7wjp59+erEPDwAAAAAAAAAAAADAOFW0AHtTU1P+5m/+JuvXr88zzzyT5Beh9Ze+9KX5rd/6rVx11VV51ateVaxDAgAAAAAAAAAAAAAwgRQlwH766adnx44dSX4RWj/hhBOycuXKXHXVVbnoootSUlJSjEMBAAAAAAAAAAAAADBBFSXAvn379iRJRUVFLrnkklx11VW55JJLMn369GK0BwAAAAAAAAAAAABgEihKgH3ZsmW56qqr8ta3vjUnnHBCMVoCAAAAAACMa+3t7eno6Bi0pqWlpc/jYGpqalJbW1uUsQEAAAAAjFdFCbB/+9vfLkYbAAAAAACACaG9vT1n1TdkT6FzSPWNjY1HrKmsqs621hYhdgAAAABgUitKgB0AAACAyatQKCRJ9j62tyj9evr09AWAiaijoyN7Cp2ZtXxVps2aN2Bd94F9OfDcEyk/4SUpKZ8+YN3+nduzc9PadHR0CLADAAAAAJPaiATYm5ubc88992Tr1q15+umnkyQnn3xyFixYkF/7tV/LokWLRuKwAAAAAIyAtra2JMmOW3cUve/ixYuL2hMARtu0WfNScdr8wYvmnj06gwEAAAAAmACKGmB/6KGHcu211+bBBx8csOaGG27I6173uvzVX/1VXvGKVxTz8AAAAACMgLq6uiTJ3GvnpmJOxbD77X1sb3bcuqO3LwAAAAAAADB1FC3Afs899+TSSy/Nvn370t3dnSSZNm1aZs2alSTZuXNn9u/fnyT5/ve/n9e+9rXZtGlTfvVXf7VYQwAAAABgAJ2dnWltbe2zrVAopK2tLXV1damqquqzr76+PtXV1UnSu69iTkWq6vrWDccvHxMAAAAAAACY/IoSYO/o6MiVV16ZvXv3prS0NO9+97vznve8J+eee27Ky188xMGDB/OjH/0on/3sZ/O5z30ue/fuzZVXXplHHnmkN+QOAAAAwMhobW3NokWLhlzf3NychQsXjuCIAAAAAAAAgKmoKAH2W265Jc8991ymT5+er371q3nzm998WE1ZWVnOO++8nHfeeXnrW9+aSy+9NM8991xuueWW/PEf/3ExhgGMM/3N7tfS0tLn8VCHzu4HAABAcdXX16e5ubnPtpaWljQ2NmbdunVpaGg4rB4AAAAAAACg2IoSYN+8eXNKSkrygQ98oN/w+i+7+OKL88EPfjA333xzNm/eLMAOk9Rgs/s1NjYets3sfgAAACOnurp6wPdcDQ0N3o8BAAAAAAAAo6IoAfaf//znSZLLLrtsyK+57LLLcvPNN+dnP/tZMYYAjEP9ze5XKBTS1taWurq6VFVVHVYPAAAAAAAAAAAAwORVlAD7nj17kiTHHXfckF/TU7t3795iDAEYhwaa3W/x4sVjMBoAAAAAAAAAAAAAxlppMZqcdtppSZIf/ehHQ35NT+1LXvKSYgwBAAAAAAAAAAAAAIBxrigzsC9ZsiTr1q3Lxz/+8bztbW/L8ccfP2j9888/n0984hMpKSnJkiVLijEEAAAAJrDOzs60trb22dbS0tLn8VD19fWprq4elbFNBft3bh90f/eBfTnw3BMpP+ElKSmffsx9AIDiaG9vT0dHx6A1g51L/bKamprU1tYWZWwAAAAAAHAkRQmwv/e97826devy85//PG94wxty22235bzzzuu3dsuWLbn22mvzb//2bykpKcl73/veYgwBAACACay1tTWLFi3qd19jY+Nh25qbm7Nw4cKRHtakV1NTk8qq6uzctLZoPSurqlNTU1O0fgBAX+3t7TmrviF7Cp1Dqu/vXOqXVVZVZ1trixA7AAAAAACjoigB9sWLF+d973tf/tf/+l956KGH8rrXvS7nnHNOXve61+XUU09NSUlJnnjiifzgBz/Iv/zLv/S+7n3ve18WL15cjCEAAAAwgdXX16e5ubnPtkKhkLa2ttTV1aWqquqweoavtrY221pbhjSDa2NjY9atW5eGhoZBa83gCgAjq6OjI3sKnZm1fFWmzZo3YN3RrKCyc9PadHR0+B0OAAAAAMCoKEqAPUn+/M//PNXV1bn55pvT1dWVrVu39gmrJ0l3d3eSpLS0NNdff30+/vGPF+vwAAAATGDV1dX9zqjupueRV1tbO+SwWkNDg5nvAWCcmDZrXipOmz940dyzR2cwU1ShUEjy4k0AxdDTp6cvAAAAAMBkVbQAe0lJSf7kT/4k73znO/OZz3wm99xzTx555JE+NS9/+cvza7/2a/m//+//OwsWLCjWoQEAAAAAAEZVW1tbkmTnprVF7+tGTgAAAABgMitagL3HggUL8pd/+ZdJkn379uWZZ55Jkpx00kmZPn3gZUoBAAAAAAAmirq6uiTJrOWrMm3WvGH3279ze3ZuWtvbFwAAAABgsip6gP1Q06dPz0te8pKRPAQAAAAAAMCoq6qqSpJMmzUvFafNL3pfAAAAAIDJqvRYXvSNb3wjCxcuzMKFC/PFL37xqF77xS9+sfe199xzz7EcHgAAAAAAAAAAAACACeioZ2Dv7u7Ohz70oTzyyCP5tV/7tbzjHe84qtf/1m/9Vj7/+c/nnnvuyapVq/LjH//4aIcAAAAAAABTUqFQSJLs37m9KP16+vT0BQAAAACAkXbUAfZ//Md/zMMPP5yysrJ86lOfOuoDlpSU5NOf/nRe9apXZevWrbn//vtz0UUXHXUfAAAAAACYatra2pIkOzetLXrfxYsXF7UnAAAAAAD056gD7F/+8peTJG9605ty9tlnH9NBzz777Lz5zW/ON77xjaxfv16AHQAAAAAAhqCuri5JMmv5qkybNW/Y/fbv3J6dm9b29gUAAAAAgJF21AH2Bx98MCUlJbn00kuHdeDly5fn61//er7//e8Pqw8AAAAAAEwVVVVVSZJps+al4rT5Re8LAAAAAAAjrfRoX/Doo48mSc4666xhHfjMM89M8ovlTgEAAAAAAAAAAAAAmNyOOsD+3HPPJUlOPvnkYR245/W7du0aVh8AAAAAAAAAAAAAACaGow6wH3/88UmSZ599dlgH7nn9zJkzh9UHAAAAAAAAAAAAAICJ4agD7KecckqS5F//9V+HdeCWlpYkyamnnjqsPgAAAAAAAAAAAAAATAxHHWB/7Wtfm+7u7nzta18b1oG/+tWvpqSkJK95zWuG1QcAAAAAAAAAAAAAgInhqAPsv/Ebv5Ek+da3vpUHHnjgmA76ne98J9/61rf69AMAAAAAAAAAAAAAYHI76gD7W9/61tTV1aW7uztXXnllHnnkkaN6/cMPP5y3ve1tKSkpSV1dXVauXHm0QwAAAAAAAAAAAAAAYAI66gD7tGnT8slPfjJJ8uSTT2bRokW55ZZbsnv37kFf98ILL+TTn/50zjvvvDz55JNJkrVr16a8vPwYhg0AAAAAAAAAAAAAwERzTOnxFStW5KMf/Wj+x//4H9m9e3c+/OEP58Ybb8ySJUuyaNGinHrqqTnuuOOye/fuPPHEE/mnf/qnNDU1Zffu3enu7k6SfPSjH80VV1xRzK8FAAAAAAAAAAAAAIBx7JinP7/xxhszd+7cfPCDH0xnZ2deeOGFfPOb38w3v/nNfut7guvV1dX5i7/4i7zrXe861kMDAAAAAAAAAAAAADABHXOAPUmuueaavPnNb87NN9+cO++8Mx0dHQPW1tTU5Oqrr86HPvShzJkzZziHBQAAAGAM7H1s76D7u/Z1ZX/H/kyrmZbS6aXH3AcAAAAAAACYvIYVYE+SOXPm5JOf/GQ++clP5l/+5V/y4x//ODt37szzzz+fmTNnZtasWXnVq16Vc845pxjjBQAAAGCU1dTUpLKqMjtu3VG0npVVlampqSlaPwAAAAAAAGBiGHaA/VDnnHOOoDoAAADAJFNbW5ttrdsGXX0vSVpaWtLY2Jh169aloaFh0NqamprU1tYWc5gAAAAAAADABFDUADsAAAAAk1Ntbe2QA+cNDQ1ZuHDhCI8IAAAAAAAAmIhKx3oAAAAAAAAAAAAAAABMDQLsAAAAAAAAAAAAAACMCgF2AAAAAAAAAAAAAABGhQA7AAAAAAAAAAAAAACjonysBwAAAACMH52dnWltbe2zraWlpc/joerr61NdXT0qYwMAfmH/zu2D7u8+sC8Hnnsi5Se8JCXl04+5DwAAAAAAFNukCbA/+uij+bM/+7Ns3rw527dvT0VFRV72spflbW97W97//vcP68P0z3/+87nmmmuGVHvHHXfkXe961zEfCwAAAMZSa2trFi1a1O++xsbGw7Y1Nzdn4cKFIz0sAOA/1dTUpLKqOjs3rS1az8qq6tTU1BStHwAAAAAADGZSBNi/9rWvpbGxMbt27erd1tnZmS1btmTLli257bbbsnnz5syfP38MRwkAAADjX319fZqbm/tsKxQKaWtrS11dXaqqqg6rBwBGT21tbba1tqSjo2PQupaWljQ2NmbdunVpaGgYtLampia1tbXFHCYAAAAAAAxowgfYf/SjH+Xtb397CoVCZsyYkdWrV2fZsmUpFAq5++6789nPfjYPP/xwLrnkkmzZsiUzZ84c1vH+4R/+IXPmzBlw/9y5c4fVHwAAAMZSdXV1vzOqL168eAxGAwD0p7a2dsiB84aGBqulAAAAAAAwrkz4APt1112XQqGQ8vLyfOtb38oFF1zQu++Nb3xjXv7yl+f3fu/38vDDD2ft2rX5oz/6o2Ed78wzz0xdXd3wBg0AAAAAAAAAAAAAMAWVjvUAhuPBBx9MU1NTkuTd7353n/B6j1WrVvUuj3rLLbdk//79ozpGAAAAAAAAAAAAAABeNKED7Bs3bux9fs011/RbU1pamne+851JkmeffTb33nvvaAwNAAAAAAAAAAAAAIBfMqED7A888ECS5LjjjsuiRYsGrLvooot6n3/3u98d8XEBAAAAAAAAAAAAAHC4CR1gb2lpSZLMnz8/5eXlA9bV19cf9ppjdc0112TOnDmZPn16ampqcv755+e///f/nn//938fVl8AAAAAAAAAAAAAgMlu4NT3OLdnz550dHQkSebOnTto7UknnZTjjjsuu3fvzvbt24d13Pvuu6/3+c6dO7Nz58784Ac/yNq1a/PpT386733ve4fVHwAAAAAAmDj27xz8c4fuA/ty4LknUn7CS1JSPv2Y+wAAAAAATBYTNsD+/PPP9z6fMWPGEet7AuwvvPDCMR3vV37lV7JixYpccMEFmTdvXpLkZz/7Wb785S9n/fr12bNnT/7rf/2vKSkpybXXXjtor71792bv3r29f961a9cxjQkAAAAAABgbNTU1qayqzs5Na4vWs7KqOjU1NUXrBwAAAAAwHk3YAPuePXt6n0+fPvCMJT0qKiqSJIVC4aiP9Za3vCVXX311SkpK+mx/zWtek7e//e3ZtGlTVqxYkf379+dDH/pQLrvsspx22mkD9luzZk0++tGPHvU4AAAAAACA8aG2tjbbWlt6V4sdSEtLSxobG7Nu3bo0NDQMWltTU5Pa2tpiDhMAAAAAYNyZsAH2ysrK3uf79u07Yn3PjOdVVVVHfawTTjhh0P3Lly/PH/7hH+bGG29MZ2dnbr/99nzkIx8ZsH716tX58Ic/3PvnXbt29c7qDgAAAAAATAy1tbVDDpw3NDRk4cKFIzwiAAAAAIDxr3SsB3CsZs6c2fv8hRdeOGL97t27kyQzZswYkfFce+21vTO033///YPWVlRU5Pjjj+/zHwAAAAAAAAAAAADAZDdhA+yVlZWZNWtWkmTHjh2D1j7zzDO9AfaRmun81FNP7R3Pv//7v4/IMQAAAAAAAAAAAAAAJrIJG2BPkrPPPjtJ8tOf/jQHDhwYsK61tbX3eUNDw4iNp2cGdgAAAAAAAAAAAAAADjehA+yvf/3rkyS7d+9Oc3PzgHX3339/7/PFixePyFieeuqpdHR0JEnmzJkzIscAAAAAAAAAAAAAAJjIJnSA/Yorruh9fscdd/Rb09XVlTvvvDNJcuKJJ2bZsmUjMpZbb7013d3dSZKLLrpoRI4BAAAAAAAAAAAAADCRTegA+2tf+9osWbIkSXL77bfne9/73mE1a9euTUtLS5Lkuuuuy7Rp0/rsv++++1JSUpKSkpK8613vOuz1bW1t+dGPfjToODZt2pQ//uM/TpJUVVXlmmuuOZYvBwAAAAAAAAAAAABgUisf6wEM1y233JLFixenUCjk4osvzg033JBly5alUCjk7rvvzq233pokOfPMM7Nq1aqj7t/W1pZly5blggsuyKWXXppXvepVOfXUU5MkP/vZz7J+/fqsX7++d/b1T37yk3npS19avC8QAAAAAAAAAAAAAGCSmPAB9nPPPTdf+tKX0tjYmF27duWGG244rObMM8/M5s2bM3PmzGM+zve+971+Z3jvUV1dnU996lO59tprj/kYAAAAAAAAAAAAAACT2YQPsCfJpZdemp/85Ce55ZZbsnnz5uzYsSPTp0/P/Pnzc+WVV+YDH/hAqqurj6n3okWLsm7dunzve9/Lli1b8vjjj6ejoyMHDhzISSedlHPOOSe/+qu/mv/yX/5L78zsAAAAAAAAAAAAAAAcblIE2JPk9NNPz80335ybb775qF63dOnSdHd3D7h/5syZueqqq3LVVVcNd4gAAAAAAAAAAAAAAFNa6VgPAAAAAAAAAAAAAACAqUGAHQAAAAAAAAAAAACAUSHADgAAAAAAAAAAAADAqBBgBwAAAAAAAAAAAABgVAiwAwAAAAAAAAAAAAAwKgTYAQAAAAAAAAAAAAAYFQLsAAAAAAAAAAAAAACMCgF2AAAAAAAAAAAAAABGhQA7AAAAAAAAAAAAAACjonysBwAAAAAAADAZdHZ2prW1tc+2lpaWPo+Hqq+vT3V19aiMDQAAAABgvBBgBwAAAAAAKILW1tYsWrSo332NjY2HbWtubs7ChQtHelgAAAAAAOOKADsAAAAAAEAR1NfXp7m5uc+2QqGQtra21NXVpaqq6rB6AAAAAICpRoAdAAAAAACgCKqrq/udUX3x4sVjMBoAAAAAgPGpdKwHAAAAAAAAAAAAAADA1CDADgAAAAAAAAAAAADAqCgf6wEAAAAAAADHrrOzM62trX22tbS09Hk8VH19faqrq0dlbAAAAAAA8MsE2AEAAAAAYAJrbW3NokWL+t3X2Nh42Lbm5uYsXLhwpIcFAAAAAAD9EmAHAAAAAIAJrL6+Ps3NzX22FQqFtLW1pa6uLlVVVYfVAwAAAADAWBFgBwAAAACACay6urrfGdUXL148BqMBAAAAAIDBlY71AAAAAAAAAAAAAAAAmBoE2AEAAAAAAAAAAAAAGBUC7AAAAAAAAAAAAAAAjAoBdgAAAAAAAAAAAAAARoUAOwAAAAAAAAAAAAAAo0KAHQAAAAAAAAAAAACAUSHADgAAAAAAAAAAAADAqBBgBwAAAAAAAAAAAABgVAiwAwAAAAAAAAAAAAAwKgTYAQAAAAAAAAAAAAAYFQLsAAAAAAAAAAAAAACMCgF2AAAAAAAAAAAAAABGhQA7AAAAAAAAAAAAAACjQoAdAAAAAAAAAAAAAIBRIcAOAAAAAAAAAAAAAMCoEGAHAAAAAAAAAAAAAGBUlI/1AAAAAACYeDo7O9Pa2tpnW0tLS5/HQ9XX16e6unpUxgYAAAAAAACMXwLsAAAAABy11tbWLFq0qN99jY2Nh21rbm7OwoULR3pYAAAAAAAAwDgnwA4AAADAUauvr09zc3OfbYVCIW1tbamrq0tVVdVh9QAAAAAAAAAC7AAAAAActerq6n5nVF+8ePEYjAYAAAAAAACYKErHegAAAAAAAAAAAAAAAEwNAuwAAAAAAAAAAAAAAIwKAXYAAAAAAAAAAAAAAEaFADsAAAAAAAAAAAAAAKNCgB0AAAAAAAAAAAAAgFFRPtYDAAAAAKD42tvb09HRMWhNS0tLn8fB1NTUpLa2tihjAwAAAAAAAKYuAXYAAACASaa9vT0N9Wels7BnSPWNjY1HrKmuqkxL6zYhdgAAAAAAAGBYBNgBAAAAJpmOjo50FvZk3Vuq0nBK6YB1hQPdaXu2K3UnlqaqvGTAupanutL4lUI6OjoE2AEAAAAAAIBhEWAHAAAAmKQaTinNwtllg9YsnjdKgwEAAAAAAABIMvAUXAAAAAAAAAAAAAAAUEQC7AAAAAAAAAAAAAAAjAoBdgAAAAAAAAAAAAAARoUAOwAAAAAAAAAAAAAAo0KAHQAAAAAAAAAAAACAUSHADgAAAAAAAAAAAADAqJg0AfZHH300q1atSn19fY477ricfPLJec1rXpM//dM/TWdn54gcs7OzM7/yK7+SkpKSlJSUpK6ubkSOAwAAAAAAAAAAAAAwGZSP9QCK4Wtf+1oaGxuza9eu3m2dnZ3ZsmVLtmzZkttuuy2bN2/O/Pnzi3rcP/zDP8zPf/7zovYEAAAAAAAAAAAAAJisJvwM7D/60Y/y9re/Pbt27cqMGTPyP//n/8z/9//9f/n2t7+d97znPUmShx9+OJdcckmef/75oh7305/+dCorKzNz5syi9QUAAAAAAAAAAAAAmKwmfID9uuuuS6FQSHl5eb71rW/lhhtuyAUXXJA3vvGNufXWW/Mnf/InSV4Msa9du7Yoxzx48GDe85735ODBg7nhhhty8sknF6UvAAAAAAAAAAAAAMBkNqED7A8++GCampqSJO9+97tzwQUXHFazatWqNDQ0JEluueWW7N+/f9jHveWWW9Lc3Jyzzjorv//7vz/sfgAAAAAAAAAAAAAAU8GEDrBv3Lix9/k111zTb01paWne+c53JkmeffbZ3HvvvcM65qOPPpo//MM/TJL87//9vzN9+vRh9QMAAAAYioMHD+a+++7LXXfdlfvuuy8HDx4c6yEBAAAAAAAAHLUJHWB/4IEHkiTHHXdcFi1aNGDdRRdd1Pv8u9/97rCO+b73vS+7d+/Ob//2b2fp0qXD6gUAAAAwFBs2bMj8+fOzbNmyvOMd78iyZcsyf/78bNiwYayHBgAAAAAAAHBUJnSAvaWlJUkyf/78lJeXD1hXX19/2GuOxd13352vf/3rOemkk7J27dpj7gMAAAAwVBs2bMjKlSvzile8It/73vfy/PPP53vf+15e8YpXZOXKlULsAAAAAAAAwIQyYQPse/bsSUdHR5Jk7ty5g9aedNJJOe6445Ik27dvP6bjPfPMM/nd3/3dJMnHP/7xnHLKKcfUBwAAAGCoDh48mFWrVmX58uXZuHFjzj///MyYMSPnn39+Nm7cmOXLl+f666/PwYMHx3qoAAAAAAAAAEMyYQPszz//fO/zGTNmHLG+J8D+wgsvHNPx/tt/+2954okncsEFF+Q973nPMfXosXfv3uzatavPfwAAAAC/rKmpKW1tbbnhhhtSWtr3Mk5paWlWr16dn//852lqahqjEQIAAAAAAAAcnQkbYN+zZ0/v8+nTpx+xvqKiIklSKBSO+ljf+c538rnPfS7l5eX53//7f///7N17mI31/v/xz2fNYDDO41TOSRQhUZLt0GmXdFBttVPRrrSVb0mU2u10EOmog7aic+mgotKuRIRSsYvI5BxyKGczhjEzr98ffutujTkzs+Y94/m4Lldj1r3Wutf9/H737V73e93Lee8L/BiRRo4c6apUqRL8qV+//mE9HgAAAAAAKJ02btzonHOuZcuW2d4e/n14OQAAAAAAAAAAAACwrsQOsMfFxQU/p6am5rn8vn37nHPOlS9fvkDPs2/fPnfDDTc4Se6WW25xJ554YsFWNBvDhg1zO3fuDP6sW7fusB8TAAAAAACUPnXr1nXOObd48eJsbw//PrwcAAAAAAAAAAAAAFhXYgfYK1WqFPyclJSU5/LJycnOOefi4+ML9DwjRoxwv/zyi6tfv7677777CraSOShXrpyrXLlypj8AAAAAAAAH69y5s2vUqJF76KGHXEZGRqbbMjIy3MiRI13jxo1d586di2kNAQAAAAAAAAAAAKBgYot7BQ5VXFycq1Gjhtu6datbv359rstu3749GGCvX79+gZ7n4Ycfds45d+aZZ7qPPvoo22XCj52cnOzeeust55xztWrVct27dy/QcwEAAAAAAESKiYlxjz32mLv00kvdRRdd5IYNG+ZatmzpFi9e7EaOHOk+/vhjN2nSJBcTE1PcqwoAAAAAAAAAAAAA+VJiB9idc+744493s2fPditWrHBpaWkuNjb7l5OYmBj83KJFiwI9R2pqqnPOuZdeesm99NJLuS67ZcsWd8UVVzjnnOvSpQsD7AAAAAAA4LD16tXLTZo0yQ0ePNiddtppwe8bN27sJk2a5Hr16lWMawcAAAAAAAAAAAAABVOiB9hPP/10N3v2bJecnOwWLFjgTjnllGyXmzVrVvBzp06dorV6AAAAAAAAhaJXr17uwgsvdLNnz3YbN250devWdZ07d+bK6wAAAAAAAAAAAABKnFBxr8DhuOiii4Kfc7o6ekZGhnv11Vedc85VrVrVdevWrUDPISnPPw0bNnTOOdewYcPgdzNnzjyk1wQAAAAAAJCdmJgY17VrV3fFFVe4rl27MrwOAAAAAAAAAAAAoEQq0QPsHTp0cJ07d3bOOTdhwgT3zTffZFnmsccec0uXLnXOOXfLLbe4MmXKZLp95syZznvvvPeub9++Rb7OAAAAAAAAAAAAAAAAAAAAAHCkii3uFThcY8aMcZ06dXIpKSnu7LPPdnfddZfr1q2bS0lJcW+99ZZ7/vnnnXPONWvWzA0ePLiY1xYAAAAAAAAAAAAAAAAAAAAAjlwlfoC9bdu27u2333Z9+vRxu3btcnfddVeWZZo1a+amTp3qKlWqVAxrCAAAAAAAAAAAAAAAAAAAAABwzrlQca9AYejZs6dbtGiRGzRokGvWrJmrUKGCq1q1qjv55JPdww8/7H744QfXtGnT4l5NAAAAAAAAAAAAAAAAAAAAADiilfgrsIc1bNjQPf744+7xxx8v0P26du3qJB3Wc69Zs+aw7g8AAAAAAAAAAAAAAAAAAAAAR4JScQV2AAAAAAAAAAAAAAAAAAAAAIB9DLADAAAAAAAAAAAAAAAAAAAAAKKCAXYAAAAAAAAAAAAAAAAAAAAAQFQwwA4AAAAAAAAAAAAAAAAAAAAAiIrY4l4BAAAAAAAAFK6UlBTnnHNLt6QXyuOFHyf8uAAAAAAAAAAAAABwqBhgBwAAAAAAKGXWrFnjnHOuz/t7C/1xO3XqVKiPCQAAAAAAAAAAAODIwgA7AAAAAABAKdOoUSPnnHOv94pzLRJiDvvxlm5Jd33e3xs8LgAAAAAAAAAAAAAcKgbYAQAAAAAASpny5cs755xrkRDjTqp7+APsBz8uAAAAAAAAAAAAAByqUHGvAAAAAAAAAAAAAAAAAAAAAADgyMAAOwAAAAAAAAAAAAAAAAAAAAAgKhhgBwAAAAAAAAAAAAAAAAAAAABEBQPsAAAAAAAAAAAAAAAAAAAAAICoYIAdAAAAAAAAAAAAAAAAAAAAABAVDLADAAAAAAAAAAAAAAAAAAAAAKKCAXYAAAAAAAAAAAAAAAAAAAAAQFQwwA4AAAAAAAAAAAAAAAAAAAAAiAoG2AEAAAAAAAAAAAAAAAAAAAAAUcEAOwAAAAAAAAAAAAAAAAAAAAAgKhhgBwAAAAAAAAAAAAAAAAAAAABEBQPsAAAAAAAAAAAAAAAAAAAAAICoYIAdAAAAAAAAAAAAAAAAAAAAABAVDLADAAAAAAAAAAAAAAAAAAAAAKIitrhXAAAAAAAAAFnt2bPHJSYmZvpdSkqKW7NmjWvUqJErX758ptuaN2/uKlSoEM1VBAAAAAAAAAAAAIACY4AdAAAAAADAoMTERNeuXbt8L79gwQJ30kknFeEaAQAAAAAAAAAAAMDhY4AdAAAAAADAoObNm7sFCxZk+t3SpUtdnz593Ouvv+5atGiRZXkAAAAAAAAAAAAAsI4BdgAAAAAAAIMqVKiQ4xXVW7RowdXWAQAAAAAAAAAAAJRIoeJeAQAAAAAAAAAAAAAAAAAAAADAkYEBdgAAAAAAAAAAAAAAAAAAAABAVDDADgAAAAAAAAAAAAAAAAAAAACICgbYAQAAAAAAAAAAAAAAAAAAAABRwQA7AAAAAAAAAAAAAAAAAAAAACAqGGAHAAAAAAAAAAAAAAAAAAAAAEQFA+wAAAAAAAAAAAAAAAAAAAAAgKhggB0AAAAAAAAAAAAAAAAAAAAAEBUMsAMAAAAAAAAAAAAAAAAAAAAAooIBdgAAAAAAAAAAAAAAAAAAAABAVDDADgAAAAAAAAAAAAAAAAAAAACICgbYAQAAAAAAAAAAAAAAAAAAAABRwQA7AAAAAAAAAAAAAAAAAAAAACAqGGAHAAAAAAAAAAAAAAAAAAAAAEQFA+wAAAAAAAAAAAAAAAAAAAAAgKhggB0AAAAAAAAAAAAAAAAAAAAAEBUMsAMAAAAAAAAAAAAAAAAAAAAAooIBdgAAAAAAAAAAAAAAAAAAAABAVDDADgAAAAAAAAAAAAAAAAAAAACICgbYAQAAAAAAAAAAAAAAAAAAAABRwQA7AAAAAAAAAAAAAAAAAAAAACAqGGAHAAAAAAAAAAAAAAAAAAAAAERFbHGvAAAAAAAAAJxbu3at27JlS67LLF26NNN/81oOAAAAAAAAAAAAAKxhgB0AAAAAAKCYrV271h3XvIXbm7InX8v36dMnX8st/SMj19tT0uTW7MhwjaqGXPlYf8iPAwAAAAAAAAAAAAD5xQA7AAAAAABAMduyZYvbm7LH1Th/sCtTo36Oyykt1aXt3Oxiq9R2PrZsjsvtXb/E7ZrxguvzQUqhrWOF8nEuISGh0B4PAAAAAAAAAAAAwJGJAXYAAAAAAAAjytSo78rVaZr7QvWOz9dj7ZBzr7/+umvRokWOyyxdutT16dMnz+Wccy4hIcE1aNAgX88NAAAAAAAAAAAAADlhgB0AAAAAAKCUatGihTvppJMKbTkAAAAAAAAAAAAAOFyh4l4BAAAAAAAAAAAAAAAAAAAAAMCRoVQMsP/6669u8ODBrnnz5q5ixYquevXqrn379u6RRx5xe/bsOazHXrp0qXvmmWfcNddc40466SRXr149FxcX5ypWrOiaNGnievfu7aZMmeIkFdKrAQAAAAAAAAAAAAAAAAAAAIDSKba4V+BwffTRR65Pnz5u165dwe/27Nnj5s+f7+bPn+/Gjx/vpk6d6po2bXpIjz9ixAj3xhtvZHvb6tWr3erVq90777zjunTp4t577z1Xo0aNQ3oeAAAAAAAAAAAAAAAAAAAAACjtSvQA+w8//OB69+7tUlJSXHx8vBs2bJjr1q2bS0lJcW+99ZZ74YUX3LJly1yPHj3c/PnzXaVKlQr8HLGxse6UU05xnTp1cq1atXJ16tRxNWvWdNu3b3eJiYlu3LhxbvHixW7WrFmuZ8+ebs6cOS4UKhUXtgcAAAAAAAAAAAAAAAAAAACAQlWiB9hvueUWl5KS4mJjY93nn3/uOnbsGNzWvXt3d+yxx7qhQ4e6ZcuWuccee8wNHz68wM8xfvx4Fxub/WY688wz3T//+U/3t7/9zb3//vvum2++cR9//LG74IILDvUlAQAAAAAAAAAAAAAAAAAAAECpVWIvFf7dd9+52bNnO+ec+8c//pFpeD1s8ODBrkWLFs4558aMGeP2799f4OfJaXg9LCYmxg0ZMiT4e3idAAAAAAAAAAAAAAAAAAAAAACZldgB9smTJwc/9+vXL9tlQqGQu/rqq51zzu3YscN9+eWXRbIulSpVCn7eu3dvkTwHAAAAAAAAAAAAAAAAAAAAAJR0JXaAfc6cOc455ypWrOjatWuX43JdunQJfp47d26RrMtbb70V/Ny8efMieQ4AAAAAAAAAAAAAAAAAAAAAKOlii3sFDtXSpUudc841bdrUxcbm/DIiB8rD9ykMW7ZsccuXL3fjx493L730knPOuYSEBHfllVcW2nMAAAAAAAAAAAAAAAAAAAAAQGlSIgfY9+7d67Zs2eKcc65evXq5LlutWjVXsWJFl5yc7NatW3dYz9u1a1c3a9asbG9LSEhwH3zwgatatephPQcAAAAAAAAAAAAAAAAAAAAAlFah4l6BQ7F79+7g5/j4+DyXr1ixonPOuaSkpCJZn//7v/9zS5cudaeffnq+lt+3b5/btWtXpj8AAAAAAAAAAAAAAAAAAAAAUNqV2Cuwh5UtWzbP5cuVK+eccy4lJeWwnvell15yycnJTpLbsWOHmz9/vnvuuefcM88841atWuXGjx/vateunefjjBw50t13332HtS4AAAAAAAAAAAAAAAAAAAAAUNKUyCuwx8XFBT+npqbmufy+ffucc86VL1/+sJ63cePGrmXLlq5Vq1auc+fObtCgQW7RokXuvPPOcx9//LFr3769W79+fZ6PM2zYMLdz587gz7p16w5rvQAAAAAAAAAAAAAAAAAAAACgJCiRV2CvVKlS8HNSUlKeyycnJzvnnIuPjy/0dYmLi3MvvfSSa9iwoVu3bp0bOnSoe/PNN3O9T7ly5YKrwgMAAAAAAIS/NW7/1sL5kHv4cQ732+gAAAAAAAAAAAAAoLCVyAH2uLg4V6NGDbd169Y8r3i+ffv2YIC9fv36RbI+CQkJrlOnTm7atGluypQpbv/+/a5MmTJF8lwAAAAAAKD0WbNmjXPOua0fP1boj9upU6dCfUwAAAAAAAAAAAAAOBwlcoDdOeeOP/54N3v2bLdixQqXlpbmYmOzfymJiYnBzy1atCiy9alZs6Zzzrk9e/a4LVu2uLp16xbZcwEAAAAAgNKlUaNGzjnnapw/2JWpcfgfwN+/dZ3b+vFjweMCAAAAAAAAAAAAgBUldoD99NNPd7Nnz3bJycluwYIF7pRTTsl2uVmzZgU/F+UVx3777bfg5/j4+CJ7HgAAAAAAUPqUL1/eOedcmRr1Xbk6TQv9cQEAAAAAAAAAAADAilBxr8Chuuiii4KfX3rppWyXycjIcK+++qpzzrmqVau6bt26Fcm6rF+/3n3zzTfOOecaNmzoKlWqVCTPAwAAAAAAAAAAAAAAAAAAAAAlWYkdYO/QoYPr3Lmzc865CRMmBAPkkR577DG3dOlS55xzt9xyiytTpkym22fOnOm898577/r27Zvl/suWLXMzZszIdT127tzp/v73v7vU1FTnnHNXX331obwcAAAAAAAAAAAAAAAAAAAAACj1Yot7BQ7HmDFjXKdOnVxKSoo7++yz3V133eW6devmUlJS3FtvveWef/5555xzzZo1c4MHDy7w42/YsMGdccYZrnXr1u6iiy5y7dq1c3Xq1HGxsbFu06ZNbu7cuW7ChAlu06ZNzjnnWrZs6e68885CfY0AAAAAAAAAAAAAAAAAAAAAUFqU6AH2tm3burffftv16dPH7dq1y911111ZlmnWrJmbOnWqq1Sp0iE/z8KFC93ChQtzXaZHjx7upZdechUqVDjk5wEAAAAAAAAAAAAAAAAAAACA0qxED7A751zPnj3dokWL3JgxY9zUqVPd+vXrXdmyZV3Tpk3dZZdd5m6++eZDHirv1KmT++yzz9wXX3zh5s+f79avX+82b97s9uzZ4ypXruwaN27sTj31VHfFFVe4Tp06FfIrAwAAAAAAAAAAAAAAAAAAAIDSpcQPsDvnXMOGDd3jjz/uHn/88QLdr2vXrk5SjreXKVPGnX322e7ss88+3FUEAAAAAAAAAAAAAAAAAAAAgCNeqLhXAAAAAAAAAAAAAAAAAAAAAABwZCgVV2AHAAAAAAAoDfZvXZfr7UpLdWk7N7vYKrWdjy17yI8DAAAAAAAAAAAAAMWFAXYAAAAAAIBilpCQ4OLKV3BbP36s0B4zrnwFl5CQUGiPBwAAAAAAAAAAAACFgQF2AAAAAACAYtagQQP3S+JSt2XLllyXW7p0qevTp497/fXXXYsWLXJdNiEhwTVo0KAwVxMAAAAAAAAAAAAADhsD7AAAAAAAAAY0aNAg3wPnLVq0cCeddFIRrxEAAAAAAAAAAAAAFL5Qca8AAAAAAAAAAAAAAAAAAAAAAODIwAA7AAAAAAAAAAAAAAAAAAAAACAqGGAHAAAAAAAAAAAAAAAAAAAAAEQFA+wAAAAAAAAAAAAAAAAAAAAAgKhggB0AAAAAAAAAAAAAAAAAAAAAEBUMsAMAAAAAAAAAAAAAAAAAAAAAooIBdgAAAAAAAAAAAAAAAAAAAABAVMQW9woAAAAAAACg6O3Zs8clJiZm+t3SpUsz/TdS8+bNXYUKFaKybgAAAAAAAAAAAACOHAywAwAAAAAAHAESExNdu3btsr2tT58+WX63YMECd9JJJxX1agEAAAAAAAAAAAA4wjDADgAAAAAAcARo3ry5W7BgQabfpaSkuDVr1rhGjRq58uXLZ1keAAAAAAAAAAAAAAobA+wAAAAAAABHgAoVKmR7RfVOnToVw9oAAAAAAAAAAAAAOFKFinsFAAAAAAAAAAAAAAAAAAAAAABHBgbYAQAAAAAAAAAAAAAAAAAAAABRwQA7AAAAAAAAAAAAAAAAAAAAACAqGGAHAAAAAAAAAAAAAAAAAAAAAEQFA+wAAAAAAAAAAAAAAAAAAAAAgKhggB0AAAAAAAAAAAAAAAAAAAAAEBUMsAMAAAAAAAAAAAAAAAAAAAAAooIBdgAAAAAAAAAAAAAAAAAAAABAVDDADgAAAAAAAAAAAAAAAAAAAACICgbYAQAAAAAAAAAAAAAAAAAAAABRwQA7AAAAAAAAAAAAAAAAAAAAACAqGGAHAAAAAAAAAAAAAAAAAAAAAEQFA+wAAAAAAAAAAAAAAAAAAAAAgKhgnYCVFwABAABJREFUgB0AAAAAAAAAAAAAAAAAAAAAEBUMsAMAAAAAAAAAAAAAAAAAAAAAooIBdgAAAAAAAAAAAAAAAAAAAABAVDDADgAAAAAAAAAAAAAAAAAAAACICgbYAQAAAAAAAAAAAAAAAAAAAABRwQA7AAAAAAAAAAAAAAAAAAAAACAqGGAHAAAAAAAAAAAAAAAAAAAAAEQFA+wAAAAAAAAAAAAAAAAAAAAAgKhggB0AAAAAAAAAAAAAAAAAAAAAEBUMsAMAAAAAAAAAAAAAAAAAAAAAooIBdgAAAAAAAAAAAAAAAAAAAABAVMQW9woAAAAAAAAgqz179rjExMRMv1u6dGmm/0Zq3ry5q1ChQlTWDQAAAAAAAAAAAAAOFQPsAAAAAAAABiUmJrp27dple1ufPn2y/G7BggXupJNOKurVAgAAAAAAAAAAAIDDwgA7AAAAAACAQc2bN3cLFizI9LuUlBS3Zs0a16hRI1e+fPksywMAAAAAAAAAAACAdQywAwAAAAAAGFShQoVsr6jeqVOnYlgbAAAAAAAAAAAAACgcoeJeAQAAAAAAAAAAAAAAAAAAAADAkYEBdgAAAAAAAAAAAAAAAAAAAABAVDDADgAAAAAAAAAAAAAAAAAAAACICgbYAQAAAAAAAAAAAAAAAAAAAABRwQA7AAAAAAAAAAAAAAAAAAAAACAqGGAHAAAAAAAAAAAAAAAAAAAAAEQFA+wAAAAAAAAAAAAAAAAAAAAAgKhggB0AAAAAAAAAAAAAAAAAAAAAEBUMsAMAAAAAAAAAAAAAAAAAAAAAooIBdgAAAAAAAAAAAAAAAAAAAABAVDDADgAAAAAAAAAAAAAAAAAAAACIilIzwP7rr7+6wYMHu+bNm7uKFSu66tWru/bt27tHHnnE7dmz57Aee8+ePe799993//znP1379u1dtWrVXJkyZVyNGjVcx44d3fDhw92mTZsK6ZUAAAAAAAAAAAAAAAAAAAAAQOkUW9wrUBg++ugj16dPH7dr167gd3v27HHz58938+fPd+PHj3dTp051TZs2LfBjL1q0yHXq1MklJSVluW3btm1u3rx5bt68ee6JJ55wzz//vOvdu/dhvRYAAAAAAAAAAAAAAAAAAAAAKK1K/BXYf/jhB9e7d2+3a9cuFx8f70aMGOG+/vprN336dHf99dc755xbtmyZ69Gjh9u9e3eBH3/Xrl3B8HqnTp3cyJEj3bRp09z//vc/99lnn7n+/fu7UCjkdu3a5a688kr33//+t1BfHwAAAAAAAAAAAAAAAAAAAACUFiX+Cuy33HKLS0lJcbGxse7zzz93HTt2DG7r3r27O/bYY93QoUPdsmXL3GOPPeaGDx9eoMcPhULub3/7m7v33nvd8ccfn+X2s88+25177rnu4osvdunp6W7gwIFu+fLlznt/uC8NAAAAAAAAAAAAAAAAAAAAAEqVEn0F9u+++87Nnj3bOefcP/7xj0zD62GDBw92LVq0cM45N2bMGLd///4CPcdpp53m3n777WyH18MuvPBC16tXL+eccytXrnQ//PBDgZ4DAAAAAAAAAAAAAAAAAAAAAI4EJXqAffLkycHP/fr1y3aZUCjkrr76auecczt27HBffvllkaxLt27dgp9XrlxZJM8BAAAAAAAAAAAAAAAAAAAAACVZiR5gnzNnjnPOuYoVK7p27drluFyXLl2Cn+fOnVsk67Jv377g55iYmCJ5DgAAAAAAAAAAAAAAAAAAAAAoyUr0APvSpUudc841bdrUxcbG5rhc8+bNs9ynsM2aNSv4uUWLFkXyHAAAAAAAAAAAAAAAAAAAAABQkuU89W3c3r173ZYtW5xzztWrVy/XZatVq+YqVqzokpOT3bp16wp9XRYuXOimTp3qnHOuVatWeQ6w79u3L9MV23ft2lXo6wQAAAAAAAAAAAAAAAAAAAAA1pTYK7Dv3r07+Dk+Pj7P5StWrOiccy4pKalQ12Pfvn3uuuuuc+np6c4550aMGJHnfUaOHOmqVKkS/Klfv36hrhMAAAAAAAAAAAAAAAAAAAAAWFRiB9j37t0b/Fy2bNk8ly9XrpxzzrmUlJRCXY+bb77ZzZ8/3znn3DXXXON69uyZ532GDRvmdu7cGfwpiqvCAwAAAAAAAAAAAAAAAAAAAIA1scW9AocqLi4u+Dk1NTXP5fft2+ecc658+fKFtg4jR45048ePd8451759e/fss8/m637lypULBuoBAAAAAAAAAAAAAAAAAAAA4EhRYq/AXqlSpeDnpKSkPJdPTk52zjkXHx9fKM8/btw4d9dddznnnGvevLn75JNPXMWKFQvlsQEAAAAAAAAAAAAAAAAAAACgNCqxA+xxcXGuRo0azjnn1q9fn+uy27dvDwbY69evf9jPPXHiRDdgwADnnHMNGzZ006ZNcwkJCYf9uAAAAAAAAAAAAAAAAAAAAABQmsUW9wocjuOPP97Nnj3brVixwqWlpbnY2OxfTmJiYvBzixYtDus5P/zwQ3f11Ve7jIwMV7duXTd9+nRXr169w3pMSc4553bt2nVYjwN7MjIygv/SFwAAAACAosHxNwAgv9hnAADyg/0FACC/2GcAAIpLeL8Tnj8FSpoSPcB++umnu9mzZ7vk5GS3YMECd8opp2S73KxZs4KfO3XqdMjPN336dPe3v/3NpaWluRo1arhp06a5Y4455pAfL2z37t3OucK5Ojxs2rhxo6tSpUpxrwYAAAAAAKUax98AgPxinwEAyA/2FwCA/GKfAQAoLrt372YfhBLJqwR//OK7774Lhtb79+/v/vOf/2RZJiMjw7Vs2dItXbrUVa1a1f3++++uTJkyBX6ur7/+2p199tkuOTnZValSxU2fPt21a9fusF9DeB03bNjgKlWq5Lz3hfKYJd2uXbtc/fr13bp161zlypWLe3WOaLSwhR520MIOWthBCztoYQs97KCFHbSwgxZ20MIWethBCztoYQct7KCFLfSwgxZ20MIOWthBC1voYQct7KCFHbSwgxbZk+R2797tjjrqKBcKhYp7dYACK9FXYO/QoYPr3Lmzmz17tpswYYK75pprXMeOHTMt89hjj7mlS5c655y75ZZbsgyvz5w503Xr1s0559w111zjXn755SzP8+OPP7oePXq45ORkV7FiRTd16tRCG153zrlQKOTq1atXaI9XmlSuXJmdjhG0sIUedtDCDlrYQQs7aGELPeyghR20sIMWdtDCFnrYQQs7aGEHLeyghS30sIMWdtDCDlrYQQtb6GEHLeyghR20sIMWWXHldZRkJXqA3TnnxowZ4zp16uRSUlLc2Wef7e666y7XrVs3l5KS4t566y33/PPPO+eca9asmRs8eHCBH3/lypXunHPOcTt27HDOOffggw+6KlWquMWLF+d4n1q1arlatWod0usBAAAAAAAAAAAAAAAAAAAAgNKqxA+wt23b1r399tuuT58+bteuXe6uu+7KskyzZs3c1KlTXaVKlQr8+LNnz3a///578PdBgwbleZ97773XDR8+vMDPBQAAAAAAAAAAAAAAAAAAAAClWai4V6Aw9OzZ0y1atMgNGjTINWvWzFWoUMFVrVrVnXzyye7hhx92P/zwg2vatGlxryYKoFy5cu7ee+915cqVK+5VOeLRwhZ62EELO2hhBy3soIUt9LCDFnbQwg5a2EELW+hhBy3soIUdtLCDFrbQww5a2EELO2hhBy1soYcdtLCDFnbQwg5aAKWTl6TiXgkAAAAAAAAAAAAAAAAAAAAAQOlXKq7ADgAAAAAAAAAAAAAAAAAAAACwjwF2AAAAAAAAAAAAAAAAAAAAAEBUMMAOAAAAAAAAAAAAAAAAAAAAAIgKBtgBAAAAAAAAAAAAAAAAAAAAAFHBADvMS09PL+5VAAAAAAAAAAAAAAAAAAAAAFAIGGCHaampqe7pp592t956a3GvCgAAAAAAAAAAAAAAAAAAAIDDFFvcKwDkJDU11b366qvunnvuccnJyS49Pd09/fTTxb1aAAAAAAAAAAAAAAAAAAAAAA4RV2CHSampqe6VV15xgwYNcsnJya5cuXLu2Wefdddee21xr9oRSVK2PyP6aGEHLeyghS30sIMWdtDCDlrYQQtb6AEAAAAAAAAAAAAgmhhghznhK68PHjzYJScnu+rVq7u0tDTnnAv+i6J18MCC9z7Lzww1RAct7KCFHbSwhR520MIOWthBCztoYQs97Dh4O2dkZBTTmoAWdtDCDlrYQg87aGEHLeyghR20sIUedtDCDlrYQQs7aGEHLWyhB1D6xRb3CgCRwsPrt912m0tKSnKdOnVyzZo1c2+//barWbOm69evn3PuwA4q8gQ7Cld4265Zs8YtWrTILVmyxG3cuNHFxMS45s2bu5NPPtm1atXKlS1b1jlHj6JECztoYQctbKGHHbSwgxZ20MIOWthCDxsit+vs2bPdcccd52rVquXS0tJcbCxv2UUTLeyghR20sCWyx4oVK1zTpk1dKBRy6enpLiYmppjX7shCCztoYQct7KCFLfSwgxZ20MIOjvnsoIUdtLCFHsCRgf9vhhkHD6+ffPLJbsCAAe7ZZ591e/bscccee6zr0KGDc85x4rwISXJJSUnu7rvvdl999ZVbtGhRptu99y4UCrmrrrrKnXfeee7SSy913nsGGooALeyghR20sIUedtDCDlrYQQs7aGELPWyI3J4zZsxwDz74oFuyZImbM2eOO/bYY4t57Y4stLCDFnbQwpbIHl988YV78MEHXfv27d0jjzzCkE+U0cIOWthBCztoYQs97KCFHbSwg2M+O2hhBy1soQdwBBFgwL59+/TCCy+oUqVK8t6rVatWmjhxot58803VrFlT1atX17x58yRJ6enpxby2pVdSUpImT56s7t27y3sf/Kldu7aOOuoo1a9fX82aNZP3XqFQSJUqVdK9994b3D8jI6P4Vr6UoYUdtLCDFrbQww5a2EELO2hhBy1soYcNkdtx2rRp6tmzp2JiYuS913333SeJ9z6ihRZ20MIOWthycI+LLroo2H9/9NFH7JujiBZ20MIOWthBC1voYQct7KCFHRzz2UELO2hhCz2AIwsD7Ch2Bw+vn3jiiXrrrbckSUOHDpX3XmeddZY2btxYzGtauu3cuVPPPfec2rZtK++9YmNjVatWLQ0aNEhff/21tm/frl27dmnnzp0aN26cLr74YoVCIXnvdcsttwSPw8Hl4aOFHbSwgxa20MMOWthBCztoYQctbKGHDdm9+R4+YXv99dcHt4XfgOeN+KJDCztoYQctbMmtxx133JFleXoUHVrYQQs7aGEHLWyhhx20sIMWdnDMZwct7KCFLfQAjjwMsKNYHTy83rp1a02cOFH79+/XzJkzg53Qm2++WdyrWqolJyfrxRdf1PHHHy/vvcqUKaMrrrhCkydPzrRc5D8UVq1apUceeSQYaLjnnnuivdqlEi3soIUdtLCFHnbQwg5a2EELO2hhCz1sOPjN9wsvvDDTlfBPOOEEVatWTZ06ddK//vWv4IP8aWlpxbXKpRYt7KCFHbSwJbcesbGx6tu3r84++2w9+OCD+vzzz4Nl6VH4aGEHLeyghR20sIUedtDCDlrYwTGfHbSwgxa20AM4MjHAjmKT3fD6m2++qR07dkiS7rjjDoVCIV1yySXau3evpKxXeuOTVIcnvD1nzJihdu3aBYMMt956q3788cdgucidfWSDvXv3asyYMQqFQipXrpxeffXV6K18KUMLO2hhBy1soYcdtLCDFnbQwg5a2EIPO3L7quzmzZvr9NNP16BBg3TKKaeodu3a8t6rXbt2WrVqVZb74/DQwg5a2EELW3LrkZCQoPr16+vkk09WbGysvPeKj4/X6NGjs70/Dg8t7KCFHbSwgxa20MMOWthBCzs45rODFnbQwhZ6AEcuBthRLHK68vquXbskSStXrlStWrXkvdfDDz+c5+MtXbpUzz77rAYOHFjUq15qRO68e/ToEQwy3HTTTfrll1+yXS47GzduVP/+/RUKhfS3v/1N27dv5x8GBUQLO2hhBy1soYcdtLCDFnbQwg5a2EIPO3J78/3aa6/Vd999p5SUFEnS9u3b9cUXX+i0006T915NmzbV9u3bi2nNSx9a2EELO2hhS249rrjiCn3wwQf6448/lJaWpq+//lrDhg0Lbr/33nuLb8VLIVrYQQs7aGEHLWyhhx20sIMWdnDMZwct7KCFLfQAjmwMsCPqchpeT0pKkiSlpKRo4MCB8t6rY8eOwZXgwldbD/93z5492rJliwYPHqwOHToEOy+G2AvmwQcflPdeMTEx6tGjh77//vsCP8aUKVNUpkwZhUIhTZs2rQjW8shACztoYQctbKGHHbSwgxZ20MIOWthCj+KV25vvt99+e6ZlI6+EP2PGDLVv316DBg3Shg0bora+pRkt7KCFHbSwJbcet912W7YfIEtJSdFdd92lsmXL6rbbbtPOnTujucqlFi3soIUdtLCDFrbQww5a2EELOzjms4MWdtDCFnoAYIAdUZXX8LokbdmyRaeddprKli2rp556StKBry2PtHjxYvXv319t27YNTsR771W+fPngE1jIW0ZGhnr16qVQKCTvvV555ZVDfqxLLrlE3nv1799f+/btK8S1PDLQwg5a2EELW+hhBy3soIUdtLCDFrbQo3jl9ub7kCFDsl0ubPfu3Zo+fbpWr14djVUt9WhhBy3soIUtufUYOnRotsuF/fzzz3rjjTeCr83G4aGFHbSwgxZ20MIWethBCztoYQfHfHbQwg5a2EIPABID7IiivXv3asKECbkOr0vS8OHD5b1XjRo19NNPP2W6bcqUKRo6dGjwGOXLl1fdunV15ZVXql69esGOrF+/ftqxY0c0X16JtHDhwmCb9enTJ/h9Qb4OPvwJt7vvvlveew0aNCi4Sj7yjxZ20MIOWthCDztoYQct7KCFHbSwhR7FJ78nbCOvGnOwyA8KfPrpp9q+fbtSU1MliQYFQAs7aGEHLWzJ7wnb3HpEfl32wVceo0f+0cIOWthBCztoYQs97KCFHbSwg2M+O2hhBy1soQeAMAbYERUZGRl65ZVXgp3NwcPr4R3TsmXL1K5dO3nv9cwzz0g68KmpyZMn64YbbpD3XrGxsfLe69xzz9Uzzzyj119/Xddee23w2IMGDdJvv/1WbK+1JJkxY0awPcPbO7edf24mT56s3r17a9u2bYW5ikcMWthBCztoYQs97KCFHbSwgxZ20MIWehS/adOmqVevXgV+8z1S+IP+HTt21KhRo/THH38U6P44gBZ20MIOWtgyffr0QzphG+mWW25Rw4YNddddd+mrr74q8P1xAC3soIUdtLCDFrbQww5a2EELOzjms4MWdtDCFnoAYIAdUZOYmCjvvRo0aKC3334705XXwwPsb775pkKhkNq2bas33nhD06ZNU8eOHVW1atVgZ9W7d2+NHTtWaWlp+uqrr3T55ZczvF5A4e09ceJEee9VsWJFLV68+LAec+3atUpOTpbEPwIKghZ20MIOWthCDztoYQct7KCFHbSwhR42JCYmqkuXLof15ntqaqomT56sk046SRUqVJD3Xt27d9fatWsL9DhHOlrYQQs7aGHLzJkz1b17d8XExBToCpWRNm/erOuuu06hUEjeex1zzDHBB9gK8jhHOlrYQQs7aGEHLWyhhx20sIMWdnDMZwct7KCFLfQAIDHAjihbuXKl3nvvPe3evTvLbb/++quaNm0q773q1aunbt26qXbt2vLeq379+jr//PP14YcfBst///33Ov/884Md2W233cbwegF9+umnwfb78ssvC+UxC/JV9PgTLeyghR20sIUedtDCDlrYQQs7aGELPYrfTTfdVKATtjlt33Xr1umFF15Qq1at5L1Xo0aNtGbNGkl8HWp+0cIOWthBCzvWrVunypUry3uvO++8M/j9oZxonTRpkq666qrg3wD//ve/g9vokTda2EELO2hhBy1soYcdtLCDFrZwzGcHLeyghS30AMAAO6Iup53J//73P8XHxwcHIOFB9osuukiLFi3Spk2bJB3YsXz11Ve64IILGF4/TD/88ENwADllyhRJhTuMwCfZ8o8WdtDCDlrYQg87aGEHLeyghR20sIUexSfyTfHJkycHP+e0zQ7usn///izL7Nu3T99++61OPfVUee/VunVrbdiwoZDWuPSihR20sIMWNi1cuFD33ntv8Pf89sjO+vXr9dBDDwXvn48cObKwVvOIQAs7aGEHLeyghS30sIMWdtCi+HHMZwct7KCFLfQAEMYAO0x57LHH5L1XfHy8hg4dqjlz5mTa6WRkZGjWrFm66KKLGF4vJD179pT3Xueff762bt1aKI85Y8aM4Gc+yZZ/tLCDFnbQwhZ62EELO2hhBy3soIUt9Cg+B7+JntOb7+FtuG7dOr366qvq16+fevXqpTFjxmR75fy5c+fqhBNOkPdet9xyi/bu3Vvo617a0MIOWthBC9vy6vH7779r7ty5euKJJ/T000/rhx9+0LZt2yT9eVJ39+7deuCBB+S9V5UqVTKdEEb+0cIOWthBCztoYQs97KCFHbQoPhzz2UELO2hhCz0ASAyww4jIE96zZs3SV199lWWZjIwMffXVV4c0vB7eyWVkZGj37t2Ft+IlWPiAb8KECapRo4YaNGigKVOmHPbwwYMPPijvvQYOHFgYq3lEoIUdtLCDFrbQww5a2EELO2hhBy1soUfJEO70yy+/6C9/+Ytq1KiR6ZvpqlatquHDh2e6T1JSkoYMGSLvvTp27KiUlJTiWPVShxZ20MIOWtgS3ocvW7ZM5557ro466qigRf369XXGGWdo2bJlme7zyy+/qFu3boqJidHgwYMlFe63sRypaGEHLeyghR20sIUedtDCDlrYwTGfHbSwgxa20AMo/RhghxnZnUQPf9rqUIbXDz5gSUpK0qhRo9S1a1f17du3cFe+BPv999919tlny3uv0047TYsXLz7kxwp/8tl7r3POOUfr1q0LOnAAmTda2EELO2hhCz3soIUdtLCDFnbQwhZ62LdmzZrga00rVqyoRo0a6eKLLw6uEuO91z//+c/gCmSS9NVXXwW3zZ07txjXvnShhR20sIMWtqxYsULt2rULtm/16tVVp04dVa1aVd571apVS9OnT890nzvuuEPee9WtW1c7duxgn11IaGEHLeyghR20sIUedtDCDlrYwTGfHbSwgxa20AMo3Rhgh1mRJ8ELMrx+8FeKLFiwQI8//riOP/74TJ/Cuvrqq4v8NZQUK1eu1DHHHCPvvTp37qwvvvhCu3btkvTnBwvyukrf/fffH2zbrl276p133tGGDRsy3e/gx+CgMita2EELO2hhCz3soIUdtLCDFnbQwhZ62BTeXo8//riqVKmicuXK6brrrtO6deskSUuXLtWjjz4abPd//OMf2rhxoyTp559/VuXKlRUTE6Pvv/++2F5DaUELO2hhBy3s2bt3rwYOHKiyZcuqcuXKuvbaa7V69Wr99ttvevfdd9W5c2d575WQkKAPP/xQ+/btkyRNmTJFZcuWVfPmzbVnz55ifhWlAy3soIUdtLCDFrbQww5a2EELGzjms4MWdtDCFnoARwYG2GHSoQ6vR5o9e7ZGjx6tatWqqUKFCvLeB5/Y9d6rXr162rx5c1G/lBIjMTFR9erVk/dexx13nG699VYtWrQouAp+bsJfIR/+U6VKFVWtWlUNGzbU5ZdfrjfeeCNYNvwBg8hBho8++ij4RwRoYQkt7KCFLfSwgxZ20MIOWthBC1voYdeFF14o772OPvporVq1Ksvt77zzTrDtb7jhBq1bt0533nmnvPdq0aKFdu/eXQxrXTrRwg5a2EELO5KSknTSSSfJe682bdro119/zXT7H3/8ofPOO0/ee9WoUUOffvqp9u7dq6uvvlree5166qnFtOalDy3soIUdtLCDFrbQww5a2EELWzjms4MWdtDCFnoApRsD7DCnIMPr4U9bhe+zdetWLVq0SH379lXDhg2D+9WvX1+XXHKJ3n//fTVu3Fjeew0cOFB79+6N/gs0bMWKFerevXsw8F+uXDl17dpVN954o7744ots7zNixIhgO8fHx6tdu3a67rrr1KdPn0xXvb/vvvuyvf/EiRPVvn17xcfHa8WKFUX58koUWthBCztoYQs97KCFHbSwgxZ20MIWetiSkZGhPXv2qH379vLeq0ePHsFtB1/NfvLkycG27ty5s5o3b65QKKRBgwZp3759eV5BH7mjhR20sIMW9ixatEiVKlVSTEyMHn74YUnZf3CsZ8+e8t6revXqGjBggJo2baoKFSroySeflJT3t64gb7SwgxZ20MIOWthCDztoYQctbOCYzw5a2EELW+gBHBkYYIdJGRkZmjNnTq7D6+GDGEnasWOHZs+erb/+9a867rjj5L1X2bJlFR8fr1tuuUVz5syRJD3wwAPy3qt8+fL68ccfo/66SoJNmzZp7Nix+utf/yrvvWJiYtS9e/fg6+UjRQ4ynHnmmXr22Wcz3b5y5UqNGjUqWObpp5/OdPvvv/+ubt26Bbe//PLLRfraShpa2EELO2hhCz3soIUdtLCDFnbQwhZ62PN///d/8t7r+OOPV2JiYqbbMjIygqvkT5o0KdiW3h/4sP6CBQuKY5VLLVrYQQs7aGHH7t271bZtW3nv1bt3byUlJWW6PfL98h49egTvg3vvdcIJJ2jJkiXRXuVSixZ20MIOWthBC1voYQct7KCFLRzz2UELO2hhCz2A0o0Bdpj09ddfq3v37sFO5bbbbtP69esl/fmp2/Cno8aNG6fLL79ccXFxwfLVqlXTAw88oGnTpgWPuXTpUjVv3lwxMTG6/fbbMz0Gsjd58mRNnDhRO3bskJT5YDFykKFXr16aMWNG0CbyyvZJSUkaOnSoTjzxRE2dOjXLc3z++efy3uupp54q4ldTstHCDlrYQQtb6GEHLeyghR20sIMWttDDhjfeeCPY1qNHj1ZycnJwW/jN9927d+vNN99Us2bNgmU//fTTTI+T03scvPeRf7SwgxZ20MKOlJQUXXvttfLeq3Xr1vr2228z3R65H3/hhReUkJAg773KlCmT5ZtWIq9siYKjhR20sIMWdtDCFnrYQQs7aGELx3x20MIOWthCD6B0Y4AdJq1bt06hUEjee91+++1au3Ztptu3bNmiRx99NPjEbUxMjLz3OvXUU3X77bdr+fLlWR7z+eefl/deoVBIH3zwQZReScmU3YFeeKcvZR5kuOSSS4Ir3Od033nz5mn+/PnB7QsXLsx0e+SV9fmHQWa0sIMWdtDCFnrYQQs7aGEHLeyghS30sOeOO+4Itvl9992nefPmSZKSk5O1du1a/eMf/wi+cc57rw8//FDSge0deWJXkv744w+tWbNGmzZtyvR7tn3+0MIOWthBCztWrlyp+vXry/sDX4n91Vdfafv27cHtW7Zs0eDBg9WmTZt89ZAO/Bsg8t8BEj3ygxZ20MIOWthBC1voYQct7KCFLRzz2UELO2hhCz2A0osBdpj1008/adiwYdq8eXPwu++++07PP/+8jj32WMXGxgY7ntjYWPXq1UuStGfPHkmZdyxLly4NDoD69u0b3RdSyjz44IPBdr/00ks1d+7c4La8PuGckZGhiRMnqnXr1vq///u/LPfjHwMFQws7aGEHLWyhhx20sIMWdtDCDlrYQo/oinzz/J577lGZMmWCq4qddNJJOv7441WtWrWgifdeH3/8saQD2zU1NVWStHnzZr344ovq2bOn6tWrp5iYGNWuXVs9e/bUU089pT/++CPL8yEzWthBCztoYdMvv/wSXFGsXr166ty5s2699Vb17dtXTZo0yfRNpeFvR4nssXXrVn355Zfq37+/evTooVNOOUXdu3fXhAkT9M033wTPQ4+80cIOWthBCztoYQs97KCFHbQofhzz2UELO2hhCz2A0o8BdpgWPsn95ZdfatSoUapZs6YqVaok772qV6+uhg0bZvrU7VdffSXpwA4l8lNUL7zwgqpUqaJatWoFV1/nxHnBjRw5ssCDDJHb+e2339YZZ5wRPEbkgSMKhhZ20MIOWthCDztoYQct7KCFHbSwhR7FI/JN8cmTJ2vIkCHq1q2bTjzxRNWtWzf41jnvvT766CNJmd98X758ubp37666devKe6+yZctmesO+QoUK6tKli3799dcsz4fMaGEHLeyghU1r1qzRrbfeqhNPPFFVq1ZVuXLlVK5cuTxP2K5cuVKXXHKJjjnmGHnvM/UrW7asmjdvrqeeeip4HnrkjRZ20MIOWthBC1voYQct7KBF8eOYzw5a2EELW+gBlG4MsMO8LVu2qFOnTpl2Hm3bttV//vMfLVq0SAsWLNBZZ50V3DZt2jRJf+5QUlNT1b59e3nvdeqpp2rXrl15Pmd6enqwY8IBjz76aIEHGSJ//84776hbt27BY4wdO7bI17m0ooUdtLCDFrbQww5a2EELO2hhBy1soUfxOvhD9n/88YeeeuopnXTSScE2jfza0/Cb77/88ovq1asXLBMfH68hQ4Zo9OjRmjBhgnr16qUmTZrIe69GjRppzZo12T4f/kQLO2hhBy1sSk1NVXp6uhYsWKC7775bxx57bK4nbBMTE9WoUaNgmXLlyun888/XNddco4svvlhNmzYNbvv3v/8dPA898kYLO2hhBy3soIUt9LCDFnbQovhxzGcHLeyghS30AEovBthRIixZskSxsbHq1KmT7rrrLu3duze4LTU1VV988UW2Q+zp6el64okn5L1XtWrV9Omnnwa/z0l6erq+//57HX/88brqqquK9oWVID/99JNCoZDOPvtsff3118Hv8xpkyMjIyDLI8NxzzwXLpaen5/k19MiMFnbQwg5a2EIPO2hhBy3soIUdtLCFHrZ8/fXXaty4cbZvvoc/sL9y5crghG2NGjV0wQUX6Keffsr0ODt27NCMGTPUsWNHee910kknaePGjVF/PSUZLeyghR20sCG8f33llVfUokWLbId89u/fL0latmyZjj766OB98q5du+r7778Pbpek7777Tvfcc0/wOKNHj47+iyqhaGEHLeyghR20sIUedtDCDlrYwzGfHbSwgxa20AMoPRhgR4mxadMmrV27Nhg+T0tLCw5m9u/fr+nTp2c7xH7ZZZfJe6927dpp5cqVuT5HeHi9e/fuwePcdNNNRfvCSpB169bp22+/Df5+KFfhO3iQIbsPE/B1LHmjhR20sIMWttDDDlrYQQs7aGEHLWyhhy19+/aV95m/Kju87bdu3aqLL75Y3ntVr15dffv21erVqyX9uX0jt/2CBQvUpk0bee91++23a9++fdF9MSUcLeyghR20sGPlypXBfviTTz6RlLnHpk2b1LVrV3nvlZCQoL59+wbvk0e+xy5JycnJGj16dNAu3Bf5Qws7aGEHLeyghS30sIMWdtDCFo757KCFHbSwhR5A6cAAO0qk7E6iZzfEfvvttwc/jxs3LtfHDA+vhw964uLiFBMTI++9Bg4cWFQvpcQq7EGGkSNH6s477yy6FS7FaGEHLeyghS30sIMWdtDCDlrYQQtb6FF8IrfbkiVLJP355nt4+8+YMUPHHHOMvPfq1q1bcMI2p2779u3Tc889p6pVq+q4447Tb7/9VsSvonSghR20sIMWNi1ZskSfffaZpD97hFuNHz9ederUkfdeF154YXDCNqceGzZsUJ8+fVSmTBndfPPNma5mibzRwg5a2EELO2hhCz3soIUdtCh+HPPZQQs7aGELPYDShQF2lCoHD7GHQiF573XmmWdq06ZNkrLfGR08vF62bFn9/e9/19133x08xs033xztl1PiHOogw1NPPRUs9/jjj0d1nUsrWthBCztoYQs97KCFHbSwgxZ20MIWekTPwVepP/i9jOuvv17ee5UrV07ff/99tsscbO3atYqPj1etWrW0d+/ewl3hUowWdtDCDlrYFXmyNuz888+X917x8fFavHhxsFxu3n77bXnvdeqpp/LNKYeIFnbQwg5a2EELW+hhBy3soEXx4pjPDlrYQQtb6AGUHgywo9TZu3evvvvuO5122mnB8PnQoUNzXD674fU+ffpo3rx5kqQJEyYEjzN48OBovYwS51AHGZ544gmVKVNG3nu1b98+07Lh5VEwtLCDFnbQwhZ62EELO2hhBy3soIUt9LAjIyND55xzjmJiYnThhRcqPT09z5Ow4X6ffPKJdu/eLYltXxhoYQct7KCFLZs2bVLdunVVtmxZDRs2TFLWk7yRwi327t2rW265RTt37sz0exw6WthBCztoYQctbKGHHbSwgxZ2cMxnBy3soIUt9ABKlpADShFJrly5cq5JkybB31u0aOHuvvvu4O+RMjIy3P/+9z83ZMgQN2vWLFemTBn3t7/9zd18883ulFNOcc45d/XVV7uxY8c67717/PHH3ejRo6P7okoASc5775xz7t1333XPPfecmzlzpnPOubFjx7obb7zROXdgezvnXCh04H96xowZ44YNG+bS0tJc3bp1XZ06dVy1atXcnDlz3PLly4Nl09PTo/yKSi5a2EELO2hhCz3soIUdtLCDFnbQwhZ62JKamuo2b97sMjIyXEJCgguFQsE2z0m437nnnuvi4+NdWlpanvdB3mhhBy3soIUtSUlJbtOmTW7//v2uZs2azjnnYmJiclzeex+8x/7kk0+6ypUru7S0tKARDh0t7KCFHbSwgxa20MMOWthBCzs45rODFnbQwhZ6ACVMVMflgSIW/sTUf//7XzVu3FgxMTEaOnSoUlNTs3wyKq8rr0t/fsJq69atGjJkiEKhkFq3bh18vQj+lJGRoUmTJuX7KnxjxoxR2bJlg2XLly8fXOnee6+mTZvqySefzHR/5A8t7KCFHbSwhR520MIOWthBCztoYQs97Ni3b59OO+00ee91xRVXFPj+4fc6Iq86xhXIDg0t7KCFHbSwZd26dapevbpCoZDefPNNSQXb54a3feR9MjIyaHIIaGEHLeyghR20sIUedtDCDlrYwTGfHbSwgxa20AMoWRhgR6kRubPo06dPMJSe3bB5eHi9c+fOwXJXXXWV5s6dm+3jSdKHH34YnGgfP3580b2QEmry5Mlq27ZtvgcZYmNj5b1XjRo11K9fP82ePVvLly/Xu+++q4EDBwaPc9999xXHyynRaGEHLeyghS30sIMWdtDCDlrYQQtb6GFLeBu3aNFCP/74Y77uc/D7HImJiVq4cKG+/PJLzZw5U/v27dO+ffsk8YGCgqCFHbSwgxa2dO/ePThpG/4a7Lwc3GPPnj3atm2bkpOTtWPHjky30SP/aGEHLeyghR20sIUedtDCDlrYwTGfHbSwgxa20AMoORhgR6nz6quvBifC//3vf0vK/OnZ8PB6ly5d5L1XKBRSu3bttGzZsuAxIndK4Z3O9u3bVbNmTXnvdemll2ZZ7ki3Zs2aYEBh3Lhxwe9zG2Ro3bq1nnnmmSyPtXv3bj366KPBhwsmTZoUlddQWtDCDlrYQQtb6GEHLeyghR20sIMWttDDlhkzZqhBgwby3mvEiBFKSUkJbsvuvYpwo/T0dM2dO1dDhgxRjRo1VL58+eA9lM6dO+uOO+7Qxo0bJf35LXfIHS3soIUdtLAhvK1HjhypMmXK6LjjjtOcOXPyvF+4R0ZGhlatWqWHH35YHTt2VPXq1VW/fn0dffTRGjZsmD755JPgPvTIHS3soIUdtLCDFrbQww5a2EELezjms4MWdtDCFnoAJQcD7ChVdu7cqauuukpxcXGqXLmypkyZIinzV0J9//336tq1q7z3wUl1770ef/zx4HEO/qRUWlqa3nzzzeDrzy+//PJMj4sDFi1apBdffDH4e26DDG3atMm0bOSOPT09XStXrlSbNm0UExOje++9NyrrX5rQwg5a2EELW+hhBy3soIUdtLCDFrbQw5aHHnooeE9jzJgx+v3334Pbsvtg/v79+zVixAidfPLJwf2aNGmik08+WeXLl1dMTEzQbs2aNZJ4Ez6/aGEHLeyghR3r169Xu3bt5L1X165dtWjRIu3fv19S1ve3I3s88cQTwVUuw39q1aoVXBSmatWqGjVqVJb7Ime0sIMWdtDCDlrYQg87aGEHLWzhmM8OWthBC1voAZQMDLCjVIm8Snq/fv0y3Xbw8HrZsmV1xRVX6MYbbwx2PA8//HCwfOTO6rffftOll14aLPfCCy9E7TWVVAUZZMjpILBTp07y3qt79+5KS0tjx3+IaGEHLeyghS30sIMWdtDCDlrYQQtb6FF8Irfn4MGDg/cqrrvuOk2ZMiXTdgy/t7F//34NGTJEtWvXDpZ/6623tG3bNknSsmXL9Pjjj6tVq1by3qtp06Zat25dpsdAVrSwgxZ20MKmZcuWBdu3Q4cOevnll4MrhoVFnrAdOnSojjrqqKDHhAkTNG3aNG3evFljx47VZZddFtw2fPjw4DHokTda2EELO2hhBy1soYcdtLCDFsWPYz47aGEHLWyhB1CyMMCOUuenn35SmzZt9O677wa/y254vU+fPpo3b54yMjIyferqX//6l7Zv3x7cd+nSpbr66quD27t166affvqpGF5ZyXKogwwZGRlKT0/XkiVLdNxxxyk2NlZDhgzJ8zmQM1rYQQs7aGELPeyghR20sIMWdtDCFnoUr8g32e+//35VrVo1+Na4O+64I9Oy6enpGjVqVKYTtt77TFcXk6SUlBR9++23OvXUU+W918UXX6wdO3ZE5fWUZLSwgxZ20MKmX375JTjRWr16dSUkJGj69OmZlklLS9Pw4cMznbCtVq1alm29Zs0ajRw5MtMgEPKPFnbQwg5a2EELW+hhBy3soEXx45jPDlrYQQtb6AGUHAywo1TauHFj8CmonIbXv/nmm2D5pKQk3XvvvcFOqHPnzurdu7d69Oihk046Kfj9Mccco+eee664XlaJNGrUKJUvXz5fgwyRf3/ggQeC7d6/f3999tlnmjBhgqZPn65Vq1YFy3GFvvyjhR20sIMWttDDDlrYQQs7aGEHLWyhR/GJ3DZTpkzRTTfdpJNPPlm7du2S9OeVXxYvXqzTTz9d3nvFxMTommuuCbb9sGHDgscIL//JJ5+obt26atiwob7//vsovqKSixZ20MIOWti0du1a3XbbbWratKkSEhKUlJQk6c/tO23aNLVt21bee5UrV04nnHCCvPeqXbu2li5dmmnZpKQkDR06VN57/fWvf9XWrVu56lgB0MIOWthBCztoYQs97KCFHbQofhzz2UELO2hhCz2AkoEBdpRq+/fv19dff60zzzwz0/D6vHnzgmXCO5gVK1borLPOyvRpqsg/J598sp555pks90POtm3bpoSEBHnv1b59+3wPMrzwwguZtn3t2rVVrly54O/HHXecnnrqqRwfC1nRwg5a2EELW+hhBy3soIUdtLCDFrbQo/hFbpv09PTgTfn9+/cHvx8+fHiwbcePHy9JevLJJ4Pf3X333Zkec9OmTWrZsqW89xoxYkQUXkXpQAs7aGEHLWzau3evNm7cqL1790rK3OPmm28Otv1rr72mP/74I7gwTO3atbVs2TJJf54E/vzzzxUbG6ty5coV6FtLeW/9AFrYQQs7aGEHLWyhhx20sIMWxc/CMV+4/5F+EQxa2EELW+gB2McAO0q1lJQU9ezZU957VaxYMcfh9bABAwYEJ8svvvhinXXWWWrdurUeeughzZ49O1guu69Az+3vR7IlS5boL3/5i8aOHRv8LrdBhgkTJgT/CGjWrJmuuuoqzZ8/X0uXLtUHH3ygm266Kbj93nvvjdbLKBVoYQct7KCFLfSwgxZ20MIOWthBC1voYU/4PYn09HTt3r07+Ga5Xr16BW/Mp6Sk5PomfN++feW914MPPhj19S9NaGEHLeyghS2R++jFixerSpUq8t5r4MCBwe+XLFmS7bCPdOCEb8uWLRUTE6MZM2bk+lyLFi3Sm2++Gfyd99Azo4UdtLCDFnbQwhZ62EELO2hhRzSP+X766SfddtttwYcOGA7NjBZ20MIWegC2MMCOUm/hwoWqVauWLrzwQn377bfB7yMPJFJTUyX9+QmqM844I/hd+KtDwrjyW8Ht2LEj+Dm/gwydO3fW+PHjM33qTTrQ45FHHgmWe+utt4p25UsZWthBCztoYQs97KCFHbSwgxZ20MIWeti1bds21ahRQ9573XnnnZluS01NzfZN+I0bN6pZs2by3uvhhx8ujtUulWhhBy3soIUtP/zwg8qXL6/Y2Fi99NJLkv58Dz0xMTHbYZ/58+crLi5O3nt98sknOT72zz//HFw8pl+/fsHvGfbJHi3soIUdtLCDFrbQww5a2EELO4rymO/nn3/WwIED5b1XmTJltHDhQkkMh+aEFnbQwhZ6AMWPAXYcEX777TfNnz8/+HtOV0zv1auXvPdq0aJFsMPIbscRXn7r1q1atmyZ/vWvf+mmm25S79691bt3b40YMUKzZs1SUlJSUb2kEim/gwx/+ctfNHHixOD2g7/SZfny5TrhhBPkvdewYcOis/KlDC3soIUdtLCFHnbQwg5a2EELO2hhCz3s2bNnjxo1aqSyZcvqxRdflCTt27cvuP3gN+GHDh2qDz/8UHXq1FGNGjX05ZdfBsse/F4KH/AvGFrYQQs7aGHLjBkz5L1XtWrV9MMPP0jKvB0PHvZZuHCh3njjDVWsWFGtWrXSxo0bs33cn3/+WTfddJOqVasWtLzpppuC2xn2yYoWdtDCDlrYQQtb6GEHLeyghR2FecwXKdwifKV9772qVq3KFY5zQQs7aGELPYDixwA7jjg5HTjs379fp512mrz3Ouuss5Senp7riY6vv/5al156qRo3bhzsbCL/hEIh9e3bl6vF5SC/gwyRvSJ/7ty5s7z36tKlS56tkDta2EELO2hhCz3soIUdtLCDFnbQwhZ6FL/09HTt2LEjeN9iyJAh2S6XmpqqMWPGBI3q1Kkj7w9cJT8lJUVS5jbTp0/XunXrJPFGe37Rwg5a2EELWzIyMjRnzhx5f+CqYDmdgI0c9qlevbqaNGki770uvvhi7d27N8vy4RO2VatWlfdeDRs2VCgUkvdeN998c6bnxwG0sIMWdtDCDlrYQg87aGEHLewoqmO+g1s0a9ZMHTp0YDg0F7Swgxa20AOwgQF24P977bXXgp3N2LFjc1wuLS1Nr7zyisqVKxcclMTHxyshIUFnn3222rVrp/bt28t7r5iYGFWsWFH33XdfFF+JfZE77vwOMkT69ttvVa9ePXnvddddd0VlnUsrWthBCztoYQs97KCFHbSwgxZ20MIWetgQ3r4PPvigvPfq2LFj8NXYB0tNTdUTTzwRtDr22GO1dOnS4LawTz/9VHXr1lXdunW1evXqIn8NpQUt7KCFHbSwJy0tLRjiGThwYI7fLpqYmKi//OUvQY9mzZpl+6GBg0/YtmzZUp9++qn+85//MOyTB1rYQQs7aGEHLWyhhx20sIMWNhTWMd/+/fuD5bJrMX36dC1dulTnnHNOMBy6ePFiSXwzVxgt7KCFLfQAbGCAHUe88A7pzjvvVJkyZVSxYkXNmDEj22V37NihRx99NNghee/VqFEjvf7668HXTyUnJ2vv3r2aMGGCLr300uCgZdCgQdF6SSXGs88+W+BBhtTU1OAfD957vfzyy9Fc5VKLFnbQwg5a2EIPO2hhBy3soIUdtLCFHjZMnz5dRx11lLz3Gj16dKYriUV2SE1N1YgRI1SnTh19+OGHkjKfsJ06dapatmypMmXKyHsffFifE7P5Rws7aGEHLWzIyMjQ/v379cADDygUCunEE0/Ut99+m+PyiYmJatWqlSpUqKBp06ZJyvuE7RdffBEsM378+OB98zvuuKNoX1wJQws7aGEHLeyghS30sIMWdtDCnsM55osc7MyuxbRp04IWK1as0Nlnny3vvRo3bqzly5dneY4jHS3soIUt9ACKFwPsgKTVq1erVq1a8t7r7LPPznG5yK8EqV27tq644gpt3rw5x+XXrFmjRx99NDhoGTZsWFGsfomTkZGhHTt2BNule/fu+RpkkKQXX3wxaHD11VdHa5VLLVrYQQs7aGELPeyghR20sIMWdtDCFnrYM2LEiGC7jhkzRn/88UdwW+QA6P79+7V8+fIsX5c9depUtWrVSqFQSLVq1VLfvn3122+/Zbo/X3maP7SwgxZ20MKO9evXq23btvLeq2vXrlq0aFGw7Q7ef69YsUKzZs3Svn37Mv0+fMK2SpUqmU7YRl4tf//+/Ro7dmzwb4Vx48YV/YsrYWhhBy3soIUdtLCFHnbQwg5a2HK4x3z5aRFermPHjvLe65JLLtG2bduK9oWVQLSwgxa20AMoPgyw44gWPnn+wQcfqFq1aoqJiQmuznPwifV33nkn2FnVr19ft912m7Zu3Sop6wmQyIOePXv26Omnnw4OWsaPH1/kr6uk+Omnn9SjRw+9/PLL+RpkePnll4MG55xzjn766SdJfKVKYaCFHbSwgxa20MMOWthBCztoYQctbKFH8YvcdkOGDAm274ABA/TZZ5/l6zGmTp2qE088MbiqsfdeNWrU0NFHH62TTz5Zt99+uzZs2CCJAdHc0MIOWthBC5uWLVumunXrynuvU089VW+++aZ+//13SXlfFezgq42dcMIJma42Fmnz5s3q3bu3YmNj1atXL+3atatIXk9JRgs7aGEHLeyghS30sIMWdtCi+BXGMd/PP/+sAQMGBEOhubVIS0vT448/Lu+9mjRpoh9//FESVzeWaGEJLWyhB1D8GGAHJF166aXy3is+Pj44QR7pf//7n6pXry7vvRISEnTzzTdrx44dkvJ3In3btm267bbbFAqF1LlzZy1durTQX0NJtXPnzgIPMnTr1k2fffZZjp+SjhS+jZ193mhhBy3soIUt9LCDFnbQwg5a2EELW+hR/CIHNv/973+rTJkyCoVCqlGjhq699lp988032rNnT7BM5Lb85JNP1KpVq2AwtHHjxurYsaP++c9/6pRTTtHRRx8t771atGihNWvWSOIDB7mhhR20sIMWNv3yyy867rjj5L1XnTp1dNZZZ+mzzz7L9dtIwyds4+Pj5b1XmzZtNGPGDKWkpOR4nwceeEDee8XExOi7774ripdS4tHCDlrYQQs7aGELPeyghR20KH4FPeaLdHCLFi1aaP78+dkuHz5WnD9/vsqWLSvvvR544IGieVElFC3soIUt9ACKFwPsOOJt375dbdq0kfdel112mVJSUoITGenp6UpNTdXQoUNVvnx5ee913nnnacuWLcHt+TVz5kw1aNBA3nu99NJLRfFSSrTchg1eeumlTIMMn3zySZavWZGkb775RpMnT9bw4cP11FNPac6cOVq3bl1wOyeo8ocWdtDCDlrYQg87aGEHLeyghR20sIUexSvyTfjXXntNF1xwQbDNR40aFWzvgwdDW7ZsGXyjXI8ePbRy5crga023bdumWbNm6dRTT5X3Xq1bt9bGjRuj+8JKIFrYQQs7aGHTmjVrdPXVV6thw4by3qtu3bp68cUXs93fLlmyRAMGDFDlypWDdtdff31w+8FXvw8/xrhx44Llp0yZUrQvqASjhR20sIMWdtDCFnrYQQs7aFH88nvMFyl8FfzwFY2992rQoIF+++03Scr2ysaS9PnnnwfLDx8+vGheUAlGCztoYQs9gOLDADugAwci3nvdddddWW5LTk5Wy5Yt5b3XUUcdpbVr10o6tBPjt99+u7z3OuaYYzhhkk/5GWT4/PPPNXjwYHnvFRcXFywfFxenM844Q+PHjw+W5auCDx0t7KCFHbSwhR520MIOWthBCztoYQs9oifyfYzffvtN//3vfzVixAglJydLyrztpk6dqlatWikUCqlSpUoaOHBgptsjh0hnzpypJk2aqGzZsnriiSey3I6saGEHLeyghU3bt2/Xl19+qZtvvlm33nprcAWxyG24ZMmSTCds69atG+yrH3nkkWC5g99PX79+vf76178G+/QvvvgiOi+qhKKFHbSwgxZ20MIWethBCztoUfzyOuaLvD08FFq1alV579W0aVMdc8wx8t6refPm+v333yX9eZwY7rh582bdcMMNwZWNR48enel2HEALO2hhCz2A4sEAO/D/rVu3LvgUVOSOYerUqcHBRviTT9mdEM9tZxLeic2ePVtVq1bV0UcfrZ9++qkwV79Uys8gw2OPPaa2bdtmWu6CCy7Q+eefr1q1amX7qTWuyldwtLCDFnbQwhZ62EELO2hhBy3soIUt9Ii+nN67iNzuU6dO1Yknnhi8iT5gwIDgfZDs3g/ZsmWLOnToIO+9evXqVTQrXgrRwg5a2EEL28JXDou8gtjBQz6tWrXS1KlTdf/99wf76IcffjjLY23ZskXPPPNMMBTUsGHD4FtPkTda2EELO2hhBy1soYcdtLCDFsUnp2O+yBYHD4W2bNlSX3zxhebNm6c2bdoEw6Hr16/P9BibN2/Wc889pwYNGsh7r5o1a2rNmjVF+npKMlrYQQtb6AFEHwPsQB4mTJgQHJR8/PHH2S4TPjm+devW4JNX2dm+fbsaN26siy++uEjWtTR57rnnFBMTk+sgw0MPPaR69eoFfYYNGybpz384zJo1S7feemuuB5XIGy3soIUdtLCFHnbQwg5a2EELO2hhCz3siBz4/+STT9SqVSuVKVNG3nt17do118HQ8Bv6AwYMkPdep512mnbt2hWdFS+FaGEHLeygRfGLPHkb2WPJkiUaMGBApiGfL774Qvv379e+ffv04IMPBvvou+66S4sWLVJ6eroWLlyoe+65R40aNQpO2L788stZHh9Z0cIOWthBCztoYQs97KCFHbSwKbJLdkOh06ZNC94LnD9/fjAc2rRpU7388suaPXu2Zs6cqf79+wdDodWrV9djjz0miRYFQQs7aGELPYCixQA7kIdx48YFn5bdsGGDpOw/cbV8+XIdf/zxuvXWW7Vjx44st6enp2v37t167bXXMv0up8c7ku3YsSM4QDzrrLOyHWR49dVX1axZs+Bg0fsDX+O1cuXKLI81evTo4B8An376aTRfSolHCztoYQctbKGHHbSwgxZ20MIOWthCDzsO/ga6E044IdjeNWvW1Ndffy0p+8HQsC1btujkk0+W917nnntuka9zaUULO2hhBy3sCp+wPXjIJ3J/vmfPHo0aNSpodvTRR6t58+YqX7684uPjg333kCFDtHbt2mJ8NSUbLeyghR20sIMWttDDDlrYQQs7lixZooEDB+baQpIWLlyodu3ayXuv8uXLy3uvUCik2NhYee9Vo0YN3X777Vq1alUxvZKSjxZ20MIWegBFgwF2IA9vvfWWvPeqVKmSFi9enONyn3/+eXDQktMQe6TwiZXwiZi1a9dq4sSJhbfiJdzChQt1wQUXaPLkycHOPjzwv3v3bvXu3TvY3v/617905plnynuvWrVqadmyZZmW37Bhgy666CLFxMRoxIgRxfOCSjBa2EELO2hhCz3soIUdtLCDFnbQwhZ6FL+cBkNr166tSpUqqU6dOvr1119zvH/4fY1ffvkluNpY3759uWLMIaCFHbSwgxZ2JSYm6uqrr1ZCQkKmE7aRX6cdacKECapUqZLKlSuX6YNpCQkJuu+++7RixYoov4LSgxZ20MIOWthBC1voYQct7KCFHZs2bVKfPn1UuXLlfLXYtm2bLrjgAh111FGZWtSuXVuPP/44Q6GHgRZ20MIWegBFhwF2IA8zZ85UbGysYmNjNW3atFyXfe2114Kdzi233JLnEHv4RMyGDRs0YMAAhUIhXXnllYW27iVdUlJStjv7d955J9jO99xzjyRp2bJl6tKlS7DDP3ig4Z577gn+EbFv3z5OVhUQLeyghR20sIUedtDCDlrYQQs7aGELPYpPdoOhoVBIVapU0cCBA/WXv/xF7du3z/H+4cHQ/fv365xzzgk+XPDtt98W+bqXNrSwgxZ20MK2jRs3qmHDhvLeq23btrmesA2bM2eORo4cqdNPP109evTQFVdcof/9739KSkqK0lqXTrSwgxZ20MIOWthCDztoYQctbBkyZIi892rZsqWmT5+eY4vI470vvvhCo0eP1h133KFRo0ZlGQiNPLZE/tHCDlrYQg+gaDDADuRD+ETHRRddpC1btmS5PXKHEr5iu/deN998s7Zv357tY4bv89tvv2nAgAGqV69ecL9FixYVyeso6cLb7Lbbbgv+UfDLL78EtyUmJqpr165ZBhok6fXXX5f3Xh06dCiWdS9taGEHLeyghS30sIMWdtDCDlrYQQtb6BEdOV3VuEqVKhoyZIj27Nmjc889V2XLltWCBQuy3D/8BnxqaqoGDBgg773i4uJ0zTXXaNOmTfl+btDCElrYQYuSYeHCherUqZP++9//5jrkk9M2Df8+/IGzg5ejRf7Rwg5a2EELO2hhCz3soIUdtCh+kdvooYce0tSpU/P8IEFuF67I66IWNMkZLeyghS30AIoWA+xALsI7hfHjx6tatWpq1KiRPv7442x3FuHfpaWl6fLLLw+G0e+9994sO66Dh9fr1q0bnIj56KOPivhVlVzh7XbGGWfIe68uXbpkWebggYaVK1dKkq666ip579WrV69ornKpRQs7aGEHLWyhhx20sIMWdtDCDlrYQo/o+u9//5tpMPT2228PBj8HDx6sUCikESNGaO/evVnum5qaqhtuuCH4ytRjjjlGM2bMyLJcWlqa0tLScnxfBAfQwg5a2EEL+5KTk/M8YRspPT092Lb79u3LdNuqVav0888/a9myZdqwYUOW+yF3tLCDFnbQwg5a2EIPO2hhBy2KX+T2L8h2ijx2S01NDX7et2+fZs6cqUmTJumVV17RpEmTtHPnTqWkpBT4OY40tLCDFrbQAyg6DLAD+bBp0yadeeaZ8t6rU6dOma6QHrmzWbt2rUaMGKHq1avLe69GjRpp3LhxwQ4mcvmDh9fj4+MZXs+na665Rt57XXnllZIy7+SlzAMNtWrV0ksvvaTWrVvLe68RI0ZIYmdfWGhhBy3soIUt9LCDFnbQwg5a2EELW+hR9D7//HMdddRRKleuXDAYGrnNJk2aFHwwf+TIkfr+++8lSStXrtTMmTPVuXPn4PZatWrpvffey/T4Cxcu1LvvvquLLrpIZ511lnr27KmbbrpJ06dP17Zt2yT9eZXkIx0t7KCFHbQo3SK37Wuvvabrr79e5cqVU0xMjOLj41WxYkUNHDhQH3zwQbb3QeGhhR20sIMWdtDCFnrYQQs7aGFH5GDpk08+qQsvvDA4Jgz/6dChgwYOHBh8sIAWRYMWdtDCFnoAOWOAHcinlStXqkmTJsFV4ObPn5/pCj/r1q3TiBEjVK1aNXnvddxxx+mVV17Rjh07gmUKMrzOlX5ydvvtt8t7r2bNmun333/PdpnExER16dJF3ntVrFhR3ns1aNAgyyedD/VTcjiAFnbQwg5a2EIPO2hhBy3soIUdtLCFHkVv5cqVwYfv77jjjmDbRG6vu+++O3jzPCEhQaeeeqpq1Kih2rVrB9u9ZcuWmU7EStIbb7yhFi1aqGrVqlnehK9fv74uvPBCrVu3ThJvwku0sIQWdtCi9IpseO2116pOnTqZGsTHx8t7r5iYGFWuXFmjRo0KlqdH4aKFHbSwgxZ20MIWethBCztoYUdkiyuuuELly5fPdKxYt25dhUKh4Hdt2rTRmjVrJNGisNHCDlrYQg8gdwywAwWQmJio+vXry3uvtm3b6tlnn9XGjRu1a9euLMPrL730knbu3BncN3yipaDD67Nnz9bzzz8fnRdoXHi7fPfdd2rSpImqVq2qN998M8cddmJiov7yl78EO/0vvvhC0p87+PA/Evbs2aOff/5ZEgMN+UULO2hhBy1soYcdtLCDFnbQwg5a2EKP6EpMTNS///3vYJuEt1vkNrrnnntUs2bNLEOederU0aBBgzR37txMj/nEE09kWq558+Y699xz1b9/fx133HGqVauWvPc69thjtXr16kzPeySjhR20sIMWpU/ktrzggguCgR7vvW6++WaNHTtWX331lR544AGdf/75Qad///vfwf3YjxcOWthBCztoYQctbKGHHbSwgxZ2RLbo2bOnvPcqU6aMqlSpovvuu09z587Vhg0b9N133+mBBx7QiSeeKO+9GjdurLVr10qiRWGhhR20sIUeQN4YYAcKaPny5erYsaO89ypfvryaNm2qK6+8skiG17/99ltddtll8t6rf//+0XmBJcCOHTuC7XLaaadp8eLFOS67ZMkSnX322Xr++eczfaotcpDh2GOPlfde8+fPL/J1L21oYQct7KCFLfSwgxZ20MIOWthBC1voEX0HD2hG/n3mzJn6z3/+oxtvvFG33XabHn30Ua1evVrJycmZ7vPUU08FJ2Vbt26t2267TTt37gxarF+/XpMmTVKHDh2CwdHffvtNEt9CF4kWdtDCDlqUfJHb8IorrpD3XnFxcTrttNP0zjvvZFn+119/1cMPPxw0e/bZZ6O5uqUaLeyghR20sIMWttDDDlrYQQub+vXrF7To0qWLpkyZkmWZlJQUzZ8/P5j1Oeuss7Rly5ZiWNvSjRZ20MIWegA5Y4AdOAS//fab7rzzTrVt2zbTJ2qPP/74QhtenzdvXnDCPvznjjvuiM4LLAFWrVqlJk2ayHuvLl26aO7cucGJqYNPKu3cuVMpKSlZHiMpKSlo6L3X0Ucfre3bt3NSqoBoYQct7KCFLfSwgxZ20MIOWthBC1voUfzyurJL5O3vvfdesJ07duyoF198UampqZIODJqGt3lGRoZ+/PFHtW/fXt57XX311dq1a1eWx45sRC9aWEILO2hRMj3xxBOKi4tTmTJl1LVr1+DbU6QDzSI/nLBnzx4NHz5c3nu1atVKP/zwQ5bHY/sfOlrYQQs7aGEHLWyhhx20sIMWdrz22muqXbu2YmJi1KlTpywtDjZr1iw1a9ZM8fHxGj9+fJbbD27Bt3LlHy3soIUt9AByxwA7cIj27NmjX3/9Vbfffru6d++upk2basKECYU2vN67d+/gxEp8fLy89/rrX/+a6fGPdL/88ouOOuooee/VsmVL3XfffVq+fHm+7z927NhMgwwTJ04swrUt3WhhBy3soIUt9LCDFnbQwg5a2EELW+hhS+SAZ6S1a9eqS5cu8t7r2GOP1fPPPx+8aZ7dG/AZGRl67733VKdOHTVu3DjLlfGze8M98ur6oIUltLCDFvalpKToggsukPde1apV04cffhjcltPAzpIlS3TmmWfKe6/nn38+023hFuvWrVNiYqIkvlY7v2hhBy3soIUdtLCFHnbQwg5a2HL99dcH7/+9++67we9zarFr1y7ddddd8t7roosu0t69e4Pbwi3WrFmjF154IcvvkTta2EELW+gB5I4BdqAQJCcna+PGjUpKSgp+dzjD65dffnmw8wrfz3uvN954IzovqARZvny5OnXqpNjYWHnvVb16dT311FPBwV1e/vWvf8l7r0mTJgW/4xPOh4YWdtDCDlrYQg87aGEHLeyghR20sIUe9s2fP1/Vq1eX917XXHNNMMiZ23b+/fffdfbZZ8t7n+1XbEvS0KFDdd111xXJOpdWtLCDFnbQwo7p06cH73M/8MADwe/z2i8PHTpU3nvNmjVLUuYPDKxevVpXXXWVatasqc8//7xoVrwUooUdtLCDFnbQwhZ62EELO2hhx4oVK1SmTBl57zVw4MDg93m1mDt3ruLi4vTJJ59IOvChhPCFJFevXq0bb7xR3ntdeOGFRbbupQ0t7KCFLfQA8sYAO3AYctqhFNbw+pAhQ/TPf/5ToVBIderU0Y8//lh0L6YE27Bhgx544AF16NBB3nsNGDBA27dvz/U+kZ8+W7JkSfAzgwyHhxZ20MIOWthCDztoYQct7KCFHbSwhR623X///fLeq169elq1apWk/F0pbPLkybr77ruDv3/22WdB1/vvv181a9aU91633HJLUax2qUQLO2hhBy3smDhxorz3qlWrlubNmycp9xbh27Zu3apFixZJknbv3q1HH31U48aNU3Jysv75z38G7723adNGKSkp7OvzgRZ20MIOWthBC1voYQct7KCFHT/99JNCoZC89xo3bpyk/F+9ftOmTZIOXKxy1KhROuusszRnzhwNGjRItWvXlvdeRx11VLAcckcLO2hhCz2AvDHADhSy8IHE4Q6vDxgwQN9++62OPfZYPjWVD6mpqdq6dasmTZqk33//XVLegwkH/6OAg8DCQQs7aGEHLWyhhx20sIMWdtDCDlrYQg+7wlcQq1evnjZt2nRI23nGjBmqW7eu6tevr0GDBqlWrVqKjY3VscceqxdffLEI1rp0ooUdtLCDFnaMGzdO3nsdffTR2rx5c4Hvn56erh9//FHHHXecvPdq27atatWqJe+9Tj75ZP3yyy9FsNalEy3soIUdtLCDFrbQww5a2EELO3766SfFxcWpUqVK+uabbyRlvqhFfvzxxx/q16+fvPeqWLFi8A1ebdu21fLlyyXxnmJ+0MIOWthCDyBvIQeg0Ehy3nu3ceNGN2LECPfBBx+4TZs2uYoVK7qJEye6888/P8uyzjn37bffuieffNK9/fbbzjnnrrvuOnfvvfe6cuXKuZSUFBcKhdwZZ5zhnHMuPT09+i+sBChTpoyrXr26u+SSS1zNmjVdRkaG8967tLS0TMtFbr9QKPP/BIZ74PDQwg5a2EELW+hhBy3soIUdtLCDFrbQwx5Jzjnn4uLinHPO1a1b19WuXdt574Pb8iM9Pd21aNHCNW3a1K1fv94988wz7o8//nDHHHOMGz58uOvXr1+m50NWtLCDFnbQwp4KFSo455zbsmWL27RpU4Hv7713rVu3dpdddplzzrkff/zR/fHHH65du3Zu0qRJrlmzZrx3nk+0sIMWdtDCDlrYQg87aGEHLeyIj493aWlpLikpyc2ePds551xMTEy+7y/JJSQkuCuuuMLVrl3b7dmzx23fvt21aNHCffnll65p06YuPT2d9xTzgRZ20MIWegB5Y4AdKETee7dp0yZ35513uo8//viQhtf79+/v/vWvf7latWq5V1991f3222+ufPny7pxzznHOZd6RcWIkZ6FQyKWlpbnY2FiXnJzsHn/8cefcge3HAV900cIOWthBC1voYQct7KCFHbSwgxa20KP4hd/XOPXUU51zB064fvrpp5luy0t6erqLiYlxderUca1bt3Zly5Z16enpLjY21g0YMMD9/e9/d8654AMLyB4t7KCFHbSw55xzznGtWrVyaWlp7rPPPnOpqan5vm/4/fT169e7zZs3u/j4+GCbt2/f3jVs2DBYLrfHwAG0sIMWdtDCjuJugczoYQct7KCFDZJco0aN3NVXX+1CoZD79ttv3YYNGwp0/3CL999/P1PHbdu2BRfGoEXeaGEHLWyhB5BPhXtBdwAbN25U8+bN5b1XtWrV9NFHH2W6PfJrO+bNm6fLL79c3nt573XjjTdqzZo1wXLnnnuuQqGQLrroIqWmpmb6+vPIx3n33Xd1//33F/ErK1n2798vSdqzZ4/atWsn770GDRpUzGt1ZKKFHbSwgxa20MMOWthBCztoYQctbKGHHStXrtQpp5wi772GDBmi3bt35+t+ke9xPPDAA0pISJD3XuXLl5f3XvXr19evv/4qKfuvVY28Pw6ghR20sIMWduzevVt9+/aV917t27fXwoUL83W/8Pvga9euVf/+/VWzZk1571WvXr3gffVhw4YFy4d7ZGRkaOfOnfrss8+yPNaRjhZ20MIOWtgR7RbIHT3soIUdtLDl9ddfV5kyZeS915NPPqmUlJTgtpz2rTm1aN68efA+49FHH61Vq1ZJ+vN9SCnrsR7Hfn+ihR20sIUeQO4YYAeKwKJFi1SvXj299957mX6f1/B6+KSHJE2fPj24bfTo0Tk+zscff6yWLVvKe6/rrruuiF5RybRnzx4dc8wxwXb03uf7ADI32f0DIi0tLctBJG82/okWdtDCDlrYQg87aGEHLeyghR20sIUedjz55JNBg2eeeUa7du0KbsvuDfKcBkObNm2q0aNHq0uXLsFJ3NWrV0vKfOI2fP8vv/xS9957b9G8qBKKFnbQwg5a2LF69Wode+yx8t6ra9eumjdvnpKTkyVlv18N/27dunWZTti2adNGP//8syZMmBC0/fe//x3cL9xj/vz58t7r8ssvj8KrK1loYQct7KCFHdFqgfyhhx20sIMWxS9yO99zzz3B9hs1apSWLVuW5/2ya7Fy5Upt2LBBp512mrz3atSokVasWJHtc3744YfBbUf6hw1oYQctbKEHkD8MsANF5OCr+RRkeF2SHnvsMcXFxalx48ZasmRJ8BiRj/PRRx+pZcuWKleunLz3Ou+884rwFZU8q1atCrbx0UcfrUmTJh32Y0bu1JOTk/XWW2/p7rvv1nnnnacLL7xQjz/+uD7//PNgGQYaDqCFHbSwgxa20MMOWthBCztoYQctbKFH8Ysc8hw6dGjQ44477tDs2bPzvE/kYOgxxxyjiRMnSpKWLl2qTp06BW3DA6KR9//6668VCoXkvdfTTz9dBK+uZKGFHbSwgxY2JSYmqm7duvLeq2XLlrr//vs1f/78LMvldsJ2+fLlkg58mC3yAwr33HNPcP8tW7aoQ4cO8t4rLi5OX331VXReYAlCCztoYQct7CjKFgyHFhw97KCFHbQofpHHb0OGDAm233nnnad7770304eXpfy1yMjI0OLFi4MPLjdq1Ej79u3LdHXjyZMnq1WrVqpSpUq2zY9EtLCDFrbQA8gbA+xAFBR0eD0lJUXt27eX916nnHJK8PUh2Q2vx8bGynuvq666Krj9SD+BHunnn39WkyZN9Oabbwa/O9TtEx5kSE9P19ixY9WrVy9574MG4T8JCQm6++67D/v5Shta2EELO2hhCz3soIUdtLCDFnbQwhZ6FL/Iof+777472E716tVT//79gyuQSblf1Tg8GBq2ZMmSYED0qaeeyvRcc+fODb52tUWLFho5cqT27dtXlC+zRKCFHbSwgxY2LV++XF27dlXFihXlvVflypX1+++/B7fn54RtuFdqaqoefvhhee81Y8YMSdLevXv1wAMPqHLlyoqJidEll1yi9evXR/lVlgy0sIMWdtDCjqJugYKhhx20sIMWxS/ymO+JJ57QCSecEBz3LV68OLgtPy0iH2vhwoXq0qWLvvjii0zP9/777+v0009XXFxcMKeT3Td7HYloYQctbKEHkDsG2IEo+vbbb3MdXg/vMH788UfVr19f5cuX1zPPPCPpwAFL2MHD61deeWWwI+NrP7KK/MTaoQ4WRB44Xn755cE/FMInsTp37qxLL71U7du3D66uNGTIkEJZ/9KEFnbQwg5a2EIPO2hhBy3soIUdtLCFHsUv8r2IV155RRdddJHKlCmjm266Kfh9fgdDI5dbsmSJXnnllUzPFTkY2rJlSz399NPauXNnUbysEokWdtDCDlrYtGnTJo0fP17nn3++/vvf/wa/L8iQT1hqaqo2btwY/D3yKvnlypXTvHnzovCKSi5a2EELO2hhR1G1yOl8anbDPUf6h5Yj0cMOWthBi+IXua1++OEHjRs3Lvh2k4yMjGD7rF+/XjfeeGO+WkgHrowfKTwUGhMTI++9Lr/8cm3durWoXlaJRAs7aGELPYCcMcAORMn8+fPVo0ePHIfXI40aNSpYbubMmZluY3i94ArryvSbN2/WaaedFrTx/sDXd3377bfBPxTWrFmjp59+Ohho+M9//nPY61+a0MIOWthBC1voYQct7KCFHbSwgxa20MOGyDfQd+zYoZ9//jn4e+TXlz700EPBYOgxxxyT42Bodg4eDB0zZkwwGHqkn6yNRAs7aGEHLewKb//09PRgO23atEn/93//l+8Ttge74YYbgn35s88+K4kG+UELO2hhBy3sKIoWkQ5e/vXXX9fYsWODv9MoM3rYQQs7aFG8stuekS3++OMPDR48WLVq1cp3i8jfHzwUetlll2n79u2F/0JKAVrYQQtb6AFkjwF2IErWr18fnMC4+eabsx1eT09PV0pKis4991yFQiFddNFFmQ40PvzwQ51wwgnB8HqfPn0YXi9i4Z39qlWr1L59e3nvVb58eZ1wwgl66623sr3Prl271L9/f3nv1bt370z/4MCho4UdtLCDFrbQww5a2EELO2hhBy1soUfhym47RL5f8fzzz6tBgwYFGgwN/37OnDnB+yonnHCCxowZE1x9n+2fFS3soIUdtLAvIyND+/fv1zPPPKOGDRvKe6+2bdtqxYoVkvI35PPCCy8Eg6EXXXRRcF8UDC3soIUdtLCjMFqEHyfSrl279MILL6h3795Bp+uuu67Q17+0oYcdtLCDFnaEt/Vbb72lpk2bynuv1q1b5zkUGrntGQotHLSwgxa20ANHOgbYgSj66aefNHjwYK1evTrHZX7++WdVqFBB3nvddtttwe8ZXo++8Kekt23bpg4dOsh7r4oVK+rMM8/U9OnTg+WyOwn1zDPPyHuvuLi4XHsjf2hhBy3soIUt9LCDFnbQwg5a2EELW+gRXevWrdNf//pXee9Vp04dvfHGG8FteQ2Gzp49OxgMPemkkzRmzBglJSVJ4j2RQ0ELO2hhBy3s2L17d7BfbtCggZYtWyYpf0M+S5cuVY8ePRQKhVS2bFmNHz8+2+Wy27fzQYOsaGEHLeyghR2H0+LgZZYsWaK3335brVu3VtmyZYOh0Li4OHnvNWrUqCJ5DaUJPeyghR20sOWMM86Q9141a9bM84MEuQ2FXnrppQyFHiZa2EELW+iBIxUD7ECURX4lbaTwyYxHHnlE3nsdddRRSkxMlCRNnjz5sIbXC/r1U/hzm+3fv19/+ctf5L1XhQoV1KNHD82ZMydY7uA3DVNTUyVJb7/9tuLj41WjRg2tW7cueiteCtHCDlrYQQtb6GEHLeyghR20sIMWttAj+t5///3gBOszzzwT/L4gg6ENGzbU0KFDNW/ePGVkZGjv3r2SGBAtKFrYQQs7aGHHhx9+GAzjfPDBB5Ly3obhHs8880xwwvYf//hHcHvk/jz8WGlpafrqq6/00ksvZXkcHEALO2hhBy3sOJQWB0tMTNTTTz+tJk2aqFq1avLeq27dujr11FN1wgknyPsD39D1zTffFMErKF3oYQct7KCFHRs2bFBCQoK897rnnnsk5X8o9LTTTlMoFOKKxoWEFnbQwhZ64EjGADtgTM+ePeW91/HHH6/9+/fro48+OqTh9YNPsm/evFmffPJJka57aZOenq7rr79e3nuVK1dOXbt21ezZs4Pbc7vixY033ijvvSpXrqy1a9dGY3VLNVrYQQs7aGELPeyghR20sIMWdtDCFnpE15QpU+S919FHH60FCxZIynswdM6cOcFgaPikbIUKFZSQkKDWrVvrpptu0m+//SaJAdGCoIUdtLCDFnb88ssvatiwoSpUqKAXX3wx3/dbsGCBypcvL++9OnXqpF9//VVS9tt+7969GjJkiNq2bSvvvW644YZCW//ShBZ20MIOWthR0Bbh47vdu3dr/fr1+uc//6n27dsH+/GqVauqU6dO+uyzzzR79mxdccUVCoVC6tevn1JSUvgAQR7oYQct7KCFHXv27NF5550XfIgsfIGKgx08FNqpU6dgKLRly5bB8V1+ZPcBNdDCElrYQg8cyRhgBwz57rvvVL16dcXExOjll1/WrFmz1KJFiwINrx98YPLjjz/qlVde0THHHJPlqg7I3fvvv6+mTZsGX+v16aefBrflNsiwYMECtWnTRt579ezZU/v27ePrHQ8TLeyghR20sIUedtDCDlrYQQs7aGELPaLru+++U6NGjeS912OPPZbjcpFXNQ6/HxIKhVSzZk1ddtllGjBggLp166Z69erJe68WLVpozZo1me6L3NHCDlrYQQs7tm3bpvPPP1/ee3Xr1i0Y8szNb7/9FlwYJiEhQaNHj9a+ffskZd6nb9myRV9++WUwCBQTExOc6H366aeL7DWVVLSwgxZ20MKO/LQ4eN/73Xff6dprr1XLli3lvQ/25TfccIPefPNNpaSkSJLeeuutYGD01VdfjcrrKenoYQct7KCFLWPHjg22WXYfKIjcJ7/33ns6/fTTg/1w+M/999+vpKSkPJ8r/FizZs3SwoULJTEcGokWdtDCFnrgSMUAO2DIK6+8Enx69rrrrtOJJ54YfJ1gfq+8Lh3Y0SxbtkwjR45UkyZNgqs6xMXFyXuvW2+9NRovp8S74YYbgp38K6+8Evw+u8GEyN/df//9wf1Gjx4dlXUt7WhhBy3soIUt9LCDFnbQwg5a2EELW+gRfQ899FCub8JnNxh6zDHHqG/fvlq9enWw3M6dOzV37lydeuqp8t6rTZs22rRpU7ReRqlACztoYQct7FixYkXwIYBzzz030/aNFG7y5ptvqkGDBvLeq0OHDtq8eXOWZb///nv1798/eNw6deqoYcOG8t6rbdu22rp1a1G+pBKLFnbQwg5a2HFwi1WrVknKeh71jTfe0I033hicc/Xeq1q1arr55pv1wQcfZFp2+fLlat26tbz36t27d7ReSqlADztoYQctil/ke3p33HFH8MGA5557LttlDh4KveqqqzIdKw4fPlzJyck5Pl94///ll18G9/npp5+K4JWVPLSwgxa20ANHOgbYAQPS09O1e/dunXnmmcGg+XHHHRcMnOd3eH337t1atWqV+vXrp5NOOinY0dSrV08NGzYMvtJ2wIAB0XppJdY333wTnIi66aabgt/nNcjwzjvvBNu9R48e2r17d473Q/7Qwg5a2EELW+hhBy3soIUdtLCDFrbQI7oiryh2++23B9vwpZdeyrJM5GDoCSecoNGjRwcDOwe/JzJt2jTVr19fcXFxGjt2rCRa5IUWdtDCDlrYlJiYqLp168p7r/POOy+4WnFYuElKSopOO+00eX/gwjD/+9//Mi23ZcsWvfbaa6pataq896pcubIuu+wyTZ48WW3atFG1atX03HPPKS0tjavk54AWdtDCDlrYcXCL/fv3S5K2b9+uN954Q5dddpm898GAT+PGjXXrrbfqp59+Cq5kLClo+Nlnn6lOnTqKi4vTuHHjJPEtKgVBDztoYQctil/ksdqQIUOC4dDff/8907Y7eCj0sssu086dOyVJTzzxRJ7DoeHjvenTpwfLeu91zTXXcGXj/48WdtDCFnrgSMYAO2DEli1bVKtWLcXGxioUCgUnQnIaXj94x/Hll1+qX79+atKkSbAj895r0KBBmjhxou68805VqlRJrVq10rJlyyRxwiQ3kydPVkxMjOLi4jRx4kRJeQ8y/Pe//w0+JHDsscfqxRdf5GCxENDCDlrYQQtb6GEHLeyghR20sIMWttAj+iLfxxg0aJC89xoxYoSkP0+0fvXVV8H7GQ0aNNDIkSODN+Cz67N169bgA/yXX355nuuQnp6udevWFcbLKdFoYQct7KCFTUuWLNFRRx2lGTNm5LhM+BtVypcvr+HDhys1NTW47d1331WfPn2CE7LnnntusN+/9dZb5b1Xly5dtGbNmiJ/LSUdLeyghR20sGPx4sU6+uij9b///U9bt27VO++8oxNPPFHVq1cPtm+NGjWCn99//31JCnqE9+Opqanq0qVL8EG1HTt2FNtrKsnoYQct7KBF8Tt4OPTLL7/MdPvBQ6F/+9vftH379kzLPPnkkzkOh4aPGyOHQqtWraq///3v2rhxY5G9rpKIFnbQwhZ64EjFADtgxK+//hp8JVT4yutXXnllcDAS/iTuwSdDXn75Zd14442ZPhlVv359DRo0SJ999pmkAydLOnToEJwsSUpKiu6LK4HCO/UmTZrkeCIq8u+ff/65EhIS5L1XfHy8BgwYkOtXsiD/aGEHLeyghS30sIMWdtDCDlrYQQtb6FE8It+E/+KLLzLdFjkY6r3XBRdcoC1btkjKfjA0/D7J3//+92DgJzfp6en65ptvdMIJJ2jgwIGH+1JKPFrYQQs7aGFT+KqT2V0J7P3331fTpk3lvdeJJ56ohQsXSpJ27dqlAQMGBFc0rlixov71r38F35wybtw4ee8VExOjb775JnovpoSjhR20sIMWdqSmpmrKlCmqVq1aMBAaGxurChUqaMSIEXr22WeDb8L23gfnUDMyMoJ+b7zxhipXrqwqVarojTfekMRVjQ8VPeyghR20KH45XV34/fffz3UoNPJ+Bw+HJiUl5TgU2rt3b23evFnSn53Cx4pHOlrYQQtb6IEjEQPsgCE///xzcEL86quvDk5+7N27N9Ny69ev16uvvqpzzz030+B6x44ddcMNN2jdunWZruIQvmpQQkKCfv75Z0lcfT0vzz77rLz3qlatmlatWpXrsp988omqVasWdLj44ouDTztzwHj4aGEHLeyghS30sIMWdtDCDlrYQQtb6FF8snsTfvbs2cGH+WNiYlShQgUtWbJEUu7vX2zfvl0tWrSQ915//etfc1wuPT1d8+bNU9euXYOO8+fPP/wXU8LRwg5a2EELe3L6gFlKSor69esXbLNJkyZp7969eumll4KrUsbFxalPnz6aMmVKcP/vv/9eJ598skKhkEaNGpXtc0hZ/2+B99NpYQkt7KCFLYsWLVKlSpXk/YErE99yyy1asGCBpAPbbObMmTrrrLOCLp9//nmm+/fv31/eezVq1EiLFi0qjpdQqtDDDlrYQQt73njjDXXq1Elly5bNdig0LPI9wMjh0HvvvVdSwYZCk5KSgg8g4E+0sIMWttADpR0D7IAxS5Ys0fXXXx+82RS5g1m8eLEmTpyoZs2aBVdmKFeunE499VTdc889WrVqlfbt2yfpz6+TWr9+vbp27apQKKR//OMfmT5ZhZwtWbJETZo0UfXq1TO9eRj5wYDU1FS9+uqrwQ4+NjZW55xzjrZt2yYp50/GoWBoYQct7KCFLfSwgxZ20MIOWthBC1voYcfKlSuDbdyyZUvVqVNHxx9/vHbv3p2pR6TweyaTJ09W3bp1FQqFdP/992e6LSw8GNq5c+fgzfn//Oc/wZX38Sda2EELO2hh14QJE4I2//d//6eVK1fqvPPOC943r1Wrlt577z1t2LAh0/0eeOABhUIhdezYUT/88EOuz5GSkqJ33303+DsDotmjhR20sIMWxefnn3/Wdf+PvfMOi+L4//jMUUVQwI6iiL1g7wVrLLFETWxJNDGJxt57773G3mKMookae9RvLLG3xE6vYgVRLBQpx71/f/DbyR1dueOG4/N6Hh7xdnaZndft7szsZ2Z++AGhoaFi1Syl7ZaQkICzZ8/qBIeePn0aAPDHH3+Iz1atWmWs7Jsc5EMeyIU8kAu5WLVqlSjXPn36pBkUqqAdZ6O93zfffJNpUKhCdHQ0unTpAs455s2bZ5Bzyq2QC3kgF3JBPghThwLYCUJyEhMTERISgrlz56Jq1aqwsrIC5xw2Njbi4bJ69WqdfbQfLhs3bhTpDhw4kNPZz7VERkaKGe7d3d1x69YtnZdSJ06cwNixY0XZOjg4oGfPnqKiQIEM+oNcyAO5kAdyIRfkQx7IhTyQC3kgF/JALuTCGD4ooCR9+vfvDycnJyxbtgxVq1ZF/fr1002r/VK3e/fu4Dx5RuRr166lSpsyMNTW1habN29GVFSUwc4lt0Mu5IFcyAO5kI+rV6+idOnS4hndqVMnFCxYEJxzlC1bFt999x38/PxS7XfhwgXxbF+3bp3ONu3n9Nu3b3Hr1i00atRIvOgl0oZcyAO5kAdyITeJiYmpgkMPHjyI2bNnw9zcHHXq1IGPjw8AasPlBORDHsiFPJCLnKd///745JNPMgwKVdCOxdmxYwc451CpVOCco2DBghkGhQLAokWLRLxP27ZtUw1my+uQC3kgF3JBPghThgLYCUJinj9/jm7dusHd3V00TjjnaNasGcaMGYNmzZqJz86cOQMguZGiNFR8fX1RvXp1cM4xYMAAY55KriQwMBDOzs7gnKNKlSro3r07hg8fjk8//RSFChUSZe/m5oaJEyeKmZEosET/kAt5IBfyQC7kIid9UIdkxpALeTDGfUpZjYjQhVzIQ0660O54pOd/2hirPqXd4ZvXnyXaZXn+/Hk8efIELVq0QMGCBfHgwYMM9x04cKAIDJ09ezYA3fKkwNAPg1zIA7mQB3IhJ4mJiZgyZQo458iXL58oZ8452rdvj5MnT4rVUrTrQ8HBwWjYsCE45/j222/F5ymf67du3cLkyZPh4uICzjksLCzAOceFCxfy/HM7JeRCHsiFPJCL3EFawaHK7PiDBg36oGNRuWcf8iEP5EIeyEXOoP2cjY2NzfJ+yiQYd+7cEX5sbGzSDApNqx+xb9++aN26NW7dupWd7JsU5EIeyIVckA8iL0AB7AQhMYGBgTA3NxcPk5YtW2L69OlITExEXFwcLl++nObyUcqD6PDhw3B0dIS5uTk2b94MIPMGipeXF3bs2GHQ88pN+Pv7o3bt2rC0tNQZRKB0OPbp0wdHjhzB+/fvAaQ9Oo3QDzntQtmfGvWpIRfyQC7kIqd9eHt74969e/TsSQNyIQ855SIpKQleXl744osvsGfPHjx8+FBso3tWMuRCHnL6HrVr1y5s2rRJZ/l5cvEfOe3Dy8sLffv21XnZmNd9pCzToUOHgnOOpUuXinJXUKvVePPmDb777jtwnjxzTOfOnXHz5s1Ux6TA0A+HXMgDuZAHciEnvr6+sLOzE8/sqlWrYuLEiemmj4+Px4oVK2BjY4OaNWuKF7Dagy4TEhKwd+9euLi4oECBAuCco1ixYujVqxf+97//6RyP2n7/QS7kgVzIA7nIHSQmJuLcuXNo3bq1aAdWrlxZ9GOk7At/+/YtAgICcOTIEdy+fRsvX74Ux6Iyzz7kQx7IhTyQi5zhQ8tGSX/69Gnhxc7OLsOg0NjYWISFhekcJzg4OLtZNznIhTyQC7kgH4SpQwHsBCE53t7eKF++PNauXYuAgACdbQkJCalG3iodVa9evUKNGjXAOUfjxo2zNAOin58f+vXrB845+vbta5DzyY08efIEa9asQY8ePdCwYUNUr14d06dPh4eHh066vB50kBMY0kXKUYXv3r2DWq1OtQQPeU6GXMgDuZCLnHpm+Pv746uvvgLnHFOnTsXVq1f1dmxTgVzIQ0648Pb2RufOnUWgUNeuXbFz5069HNuUIBfykFP3qGvXrsHV1RWcczRv3hzbt2/X27FNiZzy4eXlhREjRoj2+7Bhw/R2bFNi7969oozmzZuHy5cvIyoqCiEhIVi3bh06duwo7jGtWrXC0aNHdfanwFD9QS7kgVzIA7mQB09PT9ja2uKHH37QCd5MaxWaR48eoWbNmuCcY8qUKYiJidE51okTJ8TgBOWnQoUK+P333xEaGqqT9vHjx1i/fn2qz/My5EIeyIU8kIvcw2+//YaiRYuC8+TZ79+9eye2Ke204OBgfPfddyhbtiw45zA3N0fHjh2xdetWkZZWPtMP5EMeyIU8kAt5UJ7jZ8+eFc9ke3v7TINCW7RoATs7O4SEhBgl36YIuZAHciEX5IPIjVAAO0HkAlIuA6LdwZXW8lGnTp3CmTNnUKBAARQqVAi///47gIwbJUrwutL4MTc3R1BQkGFOKJcTFxen838asWw8DOHizJkzWL16NZo0aYK6deuiatWqGDduHPbt2yfSUHBJasiFPJALuTCEj6SkJJw7dw4NGjQA58lLBTdr1gxr164VachHasiFPBjCRWRkJObPn4++ffvCwsICKpUKlpaWmDJlikhDLlJDLuTBkG2Mn376CXXq1IGZmRnMzc0xe/ZssY1cpI0hfHh5eWH48OGi3W5hYQHOOYYPHy7SkI//mDZtmiirQoUKwc3NDYULF0b+/PnFTJaff/45jh8/rrMfBYbqH3IhD+RCHsiFPERGRorVSAHdZ7b2c/Xzzz8H5xxVq1bVmVFMrVZjzJgxqFq1qnBapUoVDBgwAK9evUr19549e4bly5eLtM+ePTPQmeU+yIU8kAt5IBe5A2VwgJmZGa5du5Zqe1hYGHr06CFW7XJ0dBSD1TjnOm1sel+YfciHPJALeSAXcvAxQaExMTHo2rWrSP/dd99laeJJImPIhTyQC7kgH0RuhQLYCSIXoHRkpfcyO60gduVFSJkyZeDn55fh8ZXg9UKFCoFzjtKlS+PKlSt6P4/cjHbZU1CBcTGEC41Gg8jISAwdOlQM4kj5Y21tjcmTJ+v9b+dmyIU8kAu5yIlnxvv373Ht2jUx87fSETl06FCD/+3cBLmQB0O6SHm8AwcOYMCAAcLFqFGjDPa3cyPkQh4MfY/SfiF18+ZNjBkzhlxkgCF9pAxe//bbb7F+/Xrhg4LY/0P7eztr1iw4OTnp1D/t7OxgZ2eH1atXw9PTM9W+mQWG5vXy/RDIhTyQC3kgF7mTjRs3gnMOBwcHnDt3DgDw/PlzHD58GK1bt9Zx+OWXX+LIkSNiMFtiYqI4zrNnz7BkyRIULlwYnCfPfvzw4UOjnFNuhVzIA7mQB3JhXM6cOYMSJUpApVJh8ODBAFI/j0+fPo1ixYrBwsIC/fr1g7e3N37//XedWfHnz58v0lNw6MdDPuSBXMgDuZADpcw/Nig0f/786NmzJ27cuGGcEzAhyIU8kAu5IB9EboYC2AnCREgriJ1zrrMsVFqkDF4vWbIkBa8TJkNGqw4oFbjY2FicPHkS7dq10wk8bN++Pb755huMHz8eHTp0EJ9PmjQpp7JvUpALeSAXcvExSzam7JxctmwZSpcuDXNzc3DO8fXXX+sre3kKciEPH7uUqXbHe1hYGNatWyfuU4sWLdJX9vIU5EIe9OHi+fPnWLVqlXAxbdo0fWUvz5GZD+3nQ8rg9QEDBiA6OhoAsHXrVgpiTwPt8r1y5Qp27dqFKVOmYOLEiTh8+HCqoFAga4Gh6b2gzevlnRHkQh7IhTyQi9yBUm5BQUH45JNPYG5uLgbwPXjwAH379kX58uXBOYeVlRUqVaqE5cuX6xxD23XKwNCGDRvS6qVZhFzIA7mQB3JhfBQHs2bNEm21Xbt2pZlWmdW+WLFiCAkJEZ+/ePECS5cuFftv3LgxJ7JukpAPeSAX8kAu5EFpq507d+6jg0J79OiBW7duGecETAhyIQ/kQi7IB5HboQB2gjAh4uLicPr0aVSsWBEqlQq1a9eGl5cXgLRfdlDwOmGKxMbG4u7du+L/aQWXKNfDu3fvsH37dtSrVw+cc5ibm6NVq1ZYv369TvoXL16IwCtLS0vs2bPHsCdhIpALeSAXcpEVH5mh/Vz/999/0bx5c7E8ZM2aNfHo0SO95NXUIRfyoA8XgK6PuLg4LFy4ECqVCpUrV8b169eznc+8ALmQB325SHnMxYsXQ6VSwdbWFvv27cv2MfMKH+PD09MTw4YNE53GP/zwA16/fq1zjG3btlEQexpkNhuYdvlkJTBUm7Nnz2Lt2rW4e/cuYmJisvT38jLkQh7IhTyQC7nRLv/58+eDcw4XFxf88ssv2L9/P+zt7cWzOX/+/Jg4cSIuXLigs7/2MdIKDA0MDMzRc8qtkAt5IBfyQC7k4Z9//oG1tTU45/jiiy/E5ynbYuvWrQPnHI6Ojqn6+WJjYzFz5kxwzlG1atVMZ6wMCQnBixcv9HcSJgT5kAdyIQ/kQh5Onjypt6DQpKSkHFk92FQhF/JALuSCfBC5GQpgJwgTQXngXLx4EVZWVuBcd1n4lFDwes6iLOWoj6ATIn3i4uKwb98+mJub4/vvv88wbVRUFNatWwc3NzcRpDt69Ghcu3ZNpNFegvPly5eiEjdy5EiDnYOpQC7kgVzIxYf4SA/tRuLFixfx5Zdfihm/P/nkE9y+fZsaklmAXMiDPlykx82bN1G8eHFwzrFt2za9HtsUIRfy8LEu0rrnpPwsMDBQLEWvBEzTvSpjPsbH48ePMWDAANFp3Lx5c8TFxQEAEhISRLqUQew//PCDQc7BVPnQwNDg4GB0794dnHNUqFABI0eOxPPnzwFQez27kAt5IBfyQC6My/Hjx8VzuGHDhhg6dCjy5csnXuZWr14dFy9exPv378U+KQcLUGCofiAX8kAu5IFcGJfExESxUlbx4sWxc+fOVGmUdnJ4eDiqVq0KzjmmTp2K2NhYnXTe3t5iJdPFixen+8z29/dHjx49YG5uTjPkp4B8yAO5kAdyIRcjRowA5xwFCxZE3759PzooVLtPMCU0cDlrkAt5IBdyQT6I3AwFsBOECREeHo62bduCc47atWvj6dOnAFI/RCh43Tjcv38f33zzDR4+fGjsrJgkcXFx2L17N1xdXUXH76+//ppm2vfv3+PXX39FzZo1RZDuwoUL8fjxY5EmrSCeadOmiZeIL1++NNi55HbIhTyQC7n4EB/poe3gypUr6Nu3LwVMfwTkQh704SIzmjVrBs45evfurTMIh9CFXMiDPlwcOXIEp0+fFv9PeT+aMWMGOOdwcHBAaGioXvJtqmTHx5o1a9CgQQPY2NjAzs4OY8eOFdu0rwG1Wo3t27eL42vPsEikz4cGhiqcP38e3bt3R8mSJcE5R506dUQ7nQJEPw5yIQ/kQh7IhXEJDg5G+/btYWVlBUtLSxQqVAgWFhbgnKN+/fqYO3eu6O9Ir9327NkzLF68WPShN27cGH5+fmI7tfeyBrmQB3IhD+RCDvz9/cE5R4kSJfDq1SsAwKNHj1IFbUZHR2PUqFHCj7LytXabbtmyZeCc45dffknzb71//x79+vUTbb5FixZRAFAKyIc8kAt5IBdyMWHCBLRr1y5bMxoDyZNejBw5En379sXAgQPx22+/ifer1ObLGuRCHsiFXJAPIrdCAewEYQIoD4gzZ86gXLly4Jzju+++Q3R0dKq0FLye82g0Grx//x7FihUD5xy9evXSCQgl9MO7d+9QpUoV0ZDv27cv7t27p5NG6bS9fPkyGjVqJIJ0ly9fLhr+aaE08IcOHQrOOapXr64z8wmhC7mQB3IhF1nxkREUMK0/yIU8ZNdFZrx58wYVKlQA5xydO3cmLxlALuQhuy4ePHgg2nt//PGHzjZl9oyFCxfCysoKhQsXxpMnT/Saf1Mjuz78/PywbNky5M+fH5xzfPXVV2KbdmevWq3Gnj17sG7dOoSFhen1HEyRrASGpuxM12g04t7z8uVLHDhwAHXr1gXnHGXLlhWDOegF7YdBLuSBXMgDuTA+ERERKFOmDDjnYpUTzjm+/PJL+Pn5iVkp0ytPJTDUwcEBnHNUrFgRfn5+YjUVBfKROeRCHsiFPJALefD19cWxY8cAADdu3EC1atXg4eEBQLf/z8fHR6wq980334jPled5fHw8/vrrL/F5Wn0ep06dAucc48ePFyusELqQD3kgF/JALoyPdttNadN9aFCo8k7133//RenSpcWzX5lgpE2bNnj06FGqv0foQi7kgVzIBfkgcjsUwE4QJsRnn30mHjb3798HoNtBRcHrxuXChQuwsbEB5xyff/45BbEbgPv376Ns2bLo3LkzfHx8dLYp10JSUhK6dOkignTnzZuHiIiIdI+p3YDv0aMHOOeoW7cuIiMjKfAqA8iFPJALucjIR0ZQwLT+IRfy8LEu0kO5tyUkJOCXX35BkSJFwDnHsGHDsn1sU4dcyEN2XLx58wZDhgwRnYs///yzzoxLsbGx6N27NzjnsLKy0pmlj0ibj/Gh/SyIi4vDnj17YGtrC845JkyYkO5+KYNOiNRoNBpcvHhRrOqQ2azGb968SbNum5SUhLt376Jhw4bgnKNp06Zidhoia5ALeSAX8kAu5MHT01MMIPv000+xYcOGLO337NkzLFmyRPShc87h6OiI8uXLw8XFBd9//z1+++03kZ5e3GYOuZAHciEP5EIelLbb8OHDwXnyCtfaA72Vvo3Dhw+LPsCtW7em2l9Bu8xTrlgaFBREA5YzgXzIA7mQB3JhfLRjbpTyzGpQqJI+PDwcLi4uYvBZly5d0KxZM5QqVQqcc7i4uNDqW1mAXMgDuZAL8kHkZiiAnSBMhN27d4NzDhsbGwwfPhxA8gNDedBQ8LpxUSoLV69eFUtBUhC7YXjy5Al8fX3T3T516lRwzmFmZoaBAwemWmYtPXbu3Ck6hOfPn6+v7Jo05EIeyIVcZOYjJRQwbTjIhTykdJHVctROp/17QkICDh06hHbt2on71MGDB/WXYROGXMhDei6y4uTVq1f48ccfRZn/+OOPWLduHXbv3o1vvvlGfD5o0CCD5d/UyI4PIHngwIIFC2BpaQkXFxecPn3aIPnMK6xatUp0uG/dujVVYGhERAQOHz6MZs2awcXFBQUKFMDAgQOxa9cunXRJSUk4duwYXF1dYWNjg3Xr1gHIuleCXMgEuZAHciEPXl5eWLt2Lfz9/cVnGb1kVQJDCxcuDM45SpUqhUaNGmHChAno27cvatWqJepRc+fOFfvRLMeZQy7kgVzIA7mQi9OnT6NcuXKwt7fH5s2bER8fD+C/VVIiIiLQo0cPmJmZYcCAAZkeLyAgAF26dMHQoUMNnXWThHzIA7mQB3IhD0qbLCYmBt27d083KFSbrVu3gnOOokWLYt++fYiLi8O7d+9w/PhxNGjQAJxz1KpVC0+fPgVAz++sQi7kgVzIBfkgchMUwE4QJsLDhw9hZ2cHzjkOHTqks42C1+VAO4jd0tISnHO0a9eORjHnICEhIahbty5UKhWqV6+Os2fPZmm/27dvo3379jAzM0PhwoXx559/Gjinpg+5kAdyITcUMC0P+nSRMh051CW9Do+UQdFqtRpxcXGIjo5GbGwsnj59ilu3buHUqVPo2bMnqlatKl7cjh07VmcGaiJrkAt50A6W9vPzy9IMrMHBwWKVLuWnYMGC4vcmTZrg6NGjhs66SaLtIygoKN1ZdVNy7do1EWyyaNEiQ2YxTzBu3DisWrUqVfmHh4dj3rx5cHV1Becc+fLlE4M1lRnwtQODIiIi0LFjR3DO8dlnn+XwWZgG5EIeyIU8kAs5yajtlTIwtG7dujhx4oTODPmBgYFYuHChqE8tWbIkJ7JtkpALeSAX8kAujMvr168xYMAAcM5Rp04d3L59W2xT+kdmzJghJhPTHniQkoCAAJ3B46dOnTJ4/k0N8iEP5EIeyIVcJCQkiJW3ChYsmGFQKACsX79ezGCccgb9W7duoX79+uCco3v37oiMjMyJUzAZyIU8kAu5IB9EboEC2AnChLh37x6GDRum8xkFr8uFdhC7MsLt/v37Rs5V3uHw4cOiIT5v3jzxeUYdw8+fP8fkyZPFC8Wvv/46VRrFa1hYmM5SaxSQmD6GckF8OIZ08aEzk+ZVlNkxgLSX9wL0FzAdExOjx5ybHjnp4s6dO1i5cmWaf4NInqn4woUL+OGHHzB06FD07dsXXbt2Ra9evdC1a1e4u7ujZcuWcHd3R40aNVCtWjWUKVMGlpaWsLGx0QnYHTZsGLy8vFL9DbouskZOuADomZFVbty4gTZt2mDbtm0AMi6vhIQELFu2DJxzdO3aFVZWVsJFr169sG/fPpE2rRn0yUXm3Lx5E61bt8Zvv/0GIGtl9umnn4JzDnd3d0RHR2eYVvu5RD7+Q3sQjDLbGPDfbJUeHh4oW7YsOOdwdnbGypUrMXXqVPTq1UtnVQLtYJ8tW7bAzMwMbm5uePXqVc6dTC6HXMgDuZAHcpE7SRkY2rBhw3RnRI6JicHkyZPBOUeFChVw586dDI9Nz/APg1zIA7mQB3KRczx69Aj16tUD5xwtW7bErVu3dJ7ns2fPBucc1tbWuHfvXprHCAgIQL9+/cRzfcqUKXj27FlOnYJJQT7kgVzIA7mQi0GDBolgTu0BBWlx+vRpUeZ79+5Ntf3EiRMoV64c7Ozs4OHhQc/oD4RcyAO5kAvyQeQGKICdIEwM7Zckfn5++Prrr0XweqlSpSh4XQKUgLg7d+7g3LlzSEhIyPYxNRoNLc+SAUrZjB49GpxzVK1aVQSaZ1Rub968wapVq5A/f35wztGsWTMx22XKpTz//vtvODs74/vvv8fJkyfF51Rp08XQLlIeg8o/fQzhQnkGpQwKfffunc4xyIsuSnlcunQJu3fvTjVD3+XLl9GnTx8xI1+7du1w586dDy7HO3fuoHXr1ti6dSsePnyY6u8ThnehpPP09ESrVq3AOcegQYNSbSeAP//8U8xK+TE/hQsXRrVq1bB169YMZwGg6yJzDOUi5bPm9evXSEhISBWURS50UQIRGjdunKVZ2IOCgmBhYYE5c+YgNDQUly5dwvXr13VebKVsj7x9+xZqtRpv3rzR+Zxc6JKQkIAxY8aAc442bdroBBqmR2xsLOrWrQvOORo0aKDjQSHltfHixQtER0enOj75SJukpCTUqVNHDOAPCQkR2yIiIrB582Zxf/r+++8RHh4OtVqNsWPHgnOORo0a6aWNTpALmSAX8kAu5CRlYGijRo0QFBSU4T4HDhyAmZkZLC0tdfoBU6I812NjY/H69Wt9ZtskIRfyQC7kgVzkPAEBAShRogQ4T57heN68efj777+xZs0a8Zx2d3fHixcvAOi2zQICAvD111+LdNOmTctS251IH/IhD+RCHsiF8dHuv9u6dSuuX7+usz02NjZVLEF0dDR69+4NlUqFPn364PHjxzrbX79+LWbFnz17NrX9sgi5kAdyIRfkg8hNUAA7QZgo/v7++Oyzz0SnlpOTE/755x9jZ4v4f7IbbJCVYHUKaEjN999/D8456tWrByDjMoqMjMTGjRtFkK6bmxuOHDmS7j5z5syBSqWCmZkZXFxcsHz5crGNXKRGXy4ympFSrVZTQHsWMNR18ddff6Fr165o3rw56tWrh3nz5uksQUgudFFGNJcvXx579uxBbGwsgORAan0Er7948QLffvut6JT88ssv0515N69jKBcpg9etra2Fj+HDh6dKl9cJDg6GhYUFOOewsLBA48aN0alTJ3z99dcYMGAA+vTpgx9++AETJ07EiBEjMGbMGCxZsgSrVq3Crl274O/vn2nHO10XWcMQLrTL9sWLF9izZw9q164NNzc3lCtXDpMmTcLhw4fTTJ/XOXr0KFxcXFCkSBHs3LlTZwCzNkodyNPTEwULFkS3bt3STKfdwXju3DksXrwYtWvXRt26dVGjRg3MmTMHx48fF2nIxX+o1Wrs2LEDTk5OKFGiBPbs2ZOpj+fPn6N27drgnKNVq1apVoDQ7jDeu3cvRo4ciVKlSqFcuXIoU6YMxo8fjz/++EOkIR+pCQ4Ohr29PWxsbDBz5kwAwPv373XSHDx4UNz7Bw4ciPv376NNmzbgnGPIkCFQq9VUtnqAXMgDuZAHciEfHxoYqpT95cuXRZtu8+bNGf6N6OhoTJo0CfXr18806DQvQy7kgVzIA7kwHn5+fqhatap4Jmv345UoUQILFixItU9mQaE0CdXHQz7kgVzIA7kwPikDPxViY2Nx8uRJ3Lp1K1W6bdu2wczMDNbW1mJFR+1yv337Nnr27IkTJ04YMOemB7mQB3IhF+SDyC1QADtBmChPnz5F6dKlwTmHra0tjX4yIbRfUvn5+eHXX3/FlClTMGTIEOzevVtnoAK90NJl3Lhx4JyjWrVqqWbV1a50PXr0CMuXLxdBupUqVcLGjRtTzSKdkkOHDqFXr15QqVTgnGPy5MliG7nQxRAufHx8sG3bNvTs2RPt27dHgwYN0L59e2zZsgXXrl0T6ciFLvpyoQwoUKvVOrM8aP8UL14cs2bNEsckF//h7e0NS0tLcM5Rq1Yt7Nu3D3/99Re+/PLLbAevA8kN0f3796NDhw7gnEOlUqFo0aJ0n0oDQ7hIGbxubm4OKysrNGzYUDwzKIg9Nd7e3uIlbYsWLeDl5fVRx0mvPOm6yDqGcvH06VNMnDgxzWeGo6Mjpk+fnu6+eZXIyEj0799fDD5La8lH7bJavXq1GJQTFxens037Ob906VJUqVIlTRcODg7kIh1evnyJnj17gvPkGdXv3LmTKo125+/MmTNFuS5dujTddOPHj4ednV2aPvLnz0/3qQwICAgQZTVx4sR00x09elSkU1aZsLKyEp32RPYhF/JALuSBXMjF48ePsWzZsg+a1RhIbkdMnz4dFhYWcHR0xMWLF9NNm5SUhFmzZqFo0aLgnKNGjRqpBi0Q5EImyIU8kAvjExoaihEjRohByJwnr0Y6d+7cVO2wzIJCtdOnDCSiNl3WIB/yQC7kgVzIyW+//QbOkyfMUdDuh1Um1SlUqBB8fX0B/PeOFUjuM1dIGd+TXjAqkTbkQh7IhVyQD0I2KICdIEwYT09P0blVq1YteHh4pApOJHIfarUaL168wNdff60zslr5KV++PObOnSvSU6PyvzL4888/UbhwYZQsWVKn41a7jC5fvozhw4fDxsYGnHNUqVIFK1asQGRkZLrH167M+fn5YdasWSIgccyYMWn+nbyKIVx4e3tj9erVsLe3FzMMKEGm2tfF4sWL0/w7eRVDXRfaL9odHR3h4uKCDh06wNXVVVwXo0aNSvPv5HV8fX3Fc7tixYpo3LixTsD07du3s1VeGo0G7969w8iRI+Hg4CB8/Pjjj3o8C9NAny7SC17v1asXnjx5gj179lAQewZoB063bt1adJQAumWU3u+ZQddF1tGnC+XzTZs2iWdGmTJlUKtWLfTq1QvVq1enZ0YGPHr0CPXr1wfnHC1btsS9e/dEJ6F25+Dx48dRvXp1cM7Ru3dvnWNol+WCBQtgbW0tyrx58+bo0aMHfvzxRzRu3Fh8Pm7cuJw5wVzGw4cPUaNGDeHj1q1baQZ9rFixQnzf3dzc0q13jR49Wqce++mnn2L48OGYMGEC2rZtK3yMHz8+R84vtxEdHY127drB3Nwcn3/+OZ4/fy62aTQanbbbrl27RHlaW1tj06ZNAGjGMX1BLuSBXMgDuZAHtVotBvp9SGAoANy8eVMM/KtTp06m/e1Xr14F5xwFChTAyZMn9ZF9k4JcyAO5kAdyIQ/x8fGIjo7GpUuXcPnyZbx48SJVmsyCQrW5e/cuxo0bh23btsHb21t8Ts/3rEE+5IFcyAO5kI+ff/4ZnCfPhH/69GnxubJy45MnT1CvXj3R9x0fH59m+WoHhS5evBgPHz4EQMGhHwK5kAdyIRfkg5ANCmAnCBPHx8dHBJrUrFmTgthzOS9evMDOnTtRt25dcM7Fi6xKlSqhVq1aKF68uAiw0w6cJpIJDw+Hu7s7OE+ePfTy5cuIjo4GALx9+xZr1qxB7dq1YWVlJQZ+bN26Fa9fv8702NpBJ2/fvsWGDRuEn2XLlhnqlHIt+nKxb98+dOvWTXS6lCxZEg0bNsSaNWuwceNGTJw4EU2bNhUuRo8eLfalILhk9HldREZGipkeKleujLlz5yIsLAwAcO/ePSxYsEC4mDFjRk6eZq7Bx8cHhQoVEjPsKYGinp6e2e4g1P7Oz5s3D3Z2duKZMWfOnOxm3eTQh4v0gtd79uwpro34+Hhs27aNgtgzQLs+27p1a/j5+ent2HRdfBj6dPH8+XM4OTmB8+SZq3/99Ve8efMGQPIgkiVLlojrYvbs2fo6BZMhICBAp/y2bt2KZ8+eie2//PILmjRpIlaU0J5BXZt9+/ahVKlSOnWlhIQEcW08evQI69atE9tXrlyZI+eX2/D390eJEiXAOUft2rUxdepUXLt2Df7+/jh16hRGjBgh6qvW1tY6K9Jos3btWpGuVKlSWLhwoc7258+fY/369cLH2rVrc+Dsch8rV64U5bhmzZpUqzdFR0fD09NTzJ5vaWmJ6dOn6wSS0otZ/UAu5IFcyAO5kAc/Pz/Rr5rVwFA/Pz/R71GqVCmx4p/iRPk35Qxkly9fxpkzZ/SYe9OCXMgDuZAHcpE7+JCg0Ldv32L9+vUibZMmTbBjxw6xnQJ9sg/5kAdyIQ/kIufx9vZGq1atxPueiIgIsU2tViMxMRE//vijGGymBIxqo93mU1Z0LF68OB49epQj52AqkAt5IBdyQT4I2aAAdoLIA1AQu2kQGhqKyZMni6WD7ezs0KZNG+zYsUMEkt67dw+rVq2iAJMM0A72KV26NGrWrIlmzZqhZs2aokGuBGWdO3dOBPKmhxLckzLI8PXr15gwYQJUKhVq1aoFT09Pg51TbiW7LrZs2QI3NzfxfW/Xrh12796dalZwPz8/LFu2TKRLL2AoL/OxLlJ+79+8eYNKlSqBc45hw4aJQESFqKgoLF++HCqVCkWKFMHRo0dz7BxzE97e3nB0dATnybPYL1iwAG/fvgWQvYBmpSHp5+eHatWqCa/Vq1fHgwcP9JJ3U0MfLm7duoUWLVrAwsIC1tbW6N27tziG4kStVusEsWvPOE0kY6ggdrouPpzsutAOjC5WrBgsLS2xdOlSxMTE6KSLiorC4sWLoVKpUKpUKZ1ZIIhkfH19UaFCBXDOkT9/fhQvXhzu7u5o3LgxOOcwNzcH5xydOnUS+2jXXTUaDX744Qdx75k4caJIp/1C6v3795gzZw5UKhVatGiR5kxORPJ9RHuFLDMzMzg4OMDBwUF8VrBgQYwdO1bso9yDNBoNXr9+jY4dOwofy5cvF+m0A0xiYmIwZcoUqFQqdOzYEW/fvqUBT/+PdjmMHz9elPvgwYOxb98+eHl54fr165g4cSIaNWokBqlNmjQp3aCgGzduYN++fThw4AD++OMPvHnzBvHx8QAogDQjyIU8kAt5IBdyEhISgpCQkCyl9fPzQ506dcRL2U2bNumsuqKUeUxMDMaNG4dFixaleRx6bqcNuZAHciEP5EI+tMvnQ4JCtVm2bBk6duwo9tOeQIGe3x8G+ZAHciEP5EIOtm/fDgsLC3DOsXr1asTGxups116p8fbt2zrbtPtlp06dKlYgL1asGE6dOiW20TM7a5ALeSAXckE+CJmgAHaCyCNQEHvuJjg4GD/++KOY1c/R0RGLFy9OFRSt0WgQGxuLGTNmwNzcHG3btsXLly+NlGt5CQgIQNOmTcXMuto/NWvWxMiRI3U6d9NCGWWovBgEUlfAzp49i3z58oFzjt27d+v/REyAj3Wxbds2lC1bVgT4dOjQAbdu3dJJo+0mLi5OzB5qa2uLffv2Gfzcchv6uC7Cw8NFILyPjw+A1J1Znp6eKF26tOgsI9LGy8tLuKhZsyZ+++23VDPzfQiKBy8vL53guurVq8PX1xcAzZ6RHtl1sX79ehQrVgwqlQoWFhaYMmWK2KYdkKgEsSuzJf/www96PQ9TIGXgtL+/f7aOR9fFx/MhLtJ7qREaGoqCBQvCyspKrEiQMu3t27fF30k5EzWRTEhICHr16iUGuab86datmxhQlvL77O/vD2tra3DO0blzZ/F5Wt/7v//+WwTEX7161bAnlYsJDQ3F4MGDUw0C5JyjTZs2OkHpKcv533//FWm/+uor8Xla19Dx48fBefKKXPfu3TPcCeVCtMt10aJFKFWqlCjXIkWKiFVVlMDQyZMnIzAwUOcYL1++xOnTp9GmTRsxkE1pdzRq1AgTJ04UKx7QcyJ9yIU8kAt5IBe5F+3A0GLFimHFihU6wT/agaFz5swR/R5z585NdSzykj3IhTyQC3kgFzlPYGBghkGhaZWj9syVPj4+YqbKlC4o0OfDIR/yQC7kgVwYh5Qrvirlt2TJEvHOISQkBAMHDkwzMDRlUGiRIkWgUqng6uqKGTNmICgoCK9fvxaBpvTcTh9yIQ/kQi7IByEjFMBOEHmItILYM5tdmjA+jx8/xrBhw1C0aFHxQuvgwYM6wXMpG4pHjhwRlYkbN27kdJZzBWFhYThy5AhGjhyJr776CkOHDoWHh4dOAFZmo8ifP3+OkiVLwsPDQ+dz7f2aNWsGzjn69+8PjUZDI9PTICsutCu2+/fvR40aNaBSqWBmZgbOOcqUKYNSpUrhiy++SHeG9YiICPz4448wMzNDnz59aHBHGmTFhXbAbVhYGP7++2/8+uuvOH78OO7cuYPRo0eDc47Lly+n+3c6dOgAzjlcXFwQFRVF10U6aD+33dzcsHv37lSjn7NCRkG66Q00IHTJrou//voLo0ePFoOa+vXrJ7Zpdwqr1Wps2rQJnHOsWbNGr+dgKmi7aNGixUfPxE7XRfbJigvt5/fdu3exf/9+LFiwAB4eHjh37hwGDhwIKysr3L9/X2c/7bqtUpeqVasW4uLiqLMrDSIjI3Hx4kUMGjQILVq0QJkyZTBgwACsWLFCpEnrxdL9+/eRP39+WFpaYvr06QCQailI7aXmq1evDs45jh07ZsCzyf1ER0cjLCwM69evx/z587FgwQIcOnQIz58/F2nSGyRgZmYGOzs7bN++HYBuvUt7vxcvXqBs2bKwtrbG9evXDXg2uRPt8r1x4wZ27dqFUaNGYcSIEbC1tQXnHJaWlpg0aVKqwNCHDx9i0qRJYnUDZRaa4sWLiwEfyj3p4cOHqf4eoQu5kAdyIQ/kIveRVmCoMgAT+K+MY2JiMGvWLLi4uIBzjqJFi+LPP//UOZZ2XSs4OBgAtTs+BHIhD+RCHshFzhMUFITPPvss3aBQbby8vHD37l3Ex8cjLi5OZ1tMTAyWLFkijqO0A4kPg3zIA7mQB3JhXLSfnRMmTBDlV6dOHXTr1g3t27cXn/Xq1UukTRkUWqxYMZGOcy7eL5UtWxb9+vXDkydPUu1H6EIu5IFcyAX5IGSDAtgJIo+hHWhSp04d7Ny5EzExMcbOFpEOkZGRmD17NkqWLCmC10+fPp1ueiUwJSAgAPb29uCc4+jRozmVXZMiKx2z2iPP9+/fD0A3OOj27dti1vwhQ4YYLK+mjraL27dvo3PnzmJ2Mc457O3tUb58eRQuXFhnFtHHjx8D0O14P3z4MDjn6NmzZ46fhymgHUT1888/6zReOOcoUaIESpcuDRsbG6xYsSLVjO1JSUl49uwZ3NzcoFKpUK1aNXoJkgk+Pj5wcHAQ39v0lo5PDwrS1R8f40L7mRAZGYmdO3fCzs4OnHN8//33Ypu2A7Vane2ZxU0dX19fUc+ZOHHiB9dl6brQHxm50C7DxYsXw83NTeeZYW9vj0KFCsHa2hqbNm3SWTlF4cGDB6IDrFWrVjlyTqZAykHK6XUOXrt2TfjYsGFDhse8ePGiqH8dOXJEb3nNi6Q3S9Xp06eFj8xWbzp06JBIe+HCBUNkM9eT8j4eGRmJPn36iMDQiRMnpgoMVWbQV9pwhQsXxoQJE3DkyBF4eXnhxo0bmDJlCmrUqCE64kNDQ9P8e8R/kAt5IBfyQC5yDx8bGFq8eHGcPXs23eOOGzcOnHOcO3fO4OdgKpALeSAX8kAujMPTp09Fe2zmzJmpgkJjYmJw/PhxdOvWTaxkVrduXXz//fcICQnRSfv48WN89913UKlU6NKlC62c/RGQD3kgF/JALoyPdn/sggUL4OzsrPNum3OOjh074uLFiwB0379OmzZNxPMo77yHDh2KLVu24KuvvkKlSpXAOUf58uXFwGVq86UPuZAHciEX5IOQCQpgJ4g8iI+PjwgEad26NV6/fm3sLBEpUCoLR48eRcWKFcWLqf/9739Z2m/nzp2wtLSEtbU1rly5YvD85la0g0e0K0xZXfosIiICw4YNExWzVatWISAgAEByQNecOXOQP39+cM4xdepU/WbexEjPRcrtCxcuFLOuOzs7o0ePHnjw4AHCw8MRGBiIgwcPikC6Ll26iP21K+Dbtm1L8+8SyWTmAgB27NiBChUqCBcVK1ZE9erVUbZsWRQsWBCcc1SoUAHnzp1LFZB48OBBEcD7ySefGPRcTAUfHx+4u7tj1apVH7QfBenqn491oaBWq7F9+3bY2NiAc45169ZlmJ78pI+Pjw969uyJffv2fdB+dF3on8xcLFmyBNbW1uKZUa9ePbi7u6N27dqig6tSpUo4c+aMzsCnV69eYc2aNaIu1adPn5w6pVyJ9vM7q7NZvHr1Cg0bNoRKpcLo0aMBpP39V6vVWL58OfLly4ciRYrg3r17+sl0HiGr9c3Hjx/Dzc0NFhYWmD17NoD/XGofIzw8HMOHD4elpSWqVauGZ8+e6T/TJsjGjRtFYOiUKVNSBYa+e/cOc+bMgZOTkwjquXr1aqq6bExMDK5fv47GjRuLwTUREREZ/u1Xr17p/XxyM+RCHsiFPJALOfH39//owNAzZ87oHOuXX37BTz/9BCB5QgzlpXCTJk0ydUSQC5kgF/JALoyLp6cn5s+fr7PSFgDExcVh69atqFevHjjnoi9E+XFyckr1zm7nzp1ie8oV6oisQT7kgVzIA7kwPtp9tOfOncPy5ctRt25dtG7dGuPHj4e/v3+qftxp06bB0dERnHMUKlQIa9euhUajEX2DMTExuHHjBho1agTOORo1aoQXL17k6HnlRsiFPJALuSAfhCxQADtB5FG8vLxQpUoVWm5cQpQHe1xcnHjh5ODggD179mRpPwBi1qb8+fOLpR6JrKFdjlmpSEVERODbb78VDfeqVauiffv2qF69ulj6uU6dOlQp0wPXr18Xy2NXqFABCxcuxMuXL1Ol++eff1CgQAFwzjFhwgTxecqALO2Z2Ymsc/fuXbRo0UK8yBgwYAD8/Pyg0Wjw/PlznD9/XgSFVqlSBatXr8b9+/dx8+ZNbNiwQTRonJ2d4eHhAYCCRbPCmzdvxO9ZCYSjIF3Doe1Ce7R5WvejtHjy5Ak6deoEzjk+//zzVMtyElkn5SzTmUHXheFIz8XJkydRvnx58cwYN26cCFJ/9eoVrl+/LlxUqlQJixYtwrVr13Dy5ElMmTJFDEqrVKkSrl27BoAc6ZsRI0aIwbLKC6iUZXzy5Enx/G7btq0xsplnGDRokPDh6emZantkZCS2bNkiBgx+/vnnRshl7mX06NEYNmyYTmCo0gF///59cT8qXrw4fH19AfxX70p5XVy+fBlVqlSBlZUV1q5dm+69KSAgAEOHDhWDEohkyIU8kAt5IBdyERAQgLJly+olMNTPz09sb9KkCTjnUKlUaN68OX7//fccPa/cCLmQB3IhD+RCDrSDeZRnraenpyhHzjnWr1+P33//HfPmzUP9+vVFe+/YsWNin3fv3sHZ2Rmcc/z1119GORdTgHzIA7mQB3JhfFK2xbTfKQG67/umTp2KIkWKgPPkWYtTThijfayjR4+iWLFiKFSoEA4dOpTqWERqyIU8kAu5IB+EDFAAO0HkYZSAqazO0EfkLBMnThRB6FOmTMkwME77Qb9u3ToxYnrUqFGpthNZ49KlS/j5558BZF5+V65cgZubGzjnIsBa+alZsyYOHDiAxMRE8vCRJCUlISkpCWPHjgXnHPb29pgyZYoIItUuVyUofdSoUTA3N0erVq10ZnMlss/mzZvF9/vbb7/V2aa4CA8PFy/XzczMxIACZRZdZ2dnjBgxItXMD0TmZCVwk4J0cwbtMjxw4AB++eUXAFl75q5YsUJ4uXHjhsHymFegQR3ykNLFnDlzRFmPHTtWJ11azwzOOaysrHT+rVixIpYvX463b9/m6LmYCko5v3v3Tqfcle97YmIiPvnkExH4cOHCBbGssKenJ7Zt2yaC10uVKiU6JOl6+TiU8ldWQUvpIy4uDm3btgXnHEWLFsX//vc/scTmxYsXMWPGDBG8XrFiRfzzzz86+xNpoz1wNb12da9evcA5h6OjowjqyaivJDo6GjNmzBADOtNyEBAQgMmTJ4tBPHv37s3mmeR+yIU8kAt5IBdyEhwcDM45zM3NsWrVqo8KDNVoNCLtpk2bxPFUKhVatGiBo0eP6qQl0oZcyAO5kAdyIS+jR48W/RtHjhwRn6vVagQHB6NDhw5itsojR44gKSkJp0+fho2NDaytrWnFMz1DPuSBXMgDuTAu2m0z7RW1pk6dimLFioFzDhsbG/z2229p7qPw6NEjFC9ePFW/O5F1yIU8kAu5IB+EMaAAdoLIw1Cnk7y8f/9eNBArV66c5ZnyT58+jaZNm4JzDltb21Qj3ois4ePjA3d3d9jY2ODWrVuZpo+Pj0fHjh3h4uKCX375BfXq1cMnn3yC/v37w8vLi2bX1RPKd7tq1apiRvv07mPaAXNKYCKRPdRqNdRqNVq2bAnOOcqWLStmfdN+ca78fuHCBRQpUgROTk4YPnw47Ozs4OjoiAYNGmDt2rV48uSJUc7DlIiOjkZISAhiYmIA6L54oiDdnOPSpUsoW7YsChUqJK6J9FCCU/bu3QtbW1uYm5vj7NmzOZHNPANdF3KQlJSE9+/fo1KlSuCcw83NTThJ65nxv//9D/b29ihfvjymTZuGYsWKoUKFCmjfvj2OHz+OyMhIo5yHqRAYGIjRo0eLYGcFpfyDg4NF0HT+/Pnh6uqKNm3awMnJCTY2NuKa6dChAx4/fmyMUzAp7t27hx49eqTyodyHgoKChA9ra2sULlwYdevWRf78+cXADltbWwwePBivXr0yxinkSjLq/4iMjETNmjXBOUePHj2yXK63bt1C3bp1sWHDBsTHx+v8jYCAAEycOBGWlpbgnKNbt26IiIjI9nmYAuRCHsiFPJALOfHz88O6devw7Nkz8dnHBIYCwOTJk8WsxpzrrqKi/UKYSBtyIQ/kQh7IhXxoNBr06NFDDAJ49+4d1Gq1Tp+TWq1Gly5dRHDoH3/8gZEjR4Lz5NXnqM9cf5APeSAX8kAu5EG7zKdOnYrChQuLPtglS5aIbRm1FZs1awbOOb777rtM0xLpQy7kgVzIBfkgchIKYCcIgpCQS5cuiYf/4sWL002n/YC/ffs2+vXrJ/ZTZl8nPpzw8HBRmRo1apSY6TstFAfKrFX//vsvdeoagOfPn6NEiRIwNzfH0qVLAaQ925iypNH8+fNhZWUFGxsb+Pn55WheTZ327duDc45q1aqlWkJKm+fPn6NatWooUKAAzp07h6dPn+Lhw4fUMNETUVFRWLduHbp06YJffvkFUVFRYpunpycF6eYgd+7cQa1atcA5x5w5cxAdHZ3pPqtXr05zlhMie9B1IR/KsrPNmjUDkH5Zh4aGwsXFBcWLF8fdu3cRERGRYf2LyDqJiYlYs2YNzMzM0Llz53QHA8THx2P8+PFo3rw5KleuLGb5VgLb7O3tszSwk8iYuLg4TJo0CZxzfP311+l+z9VqNWbOnIlPP/0UzZo1Q9GiRXV81KxZkwZp6pE7d+6I58Pq1auztI9Sp/X29sa7d+90tqUMDP2QgNO8DrmQB3IhD+TCuKQ1+PJDA0OnTZsmAkNdXV2FzxkzZqT5d4i0IRfyQC7kgVzIR/fu3cUkPClXVtEux65du4JzDjs7O1Hm27Zt00mfVj86ufgwyIc8kAt5IBfGJ+Vz2N7eHmZmZuCco27dumJllYzeW9y/fx8lS5YE5xwzZ840eJ5NFXIhD+RCLsgHkdOoGEEQBCEdCQkJzMrKitna2rL69eszxhjTaDQ6aQAwzjljjDEvLy+2detWtnv3bsYYYz169GCLFy9mjDGWlJSUgzk3Dezt7VmXLl2YjY0NO3HiBPv333/TTat4efbsGWOMscePHzNLS8tU24mPR6PRsMTERBYfH8+SkpKYnZ0dY4wxMzMznXQAmIWFBXv16hXbtWsXS0hIYM7OzszJyckY2TZZSpUqxRhj7M2bN+zNmzdppklKSmLFixdnxYoVY7Gxsezt27fMycmJlSlThnHO6brQAxqNhu3cuZMdP36crVmzhh05coQxxlhAQADr1asX8/HxYYwxVq1aNbZ//35WuXJlptFomEpF1X99U6FCBdauXTvGOWf79u1jt2/fzjB9aGgo++uvvxjnnDk4ODBnZ+ccyqnpQ9eFfLi6ujLGGAsPD2dv3rxJs6yTkpKYg4MDs7W1ZS9fvmQvX75khQsXZgULFmSMUV0qu6hUKubo6Mjy5cvHvL292T///JMqjVqtZpaWlmzp0qXs4sWLbMuWLax69eosf/78LDExkalUKnbgwAFWp04dBsAIZ2E6mJubM1dXV5YvXz528+ZNdufOnVRpEhMTmZmZGZszZw77888/2YoVK5itrS2zsrJiiYmJzNHRkW3ZsoVVrlyZfOgJBwcH5uDgwPLly8eKFi3KGEv2kBFKW7xSpUqifcIYY4GBgWzr1q1s9erVLDExkXXv3p1t3bqVOTo6Gu4ETAhyIQ/kQh7IhXFR+p6SkpKYmZkZi42NZUuXLmU7d+5koaGhrFixYmz37t2sTZs2jLHkvimNRiP2mz59Olu4cCHjnLNGjRqxxYsXs/Xr1zPGGJs/fz6bNm2a+Dv0XM8YciEP5EIeyIV8tGjRgllZWbF3796x69ev65Sbdr/4wYMHWcWKFVl0dDRjjLERI0awfv36McaSPWm//9u/fz/buHEjY4xcfCjkQx7IhTyQC+OiPLMZS34Ob9iwgb17946VL1+eMcZYoUKFRLsvrb50pWxv374tYhOU97bEh0Eu5IFcyAX5IIyC4WPkCYIgiA/lwIEDYlTz3bt3U23XHsn2zz//YNCgQWL0c7t27fDvv//mZHZNkufPn4uZpps1awYvLy+xTRlRnpiYCADw9/dHsWLFPmg2LOLDadu2LTjnGDx4MOLi4nS2KU7evn2L6dOno0CBAuCco1evXoiNjaVZv/WAUobHjx+Hk5MT7O3tsW/fvlRlq/z/0aNHcHJyAucc8+fP19lG6AcvLy8UKVJEjHZesmQJKleuTDNMG4EnT56IlTvc3d3h5eWV6lkBAG/evMH69evFPapt27bGyrLJQteFHCjf/z179qBo0aIoUqQIjh07liqd4sDb2xuOjo7gnGPLli06xyCyz4sXL9ChQwdwztG8eXN4enqKsk85K5Kvry/q1asHW1tbcM5hbm6OAwcOACAn+iIsLAxt2rQRz4wHDx6IZ4X2fSkmJgZ///23mKWEcw5ra2tcvnw5VVoiezx69AgODg7gnGPu3LkffRya1Tj7kAt5IBfyQC7kISYmBhMmTED58uU/eFbjJk2a4ODBgyLdqlWrxPN90aJFOX4uuR1yIQ/kQh7IhRw8evRI9EO5u7vj7t27eP/+vU4aLy8vTJgwQZTx119/rfP+Sbutd/ToUTRp0gScc4wbNy7HzsNUIB/yQC7kgVwYj5TPYaWdV7lyZWzevBlVqlRB7969091f6Zu9fv26WD2zZcuWqVbdIjKHXMgDuZAL8kEYCwpgJwiCkJCnT5+iSpUqUKlUWL9+vQhoSNnJePToUfTq1Us0IFu1aoUzZ87Q8lx6IiQkBBUrVhSN+PPnz6eqXAUHB6NGjRrgnKNUqVK4efOmkXJrumg0GiQlJWHOnDngnKN27dq4f/++qAAnJCQAAF69eoVly5aJjhdLS0vyYQAiIiJ0Bnd4e3uLzirFRVhYGL799ltwzmFra4tDhw4ZMcemjY+PDwoXLpxqKccaNWrA29sbAAW45RRBQUFieeZmzZrh8OHDOgEh9+/fx/Lly2Fvby+W6Lxw4QIAcqRv6LqQh/DwcLRq1UoETnt5eYl6qvLMePz4MVq3bg3OOYoWLYpr164ZM8smS3BwMMqWLQvOORo3bozdu3fj+fPnYvuVK1fw008/oVChQuKaMTMzw/Hjx42Ya9MlKCgIZcqUAeccDRs2xNatWxEaGiq2Hzt2DOPGjRPPDAsLCzg7O4vrg+5h+kNpUwwdOhQqlQodO3bEo0ePPvg4FBiafciFPJALeSAXchERESH6AJ2dnT8qMFRJm5CQgNWrV8PR0RHTp0/P0fMwBciFPJALeSAX8uDr64vSpUuDcw43NzeMHj0ahw4dwvHjxzFy5EjRT8I5R//+/XUmpNL2dOTIETRt2lQ8v4cPHw7gv/YgDTLPGuRDHsiFPJCLnCejoNDDhw9DrVajaNGiqFixIoKCgkTalGV5+/ZtNGjQAJxzFClSBEuWLBH97ETWIBfyQC7kgnwQxoQC2AmCICQkKioKX331lQiCu3fvnhj9rFQc5s+fj5o1a4oGZIcOHXDhwgV6+OsZPz8/Meth5cqVMXDgQJw7dw7Hjh3D9u3bUaJECdHZ26FDB51AIEK/PHr0CG5ubuCco0WLFjh69CgiIyMRFRWFwMBA9OvXD+XKlROzhW7fvh0ABfgYgsDAQNG51bx5c+zfvx8RERFISkrC48eP8c0338DZ2Vk0TPz9/Y2dZZPGx8dHzFxsaWkJZ2dn0aGoPfs3YXh8fX1FQGLRokVRrVo19O/fH3369IGLiwvy588PzjnKlSuHlStX4s2bN8bOsslC14U8BAQEoFSpUqJeu2vXLoSFheH169fw9vZGq1atxECDunXr4smTJ8bOssni5+eHChUqgHOOAgUKwMnJCe7u7mjVqhWsrKxgY2MDzjkcHR1Ru3ZtESxNL5sMg5+fHypVqiRmVndwcECNGjVQu3ZtcM5hZWUlBsl2795drMxFdVvDsG/fPlhbW4NzjpUrV+qs+JTZNUCBofqFXMgDuZAHciEPnp6eqFSpEk6cOCE+UyZeUMgoMFQ7XUJCAm7dupUzGTdByIU8kAt5IBfyEBQUhK5du6Jo0aLifYWy0pny069fvwyDQps3bw4zMzPky5cP7dq1Q3BwMJ48eYLXr1+nuQ+RPuRDHsiFPJAL4zBz5kydoFDtCcB69eoFlUqFFStWIDY2NtW+V65cQe3atWFhYQHOObp27Uptu2xALuSBXMgF+SCMAQWwEwRBSIr2LIn16tXDkCFD8Ouvv2LIkCH45JNPdBqQffv2haenJwUzGIiAgAA0bNgQ5ubmonOXc458+fKJgJNq1arhzp07xs6qyaM9oMDR0RHlypVDjRo1xBJEip9169YhJibG2Nk1aXx9fUVAooODA1xdXeHu7o4iRYoIF+bm5mLmVgp+Myze3t4iWLdKlSo4fvw4BUcbicDAQLRt21Z0/CrPDOVfNzc3rFu3DhEREcbOqslD14U8aM/qkz9/fjg5OaFy5co6L0VsbGxo9vUcIDg4GH369EGVKlV02hPKT8OGDbFkyRIx+IzaF4YlJCQE3377rc7AZOWnQIECaNOmDQ4cOCAGdlB9yrDMmDFDlP/SpUsRHBwstqVX9ikDQ7t3746XL19muA+ROeRCHsiFPJALedDub9JoNDplOXv27AxnNU4PGmT7cZALeSAX8kAu5OH169e4d+8eNm/ejF9++UWsHMs5x1dffZVhUKi7u7t4H6UMcFb6Ft3d3bFp06Y09yXSh3zIA7mQB3KRs8yfP1+UVcqgUADYvn27KM/p06fj+PHjePfuHY4fP45ly5aJgFDOOVq3bo2wsDAA1H/7MZALeSAXckE+CGNBAewEQRAS4+fnp9NY1H7gm5ubo1y5crSEYw7x9OlTTJ8+HQ0bNtQJLCldujT69OmD+/fvA6AXgDlBYGAgOnToIALZlR97e3s4Ozvj6NGj5CGHCAwMRLt27VC8eHFwzmFmZgbOk2c7LlCgAP78809jZzFP4e3tjUKFCoFzjlq1amHPnj149+6dsbOVJwkPD4eHhwd69OiBsmXLwtraGo0bN0b//v0RFBSU5qh0wjDQdSEPgYGB+PTTT8XgJ+WFhoODA6pWrSqC16kjy/C8ffsWgYGBWL58OaZMmYKRI0dizZo1OHjwINRqtahHUX0qZ4iOjkZYWBi2bduG5cuXY/ny5fDw8MCNGzeMnbU8g/Z9Z8KECaJ90aVLFyxcuDDd/QICAjB+/HjRTu/Tp0+mA6VSBhERupALeSAX8kAu5CO9MtqyZQsKFiyYpcDQrNZ5yUfGkAt5IBfyQC7kZMqUKeIZ/uWXX2ZpRmPOOdq3b4+5c+fi9OnTWLJkCT7//HNxnNmzZ4v9yMWHQT7kgVzIA7kwPL6+vnB0dETRokVx+PBh8bl2+U6aNEnn3beLi4tOX7qzszN69+4tgkJpcMDHQS7kgVzIBfkgjAUHAEYQBEFIy6NHj9j27dvZ+fPnWWBgIMuXLx+ztbVl33//PatRowZr0aIFY4wxjUbDVCrVBx8fAOOci/9rNBrGOdf5LGWavEpiYiJLTExkx48fZ/Hx8SwqKoq1adOGFStWjNnb21M55SCvXr1i3t7e7MSJEyw+Pp7Fx8ez9u3bMzc3N1a2bFljZy9P8eLFC3bp0iV26NAhFhYWxjQaDXN3d2c9evRgNWrUoOsih/H19WXu7u7s5cuXrEyZMmzjxo2sXbt2H/V8IPTDu3fvWHR0NCtatCgzNzc3dnbyJHRdyMOrV6/YrVu32B9//MFev37N1Go169y5M2vevDmrUKHCR9dnCf1CHuQiKSmJmZmZGTsbJo92Oa9cuZJt3ryZBQQEMAcHB3bgwAHWvHlzned4YGAg27JlC1u9ejVTq9WsYsWKbPny5axixYqMc85UKhUrWLAgs7S0ZGq1mtna2jJLS0v2/v17li9fPvKaAeRCHsiFPJAL+YmOjmZ9+/ZlJ06cYOXKlWMLFixgPXv2ZIyl3feq1LVCQkLYo0eP2NmzZ9m7d+9Yvnz5WIsWLZirqyurWLEiY4zqAh8KuZAHciEP5MK4hIeHsxIlSjDGGPvmm2/Y8OHDWd26dRljuuV39OhRtnz5cnb16lWm0WjY8OHD2U8//aRzrIiICLZz5042ceJExhhjP/30Exs+fHgOnk3uh3zIA7mQB3KRcwQFBTFfX1/WqVMnxth/z2Htcp4/fz7z8PBgfn5+Ovt++umn7LPPPmM9e/Zk9vb29AzOJuRCHsiFXJAPwhhQADtBEEQuQKPRMI1Gwx49esTs7e2ZSqVi9vb2Ots/NMgk5T47d+5kISEh7Pr160ylUrG2bduyatWqsfbt2zPGKIidyD3Qd9V4qNVqZmZmJsqfXBgHX19fVq1aNVa4cGF26tQpVrt2bWNnKU+S3vefAkONA10X8kPPDONB9yW5oGvBeGh3qN+4cYPdv3+f2djYsM6dO7OCBQuKdIGBgWzr1q1s9erVLDExkRUuXJhFRkYyS0tLplKpmFqtZhqNhjk6OjJzc3MWGxvLChUqxAoWLMgSEhLY0aNHmYuLC117GUAu5IFcyAO5kJt79+6JNsaMGTPYnDlzGGMZ17O2bdvGduzYwW7dusUSEhLE55xzVrNmTTZw4EA2ZMgQxhgFiH4I5EIeyIU8kAvj4+XlxdatW8e++eYb1qhRI8ZYxkGhEyZMYEuWLBHplAFojDH29u1bNnr0aLZr1y7WsmVLtnfvXlakSBHjnFguhXzIA7mQB3KR86R8DmuXt6+vLwsMDGQPHz5khQoVYkWKFGFt27YV/YbUXtMv5EIeyIVckA8ip6AAdoIgiFyAvoMYlIrF27dv2cGDB9kff/zBTpw4wVQqFdNoNIyx5I5IBwcHNnjwYDZ//nyD5CO3Q+VhXLTLX6nOkA/jkPJaoGvD+Dx8+JCFhYWxevXq0azfBPH/0HUhB/TMIAhCZjLrWE8ZGPr111+zOnXqsIkTJzK1Ws1KlCjBoqKiWFxcHLOxsRGrRTHGmJmZGUtKSmLW1tbM29ububi45NBZ5U7IhTyQC3kgF/ISHh7Omjdvzp49e8bWrl3LBgwYkCqgU9vflClTRMBPsWLFWKNGjVj58uVZWFgYu3btGgsODmaMMTZz5kw2e/bsVPsT6UMu5IFcyAO5kIP4+HhmZWXFGPuwoNC0BgfMmTOHzZkzhxUsWJD9+++/rFy5cjl3IiYC+ZAHciEP5ML4ZPY8/djnbVp98DQALWPIhTyQC7kgH4QhoLf2BEEQuYCMgnoyWuIxLZSHfFhYGBs3bhy7evUqCw0NZYwxVqRIEVarVi1mZWXFwsLC2D///MMWLlzI4uPj2bJlyyi4KAVUHsZFu/zJhXFJWf7kw/i4uLhQwAFBpICuCzmgZwZBEDKTsi2t3d4OCgrSCQzt2rUr27BhA9u/fz9Tq9WsbNmy7PLlyyw+Pp5FR0cza2trFhsby169esXMzc0ZAPb69WsWHBzMgoOD6ZmUCeRCHsiFPJALebGxsWHVq1dngYGBbMeOHaxNmzasdOnSYrt2f+3EiRPZ8uXLGWOM5cuXj02cOJGNGTNGpL1z5w77/fff2dKlS9ncuXOZnZ0dGzduHAWGZhFyIQ/kQh7IhRzoKyiUMcYsLCwYY8nBpjExMTmQe9ODfMgDuZAHcmF8MmrzpbU9K2gf49y5cywoKIgNHDiQmZmZ0QC0DCAX8kAu5IJ8EAYBBEEQRK5Fo9GI34OCgsTvarU6zfTK548fP0adOnXAORc/8+fPx99//y3SPnz4EGvXroVKpQLnHBs3bjTMSeQhkpKSjJ0F4v9J7xohch5yIReJiYnGzgLx/5ALeSAX8kAu5IHqtXJB9SnD4+vri4kTJyJfvnzgnKNHjx54+fIlAGDbtm3gnMPJyQlv3rxBUlKSTltd+/eMPiOyBrmQB3IhD+RCDoKCglCmTBlwztG2bVuEhoamSrNkyRLRF1ukSBFwzlGsWDGEhITopHv79i2WLl0KzjmcnZ1x/fr1HDoL04BcyAO5kAdyIR/79+9Hq1atYGZmBs45Jk6cKLZl1Ma7e/cuateuDc45OnTogNjY2JzIrslDPuSBXMgDuTAtrly5gt69e4Nzjq+++srY2cnTkAt5IBdyQT7yLjREgSAIIhejjEK7cOECa9u2LZswYQJjjKU52lkZBf348WPWokULdufOHcY5Z8WKFWOnTp1i06ZNYy1bthTpy5Qpw7755hs2ePBgxjlnFy5cyJFzMmVUKhXTaDTs2LFjLDw83NjZydMoS2P/8ssv7NmzZ8bOTp6GXMiFubk5U6vVbMWKFezJkyfGzk6ehlzIA7mQB3IhD1SvlQuqTxkeX19ftmzZMhYXF8e++OILtnXrVlaoUCGdNBYWFkyj0TDGMl8tilaf+HjIhTyQC3kgF3Lg6urK/ve//zFHR0d29uxZNnHiRBYVFSW2X7hwgf3000+MMcaaNWvGZs6cyVq0aMFevHjBGjVqxAICAhhjyTMhFyhQgH3xxResYcOG7MmTJ+zBgwdGOafcCrmQB3IhD+RCLqKjo9nPP//Mzp8//0EzGj958oTt27ePBQYGMsYYq1+/PsuXL1+O5dtUIR/yQC7kgVyYFjdv3mTz5s1jx48fZ4wxduPGDXbv3j0j5ypvQi7kgVzIBfnI4xg7gp4gCILIHqdPn0bTpk1haWkJzjkWLVqUKo0yQ+Ljx49RoUIFcM6RL18+1K9fHzdv3gSQ/uxK69atA+cclpaWePjwoeFOJI+watUqWFhY4LPPPsPjx4+NnZ08zbhx48A5R/fu3cmFkSEXcqGMbP7888/Jh5EhF/JALuSBXMgD1WvlgupThufLL79Eq1at8OrVKwD/rQqhtJkrV66M+Ph4Y2Yxz0Au5IFcyAO5kAcfHx9Uq1YNU6ZM0fl8/fr1sLa2BuccK1asAAAEBgaiRYsWYpZjf39/AP/10w4aNEjMqp+UlESrrnwg5EIeyIU8kAt58Pb2hp2dHYYPHy4+y6gMnzx5gkWLFsHR0RGcc7Rr105so9VTsg/5kAdyIQ/kwnQIDw+Hk5MTOOdo0aIFjhw5gvfv3xs7W3kSciEP5EIuyEfehgLYCYIgcjGxsbFo1aqVWNaxUqVKuH37tk4apUEYFhaGxo0bg3MOa2trNGvWDHfu3NFJo43youvYsWPInz8/HBwcKIBdD9y+fVv4+uKLLyi4xIjcuHFDLHtHQXDGhVzIxeXLl8WgKPJhXMiFPJALeSAX8kD1Wrmg+pTh0H45GxMTI35X2tEbNmwA5xzly5dHVFRUjucvL0Eu5IFcyAO5kJPIyEjxe1JSEuLj49G8eXNwztGyZUudtL6+vmjZsmWqAFEAmDBhAjjn+Pbbb3Ms76YGuZAHciEP5EIewsPDxe8fEhTatGlTREREZLof8WGQD3kgF/JALnI/ykSH/v7+6NSpE/bt24e4uDgj5ypvQi7kgVzIBfkgVMaeAZ4gCIL4ePLly8c2bNjAGGOsaNGi7I8//mC1a9fWScM5Z1FRUWzOnDnszp07jDHGqlSpwn766SdWq1YtBiDNpYHNzc0ZY4wdOXKExcbGMgsLC1riK5sAYLVr12aXL19mlpaW7I8//mCjR49mT548MXbW8hwajYY1aNCAXbx4kVlYWLCDBw+SCyNBLuRCo9Gwpk2bsvPnz5MPI0Mu5IFcyAO5kAeq18oF1acMi5mZGdNoNIwxxmxsbMTnSjtaWTZbo9GwxMREplarcz6TeQRyIQ/kQh7IhZw4ODgwxpLLXaVSMQAsLi6OMcaYq6srY4wJF5UqVWKbNm1iLVq0YC9evGDNmzdnT58+ZYwx9vfffzPG/nMLIEfPwxQgF/JALuSBXMhD0aJFGWOMJSUliWd2Sp49e8Z27drFli1bxl6/fs0aN27Mdu/ezQoXLswApLsf8eGQD3kgF/JALnI/KpWKqdVqVqFCBbZv3z722WefMSsrK2NnK09CLuSBXMgF+SAogJ0gCCKXU7lyZRYQEMDOnTvHqlWrprNNeYF1/fp1duHCBRYfH8/s7OzYhg0bWO3atdMNXlf2CwwMZN7e3owxxqpWrcpsbGzENuLD4ZwzjUbDmjRpwv7++29mbm7ODh48yIYPH07BJTmMSqUSLs6fPy9cDB06VHTAEzkDuZALxUfjxo11fAwePJh85DDkQh7IhTyQC3mgeq1cUH3K8KhUqbtQlbaxEuxjZWXFbGxsxGBwwjCQC3kgF/JALuRFcWNmZsbs7e0Z55yVKlVKZxtjqQNE69Spw4YNG8YePHjAihYtyr755huj5N+UIBfyQC7kgVzIQ0ZBob/++qtOUKiHhwdzcXFhjLE03+8R2Yd8yAO5kAdyIT8ZDSRT2oE2NjbM0tIyp7KUZyEX8kAu5IJ8EOlBAewEQRAmQLly5VjVqlVTfa50Mv7yyy/Mx8eHMcbYrl27WKNGjTIMXlf227FjB7t27RpjjLE+ffowW1vbNF+KEVlHO/DqwoULjDHGjh49yn7++WeWkJBg5NzlLdJycfz4cXbkyBGakSyHIRdykZaPEydOsKtXr9IgphyGXMgDuZAHciEPVK+VC6pPGY/ExETGWLIDai8bF3IhD+RCHsiFHJibmzNnZ2cGgJ04cYK9ePEilQ8lQNTd3Z1FRESwbdu2sYSEBNa4cWNWunRpxhgFAOkDciEP5EIeyIWcZBYUSuQs5EMeyIU8kAt50I77UAYxJyUlGTNLeZacdkEr4KSPMa4L8pE+OelD8UD3wdwD9VgSBEGYONeuXWNHjx5ljDE2ZMgQ1rFjR8ZY2p2JAETH5JYtW9iiRYsYY4x16tSJffbZZyKNNlFRUSw2NlbnGETGaAeXXL16lbVv357VrVuXRhIagZQuBg4cyOrVq0czkhkBciEX2j6uXbvG5s6dy+rVq0cBD0aAXMgDuZAHciEPVK+VC6pP5SzKPSdfvnyMseS28Pv377PdMa7dpqb2ddYgF/JALuSBXMiDUk49e/ZkJUqUYM+ePWPXr19Ps/wqVarENm/ezJo2bcoSExNZ+fLl2YQJE1jx4sVzOtsmCbmQB3IhD+RCTh4/fsx2795NQaGSQD7kgVzIA7mQB+2g0L///psNHz6c+fv7MzMzM5rwJYfJSRfR0dGMMRpAmB45fV1ERkayiIgIxjmnoOk0yEkfr1+/Zps3b2ZeXl7MzMyMfOQWQBAEQZg0+/fvB+ccnHPs2rUr3XQajUb8vnfvXhQvXhycc5QoUQIbN25Mc5/79+9j7NixGDt2LC5cuJDmsYj0SUpKAgC8ffs2W8eh8s4+iouYmJhsHYdcZB9yIReKj4SEhI/aX/FAPrIPuZAHciEP5EIeqF4rF/qqTwHAmzdv8NNPP2H37t2IiIgQn5Or/9i6dSs456hatSri4+OzVTZqtTpLnxFpQy7kgVzIA7mQh4iICHTq1AmcczRr1gyenp7ppvXx8UGnTp1w/PjxHMxh3oFcyAO5kAdyIQ9qtRqrVq0S7/WaNGmCkJAQY2crz0I+5IFcyAO5kJOLFy/i66+/Fl5CQ0P1enylv1Gj0YjflX8JXQztIjg4GFOmTEG/fv1w69Yt0SdPPlJjaBcA8PLlS8ycORPVqlXD7du3AVBfSXoY2odGo8GhQ4fAOYe5uTkePHgAgHzkBjhA02QQBEGYMmvXrmWjRo1iVapUYdeuXWMFChTQGeHGGGMajUbMzHTgwAE2depUFhwczDQaDRs8eDDbsGEDY4yl2u/w4cOsR48ejDHGqlWrxgYOHMhGjhyZZloicz6kzLSdMZY8qvPNmzfs1atXzNbWlpUtW5ZZW1t/8HGJDyeli8ePH7Nnz56xV69esaJFizJXV1fm6OjIGCMXhoZcyIW2D7Vazfz8/Ji/vz978+YNK1u2LCtXrhxzdnZmjJEPQ0Mu5IFcyAO5MCxUrzUN4uLi2IEDB1j//v0ZY4wNHDiQdenShXXu3JkxRj60+eGHH9jRo0fZ8+fPmZmZ2UcdIykpSew7bNgwZmNjw5YtW8YYo7L+EMiFPJALeSAX8hAcHMxatWrFHj9+zJo1a8Zmz57N6tevz+zs7FLViWJjY5mNjQ1jjMrYEJALeSAX8kAu5MHPz49VqVKFValShf355596m9FYrVYzc3PzVD6JjCEf8kAu5IFcyEVwcDAbPHgwO3v2LAPAKleuzFauXMk6dOiQ7WOnfM5HRkayhIQEVrx4ceGJfP2HIV0wxtjLly/Z2rVr2bJly1hcXByrWrUqc3d3ZxMnTmQuLi46bfe8jqFdMMbYq1ev2NatW9mOHTtYQEAAK1CgALt06RJzc3MjFynICR/K3/n222/Z5cuXWcGCBdmlS5dY9erVyYfs5EiYPEEQBGE01qxZA845HB0dERgYmGq79sxLHh4ecHV1hYWFBTjn+Pzzz8W29EZsbtu2DZ999hlUKhU455g2bVqaxyb0h7aLK1euYMWKFShTpgwKFy4MCwsLqFQqdO/eHevWrRPpyIXhOXToEMaNG4eCBQvCxsZGjBxt164dVq1aJdKRC8NDLuRi8+bN6NOnDywtLWFmZqYzK8eyZctEOvJheMiFPJALeSAXxoXqtXKTkJCAX375BY0bNwbnHCqVCuXKlcPMmTNFmrw+s4/27C2bNm3CkydPsv0dnT59OooVKwbOOfr165fdLOYZyIU8kAt5IBdy4uvrC2dnZ3DOUblyZUyYMAEBAQHGzlaehFzIA7mQB3IhDyEhIXqdlfLp06dYtWoV7t69C4Dach8K+ZAHciEP5EIuRo4cCc45GjdujOPHj+P9+/d6O7avry9Wr16NTz/9FOXLl0exYsXQpk0bzJo1C8HBwQBohmNtDOkCAE6ePInFixejfPnysLKyAucc1apVg5eXFwByoY0hXbx8+RKLFi1ChQoVwDlH/vz5wTmHvb09zfydDoa+NhSCgoLQvn178pGLoAB2giAIE+fBgwdwdXWFo6MjDh06JF5UJSYm6qT76aefUKBAARG406lTJ7EtsyWCPT09MXnyZBHEPmrUKLGNAkwMx5IlS1CtWjUx4IBzDmtra7EkDuccY8eOFenJhWGIi4vDxIkTUaBAAeHCwsICBQoU0HExZswYsQ+5MAzkwvgo5alWq+Hn54eBAwfqlH3BggVRpEgRqFQq8dno0aNT7U9kH3IhD+RCHsiFvFC9Vl4SEhIQHh6OwYMHiyB2zjkGDx5s7KxJgz47vufPnw+VSiXa5SNGjKDv+wdALuSBXMgDuZCTwMBAtGnTBvny5RN1n2XLliEsLMzYWctzkAt5IBfyQC5Mj+fPn2P16tWifa0EhxLGgXzIA7mQB3Lx8WgH+q9YsQK///474uLiPvp42m28Z8+ewcPDA4UKFRL1AqVvUPmpUqWKCJzO64MO9O0iM0JDQ7Fs2TLUrVsXnHMULlyYXPw/hnaRMnjdwcEBJ06cQJcuXShoOg1y+toAkts0FMSee6AAdoIgCBPn1atX6NixIzjncHd3x7///isqAxqNBn///TdGjBih09Do3bu32D9loLs22g2Y169fY926daLRMm/ePMOdVB7n5cuXGDJkiI6z1q1bY+bMmbhy5Qp27tyJ8ePHCxezZs0ydpZNkqSkJNy+fRt9+vTRcdG9e3ds374d3t7eOHjwIKZPny5czJ0719jZNknIhRwoz4T4+HgcPnwYHTp0EC6KFCmC7777DufOncOTJ0/w119/Yd68ecLHggULjJx704JcyAO5kAdyISdUr81dzJ8/H2XKlBGBi+RD/zx8+BCOjo6ifPP6yyZjQi7kgVzIA7nQL2FhYVi9ejWaNGkCS0tL7Nu3D1FRUXo7Pg0uyDrkQh7IhTyQC9MhKioKc+bMEc9wa2trzJo1CwkJCcbOWp6EfMgDuZAHcpF9tOM5shOcqf18vnr1KoYPHy5m+La1tUXJkiUxfvx4LFq0CN99950InHZycoKfn1+2zsFU0JeLzFBcvX//Hrdu3ULbtm3BOUeNGjX0ujJCbkbfLpQyTyt43dPTE0DyagXt2rWjoOk0yKlrQxsKYs89UAA7QRBEHiAwMBClS5cG5xxVq1ZFt27dMGnSJLRu3Rqurq4iWKRChQoYN26c2C+j4PW0ePv2rQj2cXV1xfnz5/V9KnmeoKAgfPXVV8JZmTJlMGnSpFTpoqOjsXbtWqhUKpQoUQLnzp0zQm5Nl8TERPz999/49NNPhYvGjRtj5cqVqdLGxMRg9erVMDMzQ7ly5XDjxg0j5Nh0IRdyoDTa4+Li8Msvv6BJkybCR48ePbBnz55U+8TGxmLZsmUwMzND9erVxawARPYgF/JALuSBXMgJ1WtzF8+ePcP8+fPFbEtVqlTBtm3bDD5TSl5C6TgPCAjAwoULqSPdiJALeSAX8kAuDINGo0FCQgLu37+vt6WzQ0JC8PjxYwD0UvZDIBfyQC7kgVyYDgsXLgTnHEWLFsWsWbPw8OFDY2cpT0M+5IFcyAO5MD7aweunTp1C165dxWqZtWvXxsyZM3UCoxMSEuDp6YmWLVuCc47PP/8cb9++NUbWCQC3b99G9erVYW5ujtmzZyMpKYkGnRuA8PBwLF26FGXLlgXnHI6Ojrh//z6A/+q2FDQtF4GBgTqDClL6IuSAAtgJgiDyCP7+/qhVq5YYJav8KLPn9e/fH3v37hXpM3pgx8TEiN9TzpTx77//okyZMlCpVGkGkBIfT2hoKHr16iXctWzZEjt27BDbtRsiGo0G/v7+qFKlCjjnWL9+vZFybXokJSXh4sWL+OSTT4SLvn374uTJkyKNWq0W14ZGo8GDBw/g5OQEzjl27txprKybHORCLuLj47F7927Uq1dP+Bg7dqzOUo8pny03btyAnZ0dOOf4448/cjrLJgu5kAdyIQ/kQi6oXpu7CA0NxcyZM2FrawvOOapVq4Y9e/bodQZGIpkPHUROGA5yIQ/kQh7Ihf7R9wzEISEhGDp0KEqXLo1r167p9dimDrmQB3IhD+TCtFiyZAlGjhyJR48eGTsrBMiHTJALeSAXxkP7mX/ixAm0bt0a5ubm4Jyjbdu2OHPmDKKjowHo9qEnJSVh9+7dsLS0RLly5RAcHJzjeSeSiY+PR//+/cE5R7NmzYydHZMkPj4eq1evRvHixcE5h5WVFY4dOya2aQ8Y0A5iz58/v857KCLnCQoKEpMhFixYEPfu3QNAQewyQQHsBEEQeYgnT55g7dq16NatG5o0aYLatWtj/PjxOHjwoE66jEZj+vv7Y8SIETh69Gi6abp27QrOOerXr4/4+HhaDjIbKC5iYmLQr18/EeTTqVMnUSHWTpeSVq1agXOObt26ZZiOyBzle+zt7Y0uXboIFz/88AP++ecfkS69MlaWURs0aFCG6YjMIRfyodFocOrUKTRr1kz4mDFjBp48eaKTJi2UgMSZM2cCIB/ZhVzIA7mQB3IhB1SvzZ2EhoZi9uzZInjdzc0NHh4eFLyeDbS/u9RWNi7kQh7IhTwY2gX5NRwBAQEYN26cWIXT1dUV4eHhxs5WnoRcyAO5kAdyYTy0A3NoZlzjQz7kgVzIA7mQhwsXLqBTp04ieL1z586ZBqU/fPgQjo6O4Jzjt99+y6GcEtoo19CaNWvAOYeNjQ38/PyMnCvT5OHDh+jduzeqV68OzjkaNWqECxcuAEjuT9Hu8wgKCkKbNm3AOceYMWNoUoAcJmVw+o4dO8Qkh7a2tiKInZADc0YQBEHkGUqWLMmGDx/Ohg8fzpKSkphGo2EWFhap0qlUqjT3B8Du37/P1q1bx9atW8f279/PPv/8cwaAcc5ZUlISMzMzY1ZWVowxxhISEhjnnHHODXpepgoA4WLq1Kls9+7djDHGOnTowEaOHMnatWuXKp32vpxzplarGWOM2djYMMYYufhINBqNKOMlS5aw48ePM8YYGzBgABsxYgSrUaMGYyy1CwCMMcaioqJYbGwsY4wxe3t7xhi5+FjIhVwoPl68eME2bNjArly5whhLvmcNHz6cFS1aVKTVLmdlP19fX/b69WvGGGNFihRhjKX/DCIyhlzIA7mQB3IhD1SvzZ08evSI7dixgy1fvpzFxMSw6tWrs8mTJ7OuXbsyW1tbY2cvV6Jdl3358iUrXLiwaEcTOYuhXWgfP63/E/+RE9eF8ixJ628S/5ETLhQPUVFRzM7Oju6BeiQoKIitXLmSMcZY2bJl2Y8//kjfcyNBLuSBXMgDuchZtOs+ZmZm4v8FChQwcs7yJuRDHsiFPJAL+QgODmY7d+5kf/31F0tKSmKdO3dm27Zt0+lDT4tnz56xN2/eMMYYMzenEERjoLSpX758yRhj7P379ywuLs6YWTJJNBoNK1OmDNu+fTv7559/2NKlS9mpU6fYJ598ws6dO8eaNm0q4hEYY8zV1ZVt3LiRnTp1inXu3JmujxxGebYcO3aMnT9/nq1fv148d2JiYtiECRPYkSNHmLW1tZFzSjDGGLUMCYIg8hhKpcnMzIxZWFjoVKIyg3POWrduzQYMGMAYY6xnz55sy5Yt7NWrV+KYHh4e7MCBA4wxxurUqZNmgDyRNZQK1KZNm9hPP/3EGGOscePG7Mcff9QJ8kkreIdzzk6ePMkuX77MGGOsZs2aOsckPgylM33evHns119/ZYwx1r17dzZo0CARMM1Y6vJVBnAcP36c+fr6MsYYq1ixYpppiaxBLuRCezDBsWPHGGOMDR06lA0cODDDTi1lvzNnzrDw8HDGGGPOzs4Gzq1pQy7kgVzIA7mQB6rX5j4oeF3/JCUlifvLiBEjWPPmzZmvr6/oTCdyDkO70A4CvnPnDmPsv2cLudYlJ64L7efLpUuXWEBAAFOpVCwpKUkvxzcVcvIetXfvXvb111+zBw8eMDMzM3KhJ9q3b89GjRrFzM3N2ciRI9l3333HChcubOxs5UnIhTyQC3kgFzlDVFQUY4yJCacUqP1sHMiHPBjSRcq6MrX5MiYnrwuNRqP3Y5oiSjmdPHmSeXh4MLVazdq1a8fWr1+fYR+64i84OJjZ2NgwlUolJg4jcgbt+82dO3fYkSNHGOecVapUiTk5ORkxZ6aJSqViAFj+/PlZy5Yt2aZNm1j37t1ZYmIi69evH/P09Ex1L6tQoQIbOnQoK1u2rJFynTdI+ex98uQJu3TpEvv000/Z4MGD2erVq1liYiJLSEhgNWvWZAsWLGBLly6l4HWZMOT07gRBEETuIeUSKhnx8uVLfP/99+Ccg3OOdu3aYcCAARg+fLj4zNHREevXrzdgjvMG/v7+aNOmDczMzODg4IANGzaIbRktuxwWFoZBgwbB0tISDg4O+OuvvzLdh8iYy5cvo2LFiuCco0aNGjh48KDYllG5+vj4oF27dlCpVKhSpQp8fX1zIrsmDbmQi4MHD8LKygqcc7Rv3x5Xr17N0n5Xr15F+fLlwTmHu7s7LQ2pB8iFPJALeSAX8kD12txDaGgoZs+eDVtbW3DO4ebmBg8PD0RFRRk7aybBpEmTUKZMGXDOYWFhgYiICL0cV7km6NrIOoZyobB161ZUqlQJHTt2xMGDB8Xxk5KS9Pp3TAFDXxcAcP78ebi6usLe3h53794F8GF9YXkFQ18XMTExmDRpkliy+cGDBwDIRXbRvq9cu3YNYWFhRsxN3oZcyAO5kAdykTM8f/4cs2fPxvTp08Vn1DYwHjnhg/qqskZOuFCr1Trvm+jaS5uccHHt2jXMnj3bYMc3Ve7cuQMbGxtwztGgQQNcu3Ytw/RKub58+RKVKlUC5xzVqlVDXFxcTmQ3z6Fdl0qr7XzlyhUMGjQIdnZ24JyjW7duOZk9kySrfXc3b95EjRo1YG5ujtGjRyMhIYH6/XIY7fv88+fPceDAATRo0AAlS5YUsWucc3Tp0gWzZs1CTEyMEXNLpAetT0AQBEEwjUYjlhb6/fffWePGjZmzs3O6o50LFSrERo4cyTw9PdnNmzfZhQsXWEJCgthuY2PDunfvzoYMGZIj+TdlHjx4wC5dusQ0Gg3r3bu3KNP0lrvG/88sduHCBXbw4EGWmJjI6tSpwz755BPGGM3skB0ePHjAHj58yBhjrFu3bqx79+6MsfRnC2Usefmh48ePsxs3bjAAzM3NjVWqVCmnsmyykAs5UMr73r17YoaGzz77jDVu3DjTfZ88ecL27t3Lnj9/zhhjrHbt2rQ0ZDYgF/JALuSBXMgH1WtzBzTzumE5evQoW7p0qfj/0KFDmaOjY7aOqVwryjURERHB4uLiWFBQEFOr1ax+/frM3Nyc2drapnu95UUM4UKb27dvs+PHj7PAwEDm7+/PPD09WaNGjdjChQtZ+fLlWVJSkuiHyesYyoV2+/D8+fNs3Lhx7Pnz5ywuLo61bNmSXbp0iVWvXp1caGHo64Kx5D7DH374gd26dYudPXuWNW/enFzoAZVKJe7xjRo1MnZ28jTkQh7IhTyQC8Pz7Nkztm/fPrZu3Tr26tUrplKp2Jw5c/TWblbqVRn1vxP/YWgfcXFx7OzZs2zy5Mls5MiRrGnTpqxq1aqMsYzfkeRFDO2CseR+rQsXLrAJEyawGjVqsB07dtD1kgY54SIyMpL169ePBQUFscjISLZmzRpykQkAmFqtZps2bWLv379nxYoVY1999RWrVatWhvtwzll0dDSbN28eCw4OZvny5WOdO3dmFhYW1Pf0AWT03VSr1eK9RmJiok65x8XFMbVaza5du8b8/PzYzp072atXr9j79+9ZrVq12Nq1axljuv3uKdvb1P5On9DQUBYXF8cqVaqU6fe5Vq1azM3NjT148ID99ddfbPHixczCwiIHc5t3Udwo18ry5cvZlStX2KlTp0QaR0dHVqdOHfbll1+yPn36iBnXtb//dG1IQo6GyxMEQRBSo8yqfv369Synt7e3x9SpU+Hi4oLixYujU6dOmDt3rhjpRiMMPw6NRoP4+Hh07twZnHPUqVNHzHqV3qxUyuf379+Hk5MTOOeoUKECbty4keF+ROa8ffsWdevWBeccLVu2FJ9n9v0+duwYihYtKmYKf/r0aZb2I9KHXMhFWFiYmJ2va9eu4vOMZrV4+/Yt1q9fD0dHR3DO0bBhQ7x//z7T/YiMIRfyQC7kgVzIAdVr5UGp97x580bMNKL9vaaZ13OGIUOGgHOOqVOnZrsuqr1/eHg4tm3bhnr16qF48eJidhk3Nzd8+eWX8Pf3B0DXjzb6dJEWXl5eOH78OJo3by7aIi4uLvD09ARAbRFt9O1C+972999/o06dOlCpVLCxsYGrqys457C3t6fZv9PA0NeFQmBgINq3b08usgmVlzyQC3kgF/JgaBfURk9GrVZj7dq1UKlU4JyjePHiGDFiBF6/fq2XY2vz6NEjPH/+HI8fP9apJ5CL/zCkD4Xz58/Dzc0NnHOYm5ujdevW2LJli9hOPpLJCRdJSUk4e/YsPv30U9EGHzZsmNhOLpLJCRdAso9169bB0tISnHMMHz5cbCMX6RMTEyPeu9apUwfPnj3LdJ+4uDhs374dlStXBuccjo6OuH37dg7k1jS5evUq5syZg88++wwdO3ZE165d0aZNGzRq1AhNmzZF/fr1UbVqVVSpUgUuLi5wdHQU7y+0f+rWrYvLly8D0P3Oaz/PJ0+eTKvSZUBgYCAGDhyI3r17i8/Su38o5bdr1y5x38nqCsDEx5Gynyo4OBjTp09H8+bNda6FcuXKoVWrVrh69aqICVGga0NOKICdIAiCAAC8e/cO9erVA+ccX3/9NV6+fJlu2oSEBADA9u3bwTnHiRMn8PbtWzx9+lTnYU4vY7NHXFycaDB26tQpw+VslHIPCQlB6dKlwTlH0aJFMWvWLLx58yansmyyvH79WiyBNnDgQCQmJmZacb1w4YIIuCpTpgx27NgBtVpNnSTZhFzIxZMnT8QSXPPmzQOQcaMuJiYGv/76qwjgqVy5Ms6fP5/pfkTmkAt5IBfyQC7kgeq18vDPP//gs88+w65du/Du3Tvx+cOHDyl43cBo30eOHTuW7fuK9v4eHh7o1auXTkd9wYIFoVKpYG5uLgKnvby8AFBbXd8uUpKynREWFgYPDw80bdoUnHMUK1YMPj4+aabNaxjCRXrB67a2thg2bBg8PT1FgAkFTv+Hoa+LtKAg9o/D398fR44cEf+n8jIehnah3M/y+rMiKxjSRVrlT07Sx9DXRXx8vKhHAeRCwc/PD5xzWFlZYdasWXj06JHejh0TE4Off/4ZAwYMQNmyZeHk5ITixYtjwIAB+Pnnn0U6cvEfhvQBAC9fvsSOHTswePBg2Nvbi6DgiRMnijTkIxlDukgreF1pf1PgdGoMfV0oqNVqbNu2TVwX5CJzLly4AAsLC1haWsLDwwNAxvWfhIQEHDp0CI0bNxbf/T/++CNH82xKPHz4EO3atRP3jw/5sbKyAucc7u7uGDhwYJqDQrTrYuPHjxd9hvfu3Uu1nUjuR7K2tgbnHAcPHszSPmvWrBFOzp49m266zPpj6R6VPim/p2fOnMHChQtRqFAhce2Ym5vD3t4eP/74I86fP6/z7gNIXb50bcgFBbATBEEQAJIf2Bs3bkShQoXg4uKCI0eOZFqJWrp0KTjnWL16dZrHI7LHq1evUKNGDZiZmWH58uUAMq7YBgYGillGCxYsiJ49eyIwMDCnsmvShISEoFSpUjA3Nxedshl9x8+ePSsC5ooXL44JEyYgLCwsp7Jr0pALubh37x5sbW1hYWGBAwcOZJj29evX2LFjB4oVKyaCqNavX0+BcXqCXMgDuZAHciEPVK81PspM+A0bNgTnHLVq1cKePXsQHx+P58+fY9asWRS8ngPoq+Nb+zgzZswQAzw552jUqBF++OEHXLx4EX///TfWrVsnZqFxdXVFUFCQXvKQ28mplxBKWyUxMRGenp5o06YNOOdo3rx5lmY1ywsYykXK4PWhQ4ciLi4OQHLwBAVOp8YY509B7B9GSEiIeLH6/fff6/342gHTeX2wU2YY2sXbt29x+PBhXLlyRed6oD731BjShfYqszt27MCSJUtSbSP+IyfuUf/73/9gaWmJAQMG6HxOJA8emDdvHh4+fKiX48XHx+POnTto1KgR7OzsUgXNKcGhEyZMEPuQi//Qtw+FlM/nEydOYNiwYcLHmDFjxDbykYwhXKQVvL5mzRps376dAqczwFDXRUooiP3DuHTpEszNzZEvXz6cPn0aQOpyUv4fFxeHo0ePokWLFuK7P3/+fGo7ZJNRo0aBcw4zMzPY29vjhx9+wKBBg/DNN99g1KhRmDZtGsaMGYNp06Zh5cqVWL58OVavXo1Tp07h6tWroq8D0H1OaLcjxo0bB865CM6m9nfa+Pv7o1OnTrCwsED//v3x5MmTdNOq1WokJCRg6NChsLKygpWVFf79999U6VJeT6dPn8a2bduwYMECzJ8/Hzdv3sSLFy8A0KQjGZGUlIS///4bo0ePRoECBcR3OV++fHBwcMCiRYvEPUwhs9nzAbo2ZIEC2AmCIAhBeHg4unXrBs45GjduLJa1VtCuMPn6+sLd3R2cc0ybNi2ns5pn6NChAzjn6N27t85MlSmXZ7xx4wacnZ3BOYetrS3atm0rKlZE9lGr1aIxPnDgQLx//15s03bx6tUr7N+/HyVKlADnHEWKFMEPP/yA4OBgY2TbJCEXcvH+/Xsxy8K4cePS7SQJDAzEihUrUKRIEXDO4ezsjPnz54sGOZF9yIU8kAt5IBdyQfVaOfD29hbf9Vq1amHNmjWYMmWKCEig4HX50e44HzFihE4wyYgRI3Dv3j2d6yopKQleXl5o1KgROOcYO3YsrUZkRM6dO4eSJUuicOHC2Lt3LwB6OWUITp06hfr160OlUsHOzg5jxowRzx6lvFMGTit9YPRyKucJDAzEJ598IlzQbFdp8/DhQwwZMkSsUGNmZoaLFy/q5dhZuQ/Rc+M/DOkCSO7T2rhxIxwdHcE5x5AhQ3RmtCYX/2FIF9rB67///juaNGki+iNTpiEMf10o7N+/X9R9KSAxNYmJiXo5zrNnz7Bp0yYxsNzCwgLW1tYYOXIkFi9ejBUrVqB///4iOJTeEaaNvnykRcp3IRs2bBA+VqxYYbC/m1vRhwvt50LK4PW1a9cCoMDprGDI60IbcpF1Hjx4ABsbG3DORT+FNsr9JiYmBrt37xary3HOMX78eDx+/Dins2wyaN/LR44cKcp1+/btH3U87e92WgG65ubmaNCgAerVq0eBuhng4eGB/Pnzg3OOZcuW6bxXUspJcXfv3j0UL14cnHPUrFkzVTkq6V6+fInDhw/j008/FTPnKz/Ozs5o3bq1WGWIXOgSFxeHEydO4JNPPkG5cuV0yq5BgwaYNWsWvL29dfbJqAzp2pATCmAnCIIgdHj48CGqV68OzjlatmyJ69evIzo6WidNSEgI5s+fD3t7e3DOsXTpUiPl1nRRGhgrVqyAhYUFatasidu3b6eqIAUGBmLr1q0iSNfe3h4dO3bEnTt3jJBr00Sj0UCj0WD27NngnKNu3bq4d+9eKhf//vsvZsyYIQKCSpQogSFDhsDf399IOTc9yIV8JCQkiMZdgwYNcO/evVQdkGfOnME333wDBwcHcM5RtmxZLFmyhGac1DPkQh7IhTyQCzmgeq18+Pj4oHDhwuCco2TJkmJ2kRo1amD37t0UvC4x2i+2hg4dqtNhv3jx4nTTqtVqTJ06VdwPc+qFMZGamJgY1KpVSwzoIfTPmzdv0LFjR/FCsFy5cvjnn38AJM8kqv1CVzuInXOO+/fvGyvbeZ5Hjx6hS5cuqYLYaYDHf4SHh6NChQpiRY01a9boZYU55ZpQq9V48OABNmzYgLFjx+Lbb7/Fjh07cO3atVRp8zqGcqEQHR2NKVOmwM3NTcxyXKJECcybN0+kIRfJGPq6SEpKwm+//SYm8qHA6fQx9HWhoFaraYZjAxMcHIxZs2aJYKzixYvjq6++SjUg4c2bN1i3bh1UKhXs7e1x/PhxI+WYAIDY2FhMnz4dKpUK9evXh6+vr7GzZJKo1WqcOXNGTNLAOcfGjRtTtb+1A6dHjBghttF9KmdJ6WLYsGFiG7lIRqPR4NWrV+jYsSNUKhXGjRuX5sQjr169wrRp00T9VFnxge412Ue7j3z06NE695b4+HixLSkpSed7m9F3OL0AXXd3d/z55594+vSpuI9RoO5/aJfpokWLhIvVq1en+b7Iz89PDN4sUqQIVq5cCeC/clT+DQoKQr9+/VC+fHkxMNDc3Bx169ZFiRIlULRoUXDO4eTkBC8vLwDUF5KSmTNn6rTHOnfujHnz5iE+Pl6UVVbu63RtyAsFsBMEQRCp8PPz0xkpOGnSJNy9excPHz7En3/+iW+//VbMAFOzZk1EREQYO8smy+PHj0Vj0N3dHbt370ZgYCD8/f2xc+dOtG/fXgRcOTk5oV+/fqlmzif0Q2hoKKpUqQLOk5d737RpEzw9PXHhwgWsWrUKVatWFbMfurq6YsaMGQZfBi+vQi7k4uHDh6hUqRI452jSpAmWLVuGmzdvwsPDA9OmTUPBggVFYFy1atWwffv2bD03qGMxfXLSBXWeZAy5kAe6R8mDDPVa8vMfPj4+KFSokJgd0dnZGdu2bdN5MULIhfb3d9KkSciXLx8457CyshKzvaVMB/zXwX7w4EGYmZnB0dGR6sZGIiEhAQDQqVMnMZiAMAyPHz/GrFmz0KBBAzFA7fz58wBSv/QNCgoSM8gpaYicQanHxsbG4uHDhxgwYIAYeGBhYUHBEGlw//59VKlSBYsXL9Zbf2xiYiJCQ0PRrVs3VKxYUeelMOccLi4umDNnjkhP9alkDOFCG2WWv/Xr16N9+/Yi8GrUqFEiDblIRt8uUgavKytBcs4xYMAACpzOAENfFwo0q67hePjwISZMmCAmhnFxccHq1at12g/a/VBPnjwRKz1pPysI43DmzBlRlzp48KCxs2OSeHl56TwX+vbtK7Yp7T3gv/uUmZkZOOf4/vvvjZFdAslefv31V/HMGDx4sNhGz4z/WL9+vfheL1++XARtBgcH4/Lly2jQoIHot+WcY+bMmdS3pEe0g2PHjBkjynnTpk0fPAmF9nN67NixIkC3efPmOHr0qNjm7++vsyodBeomo11+EydOFC569eqFdevW4e7duzh27BgWLVoEJycncM5hZ2eHrl27IjAwUOyrlKO3tzfc3NzE89nKygoTJ07E4cOHERcXh8ePH+PPP/9E69atxQQzjx49yvHzzg1MmjQJjRo1wt69e/H69WvxeVbfkdK1ITcUwE4QBEGkib+/P2rWrCkqZfnz54eLiwvMzMxgYWEBzjkqV66M3377LdXLP0K/+Pn5iaUa8+fPj0KFCsHZ2VnnZVLVqlWxcuVKhIaGGju7Jo2fnx9cXFxEoE/BggVRoEABHRd169bFoUOH8PLlS2Nn16QxhguajTR9/Pz84OrqqvPMSPnSu2XLlrh7967OUmvZ4dWrV3o5jqmREy60n/l//PEHbt68me72vAy5kAdj3KPu3buns3wquUjGGPVaLy8v/Pbbb+L/5OI/vL29xcDksmXLYvv27TovXAk52bx5s7iOOOdYv3692JZRh/2sWbPAOYelpSVCQkJyIKeENtpumjRpAs45ypQpg+joaBqMpmeU8oyLi8OtW7fQrVs3cM6RL18+XL16FUDqZ0FgYKBY8YOeE4ZFu3zj4+Ph5+eH/v37o06dOuCci8CSsmXLYtOmTeQjDSIjI/XWz/H06VNs3rxZTBKglH/16tXRoEEDlCpVSnw2ZswYvfxNU0KfLlKi/d339fXFkiVLhItp06YZ5G/mZvTlIqPg9W3btgEABU5ngiGvC20oiF3/hIeHY968eWIW0HLlymHfvn14+/ZthvsNGDAAnHM0bdoU79+/p7qtEVC+81FRUWKF7SlTphg5V6bL+vXr0blzZ9jY2MDKygpDhgwR27QDTZX7lDJRgxIARxielPchHx8fdOnSRQwoGDRokJFyJh8pJ0tQ6j1OTk5o0aIFihcvLgLXVSoVzM3N8euvv+Ldu3fZ+rspHdGzW79B7AAwcOBA8Q69UaNGOgP2lfLWXpVOO1A3r/vQdjF9+nSYmZmJOqcyCagysYijoyM6duwoVpHTaDRi/wcPHoj0nCevGH/+/Pk0v////PMPqlatinz58mHjxo3ic0L32RoeHq6z7WPKiK4NOaEAdoIgCCJdHj16hBEjRojlrbV/6tSpgz///DPbDRQiawQFBaFbt24oV66cqFApozB79+6N4ODgbAVcKZUtqnRlTnBwMPr27YvKlSuLABDOOT755BOMHj0a0dHR2Tp+VhyQp2QM7UKbK1euoFu3bti6davOrALk4j9CQkLw3Xffidl1bWxsYG1tjS+//BLLli3Ta1kdP34ctWvXxvr16xEQECA+Jx/J5JSLNWvWiCXvRo8ejT///FNsIxfJkAt5yMl71LJly8A5R8+ePXVmvCIXyRi6XquNn58fRo4cKWZLVCAX/+Ht7S1mYq9duzZ2795Ng/YkRPnOenl56SxVvmLFCpEmvUARjUaDyMhIdO/eHebm5mjUqJHOctCEYdFoNDr3HOUZwbnuUvKE4QgNDUWXLl3AOUetWrV02g8pSemL0B8pZ6o6dOgQfvzxRzGQSvmpXLkyRo0aBV9fX7pXGRh/f3+MHj0apUqVEi/eP/30Uxw4cEDUBTw9PbFmzRrxsn716tVGznXeQvt+FBcXh3Xr1kGlUsHe3p5m1jUgSUlJ+P3339G8eXNxb9q8ebPYHh8fn27gNAXu5iwUxK4flO+th4eHmEnU1dUVR48ezbBtnpCQgMTERHzyySfgnKNjx445lWUiHe7cuSMC6mjgmWEJCQnBmjVrYGtrC845+vXrJ7Zp13vVajWOHj2Ko0eP4v3798bIap4i5b3/6tWrWLNmDYoUKYKCBQvq9ENeunTJSLmUD+3v7IIFC3QmglF+XF1d8eWXX+LatWs6+4aEhOD+/fsf9NzVXonr/PnzOvvm9ee3voLYQ0ND4ebmJvp8a9WqBW9vbwDJwcDa5awdqGtjY0OTJf4/2i527tyJHj16pLouKleujGnTpsHHxwdA8vdX8eTl5YXChQuLYPemTZvCy8tLpNP+FwDev38vVmzs3r17Tp1mrkFfg17o2pAXCmAnCIIgMiQmJgaPHj3C8uXLMWPGDEyZMgXr16/Xa2AokTXevHkDPz8/bN68GR4eHjh48KDelxB6+/YtgoKCsGfPHuzcuRPnz5+nYN00iIqKwuPHj/H777/jr7/+wvnz5xEbGyu2f8wSQinL9uHDh7h16xZWrFiBlStX4s8//xQV6LTS51UM4SIlT548wbBhw0SD9KuvvsK+ffvEdnLxH7GxsXj58iVOnz6NW7du4e7duzrb9eEjKChIp6OgZ8+e2LNnj9hOPpIxtIuoqChMnToVDRo0AOfJy6w5OztjwYIFIg25SIZcyENO3KMAYNSoUShYsCAsLS1RtGhRLF68WGwjF8nkRL3W19cXI0eOFB3FFNCQPj4+PmKJ+Bo1amD//v2Ij483draINFiyZIn4Pk+YMEF8nlHwOgAcOXJEBPZQ0PTHkZ2BxomJiUhMTMTs2bPh5OQElUoFa2tr7Ny5U9/ZzBNof9+z8gJXo9HgxIkTKFGiBOzt7bFhw4ZUxyEMQ8prIikpCTt27MB3330HzrlY4dHBwQFOTk7YsGEDbt26leExCP3g7e2Nb775Rjz/S5YsiTVr1ogBHsr1odFoEBMTg6lTp8Lc3BwdOnTAmzdvjJn1PE1oaCjc3d2hUqkwfvx4Y2fHJNFoNPj555/RqFEjUef65ZdfACQ/c5RrI6PAaSJnSUxMxJYtW4QL7ZmQ6RmSOcp3Ojg4GGXLlhWrBO3du1enjz29/aKjo8WM31988UWqwB/C8CjlHRkZiVmzZsHOzi7VYGdCf2h/vxMSEuDh4SGC2DNaIYUmETMcKcs2KioKDx48wLBhw1IFYhcuXBijR4/G0aNHjZllKdHuF//333/x66+/YsSIEZg2bRpWrVqFp0+finaAMvA7IiICAwcOhIODA3bt2vVB3++oqCjMnTsXhQoVQuvWrbFr1y4xs3Jeb6unF8T+008/fdD7i5cvX2Lr1q1wd3cXA5aVmaZTDt4PDAxE69atUb9+feoT1kL7u/jmzRtcv34dP//8M3766Sf8+uuvePnypRicpD3zekBAACpUqCACn9u1awc/P79Ux1RQ+rYU361btzb0qeVp6NqQEwpgJwiCID4aamjLw8c05lL627t3Lzp37ixeXikj0Rs3boylS5emux+hy8eUj7a/169fY8OGDahatarOTGQqlQo1atTAwoULs/W38hL6Kp/Y2Fj88ccfYjYZlUqFokWLYtKkSSJNXu9QyUliYmJw5MgRMRJdmX1M++UtXRs5w/v37xEbG4tVq1ahTZs24mXh6NGjRRpykTOQC/k4ffo0vvnmG+GC7lFZRx/PVCV4XZlJo2LFijQrXyb4+PiIuufKlSuNnR0iDby8vMSyzZ9++qmY9SWz4PXbt2/rDFC4c+dOhvsRqdF+Qfjs2TM8e/YMz58/R0hICHx8fBAYGAgvLy9cu3YNN2/exM2bN3Hs2DF4eHhg8+bN6NGjBxo3bizqrimf0WmhzHapr8FVpsi+ffvEIO/Mvs9xcXGoW7cuOOdo2bJlTmQvT5PSR0BAAA4cOIBmzZqJAB/tPqeff/4Z/v7+GR4DoOtCXwQGBuL7778Xz/0yZcrgf//7n86M9ynrSPv37xfebt++ndNZJrQYMmSICMB68eKFsbNjciQmJmLbtm0oWrQozMzMYGtri59++klnu4Jarcb27dvFTK6rVq0yQo7zLimfE0uXLhX1rEGDBhkpV7mT2NhYdOzYEZxzFClSBAsWLEBkZGS66bWfEePGjRPBWRQQajxCQ0OxZs0aVKpUSXgMCgoydrZyNVmd6fjdu3eYMmUKzM3NUb169VSDMYmc4927d7hz5w66d++OatWq6bS/GzRogEGDBiEoKEjn+UH9IrpkVh5p9aMOGDAAnHPY2dlh7969We5rvXjxIrp27SraGMWKFUPXrl1FuzCvt/m0z1951pYpUwa+vr5Z2l9xmZiYCF9fX3z++efgnKNgwYK4efNmmvuEhYWJe19eL39tMhuAlHJ7WFgYPvvsM9Hn0aJFC/G9zugai4uLE4NomzVrRvcnA0HXhrxQADtBEARB5EG0K703b97E6NGjdUah29vbo1ChQrC0tBSd8NpLDlKwT9bJrKy0XRw6dAhffvmljovixYujTJkysLe3JxfZJDtllZSUhLdv32LUqFGwt7dPc1Yf4sP4GB/a+8TGxmLcuHEoXry48PHjjz/qM4t5Bn3cR7y9vbFw4ULhYsqUKXrIWd6DXMjDx7rQfq4HBwdj/vz5wsW4ceP0lT0iA5TgdSUoq3HjxoiOjsbevXspiD0T/P39MWvWLCoTSTl37hzs7e3BOce8efMyfKGuOPTz80P79u1hZmYGS0tLDBkyhFZTywYzZsxAw4YNUapUKTg5OaFEiRJwcHCAg4MDChYsCCsrK1hbWyN//vyiPWdubq4zKLlYsWI6s+en9eLj3r17qF+/Pv7999900+R1Nm/ejMKFC2Po0KGZplVmSPrqq69gbm6OcuXK6QTqZhW6N344vr6++Pnnn1G+fHkxkEbp1+jXrx/WrVuncy/LqIzputAP4eHhmDx5MooWLQrOOVxcXHDt2rV00ytO7t69K+5tf/31V05ll9AiISEBADB9+nSoVCoULlwYz58/N3KuTJdLly5hxowZyJcvHzjn6Nu3r9imff9Rq9VYv3493N3dcenSJWNkNc/z5MkTnDp1Ck2aNNGZDGbq1KnGzpr0KPf4GzduiNnX27Ztm2pQWXocPXoUtWvXBucc5cuXx7179wyZ3TyBMlgPSO77jo+Px/v37/H69WtERkbixYsXCA0NRVBQEG7duoU9e/Zg1apVqFWrFooXLy5mEd2yZQsA3T6qtOpZVL9Nm/j4eNy5cyfDVQi0OX36tFhZaNOmTQbOHQGkbgvs3bsXffv2RYECBXTer9avXx/Tpk3Ds2fPxCzJdF1knYwCaLXL6ZtvvhGDmT4kiD0kJATnz59Hx44dUbJkSXDO4ezsDE9Pz0z/fl5A+3s+b948rFy5Eq9fv/6oYwUGBqJ9+/bgnKNNmzZ4+vRpumnzerl/LElJSdBoNNiwYYP4PpcrV05MvJBZAPypU6dQpkwZqFQqUY+l+5HhoWtDHiiAnSAIgiBMCOVlBpD+yzztytXevXvF7BrK7JS9e/fG9evX4e/vj9OnT2Pu3Lki2GfBggUGP4fcjtKY0O7cyoqL5cuXixnhOOdo2rQpRo4cieDgYDx//hxXr17FokWLhIvFixcb9kRMgA9xkRnariZNmgRHR0dYWlqCc45Zs2ZlK595BcXHu3fvxGcf60N7v7Fjx8LGxkYEQqxevTp7Gc0D6NOFdgfK+/fvsX79eqhUKuTPnx/79u3LXkbzAORCHgzlIjo6WrjgnGPt2rXZy2geIiv12pT4+fnpzLzeqFEj8QL4/fv32LZtGwWxE7mWmTNngnOOUqVKZRiwpnyfAwMD0bdvXzFru5ubm+iEp+/8h3Py5EmdQHTtl+LKZ5aWllCpVLC2toaNjQ2sra1RqFAhuLi4oHr16li4cCGOHz8ujpnWvc3Lywu1atUSwSf3799PN21eRQkWVK6HCxcuZGk/ZQas/PnzIywsLMt/Twl0UKAXVroo9xOlXGJiYvDy5UuMHz9erDygPUC/X79+OHTokM4xMvt+03WRfZSy+v3331G6dGlwzlG6dGlcvnw5S/tt3rwZFhYWsLOzE4MIiJxDuc5evHiBOnXqgHOOChUq6LRdCP2gfY+PioqCh4cH7OzsUk1ioV2XSkpKQkREBD0fcgDlnpSYmIjY2FisXLkSbdq0EX20ynO+ffv22L59u5Fzm3uYPXu2KL8TJ05kaR8vLy/06tVL7Ke9UgHx4Tx9+hQ7d+5E06ZN8cknn6B58+aoVq0aateujbp168LV1RUuLi6oUKECSpQoAUdHR9HO0/5xdHTE6tWrU9V1te9ZO3fuxMyZM9PcRiTfX/bs2QNnZ2f8+eefGaZVyi4xMRENGjQA5xz9+/eHWq2mcs0BEhMTsXbtWvTt21dn8HixYsVQtWpVeHh4ZDggh66L7KM9GLlfv35ZDmJPOWP1ixcvcODAATRv3hycc5QoUULMNJ7XXWi3ebX7JpR6Z1RUlE4fenokJiZi69atMDc3R4kSJXDmzBkAVL76Rq1Ww93dHZxz5MuXDzdu3ACQfj+S9ufffvuteJ7ToPGPh66N3AsFsBMEQRCEiRAbG4tdu3Zh+fLl4rOUlSvt/2/evBkNGzYUleHPP/8cBw4cSDWTX2xsLJYtWwaVSgU3Nzf4+PgY9kRyMUr5RkZGYvbs2ToB/yldaDdKZs6cKWY5UWaRvn79eioX79+/F7PqNmjQAKGhoQY8m9zNh7jI6rEA4Pr162jUqJGYgalKlSqIiIjQT6ZNGKUMnz9/jv79++t0Bn7ssYDk2U2KFSsmrp127dp99AwEeQV9ukiLp0+fok2bNjrBodTQTxtyIQ/6dpGynCMiIjBkyBCoVCq0atUKz549y9bx8wJZqdem5MGDBxg+fLiYobpJkyZim/YSj9pB7CNHjjTMCRCEAZg7dy4456hcuXK69R3tmde//vprFC5cWLzADQgIAEDBt9lh+PDhIli9QYMG2LlzJ/bt24fdu3fj0KFDOHPmDE6ePIlz587h33//xa1bt+Dl5YW3b9+mmvk+LQ9eXl5wc3MTq6Ip/z548AAABetq888//6BRo0ZQqVQYNWoUXr16lWH6q1evwtnZGWZmZmjVqlWqstR+xrx48QJ3797F8OHD8fnnn6Nt27bo1asXduzYgUePHgEgF+nh5eWFH374QQTYKj+1atXCF198AR8fH7x58+aDj0nXRfZQvt9v3rwRZVmiRAkcPnw4w/2071OffvopOOc067ce0Wg0Ovce7WC3xMRE8d1WPISFhWH+/PmiD6RVq/GgalYAAOIxSURBVFZZnhmW+HgSExOxadMm5MuXD7a2tvj555+NnaU8R8p24IsXLzB58mS0bdtWZ2Chi4sLmjRpgjNnzlCbO4so95fPP/9c3FcSExMzbXuHhoZi8ODBOu8ylGNRW+PDSUpKwsaNG3VWbkrvR3sgrUqlgpmZGaysrFC7dm107twZN27cEKsPKWj7PHDgACpVqgTOOQYNGpRmmrzOu3fv0KNHD3DO0bNnT7x8+TLTfUJDQ8XzuVevXummy8r1QS5Sk7LcvLy8sHXrVtStW1dMasQ5h62tLVq1aoU//vgDDx8+zPAYdF3oj7SC2C0sLHD9+vUs7a89INrLywutW7cWK4KEh4cbJM+5He2JK8aOHSvKKbPvbGRkJEqUKAHOOQYMGJClfYgPQ5lswdLSUky2lpXg9Tlz5oh72eDBg3Mkr6YMXRu5EwpgJwiCIAgTICYmBgcPHhQvCceNG5cqjXZFa9u2bWL2Ks45RowYgcDAwFQzZyncuHEDtra24Jzj4MGDhj2ZXM6rV6+wevVqVKhQAZxzjB8/PlUabRdz5syBk5OTcDFnzhydpSJTVpD//vtv0VF5+vRpw52ICZAVFx/C5cuX0aBBAxG8XrVqVURGRgJAqsEGRGqePn2KMWPGiOVMP8aH9vVw8uRJsey5Erz+9u1bAOQjM/ThIiMmTpwIzjkcHBzw+PFjvR7b1CAX8qAPF9ovyVM+v/fv308zaGSRrNRrU5KUlIQ//vhDvDBUqVRYsmSJ2K79XFCC2JVZ+kaMGGGQ8yAIfXP48GGYmZmhRIkSOrPfKm035b5z9+5ddOnSBY6OjiJ4/Z9//gFAgZ4fi3a5jRw5UtzPf/311ywfI7MXH9pBuk5OTpgxYwZatWpFwboZsGXLFuFizZo1Ou1o7cCd8PBwTJ06VbSjM3rGnz9/Hn379kWpUqVSBQzZ2dmhVq1a8PLyAkABWtr4+/vjq6++Qv78+UU5W1paoly5cpg8eTJ8fHzEbHEf8hKQrgv9odFoMHToUHDOUbBgQcydOzfDwd/anhYvXgzOOaysrDBlypRU2wnD8vTpU1y5cgXdunVDmTJlxMyWV65cSZU2o+AsQpc3b95kKSgRSA6AUCaB+e677wycM0Ih5ff50qVLWLBggc4kMEpdt2/fvrhy5UoqpxqNhq6LDFDKR3m29u7dO910CsHBwTr14c6dO4u2BvHx+Pn5iT4KS0tL9O3bF6NGjcLUqVOxePFizJkzBwsWLMCWLVuwefNmrF+/Hvv27cP//vc/XLx4EVFRUaL+q+1L+/f9+/ejYsWKsLCwEP5oZbrUJCQkYP369ShSpAhKly6NgwcPplvvV+qg//77L0qWLCmeE5ndd65cuYJ9+/Zh6NChGD58OHbt2oWrV6+mm55I5tatW1i3bh2cnJzECgTKdTN48GB4eHhk6Th0Xegf7X7XL7/8Em3btv3oY/35558oVKgQSpQoIVZBoLZ3aqKiotC1a1dwzjF37txM08fHxyM6Olq8L+/Zs2cO5DLvMX78eHDOUbJkyQwHcWh/pzds2KAzaV5mA82JjKFrI/dCAewEQRAEYQIcOXIErq6uYpm0zp07pzs798GDB9GkSRPRGJ84cSKioqIy/Rs1atQA51zMZE0NxtQkJSVh7dq1KFKkiOg8GTp0aLovRNauXYvy5csLF0uXLk332EpHSVxcnNjnl19+0dlG/MeHusiMy5cvo2HDhhS8/pGo1WpMnDgRVlZW4sX3kiVLdIJMMiOj4PX27duLmfwoeCFj9OEiPZQXJdOmTYOlpSUKFSqEp0+fZvu4pgq5kAd9uNizZw845/jtt990Ptee+btixYrgnItZxen5nTYfUq9NycGDBzF8+HBYW1uDc46vv/5abEsZxK7McDZt2jSdJVgJQlbu3r2LKlWqgHOORYsWpTnr6tmzZ+Hq6iqugWLFiuHatWsA6J6TXbTrmGPGjBH10E2bNqWa5fBD8fT01AnSXb16NSIiIvDo0SO0b9+egnVToP1dVlYm4Jxj8eLFYplxhQcPHmD27NkiqLpFixYICwsDkLocf/31V1hbW4vZL4sXL446depgxIgRaNOmDapWrSoc0XLmqVGuC3t7ezg7O2P79u2pAto+pLzoutAvUVFRaNmyJTjnqFGjBu7evZtuWm1Px44dQ4MGDUR5Hz9+PCeya5KEh4fj0qVLOHz4MPbs2YPffvsNO3bswE8//YRVq1Zh4cKFmDp1KiZMmICBAweia9eu+D/2zjqsqqwL42vfSwkiiBgYKHYndrdjd41jj61jO6OOOfZYY4+tgzE6dgd2J4iUpCgqKErXhff7g+9szw26FPbvee4j3rPPuefsddbOd6/drl07lCxZkouzpOiiu3fvBpC4SFHaql7ze0ECHz9+xLZt23jfLSV5JIlR9PT04Onpmdm3KJBx8eJFzJ49G0ZGRjA2NuaLOAwNDbFgwQKcO3dOLb3wi9QzePBgMMbQtGlThIeHqx2T169Pnz7FqFGjeHnUsmVLnD17VuRnBuHs7IwCBQqAMYbWrVvD3d091ddITrzOGIOFhQW6devG28dCrKtNQEAAOnfuDMYYGjRoAEdHR35MvluKRIcOHXgdfeHCBbVrSfOoKpUKDx48wJQpU2BgYMD77FIQhlKlSmHhwoVavyNICBgyYMAA1KpVS20BU9GiRTFp0iStPE+qXyD8IvPQNU+alj5acHAwF5KOGDEiI24tRxIaGooZM2aAsYRdSJ89e5ZoWvmOXFLwnvbt26sdE6QflUrF+9y9e/dONJ1cX7Nz504UL16clz3yekCQNoRvfL8IAbtAIBAIBDkALy8v3mkfNmyY1qpOqZHl4uLCt7+TIo/FxMQkee34+Hg8evQI+fLlA2MMW7ZsybTnyAl4eHjw/J07d26ikxpXrlxBkyZN1CbbJZJqFJ8+fZqfc/To0Qy//5xESm2RHJri9SpVqgjxehpwd3dXE/pI0dJTghCvZyzpsUViyPNeqmcMDQ3h5eWV7mvnZIQtvh3SY4vY2FhMmDCBny8JIeSDkfv37+fHN23alOH3n5NIrl2rC3leBwYGYteuXTA1NdWKkihPp1Kp8OLFiySjjwoE3xpSFFypfXv69Gn4+/tj9+7dmDRpktqW8mXLloWLi0t233KOIikRe1r7BS9fvkSVKlV4hKa1a9dygTUAvHr1Soh1dSAvz6WJKcYYbG1tMWnSJCxZsgSTJk1CvXr1uF/UqlUL+/fv1xoDCQ4OVvMtY2NjNGnSBM+ePeO2CAkJwePHj9G6dWsu2BLbmScgt8Xq1auxZcsWeHt7J5omJQi/yHguXrzI3/HNmzcnmk7e97537x769OnDz5s/f34W3GnOxM/PD6NHj+a7BaXlY2lpidKlS+PixYta5ZjcbnZ2dmCM4eeff9Z5XACcOXMGSqUSlpaWyS6Uler3VatW8QAZTk5OiaaX8lrkeerQzK/379/j4cOH6N69O6ytrdV8oUqVKli0aBEePnyodk5SEY+FX+hGyoM9e/bA1NQU5cqVU1t8ppmHUjRLxhjatGmDI0eOiHc+g3F2doalpSUYY2jVqpXa4szU5HFSIt358+cjPj4e+/btE2LdJPD29uYLWFu0aIH79+9rLfCIj4/HgAEDwBiDvr4+WrVqpbbwQGqbRkVFYfny5WjcuLFWeWZra4vSpUtzW0ydOjVLn/N7wMfHRy3fGjRogBEjRsDLyytVi8mFX2Q+8ro4LUHwpDautPNN586dM+zeciJXrlzh7/GcOXN0BiuUB8dbsmQJFAoFlEolFi9erHZckH5UKhXf1SYxAbvcL7Zu3YqSJUtCqVSCMYbRo0frTCdIPcI3vk+EgF0gEAgEghyCs7MzRo8ejdu3b/PvNBtX8+fP5538MWPGcNFnYsgHMaXzjhw5kvE3n8NwcXHBwoULtaJkyO0xduxYNfGJRGKdEunc5cuX8wGUmzdvZsLd5ywSs0VKEZHXMxYXFxds37492bJHjqZ4XT7hK8TraSclttAccJRPSknHNOuZlStXQqFQQKFQoEuXLoiMjBQd/WQQtvh20GWLlA4WBgYGYvz48bx8Wrp0KY96fOzYMfTo0YMf+++//zLl/nMSutq1qRm4ValU2LNnD4/Qt2bNmsy4TYEgy5C//7NmzVKbvC1evDgYY3zCo2zZsujfvz/evHmTob8rSCAjRewuLi7cfqamppg7dy6/vrzO9vDw4GJdU1NTtQiAuRm5LRYvXgxLS0veV5YiGkr/b9y4MXbv3q0lOgkKCsLvv//O7VixYkVMmzZN5+RWXFwczp07B0tLSxQpUkT0x2XI3/3E2qYpRfhF5nDmzBno6+vD3Nwcd+/eVetHSMjz9+nTpxgyZAj3jSFDhnA7iLoh9QQEBPBIklL7tHjx4ihRogTy5cuHokWLolKlSihVqhRKly6NevXqoX79+mjQoAF+/vlnzJ49Gzdu3NC5q5bcbgcOHIC5uTm327hx43Smy+3Y29vD2toaxsbGWL16dZK7McXHx0OlUmHo0KFgjMHMzAweHh4608kJDg7G27dv4eHhAU9PTzW/EbZInKCgIJw9exbNmzdHyZIl1dq8P/zwA2bPno2QkJBk81D4Rerw9/fnu200b94cFy5cQFBQED5//gw3NzcMGTJEzR49evTAhQsXhHg9k3BxcVETsbu5uaX5WkePHuUCrgIFCqjNQ0VFRWHHjh06xbqirk/Azc0NVlZWXGw+ZswYnDt3DhcuXMDff/+tJkgvVKiQ2typ1D6OjIzE8OHDeWRXxhh+/PFHbNmyBREREYiOjoaTkxPWrFnDbbF27dpseuJvF2dnZzRp0gTz5s3D+/fvuXA9Le+q8ItvE6mvERkZiTJlyvDFCvK5EIE269ev52XLxo0b1cY8pN1lY2JicObMGTRq1IinvXXrVnbdco5m1apVUCqVaNq0KV6/fq1z1w4AWLZsGSwsLHhZI99FVsx1ZwzCN74/hIBdIBAIBIIchHzAXbNDd/78ed746tixIxwcHFJ0zefPn/PBlSZNmqR7e/TcQlKR7Q8ePMhtMXjwYHz69AlA8oO9d+7cgb6+vlh5nkqS22UgMYR4PXNIa7SYjIy8Lga8EpDnQ3oGRT59+gRXV1dMmDBBbVJww4YNGXGbuQJhi2+HxGyRXGQ+ICFK3I8//sjzvUCBAqhevTry5s3Lv5MPRgqSRt6uldsipYug3r9/j759+3Kxgy4xokDwPSH3g3Xr1vFtaaVPwYIFMWDAAJw5c0ZrZ4G9e/eqiUxSgpTWwcEBy5cvx8ePH3m7Ore3pRITsW/bti1V/QR3d3fUq1ePixpr1aqFJ0+e8N/QFOu2adOGC4tSsyA0JyO3xalTpzB16lSYmZnxXThKliyJESNG4OXLl3yCSjonNjYWS5Ys4farXbs2/vrrL17/6GqTBQUFoWzZsloL0QUZh/CLzEGKPmxubq5zdw65IOf27dv46aef1ISKUpR7QdpxcnLigsTKlSvj9u3biIiIQGBgIG+nRkdH87IK0C2UkvuApkhX6nfIt6EX0UO1CQ4O5jto1ahRI9Edn6R64N27d6hduzYYYyhcuDA+fvyoMx0AvHnzBuvWrUPjxo2RP39+mJmZQU9PD3369FHb/UDY4itxcXEIDg7G+vXr0a1bN7X2bb58+dCyZUts27YNoaGh3CeSGjcRfpE23N3dUaxYMT6WUapUKVhbW6No0aJqNpkyZQpcXFx4vqVF0CnyPHkyQsS+Z88e3p4yNzfHwoUL+TG5L8nFur/88ktGPUKOwd3dHTVr1lTzA8YYL1sMDQ1hbW2Nffv28XOkfnNERAR69eoFAwMDft6aNWsQGBio9Tvh4eGYPXs2lEol2rVrJ9q1OtAc10tLWSL84ttEXqdIwd+MjIywbNkyteOCr8jrX/mi/Hnz5qkFhImKisKWLVvQvHlznmbJkiXZccu5gnPnzvF5ufXr16uV5SqVCo6OjmoBDhljGDlypFoaQfoQvvH9IgTsAoFAIBDkQOSdOamh9uuvv8LQ0BAWFhbYtm1bijp8fn5+GDZsGExMTKBQKDB9+vQ0i4EFCbaIiIhA7969wRhD+fLlce7cuRSd6+rqykUqlpaW2Lhxo86IWYKMIb3idSFwTz+ZEXldHolUDHp9RZ6HN2/exPnz53HmzBkcPHgQ+/fvx969e7F+/XqsWrUKa9aswYIFCzBx4kRMmDABffv2Rfny5WFjY6MW5XL69On8miKvU46wxbfJ5s2bsWnTJgBJ52F8fDzOnz/PIylKi86kT79+/eDp6QlARO1JDfI8f/ToEY4fP671fWJs3bqV5//169cz6xYFgixDXk8EBATg/v37OH/+POzt7eHs7KyWVipnbty4AVNTUxgZGeHAgQOpqguePn3Kt01v2LAhli9fzttTub0cS0zEvnbt2hTljWSHkJAQnDx5Em3btuWTtFJkb01beXh4YPz48WoCOIH2u/j69Wu4ubnhyZMnWgvQ5Gm3bdvG7WZra4udO3cmGckvNjYWX758QbVq1cAYUxM7CDIG4ReZh4+PD8qXLw99fX1s375dLaq9vDw7fPgwunbtyn2jU6dOuH37tuhHZBDOzs4oUKAAFyS+evUKgLpoRxpPio+PVxtb0rSB/P8HDx7kQrqKFSti9erV+Pvvv4VYNwlev36N+vXr8wUwL1684PmtOabXvXv3RIVUcl9av349OnTooFPgKPrniRMeHo6ePXvyPGaMwcbGBk2bNsWNGzfg5+enlj65PrmE8IvU4+HhgbZt22qJ1o2NjdGmTRvs2bNHLX1ERASePHmCd+/epfg35Hn94MEDODk5JXo8t6MpYk/tDrOrV6+GjY0NlEolDA0NsWjRIn5MXs5JYl1DQ0MwxjBjxowMe4acgp+fH6ZPn466deuq+YaJiQkGDx6MM2fO8LTS/GlkZCT69evH0xoZGeHgwYNJ/s5///3H00sLOAXapKecEH6ReaTHLsHBwXj37h1+/PFH5M+fH4wxWFhY4OrVqxl4hzkPeT9u5syZakF12rdvj3bt2qFChQpqgY4mTpwILy8vAKLOzSzmz5/P83v48OFYsWIFDhw4gD59+qBWrVr8mLW1NX777Td+XlrF65rnCRG88I3vFSFgFwgEAoEgFxASEoJKlSqBMYamTZuqTYYkxsePH7Fq1SoeeaNMmTL48OFDVt1yjiUwMBDW1tZgjKF79+4pagT7+vpi/PjxfJKradOmWlHbRWM6dURHR+P169d8yyjNaGPpEa9LHaMvX77A3t5ebBOcAj5+/AgXFxeEhYUBULdHRkVef/78OczMzDBw4ED+nbCHOmPGjOHi57R8lEolatSoobZKXZeNHBwccP78+SR3DcntZJUtdCFsoc6FCxdgZmYGMzOzFEW8ioiIQM2aNdGkSRNcunQJ/fv3x7Rp0/DXX3+ppUuNuFGQgLu7O1q3bg0DAwM4OjommVaqr+/evcvbT4cPH9aZVuSz4HsjsXc2qSiI0u4QefPmxcGDB1P83tvZ2aFPnz7Ily8fGGPIkycPmjRpwqP35vZJEV0i9r59+6Z40be8L+fl5cUXOltZWeHp06c6z5Hay/LzBV9JTOCp6RcXLlzg7aaqVati8+bNXLyeVL4+e/aMixgWL16cwXcvAIRfZBYhISFcRNW0aVM8f/4cERERABLaTSqVCrNmzeKLlhhj6NWrF+7fv5/rFyxlNBkRVVduE3mE6QoVKmDt2rXcD4RYN2k8PDxQokQJvlBv9+7dePv2LQDg8+fPePDgATp37gzGGPT19dG0aVPcu3ePny8fXx82bJja2FWzZs0wbtw4XLhwAVu2bMH48eO5LcQOHto4OjrCwsICenp6GDp0KK5evaq1o1By763wi4zh48ePuHPnDv744w/Mnz8fK1aswPPnz9UiRsfHxyM+Ph7nzp0DYwzt2rXTWmiQHMePH0erVq3AGMNvv/2GK1euqF1fkIC8zmjSpAlf+JRSbt26hTlz5sDY2BiMMbVxcXlfRqVSYePGjbCwsMCzZ88y6vZzFFFRUYiIiMCxY8ewb98+2NnZwdXVlc8vAV/rhejoaIwbN47PL5mbm+O///7j6TTfcckWHh4eKFSoEPT09HDjxo0seKrcifCLjEfKt4iICLi5ueHly5dwcnLC06dPcfPmTdy+fRs3btzAiRMncOzYMZw8eRI7duzAH3/8gblz56Jx48YoXbq02vzGtm3bkvxNKSK/GJf6+vyrVq1CxYoVE50zmjt3rtYCWnkZlhbCwsK4XiG320LeFv3tt9/UFrFK40jSp2/fvti/f7/a+fL50rSwbds2vjAwt9sCyH7fEKQeIWAXCAQCgSAX8Pr1axQpUgT6+vpYvXo1gKSFuJ8/f8a2bdt4h7FIkSJ8O1V5ZJnEEIOMiePg4ABjY2OYmJjg33//BZB0R+LNmzf47bffYGVlBcYYihUrBm9vb63zYmNj8fr1a2zfvh3bt2+Hvb29iDadCFFRUdi9ezdat26N3bt3IyQkhB9Lr3hdIiQkBEWKFAFjDLNmzeLR4gBhC00CAgIwd+5cNG/eHHv37kVwcDA/llHidQcHB7WJ+HHjxvFjwh4JBAQEoEyZMmCMwcDAAAqFAkWLFkXevHmRL18+FC9eHMWKFUOxYsVQvnx5VK5cGdWrV0ezZs3QsWNHjB8/HsePH1cTleqykYuLC4+iMXXqVNjb2/NjwhYJZIUtPD09ceXKFUyYMAHTp0/H4cOH1dILW3xFvlXwwoUL1QRSidGlSxfkz58fb968SXRSSuLJkyc4duwYpk2bhgULFuDkyZNcGAoIW8hxcXHhUW9nzZqlVn8nxq5du3jZf+DAgSTTenh44M6dO1i2bBk2bNiAy5cvq0XuFbYQfI/Iy5zBgwfzCIqHDh1K1Tv98uVLjBkzhg/2Fy5cmE+K5HZhozyP9+3bpyW2Sg0vXrxAo0aNwBjDjz/+mGQ5J8qktOPl5YWWLVvy6Eu///47oqKiACSdr0FBQRgxYgTvlz969CirbjlXI/wi4/D09ESpUqXAGEPt2rUxbNgwbN26FUOHDuV5LH1Gjx4NNze3dJXxwh6JkxEidgD4559/eNS4ihUrYsOGDWo7SUjRQ4VYN3Hc3Ny4X5iamsLa2hpdu3ZFlSpV+PcGBgaoXr06H8cFvkbYjYuLQ6dOndT8Z9GiRTx6n0RISAg2bNgAhUIBS0tLXLx4MUuf83vAz88PFy5cUPsuLe+p8IvMQVcQnSdPnqgtekqpiD0iIgKLFi3iY7V6enooW7YsVq5cqfV7goSdeaUFGatXr+bvc1LI6++QkBD8888/MDU15XW8hOZOztK4u9hdVpvkFpLLF85u3ryZ1yF6eno4evRostcBgLVr13Kfevz4cQbevQAQfpHZBAUFYciQIShbtizMzc1hYmLCdwM0NDTku6xICwN1iUjz5s2LsmXLYufOnfy6uvojJ0+eRNGiRflOBbldrCt//rt372L9+vWoUaMGKlWqhKpVq2LAgAE6d4N3c3NDo0aNYGdnl6Z6NzQ0FOvXr0eRIkX4YnNhi6/Pv2vXLgwdOhR58+ZFoUKFYGNjg06dOuHw4cNc9C/h4+OD/v37499//02TLU6ePAnGGPLly4cXL15o3UtuJbt8IyQkBFeuXEFAQAAvw0TbNnmEgF0gEAgEghxOfHw8nJyceOdQc0WnJoGBgdi0aRPKlSsHxhgsLS2xa9cuxMbGanUUY2JiEBUVhfv37+PGjRt4+PChVhQI0SD7Snx8PO7du8c74ydPnkwyvY+PD2bMmIHixYvzhQRSNBJ5o9vHxwerVq3ikd2lVb1t2rTB+vXr1X5fkNCplgbIa9euDTs7OwAJ25bWq1cv3eJ1IEG8IglQFQoF6tevjzVr1vDjwhZfCQoK4uVNrVq1uD2uXLmSYeJ1udhKTFAlzsuXL7m43NraGtevX4e3tze8vb0RFBSEoKAgvH//HqGhoYiKikJISEiikya6Bhbj4uKwf/9+7n8KhQK1a9fGihUreBphiwQy0xa3b99Gp06duGBC+ghb6CY8PByzZ8+GUqlE5cqVcfv27STTv3//HnXq1IGxsbFWdB55noaHh2Pz5s3Ily8fnyyRPra2tli1apXO83Iz4eHhmDdvHgwMDFCxYkVcu3Yt0bRSnkkRkRljOgcjJQ4dOoRq1arBwsJCrS3VrFkzUX8Lvnvk7diffvqJC7GS275cM3J1cHAw7O3teaREGxubVEcAzKno6ivI69+3b98iNjY22TIkOjoas2bNAmMMpUuXTnUkS0HSSDY5efIk72d06tRJ5y5Qurh06RLf2a569epaE46C5JH7gPCL7MHNzU1tcbdSqeR/GxkZoWLFimrtUCAhqp4UrT2lyP1J6scL1EmviP3Ro0dc/KOnp4devXrxY/LofZpi3TFjxmTYM+QUPD090aNHD5QsWVItUiJjCbvPdO7cGcePH+fp5WJoqV2kp6eHokWLYs+ePWrXlrcRvL29UbduXSgUCrXxWoE2aRXcCL/IGDTFm0mluXv3LgwMDFItYg8NDcW7d++wbNkyNGjQgNti8uTJOu8jt+Pm5obJkyfj4cOHaTo/NjYWW7duRZ48eWBsbIzdu3dn7A3mQjTfT8lXXr9+jQ4dOvB6RD4fq+udlr5TqVQYMmQIXyzr5eUlfCCTEX6RsdjZ2fH3XqoXlEoln281NDREvnz5YGJiAnNzcxQqVAgFCxZEyZIl0bBhQ7Rr1w779+9XWyiuqw66cOECb0MXKFCAB+XJ7WJdzbwKDw9HbGwsYmJitMaspLLl999/B2MMJiYmqdqtEUiox7dv387nsCwsLIQt/o/m8/v7++Pdu3cICQnhwRMkJLutX7+e98lTawsgIVBDu3btwFjCrh9CxP6VrPaN8PBwbN++HYwx1KtXD3v27EFAQIDOexGoIwTsAoFAIBDkAlQqFRo3bswj3sq3xpY+QEIDd9GiRbCxseGdv7Vr12pNzAYFBcHBwQHdu3eHra2tWqfUyMgIw4cPT3ZgJrcSERGBunXrgrGELcelxrHmCswXL15g+PDhPIp34cKF8d9//2nlZXBwMBYvXszT6evr84F6aSJy6tSpPL2wRQJOTk4oXLgwF23OmzcPtra2GSJeBxLs7OTkxEVC0iC8iPytm5cvX3J71KlTBzNnzkTBggV52dKuXbt0i9dLlCiB9evXY926dULEngTOzs4oUKAAXzTg6uqqljdyf5B3tlOaf5GRkXj16hWGDh2aqG8IEsgMW7x8+RJt2rSBiYkJj8hQuHBh6OnpicnCJHj79i1atGgBxhK2gn/58iU/JpVJkg3s7Ox4Xsq3wAa+5mdQUBBmz56tJlq3srJC+fLlYWZmJmyRBG/fvkXz5s3BGEPTpk3VbKHZppIijzDG0KZNG7U8lP/9119/qdnCwsICVlZWMDAw4G0pYQvB9468zhg4cCAYY2jRooXajk0pxdnZGU2aNAFjCVttp2Q3hNzMnj170LhxYx6pNbnIfc+ePeP19JYtW5I8R5A22rZty/sHr1+/BpD4JJJUzwcEBKBZs2Y8KtylS5cACNukFeEX2cvr16+xePFitG7dGqVKlUKVKlXQsGFD7Nq1i+++KPH582esXbsWY8eOVduZJqUcOnQIHTt2xL59++Dp6cm/F/ZLQC5ib9u2LVxdXVN1/r59+9CvXz8etGTixIn8mLzuV6lU2LlzJx+7ffv2bYY9Q07h48ePuHjxIoYNG4bWrVujXr16aN++PY4cOaK2uEBebnXt2pXnaaVKlXDs2DGeLrF6pXPnzmCMoVu3bpn6PLkZ4RdZh/Se3717l89H9O3bFz4+Pkmep1kHPH/+HAsXLuRjIbNmzcq0e/6ekQeukN5llUqFd+/epeh8Dw8P1KtXD4wxDBs2LFPuUQAsXryYjy8tXryYf59c20cu/p00aVJm32aORCqThF9kHxMmTODvcceOHXH27FncvXsX9vb2uH37Nl68eIHnz5/DwcEB3t7e8PX1hZ+fH98hRY4un7lw4QLfZUValC7EurqRt0WTEs3Kd2tMqVBXEq/ny5ePB98TtlAnsXxMyhY//vhjmkXTQEJ51r59e2GLZMhM3wCAd+/eYfz48bwsLFWqFPr27cv7lMIeiSME7AKBQCAQ5HDi4+MRHR2NqVOngjGGunXr4sWLF1oNpIcPH6Jnz568o1GwYEFs2LAB79+/V0v36NEj/PLLLzwquJ6eHp/8laIoKxQK6OnpYfbs2Wr3IUgQNo8ePRqMMTRo0AAvXrzQEkhfuXIFNWvWhJmZGRe1nTx5Umd0XRcXFx55vWTJkpgxYwYuXbqEXbt2Ydy4cXzgd9q0aVn1iN8N8olCMzMzHhWgatWq+PjxI4C0idc13/W1a9eiQoUKXAQnF00LviK3h7GxMe/cdejQAZ8/fwaQPvH6xo0bERgYCABiq+BkyKjtzDXRzN9Vq1ahbNmyvB755ZdfMuR3chIZZQsp7w8cOMAjTFetWhVnzpyBu7s7zp49i19//ZX7xcyZMzPyMXIEXl5efIFf06ZNcf78eV42ScgF0w0bNuQLoTT5888/eboaNWrgl19+gZ+fHz5+/Ihbt25h8eLF3BYLFizIgqf7vvD09ETp0qW5Lc6dO6dmi6CgIBw6dIjnsbSASaVSaZVDe/fuVUvXu3dvODo6wtvbGxcvXsTcuXO5LebNm5fFTyoQZCzydu3ChQu1IoSm5jobN24EYwzly5dXEyQK1HFzc+NlzN69e1N0jr29PT9n48aNmXyHuY8vX76gWrVqYIxh6NChiImJSbSPIV+k1rFjRzCWEIl3ypQpidbxguQRfvFtEB8fj7i4OLx+/RohISF8JwIJaSI3ICCAj/X17t07VRHwT548yRceSn37nTt3qt2DIKHPJy3ob9++PR+PSgp53r1+/RpbtmxB3rx5wRjD4MGD+TH5hLxKpcKRI0fg4OCQsQ+QA4mOjkZUVJTWOKy8vpAEWkqlEuXLl1fbZTOpd7t169ZgLGEHEOEDGYvwi+xBLmKXxnNHjRqVogiTmrvUbdmyhc8r7du3L9Pu+XtHyrfo6GisWLEC//zzj9r3SSHtaqOvrw93d/dMvc/cRnx8PPz8/FClShUwxtC6desU57G9vT0P5lO1alW+46CoJ1KP8IvsQd5GmjRpEm//y9v+yZGcreTi9Zo1a2LdunVo06aNEOumEV27NZqYmODQoUNJ2kJTvN6kSRP8+++/Ivp3OpDnU2psoQshYk8/afUNOT4+Pjh06BD3E0l3JfU5RCR23QgBu0AgEAgEuQQfHx8u5mzUqBHWrl2LJ0+eYP/+/Vi4cCGMjIy4QMfKygoHDhzQEmZdunQJderUgampKV81OGXKFFy7dg2fP39GXFwcjh49ivHjx/NrTZ8+nZ8vBlwS8Pb25hOA9evXx6JFi3D16lX8+eefXNwufaytrXHnzp1ErzV//nwwlrCt4MGDB9W2Zv706ZNatGmxPa02Li4uXMypVCpRvHhxHlVMiqqUVqROzuvXr7nQzsjICI0aNYKXl1e67z0nIreHgYEBqlevziODpmYxwfPnz1GpUiXuQ1u3blWLuhEbG6smYpdHYxLlVAKZJWKXc+PGDb4AJ1++fBg0aJDWoilBxorY+/TpA8YYKlSoAH9/f7XjoaGhWL9+PRQKBRQKBbZv354Rt5+jcHV15e9sqVKl0LlzZ+zevRtLlizBmDFjeN1dqFAh/P777zrrkYsXL/J0tra22LVrl9bWkVFRUdi4cSMUCgWsrKz4xJXgK25ubihRogRvAzVu3Bi///47Ro0ahR9++EFtYHDkyJFabVoAuH//Pq9zSpcujYULFyIiIkItTUREBDZt2gSFQgFzc3OcPXs2i55QIMgcdLWn0tL2efXqFe8Trlu3LiNuLUfy5s0b9O/fH4aGhujZs2eSYn9p8uLIkSO8jfrXX39l1a3mGnx8fPgON3///TcA3T4g/04eYbdt27ZaEaoFqUP4xbdBasr+mzdvwtDQEIwx9OrVK8Ui9k+fPmHv3r0YMGAAH3NUKBT49ddf03QfORlnZ2cULVoUI0eOTHHEUHneqVQq2NnZcbHu/PnzkzxXTJjrJqXv4759+/g4X/78+XH06NEUXePy5csoVKgQ9PT0sHTp0nTfr0Ab4RfZg5R3169fh42NTZoXuAYGBqJXr1580UFcXJyoJ5Lg0KFDMDY2hpWVVbJzDdKCnKVLl8LQ0BB58uRJ9a4fguRxcHDgZY68vZMUDx48QMuWLXlwpbFjx+oMZCVIGcIvsg+5QHbKlCl8bHbr1q1pChQmR1O8fvDgQYSHh+P169dCOJ0OdAl1GWM4deqUzvSa4vXGjRvj3r17iI+Ph5eXlxBOp4PEbHH8+PFUX0uI2NNPan0jMdzc3NCqVStefjHG4OLiktG3m2MQAnaBQCAQCHIRbm5uKFWqFG8kSVswS5Gh8+fPj9q1a8PZ2Vnr3DNnzqB48eJ80rBq1ap4+vQp3zJeLtIKCgrC5s2bedrVq1dn2TN+L7i5uaFs2bLcFtIAlRSJuHTp0ujevTsX78q3v5OIj4/n0QGaN2/OJ7nkA7uBgYEYM2YMlEol2rZtm+KJsNyEs7OzWkTi06dPZ1hEPRcXF9ja2vKo4t26dcO9e/cy5No5Fbk9qlWrhpMnT+oUHuoiPj4eb968QdGiRXnZNmDAAL6wQ15OqVQq7Nixg/vc+PHjM+NxvmsyS8QeExODCxcu8Ig0ZmZmmDhxoui4J0FqbSHVA/L6ICoqCj179gRjjO+Qojl47Ofnhx49ekBPTw8DBgxI9+ByTsTDwwMtWrRQi54gb0sVK1YMw4cPx6dPn9TOk2zx66+/wsDAAAYGBliwYAEXr2tOyvr4+KBhw4ZiAVoSvHr1Ci1atED+/PnBGOPtTqlcL1euHMaPH89toSlI2Lx5M59YHDFiBBeva6bz9/dHhw4dwBjDkiVLsubhBIJvnIcPH3Ixo+jrJc2xY8d4Hb506VJERkbyY5r1taenJ6pXrw7GEnbXcnR0zJZ7zsn4+/tze6xYsSLJtCEhIejUqROPxle7dm2cPn06i+40ZyP84vtBHllXX18/xSJ2zbbt6dOnMXr0aN5emzx5cqJpcyuBgYE8oAKQeoFBcHAwpk+fDj09PdSrV0/n2K4g/cTFxWHAgAG8HygthgKSXxA1b948ft6BAwey5H5zGsIvvl2k+kIShKZ1PGn58uV8riQzgmnkJG7evIny5cvDwMAAq1ev1lqQr4thw4bxtq3wh4zn7NmzPLDFs2fPAGiPMcnrhSdPnqBbt258cXjDhg35rjhiUU3aEH6RvWSGiP3ChQt8t/LatWvDzs6O6xIAIdZNL3K7SIvIdu/erWWvkJAQbN++nY+lN2vWDHfu3FGbcxW2SB/yPO/bty8YS9idNyXlmCYeHh5qizukcRRhi5STUt/QRHOHoVmzZvFdiiwsLLB//35RxyeCELALBAKBQJDL8PLywvDhw/m22VLk2+7du2PDhg18q1p5A+zSpUsoWbIk78TnzZsXmzdvxrVr13gHBFBv+EZGRmLZsmVQKBSoWrUqHjx4kHUP+Z3g4+ODCRMmoE6dOjAxMYFSqUSZMmUwbNgwnD59GsHBwQCgFnEhOjoasbGxCA8PB5AwCWhoaIhffvkl0d/ZunUrt/X169cz9Zm+V5ydnfkEes2aNWFnZ4fQ0NB0XdPd3R116tQBYwx58+ZF165d1cTrYpI2ceT2qFWrVqrtsXbtWvTp0wdGRkZgjGHChAn8mLxsU6lU+Pvvv8EYQ+HChfHkyZMMfY6cgFw43aZNm3RPHsXExODSpUuoXLkyHzyZMGGCEK+ngLTY4u3bt/D398ebN28QGhqKbdu2gTGGNWvWJHrOr7/+ykXAYtBeN+/evcPatWvRqlUrXs4wxtCyZUusXr2aL7rRHIiKiYlB48aNeRR8abA9sfpg8ODBYIyhXbt2AMQAoy7ev3+PLVu2oEOHDihcuDD09PRgZWWFfv364dixYzyPNW0RFxfHRYklSpTAhw8fdKaT+OWXX8AYQ506dRAbGytsIci1SO/+kSNH+KSVFEFUtG3VkefHypUreV2xceNGtcWyUrnj5eWFYcOG8YnZli1bZtiiWoE6I0eOhJ6eHoYPH44vX75wW0kTr2FhYbh37x5atmzJBVQ1atTAv//+y68h3ve0Ifzi+0SXiL1r1668/ZQU8jbThw8f+C5DjDEsX7480+75e0fKt/j4ePz3338IDw9P0ST36dOnuV/t3bs3s28zV3Lw4EGexzNmzODfJ2efU6dO8fO6d++e2beZI5HyWPjFt01a20jS/MfOnTuRN29e5MmTBw4ODhl5azmO4OBgTJgwAYwxVK9ePdldgh4/fsznKmxsbODn5yfatBnMsWPH+ByqLnvI8/v+/fvo3LkzD5BRtWpVBAQEABDjf+lB+EX2k5Ei9itXrvDzCxUqpDanIW8DyIXTJiYmaroFQfLI7XL9+nWuE5GIjo7G/v37uS2srKxw6NAhfjwxWxgZGcHJySnzHyAHIbfFkSNH4O3tneZreXt7c1uYmZnxdpWoY1JOcr6RFG/evMGSJUt4wL5y5cph7969KQ7YlxsRAnaBQCAQCHIhkZGR+PjxI65du4YHDx5odebkjdeHDx/C1tYWSqWSTzLJP2ZmZvjpp5+42FreuXd2dkbjxo2hUCiwa9cu0fHXQUxMDCIiIvDixQu4uLhoRUiXN44vXryIESNGoE6dOqhatSp69uyJMWPGwNraGs2aNeMDXBJSp/Hy5ct8knHHjh2Z/1DfKS4uLihUqBAYYyhbtiwuXbqU5lWwQryefuT2sLGxwfXr15PNN/lxb29vbNiwgYurBg8ezI/JyziVSoWTJ0+qDbgI1HFxcUHhwoV5lIv379+n6TqSeF2KvC7E66knpbYIDw/Htm3bUKZMGVhZWaFAgQKoW7cuOnbsCEtLSwwcOJDvTAAk+I5U36xZswZKpRJ6enq4c+dOljzX98yDBw9w9+5d3Lp1CzExMbze0FV/hIWF8ajqHTt2TDSdJKD7+eefeZRLQfK8fv0aHh4efPcaCV11R1xcHDp37gzGGOrVq4fIyEid6SS/WLBgARhjaNq0aebcvECQDcjf+ZT8LeHm5oZixYqBMQZra2u8fPkyc2/0O0ZexksLxBhjGDduHA4fPoyYmBj4+vri+vXraNq0KQoUKMAj8kjtI9FvyHj27NnDbfHXX3/h9evX/Jinpyfmz5+PGjVq8AnXZs2a4eTJkzyNsEn6EH7xfSIXsUv2SEu/MCoqCkuWLIFCoUDNmjWFODEZRo0ahcKFC+Px48cpSv/582eUKFECjDGMHTsWgPCXjELKx0mTJkGpVKJcuXK4deuW2rHEuH37Nl+MXqZMGezbty9F5wl0I/wi5yFvG0jCU8YYHj58mI139X3g5+eH+vXrg7GEHXqdnJz4uLc8KNLr16/5wnzGGH799dfsuuUczbt371C1alUYGRlh+/btOndVBhIiSjds2JDPW1SuXJkHKhHCwvQj/CL7SUzEvm3btlSJ2F1dXdGuXTs+n1StWjVe/8fFxanV5x4eHmjdujVfLCgFgROkjOTKHk9PT/Tu3ZvvjlalShU+561pC09PTx4QYMKECXwHWkHKSG89ILfFuXPnULZsWd6HF0HcUk9a7PH27VssXbqU7xxcoUIF7N69W21OVqCNELALBAKBQCDgaIqo3r9/j1GjRsHExISvXLa2tsasWbMwZ84c/PzzzzxCQMeOHfHp0ycA6qLrFStWoEaNGsluLyxQR7PDd/DgQSgUCujp6aktIJD+b21tjXPnzqlFaQKAjx8/YuTIkTy9EOkmjYuLCwwNDWFjY4Nbt26laUJDiNczDhcXFyiVStSpUwceHh4pOkeev7GxsThw4AAfDJ4zZ06y54utu3Tj4uICxhhatWqFyMjIVJ8vxOsZR2K2kN79sLAwzJ49W62uyJMnDxhjMDQ0BGMMpUuXhr29Pa8zpPf+1atXPDq+lZWV2K45CdJalo8ZMwaMMdSvX5+3m3Th6ekJKysrMMYwadKktN5mriAxWyRXnk+fPp1PFL59+zbRdP7+/qhVqxYYYxg4cGC67lUgyG7SUnapVCpERUXh1q1b2LhxIy+bzMzMMGLECK1oyJq/kdvbvvKJjt9++02tfi5fvjwKFCgApVLJv8ufPz/fNSsjJ60A0c6VI7dFgwYN0LdvX/Tq1QtmZma83ZQ3b178/PPPuHHjBj8vve+zZNPcLkzJTr8QpB2pDHn+/Dk8PT0BpM0nbt26xbfQ3r9/f4beY07C398fHTp0AGMMP/30U5K7D0h2+PLlC19k1rdvX7VjgvQTFRWFqlWrgjGGDh06pOicBw8eoGbNmlAoFFAoFBg6dGi6d3zMzQi/+H7QXBQr/T8+Pl4tmr6cQ4cOoXjx4lAoFKhWrVqS/XTBVzw8PFC8eHEwxtCwYUPs379fLdDR2bNn+ViUVH69evUKgPCFjCYkJAT9+vUDYwyNGzeGg4MDD1IBJAjatm7dCiMjIx4srGrVqvDy8gIg7JGRCL/IfhITsa9fvz5FeSzVFWFhYTh//jyv/w0NDRNdROjp6Ylff/0Vp0+fzsAnEUi2CA8Px9WrV9GxY0dui9u3bwPQbYs1a9YkuwuCIOOQzw++f/8e48ePR6NGjcBYws6C8kA+gsxDiNfTjhCwCwQCgUAg0ELqWF66dIkLFIoUKYJZs2bB0dFRLe3Dhw/5ds79+vXTugYAPpgsJszTxpkzZ/jkraGhIRo1aoT9+/dj9+7dmDt3LsqUKQPGGCpVqoSTJ0/ybZzfvn2LzZs389W1+fPnh4+PTzY/zbePj48PLl++rBaNIaUI8XrG4+fnB1dXV553qS1HQkJC8Ouvv0JPTw81atQQW9alA39/f4SFhaX6PCFez3iSssVff/3FB4Rr1KiBX375Ba6urrh+/Tp27NiB8uXL8zrDzs4Ovr6+AABHR0f06dOH1+n16tXju6sIMo6NGzdy4ackiJMW/kltJ39/f0yZMgV58+aFqakpjh8/DkC0ozKa3bt3gzEGU1NTXL58GQC0FnV8+fIF69evR5EiRcAY41vVClsIvkek9/vFixfYvXs3Nm7ciG3btmHdunWYN28eFi9ejD/++AOTJk3C2LFjMXnyZAwYMADNmzdHgwYNYGhoyIW9FhYW6NChQ5LtqhcvXvBFzLldcCp//i1btqBFixZaO5sVLFgQ1atX59GINaNXpbYfIU9/5coVLooQtvj6/AsWLIC5ubmWLYyNjVG8eHEcOnRILTo7kNDHTmufzt/fH7169cLTp0+17iU3kt1+IUgb8jxMT3tI6hsOGjRI67qCBKKjo7F27VqYmpqidOnSOHXqVLL5JPU1lEolb7cKMo7Y2FjUq1dPLUCCZhRRuY3u37+PBg0awMjIiC+YkradF/2JtCH84tskPWV4REQEQkNDsXz5clSvXp2LemfMmKEzvdx3RN3xFVdXV5QuXZqPcVhbW6NVq1aoV68eLCwseNuqWbNmOHr0aKaUQcIeCXh6esLGxgaMJeyeOX78eOzatQtjxozh0aGlYCOtW7dOciFOWhG2SOBb8IvcjrzPN2nSJDDGMHv27BSfL3+XfXx80KtXLzDGUKJECTx//lznOboC/gjSjzwvfX19uS1sbGy0dCMS8gU8gsxBs9x68OABRo4cyfvb0qdatWoYMGAAnwsUZA5CvJ4+hIBdIBAIBAKBTqKjo/mgfKFChbB06VIe9ULqqEidz3PnzvHoSQcOHODXSG77eUHSxMfH4/3792jTpg0UCgUMDQ0xatQore22fH19eQQga2trNGnSBJMmTYKtrS3fItXCwgJ///03ADFJkhpS894K8XrmI393nzx5gnfv3qXovAsXLvCO+vbt2zPr9gQ6EOL1rOXJkye8Pq5evTr27NmjNaHu7+/P64xChQqhYsWKaNeuHQoUKMAjMVhaWuoUCglSRnKCtM6dO/P81xzg9fHxwW+//QZra2swlrDFvLQwTZB6krNF165duS00hbjv37/Htm3bULFiRS6iEzsKCb53rl+/Dn19fS2RaGo+FSpUwMyZM5Osyx0dHdG3b18YGxvj2bNnAIRYV/78vr6+OHXqFMaOHYuhQ4di8uTJOHnyJN6/fw9Avc27fPly6OvrY//+/Smuk+XpLl26hMaNG8PExIRP8ApbfH3+s2fPYunSpahXrx7atWuHoUOHYt++fXjz5o3WeQcOHICenh727duXJuH0nDlz+MLyFy9eaN1LbiQr/ULOiRMn8Mcff8DFxYULHESbN/ORbBgSEsIX1Xbv3h2AyP/E+PDhA3744QcwxtCoUSOt9qrchx49esTbtowx/Pfff1l9u7kCKY979+6tNj6r+Q7fuHED1apV433sSpUq8X5dbi/704vwi28Lef3s4eGBJ0+e4OnTp7h79y6uXr2KS5cu4eTJkzh06BAOHTqEHTt2YOXKlVi6dCmmTJmCpk2bonbt2mCMcfH6jz/+qPP60viWXBAn6o+veHp6okuXLnw+SMpP6d+ePXvi1KlTaj4SFxeXblGVfHxe2CMBNzc3VKpUiZc9mrZo3Lgx5syZg/DwcH5OfHx8unbosLe3x6pVq9SuJ8g+vxB8RZ63586dUyvXUztX/fTpU9StWxeMMYwePRqRkZHiXc8mHjx4gBo1akCpVGLy5MmIjY0VtshCNH3n4MGDmDx5MvT09NSCMxQtWhTz5s3D8+fPeTtKaEQyByFeTz9CwC4QCAQCgUAnDx8+RJEiRaBUKtG/f38esU2T+Ph4vH79mk8+LVy4MIvvNGfz6tUrWFpa8q3uIiIiAHwdqJU6/z4+PjwSe4kSJXh0REm8vnHjxhSLfQXqSJ25uLi4RFeMC/F61rJt2zYwxnD16tUk08nzvVq1amoR3kQnPf1I5Y9KpdK5Y4EQr2c9//33Hxcmjh8/Xiuyt/Svi4sLSpYsCcYY6tSpw0Xv+fPnR/ny5fHkyRMAwk/Sgjxyt729PQDthX/+/v486lKBAgUwffp0rF27FuvXr0fVqlV5NNh8+fKJ6OvpQMqz0NBQre1MJVu8f/8erVq14gL1P/74A/v378fhw4fRqVMnvt2wiYkJ1q1bp3ZdgeB7ZOrUqXzrWCMjI1hbW6N06dIoW7Ysypcvj1q1aqFmzZqoXbs2WrZsiTZt2qBVq1YYOHAg5s2bhy1btuD9+/daC2rlODg44Oeff+YTwhYWFkKs+39S0ifQTDNw4EBeJxw8eDDZa8iPX7hwAV26dOG7eQnh9Fc0y3Jd+SGlkfJ0wIABfBeVlNhCEzc3N77tubm5ubDF/8kKv5Dz+PFjdOnShbeD//zzT/j7+wMQtshM5Hm7bt06Pl61ZMmSbLyr7wMvLy++oLJ58+a4deuW1iT4rVu3MGLECJ6vQ4YMyZ6bzcFI5cy6deugr6+PKlWq4MmTJ1rlT1RUFA4fPqw2LlutWjU+JivKmYxB+MW3x59//onGjRur9TWkvE/pAlpzc3OMHTtWa2c04Kt4PSIiAqVKlVLbCViMu3/l48ePOH/+PIYOHYomTZrAxsYGffr0wdq1axEeHq6WVyqVCj/++CN++umnNC/Wd3Z2RuHChTFw4ED+nbBHAq9fv8a8efPQvHlzWFtbw9LSEu3atcOSJUvg4eHB3+n4+HjExcVh7ty5mDBhgtYOUCkhICAADRo0AGMM48aN498LWySQ1X7h4uKCS5cuJbnQLbehq/0j/87V1RVxcXHJjrlGRkZizJgxYIyhfPnyCAwMTPa34+Pj07y7c24jKioKbm5uAJLPq8jISAwaNIgv1EzPAhxBytAsR4KCgnDkyBH0798fCoWCj/2ZmprCxsYGO3bswMOHD9XO0RznEr6RMQjxesYgBOwCgUAgEAh0snnzZj54eOXKlSTThoaG8ogCvXv3zqI7zB2cPXuWr5SVIqhrRtNVqVSIj4/HtGnToFQqMW7cOFy4cAEzZ87EihUr8PLly+y49RxFREQE/v77b5w8eZJ3xKWOnRCvZy2fPn3iURb69+/Pt19OjPj4eLx7946LEPv06cO/F6Sf0NBQLFq0CP/++6/aIJUQr2cPa9as4WJBSYSuOUAcFxeHiIgI9OzZE4wxLFu2DI8ePcL27dtx7do1PvArBq3STnh4OKytrWFlZcUFUZp8/PgRvXv35osHND9GRkYYM2YM3/1GkDYiIyPRrFkzlClTJtFJwA8fPqB79+6JTqLr6+ujU6dOXGgoEHzvTJ48mb/fM2fOxJs3bxAcHIygoCAEBwcjIiICERERiImJQXx8vFbfA0i8HeXg4IBRo0bx60sLbIVYVzfyulYzT+X/Hzp0KO8TJiXW1SVel0fOF7ZIHM2Ie4mRUlskhoeHB9q3by9skQQZ7ReauLq6Ytq0aTwyWeHChdGyZUs+biJskTia4h4Jqb4AEsarpGNysYjE1q1bUbJkSSgUChQsWJAv1hQkjZubG6ysrLhApG/fvjh8+DDs7OwwZcoUvoMmYwwdOnQQO25kIm/evEH16tXBGEOzZs3w33//wd3dHZ8+fcKuXbvw888/q0U9bNGiBY+8rqtNlRbEeFYCwi++Hb58+YImTZqAMcbrVwsLCzVhuqmpKfLkyYNChQqhaNGiKFKkCMqVK4e6deuiY8eO2LBhAy5cuMCvKX/P5eJ1SaQrhLopIywsLNFj3t7ePHBSz549Uy3WdXFxQa1atYQ9kkDKh4CAAAQGBmoFR5KO+/v78/nVHj16pNoWcXFx2LlzJ7fFhAkTtH5D8JXM9AsPDw8UKVIEjDFMmzYN165d48eELXQzZcoUNGjQgP8/sXyS+onXrl3ji6QOHz6cZFoJzYBwYt5Dm+joaPz4449o3bp1smmlfDx27BgMDAygVCqTDTYmSDuaPuHm5oYTJ06gevXqKFy4sNo8xg8//ID169drzUnpGmcJDg7G1q1b4erqCkC0kRNDyjt5HS7PTyFezziEgF0gEAgEAoFO1q9fD4VCgerVq+Pz58+Ii4vTaiRLDTR/f38eybVv377Zcbs5lvPnz/Mt7f75558k00qDVLpsIDrk6ePPP/+EQqFAlSpVYGdnh5CQEAAJHUUhXs9aYmJisHHjRhQsWBAlS5bE8ePHE32/pfy/du0a78BPmjQpK283xzNlyhQeUczOzo7vEnHx4kVUrlxZiNezmK1bt4IxBqVSiZs3byaZdsGCBVAqlZgzZ47WMVFnpI979+6hWLFisLCwwI4dO7SECvK64cWLFzh27BiWL1+OfPnyQaFQQE9PD82bN8edO3ey+tZzHC9evED16tVhZGSEDRs2JLqTCgDcuHEDhw8fxp9//ol8+fLBwMAAjDHY2Njg1KlTWXjXAkHmIJ+ImDRpEm8bbdmyhX8vL590tWOTattqitfHjx8PJycnIdZNB/L646effuKRlHSJdZMSr8+dOxdBQUEi+nc60GWLvHnzChF7NpAav0iM4OBgnD9/HsWKFeO7RZibm8PBwQGA6MfrIqn3U34sKiqKR7L88uULXF1d4eDggJUrV+LHH3/k41uMMYwaNSpFvy36Jgm8evUKtra2PJKxnp4eb69Kn86dO+P69es80EVGIM9/YYsE3N3dYW1tzXc3MTMz4zuTSp/q1avjl19+wadPn9L9e5It5bujinIqgezyC4E2L1++5LvJFS5cGMeOHcOjR4/w+PFjeHl5wdPTE87Oznj79i0+ffrE/42NjdXa1VFer8jF6/Xr1+d+J0UZFUJdbRLrJ+jKnzt37nD/6dWrV4rFui4uLqhRowYYY7C0tBT2SITU2kJaAJIaW0ioVCrs2LGDt7OELdTJCr+Ij4+HnZ0dX4ygVCpRp04drFy5MtH7yO3cuXOH19eHDh1KMq2UdwcPHuTn6BKwy9urly9fxoIFC9CgQQN07twZkydPxqtXrwCI/rcmly9f5vl67NixJNNKtli9ejU/R9qJVhfJ9SGEXySOPG/8/f2xfv161KlTB/ny5eN5r1Ao8NNPP6mN7wK68126XmhoKDZt2oTChQtDT0+Pj4UIv1BHHshw+fLlcHJyUjueXvG68A11hIBdIBAIBAKBTv78808wxlCsWDG8efNG67i8USUJFYyNjWFnZ5eVt5njCQkJga2tLRhjGD16NMLDw7XSSGIsKfJuzZo1daYTpB0PDw+YmZnx/D18+DCePn2qJV6/f/8+Pye3dSyykg8fPqBz585gjKFhw4ZqUXGlKG9SGeXu7s6jAFlaWvIIb2LiNWNwc3PjUZVq1aqFvXv34sSJEzzyev78+TFx4kQhXs8ivL29UblyZSgUCixdujRRsW5YWBh69OgBxhi6d+8u/CGDCQkJ4ZH36tWrxwcAga9ljzRBGxISgjt37qBRo0Z8wr1GjRo4e/Zsttx7TiMsLAwTJkwAYwy2trY86h7wtb6QbBEXF4f379+jVatWfAA4f/782L9/f3bdvkCQ4cgnIqZOncrf9a1bt6YrKqiDg4NaxNGxY8ciMjISQIKwSIh1047cLoMHD+Z5fPv2bf59UuL12bNn82Ourq7CFukgMVvIo+qlFCFiTx8p8YukkPLZx8cHjRo14n19xhh8fX0z5Z5zCtu3b8eQIUPQo0cP/PDDD2jXrh0aNWqEevXqoV69eqhYsSJKlSqF8uXL88jIJiYmamJSPT09DB06lF9T13v/6tUrLFu2jP9fjK8k4Ofnh4ULF/IxDik/ixYtismTJ8PPz0+rb7dhw4ZUi+AkYmNjceHCBSxatIh/J2yRgIeHBzp16sR3m5E+ZmZmGD58OOzt7fkCfwk7O7s077AlCbzGjBnDvxO2SCCr/UKlUomIiong7OyMAgUK8Kj37u7uascT2/EmsXdZLl6XIupbWlpi0qRJWLJkiRDqphPJBnfv3uVi3d69eye6e52Es7Mz34nCysoKq1evxpo1a4Q90kFabaGJELGnn/TaIjIyEm5ubny3KMkW8h0KBF/x9vZG7969oa+vj4EDB6aoL7Zy5Upe32vu5iSvWzZt2oS8efOqtdOkcksSoYo5ka+4u7ujS5cu0NfXx9ChQ3XqQgD1smT69Ok8X2/cuJHk9b98+YLHjx9j+fLlWLJkCebNm4fbt28jICAAgLBFYsTGxuL9+/eYNGkSmjZtqvYuly5dGt26dYO9vT0fgwUSz0u5eH3Dhg2oVq2a2hyIGJfSTWBgIN+ZY+LEiXB2dgYAvHv3DkuWLEl35HXhG18RAnaBQCAQCAQ6cXBwgI2NDczNzXHkyBG1BpJ8snDdunU8+nqZMmXw8OHD7LjdHEtkZCQmT57MhdNPnz5VOy63RfPmzbmIVAjYMx4XFxcULFgQjCVsTWtjY6MmXheR17MWSajLGEOLFi1w7949hIaGqqVxdXXFTz/9xAXW1atX550+QcYh942yZcuiWLFifNBDRF7PWkJCQriIp27dulqLOyRevHiBqlWrgjGGPn36iEGpTMDX15cPAjZv3hw3btzgu3dIeHh44I8//uBlmZGREerXr48TJ05k013nTHx9fVGzZk1eX9y5c0ervnjz5g3279/PFw1Kgoddu3Zl010LBJmHvMyXdlJJj4j9yZMnauL1yZMna/VF5GJd+aRIbhqETw9yu3Tt2hUNGzbUOSFy6tQpvsiTMYbFixfzY5LdhS3Sh9wWPXr0QIUKFeDo6Jima3l4eKBdu3ZcxC5dR7TLUkZK/UIT+bt++vRpXvczxtClSxet9prgKxs2bOAinNR+jIyMoKenhx9//BEbN27k19T1vnt7e/Mou2PHjuXfi3GWBGJjYxEVFYULFy7g9OnTuHHjhlYkOCmvRowYkeZIrrGxsbh27Rrv0whbaBMUFAQXFxds3rwZW7ZswenTp/H48WO1NFKZ8/vvv4Mxhp49e6ZJOH3o0CHuT0KQqE1W+sXFixdRvXp1rFy5Um28S9giARcXFy7yadWqFdzc3NJ0HameDw8PVxOvT548mQvjhVA3/cjFukZGRmCMoX///ggKCtKZ3tnZmUdet7Kywtq1a/HhwwcAwh7pRW4LQ0NDMJaw03JgYGCqriNE7OkntX4hoZm/K1euRNmyZXlk/YkTJ2baPX/PHDp0iC8oXrFiBaKiovgxKfiIxM2bN1G0aFE+X57YwoK//vqLt5t69uyJ+fPnY8GCBWjcuDEYY6hcuXKqF4jkBv755x+++HjVqlVqtoiLi1PrS585c4bncevWrdV2U5Hb7MuXL7h27Rpq166N4sWLq/URixYtilatWsHV1RWAGAvR5MqVK5g8eTKfO5I+lSpVwo8//ggXFxdeLiW1q4T8e0m8Li1EUyqVaNCggQiukAwTJ05UG/e2t7fH8uXLUy1eF76RNELALhAIBAKBQCdBQUHo2rUrGGNo1qwZHB0d1TorANREV4wxrF+/PpvuNmfj6+urJtR99OiRlvBq0KBBYIzB0NAQ06dPByAGpDIDFxcXHklGoVDAyMgIHTt2xJMnT3gake9Zh5ubG4oUKcIHnUaOHInLly/j2LFj2L17N8qXL8+3UitUqBBevnwJQAh0MgNN3zAxMcHo0aPh6emZ3beW6/D29ka5cuV4nXHz5k18/vwZQMIA1fPnz3m0BlNT02S3hBSkHXd3dz6oXrZsWfTq1Qt79uzBn3/+iXnz5sHKyooP0JuamqJXr164fPlydt92jsTd3Z1HAa1UqRKGDBmC06dP459//sHWrVtRu3ZtbitjY2PUq1dP5za0AkFOIaNE7J8/f8aMGTP4+eXLl+cLblUqlVqbSy6cVigUfBBekDLkdtGM6AoAAQEBGD58uNqElhTlNTo6Wq2PIrcFYyzNwqLcitwWr1+/TnP/Lz4+Hv7+/mjTpg0YS4jaK7ZtTh3J+YUm8jLp0KFDaNiwIfeDgQMHCvF6Mri7u/PF4Xny5IGtrS0GDBiA0aNHY9iwYfj5558xc+ZMzJ49G3PnzsWff/6JTZs2Yc+ePXjy5EmSkXglvL291XYmYoxh/Pjx/LgYb0k6DzTHOm7fvg0DA4NUi3Ul8XqtWrWELdKIpi0ePnzI8zEtwmkhSEyarPALIGHnjt69e3O/6N69O/bt25ei+8hNpFfELuWjpnh92rRpPOolkFBWCb9IP5KP3L59G6ampujSpQt8fHy00r18+VJNvL5hwwa1CL2a9pCLdYU9UobcFsbGxqhcubLWYpyUIOqM9JNSv0iKu3fv8iBYJiYm6NevX5p3YsmJyN/F5cuX837Zhg0bdC7cuHv3Lrp06YI8efKAMYbBgwfr7E+cOHGCX2vJkiX4+PEjP+bg4IAqVarA1NQUZ86cyZwH+w6R22LZsmVqmg9/f3+t9OfPn0f16tWhUCigp6eH2bNn6xRQP3z4ENOnT1fb8UxfXx9VqlRB6dKl+Xxi0aJFxdytDqZNm8bzzczMDFZWVliyZInWgtnkSCzyulKpxK1btxAaGqoWXEGI2L8ifx+lYJOMMTRu3Ji/1xUqVMCuXbtSJV4XvqEbIWAXCAQCgUCQKJ6enrC2tgZjCZFcp0yZgsOHD2P9+vVo3749X33OGMPcuXOz+3ZzNHKhbvXq1TF48GDs3bsXS5cuRYsWLbgdrKyscPbs2ey+3RyNs7Mzn7QtUKAAFi5cyI/lhg7Et4a7uztq167NfUCpVGpFeytUqBDu3r0LQNgoM5H7RpEiRbBq1Sqe32JwPGtxc3PjYt1y5cqhTZs2WLx4Mbp06cIXRBkbG6NPnz5CtJbJvHr1Cs2bN+eLaXSVVVZWVti4caOwRSbz6tUrNGzYkLdfdUUQNTc3x4wZM9R2VREIcioZJWL38/PD5MmTUbduXTDGYGNjg5s3bwJIaHdpCqebNGkCxhh2794t2mWpJLn88vf3x9y5c3nk4hIlSuDatWv8XLktPD090bBhQ+jp6eHq1auZeds5krS+u5pt4uDgYEyfPp3vZmRmZobnz59nxC3mGlJqC3m6w4cPq4nXBw0aJMTrKeTly5d8MrVt27bw9fVN03V09Q/l4nULCwv06dNHCK/SgTx6aGrEupri9YIFC2LUqFHCFulAssWdO3fSLJwGhCAxI0irX0hERETg33//RY8ePdQCOEyePJmnEbZIIL0i9piYGJQtW5aPn7Rv3x5eXl78mITkF9IYi3yhjSDlSL7h4eHBF1TK8ff357swK5VK9OvXj0d91WUPXQufBClDssXLly9x/fr1NF0jPj4ecXFxanXG6NGj1Y4Lkic5v0iM2NhYXLlyhbelTE1NMXbsWLWdUgUJyPtos2bN4v2zYcOGYdeuXQgMDISjoyN27dqFSpUq8ejg8l3Ipfc5Li4OsbGxfKeVkSNHIiwsjF8/Pj4ewcHBfAeuRYsWZe3DfuPIbTFz5kxui/79+2Pjxo1wd3fHuXPnsGLFChgbG/NyvnXr1oiMjASgPs54/vx5tGvXjtusfPnyGDp0KB4+fIigoCB8/PgRZ86cQevWrcEYQ40aNURUfB2MHj0ahQoVwpYtWxLd6SkpkhKvy+uYV69e8UAXQsSujjwP5CJ2xhhKlSqFvXv3agWd1ERe7wrfSBwhYBcIBAKBQJAkbm5uqFChgprgSl9fn68GZEx9a3JB5uHm5oaqVauq2UIabDcwMEDRokWxe/fu7L7NXIGzszOftK1duzYOHDggJryzET8/P8yaNYsLp6RPuXLl0KlTJx4FXAzOZj5y36hVq5bwjWzE3d0ddevW5VFJ5GJdU1NT9O3blwsMBZnL+/fvsXfvXvTr1w/VqlWDmZkZKlasiJ49e2LJkiVp2kJekDb8/f2xadMmdOnSBdbW1tDX10ehQoXQokUL/Pzzz3B2dlbb8lQgyOnIB+GnTp3K64l//vknVedHRkbi/v37fAcvIyMjvnhQs/3l6+uLc+fOqUXBEqQfyRZRUVF4+vQpunfvzm0hLcrRtMXr16/x5MkTUe5lAboi8W7YsAFly5aFoaGh2vjKb7/9lk13mXNJKvL6Tz/9JPorqcTZ2ZmLEps3b85FiSqVipcz8r9T0g/XFK8vW7YMvr6+2LNnjxDrpgO5WFcqYzp16qQWMVeOpni9UKFCsLOzQ0hICHbu3ClskQ502aJLly5CxJ4NpNYvdBEfH485c+agYMGC3BbDhg3LrFv+bpGL2Nu0aZNqEfvixYvRqVMnGBkZQalUYtq0afyYfMGtSqXC9u3bed1+5cqVDHuG3IRmGaL5/9WrV6NXr148KIC8/EnMHpaWlnj48GHm3ngOJDlbpPRcPz8/jB49mpdTQ4cOzbB7zC2k1hZSW6pmzZpgjCFfvnwYM2aMEK8ngXxcas6cOWrzGFZWVsibN6/anF+tWrX4gibN4AtBQUEoVaoUGGPYu3evzt9o3bo19PX1cfDgwUx+su8PeT7NnTsXenp6fIGYpaWlVvCw5s2bc/G6fFzp2LFjqFOnDh/raNSoES5cuIBPnz4B+Gq3uLg4PH78GFWqVEHevHmxc+dOAKJNC6jbQlqsIZHa/AkJCcGKFSt4YCt9fX0eOEHuQ/LdGgsUKABHR8c0/V5ORG6PiRMnch9o27Yt7t+/z4/pyiv5d8I3kkYI2AUCgUAgECSLr68vZs2ahcaNG0NfXx/58uWDlZUVhg4dikOHDmX37eUqfH19MW3aNL59phSlrX///jhx4kR2316uQj4IX6dOHezatUurIynIOmJiYhAWFoYjR47gwIED2L17N9zd3bkYQUT4zDrkvlGzZk3s378fERER2X1buZI3b95g+fLlaNmyJUxNTVGkSBGULVsWW7ZsSdMWtIL0ExERgYCAAK36QpRRWc+HDx/g7e3Nt0KVbCBsIchtyAfhJ02aBMYY7ty5k6Zr+fj4oFu3bmCMoWrVqnBxcdGZLqcPuH8L+Pj48AUFtWvXxqtXr7L7lgQA7t27h8WLF6NgwYJ8Il6KXDZ58mQcPnw4u28xxyHE65lDeiPryvH29uZ2sbCwwB9//IG3b98CSLDf9u3bhVg3HcjFuvKFapptXk3BVaFChbBv3z7el5cEicIWaUeXLdatW6cWvTglCBF7+kmpX+hC3nYeP34834mQMYaTJ09m2j1/r7i4uKBQoUJgLGGH39QsFAASgjOsWbOGR6n86aef+DG5LVQqFezs7LBq1aoMu3dBAvJyxcvLC3/99Rdvxw4ePJgf07THiRMnsH///iy919yMlP+xsbEIDw/HmjVr0L59ex4AS/qkNaq7IHmEeD3tyMuP7du3o2PHjmrvrRTpuGvXrggODgagu80TGBiIkiVLQqFQ4OjRowDU+4Pr1q3jAnmxuEY3clvs2bMHvXr10rJFnTp1MG7cOERFRQFQF6+fOXMGNWrU4GVP27Zt8f79+0R/LzQ0FG3atAFjDH369Mm8B/sOkb+76ZmveP36Nbp27cr7Do0bN8a7d+8AqC88BxJE7D/88AO3dW6J/J0SdI2fS2N5KZlrFb6RPELALhAIBAKBIEXExMQgJiYGjx49gpOTE/z9/XnnBBAD5FlJVFQUwsLCcOHCBVy+fBmvXr3C58+fs/u2ciUuLi6wsrICYwwtW7ZMdpsoQfYgyqesx8XFBQULFgRjDAMHDhSLO7KRuLg4xMfH48WLF/D19RURb7OJxCL2CLF01pNYnSBsIcjNyAfhfXx8AKj7ikqlSvHWtJcvX0bp0qWRN29erFy5EoDwr4wkKipKK8qYLuLj43HmzBlYWVnB3NwcW7ZsASBskRVoRp3+9OkTXF1dMXDgQFSqVElt4rdChQqYNGmS1qIRsU1zxiDE65lLRojYPTw8+E5qZmZmWLFiBY8+JqEp1h03blxGPUKuQfKFe/fuYc6cOVq2UqlUuHTpEqpUqQLGGPLnz88Dlsj9SNMWY8eOzbqHyCHIbTF48OA074oWGxubqF+Iuj5lJOcXSfHlyxf8+++/XKRoamqKuXPn8h0gBeq4uLhAqVSiYsWKKc4jeV8kJiYGBw8e5KLpGTNmJHu+aEtlLHJ7xMbG4sCBA9wes2fPTvZ8US5lDprjWx8+fMC8efO44E2qI0qWLIlmzZrh8uXLPFqyIGMR4vX0Iy+3AwMDcfXqVSxYsADTp0/HunXrcOfOHb7oT1cZHx8fjy9fvqBdu3ZgjGHixIlq/YpNmzYhf/78YIyJxU7JIC+zw8LCcO/ePWzevBlr167FP//8Az8/P7VFMxK3bt1C8+bNeXTpDh06JDl+JZVhkydP5n1KEQgrcwgICMCGDRvQuHFj3t+7ceMGgAQ7aIrYGzdujObNm/PdDgQJyMse6b2VFhS7uromep7wjZQhBOwCgUAgEAhShK6tf8XA07eDsEX28eLFC1SsWBHOzs7ZfSsCwTeFs7Mz2rRpIybwshld9bdY1CEQCAQCTTQnAOX1h6OjIxf1JNfvCA8PR8uWLcEYQ7169ZJML/owqSM8PBwXLlyAt7c3gOTzLyIigu/c1axZsyy4Q4HcJpGRkbh69Sq6du2K0qVLqwnXmzRpgnHjxuHdu3fJikik40KIlTqEeD1r0BSxu7u7p/jc+Ph4bNq0CYwxGBkZwdTUFNOnT+fH5ZH8VCoVdu7cyW24ZMmSDH2O3IDkE/J8lVCpVNi8eTOMjY1hZGQEMzMzzJkzhx+XRwjXtMWGDRsy/+ZzGJItwsLC0nS+vD//119/icUd6SApv0iMsLAwHDx4ENWrVwdjDCYmJvj999/5IlCBbvz8/ODk5KRzjColhIeHY9GiRdDX10f58uVx9+7dzLjNXEtq7REaGorZs2dDX18f1apVg4ODQybdmUAXmv2CW7duYcmSJbC2tlbrc1hYWKB///64evWq1gJBQcYhxOsZR0rKouTGQfbt28d9oGfPnhgyZAgGDBjAvxs7diwfUxEkTkrqa/mxN2/eYNSoUciTJw8YY2jXrh0/ntRYRkBAAF/Q3L179wy6e4EcyWdiY2Px8uVLHlU/b968ePDgAQDdC6KkXWsF6ugSsZuamuLIkSM60wvfSDkKEggEAoFAIEgBjDG1f4mIFArRlPhWELbIPqpWrUqOjo5UqVIliouLy+7bEQi+GSpVqkTnz5+n0qVLZ/et5Gp01d/yvwUCgUAgICJSKpVq/5fqisePH1O3bt1ozpw5RJR0v0OlUpGxsTG1bNmSlEolvXnzhl6/fq0zLQB+rc+fP5OrqyuFhIRQSEgIERHFx8en+5lyEvHx8XTu3Dn68ccfaeHChUSUtC1iY2MpT548ZGtrS0qlkj58+ECfP39O9ncAJPl/gW6k91WyydatW2n06NHUpk0bOn36NHl7e1O+fPmoZs2atGbNGvr3339p48aNVKRIETI0NEz0ug8ePKCuXbuSo6MjKZVK0d9MAvn7HRcXx21x+PBhWr9+Pd2/f5+IiAYNGkSbNm0iU1PTFF9b+EXiVKxYkW7dukUFChSga9eu0dixY8nFxSVF5zLGaNy4cXT9+nWaOHEiqVQqWr16NQ0ePJiIiAwMDEilUhFRQh01ZMgQ+vvvv6lq1aqkr6+fac+UU5F8wsDAQOuYUqmksWPH0pUrV2jq1KkUGxtLS5cupZ9++omIiPT19Xn5I9li27Zt1KZNGypYsGDWPUQOQbKFiYkJEaW8TJFsILXRjh8/Tp6enmRsbEx6enq0ZcsWGj9+fCbccc4lKb/QRXh4OJ0+fZqWL19OL168IGNjY5o2bRqNGDGCSpYsmZm3+t1TvHhxqlKlCjHGKD4+nr/HLi4u5O/vn+z5xsbG1KJFC2KM0atXr+jevXvJniP6EylHsoejoyO9f/8+2fR58+alFi1akEqlIicnJ97OEmQNUt/d3t6e5s6dSx07dqQlS5aQn58fGRkZUZ48eWju3Ln0zz//0MGDB6lVq1ZkYWHB6xtd9Y5o36YNlUpFt2/fpilTppCDgwOZmprSwIEDafz48VS1atXsvr3vDs05i/j4eK33NrFxEOn4Tz/9RH/99Rcxxuj06dO0b98+OnToEBERLViwgKZOnUqlSpUiIkq0fx0TE5Pk8dyA5pySrjJCqtOJiO7fv0+HDh2iqKgoatKkCR0+fJgYYxQXF6c13kj0NW8/fPjA2wFFixbNlGfJ7Ug+o6enR5UrV6aVK1fSDz/8QOHh4TRjxgzy9fXV8r1ChQqRlZVVdtzuN498bG7t2rU0a9Ys6ty5M3Xt2lUtnfCN1KOX3TcgEAgEAoFAIBB87+jpJTSrdXU2BILcjOQbAoFAIBAIvk+cnJzIx8eHwsPD6cqVK9SmTZtE00r1vpubG8XFxVFUVFSii6YYYxQZGUmzZ8+mGzdu0PPnz6lChQpkY2NDa9asoYoVKyY6mJ9b+fDhAwUFBdH169fpxo0b1Lx580TT6uvrEwDy8PCguLg4CgsLS5EogTFGALQmK+Pj48WiaQ3keaJQKOjdu3d07NgxOnfuHJ0/f57nXaFChahw4cK0ePFiqlChAlWoUIFfQ57Xmjx9+pR+/fVXunHjBjVu3Jju3r1L1apVE36hgw0bNpCLiwuNHz+eqlSpwvMnI8TrRMIvkqNixYp0+/ZtatasGdnb29O+ffto6dKlyS6alfKvWbNmVL16dapWrRqNHz+e/vnnHzI2NqatW7eSnp4ez3ulUknDhw+npk2bqvmRIP1ItmjYsCFVrVqVqlSpQmPGjCE7OzvKly8fbdq0iZRKpZotRowYQR06dKASJUpk9+1/9yTlK/KyR6lUUlRUFB07doyuXLlCe/bsIT09PVKpVGRmZkYGBgbUtGnTrLrtXIdcvO7o6EjGxsY0depUGj58uBCvpxKp7jx16hSNGzeOduzYkSJhTtOmTcnW1pbu3btHZ86coUmTJvEyKbHfAUBhYWGUJ08e3ldJqv2Vm9m/fz8NGTKELl68SEWKFEk0nZR/bdu2pRo1apCDgwNdu3aNRo0alaK2EQC1xcyCpJHyW/r3w4cP5OvrSytWrKDHjx+Tn58fT1uxYkXq06cPde3alerUqcO/l/oPmm3ZGzdukIuLC40ZM0arvSv4mm8AKDY2VmuxU0aK14Vf6EaeH8m9m5KYWqFQ0IQJE8jGxoacnJzo0aNHVLlyZWrevDm1bt2aiEitTSvh6upKHz58oFOnTtHbt29p1qxZVKtWrcx5sO+QxPJfoVDQhw8faPr06RQaGkpVqlShFStWkLm5OQHQWUfHx8eTUqmkyMhImjhxIvn7+5OVlRWNHDkysx8jRxMUFERmZmbJjhdZW1tT//796datW+Tm5kaOjo5UsmRJUQekAknErlQqadmyZfxv+Xid8I3UI9QEAoFAIBAIBAJBOhGdOoFAIBAIBAJBTqRWrVrUvHlzunnzJp04cYJq1KihM9qqfLD+3bt3RJQgok4souWLFy9ozpw5dObMGT5o/+bNG3Jzc6MnT57Q9evXqVKlSmIC5f8oFAqqV68eNWjQgB48eEAnTpygatWqkYWFhVZaadLWx8eHAgMDiYjI3NxcK2KxpsDk+vXrdPXqVbp9+zbp6elRvnz5qEOHDlygKITT6kh59+zZM3r+/DktWrSIgoKCKDQ0lBQKBcXHx1O/fv2oR48e1KZNGzVbSe91UuL1SZMm0f3798nAwIDCw8OpWbNmdOvWLapataqwhYzbt2/TL7/8QkQJZc6ECROoXLlydOTIkTSJ14VfpI0KFSqQvb09LVq0iAsKk0Oez+bm5jRw4ECKjo6mSZMm0c6dO6lGjRo0duxYrZ0gJfG6WECQccjz0dTUlPr160ehoaE0ZcoU2rNnD9WuXZtGjBihZQtJvC7q6oxHs57w8PAgd3d3+uOPP8jd3Z2CgoKIKEE816RJE+rfvz+1a9eOypYtm523nWNJTLwuIq+nnbCwMNqzZw/5+/vT+vXrqXbt2lSoUKFE06tUKmKMUUREBBElRMeVFjnJkXzHxcWFrl27RidOnKCAgAAqX748NW3alCZOnCiEujr48uULbd68mYiIduzYQbVq1SJLS0udaSWR6MePH3lZFB0dzY9pollf62oDC3voRp4vnz9/pgcPHtCqVavIy8tLbaezdu3aUe3atWnGjBlkbm6ulZdSW1V+vfv379P69evpxIkT9PTpU/r777+Fb2igVCopOjqa1q5dS2XLlqUOHTpQ3rx5iSj94nXhF5mD1A9XKBTUqVMn6tSpk9pxKU9jY2MpMDCQnj9/TteuXSMnJye6c+cORUVF8ejHzs7OdPPmTTIzMxN2SAQpry9fvkwBAQFkZGREPXr0oGrVqhGR7jpBWqgRExND8+fPp4cPH5JSqaQmTZqoLWZLrK8n/EI3r1+/psuXL1OnTp2oSJEiSfaV9fT0qGPHjlSwYEHy9vam/fv3U5cuXRLNV2EL3Wgu8JaL0jPTN3IyQsAuEAgEAoFAIBAIBAKBQCAQCAQCLWrWrEmDBg2iW7du0ebNm6ls2bI0duxYMjQ0JKKvW5tKg/QLFiyga9euERHRkCFD1LaclQbwP336RL/++iudP3+e8uXLR9u3b6eCBQtScHAwrV+/nq5fv04TJkygf//9lwoUKJDFT/ztUrduXRo6dCgXG9jY2NDo0aO5LWJjY0lfX59PLP3555/0/PlzIiIaNmyYmnBXLro9c+YMXbx4kTZt2qT1mxcuXKBy5crRwYMHqVKlSkIwKiM6OppmzpxJJ0+epC9fvlBISAgxxsjAwIAmTJhA9erVo759+/L08rxLapJPU7zevn17CgkJoWvXrlHTpk2FiF2DJk2a0NixY2nLli20YcMGUigUVLx4cTp27FiqxevCL9JHlSpV6ODBgzwvJFGhtONGnjx5kjxfqVRS27ZtqVmzZnTp0iW6c+cOjR07NtH08jzP7ZPnKQUAhYeHc/FVYiiVSmrTpg3VqVOH7ty5Q/fv36cRI0Ykml7kfcYif599fX3pypUrtGbNGgoICKBPnz7xdAMGDCBbW1uaMmWK1rma5ZLwkbSjS7w+bdo0EXk9neTJk4e6du1K9+7doxcvXtC1a9eod+/eOts2AEhPT4+cnZ3Jzc2NiIj3MTTfa8YY3bt3jyZOnEjOzs4UFRVFRESOjo509OhR8vLyorVr1wp/0MDExIQGDx5MXl5edP/+fbp16xZ169YtUcGaQqEgT09PvnC5cOHCRKRtDyktAHJxcaE7d+6Qu7s7ff78mZo1a0YVKlSg+vXrC+G0Bppl+Nq1a+nWrVt04sQJ/p2ZmRnVrFmTBgwYQAMGDODt3Pj4+ESFcdL39+7do7Vr1/Lr7dixgwwNDWnDhg3CFhrMmzePVq1aRdWqVaOYmBjq0aMH5cmTh27dukVTp05Nk3hd+EXmwhjT6it//vyZVCoV3bhxg5ycnOj69ev0/PlzCgkJIaKEOqlEiRJ8Z6guXboQUcIiW0HiSOXUjRs3KDIykvLmzUuDBg1KtK8hX0CwY8cOOnPmDEVGRpKBgQH9/PPPvC6Rrv3x40d6+fIl+fj4UOXKlal48eJkZWUlxkI0iIyMpL1799L8+fNpypQptHr16iTHJ+Li4qhAgQJUtmxZ8vb2puDgYFKpVInupi1skTjy8llzsTdR5vhGYvVCjhiXgkAgEAgEAoFAIBAIBAKBQCAQCAQy4uPj+d+LFy8GYwyMMfz555/w9PTUSr9w4UKepkyZMjh+/LjO644cORKMMRQqVAjPnj1TO3bp0iUULFgQNjY28PHxycjH+a6R22LRokU8n1esWAEXFxe1tF++fMGkSZN4miZNmuD+/fv8uEql4n//8ccfqFy5Mk9bokQJ2NraYtKkSejQoQMqVaoExhiKFi3Kf0d+L7mdIUOG8LyrVq0aRo0ahUePHqmlked3cjx58gRNmjSBUqlEnjx58NNPP+Hz588ICAhAu3btwBiDubk5Xrx4kepr50Tkzz958mRui2LFivG/Bw8ejC9fvqTqWsIvMgYpTy5duoRFixYBAOLi4pI9b+nSpWCMQV9fH0+fPk3XbwvU2b17N9atWwcgZbb49ddfwRiDiYkJ3NzcMvv2cj3SexsZGYmgoCBMmzYNzZo142WRVL716NEDx48fV7OhvAyTv/8ODg46vxckkJwfhIWF4eDBg6hRowb3hXnz5ok2agYRGBiInj17gjGG+vXrq72vEtJ7+/79e4wcORL6+vrQ09PD8uXLAWjb8MGDByhVqhQYY6hXrx4mT56Mv//+G7/88gsUCgXvywi0CQgIQJcuXcAYQ4MGDXh7E/hqBym/vb290apVKzDGYGFhgX///VftuERsbCzevHmD3r17o0KFCmrlGWMMNjY2WLhwodbvCAB/f39MnToVP/zwg1qelSxZEg0aNMDVq1fh6+urdk5i+Sf//u7du+jTpw+/Xs+ePblvTJgwIdlr5Tbc3NxgYWEBxhhq1aqFffv24ezZs6hVqxYYY8iXLx/GjBmj5i/JIfwiY9FVl4eHhyMwMBB79+7F4sWLUbduXVhbW6vls62tLQYPHoxdu3bBwcEBHz9+1Hldkf/J0759e16eAEBMTIxWGik/Y2NjsWfPHtja2nJb7Nq1Sy3tp0+fcPLkSZQpUwZ58uQBYwwFCxZErVq18PLlS7XrCRL6DnPmzAFjDHXq1MHDhw+TPcfPzw/lypUDYwzt2rVLND+FLdJHRvqGrnz++PGj1njX92wPIWAXCAQCgUAgEAgEAoFAIBAIBAKBFvKB7xkzZvBB9FatWmH27Nn477//8Mcff6BXr178mJGRERYsWKDzeo6OjihYsCD09fVx+fJl/hvSpKCjoyNMTU3BGOPHBQnIbTFz5kye33Xr1sXEiROxceNGjBkzBi1btlRbSLB161Z+XmxsLP97/PjxahO4P/74I86dO4fw8HAACZNgjx49QuvWrcEYQ8uWLfHhw4ese+BvGM3FHWPHjkVgYCAiIiK0jqcUSbyup6eHPHnyYNCgQXwSPT4+Hh4eHnzyS4jYvyJ//l9++UXtne7SpQt/n5Oyifwawi8ylidPnoAxhrx58+LNmzdJppVstG3bNjDGkCdPHty6dUtnWqk8fPfuHe7du4cVK1bgwIEDsLe317qeIIGLFy/yxWP+/v5JppXy7o8//uD2S0qYlRLBnEA3mgIDBwcHTJo0iQvjpE+VKlXQo0cPvHz5UktgJUee56dOnULNmjUxcuRIncdzO/Ky/+7duwgNDQXwNY90idd///33FIvXhV+kDB8fH1SrVg2MMbRo0QKPHj3ida7kH2/fvsXChQtRsmRJXo55eXlpXevt27e8rdS5c2c8fvyY53d4eDh+//136OnpoVevXln3gN8Z3t7efBFfixYtcP/+fYSFhaml8fLywvDhw2FpaQnGGCpWrIi3b99qXcvf3x87duxA1apVwRjjIunKlSvD1tYWxYoVg1KpBGMMU6ZMyapH/G7w8fFB0aJFwRiDoaEh8uXLh6FDh+LKlStaYrWkyhVN8Xrfvn153bJo0SLExMRgx44dQsSeBC4uLihYsCAYYyhXrhwvi9IiXhd+kTlERETg/fv3OHDgABYtWoTq1atz/5Hy2NbWFr1794adnR0ePXqE6OhotWtoLtQRJI9KpUJcXBwaNGgAxlii9avU5oqOjsbWrVtRr149Xg798ccfamkDAgKwcuVKFChQAIwxlC9fHtbW1rCxsQFjDEWKFBELa3Vw48YN3p767bffEBwcrDOdZAspeAhjDP3799dZ3gtbpJ2M9g1pLDcmJgbBwcFYsmQJ+vbtC0tLS9jY2KBFixaYP38+vL291a77vSEE7AKBQCAQCAQCgUAgEAgEAoFAINCJfOB74cKFMDc3h56eHp9MlwusrKysMHfuXJ5ec/Lv0qVLPHKcn58fgISJQuk37O3tUaBAAVSoUAHv3r3Lgqf7vpDbYtGiRShUqBCf4NbX11ezRZ06dbBx40aeXj5BO2zYMD6Za2RkpGYz4OvkSHx8PM6fP48iRYqgePHiapHcczu6JoTSKvJ48uQJqlevDj09Pejr66NHjx78mDxCk1zEXrBgQTx//jxNv5fTkNti4sSJ3AdGjx4NV1fXFJ8r/CLjuX79OkqXLg0jIyMsXbqUixJ1Idli3bp1vI45c+aMVjqpXnn8+DGaNWvGJ94ZYzAzM8OMGTN4WiG8+srFixdRsmRJ5M2bF2vWrEFkZGSiaaV3ffr06dDX14eJiUmikfzk9Xx8fDxcXFzg7e0NDw8PREVFqR0TfEWzfXT8+HHMmjULRkZGXGhlZGSEIkWK4Ndff8Xjx495fqZEGH3q1Cl06NCB+8b48eN1phMAbdq0QZUqVWBnZ4eQkBAAQGhoKA4cOJDmyOvCL1KHu7s7ihQpAsYYatSogenTp+Phw4d4+PAhrl69ih9++IHvrpIvXz6cPn0agHZ03Bs3bsDCwgIlS5bElStX+HHp3127dvH+yufPn7P+Qb8T3NzcuD2qVKmCMWPGwN7eHmfOnMGBAwdQtWpVmJmZ8UWV0m4p8jaVp6cnpk6dihIlSvB07du3x6FDh7ifvXjxAuvWreNl3tq1a7Pjcb9pXrx4gcKFC2Pu3Ln8vZdIrcj23r176N27N68XFixYwH0nNjY2URG7EPMm4OLiwkWcCoUCefLkwYgRI1Il3hR+kbHcv38f//77L+bPn4/69eur7cLFGEOjRo3Qq1cvHDp0CPb29lrvslRmibo4/SxbtgyMJex84uvry/NUPtYXGRmJBQsWoHr16txGs2fP5kJrKZ2dnR3f9WDEiBH48uUL3r17h8ePH6N58+ZgjGHYsGGIjIwUttNgw4YNPG83bNjAAywACfkr5VdgYCBfRFOkSBHcuHEDgPYiDmGL9JMRviH1zYOCgrBq1Sq0aNECjDE+Fiz/VKhQ4buOjC8E7AKBQCAQCAQCgUAgEAgEAoFAIEgUuSDhyJEjGD16NBfbSgPlQ4YMwd69e3WeI3H//n3kyZMH1tbWcHJyUjsWGxvLxbk//PBDohGDcjvyfD158iSmTJkCExMTGBsbw9DQECYmJpg1axYuXbrE08nF62PGjOGTHcWLF8dff/3Fj+ma4Hjz5g2KFy/Oo/QJviKfpEvPhJ2Liws6dOgAKysrMMbQoEEDLryW71AAJIjYO3XqxBeQBAcHi8lCqPvFpEmTeLk0adIkrbJGQv6+C7/IHEJDQzFlyhQwxlCtWjXcvn1bZzrpHX7z5g0qVKjAI7y9f/9eZ7p79+4hb968YIyhVKlSsLW1Rf369fkk7q+//pq5D/YdEhwczHcYqFGjRqILL6T33cvLiy8OqFmzZpKC97CwMPz222/o1q0bjIyMkD9/fhgbG6Nnz57YvHkzTyfKKnWCgoJw/vx5DBkyBIaGhrxNlTdvXpQoUQJbtmzB3bt31c5JTIigKV6X2lOMMb4gRETV1cbf358LcWvUqIF///0X7969w5EjR7iIJLXidQnhF6nD3d2dRw5ljMHAwACGhoZq4hxTU1Ps27dPbXEf8DUPZ82aBcYY2rZty4/JfWb79u1gLGH3IrmoS6CNu7u72k4Qkh3k9jA3N8e1a9cAqAvj3NzcMHz4cBQqVIiL49asWcOFvnLxVnh4OObMmQM9PT20b99eLCzQgebiv7QI0q5fv47u3btrRXWV786lUqkSFbELEnB2duZizsKFC2P58uVaC2USQ/hFxrNq1So14Wb16tUxcOBAHDhwAHfu3AEArSjrQEL7C/j6/n+vkYq/Jc6dO4f8+fODMYa//vpLbZeImJgYvH37Ft26deOLQKQ+9KdPn9Su8/r1a97HHjdunFYbadOmTWCMoUmTJqL9JENe/sybN08tjx89esSPBQcH48mTJ7y9lTdvXvz44486d0oTtsgY0usbUvn07t07dO3alS8wZIyhdu3aGDVqFNavX48xY8agdu3aYIyhePHiWnXL94IQsAsEAoFAIBAIBAKBQCAQCAQCgSBJNCdl3d3dcePGDVy9ehWOjo5JppVwcXFB6dKlucDQ09MTHz9+hKOjI3744QceWVoS735vg+1ZhWb++vn5wcnJCU5OTloCK7kwYe7cuTxqnLW1NbZt28aPaU7cSnkfExPDt7EVQt3MIzg4GEePHkXr1q3BGIOxsTFu3rwJQNsP3N3d0aJFC+zYsSM7bvWbRf4OT548mU/sTZgwAa9fv1ZLK89T4ReZi5+fHxo1agTGGJo1awZnZ2e1qLnS3+/evcPPP/8MExMTMMbQu3dvhIaGal3P0dGRi3969uyJO3fuICIiAm/fvsWGDRugUChQqFChRCOG52Zev37NtzFv3rw5nJyc1OoIyRY+Pj5o164dL4tmzJihtphG+vfDhw/4559/0LBhQzUBUZ48edT+L6Lia6NSqdCuXTutyHmtW7fGmjVrtMqspIRxSYnXly5din///VenIFHYIgEXFxdYWlryhTYTJkzgUSlNTEzw+++/p0i8Lvwi/fj6+mL8+PGoWbOmWl5ZWlqiUqVKuH79epLnL1q0CIwxdOnSBVFRUWp+c//+fZQrVw6MMcyfPz+TnyRn4Ofnh+nTp8PW1lbNHjY2Nmjbti2cnZ0BqL+/Xl5eGDVqFPepYsWK4ezZswgLC+NpNN/3//77j1/78ePHWfNw3xHpLR9iYmJgZ2cHIyMjLlhctmyZ2nEJlUqFnTt38rppyZIl6frtnIizszMXGtaqVQsHDhzg0dMTQ/hF5rF06VJs27YNDx8+VFtII/0r3/XEzs4Ov/zyC8qXL48uXbpg+vTpWiJRQdpZsGABf2dHjhyJVatWYffu3Rg+fDhsbGzU6pHNmzer9UEke23evBmMMdja2vLj8nR79uzhAt33799/lxGmMwv5Ozxz5ky1Ort3794YPXo0WrduzXcqMDExQZMmTXDv3j2d1xO2yDjS6htSnr5580YtOjtjDJs2beKR1oEE+zs6OvLo7N27d/8uFz8JAbtAIBAIBAKBQCAQCAQCgUAgEAhSTFIT6clNsm/bto0PuteoUQOVKlXig/aWlpZctCufANHcyjYlv5NbSGk+HDhwANbW1jxi4saNG/mxpCabzp49y6PCbt26Nd33K9BGHrnP09MTvXv3BmMMBQoUwJMnT3Sek5TgITcjn7idOHEiGGPo1KkTj0ClifCLrMHDwwMlS5YEYwyNGzfGoUOH1CK9vXr1Cv3790fRokW50PPp06dq15AiUo4YMQKMJezU8e7dO7U0Pj4+KF++PBhjOHHiRJY82/eGh4cHSpQoAcYYGjZsiN27d3NxbnBwMJ49e4YGDRrwhQSlSpVSEylK5Y2npycmTJjAF6UZGxujfPnymDt3Lv755x/8/fffGD16NBdOz507N9ue+VvlxYsXfCeBAQMGYMOGDWrHUyIESUq8vnz5cn7s77//FiL2JJCL2PPly8ff6YULF8Lb2zvZ84VfZBwRERF4//49tmzZgjVr1mDRokW4cuUKPnz4AED3Oyt9t3fvXigUCpQqVQo3b97kbaUbN27wRTlt27bFq1evAKQtknVuIzo6GiEhITh48CD27duHrVu3wtnZmYui5O2uwMBAzJkzB4ULF+aitlu3biV6bcluTk5OMDU1BWMM58+fz9Tnyc1cvnwZM2fO5ItpBg0axI9pRmLfvHkzqlWrhu3bt2vteCBQrzNq1qyJ/fv3J7qrg/CLzCExwbn8+8R26JIvKqtatSoCAwMBiDohrcjz7bfffgNjX3f/0VyM1qxZM5w+fTrRa02fPh2MMXTs2FHr2pGRkZg6dSoYYxg2bFjmPdB3jPydX758OcqUKZOoLbp37853KtCFsEX6SY9vSLb08/NDqVKlwBiDvr4+SpcuDXt7e7Xfkerw+Ph42NnZwcTEBBUqVNBaEP09IATsAoFAIBAIBAKBQCAQCAQCgUAgyFTkgpPNmzfDysoKxsbGYIyhUKFCaNCgAZycnAB8HejXNTH55csXLmIRk4wpIygoCAMGDOATJPKI0YnloRQZ+bfffoOBgQEMDQ1x8eLFrLrlHEVqBYIvX77kkZP69euHjx8/ZtKd5Uzk5cb27dtx6tQpnemEX2Qtrq6uXMRuaWmJ0qVLY8CAAfjhhx/Utsw2NDTE2bNnAWjbITQ0FNWrV4e+vj727duntbgpLi6OR8Y/efJk1j7gd4SrqyufCDczM0PRokXRsWNH1KlTh4t3pWNSJPu4uDiez66urujRowe3m7m5OZYuXaoVITQ0NBR//fUXj4p/9erVLH/Wbx1XV1dcvnxZLUJoWto2J0+eRNu2bbnt/vzzT7XrqVQq7NixQ4jYk8DZ2RkWFhZgjMHIyAg9evTg7VIg8XySvhd+kfkk5xuhoaFo3LgxGGMoXbo0OnTogJEjR8LQ0BCMMdStWxdHjx5NUgQvSDlSnkntrqNHj/JFycWKFUs2Yr503o4dO6Cvrw8TExOxe0omIPebz58/Y+/evVwYPXr0aJ3p4uLi4OXlhfDw8Cy91+8JFxcXFCxYEIwx9OnTR2vXIOEXWYtmGS7//5gxY8AYg4GBAebNm4dz587Bx8cHgwYN4oudxbuePuT9bymydIECBWBhYYEqVaqgdevWOH78ODw8PHg6XfXujh07YGBggJYtW+L9+/dq1z9+/Dhf+CnfMU2gjtwWV69exbJly2BjY4OiRYuiXLlyqF+/Pg4cOCBskUWkxTekhWP+/v6oXLkyXxRbv359PHjwAEDi7VYHBwe+48rBgwcz8ckyByFgFwgEAoFAIBAIBAKBQCAQCAQCQaYjnxh//PgxLl68iI0bN+L+/fs88hWgPhgfExODp0+fYufOnRg3bhwqV64MKysrODo6Zum9f88cO3ZMbctaicSEQNL3d+7c4VF427RpkyX3mtOQ57Grqyvi4uKSFUlFRUVh/vz5XIDl4uKS2beZ49C1+EUz34VfZD2enp7o2LEjj7Qu/xgZGcHCwgJXrlxJ9PxHjx5xkbsUMU7uU5cuXeLXS04glNvx8vJCjx49+KICzShwtWrV4sJblUrF3383Nze0b9+eC90tLS1x4cIFtcij8kiu3t7eqFGjBhhjWLduXdY+5HdIWkS0T58+RdOmTbn9evTowY9FRkbyvyURu1KpFBETE+Hly5dcxF65cmUcPnxYbccTTSR7Cb/IfqR6//Pnz2jcuDFfrCF9+vbti3PnzvF0mv9KyO0kRO3JI+VRaGgoatWqxRcm//fff0meJ29rdevWDYwx5M+fX213FkHmEBsbix07diBPnjzQ09PDpk2bsvuWvlucnZ3RrFkzvHz5Uu174RffDqtWreLi9QMHDqgtGASAatWqoUSJEvDy8sqmO8w5aNanb9++hZeXFz5//pzkAgM5V69e5dHxp02bhmvXruHq1atYsmQJX3gzfPjwTHuGnILmeMbnz58REBCAT58+qbVzkkLYIuNIjW9IaT9+/Ig2bdrw8qthw4Z8h7qkFmK+evUKhQoVAmMMhw4dyozHyVSEgF0gEAgEAoFAIBAIBAKBQCAQCARZgjSZomvQXRJaPXjwAHZ2dvjpp59QrVo1tW1W8+fPj0qVKmH+/PliS/NkiIuLQ1RUFDp37gzGGGrUqAEHBwd+LLFzAMDd3R3FixcHYww2NjY4evQoAGjluaYdRVR83ezcuRNjxozh/09OFPXy5UuYmZmBMYYlS5boTJPcRLCwhW4ywy9EXqecgIAAnDp1CgMHDkTNmjVRpkwZtG7dGosWLYKzszOAxP3jw4cPqFatGkxMTLBv3z61fL937x4qVaoExhhGjRqVJc/yvfPx40fY29tj5MiRaNWqFRo2bIhevXrBzs6OC3nkCwS8vb3Rt29fXjYVLFgQz58/T/Z3evXqBcYY+vfvr3NxiSD9bN++HR07doSxsTGMjY3VIqzLhSoqlQo7d+7kEcJfvXqVHbf7TePs7AxLS0swxlCzZk3s378/SRG78ItvB+ldDwkJwb59+zB9+nQsWLAAu3fvRnh4eJJ1y/Xr17FgwQL07NkTY8eOzcrbzhFMmjQJjDHky5cP8+fPR1BQUKJp5Xb4888/wRiDvr4+ZsyYoXVckHKio6MREhKSorS+vr5o3749L4MEaUfqG+sqx4VfZC9BQUFo27YtlEolFi5cqNYeioyMhEqlQqNGjcAYEztqZRBJvacp7S9v3LhRbTcoPT09Ph44ePBgnk7uc7r8T/TPE0fYIutJjW9ERERg9uzZMDc3B2MMVapUwaNHj5K9DgAsWbKE1zuau0B9D+iRQCAQCAQCgUAgEAgEAoFAIBAIBJlIfHw8KRQKUigURETEGCMiIpVKRXfv3qXAwEA6evQo+fr60v379/l5xYoVozp16lDbtm2pVq1aVKtWLbKxsSEA/BoC3SgUClKpVOTq6kpERKVLl6ZKlSrxY5pINvL29qaff/6Z3r59SwYGBtSwYUNq2rQpERHp6+sTEVFAQAA9fvyYrl69SpGRkVSjRg1q164d2djYUFxcHCmVyix6ym+fV69e0bZt2+jRo0dUuXJlmjhxYqLvrvRe6+npkZGREYWEhFB0dHSi6YiELVJLZviFdJ7I7+QpWLAgdenShbp06UIhISGkUqnIwsKCv9NJle3m5uZUtWpVcnJyomXLlhERUZEiRSgwMJCmT59O79+/p7Zt29KkSZOI6KvtBLopUKAAtWzZklq2bEkxMTEUHx9PRkZG/DgAnn+fP3+mbdu20fXr1ykkJIQsLS3p5s2bVLFixSTzOTQ0lF69esWvJ/wjcxg5ciS1adOGTp8+TbNnz6ZNmzbRly9faP/+/aSnp8fLJqVSSUOGDKH8+fOThYUFlSpVKrtv/ZujUqVKdOvWLWratCk5ODjQ+vXrqVixYtSiRQutskn4xbeF9K6bmprSTz/9pDNNeHg4Mcbo9u3b5OjoSNeuXaMnT55QQEAAERGvh1q2bEl9+vTJytv/bgkPD6eXL18SEZG1tTV169aN8ufPrzOtvI4/f/48HT16lIiI8uTJQ40bNyaiBBsk1Z4SfUBtVCoV3bp1i969e0eDBg1KNo+sra2pWbNmdOnSJTp8+DD9+uuvVKNGDZ1phS2SRk8vQW6nmUeZ4ReC1OHn50c3b94kpVJJjRs35rZSqVRkZGREwcHB9PnzZypatChVqFAhm+82Z5DUe5pcn0xqN40fP56MjY3p77//Jm9vb4qOjqaWLVtSixYtaObMmUREFBUVRUZGRvwcyf+CgoLI0dGRihUrRuXKlRN9wUQQtsh6UuIbUh75+vrSlStXKDg4mPT19WnLli1ka2ubaJ0rnRccHEwPHz4kIiITExMyMzPLnIfJRISAXSAQCAQCgUAgEAgEAoFAIBAIBBmKNIguDbJLg/KxsbH0+PFj8vLyomPHjtHbt2/5IDsRUdGiRal27drUs2dPKl26NDVv3pzMzc0pT548WtcXgp/kCQ8Pp7CwMNLX16eePXuSvr4+qVQqPoErIRfpTpgwgdukdOnSNH/+fCpUqBBPe+HCBdq7dy8dPnyYf6dQKMja2ppOnz5NVapUyfUTVHLy589P1apVo0ePHtGlS5eoXbt2iU6SSxNSz54942IqzYkn+cSVsEXayEi/iI+PJ8YYMcZ4meTq6koBAQEUHx9PVatWJWNjYzI2Nha2+D/SO2xqaqr1XVKLOwwMDGjz5s3k5uZGz549o9GjR1NUVBRP07lzZ5o2bZrWgoTEJnuF8OprHujr6/O8kNtCEq49efKEjh8/ToGBgWRhYUHnz5+nihUrJipsk75/+/YtX4RTunRptesLMgYpP0uVKkVjx44lS0tLGjVqFNnZ2VGpUqVo8eLFajZSKpXUo0ePbLzjb5+KFSvSrVu3qFWrVhQVFUU2NjZq76zwi28TXX2DyMhIio2NpatXr9KbN2/o1KlT5OvrSx4eHjxNpUqVqFGjRtSiRQtq0KABlSpVSq3dK0iaBw8ekL29PRER/fzzz1SrVi2d6eTv+KNHj2jfvn304MEDIiIaP348devWjaeT7HjlyhXy9fWlvHnzUpEiRah58+bJLnbLjTg5OVHv3r0pMjKSmjRpkuTiJKkcKlOmDM/LL1++JJpe2CJpEnv2jPYLOfL+RG7P/6SQyhIjIyPe5wDA+3ujRo0iV1dXql27NuXLly87b1VACf026d0eNmwYtW/fnmJjYyk0NJSsra3VbCQtuP348SN5enrSvXv36MaNG+Ti4kIeHh6kp6dHL1++pHLlymXX43zXCFtkD1K5vmXLFnr06BEREe3cuZOaNm2a5HiGdN6mTZvo1KlTREQ0duxYKlu2rFq676GuEAJ2gUAgEAgEAoFAIBAIBAKBQCAQZAiagvVPnz6Rv78/PXnyhOzt7enly5f0/Plznr5o0aJUs2ZN6tmzJ5UqVYo6d+5MBgYGZGxsrHZdTeGnEK+njPj4eIqIiKDY2Fjy8/MjIkpUpOvh4UGjR4+mBw8eUFRUFFlaWtKhQ4eofPnyPO2ZM2do0aJF9OTJE8qbNy9169aNIiIiyNfXl54+fUqdO3cme3t7srGxydLn/JaxtLSk7t2704ULF+js2bPUoEEDmjp1qtaiDIl3797R1atXSalUUlxcHBUtWlTtuDTxJGyRdjLKL+Li4rjQ18vLi+zt7Wnfvn3k7OxMQUFBRJQghKxbty7NnTuXypUrJ6K009d3WD6JmpywXxJTm5ubk729PU2cOJFcXV3JwcGBKlSoQJ07d6bJkydTwYIFtSZn5ULsmzdvUnh4OP3www/fxSRuZqPLFvK/pXd12bJl5O7uTvny5aNt27ZRnTp1El1IJv9+3bp15O7uTowxatu2rdb1BSlH1yIbIvX81NPTo86dO9OkSZNo5cqVdPLkSerevTvVqVMnK281R1CxYkV68OABRUdHU6lSpdSEH8Ivvg0061Np4WxYWBjZ29uTt7c3HTlyhAIDA9UE61WqVKGOHTtSjx49qGzZslSzZk2dUSrForOUERMTQ/r6+pQnTx6qXbs2EWnnndx/HBwcaNu2bXzx5cCBA2nhwoVq13z16hX98ssvdPXqVYqNjSWihAWdo0aNohUrVgjhtAZRUVFkbm5O4eHhZGdnR1OmTNHqS2vi5uZGRAnlWVKLBz08PIQt0kBG+oVm/S+VcyqViqKjo6lw4cI6r5nbMTU1JRsbG3J2diZ7e3sqV64c5c2bl2JiYmjUqFF05MgRsrCwoM2bN1P+/PlF3n0DSDul6enpUeHChbXaU56enhQWFkZnz56lly9f0vXr1+ndu3dElNCOKlKkCHXv3p3Kli1L79+/F6LpdCBskfUAoMDAQLpx4wYREXXp0oXatWtHRLr7CfIya+/evTR37lwiImrcuDF16tSJiL62laV0MTExpKenx8ewvrW2rhCwCwQCgUAgEAgEAoFAIBAIBAKBIENgjFF4eDj98ccfFBAQQA8ePCBPT08eabJAgQLUpEkTatmyJVWqVIlatGhBhoaGWltqA1CLJvMtDap/TxQpUoR69+5Ne/bsoVevXtGXL1/IzMxMSzj67Nkz6t+/P3l6elJ8fDyZm5vThQsXqHr16nzSw93dnf7++2968uQJtWvXjsaNG0ddunQhlUpFr169osGDB9OTJ0/o9OnTNGnSJDEJTF8nlTp37kxTpkyhGTNm0O+//07m5uY0aNAgLcHUx48f6ejRo2RnZ0dxcXHUvHlz6tevn9Z1hS3SR0b4hVyMePv2bZoyZQq9fv2aAgMDeSQyY2NjcnV1JVdXV7K3t6eLFy9S5cqVv7mJwu8FaVGHmZkZ7dy5k+Li4iggIIBMTEyoQIECWulDQ0PJwcGBvL296fjx4+Tr60vPnj0jIqJhw4bRzp07s/oRviukcmPXrl107do1MjQ0pJ9//platWpFRLrrZXm9vWXLFtq9ezcxxqh79+5UrVo1fk3hA6kjLCyMXrx4QXXq1CEDA4Mk05qamlLLli1p9erV5OTkRI8fP05SwC5skTglSpQgInWBSGb6hSB1SHXwmzdvyNnZmRwcHOjixYvk5eVFPj4+PF3VqlWpTZs21K9fPypevDi1bt1ap2hX0xeEX6SM4OBgio2NpTx58pCFhQURqeedPF/v379P27Zto7179xJRws4pM2bMIH19fd7fuHfvHk2ZMoUePXpEFhYWZGNjQ3FxceTg4ECrVq0ixhgtX75c+IyMqlWrUq9evWjNmjV0+PBhat68OTVp0kQrnXzRx82bN3mE6uLFi6ulk2wmbJF2MtIvJPF6fHw8HTlyhM6cOUN37tyh2NhYCgkJoV69elGTJk1o+PDhYkGBjNKlS1O/fv1o/vz5NHv2bLp+/TrFxcVRUFAQPXv2jPLnz0/r1q2jevXqiTzLRjT7BtL7rlQqydfXlz5+/EgnTpwgPz8/unDhAoWEhFBUVBQpFAoqUKAA9e/fnypXrkwtWrSgcuXKqS3oEKQOYYvshTFG79+/J0dHRyIiql+/fqI7AsnLrCNHjtDvv/9ORET58uWjzp0784VTSqWSYmJiyMXFhQ4cOEAvXrwglUpFderUoeHDh397ARYgEAgEAoFAIBAIBAKBQCAQCAQCQQYyduxYMMZgaGiI1q1bY9q0aTh16hTevn2LiIgIrfQqlQoBAQF49OgRPn78iMjISP69IH3s3r0bjDEwxrB+/Xr4+fnxY48ePcKGDRtgamrK05QuXRrPnz8HAMTFxSE+Ph4AsHfvXigUCpQqVQoXLlzg14iJiQEADBo0CIwxjBkzJguf7tsnLi6O//3bb7/xfJ46dSpOnz6NuLg4xMXF4cqVK/j1119hYmICxhiqVKmCkydPal0DELbICNLrF0BCfv/zzz9QKBQ8XcGCBbFo0SL8999/eP78OTZv3oxmzZqBMYZy5crB09MzW543JxEbGwsAvGyS+PDhA+7du4eNGzeiV69eqFq1KreLZMM2bdpg3bp1+Pvvv7Pj1r9Lpk2bxuvzq1evJppObo/Tp0+jXr16YIxBT08P27dv13lOTEwM3r9/r1bGado1txMZGYlt27ahYsWKuHjxYorOiYiIgK2tLRhjGDp0aIryVNgidWSmXwiS5vXr1zh06BAWLlyI9u3bo1ixYmplfaVKldC9e3ds374dFy9eRGRkpM6+h1SXCNKHr68vKlSoAD09PWzbto333eLj49X6cUeOHEGPHj24nTp06ICbN2+qlTmfPn1Cw4YNwRhDtWrV4OzsjLCwMLx9+xbr16+HUqmEpaUlbt26leXP+a3j5+eHRo0agTGGZs2awcnJieetZn96zJgxYIzBwMAAY8eOBfC1rJLOEbZIHxnpFwBw/PhxDB06VK2sMzIyAmOM90NmzpzJ0+f2+luef7NmzYJSqYRSqeR5V7RoUZw/fx7R0dHZeJe5E82yRk5AQAAePnyIBQsWYODAgciXLx9/z42MjGBqaooff/wRv//+O54+fYq3b99qXUO6rq7rC9QRtvj2ePbsGfLkyYMCBQrg0aNHALTbq/L8PHr0KCpWrAg9PT0wxjBkyBC1tOHh4Vi9ejXq1KmjVn8wxlCsWDE4OTkB+HbqDBGBXSAQCAQCgUAgEAgEAoFAIBAIBBkC/h8JZvPmzdSnTx8qWrQoVahQQS1NXFyc2v/fvXtH48ePJxcXF3Jzc6Py5ctT1apVaevWrWRpafltRYT5jpBsMXToUHJ3d6fly5fT5MmT6b///qMiRYoQY4zu3r1LgYGBFB0dTVZWVlS7dm1atWoVVaxYUS0yXFRUFO3fv58AUJ8+fah9+/ZElGBLfX19IvoaVS4+Pl5EdJWhUCj4O7x06VIiIlq+fDmtXbuW1q5dS5UrVyYi4lG+Y2NjqWLFijRq1Chq3rw5v4aEsEX6yCi/CAkJob1799LkyZMJABUqVIhsbW1pw4YNZGNjw3+vWrVq1KJFCxo2bBg9fPiQ/vrrL1q5ciXp6ekJu6QA6IiIKEWDe/v2LQUHB9P58+fJ0dGRbt68Sa9fv+bpLC0tqXXr1tSmTRuqUqUKtWzZkhhjZGxsnOT1BQnExcVRTEwMnTt3joiIevTowaNMayLPR3t7e9q6dSs9evSIiIjGjBlDI0eOVLvuhw8faP78+fTy5Ut68eIFNW/enJo1a0YzZ84U0UM1iI6Ophs3bpCbmxvt2LGDbG1teTTXxAgODqZ3797xvxPLS2GL1JMZfpHSelrYIgF9fX0aN24cff78mfT19algwYLUp08fatSoEdna2pKtrS0pFAreJpIIDQ0lxhgxxsjExIT09PREGykDyJ8/P9WqVYvc3d3pn3/+ofr161OFChXIyMiI76g1d+5cOnXqFL18+ZKIiLp160YzZ86kevXqqeX/5MmT6f79+1SqVCk6f/48FStWjIiITExMqGfPnrRnzx5ycHCgwMDAbHnWb5nixYvTvn37qFWrVnTr1i0aPXo0TZo0iZo1a0ZFihShqKgoCg8PpxkzZtCePXuIMUZWVlbUrl07IiJetkj2ELZIHxnpFwsWLKDjx4/TixcviIioXLlyVLFiRfrhhx8oKCiIXF1dyc7OjlatWkUKhYKWLVuW6+sKef97+fLl1KBBA/Lz8yNvb2+qUaMGtW7dWmvnAUHWIL2bcXFxFBoaSo8fP6bHjx/To0eP6N69e7z9qqenRxYWFtSpUycqXbo0de/enSwsLKh06dJq15PaRtK/YgfHlCNs8e1hYGBA0dHRFBUVRW5ubmRra8vHPiSk/LSzs6O5c+fS27dvKS4ujrp06UJ79uzh6aKjo2nDhg20du1aCg4OpmrVqtGIESPI19eXHj58SHfu3KFevXrRlStXvpnyUAjYBQKBQCAQCAQCgUAgEAgEAoFAkCEwxvhkYcuWLYlIeytaSYweHx9P169fpylTptCLFy/I0tKSypUrRyqVio4dO0aurq5048YNKlCggBDtpAG5LZYuXUoGBga0bt06unPnDsXHx6ulbdCgAQ0YMIB69epFRYsW1RL0KBQKioiIICIic3NzIiKKjY3l4qDr16/T9evXSaFQUKdOncQklQZKpVLNFlZWVnTw4EF68OABOTs7q6Vt0KABjR8/njp16kRmZmZa1xK2SB/p8QvpvOjoaNq1axdNmzaNAFD58uWpV69eNGXKFLVFNwBIoVBQuXLlqHnz5vTw4UN69OgR6evri/IsGaQySJ5Pvr6+FBwcTKdOnSIfHx+6cOECBQUFUVRUFBERFShQgLp160bVq1enpk2bUpUqVahw4cJqPqC5gErYIXEUCgUZGhrySfMCBQoQEZFKpVKbSJfXF1euXKEtW7ZwcW/fvn1p3bp1PG1kZCRduHCBVq5cSQ8ePCB9fX2KjY2lixcv0rlz5+jdu3e0du1aYRcZxsbG1KhRI7p48SI9ePCAbt68SV27dtVZtku2cHJyIgBERFS4cGGdbShhi7SR0X4RExNDBgYG/LyHDx+Sl5cX3b59mwwMDKhWrVpUvnx5ql+/vlhQ8H+KFClCt27dojNnzlCLFi3IxsaGChYsqJYmJiaG/33r1i26efMm/ffffxQXF0dlypShnj170qBBg0ihUAgRezoxNTWlpUuX0v379+n27ds0fPhwqlWrFjVo0IDu3btHHh4edOvWLZ5++PDhNGPGDCpfvrzauxwSEkJOTk5kbGxMmzdvpmLFiqn5VZ48eUilUhEACgoKyvLn/B4oU6YMXbp0idq1a0d3794lNzc3srS0pKZNm9KrV6/o8+fP5OjoSAqFgkxMTGj69OnUvXt3resIW6SfjPKLcePG0cGDByk4OJiIEhY/9evXjy9yJiL68uULNWjQgCZOnEgbN26khg0bUteuXbPuYb9R5P1vXe+5KPuzj+fPn9OgQYMoLCxMbfFx0aJFqUePHlS7dm1q164dWVpako2NTaJtH7kNc3vbKK0IW3w7AKCSJUvSDz/8QOfOnaOnT59S9+7dycTERC0NY4zWrFlDs2bNovj4eAJAHTt2pJMnTxJRgnDd0NCQbt++Tfv376ewsDAaO3YsjR49mipUqEAqlYqcnZ2pX79+5O3tTY8fPxYCdoFAIBAIBAKBQCAQCAQCgUAgEOQ8NKOla0Z0kyYSnZ2d6ZdffqGXL19SrVq16MCBA1SkSBEyMzOjIUOG0P79+2nu3Ln0119/aUVRFKQM+cTtggULqG7duvTy5Us6c+YMMcaoTp06ZGNjQ6NHj+aiWkl0K0dfX59q1KhB9+7dIzc3N/r8+TPlz5+fiIju3r1L27ZtIz8/Px7pWKCN3BYTJ06kNm3akIODAx09epS+fPlCZcuWpRIlStDkyZPJ2Ng40Yk/YYv0kxa/iIuL4zaxs7Pj4vUqVarQsGHDaOTIkZQvXz6Kj4/nZaCUXk9Pj+9E8eTJE3r16hWVK1dOTO4mQVxcHIWFhZGXlxedPXuWPDw86PTp0xQTE0NhYWGkVCpJqVRS165deSQ4KysrKlGihE7BujTZK3bzSDlSpOIyZcqQk5MTvXv3TkukK98h5dixY7R9+3a6ePEiERF17dqVVq5cSUqlkp9369Ytmj9/Pjk5OVHFihVpyZIlFBoaSr6+vrRgwQJav349VahQgcaMGZMtz/wtoq+vT3379qWLFy/SmTNnaMWKFVS2bFmqWrUqTyNFc5Xe/Z07d/KoiR07dlQraySBibBF2shIv4iNjeXidXt7e7p8+TKtXLmS8uTJwxeqERGVLFmShg4dSvPnzxci9v9TuXJlvoMN0df3Wlq4IeWrFJ3y9evXBIDy589PL168oBMnTtD79+9p+vTpQsCYAdjY2NDFixepe/fu9OzZM3r27Bnt3buX18EGBgZUqlQpGjJkCP32229a5wOg169f0/Pnz4mIeL9PT0+P+5eXlxd9+vSJChYsqFb+CdSpUKECXbt2jSZOnEjPnj0jNzc3cnd3V/ONChUq0Lhx42j06NFEpC48FLbIONLrF8OHD6e9e/dy261cuZKmT5/Oj0sLoMzNzalHjx507Ngxun79Ojk4OAgB+/9Jqt0vyv7so2bNmtSwYUM6f/48tWnThtq3b0+1atWiatWqaS1II0poezk7O5Ofnx/5+vpS5cqVqUaNGmRqaqrVBhOkDmGLbwdphyBJwL527VoqWrQodezYkcqXL0+RkZF08uRJunr1Ko+0rq+vT7169aIDBw4QUcKCWkNDQyIiOnjwIDk7O1OrVq1o3LhxVLZsWd5frF69OhUtWpTc3NzI29s7ux5ZGwgEAoFAIBAIBAKBQCAQCAQCgUCQhcTExKBRo0ZgjKFevXr49OkTACAqKgoAEBgYiPz586N58+aIi4vLzlvNEWjmYWxsLFQqVZJpNDl8+DAYY2Dsf+3dd3QVdf7/8de9qSSEBAiQkBASSIBACCUghCZtBYNIERREqoKiiAWxrAXEsgi7uKLuqrsgLusPpPcq0nuLQIDQUiihBkhCejK/P/jekUAoq5CbwPNxDsfrnZLPzHvuzJ07r/mMxejfv7/xt7/9zRg5cqTRoEEDw2KxGNWrVzfmzZt319t+v8nPz//D41CLu+N/+VzYarJy5Upz3YeGhhp///vfjdTU1ALjFDb9xIkTDScnJ8PT09M4duzYHW0HD6r09HRj2LBhhqOjo+Hk5GRYLBbDycnJ8PLyMrp3726MGDHC2LRpk3Ho0KHbzovjx+9n20YnTJhgODk5GaGhocbu3bsLHXfcuHFGnTp1zM9Gt27djAMHDhQYJzMz02jTpo1hsViMRx55xIiLizOHpaamGsOHDzf3abhRXFycuY4ffvhhY/PmzUZaWlqBcXJycoznnnvOsFgshtVqNbp27WokJibeMC9q8fvdrc/Ftceajz/+2IiIiDDH8/DwMKpVq2Y0a9bMqFatmmG1Wg2LxWKMGDHini/f/WTatGlGqVKlDIvFYvTs2dP473//a5w9e9aYNWuW4eXlZVgsFr4r3WWJiYnGmDFjjDZt2hgBAQFGaGio8dBDDxn/+te/jE2bNpnjFXZsTklJMRo0aGCULl3amDZtWoFxzp07ZzRs2NDcZ2VkZBTJ8pRktm39ySefNOrXr2/UqFHDqFevnvH3v//dWL9+vTketbj37vRzkZ2dbb5++eWXze/Arq6uxrfffnvbvzNw4EDDYrEYzZs3N39TAYqba7//nDp1qsA5se11Tk6O+d6JEyeMf/zjH4a7u7vh4OBgWCwWo3Tp0kbr1q2Ns2fP3jBP3DlqUbxcu/7ffvtt87wgJCTEaNasmVGrVi2jTJky5vv169c33n//fXOaa2t1+vRpIygoyLBarcbChQvN+duO5xkZGUZYWJhhsViMr776qoiW8PYIsAMAAAAAAAAAitSiRYsMR0dHw8/Pzzhy5IhhGAV/cN+5c6fh4OBgVKpUyTh58iQhxGLiyy+/NC+Y2P65uLgYzZs3N2bPnm2Ol5eXZ16AKewiFhe2fvN7g8zUoujFxMQYQUFBhsViMapUqWKMGTPGSElJMQzj1nU8f/68Ub9+fcNisRhNmzYlvH4HYmJijICAAKNz587Gu+++a2zYsMGIjY0tMM612+6BAweMFStWGG+//bbx3//+97bhLNy5EydOmNtvy5YtjXnz5hkJCQnGqVOnjDlz5hhPPfVUgf1Qnz59jBMnTpjT27b38ePHGxaLxfDx8TEOHz5sGEbB4/6ECRMMi8VihIeHG2lpadStELGxsUblypUNi8Vi1KlTx3juueeMBQsWGCtWrDDGjx9vREVFmeH10NBQY9q0aYXOh1r8cX/kc3Ht+nzuuecMZ2dnc7zevXsbkydPNi5cuGDk5OQYMTExxoQJE8wQ++eff26nJS5Zdu3aZQZzhg4dap5r2Hz33XeGxWIxRo8ebacW3r9sAamEhATj8uXL5vckm5vtT7KysozevXubNwj+8MMPxtKlS42pU6ca4eHh5vunTp265Xxwo+TkZOPixYvG5cuXC7xPLYrO7T4X136nHTdunFGxYkXzBs5JkyaZw261rp988knzXIMAO4qz67fjm23XR48eNV555RXzO9Bjjz1mDBo0yGjevLkZ4L148WIRtPj+RS2Kl+tvcK1ataq5zi0Wi+Hm5mZYLBbjlVdeMZYtW1bodIZx9Sa2SpUqGRaLxZg6daphGL/VNj093fjuu+8MNzc3Izg42IiPjy+CJbsz9N8PAAAAAAAAAChSR44cUV5ennx9fVWxYkVJMh83m5eXp61bt8owDLVu3VqVK1e2Z1Oh3x4tP2zYMFWqVEk///yz9u/fL0dHRz3zzDNq0KCBGjZsKEnKyckxHzcvSVlZWUpOTta2bdu0a9cudevWTREREfZalGLHYrH8T+NTi6KXn5+vvLw8/fTTT7pw4YIkqUWLFnrppZfk4eEhwzBuWsfc3FwtXrxY586dkyQ1aNBAeXl5slqtPLr+FmrXrq1ff/1VXl5eNwzLz8+XYRhycHCQJM2cOVMfffSRjhw5oszMTEmSm5ubxowZo9dff11Wq/WWNcKt+fn5acaMGWrbtq02bNigPXv2mNtvbm6uUlJSZLFY5O3trQEDBuizzz4rML1tvZ86dUqS9OSTTyo4OFh5eXlydHSUYRjKy8vT8ePHJUlhYWFyd3cv2oUsIWrUqKE1a9aoZ8+e2rNnj/bv369JkybJwcFBjo6OysrKksViUd26dTVs2DD16tVLkm7Y/qnFH/d7Pxd5eXnmvqtXr16aMWOGLBaLLBaLRo0apffff1/Sb5+b2rVrKzAwUGfPntW4ceO0ZMkSDRw4UJ6envZZ8GLOtq3/+uuvio2NVXh4uIYMGaLq1atLkjIzM+Xq6mpu17t27eL4cA9YrVYFBATcdNj1DMOQs7Oz/vGPf+jgwYOKjo7WCy+8oMzMTLm4uCgrK0u1a9fWzJkz5evrW+BzZHtt+3587Twf9Lra1kHZsmULHU4titadfC7Wrl2ruXPnmucNEydO1KBBgyTphvV6rQMHDujgwYOyWq2qV6+eXFxc7sESAHfH9dvx9f9v22dMmzZNX375pUqXLq333ntPI0eONMd56qmnNHPmTE2aNEkjRoxgP/M7UYvixcHBwTyWvvvuu2rbtq2OHDmirVu3KicnRy1btlRgYKBatGhhTpOfn28eh23c3d3VuHFjLV68WDt27FDHjh3l7e2tjIwMzZo1S1999ZUyMjLUoUMHlStXrqgX86YIsAMAAAAAAAAAilT58uUlXb1Akp6eLg8PD0lXL5Bs2rRJf/nLX2QYhpo0aWLPZuL/WK1W86J5z5491bVrVxmGoZycnBvCbRkZGUpLS9OSJUt0+PBhLV68WPHx8Wbw94svvtCxY8dUoUIFeyxKiUctip7ValVWVpYWLFig1NRUBQQEaPz48SpXrtxNwyS29xMTEzVlyhSdOnVKzs7OGjhwoHmzjkSo51ZsAc1rw1HS1WCnbZ1PmTLFDPa0adNGtWrVkre3tyZOnKg33nhDpUuX1pAhQ1jHf1BISIjWrFmjV199Vfv371dcXJykqzeeubq66rnnnlObNm3UrVs3SYWHrDIyMiRJSUlJZohUulrP/fv3a/ny5ZKkpk2b3nQeuFqLRYsW6auvvtLq1au1fft25eXlKS8vT5I0ZMgQderUSY899pgkanEv/a+fi+zsbDk7O0uS+vTpoxkzZsjBwUG+vr567733NGTIkEL/jpubmxo1aiTDMPTzzz8rLi5O9evXL5JlLIny8/M1f/585ebmKiIiwlxXubm55ra+Y8cOSVdvEOD4cHf9nvVpsViUl5cnLy8vrV69Wq+88ooOHDigHTt2qHHjxqpVq5Y+++wzlS1b9oaQtO37weXLlxUfH6/Y2Fj16tWLuopaFCe3Wwe24fPnz9eWLVskSR999JFeeOEFSTc/DtvOIzZs2KC9e/dKkmrWrHk3mw4UOYvForVr15o39Y0aNUqvv/66JOnKlStyd3fX8OHDNXPmTB07dsycBncftSh61x5XIyMjFRkZqb59+950/MKODW5uburRo4cWL16siRMn6siRI6pevbqio6N18OBBnTt3To8++qhef/1187f4whT1b1UE2AEAAAAAAAAARcrX11fu7u7avn27/vvf/yoqKkp5eXnatGmTPv30U504cUKPPvqohg0bZu+m4v9YrVazR29br97Ozs66dOmSMjMztXLlSiUmJmrOnDk6ffq0kpKSzGmbNm2qDh06qGvXripXrpx5AwN+H2pR9JYsWaJff/1V7u7u+vTTT+Xn53dDsNrm2vffeecdrVmzRo6Ojho1apQaN26svLw8M4Sdn5+v7OxsHT58WD4+PipVqpQ8PDwIjOq3i9/Xr2Pb+/PmzTPD6yNGjNCwYcMUEBAgi8Wili1b6pFHHtE333yjLl26qGLFilxM/4OqV6+uqVOn6syZM9qwYYOys7MVEBCg4ODgAmGpm227devWlSTt3r1bmzdvVmRkpHJzc7Vz5069+eabOnDggJo0aaKnn35aUuEX43GVv7+/PvzwQ40ePVrLly9XamqqPDw8FBgYqPDwcHNbpxb33p1+LnJycszw+ksvvaRp06bJarUqMDBQH3zwgRlMub5mtuNJjRo1VKFCBV2+fNl80gRuZOvN3hbGsX1HMgzDvHnsu+++09///ndJUrt27ezSTtzI1uuop6envvvuO+Xm5iouLk4hISGSZH5+bN8Jzp07p5SUFC1ZskT79u3T6tWrlZiYqNzcXG3fvl1/+9vf7LYsJR21sI9Vq1aZ+6ZnnnlGr7zyiqRb30RmsVi0ceNGvfzyy5KuPiHKdjwxDMMcByhp5s6dK0nq2bOnGZjOzc01b9jfunWrJOn8+fPKz8+XxPfVe4VaFL0/sv5sofP+/fsrNTVVw4cP15IlS8zhAQEBGjhwoN555x1Vq1bNPMYU9tuW7fhxs9+97jYC7AAAAAAAAACAItWuXTu9/PLLGjt2rEaOHKkvv/xSaWlpysjIUEZGhtq0aaO5c+fKycmJIKcd2da97SKILQiUkJCgDRs26ODBg1q4cKGSk5N14sQJc7oWLVqoTZs26tGjh3x9fRUREVGg12n876iFfdluAsjOzlZwcLCkG4PVUsFHOPfv318zZ86U1WpVp06dFBUVJem3HsQPHz6sqVOnaunSpTpw4ID8/PxUq1YtjR07VqGhoUV2obAkSkpK0tdffy1JGjp0qEaPHm1eRDcMQ+3bt1e9evUUGxurtLQ0VapUyZ7NvW94eXnJy8vrht49r+2d7WbH6759+2rq1KnaunWrBg4cqFq1aunKlSuKj4/XyZMnFRISotmzZ6t8+fKFHvev/Rs8ueBqgNBisahLly4F3rcF1iRqUVRu97kwDMM8Zk+cOFHTpk2TJFWsWFHvvffeTcPr0m/HmdWrV+vcuXP3elFKPNv2X716dUnSzp07tWfPHgUEBMjLy0uff/65PvroI0nS+++/r/bt29utrbiR7Xuug4ODnJ2dVadOHXPY8ePHlZ6eroULFyo+Pl6LFy/W2bNnlZGRIavVqjJlyigqKkq1atVSaGio0tPT5ebmZselKdmoRdGxHSv27NkjJycnubi4qGPHjuY6u9XvIHv37tXIkSOVnZ0tT09P/elPf5Knp+cNx+bs7Gzl5uYWqAPHbxRXhmHo4MGDkqRy5cpJuhqYtv2GERsbq9WrV0uSoqKi+K3wHqIWJY/FYjHPKYYNG6bg4GDt3LlTx44dk6enp3r37q3AwMAbnsJoO+c4efKkoqOjtXv3bq1du1Yff/xxkT0ZlV8pAQAAAAAAAABFxvZj+qeffionJyf98MMPSkpKUk5Ojho0aKDmzZvrb3/7m5ycnAhw2pntovbBgwd16NAhrV+/3gxLp6SkmOM0bNhQLVq0UPfu3eXv76+mTZsWWjtuRvj9qIV92MIdth5v69Spo4ceeqjAsGvZ1unAgQM1depUWa1W1atXT/369VO9evXMcfbu3atBgwZp165dMgxDbm5uOn78uA4fPqwtW7ZozZo1Cg0NJVxyE5cvX1Z0dLQ8PT3VpUsXM5Bj29bPnz9vBqYITd17t9tG8/Ly5OHhoaVLl6pLly7asmWLEhMTJV0N8UZFRenf//63fHx8zKdLXL+PslgsZk1toeAH+bNxs2WnFsWHbZ3Y/hsTE6P58+fr0qVLkqR3331X/fv3l3TrY/KFCxe0ceNGWa1W1axZU1WqVLn3jS+hbOt6wIAB+v7777Vz50717t1bLi4u8vT01Nq1ayVJzz//vJ555hl7NhX67XuUbfu/9skrly9f1vHjx7Vs2TIdOXJEixYtUnp6uvn5cXR0VOfOnRUUFKRu3bqpUqVK5g2G+N9RC/syDEMLFy5UTk6OwsPDzSeg3MrBgwc1evRoxcTESJLCw8P14osvmjdMSVeDiAsXLtRPP/2kpKQkNW7cWI0aNdIrr7zC8RvFlsViUb169fTzzz8rPT1dV65cMW9UPnbsmL777jstXrxYoaGh5vk17g1qUTLZnvRntVrVsWNHdezY8YZxbMOPHj2qpKQkLV++XLt27dK2bdt08eJFc7zLly9r9erVZt3vJQLsAAAAAAAAAIAic+3jST/88EN1795dKSkpunLlisLCwlS5cmXzB3fC60UvNzdX0dHRunDhgubOnavDhw9r69atSk9PlySVKlVKNWvWVEREhB5++GEFBwebgV5b3Wyvr0dg+n9DLezPFuoICQmRJB09elTbt29X48aNzeCHbTzDMHTu3Dm9+uqrmj59uqxWq6pVq6ZXXnlF3bp1M+cZGxurvn37as+ePWrSpIkef/xxtWvXTkeOHNHkyZP1yy+/6Pnnn9f8+fNVtmzZol/oEuDXX3/VhQsX5Ofnp9q1a8tisRToDW7y5Mk6fPiwwsPD5ejoSEDHzhwcHJSbmysvLy8tWbJEixcvVnx8vCSpSZMmatCggcqUKSNJZvDKarUqPT1dSUlJ2rhxo/bv36958+apefPmmjRpEvX8naiF/axcudLspfKtt97SSy+9JOnm4XXb++vXr9fcuXOVn5+vJk2ayM/Pr0jbXRJVrVpVK1asULdu3ZSQkKD09HTz+DB27Fj17NlTQUFBdm7lg+v6kLRhGEpLS9P+/fu1Y8cObd++XatXr9apU6eUm5srBwcHlSpVSq1bt1a1atX0xBNPqGLFijc89eD6+eP2qIX92da9q6urJKlWrVqSZN5EVpgDBw7o448/1po1a5SamqoqVaroxx9/VPny5c1xVq5cqX//+9+aOXOm+d7Ro0f1448/Kj4+Xp9//jnHbxRboaGhys/P19SpUxUQEKCIiAglJCRo9erVWrBggRwdHTVy5EjVr1/f3k2971GLkscwjAK/u19r7969unTpkubMmaP4+HitXr3a7BDD1dVV/v7+6tatmyIiIhQZGalKlSoVSXhdIsAOAAAAAAAAAChiDg4O5gXtwnrqsf3gjqL3008/qW/fvmYA2sPDQ5UqVVKnTp0UHh6uFi1aKCgoSE5OTgVqlJ2dLWdnZ/M9bkD446hF8VGzZk3VqVNHMTExWrVqlcLCwlSqVCkz+HHx4kVt3LhRX331lVasWCGr1aqwsDC98sor6tevn6SrPR9nZWXp888/1549e9SiRQuNHz9e9erVk6urqxo1aiRfX19FR0crLi5OKSkpBNhvIiQkRBUrVlReXp5iY2Pl7+9vhhP/8Y9/6O2335YkjRw58obHY8M+HB0dlZeXJ3d3dz355JM3DLddYI+OjtbBgwe1YcMGbdmyRXFxcWYvcE5OTsrNzdWaNWvUunXrIl6C+we1KHqJiYn64osvJEmPPPKI3njjDUk3D3favgfv3r1b/fr1U25ursLDwzV8+HBJKnDDTmG4aUeqUaOGVqxYoR07dig6OlrVq1dXSEiImjRpYu+mPfAyMjLk7u6uVatWKS4uTsuXL9eBAwd04MAB88ZAb29vtW/fXvXr19ef/vQn+fj4KDQ01JyHbbxrbyS04RzyzlGL4qNcuXKSpNOnTyszM9MMtNvY9uvR0dEaPXq01q1bp0uXLsnPz09LliyRv7+/efzesGGDxo0bp1WrVqlixYp66aWX5OXlpcTERE2YMEFffPGFAgIC9Nprr9ljUYHbGjBggPbv36+//vWv+uSTT+Tg4GBu35UqVdKHH36oAQMG2LuZDwRqUfzZzicKe4rKsWPHdPz4cc2dO1dxcXFaunSpLBaLcnJy5O7urtKlS+vpp59WSEiIoqKiVKlSJXl5eRWYf1GdVxBgBwAAAAAAAAAUuVtd0H7QQzf21KdPH23ZskVWq1XVq1dXVFSUKlSoIE9Pz0LHT0xM1LJly7Rr1y5JUlhYmPr06aOyZcveNmCFW6MWxUetWrXUt29fvf322/rzn/+stLQ0NW/eXJUrV9bFixc1YcIEHT58WLGxsXJwcFDbtm317LPPmuFQ200EtkcwOzs7a8CAAWrQoIGcnZ3Ni8AhISGyWCw6efKkzpw5o6pVq9p5yYungIAAVa9eXZs3b9aHH36o2NhYOTo6KiYmRl9++aUk6b333lOfPn3s3FJIv11Uv/ZGGlvPotu3b1dSUpLmzZungwcPauvWrWYIzsPDQ8HBwerbt69atWqlunXrKiQkRNnZ2fZalBKPWthHWlqa2bthRESEGVS8WXjdYrEoJiZGgwcPVlpamsqUKaN27dqpevXqkmQez/Py8rR161bFxcXJ0dFRVatWVdOmTc2ngjzo36f9/Pzk5+enLl262Lsp+D/Z2dl6/vnntWLFCp0/f95839fXV02bNlWHDh3UqFEjhYeHFwjkXs9isdC79x9ELYoH2766Xbt2mjdvnuLj4/Xrr7/qoYceKrAPt1gsWrNmjYYNG6b4+Hilp6fL399fs2bNUp06dcz65Ofn68cff9SqVavUpEkTffDBB3r00UclSenp6XJwcNC4ceO0evVqvfDCCypVqpS9Fh0olG1bHjdunCpUqKClS5fq8OHDcnJyUo8ePdSmTRtzm8a9RS2KN9vxw3b8zcnJ0enTpxUTE6O1a9dq3759Wrt2rfkExzJlyqhy5cqKiopSYGCgHn/8cZUtW1aVKlUqMF/bMd02/6I6n7AYtjNPAAAAAAAAAADwwLpVyNl2EePa8MIPP/ygqVOn6pdffikwboMGDbRs2TJVqFCBQMPvRC2Kj2vX29tvv61x48ZJutoDsYeHhzIyMpSRkSHpahhxxIgR6tq1qyIjI2+Yfu7cuXriiSdUpUoVbd26VT4+PsrLyzN7ylq7dq3atGkjR0dHRUdHq3bt2nZY4pLh0KFDatOmjZKSkm4YNnr0aL344ovy9va2Q8twfS9wNoZhaOvWrTpz5oxmzZqlkydPas2aNeZwX19fVahQQVFRUQoNDVVkZKSCgoLM/ZztIjr7sjtHLYqHBQsWqGvXrvLy8tLatWtVt27dQgPmtvcOHjyooUOHavPmzcrOzlazZs30008/yc/Pzxx32bJlmjlzpr7//nvzPS8vLw0ePFifffZZgfkBxcm+ffvUt29fubq6qmvXrgoKClKrVq1UsWJFc39y7babnJysjRs3at++fapevboqV66sFi1aSLr5UwxwZ6hF8ZGUlKQuXbpox44datWqlf785z+rTp068vPz04oVK7R161aNGjXKHD8oKEhLlixRzZo1C8xn6dKl6tSpkyRp1qxZ6t69u6TfgqjTp0/X008/rRo1amjz5s087QnF0rW/c1y8eFFZWVlydHTk3M4OqEXxdvToUW3fvl2xsbH6+eefdfDgQV24cMEcXq1aNbVp00Z16tTRo48+qlKlSikgIMAcbhhGsXkCKt1tAAAAAAAAAACAQgPT1/fqY7t49e2332rcuHFKTExUWFiYhgwZosqVK2vq1KmaP3++unXrpqVLl8rDw6NIl+F+QS2Kj2tvFhg7dqx8fHw0e/Zsbd26VcnJyZKkkJAQ+fv765133lGrVq3k7OwsSTdcDKxcubJcXFwkXQ2qVKxY0axjTEyMPvzwQ0lXe98nvH5rNWrU0Lp16zR69GgdPnxY586dU926ddWvXz8zrIOiZQuvXdsL3KFDhxQTE6MlS5bo6NGj2rx5s9k7dPny5VWrVi316NFDQUFB5kX1658yYfv82QJ0xeECe3FHLYqn1NRUZWZmSrrxaUO2mu3bt08vvviidu3apezsbAUGBuqHH34oEF6fMWOGPvvsM+3evVuS1KpVK505c0aHDh3S+PHjZbFYNHbsWMLrKJbCwsK0du1aSVd7A73WtfuY3Nxcbd26Vc8995xiY2MlXf1+7OLioo8++kivvvpqgR5C8b+jFsWHr6+vfvzxR7Vr107r1q1TbGysrFarKleurIMHD+rKlSuSrp5LNGzYUN9++618fX1vuHHgwIEDkqQnnnjihvC6dDXsKEnu7u7mOQlQ3Dg4OJj7Ey8vL3O/wj6m6FGL4u3HH3/U6NGjzf8PCwtTu3bt1Lp1azVp0kRBQUHy8vK6oV5paWlycXGRo6PjDZ1j2AsBdgAAAAAAAAAAUKhrL3LYLnps2LBBkyZN0vHjx/XMM89o2LBhioiIkCR1795dbdu21YYNG7Rr1y49/PDD9mr6fYda2I+Dg4N5Ue/VV19Vjx49dOLECSUlJSknJ0ctW7aUm5ubPD09de2Dj6+/qOvp6akqVaroyJEjmjVrljw9PVWtWjVt3bpVY8aM0Zo1axQREaFnn31WEr1Z3k716tU1adIkOTk5KTMzU46OjnJycrJ3sx5YVqtVCQkJmjVrlhISErR582bt3LnTHF6xYkXVrVtXnTp1UrVq1dSpUye5urre0Pvn9Z8he19ML4moRfHSpEkT1a5dW0ePHtW+ffvUqFEjWSyWAmERq9Wq7du3q3///jpy5Ihyc3NVsWJFLV26VNWrVzefzLJp0yZNnDhR0dHR6tSpk5599ll17dpVCQkJWrp0qYYNG6ZJkybpiSeeUOPGje285EDhbGHp6wNVtqCcJM2bN0+vvPKKkpKS1LBhQzVq1EgeHh766quv9Prrr6tUqVJ6/vnnCdD9QdSi+AgJCdEvv/yiF154QYcOHTLPNWwee+wxdenSRU888YS8vLwKDRympKRIks6cOaOUlBS5u7ubtYyNjdW6devk5OSkHj16yM3NjRAqii3bdnnt9sm2ah/Uovj64IMP5OrqKh8fH1WvXl3h4eEFOq7Iy8uTdLVeycnJOnjwoP7xj38oISFB7u7uql+/vt58802VK1fO7iF2AuwAAAAAAAAAAOC2bBepFi1apB07dqhx48YaPny4GjRoIOlqLz6lS5dWkyZNtGbNGsXHxxOavkeoRdG7tvcxPz8/+fv7FzrerS7m1qpVSyNGjNDQoUP1l7/8RbNnz1a5cuW0ZcsWSVK9evX08ssv66GHHpJUsHdjwuyFc3JyksViUalSpZSfn2/v5jzwcnJy9NZbbyk/P1/Ozs6KjIxU06ZNFRERoRYtWsjDw+OGkHROTo5ycnJ0+fJllS1bVq6urpKubvOEI34/alF8uLm5qU6dOtq/f78mTZqkiIgI1a5d23zaSmxsrDZt2qQXX3xRWVlZkqTg4GAtWrRINWrUUF5enjnuihUrtGnTJjVv3lxvvfWWWrRoIelqr7wdO3ZUcHCwGXwkwI7i7mZPIvj111/12muvKSkpSV26dNH06dPN3qLbtm2rTp066Z///KeioqLk7+/P/ukuoBbFQ3BwsKZPn66jR4/q559/Vk5Ojvz8/FS5cmV16tTJHC8/P7/QoGFYWJicnZ11/Phx7dmzR02aNJGDg4O2bdumf/7zn1q5cqWqV6+u1q1bSyKECgAlle3m1jfffPOGYbYwuu33oxMnTujLL7/UjBkzlJCQYD4xcMWKFVq6dKlWrVolb29vu/7mRIAdAAAAAAAAAADckXPnzmnGjBmSpOeff94MTOfl5al06dIyDEPbt2+XJDP4hnuDWhS9wnofu1O28Pvzzz8vwzA0evRoHTp0yBz+1FNPacCAAWrTpo2cnZ3Ni47XX3y09axYpkwZu/eSVRxcWwsC/vYXHBysI0eOaNeuXQoPD1dAQIB5gVz6rRc4ScrKytKhQ4f01ltvKTExUQkJCWratKl69+6tQYMGyWq1cuPGH0Atig8PDw/95S9/0bZt27Rp0yYNGDBAzZs3V61atXT48GFt2rRJ0dHRys3NVYUKFdSwYUN9/fXXqlatWoH9/MmTJ/XFF19Ikvr162eG13Nzc+Xk5KTAwEB5enpKkq5cuWKfhQX+AKvVqpSUFA0ePFgnT55Uu3btNHv2bFmtVmVlZcnFxUWPPvqomjVrpoMHDyorK4sA7j1CLezH29tb3t7eatKkyQ3DbOcTNzsed+zYUY0bN9bGjRvVv39/NWrUSPn5+dq7d68OHTokLy8vjR8/XpGRkYVOz7EeAEoG282thbGdO1gsFp09e1bjxo3T5MmTVapUKfXq1Usvv/yynJ2d9de//lU//fST+vTpo3nz5qlUqVJF1fwbEGAHAAAAAAAAAAB3xDAMpaWlSbrao6j0W88/WVlZ+uc//6l169apSpUqatu2rT2bet+jFiWLxWIxQyEvvPCCIiMjlZSUpMuXL6tMmTJ69NFHzVCK9NtFx5SUFKWlpWnZsmXau3evVq1apfPnz2vRokX0rotiKTAwUIGBgZJk9opv27Zt23VycrJmzpypTz75RCdOnFCFChVUunRprVq1SqtWrVJycrLeeOMNQlR/ELUoPqpVq6bly5era9euio6OVnR0tDnMdoNAkyZN1LlzZw0aNEg+Pj439LCbkZGh7OxseXh4mMFG23HfMAzNnDlTO3bskIuLi3lTG1DSnD59WklJSfL19dWECRNktVqVk5Nj9vp94MABxcfHKzU1Venp6XZu7f2NWhQ/t7pJwHYT88KFCxUVFaUtW7YoLi5OkuTi4qKmTZvq3XffNXtyt30vuPYmteuP9deemwAASg7bfn3p0qWaOXOmPDw89Nprr+m5555TuXLlJEn/7//9Px06dEg7d+7U8ePHVaNGDbu1lwA7AAAAAAAAAAC4I6VLl1bDhg21atUq7d+/X2lpaSpdurRycnL073//W99++60cHR01aNAgeXl5cdH7HqIWJc+1AZF69eqpXr16BYZbLBadOXNGWVlZWrx4seLj4zV//nydPn3a7Hm9dOnSCgwM1KxZswiwo9izBaFs+x7DMCRJCxYs0OjRo3XmzBk9/vjjmjBhgry8vLRz50716dNHb775purXr6/27dvbre33G2phfzVq1NDy5cv1r3/9Sxs3btShQ4eUmpqq9u3bKzQ0VK+++qpKly4tFxeXQnvB9fT0VGBgoOLj47V7926FhobKyclJkrR582b9+OOPMgxDTz31lAIDAznuo0Q6ePCgTp48KQ8PD/MGDtt2bhiG1q1bp/Pnz+vhhx9WUFCQPZt636MWJYuDg4Nyc3Pl5eWl5cuX66efflJ8fLwuXryoqKgoBQcHq2bNmpJu7Gk9KSlJp0+f1sqVK7V582Z5eXnphx9+4BgCACWUbR//r3/9S2fOnFH//v3N8Hp+fr5yc3Pl7OysoKAg7d69W+fOnSPADgAAAAAAAAAAij83Nze1a9dOK1as0Mcff6yjR4+qatWq2rx5s3bs2KHs7Gw98cQT6t27txlwwL1BLUqewgKJV65c0cmTJ7Vy5UodO3ZMCxYsUGpqqs6ePWuO8+ijj6pq1arq3r27fHx8FBYWVtRNB+4Ki8WiuLg4jRkzRmfOnNGgQYM0ceJEubm5KTc3V3/605/07rvv6rXXXtOePXsITd9D1MI+qlSpog8//FAWi0XJycnKzc1VxYoVbxivsB7vvby8VLduXR04cEDjxo1TVlaWGjZsqF9++UVLly7V2rVrVbt2bfXr10/u7u5FsTjAXVezZk35+/srNzdX58+fN9+/cuWKfv75Z7355pvKzs5W27Zt5eHhYceW3v+oRcnj6OiovLw8eXh46Nlnn5XFYin0Zqa4uDilpqZq3rx5OnbsmFasWGGeezg7Oys7O1u9e/dWx44d7bEYAIC7ICYmRrt27VKZMmX09ttvq1y5cubTm5ydnbV//36tX79ekuTq6mrXthJgBwAAAAAAAAAAt2W7+D1y5EidO3dOf/3rXzVt2jRzuJ+fn7p27aqhQ4fateeeBwG1KBny8vLMHittsrOzFRsbq507d2rbtm1atWqVTp48qfT0dFksFjk4OKhVq1aqVq2aevbsKV9fX4WFhRUaPqF3XZREn3zyieLj4/XQQw/pq6++kqurq3khXboanJKko0ePSir8xg/cHdTCvsqVK1fg/2+1TzcMQ05OTvrmm2905MgR7dq1S8OHD5eLi4tSU1Pl4uKixo0b6/3331fbtm3NaaSrNysUVjvqieKofPnyqlKlijZv3qx3331XvXv3lrOzs6Kjo/Wf//xHaWlp6tOnj95++21JfBe6l6hFyWJb/7YaXPvfEydOKCkpSfPnz1d8fLyWLl2q7OxsXblyRQ4ODvLw8FDfvn0VEhKizp07q0KFCipfvrw9FwcA8AcZhqHMzEzl5eXpzJkzCgkJMc/zEhIS9Pnnn+vcuXPq0qWLIiIi7NpWAuwAAAAAAAAAAOC2LBaLGcgdN26cateurejoaCUmJsrLy0svvPCCgoKCVKFCBXs39b5HLUoGW3h948aNSkxM1LJly7R//37t3btX2dnZkiRPT081btxY4eHheuSRR+Tn56f69esXOr/rg0GEhFASJSUlSZJ69OghV1dXZWdnm0HpU6dO6ZdffpEk80kDBGzvHWphHzfbd99qn2477nt5eWnVqlUaPny4fv31V504cUJVqlTR888/r7Zt26pp06aSVKCW0tXaXbhwQefPn1dMTIy6d+9OPVEseXt76/vvv1ebNm20ceNGbdq0ybwZQ5L69++v77//XhI3Ydxr1KJksJ0T2o4heXl5unDhgmJjY7V27Vrt3btXK1as0KVLlyRdfYpXqVKl1LVrVwUFBal79+7y9vaWv79/gfleW2sAQMlTrlw5hYeHa9++fdq+fbtq164tb29vxcTE6J///KdmzJihgIAA9erVy95NJcAOAAAAAAAAAADujIODg3mRfMCAAZIK9vCJokMtiq+LFy/qP//5j9avX68TJ05o27Zt5rBy5cqpdu3a6tChgxo1aqR69eqpevXqMgyjQPAnPz9fhmGYIXhqivtFZmamJOn8+fMyDMMM2aakpGjBggVasWKFqlevrsjISHs284FALUoW23Hf09NTkyZN0qVLl5SSkqIyZcrI29u7wLjOzs7KyspSdHS0du3apZ07d2rdunU6ffq00tLSNHDgQE2aNMlOSwLcWo0aNbRu3Tp9+OGHOnr0qI4dO6ZHHnlEkZGReuGFFyQRmC4q1KL4uf6G1ry8PF25ckXr16/X/v37tXbtWu3bt0+JiYnmOP7+/urYsaNq166tqKgoeXl5qVq1arecP+ceAFCyVa5cWU888YT27NmjkSNHasGCBapcubKWLl2qlJQU+fj4aPDgwXr88cft3VQC7AAAAAAAAAAA4M7ZArU2XNy2H2pRPJUtW1ZHjx7VnDlzVKVKFdWtW1ddu3ZVtWrV1K5dO1WqVElOTk4FpsnKylJqaqoSEhLk4+Mjb29vubq6mjcpACWd7Qab8PBwrV69Whs2bNCWLVvUsGFDHTp0SEuWLNG4ceOUmpqqoUOH3vRJBPjjqEXJ5eDgoNzcXDk6Osrb29sMrmdkZKhUqVLasGGDjh49qqVLl2rPnj06ePCgOW3ZsmUVGRmpRo0aKTw8/IYQJFCcVK9eXd9++61cXFx09uxZ+fj4mMMITBctalG8WCwW5efn6z//+Y8yMzM1ffp0JSQkKCEhwRwnMDBQnTp10sMPP6zmzZsrICBAfn5+5vD8/HxJMo8n188fAFCy2Y7P77//vq5cuaJx48Zp/fr15vDWrVurR48eGjBggEqVKmXHll5lMXjuBwAAAAAAAAAAAPCHXRsIXLRokR566CE5OTmpbNmyBcbLyckxQ+wbNmzQzJkztWDBAp08eVIBAQGKiIjQ119/LW9vb0LsuK/ExcXp4Ycf1okTJ1S1alWVL19eiYmJSk1NVVZWlgYPHqxvv/3W3s18IFCLkuFmAdGsrCytX79ep0+f1uzZs3Xy5Ent2LHDHB4UFCR/f3898sgjqlevnsLDwxUQEFCUTQf+ENt3qms/A9x4YR/Uong5ceJEgf153bp15ePjoy5duig4OFiNGze+4dxDkq5cuaK8vDyVLl3arCM3IQDA/ena35EWLVqkQ4cOmT2vP/nkkypTpswNNzHZCwF2AAAAAAAAAAAA4C65XeD82sDPggUL9PLLL+v48eNyc3NTUFCQMjIydOzYMdWuXVtr165V+fLlCQnhvnLo0CH17NlTR48eVXp6uiSpadOm6tChg0aNGmXn1j1YqEXxY9vfX7/fz8zM1Pbt23X48GHNmTNHJ0+e1K+//moODwgIkK+vr3r06KFq1aqpVatWKl26tFxcXArMn5uiAKDki42N1caNG+Xn56eWLVvKwcGhwP7edgzJzc1VXFycJk+erNWrVyspKUmRkZGKiopSv379JBFiB4D7VUn53k+AHQAAAAAAAAAAAChiK1euVJ8+fXT+/Hl1795d/fr1U/v27ZWTk6OXX35Z//3vfzVw4EB9++23xaZnLOBuOXPmjHbv3q0TJ07I29tbjRo1kr+/v72b9UCiFsXThQsXFBcXp+3bt2vNmjXav3+/YmJizOGBgYGqVKmSunXrpoCAAHXq1EmOjo4qVapUgfkQTASAB8P1PeVnZ2dr9uzZ+uabb7R+/XpJkoeHh1JTUyVJ48aN0xtvvGHPJgMAQIAdAAAAAAAAAAAAKEqnT5/WoEGDtGzZMvXq1UujRo1SzZo1zeHJyckKDQ1VUFCQNm7cWCJ6zQIA/HH5+fkaPny4pk6dqpycHGVmZkqSKlSooPDwcLVp00ahoaFq1aqVHB0d5enpect5EV4HgAdPfn6+5syZozFjxmjfvn1q2LChxowZo5CQEO3fv18DBw7UpUuXNH/+fHXu3NnezQUAPMDorgEAAAAAAAAAAAAoQomJidqwYYO8vLz0zDPPKDg4WNJvj3hOSUmRYRhKTExUWlraLQOKAID7h9Vq1bPPPqtZs2apadOmioiIUKtWrdSwYUN5eXnJ2dm5wPiGYSgrK0tLly7V2bNn5enpqaCgIDVp0kRWq5UQOwA8QGy9sCcnJ2vy5Mnat2+fOnfurDFjxqhevXoyDEMhISH6y1/+oqFDh2rr1q0E2AEAdkWAHQAAAAAAAAAAACgCtlDJ2rVrlZaWpkaNGikqKkqSlJOTIycnJ0nS4sWLdf78eTVr1kzOzs7mdACA+1+DBg107Ngxubm5FXg/Ly9PkpSbmytHR0fl5uZq2rRpmjFjhhYvXmyO5+bmpo8++kivvfaarFYrxxAAeEDY9vXff/+9li1bJi8vL73//vuqV6+epKvnG87OzgoKCpJ09aZaAADsiQA7AAAAAAAAAAAAUARsoRI/Pz9JV0OIx48fV5UqVczw+owZM/TOO+9IkgYNGqRSpUrZp7EAALu5Nrxu60XdwcFBkszw+pdffqmJEycqMTFRAQEB6tWrl7Kzs/Xtt99qxIgRcnV11dChQwmvA8AD5tChQ5KkwYMHq1GjRjIMQ4ZhyNnZWVeuXNGMGTMkSeXKlbNnMwEAEM+KAgAAAAAAAAAAAIpQ5cqV5eHhoejoaM2dO1cxMTG6cOGCvvrqKz3//PNKS0vTkCFD1KtXL3s3FQBgZ1brb7EOwzAkSfPnz9c333yjM2fOaNCgQZo3b57Gjh2rCRMmaOHChXJyctJ3332ns2fP2qvZAAA7uXTpkiTp1KlTys7OlmEYslqtysjI0IIFC7Rq1Sr5+Piod+/ekn47tgAAUNQIsAMAAAAAAAAAAABFqHXr1nrppZckSa+++qratGmjpk2bavjw4bp8+bL69eunF198sUAPvAAA2HpTnzt3rg4fPqyoqCi98cYbql+/vvLz85Wdna22bduqcePG2rt3rxliBAA8OCIiIiRd7Yl9//79kqSMjAxNmTJFn332mRISEtShQwdVq1ZNknhSBwDAbiwGt1EBAAAAAAAAAAAARSI/P9/sTXfUqFH6/vvvdeLECbm4uMjBwUEffPCBevfurSpVqti5pQCA4mjbtm1q2rSpJGnVqlVq06aNpN+OLxcvXlTTpk0VHx+vvXv3qkaNGvZsLgCgiMXHx6tNmzZKSEhQjRo15OPjozNnziguLk7Z2dnq2LGjvvjiC4WEhNi7qQCABxwBdgAAAAAAAAAAAKAI5eXlycHBQZJ04MABnT59Wu7u7ipdurRq165t59YBAIqz1atXq127dvL399euXbvk7e2t3NxcOTo6Ki0tTZ9++qnGjh2r+vXra/v27ebxBgDw4IiNjVWXLl0UFxennJwcSVK1atXUoUMHvfbaawoODrZzCwEAkBzt3QAAAAAAAAAAAADgQeLg4GD2lBsaGqrQ0FB7NwkAUEJUqFBB3t7eyszM1N69e9WqVSs5OjoqNTVVU6ZM0fTp01W2bFkNGzZMDg4OMgxDFovF3s0GABShmjVr6pdfftGGDRuUmJgoR0dHdenSReXLl1eZMmXs3TwAACTRAzsAAAAAAAAAAAAAAECJkJycrE6dOmnr1q1q2bKlHn/8cYWGhupf//qXNm/erEuXLqlv374aNWqU/P397d1cAAAAACgUAXYAAAAAAAAAAAAAAIAS4tChQ2rTpo2SkpIkSS4uLsrKypKvr6+6dOmi119/XcHBwXZuJQDA3ngKBwCgOCPADgAAAAAAAAAAAAAAUIIcOXJEH330kfbs2aPs7Gz5+PjotddeU0REhHx9fe3dPAAAAAC4JQLsAAAAAAAAAAAAAAAAJUx2drZycnKUnZ2tsmXL2rs5AAAAAHDHCLADAAAAAAAAAAAAAACUcIZhyGKx2LsZAAAAAHBbVns3AAAAAAAAAAAAAAAAAH8M4XUAAAAAJQUBdgAAAAAAAAAAAAAAAAAAAABAkSDADgAAAAAAAAAAAAAAAAAAAAAoEgTYAQAAAAAAAAAAAAAAAAAAAABFggA7AAAAAAAAAAAAAAAAAAAAAKBIEGAHAAAAAAAAAAAAAAAAAAAAABQJAuwAAAAAAAAAAAAAAAAAAAAAgCJBgB0AAAAAAAAAAAAAAAAAAAAAUCQIsAMAAAAAAAAAAAAAAAAAAAAAigQBdgAAAAAAAAAAAAAAAAAAAABAkSDADgAAAAAAAAAAAAAAAAAAAAAoEgTYAQAAAAAAAAAAAAAAAAAAAABFwtHeDQAAAAAAAAAAFK3c3FzNnz9fy5cv1+bNm3XmzBldvHhRbm5uqlChgurWratmzZqpR48eCgoKsndzAQAAAAAAAADAfcRiGIZh70YAAAAAAAAAAIrGggULNGLECB05cuSOxu/UqZPGjh2rsLCwe9wyAAAAAAAAAADwIKAHdgAAAAAAAAB4QHz88cf64IMPZOvXpHXr1nrssccUHh6u8uXLKz09XUlJSVq3bp0WLVqk+Ph4LV68WP7+/vrmm2/s3HoAAAAAAAAAAHA/oAd2AAAAAAAAAHgATJ48Wc8++6wkqVKlSpo+fbpat2590/Hz8vI0ffp0/fnPf9ajjz5KgB0AAAAAAAAAANwVBNgBAAAAAAAA4D53/Phx1ahRQ5mZmSpTpox27typ4ODgO5r20qVLWr9+vTp37nyPWwkAAAAAAAAAAB4EVns3AAAAAAAAAABwb02YMEGZmZmSpE8++eSOw+uS5OXldUN4PT4+XhaLRRaLRVOmTJEkzZkzR1FRUapcubIcHR0L7d194cKF6tGjh/z9/eXi4qLy5csrMjJSY8eOVVpa2k3bMHr0aPPv3cqaNWvM8dasWXPD8NatW8tisZhti42N1ZAhQxQUFCRXV1f5+vrqySef1JYtW275d/Ly8jRlyhR16NBBPj4+cnZ2lqenp0JCQtSuXTt9+umn2r9//y3nAQAAAAAAAADAg8rR3g0AAAAAAAAAANw7hmFo6tSpkiQPDw8NHDjwrs+/X79+5t8oTGZmpp5++mnNnTu3wPvJycnasmWLtmzZoi+//FKLFy9W/fr172r7bmbp0qXq2bOnrly5Yr53+vRpzZw5U7Nnz9bf/vY3vfrqqzdMl5aWpqioKK1fv77A+zk5OUpJSdGRI0f0yy+/aNeuXZo1a9a9XgwAAAAAAAAAAEocAuwAAAAAAAAAcB/bt2+fLly4IElq2bKl3N3d7+r8//73v2vPnj1q2bKlhg4dqho1aujSpUuKj483x+nfv78ZXq9Xr55GjBih0NBQJScna/r06ZoyZYpOnTqldu3aac+ePfLz87urbbzeqVOn9PTTT8vR0VGffvqp2SP76tWr9dlnnyklJUWvvfaaAgMD1bVr1wLTjh492gyvP/bYY+rTp48CAgLk6uqqs2fPavfu3Vq0aNFte4sHAAAAAAAAAOBBRYAdAAAAAAAAAO5je/bsMV83bNjwnsy/X79+mjJlSqGh7cWLF2vGjBmSpHbt2mnJkiVydnY2hz/yyCOKjIzUkCFDlJycrNdff10//fTTXW/ntQ4fPixPT09t3rxZoaGh5vuRkZHq0qWLmjVrppSUFA0bNkydOnWSk5OTOY5tWXr06KGZM2feMO+OHTvqnXfeUXJy8j1dBgAAAAAAAAAASiqrvRsAAAAAAAAAALh3zp8/b76uUKHCTcfLz8/Xvn37bvovJyen0Om8vLz01Vdf3bTH8a+//lqS5OTkpO+//75AeN1m8ODBat++vSRpzpw5SkpKuuPl+73ef//9AuF1mzp16ujdd9+VJJ08eVLz588vMPz06dOSrvZmfyvlypW7Sy0FAAAAAAAAAOD+QoAdAAAAAAAAAO5jqamp5mt3d/ebjpeSkqK6deve9N/JkycLna5z587y8PAodFhubq7Wrl0r6WpP61WqVLnp3x88eLA5zZo1a263WH+IxWJR//79bzp84MCBZiD/559/LjDM19dXkvTTTz8pPT393jUSAAAAAAAAAID7FAF2AAAAAAAAALiPXRsuv3Llyl2ff3h4+E2HHTt2zAx5N2nS5JbzuXb4vn377k7jbiIoKEje3t43HV6hQgUFBgZKkvbu3VtgmC34vmnTJgUFBWnYsGGaO3euzp07d8/aCwAAAAAAAADA/YQAOwAAAAAAAADcx8qXL2++vlXI2svLS4ZhFPh3q17KbcqWLXvTYcnJyebrihUr3nI+Pj4+hU53L9yuLZJUqVKlQtvy/vvva9CgQbJYLDp79qy+/vprde/eXRUrVlRYWJhGjRqlM2fO3JN2AwAAAAAAAABwPyDADgAAAAAAAAD3sXr16pmvd+/efdfn7+DgcEfjWSyWu/63f68/0hYnJydNmjRJ+/bt03vvvadmzZrJ2dlZkhQTE6MxY8YoODhY8+fPv1vNBQAAAAAAAADgvkKAHQAAAAAAAADuY2FhYWYv7OvXr1d6enqR/e1y5cqZr2/XK/np06cLnU6SrNbffsrOz8+/6TyuXLlyR+26kx7SbeNc3xab2rVr66OPPtLGjRt1+fJlrVy5UgMHDpSDg4PS0tLUu3dvJSUl3VF7AAAAAAAAAAB4kBBgBwAAAAAAAID7mMVi0TPPPCNJSklJ0Q8//FBkf7tatWpyc3OTJG3duvWW427bts18HRYWVmCYh4eH+frixYs3ncehQ4fuqF1xcXG6cOHCTYefO3dO8fHxhbalMK6urmrfvr0mT56s8ePHS5IyMjK0aNGiO2oPAAAAAAAAAAAPEgLsAAAAAAAAAHCfe/311+Xq6ipJeueddxQXF1ckf9fR0VEPP/ywJGnlypU6ceLETcf997//bU7TunXrAsOCgoLM1zt27LjpPKZPn35H7TIMQ//5z39uOnzKlCkyDEOS1L59+zuap027du3M1+fPn/+fpgUAAAAAAAAA4EFAgB0AAAAAAAAA7nMBAQGaOHGiJOny5ctq0aKFNmzYcMtpDMPQpUuX/vDffumllyRJ2dnZevbZZ5WTk3PDOJMnT9aKFSskSd27d5evr2+B4c2aNZOjo6Mk6fPPPzfD5dcaP358gV7cb+ejjz5SbGzsDe8fOHBAn3zyiSTJ19dXXbp0MYclJydr4cKFhf59G9tySAWD9wAAAAAAAAAA4CpHezcAAAAAAAAAAHDvDR48WCdPntSHH36oU6dOqWXLlmrbtq06d+6sunXrqly5csrLy9Pp06e1a9cuzZgxQzExMZIkBwcHOTs7/66/26lTJ/Xs2VMzZ87UihUr1LRpU73++uuqVauWLl68qOnTp2vy5MmSpHLlymnChAk3zKNixYrq2bOnpk2bpuXLl+vxxx/XSy+9pEqVKikxMVFTp07V7Nmz1axZM23atOm2bQoODta5c+fUtGlTvfXWW2aP72vWrNHYsWN1+fJlSdKXX35ZYLlTUlL0+OOPKzAwUN27d1eTJk1UtWpVOTo6KikpSQsXLjR7kvfz89Njjz32u9YZAAAAAAAAAAD3M4txq65iAAAAAAAAAAD3lblz5+qNN97QsWPHbjuuxWJRhw4dNH78eIWFhZnvx8fHm72Lf//99xowYMAt55OZmamnn35ac+fOvek4lStX1uLFi1W/fv1Ch585c0YtW7bU4cOHCx3eq1cvPffcc2rfvr0kafXq1WYw3aZ169Zau3atHn74YY0cOVJPPvmk0tPTb5iX1WrVuHHjNGLEiALvX7vct+Lr66uFCxcqIiLituMCAAAAAAAAAPCgoQd2AAAAAAAAAHiAdOvWTZ07d9bcuXO1fPlybd68WWfPntWlS5fk5uam8uXLq27duoqMjNRTTz11R4Ht23F1ddWcOXO0cOFCTZkyRVu2bNH58+fl7u6uGjVqqGvXrho2bJhKly5903lUqlRJW7du1WeffaY5c+YoMTFR7u7uCgsL05AhQ9SnTx+tWbPmjtvUqVMn7dixQ+PHj9cvv/yipKQkeXl5qWXLlhoxYoQiIyNvmKZq1aratm2blixZok2bNikhIUFnzpxRWlqavLy8VLt2bXXu3FlDhgxRmTJlfs+qAgAAAAAAAADgvkcP7AAAAAAAAACAB8K1PbD/L2F3AAAAAAAAAABw91jt3QAAAAAAAAAAAAAAAAAAAAAAwIOBADsAAAAAAAAAAAAAAAAAAAAAoEgQYAcAAAAAAAAAAAAAAAAAAAAAFAkC7AAAAAAAAAAAAAAAAAAAAACAIkGAHQAAAAAAAAAAAAAAAAAAAABQJCyGYRj2bgQAAAAAAAAAAAAAAAAAAAAA4P5HD+wAAAAAAAAAAAAAAAAAAAAAgCJBgB0AAAAAAAAAAAAAAAAAAAAAUCQIsAMAAAAAAAAAAAAAAAAAAAAAigQBdgAAAAAAAAAAAAAAAAAAAABAkSDADgAAAAAAAAAAAAAAAAAAAAAoEgTYAQAAAAAAAAAAAAAAAAAAAABFggA7AAAAAAAAAAAAAAAAAAAAAKBIEGAHAAAAAAAAAAAAAAAAAAAAABSJ/w+4kXcg8yeckAAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -632,7 +659,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAC7AAAAPgCAYAAACx8HFwAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdf3zXdb03/sd+wNgAQZ15IKRRiJuhJaRHQRKsPF1HTZyYlav0qqyr0/la4bGwk2mnI8dzwo6dc+ucrI5lHM1CpCssT+eUGHph5bIf1OaPLieSlM1AkH0YsO37hxc7LBhsbGyM3e+322577/V6vl6v5we5tZyPvT5FHR0dHQEAAAAAAAAAAAAAgIOseLAbAAAAAAAAAAAAAABgeBBgBwAAAAAAAAAAAABgQAiwAwAAAAAAAAAAAAAwIATYAQAAAAAAAAAAAAAYEALsAAAAAAAAAAAAAAAMCAF2AAAAAAAAAAAAAAAGhAA7AAAAAAAAAAAAAAADQoAdAAAAAAAAAAAAAIABIcAOAAAAAAAAAAAAAMCAEGAHAAAAAAAAAAAAAGBAlA52AwAAAAAAAAAAAADA4Ovo6MiOHTvS3t4+2K1wCCsuLs6IESNSVFR0QOsF2AEAAAAAAAAAAABgGGtra0tzc3O2bNmSHTt2DHY7DAEjRozI2LFjU1lZmZKSkl6tLero6Og4SH0BAAAAAECS5LLLLstXvvKVJMmTTz6ZqqqqA95r1apVmTdvXpLkE5/4RK677ro+97frlpizzjorq1at6vN+AAAAAABDRVtbW55++um0trZm3LhxGTNmTEpKSg74dm0Obx0dHWlra8sLL7yQ559/PmVlZTnuuON6FWJ3AzsAAAAAwDAyderU/PrXv06S/OIXv8j06dP3Wf/6178+3/ve95IkkyZNytNPP73P+paWlhx55JHZvn17SktLs3HjxowZM6Z/mu+Ff/zHf8ymTZsyfvz4fPCDHxzw8wEAAAAAhorm5ua0trZm8uTJKS8vH+x2GCLGjBmTcePGZd26dWlubs6xxx7b47XFB7EvAAAAAAAOMbtuLk+y35vGt2/fnv/zf/5P59fr16/PE088sc81Dz74YLZv354kOfXUUwclvJ68GGC//vrr84//+I+Dcj4AAAAAwFDQ0dGRLVu2ZNy4ccLr9Fp5eXmOOOKIbNmyJR0dHT1eJ8AOAAAAADCM7B5gv++++/ZZ+8Mf/jCFQqHL2P7W7B6K3/2sL3/5y+no6EhHR0eqqqp63jAAAAAAAAfNjh07smPHjkG7jIShb+zYsZ1/j3pKgB0AAAAAYBiZO3du5/MPfvCDfd6IsiuMPnbs2Jx55pldxva3JukaYAcAAAAA4NDT3t6eJCkpKRnkThiqdv3d2fV3qScE2AEAAAAAhpGJEydm2rRpSZLm5ub84he/6LZ2Vxj9zDPPzOte97ouY3vT0tKSH//4x0mSkSNHZvbs2f3TNAAAAAAAB1VRUdFgt8AQdSB/dwTYAQAAAACGmd1vRu8ukL59+/asWbMmyYu3tp911llJkmeeeSaPPfbYXtc8+OCDnW8R+qd/+qcpLy/vnLvssstSVFSUoqKiNDU17bO///iP/8iFF16YCRMmZNSoUZk8eXJqa2vz3e9+d7+vraqqKkVFRXnqqaeSJE899VTnubt/XHfddfvcZ9u2bfnsZz+bM844I0cffXTKy8szderU/K//9b/y5JNP7rcPAAAAAABg7wTYAQAAAACGmd0D7Pfdd99ea374wx+mUCgkeTHAfvrpp2fkyJH7XLN7GH73M3qqvb0973nPe/LGN74xK1asyG9/+9u0trbm6aefzt13350/+7M/ywc/+MFe79tbTz75ZE477bRceeWVeeihh/KHP/wh27Zty69//ev867/+a0466aR93kQPAAAAAAB0r3SwGwAAAAAAYGDNnTu38/kHP/hBOjo69niLz10B7bFjx2bGjBkpLS3NaaedlgceeCCrVq3Ke9/73j327WuA/UMf+lC++MUvJklKSkpy6aWXZu7cuSkrK8tPf/rTfOlLX8rNN9+cp59+uts9brnllrS0tOSKK67I73//+xxzzDG55ZZb9qirrq7e6/rNmzfn3HPPTUNDQ84555ycf/75OfbYY7Nhw4Z85StfyU9+8pNs3bo1b3nLW9LQ0JAjjzyy168TAAAAAACGMwF2AAAAAIBh5thjj01NTU0aGhryhz/8IT/72c/y6le/ukvNrjD67NmzU1r64o+SX/va13YG2P9YS0tLfvzjHydJRo0alTPOOKNXPT344IP5p3/6pyTJ6NGjc++99+bMM8/snH/b296WD33oQzn77LOzfPnybvc555xzkqTzpvaKiorMnz+/x3088sgjKS0tzTe+8Y0sWLCgy9z73//+nH/++bn33nvzu9/9Lrfeems+/OEP93hvAAAAAICh7DebCtm4dftgt9FnR44emZeOLx/sNvpVVVVVnnrqqdx666257LLLejw3WATYAQAAAACGoXnz5qWhoSHJi2H13QPs27dvz5o1a5J0va39rLPOyg033JDf/va3aWxs7HKL+YMPPpgdO3YkSc4444yUlZX1qp8lS5ako6MjSXLjjTd2Ca/vMmHChNx5552ZMWNG2traerV/b1xzzTV7hNeTpLS0NJ/5zGdy7733Jkm+853vCLADAAAAAMPCbzYVcvanV6V1Z/tgt9JnZaXF+f5Vcw9KiL2joyPLli3L7bffnp/85Cd59tlnU1JSkmOPPTYTJkzIaaedljlz5uR1r3tdjjjiiH4/v7euu+66JMlll12WqqqqATu3eMBOAgAAAADgkDFv3rzO5/vuu6/L3EMPPZRCoZDkxdD6LrNmzeq8jf2P1+z+9e6h955obW3NPffckyQZN25c3v3ud3dbe/LJJ3fesn4wFBcX58orr+x2vrq6OpMmTUqSrF279qD1AQAAAABwKNm4dfthEV5Pktad7QflJvlNmzZl3rx5efOb35wVK1Zk3bp12blzZ8rKyrJu3bo8+OCD+cxnPpPa2tp9vtNof3vFK16RE044IePGjdtj7vrrr8/111+fpqamAesnEWAHAAAAABiWzjrrrBQVFSVJVq9enfb2//4PD6tWrUqSjBkzJq95zWs6x8eMGZOZM2d2qfnjNUnXcHxP/OxnP8v27S/+x4LZs2fv9/b2173udb3avzdOOOGEHHXUUfus2RVg37hx40HrAwAAAACAoeUd73hH7r///pSUlGThwoV57LHH0tramueeey6FQiE/+9nPcuONN+ZVr3rVgPb1ve99L42NjbnwwgsH9Nx9EWAHAAAAABiGjjnmmLzyla9M8mIQ+6c//Wnn3K4w+uzZsztvXN9l143suwfWt27dmocffjhJUl5enj/90z/tVS/PPPNM5/PUqVP3W9+TmgNVWVm535pdAfvW1taD1gcAAAAAAEPH448/nm9961tJkk996lP59Kc/neOPPz7FxS9GtUtLS3PyySfn6quvzk9/+tNccsklg9nuoBNgBwAAAAAYpna/KX1XIL21tTUPPfRQkv8Oq+9u19izzz6bX/3qV0mSBx98MDt27EjyYuh95MiRverjhRde6HyuqKjYb/3o0aN7tX9v7PqPCQAAAAAA0FO7XxJzwQUX7Le+vLy8y9dVVVUpKirKl7/85WzZsiWLFi3KCSeckPLy8lRWVmb+/Pn54Q9/eEC97b73Lpdddlnnu7QmL/73gqKios6PqqqqAzqrp/wkHgAAAABgmJo7d27n83333Zck+eEPf5hCobDH/C5nnnlmSkpKuqzZ/Tb23UPxPTVmzJjO55aWlv3Wb926tddnAAAAAADAQFi/fv0Br924cWNOPfXU/N3f/V2ampoycuTIPPfcc/nmN7+ZWbNm5d/+7d/6pcdx48bl2GOP7fz6yCOPzLHHHtv5ccwxx/TLOd0RYAcAAAAAGKbOOuuszhtWVq9enba2ts4w+ujRo3PqqafuseaII47Iq171qiT9F2B/6Utf2vn8xBNP7Le+JzUAAAAAADBQTj311M6fty9cuDCPPfbYAe1z/fXX59lnn83Xv/71bN26Nc8//3x+9atf5ayzzkp7e3ve+9735ic/+Umf+7355pvz29/+tvPr5cuX57e//W3nx49//OM+n7EvAuwAAAAAAMPU0UcfnZNPPjlJ8vzzz+eRRx7pDKPPmjUrpaWle1131llnJUnuv//+vPDCC3n44YeTvHiT+t5C7/tz8sknp6ysLEny4IMPprW1dZ/13/ve9/a7Z3Hxiz/+7ujo6HU/AAAAAADQG1VVVXn3u9+dJPnFL36R6urqzJgxI3/xF3+Rf/u3f8vatWt79PPq559/Pt/4xjdy8cUXd/6MvqamJt/5zndy/PHHZ+fOnfn4xz9+UF/LQBBgBwAAAAAYxna/Mf3ee+/NQw89lCSZO3dut2t2Bdibm5vz+c9/Pjt27EiSnHnmmd2G3velrKwsf/7nf57kxR/O7+stUNeuXZvvfve7+91zzJgxSZKtW7f2uh8AAAAAAOitz33uc/n4xz+e0aNHp6OjI4888kg+97nP5V3veldOOumk/Mmf/Ek+/OEP53e/+123e8yePTuve93r9hgvLy/PX/3VXyV58Wf5zz///EF7HQNBgB0AAAAAYBjbPaj+T//0TykUCnuM/7E5c+Z0vhXq3//933eO7x6G762FCxd27vmRj3wka9as2aPmd7/7XS655JK0tbXtd78pU6YkSZ577rmsW7fugPsCAAAAAICeKC0tzSc/+cn85je/yVe/+tW8+93vzqte9aqMHDkySfLss8/mM5/5TKZPn54f/ehHe93j7LPP7nb/XXPt7e35yU9+0v8vYAAJsAMAAAAADGOvfe1rU1z84o+Kn3322SRJRUVFTj311G7XHHXUUTnppJO6rEn6FmCfPXt2/vIv/zJJsmXLlrz2ta/N5Zdfni9/+cu544478pGPfCQnnnhifvWrX6W2tna/+73+9a/vfL7wwgvzhS98Id/+9rdz77335t57780TTzxxwL0CAAAAAEB3xo0bl7q6unzhC1/IT3/60zz//PP5z//8z5x//vlJXnx304suuijbtm3bY+1LX/rSbvfdfW73n80PRQLsAAAAAADD2JFHHplXv/rVXcZmzZqVESNG7HPdWWed1eXrI444IjNmzOhTL5/5zGfyrne9K0myc+fOfPnLX87ll1+et73tbfn7v//7/OEPf8iVV17ZGXTfl//5P/9nqqurkyQ/+clPcsUVV+Tcc8/N//gf/yP/43/8jyxdurRPvQIAAAAAQE+MGjUqr3/96/O///f/zjvf+c4kyfr163PvvfcOcmeDR4AdAAAAAGCY++Ob0+fOnbvfNX8cYJ8zZ05KSkr61EdxcXG++MUv5jvf+U7e9KY35SUveUlGjhyZSZMm5cILL8y9996bf/zHf+zRXqNHj85DDz2Ua6+9Nq95zWsybty4zpvmAQAAAABgMFxxxRWdz48++uge87/5zW+6Xbv73Ete8pL+bWyAlQ52AwAAAAAADK5Pf/rT+fSnP92rNRdddFE6Ojp6XP/lL385X/7yl3tU+8Y3vjFvfOMbu52fO3duj84eN25crr/++lx//fX7re3Na1m1alWPawEAAAAAYJcxY8Z0PpeVle0xf99993W7dtdccXFxTjnllH7pp6ioKB0dHb36GXl/cN0MAAAAAAAAAAAAAMABevLJJ/PYY4/tt+4rX/lK5/OMGTP2mH/ggQf2eonKtm3bsmTJkiTJn/3Zn2X8+PEH3OvujjjiiCTJpk2b+mW/nhJgBwAAAAAAAAAAAAA4QL/85S9TU1OTc889N7fddluampo653bs2JFHHnkkl19+eW666aYkyWmnnZYzzzxzj33GjRuXiy66KMuWLcvOnTuTJI2NjTn33HPT2NiYkpKSfPKTn+y3vqdPn54k+fd///e0tLT02777UzpgJwEAAAAAAAAAAAAAHGZGjBiR9vb2fPvb3863v/3tJMnIkSMzZsyYbNy4MR0dHZ21M2bMyN13353i4j3vIf/EJz6Rz3/+87n44otTVlaWUaNG5fnnn0+SFBUV5V/+5V/ymte8pt/6ft/73pcHH3wwd911V/73//7feclLXpLS0tJMmjQpDzzwQL+d88cE2AEAAAAAAAAAAAAADtCf/dmf5fHHH8+3v/3tPPDAA1m7dm3Wr1+fTZs2paKiIhMnTswpp5yS2traXHzxxXsNryfJkUcemR/96EdZvHhx7rrrrjz99NM56qijMnv27CxatChnnHFGv/ZdV1eXJPn85z+fX/ziF9mwYUPa29v79Yy9KerYPdI/hD311FP57Gc/m3vuuSdPP/10ysrK8opXvCJvfvOb8xd/8RepqKjot7P+67/+K0uXLs0DDzyQDRs2pLS0NMcee2xOPvnkvO51r8vb3/72jBkzpt/OAwAAAAAAAAAAAID+tm3btjz55JOZMmVKRo0a1W3dbzYVcvanV6V158EPNx9sZaXF+f5Vc/PS8eWD3UqnqqqqPPXUU7n11ltz2WWXDXY7vdLTv0O7OyxuYP/Wt76Vurq6bN68uXOspaUlDz/8cB5++OF88YtfzD333JOpU6f26ZyNGzfm8ssvzze/+c095jZv3pzHH388d911V84444y8+tWv7vG+7e3teeaZZzJ27NgUFRX1qUcAAAAAAAAAAAAADl8dHR3ZsmVLJk6c2O1N3v3tpePL8/2r5mbj1u0Dct7BdOTokYdUeH04GvIB9kceeSSXXHJJCoVCxowZk0WLFmXevHkpFAr52te+li984Qt57LHHcu655+bhhx/O2LFjD+ic559/Pm94wxtSX1+fJLnwwguzYMGCvOIVr0hJSUmefvrp3H///bnrrrt6vfczzzyT44477oD6AgAAAAAAAAAAAGD4efrppzNp0qQBO++l48sFv+kXQz7AfuWVV6ZQKKS0tDTf/e53c8YZZ3TOnX322Tn++ONz9dVX57HHHsuSJUty3XXXHdA5f/mXf5n6+vqUlZXl61//et70pjd1mX/Na16TCy+8MJ/5zGfS1tbWq713heqffvrpHHHEEQfUH4em6urqbNiwIRMmTEhjY+NgtwMAAACHJf/+DUBP+Z4BQE/4fgFAT/meAcBg2bx5c4477rgDvtQZBtuQDrD/6Ec/yurVq5Mk73rXu7qE13dZuHBhbr311jQ0NOTmm2/Oxz72sYwYMaJX5zzwwAP56le/miT51Kc+tUd4fXdFRUUpLe3dH2tRUVGS5IgjjhBgP8zsemuO4uJi/2wBAADgIPHv3wD0lO8ZAPSE7xcA9JTvGQAMtl35Uxhqige7gb5YsWJF5/Pll1++15ri4uK84x3vSJJs2rQp9913X6/P+ed//uckybhx4/KBD3yg940CAAAAAAAAAAAAAOxFU1NTOjo6ctlllw12KwNiSAfYH3jggSTJ6NGjM3PmzG7rzjrrrM7nBx98sFdnbN++Pd/85jeTJG94wxsyatSoJElbW1uefvrpNDU1Zdu2bb1tHQAAAAAAAAAAAABg2BnSAfaGhoYkydSpU1NaWtptXXV19R5reupnP/tZZ0D9pJNOyubNm/PBD34wlZWVmTx5cqZMmZJx48blDW94Q1atWtX7FwEAAAAAAAAAAAAAMEwM2QD7tm3b0tzcnCSZNGnSPmuPPPLIjB49Okny9NNP9+qcX/3qV53P7e3tec1rXpObb745mzZt6hzfvn17/uu//itnn312brzxxv3u2drams2bN3f5AAAAAAAAAAAAAAA43A3ZAPuWLVs6n8eMGbPf+l0B9hdeeKFX5/zhD3/ofL7xxhvz+OOP541vfGN+9KMfZdu2bXn22WfzL//yLxk3blw6Ojry0Y9+NN/85jf3uefixYszbty4zo/jjjuuVz0BAAAAAAAAAAAAAAxFQzbAvm3bts7nkSNH7re+rKwsSVIoFHp1ztatW7uc+YY3vCErV67MqaeemrKyshxzzDF53/vel5UrV6a4+MU/zkWLFqWjo6PbPRctWpTnn3++86O3t8IDAAAAAAAAAAAAAAxFQzbAPmrUqM7n7du377e+tbU1SVJeXn7A5yQv3sJeUlKyR92ZZ56Z2traJElDQ0N+8YtfdLtnWVlZjjjiiC4fAAAAAAAAAAAAAACHuyEbYB87dmzn8wsvvLDf+l03qY8ZM+aAzznmmGNyyimndFv7Z3/2Z53PP/7xj3t1DgAAAAAAAAAAAADA4W7IBthHjRqVo48+Okmyfv36fdZu3LixM8B+3HHH9eqc3esnTZrU49rf//73vToHAAAAAAAAAAAAAOBwN2QD7Ely4oknJkmeeOKJ7Ny5s9u6xsbGzueamppenfHKV76y87mtrW2ftbvPl5aW9uocAAAAAAAAAAAAAIDD3ZAOsJ955plJkq1bt6a+vr7buvvvv7/zefbs2b0642Uve1kmT56cJGlqakpHR0e3tb/+9a87n1/60pf26hwAAAAAAAAAAAAAgMPdkA6wz58/v/P51ltv3WtNe3t7brvttiTJ+PHjM2/evF6fc9FFFyVJNm/enO9973vd1i1fvrzzeVe4HgAAAAAAAAAAAACAFw3pAPtpp52WOXPmJEm+9KUvZc2aNXvULFmyJA0NDUmSK6+8MiNGjOgyv2rVqhQVFaWoqCiXXXbZXs/54Ac/mFGjRiVJPvzhD2fz5s171CxdujSrVq1Kkpx77rk57rjjDvRlAQAAAAAAAAAAAAAclkoHu4G+uvnmmzN79uwUCoWcc845ueaaazJv3rwUCoV87Wtfyy233JIkmTZtWhYuXHhAZ0yePDmf/OQnc/XVV+cXv/hFTjvttHzkIx/JySefnM2bN2f58uX5l3/5lyTJEUcckc985jP99voAAAAAAAAAAAAAYNBtejppeW6wu+i7iqOT8S6qHkxDPsB+yimn5M4770xdXV02b96ca665Zo+aadOm5Z577snYsWMP+Jy/+qu/yh/+8IfceOONefTRR/M//+f/3KPmJS95SVasWJHjjz/+gM8BAAAAAAAAAAAAgEPKpqeTf56Z7Gwd7E76rrQs+UD9QQ2xt7W15a677srKlSvz0EMP5dlnn01LS0vGjx+fadOmZc6cObn00kszffr0bve4//77c/vtt+cHP/hBNmzYkG3btuWYY47Jq171qpx//vl55zvfmVGjRnW7/rrrrsv111+/x/jIkSNz9NFH56STTsrFF1+cd77znRkxYkS/vO6eKh7Q0w6S888/Pz//+c/zoQ99KNOmTUtFRUXGjx+f17zmNbnxxhvzyCOPZOrUqX0+Z/HixXnwwQfz9re/PVVVVSkrK8u4ceNy6qmn5m/+5m/y2GOP5YwzzuiHVwQAAAAAAAAAAAAAh4iW5w6P8Hry4us4iDfJP/TQQznxxBNzySWX5Ktf/Woef/zxtLS0ZOzYsXnuuefy4IMP5u/+7u9y0kkn5aKLLsr27du7rH/uuedy7rnnZu7cubnlllvS2NiYbdu2ZdSoUVm/fn3uueeevO9978u0adPy/e9/v0c9HXvssZ0fpaWl2bBhQ7773e/mPe95T2bNmpWNGzcejD+Kbg35G9h3ednLXpabbropN910U6/WzZ07Nx0dHT2uP+OMM4TUAQAAAAAAAAAAAIAuvvWtb+Xiiy9Oa2trjj766Fx11VW56KKLcvzxxyd58Wb2Rx55JHfddVc+97nPZfny5WlpacnIkSOTJL/73e9y5pln5oknnkhJSUne//73533ve19OPPHEJMmmTZuyYsWKXHvttXn66afzxje+MV//+tczf/78ffb129/+tsvX69aty6c+9al84QtfyMMPP5z/7//7//LVr361//9AunFY3MAOAAAAAAAAAAAAADBYHn/88dTV1aW1tTUnnnhifvrTn+ajH/1oZ3g9SUpKSvKa17wmixcvzpNPPpkLLrigc66joyNve9vb8sQTT2TEiBG5++6789nPfrYzvJ4k48ePz2WXXZZHHnkkr3rVq7Jjx468853vzK9//ete9Tp58uTccsstOfvss5MkX//61/PCCy/08U+g5wTYAQAAAAAAAAAAAAD64K//+q+zefPmjBo1KnfffXcmTZq0z/qjjjoqK1asyLhx45IkK1euzPe///0kycc+9rGcf/753a49+uij841vfCOjRo3K5s2b84lPfOKAen7jG9+YJNm+fXsef/zxA9rjQAiwAwAAAAAAAAAAAAAcoN/97ndZtmxZkuTSSy/NtGnTery2qKgoSfK5z30uSTJ27NgsXLhwv+uOP/74vPWtb02S3HnnnWlubu5t2+no6Oh8bmtr6/X6AyXADgAAAAAAAAAAAABwgO677760t7cnSS688MJer9+5c2dWr16dJDnnnHMyZsyYHq2rra3tXP+DH/yg1+f+x3/8R5IXQ/RTpkzp9foDJcAOAAAAAAAAAAAAAHCAfvnLX3Y+n3LKKb1e39TUlK1bt/Z6/atf/erO55///Oc9Xrdu3bpcccUV+f73v58kOf/883P00Uf3eH1flQ7YSQAAAAAAAAAAAAAAh5nnnnuu8/moo47q0/reBMkrKyv3uscf+5M/+ZPO5y1btqSlpaXz6+rq6nzuc5/r8Zn9QYAdAAAAAAAAAAAAAGAIa21t7Xbud7/73V7H3/GOd+Tzn/98Ro0adbDa2qviAT0NAAAAAAAAAAAAAOAwsvut6X/4wx/6tH5fN6n/sebm5s7nI488stu6jo6OdHR0pL29Pc8880z+9V//NePHj89tt92Wf/7nf+51v33lBnYAAACAYaClpSWNjY1dxgqFQpqamlJVVZXy8vIuc9XV1amoqBjIFgEAAAAAAGBIeuUrX9n5/Mgjj2TixIm9Wv+yl70so0ePztatW/OTn/ykx+seeeSRzucTTjhhv/VFRUWZMGFC3vve9+aEE07I2WefnauvvjozZszI2Wef3aue+0KAHQAAAGAYaGxszMyZM3tcX19fnxkzZhzEjgAAAAAAAODwMG/evBQXF6e9vT133313zj333F6tHzFiRObMmZN777033/3ud7Nly5aMHTt2v+uWL1/e+Tx37txenTl37ty8/e1vz2233Za//Mu/zM9//vOUlJT0ao8DVTwgpwAAAAAwqKqrq1NfX9/lY+nSpUmSpUuX7jFXXV09yB0DAAAAAADA0HDsscfmoosuSpLcfvvteeyxx3q8tqOjI0ny/ve/P0nywgsv5Kabbtrvuscffzxf+9rXkiRnnnlmXv7yl/e27Vx77bUpKSnJr371q3zlK1/p9foDJcAOAAAAMAxUVFRkxowZXT5qamqSJDU1NXvMVVRUDHLHAAAAAAAAMHR86lOfypgxY1IoFFJbW5vf/OY3+6zfuHFjLrroojz//PNJkvPOO6/zFvW//du/zcqVK7td+9xzz+Xiiy/Otm3bUlRUlE996lMH1PMrXvGKXHLJJUmSv/mbv8mOHTsOaJ/eEmAHAAAAAAAAAAAAAOiDadOm5atf/WpGjhyZX/7yl3n1q1+dG2+8MU888URnTVtbWx555JFce+21efnLX57ly5d3zhUVFeWOO+7Iy1/+8uzYsSMXXnhhrrzyyjQ0NHTWPP/88/nKV76SGTNm5Gc/+1mSF29RP+ussw6470WLFqWoqChNTU350pe+dMD79IYAOwAAAAAAAAAAAABAH82fPz/f//73M3Xq1DQ3N+ejH/1ojj/++JSVleXoo4/OyJEjM2PGjPzN3/xNnn/++bz1rW/N6NGjO9f/yZ/8SR566KGcc8452blzZz772c/mxBNPTHl5eY488siMHz8+l112WdatW5cRI0bk7//+73Pdddf1qefp06fnTW96U5IXb35vbW3t0349IcAOAAAAAAAAAAAAAHSv4uiktGywu+gfpWUvvp6DZPbs2WlsbMwdd9yRSy+9NFOnTs2oUaOyZcuWHHXUUTnzzDPzsY99LA0NDbn99tszYsSILuuPOeaY/Md//Ee+973v5d3vfndOOOGEjBw5Mps2beqsmThxYtauXZu/+qu/6peeP/axjyVJ1q9fn89//vP9sue+lB70EwAAAAAAAAAAAACAoWv8cckH6pOW5wa7k76rOPrF13MQlZSU5C1veUve8pa3HPAeZ599ds4+++wuY3feeWfe+ta35plnnslXv/rV/M3f/E2366+77roe385+6qmnpqOj44B77S0BdgAAAAAAAAAAAABg38Yfd9CD3+zbJZdckg0bNuRDH/pQPvWpT2Xs2LG5+uqrB7utXise7AYAAAAAAAAAAAAAANi/D37wg7nqqquSJB/5yEfyuc99bpA76j0BdgAAAAAAAAAAAACAIeIf/uEf0tHRkY6Ojrz//e8f7HZ6TYAdAAAAAAAAAAAAAIABIcAOAAAAAAAAAAAAAMCAEGAHAAAAAAAAAAAAAGBACLADAAAAAAAAAAAAADAgBNgBAAAAAAAAAAAAABgQAuwAAAAAAAAAAAAAAAwIAXYAAAAAAAAAAAAAAAaEADsAAAAAAAAAAAAAAANCgB0AAAAAAAAAAAAAgAEhwA4AAAAAAAAAAAAAwIAQYAcAAAAAAAAAAAAAYEAIsAMAAAAAAAAAAAAAMCAE2AEAAAAAAAAAAAAAGBClg90AAAAAAAAAAAAAAHBo2/DChmxs3TjYbfTZkWVHZsKYCYPdxrAmwA4AAAAAAAAAAAAAdGvDCxty3orzsr1t+2C30mcjS0Zm5fyVBzXE3tbWlrvuuisrV67MQw89lGeffTYtLS0ZP358pk2bljlz5uTSSy/N9OnTu93j5z//ef793/899913X5566qls3Lgx5eXleelLX5pTTz01tbW1+fM///OMGDGiy7q5c+fm/vvv32O/ioqKvPSlL82sWbPyvve9L6effnq/v+6eEmAHAAAAAAAAAAAAALq1sXXjYRFeT5LtbduzsXXjQQuwP/TQQ3nnO9+Zxx57rHNsxIgRGTt2bJ577rk8+OCDefDBB/N3f/d3qa2tzR133JGRI0d21m7ZsiXve9/7cscdd6SjoyNJUlRUlHHjxqVQKKShoSENDQ257bbb8opXvCL//u//nj/90z/do48RI0bkqKOO6vy6ubk5jz/+eB5//PHcdttt+cQnPpFPfOITB+XPYH+KB+VUAAAAAAAAAAAAAIDDyLe+9a3MnTs3jz32WI4++ugsXrw4jz32WLZv357nnnsu27dvz49//ON89KMfzRFHHJHly5enpaWlc/3GjRtzxhln5Pbbb0+SvOUtb8n999+fbdu2ZePGjdm2bVt+85vf5Itf/GJOPvnk/PrXv86aNWv22susWbPy29/+tvOjpaUl3/3udzN16tR0dHTkuuuuyz333DMgfy5/TIAdAAAAAAAAAAAAAKAPHn/88dTV1aW1tTUnnnhifvrTn+ajH/1ojj/++M6akpKSvOY1r8nixYvz5JNP5oILLuiyx6WXXppf/vKXKS0tzZ133pk77rgjr33ta7vc0D5x4sS8613vyk9/+tN87nOfy6hRo3rU38iRI/OGN7wh3/zmNzv3++d//ud+eOW9VzoopwIAAAAAAAAAAAAAHCb++q//Ops3b86oUaNy9913Z9KkSfusP+qoo7JixYp0dHQkSb7zne/kO9/5TpLk2muvzcUXX7zP9UVFRflf/+t/pb29vVd9nnjiiZk5c2bWrFmTH//4x71a21/cwA4AAAAAAAAAAAAAcIB+97vfZdmyZUlevEV92rRpPV5bVFSU5L9vQx83blw+/OEP93h9cXHv4+C7wvWbN2/u9dr+IMAOAAAAAAAAAAAAAHCA7rvvvs6b0C+88MJer9+5c2d+8IMfJEne8IY3ZPTo0f3a3x9rampK8uIt8INBgB0AAAAAAAAAAAAA4AD98pe/7Hw+5ZRTer3+qaeeygsvvHDA63vjRz/6Uerr65Mkp59++kE9qzsC7AAAAAAAAAAAAAAAB+i5557rfD6QW837ur4nnnnmmXz1q1/NBRdckPb29hQVFeWDH/zgQTlrf0oH5VQAAAAAAAAAAAAAAA6K+++/P0VFRXudGzFiRG666abMnTt3YJv6fwTYAQAAAAAAAAAAAAAO0NFHH935/Ic//CETJ07s0/r+MGLEiM7b3IuKilJeXp6JEydm1qxZefe7351p06b1yzkHQoAdAAAAAAAAAAAAAOAAvfKVr+x8fuSRR3odYH/Zy16WMWPG5IUXXsgjjzzSLz3NmjUrq1at6pe9+lvxYDcAAAAAAAAAAAAAADBUzZs3L8XFL8ay77777l6vLy0tzWtf+9okyX/+539m69at/drfoUaAHQAAAAAAAAAAAADgAB177LG56KKLkiS33357HnvssR6v7ejoSJL8xV/8RZLk+eefz0033dTj9e3t7b3o9NAgwA4AAAAAAAAAAAAA0Aef+tSnMmbMmBQKhdTW1uY3v/nNPus3btyYiy66KM8//3yS5M///M9zzjnnJEk++clPZtmyZfs985ZbbskXvvCFvjc/wATYAQAAAAAAAAAAAAD6YNq0afnqV7+akSNH5pe//GVe/epX58Ybb8wTTzzRWdPW1pZHHnkk1157bV7+8pdn+fLlXfa4/fbbU1NTk507d+bNb35zLr300qxevTo7duzorNmwYUO+8pWvZObMmXnve9+bQqEwYK+xv5QOdgMAAAAAAAAAAAAAAEPd/Pnz8/3vfz+XXXZZnnjiiXz0ox/NRz/60YwcOTJjxozJpk2b0t7eniQpKirKW9/61owePbpz/dFHH52HHnoo73nPe/KNb3wjt99+e26//fYUFRVl/PjxKRQK2bZtW2d9TU1N5syZM+Cvs68E2AEAAAAAAAAAAAAA+sHs2bPT2NiYb3zjG1m5cmV++MMf5tlnn82WLVty1FFHpbq6OmeddVbe/va354QTTthj/RFHHJE777wz11xzTZYuXZpVq1blqaeeysaNG1NeXp4pU6bktNNOy8UXX5w3vvGNKSkpGYRX2TcC7AAAAAAAAAAAAABAt44sOzIjS0Zme9v2wW6lz0aWjMyRZUce1DNKSkrylre8JW95y1sOeI9XvepVedWrXtXrdatWrTrgMweKADsAAAAAAAAAAAAA0K0JYyZk5fyV2di6cbBb6bMjy47MhDETBruNYU2AHQAAAAAAAAAAAADYpwljJgh+0y8E2AEAAAAOQ+vWrUtzc/M+axoaGrp83pfKyspMnjy5X3oDAAAAAAAAhi8BdgAAAIDDzLp161JTfUJaCtt6VF9XV7ffmoryUWlofFSIHQAAAAAAAOgTAXYAAACAw0xzc3NaCtuy9MLy1BxT3G1dYWdHmja1p2p8ccpLi7qta/h9e+ruLqS5uVmAHQAAAAAAAOgTAXYAAACAw1TNMcWZMaFknzWzjxugZgAAAAAAAACSdH8FFwAAAAAAAAAAAAAA9CMBdgAAAAAAAAAAAAAABoQAOwAAAAAAAAAAAAAAA0KAHQAAAAAAAAAAAACGsY6OjsFugSHqQP7uCLADAAAAAAAAAAAAwDBUXPxilLitrW2QO2Go2vV3Z9ffpZ4QYAcAAAAAAAAAAACAYWjEiBEZMWJEXnjhhcFuhSFqy5YtnX+PekqAHQAAAAAAAAAAAACGoaKioowdOzbPP/98CoXCYLfDEFMoFLJ58+aMHTs2RUVFPV5XehB7AgAAAAAAAAAAAAAOYZWVlSkUClm3bl2OOOKIjB07NiUlJb0KJDN8dHR0pK2tLVu2bMnmzZtTVlaWysrKXu0hwA4AAAAAAAAAAAAAw1RJSUmOO+64NDc3Z8uWLdm0adNgt8QQMGLEiIwfPz6VlZUpKSnp1VoBdgAAAAAAAAAAAAAYxkpKSnLsscfmJS95SXbs2JH29vbBbolDWHFxcUaMGHHAt/QLsAMAAAAAAAAAAAAAKSoqysiRIwe7DQ5zxYPdAAAAAAAAAAAAAAAAw4Mb2AEAAADotZaWljQ2NnYZKxQKaWpqSlVVVcrLy7vMVVdXp6KiYiBbBAAAAAAAAA5BAuwAAAAA9FpjY2NmzpzZ4/r6+vrMmDHjIHYEAAAAAAAADAUC7AAAAAD0WnV1derr67uMNTQ0pK6uLkuXLk1NTc0e9QAAAAAAAAAC7AAAAAD0WkVFRbc3qtfU1LhtHQAAAAAAANir4sFuAAAAAAAAAAAAAACA4UGAHQAAAAAAAAAAAACAASHADgAAAAAAAAAAAADAgBBgBwAAAAAAAAAAAABgQAiwAwAAAAAAAAAAAAAwIATYAQAAAAAAAAAAAAAYEALsAAAAAAAAAAAAAAAMCAF2AAAAAAAAAAAAAAAGhAA7AAAAAAAAAAAAAAADQoAdAAAAAAAAAAAAAIABIcAOAAAAAAAAAAAAAMCAKB3sBgAAAADoX4VCIUnS0NzWL/vt2mfXvgDA4Ghra8vq1auzYcOGTJgwIXPmzElJSclgtwUAAAAA0CsC7AAAAACHmaampiRJ3fJt/b7v7Nmz+3VPAKBnli9fnoULF3Z+n0+SqqqqLFmyJLW1tYPXGAAAAABALwmwAwAAABxmqqqqkiRLa0elprLvt7I2NLelbvm2zn0BgIG1fPnyLFiwIOedd17uuOOOTJ8+PWvXrs0NN9yQBQsWZNmyZULsAAAAAMCQIcAOAAAAcJgpLy9PktRUlmTGhL4H2P94XwBg4LS1tWXhwoU577zzsmLFihQXFydJTj/99KxYsSLz58/PVVddlQsuuCAlJf33fR8AAAAA4GApHuwGAAAAAAAA2LvVq1enqakp11xzTWd4fZfi4uIsWrQoTz75ZFavXj1IHQIAAAAA9I4AOwAAAAAAwCFqw4YNSZLp06fvdX7X+K46AAAAAIBDnQA7AAAAAADAIWrChAlJkrVr1+51ftf4rjoAAAAAgEOdADsAAAAAAMAhas6cOamqqsoNN9yQ9vb2LnPt7e1ZvHhxpkyZkjlz5gxShwAAAAAAvSPADgAAAAAAcIgqKSnJkiVLsnLlysyfPz9r1qzJli1bsmbNmsyfPz8rV67Mpz/96ZSUlAx2qwAAAAAAPVI62A0AAAAAAADQvdra2ixbtiwLFy7MrFmzOsenTJmSZcuWpba2dhC7AwAAAADoHQF2AAAAAACAQ1xtbW0uuOCCrF69Ohs2bMiECRMyZ84cN68DAAAAAEOOADsAAAAAAMAQUFJSkrlz5w52GwAAAAAAfSLADgAAAECPNDQ09Gh+f3VJUllZmcmTJ/dLXwAAAAAAAMDQIcAOAAAAwD5teKE9KUrq6up6VN+TulHlo/Jo46NC7AAAAAAAADDMCLADAAAAsE+btnUkHcmkKyalbGJZt3Xt29uzo3lHRlSOSPHI4m7rWp9pzfpb1qe5uVmAHQAAAAAAAIaZwybA/tRTT+Wzn/1s7rnnnjz99NMpKyvLK17xirz5zW/OX/zFX6SiouKA9/7yl7+cyy+/vEe1t956ay677LIDPgsAAADgUFU2sSzlVeX7Lpo2ML0AAAAAAAAAQ9NhEWD/1re+lbq6umzevLlzrKWlJQ8//HAefvjhfPGLX8w999yTqVOnDmKXAAAAAAOr4fft+5wv7OxI06b2VI0vTnlpUbd1T27s6O/WAAAAAAAAgGFqyAfYH3nkkVxyySUpFAoZM2ZMFi1alHnz5qVQKORrX/tavvCFL+Sxxx7Lueeem4cffjhjx47t03n/8R//kYkTJ3Y7P2nSpD7tDwAAANBXlZWVqSgflbq7C4PdCgAAAAAAAEAXQz7AfuWVV6ZQKKS0tDTf/e53c8YZZ3TOnX322Tn++ONz9dVX57HHHsuSJUty3XXX9em8adOmpaqqqm9NAwAAABxEkydPTkPjo2lubt5nXUNDQ+rq6rJ06dLU1NTstw4AAAAAAACgr4Z0gP1HP/pRVq9enSR517ve1SW8vsvChQtz6623pqGhITfffHM+9rGPZcSIEQPdKgAAAMCAmjx5ciZPntyj2pqamsyYMeMgdwQAAAAAAACQFA92A32xYsWKzufLL798rzXFxcV5xzvekSTZtGlT7rvvvoFoDQAAAAAAAAAAAACAPzKkA+wPPPBAkmT06NGZOXNmt3VnnXVW5/ODDz540PsCAAAAAAAAAAAAAGBPQzrA3tDQkCSZOnVqSktLu62rrq7eY82BuvzyyzNx4sSMHDkylZWVOf300/PXf/3X+c1vftOnfQEAAAAAAAAAAAAADndDNsC+bdu2NDc3J0kmTZq0z9ojjzwyo0ePTpI8/fTTfTp31apV2bBhQ3bs2JHnnnsuP/zhD/O3f/u3mTp1aj7/+c/3aW8AAAAAAAAAAAAAgMNZ99eWH+K2bNnS+TxmzJj91o8ePTpbt27NCy+8cEDnvfzlL09tbW3OOOOMHHfccUmS//t//2/uuuuuLFu2LNu2bcv73ve+FBUV5YorrtjnXq2trWltbe38evPmzQfUEwAAAAAAQE+1tLSksbGxy1ihUEhTU1OqqqpSXl7eZa66ujoVFRUD2SIAAAAAMAwM2QD7tm3bOp9Hjhy53/qysrIkL/4gtrcuvPDCvPOd70xRUVGX8VNPPTWXXHJJVq5cmdra2uzYsSMf+tCH8qY3vSl/8id/0u1+ixcvzvXXX9/rPgAAAAAAAA5UY2NjZs6c2eP6+vr6zJgx4yB2BAAAAAAMR0M2wD5q1KjO5+3bt++3fteN5398e0hPjBs3bp/z5513Xq699tp8/OMfT0tLS770pS/lYx/7WLf1ixYtyoc//OHOrzdv3tx5qzsAAAAAAAwmt3Qfvqqrq1NfX99lrKGhIXV1dVm6dGlqamr2qAcAAAAA6G9DNsA+duzYzucXXnhhv/Vbt25NkowZM+ag9HPFFVfk2muvTUdHR+6///59BtjLyso6b4QHAAAAAIBDiVu6D18VFRXd/rOqqanxzxEAAAAAGBBDNsA+atSoHH300Xnuueeyfv36fdZu3LixM8B+sG46f8lLXpKjjz46zc3N+c1vfnNQzgAAAAAAgIPNLd0AAAAAABxMQzbAniQnnnhiVq9enSeeeCI7d+5MaeneX87ub3X6xz9Y709FRUUHbW8AAAAAABgIbukGAAAAAOBgKh7sBvrizDPPTJJs3bp1j9tgdnf//fd3Ps+ePfug9PL73/8+zc3NSZKJEycelDMAAAAAAAAAAAAAAIayIR1gnz9/fufzrbfeutea9vb23HbbbUmS8ePHZ968eQell1tuuSUdHR1JkrPOOuugnAEAAAAAAENdW1tbVq1alTvuuCOrVq1KW1vbYLcEAAAAAMAAGtIB9tNOOy1z5sxJknzpS1/KmjVr9qhZsmRJGhoakiRXXnllRowY0WV+1apVKSoqSlFRUS677LI91jc1NeWRRx7ZZx8rV67MJz/5ySRJeXl5Lr/88gN5OQAAAAAAcFhbvnx5pk6dmnnz5uVtb3tb5s2bl6lTp2b58uWD3RoAAAAAAANkSAfYk+Tmm29OeXl5du7cmXPOOSeLFy/OQw89lPvuuy/vfe97c/XVVydJpk2bloULF/Z6/6ampsyYMSOzZs3K4sWL8+1vfzsPP/xwHn744Xz961/Pm9/85rzpTW/K9u3bkySf/vSn89KXvrRfXyMAAAAAAAx1y5cvz4IFC3LSSSdlzZo12bJlS9asWZOTTjopCxYsEGIHAAAAABgmSge7gb465ZRTcuedd6auri6bN2/ONddcs0fNtGnTcs8992Ts2LEHfM6aNWv2esP7LhUVFfnMZz6TK6644oDPAAAAAACAw1FbW1sWLlyY8847LytWrEhx8Yv365x++ulZsWJF5s+fn6uuuioXXHBBSkpKBrlbAAAAAAAOpiEfYE+S888/Pz//+c9z880355577sn69eszcuTITJ06NRdffHE+8IEPpKKi4oD2njlzZpYuXZo1a9bk4YcfzoYNG9Lc3JydO3fmyCOPzCtf+cq87nWvy7vf/e685CUv6edXBgAAAAAAQ9/q1avT1NSUO+64ozO8vktxcXEWLVqUWbNmZfXq1Zk7d+7gNAkAAAAAwIA4LALsSfKyl70sN910U2666aZerZs7d246Ojq6nR87dmwuvfTSXHrppX1tEQAAAAAAhqUNGzYkSaZPn77X+V3ju+oAAAAAADh8HTYBdgAAAAAA4NA0YcKEJMnatWtz+umn7zG/du3aLnW8qKWlJY2NjV3GCoVCmpqaUlVVlfLy8i5z1dXVB/yOtAAAAAAAA0WAHQAAAAAAOKjmzJmTqqqq3HDDDVmxYkWKi4s759rb27N48eJMmTIlc+bMGcQuDz2NjY2ZOXNmj+vr6+szY8aMg9gRAAAAAEDfCbADAAAAsE+FQiFJ0vpMa7/st2ufXfsCcPgrKSnJkiVLsmDBgsyfPz+LFi3K9OnTs3bt2ixevDgrV67MsmXLUlJSMtitHlKqq6tTX1/fZayhoSF1dXVZunRpampq9qgHAAAAADjUCbADAAAAsE9NTU1JkvW3rO/3fWfPnt2vewJw6Kqtrc2yZcuycOHCzJo1q3N8ypQpWbZsWWprawexu0NTRUVFtzeq19TUuG0dAAAAABiSBNgBAAAA2KeqqqokyaQrJqVsYlmf92t9pjXrb1nfuS8Aw0dtbW0uuOCCrF69Ohs2bMiECRMyZ84cN68DAAAAAAwjAuwAAAAA7FN5eXmSpGxiWcqryvt9XwCGl5KSksydO3ew2wAAAAAAYJAUD3YDAAAAAAAAAAAAAAAMDwLsAAAAAAAAAAAAAAAMCAF2AAAAAAAAAAAAAAAGhAA7AAAAAAAAAAAAAAADQoAdAAAAAAAAAAAAAIABIcAOAAAAAAAAAAAAAMCAEGAHAAAAAAAAAAAAAGBACLADAAAAAAAAAAAAADAgBNgBAAAAAAAAAAAAABgQAuwAAAAAAAAAAAAAAAyI0sFuAAAAAAAAOHy1tLSksbGxy1ihUEhTU1OqqqpSXl7eZa66ujoVFRUD2SIAAAAAAANIgB0AAAAAADhoGhsbM3PmzB7X19fXZ8aMGQexIwAAAAAABpMAOwAAAAAAcNBUV1envr6+y1hDQ0Pq6uqydOnS1NTU7FEPAAAAAMDhS4AdAAAAAAA4aCoqKrq9Ub2mpsZt6wAAAAAAw0zxYDcAAAAAAAAAAAAAAMDwIMAOAAAAAAAAAAAAAMCAEGAHAAAAAAAAAAAAAGBACLADAAAAAAAAAAAAADAgSge7AQAAAICeamlpSWNjY5exQqGQpqamVFVVpby8vMtcdXV1KioqBrJFAAAAAAAAAPZBgB0AAAAYMhobGzNz5swe19fX12fGjBkHsSMAAAAAAAAAekOAHQAAABgyqqurU19f32WsoaEhdXV1Wbp0aWpqavaoBwD2bd26dWlubt5nTUNDQ5fP+1JZWZnJkyf3S28AAAAAABx+BNgBAACAIaOioqLbG9Vramrctg4AvbRu3brUVJ+QlsK2HtXX1dXtt6aifFQaGh8VYgcAAAAAYK8E2AEAAAAAYJhqbm5OS2Fbll5YnppjirutK+zsSNOm9lSNL055aVG3dQ2/b0/d3YU0NzcLsAMAAAAAsFcC7AAAAAAAMMzVHFOcGRNK9lkz+7gBagYAAAAAgMNa99epAAAAAAAAAAAAAABAP3IDOwAAAAA90vpM6z7n27e3Z0fzjoyoHJHikd3fm7C/fQAAAAAAAIDDlwA7AAAAcNC0tLSksbGxy1ihUEhTU1OqqqpSXl7eZa66ujoVFRUD2SI9UFlZmVHlo7L+lvX9tueo8lGprKzst/0A4HCwbt26NDc377OmoaGhy+d9aW1tTVlZWb/tV1lZmcmTJ++3DgAAAABgXwTYAQAAgIOmsbExM2fO7HF9fX19ZsyYcRA74kBMnjw5jzY+2qNAXV1dXZYuXZqampp91grAAUBX69atS031CWkpbOtRfV1d3f6LipJ09Oz8nuw3qnxUHm181PdwAAAAAKBPBNgBAACAg6a6ujr19fVdxvYVcq6urh7I9uiFyZMn9zisVlNT4xcRAKCXmpub01LYlqUXlqfmmOJu6wo7O9K0qT1V44tTXlrUbd23H9+Zj9/XmklXTErZxO5vYW/f3p4dzTsyonJEikd2f27rM61Zf8v6NDc3C7ADAAAAAH0iwA4AAAAcNBUVFd0GmYWcAQD2VHNMcWZMKNlnzezj9r9PQ3NbkqRsYlnKq8r3XTytp90BAAAAAPRd91dpAAAAAAAAAAAAAABAPxJgBwAAAAAAAAAAAABgQAiwAwAAAAAAAAAAAAAwIATYAQAAAAAAAAAAAAAYEALsAAAAAAAAAAAAAAAMCAF2AAAAAAAAAAAAAAAGhAA7AAAAAAAAAAAAAAADonSwGwAAAAAAAAZHoVBIkjQ0t/XLfrv22bUvAAAAAAD8MQF2AAAAAAAYppqampIkdcu39eu+9913X8rLy7udb2ho6PJ5XyorKzN58uR+6w0AAAAAgMElwA4AAAAAAMNUVVVVkmRp7ajUVJb0eb/V63bmg/e25uMf/3g+/vGP77e+rq5uvzWjykfl0cZHhdgBAAAAAA4TAuwAAAAAADBM7bolvaayJDMm9D3A3tDcliSZdMWklE0s67aufXt7djTvyIjKESkeWdxtXeszrVl/y/o0NzcLsPdS686OFz8/09o/+/2/fQqFQr/sBwAAAAAMXwLsAAAAAABAvyqbWJbyqvJ9F00bmF6Gq2e2vBhgX3/L+n7dt6mpKbNnz+7XPQEAAACA4UWAHQAAAAAA4DAzcWxRkv3fht9Tu27Dr6qq6vNeAAAAAMDwJsAOAAAAAAAwyAqFQpKkobmtX/bbdQP7iMoR+78NvxfKy/tvLwAAAABgeBJgBwAAABgGWlpa0tjY2GWsoaGhy+fdVVdXp6KiYkB6AwCSpqamJEnd8m39uu+O5h3JtH7dEgAAAACgTwTYAQAAAIaBxsbGzJw5c69zdXV1e4zV19dnxowZB7stAOD/qaqqSpIsrR2VmsqSPu/37cd35OP3bc+IyhF93gsAAAAAoD8JsAMAAAAMA9XV1amvr+8yVigU0tTUlKqqqpSXl+9RDwAMnF3fi2sqSzJjQt8D7A3NbUmS4pHFfd4LAAAAAKA/CbADAAAAh6x169alubl5nzUNDQ1dPu9LZWVlJk+e3C+9DTUVFRV7vVF99uzZg9ANAAAAAAAAMFwJsAMAAACHpHXr1uWE6hOyrbCtR/V1dXX7rRlVPiqPNj46bEPsAAAAAAAAAINNgB0AAAA4JDU3N2dbYVsmXTEpZRPLuq1r396eHc07MqJyRIpHFndb1/pMa9bfsj7Nzc0C7ABwkLTu7Hjx8zOt/bPf/9unUCj0y34AAAAAAAw+AXYAAADgkFY2sSzlVeX7Lpo2ML0AAPv2zJYXA+zrb1nfr/s2NTVl9uzZ/bonAAAAAACDQ4AdAAAAAADoFxPHFiXJft9Bpad2vYNKVVVVn/cCAAAAAODQIMAOAAAAAAD0i7LSFwPsPXoHlV4oL++/vQAAAAAAGFzFg90AAAAAAAAAAAAAAADDgwA7AAAAAAAAAAAAAAADonSwGwAAAAAAAAZXw+/b9zlf2NmRpk3tqRpfnPLSom7rntzY0d+tAQAAAABwmBFgBwAAAACAYaqysjIV5aNSd3dhsFsBAAAAAGCYEGAHAAAAAIBhavLkyWlofDTNzc37rGtoaEhdXV2WLl2ampqa/dYBAAAAAEB3BNgBAAAAAGAYmzx5ciZPntyj2pqamsyYMeMgdzS8Nfy+fZ/zhZ0dadrUnqrxxSkvLeq27smNHf3dGgAAAABAvxBgBwAAAAAAGGSVlZWpKB+VursLg90KAAAAAMBBJcAOAAAAAAAwyCZPnpyGxkfT3Ny8z7qGhobU1dVl6dKlqamp2W8dAAAAAMChRoAdAAAAAADgEDB58uRMnjy5R7U1NTWZMWPGQe4IAAAAAKD/CbADAAAA0GstLS1pbGzsMtbQ0NDl8+6qq6tTUVExIL0BAAAAAAAAhy4BdgAAAAB6rbGxMTNnztzrXF1d3R5j9fX1bokFAAAAAAAABNgBAAAA6L3q6urU19d3GSsUCmlqakpVVVXKy8v3qAcAAAAAAAAQYAcAAACg1yoqKvZ6o/rs2bMHoRsAAAAAAABgqBBgBwAAAA5JhUIhSdL6TGu/7Ldrn137AgAHz/6+f7dvb8+O5h0ZUTkixSOLD3gfAAAAAACGHgF2AAAAoN+sW7cuzc3N+6xpaGjo8rk79913X5Jk/S3r+6e5/6epqckt4QBwkFRWVmZU+ah+/f49qnxUKisr+22/4cYvEwAAAAAAhxoBdgAAAKBfrFu3LjXVJ6SlsK1H9XV1dT2qm3TFpJRNLOtLa0leDF2tv2V9qqqq+rwXALB3kydPzqONj/boF9rq6uqydOnS1NTU7LO2srIykydP7s82hwW/TAAAAAAAHKoE2AEAAGA/Wlpa0tjY2GWsUCikqakpVVVVKS8v7zJXXV2dioqKgWzxkNDc3JyWwrYsvbA8Ncd0f3tnYWdHmja1p2p8ccpLi7qt+/bjO/Px+1pTNrEs5VXl3db11h//8wIA+tfkyZN7HDivqanJjBkzDnJHw5NfJgAAAAAADlUC7AAAALAfjY2NmTlzZo/r6+vrh3UQq+aY4syYULLPmtnH7X+fhua2fuoIAGB48ssEAAAAAMChSIAdAAAA9qO6ujr19fVdxvZ1U2V1dfVAtgcAAAAAAAAAQ4YAOwAAAOxHRUVFt7dRuqkSAAAAAAAAAHqueLAbAAAAAAAAAAAAAABgeBBgBwAAAAAAAAAAAABgQAiwAwAAAAAAAAAAAAAwIATYAQAAAAAAAAAAAAAYEALsAAAAAAAAAAAAAAAMCAF2AAAAAAAAAAAAAAAGhAA7AAAAAAAAAAAAAAADonSwGwAAAAAOD4VCIUnS0NzWL/s9ubE9SdK+vb1f9gMAAAAAAABg8AmwAwAAAP2iqakpSVK3fFu/7rujeUcyrV+3BAAAAAAAAGCQCLADAAAA/aKqqipJsrR2VGoqS/q837cf35GP37c9IypH9HkvAAAAAAAAAA4NAuwAAABAvygvL0+S1FSWZMaEvgfYG5rbkiTFI4v7vBcAAAAAAAAAhwb/BRgAAAAAAAAAAAAAgAEhwA4AAAAAAAAAAAAAwIAQYAcAAAAAAAAAAAAAYEAIsAMAAAAAAAAAAAAAMCAE2AEAAAAAAAAAAAAAGBClg90AAAAAAAAAAAAAABxMbW1tWb16dTZs2JAJEyZkzpw5KSkpGey2YFgSYAcAAAAOaa3PtO5zvn17e3Y078iIyhEpHtn9m83tbx8AAAAAAAAOT8uXL8/ChQvT1NTUOVZVVZUlS5aktrZ28BqDYUqAHQAAADgkjR9VlBQl629Z3297jioflcrKyn7bDwAAAAAAgEPb8uXLs2DBgpx33nm54447Mn369KxduzY33HBDFixYkGXLlgmxwwATYAcAAAAOSRPGFCcdydKlS1NTU9NtXUNDQ+rq6vZblySVlZWZPHlyf7cKAAAAAADAIaitrS0LFy7MeeedlxUrVqS4+MV38z399NOzYsWKzJ8/P1dddVUuuOCClJSUDHK3MHwIsAMAAACHtJqamsyYMaPf6gAAAAAAABgeVq9enaamptxxxx2d4fVdiouLs2jRosyaNSurV6/O3LlzB6dJGIaK918CAAAAAAAAAAAAAEPLhg0bkiTTp0/f6/yu8V11wMA4bALsTz31VBYuXJjq6uqMHj06Rx11VE499dT8wz/8Q1paWg7KmS0tLXn5y1+eoqKiFBUVpaqq6qCcAwAAAAAAAAAAAEDvTJgwIUmydu3avc7vGt9VBwyMwyLA/q1vfSsnn3xybrrppjz66KNpaWnJxo0b8/DDD+fqq6/OKaeckieeeKLfz7322mvz5JNP9vu+AAAAAAAAAAAAAPTNnDlzUlVVlRtuuCHt7e1d5trb27N48eJMmTIlc+bMGaQOYXga8gH2Rx55JJdcckk2b96cMWPG5G//9m/zf/7P/8n3vve9vOc970mSPPbYYzn33HOzZcuWfj33H//xHzNq1KiMHTu23/YFAAAAAAAAAAAAoO9KSkqyZMmSrFy5MvPnz8+aNWuyZcuWrFmzJvPnz8/KlSvz6U9/OiUlJYPdKgwrQz7AfuWVV6ZQKKS0tDTf/e53c8011+SMM87I2WefnVtuuSV///d/n+TFEPuSJUv65cy2tra85z3vSVtbW6655pocddRR/bIvAAAAAAAAAAAAAP2ntrY2y5Ytyy9+8YvMmjUrRxxxRGbNmpW1a9dm2bJlqa2tHewWYdgpHewG+uJHP/pRVq9enSR517velTPOOGOPmoULF+bWW29NQ0NDbr755nzsYx/LiBEj+nTuzTffnPr6+pxwwgn5yEc+ki996Ut92g8AAAAAAA5XLS0taWxs7DLW0NDQ5fPuqqurU1FRMSC9AQAAADA81NbW5oILLsjq1auzYcOGTJgwIXPmzHHzOgySIR1gX7FiRefz5Zdfvtea4uLivOMd78iiRYuyadOm3HfffTnnnHMO+Mynnnoq1157bZLkX//1XzNy5MgD3gsAAAAAAA53jY2NmTlz5l7n6urq9hirr6/PjBkzDnZbAAAAAAwzJSUlmTt37mC3AWSIB9gfeOCBJMno0aO7/eF3kpx11lmdzw8++GCfAuzvf//7s3Xr1rz97W/3P2QAAACwFw2/b9/nfGFnR5o2tadqfHHKS4sOeB8AYGiorq5OfX19l7FCoZCmpqZUVVWlvLx8j3oAAAAAAA5fQzrAvuutRadOnZrS0u5fyu4/7N7b25H21Ne+9rV8+9vfzpFHHpklS5Yc8D4AAABwOKqsrExF+ajU3V3otz0rykelsrKy3/YDAPavpaUljY2NXcZ2/Wx9bz9jr66uTkVFRbf7VVRU7PVG9dmzZ/exUwAAAAAAhqIhG2Dftm1bmpubkySTJk3aZ+2RRx6Z0aNHZ+vWrXn66acP6LyNGzfmgx/8YJLk7/7u73LMMccc0D5J0tramtbW1s6vN2/efMB7AQAAwKFi8uTJaWh8tPPf17vT0NCQurq6LF26NDU1NfusrayszOTJk/uzTQBgPxobG7t919O6uro9xurr6/caUAcAAAAAgL0ZsgH2LVu2dD6PGTNmv/W7AuwvvPDCAZ33V3/1V/nd736XM844I+95z3sOaI9dFi9enOuvv75PewAAAMChaPLkyT0OnNfU1Ai7AcAhqLq6OvX19V3GCoVCmpqaUlVVlfLy8j3qAQAAAACgp4ZsgH3btm2dzyNHjtxvfVlZWZIXf8jeWz/4wQ/yb//2byktLc2//uu/pqioqNd77G7RokX58Ic/3Pn15s2bc9xxx/VpTwAAAPrPunXrenSL+O6fu+MGcQBgqKmoqNjrL5nNnj17ELoZ3lpaWtLY2NhlbF//P7S6ujoVFRUD0hsAAAAAwIEasgH2UaNGdT5v3759v/Wtra1JssfNMD1Zd8UVV6SjoyNXXnllTj755N41uhdlZWWdgXoAAAAOLevWrcsJ1SdkW2Hb/ouT1NXV7XN+VPmoPNr4qBA7AAC91tjYmJkzZ+51bm//P7S+vt473AAAAAAAh7whG2AfO3Zs5/MLL7yw3/qtW7cmScaMGdOrc/72b/82jz76aI477rhcf/31vWsSAACAIae5uTnbCtsy6YpJKZvY/S8ft29vz47mHRlROSLFI4v3WtP6TGvW37I+zc3NAuwc9tra2rJ69eps2LAhEyZMyJw5c1JSUjLYbQHAkFZdXZ36+vouY4VCIU1NTamqqtrj0p7q6uqBbA8AAAAA4IAM2QD7qFGjcvTRR+e5557L+vXr91m7cePGzgD7cccd16tzbrzxxiTJ61//+nzrW9/aa82uvbdu3Zqvfe1rSZKXvOQlOfvss3t1FgAAAIeOsollKa/az7t4TRuYXuBQt3z58ixcuDBNTU2dY1VVVVmyZElqa2sHrzEAGOIqKir2eqP67NmzB6EbAAAAAID+MWQD7Ely4oknZvXq1XniiSeyc+fOlJbu/eU0NjZ2PtfU1PTqjO3btydJbr311tx66637rG1ubs5b3/rWJMlZZ50lwA4AAAAc9pYvX54FCxbkvPPOyx133JHp06dn7dq1ueGGG7JgwYIsW7ZMiB0AAAAAAADotPf3OB8izjzzzCQv3nz+x2+hubv777+/89mtJAAAAAD9o62tLQsXLsx5552XFStW5PTTT8+YMWNy+umnZ8WKFTnvvPNy1VVXpa2tbbBbBQAAAAAAAA4RQzrAPn/+/M7n7m5Hb29vz2233ZYkGT9+fObNm9erMzo6Ovb78bKXvSxJ8rKXvaxzbNWqVQf0mgAAAACGitWrV6epqSnXXHNNiou7/pipuLg4ixYtypNPPpnVq1cPUocAAAAAAADAoWZIB9hPO+20zJkzJ0nypS99KWvWrNmjZsmSJWloaEiSXHnllRkxYkSX+VWrVqWoqChFRUW57LLLDnrPAAAAAIeLDRs2JEmmT5++1/ld47vqAAAAAAAAAEoHu4G+uvnmmzN79uwUCoWcc845ueaaazJv3rwUCoV87Wtfyy233JIkmTZtWhYuXDjI3QIAAAAcPiZMmJAkWbt2bU4//fQ95teuXdulDgAAAAAAYKC0tLSksbGxy1ihUEhTU1OqqqpSXl7eZa66ujoVFRUD2SIMW0M+wH7KKafkzjvvTF1dXTZv3pxrrrlmj5pp06blnnvuydixYwehQwAAAIDD05w5c1JVVZUbbrghK1asSHHxf7/ZX3t7exYvXpwpU6Z0voMeAAAAAADAQGlsbMzMmTN7XF9fX58ZM2YcxI6AXYZ8gD1Jzj///Pz85z/PzTffnHvuuSfr16/PyJEjM3Xq1Fx88cX5wAc+4LdiAAAAAPpZSUlJlixZkgULFmT+/PlZtGhRpk+fnrVr12bx4sVZuXJlli1blpKSksFuFQDI3m8da2ho6PJ5d24dAwAAAIay6urq1NfXdxlraGhIXV1dli5dmpqamj3qgYFxWATYk+RlL3tZbrrpptx00029Wjd37tx0dHT06eympqY+rQcAAAAYqmpra7Ns2bIsXLgws2bN6hyfMmVKli1bltra2kHsDgDY3b5uHaurq9tjzK1jAAAAwFBWUVHR7c82ampq/NwDBtFhE2AHAAAAYHDU1tbmggsuyOrVq7Nhw4ZMmDAhc+bMcfM6APSztra2Pn2/3dutY4VCIU1NTamqqkp5efke9QAAAAAA/U2AHQAAAIA+Kykpydy5cwe7DQCGgL6GsIer5cuXZ+HChV3eFbaqqipLlizp8TuedHfr2OzZs/urTQAAAACA/Soe7AYAAAAAAIDhYfny5Zk6dWrmzZuXt73tbZk3b16mTp2a5cuXD3Zrh7Tly5dnwYIFOemkk7JmzZps2bIla9asyUknnZQFCxb48wMAAAAAhhQ3sAMAAHDYaWlpSWNjY5exQqGQpqamVFVVpby8vMtcdXV1KioqBrJFAIBhZ1cI+7zzzssdd9yR6dOnZ+3atbnhhhuyYMGCLFu2rMc3iQ8nbW1tWbhwYc4777ysWLEixcUv3k10+umnZ8WKFZk/f36uuuqqXHDBBW6yBwAAAACGBAF2AAAADjuNjY2ZOXNmj+vr6+szY8aMg9gRAMDwJoR94FavXp2mpqbccccdnX9uuxQXF2fRokWZNWtWVq9enblz5w5OkwAAAAAAvSDADgAAwGGnuro69fX1XcYaGhpSV1eXpUuXpqamZo96AAAOHiHsA7dhw4YkyfTp0/c6v2t8Vx0AAAAAwKFOgB0AAIDDTkVFRbc3qtfU1LhtHQBggAlhH7gJEyYkSdauXZvTTz99j/m1a9d2qQMAAAAAONQV778EAAAAAADgwO0ewt4bIezuzZkzJ1VVVbnhhhvS3t7eZa69vT2LFy/OlClTMmfOnEHqEAAAAACgd9zADgAAAAAAHFS7h7BXrFiR4uL/vl9HCHvfSkpKsmTJkixYsCDz58/PokWLMn369KxduzaLFy/OypUrs2zZspSUlAx2qwAcRlpaWtLY2NhlrFAopKmpKVVVVSkvL+8yV11dnYqKioFsEQAAgCFMgB0AAAAAADiohLD7pra2NsuWLcvChQsza9aszvEpU6Zk2bJlqa2tHcTuADgcNTY2ZubMmT2ur6+vz4wZMw5iRwAAABxOBNgBAAAAAICDTgi7b2pra3PBBRdk9erV2bBhQyZMmJA5c+YI/QNwUFRXV6e+vr7LWENDQ+rq6rJ06dLU1NTsUQ8AAAA9JcAOAAAAAAAMCCHsvikpKcncuXP7bb+2tjb/LADYq4qKim5vVK+pqXHbOgAAAH0iwA4AAAAAAAyY/g5hc2CWL1+ehQsXpqmpqXOsqqoqS5YscRs+AAAAAHBQCbADAADAbgqFQpKk9ZnWPu+1a49de9J3LS0taWxs7DLW0NDQ5fPuqqurU1FRMSC9AQAMFcuXL8+CBQty3nnn5Y477sj06dOzdu3a3HDDDVmwYEGWLVsmxA4AAAAAHDQC7AAAALCbXTdQrr9lfb/uOXv27H7bbzhrbGzMzJkz9zpXV1e3x1h9fb23NQcA2E1bW1sWLlyY8847LytWrEhxcXGS5PTTT8+KFSsyf/78XHXVVbngggtSUlIyyN0CAAAAAIcjAXYAAADYTVVVVZJk0hWTUjaxrE97tT7TmvW3rO/ck76rrq5OfX19l7FCoZCmpqZUVVWlvLx8j3oAAP7b6tWr09TUlDvuuKMzvL5LcXFxFi1alFmzZmX16tWZO3fu4DQJAAAAABzWBNgBAABgN7sC0GUTy1JeVb6f6t7tSd9VVFTs9UZ1N9wDAPTMhg0bkiTTp0/f6/yu8V11AAAAAAD9rXj/JQAAAAAAABwOJkyYkCRZu3btXud3je+qAwAAAADob/16A3t7e3t+9atf5f/+3/+bLVu2pK2tbb9r3vGOd/RnCwAAAAAAAHRjzpw5qaqqyg033JAVK1akuPi/7zpqb2/P4sWLM2XKlMyZM2cQuwQAAAAADmf9EmAvFAr51Kc+lS984Qt57rnneryuqKhIgB0AAAAAAGCAlJSUZMmSJVmwYEHmz5+fRYsWZfr06Vm7dm0WL16clStXZtmyZSkpKRnsVgEAAACAw1SfA+yFQiFnn312fvSjH6Wjo6M/egIAAAAAAOAgqa2tzbJly7Jw4cLMmjWrc3zKlClZtmxZamtrB7E7AAAAAOBw1+cA+2c+85n88Ic/TJJMnz49H/jABzJz5swcddRRXd52EgAAAAAAgENDbW1tLrjggqxevTobNmzIhAkTMmfOHDevAwAAAAAHXZ8D7HfeeWeSZNasWfn+97+fkSNH9rkpAAAAAAAADq6SkpLMnTt3sNsA4CBoa2vzS0oAAAAcsvp8Rfqvf/3rFBUV5eqrrxZeBwAAAAAAAIBBtHz58kydOjXz5s3L2972tsybNy9Tp07N8uXLB7s1AAAASNIPAfZdofXJkyf3uRkAAAAAAAAA4MAsX748CxYsyEknnZQ1a9Zky5YtWbNmTU466aQsWLBAiB0AAIBDQmlfN6iurs4Pf/jD/Pa3v+2PfgAAAEjS0tKSxsbGLmOFQiFNTU2pqqpKeXl5l7nq6upUVFQMZIuHlHXr1qW5uXmfNQ0NDV0+768OAAAAYChpa2vLwoULc95552XFihUpLn7xPrvTTz89K1asyPz583PVVVflggsuSElJySB3CwAAwHDW5wD7ZZddloceeijf+MY38sY3vrE/egIAABj2GhsbM3PmzB7X19fXZ8aMGQexo0PXunXrUlN9QloK23pUX1dX16O61mda9znfvr09O5p3ZETliBSP3PsbnO1vDwAAAID+snr16jQ1NeWOO+7oDK/vUlxcnEWLFmXWrFlZvXp15s6dOzhNAgAAQPohwP6e97wnX//613Pbbbfl9a9/fd761rf2R18AAADDWnV1derr67uMNTQ0pK6uLkuXLk1NTc0e9cNVc3NzWgrbsvTC8tQcs/cgeZIUdnakaVN7qsYXp7y0qNu61U/tzAe/25r1t6zvl/5GlY9KZWVlv+wFAAAA0J0NGzYkSaZPn77X+V3ju+oAAABgsPQ4wL5u3bpu5/7pn/4p73nPe1JXV5e77747b3vb23r89vWTJ0/uaQsAAADDRkVFRbc3qtfU1Azb29b3peaY4syYsO+3v559XA8362jd6y8K7G5fv1Cwu8rKSv/uCwAAABx0EyZMSJKsXbs2p59++h7za9eu7VIHAACHmpaWljQ2NnYZKxQKaWpqSlVVVcrLy7vM9TSnChx6ehxgnzJlyn5rOjo6ctddd+Wuu+7q0Z5FRUXZuXNnT1sAAACAAdPTXxTwCwUAAADAoWDOnDmpqqrKDTfckBUrVqS4+L/fqa69vT2LFy/OlClTMmfOnEHsEgAAutfY2JiZM2f2uL6+vt5/p4MhqscB9o6Ojn6tAwAAAAAAAAD6R0lJSZYsWZIFCxZk/vz5WbRoUaZPn561a9dm8eLFWblyZZYtW5aSkn2/gx0AAAyW6urq1NfXdxnb17siV1dXD2R7QD/qcYD91ltvPZh9AAAAAAAAAAB9UFtbm2XLlmXhwoWZNWtW5/iUKVOybNmy1NbWDmJ3AACwbxUVFd3eqO5dkeHw0uMA+zvf+c6D2QcAAABwGGppaUljY2OXsYaGhi6fd1ddXZ2KiooB6Q0AAAAOR7W1tbnggguyevXqbNiwIRMmTMicOXPcvA4AAMAho8cBdgAAAIDeamxszMyZM/c6V1dXt8dYfX292zMAAACgj0pKSjJ37tzBbgMAAAD2qs8B9k9+8pNJkve///2prKzs0ZqNGzfmn/7pn5Ik1157bV9bAAAAAA5R1dXVqa+v7zJWKBTS1NSUqqqqlJeX71EPAAAAAAAAwOGrzwH26667LkVFRVmwYEGPA+x/+MMfOtcJsAMAAMDhq6KiYq83qs+ePXsQugEAAAAAAABgsPU5wA4AAAAAAAAAAAAAg2ndunVpbm7eZ01DQ0OXz/tSWVmZyZMn90tvQFeDEmDfsWNHkmTEiBGDcTwAAAAAAAAAAP8/e/cf3dhd3/n/ZWk8lpQfDBtNQJOJuG7CjESdbxc7CY49Sjyhm54upnaECKdUDXTphtLSpaCB1qFZyGmxzwlr2HS73ZMBNhyOW6dbxTHLJP0BJQliwq+IEqo90iSkUR0zhozSTH5Z9ngkf/8YJEYztizb19ZH0vNxzhx57v34o4/mPVdXuvf9eX8AAACaxMzMjPYH9mshv1BT+2g0umYbl9ulY5ljJLEDW6AuCew/+MEPJEm7d++ux9MDAAAAAAAAAAAAAAAAAACgSeRyOS3kF7T3tr3q2NOxarviqaKWcktq97bLsdOxarvF44uaPTyrXC5HAjuwBdadwP6lL31pxe1f/vKX9fjjj1f93cXFRT399NP63//7f6utrU3XXHPNep8eAAAAAAAAAAAAAACcZX5+XplMpmJbPp9XNpuVZVlyu90V+wKBgDwez3YOEQAAANgWHXs65Lbc1Rvt256xAFjduhPY3/ve96qtra1i2/Lysv74j/+45j6Wl5flcDj0oQ99aL1PDwAAAAAAAAAAAAAAzpLJZNTT01Nz+2Qyqe7u7i0cEQAAAAAAq1t3Art0JgG9lm0r2blzp6655hqNjIzohhtu2MjTAwAAAABQls/nJUnpXMGW/kr9lPoFAAAAAAAwXSAQUDKZrNiWTqcVjUY1MTGhYDB4XnsAAAAAAOpl3QnszzzzTPnn5eVl/cIv/ILa2tr093//93rjG9+46u+1tbXJ5XLpkksukdPp3NhoAQAAAAA4RzablSRFpxZs77e/v9/WPgEAAAAAALaCx+NZtaJ6MBik2joAAAAAwCjrTmB/wxvesOL2PXv2rLoPAAAAAICtYlmWJGki7FLQu/kJ0+lcQdGphXK/AAAAAAAAAAAAAADAPutOYD9XsVi0YxwAAAAAAGyI2+2WJAW9TnX77Fvxq9QvAAAAAAAAAAAAAACwz6YT2IFCoaBEIqG5uTn5fD6FQiE5nfYljaB2xMIsxMMcxMIcxMIcxMIcxMIsxMMcxMIcxMIcxMIsxMMcxMIcxMIcxMIcxMIsxMMcxMIcxMIcxMIcxMIsxMMcxMIcxMIcxMIcxMIsxANALRz1HgAa29TUlK688kodPHhQ7373u3Xw4EFdeeWVmpqaqvfQWg6xMAvxMAexMAexMAexMAexMAvxMAexMAexMAexMAvxMAexMAexMAexMAexMAvxMAexMAexMAexMAexMAvxMAexMAexMAexMAexMAvxAFCrmhPYb7zxRtv/vPWtb93K14YtNjU1pUgkoquuukrf+ta39PLLL+tb3/qWrrrqKkUiEU4624hYmIV4mINYmINYmINYmINYmIV4mINYmINYmINYmIV4mINYmINYmINYmINYmIV4mINYmINYmINYmINYmIV4mINYmINYmINYmINYmIV4AFiPtuXl5eVaGjocDrW1tala87a2toq/l9pW214oFNY14Gb00ksv6TWveY1efPFFXXzxxfUeTk0KhYKuvPJKXXXVVZqenpbD8fO5EMViUcPDw0qlUnrqqadaevmPvXv36sc//rEuu+wyzc7ObslzEAuzEA9zEAtzEAtzEAtzEAuzNFI8vv/976unp0fJZFLd3d11HctW2Ggsyv8ut12gbt/mY/T9uYJ6Dr+65r9zM8ejkY6LZkcsarMd378l4mESYmEOYmEOYlEbrtm2HuJhDmJhDmKxtmb5jmH3tQuuhbT2cbGdiIc5iMXamuWcgdoRC3MQC7NsZTxq/RxaanfFJ6+Q23Jv+LWU5LN5Pf3Jp439/NuIeafA2WquwH799dfr+uuv1w033LDinze+8Y1aXl4uJ6dblqXe3l719vbKsixJP09cf+Mb36gbbrhB119/vf2vCNsikUgom83q9ttvrzjZSGcmO4yMjOiZZ55RIpGo0whbB7EwC/EwB7EwB7EwB7EwB7EwC/EwB7EwB7EwB7EwC/EwB7EwB7EwB7EwB7EwC/EwB7EwB7EwB7EwB7EwC/EwB7EwB7EwB7EwB7EwC/EAsF47am34yCOPrLrvb//2b/Ubv/Ebuvjii/Xxj39cv/VbvyWv11vRJpfL6d5779Xo6KhOnDih//7f/7t+9Vd/dcMDR33Nzc1Jkrq6ulbcX9peaoetQyzMQjzMQSzMQSzMQSzMQSzMQjzMQSzMQSzMQSzMQjzMQSzMQSzMQSzMQSzMQjzMQSzMQSzMQSzMQSzMQjzMQSzMQSzMQSzMQSzMQjwArFfNFdhX8+STT+qWW27R8vKyjh49qo9+9KPnJa9Lktfr1Uc/+lEdPXpUy8vLete73qUnn3xys0+POvH5fJKkVCq14v7S9lI7bB1iYRbiYQ5iYQ5iYQ5iYQ5iYRY74zE/P6/vf//7FX+OHj2qv/zLv9TRo0crts/Pz9v3IpoEx4Y5iIU5iIVZiIc5iIU5iIU5iIU5iIVZiIc5iIU5iIU5iIU5iIVZiIc5iIU5iIU5iIU5iIVZiAeA9WpbXl5e3kwH73//+/W5z31On/rUpzQyMlLT74yNjenjH/+4fvu3f1uHDx/ezNM3hZdeekmvec1r9OKLL+riiy+u93BqUigUdOWVV+qqq67S9PR0xbIfxWJRw8PDSqVSeuqpp+R0Ous40vrau3evfvzjH+uyyy7T7OzsljwHsTAL8TAHsTAHsTAHsTAHsTCLnfH4/ve/r56enpqeN5lMqru7e11jLfW/kd9tBBuNRfnf5bYL1O3b/DHz/bmCeg6/uua/czPHg/cpcxCL2mzH92+JeJiEWJiDWJiDWNSGa7ath3iYg1iYg1isrVm+Y6zn2sXMzIxyuVzVNul0WtFoVBMTEwoGg1Xber1e+f3+dY+5XjguzEI8zEEs1tYs5wzUjliYg1iYZSvjUevn2qNHj+rAgQPae9tedezp2PBrKVk8vqjZw7P65je/qf7+/k33Z7dGzDsFzrZjsx189atfVVtbm2688caaf+fgwYOSpK997WubfXrUwfz8vDKZjH7v935PH/vYx3Tw4EG9+93vltPpVKFQ0F/91V8pkUjorrvu0hNPPKFAICCPx1PvYTclYmEW4mEOYmEOYmEOYmGWxcVFYmEIu4+NQCCgZDJZsW21G3uBQGDLXlcj4n3KHMTCHMTCLOuJx+LiIrHYQhwb5iAW5iAW5iAWZuH8bQ6ODXMQC3OYFIuZmRntD+zXQn6hpvbRaHTNNi63S8cyxxoiid2kWIB4mIRYmINYmINYmINYmMWUeGSzWUnS7GF7JxRls1kjE9iBRrfpCuxut1unTp3SY489pre85S01/c53vvMdXXfddXK5XJqfn9/M0zeFRpsJs56qktLGKks2i62eaUsszEI8zEEszEEszEEszLLVVbpRu+04Nuys0t3MFb83EwsqsNuLc4Y5iEXttqPSFedvc3BsmINYmINY1I5rtq2F87c5ODbMQSxqY9p3DGlrr0uV2q1VqbJ4qqil3JLave1y7HSs2q5UqbJR/v9wXJiFeJiDWNSmWc4ZqA2xMAexMMtWx4MK7CtrtLxT4FybrsC+a9cuPffcc3r00UdrTmB/5JFHJEmvec1rNvv0qINzq0oWCgVNT09rdHRUt99+u4aHhyuW+aCy5NYhFmYhHuYgFuYgFuYgFmY5Ox7Eor44NsxBLMxBLMxBLMyynngQi63FsWEOYmEOYmEOYmEWzt/m4NgwB7Ewh4mx6NjTIbflrt5o35YPY9uZGItWRjzMQSzMQSzMQSzMQSzMYko83O4zn2Vr+ly7gX4B2GvTFdhvueUWxeNx7dq1S9/+9re1b1/1b6xPPvmkent79eKLLyocDutv/uZvNvP0TaEZZsI0a+XBzdqOmbbnIhZmIR7mIBbmIBbmIBbmIBZmsTseVGDfuPVWCZu42a3g7tWrf+VPLyt7sihrl0PuHW2rtkufKCr6QL5lK7CvpJVeq+mIxcrq8f1bIh4mIRbmIBbmIBYr45otiIc5iIU5iMX5muU7xnqvrVzxyStsSfTJZ/N6+pNPN/T/KY4LsxAPcxCL8zXLOQMbRyzMQSzMUo97pK32ubYZ8k7R2jZdgf0jH/mIpqam9OKLL6q3t1f/9b/+V9166636d//u31W0e+GFF/SlL31Jf/Inf6KTJ0/K4XAoFott9ukBAAAAAC3O6/XK43Yp+kDetj49bpe8Xq9t/QEAAAAAAAAAAAAAgDM2ncDe29urT3/604rFYnrxxRcVi8V06NAhdXZ26tJLL1VbW5t++tOf6plnntHy8rJKBd/vuusu9fb2bvoFAAAAAABam9/vVzpzTLlcrmq7dDqtaDSqiYkJBYPBqm29Xq/8fr+dwwQAAAAAAAAAwDiFQkGJREJzc3Py+XwKhUJyOp31HhYAAGhym05gl6QPf/jDsixLv//7v6/jx49reXlZTz/9tP7lX/5FkspJ65Lk8/n0P/7H/1A4HLbjqQEAAACgKczMzNSUgH32YzWtloDt9/trfr3BYNDIZf4AAAAAAAAAANhOU1NTisViymaz5W2WZWl8fJzcLgAAsKVsSWCXpJtvvlmDg4P68pe/rK997Wv653/+Z/3bv/2bJOm1r32trrrqKv3yL/+yhoeH1d7ebtfTAgAAAEDDm5mZ0f7Afi3kF2pqH41G12zjcrt0LHOspZLYAQAAAAAAAABAbaamphSJRDQ4OKjJyUl1dXUplUppdHRUkUhE8XicJHYAW87OIl+1FAEDYA7bEtglqb29XZFIRJFIxM5uAQAAAKCp5XI5LeQXtPe2verY07Fqu+KpopZyS2r3tsux07Fqu8Xji5o9PKtcLkcCOwAAAAAAAAAAqFAoFBSLxTQ4OKjp6Wk5HGfuOfT29mp6elrDw8M6dOiQhoaG5HQ66zxaAM1qZmZGwcB+zdtY5AtA47A1gR0AAAAAsHEdezrkttzVG+3bnrEAAAAAAAAAAIDmlEgklM1mNTk5WU5eL3E4HBoZGVFfX58SiYQGBgbqM0gATS+Xy2k+v6CJm90K7l69eFf+9LKyJ4uydjnk3tG2aruHnjqtOx5e3IqhAtgCJLADAAAAAAAAAAAAAAAAQIuYm5uTJHV1da24v7S91A4AtlJwt0PdvuqrPfRfvnY/6VzBphEB2A6rT1sBAAAAAAAAAAAAAAAAADQVn88nSUqlUivuL20vtQMAALBbzRXYnc4zM1za2tp0+vTp87ZvxLl9AQAAAABgovn5eWUymYpt6XS64vFsgUBAHo9nW8YGAAAAAAAAAMB6hEIhWZal0dFRTU9Py+H4eQ3UYrGosbExdXZ2KhQK1XGUAACgmdWcwL68vLyu7QAAAAAANItMJqOenp4V90Wj0fO2JZNJdXd3b/WwAAAAAAAAAABYN6fTqfHxcUUiEQ0PD2tkZERdXV1KpVIaGxvTkSNHFI/HN1XYFAAAoJqaE9g/8YlPrGs7AAAAAADNIhAIKJlMVmzL5/PKZrOyLEtut/u89gAAAAAAAAAAmCocDisejysWi6mvr6+8vbOzU/F4XOFwuI6jAwAAzY4EdgAAAAAA1uDxeFasqN7f31+H0QAAAAAAAAAAsHnhcFhDQ0NKJBKam5uTz+dTKBSi8jqAhrZ4fLHq/uKpopZyS2r3tsux07HhfgBsTs0J7JJ0zz336Prrr1cwGNyq8QAAAAAAAAAAAAAAAAAAtsD8/LwymUzFtvb2dhWLRbW3t+uJJ56o2BcIBOTxeLZziACwIbtcbVKbNHt41rY+XW6XvF6vbf0B+Ll1JbB/4AMfUFtbm7xerw4cOKDrr79e119/vf79v//3amtr26oxAgAAAAAAAAAAAACAn5mZmVEul6vaJp1OVzyu5gc/+IEk+ypMlvrJ5/O29AcAsFcmk1FPT0/N7ZPJ5IorlJaslBCfz+eVzWZlWZbcbnfFPhLiAWwV34UOaVmamJioWqQ5nU4rGo2u2U6SvF6v/H6/3UMFoHUmsEvS8vKyTpw4oenpaU1PT0uSLr74YvX19ZUT2q+55hrt2LHurgEAAAAAAAAAAAAAQBUzMzMKBvZrPr9QU/toNFpTOzsrVUpSNptVf3+/rX0CADYvEAgomUxWbKuWzBkIBKr2Z3dCPIDWUZrwmM4VbOmv1I9lWTW9zwSDQd6PgDpaV5b5F7/4RSUSCSUSCT355JPl7S+++KL+7u/+Tn/3d38nSXK5XHrLW95STmi/7rrrzptNBwAAAAAAAAAAAAAA1ieXy2k+v6CJm90K7nas2i5/elnZk0VZuxxy71h9RfXpzJL+5BuntPe2verY07Hp8S0eX9Ts4VlZlrXpvgAA9vN4PKsmbG4kmdPuhHgArSObzUqSolO1TcxcT79MpATMt64E9ltvvVW33nqrJOnEiRPlZPZEIqEnnnhChcKZGSz5fF6PPvqoHn30UUlSe3u7uru7ywntBw4c0MUXX2zzSwEAAAAAAAAAAAAAoDUEdzvU7XNWbdN/+dr9lCpVduzpkNuyrzAdRe4AoDXYnRAPoHWUJjxOhF0Keqt/rq1FOldQdGqBiZRAg1hXAvvZdu/erXA4rHA4LEl65ZVX9Nhjj5UT2r/73e9qYeHMzJhTp07pO9/5jr7zne/o05/+tBwOh6666irdcMMN+uxnP2vPKwEAAAAAAAAAAAAAAAAAAIDxShMeg17nmhMzN9IvALNtOIH9XBdeeKFuuukm3XTTTZKkpaUlfe9731MikdA3vvENPfbYY3rxxRclSYVCQT/4wQ/0xBNPkMAOAAAAoOXl83lJZ5ZXtkOpn1K/AAAAAACzzM/PK5PJVGzL5/PKZrOyLOu8m+2BQEAej2c7hwgAAAAAAABsGdsS2M/V3t6uvr4+9fX16Q//8A916tQpffGLX9Rdd92lZ555RsvLy1v11AAAAADQULLZrCRp9vCs7f329/fb2icAAAAAYPMymYx6enpqbp9MJtXd3b2FIwIAAAAAAAC2z5YlsC8uLurb3/62vvGNbyiRSOjb3/62Xn31VUkieR0AAAAAzmJZliRp72171bGnY9P9LR5f1Ozh2XK/AAAAAACzBAIBJZPJim3pdFrRaFQTExMKBoPntQcAAAAAAACahW0J7C+++KKOHj2qRCKhb3zjG0omk1paWpL084R1p9Opq666SgcOHNCBAwcUCoXsenoAAAAAaFilpeE79nTIbbnXaL3+fgEAAAAAZvF4PKtWVA8Gg1RbBwAAAAAAQFPbcAL7T37yEyUSiXLCeiqVKieqlx49Ho+uvfbacsL6ddddp4suusiekQMAAAAAAAAAAAAA0GLy+bwkKZ0r2NLfMy8UJUnFU0Vb+gMAAAAAYC3rSmD/4he/WE5af/rpp8vbSwnrXq9X/f395erq3d3d2rHDtiLvAAAAAAAAAAAAAAC0tGw2K0mKTi3Y2u9SbknaZ2uXAAAAAACsaF3Z5f/pP/0ntbW1lRPWr7jiinJ19QMHDmj//v1bMkgAAAAAAAAAAAAAACBZliVJmgi7FPQ6N93fQ08t6Y6HT6nd277pvgAAAAAAqMWGyqPv2LFD73znOxWJRHTgwAHt3r3b7nEBAAAAAAAAAAAAAIBzuN1uSVLQ61S3b/MJ7OlcQZLk2OnYdF8AAAAAANRiXQnsr33ta/XCCy/o9OnTuu+++3TfffdJkt74xjfqwIEDCoVCOnDggK644ootGSwAAAAAALWYn59XJpOp2JZOpysezxYIBOTxeLZlbAAAAAAAAAAAAAAAtLJ1JbA///zz+n//7/8pkUjoG9/4hhKJhH784x/rySef1JNPPql7771XkvS6171OBw4cKP9585vfrLa2ti15AQAAAAAAnCuTyainp2fFfdFo9LxtyWRS3d3dWz0sAAAAAAAAAAAAAGdJnyhW3Z8/vazsyaKsXQ65d6yeh7pWPwDMsq4Edkn6xV/8Rf3iL/6ifud3fkeSlM1my8nsiURCTz75pH7yk58oHo/r/vvvlyRdeOGF6u3tLVdp7+3tlcvlsveVAAAAAADwM4FAQMlksmJbPp9XNpuVZVnlpbbPbg8AAAAAAAAAAABge3i9XnncLkUfyNvWp8ftktfrta0/AFtn3Qns57IsS5Zl6dZbb5UknThxoiKh/YknntDLL7+sr371q/ra17525kl37NCb3/xmhUIhffrTn97sEAAAAAAAqODxeFasqN7f31+H0QAAAAAAAAAAAAA4m9/vVzpzTLlcrmq7dDqtaDSqiYkJBYPBqm29Xq/8fr+dwwSwRTadwH6u3bt36x3veIfe8Y53SJJefvllHT16VIlEQt/4xjf0+OOPa3FxUd/97nf1ve99jwT2BjAzM1PTSeLsx2o4SWzOWvEgFtuHY8McxMIcxMIcxMIsnL/NwbFhDmJhDmJhDmJhFjvjQSw2h2PDHMTCHMTCHMTCLJy/zcGxYQ5iYQ47Y1FLrDZi8fhi1f3FU0Ut5ZbU7m2XY6djw/3UG8eFWTh/m4NjwxzEwhzEwhzEwix2n79XKkq1kmAwWHNbAOazPYH9XBdddJF+4Rd+QT/+8Y/17LPPKpvN6vjx41peXt7qp4YNZmZmtD8Q1EJ+vqb20Wh0zTYut0fHMmk+BGzAeuJBLLYWx4Y5iIU5iIU5iIVZOH+bg2PDHMTCHMTCHMTCLHbHg1hsHMeGOYiFOYiFOYiFWTh/m4NjwxzEwhxbEQs77XK1SW3S7OFZ2/p0uV3yer229WcXjguzcP42B8eGOYiFOYiFOYiFWTh/A7CL7Qnsy8vL+sEPfqBEIlH+c+LEifPaoDHkcjkt5Od1yWBM7Zdcvmq75dOndPrFn2rHa16nth07V2239Pyzev7IuHK5HCedDaglHsRie3BsmINYmINYmINYmIXztzka4dholSpXjRCLVkEszEEszGJnPIjF5nBsmINYmINYmINYmIXztzk4NsxBLMxhdyzy//K4XkxM2DY+34UOaVmamJhQMBhctV06nVY0Gl2znWRuVVOOC7Nw/jYHx4Y5iIU5iIU5iIVZOH8DsMumE9iXlpb0ne98p5ys/thjj+nll18u7z83Wf2KK65QKBTS9ddfr+uvv36zT49t0n7J5ep4/ZXVG+190/YMBmvHg1hsG44NcxALcxALcxALs3D+Nofdx0atSzpXazc3N6cOV0dLVLk6G+9T5iAW5iAWZiEe5iAW5iAW5iAW5iAWZiEe5iAW5iAW5rArFkvPP2vTiCoFg0F1d3fb1s5kHBdmIR7mIBbmIBbmIBbmIBZmIR4ANmvdCeyvvPKKHnvsMX3jG99QIpHQ9773PS0u/ry639kJ621tberq6tL1119fTlr3+Xz2jBwAAAAA6qjwygtytNW+pPOay+N1dOjIkSNVvzM1Q5UrAAAAAAAA2CN9olh1f/70srIni7J2OeTe0bbhfgAAAAAAsNu6EtivvvpqPfHEEyoWf/4F9uyE9R07dujNb35zOWE9FArpta99rX2jBQAAAABDFBdfUXFZmrjZreBux6rtarlRmD5RVPSBvHw+X8tUuQIAAAAAAMDGODouPFNY4YG8bX16GmA1PwAAAABA81hXAvv3v//9ir+7XC5de+21uv7663X99dfruuuu0wUXXGDrAAEAAADAZMHdDnX7nFXb9F++TYMBAAAAAABA03Ne+NozhRXWWKWP1fzqY35+XplMpmJbPp9XNpuVZVlyu90V+wKBgDwez3YOEQAAAADqbl0J7BdeeKH6+/vLCevXXHONdu7cuVVjAwAAAAAAAAAAAAAAK6h1lT5W89temUxGPT09NbdPJpPEBwAAAEDLWVcC+8mTJ+VwOLZqLAAAAADqjOpAAAAAAACsrVAoKJFIaG5uTj6fT6FQSE5n9dW5AACtIRAIKJlMVmyrVg0/EAhs5/AAAAAAwAjrSmAneR0AAABoblQHAgAAAACguqmpKcViMWWz2fI2y7I0Pj6ucDhcv4EBAIzg8XhWvWa6kWr4FB0BAAAA0IzWlcAOAAAAoLlRHQgAAAAAgNVNTU0pEolocHBQk5OT6urqUiqV0ujoqCKRiOLxOEnsAABbUXQEAAAAQDMigR1V5fN5SdLS88/a0l+pn1K/WB8740EsNodjwxzEwhzEwhzEwiyNdv62uzqQSew+Nk6/+NMz/Z5etqW/VsL7lDmIhTmIhVka7fzdzDg2zEEszEEszEEszLId5+9CoaBYLKbBwUFNT0+XVy7u7e3V9PS0hoeHdejQIQ0NDcnpdFb87szMjHK5XNXnTafTFY/VeL1e+f3+ml/TduLYMAexMAexMEcjxqKZi47w/dscjXhsNCtiYQ5iYQ5iYRbO3wDsQgI7qiotf/n8kXHb++3v77e1z1awFfEgFhvDsWEOYmEOYmEOYmEWzt/m2LJj42RR/Zfb2mXT433KHMTCHMTCLJy/zcGxYQ5iYQ5iYQ5iYZbtOH8nEglls1lNTk6Wk9dLHA6HRkZG1NfXp0QioYGBgfK+mZkZ7Q/s10J+oabnjUaja7ZxuV06ljlmZBI7x4Y5iIU5iIU5GjEWzVx0hO/f5mjEY6NZEQtzEAtzEAuzcP4GYBcS2FGVZVmSpEsGY2q/ZPNZOUvPP6vnj4yX+8X62BkPYrE5HBvmIBbmIBbmIBZm4fxtDruPjfy/PK4XExOydjnWbowKvE+Zg1iYg1iYhfO3OTg2zEEszEEszEEszLId5++5uTlJUldXlwqFghKJhObm5uTz+RQKhdTV1VXRriSXy2khv6C9t+1Vx56OVZ+3eKqopdyS2r3tcuxc/bvm4vFFzR6eVS6XMzKBnWPDHMTCHMTCHMTCLHz/NgfHhjmIhTmIhTmIhVk4fwOwS1MksP/rv/6r/uzP/kwPPvignn32WXV0dOiKK67QLbfcot/7vd+Tx+PZcN/pdFr/+I//qO9973v653/+Zz333HPK5XJyOp163etep2uuuUbvfve79Wu/9mtqa2uz8VWZwe12S5LaL7lcHa+/0vZ+sT5bEQ9isTEcG+YgFuYgFuYgFmbh/G0Ou2NRWtLOvaP5vgdsNd6nzEEszEEszML52xwcG+YgFuYgFuYgFmbZjvO3z+eTJP35n/+57rnnnnLVOenMDfzbbrutot25OvZ0yG2tEd99Gx+vKTg2zEEszEEszEEszML3b3NwbJiDWJiDWJiDWJil0c7f8/PzymQyFdvS6XTF49kCgcCm8k0B1K7hE9i/8pWvKBqN6qWXXipvm5+f1+OPP67HH39cn//85/Xggw/qyis39mb5qU99Sn/5l3+54r5nnnlGzzzzjP7P//k/uuGGG3T//ffrkksu2dDzAAAAAAAAAAAAwFyhUEi7d+/WyMiIBgcHNTk5qa6uLqVSKX3qU5/S7bffrksvvVShUKjeQwUAAAAqrJSkudL+tdpJktfrNXIlIABYSSaTUU9Pz4r7otHoeduSyaS6u7u3elgA1OAJ7P/0T/+kd73rXcrn87rwwgs1MjKigwcPKp/P67777tPnPvc5Pfnkk3rb296mxx9/XBdddNG6n2PHjh16y1veov7+fl111VV6/etfr927d+uFF15QJpPRPffco1QqpUcffVRvf/vb9c1vflMOx+rLOgIAAAAAAAAAAKAxnb0a7/LycvkPAAAAYKLCKy/I0bZykuZKamnn6uhQ/P77V115SCIhHoA5AoGAkslkxbZ8Pq9sNivLss6r/h4IBLZzeEBLa+gE9g996EPK5/PasWOH/uEf/kHXXXdded+NN96oN77xjfrYxz6mJ598UuPj4/rkJz+57uf4/Oc/rx07Vv5n+uVf/mV94AMf0C233KKpqSl961vf0pEjR/Rrv/ZrG31JAAAAAAAAAAAAMFAikdBzzz2nsbEx3XPPPerr6yvv6+zs1OjoqG6//XYlEgkNDAzUb6AAAADAzxQXX1FxWZq42a3g7tULcuZPLyt7sihrl0PuHW2rtkv862n9wT8sanBwsKbnrykh3u3SscwxktgBbAmPx7NiRfX+/v46jAbA2Ro2gf273/2uEomEJOl973tfRfJ6SSwW07333qt0Oq27775bH//4x9Xe3r6u51kteb3E6XTqox/9qKampiSduXhJAjsAAAAAAAAA1Nf8/LwymUzFtrWqK3k8nu0cIoAGMzc3J0n64Ac/qI9+9KNKJBKam5uTz+dTKBTS/Py8br/99nI7AAAAwBTB3Q51+5xV2/RfvnY/6VxBWpb23rZXHXs6Vm1XPFXUUm5J7d52OXaunji/eHxRs4dnlcvlSGAHAKDFNGwC+/T0dPnn3/qt31qxjcPh0K233qqRkRGdPHlSDz/8sG666Sbbx3LRRReVf15YWLC9f6wPN6YAAACwHZYLS5J+drF2k0p95PP5TfcFAACAMzKZjHp6empun0wmV6zGBAAlPp9PkpRKpdTb23telfVUKlXRDgAAAGhWHXs65Lbc1Rvt256xAACAxtSwCezf/OY3JUkXXHBB1ZsQN9xwQ/nno0ePbkkC+3333Vf+ORAI2N4/1ocbUwAAANgOhVf+TZIUnbJvEms2m2W5OgAAAJsEAgElk8mKbel0WtFoVBMTEwoGg+e1B4DVzM/P64ILLtCePXv0h3/4hxofH9fi4mK5eE5HR4f+6I/+SJdddpkuuOACzc/PUzwHAAAAAAAAWEXDJrCn02lJ0pVXXqkdO1Z/GWffdCj9jh1yuZyeeuopff7zn9e9994rSfJ6vfqN3/gN254DG8ONKQAAAGwH54X/TpI0EXYp6K2+7OZa0rmColMLsizLhpEBAABAkjwez6qFK4LBIEUtAKxLJpPRtddeK0k6fvy4rrnmmlXbXnvttRTPAQAAAAAAAKpoyAT2hYUF5XI5SdLevXurtn3ta1+rCy64QK+++qqeffbZTT3vwMCAHn300RX3eb1ePfDAA9q1a9ea/SwuLmpxcbH895deemlT40IlbkwBAABgO7Q52yVJQa9T3b7NJbCXuN1rLLcJAAAAAKiLs4vnfP3rX9dnP/tZHT9+vLz/sssu0x/8wR/oxhtvLLcHAAAAAAAAsLKGTGB/+eWXyz9feOGFa7YvJbC/8sorWzKe//Jf/ovuuOMOeb3emtqPjY3pzjvv3JKxAAAAAAAAAAAAwF5nF8/p7u7Whz/8YX3hC1/Q+9//ft1zzz163/veJ6fTnsnNAAAAWJ9CoaBEIqG5uTn5fD6FQiE+mwEAABiuIRPYFxYWyj/v3LlzzfYdHR2SpHw+v6nnvffee/Xqq69qeXlZJ0+e1OOPP67/9b/+l/78z/9c//Iv/6LPf/7zet3rXrdmPyMjI/rIRz5S/vtLL72kyy+/fFNjAwAAAAAAAAAAwPZwOp26+uqrJUlXX3111QSp0v2pxeOLq7ZZj1I/m73vBQAA0AympqYUi8WUzWbL2yzL0vj4uMLhcP0GBgAAgKoaMoHd5XKVfz516tSa7RcXz1zIc7vdm3rezs7Oir+HQiF94AMf0Dvf+U4dOXJE11xzjR577DHt3bu3aj8dHR3lpPpGsfT8s1X3L58+pdMv/lQ7XvM6te1YfVLBWv2gNtX+HYnF9uLYMAexMAexMAexMAvnb3PYdWycfvGndg+t5fA+ZQ5iYQ5iYRY74kEs7MGxYQ5iYQ5iYQ5iYRYTz9+lZKrZw7O299vf329rn3bi2DAHsTAHsTAHsTCLiefvVtVox8bU1JQikYgGBwc1OTmprq4upVIpjY6OKhKJKB6PN2wSO/cyzNFox0UzIxZm4fwNYLMaMoH9oosuKv/8yiuvrNn+1VdflSRdeOGFto/F5XLp3nvv1Rve8AY9++yz+tjHPqa/+qu/sv156sXr9crl9uj5I+O29elye+T1est/n5+fVyaTqWiTz+eVzWZlWdZ5Ew8CgYA8Ho9t42kkdsfj3FigdttxbKA2xMIcxMIcxMIsnL/NsRXHBjaG9ylzEAtzEAuzcP42B8eGOYiFOYiFOYiFWUw+f1uWJUnae9tedezZfIGjxeOLmj08W+7XNBwb5iAW5qjXPdd0Ol3xeLZWvefKcWEWk8/fraYRj41CoaBYLKbBwUFNT0/L4XBIknp7ezU9Pa3h4WEdOnRIQ0NDVVfLMQ33MszRiMdFsyIWZuH8DcAuDZnA7nK5dMkll+j555/X7Gz1ahUvvPBCOYH98ssv35LxeL1e9ff366tf/aq+/OUva2lpSe3t7VvyXNvN7/frWCatXC5XtV06nVY0GtXExISCwWDVtl6vV36/v/z3TCajnp6emseUTCbV3d1dc/tmUks8NhML1G47jg3UhliYg1iYg1iYhfO3Oew+NkrtsH68T5mDWJiDWJjF7ngQi43j2DAHsTAHsTAHsTCLyefvUqGejj0dclubWy14pX5Nw7FhDmJhjnrfc13pGlar3nPluDCLyefvVtOIx0YikVA2m9Xk5GQ5eb3E4XBoZGREfX19SiQSGhgY2LJx2I17GeZoxOOiWRELs3D+BmCXhkxgl6Q3velNSiQS+tGPfqTTp09rx46VX8rZs8zXOjFtxu7duyWdmdmey+Xk8/m27Lm2m9/vr/kkEQwG132hIxAIKJlMVmyrdgILBALr6r/Z1BqPjcQC67PVxwZqRyzMQSzMQSzMwvnbHBwb5iAW5iAW5iAWZiEe5iAW5iAW5iAW5iAWZiEe5iAW5iAW5qjHPde1Vr2uppkrupt+XMzMzNSUEHb2YzWmJ4WZHo9W0mixmJubkyR1dXWtuL+0vdSukZgci8XTy2cejy/a09/P+snn87b0ZzeTY9FqiIVZiAcAOzRsAvuBAweUSCT06quvKplM6i1vecuK7R599NHyz/39/Vs2nh//+Mflny+88MIte55m5PF4Vj1JcQIDAAAAAAAAAAAAgOpWu+e60XvkVHSvnZ0J53Nzc3pH5B1aXKgtMbSWqsout0vHMseMTmIHNqJUWDKVSqm3t/e8/alUqqId7HH85TMJ7LOHZ23tN5vNbmleFwAAME/DJrAPDw9rbGxMknTvvfeumMBeLBb1pS99SZK0a9cuHTx4cEvGMjs7q29961uSpDe84Q266KKLtuR5sLJWm4EOAABQTaFQUCKR0NzcnHw+n0KhkJxOZ72H1dTSJ4pV9+dPLyt7sihrl0PuHW0b6gMAAAAAAADYTnZXdG9WMzMzCgb2az6/UFP7WhLOJWnvbXvVsadj1f3FU0Ut5ZbU7m2XY6dj1XaLxxc1e3hWuVyOe+BoOqFQSJZlaXR0VNPT03I4fn4sFItFjY2NqbOzU6FQqI6jbD57Ljpzn2Ot96lald6nLMvadF8AmkMzrwQEoFLDJrBfe+21CoVCSiQS+sIXvqD3vOc9uu666yrajI+Pl9+0PvShD6m9vb1i/yOPPFJOan/Pe96jL37xixX7n3zySc3OzurGG29cdRwvvvii3v3ud+vUqVOSpFtvvXWzLw3rMDMzo/2B/Vqw8YIAM9ABAECjmpqaUiwWUzabLW+zLEvj4+MKh8P1G1iT8nq98rhdij5gz7KWHrdLXq/Xlr4AAAAAAACAzbC7onuzyuVyms8vaOJmt4K7V08kr6XIhSQ99NRp3fHwojr2dMhtuVdtJ0nat9FRA83B6XRqfHxckUhEw8PDGhkZUVdXl1KplMbGxnTkyBHF43GK/Nis42fvYTW9T63DuROjWsVKibprTRgjURfNjpWAgNbRsAnsknT33Xerv79f+XxeN910k26//XYdPHhQ+Xxe9913nw4fPixJ2rdvn2Kx2Lr7P378uN761rfql37plzQ8PKyenh69/vWv144dO/STn/xER48e1Re+8AX95Cc/kSR1dXXpj/7oj2x9jagul8tpIb/ADHQAANDypqamFIlENDg4qMnJyfJF2tHRUUUiEcXjcZLYbeb3+5XOHKtpNaBoNKqJiQkFg8FV27ESEAAAAAAAANCYgrsd6vZVT5Ltv3ztftK5gk0jAlpDOBxWPB5XLBZTX19feXtnZyf3RX4mnz9ThMeu95dnXjizomzxFCvL2qFaou5KSNRFK2AlIKB1NHQC+5vf/Gb99V//taLRqF566SXdfvvt57XZt2+fHnzwQV100UUbfp4nnnhCTzzxRNU2b3vb23Tvvfcyy61OmIEOAABaWaFQUCwW0+DgYMUymb29vZqentbw8LAOHTqkoaEhKo3YzO/315x0HgwGuagIAAAAAC1s8fhi1f3rKcYDAGspFApKJBKam5uTz+dTKBTi2iCAutqqStPhcFhDQ0O8562itGpvdGrB1n6Xckvk4dhgpUTdaoWRSNRFK2AlIKB1NHQCuyS9/e1v1w9/+EPdfffdevDBBzU7O6udO3fqyiuv1Dvf+U598IMf3HBSeX9/v/7+7/9eX/va1/T4449rdnZWP/3pTzU/P6+LL75YnZ2d6u3t1a//+q/zBgkAAIC6SSQSymazmpycLCevlzgcDo2MjKivr0+JREIDAwMV+2dmZmqqIH72YzVUEQcAAAAAoJLX65XL7dLs4Vnb+nS5XfJ6vbb1B6C5TE1NKRaLlZMWJcmyLI2Pj1ON2HCLp5fPPNo0WanUT6kCM1BPW1lp2ul0nnf/A2dYliVJmgi7FPRuPqn/oaeWdMfDp9Tubd90X1g9UVeiMBIAoPk1fAK7JL3hDW/QZz7zGX3mM59Z1+8NDAxoeXl51f3t7e266aabdNNNN212iAAAAMCWmZubkyR1dXWtuL+0vdSuZGZmRvsD+7WQr63qRjQaXbONy+3SscwxktgBAAAAAPgZv9+vY5ljNU0gX63S4rmYQA5gNVNTU4pEIhocHNTk5KS6urqUSqU0OjqqSCSieDxOErvBjr98Jn/BzklP0pkKzBTlQ71Rabo+SpXtg16nun2bT2BP5wqSVHXFIACwEysLAc2rKRLY0VjsrPJZSxVQAACAZjY/P6+XX35ZknT//ffrqquuOm/JzR/+8IeSpJdfflnz8/PlFYpyuZwW8gvae9tedezpWPU51rOE+ezhWeVyOW6iAwAAAABwFr/fX/N3ZSotAtioQqGgWCymwcFBTU9Pl1dr7O3t1fT0tIaHh3Xo0CENDQ2R9GOoPRe1SdKa12xrVbpmW6rADNQTlaYBAOvFykJAcyOBHdtqZmZGwcB+zdtY5RMAAKCVZTIZvf/975ckvfe9763a9v3vf7+uvvrq8y4Cd+zpkNtyV3+ifZsZJQAAAAAAAICtlkgklM1mNTk5WU5eL3E4HBoZGVFfX58SiYQGBgbqM0hU1bHjTAJ7Tdds16FUgRkAAKBRsLIQ0PxIYMe2yuVyms8vaOJmt4K7V6/emT+9rOzJoqxdDrl/9iV9JQ89dVp3PLy4FUMFAABoCKUlN7/+9a/rYx/7mEKhkA4ePKg777xTn/jEJ/Twww8rkUjorrvu0o033siSmwAAAAAAAECTmpubkyR1dXWtuL+0vdQOAAAAMBErCwGtgQR21EVwt0Pdvuonj/7L1+4nnSvYNCIAAIDGVFpys7u7W7/wC7+gWCymO++8U5J05513qrOzk9nnAAAAAACs08zMjHK5XNU26XS64rEar9crv99vy9gAYDU+n0+SlEql1Nvbe97+VCpV0Q7A+szPzyuTyVRsy+fzymazsizrvEr3gUBAHo9nO4cIAEBTYGUhoDWQwI6Gtnh6+czjcXuqsJf6yefztvQHAACwncLhsIaGhvSFL3xB73//+3XPPffofe97H7POAQAA0BBIBgFgipmZGQUD+zWfX6ipfTQaXbONx+1SOnOMJHYAWyoUCsmyLI2OjlZUqpSkYrGosbExdXZ2KhQK1XGUQOPKZDLq6empuX0ymVR3d/cWjgioXfpEser+/OllZU8WZe1yyL2jbdV2z7ywbPfQYCOuraBZbOXKQoVCQYlEQnNzc/L5fAqFQtxPB+qEBHY0tOMvn/lgPHt41tZ+s9ms+vv7be0TAABgOzidTl199dWSpKuvvpov2wAAAGgYm00GoVoyALvkcjnN5xc0cbNbwd2OVdvVmuSTPlFU9IG8crkc7ysAtpTT6dT4+LgikYiGh4c1MjKirq4upVIpjY2N6ciRI4rH41wzBDYoEAgomUxWbEun04pGo5qYmFAwGDyvPVBvXq9XHrdL0Qco5NgKmGiDZrFVKwtNTU0pFospm82Wt1mWpfHxcVY0B+qABHY0tD0XnbkgvPe2verY07Hp/haPL2r28Kwsy9p0XwAAAMBmrFQlo1rCFVUyAABAo9tMMsjMzIz2B/ZrwcZqyS63S8eolgy0tOBuh7p91ZM8+y/fpsEAQI3C4bDi8bhisZj6+vrK2zs7OxWPx0nMATbB4/GsmugZDAZJAoWR/H6/0pljNU34Xu3790rtYCYm2qBZbMXKQlNTU4pEIhocHNTk5GR5oufo6KgikQiflYE6IIEdDa3jZxVNOvZ0yG2512hdu3OXzAEAAAC2W7UqGStdHKZKBgAAaHSbSQbJ5XJayC+sWeiieKqopdyS2r3tcuxcvapyqdAF1ZIBAEAjCofDGhwc1F/8xV/o6aef1hVXXKHf/d3f1c6dO+s9NABAHfj9/pq/2zIZo7Ex0QbNwu6VhQqFgmKxmAYHBysS4nt7ezU9Pa3h4WEdOnRIQ0NDrFYEbCMS2AEAAADAQCtVycjn88pms7Is67xJl1TJAAAAqLHQxb7tGQsAAEC9TE1NKRaLKZvNlrfdfffdGh8fp6qkzfL5vCQpnSvY0t8zLxQlnZl4CQAA0MrsXFkokUgom81qcnKyopq7JDkcDo2MjKivr0+JREIDAwN2vQQAayCBHQAAAAAMtFqVjP7+/jqMBgAAAAAAAI1gampKkUhEg4ODmpycLFeqHB0dVSQSWXeyD6orTRKITi3Y2u9SbomJlwCMtnh8ser+9ayABgCrCYfDGhoaUiKR0NzcnHw+n0Kh0LqrpM/NzUmSurq6Vtxf2l5qB2B7kMCObcUMdAAAAHOUPpvZdXGw1E+pXwAAAAAAGpHd9zJK/fB9GcBWKxQKisViGhwc1PT0dLm6ZG9vr6anpzU8PKxDhw5paGho3Uk/WJllWZKkibBLQe/m/00fempJdzx8Su3e9k33BQBbwev1yuV2afbwrG19utwueb1e2/oD0FycTuemq6L7fD5JUiqVUm9v73n7U6lURTsA24MEdmwrZqADAACYo/TZzM6LjKV+qRIOAAAAAGhUW3Uvg+/LALZaIpFQNpvV5ORkOXm9xOFwaGRkRH19fUokEptOAsIZbrdbkhT0OtXt23wCe2nSU7Vqxajd/Py8MplMxbZ8Pq9sNivLssrxKwkEAvJ4PNs5RKDh+P1+HcscUy6Xq9ounU4rGo1qYmJCwWCwaluv1yu/32/nMAGgQigUkmVZGh0drZjoKUnFYlFjY2Pq7OxUKBSq4yiB1kMCO7YVM9ABAADMUfpstve2verY07Hp/haPL2r28Gy5XwAAAAAAGpHd9zLSuYKiUwt8Xwaw5ebm5iRJXV1dK+4vbS+1A5pdJpNRT09Pze2TyaS6u7u3cESwC5MT6svv99eccB4MBjmuANSd0+nU+Pi4IpGIhoeHNTIyoq6uLqVSKY2NjenIkSOKx+OsUgRsMxLYsa2YgQ4AAGCO0mezjj0dclvuNVqvv18AAAAAABqR3fcyzu0XALaKz+eTJKVSKfX29p63P5VKVbQDml0gEFAymazYVq0qdCAQ2M7hYROYnAAAWK9wOKx4PK5YLKa+vr7y9s7OTsXjcYXD4TqODmhNJLADAAAAAAAAAAAAANDgQqGQLMvS6Oiopqen5XD8vAhYsVjU2NiYOjs7FQqF6jhKYPt4PJ5Vk5apCt3YmJwAANiIcDisoaEhJRIJzc3NyefzKRQKUXkdqBMS2NEUFo8vVt1fPFXUUm5J7d72qtXa1+oHAAAAAAAAAAAAAEzkdDo1Pj6uSCSi4eFhjYyMqKurS6lUSmNjYzpy5Iji8TgJOgAaHpMTAAAb5XQ6NTAwUO9hABAJ7Ghwu1xtUps0e3jWtj5dbpe8Xq9t/QEAAKB1zM/PK5PJVGxLp9MVjyWBQEAej2fbxgYAAAAAAIDmFw6HFY/HFYvF1NfXV97e2dmpeDyucDhcx9EBAAAAAHAGCexoaL4LHdKyVlwC6mzVloo6l9frld/vt3uoAAAAaAGZTEY9PT0r7otGoxV/TyaTVIEBAACwST6fl2TfCoulfkr9AmhN6RPFqvvzp5eVPVmUtcsh9462DfcDAHYLh8MaGhpSIpHQ3NycfD6fQqEQldcbCCuQAwAAAGh2JLCjKdS6BBRLRQEAAGArBQIBJZPJim35fF7ZbFaWZcntdle0BQAAgD2y2awke1dqLPXb399va58AzOf1euVxuxR9wL5JLB5WfwWwzZxOpwYGBuo9jJZh16Sn3KvLrEAOAAAAoCWQwA4AAAAANvF4PCtOmCTpCQAAYGtZliVJ2nvbXnXs6dh0f4vHFzV7eLbcL4DW4vf7lc4cUy6Xq9puM6u/zs/PK5PJnNff2Y9nCwQC8ng8tb4EAMA22YpJT66ODsXvv18+n2/VNqxAvj1mZmZq+jxw9mM1xAIAzLXSd7TVilRJfEcDADuQwI66YNlNAAAAc7AcLQAAABpd6SZix54OuS33Gq3X3y+A1uP3+2tOMNvI6q+ZTEY9PT0r7otGo+dtSyaTrDALAAbajklP1bAC+daZmZnR/sB+LeQXamq/0vn7XC63S8cyx0hiBwADVfuOthK+owHA5pHAjm3FspsAAADm8Hq9crldLEcLAAAAAMA2CwQCSiaTFdvWqu4HADDTVk96Qn3kcjkt5BfWXOVpPQVgZg/PKpfLkcAOwDasFGGflb6jVZuAttZ3NCq6A8DaSGDHum1mWct6z0BvNiwxahbiYQ5iYQ5iYQ5iYZZz41GvWPj9fh1r8c9mHBvmIBbmIBbmIBZmWU88iMXW4tgwx2ZjYedN1tL+Vl1diOPCHMTCLCafvz0ez4oJjP39/ds2hu3EsWEOYmEOYmEOYmEW0+JR0ypP+7bs6evKtFi0MmJhDpOuhczNzekdkXdocaG2axjNtlKE3cfFat/RJPtX3VpJo1d0530KwEaQwI512+yylsxAtw9LjJqFeJiDWJiDWJiDWJhltXjUIxat/tmMY8McxMIcxMIcxMIs64kHsdhaHBvm2EwsZmZmFAzs13x+oabnquUmq9rUsqsLcVyYg1iYhfO3OTg2zEEszEEszEEszEI8zEEszEEszGHctRCpZVeKMP24sLuiu+lMjwcAM5HAjnVjWUtzEAuzEA9zEAtzEAtzEAuznBsPYlE/HBvmIBbmIBbmIBZmWU88iMXW4tgwx2ZikcvlNJ9f0MTNbgV3r37zNH96WdmTRVm7HHLvaFu1XfpEUdEH8muuGtSsqwtxXJiDWJiF87c5ODbMQSzMQSzMQSzMspl4bMUqT62MY8McxMIcJl0Leeip07rj4cWWXSnC9OPC7orupjM9HgDMRAI71q3VlrU0GbEwC/EwB7EwB7EwB7Ewy0rxqDUWdl6AlxorKWcrcGyYg1iYg1iYg1iYhXiYg1iYw45YBHc71O1zVm3Tf3ntY6r1BmCz3SjkuDAHsTAL8TAHsTAHsTAHsTAHsTDLRuOxVZWNWxnHhjmIhTlMuhaSzhVqfs5mxHFhFuIBYCNIYAcAAAAaxFZcgPe4XUpnjrV0EjsAAAAAAAAAoLFtVWVjAAAAAFuDBHYAAACgQdh9AT59oqjoA3nlcjkS2AEAAAAAAAAADY/KxgAAAEBjIIEdAAAAaDB2XYAHAAAAAAAAAAAAAAAAthsJ7AAAAAAAAACAbZXP5yXZV9Ww1E+pXwAAAAAAAAAAYC4S2AEAAFB38/PzymQyFdvy+byy2awsy5Lb7a7YFwgE5PF4tnOIAAAAAGyUzWYlSdGpBdv77e/vt7VPAAAAAAAAAABgLxLYUXcrJayl0+mKx7ORsAYAQPPJZDLq6empuX0ymVR3d/cWjggAAADAVrIsS5I0EXYp6HVuur90rqDo1EK5XwAAAACtxe5Vnp55oShJKp4q2tIfAAAAgEoksKPuqiWsRaPR87aRsAYAQPMJBAJKJpMV29LptKLRqCYmJhQMBs9rDwAAAKBxlVZZCnqd6vZtPoH93H4BAAAAtJatWuVpKbck7bO1SwCwxeLp5TOPxxft6e9n/ZQmBAEAsNVIYEfdrZSwls/nlc1mZVnWeTedSFgDAKD5eDyeVSeoBYNBJq8BAAAAAAAAAIBV2b3K00NPLemOh0+p3du+6b4AQLJ/pYjHj5/pZ/bwrC39lWSzWfX399vaZyuYmZlRLper2iadTlc8VuP1euX3+20ZGwCYigR21N1qCWt8GAIAAKhk94WtUj9UUgAAAAAAAAAANDK7V3n6wU9OSzpTgT2/c/PX0KlsDGCrVoq4NHypLvr/Ltp0P4vHFzV7eLY8IQi1m5mZ0f7Afi3ka4ttNBpds43L7dKxzDGS2AE0NRLYAQAAgAaxVRe2qKQAAAAAAAAAAMDPHX95WRKVjTeDasStY35+XplMpmJbtdgGAgF5PJ5tGZtJtmqliAsCF8htuTfdX0lpQhBql8vltJBf0N7b9qpjT8eq7YqnilrKLand2y7HTseq7UqTCXK5HO97AJoaCewAAABAg7D7wlY6V1B0aoFKCgAAAAAAAAAAnGXPRW2StGYyYq1arbLxzMyMgoH9mrexGrHH7VKaasRGymQy6unpWXHfSrFNJpPq7u7e6mEZx+6VIkorLVdLhMb26tjTsfZkgn3bMxYAaAQksAMAAAANwu4LW+f2CwAAADQTKsABAAAA2KiOHWcS2GtKRlyHVrken8vlNJ9f0MTNbgV3r55cmz+9rOzJoqxdDrl/9m++kvSJoqIP5KlGbKhAIKBkMlmxLZ/PK5vNyrKs8/7fBwKB7RweAAAwFAnsaDrcmAIAAAAAAABABTgAduLeAwAAjSF9olh1f60J08+8sGz30FpScLdjzYI8/Zdv02BQZvdnW4/Hs+L36f7+/k2OFAAANDMS2NF0uDEFAAAAAAAAgApwAOzEvQcAAMzm9XrlcbsUfSBf76EAxuOzLSDNzMwol8tVbVNtYsdK7QAA60MCO5oON6YAAAAAAAAAUAEOgJ249wAAgNn8fr/SmWM1JSNGo1FNTEwoGAyu2Q5mqZYkWmuiqXRmwoPf77dtXI2Gz7ZodTMzMwoG9ms+v1BTe84HALA1SGBH0+HGFAAAAAAAAAAAsBP3HgAAMJ/f7685KTkYDFJRuoHMvVKU2mpLIq2ljcvt0rHMsZZNYuezLVpdLpfTfH5BEze7FdztWLVd/vSysieLsnY55N7Rtmq7h546rTseXtyKoQJAUyOBHQAAAAAAAABQF+kTxar7a71RuFY/AAAAALARi8erJyQWTxW1lFtSu7ddjp2rJ0Gu1Q+qO7mwLC1Le2/bq449HSu2WU8sZg/PKpfLtWwCO+rLrmshz7ywbPfQWk5wt0PdPmfVNv2Xr91POlewaUQA0FpIYAcAAAAaDEk+AAAAaHRer1cet0vRB/K29elxu+T1em3rDwAAAEDr8nq9crldmj08a1ufLr6zbFrHng65LffqDfZt31iA9dqKayEww+LpM5MJ7JqsVOonn+f/CoDmRgI7AAAA0CBI8gEAAECz8Pv9SmeOKZfLVW2XTqcVjUY1MTGhYDBYta3X66V6HoBtUygUlEgkNDc3J5/Pp1AoJKezeuU+AADQOPx+v47xnQWAjey+FlJqh/UrJYbbVTn98eNn+rFz0pMkZbNZ9ff329onAJiEBHYAAACgQZDkAwAAgGbi9/tr/iwaDAbV3d29xSMCgNpMTU0pFospm82Wt1mWpfHxcYXD4foNDAAA2IrvLADsthXvK2tV/S6eKmopt6R2b7scOx0b7qeZlL7LRacWbO330vCluuj/u2jT/SweX9Ts4VlZlrX5QQGAwUhgBwAAwKZRdWz7cMEcAAAAAID6mZqaUiQSkcvlqtj+05/+VJFIRPF4nCR2AGhx8/PzymQyFdvS6XTF49kCgYA8Hs+29QcAaA5er1cut8vWqt+uFlm5uZQYPhF2Kejd/D3th55a0h0Pn9IFgQvkttyb7q/E7bavLwAwEQnsAAAA2BSqjjUXboYAAACgWTHxFsBmFQoFfeADH9Dy8rLe+ta36uMf/7i6urqUSqX0qU99SkeOHNEHPvABDQ0N8f4CAC0sk8mop6dnxX3RaPS8bclksmohErv7AwA0B7/fr2Os3LwhpcTwoNepbt/mv7ulcwVJqlrhHgBwPhLYAQAAsGGlqmODg4OanJws37QdHR2l6liD4mYIAAAAmhETbwHY4ZFHHtFzzz2nAwcO6Mtf/rIcjjPJCb29vfryl7+s66+/XkePHtUjjzyit771rXUeLQCgXgKBgJLJZMW2fD6vbDYry7LOq6YaCAS2tT8AQPNg5WYAQCMjgR0AAAAbUigUFIvFNDg4qOnp6YqbttPT0xoeHtahQ4eoOtZguBkCAACAZsPEWwB2eeSRRyRJd955Z/k6SInD4dAnP/lJ/Yf/8B9IYAeAFufxeFZMEOzv7zeiP6ARLZ5ePvN4fHHzff2sj3w+v+m+AAAAsHEksAMAAGBDEomEstmsJicnV7xpOzIyor6+PiUSCQ0MDNRnkFg3boYAAACgmTDxFgAAAAAa3/GXzySwzx6eta3PbDbLvQ8AAIA6IoEdAAAAGzI3NydJ6urqWnF/aXupHQAAAABst7Mn3i4vL+uRRx7R3NycfD6fQqEQE28BrMvAwID+9E//VJ/4xCcUCoV09OjR8ntKf3+/7rzzznI7AACAVlaqbp7OFWzp71ThTAL7nv+0R26/e43W1S0eX9Ts4VlZlmXDyAAAALBRJLADAABgQ3w+nyQplUqpt7f3vP2pVKqi3dlmZmaUy+Wq9p9Opyseq/F6vfL7/Wu2AwAAANBaShNqn376af36r/+6stlseZ9lWfrTP/3TinYAUM3AwIB2796tb37zm3rNa15TTsySJLfbrXw+r0svvZQEdgAA0PJK372iUwu29uvY4ZDb2lwCe4nbbU8/AAAA2BgS2AEAALAhoVBIlmVpdHRU09PTcjgc5X3FYlFjY2Pq7OxUKBSq+L2ZmRntD+zXQr62i5bRaHTNNi63S8cyx0hiBwAAAFChNKH2N3/zNzU4OKjJyUl1dXUplUppdHRUv/mbv1nRDgCqcTqdeu9736tPf/rTWlxcrNh36tQpSdJ73vMeOZ3OegwPAADAGKXq5hNhl4LezX82euipJd3x8Cm1e9s33RcAlKRPFKvuz59eVvZkUdYuh9w72lZt98wLZ1aJWDy+uGobSSqeKmopt6R2b7scOx2rtlurHwBoFiSwAwAAYEOcTqfGx8cViUQ0PDyskZGRciLI2NiYjhw5ong8ft5N21wup4X8gvbetlcdezpW7X89X+BnD88ql8uRwA4AAACgQl9fn3bs2KFLLrlEU1NT2rHjzCXx3t5eTU1Nae/evXr++efV19dX55ECaASFQkF/8zd/o6uvvlrPPfecZmZmyvv27t2r3bt3Kx6Pa2xsjCR2AAAMMD8/r0wmU7Gt2uqvgUBAHo9nW8bW7ErVzYNep7p9m/9clM4VJKnq/SIAqJXX65XH7VL0gfzajWvVJs0enrWtO5fbJa/Xa1t/AGAiEtgBAACwbqWLvpZl6a677tJnP/vZioSPyy67THfddZcsy9L3v//9FS/6duzpWHuZx31bMXoAAAAAreKxxx7T6dOn9dOf/lThcPi8ibc//elPy+0GBgbqO1gAxkskEspms5qcnNQ111yjRCKhubk5+Xw+hUIhffe731VfX58SiQTvKQAAGCCTyainp2fFfSut/ppMJtXd3b3VwwIA1Jnf71c6c0y5XK5qu3Q6rWg0qomJCQWDwaptFxcX1dGxevG29fbn9Xop3gag6ZHADgAAgHWrdtFXkn784x/rox/9aPnvXPQFAAAAUA9zc3OSpImJCf3xH/9xxcTbzs5OTUxMKBqNltsBQDWl94quri45nc7zktS7uroq2gEAgPoKBAJKJpMV2/L5vLLZrCzLKlcJP7s9AKA1+P3+mhPEg8Ggrfe67e4PABoVCewAAABYt5Uu+labMc5FXwAAAAD14PP5JElXXHGFfvSjH61YLfnsdgBQTem9IpVKqbe397z9qVSqoh0AAKgvj8ezYoJgf39/HUYDAAAA4GwksAMAAGDdVrvoKzFjHAAAAIA5QqGQLMvS6OiopqenK6olF4tFjY2NqbOzU6FQqH6DBNAwzn1PcTgc5X28p9RXoVA4b5KS0+ms97AAAAAAAACwCsfaTQAAAAAAAAAAaDxOp1Pj4+M6cuSIhoeH9a1vfUsvv/yyvvWtb2l4eFhHjhzRf/tv/40kRwA14T3FTFNTU7ryyit18OBBvfvd79bBgwd15ZVXampqqt5DAwAAAAAAwCqowA4AAAAAAAAAaFrhcFjxeFyxWEx9fX3l7Z2dnYrH4wqHw3UcHYBGw3uKWaamphSJRDQ4OKjJyUl1dXUplUppdHRUkUikppjMz88rk8lUbMvn88pms7IsS263u2JfIBCQx+Ox/bUAAIC1LR5fXHVf8VRRS7kltXvb5di5ej3Pan0AAABg+5DADgAAgG2Vz+cl2XeBsNRPqd9Ws9JN1nQ6XfF4Nm6yAgAAoBWFw2ENDQ0pkUhobm5OPp9PoVCIKskANoT3FDMUCgXFYjENDg5qenpaDseZRLXe3l5NT09reHhYhw4d0tDQUNXYZDIZ9fT01Py8yWRS3d3dmx4/AACo3S5Xm9QmzR6etaU/l9slr9drS18AAADYGBLYAQAAsK2y2awk+y4ynt1vf3+/rX02gmo3WaPR6HnbuMkKAACAVuV0OjUwMFDvYQBoEryn1F8ikVA2m9Xk5GQ5eb3E4XBoZGREfX19SiQSVWMVCASUTCYrtqXTaUWjUU1MTCgYDJ7XHgAAbC/fhQ5pWSuem0uqnb/P5fV65ff7t2KoAAAAqBEJ7AAAANhWlmVJkvbetlcdezo23d/i8UXNHp4t99tqVrrJutYy1wAAAAAAAI1ubm5OktTV1bXi/tL2UrvVeDyeVSf7B4NBCgEAALAJ6RPFqvvzp5eVPVmUtcsh9462Nfup5dzM+RsAAKAxkMAOAACAbVVKqO7Y0yG35V6j9fr7bTWr3WRtxWr0AAAAGzE/P69MJlOxba0JgR6PZ8v7AgAA1fl8PklSKpVSb2/veftTqVRFOwAAsH28Xq88bpeiD+Rt69Pjdsnr9drWHwAAAOqLBHYAAAAAAAAALSuTyainp6fm9slkctVKbnb2BQAAqguFQrIsS6Ojo5qenpbD4SjvKxaLGhsbU2dnp0KhUB1HCQBAa/L7/UpnjimXy1Vtl06nFY1GNTExoWAwWLWt1+uV3++3c5hA3a1UDCGdTlc8no1iCACAZkICOwAAAAAAAICWFQgElEwmK7ZVu4EeCAS2pS8AAFCd0+nU+Pi4IpGIhoeHNTIyoq6uLqVSKY2NjenIkSOKx+NyOp31HioAAC3J7/fXnHAeDAaZ4I2WVK0YQjQaPW8bxRAaB5MTAGBtJLADAAAAAAAAaFkej2fVG3/rvYFuZ18AAGBt4XBY8XhcsVhMfX195e2dnZ2Kx+MKh8N1HB0AAABQ3UrFEPL5vLLZrCzLktvtPq89GgOTEwBgbSSwAwAAAAAAAADqjspUAICNCIfDGhoaUiKR0NzcnHw+n0KhEJXXAQAAYLzViiH09/dvqD+urZiDyQkAsDYS2AEAQMta6Qv8Wl8a+QIPAAAAAFuDylQAgI1yOp0aGBio9zAAAACAuuLaijnsnpwAAM2IBHYAANCyqn2BXwlf4AEAAABg61CZCgAAAAAAYOO4trJxVK8HgO1HAjsAAHVWKBRY3rZOVvoCn06nFY1GNTExoWAweF57AAAAwDSsLIRmQWUqAAAAACYjuRGA6bi2snFUrweA7UcCOwAAdTQ1NaVYLKZsNlveZlmWxsfHFQ6H6zewFrHaF3hJCgaDfOHcYovHF6vuL54qaim3pHZvuxw7HRvuBwAAoNmxshAAAAAAAFuP5EYAaF5UrweA7UcCOwAAdTI1NaVIJKLBwUFNTk6qq6tLqVRKo6OjikQiisfjJLGjKXm9XrncLs0enrWtT5fbJa/Xa1t/AAAAjYSVhQAAQKthBRoAQD2Q3AgAzYvq9QCw/UhgBwCgDgqFgmKxmAYHBzU9PS2H40x16d7eXk1PT2t4eFiHDh3S0NCQnE5nnUcLSDMzM8rlclXbVFsm81xf/8evq6OjY83+Vku6OpfX65Xf71/zeQEAAJoRKwsBAIBWwwo0AIB6ILkRAAAAsA8J7AAA1EEikVA2m9Xk5GQ5eb3E4XBoZGREfX19SiQSGhgYqM8ggZ+ZmZlRMLBf8/mFmtqvtEzmuTxul9KZYzUlnZN0BQAAAAAAgLOxAg0AAAAAAEBjI4EdAIA6mJubkyR1dXWtuL+0vdQOqKdcLqf5/IImbnYruNuxarv86WVlTxZl7XLIvaNt1XbpE0VFH8grl8tRNR0AAAAAAADrxgo0AAAAAAAAjY0EdgAA6sDn80mSUqmUent7z9ufSqUq2gEmCO52qNvnrNqm//JtGgwAAAAAAAAAAAAAAACAhrR6CU0AALBlQqGQLMvS6OioisVixb5isaixsTF1dnYqFArVaYQAAAAAAAAAAAAAAAAAANiPCuwAANSB0+nU+Pi4IpGIhoeHNTIyoq6uLqVSKY2NjenIkSOKx+NyOqtXuwa2Qz6flySlcwVb+iv1U+oXAAAAAAAA2C4zMzPK5XJV26TT6YrHarxer/x+vy1jAwAAAAAAaBUksAMAsE6FQkGJREJzc3Py+XwKhUIbSjQPh8OKx+OKxWLq6+srb+/s7FQ8Hlc4HLZz2MCGZbNZSVJ0asH2fvv7+23tEwAAAAAAAFjNzMyM9gf2ayFf23WuaDS6ZhuX26VjmWMksQMAAAAAAKwDCewAAKzD1NSUYrFYOaFXkizL0vj4+IYSzsPhsIaGhmxJiAe2imVZkqSJsEtB7+b/b6ZzBUWnFsr9AgAAAAAAANshl8tpIb+gvbftVceejlXbFU8VtZRbUru3XY6djlXbLR5f1OzhWeVyORLYAQAAAAAA1oEEdgAAajQ1NaVIJKLBwUFNTk6qq6tLqVRKo6OjikQiG66a7nQ6NTAwYP+AAZu43W5JUtDrVLfPvskVpX4BAACARjUzM6NcLle1TTqdrnisxuv1kvwGAMA26NjTIbe1xrWpfdszFgAAAADNr1AoUNgQAM5BAjsAADUoFAqKxWIaHBzU9PS0HI4zVXd6e3s1PT2t4eFhHTp0SENDQ3zJADZgfn5emUymYlu1RJ9AICCPx7MtYwMAALDbSp998vm8stmsLMs6b6Ifn33MNDMzo/2B/VrIL9TUPhqNrtnG5XbpWOYYSewAAAAAAABAk5iamlIsFlM2my1vsyxL4+PjGyqSCADNggR2AABqkEgklM1mNTk5WU5eL3E4HBoZGVFfX58SiQTV1LcQiT7NK5PJqKenZ8V9KyX6JJNJdXd3b/WwAAAAtkS1zz4r4bOPmXK5nBbyC9p721517OlYtV3xVFFLuSW1e9vl2OlYtd3i8UXNHp5VLpcjgR0AAAAAAABoAlNTU4pEIhocHNTk5KS6urqUSqU0OjqqSCSieDxOEjuAlkUCOwAANZibm5MkdXV1rbi/tL3UDluDRJ/mFQgElEwmK7atNTkBAACgUa302SedTisajWpiYkLBYPC89jBXx54OuS139Ub7tmcsAAAAAAAAAMxQKBQUi8U0ODio6enpcrHE3t5eTU9Pa3h4WIcOHdLQ0JCcTmedRwsA248EdgAAauDz+SRJqVRKvb295+1PpVIV7bA1SPRpXh6PZ8XJBv39/XUYDQAAwNZa7bOPJAWDQSZhAgAAAAAAAECDSyQSymazmpycLCevlzgcDo2MjKivr0+JREIDAwP1GSQA1BEJ7AAA1CAUCsmyLI2OjlbMjJWkYrGosbExdXZ2KhQK1XGUzY9En/pKnyhW3Z8/vazsyaKsXQ65d7RtuB8AAAAAAAAAAAAAABrZ3NycJKmrq2vF/aXtpXYA0GpIYAcAoAZOp1Pj4+OKRCIaHh7WyMiIurq6lEqlNDY2piNHjigej7OsE5qS1+uVx+1S9IG8bX163C55vV7b+gMAAABqNTMzo1wuV7VNOp2ueKzWBgAAoJXNz88rk8lUbMvn88pms7IsS263u2JfIBCQx+PZziECAAAAdeHz+SRJqVRKvb295+1PpVIV7QCg1ZDADgBAjcLhsOLxuGKxmPr6+srbOzs7FY/HFQ6H6zg6YOv4/X6lM8dqSvKJRqOamJhQMBis2tbr9crv99s5TAAAAGBNMzMzCgb2az6/UFP7aDS6xSMCAABobJlMRj09PTW3TyaTrKQJANi0cydQFQoFTU9PS5Luv/9+FQqFisJjTKACUA+hUEiWZWl0dFTT09NyOBzlfcViUWNjY+rs7FQoFKrjKAGgfkhgBwBgHcLhsIaGhpRIJDQ3Nyefz6dQKETl9QZhV6XFklZKwvb7/TW/1mAwyE0oAAAAGCmXy2k+v6CJm90K7nas2i5/elnZk0VZuxxy72hbsc1DT53WHQ8vbtVQAQDAFsjnz6wwuHjcnnN4qZ9Sv60oEAgomUxWbKtW6CIQCGzn8AAATaraBKrR0VGNjo5WbGMCFYB6cDqdGh8fVyQS0fDwsEZGRtTV1aVUKqWxsTEdOXJE8XicfBMALYsEdgAA1snpdGpgYKDew8A6zczMaH9gvxZsrLTocrt0LHOsZZLYAQAAgGYR3O1Qt6/6jaH+y6v3kc4VbBwRAADYDtlsVpI0e3jW9n77+/tt7bNReDyeVRMCKXQBANgqpQlUX//61/Wxj31MoVBI7373u7Vjxw6dPn1af/VXf6VEIqG77rpLN954IxOoANRNOBxWPB5XLBZTX19feXtnZ6fi8bjC4XAdRwcA9UUCOwAAaAm5XE4L+QXtvW2vOvZ0rNqueKqopdyS2r3tcuxcvSLj4vFFzR6eVS6XI4EdAAAAaEGLp5fPPFLBFQCALWfXyoqLi2fOt2tdI6xV6RqhZVmb7gsAgGY3Pz+vTCZTsa3a+TsQCMjj8azYl8fj0S/90i/pHe94hwYHBzU9PS2H4+f39f7zf/7PGh4e1l/8xV/owx/+MNWNAdRVOBzW0NCQEomE5ubm5PP5FAqFeG8C0PJIYAcAAC2lY0+H3Ja7eqN92zMWAAAAAI3r+MtnEtip4AoAwNaamZlRMLBf8zaurFjTNcJ1cLvt6wsAgGaVyWTU09Oz4r6Vzt/JZLLqSh6JRELZbFaTk5MVyeuS5HA4NDIyor6+PiUSCVbXBlB3TqeT9yIAOAcJ7AAAAAAAAACwTnsuapNEBVcAALZaLpfTfH5BEze7Fdy9+oqJ+dPLyp4sytrlkHtH24ptHnrqtO542J7VUwAAwPoEAgElk8mKbfl8XtlsVpZlnTchLBAIVO1vbm5OktTV1bXi/tL2UjsAAACYhQR2AAAAAAAAAFinjp8lxlHBFQCA7RHc7VC3z1m1Tf/l1ftI5wo2jggAAKyHx+NZsaL6Rlch8/l8kqRUKqXe3t7z9qdSqYp2AAAAMAsJ7AAAAAAAAAAAAABaxuLx6lXYi6eKWsotqd3bLsfO1au+r9UPAADYOqFQSJZlaXR0VNPT03I4fn7OLhaLGhsbU2dnp0KhUB1HCQAAgNWQwA4AAAAAAAAAAACg6e1ytUlt0uzhWdv6dLld8nq9tvUHAABq43Q6NT4+rkgkouHhYY2MjKirq0upVEpjY2M6cuSI4vG4nM7qK7gAAACgPkhgBwAAAAAAAAAAAND0fBc6pGVpYmJCwWBw1XbpdFrRaHTNdpLk9Xrl9/vtHioAAKhBOBxWPB7XRz7yEfX19ZW3W5aleDyucDhcx9EBAACgGhLYAQAAsG7z8/PKZDIV29LpdMXj2QKBgDwez7aMDQAAAFhNPp+XJKVzhU339cwLRUlS8VRx030BAIDtFQwG1d3dbVs7AABQX21tbfUeAgAAANapaRLY//Vf/1V/9md/pgcffFDPPvusOjo6dMUVV+iWW27R7/3e720qYWp+fl5/93d/p69+9at6/PHH9aMf/UivvPKKLr74Yu3bt0+/8iu/ot/5nd/R61//ehtfEQAAgLkymYx6enpW3BeNRs/blkwmudkHAABgk5mZGeVyuaptqk0uPFcrVQ3NZrOSpOjUgm19LuWWpH22dQcAAAAAAGo0NTWlSCSiwcFBTU5OqqurS6lUSqOjo4pEIlRhBwAAMFhTJLB/5StfUTQa1UsvvVTeNj8/r8cff1yPP/64Pv/5z+vBBx/UlVdeue6+f/jDH6q/v1+vvPLKefv+7d/+Td/+9rf17W9/W5/97Gd1+PBhvetd79rUawGA1RQKBSUSCc3Nzcnn8ykUCsnpdNZ7WABaVCAQUDKZrNiWz+eVzWZlWZbcbvd57QEAALB5MzMz2h/Yr4V8bQnYK00uPJfL7dKxzLGWSGK3LEuSNBF2Kejd3Hfqh55a0h0Pn1LxdFH5bH7VdsVTRS3lltTubZdjp2PVdovHFzc1HgAAgGaw0sqPa113ZOVHAGhNhUJBsVhMg4ODmp6elsNx5jt3b2+vpqenNTw8rEOHDmloaIj76gAAAAZq+AT2f/qnf9K73vUu5fN5XXjhhRoZGdHBgweVz+d133336XOf+5yefPJJve1tb9Pjjz+uiy66aF39v/TSS+Xk9f7+fg0ODurqq6/WJZdcohMnTmhqakqf+9zn9NJLL+k3fuM3dPHFF+tXf/VXt+KlAmhhU1NTisVi5Upx0pmb7uPj48wYR1Ozs7JkLZUnUTuPx7NiRfX+/v46jAYAAKB15HI5LeQXtPe2verY07Fqu/UkTc8enlUul2uJBPZSwlPQ61S3b3M3r+deKUpt0vH/fdyOoUk6M5nA6/Xa1h8AAM0gnz8zUSydK2y6r1IfpT5hnmorP66ElR8BoHUlEglls1lNTk6Wk9dLHA6HRkZG1NfXp0QioYGBgfoMEgAAAKtq+AT2D33oQ8rn89qxY4f+4R/+Qdddd11534033qg3vvGN+tjHPqYnn3xS4+Pj+uQnP7mu/h0Oh2655RZ94hOf0Jve9Kbz9t9000361V/9Vd18880qFAr6/d//fT311FNqa2vb7EsDAEkse2YCKr7Ux8zMjIKB/Zq3sbKkZF9Vw1I/3OwCAABAPXTs6ZDbcldvtG97xtKqfBc6pGVpYmJCwWBw1XbpdFrRaHTNdpLk9XpbYiIBAADrUSrsEp2q7TphrX1SiMFMK638WO3zFCs/AkDrmpubkyR1dXWtuL+0vdQOAAAAZmnoBPbvfve7SiQSkqT3ve99FcnrJbFYTPfee6/S6bTuvvtuffzjH1d7e3vNz9HX16e+vr6qbYaGhhQOh3X//ffr6aef1j/90z8x0x+ALVj2zAxUfKmPXC6n+fyCJm52K7h79YqR+dPLyp4sytrlkHvH6hPIPv/9U/pfjy9p9vCsrePkZtcZhUJBiURCc3Nz8vl8CoVCvC8BAAD8DCsLNbdgMFjTd8Ba2wEAgEqWZUmSJsIuBb2bu96UzhUUnVoo9wnzrLbyo8TnKQBAJZ/PJ0lKpVLq7e09b38qlapoBwAAALM0dAL79PR0+eff+q3fWrGNw+HQrbfeqpGREZ08eVIPP/ywbrrpJtvHcvDgQd1///2SpKeffpqLJ2gKJCPWH8uemYGKL/UV3O1Qt6/6e0//5Wv3c/WeM8fQ3tv2qmNPx6bHtXh8UbOHZ7nZpTMrRcRisXI1LOnMjcXx8XFWiAAAAC1vq1YWAgAAaBWlFTCDXuea1wnX2ycAAGhcoVBIlmVpdHS0ohicJBWLRY2Njamzs1OhUKiOowQAAMBqGjqB/Zvf/KYk6YILLqhaGfeGG24o/3z06NEtSWBfXFws/0yCL5oByYhmYNkzM1DxpTl0/Kw6e8eeDrkt+25QtfrNrqmpKUUiEQ0ODmpyclJdXV1KpVIaHR1VJBJRPB7nvAEAAFqa3SsLPfTUad3x8OKq+wEAAAAAAFqB0+nU+Pi4IpGIhoeHNTIyUr5PNTY2piNHjigej5PDAwAAYKiGTmAvLZl85ZVXaseO1V/K2ZVwt2qZ5UcffbT887mVeIFGQzKiOVj2rDnNz88rk8lUbMvn88pms7Is67yE6EAgII/Hs51DBGpSKBQUi8U0ODhYUdmit7dX09PTGh4e1qFDhzQ0NMTFQQAA0PLsWlkonSvYNCIAAAAAAIDGFg6HFY/HFYvF1NfXV97e2dlJXgMAAIDhGjaBfWFhQblcTpK0d+/eqm1f+9rX6oILLtCrr76qZ5991vaxPPHEE3rwwQclSVdddRUJ7GhoJCOahWXPmlMmk6m6csi5kskkVd5hpEQioWw2q8nJyYr3J0lyOBwaGRlRX1+fEomEBgYG6jNIAAAAYAXpE8Wq+2upiL9WHwAAAAAAYOuFw2ENDQ0pkUhobm5OPp9PoVCIfAYAAADDNWwC+8svv1z++cILL1yzfSmB/ZVXXrF1HIuLi/rt3/5tFQpnql996lOfqul3Fhd/vtTzSy+9ZOuYgM0gGdEsLHvWnAKBgJLJZMW2dDqtaDSqiYmJ8yZCnb2SCGCSubk5SVJXV9eK+0vbS+0AAACAevN6vfK4XYo+kLelP4/bJa/Xa0tfAACgOiagAQCA1TidTvIXAAAAGkzDJrAvLCyUf965c+ea7Ts6OiRJ+bw9N6dKPvjBD+rxxx+XJL3nPe/R29/+9jV/Z2xsTHfeeaet4wDsQjKieVj2rPl4PJ5VK6oHg0GqrW+xxeOLVfcXTxW1lFtSu7ddjp2OVdut1U8r8Pl8kqRUKqXe3t7z9qdSqYp2AAAA2LzF08tnHm36PFrqx+5rZqby+/1KZ46VV3ZcTbVJxmfzer3y+/12DxMAAJyFCWgAAAAAAADNp2ET2F0uV/nnU6dOrdm+VPHc7XbbNoaxsTF9/vOflyRdc801+p//83/W9HsjIyP6yEc+Uv77Sy+9pMsvv9y2cQGbQTKimVj2DK2olECTzhVs6S83fybRZ/bwrC39SZKrxW92hUIhWZal0dFRTU9PV6zcUSwWNTY2ps7OToVCoTqOEgAAoLkcf9n+z7WSlM1m1d/fb2ufpvL7/TUnnTPJGACA+mMCGgAAAAAAQPNp2AT2iy66qPzzK6+8smb7V199VZJ04YUX2vL899xzj26//XZJUiAQ0EMPPaQLLrigpt/t6OgoV4QHTEMyorlY9gytJpvNSpKiUwvVG67Tn/zJn+g//sf/uOr+Wm90SdzscjqdGh8fVyQS0fDwsEZGRtTV1aVUKqWxsTEdOXJE8XicyTYAAAA22nNRmyRp72171bFn89eXFo8vavbwrCzL2nRfAAAAW4UJaAAAAAAAAM2lYRPYXS6XLrnkEj3//POana1eceqFF14oJ7DbUel8cnJSv/u7vytJesMb3qCvfvWrLV19Fc2FZERzFQoFKrCjpZQSaCbCLgW9m/+/ns4VFJ1a0MGDB2u6gcWNrtqEw2HF43HFYjH19fWVt3d2dioejyscDtdxdAAAAPVn98pCpQrs7d52uS37Vhq0c9VCAAAAAAAAAAAAoJqGTWCXpDe96U1KJBL60Y9+pNOnT2vHjpVfTiaTKf+8ViXVtfzf//t/deutt6pYLMrn8+kf//EftXfv3k31CZiGZETzTE1NKRaLlStSS2eSe8fHx4kHmlYpgSbodarbZ99kDRJz7BcOhzU0NMQkGwAAgBVs1cpCS7klaZ+tXQIAAAAAAAAAAADboqET2A8cOKBEIqFXX31VyWRSb3nLW1Zs9+ijj5Z/7u/v3/Dz/eM//qNuueUWnT59Wpdccom++tWv6oorrthwf4DJSEY0x9TUlCKRiAYHBzU5OVmuiD86OqpIJMKkAgBGcDqdGhgYqPcwAAAAjGP3ykIPPbWkOx4+pXZv+6b7AgAAAAAAAAAAAOqhoRPYh4eHNTY2Jkm69957V0xgLxaL+tKXviRJ2rVrlw4ePLih53rsscc0NDSkxcVFveY1r9Hf//3f6xd/8Rc3PnigAZCMWH+FQkGxWEyDg4Oanp6Ww+GQJPX29mp6elrDw8M6dOiQhoaGmFwAAAAAAAaye2WhdK4gSXLsdGy6LwAAAAAAAAAAAKAeGjqB/dprr1UoFFIikdAXvvAFvec979F1111X0WZ8fFzpdFqS9KEPfUjt7ZXVqR555JFyUvt73vMeffGLXzzveX7wgx/obW97m1599VVdcMEFevDBB9XT07M1LwoAzpJIJJTNZjU5OVlOXi9xOBwaGRlRX1+fEokEkw0A1FWhUGDVDgAAAAAAAKDJzczMKJfLVW1TujdbeqzG6/XK7/fbMjYAAAAAANA4GjqBXZLuvvtu9ff3K5/P66abbtLtt9+ugwcPKp/P67777tPhw4clSfv27VMsFlt3/08//bR+5Vd+RSdPnpQk/emf/qle85rXKJVKrfo7l156qS699NINvR4AONvc3Jwkqaura8X9pe2ldgBQD1NTU4rFYspms+VtlmVpfHxc4XC4fgMDAAAAAAAAYJuZmRkFA/s1n1+oqX00Gl2zjcftUjpzjCR2AAAAAABaTMMnsL/5zW/WX//1Xysajeqll17S7bfffl6bffv26cEHH9RFF1207v4TiYSee+658t8//OEPr/k7n/jEJ/TJT35y3c8FAOfy+XySpFQqpd7e3vP2lybTlNoBzSh9olh1f/70srIni7J2OeTe0bbhfrAxU1NTikQiGhwc1OTkpLq6upRKpTQ6OqpIJKJ4PE4SOwAAAAAAAIw1Pz+vTCZTsa1aBfFAICCPx7MtYzNNLpfTfH5BEze7FdztWLXdeq7ZRh/IK5fLkcAOAAAAAECLafgEdkl6+9vfrh/+8Ie6++679eCDD2p2dlY7d+7UlVdeqXe+85364Ac/2LIXkgA0tlAoJMuyNDo6qunpaTkcP78gXCwWNTY2ps7OToVCoTqOEtgaXq9XHrdL0QfytvXpcbvk9Xpt66/VFQoFxWIxDQ4OVrxH9fb2anp6WsPDwzp06JCGhobkdDrrPFoAAIDmsnh8ser+4qmilnJLave2y7Fz9eSitfrB+pAABwBA48lkMurp6Vlx30oVxJPJpLq7u7d6WEYL7nao21f9el//5ds0GAAAAAAA0JCaIoFdkt7whjfoM5/5jD7zmc+s6/cGBga0vLy86v73vve9eu9737vJ0QHAxjidTo2PjysSiWh4eFgjIyPl6sZjY2M6cuSI4vE4iaFoSn6/X+nMMeVyuart0um0otGoJiYmFAwGq7b1er1U8rFRIpFQNpvV5ORkxQQbSXI4HBoZGVFfX58SiYQGBgbqM0gAAIAms8vVJrVJs4dnbevTxURP25AABwBA4wkEAkomkxXb8vm8stmsLMuS2+0+rz0AAAAAAAA2p2kS2AGgWYXDYcXjccViMfX19ZW3d3Z2Kh6PKxwO13F0zWlmZqampOmzH6tZXFxUR0eHLf21WgK23++v+fUGg0ESP7bZ3NycJKmrq2vF/aXtpXYAAACtLH2iWHV//vSysieLsnY55N7Rtmq7k3lJy1pzAicTPeuDBDgAABqPx+NZ8bpif39/HUYDAAAAAADQGkhgB4AGEA6HNTQ0pEQiobm5Ofl8PoVCISqvb4GZmRkFA/s1n1+oqf1KFfTO0yZp9cU+1tWfy+3SscwxkktgBJ/PJ0lKpVLq7e09b38qlapoBwAA0Iq8Xq88bpeiD+Rt69PjdikUCtX0vYCJntuLBDgAAAAAAAAAAIC1kcAOAA3C6XRqYGCg3sNoerlcTvP5BU3c7FZwt2PVdrVWR3zoqdO64+FF7b1trzr2rF6FvXiqqKXcktq97XLsXPl5F48vavbwrHK5HAnsMEIoFJJlWRodHdX09LQcjp//3y0WixobG1NnZ6dCoVAdRwkAAFBffr9f6cyxmlZ5omI6AAAAAAAAAAAAWgEJ7ADK5ufnlclkKrattcy1x+PZziG2lPXEg1jYL7jboW5f9Qr3/Zev3U86V5AkdezpkNtyV2+8r9bRAWZwOp0aHx9XJBLR8PCwRkZG1NXVpVQqpbGxMR05ckTxeJzVIgAAQMvz+/01J5xTMR0AAAAAAAAAAADNjgR2AGWZTEY9PT01t08mk9xU30LriQexAFAv4XBY8XhcsVhMfX195e2dnZ2Kx+MKh8N1HB0AAACwtpUmkKfT6YrHszGJHAAAAAAAAAAAYHNIYAdQFggElEwmK7ZVW8I8EAhs5/BaznriQSwA1FM4HNbQ0JASiYTm5ubk8/kUCoWovA4AAICGUG0CeTQaPW8bk8gBAAAAAAAAAAA2hwR2AGUej2fVG7AsYb79iAeARuJ0OjUwMFDvYQAAAADrttIE8nw+r2w2K8uy5Ha7z2sPAADqixVUAAAAAAAAGhsJ7AAAAAAAAABa1moTyPv7++swGgAAUAtWUKmPfD4vSUrnCrb0V+rnBz/4QfV2VSYnnMvr9crv9296bAAAAAAAYGuRwA4AAAAAAAAAAACgYbCCSn1ks1lJUnRqwdZ+3/e+99XUbqXJCedyuV06ljlGEjsAAAAAAIYjgR0AgC20eHr5zOPxxc339bM+SlVuAAAAAAAAAKAVsYJKfViWJUmaCLsU9Do33d9DTy3pjodPac9/2iO3371qu+KpopZyS2r3tsux07Fqu8Xji5o9PKtcLkcCOwAAAAAAhiOBHQCALXT85TMJ7LOHZ23rM5vNciMGAAAAAAAAALCtSpXtg16nun2bT2BP5wpn+vW75bZWT2CXJO3b9NMBAAAAAACDkMAOAMBZStXNSxfON+tU4UwC+1oVZGpRqh5TqnIDAAAAAAAAAAAAAAAAAECjIYEdAICzZLNZSVJ0asHWfh07HGtXkKlRqcoNAAAAAAAAAAAAAAAAAACNhgR2AADOUqpuPhF2Kejd/BKoDz21pDsePqV2b/um+4L95ufnlclkKral0+mKx7MFAgF5PJ5tGRsAAAAAAAAAAAAAAAAANCMS2AEAOEupunnQ61S3b/MJ7OlcQZLk2OnYdF+wXyaTUU9Pz4r7otHoeduSyaS6u7u3elgAAAAAAAAAYKz0iWLV/fnTy8qeLMra5ZB7R9uq7Z55YdnuoQEAAAAAgAZBAjsAtICVqkzn83lls1lZllVO2i6hyjRaRSAQUDKZrNi21rEBAAAAAAAAAK3I6/XK43Yp+kDe1n4Xjy/a2k8+b+/4AAAAAACA/UhgB4AWUK3K9EqoMm2/tS7AF08VtZRbUru3fdVq7XZdxG9kK03GSKfTFY9nW2syhsfjWfH/en9//yZHCgAAAAAAAADNxe/3K505plwuV7VdOp1WNBrVxMSEgsHgqu0eeugh3XHHHZo9PGvrOLPZLNd4AQAAAAAwHAnsANACVqoyXe0CMlWm7bPL1Sa1ybYL8C63S16v15a+GlG1yRjRaPS8bUzGAAAAAAAAAAD7+P1++f3+mtoGg8Gq12dLldL33rZXHXs6Nj22xeOLmj08K8uyNt0XAAAAAADYWiSwA0ALWK3KtLT2BWRsju9Ch7SsNSvN1FqRxuv11nxzoBmtNBkjn88rm83Ksiy53e7z2gMAAADNzu6VigAAAIDtULqe27GnQ27LvUbr9fcLAAAAAADMRQI7AADboNaJAkwoqG61yRgsBwsAAIBWxkpFAAAAAAAAAAAAaCQksAOAIWZmZpTL5aq2qVZB72ytXqXbDukTxar786eXlT1ZlLXLIfeOtg33AwAAAACbxUpFAAAAAAAAAAAAaCQksAOAAWZmZhQM7Nd8fqGm9itV0Dubx+1SOnOMJPYN8Hq98rhdij6Qt61Pj9slr9drW3/4uUKhoEQiobm5Ofl8PoVCITmdznoPCwAAANhWrFQEAAAAAAAAAACARkICOwAYIJfLaT6/oImb3Qrudqzarpaq3+kTRUUfyCuXy5HAvgF+v1/pzLGaquFHo1FNTEwoGAxWbUtF/K0xNTWlWCymbDZb3mZZlsbHxxUOh+s3MAAAAAAAAAAAAAAAAADAqkhgBwCDBHc71O2rXj26//JtGkwL8/v9NSecB4PBFSsdYmtNTU0pEolocHBQk5OT6urqUiqV0ujoqCKRiOLxOEnsAAAAMNb8/LwymUzFtnQ6XfF4tkAgII/Hsy1jAwAAAAAAAAAAALYaCewAAKChFAoFxWIxDQ4Oanp6Wg7HmVULent7NT09reHhYR06dEhDQ0NyOqtPCAEAAADqIZPJqKenZ8V90Wj0vG3JZJKJswAAAAAAAAAAAGgaJLADAICGkkgklM1mNTk5WU5eL3E4HBoZGVFfX58SiYQGBgbqM0gAAACgikAgoGQyWbEtn88rm83Ksiy53e7z2gMAAAAAAAAAAADNggR2oIXNzMwol8tVbVNtCfNzeb1e+f3+VfcXCgUlEgnNzc3J5/MpFApRHRnAus3NzUmSurq6Vtxf2l5qBwAAAJjG4/GsWFG9v7+/DqMBAAAAAAAAAAAAthcJ7ECLmpmZUTCwX/P5hZrar7SE+bk8bpfSmWMrJrFPTU0pFospm82Wt1mWpfHxcYXD4ZrH3azy+bwkKZ0rbLqvUh+lPoFm4/P5JEmpVEq9vb3n7U+lUhXtAAAAAAAAAAAAAAAAAADmIIEdaFG5XE7z+QVN3OxWcLdj1Xb508vKnizK2uWQe0fbqu3SJ4qKPpBXLpc7L4F9ampKkUhEg4ODmpycVFdXl1KplEZHRxWJRBSPx1s+ib2U2B+dqm1CQa19Ur0PzSgUCsmyLI2Ojmp6eloOx8/fw4rFosbGxtTZ2alQKFTHUQIAAAAAAAAAarF4fLHq/uKpopZyS2r3tsuxc/V7Wmv1AwAAAAAAzEECO9Digrsd6vY5q7bpv3zj/RcKBcViMQ0ODur+++/X0aNH9ZWvfEU+n0/333+/3vGOd+jQoUMaGhqS01l9HM3MsixJ0kTYpaB3c/8O6VxB0amFcp9As3E6nRofH1ckEtHw8LBGRkbKE2PGxsZ05MgRxePxln5PAQAAAAAAAADTeb1eudwuzR6eta1Pl9slr9drW38AAAAAAGBrkMAOYEslEglls1m9//3v1759+8qVxqUzSdu33XabvvKVryiRSGhgYKBu46w3t9stSQp6nWtOKKhVNpst97uSdDpd8ViN1+s9r7I+UE/hcFjxeFyxWEx9fX3l7Z2dnazqAAAAAAAAAAANwO/361jmmHK5XNV26XRa0WhUExMTCgaDVdtyPwMAAAAAgMZAAjuALTU3NydJGhkZ0dvf/nZNTk6WKyWPjo7q9ttvr2iHzZt7pSi1SdFotKb2tbRzuV06ljnGRV8YJRwOa2hoSIlEQnNzc/L5fAqFQlReBwAAAAAAAIAG4ff7a773EAwG1d3dvcUjAgAAAAAA24EEdgBb6tJLL5UkHThwQNPT03I4HJKk3t5eTU9P6/rrr9fRo0fL7bB5JxeWpWVp72171bGnY9V2xVNFLeWW1O5tl2OnY9V2i8cXNXt4VrlcjgR2GMfpdLb06g0AAAAAAAAAAAAAAAAA0GhIYAdQV21tbfUeQtPq2NMht+Wu3mjf9oyl0c3PzyuTyVRsS6fTFY9nCwQC8ng82zI2AAAAAAAAAAAAAAAAAAAaCQnsALbUc889J0k6evSohoeHNTIyoq6uLqVSKY2Njeno0aMV7Vpd+kSx6v786WVlTxZl7XLIvWPl5P9nXljeiqG1tEwmo56enhX3RaPR87Ylk8mqy5iSEA8AAAAAAAAAAAAAAAAAaFUksAMtKp/PS5LSuYIt/ZX6KfVb4vP5JEmjo6O655571NfXV97X2dmpT33qU7r99tvL7VqV1+uVx+1S9IH82o2x7QKBgJLJZMW2fD6vbDYry7LkdrvPa1+N3QnxAAAAAAAAAAAAAAAAAAA0ChLYgRaVzWYlSdGpBdv77e/vl3SmyvQFF1ygPXv26G//9m9133336bvf/a4ymYwCgYCuvfZafexjH9Nll12mCy64QPPz8y1bZdrv9yudOaZcLle1XTqdVjQa1cTEhILBYNU2sI/H41kxgbz0f3297E6IBwAAAAAAAAAAAAAAAACgUZDADrQoy7IkSRNhl4Je56b7S+cKik4tlPuVzlSZvvbaayVJx48fV29v76q/f+2117Z8lWm/3y+/319T22AwuOq/VakK/uLxRVvGVern3Or62LhzE+ILhYISiYQcDoeWlpbU29srp3PzxyUAAAAAAAAAAAAAAAAAAKYhgR1oUaUKz0GvU90++xJlz64cfXaV6a9//ev67Gc/q+PHj5f3X3bZZfqDP/gD3XjjjeX22LxSdf3Zw7O297vRiuNY3dTUlGKxWDlu0pkJJuPj4wqHw/UbGAAAAAAAAAAAAID/n737Do+qzv82/v1OAqHXSJMuImAQAUEEEWQtq6Ig4iq7qODafiirSFEsq6tSxK6oi4pdsCCCXSmioFhglR56BCSg9BYIJO/nD545zqQRIOWTcL+ui0uYOTM5c+5dDufMZ84AAAAAyAcMsAPIN5FXmW7VqpUbMGCAGzt2rLvxxhvdmDFj3D//+U+uMp0PwlfBr31DbRdXK+6on2/f+n1u3Qvroq6uj7wxceJE17NnT9e1a1c3fvx4l5CQ4BYuXOiGDx/uevbs6SZMmMAQOwAAAAAAAAAAAAAAAACgWGGAHUCBiYmJcaeddppzzrnTTjuN4fV8Er4KflytOFe6fulDLH34z4u8kZaW5gYOHOi6du3qJk2a5EKhkHPOuXbt2rlJkya57t27u0GDBrlu3brx/xUAAAAAAAAAAAAAAAAAQLERKuwVAADgWDRz5kyXlJTk7rrrrmB4PSwUCrmhQ4e61atXu5kzZxbSGgIAAAAAAAAAAAAAAAAAkPe4AjtwjFvyR3qO96cckEvalu7qVwq50rH+iJ8HQLTk5GTnnHMJCQlZ3h++PbwcAAAAAAAAAADW7NmzxyUmJkbdtmTJkqj/RmrSpIkrU6ZMgawbAAAAAACwiwF24BgVHx/vypQu5Xp/kJJnz1mmdCkXHx+fZ88HFGc1a9Z0zjm3cOFC165du0z3L1y4MGo5AAAAAAAAAACsSUxMdK1bt87yvt69e2e6be7cua5Vq1b5vVoAAAAAAMA4BtiBY1TdunXdksSlbtOmTTkut2TJEte7d2/35ptvuqZNm+a4bHx8vKtbt25eriZQbHXs2NHVr1/fDR8+3E2aNMmFQqHgvvT0dDdixAjXoEED17Fjx0JcSwAAAAAAAAAAstekSRM3d+7cqNtSUlJcUlKSq1+/vitdunSm5QEAAAAAABhgB45hdevWzfXAedOmTbkiRhGzb/2+HO9PT013+zftdyXiS7hQyVC2yx3qeXBkYmJi3GOPPeZ69uzpunfv7oYOHeoSEhLcwoUL3YgRI9zHH3/sJkyY4GJiYgp7VQEAAAAAAAAAyFKZMmWyfP+oQ4cOhbA2AAAAAACgqGCAHQCKmfj4eFeqdCm37oV1efacpUqXcvHx8Xn2fDioR48ebsKECW7gwIGuffv2we0NGjRwEyZMcD169CjEtQMAAAAAAAAAoGDt2bPHJSYmRt22ZMmSqP9GatKkiStTpkyBrBsAAAAAAMg7DLADQDFTt25dtzRxqdu0aVOOyy1ZssT17t3bvfnmm65p06Y5LhsfH5/rq/Xj8PTo0cN169bNzZw50yUnJ7uaNWu6jh07cuV1AAAAAAAAAMAxJzEx0bVu3TrL+3r37p3ptrlz5/INwgAAAAAAFEEMsAOAUYdzlZGMVxipW7durgfOmzZtysndQhYTE+M6d+5c2KsBAAAAAAAAAEChatKkiZs7d27UbSkpKS4pKcnVr1/flS5dOtPyAAAAAACg6GGAHQCMOpyrjHCFEQAAAAAAAAAAUNSVKVMmy/c7OnToUAhrAwAAAAAA8gsD7ABg1OFcZYQrjAAAAAAAAAAAAAAAAAAAgKKAAXYAMIqrjAAAAAAAAAAAAAAAAAAAgOImVNgrAAAAAAAAAAAAAAAAAAAAAAA4NnAFdgB5Zs2aNW7Tpk05LrNkyZKo/+YkPj7e1a1bN0/WDchLaWlpbubMmS45OdnVrFnTdezY0cXExBT2agEAAAAAAAAAAAAAAAAAYB4D7ADyxJo1a9xJTU5ye1P25mr53r17H3KZUqVLuaWJSxli//8YmrZh4sSJbuDAgS4pKSm4rX79+u6xxx5zPXr0KLwVAwAAAAAAAAAAAAAAAACgCGCAHUCe2LRpk9ubstfVvqG2i6sVl+1y6anpbv+m/a5EfAkXKhnKdrl96/e5dS+sc5s2bWKA3TE0bcXEiRNdz549XdeuXd348eNdQkKCW7hwoRs+fLjr2bOnmzBhAj0AAAAAAAAAAAAAAAAAAMgBA+wA8lRcrThXun7pnBdqXDDrUlwwNG1DWlqaGzhwoOvataubNGmSC4UOfgCjXbt2btKkSa579+5u0KBBrlu3blwZHwAAAAAAAAAAAAAAAACAbGR/+WMAQKHLODTdrl07V65cuWBoumvXrm7QoEEuLS2tsFe12Js5c6ZLSkpyd911VzC8HhYKhdzQoUPd6tWr3cyZMwtpDQEAAAAAAAAAAAAAAAAAsI8BdgAwjKFpO5KTk51zziUkJGR5f/j28HIAAAAAAAAAAAAAAAAAACAzBtgBwDCGpu2oWbOmc865hQsXZnl/+PbwcgAAAAAAAAAAAAAAAAAAILPYwl4BAMVDSkqKc865fev35cnzhZ8n/LzHqsih6Xbt2mW6n6HpgtOxY0dXv359N3z4cDdp0qSoK+Knp6e7ESNGuAYNGriOHTsW4loCAAAAAAAAAAAAAAAAAGAbA+wAAnv27HGJiYlRty1ZsiTqv5GaNGniypQp45xzLikpyTnn3LoX1uXpOiUlJbkOHTrk6XMWJQxN2xETE+Mee+wx17NnT9e9e3c3dOhQl5CQ4BYuXOhGjBjhPv74YzdhwgQXExNT2KsKAAAAAAAAAAAAAAAAAIBZDLADCCQmJrrWrVtneV/v3r0z3TZ37lzXqlUr55xz9evXd845V/uG2i6uVtxRr8u+9fvcuhfWBc97rMqroemj+XAC/tSjRw83YcIEN3DgQNe+ffvg9gYNGrgJEya4Hj16FOLaAQAAAAAAAAAAAAAAAABgHwPsAAJNmjRxc+fOjbotJSXFJSUlufr167vSpUtnWj4sfF9crThXun70ckcj4888FuXF0PTRfDgB0Xr06OG6devmZs6c6ZKTk13NmjVdx44dufI6AAAAAAAAAAAAAAAAAAC5wAA7gECZMmWyHFru0KFDIawNIh3t0HTkhxOmT5/unnjiCbd+/frg/lq1arkBAwa4Ll26BMsjezExMa5z586FvRoAAAAAAAAAAAAAAAAAABQ5ocJeAQB2paWluRkzZrjx48e7GTNmuLS0tMJepWNaeGi6V69ernPnzod1xe/whxOSkpLckCFDXOvWrd3s2bPdzp073ezZs13r1q3dkCFDXFJSkmvVqpUrU6ZMPr4SAAAAAAAAAAAAAAAAAABwrGKAHUCWJk6c6Bo1auTOPvts9/e//92dffbZrlGjRm7ixImFvWo4QmlpaW7gwIGua9eubtKkSa5du3auXLlyrl27dm7SpEmua9eubtCgQXxQAQAAAAAAAAAAAAAAAAAA5BsG2AFkMnHiRNezZ0/XvHnzqKt0N2/e3PXs2TPHIfZ96/e5lKSUbH/tXrbbbftum9u9bHeOy+1bv68AX/GxYebMmS4pKcndddddLhSK/us/FAq5oUOHutWrV7uZM2cW0hoCAAAAAAAAAAAAAAAAAIDiLrawVwCALRmv0h0edA5fpbt79+5u0KBBrlu3bi4mJiZ4XHx8vCtVupRb98K6PFuXUqVLufj4+Dx7vmNdcnKyc865hISELO8P3x5eDgAAAAAAAAAAAAAAAAAAIK8xwA4gSvgq3ePHj8/2Kt3t27d3M2fOdJ07dw7uq1u3rluauNRt2rQpx+dfsmSJ6927t3vzzTdd06ZNc1w2Pj7e1a1b94hfC6LVrFnTOefcwoULXbt27TLdv3DhwqjlAAAAAAAAAAAAAAAAAAAA8hoD7ACiHM1VuuvWrZvrgfOmTZu6Vq1aHeFa4kh07NjR1a9f3w0fPjzq6vrOOZeenu5GjBjhGjRo4Dp27FiIawkAAAAAAAAAAAAAAAAAAIqz0KEXAXAsibxKd1a4SnfRFRMT4x577DH38ccfu+7du7vZs2e7nTt3utmzZ7vu3bu7jz/+2D366KMuJiamsFcVAAAAAAAAAAAAAAAAAAAUUwywA4gSeZXu9PT0qPu4SnfR16NHDzdhwgS3YMEC1759e1ehQgXXvn17t3DhQjdhwgTXo0ePwl5FAAAAAAAAAAAAAAAAAABQjMUW9goAsCV8le6ePXu67t27u6FDh7qEhAS3cOFCN2LECPfxxx+7CRMmcJXuIqxHjx6uW7dububMmS45OdnVrFnTdezYkaYAAAAAAAAAAAAAAAAAACDfMcAOIJPwVboHDhzo2rdvH9zeoEEDrtJdTMTExLjOnTsX9moAAAAAAAAAAAAAAAAAAIBjDAPsALLEVboBAAAAAAAAAAAAAAAAAACQ1xhgB5AtrtINAAAAAAAAAAAAAAAAAACAvBQq7BUAAAAAAAAAAAAAAAAAAAAAABwbGGAHAAAAAAAAAAAAAAAAAAAAABQIBtgBAAAAAAAAAAAAAAAAAAAAAAWCAXYAAAAAAAAAAAAAAAAAAAAAQIFggB0AAAAAAAAAAAAAAAAAAAAAUCAYYAcAAAAAAAAAAAAAAAAAAAAAFAgG2AEAAAAAAAAAAAAAAAAAAAAABYIBdgAAAAAAAAAAAAAAAAAAAABAgWCAHQAAAAAAAAAAAAAAAAAAAABQIBhgBwAAAAAAAAAAAAAAAAAAAAAUiNjCXgEAxdeePXtcYmJi1G1LliyJ+m+kJk2auDJlyhTIugEAAAAAAAAAAAAAAAAAAKDgMcAOIN8kJia61q1bZ3lf7969M902d+5c16pVq/xeLQAAAAAAAAAAAAAAAAAAABQSBtgB5JsmTZq4uXPnBn9OS0tz33//vUtMTHRNmjRx7dq1czExMVHLAwAAAAAAAAAAAAAAAAAAoPhigB1AvilTpkxwRfWJEye6gQMHuqSkpOD++vXru8cee8z16NGjkNYQAAAAAAAAAAAAAAAAAAAABSlU2CsAoPibOHGi69mzp2vevLmbPXu227lzp5s9e7Zr3ry569mzp5s4cWJhryIAAAAAAAAAAAAAAAAAAAAKAAPsAPJVWlqaGzhwoOvataubNGmSa9eunStXrpxr166dmzRpkuvatasbNGiQS0tLK+xVBQAAAAAAAAAAAAAAAAAAQD5jgB1Avpo5c6ZLSkpyd911lwuFov/KCYVCbujQoW716tVu5syZhbSGAAAAAAAAAAAAAAAAAAAAKCixhb0CAIq35ORk55xzCQkJLi0tzc2cOdMlJye7mjVruo4dO7qEhISo5QAAAAAAAAAAAAAAAAAAAFB8McAOIF/VrFnTOefc6NGj3ZgxY1xSUlJwX/369d0NN9wQtRwAAAAAAAAAAAAAAAAAAACKr1BhrwCA4q1jx47uuOOOc0OHDnUJCQlu9uzZbufOnW727NkuISHB3XXXXa5atWquY8eOhb2qAAAAAAAAAAAAAAAAAAAAyGcMsAPId9774PeSgl8AAAAAAAAAAAAAAAAAAAA4tjDADiBfzZw50/3+++9uxIgRbuHCha59+/auQoUKrn379m7RokVu+PDh7vfff3czZ84s7FUFAAAAAAAAAAAAAAAAAABAPmOAHUC+Sk5Ods45d8stt7gVK1a4r776yo0bN8599dVXbvny5e6WW26JWg4AAAAAAAAAAAAAAAAAAADFV2xhrwCA4q1mzZrOOecWLlzo2rVr5zp37hx1/8KFC6OWAwAAAAAAAAAAAAAAAAAAQPFVbK7A/uuvv7qBAwe6Jk2auLJly7oqVaq4Nm3auEceecTt2bPnqJ47PT3dLV682L366quuX79+rk2bNi4uLs5575333s2YMSNvXgRQDHXs2NHVr1/fDR8+3KWnp0fdl56e7kaMGOEaNGjgOnbsWEhrCAAAAAAAAAAAAAAAAAAAgIJSLK7A/tFHH7nevXu7HTt2BLft2bPHzZkzx82ZM8e99NJL7pNPPnGNGjU6oud/4403XJ8+ffJobYFjS0xMjHvsscdcz549Xffu3d3QoUNdQkKCW7hwoRsxYoT7+OOP3YQJE1xMTExhryoAAAAAAAAAAAAAAAAAAADyWZG/AvvPP//srrjiCrdjxw5Xrlw5N2zYMPfdd9+5adOmueuvv94559yyZcvcRRdd5Hbu3HlEP0NS8PsSJUq4Vq1auebNm+fJ+gPHgh49ergJEya4BQsWuPbt27sKFSq49u3bu4ULF7oJEya4Hj16FPYqAgAAAAAAAAAAAAAAAAAAoAAU+Suw33rrrS4lJcXFxsa6L7/80p1xxhnBfV26dHEnnniiGzJkiFu2bJl77LHH3P3333/YP6NZs2bu6aefdm3atHGnnnqqK1WqlLv//vvdggUL8vCVAMVbjx49XLdu3dzMmTNdcnKyq1mzpuvYsSNXXgcAAAAAAAAAAAAAAAAAADiGFOkB9h9//NHNnDnTOefcP//5z6jh9bCBAwe6V155xS1ZssQ99dRT7u6773YlSpQ4rJ/Ttm1b17Zt2zxZZ+BYFhMT4zp37lzYqwEAAAAAAAAAAAAAAAAAAIBCEirsFTgakyZNCn7ft2/fLJcJhULu6quvds45t23bNvfVV18VxKoBAAAAAAAAAAAAAAAAAAAAADIo0gPss2bNcs45V7ZsWde6detsl+vUqVPw+2+//Tbf1wsAAAAAAAAAAAAAAAAAAAAAkFmRHmBfsmSJc865Ro0audjY2GyXa9KkSabHAAAAAAAAAAAAAAAAAAAAAAAKVvZT38bt3bvXbdq0yTnnXO3atXNctnLlyq5s2bJu9+7dbu3atQWxejnat2+f27dvX/DnHTt2FOLaAAAAAAAAAAAAAAAAAAAAAEDBKLJXYN+5c2fw+3Llyh1y+bJlyzrnnNu1a1e+rVNujRgxwlWsWDH4VadOncJeJQAAAAAAAAAAAAAAAAAAAADId0V2gH3v3r3B70uWLHnI5ePi4pxzzqWkpOTbOuXW0KFD3fbt24NfFq4KDwAAAAAAAAAAAAAAAAAAAAD5LbawV+BIlSpVKvh9amrqIZfft2+fc8650qVL59s65VZcXFwwUA8AAAAAAAAAAAAAAAAAAAAAx4oiewX28uXLB7/ftWvXIZffvXu3c865cuXK5ds6AQAAAAAAAAAAAAAAAAAAAACyV2QH2EuVKuWqVq3qnHNu3bp1OS67devWYIC9Tp06+b5uAAAAAAAAAAAAAAAAAAAAAIDMiuwAu3PONWvWzDnn3IoVK9yBAweyXS4xMTH4fdOmTfN9vQAAAAAAAAAAAAAAAAAAAAAAmRXpAfYzzzzTOefc7t273dy5c7Nd7uuvvw5+36FDh3xfLwAAAAAAAAAAAAAAAAAAAABAZkV6gL179+7B71955ZUsl0lPT3evv/66c865SpUqubPPPrsgVg0AAAAAAAAAAAAAAAAAAAAAkEGRHmBv27at69ixo3POubFjx7rZs2dnWuaxxx5zS5Yscc45d+utt7oSJUpE3T9jxgznvXfee9enT598X2cAAAAAAAAAAAAAAAAAAAAAOFbFFvYKHK2nnnrKdejQwaWkpLjzzjvP3XXXXe7ss892KSkp7u2333YvvPCCc865xo0bu4EDBx7xz3n11Vej/vzLL78Ev//8889dUlJS8OdGjRq5M88884h/FgAAAAAAAAAAAAAAAAAAAAAUR0V+gL1ly5bunXfecb1793Y7duxwd911V6ZlGjdu7D755BNXvnz5I/45ffv2zfa+hx9+OOrP11xzDQPsAAAAAAAAAAAAAAAAAAAAAJBBqLBXIC9cfPHFbv78+W7AgAGucePGrkyZMq5SpUrutNNOcw8//LD7+eefXaNGjQp7NQEAAAAAAAAAAAAAAAAAAADgmFbkr8AeVq9ePff444+7xx9//LAe17lzZyfpkMvlZhkAAAAAAAAAAAAAAAAAAAAAQPaKxRXYAQAAAAAAAAAAAAAAAAAAAAD2McAOAAAAAAAAAAAAAAAAAAAAACgQDLADAAAAAAAAAAAAAAAAAAAAAAoEA+wAAAAAAAAAAAAAAAAAAAAAgAIRW9grAOckOeec27FjRyGvCfJaenp68F/6AgAAAACQPzj+BgDkFvsMAEBusL8AAOQW+wwAQGEJ73fC86dAUePF/3oL3bp161ydOnUKezUAAAAAAAAAAAAAAAAAAABQRKxdu9bVrl27sFcDOGwMsBuQnp7u1q9f78qXL++894W9Oibs2LHD1alTx61du9ZVqFChsFfnmEYLW+hhBy3soIUdtLCDFrbQww5a2EELO2hhBy1soYcdtLCDFnbQwg5a2EIPO2hhBy3soIUdtLCFHnbQwg5a2EELO2iRNUlu586drlatWi4UChX26gCHLbawVwDOhUIhPgGTjQoVKrDTMYIWttDDDlrYQQs7aGEHLWyhhx20sIMWdtDCDlrYQg87aGEHLeyghR20sIUedtDCDlrYQQs7aGELPeyghR20sIMWdtAis4oVKxb2KgBHjI9dAAAAAAAAAAAAAAAAAAAAAAAKBAPsAAAAAAAAAAAAAAAAAAAAAIACwQA7TIqLi3P33Xefi4uLK+xVOebRwhZ62EELO2hhBy3soIUt9LCDFnbQwg5a2EELW+hhBy3soIUdtLCDFrbQww5a2EELO2hhBy1soYcdtLCDFnbQwg5aAMWTl6TCXgkAAAAAAAAAAAAAAAAAAAAAQPHHFdgBAAAAAAAAAAAAAAAAAAAAAAWCAXYAAAAAAAAAAAAAAAAAAAAAQIFggB0AAAAAAAAAAAAAAAAAAAAAUCAYYAcAAAAAAAAAAAAAAAAAAAAAFAgG2GFeWlpaYa8CAAAAAAAAAAAAAAAAAAAAgDzAADtMS01Ndc8884y77bbbCntVAAAAAAAAAAAAAAAAAAAAAByl2MJeASA7qamp7vXXX3f33nuv2717t0tLS3PPPPNMYa8WAAAAAAAAAAAAAAAAAAAAgCPEFdhhUmpqqnvttdfcgAED3O7du11cXJx79tln3bXXXlvYq3ZMkpTl71HwaGEHLeyghS30sIMWdtDCDlrYQQtb6AEAAAAAAAAAAACgIDHADnPCV14fOHCg2717t6tSpYo7cOCAc84F/0X+yjiw4L3P9HuGGgoGLeyghR20sIUedtDCDlrYQQs7aGELPezIuJ3T09MLaU1ACztoYQctbKGHHbSwgxZ20MIOWthCDztoYQct7KCFHbSwgxa20AMo/mILewWASOHh9dtvv93t2rXLdejQwTVu3Ni988477rjjjnN9+/Z1zh3cQUW+wY68Fd62SUlJbv78+W7RokUuOTnZxcTEuCZNmrjTTjvNNW/e3JUsWdI5R4/8RAs7aGEHLWyhhx20sIMWdtDCDlrYQg8bIrfrzJkz3UknneSqVavmDhw44GJjOWVXkGhhBy3soIUtkT1WrFjhGjVq5EKhkEtLS3MxMTGFvHbHFlrYQQs7aGEHLWyhhx20sIMWdnDMZwct7KCFLfQAjg38vxlmZBxeP+2001y/fv3cs88+6/bs2eNOPPFE17ZtW+ec443zfCTJ7dq1y919993um2++cfPnz4+633vvQqGQu+qqq9yFF17oevbs6bz3DDTkA1rYQQs7aGELPeyghR20sIMWdtDCFnrYELk9p0+f7h566CG3aNEiN2vWLHfiiScW8todW2hhBy3soIUtkT2mTp3qHnroIdemTRv3yCOPMORTwGhhBy3soIUdtLCFHnbQwg5a2MExnx20sIMWttADOIYIMGDfvn168cUXVb58eXnv1bx5c40fP17jxo3TcccdpypVquj777+XJKWlpRXy2hZfu3bt0qRJk9SlSxd574Nf1atXV61atVSnTh01btxY3nuFQiGVL19e9913X/D49PT0wlv5YoYWdtDCDlrYQg87aGEHLeyghR20sIUeNkRuxylTpujiiy9WTEyMvPf6z3/+I4lzHwWFFnbQwg5a2JKxR/fu3YP990cffcS+uQDRwg5a2EELO2hhCz3soIUdtLCDYz47aGEHLWyhB3BsYYAdhS7j8Popp5yit99+W5I0ZMgQee917rnnKjk5uZDXtHjbvn27nn/+ebVs2VLee8XGxqpatWoaMGCAvvvuO23dulU7duzQ9u3bNWbMGF166aUKhULy3uvWW28NnoeDy6NHCztoYQctbKGHHbSwgxZ20MIOWthCDxuyOvkefsP2+uuvD+4Ln4DnRHz+oYUdtLCDFrbk1OOOO+7ItDw98g8t7KCFHbSwgxa20MMOWthBCzs45rODFnbQwhZ6AMceBthRqDIOr7do0ULjx4/X/v37NWPGjGAnNG7cuMJe1WJt9+7devnll9WsWTN571WiRAn16tVLkyZNilou8h8Kq1at0iOPPBIMNNx7770FvdrFEi3soIUdtLCFHnbQwg5a2EELO2hhCz1syHjyvVu3blFXwj/55JNVuXJldejQQffcc0/wQf4DBw4U1ioXW7SwgxZ20MKWnHrExsaqT58+Ou+88/TQQw/pyy+/DJalR96jhR20sIMWdtDCFnrYQQs7aGEHx3x20MIOWthCD+DYxAA7Ck1Ww+vjxo3Ttm3bJEl33HGHQqGQLrvsMu3du1dS5iu98UmqoxPentOnT1fr1q2DQYbbbrtNv/zyS7Bc5M4+ssHevXv11FNPKRQKKS4uTq+//nrBrXwxQws7aGEHLWyhhx20sIMWdtDCDlrYQg87cvqq7CZNmujMM8/UgAEDdPrpp6t69ery3qt169ZatWpVpsfj6NDCDlrYQQtbcuoRHx+vOnXq6LTTTlNsbKy89ypXrpxGjRqV5eNxdGhhBy3soIUdtLCFHnbQwg5a2MExnx20sIMWttADOHYxwI5Ckd2V13fs2CFJWrlypapVqybvvR5++OFDPt+SJUv07LPPqn///vm96sVG5M77oosuCgYZbr75Zi1dujTL5bKSnJysG2+8UaFQSH/729+0detW/mFwmGhhBy3soIUt9LCDFnbQwg5a2EELW+hhR04n36+99lr9+OOPSklJkSRt3bpVU6dOVfv27eW9V6NGjbR169ZCWvPihxZ20MIOWtiSU49evXrpgw8+0B9//KEDBw7ou+++09ChQ4P777vvvsJb8WKIFnbQwg5a2EELW+hhBy3soIUdHPPZQQs7aGELPYBjGwPsKHDZDa/v2rVLkpSSkqL+/fvLe68zzjgjuBJc+Grr4f/u2bNHmzZt0sCBA9W2bdtg58UQ++F56KGH5L1XTEyMLrroIv3000+H/RyTJ09WiRIlFAqFNGXKlHxYy2MDLeyghR20sIUedtDCDlrYQQs7aGELPQpXTiffBw0aFLVs5JXwp0+frjZt2mjAgAFav359ga1vcUYLO2hhBy1syanH7bffnuUHyFJSUnTXXXepZMmSuv3227V9+/aCXOViixZ20MIOWthBC1voYQct7KCFHRzz2UELO2hhCz0AMMCOAnWo4XVJ2rRpk9q3b6+SJUvq6aeflnTwa8sjLVy4UDfeeKNatmwZvBHvvVfp0qWDT2Dh0NLT09WjRw+FQiF57/Xaa68d8XNddtll8t7rxhtv1L59+/JwLY8NtLCDFnbQwhZ62EELO2hhBy3soIUt9ChcOZ18Hzx4cJbLhe3cuVPTpk3T6tWrC2JViz1a2EELO2hhS049hgwZkuVyYYsXL9Zbb70VfG02jg4t7KCFHbSwgxa20MMOWthBCzs45rODFnbQwhZ6AJAYYEcB2rt3r8aOHZvj8Lok3X///fLeq2rVqlqwYEHUfZMnT9aQIUOC5yhdurRq1qypf/zjH6pdu3awI+vbt6+2bdtWkC+vSJo3b16wzXr37h3cfjhfBx/+hNvdd98t770GDBgQXCUfuUcLO2hhBy1soYcdtLCDFnbQwg5a2EKPwpPbN2wjrxqTUeQHBT7//HNt3bpVqampkkSDw0ALO2hhBy1sye0btjn1iPy67IxXHqNH7tHCDlrYQQs7aGELPeyghR20sINjPjtoYQctbKEHgDAG2FEg0tPT9dprrwU7m4zD6+Ed07Jly9S6dWt57zV69GhJBz81NWnSJN1www3y3is2Nlbee11wwQUaPXq03nzzTV177bXBcw8YMEC//fZbob3WomT69OnB9gxv75x2/jmZNGmSrrjiCm3ZsiUvV/GYQQs7aGEHLWyhhx20sIMWdtDCDlrYQo/CN2XKFPXo0eOwT75HCn/Q/4wzztDIkSP1xx9/HNbjcRAt7KCFHbSwZdq0aUf0hm2kW2+9VfXq1dNdd92lb7755rAfj4NoYQct7KCFHbSwhR520MIOWtjBMZ8dtLCDFrbQAwAD7CgwiYmJ8t6rbt26euedd6KuvB4eYB83bpxCoZBatmypt956S1OmTNEZZ5yhSpUqBTurK664Qs8995wOHDigb775RldeeSXD64cpvL3Hjx8v773Kli2rhQsXHtVzrlmzRrt375bEPwIOBy3soIUdKcU1hgABAABJREFUtLCFHnbQwg5a2EELO2hhCz1sSExMVKdOnY7q5HtqaqomTZqkVq1aqUyZMvLeq0uXLlqzZs1hPc+xjhZ20MIOWtgyY8YMdenSRTExMYd1hcpIGzdu1HXXXadQKCTvvU444YTgA2yH8zzHOlrYQQs7aGEHLWyhhx20sIMWdnDMZwct7KCFLfQAIDHAjgK2cuVKvf/++9q5c2em+3799Vc1atRI3nvVrl1bZ599tqpXry7vverUqaOuXbvqww8/DJb/6aef1LVr12BHdvvttzO8fpg+//zzYPt99dVXefKch/NV9PgTLeyghR20sIUedtDCDlrYQQs7aGELPQrfzTfffFhv2Ga3fdeuXasXX3xRzZs3l/de9evXV1JSkiS+DjW3aGEHLeyghR1r165VhQoV5L3XnXfeGdx+JG+0TpgwQVdddVXwb4B///vfwX30ODRa2EELO2hhBy1soYcdtLCDFrZwzGcHLeyghS30AMAAOwpcdjuT//3vfypXrlxwABIeZO/evbvmz5+vDRs2SDq4Y/nmm290ySWXMLx+lH7++efgAHLy5MmS8nYYgU+y5R4t7KCFHbSwhR520MIOWthBCztoYQs9Ck/kSfFJkyYFv89um2Xssn///kzL7Nu3Tz/88IPatWsn771atGih9evX59EaF1+0sIMWdtDCpnnz5um+++4L/pzbHllZt26dhg8fHpw/HzFiRF6t5jGBFnbQwg5a2EELW+hhBy3soEXh45jPDlrYQQtb6AEgjAF2mPLYY4/Je69y5cppyJAhmjVrVtROJz09XV9//bW6d+/O8Hoeufjii+W9V9euXbV58+Y8ec7p06cHv+eTbLlHCztoYQctbKGHHbSwgxZ20MIOWthCj8KT8SR6diffw9tw7dq1ev3119W3b1/16NFDTz31VJZXzv/222918skny3uvW2+9VXv37s3zdS9uaGEHLeyghW2H6vH777/r22+/1RNPPKFnnnlGP//8s7Zs2SLpzzd1d+7cqQcffFDee1WsWDHqDWHkHi3soIUdtLCDFrbQww5a2EGLwsMxnx20sIMWttADgMQAO4yIfMP766+/1jfffJNpmfT0dH3zzTdHNLwe3smlp6dr586debfiRVj4gG/s2LGqWrWq6tatq8mTJx/18MFDDz0k77369++fF6t5TKCFHbSwgxa20MMOWthBCztoYQctbKFH0RDutHTpUp111lmqWrVq1DfTVapUSffff3/UY3bt2qXBgwfLe68zzjhDKSkphbHqxQ4t7KCFHbSwJbwPX7ZsmS644ALVqlUraFGnTh395S9/0bJly6Ies3TpUp199tmKiYnRwIEDJeXtt7Ecq2hhBy3soIUdtLCFHnbQwg5a2MExnx20sIMWttADKP4YYIcZWb2JHv601ZEMr2c8YNm1a5dGjhypzp07q0+fPnm78kXY77//rvPOO0/ee7Vv314LFy484ucKf/LZe6/zzz9fa9euDTpwAHlotLCDFnbQwhZ62EELO2hhBy3soIUt9LAvKSkp+FrTsmXLqn79+rr00kuDq8R47/V///d/wRXIJOmbb74J7vv2228Lce2LF1rYQQs7aGHLihUr1Lp162D7VqlSRTVq1FClSpXkvVe1atU0bdq0qMfccccd8t6rZs2a2rZtG/vsPEILO2hhBy3soIUt9LCDFnbQwg6O+eyghR20sIUeQPHGADvMinwT/HCG1zN+pcjcuXP1+OOPq1mzZlGfwrr66qvz/TUUFStXrtQJJ5wg7706duyoqVOnaseOHZL+/GDBoa7S98ADDwTbtnPnznr33Xe1fv36qMdlfA4OKjOjhR20sIMWttDDDlrYQQs7aGEHLWyhh03h7fX444+rYsWKiouL03XXXae1a9dKkpYsWaJHH3002O7//Oc/lZycLElavHixKlSooJiYGP3000+F9hqKC1rYQQs7aGHP3r171b9/f5UsWVIVKlTQtddeq9WrV+u3337Te++9p44dO8p7r/j4eH344Yfat2+fJGny5MkqWbKkmjRpoj179hTyqygeaGEHLeyghR20sIUedtDCDlrYwDGfHbSwgxa20AM4NjDADpOOdHg90syZMzVq1ChVrlxZZcqUkfc++MSu9161a9fWxo0b8/ulFBmJiYmqXbu2vPc66aSTdNttt2n+/PnBVfBzEv4K+fCvihUrqlKlSqpXr56uvPJKvfXWW8Gy4Q8YRA4yfPTRR8E/IkALS2hhBy1soYcdtLCDFnbQwg5a2EIPu7p16ybvvY4//nitWrUq0/3vvvtusO1vuOEGrV27Vnfeeae892ratKl27txZCGtdPNHCDlrYQQs7du3apVatWsl7r1NPPVW//vpr1P1//PGHLrzwQnnvVbVqVX3++efau3evrr76annv1a5du0Ja8+KHFnbQwg5a2EELW+hhBy3soIUtHPPZQQs7aGELPYDijQF2mHM4w+vhT1uFH7N582bNnz9fffr0Ub169YLH1alTR5dddpkmTpyoBg0ayHuv/v37a+/evQX/Ag1bsWKFunTpEgz8x8XFqXPnzrrppps0derULB8zbNiwYDuXK1dOrVu31nXXXafevXtHXfX+P//5T5aPHz9+vNq0aaNy5cppxYoV+fnyihRa2EELO2hhCz3soIUdtLCDFnbQwhZ62JKenq49e/aoTZs28t7roosuCu7LeDX7SZMmBdu6Y8eOatKkiUKhkAYMGKB9+/Yd8gr6yBkt7KCFHbSwZ/78+SpfvrxiYmL08MMPS8r6g2MXX3yxvPeqUqWK+vXrp0aNGqlMmTJ68sknJR36W1dwaLSwgxZ20MIOWthCDztoYQctbOCYzw5a2EELW+gBHBsYYIdJ6enpmjVrVo7D6+GDGEnatm2bZs6cqb/+9a866aST5L1XyZIlVa5cOd16662aNWuWJOnBBx+U916lS5fWL7/8UuCvqyjYsGGDnnvuOf31r3+V914xMTHq0qVL8PXykSIHGc455xw9++yzUfevXLlSI0eODJZ55plnou7//fffdfbZZwf3v/rqq/n62ooaWthBCztoYQs97KCFHbSwgxZ20MIWetjzr3/9S957NWvWTImJiVH3paenB1fJnzBhQrAtvT/4Yf25c+cWxioXW7SwgxZ20MKOnTt3qmXLlvLe64orrtCuXbui7o88X37RRRcF58G99zr55JO1aNGigl7lYosWdtDCDlrYQQtb6GEHLeyghS0c89lBCztoYQs9gOKNAXaY9N1336lLly7BTuX222/XunXrJP35qdvwp6PGjBmjK6+8UqVKlQqWr1y5sh588EFNmTIleM4lS5aoSZMmiomJ0aBBg6KeA1mbNGmSxo8fr23btkmKPliMHGTo0aOHpk+fHrSJvLL9rl27NGTIEJ1yyin65JNPMv2ML7/8Ut57Pf300/n8aoo2WthBCztoYQs97KCFHbSwgxZ20MIWetjw1ltvBdt61KhR2r17d3Bf+OT7zp07NW7cODVu3DhY9vPPP496nuzOcXDuI/doYQct7KCFHSkpKbr22mvlvVeLFi30ww8/RN0fuR9/8cUXFR8fL++9SpQokembViKvbInDRws7aGEHLeyghS30sIMWdtDCFo757KCFHbSwhR5A8cYAO0xau3atQqGQvPcaNGiQ1qxZE3X/pk2b9OijjwafuI2JiZH3Xu3atdOgQYO0fPnyTM/5wgsvyHuvUCikDz74oIBeSdGU1YFeeKcvRQ8yXHbZZcEV7rN77Pfff685c+YE98+bNy/q/sgr6/MPg2i0sIMWdtDCFnrYQQs7aGEHLeyghS30sOeOO+4Itvl//vMfff/995Kk3bt3a82aNfrnP/8ZfOOc914ffvihpIPbO/KNXUn6448/lJSUpA0bNkTdzrbPHVrYQQs7aGHHypUrVadOHXl/8Cuxv/nmG23dujW4f9OmTRo4cKBOPfXUXPWQDv4bIPLfARI9coMWdtDCDlrYQQtb6GEHLeyghS0c89lBCztoYQs9gOKLAXaYtWDBAg0dOlQbN24Mbvvxxx/1wgsv6MQTT1RsbGyw44mNjVWPHj0kSXv27JEUvWNZsmRJcADUp0+fgn0hxcxDDz0UbPeePXvq22+/De471Cec09PTNX78eLVo0UL/+te/Mj2OfwwcHlrYQQs7aGELPeyghR20sIMWdtDCFnoUrMiT5/fee69KlCgRXFWsVatWatasmSpXrhw08d7r448/lnRwu6ampkqSNm7cqJdfflkXX3yxateurZiYGFWvXl0XX3yxnn76af3xxx+Zfh6i0cIOWthBC5uWLl0aXFGsdu3a6tixo2677Tb16dNHDRs2jPqm0vC3o0T22Lx5s7766ivdeOONuuiii3T66aerS5cuGjt2rGbPnh38HHocGi3soIUdtLCDFrbQww5a2EGLwscxnx20sIMWttADKP4YYIdp4Te5v/rqK40cOVLHHXecypcvL++9qlSponr16kV96vabb76RdHCHEvkpqhdffFEVK1ZUtWrVgquv88b54RsxYsRhDzJEbud33nlHf/nLX4LniDxwxOGhhR20sIMWttDDDlrYQQs7aGEHLWyhR+GIPCk+adIkDR48WGeffbZOOeUU1axZM/jWOe+9PvroI0nRJ9+XL1+uLl26qGbNmvLeq2TJklEn7MuUKaNOnTrp119/zfTzEI0WdtDCDlrYlJSUpNtuu02nnHKKKlWqpLi4OMXFxR3yDduVK1fqsssu0wknnCDvfVS/kiVLqkmTJnr66aeDn0OPQ6OFHbSwgxZ20MIWethBCztoUfg45rODFnbQwhZ6AMUbA+wwb9OmTerQoUPUzqNly5b673//q/nz52vu3Lk699xzg/umTJki6c8dSmpqqtq0aSPvvdq1a6cdO3Yc8mempaUFOyYc9Oijjx72IEPk7e+++67OPvvs4Dmee+65fF/n4ooWdtDCDlrYQg87aGEHLeyghR20sIUehSvjh+z/+OMPPf3002rVqlWwTSO/9jR88n3p0qWqXbt2sEy5cuU0ePBgjRo1SmPHjlWPHj3UsGFDee9Vv359JSUlZfnz8Cda2EELO2hhU2pqqtLS0jR37lzdfffdOvHEE3N8wzYxMVH169cPlomLi1PXrl11zTXX6NJLL1WjRo2C+/79738HP4ceh0YLO2hhBy3soIUt9LCDFnbQovBxzGcHLeyghS30AIovBthRJCxatEixsbHq0KGD7rrrLu3duze4LzU1VVOnTs1yiD0tLU1PPPGEvPeqXLmyPv/88+D27KSlpemnn35Ss2bNdNVVV+XvCytCFixYoFAopPPOO0/fffddcPuhBhnS09MzDTI8//zzwXJpaWmH/Bp6RKOFHbSwgxa20MMOWthBCztoYQctbKGHLd99950aNGiQ5cn38Af2V65cGbxhW7VqVV1yySVasGBB1PNs27ZN06dP1xlnnCHvvVq1aqXk5OQCfz1FGS3soIUdtLAhvH997bXX1LRp0yyHfPbv3y9JWrZsmY4//vjgPHnnzp31008/BfdL0o8//qh77703eJ5Ro0YV/IsqomhhBy3soIUdtLCFHnbQwg5a2MMxnx20sIMWttADKD4YYEeRsWHDBq1ZsyYYPj9w4EBwMLN//35NmzYtyyH2yy+/XN57tW7dWitXrszxZ4SH17t06RI8z80335y/L6wIWbt2rX744Yfgz0dyFb6MgwxZfZiAr2M5NFrYQQs7aGELPeyghR20sIMWdtDCFnrY0qdPH3kf/VXZ4W2/efNmXXrppfLeq0qVKurTp49Wr14t6c/tG7nt586dq1NPPVXeew0aNEj79u0r2BdTxNHCDlrYQQs7Vq5cGeyHP/30U0nRPTZs2KDOnTvLe6/4+Hj16dMnOE8eeY5dknbv3q1Ro0YF7cJ9kTu0sIMWdtDCDlrYQg87aGEHLWzhmM8OWthBC1voARQPDLCjSMrqTfSshtgHDRoU/H7MmDE5Pmd4eD180FOqVCnFxMTIe6/+/fvn10spsvJ6kGHEiBG6884782+FizFa2EELO2hhCz3soIUdtLCDFnbQwhZ6FJ7I7bZo0SJJf558D2//6dOn64QTTpD3XmeffXbwhm123fbt26fnn39elSpV0kknnaTffvstn19F8UALO2hhBy1sWrRokb744gtJf/YIt3rppZdUo0YNee/VrVu34A3b7HqsX79evXv3VokSJXTLLbdEXc0Sh0YLO2hhBy3soIUt9LCDFnbQovBxzGcHLeyghS30AIoXBthRrGQcYg+FQvLe65xzztGGDRskZb0zyji8XrJkSf3973/X3XffHTzHLbfcUtAvp8g50kGGp59+Olju8ccfL9B1Lq5oYQct7KCFLfSwgxZ20MIOWthBC1voUXAyXqU+47mM66+/Xt57xcXF6aeffspymYzWrFmjcuXKqVq1atq7d2/ernAxRgs7aGEHLeyKfLM2rGvXrvLeq1y5clq4cGGwXE7eeecdee/Vrl07vjnlCNHCDlrYQQs7aGELPeyghR20KFwc89lBCztoYQs9gOKDAXYUO3v37tWPP/6o9u3bB8PnQ4YMyXb5rIbXe/fure+//16SNHbs2OB5Bg4cWFAvo8g50kGGJ554QiVKlJD3Xm3atIlaNrw8Dg8t7KCFHbSwhR520MIOWthBCztoYQs97EhPT9f555+vmJgYdevWTWlpaYd8Ezbc79NPP9XOnTslse3zAi3soIUdtLBlw4YNqlmzpkqWLKmhQ4dKyvwmb6Rwi7179+rWW2/V9u3bo27HkaOFHbSwgxZ20MIWethBCztoYQfHfHbQwg5a2EIPoGgJOaAYkeTi4uJcw4YNgz83bdrU3X333cGfI6Wnp7v//e9/bvDgwe7rr792JUqUcH/729/cLbfc4k4//XTnnHNXX321e+6555z33j3++ONu1KhRBfuiigBJznvvnHPuvffec88//7ybMWOGc8655557zt10003OuYPb2znnQqGDf/U89dRTbujQoe7AgQOuZs2arkaNGq5y5cpu1qxZbvny5cGyaWlpBfyKii5a2EELO2hhCz3soIUdtLCDFnbQwhZ62JKamuo2btzo0tPTXXx8vAuFQsE2z0643wUXXODKlSvnDhw4cMjH4NBoYQct7KCFLbt27XIbNmxw+/fvd8cdd5xzzrmYmJhsl/feB+fYn3zySVehQgV34MCBoBGOHC3soIUdtLCDFrbQww5a2EELOzjms4MWdtDCFnoARUyBjssD+Sz8ianPPvtMDRo0UExMjIYMGaLU1NRMn4w61JXXpT8/YbV582YNHjxYoVBILVq0CL5eBH9KT0/XhAkTcn0VvqeeekolS5YMli1dunRwpXvvvRo1aqQnn3wy6vHIHVrYQQs7aGELPeyghR20sIMWdtDCFnrYsW/fPrVv317ee/Xq1euwHx8+1xF51TGuQHZkaGEHLeyghS1r165VlSpVFAqFNG7cOEmHt88Nb/vIx6Snp9PkCNDCDlrYQQs7aGELPeyghR20sINjPjtoYQctbKEHULQwwI5iI3Jn0bt372AoPath8/DweseOHYPlrrrqKn377bdZPp8kffjhh8Eb7S+99FL+vZAiatKkSWrZsmWuBxliY2PlvVfVqlXVt29fzZw5U8uXL9d7772n/v37B8/zn//8pzBeTpFGCztoYQctbKGHHbSwgxZ20MIOWthCD1vC27hp06b65ZdfcvWYjOc5EhMTNW/ePH311VeaMWOG9u3bp3379kniAwWHgxZ20MIOWtjSpUuX4E3b8NdgH0rGHnv27NGWLVu0e/dubdu2Leo+euQeLeyghR20sIMWttDDDlrYQQs7OOazgxZ20MIWegBFBwPsKHZef/314I3wf//735KiPz0bHl7v1KmTvPcKhUJq3bq1li1bFjxH5E4pvNPZunWrjjvuOHnv1bNnz0zLHeuSkpKCAYUxY8YEt+c0yNCiRQuNHj0603Pt3LlTjz76aPDhggkTJhTIayguaGEHLeyghS30sIMWdtDCDlrYQQtb6GHL9OnTVbduXXnvNWzYMKWkpAT3ZXWuItwoLS1N3377rQYPHqyqVauqdOnSwTmUjh076o477lBycrKkP7/lDjmjhR20sIMWNoS39YgRI1SiRAmddNJJmjVr1iEfF+6Rnp6uVatW6eGHH9YZZ5yhKlWqqE6dOjr++OM1dOhQffrpp8Fj6JEzWthBCztoYQctbKGHHbSwgxb2cMxnBy3soIUt9ACKDgbYUaxs375dV111lUqVKqUKFSpo8uTJkqK/Euqnn35S586d5b0P3lT33uvxxx8PnifjJ6UOHDigcePGBV9/fuWVV0Y9Lw6aP3++Xn755eDPOQ0ynHrqqVHLRu7Y09LStHLlSp166qmKiYnRfffdVyDrX5zQwg5a2EELW+hhBy3soIUdtLCDFrbQw5bhw4cH5zSeeuop/f7778F9WX0wf//+/Ro2bJhOO+204HENGzbUaaedptKlSysmJiZol5SUJImT8LlFCztoYQct7Fi3bp1at24t7706d+6s+fPna//+/ZIyn9+O7PHEE08EV7kM/6pWrVpwUZhKlSpp5MiRmR6L7NHCDlrYQQs7aGELPeyghR20sIVjPjtoYQctbKEHUDQwwI5iJfIq6X379o26L+PwesmSJdWrVy/ddNNNwY7n4YcfDpaP3Fn99ttv6tmzZ7Dciy++WGCvqag6nEGG7A4CO3ToIO+9unTpogMHDrDjP0K0sIMWdtDCFnrYQQs7aGEHLeyghS30KDyR23PgwIHBuYrrrrtOkydPjtqO4XMb+/fv1+DBg1W9evVg+bfffltbtmyRJC1btkyPP/64mjdvLu+9GjVqpLVr10Y9BzKjhR20sIMWNi1btizYvm3bttWrr74aXDEsLPIN2yFDhqhWrVpBj7Fjx2rKlCnauHGjnnvuOV1++eXBfffff3/wHPQ4NFrYQQs7aGEHLWyhhx20sIMWhY9jPjtoYQctbKEHULQwwI5iZ8GCBTr11FP13nvvBbdlNbzeu3dvff/990pPT4/61NU999yjrVu3Bo9dsmSJrr766uD+s88+WwsWLCiEV1a0HOkgQ3p6utLS0rRo0SKddNJJio2N1eDBgw/5M5A9WthBCztoYQs97KCFHbSwgxZ20MIWehSuyJPsDzzwgCpVqhR8a9wdd9wRtWxaWppGjhwZ9Yat9z7q6mKSlJKSoh9++EHt2rWT916XXnqptm3bViCvpyijhR20sIMWNi1dujR4o7VKlSqKj4/XtGnTopY5cOCA7r///qg3bCtXrpxpWyclJWnEiBFRg0DIPVrYQQs7aGEHLWyhhx20sIMWhY9jPjtoYQctbKEHUHQwwI5iKTk5OfgUVHbD67Nnzw6W37Vrl+67775gJ9SxY0ddccUVuuiii9SqVavg9hNOOEHPP/98Yb2sImnkyJEqXbp0rgYZIv/84IMPBtv9xhtv1BdffKGxY8dq2rRpWrVqVbAcV+jLPVrYQQs7aGELPeyghR20sIMWdtDCFnoUnshtM3nyZN1888067bTTtGPHDkl/Xvll4cKFOvPMM+W9V0xMjK655ppg2w8dOjR4jvDyn376qWrWrKl69erpp59+KsBXVHTRwg5a2EELm9asWaPbb79djRo1Unx8vHbt2iXpz+07ZcoUtWzZUt57xcXF6eSTT5b3XtWrV9eSJUuilt21a5eGDBki773++te/avPmzVx17DDQwg5a2EELO2hhCz3soIUdtCh8HPPZQQs7aGELPYCigQF2FGv79+/Xd999p3POOSdqeP37778PlgnvYFasWKFzzz036tNUkb9OO+00jR49OtPjkL0tW7YoPj5e3nu1adMm14MML774YtS2r169uuLi4oI/n3TSSXr66aezfS5kRgs7aGEHLWyhhx20sIMWdtDCDlrYQo/CF7lt0tLSgpPy+/fvD26///77g2370ksvSZKefPLJ4La777476jk3bNighIQEee81bNiwAngVxQMt7KCFHbSwae/evUpOTtbevXslRfe45ZZbgm3/xhtv6I8//gguDFO9enUtW7ZM0p9vAn/55ZeKjY1VXFzcYX1rKefWD6KFHbSwgxZ20MIWethBCztoUfgsHPOF+x/rF8GghR20sIUegH0MsKNYS0lJ0cUXXyzvvcqWLZvt8HpYv379gjfLL730Up177rlq0aKFhg8frpkzZwbLZfUV6Dn9+Vi2aNEinXXWWXruueeC23IaZBg7dmzwj4DGjRvrqquu0pw5c7RkyRJ98MEHuvnmm4P777vvvoJ6GcUCLeyghR20sIUedtDCDlrYQQs7aGELPewJn5NIS0vTzp07g2+W69GjR3BiPiUlJceT8H369JH3Xg899FCBr39xQgs7aGEHLWyJ3EcvXLhQFStWlPde/fv3D25ftGhRlsM+0sE3fBMSEhQTE6Pp06fn+LPmz5+vcePGBX/mHHo0WthBCztoYQctbKGHHbSwgxZ2FOQx34IFC3T77bcHHzpgODQaLeyghS30AGxhgB3F3rx581StWjV169ZNP/zwQ3B75IFEamqqpD8/QfWXv/wluC381SFhXPnt8G3bti34fW4HGTp27KiXXnop6lNv0sEejzzySLDc22+/nb8rX8zQwg5a2EELW+hhBy3soIUdtLCDFrbQw64tW7aoatWq8t7rzjvvjLovNTU1y5PwycnJaty4sbz3evjhhwtjtYslWthBCztoYcvPP/+s0qVLKzY2Vq+88oqkP8+hJyYmZjnsM2fOHJUqVUree3366afZPvfixYuDi8f07ds3uJ1hn6zRwg5a2EELO2hhCz3soIUdtLAjP4/5Fi9erP79+8t7rxIlSmjevHmSGA7NDi3soIUt9AAKHwPsOCb89ttvmjNnTvDn7K6Y3qNHD3nv1bRp02CHkdWOI7z85s2btWzZMt1zzz26+eabdcUVV+iKK67QsGHD9PXXX2vXrl359ZKKpNwOMpx11lkaP358cH/Gr3RZvny5Tj75ZHnvNXTo0IJZ+WKGFnbQwg5a2EIPO2hhBy3soIUdtLCFHvbs2bNH9evXV8mSJfXyyy9Lkvbt2xfcn/Ek/JAhQ/Thhx+qRo0aqlq1qr766qtg2YznUviA/+GhhR20sIMWtkyfPl3ee1WuXFk///yzpOjtmHHYZ968eXrrrbdUtmxZNW/eXMnJyVk+7+LFi3XzzTercuXKQcubb745uJ9hn8xoYQct7KCFHbSwhR520MIOWtiRl8d8kcItwlfa996rUqVKXOE4B7Swgxa20AMofAyw45iT3YHD/v371b59e3nvde655yotLS3HNzq+++479ezZUw0aNAh2NpG/QqGQ+vTpw9XispHbQYbIXpG/79ixo7z36tSp0yFbIWe0sIMWdtDCFnrYQQs7aGEHLeyghS30KHxpaWnatm1bcN5i8ODBWS6Xmpqqp556KmhUo0YNeX/wKvkpKSmSottMmzZNa9eulcSJ9tyihR20sIMWtqSnp2vWrFny/uBVwbJ7AzZy2KdKlSpq2LChvPe69NJLtXfv3kzLh9+wrVSpkrz3qlevnkKhkLz3uuWWW6J+Pg6ihR20sIMWdtDCFnrYQQs7aGFHfh3zZWzRuHFjtW3bluHQHNDCDlrYQg/ABgbYgf/vjTfeCHY2zz33XLbLHThwQK+99pri4uKCg5Jy5copPj5e5513nlq3bq02bdrIe6+YmBiVLVtW//nPfwrwldgXuePO7SBDpB9++EG1a9eW91533XVXgaxzcUULO2hhBy1soYcdtLCDFnbQwg5a2EIPG8Lb96GHHpL3XmeccUbw1dgZpaam6oknnghanXjiiVqyZElwX9jnn3+umjVrqmbNmlq9enW+v4bighZ20MIOWthz4MCBYIinf//+2X67aGJios4666ygR+PGjbP80EDGN2wTEhL0+eef67///S/DPodACztoYQct7KCFLfSwgxZ20MKGvDrm279/f7BcVi2mTZumJUuW6Pzzzw+GQxcuXCiJb+YKo4UdtLCFHoANDLDjmBfeId15550qUaKEypYtq+nTp2e57LZt2/Too48GOyTvverXr68333wz+Pqp3bt3a+/evRo7dqx69uwZHLQMGDCgoF5SkfHss88e9iBDampq8I8H771effXVglzlYosWdtDCDlrYQg87aGEHLeyghR20sIUeNkybNk21atWS916jRo2KupJYZIfU1FQNGzZMNWrU0Icffigp+g3bTz75RAkJCSpRooS898GH9XljNvdoYQct7KCFDenp6dq/f78efPBBhUIhnXLKKfrhhx+yXT4xMVHNmzdXmTJlNGXKFEmHfsN26tSpwTIvvfRScN78jjvuyN8XV8TQwg5a2EELO2hhCz3soIUdtLDnaI75Igc7s2oxZcqUoMWKFSt03nnnyXuvBg0aaPny5Zl+xrGOFnbQwhZ6AIWLAXZA0urVq1WtWjV573Xeeedlu1zkV4JUr15dvXr10saNG7NdPikpSY8++mhw0DJ06ND8WP0iJz09Xdu2bQu2S5cuXXI1yCBJL7/8ctDg6quvLqhVLrZoYQct7KCFLfSwgxZ20MIOWthBC1voYc+wYcOC7frUU0/pjz/+CO6LHADdv3+/li9fnunrsj/55BM1b95coVBI1apVU58+ffTbb79FPZ6vPM0dWthBCztoYce6devUsmVLee/VuXNnzZ8/P9h2GfffK1as0Ndff619+/ZF3R5+w7ZixYpRb9hGXi1///79eu6554J/K4wZMyb/X1wRQws7aGEHLeyghS30sIMWdtDClqM95stNi/ByZ5xxhrz3uuyyy7Rly5b8fWFFEC3soIUt9AAKDwPsOKaF3zz/4IMPVLlyZcXExARX58n4xvq7774b7Kzq1Kmj22+/XZs3b5aU+Q2QyIOePXv26JlnngkOWl566aV8f11FxYIFC3TRRRfp1VdfzdUgw6uvvho0OP/887VgwQJJfKVKXqCFHbSwgxa20MMOWthBCztoYQctbKFH4YvcdoMHDw62b79+/fTFF1/k6jk++eQTnXLKKcFVjb33qlq1qo4//niddtppGjRokNavXy+JAdGc0MIOWthBC5uWLVummjVrynuvdu3aady4cfr9998lHfqqYBmvNnbyySdHXW0s0saNG3XFFVcoNjZWPXr00I4dO/Ll9RRltLCDFnbQwg5a2EIPO2hhBy0KX14c8y1evFj9+vULhkJzanHgwAE9/vjj8t6rYcOG+uWXXyRxdWOJFpbQwhZ6AIWPAXZAUs+ePeW9V7ly5YI3yCP973//U5UqVeS9V3x8vG655RZt27ZNUu7eSN+yZYtuv/12hUIhdezYUUuWLMnz11BUbd++/bAHGc4++2x98cUX2X5KOlL4Pnb2h0YLO2hhBy1soYcdtLCDFnbQwg5a2EKPwhc5sPnvf/9bJUqUUCgUUtWqVXXttddq9uzZ2rNnT7BM5Lb89NNP1bx582AwtEGDBjrjjDP0f//3fzr99NN1/PHHy3uvpk2bKikpSRIfOMgJLeyghR20sGnp0qU66aST5L1XjRo1dO655+qLL77I8dtIw2/YlitXTt57nXrqqZo+fbpSUlKyfcyDDz4o771iYmL0448/5sdLKfJoYQct7KCFHbSwhR520MIOWhS+wz3mi5SxRdOmTTVnzpwslw8fK86ZM0clS5aU914PPvhg/ryoIooWdtDCFnoAhYsBdhzztm7dqlNPPVXee11++eVKSUkJ3shIS0tTamqqhgwZotKlS8t7rwsvvFCbNm0K7s+tGTNmqG7duvLe65VXXsmPl1Kk5TRs8Morr0QNMnz66aeZvmZFkmbPnq1Jkybp/vvv19NPP61Zs2Zp7dq1wf28QZU7tLCDFnbQwhZ62EELO2hhBy3soIUt9ChckSfh33jjDV1yySXBNh85cmSwvTMOhiYkJATfKHfRRRdp5cqVwdeabtmyRV9//bXatWsn771atGih5OTkgn1hRRAt7KCFHbSwKSkpSVdffbXq1asn771q1qypl19+Ocv97aJFi9SvXz9VqFAhaHf99dcH92e8+n34OcaMGRMsP3ny5Px9QUUYLeyghR20sIMWttDDDlrYQYvCl9tjvkjhq+CHr2jsvVfdunX122+/SVKWVzaWpC+//DJY/v7778+fF1SE0cIOWthCD6DwMMAO6OCBiPded911V6b7du/erYSEBHnvVatWLa1Zs0bSkb0xPmjQIHnvdcIJJ/CGSS7lZpDhyy+/1MCBA+W9V6lSpYLlS5Uqpb/85S966aWXgmX5quAjRws7aGEHLWyhhx20sIMWdtDCDlrYQo+CE3ke47ffftNnn32mYcOGaffu3ZKit90nn3yi5s2bKxQKqXz58urfv3/U/ZFDpDNmzFDDhg1VsmRJPfHEE5nuR2a0sIMWdtDCpq1bt+qrr77SLbfcottuuy24gljkNly0aFHUG7Y1a9YM9tWPPPJIsFzG8+nr1q3TX//612CfPnXq1IJ5UUUULeyghR20sIMWttDDDlrYQYvCd6hjvsj7w0OhlSpVkvdejRo10gknnCDvvZo0aaLff/9d0p/HieGOGzdu1A033BBc2XjUqFFR9+MgWthBC1voARQOBtiB/2/t2rXBp6AidwyffPJJcLAR/uRTVm+I57QzCe/EZs6cqUqVKun444/XggUL8nL1i6XcDDI89thjatmyZdRyl1xyibp27apq1apl+ak1rsp3+GhhBy3soIUt9LCDFnbQwg5a2EELW+hR8LI7dxG53T/55BOdcsopwUn0fv36BedBsjofsmnTJrVt21bee/Xo0SN/VrwYooUdtLCDFraFrxwWeQWxjEM+zZs31yeffKIHHngg2Ec//PDDmZ5r06ZNGj16dDAUVK9eveBbT3FotLCDFnbQwg5a2EIPO2hhBy0KT3bHfJEtMg6FJiQkaOrUqfr+++916qmnBsOh69ati3qOjRs36vnnn1fdunXlvddxxx2npKSkfH09RRkt7KCFLfQACh4D7MAhjB07Njgo+fjjj7NcJvzm+ObNm4NPXmVl69atatCggS699NJ8Wdfi5Pnnn1dMTEyOgwzDhw9X7dq1gz5Dhw6V9Oc/HL7++mvddtttOR5U4tBoYQct7KCFLfSwgxZ20MIOWthBC1voYUfkwP+nn36q5s2bq0SJEvLeq3PnzjkOhoZP6Pfr10/ee7Vv3147duwomBUvhmhhBy3soEXhi3zzNrLHokWL1K9fv6ghn6lTp2r//v3at2+fHnrooWAffdddd2n+/PlKS0vTvHnzdO+996p+/frBG7avvvpqpudHZrSwgxZ20MIOWthCDztoYQctbIrsktVQ6JQpU4JzgXPmzAmGQxs1aqRXX31VM2fO1IwZM3TjjTcGQ6FVqlTRY489JokWh4MWdtDCFnoA+YsBduAQxowZE3xadv369ZKy/sTV8uXL1axZM912223atm1bpvvT0tK0c+dOvfHGG1G3Zfd8x7Jt27YFB4jnnntuloMMr7/+uho3bhwcLHp/8Gu8Vq5cmem5Ro0aFfwD4PPPPy/Il1Lk0cIOWthBC1voYQct7KCFHbSwgxa20MOOjN9Ad/LJJwfb+7jjjtN3330nKevB0LBNmzbptNNOk/deF1xwQb6vc3FFCztoYQct7Aq/YZtxyCdyf75nzx6NHDkyaHb88cerSZMmKl26tMqVKxfsuwcPHqw1a9YU4qsp2mhhBy3soIUdtLCFHnbQwg5a2LFo0SL1798/xxaSNG/ePLVu3Vree5UuXVree4VCIcXGxsp7r6pVq2rQoEFatWpVIb2Soo8WdtDCFnoA+YMBduAQ3n77bXnvVb58eS1cuDDb5b788svgoCW7IfZI4TdWwm/ErFmzRuPHj8+7FS/i5s2bp0suuUSTJk0Kdvbhgf+dO3fqiiuuCLb3Pffco3POOUfee1WrVk3Lli2LWn79+vXq3r27YmJiNGzYsMJ5QUUYLeyghR20sIUedtDCDlrYQQs7aGELPQpfdoOh1atXV/ny5VWjRg39+uuv2T4+fF5j6dKlwdXG+vTpwxVjjgAt7KCFHbSwKzExUVdffbXi4+Oj3rCN/DrtSGPHjlX58uUVFxcX9cG0+Ph4/ec//9GKFSsK+BUUH7SwgxZ20MIOWthCDztoYQct7NiwYYN69+6tChUq5KrFli1bdMkll6hWrVpRLapXr67HH3+codCjQAs7aGELPYD8wwA7cAgzZsxQbGysYmNjNWXKlByXfeONN4Kdzq233nrIIfbwGzHr169Xv379FAqF9I9//CPP1r2o27VrV5Y7+3fffTfYzvfee68kadmyZerUqVOww8840HDvvfcG/4jYt28fb1YdJlrYQQs7aGELPeyghR20sIMWdtDCFnoUnqwGQ0OhkCpWrKj+/fvrrLPOUps2bbJ9fHgwdP/+/Tr//PODDxf88MMP+b7uxQ0t7KCFHbSwLTk5WfXq1ZP3Xi1btszxDduwWbNmacSIETrzzDN10UUXqVevXvrf//6nXbt2FdBaF0+0sIMWdtDCDlrYQg87aGEHLWwZPHiwvPdKSEjQtGnTsm0Rebw3depUjRo1SnfccYdGjhyZaSA08tgSuUcLO2hhCz2A/MEAO5AL4Tc6unfvrk2bNmW6P3KHEr5iu/det9xyi7Zu3Zrlc4Yf89tvv6lfv36qXbt28Lj58+fny+so6sLb7Pbbbw/+UbB06dLgvsTERHXu3DnTQIMkvfnmm/Leq23btoWy7sUNLeyghR20sIUedtDCDlrYQQs7aGELPQpGdlc1rlixogYPHqw9e/boggsuUMmSJTV37txMjw+fgE9NTVW/fv3kvVepUqV0zTXXaMOGDbn+2aCFJbSwgxZFw7x589ShQwd99tlnOQ75ZLdNw7eHP3CWcTla5B4t7KCFHbSwgxa20MMOWthBi8IXuY2GDx+uTz755JAfJMjpwhWHuqgFTbJHCztoYQs9gPzFADuQg/BO4aWXXlLlypVVv359ffzxx1nuLMK3HThwQFdeeWUwjH7fffdl2nFlHF6vWbNm8EbMRx99lM+vqugKb7e//OUv8t6rU6dOmZbJONCwcuVKSdJVV10l77169OhRkKtcbNHCDlrYQQtb6GEHLeyghR20sIMWttCjYH322WdRg6GDBg0KBj8HDhyoUCikYcOGae/evZkem5qaqhtuuCH4ytQTTjhB06dPz7TcgQMHdODAgWzPi+AgWthBCztoYd/u3bsP+YZtpLS0tGDb7tu3L+q+VatWafHixVq2bJnWr1+f6XHIGS3soIUdtLCDFrbQww5a2EGLwhe5/Q9nO0Ueu6Wmpga/37dvn2bMmKEJEybotdde04QJE7R9+3alpKQc9s841tDCDlrYQg8g/zDADuTChg0bdM4558h7rw4dOkRdIT1yZ7NmzRoNGzZMVapUkfde9evX15gxY4IdTOTyGYfXy5Urx/B6Ll1zzTXy3usf//iHpOidvBQ90FCtWjW98soratGihbz3GjZsmCR29nmFFnbQwg5a2EIPO2hhBy3soIUdtLCFHvnvyy+/VK1atRQXFxcMhkZuswkTJgQfzB8xYoR++uknSdLKlSs1Y8YMdezYMbi/WrVqev/996Oef968eXrvvffUvXt3nXvuubr44ot18803a9q0adqyZYukP6+SfKyjhR20sIMWxVvktn3jjTd0/fXXKy4uTjExMSpXrpzKli2r/v3764MPPsjyMcg7tLCDFnbQwg5a2EIPO2hhBy3siBwsffLJJ9WtW7fgmDD8q23bturfv3/wwQJa5A9a2EELW+gBZI8BdiCXVq5cqYYNGwZXgZszZ07UFX7Wrl2rYcOGqXLlyvLe66STTtJrr72mbdu2BcsczvA6V/rJ3qBBg+S9V+PGjfX7779nuUxiYqI6deok773Kli0r773q1q2b6ZPOR/opORxECztoYQctbKGHHbSwgxZ20MIOWthCj/y3cuXK4MP3d9xxR7BtIrfX3XffHZw8j4+PV7t27VS1alVVr1492O4JCQlRb8RK0ltvvaWmTZuqUqVKmU7C16lTR926ddPatWslcRJeooUltLCDFsVXZMNrr71WNWrUiGpQrlw5ee8VExOjChUqaOTIkcHy9MhbtLCDFnbQwg5a2EIPO2hhBy3siGzRq1cvlS5dOupYsWbNmgqFQsFtp556qpKSkiTRIq/Rwg5a2EIPIGcMsAOHITExUXXq1JH3Xi1bttSzzz6r5ORk7dixI9Pw+iuvvKLt27cHjw2/0XK4w+szZ87UCy+8UDAv0Ljwdvnxxx/VsGFDVapUSePGjct2h52YmKizzjor2OlPnTpV0p87+PA/Evbs2aPFixdLYqAht2hhBy3soIUt9LCDFnbQwg5a2EELW+hRsBITE/Xvf/872Cbh7Ra5je69914dd9xxmYY8a9SooQEDBujbb7+Nes4nnngiarkmTZroggsu0I033qiTTjpJ1apVk/deJ554olavXh31c49ltLCDFnbQoviJ3JaXXHJJMNDjvdctt9yi5557Tt98840efPBBde3aNej073//O3gc+/G8QQs7aGEHLeyghS30sIMWdtDCjsgWF198sbz3KlGihCpWrKj//Oc/+vbbb7V+/Xr9+OOPevDBB3XKKafIe68GDRpozZo1kmiRV2hhBy1soQdwaAywA4dp+fLlOuOMM+S9V+nSpdWoUSP94x//yJfh9R9++EGXX365vPe68cYbC+YFFgHbtm0Ltkv79u21cOHCbJddtGiRzjvvPL3wwgtRn2qLHGQ48cQT5b3XnDlz8n3dixta2EELO2hhCz3soIUdtLCDFnbQwhZ6FLyMA5qRf54xY4b++9//6qabbtLtt9+uRx99VKtXr9bu3bujHvP0008Hb8q2aNFCt99+u7Zv3x60WLdunSZMmKC2bdsGg6O//fabJL6FLhIt7KCFHbQo+iK3Ya9eveS9V6lSpdS+fXu9++67mZb/9ddf9fDDDwfNnn322YJc3WKNFnbQwg5a2EELW+hhBy3soIVNffv2DVp06tRJkydPzrRMSkqK5syZE8z6nHvuudq0aVMhrG3xRgs7aGELPYDsMcAOHIHffvtNd955p1q2bBn1idpmzZrl2fD6999/H7xhH/51xx13FMwLLAJWrVqlhg0bynuvTp066dtvvw3emMr4ptL27duVkpKS6Tl27doVNPTe6/jjj9fWrVt5U+ow0cIOWthBC1voYQct7KCFHbSwgxa20KPwHerKLpH3v//++8F2PuOMM/Tyyy8rNTVV0sFB0/A2T09P1y+//KI2bdrIe6+rr75aO3bsyPTckY3oRQtLaGEHLYqmJ554QqVKlVKJEiXUuXPn4NtTpIPNIj+csGfPHt1///3y3qt58+b6+eefMz0f2//I0cIOWthBCztoYQs97KCFHbSw44033lD16tUVExOjDh06ZGqR0ddff63GjRurXLlyeumllzLdn7EF38qVe7Swgxa20APIGQPswBHas2ePfv31Vw0aNEhdunRRo0aNNHbs2DwbXr/iiiuCN1bKlSsn773++te/Rj3/sW7p0qWqVauWvPdKSEjQf/7zHy1fvjzXj3/uueeiBhnGjx+fj2tbvNHCDlrYQQtb6GEHLeyghR20sIMWttDDlsgBz0hr1qxRp06d5L3XiSeeqBdeeCE4aZ7VCfj09HS9//77qlGjhho0aJDpyvhZnXCPvLo+aGEJLeyghX0pKSm65JJL5L1X5cqV9eGHHwb3ZTews2jRIp1zzjny3uuFF16Iui/cYu3atUpMTJTE12rnFi3soIUdtLCDFrbQww5a2EELW66//vrg/N97770X3J5dix07duiuu+6S917du3fX3r17g/vCLZKSkvTiiy9muh05o4UdtLCFHkDOGGAH8sDu3buVnJysXbt2BbcdzfD6lVdeGey8wo/z3uutt94qmBdUhCxfvlwdOnRQbGysvPeqUqWKnn766eDg7lDuueceee81YcKE4DY+4XxkaGEHLeyghS30sIMWdtDCDlrYQQtb6GHfnDlzVKVKFXnvdc011wSDnDlt599//13nnXeevPdZfsW2JA0ZMkTXXXddvqxzcUULO2hhBy3smDZtWnCe+8EHHwxuP9R+eciQIfLe6+uvv5YU/YGB1atX66qrrtJxxx2nL7/8Mn9WvBiihR20sIMWdtDCFnrYQQs7aGHHihUrVKJECXnv1b9//+D2Q7X49ttvVapUKX366aeSDn4oIXwhydWrV+umm26S917dunXLt3UvbmhhBy1soQdwaAywA0chux1KXg2vDx48WP/3f/+nUCikGjVq6Jdffsm/F1OErV+/Xg8++KDatm0r77369eunrVu35viYyE+fLVq0KPg9gwxHhxZ20MIOWthCDztoYQct7KCFHbSwhR62PfDAA/Leq3bt2lq1apWk3F0pbNKkSbr77ruDP3/xxRdB1wceeEDHHXecvPe69dZb82O1iyVa2EELO2hhx/jx4+W9V7Vq1fT9999LyrlF+L7Nmzdr/vz5kqSdO3fq0Ucf1ZgxY7R792793//9X3Du/dRTT1VKSgr7+lyghR20sIMWdtDCFnrYQQs7aGHHggULFAqF5L3XmDFjJOX+6vUbNmyQdPBilSNHjtS5556rWbNmacCAAapevbq896pVq1awHHJGCztoYQs9gENjgB3IY+EDiaMdXu/Xr59++OEHnXjiiXxqKhdSU1O1efNmTZgwQb///rukQw8mZPxHAQeBeYMWdtDCDlrYQg87aGEHLeyghR20sIUedoWvIFa7dm1t2LDhiLbz9OnTVbNmTdWpU0cDBgxQtWrVFBsbqxNPPFEvv/xyPqx18UQLO2hhBy3sGDNmjLz3Ov7447Vx48bDfnxaWpp++eUXnXTSSfLeq2XLlqpWrZq89zrttNO0dOnSfFjr4okWdtDCDlrYQQtb6GEHLeyghR0LFixQqVKlVL58ec2ePVtS9EUtcuOPP/5Q37595b1X2bJlg2/watmypZYvXy6Jc4q5QQs7aGELPYBDCzkAeUaS89675ORkN2zYMPfBBx+4DRs2uLJly7rx48e7rl27ZlrWOed++OEH9+STT7p33nnHOefcdddd5+677z4XFxfnUlJSXCgUcn/5y1+cc86lpaUV/AsrAkqUKOGqVKniLrvsMnfccce59PR05713Bw4ciFoucvuFQtF/BYZ74OjQwg5a2EELW+hhBy3soIUdtLCDFrbQwx5JzjnnSpUq5ZxzrmbNmq569erOex/clxtpaWmuadOmrlGjRm7dunVu9OjR7o8//nAnnHCCu//++13fvn2jfh4yo4UdtLCDFvaUKVPGOefcpk2b3IYNGw778d5716JFC3f55Zc755z75Zdf3B9//OFat27tJkyY4Bo3bsy581yihR20sIMWdtDCFnrYQQs7aGFHuXLl3IEDB9yuXbvczJkznXPOxcTE5Prxklx8fLzr1auXq169utuzZ4/bunWra9q0qfvqq69co0aNXFpaGucUc4EWdtDCFnoAh8YAO5CHvPduw4YN7s4773Qff/zxEQ2v33jjje6ee+5x1apVc6+//rr77bffXOnSpd3555/vnIvekfHGSPZCoZA7cOCAi42Ndbt373aPP/64c+7g9uOAr2DRwg5a2EELW+hhBy3soIUdtLCDFrbQo/CFz2u0a9fOOXfwDdfPP/886r5DSUtLczExMa5GjRquRYsWrmTJki4tLc3Fxsa6fv36ub///e/OORd8YAFZo4UdtLCDFvacf/75rnnz5u7AgQPuiy++cKmpqbl+bPh8+rp169zGjRtduXLlgm3epk0bV69evWC5nJ4DB9HCDlrYQQs7CrsFotHDDlrYQQsbJLn69eu7q6++2oVCIffDDz+49evXH9bjwy0mTpwY1XHLli3BhTFocWi0sIMWttADyKW8vaA7gOTkZDVp0kTee1WuXFkfffRR1P2RX9vx/fff68orr5T3Xt573XTTTUpKSgqWu+CCCxQKhdS9e3elpqZGff155PO89957euCBB/L5lRUt+/fvlyTt2bNHrVu3lvdeAwYMKOS1OjbRwg5a2EELW+hhBy3soIUdtLCDFrbQw46VK1fq9NNPl/degwcP1s6dO3P1uMhzHA8++KDi4+PlvVfp0qXlvVedOnX066+/Ssr6a1UjH4+DaGEHLeyghR07d+5Unz595L1XmzZtNG/evFw9LnwefM2aNbrxxht13HHHyXuv2rVrB+fVhw4dGiwf7pGenq7t27friy++yPRcxzpa2EELO2hhR0G3QM7oYQct7KCFLW+++aZKlCgh772efPJJpaSkBPdlt2/NrkWTJk2C84zHH3+8Vq1aJenP85BS5mM9jv3+RAs7aGELPYCcMcAO5IP58+erdu3aev/996NuP9TwevhND0maNm1acN+oUaOyfZ6PP/5YCQkJ8t7ruuuuy6dXVDTt2bNHJ5xwQrAdvfe5PoDMSVb/gDhw4ECmg0hONv6JFnbQwg5a2EIPO2hhBy3soIUdtLCFHnY8+eSTQYPRo0drx44dwX1ZnSDPbjC0UaNGGjVqlDp16hS8ibt69WpJ0W/chh//1Vdf6b777sufF1VE0cIOWthBCztWr16tE088Ud57de7cWd9//712794tKev9avi2tWvXRr1he+qpp2rx4sUaO3Zs0Pbf//538Lhwjzlz5sh7ryuvvLIAXl3RQgs7aGEHLewoqBbIHXrYQQs7aFH4IrfzvffeG2y/kSNHatmyZYd8XFYtVq5cqfXr16t9+/by3qt+/fpasWJFlj/zww8/DO471j9sQAs7aGELPYDcYYAdyCcZr+ZzOMPrkvTYY4+pVKlSatCggRYtWhQ8R+TzfPTRR0pISFBcXJy897rwwgvz8RUVPatWrQq28fHHH68JEyYc9XNG7tR3796tt99+W3fffbcuvPBCdevWTY8//ri+/PLLYBkGGg6ihR20sIMWttDDDlrYQQs7aGEHLWyhR+GLHPIcMmRI0OOOO+7QzJkzD/mYyMHQE044QePHj5ckLVmyRB06dAjahgdEIx//3XffKRQKyXuvZ555Jh9eXdFCCztoYQctbEpMTFTNmjXlvVdCQoIeeOABzZkzJ9NyOb1hu3z5ckkHP8wW+QGFe++9N3j8pk2b1LZtW3nvVapUKX3zzTcF8wKLEFrYQQs7aGFHfrZgOPTw0cMOWthBi8IXefw2ePDgYPtdeOGFuu+++6I+vCzlrkV6eroWLlwYfHC5fv362rdvX9TVjSdNmqTmzZurYsWKWTY/FtHCDlrYQg/g0BhgBwrA4Q6vp6SkqE2bNvLe6/TTTw++PiSr4fXY2Fh573XVVVcF9x/rb6BHWrx4sRo2bKhx48YFtx3p9gkPMqSlpem5555Tjx495L0PGoR/xcfH6+677z7qn1fc0MIOWthBC1voYQct7KCFHbSwgxa20KPwRQ7933333cF2ql27tm688cbgCmRSzlc1Dg+Ghi1atCgYEH366aejfta3334bfO1q06ZNNWLECO3bty8/X2aRQAs7aGEHLWxavny5OnfurLJly8p7rwoVKuj3338P7s/NG7bhXqmpqXr44Yflvdf06dMlSXv37tWDDz6oChUqKCYmRpdddpnWrVtXwK+yaKCFHbSwgxZ25HcLHB562EELO2hR+CKP+Z544gmdfPLJwXHfwoULg/ty0yLyuebNm6dOnTpp6tSpUT9v4sSJOvPMM1WqVKlgTierb/Y6FtHCDlrYQg8gZwywAwXohx9+yHF4PbzD+OWXX1SnTh2VLl1ao0ePlnTwgCUs4/D6P/7xj2BHxtd+ZBb5ibUjHSyIPHC88sorg38ohN/E6tixo3r27Kk2bdoEV1caPHhwnqx/cUILO2hhBy1soYcdtLCDFnbQwg5a2EKPwhd5LuK1115T9+7dVaJECd18883B7bkdDI1cbtGiRXrttdeiflbkYGhCQoKeeeYZbd++PT9eVpFECztoYQctbNqwYYNeeuklde3aVZ999llw++EM+YSlpqYqOTk5+HPkVfLj4uL0/fffF8ArKrpoYQct7KCFHfnVIrv3U7Ma7jnWP7QciR520MIOWhS+yG31888/a8yYMcG3m6SnpwfbZ926dbrpppty1UI6eGX8SOGh0JiYGHnvdeWVV2rz5s359bKKJFrYQQtb6AFkjwF2oIDMmTNHF110UbbD65FGjhwZLDdjxoyo+xheP3x5dWX6jRs3qn379kEb7w9+fdcPP/wQ/EMhKSlJzzzzTDDQ8N///veo1784oYUdtLCDFrbQww5a2EELO2hhBy1soYcNkSfQt23bpsWLFwd/jvz60uHDhweDoSeccEK2g6FZyTgY+tRTTwWDocf6m7WRaGEHLeyghV3h7Z+WlhZspw0bNuhf//pXrt+wzeiGG24I9uXPPvusJBrkBi3soIUdtLAjP1pEyrj8m2++qeeeey74M42i0cMOWthBi8KV1faMbPHHH39o4MCBqlatWq5bRN6ecSj08ssv19atW/P+hRQDtLCDFrbQA8gaA+xAAVm3bl3wBsYtt9yS5fB6WlqaUlJSdMEFFygUCql79+5RBxoffvihTj755GB4vXfv3gyv57Pwzn7VqlVq06aNvPcqXbq0Tj75ZL399ttZPmbHjh268cYb5b3XFVdcEfUPDhw5WthBCztoYQs97KCFHbSwgxZ20MIWeuStrLZD5PmKF154QXXr1j2swdDw7bNmzQrOq5x88sl66qmngqvvs/0zo4UdtLCDFvalp6dr//79Gj16tOrVqyfvvVq2bKkVK1ZIyt2Qz4svvhgMhnbv3j14LA4PLeyghR20sCMvWoSfJ9KOHTv04osv6oorrgg6XXfddXm+/sUNPeyghR20sCO8rd9++201atRI3nu1aNHikEOhkdueodC8QQs7aGELPXCsY4AdKEALFizQwIEDtXr16myXWbx4scqUKSPvvW6//fbgdobXC174U9JbtmxR27Zt5b1X2bJldc4552jatGnBclm9CTV69Gh571WqVKkceyN3aGEHLeyghS30sIMWdtDCDlrYQQtb6FGw1q5dq7/+9a/y3qtGjRp66623gvsONRg6c+bMYDC0VatWeuqpp7Rr1y5JnBM5ErSwgxZ20MKOnTt3BvvlunXratmyZZJyN+SzZMkSXXTRRQqFQipZsqReeumlLJfLat/OBw0yo4UdtLCDFnYcTYuMyyxatEjvvPOOWrRooZIlSwZDoaVKlZL3XiNHjsyX11Cc0MMOWthBC1v+8pe/yHuv44477pAfJMhpKLRnz54MhR4lWthBC1vogWMVA+xAAYv8StpI4TczHnnkEXnvVatWLSUmJkqSJk2adFTD64f79VP4c5vt379fZ511lrz3KlOmjC666CLNmjUrWC7jScPU1FRJ0jvvvKNy5cqpatWqWrt2bcGteDFECztoYQctbKGHHbSwgxZ20MIOWthCj4I3ceLE4A3W0aNHB7cfzmBovXr1NGTIEH3//fdKT0/X3r17JTEgerhoYQct7KCFHR9++GEwjPPBBx9IOvQ2DPcYPXp08IbtP//5z+D+yP15+LkOHDigb775Rq+88kqm58FBtLCDFnbQwo4jaZFRYmKinnnmGTVs2FCVK1eW9141a9ZUu3btdPLJJ8v7g9/QNXv27Hx4BcULPeyghR20sGP9+vWKj4+X91733nuvpNwPhbZv316hUIgrGucRWthBC1vogWMZA+yAMRdffLG892rWrJn279+vjz766IiG1zO+yb5x40Z9+umn+bruxU1aWpquv/56ee8VFxenzp07a+bMmcH9OV3x4qabbpL3XhUqVNCaNWsKYnWLNVrYQQs7aGELPeyghR20sIMWdtDCFnoUrMmTJ8t7r+OPP15z586VdOjB0FmzZgWDoeE3ZcuUKaP4+Hi1aNFCN998s3777TdJDIgeDlrYQQs7aGHH0qVLVa9ePZUpU0Yvv/xyrh83d+5clS5dWt57dejQQb/++qukrLf93r17NXjwYLVs2VLee91www15tv7FCS3soIUdtLDjcFuEj+927typdevW6f/+7//Upk2bYD9eqVIldejQQV988YVmzpypXr16KRQKqW/fvkpJSeEDBIdADztoYQct7NizZ48uvPDC4ENk4QtUZJRxKLRDhw7BUGhCQkJwfJcbWX1ADbSwhBa20APHMgbYAUN+/PFHValSRTExMXr11Vf19ddfq2nTpoc1vJ7xwOSXX37Ra6+9phNOOCHTVR2Qs4kTJ6pRo0bB13p9/vnnwX05DTLMnTtXp556qrz3uvjii7Vv3z6+3vEo0cIOWthBC1voYQct7KCFHbSwgxa20KNg/fjjj6pfv76893rssceyXS7yqsbh8yGhUEjHHXecLr/8cvXr109nn322ateuLe+9mjZtqqSkpKjHIme0sIMWdtDCji1btqhr167y3uvss88Ohjxz8ttvvwUXhomPj9eoUaO0b98+SdH79E2bNumrr74KBoFiYmKCN3qfeeaZfHtNRRUt7KCFHbSwIzctMu57f/zxR1177bVKSEiQ9z7Yl99www0aN26cUlJSJElvv/12MDD6+uuvF8jrKeroYQct7KCFLc8991ywzbL6QEHkPvn999/XmWeeGeyHw78eeOAB7dq165A/K/xcX3/9tebNmyeJ4dBItLCDFrbQA8cqBtgBQ1577bXg07PXXXedTjnllODrBHN75XXp4I5m2bJlGjFihBo2bBhc1aFUqVLy3uu2224riJdT5N1www3BTv61114Lbs9qMCHytgceeCB43KhRowpkXYs7WthBCztoYQs97KCFHbSwgxZ20MIWehS84cOH53gSPqvB0BNOOEF9+vTR6tWrg+W2b9+ub7/9Vu3atZP3Xqeeeqo2bNhQUC+jWKCFHbSwgxZ2rFixIvgQwAUXXBC1fSOFm4wbN05169aV915t27bVxo0bMy37008/6cYbbwyet0aNGqpXr56892rZsqU2b96cny+pyKKFHbSwgxZ2ZGyxatUqSZnfR33rrbd00003Be+5eu9VuXJl3XLLLfrggw+ill2+fLlatGgh772uuOKKgnopxQI97KCFHbQofJHn9O64447ggwHPP/98lstkHAq96qqroo4V77//fu3evTvbnxfe/3/11VfBYxYsWJAPr6zooYUdtLCFHjjWMcAOGJCWlqadO3fqnHPOCQbNTzrppGDgPLfD6zt37tSqVavUt29ftWrVKtjR1K5dW/Xq1Qu+0rZfv34F9dKKrNmzZwdvRN18883B7YcaZHj33XeD7X7RRRdp586d2T4OuUMLO2hhBy1soYcdtLCDFnbQwg5a2EKPghV5RbFBgwYF2/CVV17JtEzkYOjJJ5+sUaNGBQM7Gc+JTJkyRXXq1FGpUqX03HPPSaLFodDCDlrYQQubEhMTVbNmTXnvdeGFFwZXKw4LN0lJSVH79u3l/cELw/zvf/+LWm7Tpk164403VKlSJXnvVaFCBV1++eWaNGmSTj31VFWuXFnPP/+8Dhw4wFXys0ELO2hhBy3syNhi//79kqStW7fqrbfe0uWXXy7vfTDg06BBA912221asGBBcCVjSUHDL774QjVq1FCpUqU0ZswYSXyLyuGghx20sIMWhS/yWG3w4MHBcOjvv/8ete0yDoVefvnl2r59uyTpiSeeOORwaPh4b9q0acGy3ntdc801XNn4/6OFHbSwhR44ljHADhixadMmVatWTbGxsQqFQsEbIdkNr2fccXz11Vfq27evGjZsGOzIvPcaMGCAxo8frzvvvFPly5dX8+bNtWzZMkm8YZKTSZMmKSYmRqVKldL48eMlHXqQ4bPPPgs+JHDiiSfq5Zdf5mAxD9DCDlrYQQtb6GEHLeyghR20sIMWttCj4EWexxgwYIC89xo2bJikP99o/eabb4LzGXXr1tWIESOCE/BZ9dm8eXPwAf4rr7zykOuQlpamtWvX5sXLKdJoYQct7KCFTYsWLVKtWrU0ffr0bJcJf6NK6dKldf/99ys1NTW477333lPv3r2DN2QvuOCCYL9/2223yXuvTp06KSkpKd9fS1FHCztoYQct7Fi4cKGOP/54/e9//9PmzZv17rvv6pRTTlGVKlWC7Vu1atXg9xMnTpSkoEd4P56amqpOnToFH1Tbtm1bob2moowedtDCDloUvozDoV999VXU/RmHQv/2t79p69atUcs8+eST2Q6Hho8bI4dCK1WqpL///e9KTk7Ot9dVFNHCDlrYQg8cqxhgB4z49ddfg6+ECl95/R//+EdwMBL+JG7GN0NeffVV3XTTTVGfjKpTp44GDBigL774QtLBN0vatm0bvFmya9eugn1xRVB4p96wYcNs34iK/POXX36p+Ph4ee9Vrlw59evXL8evZEHu0cIOWthBC1voYQct7KCFHbSwgxa20KNwRJ6Enzp1atR9kYOh3ntdcskl2rRpk6SsB0PD50n+/ve/BwM/OUlLS9Ps2bN18sknq3///kf7Uoo8WthBCztoYVP4qpNZXQls4sSJatSokbz3OuWUUzRv3jxJ0o4dO9SvX7/gisZly5bVPffcE3xzypgxY+S9V0xMjGbPnl1wL6aIo4UdtLCDFnakpqZq8uTJqly5cjAQGhsbqzJlymjYsGF69tlng2/C9t4H76Gmp6cH/d566y1VqFBBFStW1FtvvSWJqxofKXrYQQs7aFH4sru68MSJE3McCo18XMbh0F27dmU7FHrFFVdo48aNkv7sFD5WPNbRwg5a2EIPHIsYYAcMWbx4cfCG+NVXXx28+bF3796o5datW6fXX39dF1xwQdTg+hlnnKEbbrhBa9eujbqKQ/iqQfHx8Vq8eLEkrr5+KM8++6y896pcubJWrVqV47KffvqpKleuHHS49NJLg087c8B49GhhBy3soIUt9LCDFnbQwg5a2EELW+hReLI6CT9z5szgw/wxMTEqU6aMFi1aJCnn8xdbt25V06ZN5b3XX//612yXS0tL0/fff6/OnTsHHefMmXP0L6aIo4UdtLCDFvZk9wGzlJQU9e3bN9hmEyZM0N69e/XKK68EV6UsVaqUevfurcmTJweP/+mnn3TaaacpFApp5MiRWf4MKfP/FjifTgtLaGEHLWyZP3++ypcvL+8PXpn41ltv1dy5cyUd3GYzZszQueeeG3T58ssvox5/4403ynuv+vXra/78+YXxEooVethBCztoYc9bb72lDh06qGTJklkOhYZFngOMHA697777JB3eUOiuXbuCDyDgT7Swgxa20APFHQPsgDGLFi3S9ddfH5xsitzBLFy4UOPHj1fjxo2DKzPExcWpXbt2uvfee7Vq1Srt27dP0p9fJ7Vu3Tp17txZoVBI//znP6M+WYXsLVq0SA0bNlSVKlWiTh5GfjAgNTVVr7/+erCDj42N1fnnn68tW7ZIyv6TcTg8tLCDFnbQwhZ62EELO2hhBy3soIUt9LBj5cqVwTZOSEhQjRo11KxZM+3cuTOqR6TwOZNJkyapZs2aCoVCeuCBB6LuCwsPhnbs2DE4Of/f//43uPI+/kQLO2hhBy3sGjt2bNDmX//6l1auXKkLL7wwOG9erVo1vf/++1q/fn3U4x588EGFQiGdccYZ+vnnn3P8GSkpKXrvvfeCPzMgmjVa2EELO2hReBYvXqzrrrtOv/76a/CtWeFjt9TUVE2bNi1qOHTKlCmSpPfffz+47Yknniis1S926GEHLeyghS1PPPFEsF2vvPLKLIdCwyLnbCIfd8011xxyKDRs165duvjii+W914MPPpgvr6moooUdtLCFHijuGGAHjNu/f79Wr16tBx54QM2aNVNcXJy89ypTpkywc3nyySejHhO5c3n++eeD5SZMmFDQq19kbdmyJbjC/VlnnaW5c+dGvSn16aef6vbbbw+2beXKlXX55ZcH/1BgkCHv0MIOWthBC1voYQct7KCFHbSwgxa2FEYPBkqyd/XVV6tWrVp65JFH1KxZM7Vp0ybbZSPf1L300kvl/cErIs+ePTvTshkHQ8uVK6cxY8Zo586d+fZaijpa2EELO2hhz3fffae6desG++iLLrpIFStWlPdeDRo00LXXXqulS5dmetzXX38d7NtHjx4ddV/kfnr79u2aO3eu2rVrF7zRi6zRwg5a2EEL2/bv359pOHTixIm6//77FRsbq1atWmnJkiWSOIYrCPSwgxZ20KLgXX311Tr33HNzHAoNi5zFeeWVV+S9VygUkvdeFStWzHEoVJJGjBgRzPucc845mT7MdqyjhR20sIUeKM4YYAcMS05OVvfu3XXWWWcFByfee5155pkaMGCAzjzzzOC2qVOnSjp4kBI+UElMTFRCQoK89+rbt29hvpQiacWKFapTp46892ratKkuvfRS3XLLLbrwwgtVtWrVYNs3b95cQ4YMCa6MxGBJ3qOFHbSwgxa2FGQPTkjmjBZ2FMbfU+FvI0I0WthRkC0iTzyy/89aYf17KvKE77G+L4ncljNmzNC6devUqVMnVaxYUQsWLMjxsddff30wGHr//fdLit6eDIYeHlrYQQs7aGHT/v37NXToUHnvVbp06WA7e+91/vnn67PPPgu+LSXy30OrVq3S6aefLu+9+vTpE9yecb8+d+5c3Xnnnapfv7689ypRooS89/r666+P+f12RrSwgxZ20KJoyGo4NHx1/BtuuOGwnovtfvToYQct7KBFwYjcz+7ZsyfXjwtfBOPnn38O+pQpUybLodCsziP26tVLXbp00dy5c49m9YsVWthBC1vogWMBA+yAYStWrFBsbGywM+ncubPuuece7d+/X3v37tWsWbOy/Pqo8I5o0qRJqlKlimJjYzVmzBhJhz5AWbRokV555ZV8fV1FybJly9SyZUuVLFky6kME4ROOV155pSZPnqyUlBRJWX86DXmjoFuEH89BfWa0sIMWthR0j8WLF2vevHnse7JACzsKqkVaWpoWLVqknj17aty4cUpKSgru4++sg2hhR0H/HfXGG2/ov//9b9TXz9PiTwXdY9GiRerVq1fUm43Heo+M27Rfv37y3mvUqFHBdg87cOCAtm3bpmuvvVbeH7xyTNeuXfXjjz9mek4GQw8fLeyghR20sCkxMVHly5cP9tnNmjXTkCFDsl1+3759euyxx1SmTBm1aNEieAM28kOXqampGj9+vOrXr68KFSrIe6/q1avrb3/7m7744ouo5+PY70+0sIMWdtCiaNi/f7+mT5+uLl26BMeBTZo0Cc5jZDwXvn37di1fvlyTJ0/W//73P23atCl4Lrb50aOHHbSwgxYF43C3TXj5KVOmBF3Kly+f41Donj17tGHDhqjnWbVq1dGuerFDCztoYQs9UNwxwA4Yt3jxYjVq1EjPPPOMli9fHnVfampqpk/ehk9Ubd68Waeccoq89zrjjDNydQXEpUuX6qqrrpL3Xr169cqX11MUrVu3Tk899ZR69Oih008/XQkJCbrnnnv01ltvRS13rA8dFIT8bJHxU4U7duzQgQMHMn0FD50PooUdtLCloPYZy5Yt0z/+8Q9573XXXXfpu+++y7PnLi5oYUdBtFi8eLG6du0aDApdcskleu211/LkuYsTWthRUH9HzZ49Ww0bNpT3Xh07dtTYsWPz7LmLk4LqsWjRIvXv3z84fr/55pvz7LmLk/Hjxwfb6MEHH9SsWbO0c+dOrV69WqNHj9YFF1wQ/B1z9tln68MPP4x6PIOheYcWdtDCDlrYsXDhQpUrV07XXXdd1PBmVt9Cs2bNGrVo0ULeew0dOlS7d++Oeq5PP/00+HBC+NeJJ56od955R7/++mvUsmvXrtWzzz6b6fZjGS3soIUdtCg63n77bVWrVk3eH7z6/Y4dO4L7wsdpq1at0rXXXqsGDRrIe6/Y2FhdcMEFevHFF4Nl+eazvEEPO2hhBy3sCO/Hp02bFuyTK1WqdMih0E6dOql8+fJavXp1oax3cUQLO2hhCz1QFDHADhQBGb8GJPIEV1ZfH/X5559r6tSpqlChgqpWrap33nlHUs4HJeHh9fDBT2xsrFauXJk/L6iI27t3b9Sf+cRy4cmPFlOnTtWTTz6p9u3bq3Xr1mrWrJkGDhyod999N1iG4ZLMaGEHLWzJjx5paWmaPn262rZtK+8PflXwmWeeqWeeeSZYhh6Z0cKO/GixZcsWPfTQQ+rVq5dKlCihUCikkiVLaujQocEytMiMFnbk5zHG008/rVatWikmJkaxsbG6//77g/tokbX86LFo0SLdcsstwXF7iRIl5L3XLbfcEixDjz/dfffdwbaqWrWqmjdvrvj4eJUtWza4kuVll12mjz/+OOpxDIbmPVrYQQs7aGHHli1bgm8jlaL32ZH71csuu0zeezVr1izqimIHDhzQgAED1KxZs6Bp06ZN1bdvX23evDnTz1u/fr0effTRYNn169fn0ysremhhBy3soEXREP5wQExMjGbPnp3p/g0bNqhHjx7Bt3ZVqVIl+LCa9z7qGJv3C48ePeyghR20sOFIhkJ3796tSy65JFj+2muvzdWFJ5EzWthBC1vogaKKAXagCAifyMruzeyshtjDb4TUq1dPS5cuzfH5w8PrVatWlfdedevW1bfffpvnr6Moi9z2DBUUrvxokZ6eri1btqhfv37Bhzgy/ipVqpTuvPPOPP/ZRRkt7KCFLQWxz0hJSdHs2bODK3+HT0T269cv3392UUILO/KzRcbnmzBhgvr27Ru0uPXWW/PtZxdFtLAjv/+OinxD6scff9SAAQNokYP87JFxeL1Pnz569tlngx4Msf8p8n+39913n2rVqhX178/y5curfPnyevLJJ7Vw4cJMjz3UYOixvn0PBy3soIUdtCiann/+eXnvVblyZU2fPl2SlJycrEmTJqlLly5RDf/+979r8uTJwYfZ9u/fHzzP+vXr9fDDDys+Pl7eH7z6cVJSUqG8pqKKFnbQwg5aFK6pU6eqZs2aCoVCuummmyRl3h9PmTJF1atXV4kSJXTVVVdp8eLFeuedd6Kuiv/QQw8FyzMceuToYQct7KCFDeFtfqRDoWXLltXll1+uH374oXBeQDFCCztoYQs9UJQxwA4UE1kNsXvvo74WKisZh9ePP/54htdRbOT0rQPhf8Dt2bNHn332mc4777yowcPzzz9f11xzjQYNGqS//vWvwe133HFHQa1+sUILO2hhy5F8ZWPGk5OPPPKI6tatq9jYWHnv1bt377xavWMKLew40q8yjTzxvmHDBo0ePTr4e2rEiBF5tXrHFFrYkRctkpOT9cQTTwQt7r777rxavWPOoXpE7h8yDq/37dtXu3btkiS9+OKLDLFnIXL7fvvtt3rjjTc0dOhQDRkyRJMmTco0FCrlbjA0uzdoj/XtnRNa2EELO2hRNIS328qVK3XuuecqNjY2+ADfggUL1KtXLzVq1Ejee8XFxemkk07So48+GvUcka0zDoaefvrpfHtpLtHCDlrYQYvCF25w3333Bcdqb7zxRpbLhq9qX716da1evTq4/ffff9eoUaOCxz///PMFserFEj3soIUdtLAjfKw2ffr0Ix4K7dGjh+bOnVs4L6AYoYUdtLCFHijqGGAHipG9e/dqypQpaty4sUKhkFq2bKlFixZJyvrNDobXURzt2bNHv/zyS/DnrIZLwv9/2LFjh8aOHavTTjtN3nvFxsbq7LPP1rPPPhu1/O+//x4MXpUsWVLjxo3L3xdRTNDCDlrYkpsehxK5X58zZ446duwYfD1kixYttGbNmjxZ1+KOFnbkRQspusfevXs1fPhwhUIhNWnSRN9///1Rr+exgBZ25FWLjM85cuRIhUIhlStXTu++++5RP+ex4kh6LFy4UDfffHNw0vi6667T1q1bo57jpZdeYog9C4e6Gljk9snNYGikadOm6ZlnntEvv/yi3bt35+rnHctoYQct7KCFbZHb/6GHHpL3XvXr19err76q9957T5UqVQr2zWXLltWQIUP09ddfRz0+8jmyGgxdsWJFgb6moooWdtDCDlrY8dNPP6lUqVLy3qtnz57B7RmPxUaPHi3vvapUqZLpPN+ePXv073//W957NWvW7JBXrFy9erV+//33vHsRxQg97KCFHbSw47PPPsuzodC0tLQC+fbg4ooWdtDCFnqgKGOAHSgmwjucb775RnFxcfI++mvhM2J4vWCFv8oxL4ZOkL29e/fq3XffVWxsrP75z3/muOzOnTs1evRoNW/ePBjSve222zR79uxgmciv4Ny0aVPwj7h//etf+fYaigta2EELWw6nR3YiDxK/+eYb/f3vfw+u+H3uuefqf//7HweSuUALO/KiRXZ+/PFH1ahRQ957vfTSS3n63MURLew40hZZ/Z2T8bYVK1YEX0UfHpjm76qcHUmPtWvXqm/fvsFJ444dO2rv3r2SpNTU1GC5jEPs1113Xb68huLqcAdDV61apUsvvVTee5144on617/+peTkZEkcrx8tWthBCztoUbg+/vjjYD98+umnq1+/fipdunTwZm5CQoK++eYbpaSkBI/J+GEBBkPzBi3soIUdtChc+/fvD74pq0aNGnrttdcyLRM+Tt64caOaNWsm773uuusu7dmzJ2q5xYsXB99kOnLkyGz32cuWLVOPHj0UGxvLFfIzoIcdtLCDFrb0799f3ntVrFhRvXr1OuKh0MhzghnxweXcoYUdtLCFHijKGGAHipGNGzfqnHPOkfdeLVu21G+//SYp806E4fXCMX/+fF1zzTVKSkoq7FUplvbu3as333xTDRs2DE78vv7661kum5KSotdff10tWrQIhnSHDx+utWvXBstkNcRz9913B28ibtq0Kd9eS1FHCztoYcvh9MhOZINvv/1WvXr1YmD6CNDCjrxocShnnnmmvPe64ooroj6Eg2i0sCMvWkyePFlTpkwJ/pzx76N7771X3ntVrlxZv/76a56sd3F1ND2eeuoptW3bVmXKlFH58uV1++23B/dF/n/gwIEDGjt2bPD8kVdYRPYOdzA0bMaMGbr00kt1/PHHy3uvVq1aBcfpDIgeGVrYQQs7aFG4Vq1apfPPP19xcXEqWbKkqlatqhIlSsh7rzZt2uiBBx4Izndkd9y2fv16jRw5MjiHfsYZZ2jp0qXB/Rzv5Q4t7KCFHbSwYdmyZfLeq2bNmtq8ebMkac2aNZmGNnft2qVbb7016BP+5uvIY7pHHnlE3nu9+uqrWf6slJQUXXXVVcEx34gRIxgAyoAedtDCDlrYMnjwYJ133nlHdUVj6eBFL/71r3+pV69euv766/X2228H769yzJc7tLCDFrbQA0UVA+xAMRDeQUydOlUnnHCCvPe69tprtWvXrkzLMrxe8NLT05WSkqLq1avLe6+//e1vUQOhyBs7duxQ06ZNgwP5Xr16ad68eVHLhE/azpo1S+3atQuGdB999NHgwD8r4QP8fv36yXuvhISEqCufIBot7KCFLbnpkRMGpvMOLew42haHsm3bNp144ony3qtr1650yQEt7DjaFgsWLAiO995///2o+8JXzxg+fLji4uIUHx+vdevW5en6FzdH22Pp0qV65JFHVLZsWXnv9Y9//CO4L/Jk74EDBzRu3DiNHj1aGzZsyNPXUBzlZjA048n09PT04O+eTZs2acKECWrdurW892rQoEHwYQ7eoD08tLCDFnbQovD98ccfqlevnrz3wbeceO/197//XUuXLg2uSpnd9gwPhlauXFneezVu3FhLly4Nvk0ljB6HRgs7aGEHLexITEzURx99JEn64YcfdPLJJ+utt96SFH3+b8mSJcG3yl1zzTXB7eH9+b59+/Tll18Gt2d1zuPzzz+X916DBg0KvmEF0ehhBy3soEXhizx2Cx/THe5QaPg91Tlz5qhu3brBvj98gZG//OUvWrNmTaafh2i0sIMWttADRR0D7EAx0q1bt2BnM3/+fEnRJ6gYXi9cX3/9tcqUKSPvvS677DKG2PPB/Pn/j72zDo/i+P/4zEUJgYRgIRAIwd3dpTgU6BcrhZa2uHtxd3cvGmhxCdLibsXjBkETEgIhQuRy798f+e2wFw+5y22Sz+t58pTezu7NzvtmR/Y9n3mKkiVLolOnTnB3d9c6JtWFuLg4dO7cWZh0582bh6CgoGSvKR/Ad+/eHZxz1KpVCyEhIWS8SgHSQjmQFsoiJT1SggzTuoe0UA7fqkVySM+2mJgY7Nq1CwULFgTnHMOHD8/wtbM7pIVyyIgWnz59wtChQ8Xk4p9//qkVcSkyMhK9evUC5xxmZmZaUfqIpPkWPeRtQVRUFPbv3w9LS0twzjFx4sRkz0toOiESo9FocO3aNbGrQ2pRjT99+pRk3zYuLg6PHz9GvXr1wDlHo0aNRHQaIm2QFsqBtFAOpIVycHFxEQvIOnTogI0bN6bpvLdv32LJkiViDp1zDhsbG5QuXRoODg747bff8Ndff4n09OI2dUgL5UBaKAfSQjlIY7cRI0aA8/gdruULvaW5jePHj4s5wG3btiU6X0Je5gl3LPX19aUFy6lAeigH0kI5kBaGR+65kcozraZQKX1gYCAcHBzE4rPOnTujcePGKFasGDjncHBwoN230gBpoRxIC2VBehBZGTKwE0Q2Yd++feCcw8LCAiNGjAAQ32BIDQ2Z1w2L1Fm4deuW2AqSTOz64fXr1/Dw8Ej2+NSpU8E5h5GREQYOHJhom7Xk2L17t5gQnj9/vq6ym60hLZQDaaEsUtMjIWSY1h+khXJIqEVay1GeTv7vmJgYHDt2DG3atBHPqaNHj+ouw9kY0kI5JKdFWjT58OEDBg8eLMp88ODBWL9+Pfbt24eff/5ZfD5o0CC95T+7kRE9gPiFAwsWLICpqSkcHBxw/vx5veQzp7Bq1Sox4b5t27ZExtCgoCAcP34cjRs3hoODA/LmzYuBAwdi7969Wuni4uJw6tQpODo6wsLCAuvXrweQdl0J0kJJkBbKgbRQDq6urli3bh28vLzEZym9ZJWMoQUKFADnHMWKFUP9+vUxceJE9OnTB9WrVxf9qLlz54rzKMpx6pAWyoG0UA6khbI4f/48SpUqBWtra2zZsgXR0dEAvu6SEhQUhO7du8PIyAgDBgxI9Xre3t7o3Lkzhg0bpu+sZ0tID+VAWigH0kI5SGOyiIgIdOvWLVlTqJxt27aBc45ChQrh4MGDiIqKwufPn+Hs7Iy6deuCc47q1avjzZs3AKj9TiukhXIgLZQF6UFkJcjAThDZhBcvXiBPnjzgnOPYsWNax8i8rgzkJnZTU1NwztGmTRtaxZyJPH/+HLVq1YJKpULlypVx8eLFNJ338OFDtG3bFkZGRihQoABOnz6t55xmf0gL5UBaKBsyTCsHXWqRMB1pqE1yEx4JTdFqtRpRUVEIDw9HZGQk3rx5gwcPHuDcuXPo0aMHKlasKF7cjhs3TisCNZE2SAvlIDdLe3p6pikCq5+fn9ilS/qzsrIS/27YsCFOnjyp76xnS+R6+Pr6JhtVNyG3b98WZpNFixbpM4s5gvHjx2PVqlWJyj8wMBDz5s2Do6MjOOfIlSuXWKwpRcCXG4OCgoLQvn17cM7x/fffZ/JdZA9IC+VAWigH0kKZpDT2SmgMrVWrFs6cOaMVId/HxwcLFy4U/aklS5ZkRrazJaSFciAtlANpYVg+fvyIAQMGgHOOmjVr4uHDh+KYND8yY8YMEUxMvvAgId7e3lqLx8+dO6f3/Gc3SA/lQFooB9JCWcTExIidt6ysrFI0hQLAhg0bRATjhBH0Hzx4gDp16oBzjm7duiEkJCQzbiHbQFooB9JCWZAeRFaBDOwEkY148uQJhg8frvUZmdeVhdzELq1we/r0qYFzlXM4fvy4GIjPmzdPfJ7SxPC7d+/wxx9/iBeKP/30U6I0kq4BAQFaW62RITF59KUFkX70qUV6I5PmVKToGEDS23sBujNMR0RE6DDn2Y/M1OLRo0dYuXJlkt9BxEcqvnr1Kn7//XcMGzYMffr0QZcuXdCzZ0906dIFTZs2RfPmzdG0aVNUrVoVlSpVQokSJWBqagoLCwstw+7w4cPh6uqa6DuoXqSNzNACoDYjrdy9exetWrXC9u3bAaRcXjExMVi2bBk45+jSpQvMzMyEFj179sTBgwdF2qQi6JMWqXPv3j20bNkSf/31F4C0lVmHDh3AOUfTpk0RHh6eYlp5u0R6fEW+CEaKNgZ8jVbp5OSEkiVLgnMOe3t7rFy5ElOnTkXPnj21diWQm322bt0KIyMjVKlSBR8+fMi8m8nikBbKgbRQDqRF1iShMbRevXrJRkSOiIjAH3/8Ac45ypQpg0ePHqV4bWrD0wdpoRxIC+VAWmQeL1++RO3atcE5R/PmzfHgwQOt9nz27NngnMPc3BxPnjxJ8hre3t7o16+faNenTJmCt2/fZtYtZCtID+VAWigH0kJZDBo0SJg55QsKkuL8+fOizA8cOJDo+JkzZ1CqVCnkyZMHTk5O1EanE9JCOZAWyoL0ILICZGAniGyG/CWJp6cnfvrpJ2FeL1asGJnXFYBkiHv06BEuXbqEmJiYDF9To9HQ9iwpIJXNmDFjwDlHxYoVhdE8pXL79OkTVq1ahdy5c4NzjsaNG4tolwm38rx8+TLs7e3x22+/4ezZs+Jz6rRpo28tEl6Dyj959KGF1AYlNIV+/vxZ6xqkizZSeVy/fh379u1LFKHvxo0b6N27t4jI16ZNGzx69Cjd5fjo0SO0bNkS27Ztw4sXLxJ9P6F/LaR0Li4uaNGiBTjnGDRoUKLjBHD69GkRlfJb/goUKIBKlSph27ZtKUYBoHqROvrSImFb8/HjR8TExCQyZZEW2khGhAYNGqQpCruvry9MTEwwZ84c+Pv74/r167hz547Wi62E45HQ0FCo1Wp8+vRJ63PSQpuYmBiMHTsWnHO0atVKy2iYHJGRkahVqxY456hbt66WDhIJ68b79+8RHh6e6PqkR9LExcWhZs2aYgH/8+fPxbGgoCBs2bJFPJ9+++03BAYGQq1WY9y4ceCco379+joZoxOkhZIgLZQDaaFMEhpD69evD19f3xTPOXz4MIyMjGBqaqo1D5gQqV2PjIzEx48fdZntbAlpoRxIC+VAWmQ+3t7eKFKkCDiPj3A8b948XL58GWvWrBHtdNOmTfH+/XsA2mMzb29v/PTTTyLdtGnT0jR2J5KH9FAOpIVyIC0Mj3z+btu2bbhz547W8cjIyERegvDwcPTq1QsqlQq9e/fGq1evtI5//PhRRMWfPXs2jf3SCGmhHEgLZUF6EFkJMrATRDbFy8sL33//vZjUsrOzw/379w2dLeL/yajZIC1mdTI0JOa3334D5xy1a9cGkHIZhYSEYNOmTcKkW6VKFZw4cSLZc+bMmQOVSgUjIyM4ODhg+fLl4hhpkRhdaZFSREq1Wk2G9jSgr3rx77//okuXLmjSpAlq166NefPmaW1BSFpoI61oLl26NPbv34/IyEgA8UZqXZjX379/j19++UVMSv7444/JRt7N6ehLi4TmdXNzc6HHiBEjEqXL6fj5+cHExAScc5iYmKBBgwbo2LEjfvrpJwwYMAC9e/fG77//jkmTJmHkyJEYO3YslixZglWrVmHv3r3w8vJKdeKd6kXa0IcW8rJ9//499u/fjxo1aqBKlSooVaoUJk+ejOPHjyeZPqdz8uRJODg4oGDBgti9e7fWAmY5Uh/IxcUFVlZW6Nq1a5Lp5BOMly5dwuLFi1GjRg3UqlULVatWxZw5c+Ds7CzSkBZfUavV2LlzJ+zs7FCkSBHs378/VT3evXuHGjVqgHOOFi1aJNoBQj5hfODAAYwaNQrFihVDqVKlUKJECUyYMAFHjhwRaUiPxPj5+cHa2hoWFhaYOXMmAODLly9aaY4ePSqe/QMHDsTTp0/RqlUrcM4xdOhQqNVqKlsdQFooB9JCOZAWyiO9xlCp7G/cuCHGdFu2bEnxO8LDwzF58mTUqVMnVdNpToa0UA6khXIgLQyHp6cnKlasKNpk+TxekSJFsGDBgkTnpGYKpSBU3w7poRxIC+VAWhiehMZPicjISJw9exYPHjxIlG779u0wMjKCubm52NFRXu4PHz5Ejx49cObMGT3mPPtBWigH0kJZkB5EVoEM7ASRTXnz5g2KFy8OzjksLS1p9VM2Qv6SytPTE3v27MGUKVMwdOhQ7Nu3T2uhAr3Q0mb8+PHgnKNSpUqJourKO10vX77E8uXLhUm3XLly2LRpU6Io0gk5duwYevbsCZVKBc45/vjjD3GMtNBGH1q4u7tj+/bt6NGjB9q2bYu6deuibdu22Lp1K27fvi3SkRba6EoLaUGBWq3WivIg/7O1tcWsWbPENUmLr7i5ucHU1BScc1SvXh0HDx7Ev//+ix9//DHD5nUgfiB66NAhtGvXDpxzqFQqFCpUiJ5TSaAPLRKa142NjWFmZoZ69eqJNoNM7Ilxc3MTL2mbNWsGV1fXb7pOcuVJ9SLt6EuLN2/eYNKkSUm2GTY2Npg+fXqy5+ZUQkJC0L9/f7H4LKktH+VltXr1arEoJyoqSuuYvJ1funQpKlSokKQW+fLlIy2SITg4GD169ADn8RHVHz16lCiNfPJ35syZolyXLl2abLoJEyYgT548SeqRO3duek6lgLe3tyirSZMmJZvu5MmTIp20y4SZmZmYtCcyDmmhHEgL5UBaKItXr15h2bJl6YpqDMSPI6ZPnw4TExPY2Njg2rVryaaNi4vDrFmzUKhQIXDOUbVq1USLFgjSQkmQFsqBtDA8/v7+GDlypFiEzHn8bqRz585NNA5LzRQqT5/QSERjurRBeigH0kI5kBbK5K+//gLn8QFzJOTzsFJQnfz588PDwwPA13esQPycuURCf09yZlQiaUgL5UBaKAvSg1AaZGAniGyMi4uLmNyqXr06nJycEpkTiayHWq3G+/fv8dNPP2mtrJb+Spcujblz54r0NKj8WganT59GgQIFULRoUa2JW3kZ3bhxAyNGjICFhQU456hQoQJWrFiBkJCQZK8v78x5enpi1qxZwpA4duzYJL8np6IPLdzc3LB69WpYW1uLCAOSyVReLxYvXpzk9+RU9FUv5C/abWxs4ODggHbt2sHR0VHUi9GjRyf5PTkdDw8P0W6XLVsWDRo00DJMP3z4MEPlpdFo8PnzZ4waNQr58uUTegwePFiHd5E90KUWyZnXe/bsidevX2P//v1kYk8BuXG6ZcuWYqIE0C6j5P6dGlQv0o4utZA+37x5s2gzSpQogerVq6Nnz56oXLkytRkp8PLlS9SpUwecczRv3hxPnjwRk4TyyUFnZ2dUrlwZnHP06tVL6xryslywYAHMzc1FmTdp0gTdu3fH4MGD0aBBA/H5+PHjM+cGsxgvXrxA1apVhR4PHjxI0vSxYsUK8XuvUqVKsv2uMWPGaPVjO3TogBEjRmDixIlo3bq10GPChAmZcn9ZjfDwcLRp0wbGxsb44Ycf8O7dO3FMo9Fojd327t0rytPc3BybN28GQBHHdAVpoRxIC+VAWigHtVotFvqlxxgKAPfu3RML/2rWrJnqfPutW7fAOUfevHlx9uxZXWQ/W0FaKAfSQjmQFsohOjoa4eHhuH79Om7cuIH3798nSpOaKVTO48ePMX78eGzfvh1ubm7ic2rf0wbpoRxIC+VAWiiPP//8E5zHR8I/f/68+FzaufH169eoXbu2mPuOjo5OsnzlptDFixfjxYsXAMgcmh5IC+VAWigL0oNQGmRgJ4hsjru7uzCaVKtWjUzsWZz3799j9+7dqFWrFjjn4kVWuXLlUL16ddja2gqDndw4TcQTGBiIpk2bgvP46KE3btxAeHg4ACA0NBRr1qxBjRo1YGZmJhZ+bNu2DR8/fkz12nLTSWhoKDZu3Cj0WbZsmb5uKcuiKy0OHjyIrl27ikmXokWLol69elizZg02bdqESZMmoVGjRkKLMWPGiHPJBBePLutFSEiIiPRQvnx5zJ07FwEBAQCAJ0+eYMGCBUKLGTNmZOZtZhnc3d2RP39+EWFPMoq6uLhkeIJQ/pufN28e8uTJI9qMOXPmZDTr2Q5daJGceb1Hjx6ibkRHR2P79u1kYk8BeX+2ZcuW8PT01Nm1qV6kD11q8e7dO9jZ2YHz+MjVe/bswadPnwDELyJZsmSJqBezZ8/W1S1kG7y9vbXKb9u2bXj79q04vmvXLjRs2FDsKCGPoC7n4MGDKFasmFZfKSYmRtSNly9fYv369eL4ypUrM+X+shpeXl4oUqQIOOeoUaMGpk6ditu3b8PLywvnzp3DyJEjRX/V3Nxca0caOevWrRPpihUrhoULF2odf/fuHTZs2CD0WLduXSbcXdZj5cqVohzXrFmTaPem8PBwuLi4iOj5pqammD59upaRlF7M6gbSQjmQFsqBtFAOnp6eYl41rcZQT09PMe9RrFgxseOfpIn034QRyG7cuIELFy7oMPfZC9JCOZAWyoG0yBqkxxQaGhqKDRs2iLQNGzbEzp07xXEy+mQc0kM5kBbKgbTIfNzc3NCiRQvxvicoKEgcU6vViI2NxeDBg8ViM8kwKkc+5pN2dLS1tcXLly8z5R6yC6SFciAtlAXpQSgNMrATRA6ATOzZA39/f/zxxx9i6+A8efKgVatW2LlzpzCSPnnyBKtWrSKDSQrIzT7FixdHtWrV0LhxY1SrVk0MyCVT1qVLl4SRNzkkc09Ck+HHjx8xceJEqFQqVK9eHS4uLnq7p6xKRrXYunUrqlSpIn7vbdq0wb59+xJFBff09MSyZctEuuQMQzmZb9Ui4e/+06dPKFeuHDjnGD58uDAiSoSFhWH58uVQqVQoWLAgTp48mWn3mJVwc3ODjY0NOI+PYr9gwQKEhoYCyJihWRpIenp6olKlSkLXypUr49mzZzrJe3ZDF1o8ePAAzZo1g4mJCczNzdGrVy9xDUkTtVqtZWKXR5wm4tGXiZ3qRfrJqBZyY3ThwoVhamqKpUuXIiIiQitdWFgYFi9eDJVKhWLFimlFgSDi8fDwQJkyZcA5R+7cuWFra4umTZuiQYMG4JzD2NgYnHN07NhRnCPvu2o0Gvz+++/i2TNp0iSRTv5C6suXL5gzZw5UKhWaNWuWZCQnIv45It8hy8jICPny5UO+fPnEZ1ZWVhg3bpw4R3oGaTQafPz4Ee3btxd6LF++XKSTG0wiIiIwZcoUqFQqtG/fHqGhobTg6f+Rl8OECRNEuQ8ZMgQHDx6Eq6sr7ty5g0mTJqF+/fpikdrkyZOTNQXdvXsXBw8exOHDh3HkyBF8+vQJ0dHRAMhAmhKkhXIgLZQDaaFMnj9/jufPn6cpraenJ2rWrCleym7evFlr1xWpzCMiIjB+/HgsWrQoyetQu500pIVyIC2UA2mhPOTlkx5TqJxly5ahffv24jx5AAVqv9MH6aEcSAvlQFoogx07dsDExAScc6xevRqRkZFax+U7NT58+FDrmHxedurUqWIH8sKFC+PcuXPiGLXZaYO0UA6khbIgPQglQQZ2gsghkIk9a+Pn54fBgweLqH42NjZYvHhxIlO0RqNBZGQkZsyYAWNjY7Ru3RrBwcEGyrVy8fb2RqNGjURkXflftWrVMGrUKK3J3aSQVhlKLwaBxB2wixcvIleuXOCcY9++fbq/kWzAt2qxfft2lCxZUhh82rVrhwcPHmilkWsTFRUloodaWlri4MGDer+3rIYu6kVgYKAwwru7uwNIPJnl4uKC4sWLi8kyImlcXV2FFtWqVcNff/2VKDJfepB0cHV11TLXVa5cGR4eHgAoekZyZFSLDRs2oHDhwlCpVDAxMcGUKVPEMbkhUTKxS9GSf//9d53eR3YgoXHay8srQ9ejevHtpEeL5F5q+Pv7w8rKCmZmZmJHgoRpHz58KL4nYSRqIp7nz5+jZ8+eYpFrwr+uXbuKBWUJf89eXl4wNzcH5xydOnUSnyf1u798+bIwxN+6dUu/N5WF8ff3x5AhQxItAuSco1WrVlqm9ITl/N9//4m0ffv2FZ8nVYecnZ3BefyOXE+ePNHfDWVB5OW6aNEiFCtWTJRrwYIFxa4qkjH0jz/+gI+Pj9Y1goODcf78ebRq1UosZJPGHfXr18ekSZPEjgfUTiQPaaEcSAvlQFpkXeTG0MKFC2PFihVa5h+5MXTOnDli3mPu3LmJrkW6ZAzSQjmQFsqBtMh8fHx8UjSFJlWO8siV7u7uIlJlQi3I6JN+SA/lQFooB9LCMCTc8VUqvyVLloh3Ds+fP8fAgQOTNIYmNIUWLFgQKpUKjo6OmDFjBnx9ffHx40dhNKV2O3lIC+VAWigL0oNQImRgJ4gcRFIm9tSiSxOG59WrVxg+fDgKFSokXmgdPXpUyzyXcKB44sQJ0Zm4e/duZmc5SxAQEIATJ05g1KhR6Nu3L4YNGwYnJyctA1Zqq8jfvXuHokWLwsnJSetz+XmNGzcG5xz9+/eHRqOhlelJkBYt5B3bQ4cOoWrVqlCpVDAyMgLnHCVKlECxYsXwv//9L9kI60FBQRg8eDCMjIzQu3dvWtyRBGnRQm64DQgIwOXLl7Fnzx44Ozvj0aNHGDNmDDjnuHHjRrLf065dO3DO4eDggLCwMKoXySBvt6tUqYJ9+/YlWv2cFlIy6Sa30IDQJqNa/PvvvxgzZoxY1NSvXz9xTD4prFarsXnzZnDOsWbNGp3eQ3ZBrkWzZs2+ORI71YuMkxYt5O3348ePcejQISxYsABOTk64dOkSBg4cCDMzMzx9+lTrPHnfVupLVa9eHVFRUTTZlQQhISG4du0aBg0ahGbNmqFEiRIYMGAAVqxYIdIk9WLp6dOnyJ07N0xNTTF9+nQASLQVpHyr+cqVK4NzjlOnTunxbrI+4eHhCAgIwIYNGzB//nwsWLAAx44dw7t370Sa5BYJGBkZIU+ePNixYwcA7X6X/Lz379+jZMmSMDc3x507d/R4N1kTefnevXsXe/fuxejRozFy5EhYWlqCcw5TU1NMnjw5kTH0xYsXmDx5stjdQIpCY2trKxZ8SM+kFy9eJPo+QhvSQjmQFsqBtMh6JGUMlRZgAl/LOCIiArNmzYKDgwM45yhUqBBOnz6tdS15X8vPzw8AjTvSA2mhHEgL5UBaZD6+vr74/vvvkzWFynF1dcXjx48RHR2NqKgorWMRERFYsmSJuI40DiTSB+mhHEgL5UBaGBZ52zlx4kRRfjVr1kTXrl3Rtm1b8VnPnj1F2oSm0MKFC4t0nHPxfqlkyZLo168fXr9+neg8QhvSQjmQFsqC9CCUBhnYCSKHITea1KxZE7t370ZERIShs0UkQ0hICGbPno2iRYsK8/r58+eTTS8ZU7y9vWFtbQ3OOU6ePJlZ2c1WpGViVr7y/NChQwC0zUEPHz4UUfOHDh2qt7xmd+RaPHz4EJ06dRLRxTjnsLa2RunSpVGgQAGtKKKvXr0CoD3xfvz4cXDO0aNHj0y/j+yA3ET1559/ag1eOOcoUqQIihcvDgsLC6xYsSJRxPa4uDi8ffsWVapUgUqlQqVKleglSCq4u7sjX7584neb3NbxyUEmXd3xLVrI24SQkBDs3r0befLkAeccv/32mzgm10CtVmc4snh2x8PDQ/RzJk2alO6+LNUL3ZGSFvIyXLx4MapUqaLVZlhbWyN//vwwNzfH5s2btXZOkXj27JmYAGvRokWm3FN2IOEi5eQmB2/fvi302LhxY4rXvHbtmuh/nThxQmd5zYkkF6Xq/PnzQo/Udm86duyYSHv16lV9ZDPLk/A5HhISgt69ewtj6KRJkxIZQ6UI+tIYrkCBApg4cSJOnDgBV1dX3L17F1OmTEHVqlXFRLy/v3+S30d8hbRQDqSFciAtsg7fagy1tbXFxYsXk73u+PHjwTnHpUuX9H4P2QXSQjmQFsqBtDAMb968EeOxmTNnJjKFRkREwNnZGV27dhU7mdWqVQu//fYbnj9/rpX21atX+PXXX6FSqdC5c2faOfsbID2UA2mhHEgLwyOfj12wYAHs7e213m1zztG+fXtcu3YNgPb712nTpgk/j/TOe9iwYdi6dSv69u2LcuXKgXOO0qVLi4XLNOZLHtJCOZAWyoL0IJQEGdgJIgfi7u4ujCAtW7bEx48fDZ0lIgFSZ+HkyZMoW7aseDH1zz//pOm83bt3w9TUFObm5rh586be85tVkZtH5B2mtG59FhQUhOHDh4uO2apVq+Dt7Q0g3tA1Z84c5M6dG5xzTJ06VbeZz2Ykp0XC4wsXLhRR1+3t7dG9e3c8e/YMgYGB8PHxwdGjR4WRrnPnzuJ8eQd8+/btSX4vEU9qWgDAzp07UaZMGaFF2bJlUblyZZQsWRJWVlbgnKNMmTK4dOlSIkPi0aNHhYH3u+++0+u9ZBfc3d3RtGlTrFq1Kl3nkUlX93yrFhJqtRo7duyAhYUFOOdYv359iulJn+Rxd3dHjx49cPDgwXSdR/VC96SmxZIlS2Bubi7ajNq1a6Np06aoUaOGmOAqV64cLly4oLXw6cOHD1izZo3oS/Xu3TuzbilLIm+/0xrN4sOHD6hXrx5UKhXGjBkDIOnfv1qtxvLly5ErVy4ULFgQT5480U2mcwhp7W++evUKVapUgYmJCWbPng3gq5byawQGBmLEiBEwNTVFpUqV8PbtW91nOhuyadMmYQydMmVKImPo58+fMWfOHNjZ2QlTz61btxL1ZSMiInDnzh00aNBALK4JCgpK8bs/fPig8/vJypAWyoG0UA6khTLx8vL6ZmPohQsXtK61a9curF27FkB8QAzppXDDhg1T1YggLZQEaaEcSAvD4uLigvnz52vttAUAUVFR2LZtG2rXrg3OuZgLkf7s7OwSvbPbvXu3OJ5whzoibZAeyoG0UA6kheGRz9FeunQJy5cvR61atdCyZUtMmDABXl5eieZxp02bBhsbG3DOkT9/fqxbtw4ajUbMDUZERODu3buoX78+OOeoX78+3r9/n6n3lRUhLZQDaaEsSA9CKZCBnSByKK6urqhQoQJtN65ApIY9KipKvHDKly8f9u/fn6bzAIioTblz5xZbPRJpQ16OaelIBQUF4ZdffhED94oVK6Jt27aoXLmy2Pq5Zs2a1CnTAXfu3BHbY5cpUwYLFy5EcHBwonT3799H3rx5wTnHxIkTxecJDVnyyOxE2nn8+DGaNWsmXmQMGDAAnp6e0Gg0ePfuHa5cuSJMoRUqVMDq1avx9OlT3Lt3Dxs3bhQDGnt7ezg5OQEgs2ha+PTpk/h3WoxwZNLVH3It5KvNk3oeJcXr16/RsWNHcM7xww8/JNqWk0g7CaNMpwbVC/2RnBZnz55F6dKlRZsxfvx4YVL/8OED7ty5I7QoV64cFi1ahNu3b+Ps2bOYMmWKWJRWrlw53L59GwBppGtGjhwpFstKL6ASlvHZs2dF+926dWtDZDPHMGjQIKGHi4tLouMhISHYunWrWDD4ww8/GCCXWZcxY8Zg+PDhWsZQaQL+6dOn4nlka2sLDw8PAF/7XQnrxY0bN1ChQgWYmZlh3bp1yT6bvL29MWzYMLEogYiHtFAOpIVyIC2Uhbe3N0qWLKkTY6inp6c43rBhQ3DOoVKp0KRJE/z999+Zel9ZEdJCOZAWyoG0UAZyM4/U1rq4uIhy5Jxjw4YN+PvvvzFv3jzUqVNHjPdOnTolzvn8+TPs7e3BOce///5rkHvJDpAeyoG0UA6kheFJOBaTv1MCtN/3TZ06FQULFgTn8VGLEwaMkV/r5MmTKFy4MPLnz49jx44luhaRGNJCOZAWyoL0IJQAGdgJIgcjGabSGqGPyFwmTZokTOhTpkxJ0Rgnb+jXr18vVkyPHj060XEibVy/fh1//vkngNTL7+bNm6hSpQo458JgLf1Vq1YNhw8fRmxsLOnwjcTFxSEuLg7jxo0D5xzW1taYMmWKMJHKy1UypY8ePRrGxsZo0aKFVjRXIuNs2bJF/L5/+eUXrWOSFoGBgeLlupGRkVhQIEXRtbe3x8iRIxNFfiBSJy3GTTLpZg7yMjx8+DB27doFIG1t7ooVK4Qud+/e1Vsecwq0qEM5JNRizpw5oqzHjRunlS6pNoNzDjMzM63/li1bFsuXL0doaGim3kt2QSrnz58/a5W79HuPjY3Fd999J4wPV69eFdsKu7i4YPv27cK8XqxYMTEhSfXl25DKX9oFLaEeUVFRaN26NTjnKFSoEP755x+xxea1a9cwY8YMYV4vW7Ys7t+/r3U+kTTyhavJjat79uwJzjlsbGyEqSeluZLw8HDMmDFDLOhMSgNvb2/88ccfYhHPgQMHMngnWR/SQjmQFsqBtFAmfn5+4JzD2NgYq1at+iZjqEajEWk3b94srqdSqdCsWTOcPHlSKy2RNKSFciAtlANpoVzGjBkj5jdOnDghPler1fDz80O7du1EtMoTJ04gLi4O58+fh4WFBczNzWnHMx1DeigH0kI5kBaGRT42k++oNXXqVBQuXBicc1hYWOCvv/5K8hyJly9fwtbWNtG8O5F2SAvlQFooC9KDMARkYCeIHAxNOimXL1++iAFi+fLl0xwp//z582jUqBE457C0tEy04o1IG+7u7mjatCksLCzw4MGDVNNHR0ejffv2cHBwwK5du1C7dm1899136N+/P1xdXSm6ro6QftsVK1YUEe2Te47JDXOSMZHIGGq1Gmq1Gs2bNwfnHCVLlhRR3+QvzqV/X716FQULFoSdnR1GjBiBPHnywMbGBnXr1sW6devw+vVrg9xHdiI8PBzPnz9HREQEAO0XT2TSzTyuX7+OkiVLIn/+/KJOJIdkTjlw4AAsLS1hbGyMixcvZkY2cwxUL5RBXFwcvnz5gnLlyoFzjipVqghNkmoz/vnnH1hbW6N06dKYNm0aChcujDJlyqBt27ZwdnZGSEiIQe4ju+Dj44MxY8YIs7OEVP5+fn7CNJ07d244OjqiVatWsLOzg4WFhagz7dq1w6tXrwxxC9mKJ0+eoHv37on0kJ5Dvr6+Qg9zc3MUKFAAtWrVQu7cucXCDktLSwwZMgQfPnwwxC1kSVKa/wgJCUG1atXAOUf37t3TXK4PHjxArVq1sHHjRkRHR2t9h7e3NyZNmgRTU1NwztG1a1cEBQVl+D6yA6SFciAtlANpoUw8PT2xfv16vH37Vnz2LcZQAPjjjz9EVGPOtXdRkb8QJpKGtFAOpIVyIC2Uh0ajQffu3cUigM+fP0OtVmvNOanVanTu3FmYQ48cOYJRo0aB8/jd52jOXHeQHsqBtFAOpIVykJf51KlTUaBAATEHu2TJEnEspbFi48aNwTnHr7/+mmpaInlIC+VAWigL0oPITMjAThAEoUCuX78uGv/Fixcnm07ewD98+BD9+vUT50nR14n0ExgYKDpTo0ePFpG+k0LSQIpa9d9//9Gkrh549+4dihQpAmNjYyxduhRA0tHGpC2N5s+fDzMzM1hYWMDT0zNT85rdadu2LTjnqFSpUqItpOS8e/cOlSpVQt68eXHp0iW8efMGL168oIGJjggLC8P69evRuXNn7Nq1C2FhYeKYi4sLmXQzkUePHqF69ergnGPOnDkIDw9P9ZzVq1cnGeWEyBhUL5SHtO1s48aNASRf1v7+/nBwcICtrS0eP36MoKCgFPtfRNqJjY3FmjVrYGRkhE6dOiW7GCA6OhoTJkxAkyZNUL58eRHlWzK2WVtbp2lhJ5EyUVFRmDx5Mjjn+Omnn5L9navVasycORMdOnRA48aNUahQIS09qlWrRos0dcijR49E+7B69eo0nSP1ad3c3PD582etYwmNoekxnOZ0SAvlQFooB9LCsCS1+DK9xtBp06YJY6ijo6PQc8aMGUl+D5E0pIVyIC2UA2mhPLp16yaC8CTcWUVejl26dAHnHHny5BFlvn37dq30Sc2jkxbpg/RQDqSFciAtDE/Cdtja2hpGRkbgnKNWrVpiZ5WU3ls8ffoURYsWBeccM2fO1HuesyukhXIgLZQF6UFkNipGEARBKI6YmBhmZmbGLC0tWZ06dRhjjGk0Gq00ABjnnDHGmKurK9u2bRvbt28fY4yx7t27s8WLFzPGGIuLi8vEnGcPrK2tWefOnZmFhQU7c+YM+++//5JNK+ny9u1bxhhjr169YqampomOE9+ORqNhsbGxLDo6msXFxbE8efIwxhgzMjLSSgeAmZiYsA8fPrC9e/eymJgYZm9vz+zs7AyR7WxLsWLFGGOMffr0iX369CnJNHFxcczW1pYVLlyYRUZGstDQUGZnZ8dKlCjBOOdUL3SARqNhu3fvZs7OzmzNmjXsxIkTjDHGvL29Wc+ePZm7uztjjLFKlSqxQ4cOsfLlyzONRsNUKur+65oyZcqwNm3aMM45O3jwIHv48GGK6f39/dm///7LOOcsX758zN7ePpNymv2heqE8HB0dGWOMBQYGsk+fPiVZ1nFxcSxfvnzM0tKSBQcHs+DgYFagQAFmZWXFGKO+VEZRqVTMxsaG5cqVi7m5ubH79+8nSqNWq5mpqSlbunQpu3btGtu6dSurXLkyy507N4uNjWUqlYodPnyY1axZkwEwwF1kH4yNjZmjoyPLlSsXu3fvHnv06FGiNLGxsczIyIjNmTOHnT59mq1YsYJZWloyMzMzFhsby2xsbNjWrVtZ+fLlSQ8dkS9fPpYvXz6WK1cuVqhQIcZYvA4pIY3Fy5UrJ8YnjDHm4+PDtm3bxlavXs1iY2NZt27d2LZt25iNjY3+biAbQVooB9JCOZAWhkWae4qLi2NGRkYsMjKSLV26lO3evZv5+/uzwoULs3379rFWrVoxxuLnpjQajThv+vTpbOHChYxzzurXr88WL17MNmzYwBhjbP78+WzatGnie6hdTxnSQjmQFsqBtFAezZo1Y2ZmZuzz58/szp07WuUmnxc/evQoK1u2LAsPD2eMMTZy5EjWr18/xli8TvL3f4cOHWKbNm1ijJEW6YX0UA6khXIgLQyL1GYzFt8Ob9y4kX3+/JmVLl2aMcZY/vz5xbgvqbl0qWwfPnwovAnSe1sifZAWyoG0UBakB2EQ9O+RJwiCINLL4cOHxarmx48fJzouX8l2//59DBo0SKx+btOmDf7777/MzG625N27dyLSdOPGjeHq6iqOSSvKY2NjAQBeXl4oXLhwuqJhEemndevW4JxjyJAhiIqK0jomaRIaGorp06cjb9684JyjZ8+eiIyMpKjfOkAqQ2dnZ9jZ2cHa2hoHDx5MVLbS/798+RJ2dnbgnGP+/Plaxwjd4OrqioIFC4rVzkuWLEH58uUpwrQBeP36tdi5o2nTpnB1dU3UVgDAp0+fsGHDBvGMat26taGynG2heqEMpN///v37UahQIRQsWBCnTp1KlE7SwM3NDTY2NuCcY+vWrVrXIDLO+/fv0a5dO3DO0aRJE7i4uIiyTxgVycPDA7Vr14alpSU45zA2Nsbhw4cBkCa6IiAgAK1atRJtxrNnz0RbIX8uRURE4PLlyyJKCecc5ubmuHHjRqK0RMZ4+fIl8uXLB8455s6d+83XoajGGYe0UA6khXIgLZRDREQEJk6ciNKlS6c7qnHDhg1x9OhRkW7VqlWifV+0aFGm30tWh7RQDqSFciAtlMHLly/FPFTTpk3x+PFjfPnyRSuNq6srJk6cKMr4p59+0nr/JB/rnTx5Eg0bNgTnHOPHj8+0+8gukB7KgbRQDqSF4UjYDkvjvPLly2PLli2oUKECevXqlez50tzsnTt3xO6ZzZs3T7TrFpE6pIVyIC2UBelBGAoysBMEQSiQN2/eoEKFClCpVNiwYYMwNCScZDx58iR69uwpBpAtWrTAhQsXaHsuHfH8+XOULVtWDOKvXLmSqHPl5+eHqlWrgnOOYsWK4d69ewbKbfZFo9EgLi4Oc+bMAeccNWrUwNOnT0UHOCYmBgDw4cMHLFu2TEy8mJqakh56ICgoSGtxh5ubm5iskrQICAjAL7/8As45LC0tcezYMQPmOHvj7u6OAgUKJNrKsWrVqnBzcwNABrfMwtfXV2zP3LhxYxw/flzLEPL06VMsX74c1tbWYovOq1evAiCNdA3VC+UQGBiIFi1aCOO0q6ur6KdKbcarV6/QsmVLcM5RqFAh3L5925BZzrb4+fmhZMmS4JyjQYMG2LdvH969eyeO37x5E2vXrkX+/PlFnTEyMoKzs7MBc5198fX1RYkSJcA5R7169bBt2zb4+/uL46dOncL48eNFm2FiYgJ7e3tRP+gZpjukMcWwYcOgUqnQvn17vHz5Mt3XIWNoxiEtlANpoRxIC2URFBQk5gDt7e2/yRgqpY2JicHq1athY2OD6dOnZ+p9ZAdIC+VAWigH0kI5eHh4oHjx4uCco0qVKhgzZgyOHTsGZ2dnjBo1SsyTcM7Rv39/rYBUcp1OnDiBRo0aifZ7xIgRAL6OB2mRedogPZQDaaEcSIvMJyVT6PHjx6FWq1GoUCGULVsWvr6+Im3Csnz48CHq1q0LzjkKFiyIJUuWiHl2Im2QFsqBtFAWpAdhSMjAThAEoUDCwsLQt29fYYJ78uSJWP0sdRzmz5+PatWqiQFku3btcPXqVWr8dYynp6eIeli+fHkMHDgQly5dwqlTp7Bjxw4UKVJETPa2a9dOywhE6JaXL1+iSpUq4JyjWbNmOHnyJEJCQhAWFgYfHx/069cPpUqVEtFCd+zYAYAMPvrAx8dHTG41adIEhw4dQlBQEOLi4vDq1Sv8/PPPsLe3FwMTLy8vQ2c5W+Pu7i4iF5uamsLe3l5MKMqjfxP6x8PDQxgSCxUqhEqVKqF///7o3bs3HBwckDt3bnDOUapUKaxcuRKfPn0ydJazLVQvlIO3tzeKFSsm+rV79+5FQEAAPn78CDc3N7Ro0UIsNKhVqxZev35t6CxnWzw9PVGmTBlwzpE3b17Y2dmhadOmaNGiBczMzGBhYQHOOWxsbFCjRg1hlqaXTfrB09MT5cqVE5HV8+XLh6pVq6JGjRrgnMPMzEwsku3WrZvYmYv6tvrh4MGDMDc3B+ccK1eu1NrxKbU6QMZQ3UJaKAfSQjmQFsrBxcUF5cqVw5kzZ8RnUuAFiZSMofJ0MTExePDgQeZkPBtCWigH0kI5kBbKwdfXF126dEGhQoXE+wpppzPpr1+/fimaQps0aQIjIyPkypULbdq0gZ+fH16/fo2PHz8meQ6RPKSHciAtlANpYRhmzpypZQqVBwDr2bMnVCoVVqxYgcjIyETn3rx5EzVq1ICJiQk45+jSpQuN7TIAaaEcSAtlQXoQhoAM7ARBEApFHiWxdu3aGDp0KPbs2YOhQ4fiu+++0xpA9unTBy4uLmRm0BPe3t6oV68ejI2NxeQu5xy5cuUShpNKlSrh0aNHhs5qtke+oMDGxgalSpVC1apVxRZEkj7r169HRESEobObrfHw8BCGxHz58sHR0RFNmzZFwYIFhRbGxsYiciuZ3/SLm5ubMOtWqFABzs7OZI42ED4+PmjdurWY+JXaDOm/VapUwfr16xEUFGTorGZ7qF4oB3lUn9y5c8POzg7ly5fXeiliYWFB0dczAT8/P/Tu3RsVKlTQGk9If/Xq1cOSJUvE4jMaX+iX58+f45dfftFamCz95c2bF61atcLhw4fFwg7qT+mXGTNmiPJfunQp/Pz8xLHkyj6hMbRbt24IDg5O8RwidUgL5UBaKAfSQjnI55s0Go1WWc6ePTvFqMbJQYtsvw3SQjmQFsqBtFAOHz9+xJMnT7Blyxbs2rVL7BzLOUffvn1TNIU2bdpUvI+SFjhLc4tNmzbF5s2bkzyXSB7SQzmQFsqBtMhc5s+fL8oqoSkUAHbs2CHKc/r06XB2dsbnz5/h7OyMZcuWCUMo5xwtW7ZEQEAAAJq//RZIC+VAWigL0oMwFGRgJwiCUDCenp5ag0V5g29sbIxSpUrRFo6ZxJs3bzB9+nTUq1dPy1hSvHhx9O7dG0+fPgVALwAzAx8fH7Rr104Y2aU/a2tr2Nvb4+TJk6RDJuHj44M2bdrA1tYWnHMYGRmB8/hox3nz5sXp06cNncUchZubG/Lnzw/OOapXr479+/fj8+fPhs5WjiQwMBBOTk7o3r07SpYsCXNzczRo0AD9+/eHr69vkqvSCf1A9UI5+Pj4oEOHDmLxk/RCI1++fKhYsaIwr9NElv4JDQ2Fj48Pli9fjilTpmDUqFFYs2YNjh49CrVaLfpR1J/KHMLDwxEQEIDt27dj+fLlWL58OZycnHD37l1DZy3HIH/uTJw4UYwvOnfujIULFyZ7nre3NyZMmCDG6b179051oVRCExGhDWmhHEgL5UBaKI/kymjr1q2wsrJKkzE0rX1e0iNlSAvlQFooB9JCmUyZMkW04T/++GOaIhpzztG2bVvMnTsX58+fx5IlS/DDDz+I68yePVucR1qkD9JDOZAWyoG00D8eHh6wsbFBoUKFcPz4cfG5vHwnT56s9e7bwcFBay7d3t4evXr1EqZQWhzwbZAWyoG0UBakB2EoOAAwgiAIQrG8fPmS7dixg125coX5+PiwXLlyMUtLS/bbb7+xqlWrsmbNmjHGGNNoNEylUqX7+gAY51z8v0ajYZxzrc8SpsmpxMbGstjYWObs7Myio6NZWFgYa9WqFStcuDCztramcspEPnz4wNzc3NiZM2dYdHQ0i46OZm3btmVVqlRhJUuWNHT2chTv379n169fZ8eOHWMBAQFMo9Gwpk2bsu7du7OqVatSvchkPDw8WNOmTVlwcDArUaIE27RpE2vTps03tQ+Ebvj8+TMLDw9nhQoVYsbGxobOTo6E6oVy+PDhA3vw4AE7cuQI+/jxI1Or1axTp06sSZMmrEyZMt/cnyV0C+mgLOLi4piRkZGhs5HtkZfzypUr2ZYtW5i3tzfLly8fO3z4MGvSpIlWO+7j48O2bt3KVq9ezdRqNStbtixbvnw5K1u2LOOcM5VKxaysrJipqSlTq9XM0tKSmZqasi9fvrBcuXKRrilAWigH0kI5kBbKJzw8nPXp04edOXOGlSpVii1YsID16NGDMZb03KvU13r+/Dl7+fIlu3jxIvv8+TPLlSsXa9asGXN0dGRly5ZljFFfIL2QFsqBtFAOpIVhCQwMZEWKFGGMMfbzzz+zESNGsFq1ajHGtMvv5MmTbPny5ezWrVtMo9GwESNGsLVr12pdKygoiO3evZtNmjSJMcbY2rVr2YgRIzLxbrI+pIdyIC2UA2mRefj6+jIPDw/WsWNHxtjXdlhezvPnz2dOTk7M09NT69wOHTqw77//nvXo0YNZW1tTG5xBSAvlQFooC9KDMARkYCcIgsgCaDQaptFo2MuXL5m1tTVTqVTM2tpa63h6TSYJz9m9ezd7/vw5u3PnDlOpVKx169asUqVKrG3btowxMrETWQf6rRoOtVrNjIyMRPmTFobBw8ODVapUiRUoUICdO3eO1ahRw9BZypEk9/snY6hhoHqhfKjNMBz0XFIWVBcMh3xC/e7du+zp06fMwsKCderUiVlZWYl0Pj4+bNu2bWz16tUsNjaWFShQgIWEhDBTU1OmUqmYWq1mGo2G2djYMGNjYxYZGcny58/PrKysWExMDDt58iRzcHCgupcCpIVyIC2UA2mhbJ48eSLGGDNmzGBz5sxhjKXcz9q+fTvbuXMne/DgAYuJiRGfc85ZtWrV2MCBA9nQoUMZY2QQTQ+khXIgLZQDaWF4XF1d2fr169nPP//M6tevzxhL2RQ6ceJEtmTJEpFOWoDGGGOhoaFszJgxbO/evax58+bswIEDrGDBgoa5sSwK6aEcSAvlQFpkPgnbYXl5e3h4MB8fH/bixQuWP39+VrBgQda6dWsxb0jjNd1CWigH0kJZkB5EZkEGdoIgiCyArk0MUsciNDSUHT16lB05coSdOXOGqVQqptFoGGPxE5H58uVjQ4YMYfPnz9dLPrI6VB6GRV7+UneG9DAMCesC1Q3D8+LFCxYQEMBq165NUb8J4v+heqEMqM0gCELJpDaxntAY+tNPP7GaNWuySZMmMbVazYoUKcLCwsJYVFQUs7CwELtFMcaYkZERi4uLY+bm5szNzY05ODhk0l1lTUgL5UBaKAfSQrkEBgayJk2asLdv37J169axAQMGJDJ0yvWbMmWKMPwULlyY1a9fn5UuXZoFBASw27dvMz8/P8YYYzNnzmSzZ89OdD6RPKSFciAtlANpoQyio6OZmZkZYyx9ptCkFgfMmTOHzZkzh1lZWbH//vuPlSpVKvNuJJtAeigH0kI5kBaGJ7X29Fvb26Tm4GkBWsqQFsqBtFAWpAehD+itPUEQRBYgJVNPSls8JoXUyAcEBLDx48ezW7duMX9/f8YYYwULFmTVq1dnZmZmLCAggN2/f58tXLiQRUdHs2XLlpG5KAFUHoZFXv6khWFJWP6kh+FxcHAgwwFBJIDqhTKgNoMgCCWTcCwtH2/7+vpqGUO7dOnCNm7cyA4dOsTUajUrWbIku3HjBouOjmbh4eHM3NycRUZGsg8fPjBjY2MGgH38+JH5+fkxPz8/apNSgbRQDqSFciAtlIuFhQWrXLky8/HxYTt37mStWrVixYsXF8fl87WTJk1iy5cvZ4wxlitXLjZp0iQ2duxYkfbRo0fs77//ZkuXLmVz585lefLkYePHjydjaBohLZQDaaEcSAtloCtTKGOMmZiYMMbizaYRERGZkPvsB+mhHEgL5UBaGJ6UxnxJHU8L8mtcunSJ+fr6soEDBzIjIyNagJYCpIVyIC2UBelB6AUQBEEQWRaNRiP+7evrK/6tVquTTC99/urVK9SsWROcc/E3f/58XL58WaR98eIF1q1bB5VKBc45Nm3apJ+byEHExcUZOgvE/5NcHSEyH9JCWcTGxho6C8T/Q1ooB9JCOZAWyoH6tcqC+lP6x8PDA5MmTUKuXLnAOUf37t0RHBwMANi+fTs457Czs8OnT58QFxenNVaX/zulz4i0QVooB9JCOZAWysDX1xclSpQA5xytW7eGv79/ojRLliwRc7EFCxYE5xyFCxfG8+fPtdKFhoZi6dKl4JzD3t4ed+7cyaS7yB6QFsqBtFAOpIXyOHToEFq0aAEjIyNwzjFp0iRxLKUx3uPHj1GjRg1wztGuXTtERkZmRnazPaSHciAtlANpkb24efMmevXqBc45+vbta+js5GhIC+VAWigL0iPnQksUCIIgsjDSKrSrV6+y1q1bs4kTJzLGWJKrnaVV0K9evWLNmjVjjx49YpxzVrhwYXbu3Dk2bdo01rx5c5G+RIkS7Oeff2ZDhgxhnHN29erVTLmn7IxKpWIajYadOnWKBQYGGjo7ORppa+xdu3axt2/fGjo7ORrSQlkYGxsztVrNVqxYwV6/fm3o7ORoSAvlQFooB9JCOVC/VllQf0r/eHh4sGXLlrGoqCj2v//9j23bto3lz59fK42JiQnTaDSMsdR3i6LdJ74d0kI5kBbKgbRQBo6Ojuyff/5hNjY27OLFi2zSpEksLCxMHL969Spbu3YtY4yxxo0bs5kzZ7JmzZqx9+/fs/r16zNvb2/GWHwk5Lx587L//e9/rF69euz169fs2bNnBrmnrAppoRxIC+VAWiiL8PBw9ueff7IrV66kK6Lx69ev2cGDB5mPjw9jjLE6deqwXLlyZVq+syukh3IgLZQDaZG9uHfvHps3bx5zdnZmjDF29+5d9uTJEwPnKmdCWigH0kJZkB45HEM76AmCIIiMcf78eTRq1AimpqbgnGPRokWJ0kgREl+9eoUyZcqAc45cuXKhTp06uHfvHoDkoyutX78enHOYmprixYsX+ruRHMKqVatgYmKC77//Hq9evTJ0dnI048ePB+cc3bp1Iy0MDGmhLKSVzT/88APpYWBIC+VAWigH0kI5UL9WWVB/Sv/8+OOPaNGiBT58+ADg664Q0pi5fPnyiI6ONmQWcwykhXIgLZQDaaEc3N3dUalSJUyZMkXr8w0bNsDc3Bycc6xYsQIA4OPjg2bNmokox15eXgC+ztMOGjRIRNWPi4ujXVfSCWmhHEgL5UBaKAc3NzfkyZMHI0aMEJ+lVIavX7/GokWLYGNjA8452rRpI47R7ikZh/RQDqSFciAtsg+BgYGws7MD5xzNmjXDiRMn8OXLF0NnK0dCWigH0kJZkB45GzKwEwRBZGEiIyPRokULsa1juXLl8PDhQ6000oAwICAADRo0AOcc5ubmaNy4MR49eqSVRo70ouvUqVPInTs38uXLRwZ2HfDw4UOh1//+9z8ylxiQu3fvim3vyARnWEgLZXHjxg2xKIr0MCykhXIgLZQDaaEcqF+rLKg/pT/kL2cjIiLEv6Vx9MaNG8E5R+nSpREWFpbp+ctJkBbKgbRQDqSFMgkJCRH/jouLQ3R0NJo0aQLOOZo3b66V1sPDA82bN09kEAWAiRMngnOOX375JdPynt0gLZQDaaEcSAvlEBgYKP6dHlNoo0aNEBQUlOp5RPogPZQDaaEcSIusjxTo0MvLCx07dsTBgwcRFRVl4FzlTEgL5UBaKAvSg1AZOgI8QRAE8e3kypWLbdy4kTHGWKFChdiRI0dYjRo1tNJwzllYWBibM2cOe/ToEWOMsQoVKrC1a9ey6tWrMwBJbg1sbGzMGGPsxIkTLDIykpmYmNAWXxkEAKtRowa7ceMGMzU1ZUeOHGFjxoxhr1+/NnTWchwajYbVrVuXXbt2jZmYmLCjR4+SFgaCtFAWGo2GNWrUiF25coX0MDCkhXIgLZQDaaEcqF+rLKg/pV+MjIyYRqNhjDFmYWEhPpfG0dK22RqNhsXGxjK1Wp35mcwhkBbKgbRQDqSFMsmXLx9jLL7cVSoVA8CioqIYY4w5OjoyxpjQoly5cmzz5s2sWbNm7P3796xJkybszZs3jDHGLl++zBj7qi2ATL2P7ABpoRxIC+VAWiiHQoUKMcYYi4uLE212Qt6+fcv27t3Lli1bxj5+/MgaNGjA9u3bxwoUKMAAJHsekX5ID+VAWigH0iLro1KpmFqtZmXKlGEHDx5k33//PTMzMzN0tnIkpIVyIC2UBelBkIGdIAgii1O+fHnm7e3NLl26xCpVqqR1THqBdefOHXb16lUWHR3N8uTJwzZu3Mhq1KiRrHldOs/Hx4e5ubkxxhirWLEis7CwEMeI9MM5ZxqNhjVs2JBdvnyZGRsbs6NHj7IRI0aQuSSTUalUQosrV64ILYYNGyYm4InMgbRQFpIeDRo00NJjyJAhpEcmQ1ooB9JCOZAWyoH6tcqC+lP6R6VKPIUqjY0ls4+ZmRmzsLAQi8EJ/UBaKAfSQjmQFspF0sbIyIhZW1szzjkrVqyY1jHGEhtEa9asyYYPH86ePXvGChUqxH7++WeD5D87QVooB9JCOZAWyiElU+iePXu0TKFOTk7MwcGBMcaSfL9HZBzSQzmQFsqBtFA+KS0kk8aBFhYWzNTUNLOylGMhLZQDaaEsSA8iOcjAThAEkQ0oVaoUq1ixYqLPpUnGXbt2MXd3d8YYY3v37mX169dP0bwunbdz5052+/ZtxhhjvXv3ZpaWlkm+FCPSjtx4dfXqVcYYYydPnmR//vkni4mJMXDuchZJaeHs7MxOnDhBEckyGdJCWSSlx5kzZ9itW7doEVMmQ1ooB9JCOZAWyoH6tcqC+lOGIzY2ljEWrwGNlw0LaaEcSAvlQFooA2NjY2Zvb88AsDNnzrD3798n0kMyiDZt2pQFBQWx7du3s5iYGNagQQNWvHhxxhgZgHQBaaEcSAvlQFook9RMoUTmQnooB9JCOZAWykHu+5AWMcfFxRkySzmWzNaCdsBJHkPUC9IjeTJTD0kHeg5mHWjGkiAIIptz+/ZtdvLkScYYY0OHDmXt27dnjCU9mQhATExu3bqVLVq0iDHGWMeOHdn3338v0sgJCwtjkZGRWtcgUkZuLrl16xZr27Ytq1WrFq0kNAAJtRg4cCCrXbs2RSQzAKSFspDrcfv2bTZ37lxWu3ZtMjwYANJCOZAWyoG0UA7Ur1UW1J/KXKRnTq5cuRhj8WPhL1++ZHhiXD6mpvF12iAtlANpoRxIC+UglVOPHj1YkSJF2Nu3b9mdO3eSLL9y5cqxLVu2sEaNGrHY2FhWunRpNnHiRGZra5vZ2c6WkBbKgbRQDqSFMnn16hXbt28fmUIVAumhHEgL5UBaKAe5KfTy5ctsxIgRzMvLixkZGVHAl0wmM7UIDw9njNECwuTI7HoREhLCgoKCGOecTNNJkJl6fPz4kW3ZsoW5uroyIyMj0iOrAIIgCCJbc+jQIXDOwTnH3r17k02n0WjEvw8cOABbW1twzlGkSBFs2rQpyXOePn2KcePGYdy4cbh69WqS1yKSJy4uDgAQGhqaoetQeWccSYuIiIgMXYe0yDikhbKQ9IiJifmm8yUdSI+MQ1ooB9JCOZAWyoH6tcpCV/0pAPj06RPWrl2Lffv2ISgoSHxOWn1l27Zt4JyjYsWKiI6OzlDZqNXqNH1GJA1poRxIC+VAWiiHoKAgdOzYEZxzNG7cGC4uLsmmdXd3R8eOHeHs7JyJOcw5kBbKgbRQDqSFclCr1Vi1apV4r9ewYUM8f/7c0NnKsZAeyoG0UA6khTK5du0afvrpJ6GLv7+/Tq8vzTdqNBrxb+m/hDb61sLPzw9TpkxBv3798ODBAzEnT3okRt9aAEBwcDBmzpyJSpUq4eHDhwBoriQ59K2HRqPBsWPHwDmHsbExnj17BoD0yApwgMJkEARBZGfWrVvHRo8ezSpUqMBu377N8ubNq7XCjTHGNBqNiMx0+PBhNnXqVObn58c0Gg0bMmQI27hxI2OMJTrv+PHjrHv37owxxipVqsQGDhzIRo0alWRaInXSU2ZyzRiLX9X56dMn9uHDB2ZpaclKlizJzM3N031dIv0k1OLVq1fs7du37MOHD6xQoULM0dGR2djYMMZIC31DWigLuR5qtZp5enoyLy8v9unTJ1ayZElWqlQpZm9vzxgjPfQNaaEcSAvlQFroF+rXZg+ioqLY4cOHWf/+/RljjA0cOJB17tyZderUiTFGesj5/fff2cmTJ9m7d++YkZHRN10jLi5OnDt8+HBmYWHBli1bxhijsk4PpIVyIC2UA2mhHPz8/FiLFi3Yq1evWOPGjdns2bNZnTp1WJ48eRL1iSIjI5mFhQVjjMpYH5AWyoG0UA6khXLw9PRkFSpUYBUqVGCnT5/WWURjtVrNjI2NE+lJpAzpoRxIC+VAWigLPz8/NmTIEHbx4kUGgJUvX56tXLmStWvXLsPXTtjOh4SEsJiYGGZrayt0Ir2+ok8tGGMsODiYrVu3ji1btoxFRUWxihUrsqZNm7JJkyYxBwcHrbF7TkffWjDG2IcPH9i2bdvYzp07mbe3N8ubNy+7fv06q1KlCmmRgMzQQ/qeX375hd24cYNZWVmx69evs8qVK5MeSidTbPIEQRCEwVizZg0457CxsYGPj0+i4/LIS05OTnB0dISJiQk45/jhhx/EseRWbG7fvh3ff/89VCoVOOeYNm1aktcmdIdci5s3b2LFihUoUaIEChQoABMTE6hUKnTr1g3r168X6UgL/XPs2DGMHz8eVlZWsLCwECtH27Rpg1WrVol0pIX+IS2UxZYtW9C7d2+YmprCyMhIKyrHsmXLRDrSQ/+QFsqBtFAOpIVhoX6tsomJicGuXbvQoEEDcM6hUqlQqlQpzJw5U6TJ6ZF95NFbNm/ejNevX2f4Nzp9+nQULlwYnHP069cvo1nMMZAWyoG0UA6khTLx8PCAvb09OOcoX748Jk6cCG9vb0NnK0dCWigH0kI5kBbK4fnz5zqNSvnmzRusWrUKjx8/BkBjufRCeigH0kI5kBbKYtSoUeCco0GDBnB2dsaXL190dm0PDw+sXr0aHTp0QOnSpVG4cGG0atUKs2bNgp+fHwCKcCxHn1oAwNmzZ7F48WKULl0aZmZm4JyjUqVKcHV1BUBayNGnFsHBwVi0aBHKlCkDzjly584Nzjmsra0p8ncy6LtuSPj6+qJt27akRxaCDOwEQRDZnGfPnsHR0RE2NjY4duyYeFEVGxurlW7t2rXImzevMO507NhRHEtti2AXFxf88ccfwsQ+evRocYwMJvpjyZIlqFSpklhwwDmHubm52BKHc45x48aJ9KSFfoiKisKkSZOQN29eoYWJiQny5s2rpcXYsWPFOaSFfiAtDI9Unmq1Gp6enhg4cKBW2VtZWaFgwYJQqVTiszFjxiQ6n8g4pIVyIC2UA2mhXKhfq1xiYmIQGBiIIUOGCBM75xxDhgwxdNYUgy4nvufPnw+VSiXG5SNHjqTfezogLZQDaaEcSAtl4uPjg1atWiFXrlyi77Ns2TIEBAQYOms5DtJCOZAWyoG0yH68e/cOq1evFuNryRxKGAbSQzmQFsqBtPh25Eb/FStW4O+//0ZUVNQ3X08+xnv79i2cnJyQP39+0S+Q5galvwoVKgjjdE5fdKBrLVLD398fy5YtQ61atcA5R4ECBUiL/0ffWiQ0r+fLlw9nzpxB586dyTSdBJldN4D4MQ2Z2LMOZGAnCILI5nz48AHt27cH5xxNmzbFf//9JzoDGo0Gly9fxsiRI7UGGr169RLnJzS6y5EPYD5+/Ij169eLQcu8efP0d1M5nODgYAwdOlRLs5YtW2LmzJm4efMmdu/ejQkTJggtZs2aZegsZ0vi4uLw8OFD9O7dW0uLbt26YceOHXBzc8PRo0cxffp0ocXcuXMNne1sCWmhDKQ2ITo6GsePH0e7du2EFgULFsSvv/6KS5cu4fXr1/j3338xb948oceCBQsMnPvsBWmhHEgL5UBaKBPq12Yt5s+fjxIlSgjjIumhe168eAEbGxtRvjn9ZZMhIS2UA2mhHEgL3RIQEIDVq1ejYcOGMDU1xcGDBxEWFqaz69PigrRDWigH0kI5kBbZh7CwMMyZM0e04ebm5pg1axZiYmIMnbUcCemhHEgL5UBaZBy5nyMj5kx5+3zr1i2MGDFCRPi2tLRE0aJFMWHCBCxatAi//vqrME7b2dnB09MzQ/eQXdCVFqkhafXlyxc8ePAArVu3BuccVatW1enOCFkZXWshlXlS5nUXFxcA8bsVtGnThkzTSZBZdUMOmdizDmRgJwiCyAH4+PigePHi4JyjYsWK6Nq1KyZPnoyWLVvC0dFRmEXKlCmD8ePHi/NSMq8nRWhoqDD7ODo64sqVK7q+lRyPr68v+vbtKzQrUaIEJk+enChdeHg41q1bB5VKhSJFiuDSpUsGyG32JTY2FpcvX0aHDh2EFg0aNMDKlSsTpY2IiMDq1athZGSEUqVK4e7duwbIcfaFtFAG0qA9KioKu3btQsOGDYUe3bt3x/79+xOdExkZiWXLlsHIyAiVK1cWUQGIjEFaKAfSQjmQFsqE+rVZi7dv32L+/Pki2lKFChWwfft2vUdKyUlIE+fe3t5YuHAhTaQbENJCOZAWyoG00A8ajQYxMTF4+vSpzrbOfv78OV69egWAXsqmB9JCOZAWyoG0yD4sXLgQnHMUKlQIs2bNwosXLwydpRwN6aEcSAvlQFoYHrl5/dy5c+jSpYvYLbNGjRqYOXOmljE6JiYGLi4uaN68OTjn+OGHHxAaGmqIrBMAHj58iMqVK8PY2BizZ89GXFwcLTrXA4GBgVi6dClKliwJzjlsbGzw9OlTAF/7tmSaVhY+Pj5aiwoS6kUoAzKwEwRB5BC8vLxQvXp1sUpW+pOi5/Xv3x8HDhwQ6VNqsCMiIsS/E0bK+O+//1CiRAmoVKokDaTEt+Pv74+ePXsK7Zo3b46dO3eK4/KBiEajgZeXFypUqADOOTZs2GCgXGc/4uLicO3aNXz33XdCiz59+uDs2bMijVqtFnVDo9Hg2bNnsLOzA+ccu3fvNlTWsx2khbKIjo7Gvn37ULt2baHHuHHjtLZ6TNi23L17F3ny5AHnHEeOHMnsLGdbSAvlQFooB9JCWVC/Nmvh7++PmTNnwtLSEpxzVKpUCfv379dpBEYinvQuIif0B2mhHEgL5UBa6B5dRyB+/vw5hg0bhuLFi+P27ds6vXZ2h7RQDqSFciAtshdLlizBqFGj8PLlS0NnhQDpoSRIC+VAWhgOeZt/5swZtGzZEsbGxuCco3Xr1rhw4QLCw8MBaM+hx8XFYd++fTA1NUWpUqXg5+eX6Xkn4omOjkb//v3BOUfjxo0NnZ1sSXR0NFavXg1bW1twzmFmZoZTp06JY/IFA3ITe+7cubXeQxGZj6+vrwiGaGVlhSdPngAgE7uSIAM7QRBEDuL169dYt24dunbtioYNG6JGjRqYMGECjh49qpUupdWYXl5eGDlyJE6ePJlsmi5duoBzjjp16iA6Opq2g8wAkhYRERHo16+fMPl07NhRdIjl6RLSokULcM7RtWvXFNMRqSP9jt3c3NC5c2ehxe+//4779++LdMmVsbSN2qBBg1JMR6QOaaE8NBoNzp07h8aNGws9ZsyYgdevX2ulSQrJkDhz5kwApEdGIS2UA2mhHEgLZUD92qyJv78/Zs+eLczrVapUgZOTE5nXM4D8t0tjZcNCWigH0kI56FsL0ld/eHt7Y/z48WIXTkdHRwQGBho6WzkS0kI5kBbKgbQwHHJjDkXGNTykh3IgLZQDaaEcrl69io4dOwrzeqdOnVI1pb948QI2NjbgnOOvv/7KpJwScqQ6tGbNGnDOYWFhAU9PTwPnKnvy4sUL9OrVC5UrVwbnHPXr18fVq1cBxM+nyOc8fH190apVK3DOMXbsWAoKkMkkNKfv3LlTBDm0tLQUJnZCGRgzgiAIIsdQtGhRNmLECDZixAgWFxfHNBoNMzExSZROpVIleT4A9vTpU7Z+/Xq2fv16dujQIfbDDz8wAIxzzuLi4piRkREzMzNjjDEWExPDOOeMc67X+8quABBaTJ06le3bt48xxli7du3YqFGjWJs2bRKlk5/LOWdqtZoxxpiFhQVjjJEW34hGoxFlvGTJEubs7MwYY2zAgAFs5MiRrGrVqoyxxFoAYIwxFhYWxiIjIxljjFlbWzPGSItvhbRQFpIe79+/Zxs3bmQ3b95kjMU/s0aMGMEKFSok0srLWTrPw8ODffz4kTHGWMGCBRljybdBRMqQFsqBtFAOpIVyoH5t1uTly5ds586dbPny5SwiIoJVrlyZ/fHHH6xLly7M0tLS0NnLksj7ssHBwaxAgQJiHE1kLvrWQn79pP6f+Epm1AupLUnqO4mvZIYWkg5hYWEsT5489AzUIb6+vmzlypWMMcZKlizJBg8eTL9zA0FaKAfSQjmQFpmLvO9jZGQk/j9v3rwGzlnOhPRQDqSFciAtlIefnx/bvXs3+/fff1lcXBzr1KkT2759u9YcelK8ffuWffr0iTHGmLExWRANgTSmDg4OZowx9uXLFxYVFWXILGVLNBoNK1GiBNuxYwe7f/8+W7p0KTt37hz77rvv2KVLl1ijRo2EH4ExxhwdHdmmTZvYuXPnWKdOnah+ZDJS23Lq1Cl25coVtmHDBtHuREREsIkTJ7ITJ04wc3NzA+eUYIwxGhkSBEHkMKROk5GRETMxMdHqRKUG55y1bNmSDRgwgDHGWI8ePdjWrVvZhw8fxDWdnJzY4cOHGWOM1axZM0mDPJE2pA7U5s2b2dq1axljjDVo0IANHjxYy+STlHmHc87Onj3Lbty4wRhjrFq1alrXJNKHNJk+b948tmfPHsYYY926dWODBg0ShmnGEpevtIDD2dmZeXh4MMYYK1u2bJJpibRBWigL+WKCU6dOMcYYGzZsGBs4cGCKk1rSeRcuXGCBgYGMMcbs7e31nNvsDWmhHEgL5UBaKAfq12Y9yLyue+Li4sTzZeTIkaxJkybMw8NDTKYTmYe+tZCbgB89esQY+9q2kNbaZEa9kLcv169fZ97e3kylUrG4uDidXD+7kJnPqAMHDrCffvqJPXv2jBkZGZEWOqJt27Zs9OjRzNjYmI0aNYr9+uuvrECBAobOVo6EtFAOpIVyIC0yh7CwMMYYEwGnJGj8bBhID+WgTy0S9pVpzJcymVkvNBqNzq+ZHZHK6ezZs8zJyYmp1WrWpk0btmHDhhTn0CX9/Pz8mIWFBVOpVCJwGJE5yJ83jx49YidOnGCcc1auXDlmZ2dnwJxlT1QqFQPAcufOzZo3b842b97MunXrxmJjY1m/fv2Yi4tLomdZmTJl2LBhw1jJkiUNlOucQcK29/Xr1+z69eusQ4cObMiQIWz16tUsNjaWxcTEsGrVqrEFCxawpUuXknldSegzvDtBEASRdUi4hUpKBAcH47fffgPnHJxztGnTBgMGDMCIESPEZzY2NtiwYYMec5wz8PLyQqtWrWBkZIR8+fJh48aN4lhK2y4HBARg0KBBMDU1Rb58+fDvv/+meg6RMjdu3EDZsmXBOUfVqlVx9OhRcSylcnV3d0ebNm2gUqlQoUIFeHh4ZEZ2szWkhbI4evQozMzMwDlH27ZtcevWrTSdd+vWLZQuXRqcczRt2pS2htQBpIVyIC2UA2mhHKhfm3Xw9/fH7NmzYWlpCc45qlSpAicnJ4SFhRk6a9mCyZMno0SJEuCcw8TEBEFBQTq5rlQnqG6kHX1pIbFt2zaUK1cO7du3x9GjR8X14+LidPo92QF91wsAuHLlChwdHWFtbY3Hjx8DSN9cWE5B3/UiIiICkydPFls2P3v2DABpkVHkz5Xbt28jICDAgLnJ2ZAWyoG0UA6kRebw7t07zJ49G9OnTxef0djAcGSGHjRXlTYyQwu1Wq31vonqXtJkhha3b9/G7Nmz9Xb97MqjR49gYWEBzjnq1q2L27dvp5heKtfg4GCUK1cOnHNUqlQJUVFRmZHdHIe8L5XU2PnmzZsYNGgQ8uTJA845unbtmpnZy5akde7u3r17qFq1KoyNjTFmzBjExMTQvF8mI3/Ov3v3DocPH0bdunVRtGhR4V3jnKNz586YNWsWIiIiDJhbIjlofwKCIAiCaTQasbXQ33//zRo0aMDs7e2TXe2cP39+NmrUKObi4sLu3bvHrl69ymJiYsRxCwsL1q1bNzZ06NBMyX925tmzZ+z69etMo9GwXr16iTJNbrtr/H9ksatXr7KjR4+y2NhYVrNmTfbdd98xxiiyQ0Z49uwZe/HiBWOMsa5du7Ju3boxxpKPFspY/PZDzs7O7O7duwwAq1KlCitXrlxmZTnbQlooA6m8nzx5IiI0fP/996xBgwapnvv69Wt24MAB9u7dO8YYYzVq1KCtITMAaaEcSAvlQFooD+rXZg0o8rp+OXnyJFu6dKn4/2HDhjEbG5sMXVOqK1KdCAoKYlFRUczX15ep1WpWp04dZmxszCwtLZOtbzkRfWgh5+HDh8zZ2Zn5+PgwLy8v5uLiwurXr88WLlzISpcuzeLi4sQ8TE5HX1rIx4dXrlxh48ePZ+/evWNRUVGsefPm7Pr166xy5cqkhQx91wvG4ucMf//9d/bgwQN28eJF1qRJE9JCB6hUKvGMr1+/vqGzk6MhLZQDaaEcSAv98/btW3bw4EG2fv169uHDB6ZSqdicOXN0Nm6W+lUpzb8TX9G3HlFRUezixYvsjz/+YKNGjWKNGjViFStWZIyl/I4kJ6JvLRiLn9e6evUqmzhxIqtatSrbuXMn1ZckyAwtQkJCWL9+/Zivry8LCQlha9asIS1SAQBTq9Vs8+bN7MuXL6xw4cKsb9++rHr16imewzln4eHhbN68eczPz4/lypWLderUiZmYmNDcUzpI6bepVqvFe43Y2Fitco+KimJqtZrdvn2beXp6st27d7MPHz6wL1++sOrVq7N169YxxrTn3ROOt2n8nTz+/v4sKiqKlStXLtXfc/Xq1VmVKlXYs2fP2L///ssWL17MTExMMjG3ORdJG6muLF++nN28eZOdO3dOpLGxsWE1a9ZkP/74I+vdu7eIuC7//VPdUAiZapcnCIIgFI0UVf3OnTtpTm9tbY2pU6fCwcEBtra26NixI+bOnStWutEKw29Do9EgOjoanTp1AuccNWvWFFGvkotKJX3+9OlT2NnZgXOOMmXK4O7duymeR6ROaGgoatWqBc45mjdvLj5P7fd96tQpFCpUSEQKf/PmTZrOI5KHtFAWAQEBIjpfly5dxOcpRbUIDQ3Fhg0bYGNjA8456tWrhy9fvqR6HpEypIVyIC2UA2mhDKhfqxykfs+nT59EpBH575oir2cOQ4cOBeccU6dOzXBfVH5+YGAgtm/fjtq1a8PW1lZEl6lSpQp+/PFHeHl5AaD6I0eXWiSFq6srnJ2d0aRJEzEWcXBwgIuLCwAai8jRtRbyZ9vly5dRs2ZNqFQqWFhYwNHREZxzWFtbU/TvJNB3vZDw8fFB27ZtSYsMQuWlHEgL5UBaKAd9a0Fj9HjUajXWrVsHlUoFzjlsbW0xcuRIfPz4USfXlvPy5Uu8e/cOr1690uonkBZf0aceEleuXEGVKlXAOYexsTFatmyJrVu3iuOkRzyZoUVcXBwuXryIDh06iDH48OHDxXHSIp7M0AKI12P9+vUwNTUF5xwjRowQx0iL5ImIiBDvXWvWrIm3b9+mek5UVBR27NiB8uXLg3MOGxsbPHz4MBNymz25desW5syZg++//x7t27dHly5d0KpVK9SvXx+NGjVCnTp1ULFiRVSoUAEODg6wsbER7y/kf7Vq1cKNGzcAaP/m5e35H3/8QbvSpYCPjw8GDhyIXr16ic+Se35I5bd3717x3EnrDsDEt5FwnsrPzw/Tp09HkyZNtOpCqVKl0KJFC9y6dUt4QiSobigTMrATBEEQAIDPnz+jdu3a4Jzjp59+QnBwcLJpY2JiAAA7duwA5xxnzpxBaGgo3rx5o9WY08vYjBEVFSUGjB07dkxxOxup3J8/f47ixYuDc45ChQph1qxZ+PTpU2ZlOdvy8eNHsQXawIEDERsbm2rH9erVq8JwVaJECezcuRNqtZomSTIIaaEsXr9+LbbgmjdvHoCUB3URERHYs2ePMPCUL18eV65cSfU8InVIC+VAWigH0kI5UL9WOdy/fx/ff/899u7di8+fP4vPX7x4QeZ1PSN/jpw6dSrDzxX5+U5OTujZs6fWRL2VlRVUKhWMjY2FcdrV1RUAjdV1rUVCEo4zAgIC4OTkhEaNGoFzjsKFC8Pd3T3JtDkNfWiRnHnd0tISw4cPh4uLizCYkHH6K/quF0lBJvZvw8vLCydOnBD/T+VlOPSthfQ8y+ltRVrQpxZJlT9pkjz6rhfR0dGiHwWQFhKenp7gnMPMzAyzZs3Cy5cvdXbtiIgI/PnnnxgwYABKliwJOzs72NraYsCAAfjzzz9FOtLiK/rUAwCCg4Oxc+dODBkyBNbW1sIUPGnSJJGG9IhHn1okZV6Xxt9knE6MvuuFhFqtxvbt20W9IC1S5+rVqzAxMYGpqSmcnJwApNz/iYmJwbFjx9CgQQPx2z9y5Eim5jk78eLFC7Rp00Y8P9LzZ2ZmBs45mjZtioEDBya5KETeF5swYYKYM3zy5Emi40T8PJK5uTk45zh69GiazlmzZo3Q5OLFi8mmS20+lp5RyZPwd3rhwgUsXLgQ+fPnF3XH2NgY1tbWGDx4MK5cuaL17gNIXL5UN5QFGdgJgiAIAPEN9qZNm5A/f344ODjgxIkTqXaili5dCs45Vq9eneT1iIzx4cMHVK1aFUZGRli+fDmAlDu2Pj4+IsqolZUVevToAR8fn8zKbrbm+fPnKFasGIyNjcWkbEq/8YsXLwrDnK2tLSZOnIiAgIDMym62hrRQFk+ePIGlpSVMTExw+PDhFNN+/PgRO3fuROHChYWJasOGDWSM0xGkhXIgLZQDaaEcqF9reKRI+PXq1QPnHNWrV8f+/fsRHR2Nd+/eYdasWWRezwR0NfEtv86MGTPEAk/OOerXr4/ff/8d165dw+XLl7F+/XoRhcbR0RG+vr46yUNWJ7NeQkhjldjYWLi4uKBVq1bgnKNJkyZpimqWE9CXFgnN68OGDUNUVBSAePMEGacTY4j7JxN7+nj+/Ll4sfrbb7/p/Ppyw3ROX+yUGvrWIjQ0FMePH8fNmze16gPNuSdGn1rId5nduXMnlixZkugY8ZXMeEb9888/MDU1xYABA7Q+J+IXD8ybNw8vXrzQyfWio6Px6NEj1K9fH3ny5ElkmpPMoRMnThTnkBZf0bUeEgnb5zNnzmD48OFCj7Fjx4pjpEc8+tAiKfP6mjVrsGPHDjJOp4C+6kVCyMSePq5fvw5jY2PkypUL58+fB5C4nKT/j4qKwsmTJ9GsWTPx258/fz6NHTLI6NGjwTmHkZERrK2t8fvvv2PQoEH4+eefMXr0aEybNg1jx47FtGnTsHLlSixfvhyrV6/GuXPncOvWLTHXAWi3E/JxxPjx48E5F+ZsGn8njZeXFzp27AgTExP0798fr1+/TjatWq1GTEwMhg0bBjMzM5iZmeG///5LlC5hfTp//jy2b9+OBQsWYP78+bh37x7ev38PgIKOpERcXBwuX76MMWPGIG/evOK3nCtXLuTLlw+LFi0SzzCJ1KLnA1Q3lAIZ2AmCIAhBYGAgunbtCs45GjRoILa1lpB3mDw8PNC0aVNwzjFt2rTMzmqOoV27duCco1evXlqRKhNuz3j37l3Y29uDcw5LS0u0bt1adKyIjKNWq8VgfODAgfjy5Ys4Jtfiw4cPOHToEIoUKQLOOQoWLIjff/8dfn5+hsh2toS0UBZfvnwRURbGjx+f7CSJj48PVqxYgYIFC4JzDnt7e8yfP18MyImMQ1ooB9JCOZAWyoL6tcrAzc1N/NarV6+ONWvWYMqUKcKQQOZ15SOfOB85cqSWmWTkyJF48uSJVr2Ki4uDq6sr6tevD845xo0bR7sRGZBLly6haNGiKFCgAA4cOACAXk7pg3PnzqFOnTpQqVTIkycPxo4dK9oeqbwTGqelOTB6OZX5+Pj44LvvvhNaULSrpHnx4gWGDh0qdqgxMjLCtWvXdHLttDyHqN34ij61AOLntDZt2gQbGxtwzjF06FCtiNakxVf0qYXcvP7333+jYcOGYj4yYRpC//VC4tChQ6LvS4bExMTGxurkOm/fvsXmzZvFwnITExOYm5tj1KhRWLx4MVasWIH+/fsLcyi9I0waXemRFAnfhWzcuFHosWLFCr19b1ZFF1rI24WE5vV169YBION0WtBnvZBDWqSdZ8+ewcLCApxzMU8hR3reREREYN++fWJ3Oc45JkyYgFevXmV2lrMN8mf5qFGjRLnu2LHjm64n/20nZdA1NjZG3bp1Ubt2bTLqpoCTkxNy584NzjmWLVum9V5JKidJuydPnsDW1hacc1SrVi1ROUrpgoODcfz4cXTo0EFEzpf+7O3t0bJlS7HLEGmhTVRUFM6cOYPvvvsOpUqV0iq7unXrYtasWXBzc9M6J6UypLqhTMjAThAEQWjx4sULVK5cGZxzNG/eHHfu3EF4eLhWmufPn2P+/PmwtrYG5xxLly41UG6zL9IAY8WKFTAxMUG1atXw8OHDRB0kHx8fbNu2TZh0ra2t0b59ezx69MgAuc6eaDQaaDQazJ49G5xz1KpVC0+ePEmkxX///YcZM2YIQ1CRIkUwdOhQeHl5GSjn2Q/SQnnExMSIwV3dunXx5MmTRBOQFy5cwM8//4x8+fKBc46SJUtiyZIlFHFSx5AWyoG0UA6khTKgfq3ycHd3R4ECBcA5R9GiRUV0kapVq2Lfvn1kXlcw8hdbw4YN05qwX7x4cbJp1Wo1pk6dKp6HmfXCmEhMREQEqlevLhb0ELrn06dPaN++vXghWKpUKdy/fx9AfCRR+QtduYmdc46nT58aKts5npcvX6Jz586JTOy0wOMrgYGBKFOmjNhRY82aNTrZYU6qE2q1Gs+ePcPGjRsxbtw4/PLLL9i5cydu376dKG1OR19aSISHh2PKlCmoUqWKiHJcpEgRzJs3T6QhLeLRd72Ii4vDX3/9JQL5kHE6efRdLyTUajVFONYzfn5+mDVrljBj2draom/fvokWJHz69Anr16+HSqWCtbU1nJ2dDZRjAgAiIyMxffp0qFQq1KlTBx4eHobOUrZErVbjwoULIkgD5xybNm1KNP6WG6dHjhwpjtFzKnNJqMXw4cPFMdIiHo1Ggw8fPqB9+/ZQqVQYP358koFHPnz4gGnTpon+qbTjAz1rMo58jnzMmDFaz5bo6GhxLC4uTut3m9JvODmDbtOmTXH69Gm8efNGPMfIqPsVeZkuWrRIaLF69eok3xd5enqKxZsFCxbEypUrAXwtR+m/vr6+6NevH0qXLi0WBhobG6NWrVooUqQIChUqBM457Ozs4OrqCoDmQhIyc+ZMrfFYp06dMG/ePERHR4uySstzneqGciEDO0EQBJEIT09PrZWCkydPxuPHj/HixQucPn0av/zyi4gAU61aNQQFBRk6y9mWV69eicFg06ZNsW/fPvj4+MDLywu7d+9G27ZtheHKzs4O/fr1SxQ5n9AN/v7+qFChAjiP3+598+bNcHFxwdWrV7Fq1SpUrFhRRD90dHTEjBkz9L4NXk6FtFAWL168QLly5cA5R8OGDbFs2TLcu3cPTk5OmDZtGqysrIQxrlKlStixY0eG2g2aWEyezNSCJk9ShrRQDvSMUg5K6NeSPl9xd3dH/vz5RXREe3t7bN++XevFCKEs5L/fyZMnI1euXOCcw8zMTER7S5gO+DrBfvToURgZGcHGxob6xgYiJiYGANCxY0exmIDQD69evcKsWbNQt25dsUDtypUrABK/9PX19RUR5KQ0ROYg9WMjIyPx4sULDBgwQCw8MDExITNEEjx9+hQVKlTA4sWLdTYfGxsbC39/f3Tt2hVly5bVeinMOYeDgwPmzJkj0lN/Kh59aCFHivK3YcMGtG3bVhivRo8eLdKQFvHoWouE5nVpJ0jOOQYMGEDG6RTQd72QoKi6+uPFixeYOHGiCAzj4OCA1atXa40f5PNQr1+/Fjs9ydsKwjBcuHBB9KWOHj1q6OxkS1xdXbXahT59+ohj0ngP+PqcMjIyAuccv/32myGySyBelz179og2Y8iQIeIYtRlf2bBhg/hdL1++XJg2/fz8cOPGDdStW1fM23LOMXPmTJpb0iFyc+zYsWNFOW/evDndQSjk7fS4ceOEQbdJkyY4efKkOObl5aW1Kx0ZdeORl9+kSZOEFj179sT69evx+PFjnDp1CosWLYKdnR0458iTJw+6dOkCHx8fca5Ujm5ubqhSpYpon83MzDBp0iQcP34cUVFRePXqFU6fPo2WLVuKADMvX77M9PvOCkyePBn169fHgQMH8PHjR/F5Wt+RUt1QNmRgJwiCIJLEy8sL1apVE52y3Llzw8HBAUZGRjAxMQHnHOXLl8dff/2V6OUfoVs8PT3FVo25c+dG/vz5YW9vr/UyqWLFili5ciX8/f0Nnd1sjaenJxwcHITRx8rKCnnz5tXSolatWjh27BiCg4MNnd1sjSG0oGikyePp6QlHR0etNiPhS+/mzZvj8ePHWlutZYQPHz7o5DrZjczQQt7mHzlyBPfu3Uv2eE6GtFAOhnhGPXnyRGv7VNIiHkP0a11dXfHXX3+J/yctvuLm5iYWJpcsWRI7duzQeuFKKJMtW7aIesQ5x4YNG8SxlCbsZ82aBc45TE1N8fz580zIKSFHrk3Dhg3BOUeJEiUQHh5Oi9F0jFSeUVFRePDgAbp27QrOOXLlyoVbt24BSNwW+Pj4iB0/qJ3QL/LyjY6OhqenJ/r374+aNWuCcy6MJSVLlsTmzZtJjyQICQnR2TzHmzdvsGXLFhEkQCr/ypUro27duihWrJj4bOzYsTr5zuyELrVIiPy37+HhgSVLlggtpk2bppfvzMroSouUzOvbt28HADJOp4I+64UcMrHrnsDAQMybN09EAS1VqhQOHjyI0NDQFM8bMGAAOOdo1KgRvnz5Qn1bAyD95sPCwsQO21OmTDFwrrIvGzZsQKdOnWBhYQEzMzMMHTpUHJMbTaXnlBSoQTLAEfon4XPI3d0dnTt3FgsKBg0aZKCcKY+EwRKkfo+dnR2aNWsGW1tbYVxXqVQwNjbGnj178Pnz5wx9b0KNqO3WrYkdAAYOHCjeodevX19rwb5U3vJd6eRG3Zyuh1yL6dOnw8jISPQ5pSCgUmARGxsbtG/fXuwip9FoxPnPnj0T6TmP3zH+ypUrSf7+79+/j4oVKyJXrlzYtGmT+JzQblsDAwO1jn1LGVHdUCZkYCcIgiCS5eXLlxg5cqTY3lr+V7NmTZw+fTrDAxQibfj6+qJr164oVaqU6FBJqzB79eoFPz+/DBmupM4WdbpSx8/PD3369EH58uWFAYRzju+++w5jxoxBeHh4hq6fFg1Ip3j0rYWcmzdvomvXrti2bZtWVAHS4ivPnz/Hr7/+KqLrWlhYwNzcHD/++COWLVum07JydnZGjRo1sGHDBnh7e4vPSY94MkuLNWvWiC3vxowZg9OnT4tjpEU8pIVyyMxn1LJly8A5R48ePbQiXpEW8ei7XyvH09MTo0aNEtESJUiLr7i5uYlI7DVq1MC+ffto0Z4CkX6zrq6uWluVr1ixQqRJziii0WgQEhKCbt26wdjYGPXr19faDprQLxqNRuuZI7URnGtvJU/oD39/f3Tu3Bmcc1SvXl1r/JCQhHoRuiNhpKpjx45h8ODBYiGV9Fe+fHmMHj0aHh4e9KzSM15eXhgzZgyKFSsmXrx36NABhw8fFn0BFxcXrFmzRrysX716tYFznbOQP4+ioqKwfv16qFQqWFtbU2RdPRIXF4e///4bTZo0Ec+mLVu2iOPR0dHJGqfJuJu5kIldN0i/WycnJxFJ1NHRESdPnkxxbB4TE4PY2Fh899134Jyjffv2mZVlIhkePXokDHW08Ey/PH/+HGvWrIGlpSU45+jXr584Ju/3qtVqnDx5EidPnsSXL18MkdUcRcJn/61bt7BmzRoULFgQVlZWWvOQ169fN1AulYf8N7tgwQKtQDDSn6OjI3788Ufcvn1b69znz5/j6dOn6Wp35TtxXblyRevcnN5+68rE7u/vjypVqog53+rVq8PNzQ1AvBlYXs5yo66FhQUFS/x/5Frs3r0b3bt3T1Qvypcvj2nTpsHd3R1A/O9X0snV1RUFChQQZvdGjRrB1dVVpJP/FwC+fPkidmzs1q1bZt1mlkFXi16obigXMrATBEEQKRIREYGXL19i+fLlmDFjBqZMmYINGzbo1BhKpI1Pnz7B09MTW7ZsgZOTE44eParzLYRCQ0Ph6+uL/fv3Y/fu3bhy5QqZdZMgLCwMr169wt9//41///0XV65cQWRkpDj+LVsIJSzbFy9e4MGDB1ixYgVWrlyJ06dPiw50UulzKvrQIiGvX7/G8OHDxYC0b9++OHjwoDhOWnwlMjISwcHBOH/+PB48eIDHjx9rHdeFHr6+vloTBT169MD+/fvFcdIjHn1rERYWhqlTp6Ju3brgPH6bNXt7eyxYsECkIS3iIS2UQ2Y8owBg9OjRsLKygqmpKQoVKoTFixeLY6RFPJnRr/Xw8MCoUaPERDEZGpLH3d1dbBFftWpVHDp0CNHR0YbOFpEES5YsEb/niRMnis9TMq8DwIkTJ4Sxh0zT30ZGFhrHxsYiNjYWs2fPhp2dHVQqFczNzbF7925dZzNHIP+9p+UFrkajwZkzZ1CkSBFYW1tj48aNia5D6IeEdSIuLg47d+7Er7/+Cs652OExX758sLOzw8aNG/HgwYMUr0HoBjc3N/z888+i/S9atCjWrFkjFnhI9UOj0SAiIgJTp06FsbEx2rVrh0+fPhky6zkaf39/NG3aFCqVChMmTDB0drIlGo0Gf/75J+rXry/6XLt27QIQ3+ZIdSMl4zSRucTGxmLr1q1CC3kkZGpDUkf6Tfv5+aFkyZJil6ADBw5ozbEnd154eLiI+P2///0vkfGH0D9SeYeEhGDWrFnIkydPosXOhO6Q/75jYmLg5OQkTOwp7ZBCQcT0R8KyDQsLw7NnzzB8+PBERuwCBQpgzJgxOHnypCGzrEjk8+L//fcf9uzZg5EjR2LatGlYtWoV3rx5I8YB0sLvoKAgDBw4EPny5cPevXvT9fsOCwvD3LlzkT9/frRs2RJ79+4VkZVz+lg9ORP72rVr0/X+Ijg4GNu2bUPTpk3FgmUp0nTCxfs+Pj5o2bIl6tSpQ3PCMuS/xU+fPuHOnTv4888/sXbtWuzZswfBwcFicZI88rq3tzfKlCkjjM9t2rSBp6dnomtKSHNbkt4tW7bU963laKhuKBMysBMEQRDfDA20lcO3DOYS6nfgwAF06tRJvLySVqI3aNAAS5cuTfY8QptvKR+5fh8/fsTGjRtRsWJFrUhkKpUKVatWxcKFCzP0XTkJXZVPZGQkjhw5IqLJqFQqFCpUCJMnTxZpcvqESmYSERGBEydOiJXoUvQx+ctbqhuZw5cvXxAZGYlVq1ahVatW4mXhmDFjRBrSInMgLZTH+fPn8fPPPwst6BmVdnTRpkrmdSmSRtmyZSkqXyq4u7uLvufKlSsNnR0iCVxdXcW2zR06dBBRX1Izrz98+FBrgcKjR49SPI9IjPwF4du3b/H27Vu8e/cOz58/h7u7O3x8fODq6orbt2/j3r17uHfvHk6dOgUnJyds2bIF3bt3R4MGDUTfNWEbnRRStEtdLa7Kjhw8eFAs8k7t9xwVFYVatWqBc47mzZtnRvZyNAn18Pb2xuHDh9G4cWNh8JHPOf3555/w8vJK8RoA1Qtd4ePjg99++020+yVKlMA///yjFfE+YR/p0KFDQreHDx9mdpYJGUOHDhUGrPfv3xs6O9mO2NhYbN++HYUKFYKRkREsLS2xdu1areMSarUaO3bsEJFcV61aZYAc51wSthNLly4V/axBgwYZKFdZk8jISLRv3x6ccxQsWBALFixASEhIsunlbcT48eOFOYsMoYbD398fa9asQbly5YSOvr6+hs5WliatkY4/f/6MKVOmwNjYGJUrV060GJPIPD5//oxHjx6hW7duqFSpktb4u27duhg0aBB8fX212g+aF9EmtfJIah51wIAB4JwjT548OHDgQJrnWq9du4YuXbqIMUbhwoXRpUsXMS7M6WM++f1LbW2JEiXg4eGRpvMlLWNjY+Hh4YEffvgBnHNYWVnh3r17SZ4TEBAgnn05vfzlpLYAKeHxgIAAfP/992LOo1mzZuJ3nVIdi4qKEotoGzduTM8nPUF1Q7mQgZ0gCIIgciDyTu+9e/cwZswYrVXo1tbWyJ8/P0xNTcUkvHzLQTL7pJ3UykquxbFjx/Djjz9qaWFra4sSJUrA2tqatMggGSmruLg4hIaGYvTo0bC2tk4yqg+RPr5FD/k5kZGRGD9+PGxtbYUegwcP1mUWcwy6eI64ublh4cKFQospU6boIGc5D9JCOXyrFvJ23c/PD/PnzxdajB8/XlfZI1JAMq9LpqwGDRogPDwcBw4cIBN7Knh5eWHWrFlUJgrl0qVLsLa2Bucc8+bNS/GFuqShp6cn2rZtCyMjI5iammLo0KG0m1oGmDFjBurVq4dixYrBzs4ORYoUQb58+ZAvXz5YWVnBzMwM5ubmyJ07txjPGRsbay1KLly4sFb0/KRefDx58gR16tTBf//9l2yanM6WLVtQoEABDBs2LNW0UoSkvn37wtjYGKVKldIy6qYVejamHw8PD/z5558oXbq0WEgjzWv069cP69ev13qWpVTGVC90Q2BgIP744w8UKlQInHM4ODjg9u3byaaXNHn8+LF4tv3777+ZlV1CRkxMDABg+vTpUKlUKFCgAN69e2fgXGVfrl+/jhkzZiBXrlzgnKNPnz7imPz5o1arsWHDBjRt2hTXr183RFZzPK9fv8a5c+fQsGFDrWAwU6dONXTWFI/0jL97966Ivt66detEi8qS4+TJk6hRowY45yhdujSePHmiz+zmCKTFekD83Hd0dDS+fPmCjx8/IiQkBO/fv4e/vz98fX3x4MED7N+/H6tWrUL16tVha2sroohu3boVgPYcVVL9LOrfJk10dDQePXqU4i4Ecs6fPy92Ftq8ebOec0cAiccCBw4cQJ8+fZA3b16t96t16tTBtGnT8PbtWxElmepF2knJQCsvp59//lksZkqPif358+e4cuUK2rdvj6JFi4JzDnt7e7i4uKT6/TkB+e983rx5WLlyJT5+/PhN1/Lx8UHbtm3BOUerVq3w5s2bZNPm9HL/VuLi4qDRaLBx40bxey5VqpQIvJCaAf7cuXMoUaIEVCqV6MfS80j/UN1QDmRgJwiCIIhshPQyA0j+ZZ68c3XgwAERXUOKTtmrVy/cuXMHXl5eOH/+PObOnSvMPgsWLND7PWR1pMGEfHIrLVosX75cRITjnKNRo0YYNWoU/Pz88O7dO9y6dQuLFi0SWixevFi/N5INSI8WqSHXavLkybCxsYGpqSk455g1a1aG8plTkPT4/Pmz+Oxb9ZCfN27cOFhYWAgjxOrVqzOW0RyALrWQT6B8+fIFGzZsgEqlQu7cuXHw4MGMZTQHQFooB31pER4eLrTgnGPdunUZy2gOIi392oR4enpqRV6vX7++eAH85csXbN++nUzsRJZl5syZ4JyjWLFiKRrWpN+zj48P+vTpI6K2V6lSRUzC028+/Zw9e1bLiC5/KS59ZmpqCpVKBXNzc1hYWMDc3Bz58+eHg4MDKleujIULF8LZ2VlcM6lnm6urK6pXry7MJ0+fPk02bU5FMgtK9eHq1atpOk+KgJU7d24EBASk+fsko4MEvbDSRnqeSOUSERGB4OBgTJgwQew8IF+g369fPxw7dkzrGqn9vqleZByprP7++28UL14cnHMUL14cN27cSNN5W7ZsgYmJCfLkySMWERCZh1TP3r9/j5o1a4JzjjJlymiNXQjdIH/Gh4WFwcnJCXny5EkUxELel4qLi0NQUBC1D5mA9EyKjY1FZGQkVq5ciVatWok5Wqmdb9u2LXbs2GHg3GYdZs+eLcrvzJkzaTrH1dUVPXv2FOfJdyog0s+bN2+we/duNGrUCN999x2aNGmCSpUqoUaNGqhVqxYcHR3h4OCAMmXKoEiRIrCxsRHjPPmfjY0NVq9enaivK39m7d69GzNnzkzyGBH/fNm/fz/s7e1x+vTpFNNKZRcbG4u6deuCc47+/ftDrVZTuWYCsbGxWLduHfr06aO1eLxw4cKoWLEinJycUlyQQ/Ui48gXI/fr1y/NJvaEEavfv3+Pw4cPo0mTJuCco0iRIiLSeE7XQj7mlc9NSP3OsLAwrTn05IiNjcW2bdtgbGyMIkWK4MKFCwCofHWNWq1G06ZNwTlHrly5cPfuXQDJzyPJP//ll19Ee06Lxr8dqhtZFzKwEwRBEEQ2ITIyEnv37sXy5cvFZwk7V/L/37JlC+rVqyc6wz/88AMOHz6cKJJfZGQkli1bBpVKhSpVqsDd3V2/N5KFkco3JCQEs2fP1jL8J9RCPiiZOXOmiHIiRZG+c+dOIi2+fPkiourWrVsX/v7+erybrE16tEjrtQDgzp07qF+/vojAVKFCBQQFBekm09kYqQzfvXuH/v37a00Gfuu1gPjoJoULFxZ1p02bNt8cgSCnoEstkuLNmzdo1aqVljmUBvpJQ1ooB11rkbCcg4KCMHToUKhUKrRo0QJv377N0PVzAmnp1ybk2bNnGDFihIhQ3bBhQ3FMvsWj3MQ+atQo/dwAQeiBuXPngnOO8uXLJ9vfkUde/+mnn1CgQAHxAtfb2xsAmW8zwogRI4RZvW7duti9ezcOHjyIffv24dixY7hw4QLOnj2LS5cu4b///sODBw/g6uqK0NDQRJHvk9LB1dUVVapUEbuiSf999uwZADLryrl//z7q168PlUqF0aNH48OHDymmv3XrFuzt7WFkZIQWLVokKkt5G/P+/Xs8fvwYI0aMwA8//IDWrVujZ8+e2LlzJ16+fAmAtEgOV1dX/P7778JgK/1Vr14d//vf/+Du7o5Pnz6l+5pULzKG9Pv+9OmTKMsiRYrg+PHjKZ4nf0516NABnHOK+q1DNBqN1rNHbnaLjY0Vv21Jh4CAAMyfP1/MgbRo0SLNkWGJbyc2NhabN29Grly5YGlpiT///NPQWcpxJBwHvn//Hn/88Qdat26ttbDQwcEBDRs2xIULF2jMnUak58sPP/wgniuxsbGpjr39/f0xZMgQrXcZ0rVorJF+4uLisGnTJq2dm5L7ky+kValUMDIygpmZGWrUqIFOnTrh7t27YvchCbmehw8fRrly5cA5x6BBg5JMk9P5/PkzunfvDs45evTogeDg4FTP8ff3F+1zz549k02XlvpBWiQmYbm5urpi27ZtqFWrlghqxDmHpaUlWrRogSNHjuDFixcpXoPqhe5IysRuYmKCO3fupOl8+YJoV1dXtGzZUuwIEhgYqJc8Z3XkgSvGjRsnyim132xISAiKFCkCzjkGDBiQpnOI9CEFWzA1NRXB1tJiXp8zZ454lg0ZMiRT8pqdobqRNSEDO0EQBEFkAyIiInD06FHxknD8+PGJ0sg7Wtu3bxfRqzjnGDlyJHx8fBJFzpK4e/cuLC0twTnH0aNH9XszWZwPHz5g9erVKFOmDDjnmDBhQqI0ci3mzJkDOzs7ocWcOXO0topM2EG+fPmymKg8f/68/m4kG5AWLdLDjRs3ULduXWFer1ixIkJCQgAg0WIDIjFv3rzB2LFjxXam36KHvD6cPXtWbHsumddDQ0MBkB6poQstUmLSpEngnCNfvnx49eqVTq+d3SAtlIMutJC/JE/Yfh86dIgiaKSRtPRrExIXF4cjR46IF4YqlQpLliwRx+XtgmRil6L0jRw5Ui/3QRC65vjx4zAyMkKRIkW0ot9KYzfpufP48WN07twZNjY2wrx+//59AGT0/Fbk5TZq1CjxPN+zZ0+ar5Haiw+5SdfOzg4zZsxAixYtyKybAlu3bhVarFmzRmscLTfuBAYGYurUqWIcnVIbf+XKFfTp0wfFihVLZBjKkycPqlevDldXVwBk0JLj5eWFvn37Infu3KKcTU1NUapUKfzxxx9wd3cX0eLS8xKQ6oXu0Gg0GDZsGDjnsLKywty5c1Nc/C3XafHixeCcw8zMDFOmTEl0nNAvb968wc2bN9G1a1eUKFFCRLa8efNmorQpmbMIbT59+pQmUyIQb4CQgsD8+uuves4ZIZHw93z9+nUsWLBAKwiM1Nft06cPbt68mUhTjUZD9SIFpPKR2tZevXolm07Cz89Pqz/cqVMnMdYgvh1PT08xR2Fqaoo+ffpg9OjRmDp1KhYvXow5c+ZgwYIF2Lp1K7Zs2YINGzbg4MGD+Oeff3Dt2jWEhYWJ/q9cL/m/Dx06hLJly8LExEToRzvTJSYmJgYbNmxAwYIFUbx4cRw9ejTZfr/UB/3vv/9QtGhR0U6k9ty5efMmDh48iGHDhmHEiBHYu3cvbt26lWx6Ip4HDx5g/fr1sLOzEzsQSPVmyJAhcHJyStN1qF7oHvm8648//ojWrVt/87VOnz6N/Pnzo0iRImIXBBp7JyYsLAxdunQB5xxz585NNX10dDTCw8PF+/IePXpkQi5zHhMmTADnHEWLFk1xEYf8N71x40atoHmpLTQnUobqRtaFDOwEQRAEkQ04ceIEHB0dxTZpnTp1SjY699GjR9GwYUMxGJ80aRLCwsJS/Y6qVauCcy4iWdOAMTFxcXFYt24dChYsKCZPhg0bluwLkXXr1qF06dJCi6VLlyZ7bWmiJCoqSpyza9curWPEV9KrRWrcuHED9erVI/P6N6JWqzFp0iSYmZmJF99LlizRMpmkRkrm9bZt24pIfmReSBldaJEc0ouSadOmwdTUFPnz58ebN28yfN3sCmmhHHShxf79+8E5x19//aX1uTzyd9myZcE5F1HFqf1OmvT0axNy9OhRjBgxAubm5uCc46effhLHEprYpQhn06ZN09qClSCUyuPHj1GhQgVwzrFo0aIko65evHgRjo6Oog4ULlwYt2/fBkDPnIwi72OOHTtW9EM3b96cKMphenFxcdEy6a5evRpBQUF4+fIl2rZtS2bdBMh/y9LOBJxzLF68WGwzLvHs2TPMnj1bmKqbNWuGgIAAAInLcc+ePTA3NxfRL21tbVGzZk2MHDkSrVq1QsWKFYVGtJ15YqR6YW1tDXt7e+zYsSORoS095UX1QreEhYWhefPm4JyjatWqePz4cbJp5TqdOnUKdevWFeXt7OycGdnNlgQGBuL69es4fvw49u/fj7/++gs7d+7E2rVrsWrVKixcuBBTp07FxIkTMXDgQHTp0gVt2rRBiRIlhDlLii66c+dOAMmbFKWt6hN+TsQTHByMLVu2iLFbWspIMqMYGxvD19dX31kkZPzzzz+YOnUqzM3NYWFhIRZxmJmZYfbs2Thz5oxWeqoX6ad///7gnKNJkyaIiIjQOiZvXx8+fIhBgwaJ51GLFi1w+vRpKk8d4ebmhvz584NzjlatWsHLyyvd10jNvM45h42NDb7//nvRPyazbmLev3+PTp06gXOO+vXr4+nTp+KYfLcUiXbt2ok2+ty5c1rXkt6jqtVq3L17F2PHjoWpqakYs0tBGBwcHDBnzpxE30PEBwzp06cPatSoobWAyc7ODqNGjUpU5imNC6he6I+k3pN+yxgtNDRUGEl/++03XWQtWxIWFoaJEyeC8/hdSB89epRsWvmOXFLwnrZt22odIzKOWq0WY+7//e9/yaaT+2t27NiBYsWKiWePvB0gvg2qG1kXMrATBEEQRDbAz89PDNoHDBiQaFWn1Mlyd3cX299JkcdiYmJSvLZGo8H9+/eRN29ecM6xadMmvd1HdsDHx0eU7/Tp05N9qXHhwgU0btxY62W7REqd4lOnTolzDh8+rPP8ZyfSqkVqJDSvV6pUiczr34CXl5eW0UeKlp4WyLyuWzKiRXLIy15qZ8zMzODn55fha2dnSAvlkBEtYmNjMWLECHG+ZISQT0bu3btXHN+wYYPO85+dSK1fmxTysg4KCsKff/6JPHnyJIqSKE+nVqvx7NmzFKOPEoTSkKLgSv3bU6dO4e3bt9i5cydGjRqltaV86dKl4e7ubugsZytSMrF/67jA1dUVlSpVEhGaVq1aJQzWAODt7U1m3SSQP8+lF1Occ9SuXRujRo3CggULMGrUKNStW1fUixo1amDv3r2J5kBCQ0O16paFhQUaN26MR48eCS0+f/6M//77D61atRKGLdrOPB65FitWrMCmTZvw/PnzZNOkBaoXuueff/4Rv/GNGzcmm04+9r59+zZ69Oghzps1a1Ym5DR78urVKwwePFjsFvQtfwUKFICjoyP++eefRM8xuW5OTk7gnGPgwIFJHicAZ2dnGBkZoUCBAqkulJXa92XLlokAGS4uLsmml8qayjx9JCyvgIAA3Lt3D127dkXx4sW16kKlSpUwd+5c3Lt3T+uclCIeU71IGqkMdu3ahTx58qBMmTJai88SlqEUzZJzjtatW+PQoUP0m9cxbm5uKFCgADjnaNmypdbizPSUcUom3VmzZkGj0WDPnj1k1k2B58+fiwWszZs3x507dxIt8NBoNOjTpw845zAxMUHLli21Fh5IfdOoqCgsXrwYjRo1SvQ8q127NhwdHYUW48aNy9T7zAq8ePFCq9zq16+P3377DX5+fulaTE71Qv/I2+JvCYIn9XGlnW86deqks7xlRy5cuCB+x9OmTUsyWKE8ON6CBQugUqlgZGSEefPmaR0nMo5arRa72iRnYJfXi82bN6NEiRIwMjIC5xyDBw9OMh2RfqhuZE3IwE4QBEEQ2QQ3NzcMHjwYN27cEJ8l7FzNmjVLDPKHDBkiTJ/JIZ/ElM47dOiQ7jOfzXB3d8ecOXMSRcmQ6zF06FAt84lEcoMS6dzFixeLCZRr167pIffZi+S0SCsUeV23uLu7Y9u2bak+e+QkNK/LX/iSef3bSYsWCScc5S+lpGMJ25mlS5dCpVJBpVKhc+fO+PLlCw30U4G0UA5JaZHWycKgoCAMHz5cPJ8WLlwooh4fPXoU3bp1E8eOHDmil/xnJ5Lq16Zn4latVmPXrl0iQt/KlSv1kU2CyDTkv//JkydrvbwtVqwYOOfihUfp0qXRu3dvvH79WqffS8SjSxO7u7u70C9PnjyYPn26uL68zfbx8RFm3Tx58mhFAMzJyLWYN28eChQoIMbKUkRD6f8bNWqEnTt3JjKdhISEYMaMGULH8uXLY/z48Um+3IqLi8OZM2dQoEAB2Nra0nhchvy3n1zfNK1QvdAPzs7OMDExgbW1NW7duqU1jpCQl+/Dhw/x888/i7rx888/Cx2obUg/79+/F5Ekpf5psWLFYG9vj7x588LOzg4VKlSAg4MDHB0dUbduXdSrVw/169fHwIEDMXXqVFy9ejXJXbXkuu3fvx/W1tZCt2HDhiWZLqdz6dIlFC9eHBYWFlixYkWKuzFpNBqo1Wr88ssv4JzDysoKPj4+SaaTExoaijdv3sDHxwe+vr5a9Ya0SJ6QkBCcPn0azZo1Q4kSJbT6vO3bt8fUqVPx+fPnVMuQ6kX6ePv2rdhto1mzZjh37hxCQkLw8eNHeHp64ueff9bSo1u3bjh37hyZ1/WEu7u7lond09Pzm691+PBhYeDKnz+/1nuoqKgobN++PUmzLrX18Xh6eqJIkSLCbD5kyBCcOXMG586dw9atW7UM6YUKFdJ6dyr1j798+YJff/1VRHblnKNv377YtGkTIiMjER0dDRcXF6xcuVJosWrVKgPdsXJxc3ND48aNMXPmTAQEBAjj+rf8VqleKBNprPHlyxeUKlVKLFaQvwshErNmzRrxbFm/fr3WnIe0u2xMTAycnZ3RsGFDkfb69euGynK2ZtmyZTAyMkKTJk3w8uXLJHftAIBFixbBxsZGPGvku8jSu27dQHUj60EGdoIgCILIRsgn3BMO6M6ePSs6Xx06dMCTJ0/SdM3Hjx+LyZXGjRtneHv0nEJKke0PHDggtOjfvz8+fPgAIPXJ3ps3b8LExIRWnqeT1HYZSA4yr+uHb40Wo8vI6zThFY+8HDIyKfLhwwd4eHhgxIgRWi8F161bp4ts5ghIC+WQnBapReYD4qPE9e3bV5R7/vz5UbVqVVhaWorP5JORRMrI+7VyLdK6CCogIAA9e/YUZoekzIgEkZWQ14PVq1eLbWmlv4IFC6JPnz5wdnZOtLPA7t27tUwmaUFK++TJEyxevBjBwcGiX53T+1LJmdi3bNmSrnGCl5cX6tatK0yNNWrUwIMHD8R3JDTrtm7dWhiL0rMgNDsj1+LkyZMYN24crKysxC4cJUqUwG+//QZXV1fxgko6JzY2FgsWLBD61axZE2vXrhXtT1J9spCQEJQuXTrRQnRCd1C90A9S9GFra+skd+eQG3Ju3LiBfv36aRkVpSj3xLfj4uIiDIkVK1bEjRs3EBkZiaCgINFPjY6OFs8qIGmjlLwOJDTpSuMO+Tb0FD00MaGhoWIHrWrVqiW745PUDrx79w41a9YE5xyFCxdGcHBwkukA4PXr11i9ejUaNWqEfPnywcrKCsbGxujRo4fW7gekxVfi4uIQGhqKNWvW4Pvvv9fq3+bNmxctWrTAli1bEBYWJupESvMmVC++DS8vLxQtWlTMZTg4OKB48eKws7PT0mTs2LFwd3cX5fYthk4q89TRhYl9165doj9lbW2NOXPmiGPyuiQ3644ePVpXt5Bt8PLyQvXq1bXqAedcPFvMzMxQvHhx7NmzR5wjjZsjIyPxww8/wNTUVJy3cuVKBAUFJfqeiIgITJ06FUZGRmjTpg31a5Mg4bzetzxLqF4oE3mbIgV/Mzc3x6JFi7SOE1+Rt7/yRfkzZ87UCggTFRWFTZs2oVmzZiLNggULDJHlHMGZM2fEe7k1a9ZoPcvVajWePn2qFeCQc47ff/9dKw2RMahuZF3IwE4QBEEQ2RD5YE7qqP3xxx8wMzODjY0NtmzZkqYB36tXrzBgwADkzp0bKpUKEyZM+GYzMBGvRWRkJP73v/+Bc46yZcvizJkzaTrXw8NDmFQKFCiA9evXJxkxi9ANGTWvk8E94+gj8ro8EilNen1FXobXrl3D2bNn4ezsjAMHDmDv3r3YvXs31qxZg2XLlmHlypWYPXs2Ro4ciREjRqBnz54oW7YsSpYsqRXlcsKECeKaVNZph7RQJhs3bsSGDRsApFyGGo0GZ8+eFZEUpUVn0l+vXr3g6+sLgKL2pAd5md+/fx/Hjh1L9HlybN68WZT/lStX9JVFgsg05O3E+/fvcefOHZw9exaXLl2Cm5ubVlrpOXP16lXkyZMH5ubm2L9/f7ragocPH4pt0xs0aIDFixeL/lROf44lZ2JftWpVmspG0uHz5884ceIEvvvuO/GSVorsnVArHx8fDB8+XMsARyT+Lb58+RKenp548OBBogVo8rRbtmwRutWuXRs7duxIMZJfbGwsPn36hCpVqoBzrmV2IHQD1Qv98eLFC5QtWxYmJibYtm2bVlR7+fPs77//RpcuXUTd6NixI27cuEHjCB3h5uaG/PnzC0Oit7c3AG3TjjSfpNFotOaWEmog//8DBw4II1358uWxYsUKbN26lcy6KfDy5UvUq1dPLIB59uyZKO+Ec3pdu3ZN1kglr0tr1qxBu3btkjQ40vg8eSIiItC9e3dRxpxzlCxZEk2aNMHVq1fx6tUrrfSpjcklqF6kHx8fH3z33XeJTOsWFhZo3bo1du3apZU+MjISDx48wLt379L8HfKyvnv3LlxcXJI9ntNJaGJP7w6zK1asQMmSJWFkZAQzMzPMnTtXHJM/5ySzrpmZGTjnmDhxos7uIbvw6tUrTJgwAXXq1NGqG7lz50b//v3h7Ows0krvT798+YJevXqJtObm5jhw4ECK33PkyBGRXlrASSQmI88Jqhf6IyO6hIaG4t27d+jbty/y5csHzjlsbGxw8eJFHeYw+yEfx02aNEkrqE7btm3Rpk0blCtXTivQ0ciRI+Hn5weA2lx9MWvWLFHev/76K5YsWYL9+/ejR48eqFGjhjhWvHhxTJkyRZz3reb1hOeRCZ7qRlaFDOwEQRAEkQP4/PkzKlSoAM45mjRpovUyJDmCg4OxbNkyEXmjVKlSCAwMzKwsZ1uCgoJQvHhxcM7RtWvXNHWC/f39MXz4cPGSq0mTJomitlNnOn1ER0fj5cuXYsuohNHGMmJelwZGnz59wqVLl2ib4DQQHBwMd3d3hIeHA9DWQ1eR1x8/fgwrKyv8+OOP4jPSQ5shQ4YI8/O3/BkZGaFatWpaq9ST0ujJkyc4e/ZsiruG5HQyS4ukIC20OXfuHKysrGBlZZWmiFeRkZGoXr06GjdujH///Re9e/fG+PHjsXbtWq106TE3EvF4eXmhVatWMDU1xdOnT1NMK7XXt27dEv2nv//+O8m0VM5EViO532xKURCl3SEsLS1x4MCBNP/unZyc0KNHD+TNmxecc+TKlQuNGzcW0Xtz+kuRpEzsPXv2TMMNEKcAAMwrSURBVPOib/lYzs/PTyx0LlKkCB4+fJjkOVJ/WX4+8ZXkDJ4J68W5c+dEv6ly5crYuHGjMK+nVK6PHj0SJoZ58+bpOPcEQPVCX3z+/FmYqJo0aYLHjx8jMjISQHy/Sa1WY/LkyWLREuccP/zwA+7cuZPjFyzpGl1E1ZVrIo8wXa5cOaxatUrUAzLrpoyPjw/s7e3FQr2dO3fizZs3AICPHz/i7t276NSpEzjnMDExQZMmTXD79m1xvnx+fcCAAVpzV02bNsWwYcNw7tw5bNq0CcOHDxda0A4eiXn69ClsbGxgbGyMX375BRcvXky0o1Bqv1uqF7ohODgYN2/exPz58zFr1iwsWbIEjx8/1ooYrdFooNFocObMGXDO0aZNm0QLDVLj2LFjaNmyJTjnmDJlCi5cuKB1fSIeeZvRuHFjsfAprVy/fh3Tpk2DhYUFOOda8+LysYxarcb69ethY2ODR48e6Sr72YqoqChERkbi6NGj2LNnD5ycnODh4SHeLwFf24Xo6GgMGzZMvF+ytrbGkSNHRLqEv3FJCx8fHxQqVAjGxsa4evVqJtxVzoTqhe6Ryi0yMhKenp5wdXWFi4sLHj58iGvXruHGjRu4evUqjh8/jqNHj+LEiRPYvn075s+fj+nTp6NRo0ZwdHTUer+xZcuWFL9TishP81Jf73/ZsmUoX758su+Mpk+fnmgBrfwZ9i2Eh4cLv0JO10LeF50yZYrWIlZpHkn669mzJ/bu3at1vvx96bewZcsWsTAwp2sBGL5uEOmHDOwEQRAEkQN4+fIlbG1tYWJighUrVgBI2Yj78eNHbNmyRQwYbW1txXaq8sgyyUGTjMnz5MkTWFhYIHfu3Dh48CCAlAcSr1+/xpQpU1CkSBFwzlG0aFE8f/480XmxsbF4+fIltm3bhm3btuHSpUsUbToZoqKisHPnTrRq1Qo7d+7E58+fxbGMmtclPn/+DFtbW3DOMXnyZBEtDiAtEvL+/XtMnz4dzZo1w+7duxEaGiqO6cq8/uTJE60X8cOGDRPHSI943r9//3/snXVcVNn7x58zQyOCiIGBYgeg2N3dXatrrGt3f9U1V9fYtbsLY3Xt7m5UUClJUQwUpWuGz+8Pfvd4hxlC0jjv14sXMPfcO/ee5z4nP+c5KFmyJBhjMDAwgEKhQKFChZArVy7kzp0bRYoUQeHChVG4cGGUKVMGFSpUgIODAxo0aIA2bdpg5MiROHLkiIaoVJeN3N3deRSNCRMm4PLly/yYsEUi2WELHx8fXLx4EaNGjcKkSZNw4MABjfTCFl+QbxU8d+5cDYFUcrRv3x558uTBq1evkp2UknB2dsbhw4cxceJEzJkzB8eOHePCUEDYQo67uzuPejt16lSN+js5tm3bxsv+vXv3ppjW29sbt27dwl9//YXVq1fjwoULGpF7hS0E3yPyMufXX3/lERT379//Ve/08+fPMWzYMD7YX6BAAT4p8rMLG+V5vGvXLi2x1dfw9OlT1KlTB4wx/PLLLymWc6JMSj++vr5o3Lgxj770xx9/ICYmBkDK+RoSEoLffvuN98sfPHiQXbf8UyP8IvPw8fFB8eLFwRhDlSpVMHDgQGzYsAEDBgzgeSz9DB06FJ6enhkq44U9kiczROwAsGfPHh41rly5cli9erXGThJS9FAh1k0eT09P7hdmZmawsbFBhw4dULFiRf65gYEBHBwc+Dgu8CXCrlqtRtu2bTX8Z968eTx6n0RYWBhWr14NhUIBKysrnDt3Lluf83sgMDAQZ8+e1fgsPe+p8IusQVcQHWdnZ41FT2kVsUdFRWHevHl8rFZPTw+lSpXCkiVLtL5PkLgzr7Qg459//uHvc0rI6++wsDDs2bMHZmZmvI6XSLqTszTuLnaX1Sa1heTyhbPr1q3jdYienh4OHTqU6nUAYPny5dynHj58mIl3LwCEX2Q1ISEh6N+/P0qVKgULCwuYmpry3QANDQ35LivSwkBdItJcuXKhVKlS2Lp1K7+urv7IsWPHUKhQIb5Twc8u1pU//+3bt7Fy5UpUqlQJ5cuXh52dHXr37q1zN3hPT0/UqVMHTk5O6ap3w8PDsXLlShQsWJAvNhe2+PL827Ztw4ABA5ArVy7kz58ftra2aNu2LQ4cOMBF/xL+/v7o1asX/v3333TZ4tixY2CMIXfu3Hj69KnWvfys5JRvhIWF4eLFi3j//j0vw0TbNnWEgF0gEAgEgh+chIQEPHv2jHcOk67oTEpwcDDWrl2L0qVLgzEGKysrbNu2DfHx8Vodxbi4OMTExODu3bu4du0a7t+/rxUFQjTIvpCQkIA7d+7wzvixY8dSTO/v74/JkyejSJEifCGBFI1E3uj29/fH0qVLeWR3aVVvs2bNsHLlSo3vFyR2qqUB8ipVqsDJyQlA4ralNWrUyLB4HUgUr0gCVIVCgZo1a2LZsmX8uLDFF0JCQnh54+joyO1x8eLFTBOvy8VWYoIqeZ4/f87F5TY2Nrh69Sr8/Pzg5+eHkJAQhISE4O3btwgPD0dMTAzCwsKSnTTRNbCoVquxe/du7n8KhQJVqlTB4sWLeRphi0Sy0hY3b95E27ZtuWBC+hG20E1kZCSmT58OpVKJChUq4ObNmymmf/v2LapWrQoTExOt6DzyPI2MjMS6deuQO3duPlki/VSrVg1Lly7Ved7PTGRkJGbNmgUDAwOUK1cOV65cSTatlGdSRGTGmM7BSIn9+/fD3t4elpaWGm2pBg0aiPpb8N0jb8f269ePC7FS2748aeTq0NBQXL58mUdKtLW1/eoIgD8quvoK8vr39evXiI+PT7UMiY2NxdSpU8EYQ4kSJb46kqUgZSSbHDt2jPcz2rZtq3MXKF2cP3+e72zn4OCgNeEoSB25Dwi/yBk8PT01FncrlUr+t5GREcqVK6fRDgUSo+pJ0drTityfpH68QJOMitgfPHjAxT96enro2rUrPyaP3pdUrDts2LBMe4YfBR8fH3Tu3BnFihXTiJTIWOLuM+3atcORI0d4erkYWmoX6enpoVChQtixY4fGteVtBD8/P1SvXh0KhUJjvFagTXoFN8IvMoek4s2U0ty+fRsGBgZfLWIPDw/Hmzdv8Ndff6FWrVrcFuPGjdN5Hz87np6eGDduHO7fv5+u8+Pj47FhwwYYGxvDxMQE27dvz9wb/AlJ+n5KvvLy5Uu0atWK1yPy+Vhd77T0mUqlQv/+/fliWV9fX+EDWYzwi8zFycmJv/dSvaBUKvl8q6GhIXLnzg1TU1NYWFggf/78yJcvH4oVK4batWujRYsW2L17t8ZCcV110NmzZ3kbOm/evDwoz88u1k2aV5GRkYiPj0dcXJzWmJVUtvzxxx9gjMHU1PSrdmsEEuvxzZs38zksS0tLYYv/J+nzBwUF4c2bNwgLC+PBEyQku61cuZL3yb/WFkBioIYWLVqAscRdP4SI/QvZ7RuRkZHYvHkzGGOoUaMGduzYgffv3+u8F4EmQsAuEAgEAsFPgEqlQt26dXnEW/nW2NIPkNjAnTdvHmxtbXnnb/ny5VoTsyEhIXBxcUGnTp1QrVo1jU6pkZERBg0alOrAzM9KVFQUqlevDsYStxyXGsdJV2A+ffoUgwYN4lG8CxQogP/++08rL0NDQzF//nyeTl9fnw/USxOREyZM4OmFLRJ59uwZChQowEWbs2bNQrVq1TJFvA4k2vnZs2dcJCQNwovI37p5/vw5t0fVqlUxZcoU5MuXj5ctLVq0yLB4vWjRoli5ciVWrFghROwp4Obmhrx58/JFAx4eHhp5I/cHeWc7rfkXHR2NFy9eYMCAAcn6hiCRrLDF8+fP0axZM5iamvKIDAUKFICenp6YLEyB169fo1GjRmAscSv458+f82NSmSTZwMnJieelfAts4Et+hoSEYPr06RqidWtra5QpUwbm5ubCFinw+vVrNGzYEIwx1K9fX8MWSdtUUuQRxhiaNWumkYfyv1etWqVhC0tLS1hbW8PAwIC3pYQtBN878jqjT58+YIyhUaNGGjs2pRU3NzfUq1cPjCVutZ2W3RB+Znbs2IG6devySK2pRe57/Pgxr6fXr1+f4jmC9NG8eXPeP3j58iWA5CeRpHr+/fv3aNCgAY8Kd/78eQDCNulF+EXO8vLlS8yfPx9NmzZF8eLFUbFiRdSuXRvbtm3juy9KfPr0CcuXL8fw4cM1dqZJK/v370ebNm2wa9cu+Pj48M+F/RKRi9ibN28ODw+Przp/165d6NmzJw9aMnr0aH5MXverVCps3bqVj92+fv06057hR+HDhw84d+4cBg4ciKZNm6JGjRpo2bIlDh48qLG4QF5udejQgedp+fLlcfjwYZ4uuXqlXbt2YIyhY8eOWfo8PzPCL7IP6T2/ffs2n4/o0aMH/P39UzwvaR3w5MkTzJ07l4+FTJ06Ncvu+XtGHrhCepdVKhXevHmTpvO9vb1Ro0YNMMYwcODALLlHATB//nw+vjR//nz+eWptH7n4d8yYMVl9mz8kUpkk/CLnGDVqFH+P27Rpg1OnTuH27du4fPkybt68iadPn+LJkydwcXGBn58fAgICEBgYyHdIkaPLZ86ePct3WZEWpQuxrm7kbdGURLPy3RrTKtSVxOu5c+fmwfeELTRJLh9TssUvv/ySbtE0kFietWzZUtgiFbLSNwDgzZs3GDlyJC8Lixcvjh49evA+pbBH8ggBu0AgEAgEPzgJCQmIjY3FhAkTwBhD9erV8fTpU60G0v3799GlSxfe0ciXLx9Wr16Nt2/faqR78OABxo4dy6OC6+np8clfKYqyQqGAnp4epk+frnEfgkRh89ChQ8EYQ61atfD06VMtgfTFixdRuXJlmJubc1HbsWPHdEbXdXd355HXixUrhsmTJ+P8+fPYtm0bRowYwQd+J06cmF2P+N0gnyg0NzfnUQHs7Ozw4cMHAOkTryd915cvX46yZctyEZxcNC34gtweJiYmvHPXqlUrfPr0CUDGxOtr1qxBcHAwAIitglMhs7YzT0rS/F26dClKlSrF65GxY8dmyvf8SGSWLaS837t3L48wbWdnh5MnT8LLywunTp3CtGnTuF9MmTIlMx/jh8DX15cv8Ktfvz7OnDnDyyYJuWC6du3afCFUUv7++2+erlKlShg7diwCAwPx4cMH3LhxA/Pnz+e2mDNnTjY83feFj48PSpQowW1x+vRpDVuEhIRg//79PI+lBUwqlUqrHNq5c6dGum7dusHV1RV+fn44d+4cZs6cyW0xa9asbH5SgSBzkbdr586dqxUh9Guus2bNGjDGUKZMGQ1BokATT09PXsbs3LkzTedcvnyZn7NmzZosvsOfj8+fP8Pe3h6MMQwYMABxcXHJ9jHki9TatGkDxhIj8Y4fPz7ZOl6QOsIvvg0SEhKgVqvx8uVLhIWF8Z0IJKSJ3Pfv3/Oxvm7dun1VBPxjx47xhYdS337r1q0a9yBI7PNJC/pbtmzJx6NSQp53L1++xPr165ErVy4wxvDrr7/yY/IJeZVKhYMHD8LFxSVzH+AHJDY2FjExMVrjsPL6QhJoKZVKlClTRmOXzZTe7aZNm4KxxB1AhA9kLsIvcga5iF0azx0yZEiaIkwm3aVu/fr1fF5p165dWXbP3ztSvsXGxmLx4sXYs2ePxucpIe1qo6+vDy8vryy9z5+NhIQEBAYGomLFimCMoWnTpmnO48uXL/NgPnZ2dnzHQVFPfD3CL3IGeRtpzJgxvP0vb/unRmq2kovXK1eujBUrVqBZs2ZCrJtOdO3WaGpqiv3796doi6Ti9Xr16uHff/8V0b8zgDyfvsYWuhAi9oyTXt+Q4+/vj/3793M/kXRXUp9DRGLXjRCwCwQCgUDwk+Dv78/FnHXq1MHy5cvh7OyM3bt3Y+7cuTAyMuICHWtra+zdu1dLmHX+/HlUrVoVZmZmfNXg+PHjceXKFXz69AlqtRqHDh3CyJEj+bUmTZrEzxcDLon4+fnxCcCaNWti3rx5uHTpEv7++28ubpd+bGxscOvWrWSvNXv2bDCWuK3gvn37NLZm/vjxo0a0abE9rTbu7u5czKlUKlGkSBEeVUyKqpRepE7Oy5cvudDOyMgIderUga+vb4bv/UdEbg8DAwM4ODjwyKBfs5jgyZMnKF++PPehDRs2aETdiI+P1xCxy6MxiXIqkawSscu5du0aX4CTO3du9O3bV2vRlCBzRezdu3cHYwxly5ZFUFCQxvHw8HCsXLkSCoUCCoUCmzdvzozb/6Hw8PDg72zx4sXRrl07bN++HQsWLMCwYcN43Z0/f3788ccfOuuRc+fO8XTVqlXDtm3btLaOjImJwZo1a6BQKGBtbc0nrgRf8PT0RNGiRXkbqG7duvjjjz8wZMgQtG7dWmNgcPDgwVptWgC4e/cur3NKlCiBuXPnIioqSiNNVFQU1q5dC4VCAQsLC5w6dSqbnlAgyBp0tafS0/Z58eIF7xOuWLEiM27th+TVq1fo1asXDA0N0aVLlxTF/tLkxcGDB3kbddWqVdl1qz8N/v7+fIebTZs2AdDtA/LP5BF2mzdvrhWhWvB1CL/4Nviasv/69eswNDQEYwxdu3ZNs4j948eP2LlzJ3r37s3HHBUKBaZNm5au+/iRcXNzQ6FChTB48OA0RwyV551KpYKTkxMX686ePTvFc8WEuW7S+j7u2rWLj/PlyZMHhw4dStM1Lly4gPz580NPTw8LFy7M8P0KtBF+kTNIeXf16lXY2tqme4FrcHAwunbtyhcdqNVqUU+kwP79+2FiYgJra+tU5xqkBTkLFy6EoaEhjI2Nv3rXD0HquLi48DJH3t5JiXv37qFx48Y8uNLw4cN1BrISpA3hFzmHXCA7fvx4Pja7YcOGdAUKk5NUvL5v3z5ERkbi5cuXQjidAXQJdRljOH78uM70ScXrdevWxZ07d5CQkABfX18hnM4AydniyJEjX30tIWLPOF/rG8nh6emJJk2a8PKLMQZ3d/fMvt0fBiFgFwgEAoHgJ8LT0xPFixfnjSRpC2YpMnSePHlQpUoVuLm5aZ178uRJFClShE8a2tnZ4dGjR3zLeLlIKyQkBOvWreNp//nnn2x7xu8FT09PlCpVittCGqCSIhGXKFECnTp14uJd+fZ3EgkJCTw6QMOGDfkkl3xgNzg4GMOGDYNSqUTz5s3TPBH2M+Hm5qYRkfjEiROZFlHP3d0d1apV41HFO3bsiDt37mTKtX9U5Pawt7fHsWPHdAoPdZGQkIBXr16hUKFCvGzr3bs3X9ghL6dUKhW2bNnCfW7kyJFZ8TjfNVklYo+Li8PZs2d5RBpzc3OMHj1adNxT4GttIdUD8vogJiYGXbp0AWOM75CSdPA4MDAQnTt3hp6eHnr37p3hweUfEW9vbzRq1EgjeoK8LVW4cGEMGjQIHz9+1DhPssW0adNgYGAAAwMDzJkzh4vXk07K+vv7o3bt2mIBWgq8ePECjRo1Qp48ecAY4+1OqVwvXbo0Ro4cyW2RVJCwbt06PrH422+/cfF60nRBQUFo1aoVGGNYsGBB9jycQPCNc//+fS5mFH29lDl8+DCvwxcuXIjo6Gh+LGl97ePjAwcHBzCWuLuWq6trjtzzj0xQUBC3x+LFi1NMGxYWhrZt2/JofFWqVMGJEyey6U5/bIRffD/II+vq6+unWcSetG174sQJDB06lLfXxo0bl2zan5Xg4GAeUAH4eoFBaGgoJk2aBD09PdSoUUPn2K4g46jVavTu3Zv3A6XFUEDqC6JmzZrFz9u7d2+23O+PhvCLbxepvpAEoekdT1q0aBGfK8mKYBo/EtevX0eZMmVgYGCAf/75R2tBvi4GDhzI27bCHzKfU6dO8cAWjx8/BqA9xiSvF5ydndGxY0e+OLx27dp8VxyxqCZ9CL/IWbJCxH727Fm+W3mVKlXg5OTEdQmAEOtmFLldpEVk27dv17JXWFgYNm/ezMfSGzRogFu3bmnMuQpbZAx5nvfo0QOMJe7Om5ZyLCne3t4aizukcRRhi7STVt9IStIdhqZOncp3KbK0tMTu3btFHZ8MQsAuEAgEAsFPhq+vLwYNGsS3zZYi33bq1AmrV6/mW9XKG2Dnz59HsWLFeCc+V65cWLduHa5cucI7IIBmwzc6Ohp//fUXFAoF7OzscO/evex7yO8Ef39/jBo1ClWrVoWpqSmUSiVKliyJgQMH4sSJEwgNDQUAjYgLsbGxiI+PR2RkJIDESUBDQ0OMHTs22e/ZsGEDt/XVq1ez9Jm+V9zc3PgEeuXKleHk5ITw8PAMXdPLywtVq1YFYwy5cuVChw4dNMTrYpI2eeT2cHR0/Gp7LF++HN27d4eRkREYYxg1ahQ/Ji/bVCoVNm3aBMYYChQoAGdn50x9jh8BuXC6WbNmGZ48iouLw/nz51GhQgU+eDJq1CghXk8D6bHF69evERQUhFevXiE8PBwbN24EYwzLli1L9pxp06ZxEbAYtNfNmzdvsHz5cjRp0oSXM4wxNG7cGP/88w9fdJN0ICouLg5169blUfClwfbk6oNff/0VjDG0aNECgBhg1MXbt2+xfv16tGrVCgUKFICenh6sra3Rs2dPHD58mOdxUluo1WouSixatCjevXunM53E2LFjwRhD1apVER8fL2wh+GmR3v2DBw/ySSspgqho22oiz48lS5bwumLNmjUai2WlcsfX1xcDBw7kE7ONGzfOtEW1Ak0GDx4MPT09DBo0CJ8/f+a2kiZeIyIicOfOHTRu3JgLqCpVqoR///2XX0O87+lD+MX3iS4Re4cOHXj7KSXkbaZ3797xXYYYY1i0aFGW3fP3jpRvCQkJ+O+//xAZGZmmSe4TJ05wv9q5c2dW3+ZPyb59+3geT548mX+emn2OHz/Oz+vUqVNW3+YPiZTHwi++bdLbRpLmP7Zu3YpcuXLB2NgYLi4umXlrPxyhoaEYNWoUGGNwcHBIdZeghw8f8rkKW1tbBAYGijZtJnP48GE+h6rLHvL8vnv3Ltq1a8cDZNjZ2eH9+/cAxPhfRhB+kfNkpoj94sWL/Pz8+fNrzGnI2wBy4bSpqamGbkGQOnK7XL16letEJGJjY7F7925uC2tra+zfv58fT84WRkZGePbsWdY/wA+E3BYHDx6En59fuq/l5+fHbWFubs7bVaKOSTup+UZKvHr1CgsWLOAB+0qXLo2dO3emOWDfz4gQsAsEAoFA8BMSHR2NDx8+4MqVK7h3755WZ07eeL1//z6qVasGpVLJJ5nkP+bm5ujXrx8XW8s7925ubqhbty4UCgW2bdsmOv46iIuLQ1RUFJ4+fQp3d3etCOnyxvG5c+fw22+/oWrVqrCzs0OXLl0wbNgw2NjYoEGDBnyAS0LqNF64cIFPMm7ZsiXrH+o7xd3dHfnz5wdjDKVKlcL58+fTvQpWiNczjtwetra2uHr1aqr5Jj/u5+eH1atXc3HVr7/+yo/JyziVSoVjx45pDLgINHF3d0eBAgV4lIu3b9+m6zqSeF2KvC7E619PWm0RGRmJjRs3omTJkrC2tkbevHlRvXp1tGnTBlZWVujTpw/fmQBI9B2pvlm2bBmUSiX09PRw69atbHmu75l79+7h9u3buHHjBuLi4ni9oav+iIiI4FHV27Rpk2w6SUD3+++/8yiXgtR5+fIlvL29+e41ErrqDrVajXbt2oExhho1aiA6OlpnOskv5syZA8YY6tevnzU3LxDkAPJ3Pi1/S3h6eqJw4cJgjMHGxgbPnz/P2hv9jpGX8dICMcYYRowYgQMHDiAuLg4BAQG4evUq6tevj7x58/KIPFL7SPQbMp8dO3ZwW6xatQovX77kx3x8fDB79mxUqlSJT7g2aNAAx44d42mETTKG8IvvE7mIXbJHevqFMTExWLBgARQKBSpXrizEiakwZMgQFChQAA8fPkxT+k+fPqFo0aJgjGH48OEAhL9kFlI+jhkzBkqlEqVLl8aNGzc0jiXHzZs3+WL0kiVLYteuXWk6T6Ab4Rc/HvK2gSQ8ZYzh/v37OXhX3weBgYGoWbMmGEvcoffZs2d83FseFOnly5d8YT5jDNOmTcupW/6hefPmDezs7GBkZITNmzfr3FUZSIwoXbt2bT5vUaFCBR6oRAgLM47wi5wnORH7xo0bv0rE7uHhgRYtWvD5JHt7e17/q9Vqjfrc29sbTZs25YsFpSBwgrSRWtnj4+ODbt268d3RKlasyOe8k9rCx8eHBwQYNWoU34FWkDYyWg/IbXH69GmUKlWK9+FFELevJz32eP36NRYuXMh3Di5btiy2b9+uMScr0EYI2AUCgUAgEHCSiqjevn2LIUOGwNTUlK9ctrGxwdSpUzFjxgz8/vvvPEJAmzZt8PHjRwCaouvFixejUqVKqW4vLNAkaYdv3759UCgU0NPT01hAIP1vY2OD06dPa0RpAoAPHz5g8ODBPL0Q6aaMu7s7DA0NYWtrixs3bqRrQkOI1zMPd3d3KJVKVK1aFd7e3mk6R56/8fHx2Lt3Lx8MnjFjRqrni627dOPu7g7GGJo0aYLo6OivPl+I1zOP5GwhvfsRERGYPn26Rl1hbGwMxhgMDQ3BGEOJEiVw+fJlXmdI7/2LFy94dHxra2uxXXMKpLcsHzZsGBhjqFmzJm836cLHxwfW1tZgjGHMmDHpvc2fguRskVp5PmnSJD5R+Pr162TTBQUFwdHREYwx9OnTJ0P3KhDkNOkpu1QqFWJiYnDjxg2sWbOGl03m5ub47bfftKIhJ/2On73tK5/o+N///qdRP5cpUwZ58+aFUqnkn+XJk4fvmpWZk1aAaOfKkduiVq1a6NGjB7p27Qpzc3PebsqVKxd+//13XLt2jZ+X0fdZsunPLkzJSb8QpB+pDHny5Al8fHwApM8nbty4wbfQ3r17d6be449EUFAQWrVqBcYY+vXrl+LuA5IdPn/+zBeZ9ejRQ+OYIOPExMTAzs4OjDG0atUqTefcu3cPlStXhkKhgEKhwIABAzK84+PPjPCL74eki2Kl/xMSEjSi6cvZv38/ihQpAoVCAXt7+xT76YIveHt7o0iRImCMoXbt2ti9e7dGoKNTp07xsSip/Hrx4gUA4QuZTVhYGHr27AnGGOrWrQsXFxcepAJIFLRt2LABRkZGPFiYnZ0dfH19AQh7ZCbCL3Ke5ETsK1euTFMeS3VFREQEzpw5w+t/Q0PDZBcR+vj4YNq0aThx4kQmPolAskVkZCQuXbqENm3acFvcvHkTgG5bLFu2LNVdEASZh3x+8O3btxg5ciTq1KkDxhJ3FpQH8hFkHUK8nn6EgF0gEAgEAoEWUsfy/PnzXKBQsGBBTJ06Fa6urhpp79+/z7dz7tmzp9Y1APDBZDFhnj5OnjzJJ28NDQ1Rp04d7N69G9u3b8fMmTNRsmRJMMZQvnx5HDt2jG/j/Pr1a6xbt46vrs2TJw/8/f1z+Gm+ffz9/XHhwgWNaAxpRYjXM5/AwEB4eHjwvPvaciQsLAzTpk2Dnp4eKlWqJLasywBBQUGIiIj46vOEeD3zSckWq1at4gPClSpVwtixY+Hh4YGrV69iy5YtKFOmDK8znJycEBAQAABwdXVF9+7deZ1eo0YNvruKIPNYs2YNF35Kgjhp4Z/UdgoKCsL48eORK1cumJmZ4ciRIwBEOyqz2b59OxhjMDMzw4ULFwBAa1HH58+fsXLlShQsWBCMMb5VrbCF4HtEer+fPn2K7du3Y82aNdi4cSNWrFiBWbNmYf78+fjzzz8xZswYDB8+HOPGjUPv3r3RsGFD1KpVC4aGhlzYa2lpiVatWqXYrnr69ClfxPyzC07lz79+/Xo0atRIa2ezfPnywcHBgUcjThq96mv7EfL0Fy9e5KIIYYsvzz9nzhxYWFho2cLExARFihTB/v37NaKzA4l97PT26YKCgtC1a1c8evRI615+RnLaLwTpQ56HGWkPSX3Dvn37al1XkEhsbCyWL18OMzMzlChRAsePH081n6S+hlKp5O1WQeYRHx+PGjVqaARISBpFVG6ju3fvolatWjAyMuILpqRt50V/In0Iv/g2yUgZHhUVhfDwcCxatAgODg5c1Dt58mSd6eW+I+qOL3h4eKBEiRJ8jMPGxgZNmjRBjRo1YGlpydtWDRo0wKFDh7KkDBL2SMTHxwe2trZgLHH3zJEjR2Lbtm0YNmwYjw4tBRtp2rRpigtx0ouwRSLfgl/87Mj7fGPGjAFjDNOnT0/z+fJ32d/fH127dgVjDEWLFsWTJ090nqMr4I8g48jzMiAggNvC1tZWSzciIV/AI8gakpZb9+7dw+DBg3l/W/qxt7dH7969+VygIGsQ4vWMIQTsAoFAIBAIdBIbG8sH5fPnz4+FCxfyqBdSR0XqfJ4+fZpHT9q7dy+/RmrbzwtSJiEhAW/fvkWzZs2gUChgaGiIIUOGaG23FRAQwCMA2djYoF69ehgzZgyqVavGt0i1tLTEpk2bAIhJkq/ha95bIV7PeuTvrrOzM968eZOm886ePcs76ps3b86q2xPoQIjXsxdnZ2deHzs4OGDHjh1aE+pBQUG8zsifPz/KlSuHFi1aIG/evDwSg5WVlU6hkCBtpCZIa9euHc//pAO8/v7++N///gcbGxswlrjFvLQwTfD1pGaLDh06cFskFeK+ffsWGzduRLly5biITuwoJPjeuXr1KvT19bVEol/zU7ZsWUyZMiXFutzV1RU9evSAiYkJHj9+DECIdeXPHxAQgOPHj2P48OEYMGAAxo0bh2PHjuHt27cANNu8ixYtgr6+Pnbv3p3mOlme7vz586hbty5MTU35BK+wxZfnP3XqFBYuXIgaNWqgRYsWGDBgAHbt2oVXr15pnbd3717o6elh165d6RJOz5gxgy8sf/r0qda9/Ixkp1/IOXr0KP7880+4u7tzgYNo82Y9kg3DwsL4otpOnToBEPmfHO/evUPr1q3BGEOdOnW02qtyH3rw4AFv2zLG8N9//2X37f4USHncrVs3jfHZpO/wtWvXYG9vz/vY5cuX5/26n73szyjCL74t5PWzt7c3nJ2d8ejRI9y+fRuXLl3C+fPncezYMezfvx/79+/Hli1bsGTJEixcuBDjx49H/fr1UaVKFTDGuHj9l19+0Xl9aXxLLogT9ccXfHx80L59ez4fJOWn9LtLly44fvy4ho+o1eoMi6rk4/PCHol4enqifPnyvOxJaou6detixowZiIyM5OckJCRkaIeOy5cvY+nSpRrXE+ScXwi+IM/b06dPa5TrXztX/ejRI1SvXh2MMQwdOhTR0dHiXc8h7t27h0qVKkGpVGLcuHGIj48XtshGkvrOvn37MG7cOOjp6WkEZyhUqBBmzZqFJ0+e8HaU0IhkDUK8nnGEgF0gEAgEAoFO7t+/j4IFC0KpVKJXr148YltSEhIS8PLlSz75NHfu3Gy+0x+bFy9ewMrKim91FxUVBeDLQK3U+ff39+eR2IsWLcqjI0ri9TVr1qRZ7CvQROrMqdXqZFeMC/F69rJx40YwxnDp0qUU08nz3d7eXiPCm+ikZxyp/FGpVDp3LBDi9eznv//+48LEkSNHakX2ln67u7ujWLFiYIyhatWqXPSeJ08elClTBs7OzgCEn6QHeeTuy5cvA9Be+BcUFMSjLuXNmxeTJk3C8uXLsXLlStjZ2fFosLlz5xbR1zOAlGfh4eFa25lKtnj79i2aNGnCBep//vkndu/ejQMHDqBt27Z8u2FTU1OsWLFC47oCwffIhAkT+NaxRkZGsLGxQYkSJVCqVCmUKVMGjo6OqFy5MqpUqYLGjRujWbNmaNKkCfr06YNZs2Zh/fr1ePv2rdaCWjkuLi74/fff+YSwpaWlEOv+P2npEyRN06dPH14n7Nu3L9VryI+fPXsW7du357t5CeH0F5KW5bryQ0oj5Wnv3r35LippsUVSPD09+bbnFhYWwhb/T3b4hZyHDx+iffv2vB38999/IygoCICwRVYiz9sVK1bw8aoFCxbk4F19H/j6+vIFlQ0bNsSNGze0JsFv3LiB3377jedr//79c+Zmf2CkcmbFihXQ19dHxYoV4ezsrFX+xMTE4MCBAxrjsvb29nxMVpQzmYPwi2+Pv//+G3Xr1tXoa0h5n9YFtBYWFhg+fLjWzmjAF/F6VFQUihcvrrETsBh3/8KHDx9w5swZDBgwAPXq1YOtrS26d++O5cuXIzIyUiOvVCoVfvnlF/Tr1y/di/Xd3NxQoEAB9OnTh38m7JHIy5cvMWvWLDRs2BA2NjawsrJCixYtsGDBAnh7e/N3OiEhAWq1GjNnzsSoUaO0doBKC+/fv0etWrXAGMOIESP458IWiWS3X7i7u+P8+fMpLnT72dDV/pF/5uHhAbVaneqYa3R0NIYNGwbGGMqUKYPg4OBUvzshISHduzv/bMTExMDT0xNA6nkVHR2Nvn378oWaGVmAI0gbScuRkJAQHDx4EL169YJCoeBjf2ZmZrC1tcWWLVtw//59jXOSjnMJ38gchHg9cxACdoFAIBAIBDpZt24dHzy8ePFiimnDw8N5RIFu3bpl0x3+HJw6dYqvlJUiqCeNpqtSqZCQkICJEydCqVRixIgROHv2LKZMmYLFixfj+fPnOXHrPxRRUVHYtGkTjh07xjviUsdOiNezl48fP/IoC7169eLbLydHQkIC3rx5w0WI3bt3558LMk54eDjmzZuHf//9V2OQSojXc4Zly5ZxsaAkQk86QKxWqxEVFYUuXbqAMYa//voLDx48wObNm3HlyhU+8CsGrdJPZGQkbGxsYG1tzQVRSfnw4QO6devGFw8k/TEyMsKwYcP47jeC9BEdHY0GDRqgZMmSyU4Cvnv3Dp06dUp2El1fXx9t27blQkOB4Htn3Lhx/P2eMmUKXr16hdDQUISEhCA0NBRRUVGIiopCXFwcEhIStPoeQPLtKBcXFwwZMoRfX1pgK8S6upHXtUnzVP7/gAEDeJ8wJbGuLvG6PHK+sEXyJI24lxxptUVyeHt7o2XLlsIWKZDZfpEUDw8PTJw4kUcmK1CgABo3bszHTYQtkiepuEdCqi+AxPEq6ZhcLCKxYcMGFCtWDAqFAvny5eOLNQUp4+npCWtray4Q6dGjBw4cOAAnJyeMHz+e76DJGEOrVq3EjhtZyKtXr+Dg4ADGGBo0aID//vsPXl5e+PjxI7Zt24bff/9dI+pho0aNeOR1XW2q9CDGsxIRfvHt8PnzZ9SrVw+MMV6/WlpaagjTzczMYGxsjPz586NQoUIoWLAgSpcujerVq6NNmzZYvXo1zp49y68pf8/l4nVJpCuEumkjIiIi2WN+fn48cFKXLl2+Wqzr7u4OR0dHYY8UkPLh/fv3CA4O1gqOJB0PCgri86udO3f+aluo1Wps3bqV22LUqFFa3yH4Qlb6hbe3NwoWLAjGGCZOnIgrV67wY8IWuhk/fjxq1arF/08un6R+4pUrV/giqQMHDqSYViJpQDgx76FNbGwsfvnlFzRt2jTVtFI+Hj58GAYGBlAqlakGGxOkn6Q+4enpiaNHj8LBwQEFChTQmMdo3bo1Vq5cqTUnpWucJTQ0FBs2bICHhwcA0UZODinv5HW4PD+FeD3zEAJ2gUAgEAgEOlm5ciUUCgUcHBzw6dMnqNVqrUay1EALCgrikVx79OiRE7f7w3LmzBm+pd2ePXtSTCsNUumygeiQZ4y///4bCoUCFStWhJOTE8LCwgAkdhSFeD17iYuLw5o1a5AvXz4UK1YMR44cSfb9lvL/ypUrvAM/ZsyY7LzdH57x48fziGJOTk58l4hz586hQoUKQryezWzYsAGMMSiVSly/fj3FtHPmzIFSqcSMGTO0jok6I2PcuXMHhQsXhqWlJbZs2aIlVJDXDU+fPsXhw4exaNEi5M6dGwqFAnp6emjYsCFu3bqV3bf+w/H06VM4ODjAyMgIq1evTnYnFQC4du0aDhw4gL///hu5c+eGgYEBGGOwtbXF8ePHs/GuBYKsQT4RMWbMGN42Wr9+Pf9cXj7pasem1LZNKl4fOXIknj17JsS6GUBef/Tr149HUtIl1k1JvD5z5kyEhISI6N8ZQJctcuXKJUTsOcDX+EVyhIaG4syZMyhcuDDfLcLCwgIuLi4ARD9eFym9n/JjMTExPJLl58+f4eHhARcXFyxZsgS//PILH99ijGHIkCFp+m7RN0nkxYsXqFatGo9krKenx9ur0k+7du1w9epVHugiM5Dnv7BFIl5eXrCxseG7m5ibm/OdSaUfBwcHjB07Fh8/fszw90m2lO+OKsqpRHLKLwTaPH/+nO8mV6BAARw+fBgPHjzAw4cP4evrCx8fH7i5ueH169f4+PEj/x0fH6+1q6O8XpGL12vWrMn9TooyKoS62iTXT9CVP7du3eL+07Vr1zSLdd3d3VGpUiUwxmBlZSXskQxfawtpAcjX2EJCpVJhy5YtvJ0lbKFJdvhFQkICnJyc+GIEpVKJqlWrYsmSJcnex8/OrVu3eH29f//+FNNKebdv3z5+ji4Bu7y9euHCBcyZMwe1atVCu3btMG7cOLx48QKA6H8n5cKFCzxfDx8+nGJayRb//PMPP0faiVYXqfUhhF8kjzxvgoKCsHLlSlStWhW5c+fmea9QKNCvXz+N8V1Ad75L1wsPD8fatWtRoEAB6Onp8bEQ4ReayAMZLlq0CM+ePdM4nlHxuvANTYSAXSAQCAQCgU7+/vtvMMZQuHBhvHr1Suu4vFElCRVMTEzg5OSUnbf5wxMWFoZq1aqBMYahQ4ciMjJSK40kxpIi71auXFlnOkH68fb2hrm5Oc/fAwcO4NGjR1ri9bt37/JzfraORXby7t07tGvXDowx1K5dWyMqrhTlTSqjvLy8eBQgKysrHuFNTLxmDp6enjyqkqOjI3bu3ImjR4/yyOt58uTB6NGjhXg9m/Dz80OFChWgUCiwcOHCZMW6ERER6Ny5Mxhj6NSpk/CHTCYsLIxH3qtRowYfAAS+lD3SBG1YWBhu3bqFOnXq8An3SpUq4dSpUzly7z8aERERGDVqFBhjqFatGo+6B3ypLyRbqNVqvH37Fk2aNOEDwHny5MHu3btz6vYFgkxHPhExYcIE/q5v2LAhQ1FBXVxcNCKODh8+HNHR0QAShUVCrJt+5Hb59ddfeR7fvHmTf56SeH369On8mIeHh7BFBkjOFvKoemlFiNgzRlr8IiWkfPb390edOnV4X58xhoCAgCy55x+FzZs3o3///ujcuTNat26NFi1aoE6dOqhRowZq1KiBcuXKoXjx4ihTpgyPjGxqaqohJtXT08OAAQP4NXW99y9evMBff/3F/xfjK4kEBgZi7ty5fIxDys9ChQph3LhxCAwM1OrbrV69+qtFcBLx8fE4e/Ys5s2bxz8TtkjE29sbbdu25bvNSD/m5uYYNGgQLl++zBf4Szg5OaV7hy1J4DVs2DD+mbBFItntFyqVSkRUTAY3NzfkzZuXR7338vLSOJ7cjjfJvcty8boUUd/KygpjxozBggULhFA3g0g2uH37NhfrduvWLdnd6yTc3Nz4ThTW1tb4559/sGzZMmGPDJBeWyRFiNgzTkZtER0dDU9PT75blGQL+Q4Fgi/4+fmhW7du0NfXR58+fdLUF1uyZAmv75Pu5iSvW9auXYtcuXJptNOkcksSoYo5kS94eXmhffv20NfXx4ABA3TqQgDNsmTSpEk8X69du5bi9T9//oyHDx9i0aJFWLBgAWbNmoWbN2/i/fv3AIQtkiM+Ph5v377FmDFjUL9+fY13uUSJEujYsSMuX77Mx2CB5PNSLl5fvXo17O3tNeZAxLiUboKDg/nOHKNHj4abmxsA4M2bN1iwYEGGI68L3/iCELALBAKBQCDQiYuLC2xtbWFhYYGDBw9qNJDkk4UrVqzg0ddLliyJ+/fv58Tt/rBER0dj3LhxXDj96NEjjeNyWzRs2JCLSIWAPfNxd3dHvnz5wFji1rS2trYa4nUReT17kYS6jDE0atQId+7cQXh4uEYaDw8P9OvXjwusHRwceKdPkHnIfaNUqVIoXLgwH/QQkdezl7CwMC7iqV69utbiDomnT5/Czs4OjDF0795dDEplAQEBAXwQsGHDhrh27RrfvUPC29sbf/75Jy/LjIyMULNmTRw9ejSH7vrHJCAgAJUrV+b1xa1bt7Tqi1evXmH37t180aAkeNi2bVsO3bVAkHXIy3xpJ5WMiNidnZ01xOvjxo3T6ovIxbrySZGfaRA+I8jt0qFDB9SuXVvnhMjx48f5Ik/GGObPn8+PSXYXtsgYclt07twZZcuWhaura7qu5e3tjRYtWnARu3Qd0S5LG2n1i6TI3/UTJ07wup8xhvbt22u11wRfWL16NRfhfO2PkZER9PT08Msvv2DNmjX8mrredz8/Px5ld/jw4fxzMc6SSHx8PGJiYnD27FmcOHEC165d04oEJ+XVb7/9lu5IrvHx8bhy5Qrv0whbaBMSEgJ3d3esW7cO69evx4kTJ/Dw4UONNFKZ88cff4Axhi5duqRLOL1//37uT0KQqE12+sW5c+fg4OCAJUuWaIx3CVsk4u7uzkU+TZo0gaenZ7quI9XzkZGRGuL1cePGcWG8EOpmHLlY18jICIwx9OrVCyEhITrTu7m58cjr1tbWWL58Od69ewdA2COjyG1haGgIxhJ3Wg4ODv6q6wgRe8b5Wr+QSJq/S5YsQalSpXhk/dGjR2fZPX/P7N+/ny8oXrx4MWJiYvgxKfiIxPXr11GoUCE+X57cwoJVq1bxdlOXLl0we/ZszJkzB3Xr1gVjDBUqVPjqBSI/A3v27OGLj5cuXaphC7VardGXPnnyJM/jpk2bauymIrfZ58+fceXKFVSpUgVFihTR6CMWKlQITZo0gYeHBwAxFpKUixcvYty4cXzuSPopX748fvnlF7i7u/NyKaVdJeSfS+J1aSGaUqlErVq1RHCFVBg9erTGuPfly5exaNGirxavC99IGSFgFwgEAoFAoJOQkBB06NABjDE0aNAArq6uGp0VABqiK8YYVq5cmUN3+2MTEBCgIdR98OCBlvCqb9++YIzB0NAQkyZNAiAGpLICd3d3HklGoVDAyMgIbdq0gbOzM08j8j378PT0RMGCBfmg0+DBg3HhwgUcPnwY27dvR5kyZfhWavnz58fz588BCIFOVpDUN0xNTTF06FD4+Pjk9K39dPj5+aF06dK8zrh+/To+ffoEIHGA6smTJzxag5mZWapbQgrSj5eXFx9UL1WqFLp27YodO3bg77//xqxZs2Btbc0H6M3MzNC1a1dcuHAhp2/7h8TLy4tHAS1fvjz69++PEydOYM+ePdiwYQOqVKnCbWViYoIaNWro3IZWIPhRyCwR+6dPnzB58mR+fpkyZfiCW5VKpdHmkgunFQoFH4QXpA25XZJGdAWA9+/fY9CgQRoTWlKU19jYWI0+itwWjLF0C4t+VuS2ePnyZbr7fwkJCQgKCkKzZs3AWGLUXrFt89eRml8kRV4m7d+/H7Vr1+Z+0KdPHyFeTwUvLy++ONzY2BjVqlVD7969MXToUAwcOBC///47pkyZgunTp2PmzJn4+++/sXbtWuzYsQPOzs4pRuKV8PPz09iZiDGGkSNH8uNivCXlPEg61nHz5k0YGBh8tVhXEq87OjoKW6STpLa4f/8+z8f0CKeFIDFlssMvgMSdO7p168b9olOnTti1a1ea7uNnIqMidikfk4rXJ06cyKNeAolllfCLjCP5yM2bN2FmZob27dvD399fK93z5881xOurV6/WiNCb1B5ysa6wR9qQ28LExAQVKlTQWoyTFkSdkXHS6hcpcfv2bR4Ey9TUFD179kz3Tiw/IvJ3cdGiRbxftnr1ap0LN27fvo327dvD2NgYjDH8+uuvOvsTR48e5ddasGABPnz4wI+5uLigYsWKMDMzw8mTJ7Pmwb5D5Lb466+/NDQfQUFBWunPnDkDBwcHKBQK6OnpYfr06ToF1Pfv38ekSZM0djzT19dHxYoVUaJECT6fWKhQITF3q4OJEyfyfDM3N4e1tTUWLFigtWA2NZKLvK5UKnHjxg2Eh4drBFcQIvYvyN9HKdgkYwx169bl73XZsmWxbdu2rxKvC9/QjRCwCwQCgUAgSBYfHx/Y2NiAscRIruPHj8eBAwewcuVKtGzZkq8+Z4xh5syZOX27PzRyoa6DgwN+/fVX7Ny5EwsXLkSjRo24HaytrXHq1Kmcvt0fGjc3Nz5pmzdvXsydO5cf+xk6EN8aXl5eqFKlCvcBpVKpFe0tf/78uH37NgBho6xE7hsFCxbE0qVLeX6LwfHsxdPTk4t1S5cujWbNmmH+/Plo3749XxBlYmKC7t27C9FaFvPixQs0bNiQL6bRVVZZW1tjzZo1whZZzIsXL1C7dm3eftUVQdTCwgKTJ0/W2FVFIPhRySwRe2BgIMaNG4fq1auDMQZbW1tcv34dQGK7K6lwul69emCMYfv27aJd9pWkll9BQUGYOXMmj1xctGhRXLlyhZ8rt4WPjw9q164NPT09XLp0KStv+4ckve9u0jZxaGgoJk2axHczMjc3x5MnTzLjFn8a0moLeboDBw5oiNf79u0rxOtp5Pnz53wytXnz5ggICEjXdXT1D+XidUtLS3Tv3l0IrzKAPHro14h1k4rX8+XLhyFDhghbZADJFrdu3Uq3cBoQgsTMIL1+IREVFYV///0XnTt31gjgMG7cOJ5G2CKRjIrY4+LiUKpUKT5+0rJlS/j6+vJjEpJfSGMs8oU2grQj+Ya3tzdfUCknKCiI78KsVCrRs2dPHvVVlz10LXwSpA3JFs+fP8fVq1fTdY2EhASo1WqNOmPo0KEaxwWpk5pfJEd8fDwuXrzI21JmZmYYPny4xk6pgkTkfbSpU6fy/tnAgQOxbds2BAcHw9XVFdu2bUP58uV5dHD5LuTS+6xWqxEfH893Whk8eDAiIiL49RMSEhAaGsp34Jo3b172Puw3jtwWU6ZM4bbo1asX1qxZAy8vL5w+fRqLFy+GiYkJL+ebNm2K6OhoAJrjjGfOnEGLFi24zcqUKYMBAwbg/v37CAkJwYcPH3Dy5Ek0bdoUjDFUqlRJRMXXwdChQ5E/f36sX78+2Z2eUiIl8bq8jnnx4gUPdCFE7JrI80AuYmeMoXjx4ti5c6dW0MmkyOtd4RvJIwTsAoFAIBAIUsTT0xNly5bVEFzp6+vz1YCMaW5NLsg6PD09YWdnp2ELabDdwMAAhQoVwvbt23P6Nn8K3Nzc+KRtlSpVsHfvXjHhnYMEBgZi6tSpXDgl/ZQuXRpt27blUcDF4GzWI/cNR0dH4Rs5iJeXF6pXr86jksjFumZmZujRowcXGAqylrdv32Lnzp3o2bMn7O3tYW5ujnLlyqFLly5YsGBBuraQF6SPoKAgrF27Fu3bt4eNjQ309fWRP39+NGrUCL///jvc3Nw0tjwVCH505IPwEyZM4PXEnj17vur86Oho3L17l+/gZWRkxBcPJm1/BQQE4PTp0xpRsAQZR7JFTEwMHj16hE6dOnFbSItyktri5cuXcHZ2FuVeNqArEu/q1atRqlQpGBoaaoyv/O9//8uhu/xxSSnyer9+/UR/5Stxc3PjosSGDRtyUaJKpeLljPzvtPTDk4rX//rrLwQEBGDHjh1CrJsB5GJdqYxp27atRsRcOUnF6/nz54eTkxPCwsKwdetWYYsMoMsW7du3FyL2HOBr/UIXCQkJmDFjBvLly8dtMXDgwKy65e8WuYi9WbNmXy1inz9/Ptq2bQsjIyMolUpMnDiRH5MvuFWpVNi8eTOv2y9evJhpz/AzkbQMSfr/P//8g65du/KgAPLyJzl7WFlZ4f79+1l74z8gqdkirecGBgZi6NChvJwaMGBApt3jz8LX2kJqS1WuXBmMMeTOnRvDhg0T4vUUkI9LzZgxQ2Mew9raGrly5dKY83N0dOQLmpIGXwgJCUHx4sXBGMPOnTt1fkfTpk2hr6+Pffv2ZfGTfX/I82nmzJnQ09PjC8SsrKy0goc1bNiQi9fl40qHDx9G1apV+VhHnTp1cPbsWXz8+BHAF7up1Wo8fPgQFStWRK5cubB161YAok0LaNpCWqwh8bX5ExYWhsWLF/PAVvr6+jxwgtyH5Ls15s2bF66urun6vh8RuT1Gjx7NfaB58+a4e/cuP6Yrr+SfCd9IGSFgFwgEAoFAkCoBAQGYOnUq6tatC319feTOnRvW1tYYMGAA9u/fn9O391MREBCAiRMn8u0zpShtvXr1wtGjR3P69n4q5IPwVatWxbZt27Q6koLsIy4uDhERETh48CD27t2L7du3w8vLi4sRRITP7EPuG5UrV8bu3bsRFRWV07f1U/Lq1SssWrQIjRs3hpmZGQoWLIhSpUph/fr16dqCVpBxoqKi8P79e636QpRR2c+7d+/g5+fHt0KVbCBsIfjZkA/CjxkzBowx3Lp1K13X8vf3R8eOHcEYg52dHdzd3XWm+9EH3L8F/P39+YKCKlWq4MWLFzl9SwIAd+7cwfz585EvXz4+ES9FLhs3bhwOHDiQ07f4wyHE61lDRiPryvHz8+N2sbS0xJ9//onXr18DSLTf5s2bhVg3A8jFuvKFaknbvEkFV/nz58euXbt4X14SJApbpB9dtlixYoVG9OK0IETsGSetfqELedt55MiRfCdCxhiOHTuWZff8veLu7o78+fODscQdfr9moQCQGJxh2bJlPEplv379+DG5LVQqFZycnLB06dJMu3dBIvJyxdfXF6tWreLt2F9//ZUfS2qPo0ePYvfu3dl6rz8zUv7Hx8cjMjISy5YtQ8uWLXkALOknvVHdBakjxOvpR15+bN68GW3atNF4b6VIxx06dEBoaCgA3W2e4OBgFCtWDAqFAocOHQKg2R9csWIFF8iLxTW6kdtix44d6Nq1q5YtqlatihEjRiAmJgaApnj95MmTqFSpEi97mjdvjrdv3yb7feHh4WjWrBkYY+jevXvWPdh3iPzdzch8xcuXL9GhQwfed6hbty7evHkDQHPhOZAoYm/dujW39c8S+Tst6Bo/l8by0jLXKnwjdYSAXSAQCAQCQZqIi4tDXFwcHjx4gGfPniEoKIh3TgAxQJ6dxMTEICIiAmfPnsWFCxfw4sULfPr0Kadv66fE3d0d1tbWYIyhcePGqW4TJcgZRPmU/bi7uyNfvnxgjKFPnz5icUcOolarkZCQgKdPnyIgIEBEvM0hkovYI8TS2U9ydYKwheBnRj4I7+/vD0DTV1QqVZq3pr1w4QJKlCiBXLlyYcmSJQCEf2UmMTExWlHGdJGQkICTJ0/C2toaFhYWWL9+PQBhi+wgadTpjx8/wsPDA3369EH58uU1Jn7Lli2LMWPGaC0aEds0Zw5CvJ61ZIaI3dvbm++kZm5ujsWLF/PoYxJJxbojRozIrEf4aZB84c6dO5gxY4aWrVQqFc6fP4+KFSuCMYY8efLwgCVyP0pqi+HDh2ffQ/wgyG3x66+/pntXtPj4+GT9QtT1aSM1v0iJz58/499//+UiRTMzM8ycOZPvACnQxN3dHUqlEuXKlUtzHsn7InFxcdi3bx8XTU+ePDnV80VbKnOR2yM+Ph579+7l9pg+fXqq54tyKWtIOr717t07zJo1iwvepDqiWLFiaNCgAS5cuMCjJQsyFyFezzjycjs4OBiXLl3CnDlzMGnSJKxYsQK3bt3ii/50lfEJCQn4/PkzWrRoAcYYRo8erdGvWLt2LfLkyQPGmFjslAryMjsiIgJ37tzBunXrsHz5cuzZsweBgYEai2Ykbty4gYYNG/Lo0q1atUpx/Eoqw8aNG8f7lCIQVtbw/v17rF69GnXr1uX9vWvXrgFItENSEXvdunXRsGFDvtuBIBF52SO9t9KCYg8Pj2TPE76RNoSAXSAQCAQCQZrQtfWvGHj6dhC2yDmePn2KcuXKwc3NLadvRSD4pnBzc0OzZs3EBF4Oo6v+Fos6BAKBQJCUpBOA8vrD1dWVi3pS63dERkaicePGYIyhRo0aKaYXfZivIzIyEmfPnoWfnx+A1PMvKiqK79zVoEGDbLhDgdwm0dHRuHTpEjp06IASJUpoCNfr1auHESNG4M2bN6mKSKTjQoj1dQjxevaQVMTu5eWV5nMTEhKwdu1aMMZgZGQEMzMzTJo0iR+XR/JTqVTYunUrt+GCBQsy9Tl+BiSfkOerhEqlwrp162BiYgIjIyOYm5tjxowZ/Lg8QnhSW6xevTrrb/4HQ7JFREREus6X9+dXrVolFndkgJT8IjkiIiKwb98+ODg4gDEGU1NT/PHHH3wRqEA3gYGBePbsmc4xqrQQGRmJefPmQV9fH2XKlMHt27ez4jZ/Wr7WHuHh4Zg+fTr09fVhb28PFxeXLLozgS6S9gtu3LiBBQsWwMbGRqPPYWlpiV69euHSpUtaCwQFmYcQr2ceaSmLUhsH2bVrF/eBLl26oH///ujduzf/bPjw4XxMRZA8aamv5cdevXqFIUOGwNjYGIwxtGjRgh9PaSzj/fv3fEFzp06dMunuBXIkn4mPj8fz5895VP1cuXLh3r17AHQviJJ2rRVookvEbmZmhoMHD+pML3wj7ShIIBAIBAKBIA0wxjR+ExEpFKIp8a0gbJFz2NnZkaurK5UvX57UanVO345A8M1Qvnx5OnPmDJUoUSKnb+WnRlf9Lf9bIBAIBAIiIqVSqfG/VFc8fPiQOnbsSDNmzCCilPsdKpWKTExMqHHjxqRUKunVq1f08uVLnWkB8Gt9+vSJPDw8KCwsjMLCwoiIKCEhIcPP9CORkJBAp0+fpl9++YXmzp1LRCnbIj4+noyNjalatWqkVCrp3bt39OnTp1S/B0CK/wt0I72vkk02bNhAQ4cOpWbNmtGJEyfIz8+PcufOTZUrV6Zly5bRv//+S2vWrKGCBQuSoaFhste9d+8edejQgVxdXUmpVIr+ZgrI32+1Ws1tceDAAVq5ciXdvXuXiIj69u1La9euJTMzszRfW/hF8pQrV45u3LhBefPmpStXrtDw4cPJ3d09TecyxmjEiBF09epVGj16NKlUKvrnn3/o119/JSIiAwMDUqlURJRYR/Xv3582bdpEdnZ2pK+vn2XP9KMi+YSBgYHWMaVSScOHD6eLFy/ShAkTKD4+nhYuXEj9+vUjIiJ9fX1e/ki22LhxIzVr1ozy5cuXfQ/xgyDZwtTUlIjSXqZINpDaaEeOHCEfHx8yMTEhPT09Wr9+PY0cOTIL7vjHJSW/0EVkZCSdOHGCFi1aRE+fPiUTExOaOHEi/fbbb1SsWLGsvNXvniJFilDFihWJMUYJCQn8PXZ3d6egoKBUzzcxMaFGjRoRY4xevHhBd+7cSfUc0Z9IO5I9XF1d6e3bt6mmz5UrFzVq1IhUKhU9e/aMt7ME2YPUd798+TLNnDmT2rRpQwsWLKDAwEAyMjIiY2NjmjlzJu3Zs4f27dtHTZo0IUtLS17f6Kp3RPs2fahUKrp58yaNHz+eXFxcyMzMjPr06UMjR44kOzu7nL69746kcxYJCQla721y4yDS8X79+tGqVauIMUYnTpygXbt20f79+4mIaM6cOTRhwgQqXrw4EVGy/eu4uLgUj/8MJJ1T0lVGSHU6EdHdu3dp//79FBMTQ/Xq1aMDBw4QY4zUarXWeCPRl7x99+4dbwcUKlQoS57lZ0fyGT09PapQoQItWbKEWrduTZGRkTR58mQKCAjQ8r38+fOTtbV1TtzuN498bG758uU0depUateuHXXo0EEjnfCNr0cvp29AIBAIBAKBQCD43tHTS2xW6+psCAQ/M5JvCAQCgUAg+D559uwZ+fv7U2RkJF28eJGaNWuWbFqp3vf09CS1Wk0xMTHJLppijFF0dDRNnz6drl27Rk+ePKGyZcuSra0tLVu2jMqVK5fsYP7Pyrt37ygkJISuXr1K165do4YNGyabVl9fnwCQt7c3qdVqioiISJMogTFGALQmKxMSEsSi6STI80ShUNCbN2/o8OHDdPr0aTpz5gzPu/z581OBAgVo/vz5VLZsWSpbtiy/hjyvk/Lo0SOaNm0aXbt2jerWrUu3b98me3t74Rc6WL16Nbm7u9PIkSOpYsWKPH8yQ7xOJPwiNcqVK0c3b96kBg0a0OXLl2nXrl20cOHCVBfNSvnXoEEDcnBwIHt7exo5ciTt2bOHTExMaMOGDaSnp8fzXqlU0qBBg6h+/foafiTIOJItateuTXZ2dlSxYkUaNmwYOTk5Ue7cuWnt2rWkVCo1bPHbb79Rq1atqGjRojl9+989KfmKvOxRKpUUExNDhw8fposXL9KOHTtIT0+PVCoVmZubk4GBAdWvXz+7bvunQy5ed3V1JRMTE5owYQINGjRIiNe/EqnuPH78OI0YMYK2bNmSJmFO/fr1qVq1anTnzh06efIkjRkzhpdJyX0PAIqIiCBjY2PeV0mp/fUzs3v3burfvz+dO3eOChYsmGw6Kf+aN29OlSpVIhcXF7py5QoNGTIkTW0jABqLmQUpI+W39Pvdu3cUEBBAixcvpocPH1JgYCBPW65cOerevTt16NCBqlatyj+X+g9J27LXrl0jd3d3GjZsmFZ7V/Al3wBQfHy81mKnzBSvC7/QjTw/Uns3JTG1QqGgUaNGka2tLT179owePHhAFSpUoIYNG1LTpk2JiDTatBIeHh707t07On78OL1+/ZqmTp1Kjo6OWfNg3yHJ5b9CoaB3797RpEmTKDw8nCpWrEiLFy8mCwsLAqCzjk5ISCClUknR0dE0evRoCgoKImtraxo8eHBWP8YPTUhICJmbm6c6XmRjY0O9evWiGzdukKenJ7m6ulKxYsVEHfAVSCJ2pVJJf/31F/9bPl4nfOPrEWoCgUAgEAgEAoEgg4hOnUAgEAgEAoHgR8TR0ZEaNmxI169fp6NHj1KlSpV0RluVD9a/efOGiBJF1MlFtHz69CnNmDGDTp48yQftX716RZ6enuTs7ExXr16l8uXLiwmU/0ehUFCNGjWoVq1adO/ePTp69CjZ29uTpaWlVlpp0tbf35+Cg4OJiMjCwkIrYnFSgcnVq1fp0qVLdPPmTdLT06PcuXNTq1atuEBRCKc1kfLu8ePH9OTJE5o3bx6FhIRQeHg4KRQKSkhIoJ49e1Lnzp2pWbNmGraS3uuUxOtjxoyhu3fvkoGBAUVGRlKDBg3oxo0bZGdnJ2wh4+bNmzR27FgiSixzRo0aRaVLl6aDBw+mS7wu/CJ9lC1bli5fvkzz5s3jgsLUkOezhYUF9enTh2JjY2nMmDG0detWqlSpEg0fPlxrJ0hJvC4WEGQe8nw0MzOjnj17Unh4OI0fP5527NhBVapUod9++03LFpJ4XdTVmU/SesLb25u8vLzozz//JC8vLwoJCSGiRPFcvXr1qFevXtSiRQsqVapUTt72D0ty4nUReT39RERE0I4dOygoKIhWrlxJVapUofz58yebXqVSEWOMoqKiiCgxOq60yEmO5Dvu7u505coVOnr0KL1//57KlClD9evXp9GjRwuhrg4+f/5M69atIyKiLVu2kKOjI1lZWelMK4lEP3z4wMui2NhYfiwpSetrXW1gYQ/dyPPl06dPdO/ePVq6dCn5+vpq7HTWokULqlKlCk2ePJksLCy08lJqq8qvd/fuXVq5ciUdPXqUHj16RJs2bRK+kQSlUkmxsbG0fPlyKlWqFLVq1Ypy5cpFRBkXrwu/yBqkfrhCoaC2bdtS27ZtNY5LeRofH0/BwcH05MkTunLlCj179oxu3bpFMTExPPqxm5sbXb9+nczNzYUdkkHK6wsXLtD79+/JyMiIOnfuTPb29kSku06QFmrExcXR7Nmz6f79+6RUKqlevXoai9mS6+sJv9DNy5cv6cKFC9S2bVsqWLBgin1lPT09atOmDeXLl4/8/Pxo9+7d1L59+2TzVdhCN0kXeMtF6VnpGz8yQsAuEAgEAoFAIBAIBAKBQCAQCAQCLSpXrkx9+/alGzdu0Lp166hUqVI0fPhwMjQ0JKIvW5tKg/Rz5syhK1euEBFR//79NbaclQbwP378SNOmTaMzZ85Q7ty5afPmzZQvXz4KDQ2llStX0tWrV2nUqFH077//Ut68ebP5ib9dqlevTgMGDOBiA1tbWxo6dCi3RXx8POnr6/OJpb///puePHlCREQDBw7UEO7KRbcnT56kc+fO0dq1a7W+8+zZs1S6dGnat28flS9fXghGZcTGxtKUKVPo2LFj9PnzZwoLCyPGGBkYGNCoUaOoRo0a1KNHD55enncpTfIlFa+3bNmSwsLC6MqVK1S/fn0hYk9CvXr1aPjw4bR+/XpavXo1KRQKKlKkCB0+fPirxevCLzJGxYoVad++fTwvJFGhtOOGsbFxiucrlUpq3rw5NWjQgM6fP0+3bt2i4cOHJ5tenuc/++R5WgFAkZGRXHyVHEqlkpo1a0ZVq1alW7du0d27d+m3335LNr3I+8xF/j4HBATQxYsXadmyZfT+/Xv6+PEjT9e7d2+qVq0ajR8/XuvcpOWS8JH0o0u8PnHiRBF5PYMYGxtThw4d6M6dO/T06VO6cuUKdevWTWfbBgDp6emRm5sbeXp6EhHxPkbS95oxRnfu3KHRo0eTm5sbxcTEEBGRq6srHTp0iHx9fWn58uXCH5JgampKv/76K/n6+tLdu3fpxo0b1LFjx2QFawqFgnx8fPjC5QIFChCRtj2ktADI3d2dbt26RV5eXvTp0ydq0KABlS1blmrWrCmE00lIWoYvX76cbty4QUePHuWfmZubU+XKlal3797Uu3dv3s5NSEhIVhgnfX7nzh1avnw5v96WLVvI0NCQVq9eLWyRhFmzZtHSpUvJ3t6e4uLiqHPnzmRsbEw3btygCRMmpEu8Lvwia2GMafWVP336RCqViq5du0bPnj2jq1ev0pMnTygsLIyIEuukokWL8p2h2rdvT0SJi2wFySOVU9euXaPo6GjKlSsX9e3bN9m+hnwBwZYtW+jkyZMUHR1NBgYG9Pvvv/O6RLr2hw8f6Pnz5+Tv708VKlSgIkWKkLW1tRgLSUJ0dDTt3LmTZs+eTePHj6d//vknxfEJtVpNefPmpVKlSpGfnx+FhoaSSqVKdjdtYYvkkZfPSRd7E2WNbyRXL/wQ41IQCAQCgUAgEAgEAoFAIBAIBAKBQEZCQgL/e/78+WCMgTGGv//+Gz4+Plrp586dy9OULFkSR44c0XndwYMHgzGG/Pnz4/HjxxrHzp8/j3z58sHW1hb+/v6Z+TjfNXJbzJs3j+fz4sWL4e7urpH28+fPGDNmDE9Tr1493L17lx9XqVT87z///BMVKlTgaYsWLYpq1aphzJgxaNWqFcqXLw/GGAoVKsS/R34vPzv9+/fneWdvb48hQ4bgwYMHGmnk+Z0azs7OqFevHpRKJYyNjdGvXz98+vQJ79+/R4sWLcAYg4WFBZ4+ffrV1/4RkT//uHHjuC0KFy7M//7111/x+fPnr7qW8IvMQcqT8+fPY968eQAAtVqd6nkLFy4EYwz6+vp49OhRhr5boMn27duxYsUKAGmzxbRp08AYg6mpKTw9PbP69n56pPc2OjoaISEhmDhxIho0aMDLIql869y5M44cOaJhQ3kZJn//XVxcdH4uSCQ1P4iIiMC+fftQqVIl7guzZs0SbdRMIjg4GF26dAFjDDVr1tR4XyWk9/bt27cYPHgw9PX1oaenh0WLFgHQtuG9e/dQvHhxMMZQo0YNjBs3Dps2bcLYsWOhUCh4X0agzfv379G+fXswxlCrVi3e3gS+2EHKbz8/PzRp0gSMMVhaWuLff//VOC4RHx+PV69eoVu3bihbtqxGecYYg62tLebOnav1PQIgKCgIEyZMQOvWrTXyrFixYqhVqxYuXbqEgIAAjXOSyz/557dv30b37t359bp06cJ9Y9SoUale62fD09MTlpaWYIzB0dERu3btwqlTp+Do6AjGGHLnzo1hw4Zp+EtqCL/IXHTV5ZGRkQgODsbOnTsxf/58VK9eHTY2Nhr5XK1aNfz666/Ytm0bXFxc8OHDB53XFfmfOi1btuTlCQDExcVppZHyMz4+Hjt27EC1atW4LbZt26aR9uPHjzh27BhKliwJY2NjMMaQL18+ODo64vnz5xrXEyT2HWbMmAHGGKpWrYr79++nek5gYCBKly4NxhhatGiRbH4KW2SMzPQNXfn84cMHrfGu79keQsAuEAgEAoFAIBAIBAKBQCAQCAQCLeQD35MnT+aD6E2aNMH06dPx33//4c8//0TXrl35MSMjI8yZM0fn9VxdXZEvXz7o6+vjwoUL/DukSUFXV1eYmZmBMcaPCxKR22LKlCk8v6tXr47Ro0djzZo1GDZsGBo3bqyxkGDDhg38vPj4eP73yJEjNSZwf/nlF5w+fRqRkZEAEifBHjx4gKZNm4IxhsaNG+Pdu3fZ98DfMEkXdwwfPhzBwcGIiorSOp5WJPG6np4ejI2N0bdvXz6JnpCQAG9vbz75JUTsX5A//9ixYzXe6fbt2/P3OSWbyK8h/CJzcXZ2BmMMuXLlwqtXr1JMK9lo48aNYIzB2NgYN27c0JlWKg/fvHmDO3fuYPHixdi7dy8uX76sdT1BIufOneOLx4KCglJMK+Xdn3/+ye2XkjArLYI5gW6SCgxcXFwwZswYLoyTfipWrIjOnTvj+fPnWgIrOfI8P378OCpXrozBgwfrPP6zIy/7b9++jfDwcABf8kiXeP2PP/5Is3hd+EXa8Pf3h729PRhjaNSoER48eMDrXMk/Xr9+jblz56JYsWK8HPP19dW61uvXr3lbqV27dnj48CHP78jISPzxxx/Q09ND165ds+8BvzP8/Pz4Ir5GjRrh7t27iIiI0Ejj6+uLQYMGwcrKCowxlCtXDq9fv9a6VlBQELZs2QI7OzswxrhIukKFCqhWrRoKFy4MpVIJxhjGjx+fXY/43eDv749ChQqBMQZDQ0Pkzp0bAwYMwMWLF7XEaimVK0nF6z169OB1y7x58xAXF4ctW7YIEXsKuLu7I1++fGCMoXTp0rwsSo94XfhF1hAVFYW3b99i7969mDdvHhwcHLj/SHlcrVo1dOvWDU5OTnjw4AFiY2M1rpF0oY4gdVQqFdRqNWrVqgXGWLL1q9Tmio2NxYYNG1CjRg1eDv35558aad+/f48lS5Ygb968YIyhTJkysLGxga2tLRhjKFiwoFhYq4Nr167x9tT//vc/hIaG6kwn2UIKHsIYQ69evXSW98IW6SezfUMay42Li0NoaCgWLFiAHj16wMrKCra2tmjUqBFmz54NPz8/jet+bwgBu0AgEAgEAoFAIBAIBAKBQCAQCHQiH/ieO3cuLCwsoKenxyfT5QIra2trzJw5k6dPOvl3/vx5HjkuMDAQQOJEofQdly9fRt68eVG2bFm8efMmG57u+0Jui3nz5iF//vx8gltfX1/DFlWrVsWaNWt4evkE7cCBA/lkrpGRkYbNgC+TIwkJCThz5gwKFiyIIkWKaERy/9nRNSGUXpGHs7MzHBwcoKenB319fXTu3Jkfk0dokovY8+XLhydPnqTr+3405LYYPXo094GhQ4fCw8MjzecKv8h8rl69ihIlSsDIyAgLFy7kokRdSLZYsWIFr2NOnjyplU6qVx4+fIgGDRrwiXfGGMzNzTF58mSeVgivvnDu3DkUK1YMuXLlwrJlyxAdHZ1sWuldnzRpEvT19WFqappsJD95PZ+QkAB3d3f4+fnB29sbMTExGscEX0jaPjpy5AimTp0KIyMjLrQyMjJCwYIFMW3aNDx8+JDnZ1qE0cePH0erVq24b4wcOVJnOgHQrFkzVKxYEU5OTggLCwMAhIeHY+/evemOvC784uvw8vJCwYIFwRhDpUqVMGnSJNy/fx/379/HpUuX0Lp1a767Su7cuXHixAkA2tFxr127BktLSxQrVgwXL17kx6Xf27Zt4/2VT58+Zf+Dfid4enpye1SsWBHDhg3D5cuXcfLkSezduxd2dnYwNzfniyql3VLkbSofHx9MmDABRYsW5elatmyJ/fv3cz97+vQpVqxYwcu85cuX58TjftM8ffoUBQoUwMyZM/l7L/G1Its7d+6gW7duvF6YM2cO9534+PhkRexCzJuIu7s7F3EqFAoYGxvjt99++yrxpvCLzOXu3bv4999/MXv2bNSsWVNjFy7GGOrUqYOuXbti//79uHz5sta7LJVZoi7OOH/99RcYS9z5JCAggOepfKwvOjoac+bMgYODA7fR9OnTudBaSufk5MR3Pfjtt9/w+fNnvHnzBg8fPkTDhg3BGMPAgQMRHR0tbJeE1atX87xdvXo1D7AAJOavlF/BwcF8EU3BggVx7do1ANqLOIQtMk5m+IbUNw8JCcHSpUvRqFEjMMb4WLD8p2zZst91ZHwhYBcIBAKBQCAQCAQCgUAgEAgEAkGyyAUJBw8exNChQ7nYVhoo79+/P3bu3KnzHIm7d+/C2NgYNjY2ePbsmcax+Ph4Ls5t3bp1shGDfnbk+Xrs2DGMHz8epqamMDExgaGhIUxNTTF16lScP3+ep5OL14cNG8YnO4oUKYJVq1bxY7omOF69eoUiRYrwKH2CL8gn6TIyYefu7o5WrVrB2toajDHUqlWLC6/lOxQAiSL2tm3b8gUkoaGhYrIQmn4xZswYXi6NGTNGq6yRkL/vwi+yhvDwcIwfPx6MMdjb2+PmzZs600nv8KtXr1C2bFke4e3t27c60925cwe5cuUCYwzFixdHtWrVULNmTT6JO23atKx9sO+Q0NBQvsNApUqVkl14Ib3vvr6+fHFA5cqVUxS8R0RE4H//+x86duwIIyMj5MmTByYmJujSpQvWrVvH04mySpOQkBCcOXMG/fv3h6GhIW9T5cqVC0WLFsX69etx+/ZtjXOSEyIkFa9L7SnGGF8QIqLqahMUFMSFuJUqVcK///6LN2/e4ODBg1xE8rXidQnhF1+Hl5cXjxzKGIOBgQEMDQ01xDlmZmbYtWuXxuI+4EseTp06FYwxNG/enB+T+8zmzZvBWOLuRXJRl0AbLy8vjZ0gJDvI7WFhYYErV64A0BTGeXp6YtCgQcifPz8Xxy1btowLfeXircjISMyYMQN6enpo2bKlWFigg6SL/9IjSLt69So6deqkFdVVvjuXSqVKVsQuSMTNzY2LOQsUKIBFixZpLZRJDuEXmc/SpUs1hJsODg7o06cP9u7di1u3bgGAVpR1ILH9BXx5/7/XSMXfEqdPn0aePHnAGMOqVas0domIi4vD69ev0bFjR74IROpDf/z4UeM6L1++5H3sESNGaLWR1q5dC8YY6tWrJ9pPMuTlz6xZszTy+MGDB/xYaGgonJ2deXsrV65c+OWXX3TulCZskTlk1Dek8unNmzfo0KEDX2DIGEOVKlUwZMgQrFy5EsOGDUOVKlXAGEORIkW06pbvBSFgFwgEAoFAIBAIBAKBQCAQCAQCQYoknZT18vLCtWvXcOnSJbi6uqaYVsLd3R0lSpTgAkMfHx98+PABrq6uaN26NY8sLYl3v7fB9uwiaf4GBgbi2bNnePbsmZbASi5MmDlzJo8aZ2Njg40bN/JjSSdupbyPi4vj29gKoW7WERoaikOHDqFp06ZgjMHExATXr18HoO0HXl5eaNSoEbZs2ZITt/rNIn+Hx40bxyf2Ro0ahZcvX2qkleep8IusJTAwEHXq1AFjDA0aNICbm5tG1Fzp7zdv3uD333+HqakpGGPo1q0bwsPDta7n6urKxT9dunTBrVu3EBUVhdevX2P16tVQKBTInz9/shHDf2ZevnzJtzFv2LAhnj17plFHSLbw9/dHixYteFk0efJkjcU00u93795hz549qF27toaAyNjYWON/ERVfG5VKhRYtWmhFzmvatCmWLVumVWalJIxLSby+cOFC/PvvvzoFicIWibi7u8PKyoovtBk1ahSPSmlqaoo//vgjTeJ14RcZJyAgACNHjkTlypU18srKygrly5fH1atXUzx/3rx5YIyhffv2iImJ0fCbu3fvonTp0mCMYfbs2Vn8JD8GgYGBmDRpEqpVq6ZhD1tbWzRv3hxubm4ANN9fX19fDBkyhPtU4cKFcerUKURERPA0Sd/3//77j1/74cOH2fNw3xEZLR/i4uLg5OQEIyMjLlj866+/NI5LqFQqbN26lddNCxYsyNB3/4i4ublxoaGjoyP27t3Lo6cnh/CLrGPhwoXYuHEj7t+/r7GQRvot3/XEyckJY8eORZkyZdC+fXtMmjRJSyQqSD9z5szh7+zgwYOxdOlSbN++HYMGDYKtra1GPbJu3TqNPohkr3Xr1oExhmrVqvHj8nQ7duzgAt23b99+lxGmswr5OzxlyhSNOrtbt24YOnQomjZtyncqMDU1Rb169XDnzh2d1xO2yDzS6xtSnr569UojOjtjDGvXruWR1oFE+7u6uvLo7J06dfouFz8JAbtAIBAIBAKBQCAQCAQCgUAgEAjSTEoT6alNsm/cuJEPuleqVAnly5fng/ZWVlZctCufAEm6lW1avudnIa35sHfvXtjY2PCIiWvWrOHHUppsOnXqFI8Ku2HDhgzfr0AbeeQ+Hx8fdOvWDYwx5M2bF87OzjrPSUnw8DMjn7gdPXo0GGNo27Ytj0CVFOEX2YO3tzeKFSsGxhjq1q2L/fv3a0R6e/HiBXr16oVChQpxoeejR480riFFpPztt9/AWOJOHW/evNFI4+/vjzJlyoAxhqNHj2bLs31veHt7o2jRomCMoXbt2ti+fTsX54aGhuLx48eoVasWX0hQvHhxDZGiVN74+Phg1KhRfFGaiYkJypQpg5kzZ2LPnj3YtGkThg4dyoXTM2fOzLFn/lZ5+vQp30mgd+/eWL16tcbxtAhBUhKvL1q0iB/btGmTELGngFzEnjt3bv5Oz507F35+fqmeL/wi84iKisLbt2+xfv16LFu2DPPmzcPFixfx7t07ALrfWemznTt3QqFQoHjx4rh+/TpvK127do0vymnevDlevHgBIH2RrH82YmNjERYWhn379mHXrl3YsGED3NzcuChK3u4KDg7GjBkzUKBAAS5qu3HjRrLXluz27NkzmJmZgTGGM2fOZOnz/MxcuHABU6ZM4Ytp+vbty48ljcS+bt062NvbY/PmzVo7Hgg064zKlStj9+7dye7qIPwia0hOcC7/PLkduuSLyuzs7BAcHAxA1AnpRZ5v//vf/8DYl91/ki5Ga9CgAU6cOJHstSZNmgTGGNq0aaN17ejoaEyYMAGMMQwcODDrHug7Rv7OL1q0CCVLlkzWFp06deI7FehC2CLjZMQ3JFsGBgaiePHiYIxBX18fJUqUwOXLlzW+R6rDExIS4OTkBFNTU5QtW1ZrQfT3gBCwCwQCgUAgEAgEAoFAIBAIBAKBIEuRC07WrVsHa2trmJiYgDGG/Pnzo1atWnj27BmALwP9uiYmP3/+zEUsYpIxbYSEhKB37958gkQeMTq5PJQiI//vf/+DgYEBDA0Nce7cuey65R+KrxUIPn/+nEdO6tmzJz58+JBFd/ZjIi83Nm/ejOPHj+tMJ/wie/Hw8OAidisrK5QoUQK9e/dG69atNbbMNjQ0xKlTpwBo2yE8PBwODg7Q19fHrl27tBY3qdVqHhn/2LFj2fuA3xEeHh58Itzc3ByFChVCmzZtULVqVS7elY5JkezVajXPZw8PD3Tu3JnbzcLCAgsXLtSKEBoeHo5Vq1bxqPiXLl3K9mf91vHw8MCFCxc0IoSmp21z7NgxNG/enNvu77//1rieSqXCli1bhIg9Bdzc3GBpaQnGGIyMjNC5c2feLgWSzyfpc+EXWU9qvhEeHo66deuCMYYSJUqgVatWGDx4MAwNDcEYQ/Xq1XHo0KEURfCCtCPlmdTuOnToEF+UXLhw4VQj5kvnbdmyBfr6+jA1NRW7p2QBcr/59OkTdu7cyYXRQ4cO1ZlOrVbD19cXkZGR2Xqv3xPu7u7Ily8fGGPo3r271q5Bwi+yl6RluPz/YcOGgTEGAwMDzJo1C6dPn4a/vz/69u3LFzuLdz1jyPvfUmTpvHnzwtLSEhUrVkTTpk1x5MgReHt783S66t0tW7bAwMAAjRs3xtu3bzWuf+TIEb7wU75jmkATuS0uXbqEv/76C7a2tihUqBBKly6NmjVrYu/evcIW2UR6fENaOBYUFIQKFSrwRbE1a9bEvXv3ACTfbnVxceE7ruzbty8LnyxrEAJ2gUAgEAgEAoFAIBAIBAKBQCAQZDnyifGHDx/i3LlzWLNmDe7evcsjXwGag/FxcXF49OgRtm7dihEjRqBChQqwtraGq6trtt7798zhw4c1tqyVSE4IJH1+69YtHoW3WbNm2XKvPxryPPbw8IBarU5VJBUTE4PZs2dzAZa7u3tW3+YPh67FL0nzXfhF9uPj44M2bdrwSOvyHyMjI1haWuLixYvJnv/gwQMucpcixsl96vz58/x6qQmEfnZ8fX3RuXNnvqggaRQ4R0dHLrxVqVT8/ff09ETLli250N3Kygpnz57ViDwqj+Tq5+eHSpUqgTGGFStWZO9DfoekR0T76NEj1K9fn9uvc+fO/Fh0dDT/WxKxK5VKETExGZ4/f85F7BUqVMCBAwc0djxJimQv4Rc5j1Tvf/r0CXXr1uWLNaSfHj164PTp0zxd0t8ScjsJUXvqSHkUHh4OR0dHvjD5v//+S/E8eVurY8eOYIwhT548GruzCLKG+Ph4bNmyBcbGxtDT08PatWtz+pa+W9zc3NCgQQM8f/5c43PhF98OS5cu5eL1vXv3aiwYBAB7e3sULVoUvr6+OXSHPw5J69PXr1/D19cXnz59SnGBgZxLly7x6PgTJ07ElStXcOnSJSxYsIAvvBk0aFCWPcOPQtLxjE+fPuH9+/f4+PGjRjsnJYQtMo+v8Q0p7YcPH9CsWTNeftWuXZvvUJfSQswXL14gf/78YIxh//79WfE4WYoQsAsEAoFAIBAIBAKBQCAQCAQCgSBbkCZTdA26S0Kre/fuwcnJCf369YO9vb3GNqt58uRB+fLlMXv2bLGleSqo1WrExMSgXbt2YIyhUqVKcHFx4ceSOwcAvLy8UKRIETDGYGtri0OHDgGAVp4ntaOIiq+brVu3YtiwYfz/1ERRz58/h7m5ORhjWLBggc40qU0EC1voJiv8QuR12nn//j2OHz+OPn36oHLlyihZsiSaNm2KefPmwc3NDUDy/vHu3TvY29vD1NQUu3bt0sj3O3fuoHz58mCMYciQIdnyLN87Hz58wOXLlzF48GA0adIEtWvXRteuXeHk5MSFPPIFAn5+fujRowcvm/Lly4cnT56k+j1du3YFYwy9evXSubhEkHE2b96MNm3awMTEBCYmJhoR1uVCFZVKha1bt/II4S9evMiJ2/2mcXNzg5WVFRhjqFy5Mnbv3p2iiF34xbeD9K6HhYVh165dmDRpEubMmYPt27cjMjIyxbrl6tWrmDNnDrp06YLhw4dn523/EIwZMwaMMeTOnRuzZ89GSEhIsmnldvj777/BGIO+vj4mT56sdVyQdmJjYxEWFpamtAEBAWjZsiUvgwTpR+ob6yrHhV/kLCEhIWjevDmUSiXmzp2r0R6Kjo6GSqVCnTp1wBgTO2plEim9p2ntL69Zs0ZjNyg9PT0+Hvjrr7/ydHKf0+V/on+ePMIW2c/X+EZUVBSmT58OCwsLMMZQsWJFPHjwINXrAMCCBQt4vZN0F6jvAT0SCAQCgUAgEAgEAoFAIBAIBAKBIAtJSEgghUJBCoWCiIgYY0REpFKp6Pbt2xQcHEyHDh2igIAAunv3Lj+vcOHCVLVqVWrevDk5OjqSo6Mj2draEgB+DYFuFAoFqVQq8vDwICKiEiVKUPny5fmxpEg28vPzo99//51ev35NBgYGVLt2bapfvz4REenr6xMR0fv37+nhw4d06dIlio6OpkqVKlGLFi3I1taW1Go1KZXKbHrKb58XL17Qxo0b6cGDB1ShQgUaPXp0su+u9F7r6emRkZERhYWFUWxsbLLpiIQtvpas8AvpPJHfqZMvXz5q3749tW/fnsLCwkilUpGlpSV/p1Mq2y0sLMjOzo6ePXtGf/31FxERFSxYkIKDg2nSpEn09u1bat68OY0ZM4aIvthOoJu8efNS48aNqXHjxhQXF0cJCQlkZGTEjwPg+ffp0yfauHEjXb16lcLCwsjKyoquX79O5cqVSzGfw8PD6cWLF/x6wj+yhsGDB1OzZs3oxIkTNH36dFq7di19/vyZdu/eTXp6erxsUiqV1L9/f8qTJw9ZWlpS8eLFc/rWvznKly9PN27coPr165OLiwutXLmSChcuTI0aNdIqm4RffFtI77qZmRn169dPZ5rIyEhijNHNmzfJ1dWVrly5Qs7OzvT+/XsiIl4PNW7cmLp3756dt//dEhkZSc+fPyciIhsbG+rYsSPlyZNHZ1p5HX/mzBk6dOgQEREZGxtT3bp1iSjRBim1p0QfUBuVSkU3btygN2/eUN++fVPNIxsbG2rQoAGdP3+eDhw4QNOmTaNKlSrpTCtskTJ6eolyu6R5lBV+Ifg6AgMD6fr166RUKqlu3brcViqVioyMjCg0NJQ+ffpEhQoVorJly+bw3f4YpPSeptYnk9pNI0eOJBMTE9q0aRP5+flRbGwsNW7cmBo1akRTpkwhIqKYmBgyMjLi50j+FxISQq6urlS4cGEqXbq06Asmg7BF9pMW35DyKCAggC5evEihoaGkr69P69evp2rVqiVb50rnhYaG0v3794mIyNTUlMzNzbPmYbIQIWAXCAQCgUAgEAgEAoFAIBAIBAJBpiINokuD7NKgfHx8PD18+JB8fX3p8OHD9Pr1az7ITkRUqFAhqlKlCnXp0oVKlChBDRs2JAsLCzI2Nta6vhD8pE5kZCRFRESQvr4+denShfT19UmlUvEJXAm5SHfUqFHcJiVKlKDZs2dT/vz5edqzZ8/Szp076cCBA/wzhUJBNjY2dOLECapYseJPP0ElJ0+ePGRvb08PHjyg8+fPU4sWLZKdJJcmpB4/fszFVEknnuQTV8IW6SMz/SIhIYEYY8QY42WSh4cHvX//nhISEsjOzo5MTEzIxMRE2OL/kd5hMzMzrc9SWtxhYGBA69atI09PT3r8+DENHTqUYmJieJp27drRxIkTtRYkJDfZK4RXX/JAX1+f54XcFpJwzdnZmY4cOULBwcFkaWlJZ86coXLlyiUrbJM+f/36NV+EU6JECY3rCzIHKT+LFy9Ow4cPJysrKxoyZAg5OTlR8eLFaf78+Ro2UiqV1Llz5xy842+fcuXK0Y0bN6hJkyYUExNDtra2Gu+s8ItvE119g+joaIqPj6dLly7Rq1ev6Pjx4xQQEEDe3t48Tfny5alOnTrUqFEjqlWrFhUvXlyj3StImXv37tHly5eJiOj3338nR0dHnenk7/iDBw9o165ddO/ePSIiGjlyJHXs2JGnk+x48eJFCggIoFy5clHBggWpYcOGqS52+xl59uwZdevWjaKjo6levXopLk6SyqGSJUvyvPz8+XOy6YUtUia5Z89sv5Aj70/87PmfElJZYmRkxPscAHh/b8iQIeTh4UFVqlSh3Llz5+StCiix3ya92wMHDqSWLVtSfHw8hYeHk42NjYaNpAW3Hz58IB8fH7pz5w5du3aN3N3dydvbm/T09Oj58+dUunTpnHqc7xphi5xBKtfXr19PDx48ICKirVu3Uv369VMcz5DOW7t2LR0/fpyIiIYPH06lSpXSSPc91BVCwC4QCAQCgUAgEAgEAoFAIBAIBIJMIalg/ePHjxQUFETOzs50+fJlev78OT158oSnL1SoEFWuXJm6dOlCxYsXp3bt2pGBgQGZmJhoXDep8FOI19NGQkICRUVFUXx8PAUGBhIRJSvS9fb2pqFDh9K9e/coJiaGrKysaP/+/VSmTBme9uTJkzRv3jxydnamXLlyUceOHSkqKooCAgLo0aNH1K5dO7p8+TLZ2tpm63N+y1hZWVGnTp3o7NmzdOrUKapVqxZNmDBBa1GGxJs3b+jSpUukVCpJrVZToUKFNI5LE0/CFukns/xCrVZzoa+vry9dvnyZdu3aRW5ubhQSEkJEiULI6tWr08yZM6l06dIiSjt9eYflk6ipCfslMbWFhQVdvnyZRo8eTR4eHuTi4kJly5aldu3a0bhx4yhfvnxak7NyIfb169cpMjKSWrdu/V1M4mY1umwh/1t6V//66y/y8vKi3Llz08aNG6lq1arJLiSTf75ixQry8vIixhg1b95c6/qCtKNrkQ2RZn7q6elRu3btaMyYMbRkyRI6duwYderUiapWrZqdt/pDUK5cObp37x7FxsZS8eLFNYQfwi++DZLWp9LC2YiICLp8+TL5+fnRwYMHKTg4WEOwXrFiRWrTpg117tyZSpUqRZUrV9YZpVIsOksbcXFxpK+vT8bGxlSlShUi0s47uf+4uLjQxo0b+eLLPn360Ny5czWu+eLFCxo7dixdunSJ4uPjiShxQeeQIUNo8eLFQjidhJiYGLKwsKDIyEhycnKi8ePHa/Wlk+Lp6UlEieVZSosHvb29hS3SQWb6RdL6XyrnVCoVxcbGUoECBXRe82fHzMyMbG1tyc3NjS5fvkylS5emXLlyUVxcHA0ZMoQOHjxIlpaWtG7dOsqTJ4/Iu28Aaac0PT09KlCggFZ7ysfHhyIiIujUqVP0/Plzunr1Kr1584aIEttRBQsWpE6dOlGpUqXo7du3QjSdAYQtsh8AFBwcTNeuXSMiovbt21OLFi2ISHc/QV5m7dy5k2bOnElERHXr1qW2bdsS0Ze2spQuLi6O9PT0+BjWt9bWFQJ2gUAgEAgEAoFAIBAIBAKBQCAQZAqMMYqMjKQ///yT3r9/T/fu3SMfHx8eaTJv3rxUr149aty4MZUvX54aNWpEhoaGWltqA9CIJvMtDap/TxQsWJC6detGO3bsoBcvXtDnz5/J3NxcSzj6+PFj6tWrF/n4+FBCQgJZWFjQ2bNnycHBgU96eHl50aZNm8jZ2ZlatGhBI0aMoPbt25NKpaIXL17Qr7/+Ss7OznTixAkaM2aMmASmL5NK7dq1o/Hjx9PkyZPpjz/+IAsLC+rbt6+WYOrDhw906NAhcnJyIrVaTQ0bNqSePXtqXVfYImNkhl/IxYg3b96k8ePH08uXLyk4OJhHIjMxMSEPDw/y8PCgy5cv07lz56hChQrf3ETh94K0qMPc3Jy2bt1KarWa3r9/T6amppQ3b16t9OHh4eTi4kJ+fn505MgRCggIoMePHxMR0cCBA2nr1q3Z/QjfFVK5sW3bNrpy5QoZGhrS77//Tk2aNCEi3fWyvN5ev349bd++nRhj1KlTJ7K3t+fXFD7wdURERNDTp0+patWqZGBgkGJaMzMzaty4Mf3zzz/07NkzevjwYYoCdmGL5ClatCgRaQpEstIvBF+HVAe/evWK3NzcyMXFhc6dO0e+vr7k7+/P09nZ2VGzZs2oZ8+eVKRIEWratKlO0W5SXxB+kTZCQ0MpPj6ejI2NydLSkog0806er3fv3qWNGzfSzp07iShx55TJkyeTvr4+72/cuXOHxo8fTw8ePCBLS0uytbUltVpNLi4utHTpUmKM0aJFi4TPyLCzs6OuXbvSsmXL6MCBA9SwYUOqV6+eVjr5oo/r16/zCNVFihTRSCfZTNgi/WSmX0ji9YSEBDp48CCdPHmSbt26RfHx8RQWFkZdu3alevXq0aBBg8SCAhklSpSgnj170uzZs2n69Ol09epVUqvVFBISQo8fP6Y8efLQihUrqEaNGiLPcpCkfQPpfVcqlRQQEEAfPnygo0ePUmBgIJ09e5bCwsIoJiaGFAoF5c2bl3r16kUVKlSgRo0aUenSpTUWdAi+DmGLnIUxRm/fviVXV1ciIqpZs2ayOwLJy6yDBw/SH3/8QUREuXPnpnbt2vGFU0qlkuLi4sjd3Z327t1LT58+JZVKRVWrVqVBgwZ9ewEWIBAIBAKBQCAQCAQCgUAgEAgEAkEmMnz4cDDGYGhoiKZNm2LixIk4fvw4Xr9+jaioKK30KpUK79+/x4MHD/DhwwdER0fzzwUZY/v27WCMgTGGlStXIjAwkB978OABVq9eDTMzM56mRIkSePLkCQBArVYjISEBALBz504oFAoUL14cZ8+e5deIi4sDAPTt2xeMMQwbNiwbn+7bR61W87//97//8XyeMGECTpw4AbVaDbVajYsXL2LatGkwNTUFYwwVK1bEsWPHtK4BCFtkBhn1CyAxv/fs2QOFQsHT5cuXD/PmzcN///2HJ0+eYN26dWjQoAEYYyhdujR8fHxy5Hl/JOLj4wGAl00S7969w507d7BmzRp07doVdnZ23C6SDZs1a4YVK1Zg06ZNOXHr3yUTJ07k9fmlS5eSTSe3x4kTJ1CjRg0wxqCnp4fNmzfrPCcuLg5v377VKOOS2vVnJzo6Ghs3bkS5cuVw7ty5NJ0TFRWFatWqgTGGAQMGpClPhS2+jqz0C0HKvHz5Evv378fcuXPRsmVLFC5cWKOsL1++PDp16oTNmzfj3LlziI6O1tn3kOoSQcYICAhA2bJloaenh40bN/K+W0JCgkY/7uDBg+jcuTO3U6tWrXD9+nWNMufjx4+oXbs2GGOwt7eHm5sbIiIi8Pr1a6xcuRJKpRJWVla4ceNGtj/nt05gYCDq1KkDxhgaNGiAZ8+e8bxN2p8eNmwYGGMwMDDA8OHDAXwpq6RzhC0yRmb6BQAcOXIEAwYM0CjrjIyMwBjj/ZApU6bw9D97/S3Pv6lTp0KpVEKpVPK8K1SoEM6cOYPY2NgcvMufk6RljZz379/j/v37mDNnDvr06YPcuXPz99zIyAhmZmb45Zdf8Mcff+DRo0d4/fq11jWk6+q6vkATYYtvj8ePH8PY2Bh58+bFgwcPAGi3V+X5eejQIZQrVw56enpgjKF///4aaSMjI/HPP/+gatWqGvUHYwyFCxfGs2fPAHw7dYaIwC4QCAQCgUAgEAgEAoFAIBAIBIJMAf8fCWbdunXUvXt3KlSoEJUtW1YjjVqt1vj/zZs3NHLkSHJ3dydPT08qU6YM2dnZ0YYNG8jKyurbigjzHSHZYsCAAeTl5UWLFi2icePG0X///UcFCxYkxhjdvn2bgoODKTY2lqytralKlSq0dOlSKleunEZkuJiYGNq9ezcBoO7du1PLli2JKNGW+vr6RPQlqlxCQoKI6CpDoVDwd3jhwoVERLRo0SJavnw5LV++nCpUqEBExKN8x8fHU7ly5WjIkCHUsGFDfg0JYYuMkVl+ERYWRjt37qRx48YRAMqfPz9Vq1aNVq9eTba2tvz77O3tqVGjRjRw4EC6f/8+rVq1ipYsWUJ6enrCLmkAOiIiStHgXr9+TaGhoXTmzBlydXWl69ev08uXL3k6Kysratq0KTVr1owqVqxIjRs3JsYYmZiYpHh9QSJqtZri4uLo9OnTRETUuXNnHmU6KfJ8vHz5Mm3YsIEePHhARETDhg2jwYMHa1z33bt3NHv2bHr+/Dk9ffqUGjZsSA0aNKApU6aI6KFJiI2NpWvXrpGnpydt2bKFqlWrxqO5JkdoaCi9efOG/51cXgpbfD1Z4RdpraeFLRLR19enESNG0KdPn0hfX5/y5ctH3bt3pzp16lC1atWoWrVqpFAoeJtIIjw8nBhjxBgjU1NT0tPTE22kTCBPnjzk6OhIXl5etGfPHqpZsyaVLVuWjIyM+I5aM2fOpOPHj9Pz58+JiKhjx440ZcoUqlGjhkb+jxs3ju7evUvFixenM2fOUOHChYmIyNTUlLp06UI7duwgFxcXCg4OzpFn/ZYpUqQI7dq1i5o0aUI3btygoUOH0pgxY6hBgwZUsGBBiomJocjISJo8eTLt2LGDGGNkbW1NLVq0ICLiZYtkD2GLjJGZfjFnzhw6cuQIPX36lIiISpcuTeXKlaPWrVtTSEgIeXh4kJOTEy1dupQUCgX99ddfP31dIe9/L1q0iGrVqkWBgYHk5+dHlSpVoqZNm2rtPCDIHqR3U61WU3h4OD18+JAePnxIDx48oDt37vD2q56eHllaWlLbtm2pRIkS1KlTJ7K0tKQSJUpoXE9qG0m/xQ6OaUfY4tvDwMCAYmNjKSYmhjw9PalatWp87ENCyk8nJyeaOXMmvX79mtRqNbVv35527NjB08XGxtLq1atp+fLlFBoaSvb29vTbb79RQEAA3b9/n27dukVdu3alixcvfjPloRCwCwQCgUAgEAgEAoFAIBAIBAKBIFNgjPHJwsaNGxOR9la0khg9ISGBrl69SuPHj6enT5+SlZUVlS5dmlQqFR0+fJg8PDzo2rVrlDdvXiHaSQdyWyxcuJAMDAxoxYoVdOvWLUpISNBIW6tWLerduzd17dqVChUqpCXoUSgUFBUVRUREFhYWREQUHx/PxUFXr16lq1evkkKhoLZt24pJqiQolUoNW1hbW9O+ffvo3r175ObmppG2Vq1aNHLkSGrbti2Zm5trXUvYImNkxC+k82JjY2nbtm00ceJEAkBlypShrl270vjx4zUW3QAghUJBpUuXpoYNG9L9+/fpwYMHpK+vL8qzVJDKIHk+BQQEUGhoKB0/fpz8/f3p7NmzFBISQjExMURElDdvXurYsSM5ODhQ/fr1qWLFilSgQAENH0i6gErYIXkUCgUZGhrySfO8efMSEZFKpdKYSJfXFxcvXqT169dzcW+PHj1oxYoVPG10dDSdPXuWlixZQvfu3SN9fX2Kj4+nc+fO0enTp+nNmze0fPlyYRcZJiYmVKdOHTp37hzdu3ePrl+/Th06dNBZtku2ePbsGQEgIqICBQrobEMJW6SPzPaLuLg4MjAw4Ofdv3+ffH196ebNm2RgYECOjo5UpkwZqlmzplhQ8P8ULFiQbty4QSdPnqRGjRqRra0t5cuXTyNNXFwc//vGjRt0/fp1+u+//0itVlPJkiWpS5cu1LdvX1IoFELEnkHMzMxo4cKFdPfuXbp58yYNGjSIHB0dqVatWnTnzh3y9vamGzdu8PSDBg2iyZMnU5kyZTTe5bCwMHr27BmZmJjQunXrqHDhwhp+ZWxsTCqVigBQSEhItj/n90DJkiXp/Pnz1KJFC7p9+zZ5enqSlZUV1a9fn168eEGfPn0iV1dXUigUZGpqSpMmTaJOnTppXUfYIuNkll+MGDGC9u3bR6GhoUSUuPipZ8+efJEzEdHnz5+pVq1aNHr0aFqzZg3Vrl2bOnTokH0P+40i73/res9F2Z9zPHnyhPr27UsREREai48LFSpEnTt3pipVqlCLFi3IysqKbG1tk237yG34s7eN0ouwxbcDACpWrBi1bt2aTp8+TY8ePaJOnTqRqampRhrGGC1btoymTp1KCQkJBIDatGlDx44dI6JE4bqhoSHdvHmTdu/eTRERETR8+HAaOnQolS1bllQqFbm5uVHPnj3Jz8+PHj58KATsAoFAIBAIBAKBQCAQCAQCgUAg+PFIGi09aUQ3aSLRzc2Nxo4dS8+fPydHR0fau3cvFSxYkMzNzal///60e/dumjlzJq1atUoriqIgbcgnbufMmUPVq1en58+f08mTJ4kxRlWrViVbW1saOnQoF9VKols5+vr6VKlSJbpz5w55enrSp0+fKE+ePEREdPv2bdq4cSMFBgbySMcCbeS2GD16NDVr1oxcXFzo0KFD9PnzZypVqhQVLVqUxo0bRyYmJslO/AlbZJz0+IVareY2cXJy4uL1ihUr0sCBA2nw4MGUO3duSkhI4GWglF5PT4/vROHs7EwvXryg0qVLi8ndFFCr1RQREUG+vr506tQp8vb2phMnTlBcXBxFRESQUqkkpVJJHTp04JHgrK2tqWjRojoF69Jkr9jNI+1IkYpLlixJz549ozdv3miJdOU7pBw+fJg2b95M586dIyKiDh060JIlS0ipVPLzbty4QbNnz6Znz55RuXLlaMGCBRQeHk4BAQE0Z84cWrlyJZUtW5aGDRuWI8/8LaKvr089evSgc+fO0cmTJ2nx4sVUqlQpsrOz42mkaK7Su79161YeNbFNmzYaZY0kMBG2SB+Z6Rfx8fFcvH758mW6cOECLVmyhIyNjflCNSKiYsWK0YABA2j27NlCxP7/VKhQge9gQ/TlvZYWbkj5KkWnfPnyJQGgPHny0NOnT+no0aP09u1bmjRpkhAwZgK2trZ07tw56tSpEz1+/JgeP35MO3fu5HWwgYEBFS9enPr370//+9//tM4HQC9fvqQnT54QEfF+n56eHvcvX19f+vjxI+XLl0+j/BNoUrZsWbpy5QqNHj2aHj9+TJ6enuTl5aXhG2XLlqURI0bQ0KFDiUhTeChskXlk1C8GDRpEO3fu5LZbsmQJTZo0iR+XFkBZWFhQ586d6fDhw3T16lVycXERAvb/J6V2vyj7c47KlStT7dq16cyZM9SsWTNq2bIlOTo6kr29vdaCNKLEtpebmxsFBgZSQEAAVahQgSpVqkRmZmZabTDB1yFs8e0g7RAkCdiXL19OhQoVojZt2lCZMmUoOjqajh07RpcuXeKR1vX19alr1660d+9eIkpcUGtoaEhERPv27SM3Nzdq0qQJjRgxgkqVKsX7iw4ODlSoUCHy9PQkPz+/nHpkbSAQCAQCgUAgEAgEAoFAIBAIBAJBNhIXF4c6deqAMYYaNWrg48ePAICYmBgAQHBwMPLkyYOGDRtCrVbn5K3+ECTNw/j4eKhUqhTTJOXAgQNgjIExhv79++Off/7B5MmT4ejoCMYYSpYsiaNHj2b6vf9oJCQkZDiNsEXm8DV+IdnkwoULPO/Lly+PFStWIDw8XCONrvNXrVoFfX19mJubw9fXN03vwc9KVFQURo0aBT09Pejr64MxBn19fVhYWKBLly6YOHEibt++DS8vr1SvJeqP9CO9o8uWLYO+vj7Kly+Px48f60y7ZMkSVKxYkftG586d4e7urpEmJiYGjRs3BmMMLVq0gJ+fHz8WHh6OMWPG8DJNoI2fnx/P44YNG+LOnTuIiIjQSBMfH4/BgweDMQaFQoFOnTrh5cuXWtcStkg/meUX8rrmzz//RNWqVXk6MzMzlChRAnXq1EGJEiWgUCjAGMPEiROz/Pl+JPbt2wdjY2MwxtC9e3fs2bMH79+/x6FDh2BhYQHGmGgrZTIvX77EvHnz0LhxY9jY2KB8+fKoUaMGNm/ejNu3b/N0uurmsLAwODo6IleuXNi3b59GmuDgYFSpUoWXWdHR0dnyPN8z0rveo0cPVK5cGWXKlEGlSpWwYsUK3Lhxg6cTtsh60uoXcXFx/O/Ro0fzNrCRkRE2btyY6vcMHDgQjDHUrVuXj6kIBN8a8vZPUFCQRp9Y+js+Pp5/9urVK6xbtw6mpqZQKpVgjCFXrlxo1KgR3r9/r3VNQdoRtvi2kOf/tGnTeL+gdOnSqFOnDsqVK4fcuXPzzytXrow//viDnyO31du3b2FrawuFQoETJ07w60v1eXR0NOzs7MAYw5o1a7LpCVNHCNgFAoFAIBAIBAKBQCAQCAQCgUCQrZw8eRJ6enooXLgwvL29AWgOuDs7O0OpVKJAgQJ4/fq1ECF+I6xevZpPmEg/hoaGqFu3Lv777z+eTq1W8wkYXZNYYmLrC+kVMgtbZD/Pnz+Hra0tGGMoWrQo5s2bh7CwMAAp2/HDhw+oXLkyGGOoVauWEK+ngefPn8PGxgbt27fHjBkzcPPmTXh6emqkkb+77u7uOH/+PKZNm4Y9e/akKs4SpJ1Xr17x97d+/fo4evQoAgICEBQUhMOHD6Nnz54a5dAvv/yCV69e8fOl933p0qVgjKFgwYJ48eIFAM16f9myZWCMwcHBAREREcJuOvD09EShQoXAGEPFihUxePBgHD9+HOfPn8fSpUvRpk0bLl4vX7489u3bp/M6whYZJyN+Ic/PwYMHw8DAgKfr3bs3tm3bho8fPyI+Ph7Pnz/HsmXLuIh9+fLlOfTE3xePHj3iwpzhw4fzvobEpk2bwBjDnDlzcugOf1wkgVRAQABCQ0N5O0kiufIkNjYWvXv35gsEd+7ciTNnzmD37t1wcHDgnwcFBaV4HYE2ISEh+PTpE0JDQzU+F7bIPlLzC3mbdsmSJcifPz9fwLl161Z+LKW87tGjB+9rCAG74Fsm6Xuc3Hvt4+ODsWPH8jZQu3btMGjQINStW5cLeD99+pQNd/zjImzxbZF0gWuxYsV4njPGYGJiAsYYxo4di7Nnz+o8D0hcxFagQAEwxrB7924AX2wbFRWFTZs2wcTEBKVKlYK/v382PFnaEPH7BQKBQCAQCAQCgUAgEAgEAoFAkK14e3uTWq0ma2tryp8/PxER325WrVbTvXv3CAA1atSIChUqlJO3KqAvW8uPGjWKChQoQBcvXiQ3NzfS09Ojvn37kqOjI1WpUoWIiOLj4/l280REsbGxFBISQvfv36dHjx5R586dqWrVqjn1KN8cjLGvSi9skf0kJCSQWq2mAwcO0MePH4mIqF69ejRy5EgyMzMjAMnaUaVS0alTpyg4OJiIiBwdHUmtVpNCoRBb16dAhQoVyMXFhSwsLLSOJSQkEABSKpVERHTw4EGaP38+eXt7U0xMDBERmZiY0Lx582jChAmkUChStJEgZQoXLkz//vsvNWnShG7evEmurq78/VWpVBQWFkaMMbKysqIBAwbQ4sWLNc6X8j0oKIiIiHr06EGlSpUitVpNenp6BIDUajUFBgYSEZGdnR2Zmppm70N+J5QpU4auXr1K3bt3J1dXV3Jzc6OtW7eSUqkkPT09io2NJcYY2dvb06hRo6hXr15ERFrvv7BFxkmvX6jVal529erVi/79919ijBFjjGbPnk1//PEHEX3xmwoVKlDx4sXp/fv3tGTJEjp9+jQNHDiQzM3Nc+bBv3Gkd93FxYU8PT3JwcGBhgwZQiVLliQiopiYGDIyMuLv9aNHj0T9kAUoFAqysbFJ9lhSAJCBgQGtW7eOPDw86MmTJzRs2DCKiYkhQ0NDio2NpQoVKtDBgwfJ2tpaw4+kv6X2sfyaP7tdpTzIkyePzuPCFtlLWvzi2rVrdOTIEd5vWLVqFQ0aNIiISCtf5bi7u5OHhwcpFAqqVKkSGRoaZsETCASZQ9L3OOn/Upmxb98+Wr16NeXKlYtmzpxJkydP5ml69uxJBw8epK1bt9LEiRNFOZNOhC2+LZRKJa9LZ8yYQU2aNCFvb2+6d+8excfHU/369al48eJUr149fk5CQgKvhyVMTU2pevXqdOrUKXr48CG1atWKrKysKDo6mg4dOkRr1qyh6OhoatmyJVlaWmb3YyaLELALBAKBQCAQCAQCgUAgEAgEAoEgW8mbNy8RJU6QREVFkZmZGRElTpDcvn2b/vrrLwJANWvWzMnbFPw/CoWCT5p3796dOnXqRAAoPj5eS9wWHR1NERERdPr0aXrx4gWdOnWK/P39ufB35cqV5OvrS/ny5cuJR/nuEbbIfhQKBcXGxtLx48cpPDycbGxsaOnSpWRpaZmsmET6/OXLl7Rjxw4KCgoiAwMDGjhwIF+sQyREPSkhCTTl4iiiRGGnlOc7duzgwp7GjRtTuXLlyMrKilatWkWTJk2iXLly0ZAhQ0QeZ5DSpUvT1atXady4ceTm5kZ+fn5ElLjwzMjIiAYPHkyNGzemzp07E5FukVV0dDQREb1584aLSIkS7enm5kbnzp0jIqJatWolew1Boi1OnjxJa9asoStXrtCDBw9IrVaTWq0mIqIhQ4ZQ27ZtqV27dkQkbJGVfK1fxMXFkYGBARER/fLLL/Tvv/+SUqkka2trmjlzJg0ZMkTn95iYmFC1atUIAF28eJH8/PyocuXK2fKM3yMJCQl07NgxUqlUVLVqVZ5XKpWKv+sPHz4kosQFAqJ+yFzSk5+MMVKr1WRhYUFXrlyhsWPHkru7Oz18+JCqV69O5cqVo8WLF1OePHm0RNJS+yA0NJT8/f3J09OTevXqJexKwhbfEqnlgXT82LFjdPfuXSIimj9/Pg0bNoyIkq+HpX7EzZs36enTp0REVLZs2cy8dYEg22GM0bVr1/iivtmzZ9OECROIiCgyMpJMTU1pzJgxdPDgQfL19eXnCDIfYYvsR16v1q5dm2rXrk39+vVLNr2uusHExIS6detGp06dolWrVpG3tzeVLFmSnjx5Qh4eHhQcHEytW7emCRMm8LF4XWT3WJUQsAsEAoFAIBAIBAKBQCAQCAQCgSBbsba2JlNTU3rw4AHt2bOH2rRpQ2q1mm7fvk0LFy6kV69eUevWrWnUqFE5fauC/0ehUPCI3lJUbwMDA/r8+TPFxMTQhQsX6OXLl3T48GF6+/YtvXnzhp9bq1YtatmyJXXq1IksLS35AgZB+hC2yH5Onz5NLi4uZGpqSgsXLqTChQtrCasl5J//73//o6tXr5Kenh7Nnj2bqlevTmq1mouwExISKC4ujl68eEEFCxYkY2NjMjMzE4JR+jL5nTSPpc+PHj3KxesTJ06kUaNGkY2NDTHGqH79+tSiRQvasGEDdezYkfLnzy8m0zNIyZIlaffu3fTu3Tu6efMmxcXFkY2NDZUqVUpDLJXcu2tvb09ERI8fP6Y7d+5Q7dq1SaVSkbOzM02ZMoXc3d2pZs2a1KdPHyLSPRkvSKRIkSI0d+5cmjNnDp07d47Cw8PJzMyMihcvTg4ODvxdF7bIetLqF/Hx8Vy8PnLkSNq3bx8pFAoqXrw4zZo1iwtTktpMqk/KlClD+fLlo9DQUL7ThEAbKZq9JMaR2kgA+OKxTZs20YoVK4iIqGnTpjlynwJtpKij5ubmtGnTJlKpVOTn50elS5cmIuL+I7UJgoODKSwsjE6fPk3Pnj2jK1eu0MuXL0mlUtGDBw/on3/+ybFn+d4RtsgZLl26xMumvn370tixY4ko5UVkjDG6desWjR49mogSd4iS6hMAPI1A8L1x5MgRIiLq3r07F0yrVCq+YP/evXtERPThwwdKSEggItFezSqELbKfjOSfJDrv378/hYeH05gxY+j06dP8uI2NDQ0cOJD+97//UYkSJXgdo2tsS6o/khv3ymyEgF0gEAgEAoFAIBAIBAKBQCAQCATZStOmTWn06NG0aNEimjx5Mq1evZoiIiIoOjqaoqOjqXHjxnTkyBHS19cXQs4cRMp7aRJEEgIFBATQzZs3ycPDg06cOEEhISH06tUrfl69evWocePG1K1bN7K2tqaqVatqRJ0WfD3CFjmLtAggLi6OSpUqRUTawmoizS2c+/fvTwcPHiSFQkFt27alNm3aENGXCOIvXryg3bt305kzZ8jd3Z0KFy5M5cqVo0WLFlH58uWzbaLwe+TNmze0du1aIiIaPnw4zZkzh0+iA6BmzZpRpUqVyNPTkyIiIqhAgQI5ebs/DBYWFmRhYaEV3VMenS25+rpfv360e/duunfvHg0cOJDKlStHkZGR5O/vT69fv6bSpUvTf//9R3nz5tVZ78u/Q+xckCggZIxRx44dNT6XBGtEwhbZRWp+AYDX2atWraJ9+/YREVH+/Plp5syZyYrXib7UM1euXKHg4OCsfpTvHun9L1myJBEROTs7k6urK9nY2JCFhQUtX76c5s+fT0REf/zxBzVr1izH7lWgjdTOVSqVZGBgQBUrVuTHAgMDKSoqik6cOEH+/v506tQpev/+PUVHR5NCoaDcuXNTmzZtqFy5clS+fHmKiooiExOTHHya7xthi+xDqitcXV1JX1+fDA0NqVWrVjzPUhoHefr0KU2ePJni4uLI3NycmjdvTubm5lp1c1xcHKlUKg07iPpb8K0CgDw8PIiIyNLSkogSBdPSGIanpydduXKFiIjatGkjxgqzEGGL7w/GGO9TjBo1ikqVKkXOzs7k6+tL5ubm1Lt3bypevLjWLoxSn+P169f05MkTevz4MV27do3+/PPPbNsZVYxSCgQCgUAgEAgEAoFAIBAIBAKBINuQBtMXLlxI+vr6tHPnTnrz5g3Fx8eTo6Mj1a1bl/755x/S19cXAs4cRprU9vDwIC8vL7px4wYXS4eFhfE0VapU+b/27jyuyjrv//j7sKMiiKggiIKggYgmGmDuOmmQ4laTmfuYWbaYrdNU2jJjOrfdbVPO5FLe3eO+Ky654Ia7pKKCIosa4oKKgLKe3x/+zpUomvekHNDX8/Hw0el8r3PxufgerovD9b4+l9q1a6e+ffvKx8dHERER5c4dFyP855gL67CEOywdb5s1a6ZHHnmkzNj1LN/TYcOGadasWbKxsVGLFi00ePBgtWjRwljmwIEDGj58uPbu3Suz2axq1arpxIkTOnr0qLZv366NGzcqKCiIcMktXLp0SQkJCXJ1dVVMTIwRyLG818+dO2cEpghN3Xu/9R4tKSmRi4uLYmNjFRMTo+3btysjI0PStRBvVFSUvvvuO3l6ehp3l7hxH2UymYw5tYSCH+SfjVttO3NReVi+J5b/JiYmasmSJbp48aIk6d1339WQIUMk3f6YfP78eW3dulU2NjZq2rSpGjRocO+Lr6Is3+uhQ4dqxowZ2rNnjwYMGCBHR0e5uroqLi5OkjRq1Cg9++yz1iwV+vX3KMv7//o7r1y6dEknTpzQqlWrdOzYMS1fvlz5+fnGz4+dnZ169uwpPz8/9enTR/Xq1TMuMMT/HXNhXWazWcuWLVNRUZFCQ0ONO6DczpEjRzR+/HglJiZKkkJDQ/XCCy8YF0xJ14KIy5Yt05w5c5SZmak2bdqodevWeuWVVzh+o9IymUxq0aKFfvrpJ+Xn5ysvL8+4UPn48eP65z//qRUrVigoKMj4fI17g7momix3+rOxsVGPHj3Uo0ePm5axjKekpCgzM1OrV6/W3r17tXPnTl24cMFY7tKlS9qwYYMx7/cSAXYAAAAAAAAAQIW5/vakEyZMUN++fZWTk6O8vDyFhISofv36xh/cCa9XvOLiYiUkJOj8+fNatGiRjh49qh07dig/P1+S5OzsrKZNmyosLEwdO3ZUQECAEei1zJvl8Y0ITP/fMBfWZwl1BAYGSpJSUlK0a9cutWnTxgh+WJYzm806e/asXn31Vc2ePVs2Njby9/fXK6+8oj59+hjrTEpK0qBBg7R//36Fh4erV69e6tq1q44dO6bp06dr/fr1GjVqlJYsWaJatWpV/EZXAT///LPOnz8vb29vBQcHy2QylekGN336dB09elShoaGys7MjoGNltra2Ki4ulpubm1auXKkVK1YoLS1NkhQeHq6HH35YNWvWlCQjeGVjY6P8/HxlZmZq69atOnTokBYvXqxHH31U06ZNYz7/Q8yF9axdu9boUvnWW2/pxRdflHTr8Lrl+c2bN2vRokUqLS1VeHi4vL29K7Tuqqhhw4Zas2aN+vTpo/T0dOXn5xvHh4kTJ+rJJ5+Un5+flat8cN0YkjabzcrNzdWhQ4e0e/du7dq1Sxs2bNAvv/yi4uJi2draytnZWZ06dZK/v7/69eununXr3nTXgxvXj9/GXFif5Xvv5OQkSXrooYckybiIrDyHDx/Wxx9/rI0bN+ry5ctq0KCBfvzxR9WuXdtYZu3atfruu+80b94847mUlBT9+OOPSktL02effcbxG5VWUFCQSktLNWvWLPn6+iosLEzp6enasGGDli5dKjs7O73xxhtq2bKltUu97zEXVY/ZbC7zd/frHThwQBcvXtTChQuVlpamDRs2GA0xnJyc5OPjoz59+igsLEyRkZGqV69ehYTXJQLsAAAAAAAAAIAKZmtra5zQLq9Tj+UP7qh4c+bM0aBBg4wAtIuLi+rVq6fo6GiFhoaqXbt28vPzk729fZk5KiwslIODg/EcFyD8fsxF5dG0aVM1a9ZMiYmJWrdunUJCQuTs7GwEPy5cuKCtW7fqq6++0po1a2RjY6OQkBC98sorGjx4sKRrnY8LCgr02Wefaf/+/WrXrp0mT56sFi1ayMnJSa1bt5aXl5cSEhKUmpqqnJwcAuy3EBgYqLp166qkpERJSUny8fExwon/+Mc/9Pbbb0uS3njjjZtujw3rsLOzU0lJiapXr66nnnrqpnHLCfaEhAQdOXJEW7Zs0fbt25Wammp0gbO3t1dxcbE2btyoTp06VfAW3D+Yi4qXkZGhzz//XJL02GOP6fXXX5d063Cn5ffgffv2afDgwSouLlZoaKhefvllSSpzwU55uGhHatKkidasWaPdu3crISFBjRs3VmBgoMLDw61d2gPvypUrql69utatW6fU1FStXr1ahw8f1uHDh40LAz08PNStWze1bNlSf/jDH+Tp6amgoCBjHZblrr+Q0ILPkHeOuag83N3dJUmnT5/W1atXjUC7hWW/npCQoPHjx2vTpk26ePGivL29tXLlSvn4+BjH7y1btmjSpElat26d6tatqxdffFFubm7KyMjQlClT9Pnnn8vX11djx461xqYCv2no0KE6dOiQ/v73v+uTTz6Rra2t8f6uV6+eJkyYoKFDh1q7zAcCc1H5WT5PlHcXlePHj+vEiRNatGiRUlNTFRsbK5PJpKKiIlWvXl01atTQM888o8DAQEVFRalevXpyc3Mrs/6K+lxBgB0AAAAAAAAAUOFud0L7QQ/dWNPAgQO1fft22djYqHHjxoqKilKdOnXk6upa7vIZGRlatWqV9u7dK0kKCQnRwIEDVatWrd8MWOH2mIvK46GHHtKgQYP09ttv689//rNyc3P16KOPqn79+rpw4YKmTJmio0ePKikpSba2turSpYtGjBhhhEMtFxFYbsHs4OCgoUOH6uGHH5aDg4NxEjgwMFAmk0mnTp1SVlaWGjZsaOUtr5x8fX3VuHFjxcfHa8KECUpKSpKdnZ0SExP15ZdfSpL+8pe/aODAgVauFNKvJ9Wvv5DG0ll0165dyszM1OLFi3XkyBHt2LHDCMG5uLgoICBAgwYNUocOHdS8eXMFBgaqsLDQWptS5TEX1pGbm2t0NwwLCzOCircKr5tMJiUmJmrkyJHKzc1VzZo11bVrVzVu3FiSjON5SUmJduzYodTUVNnZ2alhw4aKiIgw7gryoP8+7e3tLW9vb8XExFi7FPx/hYWFGjVqlNasWaNz584Zz3t5eSkiIkLdu3dX69atFRoaWiaQeyOTyUR379+JuagcLPvqrl27avHixUpLS9PPP/+sRx55pMw+3GQyaePGjRozZozS0tKUn58vHx8fzZ8/X82aNTPmp7S0VD/++KPWrVun8PBwvf/++3r88cclSfn5+bK1tdWkSZO0YcMGPf/883J2drbWpgPlsryXJ02apDp16ig2NlZHjx6Vvb29+vfvr86dOxvvadxbzEXlZjl+WI6/RUVFOn36tBITExUXF6eDBw8qLi7OuINjzZo1Vb9+fUVFRalRo0bq1auXatWqpXr16pVZr+WYbll/RX2eMJktnzwBAAAAAAAAAMAD63YhZ8tJjOvDC99//71mzZql9evXl1n24Ycf1qpVq1SnTh0CDf8h5qLyuP779vbbb2vSpEmSrnUgdnFx0ZUrV3TlyhVJ18KI48aNU+/evRUZGXnT6xctWqR+/fqpQYMG2rFjhzw9PVVSUmJ0yoqLi1Pnzp1lZ2enhIQEBQcHW2GLq4bk5GR17txZmZmZN42NHz9eL7zwgjw8PKxQGW7sAmdhNpu1Y8cOZWVlaf78+Tp16pQ2btxojHt5ealOnTqKiopSUFCQIiMj5efnZ+znLCfR2ZfdOeaicli6dKl69+4tNzc3xcXFqXnz5uUGzC3PHTlyRKNHj1Z8fLwKCwvVtm1bzZkzR97e3sayq1at0rx58zRjxgzjOTc3N40cOVKffvppmfUBlcnBgwc1aNAgOTk5qXfv3vLz81OHDh1Ut25dY39y/Xs3OztbW7du1cGDB9W4cWPVr19f7dq1k3TruxjgzjAXlUdmZqZiYmK0e/dudejQQX/+85/VrFkzeXt7a82aNdqxY4c++OADY3k/Pz+tXLlSTZs2LbOe2NhYRUdHS5Lmz5+vvn37Svo1iDp79mw988wzatKkieLj47nbEyql6//OceHCBRUUFMjOzo7PdlbAXFRuKSkp2rVrl5KSkvTTTz/pyJEjOn/+vDHu7++vzp07q1mzZnr88cfl7OwsX19fY9xsNleaO6DSbgMAAAAAAAAAAJQbmL6xq4/l5NXUqVM1adIkZWRkKCQkRM8995zq16+vWbNmacmSJerTp49iY2Pl4uJSodtwv2AuKo/rLxaYOHGiPD09tWDBAu3YsUPZ2dmSpMDAQPn4+Oidd95Rhw4d5ODgIEk3nQysX7++HB0dJV0LqtStW9eYx8TERE2YMEHSte77hNdvr0mTJtq0aZPGjx+vo0eP6uzZs2revLkGDx5shHVQsSzhteu7wCUnJysxMVErV65USkqK4uPjje7QtWvX1kMPPaT+/fvLz8/POKl+410mLD9/lgBdZTjBXtkxF5XT5cuXdfXqVUk3323IMmcHDx7UCy+8oL1796qwsFCNGjXS999/Xya8PnfuXH366afat2+fJKlDhw7KyspScnKyJk+eLJPJpIkTJxJeR6UUEhKiuLg4Sde6gV7v+n1McXGxduzYoT/96U9KSkqSdO33Y0dHR3300Ud69dVXy3QIxf8dc1F5eHl56ccff1TXrl21adMmJSUlycbGRvXr19eRI0eUl5cn6dpniVatWmnq1Kny8vK66cKBw4cPS5L69et3U3hduhZ2lKTq1asbn0mAysbW1tbYn7i5uRn7FfYxFY+5qNx+/PFHjR8/3vj/kJAQde3aVZ06dVJ4eLj8/Pzk5uZ203zl5ubK0dFRdnZ2NzXHsBYC7AAAAAAAAAAAoFzXn+SwnPTYsmWLpk2bphMnTujZZ5/VmDFjFBYWJknq27evunTpoi1btmjv3r3q2LGjtUq/7zAX1mNra2uc1Hv11VfVv39/nTx5UpmZmSoqKlL79u1VrVo1ubq66vobH994UtfV1VUNGjTQsWPHNH/+fLm6usrf3187duzQhx9+qI0bNyosLEwjRoyQRDfL39K4cWNNmzZN9vb2unr1quzs7GRvb2/tsh5YNjY2Sk9P1/z585Wenq74+Hjt2bPHGK9bt66aN2+u6Oho+fv7Kzo6Wk5OTjd1/7zxZ8jaJ9OrIuaicgkPD1dwcLBSUlJ08OBBtW7dWiaTqUxYxMbGRrt27dKQIUN07NgxFRcXq27duoqNjVXjxo2NO7Ns27ZNX3zxhRISEhQdHa0RI0aod+/eSk9PV2xsrMaMGaNp06apX79+atOmjZW3HCifJSx9Y6DKEpSTpMWLF+uVV15RZmamWrVqpdatW8vFxUVfffWVXnvtNTk7O2vUqFEE6H4n5qLyCAwM1Pr16/X8888rOTnZ+Kxh8cQTTygmJkb9+vWTm5tbuYHDnJwcSVJWVpZycnJUvXp1Yy6TkpK0adMm2dvbq3///qpWrRohVFRalvfl9e9P3qvWwVxUXu+//76cnJzk6empxo0bKzQ0tEzjipKSEknX5is7O1tHjhzRP/7xD6Wnp6t69epq2bKl3nzzTbm7u1s9xE6AHQAAAAAAAAAA/CbLSarly5dr9+7datOmjV5++WU9/PDDkq518alRo4bCw8O1ceNGpaWlEZq+R5iLind99zFvb2/5+PiUu9ztTuY+9NBDGjdunEaPHq2//e1vWrBggdzd3bV9+3ZJUosWLfTSSy/pkUcekVS2uzFh9vLZ29vLZDLJ2dlZpaWl1i7ngVdUVKS33npLpaWlcnBwUGRkpCIiIhQWFqZ27drJxcXlppB0UVGRioqKdOnSJdWqVUtOTk6Srr3nCUf855iLyqNatWpq1qyZDh06pGnTpiksLEzBwcHG3VaSkpK0bds2vfDCCyooKJAkBQQEaPny5WrSpIlKSkqMZdesWaNt27bp0Ucf1VtvvaV27dpJutaVt0ePHgoICDCCjwTYUdnd6k4EP//8s8aOHavMzEzFxMRo9uzZRrfoLl26KDo6Wt98842ioqLk4+PD/ukuYC4qh4CAAM2ePVspKSn66aefVFRUJG9vb9WvX1/R0dHGcqWlpeUGDUNCQuTg4KATJ05o//79Cg8Pl62trXbu3KlvvvlGa9euVePGjdWpUydJhFABoKqyXNz65ptv3jRmCaNb/n508uRJffnll5o7d67S09ONOwauWbNGsbGxWrdunTw8PKz6NycC7AAAAAAAAAAA4I6cPXtWc+fOlSSNGjXKCEyXlJSoRo0aMpvN2rVrlyQZwTfcG8xFxSuv+9idsoTfR40aJbPZrPHjxys5OdkY/+Mf/6ihQ4eqc+fOcnBwME463njy0dJZsWbNmlbvklUZXD8XBPytLyAgQMeOHdPevXsVGhoqX19f4wS59GsXOEkqKChQcnKy3nrrLWVkZCg9PV0REREaMGCAhg8fLhsbGy7c+B2Yi8rDxcVFf/vb37Rz505t27ZNQ4cO1aOPPqqHHnpIR48e1bZt25SQkKDi4mLVqVNHrVq10tdffy1/f/8y+/lTp07p888/lyQNHjzYCK8XFxfL3t5ejRo1kqurqyQpLy/POhsL/A42NjbKycnRyJEjderUKXXt2lULFiyQjY2NCgoK5OjoqMcff1xt27bVkSNHVFBQQAD3HmEurMfDw0MeHh4KDw+/aczyeeJWx+MePXqoTZs22rp1q4YMGaLWrVurtLRUBw4cUHJystzc3DR58mRFRkaW+3qO9QBQNVgubi2P5bODyWTSmTNnNGnSJE2fPl3Ozs56+umn9dJLL8nBwUF///vfNWfOHA0cOFCLFy+Ws7NzRZV/EwLsAAAAAAAAAADgjpjNZuXm5kq61lFU+rXzT0FBgb755htt2rRJDRo0UJcuXaxZ6n2PuahaTCaTEQp5/vnnFRkZqczMTF26dEk1a9bU448/boRSpF9POubk5Cg3N1erVq3SgQMHtG7dOp07d07Lly+nuy4qpUaNGqlRo0aSZHTFt7y3Le/r7OxszZs3T5988olOnjypOnXqqEaNGlq3bp3WrVun7Oxsvf7664SofifmovLw9/fX6tWr1bt3byUkJCghIcEYs1wgEB4erp49e2r48OHy9PS8qcPulStXVFhYKBcXFyPYaDnum81mzZs3T7t375ajo6NxURtQ1Zw+fVqZmZny8vLSlClTZGNjo6KiIqPr9+HDh5WWlqbLly8rPz/fytXe35iLyud2FwlYLmJetmyZoqKitH37dqWmpkqSHB0dFRERoXfffdfo5G75veD6i9RuPNZf/9kEAFB1WPbrsbGxmjdvnlxcXDR27Fj96U9/kru7uyTpf//3f5WcnKw9e/boxIkTatKkidXqJcAOAAAAAAAAAADuSI0aNdSqVSutW7dOhw4dUm5urmrUqKGioiJ99913mjp1quzs7DR8+HC5ublx0vseYi6qnusDIi1atFCLFi3KjJtMJmVlZamgoEArVqxQWlqalixZotOnTxud12vUqKFGjRpp/vz5BNhR6VmCUJZ9j9lsliQtXbpU48ePV1ZWlnr16qUpU6bIzc1Ne/bs0cCBA/Xmm2+qZcuW6tatm9Vqv98wF9bXpEkTrV69Wv/617+0detWJScn6/Lly+rWrZuCgoL06quvqkaNGnJ0dCy3C66rq6saNWqktLQ07du3T0FBQbK3t5ckxcfH68cff5TZbNYf//hHNWrUiOM+qqQjR47o1KlTcnFxMS7gsLzPzWazNm3apHPnzqljx47y8/OzZqn3PeaiarG1tVVxcbHc3Ny0evVqzZkzR2lpabpw4YKioqIUEBCgpk2bSrq503pmZqZOnz6ttWvXKj4+Xm5ubvr+++85hgBAFWXZx//rX/9SVlaWhgwZYoTXS0tLVVxcLAcHB/n5+Wnfvn06e/YsAXYAAAAAAAAAAFD5VatWTV27dtWaNWv08ccfKyUlRQ0bNlR8fLx2796twsJC9evXTwMGDDACDrg3mIuqp7xAYl5enk6dOqW1a9fq+PHjWrp0qS5fvqwzZ84Yyzz++ONq2LCh+vbtK09PT4WEhFR06cBdYTKZlJqaqg8//FBZWVkaPny4vvjiC1WrVk3FxcX6wx/+oHfffVdjx47V/v37CU3fQ8yFdTRo0EATJkyQyWRSdna2iouLVbdu3ZuWK6/jvZubm5o3b67Dhw9r0qRJKigoUKtWrbR+/XrFxsYqLi5OwcHBGjx4sKpXr14RmwPcdU2bNpWPj4+Ki4t17tw54/m8vDz99NNPevPNN1VYWKguXbrIxcXFipXe/5iLqsfOzk4lJSVycXHRiBEjZDKZyr2YKTU1VZcvX9bixYt1/PhxrVmzxvjs4eDgoMLCQg0YMEA9evSwxmYAAO6CxMRE7d27VzVr1tTbb78td3d34+5NDg4OOnTokDZv3ixJcnJysmqtBNgBAAAAAAAAAMBvspz8fuONN3T27Fn9/e9/17///W9j3NvbW71799bo0aOt2rnnQcBcVA0lJSVGx0qLwsJCJSUlac+ePdq5c6fWrVunU6dOKT8/XyaTSba2turQoYP8/f315JNPysvLSyEhIeWGT+iui6rok08+UVpamh555BF99dVXcnJyMk6kS9eCU5KUkpIiqfwLP3B3MBfW5e7uXub/b7dPN5vNsre317fffqtjx45p7969evnll+Xo6KjLly/L0dFRbdq00XvvvacuXboYr5GuXaxQ3twxn6iMateurQYNGig+Pl7vvvuuBgwYIAcHByUkJOiHH35Qbm6uBg4cqLffflsSvwvdS8xF1WL5/lvm4Pr/njx5UpmZmVqyZInS0tIUGxurwsJC5eXlydbWVi4uLho0aJACAwPVs2dP1alTR7Vr17bm5gAAfiez2ayrV6+qpKREWVlZCgwMND7npaen67PPPtPZs2cVExOjsLAwq9ZKgB0AAAAAAAAAAPwmk8lkBHInTZqk4OBgJSQkKCMjQ25ubnr++efl5+enOnXqWLvU+x5zUTVYwutbt25VRkaGVq1apUOHDunAgQMqLCyUJLm6uqpNmzYKDQ3VY489Jm9vb7Vs2bLc9d0YDCIkhKooMzNTktS/f385OTmpsLDQCEr/8ssvWr9+vSQZdxogYHvvMBfWcat99+326Zbjvpubm9atW6eXX35ZP//8s06ePKkGDRpo1KhR6tKliyIiIiSpzFxK1+bu/PnzOnfunBITE9W3b1/mE5WSh4eHZsyYoc6dO2vr1q3atm2bcTGGJA0ZMkQzZsyQxEUY9xpzUTVYPhNajiElJSU6f/68kpKSFBcXpwMHDmjNmjW6ePGipGt38XJ2dlbv3r3l5+envn37ysPDQz4+PmXWe/1cAwCqHnd3d4WGhurgwYPatWuXgoOD5eHhocTERH3zzTeaO3eufH199fTTT1u7VALsAAAAAAAAAADgztja2honyYcOHSqpbIdPVBzmovK6cOGCfvjhB23evFknT57Uzp07jTF3d3cFBwere/fuat26tVq0aKHGjRvLbDaXCf6UlpbKbDYbIXjmFPeLq1evSpLOnTsns9lshGxzcnK0dOlSrVmzRo0bN1ZkZKQ1y3wgMBdVi+W47+rqqmnTpunixYvKyclRzZo15eHhUWZZBwcHFRQUKCEhQXv37tWePXu0adMmnT59Wrm5uRo2bJimTZtmpS0Bbq9JkybatGmTJkyYoJSUFB0/flyPPfaYIiMj9fzzz0siMF1RmIvK58YLWktKSpSXl6fNmzfr0KFDiouL08GDB5WRkWEs4+Pjox49eig4OFhRUVFyc3OTv7//bdfPZw8AqNrq16+vfv36af/+/XrjjTe0dOlS1a9fX7GxscrJyZGnp6dGjhypXr16WbtUAuwAAAAAAAAAAODOWQK1Fpzcth7monKqVauWUlJStHDhQjVo0EDNmzdX79695e/vr65du6pevXqyt7cv85qCggJdvnxZ6enp8vT0lIeHh5ycnIyLFICqznKBTWhoqDZs2KAtW7Zo+/btatWqlZKTk7Vy5UpNmjRJly9f1ujRo295JwL8fsxF1WVra6vi4mLZ2dnJw8PDCK5fuXJFzs7O2rJli1JSUhQbG6v9+/fryJEjxmtr1aqlyMhItW7dWqGhoTeFIIHKpHHjxpo6daocHR115swZeXp6GmMEpisWc1G5mEwmlZaW6ocfftDVq1c1e/ZspaenKz093VimUaNGio6OVseOHfXoo4/K19dX3t7exnhpaakkGceTG9cPAKjaLMfn9957T3l5eZo0aZI2b95sjHfq1En9+/fX0KFD5ezsbMVKrzGZue8HAAAAAAAAAAAA8LtdHwhcvny5HnnkEdnb26tWrVpllisqKjJC7Fu2bNG8efO0dOlSnTp1Sr6+vgoLC9PXX38tDw8PQuy4r6Smpqpjx446efKkGjZsqNq1aysjI0OXL19WQUGBRo4cqalTp1q7zAcCc1E13CogWlBQoM2bN+v06dNasGCBTp06pd27dxvjfn5+8vHx0WOPPaYWLVooNDRUvr6+FVk68LtYfqe6/meACy+sg7moXE6ePFlmf968eXN5enoqJiZGAQEBatOmzU2fPSQpLy9PJSUlqlGjhjGPXIQAAPen6/+OtHz5ciUnJxud15966inVrFnzpouYrIUAOwAAAAAAAAAAAHCX/Fbg/PrAz9KlS/XSSy/pxIkTqlatmvz8/HTlyhUdP35cwcHBiouLU+3atQkJ4b6SnJysJ598UikpKcrPz5ckRUREqHv37vrggw+sXN2DhbmofCz7+xv3+1evXtWuXbt09OhRLVy4UKdOndLPP/9sjPv6+srLy0v9+/eXv7+/OnTooBo1asjR0bHM+rkoCgCqvqSkJG3dulXe3t5q3769bG1ty+zvLceQ4uJipaamavr06dqwYYMyMzMVGRmpqKgoDR48WBIhdgC4X1WV3/sJsAMAAAAAAAAAAAAVbO3atRo4cKDOnTunvn37avDgwerWrZuKior00ksv6X/+5380bNgwTZ06tdJ0xgLulqysLO3bt08nT56Uh4eHWrduLR8fH2uX9UBiLiqn8+fPKzU1Vbt27dLGjRt16NAhJSYmGuONGjVSvXr11KdPH/n6+io6Olp2dnZydnYusx6CiQDwYLixU35hYaEWLFigb7/9Vps3b5Ykubi46PLly5KkSZMm6fXXX7dmyQAAEGAHAAAAAAAAAAAAKtLp06c1fPhwrVq1Sk8//bQ++OADNW3a1BjPzs5WUFCQ/Pz8tHXr1irRNQsA8PuVlpbq5Zdf1qxZs1RUVKSrV69KkurUqaPQ0FB17txZQUFB6tChg+zs7OTq6nrbdRFeB4AHT2lpqRYuXKgPP/xQBw8eVKtWrfThhx8qMDBQhw4d0rBhw3Tx4kUtWbJEPXv2tHa5AIAHGO0aAAAAAAAAAAAAgAqUkZGhLVu2yM3NTc8++6wCAgIk/XqL55ycHJnNZmVkZCg3N/e2AUUAwP3DxsZGI0aM0Pz58xUREaGwsDB16NBBrVq1kpubmxwcHMosbzabVVBQoNjYWJ05c0aurq7y8/NTeHi4bGxsCLEDwAPE0oU9Oztb06dP18GDB9WzZ099+OGHatGihcxmswIDA/W3v/1No0eP1o4dOwiwAwCsigA7AAAAAAAAAAAAUAEsoZK4uDjl5uaqdevWioqKkiQVFRXJ3t5ekrRixQqdO3dObdu2lYODg/E6AMD97+GHH9bx48dVrVq1Ms+XlJRIkoqLi2VnZ6fi4mL9+9//1ty5c7VixQpjuWrVqumjjz7S2LFjZWNjwzEEAB4Qln39jBkztGrVKrm5uem9995TixYtJF37vOHg4CA/Pz9J1y6qBQDAmgiwAwAAAAAAAAAAABXAEirx9vaWdC2EeOLECTVo0MAIr8+dO1fvvPOOJGn48OFydna2TrEAAKu5Prxu6aJua2srSUZ4/csvv9QXX3yhjIwM+fr66umnn1ZhYaGmTp2qcePGycnJSaNHjya8DgAPmOTkZEnSyJEj1bp1a5nNZpnNZjk4OCgvL09z586VJLm7u1uzTAAAxL2iAAAAAAAAAAAAgApUv359ubi4KCEhQYsWLVJiYqLOnz+vr776SqNGjVJubq6ee+45Pf3009YuFQBgZTY2v8Y6zGazJGnJkiX69ttvlZWVpeHDh2vx4sWaOHGipkyZomXLlsne3l7//Oc/debMGWuVDQCwkosXL0qSfvnlFxUWFspsNsvGxkZXrlzR0qVLtW7dOnl6emrAgAGSfj22AABQ0QiwAwAAAAAAAAAAABWoU6dOevHFFyVJr776qjp37qyIiAi9/PLLunTpkgYPHqwXXnihTAdeAAAs3dQXLVqko0ePKioqSq+//rpatmyp0tJSFRYWqkuXLmrTpo0OHDhghBgBAA+OsLAwSdc6sR86dEiSdOXKFc2cOVOffvqp0tPT1b17d/n7+0sSd+oAAFiNycxlVAAAAAAAAAAAAECFKC0tNbrpfvDBB5oxY4ZOnjwpR0dH2dra6v3339eAAQPUoEEDK1cKAKiMdu7cqYiICEnSunXr1LlzZ0m/Hl8uXLigiIgIpaWl6cCBA2rSpIk1ywUAVLC0tDR17txZ6enpatKkiTw9PZWVlaXU1FQVFhaqR48e+vzzzxUYGGjtUgEADzgC7AAAAAAAAAAAAEAFKikpka2trSTp8OHDOn36tKpXr64aNWooODjYytUBACqzDRs2qGvXrvLx8dHevXvl4eGh4uJi2dnZKTc3V3/96181ceJEtWzZUrt27TKONwCAB0dSUpJiYmKUmpqqoqIiSZK/v7+6d++usWPHKiAgwMoVAgAg2Vm7AAAAAAAAAAAAAOBBYmtra3TKDQoKUlBQkLVLAgBUEXXq1JGHh4euXr2qAwcOqEOHDrKzs9Ply5c1c+ZMzZ49W7Vq1dKYMWNka2srs9ksk8lk7bIBABWoadOmWr9+vbZs2aKMjAzZ2dkpJiZGtWvXVs2aNa1dHgAAkujADgAAAAAAAAAAAAAAUCVkZ2crOjpaO3bsUPv27dWrVy8FBQXpX//6l+Lj43Xx4kUNGjRIH3zwgXx8fKxdLgAAAACUiwA7AAAAAAAAAAAAAABAFZGcnKzOnTsrMzNTkuTo6KiCggJ5eXkpJiZGr732mgICAqxcJQDA2rgLBwCgMiPADgAAAAAAAAAAAAAAUIUcO3ZMH330kfbv36/CwkJ5enpq7NixCgsLk5eXl7XLAwAAAIDbIsAOAAAAAAAAAAAAAABQxRQWFqqoqEiFhYWqVauWtcsBAAAAgDtGgB0AAAAAAAAAAAAAAKCKM5vNMplM1i4DAAAAAH6TjbULAAAAAAAAAAAAAAAAwO9DeB0AAABAVUGAHQAAAAAAAAAAAAAAAAAAAABQIQiwAwAAAAAAAAAAAAAAAAAAAAAqBAF2AAAAAAAAAAAAAAAAAAAAAECFIMAOAAAAAAAAAAAAAAAAAAAAAKgQBNgBAAAAAAAAAAAAAAAAAAAAABWCADsAAAAAAAAAAAAAAAAAAAAAoEIQYAcAAAAAAAAAAAAAAAAAAAAAVAgC7AAAAAAAAAAAAAAAAAAAAACACkGAHQAAAAAAAAAAAAAAAAAAAABQIQiwAwAAAAAAAAAAAAAAAAAAAAAqBAF2AAAAAAAAAAAAAAAAAAAAAECFsLN2AQAAAAAAAACAilVcXKwlS5Zo9erVio+PV1ZWli5cuKBq1aqpTp06at68udq2bav+/fvLz8/P2uUCAAAAAAAAAID7iMlsNputXQQAAAAAAAAAoGIsXbpU48aN07Fjx+5o+ejoaE2cOFEhISH3uDIAAAAAAAAAAPAgoAM7AAAAAAAAADwgPv74Y73//vuy9DXp1KmTnnjiCYWGhqp27drKz89XZmamNm3apOXLlystLU0rVqyQj4+Pvv32WytXDwAAAAAAAAAA7gd0YAcAAAAAAACAB8D06dM1YsQISVK9evU0e/ZsderU6ZbLl5SUaPbs2frzn/+sxx9/nAA7AAAAAAAAAAC4KwiwAwAAAAAAAMB97sSJE2rSpImuXr2qmjVras+ePQoICLij1168eFGbN29Wz54973GVAAAAAAAAAADgQWBj7QIAAAAAAAAAAPfWlClTdPXqVUnSJ598csfhdUlyc3O7KbyelpYmk8kkk8mkmTNnSpIWLlyoqKgo1a9fX3Z2duV2d1+2bJn69+8vHx8fOTo6qnbt2oqMjNTEiROVm5t7yxrGjx9vfL3b2bhxo7Hcxo0bbxrv1KmTTCaTUVtSUpKee+45+fn5ycnJSV5eXnrqqae0ffv2236dkpISzZw5U927d5enp6ccHBzk6uqqwMBAde3aVX/961916NCh264DAAAAAAAAAIAHlZ21CwAAAAAAAAAA3Dtms1mzZs2SJLm4uGjYsGF3ff2DBw82vkZ5rl69qmeeeUaLFi0q83x2dra2b9+u7du368svv9SKFSvUsmXLu1rfrcTGxurJJ59UXl6e8dzp06c1b948LViwQP/1X/+lV1999abX5ebmKioqSps3by7zfFFRkXJycnTs2DGtX79ee/fu1fz58+/1ZgAAAAAAAAAAUOUQYAcAAAAAAACA+9jBgwd1/vx5SVL79u1VvXr1u7r+//7v/9b+/fvVvn17jR49Wk2aNNHFixeVlpZmLDNkyBAjvN6iRQuNGzdOQUFBys7O1uzZszVz5kz98ssv6tq1q/bv3y9vb++7WuONfvnlFz3zzDOys7PTX//6V6Mj+4YNG/Tpp58qJydHY8eOVaNGjdS7d+8yrx0/frwRXn/iiSc0cOBA+fr6ysnJSWfOnNG+ffu0fPny3+wWDwAAAAAAAADAg4oAOwAAAAAAAADcx/bv3288btWq1T1Z/+DBgzVz5sxyQ9srVqzQ3LlzJUldu3bVypUr5eDgYIw/9thjioyM1HPPPafs7Gy99tprmjNnzl2v83pHjx6Vq6ur4uPjFRQUZDwfGRmpmJgYtW3bVjk5ORozZoyio6Nlb29vLGPZlv79+2vevHk3rbtHjx565513lJ2dfU+3AQAAAAAAAACAqsrG2gUAAAAAAAAAAO6dc+fOGY/r1Klzy+VKS0t18ODBW/4rKioq93Vubm766quvbtlx/Ouvv5Yk2dvba8aMGWXC6xYjR45Ut27dJEkLFy5UZmbmHW/ff+q9994rE163aNasmd59911J0qlTp7RkyZIy46dPn5Z0rZv97bi7u9+lSgEAAAAAAAAAuL8QYAcAAAAAAACA+9jly5eNx9WrV7/lcjk5OWrevPkt/506darc1/Xs2VMuLi7ljhUXFysuLk7StU7rDRo0uOXXHzlypPGajRs3/tZm/S4mk0lDhgy55fiwYcOMQP5PP/1UZszLy0uSNGfOHOXn59+7IgEAAAAAAAAAuE8RYAcAAAAAAACA+9j14fK8vLy7vv7Q0NBbjh0/ftwIeYeHh992PdePHzx48O4Udwt+fn7y8PC45XidOnXUqFEjSdKBAwfKjFmC79u2bZOfn5/GjBmjRYsW6ezZs/esXgAAAAAAAAAA7icE2AEAAAAAAADgPla7dm3j8e1C1m5ubjKbzWX+3a5LuUWtWrVuOZadnW08rlu37m3X4+npWe7r7oXfqkWS6tWrV24t7733noYPHy6TyaQzZ87o66+/Vt++fVW3bl2FhITogw8+UFZW1j2pGwAAAAAAAACA+wEBdgAAAAAAAAC4j7Vo0cJ4vG/fvru+fltb2ztazmQy3fWv/Z/6PbXY29tr2rRpOnjwoP7yl7+obdu2cnBwkCQlJibqww8/VEBAgJYsWXK3ygUAAAAAAAAA4L5CgB0AAAAAAAAA7mMhISFGF/bNmzcrPz+/wr62u7u78fi3upKfPn263NdJko3Nr3/KLi0tveU68vLy7qiuO+mQblnmxlosgoOD9dFHH2nr1q26dOmS1q5dq2HDhsnW1la5ubkaMGCAMjMz76geAAAAAAAAAAAeJATYAQAAAAAAAOA+ZjKZ9Oyzz0qScnJy9P3331fY1/b391e1atUkSTt27Ljtsjt37jQeh4SElBlzcXExHl+4cOGW60hOTr6julJTU3X+/Plbjp89e1ZpaWnl1lIeJycndevWTdOnT9fkyZMlSVeuXNHy5cvvqB4AAAAAAAAAAB4kBNgBAAAAAAAA4D732muvycnJSZL0zjvvKDU1tUK+rp2dnTp27ChJWrt2rU6ePHnLZb/77jvjNZ06dSoz5ufnZzzevXv3Ldcxe/bsO6rLbDbrhx9+uOX4zJkzZTabJUndunW7o3VadO3a1Xh87ty5/9NrAQAAAAAAAAB4EBBgBwAAAAAAAID7nK+vr7744gtJ0qVLl9SuXTtt2bLltq8xm826ePHi7/7aL774oiSpsLBQI0aMUFFR0U3LTJ8+XWvWrJEk9e3bV15eXmXG27ZtKzs7O0nSZ599ZoTLrzd58uQyXdx/y0cffaSkpKSbnj98+LA++eQTSZKXl5diYmKMsezsbC1btqzcr29h2Q6pbPAeAAAAAAAAAABcY2ftAgAAAAAAAAAA997IkSN16tQpTZgwQb/88ovat2+vLl26qGfPnmrevLnc3d1VUlKi06dPa+/evZo7d64SExMlSba2tnJwcPiPvm50dLSefPJJzZs3T2vWrFFERIRee+01PfTQQ7pw4YJmz56t6dOnS5Lc3d01ZcqUm9ZRt25dPfnkk/r3v/+t1atXq1evXnrxxRdVr149ZWRkaNasWVqwYIHatm2rbdu2/WZNAQEBOnv2rCIiIvTWW28ZHd83btyoiRMn6tKlS5KkL7/8ssx25+TkqFevXmrUqJH69u2r8PBwNWzYUHZ2dsrMzNSyZcuMTvLe3t564okn/qPvGQAAAAAAAAAA9zOT+XatYgAAAAAAAAAA95VFixbp9ddf1/Hjx39zWZPJpO7du2vy5MkKCQkxnk9LSzO6i8+YMUNDhw697XquXr2qZ555RosWLbrlMvXr19eKFSvUsmXLcsezsrLUvn17HT16tNzxp59+Wn/605/UrVs3SdKGDRuMYLpFp06dFBcXp44dO+qNN97QU089pfz8/JvWZWNjo0mTJmncuHFlnr9+u2/Hy8tLy5YtU1hY2G8uCwAAAAAAAADAg4YO7AAAAAAAAADwAOnTp4969uypRYsWafXq1YqPj9eZM2d08eJFVatWTbVr11bz5s0VGRmpP/7xj3cU2P4tTk5OWrhwoZYtW6aZM2dq+/btOnfunKpXr64mTZqod+/eGjNmjGrUqHHLddSrV087duzQp59+qoULFyojI0PVq1dXSEiInnvuOQ0cOFAbN26845qio6O1e/duTZ48WevXr1dmZqbc3NzUvn17jRs3TpGRkTe9pmHDhtq5c6dWrlypbdu2KT09XVlZWcrNzZWbm5uCg4PVs2dPPffcc6pZs+Z/8q0CAAAAAAAAAOC+Rwd2AAAAAAAAAMAD4foO7P+XsDsAAAAAAAAAALh7bKxdAAAAAAAAAAAAAAAAAAAAAADgwUCAHQAAAAAAAAAAAAAAAAAAAABQIQiwAwAAAAAAAAAAAAAAAAAAAAAqBAF2AAAAAAAAAAAAAAAAAAAAAECFIMAOAAAAAAAAAAAAAAAAAAAAAKgQJrPZbLZ2EQAAAAAAAAAAAAAAAAAAAACA+x8d2AEAAAAAAAAAAAAAAAAAAAAAFYIAOwAAAAAAAAAAAAAAAAAAAACgQhBgBwAAAAAAAAAAAAAAAAAAAABUCALsAAAAAAAAAAAAAAAAAAAAAIAKQYAdAAAAAAAAAAAAAAAAAAAAAFAhCLADAAAAAAAAAAAAAAAAAAAAACoEAXYAAAAAAAAAAAAAAAAAAAAAQIUgwA4AAAAAAAAAAAAAAAAAAAAAqBD/D3EuFFgLYVyAAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAC7AAAAPgCAYAAACx8HFwAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeXieZZk3/m+2ZmlLWwhgSylBS0kQUVpBSqldVHQGECggKlHgVXF/UeoGzLAoijiConO44AJiR2AsBUZQZFSKpS+oVFzQhIJDKJUCpnSjeZouye8Pfs20dEuaNGmaz+c4cuTOfZ/XeZ1PyTF1nn5zpai9vb09AAAAAAAAAAAAAACwixX39QAAAAAAAAAAAAAAAAwMAuwAAAAAAAAAAAAAAPQKAXYAAAAAAAAAAAAAAHqFADsAAAAAAAAAAAAAAL1CgB0AAAAAAAAAAAAAgF4hwA4AAAAAAAAAAAAAQK8QYAcAAAAAAAAAAAAAoFcIsAMAAAAAAAAAAAAA0CsE2AEAAAAAAAAAAAAA6BUC7AAAAAAAAAAAAAAA9IrSvh4AAAAAAAAAAAAAAOh77e3tWbduXdra2vp6FHZjxcXFKSsrS1FR0U6tF2AHAAAAAAAAAAAAgAFsw4YNaW5uzqpVq7Ju3bq+Hod+oKysLEOHDk11dXVKSkq6tLaovb29fRfNBQAAAAAASZJzzjknP/jBD5IkTzzxRGpqana619y5czNt2rQkyaWXXprLLrus2/NtPCVmypQpmTt3brf7AQAAAAD0Fxs2bMhTTz2V1tbWDBs2LEOGDElJSclOn67Nnq29vT0bNmzICy+8kBUrVqS8vDwHHnhgl0LsTmAHAAAAABhAxo4dm7/97W9Jkj//+c85/PDDt1v/xje+Mb/85S+TJKNHj85TTz213fqWlpaMGDEia9euTWlpaZYtW5YhQ4b0zPBd8NWvfjXLly/P8OHD87GPfazX9wcAAAAA6C+am5vT2tqaMWPGpLKysq/HoZ8YMmRIhg0blkWLFqW5uTn7779/p9cW78K5AAAAAADYzWw8uTzJDk8aX7t2bf7f//t/HV8vXrw4jz/++HbXzJ8/P2vXrk2SHHXUUX0SXk9eDLBffvnl+epXv9on+wMAAAAA9Aft7e1ZtWpVhg0bJrxOl1VWVmavvfbKqlWr0t7e3ul1AuwAAAAAAAPIpgH2e++9d7u1v/nNb1IoFDa7t6M1m4biN93rhhtuSHt7e9rb21NTU9P5gQEAAAAA2GXWrVuXdevW9dlhJPR/Q4cO7fg+6iwBdgAAAACAAWTq1Kkd17/+9a+3eyLKxjD60KFDc9xxx212b0drks0D7AAAAAAA7H7a2tqSJCUlJX08Cf3Vxu+djd9LnSHADgAAAAAwgIwaNSrjxo1LkjQ3N+fPf/7zNms3htGPO+64vOENb9js3ta0tLTkd7/7XZJk0KBBmTRpUs8MDQAAAADALlVUVNTXI9BP7cz3jgA7AAAAAMAAs+nJ6NsKpK9duzYPPPBAkhdPbZ8yZUqS5Omnn87ChQu3umb+/PkdvyL0da97XSorKzuenXPOOSkqKkpRUVGampq2O9/Pf/7znHrqqRk5cmQqKioyZsyYzJgxI/fcc88OX1tNTU2Kiory5JNPJkmefPLJjn03/bjsssu222fNmjX52te+lokTJ2afffZJZWVlxo4dmw9+8IN54okndjgHAAAAAACwdQLsAAAAAAADzKYB9nvvvXerNb/5zW9SKBSSvBhgP+aYYzJo0KDtrtk0DL/pHp3V1taW973vfXnLW96S22+/Pc8880xaW1vz1FNP5bbbbsub3/zmfOxjH+ty36564okncvTRR+f888/Pgw8+mOeffz5r1qzJ3/72t3zrW9/Kq171qu2eRA8AAAAAAGxbaV8PAAAAAABA75o6dWrH9a9//eu0t7dv8Ss+Nwa0hw4dmvHjx6e0tDRHH3107r///sydOzfvf//7t+jb3QD7xz/+8Xz3u99NkpSUlOSss87K1KlTU15enj/84Q/53ve+l2uvvTZPPfXUNntcd911aWlpyXnnnZd//OMf2XfffXPddddtUVdbW7vV9StXrswJJ5yQhoaGHH/88TnppJOy//77Z8mSJfnBD36Q3//+91m9enXe/va3p6GhISNGjOjy6wQAAAAAgIFMgB0AAAAAYIDZf//9U1dXl4aGhjz//PP54x//mNe85jWb1WwMo0+aNCmlpS++lfz617++I8D+Ui0tLfnd736XJKmoqMjEiRO7NNP8+fPz9a9/PUkyePDg3H333TnuuOM6nr/zne/Mxz/+8UyfPj1z5szZZp/jjz8+STpOaq+qqsopp5zS6TkefvjhlJaW5sc//nFOP/30zZ596EMfykknnZS77747zz77bK6//vpccMEFne4NAAAAANCf/X15IctWr+3rMbptxOBBOWB4ZV+P0aNqamry5JNP5vrrr88555zT6Wd9RYAdAAAAAGAAmjZtWhoaGpK8GFbfNMC+du3aPPDAA0k2P619ypQp+cIXvpBnnnkmjY2Nm51iPn/+/Kxbty5JMnHixJSXl3dpnquvvjrt7e1Jkquuumqz8PpGI0eOzC233JLx48dnw4YNXerfFRdddNEW4fUkKS0tzVe+8pXcfffdSZKf/exnAuwAAAAAwIDw9+WFTP/y3LSub+vrUbqtvLQ4v/rE1F0SYm9vb8/s2bPzox/9KL///e/z3HPPpaSkJPvvv39GjhyZo48+OpMnT84b3vCG7LXXXj2+f1dddtllSZJzzjknNTU1vbZvca/tBAAAAADAbmPatGkd1/fee+9mzx588MEUCoUkL4bWNzr22GM7TmN/6ZpNv9409N4Zra2tueuuu5Ikw4YNy3vf+95t1h5xxBEdp6zvCsXFxTn//PO3+by2tjajR49OkjzyyCO7bA4AAAAAgN3JstVr94jwepK0rm/bJSfJL1++PNOmTcvb3va23H777Vm0aFHWr1+f8vLyLFq0KPPnz89XvvKVzJgxY7u/abSnveIVr8ihhx6aYcOGbfHs8ssvz+WXX56mpqZemycRYAcAAAAAGJCmTJmSoqKiJMm8efPS1va///Awd+7cJMmQIUPy2te+tuP+kCFDMmHChM1qXrom2Twc3xl//OMfs3bti/9YMGnSpB2e3v6GN7yhS/274tBDD83ee++93ZqNAfZly5btsjkAAAAAAOhf3v3ud+e+++5LSUlJZs6cmYULF6a1tTVLly5NoVDIH//4x1x11VV59atf3atz/fKXv0xjY2NOPfXUXt13ewTYAQAAAAAGoH333TevfOUrk7wYxP7DH/7Q8WxjGH3SpEkdJ65vtPFE9k0D66tXr85DDz2UJKmsrMzrXve6Ls3y9NNPd1yPHTt2h/WdqdlZ1dXVO6zZGLBvbW3dZXMAAAAAANB/PPbYY/nJT36SJLniiivy5S9/OYccckiKi1+MapeWluaII47Ipz71qfzhD3/ImWee2Zfj9jkBdgAAAACAAWrTk9I3BtJbW1vz4IMPJvnfsPqmNt577rnn8te//jVJMn/+/Kxbty7Ji6H3QYMGdWmOF154oeO6qqpqh/WDBw/uUv+u2PiPCQAAAAAA0FmbHhJz8skn77C+srJys69rampSVFSUG264IatWrcqFF16YQw89NJWVlamurs4pp5yS3/zmNzs126a9NzrnnHM6fktr8uK/FxQVFXV81NTU7NReneWdeAAAAACAAWrq1Kkd1/fee2+S5De/+U0KhcIWzzc67rjjUlJSstmaTU9j3zQU31lDhgzpuG5padlh/erVq7u8BwAAAAAA9IbFixfv9Nply5blqKOOyhe/+MU0NTVl0KBBWbp0ae64444ce+yx+f73v98jMw4bNiz7779/x9cjRozI/vvv3/Gx77779sg+2yLADgAAAAAwQE2ZMqXjhJV58+Zlw4YNHWH0wYMH56ijjtpizV577ZVXv/rVSXouwH7AAQd0XD/++OM7rO9MDQAAAAAA9Jajjjqq4/32mTNnZuHChTvV5/LLL89zzz2X//zP/8zq1auzYsWK/PWvf82UKVPS1taW97///fn973/f7XmvvfbaPPPMMx1fz5kzJ88880zHx+9+97tu77E9AuwAAAAAAAPUPvvskyOOOCJJsmLFijz88MMdYfRjjz02paWlW103ZcqUJMl9992XF154IQ899FCSF09S31rofUeOOOKIlJeXJ0nmz5+f1tbW7db/8pe/3GHP4uIX3/5ub2/v8jwAAAAAANAVNTU1ee9735sk+fOf/5za2tqMHz8+H/7wh/P9738/jzzySKfer16xYkV+/OMf54wzzuh4j76uri4/+9nPcsghh2T9+vX513/91136WnqDADsAAAAAwAC26Ynpd999dx588MEkydSpU7e5ZmOAvbm5Od/+9rezbt26JMlxxx23zdD79pSXl+ef//mfk7z45vz2fgXqI488knvuuWeHPYcMGZIkWb16dZfnAQAAAACArvrGN76Rf/3Xf83gwYPT3t6ehx9+ON/4xjfynve8J6961avyspe9LBdccEGeffbZbfaYNGlS3vCGN2xxv7KyMp/85CeTvPhe/ooVK3bZ6+gNAuwAAAAAAAPYpkH1r3/96ykUClvcf6nJkyd3/CrUL33pSx33Nw3Dd9XMmTM7en7605/OAw88sEXNs88+mzPPPDMbNmzYYb+DDz44SbJ06dIsWrRop+cCAAAAAIDOKC0tzWc/+9n8/e9/zw9/+MO8973vzatf/eoMGjQoSfLcc8/lK1/5Sg4//PD89re/3WqP6dOnb7P/xmdtbW35/e9/3/MvoBcJsAMAAAAADGCvf/3rU1z84lvFzz33XJKkqqoqRx111DbX7L333nnVq1612ZqkewH2SZMm5aMf/WiSZNWqVXn961+fc889NzfccENuuummfPrTn85hhx2Wv/71r5kxY8YO+73xjW/suD711FPzne98Jz/96U9z99135+67787jjz++07MCAAAAAMC2DBs2LPX19fnOd76TP/zhD1mxYkX++7//OyeddFKSF3+76WmnnZY1a9ZssfaAAw7YZt9Nn2363nx/JMAOAAAAADCAjRgxIq95zWs2u3fsscemrKxsu+umTJmy2dd77bVXxo8f361ZvvKVr+Q973lPkmT9+vW54YYbcu655+ad73xnvvSlL+X555/P+eef3xF0357/83/+T2pra5Mkv//973PeeeflhBNOyD/90z/ln/7pnzJr1qxuzQoAAAAAAJ1RUVGRN77xjfmv//qvnH322UmSxYsX5+677+7jyfqOADsAAAAAwAD30pPTp06dusM1Lw2wT548OSUlJd2ao7i4ON/97nfzs5/9LG9961uz3377ZdCgQRk9enROPfXU3H333fnqV7/aqV6DBw/Ogw8+mEsuuSSvfe1rM2zYsI6T5gEAAAAAoC+cd955HdePPvroFs///ve/b3Ptps/222+/nh2sl5X29QAAAAAAAPStL3/5y/nyl7/cpTWnnXZa2tvbO11/ww035IYbbuhU7Vve8pa85S1v2ebzqVOndmrvYcOG5fLLL8/ll1++w9quvJa5c+d2uhYAAAAAADYaMmRIx3V5efkWz++9995trt34rLi4OEceeWSPzFNUVJT29vYuvUfeExw3AwAAAAAAAAAAAACwk5544oksXLhwh3U/+MEPOq7Hjx+/xfP7779/q4eorFmzJldffXWS5M1vfnOGDx++07Nuaq+99kqSLF++vEf6dZYAOwAAAAAAAAAAAADATvrLX/6Surq6nHDCCbnxxhvT1NTU8WzdunV5+OGHc+655+aaa65Jkhx99NE57rjjtugzbNiwnHbaaZk9e3bWr1+fJGlsbMwJJ5yQxsbGlJSU5LOf/WyPzX344YcnSf7jP/4jLS0tPdZ3R0p7bScAAAAAAAAAAAAAgD1MWVlZ2tra8tOf/jQ//elPkySDBg3KkCFDsmzZsrS3t3fUjh8/PrfddluKi7c8h/zSSy/Nt7/97ZxxxhkpLy9PRUVFVqxYkSQpKirKN7/5zbz2ta/tsbk/8IEPZP78+bn11lvzX//1X9lvv/1SWlqa0aNH5/777++xfV5KgB0AAAAAAAAAAAAAYCe9+c1vzmOPPZaf/vSnuf/++/PII49k8eLFWb58eaqqqjJq1KgceeSRmTFjRs4444ythteTZMSIEfntb3+bK6+8Mrfeemueeuqp7L333pk0aVIuvPDCTJw4sUfnrq+vT5J8+9vfzp///OcsWbIkbW1tPbrH1hS1bxrpBwAAAAAAAAAAAAAGhDVr1uSJJ57IwQcfnIqKim3W/X15IdO/PDet63d9uHlXKy8tzq8+MTUHDK/s61E61NTU5Mknn8z111+fc845p6/H6ZLOfg9tygnsu4G2trY8/fTTGTp0aIqKivp6HAAAAAAAAAAAAAB2U+3t7Vm1alVGjRq1zZO8e9oBwyvzq09MzbLVa3tlv11pxOBBu1V4fSASYN8NPP300znwwAP7egwAAAAAAAAAAAAA+omnnnoqo0eP7rX9DhheKfhNjxBg3w0MHTo0yYv/h2Svvfbq42noSbW1tVmyZElGjhyZxsbGvh4HAAAA9kj+/28AOsvfGQB0hr8vAOgsf2cA0FdWrlyZAw88sCN/Cv2NAPtuoKioKEmy1157CbDvYTb+ao7i4mL/bQEAAGAX8f9/A9BZ/s4AoDP8fQFAZ/k7A4C+tjF/Cv2NADsAAAAAAAAAAAAAQB9pamrq6xF6VXFfDwAAAAAAAAAAAAAAwMAgwA4AAAAAAAAAAAAAQK8QYAcAAAAAAAAAAAAAoFcIsAMAAAAAAAAAAAAA0CsE2AEAAAAAAAAAAAAA6BUC7AAAAAAAAAAAAAAA9AoBdgAAAAAAAAAAAAAAeoUAOwAAAAAAAAAAAAAAvUKAHQAAAAAAAAAAAACAXiHADgAAAAAAAAAAAABArxBgBwAAAAAAAAAAAACgVwiwAwAAAAAAAAAAAADQK0r7egAAAAAAAAAAAAAAYDe3/KmkZWlfT9F9Vfskww/s6ykGNAF2AAAAAAAAAAAAAGDblj+V/PuEZH1rX0/SfaXlyUcW7NIQ+4YNG3LrrbfmzjvvzIMPPpjnnnsuLS0tGT58eMaNG5fJkyfnrLPOyuGHH77NHvfdd19+9KMf5de//nWWLFmSNWvWZN99982rX/3qnHTSSTn77LNTUVGxzfWXXXZZLr/88i3uDxo0KPvss09e9apX5YwzzsjZZ5+dsrKyHnndnSXADgAAAAAAAAAAAABsW8vSPSO8nrz4OlqW7rIA+4MPPpizzz47Cxcu7LhXVlaWoUOHZunSpZk/f37mz5+fL37xi5kxY0ZuuummDBo0qKN26dKlefe7352f/vSnHffKy8tTUVGRxYsXZ/Hixbnrrrvy+c9/PjfccEOmT5++w5n233//jutVq1ZlyZIlWbJkSe655558+9vfzj333JMRI0b00J/AjhX32k4AAAAAAAAAAAAAAHuon/zkJ5k6dWoWLlyYffbZJ1deeWUWLlyYtWvXZunSpVm7dm1+97vf5TOf+Uz22muvzJkzJy0tLR3rn3322RxzzDH56U9/mpKSknz0ox/NX/7yl6xZsybLly/PsmXLcv311+fAAw/MU089lbe85S25/fbbdzjXM8880/GxevXqPPnkk3nf+96XJHnooYfyf//v/91VfyRbJcAOAAAAAAAAAAAAANANjz32WOrr69Pa2prDDjssf/jDH/KZz3wmhxxySEdNSUlJXvva1+bKK6/ME088kZNPPrnjWXt7e975znfm8ccfT1lZWW677bZ87Wtfy2GHHdZRM3z48Jxzzjl5+OGH8+pXvzrr1q3L2Wefnb/97W9dmnXMmDG57rrrOk5v/8///M+88MIL3fwT6DwBdgAAAAAAAAAAAACAbviXf/mXrFy5MhUVFbntttsyevTo7dbvvffeuf322zNs2LAkyZ133plf/epXSZKLL744J5100jbX7rPPPvnxj3+cioqKrFy5MpdeeulOzfyWt7wlSbJ27do89thjO9VjZwiwAwAAAAAAAAAAAADspGeffTazZ89Okpx11lkZN25cp9cWFRUlSb7xjW8kSYYOHZqZM2fucN0hhxySd7zjHUmSW265Jc3NzV0dO+3t7R3XGzZs6PL6nSXADgAAAAAAAAAAAACwk+699960tbUlSU499dQur1+/fn3mzZuXJDn++OMzZMiQTq2bMWNGx/pf//rXXd735z//eZIXQ/QHH3xwl9fvLAF2AAAAAAAAAAAAAICd9Je//KXj+sgjj+zy+qampqxevbrL61/zmtd0XP/pT3/q9LpFixblvPPOy69+9askyUknnZR99tmn0+u7q7TXdgIAAAAAAAAAAAAA2MMsXbq043rvvffu1vquBMmrq6u32uOlXvayl3Vcr1q1Ki0tLR1f19bW5hvf+Ean9+wJAuwAAAAAAAAAAAAAAP1Ya2vrNp89++yzW73/7ne/O9/+9rdTUVGxq8baquJe3Q0AAAAAAAAAAAAAYA+y6anpzz//fLfWb+8k9Zdqbm7uuB4xYsQ269rb29Pe3p62trY8/fTT+da3vpXhw4fnxhtvzL//+793ed7ucgI7AAAAAF3W0tKSxsbGze4VCoU0NTWlpqYmlZWVmz2rra1NVVVVb44IAAAAAAAAveKVr3xlx/XDDz+cUaNGdWn9QQcdlMGDB2f16tX5/e9/3+l1Dz/8cMf1oYceusP6oqKijBw5Mu9///tz6KGHZvr06fnUpz6V8ePHZ/r06V2auTsE2AEAAADossbGxkyYMKHT9QsWLMj48eN34UQAAAAAAADQN6ZNm5bi4uK0tbXltttuywknnNCl9WVlZZk8eXLuvvvu3HPPPVm1alWGDh26w3Vz5szpuJ46dWqX9pw6dWre9a535cYbb8xHP/rR/OlPf0pJSUmXeuys4l7ZBQAAAIA9Sm1tbRYsWLDZx6xZs5Iks2bN2uJZbW1tH08MAAAAAAAAu8b++++f0047LUnyox/9KAsXLuz02vb29iTJhz70oSTJCy+8kGuuuWaH6x577LHcfPPNSZLjjjsuL3/5y7s6di655JKUlJTkr3/9a37wgx90ef3OEmAHAAAAoMuqqqoyfvz4zT7q6uqSJHV1dVs8q6qq6uOJAQAAAAAAYNe54oorMmTIkBQKhcyYMSN///vft1u/bNmynHbaaVmxYkWS5MQTT+w4Rf3zn/987rzzzm2uXbp0ac4444ysWbMmRUVFueKKK3Zq5le84hU588wzkySf+9znsm7dup3q01UC7AAAAAAAAAAAAAAA3TBu3Lj88Ic/zKBBg/KXv/wlr3nNa3LVVVfl8ccf76jZsGFDHn744VxyySV5+ctfnjlz5nQ8Kyoqyk033ZSXv/zlWbduXU499dScf/75aWho6KhZsWJFfvCDH2T8+PH54x//mOTFU9SnTJmy03NfeOGFKSoqSlNTU773ve/tdJ+uEGAHAAAAAAAAAAAAAOimU045Jb/61a8yduzYNDc35zOf+UwOOeSQlJeXZ5999smgQYMyfvz4fO5zn8uKFSvyjne8I4MHD+5Y/7KXvSwPPvhgjj/++Kxfvz5f+9rXcthhh6WysjIjRozI8OHDc84552TRokUpKyvLl770pVx22WXdmvnwww/PW9/61iQvnvze2trarX6dIcAOAAAAAAAAAAAAAGxb1T5JaXlfT9EzSstffD27yKRJk9LY2JibbropZ511VsaOHZuKioqsWrUqe++9d4477rhcfPHFaWhoyI9+9KOUlZVttn7ffffNz3/+8/zyl7/Me9/73hx66KEZNGhQli9f3lEzatSoPPLII/nkJz/ZIzNffPHFSZLFixfn29/+do/03J7SXb4DAAAAAAAAAAAAANB/DT8w+ciCpGVpX0/SfVX7vPh6dqGSkpK8/e1vz9vf/vad7jF9+vRMnz59s3u33HJL3vGOd+Tpp5/OD3/4w3zuc5/b5vrLLrus06ezH3XUUWlvb9/pWbtKgB0AAAAAAAAAAAAA2L7hB+7y4Dfbd+aZZ2bJkiX5+Mc/niuuuCJDhw7Npz71qb4eq8uK+3oAAAAAAAAAAAAAAAB27GMf+1g+8YlPJEk+/elP5xvf+EYfT9R1AuwAAAAAAAAAAAAAAP3Ev/3bv6W9vT3t7e350Ic+1NfjdJkAOwAAAAAAAAAAAAAAvUKAHQAAAAAAAAAAAACAXiHADgAAAAAAAAAAAABArxBgBwAAAAAAAAAAAACgVwiwAwAAAAAAAAAAAADQKwTYAQAAAAAAAAAAAADoFQLsAAAAAAAAAAAAAAD0CgF2AAAAAAAAAAAAAAB6hQA7AAAAAAAAAAAAAAC9QoAdAAAAAAAAAAAAAIBeIcAOAAAAAAAAAAAAAECvEGAHAAAAAAAAAAAAAKBXCLADAAAAAAAAAAAAANArSvt6gJ7y5JNP5mtf+1ruuuuuPPXUUykvL88rXvGKvO1tb8uHP/zhVFVV9dhev/jFLzJr1qzcf//9WbJkSUpLS7P//vvniCOOyBve8Ia8613vypAhQ3psPwAAAAAAAAAAAADoS0teWJJlrcv6eoxuG1E+IiOHjOzrMQa0PSLA/pOf/CT19fVZuXJlx72WlpY89NBDeeihh/Ld7343d911V8aOHdutfZYtW5Zzzz03d9xxxxbPVq5cmcceeyy33nprJk6cmNe85jXd2gsAAAAAAAAAAAAAdgdLXliSE28/MWs3rO3rUbptUMmg3HnKnbs0xL5hw4bceuutufPOO/Pggw/mueeeS0tLS4YPH55x48Zl8uTJOeuss3L44Ydvs8ef/vSn/Md//EfuvffePPnkk1m2bFkqKytzwAEH5KijjsqMGTPyz//8zykrK9ts3dSpU3Pfffdt0a+qqioHHHBAjj322HzgAx/IMccc0+Ovu7P6fYD94YcfzplnnplCoZAhQ4bkwgsvzLRp01IoFHLzzTfnO9/5ThYuXJgTTjghDz30UIYOHbpT+6xYsSJvetObsmDBgiTJqaeemtNPPz2veMUrUlJSkqeeeir33Xdfbr311p58eQAAAAAAAAAAAADQp5a1LtsjwutJsnbD2ixrXbbLAuwPPvhgzj777CxcuLDjXllZWYYOHZqlS5dm/vz5mT9/fr74xS9mxowZuemmmzJo0KCO2lWrVuUDH/hAbrrpprS3tydJioqKMmzYsBQKhTQ0NKShoSE33nhjXvGKV+Q//uM/8rrXvW6LOcrKyrL33nt3fN3c3JzHHnssjz32WG688cZceumlufTSS3fJn8GOFPfJrj3o/PPPT6FQSGlpae65555cdNFFmThxYqZPn57rrrsuX/rSl5IkCxcuzNVXX73T+3z0ox/NggULUl5enjvuuCNz5szJO9/5zrzuda/La1/72px66qn56le/mkWLFm33pyEAAAAAAAAAAAAAgD3PT37yk0ydOjULFy7MPvvskyuvvDILFy7M2rVrs3Tp0qxduza/+93v8pnPfCZ77bVX5syZk5aWlo71y5Yty8SJE/OjH/0oSfL2t7899913X9asWZNly5ZlzZo1+fvf/57vfve7OeKII/K3v/0tDzzwwFZnOfbYY/PMM890fLS0tOSee+7J2LFj097enssuuyx33XVXr/y5vFS/DrD/9re/zbx585Ik73nPezJx4sQtambOnJm6urokybXXXpt169Z1eZ/7778/P/zhD5MkV1xxRd761rdus7aoqCilpf3+YHsAAAAAAAAAAAAAoJMee+yx1NfXp7W1NYcddlj+8Ic/5DOf+UwOOeSQjpqSkpK89rWvzZVXXpknnngiJ5988mY9zjrrrPzlL39JaWlpbrnlltx00015/etfv9kJ7aNGjcp73vOe/OEPf8g3vvGNVFRUdGq+QYMG5U1velPuuOOOjn7//u//3gOvvOv6dYD99ttv77g+99xzt1pTXFycd7/73UmS5cuX59577+3yPhv/4wwbNiwf+chHuj4oAAAAAAAAAAAAALDH+pd/+ZesXLkyFRUVue222zJ69Ojt1u+99965/fbbM2zYsCTJz372s/zsZz9LklxyySU544wztru+qKgoH/zgB3Peeed1ac7DDjssEyZMSJL87ne/69LantKvA+z3339/kmTw4MEdf5BbM2XKlI7r+fPnd2mPtWvX5o477kiSvOlNb+r4KYUNGzbkqaeeSlNTU9asWdPV0QEAAAAAAAAAAACAPcCzzz6b2bNnJ3nxFPVx48Z1em1RUVGSzQ/cvuCCCzq9vri463HwjeH6lStXdnltT+jXAfaGhoYkydixY1NaWrrNutra2i3WdNYf//jHjoD6q171qqxcuTIf+9jHUl1dnTFjxuTggw/OsGHD8qY3vSlz587t+osAAAAAAAAAAAAAAPqte++9N21tbUmSU089tcvr169fn1//+tdJXjxwe/DgwT0630s1NTUlefEU+L7QbwPsa9asSXNzc5Ls8Ij9ESNGdPyHfOqpp7q0z1//+teO67a2trz2ta/Ntddem+XLl3fcX7t2bX7xi19k+vTpueqqq7rUHwAAAAAAAAAAAADov/7yl790XB955JFdXv/kk0/mhRde2On1XfHb3/42CxYsSJIcc8wxu3Svbem3AfZVq1Z1XA8ZMmSH9RsD7Bv/43bW888/33F91VVX5bHHHstb3vKW/Pa3v82aNWvy3HPP5Zvf/GaGDRuW9vb2fOYzn8kdd9yx3Z6tra1ZuXLlZh8AAAAAAAAAAAAAQP+zdOnSjuudOdW8u+s74+mnn84Pf/jDnHzyyWlra0tRUVE+9rGP7ZK9dqS0T3btAWvWrOm4HjRo0A7ry8vLkySFQqFL+6xevXqzPd/0pjflzjvvTElJSZJk3333zQc+8IEcfvjhmTJlStra2nLhhRfmrW99a4qKirba88orr8zll1/epTkAAAAAAAAAAAAAADrjvvvu22aWuaysLNdcc02mTp3au0P9//rtCewVFRUd12vXrt1hfWtra5KksrJyp/dJXjyFfWN4fVPHHXdcZsyYkSRpaGjIn//85232vPDCC7NixYqOj6eeeqpLMwEAAAAAAAAAAAAAu4d99tmn4/r555/v9fVbU1ZWlv333z/7779/Xvayl+Xggw/OpEmT8slPfjKPPPJIPvKRj/TIPjuj357APnTo0I7rF154YYf1G09SHzJkyE7vs+++++bII4/cZu2b3/zmzJ49O0nyu9/9LkccccRW68rLyztOhAcAAAAAAAAAAAAA+q9XvvKVHdcPP/xwRo0a1aX1Bx10UIYMGZIXXnghDz/8cI/MdOyxx2bu3Lk90qun9esT2Df+tMHixYu3W7ts2bKOAPuBBx7YpX02rR89enSna//xj390aR8AAAAAAAAAAAAAoP+ZNm1aiotfjGXfdtttXV5fWlqa17/+9UmS//7v/+7IPe+p+m2APUkOO+ywJMnjjz+e9evXb7OusbGx47qurq5Le2z6ExEbNmzYbu2mz0tL++3h9gAAAAAAAAAAAABAJ+2///457bTTkiQ/+tGPsnDhwk6vbW9vT5J8+MMfTpKsWLEi11xzTafXt7W1dWHS3UO/DrAfd9xxSZLVq1dnwYIF26y77777Oq4nTZrUpT0OOuigjBkzJknS1NTU8U2yNX/72986rg844IAu7QMAAAAAAAAAAAAA9E9XXHFFhgwZkkKhkBkzZuTvf//7duuXLVuW0047LStWrEiS/PM//3OOP/74JMlnP/vZzJ49e4d7XnfddfnOd77T/eF7Wb8OsJ9yyikd19dff/1Wa9ra2nLjjTcmSYYPH55p06Z1eZ+NPxGxcuXK/PKXv9xm3Zw5czquN4brAQAAAAAAAAAAAIA927hx4/LDH/4wgwYNyl/+8pe85jWvyVVXXZXHH3+8o2bDhg15+OGHc8kll+TlL3/5Ztnj5MXT2+vq6rJ+/fq87W1vy1lnnZV58+Zl3bp1HTVLlizJD37wg0yYMCHvf//7UygUeu019pR+HWA/+uijM3ny5CTJ9773vTzwwANb1Fx99dVpaGhIkpx//vkpKyvb7PncuXNTVFSUoqKinHPOOVvd52Mf+1gqKiqSJBdccEFWrly5Rc2sWbMyd+7cJMkJJ5yQAw88cGdfFgAAAAAAAAAAAADQz5xyyin51a9+lbFjx6a5uTmf+cxncsghh6S8vDz77LNPBg0alPHjx+dzn/tcVqxYkXe84x0ZPHhwx/p99tknDz74YN72trcleTHQ/vrXvz7l5eXZe++9U1lZmVGjRuWcc87J73//+9TV1XVkqfuT0r4eoLuuvfbaTJo0KYVCIccff3wuuuiiTJs2LYVCITfffHOuu+66JC/+VMPMmTN3ao8xY8bks5/9bD71qU/lz3/+c44++uh8+tOfzhFHHJGVK1dmzpw5+eY3v5kk2WuvvfKVr3ylx14fAAAAAAAAAAAAANA/TJo0KY2Njfnxj3+cO++8M7/5zW/y3HPPZdWqVdl7771TW1ubKVOm5F3velcOPfTQLdbvtddeueWWW3LRRRd1HLD95JNPZtmyZamsrMzBBx+co48+OmeccUbe8pa3pKSkpA9eZff0+wD7kUcemVtuuSX19fVZuXJlLrrooi1qxo0bl7vuuitDhw7d6X0++clP5vnnn89VV12VRx99NP/n//yfLWr222+/3H777TnkkEN2eh8AAAAAAAAAAAAA2J2MKB+RQSWDsnbD2r4epdsGlQzKiPIRu3SPkpKSvP3tb8/b3/72ne7x6le/Oq9+9au7vG7u3Lk7vWdv6fcB9iQ56aST8qc//SnXXntt7rrrrixevDiDBg3K2LFjc8YZZ+QjH/lIqqqqur3PlVdembe+9a355je/mXnz5mXJkiWpqKjIuHHj8ta3vjUf/ehHM2zYsB54RQAAAAAAAAAAAACwexg5ZGTuPOXOLGtd1tejdNuI8hEZOWRkX48xoO0RAfYkOeigg3LNNdfkmmuu6dK6qVOnpr29vdP1EydOzMSJE7s6HgAAAAAAAAAAAAD0WyOHjBT8pkcU9/UAAAAAAAAAAAAAAAAMDALsAAAAAAAAAAAAAAD0CgF2AAAAAAAAAAAAAAB6hQA7AAAAAAAAAAAAAAC9QoAdAAAAAAAAAAAAAIBeIcAOAAAAAAAAAAAAAECvEGAHAAAAAAAAAAAAAKBXCLADAAAAAAAAAAAAwADW3t7e1yPQT+3M944AOwAAAAAAAAAAAAAMQMXFL0aJN2zY0MeT0F9t/N7Z+L3UGQLsAAAAAAAAAAAAADAAlZWVpaysLC+88EJfj0I/tWrVqo7vo84SYAcAAAAAAAAAAACAAaioqChDhw7NihUrUigU+noc+plCoZCVK1dm6NChKSoq6vS60l04EwAAAAAAAAAAAACwG6uurk6hUMiiRYuy1157ZejQoSkpKelSIJmBo729PRs2bMiqVauycuXKlJeXp7q6uks9BNgBAAAAAAAAAAAAYIAqKSnJgQcemObm5qxatSrLly/v65HoB8rKyjJ8+PBUV1enpKSkS2sF2AEAAAAAAAAAAABgACspKcn++++f/fbbL+vWrUtbW1tfj8RurLi4OGVlZTt9Sr8AOwAAAAAAAAAAAACQoqKiDBo0qK/HYA9X3NcDAAAAAAAAAAAAAAAwMAiwAwAAAAAAAAAAAADQKwTYAQAAAAAAAAAAAADoFQLsAAAAAAAAAAAAAAD0CgF2AAAAAAAAAAAAAAB6hQA7AAAAAAAAAAAAAAC9QoAdAAAAAAAAAAAAAIBeIcAOAAAAAAAAAAAAAECvEGAHAAAAAAAAAAAAAKBXCLADAAAAAAAAAAAAANArBNgBAAAAAAAAAAAAAOgVAuwAAAAAAAAAAAAAAPQKAXYAAAAAAAAAAAAAAHqFADsAAAAAAAAAAAAAAL1CgB0AAAAAAAAAAAAAgF4hwA4AAAAAAAAAAAAAQK8QYAcAAAAAAAAAAAAAoFcIsAMAAAAAAAAAAAAA0CsE2AEAAAAAAAAAAAAA6BUC7AAAAAAAAAAAAAAA9AoBdgAAAAAAAAAAAAAAeoUAOwAAAAAAAAAAAAAAvUKAHQAAAAAAAAAAAACAXiHADgAAAAAAAAAAAABArxBgBwAAAAAAAAAAAACgVwiwAwAAAAAAAAAAAADQKwTYAQAAAAAAAAAAAADoFQLsAAAAAAAAAAAAAAD0CgF2AAAAAAAAAAAAAAB6hQA7AAAAAAAAAAAAAAC9QoAdAAAAAAAAAAAAAIBeIcAOAAAAAAAAAAAAAECvEGAHAAAAAAAAAAAAAKBXCLADAAAAAAAAAAAAANArBNgBAAAAAAAAAAAAAOgVAuwAAAAAAAAAAAAAAPQKAXYAAAAAAAAAAAAAAHqFADsAAAAAAAAAAAAAAL1CgB0AAAAAAAAAAAAAgF4hwA4AAAAAAAAAAAAAQK8QYAcAAAAAAAAAAAAAoFeU9vUAAAAAAOz+Fi1alObm5u3WNDQ0bPZ5e6qrqzNmzJgemQ0AAAAAAADoPwTYAQAAANiuRYsW5dDaQ7OmsKZT9fX19TusqaisyKONjwqxAwAAAAAAwAAjwA4AAADAdjU3N2dNYU1Gnzc65aPKt1nXtrYt65rXpay6LMWDirdZ1/p0axZftzjNzc0C7AAAAAAAADDACLADAAAA0Cnlo8pTWVO5/aJxvTMLAAAAAAAA0D9t+ygsAAAAAAAAAAAAAADoQQLsAAAAAAAAAAAAAAD0CgF2AAAAAAAAAAAAAAB6hQA7AAAAAAAAAAAAAAC9QoAdAAAAAAAAAAAAAIBeIcAOAAAAAAAAAAAAAECvEGAHAAAAAAAAAAAAAKBXCLADAAAAAAAAAAAAANArBNgBAAAAAAAAAAAAAOgVAuwAAAAAAAAAAAAAAPSK0r4eAAAAAIDet2HDhsybNy9LlizJyJEjM3ny5JSUlPT1WAAAAAAAAMAezgnsAAAAAAPMnDlzMnbs2EybNi3vfOc7M23atIwdOzZz5szp69EAAAAAAACAPZwAOwAAAMAAMmfOnJx++ul51atelQceeCCrVq3KAw88kFe96lU5/fTThdgBAAAAAACAXUqAHQAAAGCA2LBhQ2bOnJkTTzwxt99+e4455pgMGTIkxxxzTG6//faceOKJ+cQnPpENGzb09agAAAAAAADAHkqAHQAAAGCAmDdvXpqamnLRRReluHjzt4WKi4tz4YUX5oknnsi8efP6aEIAAAAAAABgTyfADgAAADBALFmyJEly+OGHb/X5xvsb6wAAAAAAAAB6mgA7AAAAwAAxcuTIJMkjjzyy1ecb72+sAwAAAAAAAOhpAuwAAAAAA8TkyZNTU1OTL3zhC2lra9vsWVtbW6688socfPDBmTx5ch9NCAAAAAAAAOzpBNgBAAAABoiSkpJcffXVufPOO3PKKafkgQceyKpVq/LAAw/klFNOyZ133pkvf/nLKSkp6etRAQAAAAAAgD1UaV8PAAAAAEDvmTFjRmbPnp2ZM2fm2GOP7bh/8MEHZ/bs2ZkxY0YfTgcAAAAAAADs6QTYAQAAAAaYGTNm5OSTT868efOyZMmSjBw5MpMnT3byOgAAAAAAALDLCbADAAAADEAlJSWZOnVqX48BAAAAAAAADDDFfT0AAAAAAAAAAAAAAAADgwA7AAAAAAAAAAAAAAC9QoAdAAAAAAAAAAAAAIBeIcAOAAAAAAAAAAAAAECvEGAHAAAAAAAAAAAAAKBXCLADAAAAAAAAAAAAANArBNgBAAAAAAAAAAAAAOgVAuwAAAAAAAAAAAAAAPQKAXYAAAAAAAAAAAAAAHqFADsAAAAAAAAAAAAAAL1CgB0AAAAAAAAAAAAAgF6xxwTYn3zyycycOTO1tbUZPHhw9t577xx11FH5t3/7t7S0tHSr9w033JCioqJOfdxwww0984IAAAAAAAAAAAAAAPYwpX09QE/4yU9+kvr6+qxcubLjXktLSx566KE89NBD+e53v5u77rorY8eO7cMpAQAAAAAAAAAAAAAGtn4fYH/44Ydz5plnplAoZMiQIbnwwgszbdq0FAqF3HzzzfnOd76ThQsX5oQTTshDDz2UoUOHdmu/n//85xk1atQ2n48ePbpb/QEAAAAAAAAAAAAA9lT9PsB+/vnnp1AopLS0NPfcc08mTpzY8Wz69Ok55JBD8qlPfSoLFy7M1Vdfncsuu6xb+40bNy41NTXdGxoAAAAAAAAAAAAAYADq1wH23/72t5k3b16S5D3vec9m4fWNZs6cmeuvvz4NDQ259tprc/HFF6esrKy3RwUAAAAAAOhTLS0taWxs3OxeoVBIU1NTampqUllZudmz2traVFVV9eaIAAAAAMAA0K8D7LfffnvH9bnnnrvVmuLi4rz73e/OhRdemOXLl+fee+/N8ccf30sTAgAAAAAA7B4aGxszYcKETtcvWLAg48eP34UTAQAAAAADUb8OsN9///1JksGDB2/3DdcpU6Z0XM+fP1+AHQAAAAAAGHBqa2uzYMGCze41NDSkvr4+s2bNSl1d3Rb1AAAAAAA9rV8H2BsaGpIkY8eOTWnptl/Kpm+wblyzs84999w8+uijaW5uzl577ZWxY8fmjW98Yz74wQ/mgAMO6FZvAAAAAACAXaWqqmqbJ6rX1dU5bR0AAAAA6BXFfT3AzlqzZk2am5uTJKNHj95u7YgRIzJ48OAkyVNPPdWtfefOnZslS5Zk3bp1Wbp0aX7zm9/k85//fMaOHZtvf/vb3eoNAAAAAAAAAAAAALAn67cnsK9atarjesiQITusHzx4cFavXp0XXnhhp/Z7+ctfnhkzZmTixIk58MADkyT/8z//k1tvvTWzZ8/OmjVr8oEPfCBFRUU577zztturtbU1ra2tHV+vXLlyp2YCAAAAAAAAAAAAAOhP+m2Afc2aNR3XgwYN2mF9eXl5kqRQKHR5r1NPPTVnn312ioqKNrt/1FFH5cwzz8ydd96ZGTNmZN26dfn4xz+et771rXnZy162zX5XXnllLr/88i7PAQAAAAAAAAAAAADQn/XbAHtFRUXH9dq1a3dYv/HE88rKyi7vNWzYsO0+P/HEE3PJJZfkX//1X9PS0pLvfe97ufjii7dZf+GFF+aCCy7o+HrlypUdp7oDAAAAAMCepKWlJY2NjZvdKxQKaWpqSk1NzRbv29fW1qaqqqo3RwQAAAAAoBf12wD70KFDO65feOGFHdavXr06STJkyJBdMs95552XSy65JO3t7bnvvvu2G2AvLy/vOBEeAAAAAAD2ZI2NjZkwYUKn6xcsWJDx48fvwokAAAAAAOhL/TbAXlFRkX322SdLly7N4sWLt1u7bNmyjgD7rjrpfL/99ss+++yT5ubm/P3vf98lewAAAAAAQH9TW1ubBQsWbHavoaEh9fX1mTVrVurq6raoBwAAAABgz9VvA+xJcthhh2XevHl5/PHHs379+pSWbv3lbPqrSV/6RnhPKioq2mW9AQAAAACgP6qqqtrmiep1dXVOWwcAAAAAGGCK+3qA7jjuuOOSJKtXr97i9JZN3XfffR3XkyZN2iWz/OMf/0hzc3OSZNSoUbtkDwAAAAAAAAAAAACA/qxfB9hPOeWUjuvrr79+qzVtbW258cYbkyTDhw/PtGnTdsks1113Xdrb25MkU6ZM2SV7AAAAAAAAAAAAAAD0Z6V9PUB3HH300Zk8eXLmzZuX733vezn77LMzceLEzWquvvrqNDQ0JEnOP//8lJWVbfZ87ty5HaH2s88+OzfccMNmz5uamrJs2bIceeSR25zjzjvvzGc/+9kkSWVlZc4999zuvjQAAACAHtXS0pLGxsbN7hUKhTQ1NaWmpiaVlZWbPautrU1VVVVvjggAAAAAAAAMAP06wJ4k1157bSZNmpRCoZDjjz8+F110UaZNm5ZCoZCbb7451113XZJk3LhxmTlzZpf7NzU1Zdq0aZk4cWJOOumkvPrVr85+++2XJPmf//mfzJ49O7Nnz+44ff3LX/5yDjjggJ57gQAAAAA9oLGxMRMmTOh0/YIFCzJ+/PhdOBEAAAAAAAAwEPX7APuRRx6ZW265JfX19Vm5cmUuuuiiLWrGjRuXu+66K0OHDt3pfR544IE88MAD23xeVVWVr3zlKznvvPN2eg8AAACAXaW2tjYLFizY7F5DQ0Pq6+sza9as1NXVbVEPAAAAAAAA0NP6fYA9SU466aT86U9/yrXXXpu77rorixcvzqBBgzJ27NicccYZ+chHPrLTv/J6woQJmTVrVh544IE89NBDWbJkSZqbm7N+/fqMGDEir3zlK/OGN7wh733veztOZgcAAADY3VRVVW3zRPW6ujqnrQMAAAAAAAC9Yo8IsCfJQQcdlGuuuSbXXHNNl9ZNnTo17e3t23w+dOjQnHXWWTnrrLO6OyIAAAAAAAAAAAAAwIBW3NcDAAAAAAAAAAAAAAAwMAiwAwAAAAAAAAAAAADQKwTYAQAAAAAAAAAAAADoFQLsAAAAAAAAAAAAAAD0CgF2AAAAAAAAAAAAAAB6hQA7AAAAAAAAAAAAAAC9orSvBwAAAABg91YoFJIkrU+39ki/jX029gUAAAAAAAAGDgF2AAAAALarqakpSbL4usU93nfSpEk92hMAAAAAAADYvQmwAwAAALBdNTU1SZLR541O+ajybvdrfbo1i69b3NEXAAAAAAAAGDgE2AEAAADYrsrKyiRJ+ajyVNZU9nhfAAAAAAAAYOAQYAcAAAAAAHrMokWL0tzcvN2ahoaGzT5vT3V1dcaMGdMjswEAAAAA0PcE2AEAAAAAgB6xaNGiHFp7aNYU1nSqvr6+foc1FZUVebTxUSF2AAAAAIA9hAA7AAAAAADQI5qbm7OmsCajzxud8lHl26xrW9uWdc3rUlZdluJBxdusa326NYuvW5zm5mYB9p3gNHwAAAAAYHckwA4AAAAAAPSo8lHlqayp3H7RuN6ZZaByGj4AAAAAsLsSYAcAAAAAANjDOA0fAAAAANhdCbADAAAAAADsoZyGDwAAAADsbrZ9lAYAAAAAAAAAAAAAAPQgAXYAAAAAAAAAAAAAAHqFADsAAAAAAAAAAAAAAL1CgB0AAAAAAAAAAAAAgF4hwA4AAAAAAAAAAAAAQK8o7esBAAAAAOgfWp9u3e7ztrVtWde8LmXVZSketO1zE3bUBwAAAAAAANhzCbADAAAAsF3V1dWpqKzI4usW91jPisqKVFdX91g/AAAAAAAAoH8QYAcAAABgu8aMGZNHGx9Nc3PzdusaGhpSX1+fWbNmpa6ubru11dXVGTNmTE+OCQAAAAAAAPQDAuwAAABAv9HS0pLGxsbN7hUKhTQ1NaWmpiaVlZWbPautrU1VVVVvjrjHGjNmTKcD53V1dRk/fvwunggAAAAAAADojwTYAQAAgH6jsbExEyZM6HT9ggULBmyQetGiRZ06MX3Tz9vjxHQAAAAAAACgJwiwAwAAAP1GbW1tFixYsNm9hoaG1NfXZ9asWamrq9uifiBatGhR6moPTUthTafq6+vrd1hTVVmRhsZHhdgBAAAAAACAbhFgBwAAAPqNqqqqbZ6oXldXN2BPW3+p5ubmtBTWZNaplanbt3ibdYX17Wla3paa4cWpLC3aZl3DP9pSf1shzc3NAuwAAAAAAABAtwiwAwAAAOyh6vYtzviRJdutmXRgLw0DAAAAAAAAkGTbR3ABAAAAAAAAAAAAAEAPEmAHAAAAAAAAAAAAAKBXCLADAAAAAAAAAAAAANArBNgBAAAAAAAAAAAAAOgVpX09AAAAAAAAsGcoFApJktanW3uk38Y+G/sCAAAAAND/CbADAAAAAAA9oqmpKUmy+LrFPd530qRJPdoTAAAAAIC+IcAOAAAAAAD0iJqamiTJ6PNGp3xUebf7tT7dmsXXLe7oCwAAAABA/yfADgAAAAAA9IjKysokSfmo8lTWVPZ4XwAAAAAA+r/ivh4AAAAAAAAAAAAAAICBwQnsAAAAAHuYQqGQJGlo3tAj/Tb22dgXAAAAAAAAYGcJsAMAAADsYZqampIk9XPW9HjfSZMm9WhPAAAAAAAAYGARYAcAAADYw9TU1CRJZs2oSF11Sbf7NTRvSP2cNR19AQAAAAAAAHaWADsAAADAHqaysjJJUlddkvEjux9gf2lfAGD3VygUkiStT7f2SL+NfTb2BQAAAADYWQLsAAAAAAAA/cCGDRsyb968LFmyJCNHjszkyZNTUrL1H1ZrampKkiy+bnGPztDU1JRJkyb1aE8AAAAAYGARYAcAAAAAANjNzZkzJzNnzuwIpidJTU1Nrr766syYMWOL+pqamiTJ6PNGp3xUebf3b326NYuvW9zRFwAAAABgZwmwAwAAAAAA7MbmzJmT008/PSeeeGJuuummHH744XnkkUfyhS98Iaeffnpmz569RYi9srIySVI+qjyVNZU9NsvGvgAAAAAAO6u4rwcAAAAAAABg6zZs2JCZM2fmxBNPzO23355jjjkmQ4YMyTHHHJPbb789J554Yj7xiU9kw4YNfT0qAAAAAECnCLADAAAAAADspubNm5empqZcdNFFKS7e/J91iouLc+GFF+aJJ57IvHnz+mhCAAAAAICuEWAHAAAAAADYTS1ZsiRJcvjhh2/1+cb7G+sAAAAAAHZ3pX09AAAAAMC2LFq0KM3NzdutaWho2Ozz9lRXV2fMmDE9Mlt/0PCPtu0+L6xvT9PyttQML05ladFO9wEAdp2RI0cmSR555JEcc8wxWzx/5JFHNqsDAAAAANjdCbADAAAAu6VFixbl0NpDs6awplP19fX1O6ypqKzIo42P7vEh9urq6lRVVqT+tkKP9ayqrEh1dXXH1y0tLWlsbNysZns/TFBbW5uqqqoemwcABorJkyenpqYmX/jCF3L77benuPh/f7luW1tbrrzyyhx88MGZPHlyH04JAAAAANB5AuwAAADAbqm5uTlrCmsy+rzRKR9Vvs26trVtWde8LmXVZSkeVLzNutanW7P4usVpbm7e4wPsY8aMSUPjo506vb6+vj6zZs1KXV3ddmtfenp9Y2NjJkyYsNXarf0wwYIFCzJ+/PhOTA8AbKqkpCRXX311Tj/99Jxyyim58MILc/jhh+eRRx7JlVdemTvvvDOzZ89OSUlJX48KAAAAANApAuwAAADAbq18VHkqayq3XzSud2bpT8aMGdPpoH5dXV2Xw+W1tbVZsGDBZvcKhUKamppSU1OTysrKLeoBgJ0zY8aMzJ49OzNnzsyxxx7bcf/ggw/O7NmzM2PGjD6cDgAAAACgawTYAQAAAOiyqqqqrYbeJ02a1AfTAMCeb8aMGTn55JMzb968LFmyJCNHjszkyZOdvA4AAAAA9DsC7AAAAAAAAP1ASUlJpk6d2tdjAAAAAAB0S3FfDwAAAAAAAAAAAAAAwMDgBHYAAAAAAKBDS0tLGhsbN7tXKBTS1NSUmpqaVFZWbvastrY2VVVVm91rfbp1u3u0rW3LuuZ1KasuS/GgbZ+1s6M+AAAAAAD0PwLsAAAAAABAh8bGxkyYMKHT9QsWLMj48eOTJNXV1amorMji6xb32DwVlRWprq7usX4DjR8mAAAAAAB2NwLsAAAAAABAh9ra2ixYsGCzew0NDamvr8+sWbNSV1e3Rf1GY8aMyaONj6a5uXm7e2yv30tVV1dnzJgxXXwV+GECAAAAAGB3JcAOAAAAAAB0qKqq6jhR/aXq6uq2+WyjMWPGdDpw3pl+7Bw/TAAAAAAA7K4E2AEAAIDdUqFQSJK0Pt3aI/029tnYFwBgT+eHCQAAAACA3ZEAOwAAALBbampqSpIsvm5xj/edNGlSj/YEAAAAAAAAoHME2AEAAIDdUk1NTZJk9HmjUz6qvNv9Wp9uzeLrFnf0BQAAAAAAAKD3CbADAAAAu6XKysokSfmo8lTWVPZ4XwAAAAAAAAB6X3FfDwAAAAAAAAAAAAAAwMAgwA4AAAAAAAAAAAAAQK8o7esBAAAAANj1Wlpa0tjYuNm9hoaGzT5vqra2NlVVVb0yGwAAAAAAADBwCLADAAAADACNjY2ZMGHCVp/V19dvcW/BggUZP378rh4LAAAAAAAAGGAE2AEAAAAGgNra2ixYsGCze4VCIU1NTampqUllZeUW9QAAAAAAAAA9TYAdAAAAYACoqqra6onqkyZN6oNpAAAAAAAAgIGquK8HAAAAAAAAAAAAAABgYBBgBwAAAAAAAAAAAACgVwiwAwAAAAAAAAAAAADQKwTYAQAAAAAAAAAAAADoFQLsAAAAAAAAAAAAAAD0itK+HgAAAAAAAOg7ixYtSnNz83ZrGhoaNvu8PdXV1RkzZkyPzAYAAAAAwJ5HgB0AAAAAAAaoRYsWpa720LQU1nSqvr6+foc1VZUVaWh8VIgdAAAAAICtEmAHAAAAAIABqrm5OS2FNZl1amXq9i3eZl1hfXualrelZnhxKkuLtlnX8I+21N9WSHNzswA7AAAAAABbJcAOAAAAAAADXN2+xRk/smS7NZMO7KVhAAAAAADYowmwAwAAAADAAFUoFJIkDc0beqTfxj4b+wIAAAAAwEsJsAMAAAAAwADV1NSUJKmfs6bH+06aNKlHewIAAAAAsGcQYAcAAAAAgAGqpqYmSTJrRkXqqku63a+heUPq56zp6AsAAAAAAC8lwA4AAAAAAANUZWVlkqSuuiTjR3Y/wP7SvgAAAAAA8FLFfT0AAAAAAAAAAAAAAAADgxPYAQAAgN1a69Ot233etrYt65rXpay6LMWDtv2z+jvqAwAAAAAAAMCuJ8AOAAAA7Jaqq6tTUVmRxdct7rGeFZUVqa6u7rF+AAAAAAAAAHSNADsAAACwWxozZkwebXw0zc3N261raGhIfX19Zs2albq6uu3WVldXZ8yYMT05JgAAAAAAAABdIMAOAAAA7LbGjBnT6cB5XV1dxo8fv4snAgAAAAAAAKA7BNgBAAAAAAB2A4sWLdrst88UCoU0NTV1en1NTU0qKys7vvbbZwAAAACA3ZEAOwAAAAAAQB9btGhR6moPTUthTY/1rKqsSEPjo0LsAAAAAMBuRYAdAAAAAACgjzU3N6elsCazTq1M3b7FSZLC+vY0LW/rdI+a4cWpLC1KkjT8oy31txXS3NwswA4AAAAA7FYE2AEAAAAAAPpYoVB48aKoveNeZWlR6qpLdq7h/9+noy8AAAAAwG5CgB0AAAAAAKCPNTU1JUnq56zp8b6TJk3q0Z4AAAAAAN0hwA4AAAAAANDHampqkiSzZlTs/Knrm2ho3pD6OWs6+gIAAAAA7C4E2AEAAAAAgF2mpaUljY2Nm91raGjY7POmamtrU1VV1Suz7U4qKyuTJHXVJRk/svsB9pf2BQAAAADYXfRogL2trS1//etf8z//8z9ZtWpVNmzYsMM17373u3tk7yeffDJf+9rXctddd+Wpp55KeXl5XvGKV+Rtb3tbPvzhD++SN7tbWlpy+OGH54knnkiSHHTQQR2/4hMAAAAAAPqLhn+0bfd5YX17mpa3pWZ4cSpLi7rUp7GxMRMmTNhqfX19/Rb3FixYkPHjx+9gYgAAAAAA+qseCbAXCoVcccUV+c53vpOlS5d2el1RUVGPBNh/8pOfpL6+PitXruy419LSkoceeigPPfRQvvvd7+auu+7K2LFju73Xpi655JKO8DoAAAAAAPQ31dXVqaqsSP1thR7rWVVZkerq6o6va2trs2DBgs1qCoVCmpqaUlNTs8UJ4bW1tT02CwAAAAAAu59uB9gLhUKmT5+e3/72t2lvb++Jmbrk4YcfzplnnplCoZAhQ4bkwgsvzLRp01IoFHLzzTfnO9/5ThYuXJgTTjghDz30UIYOHdpj+371q19NRUVFysrKsmrVqh7pCwAAAAAAvWXMmDFpaHw0zc3N261raGhIfX19Zs2albq6uu3WVldXZ8yYMR1fV1VVbfVE9UmTJu3c0AAAAAAA9GvdDrB/5StfyW9+85skyeGHH56PfOQjmTBhQvbee+8UFxd3e8AdOf/881MoFFJaWpp77rknEydO7Hg2ffr0HHLIIfnUpz6VhQsX5uqrr85ll13W7T03bNiQ973vfdmwYUMuvfTSfO973xNgBwAA2IO1tLSksbFxs3s7OjW0qqqqN0cEANhpY8aM2Sxwvj11dXVbDaPTcxr+0bbd54X17Wla3paa4cWpLC3a6T4AAAAAAH2l2wH2W265JUly7LHH5le/+lUGDRrU7aE667e//W3mzZuXJHnPe96zWXh9o5kzZ+b6669PQ0NDrr322lx88cUpKyvr1r7XXnttFixYkEMPPTSf/vSn873vfa9b/QAAANi9NTY2ZsKECZ2uX7BggWAXAABdUl1dnarKitTfVuixnlWVFamuru6xfgAAAAAAPaHbAfa//e1vKSoqyqc+9aleDa8nye23395xfe655261pri4OO9+97tz4YUXZvny5bn33ntz/PHH7/SeTz75ZC655JIkybe+9a1ef80AAAD0vtra2ixYsGCzew0NDamvr8+sWbNSV1e3RT0AAHTFmDFj0tD4aJqbm7dbt73/HfpS1dXVnT5dHwAAAACgt3Q7wD5o0KAUCoU+eQP0/vvvT5IMHjx4uyfhTZkypeN6/vz53Qqwf+hDH8rq1avzrne9K1OnTt3pPgAAAPQfVVVV2zxRva6uzmnrAAD0iDFjxnT631v871AAAAAAoL8q7m6DjafKPfPMM90epqsaGhqSJGPHjk1p6baz+JuefLdxzc64+eab89Of/jQjRozI1VdfvdN9AAAAAAAAAAAAAAAGom4H2M8555y0t7fnxz/+cU/M02lr1qzp+DWao0eP3m7tiBEjMnjw4CTJU089tVP7LVu2LB/72MeSJF/84hez77777lSfJGltbc3KlSs3+wAAAAAAAAAAAAAA2NN1O8D+vve9L9OnT8+NN96Ym266qSdm6pRVq1Z1XA8ZMmSH9RsD7C+88MJO7ffJT34yzz77bCZOnJj3ve99O9VjoyuvvDLDhg3r+DjwwAO71Q8AAAAAAAAAAAAAoD8o7WzhokWLtvns61//et73vvelvr4+t912W975znemtrY2VVVVO+w7ZsyYzo6wmTVr1nRcDxo0aIf15eXlSZJCodDlvX7961/n+9//fkpLS/Otb30rRUVFXe6xqQsvvDAXXHBBx9crV64UYgcAAGBA2LBhQ+bNm5clS5Zk5MiRmTx5ckpKSvp6LAAAAAAAAAB6SacD7AcffPAOa9rb23Prrbfm1ltv7VTPoqKirF+/vrMjbKaioqLjeu3atTusb21tTZJUVlZ2aZ/W1tacd955aW9vz/nnn58jjjiia4NuRXl5eUegHgAAAAaKOXPm5IILLsiTTz7Zce+ggw7KNddckxkzZvThZAAAAAAAAAD0luLOFra3t+/wo7N1L12zM4YOHdpx/cILL+ywfvXq1UmSIUOGdGmfz3/+83n00Udz4IEH5vLLL+/akAAAAECSF8Prp512Wp577rnN7j/33HM57bTTMmfOnD6aDAAAAAAAAIDe1OkT2K+//vpdOUeXVVRUZJ999snSpUuzePHi7dYuW7asI8B+4IEHdmmfq666Kknyxje+MT/5yU+2WrOx9+rVq3PzzTcnSfbbb79Mnz69S3sBAADAnmjDhg35wAc+kCR5wxvekIsvvjiHH354HnnkkXz+85/PnXfemQ9+8IM5+eSTU1JS0sfTAgAAAAAAALArdTrAfvbZZ+/KOXbKYYcdlnnz5uXxxx/P+vXrU1q69ZfT2NjYcV1XV9elPdauXZvkxQD/jkL8zc3Necc73pEkmTJligA7AAAAJJk7d27+8Y9/5Ljjjssdd9yR4uIXfyHcMccckzvuuCNTpkzJ/fffn7lz5+YNb3hDH08LALDnamlp2ezfTJKkoaFhs8+bqq2tTVVVVa/MBgAAAAAMHJ0OsO+OjjvuuMybNy+rV6/OggUL8rrXvW6rdffdd1/H9aRJk3prPAAAACAvBtiT5PLLL+8Ir29UXFycSy+9NG9605sE2AEAdrHGxsZMmDBhq8/q6+u3uLdgwYKMHz9+V48FAAAAAAww3Q6wf/azn02SfOhDH0p1dXWn1ixbtixf//rXkySXXHLJTu99yimn5Morr0zy4gnpWwuwt7W15cYbb0ySDB8+PNOmTevSHu3t7TusqampyZNPPpmDDjooTU1NXeoPAAAAAACwNT19YnptbW0WLFiw2b1CoZCmpqbU1NSksrJyi3oAAAAAgJ7W7QD7ZZddlqKiopx++umdDrA///zzHeu6E2A/+uijM3ny5MybNy/f+973cvbZZ2fixImb1Vx99dUdb+Kef/75KSsr2+z53LlzO0LtZ599dm644YadngcAAADY0tSpU3PFFVfk0ksvzdSpUzc7hb2trS2XXXZZRx0AAP+rp09Mr6qq2upzv70WAAAAAOhN3Q6w97Vrr702kyZNSqFQyPHHH5+LLroo06ZNS6FQyM0335zrrrsuSTJu3LjMnDmzj6cFAACAgWfq1KnZb7/9cv/99+fkk0/ORRddlMMPPzyPPPJIvvCFL2T+/PnZb7/9BNgBYDfR06d+s/OcmA4AAAAA7In6JMC+bt26JNniNPSdceSRR+aWW25JfX19Vq5cmYsuumiLmnHjxuWuu+7K0KFDu70fAAAA0DUlJSX55je/mdNPPz2//OUvc+edd3Y8q6qqSlFRUb75zW+mpKSkD6cEADbq6VO/2XlOTAcAAAAA9kR9EmD/wx/+kCTZd999e6TfSSedlD/96U+59tprc9ddd2Xx4sUZNGhQxo4dmzPOOCMf+chHnP4CAAAAfWjGjBmZPXt2Zs6cmaampo77+++/f7785S9nxowZfTccALAZp34DAAAAALArdTnAfuONN271/h133JGHHnpou2tbW1vzt7/9Ld///vdTVFSUo446qqvbb9NBBx2Ua665Jtdcc02X1k2dOjXt7e3d2nvTf3gHAAAAtm7GjBk5+eSTM2/evCxZsiQjR47M5MmTnbwOALsZp34DAAAAALArdTnAfs4556SoqGize+3t7fmXf/mXTvdob29PcXFxzj///K5uDwAAAPRjJSUlmTp1al+PAQAAAAAAAEAfKd6ZRe3t7R0fW7u3vY+ysrJMmjQp//Vf/5UpU6b02AsBAAAAAAAAAAAAAGD31uUT2J944omO6/b29rz85S9PUVFRfv7zn+eQQw7Z5rqioqJUVFRkn3328avBAQAAAAAAAAAAAAAGoC4H2A866KCt3h81atQ2nwEAAEB/smjRojQ3N2+3pqGhYbPP21JdXZ0xY8b02GwAAAAAAAAA0J91OcD+Um1tbT0xBwAAAOwWFi1alENrD82awppO1dfX12/3eUVlRR5tfFSIHQAAAAAAAADSAwF2AAAA2JM0NzdnTWFNRp83OuWjyrdZ17a2Leua16WsuizFg4q3WtP6dGsWX7c4zc3NAuwAAAAAAAAAEAF2AAAA2KryUeWprKncftG43pmF/9XS0pLGxsbN7jU0NGz2eVO1tbWpqqrqldkAAAAAAAAA2LFOB9inT5/e45sXFRXll7/8ZY/3BQAAAPrGokWL0tzc3PF1oVBIU1NTp9fX1NSksvJ/f3Cgurp6s9PrGxsbM2HChK2ura+v3+LeggULMn78+E7vDwAAAAAAAMCu1ekA+9y5c1NUVJT29vZt1hQVFW329cbazt4HAAAA+q9FixalrvbQtBTW9FjPqsqKNDQ+2hFir62tzYIFCzar2RiSf2n4fWM9AAAAAAAAALuPTgfYX//61283cP7000/nscceS/JiML2mpib7779/kuTZZ59NU1NT2tvbU1RUlEMOOSSjRo3q5ugAAADA7qS5uTkthTWZdWpl6vYtTpIU1renaXlbp3vUDC9OZemL7z80/KMt9bcV0tzc3BFgr6qq2uqJ6pMmTeqBVwAAAAAAAADArtalE9i35Wc/+1nOOuus7LXXXrn44otz7rnnprq6erOa5ubmXH/99fnCF76Qf/zjH/nqV7+af/qnf9rpwQEAAIDdU92+xRk/sqTj60kH9uEwAAAAAAAAAOxWOh1g35aFCxfmbW97W0pLSzN//vy88pWv3GpddXV1PvnJT+aEE07IpEmTcuaZZ+ahhx7KuHHjujsCAAAAsBsoFApJkobmDT3Sb2OfjX0BAAAAAAAA6P+6HWC/+uqrs3r16nz+85/fZnh9U4cddlg+9alP5eKLL86Xv/zlXHfddd0dAQAAANgNNDU1JUnq56zp8b6TJk3q0Z4AAAAAAAAA9I1uB9j/+7//O0VFRZk+fXqn10ybNi1J8otf/KK72wMAAAC7iZqamiTJrBkVqasu6Xa/huYNqZ+zpqMvAAAAAAAAAP1ftwPsS5Ys6fKaoqKiJMkzzzzT3e0BAACA3URlZWWSpK66JONHdj/A/tK+AAAAAAAAAPR/3Q6wDx8+PM8991zuu+++vO51r+vUmrlz5yZJhg0b1t3tAQAAgN1Mwz/atvu8sL49TcvbUjO8OJWlRTvdBwAAAAAAAID+p9sB9smTJ2f27Nn54he/mFNOOSXjxo3bbv3ChQtz1VVXpaioKMcdd1x3twcAAAB2E9XV1amqrEj9bYUe61lVWZHq6uoe6wcAAAAAAABA3+p2gP2CCy7InDlzsmLFihxzzDG55JJL8u53vzt77733ZnXLli3LjTfemM997nNZvnx5iouLM3PmzO5uDwAAAOwmxowZk4bGR9Pc3LzduoaGhtTX12fWrFmpq6vbbm11dXXGjBnTk2MCAAAAAAAA0Ie6HWA/5phj8m//9m+ZOXNmVqxYkZkzZ+YTn/hEDj744Oy3334pKirKs88+myeeeCLt7e1pb29PknzpS1/KMccc0+0XAAAAAOw+xowZ0+nAeV1dXcaPH7+LJwIAAAAAAABgd9LtAHuSfPzjH09NTU0++tGP5umnn057e3v+9re/5X/+53+SpCO0niQjR47M17/+9cyYMaMntgYAAAAAAAAAAAAAoJ/okQB7kpx66qk58cQTc8cdd+QXv/hF/vznP+f5559PkowYMSKvetWr8sY3vjGnnHJKysrKempbAAAAAAAAAAAAAAD6iR4LsCdJWVlZTj/99Jx++uk92RYAAAB6TaFQSJK0Pt3a7V4be2zsCQAAAAAAAAADXY8G2AEAAKC/a2pqSpIsvm5xj/acNGlSj/UDAAAAAAAAgP5KgB0AAAA2UVNTkyQZfd7olI8q71av1qdbs/i6xR09AQAAAPqjDRs2ZN68eVmyZElGjhyZyZMnp6SkpK/HAgAAoJ8SYAcAAIBNVFZWJknKR5WnsqayR3sCAAAA9Ddz5szJzJkzO35rXfLiAQBXX311ZsyY0XeDAQAA0G91OsC+8aeni4qKsn79+i3u74yX9gIAAAD2LC0tLWlsbNzsXkNDw2afN1VbW5uqqqpemQ0AAADYvjlz5uT000/PiSeemJtuuimHH354HnnkkXzhC1/4/9j7/+C2rvvO/38JIEUA/qWMoSRUaASsXQto6c82pJ3QpOHQ6aw7/YQpGZhJZxuM0x87arNtt9+Wqnfpjif2tCVnmjAdd3anGzX5ONNhS3eXppmt7Gk3TR0bdpwmglNnsQPQrmsEpsXEulnLsk2QogB+/1AAExJ+kbgkDoDnY8ZD6d6jg0O+fHGJe9/3HE1MTGhhYYEidgAAAADAjtVcwL61tbWj7QAAAAAAAMlkUgMDAyX3RSKRy7bFYjH19/fv9bAAAAAAAEAV2WxWk5OTGh0d1dLSkhwOhyRpcHBQS0tLGh8f1/HjxzU2NlbXxHcAAAAAgPZTcwH7Zz/72R1tBwAAAAAACAQCisVikqR//Md/1J/+6Z/q9OnThf1HjhzR7/7u7+ojH/lIoT0AAAAAAGi8aDSqVCql+fn5QvF6nsPh0NTUlIaGhhSNRjUyMtKYQQIAAAAAmhIF7AAAAAAAYM94PB719/drcXFR99xzj0ZHR/XII48ULTl+zz33sOQ4AAAAAACGWV1dlST19fWV3J/fnm8HAAAAAECtHNWbvOOLX/yiEonEXo0FAAAAAAC0oEuXHB8cHNSVV15ZWHJ8dHRUx48fVzabbfRQAQAAAADAj3V3d0uS4vF4yf357fl2AAAAAADUakcF7J/5zGfU19en97znPbrrrrv04IMP6rvf/a62trb2anwAAAAAAKDJ5Zccv/fee8suOf7yyy8rGo02aIQAAAAAAOBSoVBIfr9f09PTyuVyRftyuZxmZmbU29urUCjUoBECAAAAAJpVx07/wdbWls6cOaOlpSUtLS1Jkq6++moNDQ3p9ttv1+23365bbrlFHR077hoAAAAAAGNsnN6ouD93PqdNa1Od3k45DpZ+PrxaH+2CJccBAAAAAGgua2trSiaT+s3f/E3dc889uuOOO/RLv/RLcjqdymaz+uu//mtFo1H9yZ/8iZ5//nkFAgF5PJ5GDxsAAAAA0CR2VGX+la98RdFoVNFoVC+88EJh+xtvvKG/+7u/09/93d9Jklwulz70oQ8VCtpvvfVWud1ue0cOAAAAAMAe8Hq9crldWjmxYkt/LrdLXq/Xlr6a1fYlxwcHBy/bz5LjAAAAAACYJZlMamBgoPD3p556Sk899dRl7X7/939fkhSLxdTf379v4wMAAAAANLcdFbDffffduvvuuyVJZ86cKRSzR6NRPf/888pms5KkTCajJ598Uk8++aQkqbOzU/39/YWC9ttuu01XX321zd8KAAAAAAD18/l8Wk4uy7Ksiu0SiYQikYjm5uYUDAbLtvN6vfL5fHYPs6lsX3J8aWlJDsc7M9az5DgAAAAAAOYJBAKKxWKFv2ezWS0tLWl6elr33nuvxsfH5XQ6i9oDAAAApsmvLLRdJpNRKpWS3++/bGJmVhYC9s+OCti3O3z4sMLhsMLhsCTprbfe0je/+c1CQfu3v/1tra+vS5LOnz+vf/qnf9I//dM/6XOf+5wcDoduuukmffjDH9af/umf2vOdAAAAAABgE5/PV3PReTAYZIaxKpxOp2ZnZzUxMaHx8XFNTU2pr69P8XhcMzMzOnnypBYWFopufAMAAAAAgMbxeDyXXe9wOp2anp7WXXfdxbUQAAAANIVLVxaqhpWFgP2z6wL2S1155ZW68847deedd0qSNjc39Z3vfEfRaFRPPfWUvvnNb+qNN96QdPHp7H/+53/W888/TwE7AAAAAABtIBwOa2FhQZOTkxoaGips7+3t1cLCQuEBeQAAAAAAAAAAAMAOl64sJFVeZZmVhYD9Y1sB+6U6Ozs1NDSkoaEh/af/9J90/vx5feUrX9Gf/Mmf6OWXX9bW1tZevTQAAAAAADBQOBzW2NiYotGoVldX1d3drVAoxMzrAAAAAAAAAAAAsF2plYXyWGUZaKw9K2Df2NjQt771LT311FOKRqP61re+pbfffluSKF4HAAAAAKBNOZ1OjYyMNHoYAAAAAAAAAAAAAIAGsa2A/Y033tAzzzyjaDSqp556SrFYTJubm5LeKVh3Op266aabdNttt+m2225TKBSy6+UBAAAAAAAAAAAAAAAAAAAAAIbbdQH7D37wA0Wj0ULBejweLxSq5796PB598IMfLBSs33rrrbrqqqvsGTkAAAAAAAAAAAAAAAAAAAAAoKnsqID9K1/5SqFo/aWXXipszxese71eDQ8PF2ZX7+/vV0eHbZO8AwAAAEDbWFtbUzKZLNqWyWSUSqXk9/vldruL9gUCAXk8nv0cIgAAAAAAAAAAAAAAwI7tqLr8V3/1V3XgwIFCwfr1119fmF39tttu09GjR/dkkAAAAADQbpLJpAYGBmpuH4vF1N/fv4cjAgAAAAAAAAAAAAAAqN+upkfv6OjQJz7xCU1MTOi2227T4cOH7R4XAAAAALS1QCCgWCxWtC2RSCgSiWhubk7BYPCy9gAAAAAAAAAAAAAAAKbbUQH7u971Lr3++uu6cOGCHn74YT388MOSpJ/8yZ/UbbfdplAopNtuu03XX3/9ngwWAAAAANqFx+MpO6N6MBhktnUAAAAAAAAAAAAAANCUdlTA/qMf/Uj/5//8H0WjUT311FOKRqN69dVX9cILL+iFF17QQw89JEl6z3veo9tuu63w3wc+8AEdOHBgT74BAAAAAAAAAAAAAAAAAAAAAEBz2FEBuyT99E//tH76p39av/EbvyFJSqVShWL2aDSqF154QT/4wQ+0sLCgRx55RJJ05ZVXanBwsDBL++DgoFwul73fCQAAAAAAP7a2tqZkMlm0LZPJKJVKye/3y+12F+0LBALyeDz7OUQAAAAAAAAAAAAAANrSjgvYL+X3++X3+3X33XdLks6cOVNU0P7888/rzTff1Ne+9jX9wz/8w8UX7ejQBz7wAYVCIX3uc5+rdwgAAAAAABRJJpMaGBiouX0sFlN/f/8ejggAAAAAAAAAAAAAAEg2FLBf6vDhw7rrrrt01113SZLefPNNPfPMM4pGo3rqqad06tQpbWxs6Nvf/ra+853vUMAOAAAAALBdIBBQLBYr2pZIJBSJRDQ3N6dgMHhZewAAAAAAAAAAAAAAsPdsL2C/1FVXXaWf+Imf0KuvvqpXXnlFqVRKp0+f1tbW1l6/NAAAAACgTXk8nrIzqgeDQWZbBwAAAAAAAAAAAFpMOp2WZVkV2yQSiaKvlXi9Xvl8PlvGBqCY7QXsW1tb+ud//mdFo9HCf2fOnLmsDQAAAAAAAAAAAAAAAAAAAFCvdDqto4GjWs+s19Q+EolUbeNyu7ScXKaIHdgDdRewb25u6p/+6Z8Kxerf/OY39eabbxb2X1qsfv311ysUCun222/X7bffXu/LAwAAAAAAAAAAAAAAAAAAoI1ZlqX1zLp6jvWo60hX2Xa58zltWpvq9HbKcdBRtt3G6Q2tnFiRZVkUsAN7YMcF7G+99Za++c1v6qmnnlI0GtV3vvMdbWxsFPZvL1g/cOCA+vr6dPvttxeK1ru7u+0ZOQAAAAAAAAAAAAAAAAAAAPBjXUe65Pa7Kze6cX/GAqC8HRWw33zzzXr++eeVy+UK27YXrHd0dOgDH/hAoWA9FArpXe96l32jBQAAAAAAAAAAAAAAAAAAAAA0rR0VsD/33HNFf3e5XPrgBz+o22+/XbfffrtuvfVWXXHFFbYOEAAAAAAAAAAAAAAAlLe2tqZkMlm0LZPJKJVKye/3y+0unoEyEAjI4/Hs5xABAAAAACjYUQH7lVdeqeHh4ULB+i233KKDBw/u1dgAAAAAAAAAAAAAAEAVyWRSAwMDNbePxWLq7+8v/D2dTsuyrIr/JpFIFH2txOv1yufz1TweAAAAAEB72VEB+9mzZ+VwOPZqLAAAAAAAAAAAAAAAYIcCgYBisVjRtkQioUgkorm5OQWDwcva56XTaR0NHNV6Zr2m14pEIlXbuNwuLSeXKWIHAAAAAJS0owJ2itcBAAAAAAAAAAAAADCLx+MpmlF9u2AwWHafJFmWpfXMunqO9ajrSFfZdrnzOW1am+r0dspxsHztwMbpDa2cWJFlWRSwAwAAAABK2lEBOwAAAAAAAAAAAAAAaD1dR7rk9rsrN7pxf8YCAAAAAGhtFLADAAAAAAAAAAAAAAAAAACgaWUyGUkXVwSyQ76ffL8A7EUBOwAAAACg6aXTaVmWVbFNIpEo+lqJ1+tliWsAAAAAANAWKPQBAABAK0ilUpKklRMrtvc7PDxsa58AKGAHAAAAADS5dDqtYOCo1jLrNbWPRCJV23jcLiWSyxSxAwAAAACAlkehDwAAAFqB3++XJPUc61HXka66+9s4vaGVEyuFfgHYiwJ2AAAAADAAM4jv3iuvvKK1zLr+8I4u9b7rQNl2Gxek02/mdOQqh7oqfBp++fUt3ffEul555ZW2+RkCAAAAAID2RaEPAAAAWoHb7ZYkdR3pktvvtr1fAPaigB0AAAAAGiydTuto4KjWbZxB3OV2ablNZhDPzxJ23xP2LHO9vV9mCQMAAAAAAK2OQh8AAAAAwH6jgB0AAAAAGsyyLK1n1qvOcpU7n9OmtalOb6ccBx1l2+VnubIsqy0K2POzec2FXQp6nXX3l7CyiiyuM0sYAAAAAAAwlp2r+dWy2h8AAAAAAHaigB0AAAAADFHTLFc37s9Ymkl+Nq+g16n+7voL2C/tFwAAAAAAwCTpdFrBwFGt2biaHwAAAAAA+4kCdgAAAAAAAAAAAAAAmoRlWVrLrGvu424FD5dfpS9zYUupszn5Dznk7jhQtt3jL17QfU9s7MVQAQAAAAAoiQJ2AAAAAACqWFtbUzKZLNpWaRnuQCAgj8ezL2MDAAAAAADtKXjYUXU1uuHrqveTsLI2jQgAAAAAgNpQwI66ZbNZRaNRra6uqru7W6FQSE5n5Qsl2BtkYRbyMAdZmIMszEEW5iALs5CHOUzLIplMamBgoOS+Ustwx2Ix9ff37/Ww9oVpWbQzsjALeZiDLMxBFuYgC3OQhVnIwxxkYQ6yMAdZmIMszEIe5iALc5CFOcjCHGRhFvIAUAsK2FGXxcVFTU5OKpVKFbb5/X7Nzs4qHA43bmBtiCzMQh7mIAtzkIU5yMIcZGEW8jCHiVkEAgHFYrGibZlMRqlUSn6/X263+7L2rcDELNoVWZiFPMxBFuYgC3OQhTnIwizkYQ6yMAdZmIMszEEWZiEPc5CFOcjCHGRhDrIwC3kAqJWj0QNA81pcXNTExIRuuukmPfvss3rzzTf17LPP6qabbtLExIQWFxcbPcS2QRZmIQ9zkIU5yMIcZGEOsjALeZjD1Cw8Ho/6+/uL/hseHtanPvUpDQ8PX7bP4/E0ZJx2MjWLdkQWZiEPc5CFOcjCHGRhDrIwC3mYgyzMQRbmMCmLjdMbyqQyZf97+4W3dfabZ/X2C29XbLdxemPfxmwnk7IAeZiELMxBFuYgC3OQhVnIA8BOHNja2tpq9CDa3blz53TNNdfojTfe0NVXX93o4dQkm83qhhtu0E033aSlpSU5HO88C5HL5TQ+Pq54PK4XX3yxrZf/6Onp0auvvqr3ve99WllZ2ZPXIAuzkIc5yMIcZGEOsjAHWZjFhDyee+45DQwM6Pr7r5fb767+D6rIpDJ66f6XFIvF1N/fb8MI98dus8j//OY+7lbwcPnntDMXtpQ6m5P/kEPujgNl2yXO5BR5NNN0Pz87mXBc4CKyqM1+fP6WyMMkZGEOsjAHWdSGa7bthzzMQRbmIIvqTP+Mkb8WEjt2hfq768/osRc3NTqfkWysHHC5XVpOLsvn89nX6R7iuDALeZiDLKoz/ZwB+5GFOcjCLCbk0W73XJux7hTYrqPRA0BzikajSqVSmp+fLzrZSJLD4dDU1JSGhoYUjUY1MjLSmEG2CbIwC3mYgyzMQRbmIAtzkIVZyMMcu83C6/XK43Yp8mjGtrF43C55vV7b+ms2HBfmIAuzkIc5yMIcZGEOsjAHWZiFPMxBFuYgC3OYkkX3lQ5pS5qbm1MwGCzbLpFIKBKJVG0nXbxe0yzF65I5WeAi8jAHWZiDLMxBFuYgC7OQB4CdooAdu7K6uipJ6uvrK7k/vz3fDnuHLMxCHuYgC3OQhTnIwhxkYRbyMMdus/D5fEokl2VZVsX+W/kmq904LsxBFmYhD3OQhTnIwhxkYQ6yMAt5mIMszEEW5jAti2AwWNPMkrW2ayamZdHuyMMcZGEOsjAHWZiDLMxCHgB2qvza6kAF3d3dkqR4PF5yf357vh32DlmYhTzMQRbmIAtzkIU5yMIs5GGOerLw+Xzq7++v+F++aD1/k7XSf+1cvC5xXJiELMxCHuYgC3OQhTnIwhxkYRbyMAdZmIMszEEW5iALs5CHOcjCHGRhDrIwB1mYhTwA7NSBra2trUYPot2dO3dO11xzjd544w1dffXVjR5OTbLZrG644QbddNNNWlpaKlr2I5fLaXx8XPF4XC+++KKcTmcDR9pYPT09evXVV/W+971PKysre/IaZGEW8jAHWZiDLMxBFuYgC7OYkMdzzz2ngYEBXX//9XL73XX3l0ll9NL9LykWizXVbFh7nUX+59xsP5dGMOG4wEVkUZv9+PwtkYdJyMIcZGEOsqgN12zbD3mYgyzMQRbVmf4Zo3CN49gV6u+uP6PnVrMaOPF20TWTtbU1JZPJonaVVrcLBALyeDx1j6VROC7MQh7mIIvqTD9nwH5kYQ6yMIsJebTbPddmrDsFtmMGduyK0+nU7OysTp48qfHxcT377LN688039eyzz2p8fFwnT57U5z//eU7++4AszEIe5iALc5CFOcjCHGRhFvIwB1mYgyzMQRZmIQ9zkIU5yMIcZGEOsjALeZiDLMxBFuYwOYtkMqmBgYGi/yKRiCQpEolctu/SYvdmY3IW7Yg8zEEW5iALc5CFOcjCLOQBYKeYgd0AzfwkzOLioiYnJ5VKpQrbent79fnPf17hcLhxAzPEfj1pK5GFacjDHGRhDrIwB1mYgyzM0sg82m02gGr2KgtmYN853qfMQRaV7efnb4k8TEIW5iALc5BFZVyzbV/kYQ6yMAdZlGf6Z4xGzcCeyWSUSqXk9/vldhdfw2r2GdjzOC7MQh7mIIvyTD9nYO+QhTnIwiz15lHP76Htds+1metOAYkCdiM0+xtJNptVNBrV6uqquru7FQqFeFLqx/b7gwpZmIU8zEEW5iALc5CFOcjCLI3Ko90uptRiL7KggH13eJ8yB1mUt9+fvyXyMAlZmIMszEEW5XHNtr2RhznIwhxkUZrpnzGeeeYZ3XbbbZoLuxT01p9Xwsoqsriup59+WsPDw3X31+w4LsxCHuYgi9JMP2fsh3Z96EkyL4t2RhZmqSeP/P28Wm2/79du91ybve4UoIDdALyRtK5GfFABAABA4+zkIm07zwbQKBSwA62Lz98AgFpxzgAA1ML088Vf/dVfKRKJ2N7v3NycPvWpT9neLwC0MtPPGfuhnmJTALhUqfutiURCkUhEc3NzCgaDRfva+Z4rdadodh2NHgAAAAAAtIpkMlnzRVpTL3QAAAAAAADAbH6/X5Jsn4E93y8AADsRCAQUi8WKtlUrNgWAcjweT9l7qMFgkPurQAuhgB0AAAAAbLKTi7RcoN1b5WZn2P51u1ZashQAAACA+XaygpfEZxYAxfLvEUGvU/3d9RewX9ovAAA7QbEpAADYDQrYAQAAAMAmXKQ1R6XZ8Estsc2M+AAAAAD2005W8JL4zAIAAAAAQK02Tm9U3J87n9OmtalOb6ccBx277gdAfShgBwAAAAC0nFKz4VebzRAAAAAA9stOVvDKtwcAAAAAAOV5vV653C6tnFixrU+X2yWv12tbfwDeQQE7AAAAAKDllJsNf3h4uAGjAQAAAIBirOAFAAAAAIC9fD6flpPLsiyrYrtKD5Bfyuv1yufz2TlMAD9GATsAAAAAAAAAAAAAAAAAAACams/nq7ngnAfIgcaigB0AAAAAGiyTyUiSNk5v2NJfvp98vwAAAAAAAACa09rampLJZNG2TCajVColv98vt9tdtC8QCMjj8eznEAE0Gd5XAACACShgBwAAAIAGS6VSkqSVEyu29zs8PGxrnwAAAAAAAAD2TzKZ1MDAQM3tY7EYM4kCqIj3FQAAYAIK2AEAAACgwfx+vySp51iPuo501d3fxukNrZxYKfQLAAAAAAAAoDkFAgHFYrGibYlEQpFIRHNzcwoGg5e1B4BK6n1fSafTsiyr4mskEomir5V4vV75fL5ahg6gBfGeArQvCtgBAAAAoMHyy3F2HemS2++u0nrn/QIAAAAAAABoTh6Pp+zMx8FgkFmRAexYPe8r6XRaRwNHtZ5Zr+m1IpFI1TYut0vLyWUKToE2lE6nFQwc1ZqN7yket0sJ3lOApkABOwAAAAAAAAAAAAAAAACgIsuytJ5Zr7qibO58TpvWpjq9nXIcdJRtl19R1rIsik2BNmRZltYy65r7uFvBw+XfKzIXtpQ6m5P/kEPujgNl2yXO5BR5NMN7CtAkKGAHAAAAAAAAAAAAAKDJJM7kKu7fSaEPAAA7UdOKsjfuz1gANL/gYYf6u50V2wxft0+DAbBvKGAHAAAAAAAAAAAAAKBJeL1eedwuRR7N2Nanx+2S1+u1rT8AAAAAACqhgB07tra2pmQyWbQtk8kolUrJ7/fL7S5+wjIQCMjj8eznENsGWZiFPMxBFuYgC3OQhVkuzYMsGodjwxxkYQ6yMAdZmGUneZDF3uLYMAdZmIMszEEWZuH8bQ6ODXOQhTnqycLn8ymRXJZlWRVfI5FIKBKJaG5uTsFgsGJbr9crn8+3i++k+XFcmIU8zEEW5iALc5CFOcjCLOQBYDdaooD9+9//vv7sz/5Mjz32mF555RV1dXXp+uuv1yc/+Un95m/+Zl1vdolEQl//+tf1ne98R//7f/9vvfbaa7IsS06nU+95z3t0yy236Jd+6Zf0C7/wCzpwoPyya60kmUxqYGCg5vaxWEz9/f17OKL2RRZmIQ9zkIU5yMIcZGGWneRBFnuLY8McZGEOsjAHWZiF87c5ODbMQRbmIAtzkIVZOH+bg2PDHGRhjnqz8Pl8NRecB4NBcqyA48Is5GEOsjAHWZiDLMxBFmYhDwC70fQF7H/7t3+rSCSic+fOFbatra3p1KlTOnXqlL70pS/pscce0w033LCr/v/4j/9Yf/VXf1Vy38svv6yXX35Z//2//3d9+MMf1iOPPKJrr712V6/TTAKBgGKxWNG2Sk/vBwKB/RxeWyELs5CHOcjCHGRhDrIwy6V5kEXjcGyYgyzMQRbmIAuz7CQPsthbHBvmIAtzkIU5yMIsnL/NwbFhDrIwB1mYgyzMQh7mIAtz1JtFOp2uadWO7V+rtWtXHBfmIAuzkAeA3WjqAvbvfve7+sVf/EVlMhldeeWVmpqa0h133KFMJqOHH35Yf/EXf6EXXnhBH/3oR3Xq1CldddVVO36Njo4OfehDH9Lw8LBuuukmvfe979Xhw4f1+uuvK5lM6otf/KLi8biefPJJfexjH9PTTz8th8OxB99t49Tyi2wlly4P0s7Lz9mhnjzIwl4cG+YgC3OQhTnIwiycv81h+rGxcXqj4v7c+Zw2rU11ejvlOFj+c0e1fkxgehbthCzMQRZm4fxtDo4Nc5CFOcjCHGRhFs7f5uDYMAdZmIMszEEWZrEzD7KoD8eGOezMYnV1VZ+YuEuZ9druG0QikV2/biviuDAHWZjFrjza/aEYoN0d2Nra2mr0IHbr9ttvVzQaVUdHh5566indeuutRfs/97nP6Z577pEkffazn9X999+/49e4cOGCOjrK1/lns1l98pOf1OLioiTpq1/9qn7hF35hR69x7tw5XXPNNXrjjTd09dVX73iMeymdTutoIKj1zJptfbrcHi0nE23xS0BPT49effVVve9979PKykrd/dmdRztlYTeODXOQhTnIwhxkYRbO3+Zo1LHx3HPPaWBgoOJSeBfHdlTrmXUbx+bScnLZyP9XeJ8yB1mYgyzqw+fv1sWxYQ6yMAdZ1MfOcwZZmKUVzt+1fH5sBhwb5iCL3TP9M4Zk33WpdtMqx0WrZNsK5+9W0SrHRiM0wzlDkuY+7lbwcPmJcTIXtpQ6m5P/kEPujgNl2y0lN/WHT51Xz7EedR3pqntcG6c3tHJiRU8//bSGh4fr7s9OHBfmIAuz7EUesWNXqL/bWXc/z61mNXDi7aq/I7XK71Im150CtWjaGdi//e1vKxqNSpJ+7dd+7bLidUmanJzUQw89pEQioQcffFB/8Ad/oM7Ozh29TqXidUlyOp36/d///UIBezQa3XEBu8ksy9J6Zk3Xjk6q89rryrbbunBeF974oTqueY8OdBws227zR6/oRydnZVkWvwDsQi15kMX+4NgwB1mYgyzMQRZm4fxtDpOPDZ/Pp+Xkck1LeJZbau9SJs8cYXIW7YYszEEWZrEzD7KoD8eGOcjCHGRhDrIwC+dvc3BsmIMszEEW5iALs3D+NgfHhjnsziLzr6f0RnROwcOOqsWhw+VfruDxFzclSSsn6i/W3y6VShlXwM5xYQ6yMIudeeTfowC0p6YtYF9aWir8+Vd+5VdKtnE4HLr77rs1NTWls2fP6oknntCdd95p+1iuuuqqwp/X1+2bMdEknddep6733lC5Uc9P7c9gUD0Pstg3HBvmIAtzkIU5yMIsnL/NYeqx4fP5ar5IFgwGm3o2gDxTs2hHZGEOsjALeZiDLMxBFuYgC3OQhVnIwxxkYQ6yMAdZmIMszEIe5iALc9iVxeaPXrFpRBcdueri7Ox2z8Du9/vr7muvcFyYgyzMYkcedr9HAWguTVvA/vTTT0uSrrjiCg0MDJRt9+EPf7jw52eeeWZPCtgffvjhwp8DgYDt/QMAAAAAAAAAAAAA0CjZbFbRaFSrq6vq7u5WKBSS01l5Jl8AQOvp6rhYwN51pEtuv9u2ft1u+/oCAADNoWkL2BOJhCTphhtuUEdH+W9je0F5/t/YwbIsvfjii/rSl76khx56SJLk9Xr1qU99yrbXAAAAAAAAAAAAAACgkRYXFzU5OalUKlXY5vf7NTs7q3A43LiBAQAAAACaVlMWsK+vr8uyLElST09Pxbbvete7dMUVV+jtt9/WK6/Ut+TEyMiInnzyyZL7vF6vHn30UR06dKhqPxsbG9rY2Cj8/dy5c3WNCwAAAAAAAAAAAADQvtbW1pRMJou25Sd4KzXRWyAQkMfjqdrv4uKiJiYmNDo6qvn5efX19Skej2t6eloTExNaWFigiB0AAAAAsGNNWcD+5ptvFv585ZVXVm2fL2B/66239mQ8//E//kfdd9998nq9NbWfmZnRAw88sCdjAQAAALC/qq30VOlG4XZer1c+n8+2cQEAAAAAAKB9JJNJDQwMlNwXiUQu2xaLxdTf31+xz2w2q8nJSY2OjmppaUkOh0OSNDg4qKWlJY2Pj+v48eMaGxuT0+ms/5sAAAAAALSNpixgX19fL/z54MGDVdt3dXVJkjKZTF2v+9BDD+ntt9/W1taWzp49q1OnTunP//zP9V/+y3/Rv/7rv+pLX/qS3vOe91TtZ2pqSr/3e79X+Pu5c+d03XXX1TU2AAAAAPsr+9brchwofQOwlGrtPG6XEsllitgBAAAAAACwY4FAQLFYrGhbJpNRKpWS3++X2+2+rH010WhUqVRK8/PzheL1PIfDoampKQ0NDSkajWpkZKTu7wEAAADtZSu7KUlKWFlb+sv3U2+dKID90ZQF7C6Xq/Dn8+fPV22/sbEhSZd9KN+p3t7eor+HQiF95jOf0Sc+8QmdPHlSt9xyi775zW+qp6enYj9dXV2FonrT5d/MN3/0ii395fvhJLE7duZBFvXh2DAHWZiDLMxBFmbh/G0Ou4+N86+9pNyW9OWPufQz3eVnmMpc2FLqbE7+Qw65Ow6UbJM4k1Pk0Ywsy2qLAnbep8xBFuYgC7Nw/jYHx4Y5yMIcZGEOsjCL6efvdDoty7Iqtql1BS/J7FW8ODbMQRbm2I8sPB5PyRnVh4eHd/06q6urkqS+vr6S+/Pb8+2aAceFWUw/f7cTjg1z2J3FhTd+eLHfC1u29NdOOC7MQRZmsTOP8z94UZIUWVyv0nJnUqlUXb8HA9gfTVnAftVVVxX+/NZbb1Vt//bbb0uSrrzyStvH4nK59NBDD+n973+/XnnlFd1zzz3667/+a9tfp1FSqZQk6UcnZ23vl5PEzu1FHmSxOxwb5iALc5CFOcjCLJy/zbFXx0ZXp9RfoYBdkoZZcKkI71PmIAtzkIVZOH+bg2PDHGRhDrIwB1mYxeTzdzqd1tHAUa1narshX8tKXy63S8uGruLFsWEOsjBHs2bR3d0tSYrH4xocHLxsfzweL2rXDJo1i1Zl8vm73XBsmGPPsjib417FDnFcmIMszLIXefzhHQf1//5kZ939JKysIovr8vv99Q8KwJ5rygJ2l8ula6+9Vj/60Y+0srJSse3rr79eKGC/7rq9+U3M6/VqeHhYX/va1/TVr35Vm5ub6uys/w3VBPk382tHJ9V5bf0/v80fvaIfnZzd05PE2tqakslk0bZqy+N5PJ49G4+d7MxjP7JoZc14bLQqsjAHWZiDLMzC+dscdh8bmX89pTeic/IfclRvjCK8T5mDLMxBFmbh/G0Ojg1zkIU5yMIcZGEWk8/flmVpPbOunmM96jpSfoXe3PmcNq1NdXo75ThY/rPmxukNrZxYMXYVL44Nc5CFOZo1i1AoJL/fr+npaS0tLcnheOe9KZfLaWZmRr29vQqFQns6Djs1QxbttGqHyefvdtMMx0a74F6GOTguzEEWZrEzj/x71B29HVUnDNuJS+sDAZipKQvYJemnfuqnFI1G9S//8i+6cOGCOjpKfyvbC5mDweCejefw4cOSLhZPW5bVVE+ZV5J/M++89jp1vfcG2/vdC8lkUgMDAzW3j8ViJZfTM9Fe5MEJe3ea8dhoVWRhDrIwB1mYhfO3OezOIr8snrvjQN19tRvep8xBFuYgC7Nw/jYHx4Y5yMIcZGEOsjBLM5y/u450ye2v0ueNtr5kQ3BsmIMszNGsWTidTs3OzmpiYkLj4+OamppSX1+f4vG4ZmZmdPLkSS0sLMjptK/YaK+ZnkW7rdrRDOfvdmH6sdFOuJdhDo4Lc5CFWezMg/cooL01bQH7bbfdpmg0qrfffluxWEwf+tCHSrZ78sknC3/eyyU/Xn311cKfr7zyyj17HVQXCAQUi8WKtiUSCUUiEc3NzV32IEMgENjP4QEAAAAAAAAAAABAUwiHw1pYWNDk5KSGhoYK23t7e7WwsKBwONzA0bWedlu1AwAAQJISZ3IV92cubCl1Nif/IUfFYvdq/QAwS9MWsI+Pj2tmZkaS9NBDD5UsYM/lcvrLv/xLSdKhQ4d0xx137MlYVlZW9Oyzz0qS3v/+9+uqq67ak9dBbTweT9kZ1YPBYNPMtg4AAAAAAAAAAAAAjRYOhzU2NqZoNKrV1VV1d3crFAo11czrzaZdVu0A0Lw2Tm9U3L+TB20AtC9H15VyHJAij2Zs69Pjdsnr9drWH4C907QF7B/84AcVCoUUjUb15S9/WZ/+9Kd16623FrWZnZ1VIpGQJP3O7/yOOjs7i/Z/4xvfKBS1f/rTn9ZXvvKVov0vvPCCVlZW9JGPfKTsON544w390i/9ks6fPy9Juvvuu+v91oyUX66jnK0L53XhjR+q45r36EDHwV33g9pU+jmSxf7i2DAHWZiDLMxBFmbh/G0Ou46NC2/80O6htR3ep8xBFuYgC7PYkQdZ2INjwxxkYQ6yMAdZmIXztzk4NsxBFuZo5iycTqdGRkb2/XX3SjNn0Yo4f5uDY8Mcpt7LOOQ6IB2QVk6s2Nany/BiU44Lc5CFWezII7fxlnJb0tzcnILBYNm+EomEIpFI1XaS5PV6WXkGaBJNW8AuSQ8++KCGh4eVyWR055136t5779Udd9yhTCajhx9+WCdOnJAk3XjjjZqcnNxx/6dPn9bP/uzP6t/8m3+j8fFxDQwM6L3vfa86Ojr0gx/8QM8884y+/OUv6wc/+IEkqa+vT//5P/9nW7/HRvN6vXK5PfrRyVnb+nS5PUb/4mkyu/Mgi93j2DAHWZiDLMxBFmbh/G2OvTg2JClhZW3rI5Oxb3YBk/E+ZQ6yMAdZmIXztzk4NsxBFuYgC3OQhVk4f5uDY8McZGEOsjAHWZiF87c5ODbMsVf3MuzSfaVDapNiU44Lc5CFWfbi/B0KhWp6HwgGg+rv77fldQE0XlMXsH/gAx/Q3/zN3ygSiejcuXO69957L2tz44036rHHHtNVV12169d5/vnn9fzzz1ds89GPflQPPfSQPB7Prl/HRD6fT8vJhCzLqtiuFX7xbAa15EEW+4NjwxxkYQ6yMAdZmIXztznsPjYef/xx3XfffYosrts2xlQqpeHhYdv6MxXvU+YgC3OQhVnszoMsdo9jwxxkYQ6yMAdZmIXztzk4NsxBFuYgC3OQhVk4f5uDY8McdmeRb2e3WotIm7nYlOPCHGRhFs7fAOzS1AXskvSxj31M3/ve9/Tggw/qscce08rKig4ePKgbbrhBn/jEJ/Rbv/Vbuy4qHx4e1t///d/rH/7hH3Tq1CmtrKzohz/8odbW1nT11Vert7dXg4OD+nf/7t+1dJGJz+er+STRzL94Nota8yCLvcexYQ6yMAdZmIMszML52xx2Hhv52dLnwi4Fvc66xpWwsoosrsvv99fVTzPhfcocZGEOsjALeZiDLMxBFuYgC3OQhVnIwxxkYQ6yMAdZmIMszEIe5iALc+zFvQw7VpPd3k+7rCjb7MdFNptVNBrV6uqquru7FQqF5HTWd0+rUZo9i1ZDHgDs0PQF7JL0/ve/X1/4whf0hS98YUf/bmRkRFtbW2X3d3Z26s4779Sdd95Z7xCxh9LpdE1PdG3/WglPdQEAAKAWbrdbkhT0OtXfbc/FvnyfAAAAAIDWkS/u2Ti9YUt/+X7apWgIAACgmlYq0rVbKpWSJFtXk83328qTfbaCxcVFTU5OFv4fkCS/36/Z2VmFw+HGDQwAgB9riQJ2tK90Oq2jgaNaz9T2i3YtyyK53C4tJ5cpYgcAAAAAAAAAAHXLF4ysnFixvV+KhgAAQLujSLey/MqvdqwmK7XnirLNaHFxURMTExodHdX8/Lz6+voUj8c1PT2tiYkJLSwscHwAABqOAnY0NcuytJ5ZV8+xHnUd6SrbLnc+p01rU53eTjkOOsq22zi9oZUTK7IsiwJ2AAAAAAAAoImtra0pmUwWbctkMkqlUvL7/ZetfhMIBOTxePZziADaRL64p9q9jFrl72VQNAQAANodRbrV7cVqstv7hXmy2awmJyc1OjqqpaUlORwX66QGBwe1tLSk8fFxHT9+XGNjY6xUAABoKArY0RK6jnTJ7a/yy/GN+zMWAAAAAAAAAI2XTCY1MDBQc/tYLKb+/v49HBGAZlbPQzH5fTXdy9gBioYAAEA7o0h3ZxJnchX3Zy5sKXU2J/8hh9wdB3bdDxovGo0qlUppfn6+cFzkORwOTU1NaWhoSNFoVCMjI40ZJLCPSn2eTyQSRV+3Y5ILYP9QwA4AAACggFkqAQAA0CoCgYBisVjRtkQioUgkorm5OQWDwcvaA0A5PBQDAABgFop0a+P1euVxuxR5NGNbnx63S16v17b+YK/V1VVJUl9fX8n9+e35dkCrq/R5PhKJXLaNz/PA/qGAHQAAAEABN+QBAADQKjweT9nfVYPBIL/HAtgRHooBAAAwC0W6tfH5fEokl2VZVsV2lX63vZTX65XP57NzmLBRd3e3JCkej2twcPCy/fF4vKgd0OpKfZ6vNoEbgP1BATuaWiZz8QnRjdMbtvSX7yffLwAAQLvhhjwAAAAAAJfjoRgAAMAKpmahSLd2Pp+v5oJzfrdtfqFQSH6/X9PT01paWipaoSCXy2lmZka9vb0KhUINHCWwf8p9nh8eHm7AaABsRwE7mloqlZIkrZxYsb1fTlIAAKAdcUMeAAAAAAAAABqDCdzMxgqmZqFIFyjN6XRqdnZWExMTGh8f19TUlPr6+hSPxzUzM6OTJ09qYWFBTqez0UMFALQ5CtixY6WeKk4kEkVft9vLp4r9fr8kqedYj7qOdNXd38bpDa2cWCn0azqTsgB5mIQszEEW5iALs1yaB1k0DseGOcjCHGRhDrIwy07yIIu9xbFhDrIwB1mYgyzMwvnbHBwb5iALc5CFOUzKggnczMqj1Gu10wqmJmchtVeRrulZtJNmySIcDmthYUGTk5MaGhoqbO/t7dXCwoLC4fC+j8luzZJFuyAPALtBATt2rNJTxZFI5LJte/lUcX4Jrq4jXXL73VVa77xf05mUBcjDJGRhDrIwB1mYpVweZLH/ODbMQRbmIAtzkIVZdpIHWewtjg1zkIU5yMIcZGEW087f1WbTzZ3PadPaVKe3U46DjrLt7JqVdz9xbJiDLMxBFuYwKYt2n8BNMiuPS7XbCqYmZ5HXDkW6UnNk0S6aKYtwOKyxsTFFo1Gtrq6qu7tboVCoJR7qkJori3ZgZx4UwwPtgwJ27Fipp4ozmYxSqZT8fv9lxd/N/lSxycjCLORhDrIwB1mYgyzMcmkeZNE4HBvmIAtzkIU5yMIsO8mDLPYWx4Y5TMsinU7LsqyKbSrd7LqU1+uVz+ezZWx7zbQs2hlZmMWU87fX65XL7bJ1Nl2X2yWv12tbf3uNY8McZGEOsjCH3VmUKrqq1l++6KrdJ3CTODZM0ixZtHqRrtQ8WbSDZsvC6XRqZGSkoWPYK82WRauzMw8eTgDax4Gtra2tRg+i3Z07d07XXHON3njjDV199dWNHs6+q+cD/HPPPaeBgQFdf//1tnyAz6Qyeun+l2w7sfX09OjVV1/V+973Pq2s2LvMGwAAwH7J/87Fh/9ihZ/LsSvU313fhfDnVrMaOPF21Z8xWQBAaXz+BpBOp3U0cFTrmXXb+nS5XVpOLjdNETtqwzkDdtrJZ7RaH7KJRCKam5tTMBis2LaZHrIBmhHnC9Qjf36o1fbziOn3v3E5rtmiVc4Zdv+/zLEBYLfqqSVsN+1ed4rmxwzsaLhKT02Vwi+3AAAAAAAAALazLEvrmXX1HOtR15Gusu1y53PatDbV6e2U46CjbLuN0xtaObEiy7IoEAVgC5/PV/P7STAY5D4IADSxUjOQVnpIiRlhAQAA3uHxeEp+Jh4eHm7AaADsJQrY0XB2fIDfOL1R8TV2cmMKAACgndQ6A9z2r5W04wxwiTO5ivszF7aUOpuT/5BD7o4Du+oDAAAAtek60lV9psob92csAAAAaE/liq4kHlICAAAAgDwK2NFw9XyA93q9crldWjlh3zJMLrdLXq/Xtv4AAABMlU6ndTRwVOuZ9ZraRyKRqm1cbpeWk8ttUcTu9XrlcbsUeTRjS38efg8FAAAAAGPwwDcAAAAAAACwdyhgR1Pz+XxaTi7XdBG53Izul+IiMgAAaBeWZWk9s66eYz3qOtJVtt1OVrNZObEiy7La4vcpn8+nhI2/i/J7KAAAAACYIZ1OKxg4qjUbH/j2uF1KtMkD3wCA+rECOQC0h7W1NSWTyaJtmUxGqVRKfr9fbnfxKnOBQEAej2c/hwgAwJ6hgB1Nz+fz1XzBlyXZAAAALtd1pEtuv7tyoxv3ZyzNht9FAQAAAKD1WJaltcy65j7uVvBw+aLAzIUtpc7m5D/kkLvjQNl2iTM5RR7NFD3wXapQpdKM7hSqAEB7YAVyAGgvyWRSAwMDNbePxWI7uteUzWYVjUa1urqq7u5uhUIhOZ3O3QwVAADbUcAOAAAAAAAAAAAAXCJ42KH+7srFHcPX7a7vSoUqpWZ032mhCgCgObECOQC0l0AgoFgsVrSt0nt8IBCoue/FxUVNTk4qlUoVtvn9fs3OziocDtc1bgAA7EABO/ZdOp2u6QP39q+V8IEbAABgdzKZjCT7lpHN95PvF/VhNj4AAAAAaF2lClUymYxSqZT8fr/cbvdl7QEA7YFVHwGgfXg8nrLv4/W8xy8uLmpiYkKjo6Oan59XX1+f4vG4pqenNTExoYWFBYrYAQANRwE79lU6nVYwcFRrmfWa2peaZeRSHrdLieQyy24CAADsUH7GBTuXo833Ozw8bGuf7YjZ+AAAAACgdZUrVOHzNAAAAPYadTWtLZvNanJyUqOjo1paWpLD4ZAkDQ4OamlpSePj4zp+/LjGxsbkdFZecQoAgL1EATv2lWVZWsusa+7jbgUPO8q2y1zYUupsTv5DDrk7DpRtlziTU+TRjCzLKhSwU+gDAABQG7/fL0nqOdajriNddfe3cXpDKydWCv22o51c9K12wZfZ+AAAAAAAAADzsQI5gGZDXU1ri0ajSqVSmp+fLxSv5zkcDk1NTWloaEjRaFQjIyONGSQAAKKAHQ0SPOxQf3flp/iGr9td3xT6AAAA1Cb/e1HXkS65/e4qrXfebzvayUXfahd8mY0PAAAAAAAAMNt+rEAOAHajrqa1ra6uSpL6+vpK7s9vz7cDAKBRKGBH3bLZrKLRqFZXV9Xd3a1QKNTQJWbaudDHtCzaHXmYgyzMQRbmIAtzkIVZ6s1jJxd9ueBbGceGOcjCHGRhFvIwB1mYw+4syHb3+NmZgyzMUmsemUxGkpSwsra8br6ffL/g2DAJWZiDLMyxkyz2YwXydsexYQ6yMEe9WbRzXY3dTDwuuru7JUnxeFyDg4OX7Y/H40XtWoVpWZRatbnagyKVVm5uNqblAcBMFLCjLouLi5qcnFQqlSps8/v9mp2dVTgcbtzA2hBZmIU8zEEW5iALc5CFOcjCLHbkwUVfe3BsmIMszEEWZiEPc5CFOezOgmx3j5+dOcjCLDvJI98msljbbLq1SqVSfD4Ux4ZJyMIcZGGO3WaxlyuQtzOODXOQhTnIwhymZhEKheT3+zU9Pa2lpSU5HO88YJXL5TQzM6Pe3l6FQqGGjdFuJmZRadXmUqqt3NxMTMwDgJnKPwIMVLG4uKiJiQnddNNNevbZZ/Xmm2/q2Wef1U033aSJiQktLi5e9m+2z1ry3Gr9/zFryUW7yQJ7hzzMQRbmIAtzkIU5yMIs5GEOsjAHWZiDLMxCHuYgC3PYnQXZ7h4/O3OQhVl2moff75ckzYVdih27ou7/5sKuon7bGceGOcjCHGRhDrIwiwl5pNNpPffccxX/SyQSkqREIlG1bTqd3vMx7wUTssBFpmaxtra2o2NjbW2tIeO0k6lZSJLT6dTs7KxOnjyp8fHxovGNj4/r5MmT+vznP98ys2GbmkV+1ebt/83NzUmS5ubmLtvXKis3m5oHADMd2Nra2mr0INrduXPndM011+iNN97Q1Vdf3ejh1CSbzeqGG27QTTfdVPJpvfHxccXjcb344otFv/D81V/9lSKRiO3jmZub06c+9Snb+61XT0+PXn31Vb3vfe/TysrKnrzGbrPA3iAPc5CFOcjCHGRhDlOyeO655zQwMKDr779ebr+7+j+oIpPK6KX7X2q6GQJMyQNkYRKyMAdZ1GY/Pn9L5GESsjCH3Vnstj9+t+W4qBXXbNvPbvLIv6fEjl1RdTbdWjy3mtXAibeb6j1lL3BsmIMsquMzRvup9/fQ/T5nFF63Rc8tJhwb6XRaRwNHtZ6xb0UWl9ul5eSyfD6fbX3uNROyMB3njHfek2rV7O9de52FXe/xpWbB7u3t1ec///mWmQXb5OOiFM7fZuXRCpqx7hTYrqPRA0BzikajSqVSmp+fLzrZSJLD4dDU1JSGhoYUjUY1MjJS2Ld91pKgt/4TUcLKKrK43tazluw2C+wN8jAHWZiDLMxBFuawM4u1tTUlk8mibZlMRqlUSn6/X253cfFOIBCQx+Ox5ftoFRwb5iALc5CFOcjCLORhDrIwh91ZkO3u8bMzB1mYhTzMQRbmIAtzkIU5yMIsJuRhWZbWM+vqOdajriNdZdvlzue0aW2q09spx0FH2XYbpze0cmJFlmU1VQG7CVngIpOzyM80vV21e1XNzOQstguHwxobG1M0GtXq6qq6u7sVCoVaqnC4WbJoF+QBYKcoYMeurK6uSpL6+vpK7s9vz7fLK/xSunWgYv+ZC1tKnc3Jf8ghd0eFtj/u59JfdtvJbrPA3iAPc5CFOcjCHGRhDjuzSCaTbTWrxV7g2DAHWZiDLMxBFmYhD3OQhTnszoJsd4+fnTnIwizkYQ6yMAdZmIMszLHbLDKZjKSLE6/ZId9Pvt92ZdKx0XWkq/oqTzfu+TAaxqQs2p3JWXg8npL3noaHh/d9LPvBlCzW1tb0xBNP6OzZs4VtGxsbOn36dMn2L730kp5++umibUeOHFFX1zsP6Rw6dEh33HFH00yGZUoWuIg8AOwUBezYle7ubklSPB7X4ODgZfvj8XhRuzyv1yuP26XIo/Z94Pa4XfJ6vbb112x2mwX2BnmYgyzMQRbmIAtz1JNFOp2WZVmFv2cyGc3NzRW1efnll3XffffpD//wD9Xb21u0L5PJ6LnnnpMkJRKJ+r6RFsGxYQ6yMAdZmIMszEIe5iALc9idBdnuHj87c5CFWcjDHGRhDrIwB1mYY7dZpFIpSVJkcd3W8aRSqZYt/KwFx4Y5yMIcZGEOU7J44oknNDo6anu/J0+e1Ec/+lHb+90LpmSBi8gDwE4d2Nra2mr0INrduXPndM011+iNN97Q1Vdf3ejh1CSbzeqGG27QTTfdpKWlpaJlP3K5nMbHxxWPx/Xiiy9etvTMpUVXpSQSCUUiEc3NzSkYDFZs6/V6jV1iq6enR6+++qre9773aWVlZU9eo54sYD/yMAdZmIMszNFMWWSz2ZZezm63WaTTaQUDR7WWsfdmyPX3X199BpkaZFIZvXT/S003y3szHRutjizMQRbmIIva7Mfnb4k8TEIW5rA7i93299xzz2lgYKCtf7fluKgN12zbz27yyL+nxI5dof7u+jN6bjWrgRNvN9V7yl7g2DAHWVTHZ4z2s9ssnnnmGd12222aC7sU9NafUcLKKrK4rqeffrpiAXvhXNWi55a9OjZ2cu+BzxgX8T5VHeeM9rPXWdT6Hp8/B707/G4d9B68+PoXcrpw9kLNr9VxqEOOjovjP2+d12uLr1U9B5mk2Y4Lzt9m5dEKmrHuFNiOGdixK06nU7Ozs5qYmND4+LimpqbU19eneDyumZkZnTx5UgsLCyVPNj6fr+aC82Aw2JInbDvVkwXsRx7mIAtzkIU5miWLxcVFTU5OFmaukSS/36/Z2VmFw+HGDcxGu83CsiytZdY193G3gocdZXqXMhe2lDqbk/+QQ+6OA2XbPf7iBd33xIZt31ezapZjox2QhTnIwhxkYRbyMAdZmMPuLHbbXyZzccXHjdP2/H6b7yffbzPguDAHWZiFPMxBFuYgC3OQhTl2m4XbfbGwOeh12vLQ06X9tqu9ODba4d7DXuB9yhxkYY56sqh10s/tX8vJv59d9f9cZduDNq8tvtZU5yCOC7OQB4CdooAduxYOh7WwsKDJyUkNDQ0Vtvf29mphYYEPefuILMxCHuYgC3OQhTlMz2JxcVETExMaHR3V/Px84QPt9PS0JiYmjBijXerJInjYUfVmyPB11ceQsLI1j7fVmX5stBOyMAdZmIMszEIe5iALc9idxW76y9+0XTlh72x3qVSqaWYdkzguTEIWZiEPc5CFOcjCHGRhDrIwi515tNO9h73AsWEOsjDHbrLY6UrLkUikpnbbH+bPnc9p09qs6d9JUqe3U46Djsv6aSamHBd2PpwgSV6vt+YJYk1iSh4AmsOBra2trUYPot01+1IOO1lmq1atsmTKfi0VlbcXWWD3yMMcZGEOsjCHiVm065Jiu1my1K4lzP/qf59XZHG97ZdA3c7EY6NdkYU5yMIcZFHefn/+lsjDJGRhDruz2El/+WWze471qOtI165fM2/j9IZWTqw01bLZ23FclMc12/ZWax52f/5+bjWrgRNvN/XnZbtxbJiDLErjM0Z7a+Q121rPGa1yP70W9R4bu733kP8Zc/38HbxPlcY5o73t5pxh10rL0e9f0P/vf21INlb+udwuLSeXm7JwupHHRTqd1tHAUa3X+HBCLZo5C4n3qf3S7HWnADOwo25Op1MjIyONHgZEFqYhD3OQhTnIwhwmZhGNRpVKpTQ/P190AVmSHA6HpqamNDQ0pGg0atzY62FiFu2MPMxBFuYgC3OQhVnIwxxkYQ67s9hJf/nlrbuOdNlSXHJpv82G48IcZGGWneaROJOruL/WwpJq/bQjjg1zkIU5yMIcZGGWevPY7b2HTCYjyb4ZifP95PttRhwb5iALc+wmC7tWWpYkbW1obm5OwWBQ0sX3mPwqdbXw+/1F1z6addZvqbHHhWVZWs+sV51YIT9D/vaZ70vJT6xgWRZ5AGhpFLCj4dbW1pRMJou2VVoyJRAIyOPx1Nw/T3QBANAcVldXJUl9fX0l9+e359sBAAAAaC2lrhPmb7xeekNV2vl1QgColdfrlcftUuRR+wrMPG6XvF6vbf0BAMzCQ0/m2u29h3wB6MoJe2fUTqVSTbnKEwBzBYPBopUdeI9pnJomVrhxf8YCAM2AAnY0XDKZ1MDAQMl9kUjksm07WVJrcXFRk5OTRU8X+v1+zc7OKhwO72q8AABgb3R3d0uS4vG4BgcHL9sfj8eL2gEAAABoLZWuE5ayk+uEALATPp9PieSyLMuq2C6RSCgSiRTNeFhOM89kCAAoj4eezLf93sMtt9xy2eR35e49+P1+Sao6m26t8rPp5vsFAAAA2h0F7Gi4QCCgWCxWtK3azEq1WFxc1MTEhEZHRzU/P6++vj7F43FNT09rYmJCCwsLFLEDAGCQUCgkv9+v6elpLS0tFS3lmcvlNDMzo97eXoVCoQaOEgAAAMBeKXWdsFJxaKnrhBunNyq+xk6WagbQ3nw+X80F55fOeAgAaB889GS+/L2H3/7t35ZlWZdNfuf1ekvee8jXKdQ0m+4OXFr/AAAwAysDAsD+o4AdDefxeEpe2K1nSZtsNqvJyUmNjo4WFcANDg5qaWlJ4+PjOn78uMbGxuR0Onf9OgAAwD5Op1Ozs7OamJjQ+Pi4pqamCg+gzczM6OTJk1pYWODcvQco8gEAAEAjpNPpqoU+lWy/qbi6uqouV5dWTqzYMTRJkouZLwEAAFADHnoym9Pp1Cc+8Ql97nOf03ve8x6dOHFCo6OjOnnypO677z6dOnVKv//7v8+9BwBoc6wMCAD7jwJ2tKRoNKpUKqX5+fmi2VslyeFwaGpqSkNDQ4pGoxoZGWnMIAEAwGXC4bAWFhY0OTmpoaGhwvbe3l5WT9kDh1wHpAOiyAcAAAD7Lp1OKxg4qrXMek3tI5FI1Tauri6dPHlS3d3dZdsw8yUAAADQXrLZrP7H//gfuvnmm3XmzBkdO3assM/v9+vmm2/WwsKCZmZmKGIHgDZmx8qAAICdoYAdLWl1dVWS1NfXV3J/fnu+HQAAMEc4HNbY2Jii0ahWV1fV3d2tUCjEhWNdXKZOkhJW1pb+zq5vSVvSl7/8Zf3Mz/xM2XYU+QAAAMBulmVpLbOuuY+7FTxcfpWfzIUtpc7m5D/kkLvjQNl2iTM5RR7NqLu7u6bZr5j5EgAAAGgP2ye/u+WWWy679/Dtb3+bye8AtKxsNss91xp5PJ6y14q4jgQAe4MCdrSk/CxL8Xhcg4ODl+2Px+NF7QAAgFmcTicXiktIpVKSpMhibbNU1qqrq4siHwAAAOyr/MOZOrBVsZ2744CC3hpurP64n0K/AAAAQItYW1tTMpks2pZIJIq+bhcIBOTxePZlbM1g++R3pe49MPnd/in1/3Imk1EqlZLf75fb7S7aV+n/ZTv7AvaL3RNV5fspdy1kcXFRk5OThfuL0sWVJ2ZnZ1n1GgBgBArY0ZJCoZD8fr+mp6e1tLQkh+OdWZxyuZxmZmbU29urUCjUwFECAADsjN/vlyTNhV21FfFUkbCyiiyuF/oFAAAA9stePZyZSqU0PDxsa58AAADATthdcJ5MJjUwMFByXyQSuWxbLBZjIpJt6p38buP0RsX+c+dz2rQ21entlONg+dWlqvXTDir9v1xKpf+X7ewL2C/7eS1kcXFRExMTGh0d1fz8vPr6+hSPxzU9Pa2JiQktLCxQxA4AaDgK2NGSnE6nZmdnNTExofHxcU1NTRV+GZuZmdHJkye1sLDAsjgAAKCpFGYM2TpQsV3mwpZSZ3PyH3LI3VGh7Y/7uXQmEgAAAGCv5R+i/MM7utT7rvK/s25ckE6/mdORqxzqqnA1++XXt3TfExs8nAkAAICGs7vgPBAIKBaLFW2rNtM03rHbye+8Xq9cbpdWTqzYNhaX2yWv12tbf82m1P/LiURCkUhEc3NzCgaDl7Xfj76A/bJfE1Vls1lNTk5qdHS06H1vcHBQS0tLGh8f1/HjxzU2NkbdlE3ys+Db9bBSvh9WGgTQ6ihgR8sKh8NaWFjQ5OSkhoaGCtt7e3t5khAAADQlr9crj9ulyKP2XazwtPkFcwAAADTGddddJ4/bpfuesG/WMY/bpeuuu862/gAAAIDdsLvg3OPxlCxwZ+Wh2ux28jufz6fl5LIsy6rYf6Wi6Ut5vV75fL66v6dmVe7/ZUkKBoM7miHdzr6A/ZJ//w96nervtq9w/NLzSjQaVSqV0vz8fNFDO5LkcDg0NTWloaEhRaNRjYyM2DaOdpafXd/Oh57y/XK+B9DKKGBHSwuHwxobG1M0GtXq6qq6u7sVCoV4ghAAADQln8+nBBfMAQAA0AL43RYAAACtioJz8+x28jufz1fzZwyKpgHUKnEmV3F/rSstl+tndXVVktTX11dyf357vl27SqfTNV2X2v61nI2NizOm9xzrUdeRrrrHtnF6QysnVlhpEEDLo4AdLc/pdPLEIAAAaBlcMAcAAECr4HdbAAAAAPuFye8ANNp+rbTc3d0tSYrH4xocHLzs38Tj8aJ27SidTisYOKq1TG0rA0YikZradR3pktvvrt6wRpfOrg8ArYYCdgAAAAAFa2trSiaTRdsqzS4QCATk8Xj2ZWwAAAAAAAAAAOwWk98BaKT9Wo0uFArJ7/drenpaS0tLcjgchX25XE4zMzPq7e1VKBTa/TfT5CzL0lpmXXMfdyt42FG2Xa2z4T/+4gXd98TGXgwVAFoaBewAAABAE7O74DyZTGpgYKDkvlKzC8RiMWbCBAAAgC14mBIAAAAAALSy/ViNzul0anZ2VhMTExofH9fU1JT6+voUj8c1MzOjkydPamFhgRUoJAUPO9TfXfnnMHxd9X4SVlaStHG6chF77nxOm9amOr2dchwsXzhfrR8AaBUUsAMAAABNzO6C80AgoFgsVrQtk8kolUrJ7/dftlRdIBDYxagBAACAy/EwJQAAAAAAaCd79TB/OBzWwsKCJicnNTQ0VNje29urhYUFhcPhOkeO7Q65DkgHpJUTK7b16XK75PV6besPAExEATsAAADQxOwuOPd4PCWLgIaHh+sfLAAAAFDBpb/bZrNZfetb31IymVQgENDg4GDR7GA8TAlgP7FKBAAA5kun07Isq/D3/LXyWl16Td3r9dY8UzIA7MZePswfDoc1NjamaDSq1dVVdXd3KxQKMfP6Hui+0iFtSXNzcwoGg2XbJRIJRSKRqu0kzkEA2gMF7AAAAEATo+AcAAAArWL777aLi4uanJwsKjbx+/2anZ1lljAADcEqEQAAmC2dTisYOKq1zLptfXrcLiWSyxQQAtgze70ystPp1MjISL3DbDmZTEaSlLCytvSX78fv99f0OTAYDPJ5EQBEATsAAAAMUGoWs2oXZ5jFDAAAAGhNi4uLmpiY0OjoqObn59XX16d4PK7p6WlNTEyw1DWAhtjrwhIAAFCfV155RWuZdf3hHV3qfdcBSdLGBen0m7ma+zhylUNdP66iefn1Ld33xLpeeeUVCtgB7Jm9nqgqm80yA3sJ+QkTIov2PfSU75dJxgCgdhSwAwAAoOEqzWJWCrOYAQAAAK0pm81qcnJSo6OjWlpaksPhkCQNDg5qaWlJ4+PjOn78uMbGxqrecC31oGwikSj6uh0PygKohBXQAAAwW74Y8b4nNmzvl/M9gGbE6nbl+f1+SdJc2KWgt/6C/oSVVWRxvdAvAKA2FLADAACg4UrNYpZIJBSJRDQ3N6dgMHhZewAAAACtJxqNKpVKaX5+vlC8nudwODQ1NaWhoSFFo9GqS2BXelA2Eolcto0HZQEAAIDmRTGiedLptCzLqtim0kPGl9rY2FBXV5ctfXm9XmbWR0tjdbvK8itoBb1O9XfbNyP99pW5mFgBAKqjgB0AAAANV24WM0kKBoMUkQAAAABtYnV1VZLU19dXcn9+e75dJaUelM1kMkqlUvL7/UU3FfPtAQAAADSn/ShGRO3S6bSCgaNay6zX1L7UQ8aXOSBpy56+XG6XlpPLFLGjJdm5uh12j4kVAKA6CtgBAAAAAAAAAEbo7u6WJMXjcQ0ODl62Px6PF7WrpNyDssPDw3WOEgAAAABQiWVZWsusa+7jbgUPO8q2y1zYUupsTv5DDrk7DpRt9/iLF3TfExvqOdajriOlZ2HPnc9p09pUp7dTjoPlX3Pj9IZWTqzIsiwK2NGS7FzdrtUlzuQKf86/H9Vq+/vW9n7ymFgBAKqjgB0AAAAAAAAAYIRQKCS/36/p6emiWcIkKZfLaWZmRr29vQqFQg0cJQAAAABTlSoi3K7Wgulq/aA2wcOOqjPiD19XvZ+ElZUkdR3pkttfYVb8G3cyOqA12bm6Xavyer3yuF2KPJqxrU+P2yWv1/vO35lYAQCqooAdAAAAAAAAAGAEp9Op2dlZTUxMaHx8XFNTU+rr61M8HtfMzIxOnjyphYUFlrgGAAAAUGQ/ihEBoBnYubpdq/L5fEokl2VZVmFbfnb0Wl06i7rX62VVBwDYIQrYAQAAAAAAAADGCIfDWlhY0OTkpIaGhgrbe3t7tbCwoHA43MDRAQAAADBRqWLEUhKJhCKRiObm5hQMBiu2pRgRQDNidbva+Hy+y97jmR0dAPYXBewAAAAAAAAAAKOEw2GNjY0pGo1qdXVV3d3dCoVCzLwOAAAAoKxSxYjlBINB9ff37/GI2lcmc3Em/ISVtaW/l1/PSZJy53O29Ae0Mla3AwA0CwrYAQAAAAAAAADGcTqdGhkZafQwAAAAAECStLa2pmQyWbQtkUgUfd0uEAjI4/Hsy9hMk0qlJEmRxXVb+307+bYcBx3VG1awcXpD0jtF9kArYnU7AEAzoIAdAAAAAAAAAAAAAAAAqCCZTGpgYKDkvkgkctm2WCzWtrO8+/1+SdJc2KWgt/5Znr/03Ib+/NQFvbb4ml5bfK3u/qSLRfbDw8O29AWYiNXtAACmo4AdAAAAAAAAAAAAAAAALcXuGdMDgYBisVjRtkwmo1QqJb/fL7fbfVn7dpX/WQS9TvV3118se/MRp6QL6jnWo64jXXX1tXF6QysnVgpF9kArY3U7AIDJKGAHAAAAAAAAAAAAAABAS7F7xnSPx1NyP7N4772ujgMXvx7pktvvrtK6Npc+cAAAAID9RQE7AAAA9l06nZZlWRXbVJoF5VJer1c+n8+WsQEAAAAAAAAAgObHjOkAAACAuShgBwAAwL5Kp9M6Gjiq9cx6Te1LzYJyKZfbpeXkMkXsAAAAAAAAAABAEjOmAwAAACajgB0AAAD7yrIsrWfW1XOsR11Husq2y53PadPaVKe3U46DjrLtNk5vaOXEiizLooAdAAAAAAAAAAAAAFCXbDaraDSq1dVVdXd3KxQKyel0NnpYANBSKGAHAABAQ3Qd6ZLb767c6Mb9GQsAAAAAAAAAAADMtnF6o+y+nUyMBACVLC4uanJyUqlUqrDN7/drdnZW4XC4cQMDgBZDATsAAAAAAAAA7AFmagIAAAAAtLPEmVzF/ZkLW0qdzcl/yCF3x4Gy7ay3t6QD0sqJFVvG5XK75PV6bekLQGtZXFzUxMSERkdHNT8/r76+PsXjcU1PT2tiYkILCwsUsQOATShgBwAAwI6tra0pmUwWbctkMkqlUvL7/XK7i2dWDwQC8ng8hXaSfTNc5PvJ9wsAAACYgJmaAABoDvVc5wIAAKV5vV553C5FHrXv3o2rq0sLjzyi7u7ukvsTiYQikYjm5uYUDAarjs/n89k2NgCtIZvNanJyUqOjo1paWpLDcXE1h8HBQS0tLWl8fFzHjx/X2NgYk1QAgA0oYAcAAEBV6XRalmUV/p6/CFir7RcLn3jiCUn2zZKRl0qlNDw8bGufAAAAwG4wUxMAAM0jmUxqYGCg5vaxWEz9/f17OCIAAJqfz+dTIrlcdG+plL0oOg8Gg5yrAexKNBpVKpXS/Px8oXg9z+FwaGpqSkNDQ4pGoxoZGWnMIAGghVDADgAAgIrS6bSCgaNay6zvuo9Sxe49x3rUdaSrnqFJujgD+8qJFfn9/rr7AgAAAOrFTE0AADSXQCCgWCxWtK1SMV0gENjP4QEA0LR8Pl/Ns5xTdA7ABKurq5Kkvr6+kvvz2/PtAAD1oYAdAAAAFVmWpbXMuuY+7lbwsKNsu8yFLaXO5uQ/5JC740DZdo+/eEH3PbGhriNdcvvdZdvt1KXLOQMAAACNwExNAAA0F4/HU7ZgjmI6AAAAoH10d3dLkuLxuAYHBy/bH4/Hi9oBAOpDATsAAABqEjzsUH935Rkih6+r3k/Cyto0IgAAAMA8zNQEAAAAAAAANJ9QKCS/36/p6emilRUlKZfLaWZmRr29vQqFQg0cJQC0DgrYAQAAAAAAAMAGa2trevPNNyVJjzzyiG666SZlMhmlUin5/X653W5973vfkyS9+eabWltbk8fjaeSQAQAAAAAAAEhyOp2anZ3VxMSExsfHNTU1pb6+PsXjcc3MzOjkyZNaWFiQ01l50jcAQG0oYAcAAG1rbW1NyWSyaNulxSXbBQIBiksAAAAAlJVMJvXrv/7rkqRf/uVfrtj213/913XzzTerv79/H0YGAAAAAAAAoJpwOKyFhQVNTk5qaGiosL23t1cLCwsKh8MNHB0AtBYK2AEAQNPKZrOKRqNaXV1Vd3e3QqHQjp52TiaTGhgYqLl9LBZry+KSTCYjSUpYWVv6e/n1nCQpdz5nS38AAACAKQKBgGKxmP7xH/9R99xzj0KhkO644w498MAD+uxnP6snnnhC0WhUf/Inf6KPfOQjCgQCjR4yAAAAAAAAgG3C4bDGxsbqqkUAAFRHATsAAGhKi4uLmpycVCqVKmzz+/2anZ2t+annfHHJdolEQpFIRHNzcwoGg5e1b0f5n3Fkcd3WfjetTelGW7sEAAAAGsrj8ai/v1/9/f36iZ/4CU1OTuqBBx6QJD3wwAPM1AQAAAAAgA1KrbKcSCSKvm7HKssAdsrpdGpkZKTRwwCAlkYBOwAAaDqLi4uamJiQy+Uq2v7DH/5QExMTNReE5ItLSgkGg20523opfr9fkjQXdinorf+p8sdf3NR9T5xXp7ez7r4AAAAAU+Vnavryl7+sX//1X9cXv/hF/dqv/RozNQEAAAAAUKdKqyxHIpHLtrXrKssAAAAmo4AdAAA0lWw2q8985jPa2trSz/7sz+oP/uAP1NfXp3g8rj/+4z/WyZMn9ZnPfEZjY2MUhtjE7XZLkoJep/q76/+ZJqyspIszsGcOZsq2y53PadPaVKe3U46DjrLtNk5v1D0mAAAAYC84nU7dfPPNkqSbb76ZzygAAAAAANig1CrLmUxGqVRKfr+/cG9re3sAAACYhQJ2AADQVL7xjW/otdde02233aavfvWrcjguFjYPDg7qq1/9qm6//XY988wz+sY3vqGf/dmfbfBoUcoh1wHpgLRyYsW2Pl1ul7xer239AQAAAAAAAAAAwEzlVlkeHh5uwGgAAACwGxSwAwCApvKNb3xDkvTAAw8UitfzHA6H7r//fv3bf/tvKWA3WPeVDmlLmpubUzAYLNsukUgoEolUbSdJXq9XPp/P7qECAAAAAAAAAAAAAAAAsBkF7AAAAGiIYDBYcnaM3bYDAAAAAAAAAAAAAAAAYD4K2AEAQFMZGRnRH/3RH+mzn/2sRkZGimZhz+VyeuCBBwrtYK/EmVzF/ZkLW0qdzcl/yCF3x4Fd9wMAAAAAAAAAAAAAAACgdVHADgAAmsrIyIgOHz6sp59+WmNjY7r33nvV19eneDyu6elpPf3003r3u99NAbuNvF6vPG6XIo9mbOvT43bJ6/Xa1h8AAAAAAADax9rampLJZNG2TCajVColv98vt9tdtC8QCMjj8eznEAEAAAAAAFABBewAAKCpOJ1O/bf/9t9011136etf/7pOnjxZ2Je/CfXnf/7ncjqdjRpiy/H5fEokl2VZVsV2iURCkUhEc3NzCgaDFdt6vV75fD47hwkAAAAAAIA2kUwmNTAwUHP7WCym/v5+SVI6na7pOtf2r5VwnQsAgNqUegCt0jmXB9AAAABaGwXsAACg6YTDYT3yyCP6vd/7PX3/+98vbH/3u9+t2dlZhcPhBo6uNfl8vppvxAWDwcINQQAAAAAAAMBugUBAsVisaFulyRUCgYCki8XrRwNHtZ5Zr+l1IpFI1TYut0vLyWWK2AEAqKLSA2ilzrnbH0ADAABA66GAHQAANKVwOKyxsTFFo1Gtrq6qu7tboVCImdcBAAAAAACAFufxeMoWtFWaXMGyLK1n1tVzrEddR7rK9p87n9OmtalOb6ccBx1l222c3tDKiRVZlkUBOwAAVVz6AFo2m9W3vvUtJZNJBQIBDQ4OFt3nyz+ABgAAgNZEATsAAGhaTqdTIyMjjR4GAAAAAAAAgCbSdaRLbr+7cqMb92csAAC0i+0PoC0uLmpyclKpVKqw3+/3s9IyAABAG6GAHQAAAA23tramZDJZtC2RSBR93S4QCMjj8ezL2AAAAAAAANBY6XRalmVVbFPpWtKlbQAAQOMsLi5qYmJCo6Ojmp+fV19fn+LxuKanpzUxMaGFhQWK2AEAANoABewAAOxQNptVNBrV6uqquru7FQqFipazA7BzyWRSAwMDJfdFIpHLtsVisbJLQQMAAAA7Uephykwmo1QqJb/fL7e7eHZWHqYEAGB/LS8v62f+zf+j9Y3zNbUvdS3pUrnzuXqHBQAAdiGbzWpyclKjo6NaWlqSw+GQJA0ODmppaUnj4+M6fvy4xsbGuP8KAADQ4ihgBwBgB1jODtgbgUBAsVisaFu1oiEAAADADpUepixl+8OUds0Gm+f1euXz+WoeCwAA7eDUqVM1F6/XatPalG60tUsAAFCDaDSqVCql+fn5QvF6nsPh0NTUlIaGhhSNRjUyMtKYQQIAAGBfUMAOAECNWM4O2Dsej6fkjOrDw8MNGA0AAMDesnvGb2YQr0+phykTiYQikYjm5uYUDAYvay9dLF4/Gjiq9cx6Ta9Ty2ywLrdLy8llitgBANjG7/dLkubCLgW99c3E+viLm7rvifPq9HbaMDIAALBTq6urkqS+vr6S+/Pb8+0AAADQuihgBwCgBixnBwAAAMAu9cz4vR/9tZtyD1NKUjAYLLvPsiytZ9bVc6xHXUe6yvafO5/TprWpTm+nHAcdZdttnN7QyokVWZZFATsAANvkH8YLep3q767v2mvCykpSxXMyAADYO93d3ZKkeDyuwcHBy/bH4/GidgAAAGhdLVPA/v3vf19/9md/pscee0yvvPKKurq6dP311+uTn/ykfvM3f7OuWaXW1tb0d3/3d/ra176mU6dO6V/+5V/01ltv6eqrr9aNN96on/u5n9Nv/MZv6L3vfa+N3xEAwCQsZwcAAADALrud8Xu/+mt16XRalmVVbJNIJIq+VmrTdaRLbr+7bDtJ0o07GyMAALhc4kyu4v7MhS2lzubkP+SQu+NAyTYvv761F0MDAAA1CoVC8vv9mp6eLpo0TJJyuZxmZmbU29urUCjUwFECAABgP7REAfvf/u3fKhKJ6Ny5c4Vta2trOnXqlE6dOqUvfelLeuyxx3TDDTfsuO/vfe97Gh4e1ltvvXXZvv/7f/+vvvWtb+lb3/qW/vRP/1QnTpzQL/7iL9b1vQAAzMRydgAAAADsstsZv/erv1aWTqcVDBzVWma9pvaRSGSPRwQAAKrxer3yuF2KPJpp9FAAAECdnE6nZmdnNTExofHxcU1NTamvr0/xeFwzMzM6efKkFhYWWPEaAACgDTR9Aft3v/td/eIv/qIymYyuvPJKTU1N6Y477lAmk9HDDz+sv/iLv9ALL7ygj370ozp16pSuuuqqHfV/7ty5QvH68PCwRkdHdfPNN+vaa6/VmTNntLi4qL/4i7/QuXPn9KlPfUpXX321fv7nf34vvlUAQAOxnB0AAAAAND/LsrSWWdfcx90KHnaUbVfLDK6Pv3hB9z2xsVdDBQAAP+bz+ZRILte0gkq5FWgubQMAABonHA5rYWFBk5OTGhoaKmzv7e3VwsKCwuFwA0cHAACA/dL0Bey/8zu/o0wmo46ODv2v//W/dOuttxb2feQjH9FP/uRP6p577tELL7yg2dlZ3X///Tvq3+Fw6JOf/KQ++9nP6qd+6qcu23/nnXfq53/+5/Xxj39c2WxWv/3bv60XX3xRBw6UvrEFAGhO25eze+SRR/TMM89odXVV3d3dGh4eZjk7tJ21tTUlk8mibYlEoujrdoFAQB6PZ1/GBgAAAJSTyfx45tYDWxXbuTsOKOitPNvb+WzuYp9pe2aD3Th9sRi+MEYAAFDg8/nk8/lqaltpBZr8eTZ/3q0X528AAHYnHA5rbGxM0Wi0cM81FAox8zoAAEAbaeoC9m9/+9uKRqOSpF/7tV8rKl7Pm5yc1EMPPaREIqEHH3xQf/AHf6DOzs6aX2NoaKjoic9SxsbGFA6H9cgjj+ill17Sd7/7XZZmBoAWk1/O7q677tI111xTdEPC7XYrk8nokUce4aKK4dLpdE0zNW3/WonX6635xlmrSSaTGhgYKLmv1CxWsViM348AAADQcKlUSpIUWVy3rc/T/99p2/qSLo5xeHjY1j4BAMBF+d8FVk6s2N4v528AAHbG6XRqZGSk0cMAAABAgzR1AfvS0lLhz7/yK79Sso3D4dDdd9+tqakpnT17Vk888YTuvPNO28dyxx136JFHHpEkvfTSSxRoAUCLKrXCxoEDB1h5owmk02kdDRzVeqa2QpValhJ2uV1aTi63ZRF7IBBQLBYr2pbJZJRKpeT3++V2uy9rDwAAADSa3++XJM2FXVVnWK9mKXlef/jUpo786hG5fe7q/6CKjdMbWjmxUhgjAACwX/48++7wu3XQe7Bsu9yFnC6cvaCOQx1ydDjKtjtvnddri69x/gYAAAAAANihpi5gf/rppyVJV1xxRdkZQCXpwx/+cOHPzzzzzJ4UsG9svLPUILPvAkDryWazmpyc1OjoqB555BE988wzheXshoeHddddd+n48eMaGxureh5YW1tTMpks2lat8Nfj8dj+PbUby7K0nllXz7EedR3pKtsudz6nTWtTnd5OOQ6WvzmVLy6xLKstC9g9Hk/JB/aYaQoAAAAmK3ze2qr8EHLmwpZSZ3PyH3LI3VG67UHnxc8Lbp9bbn/9BeyXjREAANjuuuuuk8vt0muLr9nWp8vt0nXXXWdbfwAAAAAAAO2gqQvYE4mEJOmGG25QR0f5b2X7jJ/5f2O3J598svDnYDC4J68BAGicaDSqVCql+fl5dXZ2Xrac3dTUlIaGhhSNRqsudZdMJis+eHWpWCzGyh426jrSVb245Mb9GQsAAACA/eX1euVxuxR5NNPooQAAgAbw+XxaTi7LsqyK7RKJhCKRiObm5qre9/N6vW05wQUAAAAAAEA9mraAfX19vXBxqaenp2Lbd73rXbriiiv09ttv65VXXrF9LM8//7wee+wxSdJNN91U9ULWxsZG0Yzt586ds31MAAB7ra6uSpL6+vpK7s9vz7erJBAIKBaLFW2rdENk+4NY7SadThfdTMrPVF+r7TPa79VDbAAAAACah8/nU8KmorV8GwAAsP9KrXKZv/5X6jrg9lUufT5fzQXnwWCQyUWqYMVRAAAAAACwG01bwP7mm28W/nzllVdWbZ8vYH/rrbdsHcfGxob+/b//98pms5KkP/7jP676b2ZmZvTAAw/YOg4AwN7q7u6WJMXjcQ0ODl62Px6PF7WrxOPxlL3pwQ2Rd6TTaQUDR7WWWW/0UAAAAIC6XPpgZimVCq4utbGxoa6uLtv6a7dZQylaAwCg+VVa5bLUA2ascrl3WHEUAAAAAADsRtMWsK+vv1PMdvDgwart8zf1Mhl7lwf+rd/6LZ06dUqS9OlPf1of+9jHqv6bqakp/d7v/V7h7+fOndN1111n67gAAPYKhULy+/2anp7W0tKSHA5HYV8ul9PMzIx6e3sVCoUaOMrWYlmW1jLrmvu4W8HDF3/emQtbSp3N1dyH/5BD7o4DkqTHX7yg+57YqPIvAAAAAHvt9MHMmmb0PiBpq7bXr6U/l9ul5eRyWxWx22njdOXPGbnzOW1am+r0dspx0FG2XbV+AADAO0qtcllt1m/sDVYcBQAAAAAAu9G0Bewul6vw5/Pnz1dtv7Fx8QbQpRes6jEzM6MvfelLkqRbbrlF//W//tea/l1XV1fVWbIAAGZxOp2anZ3VxMSExsfHNTU1pb6+PsXjcc3MzOjkyZNaWFiQ0+ls9FBbRuGhswPvVOa4Ow4o6N3tz/hiP7nztRfAAwAAAPUq9WBmKfmHNbc/hFlK/sHMnmM96jpS/vrSToqmV06syLIsCth3yOv1yuV2aeXEim19utwueb1e2/oDAKBVXbrKZTabVTQalcPh0ObmpgYHB7lWu09YcRQAAAAAAOxG0xawX3XVVYU/v/XWW1Xbv/3225KkK6+80pbX/+IXv6h7771X0sWZAh5//HFdccUVtvQNADBTOBzWwsKCJicnNTQ0VNje29urhYUFhcPhBo6u9aRSKUlSZLG2mSprtWltSjfa2iUAAABQVfCwQ/3dlYuohmtYoC9hZSVJXUe65PZXmaiB33v3lM/n03JyWZZlVWxXaQbSS3m9Xh4kAABghxYXFzU5OVm4nihJfr9fs7OzXLMFAAAAAAAwVNMWsLtcLl177bX60Y9+pJWVyrMcvf7664UC9uuuq+FOYBXz8/P6D//hP0iS3v/+9+trX/saMyMBQJsIh8MaGxtTNBrV6uqquru7FQqFmM1nD9x8881ydR3U+kb1lVZ2otPbaWt/AAAAQCX5lYXyhef1evn1iysKsbKQfdbW1pRMJou2JRKJoq/bBQIBeTweSReL2GstOGcGUgAA7Le4uKiJiQmNjo5qfn6+sGrm9PS0JiYmmHgEAAAAAADAUE1bwC5JP/VTP6VoNKp/+Zd/0YULF9TRUfrb2X4DqtosR9X8z//5P3X33Xcrl8upu7tbX//619XT01NXnwCA5uJ0OjUyMtLoYbS8o0ePavmFF22bzTDfznHQYfdQAQAAgLJYWch8yWRSAwMDJfdFIpHLtsViMQrRAQAwQDab1eTkpEZHR7W0tCSH4+J1v8HBQS0tLWl8fFzHjx/X2NgYE5AAAAAAAAAYpqkL2G+77TZFo1G9/fbbisVi+tCHPlSy3ZNPPln48/Dw8K5f7+tf/7o++clP6sKFC7r22mv1ta99Tddff/2u+wMAAJVdOpthqZkRK9k+M2J+5suN0xu2jC3fT75fAAAAoBS/3y9Jmgu7FPTWXzj1+Iubuu+J86wsZKNAIKBYLFa0LZPJKJVKye/3y+12X9YeAAA0XjQaVSqV0vz8fKF4Pc/hcGhqakpDQ0OKRqMVJySpZzWWdpROp2uadGT710q8Xm/Va8DVfjdr5zwAAAAAAGhWTV3APj4+rpmZGUnSQw89VLKAPZfL6S//8i8lSYcOHdIdd9yxq9f65je/qbGxMW1sbOiaa67R3//93+unf/qndz94AACwY/XMjJif+XLlxIqtY0qlUnU9IAcAAIDWli+wCXqd6u+uv4A9YWUliZWFbOTxeErOqM7v+QAAmG11dVWS1NfXV3J/fnu+XTmsxlK7dDqtYOCo1jK1rS5U6ud3KY/bpURyuVDEXimPUto5DwAAAAAAmllTF7B/8IMfVCgUUjQa1Ze//GV9+tOf1q233lrUZnZ2tvB0/+/8zu+os7N4dqpvfOMbhaL2T3/60/rKV75y2ev88z//sz760Y/q7bff1hVXXKHHHntsRxdOAACAPeqZGTE/82XPsR51Hemqeywbpze0cmKl0C8AAAAAMIMrAAD7p7u7W5IUj8c1ODh42f54PF7UrhxWY6mdZVlay6xr7uNuBQ+Xf6Ayc2FLqbM5+Q855O44ULZd4kxOkUczsiyrUMBeKo9EIqFIJKK5uTkFg8Gife2cBwAAAAAAzaypC9gl6cEHH9Tw8LAymYzuvPNO3XvvvbrjjjuUyWT08MMP68SJE5KkG2+8UZOTkzvu/6WXXtLP/dzP6ezZs5KkP/qjP9I111xTuOhVyrvf/W69+93v3tX3AwAAyrt0ZsRsNqtoNCqHw6HNzU0NDg7K6Sw9q2X+RlPXkS65/e6SbXbj0htYAAAAANoXM7gCALB/QqGQ/H6/pqentbS0JIfjnYLqXC6nmZkZ9fb2KhQKVeyH1Vh2LnjYUXV1oeHrdtd3uTwkKRgM8rsTAAAAAAAtoukL2D/wgQ/ob/7mbxSJRHTu3Dnde++9l7W58cYb9dhjj+mqq67acf/RaFSvvfZa4e+/+7u/W/XffPazn9X999+/49cCAAC1W1xc1OTkpFKpVGGb3+/X7OyswuFw4wYGAAAAlJA4k6u4v9ZZKl9+fcvuocFGzOAKAMD+cTqdmp2d1cTEhMbHxzU1NaW+vj7F43HNzMzo5MmTWlhYKDvhBQAAAAAAABqn6QvYJeljH/uYvve97+nBBx/UY489ppWVFR08eFA33HCDPvGJT+i3fuu3WIoXAIAWsri4qImJCY2Ojmp+fr5wY2p6eloTExNaWFgoW8S+cXqjYt+58zltWpvq9HbKcbD8MrjV+gEAAAAkyev1yuN2KfJoxtZ+7fp9NN9PJmPv+NoVM7gCALC/wuGwFhYWNDk5qaGhocL23t7eitcIAQAAAAAA0FgtUcAuSe9///v1hS98QV/4whd29O9GRka0tVV+5qpf/uVf1i//8i/XOToAAGCXbDaryclJjY6OFi0NPDg4qKWlJY2Pj+v48eMaGxsrml3J6/XK5XZp5cSKbWNxuV3yer229QcAAIDW4/P5lEguy7Ksiu0SiYQikYjm5uYUDAbLtnv88cd133332fp7rSSlUimKrAEAQFMKh8MaGxtTNBrV6uqquru7FQqFmHkdAAAAAADAYC1TwA4AANpDNBpVKpXS/Px8oXg9z+FwaGpqSkNDQ4pGoxoZGSns8/l8WraxcEi6WBTv8/l2/b0AAACgPfh8vpp/bwwGgyVn8M7Lz5Tec6xHXUe66h7bxukNrZxYkd/vr7svAACARnE6nUXXArE38r+LJqysLf3l+2E1IAAAAAAA2g8F7AAAoKmsrq5Kkvr6+kruz2/Pt9vOzsIhAAAAoBHcbrckqetIl9x+t+39AgAAAOWkUilJUmRx3fZ+WQ0IAAAAAID2QgE7AAB7LJ1O1zTr9/av5TDjt9Td3S1JisfjGhwcvGx/PB4vagcAAAAAAAAAqF9+1Z65sEtBr7Pu/hJWVpHFdVYDAgAAAACgDVHADgCGWltbUzKZLNqWyWSUSqXk9/uLZscLBALyeDz7PUTUIJ1O62jgqNYztc1IE4lEKu53uV1aTi63dRF7KBSS3+/X9PS0lpaW5HA4CvtyuZxmZmbU29urUCjUwFECAAAA5ZX6vFfpoVY+8wEAAMAE+fsSQa9T/d31F7Bf2i8AAAAAAGgfFLADgKGSyaQGBgZqahuLxdTf37/HI8JuWJal9cy6eo71qOtIV9l2ufM5bVqb6vR2ynHQUbLNxukNrZxYkWVZbV3A7nQ6NTs7q4mJCY2Pj2tqakp9fX2Kx+OamZnRyZMntbCwIKfTvhsoAAAAgJ0qfd4r9VArn/kAAAAAAAAAAADQSihgBwBDBQIBxWKxom2JREKRSERzc3MKBoNFbbF3djIbvlR6dsSuI11y+6vMInOjLcNtC+FwWAsLC5qcnNTQ0FBhe29vrxYWFhQOhxs4OgAAAKCyUp/3qn3GuNTG6Y2Kr1HLQ7K19AMAAAAAAAAAAADYjQJ2AAV2FOnCPh6Pp+wMe8FgkNn39lA6nZZlWYW/5x8cqNX2BwwSiYTt48NF4XBYY2NjikajWl1dVXd3t0Kh0I5mXi/1vpfPrFR2vO8BAADADuU+7w0PD1f9t16vVy63SysnVmwbj8vtktfrta0/AAAAtLbEmVzF/ZkLW0qdzcl/yCF3x4Fd9wMAAAAAAFoXBewACiotYV4KS5ijFaXTaQUDR7WWWd91Hzspdkd9nE6nRkZGdv3vK73vlcqR9z0AAAA0ms/n03Jyueih21LKreBVitfrlc/ns3OYAAAAaEFer1cet0uRRzO29enhYUoAAAAAANoSBewACkotYV7phnepJcyBZmdZltYy65r7uFvBw46y7WqdQebxFy/ovic29mKosEGp971qK08AAAAAjebz+WouOGcFLwAAANjF5/MpwcOUAAAAAADABhSwAygot4S5xA1vtI9M5sczxxzYqtjO3XFAQa+zan/nsxeXQM2k65+RZuP0xUL4whhRt3Lve8PDww0YDQAAAAAAAACYjYcpAQAAAACAHShgBwBDpNPpmmYt2f61HGYs2b1UKiVJiiyu29rv6f/vtG19pVIpCqwBAAAAAAAAAA23tramZDJZtK3SvYxAICCPx7MvYwMAAAAAAOaigB0ADJBOpxUMHNVaprai6UgkUnG/x+1SIrlMEfsu+P1+SdJc2FXTDOvVLCXP6w+f2tSRXz0it89dV18bpze0cmKlMEYAAAAAAAAAABopmUxqYGCg5L5S9zJisVjRrOx2Tu4jMcEPAAAAAADNggJ2ADCAZVlay6xr7uNuBQ87yrbLXNhS6mxO/kMOuTsOlGyTOJNT5NGMLMviIu0uuN0Xi8yDXqf6u+svYE9YTkmbcvvccvvrK2DPy48RAAAAAAAAAIBGCgQCisViRdsymYxSqZT8fv9l17MDgUDhz+l0WkcDR7Vu0+Q+kuRyu7TMBD8AAAAAABiPAnYA+yabzSoajWp1dVXd3d0KhUJyOusvEG4lwcOOqkXTw9ft02AAAAAAAAAAAAAq8Hg8RTOq5w0PD1f9t5ZlaT2zrp5jPeo60lW2Xe58TpvWpjq9nXIcLD8JUH4VUyb4AQAAAADAfBSwA9gXi4uLmpycVCqVKmzz+/2anZ1VOBxu3MAAAAAAAAAAAADQMF1HuqqvYHrj/owFAAAAAADsDwrYgTaWTqdlWVbFNolEouhrJV6vt+SMFouLi5qYmNDo6Kjm5+fV19eneDyu6elpTUxMaGFhgSJ2GCdxJldxf+bCllJnc/IfcsjdcaBsu5df37J7aAAAAAAAAAAAAAAAAAAANC0K2IE2lU6nFQwc1Vpmvab2kUikahuP26VEcrmoiD2bzWpyclKjo6NaWlqSw3FxacfBwUEtLS1pfHxcx48f19jYmJxO5+6+GcBGXq9XHrdLkUczjR4KAAAAAAAAAAAAAAAAAAAthwJ2oE1ZlqW1zLrmPu5W8LCjbLtaZ5lOnMkp8mhGlmUVFbBHo1GlUinNz88XitfzHA6HpqamNDQ0pGg0qpGRkbq/L6BePp9PieRyTasTRCIRzc3NKRgMVm0HAAAAAAAAAAAAAAAAAAAoYAfaXvCwQ/3dlWc+H75u9/2vrq5Kkvr6+kruz2/Pt2tXmczF2b4TVrbuvvJ95PvEzvl8vqIHMSoJBoPq7+/f4xEBAAAAAAAAAAAAAAAAANAaKGAHsKe6u7slSfF4XIODg5ftj8fjRe3aVSqVkiRFFtdt7XN4eNi2/gAAAAAAAAAAAAAAAAAAAOpFATuAPRUKheT3+zU9Pa2lpSU5HI7Cvlwup5mZGfX29ioUCjVwlI3n9/slSXNhl4LeyjPiV5Owsoosrhf6BAAAAAC0trW1NSWTyaJtiUSi6Ot2gUBAHo9nX8YGAAAAlJNfSXbj9IYt/eX7YYVaAAAAAADMRwE7gD3ldDo1OzuriYkJjY+Pa2pqSn19fYrH45qZmdHJkye1sLAgp7O+ou1m53a7JUlBr1P93fb8LPJ9SqWLGTKZjFKplPx+f1FbiWIGAAAAAGgmyWRSAwMDJfdFIpHLtsViMfX39+/1sAAAAICK8qvTrpxYsb1fVqgFAAAAAMBsFLAD2HPhcFgLCwuanJzU0NBQYXtvb68WFhYUDocbODqzJM7kKu7PXNhS6mxO/kMOuTsO1NxHpWKGUihmAAAAAIDmEQgEFIvFirZVe2gZAAAAaLT8SrI9x3rUdaSr7v42Tm9o5cQKK9QCAAAAANAEKGAHsC/C4bDGxsYUjUa1urqq7u5uhUKhtp95Pc/r9crjdinyqD3LWnrcLnm93sLfSxUzJBIJRSIRzc3NKRgMFu2jmKFYqRnsE4lE0dftmMEeAAAAwH7yeDwlH0Jm1kkAAACYLP+gZdeRLrn97iqtd94vAAAAAAAwFwXsAPaN0+nUyMhIo4dhJJ/Pp0RyWZZlVWxXqeh8O6/XK5/PV/h7uWIGSQoGg8y2XkWlGewjkchl20rNYL9xeqPia+TO57RpbarT2ynHQUfJNtX6AAAAAAAAAAAAAAAAAADAdBSwA4AhfD5fUdF5JRSd769SM9hnMhmlUin5/f7LZnPZPoO91+uVy+3SyokVW8biumR2fQAAAAAAAAAAAAAAAAAAmgkF7AAAVFFuBvvh4eGq/9bn82l5D2fXBwAAAAAAAAAAAAAAAACgmVDADrSpTCYjSUpYWVv6y/eT7xfAO5hdHwAAAAAAAAAAAAAAAACAiyhgB9pUKpWSJEUW123vNz8r9drampLJZNH+TCajVColv98vt9tdtC8QCMjj8dg6HgAAAAAAAAAAAJhr4/RGxf258zltWpvq9HbKcdCx634AAAAAAIA5KGAH2pTf75ckzYVdCnqddfeXsLKKLK4X+pWkZDKpgYGBmvuIxWLMPA0AAAAAAAAAANAGvF6vXG6XVk6s2Nany+2S1+u1rT8AAAAAALA3KGAH2lR+9vOg16n+7voL2C/tV7o4o3osFivan0gkFIlENDc3p2AwWLQvEAjYNg4AAAAAAAAAAACYy+fzaTm5LMuyKrardG/pUl6vVz6fz85hAgAAAACAPUABO4A94/F4ys6oHgwGmW19D6XT6Zou+G7/WgkXfAEAAAAAAAAAgN18Pl/N9x+4twQAAAAAQOuggB1oc4kzuYr7Mxe2lDqbk/+QQ+6OA7vuB/snnU7raOCo1jPrNbWPRCJV27jcLi0nlyliBwAAAAAAAAAAAAAAAAAAdaGAHWhTXq9XHrdLkUcztvXpcbvk9Xpt66/dra2tKZlMFm0rN2t6IBCQx+ORJFmWpfXMunqO9ajrSFfZ/nPnc9q0NtXp7ZTjoKNsu43TG1o5sSLLsihgBwAAAAAAAAAAe2Yn90ak4vsjAAAAAACgeVDADrQpn8+nRHJZlmUVtiUSiZpm486bm5tTMBgs/N3r9VLgbKNkMqmBgYGS+y7NKRaLXbZsZteRLrn97sovcmNdQwQAAAAAAAAAALDNTu6NSKXvjwAAAAAAAPNRwA60MZ/PV1RwHggEFIvFitpkMhmlUin5/X653cXF0Mxqsbd2kkcgENjv4QEAAAAAAAAAANhqN/eqAAAAAABA86GAHUCBx+MpOUvF8PBwA0YD8gAAAAAAAAAAAO2EeyMAAAAAALQHCtgBoMVkMhlJ0sbpDVv6y/eT7xcAAAAAAAAAAAAAAAAAAGC3KGAHgBaTSqUkSSsnVmzvlxlOAAAAAAAAAAAAAAAAAABAPShgB4AW4/f7JUk9x3rUdaSr7v42Tm9o5cRKoV8AAAAAAAAAAAAAAAAAAIDdooAdAFqM2+2WJHUd6ZLb77a9XwAAAAAAAAAAAAAAAAAAgN1yNHoAAAAAAAAAAAAAAAAAAAAAAID2QAE7AAAAAAAAAAAAAAAAAAAAAGBfdDR6AAAAtJu1tTUlk8mibYlEoujrdoFAQB6PZ1/GBgAAAAAAAAAAAAAAAADAXqKAHQCAfZZMJjUwMFByXyQSuWxbLBZTf3//Xg8LAAAAAAAAAAAAAAAAAIA9RwE7AAD7LBAIKBaLFW3LZDJKpVLy+/1yu92XtQcAAAAAAAAAAAAAAAAAoBVQwA4AwD7zeDwlZ1QfHh5uwGgAAAAAAAAAAAAAAAAAANg/jkYPAAAAAAAAAAAAAAAAAAAAAADQHpiBHYBt0um0LMuq2CaRSBR9rcTr9crn89kytna0cXqj4v7c+Zw2rU11ejvlOFj+eaZq/QAAAAAAAAAAAAAAAAAAANSKAnYAtkin0zoaOKr1zHpN7SORSNU2LrdLy8llith3yOv1yuV2aeXEim19utwueb1e2/oDAAAAAAAAAAAAAAAAAADtiQJ2ALawLEvrmXX1HOtR15Gusu12Muv3yokVWZZFAfsO+Xw+LSeXa5oNPxKJaG5uTsFgsGJbZsMHAAAAAAAAAAAAAAAAAAB2oIAdgK26jnTJ7XdXbnTj/oylnfl8vpoLzoPBoPr7+/d4RAAAAAAAAAAAAAAAAAAAAFL56Y8BAAAAAAAAAAAAAAAAAAAAALARBewAAAAAAAAAAAAAAAAAAAAAgH1BATsAAAAAAAAAAAAAAAAAAAAAYF9QwA4AAAAAAAAAAAAAAAAAAAAA2BcUsAMAAAAAAAAAAAAAAAAAAAAA9kVHowcAoDVkMhlJ0sbpDVv6y/eT7xcAAAAAAAAAAAAAAAAAAADNjwJ2ALZIpVKSpJUTK7b3Ozw8bGufAAAAAAAAAAAAAAAAAAAAaAwK2AHYwu/3S5J6jvWo60hX3f39/9m77/AoyraNw/NsKhBaCL333nsvCogUAUVAAUFRfClKLyLSRKoUaSKgIFJEVEBBpPcmSA0k1ECA0Amk1+v7g28fd9MDKfdurvM4PF7Ynd3Mzu/VyczeOxt2J8y49d0t/bxERERERERERERERERERERERERERGT7OMBORCkiU6ZMhmEYhksBFyNTsUwp/rxERERERERERERERERERERERERERGT7TOm9AkRERERERERERERERERERERERERERESUMfAK7EREGUBwcLDh5eVlddvFixet/tdSuXLljMyZM6fJuhERERERERERERERERERERERERFRxsEBdiKiDMDLy8uoWbNmnPf16NEj1m0nT540atSokdqrRUREREREREREREREREREREREREQZDAfYiYgygHLlyhknT560ui0kJMTw8fExihUrZmTKlCnW8kREREREREREREREREREREREREREKY0D7EREGUDmzJnjvKJ6w4YN02FtiIiIiIiIiIiIiIiIiIiIiIiIiCijMqX3ChARERERERERERERERERERERERERERFRxsABdiIiIiIiIiIiIiIiIiIiIiIiIiIiIiJKE47pvQJEZF/C7oQleH90eLQR8TDCcPJwMkzO8X+GJrHnISIiIiIiIiIiIiIiIiIiIiIiIiIi28MBdiJKER4eHoZrJlfj1ne3Uuw5XTO5Gh4eHin2fERERERERERERERERERERERERERElL44wE5EKaJIkSKGt5e38fDhwwSXu3jxotGjRw/jp59+MsqXL5/gsh4eHkaRIkVScjWJiIiIiIiIiIiIiIiIiIiIiIiIiCgdcYCdiFJMkSJFkjxwXr58eaNGjRqpvEZERERERERERERERERERERERERERCSJKb1XgIiIiIiIiIiIiIiIiIiIiIiIiIiIiIgyBl6BnYhSTXBwsOHl5WV128WLF63+11K5cuWMzJkzp8m6ERERERERERERERERERERERERERFR2uMAOxGlGi8vL6NmzZpx3tejR49Yt508edKoUaNGaq8WERERERERERERERERERERERERERGlEw6wE1GqKVeunHHy5Emr20JCQgwfHx+jWLFiRqZMmWItT0RERERERERERERERERERERERERE9osD7ESUajJnzhznFdUbNmyYDmtDRERERERERERERERERERERERERETpzZTeK0BEREREREREREREREREREREREREREREGQMH2ImIiIiIiIiIiIiIiIiIiIiIiIiIiIgoTXCAnYiIiIiIiIiIiIiIiIiIiIiIiIiIiIjSBAfYiYiIiIiIiIiIiIiIiIiIiIiIiIiIiChNcICdiIiIiIiIiIiIiIiIiIiIiIiIiIiIiNIEB9iJiIiIiIiIiIiIiIiIiIiIiIiIiIiIKE1wgJ2IiIiIiIiIiIiIiIiIiIiIiIiIiIiI0gQH2ImIiIiIiIiIiIiIiIiIiIiIiIiIiIgoTXCAnYiIiIiIiIiIiIiIiIiIiIiIiIiIiIjSBAfYiYiIiIiIiIiIiIiIiIiIiIiIiIiIiChNcICdiIiIiIiIiIiIiIiIiIiIiIiIiIiIiNIEB9iJiIiIiIiIiIiIiIiIiIiIiIiIiIiIKE1wgJ2IiIiIiIiIiIiIiIiIiIiIiIiIiIiI0gQH2ImIiIiIiIiIiIiIiIiIiIiIiIiIiIgoTXCAnYiIiIiIiIiIiIiIiIiIiIiIiIiIiIjSBAfYiYiIiIiIiIiIiIiIiIiIiIiIiIiIiChN2M0A+40bN4xhw4YZ5cqVM7JkyWK4u7sbtWvXNmbOnGkEBwe/1HNHR0cbFy5cMFasWGH079/fqF27tuHi4mIopQyllLF3796UeRFEREREREREREREREREREREREREREREdswxvVcgJfzxxx9Gjx49jGfPnunbgoODjRMnThgnTpwwli1bZmzZssUoVarUCz3/qlWrjN69e6fQ2hIRERERERERERERERERERERERERERFlTDZ/BfZTp04ZXbt2NZ49e2a4ubkZU6ZMMQ4fPmzs2rXL+PDDDw3DMIxLly4Zbdu2NQICAl7oZwDQf3ZycjJq1KhhVK5cOUXWn4iIiIiIiIiIiIiIiIiIiIiIiIiIiCijsPkB9k8//dQICQkxHB0dje3btxufffaZUb9+faNFixbGd999Z8yYMcMwjOdD7F9//fUL/YwKFSoY33zzjXHkyBHj2bNnxsmTJ43OnTun5MsgIiIiIiIiIiIiIiIiIiIiIiIiIiIisns2PcB+/Phx48CBA4ZhGMYHH3xg1K9fP9Yyw4YNM8qXL28YhmHMmzfPiIiISPbPqVOnjjFo0CCjXr16hqur68utNBEREREREREREREREREREREREREREVEGZdMD7Bs3btR/7tOnT5zLmEwmo1evXoZhGIa/v7+xZ8+etFg1IiIiIiIiIiIiIiIiIiIiIiIiIiIiIorBpgfYDx48aBiGYWTJksWoWbNmvMs1bdpU//nQoUOpvl5EREREREREREREREREREREREREREREFJtND7BfvHjRMAzDKFWqlOHo6BjvcuXKlYv1GCIiIiIiIiIiIiIiIiIiIiIiIiIiIiJKWzY7wB4aGmo8fPjQMAzDKFSoUILL5syZ08iSJYthGIbh6+ub6utGRERERERERERERERERERERERERERERLHFf9ly4QICAvSf3dzcEl0+S5YsRlBQkBEYGJiaq5UkYWFhRlhYmP7706dPDcMwjGfPnqXXKlEqiY6O1v/LvkRERERERESpg8ffRESUVNxnEBFRUnB/QUREScV9BhERpRfzfgdAOq8J0Yux2QH20NBQ/WdnZ+dEl3dxcTEMwzBCQkJSbZ2SaurUqcbEiRNj3V64cOF0WBtKC35+fkb27NnTezWIiIiIiIiI7BqPv4mIKKm4zyAioqTg/oKIiJKK+wwiIkovAQEB3AeRTbLZAXZXV1f95/Dw8ESXN1/xPFOmTKm2Tkk1ZswYY+jQofrv0dHRxuPHj41cuXIZSql0XDM5nj17ZhQuXNjw9fU1smXLlt6rk6GxhSzsIQdbyMEWcrCFHGwhC3vIwRZysIUcbCEHW8jCHnKwhRxsIQdbyMEWsrCHHGwhB1vIwRZysIUs7CEHW8jBFnKwhRxsETcARkBAgFGgQIH0XhWiF2KzA+xZs2bVfw4MDEx0+aCgIMMwDMPNzS3V1impXFxc9BXhzXLkyJE+KyNctmzZuNMRgi1kYQ852EIOtpCDLeRgC1nYQw62kIMt5GALOdhCFvaQgy3kYAs52EIOtpCFPeRgCznYQg62kIMtZGEPOdhCDraQgy3kYIvYeOV1smWm9F6BF+Xq6mrkypXLMAzDuHXrVoLLPnnyRA+wFy5cONXXjYiIiIiIiIiIiIiIiIiIiIiIiIiIiIhis9kBdsMwjAoVKhiGYRhXrlwxIiMj413Oy8tL/7l8+fKpvl5EREREREREREREREREREREREREREREFJtND7A3atTIMAzDCAoKMk6ePBnvcvv27dN/btiwYaqvF708FxcXY/z48YaLi0t6r0qGxxaysIccbCEHW8jBFnKwhSzsIQdbyMEWcrCFHGwhC3vIwRZysIUcbCEHW8jCHnKwhRxsIQdbyMEWsrCHHGwhB1vIwRZysAWRfVIAkN4r8aKOHz9u1K1b1zAMw+jXr5/x7bffxlomOjraqFSpknHx4kUjR44cxv379w0nJ6eX/tkTJkwwJk6caBiGYezZs8do1qzZSz8nERERERERERERERERERERERERERERkT2z6Suw16lTx2jcuLFhGIaxfPly48iRI7GW+frrr42LFy8ahmEYn376aazh9b179xpKKUMpZfTu3TvV15mIiIiIiIiIiIiIiIiIiIiIiIiIiIgoo3JM7xV4WfPmzTMaNmxohISEGK1atTI+++wzo3nz5kZISIixbt0647vvvjMMwzDKlCljDBs27IV/zooVK6z+fvr0af3nbdu2GT4+PvrvpUqVMho1avTCP4uIiIiIiIiIiIiIiIiIiIiIiIiIiIjIHikASO+VeFl//PGH0aNHD+PZs2dx3l+mTBljy5YtRqlSpWLdt3fvXqN58+aGYRjGe++9F2tQ3UwpleT1Seh5iIiIiIiIiIiIiIiIiIiIiIiIiIiIiDIqU3qvQEpo3769cfbsWWPIkCFGmTJljMyZMxs5cuQwatWqZUyfPt04depUnMPrRERERERERERERERERERERERERERERJR27OIK7GTfoqKiDAcHh/ReDSIiIiIiIiIiIiIiIiIiIiIiIiIiInpJdnEFdrJf4eHhxvz5843Bgwen96oQERERERERERERERERERERERERERHRS3JM7xUgik94eLjx448/GuPGjTOCgoKMqKgoY/78+em9WkRERERERERERERERERERERERERERPSCeAV2Eik8PNxYuXKlMWTIECMoKMhwcXExFi5caLz//vvpvWoZEoA4/0xpjy3kYAs52EIW9pCDLeRgCznYQg62kIU9iIiIiIiIiIiIiIiIiCgtcYCdxDFfeX3YsGFGUFCQ4e7ubkRGRhqGYej/pdQVc2BBKRXrzxxqSBtsIQdbyMEWsrCHHGwhB1vIwRZysIUs7CFHzO0cHR2dTmtCbCEHW8jBFrKwhxxsIQdbyMEWcrCFLOwhB1vIwRZysIUcbCEHW8jCHkT2zzG9V4DIknl4fejQoUZgYKDRsGFDo0yZMsbPP/9s5M6d2+jTp49hGM93UJZvsFPKMm9bHx8f4+zZs4anp6fh5+dnODg4GOXKlTNq1aplVK5c2XB2djYMgz1SE1vIwRZysIUs7CEHW8jBFnKwhRxsIQt7yGC5XQ8cOGCULVvWyJMnjxEZGWk4OvKUXVpiCznYQg62kMWyx5UrV4xSpUoZJpPJiIqKMhwcHNJ57TIWtpCDLeRgCznYQhb2kIMt5GALOXjMJwdbyMEWsrAHUcbAf5tJjJjD67Vq1TL69+9vLFy40AgODjZKly5t1KlTxzAMg2+cpyIARmBgoDF27Fhj//79xtmzZ63uV0oZJpPJ6Nmzp/H6668bb731lqGU4kBDKmALOdhCDraQhT3kYAs52EIOtpCDLWRhDxkst+fu3buNL7/80vD09DQOHjxolC5dOp3XLmNhCznYQg62kMWyx86dO40vv/zSqF27tjFz5kwO+aQxtpCDLeRgCznYQhb2kIMt5GALOXjMJwdbyMEWsrAHUQYCIgHCwsKwdOlSZM2aFUopVK5cGWvXrsWaNWuQO3duuLu74+jRowCAqKiodF5b+xUYGIiNGzeiRYsWUErpf/LmzYsCBQqgcOHCKFOmDJRSMJlMyJo1K8aPH68fHx0dnX4rb2fYQg62kIMtZGEPOdhCDraQgy3kYAtZ2EMGy+24Y8cOtG/fHg4ODlBKYeLEiQB47iOtsIUcbCEHW8gSs0fHjh31/vuPP/7gvjkNsYUcbCEHW8jBFrKwhxxsIQdbyMFjPjnYQg62kIU9iDIWDrBTuos5vF6lShWsW7cOADBy5EgopdCyZUv4+fml85rat6dPn2Lx4sWoXr06lFJwdHREnjx5MGTIEBw+fBhPnjzBs2fP8PTpUyxZsgSdOnWCyWSCUgqffvqpfh4eXL48tpCDLeRgC1nYQw62kIMt5GALOdhCFvaQIa6T7+Y3bD/88EN9n/kEPE/Epx62kIMt5GALWRLqMWrUqFjLs0fqYQs52EIOtpCDLWRhDznYQg62kIPHfHKwhRxsIQt7EGU8HGCndBVzeL1q1apYu3YtIiIisHfvXr0TWrNmTXqvql0LCgrC999/jwoVKkApBScnJ3Tv3h0bN260Ws7yF4Vr165h5syZeqBh3Lhxab3adokt5GALOdhCFvaQgy3kYAs52EIOtpCFPWSIefL9jTfesLoSfsWKFZEzZ040bNgQn3/+uf4gf2RkZHqtst1iCznYQg62kCWhHo6OjujduzdatWqFL7/8Etu3b9fLskfKYws52EIOtpCDLWRhDznYQg62kIPHfHKwhRxsIQt7EGVMHGCndBPX8PqaNWvg7+8PABg1ahRMJhPefPNNhIaGAoh9pTd+kurlmLfn7t27UbNmTT3IMHjwYJw+fVovZ7mzt2wQGhqKefPmwWQywcXFBT/++GParbydYQs52EIOtpCFPeRgCznYQg62kIMtZGEPORL6quxy5cqhUaNGGDJkCOrWrYu8efNCKYWaNWvi2rVrsR5PL4ct5GALOdhCloR6eHh4oHDhwqhVqxYcHR2hlIKbmxtmzJgR5+Pp5bCFHGwhB1vIwRaysIccbCEHW8jBYz452EIOtpCFPYgyLg6wU7qI78rrz549AwBcvXoVefLkgVIK06dPT/T5Ll68iIULF2LQoEGpvep2w3Ln3bZtWz3IMGDAAHh7e8e5XFz8/PzQr18/mEwmvP3223jy5Al/MUgmtpCDLeRgC1nYQw62kIMt5GALOdhCFvaQI6GT7++//z6OHz+OkJAQAMCTJ0+wc+dONGjQAEoplCpVCk+ePEmnNbc/bCEHW8jBFrIk1KN79+74/fff8eDBA0RGRuLw4cMYM2aMvn/8+PHpt+J2iC3kYAs52EIOtpCFPeRgCznYQg4e88nBFnKwhSzsQZSxcYCd0lx8w+uBgYEAgJCQEAwaNAhKKdSvX19fCc58tXXz/wYHB+Phw4cYNmwY6tSpo3deHGJPni+//BJKKTg4OKBt27b4559/kv0cmzZtgpOTE0wmE3bs2JEKa5kxsIUcbCEHW8jCHnKwhRxsIQdbyMEWsrBH+kro5Pvw4cOtlrW8Ev7u3btRu3ZtDBkyBHfu3Emz9bVnbCEHW8jBFrIk1GPo0KFxfoAsJCQEn332GZydnTF06FA8ffo0LVfZbrGFHGwhB1vIwRaysIccbCEHW8jBYz452EIOtpCFPYiIA+yUphIbXgeAhw8fokGDBnB2dsY333wD4PnXlls6f/48+vXrh+rVq+s34pVSyJQpk/4EFiUuOjoanTt3hslkglIKK1eufOHnevPNN6GUQr9+/RAWFpaCa5kxsIUcbCEHW8jCHnKwhRxsIQdbyMEWsrBH+kro5PuIESPiXM4sICAAu3btwvXr19NiVe0eW8jBFnKwhSwJ9Rg5cmScy5lduHABq1ev1l+bTS+HLeRgCznYQg62kIU95GALOdhCDh7zycEWcrCFLOxBRAAH2CkNhYaGYvny5QkOrwPAhAkToJRCrly5cO7cOav7Nm3ahJEjR+rnyJQpE/Lnz493330XhQoV0juyPn36wN/fPy1fnk06c+aM3mY9evTQtyfn6+DNn3AbO3YslFIYMmSIvko+JR1byMEWcrCFLOwhB1vIwRZysIUcbCELe6SfpL5ha3nVmJgsPyiwbds2PHnyBOHh4QDABsnAFnKwhRxsIUtS37BNqIfl12XHvPIYeyQdW8jBFnKwhRxsIQt7yMEWcrCFHDzmk4Mt5GALWdiDiMw4wE5pIjo6GitXrtQ7m5jD6+Yd06VLl1CzZk0opbBgwQIAzz81tXHjRnz00UdQSsHR0RFKKbRp0wYLFizATz/9hPfff18/95AhQ3D79u10e622ZPfu3Xp7mrd3Qjv/hGzcuBFdu3bF48ePU3IVMwy2kIMt5GALWdhDDraQgy3kYAs52EIW9kh/O3bsQOfOnZN98t2S+YP+9evXx7Rp0/DgwYNkPZ6eYws52EIOtpBl165dL/SGraVPP/0URYsWxWeffYb9+/cn+/H0HFvIwRZysIUcbCELe8jBFnKwhRw85pODLeRgC1nYg4g4wE5pxsvLC0opFClSBD///LPVldfNA+xr1qyByWRC9erVsXr1auzYsQP169dHjhw59M6qa9euWLRoESIjI7F//35069aNw+vJZN7ea9euhVIKWbJkwfnz51/qOW/evImgoCAA/CUgOdhCDraQgy1kYQ852EIOtpCDLeRgC1nYQwYvLy80bdr0pU6+h4eHY+PGjahRowYyZ84MpRRatGiBmzdvJut5Mjq2kIMt5GALWfbu3YsWLVrAwcEhWVeotHTv3j307dsXJpMJSimULFlSf4AtOc+T0bGFHGwhB1vIwRaysIccbCEHW8jBYz452EIOtpCFPYgI4AA7pbGrV6/i119/RUBAQKz7bty4gVKlSkEphUKFCqF58+bImzcvlFIoXLgw2rVrh82bN+vl//nnH7Rr107vyIYOHcrh9WTatm2b3n579uxJkedMzlfR03/YQg62kIMtZGEPOdhCDraQgy3kYAtZ2CP9DRgwIFlv2Ma3fX19fbF06VJUrlwZSikUK1YMPj4+APh1qEnFFnKwhRxsIYevry+yZcsGpRRGjx6tb3+RN1o3bNiAnj176t8BvvjiC30feySOLeRgCznYQg62kIU95GALOdhCFh7zycEWcrCFLOxBRBxgpzQX387k33//hZubmz4AMQ+yd+zYEWfPnsXdu3cBPN+x7N+/Hx06dODw+ks6deqUPoDctGkTgJQdRuAn2ZKOLeRgCznYQhb2kIMt5GALOdhCDraQhT3Sj+VJ8Y0bN+o/x7fNYnaJiIiItUxYWBiOHTuGevXqQSmFqlWr4s6dOym0xvaLLeRgCznYQqYzZ85g/Pjx+u9J7RGXW7du4auvvtLnz6dOnZpSq5khsIUcbCEHW8jBFrKwhxxsIQdbpD8e88nBFnKwhSzsQURmHGAnUb7++msopeDm5oaRI0fi4MGDVjud6Oho7Nu3Dx07duTwegpp3749lFJo164dHj16lCLPuXv3bv1nfpIt6dhCDraQgy1kYQ852EIOtpCDLeRgC1nYI/3EPIke38l38zb09fXFjz/+iD59+qBz586YN29enFfOP3ToECpWrAilFD799FOEhoam+LrbG7aQgy3kYAvZEutx//59HDp0CHPmzMH8+fNx6tQpPH78GMB/b+oGBARg8uTJUEohe/bsVm8IU9KxhRxsIQdbyMEWsrCHHGwhB1ukHx7zycEWcrCFLOxBRAAH2EkIyze89+3bh/3798daJjo6Gvv373+h4XXzTi46OhoBAQEpt+I2zHzAt3z5cuTKlQtFihTBpk2bXnr44Msvv4RSCoMGDUqJ1cwQ2EIOtpCDLWRhDznYQg62kIMt5GALWdjDNpg7eXt7o0mTJsiVK5fVN9PlyJEDEyZMsHpMYGAgRowYAaUU6tevj5CQkPRYdbvDFnKwhRxsIYt5H37p0iW0adMGBQoU0C0KFy6MV155BZcuXbJ6jLe3N5o3bw4HBwcMGzYMQMp+G0tGxRZysIUcbCEHW8jCHnKwhRxsIQeP+eRgCznYQhb2ILJ/HGAnMeJ6E938aasXGV6PecASGBiIadOmoVmzZujdu3fKrrwNu3//Plq1agWlFBo0aIDz58+/8HOZP/mslELr1q3h6+urO/AAMnFsIQdbyMEWsrCHHGwhB1vIwRZysIUs7CGfj4+P/lrTLFmyoFixYujUqZO+SoxSCv/73//0FcgAYP/+/fq+Q4cOpePa2xe2kIMt5GALWa5cuYKaNWvq7evu7o58+fIhR44cUEohT5482LVrl9VjRo0aBaUU8ufPD39/f+6zUwhbyMEWcrCFHGwhC3vIwRZysIUcPOaTgy3kYAtZ2IPIvnGAncSyfBM8OcPrMb9S5OTJk5g9ezYqVKhg9SmsXr16pfprsBVXr15FyZIloZRC48aNsXPnTjx79gzAfx8sSOwqfZMmTdLbtlmzZli/fj3u3Llj9biYz8GDytjYQg62kIMtZGEPOdhCDraQgy3kYAtZ2EMm8/aaPXs2smfPDhcXF/Tt2xe+vr4AgIsXL2LWrFl6u3/wwQfw8/MDAFy4cAHZsmWDg4MD/vnnn3R7DfaCLeRgCznYQp7Q0FAMGjQIzs7OyJYtG95//31cv34dt2/fxi+//ILGjRtDKQUPDw9s3rwZYWFhAIBNmzbB2dkZ5cqVQ3BwcDq/CvvAFnKwhRxsIQdbyMIecrCFHGwhA4/55GALOdhCFvYgyhg4wE4ivejwuqUDBw5gxowZyJkzJzJnzgyllP7ErlIKhQoVwr1791L7pdgMLy8vFCpUCEoplC1bFoMHD8bZs2f1VfATYv4KefM/2bNnR44cOVC0aFF069YNq1ev1suaP2BgOcjwxx9/6F8iiC0kYQs52EIW9pCDLeRgCznYQg62kIU95HrjjTeglELBggVx7dq1WPevX79eb/uPPvoIvr6+GD16NJRSKF++PAICAtJhre0TW8jBFnKwhRyBgYGoUaMGlFKoVq0abty4YXX/gwcP8Prrr0MphVy5cmHbtm0IDQ1Fr169oJRCvXr10mnN7Q9byMEWcrCFHGwhC3vIwRZysIUsPOaTgy3kYAtZ2IPIvnGAncRJzvC6+dNW5sc8evQIZ8+eRe/evVG0aFH9uMKFC+PNN9/Eb7/9huLFi0MphUGDBiE0NDTtX6BgV65cQYsWLfTAv4uLC5o1a4aPP/4YO3fujPMxU6ZM0dvZzc0NNWvWRN++fdGjRw+rq95PnDgxzsevXbsWtWvXhpubG65cuZKaL8+msIUcbCEHW8jCHnKwhRxsIQdbyMEWsrCHLNHR0QgODkbt2rWhlELbtm31fTGvZr9x40a9rRs3boxy5crBZDJhyJAhCAsLS/QK+pQwtpCDLeRgC3nOnj2LrFmzwsHBAdOnTwcQ9wfH2rdvD6UU3N3d0b9/f5QqVQqZM2fG3LlzAST+rSuUOLaQgy3kYAs52EIW9pCDLeRgCxl4zCcHW8jBFrKwB1HGwAF2Eik6OhoHDx5McHjdfBADAP7+/jhw4ABee+01lC1bFkopODs7w83NDZ9++ikOHjwIAJg8eTKUUsiUKRNOnz6d5q/LFty9exeLFi3Ca6+9BqUUHBwc0KJFC/318pYsBxleffVVLFy40Or+q1evYtq0aXqZ+fPnW91///59NG/eXN+/YsWKVH1ttoYt5GALOdhCFvaQgy3kYAs52EIOtpCFPeT55JNPoJRChQoV4OXlZXVfdHS0vkr+hg0b9LZU6vmH9U+ePJkeq2y32EIOtpCDLeQICAhA9erVoZRC165dERgYaHW/5fnytm3b6vPgSilUrFgRnp6eab3Kdost5GALOdhCDraQhT3kYAs52EIWHvPJwRZysIUs7EFk3zjATiIdPnwYLVq00DuVoUOH4tatWwD++9St+dNRS5YsQbdu3eDq6qqXz5kzJyZPnowdO3bo57x48SLKlSsHBwcHDB8+3Oo5KG4bN27E2rVr4e/vD8D6YNFykKFz587YvXu3bmN5ZfvAwECMHDkSVapUwZYtW2L9jO3bt0MphW+++SaVX41tYws52EIOtpCFPeRgCznYQg62kIMtZGEPGVavXq239YwZMxAUFKTvM598DwgIwJo1a1CmTBm97LZt26yeJ75zHDz3kXRsIQdbyMEWcoSEhOD999+HUgpVq1bFsWPHrO633I8vXboUHh4eUErByckp1jetWF7ZkpKPLeRgCznYQg62kIU95GALOdhCFh7zycEWcrCFLOxBZN84wE4i+fr6wmQyQSmF4cOH4+bNm1b3P3z4ELNmzdKfuHVwcIBSCvXq1cPw4cNx+fLlWM/53XffQSkFk8mE33//PY1eiW2K60DPvNMHrAcZ3nzzTX2F+/gee/ToUZw4cULff+bMGav7La+sz18MrLGFHGwhB1vIwh5ysIUcbCEHW8jBFrKwhzyjRo3S23zixIk4evQoACAoKAg3b97EBx98oL9xTimFzZs3A3i+vS3f2AWABw8ewMfHB3fv3rW6nds+adhCDraQgy3kuHr1KgoXLgylnn8l9v79+/HkyRN9/8OHDzFs2DBUq1YtST2A578DWP4eALBHUrCFHGwhB1vIwRaysIccbCEHW8jCYz452EIOtpCFPYjsFwfYSaxz585hzJgxuHfvnr7t+PHj+O6771C6dGk4OjrqHY+joyM6d+4MAAgODgZgvWO5ePGiPgDq3bt32r4QO/Pll1/q7f7WW2/h0KFD+r7EPuEcHR2NtWvXomrVqvjkk09iPY6/DCQPW8jBFnKwhSzsIQdbyMEWcrCFHGwhC3ukLcuT5+PGjYOTk5O+qliNGjVQoUIF5MyZUzdRSuHPP/8E8Hy7hoeHAwDu3buH77//Hu3bt0ehQoXg4OCAvHnzon379vjmm2/w4MGDWD+PrLGFHGwhB1vI5O3tra8oVqhQITRu3BiDBw9G7969UaJECatvKjV/O4plj0ePHmHPnj3o168f2rZti7p166JFixZYvnw5jhw5on8OeySOLeRgCznYQg62kIU95GALOdgi/fGYTw62kIMtZGEPIvvHAXYSzfwm9549ezBt2jTkzp0bWbNmhVIK7u7uKFq0qNWnbvfv3w/g+Q7F8lNUS5cuRfbs2ZEnTx599XW+cZ58U6dOTfYgg+V2/vnnn/HKK6/o57A8cKTkYQs52EIOtpCFPeRgCznYQg62kIMtZGGP9GF5Unzjxo0YMWIEmjdvjipVqiB//vz6W+eUUvjjjz8AWJ98v3z5Mlq0aIH8+fNDKQVnZ2erE/aZM2dG06ZNcePGjVg/j6yxhRxsIQdbyOTj44PBgwejSpUqyJEjB1xcXODi4pLoG7ZXr17Fm2++iZIlS0IpZdXP2dkZ5cqVwzfffKN/Dnskji3kYAs52EIOtpCFPeRgCznYIv3xmE8OtpCDLWRhDyL7xgF2Eu/hw4do2LCh1c6jevXq+Pbbb3H27FmcPHkSLVu21Pft2LEDwH87lPDwcNSuXRtKKdSrVw/Pnj1L9GdGRUXpHRM9N2vWrGQPMljevn79ejRv3lw/x6JFi1J9ne0VW8jBFnKwhSzsIQdbyMEWcrCFHGwhC3ukr5gfsn/w4AG++eYb1KhRQ29Ty689NZ989/b2RqFChfQybm5uGDFiBGbMmIHly5ejc+fOKFGiBJRSKFasGHx8fOL8efQftpCDLeRgC5nCw8MRFRWFkydPYuzYsShdunSCb9h6eXmhWLFiehkXFxe0a9cO7733Hjp16oRSpUrp+7744gv9c9gjcWwhB1vIwRZysIUs7CEHW8jBFumPx3xysIUcbCELexDZLw6wk03w9PSEo6MjGjZsiM8++wyhoaH6vvDwcOzcuTPOIfaoqCjM1Pi8twABAABJREFUmTMHSinkzJkT27Zt07fHJyoqCv/88w8qVKiAnj17pu4LsyHnzp2DyWRCq1atcPjwYX17YoMM0dHRsQYZFi9erJeLiopK9GvoyRpbyMEWcrCFLOwhB1vIwRZysIUcbCELe8hy+PBhFC9ePM6T7+YP7F+9elW/YZsrVy506NAB586ds3oef39/7N69G/Xr14dSCjVq1ICfn1+avx5bxhZysIUcbCGDef+6cuVKlC9fPs4hn4iICADApUuXULBgQX2evFmzZvjnn3/0/QBw/PhxjBs3Tj/PjBkz0v5F2Si2kIMt5GALOdhCFvaQgy3kYAt5eMwnB1vIwRaysAeR/eAAO9mMu3fv4ubNm3r4PDIyUh/MREREYNeuXXEOsXfp0gVKKdSsWRNXr15N8GeYh9dbtGihn2fAgAGp+8JsiK+vL44dO6b//iJX4Ys5yBDXhwn4dSyJYws52EIOtpCFPeRgCznYQg62kIMtZGEPWXr37g2lrL8q27ztHz16hE6dOkEpBXd3d/Tu3RvXr18H8N/2tdz2J0+eRLVq1aCUwvDhwxEWFpa2L8bGsYUcbCEHW8hx9epVvR/eunUrAOsed+/eRbNmzaCUgoeHB3r37q3Pk1ueYweAoKAgzJgxQ7cz96WkYQs52EIOtpCDLWRhDznYQg62kIXHfHKwhRxsIQt7ENkHDrCTTYrrTfS4htiHDx+u/7xkyZIEn9M8vG4+6HF1dYWDgwOUUhg0aFBqvRSbldKDDFOnTsXo0aNTb4XtGFvIwRZysIUs7CEHW8jBFnKwhRxsIQt7pB/L7ebp6Qngv5Pv5u2/e/dulCxZEkopNG/eXL9hG1+3sLAwLF68GDly5EDZsmVx+/btVH4V9oEt5GALOdhCJk9PT/z9998A/uthbrVs2TLky5cPSim88cYb+g3b+HrcuXMHPXr0gJOTEwYOHGh1NUtKHFvIwRZysIUcbCELe8jBFnKwRfrjMZ8cbCEHW8jCHkT2hQPsZFdiDrGbTCYopfDqq6/i7t27AOLeGcUcXnd2dsY777yDsWPH6ucYOHBgWr8cm/OigwzffPONXm727Nlpus72ii3kYAs52EIW9pCDLeRgCznYQg62kIU90k7Mq9THPJfx4YcfQikFFxcX/PPPP3EuE9PNmzfh5uaGPHnyIDQ0NGVX2I6xhRxsIQdbyGX5Zq1Zu3btoJSCm5sbzp8/r5dLyM8//wylFOrVq8dvTnlBbCEHW8jBFnKwhSzsIQdbyMEW6YvHfHKwhRxsIQt7ENkPDrCT3QkNDcXx48fRoEEDPXw+cuTIeJePa3i9R48eOHr0KABg+fLl+nmGDRuWVi/D5rzoIMOcOXPg5OQEpRRq165ttax5eUoetpCDLeRgC1nYQw62kIMt5GALOdhCFvaQIzo6Gq1bt4aDgwPeeOMNREVFJfomrLnf1q1bERAQAIDbPiWwhRxsIQdbyHL37l3kz58fzs7OGDNmDIDYb/JaMrcIDQ3Fp59+iqdPn1rdTi+OLeRgCznYQg62kIU95GALOdhCDh7zycEWcrCFLOxBZFtMBpEdAWC4uLgYJUqU0H8vX768MXbsWP13S9HR0ca///5rjBgxwti3b5/h5ORkvP3228bAgQONunXrGoZhGL169TIWLVpkKKWM2bNnGzNmzEjbF2UDABhKKcMwDOOXX34xFi9ebOzdu9cwDMNYtGiR8fHHHxuG8Xx7G4ZhmEzP/9Mzb948Y8yYMUZkZKSRP39+I1++fEbOnDmNgwcPGpcvX9bLRkVFpfErsl1sIQdbyMEWsrCHHGwhB1vIwRZysIUs7CFLeHi4ce/ePSM6Otrw8PAwTCaT3ubxMfdr06aN4ebmZkRGRib6GEocW8jBFnKwhSyBgYHG3bt3jYiICCN37tyGYRiGg4NDvMsrpfQ59rlz5xrZsmUzIiMjdSN6cWwhB1vIwRZysIUs7CEHW8jBFnLwmE8OtpCDLWRhDyIbk6bj8kSpzPyJqb/++gvFixeHg4MDRo4cifDw8FifjErsyuvAf5+wevToEUaMGAGTyYSqVavqrxeh/0RHR2PDhg1JvgrfvHnz4OzsrJfNlCmTvtK9UgqlSpXC3LlzrR5PScMWcrCFHGwhC3vIwRZysIUcbCEHW8jCHnKEhYWhQYMGUEqhe/fuyX68+VyH5VXHeAWyF8MWcrCFHGwhi6+vL9zd3WEymbBmzRoAydvnmre95WOio6PZ5AWwhRxsIQdbyMEWsrCHHGwhB1vIwWM+OdhCDraQhT2IbAsH2MluWO4sevTooYfS4xo2Nw+vN27cWC/Xs2dPHDp0KM7nA4DNmzfrN9qXLVuWei/ERm3cuBHVq1dP8iCDo6MjlFLIlSsX+vTpgwMHDuDy5cv45ZdfMGjQIP08EydOTI+XY9PYQg62kIMtZGEPOdhCDraQgy3kYAtZ2EMW8zYuX748Tp8+naTHxDzP4eXlhTNnzmDPnj3Yu3cvwsLCEBYWBoAfKEgOtpCDLeRgC1latGih37Q1fw12YmL2CA4OxuPHjxEUFAR/f3+r+9gj6dhCDraQgy3kYAtZ2EMOtpCDLeTgMZ8cbCEHW8jCHkS2gwPsZHd+/PFH/Ub4F198AcD607Pm4fWmTZtCKQWTyYSaNWvi0qVL+jksd0rmnc6TJ0+QO3duKKXw1ltvxVouo/Px8dEDCkuWLNG3JzTIULVqVSxYsCDWcwUEBGDWrFn6wwUbNmxIk9dgL9hCDraQgy1kYQ852EIOtpCDLeRgC1nYQ5bdu3ejSJEiUEphypQpCAkJ0ffFda7C3CgqKgqHDh3CiBEjkCtXLmTKlEmfQ2ncuDFGjRoFPz8/AP99yx0ljC3kYAs52EIG87aeOnUqnJycULZsWRw8eDDRx5l7REdH49q1a5g+fTrq168Pd3d3FC5cGAULFsSYMWOwdetW/Rj2SBhbyMEWcrCFHGwhC3vIwRZysIU8POaTgy3kYAtZ2IPIdnCAnezK06dP0bNnT7i6uiJbtmzYtGkTAOuvhPrnn3/QrFkzKKX0m+pKKcyePVs/T8xPSkVGRmLNmjX668+7detm9bz03NmzZ/H999/rvyc0yFCtWjWrZS137FFRUbh69SqqVasGBwcHjB8/Pk3W356whRxsIQdbyMIecrCFHGwhB1vIwRaysIcsX331lT6nMW/ePNy/f1/fF9cH8yMiIjBlyhTUqlVLP65EiRKoVasWMmXKBAcHB93Ox8cHAE/CJxVbyMEWcrCFHLdu3ULNmjWhlEKzZs1w9uxZREREAIh9ftuyx5w5c/RVLs3/5MmTR18UJkeOHJg2bVqsx1L82EIOtpCDLeRgC1nYQw62kIMtZOExnxxsIQdbyMIeRLaBA+xkVyyvkt6nTx+r+2IOrzs7O6N79+74+OOP9Y5n+vTpennLndXt27fx1ltv6eWWLl2aZq/JViVnkCG+g8CGDRtCKYUWLVogMjKSO/4XxBZysIUcbCELe8jBFnKwhRxsIQdbyMIe6cdyew4bNkyfq+jbty82bdpktR3N5zYiIiIwYsQI5M2bVy+/bt06PH78GABw6dIlzJ49G5UrV4ZSCqVKlYKvr6/Vc1BsbCEHW8jBFjJdunRJb986depgxYoV+ophZpZv2I4cORIFChTQPZYvX44dO3bg3r17WLRoEbp06aLvmzBhgn4O9kgcW8jBFnKwhRxsIQt7yMEWcrBF+uMxnxxsIQdbyMIeRLaFA+xkd86dO4dq1arhl19+0bfFNbzeo0cPHD16FNHR0Vafuvr888/x5MkT/diLFy+iV69e+v7mzZvj3Llz6fDKbMuLDjJER0cjKioKnp6eKFu2LBwdHTFixIhEfwbFjy3kYAs52EIW9pCDLeRgCznYQg62kIU90pflSfZJkyYhR44c+lvjRo0aZbVsVFQUpk2bZvWGrVLK6upiABASEoJjx46hXr16UEqhU6dO8Pf3T5PXY8vYQg62kIMtZPL29tZvtLq7u8PDwwO7du2yWiYyMhITJkywesM2Z86csba1j48Ppk6dajUIREnHFnKwhRxsIQdbyMIecrCFHGyR/njMJwdbyMEWsrAHke3gADvZJT8/P/0pqPiG148cOaKXDwwMxPjx4/VOqHHjxujatSvatm2LGjVq6NtLliyJxYsXp9fLsknTpk1DpkyZkjTIYPn3yZMn6+3er18//P3331i+fDl27dqFa9eu6eV4hb6kYws52EIOtpCFPeRgCznYQg62kIMtZGGP9GO5bTZt2oQBAwagVq1aePbsGYD/rvxy/vx5NGrUCEopODg44L333tPbfsyYMfo5zMtv3boV+fPnR9GiRfHPP/+k4SuyXWwhB1vIwRYy3bx5E0OHDkWpUqXg4eGBwMBAAP9t3x07dqB69epQSsHFxQUVK1aEUgp58+bFxYsXrZYNDAzEyJEjoZTCa6+9hkePHvGqY8nAFnKwhRxsIQdbyMIecrCFHGyR/njMJwdbyMEWsrAHkW3gADvZtYiICBw+fBivvvqq1fD60aNH9TLmHcyVK1fQsmVLq09TWf5Tq1YtLFiwINbjKH6PHz+Gh4cHlFKoXbt2kgcZli5darXt8+bNCxcXF/33smXL4ptvvon3uSg2tpCDLeRgC1nYQw62kIMt5GALOdhCFvZIf5bbJioqSp+Uj4iI0LdPmDBBb9tly5YBAObOnatvGzt2rNVz3r17F5UqVYJSClOmTEmDV2Ef2EIOtpCDLWQKDQ2Fn58fQkNDAVj3GDhwoN72q1atwoMHD/SFYfLmzYtLly4B+O9N4O3bt8PR0REuLi7J+tZSnlt/ji3kYAs52EIOtpCFPeRgCznYIv1JOOYz98/oF8FgCznYQhb2IJKPA+xk10JCQtC+fXsopZAlS5Z4h9fN+vfvr98s79SpE1q2bImqVaviq6++woEDB/RycX0FekJ/z8g8PT3RpEkTLFq0SN+W0CDD8uXL9S8BZcqUQc+ePXHixAlcvHgRv//+OwYMGKDvHz9+fFq9DLvAFnKwhRxsIQt7yMEWcrCFHGwhB1vIwh7ymM9JREVFISAgQH+zXOfOnfWJ+ZCQkARPwvfu3RtKKXz55Zdpvv72hC3kYAs52EIWy330+fPnkT17diilMGjQIH27p6dnnMM+wPM3fCtVqgQHBwfs3r07wZ919uxZrFmzRv+d59CtsYUcbCEHW8jBFrKwhxxsIQdbyJGWx3znzp3D0KFD9YcOOBxqjS3kYAtZ2INIFg6wk907c+YM8uTJgzfeeAPHjh3Tt1seSISHhwP47xNUr7zyir7N/NUhZrzyW/L5+/vrPyd1kKFx48ZYtmyZ1afegOc9Zs6cqZdbt25d6q68nWELOdhCDraQhT3kYAs52EIOtpCDLWRhD7keP36MXLlyQSmF0aNHW90XHh4e50l4Pz8/lClTBkopTJ8+PT1W2y6xhRxsIQdbyHLq1ClkypQJjo6O+OGHHwD8dw7dy8srzmGfEydOwNXVFUopbN26Nd7nvnDhgr54TJ8+ffTtHPaJG1vIwRZysIUcbCELe8jBFnKwhRypecx34cIFDBo0CEopODk54cyZMwA4HBoftpCDLWRhD6L0xwF2yhBu376NEydO6L/Hd8X0zp07QymF8uXL6x1GXDsO8/KPHj3CpUuX8Pnnn2PAgAHo2rUrunbtiilTpmDfvn0IDAxMrZdkk5I6yNCkSROsXbtW3x/zK10uX76MihUrQimFMWPGpM3K2xm2kIMt5GALWdhDDraQgy3kYAs52EIW9pAnODgYxYoVg7OzM77//nsAQFhYmL4/5kn4kSNHYvPmzciXLx9y5cqFPXv26GVjnkvhB/yThy3kYAs52EKW3bt3QymFnDlz4tSpUwCst2PMYZ8zZ85g9erVyJIlCypXrgw/P784n/fChQsYMGAAcubMqVsOGDBA389hn9jYQg62kIMt5GALWdhDDraQgy3kSMljPkvmFuYr7SulkCNHDl7hOAFsIQdbyMIeROmPA+yU4cR34BAREYEGDRpAKYWWLVsiKioqwTc6Dh8+jLfeegvFixfXOxvLf0wmE3r37s2rxcUjqYMMlr0s/9y4cWMopdC0adNEW1HC2EIOtpCDLWRhDznYQg62kIMt5GALWdgj/UVFRcHf31+ftxgxYkScy4WHh2PevHm6Ub58+aDU86vkh4SEALBus2vXLvj6+gLgifakYgs52EIOtpAlOjoaBw8ehFLPrwoW3xuwlsM+7u7uKFGiBJRS6NSpE0JDQ2Mtb37DNkeOHFBKoWjRojCZTFBKYeDAgVY/n55jCznYQg62kIMtZGEPOdhCDraQI7WO+WK2KFOmDOrUqcPh0ASwhRxsIQt7EMnAAXai/7dq1Sq9s1m0aFG8y0VGRmLlypVwcXHRByVubm7w8PBAq1atULNmTdSuXRtKKTg4OCBLliyYOHFiGr4S+Sx33EkdZLB07NgxFCpUCEopfPbZZ2myzvaKLeRgCznYQhb2kIMt5GALOdhCDraQhT1kMG/fL7/8Ekop1K9fX381dkzh4eGYM2eOblW6dGlcvHhR32e2bds25M+fH/nz58f169dT/TXYC7aQgy3kYAt5IiMj9RDPoEGD4v12US8vLzRp0kT3KFOmTJwfGoj5hm2lSpWwbds2fPvttxz2SQRbyMEWcrCFHGwhC3vIwRZysIUMKXXMFxERoZeLq8WuXbtw8eJFtG7dWg+Hnj9/HgC/mcuMLeRgC1nYg0gGDrBThmfeIY0ePRpOTk7IkiULdu/eHeey/v7+mDVrlt4hKaVQrFgx/PTTT/rrp4KCghAaGorly5fjrbfe0gctQ4YMSauXZDMWLlyY7EGG8PBw/cuDUgorVqxIy1W2W2whB1vIwRaysIccbCEHW8jBFnKwhSzsIcOuXbtQoEABKKUwY8YMqyuJWXYIDw/HlClTkC9fPmzevBmA9Ru2W7ZsQaVKleDk5ASllP6wPt+YTTq2kIMt5GALGaKjoxEREYHJkyfDZDKhSpUqOHbsWLzLe3l5oXLlysicOTN27NgBIPE3bHfu3KmXWbZsmT5vPmrUqNR9cTaGLeRgCznYQg62kIU95GALOdhCnpc55rMc7IyrxY4dO3SLK1euoFWrVlBKoXjx4rh8+XKsn5HRsYUcbCELexClLw6wEwG4fv068uTJA6UUWrVqFe9yll8JkjdvXnTv3h337t2Ld3kfHx/MmjVLH7SMGTMmNVbf5kRHR8Pf319vlxYtWiRpkAEAvv/+e92gV69eabXKdost5GALOdhCFvaQgy3kYAs52EIOtpCFPeSZMmWK3q7z5s3DgwcP9H2WA6ARERG4fPlyrK/L3rJlCypXrgyTyYQ8efKgd+/euH37ttXj+ZWnScMWcrCFHGwhx61bt1C9enUopdCsWTOcPXtWb7uY++8rV65g3759CAsLs7rd/IZt9uzZrd6wtbxafkREBBYtWqR/V1iyZEnqvzgbwxZysIUcbCEHW8jCHnKwhRxsIcvLHvMlpYV5ufr160MphTfffBOPHz9O3Rdmg9hCDraQhT2I0g8H2ClDM795/vvvvyNnzpxwcHDQV+eJ+cb6+vXr9c6qcOHCGDp0KB49egQg9hsglgc9wcHBmD9/vj5oWbZsWaq/Lltx7tw5tG3bFitWrEjSIMOKFSt0g9atW+PcuXMA+JUqKYEt5GALOdhCFvaQgy3kYAs52EIOtpCFPdKf5bYbMWKE3r79+/fH33//naTn2LJlC6pUqaKvaqyUQq5cuVCwYEHUqlULw4cPx507dwBwQDQhbCEHW8jBFjJdunQJ+fPnh1IK9erVw5o1a3D//n0AiV8VLObVxipWrGh1tTFL9+7dQ9euXeHo6IjOnTvj2bNnqfJ6bBlbyMEWcrCFHGwhC3vIwRZysEX6S4ljvgsXLqB///56KDShFpGRkZg9ezaUUihRogROnz4NgFc3BthCEraQhT2I0h8H2IkAvPXWW1BKwc3NTb9Bbunff/+Fu7s7lFLw8PDAwIED4e/vDyBpb6Q/fvwYQ4cOhclkQuPGjXHx4sUUfw226unTp8keZGjevDn+/vvveD8lbcl8H3f2iWMLOdhCDraQhT3kYAs52EIOtpCDLWRhj/RnObD5xRdfwMnJCSaTCbly5cL777+PI0eOIDg4WC9juS23bt2KypUr68HQ4sWLo379+vjf//6HunXromDBglBKoXz58vDx8QHADxwkhC3kYAs52EImb29vlC1bFkop5MuXDy1btsTff/+d4LeRmt+wdXNzg1IK1apVw+7duxESEhLvYyZPngylFBwcHHD8+PHUeCk2jy3kYAs52EIOtpCFPeRgCznYIv0l95jPUswW5cuXx4kTJ+Jc3nyseOLECTg7O0MphcmTJ6fOi7JRbCEHW8jCHkTpiwPslOE9efIE1apVg1IKXbp0QUhIiH4jIyoqCuHh4Rg5ciQyZcoEpRRef/11PHz4UN+fVHv37kWRIkWglMIPP/yQGi/FpiU0bPDDDz9YDTJs3bo11tesAMCRI0ewceNGTJgwAd988w0OHjwIX19ffT/foEoatpCDLeRgC1nYQw62kIMt5GALOdhCFvZIX5Yn4VetWoUOHTrobT5t2jS9vWMOhlaqVEl/o1zbtm1x9epV/bWmjx8/xr59+1CvXj0opVC1alX4+fml7QuzQWwhB1vIwRYy+fj4oFevXihatCiUUsifPz++//77OPe3np6e6N+/P7Jly6bbffjhh/r+mFe/Nz/HkiVL9PKbNm1K3Rdkw9hCDraQgy3kYAtZ2EMOtpCDLdJfUo/5LJmvgm++orFSCkWKFMHt27cBIM4rGwPA9u3b9fITJkxInRdkw9hCDraQhT2I0g8H2Inw/EBEKYXPPvss1n1BQUGoVKkSlFIoUKAAbt68CeDF3hgfPnw4lFIoWbIk3zBJoqQMMmzfvh3Dhg2DUgqurq56eVdXV7zyyitYtmyZXpZfFfzi2EIOtpCDLWRhDznYQg62kIMt5GALWdgj7Viex7h9+zb++usvTJkyBUFBQQCst92WLVtQuXJlmEwmZM2aFYMGDbK633KIdO/evShRogScnZ0xZ86cWPdTbGwhB1vIwRYyPXnyBHv27MHAgQMxePBgfQUxy23o6elp9YZt/vz59b565syZermY59Nv3bqF1157Te/Td+7cmTYvykaxhRxsIQdbyMEWsrCHHGwhB1ukv8SO+SzvNw+F5siRA0oplCpVCiVLloRSCuXKlcP9+/cB/HecaO547949fPTRR/rKxjNmzLC6n55jCznYQhb2IEofHGAn+n++vr76U1CWO4YtW7bogw3zJ5/iekM8oZ2JeSd24MAB5MiRAwULFsS5c+dScvXtUlIGGb7++mtUr17darkOHTqgXbt2yJMnT5yfWuNV+ZKPLeRgCznYQhb2kIMt5GALOdhCDraQhT3SXnznLiy3+5YtW1ClShV9Er1///76PEhc50MePnyIOnXqQCmFzp07p86K2yG2kIMt5GAL2cxXDrO8gljMIZ/KlStjy5YtmDRpkt5HT58+PdZzPXz4EAsWLNBDQUWLFtXfekqJYws52EIOtpCDLWRhDznYQg62SD/xHfNZtog5FFqpUiXs3LkTR48eRbVq1fRw6K1bt6ye4969e1i8eDGKFCkCpRRy584NHx+fVH09towt5GALWdiDKO1xgJ0oEcuXL9cHJX/++Wecy5jfHH/06JH+5FVcnjx5guLFi6NTp06psq72ZPHixXBwcEhwkOGrr75CoUKFdJ8xY8YA+O8Xh3379mHw4MEJHlRS4thCDraQgy1kYQ852EIOtpCDLeRgC1nYQw7Lgf+tW7eicuXKcHJyglIKzZo1S3Aw1HxCv3///lBKoUGDBnj27FnarLgdYgs52EIOtkh/lm/eWvbw9PRE//79rYZ8du7ciYiICISFheHLL7/U++jPPvsMZ8+eRVRUFM6cOYNx48ahWLFi+g3bFStWxHp+io0t5GALOdhCDraQhT3kYAs52EImyy5xDYXu2LFDnws8ceKEHg4tVaoUVqxYgQMHDmDv3r3o16+fHgp1d3fH119/DYAtkoMt5GALWdiDKHVxgJ0oEUuWLNGflr1z5w6AuD9xdfnyZVSoUAGDBw+Gv79/rPujoqIQEBCAVatWWd0W3/NlZP7+/voAsWXLlnEOMvz4448oU6aMPlhU6vnXeF29ejXWc82YMUP/ArBt27a0fCk2jy3kYAs52EIW9pCDLeRgCznYQg62kIU95Ij5DXQVK1bU2zt37tw4fPgwgLgHQ80ePnyIWrVqQSmFNm3apPo62yu2kIMt5GALucxv2MYc8rHcnwcHB2PatGm6WcGCBVGuXDlkypQJbm5uet89YsQI3Lx5Mx1fjW1jCznYQg62kIMtZGEPOdhCDraQw9PTE4MGDUqwBQCcOXMGNWvWhFIKmTJlglIKJpMJjo6OUEohV65cGD58OK5du5ZOr8T2sYUcbCELexClDg6wEyVi3bp1UEoha9asOH/+fLzLbd++XR+0xDfEbsn8xor5jZibN29i7dq1KbfiNu7MmTPo0KEDNm7cqHf25oH/gIAAdO3aVW/vzz//HK+++iqUUsiTJw8uXbpktfydO3fQsWNHODg4YMqUKenzgmwYW8jBFnKwhSzsIQdbyMEWcrCFHGwhC3ukv/gGQ/PmzYusWbMiX758uHHjRryPN5/X8Pb21lcb6927N68Y8wLYQg62kIMt5PLy8kKvXr3g4eFh9Yat5ddpW1q+fDmyZs0KFxcXqw+meXh4YOLEibhy5UoavwL7wRZysIUcbCEHW8jCHnKwhRxsIcfdu3fRo0cPZMuWLUktHj9+jA4dOqBAgQJWLfLmzYvZs2dzKPQlsIUcbCELexClHg6wEyVi7969cHR0hKOjI3bs2JHgsqtWrdI7nU8//TTRIXbzGzF37txB//79YTKZ8O6776bYutu6wMDAOHf269ev19t53LhxAIBLly6hadOmeocfc6Bh3Lhx+peIsLAwvlmVTGwhB1vIwRaysIccbCEHW8jBFnKwhSzskX7iGgw1mUzInj07Bg0ahCZNmqB27drxPt48GBoREYHWrVvrDxccO3Ys1dfd3rCFHGwhB1vI5ufnh6JFi0IpherVqyf4hq3ZwYMHMXXqVDRq1Aht27ZF9+7d8e+//yIwMDCN1to+sYUcbCEHW8jBFrKwhxxsIQdbyDJixAgopVCpUiXs2rUr3haWx3s7d+7EjBkzMGrUKEybNi3WQKjlsSUlHVvIwRaysAdR6uAAO1ESmN/o6NixIx4+fBjrfssdivmK7UopDBw4EE+ePInzOc2PuX37Nvr3749ChQrpx509ezZVXoetM2+zoUOH6l8KvL299X1eXl5o1qxZrIEGAPjpp5+glEKdOnXSZd3tDVvIwRZysIUs7CEHW8jBFnKwhRxsIQt7pI34rmqcPXt2jBgxAsHBwWjTpg2cnZ1x8uTJWI83n4APDw9H//79oZSCq6sr3nvvPdy9ezfJP5vYQhK2kIMtbMOZM2fQsGFD/PXXXwkO+cS3Tc23mz9wFnM5tkg6tpCDLeRgCznYQhb2kIMt5GCL9Ge5jb766its2bIl0Q8SJHThisQuasEm8WMLOdhCFvYgSl0cYCdKgHmnsGzZMuTMmRPFihXDn3/+GefOwnxbZGQkunXrpofRx48fH2vHFXN4PX/+/PqNmD/++COVX5XtMm+3V155BUopNG3aNNYyMQcarl69CgDo2bMnlFLo3LlzWq6y3WILOdhCDraQhT3kYAs52EIOtpCDLWRhj7T1119/WQ2GDh8+XA9+Dhs2DCaTCVOmTEFoaGisx4aHh+Ojjz7SX5lasmRJ7N69O9ZykZGRiIyMjPe8CD3HFnKwhRxsIV9QUFCib9haioqK0ts2LCzM6r5r167hwoULuHTpEu7cuRPrcZQwtpCDLeRgCznYQhb2kIMt5GCL9Ge5/ZOznSyP3cLDw/Wfw8LCsHfvXmzYsAErV67Ehg0b8PTpU4SEhCT7Z2Q0bCEHW8jCHkSphwPsRElw9+5dvPrqq1BKoWHDhlZXSLfc2dy8eRNTpkyBu7s7lFIoVqwYlixZoncwlsvHHF53c3Pj8HoSvffee1BK4d133wVgvZMHrAca8uTJgx9++AFVq1aFUgpTpkwBwJ19SmELOdhCDraQhT3kYAs52EIOtpCDLWRhj9S3fft2FChQAC4uLnow1HKbbdiwQX8wf+rUqfjnn38AAFevXsXevXvRuHFjfX+ePHnw66+/Wj3/mTNn8Msvv6Bjx45o2bIl2rdvjwEDBmDXrl14/PgxgP+ukpzRsYUcbCEHW9g3y227atUqfPjhh3BxcYGDgwPc3NyQJUsWDBo0CL///nucj6GUwxZysIUcbCEHW8jCHnKwhRxsIYflYOncuXPxxhtv6GNC8z916tTBoEGD9AcL2CJ1sIUcbCELexDFjwPsREl09epVlChRQl8F7sSJE1ZX+PH19cWUKVOQM2dOKKVQtmxZrFy5Ev7+/nqZ5Ayv80o/8Rs+fDiUUihTpgzu378f5zJeXl5o2rQplFLIkiULlFIoUqRIrE86v+in5Og5tpCDLeRgC1nYQw62kIMt5GALOdhCFvZIfVevXtUfvh81apTeNpbba+zYsfrkuYeHB+rVq4dcuXIhb968ertXqlTJ6o1YAFi9ejXKly+PHDlyxDoJX7hwYbzxxhvw9fUFwJPwAFtIwhZysIX9smz4/vvvI1++fFYN3NzcoJSCg4MDsmXLhmnTpunl2SNlsYUcbCEHW8jBFrKwhxxsIQdbyGHZonv37siUKZPVsWL+/PlhMpn0bdWqVYOPjw8AtkhpbCEHW8jCHkQJ4wA7UTJ4eXmhcOHCUEqhevXqWLhwIfz8/PDs2bNYw+s//PADnj59qh9rfqMlucPrBw4cwHfffZc2L1A483Y5fvw4SpQogRw5cmDNmjXx7rC9vLzQpEkTvdPfuXMngP928OZfEoKDg3HhwgUAHGhIKraQgy3kYAtZ2EMOtpCDLeRgCznYQhb2SFteXl744osv9DYxbzfLbTRu3Djkzp071pBnvnz5MGTIEBw6dMjqOefMmWO1XLly5dCmTRv069cPZcuWRZ48eaCUQunSpXH9+nWrn5uRsYUcbCEHW9gfy23ZoUMHPdCjlMLAgQOxaNEi7N+/H5MnT0a7du10py+++EI/jvvxlMEWcrCFHGwhB1vIwh5ysIUcbCGHZYv27dtDKQUnJydkz54dEydOxKFDh3Dnzh0cP34ckydPRpUqVaCUQvHixXHz5k0AbJFS2EIOtpCFPYgSxwF2omS6fPky6tevD6UUMmXKhFKlSuHdd99NleH1Y8eOoUuXLlBKoV+/fmnzAm2Av7+/3i4NGjTA+fPn413W09MTrVq1wnfffWf1qTbLQYbSpUtDKYUTJ06k+rrbG7aQgy3kYAtZ2EMOtpCDLeRgCznYQhb2SHsxBzQt/7537158++23+PjjjzF06FDMmjUL169fR1BQkNVjvvnmG/2mbNWqVTF06FA8ffpUt7h16xY2bNiAOnXq6MHR27dvA+C30FliCznYQg62sH2W27B79+5QSsHV1RUNGjTA+vXrYy1/48YNTJ8+XTdbuHBhWq6uXWMLOdhCDraQgy1kYQ852EIOtpCpT58+ukXTpk2xadOmWMuEhITgxIkTetanZcuWePjwYTqsrX1jCznYQhb2IIofB9iJXsDt27cxevRoVK9e3eoTtRUqVEix4fWjR4/qN+zN/4waNSptXqANuHbtGkqUKAGlFJo2bYpDhw7pN6Zivqn09OlThISExHqOwMBA3VAphYIFC+LJkyd8UyqZ2EIOtpCDLWRhDznYQg62kIMt5GALWdgj/SV2ZRfL+3/99Ve9nevXr4/vv/8e4eHhAJ4Pmpq3eXR0NE6fPo3atWtDKYVevXrh2bNnsZ7bshF7sYUkbCEHW9imOXPmwNXVFU5OTmjWrJn+9hTgeTPLDycEBwdjwoQJUEqhcuXKOHXqVKzn4/Z/cWwhB1vIwRZysIUs7CEHW8jBFnKsWrUKefPmhYODAxo2bBirRUz79u1DmTJl4ObmhmXLlsW6P2YLfitX0rGFHGwhC3sQJYwD7EQvKDg4GDdu3MDw4cPRokULlCpVCsuXL0+x4fWuXbvqN1bc3NyglMJrr71m9fwZnbe3NwoUKAClFCpVqoSJEyfi8uXLSX78okWLrAYZ1q5dm4pra9/YQg62kIMtZGEPOdhCDraQgy3kYAtZ2EMWywFPSzdv3kTTpk2hlELp0qXx3Xff6ZPmcZ2Aj46Oxq+//op8+fKhePHisa6MH9cJd8ur6xNbSMIWcrCFfCEhIejQoQOUUsiZMyc2b96s74tvYMfT0xOvvvoqlFL47rvvrO4zt/D19YWXlxcAfq12UrGFHGwhB1vIwRaysIccbCEHW8jy4Ycf6vN/v/zyi749vhbPnj3DZ599BqUUOnbsiNDQUH2fuYWPjw+WLl0a63ZKGFvIwRaysAdRwjjATpQCgoKC4Ofnh8DAQH3bywyvd+vWTe+8zI9TSmH16tVp84JsyOXLl9GwYUM4OjpCKQV3d3d88803+uAuMZ9//jmUUtiwYYO+jZ9wfjFsIQdbyMEWsrCHHGwhB1vIwRZysIUs7CHfiRMn4O7uDqUU3nvvPT3ImdB2vn//Plq1agWlVJxfsQ0AI0eORN++fVNlne0VW8jBFnKwhRy7du3S57knT56sb09svzxy5EgopbBv3z4A1h8YuH79Onr27IncuXNj+/btqbPidogt5GALOdhCDraQhT3kYAs52EKOK1euwMnJCUopDBo0SN+eWItDhw7B1dUVW7duBfD8QwnmC0lev34dH3/8MZRSeOONN1Jt3e0NW8jBFrKwB1HiOMBO9BLi26Gk1PD6iBEj8L///Q8mkwn58uXD6dOnU+/F2LA7d+5g8uTJqFOnDpRS6N+/P548eZLgYyw/febp6an/zEGGl8MWcrCFHGwhC3vIwRZysIUcbCEHW8jCHrJNmjQJSikUKlQI165dA5C0K4Vt3LgRY8eO1X//+++/dddJkyYhd+7cUErh008/TY3VtktsIQdbyMEWcqxduxZKKeTJkwdHjx4FkHAL832PHj3C2bNnAQABAQGYNWsWlixZgqCgIPzvf//T596rVauGkJAQ7uuTgC3kYAs52EIOtpCFPeRgCznYQo5z587BZDJBKYUlS5YASPrV6+/evQvg+cUqp02bhpYtW+LgwYMYMmQI8ubNC6UUChQooJejhLGFHGwhC3sQJY4D7EQpzHwg8bLD6/3798exY8dQunRpfmoqCcLDw/Ho0SNs2LAB9+/fB5D4YELMXwp4EJgy2EIOtpCDLWRhDznYQg62kIMt5GALWdhDLvMVxAoVKoS7d+++0HbevXs38ufPj8KFC2PIkCHIkycPHB0dUbp0aXz//fepsNb2iS3kYAs52EKOJUuWQCmFggUL4t69e8l+fFRUFE6fPo2yZctCKYXq1asjT548UEqhVq1a8Pb2ToW1tk9sIQdbyMEWcrCFLOwhB1vIwRZynDt3Dq6ursiaNSuOHDkCwPqiFknx4MED9OnTB0opZMmSRX+DV/Xq1XH58mUAPKeYFGwhB1vIwh5EiTMZRJRiABhKKcPPz8+YMmWK8fvvvxt37941smTJYqxdu9Zo165drGUNwzCOHTtmzJ071/j5558NwzCMvn37GuPHjzdcXFyMkJAQw2QyGa+88ophGIYRFRWV9i/MBjg5ORnu7u7Gm2++aeTOnduIjo42lFJGZGSk1XKW289ksv5PoLkHvRy2kIMt5GALWdhDDraQgy3kYAs52EIW9pAHgGEYhuHq6moYhmHkz5/fyJs3r6GU0vclRVRUlFG+fHmjVKlSxq1bt4wFCxYYDx48MEqWLGlMmDDB6NOnj9XPo9jYQg62kIMt5MmcObNhGIbx8OFD4+7du8l+vFLKqFq1qtGlSxfDMAzj9OnTxoMHD4yaNWsaGzZsMMqUKcNz50nEFnKwhRxsIQdbyMIecrCFHGwhh5ubmxEZGWkEBgYaBw4cMAzDMBwcHJL8eACGh4eH0b17dyNv3rxGcHCw8eTJE6N8+fLGnj17jFKlShlRUVE8p5gEbCEHW8jCHkSJ4wA7UQpSShl37941Ro8ebfz5558vNLzer18/4/PPPzfy5Mlj/Pjjj8bt27eNTJkyGa1btzYMw3pHxjdG4mcymYzIyEjD0dHRCAoKMmbPnm0YxvPtxwO+tMUWcrCFHGwhC3vIwRZysIUcbCEHW8jCHunPfF6jXr16hmE8f8N127ZtVvclJioqynBwcDDy5ctnVK1a1XB2djaioqIMR0dHo3///sY777xjGIahP7BAcWMLOdhCDraQp3Xr1kblypWNyMhI4++//zbCw8OT/Fjz+fRbt24Z9+7dM9zc3PQ2r127tlG0aFG9XELPQc+xhRxsIQdbyJHeLcgae8jBFnKwhQwAjGLFihm9evUyTCaTcezYMePOnTvJery5xW+//WbV8fHjx/rCGGyROLaQgy1kYQ+iJErZC7oTkZ+fH8qVKwelFHLmzIk//vjD6n7Lr+04evQounXrBqUUlFL4+OOP4ePjo5dr06YNTCYTOnbsiPDwcKuvP7d8nl9++QWTJk1K5VdmWyIiIgAAwcHBqFmzJpRSGDJkSDqvVcbEFnKwhRxsIQt7yMEWcrCFHGwhB1vIwh5yXL16FXXr1oVSCiNGjEBAQECSHmd5jmPy5Mnw8PCAUgqZMmWCUgqFCxfGjRs3AMT9taqWj6fn2EIOtpCDLeQICAhA7969oZRC7dq1cebMmSQ9znwe/ObNm+jXrx9y584NpRQKFSqkz6uPGTNGL2/uER0djadPn+Lvv/+O9VwZHVvIwRZysIUcad2CEsYecrCFHGwhy08//QQnJycopTB37lyEhITo++Lbt8bXoly5cvo8Y8GCBXHt2jUA/52HBGIf6/HY7z9sIQdbyMIeRAnjADtRKjh79iwKFSqEX3/91er2xIbXzW96AMCuXbv0fTNmzIj3ef78809UqlQJSin07ds3lV6RbQoODkbJkiX1dlRKJfkAMiFx/QIRGRkZ6yCSJxv/wxZysIUcbCELe8jBFnKwhRxsIQdbyMIecsydO1c3WLBgAZ49e6bvi+sEeXyDoaVKlcKMGTPQtGlT/Sbu9evXAVi/cWt+/J49ezB+/PjUeVE2ii3kYAs52EKO69evo3Tp0lBKoVmzZjh69CiCgoIAxL1fNd/m6+tr9YZttWrVcOHCBSxfvly3/eKLL/TjzD1OnDgBpRS6deuWBq/OtrCFHGwhB1vIkVYtKGnYQw62kIMt0p/ldh43bpzeftOmTcOlS5cSfVxcLa5evYo7d+6gQYMGUEqhWLFiuHLlSpw/c/Pmzfq+jP5hA7aQgy1kYQ+ipOEAO1EqiXk1n+QMrwPA119/DVdXVxQvXhyenp76OSyf548//kClSpXg4uICpRRef/31VHxFtufatWt6GxcsWBAbNmx46ee03KkHBQVh3bp1GDt2LF5//XW88cYbmD17NrZv366X4UDDc2whB1vIwRaysIccbCEHW8jBFnKwhSzskf4shzxHjhype4waNQoHDhxI9DGWg6ElS5bE2rVrAQAXL15Ew4YNdVvzgKjl4w8fPgyTyQSlFObPn58Kr862sIUcbCEHW8jk5eWF/PnzQymFSpUqYdKkSThx4kSs5RJ6w/by5csAnn+YzfIDCuPGjdOPf/jwIerUqQOlFFxdXbF///60eYE2hC3kYAs52EKO1GzB4dDkYw852EIOtkh/lsdvI0aM0Nvv9ddfx/jx460+vAwkrUV0dDTOnz+vP7hcrFgxhIWFWV3deOPGjahcuTKyZ88eZ/OMiC3kYAtZ2IMocRxgJ0oDyR1eDwkJQe3ataGUQt26dfXXh8Q1vO7o6AilFHr27Knvz+hvoFu6cOECSpQogTVr1ujbXnT7mAcZoqKisGjRInTu3BlKKd3A/I+HhwfGjh370j/P3rCFHGwhB1vIwh5ysIUcbCEHW8jBFrKwR/qzHPofO3as3k6FChVCv3799BXIgISvamweDDXz9PTUA6LffPON1c86dOiQ/trV8uXLY+rUqQgLC0vNl2kT2EIOtpCDLWS6fPkymjVrhixZskAphWzZsuH+/fv6/qS8YWvuFR4ejunTp0Mphd27dwMAQkNDMXnyZGTLlg0ODg548803cevWrTR+lbaBLeRgCznYQo7UbkHJwx5ysIUcbJH+LI/55syZg4oVK+rjvvPnz+v7ktLC8rnOnDmDpk2bYufOnVY/77fffkOjRo3g6uqq53Ti+mavjIgt5GALWdiDKGEcYCdKQ8eOHUtweN28wzh9+jQKFy6MTJkyYcGCBQCeH7CYxRxef/fdd/WOjF/7EZvlJ9ZedLDA8sCxW7du+hcF85tYjRs3xltvvYXatWvrqyuNGDEiRdbfnrCFHGwhB1vIwh5ysIUcbCEHW8jBFrKwR/qzPBexcuVKdOzYEU5OThgwYIC+PamDoZbLeXp6YuXKlVY/y3IwtFKlSpg/fz6ePn2aGi/LJrGFHGwhB1vIdPfuXSxbtgzt2rXDX3/9pW9PzpCPWXh4OPz8/PTfLa+S7+LigqNHj6bBK7JdbCEHW8jBFnKkVov43k+Na7gno39o2RJ7yMEWcrBF+rPcVqdOncKSJUv0t5tER0fr7XPr1i18/PHHSWoBPL8yviXzUKiDgwOUUujWrRsePXqUWi/LJrGFHGwhC3sQxY8D7ERp5MSJE2jbtm28w+uWpk2bppfbu3ev1X0cXk++lLoy/b1799CgQQPdRqnnX9917Ngx/YuCj48P5s+frwcavv3225def3vCFnKwhRxsIQt7yMEWcrCFHGwhB1vIwh4yWJ5A9/f3x4ULF/TfLb++9KuvvtKDoSVLlox3MDQuMQdD582bpwdDM/qbtZbYQg62kIMt5DJv/6ioKL2d7t69i08++STJb9jG9NFHH+l9+cKFCwGwQVKwhRxsIQdbyJEaLSzFXP6nn37CokWL9N/ZyBp7yMEWcrBF+opre1q2ePDgAYYNG4Y8efIkuYXl7TGHQrt06YInT56k/AuxA2whB1vIwh5EceMAO1EauXXrln4DY+DAgXEOr0dFRSEkJARt2rSByWRCx44drQ40Nm/ejIoVK+rh9R49enB4PZWZd/bXrl1D7dq1oZRCpkyZULFiRaxbty7Oxzx79gz9+vWDUgpdu3a1+oWDXhxbyMEWcrCFLOwhB1vIwRZysIUcbCELe6SsuLaD5fmK7777DkWKFEnWYKj59oMHD+rzKhUrVsS8efP01fe5/WNjCznYQg62kC86OhoRERFYsGABihYtCqUUqlevjitXrgBI2pDP0qVL9WBox44d9WMpedhCDraQgy3kSIkW5uex9OzZMyxduhRdu3bVnfr27Zvi629v2EMOtpCDLeQwb+t169ahVKlSUEqhatWqiQ6FWm57DoWmDLaQgy1kYQ/K6DjATpSGzp07h2HDhuH69evxLnPhwgVkzpwZSikMHTpU387h9bRn/pT048ePUadOHSilkCVLFrz66qvYtWuXXi6uN6EWLFgApRRcXV0T7E1JwxZysIUcbCELe8jBFnKwhRxsIQdbyMIeacvX1xevvfYalFLIly8fVq9ere9LbDD0wIEDejC0Ro0amDdvHgIDAwHwnMiLYAs52EIOtpAjICBA75eLFCmCS5cuAUjakM/FixfRtm1bmEwmODs7Y9myZXEuF9e+nR80iI0t5GALOdhCjpdpEXMZT09P/Pzzz6hatSqcnZ31UKirqyuUUpg2bVqqvAZ7wh5ysIUcbCHLK6+8AqUUcufOnegHCRIaCn3rrbc4FPqS2EIOtpCFPSij4gA7URqz/EpaS+Y3M2bOnAmlFAoUKAAvLy8AwMaNG19qeD25Xz9F/22ziIgINGnSBEopZM6cGW3btsXBgwf1cjFPGoaHhwMAfv75Z7i5uSFXrlzw9fVNuxW3Q2whB1vIwRaysIccbCEHW8jBFnKwhSzskfZ+++03/QbrggUL9O3JGQwtWrQoRo4ciaNHjyI6OhqhoaEAOCCaXGwhB1vIwRZybN68WQ/j/P777wAS34bmHgsWLNBv2H7wwQf6fsv9ufm5IiMjsX//fvzwww+xnoeeYws52EIOtpDjRVrE5OXlhfnz56NEiRLImTMnlFLInz8/6tWrh4oVK0Kp59/QdeTIkVR4BfaFPeRgCznYQo47d+7Aw8MDSimMGzcOQNKHQhs0aACTycQrGqcQtpCDLWRhD8rIOMBOJEz79u2hlEKFChUQERGBP/7444WG12O+yX7v3j1s3bo1Vdfd3kRFReHDDz+EUgouLi5o1qwZDhw4oO9P6IoXH3/8MZRSyJYtG27evJkWq2vX2EIOtpCDLWRhDznYQg62kIMt5GALWdgjbW3atAlKKRQsWBAnT54EkPhg6MGDB/VgqPlN2cyZM8PDwwNVq1bFgAEDcPv2bQAcEE0OtpCDLeRgCzm8vb1RtGhRZM6cGd9//32SH3fy5ElkypQJSik0bNgQN27cABD3tg8NDcWIESNQvXp1KKXw0Ucfpdj62xO2kIMt5GALOZLbwnx8FxAQgFu3buF///sfateurffjOXLkQMOGDfH333/jwIED6N69O0wmE/r06YOQkBB+gCAR7CEHW8jBFnIEBwfj9ddf1x8iM1+gIqaYQ6ENGzbUQ6GVKlXSx3dJEdcH1IgtJGELWdiDMjIOsBMJcvz4cbi7u8PBwQErVqzAvn37UL58+WQNr8c8MDl9+jRWrlyJkiVLxrqqAyXst99+Q6lSpfTXem3btk3fl9Agw8mTJ1GtWjUopdC+fXuEhYXx6x1fElvIwRZysIUs7CEHW8jBFnKwhRxsIQt7pK3jx4+jWLFiUErh66+/jnc5y6sam8+HmEwm5M6dG126dEH//v3RvHlzFCpUCEoplC9fHj4+PlaPpYSxhRxsIQdbyPH48WO0a9cOSik0b95cD3km5Pbt2/rCMB4eHpgxYwbCwsIAWO/THz58iD179uhBIAcHB/1G7/z581PtNdkqtpCDLeRgCzmS0iLmvvf48eN4//33UalSJSil9L78o48+wpo1axASEgIAWLdunR4Y/fHHH9Pk9dg69pCDLeRgC1kWLVqkt1lcHyiw3Cf/+uuvaNSokd4Pm/+ZNGkSAgMDE/1Z5ufat28fzpw5A4DDoZbYQg62kIU9KKPiADuRICtXrtSfnu3bty+qVKmiv04wqVdeB57vaC5duoSpU6eiRIkS+qoOrq6uUEph8ODBafFybN5HH32kd/IrV67Ut8c1mGB526RJk/TjZsyYkSbrau/YQg62kIMtZGEPOdhCDraQgy3kYAtZ2CPtffXVVwmehI9rMLRkyZLo3bs3rl+/rpd7+vQpDh06hHr16kEphWrVquHu3btp9TLsAlvIwRZysIUcV65c0R8CaNOmjdX2tWRusmbNGhQpUgRKKdSpUwf37t2Ltew///yDfv366efNly8fihYtCqUUqlevjkePHqXmS7JZbCEHW8jBFnLEbHHt2jUAsd9HXb16NT7++GP9nqtSCjlz5sTAgQPx+++/Wy17+fJlVK1aFUopdO3aNa1eil1gDznYQg62SH+W5/RGjRqlPxiwePHiOJeJORTas2dPq2PFCRMmICgoKN6fZ97/79mzRz/m3LlzqfDKbA9byMEWsrAHZXQcYCcSICoqCgEBAXj11Vf1oHnZsmX1wHlSh9cDAgJw7do19OnTBzVq1NA7mkKFCqFo0aL6K2379++fVi/NZh05ckS/ETVgwAB9e2KDDOvXr9fbvW3btggICIj3cZQ0bCEHW8jBFrKwhxxsIQdbyMEWcrCFLOyRtiyvKDZ8+HC9DX/44YdYy1gOhlasWBEzZszQAzsxz4ns2LEDhQsXhqurKxYtWgSALRLDFnKwhRxsIZOXlxfy588PpRRef/11fbViM3OTkJAQNGjQAEo9vzDMv//+a7Xcw4cPsWrVKuTIkQNKKWTLlg1dunTBxo0bUa1aNeTMmROLFy9GZGQkr5IfD7aQgy3kYAs5YraIiIgAADx58gSrV69Gly5doJTSAz7FixfH4MGDce7cOX0lYwC64d9//418+fLB1dUVS5YsAcBvUUkO9pCDLeRgi/Rneaw2YsQIPRx6//59q20Xcyi0S5cuePr0KQBgzpw5iQ6Hmo/3du3apZdVSuG9997jlY3/H1vIwRaysAdlZBxgJxLi4cOHyJMnDxwdHWEymfQbIfENr8fccezZswd9+vRBiRIl9I5MKYUhQ4Zg7dq1GD16NLJmzYrKlSvj0qVLAPiGSUI2btwIBwcHuLq6Yu3atQASH2T466+/9IcESpcuje+//54HiymALeRgCznYQhb2kIMt5GALOdhCDraQhT3SnuV5jCFDhkAphSlTpgD4743W/fv36/MZRYoUwdSpU/UJ+Lj6PHr0SH+Av1u3bomuQ1RUFHx9fVPi5dg0tpCDLeRgC5k8PT1RoEAB7N69O95lzN+okilTJkyYMAHh4eH6vl9++QU9evTQb8i2adNG7/cHDx4MpRSaNm0KHx+fVH8tto4t5GALOdhCjvPnz6NgwYL4999/8ejRI6xfvx5VqlSBu7u73r65cuXSf/7tt98AQPcw78fDw8PRtGlT/UE1f3//dHtNtow95GALOdgi/cUcDt2zZ4/V/TGHQt9++208efLEapm5c+fGOxxqPm60HArNkSMH3nnnHfj5+aXa67JFbCEHW8jCHpRRcYCdSIgbN27or4QyX3n93Xff1Qcj5k/ixnwzZMWKFfj444+tPhlVuHBhDBkyBH///TeA52+W1KlTR79ZEhgYmLYvzgaZd+olSpSI940oy79v374dHh4eUErBzc0N/fv3T/ArWSjp2EIOtpCDLWRhDznYQg62kIMt5GALWdgjfViehN+5c6fVfZaDoUopdOjQAQ8fPgQQ92Co+TzJO++8owd+EhIVFYUjR46gYsWKGDRo0Mu+FJvHFnKwhRxsIZP5qpNxXQnst99+Q6lSpaCUQpUqVXDmzBkAwLNnz9C/f399ReMsWbLg888/19+csmTJEiil4ODggCNHjqTdi7FxbCEHW8jBFnKEh4dj06ZNyJkzpx4IdXR0RObMmTFlyhQsXLhQfxO2Ukq/hxodHa37rV69GtmyZUP27NmxevVqALyq8YtiDznYQg62SH/xXV34t99+S3Ao1PJxMYdDAwMD4x0K7dq1K+7duwfgv07mY8WMji3kYAtZ2IMyIg6wEwly4cIF/YZ4r1699JsfoaGhVsvdunULP/74I9q0aWM1uF6/fn189NFH8PX1tbqKg/mqQR4eHrhw4QIAXn09MQsXLoRSCjlz5sS1a9cSXHbr1q3ImTOn7tCpUyf9aWceML48tpCDLeRgC1nYQw62kIMt5GALOdhCFvZIP3GdhD9w4ID+ML+DgwMyZ84MT09PAAmfv3jy5AnKly8PpRRee+21eJeLiorC0aNH0axZM93xxIkTL/9ibBxbyMEWcrCFPPF9wCwkJAR9+vTR22zDhg0IDQ3FDz/8oK9K6erqih49emDTpk368f/88w9q1aoFk8mEadOmxfkzgNj/X+D5dLaQhC3kYAtZzp49i6xZs0Kp51cm/vTTT3Hy5EkAz7fZ3r170bJlS91l+/btVo/v168flFIoVqwYzp49mx4vwa6whxxsIQdbyLN69Wo0bNgQzs7OcQ6FmlmeA7QcDh0/fjyA5A2FBgYG6g8g0H/YQg62kIU9yN5xgJ1IGE9PT3z44Yf6ZJPlDub8+fNYu3YtypQpo6/M4OLignr16mHcuHG4du0awsLCAPz3dVK3bt1Cs2bNYDKZ8MEHH1h9sori5+npiRIlSsDd3d3q5KHlBwPCw8Px448/6h28o6MjWrdujcePHwOI/5NxlDxsIQdbyMEWsrCHHGwhB1vIwRZysIUs7CHH1atX9TauVKkS8uXLhwoVKiAgIMCqhyXzOZONGzcif/78MJlMmDRpktV9ZubB0MaNG+uT899++62+8j79hy3kYAs52EKu5cuX6zaffPIJrl69itdff12fN8+TJw9+/fVX3Llzx+pxkydPhslkQv369XHq1KkEf0ZISAh++eUX/XcOiMaNLeRgCznYIv1cuHABffv2xY0bN/S3ZpmP3cLDw7Fr1y6r4dAdO3YAAH799Vd925w5c9Jr9e0Oe8jBFnKwhSxz5szR27Vbt25xDoWaWc7ZWD7uvffeS3Qo1CwwMBDt27eHUgqTJ09Olddkq9hCDraQhT3I3nGAnUi4iIgIXL9+HZMmTUKFChXg4uICpRQyZ86sdy5z5861eozlzmXx4sV6uQ0bNqT16tusx48f6yvcN2nSBCdPnrR6U2rr1q0YOnSo3rY5c+ZEly5d9C8KHGRIOWwhB1vIwRaysIccbCEHW8jBFnKwhSzp0YMDJfHr1asXChQogJkzZ6JChQqoXbt2vMtavqnbqVMnKPX8ishHjhyJtWzMwVA3NzcsWbIEAQEBqfZabB1byMEWcrCFPIcPH0aRIkX0Prpt27bInj07lFIoXrw43n//fXh7e8d63L59+/S+fcGCBVb3We6nnz59ipMnT6JevXr6jV6KG1vIwRZysIVsERERsYZDf/vtN0yYMAGOjo6oUaMGLl68CIDHcGmBPeRgCznYIu316tULLVu2THAo1MxyFueHH36AUgomkwlKKWTPnj3BoVAAmDp1qp73efXVV2N9mC2jYws52EIW9iB7xgF2IsH8/PzQsWNHNGnSRB+cKKXQqFEjDBkyBI0aNdK37dy5E8DzgxTzgYqXlxcqVaoEpRT69OmTni/FJl25cgWFCxeGUgrly5dHp06dMHDgQLz++uvIlSuX3vaVK1fGyJEj9ZWROFiS8thCDraQgy1kScsePCGZMLaQIz3+O2X+NiKyxhZypGULyxOP3P/HLb1+n7I84ZvR9yWW23Lv3r24desWmjZtiuzZs+PcuXMJPvbDDz/Ug6ETJkwAYL09ORiaPGwhB1vIwRYyRUREYMyYMVBKIVOmTHo7K6XQunVr/PXXX/rbUix/H7p27Rrq1q0LpRR69+6tb4+5Xz958iRGjx6NYsWKQSkFJycnKKWwb9++DL/fjokt5GALOdjCNsQ1HGq+Ov5HH32UrOfidn957CEHW8jBFmnDcj8bHByc5MeZL4Jx6tQp3Sdz5sxxDoXGdR6xe/fuaNGiBU6ePPkyq29X2EIOtpCFPSgj4AA7kWBXrlyBo6Oj3pk0a9YMn3/+OSIiIhAaGoqDBw/G+fVR5h3Rxo0b4e7uDkdHRyxZsgRA4gconp6e+OGHH1L1ddmSS5cuoXr16nB2drb6EIH5hGO3bt2wadMmhISEAIj702mUMtK6hfnxPKiPjS3kYAtZ0rrHhQsXcObMGe574sAWcqRVi6ioKHh6euKtt97CmjVr4OPjo+/jf7OeYws50vq/UatWrcK3335r9fXzbPGftO7h6emJ7t27W73ZmNF7xNym/fv3h1IKM2bM0NvdLDIyEv7+/nj//feh1PMrx7Rr1w7Hjx+P9ZwcDE0+tpCDLeRgC5m8vLyQNWtWvc+uUKECRo4cGe/yYWFh+Prrr5E5c2ZUrVpVvwFr+aHL8PBwrF27FsWKFUO2bNmglELevHnx9ttv4++//7Z6Ph77/Yct5GALOdjCNkRERGD37t1o0aKFPg4sV66cPo8R81z406dPcfnyZWzatAn//vsvHj58qJ+L2/zlsYccbCEHW6SN5G4b8/I7duzQXbJmzZrgUGhwcDDu3r1r9TzXrl172VW3O2whB1vIwh5k7zjATiTchQsXUKpUKcyfPx+XL1+2ui88PDzWJ2/NJ6oePXqEKlWqQCmF+vXrJ+kKiN7e3ujZsyeUUujevXuqvB5bdOvWLcybNw+dO3dG3bp1UalSJXz++edYvXq11XIZfeggLaRmi5ifKnz27BkiIyNjfQUPOz/HFnKwhSxptc+4dOkS3n33XSil8Nlnn+Hw4cMp9tz2gi3kSIsWFy5cQLt27fSgUIcOHbBy5coUeW57whZypNV/o44cOYISJUpAKYXGjRtj+fLlKfbc9iStenh6emLQoEH6+H3AgAEp9tz2ZO3atXobTZ48GQcPHkRAQACuX7+OBQsWoE2bNvq/Mc2bN8fmzZutHs/B0JTDFnKwhRxsIcf58+fh5uaGvn37Wg1vxvUtNDdv3kTVqlWhlMKYMWMQFBRk9Vxbt27VH04w/1O6dGn8/PPPuHHjhtWyvr6+WLhwYazbMzK2kIMt5GAL27Fu3TrkyZMHSj2/+v2zZ8/0febjtGvXruH9999H8eLFoZSCo6Mj2rRpg6VLl+pl+c1nKYM95GALOdhCDvN+fNeuXXqfnCNHjkSHQps2bYqsWbPi+vXr6bLe9ogt5GALWdiDbBEH2IlsQMyvAbE8wRXX10dt27YNO3fuRLZs2ZArVy78/PPPABI+KDEPr5sPfhwdHXH16tXUeUE2LjQ01Orv/MRy+kmNFjt37sTcuXPRoEED1KxZExUqVMCwYcOwfv16vQyHS2JjCznYQpbU6BEVFYXdu3ejTp06UOr5VwU3atQI8+fP18uwR2xsIUdqtHj8+DG+/PJLdO/eHU5OTjCZTHB2dsaYMWP0MmwRG1vIkZrHGN988w1q1KgBBwcHODo6YsKECfo+tohbavTw9PTEwIED9XG7k5MTlFIYOHCgXoY9/jN27Fi9rXLlyoXKlSvDw8MDWbJk0VeyfPPNN/Hnn39aPY6DoSmPLeRgCznYQo7Hjx/rbyMFrPfZlvvVN998E0opVKhQweqKYpGRkRgyZAgqVKigm5YvXx59+vTBo0ePYv28O3fuYNasWXrZO3fupNIrsz1sIQdbyMEWtsH84QAHBwccOXIk1v13795F586d9bd2ubu76w+rKaWsjrH5fuHLYw852EIOtpDhRYZCg4KC0KFDB738+++/n6QLT1LC2EIOtpCFPchWcYCdyAaYT2TF92Z2XEPs5jdCihYtCm9v7wSf3zy8nitXLiilUKRIERw6dCjFX4cts9z2HCpIX6nRIjo6Go8fP0b//v31hzhi/uPq6orRo0en+M+2ZWwhB1vIkhb7jJCQEBw5ckRf+dt8IrJ///6p/rNtCVvIkZotYj7fhg0b0KdPH93i008/TbWfbYvYQo7U/m+U5RtSx48fx5AhQ9giAanZI+bweu/evbFw4ULdg0Ps/7H8/+348eNRoEABq98/s2bNiqxZs2Lu3Lk4f/58rMcmNhia0bdvcrCFHGwhB1vYpsWLF0MphZw5c2L37t0AAD8/P2zcuBEtWrSwavjOO+9g06ZN+sNsERER+nnu3LmD6dOnw8PDA0o9v/qxj49PurwmW8UWcrCFHGyRvnbu3In8+fPDZDLh448/BhB7f7xjxw7kzZsXTk5O6NmzJy5cuICff/7Z6qr4X375pV6ew6Evjj3kYAs52EIG8zZ/0aHQLFmyoEuXLjh27Fj6vAA7whZysIUs7EG2jAPsRHYiriF2pZTV10LFJebwesGCBTm8TnYjoW8dMP8CFxwcjL/++gutWrWyGjxs3bo13nvvPQwfPhyvvfaavn3UqFFptfp2hS3kYAtZXuQrG2OenJw5cyaKFCkCR0dHKKXQo0ePlFq9DIUt5HjRrzK1PPF+9+5dLFiwQP93aurUqSm1ehkKW8iREi38/PwwZ84c3WLs2LEptXoZTmI9LPcPMYfX+/Tpg8DAQADA0qVLOcQeB8vte+jQIaxatQpjxozByJEjsXHjxlhDoUDSBkPje4M2o2/vhLCFHGwhB1vYBvN2u3r1Klq2bAlHR0f9Ab5z586he/fuKFWqFJRScHFxQdmyZTFr1iyr57BsHXMwtG7duvz20iRiCznYQg62SH/mBuPHj9fHaqtWrYpzWfNV7fPmzYvr16/r2+/fv48ZM2boxy9evDgtVt0usYccbCEHW8hhPlbbvXv3Cw+Fdu7cGSdPnkyfF2BH2EIOtpCFPcjWcYCdyI6EhoZix44dKFOmDEwmE6pXrw5PT08Acb/ZweF1skfBwcE4ffq0/ntcwyXmfx+ePXuG5cuXo1atWlBKwdHREc2bN8fChQutlr9//74evHJ2dsaaNWtS90XYCbaQgy1kSUqPxFju10+cOIHGjRvrr4esWrUqbt68mSLrau/YQo6UaAFY9wgNDcVXX30Fk8mEcuXK4ejRoy+9nhkBW8iRUi1iPue0adNgMpng5uaG9evXv/RzZhQv0uP8+fMYMGCAPmnct29fPHnyxOo5li1bxiH2OCR2NTDL7ZOUwVBLu3btwvz583H69GkEBQUl6edlZGwhB1vIwRayWW7/L7/8EkopFCtWDCtWrMAvv/yCHDly6H1zlixZMHLkSOzbt8/q8ZbPEddg6JUrV9L0NdkqtpCDLeRgCzn++ecfuLq6QimFt956S98e81hswYIFUErB3d091nm+4OBgfPHFF1BKoUKFColesfL69eu4f/9+yr0IO8IecrCFHGwhx19//ZViQ6FRUVFp8u3B9oot5GALWdiDbBkH2InshHmHs3//fri4uEAp66+Fj4nD62nL/FWOKTF0QvELDQ3F+vXr4ejoiA8++CDBZQMCArBgwQJUrlxZD+kOHjwYR44c0ctYfgXnw4cP9S9xn3zySaq9BnvBFnKwhSzJ6REfy4PE/fv345133tFX/G7ZsiX+/fdfHkgmAVvIkRIt4nP8+HHky5cPSiksW7YsRZ/bHrGFHC/aIq7/5sS87cqVK/qr6M0D0/xvVcJepIevry/69OmjTxo3btwYoaGhAIDw8HC9XMwh9r59+6bKa7BXyR0MvXbtGjp16gSlFEqXLo1PPvkEfn5+AHi8/rLYQg62kIMt0teff/6p98N169ZF//79kSlTJv1mbqVKlbB//36EhITox8T8sAAHQ1MGW8jBFnKwRfqKiIjQ35SVL18+rFy5MtYy5uPke/fuoUKFClBK4bPPPkNwcLDVchcuXNDfZDpt2rR499mXLl1C586d4ejoyCvkx8AecrCFHGwhy6BBg6CUQvbs2dG9e/cXHgq1PCcYEz+4nDRsIQdbyMIeZMs4wE5kR+7du4dXX30VSilUr14dt2/fBhB7J8Lh9fRx9uxZvPfee/Dx8UnvVbFLoaGh+Omnn1CiRAl94vfHH3+Mc9mQkBD8+OOPqFq1qh7S/eqrr+Dr66uXiWuIZ+zYsfpNxIcPH6baa7F1bCEHW8iSnB7xsWxw6NAhdO/enQPTL4At5EiJFolp1KgRlFLo2rWr1YdwyBpbyJESLTZt2oQdO3bov8f879G4ceOglELOnDlx48aNFFlve/UyPebNm4c6deogc+bMyJo1K4YOHarvs/x3IDIyEsuXL9fPb3mFRYpfcgdDzfbu3YtOnTqhYMGCUEqhRo0a+jidA6Ivhi3kYAs52CJ9Xbt2Da1bt4aLiwucnZ2RK1cuODk5QSmF2rVrY9KkSfp8R3zHbXfu3MG0adP0OfT69evD29tb38/jvaRhCznYQg62kOHSpUtQSiF//vx49OgRAODmzZuxhjYDAwPx6aef6j7mb762PKabOXMmlFJYsWJFnD8rJCQEPXv21Md8U6dO5QBQDOwhB1vIwRayjBgxAq1atXqpKxoDzy968cknn6B79+748MMPsW7dOv3+Ko/5koYt5GALWdiDbBUH2InsgHkHsXPnTpQsWRJKKbz//vsIDAyMtSyH19NedHQ0QkJCkDdvXiil8Pbbb1sNhFLKePbsGcqXL68P5Lt3744zZ85YLWM+aXvw4EHUq1dPD+nOmjVLH/jHxXyA379/fyilUKlSJasrn5A1tpCDLWRJSo+EcGA65bCFHC/bIjH+/v4oXbo0lFJo164duySALeR42Rbnzp3Tx3u//vqr1X3mq2d89dVXcHFxgYeHB27dupWi629vXraHt7c3Zs6ciSxZskAphXfffVffZ3myNzIyEmvWrMGCBQtw9+7dFH0N9igpg6ExT6ZHR0fr//Y8fPgQGzZsQM2aNaGUQvHixfWHOfgGbfKwhRxsIQdbpL8HDx6gaNGiUErpbzlRSuGdd96Bt7e3viplfNvTPBiaM2dOKKVQpkwZeHt7629TMWOPxLGFHGwhB1vI4eXlhT/++AMAcOzYMVSsWBGrV68GYH3+7+LFi/pb5d577z19u3l/HhYWhu3bt+vb4zrnsW3bNiilMHz4cP0NK2SNPeRgCznYIv1ZHruZj+mSOxRqfk/1xIkTKFKkiN73my8w8sorr+DmzZuxfh5ZYws52EIW9iBbxwF2Ijvyxhtv6J3N2bNnAVifoOLwevrat28fMmfODKUU3nzzTQ6xp4KzZ8+iePHiaNeuHS5evGh1n/nfhaioKLRv314P6U6ePBkPHjyI9zktD+A7d+4MpRRq1qyJx48fc/AqAWwhB1vIklCPhHBgOuWxhRwv2iI+5v+2hYeHY8WKFcidOzeUUhgwYMBLP7e9Yws5XqaFv78//ve//+mTi99//73VFZeCg4PRtWtXKKXg4uJidZU+ituL9LDcF4SGhmLNmjVwc3ODUgojRoyI93Exh04otujoaOzfv19/q0NiVzX29/eP83fbqKgonD59GnXr1oVSCg0bNtRXp6GkYQs52EIOtpDj/Pnz+gNkr7/+OhYtWpSkx925cwfTp0/X59CVUnB3d0epUqVQrFgxfPDBB1i3bp1enm/cJo4t5GALOdhCDvOx28CBA6HU82+4tvygt/ncxsaNG/U5wKVLl8Z6vJnlNo/5jaVXr17lB5YTwR5ysIUcbJH+LGduzNszqUOh5uXv3buHYsWK6Q+ftW/fHo0aNUKhQoWglEKxYsX47VtJwBZysIUs7EG2jAPsRHbip59+glIKmTNnxsCBAwE832GYdzQcXk9f5l8WDh8+rL8KkkPsqePWrVvw8vKK9/7PPvsMSik4ODjgww8/jPU1a/FZuXKlPiH85ZdfptTq2jW2kIMtZEmsR0wcmE49bCFHzBZJ3Y6Wy1n+OTw8HL///jtatWql/zv122+/pdwK2zG2kCO+Fklp8ujRI/Tr109v8379+mHBggX46aef8N577+nbP/roo1Rbf3vzMj2A5x8cmDJlCpydnVGsWDHs2LEjVdYzo5gzZ44+4b506dJYg6EPHjzAxo0b0ahRIxQrVgzZsmXDhx9+iFWrVlktFxUVhT/++AMlSpRA5syZsWDBAgBJ70psIQlbyMEWcnh6emL+/Pm4dOmSvi2hN1nNg6EeHh5QSqFQoUKoV68eRowYge7du6NatWr696hJkybpx/Eqx4ljCznYQg62kGXHjh0oWbIkcuTIgSVLliAsLAzAf9+S8uDBA3Tu3BkODg7o06dPos93+fJltG/fHv3790/tVbdL7CEHW8jBFnKYj8mCgoLQqVOneIdCLS1duhRKKeTJkwfr169HaGgonj17hj///BN16tSBUgrVqlXD7du3AXD/nVRsIQdbyMIeZEs4wE5kJ3x8fJA1a1YopfD7779b3cfhdRksh9idnZ2hlEKrVq34KeY0dP36ddSsWRMmkwmVKlXCrl27kvS4f//9F61bt4aDgwM8PDywZcuWVF5T+8cWcrCFbByYliMlW8Rcjg2txXfCI+ZQdGRkJEJDQxEYGIjg4GDcvn0bJ0+exLZt29ClSxdUqFBBv3E7dOhQqytQU9KwhRyWw9Le3t5JugLrtWvX9Ld0mf/Jnj27/nODBg2wefPm1F51u2TZ4+rVq/FeVTemI0eO6GGTqVOnpuYqZgjDhg3DnDlzYm3/e/fuYfLkyShRogSUUsiUKZP+sKb5CviWg0EPHjxAmzZtoJTCG2+8kcavwj6whRxsIQdbyJTQsVfMwdCaNWti69atVlfIv3LlCr766iv9+9T06dPTYrXtElvIwRZysEX6evLkCfr06QOlFGrUqIF///1X32c+PzJu3Dh9MTHLDx7EdPnyZasPj2/bti3V19/esIccbCEHW8gSHh6uv3kre/bsCQ6FAsDChQv1FYxjXkH/5MmTqF27NpRS6NSpEx4/fpwWL8FusIUcbCELe5Ct4AA7kR05c+YMBgwYYHUbh9dlsRxiN3/C7ezZs+m8VhnHxo0b9YH45MmT9e0JnRj28/PD6NGj9RuKPXr0iLWMuevdu3etvmqNA4nxS60WlHyp2SK5VybNqMxXxwDi/novIOUGpoOCglJwze1PWrY4deoUZs+eHefPoOdXKt63bx/69u2L/v37o3v37ujQoQPefvttdOjQAU2aNEGzZs3QpEkTVKlSBRUrVkTRokXh7OyMzJkzWw3sDhgwAJ6enrF+Bv+9SJq0aAFwn5FUx44dwyuvvIJly5YBSHh7hYeHY+bMmVBKoUOHDnBxcdEt3n77baxfv14vG9cV9NkiccePH0eLFi2wbt06AEnbZq+//jqUUmjSpAkCAwMTXNZyv8Qe/7H8EIz5amPAf1erXL16NYoXLw6lFAoXLozZs2fjs88+w9tvv231rQSWwz7fffcdHBwcULlyZTx69CjtXoyNYws52EIOtrBNMQdD69atG+8VkYOCgjB69GgopVC6dGmcOnUqwefmPjx52EIOtpCDLdLOzZs3UatWLSil0KxZM5w8edJqfz5hwgQopeDq6oozZ87E+RyXL19Gz5499X59zJgxuHPnTlq9BLvCHnKwhRxsIctHH32khzktP1AQlx07duhtvnbt2lj3b926FSVLlkTWrFmxevVq7qOTiS3kYAtZ2INsAQfYieyM5Zsk3t7e6NGjhx5eL1SoEIfXBTAPxJ06dQq7d+9GeHj4Sz9ndHQ0v54lAeZtM3jwYCilUKFCBT1ontB28/f3x5w5c5AlSxYopdCoUSN9tcuYX+W5Z88eFC5cGB988AH++usvfTt/abOW2i1iPge3f/xSo4V5HxRzKPTZs2dWz8Eu1szb48CBA/jpp59iXaHv4MGD6Natm74iX6tWrXDq1Klkb8dTp06hRYsWWLp0KXx8fGL9fEr9Fublzp8/j+bNm0MphY8++ijW/QRs2bJFX5XyRf7x8PBAxYoVsXTp0gSvAsB/LxKXWi1i7muePHmC8PDwWENZbGHNPIhQv379JF2F/erVq3BycsLEiRNx48YNHDhwAEePHrV6Yyvm8cjTp08RGRkJf39/q9vZwlp4eDiGDBkCpRReeeUVq0HD+AQHB6NmzZpQSqFOnTpWHcxi/rtx//59BAYGxnp+9ohbVFQUatSooT/Af/36dX3fgwcPsGTJEv3fpw8++AD37t1DZGQkhg4dCqUU6tWrlyLH6MQWkrCFHGwhU8zB0Hr16uHq1asJPmbDhg1wcHCAs7Oz1XnAmMz79eDgYDx58iQlV9susYUcbCEHW6S9y5cvI3/+/FDq+RWOJ0+ejD179mDevHl6P92kSRPcv38fgPWx2eXLl9GjRw+93NixY5N07E7xYw852EIOtkh/lufvli5diqNHj1rdHxwcHGuWIDAwEF27doXJZEK3bt3g6+trdf+TJ0/0VfEnTJjAY78kYgs52EIW9iBbwgF2Ijt16dIlvPHGG/qkVoECBfDPP/+k92rR/3vZYYOkDKtzoCG2Dz74AEop1KpVC0DC2+jx48dYvHixHtKtXLkyNm3aFO9jJk6cCJPJBAcHBxQrVgyzZs3S97FFbCnVIqErUkZGRnKgPQlS69+L7du3o0OHDmjcuDFq1aqFyZMnW30FIVtYM3+iuVSpUlizZg2Cg4MBPB+kTonh9fv376N37976pOQ777wT75V3M7rUahFzeN3V1VX3GDhwYKzlMrpr167ByckJSik4OTmhfv36aNu2LXr06IE+ffqgW7du6Nu3L0aOHIlBgwZhyJAhmD59OubMmYNVq1bh0qVLiZ54578XSZMaLSy37f3797FmzRpUr14dlStXRsmSJTFq1Chs3LgxzuUzus2bN6NYsWLInTs3Vq5cafUBZkvm34HOnz+P7Nmzo2PHjnEuZ3mCcffu3Zg2bRqqV6+OmjVrokqVKpg4cSL+/PNPvQxb/CcyMhI//PADChQogPz582PNmjWJ9vDz80P16tWhlELz5s1jfQOE5QnjtWvX4pNPPkGhQoVQsmRJFC1aFMOHD8evv/6ql2GP2K5du4YcOXIgc+bM+OKLLwAAISEhVsv89ttv+r/9H374Ic6ePYtXXnkFSin873//Q2RkJLdtCmALOdhCDraQJ7mDoeZtf/DgQX1Mt2TJkgR/RmBgIEaNGoXatWsnOnSakbGFHGwhB1ukH29vb1SoUEHvky3P4+XPnx9TpkyJ9ZjEhkJ5EaoXxx5ysIUcbJH+Yg5+mgUHB+Ovv/7CyZMnYy23bNkyODg4wNXVVX+jo+V2//fff9GlSxds3bo1Fdfc/rCFHGwhC3uQreAAO5Gdun37NooUKQKlFNzc3PjpJzti+SaVt7c3fvzxR4wZMwb/+9//8NNPP1l9UIFvaFkbNmwYlFKoWLFirKvqWv7SdfPmTcyaNUsP6ZYtWxaLFy+OdRXpmH7//Xe8/fbbMJlMUEph9OjR+j62sJYaLS5evIhly5ahS5cuaN26NerUqYPWrVvju+++w5EjR/RybGEtpVqYP1AQGRlpdZUHy3/y5cuH8ePH6+dki/9cuHABzs7OUEqhWrVqWL9+PbZv34533nnnpYfXgecHor/88gtee+01KKVgMpmQJ08e/ncqDqnRIubwuqOjI1xcXFC3bl29z+AQe2wXLlzQb9I2bdoUnp6eL/Q88W1P/nuRdKnV4vbt2xg5cmSc+wx3d3d8/vnn8T42o3r8+DF69eqlP3wW11c+Wm6ruXPn6g/lhIaGWt1nuZ+fMWMGypcvH2eLnDlzskU8Hj58iC5dukCp51dUP3XqVKxlLE/+fvHFF3q7zpgxI97lhg8fjqxZs8bZI0uWLPzvVAIuX76st9XIkSPjXW7z5s16OfO3TLi4uOiT9vTy2EIOtpCDLWTx9fXFzJkzk3VVY+D5ccTnn38OJycnuLu7Y//+/fEuGxUVhfHjxyNPnjxQSqFKlSqxPrRAbCEJW8jBFunvxo0bGDRokP4QslLPv4100qRJsY7DEhsKtVw+5iARj+mShj3kYAs52EKmdevWQannF8wxszwPa76oTq5cueDl5QXgv/dYgefnzM1izvfEN4xKcWMLOdhCFvYgaTjATmTHzp8/r09uVatWDatXr441nEi2JzIyEvfv30ePHj2sPllt/qdUqVKYNGmSXp4Hlf9tgy1btsDDwwMFCxa0OnFruY0OHjyIgQMHInPmzFBKoXz58vj666/x+PHjeJ/f8pc5b29vjB8/Xg8kDhkyJM6fk1GlRosLFy5g7ty5yJEjh77CgHnI1PLfi2nTpsX5czKq1Pr3wvKNdnd3dxQrVgyvvfYaSpQoof+9+PTTT+P8ORmdl5eX3m+XKVMG9evXtxqY/vfff19qe0VHR+PZs2f45JNPkDNnTt2jX79+Kfgq7ENKtohveP3tt9/GrVu3sGbNGg6xJ8BycLpFixb6RAlgvY3i+3Ni+O9F0qVkC/Pt3377rd5nFC1aFNWqVcPbb7+NSpUqcZ+RgJs3b6J27dpQSqFZs2Y4c+aMPkloeXLwzz//RKVKlaCUQteuXa2ew3JbTpkyBa6urnqbN27cGJ07d0a/fv1Qv359ffuwYcPS5gXaGB8fH1SpUkX3OHnyZJxDH19//bX+/3vlypXj/b1r8ODBVr/Hvv766xg4cCBGjBiBV199VfcYPnx4mrw+WxMYGIhWrVrB0dERb775Jvz8/PR90dHRVsduq1at0tvT1dUV3377LQBecSylsIUcbCEHW8gRGRmpP+iXnMFQADh+/Lj+4F+NGjUSPd9++PBhKKWQLVs2/PXXXymx+naFLeRgCznYQo6wsDAEBgbiwIEDOHjwIO7fvx9rmcSGQi2dPn0aw4YNw7Jly3DhwgV9O/fvScMecrCFHGwhz/fffw+lnl8Jf8eOHfp28zc33rp1C7Vq1dLnvsPCwuLcvpZDodOmTYOPjw8ADocmB1vIwRaysAdJwwF2Ijt38eJFPWhStWpVDrHbuPv372PlypWoWbMmlFL6jayyZcuiWrVqyJcvnx6wsxycpufu3buHJk2aQKnnVw89ePAgAgMDAQBPnz7FvHnzUL16dbi4uOgPfixduhRPnjxJ9Lkth06ePn2KRYsW6T4zZ85MrZdks1Kqxfr169GxY0d90qVgwYKoW7cu5s2bh8WLF2PkyJFo2LChbjF48GD9WA7BPZeS/148fvxYX+mhXLlymDRpEu7evQsAOHPmDKZMmaJbjBs3Li1fps24ePEicuXKpa+wZx4UPX/+/EufILT8//zkyZORNWtWvc+YOHHiy6663UmJFvENr3fp0kX/uxEWFoZly5ZxiD0Blr/PtmjRAt7e3in23Pz3InlSsoWfnx8KFCgApZ5fufrHH3+Ev78/gOcfIpk+fbr+92LChAkp9RLsxuXLl62239KlS3Hnzh19/4oVK9CgQQP9jRKWV1C3tH79ehQqVMjqd6Xw8HD978bNmzexYMECff/s2bPT5PXZmkuXLiF//vxQSqF69er47LPPcOTIEVy6dAnbtm3DoEGD9O+rrq6uVt9IY2n+/Pl6uUKFCuGrr76yut/Pzw8LFy7UPebPn58Gr872zJ49W2/HefPmxfr2psDAQJw/f15fPd/Z2Rmff/651SAp35hNGWwhB1vIwRZyeHt76/OqSR0M9fb21uc9ChUqpL/xz9zE/L8xr0B28OBB7Ny5MwXX3r6whRxsIQdb2IbkDIU+ffoUCxcu1Ms2aNAAP/zwg76fgz4vjz3kYAs52CLtXbhwAc2bN9fv9zx48EDfFxkZiYiICPTr109/2Mw8MGrJ8pjP/I2O+fLlw82bN9PkNdgLtpCDLWRhD5KGA+xEGQCH2O3DjRs3MHr0aP3VwVmzZsUrr7yCH374QQ+SnjlzBnPmzOGASQIsh32KFCmCqlWrolGjRqhatao+IDcPZe3evVsP8sbHPNwTc8jwyZMnGDFiBEwmE6pVq4bz58+n2muyVS/b4rvvvkPlypX1/99btWqFn376KdZVwb29vTFz5ky9XHwDQxnZi7aI+f97f39/lC1bFkopDBgwQA8imgUEBGDWrFkwmUzInTs3Nm/enGav0ZZcuHAB7u7uUOr5VeynTJmCp0+fAni5gWbzgaS3tzcqVqyou1aqVAnnzp1LkXW3NynR4uTJk2jatCmcnJzg6uqKrl276ucwN4mMjLQaYre84jQ9l1pD7Pz3IvletoXlYHTevHnh7OyMGTNmICgoyGq5gIAATJs2DSaTCYUKFbK6CgQ95+XlhdKlS0MphSxZsiBfvnxo0qQJ6tevD6UUHB0doZRC27Zt9WMsf3eNjo5G37599X97Ro4cqZezfEMqJCQEEydOhMlkQtOmTeO8khM9/++I5TdkOTg4/B975x0WxfH/8ZmjiihFRUVRxN67sffeYokmxq8mJtHYNdbYe++9d9HEGhVLorF3Y6dLEywoiAKClOPevz/47bhHL3fcCp/X8/CIt7PL3Lx3dsq+5zOwsbGBjY2N+MzKygrjxo0T50jPII1Gg/fv36NTp05Cj+XLl4t0coNJVFQUpkyZApVKhU6dOiE8PJwWPP0/8nKYMGGCKPehQ4fi0KFDcHNzw+3btzFp0iQ0bNhQLFKbPHlyqqagO3fu4NChQzhy5AiOHj2KDx8+IDY2FgAZSNOCtFAOpIVyIC2Uib+/P/z9/TOU1svLC3Xq1BEvZTdv3qy164pU5lFRURg/fjwWLVqU4nWo3U4Z0kI5kBbKgbRQHvLyyYwpVM6yZcvQqVMncZ48gAK135mD9FAOpIVyIC2UwY4dO2BiYgLOOVavXo3o6Git4/KdGh88eKB1TD4vO3XqVLEDedGiRXHu3DlxjNrsjEFaKAfSQlmQHoSSIAM7QeQRyMT+ZePn54dff/1VRPWztbXF4sWLk5miNRoNoqOjMWPGDBgbG6Nt27YIDQ01UK6Vy7Nnz9CkSRMRWVf+U7NmTYwePVprcjclpFWG0otBIHkH7N9//0W+fPnAOcf+/ft1/0VyAVnVYvv27ShTpoww+HTs2BH379/XSiPXJiYmRkQPtbS0xKFDh/T+3b40dFEv3rx5I4zwHh4eAJJPZrm6uqJUqVJisoxIGTc3N6FFzZo18ccffySLzJcZJB3c3Ny0zHXVqlWDp6cnAIqekRrZ1WLDhg0oWrQoVCoVTExMMGXKFHFMbkiUTOxStORffvlFp98jN5DUOO3t7Z2t61G9yDqZ0SK1lxrPnz+HlZUVzMzMxI4ESdM+ePBA/J2kkaiJRPz9/dG3b1+xyDXpT48ePcSCsqT3s7e3N8zNzcE5R9euXcXnKd33ly5dEob4mzdv6vdLfcE8f/4cQ4cOTbYIkHOONm3aaJnSk5bzf//9J9L2799ffJ5SHXJxcQHniTtyPX78WH9f6AtEXq6LFi1CyZIlRbkWKVJE7KoiGUN///13+Pj4aF0jNDQU58+fR5s2bcRCNmnc0bBhQ0yaNEnseEDtROqQFsqBtFAOpMWXi9wYWrRoUaxYsULL/CM3hs6ZM0fMe8ydOzfZtUiX7EFaKAfSQjmQFjmPj49PmqbQlMpRHrnSw8NDRKpMqgUZfTIP6aEcSAvlQFoYhqQ7vkrlt2TJEvHOwd/fH4MHD07RGJrUFFqkSBGoVCo4OTlhxowZ8PX1xfv374XRlNrt1CEtlANpoSxID0KJkIGdIPIQKZnY04suTRieoKAgjBgxAnZ2duKF1rFjx7TMc0kHiidOnBCdiTt37uR0lr8IgoODceLECYwePRr9+/fH8OHD4ezsrGXASm8V+evXr1GiRAk4OztrfS4/r2nTpuCcY+DAgdBoNLQyPQUyooW8Y3v48GHUqFEDKpUKRkZG4JyjdOnSKFmyJL755ptUI6yHhITg119/hZGREb777jta3JECGdFCbrgNDg7GpUuXsHfvXri4uODhw4cYO3YsOOe4fv16qn+nY8eO4JzD0dERkZGRVC9SQd5uV69eHfv370+2+jkjpGXSTW2hAaFNdrX4559/MHbsWLGoacCAAeKYfFJYrVZj8+bN4JxjzZo1Ov0OuQW5Fi1atMhyJHaqF9knI1rI2+9Hjx7h8OHDWLBgAZydnXHx4kUMHjwYZmZmePLkidZ58r6t1JeqVasWYmJiaLIrBcLCwnD16lUMGTIELVq0QOnSpTFo0CCsWLFCpEnpxdKTJ0+QP39+mJqaYvr06QCQbCtI+Vbz1apVA+ccp06d0uO3+fL5+PEjgoODsWHDBsyfPx8LFizA8ePH8fr1a5EmtUUCRkZGKFCgAHbs2AFAu98lP+/t27coU6YMzM3Ncfv2bT1+my8TefneuXMH+/btw5gxYzBq1ChYWlqCcw5TU1NMnjw5mTE0ICAAkydPFrsbSFFoihUrJhZ8SM+kgICAZH+P0Ia0UA6khXIgLb48UjKGSgswgc9lHBUVhVmzZsHR0RGcc9jZ2eH06dNa15L3tfz8/ADQuCMzkBbKgbRQDqRFzuPr64uvv/46VVOoHDc3Nzx69AixsbGIiYnROhYVFYUlS5aI60jjQCJzkB7KgbRQDqSFYZG3nRMnThTlV6dOHfTo0QMdOnQQn/Xt21ekTWoKLVq0qEjHORfvl8qUKYMBAwbgxYsXyc4jtCEtlANpoSxID0JpkIGdIPIYcqNJnTp1sGfPHkRFRRk6W0QqhIWFYfbs2ShRooQwr58/fz7V9JIx5dmzZ7C2tgbnHCdPnsyp7OYqMjIxK195fvjwYQDa5qAHDx6IqPnDhg3TW15zO3ItHjx4gK5du4roYpxzWFtbo1y5cihcuLBWFNGgoCAA2hPvf/31Fzjn6NOnT45/j9yA3ES1c+dOrcEL5xzFixdHqVKlYGFhgRUrViSL2J6QkIBXr16hevXqUKlUqFq1Kr0ESQcPDw/Y2NiI+za1reNTg0y6uiMrWsjbhLCwMOzZswcFChQA5xw///yzOCbXQK1WZzuyeG7H09NT9HMmTZqU6b4s1QvdkZYW8jJcvHgxqlevrtVmWFtbo1ChQjA3N8fmzZu1dk6RePr0qZgAa9WqVY58p9xA0kXKqU0O3rp1S+ixcePGNK959epV0f86ceKEzvKaF0ktStX58+eFHunt3nT8+HGR9sqVK/rI5hdP0ud4WFgYvvvuO2EMnTRpUjJjqBRBXxrDFS5cGBMnTsSJEyfg5uaGO3fuYMqUKahRo4aYiH/+/HmKf4/4DGmhHEgL5UBafDlk1RharFgx/Pvvv6led/z48eCc4+LFi3r/DrkF0kI5kBbKgbQwDC9fvhTjsZkzZyYzhUZFRcHFxQU9evQQO5nVrVsXP//8M/z9/bXSBgUF4aeffoJKpUK3bt1o5+wsQHooB9JCOZAWhkc+H7tgwQI4ODhovdvmnKNTp064evUqAO33r9OmTRN+Humd9/Dhw7F161b0798fFStWBOcc5cqVEwuXacyXOqSFciAtlAXpQSgJMrATRB7Ew8NDGEFat26N9+/fGzpLRBKkzsLJkydRoUIF8WLq77//ztB5e/bsgampKczNzXHjxg295/dLRW4ekXeYMrr1WUhICEaMGCE6ZqtWrcKzZ88AJBq65syZg/z584NzjqlTp+o287mM1LRIenzhwoUi6rqDgwN69eqFp0+f4s2bN/Dx8cGxY8eEka5bt27ifHkHfPv27Sn+XSKR9LQAgF27dqF8+fJCiwoVKqBatWooU6YMrKyswDlH+fLlcfHixWSGxGPHjgkDb7t27fT6XXILHh4eaN68OVatWpWp88ikq3uyqoWEWq3Gjh07YGFhAc451q9fn2Z60id1PDw80KdPHxw6dChT51G90D3pabFkyRKYm5uLNqNevXpo3rw5ateuLSa4KlasiAsXLmgtfHr37h3WrFkj+lLfffddTn2lLxJ5+53RaBbv3r3DV199BZVKhbFjxwJI+f5Xq9VYvnw58uXLhyJFiuDx48e6yXQeIaP9zaCgIFSvXh0mJiaYPXs2gM9ayq/x5s0bjBw5EqampqhatSpevXql+0znQjZt2iSMoVOmTElmDI2IiMCcOXNgb28vTD03b95M1peNiorC7du30ahRI7G4JiQkJM2//e7dO51/ny8Z0kI5kBbKgbRQJt7e3lk2hl64cEHrWrt378batWsBJAbEkF4KN27cOF2NCNJCSZAWyoG0MCyurq6YP3++1k5bABATE4Nt27ahXr164JyLuRDpx97ePtk7uz179ojjSXeoIzIG6aEcSAvlQFoYHvkc7cWLF7F8+XLUrVsXrVu3xoQJE+Dt7Z1sHnfatGmwtbUF5xyFChXCunXroNFoxNxgVFQU7ty5g4YNG4JzjoYNG+Lt27c5+r2+REgL5UBaKAvSg1AKZGAniDyKm5sbKleuTNuNKxCpYY+JiREvnGxsbHDgwIEMnQdARG3Knz+/2OqRyBjycsxIRyokJAQ//vijGLhXqVIFHTp0QLVq1cTWz3Xq1KFOmQ64ffu22B67fPnyWLhwIUJDQ5Olu3fvHgoWLAjOOSZOnCg+T2rIkkdmJzLOo0eP0KJFC/EiY9CgQfDy8oJGo8Hr169x+fJlYQqtXLkyVq9ejSdPnuDu3bvYuHGjGNA4ODjA2dkZAJlFM8KHDx/E7xkxwpFJV3/ItZCvNk/peZQSL168QJcuXcA5R+/evZNty0lknKRRptOD6oX+SE2Ls2fPoly5cqLNGD9+vDCpv3v3Drdv3xZaVKxYEYsWLcKtW7dw9uxZTJkyRSxKq1ixIm7dugWANNI1o0aNEotlpRdQScv47Nmzov1u27atIbKZZxgyZIjQw9XVNdnxsLAwbN26VSwY7N27twFy+eUyduxYjBgxQssYKk3AP3nyRDyPihUrBk9PTwCf+11J68X169dRuXJlmJmZYd26dak+m549e4bhw4eLRQlEIqSFciAtlANpoSyePXuGMmXK6MQY6uXlJY43btwYnHOoVCo0a9YMf/75Z45+ry8R0kI5kBbKgbRQBnIzj9TWurq6inLknGPDhg34888/MW/ePNSvX1+M906dOiXOiYiIgIODAzjn+OeffwzyXXIDpIdyIC2UA2lheJKOxeTvlADt931Tp05FkSJFwHli1OKkAWPk1zp58iSKFi2KQoUK4fjx48muRSSHtFAOpIWyID0IJUAGdoLIw0iGqYxG6CNylkmTJgkT+pQpU9I0xskb+vXr14sV02PGjEl2nMgY165dw86dOwGkX343btxA9erVwTkXBmvpp2bNmjhy5Aji4+NJhyySkJCAhIQEjBs3DpxzWFtbY8qUKcJEKi9XyZQ+ZswYGBsbo1WrVlrRXInss2XLFnF///jjj1rHJC3evHkjXq4bGRmJBQVSFF0HBweMGjUqWeQHIn0yYtwkk27OIC/DI0eOYPfu3QAy1uauWLFC6HLnzh295TGvQIs6lENSLebMmSPKety4cVrpUmozOOcwMzPT+rdChQpYvnw5wsPDc/S75Bakco6IiNAqd+l+j4+PR7t27YTx4cqVK2JbYVdXV2zfvl2Y10uWLCkmJKm+ZA2p/KVd0JLqERMTg7Zt24JzDjs7O/z9999ii82rV69ixowZwrxeoUIF3Lt3T+t8ImXkC1dTG1f37dsXnHPY2toKU09acyUfP37EjBkzxILOlDR49uwZfv/9d7GI5+DBg9n8Jl8+pIVyIC2UA2mhTPz8/MA5h7GxMVatWpUlY6hGoxFpN2/eLK6nUqnQokULnDx5UistkTKkhXIgLZQDaaFcxo4dK+Y3Tpw4IT5Xq9Xw8/NDx44dRbTKEydOICEhAefPn4eFhQXMzc1pxzMdQ3ooB9JCOZAWhkU+NpPvqDV16lQULVoUnHNYWFjgjz/+SPEcicDAQBQrVizZvDuRcUgL5UBaKAvSgzAEZGAniDwMTTopl0+fPokBYqVKlTIcKf/8+fNo0qQJOOewtLRMtuKNyBgeHh5o3rw5LCwscP/+/XTTx8bGolOnTnB0dMTu3btRr149tGvXDgMHDoSbmxtF19UR0r1dpUoVEdE+teeY3DAnGROJ7KFWq6FWq9GyZUtwzlGmTBkR9U3+4lz6/cqVKyhSpAjs7e0xcuRIFChQALa2tmjQoAHWrVuHFy9eGOR75CY+fvwIf39/REVFAdB+8UQm3Zzj2rVrKFOmDAoVKiTqRGpI5pSDBw/C0tISxsbG+Pfff3Mim3kGqhfKICEhAZ8+fULFihXBOUf16tWFJim1GX///Tesra1Rrlw5TJs2DUWLFkX58uXRoUMHuLi4ICwszCDfI7fg4+ODsWPHCrOzhFT+fn5+wjSdP39+ODk5oU2bNrC3t4eFhYWoMx07dkRQUJAhvkKu4vHjx+jVq1cyPaTnkK+vr9DD3NwchQsXRt26dZE/f36xsMPS0hJDhw7Fu3fvDPEVvkjSmv8ICwtDzZo1wTlHr169Mlyu9+/fR926dbFx40bExsZq/Y1nz55h0qRJMDU1BeccPXr0QEhISLa/R26AtFAOpIVyIC2UiZeXF9avX49Xr16Jz7JiDAWA33//XUQ15lx7FxX5C2EiZUgL5UBaKAfSQnloNBr06tVLLAKIiIiAWq3WmnNSq9Xo1q2bMIcePXoUo0ePBueJu8/RnLnuID2UA2mhHEgL5SAv86lTp6Jw4cJiDnbJkiXiWFpjxaZNm4Jzjp9++indtETqkBbKgbRQFqQHkZOQgZ0gCEKBXLt2TTT+ixcvTjWdvIF/8OABBgwYIM6Toq8TmefNmzeiMzVmzBgR6TslJA2kqFX//fcfTerqgdevX6N48eIwNjbG0qVLAaQcbUza0mj+/PkwMzODhYUFvLy8cjSvuZ0OHTqAc46qVasm20JKzuvXr1G1alUULFgQFy9exMuXLxEQEEADEx0RGRmJ9evXo1u3bti9ezciIyPFMVdXVzLp5iAPHz5ErVq1wDnHnDlz8PHjx3TPWb16dYpRTojsQfVCeUjbzjZt2hRA6mX9/PlzODo6olixYnj06BFCQkLS7H8RGSc+Ph5r1qyBkZERunbtmupigNjYWEyYMAHNmjVDpUqVRJRvydhmbW2doYWdRNrExMRg8uTJ4Jzjf//7X6r3uVqtxsyZM9G5c2c0bdoUdnZ2WnrUrFmTFmnqkIcPH4r2YfXq1Rk6R+rTuru7IyIiQutYUmNoZgyneR3SQjmQFsqBtDAsKS2+zKwxdNq0acIY6uTkJPScMWNGin+HSBnSQjmQFsqBtFAePXv2FEF4ku6sIi/H7t27g3OOAgUKiDLfvn27VvqU5tFJi8xBeigH0kI5kBaGJ2k7bG1tDSMjI3DOUbduXbGzSlrvLZ48eYISJUqAc46ZM2fqPc+5FdJCOZAWyoL0IHIaFSMIgiAUR1xcHDMzM2OWlpasfv36jDHGNBqNVhoAjHPOGGPMzc2Nbdu2je3fv58xxlivXr3Y4sWLGWOMJSQk5GDOcwfW1tasW7duzMLCgp05c4b9999/qaaVdHn16hVjjLGgoCBmamqa7DiRdTQaDYuPj2exsbEsISGBFShQgDHGmJGRkVY6AMzExIS9e/eO7du3j8XFxTEHBwdmb29viGznWkqWLMkYY+zDhw/sw4cPKaZJSEhgxYoVY0WLFmXR0dEsPDyc2dvbs9KlSzPOOdULHaDRaNiePXuYi4sLW7NmDTtx4gRjjLFnz56xvn37Mg8PD8YYY1WrVmWHDx9mlSpVYhqNhqlU1P3XNeXLl2ft27dnnHN26NAh9uDBgzTTP3/+nP3zzz+Mc85sbGyYg4NDDuU090P1Qnk4OTkxxhh78+YN+/DhQ4plnZCQwGxsbJilpSULDQ1loaGhrHDhwszKyooxRn2p7KJSqZitrS3Lly8fc3d3Z/fu3UuWRq1WM1NTU7Z06VJ29epVtnXrVlatWjWWP39+Fh8fz1QqFTty5AirU6cOA2CAb5F7MDY2Zk5OTixfvnzs7t277OHDh8nSxMfHMyMjIzZnzhx2+vRptmLFCmZpacnMzMxYfHw8s7W1ZVu3bmWVKlUiPXSEjY0Ns7GxYfny5WN2dnaMsUQd0kIai1esWFGMTxhjzMfHh23bto2tXr2axcfHs549e7Jt27YxW1tb/X2BXARpoRxIC+VAWhgWae4pISGBGRkZsejoaLZ06VK2Z88e9vz5c1a0aFG2f/9+1qZNG8ZY4tyURqMR502fPp0tXLiQcc5Zw4YN2eLFi9mGDRsYY4zNnz+fTZs2TfwdatfThrRQDqSFciAtlEeLFi2YmZkZi4iIYLdv39YqN/m8+LFjx1iFChXYx48fGWOMjRo1ig0YMIAxlqiT/P3f4cOH2aZNmxhjpEVmIT2UA2mhHEgLwyK12YwltsMbN25kERERrFy5cowxxgoVKiTGfSnNpUtl++DBA+FNkN7bEpmDtFAOpIWyID0Ig6B/jzxBEASRWY4cOSJWNT969CjZcflKtnv37mHIkCFi9XP79u3x33//5WR2cyWvX78WkaabNm0KNzc3cUxaUR4fHw8A8Pb2RtGiRTMVDYvIPG3btgXnHEOHDkVMTIzWMUmT8PBwTJ8+HQULFgTnHH379kV0dDRF/dYBUhm6uLjA3t4e1tbWOHToULKylf4fGBgIe3t7cM4xf/58rWOEbnBzc0ORIkXEauclS5agUqVKFGHaALx48ULs3NG8eXO4ubklaysA4MOHD9iwYYN4RrVt29ZQWc61UL1QBtL9f+DAAdjZ2aFIkSI4depUsnSSBu7u7rC1tQXnHFu3btW6BpF93r59i44dO4JzjmbNmsHV1VWUfdKoSJ6enqhXrx4sLS3BOYexsTGOHDkCgDTRFcHBwWjTpo1oM54+fSraCvlzKSoqCpcuXRJRSjjnMDc3x/Xr15OlJbJHYGAgbGxswDnH3Llzs3wdimqcfUgL5UBaKAfSQjlERUVh4sSJKFeuXKajGjdu3BjHjh0T6VatWiXa90WLFuX4d/nSIS2UA2mhHEgLZRAYGCjmoZo3b45Hjx7h06dPWmnc3NwwceJEUcb/+9//tN4/ycd6J0+eROPGjcE5x/jx43Pse+QWSA/lQFooB9LCcCRth6VxXqVKlbBlyxZUrlwZ3377barnS3Ozt2/fFrtntmzZMtmuW0T6kBbKgbRQFqQHYSjIwE4QBKFAXr58icqVK0OlUmHDhg3C0JB0kvHkyZPo27evGEC2atUKFy5coO25dIS/vz8qVKggBvGXL19O1rny8/NDjRo1wDlHyZIlcffuXQPlNvei0WiQkJCAOXPmgHOO2rVr48mTJ6IDHBcXBwB49+4dli1bJiZeTE1NSQ89EBISorW4w93dXUxWSVoEBwfjxx9/BOcclpaWOH78uAFznLvx8PBA4cKFk23lWKNGDbi7uwMgg1tO4evrK7Znbtq0Kf766y8tQ8iTJ0+wfPlyWFtbiy06r1y5AoA00jVUL5TDmzdv0KpVK2GcdnNzE/1Uqc0ICgpC69atwTmHnZ0dbt26Zcgs51r8/PxQpkwZcM7RqFEj7N+/H69fvxbHb9y4gbVr16JQoUKizhgZGcHFxcWAuc69+Pr6onTp0uCc46uvvsK2bdvw/PlzcfzUqVMYP368aDNMTEzg4OAg6gc9w3SHNKYYPnw4VCoVOnXqhMDAwExfh4yh2Ye0UA6khXIgLZRFSEiImAN0cHDIkjFUShsXF4fVq1fD1tYW06dPz9HvkRsgLZQDaaEcSAvl4OnpiVKlSoFzjurVq2Ps2LE4fvw4XFxcMHr0aDFPwjnHwIEDtQJSyXU6ceIEmjRpItrvkSNHAvg8HqRF5hmD9FAOpIVyIC1ynrRMoX/99RfUajXs7OxQoUIF+Pr6irRJy/LBgwdo0KABOOcoUqQIlixZIubZiYxBWigH0kJZkB6EISEDO0EQhAKJjIxE//79hQnu8ePHYvWz1HGYP38+atasKQaQHTt2xJUrV6jx1zFeXl4i6mGlSpUwePBgXLx4EadOncKOHTtQvHhxMdnbsWNHLSMQoVsCAwNRvXp1cM7RokULnDx5EmFhYYiMjISPjw8GDBiAsmXLimihO3bsAEAGH33g4+MjJreaNWuGw4cPIyQkBAkJCQgKCsIPP/wABwcHMTDx9vY2dJZzNR4eHiJysampKRwcHMSEojz6N6F/PD09hSHRzs4OVatWxcCBA/Hdd9/B0dER+fPnB+ccZcuWxcqVK/HhwwdDZznXQvVCOTx79gwlS5YU/dp9+/YhODgY79+/h7u7O1q1aiUWGtStWxcvXrwwdJZzLV5eXihfvjw45yhYsCDs7e3RvHlztGrVCmZmZrCwsADnHLa2tqhdu7YwS9PLJv3g5eWFihUrisjqNjY2qFGjBmrXrg3OOczMzMQi2Z49e4qduahvqx8OHToEc3NzcM6xcuVKrR2f0qsDZAzVLaSFciAtlANpoRxcXV1RsWJFnDlzRnwmBV6QSMsYKk8XFxeH+/fv50zGcyGkhXIgLZQDaaEcfH190b17d9jZ2Yn3FdJOZ9LPgAED0jSFNmvWDEZGRsiXLx/at28PPz8/vHjxAu/fv0/xHCJ1SA/lQFooB9LCMMycOVPLFCoPANa3b1+oVCqsWLEC0dHRyc69ceMGateuDRMTE3DO0b17dxrbZQPSQjmQFsqC9CAMARnYCYIgFIo8SmK9evUwbNgw7N27F8OGDUO7du20BpD9+vWDq6srmRn0xLNnz/DVV1/B2NhYTO5yzpEvXz5hOKlatSoePnxo6KzmeuQLCmxtbVG2bFnUqFFDbEEk6bN+/XpERUUZOru5Gk9PT2FItLGxgZOTE5o3b44iRYoILYyNjUXkVjK/6Rd3d3dh1q1cuTJcXFzIHG0gfHx80LZtWzHxK7UZ0r/Vq1fH+vXrERISYuis5nqoXigHeVSf/Pnzw97eHpUqVdJ6KWJhYUHR13MAPz8/fPfdd6hcubLWeEL6+eqrr7BkyRKx+IzGF/rF398fP/74o9bCZOmnYMGCaNOmDY4cOSIWdlB/Sr/MmDFDlP/SpUvh5+cnjqVW9kmNoT179kRoaGia5xDpQ1ooB9JCOZAWykE+36TRaLTKcvbs2WlGNU4NWmSbNUgL5UBaKAfSQjm8f/8ejx8/xpYtW7B7926xcyznHP3790/TFNq8eXPxPkpa4CzNLTZv3hybN29O8VwidUgP5UBaKAfSImeZP3++KKukplAA2LFjhyjP6dOnw8XFBREREXBxccGyZcuEIZRzjtatWyM4OBgAzd9mBdJCOZAWyoL0IAwFGdgJgiAUjJeXl9ZgUd7gGxsbo2zZsrSFYw7x8uVLTJ8+HV999ZWWsaRUqVL47rvv8OTJEwD0AjAn8PHxQceOHYWRXfqxtraGg4MDTp48STrkED4+Pmjfvj2KFSsGzjmMjIzAeWK044IFC+L06dOGzmKewt3dHYUKFQLnHLVq1cKBAwcQERFh6GzlSd68eQNnZ2f06tULZcqUgbm5ORo1aoSBAwfC19c3xVXphH6geqEcfHx80LlzZ7H4SXqhYWNjgypVqgjzOk1k6Z/w8HD4+Phg+fLlmDJlCkaPHo01a9bg2LFjUKvVoh9F/amc4ePHjwgODsb27duxfPlyLF++HM7Ozrhz546hs5ZnkD93Jk6cKMYX3bp1w8KFC1M979mzZ5gwYYIYp3/33XfpLpRKaiIitCEtlANpoRxIC+WRWhlt3boVVlZWGTKGZrTPS3qkDWmhHEgL5UBaKJMpU6aINvz777/PUERjzjk6dOiAuXPn4vz581iyZAl69+4trjN79mxxHmmROUgP5UBaKAfSQv94enrC1tYWdnZ2+Ouvv8Tn8vKdPHmy1rtvR0dHrbl0BwcHfPvtt8IUSosDsgZpoRxIC2VBehCGggMAIwiCIBRLYGAg27FjB7t8+TLz8fFh+fLlY5aWluznn39mNWrUYC1atGCMMabRaJhKpcr09QEwzrn4v0ajYZxzrc+SpsmrxMfHs/j4eObi4sJiY2NZZGQka9OmDStatCiztramcspB3r17x9zd3dmZM2dYbGwsi42NZR06dGDVq1dnZcqUMXT28hRv375l165dY8ePH2fBwcFMo9Gw5s2bs169erEaNWpQvchhPD09WfPmzVloaCgrXbo027RpE2vfvn2W2gdCN0RERLCPHz8yOzs7ZmxsbOjs5EmoXiiHd+/esfv377OjR4+y9+/fM7Vazbp27cqaNWvGypcvn+X+LKFbSAdlkZCQwIyMjAydjVyPvJxXrlzJtmzZwp49e8ZsbGzYkSNHWLNmzbTacR8fH7Z161a2evVqplarWYUKFdjy5ctZhQoVGOecqVQqZmVlxUxNTZlarWaWlpbM1NSUffr0ieXLl490TQPSQjmQFsqBtFA+Hz9+ZP369WNnzpxhZcuWZQsWLGB9+vRhjKU89yr1tfz9/VlgYCD7999/WUREBMuXLx9r0aIFc3JyYhUqVGCMUV8gs5AWyoG0UA6khWF58+YNK168OGOMsR9++IGNHDmS1a1blzGmXX4nT55ky5cvZzdv3mQajYaNHDmSrV27VutaISEhbM+ePWzSpEmMMcbWrl3LRo4cmYPf5suH9FAOpIVyIC1yDl9fX+bp6cm6dOnCGPvcDsvLef78+czZ2Zl5eXlpndu5c2f29ddfsz59+jBra2tqg7MJaaEcSAtlQXoQhoAM7ARBEF8AGo2GaTQaFhgYyKytrZlKpWLW1tZaxzNrMkl6zp49e5i/vz+7ffs2U6lUrG3btqxq1aqsQ4cOjDEysRNfDnSvGg61Ws2MjIxE+ZMWhsHT05NVrVqVFS5cmJ07d47Vrl3b0FnKk6R2/5Mx1DBQvVA+1GYYDnouKQuqC4ZDPqF+584d9uTJE2ZhYcG6du3KrKysRDofHx+2bds2tnr1ahYfH88KFy7MwsLCmKmpKVOpVEytVjONRsNsbW2ZsbExi46OZoUKFWJWVlYsLi6OnTx5kjk6OlLdSwPSQjmQFsqBtFA2jx8/FmOMGTNmsDlz5jDG0u5nbd++ne3atYvdv3+fxcXFic8556xmzZps8ODBbNiwYYwxMohmBtJCOZAWyoG0MDxubm5s/fr17IcffmANGzZkjKVtCp04cSJbsmSJSCctQGOMsfDwcDZ27Fi2b98+1rJlS3bw4EFWpEgRw3yxLxTSQzmQFsqBtMh5krbD8vL29PRkPj4+LCAggBUqVIgVKVKEtW3bVswb0nhNt5AWyoG0UBakB5FTkIGdIAjiC0DXJgapYxEeHs6OHTvGjh49ys6cOcNUKhXTaDSMscSJSBsbGzZ06FA2f/58veTjS4fKw7DIy1/qzpAehiFpXaC6YXgCAgJYcHAwq1evHkX9Joj/h+qFMqA2gyAIJZPexHpSY+j//vc/VqdOHTZp0iSmVqtZ8eLFWWRkJIuJiWEWFhZityjGGDMyMmIJCQnM3Nycubu7M0dHxxz6Vl8mpIVyIC2UA2mhXN68ecOaNWvGXr16xdatW8cGDRqUzNAp12/KlCnC8FO0aFHWsGFDVq5cORYcHMxu3brF/Pz8GGOMzZw5k82ePTvZ+UTqkBbKgbRQDqSFMoiNjWVmZmaMscyZQlNaHDBnzhw2Z84cZmVlxf777z9WtmzZnPsiuQTSQzmQFsqBtDA86bWnWW1vU5qDpwVoaUNaKAfSQlmQHoQ+oLf2BEEQXwBpmXrS2uIxJaRGPjg4mI0fP57dvHmTPX/+nDHGWJEiRVitWrWYmZkZCw4OZvfu3WMLFy5ksbGxbNmyZWQuSgKVh2GRlz9pYViSlj/pYXgcHR3JcEAQSaB6oQyozSAIQskkHUvLx9u+vr5axtDu3buzjRs3ssOHDzO1Ws3KlCnDrl+/zmJjY9nHjx+Zubk5i46OZu/evWPGxsYMAHv//j3z8/Njfn5+1CalA2mhHEgL5UBaKBcLCwtWrVo15uPjw3bt2sXatGnDSpUqJY7L52snTZrEli9fzhhjLF++fGzSpEnst99+E2kfPnzI/vzzT7Z06VI2d+5cVqBAATZ+/HgyhmYQ0kI5kBbKgbRQBroyhTLGmImJCWMs0WwaFRWVA7nPfZAeyoG0UA6kheFJa8yX0vGMIL/GxYsXma+vLxs8eDAzMjKiBWhpQFooB9JCWZAehF4AQRAE8cWi0WjE776+vuJ3tVqdYnrp86CgINSpUwecc/Ezf/58XLp0SaQNCAjAunXroFKpwDnHpk2b9PMl8hAJCQmGzgLx/6RWR4ich7RQFvHx8YbOAvH/kBbKgbRQDqSFcqB+rbKg/pT+8fT0xKRJk5AvXz5wztGrVy+EhoYCALZv3w7OOezt7fHhwwckJCRojdXlv6f1GZExSAvlQFooB9JCGfj6+qJ06dLgnKNt27Z4/vx5sjRLliwRc7FFihQB5xxFixaFv7+/Vrrw8HAsXboUnHM4ODjg9u3bOfQtcgekhXIgLZQDaaE8Dh8+jFatWsHIyAicc0yaNEkcS2uM9+jRI9SuXRucc3Ts2BHR0dE5kd1cD+mhHEgL5UBa5C5u3LiBb7/9Fpxz9O/f39DZydOQFsqBtFAWpEfehZYoEARBfMFIq9CuXLnC2rZtyyZOnMgYYymudpZWQQcFBbEWLVqwhw8fMs45K1q0KDt37hybNm0aa9mypUhfunRp9sMPP7ChQ4cyzjm7cuVKjnyn3IxKpWIajYadOnWKvXnzxtDZydNIW2Pv3r2bvXr1ytDZydOQFsrC2NiYqdVqtmLFCvbixQtDZydPQ1ooB9JCOZAWyoH6tcqC+lP6x9PTky1btozFxMSwb775hm3bto0VKlRIK42JiQnTaDSMsfR3i6LdJ7IOaaEcSAvlQFooAycnJ/b3338zW1tb9u+//7JJkyaxyMhIcfzKlSts7dq1jDHGmjZtymbOnMlatGjB3r59yxo2bMiePXvGGEuMhFywYEH2zTffsK+++oq9ePGCPX361CDf6UuFtFAOpIVyIC2UxcePH9nOnTvZ5cuXMxXR+MWLF+zQoUPMx8eHMcZY/fr1Wb58+XIs37kV0kM5kBbKgbTIXdy9e5fNmzePubi4MMYYu3PnDnv8+LGBc5U3IS2UA2mhLEiPPI6hHfQEQRBE9jh//jyaNGkCU1NTcM6xaNGiZGmkCIlBQUEoX748OOfIly8f6tevj7t37wJIPbrS+vXrwTmHqakpAgIC9PdF8girVq2CiYkJvv76awQFBRk6O3ma8ePHg3OOnj17khYGhrRQFtLK5t69e5MeBoa0UA6khXIgLZQD9WuVBfWn9M/333+PVq1a4d27dwA+7wohjZkrVaqE2NhYQ2Yxz0BaKAfSQjmQFsrBw8MDVatWxZQpU7Q+37BhA8zNzcE5x4oVKwAAPj4+aNGihYhy7O3tDeDzPO2QIUNEVP2EhATadSWTkBbKgbRQDqSFcnB3d0eBAgUwcuRI8VlaZfjixQssWrQItra24Jyjffv24hjtnpJ9SA/lQFooB9Ii9/DmzRvY29uDc44WLVrgxIkT+PTpk6GzlSchLZQDaaEsSI+8DRnYCYIgvmCio6PRqlUrsa1jxYoV8eDBA6000oAwODgYjRo1Aucc5ubmaNq0KR4+fKiVRo70ouvUqVPInz8/bGxsyMCuAx48eCD0+uabb8hcYkDu3Lkjtr0jE5xhIS2UxfXr18WiKNLDsJAWyoG0UA6khXKgfq2yoP6U/pC/nI2KihK/S+PojRs3gnOOcuXKITIyMsfzl5cgLZQDaaEcSAtlEhYWJn5PSEhAbGwsmjVrBs45WrZsqZXW09MTLVu2TGYQBYCJEyeCc44ff/wxx/Ke2yAtlANpoRxIC+Xw5s0b8XtmTKFNmjRBSEhIuucRmYP0UA6khXIgLb58pECH3t7e6NKlCw4dOoSYmBgD5ypvQlooB9JCWZAehMrQEeAJgiCIrJMvXz62ceNGxhhjdnZ27OjRo6x27dpaaTjnLDIyks2ZM4c9fPiQMcZY5cqV2dq1a1mtWrUYgBS3BjY2NmaMMXbixAkWHR3NTExMaIuvbAKA1a5dm12/fp2Zmpqyo0ePsrFjx7IXL14YOmt5Do1Gwxo0aMCuXr3KTExM2LFjx0gLA0FaKAuNRsOaNGnCLl++THoYGNJCOZAWyoG0UA7Ur1UW1J/SL0ZGRkyj0TDGGLOwsBCfS+NoadtsjUbD4uPjmVqtzvlM5hFIC+VAWigH0kKZ2NjYMMYSy12lUjEALCYmhjHGmJOTE2OMCS0qVqzINm/ezFq0aMHevn3LmjVrxl6+fMkYY+zSpUuMsc/aAsjR75EbIC2UA2mhHEgL5WBnZ8cYYywhIUG02Ul59eoV27dvH1u2bBl7//49a9SoEdu/fz8rXLgwA5DqeUTmIT2UA2mhHEiLLx+VSsXUajUrX748O3ToEPv666+ZmZmZobOVJyEtlANpoSxID4IM7ARBEF84lSpVYs+ePWMXL15kVatW1TomvcC6ffs2u3LlCouNjWUFChRgGzduZLVr107VvC6d5+Pjw9zd3RljjFWpUoVZWFiIY0Tm4ZwzjUbDGjduzC5dusSMjY3ZsWPH2MiRI8lcksOoVCqhxeXLl4UWw4cPFxPwRM5AWigLSY9GjRpp6TF06FDSI4chLZQDaaEcSAvlQP1aZUH9Kf2jUiWfQpXGxpLZx8zMjFlYWIjF4IR+IC2UA2mhHEgL5SJpY2RkxKytrRnnnJUsWVLrGGPJDaJ16tRhI0aMYE+fPmV2dnbshx9+MEj+cxOkhXIgLZQDaaEc0jKF7t27V8sU6uzszBwdHRljLMX3e0T2IT2UA2mhHEgL5ZPWQjJpHGhhYcFMTU1zKkt5FtJCOZAWyoL0IFKDDOwEQRC5gLJly7IqVaok+1yaZNy9ezfz8PBgjDG2b98+1rBhwzTN69J5u3btYrdu3WKMMfbdd98xS0vLFF+KERlHbry6cuUKY4yxkydPsp07d7K4uDgD5y5vkZIWLi4u7MSJExSRLIchLZRFSnqcOXOG3bx5kxYx5TCkhXIgLZQDaaEcqF+rLKg/ZTji4+MZY4ka0HjZsJAWyoG0UA6khTIwNjZmDg4ODAA7c+YMe/v2bTI9JINo8+bNWUhICNu+fTuLi4tjjRo1YqVKlWKMkQFIF5AWyoG0UA6khTJJzxRK5Cykh3IgLZQDaaEc5L4PaRFzQkKCIbOUZ8lpLWgHnNQxRL0gPVInJ/WQdKDn4JcDzVgSBEHkcm7dusVOnjzJGGNs2LBhrFOnToyxlCcTAYiJya1bt7JFixYxxhjr0qUL+/rrr0UaOZGRkSw6OlrrGkTayM0lN2/eZB06dGB169allYQGIKkWgwcPZvXq1aOIZAaAtFAWcj1u3brF5s6dy+rVq0eGBwNAWigH0kI5kBbKgfq1yoL6UzmL9MzJly8fYyxxLPzp06dsT4zLx9Q0vs4YpIVyIC2UA2mhHKRy6tOnDytevDh79eoVu337dorlV7FiRbZlyxbWpEkTFh8fz8qVK8cmTpzIihUrltPZzpWQFsqBtFAOpIUyCQoKYvv37ydTqEIgPZQDaaEcSAvlIDeFXrp0iY0cOZJ5e3szIyMjCviSw+SkFh8/fmSM0QLC1MjpehEWFsZCQkIY55xM0ymQk3q8f/+ebdmyhbm5uTEjIyPS40sBBEEQRK7m8OHD4JyDc459+/almk6j0YjfDx48iGLFioFzjuLFi2PTpk0pnvPkyROMGzcO48aNw5UrV1K8FpE6CQkJAIDw8PBsXYfKO/tIWkRFRWXrOqRF9iEtlIWkR1xcXJbOl3QgPbIPaaEcSAvlQFooB+rXKgtd9acA4MOHD1i7di3279+PkJAQ8Tlp9Zlt27aBc44qVaogNjY2W2WjVqsz9BmRMqSFciAtlANpoRxCQkLQpUsXcM7RtGlTuLq6pprWw8MDXbp0gYuLSw7mMO9AWigH0kI5kBbKQa1WY9WqVeK9XuPGjeHv72/obOVZSA/lQFooB9JCmVy9ehX/+9//hC7Pnz/X6fWl+UaNRiN+l/4ltNG3Fn5+fpgyZQoGDBiA+/fvizl50iM5+tYCAEJDQzFz5kxUrVoVDx48AEBzJamhbz00Gg2OHz8OzjmMjY3x9OlTAKTHlwAHKEwGQRBEbmbdunVszJgxrHLlyuzWrVusYMGCWivcGGNMo9GIyExHjhxhU6dOZX5+fkyj0bChQ4eyjRs3MsZYsvP++usv1qtXL8YYY1WrVmWDBw9mo0ePTjEtkT6ZKTO5Zowlrur88OEDe/fuHbO0tGRlypRh5ubmmb4ukXmSahEUFMRevXrF3r17x+zs7JiTkxOztbVljJEW+oa0UBZyPdRqNfPy8mLe3t7sw4cPrEyZMqxs2bLMwcGBMUZ66BvSQjmQFsqBtNAv1K/NHcTExLAjR46wgQMHMsYYGzx4MOvWrRvr2rUrY4z0kPPLL7+wkydPstevXzMjI6MsXSMhIUGcO2LECGZhYcGWLVvGGKOyzgykhXIgLZQDaaEc/Pz8WKtWrVhQUBBr2rQpmz17Nqtfvz4rUKBAsj5RdHQ0s7CwYIxRGesD0kI5kBbKgbRQDl5eXqxy5cqscuXK7PTp0zqLaKxWq5mxsXEyPYm0IT2UA2mhHEgLZeHn58eGDh3K/v33XwaAVapUia1cuZJ17Ngx29dO2s6HhYWxuLg4VqxYMaET6fUZfWrBGGOhoaFs3bp1bNmyZSwmJoZVqVKFNW/enE2aNIk5Ojpqjd3zOvrWgjHG3r17x7Zt28Z27drFnj17xgoWLMiuXbvGqlevTlokISf0kP7Ojz/+yK5fv86srKzYtWvXWLVq1UgPpZMjNnmCIAjCYKxZswacc9ja2sLHxyfZcXnkJWdnZzg5OcHExAScc/Tu3VscS23F5vbt2/H1119DpVKBc45p06aleG1Cd8i1uHHjBlasWIHSpUujcOHCMDExgUqlQs+ePbF+/XqRjrTQP8ePH8f48eNhZWUFCwsLsXK0ffv2WLVqlUhHWugf0kJZbNmyBd999x1MTU1hZGSkFZVj2bJlIh3poX9IC+VAWigH0sKwUL9W2cTFxWH37t1o1KgROOdQqVQoW7YsZs6cKdLk9cg+8ugtmzdvxosXL7J9j06fPh1FixYF5xwDBgzIbhbzDKSFciAtlANpoUw8PT3h4OAAzjkqVaqEiRMn4tmzZ4bOVp6EtFAOpIVyIC2Ug7+/v06jUr58+RKrVq3Co0ePANBYLrOQHsqBtFAOpIWyGD16NDjnaNSoEVxcXPDp0yedXdvT0xOrV69G586dUa5cORQtWhRt2rTBrFmz4OfnB4AiHMvRpxYAcPbsWSxevBjlypWDmZkZOOeoWrUq3NzcAJAWcvSpRWhoKBYtWoTy5cuDc478+fODcw5ra2uK/J0K+q4bEr6+vujQoQPp8QVBBnaCIIhcztOnT+Hk5ARbW1scP35cvKiKj4/XSrd27VoULFhQGHe6dOkijqW3RbCrqyt+//13YWIfM2aMOEYGE/2xZMkSVK1aVSw44JzD3NxcbInDOce4ceNEetJCP8TExGDSpEkoWLCg0MLExAQFCxbU0uK3334T55AW+oG0MDxSearVanh5eWHw4MFaZW9lZYUiRYpApVKJz8aOHZvsfCL7kBbKgbRQDqSFcqF+rXKJi4vDmzdvMHToUGFi55xj6NChhs6aYtDlxPf8+fOhUqnEuHzUqFF0v2cC0kI5kBbKgbRQJj4+PmjTpg3y5csn+j7Lli1DcHCwobOW5yAtlANpoRxIi9zH69evsXr1ajG+lsyhhGEgPZQDaaEcSIusIzf6r1ixAn/++SdiYmKyfD35GO/Vq1dwdnZGoUKFRL9AmhuUfipXriyM03l90YGutUiP58+fY9myZahbty445yhcuDBp8f/oW4uk5nUbGxucOXMG3bp1I9N0CuR03QASxzRkYv9yIAM7QRBELufdu3fo1KkTOOdo3rw5/vvvP9EZ0Gg0uHTpEkaNGqU10Pj222/F+UmN7nLkA5j3799j/fr1YtAyb948/X2pPE5oaCiGDRumpVnr1q0xc+ZM3LhxA3v27MGECROEFrNmzTJ0lnMlCQkJePDgAb777jstLXr27IkdO3bA3d0dx44dw/Tp04UWc+fONXS2cyWkhTKQ2oTY2Fj89ddf6Nixo9CiSJEi+Omnn3Dx4kW8ePEC//zzD+bNmyf0WLBggYFzn7sgLZQDaaEcSAtlQv3aL4v58+ejdOnSwrhIeuiegIAA2NraivLN6y+bDAlpoRxIC+VAWuiW4OBgrF69Go0bN4apqSkOHTqEyMhInV2fFhdkHNJCOZAWyoG0yD1ERkZizpw5og03NzfHrFmzEBcXZ+is5UlID+VAWigH0iL7yP0c2TFnytvnmzdvYuTIkSLCt6WlJUqUKIEJEyZg0aJF+Omnn4Rx2t7eHl5eXtn6DrkFXWmRHpJWnz59wv3799G2bVtwzlGjRg2d7ozwJaNrLaQyT8m87urqCiBxt4L27duTaToFcqpuyCET+5cDGdgJgiDyAD4+PihVqhQ456hSpQp69OiByZMno3Xr1nBychJmkfLly2P8+PHivLTM6ykRHh4uzD5OTk64fPmyrr9KnsfX1xf9+/cXmpUuXRqTJ09Olu7jx49Yt24dVCoVihcvjosXLxogt7mX+Ph4XLp0CZ07dxZaNGrUCCtXrkyWNioqCqtXr4aRkRHKli2LO3fuGCDHuRfSQhlIg/aYmBjs3r0bjRs3Fnr06tULBw4cSHZOdHQ0li1bBiMjI1SrVk1EBSCyB2mhHEgL5UBaKBPq135ZvHr1CvPnzxfRlipXrozt27frPVJKXkKaOH/27BkWLlxIE+kGhLRQDqSFciAt9INGo0FcXByePHmis62z/f39ERQUBIBeymYG0kI5kBbKgbTIPSxcuBCcc9jZ2WHWrFkICAgwdJbyNKSHciAtlANpYXjk5vVz586he/fuYrfM2rVrY+bMmVrG6Li4OLi6uqJly5bgnKN3794IDw83RNYJAA8ePEC1atVgbGyM2bNnIyEhgRad64E3b95g6dKlKFOmDDjnsLW1xZMnTwB87tuSaVpZ+Pj4aC0qSKoXoQzIwE4QBJFH8Pb2Rq1atcQqWelHip43cOBAHDx4UKRPq8GOiooSvyeNlPHff/+hdOnSUKlUKRpIiazz/Plz9O3bV2jXsmVL7Nq1SxyXD0Q0Gg28vb1RuXJlcM6xYcMGA+U695GQkICrV6+iXbt2Qot+/frh7NmzIo1arRZ1Q6PR4OnTp7C3twfnHHv27DFU1nMdpIWyiI2Nxf79+1GvXj2hx7hx47S2ekzatty5cwcFChQA5xxHjx7N6SznWkgL5UBaKAfSQllQv/bL4vnz55g5cyYsLS3BOUfVqlVx4MABnUZgJBLJ7CJyQn+QFsqBtFAOpIXu0XUEYn9/fwwfPhylSpXCrVu3dHrt3A5poRxIC+VAWuQulixZgtGjRyMwMNDQWSFAeigJ0kI5kBaGQ97mnzlzBq1bt4axsTE452jbti0uXLiAjx8/AtCeQ09ISMD+/fthamqKsmXLws/PL8fzTiQSGxuLgQMHgnOOpk2bGjo7uZLY2FisXr0axYoVA+ccZmZmOHXqlDgmXzAgN7Hnz59f6z0UkfP4+vqKYIhWVlZ4/PgxADKxKwkysBMEQeQhXrx4gXXr1qFHjx5o3LgxateujQkTJuDYsWNa6dJajent7Y1Ro0bh5MmTqabp3r07OOeoX78+YmNjaTvIbCBpERUVhQEDBgiTT5cuXUSHWJ4uKa1atQLnHD169EgzHZE+0n3s7u6Obt26CS1++eUX3Lt3T6RLrYylbdSGDBmSZjoifUgL5aHRaHDu3Dk0bdpU6DFjxgy8ePFCK01KSIbEmTNnAiA9sgtpoRxIC+VAWigD6td+mTx//hyzZ88W5vXq1avD2dmZzOvZQH7v0ljZsJAWyoG0UA761oL01R/Pnj3D+PHjxS6cTk5OePPmjaGzlSchLZQDaaEcSAvDITfmUGRcw0N6KAfSQjmQFsrhypUr6NKlizCvd+3aNV1TekBAAGxtbcE5xx9//JFDOSXkSHVozZo14JzDwsICXl5eBs5V7iQgIADffvstqlWrBs45GjZsiCtXrgBInE+Rz3n4+vqiTZs24Jzjt99+o6AAOUxSc/quXbtEkENLS0thYieUgTEjCIIg8gwlSpRgI0eOZCNHjmQJCQlMo9EwExOTZOlUKlWK5wNgT548YevXr2fr169nhw8fZr1792YAGOecJSQkMCMjI2ZmZsYYYywuLo5xzhnnXK/fK7cCQGgxdepUtn//fsYYYx07dmSjR49m7du3T5ZOfi7nnKnVasYYYxYWFowxRlpkEY1GI8p4yZIlzMXFhTHG2KBBg9ioUaNYjRo1GGPJtQDAGGMsMjKSRUdHM8YYs7a2ZoyRFlmFtFAWkh5v375lGzduZDdu3GCMJT6zRo4cyezs7ERaeTlL53l6erL3798zxhgrUqQIYyz1NohIG9JCOZAWyoG0UA7Ur/0yCQwMZLt27WLLly9nUVFRrFq1auz3339n3bt3Z5aWlobO3heJvC8bGhrKChcuLMbRRM6iby3k10/p/8RncqJeSG1JSn+T+ExOaCHpEBkZyQoUKEDPQB3i6+vLVq5cyRhjrEyZMuzXX3+l+9xAkBbKgbRQDqRFziLv+xgZGYn/FyxY0MA5y5uQHsqBtFAOpIXy8PPzY3v27GH//PMPS0hIYF27dmXbt2/XmkNPiVevXrEPHz4wxhgzNiYLoiGQxtShoaGMMcY+ffrEYmJiDJmlXIlGo2GlS5dmO3bsYPfu3WNLly5l586dY+3atWMXL15kTZo0EX4ExhhzcnJimzZtYufOnWNdu3al+pHDSG3LqVOn2OXLl9mGDRtEuxMVFcUmTpzITpw4wczNzQ2cU4IxxmhkSBAEkceQOk1GRkbMxMREqxOVHpxz1rp1azZo0CDGGGN9+vRhW7duZe/evRPXdHZ2ZkeOHGGMMVanTp0UDfJExpA6UJs3b2Zr165ljDHWqFEj9uuvv2qZfFIy73DO2dmzZ9n169cZY4zVrFlT65pE5pAm0+fNm8f27t3LGGOsZ8+ebMiQIcIwzVjy8pUWcLi4uDBPT0/GGGMVKlRIMS2RMUgLZSFfTHDq1CnGGGPDhw9ngwcPTnNSSzrvwoUL7M2bN4wxxhwcHPSc29wNaaEcSAvlQFooB+rXfnmQeV33JCQkiOfLqFGjWLNmzZinp6eYTCdyDn1rITcBP3z4kDH2uW0hrbXJiXohb1+uXbvGnj17xlQqFUtISNDJ9XMLOfmMOnjwIPvf//7Hnj59yoyMjEgLHdGhQwc2ZswYZmxszEaPHs1++uknVrhwYUNnK09CWigH0kI5kBY5Q2RkJGOMiYBTEjR+Ngykh3LQpxZJ+8o05kubnKwXGo1G59fMjUjldPbsWebs7MzUajVr374927BhQ5pz6JJ+fn5+zMLCgqlUKhE4jMgZ5M+bhw8fshMnTjDOOatYsSKzt7c3YM5yJyqVigFg+fPnZy1btmSbN29mPXv2ZPHx8WzAgAHM1dU12bOsfPnybPjw4axMmTIGynXeIGnb++LFC3bt2jXWuXNnNnToULZ69WoWHx/P4uLiWM2aNdmCBQvY0qVLybyuJPQZ3p0gCIL4cki6hUpahIaG4ueffwbnHJxztG/fHoMGDcLIkSPFZ7a2ttiwYYMec5w38Pb2Rps2bWBkZAQbGxts3LhRHEtr2+Xg4GAMGTIEpqamsLGxwT///JPuOUTaXL9+HRUqVADnHDVq1MCxY8fEsbTK1cPDA+3bt4dKpULlypXh6emZE9nN1ZAWyuLYsWMwMzMD5xwdOnTAzZs3M3TezZs3Ua5cOXDO0bx5c9oaUgeQFsqBtFAOpIVyoH7tl8Pz588xe/ZsWFpagnOO6tWrw9nZGZGRkYbOWq5g8uTJKF26NDjnMDExQUhIiE6uK9UJqhsZR19aSGzbtg0VK1ZEp06dcOzYMXH9hIQEnf6d3IC+6wUAXL58GU5OTrC2tsajR48AZG4uLK+g73oRFRWFyZMniy2bnz59CoC0yC7y58qtW7cQHBxswNzkbUgL5UBaKAfSImd4/fo1Zs+ejenTp4vPaGxgOHJCD5qryhg5oYVardZ630R1L2VyQotbt25h9uzZert+buXhw4ewsLAA5xwNGjTArVu30kwvlWtoaCgqVqwIzjmqVq2KmJiYnMhunkPel0pp7Hzjxg0MGTIEBQoUAOccPXr0yMns5UoyOnd39+5d1KhRA8bGxhg7dizi4uJo3i+HkT/nX79+jSNHjqBBgwYoUaKE8K5xztGtWzfMmjULUVFRBswtkRq0PwFBEATBNBqN2Frozz//ZI0aNWIODg6prnYuVKgQGz16NHN1dWV3795lV65cYXFxceK4hYUF69mzJxs2bFiO5D838/TpU3bt2jWm0WjYt99+K8o0te2u8f+Rxa5cucKOHTvG4uPjWZ06dVi7du0YYxTZITs8ffqUBQQEMMYY69GjB+vZsydjLPVooYwlbj/k4uLC7ty5wwCw6tWrs4oVK+ZUlnMtpIUykMr78ePHIkLD119/zRo1apTuuS9evGAHDx5kr1+/ZowxVrt2bdoaMhuQFsqBtFAOpIXyoH7tlwFFXtcvJ0+eZEuXLhX/Hz58OLO1tc3WNaW6ItWJkJAQFhMTw3x9fZlarWb169dnxsbGzNLSMtX6lhfRhxZyHjx4wFxcXJiPjw/z9vZmrq6urGHDhmzhwoWsXLlyLCEhQczD5HX0pYV8fHj58mU2fvx49vr1axYTE8NatmzJrl27xqpVq0ZayNB3vWAscc7wl19+Yffv32f//vsva9asGWmhA1QqlXjGN2zY0NDZydOQFsqBtFAOpIX+efXqFTt06BBbv349e/fuHVOpVGzOnDk6GzdL/aq05t+Jz+hbj5iYGPbvv/+y33//nY0ePZo1adKEValShTGW9juSvIi+tWAscV7rypUrbOLEiaxGjRps165dVF9SICe0CAsLYwMGDGC+vr4sLCyMrVmzhrRIBwBMrVazzZs3s0+fPrGiRYuy/v37s1q1aqV5Duecffz4kc2bN4/5+fmxfPnysa5duzITExOae8oEad2barVavNeIj4/XKveYmBimVqvZrVu3mJeXF9uzZw979+4d+/TpE6tVqxZbt24dY0x73j3peJvG36nz/PlzFhMTwypWrJju/VyrVi1WvXp19vTpU/bPP/+wxYsXMxMTkxzMbd5F0kaqK8uXL2c3btxg586dE2lsbW1ZnTp12Pfff8++++47EXFdfv9T3VAIOWqXJwiCIBSNFFX99u3bGU5vbW2NqVOnwtHREcWKFUOXLl0wd+5csdKNVhhmDY1Gg9jYWHTt2hWcc9SpU0dEvUotKpX0+ZMnT2Bvbw/OOcqXL487d+6keR6RPuHh4ahbty4452jZsqX4PL37+9SpU7CzsxORwl++fJmh84jUIS2URXBwsIjO1717d/F5WlEtwsPDsWHDBtja2oJzjq+++gqfPn1K9zwibUgL5UBaKAfSQhlQv1Y5SP2eDx8+iEgj8vuaIq/nDMOGDQPnHFOnTs12X1R+/ps3b7B9+3bUq1cPxYoVE9Flqlevju+//x7e3t4AqP7I0aUWKeHm5gYXFxc0a9ZMjEUcHR3h6uoKgMYicnSthfzZdunSJdSpUwcqlQoWFhZwcnIC5xzW1tYU/TsF9F0vJHx8fNChQwfSIptQeSkH0kI5kBbKQd9a0Bg9EbVajXXr1kGlUoFzjmLFimHUqFF4//69Tq4tJzAwEK9fv0ZQUJBWP4G0+Iw+9ZC4fPkyqlevDs45jI2N0bp1a2zdulUcJz0SyQktEhIS8O+//6Jz585iDD5ixAhxnLRIJCe0ABL1WL9+PUxNTcE5x8iRI8Ux0iJ1oqKixHvXOnXq4NWrV+meExMTgx07dqBSpUrgnMPW1hYPHjzIgdzmTm7evIk5c+bg66+/RqdOndC9e3e0adMGDRs2RJMmTVC/fn1UqVIFlStXhqOjI2xtbcX7C/lP3bp1cf36dQDa97y8Pf/9999pV7o08PHxweDBg/Htt9+Kz1J7fkjlt2/fPvHcyegOwETWSDpP5efnh+nTp6NZs2ZadaFs2bJo1aoVbt68KTwhElQ3lAkZ2AmCIAgAQEREBOrVqwfOOf73v/8hNDQ01bRxcXEAgB07doBzjjNnziA8PBwvX77UaszpZWz2iImJEQPGLl26pLmdjVTu/v7+KFWqFDjnsLOzw6xZs/Dhw4ecynKu5f3792ILtMGDByM+Pj7djuuVK1eE4ap06dLYtWsX1Go1TZJkE9JCWbx48UJswTVv3jwAaQ/qoqKisHfvXmHgqVSpEi5fvpzueUT6kBbKgbRQDqSFcqB+rXK4d+8evv76a+zbtw8RERHi84CAADKv6xn5c+TUqVPZfq7Iz3d2dkbfvn21JuqtrKygUqlgbGwsjNNubm4AaKyuay2SknScERwcDGdnZzRp0gSccxQtWhQeHh4pps1r6EOL1MzrlpaWGDFiBFxdXYXBhIzTn9F3vUgJMrFnDW9vb5w4cUL8n8rLcOhbC+l5ltfbioygTy1SKn/SJHX0XS9iY2NFPwogLSS8vLzAOYeZmRlmzZqFwMBAnV07KioKO3fuxKBBg1CmTBnY29ujWLFiGDRoEHbu3CnSkRaf0aceABAaGopdu3Zh6NChsLa2FqbgSZMmiTSkRyL61CIl87o0/ibjdHL0XS8k1Go1tm/fLuoFaZE+V65cgYmJCUxNTeHs7Awg7f5PXFwcjh8/jkaNGol7/+jRozma59xEQEAA2rdvL54fmfkxMzMD5xzNmzfH4MGDU1wUIu+LTZgwQcwZPn78ONlxInEeydzcHJxzHDt2LEPnrFmzRmjy77//ppouvflYekalTtL79MKFC1i4cCEKFSok6o6xsTGsra3x66+/4vLly1rvPoDk5Ut1Q1mQgZ0gCIIAkNhgb9q0CYUKFYKjoyNOnDiRbidq6dKl4Jxj9erVKV6PyB7v3r1DjRo1YGRkhOXLlwNIu2Pr4+MjooxaWVmhT58+8PHxyans5mr8/f1RsmRJGBsbi0nZtO7xf//9VxjmihUrhokTJyI4ODinspurIS2UxePHj2FpaQkTExMcOXIkzbTv37/Hrl27ULRoUWGi2rBhAxnjdARpoRxIC+VAWigH6tcaHikS/ldffQXOOWrVqoUDBw4gNjYWr1+/xqxZs8i8ngPoauJbfp0ZM2aIBZ6cczRs2BC//PILrl69ikuXLmH9+vUiCo2TkxN8fX11kocvnZx6CSGNVeLj4+Hq6oo2bdqAc45mzZplKKpZXkBfWiQ1rw8fPhwxMTEAEs0TZJxOjiG+P5nYM4e/v794sfrzzz/r/Ppyw3ReX+yUHvrWIjw8HH/99Rdu3LihVR9ozj05+tRCvsvsrl27sGTJkmTHiM/kxDPq77//hqmpKQYNGqT1OZG4eGDevHkICAjQyfViY2Px8OFDNGzYEAUKFEhmmpPMoRMnThTnkBaf0bUeEknb5zNnzmDEiBFCj99++00cIz0S0YcWKZnX16xZgx07dpBxOg30VS+SQib2zHHt2jUYGxsjX758OH/+PIDk5ST9PyYmBidPnkSLFi3EvT9//nwaO2STMWPGgHMOIyMjWFtb45dffsGQIUPwww8/YMyYMZg2bRp+++03TJs2DStXrsTy5cuxevVqnDt3Djdv3hRzHYB2OyEfR4wfPx6cc2HOpvF3ynh7e6NLly4wMTHBwIED8eLFi1TTqtVqxMXFYfjw4TAzM4OZmRn++++/ZOmS1qfz589j+/btWLBgAebPn4+7d+/i7du3ACjoSFokJCTg0qVLGDt2LAoWLCju5Xz58sHGxgaLFi0SzzCJ9KLnA1Q3lAIZ2AmCIAjBmzdv0KNHD3DO0ahRI7GttYS8w+Tp6YnmzZuDc45p06bldFbzDB07dgTnHN9++61WpMqk2zPeuXMHDg4O4JzD0tISbdu2FR0rIvuo1WoxGB88eDA+ffokjsm1ePfuHQ4fPozixYuDc44iRYrgl19+gZ+fnyGynSshLZTFp0+fRJSF8ePHpzpJ4uPjgxUrVqBIkSLgnMPBwQHz588XA3Ii+5AWyoG0UA6khbKgfq0ycHd3F/d6rVq1sGbNGkyZMkUYEsi8rnzkE+ejRo3SMpOMGjUKjx8/1qpXCQkJcHNzQ8OGDcE5x7hx42g3IgNy8eJFlChRAoULF8bBgwcB0MspfXDu3DnUr18fKpUKBQoUwG+//SbaHqm8kxqnpTkwejmV8/j4+KBdu3ZCC4p2lTIBAQEYNmyY2KHGyMgIV69e1cm1M/IconbjM/rUAkic09q0aRNsbW3BOcewYcO0IlqTFp/RpxZy8/qff/6Jxo0bi/nIpGkI/dcLicOHD4u+LxkSkxMfH6+T67x69QqbN28WC8tNTExgbm6O0aNHY/HixVixYgUGDhwozKH0jjBldKVHSiR9F7Jx40ahx4oVK/T2d79UdKGFvF1Ial5ft24dADJOZwR91gs5pEXGefr0KSwsLMA5F/MUcqTnTVRUFPbv3y92l+OcY8KECQgKCsrpLOca5M/y0aNHi3LdsWNHlq4nv7dTMugaGxujQYMGqFevHhl108DZ2Rn58+cH5xzLli3Teq8klZOk3ePHj1GsWDFwzlGzZs1k5SilCw0NxV9//YXOnTuLyPnSj4ODA1q3bi12GSIttImJicGZM2fQrl07lC1bVqvsGjRogFmzZsHd3V3rnLTKkOqGMiEDO0EQBKFFQEAAqlWrBs45WrZsidu3b+Pjx49aafz9/TF//nxYW1uDc46lS5caKLe5F2mAsWLFCpiYmKBmzZp48OBBsg6Sj48Ptm3bJky61tbW6NSpEx4+fGiAXOdONBoNNBoNZs+eDc456tati8ePHyfT4r///sOMGTOEIah48eIYNmwYvL29DZTz3AdpoTzi4uLE4K5BgwZ4/PhxsgnICxcu4IcffoCNjQ045yhTpgyWLFlCESd1DGmhHEgL5UBaKAPq1yoPDw8PFC5cGJxzlChRQkQXqVGjBvbv30/mdQUjf7E1fPhwrQn7xYsXp5pWrVZj6tSp4nmYUy+MieRERUWhVq1aYkEPoXs+fPiATp06iReCZcuWxb179wAkRhKVv9CVm9g553jy5Imhsp3nCQwMRLdu3ZKZ2GmBx2fevHmD8uXLix011qxZo5Md5qQ6oVar8fTpU2zcuBHjxo3Djz/+iF27duHWrVvJ0uZ19KWFxMePHzFlyhRUr15dRDkuXrw45s2bJ9KQFonou14kJCTgjz/+EIF8yDidOvquFxJqtZoiHOsZPz8/zJo1S5ixihUrhv79+ydbkPDhwwesX78eKpUK1tbWcHFxMVCOCQCIjo7G9OnToVKpUL9+fXh6eho6S7kStVqNCxcuiCANnHNs2rQp2fhbbpweNWqUOEbPqZwlqRYjRowQx0iLRDQaDd69e4dOnTpBpVJh/PjxKQYeeffuHaZNmyb6p9KOD/SsyT7yOfKxY8dqPVtiY2PFsYSEBK37Nq17ODWDbvPmzXH69Gm8fPlSPMfIqPsZeZkuWrRIaLF69eoU3xd5eXmJxZtFihTBypUrAXwuR+lfX19fDBgwAOXKlRMLA42NjVG3bl0UL14cdnZ24JzD3t4ebm5uAGguJCkzZ87UGo917doV8+bNQ2xsrCirjDzXqW4oFzKwEwRBEMnw8vLSWik4efJkPHr0CAEBATh9+jR+/PFHEQGmZs2aCAkJMXSWcy1BQUFiMNi8eXPs378fPj4+8Pb2xp49e9ChQwdhuLK3t8eAAQOSRc4ndMPz589RuXJlcJ643fvmzZvh6uqKK1euYNWqVahSpYqIfujk5IQZM2bofRu8vAppoSwCAgJQsWJFcM7RuHFjLFu2DHfv3oWzszOmTZsGKysrYYyrWrUqduzYka12gyYWUycntaDJk7QhLZQDPaOUgxL6taTPZzw8PFCoUCERHdHBwQHbt2/XejFCKAv5/Tt58mTky5cPnHOYmZmJaG9J0wGfJ9iPHTsGIyMj2NraUt/YQMTFxQEAunTpIhYTEPohKCgIs2bNQoMGDcQCtcuXLwNI/tLX19dXRJCT0hA5g9SPjY6ORkBAAAYNGiQWHpiYmJAZIgWePHmCypUrY/HixTqbj42Pj8fz58/Ro0cPVKhQQeulMOccjo6OmDNnjkhP/alE9KGFHCnK34YNG9ChQwdhvBozZoxIQ1okomstkprXpZ0gOecYNGgQGafTQN/1QoKi6uqPgIAATJw4UQSGcXR0xOrVq7XGD/J5qBcvXoidnuRtBWEYLly4IPpSx44dM3R2ciVubm5a7UK/fv3EMWm8B3x+ThkZGYFzjp9//tkQ2SWQqMvevXtFmzF06FBxjNqMz2zYsEHc18uXLxemTT8/P1y/fh0NGjQQ87acc8ycOZPmlnSI3Bz722+/iXLevHlzpoNQyNvpcePGCYNus2bNcPLkSXHM29tba1c6MuomIi+/SZMmCS369u2L9evX49GjRzh16hQWLVoEe3t7cM5RoEABdO/eHT4+PuJcqRzd3d1RvXp10T6bmZlh0qRJ+OuvvxATE4OgoCCcPn0arVu3FgFmAgMDc/x7fwlMnjwZDRs2xMGDB/H+/XvxeUbfkVLdUDZkYCcIgiBSxNvbGzVr1hSdsvz588PR0RFGRkYwMTEB5xyVKlXCH3/8kezlH6FbvLy8xFaN+fPnR6FCheDg4KD1MqlKlSpYuXIlnj9/bujs5mq8vLzg6OgojD5WVlYoWLCglhZ169bF8ePHERoaaujs5moMoQVFI00dLy8vODk5abUZSV96t2zZEo8ePdLaai07vHv3TifXyW3khBbyNv/o0aO4e/duqsfzMqSFcjDEM+rx48da26eSFokYol/r5uaGP/74Q/yftPiMu7u7WJhcpkwZ7NixQ+uFK6FMtmzZIuoR5xwbNmwQx9KasJ81axY45zA1NYW/v38O5JSQI9emcePG4JyjdOnS+PjxIy1G0zFSecbExOD+/fvo0aMHOOfIly8fbt68CSB5W+Dj4yN2/KB2Qr/Iyzc2NhZeXl4YOHAg6tSpA865MJaUKVMGmzdvJj1SICwsTGfzHC9fvsSWLVtEkACp/KtVq4YGDRqgZMmS4rPffvtNJ38zN6FLLZIiv/c9PT2xZMkSocW0adP08je/ZHSlRVrm9e3btwMAGafTQZ/1Qg6Z2HXPmzdvMG/ePBEFtGzZsjh06BDCw8PTPG/QoEHgnKNJkyb49OkT9W0NgHTPR0ZGih22p0yZYuBc5V42bNiArl27wsLCAmZmZhg2bJg4JjeaSs8pKVCDZIAj9E/S55CHhwe6desmFhQMGTLEQDlTHkmDJUj9Hnt7e7Ro0QLFihUTxnWVSgVjY2Ps3bsXERER2fq7STWitlu3JnYAGDx4sHiH3rBhQ60F+1J5y3elkxt187oeci2mT58OIyMj0eeUgoBKgUVsbW3RqVMnsYucRqMR5z99+lSk5zxxx/jLly+neP/fu3cPVapUQb58+bBp0ybxOaHdtr5580brWFbKiOqGMiEDO0EQBJEqgYGBGDVqlNjeWv5Tp04dnD59OtsDFCJj+Pr6okePHihbtqzoUEmrML/99lv4+flly3Aldbao05U+fn5+6NevHypVqiQMIJxztGvXDmPHjsXHjx+zdf2MaEA6JaJvLeTcuHEDPXr0wLZt27SiCpAWn/H398dPP/0koutaWFjA3Nwc33//PZYtW6bTsnJxcUHt2rWxYcMGPHv2THxOeiSSU1qsWbNGbHk3duxYnD59WhwjLRIhLZRDTj6jli1bBs45+vTpoxXxirRIRN/9WjleXl4YPXq0iJYoQVp8xt3dXURir127Nvbv30+L9hSIdM+6ublpbVW+YsUKkSY1o4hGo0FYWBh69uwJY2NjNGzYUGs7aEK/aDQarWeO1EZwrr2VPKE/nj9/jm7duoFzjlq1ammNH5KSVC9CdySNVHX8+HH8+uuvYiGV9FOpUiWMGTMGnp6e9KzSM97e3hg7dixKliwpXrx37twZR44cEX0BV1dXrFmzRrysX716tYFznbeQP49iYmKwfv16qFQqWFtbU2RdPZKQkIA///wTzZo1E8+mLVu2iOOxsbGpGqfJuJuzkIldN0j3rbOzs4gk6uTkhJMnT6Y5No+Li0N8fDzatWsHzjk6deqUU1kmUuHhw4fCUEcLz/SLv78/1qxZA0tLS3DOMWDAAHFM3u9Vq9U4efIkTp48iU+fPhkiq3mKpM/+mzdvYs2aNShSpAisrKy05iGvXbtmoFwqD/k9u2DBAq1AMNKPk5MTvv/+e9y6dUvrXH9/fzx58iRT7a58J67Lly9rnZvX229dmdifP3+O6tWriznfWrVqwd3dHUCiGVheznKjroWFBQVL/H/kWuzZswe9evVKVi8qVaqEadOmwcPDA0Di/Svp5ObmhsKFCwuze5MmTeDm5ibSyf8FgE+fPokdG3v27JlTX/OLQVeLXqhuKBcysBMEQRBpEhUVhcDAQCxfvhwzZszAlClTsGHDBp0aQ4mM8eHDB3h5eWHLli1wdnbGsWPHdL6FUHh4OHx9fXHgwAHs2bMHly9fJrNuCkRGRiIoKAh//vkn/vnnH1y+fBnR0dHieFa2EEpatgEBAbh//z5WrFiBlStX4vTp06IDnVL6vIo+tEjKixcvMGLECDEg7d+/Pw4dOiSOkxafiY6ORmhoKM6fP4/79+/j0aNHWsd1oYevr6/WREGfPn1w4MABcZz0SETfWkRGRmLq1Klo0KABOE/cZs3BwQELFiwQaUiLREgL5ZATzygAGDNmDKysrGBqago7OzssXrxYHCMtEsmJfq2npydGjx4tJorJ0JA6Hh4eYov4GjVq4PDhw4iNjTV0togUWLJkibifJ06cKD5Py7wOACdOnBDGHjJNZ43sLDSOj49HfHw8Zs+eDXt7e6hUKpibm2PPnj26zmaeQH6/Z+QFrkajwZkzZ1C8eHFYW1tj48aNya5D6IekdSIhIQG7du3CTz/9BM652OHRxsYG9vb22LhxI+7fv5/mNQjd4O7ujh9++EG0/yVKlMCaNWvEAg+pfmg0GkRFRWHq1KkwNjZGx44d8eHDB0NmPU/z/PlzNG/eHCqVChMmTDB0dnIlGo0GO3fuRMOGDUWfa/fu3QAS2xypbqRlnCZylvj4eGzdulVoIY+ETG1I+kj3tJ+fH8qUKSN2CTp48KDWHHtq5338+FFE/P7mm2+SGX8I/SOVd1hYGGbNmoUCBQokW+xM6A75/R0XFwdnZ2dhYk9rhxQKIqY/kpZtZGQknj59ihEjRiQzYhcuXBhjx47FyZMnDZllRSKfF//vv/+wd+9ejBo1CtOmTcOqVavw8uVLMQ6QFn6HhIRg8ODBsLGxwb59+zJ1f0dGRmLu3LkoVKgQWrdujX379onIynl9rJ6aiX3t2rWZen8RGhqKbdu2oXnz5mLBshRpOunifR8fH7Ru3Rr169enOWEZ8nvxw4cPuH37Nnbu3Im1a9di7969CA0NFYuT5JHXnz17hvLlywvjc/v27eHl5ZXsmhLS3Jakd+vWrfX91fI0VDeUCRnYCYIgiCxDA23lkJXBXFL9Dh48iK5du4qXV9JK9EaNGmHp0qWpnkdok5Xykev3/v17bNy4EVWqVNGKRKZSqVCjRg0sXLgwW38rL6Gr8omOjsbRo0dFNBmVSgU7OztMnjxZpMnrEyo5SVRUFE6cOCFWokvRx+Qvb6lu5AyfPn1CdHQ0Vq1ahTZt2oiXhWPHjhVpSIucgbRQHufPn8cPP/wgtKBnVMbRRZsqmdelSBoVKlSgqHzp4OHhIfqeK1euNHR2iBRwc3MT2zZ37txZRH1Jz7z+4MEDrQUKDx8+TPM8IjnyF4SvXr3Cq1ev8Pr1a/j7+8PDwwM+Pj5wc3PDrVu3cPfuXdy9exenTp2Cs7MztmzZgl69eqFRo0ai75q0jU4JKdqlrhZX5UYOHTokFnmndz/HxMSgbt264JyjZcuWOZG9PE1SPZ49e4YjR46gadOmwuAjn3PauXMnvL2907wGQPVCV/j4+ODnn38W7X7p0qXx999/a0W8T9pHOnz4sNDtwYMHOZ1lQsawYcOEAevt27eGzk6uIz4+Htu3b4ednR2MjIxgaWmJtWvXah2XUKvV2LFjh4jkumrVKgPkOO+StJ1YunSp6GcNGTLEQLn6MomOjkanTp3AOUeRIkWwYMEChIWFpZpe3kaMHz9emLPIEGo4nj9/jjVr1qBixYpCR19fX0Nn64smo5GOIyIiMGXKFBgbG6NatWrJFmMSOUdERAQePnyInj17omrVqlrj7wYNGmDIkCHw9fXVaj9oXkSb9MojpXnUQYMGgXOOAgUK4ODBgxmea7169Sq6d+8uxhhFixZF9+7dxbgwr4/55N9famtLly4NT0/PDJ0vaRkfHw9PT0/07t0bnHNYWVnh7t27KZ4THBwsnn15vfzlpLcAKenx4OBgfP3112LOo0WLFuK+TquOxcTEiEW0TZs2peeTnqC6oVzIwE4QBEEQeRB5p/fu3bsYO3as1ip0a2trFCpUCKampmISXr7lIJl9Mk56ZSXX4vjx4/j++++1tChWrBhKly4Na2tr0iKbZKesEhISEB4ejjFjxsDa2jrFqD5E5siKHvJzoqOjMX78eBQrVkzo8euvv+oyi3kGXTxH3N3dsXDhQqHFlClTdJCzvAdpoRyyqoW8Xffz88P8+fOFFuPHj9dV9og0kMzrkimrUaNG+PjxIw4ePEgm9nTw9vbGrFmzqEwUysWLF2FtbQ3OOebNm5fmC3VJQy8vL3To0AFGRkYwNTXFsGHDaDe1bDBjxgx89dVXKFmyJOzt7VG8eHHY2NjAxsYGVlZWMDMzg7m5OfLnzy/Gc8bGxlqLkosWLaoVPT+lFx+PHz9G/fr18d9//6WaJq+zZcsWFC5cGMOHD083rRQhqX///jA2NkbZsmW1jLoZhZ6NmcfT0xM7d+5EuXLlxEIaaV5jwIABWL9+vdazLK0ypnqhG968eYPff/8ddnZ24JzD0dERt27dSjW9pMmjR4/Es+2ff/7JqewSMuLi4gAA06dPh0qlQuHChfH69WsD5yr3cu3aNcyYMQP58uUD5xz9+vUTx+TPH7VajQ0bNqB58+a4du2aIbKa53nx4gXOnTuHxo0bawWDmTp1qqGzpnikZ/ydO3dE9PW2bdsmW1SWGidPnkTt2rXBOUe5cuXw+PFjfWY3TyAt1gMS575jY2Px6dMnvH//HmFhYXj79i2eP38OX19f3L9/HwcOHMCqVatQq1YtFCtWTEQR3bp1KwDtOaqU+lnUv02Z2NhYPHz4MM1dCOScP39e7Cy0efNmPeeOAJKPBQ4ePIh+/fqhYMGCWu9X69evj2nTpuHVq1ciSjLVi4yTloFWXk4//PCDWMyUGRO7v78/Ll++jE6dOqFEiRLgnMPBwQGurq7p/v28gPw+nzdvHlauXIn3799n6Vo+Pj7o0KEDOOdo06YNXr58mWravF7uWSUhIQEajQYbN24U93PZsmVF4IX0DPDnzp1D6dKloVKpRD+Wnkf6h+qGciADO0EQBEHkIqSXGUDqL/PknauDBw+K6BpSdMpvv/0Wt2/fhre3N86fP4+5c+cKs8+CBQv0/h2+dKTBhHxyKyNaLF++XESE45yjSZMmGD16NPz8/PD69WvcvHkTixYtElosXrxYv18kF5AZLdJDrtXkyZNha2sLU1NTcM4xa9asbOUzryDpERERIT7Lqh7y88aNGwcLCwthhFi9enX2MpoH0KUW8gmUT58+YcOGDVCpVMifPz8OHTqUvYzmAUgL5aAvLT5+/Ci04Jxj3bp12ctoHiIj/dqkeHl5aUVeb9iwoXgB/OnTJ2zfvp1M7MQXy8yZM8E5R8mSJdM0rEn3s4+PD/r16yeitlevXl1MwtM9n3nOnj2rZUSXvxSXPjM1NYVKpYK5uTksLCxgbm6OQoUKwdHREdWqVcPChQvh4uIirpnSs83NzQ21atUS5pMnT56kmjavIpkFpfpw5cqVDJ0nRcDKnz8/goODM/z3JKODBL2w0kZ6nkjlEhUVhdDQUEyYMEHsPCBfoD9gwAAcP35c6xrp3d9UL7KPVFZ//vknSpUqBc45SpUqhevXr2fovC1btsDExAQFChQQiwiInEOqZ2/fvkWdOnXAOUf58uW1xi6EbpA/4yMjI+Hs7IwCBQokC2Ih70slJCQgJCSE2occQHomxcfHIzo6GitXrkSbNm3EHK3Uznfo0AE7duwwcG6/HGbPni3K78yZMxk6x83NDX379hXnyXcqIDLPy5cvsWfPHjRp0gTt2rVDs2bNULVqVdSuXRt169aFk5MTHB0dUb58eRQvXhy2trZinCf/sbW1xerVq5P1deXPrD179mDmzJkpHiMSny8HDhyAg4MDTp8+nWZaqezi4+PRoEEDcM4xcOBAqNVqKtccID4+HuvWrUO/fv20Fo8XLVoUVapUgbOzc5oLcqheZB/5YuQBAwZk2MSeNGL127dvceTIETRr1gyccxQvXlxEGs/rWsjHvPK5CanfGRkZqTWHnhrx8fHYtm0bjI2NUbx4cVy4cAEAla+uUavVaN68OTjnyJcvH+7cuQMg9Xkk+ec//vijaM9p0XjWobrx5UIGdoIgCILIJURHR2Pfvn1Yvny5+Cxp50r+/y1btuCrr74SneHevXvjyJEjySL5RUdHY9myZVCpVKhevTo8PDz0+0W+YKTyDQsLw+zZs7UM/0m1kA9KZs6cKaKcSFGkb9++nUyLT58+iai6DRo0wPPnz/X4bb5sMqNFRq8FALdv30bDhg1FBKbKlSsjJCREN5nOxUhl+Pr1awwcOFBrMjCr1wISo5sULVpU1J327dtnOQJBXkGXWqTEy5cv0aZNGy1zKA30U4a0UA661iJpOYeEhGDYsGFQqVRo1aoVXr16la3r5wUy0q9NytOnTzFy5EgRobpx48bimHyLR7mJffTo0fr5AgShB+bOnQvOOSpVqpRqf0ceef1///sfChcuLF7gPnv2DACZb7PDyJEjhVm9QYMG2LNnDw4dOoT9+/fj+PHjuHDhAs6ePYuLFy/iv//+w/379+Hm5obw8PBkke9T0sHNzQ3Vq1cXu6JJ/z59+hQAmXXl3Lt3Dw0bNoRKpcKYMWPw7t27NNPfvHkTDg4OMDIyQqtWrZKVpbyNefv2LR49eoSRI0eid+/eaNu2Lfr27Ytdu3YhMDAQAGmRGm5ubvjll1+EwVb6qVWrFr755ht4eHjgw4cPmb4m1YvsId3fHz58EGVZvHhx/PXXX2meJ39Ode7cGZxzivqtQzQajdazR252i4+PF/e2pENwcDDmz58v5kBatWqV4ciwRNaJj4/H5s2bkS9fPlhaWmLnzp2GzlKeI+k48O3bt/j999/Rtm1brYWFjo6OaNy4MS5cuEBj7gwiPV969+4tnivx8fHpjr2fP3+OoUOHar3LkK5FY43Mk5CQgE2bNmnt3JTaj3whrUqlgpGREczMzFC7dm107doVd+7cEbsPScj1PHLkCCpWrAjOOYYMGZJimrxOREQEevXqBc45+vTpg9DQ0HTPef78uWif+/btm2q6jNQP0iI5ScvNzc0N27ZtQ926dUVQI845LC0t0apVKxw9ehQBAQFpXoPqhe5IycRuYmKC27dvZ+h8+YJoNzc3tG7dWuwI8ubNG73k+UtHHrhi3LhxopzSu2fDwsJQvHhxcM4xaNCgDJ1DZA4p2IKpqakItpYR8/qcOXPEs2zo0KE5ktfcDNWNLxMysBMEQRBELiAqKgrHjh0TLwnHjx+fLI28o7V9+3YRvYpzjlGjRsHHxydZ5CyJO3fuwNLSEpxzHDt2TL9f5gvn3bt3WL16NcqXLw/OOSZMmJAsjVyLOXPmwN7eXmgxZ84cra0ik3aQL126JCYqz58/r78vkgvIiBaZ4fr162jQoIEwr1epUgVhYWEAkGyxAZGcly9f4rfffhPbmWZFD3l9OHv2rNj2XDKvh4eHAyA90kMXWqTFpEmTwDmHjY0NgoKCdHrt3AZpoRx0oYX8JXnS9vvw4cMUQSODZKRfm5SEhAQcPXpUvDBUqVRYsmSJOC5vFyQTuxSlb9SoUXr5HgSha/766y8YGRmhePHiWtFvpbGb9Nx59OgRunXrBltbW2Fev3fvHgAyemYVebmNHj1aPM/37t2b4Wuk9+JDbtK1t7fHjBkz0KpVKzLrpsHWrVuFFmvWrNEaR8uNO2/evMHUqVPFODqtNv7y5cvo168fSpYsmcwwVKBAAdSqVQtubm4AyKAlx9vbG/3790f+/PlFOZuamqJs2bL4/fff4eHhIaLFZeYlINUL3aHRaDB8+HBwzmFlZYW5c+emufhbrtPixYvBOYeZmRmmTJmS7DihX16+fIkbN26gR48eKF26tIhseePGjWRp0zJnEdp8+PAhQ6ZEINEAIQWB+emnn/ScM0Ii6f187do1LFiwQCsIjNTX7devH27cuJFMU41GQ/UiDaTykdrWb7/9NtV0En5+flr94a5du4qxBpF1vLy8xByFqakp+vXrhzFjxmDq1KlYvHgx5syZgwULFmDr1q3YsmULNmzYgEOHDuHvv//G1atXERkZKfq/cr3kvx8+fBgVKlSAiYmJ0I92pktOXFwcNmzYgCJFiqBUqVI4duxYqv1+qQ/633//oUSJEqKdSO+5c+PGDRw6dAjDhw/HyJEjsW/fPty8eTPV9EQi9+/fx/r162Fvby92IJDqzdChQ+Hs7Jyh61C90D3yedfvv/8ebdu2zfK1Tp8+jUKFCqF48eJiFwQaeycnMjIS3bt3B+ccc+fOTTd9bGwsPn78KN6X9+nTJwdymfeYMGECOOcoUaJEmos45Pf0xo0btYLmpbfQnEgbqhtfLmRgJwiCIIhcwIkTJ+Dk5CS2SevatWuq0bmPHTuGxo0bi8H4pEmTEBkZme7fqFGjBjjnIpI1DRiTk5CQgHXr1qFIkSJi8mT48OGpvhBZt24dypUrJ7RYunRpqteWJkpiYmLEObt379Y6Rnwms1qkx/Xr1/HVV1+ReT2LqNVqTJo0CWZmZuLF95IlS7RMJumRlnm9Q4cOIpIfmRfSRhdapIb0omTatGkwNTVFoUKF8PLly2xfN7dCWigHXWhx4MABcM7xxx9/aH0uj/xdoUIFcM5FVHFqv1MmM/3apBw7dgwjR46Eubk5OOf43//+J44lNbFLEc6mTZumtQUrQSiVR48eoXLlyuCcY9GiRSlGXf3333/h5OQk6kDRokVx69YtAPTMyS7yPuZvv/0m+qGbN29OFuUws7i6umqZdFevXo2QkBAEBgaiQ4cOZNZNgvxelnYm4Jxj8eLFYptxiadPn2L27NnCVN2iRQsEBwcDSF6Oe/fuhbm5uYh+WaxYMdSpUwejRo1CmzZtUKVKFaERbWeeHKleWFtbw8HBATt27EhmaMtMeVG90C2RkZFo2bIlOOeoUaMGHj16lGpauU6nTp1CgwYNRHm7uLjkRHZzJW/evMG1a9fw119/4cCBA/jjjz+wa9curF27FqtWrcLChQsxdepUTJw4EYMHD0b37t3Rvn17lC5dWpizpOiiu3btApC6SVHaqj7p50QioaGh2LJlixi7ZaSMJDOKsbExfH199Z1FQsbff/+NqVOnwtzcHBYWFmIRh5mZGWbPno0zZ85opad6kXkGDhwIzjmaNWuGqKgorWPy9vXBgwcYMmSIeB61atUKp0+fpvLUEe7u7ihUqBA452jTpg28vb0zfY30zOucc9ja2uLrr78W/WMy6ybn7du36Nq1KzjnaNiwIZ48eSKOyXdLkejYsaNoo8+dO6d1Lek9qlqtxp07d/Dbb7/B1NRUjNmlIAyOjo6YM2dOsr9DJAYM6devH2rXrq21gMne3h6jR49OVuZpjQuoXuiPlN6TZmWMFh4eLoykP//8sy6yliuJjIzExIkTwXniLqQPHz5MNa18Ry4peE+HDh20jhHZR61WizH3N998k2o6ub9mx44dKFmypHj2yNsBImtQ3fhyIQM7QRAEQeQC/Pz8xKB90KBByVZ1Sp0sDw8Psf2dFHksLi4uzWtrNBrcu3cPBQsWBOccmzZt0tv3yA34+PiI8p0+fXqqLzUuXLiApk2bar1sl0irU3zq1ClxzpEjR3Se/9xERrVIj6Tm9apVq5J5PQt4e3trGX2kaOkZgczruiU7WqSGvOyldsbMzAx+fn7ZvnZuhrRQDtnRIj4+HiNHjhTnS0YI+WTkvn37xPENGzboPP+5ifT6tSkhL+uQkBDs3LkTBQoUSBYlUZ5OrVbj6dOnaUYfJQilIUXBlfq3p06dwqtXr7Br1y6MHj1aa0v5cuXKwcPDw9BZzlWkZWLP6rjAzc0NVatWFRGaVq1aJQzWAPDs2TMy66aA/HkuvZjinKNevXoYPXo0FixYgNGjR6NBgwaiXtSuXRv79u1LNgcSHh6uVbcsLCzQtGlTPHz4UGgRERGB//77D23atBGGLdrOPBG5FitWrMCmTZvg7++fapqMQPVC9/z999/iHt+4cWOq6eRj71u3bqFPnz7ivFmzZuVATnMnQUFB+PXXX8VuQVn5KVy4MJycnPD3338ne47JdXN2dgbnHIMHD07xOAG4uLjAyMgIhQsXTnehrNS+L1u2TATIcHV1TTW9VNZU5pkjaXkFBwfj7t276NGjB0qVKqVVF6pWrYq5c+fi7t27WuekFfGY6kXKSGWwe/duFChQAOXLl9dafJa0DKVolpxztG3bFocPH6Z7Xse4u7ujcOHC4JyjdevWWoszM1PGaZl0Z82aBY1Gg71795JZNw38/f3FAtaWLVvi9u3byRZ4aDQa9OvXD5xzmJiYoHXr1loLD6S+aUxMDBYvXowmTZoke57Vq1cPTk5OQotx48bl6Pf8EggICNAqt4YNG+Lnn3+Gn59fphaTU73QP/K2OCtB8KQ+rrTzTdeuXXWWt9zIhQsXxH08bdq0FIMVyoPjLViwACqVCkZGRpg3b57WcSL7qNVqsatNagZ2eb3YvHkzSpcuDSMjI3DO8euvv6aYjsg8VDe+TMjAThAEQRC5BHd3d/z666+4fv26+Cxp52rWrFlikD906FBh+kwN+SSmdN7hw4d1n/lchoeHB+bMmZMsSoZcj2HDhmmZTyRSG5RI5y5evFhMoFy9elUPuc9dpKZFRqHI67rFw8MD27ZtS/fZIyepeV3+wpfM61knI1oknXCUv5SSjiVtZ5YuXQqVSgWVSoVu3brh06dPNNBPB9JCOaSkRUYnC0NCQjBixAjxfFq4cKGIenzs2DH07NlTHDt69Khe8p+bSKlfm5mJW7Vajd27d4sIfStXrtRHNgkix5Df/5MnT9Z6eVuyZElwzsULj3LlyuG7777DixcvdPp3iUR0aWL38PAQ+hUoUADTp08X15e32T4+PsKsW6BAAa0IgHkZuRbz5s1D4cKFxVhZimgo/b9JkybYtWtXMtNJWFgYZsyYIXSsVKkSxo8fn+LLrYSEBJw5cwaFCxdGsWLFaDwuQ37vp9Y3zShUL/SDi4sLTExMYG1tjZs3b2qNIyTk5fvgwQP88MMPom788MMPQgdqGzLP27dvRSRJqX9asmRJODg4oGDBgrC3t0flypXh6OgIJycnNGjQAF999RUaNmyIwYMHY+rUqbhy5UqKu2rJdTtw4ACsra2FbsOHD08xXV7n4sWLKFWqFCwsLLBixYo0d2PSaDRQq9X48ccfwTmHlZUVfHx8UkwnJzw8HC9fvoSPjw98fX216g1pkTphYWE4ffo0WrRogdKlS2v1eTt16oSpU6ciIiIi3TKkepE5Xr16JXbbaNGiBc6dO4ewsDC8f/8eXl5e+OGHH7T06NmzJ86dO0fmdT3h4eGhZWL38vLK8rWOHDkiDFyFChXSeg8VExOD7du3p2jWpbY+ES8vLxQvXlyYzYcOHYozZ87g3Llz2Lp1q5Yh3c7OTuvdqdQ//vTpE3766ScR2ZVzjv79+2PTpk2Ijo5GbGwsXF1dsXLlSqHFqlWrDPSNlYu7uzuaNm2KmTNnIjg4WBjXs3KvUr1QJtJY49OnTyhbtqxYrCB/F0IkZ82aNeLZsn79eq05D2l32bi4OLi4uKBx48Yi7bVr1wyV5VzNsmXLYGRkhGbNmiEwMDDFXTsAYNGiRbC1tRXPGvkusvSuWzdQ3fjyIAM7QRAEQeQi5BPuSQd0Z8+eFZ2vzp074/Hjxxm65qNHj8TkStOmTbO9PXpeIa3I9gcPHhRaDBw4EO/evQOQ/mTvjRs3YGJiQivPM0l6uwykBpnX9UNWo8XoMvI6TXglIi+H7EyKvHv3Dp6enhg5cqTWS8F169bpIpt5AtJCOaSmRXqR+YDEKHH9+/cX5V6oUCHUqFEDlpaW4jP5ZCSRNvJ+rVyLjC6CCg4ORt++fYXZISUzIkF8ScjrwerVq8W2tNJPkSJF0K9fP7i4uCTbWWDPnj1aJpOMIKV9/PgxFi9ejNDQUNGvzut9qdRM7Fu2bMnUOMHb2xsNGjQQpsbatWvj/v374m8kNeu2bdtWGIsysyA0NyPX4uTJkxg3bhysrKzELhylS5fGzz//DDc3N/GCSjonPj4eCxYsEPrVqVMHa9euFe1PSn2ysLAwlCtXLtlCdEJ3UL3QD1L0YWtr6xR355Abcq5fv44BAwZoGRWlKPdE1nF1dRWGxCpVquD69euIjo5GSEiI6KfGxsaKZxWQslFKXgeSmnSlcYd8G3qKHpqc8PBwsYNWzZo1U93xSWoHXr9+jTp16oBzjqJFiyI0NDTFdADw4sULrF69Gk2aNIGNjQ2srKxgbGyMPn36aO1+QFp8JiEhAeHh4VizZg2+/vprrf5twYIF0apVK2zZsgWRkZGiTqQ1b0L1Imt4e3ujRIkSYi7D0dERpUqVgr29vZYmv/32Gzw8PES5ZcXQSWWeProwse/evVv0p6ytrTFnzhxxTF6X5GbdMWPG6Oor5Bq8vb1Rq1YtrXrAORfPFjMzM5QqVQp79+4V50jj5ujoaPTu3RumpqbivJUrVyIkJCTZ34mKisLUqVNhZGSE9u3bU782BZLO62XlWUL1QpnI2xQp+Ju5uTkWLVqkdZz4jLz9lS/KnzlzplZAmJiYGGzatAktWrQQaRYsWGCILOcJzpw5I97LrVmzRutZrlar8eTJE60Ah5xz/PLLL1ppiOxBdePLhQzsBEEQBJELkQ/mpI7a77//DjMzM9ja2mLLli0ZGvAFBQVh0KBByJ8/P1QqFSZMmJBlMzCRqEV0dDS++eYbcM5RoUIFnDlzJkPnenp6CpNK4cKFsX79+hQjZhG6IbvmdTK4Zx99RF6XRyKlSa/PyMvw6tWrOHv2LFxcXHDw4EHs27cPe/bswZo1a7Bs2TKsXLkSs2fPxqhRozBy5Ej07dsXFSpUQJkyZbSiXE6YMEFck8o645AWymTjxo3YsGEDgLTLUKPR4OzZsyKSorToTPr59ttv4evrC4Ci9mQGeZnfu3cPx48fT/Z5amzevFmU/+XLl/WVRYLIMeTtxNu3b3H79m2cPXsWFy9ehLu7u1Za6Tlz5coVFChQAObm5jhw4ECm2oIHDx6IbdMbNWqExYsXi/5UXn+OpWZiX7VqVYbKRtIhIiICJ06cQLt27cRLWimyd1KtfHx8MGLECC0DHJH8XgwMDISXlxfu37+fbAGaPO2WLVuEbvXq1cOOHTvSjOQXHx+PDx8+oHr16uCca5kdCN1A9UJ/BAQEoEKFCjAxMcG2bdu0otrLn2d//vknunfvLupGly5dcP36dRpH6Ah3d3cUKlRIGBKfPXsGQNu0I80naTQarbmlpBrI/3/w4EFhpKtUqRJWrFiBrVu3klk3DQIDA/HVV1+JBTBPnz4V5Z10Tq9Hjx6pGqnkdWnNmjXo2LFjigZHGp+nTlRUFHr16iXKmHOOMmXKoFmzZrhy5QqCgoK00qc3JpegepF5fHx80K5du2SmdQsLC7Rt2xa7d+/WSh8dHY379+/j9evXGf4b8rK+c+cOXF1dUz2e10lqYs/sDrMrVqxAmTJlYGRkBDMzM8ydO1cckz/nJLOumZkZOOeYOHGizr5DbiEoKAgTJkxA/fr1tepG/vz5MXDgQLi4uIi00vvTT58+4dtvvxVpzc3NcfDgwTT/ztGjR0V6aQEnkZzsPCeoXuiP7OgSHh6O169fo3///rCxsQHnHLa2tvj33391mMPch3wcN2nSJK2gOh06dED79u1RsWJFrUBHo0aNgp+fHwBqc/XFrFmzRHn/9NNPWLJkCQ4cOIA+ffqgdu3a4lipUqUwZcoUcV5WzetJzyMTPNWNLxUysBMEQRBEHiAiIgKVK1cG5xzNmjXTehmSGqGhoVi2bJmIvFG2bFm8efMmp7KcawkJCUGpUqXAOUePHj0y1Al+/vw5RowYIV5yNWvWLFnUdupMZ47Y2FgEBgaKLaOSRhvLjnldGhh9+PABFy9epG2CM0BoaCg8PDzw8eNHANp66Cry+qNHj2BlZYXvv/9efEZ6aDN06FBhfs7Kj5GREWrWrKm1Sj0ljR4/foyzZ8+muWtIXientEgJ0kKbc+fOwcrKClZWVhmKeBUdHY1atWqhadOm+Oeff/Ddd99h/PjxWLt2rVa6zJgbiUS8vb3Rpk0bmJqa4smTJ2mmldrrmzdviv7Tn3/+mWJaKmfiSyO1ezatKIjS7hCWlpY4ePBghu97Z2dn9OnTBwULFgTnHPny5UPTpk1F9N68/lIkJRN73759M7zoWz6W8/PzEwudixcvjgcPHqR4jtRflp9PfCY1g2fSenHu3DnRb6pWrRo2btwozOtplevDhw+FiWHevHk6zj0BUL3QFxEREcJE1axZMzx69AjR0dEAEvtNarUakydPFouWOOfo3bs3bt++necXLOkaXUTVlWsijzBdsWJFrFq1StQDMuumjY+PDxwcHMRCvV27duHly5cAgPfv3+POnTvo2rUrOOcwMTFBs2bNcOvWLXG+fH590KBBWnNXzZs3x/Dhw3Hu3Dls2rQJI0aMEFrQDh7JefLkCWxtbWFsbIwff/wR//77b7IdhdK7b6le6IbQ0FDcuHED8+fPx6xZs7BkyRI8evRIK2K0RqOBRqPBmTNnwDlH+/btky00SI/jx4+jdevW4JxjypQpuHDhgtb1iUTkbUbTpk3FwqeMcu3aNUybNg0WFhbgnGvNi8vHMmq1GuvXr4etrS0ePnyoq+znKmJiYhAdHY1jx45h7969cHZ2hqenp3i/BHxuF2JjYzF8+HDxfsna2hpHjx4V6ZLe45IWPj4+sLOzg7GxMa5cuZID3ypvQvVC90jlFh0dDS8vL7i5ucHV1RUPHjzA1atXcf36dVy5cgV//fUXjh07hhMnTmD79u2YP38+pk+fjiZNmsDJyUnr/caWLVvS/JtSRH6al/r8/ZctW4ZKlSql+s5o+vTpyRbQyp9hWeHjx4/Cr5DXtZD3RadMmaK1iFWaR5J++vbti3379mmdL39fmhW2bNkiFgbmdS0Aw9cNIvOQgZ0gCIIg8gCBgYEoVqwYTExMsGLFCgBpG3Hfv3+PLVu2iAFjsWLFxHaq8sgyqUGTjKnz+PFjWFhYIH/+/Dh06BCAtAcSL168wJQpU1C8eHFwzlGiRAn4+/snOy8+Ph6BgYHYtm0btm3bhosXL1K06VSIiYnBrl270KZNG+zatQsRERHiWHbN6xIREREoVqwYOOeYPHmyiBYHkBZJefv2LaZPn44WLVpgz549CA8PF8d0ZV5//Pix1ov44cOHi2OkRyJv375F2bJlwTmHqakpVCoV7O3tYWlpiYIFC6JkyZIoUaIESpQogQoVKqBKlSqoUaMGmjdvjs6dO2PEiBE4fvy4lqk0JY08PDxEFI1x48bh4sWL4hhpkUhOaOHr64sLFy5g5MiRmDBhAv7880+t9KTFZ+RbBc+ZM0fLIJUa3bp1g42NDV68eJHqSymJ+/fv49ixYxg/fjxmz56NEydOCGMoQFrI8fDwEFFvJ0+erNV+p8bOnTvFs//AgQNppvXx8cGNGzewaNEirFu3DufPn9eK3EtaEF8i8mfOwIEDRQTFP/74I1P3tJubG4YOHSom+4sWLSpeiuR1Y6O8jPfu3ZvMbJUZnj59isaNG4Nzjv79+6f5nKNnUtbx8/NDq1atRPSlGTNmICYmBkDa5RoWFoaff/5ZjMvv3buXU1nO01C90B2+vr5wdHQE5xx16tTBoEGDsHnzZvz444+ijKWfX3/9FV5eXtl6xpMeqaMLEzsA7N+/X0SNq1SpEtatW6e1k4QUPZTMuqnj5eUl6kWBAgVQqlQpdO/eHVWrVhWfm5qaokaNGmIeF/gcYTchIQFdunTRqj9z584V0fskIiIisG7dOqhUKhQuXBh///13jn7PL4GgoCCcO3dO67Os3KdUL/RDSkF07t+/r7XoKaMm9ujoaMydO1fM1RobG6NcuXJYunRpsr9HJO7MKy3IWLFihbif00LefkdERGD//v0oUKCAaOMlku7kLM270+6yyUlvIbl84ezGjRtFG2JsbIwjR46kex0AWLVqlahT//33nw5zTwBUL/RNWFgYfvjhB5QrVw7W1tbInz+/2A3QzMxM7LIiLQxMyURqaWmJcuXKYceOHeK6KY1HTpw4AXt7e7FTQV4368q//82bN7FmzRrUrFkTlStXRrVq1dCvX78Ud4P38vJC48aN4ezsnKV2NzIyEmvWrEGxYsXEYnPS4vP337lzJ3788UdYWlrCzs4OZcqUQZcuXfDnn38K079EQEAAvvvuOxw6dChLWpw4cQKccxQsWBBPnz5Nlpe8iqHqRkREBC5cuIC3b9+KZxj1bdOHDOwEQRAEkcvRaDRwdXUVg8OkKzqTEhISgg0bNqB8+fLgnKNw4cLYuXMn4uPjkw0U4+LiEBMTg9u3b+PKlSu4e/dusigQ1CH7jEajwa1bt8Rg/MSJE2mmDwgIwMSJE1GyZEmxkECKRiLvdAcEBGDZsmUisru0qrdt27ZYs2aN1t8nEgfV0gR5nTp14OzsDCBx29IGDRpk27wOJJpXJAOqSqXCV199hZUrV4rjpMVnwsLCxPOmdu3aQo8LFy7ozLwuN1vRC6rUcXNzE+byUqVK4fLly/D394e/vz/CwsIQFhaG4OBgREZGIiYmBhEREam+NElpYjEhIQH79u0T9U+lUqFOnTpYsmSJSENaJKJPLa5fv44uXboIw4T0Q1qkTFRUFKZOnQojIyNUqVIF169fTzN9cHAw6tatCwsLi2TReeRlGhUVhY0bN6JgwYLiZYn0U69ePSxbtizF8/IyUVFRmDlzJkxNTVGpUiVcunQp1bRSmUkRkTnnKU5GSvzxxx+oXr06bG1ttfpSzZs3p/ab+OKR92MHDBggjFjpbV+eNHJ1eHg4Ll68KCIllilTJtMRAHMrKY0V5O3vy5cvER8fn+4zJDY2FpMnTwbnHE5OTpmOZEmkjaTJiRMnxDijS5cuKe4ClRL//POP2NmuRo0ayV44EukjrwNULwyDl5eX1uJuIyMj8bu5uTkqVaqk1Q8FEqPqSdHaM4q8PknjeEKb7JrY7927J8w/xsbG6N27tzgmj96X1Kw7dOhQnX2H3IKvry969uyJ0qVLa0VK5Dxx95muXbvi+PHjIr3cDC31i4yNjWFvb4/du3drXVveR/D390f9+vWhUqm05muJ5GTVcEP1QjckNW+mlebmzZswNTXNtIk9MjISr1+/xqJFi9CwYUOhxdixY1PMR17Hy8sLY8eOxd27d7N0fnx8PDZv3ox8+fLBwsICu3bt0m0G8yBJ70+prgQGBqJjx46iHZG/j03pnpY+U6vV+OGHH8RiWT8/P6oDeobqhW5xdnYW973ULhgZGYn3rWZmZihYsCDy588Pa2tr2NnZoUiRIihdujQaNWqE9u3bY9++fVoLxVNqg86dOyf60IUKFRJBefK6WTdpWUVFRSE+Ph5xcXHJ5qykZ8uMGTPAOUf+/PkztVsjkNiOb9u2TbzDsrW1JS3+n6Tf/9WrV3j9+jUiIiJE8AQJSbc1a9aIMXlmtQASAzW0b98enCfu+kEm9s/kdN2IiorCtm3bwDlHgwYNsHv3brx9+zbFvBDakIGdIAiCIPIAarUaTZo0ERFv5VtjSz9AYgd37ty5KFOmjBj8rVq1KtmL2bCwMDx+/Bg9evRAvXr1tAal5ubm+Omnn9KdmMmrREdHo379+uA8cctxqXOcdAXm06dP8dNPP4ko3kWLFsXRo0eTlWV4eDjmzZsn0pmYmIiJeulF5Lhx40R60iIRV1dXFC1aVJg2Z86ciXr16unEvA4k6uzq6ipMQtIkPEX+Thk3NzehR926dTFp0iQUKVJEPFvat2+fbfO6g4MD1qxZg9WrV5OJPQ3c3d1RqFAhsWjA09NTq2zk9UE+2M5o+X369AnPnj3Djz/+mGrdIBLRhxZubm5o27Yt8ufPLyIyFC1aFMbGxvSyMA1evnyJli1bgvPEreDd3NzEMemZJGng7OwsylK+BTbwuTzDwsIwdepULdN68eLFUaFCBVhZWZEWafDy5Uu0aNECnHM0a9ZMS4ukfSop8gjnHG3bttUqQ/nva9eu1dLC1tYWxYsXh6mpqehLkRbEl468zfj+++/BOUfLli21dmzKKO7u7mjatCk4T9xqOyO7IeRldu/ejSZNmohIrelF7nv48KFopzdt2pTmOUTWaNeunRgfBAYGAkj9JZLUzr99+xbNmzcXUeH++ecfAKRNVqF6YVgCAwMxb948tGnTBo6OjqhatSoaNWqEnTt3it0XJd6/f49Vq1Zh2LBhWjvTZJQ//vgDnTt3xt69e+Hr6ys+J/0SkZvY27VrB09Pz0ydv3fvXnz77bciaMmoUaPEMXnbr1arsWPHDjF3+/LlS519h9xCaGgo/v77bwwaNAht2rRBgwYN0KFDBxw+fFhrcYH8udW9e3dRppUrV8axY8dEutTala5du4Jzjq+//lqv3ycvQ/Ui55Du85s3b4r3EX379kVAQECa5yVtAx49eoQ5c+aIuZDJkyfrLc9fMvLAFdK9rFar8fr16wyd7+PjgwYNGoBzjkGDBukljwQwb948Mb80b9488Xl6fR+5+Xf06NH6zmauRHomUb0wHCNHjhT3cefOnXH69GncvHkTFy9exPXr1/H06VM8evQIjx8/hr+/P54/f46goCCxQ4qclOrMuXPnxC4r0qJ0MuumjLwvmpZpVr5bY0aNupJ5vWDBgiL4HmmhTWrlmJYW/fv3z7JpGkh8nnXo0IG0SAd91g0AeP36NUaMGCGehY6Ojujbt68YU5IeqUMGdoIgCILI5Wg0GsTGxmLcuHHgnKN+/fp4+vRpsg7S3bt30atXLzHQKFKkCNatW4fg4GCtdPfu3cOYMWNEVHBjY2Px8leKoqxSqWBsbIypU6dq5YNINDb/+uuv4JyjYcOGePr0aTKD9IULF1CrVi1YWVkJU9uJEydSjK7r4eEhIq+XLl0aEydOxD///IOdO3di+PDhYuJ3/PjxOfUVvxjkLwqtrKxEVIBq1aohNDQUQNbM60nv9VWrVqFixYrCBCc3TROfkethYWEhBncdO3bE+/fvAWTPvL5+/XqEhIQAAG0VnA662s48KUnLd9myZShXrpxoR8aMGaOTv5Ob0JUWUtkfOHBARJiuVq0aXFxc4O3tjdOnT+P3338X9WLSpEm6/Bq5Aj8/P7HAr1mzZjh79qx4NknIDdONGjUSC6GSsnz5cpGuZs2aGDNmDIKCghAaGopr165h3rx5QovZs2fnwLf7svD19YWTk5PQ4syZM1pahIWF4Y8//hBlLC1gUqvVyZ5De/bs0Ur3zTff4MmTJ/D398fff/+N6dOnCy1mzpyZw9+UIHSLvF87Z86cZBFCM3Od9evXg3OOChUqaBkSCW28vLzEM2bPnj0ZOufixYvinPXr1+s5h3mPDx8+oHr16uCc48cff0RcXFyqYwz5IrXOnTuD88RIvL/99luqbTyRPlQvlIFGo0FCQgICAwMREREhdiKQkF7kvn37Vsz1ffPNN5mKgH/ixAmx8FAa2+/YsUMrD0TimE9a0N+hQwcxH5UW8rILDAzEpk2bYGlpCc45Bg4cKI7JX8ir1WocPnwYjx8/1u0XyIXExsYiJiYm2TysvL2QDFpGRkaoUKGC1i6bad3bbdq0AeeJO4BQHdAtVC8Mg9zELs3nDhkyJEMRJpPuUrdp0ybxXmnv3r16y/OXjlRusbGxWLJkCfbv36/1eVpIu9qYmJjA29tbr/nMa97SkSAAALv6SURBVGg0GgQFBaFq1argnKNNmzYZLuOLFy+KYD7VqlUTOw5SO5F5qF4YBnkfafTo0aL/L+/7p0d6WsnN67Vq1cLq1avRtm1bMutmkZR2a8yfPz/++OOPNLVIal5v2rQpDh06RNG/s4G8nDKjRUqQiT37ZLVuyAkICMAff/wh6onku5LGHBSJPWXIwE4QBEEQeYSAgABh5mzcuDFWrVqF+/fvY9++fZgzZw7Mzc2FQad48eI4cOBAMmPWP//8g7p166JAgQJi1eBvv/2GS5cu4f3790hISMCRI0cwYsQIca0JEyaI82nCJRF/f3/xAvCrr77C3Llz8e+//2L58uXC3C79lCpVCjdu3Ej1WrNmzQLnidsKHjx4UGtr5nfv3mlFm6btaZPj4eEhzJxGRkYoWbKkiComRVXKKtIgJzAwUBjtzM3N0bhxY/j5+WU777kRuR6mpqaoUaOGiAyamcUEjx49QuXKlUUd2rx5s1bUjfj4eC0TuzwaEz2nEtGXiV3OlStXxAKcggUL4n//+1+yRVOEbk3sffr0AeccFStWxKtXr7SOR0ZGYs2aNVCpVFCpVNi2bZsusp+r8PT0FPeso6Mjunbtil27dmHBggUYOnSoaLvt7OwwY8aMFNuRv//+W6SrV68edu7cmWzryJiYGKxfvx4qlQrFixcXL66Iz3h5ecHBwUH0gZo0aYIZM2ZgyJAh6NSpk9bE4C+//JKsTwsAt2/fFm2Ok5MT5syZg+joaK000dHR2LBhA1QqFaytrXH69Okc+oYEoR9S6k9lpe/z7NkzMSZcvXq1LrKWK3nx4gW+++47mJmZoVevXmma/aWXF4cPHxZ91LVr1+ZUVvMMAQEBYoebrVu3Aki5Dsg/k0fYbdeuXbII1UTmoHqhDDLz7L969SrMzMzAOUfv3r0zbGJ/9+4d9uzZg379+ok5R5VKhd9//z1L+cjNuLu7w97eHr/88kuGI4bKy06tVsPZ2VmYdWfNmpXmufTCPGUyej/u3btXzPPZ2NjgyJEjGbrG+fPnYWdnB2NjYyxcuDDb+SWSQ/XCMEhld/nyZZQpUybLC1xDQkLQu3dvseggISGB2ok0+OOPP2BhYYHixYun+65BWpCzcOFCmJmZIV++fJne9YNIn8ePH4tnjry/kxZ37txBq1atRHClYcOGpRjIisgYVC8Mh9wg+9tvv4m52c2bN2cpUJicpOb1gwcPIioqCoGBgWSczgYpGXU55zh58mSK6ZOa15s0aYJbt25Bo9HAz8+PjNPZIDUtjh8/nulrkYk9+2S2bqSGl5cXWrduLZ5fnHN4eHjoOru5BjKwEwRBEEQewsvLC46OjqKTJG3BLEWGtrGxQZ06deDu7p7sXBcXF5QsWVK8NKxWrRoePHggtoyXm7TCwsKwceNGkXbFihU59h2/FLy8vFCuXDmhhTRBJUUidnJyQo8ePYR5V779nYRGoxHRAVq0aCFecskndkNCQjB06FAYGRmhXbt2GX4Rlpdwd3fXikh86tQpnUXU8/DwQL169URU8a+//hq3bt3SybVzK3I9qlevjhMnTqRoPEwJjUaDFy9ewN7eXjzb+vXrJxZ2yJ9TarUa27dvF3VuxIgR+vg6XzT6MrHHxcXh3LlzIiKNlZUVRo0aRQP3NMisFlI7IG8PYmJi0KtXL3DOxQ4pSSePg4KC0LNnTxgbG6Nfv37ZnlzOjfj4+KBly5Za0RPkfakSJUrgp59+wrt377TOk7T4/fffYWpqClNTU8yePVuY15O+lA0ICECjRo1oAVoaPHv2DC1btoSNjQ0456LfKT3Xy5cvjxEjRggtkhoSNm7cKF4s/vzzz8K8njTdq1ev0LFjR3DOsWDBgpz5cgShcO7evSvMjDTWS5tjx46JNnzhwoX49OmTOJa0vfb19UWNGjXAeeLuWk+ePDFInnMzr169EnosWbIkzbQRERHo0qWLiMZXp04dnDp1KodymruhevHlII+sa2JikmETe9K+7alTp/Drr7+K/trYsWNTTZtXCQkJEQEVgMwbDMLDwzFhwgQYGxujQYMGKc7tEtknISEB/fr1E+NAaTEUkP6CqJkzZ4rzDhw4kCP5zW1QvVAuUnshGUKzOp+0ePFi8a5EH8E0chNXr15FhQoVYGpqihUrViRbkJ8SgwYNEn1bqg+65/Tp0yKwxcOHDwEkn2OStwv379/H119/LRaHN2rUSOyKQ4tqsgbVC8OiDxP7uXPnxG7lderUgbOzs/AlAGTWzS5yXaRFZLt27UqmV0REBLZt2ybm0ps3b44bN25ovXMlLbKHvMz79u0LzhN3583IcywpPj4+Wos7pHkU0iLjZLRuJCXpDkOTJ08WuxTZ2tpi37591ManAhnYCYIgCCKP4efnh59++klsmy1Fvu3RowfWrVsntqqVd8D++ecflC5dWgziLS0tsXHjRly6dEkMQADtju+nT5+waNEiqFQqVKtWDXfu3Mm5L/mFEBAQgJEjR6Ju3brInz8/jIyMULZsWQwaNAinTp1CeHg4AGhFXIiNjUV8fDyioqIAJL4ENDMzw5gxY1L9O5s3bxZaX758Wa/f6UvF3d1dvECvVasWnJ2dERkZma1rent7o27duuCcw9LSEt27d9cyr9NL2tSR61G7du1M67Fq1Sr06dMH5ubm4Jxj5MiR4pj82aZWq7F161ZwzlG0aFHcv3///9g777Cojq+Pf2eXjggqoqCiqFgpIvbeYu8txthj7DVqmv5iSTSWxB6NiSaW2KKx94pd7KJ0EBEFu9IRWM77B+8dd2FBpFrO53l4gL1z786dM32+cyZX3+NDQFs43apVqxwvHiUmJtKRI0eoWrVqcvJkzJgxLF7PAtmxxYMHDyg8PJzu379P0dHRtGrVKhJC0MKFCzO859tvv5UiYJ60109ERAQtWrSIWrRoIesZIQQ1b96cfv31V7npJu1EVGJiIjVs2FB6wVcm2zNqDwYMGEBCCGrdujUR8QSjPh4+fEgrV66ktm3bUokSJcjAwIBsbW3p008/pR07dsg0TmsLjUYjRYllypShR48e6Q2nMH78eBJCkLu7OyUlJbEtmI8WJe9v27ZNLlopHkS5b6uLdnrMnz9fthXLly/X2Syr1Dt37tyhwYMHy4XZ5s2b59qmWkaXoUOHkoGBAQ0ZMoRevnwpbaUsvMbExNCFCxeoefPmUkDl6upK//77r3wG5/fsweXi/USfiL1z586y/5QZ2n2mR48eyVOGhBA0d+7cPIvz+46SbikpKfTff/9RbGxslha59+7dK8vVunXr8jqaHyWbN2+WaTxlyhT5+Zvss2fPHnlf165d8zqaHyRKGnO5eLfJbh9JWf9Ys2YNFSpUiExNTenmzZu5GbUPjsjISBozZgwJIcjFxeWNpwRduXJFrlU4ODhQWFgY92lzmR07dsg1VH320E7vixcvUseOHaWDDCcnJ3r8+DER8fxfTuByUfDkpoj92LFj8n4bGxudNQ3tPoC2cNrc3FxHt8C8GW27eHh4SJ2IwqtXr2jDhg3SFra2trRlyxZ5PSNbmJiY0O3bt/P+BT4gtG2xbds2CgkJyfazQkJCpC0sLS1lv4rbmKzzprKRGffv36fZs2dLh32Ojo60bt26LDvs+xhhATvDMAzDfITEx8fT06dP6eTJk+Tp6ZluMKfdeb106RLVqlWL1Gq1XGTS/rG0tKT+/ftLsbX24N7Hx4caNmxIKpWK/vrrLx746yExMZHi4uLo1q1b5Ovrm85Dunbn+PDhw/TFF1+Qu7s7OTk5Uffu3WnEiBFkb29PTZo0kRNcCsqg8ejRo3KRcfXq1Xn/Uu8pvr6+ZGNjQ0IIqlixIh05ciTbu2BZvJ5ztO3h4OBAHh4eb0w37eshISG0bNkyKa4aMGCAvKZdxyUnJ9Pu3bt1JlwYXXx9falEiRLSy8XDhw+z9RxFvK54Xmfx+tuTVVvExsbSqlWrqEKFCmRra0vFihWj2rVrU/v27cna2pr69u0rTyYgSi07SnuzcOFCUqvVZGBgQOfOncuX93qf8fT0pPPnz9OZM2coMTFRthv62o+YmBjpVb19+/YZhlMEdF9++aX0csm8mXv37lFQUJA8vUZBX9uh0WioY8eOJISgOnXqUHx8vN5wSrmYMWMGCSGocePGeRN5hikAtPN8Vv5W8Pf3p1KlSpEQguzt7cnb2ztvI/oeo13HKxvEhBA0atQo2rp1KyUmJlJoaCh5eHhQ48aNqVixYtIjj9I/4nFD7rN27Vppi6VLl9K9e/fkteDgYJo+fTq5urrKBdcmTZrQ7t27ZRi2Sc7gcvF+oi1iV+yRnXFhQkICzZ49m1QqFdWoUYPFiW9g2LBhVKJECbpy5UqWwr948YLKlClDQggaOXIkEXF5yS2UdBw3bhyp1WpydHSkM2fO6FzLiLNnz8rN6BUqVKD169dn6T5GP1wuPjy0+waK8FQIQZcuXSrAWL0fhIWFUd26dUmI1BN6b9++Lee9tZ0i3bt3T27MF0LQt99+W1BR/qCJiIggJycnMjExoT///FPvqcpEqR6l69evL9ctqlWrJh2VsLAw53C5KHgyErGvWrXqrUTsfn5+1Lp1a7me5OzsLNt/jUaj054HBQVRy5Yt5WZBxQkckzXeVPcEBwdTz5495elo1atXl2veaW0RHBwsHQKMGTNGnkDLZI2ctgPatjhw4ABVrFhRjuHZidvbkx17PHjwgObMmSNPDq5cuTL9/fffOmuyTHpYwM4wDMMwjCStiOrhw4c0bNgwMjc3lzuX7e3t6ZtvvqGpU6fSl19+KT0EtG/fnp49e0ZEuqLrefPmkaur6xuPF2Z0STvg27x5M6lUKjIwMNDZQKD8b29vTwcOHNDx0kRE9PTpUxo6dKgMzyLdzPH19SVjY2NycHCgM2fOZGtBg8XruYevry+p1Wpyd3enoKCgLN2jnb5JSUm0adMmORk8derUN97PR3fpx9fXl4QQ1KJFC4qPj3/r+1m8nntkZAsl78fExND333+v01aYmpqSEIKMjY1JCEHly5enEydOyDZDyfeBgYHSO76trS0f15wJ2a3LR4wYQUIIqlu3ruw36SM4OJhsbW1JCEHjxo3LbjQ/CjKyxZvq88mTJ8uFwgcPHmQYLjw8nNzc3EgIQX379s1RXBmmoMlO3ZWcnEwJCQl05swZWr58uaybLC0t6YsvvkjnDTntd3zsfV/thY7vvvtOp32uVKkSFStWjNRqtfysSJEi8tSs3Fy0IuJ+rjbatqhXrx717t2bevToQZaWlrLfVKhQIfryyy/p1KlT8r6c5mfFph+7MKUgywWTfZQ65MaNGxQcHExE2SsTZ86ckUdob9iwIVfj+CERHh5Obdu2JSEE9e/fP9PTBxQ7vHz5Um4y6927t841JuckJCSQk5MTCSGobdu2WbrH09OTatSoQSqVilQqFQ0aNCjHJz5+zHC5eH9IuylW+T8lJUXHm742W7ZsodKlS5NKpSJnZ+dMx+nMa4KCgqh06dIkhKD69evThg0bdBwd7d+/X85FKfVXYGAgEXFZyG2ioqLo008/JSEENWzYkG7evCmdVBClCtp+//13MjExkc7CnJyc6M6dO0TE9shNuFwUPBmJ2JcsWZKlNFbaipiYGDp48KBs/42NjTPcRBgcHEzffvst7d27NxffhFFsERsbS8ePH6f27dtLW5w9e5aI9Nti4cKFbzwFgck9tNcHHz58SKNHj6YGDRqQEKknC2o78mHyDhavZx8WsDMMwzAMkw5lYHnkyBEpUChZsiR988035OXlpRP20qVL8jjnTz/9NN0ziEhOJvOCefbYt2+fXLw1NjamBg0a0IYNG+jvv/+madOmUYUKFUgIQVWrVqXdu3fLY5wfPHhAK1askLtrixQpQnfv3i3gt3n3uXv3Lh09elTHG0NWYfF67hMWFkZ+fn4y7d62HomKiqJvv/2WDAwMyNXVlY+sywHh4eEUExPz1vexeD33ycwWS5culRPCrq6uNH78ePLz8yMPDw9avXo1VapUSbYZGzdupNDQUCIi8vLyol69esk2vU6dOvJ0FSb3WL58uRR+KoI4ZeOf0ncKDw+niRMnUqFChcjCwoJ27txJRNyPym3+/vtvEkKQhYUFHT16lIgo3aaOly9f0pIlS6hkyZIkhJBH1bItmPcRJX/funWL/v77b1q+fDmtWrWKFi9eTD/88AP9+OOP9NNPP9G4ceNo5MiRNGHCBPrss8+oadOmVK9ePTI2NpbC3qJFi1Lbtm0z7VfdunVLbmL+2AWn2u+/cuVKatasWbqTzYoXL04uLi7SG3Fa71VvO47QDn/s2DEpimBbvH7/GTNmkJWVVTpbmJmZUenSpWnLli063tmJUsfY2R3ThYeHU48ePejatWvp4vIxUtDlgske2mmYk/6QMjbs169fuucyqbx69YoWLVpEFhYWVL58edqzZ88b00kZa6jVatlvZXKPpKQkqlOnjo6DhLReRLVtdPHiRapXrx6ZmJjIDVPKsfM8nsgeXC7eTXJSh8fFxVF0dDTNnTuXXFxcpKh3ypQpesNrlx1uO17j5+dH5cuXl3Mc9vb21KJFC6pTpw4VLVpU9q2aNGlC27dvz5M6iO2RSnBwMDk4OJAQqadnjh49mv766y8aMWKE9A6tOBtp2bJlphtxsgvbIpV3oVx87GiP+caNG0dCCPr++++zfL92Xr579y716NGDhBBUpkwZunHjht579Dn8YXKOdlqGhoZKWzg4OKTTjShob+Bh8oa09ZanpycNHTpUjreVH2dnZ/rss8/kWiCTN7B4PWewgJ1hGIZhGL28evVKTsrb2NjQnDlzpNcLZaCiDD4PHDggvSdt2rRJPuNNx88zmZOSkkIPHz6kVq1akUqlImNjYxo2bFi647ZCQ0OlByB7e3tq1KgRjRs3jmrVqiWPSC1atCj98ccfRMSLJG/D2+RbFq/nPdp59+rVqxQREZGl+w4dOiQH6n/++WdeRY/RA4vX85erV6/K9tjFxYXWrl2bbkE9PDxcthk2NjZUpUoVat26NRUrVkx6YrC2ttYrFGKyxpsEaR07dpTpn3aC9+7du/Tdd9+Rvb09CZF6xLyyMY15e95ki86dO0tbpBXiPnz4kFatWkVVqlSRIjo+UYh53/Hw8CBDQ8N0ItG3+alcuTJ9/fXXmbblXl5e1Lt3bzIzM6Pr168TEYt1td8/NDSU9uzZQyNHjqRBgwbRhAkTaPfu3fTw4UMi0u3zzp07lwwNDWnDhg1ZbpO1wx05coQaNmxI5ubmcoGXbfH6/ffv309z5syhOnXqUOvWrWnQoEG0fv16un//frr7Nm3aRAYGBrR+/fpsCaenTp0qN5bfunUrXVw+RvKzXGiza9cu+umnn8jX11cKHLjPm/coNoyKipKbart27UpEnP4Z8ejRI2rXrh0JIahBgwbp+qvaZejy5cuybyuEoP/++y+/o/tRoKRxz549deZn0+bhU6dOkbOzsxxjV61aVY7rPva6P6dwuXi30G6fg4KC6OrVq3Tt2jU6f/48HT9+nI4cOUK7d++mLVu20JYtW2j16tU0f/58mjNnDk2cOJEaN25MNWvWJCGEFK9//vnnep+vzG9pC+K4/XhNcHAwderUSa4HKemp/O7evTvt2bNHp4xoNJoci6q05+fZHqn4+/tT1apVZd2T1hYNGzakqVOnUmxsrLwnJSUlRyd0nDhxghYsWKDzPKbgygXzGu20PXDggE69/rZr1deuXaPatWuTEIKGDx9O8fHxnNcLCE9PT3J1dSW1Wk0TJkygpKQktkU+krbsbN68mSZMmEAGBgY6zhns7Ozohx9+oBs3bsh+FGtE8gYWr+ccFrAzDMMwDKOXS5cuUcmSJUmtVlOfPn2kx7a0pKSk0L179+Ti08yZM/M5ph82gYGBZG1tLY+6i4uLI6LXE7XK4P/u3bvSE3uZMmWkd0RFvL58+fIsi30ZXZTBnEajyXDHOIvX85dVq1aREIKOHz+eaTjtdHd2dtbx8MaD9Jyj1D/Jycl6Tyxg8Xr+899//0lh4ujRo9N59lZ++/r6UtmyZUkIQe7u7lL0XqRIEapUqRJdvXqViLicZAdtz90nTpwgovQb/8LDw6XXpWLFitHkyZNp0aJFtGTJEnJycpLeYAsXLsze13OAkmbR0dHpjjNVbPHw4UNq0aKFFKj/9NNPtGHDBtq6dSt16NBBHjdsbm5Oixcv1nkuw7yPfPXVV/LoWBMTE7K3t6fy5ctTxYoVqVKlSuTm5kY1atSgmjVrUvPmzalVq1bUokUL6tu3L/3www+0cuVKevjwYboNtdrcvHmTvvzyS7kgXLRoURbr/j9ZGROkDdO3b1/ZJmzevPmNz9C+fujQIerUqZM8zYuF069JW5frSw8ljJKmn332mTxFJSu2SIu/v7889tzKyopt8f/kR7nQ5sqVK9SpUyfZD/7ll18oPDyciNgWeYl22i5evFjOV82ePbsAY/V+cOfOHbmhsmnTpnTmzJl0i+BnzpyhL774QqbrwIEDCyayHzBKPbN48WIyNDSk6tWr09WrV9PVPwkJCbR161adeVlnZ2c5J8v1TO7A5eLd45dffqGGDRvqjDWUtM/qBlorKysaOXJkupPRiF6L1+Pi4qhcuXI6JwHzvPtrnj59SgcPHqRBgwZRo0aNyMHBgXr16kWLFi2i2NhYnbRKTk6mzz//nPr375/tzfo+Pj5UokQJ6tu3r/yM7ZHKvXv36IcffqCmTZuSvb09WVtbU+vWrWn27NkUFBQk83RKSgppNBqaNm0ajRkzJt0JUFnh8ePHVK9ePRJC0KhRo+TnbItU8rtc+Pr60pEjRzLd6Paxoa//o/2Zn58faTSaN865xsfH04gRI0gIQZUqVaInT5688btTUlKyfbrzx0ZCQgL5+/sT0ZvTKj4+nvr16yc3auZkAw6TNdLWI8+fP6dt27ZRnz59SKVSybk/CwsLcnBwoNWrV9OlS5d07kk7z8VlI3dg8XruwAJ2hmEYhmH0smLFCjl5eOzYsUzDRkdHS48CPXv2zKcYfhzs379f7pRVPKin9aabnJxMKSkpNGnSJFKr1TRq1Cg6dOgQff311zRv3jzy9vYuiKh/UMTFxdEff/xBu3fvlgNxZWDH4vX85dmzZ9LLQp8+feTxyxmRkpJCERERUoTYq1cv+TmTc6Kjo2nWrFn077//6kxSsXi9YFi4cKEUCyoi9LQTxBqNhuLi4qh79+4khKCff/6ZLl++TH/++SedPHlSTvzypFX2iY2NJXt7e7K1tZWCqLQ8ffqUevbsKTcPpP0xMTGhESNGyNNvmOwRHx9PTZo0oQoVKmS4CPjo0SPq2rVrhovohoaG1KFDByk0ZJj3nQkTJsj8/fXXX9P9+/cpMjKSnj9/TpGRkRQXF0dxcXGUmJhIKSkp6cYeRBn3o27evEnDhg2Tz1c22LJYVz/abW3aNNX+f9CgQXJMmJlYV594XdtzPtsiY9J63MuIrNoiI4KCgqhNmzZsi0zI7XKRFj8/P5o0aZL0TFaiRAlq3ry5nDdhW2RMWnGPgtJeEKXOVynXtMUiCr///juVLVuWVCoVFS9eXG7WZDLH39+fbG1tpUCkd+/etHXrVtq4cSNNnDhRnqAphKC2bdvyiRt5yP3798nFxYWEENSkSRP677//KCAggJ49e0Z//fUXffnllzpeD5s1ayY9r+vrU2UHns9KhcvFu8PLly+pUaNGJISQ7WvRokV1hOkWFhZkampKNjY2ZGdnRyVLliRHR0eqXbs2tW/fnpYtW0aHDh2Sz9TO59ridUWky0LdrBETE5PhtZCQEOk4qXv37m8t1vX19SU3Nze2RyYo6fD48WN68uRJOudIyvXw8HC5vtqtW7e3toVGo6E1a9ZIW4wZMybddzCvyctyERQURCVLliQhBE2aNIlOnjwpr7Et9DNx4kSqV6+e/D+jdFLGiSdPnpSbpLZu3ZppWIW0DuF43SM9r169os8//5xatmz5xrBKOu7YsYOMjIxIrVa/0dkYk33Slgl/f3/atWsXubi4UIkSJXTWMdq1a0dLlixJtyalb54lMjKSfv/9d/Lz8yMi7iNnhJJ22m24dnqyeD33YAE7wzAMwzB6WbJkCalUKnJxcaEXL16QRqNJ10lWOmjh4eHSk2vv3r0LIrofLAcPHpRH2v3zzz+ZhlUmqfTZgAfkOeOXX34hlUpF1atXp40bN1JUVBQRpQ4UWbyevyQmJtLy5cupePHiVLZsWdq5c2eG+VtJ/5MnT8oB/Lhx4/Izuh88EydOlB7FNm7cKE+JOHz4MFWrVo3F6/nM77//TkIIUqvVdPr06UzDzpgxg9RqNU2dOjXdNW4zcsaFCxeoVKlSVLRoUVq9enU6oYJ223Dr1i3asWMHzZ07lwoXLkwqlYoMDAyoadOmdO7cufyO+gfHrVu3yMXFhUxMTGjZsmUZnqRCRHTq1CnaunUr/fLLL1S4cGEyMjIiIQQ5ODjQnj178jHWDJM3aC9EjBs3TvaNVq5cKT/Xrp/09WMz69umFa+PHj2abt++zWLdHKDdfvTv3196UtIn1s1MvD5t2jR6/vw5e//OAfpsUahQIRaxFwBvUy4yIjIykg4ePEilSpWSp0VYWVnRzZs3iYjH8frILH9qX0tISJCeLF++fEl+fn508+ZNmj9/Pn3++edyfksIQcOGDcvSd/PYJJXAwECqVauW9GRsYGAg+6vKT8eOHcnDw0M6usgNtNOfbZFKQEAA2dvby9NNLC0t5cmkyo+LiwuNHz+enj17luPvU2ypfToq11OpFFS5YNLj7e0tT5MrUaIE7dixgy5fvkxXrlyhO3fuUHBwMPn4+NCDBw/o2bNn8ndSUlK6Ux212xVt8XrdunVluVO8jLJQNz0ZjRP0pc+5c+dk+enRo0eWxbq+vr7k6upKQgiytrZme2TA29pC2QDyNrZQSE5OptWrV8t+FttCl/woFykpKbRx40a5GUGtVpO7uzvNnz8/w3h87Jw7d06211u2bMk0rJJ2mzdvlvfoE7Br91ePHj1KM2bMoHr16lHHjh1pwoQJFBgYSEQ8/k7L0aNHZbru2LEj07CKLX799Vd5j3ISrT7eNIbgcpEx2mkTHh5OS5YsIXd3dypcuLBMe5VKRf3799eZ3yXSn+7K86Kjo+m3336jEiVKkIGBgZwL4XKhi7Yjw7lz59Lt27d1rudUvM5lQxcWsDMMwzAMo5dffvmFhBBUqlQpun//frrr2p0qRahgZmZGGzduzM9ofvBERUVRrVq1SAhBw4cPp9jY2HRhFDGW4nm3Ro0aesMx2ScoKIgsLS1l+m7dupWuXbuWTrx+8eJFec/HNrDITx49ekQdO3YkIQTVr19fxyuu4uVNqaMCAgKkFyBra2vp4Y0XXnMHf39/6VXJzc2N1q1bR7t27ZKe14sUKUJjx45l8Xo+ERISQtWqVSOVSkVz5szJUKwbExND3bp1IyEEde3alctDLhMVFSU979WpU0dOABK9rnuUBdqoqCg6d+4cNWjQQC64u7q60v79+wsk7h8aMTExNGbMGBJCUK1ataTXPaLX7YViC41GQw8fPqQWLVrICeAiRYrQhg0bCir6DJPraC9EfPXVVzKv//777znyCnrz5k0dj6MjR46k+Ph4IkoVFrFYN/to22XAgAEyjc+ePSs/z0y8/v3338trfn5+bIsckJEttL3qZRUWseeMrJSLzFDS+e7du9SgQQM51hdCUGhoaJ7E+UPhzz//pIEDB1K3bt2oXbt21Lp1a2rQoAHVqVOH6tSpQ1WqVKFy5cpRpUqVpGdkc3NzHTGpgYEBDRo0SD5TX74PDAykn3/+Wf7P8yuphIWF0cyZM+Uch5KednZ2NGHCBAoLC0s3tlu2bNlbi+AUkpKS6NChQzRr1iz5GdsilaCgIOrQoYM8bUb5sbS0pCFDhtCJEyfkBn+FjRs3ZvuELUXgNWLECPkZ2yKV/C4XycnJ7FExA3x8fKhYsWLS631AQIDO9YxOvMkoL2uL1xWP+tbW1jRu3DiaPXs2C3VziGKD8+fPS7Fuz549Mzy9TsHHx0eeRGFra0u//vorLVy4kO2RA7Jri7SwiD3n5NQW8fHx5O/vL0+LUmyhfUIB85qQkBDq2bMnGRoaUt++fbM0Fps/f75s79Oe5qTdtvz2229UqFAhnX6aUm8pIlReE3lNQEAAderUiQwNDWnQoEF6dSFEunXJ5MmTZbqeOnUq0+e/fPmSrly5QnPnzqXZs2fTDz/8QGfPnqXHjx8TEdsiI5KSkujhw4c0btw4aty4sU5eLl++PHXp0oVOnDgh52CJMk5LbfH6smXLyNnZWWcNhOel9PPkyRN5MsfYsWPJx8eHiIgiIiJo9uzZOfa8zmXjNSxgZxiGYRhGLzdv3iQHBweysrKibdu26XSQtBcLFy9eLL2vV6hQgS5dulQQ0f1giY+PpwkTJkjh9LVr13Sua9uiadOmUkTKAvbcx9fXl4oXL05CpB5N6+DgoCNeZ8/r+Ysi1BVCULNmzejChQsUHR2tE8bPz4/69+8vBdYuLi5y0MfkHtplo2LFilSqVCk56cGe1/OXqKgoKeKpXbt2us0dCrdu3SInJycSQlCvXr14UioPCA0NlZOATZs2pVOnTsnTOxSCgoLop59+knWZiYkJ1a1bl3bt2lVAsf4wCQ0NpRo1asj24ty5c+nai/v379OGDRvkpkFF8PDXX38VUKwZJu/QrvOVk1RyImK/evWqjnh9woQJ6cYi2mJd7UWRj2kSPido26Vz585Uv359vQsie/bskZs8hRD0448/ymuK3dkWOUPbFt26daPKlSuTl5dXtp4VFBRErVu3liJ25TncL8saWS0XadHO63v37pVtvxCCOnXqlK6/xrxm2bJlUoTztj8mJiZkYGBAn3/+OS1fvlw+U19+DwkJkV52R44cKT/neZZUkpKSKCEhgQ4dOkR79+6lU6dOpfMEp6TVF198kW1PrklJSXTy5Ek5pmFbpOf58+fk6+tLK1asoJUrV9LevXvpypUrOmGUOud///sfCSGoe/fu2RJOb9myRZYnFiSmJz/LxeHDh8nFxYXmz5+vM9/FtkjF19dXinxatGhB/v7+2XqO0s7HxsbqiNcnTJgghfEs1M052mJdExMTEkJQnz596Pnz53rD+/j4SM/rtra2tGjRInr06BERsT1yirYtjI2NSYjUk5afPHnyVs9hEXvOedtyoZA2fefPn08VK1aUnvXHjh2bZ3F+n9myZYvcUDxv3jxKSEiQ1xTnIwqnT58mOzs7uV6e0caCpUuXyn5T9+7dafr06TRjxgxq2LAhCSGoWrVqb71B5GPgn3/+kZuPFyxYoGMLjUajM5bet2+fTOOWLVvqnKaibbOXL1/SyZMnqWbNmlS6dGmdMaKdnR21aNGC/Pz8iIjnQtJy7NgxmjBhglw7Un6qVq1Kn3/+Ofn6+sp6KbNTJbQ/V8TrykY0tVpN9erVY+cKb2Ds2LE6894nTpyguXPnvrV4nctG5rCAnWEYhmEYvTx//pw6d+5MQghq0qQJeXl56QxWiEhHdCWEoCVLlhRQbD9sQkNDdYS6ly9fTie86tevHwkhyNjYmCZPnkxEPCGVF/j6+kpPMiqVikxMTKh9+/Z09epVGYbTPf/w9/enkiVLykmnoUOH0tGjR2nHjh30999/U6VKleRRajY2NuTt7U1ELNDJC9KWDXNzcxo+fDgFBwcXdNQ+OkJCQsjR0VG2GadPn6YXL14QUeoE1Y0bN6S3BgsLizceCclkn4CAADmpXrFiRerRowetXbuWfvnlF/rhhx/I1tZWTtBbWFhQjx496OjRowUd7Q+SgIAA6QW0atWqNHDgQNq7dy/9888/9Pvvv1PNmjWlrczMzKhOnTp6j6FlmA+F3BKxv3jxgqZMmSLvr1Spktxwm5ycrNPn0hZOq1QqOQnPZA1tu6T16EpE9PjxYxoyZIjOgpbi5fXVq1c6YxRtWwghsi0s+ljRtsW9e/eyPf5LSUmh8PBwatWqFQmR6rWXj21+O95ULtKiXSdt2bKF6tevL8tB3759Wbz+BgICAuTmcFNTU6pVqxZ99tlnNHz4cBo8eDB9+eWX9PXXX9P3339P06ZNo19++YV+++03Wrt2LV29ejVTT7wKISEhOicTCSFo9OjR8jrPt2SeBmnnOs6ePUtGRkZvLdZVxOtubm5si2yS1haXLl2S6Zgd4TQLEjMnP8oFUerJHT179pTlomvXrrR+/fosxeNjIqcidiUd04rXJ02aJL1eEqXWVVwuco5SRs6ePUsWFhbUqVMnunv3brpw3t7eOuL1ZcuW6XjoTWsPbbEu2yNraNvCzMyMqlWrlm4zTlbgNiPnZLVcZMb58+elEyxzc3P69NNPs30Sy4eIdl6cO3euHJctW7ZM78aN8+fPU6dOncjU1JSEEDRgwAC944ldu3bJZ82ePZuePn0qr928eZOqV69OFhYWtG/fvrx5sfcQbVv8/PPPOpqP8PDwdOEPHjxILi4upFKpyMDAgL7//nu9AupLly7R5MmTdU48MzQ0pOrVq1P58uXleqKdnR2v3eph0qRJMt0sLS3J1taWZs+enW7D7JvIyPO6Wq2mM2fOUHR0tI5zBRaxv0Y7PyrOJoUQ1LBhQ5mvK1euTH/99ddbide5bOiHBewMwzAMw2RIcHAw2dvbkxCpnlwnTpxIW7dupSVLllCbNm3k7nMhBE2bNq2go/tBoy3UdXFxoQEDBtC6detozpw51KxZM2kHW1tb2r9/f0FH94PGx8dHLtoWK1aMZs6cKa99DAOId42AgACqWbOmLANqtTqdtzcbGxs6f/48EbGN8hLtslGyZElasGCBTG+eHM9f/P39pVjX0dGRWrVqRT/++CN16tRJbogyMzOjXr16sWgtjwkMDKSmTZvKzTT66ipbW1tavnw52yKPCQwMpPr168v+qz4PolZWVjRlyhSdU1UY5kMlt0TsYWFhNGHCBKpduzYJIcjBwYFOnz5NRKn9rrTC6UaNGpEQgv7++2/ul70lb0qv8PBwmjZtmvRcXKZMGTp58qS8V9sWwcHBVL9+fTIwMKDjx4/nZbQ/SLKbd9P2iSMjI2ny5MnyNCNLS0u6ceNGbkTxoyGrttAOt3XrVh3xer9+/Vi8nkW8vb3lYuonn3xCoaGh2XqOvvGhtni9aNGi1KtXLxZe5QBt76FvI9ZNK14vXrw4DRs2jG2RAxRbnDt3LtvCaSIWJOYG2S0XCnFxcfTvv/9St27ddBw4TJgwQYZhW6SSUxF7YmIiVaxYUc6ftGnThu7cuSOvKSjlQplj0d5ow2QdpWwEBQXJDZXahIeHy1OY1Wo1ffrpp9Lrqz576Nv4xGQNxRbe3t7k4eGRrWekpKSQRqPRaTOGDx+uc515M28qFxmRlJREx44dk30pCwsLGjlypM5JqUwq2mO0b775Ro7PBg8eTH/99Rc9efKEvLy86K+//qKqVatK7+Dap5Ar+Vmj0VBSUpI8aWXo0KEUExMjn5+SkkKRkZHyBK5Zs2bl78u+42jb4uuvv5a26NOnDy1fvpwCAgLowIEDNG/ePDIzM5P1fMuWLSk+Pp6IdOcZDx48SK1bt5Y2q1SpEg0aNIguXbpEz58/p6dPn9K+ffuoZcuWJIQgV1dX9oqvh+HDh5ONjQ2tXLkyw5OeMiMz8bp2GxMYGCgdXbCIXRftNNAWsQshqFy5crRu3bp0TifTot3uctnIGBawMwzDMAyTKf7+/lS5cmUdwZWhoaHcDSiE7tHkTN7h7+9PTk5OOrZQJtuNjIzIzs6O/v7774KO5keBj4+PXLStWbMmbdq0iRe8C5CwsDD65ptvpHBK+XF0dKQOHTpIL+A8OZv3aJcNNzc3LhsFSEBAANWuXVt6JdEW61pYWFDv3r2lwJDJWx4+fEjr1q2jTz/9lJydncnS0pKqVKlC3bt3p9mzZ2frCHkme4SHh9Nvv/1GnTp1Int7ezI0NCQbGxtq1qwZffnll+Tj46Nz5CnDfOhoT8J/9dVXsp34559/3ur++Ph4unjxojzBy8TERG4eTNv/Cg0NpQMHDuh4wWJyjmKLhIQEunbtGnXt2lXaQtmUk9YW9+7do6tXr3K9lw/o88S7bNkyqlixIhkbG+vMr3z33XcFFMsPl8w8r/fv35/HK2+Jj4+PFCU2bdpUihKTk5NlPaP9d1bG4WnF6z///DOFhobS2rVrWaybA7TFukod06FDBx2PudqkFa/b2NjQxo0bKSoqitasWcO2yAH6bNGpUycWsRcAb1su9JGSkkJTp06l4sWLS1sMHjw4r6L83qItYm/VqtVbi9h//PFH6tChA5mYmJBaraZJkybJa9obbpOTk+nPP/+UbfuxY8dy7R0+JtLWIWn///XXX6lHjx7SKYB2/ZORPaytrenSpUt5G/EPkDfZIqv3hoWF0fDhw2U9NWjQoFyL48fC29pC6UvVqFGDhBBUuHBhGjFiBIvXM0F7Xmrq1Kk66xi2trZUqFAhnTU/Nzc3uaEprfOF58+fU7ly5UgIQevWrdP7HS1btiRDQ0PavHlzHr/Z+4d2Ok2bNo0MDAzkBjFra+t0zsOaNm0qxeva80o7duwgd3d3OdfRoEEDOnToED179oyIXttNo9HQlStXqHr16lSoUCFas2YNEXGflkjXFspmDYW3TZ+oqCiaN2+edGxlaGgoHSdolyHt0xqLFStGXl5e2fq+DxFte4wdO1aWgU8++YQuXrwor+lLK+3PuGxkDgvYGYZhGIZ5I6GhofTNN99Qw4YNydDQkAoXLky2trY0aNAg2rJlS0FH76MiNDSUJk2aJI/PVLy09enTh3bt2lXQ0fuo0J6Ed3d3p7/++ivdQJLJPxITEykmJoa2bdtGmzZtor///psCAgKkGIE9fOYf2mWjRo0atGHDBoqLiyvoaH2U3L9/n+bOnUvNmzcnCwsLKlmyJFWsWJFWrlyZrSNomZwTFxdHjx8/TtdecB2V/zx69IhCQkLkUaiKDdgWzMeG9iT8uHHjSAhB586dy9az7t69S126dCEhBDk5OZGvr6/ecB/6hPu7wN27d+WGgpo1a1JgYGBBR4khogsXLtCPP/5IxYsXlwvxiueyCRMm0NatWws6ih8cLF7PG3LqWVebkJAQaZeiRYvSTz/9RA8ePCCiVPv9+eefLNbNAdpiXe2Namn7vGkFVzY2NrR+/Xo5llcEiWyL7KPPFosXL9bxXpwVWMSec7JaLvSh3XcePXq0PIlQCEG7d+/Oszi/r/j6+pKNjQ0JkXrC79tsFCBKdc6wcOFC6aWyf//+8pq2LZKTk2njxo20YMGCXIs7k4p2vXLnzh1aunSp7McOGDBAXktrj127dtGGDRvyNa4fM0r6JyUlUWxsLC1cuJDatGkjHWApP9n16s68GRavZx/t+uPPP/+k9u3b6+RbxdNx586dKTIykoj093mePHlCZcuWJZVKRdu3byci3fHg4sWLpUCeN9foR9sWa9eupR49eqSzhbu7O40aNYoSEhKISFe8vm/fPnJ1dZV1zyeffEIPHz7M8Puio6OpVatWJISgXr165d2LvYdo592crFfcu3ePOnfuLMcODRs2pIiICCLS3XhOlCpib9eunbT1x+L5Oyvomz9X5vKystbKZePNsICdYRiGYZgskZiYSImJiXT58mW6ffs2hYeHy8EJEU+Q5ycJCQkUExNDhw4doqNHj1JgYCC9ePGioKP1UeLr60u2trYkhKDmzZu/8ZgopmDg+in/8fX1peLFi5MQgvr27cubOwoQjUZDKSkpdOvWLQoNDWWPtwVERh57WCyd/2TUJrAtmI8Z7Un4u3fvEpFuWUlOTs7y0bRHjx6l8uXLU6FChWj+/PlExOUrN0lISEjnZUwfKSkptG/fPrK1tSUrKytauXIlEbEt8oO0XqefPXtGfn5+1LdvX6patarOwm/lypVp3Lhx6TaN8DHNuQOL1/OW3BCxBwUFyZPULC0tad68edL7mEJase6oUaNy6xU+GpSycOHCBZo6dWo6WyUnJ9ORI0eoevXqJISgIkWKSIcl2uUorS1GjhyZfy/xgaBtiwEDBmT7VLSkpKQMywW39VnjTeUiM16+fEn//vuvFClaWFjQtGnT5AmQjC6+vr6kVqupSpUqWU4j7bFIYmIibd68WYqmp0yZ8sb7uS+Vu2jbIykpiTZt2iTt8f3337/xfq6X8oa081uPHj2iH374QQrelDaibNmy1KRJEzp69Kj0lszkLixezzna9faTJ0/o+PHjNGPGDJo8eTItXryYzp07Jzf96avjU1JS6OXLl9S6dWsSQtDYsWN1xhW//fYbFSlShIQQvNnpDWjX2TExMXThwgVasWIFLVq0iP755x8KCwvT2TSjcObMGWratKn0Lt22bdtM56+UOmzChAlyTMmOsPKGx48f07Jly6hhw4ZyvHfq1CkiSrVDWhF7w4YNqWnTpvK0AyYV7bpHybfKhmI/P78M7+OykTVYwM4wDMMwTJbQd/QvTzy9O7AtCo5bt25RlSpVyMfHp6CjwjDvFD4+PtSqVStewCtg9LXfvKmDYRiGSUvaBUDt9sPLy0uKet407oiNjaXmzZuTEILq1KmTaXgew7wdsbGxdOjQIQoJCSGiN6dfXFycPLmrSZMm+RBDRtsm8fHxdPz4cercuTOVL19eR7jeqFEjGjVqFEVERLxRRKJcZyHW28Hi9fwhrYg9ICAgy/empKTQb7/9RkIIMjExIQsLC5o8ebK8ru3JLzk5mdasWSNtOHv27Fx9j48BpUxop6tCcnIyrVixgszMzMjExIQsLS1p6tSp8rq2h/C0tli2bFneR/4DQ7FFTExMtu7XHs8vXbqUN3fkgMzKRUbExMTQ5s2bycXFhYQQZG5uTv/73//kJlBGP2FhYXT79m29c1RZITY2lmbNmkWGhoZUqVIlOn/+fF5E86Plbe0RHR1N33//PRkaGpKzszPdvHkzj2LG6CPtuODMmTM0e/Zssre31xlzFC1alPr06UPHjx9Pt0GQyT1YvJ57ZKUuetM8yPr162UZ6N69Ow0cOJA+++wz+dnIkSPlnAqTMVlpr7Wv3b9/n4YNG0ampqYkhKDWrVvL65nNZTx+/FhuaO7atWsuxZ7RRikzSUlJ5O3tLb3qFypUiDw9PYlI/4Yo5dRaRhd9InYLCwvatm2b3vBcNrKOCgzDMAzDMFlACKHzGwBUKu5KvCuwLQoOJycneHl5oWrVqtBoNAUdHYZ5Z6hatSoOHjyI8uXLF3RUPmr0td/afzMMwzAMAKjVap3/lbbiypUr6NKlC6ZOnQog83FHcnIyzMzM0Lx5c6jVaty/fx/37t3TG5aI5LNevHgBPz8/REVFISoqCgCQkpKS43f6kEhJScGBAwfw+eefY+bMmQAyt0VSUhJMTU1Rq1YtqNVqPHr0CC9evHjj9xBRpv8z+lHyq2KT33//HcOHD0erVq2wd+9ehISEoHDhwqhRowYWLlyIf//9F8uXL0fJkiVhbGyc4XM9PT3RuXNneHl5Qa1W83gzE7Tzt0ajkbbYunUrlixZgosXLwIA+vXrh99++w0WFhZZfjaXi4ypUqUKzpw5g2LFiuHkyZMYOXIkfH19s3SvEAKjRo2Ch4cHxo4di+TkZPz6668YMGAAAMDIyAjJyckAUtuogQMH4o8//oCTkxMMDQ3z7J0+VJQyYWRklO6aWq3GyJEjcezYMXz11VdISkrCnDlz0L9/fwCAoaGhrH8UW6xatQqtWrVC8eLF8+8lPhAUW5ibmwPIep2i2EDpo+3cuRPBwcEwMzODgYEBVq5cidGjR+dBjD9cMisX+oiNjcXevXsxd+5c3Lp1C2ZmZpg0aRK++OILlC1bNi+j+t5TunRpVK9eHUIIpKSkyHzs6+uL8PDwN95vZmaGZs2aQQiBwMBAXLhw4Y338Hgi6yj28PLywsOHD98YvlChQmjWrBmSk5Nx+/Zt2c9i8gdl7H7ixAlMmzYN7du3x+zZsxEWFgYTExOYmppi2rRp+Oeff7B582a0aNECRYsWle2NvnaH+7fZIzk5GWfPnsXEiRNx8+ZNWFhYoG/fvhg9ejScnJwKOnrvHWnXLFJSUtLl24zmQZTr/fv3x9KlSyGEwN69e7F+/Xps2bIFADBjxgx89dVXKFeuHABkOL5OTEzM9PrHQNo1JX11hNKmA8DFixexZcsWJCQkoFGjRti6dSuEENBoNOnmG4HXafvo0SPZD7Czs8uTd/nYUcqMgYEBqlWrhvnz56Ndu3aIjY3FlClTEBoamq7s2djYwNbWtiCi+86jPTe3aNEifPPNN+jYsSM6d+6sE47LxttjUNARYBiGYRiGYZj3HQOD1G61vsEGw3zMKGWDYRiGYZj3k9u3b+Pu3buIjY3FsWPH0KpVqwzDKu2+v78/NBoNEhISMtw0JYRAfHw8vv/+e5w6dQo3btxA5cqV4eDggIULF6JKlSoZTuZ/rDx69AjPnz+Hh4cHTp06haZNm2YY1tDQEESEoKAgaDQaxMTEZEmUIIQAEaVbrExJSeFN02nQThOVSoWIiAjs2LEDBw4cwMGDB2Xa2djYoESJEvjxxx9RuXJlVK5cWT5DO63Tcu3aNXz77bc4deoUGjZsiPPnz8PZ2ZnLhR6WLVsGX19fjB49GtWrV5fpkxvidYDLxZuoUqUKzp49iyZNmuDEiRNYv3495syZ88ZNs0r6NWnSBC4uLnB2dsbo0aPxzz//wMzMDL///jsMDAxk2qvVagwZMgSNGzfWKUdMzlFsUb9+fTg5OaF69eoYMWIENm7ciMKFC+O3336DWq3WscUXX3yBtm3bokyZMgUd/feezMqKdt2jVquRkJCAHTt24NixY1i7di0MDAyQnJwMS0tLGBkZoXHjxvkV7Y8ObfG6l5cXzMzM8NVXX2HIkCEsXn9LlLZzz549GDVqFFavXp0lYU7jxo1Rq1YtXLhwAfv27cO4ceNknZTR9xARYmJiYGpqKscqmfW/PmY2bNiAgQMH4vDhwyhZsmSG4ZT0++STT+Dq6oqbN2/i5MmTGDZsWJb6RkSks5mZyRwlvZXfjx49QmhoKObNm4crV64gLCxMhq1SpQp69eqFzp07w93dXX6ujB/S9mVPnToFX19fjBgxIl1/l3mdbkSEpKSkdJudclO8zuVCP9rp8aa8qYipVSoVxowZAwcHB9y+fRuXL19GtWrV0LRpU7Rs2RIAdPq0Cn5+fnj06BH27NmDBw8e4JtvvoGbm1vevNh7SEbpr1Kp8OjRI0yePBnR0dGoXr065s2bBysrKxCR3jY6JSUFarUa8fHxGDt2LMLDw2Fra4uhQ4fm9Wt80Dx//hyWlpZvnC+yt7dHnz59cObMGfj7+8PLywtly5blNuAtUETsarUaP//8s/xbe76Oy8bbw2oChmEYhmEYhskhPKhjGIZhGIZhPkTc3NzQtGlTnD59Grt27YKrq6teb6vak/UREREAUkXUGXm0vHXrFqZOnYp9+/bJSfv79+/D398fV69ehYeHB6pWrcoLKP+PSqVCnTp1UK9ePXh6emLXrl1wdnZG0aJF04VVFm3v3r2LJ0+eAACsrKzSeSxOKzDx8PDA8ePHcfbsWRgYGKBw4cJo27atFCiycFoXJe2uX7+OGzduYNasWXj+/Dmio6OhUqmQkpKCTz/9FN26dUOrVq10bKXk68zE6+PGjcPFixdhZGSE2NhYNGnSBGfOnIGTkxPbQouzZ89i/PjxAFLrnDFjxsDR0RHbtm3Llnidy0X2qFy5Mk6cOIFZs2ZJQeGb0E5nKysr9O3bF69evcK4ceOwZs0auLq6YuTIkelOglTE67yBIPfQTkcLCwt8+umniI6OxsSJE7F27VrUrFkTX3zxRTpbKOJ1bqtzn7TtRFBQEAICAvDTTz8hICAAz58/B5AqnmvUqBH69OmD1q1bo2LFigUZ7Q+WjMTr7Hk9+8TExGDt2rUIDw/HkiVLULNmTdjY2GQYPjk5GUIIxMXFAUj1jqtsctJGKTu+vr44efIkdu3ahcePH6NSpUpo3Lgxxo4dy0JdPbx8+RIrVqwAAKxevRpubm6wtrbWG1YRiT59+lTWRa9evZLX0pK2vdbXB2Z76Ec7XV68eAFPT08sWLAAd+7c0TnprHXr1qhZsyamTJkCKyurdGmp9FW1n3fx4kUsWbIEu3btwrVr1/DHH39w2UiDWq3Gq1evsGjRIlSsWBFt27ZFoUKFAORcvM7lIm9QxuEqlQodOnRAhw4ddK4raZqUlIQnT57gxo0bOHnyJG7fvo1z584hISFBej/28fHB6dOnYWlpyXbIACWtjx49isePH8PExATdunWDs7MzAP1tgrJRIzExEdOnT8elS5egVqvRqFEjnc1sGY31uFzo5969ezh69Cg6dOiAkiVLZjpWNjAwQPv27VG8eHGEhIRgw4YN6NSpU4bpyrbQT9oN3tqi9LwsGx8yLGBnGIZhGIZhGIZhGIZhGIZh0lGjRg3069cPZ86cwYoVK1CxYkWMHDkSxsbGAF4fbapM0s+YMQMnT54EAAwcOFDnyFllAv/Zs2f49ttvcfDgQRQuXBh//vknihcvjsjISCxZsgQeHh4YM2YM/v33XxQrViyf3/jdpXbt2hg0aJAUGzg4OGD48OHSFklJSTA0NJQLS7/88gtu3LgBABg8eLCOcFdbdLtv3z4cPnwYv/32W7rvPHToEBwdHbF582ZUrVqVBaNavHr1Cl9//TV2796Nly9fIioqCkIIGBkZYcyYMahTpw569+4tw2unXWaLfGnF623atEFUVBROnjyJxo0bs4g9DY0aNcLIkSOxcuVKLFu2DCqVCqVLl8aOHTveWrzO5SJnVK9eHZs3b5ZpoYgKlRM3TE1NM71frVbjk08+QZMmTXDkyBGcO3cOI0eOzDC8dpp/7IvnWYWIEBsbK8VXGaFWq9GqVSu4u7vj3LlzuHjxIr744osMw3Pa5y7a+Tk0NBTHjh3DwoUL8fjxYzx79kyG++yzz1CrVi1MnDgx3b1p6yUuI9lHn3h90qRJ7Hk9h5iamqJz5864cOECbt26hZMnT6Jnz556+zZEBAMDA/j4+MDf3x8A5Bgjbb4WQuDChQsYO3YsfHx8kJCQAADw8vLC9u3bcefOHSxatIjLQxrMzc0xYMAA3LlzBxcvXsSZM2fQpUuXDAVrKpUKwcHBcuNyiRIlAKS3hxKWiODr64tz584hICAAL168QJMmTVC5cmXUrVuXhdNpSFuHL1q0CGfOnMGuXbvkZ5aWlqhRowY+++wzfPbZZ7Kfm5KSkqEwTvn8woULWLRokXze6tWrYWxsjGXLlrEt0vDDDz9gwYIFcHZ2RmJiIrp16wZTU1OcOXMGX331VbbE61wu8hYhRLqx8osXL5CcnIxTp07h9u3b8PDwwI0bNxAVFQUgtU0qU6aMPBmqU6dOAFI32TIZo9RTp06dQnx8PAoVKoR+/fplONbQ3kCwevVq7Nu3D/Hx8TAyMsKXX34p2xLl2U+fPoW3tzfu3r2LatWqoXTp0rC1teW5kDTEx8dj3bp1mD59OiZOnIhff/010/kJjUaDYsWKoWLFiggJCUFkZCSSk5MzPE2bbZEx2vVz2s3eQN6UjYzahQ9iXooYhmEYhmEYhmEYhmEYhmEYRouUlBT5948//khCCBJC0C+//ELBwcHpws+cOVOGqVChAu3cuVPvc4cOHUpCCLKxsaHr16/rXDty5AgVL16cHBwc6O7du7n5Ou812raYNWuWTOd58+aRr6+vTtiXL1/SuHHjZJhGjRrRxYsX5fXk5GT5908//UTVqlWTYcuUKUO1atWicePGUdu2balq1aokhCA7Ozv5Pdpx+dgZOHCgTDtnZ2caNmwYXb58WSeMdnq/iatXr1KjRo1IrVaTqakp9e/fn168eEGPHz+m1q1bkxCCrKys6NatW2/97A8R7fefMGGCtEWpUqXk3wMGDKCXL1++1bO4XOQOSpocOXKEZs2aRUREGo3mjffNmTOHhBBkaGhI165dy9F3M7r8/ffftHjxYiLKmi2+/fZbEkKQubk5+fv753X0PnqUfBsfH0/Pnz+nSZMmUZMmTWRdpNRv3bp1o507d+rYULsO087/N2/e1Ps5k8qbykFMTAxt3ryZXF1dZVn44YcfuI+aSzx58oS6d+9OQgiqW7euTn5VUPLtw4cPaejQoWRoaEgGBgY0d+5cIkpvQ09PTypXrhwJIahOnTo0YcIE+uOPP2j8+PGkUqnkWIZJz+PHj6lTp04khKB69erJ/ibRazso6R0SEkItWrQgIQQVLVqU/v33X53rCklJSXT//n3q2bMnVa5cWac+E0KQg4MDzZw5M933METh4eH01VdfUbt27XTSrGzZslSvXj06fvw4hYaG6tyTUfppf37+/Hnq1auXfF737t1l2RgzZswbn/Wx4e/vT0WLFiUhBLm5udH69etp//795ObmRkIIKly4MI0YMUKnvLwJLhe5i762PDY2lp48eULr1q2jH3/8kWrXrk329vY66VyrVi0aMGAA/fXXX3Tz5k16+vSp3udy+r+ZNm3ayPqEiCgxMTFdGCU9k5KSaO3atVSrVi1pi7/++ksn7LNnz2j37t1UoUIFMjU1JSEEFS9enNzc3Mjb21vneUzq2GHq1KkkhCB3d3e6dOnSG+8JCwsjR0dHEkJQ69atM0xPtkXOyM2yoS+dnz59mm6+6322BwvYGYZhGIZhGIZhGIZhGIZhmHRoT3xPmTJFTqK3aNGCvv/+e/rvv//op59+oh49eshrJiYmNGPGDL3P8/LyouLFi5OhoSEdPXpUfoeyKOjl5UUWFhYkhJDXmVS0bfH111/L9K5duzaNHTuWli9fTiNGjKDmzZvrbCT4/fff5X1JSUny79GjR+ss4H7++ed04MABio2NJaLURbDLly9Ty5YtSQhBzZs3p0ePHuXfC7/DpN3cMXLkSHry5AnFxcWlu55VFPG6gYEBmZqaUr9+/eQiekpKCgUFBcnFLxaxv0b7/cePH6+Tpzt16iTzc2Y20X4Gl4vc5erVqySEoEKFCtH9+/czDavYaNWqVSSEIFNTUzpz5ozesEp9GBERQRcuXKB58+bRpk2b6MSJE+mex6Ry+PBhuXksPDw807BK2v3000/SfpkJs7IimGP0k1ZgcPPmTRo3bpwUxik/1atXp27dupG3t3c6gZU22mm+Z88eqlGjBg0dOlTv9Y8d7br//PnzFB0dTUSv00ifeP1///tflsXrXC6yxt27d8nZ2ZmEENSsWTO6fPmybHOV8vHgwQOaOXMmlS1bVtZjd+7cSfesBw8eyL5Sx44d6cqVKzK9Y2Nj6X//+x8ZGBhQjx498u8F3zNCQkLkJr5mzZrRxYsXKSYmRifMnTt3aMiQIWRtbU1CCKpSpQo9ePAg3bPCw8Np9erV5OTkREIIKZKuVq0a1apVi0qVKkVqtZqEEDRx4sT8esX3hrt375KdnR0JIcjY2JgKFy5MgwYNomPHjqUTq2VWr6QVr/fu3Vu2LbNmzaLExERavXo1i9gzwdfXl4oXL05CCHJ0dJR1UXbE61wu8oa4uDh6+PAhbdq0iWbNmkUuLi6y/ChpXKtWLerZsydt3LiRLl++TK9evdJ5RtqNOsybSU5OJo1GQ/Xq1SMhRIbtq9LnevXqFf3+++9Up04dWQ/99NNPOmEfP35M8+fPp2LFipEQgipVqkT29vbk4OBAQggqWbIkb6zVw6lTp2R/6rvvvqPIyEi94RRbKM5DhBDUp08fvfU92yL75HbZUOZyExMTKTIykmbPnk29e/cma2trcnBwoGbNmtH06dMpJCRE57nvGyxgZxiGYRiGYRiGYRiGYRiGYfSiPfE9c+ZMsrKyIgMDA7mYri2wsrW1pWnTpsnwaRf/jhw5Ij3HhYWFEVHqQqHyHSdOnKBixYpR5cqVKSIiIh/e7v1C2xazZs0iGxsbucBtaGioYwt3d3davny5DK+9QDt48GC5mGtiYqJjM6LXiyMpKSl08OBBKlmyJJUuXVrHk/vHjr4FoeyKPK5evUouLi5kYGBAhoaG1K1bN3lN20OTtoi9ePHidOPGjWx934eGti3Gjh0ry8Dw4cPJz88vy/dyuch9PDw8qHz58mRiYkJz5syRokR9KLZYvHixbGP27duXLpzSrly5coWaNGkiF96FEGRpaUlTpkyRYVl49ZrDhw9T2bJlqVChQrRw4UKKj4/PMKyS1ydPnkyGhoZkbm6eoSc/7XY+JSWFfH19KSQkhIKCgighIUHnGvOatP2jnTt30jfffEMmJiZSaGViYkIlS5akb7/9lq5cuSLTMyvC6D179lDbtm1l2Rg9erTecAxRq1atqHr16rRx40aKiooiIqLo6GjatGlTtj2vc7l4OwICAqhkyZIkhCBXV1eaPHkyXbp0iS5dukTHjx+ndu3aydNVChcuTHv37iWi9N5xT506RUWLFqWyZcvSsWPH5HXl919//SXHKy9evMj/F31P8Pf3l/aoXr06jRgxgk6cOEH79u2jTZs2kZOTE1laWspNlcppKdp9quDgYPrqq6+oTJkyMlybNm1oy5YtspzdunWLFi9eLOu8RYsWFcTrvtPcunWLSpQoQdOmTZP5XuFtRbYXLlygnj17ynZhxowZsuwkJSVlKGJnMW8qvr6+UsSpUqnI1NSUvvjii7cSb3K5yF0uXrxI//77L02fPp3q1q2rcwqXEIIaNGhAPXr0oC1bttCJEyfS5WWlzuK2OOf8/PPPJETqySehoaEyTbXn+uLj42nGjBnk4uIibfT9999LobUSbuPGjfLUgy+++IJevnxJERERdOXKFWratCkJIWjw4MEUHx/PtkvDsmXLZNouW7ZMOlggSk1fJb2ePHkiN9GULFmSTp06RUTpN3GwLXJObpQNZWz+/PlzWrBgATVr1oyEEHIuWPuncuXK77VnfBawMwzDMAzDMAzDMAzDMAzDMBmiLUjYtm0bDR8+XIptlYnygQMH0rp16/Teo3Dx4kUyNTUle3t7un37ts61pKQkKc5t165dhh6DPna003X37t00ceJEMjc3JzMzMzI2NiZzc3P65ptv6MiRIzKctnh9xIgRcrGjdOnStHTpUnlN3wLH/fv3qXTp0tJLH/Ma7UW6nCzY+fr6Utu2bcnW1paEEFSvXj0pvNY+oYAoVcTeoUMHuYEkMjKSFwtJt1yMGzdO1kvjxo1LV9coaOd3Lhd5Q3R0NE2cOJGEEOTs7Exnz57VG07Jw/fv36fKlStLD28PHz7UG+7ChQtUqFAhEkJQuXLlqFatWlS3bl25iPvtt9/m7Yu9h0RGRsoTBlxdXTPceKHk9zt37sjNATVq1MhU8B4TE0PfffcddenShUxMTKhIkSJkZmZG3bt3pxUrVshwXFfp8vz5czp48CANHDiQjI2NZZ+qUKFCVKZMGVq5ciWdP39e556MhAhpxetKf0oIITeEsFfd9ISHh0shrqurK/37778UERFB27ZtkyKStxWvK3C5eDsCAgKk51AhBBkZGZGxsbGOOMfCwoLWr1+vs7mP6HUafvPNNySEoE8++URe0y4zf/75JwmRenqRtqiLSU9AQIDOSRCKHbTtYWVlRSdPniQiXWGcv78/DRkyhGxsbKQ4buHChVLoqy3eio2NpalTp5KBgQG1adOGNxboIe3mv+wI0jw8PKhr167pvLpqn86VnJycoYidScXHx0eKOUuUKEFz585Nt1EmI7hc5D4LFizQEW66uLhQ3759adOmTXTu3DkionRe1olS+19Er/P/++qp+F3iwIEDVKRIERJC0NKlS3VOiUhMTKQHDx5Qly5d5CYQZQz97Nkznefcu3dPjrFHjRqVro/022+/kRCCGjVqxP0nLbTrnx9++EEnjS9fviyvRUZG0tWrV2V/q1ChQvT555/rPSmNbZE75LRsKPVTREQEde7cWW4wFEJQzZo1adiwYbRkyRIaMWIE1axZk4QQVLp06XRty/sCC9gZhmEYhmEYhmEYhmEYhmGYTEm7KBsQEECnTp2i48ePk5eXV6ZhFXx9fal8+fJSYBgcHExPnz4lLy8vateunfQsrYh337fJ9vwibfqGhYXR7du36fbt2+kEVtrChGnTpkmvcfb29rRq1Sp5Le3CrZL2iYmJ8hhbFurmHZGRkbR9+3Zq2bIlCSHIzMyMTp8+TUTpy0FAQAA1a9aMVq9eXRBRfWfRzsMTJkyQC3tjxoyhe/fu6YTVTlMuF3lLWFgYNWjQgIQQ1KRJE/Lx8dHxmqv8HRERQV9++SWZm5uTEIJ69uxJ0dHR6Z7n5eUlxT/du3enc+fOUVxcHD148ICWLVtGKpWKbGxsMvQY/jFz7949eYx506ZN6fbt2zpthGKLu3fvUuvWrWVdNGXKFJ3NNMrvR48e0T///EP169fXERCZmprq/M9e8dOTnJxMrVu3Tuc5r2XLlrRw4cJ0dVZmwrjMxOtz5syhf//9V68gkW2Riq+vL1lbW8uNNmPGjJFeKc3Nzel///tflsTrXC5yTmhoKI0ePZpq1Kihk1bW1tZUtWpV8vDwyPT+WbNmkRCCOnXqRAkJCTrl5uLFi+To6EhCCJo+fXoev8mHQVhYGE2ePJlq1aqlYw8HBwf65JNPyMfHh4h08++dO3do2LBhskyVKlWK9u/fTzExMTJM2vz+33//yWdfuXIlf17uPSKn9UNiYiJt3LiRTExMpGDx559/1rmukJycTGvWrJFt0+zZs3P03R8iPj4+Umjo5uZGmzZtkt7TM4LLRd4xZ84cWrVqFV26dElnI43yW/vUk40bN9L48eOpUqVK1KlTJ5o8eXI6kSiTfWbMmCHz7NChQ2nBggX0999/05AhQ8jBwUGnHVmxYoXOGESx14oVK0gIQbVq1ZLXtcOtXbtWCnQfPnz4XnqYziu08/DXX3+t02b37NmThg8fTi1btpQnFZibm1OjRo3owoULep/Htsg9sls2lDS9f/++jnd2IQT99ttv0tM6Uar9vby8pHf2rl27vpebn1jAzjAMwzAMwzAMwzAMwzAMw2SZzBbS37TIvmrVKjnp7urqSlWrVpWT9tbW1lK0q70AkvYo26x8z8dCVtNh06ZNZG9vLz0mLl++XF7LbLFp//790ivs77//nuP4MunR9twXHBxMPXv2JCEEFStWjK5evar3nswEDx8z2gu3Y8eOJSEEdejQQXqgSguXi/whKCiIypYtS0IIatiwIW3ZskXH01tgYCD16dOH7OzspNDz2rVrOs9QPFJ+8cUXJETqSR0RERE6Ye7evUuVKlUiIQTt2rUrX97tfSMoKIjKlClDQgiqX78+/f3331KcGxkZSdevX6d69erJjQTlypXTESkq9U1wcDCNGTNGbkozMzOjSpUq0bRp0+iff/6hP/74g4YPHy6F09OmTSuwd35XuXXrljxJ4LPPPqNly5bpXM+KECQz8frcuXPltT/++INF7JmgLWIvXLiwzNMzZ86kkJCQN97P5SL3iIuLo4cPH9LKlStp4cKFNGvWLDp27Bg9evSIiPTnWeWzdevWkUqlonLlytHp06dlX+nUqVNyU84nn3xCgYGBRJQ9T9YfG69evaKoqCjavHkzrV+/nn7//Xfy8fGRoijtfteTJ09o6tSpVKJECSlqO3PmTIbPVux2+/ZtsrCwICEEHTx4ME/f52Pm6NGj9PXXX8vNNP369ZPX0npiX7FiBTk7O9Off/6Z7sQDRrfNqFGjBm3YsCHDUx24XOQNGQnOtT/P6IQu7U1lTk5O9OTJEyLiNiG7aKfbd999R0K8Pv0n7Wa0Jk2a0N69ezN81uTJk0kIQe3bt0/37Pj4ePrqq69ICEGDBw/Ouxd6j9HO83PnzqUKFSpkaIuuXbvKkwr0wbbIOTkpG4otw8LCqFy5ciSEIENDQypfvjydOHFC53uUNjwlJYU2btxI5ubmVLly5XQbot8HWMDOMAzDMAzDMAzDMAzDMAzD5CnagpMVK1aQra0tmZmZkRCCbGxsqF69enT79m0iej3Rr29h8uXLl1LEwouMWeP58+f02WefyQUSbY/RGaWh4hn5u+++IyMjIzI2NqbDhw/nV5Q/KN5WIOjt7S09J3366af09OnTPIrZh4l2vfHnn3/Snj179IbjcpG/+Pn5SRG7tbU1lS9fnj777DNq166dzpHZxsbGtH//fiJKb4fo6GhycXEhQ0NDWr9+fbrNTRqNRnrG3717d/6+4HuEn5+fXAi3tLQkOzs7at++Pbm7u0vxrnJN8WSv0WhkOvv5+VG3bt2k3aysrGjOnDnpPIRGR0fT0qVLpVf848eP5/u7vuv4+fnR0aNHdTyEZqdvs3v3bvrkk0+k7X755Red5yUnJ9Pq1atZxJ4JPj4+VLRoURJCkImJCXXr1k32S4kyTiflcy4Xec+bykZ0dDQ1bNiQhBBUvnx5atu2LQ0dOpSMjY1JCEG1a9em7du3ZyqCZ7KOkmZKv2v79u1yU3KpUqXe6DFfuW/16tVkaGhI5ubmfHpKHqBdbl68eEHr1q2Twujhw4frDafRaOjOnTsUGxubr3F9n/D19aXixYuTEIJ69eqV7tQgLhf5S9o6XPv/ESNGkBCCjIyM6IcffqADBw7Q3bt3qV+/fnKzM+f1nKE9/lY8SxcrVoyKFi1K1atXp5YtW9LOnTspKChIhtPX7q5evZqMjIyoefPm9PDhQ53n79y5U2781D4xjdFF2xbHjx+nn3/+mRwcHMjOzo4cHR2pbt26tGnTJrZFPpGdsqFsHAsPD6dq1arJTbF169YlT09PIsq433rz5k154srmzZvz8M3yBhawMwzDMAzDMAzDMAzDMAzDMHmO9sL4lStX6PDhw7R8+XK6ePGi9HxFpDsZn5iYSNeuXaM1a9bQqFGjqFq1amRra0teXl75Gvf3mR07dugcWauQkRBI+fzcuXPSC2+rVq3yJa4fGtpp7OfnRxqN5o0iqYSEBJo+fboUYPn6+uZ1ND849G1+SZvuXC7yn+DgYGrfvr30tK79Y2JiQkWLFqVjx45leP/ly5elyF3xGKddpo4cOSKf9yaB0MfOnTt3qFu3bnJTQVovcG5ublJ4m5ycLPO/v78/tWnTRgrdra2t6dChQzqeR7U9uYaEhJCrqysJIWjx4sX5+5LvIdkR0V67do0aN24s7detWzd5LT4+Xv6tiNjVajV7TMwAb29vKWKvVq0abd26VefEk7Qo9uJyUfAo7f6LFy+oYcOGcrOG8tO7d286cOCADJf2t4K2nVjU/maUNIqOjiY3Nze5Mfm///7L9D7tvlaXLl1ICEFFihTROZ2FyRuSkpJo9erVZGpqSgYGBvTbb78VdJTeW3x8fKhJkybk7e2t8zmXi3eHBQsWSPH6pk2bdDYMEhE5OztTmTJl6M6dOwUUww+HtO3pgwcP6M6dO/TixYtMNxhoc/z4cekdf9KkSXTy5Ek6fvw4zZ49W268GTJkSJ69w4dC2vmMFy9e0OPHj+nZs2c6/ZzMYFvkHm9TNpSwT58+pVatWsn6q379+vKEusw2YgYGBpKNjQ0JIWjLli158Tp5CgvYGYZhGIZhGIZhGIZhGIZhmHxBWUzRN+muCK08PT1p48aN1L9/f3J2dtY5ZrVIkSJUtWpVmj59Oh9p/gY0Gg0lJCRQx44dSQhBrq6udPPmTXkto3uIiAICAqh06dIkhCAHBwfavn07EVG6NE9rR/aKr581a9bQiBEj5P9vEkV5e3uTpaUlCSFo9uzZesO8aSGYbaGfvCgXnNZZ5/Hjx7Rnzx7q27cv1ahRgypUqEAtW7akWbNmkY+PDxFlXD4ePXpEzs7OZG5uTuvXr9dJ9wsXLlDVqlVJCEHDhg3Ll3d533n69CmdOHGChg4dSi1atKD69etTjx49aOPGjVLIo71BICQkhHr37i3rpuLFi9ONGzfe+D09evQgIQT16dNH7+YSJuf8+eef1L59ezIzMyMzMzMdD+vaQpXk5GRas2aN9BAeGBhYENF9p/Hx8SFra2sSQlCNGjVow4YNmYrYuVy8Oyh5PSoqitavX0+TJ0+mGTNm0N9//02xsbGZti0eHh40Y8YM6t69O40cOTI/o/1BMG7cOBJCUOHChWn69On0/PnzDMNq2+GXX34hIQQZGhrSlClT0l1nss6rV68oKioqS2FDQ0OpTZs2sg5iso8yNtZXj3O5KFieP39On3zyCanVapo5c6ZOfyg+Pp6Sk5OpQYMGJITgE7VyiczyaVbHy8uXL9c5DcrAwEDOBw4YMECG0y5z+sofj88zhm2R/7xN2YiLi6Pvv/+erKysSAhB1atXp8uXL7/xOUREs2fPlu1O2lOg3gcMwDAMwzAMwzAMwzAMwzAMwzB5SEpKClQqFVQqFQBACAEASE5Oxvnz5/HkyRNs374doaGhuHjxoryvVKlScHd3xyeffAI3Nze4ubnBwcEBRCSfwehHpVIhOTkZfn5+AIDy5cujatWq8lpaFBuFhITgyy+/xIMHD2BkZIT69eujcePGAABDQ0MAwOPHj3HlyhUcP34c8fHxcHV1RevWreHg4ACNRgO1Wp1Pb/nuExgYiFWrVuHy5cuoVq0axo4dm2HeVfK1gYEBTExMEBUVhVevXmUYDmBbvC15US6U+zi930zx4sXRqVMndOrUCVFRUUhOTkbRokVlns6sbreysoKTkxNu376Nn3/+GQBQsmRJPHnyBJMnT8bDhw/xySefYNy4cQBe247RT7FixdC8eXM0b94ciYmJSElJgYmJibxORDL9Xrx4gVWrVsHDwwNRUVGwtrbG6dOnUaVKlUzTOTo6GoGBgfJ5XD7yhqFDh6JVq1bYu3cvvv/+e/z22294+fIlNmzYAAMDA1k3qdVqDBw4EEWKFEHRokVRrly5go76O0fVqlVx5swZNG7cGDdv3sSSJUtQqlQpNGvWLF3dxOXi3ULJ6xYWFujfv7/eMLGxsRBC4OzZs/Dy8sLJkydx9epVPH78GABkO9S8eXP06tUrP6P/3hIbGwtvb28AgL29Pbp06YIiRYroDavdxh88eBDbt28HAJiamqJhw4YAUm2QWX+Kx4DpSU5OxpkzZxAREYF+/fq9MY3s7e3RpEkTHDlyBFu3bsW3334LV1dXvWHZFpljYJAqt0ubRnlRLpi3IywsDKdPn4ZarUbDhg2lrZKTk2FiYoLIyEi8ePECdnZ2qFy5cgHH9sMgs3z6pjGZ0m8aPXo0zMzM8McffyAkJASvXr1C8+bN0axZM3z99dcAgISEBJiYmMh7lPL3/PlzeHl5oVSpUnB0dOSxYAawLfKfrJQNJY1CQ0Nx7NgxREZGwtDQECtXrkStWrUybHOV+yIjI3Hp0iUAgLm5OSwtLfPmZfIQFrAzDMMwDMMwDMMwDMMwDMMwuYoyia5MsiuT8klJSbhy5Qru3LmDHTt24MGDB3KSHQDs7OxQs2ZNdO/eHeXLl0fTpk1hZWUFU1PTdM9nwc+biY2NRUxMDAwNDdG9e3cYGhoiOTlZLuAqaIt0x4wZI21Svnx5TJ8+HTY2NjLsoUOHsG7dOmzdulV+plKpYG9vj71796J69eof/QKVNkWKFIGzszMuX76MI0eOoHXr1hkukisLUtevX5diqrQLT9oLV2yL7JGb5SIlJQVCCAghZJ3k5+eHx48fIyUlBU5OTjAzM4OZmRnb4v9R8rCFhUW6zzLb3GFkZIQVK1bA398f169fx/Dhw5GQkCDDdOzYEZMmTUq3ISGjxV4WXr1OA0NDQ5kW2rZQhGtXr17Fzp078eTJExQtWhQHDx5ElSpVMhS2KZ8/ePBAbsIpX768zvOZ3EFJz3LlymHkyJGwtrbGsGHDsHHjRpQrVw4//vijjo3UajW6detWgDF+96lSpQrOnDmDFi1aICEhAQ4ODjp5lsvFu4m+sUF8fDySkpJw/Phx3L9/H3v27EFoaCiCgoJkmKpVq6JBgwZo1qwZ6tWrh3Llyun0e5nM8fT0xIkTJwAAX375Jdzc3PSG087jly9fxvr16+Hp6QkAGD16NLp06SLDKXY8duwYQkNDUahQIZQsWRJNmzZ942a3j5Hbt2+jZ8+eiI+PR6NGjTLdnKTUQxUqVJBp+fLlywzDsy0yJ6N3z+1yoY32eOJjT//MUOoSExMTOeYgIjneGzZsGPz8/FCzZk0ULly4IKPKIHXcpuTtwYMHo02bNkhKSkJ0dDTs7e11bKRsuH369CmCg4Nx4cIFnDp1Cr6+vggKCoKBgQG8vb3h6OhYUK/zXsO2KBiUen3lypW4fPkyAGDNmjVo3LhxpvMZyn2//fYb9uzZAwAYOXIkKlasqBPufWgrWMDOMAzDMAzDMAzDMAzDMAzD5AppBevPnj1DeHg4rl69ihMnTsDb2xs3btyQ4e3s7FCjRg10794d5cqVQ8eOHWFkZAQzMzOd56YVfrJ4PWukpKQgLi4OSUlJCAsLA4AMRbpBQUEYPnw4PD09kZCQAGtra2zZsgWVKlWSYfft24dZs2bh6tWrKFSoELp06YK4uDiEhobi2rVr6NixI06cOAEHB4d8fc93GWtra3Tt2hWHDh3C/v37Ua9ePXz11VfpNmUoRERE4Pjx41Cr1dBoNLCzs9O5riw8sS2yT26VC41GI4W+d+7cwYkTJ7B+/Xr4+Pjg+fPnAFKFkLVr18a0adPg6OjIXtrxOg9rL6K+SdiviKmtrKxw4sQJjB07Fn5+frh58yYqV66Mjh07YsKECShevHi6xVltIfbp06cRGxuLdu3avReLuHmNPlto/63k1Z9//hkBAQEoXLgwVq1aBXd39ww3kml/vnjxYgQEBEAIgU8++STd85mso2+TDaCbngYGBujYsSPGjRuH+fPnY/fu3ejatSvc3d3zM6ofBFWqVIGnpydevXqFcuXK6Qg/uFy8G6RtT5WNszExMThx4gRCQkKwbds2PHnyREewXr16dbRv3x7dunVDxYoVUaNGDb1eKnnTWdZITEyEoaEhTE1NUbNmTQDp0067/Ny8eROrVq2Smy/79u2LmTNn6jwzMDAQ48ePx/Hjx5GUlAQgdUPnsGHDMG/ePBZOpyEhIQFWVlaIjY3Fxo0bMXHixHRj6bT4+/sDSK3PMts8GBQUxLbIBrlZLtK2/0o9l5ycjFevXqFEiRJ6n/mxY2FhAQcHB/j4+ODEiRNwdHREoUKFkJiYiGHDhmHbtm0oWrQoVqxYgSJFinDavQMoJ6UZGBigRIkS6fpTwcHBiImJwf79++Ht7Q0PDw9EREQASO1HlSxZEl27dkXFihXx8OFDFk3nALZF/kNEePLkCU6dOgUA6NSpE1q3bg1A/zhBu85at24dpk2bBgBo2LAhOnToAOB1X1kJl5iYCAMDAzmH9a71dVnAzjAMwzAMwzAMwzAMwzAMw+QKQgjExsbip59+wuPHj+Hp6Yng4GDpabJYsWJo1KgRmjdvjqpVq6JZs2YwNjZOd6Q2Eel4k3mXJtXfJ0qWLImePXti7dq1CAwMxMuXL2FpaZlOOHr9+nX06dMHwcHBSElJgZWVFQ4dOgQXFxe56BEQEIA//vgDV69eRevWrTFq1Ch06tQJycnJCAwMxIABA3D16lXs3bsX48aN40VgvF5U6tixIyZOnIgpU6bgf//7H6ysrNCvX790gqmnT59i+/bt2LhxIzQaDZo2bYpPP/003XPZFjkjN8qFthjx7NmzmDhxIu7du4cnT55IT2RmZmbw8/ODn58fTpw4gcOHD6NatWrv3ELh+4KyqcPS0hJr1qyBRqPB48ePYW5ujmLFiqULHx0djZs3byIkJAQ7d+5EaGgorl+/DgAYPHgw1qxZk9+v8F6h1Bt//fUXTp48CWNjY3z55Zdo0aIFAP3tsna7vXLlSvz9998QQqBr165wdnaWz+Qy8HbExMTg1q1bcHd3h5GRUaZhLSws0Lx5c/z666+4ffs2rly5kqmAnW2RMWXKlAGgKxDJy3LBvB1KG3z//n34+Pjg5s2bOHz4MO7cuYO7d+/KcE5OTmjVqhU+/fRTlC5dGi1bttQr2k1bFrhcZI3IyEgkJSXB1NQURYsWBaCbdtrpevHiRaxatQrr1q0DkHpyypQpU2BoaCjHGxcuXMDEiRNx+fJlFC1aFA4ODtBoNLh58yYWLFgAIQTmzp3LZUYLJycn9OjRAwsXLsTWrVvRtGlTNGrUKF047U0fp0+flh6qS5curRNOsRnbIvvkZrlQxOspKSnYtm0b9u3bh3PnziEpKQlRUVHo0aMHGjVqhCFDhvCGAi3Kly+PTz/9FNOnT8f3338PDw8PaDQaPH/+HNevX0eRIkWwePFi1KlTh9OsAEk7NlDyu1qtRmhoKJ4+fYpdu3YhLCwMhw4dQlRUFBISEqBSqVCsWDH06dMH1apVQ7NmzeDo6KizoYN5O9gWBYsQAg8fPoSXlxcAoG7duhmeCKRdZ23btg3/+9//AACFCxdGx44d5cYptVqNxMRE+Pr6YtOmTbh16xaSk5Ph7u6OIUOGvHsOFohhGIZhGIZhGIZhGIZhGIZhcpGRI0eSEIKMjY2pZcuWNGnSJNqzZw89ePCA4uLi0oVPTk6mx48f0+XLl+np06cUHx8vP2dyxt9//01CCBJC0JIlSygsLExeu3z5Mi1btowsLCxkmPLly9ONGzeIiEij0VBKSgoREa1bt45UKhWVK1eODh06JJ+RmJhIRET9+vUjIQSNGDEiH9/u3Uej0ci/v/vuO5nOX331Fe3du5c0Gg1pNBo6duwYffvtt2Rubk5CCKpevTrt3r073TOI2Ba5QU7LBVFqev/zzz+kUqlkuOLFi9OsWbPov//+oxs3btCKFSuoSZMmJIQgR0dHCg4OLpD3/ZBISkoiIpJ1k8KjR4/owoULtHz5curRowc5OTlJuyg2bNWqFS1evJj++OOPgoj6e8mkSZNke378+PEMw2nbY+/evVSnTh0SQpCBgQH9+eefeu9JTEykhw8f6tRxae36sRMfH0+rVq2iKlWq0OHDh7N0T1xcHNWqVYuEEDRo0KAspSnb4u3Iy3LBZM69e/doy5YtNHPmTGrTpg2VKlVKp66vWrUqde3alf788086fPgwxcfH6x17KG0JkzNCQ0OpcuXKZGBgQKtWrZJjt5SUFJ1x3LZt26hbt27STm3btqXTp0/r1DnPnj2j+vXrkxCCnJ2dycfHh2JiYujBgwe0ZMkSUqvVZG1tTWfOnMn393zXCQsLowYNGpAQgpo0aUK3b9+WaZt2PD1ixAgSQpCRkRGNHDmSiF7XVco9bIuckZvlgoho586dNGjQIJ26zsTEhIQQchzy9ddfy/Afe/utnX7ffPMNqdVqUqvVMu3s7Ozo4MGD9OrVqwKM5cdJ2rpGm8ePH9OlS5doxowZ1LdvXypcuLDM5yYmJmRhYUGff/45/e9//6Nr167RgwcP0j1Dea6+5zO6sC3ePa5fv06mpqZUrFgxunz5MhGl769qp+f27dupSpUqZGBgQEIIGjhwoE7Y2NhY+vXXX8nd3V2n/RBCUKlSpej27dtE9O60GeyBnWEYhmEYhmEYhmEYhmEYhskV6P89waxYsQK9evWCnZ0dKleurBNGo9Ho/B8REYHRo0fD19cX/v7+qFSpEpycnPD777/D2tr63fII8x6h2GLQoEEICAjA3LlzMWHCBPz3338oWbIkhBA4f/48njx5glevXsHW1hY1a9bEggULUKVKFR3PcAkJCdiwYQOICL169UKbNm0ApNrS0NAQwGuvcikpKezRVQuVSiXz8Jw5cwAAc+fOxaJFi7Bo0SJUq1YNAKSX76SkJFSpUgXDhg1D06ZN5TMU2BY5I7fKRVRUFNatW4cJEyaAiGBjY4NatWph2bJlcHBwkN/n7OyMZs2aYfDgwbh06RKWLl2K+fPnw8DAgO2SBUiPR0TFG9yDBw8QGRmJgwcPwsvLC6dPn8a9e/dkOGtra7Rs2RKtWrVC9erV0bx5cwghYGZmlunzmVQ0Gg0SExNx4MABAEC3bt2kl+m0aKfjiRMn8Pvvv+Py5csAgBEjRmDo0KE6z3306BGmT58Ob29v3Lp1C02bNkWTJk3w9ddfs/fQNLx69QqnTp2Cv78/Vq9ejVq1aklvrhkRGRmJiIgI+XdGacm2eHvyolxktZ1mW6RiaGiIUaNG4cWLFzA0NETx4sXRq1cvNGjQALVq1UKtWrWgUqlkn0ghOjoaQggIIWBubg4DAwPuI+UCRYoUgZubGwICAvDPP/+gbt26qFy5MkxMTOSJWtOmTcOePXvg7e0NAOjSpQu+/vpr1KlTRyf9J0yYgIsXL6JcuXI4ePAgSpUqBQAwNzdH9+7dsXbtWty8eRNPnjwpkHd9lyldujTWr1+PFi1a4MyZMxg+fDjGjRuHJk2aoGTJkkhISEBsbCymTJmCtWvXQggBW1tbtG7dGgBk3aLYg22RM3KzXMyYMQM7d+7ErVu3AACOjo6oUqUK2rVrh+fPn8PPzw8bN27EggULoFKp8PPPP3/0bYX2+Hvu3LmoV68ewsLCEBISAldXV7Rs2TLdyQNM/qDkTY1Gg+joaFy5cgVXrlzB5cuXceHCBdl/NTAwQNGiRdGhQweUL18eXbt2RdGiRVG+fHmd5yl9I+U3n+CYddgW7x5GRkZ49eoVEhIS4O/vj1q1asm5DwUlPTdu3Ihp06bhwYMH0Gg06NSpE9auXSvDvXr1CsuWLcOiRYsQGRkJZ2dnfPHFFwgNDcWlS5dw7tw59OjRA8eOHXtn6kMWsDMMwzAMwzAMwzAMwzAMwzC5ghBCLhY2b94cQPqjaBUxekpKCjw8PDBx4kTcunUL1tbWcHR0RHJyMnbs2AE/Pz+cOnUKxYoVY9FONtC2xZw5c2BkZITFixfj3LlzSElJ0Qlbr149fPbZZ+jRowfs7OzSCXpUKhXi4uIAAFZWVgCApKQkKQ7y8PCAh4cHVCoVOnTowItUaVCr1Tq2sLW1xebNm+Hp6QkfHx+dsPXq1cPo0aPRoUMHWFpapnsW2yJn5KRcKPe9evUKf/31FyZNmgQiQqVKldCjRw9MnDhRZ9MNEUGlUsHR0RFNmzbFpUuXcPnyZRgaGnJ99gaUOkg7nUJDQxEZGYk9e/bg7t27OHToEJ4/f46EhAQAQLFixdClSxe4uLigcePGqF69OkqUKKFTBtJuoGI7ZIxKpYKxsbFcNC9WrBgAIDk5WWchXbu9OHbsGFauXCnFvb1798bixYtl2Pj4eBw6dAjz58+Hp6cnDA0NkZSUhMOHD+PAgQOIiIjAokWL2C5amJmZoUGDBjh8+DA8PT1x+vRpdO7cWW/drtji9u3bICIAQIkSJfT2odgW2SO3y0ViYiKMjIzkfZcuXcKdO3dw9uxZGBkZwc3NDZUqVULdunV5Q8H/U7JkSZw5cwb79u1Ds2bN4ODggOLFi+uESUxMlH+fOXMGp0+fxn///QeNRoMKFSqge/fu6NevH1QqFYvYc4iFhQXmzJmDixcv4uzZsxgyZAjc3NxQr149XLhwAUFBQThz5owMP2TIEEyZMgWVKlXSyctRUVG4ffs2zMzMsGLFCpQqVUqnXJmamiI5ORlEhOfPn+f7e74PVKhQAUeOHEHr1q1x/vx5+Pv7w9raGo0bN0ZgYCBevHgBLy8vqFQqmJubY/LkyejatWu657Atck5ulYtRo0Zh8+bNiIyMBJC6+enTTz+Vm5wB4OXLl6hXrx7Gjh2L5cuXo379+ujcuXP+vew7ivb4W18+57q/4Lhx4wb69euHmJgYnc3HdnZ26NatG2rWrInWrVvD2toaDg4OGfZ9tG34sfeNsgvb4t2BiFC2bFm0a9cOBw4cwLVr19C1a1eYm5vrhBFCYOHChfjmm2+QkpICIkL79u2xe/duAKnCdWNjY5w9exYbNmxATEwMRo4cieHDh6Ny5cpITk6Gj48PPv30U4SEhODKlSssYGcYhmEYhmEYhmEYhmEYhmE+PNJ6S0/r0U1ZSPTx8cH48ePh7e0NNzc3bNq0CSVLloSlpSUGDhyIDRs2YNq0aVi6dGk6L4pM1tBeuJ0xYwZq164Nb29v7Nu3D0IIuLu7w8HBAcOHD5eiWkV0q42hoSFcXV1x4cIF+Pv748WLFyhSpAgA4Pz581i1ahXCwsKkp2MmPdq2GDt2LFq1aoWbN29i+/btePnyJSpWrIgyZcpgwoQJMDMzy3Dhj22Rc7JTLjQajbTJxo0bpXi9evXqGDx4MIYOHYrChQsjJSVF1oFKeAMDA3kSxdWrVxEYGAhHR0de3M0EjUaDmJgY3LlzB/v370dQUBD27t2LxMRExMTEQK1WQ61Wo3PnztITnK2tLcqUKaNXsK4s9vJpHllH8VRcoUIF3L59GxEREelEutonpOzYsQN//vknDh8+DADo3Lkz5s+fD7VaLe87c+YMpk+fjtu3b6NKlSqYPXs2oqOjERoaihkzZmDJkiWoXLkyRowYUSDv/C5iaGiI3r174/Dhw9i3bx/mzZuHihUrwsnJSYZRvLkqeX/NmjXSa2L79u116hpFYMK2yB65WS6SkpKkeP3EiRM4evQo5s+fD1NTU7lRDQDKli2LQYMGYfr06Sxi/3+qVasmT7ABXudrZeOGkq6Kd8p79+6BiFCkSBHcunULu3btwsOHDzF58mQWMOYCDg4OOHz4MLp27Yrr16/j+vXrWLdunWyDjYyMUK5cOQwcOBDfffdduvuJCPfu3cONGzcAQI77DAwMZPm6c+cOnj17huLFi+vUf4wulStXxsmTJzF27Fhcv34d/v7+CAgI0CkblStXxqhRozB8+HAAusJDtkXukdNyMWTIEKxbt07abv78+Zg8ebK8rmyAsrKyQrdu3bBjxw54eHjg5s2bLGD/fzLr93PdX3DUqFED9evXx8GDB9GqVSu0adMGbm5ucHZ2TrchDUjte/n4+CAsLAyhoaGoVq0aXF1dYWFhka4PxrwdbIt3B+WEIEXAvmjRItjZ2aF9+/aoVKkS4uPjsXv3bhw/flx6Wjc0NESPHj2wadMmAKkbao2NjQEAmzdvho+PD1q0aIFRo0ahYsWKcrzo4uICOzs7+Pv7IyQkpKBeOT3EMAzDMAzDMAzDMAzDMAzDMPlIYmIiNWjQgIQQVKdOHXr27BkRESUkJBAR0ZMnT6hIkSLUtGlT0mg0BRnVD4K0aZiUlETJycmZhknL1q1bSQhBQggaOHAg/frrrzRlyhRyc3MjIQRVqFCBdu3aletx/9BISUnJcRi2Re7wNuVCscnRo0dl2letWpUWL15M0dHROmH03b906VIyNDQkS0tLunPnTpbywcdKXFwcjRkzhgwMDMjQ0JCEEGRoaEhWVlbUvXt3mjRpEp0/f54CAgLe+CxuP7KPkkcXLlxIhoaGVLVqVbp+/bresPPnz6fq1avLstGtWzfy9fXVCZOQkEDNmzcnIQS1bt2aQkJC5LXo6GgaN26crNOY9ISEhMg0btq0KV24cIFiYmJ0wiQlJdHQoUNJCEEqlYq6du1K9+7dS/cstkX2ya1yod3W/PTTT+Tu7i7DWVhYUPny5alBgwZUvnx5UqlUJISgSZMm5fn7fUhs3ryZTE1NSQhBvXr1on/++YceP35M27dvJysrKxJCcF8pl7l37x7NmjWLmjdvTvb29lS1alWqU6cO/fnnn3T+/HkZTl/bHBUVRW5ublSoUCHavHmzTpgnT55QzZo1ZZ0VHx+fL+/zPqPk9d69e1ONGjWoUqVK5OrqSosXL6YzZ87IcGyLvCer5SIxMVH+PXbsWNkHNjExoVWrVr3xewYPHkxCCGrYsKGcU2GYdw3t/k94eLjOmFj5OykpSX52//59WrFiBZmbm5NarSYhBBUqVIiaNWtGjx8/TvdMJuuwLd4ttNP/22+/leMCR0dHatCgAVWpUoUKFy4sP69Rowb973//k/do2+rhw4fk4OBAKpWK9u7dK5+vtOfx8fHk5OREQghavnx5Pr3hm2EBO8MwDMMwDMMwDMMwDMMwDJOv7Nu3jwwMDKhUqVIUFBRERLoT7levXiW1Wk0lSpSgBw8esAjxHWHZsmVywUT5MTY2poYNG9J///0nw2k0GrkAo28Rixe2XpNdITPbIv/x9vYmBwcHEkJQmTJlaNasWRQVFUVEmdvx6dOnVKNGDRJCUL169Vi8ngW8vb3J3t6eOnXqRFOnTqWzZ8+Sv7+/ThjtvOvr60tHjhyhb7/9lv755583irOYrHP//n2Zfxs3bky7du2i0NBQCg8Ppx07dtCnn36qUw99/vnndP/+fXm/kt8XLFhAQggqWbIkBQYGEpFuu79w4UISQpCLiwvFxMSw3fTg7+9PdnZ2JISg6tWr09ChQ2nPnj105MgRWrBgAbVv316K16tWrUqbN2/W+xy2Rc7JSbnQTs+hQ4eSkZGRDPfZZ5/RX3/9Rc+ePaOkpCTy9vamhQsXShH7okWLCuiN3y+uXbsmhTkjR46UYw2FP/74g4QQNGPGjAKK4YeLIpAKDQ2lyMhI2U9SyKg+efXqFX322Wdyg+C6devo4MGDtGHDBnJxcZGfh4eHZ/ocJj3Pnz+nFy9eUGRkpM7nbIv8403lQrtPO3/+fLKxsZEbONesWSOvZZbWvXv3lmMNFrAz7zJp83FG+To4OJjGjx8v+0AdO3akIUOGUMOGDaWA98WLF/kQ4w8XtsW7RdoNrmXLlpVpLoQgMzMzEkLQ+PHj6dChQ3rvI0rdxFaiRAkSQtCGDRuI6LVt4+Li6I8//iAzMzOqWLEi3b17Nx/eLGuw/36GYRiGYRiGYRiGYRiGYRgmXwkKCoJGo4GtrS1sbGwAQB43q9Fo4OnpCSJCs2bNYGdnV5BRZfD6aPkxY8agRIkSOHbsGHx8fGBgYIB+/frBzc0NNWvWBAAkJSXJ4+YB4NWrV3j+/DkuXbqEa9euoVu3bnB3dy+oV3nnEEK8VXi2Rf6TkpICjUaDrVu34tmzZwCARo0aYfTo0bCwsAARZWjH5ORk7N+/H0+ePAEAuLm5QaPRQKVS8dH1mVCtWjXcvHkTVlZW6a6lpKSAiKBWqwEA27Ztw48//oigoCAkJCQAAMzMzDBr1ix89dVXUKlUmdqIyZxSpUrh33//RYsWLXD27Fl4eXnJ/JucnIyoqCgIIWBtbY1BgwZh3rx5Ovcr6R4eHg4A6N27NypWrAiNRgMDAwMQETQaDcLCwgAATk5OMDc3z9+XfE+oVKkSPDw80KtXL3h5ecHHxwdr1qyBWq2GgYEBXr16BSEEnJ2dMWbMGPTp0wcA0uV/tkXOyW650Gg0su7q06cP/v33XwghIITA9OnT8b///Q/A63JTrVo1lCtXDo8fP8b8+fNx4MABDB48GJaWlgXz4u84Sl6/efMm/P394eLigmHDhqFChQoAgISEBJiYmMh8fe3aNW4f8gCVSgV7e/sMr6WFiGBkZIQVK1bAz88PN27cwIgRI5CQkABjY2O8evUK1apVw7Zt22Bra6tTjpS/lf6x9jM/drsqaVCkSBG919kW+UtWysWpU6ewc+dOOW5YunQphgwZAgDp0lUbX19f+Pn5QaVSwdXVFcbGxnnwBgyTO6TNx2n/V+qMzZs3Y9myZShUqBCmTZuGKVOmyDCffvoptm3bhjVr1mDSpElcz2QTtsW7hVqtlm3p1KlT0aJFCwQFBcHT0xNJSUlo3LgxypUrh0aNGsl7UlJSZDusYG5ujtq1a2P//v24cuUK2rZtC2tra8THx2P79u1Yvnw54uPj0aZNGxQtWjS/XzNDWMDOMAzDMAzDMAzDMAzDMAzD5CvFihUDkLpAEhcXBwsLCwCpCyTnz5/Hzz//DCJC3bp1CzKazP+jUqnkonmvXr3QtWtXEBGSkpLSidvi4+MRExODAwcOIDAwEPv378fdu3el8HfJkiW4c+cOihcvXhCv8t7Dtsh/VCoVXr16hT179iA6Ohr29vZYsGABihYtmqGYRPn83r17WLt2LcLDw2FkZITBgwfLzToAi3oyQxFoaoujgFRhp5Lma9eulcKe5s2bo0qVKrC2tsbSpUsxefJkFCpUCMOGDeM0ziGOjo7w8PDAhAkT4OPjg5CQEACpG89MTEwwdOhQNG/eHN26dQOgX2QVHx8PAIiIiJAiUiDVnj4+Pjh8+DAAoF69ehk+g0m1xb59+7B8+XKcPHkSly9fhkajgUajAQAMGzYMHTp0QMeOHQGwLfKSty0XiYmJMDIyAgB8/vnn+Pfff6FWq2Fra4tp06Zh2LBher/HzMwMtWrVAhHh2LFjCAkJQY0aNfLlHd9HUlJSsHv3biQnJ8Pd3V2mVXJysszrV65cAZC6QYDbh9wlO+kphIBGo4GVlRVOnjyJ8ePHw9fXF1euXEHt2rVRpUoVzJs3D0WKFEknklb6B5GRkbh79y78/f3Rp08ftivYFu8Sb0oD5fru3btx8eJFAMCPP/6IESNGAMi4HVbGEWfPnsWtW7cAAJUrV87NqDNMviOEwKlTp+SmvunTp+Orr74CAMTGxsLc3Bzjxo3Dtm3bcOfOHXkPk/uwLfIf7Xa1fv36qF+/Pvr3759heH1tg5mZGXr27In9+/dj6dKlCAoKQoUKFXDjxg34+fnhyZMnaNeuHb766is5F6+P/J6rYgE7wzAMwzAMwzAMwzAMwzAMk6/Y2trC3Nwcly9fxj///IP27dtDo9Hg/PnzmDNnDu7fv4927dphzJgxBR1V5v9RqVTSo7fi1dvIyAgvX75EQkICjh49inv37mHHjh14+PAhIiIi5L316tVDmzZt0LVrVxQtWlRuYGCyB9si/zlw4ABu3rwJc3NzzJkzB6VKlUonrFbQ/vy7776Dh4cHDAwMMH36dNSuXRsajUaKsFNSUpCYmIjAwECULFkSpqamsLCwYMEoXi9+p01j5fNdu3ZJ8fqkSZMwZswY2NvbQwiBxo0bo3Xr1vj999/RpUsX2NjY8GJ6DqlQoQI2bNiAR48e4ezZs0hMTIS9vT0qVqyoI5bKKO86OzsDAK5fv44LFy6gfv36SE5OxtWrV/H111/D19cXdevWRd++fQHoX4xnUildujRmzpyJGTNm4PDhw4iOjoaFhQXKlSsHFxcXmdfZFnlPVstFUlKSFK+PHj0amzdvhkqlQrly5fDDDz9IYUpamyntSaVKlVC8eHFERkbKkyaY9Cje7BUxjtJHIiK5eeyPP/7A4sWLAQAtW7YskHgy6VG8jlpaWuKPP/5AcnIyQkJC4OjoCACy/Ch9gidPniAqKgoHDhzA7du3cfLkSdy7dw/Jycm4fPkyfv311wJ7l/cdtkXBcPz4cVk39evXD+PHjweQ+SYyIQTOnTuHsWPHAkg9IUppT4hIhmGY942dO3cCAHr16iUF08nJyXLDvqenJwDg6dOnSElJAcD91byCbZH/5CT9FNH5wIEDER0djXHjxuHAgQPyur29PQYPHozvvvsO5cuXl22Mvrktpf3IaN4rt2EBO8MwDMMwDMMwDMMwDMMwDJOvtGzZEmPHjsXcuXMxZcoULFu2DDExMYiPj0d8fDyaN2+OnTt3wtDQkIWcBYiS9soiiCIECg0NxdmzZ+Hn54e9e/fi+fPnuH//vryvUaNGaN68OXr27AlbW1u4u7vreJ1m3h62RcGibAJITExExYoVAaQXVgO6RzgPHDgQ27Ztg0qlQocOHdC+fXsArz2IBwYGYsOGDTh48CB8fX1RqlQpVKlSBXPnzkXVqlXzbaHwfSQiIgK//fYbAGDkyJGYMWOGXEQnIrRq1Qqurq7w9/dHTEwMSpQoUZDR/WCwsrKClZVVOu+e2t7ZMmqv+/fvjw0bNsDT0xODBw9GlSpVEBsbi7t37+LBgwdwdHTEf//9h2LFiult97W/g08uSBUQCiHQpUsXnc8VwRrAtsgv3lQuiEi22UuXLsXmzZsBADY2Npg2bVqG4nXgdTtz8uRJPHnyJK9f5b1Hyf8VKlQAAFy9ehVeXl6wt7eHlZUVFi1ahB9//BEA8L///Q+tWrUqsLgy6VH6uWq1GkZGRqhevbq8FhYWhri4OOzduxd3797F/v378fjxY8THx0OlUqFw4cJo3749qlSpgqpVqyIuLg5mZmYF+DbvN2yL/ENpK7y8vGBoaAhjY2O0bdtWpllm8yC3bt3ClClTkJiYCEtLS3zyySewtLRM1zYnJiYiOTlZxw7cfjPvKkQEPz8/AEDRokUBpAqmlTkMf39/nDx5EgDQvn17nivMQ9gW7x9CCDmmGDNmDCpWrIirV6/izp07sLS0xGeffYZy5cqlO4VRGXM8ePAAN27cwPXr13Hq1Cn89NNP+XYyKs9SMgzDMAzDMAzDMAzDMAzDMPmGMpk+Z84cGBoaYt26dYiIiEBSUhLc3NzQsGFD/PrrrzA0NGQBZwGjLGr7+fkhICAAZ86ckWLpqKgoGaZmzZpo1KgRunfvjtKlS6NevXp6bcebEbIP26JgUMQdisfb6tWro06dOjrXtFHSdPDgwdiwYQNUKhVcXV0xYMAAuLq6yjC3bt3CkCFDcO3aNRARzMzMEBYWhsDAQFy8eBEeHh6oWrUqi0syIDIyEjdu3IClpSW6dOkiBTlKXn/69KkUTLFoKu95Ux7VaDSwsLDAwYMH0aVLF1y8eBH37t0DkCribd++PVavXo2SJUvK0yXS1lFCCGlTRRT8MZeNjN6dbfHuoKSJ8tvb2xu7d+/Gy5cvAQBTp07FwIEDAWTeJj979gznzp2DSqVC5cqVUaZMmbyP/HuKktaDBg3C33//jatXr+Kzzz6DsbExLC0tcerUKQDA8OHD0a9fv4KMKoPX/Sgl/2ufvBIZGYmwsDAcOnQIQUFB2LdvH+Li4mT5MTAwQKdOneDg4IBu3bqhRIkScoMh8/awLQoWIsLevXuRlJQEFxcXeQJKZvj5+WHGjBnw9vYGALi4uGDUqFFywxSQKkTcu3cvtm7dioiICNSuXRu1atXC+PHjuf1m3lmEEHB1dcWxY8cQFxeH2NhYuVH5zp07+OOPP7B//35UrVpVjq+ZvIFt8X6inPSnUqnQtm1btG3bNl0Y5XpwcDAiIiJw+PBhXLt2DZcuXcKLFy9kuMjISJw8eVLaPS9hATvDMAzDMAzDMAzDMAzDMAyTb2gfTzpz5kx0794dUVFRiI2NhZOTE+zs7OSEO4vX85/k5GTcuHEDz549w86dOxEYGAhPT0/ExcUBAExNTVG5cmW4u7ujadOmqFixohT0KnZT/k4LC6bfDrZFwaOIOhwdHQEAwcHBuHz5MmrXri2FH0o4IsKTJ08wYcIEbNmyBSqVCuXLl8f48ePRrVs3+Ux/f3/0798fXl5eqFu3Ljp37oyWLVsiKCgIf/31F06cOIHhw4dj9+7dKFKkSP6/9HvAzZs38ezZM5QqVQrVqlWDEELHG9xff/2FwMBAuLi4wMDAgAU6BYxarUZycjKsrKxw4MAB7N+/H3fv3gUA1K1bF25ubihcuDAASOGVSqVCXFwcIiIicO7cOfj4+GDXrl1o2LAh1qxZw/bMJmyLguPo0aPSS+U333yD0aNHA8hYvK58fubMGezcuRMpKSmoW7cuSpUqla/xfh8pW7Ysjhw5gm7duiE0NBRxcXGyfZg7dy569eoFBweHAo7lx0takTQRISYmBj4+Prhy5QouX76MkydPIjw8HMnJyVCr1TA1NUWzZs1Qvnx59OjRAzY2NulOPUj7fObNsC0KHiXtTUxMAABVqlQBALmJTB++vr746aef4OHhgejoaJQpUwYbN25EsWLFZJijR49i9erV2LZtm/wsODgYGzduxN27d7Fo0SJuv5l3lqpVqyIlJQUbNmyAvb093N3dERoaipMnT2LPnj0wMDDAlClTUKNGjYKO6gcP2+L9g4h05t21uXXrFl6+fIkdO3bg7t27OHnypHSIYWJigtKlS6Nbt25wd3dH/fr1UaJEiXwRrwMsYGcYhmEYhmEYhmEYhmEYhmHyGbVaLRe09XnqUSbcmfxn69at6N+/vxRAW1hYoESJEujQoQNcXFzQqFEjODg4wNDQUMdGiYmJMDIykp/xBoScw7Z4d6hcuTKqV68Ob29vHD9+HE5OTjA1NZXCjxcvXuDcuXNYvnw5jhw5ApVKBScnJ4wfPx4DBgwAkOr5+NWrV1i0aBG8vLzQqFEjLFiwAK6urjAxMUGtWrVga2uLGzduICQkBFFRUSxgzwBHR0fY2NhAo9HA398fpUuXluLEFStW4NtvvwUATJkyJd3x2EzBYGBgAI1GA3Nzc/Tu3TvddWWB/caNG/Dz88PZs2dx8eJFhISESC9whoaGSE5OhoeHB5o1a5bPb/DhwLbIf+7du4clS5YAAFq3bo3JkycDyFjcqfSDr1+/jgEDBiA5ORkuLi4YN24cAOhs2NEHb9oBKlWqhCNHjuDKlSu4ceMGKlSoAEdHR9StW7ego/bREx8fD3Nzcxw/fhwhISE4fPgwfH194evrKzcGWltbo1WrVqhRowY++eQTlCxZElWrVpXPUMJpbyRU4DFk1mFbvDsULVoUAPDw4UMkJCRIQbuCUq/fuHEDM2bMwOnTp/Hy5UuUKlUKBw4cQOnSpWX7ffbsWcyfPx/Hjx+HjY0NRo8eDSsrK9y7dw8LFy7EkiVLYG9vj4kTJxbEqzLMGxk0aBB8fHzwyy+/YPbs2VCr1TJ/lyhRAjNnzsSgQYMKOpofBWyLdx9lPKHvFJU7d+4gLCwMO3fuREhICA4ePAghBJKSkmBubo5ChQqhb9++cHR0RPv27VGiRAlYWVnpPD+/xhUsYGcYhmEYhmEYhmEYhmEYhmHyncwWtD920U1B8vnnn+PixYtQqVSoUKEC2rdvj+LFi8PS0lJv+Hv37uHQoUO4du0aAMDJyQmff/45ihQp8kaBFZM5bIt3hypVqqB///749ttv8f333yMmJgYNGzaEnZ0dXrx4gYULFyIwMBD+/v5Qq9Vo0aIFvvjiCykOVTYRKEcwGxkZYdCgQXBzc4ORkZFcBHZ0dIQQAg8ePMCjR49QtmzZAn7zdxN7e3tUqFABFy5cwMyZM+Hv7w8DAwN4e3tj2bJlAIBp06bh888/L+CYMsDrRXXtjTSKZ9HLly8jIiICu3btgp+fHzw9PaUIzsLCAhUrVkT//v3RpEkTODs7w9HREYmJiQX1Ku89bIuCISYmRno3dHd3l0LFjMTrQgh4e3vjyy+/RExMDAoXLoyWLVuiQoUKACDbc41GA09PT4SEhMDAwABly5ZFvXr15KkgH3t/ulSpUihVqhS6dOlS0FFh/p/ExEQMHz4cR44cwdOnT+Xntra2qFevHtq0aYNatWrBxcVFR5CbFiEEe/fOIWyLdwOlrm7ZsiV27dqFu3fv4ubNm6hTp45OHS6EgIeHB8aMGYO7d+8iLi4OpUuXxvbt21G9enVpn5SUFGzcuBHHjx9H3bp18cMPP6Bdu3YAgLi4OKjVasyfPx8nT57EiBEjYGpqWlCvzjB6UfLy/PnzUbx4cRw8eBCBgYEwNDREz5490bx5c5mnmbyFbfFuo7QfSvublJSEhw8fwtvbG6dOncLt27dx6tQpeYJj4cKFYWdnh/bt26NcuXLo3LkzihQpghIlSug8V2nTlefn13hCkDLyZBiGYRiGYRiGYRiGYRiGYRjmoyUzkbOyiKEtXli3bh02bNiAEydO6IR1c3PDoUOHULx4cRY0ZBO2xbuDdrp9++23mD9/PoBUD8QWFhaIj49HfHw8gFQx4qRJk9C1a1fUr18/3f07d+5Ejx49UKZMGXh6eqJkyZLQaDTSU9apU6fQvHlzGBgY4MaNG6hWrVoBvPH7QUBAAJo3b46IiIh012bMmIFRo0bB2tq6AGLGpPUCp0BE8PT0xKNHj7B9+3Y8ePAAHh4e8rqtrS2KFy+O9u3bo2rVqqhfvz4cHBxkPacsonNdlnXYFu8Ge/bsQdeuXWFlZYVTp07B2dlZr8Bc+czPzw8jR47EhQsXkJiYiAYNGmDr1q0oVaqUDHvo0CFs27YNf//9t/zMysoKX375JebNm6fzPIZ5l7h9+zb69+8PExMTdO3aFQ4ODmjSpAlsbGxkfaKdd58/f45z587h9u3bqFChAuzs7NCoUSMAGZ9iwGQNtsW7Q0REBLp06YIrV66gSZMm+P7771G9enWUKlUKR44cgaenJ6ZPny7DOzg44MCBA6hcubLOcw4ePIgOHToAALZv347u3bsDeC1E3bJlC/r27YtKlSrhwoULfNoT806iPc/x4sULvHr1CgYGBjy2KwDYFu82wcHBuHz5Mvz9/XHs2DH4+fnh2bNn8nr58uXRvHlzVK9eHe3atYOpqSns7e3ldSJ6Z05AZXcbDMMwDMMwDMMwDMMwDMMwDMPoFUyn9eqjLF6tWrUK8+fPx7179+Dk5IRhw4bBzs4OGzZswO7du9GtWzccPHgQFhYW+foOHwpsi3cH7c0Cc+fORcmSJfHff//B09MTz58/BwA4OjqidOnS+O6779CkSRMYGRkBQLrFQDs7OxgbGwNIFarY2NhIO3p7e2PmzJkAUr3vs3g9cypVqoTTp09jxowZCAwMxJMnT+Ds7IwBAwZIsQ6TvyjiNW0vcAEBAfD29saBAwcQHByMCxcuSO/QxYoVQ5UqVdCzZ084ODjIRfW0p0wo5U8R0L0LC+zvOmyLd5Po6GgkJCQASH/akGKz27dvY9SoUbh27RoSExNRrlw5rFu3Tke8/u+//2LevHm4fv06AKBJkyZ49OgRAgICsGDBAgghMHfuXBavM+8kTk5OOHXqFIBUb6DaaNcxycnJ8PT0xNChQ+Hv7w8gtX9sbGyMH3/8ERMmTNDxEMq8PWyLdwdbW1ts3LgRLVu2xOnTp+Hv7w+VSgU7Ozv4+fkhNjYWQOpYombNmli1ahVsbW3TbRzw9fUFAPTo0SOdeB1IFTsCgLm5uRyTMMy7hlqtlvWJlZWVrFe4jsl/2BbvNhs3bsSMGTPk/05OTmjZsiWaNWuGunXrwsHBAVZWVunsFRMTA2NjYxgYGKRzjlFQsICdYRiGYRiGYRiGYRiGYRiGYRi9aC9yKIseZ8+exZo1axAWFoZ+/fphzJgxcHd3BwB0794dLVq0wNmzZ3Ht2jU0bdq0oKL+wcG2KDjUarVc1JswYQJ69uyJ+/fvIyIiAklJSWjcuDHMzMxgaWkJ7YOP0y7qWlpaokyZMggKCsL27dthaWmJ8uXLw9PTE7NmzYKHhwfc3d3xxRdfAGBvlm+iQoUKWLNmDQwNDZGQkAADAwMYGhoWdLQ+WlQqFUJDQ7F9+3aEhobiwoULuHr1qrxuY2MDZ2dndOjQAeXLl0eHDh1gYmKSzvtn2jJU0Ivp7yNsi3eLunXrolq1aggODsbt27dRq1YtCCF0xCIqlQqXL1/GwIEDERQUhOTkZNjY2ODgwYOoUKGCPJnl/PnzWLp0KW7cuIEOHTrgiy++QNeuXREaGoqDBw9izJgxWLNmDXr06IHatWsX8JszjH4UsXRaQZUilAOAXbt2Yfz48YiIiEDNmjVRq1YtWFhYYPny5fjqq69gamqK4cOHs4Auh7At3h0cHR1x4sQJjBgxAgEBAXKsodCxY0d06dIFPXr0gJWVlV7BYVRUFADg0aNHiIqKgrm5ubSlv78/Tp8+DUNDQ/Ts2RNmZmYsQmXeWZR8qZ0/Oa8WDGyLd5cffvgBJiYmKFmyJCpUqAAXFxcdxxUajQZAqr2eP38OPz8/rFixAqGhoTA3N0eNGjXw9ddfo2jRogUuYmcBO8MwDMMwDMMwDMMwDMMwDMMwb0RZpNq3bx+uXLmC2rVrY9y4cXBzcwOQ6sWnUKFCqFu3Ljw8PHD37l0WTecRbIv8R9v7WKlSpVC6dGm94TJbzK1SpQomTZqEkSNH4ueff8Z///2HokWL4uLFiwAAV1dXjB07FnXq1AGg692Yxez6MTQ0hBACpqamSElJKejofPQkJSXhm2++QUpKCoyMjFC/fn3Uq1cP7u7uaNSoESwsLNKJpJOSkpCUlITIyEgUKVIEJiYmAFLzPIsjsg/b4t3BzMwM1atXh4+PD9asWQN3d3dUq1ZNnrbi7++P8+fPY9SoUXj16hUAoGLFiti3bx8qVaoEjUYjwx45cgTnz59Hw4YN8c0336BRo0YAUr3ytm3bFhUrVpTCRxawM+86GZ1EcPPmTUycOBERERHo0qULtmzZIr1Ft2jRAh06dMDKlSvRvn17lC5dmuunXIBt8W5QsWJFbNmyBcHBwTh27BiSkpJQqlQp2NnZoUOHDjJcSkqKXqGhk5MTjIyMEBYWBi8vL9StWxdqtRqXLl3CypUrcfToUVSoUAHNmjUDwCJUhmGY9xVlc+v/tXfnUVXX+R/HX5ddBL2yJCgiEFowio5Lgo0rTm6hZlqa5VZaTtbJpW0aR9Ms08amrFNOpVYzk0tqbuESbrjlnqImLiyBLCIii8Jlub8/PPcmCepvUq7A83EOp9v9fL+f+/7ywfvlcl/f933llVeuG7OE0S1/P0pJSdG8efO0dOlSJSUlWT8xcOPGjYqOjlZMTIy8vLxs+jcnAuwAAAAAAAAAAOCWnD9/XkuXLpUkPfvss9bAdGlpqdzc3GQ2m7Vv3z5JsgbfcGewFlWvou5jt8oSfn/22WdlNps1bdo0xcfHW8cff/xxjRw5Ut26dZOTk5P1Tcffvvlo6axYr149m3fJuhtcuxYE/G0vODhYp0+f1sGDBxUWFiZ/f3/rG+TSr13gJKmoqEjx8fF69dVXlZycrKSkJIWHh2vo0KEaPXq07OzsuHDjd2At7h7u7u565513tHfvXu3atUsjR47Ugw8+qPvvv1+nTp3Srl27dPjwYZWUlMjb21tt2rTRxx9/rKCgoHLP86mpqfrggw8kScOHD7eG10tKSuTo6KiAgADVr19fklRQUGCbgwV+Bzs7O+Xm5mrMmDFKTU1VZGSkli9fLjs7OxUVFcnZ2Vm9e/dWx44d9fPPP6uoqIgA7h3CWtiOl5eXvLy81KFDh+vGLK8nKjsf9+rVS+3bt9fOnTs1YsQItWvXTmVlZTp69Kji4+NlNBo1Z84cRUREVLg/53oAqB4sF7dWxPLawWAwKDMzU7Nnz9aCBQtUp04dDRkyRC+88IKcnJz03nvvacmSJRo2bJi+++471alTp6rKvw4BdgAAAAAAAAAAcEvMZrPy8/MlXe0oKv3a+aeoqEiffPKJtm/friZNmqh79+62LLXGYy2qF4PBYA2FPPfcc4qIiFBaWpouXbqkevXqqXfv3tZQivTrm465ubnKz8/X+vXrdfToUcXExCgrK0tr166luy7uSgEBAQoICJAka1d8y8+25ec6Oztby5Yt08yZM5WSkiJvb2+5ubkpJiZGMTExys7O1uTJkwlR/U6sxd0jKChIGzZs0IABA3T48GEdPnzYOma5QKBDhw6KiorS6NGj5ePjc12H3StXrshkMsnd3d0abLSc981ms5YtW6b9+/fL2dnZelEbUN2kp6crLS1Nvr6+mjt3ruzs7FRcXGzt+n3ixAklJiYqLy9Ply9ftnG1NRtrcfe50UUClouY16xZoz59+mjPnj1KSEiQJDk7Oys8PFxvvPGGtZO75feCay9S++25/trXJgCA6sPyvB4dHa1ly5bJ3d1dEyZM0DPPPCMPDw9J0n//+1/Fx8frwIED+uWXX9S8eXOb1UuAHQAAAAAAAAAA3BI3Nze1adNGMTExOn78uPLz8+Xm5qbi4mJ9/vnnmj9/vhwcHDR69GgZjUbe9L6DWIvq59qASKtWrdSqVaty4waDQRkZGSoqKtK6deuUmJioVatWKT093dp53c3NTQEBAfr2228JsOOuZwlCWZ57zGazJGn16tWaNm2aMjIy1K9fP82dO1dGo1EHDhzQsGHD9Morr6h169bq0aOHzWqvaVgL22vevLk2bNigzz77TDt37lR8fLzy8vLUo0cPhYSE6KWXXpKbm5ucnZ0r7IJbv359BQQEKDExUYcOHVJISIgcHR0lSbt379Z//vMfmc1mPf744woICOC8j2rp559/Vmpqqtzd3a0XcFh+zs1ms7Zv366srCx16dJFgYGBtiy1xmMtqhd7e3uVlJTIaDRqw4YNWrJkiRITE3Xx4kX16dNHwcHBuu+++yRd32k9LS1N6enp2rRpk3bv3i2j0agvv/yScwgAVFOW5/jPPvtMGRkZGjFihDW8XlZWppKSEjk5OSkwMFCHDh3S+fPnCbADAAAAAAAAAIC7n6urqyIjI7Vx40a99dZbOnPmjJo2bardu3dr//79MplMevTRRzV06FBrwAF3BmtR/VQUSCwoKFBqaqo2bdqks2fPavXq1crLy1NmZqZ1m969e6tp06YaOHCgfHx81KJFi6ouHbgtDAaDEhISNH36dGVkZGj06NH68MMP5erqqpKSEv35z3/WG2+8oQkTJujIkSOEpu8g1sI2mjRpojfffFMGg0HZ2dkqKSnRPffcc912FXW8NxqNatmypU6cOKHZs2erqKhIbdq00ebNmxUdHa1t27YpNDRUw4cPV926davicIDb7r777pOfn59KSkqUlZVlvb+goEA//PCDXnnlFZlMJnXv3l3u7u42rLTmYy2qHwcHB5WWlsrd3V1PP/20DAZDhRczJSQkKC8vT999953Onj2rjRs3Wl97ODk5yWQyaejQoerVq5ctDgMAcBscO3ZMBw8eVL169fTaa6/Jw8PD+ulNTk5OOn78uGJjYyVJLi4uNq2VADsAAAAAAAAAALgpy5vfL7/8ss6fP6/33ntP33zzjXW8cePGGjBggMaNG2fTzj21AWtRPZSWllo7VlqYTCadPHlSBw4c0N69exUTE6PU1FRdvnxZBoNB9vb26ty5s4KCgjR48GD5+vqqRYsWFYZP6K6L6mjmzJlKTEzUAw88oI8++kguLi7WN9Klq8EpSTpz5oykii/8wO3BWtiWh4dHuf+/0XO62WyWo6OjPv30U50+fVoHDx7Uiy++KGdnZ+Xl5cnZ2Vnt27fXlClT1L17d+s+0tWLFSpaO9YTdyNPT081adJEu3fv1htvvKGhQ4fKyclJhw8f1ldffaX8/HwNGzZMr732miR+F7qTWIvqxfL9t6zBtf9NSUlRWlqaVq1apcTEREVHR8tkMqmgoED29vZyd3fXU089pWbNmikqKkre3t7y9PS05eEAAH4ns9mswsJClZaWKiMjQ82aNbO+zktKStL777+v8+fPq3///mrbtq1NayXADgAAAAAAAAAAbspgMFgDubNnz1ZoaKgOHz6s5ORkGY1GPffccwoMDJS3t7etS63xWIvqwRJe37lzp5KTk7V+/XodP35cR48elclkkiTVr19f7du3V1hYmB566CE1btxYrVu3rnC+3waDCAmhOkpLS5MkDRo0SC4uLjKZTNag9Llz57R582ZJsn7SAAHbO4e1sI3Knrtv9JxuOe8bjUbFxMToxRdf1E8//aSUlBQ1adJEzz77rLp3767w8HBJKreW0tW1u3DhgrKysnTs2DENHDiQ9cRdycvLSwsXLlS3bt20c+dO7dq1y3oxhiSNGDFCCxculMRFGHcaa1E9WF4TWs4hpaWlunDhgk6ePKlt27bp6NGj2rhxo3JyciRd/RSvOnXqaMCAAQoMDNTAgQPl5eUlPz+/cvNeu9YAgOrHw8NDYWFhiouL0759+xQaGiovLy8dO3ZMn3zyiZYuXSp/f38NGTLE1qUSYAcAAAAAAAAAALfG3t7e+ib5yJEjJZXv8Imqw1rcvS5evKivvvpKsbGxSklJ0d69e61jHh4eCg0NVc+ePdWuXTu1atVK9957r8xmc7ngT1lZmcxmszUEz5qipigsLJQkZWVlyWw2W0O2ubm5Wr16tTZu3Kh7771XERERtiyzVmAtqhfLeb9+/fr64osvlJOTo9zcXNWrV09eXl7ltnVyclJRUZEOHz6sgwcP6sCBA9q+fbvS09OVn5+vUaNG6YsvvrDRkQA31rx5c23fvl1vvvmmzpw5o7Nnz+qhhx5SRESEnnvuOUkEpqsKa3H3+e0FraWlpSooKFBsbKyOHz+ubdu2KS4uTsnJydZt/Pz81KtXL4WGhqpPnz4yGo0KCgq64fy89gCA6q1Ro0Z69NFHdeTIEb388stavXq1GjVqpOjoaOXm5srHx0djxoxRv379bF0qAXYAAAAAAAAAAHDrLIFaC97cth3W4u7UoEEDnTlzRitWrFCTJk3UsmVLDRgwQEFBQYqMjFTDhg3l6OhYbp+ioiLl5eUpKSlJPj4+8vLykouLi/UiBaC6s1xgExYWpi1btmjHjh3as2eP2rRpo/j4eH3//feaPXu28vLyNG7cuEo/iQC/H2tRfdnb26ukpEQODg7y8vKyBtevXLmiOnXqaMeOHTpz5oyio6N15MgR/fzzz9Z9GzRooIiICLVr105hYWHXhSCBu8m9996r+fPny9nZWZmZmfLx8bGOEZiuWqzF3cVgMKisrExfffWVCgsLtXjxYiUlJSkpKcm6TUBAgPr27asuXbrowQcflL+/vxo3bmwdLysrkyTr+eS38wMAqjfL+XnKlCkqKCjQ7NmzFRsbax3v2rWrBg0apJEjR6pOnTo2rPQqg5nP/QAAAAAAAAAAAAB+t2sDgWvXrtUDDzwgR0dHNWjQoNx2xcXF1hD7jh07tGzZMq1evVqpqany9/dX27Zt9fHHH8vLy4sQO2qUhIQEdenSRSkpKWratKk8PT2VnJysvLw8FRUVacyYMZo/f76ty6wVWIvqobKAaFFRkWJjY5Wenq7ly5crNTVV+/fvt44HBgbKz89PDz30kFq1aqWwsDD5+/tXZenA72L5nerafwNceGEbrMXdJSUlpdzzecuWLeXj46P+/fsrODhY7du3v+61hyQVFBSotLRUbm5u1nXkIgQAqJmu/TvS2rVrFR8fb+28/thjj6levXrXXcRkKwTYAQAAAAAAAAAAgNvkZoHzawM/q1ev1gsvvKBffvlFrq6uCgwM1JUrV3T27FmFhoZq27Zt8vT0JCSEGiU+Pl6DBw/WmTNndPnyZUlSeHi4evbsqalTp9q4utqFtbj7WJ7vf/u8X1hYqH379unUqVNasWKFUlNT9dNPP1nH/f395evrq0GDBikoKEidO3eWm5ubnJ2dy83PRVEAUP2dPHlSO3fuVOPGjdWpUyfZ29uXe763nENKSkqUkJCgBQsWaMuWLUpLS1NERIT69Omj4cOHSyLEDgA1VXX5vZ8AOwAAAAAAAAAAAFDFNm3apGHDhikrK0sDBw7U8OHD1aNHDxUXF+uFF17Qv//9b40aNUrz58+/azpjAbdLRkaGDh06pJSUFHl5ealdu3by8/OzdVm1Emtxd7pw4YISEhK0b98+bd26VcePH9exY8es4wEBAWrYsKEeeeQR+fv7q2/fvnJwcFCdOnXKzUMwEQBqh992yjeZTFq+fLk+/fRTxcbGSpLc3d2Vl5cnSZo9e7YmT55sy5IBACDADgAAAAAAAAAAAFSl9PR0jR49WuvXr9eQIUM0depU3Xfffdbx7OxshYSEKDAwUDt37qwWXbMAAL9fWVmZXnzxRX399dcqLi5WYWGhJMnb21thYWHq1q2bQkJC1LlzZzk4OKh+/fo3nIvwOgDUPmVlZVqxYoWmT5+uuLg4tWnTRtOnT1ezZs10/PhxjRo1Sjk5OVq1apWioqJsXS4AoBajXQMAAAAAAAAAAABQhZKTk7Vjxw4ZjUY9+eSTCg4OlvTrRzzn5ubKbDYrOTlZ+fn5NwwoAgBqDjs7Oz399NP69ttvFR4errZt26pz585q06aNjEajnJycym1vNptVVFSk6OhoZWZmqn79+goMDFSHDh1kZ2dHiB0AahFLF/bs7GwtWLBAcXFxioqK0vTp09WqVSuZzWY1a9ZM77zzjsaNG6cff/yRADsAwKYIsAMAAAAAAAAAAABVwBIq2bZtm/Lz89WuXTv16dNHklRcXCxHR0dJ0rp165SVlaWOHTvKycnJuh8AoOb74x//qLNnz8rV1bXc/aWlpZKkkpISOTg4qKSkRN98842WLl2qdevWWbdzdXXVjBkzNGHCBNnZ2XEOAYBawvJcv3DhQq1fv15Go1FTpkxRq1atJF19veHk5KTAwEBJVy+qBQDAlgiwAwAAAAAAAAAAAFXAEipp3LixpKshxF9++UVNmjSxhteXLl2q119/XZI0evRo1alTxzbFAgBs5trwuqWLur29vSRZw+vz5s3Thx9+qOTkZPn7+2vIkCEymUyaP3++Jk2aJBcXF40bN47wOgDUMvHx8ZKkMWPGqF27djKbzTKbzXJyclJBQYGWLl0qSfLw8LBlmQAAiM+KAgAAAAAAAAAAAKpQo0aN5O7ursOHD2vlypU6duyYLly4oI8++kjPPvus8vPzNXbsWA0ZMsTWpQIAbMzO7tdYh9lsliStWrVKn376qTIyMjR69Gh99913mjVrlubOnas1a9bI0dFR//rXv5SZmWmrsgEANpKTkyNJOnfunEwmk8xms+zs7HTlyhWtXr1aMTEx8vHx0dChQyX9em4BAKCqEWAHAAAAAAAAAAAAqlDXrl31/PPPS5JeeukldevWTeHh4XrxxRd16dIlDR8+XH/5y1/KdeAFAMDSTX3lypU6deqU+vTpo8mTJ6t169YqKyuTyWRS9+7d1b59ex09etQaYgQA1B5t27aVdLUT+/HjxyVJV65c0aJFi/Tuu+8qKSlJPXv2VFBQkCTxSR0AAJsxmLmMCgAAAAAAAAAAAKgSZWVl1m66U6dO1cKFC5WSkiJnZ2fZ29vr73//u4YOHaomTZrYuFIAwN1o7969Cg8PlyTFxMSoW7dukn49v1y8eFHh4eFKTEzU0aNH1bx5c1uWCwCoYomJierWrZuSkpLUvHlz+fj4KCMjQwkJCTKZTOrVq5c++OADNWvWzNalAgBqOQLsAAAAAAAAAAAAQBUqLS2Vvb29JOnEiRNKT09X3bp15ebmptDQUBtXBwC4m23ZskWRkZHy8/PTwYMH5eXlpZKSEjk4OCg/P19vv/22Zs2apdatW2vfvn3W8w0AoPY4efKk+vfvr4SEBBUXF0uSgoKC1LNnT02YMEHBwcE2rhAAAMnB1gUAAAAAAAAAAAAAtYm9vb21U25ISIhCQkJsXRIAoJrw9vaWl5eXCgsLdfToUXXu3FkODg7Ky8vTokWLtHjxYjVo0EDjx4+Xvb29zGazDAaDrcsGAFSh++67T5s3b9aOHTuUnJwsBwcH9e/fX56enqpXr56tywMAQBId2AEAAAAAAAAAAAAAAKqF7Oxs9e3bVz/++KM6deqkfv36KSQkRJ999pl2796tnJwcPfXUU5o6dar8/PxsXS4AAAAAVIgAOwAAAAAAAAAAAAAAQDURHx+vbt26KS0tTZLk7OysoqIi+fr6qn///po4caKCg4NtXCUAwNb4FA4AwN2MADsAAAAAAAAAAAAAAEA1cvr0ac2YMUNHjhyRyWSSj4+PJkyYoLZt28rX19fW5QEAAADADRFgBwAAAAAAAAAAAAAAqGZMJpOKi4tlMpnUoEEDW5cDAAAAALeMADsAAAAAAAAAAAAAAEA1ZzabZTAYbF0GAAAAANyUna0LAAAAAAAAAAAAAAAAwO9DeB0AAABAdUGAHQAAAAAAAAAAAAAAAAAAAABQJQiwAwAAAAAAAAAAAAAAAAAAAACqBAF2AAAAAAAAAAAAAAAAAAAAAECVIMAOAAAAAAAAAAAAAAAAAAAAAKgSBNgBAAAAAAAAAAAAAAAAAAAAAFWCADsAAAAAAAAAAAAAAAAAAAAAoEoQYAcAAAAAAAAAAAAAAAAAAAAAVAkC7AAAAAAAAAAAAAAAAAAAAACAKkGAHQAAAAAAAAAAAAAAAAAAAABQJQiwAwAAAAAAAAAAAAAAAAAAAACqBAF2AAAAAAAAAAAAAAAAAAAAAECVcLB1AQAAAAAAAACAqlVSUqJVq1Zpw4YN2r17tzIyMnTx4kW5urrK29tbLVu2VMeOHTVo0CAFBgbaulwAAAAAAAAAAFCDGMxms9nWRQAAAAAAAAAAqsbq1as1adIknT59+pa279u3r2bNmqUWLVrc4coAAAAAAAAAAEBtQAd2AAAAAAAAAKgl3nrrLf3973+Xpa9J165d9fDDDyssLEyenp66fPmy0tLStH37dq1du1aJiYlat26d/Pz89Omnn9q4egAAAAAAAAAAUBPQgR0AAAAAAAAAaoEFCxbo6aefliQ1bNhQixcvVteuXSvdvrS0VIsXL9Zf//pX9e7dmwA7AAAAAAAAAAC4LQiwAwAAAAAAAEAN98svv6h58+YqLCxUvXr1dODAAQUHB9/Svjk5OYqNjVVUVNQdrhIAAAAAAAAAANQGdrYuAAAAAAAAAABwZ82dO1eFhYWSpJkzZ95yeF2SjEbjdeH1xMREGQwGGQwGLVq0SJK0YsUK9enTR40aNZKDg0OF3d3XrFmjQYMGyc/PT87OzvL09FRERIRmzZql/Pz8SmuYNm2a9fFuZOvWrdbttm7det14165dZTAYrLWdPHlSY8eOVWBgoFxcXOTr66vHHntMe/bsueHjlJaWatGiRerZs6d8fHzk5OSk+vXrq1mzZoqMjNTbb7+t48eP33AOAAAAAAAAAABqKwdbFwAAAAAAAAAAuHPMZrO+/vprSZK7u7tGjRp12+cfPny49TEqUlhYqCeeeEIrV64sd392drb27NmjPXv2aN68eVq3bp1at259W+urTHR0tAYPHqyCggLrfenp6Vq2bJmWL1+uf/zjH3rppZeu2y8/P199+vRRbGxsufuLi4uVm5ur06dPa/PmzTp48KC+/fbbO30YAAAAAAAAAABUOwTYAQAAAAAAAKAGi4uL04ULFyRJnTp1Ut26dW/r/P/85z915MgRderUSePGjVPz5s2Vk5OjxMRE6zYjRoywhtdbtWqlSZMmKSQkRNnZ2Vq8eLEWLVqkc+fOKTIyUkeOHFHjxo1va42/de7cOT3xxBNycHDQ22+/be3IvmXLFr377rvKzc3VhAkTFBAQoAEDBpTbd9q0adbw+sMPP6xhw4bJ399fLi4uyszM1KFDh7R27dqbdosHAAAAAAAAAKC2IsAOAAAAAAAAADXYkSNHrLfbtGlzR+YfPny4Fi1aVGFoe926dVq6dKkkKTIyUt9//72cnJys4w899JAiIiI0duxYZWdna+LEiVqyZMltr/Nap06dUv369bV7926FhIRY74+IiFD//v3VsWNH5ebmavz48erbt68cHR2t21iOZdCgQVq2bNl1c/fq1Uuvv/66srOz7+gxAAAAAAAAAABQXdnZugAAAAAAAAAAwJ2TlZVlve3t7V3pdmVlZYqLi6v0q7i4uML9jEajPvroo0o7jn/88ceSJEdHRy1cuLBceN1izJgx6tGjhyRpxYoVSktLu+Xj+19NmTKlXHjd4g9/+IPeeOMNSVJqaqpWrVpVbjw9PV3S1W72N+Lh4XGbKgUAAAAAAAAAoGYhwA4AAAAAAAAANVheXp71dt26dSvdLjc3Vy1btqz0KzU1tcL9oqKi5O7uXuFYSUmJtm3bJulqp/UmTZpU+vhjxoyx7rN169abHdbvYjAYNGLEiErHR40aZQ3k//DDD+XGfH19JUlLlizR5cuX71yRAAAAAAAAAADUUATYAQAAAAAAAKAGuzZcXlBQcNvnDwsLq3Ts7Nmz1pB3hw4dbjjPteNxcXG3p7hKBAYGysvLq9Jxb29vBQQESJKOHj1abswSfN+1a5cCAwM1fvx4rVy5UufPn79j9QIAAAAAAAAAUJMQYAcAAAAAAACAGszT09N6+0Yha6PRKLPZXO7rRl3KLRo0aFDpWHZ2tvX2Pffcc8N5fHx8KtzvTrhZLZLUsGHDCmuZMmWKRo8eLYPBoMzMTH388ccaOHCg7rnnHrVo0UJTp05VRkbGHakbAAAAAAAAAICagAA7AAAAAAAAANRgrVq1st4+dOjQbZ/f3t7+lrYzGAy3/bH/V7+nFkdHR33xxReKi4vT3/72N3Xs2FFOTk6SpGPHjmn69OkKDg7WqlWrble5AAAAAAAAAADUKATYAQAAAAAAAKAGa9GihbULe2xsrC5fvlxlj+3h4WG9fbOu5Onp6RXuJ0l2dr/+KbusrKzSOQoKCm6prlvpkG7Z5re1WISGhmrGjBnauXOnLl26pE2bNmnUqFGyt7dXfn6+hg4dqrS0tFuqBwAAAAAAAACA2oQAOwAAAAAAAADUYAaDQU8++aQkKTc3V19++WWVPXZQUJBcXV0lST/++OMNt927d6/1dosWLcqNubu7W29fvHix0jni4+Nvqa6EhARduHCh0vHz588rMTGxwloq4uLioh49emjBggWaM2eOJOnKlStau3btLdUDAAAAAAAAAEBtQoAdAAAAAAAAAGq4iRMnysXFRZL0+uuvKyEhoUoe18HBQV26dJEkbdq0SSkpKZVu+/nnn1v36dq1a7mxwMBA6+39+/dXOsfixYtvqS6z2ayvvvqq0vFFixbJbDZLknr06HFLc1pERkZab2dlZf2/9gUAAAAAAAAAoDYgwA4AAAAAAAAANZy/v78+/PBDSdKlS5f0pz/9STt27LjhPmazWTk5Ob/7sZ9//nlJkslk0tNPP63i4uLrtlmwYIE2btwoSRo4cKB8fX3LjXfs2FEODg6SpPfff98aLr/WnDlzynVxv5kZM2bo5MmT191/4sQJzZw5U5Lk6+ur/v37W8eys7O1Zs2aCh/fwnIcUvngPQAAAAAAAAAAuMrB1gUAAAAAAAAAAO68MWPGKDU1VW+++abOnTunTp06qXv37oqKilLLli3l4eGh0tJSpaen6+DBg1q6dKmOHTsmSbK3t5eTk9P/9Lh9+/bV4MGDtWzZMm3cuFHh4eGaOHGi7r//fl28eFGLFy/WggULJEkeHh6aO3fudXPcc889Gjx4sL755htt2LBB/fr10/PPP6+GDRsqOTlZX3/9tZYvX66OHTtq165dN60pODhY58+fV3h4uF599VVrx/etW7dq1qxZunTpkiRp3rx55Y47NzdX/fr1U0BAgAYOHKgOHTqoadOmcnBwUFpamtasWWPtJN+4cWM9/PDD/9P3DAAAAAAAAACAmsxgvlGrGAAAAAAAAABAjbJy5UpNnjxZZ8+evem2BoNBPXv21Jw5c9SiRQvr/YmJidbu4gsXLtTIkSNvOE9hYaGeeOIJrVy5stJtGjVqpHXr1ql169YVjmdkZKhTp046depUheNDhgzRM888ox49ekiStmzZYg2mW3Tt2lXbtm1Tly5d9PLLL+uxxx7T5cuXr5vLzs5Os2fP1qRJk8rdf+1x34ivr6/WrFmjtm3b3nRbAAAAAAAAAABqGzqwAwAAAAAAAEAt8sgjjygqKkorV67Uhg0btHv3bmVmZionJ0eurq7y9PRUy5YtFRERoccff/yWAts34+LiohUrVmjNmjVatGiR9uzZo6ysLNWtW1fNmzfXgAEDNH78eLm5uVU6R8OGDfXjjz/q3Xff1YoVK5ScnKy6deuqRYsWGjt2rIYNG6atW7feck19+/bV/v37NWfOHG3evFlpaWkyGo3q1KmTJk2apIiIiOv2adq0qfbu3avvv/9eu3btUlJSkjIyMpSfny+j0ajQ0FBFRUVp7Nixqlev3v/yrQIAAAAAAAAAoMajAzsAAAAAAAAAoFa4tgP7/yfsDgAAAAAAAAAAbh87WxcAAAAAAAAAAAAAAAAAAAAAAKgdCLADAAAAAAAAAAAAAAAAAAAAAKoEAXYAAAAAAAAAAAAAAAAAAAAAQJUgwA4AAAAAAAAAAAAAAAAAAAAAqBIE2AEAAAAAAAAAAAAAAAAAAAAAVcJgNpvNti4CAAAAAAAAAAAAAAAAAAAAAFDz0YEdAAAAAAAAAAAAAAAAAAAAAFAlCLADAAAAAAAAAAAAAAAAAAAAAKoEAXYAAAAAAAAAAAAAAAAAAAAAQJUgwA4AAAAAAAAAAAAAAAAAAAAAqBIE2AEAAAAAAAAAAAAAAAAAAAAAVYIAOwAAAAAAAAAAAAAAAAAAAACgShBgBwAAAAAAAAAAAAAAAAAAAABUCQLsAAAAAAAAAAAAAAAAAAAAAIAq8X/P9yXtwBfldQAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -642,7 +669,7 @@ } ], "source": [ - "df = plot_results( \n", + "df = plot_results(\n", " [mapie_split, mapie_cqr, mapie_ccp], ALPHA, N_TRIALS,\n", " group_functions, group_names, score_functions, score_names,\n", " n_train=n_train, n_calib=n_calib, n_test=1994-n_train-n_calib\n", @@ -654,10 +681,11 @@ "id": "eb894e2f", "metadata": {}, "source": [ - "#### - The method which is the more adaptative is the one with the most constant coverage.\n", - "#### - Here, the ``CCP`` method is the best one. We can see that the basic ``Split`` method has a strong over-coverage for small target values, and under-coverage for big target values. Moreover, it seems to have a strong bias on the ``'racepctblack'`` and ``'racePctWhite'``.\n", - "#### - The ``CQR`` method is better than the ``Split`` but suffers from the same issues.\n", - "#### $\\to$ We managed, with the ``CCP`` method, to have almost a homogenous coverage on the target value, and a much smaller bias on the ethnicity groups." + "- The method which is the more adaptative is the one with the most constant coverage.\n", + "- Here, the ``CCP`` method is the best one. We can see that the basic ``Split`` method has a strong over-coverage for small target values, and under-coverage for big target values. Moreover, it seems to have a strong bias on the ``'racepctblack'`` and ``'racePctWhite'``.\n", + "- The ``CQR`` method is better than the ``Split`` but suffers from the same issues.\n", + "\n", + "$\\to$ We managed, with the ``CCP`` method, to have almost a homogenous coverage on the target value, and a much smaller bias on the ethnicity groups." ] }, { @@ -674,9 +702,10 @@ "metadata": {}, "source": [ "## 2. Using ``CustomCCP`` calibrator for adaptativity with prior knowledge about the biases we want to avoid\n", - "#### We saw previously, that there was a strong bias on the ethnicity features (with over or under coverage for some values).\n", - "#### $\\to$ We can use this information in the ``CCP`` calibrator, to fix it. Let's use a ``CustomCCP`` calibrator, with those features, to guarantee a homogenous coverage on those.\n", - "We could just add, as custom functions definition, indicatrice functions for each of the 4 groups, for each ethnicity feature. \n", + "We saw previously, that there was a strong bias on the ethnicity features (with over or under coverage for some values).\n", + "\n", + "$\\to$ We can use this information in the ``CCP`` calibrator, to fix it. Let's use a ``CustomCCP`` calibrator, with those features, to guarantee a homogenous coverage on those.\n", + "We could just add, as custom functions definition, indicatrice functions for each of the 4 groups (split using Q1, mediane and Q3 values), for each ethnicity feature. \n", "\n", "However, as the coverage seems to be proportional to the ethnicity value, we will also pass the specific ``X`` value." ] @@ -688,8 +717,8 @@ "metadata": {}, "outputs": [], "source": [ - "calibrator = CustomCCP(\n", - " [ # We add the ethnicity feature value for each of the 4 ethnicity, to make sur there is no bias.\n", + "calibrator_2 = CustomCCP(\n", + " [ # We add the ethnicity feature value for each of the 4 ethnicity, to make sure there is no bias.\n", " lambda X, c=c, q1=q1, q2=q2 : X[:, c] * np.logical_and(\n", " X[:, c] >= np.sort(X_scaled[:, c])[int(len(X_scaled)*q1)],\n", " X[:,c] <= np.sort(X_scaled[:, c])[int(len(X_scaled)*q2)-1]\n", @@ -699,10 +728,11 @@ " ],\n", " normalized=True,\n", " bias=True,\n", - " reg_param = 1e-3,\n", + " reg_param = 1e-4,\n", ")\n", + "\n", "mapie_ccp = SplitCPRegressor(\n", - " estimator, calibrator, cv=cv, alpha=ALPHA,\n", + " estimator, calibrator_2, cv=cv, alpha=ALPHA,\n", " conformity_score=AbsoluteConformityScore(sym=False),\n", ")" ] @@ -723,7 +753,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABxYAAAH5CAYAAACs6ttbAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3wUdfoH8M/2nkpIJ0GpKooVUX8KHgrYQM9yCAIWzobllLPdqeCd5VQUe0MBEbs0EUFFAektofeWAOlts9k27ffHZJeULTNbs+F5v16+Iruzs9/dtMl85nkehSAIAgghhBBCCCGEEEIIIYQQQgghJABlvBdACCGEEEIIIYQQQgghhBBCCOn4KFgkhBBCCCGEEEIIIYQQQgghhARFwSIhhBBCCCGEEEIIIYQQQgghJCgKFgkhhBBCCCGEEEIIIYQQQgghQanjvQBCCCGEEEIIIYQQQgghhJDOiOM4MAwT72UQIplWq4VS6b8ukYJFQgghhBBCCCGEEEIIIYSQCBIEAeXl5aivr4/3UgiRRalUonv37tBqtT7vVwiCIMR4TYQQQgghhBBCCCGEEEIIIZ1WWVkZ6uvr0bVrVxiNRigUingviZCgeJ7HiRMnoNFo0K1bN59ft1SxSAghhBBCCCGEEEIIIYQQEiEcx3lDxfT09HgvhxBZMjIycOLECbAsC41G0+5+/01SCSGEEEIIIYQQQgghhBBCiCyemYpGozHOKyFEPk8LVI7jfN5PwSIhpMOYOXMmFAoFjhw54r1t0KBBGDRoUNzWRAghhBBCCCGEEEIIIaGg9qckEQX7uqVgkRASlu3bt+Pmm29GQUEB9Ho9cnNzcdVVV+Gdd96JyvOdOHECkydPRnFxcVT2TwghhJDEdPDgQdx777047bTToNfrkZSUhEsvvRRvvfUWHA6HdzuGYfD222/jwgsvhMVigdlsxoUXXoh33nkHLMu2229hYSEUCoX3P5PJhIsuugiff/55LF8eIYQQQhKE1GMSjuMwY8YMDBo0CGlpadDpdCgsLMSdd96JTZs2ebfzXITt+U+v16NXr16YOHEiKioq4vESCSGEnOJoxiIhJGRr1qzB4MGD0a1bN0yYMAFZWVkoLS3FunXr8NZbb+Ghhx4K+zl++eWXVv8+ceIEpkyZgsLCQvTv3z/s/RNCCCEk8f3000+45ZZboNPpMHbsWJx11llwu91YtWoV/vnPf2Lnzp34+OOP0dTUhGuvvRYrVqzAddddh/Hjx0OpVGLJkiV4+OGHMX/+fPz444/t2hX1798fjz/+OACgrKwM06dPx7hx4+ByuTBhwoR4vGRCCCGEdEBSj0kcDgduuukmLFmyBJdffjmeeeYZpKWl4ciRI/j2228xa9YslJSUIC8vz7vvF154Ad27d4fT6cSqVavwwQcfYPHixdixYwe1WiSEEBJTFCwSQkL24osvIjk5GRs3bkRKSkqr+yorKyPyHJ5+zoQQQgghvhw+fBh/+9vfUFBQgN9//x3Z2dne+x588EEcOHAAP/30EwDgsccew4oVK/DOO+9g4sSJ3u3uv/9+vPfee5g4cSL++c9/4r333mv1HLm5uRgzZoz33+PHj8dpp52GN998k4JFQgghhACQd0zyz3/+E0uWLMGbb76JRx99tNV+nn/+ebz55pvt9j98+HBccMEFAIB77rkH6enpeOONN7BgwQKMGjUqei+MEEKiZPz48aivr8f8+fMBiCOx+vfvj2nTpoW8z0jsgwRHrVAJISE7ePAgzjzzzHahIgB07drV+/8KhQITJ07EnDlz0Lt3b+j1epx//vlYuXJl0OdoOWNx+fLluPDCCwEAd955p7cNyMyZMyPxcgghhBCSgF599VXYbDZ8+umnrU7gefTo0QOPPPIIjh07hk8//RRXXnllq1DR48EHH8TgwYPx8ccf4/jx4wGfMyMjA3369MHBgwcj9joIIYQQktjkHJN89NFHuOqqq9qFigCgUqkwadKkVtWKvlx55ZUAxECTEEIiafz48d7zrlqtFj169MALL7zgc3REJM2dOxf/+c9/JG27fPlyKBQK1NfXh7wPEjoKFgkhISsoKMDmzZuxY8eOoNuuWLECjz76KMaMGYMXXngBNTU1GDZsmKTHevTt2xcvvPACAODvf/87Zs+ejdmzZ+Pyyy8P+TUQQgghJLH9+OOPOO2003DJJZcE3O7nn38Gx3EYO3as323Gjh0LlmWxZMmSgPtiWRbHjh1DampqSGsmhBBCSOcj55iEZVnccccdYT2f5wKn9PT0sPZDCCG+DBs2DGVlZdi/fz8ef/xxTJ48Ga+99lq77dxud8SeMy0tDRaLJe77IMFRsEgICdmkSZNgt9vRv39/XHLJJXjyySfxyy+/gGGYdtvu2LEDS5YswbPPPosnnngCK1euhCAIeO655yQ/X2ZmJoYPHw4AGDhwIMaMGYMxY8bgtNNOi9hrIoQQQkjisFqtOH78OPr16xd02127dgEAzjnnHL/beO7zbOvBMAyqq6tRXV2NHTt24K677kJ5eTluvvnmMFZPCCGEkM5CzjHJ7t27AUDSti01NDSguroax44dwzfffIMXXngBBoMB1113XUhrJoSQQHQ6HbKyslBQUID7778fQ4YMwcKFCzF+/HiMHDkSL774InJyctC7d28AQGlpKW699VakpKQgLS0NI0aMwJEjR7z74zgOjz32GFJSUpCeno4nnngCgiC0es5Bgwa1quR2uVx48sknkZ+fD51Ohx49euDTTz/FkSNHMHjwYABAamoqFAoFxo8f73MfdXV1GDt2LFJTU2E0GjF8+HDs37/fe//MmTORkpKCpUuXom/fvjCbzd5QlfhHMxYJISG76qqrsHbtWrz88stYunQp1q5di1dffRUZGRmYPn06brjhBu+2AwcOxPnnn+/9d7du3TBixAj8+OOP4DgOKpUqHi+BEEIIIQnMarUCgKQrUhsbG4Nu67nPs63HL7/8goyMjFa33XnnnT6v2CWEEELIqUfOMYmcbVsaMmRIq38XFBRgzpw5yM3NlbUfQkj82O127NmzJ+bP26dPHxiNxrD2YTAYUFNTAwBYtmwZkpKS8OuvvwIQL8QcOnQoBg4ciD///BNqtRr//e9/MWzYMGzbtg1arRZTp07FzJkz8dlnn6Fv376YOnUq5s2b523r7MvYsWOxdu1avP322zjnnHNw+PBhVFdXIz8/Hz/88AP++te/Yu/evUhKSoLBYPC5j/Hjx2P//v1YuHAhkpKS8OSTT+Kaa67Brl27oNFoAIifl9dffx2zZ8+GUqnEmDFjMGnSJMyZMyes96wzo2CREBKWCy+8EHPnzoXb7cbWrVsxb948vPnmm7j55ptRXFyMM844AwDQs2fPdo/t1asX7HY7qqqqkJWVFeulE0IIISTBJSUlAWgfBPriLzRsyXNfy1nRADBgwAD897//Bcdx2LFjB/773/+irq4OWq021KUTQgghpBORc0wiZ9uW3nvvPfTq1QtqtRqZmZno3bs3lEpqRkdIItmzZ0+rwotY2bx5M84777yQHisIApYtW4alS5fioYceQlVVFUwmE6ZPn+79e+iLL74Az/OYPn06FAoFAGDGjBlISUnB8uXLcfXVV2PatGl4+umncdNNNwEAPvzwQyxdutTv8+7btw/ffvstfv31V++FFS271qWlpQEQ/3ZLSUnxuQ9PoLh69Wpvm+o5c+YgPz8f8+fPxy233AJADEY//PBDnH766QCAiRMnesdxEd8oWCSERIRWq8WFF16ICy+8EL169cKdd96J7777Ds8//3y8l0YIIYSQTiopKQk5OTmSZjZ7Lnbatm0b+vfv73Obbdu2AUC7NutdunTx/jE7dOhQ9OnTB9dddx3eeustPPbYY2G8AkIIIYR0BnKOSfr06QMA2L59u99jEl8uuugiXHDBBaEukRDSAfTp0webN2+Oy/PKtWjRIpjNZjAMA57ncfvtt2Py5Ml48MEH0a9fv1YXWW7duhUHDhxoV4ntdDpx8OBBNDQ0oKysDAMGDPDep1arccEFF7Rrh+pRXFwMlUqFK664QvbaPXbv3g21Wt3qedPT09G7d29vW2oAMBqN3lARALKzs1FZWRny854KKFgkhESc50C3ZS/qlr2rPfbt2wej0diutVggnqteCCGEEEIA4LrrrsPHH3+MtWvXYuDAgX63Gz58OFQqFWbPno2xY8f63Obzzz+HVqvFiBEjAj7ntddeiyuuuAIvvfQS7r33XphMprBeAyGEEEISn9xjki+++AJ33HFHDFdICIk3o9EYcuVgrA0ePBgffPABtFotcnJyoFafjJLa/v1js9lw/vnn+2wdKue8b0v+WptGg6clqodCofAbeBIR1csTQkL2xx9/+Pwhu3jxYgDwDu8FgLVr12LLli3ef5eWlmLBggW4+uqrZc1X9Pziqq+vD3HVhBBCCOlMnnjiCZhMJtxzzz2oqKhod//Bgwfx1ltvIS8vD3fffTd+++03fPDBB+22+/DDD/H777/j3nvvRXp6etDnffLJJ1FTU4NPPvkkIq+DEEIIIYlN6jFJfn4+JkyYgF9++QXvvPNOu+14nsfUqVNx7NixWCybEEJ8MplM6NGjB7p169YqVPTlvPPOw/79+9G1a1f06NGj1X/JyclITk5GdnY21q9f730My7IBqzf79esHnuexYsUKn/d7KiY5jvO7j759+4Jl2VbPW1NTg71793o72pDQUMUiISRkDz30EOx2O2688Ub06dMHbrcba9aswTfffIPCwkLceeed3m3POussDB06FA8//DB0Oh3ef/99AMCUKVNkPefpp5+OlJQUfPjhh7BYLDCZTBgwYAC6d+8e0ddGCCGEkMRw+umn48svv8Rtt92Gvn37YuzYsTjrrLO8xyXfffcdxo8fDwB44403sGfPHjzwwANYsmQJhg0bBgBYunQpFixYgCuvvBKvvfaapOcdPnw4zjrrLLzxxht48MEH213lSgghhJBTi5xjkqlTp+LgwYN4+OGHMXfuXFx33XVITU1FSUkJvvvuO+zZswd/+9vf4vuCCCFEotGjR+O1117DiBEj8MILLyAvLw9Hjx7F3Llz8cQTTyAvLw+PPPIIXnnlFfTs2RN9+vTBG2+8EbBwpLCwEOPGjcNdd92Ft99+G+eccw6OHj2KyspK3HrrrSgoKIBCocCiRYtwzTXXwGAwwGw2t9pHz549MWLECEyYMAEfffQRLBYLnnrqKeTm5gbtUkMCo4pFQkjIXn/9dQwePBiLFy/GY489hsceewwbNmzAAw88gPXr17canHvFFVdg2rRpmD17Np577jmkpaXh559/xtlnny3rOTUaDWbNmgWVSoX77rsPo0aN8nvlCiGEEEJODTfccAO2bduGm2++GQsWLMCDDz6Ip556CkeOHMHUqVPx9ttvAxCvuv3tt98wbdo0HD9+HJMmTcIDDzyABQsWYNy4cfj111+h0+kkP++kSZNQWlrqs+UPIYQQQk49Uo9JjEYjfv75Z0yfPh0cx+E///kP7rvvPsycORMDBgzA5s2bkZubG+dXQwgh0hiNRqxcuRLdunXDTTfdhL59++Luu++G0+lEUlISAODxxx/HHXfcgXHjxmHgwIGwWCy48cYbA+73gw8+wM0334wHHngAffr0wYQJE9DU1AQAyM3NxZQpU/DUU08hMzMTEydO9LmPGTNm4Pzzz8d1112HgQMHQhAELF68mC4MDZNCoGaxhJAoUygUePDBB/Huu+/GeymEEEIIIa1YrVZcccUVOHjwIFauXIn+/fvHe0mEEEIIIYSQBOd0OnH48GF0794der0+3sshRJZgX79UsUgIIYQQQgg5ZSUlJeHnn39Gly5dcM011+Do0aPxXhIhhBBCCCGEENJh0YxFQgghhBBCyCktKysLhw4divcyCCGEEEIIIYSQDo8qFgkhhBBCCCGEEEIIIYQQQgghQVHFIiEk6miUKyGEEEIIIYQQQgghhBCS+KhikRBCCCGEEEIIIYQQQgghhBASFAWLhBBCCCGEEEIIIYQQQgghhJCgTrlWqDzP48SJE7BYLFAoFPFeDiGEENIhCIKAxsZG5OTkQKmk646iiY5FCCGEkPboWCR26FiEEEIIaY+ORQiR7pQLFk+cOIH8/Px4L4MQQgjpkEpLS5GXlxfvZXRqdCxCCCGE+EfHItFHxyKEEEKIf3QsQkhwp1ywaLFYAIg/IJKSkuK8GkIIIaRjsFqtyM/P9/6eJNFDxyKEEEJIe3QsEjt0LEI6gxpHDa6ddy36Z/TH21e+Da1KG+8ldRrltnKMXDgSZ2ecjY+v+jgqz/F7ye94ZtUzmDJwCoZ2HxqV5yAd06fbP8UXu77A/efcj2xzdsj7mbVzFnbU7AAArLt9XUTWFqtjESfDwc3xUX2OlrQqJfQaVcyeT47x48ejvr4e8+fPBwAMGjQI/fv3x7Rp00LeZyT2Eczy5csxePBg1NXVISUlJWrPE20KhQLz5s3DyJEjZT/2lAsWPW0+kpKS6ACaEEIIaYPaYUUfHYsQQggh/tGxSPTRsQjpDNwaN1QGFVQGFcwWM/RqfbyX1Gk0KZugMqigNWqj9jPikPMQVAYVdCYd/RyKMl7g8egfj+LOs+7EuV3PjfdysMe+BwVdC5CRlgGTzhTyfjRGDVR2MSyL9NdQNI9FnAyHX3aWo8HJRO052krWa3D1mVmSw8Xx48dj1qxZAACNRoNu3bph7NixeOaZZ6BWRzdOmjt3LjQajaRt/YV7cvYRqksuuQRlZWVITk6W/Ji2IWqiO+WCRUIIIYQQQgghhBBCSOJjeRa8ELvKHxIZRZVF8V7CKcPFufBH6R8oTCqMe7DICzy2Vm3FeV3Pg1FtjOta4sXN8WhwMtCrVdCpoz/H0cWKz+fmeFlVi8OGDcOMGTPgcrmwePFiPPjgg9BoNHj66afbbet2u6HVRqZqPC0trUPsIxitVousrKyoP48vkXy/w0FTSAkhhBBCCCGEEEIIIQmHEzgIEOK9DCIDy7PYU7sn3ss4Zbg5NwDxeyXeDtQfQBPThCxTFjSq6FaUdXQ6tRJGrTrq/4UaXup0OmRlZaGgoAD3338/hgwZgoULFwIQK+9GjhyJF198ETk5OejduzcAscX6rbfeipSUFKSlpWHEiBE4cuSId58cx+Gxxx5DSkoK0tPT8cQTT0AQWv/8HjRoEB599FHvv10uF5588knk5+dDp9OhR48e+PTTT3HkyBEMHjwYAJCamgqFQoHx48f73EddXR3Gjh2L1NRUGI1GDB8+HPv37/feP3PmTKSkpGDp0qXo27cvzGYzhg0bhrKyMr/vz/Lly6FQKFBfXy9pH5MnT8asWbOwYMECKBQKKBQKLF++XNL75uv9fuaZZzBgwIB26zrnnHPwwgsvAAA2btyIq666Cl26dEFycjKuuOIKbNmyxe9rkouCRUIIIYQQQgghhBBCSMKhisXEc6D+AJycM97LOGUwfOxabgZTXFkMpUKJXHNuvJdCZDIYDHC73d5/L1u2DHv37sWvv/6KRYsWgWEYDB06FBaLBX/++SdWr17tDdc8j5s6dSpmzpyJzz77DKtWrUJtbS3mzZsX8HnHjh2Lr776Cm+//TZ2796Njz76CGazGfn5+fjhhx8AAHv37kVZWRneeustn/sYP348Nm3ahIULF2Lt2rUQBAHXXHMNGObk94bdbsfrr7+O2bNnY+XKlSgpKcGkSZNkvUeB9jFp0iTceuut3rCxrKwMl1xyiaT3zdf7PXr0aGzYsAEHDx70brNz505s27YNt99+OwCgsbER48aNw6pVq7Bu3Tr07NkT11xzDRobG2W9Ln+oFSohhBBCCCGEEEIIISThsAIFi4lmW9W2eC/hlMJwYnjStjIsHooqi5BtykaKLiXeSyESCYKAZcuWYenSpXjooYe8t5tMJkyfPt3bkvOLL74Az/OYPn26d0bljBkzkJKSguXLl+Pqq6/GtGnT8PTTT+Omm24CAHz44YdYunSp3+fet28fvv32W/z6668YMmQIAOC0007z3u9pedq1a9dWMxZb2r9/PxYuXIjVq1fjkksuAQDMmTMH+fn5mD9/Pm655RYAAMMw+PDDD3H66acDACZOnOit/JMq0D7MZjMMBgNcLlerFqpS3jeg/fsNiNWJX375JZ599lnv6xowYAB69OgBALjyyitbre/jjz9GSkoKVqxYgeuuu07Wa/OFKhYJIYQQQgghhBBCCCEJh+O5DhGYEOm2VW2DSiF91hsJj5sXq546Qsvgosoi5JhyYNScmvMVE8miRYtgNpuh1+sxfPhw3HbbbZg8ebL3/n79+rUKubZu3YoDBw7AYrHAbDbDbDYjLS0NTqcTBw8eRENDA8rKylq171Sr1bjgggv8rqG4uBgqlQpXXHFFyK9j9+7dUKvVrZ43PT0dvXv3xu7du723GY1GbyAIANnZ2aisrJT1XKHsI9j75tH2/QaA0aNH48svvwQgBsBfffUVRo8e7b2/oqICEyZMQM+ePZGcnIykpCTYbDaUlJTIel3+UMUiIYQQQgghhBBCCCEk4bA8Cx5UsZhItlZtRaYxEyeaTsR7KacEz4zFeAeL1Y5qHLcdR/+u/aFX6eO6FhLc4MGD8cEHH0Cr1SInJwdqdesYyWQytfq3zWbD+eefjzlz5rTbV0ZGRkhrMBgMIT0uFBpN65mfCoVC9kUroexD6vvW9v0GgFGjRuHJJ5/Eli1b4HA4UFpaittuu817/7hx41BTU4O33noLBQUF0Ol0GDhwYKsWq+GgYJEQQgghhBBCCCGEEJJwOIGjVqgJpNHdiKPWo+jftT8FizHiqViMt+LKYgBAnjnP2/KRdFwmk8nbUlOK8847D9988w26du2KpKQkn9tkZ2dj/fr1uPzyywEALMti8+bNOO+883xu369fP/A8jxUrVnhbobbkqeDjOM7vuvr27QuWZbF+/XpvK9Samhrs3bsXZ5xxhuTXFwlarbbdWqW8b/7k5eXhiiuuwJw5c+BwOHDVVVeha9eu3vtXr16N999/H9dccw0AoLS0FNXV1eG/kGbUCpUQQghJMBwvYNX+yB0MEEIIIYTIwjiBP98Emuc2EUJIvLA8S61QE8iO6h0QICDblB3vpYSkvKkcB+oOxHsZsnSUGYtFlUVI0aWgq7Fr8I1Jwhk9ejS6dOmCESNG4M8//8Thw4exfPlyPPzwwzh27BgA4JFHHsErr7yC+fPnY8+ePXjggQdQX1/vd5+FhYUYN24c7rrrLsyfP9+7z2+//RYAUFBQAIVCgUWLFqGqqgo2m63dPnr27IkRI0ZgwoQJWLVqFbZu3YoxY8YgNzcXI0aMiMp7Eej1bNu2DXv37kV1dTUYhpH0vgUyevRofP311/juu+9atUEFxNc+e/Zs7N69G+vXr8fo0aMjWgVKwSIhhBCSYL7ZWIoxn67HtxtL470UQgghhJyKDi4Dlk0Gdv8Y75UQQk5xVLGYWLZXb4dBbUCmMTPeSwnJJ9s+weMrHoedscd7KZJ5WqHG25aKLcgz58Ggjl17y47MxfKwu9mo/+diY/Pz0Wg0YuXKlejWrRtuuukm9O3bF3fffTecTqe3Eu/xxx/HHXfcgXHjxmHgwIGwWCy48cYbA+73gw8+wM0334wHHngAffr0wYQJE9DU1AQAyM3NxZQpU/DUU08hMzMTEydO9LmPGTNm4Pzzz8d1112HgQMHQhAELF68uF3r0mibMGECevfujQsuuAAZGRlYvXq1pPctkJtvvhk1NTWw2+0YOXJkq/s+/fRT1NXV4bzzzsMdd9yBhx9+uFVFY7ioFSohhBCSQARBwIzVhwGIlYuEEEIIITFXsk782EFOVhJCTl0cz8V9dhyRbmvlVuSYchI2XHLzbtQ6a9HoboRRY4z3ciTpCK1QXZwLe2r34Ir8K2BUJ8b7Fi1alRLJeg0anAycrP8WnpGUrNdAq5JeXzZz5syQ7s/KysKsWbP8Pk6tVmPatGmYNm2a322WL1/e6t96vR5vvPEG3njjDZ/bP/vss3j22WcD7iM1NRWff/653+ccP348xo8f3+q2kSNHBqzyHTRoUKv7pewjIyMDv/zyS7t9BXvfAn0+UlJS4HQ6fd537rnnYuPGja1uu/nmm1v9O5xKZgoWCSGEkASy/nAt9le2b+9ACCGEEBIzJWvjvQJCCAFAFYuJRBAEbK/ejr5pfaFT6eK9nJDZ3LYOUwUoRUdY687qnWAFFtmmbKiUqngvJ670GhWuPjMLbi52P7e0KiX0mlP7fSeRR8EiIYQQkkBmrj4CpQKgYkVCCCGExAXrAsq2xnsVhBACAGAFloLFBHHcdhx1rjp0NXaFRhXbFoSRxAosGpnGeC9DMoaP/zzkosoiaFVa5Jpz472UDkGvUVHQRxIezVgkhBBCEsSJegd+3VWB3lmWeC+FEEIIIaeqsq3UApUQ0mHwPB9WKzcSO9urtwNApwiXqh3V8V6CZB2hYrGosgh55jyYteZ4L4UQEiEULBJCCCEJYs76o9CqleiXG3yAMyGEEEJIVHjmKxJCSAfACiw4ITZzykh4tlVtQ5o+DWmGtHgvJWx1zrp4L0GyeFcsCoKA4qpiZJmyTvn5ioR0JhQsEkIIIQnAyXD4cn0Jzu2Wgi6mxJ1HQQghhJAEV7IOUBvivQpCCPFieTbeSyASbK3aihxTTqcIl6hiUbqj1qNocDUg25gNrUob17UQQiKHgkVCCCEkASzaVoY6O4OzcpOpFz8hhBBC4kMQgNJ1QEq3eK+EEEK84h2ckOAYjsGe2j3oauwKQye4OIWCRemKKouggKJTtMAlhJxEwSIhhBDSwQmCgBmrD6NPlgXd001QKBTxXhIhhBBCTkV1hwF7DZCcF++VEEKIV7yDExLc3rq9YHgGXY1doVIm/oWy9a76eC9BMjcf/2Ax05iJVENqXNdBCIksChYJIYSQDq6otB47T1hxTl4y0kzUOoQQQgghcVKyXvyYUhDfdRBCSAsu3hXvJZAgDjccBgBkm7LjvJLIaHA1QBCEeC9DEoaL74zFosoi5Jg7RwtcQshJFCwSQgghHdysNUeQYdahd5YFKiVVKxJCCCEkTkrXAUk5gDEt3ishhBCveAcnJDir2wq1Qg2TxhTvpUREo7sxYWZ7urj4Be8NrgYcsR5BpjETerU+busghEQeBYuEEEJIB1bZ6MRP28pwbrcUdLXQgTghhBBC4ujoWiC5G6ChYxJCSMcRy1aoT6x4Ala3NWbP11k0uhthUBs6RRtUAGhimuLeYlQqho9f8F5cWQwAyDHnQKmgGIIAkydPRmZmJhQKBebPnx/v5UTF5MmT0b9/f++/x48fj5EjR4a1z0jsI9LoO5oQQgjpwL5aXwqVUoGzc5Oh13SOP8IIIYQQkoAc9UD1PrFi0VN1wDjiuiRCCAFiN0Ou1FqKn4/8jCdWPBGT5+tIHlr2EBYcWBDy4xtcDdCr9VApOsfftE1MU8JUysazYrG4qhgWrQWZxsy4rYHIN378eCgUCigUCmi1WvTo0QMvvPACWDa8Kt3du3djypQp+Oijj1BWVobhw4eHvda2IV6g7TyvSa1Wo7CwEP/4xz9gs9nCXkMwb731FmbOnClp2yNHjkChUKC4uDjkfcQKBYuEEEJIB8VwPL5YdxTn5CUjO8UQ7+UQQgghJBhnA/Dzk4DbLv0xHAPwfPTWFCnHNgEQxIpFT9UBBYuEkCj58eCP6DerHxwSfs7EqiKLEcTn4QQuJs/XkRRVFWHFsRUhzxW0uq3QqzpRsMg2xbUSUI5YVvS2tbliM/LMeTBrzXFbAwnNsGHDUFZWhv379+Pxxx/H5MmT8dprr4W0L47jwPM8Dh48CAAYMWIEsrKyoNPpIrnkoM4880yUlZXhyJEj+N///oePP/4Yjz/+uM9t3e7Ifd8kJycjJSUl7vuINAoWCSGEkA5qyY5yVNlcODsvBUl6dbyXQwghhJBg9i0F1n8IHPhV+mO+vBVYPAkI8WRtzJSuA3RJQHJevFdCCDkFfL/vewDA+rL1Qbd1sfGryDqV2Bl7yKFqg6sBOrWu07RCtTP2hGmFKiVY3Fm9E/vr9kf0eRmewc7qncg0ZcKoNkZ03yT6dDodsrKyUFBQgPvvvx9DhgzBwoULAQAulwuTJk1Cbm4uTCYTBgwYgOXLl3sfO3PmTKSkpGDhwoU444wzoNPpcNddd+H6668HACiVSigUCu/206dPR9++faHX69GnTx+8//77rdZy7NgxjBo1CmlpaTCZTLjggguwfv16zJw5E1OmTMHWrVu91YiBqvrUajWysrKQl5eH2267DaNHj/a+Jk/l4/Tp09G9e3fo9WJ3jvr6etxzzz3IyMhAUlISrrzySmzdurXVfl955RVkZmbCYrHg7rvvhtPpbHV/2zamPM/j1VdfRY8ePaDT6dCtWze8+OKLAIDu3bsDAM4991woFAoMGjTI5z5cLhcefvhhdO3aFXq9Hpdddhk2btzovX/58uVQKBRYtmwZLrjgAhiNRlxyySXYu3ev3/dHLjpLSQghhHRQM9ccQY8MM07LMLU66CKEEEJIB3V0tfiRk9gqShCAYxvFqkXW1bFnFx5dC6QUADoz4KiN92oIIacIKUFWogQ8ia6JaQLLs1Ar5Z9Otrqt0Kl0nWbOHsMzaHI3xXsZkkhphfrv1f9GkjYJ06+eDo1KE5Hn3VOzB27ejRxTTqcJlE9lBoMBNTU1AICJEydi165d+Prrr5GTk4N58+Zh2LBh2L59O3r27AkAsNvt+N///ofp06cjPT0d2dnZGDRoEO68806UlZV59ztnzhw899xzePfdd3HuueeiqKgIEyZMgMlkwrhx42Cz2XDFFVcgNzcXCxcuRFZWFrZs2QKe53Hbbbdhx44dWLJkCX777TcAYmWfnNfUsjLxwIED+OGHHzB37lyoVOLX7C233AKDwYCff/4ZycnJ+Oijj/CXv/wF+/btQ1paGr799ltMnjwZ7733Hi677DLMnj0bb7/9Nk477TS/z/v000/jk08+wZtvvonLLrsMZWVl2LNnDwBgw4YNuOiii/Dbb7/hzDPPhFar9bmPJ554Aj/88ANmzZqFgoICvPrqqxg6dCgOHDiAtLQ073b/+te/MHXqVGRkZOC+++7DXXfdhdWrV0t+jwKhYJEQQgjpgHaeaMDmo3W46bxcpJl8H0gQQgghpIM5IvMP9aZqwNUIcG5A6MDtUDkWOLEF6H45oKVgkRDSscRzhtypxM7awfKhzVizuq1I1iZ3mlaoAFDjrIn3EiQJ1rK13lmPA/UH0COlBxycI2LBYlFlETRKDXJMORHZX2dSVlbWKlwDgNTUVHTv3h1OpxO7du1q95jzzjsPALB37140NbUOtQsLC5GWloaqqiqUlpa2us9isXjDvlAIgoBly5Zh6dKleOihh1BSUoIZM2agpKQEOTni53bSpElYsmQJZsyYgZdeegkAwDAM3n//fZxzzjnefXlaeWZlZXlve/755zF16lTcdNNNAMSKvV27duGjjz7CuHHj8OWXX6KqqgobN270BmY9evTwPt5sNnsrEeXYvHkzvvzyS1x55ZXe29xuNz7//HNkZGQAAFatWoUNGzagsrLS27b19ddfx/z58/H999/j73//O6ZNm4a7774bd999NwDgv//9L3777bd2VYsejY2NeOutt/Duu+9i3LhxAIDTTz8dl112GQB4nzs9Pd3va2pqasIHH3yAmTNneudUfvLJJ/j111/x6aef4p///Kd32xdffBFXXHEFAOCpp57CtddeC6fT6a3IDAcFi4QQQkgHNGvNEaQZNTgzKwlqZee4qpMQQogEzgbglW7AmLlAj7/EezVEDnstUCOzjZhn+44eLFbsABi72AZVRacRCCEdS6LMukt0DtYRcrBoc9vQ1dC1UwSLSoUSvMAnTLAYrBXq5srNAJpb3fKRmx9aVFmEHHMOknRJEdtnZ/HRRx9hypQprW4bPXo0vvjiCxw7dgznn39+u8d45puOHz8e69ata3Xf7NmzMWbMGHz77beYOHFiq/uuvvpqLF26VPYaFy1aBLPZDIZhwPM8br/9dkyePBnLly8Hx3Ho1atXq+1dLhfS09O9/9ZqtTj77LMDPkdTUxMOHjyIu+++GxMmTPDezrKst/KwuLgY5557bqsqvFBt374dZrMZHMfB7Xbj2muvxbvvvuu9v6CgwBvsAcDWrVths9lavS4AcDgc3nmRu3fvxn333dfq/oEDB+KPP/7wuYbdu3fD5XLhL38J/e+8gwcPgmEYXHrppd7bNBoNLrroIuzevbvVti0/B9nZ2QCAyspKdOvWLeTn96C/CAghhJAOpq7JjQXFJ3BZzy7omtSBW6IRQgiJvIrmK5Q3fUrBYqIpWRd8m7ZqDogfeRZAB56xWLoeUKqBlMJ4r4QQQtqhGYux4WAdYIXQgsVGdyM0Sk2naIlpVBthY2yosXeOYHFT+SYAgJNzhjxDsy1BEFBUWYSeqT1h1NB8xbbuvfde3HDDDa1uS01NBQDk5eVh8+bNfh87c+ZMnxWLAHDrrbdi4MCBre6zWCwhrXHw4MH44IMPoNVqkZOTA7VajJFsNhtUKhU2b97sbRfqYTabvf9vMBiCjvSx2WwAxGq7AQMGtLrPs2+DwRDS+n3p3bs3Fi5cCLVajZycnHZtRk0mU7v1ZWdnt5of6eGpvpQrkq9HCo3mZAWy5/PB85G5mJGCRUISEM8L+HHbCdxwTg7NXSOkE/pmUyl4QUC/3CQYtIn/hxchhJAE9OrpwPVvAX2vi/dKEkfJWvmPqW6uWOS5jl2xWLIOSOkGGFLivRJCCGmHZizGhpN1hlSxyPEc7KwdBnVsT6hHi1HTHCwmSMVisIreDeUbAIgBZKgVqW2daDqBGmcNLjNeBp1KF5F9dibZ2dne6rG29Hq9t+2pL7179/Z7X0ZGRquKu3CYTKZWLUc9zj33XHAch8rKSvzf//1fWM+RmZmJnJwcHDp0CKNHj/a5zdlnn43p06ejtrbWZ9WiVqsFx0kLxLVarc/X5M95552H8vJyqNVqb3jbVt++fbF+/XqMHTvWe1vbitKWevbsCYPBgGXLluGee+7xuUYAAV/T6aefDq1Wi9WrV6OgoACA2Hp248aNePTRRyW8ssiIa2+1lStX4vrrr0dOjhiOzJ8/P+hjli9fjvPOOw86nQ49evTAzJkzo75OQjqaXWVWPPJ1MX7bXRHvpRBCIozjBXy+5gjOzk1BXgpd2RdtdCxCCCF+2KuBxY/HexWJ5cgqwCCzTVP1PvEjzwJCB65YLFkLJOeL8xVJRNGxCCHho1aoseFgHUGr33yxMWJVUmcJmDRKDTRKDWqdiTFvOFDw3uBqwP66/ehi6AIX54pYsFhUWQQAyDPnRWR/pOPo1asXRo8ejbFjx2Lu3Lk4fPgwNmzYgJdffhk//fST7P1NmTIFL7/8Mt5++23s27cP27dvx4wZM/DGG28AAEaNGoWsrCyMHDkSq1evxqFDh/DDDz9g7Vrxgr7CwkIcPnwYxcXFqK6uhssVuQr2IUOGYODAgRg5ciR++eUXHDlyBGvWrMG//vUvbNokVvo+8sgj+OyzzzBjxgzs27cPzz//PHbu3Ol3n3q9Hk8++SSeeOIJfP755zh48CDWrVuHTz/9FADQtWtXGAwGLFmyBBUVFWhoaGi3D5PJhPvvvx///Oc/sWTJEuzatQsTJkyA3W73znqMhbgGi01NTTjnnHPw3nvvSdr+8OHDuPbaazF48GAUFxfj0UcfxT333BNSn2BCEhnHiycdapvoqjxCOptluytwosGJfnnJSDJEZmg68Y+ORQghhESE2w6UbxOr+uTwVCwKHbhiseEY0FgGJOUA6s5xUrgjoWMRQsIXSthF5OMEsfJQLqvbCgDQqzrPmA+D2oB6V328lyFJoO+PosoiCBBwWvJpYHgmYiF9UUURMgwZSDekB9+YJJwZM2Zg7NixePzxx9G7d2+MHDkSGzduDGlu3z333IPp06djxowZ6NevH6644grMnDkT3bt3ByBW8P3yyy/o2rUrrrnmGvTr1w+vvPKKt1XqX//6VwwbNgyDBw9GRkYGvvrqq4i9ToVCgcWLF+Pyyy/HnXfeiV69euFvf/sbjh49iszMTADAbbfdhmeffRZPPPEEzj//fBw9ehT3339/wP0+++yzePzxx/Hcc8+hb9++uO2221BZWQkAUKvVePvtt/HRRx8hJycHI0aM8LmPV155BX/9619xxx134LzzzsOBAwewdOlSb0vdWIhrK9Thw4dj+PDhkrf/8MMP0b17d0ydOhWAWGq6atUqvPnmmxg6dGi0lklIh+ViOujJB0JIyGauOYLCdCN6dDVDSa2Oo46ORQghhETE8c1i1WFKN6CsWNpjOBaoPyr+P8933IrF0vXix5RCgI5NIo6ORQgJH1Usxk6Dq331TDCeYFHXiS5OMWlMsLltYHgGGmXHviA40PfHpvJNSNYmI9ecCwBocjf53VaOosoi5Jpzab5iggrWCUGj0WDKlCmYMmWKz/vHjx+P8ePHt7t95MiREHwc795+++24/fbb/T5fQUEBvv/+e5/36XQ6v/e1NHnyZEyePFn2/RaLBW+//Tbefvttv4995pln8Mwzz7S67X//+5/3/9u+n0qlEv/617/wr3/9y+f+7rnnnnZtUtvuQ6/XB1zXoEGD2r3X/fv39/n+hyquFYtyrV27FkOGDGl129ChQ72lr764XC5YrdZW/xHSWbhYChYJ6UwOVDZizcEa9M9PQbpJ63e71Yu+huNwUQxXRjzoWIQQQohPJWsBjRFIyZf+mPqjYhipTxFnLKKDBosl6wBzV8DS1XvTl79sxLzddCI/HuhYhJD2WC4y7RtJcFaX/J8fje5GAIBe3XkqFj1zFhmu4/8uDLTGDeUb0M3SDcm6ZABAI9MY9vPZ3DYcrD+ITGNmVOdqHlt3DPVr6qO2f0JIYAkVLJaXl3vLTD0yMzNhtVrhcDh8Publl19GcnKy97/8fBl/6BHSwblYacNpCSGJYeaaI0g2aHBmdjI0qva/ojmOw4f/ex7fTHsOzqNb47BCQscihBBCfDq6GkjtLoaLUtUcED+auwIC23FboZasFSsxtWYIgoDn3/4CoyfPwi8H6UR+PNCxCCHtUcVi7ITS/tMTRpo0pgivJn7MajOamKaE+NrzN2PR5rZhb+1eZJmykKJL8d4Wrm3V28CDR7Y5G0pF5KMHQRDwzUffYOWLK9G4rTGiFViEEOkSKlgMxdNPP42Ghgbvf6WlpfFeEiER4+Y66MkHQohsVieDHzYfx7n5Keia1L5FjL3JhskPjce8Lz7BzROfReqg8bFfJAkJHYsQEiKeB3bOj/cqCAmOY4HSDUBynvxgUaUDjF3EisWOeGLMZQMqdgFJuXBwaox6/H944f0v8fJ9N+D9aztP5UlnR8cipLNLhHCns2hwy2+F2uhuhAIKGNWdpy2mWZs4waK/NRZVFoEHj7ykPG9loae6NBzFlcUwqo3INmWHva+2GDeD1598HR+++CHOvOVM5P09Dwpq005IXMR1xqJcWVlZqKioaHVbRUUFkpKSYDD4Lq3W6XTQ6TpPD29CWnJTK1RCOo0fNh+Dm+NxVm4STLr2v57ffP5xbNu0Fv99/wuYe1yAjb/ui8MqCR2LEBJDq98Elr0AKL4Azrg+3qshxL+KHQBjF9ugKmX8iV29DzBlAGodIHAds2LxxBZxbcn5ePSV6Vj4+3p8/9Yz+OuFOcDS5fFe3SmJjkUIaY/lWQiCQAFDDITSCtXqtkKn0kEt53dkB2fWmmFn7QndCnVTxSZYNBZkG7O98y898zDDsbliM/IseTBrzGHvq61PX/sUv/zwC5564ymU9CrBtuptEX8OQog0CVWxOHDgQCxbtqzVbb/++isGDhwYpxUREl8ULBLSOfC8gJlrjuCsnCR0SzO1uU/8Pr/r0Wfw1peLcOH/XRmPJZJmdCxCSAzZqsSP9UfiugxCgipZCyg1YitUOar3AaYuYrDI8+iQMxZL1oNXGYCUfEyeOBp/fvEq/jr0sniv6pRGxyKEtMfyLPiOeHFGJxTqjEWD2gCVQhWFFcWHWWOGi3PBztrjvZSg/FUsbijbgG5J3WDWmqFXiV0IbEx4rVA5nsP26u3IMmXBoIncfEXPeZFRD4zCm9+8iaE3D43YvgkhoYlrsGiz2VBcXIzi4mIAwOHDh1FcXIySkhIAYruOsWPHere/7777cOjQITzxxBPYs2cP3n//fXz77bf4xz/+EY/lExJ3LgoWCekU/jxQjaM1dpydl4wUo8Z7+4olCzDxtmGwWRuQnVeAwh594rjKzomORQghhITtyGogtQDQJ8t7XM0BwJDWoSsWf1o4D/0/bERlk4Dsrmk4/6ye8V5Sp0PHIoSEjxVY8Oh4P0M7o0ZGfqvMelc9dGodVMrOEyx62rrWOGrivJLAeIEHJ3Dtbrczduyu3Y1sUzaMaiP06uZgMcwZi/vr98PBOpBtzIZGqQn+AAmK1hThrqvuQuWJSiSnJuOsC86KyH5jyROMEpJIgs0vjWsN+qZNmzB48GDvvx977DEAwLhx4zBz5kyUlZV5D6YBoHv37vjpp5/wj3/8A2+99Rby8vIwffp0DB1KVymQUxNVLBLSOXy5/ijyUgzo2dUMpUIBQRAw58M3MevdV/GX6/4KLbWuiho6FiGEEBIWQRArFrP6AToz4Khrv42jXgwdW7boc9kAWyVQmCbe3sFmLAqCgLemTcPjb67F9edmw2hJjfeSOi06FiEkfJ5WqCT6mpgm8AIPpUJ6rYrVZYVepZf1mI7OpBE7DdU6a+O8ksD8VSsWVxWDEzjkmHO8ga9GqQm7YrGosggqhQq5ltyw9uPx01c/4c1/vYlzB54LoynxZnRqtVoolUqcOHECGRkZ0Gq11LKZJARBEFBVVQWFQgGNxvdFAnENFgcNGhTwF//MmTN9PqaoqCiKqyIkcTAcBYuEJDqeF7D2UA3OzU9FulkHt8uJN557HMsW/YBxE5/A6Pv+QQeeUUTHIoQQQsJSewiwVwPJeUDz1f6tNFUDr50OXPUf4NKHT95ec0D8aEoHnNYOVbHIMAweeughfPTRR3jiEi1efuIWKJNkVmMSyehYhJDwUSvU2LEzdnA8B6VKekjY4G6ATqXrVK1QPcFiR69YdHNun7dvKt8Ek8aEXPPJAFCn0qGJaQrr+YoqipBjykGyNrzjBo7j8Mkrn+Cbj77BDWNuwENTHoJak3gzOpVKJbp3746ysjKcOHEi3sshRBaFQoG8vDyoVL5/difedyQhxMtNwSIhCW9vRSOsDha5qXro1CoUbVqL1csW41+vf4hBw0fGe3mEEEKCmZwMnDESuHVWvFdC4qFkLQAFkFLo+35bhfjx4O9+gsVMwG0XZyx2kJPixcXF+PzzzzH93+Nxt3o+kFYY7yURQkhAnMBRsBgjDtYBhmegUUlvc9noboRepe9UrVA9wWK1szrOKwnMX7C4oXwDulnE+YoeerUeDtYhuyK1paLKInRL6gajJrzqwtKDpVgwewEmTp6Im+68KaEvttZqtejWrRtYlgXHtW9LS0hHpdFo/IaKAAWLhCQ0hqNWH4QkuvWHaqBWKmBhGyAIXXHuxZfh86UbkJqeEe+lEUIIkWrXfIB1A2ptvFdCYu3oGiA5FzD7+b3tOaGnbPOnd80BQJcEGFOBhhKxYhHxPbY/duwYsrOzceGFF+LIkSPouvo54GgeYEyL67oIISQYlmchxPln6KnCwTnACqysx1jdVmQZszpVxaKnArPO6aMFegfiqxWqk3ViV80uXJ57OUxqk/d2nUoHJ+eUXZHqUdFUgXJ7OS7MuhA6VWjjXGoqapCclozCXoX4ctWXSO3SOVqxe9pJ+mspSUgi6jzNrQk5BbEcD56ng2dCEtmaQzUwVe3Af+68Fou+/RwAKFQkhJBERJUSp6Yjq4GUAqDFFf+tcM0n9NpWaVTtBUwZgEoHKFTi108c54OtXLkS/fv3x+uvvw4A6Nq1K3B0LZDcTZwdSQghHZQSSqpYjCEn6wTLywsWbW4btCptp5qxqFAoYNQYO3yw6KticVvVNjA8g1xzbqsqUr1KL35+ZQbHHsVVxQCAXHNuSBWGe7fuxb3X3osZb8wAgE4TKhLSWXWen+iEnIJYjq7JIySR8byAxV/PwPZPn8ZZ5w/AX677a7yXRAghhBCpGiuA+iNAUh6gMfjexm/F4n7AmA5o9GLoKPAAH5/2WDNnzsSQIUNw9tlnY8KECeKNtsrm15YDqP28NkII6QCUSiXNWIwhucGiIAhoZBqhU+lkB4srj61EtaPjtho1aUxodDfKDlpjyVewuKliE4xqY6v5ioDYCtXFusCFeDxSVFmENH0aMozyL5Re8dMKPHLLI8jMy8Rf76LzIoQkAgoWCUlgLC+Aj+OVzYSQ0LEsizvuuRfHF7+PC64djf+8OwtGE1UEEEIIIQmjZK34MbUA8HdlvueEXsv2b4IA1BwEDGmASn8ydPQzBylaeJ7H008/jTvvvBPjxo3D0qVLkZbW3Pa0dIP4MbWb/9dGCCEdgEqhAidwEOjcSNR5WmXKCdJcnAssz0Kv0st+vgeXPYgbF9wo+3GxYtaYYWNsPtuNdhRuvv2xha/5ikBzxSLvBCeEFixuqdiCXHMujGrp8xUFQcCcd+dg8v2TcenVl+KNr99AWga1YCckEVCwSEgCY3geHLVCJSQhKRQK7Dl4FF2GTcTdjz8fcCAyIYR0Si6bWBVFSKIqWSu2M03K9r+NtxVqi4pFWwXA2AFTOqBUtggWY3tiUqFQoLS0FK+//jo+/vjj1nN/SteJwaclJ6ZrIoQQuVQKlVixCKpYjDa9Sg8X5/JZBeeP1W0FAOjUoc3cszG2kB4XC2aNGU1MU4cOFtuuzc25sb1qO7LN2TBqWgeABrUBLtYVUgWmg3VgX90+ZBoz2+03mMoTlRj/j/H49zv/hk4f2tcJIST21ME3IYR0VCwnxHMUCyEkBIcPH0ZZWRkuueQSXHjPi7CUNyLFSAO8CSGnoD/fAPb/Atzzq/82koR0ZEdWi9WK/uYrAr5boVbvFz+aujTfp2q9bZSdOHEC+/btw6BBgzB79mzfc5COrg3+2gghpANQKVU0YzFGdGod4D4ZFkrR6G4EILbZ7GwsWgtKG0tlBa2x1nZt26u3w827kWvOhbpNm3aD2gA35w4pWNxRvQOcwCHHlCOp5W1DbQP27diHCy+/EI+++GhIMxkJIfFFFYuEJDCW56kVKiEJZM2aNRgwYAAeffRR8DyPDUfqkJ9mhFlH1/kQQk5BLitgrwGcDfFeCSHyOa1A5c7m+Yom/9t5g8UWnQlqDgAKJWDOFP+tiF2wWFRUhIsuuggPPPAAOI7zfSKPcQLlWwFLLqAN8NoIIaQDUClU4HhqhRoLOpVYTVbvqpf8GG/FoqrzVaIlaZNgZ+0desYi06YbwqbyTTCoDe3mKwKAQWOAi3OF1Aq1uLIYepUe2eYAXRyaHd1/FA/c8ACmPjkVbpebQkVCEhQFi4QkMJajGYuEBLP5aG2H+CNzzpw5GDx4MPr06YPFixfjUHUTapvcyE0xQKehNqiEEBlK1gGTk4GmmnivJHw8A1CFQXDbvgUaK+K9CtLSsY3i125KgdjO1B9frVCr9wPGLierAb0Vi9FtpTZ//nxcdtllyM7OxrJly/y3YS/bKq4lJa91IEoIIR2QZ8biqVyxuLVqK45aj0b9eTxzEkOpWJQzdy9RWLQWOFgHnKwz3kvxq+2MxQ3lG5BvzodFa2m3rV6lh5t3g+XkB6WbKzYj15Lrc78tbVq5CQ/e+CB0Bh2mfTsNWp1W9nMRQjoGChYJSWAsL4BGLBLi3/F6B/76wVr8tL0sruuYNm0axowZg1GjRuHXX39Fly5dsO5QLVQKBQrSOt8fWISQKCv6Qvy444f4riMSeJaCRSkWPAisejPeqwis5iCw75d4ryJ2StYCuiQgOT/wdqxL/NgqWNwntkH1zJvyzliMXsXiZ599hptuugnXXHMNVqxYgezsABUFpesAlU4MTQkhpINTKZsrFnHqnhwZs3gMrpt3XdQr5zxzEq0u6cFig0vsTCF37l4iMDdfIFTrrI3zSvxr2QqVEzhsq9rmc74iILar5QUeds4u6zl4gRf3a8wOGCAvX7QcT457EmedfxbemfsOsvKzZD0PIaRjoWCRkATG8UKHqMTqTHhewNjPNoDh6CRnWzYXiyZXx23x4YvNKa63yuqK6zquvPJKvPbaa5gxYwZ0OvGPsbUHa5CXZkCaia7QI4ScwihYlEYQOn7L2KIvgO/GAbaqeK8kNo6sBlILAV2QGYS+ZizW7AeM6YBn3pTnviieEL788ssxZcoUfPPNNzAag5zcLVknzlfUJ0dtPYQQEikqhQqswJ7SFYseTUxTVPcfSivURncj1Aq1t9qxMzFrxGOAGmfH7SLSsmKxtLEUTs6JHHMONEpNu209czBtLpus5zjccBiNTCOyTFnQqNrv1+PM88/E6AdH48VPX4TJQq3WCUl0FCwSksBYjqeKxQhbsrMcK/dV4YUfd8V7KR3OE99vxaPfFINLoC86Nyv+cRmPq1fLy8tx3333weFw4Oyzz8akSZO8swMEQcC6wzXITzXCRPMVCSGnMo6CRck6cJstAOLnkbGLLUI7O9YNHN8MJOdJCBab25uq1CcfW18KGFIBVfPFRcrozFisqanBvffeC6vVih49euDZZ5+FMlDbVkAMsUvWia+N5isSQhKASqECL/AULMaAJ1iUU7FodVuhV+uh6oSttT3BYq2j41YstpyxeKD+AHQqHfItvrsteMLfRqZR1nMUVxZDAQVyLe3nNjY1NuGNp99AQ10DMrIzcNeku6BSd76vBUJORRQsEpLAxFaoiRPyJAJPpWIihWexUtfE4HCVzVsFmAhcrDh0PNafza1bt+Kiiy7Cjz/+iNLS0nb3H6puQo3NjZxUPfQ0X5EQciqjikXpWBfAJ8B7Vbo+3iuIvrJigHOJbVCVQS4Q8oSFiubf9/VHAYETKxabLzjy3sdHbsbi3r17cfHFF+OHH37AoUOHpD+w9hDgqAWS8k62aiWEkA7M2wqVzo1EnVKhhFallTVj0eq2wqA2QKXofH/3elqhVjuq47wS/1q2Qq20VyLf4nu+ItCiYpGRV7G4pXILsk3ZSNGltLq9vLQcD930EH5f+DtKD7Y/LxKuVH1qxPdJCJGOgkVCEhhHwSKJMauThYvj4r0MyTwVi7G0aNEiXHbZZejSpQs2bNiAXr16tdtm/aFaKBWg+YqEEMKziRGWdQScM/QQtuEY8PuLgK0ysmvy5URR5/+clqyVPoPQUyngCRGr94sfTV1PbuMJJ9nIBIu///47Lr74Ymg0Gqxfvx79+/eX/mBPMJzSLSJrIYSQaFMpVOAEDjw6+e+eDsKgMsgKnhpcDdCpdJ0yWDSoDVBA0bFnLPLuVu99jikHJrXvjgTeikW3vIrFLZVbkG3Ohklzcr87N+/EAyMegNPuxLvz3sVZF5wVwuoD64xfU4QkEgoWCUlgLC+AckUSS1YnE5ewLlSuGK91165dGDFiBIYMGYI///wTubntW4EAwLpDNchLNSLdRJUAhJBTnRDRKq1OjXWLlW6h2PszsPJV4O3+wNr3ohv81ewHZLRIS0ie+YqGlODbtm1vWnNAnK1oyjh5mydYjEAr1KNHj2LYsGG48MILsWbNGpx++unydlCyDkjKAcwZwbclhJAOQKVUQYDQquVjIjnWeAwvrX8JLJcYnYH0aj3sjB0cL+2YxOrqvK1QlQoljBoj6lx18V6KXwzPQN2iu0KOOcfvHERPxaKcitRaZy2ONR5DpjHTG0zW19Rj0uhJyOueh/cXvo/CXoWhvwBCSIdFwSIhCYwqFkmsORkejY7E+YMtVsEi11zFecYZZ+DHH3/EDz/8AJPJ91WAgiBg7aEa5KcaYKb5ioQQIgZmJDjODUg8ideO2yaGWWmnA0ufAT66DDheFNn1eVjLgMay6Oy7I+B5saovOQ/QBpmvCLQPC6v3iaGiRn/ytgjMWOR5HoIgoKCgAAsXLsTixYuRkpIif0cla8VqRZqvSAhJEJ6qpUQNFosqi/DVnq9woOFAvJciiVFthJ21gxWkBaENbrFiUanonKegTRoTrG5rh53x6ebcUCtOnnfIM+f53TaUisXiymIAQK5ZvKia53mkpKfgPx//B69/+TpS0lPkL1oio0bsAOWZdUkIia3O+VOdkFMEy/OgUYAk1ioaXfFegmSeGYvRVFdXh6uvvhofffQRAOCaa66BUun/1+vRGjuqGl3ITTXQfEVCSPxsnA5s/SbeqxCxznivIDGwrtArFt12QGMALrwHuOQRwFYFfHYVUCNj9p4kCgACULoh+KZOK/BGX+DwqgivIcqq9wLOenG+olobfPu2J7o9waLaR7AYYvWuzWbDyJEj8dprrwEAhg0bBrU6hIuXHHXi+iw5gIbatRNCEoMnWHRxifN3qi82t7y5dvFi0BjgZJ1geWnBYqO7sdO2QgXEUMvmtrWaZdiRuDl3q2rRJF2S323VSjWUCiWamCbJ+y+uKkayNhkpihT896H/4rPXPwMAXHD5BdDqJBwnhaGbRWzbfmnOpVF9HkKIbxQsEpLAOF4AT8kiibGqBAoWo9229cCBA7j44otRXFyM3r17S3rM+sM1UNB8RUJIvP30ODDv74Bb+omDqOmgJ2I6HM4d+oxFlw1QacUAq2AgcOHdYuBVtSf09bgaxXCwJWMaoNScnNMXSPV+wHoCOLIy9DXEw9E1gEIJpHaXtn27VqgHAUNq62DRc7I1hOrd0tJSXHbZZVi+fDnOOivM+UXHNokfUwrE10gIIVF0+0+346rvrgp7P57Ays0n9vGEJxi1M3Zc8uUlcLEd8+9uo9oIB+uQFSxqVdrOGyxqzWhimsB0kNb+Da4GrDm+Bt/v+x4sz4rBYvN7n6xNbjUHsS2FQgGdSgc7Y5f8fJsrNqML2wUv3fUSVi1dhZ5n9gz7NRBCEgP1YCMkgXE0Y5HEQYU1cSpLotkKdcWKFbjpppvQpUsXrFu3Dj17SjuAXnuwBnkpBqSbab4iIaQDcDXGv+VhglcYxAzHhNcKVaU9GWApI/Bn4M9Pim1PR38HqJr3p1CKLUIrdoohWaCKvrrD4keX9HZbHULJWiC5G2BKk7Z9y2DR2QDYqwFD2sn3DAh5xuKGDRswYsQI6HQ6rF69Gv369ZP1+HZK1gG6JCDJ94xoQgiJpO3V2wEA5U3lyDJlhbwfTzVWR60Yk8rZ3MFh3oF5aGQa8U7RO5h04aQ4r6o9o8YIJ+uUHKTZGBu0Sm2nnLEIABaNBWW2srgEi3bGjt21u7Gjege2V2/HjuodOG477r1fr9LDxbm8bWiNGiO0qsBVhHqVHnbWDkEQoFAoAm7r5tzYUrwFx986Do2gwVvfv4U+5/QJ/4URQhICBYuEJDCasUjioZIqFiEIAqZMmYJzzjkH33//PdLSpJ1cFAQB6w7V4rQME81XJIRI52wQg5qCS+K9kuigGYvShFOx6LYBal1kq9AcdYD1OOCyipWKHmndgWObxa9bc4b/x9cfFT/KuCo+IhqOA0k5QJCTZX4dXQ2k95A2XxEQW9h61DTPzzJ1ab2NN1iUd1Ly5ZdfRmFhIebPn4/MzExZj/WpZC2QWgjoaFYRIaS1XTW78Nzq5/D9Dd9HfN/hBjKe0CRaweL+uv3omSq9CsvBOqBWqqFRamQ9j4tPjL+zjWojHJy0ikWO59DENEHfskq/k7FoLbCz9qgH2wzHYF/dPm+IuL16O440HAEPHhqlBlmmLGSbsnF2l7OhVWmx4OACNDFNrSoWpdCpdXCwDnAC12o2oy+7anahfHE5zMlmTJs9DV1zuob7MgkhCYTOahKSwHhBnLNIEsvOEw2Y9N1WfPP3gUgyyPtjoyOosSXOCeBIVyzyPI/jx48jPz8fP/zwA8xmMzQa6Z/D0loHyq1O/F/PLtCpqcUYIUSiWdcDZVuBR3cAKfnxXk3kJXiFQcxw7jAqFpuaKxYj/LuHdbZfU9rpwMHfxVmEgYLFuiPiR8YR2TUF4qgH3joHuPEjoN9f5T++vlRs39r9itatTANpWZFb3RwsWtpU5siYsSgIAkpLS9GtWzfMmjULGo0GBoNB2loCrpMBjm8BTrtCemhKCDllvLj+Reyt24tN5ZtwQdYF8V5OK57wwy1E/nhi2dFleHT5o3jpspdw/enXS3rMw78/jDxLHp67+LmgFV8tddTWp22ZNCa4WJekYNHGiHMj9arOHSw6WEdUg8Vv936LVza8AoZnoFQokWnMRKYxE38p+AuyjGKgaNaaYVAboFPpUGGvwIKDCwCIgbWcalG9Sg8n6xSDRT+xgedYpNhajMLxhbj/nPvRNYtCRUJONRQsEpLgXAwFi4nm992V2F3WiL0VjbiwUGIbrQ6k3uEGzwtQKkO80j+GXGyIJ2B9aGpqwtixY7Fp0ybs3bsXqampsvex7nANFAAK042y/sgkhJziGivEjzUHKFg8lXFuQAinFaoGUEY6WHS1X1NqofixZD1QeJn/x9YeEj8yMWyx7qgTw7vaw6E9vmSd+DG1u/SKx5Zf3zUHAH0KoE9qvY3nhF+QikWXy4UJEyZgyZIl2L9/P5KTk6WtQYqKHQDrAJLzW7dp9ae+RPzYUBq5NRBCOq7mRkmeoKgjUTb/bmNkVn0D8M6gM2qMPu8/ZjsGADhQ33xhiISGUUetR6GEEm7eDZ1K+vgLTyvUjs6gNoAVWDgkXBhkdYuzmOW8D4nGorWAF3jUu+rRDd2i8hy7anbBrDHj6sKrkWvORZI2CQa1AXq13lux64/cikW9WmyfyvEc4ONhDMPgkUcewZw5c3DLp7cgPz0fGSkBLiQjhHRaFCwSkuCi1eqRRE9RaT0AJGwbW6uDhZvjoU+AGQmR+v44fvw4brjhBuzduxdfffUV9PrQrrhcd6gGuSkGpJk67x9WhBAiW4JcoR93Yc1YtEexYrFNxYIhRQzPjm8M/Ni6oyf3IQihtyaVw3sSNMTjg6OrAUs2YJZxVX7LVr/VewFTRvtqR0XwisWqqirceOON2LRpE2bOnBnZUBEQg2ClGkgpkLa95/Me6tckIYREiCc0cYfQWv2rPV9h7v65+OraryS166xz1QFAwG0bXA3gQ/g942BjWMEfBk8I2+BqCLpto1ucoxytVqjbq7ajzlWHy/Muj8r+pTBrxCr/WkdtVJ/HoDbg7IyzkaRNCr5xCwzPyK5YrHPV+WxRXF9fj1tvvRV//PEH3n//fcxmZ6Nvcl+YNHGe104IiQvqw0ZIgnNzFCwmmm3H6uO9hLBYnUzEW4xGi5MJ/2RXUVERLrroIlRWVmL16tW4/nppLXB8WXuwBvlpBpqvSAghLVGwKE04MxaZJkCpORlgRWxNLt/BUtppQNU+sQWrz8exQGOZ+P++2qlGiydYDPXirqNrxOBNzgzClhWL1fsBY7qPYFEhhr5+qm12796NAQMGYP/+/Vi+fDn+9re/hbD4IEo3iNWKhpTI75sQQqLI2wqVlx8sVtorUeusRb2rXtL2pY1ilXa6Pt3n/QzHwM7aIYTwe8bJJU7FIgA0MMGDRU/FYrSCxW/2foNXNrwCmzt+lbSeYLHGWRO3NQTi5txBZyW2ZFAb4GJd4Np0pDh06BAuueQSbNy4EUuXLsXQ24aizlWHTGMmtCptpJdNCEkAFCwSkuCc1Ao1oZQ3OFGdQDMKfbE52YSplI1EANrU1ITTTjsNGzZswDnnnBPyfkpr7ShrcCI3xQC9hn79EkKIFwWL0vBM6K1QGbvYCjXiFYtu32FYRh+goQRoqvb9OOvxkxVvnI92qtHC2EN/rL1WrDhMygX8tMzzyRMsCoLYgtWQCqh9dC5Qqv1WLDqdTmRmZmLDhg24+OKLQ1i8BBXbxdmPWhmvjRBCIiDc2YKeVqguTv5+3JxbUntTjxKr2AbaorX4vL/BLYZtoVQshrL+eDCqmysWndIrFqNV0SZAQBPTBDsbxu/3MJm1HT9YDNYutSWD2nCyFWrL/bjdMJvNWL9+Pa688koUVxUDAPLMeZFcLiEkgdCZTUISXCRnyJHo25rg1YoAYHOxCVMpG2rFoiAI+Oabb8CyLC677DKsXLkS2dnZYa1l/eFaKAAUpJtoviIhhLREwaI0PAew8udHARBboSqjECwKnBgMtpXRSwwcT2zx/bj65jaoOov4+W/bTjVawgkWSzeIH1MK5L2PnuDVUSfOMDSl+368QilWcrbw/fffw+Vy4dxzz8WaNWtQUCCxTalcrFuceWnq0r6akhBCoqzSURnW472tUEOoWGR4BoKMZNFTsaiA77/n6p31ABBSxWK4AWuseCsWJbRCtbqsrR4TDXbGDjZWxxE+eELTGoe0YFEQBLxf/D5ONJ6I5rK85LZC9QaLzRd9zZ8/HzabDX369MH69evRq1cvAMCWii3INGYizZAWlXUTQjo+ChYJ6YBeXrwbhU/9BEZCeCNlG9JxJHobVECsArQ5QzyxGWOhVFa63W7cfffd+Nvf/oYlS5YAQESCwHWHapCdokcXM81XJISQVhLkCv0OIdRgjLEDam105hi6fLQfS+0uBmUl63w/pu4oAAVg6ipW9MWsFWoYwWLJGkCfCiTnyHucp2KxsVz8aOziezulyhuwsiyLRx55BLfccgt++OEHAJE5FvGrep/43KbMyIfPhBASZd5gkZMfLMp9jKdi0R/PDMaQgsUIHg9tr9qO1cdXR2x/LXkrFt3SKhb1Kj00Sk1U1gKILWSlzqfkBR7zD8yPaBCpVChhUBu8n/tgmpgmfLD1A3y///uIrSEQN+f2fo9IoVfr4ebccLEu/Pvf/8aNN96I2bNnA2h9LLKlcgtyTDnerwdCyKmH/mogpAP6+M9DAIAdx4MfqCXKrDsiKiqphzKBi9V0avHXRqU1MU4CO2V+f9TU1ODqq6/GnDlz8Pnnn+O6666L2FrWHapBtzQjTLoIz7cihJBEF8KJwFOWxBNnrfC8OMcwWvNvfM01UuuApBygbKvv0LD+qDjLT2sSKxZj1go1hPfP48gqIK0Q0CXJe5zn69tWLs64NGf53k6hAngGVqsVN9xwA9577z28//77uP3220Nfs1SVu8SPSTJDU0II6QA81VihBIuMnxbU/pTaSgPeL6WKz59IBotf7P4Cz615LiqzB7UqLZQKpXd+YiBWtxV6tV5WsBUKqe/7rppdeHb1s/hqz1cRfX6TxgSrywpewixsTwgq92svVG5eZrCo0sPtdOO+sffhpZdewquvvor77ruv1TZWtxWHGw4j05QZtfmZhJCOT/r0VkJIzLF88KvcXDRjMWEIgoAdxxuQmaRHWUNiDGZvy6RTw8W6UdmYGMGiW0ar4JqaGlx88cWor6/H77//jksvvTRi6zhR78CxOgcu6p4Gg4aCRUIIaSVBWn91CO4m+Y/xVOnFMlgEgPSeYmDlbACMbdpk1RwCDGmAxgA468XwMxZCrvh0iCFpr+FiGCqHt2KxDDBl+J9hqFTB1uTApZdeitLSUvz888+46qqrQluvXBU7AGN6+88TIYQkAE9oEkpQIyeM5HjOOzPQn3pXvew1hLKWYHiBR6W9EqXWUvTt0jdi+wXEqjW9Sh/0vQDEwE+v1stqxRkKqdWCnnala0+sxZi+YyLWDcCsMaPR3QiGZ6BTBe5Q5K2ulF/UGhKGY6DUSK8rUvNqHP7fYRwqO4S5c+di5MiR7bbZWrkVAJBjypE1v5EQ0rnQdz8hCc7F0YzFaJtXdAzWCLT+PFpjh9XJIispca/oMuvE61EqrIkRjMoJ3tPS0jBmzBisX78+oqEiAKw/LP4BU5BmoPmKhBDSFlUsShdKxZ0njIxasOgn7MzoDdgqgAYf1R11hwFDqhgssu7YVSy6QwwWj28WW4Wm5IstS+XwzFi01wSeYahUw6xVYPTtt2Pt2rWxCxUBoHy7WElJVQeEkATkCTaiXbFYbi8Puk04waKLj/yFVlurt0Z8n4DYLrOJaQra8rXB1QC9Sh/18Mkz2zKYWmctAGBv3V7YmMhVc5o1ZjQxTWC44F9PnmCRR2wuqnLzblnBrtloRvKAZLw7912foSIAFFcVw6wxI8vkpwsDIeSUQMEiIQmOWqFGl4vl8I9vtmL6ykNh72tr83zFnJToDS6PNpNWPCCtbEyQYFHCDNJPPvkEP/zwAxQKBZ5//nmcdtppEV/HuoO1yE7WI8NCJ+wIIaQdCSdhSLNQgkWmOfhTRylYdPkJFrv0Ej+WbGh/X0MpoE8CNKYYz1gMsRVqyVoxBE0pkP/Ylie6jWk+w7uvFi3HrM02QODw1JNPoG/fyFaXBFW5S6ym1NCcJEJIYlIpVKFVLPKBw8iWwVlpY+A2qABQ55RWOecLwzGSWmkG0jZc3V61Paz9+WNQG2Bn7WCFwLMKrW4rdCpd1FuhSq1Y9ASLlfZKHGk4ErHnN2ubg0UJX4OeYDGUOZyhYDhG0vu/+pfVmP/5fOhVenQZ2gU5vf23R99csRl55jyY5HZxIIR0KhQsEpLg3AxVLEaT51ivzh5+NcW20nqkm7RIMUZvcHm0KZUKGLUq1NgSo7rEHSB45zgOjz/+OP7+979jzZo1UV3HmkPV6JZm9FZ8EkJIh7fsP8Dk5NArvKTwtNCM4EyhTq9DViz6aYVmyQLUBuDY+jbb24GmquaKRWNzsBj4xGTEhNoK9chqILW7GIbK1TI4N6QBqpPHgYIgYPI7X+D2Sa/iz8NO8X0I86SybI46oLFcDBajFT4TQjodN+fGw78/HLNwJBi1Uh1SsBiswswTAulUOpRYS4LuL5xgkeVZcBIr+PvN6oenVj7V7nYn1/oC4AP1ByRV0cllUBvgYBxB9211W6FT66LeClXqjMVaZy0MavFC79UnVkfs+ZO0SWhimyRVzdrZKB5b+8DybMCKUUEQ8M1H3+DZCc+ieE2xt5Wrv/mcDM9gZ/VOZJoyYVTTBUmEnMooWCQkwbm5jnEg39nZ3eEHuEWl9chJ0UOnTuwfvWadGnV2N3gJM0DjzV9Fr81mw4033ohp06bh7bffxtSpU6O2hvIGJ0prHchJ0dN8RUJI4tj2rfjx2MboPcfWr8SPbGJcrNIhhDJj0RMOB5n5EzJ/MxYVSiCtUKyGazlHs775xKwhFVDrxOAtZq1QQ2h7xnPAsQ1Acj6gNYfw+BYnXY3pQHNLdIfThdsffxVT3vsSLz46Dp/8LU98rlgHixW7xI8WamdGCJHu812f44/SPzB9+/R4LwVAc8ViCAEawzMQAgy787TL1Kv1KG0sDTo/L5xWqAzPyApq/yj9I+g2x2zHYHVbQ16TP0aNEQ7WETQIbXQ3QqeMfsWi1GCx2lGNDEMG0vRp2FS+KewKUQ+L1gIH45AULDpC7Z4QIjfvhlrh+wJnxs1g6pNT8eGLH2LUA6Pw3PvPwaARg1d/Xzf76vbByTmRbcqGWkkXThNyKkvss9uEELhYqliMhXCDRZbjsavMikyLHtoEDxYtejWsDhZuCW1G481fxeLf//53LF++HIsWLcJDDz0U1TV45yumG2m+IiEk8cQi8IlVtVpnEErFnSdMU0crWAwQdnbpDdQeAewtKjjqj4ofDWnimngG4CR+DVTsAk4UhbzUkCpwK3aIrzE5r1W1oWQtT3Sbu3r/97FXPsGC39fhu2nP4Jn7boNCqW6uWIzxhVuVuwClGkjy3/KMEELa8lQHhjLXMBqiVbHY1NxOXK/S46j1KFL1qQG3DzdYlFqxKJXVbZVUaSmXUS0Gi2yQY7hGdyO0Km3UZyxKDU9rHDUwaow4PeV07Kvbh0Z/XRdkMmvMYAUWjUzw/cW6YpHhGb8VozOmzsDSH5biyalPYsKTE6BUKqFXiS3b/VUsFlcWQ61QI9ecG7U1E0ISQ2Kf3SaEwM12/KqxzsDJcGFV6B2ossHJ8MhM1kOV4OGSRa+B1ckkxHxPd5vgnePEf7/00ktYs2YNhg8fHvU1rDtYg6wkPbrSfEVCCPFNzonA2kOxD146klCCRc9jfMz2i4hAwWJGb3HGY+Wuk7fVHRGDLFMXMVgUeOntcFe8Csy7L/QWvaG8f0fXiutNLQztOT0nrdV6wJjuPRZ5/sHbsXL2/3DzsMvE+5XqOFUs7gDMmYAuhGpMQgjpIFQKFVield2aNVgY6alYVCgUKLGWIEWXEnD7WFYsBpOsSwYAFFcVS9pezsxBo9oIJ+cMGizaGBt0Kl3Ug0UbYwMnYV5zrbMWBpUBZ6SfgTpXHfbV7YvI85ubOxpUO6qDbutprxsLAgSwPNsuWPQci4y6fxTe/OZNDLtlmPc+bXPrfM/XfltbKrYgx5yDJF0I7eEJIZ0KBYuEJLhEqBrrDFwMDzaMYHFbaQMUAHJTEj9cSjaoYXOxAecXdhQtWwV/++23uPDCC1FXV4fCwkKcddZZMVnD2kM16JZuoPmKhBDiD88CvITfKQ3HgLfPA/Ytif6aOirGGXybtjzBnyZKxyCBWnql9xA/lqw7eVvdEbElqFp/sorSJbHFK88A1hOAU1rLs3ZCCRZPbAGS8sTWraHwVJ+YumLx+r3oP3IiKqrrkJWRhgv69Tq5nVLdvG2Mg/Py7WKw2DxzihBCEpFKKQaLcltbSg0WIQDHbceRpA0cpkhtyemLnBmLUiRrk2FQG7CjekfQbffW7sX186/HpvJNkvZt0pjgZAMHi07WCYZnvBVw0WRn7GCF4N0P6lx10Gv06JUi/v5dc2JNRJ7frBGDRSkzNmMZLHrC1pataIvXFuPuq+5G+bFyWFIsOOuC1udFlAoldCqdt1q3raLKIuSYcmBSm6K3cEJIQqBgkZAE52aoFWosOFkOfBhXDxaX1iMzSY9UY5TakMVQskELmzNxWqEKgoBFs97Fbbfdhr59+8JgiN2Js0qrE0dq7MhNNtB8RUIIaTgONJa3v51jpVVpNZYDEIC6oxFfWsIIpX2W2ybOO4zWjMVAYZ3OAhi7ACc2n6w0rT18cr5i81Xx8HPyyieXFWiqCm2tocyoZJxiC9QwWskKgoC31zlw/aNv4LT8bJgMPk6yKlWxr1gUBKBqD2DKiF7wTAghMaBWqsEKLHhEOFhsbgfZyDTCyTm9VYC+8ALvt32k1LVEauYfACigQI4pB4caDsEVpDPAscZjAICjVmnHWEaNES7OFbCVrKfNqC5ardhbsDP2oG1tBUFAvaseepUeSbokZJuysbl8s6RKx2AsWguAjlex6Pn69gSLx38/jkmjJ6FLVheYLf47FfgLFstsZahyVCHTlBmTzyshpGOjYJGQBMeEUUVHpHOx4VUsFpfWIztFD4M28cOlJL0aTpaHzdnxZ2I5XS7U/PQG5k9/E1OmTMEXX3wBvT52J87WH64FAHSL8HzFI/v3AABsjdJmSRBCSIfw0+PAggfbz9PjGUiq0nLUix9P5UOfkCoW7WKo6Ge+TtgYpxiI+ZN+OlC9H3A1zx2qOwwYUsQ1edqzyg38qveHtNSA1ZVBhfZ7nOEEPPCTE498exCPjx+Jue/8C2aTj4ucvMFiDL/A60vE997UVayYlKG0XDx5WmsN/SQ6IZ2RIAhYVrIs3ss45agUKnA8J7uVaNBWns1BYY2jBgACtkJtdDfKDjbbriWSwSIA5Fvycdx2HFZX4L8bqxziBTtOVtpxhkFtgAABVsb/fj1zD2NRsShl3qONsYHlWRg1RgBAr9ReOFB/IKwqUw+TRqzekxQshnUsIo/nPVEKSpR/U45dH+zCNbddg1dmvQJzcuBg0cE62n09etrq5pg7xlzmmgrx+7KhNvzPISFEPgoWCUlwTAzbUW48Uhuz5+poXCwPjgvtRI+L5bCvohGZFh2MnaBqzaIXTzxVNoZwcjOGBEGArWQX7PvW4O/PT8Nzzz0X0XBPivWHatDVoov4fMUVv/wIALDbIjNsnhByCotliOGsB5xWoO2V2jwbOJhq+fhTncQTfq24m8Rqu2jNN+KCBIsZfcQ2trYq8eutoRTQJQNq7cmKRbnBYs2B0NYaSivUcPA8tlbw+Hwbg+n3X4ZXn5gAlcrPsaBSLX4vxLJi0TP7MilL9kOXrS0GADTaYvyeEtLBfbH7Czz6x6NYcvgUbtsdB96KxSi1QvUEi+n6dL/bhjNf0bOWSAeLBUkFcLAOHKgP/Huz0l4JAHBy0o4zjGoxnAsUysWyYtHBOoJ+Lmud4vksz9r7pvdFI9OInbU7w35+tVINnUon6WugiQ2he0KIPO9J/fF61P5ei97je+MfL/0Dak3gi4n0Kr3PVrdFFUXoYuiCDENG1NYsx+pfVwMAHPbYhbWEkJMoWCQkwcWqHeUfeypxy4drMXP14Zg8X0fjYjlwIZ583V3WCJYXkJWsh1IZ22ArGpL0GgBAlTVwO5V4KikpgZvloe/WD7n3foqLhlwfl3WsOViDbunGiM5XrDhRil1FGyO2P0LIKa6pMnbP5e+ED89CWsVi8Lk1nV5IwaJNDPGiFSyyrubPoR9deomzA49vFD+H7iaxFapCebJiUW7gV3swtLXGsErgWHkNOLcDF+SocPi1K3H3neMCP8AzYzGWwWLFDkBjFGcsylBV24CN2/dFaVGEJDZPxZKntSSJDbVCDY7nIh4setpBVjurYdFavJVpvnjm67WcZydHNCoW88x5AIDiyuKA21XYKwAgaMtUD0PzXF5PVaIvnvsMMZjhK6Vi0fP58QSLPZJ7QKlQYu2JtRFZg0ltQoOrIWjVrD2GFznVVtSCZ3lkFWah12u90O3abpIuttapdXBxrnbv6ebKzcgx5XirPuPJ0eTAppXSZoISQqKDgkVCEhzLC+Bj0A61rEE8kXWk+tS8KtnF8GD50A7ytx9vgEqhQG5y7Gb7RZOlOVjsqBWLS5cuRb9+/fDe++8DAFSmlLiso9rmwqHqJuSmGCLaAvfHr2dBCPFrkRBC2gmnYlFuO0rOT4DIMdLClI5Ssfjp1cCJovg8N+eWVt3ZktsmVgZGqxUq6xIDMX9SCsTQrHQDUHdEvM2QKn5UN1csumS202w4Jv99AGIWLP55lEX/Wyfh1ddeBQB0ze8BJOUGfpCnFWosle8ALNliuCjD9O+WgGFpzjshpONQK9VgeAaCzH7pLM8GfIwnWKy0VyJVlwqtp9LeB0/1nl4dWreaUILRYMxaM5K1ydhZszNg4OWtWJR4AZMnWKoPcGzmCRYDhbGR4uScQUPRGqdYdWrWii1AdWod8sx5KKooChpKSmHSmtDobgy6L3so87JD4DjswKtjXkXl3EooFUqok6Rf7GxQG+DknOBaHN/ZGTsO1B1AlikrJmFxMEt/WAqnvWOekyLkVEHBIiEJjuUE8LFsY3aKcnM8Qs1ySmvtSDVpYG4O5BKdpxVqRWPHq1h8//33ce211+L//u//cNOto4JuLwgCbv5wDd5eFuKspgDWHxJbrRSkGaCMUAtWl9OBn3/4Etn5hRHZHyGEhKzhOPDuBcCen6U/xm/FosQqLXu99OeKptL1wLfj298eKFyLFDaUYLFJnGcY1YrFAGtSqYHkfKB8K1BzSLzN2EX86GmPJrcVqq0itLambdvwRsHnP2/AXz634+yeBbh3/B3ijVJCXUU8KhZ3itWKGuknCFmWwwdfL0Z+Vsdog0YIIYAYLHJCiBWLAU6neELHKnsVUnQpAYNFTxvMUGcKRqMVKiDOWTxiPQJHgN+BVXZxxqKbc0vap6SKRZcVKoUKOmX0W6EGWwsgViwqoIBFa/He1iu1Fw42HPS2SQ2HWWNGE9MUtAo20OchUtb/sh6HXj6ElMwUdBnaBSqZF5fp1Xq4WBe4Fsd326q3gQePHHMOlNE6ppRIEATMnzkf2QXZcV0HIac6ChYJSWBKBcByPGJQsHjKc7N8yK1QT9Q7kGTQQKvuHD9yVUoFjFoVqm3ygkUnw2HSd1tRFYVKR5Zl8fDDD+PBBx/Eww8/jAULFkBrCH5l5K4yKzYdqcOGw7VgItxWeN2hGmRYdMhMitzVfH/8PB+NDXW45MphEdsnIYSExFP5VXdI+mM4P1dwS50r54jCrGe3XQxXZPNVeSntZFxYOLf84MllA1QaIMTWbMHXFCRYBID0nkDtYaB6r1gdZ0gRb1c1n2xkZAaLTVXi504uJnpXtvM8j3+9OQvjXpyDsedosOTDfyEtuflYRMp776lYjNUFg6wLqD0khrwy5l8t/H0dSsuqMPjis6O4OEIIkUetlN8KVRAEyZVqTs6JJF0SNAr/FwvXu+qhU+mgVoY2BoMTuFYVYpHSPbk7TthOBJz/56nmk9sKtcHtf8ZiE9MEvUoPtSpyY0ECCVQ9CYgzFo0aI7TKk+HwGelnwME6sLVya9jPb9FY0MQ0BQ1no9kKVRAEzHl3DqY9Mg1J5ybhrnfvgjpZLftrUq/Si61QhZPfH8WVxTCoDcg2xj/M27J6C44eOIpLr7403ksh5JTWOc5yE3KKUioUYHiqWIwFN8uD40IPFi06NTSqxJ+v6GHRqVHf5JbVhrek1o7vNx/D0h3lEV+PQqHAiRMn8MEHH+CNN96ASqWCmw3+R+WC4hMAAJuLARfhhH7toRp0SzPAFKH5ioIgYMGcz3DR5X9BetesiOyTEELCxsq4yMRfVYDkYLF5xmIkT8js+B6Y/hegSTyhBncT8M2Y0PYVi+Mxzi2/MpKJQcVisDVl9AbsNcCxjYAx7WSQ5an8kPs5dVrlB80c679qNgIUCgWOlVfj9QdH4JPr9dBqNCfDZimVAkq19OrdSKjaK37ekjJlfW2888WPuOz8M5Gf1SWKiyOEEHnUSjVYgQ06366llqGJFEnapICVX/WuehjUBigQ2t/9LC9v/VIVJheC4Rnsqdnj836GY7yho5uXdpGUWqmGRqmB1eW/SlCAAIVCAWWUTz17QrNAwSkA1DhqYFKbWoVshUmFAICtVREIFrUWNLHxr1isKq/CXx/8K/Luy4NCK34tqhXyzkkY1cZ2Mxa3VGxBnjkPJm30W9sGM2/mPHTv3R2n9zk93ksh5JRGwSIhCUylVIDl+Jhd2HwqY3kBrhBnyZRbnTDr1NCqOs+PXItegwYnC7eMKj+HW3z/2AgGeIcPH8aqVaugUqnw3Xff4b777vPe5woSLHK8gPlFx5vXxke0YrG2yY0DlTbkphhhjNB8xV3Fm3Bg93aMGHVXRPZHCImS2sPA5GTg4B/xXklsSJzFA8D/jEWelRbKOZuDRZknAgNiXWL1ZZPYAgwrXwd2/wis/zByzxFJIc1YbBLbkSqjdBzCucXPYSBdeoofj6wS5yt6gkWFQgwX5VQfKjUABKDmoLx1RqlC4ERFDX5fVwyFQoGZrzyGx0ddCYWnBTrXfHJRarAocAjYky+SKneJHy05kh+yY98RLN+wDRNHXxelRRFCIqHWWYt+s/ph0cFF8V5KzKgUKrFiEdL/pmO4wAFQ25AvRZcScPtaZ60YLIY4BoMTuKChVCjyLfkAgK3VvsMzT7UiIL0VKiC2y7QxMmckR4GnerLOVRdwuxpnDYwaY6tgUaPSwKg2osJeEfY6LFoL7Iw96OfQyUW+e0JDbQM2LN8AhUKBR/7zCG6eeDMUCoV3LXIrFg0aA9y821tBy/EctlVtQ5YpyztfM17KS8ux9re1GDluZFzXQQihYJGQhKZSKsBSxWLM2N3yT2TyvICqRhdMOjXUnShYTDKo0ehk5AWLTPOJ0Ah9ua5ZswYDBgzAP/7xDwiC0O4PuGAVixsO16Ky0YVUowZOlotoxeKGw+IfZwVpxojNV5w/51PkFpyG8y8dFJH9EUKi5Phm8eOOufFdR6wwMioW/QWCUqu0HP7bbYXNEzp5TqgxIVxNHotKM46RX7HotovhXbQqFqWEnaYMQGsWKwb1KSdboALi2uQE1MY08WPNAXnrDOVzGkTRroO46NZH8cCU98GyXPuTyZ6vJ0mtUGNcsVixEzCmi0GvRO/O+RHZGWm46SpqPUZIR1ZiLQEA/HL0lzivJHY0Sg1YgZXVClVuZVm6IT3g9nXOOhjV4YUuUluRymFQG9DF0AW7a3b7fH8q7ZXe/5cTLBpUBjQxTa3m8MWDN1h0BgkWHTUwqA1QtfmdbNFaUOesC3u+pVlrBsMzsLkDh62RboV6dP9RPHDDA5j61FS4ne5WxyKeisOQW6E2jzE42HAQTWwTsk3Z0Cj9twOOhQWzF8BoNuKqm66K6zoIIRQsEpLQ1EoFOAoWY8bmkh8s1trdYDgBSYb4HnxFWrJBg0YnCxcTQrAYAXPmzMHgwYPRp08f/Pzzzz6vCg1WYTq/6DjSzVqcnmGGk+EiWkm57lAtupi1yEzWR2R/NVUV+PPXRRhx+11QRqvihBBCQiHnBFi4MxaDzM4JSyjz+tqKVStUXuaJL3eTWOUXtVaoEioWFQog7TTx//XJ4sxHD5VWXjWhPkl8PXGuWJz/2xpcNnoSsjPS8PvMl6FW+wgPva1QJZzQU6rE0DhWwWL5NsCSBWikzYKut9owe+HvuO9v10Cjic28LEIIkcozY1FOK9FgwWLLajy9So8kTVLA7etd9dCr9SG3QgUAp5wLbWTIt+TjqPWoz1CryiF2bdAqtWB4RnLAZtAY4GAdslvKRppWqYVSoQw47xE4WVHaNmRL0ibB6raGHeqatWYArStAfYlkxeKmlZvw4I0PQqvX4q3v3oJWr211v+drXK8Sz0v0Sesjab96tbi9jRW/B4ori6FUKJFrzo3U0kPicrqw+OvFGH7bcBiM0o5fCCHRQ2cnCUlgnlaoER4NR/xocskPxsobxINGi75znYBJMWrR5OJkVSw63ZEJFt966y2MGTMGo0aNwq+//oouXXzP+AnUCtXFcli8owxnZichxaCBi+HBhjhD05c1B6vRLc0Ic4TmK/707efQaLS4esStEdkfIYREjJyTMHygVqgSfp8EmOMTtojMu4lFsMjID54YuxjkSamaCwXPBA8WAaBLb/GjPlUMGj3UuuZwUupxgkKsWqwvkReyRjBYnPHDL7jpoRdxzeUXYsXs/yEn008Vi5xWqCqN+HpidcFg5S7A1FVysDhj7q9gWA5/v3VYlBdGCCHyqZVqcAInr2Kx+We04Of3d8vKszR9GnRqnc/tPOpd9dCpdGEFiy5e+nGVnEDvtOTTUGGvQK2z/XziKnsVlAolTFqTrGBRr9LDyTq9FYufbv8U/171b8lriiS9So9GV2PAbTwzMNsGi8m6ZFjdVlnVmr5YNBYAEoLFCIXHK35agSfHPYkzzzsT7857F1n5We228bQy1Sg1mHrFVAzpNkTSvj1BpOd7oKiyCNmm7KDtgKNt2YJlaGxoxIg7RsR1HYQQEQWLhCQwTyvUaAz4Ju01hdAKtaw5WEzphBWLDoZDk4wqzkhVLP7lL3/Ba6+9hhkzZkCn8//HXaBWqH/sqUKjk0XvLAuSDBq4WB6s3AoQP+rtbuyvsCE3xRCR+YqM242fvp2Nq0bcCpMl8FWyhBASc6yMkzD+KgOkVGlxrFh5Fy2RCJ2iXWmm1IjvodxWqIynFWpkWnP7JKXiM+ssAArAnNH6dpUW4JzyZkeaMgBbhbxAOIKtUC+/sB9eeHgMvnnzKRgNAboTeIJ3KRWLihhWLNprAVul+D6qtEE353ke7325CLcO+z9kZaRFf32EECKTWiEGi/5CQl/kVCwm65KhDfLzssHVIFZ6hfHrVk7o5Obcks8FFSQVgBM4bK/e3u6+KkcVLBqLWLHIMZL3aVAb4GSd3vdx2pZpWHBwASqawp9XKJderUcj0+g3FOUF3ltRqmzTwSFVl4pGd2PYwaJZ01yxaPcfLHJ85OZonnH+GRj94Gi89NlLMFlMPrfxPJdGpYFWpUWSTtr5BE/FYqNbDGu3VGxBjjkHBokXI0WDIAiYN3MeBgwegNzC+FZOEkJEFCwSksBOzliM90pODU3OUCoWHVApFUjuZMFiUnMFZlWj9CsqwwkWy8vLce+998Jut+Oss87CpEmTfLY/bSlQK9T5RceRl2pAYboJBq0KLpYDK6P6MpD1h2shAOiWHpn5in/++hNqqysxYtSd4S+OEEIiTc5JGJ71XY0lpWLRGcX5igDARODq8Whf6KVSS5tn2JIgiIGaOnh4FJYgVQIAgIzewNX/Abr0an27WgewLnmBqTkTaKqS18I2zPC4tsGGvz/7Nhoam3B6t2z8+/5RwduTe1uhSjgOVKqb34MYHNhX7hI/WjIlbb7kz804WFKGiaOvj+KiCCEkdBqVBhwvs2JRTrCoDRwsCoIAq9sKvSq8Vqhy23FKrVrMM+dBqVBia9XWdvdVNFXArDV751RyEn8fG9QGODlnu+2b2CheCBZgLXbG7p0p2JbVZQUv8D5nYCbrk9HENIVdSSilFWrbuZ1y2RvtmPrUVNTX1CMjKwN3TboLKl+t2JuxPAsFFO3mSgaja56FbWNsqHZU40TTCWQaM72VjPGwY9MOHNh5ADeOvzFuayCEtEbBIiEJjGYsxlajS/6VZWUNTiQbNNAFONhLRJ6ZkbKCxRBboW7btg0XXXQRfvzxR5SUlEh+nL9WqFYng9/3VKJvVhJSjBoYNCrwAtAUoVat6w/VIN2kRXZyZK7mW/Dlpzj34v9DQY/eEdkfIYRElJxg0e+MRS54KBfN+YpAhNpkRvl4TKlpboUq4/cV4wAgtJ5pGEmeE1UtTr4GlN4DMKS0vk2lkzansSVLFuCoBVwyAucwKhb3VTpx8Zh/Ye6va3CotFz6Az2tUKW8/0pVcyvUGFQsVuwUg0xLjqTN3/liIS44qycGnEPHIoSQjkmlUElqhXqg7gB21YgXVwSrUGtiTgZkSbokaAJcJOJgHWB51lvpFSq54ZbUIFWj0iDTmIm9tXu9rUs9Ku2VMGvM0Kq0YDlW8j6NaiNcnMtvmBdLRrURdtZ/sFjrElvAGjU+gkVtMjiBQ40rcAvTYLQqLTRKjc92sx7hBIuOKgeeuu0p/PHjHyg9VCrpMQzPQK1UB70ouy1vxaKrEcWVxQCAXHOu7P1E0ryZ85DXPQ8XXH5B3NZACGmNgkVCEphKqWyuWKRgMRbsIQRPx+sdSNKroVV3rh+3SXrxj6pyq/QDY2cIFYs//fQTLr30UqSnp2PDhg3o00fasHHAf7C4ZHs5GI5Hn2wzdGoV9BrxpKjVEZk/iNYerEFBuhFmbfjzFfft3IpdxZswcvTdEVgZIYREAeeWXqnn78QTL6H9o6Ne1rJk81S+eeYphXJsFe1ASKUR30M5FYuewFQVeC5UyDyVkOG0qVXr5FdimrqK73ftEemPCXGNf+wsx8Vv7IFKpcT6b9/EuWecLv3B3opFCccESk8r1Bgc11fsBMxZgM4cdNP9R45jyZ+bMXH09XE9oUgIIYF4ZiwGa+P54bYP8cLaF1q18PSn5YzFYLPl6lx1AMTKuXDIDRbbhoSBdEvqhtLG0laVmIDYCtWkMUGj1MAtuCUHiwaNodWMxXgyaoywM3a/n9Nahxj2+fr8JOuSAQCVTZURWUdDgIue7GxoF7Id23EM659eD4fdgXfmvoN+F/aT9DiWZ8VgUWYVred9amQaUVRZhFRdKroau8ped6RUl1dj5c8rMXLcyODdIgghMUPfjYQkMLVSAY7jEaHRcCQIm4x5gh5l9Q5Y9GpoVJ3rREworVDlBrN79uzBDTfcgCuvvBJ//vkn8vLyZD3e34zFuUXHcXpXM3JTxKsVPXMQG53hzzposDPYU96InGQ9jLrwq1QXfPkZMnPyMOCKq8LeFyGERAXHSAtC+DYtHls+RlIr1LqQlieZJ4Ar3Sh+tIUwHyjagZCnYlHOCTzPSdFIVCz++Sawc37r21SRChZd8oJZc/PJrZoD0h8TQsViaWkphr28DOfnG7H28//i9G7Z8nbgCRZVUoJFtfgexOLAvny72AZVwgnw975chC6pSbjtmsujvy5CCAmRWqkWW6Ei8M9QJ+sEy7Nwca6gwaKnYrFnSk/kmANXeNe76gHEIViU0cWge1J3VDuqUWlvHaBVO6ph0BhOViwGeQ89DGqD+D5ykZkZGA6j2ggH6/AfLDZXESZp288Y9NwWidmQZo0Zje5Gv+sIpWKxuroasx+dDWOWEa//8Dq69+4u+bEsz0KlUMm+MMjTCrXR3YgtFVuQa8712UY2Vn6c8yM0Wg2G3jw0bmsghLRHwSIhCcwzY1HOgHISulAqFsutLpj1GmhUnevHrVqlhEGjQnUUZixynLhdnz59sGjRIsydOxdmc/Ar6tvyVbFYYXVi/aEa9M2yIKW5naunYjESweLGI5Gbr1hfW40/Fs/H9X8bD5Wqc7XSJYR0IrzE1pzek05Cm3+juUorzhWLbU/0hBSUxWDGIgQxhJPKU4mpjEDF4paZwOaZrT93nkpIKTMW/QmlYtGQBiiUQM1+6Y+R0e6W53kIgoD8/Hws/OdgLL6vJ1KSTNKfy8PzXkmdsQjIay8cCp4HqnYDpgxAE/gEuK3JgRlzf8WEW4ZBr4vynE5CSFT1m9UPX+/5Ot7LiBq1Qg0BQtCwkOVZ7/mTYNs2Mo2waC24rfdtKEwqDLhtQ/Ms6HDDFycXnVaoAFCYXAgBQqs5iwzPoN5VD7O6uRWqwIKXeIGLQW2AAAE2VmI79CgyaozedrS+1DnroFQoYda0P6/gDRbtkQkWbYzNb9gqJ1gUBAE8z6NLly647eXbcP5z5yM5PVnWehiegUqpglIh73yUWqmGWqFGnasOe2r3INOUGXZoHirGzeDHL3/E0JuHwpwk/7wQISR6OteZbkJOMermYJGnXDEm5M4IFAQBFVYnTFoV1MrOVbEIABa9GnV2BrzEL0C7K/j7V19fj2HDhuH9998HAAwfPjzkUM1XxeKPW09ApVSgV5YZ6uaw19AcLDZEoBXqusM1SDVqkJ0U/kH3kh++gkKhwPC/3h72vgghJGo4CdWGgBhA+vu3wAcPlaI9Y9Hd5kSPyyp/H9FuheoJp9wy2mh5AlJ1BCoWXTYxQGwZfHlaobrCOKmo1oszFuXMjlSqAGM6UF8ivVJUYsWizWbDjTfeiFdeeQUAMPScnNA7T3hboUo4lvHMqwxyojts9UfF98LcNei6Zi/8HTa7E/ePuja6ayKExMQn2z+J9xKiRt18cUaw6rmWFX7BtrW5bdCpdNCqtFAF+XnpqVi0aC0SVuufS87FQ4Cs+YZZxiyolWpsq9rmva3GIc4VNGnFVqgsL69iERCr2qJJyms0qo1wck6/czNrnbUwqU3Q+OjgoFFpYFAbUOWoCnutZo0ZTUyT/4pFicciTqcTo0ePxjPPPAMAOO3C06DSyj8vwvCMWLEosxUqAOjUOuyr3QdWYJFjygn6PRAtKxavQF1VHUaOHRmX5yeE+EfBIiEJTKVUgOcFycEOCY/DLS94anAwcLE8kvWaTjmTxqJXo8HJwM1J+8MjWMXigQMHMHDgQGzevBlnnHFG2Otzse2fb+6W4+iTZUFWi+BPrxF/FTY4wq8QWOOZr6gPb74ix7JY+PVMXHntjUhKSQt7XYQQEjU8Iy1Q85y88xyytD3xwwY5kRbrisVQgrJot0L1nAyTUXkHxhMsRuAqc7dNDCpbVSx6WqGGNjMIgBgsym3xCojBmLUMkNo2jrGLVY4BHDt2DP/3f/+H33//HWeffba89fjCucXwTkqlgOeEXbQrFit3iR/NWQE3EwQB7875ESP/cjHyszOiuyZCCAmTJ/TwFyx5tAx83HzgbRvdjdApdVApggcq9a56qBQq6FV6Cav1zxXseKgNOa1QVUoVckw52F+33/s+VNnFMM2kMUGtVIvBosQLpfRq8bVaQ7kYS6YTjScC3m/UGMELPBoZ3yFnjbMGRo3R7+fSorGg1lkrqwLU5360lsDBooSKxYqKClx55ZWYN28ezj///LDWw/AM1Aq17IpFQGyHerjhMHQqXdBWwNE0b+Y8nHfpeSjsVRi3NRBCfKNgkZAEpvJWLFKwGAtOhgcnI8QtaxBPdFkM4YVMHVWyQQOrg5UcLNoDBLMrV67EgAEDwHEc1q9fj0GDBoW9vrYViwcqbdhVZkWvLAuS9SevVPRULIYyQ7Mlq5PBnjIrclOMMGnD+5yv+WMpqsqPY8Ttd4W1H0IIiTpOYrDovdrc0wq1zc/cYFfoO+qBEK62loxpE06F1NozBjMWgdAqFjXhnegEz4kBHtPU4nOJ5rBTAYRTraDWN7dClfl72JwFNFVJfz/cTSeDUB82bdqEiy66CLW1tVizZg2uvTYCVXocAyjUEoNFTyvUKFcsVuwCtKaTcyr9+H3dVuw6UIKHxtwQ3fUQQkgEeCoWgwWLXIuLWIK1QrUxNmjVWkmhTL2rHkaNEWopM3UDcPHygkW5QVhBUgGO2Y7B1jyDudIhzltM0iZBq9TKChY9bV+jXbEIALN3zQ54v6d6st5Ph4sahxgser5O2krSJcHqsgb9+gnGorXAztr9VsPa2cDHLDt27MCAAQNw6NAhrFixArfccktY62F5FiplaBWLepUerMAi15wLszY+LUj3bt2LXVt24cY7b4zL8xNCAqNgkZAEdPz4cQAA43KAO8Vbof6xpxKVVnlzCELlYuUFi+XNwWKSIQLtxzqgJL0GNifrs+WoL/4qFgVBwAsvvIBzzjkH69atQ8+ePSOyPifDQdWiBe2C4uMwaFXo3dUMZYvb1Sol1EoFrM7wgsVNR2rBC0B+mqHV/kOx8MvPcOa5F6FH335h7YcQQqKluqYaAGBtbJRXsej9d9uKxSAnchy1gDa8uUUBcRGYsRj1isXmk2Ey5vN4Q7dwg8XmE5Bw29sEgAoxXJRTRdmWWit9VmdLSTmAvUb654qxBwwWX3nlFXTr1g0bNmxAv34R+v3LusTAUErnCk/FYrDvhXCVbwMs2YAm8PfTu3N+xFk9C3DFRXQsQgjpmJps4s//8sPlUCuag8UgVYgt22pKaoWq1EkKFuucdTCq/VfESaGAAk6pVfjN5LRCBYDTkk9DvasexxqPAQCq7dVQKpRI0iaJrVAF+RWLDe4GWWuQI1WXCgBYdHgRGlztn4cXePAC7w05fW0DNFcsqv0Hi8naZFjdVtmtaNuyaC1wcS6/AWKwisU333wTycnJ2LBhAy666KKw1gI0B4sKVUgdtHRqcY52tik77NmhoZo3ax4y8zIx8C8D4/L8hJDAKFgkJAE1NIgHS7zLAQEAI7FirDO6c+ZGDHljRUyey8VysisWlQog1ej/JJYvHC+g8Kmf8MGKg3KXGFMpRg1sLunBorPNjEqe51FSUgKFQoHvv/8eS5YsQVpa5Np+ulgeGk/AJwDzio7jzOwkZFjan1zVa1Swh1mxuP5QLZINGuQkh3fy9vD+3SjesBojR1O1IiGk42psFK9Od7uc4c9YBCS0Qq2LTDtPf9o+P9ME8DKPr2LVClVWsGiDGP7pwntuT2tYxtE+JFZpJc8v9EmtF8NKVmalniVL/DpqKJG2vbt9sCgIAo4ePQoAmDFjBv744w9kZmbKW0cgHNNciSglWGw+2RntGYsVOwFzJqDx//109HgFFv6+HhNHX98p2/kTQjoHh0P83WNrsEmvWBQ4CM2/r4OFcjbGJmm+IiAGiwa1wW9wJYVKoQoajLbFyWwjXpBUAADYWrUVgFixaNFYoFVpoVFpZFUsxmLGokKhQK+UXqh31ePbvd+2uo/lWSw6tAgnmk5A13ycU+eq87mfWmet+PlR+AkWdcloZBqDVrEG46ns88yubMvBOtqFz5VNlRj2yTB8vvNzvPvuu1i1ahW6desW1jo8WJ6FWqkOqWLRoBI/v1mmLGgDXJgVLfU19fj9x98x4o4RUKniM9+REBJY3IPF9957D4WFhdDr9RgwYAA2bNgQcPtp06ahd+/eMBgMyM/Pxz/+8Q84nbGpViKkw2m+stvXLLlTSbgtLKVysTw4GScNyxscSNJroFfLOwjyBHULi47LelysJRs0cDCc5EDOwZz8A6WpqQm33HILLr30UjgcDqSkpECrjezBqpPhoFKJB9D7K204VudAr0yzz/mHeo0STe6Tf2SGYs3BGhSmG2HRh1ehuvCrGUjLyMRlQyLQgo1IQscihISBZyVWLIbbCrUuYBASNtbdOkh0N4UQ8MSoFapLRjUlYwfUupPVcKHytIZlHe2rTcMNFj0nqxiZVaKeGYHV+6Vt77adDGcBuFwujBs3Dueffz7q6+thsVhgMET4ayyUGYsyTyrLwjiBuiOAsYv4deHHB18vhsVkwJgbrozeWkg7dDxCSGg4lvOGf8GCIVZoUbEooRWqRqmR3ApVr9KHVbGoUqpkz1i0c/I6BnQxdIFepcf26u0AgEp7JcxaMzRKDTRKDTiekxwsesK8aLdCzTBm4LTk0/D9vu9bVXRO3TT15EbNuZm/isV6Z/Pnx8/xUIouBU3uJtkVo22ZNWKwWOus9Xm/nbW3CumqbdUYcMsA/Prwr/htx2/Q6XWwWCxhraElhmdCrlj0VKTmmnMjth45fvrqJyigwDV/uyYuz08ICS6uweI333yDxx57DM8//zy2bNmCc845B0OHDkVlZaXP7b/88ks89dRTeP7557F79258+umn+Oabb/DMM8/EeOWEdAyK5qvTpFaMkfC4WR4cJ/2k4fF6B5IMGmhUnfNKb0+L1yqbtD9+PK1Q66orcMUVV2Dp0qV47733In8Sr5mb5aFWir/mVh2oRopRgx5dzVD6OKjWa1RwuDmwIfYVtrlY7DphRU6qIaz5ijZrA35b+B2uu3Us1JrO2UK3o6FjEULCo+BZaZV6npN3nk3bhlPBZto4G6IbLHLu1q043Xb5s+5iVbEop+2ou0msVgzjRKe4n+aKRYE/Wb3oodaK8xdlznk6+fjmgEtu+1lzBgAFUHNA2vYtWqFWNzRhyJAh+Pbbb/HOO+8gJSVF3nNLxbqag0UJx4Kez1E0ZyxW7xW/zi1d/YadDqcLn3y7BHfddBVMxjBb6BLJ6HiEEGDK2inoN6uf7PaeHMt5K9GCtbKUM2OxiWkSKxYl/A6tc9VBr9aHVbGoVqrB8Iysi10dbnkX9igUCuRacnGw/iDcnBsVTRUwa8xQK9VQK9WyWqEqFUroVDrYGFvwjcM0tGAoTjSdwM+HfwYAzNs/D1/s/sJ7v14l/r7yNWOR4zlY3VYYNUa/IXGKPgWswPoNBKXyBIt+KxYZB7RK8Vikrr4O/S7vh6O/HEX3Md3BW3jZX/vBeFuhhlCxmKZPQ5YxC6n61IiuSQqO5bDwi4X4y8i/IDk1OebPTwiRJq7B4htvvIEJEybgzjvvxBlnnIEPP/wQRqMRn332mc/t16xZg0svvRS33347CgsLcfXVV2PUqFFBr+QjpLMSmg86XBQsRp1aqZBdsXiiwYkkvRoaVdyLw6Miubkyr7JRWrDoZDi4Kw7iP3+/ERUVFVi1ahVuuOGGqK3PyfJQN7dCPVbnwJk5SUg3+b46X69RwclwYGUExy1tOlILThDQLdUY1nzFpfO+BsuwuPaWO0LeB5GHjkUICZPkikXPybvmn7NyW6E66wNWWIWNcwMt24kxdvkVi6EGa1J5TlbKqQ50N4nBn5SKuUBcLaoRHG3ajKl04ucv1NevCjFYVGkBfbJYgScF4wBUGuyu4jDggfewb98+/PHHHxg1apS855WDc8tvhRrNYLFip/jR4r/64KufVqDOasMDt18XvXWQduh4hBDg+33fAwD21u6V9TiO5aS3Qm3xu77ltpyPOb92xi65YrHB1QC9OsyKRYUKDM9IDvYAoImVPxO6MKkQx2zH0OBqQLWjGkaNOHtQo9SAF3hZ7UB1Kh2a5HYcCEHf9L7oauyKObvnYFP5Jryw7gVckHmB936FQgGD2uBz3mO9qx4CBG/rVl+StEkAxArOcHhboTp9B4tNbBM0Kg3cVW5Mu3MaqvZW4e637kb/6/vDwTrCbsXaFsuzUCqVIVUsXtv9Wow9YyySdbEP9lb9sgqVJypx47gbY/7chBDp4na22+12Y/PmzRgyZMjJxSiVGDJkCNauXevzMZdccgk2b97sPVg+dOgQFi9ejGuu8V8W7XK5YLVaW/1HSKfRfFDsYihYjDaNSgk3y4GVMW+pvMEJcycOFj0VixVWae1CnAwHnnGjS3YeNmzYgP79+0dxdYCL4aBuUS3aq6sFJp3vK0iNGhUcjLzPb0vrDtUiSa8Oa74iz/NY+NUMXD70eqRldA15P0Q6OhYhJHwKgWsdyPnT9kRJ2/Ak2IkUpzW6MxbbVixCCCHgiXbFYnPrLLeMikVXo/i4cINFd4tqhLbVAGqdWLEY6uv3BMahnJg0dwWsJ4IH04D4vik1cHFA1xQz1q9fj4EDB8p/Tjk4t1iJKOWEnjIGFYsVO8U2qIYUn3cLgoB3vliI4ZdfgB4FOdFbB2klFscjdCxCEonccIVjpAeL/lqh7q9r3VZbEATYGTt0Ei9qsrqt0Kl0kuYx+qNSqsDI/B0QSqjXPbk7mpgmHLEeQZWjCkaN0dsKFQj+HrakV+vhYByyZz3KpVAoMKTbEOyt24uHfn8I+eZ8XJ57eattDGoDGt2N7So+PVWIRo3R7/49wWJFU0VY6/S0w/VX+eipWBQ4AUq9EhNnTMSNw2+EWWOGnbFHvmJRECsWlSGc/ler1MhPyvd+XcTS/FnzcdYFZ6HnWT1j/tyEEOnidra7uroaHMchMzOz1e2ZmZkoLy/3+Zjbb78dL7zwAi677DJoNBqcfvrpGDRoUMB2Hy+//DKSk5O9/+Xn50f0dRASV83ziagVavRp1Uq4OR5ycqcKqxNmnbpVuNWZWJpnFVZaA5/MEwQBX3/9NRxON/R5ffH0u98gOzs76utzt6hYBIDuXfz/ISFWLPLgQmyFuvZgNQrTTd6wNRQbV/2OE6VHMGL03SHvg8hDxyKEhE8pcDJnLHr+3ebEGRPgd4nAi8GWJoptGTmmfUAquxVqjCoWWTkVi7bIBIutKhbrW9/nrVgMM1iUW7EIAJYswFYp6bHfbzwOJ69C/ywV1rx7PwoLC+U/n1yeGYtyKhbZKM5YLN8uvmd+2gqvKdqF4t2H8NCY66O3BtJOLI5H6FiEdGYcd7IVqpSKRaH5QphAAaaDdYAH750jGIibc8PBOgJWxEmhVshrRQqI62xJStBYkFQAANhSsQUNrgaY1CYoFUpomluuy5kzaFAb4OAcrQLbaLko6yJYtBaolWoMLRyKbkndWt1vVBvFcK7NWrzBotr/+QBPVV6FPbxgUaFQwKgxot5V7/P+7cu3Q82occ4Z5+CxWY/hqguuglFjhElrgpN1RrxikRf4kGcsxsuhPYdQvLYYN46nakVCOrqEKqNZvnw5XnrpJbz//vvYsmUL5s6di59++gn/+c9//D7m6aefRkNDg/e/0tLSGK6YkOgSmk94MRwFi9GmVSnhZgXJFW2NTgZ2NweLTu1zpl9noFEpodcoUR1gxqLb7cY999yDUaNGoW6feEV1rA5qXSwPT07YvYsRaX7aoAKAUSu2QmVCaIXa5GKx44QVuakGGMOYr7jgy8/Q88yz0ffs80LeB4k+OhYhpDUlJAaL7SoW285YDBAsekKjaFYs+mrlKbsVapQrFgFAqZEZLDa3Qg2jggJA67mKjjZX4at1zRWfYc5YdIUSLOYA9uqAVZwcx+HRRx/FLZ8ewPdF4tpjdoKN88xYlPBnt+dzxEcxWKzcBZgy/AaL736xCD0LcnD1pXQs0tHJPR6hYxHSmXEs560UdAf5GdqqYjHABUSeuYFSqrU8IVK4waKnYlGQ0QGg7XxDKRVvKboUmDVmrC1bCwGCdy6gp+rTxUsbdQKIFXpO1hn1ikVAfH8m9p+IUb1HoWdqz3bVoUaNEXbW3u7zWucUW7hbtBa/+9aqtNCpdKhyVIW9TpPGhEZXY6vPBc/z+Pe//41Fzy3C8eXHMe6Mcbgs7zKYNCbxMWqTGNBGuGIRQMgzFuNl/qz5SO+ajsuHXx58Y0JIXIV+BjRMXbp0gUqlQkVF66tBKioqkJWV5fMxzz77LO644w7cc889+H/2zjtejquw/mfq9tefumy5yVWSu43BBQyhxRB6MaFDfmBIgimBGDCYGgKhGNNMT7BxMCWYYuPeJEtyUbd61+tl+06f3x93ZnZ2d9qW9/Qk3+/n44/8dmd3yu57e/eee84BgBUrVqBUKuH9738/brjhBrBs4xe2WCyGWGwG+1golKOIqWsASzsWZwOBZ6CUozsWR3JklV8mPvuxEbNJJiZgqqTAMMyGbsHJyUm87nWvw5o1a/CTn/0cN20fmNVjU3QDFZV8wRlMxxEX/CdVkyJHOjRbcCw+dWAaumFiSW8CXIv9iocP7MX6Rx/Ax7/07WNqNeGxDh2LHKfIRSCWPtpH8ZyBhdFkx6JFg9AYQVicSceioTaeRzORowBmPAoVADghWuynjVIEWJHEcbaDYkWq6kqjY5GPkyjUVoXVVjsWAeK+0ySgMAz0LGm4O5/P4y1veQvuuece3PIPg3jb85cCh4ZaO85W0JqIQrVfoyYi6JqiNAmUxomwaMfquhgancSdf3sMX//Eezw/yygzx2yMR+hYhHI84+5YlIPGE/DvWKzHFuyiOBZtYTHOtTdO4RgOqqk2RHkGUVZrxypRH7s0sxRbJrYAAJIicfLZImqzjsVpabrjTjs/FqUXYVHaO6o7yScxLU03OBYnpUlwDBfoWASI8DglTcEwjUi9mn6khTSKahGqoYJneZTLZbzjHe/Ab3/7W5z3rvOw/O+Xg2f5mveW7VhsJoY2KhzLtXU+s0khW8C9v7sXb/7Am8ELR02yoFAoETlqf1lEUcQFF1yA+++/37nNMAzcf//9vl0X5XK5YYDMceQLWDMfvBTKcYM16JC1mV8d9lxH5Fjohhn5Wg9bwmI70ZjHApk4j7ykQqlzzU5NTeHSSy/F1q1bcf/99+N1b3zrrB+b7IpCDfuMSIgc5BY7Ftfum0QmzmNJT+srVP/061+gu7cPV7381S0/B6V56FjkOOSxbwJfWQyMbD3aR3L8EBLLyEUVFutXYNcLjUH7sfv9ZrRj0SMKtd6ZF8ZMR6ECRFhUW3Asth2FWgRiGSJ+eXUsdsKx2IqwmLaiIyd3NdxVKpXw/Oc/H4899hj+/Oc/44MXicTxOZu0EoU6Ux2LY9bfxbS3UHXrb+5GTBTwzte8ZGb2T/GFjkcoz3Xafc/qWjUKNayjUHf1KQc580rWZ1KMDRcWc3IOQHCHX5Rz5Fkemq7BQO3nqWma+M3O36Do6ju2hdSSVvvZGdXtuKx7mSPCdoskBtQWFsPEWTcJPgFJl2qu69EiLaQ9HYtT0hTSQtqJevWjS+xCTs61LZK6hUVFUfDCF74Qf/nLX/Db3/4WJ//DyRA4oUHoS/JJ6KbeIBR3Aq7dxWWzyD133gNN03DNW2kkO4VyLHBUlyxcf/31uPXWW/GLX/wCzz77LD7wgQ+gVCrhXe96FwDg7W9/Oz71qU85219zzTX4/ve/j1//+tfYt28f7r33XnzmM5/BNddc4wyiKZTnEoZGJukk9egP4o53RJ78uSwp0aIpRnISGAC9yeNbWOxKCMhLWoOw2Nvbi7e//e1Yu3YtXvCCFzjOwdlE0YzIDsKEQByLagvu3zV7JrGsP9WWO3XtI/fhir+7BmJsBt04FE/oWOQ4Y4SsvMaRJ4/ucRwPOPFSwRNUkYXF+om+BmExYHW8LTiJqfD9tIquAvWTYuXJ5p6jhcUpTWO7BqPuSykRMa1dB5qUI85EPg7I+dr7+Hh7wqK9Yr+VybSMJSxO7G64K5VK4R//8R+xZs0avPSlLyURsiGTih1HU4hgGMWxyM6wY3F0G3kvdHk7Pf788Hq86oWXoDszg79nFF/oeITyXKZdUcrQDEdoC41CNZqLQo1HSEuwHYt2rGU91/75Wlx2+2WhcaEcwxFRq27otSu7CzetuQk3rr7Ruc0WAeuFqKj9jPMS85z/7xK7ACCy69NNkk9C1uUZifBsFtv1V38sk5VJJIWkc35+dMe6kVfyTZ2/Fxkxg7JahqIrEEURb3vb2/Doo4/iNa95DSpaBTzLewqLAHy7GduBZdhjJhXpiQeewAWXX4C+eX1H+1AoFEoEjqqv+E1vehPGx8fx2c9+FiMjIzj33HNx9913O6XlBw8erFmF9+lPfxoMw+DTn/40jhw5gsHBQVxzzTX40pe+dLROgUI5qpjW6n6lhV44SnOIHPlbVJSjDZiHcxIycR4J8fj+Yt+TEDCUrUCxBLkf//jH6Orqwhvf+EZ85jOfcbY7OsKi7jgWw0iIHEwARaW546woOjYdzuHFZ85DKtbaR+rk+CgO79+Dd/7zv7X0eEp70LEIheKD7SILWWHPMVEdi2Edi0GOxVkQFr2iUMvTAQ/wuC7mLEyq2VGopoFIa0TVMpDs74BjsUAEQCFB3Ivu94UQJwJaq44TliXiWyvCopAExDQwvde56de//jXK5TLe/e534xOf+AS5UVeJa9YjAnRG0ZuIQp1px+LoZhId6xEVnS+W8dTW3XjfG142M/umhELHI5TnMlHFMD80TXOEmjC3mW7qjqsvSIQsqWTsEaU3cVqaBgPG6SqsZ9PEJgDAocIhLOte5vs8PMujrJYbrsdwcRhAbT+w3ZlXqetdbrbnMc7FIVqfjS1FoQqJWetYDCMtpFHRKw3vgcnKJJJ80nG1+tEd68b+3P6240i7xC4cWXcEPzz0Q9zwsRvw4Q9/2LmvolUgsB6ORWHmhEWOOTaiUFVFxZYnt+BdH33X0T4UCoUSkaMeWPyhD30IH/rQhzzve+ihh2p+5nkeN954I2688UbP7SmU5xqGJSzK1LE44wi2sChFmzQcylbQlRCcxx2vdCcFFGUNFVnFxz53A77xjW/gIx/5CN74xjfWbFdpUrDrBIpuIs1HE3YTVv9iodLcZN7TB6ehGSaW9qVa7lfctH4NAGDlBd5RV5SZh45FKBQPbGdXyGQfxyCaEOLexjQ9olFDhEWGnXnHYkMUaoBj0eucZ0oQcsPZsaM6In2VU8rEpdYJYZEXASNBXg/3udrH1E7HJCe2JiwCpDMwNwRTU3DTl76Cz33uc3j3u9+Nd7/73dVt7PjY2XYsOlGoEa6/41icoffRyBYSHevhvnn86a0wDANXXnTOzOybEgk6HqFQarEdZmGORl3TwTAMOIYLFYXcAliQY7GgFAAAcT7csZiTc5EccWGiJ8dw0EytIc50pDQCoBpZ6qZeWGw29jIjZhxB0T7+ZjsWZV0OjaCdDZJ8EpqhNbg4p6QpJIUkODb42vTGelFQC5Cb6bKuwzRNbPrtJuy6eRdWv2o1zI+aNYKwpEtHxbF4LLBj0w7IkoxVl6462odCoVAictSFRQqF0jqGSgY8ikYdizONyFsrAiMKZEO5Crri/PEvLCYEFItFvOvaN+HBe+/Gd77zHc8JkaMWhZqIJvbFLWEx16Sw+MTeSaRjPJb0tB5hunH9aiw9+TT0Dgy2/BwUCoXScWxnV5RoqygTMO7nKY3XiSdM8HMoJeJMm8mOGK8o1FJAx6LXxKU+W45FpVEE9UOtkNeyI8KiK7LUPTnKi+TatbPCnxOD43CDyCyANHUE7772Wtz+v3fiS1/6Uk1kpHPMwFEQFlUiGEZxLNpOija7nTwxDGBiB3DSlZ5dpQ+t24wFg704bdnizu+bQqFQWsR20oXFbOoa+UzkWT58W1N31sEECX0ltQSRFR3RLYhpeRoJPhEqXIUKiywHzdAa+hhHy6MAvN2Isi7XbB+1Y9EmLaQdQbHVjkUTJopaMXzjGcbP9TctT2NBckGkKFTN0JCVs1icaf7zUFM1fOvT38Jfb/8rBl45gJu+f1NDBGlFq3h2Pc6kYzHsvOcKG57YgGQ6idPOPu1oHwqFQonI8T3jTaEc5xhOFCp1LM40tkBYiOhYHM5JSMcFCNyxkWXfKl1xAVP33II1jz2CP/3pT/jwhz/smd9/NHpAFd1oKgoViB51a7N6zyRO7E8i3Ua/4qYn12DVRdStSKFQ5hiOsBhB5IgiCLmFRKNOhGK5YJeWUiIRnCETdgCAp34BHFobvl09hodjUcr6b+8los1GvxAnAobSKIJ6YZpEUOM7IKYpBbJvMWUJi65ztd0cSouOQ4CIlprUWk9lZiE+eude/OGuP+E3v/kN/v3f/71xLOIIi0cjCpVtsmNxBoTF7H4iMqfne/4ePbx+M666aOUx08FEoVBmnn25fXjw4INH9RhEtjlh0eko9NvO0GuEt6Bti2oRMS4Wye01LRFhMSxqM8zVxzNEGPVzLHohaVKNo7PZWNmUkGoQFpt1LAJVh+fRxO64bBAWpWnE+Xjo62N3TdpCbrP87L9+hnvuvAfv+sK7sOANCzCt1Ebqa4YGzdAgMB7CouVYzEm5lvYdRJjgPVfY+MRGrLhoBbiIqVMUCuXoQ4VFCuUYxnYsylp7nQRRKCtkMC/wz80Jh2Y7FkfzEtIx7rh2LOq6jq4Ej54r346v/Oz3ePnLX+677WxHoZqmCUVrQlhswbEoqTo2Hc5iSU8CqVhrg9/piXEc2rsLKy+8rKnHjUrkvHISXVRAoVBmCFuAieLCi7KyvX7yzj1JyLDBAqbtWIwyMfLQl4HV321eoDKNRkEnaHJHUxr3MRvCIm9HoUY4PzsytRNimly0hMU0Eenc7wv7+bU2hEVOtLojm/tc03Ud6FqEGy9n8cjvforXv/713hvaUahezpPJPdX7O41hdSxG+drNMOR3YSaExdGt5N/Mgoa7iqUKntyyC1deTGNQKRRKlT/s+gNueuImZIMW2XQIPzEsxhGnfGhvol51LAZFodoCnNOxGLBtUSHCYpRoUVtYDBNwimqwq892LBqo61gsDfs+RtGV0KjYIJJCsiEKVTaiOxbtqNi8nG/5GDqFV5yoqqsoqkUk+WTo4pnuGImabVZYtN9/b/l/b8E37/gmXvr6lwIAJqXaSH07ttbLBcuxHERORE6ZAWFxJhM/OoSmatjy5BasuoTGoFIoxxLH74w3hfIcQFcVsAyg6jMfhXp4mgyC+lKzvNJ7jiDw5M9lOYJAVlY0FCQNmZgA9jhd+f3IPXfhg2/4O3ByCXzXPCQWnBy4/WxHodq/E3xEYdeOQs03ISw+fXAaqm5iaV8CPNvax+mmJ1cDAFY26VhUDfK+MmgKMoVCmSk6HYVaL1DWOBZ5ItT5oRaJYzFKnGcla4lTLfyBrO/4kwv+kaO6h2twVjoWRe8+SC+UkvWYWPv7VUouYbFSF4VqPb/ShjjHx8j7KGrEK4C/PLweq/7hQxiW4piXYnHhkoDzVHyiUA0D+NGVwINfbuGgI+BEoUbcnuFmJgp1dBt57VKNseuPP70Num7gqotXdn6/FArlmMWAAc3QIOktxlQ3gZ/AZ0dGhjkWDWuhtdNRaHqPAeqfJ0iwLKgFxPhojsWsnA10xDHWh0CYq8/v+EfK/o5FRVdqeiOjOhbt7RJ8wjlHW1hUgsZkddhi3lxwLNpxotNS1Sk4LZP/TwiNMbL12B2Wo6XowuKGJzbg3S95N0YOjSDdncY5F56DtJgGAExWfIRFn1j2BJdAQe38dQxzas4Fdm7eCaksYdXzqLBIoRxLUGGRQjmG0TUVPMtC0WZetBnKkkFQjPNf7bRztIC81PpkyP6JEi776v0wWonBmmFsx2IpgmNxJEe+fGXic38A1yymaeKOW7+NL1z/Ppx4ynIM9GYAAGP54C+crQqLX79nB974gzXYPtLcCkjZjsOJ+ClnOxajRt0CwNq9U0iJHBb3Jps6Njcb16/BkmWnoH9wfsvPQaFQKDNCxzsW68YHbhEuimORj1c76PxQJRKn2WQMWHU/dcKiUgwQC81GEcycjSjUmNUHGeEcHWGxE1GoRbLvmCUs6h7CYr0w2wycSJyvEVwXpmniO7/6C675wOdxytKFyMw/gdwxsdv/Qfax8XXiY2GICMgjm1uLYQ1DVy1BPOKAhOVmxvk6uhnILCTO3zoeXr8Z8wd6cfpJSzq/XwrlGGB/bn+oI+65imZoTUdrNoPt3FIMbyErsmNRtb/7cdB0/2PW6j6ng6JJi0oRIidGcnvl5BziXNzXsWjfXg75nLQ7IuuPf7w87txfj6zLNY7FqB2LtoAV5+LObSzDgmO4lhyLM+G0axYvx+KUNFVzXxAxPgaRFTFeGY+0v3t/cy8+fu3HMTB/AKlMyrk9wSfAgHH2bRPkWASI+FlWyqFCerMcC1GoG5/YiHgyjuXnLD/ah0KhUJqACosUyjGMpqngWAaKPvNC3JFs+Cr0a29di2/du7Plffzn33ZgKCvhDxuGWn6OmYJlAJ5lUFKiC4tdbfTuzUV0VcHG//kS/ueWr+Ht130cn/ra95BKJhHnWYwXgr98tNqxuOFQFuv2T+Hvv/MYvvTnbY5gGIYdDxzVScixDASOaapjcc2eSZw4kGrrdd785BqsvJD2K1IolDmILUZFmdyIFIVa71h0TebZYoqPwwCaTITFsL/pFWuFequToFrdWEcteXcp2jQ4FmcxCrUZx2K9mNYsTlej1bGoSbXXxXZEthMnyseteNng81I1A9f970H8y9d+juvf+Rr87uYbkO4ZJI+f2hPwwEp1P24mrccURxtf/05gC4tREyxmyrE4sgVIz/MVFq+48Gzar0h5znLNH67B+/72vqN9GHMSwzQiC1WtYAuHfo5F+/56QbAeTSP38wwP3dQbokRt9LrPmEDHolKAyIqRHIt5JQ+R9Rch7ecIjUK1Hu8WWjVDg2yNs7wEIsVQaoTIqK9XTiZCYLzuczEsTraeudSxyLEcYlzMOTegKiymhXSk58iIGUxVpnxdrwBgGiZ2/PcO3Pypm/HyN74c//HL/0CmJ+PczzIskkKyxjkJVIVF0SeiPsknUdY6LyxGeQ8fbTau3YhzLjwHvHD8Lc6nUI5n5v5fFwqF4ouuaeBZZlaiUMOERcMwMVmSMVmKPghtwDoNdRY6I1tB5NlIzrthS1jsTR1fwuLk/m0Y3fQIPv7V7+EfP/hRZwIqHecxXVYCB9/tdCyeNi+Ni5b14ieP7cPV33gYq3dPhD5GcYTF6JNkcZ5DIaKwKKk6Nhxqr18xOzWB/bt3YNVFzfUrUigUyqxgi1GRHIsRYtLqXQHuyTyGC3fh8bHwjkVHWGxxXOR2ErAccTAGnX/98c5GFCpvRaFG6VNSLWHRZ2V8ZNQyOVcuBggp8v+ya3LUfq+0I8w5gmnw+23LoSx+uW4St974T/jPT7wHHMcR0S41COQO+QuT9mtbHws7abkcy5Mz07NoKFYUasTxCMt1XqBWK0D2AJAcbBCZS2UJ6zbvpDGolOc8Y+Wxo30Ic5KZdizaolZYFGqY0GVYC63tjsJORKEW1eiORcM0wDKs7wIN+zlCo1CtcY77fCcq1e++jEeutqIrNecV9J3cje2etIVBm2aFRVv8nQvCIkDeU+44UVtYzIgZv4fU0CV2ISfnfF20ADB1eAqH7jmE99zwHnzkyx/xFMNSQgp5JV/z+2Nfcz/H4kwJi15O17mErunYtG4Tzr303KN9KBQKpUmosEihHMNomgqeY6BqRuQBpI1umNCbKGjLloMny4qKBsOMPpA9FonxbCSBbCQvIRXjkBTn9gAuKgcPHoRhGJh32rm46sb/xRUve3XN/V1xAbmKFuicbadjkecYvPXiE/GRF58GwzDx1h+vxb/++hnkKv6DfduxaFj9EKVCNnQ/MYFFRdFgRPi92HgoC0U3sLS39X7FzU8+AaD5fkUKhUKZFWzHYhSxTIkgLNZPkrjjUx3HYpCwGAcQVVhscRLULSzxCSJGBZ3/0YpCNZqMQhXiwduFYYuIvAiIluOt4lqFz3fIsajLvud1+PBhaJqG807qw77PrcB7X3t17Qbp+cR16Bcz5xeFajsWK9ONUbidQFOhGgxOuvpdeHprQFSrzUwIi+PbyXXNzGsQONdseBaapuPKi1Z0dp8UCuW4QDf1Gf1+H9mxGPJ3UbdSbXiWh2b6i6G6Gd2xWFJLkR2LYUTtWLS78GRXEsRIyb9fESDXrsaxGPH1uuaUa3D+vPOxMLWw5naBFQJFtXpYhkWMi4W6MWeLJJ+siROdqkxBZMUGAdWPrlgX8kre8z05PDwMWZbRf0I/rrjlCrz6Xa/2FZPTQhpFpVjzPLZjMebTfZ0SUqholY5HM7MMC8Mw8PYXvh0bntjQ0efuBLu27kKlVMGqS2m/IoVyrEGFRQrlGEa3olA1w2h6cf5X//os3v3z9ZHExSiD05wlPDahVR5ziDwLSTVCr9lITkJXXIAQteBvDvO3v/0NK1aswC233AIAiKV7GrbpSvAoSKrjEvSi3IZj0ebMhd349CvPxMvPXoC/bB7BVf/5EP6w4YjntvaxaBKZJJTLpdDnTwgcKooBLcKb+Im9U0iKHJa01a+4GouWLsPA/IXhG9ehWJe6mcUBFAqF0hR2TFMUYbEVx6JnFGqQsJiAx0L9WirTIRuE4BbGhCQRo4Imd46KY9HqWIwUhWqLae0Ki9ZEKBcnUagAIGVrjwmI9j7wg4v5RqE+9thjOPfcc/HVr34VADCY8Vjpn1kIlCb8xUG1ArB8o+t1cheJKtUVoBg8edsShoqyYmD/kVEcGIrgiGI4IlB3su9xdBv5t2txw10PrduEgd4unHXqCZ3bH4VCOW7QTb0hPrQdVvxiBa75/TXOz3YkpOzT1Syy5P4wocsRFhkeuqH7Cou2YGPHhYYJiwIndKSfzhaXWnEsjpZHfbfnGR6qodYIpn4xsPV0x7rxjrPfgWXdy2qfk+Wh6qpzDaPMBcW4GEpq+Pft2SDJJ1HSSo6wOC1PIyWkIrv2emI9KKiFGnEXAJ566ilceOGF+PSnPw0AELu940xt0kIaJbVU8x6LKix23LHI8JAlGYf2HMLIoRkY67TJhjUbEIvHcPrK04/2oVAolCY59me9KZTnMLqqQeBYaIYJvUllce9ECUPZCg5Oha/OnooQb5p1hMVjW+jYtYusJj+4d1fDfTGeg6zp0EIme2RNB8cy4JqI4ZyLfO9738MrXvEKvOAFL8A73vEOHNi/DyOH9jds1x0XUZC0QGGxougQuPavh8hzeN0FS/Cpl5+B/nQM//rrDbj2x09gaLrWJeF0MTYxKI8LHCqqHkmsW7N3Aif2J9GVaD1ebtOTa7Dy4tZiUMck8vFdVo/t3zcKhTKHsYXFKKvWfSYEa6hf+e3+meHDo1DFCCvNK1Ph2wThFqWEBKBKROzyo36ytUMTQUeGSNf05p0HGu/kmohCVWynYbRV+v7PY02E8iKJQgWASrZ6P8sTca4dYVGIk/dE3Xn98pe/xNVXX40VK1bggx/8IHbt2YO9Qx6R6F0LASnnLy6rZXLt6p0nk7uBHktUm97f+vH7oatQmqksYDnrfdXBz/fRLSQqNt7dcNfD67fgyotW0H5FCoXii2JGc69JmoQVv1iBZ8aeCdxuf36/I7DEObLwRTK8Pz9s4THMwWULixzLYcvkFvx1/1+9t6v73LYFHElv3H+nHIuKrjgdke6ITi/syFQ/x2K94CRwxF3oFhabcZiyDNtwfjxLxMrpHPk8PbDLYyxSR5yPo+JenHUUv6KmhBQqatX1N1GZQFJINiUsFpUiVNdisd/97ne4/PLLsXTpUnz0ox/Frp27MDEcXM+SFtMoqsWmhUVJkzrfsciyUOQ2KotmmI1PkH5FQTy+qoQolOcCVFikUI5hNMuxqOpm045FSdVhInzxPxDerwgAuUrzq/T3jBfx40f3Nv24mWRsjKwmn54cb7gvxrOQNSPyIvJjdYpG13X88z//M6677jp8+MMfxh//+Ed0dXVhenoa2cnGFZPdSQElOTgKtaxoEDvo4Fzal8TH/2453nTREmw8lMWL/ush/PDhPU6MqS1yMk2ssE2IHCQ1mnD8zMEslvQmkBJbW8Gaz05h385nsfLC5mNQZU3HhHysvrsoFMoxg+NYjPB3VI8iLNY7Fl0THJGjUENo27FYJyyaOiDl/bdvcCx2ZiJocpJMVk1mPfbNieS4tAjjLr/4z2ZxolDjrijUOhGXE4kQ2yp1TkzDMHDDDTfgHe94B972trfhnnvuQV9fHyYmJjE25TExm1kAwASm9ng/v1ppFBZ1DcgeBPpOJj9P72v9+L0wdcDUoTZjPozyu9AsI5uB9ALiwnVRrkhYt2kHjUGlUOp4wx/fgB9v+vHRPow5Q1gMqc2eLPn7e+umW0O3tcUvW2DxdSzawmJIIoCmkmO0u+u+/dS3PbdzBDhr7sQWfepjL03TRFkrI9bu5ydQ4+Qrq+VAB6gtftU4Fkuj6I/3NzwXQM5X1dWa18hsU9UTWAGaoaFQIJ+1pUKE5B8+gYpenTOayV7OMFJCqqancLIyiSQfXVjsjnVDMRRk5SxM08RXvvIVvO51r8OrXvUqPPjgg1iwYAFGR0dRygVfly6xC2Wt3BCFyoDx7VhMCSlIutTglmwXgRGgyrOQqtECuq5j8/rNNAaVQjlGocIihXIUWL9/CnvG28+g1zUNPMtA042mnYKyahechwsUQxGExWxA350fb/zBGnzxz89i38TciM0IwxYWw4SnuUiurOIHLuEtCIZhMDIygu9///v45je/CY6rimea0vg69yQElBU9sH+youodj4blWBYvOXMBPvv3Z+GMBRl85a/b8cqbH8W2oZzTsRgYYVdHUrCExRBnwabD5PmX9CbBt3hOm6x+xVUtCItr901BN6mwSKFQZhhHWIziWIzSsRglCjXg768QwXVX7rCwCABSgAvSnqC03V5RrlW72K+LFqHPUCmR7bk2O59t56OY9HYsApZ42cZkJh8j18+aCGQYBkNDQ/jP//xP/PjHP4YoViPHFNVjkju9gPw70Zg4AYCIo5xQKyzmDpH9dS8FWIGIjJ3EmjxuKg2e4cnjOpkAMvYskB5s6Np8YuN2KKqGqy6mwiKF4mb79HZ8+5lvd9w1NNfZMLYBT40+5fz87OSzAPz7DztBWMeiHYUa5lg0dHtuI3jRZ/1r6vcaV7QKDNPwFYCawS0GVrSK4170wsuxOFwaRlesCzEu1hClKrACTJg1jst2OzHteNVmxME4F4fkGgvWd1nOJikhhYpedSxOSVNI8AmnvzKM7hhx94+WRsEwDIaHh/HZz34Wt912GxKJ6lhU04L/PmTEDCpapUFYjHEx3/dp0loAlFcCFrW1AM/xc9axuHvrbpQKJZx76blH+1AoFEoLUGGRQjkKvOEHa3D1Nx6GFuDwioKuqeA5FrphNi0sVlQdMAE2grB4eHpmHIsVlQw4R3JtrHCfRWICB0XTO1p7M1v89unD+Opft+PBHf79Pvv378cjjzwClmVxxx134P/9v//XsI0qN66e60oIMAGMF/xX1pEo1Jn5yOlLxXDdVafi/VecjNG8jNd8bzUO2RG/zToWtfCOxbV7J5EQOJzQRr/ipvVrsGDJCZi3aElTjzNNE/c/OwbuaObLUCiU5wZOFGqUjsUIkxVBUagsH+7Ssrv9gqhMhm/jiTUWcjvubHdXOUBYtD9jrInAZj5zWsZ2T6jhUfZQSmT7NmPcnI5FIUnEOZar7VgESEdiO3AxwFAxNDSE++67DwzD4Kc//Sk+9rGPNcR0KqrWOHGa6CHvI1/HokcU6qS1bWoQSPYBuaHOdhs6TpgmHtNpx2JxHChPAKl51d9pi4fXbUFfdwZnn3ZiZ/ZFoRxnHE3XVT03PHYDVvxiRUf7Duu5dfOt+Nr6rzni1dqRtQCA8Upjkk+nsAUW2fD+HmnHdKpmtCjUMPGoXtTzc0LaYqBfZGUz2M+V4BOh/Xm2q64+CjUjZBDn4iiqxZrPP4EjwmdJqYqX7b5vBY44FpsRKBN8Ys4Iiwk+QeJnretsC4tRuzK7xC5oBQ133303AODb3/42Pv/5z4Nla8dShm4EinVpIQ3DNJCVs85tZbUMgRN848eTPBl7ZuvHWG3CMzxUZW46Fjeu3QgxJuL0VbRfkUI5FqHCIoUSwnhBxrp9bXb2+FBqaqahEU1ViWPRMBHBiFaDrBkwYYKL0KkSybFYnpsDlU4S51komtngWHz1dx/D+3755FE6qmg8tJN8IXx2xHv12+rVq3HxxRfjIx/5CAzD8B3saqoCvW51XlecfAEazfsLxMSxOHMuO4ZhcPGyPrz14qWQNaPqgg2JzXGTFDjIEToWV++ZxIn9SWTirTtANj25pqUY1F1jRRzJVjAQmzsTHRQK5TjFmqyK9He0lShUw8uxGPC3TYggLAaJgEGwHACm1gVoOxaDntOsFxZnw7FovS5KRGGRi1WPr1XkAnFl8jHr30RVbLRpNy6Oj+GZYR0Xv+S1uO6666Bpmu9YxDBN5Ap158+wRCCcPugtDtruTfdzTu0hYmR6EEgNAKXx9noi67Gi6eRmTE8sb72vOrSAaGwr+Tc9v+Guh9dvxhUXndMwWUqhUOYef9zzRwDArqyPK7sDlNUyTNNscMVVojjk28QvCtUmLI7VERZD4i5tscmOC3WLfG5BrqgSp34nhMWyRj6vbAdbkLBoOxbdgudoeRQpIYWkkERZLdeIo7aj095H/Xm0As/yRFhs4nNoLkWh2tjHn5NziPNx59qGkTuUw56b9uAHn/kBxnJjeOzIY7j5mZuxbnhdw7bZiazv86TFNABgyhUdX9bKEFnR91hsx2JOyUU61qgIrDBnHYsbn9iIsy84G2JMDN/Ygz6xDwAwn20c51AolJmHfougUEJ4yTcfxht/uAZjAaLJ0ULXVAhcq1GoZPDtZ1isKDru3Ub69A5NVZAM6ZJrxbEYF8hzFqVjQ5SMCxxkTYded603Hs7h3m2jLV2D2UDWdKzdS1wcu0cbI3hvu+02vOhFL8Lpp5+Oe+65J3CCyQTpB3TTlSCTnGGOxVZjQ5uBt45dteNMmxEWYzxkzYAa4CRWdQNPH5zG4t4EUrHWhMVCLou9O7Zi1UWXNf3Y+58dQ39KxLwU/fimUCgzjONYjKCKtN2xaMc/BkxExaIIi606FkEEO9U1ecpbwmJ9l6Ab+3jZWXQsNhWFWmx06bWCUiT9ivaErZDsuLD4f2v34QU/K2HBYB8efPBB8HzwZ+zolMekW3oeUBz1vjZquTEKdXI3ESOFJPm3MtlZYdFxLDYxwdppx+LoNnLemYU1N0uygic2bqcxqBTKMcZMxrPa0ZFs3WdGWL9hJ1BCFuaERaGahgld10OFRbfjUzd0GKj+rXVfW9tlaAt3Yeim3nDd6p+rS+yCpEmB51LvWNRNHZPSJFJCynE8us/BjmotaVXHYic6FlVDbcp1mOSTNS7LqO9TxkqMmCmHo6RJKGtlJPmk72IlN08+8iQ++vqPghM5nPSpk/CSP7wEH7z/g/jRph/hlg23NPwuBAqLAhEWJ6Xq2LSkliCwgu97ZaYciwIrzEnHoq7r2LR2U1v9it18N7a8cwsWsYs6eGQUCiUqdGaSQgnBduIdnIqwMnyW0TQVPMtCM8ym5x/sDjq/KNQb/7gF7/vlk9h4OIsj2TK6E8H9AlOl5ldAzcuQSSg7EnWuQxyLhq+jLUiQOpo8uX8asmYgLrA4NF2pieC9+eabce211+JNb3oT7rvvPgwMDDj37RotIFtufF2zk7VxOF1x8t4YCxIWZ9ixWI89iWdGieezIMJxsLC46XAOkmpgaW+y5WjXzU+thWmaWHlRc47FqZKCZw5N4/LTBhDn6cc3hUKZYexJjyiTQ1qEyYqgjkXGjkINmAyL0nNU3/vXDCxfKyrZfXRBjkX7vO2V57Mw+eoIi1Eci3IR4DsgLMqWsGg/j5gkDkD34JOPez82Aj//3b14zed+jZedyuOR//kaFi0Knxwancw23phZSFyHXtdG8RAWJ3YCyQEiiqbmk45OtYPOHMthI2lNTPIyXLjI3gyjW0j/ZCxdc/PajTsgKyquvIgKixQKhWALXrbYYxPUCdgpZF0OdLmFCYsAoCpqaCeiW/CqF7/cwpjtWExE6XcG6Yj0EzVtYbEn1gNJlyI5Fm2htaAUYJgGMmLGM0rVjkKtuD672hWCBbaFKFQhAVmTneOXIi7SSVlpFNNSmx3ZPtjPm+DDX8eH//Iw/u0d/4azzz8bb/7um3HGqWfgJctegnef/W4sSS+BaqgN78MojkW3sFjRKhC4AGHRciy641M7Ac/OzY7Ffdv3oZgvtiUs2tjXm0KhzC50ZpJCOYYxNA08x0DTm+9YlFQdpgmwPiu37CjJQ5NlDGUlJ+7SDy8BKowF3XHrsXNv9ZQXcZGDqvsLi3OVR3aNoyvO47R5GYzmpZoI3quvvhpf+9rX8POf/xyxWK3b4J0/W4//uHt7w5eK6cmJmp9FnkWMZzFe9BcWJdUAH6HPs1OougGWAcwmvlglbAdtQGbZE3snERdYLO2N9iXTi03rV2PewsVYsPiEph738M5x8ByL11+wFNwsXksKhfIcp74b0QMjygRSg2OxiShUVqi65YJoZ4U3y9c6LxmOiGVBz2n3HDqOxZmffK12LDbhWGw36lLOWY5F6zyFJDl39/igDcfilRevwOff/TL85g0JJLloi81GJz0ci5mFQGWaHG89Wpm8j+o7FhO9ABcnbketQoTJTmFNDMvNCIssT34PmhzX+zKyGcgsqEb7Wjy0bhN6u9NYefpJndkPhUI55lF1FSbMBtFjJl2SNoqu1LjW7t5/d8MxhAldmqKFxl26RdJ6kUhxjXeKChEW4xEWzWiGBt3Uffsdy9ZYoTvWHS4ssrVRqLbAlBbTSApJSFrt420h1RZCgfaFYFtYdLs5w0jwCci67ETHuqNZg3DiQqWZqR6aksnz2oJdEOdccA6u/dC1+PJPv4x/PP8f8faz345XnPQKnDf/PEfArSdIWEzxRDSddPV/l9VyoGMxzsXBgEHOaxzTBhzDQVHmnrC4Yc0GCDEBZ5171tE+FAqF0iJUWKRQjmE0TYXAsdDN5oVF27HoR0EiA1JFM5CtqE7cpR/ZFmJAF3SRgfp0C27Ho0GM56Do5jEnLD60fRynDKZxQl8SYwUZ+w4ewvvf/36USiWcddZZ+PjHP94QDWIYJkbyEqZLSsPcVnaqcdItHeMxVVJ8v/BJ6uxEodqomgGeZaFHcdFYJKy433xANO+aPZM4sS8V6uANYtOTa5qOQVV1Aw/vHMf5S3twxsJMy/umUCiUptHDhR5DbVdYDIlCFRJVUSuIdoRFTgA0BTXddmISkLy7iQG4hMUm3J3t4jgWS8Hb2dtwYvsdi1LB6le0nkdMWcJi647FqWwB7//Md5DNF3HSkgX4zHuvIYvd1GiTkd7C4gLSTzh9oPE+pWI5Fl0icP6IJSwKpGMRAKb3N3UegViOxYrajLDYwShUQ3e5MmuFxYfXb8blF9B+Rcpzk9noDDwWcRyLdd8L24mpHCmNRHIbKrpS41i8ffvtuGf/PTXHFtbbpyhKqGPRHSPaICy64lhtoS7OhX+22YJkkGNRYAWkhBQ0Q6txF3rBMZxzbNMycdz1xHqQ4lOo6JUa4dCJQlWrY4Io1zsIgRWgmc13LLq3j+pYFFgBMS7WlrB4zsA5SPAJT2HX7jdM+fR0l4tlfOOT38D0xDT65/fj3R99NzieA8uwSPAJXwHQJuuVnmDBsRwSfMJ5DQHLscgKDa5gG4ZhEOfjyCsBY88m4RkeLMvOScfixrUbcdZ5Z0GMt9avSKFQjj70mwSFcgyjayp41nYsRn+caZpQNCNwqGiLKznr3+548CA914Lr0I5CnYgoLJqmiYu/dB92DHduoNUMMZ6FbphOP2WrVErki0oz8SL1/PjRvfjJY/tCtxsrSNgxWsDSvgRO7E+iOLQHL3/Rlbjrrrtw8OBB38dNlRXohvf7KlvnWARIz2K+ovr2CElHIQqV5xhoavT3ZVwgH4mFivfEsN2vuKQ33nK/YjGfw57tW5qOQX1y/zSKsoZXn7cI/Sk68KZQKLOIGf53VFdkwAgRQoKiUFk+WEwRkuHCoia3F2PJCY3uTCFFugR1H8HQFsGYWXQsNtWxWGqM/7QoV4g7M2yiFgC5Bm7noyMsuh2L0YXFnfsO49I3fQS//dvj2HtoxHp8rHrMEfCMQk3PJ/9O7Gq8Ty2T95k9YV4cIe+3ZD+5LTVIbu+ksGi955uKQrVF9jY7sgCQc9Ek4sZ0CYiyomLNhu248qJz2t8HhXKMcSB/ABf/6mL8bMvPjvahzDlUQwXMznYsvulPb8IPN/4w0r7dot/i9GLc8NgN2Dq5FQAiOehURQ3tWHS7/YIci7YYKHLh37vsx3E+45SSWkKMizn9eWFuNJ7lnWPLSlkIrICMkPF2LFpOOrdDUG+z79lxLIaN61zYUaO2CF2OuEhIkRSYZRNTlamW50b+aeU/4d8v+XcMJAYa7rMFyy6xq+G+0SOj+PBrP4wH73oQh/cebmnfQY5FgAiaeTnvjLVsYTHIWZvkkyiqxbbmitxwLAcGDFR5bqWEGYZB+hUvaT8GlUKhHD2osEihHOOwjAnNMJoaeMghoiJQdSzaMaVhjsUgl5cfMSt6cqrkH6HpZrKkYKwg4xO/3dT0vjpBzBKeSnJ7g/XNT60FAOSmW+8SuO/ZUdyx7mBgbCcAPLaLiIAnD6QwtnUNRn71CYipLqxbtw5nnnmm7+PG8taEo4eyOD051nBbV5xHXlKh+DhhJc1ouZOwFVTdhMAx0P0mgz2wo1DzPu7bLUdyKCs6lrTRr7jl6bUwDAMrL2zOsXj/9lGcPJDC808ZjFQ8T6FQKB0jglima0q4w6r+77F7Qo/jidMsyLHoEzHmUGmzn4e1hUW3YzEFqCX/OFh7Rf6sRqH6OBY/103+c08oqv6Oxcef2QYAODQ0Gr5PpWB1LNqOxbQl4rqulRBNWHzwiY249M3Xg2VZrP3fb+L8s08ld3DNCYsjXsJiapCIqJO7G+9TK7VRqPnh6mMAINFDzs/L7dgq1vuhojThPmQ563ehAxOKo2RCHpmFNTev27QDkqzgqotXtr8PCuUYY6g4BADYNrntKB/J3EMziEuNBVszt9BOFGpJLWHD2IZQsavesXj1CVejS+zCHTvuABDNsRhFWHS7L+uFRVlzdSwqRcS4WKhjDah2MwYJiyInOuJbTg0WFgVWqIlC7RK7HGFS1uWa4xYYS1h0CXntRteKnOi8F6JiR8Y6ApoebaHXU489heyhLEYnRts67p5Yj+d35GlpGnEu3hBpu+2ZbfjAqz6AcqmMm393M1Zc3Frf8PR48NgzJaRQUArOuZW1MniWD/w+n+ATKKmljkUQ2/uba47FfTv2IZ/N49znnXu0D4VCobQBFRYplGMczjR9nWV+yCoZ8AWJkbZgNVVSwADoC3FJ5X1cXlGYKqvHRLxonLc6+JT2BnlHDoY7DcMwTWCkIKEcIiw+snMcS3oSMLLD+OYn3ovECSvx5s//DEuXLg183FiBTJZ6faHITjZGoXYnBBQkzVNYNAzikBVmMW5L0XRwLAu9CceiIyz6iORr900hxrNY2hfe0eDHpifXYHDBIixcemLkx+ydKGL/ZBkvPnMeFvY0FzVHoVAobaOroSKHoanhwmK9Y9H9MxPiWHT3+/nRrrBoR6G6T1VMEaHLL1ZMsSfy7CjU9hYeRcJ2T/jFz+aPVP9fKTX2Clrs2NfE6nzbsVgThVqpi0IN7x4+PDKBl7//s7jg7FOx5tffwKknLnI9vlnHosfELMsBiT4ge6DxPatViIDtCItDZJ+2sMiwJBY1f6Rz/YZ6G47FTkShjm4FYpnqOVo8vH4zujMprDqD9itSKJQq7ihUSa9+xrTb2TdUGgrt3FOM2o5FkRPxwXM/WD0GQ+uIsOgWa+qFG/c5F9Ui4lw8tLMRcEWh+iyAKqpFiJzoxHHm5eD0JZ7loVppEXkljy6xCzzHI8EnoJt6rRuQIUKk+/q2K0gJnBCp09KN7ca0X8OwuFeb7Ru3QytoqBiVtiNcvZiUJpEUkjWvTT6bx8ev/TgWnbAI3/u/7+GkNrqGwxyLaSGNklpy3iO2YzFIsE4KSVS0zl0PjuHAgoWqzC3H4sYnNkIQBZx1Pu1XpFCOZaiwSKEc47DQoRnNdSxKWvjEl/10UyUFXQnBEdW8UDQDlTbiQbMlBXKEYzraiDz5k1mU2vxydWBvJw4H+YqGiaK/29MwTDy8YxQn9iexfPlyfPH7v8JZb/88hsqmpxPRzVjB/3m9olB7EgKKsuYZhWq/3/hZjEJVdRM826Rj0elY9H7M6j0TOLE/2Va/4sZ1q7Hywuc15Tq8/9kx9CQEvPq8xbPq+qRQKBQAkfrejFYcizVRqFxIx+IsCIusABj1jsU0idD0jUK1Js7sP+mt9lCpErD+x9EELdYSx6JEoaplIph6LOzZ3kzsl1ysfR4xRdyaETsWDStZY8mCAdz1/Rvxlx/ehN7uur5gx7FYjHRInsIiQGI/CyNVN6mNKgGsWI1CLQwBycFap2WyHyiNkVjdTmA7FJQm3heOsNgJx+Jm4lYUaxdEPbRuM15w/lnguDa7NykUynGFLUgxDIOi629xu9GaY+WxmufzQtUbHYkDiQGcmCGLMVVDDRW6IgmLLpG0wbGoV//2F5QCRE6M5Fi0uxn9HItFtQiRFZEUyN/ibEgftMAK0FzjjrSYhsAK1cfLtY8XObGm07BdIdjuWGymW7NVx+KOTTug5TVIplQTRdspJiuTSPEp8CwP0zRhGAa6errwhVu/gP+6/b/QO9Db1vMHdSwCQEbMoKSWnPeapEngWT5YWOSTKKvltl9Hm7nqWNzwxAacseoMxOKxo30oFAqlDegMJYUyB2GtSY8ovYUsbMdiE8KiJQJGecR4UUZPUkCAroicT3RkVHIV1XFRzmVscbWpCaI6yqUixkeHO3VI2D3u/yVt7Y6D2P7zf8f42j8gLnC46AUvxMKeFIZzUqi4PB4kLE55OBaTIsqyjorHtbFvm01RTNF0Iiw207Fovb4FD8eipht4cv80FvckkG6xX7FULGD3s5ux8qLoMai5ioonD0zjslP7cWK/d+k8hUKhzCh6sLCoGSbMKMJiYMdiiLDIxTzjPGuwhUW+xQkKTiSORTexDHEl+q0ar+8QanXydd8jwJ8/Cux5INr2nBCtT1IpW07D2s9fTdOx68BQ9ONTirWORSFFXiv3Mfhc92Kpgtd++Iv40g9+DQB4yfPPhyB4fI7absKIvUyjUz7CYmYBUBxzuUkttAq5bjaVaSDVXyuIpgeB0mQ00TYKui0sNhuFGi7mR2J0KxFaXW5SRVGx+plnaQwqhUJpwO10K6gF5/9bdU6ZpglZlyHrMg4VDgVuqxqqp5BlC4W6oYcKXaqiOs40P3djkGPRHYVaUApNR6H6ORbtKFTbsZhTwjsW3X2SaYEIi3aUar3jUWTFGrdlu0Iwz/LQDT1aB7NFoi61QI6wQMc0TWzfuB16QYdkSjPqWNRVHV/6ly/hR1/5EQDg/OefDzEe3p8ZRphjMSNkUNKqwmJFq4QLi0ISFb3SVrepG47h5pywaJomNq3dRGNQKZTjACosUihzkDgf/VeTMXTohtnUwuZm3IXjBRldcR58gCjUrrCYlzTIPt18c4lqx2Lr57tr26aOFXEDwN5x78iwPXv24DUvuxrKyC6sOOcc5/ZFPXGM5aXQbsaxvE/EGrwdi11xHibg6aC032+z6VhUdBM8x0BvYkDOsgxEnnX6Rd1sG86jrOhY2pdoWSDd+sw60q940fMiP+bRXeNgALz+giUtC5oUCqWOr58OjGyZ3X3+8tXAVPsx2EeFEJFD1gDDaDMKlbWiUP2WPPGxqtPMj/KUtW14JKcnnGAdk+sYYhkinvl9ltSLYK06Fm1RtNjYYewJKwK6/+e0g1onplls3X0AcjORWIrV1Wi7MWwHnFydePZyLB4emcDlb/s47l+zEeedeUr4fjgxmmAKYHQy6z2e6loElCdrI1V1lby/6q9Foq9WEE3PBypTkY8hFOs9XlabjUI1EG35XwBKifRFJgdqzvHJLbtQkWRc2WKfFIVCmZvsmt6FFb9YgdFShN5cH1RDdWow3A7DVqI1VUPF51Z/rub4wrYPEsSidizarkE/EdK9j3qHnO08BKrxpc1EoQqsd6pNSS1BYAXEuTgYMMgr/lGoDJiG50kKSfAsXxUW6x4f42KQNRmMFZ/QCceiCbOp54lxtYuL3O5PP0YPjyI3lYNW0CCbcs317xRTlSkwRQY3vO0GPPrXR3H6ytM7+vylfClQsOuKdaGiVhyhVdIlCB7jMjdpIY2KVulYxyLHcmDAzKko1P079yM3lcOqS1Yd7UOhUChtQoVFCmUOwiG6yGYaLUSh2u7ACA+ZKMroigvgA/rxcpX2BoElWUOpQwOdb9+3Ez98eE9HnquemCX4FuTWVwHu3LKhQ0dD2DvRKCw++uijuOSSS1CSFFz2kR/geS+40rlvcU8SeUnDRIAjEQBGAoTF/PQkdL32GnRZ8aBj+cbntR2ywmwKi5oBjmWhNeFYBIioX/J4fZ/YOwmRY3FCb+uuwY3rVqNvcD4WnxCtx0EzDDy4YxyrlvbgnMXdLe+XQqG4KE8BxRHgjx+avX3KBWDvQ8Bv3jF7++wAQ8OWo00PFg1lHYAWwWHVEIXq+pnhiChn+HUsRnAhVqaJqBjBXeAJJ1rn6rrNjvysj9W0qRegWnUJ2LFoUrCLwYETADVk0k5XibDFNa7IX795Z3PHpxRrXwPR+ixU3MJi7Wv05OaduPgN/4qpXAGP3/51vPKqi8P3w4n+3ZF1SLKKQslDAMwsJOedO1i9zRaA669FordWbEzNI+fabqyujTUpWApZzFUDy5PfhXYdi+PbAZhELHWJ8g+t24xMKhFN6KVQKMcMf933VwDA73f/vqXHm6ZZI2TURKE2uWhG0iVcd991+L89/+fctisbLCwquuIpHNqijW7ooYtzFUVxHI5+ooz7XBociy4xrKhEFxYdxyIX7Fi0xcGC+7OzjoHEQIOwmBFIdLgtLObk2rGCyImQddlxwXXCsQigKcccy7A14mIUYXH7xu0AAL2gQ4MWGpfbCgd3HcTd19+NkYMj+NZvvoUXXvPCju8jKA41LaShmRoKagGqoUIzNIhMsFMyJaQgaVLnolCZuReFuuGJDeAFHmddQPsVKZRjHSosUihzkKlxstIwrAcPABiTOBb1CNvaSE04FguShnScD3SbZSNEtgZhAhjJdabP5pGd4/j1+oOecZbtErOjUJuZIKpjR4eFxaHpCjRXr6FpmvjiF7+Is885B4PX/ifOOuP0Gqfbgm7iKNg5FjxwH/UQCAGAZVkYhoH89FTN7V1xW1hsnBCsWBFgsxmFquoGiULVmnut4gKHsqI1/O6t2TOJE/qT6E623q+46ck1WHXRZZH7FTcczCJXUXHNqoUYTNPuAQplzrL1D8DnuoGcT2edPRHWiWjDWeSnP/0p+Z+QjkVZM4mQEzbxGOhYtCbu/CaxPMSxBirTRPBqosO2YR96nWNRTJOf/QS/TkWhVrLk35DeJQdOAHQ5eH+2Y89TWAye4K1B18h7wC0cCraw6FrcVCcsfu0nd+KERYNYe8c3sfL0aAtqSBytFNovaFcGjIxPNd6Znk/+ndhdvc0WgOtdAsn+2p9TA+Tf6f3RjjcM6/1clpt1LHagY3F0GwAG6Fpcc/PD6zfjBRecDT6o44BCoTzn0EzNcSsCQF6tuuKajahcP7IeG8Y34LWnvta5bX9+f6DgpRnenX6H9x12jsEIWXytKZoTR+onyrjPJahj0XYZNhOFKjDe3xPLatl5rjgfR0ktBYqkDcJijAiLdsdifZRqjItB0RVHBG3X6WbvXzabm59pVVjU8uR4JyuTTe0vDNM0sfdPexFLxfD9u76PM889s6PPb3+nn/Iai1ikxTQAcm4VK2Y9zLGYFJJQDbWmN7MdWIadc47FjU9sxOkrT0ci2WLKCIVCmTNQYZFCaRLDMHFoKlr/Sxh+YqBpRSUoeoRJSGvgqEbZ1iIsCrVeVOlOBA9+7ChUsQ3haDjbmYGTCeDwdAVTpc6vyLIdi6U2OhZ3bNmA3oHBTh0SxgoyyqoOwzBw8OBBMAyDO+64Azd8539giGmc2J+sibFd0GUJiyP+KyUB/45FXiATlNOTtT2LXQnyJW7U43H2+00McL12GkU3wLFM845FgUNFJS5gG90wsX7/NJb2tt6vWCmVsHPrxqZiUO97dgwn9CVw1fJ5kcVICoVyFNhBXALYec/RPY4Oc8k863M0qPsQlmPR0MKFkPqJLrdj0Vod7+sMjCIslicBa9KtJZwoVBe2M69cN9ll/02udyy2urrcdshFdixafZBBYrUt+vEewuKWnVg42BdtX3bfoDvmzI5CdbsL+DhM08T+KXINf/qlj+DBX3wVC6LuByDipCaFCrSiQCZPR71cAul5ABhg0iWeOiJr3Xg2XTceS1k/Tx+IfsxBWO+nknIUHIujW8n5JKqJB6qq4fFntuHKi2gMKoVCqcV2p9mCV0uORdfXlTcufyMuXHCh8/NoadQRVjz37xOFah+PZmqRolBDHYuufdQLi4quOPsrqSXEuJgTrRqEE4XqIxiVtaqwmOATKKvlQDda/fN0i+TvuMiKYBm2IQpV5EQiLIbEwEbFFhbro2LDiLsi0aMIizs27cDCpQuhFSxhUeqcsCiPy5B0CfPeOg9vu+VtmL94fsee24azFuhMj/unHKQFIixOSVOoWGNG+z3qR5InY6xpqTPpCTxDOh3nimPR7ldcdSmNQaVQjgeosEihNMnn7tqKy7/2IHaPBQszUSj7TDSYGvnQjyQWWoNmpYmOQjlEWKyfAAkTFrNlFQLHtNWhN5TrUJ8NAFU3sXUo4uRcREyTdPAJHNNcpJWL3PQkRg4fjByFGYXJoozJbAFveMMbcNlll6FcLqOnpwer9+fQlxSxpLd2FVhC5JCJ89g77u9YNE3TsysRAASRTCzWC4sxnoPIs4Edi+Isro53HItNlp7HBRaSakBzxfE9O5xHUdawuKf1fsUtz6yDoetYeWE0YfHQVBm7x4t40RnzsaiHruSjUCizzxWLrb+fIaIhcSy2EIXq6Vis+wyxJ8fECIJheQoQEqiZ2WwGXgR0BY2ORVT7Gx2sfdQLoYbRmtPMFi4l/94lE66FX5x1rEECnO2mZGudhJKsYPPO/Tjj5CXRjs2OJvVyLLo+Y2WDwzv/T8IF3zmM6XwJ6VQCiXiTbntOJO+BkElRUbAWM01kvZ8j3l3rOrQFYLcLhE8AiTrHYrIPANNZxyLLh467a7Adi+12LI5sBjILajpHn9q6G6WyhKtovyKFQqmjXmRrpWNxIE5c3y9a+iKsHFzpOOwAYLwyHhh1acIMFKN0Qw8VFhVFCRUC3YKeVxSqLcoV1SJ4lu+4YzHBJ1DRKoExo/WOxS6xCwBxyMW5eMN1jHExyIbsOBY7FYXq1XloGiYMn9j6hOvzxi/a1sYwDOzcvBOnrzodeoEc70Rlop3DBgDomo57vnkPtnxyC3bt3wVWZNHb1dv283phC4tTE+GOxYnKhCOsiyGL5RxnqtyZ+SyWJY7FuSIsHtx9ENMT0zj3eece7UOhUCgdgAqLFEqT7LM67Z4dal9Y9MO0enP8xMKK1ZHICHFnok5uQlh0OhZ9KEi1g+z+ZPDgJ1dRkRRbc3KlYhxYBhjuoLAIkBjJTmA73g7t3gaAuDIrLToWd27ZCACRhcWwKSWWAXKTY/j7l16Nu+++G7fccguSSTIQfXjnOE6el0JXovG1m98Vx5GsBFnzPo+CrPm+nwTR27EIAJkYj6mS0hDtYl8vUZg9152qmS05FhMCh4qq1TgWn9g7CYFjcGJf606YTU+uQW//IJaedGqk7R/YPoZMnMdrz18Mkacf1RQKZfaJ2XNzhhYo9Mg6iWUPFRYbolDrOhYBS9hzscASQFIRnP6VSUtYbBFWIGOq+o5FwENYtNDqJkGjODe9sB2LAZOuiqriqZ2HyA+2CBokwNnPVed82PDsXmiajjNOiigs2vtwOxY5oSoGA5iYzuPF/3Iz7tii4juv6kdvV4t9xHyMXNOQSVGB5yDwHEYnfVbzp+cB+aHq66N6uC5Tg4AQr30cyxNR0i/WuFkMDWB5SM3Ej7Ec+V1q17E4ts06x+rvxMPrNyOVjOP8s6KNRSgUysyx4hcrcPPTNzs/v+GPb8D3N3z/qB1PvbBYUKtzHVGFKjthJcEnGsQTWZdxqHgo8PFBjsZmHYt+BDkWVV2FbpIux7JWron2DMJ29nl1LJqmCUmTnOuRFJIoa+VAV2G9sOi+ll5RqnYUqi2CttvN5zgWPYTFXDaHfVv2eT4uzlU/UxVdCTzHQ3sOoVws44xVZ1Qdi21GoRbzRXzynZ/EM398BkvfuhRiX/WazwQMwyDTm8H0hL+zMGUtxKqJQmVDolAtx2JWznbkODmGm1Mdixuf2AiWY3HOBecc7UOhUCgdgM5WUihzECMkCnWiQm7nuwZgWqvd/EQiL8I6FosuR15C4JAOcSxOlxUkxdbcaAwYpGI8xnyiN1tl23AhtOA9CrpOrlWpQFaMiTyLihpeHu/Fji0bkO7qRu9gcBQHx1rdQR59hW6E7AGM/PJ6jI6O4rHHHsOrX/1qAMCRbAX7JkpY2pvwfF0WdccxmpdQlr3fB2M+/YoAwHIcEsmUt7AY55GraA3vW/v9JnKz6Fg0DHBc8x2LCYGDpBrQ9erru2bPJE7oS6I7RGAPYtP61Vh50fMiRZoWZQ1P7JvE807ux7KBFidnKRQKpVOEOhajCouuv8emWfuzE4Va9/mjyeS+7qXhx1nJEhGl5Y5FOwrVw7FY8RMW6z6nTQMtOc0kl7Do4wSAaSJbcAlkYY5FxXIs1nUfrt+8E6LA4+SlCxsfc3Ct//7dz8MwjhNu+0gFl1x7A3YcGMUD70ji2vMy/scUBm+fV/hn97y+bu8oVID0LJbGqxGoqh0L6zqHZF/DtQEApPqB4hiJmm0XXQVYDrLaTBQq137HYnGMvGdTgzXC8kPrNuH5550FQWhtMSCFQuksf9r7J+f/t09vx/c2fq/pPsNO4UShWp9hBbkqLLYrVNnsmg7u9y3Zf6s90I3w79/ujkXfbVyfL/WuQcVQoBs6JF2CYRqhzjIbWSduQS9RU9IlGKg+V5JPQtKkwNe5PgrV/bNXlGqcj0Mxqh2L7Uah2ufhdYyGaaBS9BaA3Y5FWZcDBWm7X3H5iuUwVRM8+LaiP4cPDuNDr/kQtm/Yjjf955sw7+p5yFq91XYc6UzQ098TGIUqsAJiXAzT8nRkYdEWI6flzkShciwHFuyc6Vjc8MQG0q+YoqlMFMrxABUWKcc03/jbDiz75J8xFiLAHGs4UahayKQCKzjCohK2rYuwjsWCVB109CSF0O7EbFlFXGhdNErHeEyXFBgdEAJtDkyWagTSdtEU8prEeA6ypsOnHjOQHVs2YPnZq0LFJfvubFkNjF3tEgC+ZwGu++YdOO+885zbH905DoYBTh5Mg/XY16KeBCZLCnKS96TZWCH496mnfxDZiUZhsSsuoCCpDU7bahTqbDoWDXAMA63JicFkjIesGlCtiVXDMLF+/xSW9CZb71csl7BjywasuuiySNs/vnsChgm87oIl6IoHf/GgUCiUGSdE5JB1E2wUYdEdhVovHPlFocp5gI/XuONqME3gf14H7HmQuP74uPd2UeBEcg7uiTAhDoABrMmpBjS5VoiLEgnrRcWKu1IrgS5ExRaoOJGIVoGORWuCts7FuX7LTqw642QI9fHkucPAT/8OeOoX3s9X7wa1HACKbmJ+fzfW3f4fuGxpm4IVHyfXNMKk6IKBHu8oVADoWmwJi5a4ajsW3UJiosf7/ZKaB5QnqlGy7WBoAMNDkptxLPLtOxZHt5J/0wucmzRNx2NPbaMxqBTKHCfMlTdTuN1pJaWEvFqN5o4ahepHWkiDYzhfYdEWA4Mci7qphwpmiqKEOhbdgpxqqGBc8el2fKctcIpsNGFR0cl+GY8odue53MKiLgWKbu79MmBqhCivKNUYF4Oqqx2LQrX35xdNq/vMJdVEoRrBUag7Nu3A0pOXIt1FRL84E0dWyba8MNwwDCTTSdzyh1tw0oUkHSqnkLFVRmhjwVMIvYO9gY5FAEjxKeTkHMrWuCLMCWtfx05Foc4lx6Jpmtj4xEace+m5R/tQKBRKh6DCIuWYZt0+soL8qQOdWc0zV7CFxTAXIsPxMLVWHIvBX1jyrijU7oQAIaQ7cbqsIC6wrbYaISXyyJZV6K2odT4M5yRMlzs3eNIUMrAWeRaSVtvBFwXTNLFzywYsP+fc0G3dAuuesdpYNNM0cfvtt8PQNcw/dQVOeud/YtKodbU9tHMcJ/QlMZj2HrQu6k5AN0zsm/CeNBu33KMJH7G4p3/Q07HYlRBQkLRGYVHRIXKsp8g5U6iGCZ5loOVJpEqSi/b7kRQ5SJruvBe3jxSQlzQs6U20HEn67ManoGtapH5FwzDxwPYxnLOoC6uW9LS0PwqFQmkb1TW5FyKWyRqiCYtGBGGxfjGIlLdciD7CoiYBu+8Ddt0LSDlLKGrDsWg/pw3DEgGtkvV+TL24Z7bYsWgLl2oZ0FWY1lc0ts796DjfeBEwFH93IeDt0gOwfvMuXLTitMbts1ZE3chG7+erixL7zTYFFdXEysVJPP7LL2DZCbartI2xnOPEDB9jze/v9o9CzSwgr2NhmPysutybdl9WvKfqlHWTmkfcfvVu1FYwtOYdiwxH3lNNjjNrGN1KxOfuqiv1mWf3oFiu4MqLqLBIoVAacQtVWTmLvFwVFqO4BYNgGAaDiUEcKBzwvN925AVGoRpa6DFEiUJ1i6SaoTliHGA5Fk3d6TCMR1yspBiWsOjxXdcWk2yxMCWkIGlSoFjrFhIzYqbm5ySfREWr1IiscT4O1VDBsuTzrV3HYlAUKgCoPlUjdoQnEB6Fun3jdpy+6nTn5wSbQFEpNi1iP3bPYygVSli8bDFu+cMtOOHUE5z7snIWCT6BmFc6QYfoGegJFxbFFApKAUWVvK/CjkfkRPAM31lhEcyccCwe3ncYU+NTWHXpqqN9KBQKpUNQYZFCmYOYanRh0XBEyGY6FsMci9UBXVc8omOxfuV7E6RiHHIVtWOOxZ6EAM0wseVIPnRb0zQxkgufPFJV27HIQlGNpud7JkaHMTUxhtMjCIsTxeog/uGdVQFPURS8973vxVvf+lYMb34cADCQjmEoV4FqxY/qhonHd09gWX8SGR+H3YJu8iVp54h3T+hYXkaMZ32FtJ7+QUx5OBZ7kwKKsgpVr30dK6oOgWdmV1jUDbAsA3XyII786P1Ynon2JSUhcJA1A5p1Dp3oV9y4bjV6+vpxwinLQ7fddCSHyZKCV65ciHmZmfsSRKFQKIG4O+bChEXdBIsIDiv3ZFFd/Jgj8NSvjrfFQsZnHGJHtWkSEY/a7VgEGuNYxSQ5Dq8xSn0cqamjtShUa7yiSoChQRW6AABprnZST3Y7FjU1+JrbjkWXgyBfLGPHvsO46ByPz6PCkLXRkPe5WtdW13X865d/iDf+/CB+s428jgzDACxbvYatwseIuBxhUnR+XzdG/Cbz0lbk/ORu8q+7YzGWAS54J7DofJ/HziOvhxQ+hgzFikKVlGaiUK3fhXYcQqNbgMxCQKguPHto3SYkEzFceI6HqEyhUJ7z2CKSLd4VFFcUqhHebxjG/NR8jJRGPO+zhawgYdGEGSqYqYpaIxR6UROFaqjgXIkIqq625FiUdRk8y4P1mF51hEVXx6Ksy04voxfu6NO0kK4RS5NCEhW9UnMeIitC0ZXOORa5YGHR17HoGoMpuuJ7HKqiYve23Th9ZVVYjLNxFJRC5ChgwzDwk//8CT7zvs/gnjvvAYAGYXdamkZKSNW8xp2mp78HU+M+cfkWaSGNklpyBOsYG/4dP87Ha34H24Fj545jccOaDaRf8ULar0ihHC9QYZFCmYOY1qSW7NOx6MByjgipNiEsVpToUajpOA8hxKmVl1TEBLZlk0AqxqMgaR1zLNrC2YZD2dBtH945jiu+9iAOTQVHXtmOxbjAQtb0ph2LO7ZsAIBIwuJwtvql6vHdEzAME1NTU3jpS1+K//7v/8YvfvELLD73SgDAvK44xgsyytZruvFwFgVJwwl9ScR8HIe9Vrztrjo3pM1oQUJX3H+1Z0/fgKdjsTshoKToDcK1pNqOxeDz7iSmCXAsC0WWoU0PYWF3tMnmhMhB0QynJ3LN3kks7U2ip51+xSfXYMWF0foV798+ikU9cbz4zPlgZ/OCUSgUipvswer/G8FuRFkDOBjBfX+mWSsW1YsmjI9jUc4TscnPgWALi/a/7QiL9kRevbgpJEn3Yb0YChBhsea8Ijg361Elsk+GBbQKYGgwrWNJs7XHItvjNz5O+iADo1DLROjjqtfuqS27YJomLlrhISzmLXdfabxRXOViAMcjXyzjVR+8Cd/91V347luX4+2r6j4b+dY/K8nj4+HdkRbz+wOiUDOWsDhhxe4pZfIesq/F8pcBgz6LfVIDAMza34FWMVSA5SE34xJwYoHbmAAc3ULEVdfvw8PrNuOy886EKNKIdQqF0ki9oGO7qwDigDPQnrC4OL0Y4+XG749AVVgsh0RQ+0Vz2jTrWFQNtaaTUTVU6KaOgkrGFFGdbpImgWe8HYsljYiUdvxlgk/AhOnswwu3QzEl1CYT2R2N7vOIcTGYMB1RuN1OTPsa+gmLmo8L3x2Fal9LL/bt2AdVVnHGqjOc25JMEiW1FElYlCoSbrruJvzPzf+D93/y/XjNO1/juV1WyiLFp0LfE+3QMxDcsQiQKNaSWkJBLYAFG9qxCJDXuagWOxKNzIKdM47FjWs3Yvk5y5HKpMI3plAoxwRUWKRQ5iC2sKiowUIbw/HQrUm4MBeim7COxaI7CjXOhzrNchUVMZ5r6BXYdDiLvePe4pWbdIyHohsd60QUeRYDaRHPDudDI1P2T5Sg6AZ2jQYfp+1YjPPE0dasCLpjywb0DczDwPyFodsOWQ7KlYu7sW04j/1HRnHppZdi8+bNuP/++/H2t78dwzkJBVnDgq4YJoqKIxY/unMCCYHDsn7/wRrDMBjMxHBwquR5HiM5Cem44KsT9/YPIusThWqawESx1gFaVnQIHIuWlecW4VlAVZqbmLPjXwuSCsMwsW7fFJb2JZCKtbbSUaqUsWPzM5FiUIdzFTw7XMALT5+Hxb20zJxCoRxFmhEWdYBjQhyL9aJc/cSRn5hiOxZZP8divvZfoY2JCltYVOtSDMQ0cf95TXbpSu15h/RRemLHoMa7ibPONVmY4ZSa55PrOxaDBDilaImy1c+v9Vt2IpWM44yTlzRun7cci+VJInC64eMoyxpe8NaP4bGntuLPP/g8rnvpGY3PwcVai4J17adBrPWBRKH69DEJSfK6Te8jP6tlcs38nK9uUoPk32nvyL6m0FWA4SA1JSza7t0WJwANHRjfCaT6Hbeqrut49KmtNAaVQqH4otb9zbFde0C0GNIwFqUXQdK9U4IcYVGfeWHRLVzVOxYVg7jsSpbj3y2UhR0Xz/JgPT5j6nv17LjQoJjL+k5FN7bjsUZYtARQ+7ZOdSz6iXxRhMWgjsXtG7eD5Vicevapzm1JLomyVg50ctr7vv7N12PtA2tx049uwls++BbfxbvT8jQSQqJGPO40PQM9KOQKgaJdWkyjpJVQUksQOTGSgzIhJFBRK5EdnEHMlY5Fu1+RxqBSKMcXVFikHNdMlxQs++Sf8b0Hdx/tQ2kOazAo6yFRqGw1CrW+1y6IMGGxJgo1EbyiyjRNFCQNCaHxz8mrvvs4XvSNh0MjXVNWZOdYIfjLQjMs7U1i/0QpVKy095mXggdtquVYjAkcFL15YdHuV4ziWhvKVhAXWJy7tAd5ScPeAvCOd7wDa9euxeWXXw5NN3BwqowDk2UMZmKoqDpG82QS8KEdYzh5MBXqsFvQHcdoTkbZI55rNC8hHePgd6g9/QPITk/CqHNtdsXJe2W07nUsKxqEWXYsAgDPMlCV5jqSqsKihp1jBeQqKhb3JBFrMer32Y1PQ1UVrLrostBtH9g+hqTI4XXnL255fxQKhdIR3MKiGdaxaIJjzGCRq96h2NCxaE361PfaSXkiVvlFm8nWoiArXgpiB6JQ60WtWMrpPmygE1Godn9jvIecf42wqNaIrbLda8THwgU4DzFt/eZduOCsU8FxHtczb8XfVqYbxVUhhmQigbe/+mqs+fV/4aWXX0CEu3ra7THiY0TADYgBZWDCBBEWK5KMYsknOi81COSOkNdNrTQhLA6Qf6f3Nn/89RgqwPGQm4pCbdOxOLWXOGBT8x1BfsOze5EvlnHVxStbe04KhTLr3H/gftx34L5Z21+9O63esWi2058LYEFyge99Tsei6h+FCkQUFkNEJLfophq10al2FGpZI2Jg1I5FWZOdHrt6bIHWfi47LjSnBAiLrijUerHSdiy6hWA7stV+Ddt1udnXRDa8r7fm85lW41jU/R2LOzbtwEmnn4R4onp9k0wSZbXcIKSZpomKVnGOiRd4vOS1L8G37/w2Ln/Z5YHnYXcszrRjEQCyk1nfbbrELlTUCspqGQIneArQ9SR5IrQ22znpBcuwYBkWqnx0HYtDB4YwMTJBhUUK5TiDCouUjnFoqoyP3LHhaB9GDbZotHrP5FE+kuZIn/cKABHEQo6HYQleUgc7FnOV6qCjJxksLJYUHbphIu4Tu1n/fF6kLWFxsti5VVTLBlIYzkmYLgc/50ieTJ7lQrZzolB5FopmQG9i1aZpmti5dWOkGFQAGJquoCchYGjtn1F59mE8vGMCN9xwA0455RQAwF+3VPspei0BcfdYCbmKik2HczixP+lcUz8W98QxVpBr3Kk24wUZSTEgCrV/EIauI5+t7RPoSlgCca5eWNQhcLPbsQgAPMtCadaxKJL3cb6iYu3eKXBse/2Km55cja6ePpx46umB21UUHav3TOKSk/pwymCm5f1RKBRKR5jeX/3/CI5FAI3xmW7qV1w3dCzaUah1zyEXSLym3+puOwLV7hMU2/j7yfmMdxzHosfkjq56OBabnNCrWBFaiV5y/q5rk+bUmmviCFRcjBxPkJirSkSwrREWd3rHoALEsciw5JrK1X7BO7aouHVdCWA5fOw9r8NZp55A7hA93KGdEBZ1FdD9J9IExoBqMJjf3wMAGPWbzMvMB0pjRGBVStGFRU4kPYzuntFWacWxyLQpLI5uJf9mqgkZD6/fjHhM9H/tKRTKnONfH/pXfOShj9Q4BzvNF5/4Iu7efzeA2ohQ0zRr9qubetti1UBiwLf/0BZ+gjoWASLgBaEqaqgbTDVdjkVdrRF57PhOW0T16kz0PC7Lsei1gNgRKTkiojmORSmaY7H+OZ0oVa0apWo7Fm23X7tRqAzDgGd5X7ecX8eiW4gNikLdvnE7zlhZm3qQ4BJQDMXpIbSZlCZR0SoYf2ocd/7kTgDAa97xGiyP8HmWl/NI8InQ3s12sIXFoJ7FtJiGYijIylmIrBhJWEwJKVS0SkeERft34mg7Fjc8sQEsy2IFTU+gUI4rqLBI6Rgfv3Mjfv/METx1ILi8mBIOK5IBZ5iwyLA8dGtVuRyy7Y6RAo5Y3X3lkI7FfEXFYCaGy08dwGCaDFRHjhwCAIwOH6rZ1hYNg4RFVQ8W4VKWmNOpKFQAOLEvCc0wsW0ouPR6LE++oGTDHIt2FKrYfBTqkYP7UMznIguLh6aKGLnvJ/jJVz+J2PQ+rD8w5bwXTNOsceAOWK/PnvEi1uyZgG6aWNafBBdiD1zck0RF1TGUa/wCN1FUkBL5wChUAA09i1XHYq3ToaLqlmNxdoVFBiaMENdvPfb7OC9pWL1nAif0JUPF9SA2rl+NFRdeCtYvxs9izd5JqLqB1563BN1t7I9CoVA6QtYVAxkilkma9XkYNOFXLxT5dSzWC45KwRKEyP3jU2Qibttuy1HpdCxaE1ExDxddVDgfp38sQxxvXkJPfRSqabQehZros4TFuv24flbsyTw+QhSqA/nsHZ/K4cDQGC5acZr3ZoVhIL0ApF/wMEzTxE0Py3jzbytYc1CBWf+1caaERdMIFNV4xoCiM1gw2AsAGJ306TbKLCJ9kUoZUEtEOI4iLAJAcoBcj1bjSG10FWC5JjsWrYVdrcafjW0DYl1AetC56SGrXzFG+xUplKboxKR+uwRFZrbLHTvuwMcf/jhUQ62JoJR1uUZI1A297ShUjuUwkBjwvI8BA57hQ4XFsJhMVVFDRaT6jkW3EKkZWqQYUalMvuvu2LgDQHgUaoyLOfuxXX2BjkWXsFh/3ZNCY5Sq7Vi0HZ1+gl4z8Azv+/73i0K1RVOAXNv6dCOA9CPu37kfp6+qXXSbZMljJ6VaQ8DB/EFM3DOBOz91Jzav2xz5fWjCRF7JI87FI0WPtkrvABmLTE/49yymrYSH4dJwZMeiLSx2IgrV3t/R7ljcuGYjTj37VKS72hirUyiUOQcVFikdQ7PEo066zp7rhAqLHA9dJQNINSRu9FO/24TP/XErdMMMdSzmJRV9SRGvu2AJFnSTwe/ubZvJv89uqdk2azn9EkHCYsh58Bwb+PhWWGp11G04FFymPWaJYIUQV6VmOd9iPAtVN5z3exR2bt4AAFh+TnjsQ7FYxF+++XEceOh/8f5/+wJe+4FPYc94ESNW7+Ijuybw7EhVLI0LHNIxHvsmSnh45zjmZWJY3BPusFvQTVYUbh+uFV4lVUdR1pCK8/DrROyxhcWJWmExLnAQOAYTdX8DKooOnmMiz+d1CqaF1Zr2+zBXVki/Ym8i1P3phyJL2L7pmUgxqE/sncRp89K4YFlvS/uiUCiUjpJ1LSIKifesOhYDoqfrJ0Z8o1A9HItczBGEtu8jLrJ1m3dZ91vOOqVI+vnaEbZ8HYu2sOjhsqwX94w2olBT/eSxcu1q/RrHortjESaJvIzI+s07AcDbtWaaQHEM6F4KAJBGd+Ntb3sbbnxIxpdeFMNP3n4amPr4VLvP0n1duBiaPn839utXfw3cu2UNKAYwf6APADAy7icsLiTvi9IEERejOhYB4nYsWm7HdjC0FjoW23Qsjmwi5y7QfkUKpV3ajf88VtAMrUbAKNf97dNMrW3HIgDMT873vY9neUhB4wj4R3PaqKoaWjviFg4LSqEmOtWEiYoeLG4CwMToBADg2Q3PkuPSg6NQRa7qUmu2Y7EeW5jMu5IF7P5G+/3absciQF4Pt7vTjZ+w6HYsGqbh2am5a8suGLqBM1bVORYZcl5uYVFVVXzqXz6FkdtH8PJ3vxw3fv/GSLUyABGhdVN3hNiZoru/G0CwYzEjkDSN0fIoBLY5YbFTUajA0XUsmqaJjWtpvyKFcjxChUXKcUWurGLZJ/+MSjNdJnVMlRSM5ZvrZZspFD2CsCiTAbYcInQVJA1lWYOqG5AjdCzGBBZchIFbrkwGnEHCoOaxWq2e7pAux2aJCxwG0zFsHcoHrmwbdzoWg6+J6kShclA0A0YTqzYP7d+NvsH56O7tD932uuuuw8TOp3H1P38dr3vbe7FyaS9U3cRju4mI970Hd+OEumjOwbSI4ZyEh3aM4+SBFDLxcCFsQVccAstg0+Fsze22gzMda3w9TYYFTKMqLNY5FgEgExcwVZJrrnlF0Y9KxyIiuhV/+4sfYvNTTwCovo+3jxQwXVaxqCeBWIui97ObnoaqyFh54fMCt5NVHQcmyzh7UTfmZdp0e1AoFEqrbPkdcO9niZBVGqvebmhAwOe4EzbgMYHk4IhP1gdBvYPREVNck4amSSIshRh8S3/dUahiyr+LMQp+E3liihxXffcTKxDB1O0MMFuIQpWyRNSMdVV/duOa4K0VFkEEs4hs33sIqWQcJy3x6LkqTxEhq4cIi5/4+k/xu9/9Dr95QwL/fnkMDB9vvLZWukbNdRGi9VH5Yk2OBgl6ImNA1Rn0dmXA81xAFKp1npO7qo7FkPSA6mNdbsd2MFQYDAs9ZDwPAD/89V/wt8eerorsrbolR7cC6XmOsLh5535k80UqLFIolEBqhEWt9m+fbrTfsQgAi9KLfO/jWT5UOAx1LLo65NKCtyvKLdRUtEqDyBPW8+h3XBzLeYpeJbWEGBtznJQcy0FgBRQU/1SloE5Ax/HoEiZjdYuqOiECC6zgG6nqJyy6OxaBxvcRABzccxAMw2DZ8mW1j2XJYyfKE85tN910E+7/7f049Z9OxTs//s7QBCA39jVwuyhnAl7g0dXThWm/RU6ovhfHy+NNRaHKuhz6no8CBysKNUJFzD133oPH/vZY2/usZ+TQCMaGxrDqEiosUijHG1RYpBxX3L6eRGN95/7dIVv68/m7tuJDtz0d3m84Q7gFGUUPjtxkOB6qQga/YceruiY1KmrwtgVZg8ixoXGaQDUKNcjVVZLDBZ4ocZP20Ughx29zQl8SByZLKPlEv2q6gawljBZDolAdx6LAwjBJvGdUJkaHMW/h4sBtdEsE+8znbsL8t30NZ1x8JViWwZLeBFIih0d2TeDpg9NYu28KF9W52uZ3xbF9OI/hnISlfclI7k+OZbC4N4Edo4Wa94bt4PR6PU1OAKOrSCSTiCeSDY5FAMjEeOQqWk38bUXVwbPVNZyd+LITBSbCCr/pyXH86Bs34ZF77gJAXl8AePpgFhzTZr/i+tXIdPXgpOVnBm63Z7wE3TRxycl94Dn6sUyhUI4Sd74LePzbwJEnG+8LEDmcj9goHYv2ZEq9g9ErClWTiKgZ5EJ0hMUiICSrokwr+DkW7XjVSt1qdJZvdCy2EoVayZJjt6NFXS4EAECx+lmr1AuLTTjqDo9MYOmCQe/V/oUhAIAe6wOEFD5zzSl49NFH8fqzhOr+GoRF63jd0XV8vPnzd2O/1kqAY5ExoBgMWI7DvL4ejE5kvTdMW86YyT2AUqk5h3sffxqqz8QoAKBrkeV2HPPfJgq6BsMMH0sXimV85Ku34ld3PegS2VsQFpUScRunBhyR9qF1mxETBVxSFztHoVAobtwCRoOw2IGORSBcWAwTUQIdjUw16lFgBVy55ErPzdxiWX0UKuAthoUh6zJ4hvfsZKx3LALE2VdUAz7n/MYjqAplNY5Ftnac1G7HIoDAjkXTMD1jNW3npE298xUAJoYn0DfYB6EumtsWFielSWde5GMf+xhe/83X44yXngHRL64+hJkWFgEShxolClXSpZrI3GdWPwOp4v2eTvJJ6KbekY5VW5ANcyyqiopbPn8L7v7fu9veZz0bntgAhmGw8uKVHX9uwzRw5i1nQjLnhjmEQnmuQWcwKZQ6DkyWkZM0lNtwPbZDwdUzqGpmoDOOFWLQVAUcy4S6G2XNcNYZSiGxqUVJg8izkRZ2ZysqGABJD4ebzVQpfHVUbwRh0RbzdowG9ybanDSQwlBWwlTJe7Jzoqg416SkaDACRFy7YzHGk/MsN9EHOT4yjMH5C33vv/POO3HeeedhcnISXGYA4uAydCXI5CjLMDhjQQabDmdx8wO7Mb8rhrMXddU8fkF3HJJmgGMZnDSQihwRsqw/hYNTFRSk6rmMWQ7OnkTj4N1gibDIMQx6BwY9HYtdCQF5Sa15P0qqDp5lMT5yBACwb9eOSMfXLmaESbmH7/4/GLqOUoF8OWMZBjGexcGpMpb0JdCXau1LDABsWr8mUr/iztECEgKH85b2tLwvCoVC6RjjHn+jAyI3ddP6GxelY9GewGvoWGTIfe7nkKxJMz7ABSdZK/ZNgzi02hEWWc47KtMW0Mp1wiInkPMw66NQm6QyVSss2tGoNsUR538VTScTbo6wGN1ZcXh0AksW+CQn5Ifx110qVnz4FxhSMxjkcrjw/POq93Nio9vPjkJV64TFduDDHYsCY0A1ADAM5g/0+HcsxjLkeCZ3E8ciywMMi7HJLP7uPZ/GfWue8T+OjDVmG9/Z2nnYGBr0CF+3f3/fGlQkGbliqSrgthJ/NrYdgElEVWss+PD6zbh01RmIx1ofz1AolOOfoChU3Wy/YxEAFqb8vw/zLA85aByBaoegFxzPReqQczsWNUNr6GQM63n0IsixWFSLDcJigk+gpJZ8I0ujRKFmlWx1+zoh0jCNtl8vnuUDuxrtnkk3LMPWiItewuL48DgGFw423M4zPERWxDNrnsHZZ5+NvXv3oru7G+oJKnpiPS0Lixkx09LjmqF3MFhYFDnReU0FVgALFrIk42Nv/RhW37va8zF2hGtWzrZ9fAzDQNd0GCHzhWsfWotCroBSoX0xs56NT2zEKWedgkxP51+PA5UD4FIcnqx4LIykUCgzDhUWKZQ6xgtyRwbOrWJ36QGArOmBjkWWF6DKMniWCe0xVPSqsCiHOP6KtmMxShRqRUVC5CB4OK3sx/sJe256Iwg4w7nmViGdNJCCZph4dshbiLRjUDmGQVnRoQVca00l74sYT86zGMGFaTMxOoSB+Y0rNE3TxJe//GW84Q1vwNlnn41kMonhLPky0x2vfkFYuaQHQ1kJD24fwyUn9WN+V+3End2XmBI59DchhJ0ymMJUScFQtjroH8tL4FkGmXijUGxYsW8sw6C331tY7E7wKEpajYNWUg3wHAO5TPaj10fgzRQR9vPAn38PACiXqqtG45bj84S+ZOv9ioqMbRufCo1BBYBnR/JYNpBEb4rGoFIolDlAYQQAg1H3vELAZJ8jnAT1/TU4Fj3+PjN8rUvLdiNyAWKV293XrmMR8I5DFW3HYt2kke1YdLs4TKP5KNTyFBFFbaFOqnMsFkZrfixVZIBvxbE4iSXzBxpuN00T37n1F/j72ys4dekCdPUOAqXJWsGQExodi1bUZk23Zv9yoHsJ/DqaQ7EnJBX/SS2BNaDoDMCwmN/f4x+FyjDEuZc/TK4TJwAMi0KJnFdgN3nGdjvuauEkXBgaIqSg4rY/PQQAyBfLAOfTNxqF0S0AGKCLpGQYhoFH1m+hMagUCiUUt1uw3iWlGzoMtO9YHEw0Cko2Aiv4OuRswoTFKFGPbjHPS1gM63n0PC7D6lj0mDspq2UInFCznwSfQEWt+DoLg4RFgRPAM3xNlCrLsDWP6UR0bVAUKgBUyt4CbIyLOb2VXiLt+Ii3sAgAhccLuP3627FkyRL09vbCNE0cLhxGl9jV4IaMAgMGKXvR1gwS5lgEqkIhz/JgGAZSWYJhGL6xsrbTshPCIsuwkX437v/D/QAwI8Lihic2zHgM6nOlE5dCmWtQYZFCcWGaJiZLclspTu0ylK0OwFQ9uMuP5UWoqhrJsahq1XiuIMeiaZooyaRjMYrzLVtWkBA48B6xqd2WC3GqFL56sD+CqOIWFoPchTZ2F+Ezh7wHenbsZ09SQEXRg7sgTUCWKk5UZqkZx+LoMAYX1K7QNDUVX7/xE7jhhhvwuc99DrfddhsSiQSOWK+/2ylnOxR7EgJWLO5yXJM28zNk0jUvaU1FaS4bIAPtpw9mndvGCjIycR4C59GxaEWhCo+s8wABAABJREFUsiyD3oF5yHoKi6KHsEiiUFVlduMpzJA4naGD+/HsxqeQSKZQKla/nMUt8XhRT7zlfsUdm5+BIktYeVGwsKhoBvZPlnHGgq5IccAUCoUy4xSGgUQPatYgBfw9dYRFNcixWCcsejnKWQ4wXPux+4OiRKECxJ3GtvY328FrRby9/3rBjxWIW1FznYuhtxCFOk1Eupi1iluqG7MUh2t+LJWlqgDXhLOCOBZrhUXNMPHZm2/Dv3z9NnzkBRn8/uv/gnT/AuKidE+u8h49l16TdSe9ALjsn4F4T+TjqoGPICwyBhQDAMNiwUCvfxQqAKQXEGFWKZHXi2FR9okdq0FME6F3ck9Th9+AoUILiUIdnZjGvaufQTqZIMKi41hsIQrV7leMk3Hjll0HMJUr4KqLqbBIoVCCqe9YZFwLRDoVhVofO+pGYIXQKNQwYdFPpHFT71is77trJXpS0RVwDOcZhVrWyg29ekk+ibJWrjkWN0HCImBFqdZFhrsdfbrRvsOUZ/lAYdHLsWgfm+2g9LqW48PjGFjQuMjptz/9LXb9cBdOeckp+OOf/4je3l5MSVMoa2X0xHoi9RLWkxSSENmZd+v3DfZhanwqcBu7Z1FgicjsF4Fq4zgW63u3W4AFGxqDWiqUsPre1UikEigX2+yXrmPk8AhGD4/i3Oed29HnpVAocwMqLFIoLoqyBkk1mp4TiiJyRcXtWFR1M8SxKEJVLMdiiLDoFh6DHIuyZkAzqs68MKbLxLHo1cfYk7CExXL4qusoospIrjqBFiakAkBC5DCQFrFtKO85uB4ryGAA9KdFVNRgxyIAVMolR9TzEha93jelYgHlYqHBsSiP7MLjD96L2267DTfeeKMj4g7nJKRjPJJi1XXRkxSxckk3nndKPxZ01ZaiA8C8TGtOt/ldccR4FhsPZZ3bRvISMnEBAtf4ehqs4EwG9/YPYHpyomGbnoSAkqJBcnVQSqoOgWOgyC2svm8DM8Sx+MCff4dEMoXLrn45SsXqhHFc4MAyaLNfcQ1SmS6cfPrZgdvtnShCN0xcvKzX0/VLoVAos05+CEj01d4WsILfsL9OBK3ytyfPghyLrI9jUWj83Ktu43Ysxtt3LHr2Gtmfh3Uf8va2bnHP1Bu3C0PKElFUTJF9yXUpC8XaRTzFcqW6byXa5I+u6xgaa3Qsbh0z8Nu/rcaPPnAVvv7aE8GJcSA9SMRO93N7ibt+sWTxrsbY1KjYTkzZv3tKZA2oBnlN5g/0+kehAkBmAVAaJ+fCkSjUshRxLJKeB+QOR0o/8MXQQoXFO/7yCDiOxZtecTlyxXL1PayFuwsaGN1MxFTrd+bhdZshCjwuPfeM5p+LQqE8p1D12ijUuCvaOigSs1m6xC6cN3ge+LrPa4EVoBjtCYuRolBdYplmah3pWAyKQi2rZRJ/WReFKulSW8JiSasV7dwCmm627zAVWCHwda+UvBc2JfiE41j0upZ+UaiP/OURrHzPSpzzT+c4s9QHCwcBAD0tLlZKCamG99lMEMWxmLJSKWzHolwJHot02rGoysG/G4/e/SgUWcGL/+HFHXcsbnxiIwBgBV3kRKEcl9BZTArFhd0vZzQxKfT47gmc/O9/wd+2joRvHIHhGmHRQJCJjuEFKIoCnmWh6cFZ+oqrY1EOcCzmJTLoqHfF+ZEtK4gL3sJiOk4GctMRHIu2CBnEULb22kThhL4k9k+WUVIaz3ksLyMd55GK8ZBUA5oe/LpL5bIrCrXxi4CXu3RilDgN7I7F0aFDMA0D8SVn4Rd3PYC3vOUtNdsfma6gJylArBN2P3TVqfi7s+YjITa+Lq266liGwZLeBHaOFh2H4WieCJv1zkdVNwCWB2PYwuIgpibGGp6zKyHAMIFJV/ytpBkQOBaKMsvCYkCMmGmaeODPv8PzX/xy9A0MolysTmImRA7zu+KRXLR+bFy/GivOvwSch/PTzY6RAuICi/NO7G15XxQKhdJR8sONjrMAF4HBRBAW6x2LQcKi/VnqCIsBizw67lhswjluT1a540hNowXHYpYcOycQAc/ujbQpT9Q8Z7EsVUW9AGefm9GJLHTdcByLh4bHoekGVi3g8Nivvor3XdoNxLrIMaQGyetddi0e8oogi9jn3BR27G1AxCvPGFBsYbG/ByNBk3ldi8j1lPNOx2I5ZDLPITOf9Fu24F5xME2oIfPxv/rTg3j55Rdi2eL5xLFov4dDnDte+8LoNvL6WROSD63bhEtWnY5EnEatUyiUYNyiXlkrI87VCoudcCwCxIklsEKNIxKIFoUa5GjkOC7UlQXURqGqugoOdcJiExHj7uPiGM7TVVfWGqNQU0IKFa3ie75hwmKSTzYcZ41j0dSbXuPUcAyc4Ct8Av5RqHEuDt6K9K4/xkqpgmK+6AiLEyMTjhj8pZ98CRe8/gKUtbJzXQ7mibA4EG90OEYhySdnR1gc7EV+Oh/omM0IJJWCZ3mwDBvqWLS7NHNyLnC7IOYl5+GyhZdhQWpB6O/G/X+4HysvWYmTTj8JpWJnhcUNT2zAyWeejO7e7o4+L4VCmRtQYZFCcTGWtyYbmhiIbR8hk1pP7g9epRSVI64oVEULiULlBOJY5Biougk/w52mGzBMMuegGybUAAGtIJEBUVyI9uchW1YRF1hPYdG+xX7OIHqS4TEVtTGx0V6kkwZSGM5VMF1qHEyN5iVk4jzSIg9JDYlCBSBVyk7/npew6CV22sLiwIKFePLxh/D+17wI2x6/BwDQ3dPXsP2RbAVdcR5C3Wp/lmWQiYdPeGoRBVebZf0pHJoqo2AJymN5GakY1+BYLFvCLKNXhcXs1ASMumvWlSCD99E8GSyrugHdMImwKM1yFKrm/+V017ZNOLRvN170ytchle5C2RWF+przFuPqM+dFut5eqIqCbRuexMqLLwvddvtIAcv6UzXRtxQKhXJUKY44UYoOXtGlFqY9KRfUCRelY5HlyXb2uMeOHg3qx3ELi0ECZFT8XHie23q4Bk29+Y5F27HIcuTferFQytVc/1JFqjoI1WhRqIdHiUi4ZMEAHntqK857zYfxk78+BQDo684Ql2osQ84paU3gTe+vPgEfcl06FdzBCQAYQPFxLJomRNYkHYsgwmK5IqPo45xAej45OKUIsCLAMNEdi12Lq27HNgiqQN+1/wjWbdqJa6+5Ct3pVG0UasDvnCfFUfJeSg0CHA/TNPHIk7RfkUKhRMPtWCyppZpOO8MwOiYs+iFw4VGogcKi0Jpjka37zu3VCxiGYii+Ma9ejsWkkISk+TsWw8SwBJ9o6IKseb1Mo33HIiNAR4Bj0UdYdMeP1jsWx0dIAsPgwkHs2LQDH7jmA/j9z38PAEh3p5ERMyipJed1PpA/gG6xG2m767pJknyyoUNzJugdIAuEpwMSFDIiERbtmNgwxyLHcohxMeSU1oVFlmHxljPfghUDKwJ/N6bGpvD040/jxf/wYiTTSaiyGkmkj8qmJzbNeL8ihUI5elBhkUJxMV4kH/BHs/a3XjzTAzsWBaiqCp5loBmmrwjpjg21Iyo9dEAAVREwahRqtqIiznPgA2KvirIaGhebiYevJht2RaG6BbSgZz5pIAVVN7FtON9w34jlzkvHLWExRKwkUah2x2LjQNtL7BwfHQIAPPHgvbjhA9fi7PMuwmkXXem7j6FsBem4AIFvzgkwkCYD+CgRsW5OGUwhW1FxcIoM/CeKMpJio7BZVsj7whYWe/oHYeg6CrnaAXSXJcaN58lgtGK930gU6uwKi0GT3A/86Xfo6R/A+ZdejmQ6U9OxeMpgGlctn9fgGo3Kzq0bIUsVrLwwuF9R1Q3smyhh+fwMeiMI6xQKhTIrVKaAWN2q4oDJPNOeTIviWGQDRBOWJ4KjPXkpF4jQF+QidEdmBkWmRqUZYdGJrHRNrhkGmhpFmiYRUIU4EV2FBBEWrUU7isFYwmL184xEoVrHGdFZcXiECIuPPbUVV7/zUzjntBPxpqtcglNxhPQKsiKQ7Ce3ZQ9W73dF4nmfR4di8hgGEJPAUz8Dvvc84K6PAFt+VxVbrc91O9F/vjWZNzqZ9X6+zILq//PkfRRZWMwsIvstNaYzNIMSMP697U8PIZNK4JoXXoKudBKSrMAJ2AiJBGxgdCv5t4uc87bdBzExnafCIoVCiYQ7ZrReWNTN9jv7whBZMdCxyDFcYFRq1I5Ft2NRN/QG4akVYVHVVV8xsKJVILJiTUxqSkgFRqEGdVECRFisP85Ov14C11oU6stOfBmuWHwFGDANxzg+TITFfdv34V9e/y8YWDCAv3v93zn3Z8QMymrVsXggfwC98d4aN2YzxPn4rDgW+wbIYvHp8XBhUWTIuUgRFlwn+ERDl2YrMAwTKBQ+8McHwHIsrnzllUh1kcV8nepZHBsaw9DBIay6lAqLFMrxSkuzpv/93/+N5z//+Vi0aBEOHDgAAPjWt76F//u//+vowVEos81YfpaFDw9qolANI1iQ43ioigKOZaDpAcKitVzaBOlQBNAQdWlTdByLwQNawzDx5T8/iz1jRcR8HIs2BUmHGuIGZCNEao3kql943AKaacJ38HyC1ZPn7hG0GS/ISMesKFQtPAq1Ui45YlPZ44uLl2NxbOgIxHgct3zlBrzqLe/CF777S4hxf1eFLXY227d34zVn499eejoG0s3FXZ00QFYAPn1gGqpuYLqsIh3jwNa9nraQ6o5CBYDpydrup24r0na0QN7HkjVDxnPsrAuLhqoALIfeq9+Hiuvl0nUdD/71D7jq5f8AjueRTKWhyBJUpTMr8zauX41kKo1TzzgncLu94yVohomLaL9iS9CxCIUyQ5gmkOypvS0oWprhQ7fx7FisjwxjedJn5wiLeSK0BU2wuSdc+Fl2LDpRqO6OxSajUNUKcWlakVcQEtZt5LOzoAlEYHX17RVLUlVsjehYPDQ8Do5l8aEvfB/XXvNC/O0nX0RPmoiFrK4Q8TKWId2IiR7imsseqD5B2HUxOte/hRd9Bjjj78k+n/0/4M53AXf9K7mulnjtjkIFgFG/ONREb/V1sqLlokehWqLk+M5WzsLBLwrVNE386q4H8dqXPB+JeAxdafL+zdvH16xjcWwbiay1jvuhdZsgCDyed+6ZrR46JQJ0LEI5XnCLekW1CJGvjdY0Z3jptcAFR6FyDBfsWGyxY9HtJBRYAZLe3PdV0zShGIrTK1hzH0xIuuS41GwSfAKaobUkYgLEFVjRax/rFt8Ms32HqcC2FoW6KLMIVyy9AiInNpzf2BBZqPPtz3wbl159Kb71m2+hp6/HuT8jZqAYihOhuj+/Hz2xnpaFxQSfmLUoVACBPYu2sGjHxIY5FgFy/CW1FPg6RCXod+O+P9yHS154Cbp6upBKE2GxUz2Ldr8idSxSKMcvTc9kfv/738f111+PV7ziFchms9B18m2pp6cH3/rWtzp9fBTKrGJ3LM4WXnNPoy5xUwtxLDIcD1WVwXMsNMPwncuyhUWYpuNYFHyEQDsSMykGD8IOTpXxo0f3QjNMxPhgYbEka5GjS/0wTdNxlAJApa4z0e/ckyKP/pSIrUO5BvFxvCAjIXJIxzjohum48vyQKmWwDAOBY1D2cCx6PX5ybASiGMOHP/0VXPepL4Lj/a9rXlJRVnR0x/lIQqubhMDhtPmZpgWqgbSIhMBh4+EcJqzrm4o1HmO9Y9ERFicmaraL8SwEjnFeq6pjkYUiz+7vl6FK4HsWoOvCV2PnVPW12bh+NabGR3H1K18LAEimyUC/Um5/RSAAbFq/BudccEngaw0AO0dJv+JFJzVG4lKCoWMRynOWIFdgJ4n1RN4vE6UTrr5jUVerkY82LAeYLmFRypHIT78YK12rPS6xE47FJiKwvcS9ZqNQpSz513YECkniQrRcAgXdEhbdTpKKRK4jK9S6JQM4PDqBZCKG//jYu/CTL/0rRLF6npxsTYTZ8beMJS7mh6pPEBYz24FJL4feZcC5bwWu+ATwsq8CmYVAYZi8Z6z3mGoLi2GORYYFUla0K9esY3E++XdyVytn4eBR8Q0AeGrLLuw6MIS3/v1VAFAVFsvW71GzwuLIZiIqCmRS8OH1m3HROachlQxxm1Jaho5FKHOZZoVAt2hXVsuIsS4HnNG5jkU/RFasiWOtJ4qwqFiLRJmA79FBjkWe5ZsW+2wx1MtlaB+vHQ1qk7QWQrXan5fiU4FRqHoHFvsIbHAUqlQOHo8KrNBwjJOjkxBjIv7xn/8Rn73ls4jV9f/akafjlXGYponDhcPoErtqzq0ZEnzCs/ey0/RYi5yChEX73Oz3QljHIkCcrSW1FNo9GgU/x+KhvYewY9MOvPgfXgwASFpjkU45Fjc+sRHLli9zrhGFQjn+aPqv7M0334xbb70VN9xwAziu+uF54YUXYvPmzR09OAplthnJza6jSq9zIxYsYclGdboRTUfwc8OwxLEosHbHovcXCFlrjEL1cyzaUaiJEMeiuzcx4SNC2qdXUjSoQSUzEciWa89/qq4zMUiAPaEvif0TZZRc19Y0TUyWZKREHukYmWzKSSrKGvkiopiN518pk5VbMZ7zFBHdxyhNjWDrU2swMTaMc86/BK96y7vCThHDWfL+yyTCJzbfddkyXLNyYejrFAbDMFjam8DusSIOT5MvUmlPYZFcOyNO4vH6BuYBaHQsMgyDdIzHVEmBaZo1wqIst7YqsxVYhjgWGWeSuPr+eOBPv8Wipctw+orzAACpDJlMdcehtoqmqtj6zLrQGFSA9Cue2Jek/YotQMcilDmNPYkxw5NwM0p6Xu3PWsBkHscR8aTZjsX6VeScQMQUt2PR7h70Qqn7m91iB08NfBOTV/bx13QsNhmFWsmSf23hTkgQsdSaFCzqAnFlusTLou0S4ITgaw5gOK/hb2s248joJM478xR84r1vaJhw5W1hUXT1aib6SL+gs9FREKdY1nJRut4ndY7F/p4MOI7FaECvEelZRFVYjOpYFNNEpJvY3fShu/ETFn/1p4cwf6AXL7LiwbptYbFkfRdpdiJxdIslLCZhmiYeXr8FV128stXDpkSAjkUocxlb1PJy0nlu74oZLWvlGpfYbESh8iwf6MxiWRaaofkeB8dxUOXq300/Qcm9D82odSzyLA9Zl5s6VztC1us6O8JineMuYaUU5JXGqpYoJIVkTXQt4BGF2qbDNDQK1cexaCNyonMt1YKKJx98EuPD41h6ylK8+2Pvbui2BICMQBb7TklTmJKmUNbK6In1tCwOJjuRZBEBMSYi050JjEJNC2SMGrVjEQB6Yj3IytnQ7tEoKD7JTPf/4X4k00k878Vk7iLdRY6zVOyMY3HDExtw7vPO7chzUSiUuUnTf6H37duH8847r+H2WCyGUqkzf3wolKPF6CxHodb34Q3XCZuabsIwTDy6awKXfuV+jBVq72esKFTbseiXmiq7olAlq5iG93EY5iUVMZ4N7ZdzC50Jn21t8a0sa6FRqGHUX5t6YdFPVAWAkwZTGMpVkC1XH5Mtq1B1E+kY74hzubKKcZmcSwGNk2i2sDiQFrF/suxEnwocuZbT1jEd2bERm265Dj/7xucxPjyEwQWLIp2j3a/ZHQ8XFp9/6gBefe7ilnsA3SwbSOHQdBkHJ8nkaJdH36XzWs47G6puIJFKIZ5IIFsnLAJAJi4gZ11f21nKs5hVxyLPsdA1BQxf+0VOkSU8eu+f8aK/f60zuZpKWQPoQvvC4s5tmyBVylh50WWB26m6gT3jRSyfn0FPggqLzULHIpQ5jd31FyL6zFniPaTnzo3ufy4Cz0HWzRDHoh2Fak2+G1qjYMjyRFCzhcVKLlhYlOtc5vGM//6j0lQUqu1YdAmLhtGcoFyxRT1bWEwSEdF6joLGk/8vTzoPKdouAU4IjELdsGcEF998GNd99ec4ODyOpQsHPbfjpCnyP6n+6o2pAaA8Vf25/v1wtLB+pxSdfH6zLIt5fT0Yncj6PyZtRZpa7ptyhF6j6mPnAfnDaKd9XfZI7NB1Hb/+y8N48yuuAM+T97ftWMwVJQBMc45FXQMmdgHJAYCPY/veQxibzNJ+xRmGjkUocxlbeArr67NxuwUrWqVGqDJMAwY6s1jKdj7WP5/ACjUxpfXwDA/VUH2dk3YUapgo6BbL6qNQeYaHoitNuTOd6+yRrmDfV++4c4RFuTVhMcEniGjn+myKc9W5i05FoQaJk34dizYiS4TF4X3D2HLjFvzwsz/EyOERzFs4z/cxtvg2UZ7AocIhAERca5VkWNpCB+kd7MXUxJTv/YvTi7FiYAXmJ8hipyiOxYHEAHJKrsH52QpejkXTNHHfH+7D5S+73HGP2o7FUr79z7CJkQkc2X+ExqBSKMc5Tc9In3TSSdiwYUPD7XfffTfOPJN2OFCObdxRm62i6gbe9bN12DYcHm2haMHComoY0A0T02UFJVnHzpG6STSWg6Yq4FkGmhGtY1HSbMeiXxSqhrjAhUZx5l2ORb8+xpKsg2WAsqq3HYU6nKsdvNYLi0HfIU4eSEHVTWwbqg7e7djbdJxDQiTH7+UKdSNVyOThuUt7sHO04ByT3Ss4XVZx22234Y7Pvw+JwSX4zC2/wsTYSHRhMVcBwwC9s+xgO3VeGgVJw8bDWTAM0JNs3L/dsQg+DtkSp3v6BzE1MdawbVeCR15SoeiG41gUeQ5KM5N5bcKzDFRFdjkWCU88dC/KxQKu/vvXObfZUajlUvvC4qb1q5FIpnDamcGTefsn7H7Fvo6Iw8816FiEMqexhcUAMW5Ok+hrFNgCRFJR4CBrCBYWbfeVvULdUH2ExbqORS4gClV2/c3mYp1x1bkdi/WOyHo4u2OxXBUZm+1YtKNQRRJfCSFFXHmmy7EIAIUR5yElezKKFYCxZ4H7bgLuvbHmaf/4xz/iBR/9JealOTx06w0YGpvCkgUDnofAy9Pk2sVcwmxqHlBxTZC12G/UcazJNdU1fJ4/0IORgPgxdFljML5JxyJAHIDF0baiXhWP8e8DT2zEyPg0rr3mhdXDtB2LxbLVN9qEsDi1l/z+pecBLIuH128Gx7G47Dz6eTiT0LEIZS7jOBYjdsy5HYsVrQKBrX6HMmF2pOcNqMZ01osl7v15wTEcNEPzFTg5gYNpmjD0YEHNLSzqht7gWFR0pSm3n32dPaNQDZ8oVEvwmpYDPrsCsB/vvoYxvsOOxZDXIywKVeREHHjqAL729q+B5Vl88bYvYmp8CoM+i5yAalzopDSJA3nSWduf6PfdPoyEPR6fBXoHejE17i8sipyI95zzHpzcczKAaI7F/ng/SmoJhbDxaATcbl6b7Ru348j+I04MKgCnY7ETUagb15J+xZWX0PQECuV4pukm2+uvvx7XXXcdJEmCaZpYt24dbr/9dnzlK1/Bj3/845k4Rgpl1pjoQMdiUdLw4I5xnDYvjbNe2R24razVxkuM5CpgUF0XbZq120yV6o6P5aGqCniOgS6bvovknecw4YhCfl18BcuxGNSZaG9nkxC8n6soa+hJipgqKaiE9Be6qXdyAo2i60SdCFwfK+vmhD4y+N5wKIu/O5usXB+3hcWYgKQlLGYrIcKi5Vg874Re/GHDEB7cPoZ3XHYSuhMCJooK7rr9p/jD976Is674e3T/3XWIJ5Io5KYxMH9h4PM655iV0JMQ2o43bZZl/WQA+diuCWRivKfQZTsWDSEBzXKf9vYPNkShAsRxuXeiBEUznOjdGM9ClmdRWOQYaKoChq/9UvTAn3+H5WevwpJlpzi3pdIk/q3cgSjUTetX4+zzLgYvBH8Z2zFaQIxnceEy2q/YCnQsQpnT2Cukj1XHYqKnMRI0QDQUOA6yFuZY9IhCrRcMOQFQSnBGQXI+uGPRLSyKSf/tmqElx2KFiKQMawmCLUShxqwYV9FyLFoTrwXN2kdx1HlI0XYJDC4HRrcCT/2sel0B/PLXv8U7P/hRvOa8AfzypRISAz04MjqBJfN9hEVpCoh31/ZLpgcByeWkiOh4mXGsSF47ChUA5vf3+ncsAqSjESDiM5roWASIKDmyyXk9WkFSG98Pv7rrIZx24iJceM5pzm3dGTIWy5fKRIBvZhJ/dAv51zrXh9ZtxkXnLEc6NXuTqs9F6FiEMpex3XJhApGN7Vg0YULSpBqhCkBHet6CCBNAWYYNdSwC/pGPNjVRqKZWs19bWGzFsegVhWrf5xeF2mrHov14t3hY7zBtN7o27H0TFoU6sX4C67+2HmdccgZS705h/tL5GB8ex+Ar/IVFkRMhsAKmpCkIBQFdYhcyYutpFF1CV/hGHaJ3oDcwChWoFZ+lCAuue+OkR/pI8QhO7T21rePzcize9/v70DfYh/OeX3Xei3ERgih0JAp1w5oNOPHUE9E3OLPzHWWDiKAVc/ZqdygUSpWmhcX3vve9SCQS+PSnP41yuYy3vvWtWLRoEb797W/jzW9+80wcI4UyK8iaXuPCa5eRCLGq9b2BQ1kJmQSPXFkBY00SVRS3sFg3IGA4q2ORjeRYBKqORYFjYXiIcbmKirjARRAWq9cq6dGxaJomyoqGeZkUpkqKExMaBS+RcCQnOc5MAJgu1z5fUBRqUuTRnxKxdSgH0zTBMIwTK9ubFGqiUIOwo1AXdcfRkxTwwPZxvP15y9BlORbnnXERvva1r2Fs2UuwZu8UJseIw2AworB4eLqCroTgRKvOFr1JAakYh70TJSzuiXuKziWZxNOZQtJ5P/kJiz1JEUU5B0UzUFHItjGehTKbwiLLQlOUGsdiIZfFukfux3uv/3TNtsm03SXQnrCoaxq2PL0Ob33/v4Zua/crDqTniAvkGIOORShzGts5d6w6FuNdHo5F/89wnucgaYChKWBNE/BKPDBUS/yy7tMtx2K8G5By5DG2Y9EWceQCieT0jUJ1/c0WEo2dja1QF1cWCMsBYBwXHRiOCIvNOhY5sbpfMUkEacexaJ2Ty7HoRKFe+iFAmq7ub+0PAEPHlS+8Gp///Odxg/afYBkGYyNDUFQNSxZ4r/p3hEX3JGJyADUCaSdE207gdCxWxynz+3uw++CQ/2PmnwOcey3QeyKAJoXFzCIidtvO0haQtdr3Q0WS8bt7H8f173xNTd9lPCaC5znkCiVA5JrrWBzbRl7D1IDVr7gZ73A5ECgzAx2LUOYyrToWbcdefXyn2oyLugUELsSxyHLQTd1fWLR6TlUl+DjrHYvuCFOBFaAYSlOinHOdOf+OxXhdokKci4MB03rHokd3YEPHYpvCYtj7JiwKdf5Z87H89cvxTx/7J/x616+hyApyUzkM+KQn2KSEFLJyFhWtgr54X4MoGxUWLFJCqqXHtkLvQC/279wfefsojsW+OBHkjhSPtHpYDvW/F7qm48G7HsTVr766piMYIHGonYhC3bh2I857XmNceKfZlN8EAMibrf0+USiU9mgpf+3aa6/Frl27UCwWMTIygsOHD+M973lPp4+NQplVbAdbvEOxhBMFBVpIFEe9624oW2no16u48p4m68U5SzzhOcbqWPQRFl3HISm2sOgfhRrjWXAhUahuYTEda/wiUFF1GCbQkxS8j71JjmQrTuQo0CjKBhgWARDX4v7JMkrW+Y8VZCQEDkmx2rGYD4lCtYVFhmGwYlE3Nh7KYue+Q9h423/AUCqIDyzFxz/+cWeiaHJsGAAwEDEK9Ui2jK64t2NwJmEYBif0ki8o6Zjg2b9ZUa3eK5ZD0XIv9vYPIjs50bBtd0JASdYgq7oThRrjOShK9f1ekFTcvu4g3v6TtVi3b7LhOdqFZ4ljkROrX+Qe/dufoOsarnr5P9RsG4snwHJc247F3c9uRqVcwsqLnhe4nWb1K542P+MZO0uJBh2LUOYs9mRMkGPxc93ADy73v1/XmotC9OJ3/wRkDzX/uFhXrXsNAAz/z3DR6ljUVdm/X1CvcygaKvn5pV8Brr6ROMPsjkUbuRASheqaQOA7JCzWOzUDYWp7DhmWnH8zndKVLIlBtY9dSAKGCkYjr71kcOQ+t2PRdgmwLJDsB1IDmFJjeN9tezFd1nDiCSfgM5/5jBNpf3iMfMb6ORY5aZrEoLo7iVN12zKzOy7xxRYWXW+T+QM9wY5FlgXOvMaJRG06ChUAcoebPNAqFdV0ehQB4K4H16JQqtTEoAJkLNaVSlpRqFy1lzQKI5uJW1FIYtf+IxgZn8aVF53T8jFTokPHIpS5iuOki/jZaAuHjsuuLr5TCUol6ABRolBVw79D0XYsekU+unE7FnWzUVhUdbWpPskojkXbYWjDMAzifBxFpdjwmCjUPx9Q64rUDb3tTsxWHIvlYhlf/7evY2p8Cj39PTjlTaeAseacpkZJTGhQFCpAhMWCUsD+/H50x7pbEhYXpRfhxK4TQ8XqtqibLukb7MN0UCx7HVE6FnviPQA6IywqsuL8jgDAU48/hemJ6ZoYVJtUOtV2FOrU2BQO7TmEVZfObL+iYRo4IJHY3PrXhEKhzA5Nf0vct28fdu3aBQBIJpOYN4+U7+7atQv79+/v6MFRKLOJLSymYh2YmAKQrSiekZ4AHCGrXlg8kq0gUy8sumZP6l16YFjougaeZaDrpq+4Jqtux6IVhcp6//rnJRUiz8Lnbgd3FGrcIwq1aAmPtnDSrrA4lK04zkCAxJa6v1h4uS/dnDSQwlC2gqx1DUfzEjJxHjzLgGUZiDyLQiV4EsfuWASA80/swdjBXbjiBZdhePNq6PkJFGSt5pgmRy1hcd6CSOc4nJOQjgkQOBYffssrcGjf7kiP6wQnDZIVfakY5+NY1BxXhO3s7Okf8HQsdiV4GCYwWZJRUUnPpsCxTsfioyMsLvrSfbjh95uxes8kbn5gd9urKuuxOxb5WPWL1wN//h3OvfRy9A3WlsYzDINUuqttx+LG9asRTySw/OzgAfT+yTJU3cSFy3pov2KL0LEI5ZggbBJuZJO/u+3uTwK/uKZ1cVGTgU2/Bm5/S/OPrV/hzbDEsZgfBn77Piuu1LU5TzoWDU3xFxbrOxVtxyLDAPPOJK49VqjrWCwSoc9vQOJ2LPLxzsR1NjuBxQqAJuHZHbuQs8doZhOCUGWq1m1pxehyuusaxzJAuboAp1QnjO3afwTPe/P1+N0zE9g7Yd2nVMcrh8eyAODbscipBUDMAO5J5GSdu3HORKGS81NNt2OxF6MT2chP0Zxj0Rq/uRyjzSJpBmJidfx6258ewkUrluO0ZYsbtu3OpIiwyHBNRqFuBVKDgBDHQ+tIv+Lzzz+75WOmRIOORShzGVsIjBqFajsWbTGs3rGoBCwwaofVQ6uxN7c3krCoG3qN49ANa32nUtXgcZPteLSfh3WNMQSOOBaNJhYIBV1n1VDBgm0QaQEiDhbVYkvfgb2ExY5HoYaIcvUdi6NHRvHh134YD971IA7vPYwYHyPuTyv9YHKEjGPChMW0kEZJLeFw4TC6Y92IcTHc+E834qlHn4p87OcMnIN/WvVP6I31Rn5MsxisAdMVdd470Iv8dB66Fi06PYpjUWAFpIU0hovDLR+njaqoEFxjkfv/cD+WnrwUy1cub9g21ZVqOwp1wxMbAACrLplZYfHZyWdn9PkpFEo4Tc9ovvOd78Tq1asbbl+7di3e+c53duKYKM8hSrIWKgjNFmOdFhbLKiTVe1BqO+/qXXcjOSJ2uZFcg5P67U1rhR3LGNBM03cA6RY4ZUvo8Ys6LUZ0LLrdfbyHEFWULWExQc5nqhj+ZcTeZ0PkK4jolnG9NiVZg6q7hMWQwfNJAymouontw2QicjQnIR3nnWNPCFUnnh+VcnWirrBrPUb+5+NALI0X/dutEAaWoiRrTlQrAEyNDSPT3Yt4ojGupB7TNDGWl5GOc9AVCds3PY3vfvmG0Md1ilMGSRxoMsaB93CzFt3CotVF2TcwD9nJiYYvX12WOD5akCEpOkSeBcMASikH09CRU0w8/5QBfODKU3Dhib3YdDjnCL6dwu5Y5GPk2hdzU9j05Bq86BWv8dw+lU63LSxuenINzorQr7hztACRZ3HxSa2X0T/XoWMRyjFBqx2LagXYeDtQGAYq0Vc/12B/JjYjctmIdZ9ZDEcciyObgM3/C+x7rOZuwXIsGqri30Wn+wiL7uXFHF8VFk0TUIrB0aRyoRo7GxSFeuQpYGiD//O44ZsUFjnBeZ3tTuGmnGblKcttaV0bgUwWcqrLxRDrqnYxwuVYBPDQ2k245E0fAcMwWPvJ83HBCZYoPFadaDk8ngXPc5jX3+N5CAxMQEyT628jJJxjIRvNEWHRmvB2dywuGOxFsVxBqRwtbr0px6KYIv/5TGRHoaKYiIvkfTWVK+AvjzyJa6+5ynPbrnQSuWKpGgscZWJYLgC5Q0RY5GJ4eP1mnH/WqehKh489Ke1BxyKUuYwtBEZ1LNpOPltYrI/v1JpZ7NACYb2GtmNR1mT8fMvPMVoarbmf58l5hkWh2uehW+MVDu05FsMiZ0VOrOnWs4lzcVS0CrQWxmmRhMVm+p49aCYKddsz2/CBV30A5VIZ3/39d7HykpUQORGqXl0I7giLC4KFxYyYwVh5DGWtjG6xGyzD4pG/PoIb3tPcvEhKSHle906hczqgwHG89g32wTRNZIMSFFxEcSwCQE+sBxPSRNsdp4qsQIyJzr4fvftRXP3qq2si2W2S6SRKhfaExY1rN2LpyUvRP39m5zsePfLojD4/hUIJp2lh8ZlnnsHzn//8htsvvfRSbNiwoRPHRHkOcfaN9+CNP1xzVI9h2Sf/jBf8xwMYK8jgGAapWGcGILmKWtNt6CZp7aNeTBktSA3CZtkldhUktUaINa1oKs40Ax2L7uOoqDoEjvWsQAKAgqxB5NnQjsW8y93nta0tLNoi6lQE4eisRaRg+2er99ect2maGCsQIdD9/JpL0ArTp0/sJxMszxwik7RjBRmpGO9EwsYFlrjyAgbhdhTqkQP78Pl/ficGl5+P5e/5L8R7yQplIna6omvHhiP3K06WiMO1O16d1DSbiVNrk2X9lmNR4MF7uEOIsEiOx46T7e0fhKapKOazNdvaztKxPHEsihwLlmGg5Cdw+Lv/iFfOL+E15y3GeSf04tKT+5GrqHjyQIuT5z5wLFvjWNz+9BoIYgwveMkrPbdPpjJtRaHquo7NT63FyguDY1AB0q94Qm8CA+lmIvcobuhYhHJMoMvN9e3Z7LybiGqdnsR79L+IyBZGLFP7M8sBmmtCo1jr3hIjORbrolB1KwrVPRhhBSJMmgY5f5iAEG94Kge5QEQ5wHI2+ozfbn0R8KMrG5yWnjTrWORER+xyhlrNxMVVpi1R1BYWyViF110RVHYPpYUtLA6NTuJl7/sMzj/rVKz59Tdw6jzXROPIRud/D49lsXhef40ro4F4V+Ntib7q/4fFWMwWtmPRJSzOtwTT0clo44imHIsAkJoXvk0AkqY7jsU773kMum7gTS+/wnPbrnSiGoXqdu8GMbad/JueDxPAQ+s246qLV7R1zJRo0LEI5WgwUWmsofAiKKKzHtM0HeHCT1ic6ShUNiRym2M5aIaGbZPb8I2nvoFX/v6VuHXTrY7z0IlCDRAWTdN0tncex9YKi812LDrRsT7jhxgfq4lbtUkKSZS1siN02q9rFEGQY7kGF2SnOxajRqEWsgV84m2fwKITFuF7//c9nHT6SQCIcKoaqiMYT45MIt2VRiLVKIq6yYgZTMvk89ztOAwTnmcbndNhqqbzvu0dJMc6NT4V6fFRHIsA0BvvxbQ0DbnVxYoWqqJCtBY5rblvDSqlCl78Gu8u5lQ6hXKhvSjUjWs2zngM6lRlCtsmt2FACO7tpFAoM0vT3xIZhkGh0Dj5msvloOvNr+a85ZZbsGzZMsTjcVxyySVYt25d4PbZbBbXXXcdFi5ciFgshuXLl+Mvf/lL0/ulzB32TbRfDNwuh6crODJdRjrOhzr1olJSdBR9OvvsPeQqtaJhSdYbHIvuKNSirEN1iU2m9UwMDGiGCd1nACm7XI+yanhGXTr7kDQiBIUJi65z8xQWrSjUhMgjLrCYjhCFGrMiTAqShi/ctc25PVch7k/3tSnLOlQtumMxKfLoS4nYciRnCZUyUmI19jMhcChbvZBeMCyHSqkE0zSx+MST8KXv/wrvufG7OFw0MWm5MUtKrYtycnQYAwsahUWvQx3KksF5JtEZx2yzdCcEvPnCJThjocfkIoCyosMWXUtytWMRAKYnauNQ7Z7Q0byEiqJB4FiwDCBXKjAqeQxkYohbccCnL8hA4Bjct22so+djR6FyMfKleN+zG3HpVS9BKp3x3D6V6UK51LqwuGf7FpSLBawKERY1w8DusSKWz884/aOU5qFjEcqssuk3wP1faF4k1AIcfEFs+DX5N3e4NWHSj/s/T0S2sOesj79iWBJlalOq/XvN8yxkHTB0NaBjsc6xaAuN7jEX54pCtWNOg4Q+uVDtRORi4R2LcoQuo6jComkQRyknkNcZgBNS0YwgLGWJsGhP/DqORdfYON7j9ElyLItiWYJpmlg0vx9/+sHn8Ncf3YTe7rrPtuFNzv8eHs/6xqA6xDw++91xqHPFsWh1LKqmh7AYMQ61KcciUI1DbZGyYiBudZHf/ehTuPrSVVgw2Oe5bXc6hXyxYrmE9Wi//2Nbye9o12LsOTiMobFJXHkRFRZng06PRQA6HqF0Dlvw8nIkeW2r1kWvJ/la17Nqttn7HEKUKFTN1Bw34cLUQnznme/gn5/4ZwCuKNSAjkW3OOVEoboETZETSY9jE24/2QjushRZ0XNhT4JPoKJWHGHxj3v+CAAYK0f7Tlwv/LqFzU44FoNeD4ZlUClVoOs6Mj0ZfOHWL+C/bv8v9A5UhcAYFyPCovV6TY5OhsagAkCXWB2P9CfmbrqP7Vh0hEXr3KP2LMoRFzn1x/uRk3OQ9GgORz/cjsV1D63DGeeegcUekewAkMwk24pCnZ6YxoHdB2ZcWHx86HEIrICLei+a0f1QKJRgmhYWr7jiCnzlK1+pGSzruo6vfOUreMELXtDUc91xxx24/vrrceONN+Lpp5/GqlWr8NKXvhRjY94fpoqi4CUveQn279+PO++8Ezt27MCtt96KxYu9/yBSKM0wlpeRifORBt9RGc4FDwByFRWa5XAbsbbtrutYLKvV37X6+E8wDMCwYE0DuhEQhepyLEqaDoFjfB2LRVmDyHNgm4hC9RIWC5b4lBQ4pEQeuYp/2Xo9ZyzI4I4nD+HB7eRvgX0d3cJiSdFqIl7DhEUAOKEvgf2TZZQVHRNFGSmRdCwCRHiUFN3XsMixDPbveha//58fAwAufP5VOH9ZP0yQzjyAiG+1jsURDM5f1PBc4wo5j+FsdUA5lCXn2Js4emLTi89agBWLuz3vK8kaGOvLmBNzO2AJi3U9i3GBBc8ymCjKKCvEIcuyDCSpseRd4FicNi+N9funqjFyHYBnGWiKAl6sfum6+u9f57t9Mp1GyWNyKCqb1q9BLJ7A8hXnBm53cLIMRTdwwYm9iPFzZKL2GISORSizyrN3AVt/D2QPNvc4XY0eofjQfwDrfwyUJoE991Vvn5yBrt2wVd/1rgGWq3XhFWt/N4hj0YQZJiy6n1dXLBec6zbWFYUqESENHnFfDlKOOBozC4HM/OBzAhoFU89tIgiLdn9h/gjZ3oqb01oRFivZWrel3bGouVaKJ3ocoZVhOew7PIKbbrkNAPDiy86DIHhMZg7XOhZDhcWEx2d/inzGqwbmkLAoWzGoLmHRmsybMcdiV+M4rhkqioF4rPq+uvaaF/rvKp1ErlAi7wdTj+ZYHNlCXJXxLjy8fjNYlsULLqD9irNBJ8ciAB2PUDpLMw5DE2ZN1CILtqFjsV547DRh0Zt2x6I9n3D1CVfjfSveB82KH+etOG9F8T9vd+yoLTK69yuwAjRDa8odF9ZlGeNiYD2mXVNCCpIuOcLi7iwZ79mCYJiDs15YrIlChdG2wy9IWORYDtnJLH7wpR8AAM677DyI8drxkyPSuqJQowiLaZHUs3SJXciI3guC5wIGZ9Q6FvubcyxGjULtT/Qjr+RR0RrnUZpBkZWajsUX/4O3WxEAUplUW1Gom9aSxW0zKSxqhobVQ6uxYnAFBuLUsUihHE2atsb8x3/8B6644gqcfvrpuPzyywHg/7P33WFy3PX579Tte7vX7ySdiiVXWZItyb0BjiGAKSGEEnoLxARTExMILcSEQOg/AtgQiEnoHYMpLnKRZEuy1bt00knX2/adPr8/ZmZ3Znfa7u2dzva8z+PHut2Z2e+U3fnM5/2+74tHHnkEuVwODzzwQEPb+sIXvoC3v/3tePOb3wwA+MY3voF7770X3/nOd3DHHXfULf+d73wHMzMz2Lp1Kxg9w2rFihWN7kKAALaYyPOIh2h4CPUawmjWvQDIcxo5RlOkLXkGQCO7dBR5qUJEGiBoBtCJRSfnTN7OChX1OyrKCnhJQZjxPgiGIpEmiQo5Z/d+hKUQZSkUdFKUpb23vXlFO7JlEXf8fC/uu/2GKulqIt3KNSSen6jOlZ0xHNg7itFsGSVBRixEVYjkCENhpsQjYsMsipkxFI5uh8KXsXLNRZXXU1EWS1IRDOtqw5IgQzIrFidG0dnzl3Xby4hag64kVh9uRrNl0CRh2cfFhJLJCrUsyJAUpapYnLZa8hAEgXiYxkxRQDrKgqEIkAQB3oZYBIANy1L4wY4zGJwq4KI+e2KzUVC6YpFkwpWUjM3XPddx+WgsgZnJccf3vbBnx1ZctH4jWNbd3vTIeB4MReCKlfZqhQD+ENQiARYUZS0XBo021eQGFIsP3an9X+SsZII4t0ZCU6htZhG6LaNRZJSsTRMtYxEexKJgJacUSSNPzCUBxVTJFEOxSLtlLOY0Yu+GD2k2ql7wk7Xjh1gs6deDqmqZjIZi0bj/N2IXx2WBjlV1GYu0ZGroRNKAUMBwXsGP9nEocwouv3i18zYVuS5j8fL1zgo2FQSISLr+jbhu8y4CqUVkhSrWEIsdqQRIkvSvWOQanPWfnBtJUxSqVqgA8PK/uMb5o+JRHDp5BiBj/q1Qx/drqkomjIee2IvLLlqFtkRsTmMO4A+trEWAoB5ZzHj3/e+Goir4+s1fP9dD8Q1DsegXZmIxTIfriL65Zrx5gSIpkATpSIiRBKmRfqb8w3Vd69Atd+Ntb3wbLnvZZQAASXSe3CObajKD0DOTfgzJWMgwP+BlHgQIR8tZlmJtScIoHdUyFh0mIzEk43oOa3MWLcRiC+JUnIheKS9h+tFpSKKEizZcZLuMMR5JkSrK0OmxaVy49kLPz00wGpmYDqcd7WUXAxRKsSgW2TCLWDLmX7Ho0z2hI9wBWZUxUZybu5PACxby9zkuk5zmaoW6e/tuLFmxxDNPcy7YM7kHBbGAF6x4AaYm/dlDBwgQYH7Q8FPixRdfjL179+Jv/uZvMDExgXw+jze84Q04fPgw1q5d63s7giBg165duPnm6kwJkiRx8803Y9s2+8y9X//617j66qtx2223oaenB2vXrsWdd97pajXC8zxyuZzlvwAB7DCpZ+61UrFoqNCckOeqOYyj2TIIAO0xawFVNqm4SoJsUekBAEExIBQJsqo6qvYsxKIgg6bs99EgA/0oqfL6smHGPo+xwEugSQIhmkIizNRlIrqBJIC/u2EVpgsC/vkX+zCa5UAQGpFX2Q9RhmjaL8UHs7iqMw5RVrH1hNYUjJvyLKMshbKo1LlObdu2FWP/834AQKKtDZddZZ2BvH5plQgzk52qqiA7M2VrhZqV6o/vSKaMVJRBiFkkqoAaFIWqJZdBoEZjcbChcJ1iEQASIU2lWqyxQrXD+qUpqCpw/6HW2aFqxKIAktEestJdvWBY54eTWCKBUtGHTZ4NZFnG/icfx/rNzs1CA4fH8hhoj6Ir4ZIbFsATQS0SYEFRzmq/f1SD8/Fkwb9i0cC+HwPdF1f/bnT9+YCR92agnIF5JhOjZyy6EiGKgxVqnWLRIBb17whjtWKzgM8BdFj7zy4jELCM05etJO2HWDQ1MEi2QiQ2rFhUVX0fIlUyl2IBggQlm+6X4TbsOsvj+v8ugZMAlqFx63OvdN7u7CnANLPdS7EoM/EKoWmBrlgsiqgnm88VKsRiFRRFoau9DePTGV+baNgKNe5DDeuCIi8jrNcfDEMjGXe+ptsSMT1jUVfvelnZqSowcRCIdUKlItiyY39gg7qAaFUtAixMPRLUIs1jy9kteGT4Ecxw/tRIiwGNZiKaicMQFbJkDwLzr1gE3FVyNEHbZgeyFIvioSI649p9zi1j0dhHEqRtxiJN0lBUpSFSVpAF0CTtmGPMkIwtschSLGRFhqRItteVlzVsrVVtbcbifCgWDxw4gFOfPwW5oB27619wveP6BinI6Rbmfq1QDcViKpRa1MSiTFozFgGgvbPdN7HoV7GYDmsTv84UzjQ+SBPMVqgA0O5gyQ4A0fjcrFD3bJ//fMVHzj6CpfGluKb/GtjoJQIECLCAaCrMq7+/H3feeeecPnhqagqyLKOnx/qw1tPTg8OHD9uuc/LkSTzwwAP427/9W/zud7/D8ePH8fd///cQRREf//jHbdf5zGc+g09+8pNzGmuA1mAix+GKO+/He29eg/fefP65Hk4dpgo8upOhSn5cK+BlhVrgJQiSgl/tHsa/3XsIiTCNCGst4jmxWhRqVpvWYpqgGBCqDFlRITsQdxYrVD1j0Y4/rZCFPohFww4zzFCOxKLxXjxEYTzHa5mIPuvDpekoXryuD7/cPQJRVtAWZizjUlRgtiya/vZjhaoV4A8f1YgwC7EYosCLMlTaup0vfP7zYDoH0LXyYkzt+G3dNi8fSON3+8cAAJKiIq9bxMr6bMlaK1RZUVGQ64/v2dkykhFGz3xcBI3kGpRMxGJRkCDJKsIMgXRHpy2xmIwwyJUlRFkaNEVAliRIkv2DXkc8hO5ECI8cm8Lf37TaM9/TDyhKUyxyvAAawHlrL3ddPhpLoJhvrsEyePQgCrks1m12z1eUFRXHJwp4zgXdQb5iCxDUIgEWDFxGa/Q32uAwFIuNkDKje4BLX6WpkAB/iqX5BkHpak19LHzWkrnIUBR4WdWtXx3uxbJoVSzKRsaiaRk7YpF1Ixbz2jlxUyLyOeu/IynnZQEtq9ELhmIRumJRz26slFqyzzpSKGrkkZnUIwiADoOWTTPFw234/DYeS5MEbrmoHZ/+8xQkSQbtVKtNHLT8WeZFLO1xJhYlJgHaroGpZyw+cJrE6/3t0fxD4iAoJGq7SD0dqfmzQk0YE8Say6sqCgrKes38kue4EMIAkjGTFarxXXBDfkxTvca6MDg6hTOjk7jpinVNjTNAc2hFLQIsTD0S1CJzR6Nk3bmEQej4hVk5F6bDoGossBtVQDYDN5UeSWqKRSc1Ic2arFAdbuUGmUgQRIV4M+8no1umN3LseJnXiEWHWo+l2LpjWYsDUwfqXvMiFmsVi4zJ7r0VGYt2isWvfvWrIEMkljxvCU79+BTKpbLFXtMMgxQ0LDyzU1l09nlbVsYZjVhMsIk6O97FAlVVK4pFM9Kd6ZYrFtvDGgE4nB9uaIy1EAURFKVdhxeud1eOxpKaFaqqqg2LLrIzWQweGcRr3vWapsfqhdHiKE5kT+BVF7wKfbH6SfwBAgRYWPgiFvfu3Yu1a9eCJEns3bvXddl16+bvYUZRFHR3d+Nb3/oWKIrCxo0bMTw8jM997nOOzbwPf/jDeP/731/5O5fLYdmyZfM2xgDOmMhrN8/dQ5lzOxAHzJYExFhas3xsESYLnOsNucBL4CUFt/9wNwBgWTqiE0saSMKqWOREGYJUQzpRDFS9icVLThmL1XXKogyGJGytUI3cRD92pYYKMuSQx1jgRIRoTakWDzM4OVWsU1t6Yd3SFH65ewRHxvNIRpiK5SpNEpAUFTPFakEm+1AsxkI02qMMdp7WCr5UpNokjrE0OFGBSmtqQz6nKRLu/s5/4/ovPwHmwG/AlUtQFMUyI3GgI4p4iIakKOBEBTNF7RgaJFpnj7XYGc2Wodgc+5FMGckwDZYiFyOvqF2HpoxFQ32a7uxGxoZYbIswODVdRFKgwVAkZMG9eL50SRseH5zBdJFviZqPJkiIIg+S0c4xzbg/mETjCZSKzWUs7t2xDQwbwoWXXua63NBMCbyk4PLlKYQXqTJ1MSOoRQKcM3BZINquEV+NwLAGbYRYpMNAz8XAvsY+al5hKBaNZh6fB6TqbzrDaFaohFsmnCzqmYo6FKk+Y7FihapWrVBdFYt5INbpnv/HZar/njgEpAaclwX8kcfF6eq/qapisTIPzK9dnDG2WrUgEwEla/XjVJ4HwincdWsEFAF885A2vmKZc7a7HD8ARNqBclUB4aZYlJi4/X7HtHVO5RaJWhEARA6SStTNTu/tTPuyQlVVtXHFIhsF2HjTJH+Rl8DQ2m9HNOJeiyTjUU2xSNDV74IbxvVmdKIXW57YB4IgcP2mIF9xPrFYahGg8XokqEWeXWiECFRVtU6xWEuUzYdisdZelaVYwOFjKIKyWGvWwiC4RF50JBYr9qcEWbFFNT/XG2ReWfZvQ28Qi3a9FWObXnmJ+6f3173mlTkZramPSIKEwisgQ5qdbCsVi/ysdi196UtfwoNrHgR1TKu7ysUykil7xwiWrCoWFUWBqqq+FIvJUBJtbBt6oj2ex+1cgZd5gARU0XqPTnelMTvpU7Ho05Y9QkfAkixGCiMW8rhRmDMWQx61SCwegyRKEHmxLjvTC3se1zK+51Ox+OjZRxGlo7h11a1zOiYBAgRoDXx1SDZs2ICxsTF0d3djw4YNIAjCdqYQQRCuVmBmdHZ2gqIojI9bM63Gx8fR29tru05fXx8YhqnMtACAiy66CGNjYxAEAayNzV0oFEIotDhnugRYXFBUIB6iMOnALTQz52u2KEKQFVtrUYYiIMoqsly1ek6EGQuxSFMkeBOxqALIlKxTowjKsEui60lHHVydFSqJXUNa0WP+LhuKxQjj/tNgzjZMx+xv5jlOQki3SU2EaV1t2VyBO10QsKozBka3cA0zWmbjbLF6LMzKTjcsa49iz9ksaJJAPFw9LxGWAifJEHkeU7/8EkZHDqL4+bejra0NBMWA0bPzeK6MSLTazCMJAq/cuBRHx/N47MQ0ZvXzI4naee3qtSoWT03Z+9WPZjmc3xsHQxNwOI3nFGXBRCxyUkUFm+7owsxUvYVpW4RBgZNQEmTQJAGRd39Au2wghfsPT+DxwRm8eF2/67J+QJGAyPMVK1QvxOIJFAvNWaHu3bkNF6/fCDbkToge1fMVr1zZ0dTnPNsR1CIBzgkUWSOwImk07LXjRrQ5oXed1XpxsSgWzTanfMGSN8nSFHhJBeGmsFIMxSJR/ZuKwmKfQNLa+rIIcLrNqZv9LJ/X8u/ciMVypvrv0b3A+c933VX4aVCUzMRiqEIkSsYEJ79WqMbYalQHoCOQSyW8+VccfnLoEN75bgrtrHacQnp9Viy5EYv7gGS/b2JRpmL2+x1Og5NUCPLcVA8thcxBUOq/hz2dKZw8M+a5Osc3qTaKdc2BWJQRYm2sZm3QlohCECXIIEH5USxOHNBySBN92LLjMay/cCVSyXhT4wzgD/NRiwALU48EtcizC42oK2vJOjuVnaC0Xq1ZlqzPh24qPYqgtHHa3JJiF8YqikU/GYtGXiMAMET1Mw0yrxHFoiALoAnnOB0/xOK+yfrZZF6ESYyurwEUrkoszlGwCIZkoMoqRv9vFJlHMhh+/zCWLFkCKkyB1msRruR8nAy1YVkuQ9F7QH4y9xiSwb9c9S/zcr21CiVJ7+fUkODtXe0YOj7kaxt+FYsEQSAVSmGyPDkndZ4oiI7q0lpEdcv2YqHYOLG4fQ/6lvWhu7+74TH6AS/xeHzscWzq2YQVbSvm5TMCBAjQGHxNARkcHERXV1fl3ydPnsTg4GDdfydPnvT9wSzLYuPGjbj//vsrrymKgvvvvx9XX21vJ3fttdfi+PHjljDio0ePoq+vz7aRFyBAo4iHnRtY2VJjs/QokkCmLFryDS2fpdtwTuarBVkiTOvkWVWZx9WsP12wjoOgmIrtllPzhzeRbrwkV5R/ADBjIucMG88o666mMgjIS5e04S8utM+eyXMSWIoESRBIhGiURRl8k4xZSZARD9MV0jXMaP+fLlTH7kSq1sKwQ9VsR6v7GWUoiPkZPHb3J1Ae3IUVf/FGxGLVgt1QvHGlemLw2tWd+Mu1ffqYtCJRkgREYwlEY9YGz+B0PXklyQqmCjwSIQa0Qz7DuYSqqigJulpFVSEpKoqCdg2kO7psrVDTURZFQa4Q2YLg/oC2ujuOEE22LGeRIgmIogCS9k8sigIPwUNZWQtFUbB353ZPG1QAODyWw9J0FD3JIF+xGQS1SIBzAi6LOXVnlAbve10XWPMCFyDTyBMkac17EwoVlR5gWKEChCo5Z0IaVqhG+WEoFmuJRUDbNp/Xswdd6hGhoFuhutw3zYrFMR8yUD+KRTOxSLOVc1SZB+ZXsVjWZ7XXqA6meAav+PYJ/GC/iFdfvQztXT0V1WtIb5wWSi6TdcYPAvFqQ4ckCfR2ph0Xl+iIPbFIkrjpuyX8drCp5Iz5gcjpGYu1VqhpXxmLDasVDfRtqGRONoo8JyMc8tfMM/IXJQX6b4fHb8/Yfs2qlYnioSf2BjaoC4D5qEWAoB4J0Ho0mhNoRogK1RGLterCVqAkWp+r3TL1DGJRrrH2KUklrLxjJU4RpwDoVqgOkFTt+ZUgCNuMRYPY5OQGrFAldytUL2JRVVUcmG7cCrVWsQgACq/9FiiqAgVzm5jGFTic/uJpzDw4gyUvWIIlS5ZU3jNI3LJLLWLOWDR+o/woFgEgRIeQYBPNDn3eYVy3RL+1FvFrhSqJkisBXotUOIUZbsZRresHtRmLbogltR5YqWA/Id4Nu7fvxvqr50+tuHN8J3iZx4tWvQhtobZ5+5wAAQL4h68O9vLly0EQBERRxCc/+UkoioLly5fb/tcI3v/+9+Ouu+7C9773PRw6dAjvete7UCwW8eY3vxkA8IY3vAEf/vCHK8u/613vwszMDG6//XYcPXoU9957L+68807cdtttDX1ugABOSIRbJ6WPh2jkyqKF1DMjZhCLOd7ymkWxSBIQJGtIuZkIBACCZqDqTS0n4s78OicqoE2fYSY+jdzE2pzHWhgE5KVL2nDJEvsbep4TNZtUkkA8RENV69WWjSAeoiuEqGEjOWU6Fk4Ebi1YWtv3RIiuKCABYObMUYz9z/vBFWbR+7f/gfbzN1nWY/QH9HLJPsg6oZPSxvmRRBHtPfWzyk5OFkHVFPpjOQ6KCiRdiO1zCUFSoAkxFBD6DE6DaE93dCEzPVW3TjJMQ1ZUTBcFMBQBgXNXLNIkiQt6E9h1ekYjMecIkiQh8DwI2u/MPO3hpVRozA711LHDyGdnsW6TO7GoKCqOjRewpjse5Cs2iaAWeYbi/n/VybtFigox1SS52GgTILnEap26GPKcKopFg1gsWolFhgIveVihKjVWqHKNghGoEouSoCsWQy75iSoglLRl3GCoAhO9wOxJQPRoFtJ+rFBNE2CoUIVYrGYs+jznxrUVqk5AOnzyDK764hEcm+Tx4BujuHJ1h0a+hrR7FMsYxKLDfvB5TaloUr32dSSd8xgBSHTc0a738WEZRXkR3bMkg1i0oqcjhXEfzbyG8xUNrH8VsPHNAOugEnVBkZMQYnwSizGtUSwosKqEnTC+D4j34PRkEadHJnDj5rUNjy9AY5ivWgQI6pEA9mg2K68RYlGqUdqzJFtvhTofxKJUQyySLsSiXg/UKtkMy09O4UAzNETBeZwVK1RTG5Qmqs/fhmKxLPq3QuVkzt0KlWJcc+qmylOY4WbqXvckFmntfmG2PK0Qi1AsEw4axejQKG5/xe0onShhxQdWoGuzlRCk6KoVqhPMxKKqqAhHw4g5OS08zWBct/QaGkWx2htKd6aRnclC9pjwzjdYi3SEO5DhM3MiFkVBBONzklMsrp2nQq4xN6dcJofBw4NYf+X8EIuqquKR4Uewqm0VNvZsnJfPCBAgQONoSBrDMAx+9rOftezDX/WqV+Hzn/88Pvaxj2HDhg3YvXs37rvvvkpo+dDQEEZHRyvLL1u2DH/4wx+wY8cOrFu3Du95z3tw++2344477mjZmAI8u5FqIbGYCNPIcSI4h9lIMX2ml5E9CWhKQXNeIU2RECTVErFizhUENMWiKhnEon0BaX69VrGYKZsVixJokrC1bjXDUCwaykGnZViaBEUQFSVordqyEcTDVYsRmiRAk4SFqDRnUfpBLERbCFYaMui2Hlz2ts+A7TmvbvmKYrFsP3MrwlIgAMyW9QajKKKj22pdJMoKRjIcErR1rPfuHQVNEuhNLU4lW8k4tqoKSp+hl9HJ5VRHJzLTU3U2UMmI9l3KlkWNIOe9Z35uWJbC0EwZxyeasyQ1gyYBURBA+GkSA4jGDGKxsc/eu3MrGIbFRevdi9szsyVwQb5iSxDUIs8glGaARz4P/PC153okzjBUZV5ZZ05oVLEYq7GsXAzEIklp+2E0rxTdqlSHplhUQUJxz1g0qx8USSOz7BSLEqeRbkzYUbHIEIpG2noRiwZ5174ayJ6tZjc6wVfGomkyDc2arFD11/yeM4P0ZKvEoiTJ6E6G8Mg7unDNMtNko5CmYg3p949i2eGeWtDtQBPViU1Lu1Kuw5Bt7NQWLaSyvWKxM4V8sYyyR7OuacUioOWsujSHnVDgRYR9qgQMxaIoq94Zi7IITB8Hop3Y8tRRAMD1GwNicaHQ6loECOqRAPYYL457L2SDRqxQDdLQIBNZirUo+czLtBK1VqheikUAECT7/VIIxZNYNFuhGjBnGVYyFiX/xCIv86AIypE8dCNLAeDorPb73Rmx1n9exGJEz2c2E8il4yWUT2tjnwsJpSgKYokYzvuX8xC/pN5euxErVEOx2NHb4UqwPp1QUSyGCcv3LN2ZhqqqyM64T5j0a4NqoCPSgSyfrVy/zaARxaJhhdqoYnHvE3uhqio2XLWh0eH5wuncaQwXhnHT0pvQHZ0fq9UAAQI0joblMS972cvwy1/+Eu973/taMoB3v/vdePe732373kMPPVT32tVXX43t27e35LMDBDAjylIIeyj1GkEiTOPsrIrZkojf7z+BWy7uxYpOrXlzYrKIVJQBgXpi0QyaJCDIhlpMw0xRsH5xKRqqXmCLPohFTlTQHqsWdePZ6ufnORFhhgJFuhd9OZ1UCrsQkEVBQoylQZFERZ1Zq7ZsBG01pG+UpZAx2dM6KUOdEAtRoEnggXt/gev/4kW4eN1G9Lz230GGecBU6yl6U0fRremcFIskQSDCUsgUBURYCrIkoqPbqlg8M1uCrKpIMwoyOt8sygq+89gg1i9LYWmq3tJkMaDEG8SiAlIsAehAUX8t3dkFURRQyGWRaEtV1kmGzXkVJEQPxSIArNPVr/cfmsC6pSn3hT1AEgREgdOsgn0gltCJxWJjisU9T2zDhesuRyjsnp90ZDwPmiRw9UrnnKsA/hHUIs8QGDaf0hya/fONskkFlR8F4g3aIfpt7PRfppEIZE1pvmiIRZMVKgCYGp0kSUBUCG9ikSQB2chYlJwVi7IA8O6KxRCh30QpH4pFJgKklwOnHwVyw+7nsPb428FCLIarVqiVjEWfzVcuo61Ps/jJfY/gRTduxtrzV+Cxj90EaXCrVSQbTgLZasaioxWqImkWsonqxKal3Sn7RXWVhsgmbd9flJB4jVisKVN7OjSr1/GpDFYstbfoB+agWGwWJA1elBHymWtk5GbyEgDCg1icPqFde4kePLRjP9ZdsBId6afRuXwGoNW1CBDUIwGsCjS7v/2iEcWiQRpSBAVFVcBQVvtOAgTEebBmb9QKFXAmTFVCBcuyEHkXxaJuhepFLDZy7HhZt0J10Gy47ROgEYtJNokkm8RUuVpfeBKLdD2xOPK9EbRd3YZlf7esKSL40T88ig1Xb8CSFUvwtV98De998L22lqoNWaHKHBRZIxafKTAUi0SYsORxpru0WmRmagbt3e2O63NOk8Mc0BHuACdzKIjNT74Wef8Zi4aytFiw73s5Yc+2PehZ2oPeZfa5wHPFI8OPIMkm8YJVL7B8bwMECHBu0fC3cc2aNfjUpz6Fxx57DBs3brRkkAHAe97znpYNLkCAhUQybLUhnSsSutXASIbDnb87jG9uOYld//IXlfczJRFRlrLkBNYSdTRJQJSUCrlFAJgtiTC3xAiKgeJhhWrOH+RFq2JxPFctCHOchDBDwo5XlPUcR5IkK4pFtyzGAi8hFWFAktU8yeli8w2dZA2xGAvRyPNVNajg0wrVQIhU8f/+9R9x38/+D+yXv4OLr75Zszaq2Yyoh43LIXdiEdCOR44TEWEpTbFYY4V6aqoEkgA6w8Cgftjv3TuK8RyPF6/rQyqyiOzGTDDyFKGqIGQBNEmgyFczFgFgdnrSSixGTLYyFAGu7E0spqIsuhMh7Dg1A0VRQXoQ3G6gCELL2GjQCrWYz3ksWYWiKNi3axte/Ko3ei57eCyPpekIutv8ZT56oVAoAoigzDVW8D9TENQiAVqK39wOXPpKYMV19e8ZqjLASjL6hTxHa2eHmfkLCoICZM5KchQnAVQnSsggNZtvRytUyVuxaEwEkQXNHpeuVyxKej0TpvS6hvZQ+pczWoZhakD7e3QP0L/BfR0vmDMWKcbGCtXnOS9nIFMRfPALP8KXfvBH/Ped78Ob/uovQITioNWa8x5OAUDFUcLRChUA2pZYVJBOisVcqB+b7yrgh18f8DfexQCDWKxBT2cKADA+PetBLDbWzJszSAqcwDesWOQlBaBdrIUBYELP5Er0Y8uOH+JFN14x19E2jEyuiOUAsg02H58pCGqRAPMBQRYqpNFct+MXFYtQQ7FYo7IjCXJBFIshl8lCBrHoRPopqgKGZSCK3opFs3LOjlj0ylg0rC5JgvRWLHoQi4dmDqE31lvn/mNkKDoRKIYVqpnYAgBV1rZTa2/rBkVR8N0vfhf3fPke3Pbx2/DXb/1rEARRIZpr4ccK1UzSKoqC7t5njsLMTIjnhBz6oPV82js1MtErZ7FRK9R0WCMsJ0oTHks6oxnFYjHXILH4+J55s0EtikU8OfEkblx6I5bFl1neKxW18yHwi+CZKUCAZyEaJha//e1vI5VKYdeuXdi1a5flPYIgggI6wNMW8TBjydybK4zMvdGsVnAJcn1RFgvRmDXZeRrKPgM0ReqKRa1ADDEksmURXaZnDZIJQZC0wvFnTw7jZZctrfscs5qPkxSLInEyX/38bFnLRbRTLGamp4DUGrS1d1aIxUjIRbHIy2BpSrNCnaNikSCAdMxaCMVDdIXcApxJ1VrIigq5nMeDX/oEJo7twT/e+RVcd/MLwel2n5JiTy6TuqWmkxUqoJ2/Ii9DlhVIkoiOPiuxODhVRE8yDJauHodvPXwS5/fEsborsWjtQUpCVbEIqEhFmQrZ2N6pPSTMTk9iYNWayjoRXfkqKyoYigTvg1gEgP5UBKPZMkqiXLlumgEBFYosAx6zPQ3EdCvUYgNWqKdPHEF2dgbrNl/jupyiavmK167pQDrqr6D3QqFQABDxRdg+ExHUIgFail3fBZ68B/i4nnHziTbNEvNfJpsjE81oYNa7/fqL4CG5NmMRAPITQLhKLCqgQBMK4JTpI4s6kWisYBCLpnuu2QqVz2tqRNJ6Tx6b1M5HV4IBFPjIWJzRiMVEn7Yfo3t87LAHyqYsJIoFVBkUCVQc2X02X/NTo3jNPdO47+if8bV/eRfe9Ff65DMmCqI2U0tvKhkZi0U3YjHRq6k0dTgpFkEQ2DmiaBafTxdIHAS13gq1t1NXLE5nXFefkxVqMyBo8ILkW7FoEIucpOo2yi6KxfEDQDiFM3kCJ8+M4aYrLm3BgBtDVrdJy+Ybs0t7piCoRQIsZtRmEbouq9caBnlXS2aRBNkQUeUXdRmLbopFh4xFAwqhgAkxrlaotZavQHWfgep+8x5OGlPjmrIwkUpUFYsOWcVuVqgqVBzLHMNl3ZdhsjRpeW9JfAkAIOngKmCnWAQA6LWIXyKY53j8+/v/HQ/99iG844534BVveUXlPZqgIar12yFAIBwNuyoWSYIEQzIQZEGzQu155ikWASDLV21PDcXi7KT7s0OjisX2sFanTZYnEaaai84RBREs668PwYZYMCGmISvUfCaP4weO4+VvenlT4/PC46OPQ1EV3LrqVsRNk+cAoFQKiMUAAc4lGu7aDg4Ozsc4AiwCXPDR3+Nzr1yHl6xfcq6Hck4QYynQJFl5hC8JMubiTGmQIqMZ58IhztLIc9VijaWtBSlNEhBlpdLLizAU8pwEJVRt3FFsuEIc7h+293PnTaQmJ8oWZeaMidjUrFBJW2JxdmoCSAHxRAJ5TgRDuWcxFnkJDEWCIAgwFAGWIi0kqh1qZ+oZSIaZujzHWMh67PxmLE5Oz2Ls+x8ELRTxH9/5CS7deBUAIESTIACIDj0cQle+uSkWY6xGdhZLJUBFnRXq4FQRAx1RMGXNbvPULI+Dozm8evMypGOLU60IoErg6jMW22MsSoIMWVGrisUp6ww6QieUs2VRIxZ9WKECwJJUGMfG8yjxEuIhGlNTU5jOZCHLKwH4typWjYdfnzYZzVih7t2xDTTN4GKPfMWzs2WURRmXL0u3LF8xSZQBFUjQTea+Pc0R1CLPYMyeBuLdFmJkQVA7I1sWgOK0VbEoNtE8FzzWUVX33LbFYBNLknrGYo1i0dTbkAkKgOpMhCq6FapBCClyvc2pxQo1r5OB1t/wkclpoAvojDFAHt7XSXlWy2qkwxrhNnlEIz/JJh0qFFlTUxrQm6BhmjApFr2beeVyGdf94w9xaqKEe7/6T3j+c6+vvsnaZB5GUgA029lwiHVXLMa6LUpOR2Lx6QiJh2SjWOxMJ0GSZIV4dkKzVqhbntiHA8dP4+2vfAEYpoHHZ4oGJ4gI+yQWwyEWLEODExVrrqkdxvYBiT5s2aPdD2/YHOQrLjSCWiTAYkYjdp4GaehGLM6LYlGsyVh0IeE8FYvQFYtuGYu6Pb1hW0oRlCVLkiAI0CTteewmxyaBXiDVkYIgCaBICkStR7exT7TzPhnWlt2RbkyXpx2Xs0OFWKypEw3Fop/zJYkS3v/q9+PEwRP45Dc/iRv+8gbL+5RDzjUARGIR14xFQFMt8jIPVVGfWVaootbrAQGLPWkoHEIsEcPM5Izzymg8YzHJJkGAwCw3iwgX0ex+G5yr3IhiEQBi8VhDVqj7duyDqqrzolhUVAWPDD+CC9MXYm1nUOsECLDY0NBT9fbt2/GRj3wEH/rQh3DffffN15gCnCPwkoJ/++2hcz2Mc4YYS4OmCDw5lMHgVBFjubnZJdEUgQhD1W1HNJF88TCNHFed/VermKRIAqKsVhSLEYZCUZAsTvc0G4aiF5SSbE8yGDahKjTlpJlYnC0KFUIvV5YQou2JxelJgzgikOckLYuxphlayGVw+tghiLICXlIQNhGltZmIdjhxWLN1KhWsBGlbhAFbY1MbD9FVJR207Eg/KCOE+Nrn4Y3//v0KqQhoDxJhhoKk2v8sqgQFiqbBuRCLxpgKuuqto6fqL8+JMsZzHFZ1xkDpMxq3nsqhvy2MC3sToJttci4ADNKW0K8Tg1iUZAXReAIMG8Ls9FTdekldtctQBDjfxGIURUHGSEZbfuj0KZw+cgD/9KaX4uSRg/4HbVjRUf6IPIYNgaaZhqxQ9+7chgsuvQzhiPsMhKPjeVAkgavPa90DVTehEaBx5tlHLAa1yDMcX14HfG3TuR6FBlUBSu7NAU+Ic7QIXBTEIq1nLJrusyXrb75sTPwQHX7rZRsrVEdiUdSIRZqtIwCHx7XzUclYZOp/f4cnZ7Hn6JD2B5fRMgdJSrNDzQ4Bgr8JJMNTNveDcsZK9ujEYoQGpAYyFiORCN54TR+2fmg9nn/d5dY37SzwdGIRAGKRsHPGIgAkeixktZMV6tMSsgBBIerIeIqi0JlOYnzag1hsUrH4jR/+Drd96uvY/Mr3Yse+o77XUwkKsqz4tkIFNNViWZC1fFa3jMXxg0C8C1ueOopL1ixHZ7rN92cEmDuCWiTAfEH2m83sgUasUA0VoEGy1RJ8FEHNC7FYq1j0Y4XqNA4VKhjGg1hUqhamxjZrCUGWZL2JxVFNXRiJRTTFIkHXOQ+NDY0BgC+FWV+sr+614weOAwBGT4zarhPWJxDV2rYaxKKxr26gGRq3vOIWfPmnX64jFQFNseiESCTiaoUKaApUURGh4hlGLEqlSklcmxOa7kx7WqE2qlikSArJUBIqVEyPTuP2W2/H3sf3NrQNQRB8ZywCWs5iI1aoex7fg66+LvQN1F/Lc8XR2aOYKk/huQPPRVe0waz7AAECzDt8d7J/+tOf4tprr8WXv/xl3H333XjRi16Ez3/+8/M5tgABFhTREGXJHsyWmyueDYvIs7NltEUYTBeshal5u8kwjYKJWKwllxiKtCoWWQpFXoLZVZVkw1AkbZuigwWZQSwqigpVhWU/MyVRy3KBplhkaQqkjXpixqRIy5VFhGsISFVVIUsS8tlMReEWoqvvG5mIko0lbGWcvFZkiTUZOIkwDbqGWEyEaZQECare4OM8rFB//7P/w/2//RlynIS2q/8GfctW1C0TZkg4cLNQCRLhSNRVsRgP0ygKEgpFbRmzYvH0dAkqgA3LUpUMy7NZARuXt6M70ZylxUKhajmrHeuuRAglXoKoqCAIAumOTsxOT9atZ+RiMhTh2wq1L6Udi6Pj1dl/kXgcXLmEv/+bW/DtL93pS/2o6sSi6jLT0gyCIBCNJ1Aq+rNCVVUVe3duw7rNV3sue3gsh6WpCHqSi/s8Px0Q1CLPEuTHz/UIqmhwBnkdvBSLXpDmNsmpJSAoq2KRpDUloIn0UI3mkxMRqohW29PazEUAoPRtiBwgFDQr1BprsZFJ7XxQiv45NopFjhcxm9OPezmjKRZJCkivBHKjVhWqCwplm6ZsqeZ6MIhFxpTR7GIX96Mf/Qjf/OY3AQDvv6kDlwx01BOsrM1klXCVNIpHXYhFggSSVkv8Z5ZikavLwjbQ05HC+FTGdfVmFYsAcP6KJaBIEle96v14753fRMGjoQpUaxC/VqiATiyKsqasdVIscjkgdxaIduGhHQdx0+aFt0F9NiOoRQLMJ+wy7ZpBI0RgrWIxXJNfTBJkywhPM2pJmZCLvblBBjrZlCqEt2KxNkuSIuuzERmS8bSRnRqrTq4SFAEUQVVUkAYM8qj2WNYiHUqjPVJvSV7Ma/2EcsH+XmPsQy2BXFEs2liYGtj252348V0/BgC89PUvxQXrLrBdzinfEQDCMXcrVMBqbfuMIhbFEghVu26KkrU3lO5Me1qhNqpYBLTrBNDI4EQqgdtfeTv+847/RCHrr3fRqGIxGo82ZIW6e9tubLhqw7xE+zxy9hF0hDtw88DNjpbDAQIEOHfw/a38zGc+g7e//e3IZrOYnZ3Fpz/9adx5553zObYAAeYdglQt3MOMtbCUnRgmDxyf0G7u2bKIVJSpU+nlTMRiIsxYcgJr78MUSUCUFBiT4KMsrVtQWq1QVUEr6gwipxbGfhpqSbMyMls2EYu8BJayVyxmpics64QYCubFNLJHG2hB3yfWZJUaC1EochLEJo5rPETXKRY1YlGGqpOqvEOnSZZl3PX5T+ELH3s/juzbXSF2Yzb5kGGGguzws6iCQDgSc81YTIRolAUZxUIRBEkilqg2Ak9NF8FQBNYtTVVei7EkLl2SqLPAXWwoCbI2l1NvInfFQyiYSOJ0R5c9sRjRrke6ASvU3mQYBDQyzkAoEsMXf3AfXv+uD+Bn3/0G3vHy5+Kp7Y+6bqdCLPq0QgU0O9RSwZ+SZejkMWSmp7BukzuxqKgqjo4XsLo73rJ8xWczglokwIJjzorFORKLc81obAUMxaJBJDJRzQ7U1GSsEIvf/Utg53fqt1EhFs1WqDX3vkrGYlk7bkx9M254XCP2aEXQlq9pQqqqaqmRwGUBKqxZqrav1MYxMQd3jhqlJmizYlF/Ta4nFlVVxac+9Sm8+tWvxvbt2zWnCC6rWZbWKgLs7F3NxGIsgqJTUyrWBYQSlpf6O59BSjaJh6iYriMTejpT85qxuLS3E4//+Iv4jw++BXf95D5ccus7ce9DT7iuo+g1ZSOKxbZEDGVe0hWLDgSDfg1PSDEcHxrBjecgX/HZjKAWCTCf8KM0azUMEtKJWKQICpIiQXXLfW0CdRmLLlaolfxDvS7K17gPqITqTSyq2v3Z6PnQBF2vWKRYT7XnxEi1LyLIgi1BKeuTnr0Ui32xvoqtaTOoPScGsSg51CI/ufsn+MhbP4L9O/dDccrF1uFqhRqNeBOLpvP5TMpYLIpFi2LRPBlgPhSLQDVnkaIpfOaHn8F7/+29eODXD+CNz30jtty7xTFSCNCuRUXWMkj9Ipbwb4VayBVw/MBxrL+q9TaoGT6D/VP7cVXfVehP9Ld8+wECBJg7fHezjxw5gg9+8IOgdFu5D3zgA8jn85iYmPBYM0CAxQszqRdhWkPunJrSbsCqCqSjTJ3ysVaxyEnOBR1NEhAVtVIwxkKUrtKrFg4UEwLJa4X1iy61tx4QZCuxSJmaeTlOBK8XvkVet0L1mGmU5ySEacpCQBZyVftSg1gMmfLk4iFNzSe4KBadEAtpNrVmxEO0TlJqx0KwUSyWi0V86r1vxU+/9w38/Yc/jXfd8Sm8eF0fYiEKcZvCKsJQkB3yERQQiES9FYtlUUaxVATNMJYHjJNTBfQmw5YsxbU9EfS2LXCOWBMoChJYPYMSALoSYRR4qXI9pTu6kJmqJxbbooYVKunbCpWhSKRjLE5OFi3XOcOw+Nt3vg/f/MUD6OjuwT++9a/xuY/cjlzGvumv6A+EagOO39FYwrcV6t6d20DRNC7ZsNl1uZFMGSVBxoaBFCJsa/IVn80IapGnGYQS8MRd53oUc0PZvTngCSdrUL9YFFaoumLR6KKwUc2q1JQlaJnEsf0b9duQJav6UJUBgsJvH3wcn73rJ/rn6PdHLqP938YSbWRCVyyqgkbK1aj9iiUOMDfZuKxGPpIUkFquvTa6x2OHXeCgWKRIk2KxJmOR4zi87nWvw8c//nF8+tOfxne+8x0Qe38MzJ7S7V5r7g029q4VYlFVEYuE7BWLA1cDSzYCbNzyMttIJuBih8y7KBbT3laoc1AsAgBNU/jAW/4K+3/zX7ho1QBe/M5P4FXv+wzGHPKUFP2ab0ixGIuiwOtWqE5N/IkDAEHiwaNa/X9joFhcUAS1SID5RKuVgeMlbxeICrGo34+itPU+RBLkvBCexRq7eLPCrRYVhZ6DmtBPxqJfxaKX2tOwQgV0YpGgLEoqRVGgyAogO++T8ZzbFe2qO95zgZNiURIlfOHDX8DXP/V1vPqdr8Yn/usTID2iWFytUKP+rFABgACBeCruuuzTCUWxWLk9l6RS5boCgHRXGjNTrc1YBKrEIgCQJImXvv6l+O4D38XFl1+MT7zrE/joWz9qIbzNEATtO9NQxmIDVqgGSb3h6g2+t+8XW4e3giIpvPS8l86JgA8QIMD8wXfHtVQqIZlMVv5mWRbhcLiSJRbg6YWJHIcVd9yLbz184lwP5ZyiYCIWY6HWNF4Gp6o34HSMRZZzJhbjHp9JUwREWYGiSxZjhmLRVNeTTBiiXizQNkpDwKxY1LZjVv/lOAmcnlVY4CSwNAGyZju1ZFqOE8EyVmVjPpup/Nuwdw2ZlHiaOlO2ZEz6RTJM19mzGseO1BUNdgTt1+78Zzy1/RF86mvfw8tf9zYQBIFrV3fi0y9dixWd9QV8lKVgNwse0IjFUCSKcslZfRJjaSgqwElqXaE+OFXCQHsUyTCDhN5fWtpGI8ou/oZfWZD1c6kdm444C1FWUeS16ybVaa9YTEW04pWlSPDlMhjGXzHbmwxjNFu2zc1ctnI1Pv/fP8f7Pvmf2PrAfXjrrdfjgd/+vG6WnqFkVRuwy4jG476tUPfu2IrzL1mPSCzmutyRMS1f8ZoW5is+mxHUIk8z/P4fgd99EBh8+FyPpHkYJFezEOaYsbhYFIvmvDc2rhOL1RrKUx2uiFXrU6NpSlL4zYNP4P9++1D1c4AqmVujRjTPrKcUXlf7WUm5maxJwaCqelZjRLOECCeBUBIY3+e5y44oTcNSJ5jIz0rGompVCdxxxx34+c9/jh//+Mf4yEc+AmL7fwG/eEd1H2snc9kpFtkEeEnL3I5HIygUbWa7r7wBWPdqeyvVZwokEaJiX6f5skIt8y0hWlcu7cXv7/oUvv+5D+GB7Xtw0YveiW//9A91tUhVsdiYFWqRE3X7YYeaefwAEO/BA3tO46LzlqG7I9XsrgRoAkEtEmA+0Wpicaw45rmM2QqVJEgwpPU3y7BCbbliscbVwY1YNNRzTmpClVBBMZR7xqJ+bA3bUtuMRYq1EEV2qLVCJQnSsp1SoQQVKgiJcLRuNAjfdChdIXRbAv3yqVUj3vOVe3DfT+7DP37+H/GOD7/Dk1QEPIjFWARcyV15Z2RmEgQxLxaZ5woWYlGsIRb9KBY5rqG8QwDojHTWvdbV24V/vetf8alvfQpH9h7Bm573Jvz8v38OWbb+hhjfiUY+sxEr1N3bdqOzpxP9y1urKJQVGY+NPIa1nWuxpn1NS7cdIECA1qGhJ6u7774b8Xh1pokkSfjud7+Lzs7qj9x73vOe1o0uwLxhJKsVAU8MzuAdN5x3jkdz7mAmFtsi1hut5GEN4YSTJmKxIxayfAagEXkGPIlFkoQkq4ZGAFGWgiirEJVqUU8yLCTJvXFZq1g0q/9kRcVUQcDSdBQlQbaoDA1MjA4DFFNZPs/VKxvzuUz13/o+R0xWqIZNqJlYVFXV9QHFIC7bIvUPGbVEMG8iFlV9RuWbb/8w/vqN78TK8y+yLJtwsIyNuijKFJAIRaKuVqjG+ZRIFkD1POc5ETNFAau744iyFNp1R5R2h3EsNhQFGSxNwrjKOuPa+ciUBQAxtHd0Y9fUlrr1DGteVrdCDUUiEEV3axkA6E+FsfPUbN13xwBJknjhX/8trrrxL/D1f/8oPvNPf48//+YneM/HPgtAU3XIogCAaIhYjMWTKPqwQlVVFXt3bMMtL3uV57KHx/NYkgo/LZSpTxcEtcjTCJyuZM+cObfjmAvMeXx2SjIvzJVYlLx/M+cdlYxFQ7EYB7JnrFmCpMf9TDEpFg3VA0GhzJuI0wqxmNH+X2PFNmbKrKEVAQiF6zIYZ3MFVH5thbxGYpqJuralwMygluOoT0wyyCBfLa/ilLb/hgUbVd3vSnmjKx1kWQZFUfjoRz+K173uddi0cSPwwKeBhz8HhFMaaW2jyrS9zkgSz/8/Hq99aT/i0UkUnWy06Ge45bbMQ1Ds97G3K40xj2ZeieMRjYQhiHMngAiCwN/e+hy84LqN+MBn78bbPvpl3POrB/CtT/0DztfdaBU9gynE+K/32hI6sagqlhxTC8b2AfEebHnqKJ5z1YY57kmAZhDUIgHmC63IWDSrC50yCc0wyDqKpBCiQnXZeiRBWsiTVqkXG7FC9SIWDcWioc6yQ61ikSTIOsLLjdwEUGf/aWeFauTeuRGLQ/khAEAqnAJQb2naLCqKRd09wfj7b97xN9h842as3bTW97bciMVwNIzsbNbxfcD7WD5dURSLIBQCKlQUxWLFYhcA2rvakZ3OVmpAO/BlHqFwyJUEr0U6nHZ87/oXXI/LrrkMd332Lnz141/Fn3/5Z3zwsx/EqgtXAQAErknFok8r1D2P78G6q9a1nDzeN7UPOSGHW5bfgo5wMEk7QIDFCt/E4sDAAO66y2pn1dvbi3vuuafyN0EQQQEdYE74xK8P4LKBFF66YcmCfJ5FsVijHCsLzRXMJyerN+C2CFPXE7AoFsP+FIvG84VhpVg0KbkoJgRRyLhuR5StisVaW9HRXBmrhThUwDbvb2LkLCKrNgEATuZU5HkRPcmwRdmoKRa1/TEUi2HWrFikURJlCKax33333ch1rAOw0nbc/W1hvOHq5VjdXa8KqyVlDSvU4acewqF7v4PXXPpLdPf0orO713bbdnBTDyogEI3EwLlZoRrEImElFk9Paw9NG5enLQUXvYDZiqqqYmToFJYstz/WbijwmhWq0XXtiGmN0FxZ28d0Zycy05NQVdWyfxf1JXDlynZ0xFmNWAxHLJa5TliajuLPhyYwU3R/EG7v6sZH//NbeN6L/xpf/fQdePtLb8QL3/1vAHk+IAkg6MaI21g8gYmxYc/lzp46gZmpCc98RVVVcXQsjytXtiMdfXqQyIsdQS0SwBOV36AWNGiMHLy5YM4Zi4uAWCRJK4nIxjXC1PQaQXn8xsmSdm4IokoskhTKnGn/KP0ezOuW1DXE4pDJekxTLLbV2YjOZPKoVJBl/dyZsxrTK4DTWzUlo/76/9zzP3h1SoQNxVeP4jQQipmIxWqTRgU0olOWcN999+F973sf/vSnP2Hp0qXobG/X1Ls77gYufLF2XZx4wLJ+BXaKRQDbzip4ZWIpYpGcJ4G2mHH89AhWNzOrXVUBWXBRLKaRK5TA8YJjpmGJ4xANh5DJtU5Z1pFO4rv//n687iXPwd99/KtY99Lb8F//8Hy8OQ7IauMZi8l4FIWci2JRVYGJQ8h3rMeRUyP45Hte36pdCeATQS0SYD7RCsWi2S6Uk73z3MyKRZZk6xR0FEFBVmWs7ViL/VP78dTEU3je8ufNeZyNWKH6USwyLINi1vlZ3dhP43mVIusViyG7CT8mTAxb7SYFWagj4HIZrY4hZGdicYbT7DITrDYTZXhwGGhDQ2STHQwiUVAEnNl9Blv+Ywte+j8vxfnnn98QqQigjmA2w48VqtexPJcYPjWMJSua6zmWpFLlMaMoFuusUBVFQXYmi/audtv1uTKHcCSMQgO1iNkK1Q7xZBzv+7f34eaX3Yz//Kf/xDte+A68+p2vxhve84amFYvFvDexWCqUcHTfUbzwVS/0vW2/eGT4EfTH+nH90uufUYrXAAGeafDd1T516hQGBwdd/zt58uR8jjXAswDf3XoKt/9wd8W6c75RMKkHmRqSpyw2XtSrqorhTLXAsiMTco1YoZIEJEWFrLOTUcYgFk2KRZqtWKE6oWqFqv2frbG+GMtwyBtkoB2xODpcncqvVokmixWqSbFoELZhc8ZimIasqBbF5vCwO4lDEARuWNOFPhu1V+2x40UFn/nMZ/DE3R9Fom8lwtHGlSUxV8UigVAk4pqxGAtp60s1sy3PzJYQoklc1JdoeEytwqN/uhdvufU6TE9652zUoshLYEz2uR26YtHIKE13dEEUhbp8wkSYwVuuXYn+VAScTiz6QV+b1uw9Ouav2L76Obfg7l8/jBe84m/x67v+A5g5rTW9vRrdOoZny8hzIqKxOEo+bKz27tgGkqJwyeVXuC43kuVQFGSsW5Z6WljePh0Q1CIBPGE0MUw2nU1DLGvqMy81nus2WkAsNumg0DIQlG6FaigWY4DEgZCqzUrPiRyKVCUBjZndBImyOfPOaMwZZG6Ncu/0SPX+RSuCbiNqvW/Pmps0ho2tOZOlfZX2evZs5aWhoSH3sZtRnAAY02SnWoUgQeKrv3kKL3rRi7B69Wq0tbVpmYs/fzuw8zvAJa8A1txSVVraNVFJGrKLSiAejaDgYT+2WPHnrU9hzfPfhmOnvCfx1EG3BRZVZytUABh3IV1LZR7RyPw0Om++5jLs+/XX8d43vgx3/+Q+AICgN3gbzVjMl0VnG9TcCMDnsHtUe54I8hUXHkEtEmA+0Qo1oJl84yTv+4WgCCCg2VWyFFtHhpGklrG4qk1TQN0/dL8jwdcIGrFCJQiNpHPKP1SggGZpf1aoRsYiUZ+x6KaaBIDxYeuztKAIdQRc3rBll+BILBowCFODxJEcHHv8wiAW//zTP+MnH/wJwh1hJNNJj7XsMVcr1MWqWDy0+xBed8PrcGTvkabWL4klEPokJ07mLN+x9k6NAHSzQ+XLPEIN1iKGYtFL2Xrp5kvxrd9/C69/z+vx42/9GG97wdsqY2lEsRhPxFHKez/D7N+5H4qsYP1V631v2w8mShM4OnsU1y65Fn2xvpZuO0CAAK3FwsllAgRoAIZ157X//gDO++ff1WWWtApmxSJTQ7Y1o1icKVoL7FS0/uadKVWXoUgCERvrUWMKlGHNyetqPEOxWK4lFl3sJSVZgeGcWiEWaetnjmTLplzE+vGMj561/F3gNStUc+6hOWOxyEsI06SFjDKIwGkPFZpfRFiqynVKIv78jY/jn//5n3HhC9+My9/0cd8klhlRF6JXUQmEIjFbK9Qt9/0Ku7ZuqdizSjVF9HRRQFuEQayBjJ1WY/uWP0GRZZw+3ngBXeIlSy5nMsyAJgkUBO2aSXV0AYBtziJFEiAJAny5jHCDxOLh8ZzHklVEY3Hc9uFP430f+jBO33UbYvy0L8WiJCv47B8O40c7ziAaT6BU9LZC3btzG86/eB2iMfcQ+qNjeZAEcG2QrxggwMLBIHocGk8NgbdRvDUK0X02tyck3plg8INW1E9Gw8yYkc1qxBrFV5smnopFc8aiQZSSFEpmYpEkNcLNIBZZq1uBRbGo8hqxWKtYNGcsGpaq5szB9HLt/6O73cfrhNKUdVym+72sqLjt3hLec/ejeO9734tf/vKXSIQo4AevAQ7+Sss/XP08IN4N8DoB6mBdKhPOxzMeDdtaof72wcfxyz9vbW6/msWlfwMsv9ZRZVmL3z70BABg75HBxj9LtwUWZQdisTMFABifzjhuosTxiIbnT0ERjYTx7x94M+583xsBVGv+RhSLbYkYciUBgKqR0rWYOAgA+OPBDM5fsQS9DoqIAAECPD3RCitU3pTPzMu8Zy9FUiSN4FI1Mogi6hWLkipVSI2zhbO4f+j+OY+zLFlrJFtSz/Q4SBO0K7HIMP6sUA2Vol3GopfKzkwsqlChqEodAZfPaLUIIRF1x3K+oUgKxn48hm999FtY+4K1uOKjVyDe5v7M6gTGpRaJRCN1trAA8ORjT+LPv/wzgMWrWNx+/3YAwIlDJ5pavyyVLcYoWb7qbpLu1AjA2UlnYpErcw0TiyEqBELwp9pjQyze+N434rP/81mcOXmmQqA2QixGE1EUC0XP34492/cg3ZXGslXLfG/bDx4dfhRhKoxbV926aAnqAAECaAgkFAEWNQz133CmjKXpJrKNPGAhFmvsQUtNEIuDU1Y1WyJMgyQAUyQiMiWxbhkndaRBdvK6faihejKsUElCUwmIgjNZJ5gyDSV9ICxd3dcwQ2IixyPPifrfWvGrqipEgQcbCmNidBgUpantFACcqNQRkPlsBtDv+XlOQoihLIpGg3SbLVb3309ouBNIgkCEpVASZAjjxzGy8wHcc8/38fPcisp+Ngp7kleDpliM2ioWP/2BvwMA/HH/KCiCgFzzUDSjE4uhBbQ+NUNVVezaqmUgDp08hsuvvqGh9YuCDIYmK49dJEkgHWVR5LXrNm0iFpetXG27DZ4rg23rxLL3/RSjBRluc9qiLI1EmMaJicatytKd3QAAWRK8G90A9g1nURJklEQZHbEESh4Zi6qqYs+OrXjei/7Kc9uHx/PoT0XQPw+/XQECBHCAYZ9p15BvFAbBRZ9DYlEWAVVGNpdFWyO3kEpeYQssM43Z9kZOE6s1qKjyTHURr4d+c8aiYfNG0FYrVEAbN5/XLFN1Qtewtjw9PFEhaAhAI/UIF2LRUCyypoZaok9bZ3RP5aWNXSJCNAFFEr1nXBZriEWS0UejYryo4n928/jmO67BO/7zPzVi8/9epZGYG/4WGLgKiKS09YzsTYdrSyJDYBX7aycWDaNg08y79V2fBACoh3/ntRetw1rve6EZf3zsSQDA4cGzHkvaQFcEOCsWtWbe+FTGcROl8vwSiwY6UkkgA0i6oqEhxWI8inyZBxCyt0Ie3w/QYfz8iSHcdMVlrRlwgAABFg2ciLNGUEssyqrsqj4TFREUSWFt51rkxTwitHWyCEloisU/3vdHoB1Iskn84NAPcFX/VXMaZx2xaFNLEA8ROHrPUSz54xLQpAuxSPhQLCqylqtoEIskVacodCLDBE4AG2YxPjxeIWhkaPVMrWKxYoXqkrFYC0M5KctzVKyKwMyDM3jVB1+FpS9aisMzh5velJsVajgatiUWP/CaDwAAbn7ZzYuWWNz5yE4AwNDxBhwrTChJJUABVEkFQRNWYrFLJxbdFIscj3Ck8WcLukxDgn9Fq2HFanwnWLYBYjEehSzJEHgBIZe6aff23dhw1YaWWpUKsoDto9txWfdlWNnWeIxPgAABFhaBYjHA0wJyk0SRF4omYpGmrF+HQhM2FLXEIkkQSIStzQRzxiKgEYtOMLIQDeIxzGjkTlnSjgdlEIui81jNtrLGv82KxXiIxnRRQEYfl2G3+tsffQ8vunwFuHIJEyNnEUtoxKLBU4Zpa/FQMCkW85xYp2hM2CgW43Gt2edGjLqBLk5BVRWEllyEl37m53j1a17T1HYMRD2sUNmwuxUqQRC225gtCkhFGYs17ELi1PHDmJ4YA0lRODN4vOH1izWKRQBoj7MoCRJkRbUQi07guBLoRCdINoyJovcDU28yjLOzzTfkRUEA4aAEMWP7Sa0xLisqwtE4ivm868y8kaFTmJ4Yw7rN3vmKR8byWN0VD/IVAwRYSFAtVCwaire5EIs+LMhcIfOAIqNso1CzQJGBr20GhBpVfWF87iSroQo0SA4bxSLp9Xsrm6xQKxmLJMp8LbFIacQiHQFIGj+971FE1r8MY5MzOD0ygSXdJgU4FdJUjibMZm2sUC1EIA0k+4Cpo5VxbOrWjs/U6Bn3fQCA8oxVnUcQOJMnIMoq+hMkBj/YjXc8bzVQmAC++0KNBLr8DcCKa6ukIlC16qbtmzUy6dzEiUcjKBSfflaoZ0YncejEGVAUicMnfRzrWujEtuCQsdjV3gaCIDA+7WKFys2fFaodDCvUcAOOFcl4tOqaYkcsju2HGOnGwVNjuHFzY3lZAQIEWPyoJduagWi67xvEotfyNEFjQ/cGvHjViyu5fwZIgoSsytizR5uUs7ZzLXZP7sap3Kk5jdO8rwQIe2JRIcAP8+iMdGrEokNNo0ABzdCQBOe+iKTqykz9NmKnWLQbw+5tu/H885+P08dOY3x4HN393ZXPBFCXSVnIFjRFm+hthWqA1ieQF6abywCeHp+u/Pv8/zgfz339c+dM9ngqFotl1+fmxUgs5jN5HN59GCRF4syJJmoRVBWLalHb96JU7Q+FI2FEYhFvK9QmJjlRXHO9JEGvtdlwY1aoAFDMOfe+ysUyjuw90nIb1KcmnkJZKuMvV/4lUuFUS7cdIECA1iMgFp9FaMba8+mGI2PaTPWpgjNR9V8PHcfBUW1WUd6U91dLnBRdilIn1BKLAJCKWAuyTA2xmAw7F2yGlSgnGnkABMIMhbI+NIrQ7Mck0Xl/ecldsZgIM8iURGR0G1fDbvXhP/wGgDZrbnzkDGJx7QFD1LcRYmosP0wZizkXxaL53CSTmt9/btoagu4Hu7ZuwcGvvxP5Hb8CAJDRNsyVf45YSEFrIa6CABOO21qhmhEN2RCLJRHpKHvOFIu7HtsCNhTGpmtvaohYnJ2ewODRgygJcoXkNtAZZ1ESZEiygniyDQzDYnbKmVjky2WwEa256+cZp68tjPEc75Ei4AyB5zwVi2VBxp6zGW18koxIPA5JEl2J7j07toIkSay9/ErXbY/lOBR4CeuDfMUAARYWBlHTSsWiT5tHW0gc0PQvGTRiwY8t2pHfa2TZ7z5Y/95ccx6NGetuxCLTgGLRIBYJCqVawpTQFYt0GCAp3LtFs86czRUwNDqJfjOxSDM2ikVTQ66c0bZTS3qmBoDsGe1zACQZ7fgOT2a04bmdrtIMQFdV6I/uOoDLv5HFpx/W7hudcVbb1z9+VMtxvPwNwLKrgFBNxvKV7wQuegmQXGL7Me7Eor0V6mLHHx97EiRJ4tbnXInDJ/0rFgeHJ7D76FAlY1FyIBZpmkJnOuluhbpAikUDxqNXiPFPLLbFYxCNr7xi8ywyvh9DRW17N14R5CsGCPBMQ23uYDOoUyx65DZKiqSp90CCscmVpgjKQk5ekL4ALMXi94O/n9M4zcRie7jdM9+QJmlIqn2PRiVUT8WipEgWxSJJkHXkW8hmws9TW58CAIyPjGNieAKdvZ0AqorFWmIxl8lh9P9GETkRsT2edjDUZNnJrMeS9Ti67yje+eJ3AtAyFumEMwHbCNwUi5FYBIqsuB7vCknbOjHbnPHkY09CURRcd8t1GDrhX7E4fHIYp4+chqqq2nWrAChrhHhRsPYA27vaMTM5Y78haFaozSgWo5NRiINiHRnuBcMemGnAPSGa0GrdYsGZWNy/az9kScaGqzY0NB4vPDXxFJbGl2Jz7+aWbjdAgADzg4BYfJbg9/tGcdHH7sPDR50b/4sZE3l/ijaDKKzNOjSQ40R89r4j+O9HT+nLOxdChs1jIzgxWUBbDZHYVqNWytUQi7XLm0HrxBwvVpuKUZYCrysWSZ1YdCvozIpFY5u0aYZ/W5hGtixitiSAJDRVJAAUdUtIVVEwNTGGaIVY1NZjaxSL+Wy1CM5zIkIUCROviBBNgiIJzJqsYJslFke2/Qr//M7Xon3lWsTXPx+AkSU5N2bRbIXK2zhF05E4OBfFIgDEakgkSVZQ4CV0JUJ1qtiFws7HHsKlG6/C6gsvbYhYFAUexXwOJUG25GUCQFc8hCIvQVRUEASBVEeXO7HIlUFHYo7v12JpOoLpIg+1yduUKAhgI+55Ek+emYWkqLikPwleVBCOatd40cUOde/ObTjvorWIJZKu2z4ylgcR5CsGCLDwMBpCknPGjm8Yijd6LsSiT2LQCboVqieMz7C7D9aqGBsFUaNYpLRsQ8pk/UQxLmSNIgNQq4pFoylI2CgWKVpblgkDBIVsQRt7PBqxUSyG62aqzObMVqhZgInWkY9gE5r6TVeThknt+I5Ma9Zlkupw35H1dfTMxnt25fG8N30YF/eweM+VevOMJLUMydI0kFwK9G+wZjwaCCeBDa8Fkv22HyW5EIuxSBi8ILq6VSxG/OHRXdh86Rpcc9lFOHzyrO/89GKZR7ZQ9lQsAkBPRwpjLrlG506x6F8lkIxHUUlIqFUsyiIwfRy7znJYPdCHJT2dLRppgAAB/CAn+M9/bxatUCyaiUVRER3JOAOCIliUfLUwrFCNeVIMxbSk6c+ZXB0IggDjMSmUIihIsv2+KFDAsN4Zi+bMQ7v8Qztys5jXnv/jiTjGh8fR1ae59ciEboVaYzNbyBZQPlFGu9TuW7Fo2Kvmphu7xmZ3zuL2v769Qnaq+n3H65z7gZt9bjiqEWN2dqgGDMUiQS8eZnHHlh0YWD2ATTdswsjQSEXN54VSoQSuyEFQBC0HVQWgarbAJclaZ6c7067EIl/mG85YBIC20TbgMSDONJaZKeixA41kLMbiWt+mlHd+htizfQ/SnWkMrB5oaDxukBUZxzPHcX76fHRGghonQICnA3zd5XK5nO//AixOHNaVfE8NtSBr5xygUbVl1oEwPDiiXaOi7udpVizWf2bjxdjJySLaY9YbdnvU+neuZmy1xKMZhkqMk6r7HwvR4PX+IUUQICgaouhcEPE1xCJDkZY+XFuERY4TkS1LCDNUhfwq5rVjNT0xBkWWEY9rRIqheozUZSxWr608J4GlCYtikSAIxFgKmVJ1rAmdnMlOV0PQ3SDLMmb+/C0c+8WX8ZJXvwk3vvtzIENaw06U1bkTiybFIqcydU0vMhwDVy5DUZybxIYy04ChUO1rm4OVng0O730SJ48c9FyO58rYt2s7Nl17EwbOW4Op8VGUit4WK6ViobL/nCiDIa0PBF2JMIq8plgEgHRHp6sVKs+VQYf8E4v9qQgUFRBDbb7XMUMQeNBh92zD7SemMdAexQW9CfCSglBUt/xwIBZVVcXeHduwfvM1np9/ZCyP/rYI+tNzICQCWBDUIgF8wbBdUlpALJZnNGJqDnnAmpXpHIlFD6WBJ4pznFRm7L9BchAEwMZBCVVikWVZZ6WfMWu+oljUjwdpk7FoNPnoMECQyOrNvHyxjGy+iP5es2KxviljVSwa58+fanx4Sq8RVQerKU57X2Wi+OgDHN7wowm89sU34U9vX4KOKFkdv7mZ59KUc4OXFSqARaFa3H3oBHbuO+q5nCzL+PO23Xj+tRtx0aplKJTKGJmY9rWeaORN6cSi6EYsdqa9rVAXVLGofSkY2v91kIxHK+vVEYtTxwBFwu/3TQdqxXOEoBZ5dqMVakIv+CUW/2vPf+HS712KglD/XCfU/HZ4KRZFWbTNGzRgWKGacfPAzb7G6faZteSXFwnHkIwjYabAR8aiKls+gyI0laYZdlaoBrHIhllMjk16WqHmso1//0m9B5Ob8r/u5L2TOPnlk7jyOVfiiz/+IgATsWineG8QbsRiRK9FykXn69U4lgQ7v8TiqaOnsG/HPs/lVFXFzkd2YvMNm7F89XIosoKR0yO+PsO4rsp6djqh1yKpcApFqaiRjTrSXWlXK9RmFYuAvcrWC8bYG1EsxhJa36aQd+4b7dm+B+uuWNfSfMUzhTPgZR6XdV+G8FyiKAIECLBg8PWUk0qlfP9YzDlsOECAFsCJMNw/rDXBjOZX3iVHsSTIUBrw1lRVFWdmS7i4L4lB0+u1RGOubP1MN8UiQ1qtUAEtE3E8o/2bJAGZoiGJgqMhAi8ZNqrafjM0AcU00y8ZoVHgJRR5CRRJVHIRiwWtqJ0YHQYARBMJgAd0sSQiNQRaIZetlOVFXgJLU6BqfjeiLI08p+XyUSSBcDgElIHslD9isVwqQi5n0X39q3DbP/8bfrhjCICuMFCUOVuhmi0rOTCVbEsDJKsV0Hy5jEjMniRL1ByXWV09uzTVWoLpu1/9D9AMjU9//fuuy+1/8gkIPIeN194IUZ/BeebkMVxw6WWu681MVs9JSZDB1ti49iRDKPBShWhOd3a5ZyyWy6BC/o9BX5u2rBxKgipN+V7PgMjzYMLOn5ctizg8lsdfb1yKrkRIJxb1mXkOxOLY2SFMjg1j3SZ3YlFVVRwZz+OyZWmko/5nBgZwR1CLBPCFVlqhFiY0tZnP2eZ1IEiNDPGjOHSCXytUN0wdA/rWNb++QfaZVaBsApRYVfCzDA1BBmxjo5VaYtHwc6dR5mscKQwSkA4BJF0hFodGNWeD/q52wODTbJp/lozF0qymfGyYWHQ437ze7GOimCyq+NB1EXz2zveB+N0HAWM3SHLuRDAAmXJupsRj2nvFModUsrFZ663Gnd/8EUYnZ/HI/37OdbldB45jNlvALdddhp6ONADg0Ikznoq7qdlc1UlYV7Y4nh9oisWzY841Q6m8sIpFXlIRDrG+LOANJOPRqhWqVPM7NqFNKPvV7gl85a/m8J0O0DSCWiTAfMMvefng0IMANNvA65deb3nPrFgE4J2xqIi2eYMGKopFEzoiHYjS0Tq1ll80o8ykSRqcaD+pRiEUUDTlTiwqsqcVqhuxODMxA0VW6qxQ7RSLzSI36Z9YlPISOv+yEx/7+sdAViaB6e/NN7EY056zuZLzJCdD/UlQ80ss/vTun+LQ7kP49h+/7brcmZNnMD48jk03bKqo7E4fP40V569wXY/neCj6ZOrK9a7XJulQGmWxDEmRKtdOujPtSlg2q1hsFpWMxQYUi4YVaqlg//3myhwO7zmMv//Y3899gCYcnTkKhmyNIjpAgAALA19P2g8++GDl36dOncIdd9yBN73pTbj66qsBANu2bcP3vvc9fOYzn5mfUQYI0CCcLE73DWd9LQcAJVGukCZ+kCmL4ESlTqGYNhGLiqKiWENmumUsVhSLJivUeIiCUFEsAiJJQxRFOJUJhhUqRRJQZBUMSUIyNfISYRqqCkwVtdeMsq9U0Ari8VEtBycW14lF/bOjbK1iMQNDW1bgJXTEQiBrVG6xEKXZZ8oKKJKqFPI5D8Xi+MgZjJ45jY5lq9H54g+Cnj6pjd1E4omyCnmOzKLZClUlSBRqCGpSz5Uql4qOxGKsJmPRsH5dmnZXzzUKVVVw9tRJz+V2PvYgOrp7sWL1heBKWmE4NHjck1icNhGLnFhPLHYlQhBkBUVeQmc8hHRHF04dO+wwVhU81xixmAzTCDOk5dpvBILAg3FRLD4xOAOSJPDi9f04OpYHJ8qIxDQrVCdicc/OrSAIApdudM9XHM/zyHESLl2arFOwBmgeQS0SwBeMhlCrMhaZKJpODiAZjRh0JZo87lutUCxOH5vb+rUZiwAQSoDOVxVnIZYB70QsGufC2I5OlKqgUCrXEIuUvgwVAkgSOb2hMTSiTVxZ0tMBnNaXZerJt5ms2Qp1VrOxJR0UiDXwUiyOjo5i73EJz78hiW+8OIyjs3pD0tyEJCht/5olo3V4WaECQKF47hWLiqLi6Klhz+X+8OguJONRXLnuQgAaEX345FncfI17LTJqthLTrz9XxWJHCrsOOFu+a4rFhZsBrxGL/hUCANCWMFmh1iqvxw+gTMQwy+Vw4+ZAsXguENQiAeYbjRJuqk0d0ahiUZAFV2KxNmPRwM3Lb8avT/waMca/K42BZolFp32pKBZF5/pPVMQ6xWLtPrsRi+PD2vNxd383UAIIvddRm6OYyzSvWM5OuWcsZmezOLDzAK75i2vQ+6peKCWlSiqitYpFY7+EZQI+9tjHcGXflZV9bsQKdb6hqArODp6FoliPRS12bNkBhmWw/qr1CEfCSKaSOHPijOf2ZyaqtUiFWNRbFB3hDhzNHLUQi+2d7Zh1sWXnuOYVi83AINtpxn9fIhrTMxbz9jFAB3YdgCRKLc9XPDJ7BMsSy9AV7WrpdgMECDB/8PXLcuONN1b+/alPfQpf+MIX8JrXvKby2kte8hJceuml+Na3voU3vvGNrR9lgAANoqCr4mpRSyy65SiWBRlSA/Zl4zmtwZOOWQvLlEmRmOelutI/aduF02BkIfI1VqiqXgBTBACS0vLkHLZhJhZFWQVDkZCEajMqqY9vsibH0rBXnRgdRiKZAs2wABRIipbTGDZZoSqKgkI+WyEWi7yMvjaiTrGYCGuKRUFWEDaReFmXjMWDe3bh4//wRrR39uCfv3KPZVZhwkTKSrLiO6/HCQxFQGvyap9xdraEpcnq+SFYo4B2zllM1BDFsyUBLE0iHW+9cm1seAiyJIFysdjatXULNl5zIwiCQCQWQ1dvv6+cxZnJCQA0FIKCiqp61kBXXHtQyJRFLAe0jMXtj9huSxR4qKoK0qYJ7ASCINCTCOP0THOzYEWBB8U6E5nbTk5jdVcM5/fEMZIpg5eUChHpZIW6d8c2nHfhWsST7vasR/V8xevWBLkArURQiwTwBcM2p2a2flPgMhox1azFD0V7ZyR63bcUce6KxZkT7u/Hu93frygNTc26cBLU7FDlzxDDgJNUtIVsjpXR3DKOo/63bQlmViyaMhZPj0yApil0pZNVYtGmYaURi/rnlLO6YrExYnFUjKGLKUEkqtvfMybj1q/9GqzC4eDbo2DN14Q5E4qktP2zaUw2Aplyvn8ZVqgFl2beQmJiOoNcoYRk3Hkyzx8fewrPu3oDaL12XLNiCQ6f9G7mjU7OoNf4o2KF6qJY7ExjfDrj+H6pzC2oFSonqgg1YD0GAImYSbFY2xge24vBPI2VS7qwrC9oup0LBLVIgPlGqzMWAZ+KRdOk31oYVqi1JOaK5AoAQJRpfAJts8SipxUq70wsSopkIRZtFYsuGYsGsdjV2wWcrFqh0pT1WTyfsX+W9AM3K9ShE0P48Js+DL7M47JrL3M8XwSIlhCLYVKvqUVgy9kt+MXxX4CMkiBmiIasUBcCAi9gamyqYlNrh50P78TaTWsrY1923jIMHR9yXN7AtMm6vWKFqhIAoSl3ixNFy/FOd6aRmck4Ep18mUdoIW3ZeQFsiHWcOGAHhmXAhlhHYnHP43uQTCexfM3yVg0ToiJiMDuI5yx7DlKhVMu2GyBAgPlFw9Npt23bhk2bNtW9vmnTJjzxxBMtGVSAAHNFUZArOYoGSoKEU1PWG2PBxQqVE2WIsn+iaiLPgySAzri1SDBbIebK9YVu0sUK1VAsmnMSzcQVqROLkiTUrlqBsa5B8jEUAVGoPmwYxOZU3r4JOzFyFt39Syt/SwoQZihLfmIxn7OQegVeAkuTdYrFEE1BkBRINcc152CF+uDvfokPvumvsGRgFT5794/qCjOzGkxS1DlboRIEAcr0wHRgxFrYE4w3sRg3xqQf75migESYthCprYIsSRgbdm7MTU2MYfDoIWy69jmV15atXI0zJ/0Qi9o5UXQLvFrFYmdCu86zuiIz3dGF2ekpW3KXK+sFeAPEIjC3XEpREEA7KCTHchyGZkq4ZnUnuuIhJPTvgMpoyzspFvfu2Ip1m672/OzDY3n0JsNYkmqtSjVAFUEtEsARtKFYnHtDBVwOYOZALPpSLHrAi5j0g8xZ9zF4qetIGyvUcBsoU1MwxDLgJYebcCVj0VAsamOxVaSTZsUiVbFCPT0ygWW9XSDNJGFN9ookyRWFo/YBGT2rsTEr1BlJuxcY97/fPPwUrv1OEV0xGlvemgYbTVpXtCgWSZ0InltB4qZYjOsqgYKL/dhC45iLajGbL2Lb7kN4/rWXV167cOVSHB4867ndUfOMf90KVfCwQs3kCuBtrPAkSYYgSgtqhcpJCsJsY43VEMuAMK7z2ozF8YN4fKiEmwK14qJAUIsEmA80ay1qRi2xKHq4OAiKt2JRmeskpxo0rMxUVS1j0YEwU6BUFVkOt+A6YpEkKxaXBrwUi8lUsqLWM6xQGcLaz8lnmycWs5P2isVdj+7CbS+9DQzL4Cs/+0qFHLMDRVCOBGwjEHTVPJEh8I+b/xHvv/z9mLhrAqmZVMUKdbEQiwBw1qWuEHgBu7ftxuYbqxabA6sHMHSiMWKx1gq1I9KBglSwEotdaSiygtysPUk8l4zFZiAKIpgG3RMAIJaMOVqh7tm2B+uvWu+qEG0Up7OnISoiNvVsWvBrJ0CAAM2j4V+BZcuW4a677qp7/e6778ayZctaMqgAAeYKWVEh1BSJh0bzdcSTG7FYFuWGrDXHcxzaYywiNRYDqah2E1dVLdetFq5WqKRhhVptCJrtPymCgEpQkARnYtGsWAQAmiIh8tUCMBaiQQCYLtpvY2J0GN19Syp/i4qKMEPCzBnmsxnLOiVBAkvV/7wYvdla8qk4W5/N95sffhd3fuiduOH5t+I/vvMTpNrr1V9xM7HYAitUAKBRvW7qiUWtGcWVnR/4KmSnTqLNFAW0RRiE6NYVXWYMDznboT65dQsIgsDlV1dzN5atXI0zg962eHXEYs35NAj0gqB9h9o7uyDwnC0px3Pa9UYyjRWIS9PN51IKPAeKtS/YHz85jRBN4sWX9oGmyMp1JBE0GDZkq1gcGx7C+MhZrNvsTiwa+Yqru+IWG+QArUVQiywQPtEG/Oxt53oUjcFoGNU25JsBn9eJxWatUOm5ZyQqLbBCLYwDgvOEGCdUZsITNiRHuA2E6X7JMjQc4q1tMha1/SnZEot6TUQzAEFVCKKh0QkM1Cq0GOs9IpOvyTTic3pWo8vEHhMBPTJV/9v//V8/gJd+4Cu45TwaD99+PpZ0JuszG83KSYKqV5k1AdnFPsywQi2WFxGx6JIl9ODjeyDLCm65zkQsrlrqW7FYQUWx6Ez093Zp+Y3jU/UWZGVOW38hFYtlUWlYsQgAISMj2pyxyGWB/AgeOJLDjVduaM0AA8wJQS0SYD7AS805LhiqRAJEnRVqSXYnK0VZz1h0Uyy2ID/YDL/EopELJ/CCplh0IhYJBSTjXq9JqmTJWKQIqk7haGffaRCLE8MT6F5SVcRViEWTc4EkSq5kmxcKmQKUGtesR//4KP7pDf+ECzdciK/94mvoX97vuo1WnS/KVD/FmBhWplZCOCygnW6vkKucSy2yUFaoBtyIxQO7DoArc9h8g4lYPE8jFr1cr8xWqMZ1S+i1SEe4A4IsWCYEtHe1a+uZaxgdqqqek4zFRvIVDcTiMVvFIs/xOLT7ENZfub4Vw6vg6OxRhKkwLutxt8kPECDA4kLD4U9f/OIX8YpXvAK///3vceWVWs7UE088gWPHjuFnP/tZywcYIECzECVrQXZgJGtR2QFAyVWxqECS/TcDZ0siLuiJ1ym7DKVaiCZtFYu1y5tBEAQYiqiQg4BVpUeRWhagYVtqB4NgNfadoQiIpoxFkiCQCNPIlkXbPLjxkTM478JLKn9LChCnrYrFfC5T+bcCCoqqqRP9YnZqvK6gu+yq6/G2938Uf/OW2xwfcizEoqJZoeayWahzaOKShFqZgXZysgizuFLVZ075UizqljAzRQEdcXZeFIsAMHx6ELje/r2djz2ENRevQ1u6o/LawKo1uPfH93haqE5PTQD9gKwrPZia6zQVYUASqGSGpju0hu/s9CRiCauawyAWQbFAA/3W/lTzxKIoCKDZcN3HqaqK7SdncHFfEgMdWh6IoVgsCTJi8bgtsbh3xzY9X/Eq18+dLPDIlkWsXdpmuT4DtBZBLbKAOPTr1m1r8gjw/64A3vQ7YMW1rduuHVpCLOaA1DKrUq8RUIZicQ7EotyEFSqXBf708erfxUlAbFwBod17VYgqAQaoyVi0/s67Kxb1X+Iagq8s2ixvLEOFLErR0yMTuGnzOuuyrFUVPputEosEVE1x6mVly1WVAdO5Ejjeeq5v3HwpPvV3L8c/d/8JpFoA2Hg9sUibmjWklrE4M5sBSkW0O3+yK2Q3xWJscVmhAsCx086KxT88+iTWLO/HyqUVU1NcdN4AhsenkS+UkHCxUB2dmAHi+h+6AkdSDdv6evR06MTidAYDNXZoJYNYXEjFoqgi3EQzTyMWS1ZL54lDAIC94zL+NVAsLgoEtUiA+QCvNEcsGoRHiA7VKRaLHpOLREV0VSwaVqithG9iMaz9hvIcD4ZkXMdBeTxvS4oEiqAqjukkQULgrPf92rxEACjoE5fGh8ex+pLVldftFItzUSsayM5YVYuXXH4JXnvba/HG298IykePhSRISIqE2ZlZRytLP6BdHB9C4RAIglhUisVhF/eEHVt2IN2VxqqLVlVeW756OcrFMqbGpzR7WwdMT0xXahGDQCRU7SJKh7W6I8tnsTShuXylO7XXZidngQut2xJ5EaqqLiixKAoiWN09IXVNCirjbzJ+NB61vX4OPnkQoiBiw9UbWjlMHJk9goHEADojQZxMgABPJzQ8BfuFL3whjh49iltvvRUzMzOYmZnBrbfeiqNHj+KFL3zhfIwxQICmUKtY3Hc2i762cMUSVFVVFAXnwpQXZYgNKuBSURYsZV+QX7Gi3Vax6AZVVUGTpGVfzGQFSWjEoiQ5szVGPqNBBFIkAVGwzixrizCONqJTE2MWxaJmhUpaiUWTYlFysM50gyjwyGdnIZVymP79VyBwJSxdcR5e9dZ3O5KKABALVQtrSdasUIeGhnD66EHfn10LWm9W0YqA4UzZco2o+mxEzoVYrIxJz/fLlEWkY+z8KRZP2ysWFUXBk9u2YOO1N1leX7ZyDSRJxOjZ07brGfBSLJIkgXSUrRCLKROxWAvDClVt8OGir20OikWBB8nUF+yD00VMFnhcf34nOnRFoWEvXBZlRGMJW9Xl3p3bsHLNRUim0q6fe2QsDwLA9as7XJcLMDcEtcjTFGd0a7iDv5z/z2qFFSpf0K00m7VC9ZGx6AVFakyxOLwL+Npm4Kl7qq/xOaA41fBHG/ffsqDXILI1Y9GMEMvYZyYCJsWiD2LRUDVS1sbe8Pg0BvqrTR8VqFMszpiaeSwpa8fdy4K7bFW2jUxMI8/JeNuvy8iWBCzr68JH3/YSkAShkZBsVMvONKNOsSjj+IlBHDjprOLzgpsVakxvRi0qK1QXxeIfH3sSt5hsUAHNChWApx1qnWKRZFwVxD0dKQD2isXS00ixGDYUi+bv3Ph+yCqBMtWGFUt7WjTCAHNBUIsEmA8ITU5mKukTiEJUqGJhaaAgFuxWqUBURJBkfd6ggXNJLBqWkXyZB107sacW+qOmkwJNUiSQphYoSZAQaiYU2ansDFXj5NikJcNPIeozFueSr2hgamwKIidi+L+HweU4pDvTeMsH3uKLVAQ0paGsyjhy+AhGT482PQ6KcP48kiQRjoZRdpnkZJdXOZ9wUyzufGQnNl23yWLdObB6AAAwdMzdDtWSsSiVNTtd/RJrD2tTyLJClQxO6+4JM1P1ikWO02q3hbRCNRSLoiJi6TuWQljm7zcmlrC3Qt2zfQ+SqSRWXrCyZWPkZR6nc6dxfvv5aAu1tWy7AQIEmH80JadYtmwZ7rzzzlaPJUCAlkKosdjaO5xFTzKEiZzWWOAlxdU6kxMVyA1kLAIaQVer7AI0tSJNEQ0Ti6LAawpDyZ5YpAhABQlFdi70a61QGZLUFYvVQq8tyuDMbLUoNBfjiiyju38pjFJJVLT9MROLhYpikYCsF6BhDyuSWux5YhtO/fKLUFQV+Zl6csoOxrFQFRmSQkNWVQAqirmMp6WFEyhCAVSAUQVM5DkUTOdM1WftuVmhms+PrKjIlUV0xlgwNtawrcDw6UHb148f2ofs7Aw21RKLq7RZlkMnj2PpivMct1slFrX9sSNGO+IsyoJmGVxRLE7VnztDsajWNmM90BFjAVls6lyKgoCQTUP58ZMziIdoPP+S3koGqHHOeElGLJFEqWhPLF554194fu6RsTx6kmEsa481POYAjSGoRZ4l+NxqoGMN8JbfN7ae0tj91hZSWSOv+CabRBXF4hybcY2oDaeOAL3rgXWvArZ+pZr5N+2drVuLCrEoKkgCVpKjIcVijRWqjpLd5C7D4qxGMSDLCpabmnkywYKuWWY2V6iMO0Lq22E8JqhwGcuf2/ccxh0/PIEiJ+F50zWTiMSS5kbgqViUoUJFrliGJMmWt/2ioli0OaQURSEcYlFcTMTiKXti8fjpEZw8M4bnX7fR8voFBrF48gw2X3q+43ZHJ2cBo28l8fWkbg262rVm1Ph0pu69UnnhFYtlUUa4iVyjSnaWWSU8fgCDORJXX3Zxi0YXoBUIapEArQanNPfbbiipaIKus0L1IhYNJR/poDs4lxmLtYpFN/ixQjWTpyRI8JxV3clQzp+hyAp6Tep7GTIogrIQnoZiMTSHSSzHDxzHI197BIXZAoprG1ccUgQFSZGgQoVQFlAulhFn494r1sBNsQgA4WgYnEstQrlZ0c8DhgftFYszkzM4tv8YXvm2V1pe713aC4ZlMHRiCBuv32i7LqBboepCx5JYQogKQSW0As1QLBbF6nmKRCMIR8OYtZnkxOu1yEJboTIsA7HBZ6NYIoZiof762/P4Hlx6xaUtzVc8mTkJWZVxRe8Vnt/zAAECLC409UvwyCOP4HWvex2uueYaDA9rP9733HMPHn300ZYOLkCAuWC2VL1xSoqC4xMFdCWqRINbviIAyKqKolC/zNjYmPa+TaOwI8a6KuxynOiLcDO2IPIcWJqEYCI4zSo9igAUj6+xICmgSKJibUJTBATeWsinI9aul8BbC8TuvqWVf0sKwNKUNntfRz6bAUXTIAgCsj5foRHFIgB89sO3gQxF0PuGL6Cjf7mvdWiKhMKXoEoiZEWBohPFosBjcqw5pQCtF4mMIkCUVQxOVYspWSVA04yrFarZTjbPiVAB9KXmb0aaU8birq1bEInGcNE6a5Hc0dWDaCzumbM4MzkBAFWimK0/n53xEEqCDElWkGhLgaYZW8WiQSwqHg8ntSBJAlR51sHwzB0Cz4GoyXSUFRWPD85g3dI2LDHZrMbDBrGoIBqLo5i3kggTo8MYPXMa6zb5zFfsjlWyVQPMH4Ja5FmC4iQwtNViWekLsqiFG88VjLNNoydIWiM45zrL34ZYHBnVZqAbKiyk9Dyv5dcCG98ILNEVYhFdZT1V85sveJOVxm2+VFEsmppvdsSio2LRxgqVIFHibRocBglJMXWTSgb6qsSiRLJ1ROWMrhKgSBIRUh8M7UEsljOWP//uY18FADz+thguWWajULcjFi2KRbJifSsrCg6ddFfkOYGnkxgrKMhK9vfNeDS8yKxQ7WuuPz72JGiawk1XWK0747EIlvZ24rDH8bEqFjmdcHausxmGRkcqifGpTN1750KxWOKbUyxGIvrvjonMF88+hR1nuLpjGeDcIqhFArQagiw0ReJVLBoJoi6nsSC4E4uCLHhnLOqTZswY1m2wDZUeJ2k9hLzgPSGrLJV9KdoMgq4lxKIsWSxfKYKqED0GvMZkVizKkEGTtMVCNpfJAQASqYTrdpygyiq+9smvQeRErProKnSc17gLTq3C9OQh+36BF9wUi4BGoM0lT7LVGBkagWwz4X7Xo7sAoI48pGgKS1YswdAJ/4rFklSyXCNJNgmKoCzEIgC0d7ZrVqg1MDIpw+Fzo1hsBNF4FMWcdb8ETsCBJw9gw1UbWjhCLV8xSkexrnOd98IBAgRYVGiYWPzZz36G5z//+YhEInjyySfB61lt2Ww2mK0XoGXgRPvu1C1f3IIVd9zrSQoCWtaZgeHZMmRFRU+y2kwocN7bsMtENB4aeRvVWnvMvdjNlkVEXLz/6ZoMSJHnwFAkREcrVAKKS4MF0MgS83ZpkoRYQxy2x6wFdC2x0mMiFhXUKxbzuSwSSW2WeFWx6G+GmpzTCKwly1dhxUtuB5109re3Q2HPH8Cd3g1JUS095OOH9ja0HQOUQSyq2rk/NF59EBMVBeFI1JVYNCsTM/r1szQ9h8a0B8aHz0AU6u0sdj72IDZceR0Y1npuCYLAspWrcWbQWb0i8FwlN9OwQg3bWK90JUIoChJERQVBEEh1dLpaoSoeDyd2iIzsAjN5FI1OiBMFASTNwiz3ODSaQ4GX8LyLupGKVo9LnNW+U4KkIBpP1CkW9+7cBgBYt8k9X3GqIGC2JGJtf5CvON8IapFnIRq1NlWayCa0g5fizQ0ko417zsRi/WzwEydOAACGx3WLU4MATS0Hkv1V0o2JAHQImDlRXXnfT4CvmqwpaxqQBqpWqPr4FdM5CFsbZixDw7E0syMWSRpluxWMpgdJ1+UdWhWLTF1m42yuAJahaxSLHvdf3Qp1NK9dK31d7fh/rz4Pq9sdbjpM2EOxSFvO964mm3kyFUbffxYwDvucmXg0sqisUKczOcza5Er94dEnce1lF9vmKF64aikOnzzjuE1VVa3Eoizox9697u3pTGF82sYK9RwoFkuCgjDbuGQ1EjWIRf07oKrAxGHsG5dx41WXO68YYEER1CKLA3khj9FC83aPiw2CLNhOYPZCWawSPJxsvT/4USySBOmYsVghmGpujft37AcAnDis1RiHZw4DAKa5aXihLJV9ZfA1QixW/Ngc5pVJqrafBkFKkESdYpEiKQuhVjvJqcdkRV0hFk2EbEHPe060NUYsXsRdBHFWhMqriCViuOn2mxBe2hz5VEssnth/wmVpZ1SyIx2OZyQWcbVCNaOWlJ4PiIKIyZH6XsSOLTuw+pLVaO+qT74eOG8AQ8fdicWZiWotUhJLFlUrSZBIhVJ1xGK6K71oFIuiIIJhGUhKY89Sdlaoh/YcgsiLWH/V+lYOEUdmj2BFcgXSEZtJfQECBFjUaJhY/PSnP41vfOMbuOuuu8Aw1R/Ua6+9Fk8++WRLBxfg2QvFwaL0qE7yHBnzngU3na8W1GdmyyAJoN+U2eaHnDRbl7rZphroTLgXf7NFERHWmVwJVcg4rTgVBL6OWGRpEoRemFEkLMRiyGaWHi8poE25jzRF6FaoVaRricVCrvJvhmGR6rA2tliarGRVAkA+O4tEm1YEGMRixCMDQJZlLUMy1Ytoog3XPPcFtpl4Xgiv2AClnIckq7oVqoYTB5sjFhmdWCRVGVGWwrEJE7EoqwhHo65WqGZkK8RiY41pkiTB9l+AbNZdoZPq6ISiKBgbthbDpWIBB5/aiY3X3Gi73rJV7sTizNRE5d8KQYMk6jMWAaA7EUKBlyvfjXRHFzLT9TleFcUiGicWo1OHkM4PIuQzU8KAIPAgaNbyidsHp9EeY3HDGit5TZIEoiwFXlIQSyRQKlgfvvfu2IYVay5EW9p9xujRce136drVna7K5QBzR1CLPMPQCmVhLeQWEYtmxZvfB/KsTpbweY1kajIvqYJGrFDrQACxruqYAOAXfwfETRltDvtVJRYlLTvQbIXKxqGa6w+WAe9kHy9XycLqximU3RSLdAjZvLVJs6yvWovIBFOX2TiTzaNdVwhEKH2fQu621EppBoqqoi9BYmlnEn95wyYkwi73GzZWn/Fnk7FoYNfB5ohF222bEIuGUSwvDLE47ZEX1a3nGtaqFkVRwgPb99TlKxq4cOUy14zFTK4AXjBdIxKnXUMet9eejpS9FaqeaxRdQJVAUZCaUizGovp1a3wfsmfBKGWMCVGsHFjivGKABUVQiywOXPODa3DLz27xpZJ7OkCQhabyDM3EBi83plgUFdFTsaj9w30MxzKaO4IfEqkklXxZHhrEosAJrjalAEDQhOvnGwSq8T4Fqo5YBGAZV20GY09/PbFotpDNZXJgQ2xDVqiqqiIpJnHkfUfQu6wXl117GUKJ5okniqAs5PTx/Y3b4QOmvEmHciMccbdCNWOuxKJoVzOakO7UelG1OYuqqmr5itdvsl1vYPWAq2JRlmRkTDVFUSwiRIYsJHx7uB1lqWw55ulOe2Kxolg8RxmLjcDOCnXP9j2IJ+NYddGqlo2vJJZwNn8WF7RfgDY2yFcMEODphoaJxSNHjuCGG26oe72trQ2ZTKYVYwoQoA6CZN8czGS0m7VdBttUsaYITIaRDFeLxEaJxfsOeM+EjHqo9DJlwVb55QSBK4OlCIimZh1BEDBcKSt8oYt/vSApoE1yL4qst0JNRaxFeqlQfTDr6ltS55/OUmQlnw7QrFDjumJR0u0u3QjUbCaDF77whTi2/U8AgJ7+ZbbZfH7Adq9EbO3zoAIWAvb4oX1Nbc+wQgWAvrYwzs5Wi2VRVhCOxlwVi2ZkSiJokkBHrLEHA0Ul0Pf6/0R2xXNcl1syoBV0w6etjcs9T2yFJInYdK39+stWrsGZk8cdswsNG1RAI4pDNAmKqn/Q1IhFCZJ+3NOdXRZS0gDPaU1xyasb6ACSbHw9UeBB0AxI/XyqBIWnhjK4fCCFvlQ90RtjafCijGgsgWLB2pjYs2Orpw0qABwey6MnGcLyjiBfcb4R1CLPEOiWWRh9qvXbVqS5ZxsCABuvEm+yPUE4M6PNZDZ+Cysknqqv5zNHyBFzXT/eC+THq39vfDOw8U2eqxmW5yVe1OoMc0OCICFT1d9SLWPRYUPGemYikKTcrVDpCHKmWdJd7W2ImpowEsGgVso+ky0gndQyhCKkvh2XTKFisYRXfOir+MRDWlNxzdJOW0LKAjsFpEWxSFoI7V0Hm1MJeGEhrVBnbJSIZqxZ3g+gnljctvsQCqUynn+dA7G4aimOnR6BJNl/T0drLcTEspZb6oHezjTGbOzHKorFhbRCFWSEQ40rFmOxGmJx4iAAINmzIpi4tIgQ1CKLC2fyzgropxOatULNlrUJqTzH1xGLtWqqWkiKBJJ0ViwavQCVdCeHjs4e9TtclEV3xWKU1u63BkHHlTlLlqEdVNp9fLIigyRIKLplOUmQdVaoACzjKpomOTEhBqnOVHV7kEETVsViPpNvSK0oCiI+897P4M+//DMATUGXsbHzbgS1mZjNEosVuCkWfVqhtjqjsxY9S3pA0RTOnrISiycOncDs5Cw237jZdr2B8wYwNTZVp8wzMDM1Y+mZlKRSHcHdEelAWSxDUquFcHtXO2bMrgs6zqVisRkr1FLeelx2b9uNdVesA0W1Lj/zROYEVKi4qu+qBc/lDBAgwNzRMLHY29uL48frb0yPPvooVq1q3ayFAAHcYNzcT50+DUAjEWoxmbe+1psMW8guP1aoZmLx13tGse1EvRrLQHuM9cwVzJZF3xahACAKHFgbItLYDYNvIVwaLbwk11ihEnUZirV5cGZipad/KWpRq4ws5LJItKUAADIo0CThqDDjpkfwlzffhCeeeAKpXi0TKt3Vg6mJuVvY8CYL3eMH9zoSZ26gTMTisnQUY7nqdSTICsKRGLiSP/XIbElAMky7kqx2MMSxVLILgs21baCjuwehcATDpwctr+/a+hB6lw6gf2CF7XoDq9Ygn8vYqgsBYHpSa0CTBAEQZF2mpoGuRBiCpKCo2+SlO7ocrVAZNgSH+QHzAoHnAYqpkO/5SA94ScEL1vba2pTGwzREWUUkFkfJpNidGh/FyNAg1m32JhaPjOdxXlccaQ9L5ABzR1CLPENgEHatIABrIQutUSyGvJtDBw9pTf8zo/rvn5EHaTTAfOQZYuQpYPKQ/XvCHAmkRJ+WVWngvOcAiV7P1SqKRV7U9kW2NiRkukqyuSsW9fNMmX57SQfFomJSLJqaPGYbVMBQLFp/y2ezBbTrzbwIKQN0WLOBtcFwVsL1L3gp/rTzKDb3a/fo/s4Ehsc97NtYm4kjlLMV6u4jpxyJs7lgoa1Qcw4NNwBIxCLo6Uzj2Klhy+t/fOxJdKaTuOzi82zXu+i8ZRBFCSfP2Nd/hg1qZXKboVj0tEJNOygWF94KtcDJCLEMaL0mpn024mJxnRDXvw/c6V3IcirWXhrkKy4mBLVIgPmAoDSnWJwtaBMqju07Bk6yknAlD+cDL8VixRrU4yfs2Owx9wVMqM2qq4WhkmzECpWwmQhrhqiKFptQgqi3QgWsikUzsdjT32OZcF1RLJqcDPLZvO98RSkn4fNv+zwe+t1DWLJCU6N39HRgasy55+QHtVaowyeHfVuWNoJGrFBbQSxOu9RoFE2hf6Afw4PWWmTnwzsRjoSxdtNa2/UGVg8AgKNqcWZcr0V096ayVK4jFjsjnShKRYvVaLoz7Z6xeA4Vi6SNE5UdDMWi0VMTeAEHnzw4LzaoSTaJC9svbOl2AwQIsDBomFh8+9vfjttvvx2PP/44CILAyMgI/vd//xcf/OAH8a53vWs+xhggQB0yJe/ZNrMlq7KgKxGyKAqLQmPEYluEwR0/3wfV4WvTHmU87RpzZcnWrtQJIs+DsSmQQxXFovaeO7FotUKlSAI8V0MsRmozFqvESndfveVSuIZAzWVnkUimAAAyQSPMUJYMRgOTx/dg9/+7DaIkYvv27eheeREAIN3Vi6nxMcd98AtOZ65ohkF2dhqTYyMea9SDNk3JG2iPIs8bRbkKUVIQikR8W6HOFAUkI97XRS3MVrSHdu90XI4kSfQPrKhTLO587CFsuvYmx4fDZStXAwCGBu0f/mYmx0HTDAh9xhhLk7bEYmdce9DL6N81zQq1nljkuTLC4QhEH3bCrYIoCADJIBzSxpiPL8OSVBibV9RnKwBALKRZoUbjCRRNVqh7dxj5iu7E4nSBx0xRCPIVFwhBLRLAE4o0d2KRYrVMvUZRzmj/NxpTfq1MJb6q4jRjTlao0DIXDbITqM8IdEA9sWitm2SmSrKxDAPeqQ9qp1j0skKlWIsV6kCf1cLaXrGYrygWKULV8iVtsn13Dc7iiq8MYWp6Bo/920tw6wXaeVrSmfQmFu0Ui2ZikSArRDlDUyhzgmuOYLOIR8MozjOxaLYhffDxPa7LrlneX6dY/MOjT+IvrrmszvXCwIUrtcllTnaoBrHIGDWUxPsjFjucMxZJkgTLLNw9usBJCIcYrFrWh5uv2YDPfvAtvtZLJmJQVBWqrpKePrgF+ydk3HRFa5t5AeaGoBZ55qOZSapzhaA0l7EoEdV7tKAIoE2Tb0qSex3hlbHoxwpVVdWGVKN2yi87sGHtHivwgqdi0StjUVZkEARRId1IgrQlFp0Ui901k5wUKJpiEY0rFrlhDic+dQITQxP40o++hEsuvwQA0NnbOWdikSKrVqgkpSk0jx+Yo2rRBpFoxL8VapPfJfN6Ox9x7osAwJIVS+qsUHds2YH1V68H6+AeMHCeTiw65CxOT2h1Ia3XDiVRI8TN57wr2oWiWEMsdqUxOz1bUccaMK63hVQsCrwANsxCpbRjed1Lr/O1XiwRgyIrFTL0yJ4j4Dl+fvIV21agPWzfpwkQIMDiRsPE4h133IHXvva1eN7znodCoYAbbrgBb3vb2/B3f/d3+Id/+If5GGOAZyFaUcJnSqIlq7E7GbLad3ISvNyE8ly1qfK8C7sxNF1CObnMdtm2KGtLApqRLYsIeagazRB5zlYFyer5AVRFsehcZPOiAookKr72NEmAr1EsxkKaytCo28zElq1isYYoMysWFd0608698vB930e0ZyX+cP/DuOCCCyrnub2rB9MtUCyWdeVcLKGN5ZiPnMXTx4/gQ29+hUZEwapYXNpetXmjoGpWqJEGrFDLIlJRBuEGyGRAU8kZ2Ll1i+uySwZWYXioqlgcPXsaw6dPYuM1Nzmu079sBUiKcsxZnJmcQLqz+uDEUvbnszOhFegGAa8pFqfqHhx4roxQJAJxHkRJTpAkEaDoCqkuyio2rWhHT9KeJEiEGAiSgkg0jlIxX9mHvTu3YWDVGqQ7umzXM3DEyFdc0xHYlC0AglokgCdaQSwyUd8knAUGiWfcm92IwdrfC9mGbJsrsZjoRTOVlTG0siDpVqg1xCJdJRZdrVDtMhZJCmXBZl+N5iVBWojFesUiXUcazuaqikUAGrFoc/6++PujWNpG44kHf4/1PdXjv6QziZGJafdDFbbJfqlTLCqAqiIZ02qIXT6aeaeHx3HD6z6Egk9LsVgkPO+KxeHxamPzj4+558XVEotTs1nsOnDcMV8RAPq625GIRRyJ19HJGSTj0Wrt3kDG4my2AKHm+ipxPKLh0ILeo0uigjCrXR9/+s6d6Gr3lx2UjEUhyKhkopNTh3EyT+O8VcvnbawBGkdQiyxOfPaJz+LS713aksxFBQtot6JDlMWmFIsyVV2Hl3gLCVeWyq6KsQqx6JGxaBATdpgqN0aGlaWyr4xFg9DxpVj0yFisWKHqx4IECYGrt7m3EIs5k2JxaY9lORkyKNKq9PSrWJy5fwZkmMRH/++juPjyiyuvd/Z0IpfJQZ6D24FZsRiKhMCwDI7u87apnZ2axT/81T8gO5v1XBYAwtGwb8ViM9c0oGVWGvAiFpeuXIphk3sCV+awb8c+x3xFQFNddvV1OSoWpyemQZJk5TosSsW667A70o2CWIBoquHTnWkosoJ8TU61QdI1ksE5V8iSDIZlKsRnot2fojYa1ybTGXaoex7fg1gihtWXrG7Z2PJCHmPFMVzUfhGSoWTLthsgQICFQ8PEIkEQ+MhHPoKZmRns378f27dvx+TkJP71X/91PsYX4FmKoo/8Qy/keQmSqYDub7MSCkVecs07ZCgCuXJ1HD3JMG4835lcSIZpz2ZFnhMbUq8JfBmsjVVB2Jg0aLzlQixyuhWqrJOsFEmCL1sLQIIgkAybZjWaFFtdNorFUI2dqzljUXufBEUSkEQRoiBgbFgr1K566yew9q2fRXtHBxRFxaDYBnl2BO1dvcjMTNfN6PIP3Z5BL8DZcBipji4cO+BNLB54agd2P/EYMjPawxBDaGMgACxpqxKLJKGpP0ORqG9iMVcWkY6yDSsWDaVlNNGGXVsfcl12yfKVFsXirq1bQFIULrvSeSYaw7LoX7YCZ046EItT4+joMhGLNGmrQO3SFYvG9zXV0QWeK9cdH75cRigcgbSAikUAAElZ8kVffGmfoxVxIkyDl2SEYnHIkgSe074je3duw/rN13h+1JGxPLoTIazscM7zCtA6BLVIAE/IYouIxSayPriM9v+KYtGt6VLz22r3eS0hFhuHMRu7xAk6YVarWKz+3rlaoRqKRbMNJEmjVLbJrKSqcgOz/eZADbEogakjFmeyeaTbTL/BdAQgKYiiBEEQMXhWc0b41ls34qF3LUVvT3dVXQqNWOQFEWXePksTIOytcS3EIlWxQqUpCucv7/dFLD6+9wge2XkAp0fqc4rtoFmhzm/G4tCI5kDw3KvW44+PueegGsSiMSnnz1t3Q1VVV2KRIAhcuGoZDp90UCxOzKCvyzR7XeL168PbChUAJmasjdESxy+oDSoACLL23WgUyXgUogxw5SIgCegiMhAjXSCY+ozoAOcOQS2yOPHo8KMAgL2T3s+BXhAcspXnE4LSXMZi7TbMWWWczLmqIEVFtCgca1GxQnXpHjZigwpoGYt+iEWjv8KXeW/Fokd3U1IlkCCraj6SBMfVT9IxW7QWC1YrVDOcrFCTqXqCRJZkiIKI0SFtAnHva3qx6iOr0NHfYVmuq1frNxXyhbpt+IWRsahCBUEQWHHhCl/E4rEDx7B/536cOeFPeRqJ+s9YdCJ7vTAxrNVFl11zGXY9ssu1X7Rk5RKMDI1USNk92/dAFERcceMVrp8xcN6AsxXqxAxSHalKTcyJus2wqRTpjHRCUiSL5XBar0Vqcxb5Mg8mxIAkSaRvTIMnnGNvWgk2xEJQGvs9i8W1CYSGanfP9j1Yu3ltS/MVjd+Nq/uutnyPAgQI8PRBw9/ct7zlLcjn82BZFhdffDGuuOIKxONxFItFvOUt/uxdAgRYCBR4CZzJZisdDdW972ZLGqIpFGoIzldtrlcrXtirNZkMW0gnqNBUkrU2om4QeN5W4Wg4LVYVi85FuSApoEkSkmwQi4DAc8jt+i0wdbJCXCYjDAyCzqJY7Kvf59oxFXIZJNrSlb81hRuBF16+HK+8/hK85zUvQrlYBBOJgaS1sf56zwimlSjKT/wEy5Yt1fd3brPveVOI3+qLLsXRg+7WXUA1T9DY5yipW5ipPEIMhVREO9gUVAiSglA46tsKtcBL6IiFPLM3a2EQi4l0J44f3FchPc14ctvDeOj3v8KS5aswMTpcOXa7HtuCi9ZtRCzhPuNr2crVOONghTo9OY72ruqDE0sRtqR5OsqCJFD5nhiqvtkpqx0qx2nEorjAk35VsqpYpEgCFy9xVgpoxKKCSFT7PpcKBUxPjuPM4PEG8hVjSAX5iguCoBYJ4ImWKBbtFW+eKFszFlVeeyCfzfmYlGL3UD3XjMVwykp++URFschL9laobJVkc1cs6m+Ym5YEibJg0+AI6b/TquqRsUjXWaGaMxYB6OePwrLnvAGpK16Jy17+D5iezSEaohEx6j+DBIZGLAJwJuzYmP1xpM1WqBRganptvHgVdh3wbrYatp9mlaYb4tEwiuX5VSyeGdPu5W99xS04fnrENgvxZ398DPc9sgtrli9BJlfAtK4s+ONjT2LtmuXo7+moW8eMC1ctdSYWJ2driEWuLlfTDj0dKQDA+JTVDrVU1hSLCwGeTuGpURlnsgrCDvZrbmhLxCAq2sSs4tBu0CTQ2b/K/vchwDlDUIssbjRLZJjRily4RtGsYtEMQbZaofISD0mfHGRHBEmqZCEia1Fp+LvwCccyDRKLUtmbKDSB53wQi8b4HE69ocysWKH6USzmnRWLCqFo2ZSwKhbjbfUTTd/+wrfjljW34M03vxmTo5MgGRJUpP6AdvZ2ap/rp2Z0AEVQlmto9drVvojFmQmtFin6rEUiMf9WqM1+lyb0CVcvfPULMTs1i5OHTtYt8/sf/R4Hdh3A0hVLIUsyxvSJZDsf3onu/m4sO8/ecczAwOoBVyvUDlMtU5Y1Qtx8zjsi2vsZIVN5rV2vX2ZrahGuzCEcDoOXeSx58xKcUE+4jq1VYFimkrHoF7GkTiwWipBECft37seGqza0dFxHZo+gPdyO1enWqSADBAiwsGj46eR73/seyuX6YqRcLuN//ud/WjKoAE9PGIomeaFVSQ4ochJOnKhaREZqlEq5suRqS8rSJEo1OYwMRSJ8dgeA6v5GWG27tJ1XpAmipEBSVJ+2mNox1KxQ6wvOsDFp0AexyEuaFapUUSwS4PkyZv/8DcSe/F906IRoKspWavBivmrZYJexGGWrYxJ4Dly5jIRZsUhTyExPQFUUFAt5vOdjn0UkVrVMEyQFn/vDEbSLU5AnjqO7t08b6xyJRc7EXK2+eB2OHdzr6ec/O6UVq4Wc1gwzzqLx/76kdnxIQoUgN6ZYVFSgr63xfK5J3Qo1mkxBVVU8tf1Ry/vHD+2v/HvJ8pVQVRWjZ05DliQ89fgj2HTtTZ6foRGLzlao7SbFIkORlTxPM0iSQCrKoqhb0KY7tQeh2ZqcRc0KNQonMct8QSUoCDrZvHEgje6Ec0MxEWbASwrCMe1BsFTMY99OI1/RXbE4UxQwVRBwSX8bEkG+4oIgqEWegWhasW5F5Te/ZVaozSgW9SaCrr4rF7S/7YiZOtA2v1PSHIlFggBi7nbOdjAmZ5UFPWOx1gqVqSEWPRWLNVaonE2D44YPARe+CIh1umcs1nQ3VVW1ZCwCAOgwprNljE9lUOYEfO1f3oWOdM2km3IGWUVTgS3p1hpDrsSiXVPTQbEIaMTi7sMnIcvuTeKxSe0ayfhs5sWi82+FemZ0Ch2pJF500xWgKBJ/qlEtHjdZn65Z0Q8AOHZKUy3+4dEn8fzrNnp+xoUrl+Hw4BnbWm10cgZ9XdVJa5AF/fvoT7E4Pp2xvL6QikWRSeDybxUxy81FsaiC58s4vvVXAICLLr2s1cMMMEcEtcgzH+eEWFTmTizyMm8hCnmZr6j0MvpvY8Y0sUZSpKoq0QZ+MhaPzh51zGi0AydzvhSLBiHGc7yrqhLQiD43GMRixQrVIWMxRFXvFWaCrzZjEUC9FWqmXrFYzBcxeHgQUIG//5e/R1efc01mEItzVSyar6HzLjkPQ8eHPG1LDWKxkPP32ZFoxLcVatPE4ugEaIbG9S+4HuFIGDse3mF5f9qUjb10pTZZ3bBD3bFlBzbfsNnTVWzZecswfGrY1n52emIa7d3VSU52Fr4GsZgTqpPzDcViLbHIl3mEIqGKGnqhfmPYEGuxavUDQ7FYypdwZO8RcGWu5fmKR2ePYmVyJVKhVEu3GyBAgIWDb2Ixl8shm81CVVXk83nkcrnKf7Ozs/jd736H7u76G22AZw+OHz4AAOAWMkjNBUVBgmhqVIZZ6+We591tSUM0iZLNvtBFjYhqNKHF2FaY8SYejPaKKHCVPEWgqsgziEWD7HHPWJR1YlHR16laoZrtLdtjbOWDi4UcGDaESy67wp5YNO1DPqcpM4yMRQDgxk/in97w4srf1938Qsv6P9l1BqPZMroLx0EQQGe3RizOXbFompl30TpkpqcseYV2mNGJRbNK04wlKY0YNBSLTCQKziexCABL0o3bVhljphkWK9ZcWGeH+qNvf626/eWrAADDQ4M4vO8pFPM5bPRDLK5ajfGRs7bqy5nJcbR3VmdkMg6ZmQDQEWNR4iUoiop2PZfRIGsN8FwZoag/L/9WQiWoykSH7mQIjI2tsIG2CANelBGKak3pYj6HPTu2YtnK1RaS1Q5H9XzF61Z3BvmK84ygFnkGY45NNAM/+clPAACyJLRGsehDIVWHimJRazwQgofK3awEpGvuGSQ9d2IRAOI93svUwLAELfMOxKIpY5FlaI+MRcJqXUpQKNlZjkbbgcteDyT7kc0XwTA0rlh3Pi5Yac17lmuIxTLHgxdEtJtyjY5MSrjytf9U+ft1L3lu/efxOewVBhC6s4TeCzaBIAhnwo51yNykahSLqlWxWCrzjqo8A6M6sdiIYnG+rVDPjE1iWV8n2hIxXLX+wrqcxc9/52eVf68e0InF0yM4eHwIIxPTrjaoBi5ctRSz2QIma2xLAYNYrLFC9ZGx2K3nGI6dQ8WiGeFQk8SiotXFs4cfw3AeWH3++fMwugDNIKhFnj2onfRQ9nk/3rdvHwBgcnTSY8l6SIo0h3gQDXWKRZmvIyt/fvznlr/dbAj9WKEenT2Kroj/SUx+Mxaf1O89XMmbiFSggGEZ54xFVbYoFgmCqGTemWGnWDz/0vNx3sXn1S1LEzRI/cCoqopcJmdRLI6dGcO7X/7uyt8vef1LXPchFo8hEotUcu2aAUVqVqjGYVi9djUURcGJg+7quOkJjaTzq5YMR8MoF8uuE7kJVbtpN0ugTY5Moqu3C6FwCOuvXo+dD1tzFn/67Z9W/t3V3wWGZXB28CwmRiZw+vhpbLrBOV/RwMB5A5BECaM2EwBnJmbQ0V1VLHISZ7k+AKAjrL1fFKvHLRKLIBwJ11mhcmUO4Ui4YkvaCBk/F7As27BiMZrQMhYL+QJ2b9uNSCyC89e2rhaZ5WYxVZ7CxR0XI8kG+YoBAjxd4ZtYTKVSaG9vB0EQOP/885FOpyv/dXZ24i1veQtuu+22+RxrgEWOUk57gOcEp87SwiHCUCjyMjKcXjRKnCVrDQAKnIdikSJRFlpHkhrbcrNfrYXAcWBNHua5sqiPTbd3rCgWnRufmhUqAU6fjUdR9srAdUvasLo7DoIgUMznsG7T1fjS938NhrUWTgRgUV0WshkAsFihUoSCniUDtuPhJAV3PzKITcvbkaYEEADiyTawocaVfXXbNhHBqy++FABw7KB7vkbFCtWk0jRjqU4MkoQKRQXYcMy3Fap5/UZgWKECwMZrbsSurVsqBfvI0Ck8/IdfV95v7+xGJBrD8OmT2PnYg0gkUzj/Eu+ZZAOrzoeqqjh7yvqAIUsSMjNT6DBZoTIkCdKBWeyIsyiJMkRFQTyZAkXTdYpFrlwGcw6IRYUgK1aoXkiEaXCSUiUWiwXs3bEN6zZ526AeHsujMx7Cyq6Y57IB5oagFnkGwyX7pxEMj2i/n6rcAsUiHWrOCrU2Y9GrESm4zAwnaY1QmSsSfdV/+1SPG/edUoVYtJ4jmakhFp1OoSJpSjOCwL4T+v2NoFyyDDVkCyVcfvF5ePzHX0I8Zr2XSrCel1l9dn27qZmnkExFvWYLiQckDpyqnScmFEZ3Rwq84NB4YWL2mdYWxaL1OF124UoA8MxZrFihFvwSixEU51mxODQ6iWV61tMt116O+7fvgaRP4BqdmMF///xPlWVj0TD6uztw7PQw/vDoLoRDLK7fdInnZ1yk25MdtLEgqycWOV+KRZZl0N6WqLdC5bhzQiw2o1hsi8cgyIAg8GBmjmJcioFgovMwurmBg3Y8OWLuNfzTCUEt8uxBLRnHy/7uxzPT+m96pn7ShJ/PNGc7cnLjv/WCLNQrFk37IikSfnDoB5Z13NSAXlaoKlQMZgcryi0/4CQOtEsPw4BBznJlztMKVVZlMCzjaoVKEATyWe25nyIoTyvUQr6AgdUD+Oa930Rbuj5Ww6xY5EocZEm2KBZVVUUsEbP87YXOnk7fqkE7mFWZADCwZgAMy3jaoVaIxQasUBVFgcg7E1ZexGJOzmHNv6/BrDhr+/74yDi6+rVaZNP1m7Bvx74KGVzIFvDr71f7IhRFoX+gH2cHz2LHwztAkiQuv857ktPy1csBAKeOnap7b3piukIsqqSqXWM1BHeSTYImaZSkao+IIAikO9OYnaxRLHJWxeJCgQ01TixWFIuFEvY8vgeXbr4UlIswo1EcndWux2uWXBNMzg4Q4GkM3wzHgw8+iPvvvx+qquKnP/0pHnjggcp/jz76KIaGhvCRj3xkPscaYJGD0G+O5py7hYdWqEUYCpKioiRoYyFsqss8J7lm37E02VL1ZVnfVq0lqxs0xWL9GMNGxqLxlpsVqqxZoRrLkAQBwSakfO2SNrztulVIRRgUiwXEEvZEEEUAlImsyevEYiyRRPHoVqiSiJ6VF+Fz3/257fqTeR6cqODKle2VjCOCINDZ3eu4D35RNlmhdnT3IdXRiaMH3HMWZyrEov2DX79uhUrp1xAViaNc8kcsUgSB7mTjTaypcTOxeBOmxkcxdEIrvH7y3a8jmao2SgmCQP/ASgyfHsSurVtw2dXX+wrUXrH6AhAEgeOH91ten52ZgqqqVitUmjBZoVqLvq54CCVehiSrIEkSqfZOWytUNlqfNTHfUEDWTShwQiJM64pUrYAeGRrE0MljvojFI2N5nNcVRSraeI5SgMYQ1CLPYLTYCohQ5RYRi008QPO6Al4nQQjJoynoRSyKLSCQkiZiEY0dFyfFokQbv+sESJKEqDr83sqirlYkqipFkrS3QjUhVyihLW6dsKEwMRyalFEirfeUmYzWJEwnE/jdURFFQcVFy3vw6P99vrJMXTOP0+77vFqtoZZ0uzRFGR+KRZK0XHdtiRjWLO/3zFk0iMWMT5VALBKGIEoQnEjQFuDMqKZYBDRiMZsvYofelPzyPb+qI8zWLO/HsdMj+ONjT+GGTWsR8UHirR7oRzjEYvdha2ZSscQhXyyjr7tesaioqmcDqqczVW+FWl44K1QzwmzjtUEiFoEoqygVSxgI5zXF8SIkFk8Ry/GmX5ZxhrSfTPhMRVCLPHvghwSaD5gJCknxnrRda3EoKILF2tRshQoAD515CGOlMcs6bhmLXorFAgrgZb6i3PKCChWczIElvX8fjUxIgRO8iUVFJxad3ldlkCAhQ89YJO2tUMNUdbJEqVCyEIO1oIgqsZjTc4YTbQnks3mIgoi+gT589edfrSxvp5CsRWdv55xUqzRBW4hkhmWw6sJVnsRiM1aoAHzbodphSBhCqDeEUc7eZWpyZLJiQbv5hs0QBRF7H9cmjv/qnl9BFK3X/pKVSzB8ahg7H96JC9ZfUGdLa4eOng4k00mcOGCdcK0oCmYmZypWqCqt/R6wFGv5bSAIAu2hdotiEQDSXWn7jEWTYtFNKdxKNJOxSNEUwpEwcrM57N+5H+uvbL0NalekC8uTy1u63QABAiwsfE/DvvHGGwEAg4ODGBgYCGYUBKgDqRe055JYPHPmDIAQIBQBMMg4Tp8HCrwE1sUaMUSTyBdbp74s6YrFWAMZbALP2Y6xU6910yFvK1RBUizKTJokHbMMjbzIUj5na4GqrQ9L3p5hhfrDu76CmT/8DGQkCfbil1kIHVmWQVEUZovaNXL1ee1Y2RnDAdN2Onp64SN9Sof9Q55gskIlCAJr9JxFx62oKmanNBLMSbHYFdceeMKEBCAEMhQDz5Ur++SGRJhGxIf1rRmyLGN6chyG6dulG68Ew4awa+sWJNrS+MMvfoTXvev9+O8vf6ayzpLlK3F431MYPHoQf/mKv/X1OdFYHMtWrsbR/Xvwgpe/pvK6QbS2d/UA+hmhSRIEASiyDIa17k93MowCP13J8Ex3dGF2esqyDM+V0RZZeDWfCgKMT8Vi3LAqo7Uv1/aH/ggAWLfZnVjMlARMFnjcur4PyXATyqYADSGoRZ7BaJEVqgFCkeaugqTDWj5ho9CJpSePjeByltGUVm7gPYhFnwoJV5gViw2izIva5CTVWhMJ0T689ddlvPkd2rYVg1isPZeKWFEsKkYON0mh7GF/ns0X0VbTzFPoCC7+ehEPfvtiy+uGYvGbP/odvvu7EiJ0GG/ZGLb8RuQKJev2dALYQiz2dAA4Yz8gJmIhFiuViK0VarU+2HjJGv+KxQasUAGgWObANqGI84MzY1MY6NOaeZvWrkEqGccfH3sSF68ewH/94F686zUvwn/cXbUgW7OiH1ufOoSTZ8bwb+99g6/PYBgaGy5chZ37rcSrcTz6utLV0yELAEGhWOYRi7or5Ho60hifylheK3Hnxgq1GcUiw9CQVAIzk2O4vJ8E2XMeQC/OyUvf2yPihtcvvCvFuURQizx7oDQ4EceAYW/Y7PpFyX/sBmAlIgFNsSiVJevfJoLy+we/jxXJFTiVO1V5zY3gMN5TKRUEiDoCMYMMAKAr6s8KVVZlKKriywq1++Xd6H5pNwo/KHgSi5IiuROLiqx9X/WvLEVQtsSixQo1V6wot+xAkVTFCtVQQm753RYMnxpGm27NTRAEkqkkcpkccrO5CiHnhM6eTpzOn3Zdxg0kSVqIZECzct2/c7/DGhoMxaLffMcKsVgsV/a1UQwLWh6ik33txOgELr1Cc6IaWD2Arr4u7Hh4B9ZftR4/+87P8IK/fgF+87+/qSy/dOVSPPz7h1HMFfHyN73c1xgIgsAF6y7Akb1HLK/nZnOQJVlTLE5WiUWGZCBLMohQ9bc/HU6jJJYgK3KFpE931hOLfJn//+y9d7jkBnk9fNSn91u2917cdtcFcAeDbQgdg+klkB/5AhhiICGUmBoMCQmdYNNrsKk2xcZgG/eKvevtfW+be6cXdX1/qIykkTTlXu+ulzl+/Oy9dzQaSTMjvXrPe84BFzoxisV+XjMSi+Cxex9Ds97E6eeePmfbo2kadhV3YV1mHdJcgLvIAAMMcNKj5/GIP/7xj/i///u/tr//9Kc/xbe//e052agBesdUhcejh73tA/rF0g/8Bn//3Yc6L2jAVCw2T2DGoiDohSFpNOEqvH8xXxOOr2LRXFeUDSajRLFV3EqCAIZuv1k1b1bSEUOFyPg3WERZdWQpshRhZSz6oV6rIhrzbhLQhDObMT+hF4N//u0vkbn07YiueRZYmnTcZJtqwF1GFt26eQkkws6i38xZDIRRb1aLM54Pu0nt1etPw57tf/WdNq2WS5Ak/XPrl7FoWoCGSWOykdUL6G7sUBNhuifrW0DPJ1QVWzZoOIJNZ52Nh+/9M27+3jfAMAxedNUbHc9ZsGQ59u18Eqqq4qzzLuj6tdZsPB27n3zM8TcnsaiDpQkQBAFVbSdTRxIcaoIM2djmdDaHkocVKs0df2JRAQE6YHjAjrhBCooaBZYL4ZF778L8xcuQGwn+XO4a5CueEAxqkVMQJ6NikZpdI7/aFAGK6UKxGNBApBhAnoPmQ7w3VwD7dbPpY4UKgsANj0rQDNJSNW3UFNdQliJZ6k2LWCQoNDzsx+wo1+pIxn1UWrSz7jk2qQ+0fOcXt+OjF4bw5jNYK6/SJHZmSq7rfLMEABBsc5Y6segDOqQr5gwVgWX9T7usUDUF9gGoszasxKNP7YOieNeUkiRjuqhvW7nWnSNCzGjm+eZBAijK5jHq/dpUrTVQqtSwaFRXLNI0hUvOOQ1/uOdRfOWHv4EgSnj361/seM6qJfOxY+9h8ILYVb6iia2bVltKSBMtYtGmWFREgKRQa/AWseoHXbHokbF4IhSLXH/nERUkhin9czF/2Zq53KQB5giDWuTUh9sKtVuQKjmr53eb5WiiIbUTi5psXIc0XcEoG8NBVI7Cw1MPY1Nuk+M5QaSdRTqajqiE836whBKiTLRrgsAkONxZdV6IrtXvIcuNckciUtEUsCzre+8vazIogoJG6o+TBAmh2U4sclTrWlGv1rtWLJrE3C0/ugVDo0NYtmaZtVwirSvnyh6Zwm7kjGtvN/DaV4rQMxbtZN3qTatxaM+hQMWkmQfYixUqMDvF4rjkP1quKAqmJ6YtxSJBENhy/hY8fNfD+O1Pf4tyoYxXvf1VjucsWLoAE0cmUC1Xu8pXNLH2tLXY+dedjuNpvp9WxqLxFWEoBoqigLQN0ufCOTTlpoPAT+fSbRmLQlNAKBzqWT04WzAc06Zs7gbRRBQP/+VhhCIhrN40d/mK081plIUyNuY2Isoc/z7RAAMMMHfomVj81Kc+hVyu/UI3PDyMT37yk3OyUQP0jnM//Ue85Mv3YKY2B1PtNvx++2TX5BphXBznkozrFyyhb0OF99+WegfFYoimIEhz1+hsiAoYigDXwQp1ZrJlSyIKzcBtNB+iGf+i3E0sMpS/YtFEvVpBNOZtG0GTLWKxXq3gO1/WbcY+882fILrufAAA59rmSsnZ3BlNtDeEciOdm54z05OBj/Ou92vVhs0ozuQxMzXhuXzBtr6ajxWqCda4ASEMgqwbYjEZYcH16EM/NX6s7W9nnns+/vrgPfjlj76FK1/1BsQSzonABYv1m5bs8Kiv0tQLqzeehv27dkASW83dQn5KzwTItM7zZs6nrtJ03nQOxTkIsoq6ochNZYc8rVDp0PG38FK1HhSLBrHYEGVEY3FIooDTtp7X8Xm7JqrIxlgsHzr+Vq9/yxjUIqcg5ihj0QQBbQ6IxT5ICDepRrGdFYuit2IegKFYnANiMdzbNLBpLQrYMhY7QDFvK9zNElXWlXwEAVVrEYsdMxar7VaoXmjyAt5//Y0AgF9++SN4/enG+8boDa+sYYM1U3IdZ1OxiFZNEkgssvq2TLksNkEytv0i2z53Z21YiUZTwK4D7dd3AA7LzlKX9mNRm2LRD5+aeDbW3cgAie7rAhNHJnSidtG8lvrkueedgfse34nPf+tmvPEllzptSgGsWtJ6nQ2rure12rJxFXYfPOZQa5rE4qg9I1MWAJJBvclbxKofRrIeVqi8gEjo+GcB9qNYBAANJNYPEZBVgEj0rzge4OnDoBY59dGvqojS9HsnGf25H/VMLNoUixo0iKpoqegImYCsyg4iI8WlsDaz1rEOMqA12CljsYwyhsJDDkIuCKYNZCeiULLZfXdlhaopoAPcgizForEffopF+3bVqjVEE8HEIkmQUGQFX/rolwAA7//c+5EdyTqGTk1isVL0Hma2oxtiMYggNIlFO1ZvWg1VVbFvxz7P5zRqDfDGsFK3Vqghoxbpl1isCBVUVP/jUcgXoMgKhue1Ilq2PGcLDuw6gO9+4bu48MoLsWCps8ZZuGyh9fP6M5zuFkFYvXk1ivkipidazksmsZgZardCVWQFhK3Hlgvn0JAaFoEP+FuhcmGu67zWuQLLsdb3rhdEY1FIgoSNWzYGfrd6xe7ibhAgcN68Qb7iAAM809EzsXj48GEsW7as7e9LlizB4cOH52SjBugdijEBfqTY/7SQH8xmycXX/wmnf+z3vsuRpmJRnD0ZN9s0A9qwHakI/tvSEBVLDbgwFQbpup6xNAlenrtGZ1NUEGFph42oF/K2fD1J4MEEEIum4JJi/RssgqI6XpOjKYidiMVaFdG4i1g03hSK1HMaAT1Xcdmqdcjkhh1ZdJxxXE0CrFx0TmqRHsegG8WiH0GorxMQFRexuH4zAGD3dm871EJ+CgAwMn+hrxWqCZowJhtZs4DuPMmXjjAI9ahYNBWgdpx13oXgm01IgoCXvv7v2x5fsGQ5AKBc8FZy+mH1htMhSSIO7t1p/a0wPYVkJguKbhWOrPF+qqoC0qVYzMX0G8hyU//+p7NDKExPOZYR+CYo7vgTi4qGQGLejrhhUdyUFEQMtW4nG1RAJxaX56JIH+d8Rcm4I1Zne7J8hmJQi5yCmGPF4pys0y+/eGon8MdPeD8muBokFGs5Ovgi0AqV6c4K1SQv/Qhah8VZhxt4gsTRyVZjpdklsaiZy7iJRUUyXp9oZQaRXRCLtXYrVC+EQxzOWL8SkTCHKy7c1nrAyKTLGc286aJrgIjX3yseHTIWzWPH6gMkRyamXY8T4M0+EkkBrlykMzesBADfnEWTRFsyf7gHxaJei9TqQXU/AZUMAQGuFn44Mq4PCC0abRGLz3v2mVAUFTOlKt735pe1PWfVkvmtV+6hSbRl4yoAwCM2u9iJfBEcyyCVsA3tKCJA0ajVm50Vi9k0JvIuxSJ/ohSL/RGLKkGCJgmUkQC4vy2r0WcKBrXIqQ83OdMtSMMaXNb6IxbdCsReljftVy1iUdHPxzVbnvPpQ6e32ZYGkXadMhZLKCEXznWlQARamZCdiMKZyda9rcRLHYlIVVPBBJxzZU0GCdIihEjCO2NxTWYNzhw+EwzJdFYsGraXFE1h7Wk6Wfvclz63bblkWu+LVNzuCR7ohljMj+d9H6NIqk0tu2zNMjAs45uzaJJoIwtHUO8y79luhdoP9pf3Bz6eH9P3cWh+67N61rPPAkEQmJmawav/4dVtz7ETi1QPA95rNuvOAHY7VDNz0k0shqgQZFl2KBaHIkOoS/U2xWJxuujIyxR4AVyY64vkmw36yVgEdCtUADjtnLnNV9xZ2InR6CgWxHsffhtggAFOLvRMLA4PD+Ovf21v0j/++OPIZrsLax7gmYn903WUmhLGSt6FA2FcROeCjGsEZCN2AxKanpEYQHI2RBkcTeLrrzsL77hwBTiGctiQcjSJucxrFxUVIYZ0qAe9kJ+wE4tCoF2rSRhSrH+jRHIpFilSt6b0gyxJEPhmmxWqKf5kCOCPv/wx/vCLnwAAFi9fhVTGWfyyRhGXSOqT5m7Fohey3SgWA4hFmiQhutSyQ6PzkcpksWfH497rM2w/Fy1b5WuFaq3fuEkjjAYd3wWxmImwXRNbJqYmxhCKOEm45WvWIzcyD5e99CpkbRalJhYs0Zsastxbsbh8zXqQFIXdT7aOTyE/iUzO+Romua165EpaxGJD//5ncsNtVqhCswmKPd4qAQIqiEBi3o54SL8JFWUVkZjeyLST5V4oNyVMVgVsmJ+0rFSPF2Y0fRtr8t/mhN+gFpkDTDwBfDQJHLjr+L+218X16SAW3erBXkH7XFu/+2Lgzv/QCUYAUdI892oAX3IuS7GdFYemFeqz3g2Ekk5bK4rRiblOeODr+r81/+tkCx3OGxRrEUsA0BQlf5LVBs3XClVsZSzalH2drFD1TET/oZSf3HonvvLD3wAANq5agqG0K9/HUBhmU3o906ZY5EsAxUIl7BmLHs28aA7Y+jZgdCMA4KibWATQlFpKTPdnORmPYuWS+b45iyaxuHb5oh4yFjtboc4GRybyIAjCoeBctnAU61Yswqte8BystJGIJlYs7k9Vt2bZAkQjITxkI17H8wXMG8pYBCUBzWGFGg0H1xSjQ2kUylVIUuuz2Gg+czIWAeifJQBUar5Fkg9wcmFQi5z68LPU7ARKNRSLfRKL9SCLdA/YFYsK9PthyhhCJIx7hZrUIhbXZdchTDsHk4MGQjopFjVoSIfSXWUmAt1boU6NtYZVJUHqSrHIMIzvlLqlWDTgRyzmwjm8bv3rkIvk0Kg2AonFIw8cwY+/9mMAwLK1yxBNRNvul4GWbehcWaFaxKLHvnopFhmWwbI1yzoSi4tXLD5uVqj7St7qSRPm+z8yv9WbSGaSWHfGOpx98dlYaQxu2dGLjazjeSM5ZIYybcRiPBkHG9I/p5ZikWShSE7F4lB4CDWp5lA5Z4YyUGTFyt4EdMViKBx6xmQsmp/9086eO2JR1VTsKe3BitQKpLjUnK13gAEGODHomVh89atfjX/6p3/CHXfcAUVRoCgK/vjHP+Jd73oXrrrqqqdjGwc4yaD4SmT0v58MVqgAEOVo1CXvbRUVFaqmq/dIgrCsOYs2pVUny1ITU5M6OdXsQEwBQIiheiMWRT6YmCIAhiICiUVRcROLZKBisVHXC5+Ii1isSRo0TcWx227Af3/0vdhlZPPVKmXEks5mnnns4skUAKBScioWvZAd6kwsmgpDL1Ak0ZaxSBAEVq3fjD07/BSLk4jGE0jnhlCrBL9/jKFYNLOU+EbnSdJsjO3Z2iE/PoYhV64fSZL44o9/i394/797PsdN7HaLUDiCpSvXWu8loCsWs0PDjuVYioSqqlBVFaTLCtUkFmuGVU06OwS+2USz3roh4fmmRcj2CoWJQOnDd5+g9RvbIGLeDtMKVZBVRGMJzFu0pKOt7G4jX/FZK7JWFucAxweDWmQOcOQB/d+dvz5+r2nm4nkRZXNshQqgswVpJzA+bgCy0YSq6df/M6L6v5TcsHL7LHSjWBSruiouuRAgCCe5RDGdiUm+DDz6PQBAodqbysETFOtSLMpzqFhsEYvNAGJRkmQ0mgISUW9C5Tu/uB2ves+ncd9jeh5OsVJDOumypOb038MGmdSWsciXASbqUHPOH87glj16I7hB2uqglZcAqcUAfIhFu2LRgyQ/a8NKf2JxqgCSJLFy8TyUumzmmcRakBXqbHBkfBrzhjJgXLZXf/rOZ/C/H3+X53PCfZJ2FEXhrPUrHTmL4/miI1+RMmswkkat0ezKChUApgol628nTLHI9uloYKhgEsOL+lKdDvD0Y1CLnProV7E4aytUpf+MRVOp5lYs2snKBbH2exw3aafYhsUJgtDJxYDbqlwoB0nSr//1YvC1zFRrsWTw+TE/0RpyksQuiEVVAc3SjmxBx+Oa4siH9CMWAf14kASpKxY9bNk1TcP076bx6w/9Gk8+9CRUVUWtXEMi6R0nY850dWWF6jXk5EJ+PI/KYxUc+dKRtscool2xCOh2qH7EoqnOW7xicaAVanhzGAKjHzPTCpXvc8hpX3kfEqTP8QIwNT6FUCSEmKu+++SNn8SHv/hhz+fYVYS9gCAIPWfx8ZaT08zUDDJ223fj4xemw7pi0dany4VzUDTFQeBncvpzizYHBaEpgAtxxz9jkWUcaspuEY1HwYU4S407F5ioT6Au1bE5txmRweDUAAM849GzxOK6667DwYMHcckll4A2rPJUVcXrX//6QZbAAAAA4SQhFmMcjWLNu2llkp9u0m7GRlwNxbybD3JUJ12+es8x3He0iQef2AkghkNPPQZsXRW4TeEuiMXpyXHAcHAQ+SaYDsQIQ5Eg/VQVMDIWbS9JQIPA+9+smJagbivUSq2J/M3Xo7n3Abz92o/hZYYlZ7VcRNxQJpqkG2dss5n92A2xmBsZBZXQbS5kH/J6Oj8JZDwfAkMRbVaoALBq/Wn47U0/8HxOcTqPTG4Y0XgCjQ7EMEVoIAAQxj52Y4Wa8/kMBWFq4hhyI/PhNjX1UiqamI0v/eqNp2H39pZicSY/iSUrnMHcLE1CMFSu7gnMTJQFSQB1Q2WcyunvYXEmj3A0CkVRIImCbiHbR5RAddnFENPLcfOjR/HC0+aD7vJmgTDUNd0qRiMMBQI6sfisS57flVp510QVmSiLlSMDi7LjjUEt0ge23wz89I3AtQeBSG95e3MGk6jzIvw8GiCzRk8ZRV4j330QArxrEp3mQEhdWKHSnEXejecLSFnbwABiw3v7TNzzP9aPf90/iQt73GQAgGQ7VgSpk2fGJazBi7olawdoBhHSplhUpVbGoqoBIDpaoVYMS1C3FapgDLHceNMfcN27Xod/fcdVIAgChXIVmWTrXCyqJFhX1tO0u5nHlwA2bCnDAD1j8Y6DCoiPVXDXjd413dHJacDVk62JGhQVxro0kNBgr0jO2rASv/7TA0ZWsfM6OjFdxHA2iUwq3oNi0bBC7VMl0AmHx6ewaJ5HdpxB2M01tmxchZtvu9f6XVcsts5TDKEfTY2gUG8KXVih6ts5OV2yVKgnSrEY4vojFrPpFIAGyNhoV8T+AMcfg1rk1IeKPq1QVf3+w4vc6QZ2BWKvy/spFutS6/qSYNvJHJpwnmfc2XAUQUEh/fdnODqMsX36gPTE/gkEFSOmcipEB5/L7XafIi+2lJM+UDSdWPQjdBVVaVuHGDDkJEsy+CbflrEoyzLGvj2G4p+K2PbqbfjYpz4GkiRRKVXaSDA3ym5bdg9khnwaHjbkJ/I4/F/elssUSXmqbVdvWo1bfnyLbsfpuh4WpgrgQhyG5w8HKhZTL03hUOUQAIALcSAIoi8rVFERcax2DCuZlaiI3n2YqWNTGJ4/3NbrSLodKuYIqzevxk033ARN0yy71azLIp8ECYZkoMiKg8TMhfVaoyy03t+0UccUp4tYunopgBOsWOzDfnXbhduQG82B6dd9wQO7i7tBERTOm3/enK1zgAEGOHHoeZyDZVn8+Mc/xs6dO/H9738fN910E/bt24cbbrgBbL8TmQOc1GiKvRXEvKxahcwxH9vUTnjgwAyma51ZCMWjKDYRD9GtCXL3Nkr6TQLnyr+zKxajnLdiUYka5Jei4i/7pnFQ1IvHJjp//jlaz0sxEfJQRdoVi6IodCRGGIoEyfi/tqSoIG0NSdWwy/Sb5jItQd1WqHtv+Rr4Q4/jjNf9K17+hrdbBV61UkbcyFI0VWlh1351ZYU6NAo6phdufh+5malx3+fTFAnJi1jcsBmF6SlMe9iozuQnkckNIxZPoF4LzlgE9M+LRnZPLPqR00HIjx9DbrQ/O7F+sHrDaTi4d6dFNhfyk8i4SEyOIq39dSsWKZJAKsygLuhftnRWL6qLhh2qyOsEAhFAfgdBI2kQqoRbnpjAR36xHXsmO79PAIAeFYskSSDCURBlBS+++q14yWvf2vE5O418xcxxzlccYFCL9IXHdZsm7PndiduGQGLxabBClQWgUdAtXwsHe39+P0MbXlaonaaSxbqu5jSaXY5sOJINtEKlpRpw75dQI2Y54FAZc/x6ZNymWBRlgOqC2DDJRy/FIkkBcFqhNnnBtxYp1/RrjptYvP6GnwEAPvz/XoMP/cOrrVqkWK4hbcvja6hUGxnTZoXaLAF02KFYdGT6sd5T1Ec8co3e9iseX35QtFRmlsLOwFkbVqLe4LH7YHuOsmn7mYpHuyYWTeXd02eFOu3IV3y6sWXjKhw4OoEZg/w1j4kJhtSPp6jqOZ2xaAfFYk5v5k3O6N8lTdN0xeIzyAp1kWn9Fu/s6DHAicGgFjk+uOZP1+DW/beekNfu2wrVUCxKWn+qpKbUo2LRg1h0KxarYusa6DWU6lYDFvLOwWCKoHytUAEgyXZP9pgEB0cFn5PdVqid0NEKVWsnFv0UiwBQN2oRtxXqL274BYp3FTH/TfNxyT9cYtUy1XIViZR/fwrojlikmc41l5k/6IUgxaKqqNi3o92C1CTRookoGrUGFMW/B6iSKlRNBUEQCEfDfVmhHqocgqqpWB5e7rvM1PgUhucN+z7uh3iyv5p4zeY1qJQqmDii940KU4U2YpGlWT3DUnZaoWbD+nL271k61yIWTQhNPWNR6CY/fQ7BsqyVbdoLLnrhRXjLP79lTrdlV2EX5sfmYyTqPzg/wAADPHPQn04cwOrVq/GKV7wCV155JZYsWTKX2zTASYZey2leVqGoGm55YhzP+vQf8dsn/ckgP1z3m6ew5eO3dVxODqUAeNuzxjkask+fUpC9FYsFI3MP8Cb97HjOsgSufd5arJD1iS2tU2YRdItQu2LRq2eZn7RnLPIdiRGWIkEyPupKw/IVNtsDSdQLP5bznhCsVw1i0VAsKrL+3PizX4fRq/8D89ZtsZbd8fjDKM3kEU+mIKuqdZMSchG23RCLTBc34IWpSd/HGIqAJHtM5q3fDADYs73dDrUwrZNo0VgCtUrnIj/C0lCNpiHf7DxJmgj13kzKT4xhaKQ9u6gTvnbTH/HJr/2w5+et3nAaFFnG/t1P6XZyhorTDo6mLGLRKzMiE+NQFxWoqoZ0tqVYBACeN45TF/lcfmCqY/jy1WeCZUh85ne7cONfDnS0XCYMpVG3xCIARFkavN9Jw4VKU8JEhcf6eYnjnq84QAuDWuQZBtPuRva4mX5arFAFYM8f9J/v+ULn5d033B0m6T3hpVjsdCMvVAGKs0ipcXszj2KAgAnjoYk/AiCwm1ztu0xXKB91/Oq0QpW6UiyaSnG4rZYUESD0ESfTClUFCVGSEQ55X/vLhqVrMqZ/ZmSjbnvna64EAFx09mZr2Yee2I1jUzMOxWJToa3jacLbCjUMOOqyzrWc/diYTee7Dys4VNYsMpN2rebM9XoOkJcdqmn7mYxHUa03A5t5JiiKQjjEoe5BLPbbCLfjyHgei+f1TizuvOXr+MWXve3JgrBlo64ONY/PeL6AeTb7MdpQLJpZltEOlqbDNsUiAIiSDFVVT4wVap+KRZCUfg6KDRpvJzsGtcjTiz8c+gOuvevavm1JZwOlz9qE0PSLgEny9QKapNHsyXHBZYXqo1isSsHDmW5i0czcM0GR/sRiVIt2VB/aYaq1OhGL0zbr8a6IRVXxVVZpmuZJLPIBluL1ipNYNO1hL7/6ciz/wHJkLshY1qp7t+/F5LFJxFPBpFY3VqjdwK7mdJOjZsai2xJ22ZploBkau57YBTdM289YXB+wagRY66tUS0gQCoccVqgUbfZKggef9pf3gyVZLIss810mP5bH8ILeicWv3/J1fPhLvdciqzfptbSZs9hmhQqAIzkokgJVUz0Vi3ZlcCQWAcuxDpKe53XFoqAeZ2IxxB53+1UvKKqCPaU9WJlaOchXHGCAUwRddUOvueYaXHfddYhGo7jmmmsCl/385z8/Jxs2wDMXgqRAVjUcmNYvqtvHKnj+xt4UWK8/dwmqTQk3PzbWeWEfJML+TbCWYtHVdMpPAsmNAIBQF4RELET3RFxwNAmqQ9MqPzEGc85NEngwVPDyDEWApFlPAtjMHCRsN0WyqBcx4eElUOLtzYp6TfeFj8biuPN3v8J3vvRZfPbGn4GIZsBGM6CMm5VCfgrves0VAIB4Mu1QtrpJ2XIXVqjdYCY/CXNuW1WdxRxNEp4WqkPzFiCZzmDPjsdx7kXPczxWyE9h1frNiMYTaDbqHZt5YYaCrBJgGNZTsejepl5z90RRQHEmrysW/aMNPLF8zXosX7O+tycBWLZ6HWiawa4nHsWCxUshSWKb7SrHkmjOeCsWASAbZVHlZUiqikQqA5KiLGLRst2lZze5/exVOfxu9fm4/ve78N37DuGJY2VcvW0xzlrqbRVjZixyPXw/YxwNSVahqlrH9273lJGvuHKQr3i8MKhFTkLsvQ2oTgJnXN3d8mZOmNeU7smQsSjzziGIbgYi3NvdlrHIBRKDAHRikeYsS87xfBEwBVlUsGIxVt0PrH4BxCMSMBtXzIpTSWdX5TUFyXksmm6zbnNbfY6XqisWBbFFOJrX67AP6WK3Qr31zgfx7k9+Hbfd+EmnohCAoijY+op3AwCuvHBbaxMVymFxCnhZoRrEYpAEwwNHJ1r7X6s3EY/ZlI0+isVUIoYVi+fh4e178doXXex4bDxfwOY1S5E0MpzMfe+EWCTkqVhs26YeoWmarljsg1hcs3wh1ixf2PPzViyeh2Q8igef3I0Lt23CdLHiUCzSxvFsivq/nTIWOZZBKhHD5EwJANAwGpzPJMUi2AQQn+ernB3gxGBQi5w4eJFCTzf6sQ60o5+MRYZkwPdQv6ia6kksWopFDytUL7QpFqcKgO2WkCIoX1lCTI11JAntUDQFLKkrv4IwNTYFnKH/LPHBpAipkZYVqt9rAs4BIk3TAq1QG8b1OBaP4bH7HsPn3v85fOpbn0I4GkZklX5uNvfhbS94GwBg1YbgaJw5IxZt+ZOVYgVDtms2RerEIul6w1iOxbI1yzxzFk11nkmiBtmhapRO0lKgdMWizQo1kU6gmC+iWqoiFPYnm/eW9mJBbAGidHt+pYmpsSmcc/E5vo/7YXTRKEYX9a72zwxlMDx/GDsf34kLrrhAPyYjTsUiQzEQm/pnxt73idARsBTr+J4RBIH0UNpSLCqKAkmQwIU5FJXOg/dziX4zFucaR2tHISgCzhg6o6dhhAEGGODkRVfE4qOPPmoFMT/66KO+y80m52uAUweirLasrrpZ3sO+ckUuhgXpMLaPVzzViAA6KpYSASoi87kRFwFWyE8BhosHS5Mg0LtiMwgcTQaSEJIooDQzbRGLosB3tkKlSZA06zkPKZrqKzuxKOgN3cjWl6KeHEVDlBGxFeCmFepvfvIdfPuLn8WFL/g7sOFWU4My7KhKhdYEYSyRtDL2CE0BY2yzOcnWTcZiJ/DNBiRbTlW9WkE8mbJ+ZyjS87NEEARWrT/NW7GYn0R2aAQxQ53Z6GCHGmYpSIqKUCTqSSy6t6kX0hkApid0de/QyPyOxOK6085Cdmj29lgsy2H5mvXYvf1xnLZN97l3W6GGaArlAMXiUJzDRIWHrGjgaAqpTM6yFTazGVWCnvX3KcLR+PALN+DFpy/Av9z8BL5y535s2jeN15+7FGmXHSnpyvvsBrEQDVFWoWgayA4K5F0TVaQjDFaPBtvdDDB3GNQiJyG+9zL939XPB6LZ4GWBluWkl2Lx6cga6ZlYFK1cQQBtxJQnykecv/etWGSt4zOeL+AFdzXwvHUpvGdNLJBYBAAs3AaMPdB5W4NQbhGLmqbh6OQMBFmvDRqC1FXGG+k3QKLoGYv2DG7zRz8FmWmF+pPf3oUP//f3cPn5W5CKRzFVcB5fOwlnt0Jt2qxQzVqkzQpVqADhVE+Wt6qqGorFiLVOL2KRJNqvdmdtWImHt+9p+/t4voDLnn0mUkaGUzlAJWBHLBJ2ZCxGIyHUG3z7NvWImVIFTV7AotH2jEU3XnjR2V3btwaBJEls2bgKDz25xyIDHRmLpF7f1Y3BwE7EIgCM5tKYMJp5DUPNcUIUi/0Si2e+FigdAbhBnXEyYVCL/G1htjlostZq5H/0no/iX87+F7Ad8psZkgGv9Fa/2MkMt2IRmk4KdiQWCQ/FoptYdJVFMqXvX0SJdNwvN1iK7UgU58fzSJrNGeiZh36gQFmKRbdSD4BFqlC2nVBkBarqr4StVfUb8ofufgjf+vy3sGnrJiTSCdTE1o06TdCO4WRfxaKxSd1YoXYDu01suVh2EouGYtELqzetxlOPPdX295mpGSxeudjKiKxVa2ap0waVUq31u61QE0mdWHRvk+P5moqD5YM4d/65iDDeLyIKIgr5Aobmdx5yev4rn4+nHm3fp36w5rQ12P3EbjRqDfBNvt0KlWQhNfVrAOFyvMhwGTTkhpXRCOhkpalYNEnsE5WxeDIoFncXd4MhGWydt/VEb8oAAwwwR+iKWLzjjjs8fx7g5MVf9k7jLd9+EDs+9vye1DST1fZmn9ilNaAJQVY9lWN+qPKyr0KICKAiHjtSClxvPECxaFqhhlhndVycngJWGq9NEOAY0lI3zgYm0erOHnTDnvEI6IpFu3Wq6qGoYykSBO39VbaINlsRYVqhkmwEIEhUeCexWCkWQBAkvv3Fz+K1/3ANXvf/3odio/V8c3NMAhIAEskU6oYSgdQ0a5tNtVq1CyvUTpiedFrqVkpFB4lHUyRkRfX8tKzasBm/u/lHjr81G3U06jWkc8OW7at9n7wQYSnIqopUNoeJo+1h6eY2sUIJIh31zen0Q35Cb+wOjcwD9gXfdPz3D37T07qDsHrjaXjy4ft1Yh1AZqhlOUJoChiaRNOwfiXp9n0ajnOoC7L1vU9nh2xWqAaxSFKgSRVz8HXC5kUp/Pydz8I37z6A//7jXnzo50/iJWcswCVrW9vNhPQGLeuxvX6IcTSKdVG36uvwNDNfMR2ZuyDzAYIxqEVOYjRmuiMWTXgRi1J3ZEpPkMXebJjdSsouyDTMuKwtm65BGprrImPRUCwak88T00X8dq+MPJfCe0JJz+eP0DpJNpPchGx6CYDZEostgrRYaaDJC/i7H0l4y5kMmoKk590ajwuiAk96xu9YKxJAkg7FoqiYikVvoqdgkIAf+q/v4D1veDE+e+1bQFFUG7FoJ+GcVqik9f41mvr72m6FWjGUot0PoOQLZUi2xuZMqYKlC22dV4OM1hV2zrr2rA0rcd2Xf+RwN1BVFRPTRYzm0laepEmqdsJINoX9R1v50dlU3CAWXdvUI8x8zW4Ui7/8ykf6fh03tmxche//6g7LCtiRsWhYoTZEk1jsPOU+kk1h0iQWjc9AJHT8p+P7ViwyEWBozdxuzACzxqAWOXnxdGSWzVaxaJJ8T+SfwM/2/AwNuYH/OP8/Ap/DkIyDdGDJzoRdXbYRi4YyjyZoq43CUqxD1ej5uq5reFvGItmuWOQ5nQDl5N6HNjoRi7IkozhddBCLdstPoel8v0noikWKoTzbR+ZxUW2DyEFqRQCoGrXI/37mf3HFVVfg3Z94N2iGRm3KRixStMM21C/fz7QG7VaxGAkYEBJ4wbEe9zotYrG9FMHqTatx609uhcAL4Gwq/sJUAZnhjEOxGPYZ4tFIzSIW07k0xg+3+jSJdMJzm+yYqE+AV3hsym0CXfOutU0b3G4yFt9//fs7LtMt1mxagx9+5YeYmdTdKdxWqCzFWp89d054JqQTi4qmWER9OtdSLJqfAS7Ezfrc0itOFsXirsIuLIwvxFD4+OV4DzDAAE8vjq+XxADHDf/x253gJRX3HfCxq+oBforBffkafrd9ou3vgmEl2At4uXcLtPv3B6vg4lyQYlEFRRLgXGrAmWlnhl8nIjAIqmLLNTQaaBwT/JUrTDqtXyWRd0y8NmrtZBNLk1aenBuCweJocqspaVqhkoYlnZvPPXJwHzRNxQc+8yW84R+vBUmSmKm3Cp8Ype+LmcUIALFECnVB318CKkhjmxt1vRgvF73fq8PUfCTf9u2uPi/5iXHAOKaq2ECl7CQr/axQAWDV+s0o5Cd1q1sDxWmd+NIzFvUbgFoluNCPsjQkWcMZ55yPB+663VJBJFJ6wVk1tinCTwOVCSzO+Ft7eGFqQn//cyO9WQfPFqs3nI7D+/dg7PABAHBYoZKqAoogwFuKxfbv1XAihJogQzZu1HRiUb8ZMMllFRR6FHAGgqZIvP2CFbj1Xc/G2csy+NGDR/CJW55CQdQ/e0xYP/a9KBbjIRqCoisWg1DlJYyXeaybl+grR3OAAZ6x+GhS/3+2GW5ezT+pR3VhN+hVsSgZE9eZFcDIBp106oSZfc7f26xQWRCdiEWhZigWfTIWlfZGwKhBLFbY0UCrRKmLvD4AQKk1LHNkSr+W7ZpRce0f9PdKVlvFwrFp72tlJ8UiL9mGnExi0SdjcfdBfdDmqx/9R3z+g3/vqZYHnCScqVhUNaAhU5Z6sFLXG34OK1RNMyxoI22KRcrlumDHUVveE+ChgvSxQgWAszasQq3RtPYNAArlKmRZ0TMWjSZiqdIdsfi8Z52J3939iJU/mU0lrHXOBkcMe7V+MhZngy0bVuHoxDQee2o/AHhaodYMd4xuFIsjuVTLCvUEKRYJggDDDHKYBxjgeKAszI0SzI7ZqooUTc9iM0lPqZMDAQziwlYnsRTbcd/sakQV+v2Y3QaTozg0ZH9ikQDRZptZmHIRix6KRc04NxMdnF5UD1chhmSsfEKg/Zpbmiq1/c1OLM6MuTIgQUHR/DMWTVJFU1rr7GSvOnZIvzd/2/vfhvd+5r2gPc7nNEE7bEP9FIumrWqz3oQodP5cuXMd7Zh21SJtxCJJWUSqG2s2rYGqqNj3VKt+FQURlVLFYYVaK/vbJ5lWqACw5fwtePTeRy3VokksVt31kQ37y/tBgMCZw2f6LjM1rg8895OxOBus2bwG9Wodj9//OAC0KRYZ0tsKFQCy4SyaUtNB4KVzaRTzel1tEpKhcOi4E4sng2JRVmXsL+/HqtQqpEPpzk8YYIABnhHo6k7npS99adcrvOmmm/remAHmHvbcu25hl+4H4WcPH8V37zuErUszyERbjSFR6U2xCOgEWKQ39wzcu3868PF4QMNfkBWEaBKUK7+wkJ+CPb1Hzwrs7QJsEm6l6XEAGxyPhTs0FwpTTqJWliSHtUajUmp7DkuRIGnvfRWN52qqDPPrbhKLBMNCI2CRgBPHDmNodAGisThGFyzGJVe+zFrPTK1V+LQUi61iMZ5MYcb4rJGaaikWm/UaciPzUJzJezboDux+FucAAQAASURBVNCL9X9n6lgx1DryikfW1vTkGFShjuIdN6L62C2oXHFG23HgZcVzQnH1hs0AgD3bH0f2Qj1nsWCQjNncMChD8dlRschRmK4JOPs5l+KXP/gm9u/agRVrNyCeTKFSKrSRnb26IOUnxpBIZcCFOzfMesWRQgPf/MsBXPPcVUi4GrmrN5wGVVXxwJ23I5ZIguVaE/2kJoMkYFm/kl5WqDEOvKSiISnIAkhnczh2+CCAlhWqAhIMSaA5p+bCwOJMFN9+8zb8/NFj+MQtT+FnM1Ektr0UNK/fbPZCLCZCjG6F2uH8tceYUj1vxSBf8XhiUIucRGgWgYh3vmlXkEXAbT31tCgWmwDnY0nlhXoeyK4A2KhOEHWjZJt2WVs2XQp9OtRuZXrwbv3f5CL9X7Gm2x16EossoEodWnbtkGUFNICpUh0LOiyrKAqoylHr96MGsUjTlEVaiSpgVhrFmneYoy+xqMoAQUKw1aSmYjES4hw5gUfG8xjNpRGLhJFNxfH2qy4P3Ha7DWcmpdcR/3YPh41rR3G+QfJV600sGMni2OQMGk1ed/ZSREBTWrmfNiwYyeLwWB7FSntTTbdBbaFNBWl8ZryIxTPXrwAAPLx9L9Yu19/78amWOs+uWMz4KB7suPKibfj3L/8A9zy6A+dv3WQ9p43s7BFHxvNgGBrD2dSs1tMrtmzUc6l+dcf9oCgSQ5mWSoU2FItVQT+u0a4Ui2ls36sT5i3F4vElFjmWGVhinmIY1CJ/W+iGCAyCDNmX4PEDQzJtBMDR2lGfpXU0pAYIlYBGapZK0m5tylFcYG4jRVJtJMnM1IyDbAzKWOwEodE+UMZSrHOAutpwWG8WJvXrI2Vzn7ErDJsVZy1CgYKsyoj4DFtZxKJsIxYF7/d3ZnIGsWQMbIgFzdB4zTtf47drYEjGskwF/BWLjVoDudEcpiemu1ItRuNRiBDRrLbXXHlbDjbQTiySBAkNmkX82rFs7TLQDI3dT+zG+jPWA4ClqMsOZxGL67VUvVrHEHysTG1WqOdeci6+ct1X8OhfHsV5zz3PUloGWb7uK+3DcGQY82LzcBjtLlAAkB/T93F4/vElFldvXg0AuPe2ewG0E4ssxUKoGP00Vx8gF85hT2mPg1jMDGXaFYthDqJ8/BWLJ5pYPFg5CEmVcNbIWT1bJw8wwAAnL7oqDZLJpPV/IpHA7bffjoceesh6/OGHH8btt9+OZDIZsJYBesFkhbfUP8cbktJd41/VNFR5GRNlZ5HaTWPeDaFHu1VZUfHo4VL7Ntlab/HAjEUVHE2BshWziqJY9o0m+lEsakaRJfHtxXuIdhYftbqzkVrIj1u2nCZE23oa1fYCjaFJED72Y9ZxVeyKRX19BKM3V0iCwCP33ol3vOxS/OzbX0W9VkU8lXKsZ6befjNgVyzGEyk0HIpFY5laDaMLFkOR5cD8Qsn1WVfE9tcz1XyVB34GTWyi4rJXZSgCss9nd3jeQiRSGezZ0cpZNNWpmaGRlhVqNbgZF2VpiIqKdWeejXAkivv+/AcAQDyVAUCgWi4FPr8TpsaPYWh0/qzW4Yf7DxRwtNjE9mPt+7h05RqwXAiP3HcXMjln8U5qCkiSQLNRB0EQnpY1Q3H9s1Ru6AVyOjuEkssKVQE5p4pFOwiCwEvOXIjbrrkAm9IK0he9GXRSz5/sxQo1HmLASwo6nb52TVSRCjNYO2+Qe3Q8MahFTiGYpI4dsjdZNSt4Wa4GoTLWeRk3pnc7f+fLkOxzezQLwj5QoWnA7dfpP49s0v8V67oykTQzFm3XN+PGm+29HNFX3SGPGgCmZ4pApWVjdXSqBIoiMZprTRMLtkZc0aPJBQA0YzQJNr7M+YCVsdhqtJjrC9uInnse2YGzXvZP+NiXvo9yrY50F+Sa3Qo1ndCXf2iKRomdZ5F8lVoDyxbq1wRLtWiqU5n2QZ5EVG+K1ert+3lkfNqhQGtXLOqPeRGL6WQcyxeN4uEnW2S0+V47iMUuMwvP2rASI7k0fv0n3QbXtAedrWLx8HgeC0dybU3mpxtLFgwjl07gtnsfw0g27Xh9xsj3rlqKxS6IxZzNCvUEKRZD3KBxdqphUIs887C3uBebvr2pL0XjXFih+mXd+YGl2Dal5NFqMLFYl+ogFMJ6TQAONSBHcYFWsRRBtakOZ6acikCapEFQ/Q1KeCkWWZJ1bGNpuuR4vDipn7/tCkS+yVtkZ9M15EQSuhUqzdKeA81eVqiy0O4IsfuJ3XjHC9+Br33ya6hX64glYm3L2EGTTsViIuV9f9ioNTBvke5KVHEPJXmANa4fkthOBtnzFb3WZx1Xj7eL5VgsW7MMu59o1a/me50ZzoANsWA4xrFPbqhki1hctHwRFi5biHtv14k489odpFjcV9qHpYmlSLD+99KTY5NIpBIIhXu3MJdVGVWxv1ookUpg/pL5ePjuhxGKhNosaRmSsYhyd500HBlGXaw7slXTuTRKM7r69kQqFgn6xA857S7uBkdxOHPEX6k6wAADPPPQ1R3jjTfeaP0/MjKCV77ylThw4ABuuukm3HTTTdi/fz+uuuoq5HK5p3t7/2Zw9idvx6u/fp/v408cLXfMGOwXckCAtRcOzTiLDlHpnVis+0yL+eHgTMOTjKwqeuEZImTEAqxQFVUDx5CO/MJKqdCWYRjpt5MHQBTaiUV7liEAFKadRGZhcryNWBKEVtFc9yAWOYoE4WFPCbSIRdU2EaVKxoSV0ay87ebv4YNvfzXWn3YWrnjF61CvVhCNOpt5dsWitS0uxWLdUCIQhmJRFAVIooDRhfpUvpsItKObj9z05Biyw6PW7+7cRpoifZWyBEFg1frN2L29RSwW8lNgWA6xRNJGLAbfcEY5CpKsgqIYbHnWhbjfIBabz/8olrz/V76Wr90iP/H0EYtPjun7Nllt/1xSNI2V6zZCFHhkbDaoAEBoMkiCAN9sgCS9vw+5mEEsNvUiOpVrZSyaVqiSRoBxTfUVZ/L47c0/nDUhayIVYXHBIv1zTXL6TQDHdF9EJ0I0hC4GI3ZOVLEsF0W6V5n1ALPCoBY5hSALgFuZfjJYoVYnOy/jhtsKlS9Dgm3Yh3IRGftuB44Y9Z15ejKJRYIEL4goVWotQsKwYw2YlQqEnczzQ378sK6aHN4ALD4XR2ZqmD+cBWVrmNgNMAo+xKKVJedWs6p6xiIvSpaS36xPwsZ+fv9Xd+CiN3wA65Yvwnve8BKUq3WL4AuC3Qo1k/Ru/unEon5ts4hAs8FKt79GkMLs6OQ0Fo60zjH+ikXv55+1YSUe3t7K5TTVqaNDaYQ4FhzLdG2FSpIkrrhgq0Usmtvdtk094sh4HotGj/95lCAIbNm4CrwgYt6Q0yLLzFis8no+ZTeE3Ug2hZmSbjUbpFgslKr49s23WSTkXKLvfMUBTloMapFnHm7aqytHb9rTu4J0tgof0wq1F7BkO7F4rHbMZ2kdTbkJUtGvPxaxaPMtDdGhQGKRJmnHtU/TtPaMRaL/vogXsUiTtGNgtTzjvA8vTBQQiUUcVugCL7SIxaq3YpFhOlihBigWH7n9Ebzr5e9CbiSHq995NeqVemDWIaATwfVKZyvUeq2O0UV6L6Nc6ExyB9Ui+fG8g8B0qwPN98pLsQgAqzeudhCLpu2tqc6LxWOoebg2mLArFgHgnEvOwX233+cgdP3I07JQRlEoYnVmNaKMf2xMfiyPofn9WbLfO3YvPnn/JzvmivphzeY1EAWxTa0I6J9bkyB0KxaHI8OoS3WH0jmdS0MSJdTKNfB8S7HoVkPXKjX84aY/tJHGcwGWYx1k54nCrsIuLI4vRi48uD4OMMCphJ5HUW+44Qa8733vc1zgKYrCNddcgxtuuGFON+5vHUdL/tP7L/zi3Xjxl/7Sl9VpJ3SrWDRxqOC8YEt9KBbHK701/3ZPVhHyyCssqkZuINSOFogsTVo2oIBONLkxG2JR8iIWXWRnueC01CpMjWPIla9nVyzytVLbOlmatCbk3RBN8tVGLJpWqBpBoXDv/+Ebn/oXvOiqN+K6L30X0XgC9VoF0XgCRwoNXP/7XRBlBdM1AVHa+Z7aFYuRWNyWsaiBIgg063oxOrpAtzutlNpJNxr6c7rJ2JyecB4bN1HJUmSb8tGOVRs2OxSLhfwkMrkhEAQBluXAsFxHK9QopysWVU3Dtgsuxc6/PuJQuU7PzC7TND8xhuF5nUzreke5KeFoUT+fzNS8bypXbzgNgDNfEdAzFk0rVC8bVADIxfUGX9W4OUtnh9Bs1NFs1CE0myAIPf/S/Eoe3r0dH3vXW/Dqi8/A5z70Htz8vW/Meh/doFj9XMD5bLMXEmEGghR8/qoJMsZKTaybl0AyPGgYnigMapGTDD02zTwVi5K95pkjxwapR8VidbzzMnbIAlBxNfuECkQHsdgiQAhAVytmVgCsrfEk1XUCkiAxYVOw2Z8f7ptY7Hx9rYwb5OiSc4FnvQtHZxoO8gxwKhZLNe+ajfWze1dMK1QZZulmZkCHOAYT00W89p8/i9dceSH+cMMnkE0nUK42kIx3QSzaJuq9FI6iKIEXRCxboDfz2kg3D8ViEI5OTGPhaKvR1ItiEdBzFh/ZsQ+qMVE1ni8glYhZRFkyHnWQpZ1wxQVb8dS+I9h3uPXZnbUV6sQ0FvfZzJstTDtUe74i0MpYLDclxCKhruxFR7JpaJqGfKGMhlFL24nFvzyyA6++5jOYf/5r8cYPfh6f/sZP52o3LIQGxOIpjUEtcurDz67w1gO34sN/+XDH5/etWHSpmY5UjgQ+pyE3HMQiTdIOBWKICgVboRKUw/a0Vq61kW6Uz4BpN/DMWKQYx2uWp53kWHGyiCFX1q/IixZh6kcsUj6OU2bUimofTrcd5vwteXz5PV/G2Redjf/8yX8iO5JFvVq3Mgf94FYs+lqhVm2KxS6sUIOQn8gjN69Vp3llLAKARvoQi5tW4+Dug1Zm5czUDEiKRNKwII/Gox0Vi/bomnMuPgfTk9PYaxuc8tvHJ6efBABsG9kWeC2fGpvCyPwR38eD0JSbqEk17C/v7+v5azavAdBugwroikXesPBvy1gMZaFCRUVs7XvaGJQqThcdikVzaCF/LI9PvvuTePmWl+OT7/4kbvz8jX1tcxAYjpm1rfNsISoiDlUOYXV6NZLcQNE/wACnEnomFmVZxs6dO9v+vnPnTusmeYDjh/Hy3FuH9WrBenjGSSyKiha4Dq/yZqzUG7G4a7KKxZngIq9T04GjSUc+mpm5Z4dbYdgLvIjFsIsMbSMW8xPIjbgVi6311Cvt020sTQI+5EmLWGwVEqaSUqNZqHwdb3v/dXjnv3yilTNYrSISi+OnDx/FzokqnhqvYqYuIu5SftlJOJIkUTOJRcM6s1FzEotlD2KR0/Rq3k2QKx6Fz9TEmEPN5yYqGYoIzPZcvX4zZqYmMGO8z4XpKYc6LxZPdGeFKqtQNeDs51wKTdPw4F1/tB6vzVJ5l3ft41zhqXH9vVqYDqPYkDwJWJNYzAzZrFCZEFQQumKx0fC9ocxEWBAAGoZFmWmnWpqZhsA3wYXCEGUNDKV//u/93c0YO3wAb//nj+LsCy51HMO5AmVY/bI9+K/GQjpxHERQ75msQgNw3orMIF/xBGJQi5xkKB7obXlF9FAs2moJj5zdvhAwne+JWo+KxeoE2qoat2KRbhEZZ2abwPhjwLILWmpFTdVJVSOf0FSwWYqtWWaQiF0oFpv5Q/oPoRQAQ5U36mym8HYrVJ+MRV91liZbVqjmvJa5vkgoBEVR8On3vgk3fPI9YI11lGt1yxo0CHYr1Hi0nSSsGnampmJx2t3oCsjg9Dp2upqv1ejsJWMR0BWLtUYTuw/qhPTEdNGhzkvFo4596oTnnncGGIbGbwzVIjB7K1T3Ph5P+BOL+nm93JQQ7dIWbdQ4rhPTRUuxGA5x1rX7P/73//D4rv34xLvfgFe+4Dm49c6HfNfVLwaKxVMbg1rk1IefYvHaO6/FzXtv7kj49Uss2kkADRqOVINfpyk1QagtK1SGZJzEIh1qU0HaQRGUo3fitkEFnJmNvcKTWCQZp2Kx0JlYFHihRSzW2olF0wrVq+Ekafox1aTWg4zSOkcrNQVXvO0KfPjLH7bsN/2sUO3HkiVZZ8aih2JRlmQIvIDhBcMgSTIwf9AN1cOlKz+Wx/C81j27V8YiAE8rVEDPEVRkBfue0gfLClMFZHIZiyiLJYIViyAAXmn1qDZv24xILGLZoQLeikVREXHrgVuxJr0GK9Mr/dcPYGp8qm/FoolDlUN9Pc8kFjPD7XnyNElDaAj6QInr+GbDeu1cEVr7njHqmUK+4MxYNIYHtt+zHTse2YHX/dPr8PxXPh8P3PGAp5XvbMBy7cMKxxv7y/uhaAq2jm4FQw5qowEGOJXQM7H4pje9CW95y1vw+c9/HnfffTfuvvtufO5zn8Nb3/pWvOlNb3o6tnGAAExVe2yadYEgcsYLY6Vm28Wv7qGkNNU9Vb69QB8r9kaQ7p2qYWG6c2MhqO/P0iQogsC/v/st+Om3vmJl7tkRnpUVavs+0ZSbWHRbobYTS6aVJAA0qqW2dXI0CcJHsWhajSm2nKmZyXEwDAuQNHIXvh4veOUbHc9p1KuIxhPgDZWDIKsoNkTEXb1NNwlnKRY1FRRBWFapowtNxWK7xRSn6dtlkpK0YV3y4O9vblt2enLcQbpWyh5WqB0UiwCwZ/vjAHSFqp1YjMYTqHWwQo3ZFIvp3BDWbjrDylkEgGq5fR+7RaNeQ61SxvDo3CsWnxwrYzjO4awlaczUROu9tWP1xtMBAJlc65gQbAQqyYAkiEDFIk2RSEYY1EX9fUxn9ZuA4kwePN9EKByGqKiIG1Yyr33fx/HVm27HS177Vpz/vBdi15OPteWbzhYkGwJJwGF33AlxQ1HcEP0b8bsmq0iEaKybP5i0O5EY1CInKWpTwN7bOy/nqVjsz64o+HV6rJEaM3oGYrdwEaqEKgGq7KtYBAAMrQVGN7Z+F/WJ8K/9+iH82xe+YyMWM97P7xHdKBaV8hgAAojq0+9exBIvtq6vRQ9LbSCARFEk3eZVlGAKCY4V9NomEuYwfziL97/tFY6mZqXWQDLWBbFoU/d5DZRVjCzrBSNZMAzdTgRy7Q3DzWuWAQCu+8oP2x7TSVe7FapbsajvoB+xeOZ6vZFm2qGO5wsOEi0Zj6JUDWjmuRCPRXDh1k2WHarnNvUARVFwdHIai+adGGJx68bVANqJRYbUAJJGzVAsdoORbAoAMDlTRIMXwDI0aJpCLp3ENz/xbtzzw89h+6+/ive++aV49RUXYNeBow7l51xgkLF4amNQi5z66GSFWpGClWdzoVisS3UcrQVnLDblZitjUVNAE05rU47iIKgBGYukTix+9RNfxRf+7QuexOKsFIuqCsUVOeO2QnVnLBYmChieP+z4G8/zls1nwzWEQ4KErMqgGRqaB7NoKuwUW11kt18decUIXvL/vcShQqvXvBWLVdm4zmo6KWtX93llAjaMWiSWiCGeinelWEwZ17Adf9nR1mvLT+QdpKtfxqKfFeryNctB0ZRlhzozNeMg0aLxaDCxCDgUsAzLYOv5W53Eosc+3nn0TlSlKl619lWYHwsepp46NmWRp1967Et4Mv9k4PJeGK+P9/z9A4BVG1eBIAhPxSJLsWg2mqDo9u+DSSxWpVYdljbyygv5gqVYZDnWyvy88u+vxHf//F1c/Y9X43kvfR4K+YJD+TkXYFnWsgI+Udhd3I0IHcFpQ6ed0O0YYIAB5h49E4vXX389rr32Wnzuc5/D+eefj/PPPx+f//zn8c///M/47Gc/+3Rs4wDHGUFqHS/ka0Jb3qFXY960Ji03WwW6KuoFSa/KS0FWsTDltMjysoWNBAzWsRQJkgTu+sNv8PXPfgzF6TwSKWcjIzpLxaJ7WpVyNb3KRWfRXi5MY2jUaYUq2KxQmx7EF0OT0HwKfUuxKOk3J8LYLvzy+9+AoihQ4d2Eq1eriMbiaBhFtygrkBQNmZC/YhEA6oZajVObIEkCzYZejGZyw+BCYR9i0VAsGq9FGVmRB554CA/f82fbMWiiUio4jk2bFSrtn7EIACPzFyGeTFt2qLoVautmJRqLd1QsRjgKgqxaBObZFzzXsZ2zIRbz47p6YWhed4pFUQ5W1pnQNA3bxypYOxrH5gVJzNQFNDy+KwuXrsB5Fz8fm7eeC0BXLhMkCQKazQrV/5KRibKoCwpUTUMqqzddizN5CE1dsSjJqqUeHFm03PrsbX32xdA0DQ/95U9d7Xe3IGgWNEWiC7c0C/GQ3hRvBjTid05UsXyQr3jCMahFTlJ842Lgey8FysENMChSe7iu5KoD5kK12KsVarOkk57dojoOMBHwRjOPkvXGkeijWAQALHk2ELNZO4n6tfKX9+3Bx7/yI0xMF8EwNDKmldYsiUVZUdFoBrtCkI08EEoCdAiaprWRZ4DTsrxjxqIbassKlaUIPD6h4P9961H9tQnSsxYpV+s9W6F6wVQsJuNRZFNxJ+lGh/VsSxdGjSbQ/iMT+Nnv7rb+rmmaboUalLHYgVjMpOJYtnAUDz+5B4AXsRjpuE9uXHnhNvz5wSesfZ1NxuLEdBGKop6QjEUAmD+SxauvuACXnOvReKIY1JoCYh7KVC8Mm8TidAkNXkDE1ux988ueh3PPWGd99i4553QwDD3nqsWBYvHUxqAWOfUx22a8AsUiELoFR3EOQlPVVEzWgx0V3BmLNEk71FRhOtxZsQgCP/7aj/Hzb/+8LV8R0InAvqG1E4cMyTiu/20Zi5MFDLmGnBxWqBVvxSJlDIa7yTjzvVQNK3ZhXMD3rv8eAEDhFe++SKWzFSpJko6MRa/1NGp6fRiNRZFIJ7pSLHI26+5bf3Kr47H8uItYdFuhmsSijxUqG2KxbM0yi1gsTBUcJFonK1TAqVgE9JzFXY/vQtHIK3aTnU25id8d/B3OGDoD5y8430Equ9GsN1Gr1CzF4s7CTvzvk/8buD1emGxMBmaL+iEaj+LyV12OLedvaXuMJVk0603QdPv3IRvSj2FdbB27aDwKhmNQnC6Cb/IgCAKaLWJo3rJ51mdm45aNiMQiuP+O+3ve5iCwHNt1Xux3d3wXP9390zlXTe4s7MTSxFKkQ+nOCw8wwADPKPRMLJIkiWuvvRbHjh1DqVRCqVTCsWPHcO211zryBQZ45kL0sFsIwkxNbCP1arx/AV1qSFAtAkj/d6om9HTxYikSizPOhtO+fPtUVYT2ZxVMxaIJM3PPjtkoFjVNa7PrdKunyjNOK1QAGHIp1hxWqD6KRfiEqYuKmSUgoP7UnZj4wQcQjSeQzg2BcDc7zdeoVRCNxa33tGYQhrmI8zXaFIsGmcyq+vY2DMViJBZHIpVGpdh+g8IYliRuIic9NA/Xf+jdqBrWotOTEwCAzMh8LHn/rxE77TKUXetjKZ1Y9PsUEQSBVRs2Y/d2g1icnnTkCUYTyY4ZixGWgqYBokHonXPhc639BIBapRT4/CBMTYwBQNcZi9/8ywH87137oXb43hwtNlHlZZy5JI3185NQNWCi3N5kpigKH/ufb1mWqOYAAKGpIEkCfLMBMuCGMhfl0JAUyIqGREq3UinO5FtWqIoKzmOyL50bwuoNp+GBO2/rar+7BUmzoEmijcwPQiyk759fdm1DlHGs2MTa0UG+4onGoBY5SVE3rmnFg8HLaUq7YtGd/TNLYlEDAfRq+yOU9dzEblEZB6LD+msBII0miwgbGegmBkc3WuSTvrDefKiJ+rl8PF/ASDbVslo2iC+rbCr0nhczNtV+/bWDE2aAcAqgWBTLNTSaQptisSF2tkJlmQDFIklCkGTcc0TGs2+sIxaiEQ2HQPkMrJRrDSRi3RCLwUrXitHMS8QiyKYSTitUNuKbUQ3oxNTbP/JFjBvHb7pYgSjJWGTLNWqzViVMYtF/m87asNKmWCw6iMVUPNaTFSoAXHHhNoiSjL88sgMAUJiFYvHIuP4dXuxSiRxP/OBz78f5Wze1P0DSqDfFrhWLIY5FMh7VFYtNwZGv6EY8FsH5WzbiN39+wHeZfhDiBrXCqYxBLXJi8Hj+cWyf3n5cXqvbZrwf+lIskk4SoCSUIGv+BKeiKhBVsaVYhAKKdGYmdiIWacKZyViYKiDiugZTPv2GbjE96ex7uBWL7ozFynTF2wrV2A7elfdsEo6kMcjqtl81CV5VVlHbUcO+6/ZZr0+FvPetXq23HQc7CBAgCbIjCWcSi5F4BIlUoqeMRYqm8MWPfhHjhqJe5EWUZkqOY+O2kTX3y0+xCOg5i36KxVgy1nGfBFe9fPZFZwMAHrv3MQBA1VWLPDTxEBRNwWvWvQbDkeAaY2psCgD6zli01tOYQoXvb9jqff/xPpxz8Tltf2cpFnyT9yQWI0wEYTqMuuwkmjO5jJWxyIU53/MKwzI46zln4b4/3tfXNvuBYbvLWKyIFTw08RAOlQ+1EcezQVNu4mj1KNZk1gzyFQcY4BREz8QioOcJ3HbbbfjhD39oTVeMjY2hVuveuseOL33pS1i6dClCoRDOPvtsPPBAdzd1P/rRj0AQBF784hf39boDeKPS7K6ANptcpYbYRgwFWQmWm1KbwrFYlyyyphssyUaQjDhv1vdOeRCLTACxSDkzFmfykw5rTEAnkmYDkxAz0UYsFtqJxdyIU7Eo8k0QBl3W8MhY5GgKms/El2BM5O186G5M//I/EF37bJx36RUIxVKey6uqima9hmgsYZErpsXpcNRZPJkknGkX4lbB1Y3zQSQaQyKVaSNZgdYgpZvIueQ17wDfbOB/Pv5BAEB+QlfzxXO6mi+8YlubOpCmCChKMMm2ev1m7NnxV8iShFJhBmmXYrFW7UQs6seAN47rirUbkR0etR6vziJjMT8xpltuDI12Xhi6pfDhYtNTfWjH9rEKaJLAhauHsGJYn7gc60IhbBKLtMJbVqhBTZKhOIe6IENWVVAUhWQ6i+K0boXKhcOQFBUhn7zDbedfgof+8ico8txZdJA0p3/felAsxgwrVD/F4p6pGjQA567M9mSxOsDTg0Et8gyHmzh0E4t9WBc5nk5QgNwjschXelcsRlsT3qZi0Zmx6CIWo65miqB/XqtCi1h02EAaxOQ9Y8Y5Z9etvdm1Ajg22W5pZkdMqxqKRRZHjcafW7FoPy8W/RSLBrHYtnmqnrF4x/1P4J9uFXDpchr/8ndrEQ0giMrVes9WqF6wiMVoBLlUwqnmYyK+g1kA8LWP/SNomsJb/+0L0DQNR8Z1y+7ZKBYBnVh89Kl9UFUV4/mCpZAEdMViL1aoALBi8TysW7EIvCAa2zQLYnFC38cTpVgMBGkoFiPdKRYB3Q61pVj0JxYB4PLzt+CO+//aUeHbC0LswN3gVMegFjn+eO0tr8VVv7nKYcX4dGG2xKIKtWdikaEYh1Jyphl8DTdtU92KRTtRyFFcYMYaSZJtGYtuG8hZKRYBTE+4iEVXZmNppuT4XdM0R8YeQRCOjEUvK1QAIFnjOLisV81jeuDhAzj4uYMILwvj8jdcDiZgAMQvY9HaJuO/TiSc+Xg0FkUyk+wpY3HrFVuRzCTx6Ws+DUVRkDeu03ZisVapOfbXzNsM6vau3rQaB3cfhMiLesZij1aobmvddC6NdWesg2jUIpVSxSEceHz6cZw3/zxsHd3qqeq0Y2pcJxbdVri9QtVUHKj0mAPfAQzJoFlvgmK868c0l0Zdqjv2PZ1L64pFnkcoHApUUZ590dnY8ciONrJ4Nug2Y/GhiYegQoWi9T4QEYS9pb3QoOHseWfP+jwywAADnHzomVg8dOgQNm3ahL/7u7/DO9/5TuTz+oXtM5/5DN73vvf1vAE//vGPcc011+AjH/kIHnnkEZx22mm47LLLMDU1Ffi8gwcP4n3vex+e85zn9Pyaz0T8x2934o6dwcdkrlBs9FZA87KKvCvrsSr4EwSyqkGQnYVeqSG2kY1BWJgOWySACS9iMRpALDIUCdKhWJxCZshZvIR9CoZuMTPlzGqhSedXzp2xCMAzY5E2iMVmrb3AYGnSl1gUFRU0SWBo/iKkLnwjsldcA1mSwEa8C+RmvQZN0xCNxy2itybIoEkC6bDzNUzFYjyZgqZpbeRgo14FSZIIhSO6YjHAJtQkpExEk1n8f//6Kdxxy82445afIz+pH0f7++O2QmVI0rEOL6xavxkzUxPYv1uf6s/a1heNJ9DoQCya1rhmZhVBEDjngudaj9dmQSxOjR9FZmjEypnsBqWG2DE/64mxMpZmIxhNhjEU4xDlKMzUOxeWJrHIKXUQBMB3sEI1iUXJIHfT2SFDsdgAF45B1QDO5/u07fxLUauU8dTjD3fcrq5BM6BJwvEd74S4oVj0OxftmqgiHqKxfl5iTjZxgP4xqEVOAbRlLDaDH+919QRlkIQ9kHBCpZ3gDEJ1HAi3SCHSeK5I2AgMykVmuOoA0wq1apyW3Qo2k5hkzacdvg+Y7i175dhk+xCTHWmaB9g4QLE4OuFNLDaELohFw/bR3cyDKgEEgWULR/Duc1j87JVhqBqBsE/+nKqqqNabSHawHwM6W6GaxGI8Gm63QmVCgYrFXDqJb378Xbjlzw/i6z++1ZN0rdabEEVb3Ux0RyxW6008umMf6g0e84ZsxGIs2rNiEdDtUE0UK7U2K/5ucXgsj2gkhFRAI/WEgaRRawqIeuRX+WEkl8LkTKmjYhEALr9gKwRRwh33/3W2W2phYIV6amNQi5xYlITS0/4aJ4JYZEnW8ZyZ5oyDJHTDJClMMkmBnrFof0qIDgVuh2mFar2mS8EGtBOBvcJULJrqSzfBUJlpvw+3W6EyIQZCs6VYbFbbrVABgGCN4yB7E4vZhVkMXTmEpdcsBQBwnP+1oV4NtkIlQIAgOhOLlmIxFkEi3ZtikeEYfODzH8ATDz6Bn3z9J57EoqZpqJVbvTBTrdlJsajICvbu2IvCtIcVaqWDYtGDHDv3knOtnxVZsfYbAEJUCK9d+9qurDCnjk2BIAjkZjHkxFEcGJLpmE/aKyxi0WfgOhvOoik3HSrjdC6NYr6lWAwi+c6+8GxomoYH73xw7raZZbo6l903rislBUXo2cI5CLsLuxFn41iXWTdn6xxggAFOHvRMLL7rXe/Cli1bUCwWEQ63JkZf8pKX4Pbbb+95Az7/+c/jbW97G970pjdh/fr1+OpXv4pIJIIbbrjB9zmKouDqq6/Gxz72MSxfvrzn13wm4st/2oc3fetBK9vNRI0PVvj0Y41d7lKxaMehGWfhUefb18ELreLDbreqqQoqTRl8B4LEjuE4B8ZFcuyaaJ/Q9lIsmmaZHON8fnF6CpmcU7E4GytUAJiZcuYhdFIsRmJxRKLOZo7A81aDquGRschRLWLR/n5PTU3h6x+/FoTURCQaRfLsl4MgCIgCDzYa99zeumVf2iJOKryERJgB6zrepmIxlkhBlFUorg9bo1ZFOBoDQRBIpNJt1qV21AQZsktteNEVL8EFz38R/vu69+PA7h2IJ9PguFYzSeCbEPjWDQVDkYaK1v/Ga9WGzQCA+/+s227aFarRWNzafz+Ynwd71tTZNmKxUav0rbrLT4y1kcqdICkaZur+E2+CrGDvVA3r5yeRibIgCAJLs1EU6iKUgDxKACi5zgPNRh2kT5YnAIwkOON91L/bqdwQitN6xiIb0T9vfkT9mo2nI5XJ4v67er+G+IGgGD1jsQfJokks+tlB75yoYlk2imwsuDk5wNOPQS1yCsCdW+S2IPWzQs3v1sm1DtAISie0XNcm0z66zcISAKSGpSDsCkIFiNgUi4qhWCRshJlbseiGQSyaVqgT+aKDaDKJyZCZx6IpwEO95cx0skIdCSlAKIFaU8YjO/aCokjHNoRDHBq2gbFizZt85YzhG8lGLBaLRbzlR+OYrsmIhEO45lwWJEGgIci+CrJag4emad1lLBpNKz8Cp1JrgCAIRCMhwwrVVkfREactrQeuuHAb3vaK5+Oaz3wD9z++CwxDW9l9JgrlVu1gXj58BPoAgDPXrwQA/ObPetPImbEY7ajC9IKdWNQ0DaUODUE/HJnIY9HoUEc1wQkBxaDWELq2QgWAkWwaE9NFXbHYgVhcs2whli8axS1z2MwL+ZDnA5waGNQipz5mSywCCCT0vFRhjCv7d5qfRoL1H2o0LSntikXKdW3j3ENOLlAE5TjvF/PFNsWie529YsZwTzAJPjex6FYsAk7yjOEYCLwAGsYgaEOALLVqE1OxSBj9H/uQU61Ww3XvvQ5SUQLLsRh5yQgIioDIiwj5DKuoqopGrdGRWCQJsqO6zyQeI7EIkulkV8Qirer7SakUTjv7NLzy71+JGz93Ix675zEAaLOJtasgVbMYCbiUr1i7AhRN4cE7H4SqqD1nLHpZ655zidM6tFKsWL23SxZfgo1DGwPXaWJqbAqZoQxopn8ymyRILEkswWR9Espc5LYbpRpDMWg2mqA8Il4APWexITUcquP0UBqFfAF8k0coFAq0Jc6N5rBq46o5zVlkObZjXuzR6lGM18exILZAJxbn4pgZ2FXchWWJZciEMp0XHmCAAZ5x6JlYvOuuu/ChD30IrMvaZenSpTh27FhP6xJFEQ8//DAuvfTS1gaRJC699FLce++9vs/793//dwwPD+Mtb3lLx9cQBAGVSsXx/zMZcgcyYC5QanRvA8YZnZPDM87p6rqHPePu3butn+0kotYoosJL4DtYOtqRjrTfqO+Z6o5YNBVV7ry3wvQkMrm5VSxO2xSLJNEuVHATi+lhwwbVKIRJkoIg8KAIvThsVMttWZQsQ0IzvsqqUQA8+eST2LZtG/567x3QatOQ7KSuwIMNeU+im2RhNG4jFpsSUmEGjKtLZmYLxpMpz/e7UashYhCYuhWqv2KxysuQXKQ5QRB45ZvfiVqljL8+eK+DdDNvfOzrpI1AIy3gpmd0wWLEEync/+c/AHASi7F4EjUPq1k7opxJLLa29Yxznu1YJkiZGYT8xFjX+Yp2TFT8icXdkzUoqoZnr8yBNd6/FUMxFOpim2rYDfeAAd9sgAy0Qg2Bl1TLLi+T0xWLPN8iFkM+RD1Jktjy7IvwwJ1zRyyConXFYg9XuTBDgSRaVrd2NEUFRwoNrJs3yFc8GTCoRU4BtFmhus5lfpOyX9oK3HAZ0CwFrl4jSD3bz9XQK5f18/z+oxNeTwNqk95/90O4NU1NyjxAMVDsU/3ujEU3TMWizQrVbo1pZiyGKKDMa0B2FbD9ZssivRscmwq2UQszgMrGEd/ycvzbF76LeUMZxyR2mGMd1/kGL0EQ25utJrknG9eXvXv34pxzzsHPt9dxYLoJXhRhznQ1RAVhH5WAqULsygrVWDaT9B6YqtQaiEfDIEkSuXTCQ7HYuc679q0vR6Mp4A/3PIoFw1nLAt6EfZ3dDMll0wksXTCCX/9JtzicZ1OFpOLRvkjB885Yj1QiZtnLtlm0dokj43ksdjUrTxqQNOo9WqGO5tKYnDYyFjtYoRIEgcvP34pb/vxQT7nvQRgoFk9tDGqRUx+dmvHdIEj540WmsaTz8zTTnEEqlPJdh6kcs4hFTVcs2jMWQ3TwQIanYnHISQLMVrFoKu3MrDeGdJ4fhYaAZqM1NByKhhw2pGyIdVihAkDVNthjZSwyzozFI0eO4NnPfjZu++VtECdFKLZ6RhREsCHvOq1ZbxpOTgHEotadFaqp3AtHw0imk13ZXI7URzD23TEMSfo1+ap3XAVJlHD/Hfcjnowj7LoW2slKxahFNNL/WsaGWCxdvRT33a4P6zkyFhMxCLwAOWBg2ot0X7FuBYbmDSFk1CL2bbp40cWIsd25IUyNT2F4weyzntdm1mKiMYGm3DkGphM0Sj+WFEGBb3hnLALAUGQIDdlJLGaGnBmLQcQioNuhPvCnB9odQPoEwzIdX/P+8fsRoSO4aOFF4BV+zhSLVbGK8fo41mbWIsENXJ8GGOBURM/Eoqqqnie4o0ePIh73vqn3w/T0NBRFwciIUyU2MjKCiQnvhs/dd9+Nb37zm/jGN77R1Wt86lOfQjKZtP5ftGhRT9v4t4hiD8RijNOb94cKTmKxFmCFCsChstLqJciqhula59e9eK1eYNAu9ZyiajhSaIJVnEVDcMai8zG+2XxaMxZZigTlmgCvVUqQpVZRljWIRc1osDIcB5HnQRuKRUUSwTedx5qlSKgwLT9k3HrrrTjvvPOQTCbxrv/5KWKjyyBLrWMr8DzosF4gN+tOMta0N43aVJNlXkYmyjoUonaLrXgiibpHpma9XkU0pq8nkUq3ZSLaUeElT5WYqZDLT45jaLSVPUkZdqF2YpEymqwaSUPzGc8jCAKrNmzGricfA0mSSGVaDeFoPNFRsWhaoUpyq0gPhZ2Kin5zFvtRLALATM2fWNx+rIxEiMYZi1PW31aPxDBdE9qsa91wnweajUZgxmIupt+UlQ0r5ZYVahNsWP8cBBH1255zKfbv2o7pyXHfZXoCpVuh9qK5IAgCEZaG6EG67pmqQgNwzorMIF/xJMCgFjkF4M4/VASnutBt5eie+C/sC16/j2KxI3olFuOtxgclN/TcPvuZpxOxKNQAEDBd6CdnSk4rVIIESBohs38x/3SgNok41X2t1skKFQCqaqvpuGjUSSyFQyzqLoeMGY9pe9a4NsuKgj//+c84++yzAQD3vSOHrSuHIIiSVXvVBAXhEIuHntyDv+5y5t+YZGEi1lmxaFqdppPezapKvWGtJ+vOWKSDrVBNUEb9c3Ri2mGDag452dfpp3h346wNK/HgE/rAnVuxyAsiRKk3lQxNU3jryy/DRdt0Zwa7irIXHJmYxqJ5J2G+ImBYofK9KRZNK9QuFIsAcPkFW3Dw2CR27j8ymy21EArI7hrgmY9BLXLqYy6IxV4HFdyKxZnmTLBi0cMK1a0uDFEdiEWSastYdFuhzlaxaGYsmoSUV9ZaMd+6t0+POC0zGY6ByIuWFSrgJK4swtFYraIoeOCBB7Bt2zaUSiV88aYvIro26iAWhaYAzufaYOUidrBlJwnSQRx6oVFrIBKLgCRJJNKJjgpHQFdDFm4vYCSqnxPMSJL8eL5NrQg4j4UqdbZCBXQ71J2P7wQAh2LRJHTdOZZ2eBFVBEHgytdciTOfdaa+TeXWNtFU98R0fiyP4XmzJxY35jaiJJSQb7bHD/UMoxUWokO6YtGnrzEUHkJNqjkVi2bGYkPPWOyGWKwUK9j1+K7Zbzd0xWKQ+lpRFTw4+SA25TZhYXwhREWck3MfoOcrAsC5888F6RPfNMAAAzyz0fM3+3nPex7+67/+y/qdIAjUajV85CMfweWXXz6X29aGarWK173udfjGN76BXK67m94PfvCDKJfL1v9HjszNjeKpjF6tUBMhBmPlFqFHQJ9ED8J4uUWGqI2S8bfOk0RrRuLIRNpv0qdqIhRNQ1h1Fj8R2iiQPWoq1sOnqi1jcRbEIgFgJt+6ESQIwtNaqlRsKQkyFrGoFxs0G9IVi7YdqLqUfxzdIhbzRw/iRS96ES644ALcfffdiKRHQJGEg7wUeR5MyLtZ56dYzERZMDYypVmvWfv0Dx+4DnUPIrlZryES02+qk+lsoBUqL6meqkcTxekp5EZapBtFtROLpq2eGkpBig75ajlWrd9sbZOdKIvG4hAFHoriX0SZRLOo+DcOg5SZftA0DVPjxzA82rtisRCQl/jEWBmrhmPI2aw7V4/EwUtqoIUqAJQavVmhmq9R5lvEYmlGt0I1iewgov6s8y4ASZJzp1okKdCuHNVuEONohyLVxO7JGmIcjY3zk3OzfQPMCoNa5BSA6JruVkSnitE9Kdt0nVvdmYwuaCSlKxbRY9ZcpYfhhlAKCLXOCaTCA0xYJwNNdLqJFusAzVnXLFVVHQo2AADFtIjF5CIg1luzpZMVKgBM8a3z88JRp/1ZOMS1DRB5KeJMddax6Spe8IIX4LTTTsO9996LVRkABAVBlGD2YeqCjHCIxb2PPdW2HtMKtFPGopnFCADf+fR7PZep1psWsZhLJ1CtN6GYpDXFWZmI3WBiuoiFI63vvDnkZlcsNru09T9rg26HGuJYB4Fq2r/2k7P42Wvfgq9+7B/btqkXHB7PtxHLJw1IWrdC9WncemEkm8Z0sYJKrdFRsQgAF27bjBDH4jd/mhs71IFi8dTGoBY59TEXVqheWXRBcCsWO1qhuhWLRsaive/QyQqVJEiHwrFeqbdZoXoRgb3AtEI1rTHdikUAKE63ar3MiLMWYljGqVgknGSatf3GZjYrTVx22WVYunQp7r//fixesxgA2hSLXIjD5M8moUqqY5u6IRYJOBWLn/rWpzyXM4lFAEhmZncvWcgXHMSipQ601WXWPna4DV69abX1c9rmlmHuc6PeG7EIAK9/1+vxof/+kL5NPWRJ2jE1NoWh+bOvRdZm1gIADpQPdFiyCxjHkqVYNOvNYMWi1HAcn3QuDUmUMDM10zFjEQDWnbEOiVQC9/2xc/RDN2A4PWOR8ql5dxR2oC7VcdHiizAc0e8xGnLvdagXdhV2Ic2lsSq9ak7WN8AAA5x86Lk6uP766/H85z8f69evB8/zeM1rXoM9e/Ygl8vhhz/8YU/ryuVyoCgKk5PO6fDJyUmMjo62Lb9v3z4cPHgQL3zhC62/mcopmqaxa9curFixwvEcjuMCA5kHaEe5GTyd4rZQjIdpTFdFaxqPoQg0PBRsdkyUW/k8mkEsjpVaTUKtB4svfX16QR1SGyijVQQnOb0CoASPbEIPYjE7NAI81Spo3bmCvYBmOYdi0Q+lmdYEVXpY/9yrkgAKABuOQmg2QcVax8NttcnSpP49IEgkcqO49dZbcdFFF4GiKAiyApoiIImt4y0KPCI+xGKjphOG0VgCgG7hI6saRhIcKKr1ntarepH4ia/+AIuWrcTDh/Rt0mxN4UatarNCTUMUvDOZTBQCiC5N0zA04qFYLBcAGISjOVVFklCJMOqCjJDHJFksoRfzbnWq+Xee99/OiKVYnFtisVIqQBT4vhSLpYYESVHbMkcLdRGTFQFXbJrnsO5cMaxPII6VeKwe8b9JtQ8YyJIESRQ6WKHq59mqoWpJZYfQqNdQKRexhNNvToIUi4lUGutO24IH7rodl7/itb7LdQ3SsELtkViMcjQkRYWqaiBtZPpTExUsy0WRiQ7ykk4GDGqRUwBSHYBtGl0RnarEgEyibqBnLMq9KxarPRCL0SGAbr2vlNwAwjHAdd7RCBKE3/6INcc6AKeCDQBAMghRTX1XCAJY+Vzgse93tYksTeHYZLAVqqRoOFZtbbOdPAOASIhD1TVsMlOqYr6LAGVoCqqmIRvn8Otf/xrPec5zwDCM/j6QJHhBsKxQ64KCSKiloNA0rWVzbkz+d8pYrBo2ZT/+zw/grI3eDYtKrYFE1FQs6jUJLwiIAvpx7+EaoWmaQ7FIkfrAmJ1k5cXuPremwnLeUMbR/E3F9b+XO9iq+SGb0q/r/VihCqKEyekiFp2sVqgUjVqDR9QnD8sLI7kUNE3D4fEpLO3CVi0c4nDxOafhljsfxPve8rLZbC0AIMQOaoZTGYNa5NSHrMqztkYW3FbvHcC6nA6qYrUrYpFS9fssU7Fov7Z0ZYXquh5mh7OA7dI/G2KRpEhLsWjCi+wszhStDmV61KVYDDF6Rh30fSEoAuVSGcmF+j28RThSgKZqoDkav/jFL7B161aEw2E8fvBxAC5ikRfBhTnkf5VH/ld5DO1uXf+6JRY1TUOj1sB7P/1enHb2aZ7L1Wt1RA1790RqdnaQmqYhZ9QisQ0xUGUKJEmiUqyAoikostKVFSoAxA0beYZjwNoygS3FYq0B+FzGJFWCqqmeKrRQJASGZXRisbOrfdv+TY1NYXj+7BWLI5ERJLkkxmpjs14XSACaTvw368EZixo0VMSKpTZNG7nlE0cmsGL9io6KRYqisOWCLbjvj/fhze9786w3neVYSIoEmqQ9Vfb3j9+PofAQzpt/HiYb+jWoIc4RsVjcheXJ5UhxqTlZ3wADDHDyoWfWZNGiRXj88cfxr//6r3jPe96DM844A5/+9Kfx6KOPYni4t5M/y7I466yzHOHmqqri9ttvx7nnntu2/Nq1a/HEE0/gscces/5/0YtehIsuugiPPfbYwM5jjlDlgyfzDk47LzKJEINiQ4QZ/8hQZEfF4kSlRSKqjTIIAMdsxKLQpZWUifGqgBhHg4OT0DQtCymhvcHiRXKkXRmLXgpDrcuimuFCmJnq3KAsTreIxeywTiyZikUmEocgNFuKRZJqI67ERhVTP/0oKg/cBFmWcOmll1pKPEFWQZOkU7Eo8KC4VrPO/li9VgFJUaBDzmnwhWlnc8+0DDWVjSaRrNkKkHq9hnDUKKCTzhsDL3TK9rSTbhRFgaScx4Kw7BoIaBTb0dLXrU6NGupKgfcvokIMCQLBisUgy1c/PPmInrO0cNmKDku2o9iQIHhkAm4f079XF64echBkizMRUCSBfAfr4YqNWDTtd4MUi5koCwKwVC3prH5jNjV+DJTxeTKJWT9sO/8SPHLvnRDF3m7AvaARFGiK6KVnDACIcRREWYViayLwkp6vuGY0PshXPEkwqEVOAbhvWBXJqVJ0ZzD2iL6IRTYK1Ka6Xz6S1e00DViKRfeIuMdUvgWh2kYsOjIWAYBiEbafPldc3PUmcgyFsamZwMbosaqGSdvAl5tYCodYVAU3seisq+oNHh/54vfxb38UIMsqLr74Yp1U1DRj8EdXLHK0aYWqKxZNlGy2YKZar1PGYjdZjGbGItAi3cSGoeajeyd9FtmtUAGkElGHOlDoUrFoYt6Q8702VZqlPonFEMciEub6skK955EdAIA1y3p3Tzge0EChwQu9WaFmUwB0JWY3ikUAuPz8Lbjr4e0WwT0bDBSLpzYGtcipD1mVex54dqOpdHZlssOtWAQQmE1mKRbVlmLRnZnYSbHoXh5AmxXqbInFarkKgW/d47ntWQmScFihuhWLLMc6rFBJhmyzQlUlFb//8u8x+ZNJKIqC888/H+GwXgOYmXGK4CIWbVaopXzJ+tkiFhPBxKJQFzpmMTZqDYRj+nYk0rPPmTNJt0X/bxEiWyJIpBMoF8sWOWhaoXabCeJWp1qKxYDroEkseoEgCCRSCYeKslvseXIPBF7AouWzP4cRBIEN2Q2YbEx2JPOCIKmS3hdUdXVvs+FPLOaM7PWy2BI2ZHL6Z3lybBJcmOtKxXzORedgz5N7LKXvbMCwumLRKye1LtXx5PSTOHP4TIxGRxFn9J5Yr+ctLxT5Iqab01iXXRc4HDHAAAM8s9FTdSBJEtauXYtf//rXuPrqq3H11VfPegOuueYavOENb8CWLVuwbds2/Nd//Rfq9Tre9KY3AQBe//rXY8GCBfjUpz6FUCiEjRs3Op6fSqUAoO3vA/SPuqhADiBO3EiEaOycEBEyam6aIiFICtSAJtZUxXYx1RREORqTlf7JhImygOE4B7XaPYsQdpEcoXAYEVu2oB+UiF4YSB2OEcuFUS4WOpIkxZk8AP1CmzEUixaxGIpB5HmYvBBBUqiUCkBa387piTF87p/fBnF8DImzXwbFFbAtyKphhdraBoFvgmJaxGFpJo90fAkAXYkYjcbbiKolmQgqtgFaU7FoknF1QQFHk2jaistGrYphgwxMpF3qCxs0SQDBcJbSzQ85h5qPQCKZ0olFY1c02Wh6GkzSwZkGVg7755tkXYpFkyQVmjzg07MiCAJhlvJ978PRmKEo7Uyk2vGzb38N60/fimWr1vX0PEBXevKSjFjI+Xl+cqyC+akQlg05P9MMRWJhKoyCcRPkRZ6rquZ4PyxiMUCxyFAkEmHGssU1iUVFlkGx+psUZoNnWbY95xLc+IVP4clHHsCZ5zwncNlO0EgKDEV67l8Q4iEGMzUBiqpZln17p2pQNeDc5Zm2fNcBjj8GtcgpArfFTicr1B6hEX1YoXIJoDkDT/90L4RTup2mAVJu6CQh6TxPaBQDwq+JIFYd6wBaZIgFitHPRya3x3Y//s0yNERJxkypAj+zvGNVDZNsi8iyq/IAIMxxqDXbFYsm8oUyzn/ttXhq/2Fc82IKkt3ZwuYmIIitdVSbMoZHWs3TY5MzSBuT8+VqHSRJItqBQLKIxYBmXqXWcFihAoDCG9veKf/SA+5j485t5EVJt7/tUnHrVqe2rFD7IxYBIJOM92WF+vlv3YyNq5bgvDPW9/3aTydko0Mai/RmhQoAsuxUyAbh8gu24h+v+wpuu+dRvPR5z+p9Q20IcQPF4qmKQS3ytwFZlS1Cql8IstBRMWiHW7EIAGnO/95SUASwJGsRg16KRa912kES7fdMmeGMaWAEAL42it3AzAe0qxY511BVIp3QrVANkyKvjEW7FSrBEA5iUagIOPg/ByEcFDDyuhEoLpctMzPOrViMR1v9gvxEHqOL9H6MSSzG4sH9ITOHMIiArFdbisXZWqECwNC8IWiaBjJEAqSugqwUK2A5XU1n7mMnxaKJNmLR2JdGtQH4tHEkxZ9YBIB4Kt6XFepP//enGFk4gq3nb+35uV44feh0PDz5MOpSveP3wA+W6ljTLXf5Bu+vWAzrx7ImtgbmTJtZRVbAhTiIigiGZAKtlrdesBUEQeCBPz+AF7zyBX1ttwmWYyEqoudwwMOTD0PVVLxg2QsQpsOIs4a7hxzsNtYN9hT3AACeteBZPfdkBhhggGcOeuqQMgwTaBPYD171qlfh+uuvx4c//GGcfvrpeOyxx/Db3/7WCi4/fPgwxsd7sKX6G8d0dfZKn4YgQ1a7n8xLhBlIigaF0ZshDEWAl9RAkcBMXYRie41kmAnMiuuE8QqPbIztyfbQrVjM5Ea6vODpy3Q6Qgyn30AU8joj16x7qCZjcYNYNLZhxFQs6u8jHY5CcFmImio9/uh2/OcH/wGKLGP0dZ9DeOnpbfmAgqSCJglINnJTVyy2bm7M7QN0JWIkFmvLCFqYcSsWnVmMdVFuO55uK1Q/aLKAMEOhygfftNmtUAEgnso48iY1awpNf386ZXZmcj7EohD8vBBD+Spq48k0quVS4PPd2PXEo3ji4fvw8je+w/qbeWOodvgeshQJUdEw7VIfqqqGp8YrWDOaQDbWXkAvH4qiUBch+uxHVZAdn+9mQ7+xogKIRUBXLTZEfajAJBYB2IjF4OevWLsBmaERPHrvnYHLdQONIMGQZM+KxXiIhqCojsGIXZNVRFkKmxcO8hVPBgxqkVMEnopF2zlp1opFsnfFYigJ8OXunxNKOkhEUlMMBaOrvPZQH1hwKRZz6QRYt8rJoxGyq65fXxUyWIXAGdfmIDvUaZ7GZLFFRLkz9sIhFs0AxeLbP/I/yBfL+MFnr8UL1zBOmyXFeB5JgRdb16qqIDsUZPYcyHKtjkQs0rEmK3dhmWonFk3FIgSj2ROkJPVBO7HoJPF4Qeycq2mDm1icrRWqvk0JFHokFnfuP4Jf/+kBXPPGl5y0zR9JNYnF3qxQTURC3SkWly0cxZplC3HbvY/1snmeGCgWT10MapG/DcyJFWqPGYvu7EGaoJEOBRCLsgCWchKLNEE7FIgkQXoqIU1QpFOxyLBMm2XnbBSLhDElPT3ZIhbd25PMJp0Zi6MuxWSI9iUW+WM8fnXdryBMCnjFp16B5NYkVNcgsEksinyrFjGtUE3Y1WG1Sg0kSVoZhp77pRGWqi+IgGzUGogYtcpsrVABYGh0CLImg6D045pI68QiY1xzZGPQt1vFoludau5LYMaiKgaS7ol0AtUea5H8eB53/OoOvPzNL/cl7nrF6cOnQ1AEHK0e7XsdvGKc61WdmFZVFRTdrvIFWsRiXWrVcbFkzHpvQuEQRFX0zBi1I5VNYc1pa/DQXQ/1vd0mWJbVFYse3+H7x+/H8uRyrM/qQ2UxVn/vez1veWFXcReGwkNYklgy63UNMMAAJy96ll68853vxGc+8xnIcrC6qBf84z/+Iw4dOgRBEHD//ffj7LPPth7705/+hG9961u+z/3Wt76Fn//853O2LQMADUnpqMazIxHSL4pKSG+6MxQJQVYDFYvlhuQgNdIRpqMVZhBm6hLSEdYtEggE48pYdGfuzRYmsWjmLKoefuaJdA6lQqvAzgwZikXJJBbjEPgW0cWGIxZxVbn/JowuWoov//gWMNmFAICxI4cc6zczFmVbM08UeBCMnVhs5UDWqxVEYwk0bZN8MY5G3KWGq1cNK1RDsVgTZIRcpFGjXkMkphcmiZS/YhEAUhGmzWbNjZyLWEwk0yiXWsW/6lIsTtec5LUF40/tVqh6kc83gonFCEtBVjTPm8xYItVzxuL/ffurmL9oKc67+PnW38zP8USFD/wemaThRMXZ2DhYqKMhKti2LO1pP7pyOIaZugjeh1gsu7K0eINYJDt8wXIxnViUFQ3JTNZanmD1G7ZIQMYioCtCV6xZj4N7dwUu1w00kKApAmQ/xKKkOj47OyeqWJqLIh0d5NKcLBjUIicYHvbiva+j5vy9kxWqpgBy93WCrljskVgMpwxiscsaiPVQxXvk9mlBE9JC1UEctuUrAp7E4pSoX8e1Dl0jjtGvAUHEYllhMVVsvR9u8iwS4tBothoMsQiLQrm1fC6dxP0//k+ctnYZAGDHviOtJ5vT2ATVplgMc3ZisbV95WoDyVhwvqK+XBdWqPUWsZhKREGSJEjT3onpnqAy4SZds6kEposVMMZx5kUR6EHV4X6/zW3t1woVADLJWM+Kxf/81s8xOpTGa154Ud+v+3TDLE17yVgMhzjrmHZrhQoAp69bju17DnVesANC3IBYPJUxqEVOfciaHKjK6ga9Kn/czf90KB1oZSooOrFoLwe8cu+C1FpuxWLGlf8LzE6xaA6n2hWLlCtiI5lLOqxQLcWice5nIywEXrD2jYtxltVm4Y4CGI7Big+vwOgGvZ+y76l9jvXLmgwChFOxKIiO3FE78Vmv1hHpYsipWdVrik5WqKZikaKpQHVjNxieP+yw9nRbocpmTA3Rn2KRoimEIqFgK9QOisV+rFB/dsPPEIqEcPlVl/f0vCBszG0EAQKHKv1f083vMKEREJvGcacBhmLavmscxSHKRB3EIkEQlmqRC3MQZAEM1bk+WLl+JQ7uPtj3dptgORai2q5YnKhP4HD1MM6Zdw6GInp9a1qhzpZY1DQNu4u7sTy5PFBxPcAAAzzz0fPY0YMPPojbb78dv//977Fp0yZEo86L4k033TRnGzfAiUHTIAaCHrcjYZBOSigFQFcsCrLi28sjFBEVXoJgs6dIR1jsmap5P6FLZGMsDvSwPOUqEtO5IZ8l+wNrWC7pOYveeTXJTA7FmWnA4DTDhhWraYVKhyIQ+IJ1nxCKxDF+5BAWnA7krnwv/uGcNIaGcgD0wvmOW38BfPgt1vpFWQVJEJCkVuEp8E2QTOvGojjdUiw26lVE4wmHYjEVYRByEUJmFmMorDdr6oLcRhrpxKJemESiMdC0f/GUijCoCf435fFECuFIFLA1yhKptJPEkyXY76gmKzyaotJmEWpmIGZybmLRKKKE4EydiGGFqmgaaNdnKJ5M6Va1wTyqheLUOO78/a/xD+//d081oKoBdV5G3CfXLx1hMVnhMeNS++4Yq4CjSTxrhbfx3drRBEoNCVVe8swMLBkFs2YoYE3FYpAVKgDkYhyeGq9AVlWwLI1EOoPSzDRImgOptJP5Xli8fDXu/dPvOy7XCSpBgqZIz0nCICTCDARZsYhFQVJwaKaOl5yxAKmTKF+R5ViAB7hQ95ZwpxIGtcgJxizVhAAAyUWcqCKg2hoU7hvaZkkn/bqEnrEooGtbUwAIpYHpvUCsSwIi5DF1TocAwnU9C2oeiHUHcdiWrwj0ZdlpgqV1O7QgYrGBMCYLrWPr3oZwiEXe9ngqwuHgsdZQ0v986B2YN5zB0XHdgeEXf7wff2c+aDopEISDWKw0JUfGol2xWKk1Au1NTXRjhVqtNy1iiSRJZJIxMCqvj1b2YCkLADRNYTjrVK5nU3HsPzKBEMtAkmR9H0nSaoT6QTSafqOujEWaphCNhGatWJwpVbBonp/5rRP5Qhnf+cXt+NA/XHVSK+xEWf8ux6K9XfdGsilUao2uFYsAsG75Ivzxvsd7eh0vnMzHcy5g5pcmOuShnqoY1CKnPmR1DohFpTdikSAIsKROBABAkksGkoKmFSpp0wx4ZSaG6BBqkne/hSSc90zpofZaZDbEIkESiMQiOrEYb72mHalsCsUpj4xF43pKR3TFormfXJTD5Jjexxi9ahTPkp6Fe8P3whA0Ys9f9zjWr6gKSIK0SDcAEJoCWFstYlcsNmqNjgQggZZisROxGLENTCXTs3PByY3mHMRPMp3EgZ0HLGJRERWARUcZiTkonfEYaovFY6jX/GsRURWDicV0Avt37geD7q6DYlPEr3/4a1z56isdx2q2iLNxLIwvxER9AqqmepLunWANB2iA0NCPu0qpCJNhz/WluTQacsPxeulcGlNjUwiFQxAUoaNiEQCWrFyC3/3sd1AUpaNzVBBYjgWv8G2vef/4/eAoDs9f+nyLdGQoBizFzppYnG5OoySUsDG3EVHm6a0RzOGA2RyjAQYYoH/0fFZNpVJ42ctehssuuwzz589HMpl0/D/AMx9NUYGk+hcJR4tO4oVjKIRoskUsksGKRUpuotKUHHaSmSiLcjNYsdYJQ902Ag24lUzuzL3ZgqIYcKEwZqYmHX9Xbcc2kc45rFBN2IlF0bBCVSUBQqWAO265GUKzAZKLgGYYsLbMN1l2HkNBVkFTLitUngdB2wroKbtisYpoLN5OLLqsKPTlEtYEX12QEeFay6iqima9hqhhhaoHePtPKqUjrJXN54Xc6Ly2v7mJRdWWIwlNtwcteqhgZ6anALQrVCmaRigcgdAMViyGGZ1Y9Pp4x3q0Qv3TL3+ESDSGy158lePvdmJ//4x/QU+RBIbjIRQbokNB+cSxMpblohhJeE/1rxjWCexjJe99tb6LRg4VbxyTTsXacJxDXVQgGdtv2aHSHBiKbCPzvbB4+SpMHD1kfe77hQYCLEVg4wK98X/mou4m5RIhBoKkwhQs7s3r+Yrblp1c+YrnnHMOAGDxslUneEtODAa1yCkAqYMVqtsqFQD4UuvnDkpEnViUu1cfAkAko2cemhB8VF9rjUlq0uOc6JGjFKxYrAF0u2Lx8Z0H8PD2vcY6+ycWCUK3g7QrAt2Q6SgmZ0rW77Trmh/mODQF/XoqKhrGKxJ+ftt9KJT142OSJ54kiqlYJGnwgp1YdCoWj021VALlWj3Q3rS1XAMURQYq0Sq1BhLR1rqyqQRChLEddG+Nq/nDmbbroE7iVa195wWpKytU83jP82jeJmNRy+a1H2RTceu96QZf+eFvQBAE3vGquVMIPB0QjNK0FytUABgxiPJeFIvrVixCvlDGTB/5UHaE2FM7Y/GqKy7Av77heXjZFZec6E05IRjUIqc+ZFWG1suAkgf6ySqzq5mSbBfEos0KFfC2LQ1SPboVi24FG9CuMOwV2ZGsQxHoJmSSOacVajhuDJEYLQI6TFs2ppqioba/hofvehgzEzMgaRIhU83us5myKoMiKEi2ISdREMGF/BWLQWQhYFihdpGx2Kg1HOtKpPu3Q40moojEIg7ix8xYNO02JbPe6nDrbZKibitUQCdKm3X/voiodCAWU71ZoT56x6PgGzxe+qaXdv2cbrEptwkTjYm+yTJrOEBrWemqlAqWYj2/a9lwFk2pCcU2iGlXLIqKGGhNbGLxqsWQBAkTRyY6LhsEhmXarFBVTcUDEw9gQ3YDFicXO5aP0tFWrmSf2F3cDQIEzpt33tNusb98+XIAOuE+wAADHH/0rFi88cYbn47tGKBLiIraph6ba/CSU7Hozls84EF0ZKIsxsQUAF2xWBf9FYuU3ERVkCFITmLRnevXCyhCt2Hs6TkuZnGurFBNP39JFJAdHsX01DhgE8c1aq0CK57O4tD2dlsGM2ORYiMQeB5ErYjJH18PqV7GyrUbwYUjAPTXYW0qMHdIuSiroAinFaosS3qT0vhT0ZGxWEFueJ5DlZqNcgixzsK/XqsgGm9ZwNVFBfPDrePPNxvQNM1SYAI6Eeh3W5YKM9gx7p9h4bZBBYBkKoNKqWjNwCkyD0C/oSAVESrN4cB0DYtc+ZBmpqRphdoQZdx/oIALVw8hlkiC55uBJ8YoR6PUkPT8Q9dXMZ5MYfzQPniY43nikTt/h5e96vUIuyac7YToU+MVnLYw5buORZkwSg0JkqKBpQk0RQUHpnWFXTrq/Z1YPqS/3lTF+0a33JQQYSnUa/rnwFIsdrihHEmEUONlyMZ3IJ0dwgE8BdCMYUvaBbG4YjVUVcWxQwewbPW6jsv7QTWsULNRDk989HmBKmw74iEavE2xuHuyhghL4YxFqb635elAP9OWpxIGtcgpgLaMRdlphepWNNKsU7EoBrsctIjFHjMWZQFQRJ0gtBOZdmRXAYwPKcWEAbi2LaCZB6muv66BeUZz577Hd9qe3zs5YV5Pm6KMBcNZXbFo6xMqitK6hLExTE77W0SFQyyavICZhoqX/aSJiZKCFUsWIJN0Xu1YxuPqaWYsEqRDsdgMylisOslAP5SrdSRjUd+GhaZpqNQalqoK0Ek3hjDIIqq326CFI+0Ni1xaVweGDJWAnrHYuU4fz+v762V9m0pEUar07+KRScZ7skL94S1/xltffhmys2h0Hg/wpmIx0rtiEeg+YxEA1q/Qm2xP7T+CZ5+1oafXs8P8XJyqIAgCH//7K9vsn/9WMKhFTn3MhWKxKQcPrXqBJVnUoddBMTYWqG4SFT2vTUZrSLdXYpFy3dR6EYuzyViUJRm5kZzDCrWNWMzoVqhJ6DWRdW03iUUjY1FsiDj034dQO1RDdjiL7GgWKOnqQZqkocL7/VI0XbHoIBZ5sUVIoj1jMdqFGrterYOkSMd6vJYJ22qRZDppvb+9YsiwZDetUAkQSGaSqJQqGHnVCFLpFCS+u4H9glF7eb3fsWQM9Yr3NhIqAUEROluhFivIdGnl9OTdT+LCKy/E8Pzhzgv3iDOGz8BvD/wWJb6EcKx3tx9rOEABJCMyRiEUsBTreU+eDWexv7QfsiZbik1TBRwKhVBUil1ZoS5dtRQAcHjvYSxY6u2A1g1YjrXOEyZ2FXahIlZw4cIL26xKY2zMUqT223PYVdiF0egoFiT63+5ecbJmhA8wwKmOrs8SqqriM5/5DJ71rGdh69at+MAHPoBmB2XPAHMP1Sszbo7Byyokm5pQcJFVh2YabduRi3HW5H6njEVKakJSNJRseT3pyOxuvIdiLMIeWXJBoEgCii330G2N2S8mx/Rg6Fq5iNzIqJWxaKJaKVk/J/0Ui2bGYiiMSqmAJ274IJTqNFacdQEo2rmfTmLRWUSKigqKIiCJLuWebUKqYCcWPRSLuRjrUEXqy1WsTEIAaIgKojbFokmemhmLAJBI+xeVqQiLSlPybUwMj7YXJPFUGlWHYrG1j6QqgqVIHCu1E2fm/poK1cePlvH9+w9jf76OaCwOkQ8+r0VYCqJhhepGr4pFAPi7q9/S9reCYW06FOdwcKZuEXVeWJqNolAXre/pzokKVA24YPUQGB+FXSLEIBtlMV1vV3QCQKkhIca1Pmd8l1aoQ3EOTUkBb3x+TMWiRjJgKBJkF4GHi5frCrzD+3d3XLYTzNeMhxhfktWNeIiBpGgQjHPDU+MVLM1GBvmKJwkGtcgpBLdiUXUrFl3vqyzqdqhu/Poa4KNJQHIu35di0XBe6MVytQ29KhbFusMq1UvBFkhM+mBiugQAKNd5LBjJ4ZhLsViuto4/E007FItuREIcStU6zvlmAzvyKl64ZSkoj8zdQMUiQTuJRVFC2Ea6ODMW611boQYtV2/w0DTNskIF9DxICz02SRfNa7fMN9WB5r7rVqizIxZnr1hM9KRYlGUF73nDi/t+veOFpmQSi70qFlMAelMsrlq6ACRJ4il7XmgfONWtUP9WMahF/nagaMpxt0IFnIrFGBMLbO6btor2PD0v29IQ5X/udKsRvRRs/Vihmoo3SZCQG20nFu1D0clcEjWvoRqTWIzQaNQa+M3HfoPGngZWPG9Fm9s9QzK+75esym1WqKIggg2xiKyMYOTlI70rFqErFmPxWOCQkz1jEZidYtEk3twZi5IogTyLxMK3LIQgCF0RQjNG7eVFLEbjUTTq3rUIpVIQFRGK5i8MSKQT3u+nDxRFwSvf9squl+8Fpw2dBhVq3zmL5neYKlMWaasQCjiSA02015JD4SHUpTpktfVZcygW1e4Ui0PzhhCOhnFo7+wynxlOVyzaicX7J+5Hmkvj/IXnt312Y0ysoyI1CJqmYXdpN1akVgzyFQcY4G8AXROLn/jEJ/Av//IviMViWLBgAb7whS/gne9859O5bQOcICiqhpqt4OIl5wXlaLHheBzQCQUTNEVCVFpWgm6QxtTeeKlFLKYis7vxzkQZcAH5bZqHDwRJEBZhAswdsTgxdtj6OTs0ipm8k1isV1u2SolMDuViuz2ZaYVKsSGIogAuNYzR138euflLnLmCgIP0u+jyFzseE2QVNEFCFJ1WBprt5qHgUiy6MxYXpMJtxUa9VnUoFhuijChHW0e5bhCLf60n8Lvt+v4nkv7EYjrCQNWMRrAHvBSLiVQGtWqr+SsLguNdXj4UxWSFt5RnJlas3QgAYDn95qpkqAMrvIRoPAGBD775i3I0JFmFl1twPJlGtVxof8AHZ55/GXLDo21/L9b1gvWyDSM4NNPwtHTdPVnDrskqlg9FUWiIFpm3fayCdITBxgXBFkxLc1EU6yIkD9Ky2BCRCLW+k81GHSwX6jgFljPOA+Wmfn5IZXV1h0bSOsnXxRRZIpVGKpvD4f17Oi7bCW5CvBuYhCovKhBkBYdmGlgzmpj1OWqAucGgFjmFILnOtYrkzG6UO1ihmnji//R/jz3i+LNFLPZiYRZO6f82Z0EsMu2T0J2IRdV2o++ZsdiHFereQ2PWz/OHM21WqKVqq9mTzOR0pZ0PwiEOgiBhJErg/rdGsW5xFjOldotIU7F42bPPaP3RlrHI24acVFVD2KYgs2dA6laoXRCLtUagZWrFIOfsxGI2ZVNZ9mjr5qVYzKYSUBQV9ab+eebF7hSL65YvAqArHt1IxiOzzFiMo1JrQJL9G352vOjis7FqFpPwxwsmsRgNUIV4YSRrWKH2oFjkWAYrFo3iqX2HOy8cgBA3qB1ORQxqkacXF/74Qjw08dCJ3gwAhhVqL84HHuiHWLSrC8N0sMJKUAQwFINaqnVd91Qs0v7nQHceoztzL0yF+1IsHjt4zPo5N5JzKAJJgkTNVoukDHV5G4wyguRISIIEJsxgxb+tQG5VDhVXLcKQjE7maMCKTSucqzGIRclmyy42dSvU5R9ajqErh5Afbw1816v1jhmL1nIBNQvf5KGqKiK2emU2GYumYlFQbVaorlqiyTe7IhbnL54PABhZ2O7cFUQskgoJURUdVp9uJNIJaJrWtZXw0vVLsXrT6q6W7RWr0qvAUiyO1PobFjIVi4RMQDDEEbIm+yoWhyPDvsSimbEYZG9sgiAILF6xeNbEIsuxOrFoDCyIioi/5v+KM0fOxLxYe58tzsYhKEIgcRyE8fo46lIdm7ObEfFzeBlggAFOGXTddf3Od76DL3/5y/jd736Hn//85/jVr36F73//+468uAF0vPrr92HpB37j2bA/WWAq2CqlkufjpUar4HJTARMVoY3osBOLDEVA7JCxCADj5dZk52wVi+lwew4gAFQE/T2QI+3NIIok0Ki3itm5skKdPHbU+tlTsVhuNSwT6Zznd4iMplHf8Sd9ml7TsOF1HwMdzyEcTzpUegAcqrR0xrmfoqyCItGmWNRsTUw7sdio1RCNJdCwEceLs+3FQL3WUiyqqgZeUpEMt9ZpHtf78yR++vBRNEUlMGMxZbz/mk+Tzy9j0X6jJ0m8w952/bwEJiq8w9YVAN573efx/T+0blbNPMG6qCAaT0CW/bMeASDK0gZx7qFYTKTAN5tQA4psoBUwffGLr/Z8vNAQEeUoXLh6CJKiYce4U3lQNSblRFnFglQYsqIhX9WL3CeOlbF6JI5sB4XdyuGYrnSU2j9/paaERNimWGw2EI50LgrNnNNSU/+8mYpFhaDAUgQ8BC6eWLx8FQ7tm71iMWjYwA/xkL7fDUHB/nwdiqZh29K0r/pzgOOLQS3yNEJs6Mq/e/6n87IdznFdQW46z6Oq2wrVQ/3hZ00KOJ8L6Dl3quJhhapfJzy/0aZiUZW8Hu0OXjfQfopDDYDUgKi2rn1uBZuqqn1Zoe493CIWF4xkHcQdABTLrfpnJBdsU0WSBCRFwV1vimBZmkQmHkKhXG07tObwyXz75LuVsUg5FIuAk+iZmC5aLhKVWgPJWPdWqH6o1L2Ixf5VAgs9sltMotK0Hu02Y/HT730TDtx2o2d2cSoeQ2kWxGLG2KZCBztUU8H33qchz+jpQENSwTA02B5VgJYVag+KRQBYt2IxdgwUiwN4YFCLPL2Y4WfwsXs/1vZ3e5P+6YCX7aOsyb7Wmt2in6wyu5opxsYClmwpFhW6VQd5kYBBikWSJB331W4Fm9SQ+lIsHj1g64uM5jA95VQs1my1SDLnQ7YpQOXhCjRVgyiKuPzDl4ObzyEUDUESJfCNFnHLUiwUTYEmaEjPd/YeTCtUWWp9jiRRAme7NvAN3soddOciekIDatVacL6imcE4R4rFoXlOK1RAtx11vGaz0dX79cq3vxLfu/N7bc8HgFgiZm27G6Sq1zlBpHncPsgVgFBI/1ye96Lzulq+H9AkjdWp1ZisTwaSoX6w56SanzdJkxCiQ57Zo0PhITTkhuO7b5L1XJiDpEhdKRYBYPHKxTi8d3ZDTmbGoqlY3F3cDUmVcNnSyzyJvzgb1xWpfd7v7S7uBkVQOGf+ObPa7gEGGOCZga47pYcPH8bll19u/X7ppZeCIAiMjY0FPOtvE/fu15s3uya6tyE63tizR1cDHdjzlOfjJRtxGGadF0tF1bDLRXQ4FIskAUlRfaf7vIjFMEv1pS4yEQ/RnjaLlqOrR5OHJAhH3qGZuWei35vDyWOtC39ueB5mppzEYs1mhZrItDepZEmCcHQHpn91PcpH90EQeKtZF4knUauWHbYEQeSJqKggSQKy5LyhUWyFZr1atjIRzezEhkHG0SSBJRkPYrHaUiyay9qJxWbdaXshyEqgFWraVIP5TEJ6WaG6iUpJFEFTrc/ApoVJzNREx2cZ0JWKw/MXWr+bJLogKQ57Vz9EOcqXWIwn09a2BGHTpk0AgAXLvafyZmoCkmEG6+cnkYow2Dvl/L79ceeU9fP8tD7FOlkVMFXlMVMXccailIMY9MKakTimayKaUvtNeqUpOd/PRh3hSOeJzZxBLNYEfZ2mClgFBYYiQXXpe794+ao5USwysyEWJQW7JqsIMxTOWDKw8DhZMKhFnkY0DOLpqV93XnY2VqEmZB4z060GExS3FarbKlX2fl1zYkFwNgQ10tsKVTMm9odCHuQhF+uKFAoE236u1PxUAqoIaCoaSuvc6CYWaw0eCFAZ+GHPoZZKYMFwFvmC89gVK3Zisf0cpyiKZae5Y+9hNHnBqkXSsTAURUW51gX5ZWUsEm3EYjjUaqooimptY7namBMr1Kphwea0Qu2/mbfIk1jU1ycZ19JurVBZlsFSD4UAoCsWJY9rc7cwyc5OdqhbN63GU7d8Dc/ZsrHv1zqeqItqzzaoADA6ZCoWe3vuuhWL8NT+WSoW2VM7Y/FvFYNa5MRgtsrBTrDbYJpQ1NlboQpKH8SibaCok7JJkHVi0e4s40V2BCkfSZAOgs5NLDZqjb4Ui25i0a4WJEGiartOeRGLmqZh6t4pHP6fwzj616PQNM16P0JR/ZxerbTWwZCMbl/Lq5BJZz6mpOrkqOSqRTiXmt38HNQrdcTiwaQuAaKjYtFU/c2ZYnF+O7HoXp8kSl0pFimK8s3u62SFCjgJNzesberwtV26ZCkAYPWZT49a0cTmoc2YaEyg4eWI0gH2nNRmowmSJCGpki9Znw3r35+K2FLUmsRiKByCqIhdKRYBYMnKJTi099Cszn8sx0JWZItYPFY7hiXxJdg8tNlzeVOx2O+5b1dhF+bH5nuqIQcYYIBTD113T2RZtqZJTDAMA0maxVT3KQ63BeMzCaVm8Pv612POBpVJKAC6YlFSNMg++0+oEliKxFTVSb4kfawGNQ04MF3Hf/5hN77y530oNNq3Lc71NkFHQO9FNmxWqMm0s4Dmm/1Ni5sZiwCQHR6B4Mrsq1ZsikUXsVivlPHBt78atSduQ/byd2No3TYItsyOUEy3lLATd2wQsSiroEgSouC8oVFdX/1CfgoC34Qiy4jE4miKCpZmI/jia87A8qH2gtquWKwb6sa07f2r15zNLFnVAhWLiRADkkBbQ3fBkmW47CVXYc2mM9qf4yYWBQGMTRK3bl4CGoD908Hvo0k8CrKuWOyEGEcbitz2x+LJlL4tYvANJNlBujdTF5EKs4iwFM5dnsXBmYZldcpLCm63E4vJEEhCJyO3H6uAJIAL1gx1tC1dNRKDrGqYqLhscjUNFV62VKSAnrEY6oJYzMb059QNYnHF2o0YXbAIGsWApUl0EbEIAFi8fDWOHtzvyEDtB/0oFk0rVEFWsHOiiiXZSEf15wDHD4Na5BSCLDiVj5oC2HOC3RmMYs07Y3GN0dzd/VvHnzWC0klFn2nbBWGxRXqZIEjAUAY0hYDP1I6ft2+fCS9lgZ9i0Zhkbsj+xGK5Wu8rY3HvoXHr5/ke2TkOYnHIWYvU6k285B8/bhFzl553hoMUTMX072BXOX6mwoRk2uxW7cQiAIxNFaBpGsq1uoMM9MOsrVC7xILhLN7y8ufh/K2b2h5zKyB5oTsr1CB0Q6oGIZN0qij9QBAE1hqWrM8E1AUVsUiwJaAXNq1eioWjOU/FaRDWLV+Ew2N51Or9Z+cNFIunJga1yN8OZE2eNbFoJ4C6RbekA6ATl27Szyv3LeSRAW2CIihLqQcAmRFnLdKsNmevWHTZiZOEk1h0q/hEXsTH/7+PY+qhKYy8fASrLl0FAJbikA3rx8iuerSIxaYKhVAciitZlUEQhIPcBNqJRdOutVatIdKhFiFAoF7pQCx2qVjkCR4L/35h299NRONRvPDqF2LLc7YAcBLWbcdOELsiFoMQTUShSN41NKno67YTbm7EjVqkWytUP5iEWi/fCS+cOXwmykIZ+Ua+88Iu2PeTr/MIx8KQNRkhJphYLIutvt/iFYsxNG8Io4tG9YzFbonFVUtQr9RRmOo+bscNU7FoP09sm7cNw2HvKKgEm+jbClXVVOwt7cXK5EqkuFS/mzzAAAM8g9D12JGmaXjjG99oWfgBAM/zeMc73oFotHWRvOmmm+Z2Cwc4ISh5kHcm4iEaO8cqWD7cet9z0daF0bQMdFtQutdRqDsJjVSYsewcTRvZXZN6sfmJW55ChPUoZlUFIKk2VWUnsLSunrIrFt1kT6NaAQyrCQCIdvkaE8eOwLxEZ4fbp3Tq1TJgrGpkuHUxV4UGPvq2l6BeLmLkqo8jtGgjCGUMgtCaBIvG9ckvnbiLWfviB1FWQXtYoaoECdhsXaanxsGF9WZNNKYrFsMMhXOX5zwJ33q1gkhMLxZNYjFjI18aLmJRUTUkkmnAp8dFkgSyUQ75mvMzEY5E8b6P/5fnc9yZjaIggI60mrPLchFwNImxcnBDyMwD5GUVsS6IxahBLHoNDsQMxaIoCCCDBxwDUaiLWDUSQ4ihcPHaYdz65ATGyzyW5aK4a8+0RTICeqbp/GQYhYaI8TKPhekIFmc7NyVXDevv39FiA5tseYwNUYGiag4VcrPRQCgcaXcUdIGhSCRCNOqCvn3L16zHd3//IK7//S4wFOGwqg3C4uWrIIkCJo72rhSIRCMA9BvMvohFQ7FYFxUcnK7jis3zBvmKJxEGtcgpAoICFKFNTQj75LMXcdcstv8tu1L/d8fNwEX/Yv3Zyuz1UQrQJACx3spVNBFKAkIFP7vjEbx2wwu8t3/sUe+/AwDVfr7wzVg09rcqtE6usaiTOClValhkf36Xjb09tozFBSPtxGLJZvmWzmRAUSQUo/Z6zmv/GfsOj+MVz38OfvrbuxDmnNufjuvb2Im4AmBTLJIeVqjOhsyxyRmsXb4Qsqx0rVhMRLsgFqMuK9R2UUogWJbB/3783Z6PuYlKXhDRte+3D1KzJBZNstMrB/OZjJog95yvCADLF83DkT99p+fnrVuhk667bI3xbpGIRUAQxKysdwc4eTGoRf52cKIUi1wPA0WmFaodvSoWCZJA3eZCkM46B3gb1YbnOjvh6IGjVn5jzjXcQZO0TgoaXxmGZVpklKLh+rddjyM7j2Dr67eieXETTFPfx6pSBUiAiOnrrZQrgHGqZSkWqqpC5VUopOLIlZNV2VuxGOYAW9tqemJad3IKyFg098lULI4uHPU9BuZxtZOUiXQCcH0sHo88jtR5Kewq7sKmeZvQpJtY9elVqKp6rUVRFK751DXW8nbCOhwNg2ZarV1J6M+61o5Ywr+ZYSoWg0jz2di92iGq+msEEePdwFTnHagcwPLU8p6e61YshpP6dylCe9eguZD+Wa+KNne04Qx+cv9PAADiPrHr7/jilYsBoK+cxXA0DIIgkMqmIOdlB5n5gqUvsL4bbiTYBHiF74tYPFo9Cl7hcfrw6bN+zwYYYIBnBromFt/whje0/e21r33tnG7MACcPyi77SDuRkYtxOFRoOMgLjmkVLoxhR9kIIBaTYaaNvLTnLLpJm1dtWYjVI3Fc9xuXdauiW06Z6qwm9HWIWnAhRZEECBex6EbT/VgXnAjfbDjUarmR9iKzWikDRq0ejkQRMgg9kovgwhe+Cs+/4kX4yJ/1STmCYqEqCjTjhiZsEovVCgCdtAyykJUUXZsoy85jrcBJLM5MTVp5eNF4As1JBekI47AWtaNeqyJqEIsNg0TK2MjlRr0GlmsVEpKiIpnO+BKLgG6n6yYWg2CqA63XkATQtmYeTZJYORzDRJmHomq+pFbFyCsUZLUrxWKENYnF9ptMS7EoCehX46ZpGkoNCdkoB44mccFq/X3ZPlbGonQYv9s+gU0Lknj8qG0CLhvBVJXHkUITF64ZQjbaeQJuJMEhE2UxXnZamJiZk6OJ1vtnWqFKqoowSwd+FbIxDnVRhqppII3vpSjrGZxedsVeWLxcn0jtxw517dp1wL0PAgA4j9zVTohzeoG9P1+HrGrYujQzyFc8iTCoRU4RUDQgi+25iPbJZ9FjKMSLWDTBV4C7/8v61SIWA2yafInFsjNXbdehCYSEApb4r6kFr8abz427qVi0E4tulGsNIGk7pyc62wqpqor9RydgDiB5EYvFStVq5pEkieFMCuN5fRr6zS99Hi46ezM2rl4K4IP4+W33OJ6bMYnFYhfElZWxSBvEYutY2BWLJElibGrGIgO7ylisBVuhmuuK28jaXLp3YjEI4RCHcIhDk9ffS0GUThrFYqFctX4+FVDllb6sUPuFqeZ8an/vOYvrVy7GgdtuwJIFc5PfPsDJhUEt8rcDRVWCLQg7ibE03YKzV9VWL+osUW0nKbwUi0FEBgnSoVi0k1QA0Kz1r1hcBP1cmhnKOBx1CBC6YtF2yUsb1tUEReBZf/csnHvduSgMFfCDnT8Ayej3Y7IsAwxAG7EftVLNIhYtxaKgW6HaiRFZlUESpLcVqsGphuNhTE9OQxREKLLiq0Q0LTAZlQkkIAFYx9VOLCYzSWDcuZyZ5VmT9AHZYqgILsehOONd+9pJPYIgHDmJkjh7YjFIhWlmLAaR5izHIhQJQdM0i4jtB3VRf3OCiPFuMBodRZpLY6zWu2W1g1isNxFOBROLmbA+AF+XvZ2zJFXqmnRbsGQBaIbui1gcnj+MH/zlBxhdOAppUrLOAQQILEst831egkuAl/m+MhZ3F3eDJmlsm7et5+cOMMAAz0x0TSzeeOONT+d2DHASgSYJS8Vl4vEjJevnXIzFjrEKRB+bQtOOsiH658OkIgyKLmIxE/VXBQ3FQ1jiocIihSpUJgST/2oS+gWa7/Kj3XBlAdpRLveeITV2+KDj98xQe0OhVi5ZxCIAsKEwDn/h1aCiSbz29vuNXDiDWKT1Y2LmPYZjNmLRGCKjSL1Uc9+uaJoGUVZBeATOy2qruAuFI5iZmsC8hfo0VDSWQPOIgnnJkCcZp2kqGrWqRcKZikW7qqtRqyISa025NUUFiVQGCBCgjSQ47Bj3fxwAzHsRNZoFw7KIRFuvIQqCRWqb2LQgidufmkJTVCwlmh2CpEAwgjh5SUE21rkBF+UoaID1PDsisQQIgoAoiH0Ti3VRgaioGE2GQBAEhhMhLM9FsT9fx30HZlBqSnjPmQsdxOLyoSju2ad/Zs5ZnkWI6XwjQRAENsxPYKzUhCirlvLVJBbnJVvFLt9sIByJQpBUcDEqUHmYjbKW6pGkWsSiboXa3U1FbmQeItEYDu/fDcDboiNov0z0QyyGGBIUSWDPVBUhhsSWpYN8xZMJg1rkFAHJAIqINhm0PVfRy16JL3mvj40B6aXAY98Dp+nXshaxGGBBVhkDkq5sGTfRCODOx/Zg8zClE4sBDUaVZEB6NHI0XytUnfQs8wHEYrUOZHqzfzoynrfUhwCQSsQQdll9FW0qAQBg2dY18v973Yscy4YNVY6ikaAItT/FIkmBdxOLNiXkaC6NsakCyoZlWHeKxc5WqBzLgLXZUT4dCrJsKo6jE3pzje8yYzEIsyUWaZpCIhbBTOlUJBZn11jsBYlYBAtGsnhqX+/EIoABqXgKY1CL/O1A1mSL8PFCvhlsq0iBgqiIPeejcWRvd5Ju5ZGXujCIyCAJJ7HoRqPae8ZitVRFuVC2iEWaoZF2ZTrXyjVgvm27KQr53+QxdMUQLnj5BViWXIb7xu4DABCMfo+nGvUNyZKgaMphp8pRHCRVshSLdmJE0ZT/n733DpMcL6+Fj7JUuTpP93RPnt2d3dkMu+RkgjEOBAPXgH1t4xy4NvZ19r1cg+8FHPCHM5hkbLCxjW1yMHGJu8AuG2dmJ8fOFVXK+v74SSrlkrp7ZnZmdXh4drpKpVKpVNKr97znHEIsxlmhOvxPY7KB1cVV9B1Xh63IWOx3ExSLI/oeXSG9xgqTen6F4JYoFlM+u6dYtNJtfmtbUHO5RGsSiZcVFEXhwPgBnOmdyZVxCACKORxSVAcqRKdPUubiv3eO5lDja5DDefEgwwqmbSbmM4bBsCQH89SjG8t8dtW0fivUXfVdGBPHEl9T4SowbXNDautH1h7BfGUek9Lk6IULFChwVaCQYTxGcP+Z/CTWxYLEMZ6Ky8U9J4eTUhMVAX3NxGInwV7MIRMGCZ7sANAo8ZH3GNtAjhnlWKWNypNLQhyxqC2dgHL2EVhq/ozFMyeOBv7meYEo9XzodcmEv21b+Ic//7/orK/BVrowVs9A4Bh0/PmWjq2J5ZC4QStUAoqiYpWFhkVmI6mYSSPDd2/TnJzGytJ5b53lahWKTqxQ45RamqrAtu1hxqJqgqaG2XSAQyyWh82srqKnZiwCwLb66GZRTyU3ErbT+K359q2mqmBD23vrQgMrPdXLUQyj7TsGNcMKbHMSJIe0iyMWGYZBpdbA6PHVZKz3ybZubwz3x9P2TeDEah8fu/8C9k9X8Oxrg2TbXicHU2Bp3LErqkxJws3zDZxvK+j7brDcfNVtDR+x6CgWVcOEwNKpxOJEVYCsGZ6dMQBopuXZD2cBRVGY37V3Q4pFP0Qu/yWOoiiUeQZ91cSOsXJAiVugQIEtAs1GMxaBIJmoxykWW8nrXHgSoPXwnDqZ6B1lhQoAWD4UfUwcMUzQW0x8yqIF8tnCSLRCJdvWUpKblq1uP/n1CTh84mzgb4qiMDsVrEVaTqPLtm288R0fxsmzS0hCSXKIRee2QeI5CDyXzWrTyVi0wEDXgwNnfrJzbnocZ5dW0HYsw0aRa5ZtodOTUa+kKBb7ciSrcSMZi6Mw4WvmkYzFzd1eZVFrjsJ4o5a7kf1YR3ugX1LFIkDsUDeiWCxQoMBjFysDIlvPolwy7c1ZodKgCdGVcx0Cm5NYDFmh8nS0bkhVLI4gFjeSsXjmRNRGejzkoNBz8p5t28bH3vMxHD90HPKjMuyYyBGXWDSdvogNG7VGLUAs8gxPvjPFgkVbMOxh3aFberJi0UFzqomVCyvodcl2pRGG3mfo9tIzFnsyOJ4D7xumqjfqicu76PDpNVaY9KmPDdd50RWLTsbiqPzQrbBD7esOMbtJYhEAbpm6BRf6FzyyMitUY7ivB/0BxKo4cpuaYhOyIUd++y4Zm+fz7Ni7AyeP5FcsujAtEzZs7xxAU3RqBmeVJ7XyIO5eLAWGZeBY+xj2NveiOep+qkCBAlcNCmLxMYBjyz18/5/fhT/46EMX7T0MR/GWpccg8Qz6arD5c/eJYVjwRIVckI4shqaonAZhlozFZolDTzEij20WbpagESoYI3B2RJwVKi1VYesqtEG+ggMAzp46HnnMzVk0u04QeKcFS1Ow/OE/xEff/zfYuffawPIBJSdDCkJXsciwPESp5FihDsHFED2aQ3zFEou++mZ8cgarS4veOkvlKga6ibIQr0zTBk4AedWxQtUMSBwTUIfJcg/lStVTEPZUR7GYgtnG6GZRO3TM1OrDgkXXYhSL2xuwARxfjSeJ286+LvMMNMOC5LNCTfqtlB0CVUkgzsMWrXmx5pCgC2PDYvPZ106hoxhY7qr4wZtnMdsIkrC7HGKRooDxSvYG9K0LTciaiXOt4RReW9YhsDRq4vD3OJD7EEtlaIYFkWNSCcKpqoC+asIwhztQMy0IORSLALFD3TSxuIGMRWD4He+frqAhFcRigQJbDoYDLC09YzHOwlRNabJIDWDhTlxTIdd1271hNlKIxZVHYtbj2HAl2TYtx7zGgcmIAM2gPyDb3pHJe8dlLOqGBdOZZF6TkxuO7Q0Qi/58RRdzU8Fm3nqnB8Ww8ZoPK/i9v/wX3HRtsiWSqyw0bCdTiCLEVR7FYlxJWPI182anxhzFIrlep2UnAkBPJkNOaQRktz+IEIsXQ8HnV0Gqmh5PLudAw5drtFFycKy+iaDnxyjasnFJFYsAcN3uhQ0rFgsUKPDYxPk+kYplIReyZixatgU5JhvaJRbzWKGatpkrYxGIWqeyNOsRaEqP1CRpCimaoj1lXRzkXn7F4pmYfNrJmaCKqdvuwjZsnHvvObzn/74H+27Yh4VfWgAVN8TqtBpcxaJFWag1akT16IBjOPKdKRZMJqhYTLVCddCYamBlcWWoMkxxRQAA2ETNOYpYLIVqEV5Mr+t0U4fMJxO9wAjFoqaD3mTecyWljqBtGjTokYrF6hbUXO7vdCvy+m6euhmqqeJMN192sl+xOJAHEKrkmCnzyd/7uDgO2ZBhWMH+lUvGSlz2embHvh0bViwChFQHsme3usSibKQfg2Gc7JyEbum4ffr2XIrQAgUKXNkoiMXLhG+dHBJ1q45C6fRavhN3HnzpITK9fnyRKA81ZwpMZaMXwxLPoO/rAFm2jW/7FIt1iYXA0jixGtpe56LpEotpGYsNiYdqWKA434SYL2NxIxaGAKAMyFSN3G3FPm/oToNLJcVBWLFoWTaYcoM8l5K/mIQzJ46iFLLTnJiewbl3/RLa//mHAEjG4vp//S2UE/fi1976Thy4+fbA8us+dZ3t5CNYPtvZWqMZUCwCiFUWeoq6UDHDMCx0Xz5gc3Iaq8sXvHWK5Qo0wwooEP3wiEVHsdhTDYgcE1BNyr0eSuWKR9DImolKLX0yL4tisaX47EwsO0BWalpUsbhvqgKeoXG2FT9t5dp+zjUkqIYF0adYVPrx33+JJ8dmErE4Spk5Cmt9DTQFzPisSO/YPQ6OobBjrITvvWFbhPDd5dgEK7qVi7w7uJ18JyfXhjeSrYGGssAGclMHgz5EiewjiWNSsxKnqgJ6alCxqBsWeIbOnLEIAAu792+eWOQ31tx1j/0n7BrzLGILFCiweSwtE8sw1aIBQ48Si/5cxThiURnh7nDwld4/h4rFlKbH6tHoY44ivpp07x2ncnRgMQJAM1hzCLdzKw4RGrIos20bi62eN9CzNkiulzZCLB4+cRY7ZoPNu3DO4nq7h9/9nIp/eUjHB/7vL+K5T741cX2ustC0h+fw8UY1o2LRyTE2o01Vf8bi7NR4yAo1vZnnEpCjrFDDxCLHbY70i4NfBbnVisWzS6sb3Katt3y93GjJOsqljRrNbwzX7ZnHo6fOQTeS4x0KFChwZWGxQ5wHlEFKBrMDG7bXlE/Dp09+Gs/71+ehHapTaNAwLCOXYtGyrdxN+YhikeE9NWB3ldQkaSpIhmYg97dYsXjsDMYmg4PFEzMTgb+77S6WP7aM9S+v42ff+LN42gueFk8qguQuAoBpkJrJsi3UmjV0fUNOPD1ULJq0GVAsGpZBvo+Qe0KAWJxsYHUpuxWqaZAMzkoteTm5J6Oc4q4Qh3P9c7CpdDI6Qiw2ttYK1U+WakqolrYJMaab6b+NrVQsho/xjeD68etBgcKpbj6Szr+vlb4CzolwSlMdTkgTGOiDRGIxj2JxYe8COS5TyP80uOewrORshSPH8yAuliIFh9cPQ2AE3DqdfE9RoECBqw9Fx/Qy4P1fP4mX/tXX8PH7Rxirx8CIsYXIguVlYnH1iDPF3lPJejriTGTZEs9C9ikWT6/J6PiUYgLLRBRTBGSdXAYr1LpELsaUr/niz+jboLOpB12NvwiePHrY+ZejWAyRR13VAOVkEiQRi7Rzw+CqBN1vxAZw9uRxzMzNB5Yfn5yBvnwcnK3BNAz0Om00nv4azLz6Lbjtad+D5niw+bfWHxZuFhVULAJArTGGfi/YzGND2wIMFYsI3Qzxogjd1+Abm5zG6tIi5F4XUqkMw6JgA6hK8cWbqpCCxlUs9lUDJT5MLHZRqlRRdki4gW6OnJrzE2lJ8CsWDcsKkHhxGYssQ2PfdAUXOgrMmN9Oa6CDoSnM1EWohgmxNLwp6KzG28KVHLIqzgrVxtYQi1WR9UhZABA5Bv/r+w/gp56+C/Nj0SI0i9ozDhMVAdNVAefawxvrlqyjJrLgfSStIg88xaLEp9+kTFVFyJoZ2D+aaWXKffRjYc8+yL2up0LeCMQNDihUBJbkK+5IV9kWKFAgH7761a8CAFa6mkP4hc6j/ml/UwN81z7YNqCOGPipTqGtO797T7GYlrF4FtBDjUWHWJypJFyzlpLdJUyaB6jhubvnNGLCGYunzi3BsmzwlAEwPNr95G1s92SAza9Y3LtjNvDYrE+xaBgm1js9/M7TBHz5x8t45QuehOnxRuL6XAJQDxCLNay1sygWyXVbMaLXYFHwE4tjOLe0io7T2AwTgmF4BGSaFWpPHql83Ar4STxlCxSLfhXm/YdPbHCbrp5sRRctWb8MisV5GIaJR0/lv2crUKDAYxNHz5GhovZatiga3RhNLLaVNtpqGw+tBWsEV9WVSCwm3KrEWZmmIaxE4qjhfbymarHL+Ak5juIgd1OIxd4gv2LxxBls37098JjfCtU0TPTaPYw/fxy7f3M3nvPDz4lkMPphM6SOCFihNmvodoIZi65i0aItGGaQWKTsaJMpQiwuDgmcUVaopm6OXK7f649WPoZwsjPa9jJsQ1pvDoe4NVVLtbrMAv9nclWvfkisFJvB98njn8R7H3xvZJs2CpdY3ApU+Armq/M43z+fmew3LTMwXKAMFPBOVMooYrGv9wPkNjAkKfNaoQLAyUc3ZofqEsBZcx1rPKlr/UrNLDi0dggL1QVMSBOjFy5QoMBVg4JYvAw456inji7lt9rUDAvf8qkHM7/OJlVrS4tTtgUJwDLPBEjBB891EB4cm28m39i76rkkRRcQJBFd+K0XNwtdjb8IHnn4u4G/B/1goeLPN+x34282aEdF4eY6tkCKrj4EnD15FNOzQWJxYpqQt5qm4qde/Cx02utgyk3wU7sBAI3x4IV3ve9XLJJ9aflsPKr1RoT05FkKtmVBNodflEss2qEpa16QYPjUZIRYvABlIEOUSt53X01SLCrk+B0qFk1IPBMgovr9LkrlSqZjwcV0bfQUemsQViz6rVA1cDHk5cG5OhbbaizR3RnoqAgM6iUOim6hVBk2BztrScQi+S3pMUSladmo1jdHLK72VNQlDkIoH/DVd+7Eq+/cGatO9Ss181jtAMD1czUsdlSozv5pyRqqofdXBn0IpQpsDD9/EiaqpNB21aC2bUM37fzE4u59zntvXMnNsxubUJhtSLh+Ww0TOWxlCxQokB0GaIc4TMlYNNSgotEYRBWOMXiw4xAq7rIJGYs9nQK6i0EyEwDEBgBgppJw/lhMJhYtmgd816HewLmeh5QH336INDV5ygRYAd1Bsl1rq9PbkGIxTCy6isVPPWrgwPf/HJbXWmhKFJ4wR87N0xONxPW5lqW6NdwnY/VKNitUZ1I75LAPkecCA0dzU+NYXmtjvd2DKPBgmPRrRqfnKhvTicVq+eITUX4Sj1ihbk4l4LdCfWiD1lcXw/L1cmO9r12WjEUAOBRj6VegQIErE30rH1ERR54k4VjrWOBvxmZgmEbi/Rk9Ht+Oy6tYjFihMsP7eNsZKA6TCkceHDrDJCkWLZXUUnJX3pBicfuuILHoKhb7h/r4qef+FNaW1sCIDEr7CMmSSizSDrHo9K5M20S1UQ1kLHIMB8M2YA9sgAJ6xrDfFiZ4XAiSj1icbkDXdCydJ30AccQ1x92WVCvUroxSziGnU51TGHVLn2aFamjGphWLpUrJ63dZZrT+llgpNj/0Y8c/hnsW70FLbaG6BUNOXS2/i1gabpi4AYv9RShxzigxCO/nQX8Atkx+XyUu+XudKk2hp/ciikWXpEyzUQ1jfs88KIrC6Q1as7uWtZkVizypQ/Oc+zRTw4nOCexr7kNd2DyhXKBAgSsHBbF4hUHRTfzv/3ww9+t6NimYOjodIJUAYKUXvGCUBTZgY3r/2XZAoagaFnY61ot6TJFBUwBDU1D15AZgPUYNl8cmcRQ0Nf4i+OhD9wMAWOfiGrYUbfuJxYxWqLaTw6TpBlprqxFicXySEItyr4fd+65DvxNUGzYngorFVb9i0Vl3ULHYjGYsMjQstY81jfHyeDzC2DQC0/O8VIKfExubnIGqDNDrtkFRlJeN2UhSLHoZi6R47WsGSjwbILdcK1RXeaoYWYjF0YVOazAszMLEoqYpEcUiANy60MBKT0UrRhGyLmuoCByaJWLNK/gUi4OQKtSFqyTUYo5v07IDuY8bwWpfQ6PEb9wOWMtutQMAN883cb41QE8j+7Y9MFCXuCFRbNsYyH1wErkxKI8gFicrorMesr9ddazE5bvcbNu+AxzHw7byfR4/hJxkpos/+uGb8Ac/dAPGK5fWcq1AgccLDJsh2XsRK9SQYtE2459LgXtNxoiMxbMyC8gr0dxGkdwMxxKLtg2sJFuhEsVilFgMZyx++6FHAZB6CayITj+5udHuyrmIRdOycPzMBeyLIRb/4psaXviPMvbvnEOnH3R2mB5Pvna5Vqj++RySsZjdCjU8YCQJwRrDVVSeX17zGllpaPdcK9QRisURysetQECxuAVWqJWSmGkfZN2mqwVrfe2SKxanxhto1ivkey1QoMBVgdzEopW9uX6kFYxxoEFDt/XAvXwYcVm6eTMW/aQhBSpWXRi2Qj3ywHBbWYqF3IvWWYd+9RCO/O4RGLKRSwFnw8bZE2djicX1u9Zx4i0nMDk7iYEcrEWakynEIhVULMZlLPoViwDQ04bPmZYZMcqgaAqszyK9MdkAAKxcWCHPj7gWG84A90jFYs5a5GTnJCQ1/XoXViz6iUVN0zZNLNI0DbEyPK5MMyRG4MrQzSix6EIxlC2xQs2ShZoHt07fimV5GW01m2I5TEAqsgJWJMdMGlE3IU1AMZXI612yTmKz1zOiJGJ6+7SnPs4Lzwo1o2KxzJVBgYocY2k41j4G0zbxxJknbolt7UZAYev6yQUKFMiOgli8wvDpBxdx/9lsF0E/NJCL38CiIYeaO2EFZJlnAg2gB862sT1kfbowToojv0WqHzxDe8qq4yvR4r3EM559ZxyETeaaJVmhPvrwA7jwD7+B3V2iXAxbobZ8xGLejEXFIaKmfVaouqbhi5/6TwCAIEr4lf/zxzDN4D5Ls0I1PWLRl7FYb3pZki54hoKlyugYDBSH8HKtKC1TA8UOL+68kyNo6aSoGZucBgCsLpG8CdnJHYgjfwFAG/RB0zSkEimgZdWMfJ9yvxvImlR1C9YIG99qBsVqK2CF6lMHUpRjhRqjWNzegA3g+Gr0OGzJOmoSi2aJw0AzwYmlwA2EqkSPI1exp5lRsjRMdm4E67KOsRIPMScR97rn7MWT94znthG+ZaEBxbBwdp181o6ioyFx3m/QtiyYhgFWJN93RUy3wXEVi10nD9NVzo6yUA2DYVnM7diV6zVhbPQ8IvEMDszWI1mWBQoU2BoYoAnhFFEs+m6+jZCiUcvXCHQzipMyFs/2WaKmWzsefMKZPuZjBlWgdlJzHq2QdZnuWkLT8YpFAADDpxOLvXwZi+udAUzTwt6FIbFoGCb+6RNfxi9+QsHr7uDx72//HS+j0EWaYlFyLEv9isXxRhXdfobsFVMHKDpiH+7PVwSIFSoAnMuYKehlLKY06zr9S0UshjIWN2mFStN0YLuXVlub2qarBatdFWXp0ioWKYrCdbvnRy9YoECBxxzCSiEXPSsfUTEqR86Pxf5igCikQacqFoHodpqWmVux6Cc4KOd/YYSb/YcfOOz9m6XZ2Pw2s29CPaNC6SmgKAp2yNbcohyHpNDn01Ud/W4/QCxaloUvfuyLOPvOs2g8pYE3vvuNETJzbCI5hsKwDfACPyQWbQvVRjWgtPRnLAJBUsqwo1aovMgH7v0bUw0AwMriSuJ2+GE6dWpcxiK1m4JaUyH35FxWqKZtYlFeRFVLv467KjQXkYzFTbonAEC5PCRMz4cswUtsKVaxmLRNG4WfHN4K3DR5EyxYON45Pnph+OxAndPAoD8ALdLgaT6VQHPtQMMEpkvW5SEWgaEd6kbgnmMkLtt70hSNElfKrOoESL6ixEq4afKmDW3jZjBfJXXa3sbeS/7eBQoUKIjFKw5/86WjuHl7w/tbi8l5GwVZDTbyvvposIlTFlmPnAKAxY4ayb+bi81YHEJgadQk0lj5+P3nA5mNALlRr6YQFGwMQZQHuha9CJqmiaOPPAD1zIOYr5NiPWyF2g4Qixkm8X0YOCTl9OywgD526EE8dO89AACpVMKgHy2MwsRiSx5ug2lF7SdqjWjBzTE0bH2Arsmi7yjPNOc1tqmDYoZFDyeRwtd2cqeaDrG4skSKRfe7T8xYHMgoVapQDQuvfd89uNBRUBGCmXyDfi9ALCqGueF8UD86yvDYNUzb2xcURUPX4onFfVMV8AztEWd+tAc66iKHRomHapiwAAjS8NgeZnIOIbA0aAqBnEoXummiWm9s4JMRWLaNtqxjvJJfsfgrz70Gf/mqW7E9xaY4DjfONQAAJ1b7UHWSjThZFbybLMPJFaEFckNU5tMbpuNlMg3bV4PHYV5iEQDmHTvUjULaoGKxQIECFxeGzRBSL9z0033n6YhiMXT9FNIbLq6VeJIV6tm+cy5beiT4RNp0RjtkhxhSFJhU/HUzSbEIgFihymmKxX5sxqJuO8MfoYn0lQ5psO1d2OY9dvjEWXz6rm/hr75PxJ88X4Si6jBDjhNpGYscx4KmaWi+616SIs6wbDB+uzHLACjGs9t2IQnBzzQ3TRowZxezEosyaJpGJcXqtNsfXHLFoqrpwCZVAgDQ2GTO4phDLA6uIqVdZ2BccitUYGiHWqBAgasDskWuk1njI9LsAMNqw+XBcmB5GjQM24AVlsqlrN+GnYtYZGk2oFBkwKQq7cx1cj32KxYZmsEgZVjIIx1DH6NfIo/36WBPZdAl6/ITi0tnl/DFj30RM6+YweyPz4LlWPQ6wdqukTLkZFomeJH3+iKmbaLaDNaCIiPCsIxYxaJhGrBD/Qg+VIvUJ4hrhatYTMK6Rgbz9XHH1jJGsUg9hcLqtlXIPRnllDzoMFaVVdiwMW6Mpy6XpljUNX3TikUAAaXlsUeCNr9lrgzN0mDa0WFrb5saNe+72Ci2MmMRIOSTwAg42z2baXmPXHOJRXkAWqDBMVyqindcIt9fJ+SM4n5veTIWAWBh7wIaT22A+UEGa4O1XK913zOrYhEg328eK9RDa4ews7YTTXFzQ/YFChS48lAQi1cYeqqBJ+0dFhlrMfaOYfjJMgC40A4Wjd890w4QlCWe9cgAF+FMxTgCxw+BG06nWzbwD9+MBg03pIuXX2bGhKyfPXksktcWtjttycP9GbYbHQWl30VzfBJSqQyjvQjbsnDNwVvwV//yGW+ZbqcVeI0NoDE2zFi0bDvwfblkXECxGKOI4xgKtq5iYLPoOq93rWhtI6RYLFWdx0mh0JyYAjBULLpWqImKRUVGuVINHHsVkQ1Y2fYdK1QXA82EsQlLS4CoARXflORAM4NWqKoaa4XKMjT2TldwoavADN1MtBUdjRKxQrVsYKCbEIRhwXXscDRLi6IoSBwDLcbeVdEtj+xMs7xJQmegw7TtgPVwHjRKfG77tHqJw2xDxIW24h3/flta97fEOMTiKMUiz9Koij6C2zkPlEYQknFY2CSxyG1S+VygQIGLA9MpPyl/piJFBxWLlha0Sg1nIY6AR7gZ8XXSksISAmglOkCSiPYZokZLsD4KKxa9bXHsx870GJxfWsOFZZ9TBCOkKhZb3XjF4r8tzuM992rQpOBw0kpbhiQKmJ0aw+m2Bd20cWDvAg598h342dvJetY70SGniWZyHgpFUSiJAvwmFbGKOIrCoRULTWsNcK+BJskcVLRgXebmNrpo1isQeA7nlrM1S9q9PmqVUuo1L8kK9ejAab5t0rLURUCxuAUZi0DQ4nUjxKK7TWvtrc0mulzQnEG7NCL5YuG63QuX/D0LFChw8eBm7VlMtnu1sDLMj5baCvy9MljBwFfbMGAI0ZVyX+gponzgE+qJOAi0ECA4KFCgU9p8tmlD7sk4c2w4LMXTfKxi0YVHAI5ONwEAT+E4u2MWekuHpVmYmZ/B+7/8fkx87wQoioLckyP7RZREnPqLU+h8qxNRdBmWAUESvFxDCxYqjaBSkGeCisWONuznmHbUCtWfrwgALMeiOdHE6oghp1WVPG/DJk5OMdcmSiLXrX43nxXqirIClmIxbuUjFuu+Ok5X9VzWtUnwb/fxR4IKv1FWqAAhO9c+twajZ6AhNDa0DX1ja4lFlmaxv7kfF+QLnuI0DQPT+T07u1sdqKB4ChzNxVoOu3AVi109WId5eYdcvkGpHXt3oLSnBGYvgzff/WY8uJI9Hsu1Qg3bIaehzJVHKlJdDIwBTndP45qxa4p8xQIFHocouq6XAF8/too7/+9/jbSCzIKn7J3AvslhAbXcGy1PP7MebMYdXQ5enI+t9LAmD6dRSiFlUbPEYbqe70aeZ2iP2KoKLN5914lh5p+DeunSem+7+Yo0M/x8EStUeeNWqHKvg7kdu3H4u/fg3Lt/Gev3fx4AMLdjt7dMrxO0QjAsG5Xa8OLbVQyYvslH3bLBcjz8PG81hljkGRqWocIGhWOO9axHDutaULEoOopFnRQ1giihWm9idekCAEKuUQAqQnyhpA5klCs1DHzqAz8JaZkmdE1FuVL1iLyBZkZIvbwIE+QdRUe9OVRvaqoKPoFIOjhXx2JHDWyzYVmQVRNjZd47FmXVhCAOj/UThx+JrAuI5pC66KmGp1i0YqxSR2HNIfbmMxCLj77pe/G+n3giJrcgB/CG2ToudFQs98j7z/oUyqZO9jvFk22qCKN/t2NlHn3VhGXbHrE4KpsxDgu79+d+jQuGolLtlgsUKHD5YNjkfBAgFhkuSCya+iatUJnhemJg2QDKE8B6NiskAEDnLFCZSiSOTCqpwUDORYsDOqhWBBwr1GSVQDuBWFQsFj/+Hwowtie4ibKKvQvb8I37j+C2v+3jr79J1u1mGALxxCI7QiUviXxQsZiQm3PfooUxew1wJ8wtQrRFFIshK1SKojA7NZ5DsdhPtUEFHGKxHF3m7Rduww1/Xwbq22NelR9+UpZYoW4FsTjc7g0pFuuEWOynqGGvJLhGKoVisUCBApuF6bBjJp3tXi0tZ+x4K1hDtNRWwH6TBg3DSrdCjVt/HsUiz/ABEokGPXLQ9OhDRwNqS4EVYjMWXSQpFpNgGiamZqdw8shJHH3DUSx9ZAkA0BhreMuE1YouOnd3cOrtpzBTngk8rlt6wArVhIlqaMhJYIWAYrGrDfs5hmVEtj+sWASA8enxWMWi37J2TXWGoGxCvoX3t23bgHM7L/fk1AzGMFaVVUyWJiHQ6ff4Llnkoj4WJBa3RLFYHq1YHGWFaus2bNPGVGkq9/vbtg0552BhFtw4eSMu9C9ANkav21UsUjrlHXsUT4Gn+VTytiE0QIGKbL9mamBpFlyCy0kSFvaSISdr3cJcZQ5/892/wceOfSw2ozWMvBmLAFDlqlBNNRP5erR1FDZs3DFzRyrZWqBAgasTBbF4EeEqut7wkYdwoa3g7hP5JOtxuG5bFTUfibPYGS1PP70WbFg9uhQkzBTdwndOtby/w8Ti/FgpNykgcIxHbN2+s4lzbQWfPxZsCjYuMbF45OHvYmb7AkRpWCCFrVBbm7BChW3Dsiz83Zt+HcLstahd92QAJCsHAJ763O9DrxNcp2FagUJ0PaRA1U0LvCDCXj0BAKAQn+HHsTTgZDc+ukSKdM2fsegjFlmRfH5XsQgA41PTXp6grBkQWDpRlaoOZJSrNU/ZCAAN3zFpOISlVK5g4HSCZH3zVqjrcnDf9FQjsC90XUvc5lvmG1jpqgFFalcxYAOYqgqoOSo8WTMhOsSiWK7i+JGHY9d34/YGTq7JXqPUzfLzb1M4SzML3HPG9rHRU40sQ+Pp+ydzKxTjcMtCA+fbAyx2SeE84xsk8KxQnQm3LOeC8TIPWTdgWjZUpwC/1IpFhqaKjMQCBS4XEkhA3nJuzp0GG+UnEmke8F2XiBWqr1mh9QH/pK06YviHoogiLaUhiOo2oHs++fkw2meA8hQQk10EJCsW/fj2Q49irF4F49QGYPnUrMJ2VyYZhTlmVUSBwwt++g24doLGq2+ONhFaKaqEJEgiH3ANSMrwu2/RRBPtYRal6VihasFrohQzpDI7NYaBks12qd2TA6q+MDTdgKJqqCYp3Bh+01mILvz7YqusUOuObdrs1PgGFYubzzV6LEEzHcVi6TIoFgtisUCBqxImk+3CmpYz9mj70UBj37RNnO6c9v6mbUIsppEv68p65DGByT44GrZkpG06QniElYGHHzgMzncdpkAFsgpdMFUG4oKIQX9ASJUctUilVsHrXvY6cA0OE8+diDzf7+SrRQzLAC/6iEXbRLkerAM4mkvNWIxYoYrxxKIaqkUW+4v49S/+Oi70ySC2p1i0bZRr0VpkYAxA0STrUu7JsYrGJKwoK9he2e6Ry3HHn2mZEQvSSn0oPtgyK1RnyIkTOBw/FCTRK3wFmjmCWEwYQssK1VRTrVY3ilunbkVH62BJXhq5rN8K1VXL2qw90gqVpVnUhXpEcamaKjg6/bVx2LGPZCzaqo2/eM5f4EW7X4RPnvgk/vLevxxJvrqkuJjguBIH9/vNsv8PrR1ClaviuvHrMq+/QIECVw8KYvEiIqzQ6mv5iQY/ttVFTJSDReZyd3QDJqxYPLE6/JvR+2BoCl97dDiVFc5Q21YTA6SAkMFeUGRpT6E425Cwc7yETxwNFkXN0sWzQo3Dow/dj33XHfT+NnTdI9NcdHzEYtgmNQ22ZUI+/FU8dO/deOJzfwBTL/t90OWhmq5aa2Db9h3ohaxQjVBO35ocJhZtcIIAs0UanxzHxGYs8gwF2DYYWDi6TApoTyGqqaB8+UycSIrfALE4OZwIHOgmBI4GG2MrCgCa0ke5Ug2o/5rl4foNzfGNr1Sh6CYkjoGs5lMsxrlthklXWTNQq/sVi0oisXjj9gZsACdWhsd+21GnztQlVEVHsagbXsZibXwKxw/HE4vPv34a51oKzrbI8eOS8bLfnnUDPOpaXwNLU5isbl6FmAc3zzehmzYOX+iBpSk0faS/YZDzlu0cQxVpdCN2oiqgr5rQTctnhbqBjMVde0YvlACWoUBvAelaoMDjHkb2fA0PCU2Gpn4OAFCiyPmc0sOKRT+xGKNYZHOSCjSbTizW5oDe6KaCh/ZZoBS1pnq4RxonBhMdCtH1YO337YeO4tbrfec2hktVLPbkAQzDDNiQJsG2bdx1ysDd9x/By1/wFHzmNSU0peh1cb0drxJIgyQInhMFYCcSV/ddMMFTBrB0iDzgKBaV0H4IW6ECwNx0uu2XH+1uP6DqC8Mlay9FxmK9Wgbj1B9bpVhsOI3Kg/t34sFHT3qN1KxIIn6vVLjHf1m69IrFHbNTkGKO1wIFClx58KtvslqhpuWMneycDFifAsCJzgnv365iMS1j0SWr/OCY7APYYeUU5fzPj7A68MgDR7Dn2mEtQlM05G6UnJh80SS2/wxR98tdGbaZ7Qa391APRx8+ijuedQd2/eYusLXo/WM3p1V3nGIxzgrVsAzABCiLCmYsWkZk+4XQuZ0ChYnpKAm6pqzBsA0cXif2+WsaEQzYth2rRnRzAW3LhqqouRSLA3OAXfVd4OjkYyDOnpfxuXIZurGlVqhiRcTZE2ehDIb9vAo3mniq1jdXi/iJ4a3EdWOEADvbG52zqJiKR/S7+Z4WY4GnebCJTiUEY+IYBvogQL7qpg6O5nITv7VGzSPCOYbDHz7tD/G7d/wujneO4813vxlnOmcSX+uqovMooWt8LTOxe2j9EHbVd2FMjPYpCxQocPWjIBavEMw2RCyMRW0WVnpqxGI0jNNrwSLxXGvg5d1Rton5poTvnB5adIYJgPGqkFv5I3BMILfxB2+eRT/UFHNVbtRFksurygASR7abNhQcefh+7D1wo/e83A8WKrZto6MMiUVF7sM0MpLBFA3b0PCCl/4IXvjfXweKZgA2euHudtoBq83wd7fe1yL7WijVYOjkhkbRLc9q0w+epUExHMq0gdNrMixraEFpGSpoblg0MwJ5f9cKFSCKRReyZkJgGbB0dsXiuI8k1jWyreVyBapuYbzMQzOtABE5CqYdPd7CpOtAMyGWhg1DTVMTicV90xVwDIUzreGNn6tOnW1IqDnEoqpb3vdTG5vC+uoyWmtRpfFzrpsGBeC+M+R3U3ZsYxXdRLW+8cDqtb6GusRB2gAJtxncMFcDBeDQYhcVgYXIDd/fchSLtlOIiiPs8gBguiqirxowzOFxKHH5P5MgSuDFjTURGZpCwSsWKLAJbEB1PQq8Ra4Phpex6KtPGC5IApo64L+Z1WWAy0kS0RwhtpJQmwMGUaVAHCZKFKC2gfIkwopF2XTObzHnnNVW0Kng2w89ilsP7PX+tigO8iCdvO305EzEIkVRUAzgpc97Cv72f/88BDb+JBhnhToKJUmA7BKLtuVZbYZx36KzzPl7yX9NnSguI4rFaI3kt2sdBWKFmtyo6ziWbpeCWKQoCmP1KkSB37qMxcqQWJQHKo6djjaeU1+fo4l5JcBVy14OK1SapnHNrrlL/r4FChTYevgz90Ahk41gmhXquf45rClrzurI/463h8ouGjQMO12xGEcsjiIs/OAZPkBSxFmhtlZbgb+PPHAE+24YOsNQoNDvRRWEwowAyhk27nV6oKxsN1eWZuG2p96G3//L3wctxN+f93IOORm2AV7ihxmLthVRC/I0yVgEBTAWE1ByxWUshhWLNEXHEoth8thvhVqpViLLu4SYu615MhYB4ODkwVRXorRj0gUV00/JC3e7pYoEy7Jw8vBJ77kyV4ZqqqnHNpOhb5AGl6DdasxUZkCDjmSkxkExFC/z1Dv2GItYECf0y1yMiWOQDTlgo6uYyoYUiwBRAfvximtfgXc//90QGAF/8u0/wdfOfS32dbqlg6XYXOeVKl8d+f0CQE/r4Xz/fJGvWKDA4xgFsXiFIVz8rvU1KFr6yf6kT6EoUiaWuyp037TWtTNVT+UGRC0L/TaXWSGwNPwCtRtm66iw7gOkyHFz+Sjp4tg1tddWITlNNWP9HPrdTkCxOJCDxayiW9BNG7ZvknGUanHp3Bm0TzwAiqJQuu4ZeMmrf8p7zo4hTHudFsrV4efthjqFa30NVZEN9Ca5UhWGk3Mn6wZqMcQVz9AAw6LCGFjsqJB10yN0TF0F5yMzGScrzzaGBenE1Dbv3wPNhMgxKYrFAUohxWKj7Fe4OR7u5Qo008KEo77rDrI3qeNu8db6WqBJKutmoODWVDUxU49jaOybqmKxo3hZp+2BDgrAZFVA1ZFIqoaPWBwnOQAnHo3mLI6VeVw/V8OjSz2Ylu2RbQPdQqkcvbnIitUeIRbFDZBwm0FV5DA/VkJPNVAR2YAq2T32LJoFn2KR68dUTUBPNWBYtmeJXIqToYIoT9Nu6qu1BnghfyORpQvFYoECm0Iei9CM4CzSmPEyFnWfk0GEWNRCisUewOU8FzBsOkFa24as8vI9Y865rzyFgTa6oeNieW04uKUZJk6dW8atB4YqAdUcfZ5q9/qpxOKF5TV85WGiBn3OLgb/48d+KLUhtd7poSTlU2BJAg9Fd4fSkonFCz0bA1sALpBca5gasULVs1mhZkW3P0glzy6lYhEA9u+cw/zMBHTdGOZ7bgLuZzu4fyeA/DmLo5pdVxpUj1i89FaoAPD022/A/MzkZXnvAgWuZpzunMbB9x7Evx/599yv9avRsmJdDQ4TGfbo+9M4dZj3esvAAysPACCkVJWv4kzvjJepyIBcD9JUj3HEYpaoi/UW+SwczQUUijSiVqjt1WEtYls2Thw5ESAWbcuGEpPJy08Pibd+t5+qWOy0Onj4G8Ttp3pTFS/9yZemXouyEovu/tdNolh0VWOmbYLhGYg+JburyKIYCozFYGAOvPtM0zIj28+FahGGYjAe456gmMN9Y9u2p0C1ka5YdImocsogVBgUKFw7dm3qMmnHk4eMeZhpcDMWxYoIiqJw7NAwZ7HMlaFbeoA022pcLGKRozlMlCbQUlojlx0YAwisAArDjEWLJsTiKKJuQpqIEIuuFSqzgSG08alxsFzwPQ9OHsQ/v+ifcevUrfjHR/4R73/o/ZFcRN3SwdJsLjIzq2LxSOsIAOBJ2560JSrZAgUKXHkofvlXONZlDcoIxeKZ9eGEVYk2sNLXoPlec922GmSf+kzk6ACxVU0gBNIQJkYoisJTZsljmkQaR3XHbpEq5Z9sybJNrfVV799yhxTee33EotwLFrNtR8Fm9lveY/2UnMWzRx7AL77ye3Hqv/4BtkVIrtmFnd7zNs3CMIMVXa/TQbU2/LydUKdwta+hLgYLXFYqQ3fIHUW3UanVQYcINJ6hQDEcaoyB5Z4KWTOgGhZYmiLEojAsZmmHWLRCGYsuZM2EyNGJJB2AiGLRb2vrWqEyIiHYpmsOsaimqEYyYK2vocoPT1n+93ffN430OjhXw2JHgewQop2BjhLPeP+nKUIuuxmL5XoTvCDixJEosQgAz71uGsdX+ljvq54yTjPMTWUervY1NEqXnlgEgINz5LisiRwE33ShYeigKAoWGPAMnUm9PFUVIGsmFB/B7VcsGpaFbxxbxR99+hB++YP34lMPLiaua8f+67CwN79fP5txWwsUKJCAdrKlDjLciMeBt0ljJl6xyBN1mwvLCGUsygC3ASvUVMXibL71UQxQmxmpMPRjeX3YzOs6ynu/YnGQhVjs9tFLCFk8dPwMnvjyX8Eff/jbUA0bFEVh/850dVWr00ezlm8IRhIFDNxBNtsEyzKJxN4a1QDWjhJrW9OxQtWMQINRisk1msuhWASQaoV6KRSL968Or2ufffcf4nd/7r8BAIyMio40uFao0+MNTDRrG8pZvJog6w6xmCOnaivxtt/+Gbzn//3qZXnvAgWuZhzvEHXf184TpY2rDPPbiSYhnF2WBWEiIdyAj4OaYglPgcJ3lr7j/V0X6liWlz2VD+3UO2nrWBoELdmzbBMAXLhACEmOCdoqxlmhttZa3r8t04JlWth/w37vMVWObp9pmeAmhn2JXrcH07n/Dg+F9hf7+IUf/AV89K8/CnNA7ofnd6fn0/Y6vUzZg99a/BYAQo5wAueRdQaIEtRvt+kRi6xDLOoDjzw2LAOWEezNhBWLDMVgYiaqWPTnHAZUr0BsxqJLenuKxZR6JYwpaQoNoZG6zKVWLNIMjW0L23DskSGxWHJcRNIySDcLl1iUckYhPNp6FFWuGvkd+DFXmUNX60JPu0+AQyzSpJ/lP/Z4hh9JpE1Kk+jr/QixmOW1cdh/435Mz09HHm+IDfztc/8Wr73htbh78W689Z63Ym0wdN3aCLFYF+pQDCWSzxrG4bXDaApN7B/bn7pcgQIFrl4UxOIVjp5qoiUnFxa2beNsawDauZiVaNLoXxsMLxB7JisBy0CKogLERjhzMQukmBzGmTJ5zGTIVJlnhSo1cq8/C9prQ2LRMHRMTG9Dc2I4bRy2Qm0NyH40+8NJxn53WDge+vbQWqD/8Jfxvv/9c9g2vxPXvvI3ifUpELA5Bc0GlKEAUSxWag3vPeSQNdi6TIglPzip7KnGBroJmqYhlYNKAZ6lQbEcqoyBrmJgpatCMyywDAVD18AGFItk//sVi+NTvoxFzYDEMWBTSLpypeoRdAAg+Y4R17bVJTBnauT9ZHVz02xrfQ01cXhcKroJy3dTYxg6GCp5ivLmhSaWe6qXrdiSNUedx4CiKFQEFqphehmLNE1jx579OPHoodj1Pf+GGWimhfvPDY8R1bAC25QXLVnDWJnPlGO61bhloQGAKIl53/ubhg5BlKAYVmZicaJCiu+2opPjkKYCpO+H7jmDd9x1HLJmYrLC476zLc+eOYyN3hKxhRVqgQKbQxqxOMIWJwm85RCLrmLRSFMshqxQtT7A5lQs0lyQrAxDqOVbZ2UK4PMRcn7FIgBUyxL2LAxdAmRj9Imq1enDuXTh37/w7cBzP/qbf4zxRhV//fPP9lT9k2PpA1vrnV5+YlHgPacCyvn+k3L81qhxoH0aULsBxaLoUwaUYojFPFaoANKtUPsOsVi+OMQi9YYO3vjNYW0lCjzKjgrU2AKVgPvZKIrCwf07C2LRIbXLOZW2W4XNDI0VKFAgOz506EMXdf0RxWIGtVWaYnFCmsDDaw97RGKdr2NlsOKt1yMWUxRmq4PVgN1glkwzP8K2ilmsUBmWwa5rdnl/x6kV19V10L57wl6nB83pO33pP740fPzhHr725q+BZmj85B/+JBiJ1Hgz22eQhl6nlymDz7MVtU1wIjfMWLRNQiz6ahHXshIssUJVTMUjak07qlgMZywyNBNrheonz5bl5cBzcYpFd5sNx62hXCnjRPsEDq3F9xX8mC3PosanO3plIRaR7zCKhd/Cdfe1u3H8kaHNb5kln9uv5txq9PQeOJqDwAiplpyWbXlk9+nuaTy89jCeOf/M1My/ucoc2lp75L50FYvAMGPRgAGBFkbmJE6VptDTe4HzjGZqkWGArQBN03jdba/D2575NnS1Lt5y91vw8CpREOsmIRbzvGeFr0A11ZHnSDdfcRQZXqBAgasXBbF4GWBugniIw+n1aNC2i55qYKCb4Ewy/VeiyYXhQt+vUGSwvRGcAvLnLIbVcVkgZsiIc3PpqPLGM+nS4FcsAkG1IgDIjs2pMHcd2Ma2oWKxN5zu8ROLf/+W34Lc76H90F1Y+c8349o7noW3vutD4MqkgceF7BptmoUeUix2O21Ua3VPFamEuk/rfR3NMh9gU1ix4k0KuU09v50qQKxQKYZDhSHf79HlPjTTAkvTMDQNLD/cNppzMjN9RM745HDyaaCbhFgcqVgcFhn+ZXVNA03TsJyJwdk6ee9+hoxFzlGvnOtGl12XddR9SlVFt2Baod9Syo3YjdvrsG3g+ErfW19NHJJoZYGFoluBTL+d+66NtUIFgGumq5iqCnjkQtcz0lN0M7pNGWGYFrqKgamqmMludKvhEouNEhcgNi3ThFQqQzFMcCyVely48IhFWYdmWuAYCgxFYbom4Jb5Bp6+bxJvfulBvP8n78Cr7tyBEyt9tPrZrQWzoLBCLVBgk2ifTn5ug8QiZ4UVi77MGoYPEou2CRg+UlDvA2xOUoFhifIxCRQFVKKTv4koT+W2Y11eC06233LdnoByr59BzN/u9TFwrCB/9v++F6vrHRw9Raxqn3jwGnz5/W/FVGPY/BlFgqx3emjkJBZLkuBZibsYb8Q3vtboCZJd2T5D9j9NMhYFfkgsxmcsZrdCBdJzBC9JxmLoeHQ/n74VxKJP3VAQi0SxKAocGObSOzoUKFDg0mBgDPB3D/zdRX2PiGIxA4nnVzQZloE/uedPvL8nS5M41TnlEYc1oYaW2oLpsDq0Ta73aeRLW21ns7ZMQJhYpGzKIzS99wgNOe3cvzOg1lN60e1bGawE/u53+rCdWuS9f/heLF9Yxtr9azjxRydQW6jhLz78FxjbNryOhy0bw+i1e4HMuCTbS39OIl/iPQLJhg3d1BMVi6zFEmLR+Y4Ny4Bt2oEaLE6xGGeF6s9YDO+XLMRiqVrC509/Hh86/KFU9SoA7KjsGKnQu1RWqH4L113X7opYoQIXWbGo9SGxEsbEMfT0XqKa98++/Wf4zS//JizbwidPfBJ1oY6X7H0JxJThwR21HWir7ZGKRcVQIDACQPmIRZsoFkfZmY5L49BMDbLPoUUzNfA0v+XEootnLTwLH/y+D2K2Mou/uu+v8PFjH4dmarkVi1W+Cht2JF/Uj5bawvJgGQfGD6DKjx4SKFCgwNWJgli8DPjCI2TKaT1FaZgHp1aTT/YrPfIevJNrJNHkYnyhH6w0rpkOXgikDMRgGoQMQc1u058uNyLP8VtArPgViwCw70CIWOwTYnHm1W/F3M+8Ay1ZB8dQsH2ZT/6MxX57He/84z9Aafs1aDzzx/FDv/SGQPabVAk22OKIxX63g3Kt7qkFlQDZRqE90DFeDha4rDBsLqm6BcuyUa7EKBYZDhWKFEZHl3tQdRMsTcHQVTC+dVAsHyGHJqaH6glFtyDxTKoyrVyuBuxz/USYoWuQyhWoDmk6XReJzeiILFAAqCrECubeJR1nW76wdctGV9HRlIY3KIMYEo9KsY7ZP10Fx1A42ya/hdZAR01iPWKxKrLQTBOCb1/t3n8AZ44fjV0fRVF45jWTOLbc87ZDMWLIzoxoDXTYAGYb+fMEtwIHttUhcQzmx6TIMIFYKkPVLQgsnWnQwMvVVB3FIkODpkl+6wd++k78fz9yC17xhAUsjJfwghtmoJt2QPm5FWAZuiAWCxTYDNKIxQ3CrUUs0ACokGIxRCwCgK+ZBK0PMDmJRZpLJxYBoJo+UR9AaRzIace0vNYGnBv5VdnGrdfvDTzfVUdfM9pdGc7sEzTdxC+/6a8xM0mGst72Wz8dsIdsVEZfQ1rdjSgWo/s+WbHoNBbP3+cpFhVNz0As5lMsppGGnZ4MiqJQLl26a6rofKatUCw2qsPv58ZrduHRU+cj9vqPJ6iGjcol/C4LFChw6fHPh/4ZbbU9esFNIK9ikaGYgKLpbd9+G9730Pu8v6dL01hVVj2yqS7UYdomZIbUL1msUDtaJ5sCLQEszQYGihgwIxWL/nxFABj0o/0kP4HGC3wgY1EQBfzJb/4JqruqmHzRJG7/pdtRqeerK3qdXuA1SQSGn1hkpSBZqVhKPLHIEStU1RgqrkzbhGmY4Hy1CB+qRWiKRmO8ASbUy3KJIQoUlgchxWKMe4Jnher0ekrlEmzYUAxlJCm4q7Zr5IBYmorWw1ZkLPqGnPZcuwfry+sesXspiMWu1oXESpgtz6KjdhI/97H2MciGjENrh/Dd5e/iWdufhV2NXbHLupivzkM2ZHTVbupyiqlAZEXPVpXlWGiWBpEVRxJ1ExJRv/rPa5pFiMWLmUc4X5vHP37fP+L5O5+PT5z4BI62j0YGEEahypHflZ8UDePIOslXfPLsk4t8xQIFHscofv2XAYeXyMVrowSEHxSAk6vJ+QIrPVK4CI5ikaFsNEscVgfBSuPAbJAUK22aWMxzaEULp62IRmtHFIs3Bv6W+8H9ttbXUBFYwKcodRWLZr+Fbbv24yP/9F4oNov6HS+NFHyuPWnFzQGkaPRC9p/dTiuQsajoplec0aU6TNvGTD3YOGHFYUGnGBYMy0Y5RGIKLA0wLDjKQolncGy5B8WzQtU9+1MAACdEFHHN8Unv8wx0ExI/SrEYJhaHyxq6hlK56mUg1iQOdYnDQM9nhfrur5zwmmgdRYdlA5OV4Y3AQDdhhAPkUybOOIbG3qkKLrQVWJaNzkBHXRrajlZFDpoRVCzu2n8dDCN5nS+4fgbrso6lLimoB5oJY4O/6zVHsbcwdhHVFSmQeAaf+h9Px6vu2BF9rlSGopvg2fTjwoVLjvdVE6phgfNZqIocg5ovR/Sa6SomKzwOLXYjeR2bgauSLFCgwAbROrXlq3SJRQAOkRgiFsMNvgCxKOcm9UjG4ohrT337yNWMic65pDRGLFtdZJgYX15vA6yA13x4gNd+ZIBbD+wJPN8ZQSyKAo92lygWW4qNg3vm8I8f/QI+85V7AQBM6Ho+UU+/hjzUq2F9QxmLUSIwSbHYohokj/L8fcSK1rVC5YfriLNCrZSlXArDesqy3f4A1bJ0SS0sXWJR34L63q/GPLh/JyzLGplzczVDMYBK6fLkKxYoUODiQzM1vPP+d+LGyRtHL7wJrCv5iUXdZ6ne03p4+TUv9/6eKk0BAB5cfRAAPAtLWSD1CwPSU0kjDjtaZ0sVi0DUucCfsQggkK8IAGo/+v5+y89StYR+tw/YgKmYmN8/j69/7uvoDDqYfvE06FAtIlVHn6977WxWqJaPIXNtVr3tNtQAOcnRTtQOS4G1Waim6ikWTcuEbdgBMlGQhIgKjqZpjIcGnVzyjKZoLMlLgey+2IxFV7FokOPLzZJUTMXLfAxj3CDvOSVNxT7vh3s8WWpyXRC2fd0ISj47+V3XBom6EkueG0VybqYO6+k9lNgStle3o621A7/FONx17i5UuApetv9lXgZkErZXSf0fJorDUAwFIjPsD4kl0SMWR8ElFv25nJqpZVI7bhYiK+Lnbvo5AISgDQ8gjELFiX5IUyweWjuESWkSO+s7N7WtBQoUuLJREIuXAVvphFoRWJxrpSkWVYgcDdZXwExWBbS04EVl71SwwVRKyVUcK0ebQQACH0zgLv+hFbZCjSgWe12I0rDgaA10VH1Wm7wgoNftQFs+gfN//3qsXjiD/dfflEh+iA7ZJ/hItrWQvWOv00bFRyzK2lB1x9ZI4THfDBZBblYhMLT/LFeC3xfHUKAYDjaAyYqAsy0Fim6CoSkYmgqWHyoNKIYDywS/f4Zl0RyfdN7DRFlILzzKlZpHHAII5DHaNtk+V41ZFTk0SjwGmoldj/4r8IW3e8dQa20l9n1efF0NJ1Zl/Od95wAA685+3FYbfg5C4oWK6RHF5g1zdSx2FPQ1kkXZLHEeyVoTWUKC+VSou/Zdl7q+J++dAM/S6Kumt00bHRhwj5W5xuUhFgFgYbyEHePRmyOpVIJqZFcsihyDisCirxpQDTOV5KMoCk/fP4njy33P6ncrwNAUisG5AgU2gdbWKxZdK1QAAMuD8k/wM3z0HO4nFk01wYbUTrZmZRLqFT9qcyMXuW7SOZkI6Zk3cXAzFt//XR2yDtx6IKhYbA3SyaJ6tYxWt4fj6xae9/cy7j96Fk+97XqstuJV3pP1ZHvQXe8U8Q+rB0nGYk5lQZzCcCyhIWhTNFDdBiwfIorFjFaoQD7VYpoVqmVZmUnKh46e2hLLVM8K1dgKYnG4Pdfv3fG4z/hTDBsVqVAsFihwteLLZ7+MrtbFrVO3XtT3WVPWAn+PskJlaCZAnPzgnh/E7dO3e3/X+BokVvKy86p8FTRFQ+aDisU0K9S+3g+oglg63UI0jPDytPM/P9qrQSVoWLEo96OqpEV50ft3qVpCr9MDU2Nw/E3Hceg7h3DbU2+DpsSTSlIlA7GYMWPRjwixaKqpVqj+jDjTJsRiQLEo8rGKrLAdqvv90RSN5cEyGnzDey7NChU2ySl07VdVU00kx/rnydD7KAtZdz0AYKV4r28JseirjeZ2zgVIWZe4G6W2DZPOedDTeyhzZeys7URbbceSXH4r0/uX78fT5p6Gvc29keXCmKuQ+n91sJq6nGqqAWtaqSrBsi1IzOhjfFwix5Hf5tclFi+lws+0zNwZi661aRKxaNs2Dq0fwu76bjSFixNtVaBAgSsDRdv1MQiXkDnfjhagYc6iKrJY7iVfzFd6GsZKfMAScKYWvTF3iURbIUVQWUi+6CTZC9J9clGmKApiBivUi43OevDGwW/3CRAr1JLPUrQt66j6lFSlSg2HH7gXF97/66B5Cb/xV/+K3/3jv428D++oASv1aDZQSw4Tiy1UqkNi0a9wY6qEWNzeDBYpjBAkFg3LSsxYhA1M1wQsdRT0VAMsTZPMQ18z1qYdMi30NY5PzQAMD8sGakJ6QVuu1jwSSGTpgGIRAEqVqvd8TWTRkDgougXW6KOsrkHkGBx95EEcO/RgJJsSAPaNC3jJLXP49MOLeHSpizVnP87UhsVsXzMiJJ5tpE+d3jrfxHJPxYW2AtO2MVkdEpVVkYOqW2hOElu8cn0MzYlJ1JvJmU8ix+CJO4fPD/ToNmXFWl+DyNFolrnRC19iiFLJs0LNolgEyACCq1jkmXRC8nkHZrDa13BsJVl9nRdcYYVaoMDm0D235avk7aBCkTLDxGLYCjV0M8v5ro+808j51nuDBKQfTIbmXHXbyEUOTDo1jVRPXzAGK+tBAvCaXUGF5PrAQklKtnitV0p48Mgp/N7nVViw8Y33/C7++U9/K7qc09ian0rbRgoQalhv99BIIeXiIInZrVABAM0Fono1lHgrVEexuDA7GXhZnpzFNGIRyJavePTUebzjQ5/C63/8JZnfNwmil7G4+Wberu0zeOnznoIb9u1AuSRi93wOy96rEIqJS2prW6BAgUsL1VRx89TNF135sq6sg7GHfQrDzKBYtHTcMH4D9jf3g2VYj7wCSN9jvjqPrk4cqWiKRkNoQBEcIsolFlPsIm3YWO4PVVNhwsGvlooDSwVrHQpUZBilvR4kFveE3BMGvXQr1FK1hLPHz+Lkn5yEKZv4lXf/Cn7/L38/8hpXmVebHD2IFc5YzAJGGEEs0kNikbEYolh0FImmbcLUTXBC0Ao1jjiZmJ4I/O0pFkFjdbCKJjckUuKIxb42vKcthWoRj3T0YXVxFXd/8W7yGTNkCWum5qkzk7AVxGK9SWrKUrUEhmGwY9/Q2ci1Qs1ky7pB9PU+ylwZC7UF2LAj+ZZAkBgUWREvv+bl3ralYVwch8AIaGvp9suKqUDy3X+ITi91lCISABpCAzRFB4lFy1EsXqSMxTgYtgGO5nINqblWqElq6pXBClpqCwfGD2Ta3wUKFLh6URCLlxijrP5s28bv/8cDic+HFVpVicNqL9k6Y6WnolHi4L+GbKsnF6e2UwSVUxSLSaDgBGlbZqoVqh1jfXox0AplLIYvpHK/h1J5WMx2FB11aVigCaKE//rov0GcvwEzr3oLxqZnsW1+h6c4pB37Al6UvOXD6PisUHVdhzIYBBSLfdXwchjZ6gQYmsJ0Ldi88ysWZSdXsBSyQuVZChTLwQKwrS5hpadB1kjGoq5roH2KRZthwdEUXvqKV+Ham5/oPT4+NQPKea+alF6oln3EYYlnItaqpXIVim6BYyjwLEMUi7oZUOv+3Z++EbXGGHg+vqH6xh+6AVMVAe/56kksdVWwNIWm5AuZ1y0vx9H7bIZb2Mb/zg5ur8O2gQedPD8/yV6TWCiG6RGdvCCCoijs3HtN6r54/vXT3r9lzYRubkx1t9bXUBM5iNzlJ+XDEEtlKAb5XWcl68YrPAaa4RwHdKot6VP3TYClKTxwdutyVTia3hJL5QIFHpdQ2sCIzJGNgLeDRCLlJxLZOCvUULPHbzvkNt5aJwOLuKca07JJxuIoZCAWPeRUEQCOFaoPbGjwak22UC0nNyfKJQH/+umvYK5G4zOvLmPfwgy2TY3hlS98hvM82SdVp5k3URvd6Gh1+7kVi3HkZ5IVKgCguZuQ01ofoBmomgHR18xzrVBPfu69sB/5uPf43HQOxeII4rCWsl9d/M7b3oupsTpe96M/mPl9k+BaoWpboFgUBR7/8v/9Dmad/XFw/85Nr/NKxdkejUfXrCJjsUCBqxy3TN6COp99gGcj2W7ryjp4DO8ne0aU5PGDoZiRdqm7asQi0nbuPyekCWgiqW8oixQlo1Rd5+Xzic9RI3onEcWiTUfIyXDGohSyllb7KniBR+XGCqq3VGHZFtaUNU8RJ0oivvGFb4Ab47Dn9/dgdt8sao0apuaIbadL1glOHnO5MZpoCGcsZgEjBmsozdSSFYs2C83UPOtRwzIiVqi8xAcyHF1MzASJRZd8VC0ViqlgUhwORVWq0c/QN1KIRS16zL3nT98Dls1eY2YiFvXN1yK009MTSuR73X3tbu85gRFAU/Sm8kFHoa/3UebL2FEjhOYoYvEps0/B/rH9kWXiQFEUZsozaKttWAnOJ5ZtQTM1lNnh8Sw2SC0iZYhncAcNwopFkRmdz7iVMCxCLG5EsZhELB5ePwwKFJ46+9THvatGgQKPdxTE4iVGnArRj/d//ST++Z4zmddXE1m05GT7x5WeiprEBRWL9dEXwcoIxVocXIsHTVUgxCgWW06OkC6NbhqxIaLKVcR17v53APDy2iKv00gj1OisRDIWw5B7QWKxqxhoSBxs24Jt26g1x/CEpz4Lky/5XdDCsCCcmJ4FMCQW09BThjci/S5pLlbrjeHzqgHDsjH9qjdj7Lk/i6rIQvTZX1AAGJ/acKA7GYvVoEqAo2lQNAPbJsTxQDex2FGIFaqugmGHBbRFMeBYGuHr//jUDJCVWKzWPGVtSWAjKraSY4UqOJl84xUuQCx+++tfxt13fR63PfkZiGyIuw6BxRt+8Hpc6Cj4zql11EQWAhdcNpxhaY8obPdPV8EyFA4tkuNktjH8LTQkHopuRcj/HXuvTV3ncw8QFQFDUbBsoK9tjFh0hwAei8SiVCpDMywIXLaMRYBY8vY1E6pugh9hoVoWWNyy0MDxlb5HtG8WLEMVisUCBTaK9tmL/x5hYpERYqxQw8Ti6PqFdSa9B6oezENMQqy96tbBtUJNwmrfQK2c/LkmGnU85dbr8BM3s2hKw3Paf3uRQyzmtIdUNR0DRUWzls9+LM66NF2xuJMQxWvHAIqGquuX1AoVGK1YvPv+w/inj38J/+eXXxOryMwL9/NpxtZnIT6eicVf+2odb/mKhkoGorjAJYZlAfd+INmOukCBjHBzuvI0qAfGINCwz4KW2gKH4bWoq6UPUTH0aGJxT4Oo/1xyYqo0BZsh95NuBl6aFSoAXOhfSN/wtG3MQBa01lqpA+6D3gDlahk7f3UndrxuB5bkJeiWDnVRhW3ZqDar2HNgDxZ+cQFsfdircBVtnJjfcSdrxqIftBDsEemWjkpj2M/xiEWOKBZN2/QIaE+xyMcrFv0Ebjhj0SVX3Ky82dKs91w4Y9G0zIAKMkwsho/Zc8fO4eMf/Die8vynJH7uMFRTBTeixrUuQi3iJxYpioLESiNzDzcK27YhGzLqfB3bKttAUzRaWiuynEs2ioyI5y4818s5zYK5yhy6Wjdgp+qH+727eYMAIFZJ3Z1VpTcmjkE2ZE85q1t6pnzGrYRpm0SxmEPgITACWIpNHOA4tH4I06VpzGWIlChQoMDVjYJYvISwLODRpeSpuMOLXfzvjzyEp+xJbqqEbRarIoeumlzsrvY0VEU2wN1MVUc3T8qbIRYHcmzGoscXZJjOSSIv1j/3Tpx884uw0IxvLjAqKfYYvY/2+ioGPbK/mRg7NLnfC1ihDnQTZUpF5xv/CvnhL6FUqUGQJFCbCFbuKgYsp4jvdkhz0a9Y7KkGNMOCuP16AEBd5AL7jmNoUNzw+1INC6phRqxQOZbsL9MGph0V3vHlPliGgq5qoLhhA8+mWHA0jc5AR9dHfO7Ysx+VcaK+q6XcHFAUBbFU9mx54/IYS+UKZIdQYmgKY2UBsmbCsm3YtoV3/vEf4LqbbsOOEWpAl/hb7+uolzjwDmFNOQWOf/tB0bCMdGKRZ2nsnax4v8Pp+nDf1iUOim5G7IZ3jiAWZ+oirpmpehamfjI5D9ZkDc0SD/ExkE8ahlQqQzUsiM73mQWTVQF9zSBWqBle9z0HpnFyVcZqirVzHrCFFWqBAhtHO8OA02YDo1kBlP9GnhWA8I29FmoY8qGbeDVaU7nEoqxkJBYvMlZbHWh6fMPCsCm0ZD1CgPXl4U18vVoGz3HQrK05n613yD5r1LbCCjVNsejYZfUWAYqGomYjFg/sWcBEM1tTaBSxWE0hbG3bxv9867tw/b4d+LEfek6m9xsFT7G4BfZjYWwJsagPgMUHN7+eSw3n0K+URg8WFLjEOPFlYOlB4MF/v9xbUuAKxWyZEDQ3T92cixBw8a3Fb+Vavq21wdvD689IYtGxQk2Dq6ZyMVMaWlcbA3JfmEa+0BSNxf5i4vOjwIR6FeF8RQDQVR2DfnxWGgAM5EGAADvbOwtLt3D+/eex/B/LKFfLoCgKFLd191a6po+0QnXJGBdhK9RUxaJF+j89vQfbtmHZFizdAs/7FIu+jEU/2bNj/w5UahVQzv2rSwy3VdLP2V4Z2tqHrVDDmY1SqBYJW6/+25/9G6bmpnDbU26L7oAEqKbq2b4m4WIQi7uu3RX4u8SWLppiUTEVWLaFulAHR3OYlCbRVqLDessDYiP8szf9LO6cuzPXeyxUF9DW2omfwSXVXFtQABCcXmpWYnFcHMfAGMCwDZiWSfIZMwxKbjU4moucK9JAURRKXCnW6ta2bRxeP4w9jT1FvmKBAgUKYvFSI41YPLEqY/dEGc+4ZjJxmZATKmpiOgFoWDYaIfXZRGU0sShtQDXlEnDqoJ9qhboVSFM/AYBQqqLXaUNVHT/8GK96ud8NKBb11gW8/3d+DMb6eXBjcyhVquj3hjcb+gasrfqaAcNpMPVdYtHJWDTlNiwb6CrDG416SLHGMRQoNlg0dhUD5bAVqqPwNOwhcdwa6J5ikfJlQZigwbEUvnp0Fat9zct4/IFX/nf8wu/9EQCgUUpuxvKCBH+d+qRd0TykUrmKgWZAdDL5xso8ZM2AbQMP3/ctHHnou/jp1/9+5qnUrmqgIfEQHOUq7RR5PXW47yiGg6Ul2wK7ODhXhw1AYGnUxOF+qYosVMOCEVLM7dyXTn4CwDt+9Da87jn7yDZtkFhsyTrGynys2vdyQ5RK0AwLEs9k/s6mqyJ6quFlLKZZoQLAc6+bhmHZuP9sawu2GOAZqrBCLfD4gtoF5LXg30uPbGxd7dPAqAn4E1/Ot84wEcnwoPw3qwwHhLOOwvZUQugmPoYkca1G+4qWzQrVgbVZojQGDE3BNK1IzqIL1WLQkZWAFeq5xVU84zX/0/u7Xi2h3etD3gJLKwBoOcRiM2euUW7FolAFxAb5N01D1Q2IvmZeErH46h94Fh78yF+N3B6KolKJQyBdsfjQo6fwhW9+F29+/Y9nyjPKApdYDNu0bwW2hFh89LPA594ItE5vfl2XAXnVuQUuAVzC5SIpVgpc/XBVVxIjbchO7xvnv5F5WdM20df74OxhbRCXd+cHS7MjFYvhrLXJ0rCXoys6KFCJdoIAUOEqHjmyEYStUJNUSWE7VD8GvSCxeObCGZx46wnIh2VIuySUqiX0u/2ktJENY5RiMUzSUXzwsxm2gVp92BcJZywChDx27VBN3QxaoQpDK1R/duZTnvsUfOCrHwDDMJ4dJkAUrxIrBUjwMLEYViSGnx+YQWLx3s/fi5/89Z8Ey2Uf7FdNdaQVqkcs5hOFpmL3NbsDf5e4EnRbj7USHaXSHQV3P46JpNc0W5kl6sLQ9WZZXsbu+m68eN+LvWWzYqG2gJbSgmrE/z5dYtGvWOQr5DjJSixOlCbQ1/swLMM7D1wuYjGv/WqFq0A11Yja+UL/Avp6HzdO3Jgpa7JAgQJXNwpi8RLjyFL6VNwLb5jBzrHsU+TVDLYTDSnYvMmiOCr7psGyNuc9xaIyuOx2jmKJ7MNeJ9mCTO71UKqQIkE58zAu/P3rYZs66k99FfiZvShXa5C7w2agltOikTY19BTDe11YsWjK5O/2YHizMlbiA6Qsz9IRYrGnGJjfSSxXpmfIlKdLLFo2BYFjUJdIYco4GYsUOzxOLIr2lgdIziMAMCwL07m5q6YQ1rxU8vIVf/bpu/Hzz9obWaZUqWCgmRA4xlEsEptRVSNF+ZOe9XzccNsdie8RhmnZaJZ4T7HoEovudgAAxbCwEopCP3ZOkGOjIrDgffvatX9V9OD3vGMP8emXysm/y4WxMp5zHVF7ynp+K1RVNyFrJqaqQmZF4KWEUCpDMy1IOW54pmoCZNUkuZUsDXrE1WbXRBmzDRGHl3ojs2izgGWox+S+LFDgouEz/wv44I8ArnL7r58K/OUdQG8p/7rapwEpZQLVtoHP/yH5d3NntnVGbE0FUP7mABOXsehrKFE0EL55vfDdyNu4xKKs6mSdlxEVp/5KskPVbAadvhIgwJ748v+BRV/zr1GtoN2V8ZmjBv7mW1oi4WtwpJ7R6HTyZX2DxGJcxuK1u+fx8u99Gg7sWYh/UX2e/JciGYt+xWJJiv9uaJpGdYSFKUDUiPSIC0sSsWg6ddkznnAQL3zGE0a+V1a4n+9iEIt7F2YxNd7IrOaMxeqjAOzY382VgCJjsUCBAmF87dzXMi/rEhX+jMWOGj/444KhiJ1mHkxKQ2JRG2hgaTZW9eOiLtSxrqzneg8/wgQTZScQi2stAIAdo6qXe7JHLCrnFLzrp98F/YKO5jObqN5cRblaRr+z9cTiqIzFcP4hHXL20U3dy0OcXZiNZCwChDx2yWFLtwJWqIIkeOSln5ClKMpTU/pJ4XVlHU2hCZ4aHkNJGYq2EwMUfn4QqocXrlvAs3/g2Ql7IB6qqQaI0DA4nvPyMVEGuvrW5KaPTY2Bpmkvc9G1QnV/I/57+FGE/Ci4pP+4SNzc5qvzRF0Y+i0tD5YxLo1DZPLXCPPVeRi2gXU1/vfnkqN+IplzBvBLbDZCbVKahKzLMCzDUz9faitUgAxx5MlYBAihqplahDg+vH4YNEXjztl8CtECBQpcnSiIxUuMI4vRqbjxMikKnrl/AvtnqqlqPDtUzVUENjCT1o+xRY1TKEpMelVY4ocEAsdkO0zciW9NGQSIq8sBsUQKwV6nlbiM3O9Bcpbr3P1v4Mbn8Xf/+imwVVK8lCu1gGIxL1ijj65ieAo4l+Ss1hoAAKtPtq2rDIuj8TIf2Hc8EyUW+5rhWbhKEilo/FaoADDpeL+zNA1dDSkWbSrwnfqzgBSN/DvNClXwEYvTdRFTtWhhVKpUMdCJdSbL0GiWyPt/8ytfBAD85P/47cT1J2G8woNziECPWPTlGVIs7ykW045u1x6zKrIBEtclU2U9+BuSHJJ69/7rUrfPVXkONpCxeL5DPs/25mPT5ot3fidlIXsxOlERYAPoDHQIGRSLFEXhGfuncGy5H8nO3Ag4mi6CxAs8vqC0iIWpaxPkqpJWjuRf1/pJQGokP7/4IHDqawCX45wVbt4xIStUhkfk7O1vvnAlIDSVj/MxxOJjyAp1JLFoMejKakB5Nzs1jm/+89u8v13F4rfOW/iNz6pAKX4ae1DdhR/6oIzlcrp999AKNQOxqPWB5UMAAEmI1pLlkoh/+tPfwngS2eWSzhQNRdMyWaFmxSgbVCCZWPzHj34BAPCWX/+JLb1O8M7wjbYBh4tRYFkGxz7zLvzwC5628ZWsHSX/XT+5NRt1iVFYoRYoUMCPvt7HkVb2GieWWNRGEItOxuLiuUWsnFtJXG5KmvL+7VdN6YpOiMUUu8g6X0dbS89jTsMoYpF1Im7aq22s37WO038ZVa0P+gOUHPeE9c+vAzzw1Dc/Ffw42VdJisUG3QAAVOmNyeJGWaGGFYthYlEzNbBO36ox1vD2RUCxqHY9S1VTi2YshsnLMPwZcy21hTFxDAJLaiKKoiJDTp4K1nlZhFg0BgEC7mW/8rKRg1JhjFIscsKQWKQYCmuDtcRl84CiKFQaFew7SJyaylwZujVULAaO402WQn0nDmFMIr+nheoCWmor8FuybAvryjqmpKkNkXVzFZIPuCzHK4bjFIucE3+TVXU4KU2ip/egm/ows5HNN9y3FeCY/IrFKl+FZmqR4YpD64cwW5nFtvK2rdzEAgUKXKEoiMVLjKPLUWJRcNR9zRQbxHMtBWuyFslYZGjKU1oBwF2PBi+KZYFBJUZ91hDSGykl3mfHmbHQoZzl1IEMmqbAMZevqS+USHHbabcSl+n3OrAdb9mJ7/tVbHvlH2DfjuHFsVSppioeXbg8cLg3xRoDdBTdm1zvddtgWBZiiRSXpky2racOL9TjVT7Q5OJYGgjlQ8oxxJX7HZnOjcR0jRS7DA3ouhZYh2lTAaVex2fFKusGeIb2jsk48GLJI8/qUnxBWy5XoegmRI4BS1NoOqQbI5HvZVS2Yhy21X3Fom2hLDAY+NSFFMtD19TMuV81iQvsB1f9O9DilQajmo8Sx4BjqAgxmQVfOLSEisDiCTvz2XdcKnCSQyzy2RWLE44lr27a4NlseYfPPzCN9kCPPU/mRdaBiAIFripo/WhO4UbQPg2I9eTnH/gXQho1g5ZIrio9FkqoeRfOWAxPXlM04M+h4aQYYvHeyNt4xKJ6+YnFsphOLKoWjXZPDjSYvvC+/4dtU8NrQb1SRqvjs9VKaQr8xyFjmG2YAHddmRSLJ+4CPv8mQF6FJG6ACBx3jg+KhqoZnlUosAXEYgZVY60cv8xamwyNPfHG/LVIGiiKgijwUDbgXJAF5ZKYu/noQe0C/RXyO2ufBozNWZRdDlTKhWKxQIECQxxZjycVV1biCUBXSeYnFvvhLOcQWIpYoR59+ChOPHwieTlffeLPMVMHhABKUyw2xebIrMfUbRxhhcoJpBZqrbVw9p1noZ6LOvwoPcXrDM68Yga3/J9bML9j3nu+VC1BVdTIkLtESbHbkBUjrVB9pB9N0UCorNMtPVBDURQFlmaDxKLe9YiRiBWqyEesS8PwE4uqqWKyNDlURsbYznrrSyAWFVMJEDUH7jyQ+v5x0EwtXbEocDB9tciZXobs9Bxw+yJlrhxQtJ3pDt/HtZ/dKDzFokCG/hdqCxgYg8BvpaN1YNgG5qpzuUkzYEgsttRW7POuYrHKD49TRiLHVTmc+56AydIkdEuHbMgeKXo57EMFenQcVhiuFar/eLVsC0fWj2BvfS8abuRBgQIFHtcoOq+XEF1Fx7ocbfit9khxZyXwIUtdckE7stiLtfYbKw+Lis8fWkZ3MHwPYh8Z/ZrHRtyb+4nFrD0Mt4jWFNenPv/h1b3vU1j5+NvAbtLCUCq7isX4Zp6h61hdWsRnP/IhWKoMmpdQkSSI7LAoDmcsJmGbUxc0Q7Udq8uwbKAt6xj7ufdD3347KtUaKIqCMHsNytc9HRxDoa8Ni67xcvCCzzN0JCMqrmHFu4pFp7idrZMin6Eo6FqQWDTs4HfT8h2TA80E7+QiJkGQyp5iMZzf6aJUqWCgmxB5YoXadI5RWtq4hVdYzVeXuKAVKstDUx1iMQO3WJe4wH5w80o32hCkKAp1iYtYqY5Ce6Dja8fW8NS9E9g9demn17KAETeiWBz+IESOGZmLCgB37hmHwNJ46Fz69HAWFMRigccltD4QnorPaeEFAGifBYTQ+drffFt+BNj5NIT7KWY4I9GPsGKRFUPEYuh6QnOA7iM/OAnwNetgGWQ7QmCd335f1S67FWpJ5EDTNJbX42uRnkHj6Jkl/Mun7hq+JpQjV6+WoagphG1OrHd64Dg21to0Asskx9PaiXhi0TKA77wfUBKGQRoOyUnRUDU9aIW6EaLSh80oFi8mLiaxuCmsHSP/3fMcQizKG7fdu1y4qhWLhgI8+GHg/H2Xe0sKFLhicHj9MCakicjj3W78/btL+AgYXv9GWURmyViMAw03IoZYoYZz4fxoCunEYhKBRK2QIsxPZAIAbQfvgWiaRqVWScxYtE0bJ4+cxDc+9w1oyxoolkKX6gb2rZcTuNUZi76s5jiSzq9Y5GgO8PGXFCgYlhEhOzmaA8VRYC3HClXreRaUpmZ6RCsACKIQUUWGEc4KnCnPDInUmNvbnt4jajZns8LEomqoue11wxhFLPICD9M3jL5VisUwymwZmpVALKbdE2RAX++DozlIjjuKpy705ZGuyGSIYEc1faguCSWuhIbQSCYWXcUiN+zRsBILGjQEJhtR51q5trX2ZSUW046XJLiKRb8V6pnuGSimgpunbr4sWZEFChR47KHovF5CnG+TC5NL2jx8vouf/ftv4Qf+/CsAgDPrg9jX/e0Xj3n/jhNjjfuIxZWeho/ef977u1HiYhvsYyMVi6OnznY5WXWuhaSnWHSIRSGG0ByFtU++Hf37P+s1BjcKlhfAcTx6MYpF27LwkX96Lwxdw7Ne+GLQArmwV8Rg5l65Woemjp7oTlYskv2wJjshzbe/BBXHBtVFXeLQ9ykWJ0O2tTxLw/ZNALI0FatYdAky3VEszjjqPoamiIrPtw7TGhKRQEixqJkQORpsitqUl4aKxWoCsSiVK1B0E5JDUrpWqJshFueawQKsIfFQfPuCFUvQdRVZ73jqEheyQt18NlJN4nI3FD9/aAk0Bbz8CdtTLWgvJxiBFI1ZMl1d+C2Ys54LRI7BNTNVLHVVGNbmMqrSjuECBa5amCqghWqJEdP4Edgm0FsEhNAUed+nAGjsAGZuzLfeCLEogPJndoRveBk+qKpiQ8Ti8qEoiQp4TR5Z0SODOZcaFIDxRjVWsbg+sPBj/7SMnqzgB559J05+7j04/+X3R5Zr1LLnbmdBu9tHs1bJZwFqDFASYybSekvAIx8Fjn42/nWVGfId2DYUVb/kVqh+i9mLjg+8Evjkb0LgOag5B4wuCdaOAawAHPxhQghntUhePfqYUTeWpatUsXj2W8DHXg9895+A+z4Yf14rUKBABIfXD2OhOsz4HZXR3tN7oCk6qFgcoVZjKGZDyqsqSA2lDTRwNJdKTjbERiDHLww/qeEHdZ6CnTSZHkJ9rI52TC1iDkyc/LOTaK+1ccuTbgE/SfaNZmkekQMA5Vo2YtH9HCqV/HlccDwHQUwnZ/yKRY7mAF8ZyFJswIbTBc/woFgKtE2DAoWuNrRCNVQjaIUq5rNCBYCdtZ3ev+NqqZ5GiEWXKI1YoZqDTecPaqaWqkDj+KBicV1d9/bBViKcwXeyO7RaV63Rx0Aa+nofEiuBcwYPt1e3AwiSpCsDcm+ys75zw++zrbwtcIz4MTAG4GguQMrRAg2O4cBS2VS6LkHfUTuecvlyEHJZiVA/6nydKBZ9++bw+mGwFIs7tt2xlZtXoECBKxgFsXgJcb6tgKJIVhwAfPPEGu4708LBOUK2hG1OAWClp+Lvv56ehTJVHV4kxso8PvjNU17NVxO52Kb+uHNvTifcvMYpI8P4nRdeh99+4bWYdwgft7DyFIspdpoBGBfnBro+No5OKGPx2KGHoAxk9B0l48HbhoHD4cw9N8dwo3CJxbZPQVqtBa3lGiUesk+xGLat5Rg60Eh17T/DN05dhazjQYXYp007uYd0DLGomRZ4n+WuX2EnayZElkn9/gWpBNkpVGsxNrsAsUJVDQsiz4BlaNQlDhQAprQxYpGlqcBxDhDS3E/icWJ5qFhMgbu/myUucDPgEuSKsfGiu5GTWNRNG59/ZAm3LTRxcK6x4fe92KB58hsvC9ltbkSOQdlRPkt8dqXjvqkKVvvaphuzfvK8QIHHFZRNKpEGLUIuhu1tZB+xuPOpQHUm53ZFFYsBRIhFLkhocCLgv4lfP5H6dsQKdWPWXFuJybF6hFg8fPwMvv8DMh5d1cGxDJ5++w1YmJ3CzGTUDrte2VpiEQAaDilnWDZOtiyAGnGONrV0K9Tu+fjHaRo48IPA+B6oug7RTyxuVrGYxQr1UisW109A5PMPGMXC1AhZuVV5iKtHgdp2YPvt5Lfn5i2OwuffCHzrfVuzDZtEpXSFE4unvxG855FXgS//MfCltwJSE9j3fKBzhpyDCxQoEEFY5bUoL2K2Muv9rY+wgu/pPZTYUkDhNzAGEWLKD47hNkTI1Chyz6trJGMxbdvqQor1/AYQp/xrjDciisULZy7g2JuOQT4io1wt46Y7bwo87yfQPHJsBLHYMUitp9KjSaVyaHAqrDwEgL4xJH7DikWGYiJWqO5yFEuBAgWe4SEbskcOm1rUCnWUYnFgBAf2dtd9MQAJisUSO6w/4jIWN61YtNIVi4IgwPD1mJbl5YjyMg/ivhsg3Qo1TMjmRVfrosSWvCzJptCEyIoBdeGKsoIKV0FDaGz4fbZXtxM1YYxdsWIqEBgBjK9OpgQKHM1ltqYfl4hisa/3PeLdf3xcKmwkg7Im1KAYQeveQ+uHsL26HZPS5FZuXoECBa5gFMTiJcT59gATZQF7JsnU2VP3TeDnnrEb33PddOJr3vGlY/BzPHED5pM+wuXgXB3fPdPGqTVSIFVFNtbWsuwUZbwStEWgxHxk2u6JSsRqVRs4isWMqkNbzammyIh6czxihWrbNiiKxnO+/2UAguRhXeIgcDQoXgItloEEiwLTIDcG3/rcf+DbX/sSWmvxOQ6sqYCmhqQfQFSQ/uK3WeICCsRwtiHP0LB8fvEVgYWqG7BCBbTp/Kk5Y3wTFd45bogVqu0rhgzLDhCoA1/ROXByEdNyNQWp7Fmm8gmZoK5i0SWiGJpCVWRB5zy+XFRFFmJo3zRLfMAKlRVKhFgcccez3CUF3VjIdlZ0MhI3Q2g1S3wuK9T7zrQgayZecttcwDr0sQaaI4VoHitUYGjTLGUdMgBwzUwVKz01QLhvBDyTb1uvNLziCST3ZM/U1pMOBa5wyJu0O3IJRCnU6OqvDv9d3ZY/vzCiWIwhEsN/+4efWDGoWFw/AZQnowSlu7mPAcUiAEw267FWqFNlCn/7ijnohplKgCUp87p90uh654c+hU/f9W08cix7fk6zTupQ7g+62PlnPUAcMfRjqOkKw/4KkGTzdvBlwL7nRaxQuYT6ISsutxXqNeM0eDpab4gC57k6bAqudekDH9r8ugBCJDZ3AuUJYNtNQPsUkMWmzNSB9WMXbQgwD65oK9TeEnDXnxJ1r2UCj3wc+NivAksPA7f/BPCKfwCe/utkf8dYPBcoUCCe3JivDnMAR6kP+3ofJa4UIN4GxiCVOGRpdmOKRcpRLFJEsZhGLIZJkc2q2eKIxfpYHa21VuAxmqbBSAx2/95u6JoeIcB2N4YEWqlKnguTeKYzkPvwVx7GN7/wTaxciO+LxBFwlQxZzwHFIsPBpobv7yoWwyQdTxPFom3bEBgBfb0/VCxqBnjeRywKfIQ4DMNPyPE0j8nSkFBJUiz6rS5jicVNqgc1U4PApigWBQ6mzxVrVVlFW4235U8DT5N9lXRMVrgKNEuDaZvo6/0A6Tdqv45CTyf70SUWKYrCttI2dLSOR2Quy8toCI1NKQAXqgtoq0ObUj8GxgA8wwcyRCmOEIvMqKE8BzW+BpZi0Tf6QyvUy0EsMqKnsjwwni3Xs8bXApmghmXgWOsY9jX2FfmKBQoU8FAQi1uAw4tdHF4c+uK7TfSHzwebaOfbCiYqPErO8xNlHrONUmoW4Xu/dgJP2DmcYGdjCB+/5eA101VwLO3l5pV5Nt3uKlyfb0EekWeFym388DKNbAV1muVJfWwcvXYbtm1jcOYhaKqCPddeD0EaFh5uFiMwzNwr7X0ihJm9oPj4AqW9Tpq2H/nb/4ffeO3L8bmP/RsAQO4Fv28bJDOx6yvqqvU6NJ/V5nhFCBCLYoik5Tkalu9nWnUUi1ZI3co7to+WU7WzNI0XXD+DXeMlaJoK29eMNS07QNLJmumtb6AZEHkaTJoVqihhoJsQUrIY+VIFlk2IUBd1iQMtbYxYrEtchFgcK/OBfceKEsmTHKFYXHKIxfFytOFcEdhNKRab5WDu4yh88/garpmp4sl7JvLZ0l1qOMRiJYdiESDHN5CPWNw3XYVu2t73tFFc7RmL82MlPPIHL8BzD+RUjRW4+rFZtcvAUTyWQpOofsXiRs5XYcVi2JIn1gpVDS4fIBZPAtXZxG2RFS0/+RmCnvF6kFaLTI7V0Wq3Yf+vGl58LYNuT8b+XdvxLy8voeacU9MsO+vV+ObDF775XQDA77ztvXj+a38XL/mlNwIAjpw4N3J7mxmaeQGYOqQ0u7L+EpDWQGK4iBXqZq95l5VYtAx8+2fKeN72aBNb4NjHXsbioEV+15PXAHwZWHgS0DoNqKNzxAGKZK5uVgm9BbiiFYtth/hfPwF8+neA7/w9MHsr8NK/A77nDcDUtcDsLcTyefXRy7qpBQpcKZgpzQRUMyOJRa1PFIs+QkA11VTikKXYDZFAbsairungGT6VLAwrFsMKSl1LV2KGkaRY9FuhdlodTM1OYddv74I4K0JTtQABVmJLaIrN4d9OLWL2gvti+QLJu7vvc/fhN370N/CBv/4A2WY1uM1UTAxPuT76Ou7/Tnmah81EicWIYpHhPGJRZEUohuIpxQwlaoU6MAYB4igMv/KuKTZR5obbHUss6r3AMmFiUdbl1MzNLNAsLdXakuO5oWLRIqT86e7pkeu1bRunOqe8v111r2rE35eXuTJUU4VlWwG1oruNm0FPI/uR8w0JzlXn0NE6HlG/PFjGuDi+ITWei4XaArpaN9YSVzGIYtF/fNisDY7JTixSFIWG2ICsyR6xKHKXvp4RWAEMzeCuV96F1x58babXVPgKdEv3jtdTnVPQLA23Tt+6IWvVAgUKXJ24ujuvlwjP+9Mv4Xl/+iWvkfCy24j/9zvvOo6z68ML1Pm2grEKn0rahGHbwK07hkVdXG7YuE/pxLM0nuBbPq/CKA5MzuaPq1i0VPJfuZN/OuqH7tyH1//3F49cTu6RpogdU/A3muPoddtY+9RfoPPtj+Orn/skAHJxl/s9AECpNCz6GiU+mO0opBe7v/nuz+J9n/wGrrnhFgDDz93VSHHbK81iqiag7yusK7W6ZyMKkHzMvjq80QhnS4pskFisiaRhFY4BdFWjtu9G4sW3zOHJe8ZgGkZA9QgAoo/07akmdJOscKCbkNjRikVZJZapSTl2bm6l3yq1XuI2bIXaKPERonqiwmOgmV5PmRFK0DQFoxSLS13FW2cYRBG6ccXiWFnIpVToaya+/6Zt2FZ/jE/hs6Sgz0ssupmheaxQ9zqK7nOtzU05co8DK1SRYyKK8QIFIK+OXmYU+DIghMin/vLm1hmTsRhAHLHob7ywQtCyc/0EUJlC7Bg8HMWij1iMyzkchdr3vxFPe9Wvj1zuxNlFAEBvEG2iTI7V0Wm18PpPKfjwIyY+8LEvAgD+z9dYfPocqTNSFYsJVqhuI+3b//Z2HP/su/HbP/MKAMBSSJEQh0Y1P7FYSiUWVwAlff+qmg5xI7mK8irwlbcBetBS67JaofZXUOIoiEy0XhB5LuAE8ZiAq36cd/Jwdj0N0HrZbVYtHVi6/Cq6yqXMzNxqdBzC//iXyLH87N8DXvIOYP/zh4phhgXmbgVaJ5MVwBcLhgYc/Tzwif8J/NNrgA//HPDxXwf+6/8Ad70NuOddwP3/Ahz5NHDq68Dig4ScHvG7L1Dgz7/z5zj43oObVi/FYb42jwo/vJ719F7q8j29B5EVA2SQYiippN9GFYsuNFULWKGuLUddJQRGSG3Sv+a21+AXfugXIo/be2xQviHflUfJAJixHt3exlgDrZWW9/fHP/hxx8lp+Ho/AdYUmwEVWKIVqvP3C37qBfjg1z6I57/0+QCGSkYXFE1FCNMsikU/scjRHCwM18FQDHQzqlh0rVABotJSDMUjdAzNCFihgibkcpqCzE8sjoljQXVcTAna1/skF9N5rhwahLJhByxe88KyLRiWkarS4wV+SO4aAE3RuNC/MHLdZ3pn8NZ73or7lu8LPK6YSuwQXZkrw7AMGJaBM70zARIwiYzMir7RR5ktexmLQFRduDpYxbg0vinF4vbKdtiwvbxGPwbGIGKFarM2eIYHTWW/Bx8XxyEbMhRDAUdzqUT2xYLIEDKzLtSxq74r02uqHBEFuHbBh9cPQ2AE3DZ928XZyAIFClyRKDqSW4jVPrnAcQwFgaWh6CZe98F7vYvwWl/DWInPRdQ9cdcYdowNC524l46FCJLnHhhaq5b5+IuW5DzMphQ1RmcJnbv/HXSGvEU/VIdg66yQzJ3zx/M3I370F34d9cZQqVmT0lUHcYWOVKrA7Cyhd/9nUbv5+Xjm9/6Q99zAIRb50lBB1ywF30Msp6vrWI7DtvkdmJgOKoZWZKe4pWhM10T0fIrFSq0B2ff3REVAT02+WRFYBqY93P81kVinmqHPO+FYTo7TQyKboijYjm2rjTCxOCyOeqoO3XQVixYkPj1jkZdKkHUDIkfHKmgBgOJIcVcVhvt0rMSDHmW3loBmiYPIRhWLfc3wfk8sLzoZixbSyEXD+azhPEv3MXUzisWQte0ozDZEvOCGbZkyTS8nbJoDTUWtekfBtWku5yAW5xoSRJbGSm9zU45Xu2KxQIFEDLZAWSQ2o0RfP8HeKisiisUYItEPlg9ZoQrBIkjvp+Y8yooeyBd+6OipxGWT8Ic/+VzMTY+PXM6tQQwzSjTVKyUcv9DC276h4edv5/DTr/heAMCnTrI4KpOm2kasUF1wLIOd26dx2/V7R26nC9cKNTNGZSzCJiRDClQ9qFjMjPP3ESJjLajiyqRYLGckFrvngQf+daTjgQePZI9eu0WBwyClrrssWDtG7P0nryV/b38CAApYOZR9HatHLsqm5UFZuoIUi2vHSUbmirPf3H1dGgde+Q/Ak38RaMxHb+x2Pg1YPxUdxLhY6K8A934A+I+fB775t+Q4uf7FwI6nAM0dxE66v0x+h4c/CXzrPYTo/9wfAJ/4deB+x6p3sEkL7gJXLT567KMAECEqtgIzpRmvWQ6QTLY0KKYCiZEChIBiKiOtUDdjW2moBnh6qFg8fTT+Wlnjk++Rf/R//ii2LWwLPKYYCuydwWvW2iL5HZrOELMGUkPRdRrlWhnL54cDYq/4mVcMiVhnk8q+QaZxMUjW6NAhpqjGKYbC9Nw0rt91PQCAbYfus+loBmY4YzEO/vzDcN6lq1gM3/bzjGOFCkexaA6JRVM1A4pFlzQsJUTghLdhQpoI7Jc4xaJsyKhwFU856ids3cdGHatpcNVjaWRawArVBraVt2FJXkrNEwWAdced4FjrWOBxxVBiX+vut4ExwOnO6YBN7GYVi7Iuo8wHFYsL1QW01BYUQ8HAGEA2ZGwrb9sUUTdXnQNASMowFEOByIiBXFaLscDTfK73HJfGMTAGUEwFLM3mIiW3ChuxX63yDrHoqDkfWXsE89V5TEgTW7ptBQoUuLJx6UclrmJY1vBiW5c4PG3fBP7122cDy4xXBCx1sgcZ37rQQFUcXkzpUBODZ+iIym17c3jRCD/noiFQ6N3/WewUkxuQZ//qJwAAHPPGzNsLAJpKJhKZEYVLGn74x38eAPDa990DAIFMQBdp1mOmpuLLn/0obEPD9CvfFMyGwlDpSAklAGTadrISnBQUSjkbbw5WB8OCd6Ym4qFzw+ZApVpD3zfJPlbmPFIvDjxLw/90XWIx0M2IFaqrTJ2mg0QxyRxEQPUIACUf0dNVDOjWULFY4plEi1MAEKQSZI1kMcYtxzAsdIcMrUnDU0yzzG/YCnW8IkSUWY0SD7IbyL6geRGapoKS18DbWqKS629ecxve89UT2DEevZmpienfxyiMlUnuI0VnI9Ked2AG25uP/Ql8iyY2wWnHRRymauQ3VcqhdKRpCgvjJaz2tchxngdZM14LFLjqoLQ2vw6pEc1A7C1tbp3h7YooFsMZi0KQWIyzaq9uiz7mQFb1Tdu7/8rLngzM3UYIgg1AN228/z8/D9208fEfkSJDJJ2ek4edosRiWQblkoi+nL12HIXcVqi2AWZUbm37bOJTlmVB1w1CLOYVYrkWklawpkwjFiucDY5O368BnP8uIUjmbiM5hKOQ8lsQONY3YLTxa9iWYvVRoL6d/K4BQKwDE/uIMs62gCwNrvVT5Pe4BZEJG8UVZYW69DD57+lvOPva6dxPHQC23578ut3PAL74/wghuTB6qGFDsG2S43joE8DZe8i5d/sdwI2vIGrW2hxRT5oG+c5NjSgoTY1YHsvrhGzsrwDfeR9w5u6otXWBAiFsNlMuDuPSeIDY6WnpikUAEFnRsykFMlih0mxEEZcHuqqTbMAR14O6UMfyIN4Z4oWveSHGpDH80ud+yXvsHx7+h5HvPaBJT4au0fjEOz8B0xx+DoqivDw8a51cX0uVEkAewoQ0EbCXXFFWUMniduB8HZQZrHcomoJu6gFlZiXDkFMgY5HmPEtTgBCLPbOXmLEIEJVWV+t6JJeu6OB8g89ufmKFqwSUiX741bZTpSnwvutgmFjULR2qqQby5yRfLSKyIgbGYKRtbxpUi+yDNKKI4zkMlOF276rvwrHWMaimmkpIuoTn8mA5QCRqlgbDNsAgWAu6lq+KoeBU9xR21nbiXO+c91havy4Ntm2jr/dR5+sBEm6+Ng/TNrGmrHnf3Y7ajg29h4vp0jQYignkQ7pQTAVNoellEwKARVuQaCkXOTghTeBE+wQU01EsUpe+DS9x+XtOriJ8YAygmRpOdE7g+TueH8mFLVCgwOMbRed1C+CWE184RIpB02mGb6tLuN1nSwoA05V8N147xoKNk4gdZHVjN/jLAxuVg8/B2li24N480AakUGKQrQi3Nnijcero4cTnGF7ATbc/GWxjBuLCwcjz/T4pmmjfdNpMPdiwoGkGopR/smdtMCzCZhsiOsqwi1atNQKKtmaMHacfIkfD8JErNZE0rMyMhIuukSLaJRaNLlGcSNywmOmqhmfjqxomygKbqlLlxTIGmgmJj7dCZXneyxn0K03HyjwYaWOKxW21aDPJ3XfurmB4krFIWQYoy0xUAe4YL+P3X3QAeyajNzPVGBVjHrj2qrSYTqA+cdcYXnXHAn74tu0Q2M3bFV9MUBQFw6bAsTTonLbIU1XyvSUpp5Owd7KCtb4GNez5mwNcYRFa4PGKrbCmE2sxisX8Vqj+JlZku0YpFhk+nVgUqkBlGkmQFS2gWAQArJ9E+b9+CwBw49jmLJpcnF1MVnJyDIXnPuUWlFjge/dF1XousTjKsjPJDnWjaGRQCQSQxZaxt5io+FOdfKgNWaG6eXOhYbU0K9QPvHCA33iaCD6vQnL9RLbl+snEosizjxnF4u55R9G7dowQpqIvx2vhTkLaatFMoQjEBiEhB5fX9rJSeuwPYsXCtoHeaAs6ACR3keGBleR7nA3Dszv9DeC/3gCsHwNueBnwI/8C/PC7gVteRVSKjHPeZFiALxFCujIJ1OeA8b3A/BOAa18I3PajwM2vIsvyW3uOKlAgC/hQXZBE1ti++2aBFQKEgGqoQyvUmNschmI2RYrqih5QXCUhnLOYhp7Wwzvuf0fwsU4yqUrRFO589p2Rx9cUonA0dPL5/cq6qdJUZLvDlp65QEcVbFnW5yf1wlmVDBholhYhr3iGB8UNMxZVU/UISV3RA1ao7vorXDLJqRgKeJq8JkJihY4Z9xgM5FP69qtL6sXl+WWFq75MU1kGrFAB7Gvsw9JgaSSh6RKLS/JShGiN+x24xGJX62J5sIyF2oL3nGqqMG0TU9umRnyiKAbGADbsyO9irjJUF7rWpbsa2Ww9k8DSLKZKU2hr7cix5CoW/epEgzIi9qijMClNoq/3ybGU00Z1qxA+X2aBa4WqmiqOt4/DtE08YeYJAXvaAgUKFCg6r1uAp+0nUvD3fe2kl1Xn4r8/aVh81CUOtVL2k3Bd4iIWoGF7vyRbVbZ7PnXdbr/eikzLZJ8q0lQF7fWoZYBrhco6HvilHDaIefDde74WeWz92HfRve/TAIBnv+gloBIueoN+n1iFssPnXdtGF6Zlo1zNT4R5Vqgg5LKfSKzU6pB9isVmOf0CL7AMNN8xVRVZmJaNgZ6taaXrrmKRHCdmjyhUSz6C2raBlqzDsCzopo1ygrpscoJYWzQmZ0gWI8fEWqFyHA/FySn0241OVPIrFsfLAiSOwTUz0dc1Qr8lhhegqdkUHXG2JcBoy91RaDivv/bOZ2PXgRuTlyvxeOMP3YADsxsjWi8lGI6DaliOOjofsTjbEEEBqIj5zgH7Z6pY6amZj/M4FFaoBR63UDsRdVdu8NUokSfnt0K99z5ifbbW7kWJRTY0MEKzCHRo2FDGYrgxV5sD+FJi1dJXgxmLd+Je4O23gj/ycQBAk98a9cQXv3l/5LGvH1nG//cNcv199Q88C0mno26fNLSqIyw769WtyQo0neMit2LRGGFnxZUAeTlIBPvgEosC5/8OM9abLsFy9m4AwESzhr07ZnHdnoX45ZU2rmlamK6w+X8H3YzkT3cx8SmR5yA/RojFo595F+xvv5+cEyavA/zT6jufRgjSLJ958lrAVIHlHNapW4gSa0FgqRF2vI9h5Bn24ERg5kZC5KbkvuVCfwW4z2d3ypeAp74e+NH/BL7/bcDupwPlifi8jQIFriD0jX6sQuqb3/ym9+8S47OlNCmP/AAAqhQzMJtRsZikSNQ13SOl0tAUmiOXcfGpE5+CZVuwfS47D9zzQGS5s/efxfJHyVDY97z4eyLPtxwnCdc61U+AzZSjVvNZrEuTQNEUumrQ/nOUYtG27aAVKs0FiEWWYqGZWlSxyPCo3FKBwioesehZoWrxVqj+rM4wFFPBXGUOT9r2JNw4Qe7vJYlcT+lQL8RVzY4JY97n9hOZrsrQVdttBB6xmKJY5Pkgsbi3sReGZXhqwiR0NOK0tTxY9v7tIk7Z627DmR5xl7h+/HrvuYExgGmZeOErX4j6eHbiHBgStONSULk/W5kFAKyr61gZrICneUxKk5HX58VsZRYdrRPJW1VMcgz5SUQTJniGD9ijjsJkaRI9vYeBMQBHc7leu1Xw20ZnhWuFqhgKDq8fhsRKuGnqpq3etAIFClzhKDqvWwDXK/3IUg8f/+55T+1VFVmIPItnXkMudpNVIZBtNwpxgqs4S9A4BFQCOWD2smdk/Nv73oFf++8viTyuO7YLbEixWOXJB2JSJqV2/MZHMfWKN2V6fz+xaFkW3vknb8TZb3wM2uJRAECjmWwhJPe6kMoVKD5FVEUINi1Vw0JlA8SiX7E4HVLaVepBxeJYArE447yOZ2kvExAgikUA6KrZvl/XCtVdBcWR95NC5OG6rGHgbFctQbU3MTHhfIYxoljkEhSL3FCxWPcRdc2SAFqsZLPccjBTF/HV33wWnrKXvPfYGCnS5xZ2RUhZmhWgq5tToNQ3SSy625QlZ5GiqESC87EEhuGg6BYEls6dBfn0fZP4i1fdgj2T+Qjla6arkDUTa/28nnlDWoJ7jOdWFihw0aDJm29Ii/XouXoDGYuao5rXdB1QuwiI7cNWqxQVVBgyQpBYDC9fmQG4Ell3DEjG4vCcLlA6sP/5aN/0M9k/QHn0lPUX7x4282zbxpv++oN428cfwTfPWrBtG5PN5GZKp08aZqMsHhtZ7McyoN11JunzEoumlk7SNRaIPag+iH1aUclxEMhYHLRGv6/ua7yduxewDNSrZRx56/OwZ3uCWtVROPI5lfIAyGfIYtvlKBZ/4Ck3RJ4SOIaQ2o8VrJGaGPN3BB9fcNQryw+PXkdzJxkEWM2gojtzD/Cd90cUppvBXzy9gzc8S8rtmvCYQSfZJjgWO58KrJ8ElI1ncMG2iR3rl/8E+Mgvk3zE2VuBH3g78CP/DDzrt4Hp6wulYYGrCj2tFyEGAEDxDZ767T0pk4JmaR5Rg0pUleUSi6Pu2fodcn21QkPmlmllUgr5FW6j8OWzX8YdM3cAvre67+vDDEvbtvGv7/pXfPEvvwj5qAzbstEYb0TW4+bpxSkW44jFSt7aIQRXIZl1fZqlBew444hF0zZjrVAB4IFtD0BipQCxaJs2eH74fbjEokugxGFgDFAX6vijZ/4RbpwixKK7Djo0OeYSYm7WIMsFaxGGZiAyYkCJmQSVcvo4dPDzuerLMlcGBQo3Pj06zMwJHPTBsBbZVSeqvrPd9OtRW21DZERYtoXT3WAeaJpi8XT3NGiKxnXj1+Htz347ALJv02yG0+Dmf46JY4HHJVbCmDiGttrGsryMhtDwtmEzmK/Oo6N2Iqpa1SDWsX4iULf13KrDCWkCpm2iq3XB0dxlUSyK4YHODCg7NYJqqji0dgg7azsj30mBAgUKFMTiFuAVT5jHa560gMkKj7/+0lGvJzHukAzbG5L3t7hJe76k3Lgk5L0Ht83sF/9+r4NTxx+FaQRf4yoWGQQLa1e4mEYsAoC08yaoRjoxY9s2vns3IRYtTcE//9Fv4J/f9ReYueXZGHvuzwIA6mMpxGK/i3Kl6inrgKjNrGZYuRWLpmVDNoZNqZl6UAVZqdbQ902yV0U2lqz5xOueht954XXYVhdhWDYoZxrOtersZ5yGH1qhkvegnEwrKURwdxQ91r40CYruWKHGbDvLC1B0EzQVfJ9miQNFM6CFfMVfsyx4hJ07FVitN9AMKRZpToCmby4kvC5uUrHobJP/uLrSwXIcFN0Ez9KJCukk0DSFFx6cjdgMj8LeKXKjeXY9v03ME3YSm9m901vTiC9Q4IqD1gesTRIbUgwZNsg+eBQLtQMdvnNsXCaX32WADWUshm+IyxMAK3g1V7sXnP4OKxb/vXsTcP1LYY/tyb7NGU55X7ybKBZVw8bv/cPX8btvex9educC/v7FIiiKwuRYCrHYk1EtS5GJ9zC2SrHoWq82M+QaBWCqQJpiY2w3MFgn/4/B0Ao15zXWT8jIqyQLcfkQ8OC/AXf/bfxrVo4AIFmHuTFYBUwNPGXg9U/igST7O8cW+Ma9c5GnRJ4NOFNkhrwKHPlMNmIzCf/xC8C/vjb42NoxgK+QnD8/6vPESrh1cvR6aQaYvYUsm2aLa9vAve8HTty1NZbMAGCZONA0MFVhkr+Pxzo66QqRCHY/A9B6wPrx/O8Vtjtdc+xO/9uHHLvTVwftTgsUuIogGzL0EfWP3z6SNsi1t6+R3gRFUYEMPwBeFho1wrXFcoZv2svRc19eK1QrNMgTJjsqfAU3T90ceOy+bxBi0TZsPPCRB/Dn//vPce33XIuFX1oARVMesTj90mlwE2R7VhXiPOUSi/4swDiyZlNWqCAqs8D66unrC9uFcgwX+H5dFVlY/ecSuRZtQWIlaJbmvc427aAVqjkABQplNnlbFIOo1kRGHPlduoSYq0ANE4sAITGzEIttmhxLXSE4ZOKSpBInodqoYuf1OyOv5XguoFis8BVMl6axNFhKzT3sal3srO0ETdE43ws6oOkx13/393SmewYT4gTGxDE8c/6Z+LEDPwbZkGOJ/izwFItitJ+3rbwNHa2D5cEyxsSx1MzIrFioLqCltoZDBiD9RsVUAr8FmqGhW3puK1T3c6wr60TtmOO1W4WNKBY5miM5pXoXp7unsb+5P5dtc4ECBR4fKIjFLcBT901g/3QVL7hhGx4+38XdJ4LNNzcjr1HichGDg24n8pirjnzHa27Db7/w2ojirSaR4oU5SSw/8hIBeWGZJpYXgzfMmqNYpHMEnYcLnHC9oxvBB86ePIa1FTIxvv65d+LofV/HG97+XpQXbgBFURBKZdRTFIvKYACpVPbINADgQxNnqmGhXMmntFrrBwv/sGIxnLFIU1SEIAOIVeZPPX23Z89KOUoNV02YtWmla2pAAeKuR/SRqAxFoasYUDRyE9MYQSzasKHoFsoCGzu9SaxQTQgsHbCj9MjBnHaoSZA4BpzvJo/m+MxWqEnYvBUq+Yz+4+pKB8OyUAyHWLxEKsAd42XQFLDcy08USzyDN734IG7bUUzTFXicQu8nWlKmwk/ihCfn9UGiGi0z1C40+BosYQUiECQWGT5IkLIhIlJsBP48sRhsWCmqHrj+GTZNLABTMFDyqd4vrHVx6Dixf/r9z6v47H2n8YE//g089/pJUBSFkshjvJE8oCQP1JE2qABQ30gzz/nsX7sQU2PkVUCaWjqx2NhJ/ptAUnlWqHkzD8NKr6P/NVQxJtmzOtap/EaIxd4yoA+wU2jjj54notx6JLqMoQBqspJM4iiils2DM3cDn/ifwD1/B5z9Vs6N9kFeJYSU7LsPWXmUkIhSI7gsRQHbbwdap4PK0CTsejpR0anRexMPF+4n1qo0s3WKxd4ieAbgHuN51KnonEWmKQUX259IFON5rGcjdqcSsTv9McfudM8zCrvTApcVWexENwtZz0As+uwjKZP8Hrr68JweJhZdpRLFZfvtrJ4lZJ2/t8GG855j0BAa3r+7a8FrjGuv6eLJs0/2suYAQJVVHPouOV8sf2IZp+85jV9786/h2udfC4qmQNEUBFGAWBIx+f2TWPhlYiXuEn2mYUIsiWCY9PPsZolFN7/PW98Ia1XXBtUldzmag2Eb3jCW+7gWqnn9ClGREaGZ2vB7tRCxQhUYIfU7Uk0VIitm+h77eh80RaMmkNqPibl21fhaLitUmZcDx5P7edPIUF7goQ2C+2Vfcx9WBisRotqPrt5FU2xivjqPpcFSQDHqt6V14ZJuiqlgtjLrWcqOS+Po6/0N55PGZVW62F7dThSLg2WMS+MbUuKFMV+bh2IqaKvDwQBvP8cQiyIr5lYsAkBba4OnLxOxuMH9VObKONo6CgsW7th2R6bfQYECBR5fKIjFLcRtCw1MVHg8eC54073UJYVMTeRyWR/KveRp3+fdsA0/84y93vqW//Mt6D/0RZQc6yf2zLdx8s0vis2m22pcOHMq8LemuBmL2QuJTitdCdEKFUbfvefr3mdvPO3V+Mk3/R2e9KznobVKpsjFUgWVWvo0TalSheInFkOkr2HlVywudoJFYlUrlC4BAAD320lEQVTkAqq9Sq2OXkhtmGSHCgwVf67SsOpYmA4yWG0CgKapoHw5kjTnKBZ9uZf1EoeuYkB2phVHkWumZcO0bU89GQbLEytUnmUCRFSz5BKLW5MrSFFUwLqUYnnP+nWjSPpMWcGzNCSOgWltQnHwGAPL8tAMC0Lo+7yY4Fka880SVnpqjtTXAgUKAAB0GcjhPuDhy388/Hc5NJiTYIP6j5+7H1++99Fs61d70OwRikX/JDgrhjIWQzfhIVXl8fNRtZydQSXgx7mlfKrML98/JNJ+62kC/u6XnoNXft8zcOYC2V/jtRI4jk1VJNYqGYjFygaaeRQN6g0d/NPxaC2UpFicr1G4fTZmWw013Qq1vh2gGKAbr8xSNkostn3E4txtRLHo2JDGwrKAVWL9KeSIHvAwWAso7SpaTJZibzl1FVWBQm+QkVg0NODud5LfXsWxncua85gGt4Fv28D6MWBsFyDE1F47ngq0z2RTI+9+JiFVl1PsUA9/kvx3Ky2+HHL5iiYW26eBymhbZQ9CBZi6HmidSP/dpdqdfqiwOy3wmIK1hfbISRgYg5HEot/ykjbJucqfJRcmFl3ygGIzEovnCLG4CvJfboIDZYx+rZ9YXF+KV/+7mKvMBUiCY/cdg2VaEAQBE8+bwJ2vvRPf99++D2tOTcM5bgF1x0GBdgaM3YxFACiH6oyLoVgMZ/aNskJ1FYsuWcXTPHRT98i6JMWi4Ksv3f3kkpq2YXv7AyDk6iiSSDEVlNhSJiKpp/cgsZJHbsYpFmtCDaqRvWfR43sB8tQlBv3q2zA4nosQi9ePX48leQmDlEHBntZDTajhwNgBLMlLgd+Dq8b0w0+SzVfnUeHId9UUm1BNNfJ7yoqe3gPP8LGfcaG6gHVlHR21g6nSVKYM01HYXtkOgGRLunCPK3/+JsMy0EwtN0nnZkVatpXbRnUrwFDMhgnBMlfGoryIClfBgfEDW7xlBQoUuBpQEItbCJqm8P03zkYeP98mF+/NkhZpkB/+ElY+8lYvm88Fx2zdV3zunT+Hc+/6JU8V6eLC2SCxOLRCzU4sriymN1LCn+OzH/kXsBwPc9AFU25gZud+AEN1KECNtBYLE4the1DNtFCu5pP6h4lFAJio+gK7K1X0Q2rD8UpMc9WB6BGLQ6UhS1MYZLTa1DUNFBMk3wCg5Ctyx0oc+prhEZ6j7EA1J5cyKYuR5XjIGlEssr7vwFVmMltELAJAXRruW4rlPevXjWKzikWyjqtriovhWC9jkR3xm9pK7J6sYK2vpfbUChQoEAN9kN8KtXUKOPLp4d/hG2Y5nljU9GwEJmWZgKkGFYtMzPnWn0PE8Om2i6HMouMXWpFFFCPfaMLZxXw5kn//mXvBsQzWVRoNkcL1C+POekhD0R3GmGgmX/dqldEWTo0RU/2piCFwkzIWT/1KFXf/VIWo3vwwVMA28M2zpGaywo0ehic5i9140m9ohZqz+dP25fvseQ7577HPJy/fOUNsWwHw7Aavxb73LOtrUQuNNGITQI2nIGfJWBysA5/6LeDYF4CDPwy84v2EWPc1ejeN/jKxRp46AHAxTbDp6wkJmYXMnLuNfM8rCcRibwk49514AtOPzjng478WJI3T0CaK4ItOLH7jb4Az37446+6cA6rb8r1m55OJQjSk8AEwtDv9pN/u9KWF3WmBxz0GxmCk9aLfDtAl/PyKwH4ossUjFnMqFt1sOUZiYGeoRfyE59pi+rBHmJS452P3gKZpCLYAWqAxtkBcW1aXyLZQTi3SGGt4rzEtM0D0lUJDTi5BFHgsr416CD2tFyB+w+sLf3euQs7dFo4hGYturqGnWDRSFItOPesq0WwrZIVqDCAyycSiZVvQTC1zjl9PI8Sia5nKxAw51YV6JitUFyYd/K48K9QUC1Be4AMZiwAhFmVDxpIcX8fopg7FVNAUmrhx8kYsyUuB34NrGewHRVHedlw7dq23H90cvrBKNSt6Wg8SI8Vazy7UFtA3+rBhY746n0u4kQSXWFwZDO8D3O/I/9tkBRY2bJSYfBEFFa7iEaA8zQcyG9NwrHUMZ7pncr1XHFiaBb3B1r/7+XfVdxX5igUKFIhFQSxuMZ60exxjZR6WbcPluHqK41ufMD3tqgzDzxuHv3TxNnQD0FdPQ18+DiF0c3/hbDDY2TIN6JqGitVH/+EvoeQETvMCKexMI9pwWVk6H3nMjzDhc/89X8PUtjnQoUYJP7MXANCz45tXtm2j8cNvgrT/SSiVKgHLSjaUnWCYdm4r1AsdJWJ2NF0dbiPDMAErVACYzEIscuTzUBSFmshlttrUQ4pFl2T0qzPHKwL6iuHlNlZHkGuqRyzGL8dyPAYOsehXuDU8xeLWqWj9NrIUs3krVD/57xKoedGQNj8191gCw3JQDRMCx+AS8orYP13BSl+FtZm8qQIFHo/QB+mEXBy+9MfBv8NkVH91U5tEOVO/up9YjGviBDIWeSCtQRi2Qr0QnfDvqdFrJedcV42YqQWXEMyCv7xbw0e+dgjTE03cto1c61iLkFr9QfBaNJFih5rJCnUjisUUjFRJhr9vR7H4Dw9aoN7QgTW2P/qaqesSCegNW6G2fc0UsQZc9yJCoiRh5QhA0ViUqY1ZoQJAZ1iPlsw2+ex+9JaIzWxCI6vCA70sVqhnv0XUeM/9A+AF/w+YPgDUZoFBa3M5i364+2r+jvjn3d9gFiURKwDbbnJUdDG/yyOfIcvseXb6ek5+lXyv930g2+dskXsMdoRF36agK4SwvuedhIjdEjifzdQIiTx7M/l71zOyvXz3swjJ3PLdYwXsTv8G4Px2p39W2J0WeNxDMZSILWYYrI9w9xSLPovnC/3goIWXsZhRsbh2PkoK2vroc52f2BpFLPqx/pV13P2Ju1FtVMGUg+dJl1h04eYsAkQ9aPt8YaQMQ05bYYXqz+kLW6HaIZ8aV7HoknocTTIWI8RiyNpToIc1rMSQz+USc7ZpB6xQVVOFxEqJxKKruIsjWuPQ1boosSWPEGNjhpyaQjMXsQgAJztDhwzVVMFSbIBADYMTOGhycL9cO3YtACQSVa4l8Lg0jusnrodpmzjbHQ4BxVmhAkPl5MGJg95jrgLXbzOcBz29hxJXiiUWXRIQIGTXVqAhNrBQXcCJzglPXe0qFmvcsIanRXKcSFy+XEeKojxb16yKRcu28K4H3oX3PfS+2HzLPGDpdPeUNLjH/jXNa1Djt04gUKBAgasHBbG4xaBpCj965w7cuL3hkSrPu57YG3nTNKG6dK4p4fsOzuCJO4ce4iff/CIwx7+25dtHXYQmfZhYBICB3AcPAyv/+RZMVhy1nUSKDl2Jkj8rF9KJxdWeGlGjvfZXfy9AmpnmsIGogxTWlVrw4rfW18BN7QZbn0GpUoGSYilKFIv5Lp4X2goaQvALnqkHyU851Oh0cxTj4GYhUr5sqXqJS91uPzRVBRUqOjmGAutTgE5WBXRVolhkaAolPr154xJuLlHoB0XTqNQaGOgmxFAGIs/SsFQZTGnrCpJm2a9YZKFpm7NC9ZOl61mtzEJoxGRmXslgWc6xQr20isVrt1XRGRhXVV5lgQKXBIaSL2Oxvwzc+35ioeci3Kzop9s/jgLtNFA0ewTZE1Ysppkhh6Z9j8cRizEED+Nc/9SYrOIzGRSLhmHitz6r4Bc+TmqZN77uNZirknUydvx1I12xmCVjMd9ktIvXP4nHhBDdptzNBUMBbBOSO+VfiplYnj6YqHxTVHI85iIWTZ0cd/5j4smvS3/NyhGgMg3NZtGs+po+D38EeOBf0l9LMUBpPHCsl43VKNHUW3JI7SRi0cZA1WGOKrdtmxB7+55HyCCAWMoqrfyK4yS0TgJ8FRjbvTXr2/k0oqJTQjmLhkryL+fvBCrT6es4ew/5Ts99x7OtTYWjIA0oFk/cBTzysZwbn4Kec9wO1sixslkYKnD/Pw//DQDTNwK/fQ64/SeyrWPhTgAUsPQQsTu96099dqe3AN9f2J0WePxhlBrRghWx2wzDbwfoZix29OFrFvtBC2zbOZnTbLbrpqtY9MOMGXJKQ2upNXIZy7Kw+OFFnH3HWVCg8OpffDXYkJuQ4vRcbJp8BtcKFRjmK9rOJHzYCjUOlbz5zD7Yto2O1gkoFqVyOjkjGzJ4mve+M47mYMP2VIBJxGKcYtE7LkyA54fPa6YGiZUSVW+KEbXDTENf76PMlcExHFiWjSVsG2IjN7F4qjt0CNNMjRBFFA3ZkGNJJ47noMrBvshMeQZVrorFQYzNO4bK3SlpCtc0rwEFCmf7Q2IxaZtLbAkT0gQmShPeYy6JFlYAZ0VP6wUIWj+2VwmxSIPGfGV+Q+uPw7MXno1jrWPeoIH73VcFn32yQM4D/qzWrHDVfjzDe8duGg6tHUJba+NC/0Jk4CEvOJrbsGLRJROfNPukzErLAgUKPL5QEIsXATfM1fHy27d7+W9P2j2Ot738ZtwwS07Kz7tuBhLHYLYxLDRefMt2HNzeCKznYsSZ2RmmWO2c5GM4YxEAlMFwosklWN2CTVOjRckoxSIAHD/ysPdviqJw0xOeFHh+0UdwGg6xWK01AsucWhtuV6lcgZxCWmiGlVuxuNRV0ZSCP6swsRgmSqZrycRiOGMRABpSHsWiFiBfAYClaTC+42CqKqCrGBho2cgjzwo1RtnYbI5h4ZqDUHQTIkdHMvmsQQe0WMt9jCVhzE9uMtzmrVB9xOJaT4O1gazEq41YZBxiUWTpi3JOSsLeSfLbW+1tjiwuUOBxCTk9nyeABz9MmtLbnzh8LEwsyitRe9QcoJxmhI7g+dGmQjeovvdVrXwlahyx2B9osBIIIDXGxnWkYpEV8eipc/jgAxr+6vvI/njWHTcFFlle8+djk2tIGrFYLY2eeq4nqARSz8mWiT96nojvmUnO684MQwEsEyUp5RiYuQGU3sdUObpRnhUqn0PR3z0PwAbqvqbR3C3R5Wwb+Na7gfXjxKazuQvbZ2dw+7ULw2Uu3A+c+jrJH01DbTs51p1pdc5SgV6oPu0tEgISAKxoLVbhyOfNXD746/LmDkIsGhlrmZUjgJyibDF1oiLkN0ZMo7dESE7RaUbvfibZh6tHgsud/ApRSt/4cqKiS4K8BqyfINavfBl4+D/TVYuW5RwHIWLx9DeB+z+U/tnzwHkPzN4GPPpfRGG4URgq8KW3DAlF978zDvkXzq9NgtQEJvYRovO/3kBIWM/u9D3Ara8p7E4LPGaRlqeomRr+9Ft/uuXrdbGuJP9+WbBeHhwwVCz6yY/z/eA5X5fJ9SurFeraueh5ydLyueCMylgEgKVzS1j/wjpmXjED27Zx61NvDTyvKiqYCvmsluQMBfsUi+5+srvkHDyK5AM2qVg0Cbnnz9yjaTo1g6+v9SGyotdD8kgmh2OZE+YAIEKsCb6+iZu36JJFYStU1VQhcVIi6eKRS1y2nlBP7xFikeawe+9u7Lo+qqhr8s1E9V8SLvQvwHRqDs3UwDGcdyzfs3hPZHle4EkJ6rvEUhSFvc29WJFXYrNIXfJ1qjSFElfC9ur2gG2quy8in0dsYmdtZ2AfNQVCLOb9nC76ep8oFmNiEyalSbA0i7pQR3kLh2pesOsFUEwFD64+CMBHKvvUqi6xmNUa148JiRCv/mM6DV8//3VUuAps2Hho9aHc7+eHS0RvBOOlcUI2j12zqW0oUKDA1YuCWLxICJMzFZH1VGIVkcXb/9stuHWhGffSyw5VyTdBtXguXrGYBC1m/StLyVM4RnsRpmlg//XD5t2u/QdQrTcCy508Osx98RSL4WUCxGIVgxTln25aKFeyq+ssUFjraxiXgo3S2XqwUJdDKol0xSJZF835iMUSn5lY1HTVsz+1nUYVx1ABS8uJigBZM6HoJigKI+0u/3/2zjtMkqu8+qdy5zg57czmKO0q54AiQgIhBCKIIDBBAmQTDSaDSQZj488EA8YEEwyYaEAEgYiSQDlr4+zu5DzTuSt9f9yq7spdPdOzsX7Ps89Od1dVV6eqW++557wVmVycJF16CVIUNGGRsf0O5NIS6HAccquERaNjkWYhVlYmQhmjUKfzFZSl5t1yxn063qFpGqFwFBVJQURgW9LDwC/rOsiA3W8/0YCAAAPlJgruqgIMXgAkDD3ArMXqwgwgLH+mes2xaBUWrTORDQWEQpMz/IcnFmyTVvLFMmQ4z66V5OaiUA8vKqhQYWxe248HXhvH687gMdiVxkBPh2m5J/cdwhk95Dm7WRIBtVLHYsqhmHdJegLyexNgDDFVTqxLSK6Rsne9PILv3OgjzkkqA4pYdyw60bEVALC9wz6IWFYUqh6DanXb7XwJ+b+kfceLM8DuXxBBKDcGtG8CRdGW85VKnIeNBLtkLxHTVMN3b/6geZnCVN1haITRe1gTh6akUPB03DqRXktELY9Ca43ZfcCv3w/87uPNRx/75eCfSN/HTc8it/vOJDGw00/Xl1FV4Ok7gPbN5DjixdgDAChg6w3A2a8Fxu73jrYtTNW+u9GQ8bunku/k6P3Lelk2lsYBLgJc9l5AKgGP/e/ytqOLitO7ge03kvvKC0SYjbY3v73TX0Eici94cxB3GnDc8MVHvoiX3/FyR+ECAP79oX/Hlx/7Mn6yr3l3sOwwmcPKQmXB9TEBgsmxCBD3UL6arzn3rM4gPU7SbxTqwtQCxKr5tTfrWJyfdBcWxQURlVIFXX1dWP+R9Wh7ZhsiyQgGNw6alju831Cf0YZBxh6L8+V50vNNO91EfCQjxFz6M/tCIVGncyXz+NRLCC6ImrCoTRDTRSZGe0HtIXJctX7X9F52gNmxSIECVNiiUCNsxNWJpcdhJoWk4+NG7h2/F+OFccS4GDiaA0VRjtfOCSHhSyTXERQB44XxmmOwLJdJnz5NWJRV2RYBXBNPLcOQLZktmCpNOYqEej9EXQDbnN5sEhZLsnON8GMXfgy37bzN1IswykXB0mzTzkydvJivvY9WGJpBZ6QT2XDWs89ks2zNbEU2lMVTc09BVdXaZ6+/LpZla1GoyxEWs2EysSjkY6JmUSzikZlHcE73ORhMDGLf4r6mvjNWWIpdttvw9Ttfj/ee9160h5cxjgkICDgpCITF44i12dARuY7MLzU3u312asIWQVn2EBZl0V7YmZ10diyWhh/C+H/djt/8z5dM959icSsCwKH9BmFRdXYsDs/U9ysSi6HsIdBVJAWhJhyLZXBQAfQmzAOgboNjUZIViJZ8rGzUXVgUtChURqgPmjJRzlMQNSJWKqB58vyqVnhiGbOTMKtF1S74jP6sNuixCBAxKMwxDo7FHJhwAnLDjDB/6PsOAKBXHoUas0TIWPth+iHjEBF7vNLR2YWBzTsgKSrCDSJyW02EZ9HpIboHBAQ4oPdGLC00t17vmcQhAzhHGeanAJ8xUE5Qkt5j0SIsWp2RhlnmS2Vy/F0oq/ifx0QiaHiQL1Uxu2COQMsXS1CaGOq6CYt/Pizh9C8U8N4v/BgAkA6Tc9vFpxLRa6lCzmkSxeHJfYehnbpBU+T+7IqjUKP4nxvDUN+XALSoqjVhMp5hF4c9112blEgPOQcuHmTx/G0cUMk33AdUywiHPM5vmSGoDI8dHfZzxbKiUJdGNYeXRcTr1VwZekTp3AHyvx7DOnCO8/Yq+cYRwYleoDgL1hhpmzOMT1WViOyxDvu6WsEzwpLPfFnDnPQgeV2VHGpRqw69QFEtAn/6NBHDFg6SvoWtRlWB4T+QmM020r8cfARo3wIsjdXdmjNPA4uHiPiY6PXe5uj9xGXXsRE473aADQNP/MjdtaiJywqfwBlb1tgfH3+kNf0ol8bI96x9IxGuh/9A7msGo6h4wZuAnS8m9+engGjH8o6f574eeOkPgUvfFcSdBhw3TBQm8PjM45gqTDk+XhKJ0OAlKK0Er+3yFG9yLAJAiAmhIBZAadesM+UZ0ySlSo5cW/oVFlVFxdSY+bWLTbbXcOuxWDpYwr4P7MMPP/VDAAAbJeOi9aett0WcH9prTpSSFRnJrCEKtTxPBBPtZfmJQrX2RGwGXbids0x88xKCC1IBETZSE+d0wZDVJjcLjED6Llom15iiUBlSBymIBVCqJlBahMUoF62Jl1Z0YaxRFKqkSPjmk98EQIQoq4BtxI9IaSQtp7FQWaiJfBW5Ao7mTEJR0ZLIwAnO463tbduxUFnAQnnB9liumkOICdV6Jm5v347ZUn1cXJbKjuJ+T6wHZ3adadofiqKQ5JO133uzFMViTZx04rq11+GsrrNaKixSFIVL+i/B/sX9KIgFlKUyWJqtuV43bNyAsGYY0N+jZuiIkLGj/p304sGpByErMq4euhoX91+M4aXhmvC7HFbiWEwJKVzcd/GyXnNAQMDJwTEhLH7mM5/B4OAgQqEQzj77bPzlL39xXfaLX/wiLrzwQqTTaaTTaVx++eWey58oHPz4tfjDu64Bx6z+R5ZbWmhqeVVVMTVmbgLt5Vh0wsmx+NPvfB1T33kv+O6NuOA5LzE9dsrp9sKR0bFYBQ1JURBPmgdu1ihULzdUVVIQjjYjLJJBbH/SPJDrSNQHD05CVVussWOR4evbyER533PgxWoVXIgMAoyORWMUqv78S00IixxDQeDchaa6Y9EuLNLhOKRlRIw6YezzqNIMxGqlaYOAEY6hETL00BhbaH4wnD6BHIsMQ0PWThPRIywsAsBQ+wpmxgYENMkJMRbRYwj9RATqgkm8G0gNkH5vgNY/zkJhmogYy4TWhMUqzMdHL8fionZOUlWgLPk7sB8YMfeNyRdLro5FpxLS6JS9x+I3f/JbPOOrRWxqo/G2m68yPXaRJiw+rq0m0wKe2GePh/eMQvURP5aMR3HBgPY6dCHNuh1pFur7Elgjmx8fiMlAxbvnlK+efmIBYcFjsgfNANl1xLFoEcOW5VhcOAxEO03fCUd0x9viYSJUdZ3ivJwiaoKdB8k+ACraWTJWLLMpEn2qOz6reeKUM8az6mjfZT3MgTgWmySlbTc3WRf684bv9LdeSNyBf/0CUFkErvwQ0L4JePrnrq7UZbNwiIhray8hwphOx2agOEveBwDYfxeJht1xg3csp1QBJh4DuneS7YUSwFmvIS7G+WHndRZHADYEOpoF59TfbOYp8j6slNwYEOsiwt1l7yPHwkcb9OQ0IlWA33+iLiqecysgaL/50jyQ6Fm+4zuSCeJOTzJOhLGIqIgYXho+Ks+t9w50ggdvEyoERjC5qhbKC6aefRWtJYPfKFQAmDhsrmtIpeaOz07C4h9/+Ufs//B+sEkWV7/matNj63atsy0/vGcY4nT93F5VqibH4mx51iRwrXoUqjYsWLQcs72E4KJYJP0PrY5FoT6uCzEhu2PRICwyNAOWZomwqG3HuH5VriLGx1yFxVoUKu9dE5otzULRXmRKSHkum+SbFxYB4MAiGd9V5Ap4hjcJRcZeiADA8uR7bk3y2JLZAsDcs1FnqbqECBepvX872nZANRRWKnIFsup/0nVKSKEkl5pugaOoCopSESkh5SqGvX7X6/HGXW9sudh19eDVWKouYffCbpQlzRmqCaYsy0JSyW95Oc+rO/78iKH3jN+DweQgdrTtwOUDl6MklbB7fnfD9dxYSY/FgICAgEYc9aPL//zP/+DNb34z3ve+9+GBBx7AqaeeiquuugpTU86z3O666y686EUvwm9/+1vcfffd6O/vx5VXXonRUe8oqBMBycHptxoUlhoUoAywWv++CUN/Q8DcY7ERFE1jZqI+I1xVFXzpk+/Hv37gbYjveiY6nv9+m8C34wy7sHjIGIWqMpBlFTGDY3GhWMVSuT6wj8Tino7FsigjFPFfCCiBA8dQ6IiZi2DGHouOwmLcXYjSeyzSvNGx6F+4qlYr4DS3o+5Y5BhzRJjumMxV/F30VGUFAmsXDY1URAURngFtWUZVRIBmoLQoCjVt6Geo9+pSVxATAZhdi6PLERY1sVNukXh6tNEdqlH+yBe2NnYGwmLAkeGEGYvUhMUGvQKBusMr0dO4B1txZkVuGUouATQH2eIUsDkWDbcXi+Sc5NDO15XhUbOwWChVapMjamhFoh2dDGTZfE4em5qDooliqqrifV/4MV7ytk/gpu0cfv3SCNpS5mOS7lg04iws2otIeqHFl2PRxzJxmRTnOmEWRzkaRHRbKWIRkXADF3n7Fk1YNBf5KqIIhqHBsk1MUFkaJfG8DjFYJmb3kv/Li0SYi2Tcl230u9Acd508GcMWwj1E5NOdAHnteJC1F3F1YT6sORaXNYEqpfWFLM7Uhf6lUXOE6wNfIf0id90MbH0OcbMtDLfetXjwj2QywZZnmzPyO7aSiQa6C6GSJzGf8W7n7ehMPka+F+uvADhtXHzB35HerW6uxcVDxB3qFN/FhYlQPPbwsl5eDVUlkyziXQCn9UA8+1Zg5N76d8uLmqj4dF1UNH0HVSJYBzP9A3xwwoxFgBUVwZcLBcrTAceBswkVITZkioVcrC6a+v6Vc+Qx2mlyg9M+0BQmRizCYtn7GruYN9dNSvkSSoX6NegvvvoLvPfV70V8Rxxr37kWyXbzmGL96ett2zy4+6DJQVaVq6YeiwuVBaSEVE1Qi/gYZ8TiK7guU0mfQr2Pn46nsCiZhUXdscgY2s6EubBJCAbqvRhVmpxXBEYwCYsKY64VJPj65C9r3KQeh2nss+fEVKn+G82EPcYhaN6xGFbCyIQyNfHQ2mMRAA4tmseeurAIFSZxcDA5CJ7mMVG0T+pfqiyZ4keNPfUoUChJpeaExVAKZancdIRnQSxAhYqU00RHA41cpMvh9K7TEeNieGLmCZSlcs0Vq6N/1yJs8+d0PWK2kSg5VZzC8NIwzuk6B+2Rduxo24EYF8PuuRUIiwxnczUHBAQEtIqjfnT51Kc+hVe/+tW45ZZbsHXrVnz+859HJBLBl7/8Zcflv/GNb+C2227Dzp07sXnzZnzpS1+Coii48847j/Cen7jkmohCzXZ0gmYYTIyaBzOlorewaOzjSNMMcksLhvsoFPM5vP4fPozMFbeCMgyKu/pI0SWVMUdjqaqKQ/v3gOPqRUlJUU19GI1uRYD0WKxI7gMdEoXqv8diCTwyUd7m5OvQ4hwpirL1VwS8ozM5hgZNmXssNiMsitUKWEF3LEq1bRojSqMCA4GlkS/7cyxWJBkhjgbLOAuLikrEx6jgX4ja1OXfGWrE5FjULhSbnRVnJWbY76lc89GqKU3s9BtXe6wjan3IrDGxR4Llfi8CAprlhBmL6MKiQ8TRiijMAMu4iNahpZK2b5bJJrRVWKyf6+YL5Pgb8hk/logKOGAp5uULJShWx6IW4yQwwMy8scBFQZJkTM0ukFsUhcV8CR9508vxleeEIBj2g9HSI9b22ItHT+47jKSlV1Fbyj6WkKUqKPjssbiSvkYAsDDi/XgjJx8AiCXvHosA0LUD29oZW+RouSI251ZUZCJ8J/u9HYuqCswbHJrZ9c6OW51ig+g9IQZEsujkSSGxEOknIlpJGxcXpuvP40KI0YVF76dyJNZFIn9Llv20/p77zwbOeT0RsLY8G2jbSFyLOiudvKUqwPCfiLswPWh+rH0zEeetMYeNejWM3EecjQNn1+8LJYEzX00iUhfsgjwWR8jEB8pBWEz0ke2NP7Sy11vNEZE0PVh3Bl70VoCPA0/91HvbUrWBqKjRtinoiRjgixNmLAJg77wPYb7FhNiQzREHABKtXQPDfj4Js+GaeKQqKnLVnKlfXSnX3CTTVEcK44fNLV6qBe/J4bNT9kkv0xPTtb/L+TJedNuL0P/6ftBCvXynC2W9G+0x1Af3HkR7V70nWlEsIpkxR6GmhXTtth83op8+jF50RDuQE83jDWs0qhE9DlOfEK0LPIyWoiPLMkJMCJLFsa877lQtjj7EhFCWy7UoVJkyX6Mn+WRNfBsrmGOwy1IZHM2ZXJBOGHsRZkNZz2WbdSxSoLA9ux0ThQlU5ApxLNLmWN/x4ripBmIUFo2wNIuh5BCmi9M2wW+pqgmL2rgrwSfQHSWThiJcBCWpZHuvvUgL6WUJizMlMkFuID7Q1HqtgKM5nNdzHvYv7kdezENgBNP7rL+W5fRYrAmLDa6n7h2/FwIj4JlDz6xF3p7VfRaGl4aX3WcxcCwGBASsJkf16FKtVnH//ffj8ssvr91H0zQuv/xy3H333b62USwWIYoiMhnnmUGVSgVLS0umfwHe5JuIQmUYFu2d3ZgYsQqL3lGoc9P1wRfNkJP1048+hNKBB0BRFN74vk/i+pe8yrbepdc8F1299giqpZlJlIoFhKP1k7ykqKYei4fmighxNJQKERgj0Whjx2LUfzFPBoP2mGCK0gRQi6+V50ccHYtsg3hbgWVAGYTFZLgZx2IVbEh3LDpHoVIUhbaY4BkLa9qmpCDE2vsn6uhCVPwICFFmx6ImLDr1I2oCXUATWBozuUrt9fhFFzuX05/xWKSqC4tHIQp1Q0cgLAasPifWWIQiDqByi7dfmgP4xtE9blBSieyXpbju5ViczTWX0jDYmcKBkUmwan29fLHsGoUKEIeilYefOoD/200m2vzLm16Ad772JpPLHwB4jpwnrPfnilWMTs4ikzQLiU5RqGOvBx56XbQehfqtFwI/eF3t8Y9dLuB/XxAGFNlXXKonefvMdBMOPXNsSGWEQ2Qs4qq1dG5HXKAQkxdMd1eqIkK8y9jlJ39LXruxR1J+ElBlIpi5xJMBIM6+qmG82bm97oZzourjd5Fdjw5dWAz3AFDrUZ35SfI9dupDqsFrDgmfQyozNA3Ee0iPVOObPP2UeblL3wVkNLcsRQGXvNMssDbqJdmI6afJb37D5XahrF1zMDQSq42oCok87dpB3I1GLvg78hr2/dZ8v6IAS+NAor/u3jRCUcD6y4GpJ/31CHVjSRMA2jfX7+OjpJdnaQGQXSaYSVWtp+LT5DW4iYoAed0BAQ04scYiJGqxGRGiFQiMgELVXoMQWS21x0FYDDEGx6JM+swZHYylxeaExUx3pnlh0aG/88E9B7F4HxFJX/HmV+DVf//qWh9InRhInYK21BIUWcHIgRG0ddUnYk+XpmuORYqjUJSKaIu01cQoP1GoK3U8dUe7ka+aj9dewmJJKiHCRWxRqLq4WilXEOEi9ihU2iws6j3yoJL3qgrz52EUWJ32QWAEz56JgEVYDHsLiwIr1PfJJ7s6d2GiMFETvgVGMLlvJwuTNYEcAGjOfcL1pswmTJemTd9zAMiJOcT5eO39A4DNGXJujHGxph2LmVAGRbFYi4j1iy4sDiWHmlqvVVw9dDWmS9M4lDsEgRVMzl8AYCjG5GL0y8b0RlzUdxE2pDa4LqOoCu4dvxfbstuwJlnvLX1Z/2WYKE54/l68WEmPxYCAgIBGHNWjy8zMDGRZRmen+QK9s7MTExMNiiAaf//3f4+enh7TINzIRz/6USSTydq//n6HvigBJvK55i4yunoHTI5FTgij3EBYnJ2ux5XR2sn6/bffgvk7vwRVkW3FukZMHSY9dsKG6FJJVpDKkgE1y/EYni2gOxmCPnUrHI3VYh6dKIsK+FBzs5E6EiEInP1nJZdyqB5+FAUHx2IjBI4GZSi2GsW0RojVSq0/oyqRQTfP0LBeF3Qk/A9uq5KCEMeAc7m4qIhHTlg0ujcV7XC23JlcOokQeX/7MxFM5yue4rMT+ufTqj6SRxv9NxILNT+AXinrO8jvOZjnH7CanHBjES7cuKdes1QLK4pCpaUywAqNhUW2fi6ay5sLHo0Y6krjwMgkkjIp0K1r40mPRSe3k8b4tP0C/ea3fwJv+FkZZUlteiyyb5xsL2uJTG3POM9OP6WTQcJYzCsvEFFYFvGa03gMJGmgkjMX85YjGuWnSGSjX5yKwVIF4RD5vKqiS8JBB+ndk1YXTHdXqh6ORb2H4JIhuk//u5EgY+03ueZ87+X9ODPbtyDMkPN+MdRNRK1FTUTLT5Heh5x7AVaoORaXOQZI9ZFYV2OhdHZf/e/1VwAD55h/S1uvN7soSwvLe26d4T8S5+fGq+1Ou9QaEk9bmHRc1ZG5A+Q1rbmAuBSNhFPA0MXA1OPm72hhirwHbe4FOGy9nvxmJh/xvy9W9F6zumCqk+wn++z0e7OJire5i4psWOvdGRDgzYk2FpksTqIo+W+NolqtVcsgxIRQEN2FRVa1X5uG2XA9+lQBZFXGTLkeKV5eam4sku3Nmnosshxb69PohpNj8V/e9S8Y+9oY5JJ7XUR34Fn7Ay5OL0KWZLR31ydyzJZma3GnXIacj7uj3bVI+GhsBf0TfdIT60Guaj4Pu/bEpEgMqTGmVBdzaJ6MiarVKkKsvceiLtrpUaghltRCKIUCx3OmnpoAkLSel0Acnb86+KuasMh4jCUBIuzpZATvKFTAHL/qh9M6ToOoiDi0dAhVuWrq/QeQ35vxvdVdnU4/qx1tOzBTmrF9FvlqngiLhrH59rbtAIhDr1nHYjacRVEqLsuxGGEjSIfcBd/V5Pye88HRHMYL446isu4ibJYIF8G/XvqvOK3rNNdlds/vxmJ1ERf3XWwSvC/suxAUqGX3rrV+XwICAgJayXE9beFjH/sYvv3tb+MHP/gBQiHnGcrvfOc7sbi4WPt3+HAL+syc4DTjWARIPOmkoceiEI74cCzWB1+FPfcCABKpNDpf9BFT9KlfJg/thxAKQwjViz0VSUEkRhxPsVQbDs4W0Z+uRw+wobjnJUxZkiE3eY3TkwyBY9z3v1iVm05DCrEMKFbv2ycj3UyPxUoFjD57X3MkWKNQAaAz4THD30JFUhDiaTAuUah6vGzyCAhRiRAHmgIYmoKiXVSpKxT0dGFxKBvBbL6KXIO+GFZSHtG2xyO6YzN8FByLmSiPZJiz9eoMCDiWOObGIlxkZQ4e1+2uoMeiVNKcZP4di9NNugSGutOmHosRnkW+WK5NOnHCKCz+VHMphgQef3xl1HcEq5F9o7OgKAopSx8iniPnlUzCLkjZolA1d1c63Jrj3nSZIY5FsYn3c+Qv9b/1WdlSGRHNsVgsuxRJEz0AgBBlfrxcqTaOQjU6FhdHiTMwtcZ9eQCY2w8ImrM92g6kG8RmVXLk/fWic1vtT4XmyD7kJ4mDMD9J4jc9+uNwWsTaskMLUmuIWGZ8PxYOArJEeg3GO00CPADidLzknfXbObNbpilkifRw7D291nPSBMOS97kw0/i91Bm9n3ye669wjgTd8QLSB9TY01AXl7tPdd9u35lEAB190N9+OJEbJ2KnVRhMDZDPQbIIi82IigDpESkE/aIDVp9jbSwyU5qxudOcGM2P1pZfKQIroCgVbSKlSJPjKeOQYGCKQtUu/I0iUWGp0JTTJ9OTMQmLDM/U+jS6YRQW80/mAYq4Dte+e62pn6Bf5seJWGeMQl2oLNQESt352B/vr103rzTm1A99sT4sVutRtaqqOkbXAgATIa/bGBuqC4sUT/a/Uq4gwkYgymZhkbNEqIcY7fegAhzP2Zx6TtGkvz38W/x4348xV57z5VicLtWja/30/mu2z+LW7FYwFINDuUOoKlXwDG/6XsqqjENL9Yn+XsLi5sxmKKqCkXw9eUBWZBSlItKhtGm727NEWIxxMYiKiLLoX2jPhDLLEhani9NICan653aEiXARnNF5BgDy3WEpi7Bo6W/ZDBzNebod7xm/B5lQBhf3XWyaUJAOpbE5s9kmojfzvEEUakBAwGpxVI8ubW1tYBgGk5PmWa+Tk5Po6uryXPeTn/wkPvaxj+GXv/wlTjnlFNflBEFAIpEw/QvwJrfov8ciYHcs8qEwyiXvGYpzM+Qzzz10Byb/71/AsCyuuP4mMNGU53oFJgZ648W2+6dH9qN/aL2pXmEUhFRWwHxRxLr2+kCPFrwjP1QVTbvV1rV7F16LVRkhrrmBiMDRtR5DYrVa6+HnB1GsghVCYGmqdpHFszRoS2GnqwlhsSorCHs4FqsSec+ORE8+mqaQCHEQWLomAqsrdSyGyX6vyUahAhiZb664nQwfeWffaqI7Fo+EA9WJde1R8GwwEA5YPU64sQgXARxm7K98uytwLMplgAnZIg1VaxSUoRg0vejf6QAQx+Lw6GStiBISWBRK3lGourD47cdEXP8/JYQEHi+85iL0JVyOOQ3OL/vG5zDY24kyT4SGBcl8bnWSCuMRh2Le/t95Pk8z7F/iiPOq2ETRdvhPQFU791EUEbLkSk0crFTdChsuE46qIkLW/ozWSWT7DD3BFg8TQSbUIA57di/ptQcAmXXe/RUB4ryVG0wW6thsub2VCIpSmTgWo+2ejkVdWBSbnZmmkx4iPRb1Qmn7JtJ/sOZCdhGct91AYlQBe//DRhidghMPk+PH5mcRN6ET2Q1AcdYuurkxeh+JGk32OD+++RoyqeCwQdBeHCHfu7RHFBrNABuvAqafBCrLPOYtjWmfqeX4lhoAxKLZ5Wrqqfh3jUVFAIh3Az6KzAEBJ9pYRFREX+4aPULSrWBeFOtjgUYChcAIzi5JSv/PfvwMsSGTYxEAxvP1yRn5xXxTIkK2N4u56blaBCXLsaiUvB2Lc1os+9JDSxj+5DCEsIDzrzofQkdzcZk685PzSKQSNYciQIRFayxmT6wHitZCxE8U6krpjnXX32uQmFG3z52Jkvc8ZTiv64IhpU38EqsiomzUHoVqmbSmOxahAJzg4Fi0iHyKquCByQdq+9jIsViRKlgyRK1bhU0nmhUWQ2wI61LrMJ4fJ45Fhq8JXhzNgaVYjOTqQqGqpSc4TbjemN4IChTG8vV+knmRTAKwxrhuzW4FR3PoiHSYlvNDOpSGoiq297sR06VpZEIZhD3GWqvNVUNXASDvu9Xpx9P8qsSKzpfn8dDUQzi943R0x7ptj1/Ud9Gyt80xXBCFGhAQsGoc1aMLz/M4/fTTTQ3G9Ybj5557rut6//RP/4QPfehDuOOOO3DGGWcciV09qcjnmhMWO3v7sTA3C0VzxPGhxo7F2Sly0RQa3InsRTejp38QC3OG2BEXQe/hxLngznohZiyRIlOH92NgrTkuKVeuDzLFCBkkndpXH8RRPvpFFZqccr6xy/sCrVCREGbdB6ZO4k2IZaAy9ftTHj0WGUuPBbFaBc0JJocix9iFxZ6Uf2FRVYEw595jUXcsJo6QwPbxG0/BVdu6IGtxMMoKeyzqwmB/JgIKwNhicxE4bu/L8YruWIwJR0dY/MgNO3DL+YNNC/IBAX454cYifMTcd65VhOzF8Vfs5HHhmsbHBtJjUUAzjsX5XLHulvPBYFcKlaoIWTsHRHgO+WIJikcxSO+xePEaBu+/WMCpm4YwPecRI9tAnNs7Ooet6/pRocn4oqA2LgomYpaxSCUPjD+EktiaOO19Oe091PsE+qE4Azz54/ptLgKIlaajYXUco1CFBOmjpzP8RyLYAERYjHc3jt+dPwBkhsi2uk+1x2zadiQHKA3EMGOvPUUBenYCuQnymyrNArEu4r5zgcVKhcVBoJon/wCgcwcRuIxuPidoGnjlL8jffnusxrvJb+6ezwC/+zgw9jBw4A+kh+SQfRJfjY6tQGGaiK2NKMwQYbT/TOL2dEKI2eNQFw6T/Wjk9tt+IxE5p59ovC9OLI2R57F+13S3ZkFzodRExaf8i4oAkOxdUYx0wMnDiTQWCTPkvLZ7bnfDZRfKCwDco1D3LjQ49hkIMSGTEOmHCBdBVY881oXFQl1YLCwVGrrVjGR6yHFBrGjxqxyLUsFbWJmZJGOLyPoI2q9tx6Zdm7A421w9xkhuLoc1G9aYhly5as4kwIXZsCmO80hEoXZHzWLJQmXBddmasCikavfRoMFSLBS6PnYIc2FULed1Y49AgLxWAERYtEShCoxgEyKHl4ZrzsqKXEGIDXl+B4xuRQCujjRZkWvitldfRzdOaTsFE8UJVGUSAauPyTiaw9rUWkwU605ZmdZqWA4/qwgXQW+sF1OlqZrYrMeitofMfZBToRT+97r/xXXrrgMA5KUmhEXtNfpxLhuZLc2iLdxW/9yOAs/ofwYoUAizYZuozNFcU8cEv/zy4C/B0Rxu3HgjIg7JGJcNXLbsbXN0ICwGBASsHkf96PLmN78ZX/ziF/HVr34VTz75JG699VYUCgXccsstAICXvexleOc76/E+H//4x/Ge97wHX/7ylzE4OIiJiQlMTEwgn1+F2K+TlPxScwPZ7l4SPSVWyaCuURSqUi3h97/4CfJLi+BSXUiffT3au3sxO+k/ummxZJ6ZNjWyHwPrNpruy1Xqyyh8DDxDY3NPfQAtU40HBEVDT8R8pXEkZmeDXoWFioSQQw9GHdZBlBI4GjAMXniWRsRnLGW1UrYJizxrj0LtSjY3cIvwjOO+AnVhMX6EevJdta0LZw1lDI7FlRVjdWExxNLoSYUx3SC+xosV7soxQVVSwdIUOObonC42dyVw7Sk9R+35A04OTqixCBdtLvbSL41EGw9891g0CouLeZODsRFDXaSAIWmTIUICh3zR3bG4WFbx07v+gqnZBXTHabz7IgH93e0YnTKIh00ImwCwWKhg6/oGcZwW4lFL8WD0rwCAn+5pviezE6MFjryvS2Noi1AQ/Awf1pwP7Ps1oPffYcOAXPF/UrO4SsrVKgTeYcyVq8+WR7Qd+MsXiFiVmyB96bycXpUlIvZ1bAFu/SNw9uvsLkindRo5FqOGolplkQiWUgmYeopEyqcGnOM8NViVbL8iLbfHovb9yWuuw7aNZAw483TjddMDQO8ZWpSqj+9P23rgtnuAM19NIkF/91Hg8D1A31lAwj5bvkbHFuKCLdl7lNoYe4A4lTde4/35nHITcSnqAqouLjcSFtdeQr4nI/c13hcrqkLe53iPPd5W74tY1CIKH/mf5kVFgPS+DPoaBfjkRBmLJIQEOJrDvsV9DZf1EpcAYM/8Ht/PK7ACiTVt4vAbYgw9+lQS+WgUigpLBU+3mvW6M9tDJlBUtboIwzOewqJclvHQnx/C1NgU2BiLzud2ItudxcyE/5QBJ1F2zQZzlPhCZaEuoIL0+BMMqRFh6ySnVcAqLBpjUa3owqK1zx7P8LXeiQDp/WeNQvV0LFqExRBjFw11tyJA3IiNHIu661bHTVgsy2WEmBBoml5W/8DTO0/HXHkOVaVaf00a29u2Y7JYdzuLDHlP3FrEbExvxExppuYg1YXFjmiHbdmh1BA2pMkE/maEe/01NtNrtSpXkRNz6Ix2ekaGrjbpUBq3n3Y7Lui9wPb9sMbQtoL58jzuHrsb5/Weh21t2xyX2ZzZjLSQXtYkP57mlz05MCAgIKARR71Se9NNN+GTn/wk3vve92Lnzp146KGHcMcdd9Qalx86dAjj43XB6XOf+xyq1SpuvPFGdHd31/598pOfPFov4YSjkbAoiebBW1cfKYJUq2RgwoXDrsJideYQlv7yfUxNjGJqfLR2f1tHF2am3BvTN5r5LYsi1liERavbsCspmNx+ZbGxs61o2Mbvdk/VnBBOMFAQbeDqKlTlpnvVhTnGJCwC/uM2xWoVDCeYRECeoWDVBDvjzUWtRAXWte9dVSvqJo5gdKagR2Uy7IrVPKPTcmNnDDN5n1FfDkgrdE8eC1RlBRxDg3WJvg0IOBE4ocYifJQ4nFoJK3j2lWsUiUhJJU00tJw3LLPKwRqExSVvYXEpby7UDXVrwqIWxx0RWOQLJSgOwuK+OQXXfquE0alZHBipjz16O7MYnaz3OvKKvHRj67rmhMVI2HL+PXQ30LYJM8XWzEyRVRBxIz+J6bfF8fQbfMQy7nwJEad3/5Lc5sLkM17m+bVSFRHiHdIW5g7U/774HcQ9dvfnALnaWJApa2PVvrNIX8Ls2sY7Ul40x346YS28dJL+Qph4mPyfXe+5Oq2SMbKkqGiquq2jC4u6O5YVSN/HhUPu6xjJrgOKc4Dsc1JUdh1wzT8Bb7gfuOFLwJZnA7te4u2ya9PG2wsj7svojNxPPp+2Dd7LbXomwAgkDlVViNDpJi6LZSL6UxQ5Zqy/nIh+zU6oKM4Biki+O9YxTqIHAFX/nhVngPQa4IxX+hMV04NA16lA/9nN7VPASc2JMhahQCEbypp6vrnRSFjcPd/Y9agjMALpn9dE/dwq0CT4BObL87XbhUWzY9EqMC1Om+smqY4UWI6FqEWGszyLUrF+bDKKgOKciAMfOYC56TmMDtfrIunOdFPCohNOwqIxhjQpJE3C4qo7FimgLdxm6le3WFl0FWh0YdEaGSowAlSq/h5G2Ihvx6KqqOB53iwsWtyIqqriwakHa+tUFH+ORWM/QDdBrCSVyLYoFpmQz8kpBk5pr8cc665gnV0duzBbqo9fq7T2nrgMQ7a3bcd0cbom+ulRru3hdsfldedoM7GmyxEW9dcwEG9uLL0a/M2Ov8HzNz7fdj/P8MvuseiG7la8aeNNrjG5FEXhGQPPMDmN/cKxJ1arnoCAgGOLo5NtZ+ENb3gD3vCGNzg+dtddd5luDw8Pr/4OneQ0ikI9PLwXQxu21G5n2jvBcTyqlQoQA4RQFGUHYfGpB+7GxNffASYUQVdXB9Zu2grcS2YYt3V048F7/gC/bcNLDhGla9ZtBEb2124XKzJgOIf2pSOmqNGy1DjmVO8vBwAHZor4xeOTrstGaRERpxn5BooVybfbUMcpAjIZ5jDuI6JTrFZBsTxYg9uLZ2nbjKXOJnosAt5uxIqkgGMo8B6Rr61G78FHWd0vy8D4Hdnak8Dd+2c9lvZGXK5j4RiDZ2lbzS0g4ETjhBmL8KvgWORjtgkuJhr0dKOgEtGAMk9MsjkWDcWYhVweYNwvnh/dN4rze+tiRSwsoC2dgCSTc3tY4JCfKUOmzCOLPz28By/8UgHJEIWObBJnn7oZ0FIUezuzGJmYgWnw0CRb1vVDPnDQ9/K2GcQLh4BzbgXwcFPPy4A41HjKYWzTsaXWv25NiiYRn14H9XgncOqLgQe/Rm5zYUCpggKLs3ubP7c7RqECJMpUp3cXcMYtwH1fJrc73fuE1RDiDYW+OhSgSIZehe7MKVFkaG0cm+ghUatT2pck4y1g0gr5HEQZ4JYzBIh3kd9aqV7YxpoLgAe/7k+nbNsIPPFjIr41gxADTnk+sOPGxgKyLhLm3ScEAiDu06nHgS3PMTtB3Z5/7cXA5ONEYJarmlvT4fuWnyARsbogsOP5wBM/JOJizy7v5zGS0wSa9i32xxgOiGbrwqKORwyuiVg78Mo7PN2tJwTrnkH+79pxdPfjBOJEGYt0RDowUZhoKPIZRTwnnp734dbWCDEhqFBBCf5/d9a4xaSQxGKl/rsv5OrCIi3Yz5uju0eBrfXbNEOjo6cDYlUk0Z0ci1whhzhIz+CZbiIY3nfffdj3wX2gGAqhSAi7ztsF/IZso7OrE3PTc+gGcfhJavMJBms2rMEo6mKlqIim9zolpCCwdWExFGmuFuAXvS8mJVCgKRptkTbyvQARO+NcvOZcnCnVxVQmyoCmaMQ48+QSgRVQpuvntygXhaSY3x9rj8PaZyzbeyyG2bBJNJwoTmCpuoTzes7Dn8f+XIsd9RIWJwuTyIQyGCuMOT6/Tlkq17a1HMeiUXCyRmWe0naKSbSuylWwHOs6btia3YqKXMF4YRyZUAa5ag48zSPmkhQR42JgKKYpYVHf31IT1yT6d2AwMeh7ndXE2l8RIMJ1K4XFXDWHu8fuxiX9l7i6FXX+4ex/wPDiMJJ8cykyVrE9ICAgoJUEpeIAG40ci/ueetx0m6ZpdPT0QdQci3wojHLJPICYGhvBlz/8ZoT6t6H7sldiad4cn9TW2YXZaXfRzorkEOvQ0z9oul20iI9r26ImUa/k0sfRSMUgLJ67NoufPTYO2WUWd4xuLBoWqnJD8dGKU3RqKuKv6FmtlkGxnCn6VHAQ/HRh0ampvRPxkPvrrEoKBNY9KnU10F8T1YLZWAmDaLqtJ+nL2eqGeAI4FgGADxyLAQHHD3xE633WwokNjYTFJR9R5py9aGUTFo2OxQZRqA/tPmy7b7C3s+ZYDPEsCiVzFOr03CKuf+u/45ROGr98aRQz8zlTjFlvRxY5Y2TZMnpVbmnSsWiDDQHbnotz+xic0cM0Fm80uqrDAIDz4qNEnDF+/t07fW+nxuXvq//NhQGpgo2RBdzzN1Fwi8NNbapccREWjY5FALjqo/W/U32NN5zoA0I+Z27rY7di48lCk4pe8FOIMNS+mazHx4CIdzGQ0pwT0nJP/zRDIkBLC/X71l5MBFHVR9/vto0kutXH63SEorxFZ4C8l/Eu0j/R6zgz8SgRczdc4fj7t7HjJmBpBDj4Z3K700GskiXy2hK9dZFv/WXk79H7Gz+Hkdw4iWnNrnN+PN5LhEWl+aI+AHIsXobr+bgivQb4+4PAluuO9p4EHGN0RbswXZquFcDdBIn5iruwqKoq9s7777FYE8r8zlQGTE4zgPSUM0Z0FnPFmogQ2xaDbDkOjz49arpNg0ZXXxeqFXIuYDkW5ZJhogcF/Hr3r3HVVVeBy3BY9951KBVKpmU6ujtMY5NcJef/BWkMbhi03WeM7MyEMibHogwf55dlUBDJOEqtkNfTFemqPbZQWUBCqJ/Dv7/n+/jPR/8TbJoFE2Uc+x8KjGCKQnXqRWeLQtU+Y0VWwPKsyUEXZsMmh+H+hf2IcTGc3nE6ACLQRdmoZ/TlZHES2TCJwE0JKfcoVKlcEzKX02PRSIQ1v+7B5KDpvqpSBS/wri1iNmU2AQBGc+T7m6vmEOWirgIURVFI8AniCPYJR3OIcbGmxMiZ8gxYikVvrNf3OkeaVkehPjD5ADiawws2vsDVrWh87o2Zja7itet6gbAYEBCwigSV4gAbucUFz8f3PfWY7b6u3gHIWj8X3tJjUVVVdPT04TXv+39ov+HdEOIpLC3M1XoyAkBbZw8UuT6glV3y4N3IdvWDYc1Fz7Iom9r8nNqfMjkDKqJi6zVohKbMcak3ndmPEMtAcZl1nWCkhn3gSqLctGMx7OBYTEf8DQ7EahU0w4OjKVDaRRHP2l9zmGcQaxDjaiQZcn9+WVEhOPRxdKJUlZtJq3FFaKljsT5Q29QVX9G2pAYRvscLgWMxIOA4gouQKEG1hRMb+Kh3v8OlUffHdBycPqr1QtdwDM8VSlCNxRnFXPR6aI9dWBzq64SiFVHCAod8kUShKqoKWVHRnkniB594A+64OYJslIEoSphdqDvY+rraLDvYfKEtEWuioulE9y4gsw6ndmnnfp/iZlw2FGd/8yHwv3grAIBnVOImsvQgaki0rf55aMIip7khuZzPWE6NSlVESLB81qoKLAyb7+NCwOv+COy6GQj7KLqlB4mb0A96j9CStzsGAGYUsiwvae+97saKZNwjgbUiEyVXwLHM8oVFAEj2kz6JOv1nw3e2ny6SLY15L7dSsutJPKiXu3HkfuJU7DvT3zY3a3Goe39F/ncS/ApT5NiWXVd3A3JhYO2lwNST2qQKnyyNAeGMe//YZC9QyRH3ZIA74RT5FxBgoDPSCVERa441N2eil2Nxtjzr2YfPii4gUU1MbrVGoWaETK3fnA6tul8Eje+xT6zq7u+GorUGYXm21mNRVVWosoqPPfwxfPN738TQO4bAJsn196whhr2921xrmC5Po1naDOMZtkyewxg72xHpMIkjSivHjAZ096daJucKY5/FhcoCUnyqdvv5G5+PPfN7sPHjG9F+bbtN9AM0V6olCtWKUTAFDJ+xDFsUqtGxqKgK9i/ux7bstprgKauyo3hpZLo0jY5IB/7utL/D3+76W1fRqSyXEeEioCm6Fi26XMKWSSs0RdfEQoCImBzPuc79aQu3IRPK1PoyLlYXEeWinoJVQmhOWASIa9EaVevFdHEaSSFpe33HEgIjeDpYm6UoFXF+7/kN3YoroVkhMiAgIKAZglJxgI1yqWjro2hk/9NP2O7T+ywCgBAiwmK1QgYev7vjxwCA9aecAYpmwIfIQGF+pj5rrq2zC0bEJoXFjgF7NFVRlE0C5bYec+GgJMr13nwOhDkGFUNcakxg8Y/P3W5bjtZGbCmucdGuVJUa9mG04hSFmo76FxbBcmAYChRH1nGLKG2LC74Tm5Jh79cgsHRDx2KhIuH3e6axtScBwcGV2Qw1YbEFjsXedBgsTSEe5jCYjYJvIBZ7obbSMXQUIZ9ncLoICDgu8OqNtly4iLdjMTdO4jW9YAXbXV5RqAAgmRL7zcfTh/fY+7sN9dXHEhGBQ75YRl6k8fzvlvCNP5Ko9At2btB6DZNz1PhUPUGht9MiLDZJb9vKJqMAANZdCkSytrttkalGFAkpmcRH3VXdDjznM1BTQwCAizqL9T6BzRLT3k9Oc8FqHwGvNNfD0zEKtTTnHNnbtQO47v8RJ1QjOrf6c8IBdQHSRxSqrF0eUdC+03q8phB3d6DRDBFipQpCAocDCwpmK8uMykpZhMVwqt7XsBFp8rk3iideMe2biWPRTXxXFWDsfvLdizWIQdXho8DaS4iYF+sg77cVPb60wxJfuuNGMsFhdp/vl4ClMbJvbsfM1AD5HBr0kA0ICKhzcOkgJooT6Ih0AKg71oz934x49Vhspr8iYBeU/GCNQk2FUjaHFaW4n39Hd9snVnUN1MciLEd6LKqiitEvjWLsq2OYKc3gDtwBmq9fW80ZxiLZTjIGKB0i+zFXMic9+cE4ZqBlGmkhbXqvl+sIC4Wbi0zVe/fVnjdef97FyiJSoVTt9uVrLscPr/8h8k/kQQs0Qow9glRgBCh0fbxp/fwAuztL/16osgpO4EziWISN1J5jqbqEklTC+b3nm7ZrjWM1UpErKEkl9MZ68aodr8KNm250XE5WZIiKiBhLtmV83cshytrPW6e2n1r7W1RET8ciAGxIb8BsaRZVuYqlyhJiXMzVbQkAST6Jst/+zRrNCqjTpWlkQhnHz/VYodWOxRAT8uyt2AoCx2JAQMBqElSKV4E7fvAtvP/2W472bqwIrz6L+556zDZI6erpr/3NhyPI55bw0+9+HQDQP2SeccwJZEA6axQWO7qxEtr77cJiqSpBQX3gaY0PLVWlWm8+JyI8a4vBvPaUHttyCZBBf5ZtFJVEoSwqSISaExadHI5Zn8JitVoBaBYsTYPSirqCJpR973Xn4u8u24D2OLm/I+7/YizZwDEpcExDx+LPHhuHKCt4xXmDaI81fyFoRP8c2dAKnSIAelNh/O5tl+CsoQwYmsJQ2yo3sz8O4FkazIneJygg4ERhNWb5chGb6GciP0niF71wcix6RKECQFVxF2Ye3Tdaiz3VGeztrP0dFlgsFYp4xX8+jF/slbCl13zBrp+jxqfrbomejoz3a9DX1SPDLKLK+h5/63uy7jJzXzbNaegpLE5belDtuhnii74HAGBpEPHEQaz0DR8DpAp0ZZFTKk2tXq5W7cLigofr0TiR5YxXkv9TDkJj31n+d4Jmibi4jEg5dGnCrCK7OxYBIp6rCpJhDq//WRmf39O1vN9jeq19P9ec629dPgLEOoFi84XopujYShyLbqLb/EHyGgYvcncEOnHqTeT/eDfpu2glN0GORVbheePVRNg9/Fd/zzP2ILB4GIh1ewuLpYXAsRgQ0AT3TtwLgIg5HM1hLk+ORcb+eUaswpORPfN7miqIW92HvtaxRqE6CSEe4QWTBydrjkSdLsMkJ4ZjIFZEDH9iGIv3LiIxlMA1Q9fg14d+bVpndqouvMZTcXACB3GGnP+9xFcnYmn7sbMn1mN6r/tiPuLGHfAcizhg7FcJmAXNXDWHbMg8NumKdqFymIwxwlwYLGURFtnGUahWMVIXqRRJsTkWI1zE9BxxLo4Lei4wvU63voNG1ia9+y/rglycJxNmVupYjHL289bOjp21v0WZCItec5y3ZrZiqjiFslRGrppDjI/ZYmSNOInujWi2l+RMaQaZcGZZv+UjhcAILemxSFEUeJrHJf2XYGvb1sYrrIDlTLoICAgI8EsgLK4C//zuN+FPd/78aO/GivDqs7g4P4fZKXOvnq6+fqhacSG/OI/FuVnIEhHa1m02z5TnBTK4mzP0VExmsmBX4DbrdBAWi1UZsiGKMm4R9Eqi4u1Y5BlUZfuVRMch0lm9LrT4c6VRQhgqgES4udfp5FjM+HYsVkAxHDiGAqUVbHnNHXjGYAZ/d8VGJLX96UoIvmNJjXGhjvvM0mA9nH7zhSrufHIKF25owzlrs01fpFjReyy2QlgEgN50BG2a2LmpuwUOlOMcgaXBMIGwGBBwXOBQbFj5NsPEkeVGYRqoNnCx+REWLbcrHi6BckXE7mGzU2Cory4sTixWUC5XMZsX8cdXRnHmOrMbseZYnK4LMOGQgEyy8TGf16uMlt5r63pXIN7pCJbPz08UqlNvOavLvG2TfRmd4T8AosfnV3MskvEOL5eaitolUaiWccP8MBEsG9G+EfiHcSIcWXHrjedGtB2o5JtbB6j/pkJJm/htQivcZKIMPnipgC+cewj4/SeAx78PjD/i/7kzg/b7hi7xv7+ZIeIIXaVoOwBA+yay/aKzWICJR8lxY/0zmtvuxquJ0Jdd7/z9yI0Rkdz6mBADBi8Epp9o7DBcGgN+93ESi5vsdTw2ASCRtIoIeEQ1BgQEODNfmUd7uB1FkHPLbNnZsegVwfn03NNoj/h0PANgKKbpgj/P8KAMV8BOriFVcr/WV1UV+5/ab7qvu78+YboyT0SyykQFQ+8YQuaMDK5Yc4VJiOIF3iQsUhSF9s76654rz0FWPNRNC5ku+ySn/ni/SeTrjHballkNrMKxMQpVhWq6bSXMhm0RjiEm1NCxaK0r6CJVzbFocN1F2ahp+W1t29AR7TCtH+cajwvXpbzHI7ogFxfswuJy6iBOEbA72up9iStKpaGwuL1tO3JiDjOlGeTFPBJ8wlPITwvppqNQMyH/E+5UqJgvk+OGVfA/lgixoRXXrgDSg/Ib13wDrzv1davmVuyJ9eDsrrOP6Z6VAQEBxz+BsBjgiJewCAD7nn7cdLurdwBqlQw0Dj75EAAVz3rByxzX5XgBDMuaxEmappFp73BcHiCD9gN7nnR9vKPfPJijoaJYkVExXKtEeYuwWJVrgpQTJArVfrFDK032KdLX02ZEJ5sUFo2OxcNzZFDaTI9FlWbA0hQozuxYtNKTivgeJKUaRKGGOMYzCvVnj02AZ2ncct4Qsit0KwKoRalyQmuERSPbe3z2bzqBEVjvzzMgIOAYgm/9cRB8FJ5Z2aV5c3SjEw6zyu09Fs3nx7Lsfdx52FLMG+qtuwR++zjpSfQff3MGdnbZz/UUBaSTMYxNmYudvZ3u4qCqqnh6/4hrnaYljkVrZKwWI2frUWhk9H5U0OBc2rXDdtd4Thvj7L4D+MHr3NflI1psqe5YLAJyo5SGOpWqCIGzjH0WDwMJewqE6/M7CXp+nXCVHMAJxMlXXYawqDva1pznvZz22aXDLE7tpMFQKoleffxHwF0fAb7/N8CPXk/ExtH73LeTGrDfV3tuH+fi7HqgOGsTvluKHs1adBYLMPEI0L4FSDRZzOKjwKvvAs59o/NkhsUxEpPq5DLc/jzihJ0/4P0cxrjU7Hr3Y1tS2/d88/3NAgICiPtMZ648h6rF/dtILNs9vxttYf8R5RRFOQoujdYxunmcnGRewiLN0tj3hDmC2SgsTj1EEpq2vHsLIusjtee8ZVs93SrbkTX1WATMPRJnSjM2p9jo8CgW5hYc9yndbXeJDSQGTM7HRn0D3YglfUwIMmB1W1qFxJ64+zggykZt7sMQ27jHohVdpNIdi6YoVG3MrIvLZ3WdZRN5Gok+MS7WUEDTP78ET+oKYTYMRVQw9t9jy3KPRhzG+h2RjpoDtCpXwfIs1KoKuGj3mzObAQCHcodQEAtICSkwHpMI06E0SlKpqVYvzQiL+WoesiqjP9bfEuFutWhlTOvm7OaGovRKCLEhfO6Kz+HKwStX7TkCAgICAmExwJGch7AYjSew7ymzsNjR0wdxgQiFpz/rpQDgPjChKGTaOjA3be7/0tbpPrD86Msvw2uuv9T18WyPuQgTohUUqlItypSRyqANwgjLciiJMkIevf3CPIOqg7C4XChN9PLbH1HHybFojXV1o1qpQKVZsAwNWivKCQ7bA4BXnDeI2y5dhwjvLRqyNOW6jdo+8+5RqHzHEO47OI8rt3bh1IFU4xfhA70PItMix6KRLd2BsChwdM3dExAQcIyzGlGojfo2qgow16CY7+A+auRYLHnoIgNdGTxkERYHetoxvEDO27dfTRx6EatTzkBPRxbj0/OQFRV7SwlAVdFnKOZZnU8bX/6v2HzNa2CdAh7SYj439PosoGjOv7Kk2rZlQ+tDmIo7fwaCtATkJzHOD3pvp/tU211C2yBmI+uBl/8E2HaD+7pcBIAKniLvLScVmoqHLFe0HotGZ8rSqHO8aTMIPs7PsggsHAYy64hQtJwo1GQv8KYngbM9xFegLixGyBhpf04AXv5/wO0PAC/+LnDR24HeM0i85tST7o5NJ2Ex3glc9l5grftYuEbbJqCwysJitJ28/05uo/IS6YXYf9byInjbNwJdLrFg+Qkg3uV8TNp8DUAxjeNQ5wwiQIdH/FhCK/aWAsdiQMBy6InVr+0XKgu2/my5qvfx+MDigaaECYDEZzaLMXYxxIRMfeYoioJSda8HdA12Ye8Te033pdvTEOfIROTNzyHiTThj7+UIkP6NmY6MybEIAG3d9bHIXHnO5Pz78A0fxs0X3Yxq2XweFsLkHNTWbxdj1yTWIC/WJ9Ys1xHW3mV2kC7FyH6JlPPEa2sUqlFsBoiT0g1rTClA9tsYhern89Y/X0VSwAosRMMkcb1/YkekA93Rblzabz/HNopCzYQyDYVaXcxM8kSkpCgKck4GG2M940fdcBNUbz/tdkTYCKpyFRzPoXSwBMzXI1iN9MX7EGbDGF4ahgq1oYifFtJNR6Fao2690EXoweRgU89xpDmWY1qd4GjO5vwNCAgIaCWBsBjgiNWxqCj1AfXaTVux3+BYrJRL+OxH3o3FP34DSqUAIU5myZWK7vFdmbYOzM5Mmu5r6+xyWRrYes6l+Mjnv2m7PxonRSWWN8/UD9EKFBUoucwwZDkeZVF2FO10IjyDithKYZEUQTI+3YY6Tvs4mI2CYyhbvKsVsVoBaAYcTdeiUN3iX7uSIbz2onUNY1YFjgbnEXMKELenm8ON5sNIRzi8/NwBJBpEqvpFdyyyq+BY3NRFBuInc49BgaUDx2JAwPECzdoEuhXTSFgEgJk93o9zdkedql2clyTt+GLYb4qiUBTdRbdTN/Th4afqYmZVlPCGD30O136ziMm8gmSUPF+x4i6udLenMT49h6kikJd5QJHNjkVL5NNlu9bhJ597n207HVlSKEpEfRYbNJfXE9NK4zR10Tt2Kl46DNAcpmNbvLfTtd12VyYZQzYZA7p3Ajf8R/2BsKWQqxXuQjR5L3k535SwSKJQebNbsJID2jb43kYN/TuSHgI4H+/3wkHSC7PnNBJtWXHv5+VJsocIWp77Rr5zqbBh3MZHgGQfsPFK4BnvAl78P8Brfw/c/iBwy8+Ii9JKvNvZrXfhW4Dtz228r20bALmyuoIYRQEZl55ScgWgaGDjM+2RvCtB0l5Tst/u7AWAcBoYOAeYerzWm9SRWYMI4CTi6kTbST/HRm7sgIAAR4zC4mJlERXJ3J93vuJ9jKoq1aaECYC43JrF6FikKKrmKgOASCziKSz2bOzBvifrkxUUWcFnPvAZjPzHCKrTVXD6ta6HOTPbkcXclLkvri7gifMiVKg4nDtce2xo5xA++IUPgrNMnEpnSQ0mlrILYVYBT3A6hi6DfIyc12XK+QVaHYtGAY6jOaQF9x58ETZim6huFXX8OBY5mgMFCoqogI2Yayf69+WmzTfhy1d9GQMJ+znBSZQz0h5ub+his0ahAoCUl8DEGc84YDfcxMgbNtyAC/suREWukO+HNn/NKSKYpmisS67DwaWDAIC2SANhMZRGWS43tb/N9FjURWinz+BYYjnHmICAgIATmUBYDLBBMwzyuUXQ4UQtPvPw/nrBcN3m7TXHoixLeOsrbsA9v/sVwpvOAy1EQfNkYOUpLLZ3mnosAkBbh3vG/vW3vQdnXmjv0xIKR7R9Nn+VQ1r2vltRkqIp4lhsEIValvz3M2gEpUVWNBuF6igstkXxh7dfip0D3oM1UaxCpRiwhv54vEdfSV/7w7q7EWvLcM49FkNriGPi2af2YHN367Lk9Uhbhm/9DLKOeAgfvWEHLtnsv8fHiUaIY0yO34CAgGOcZUZcuW+vwUU0RQNz+72Xoe0TYVTNFfDInFDfjkYqEUW+Yj6Hj07W+7nt3NBfcyzOlVRc9fdfw9d//Bt84FIBnTEaYS06NF9xL4B0t2dqPRZjrAgoIno7DEVMwVxM+vybno1rLz0b1jjKdIIU8ZIxn+egRVIgfHzKxxjDq/chgHh5BMiuh8w3OKd69Vi0Yp3ZrH2fQgzZX1bK15yUfqhUNcdiyZKG0XuG/33S0aM1e3b5W352L3Gx9Z9JolfLS777STdEVchneeD3pBemVqhNCh7jLIoi/QCTfSSeVnBwQtAMEHMRMf1McsposVr5Ke/lVkq7x3cqPdR8D8xG6K8nu959mW3PI/07Fw87P67IRGzWcXr/dWiaOEWt39uAgABfdEXqx7FcNYeCaK4NWEUnJzojzfUCXE7Ep1WsMkZfRpNRyFXzuTq/VJ8k07epD/uf3A9VVSGXZPzHm/4DP/jqD5C9Mgu+nQerJQFRkvuxO9uZtTsWO4nIUxmtgKZoTBTqLWRe/N4X48KrLwRtmbiRzJD9jmXsxzVr3GYretjlfUSLW3ssGknwCUdB7trrrwXg7BS0flZ+Yin1uFtFUsBEzHUV43P0xfscBTvd1ehGR7TDt7CY4OqitZyXwcQYSMtIF7A6OY0k+AQRFvnGNafN2c2YKZGxdXvIu9ahxwRX5IrnckaaERYXKguIcbGaq/NYZbkxwgEBAQEnKoGweIIQ3f4MtN/wnpZsKxZPIr+0iP7bv4n+v/sOVFXF4w/WY4XWbd6G0YP7MTk2gpnJcUxNjOFTX/shuCS5eGAEf8Li7JR/x6IbvWuGyHNa8/d1YdFjnFb2EYVabqFjkdYci35jTHXc9rErGfZ0F8qyDFmSoFBm96CXS9MPAkebhEonooLzYJdNkD6aV2/vQphf2X6Y9kkTS1l+FSIAAbzorAGcs9Z/j48TjUgLP6uAgIAjgB+HYTOEGxQGQklSzHdBpRhnB5b+uMN96UQM+Yq5mPenB56o/b1zYz8mZ+axZ0bCOV8q4NHhSdz5Xx/BjVvIOTasFfPyFXfnUnd7BmOaSyDKSERY7DQc611EHMtuYdt6EumZifk8By2OAAAOLlpeef85xK1mpFrwjLRklSrQe1pjMdnk7vPfH4esS15XWHMsUoB7bz0HytUqcSwanV+MAHRsAQYvILcdZtN74jdFYGYPeU+jHcRxqMrIRlogLaoKsPvnwM/eBtzzWeKk1MTORLgFl1dJ93i4hqQHiUjfxGe0LDo8XLI9u0gvxFaSH2/8vNueQ74bh//i/PjiSN3NSHONfzcJLT53GY6SgICTnWy4PlFHhWoSxwBgoYEbOM7FkbE66BvQSARywiqyGfssxhIxSGXzOfiJB+tjkd6NvSiXyihMFLD/w/ux76F9+OhXPorMZrLfcY5MUFJl9/OuV49FRVLQGenEdKlxr9ehjaQukupI2R5rC7eZRDNj3KsXz7ruWQi5pDHcN+nRKxikL7VX3G1CSDg6JzsHiZjs9FlaPyu/PTVDbAiyKIO2nJ8biUQ8zTeMKh2ID4CmvM/7ZakMhmJM0a1ynkShymrzE9mtorKRJJ9EWSrXRG0vtmbqceCNHIt6fG8zeDlSrSxUFpAOpZcVZ3wkCYTFgICAADOBsHgMsLQwjyu2deHR++9Z9jbanvVmRDacjfHF5nLPnYjFE8gvLgAAKJr0GXzswb+AjqbAxLJYt2kbVFXF6MH9YFgW//7tn2PjtlPBaBkftOZyLJfcZ9lnnRyLHj0Wm0VgSAGg7NFsvSIpnuJWlGdRFlvoWBSiEFgavIdL0gkvV6UXYpXMJlNhji4Nr1BYJDGn3oeOmIuwqNMWa038ik6tx+IqOBYD0LDvZkBAwDEG3/xFb7lKoi1HZhzcOY22F0qR3mcuKEyoaeEoFY9hydJk0SgsnrqBzL5XFBmdMQr3fu6NuPCM7WC1c2ZYOw/ly+6iXE9H3bEYpUVAltDX1Th2rVjTKpcpUC0QN5WiD1F0oaNjq71HplgA5Aaz2Tdd02TkZLPCouZYpA3iSmHGZWGYnKeA0bG4UL8z0Q2EU8Arfgrcdq+3WLQSZvcCmUEifmuibU+8hQ78y94PvOL/gFffCVz8DgBAwsux6BeviM5GsDwQ77FF+bacdo/PbOPVznGlKyE3AbChumvViWgb0Hs6MPm48+/G2F8x3une51In0QtUFgNhMSBgGVjFlrH8mOl2I8die6TdFFPqh2ijhAUHrC44o7AYTUQhWcYij933WO3v3o3keCSKIpgIg7d85S046+KzEKG086agbdsjnTnbmcXSgtnZ195dd4/1xnprrrLlQlEUuqPdptt+2Lx5M9LtzuLQ3eN3e65bEAuesZkpIeXonFzSIsudPkurM5BjOE/3no7ACFBEBZRgft2NnIY8w4N1SNwwsi7V2J1fkkq2bUk5admORadoU52kkERFrvgSFo3vsdGp67bdZmnGsbhUXUImlGmJm3Y1CaJQAwICAswEwuIxwKF9uwEAf/7NHSveVslFCJufJbPcijlSMNRLSorDRXcskUQ+Zx7cPv7AX9D/hv9G721fwZ4nHwPNMBg7PIxsexfau4ggGI+SgRmlFRLKHo7FbHsnFubMA2SjY1FWmix6WRAoFTQFlD10wbIoI8IzuPmcAbz6wqFanKZOhGdQkVpTSGA5Dkw4jhDHgGvg9rOyXGefqBWJFVCm51ypsBjimIaOxUSD3o+thqbJa6QDYXFViAqBYzEg4LhiGYW12Xly3j885SAsNiiqIJwCCtOIcNq54ZB5opTKCgDNYHpuAQAwOW+Oz6pazrWyoiKdjGHBWMyjWfzx/rqw+NcnhhGLhDCYpPD7V0SwrpfMtGYZRvufDHGt4qSR7vYMypUqVBWIMiIgWxyLjVhuL0trTGNJ662U7LMvW8kDintFUqEYoHPb8vZj6glg/CE0FBq1NAA9ChWA775zsixDkmQiLBrXSQ0AghYJ1rHZ09G6bKp5ID9JYmCFeK1HYk+8RZc/qTXAhW8CBi8k/QbjnQBFIy60QLjMDB3d9f3g1CMzux7oOoW4aFtNbhyItDV2ZG+7gQiIuTH7Y7N76+J9eoiIsF6k1gDlQFgMCGgFo/lR0+1GPRazoaxJ9Gsk8AD+HIu5ReKiW5oh4x5dXFIU8js3iiGxZAxiyXwOfuyvdWFx/0P7kenIAElg6J1D6BgiTu1onBynZK2tilefxkyH3ZWpOxYBEtE5XWzsWGxEb8xjUkaTzJRmbEKxlcWqd4x0Wkg7ugH1+FSnz9JJaLYKw05cv/56zN05B9oy8aeR01BgBE8RDwAGE4MNn78klSAwgkkElYsymCizLMei1z7F+BgqcgVMEzWkCBtp6Mxsxn1YW0f7LVE+JuIpqoK2cJuvz/NoEjgWAwICAswEwuJR4LEH/oIrtnXVxL4jQbVCZi3PjpNi1tICKWJNjxywLRtLppBbWqjdnp+dxtjhYaiyhLlffgb/8t43I9veifzSomm2m8BrgxHtIt07CrUDqmouZBl7LIryyi7gKQCJMGeLK6svQEGUVcQEFv94/Q6861lbbb0H3QS9jRs3AgBY3n9BMRyJQgWFEGd2D/rBK67Vi6rmWFRg7nfINClsWiGORe9txIXm4l5bAcfQNbdsQGsJolADAo4zGrlwACwsLJD/8z6SDhoKi2lz7OKf/hX4xgsQZ0gxTqEFgGJQKpMJLwc18bKo3Z5ZNI8XRIVEoS4UqrX78qUqHn56P2RFxVt/WcaL3vMldLalISmqaSyi94PV71sqVeFGdzsp5qmqCpZSgWrO3GNxhVBOgp2qAEvm4mrtvUutsS9fydUdjQa6s0SUE7Nblxc5WTIUdBv1S9SKribHYtlf37lKlex7iOfMz5le1/rIXit638/+c0g8ZozEq7XUsWiEogAughjfgu2nVygMevUhbBXpQRInaizMnvZS4MXfcf4ur5TcOBBrb+yg3nY9+Z0d/qv9sdm9QOd24LzbgbNf2/g50wPEadvINRwQEOCIkifnDZ7mMVawOBYNk00WphZgJRPKgKfr19t+XHbGnnmyIuNXB3+FQoiMMXRxo1Qk57zFaXIe0+M0Fa3+YHUsVor1nnKyKOPJB5+EqqqY+uEUvvSWLxERkSb7p/ef47U+z1JVghASPIXFNocJTVnDWKQ31ouq4j6W8ctAfAVOeAtPzz2NKBdFD00mmMfS9nGn7jx0IxPOOIrFuiAZdRgjGEUnPWbVjxC1vW07SodLQJOlAoERGgracT7u+ThgEBaN25LJd8bL1emGlyAa5+NQodr6SXoR5aKm35oTCT7hSyA0EmEjJHbX52rd0W5fEwiOJstxRQcEBAScyATC4lHg3t//GgAwvOfpZa2/HEFS0RyAizMkflQX9WQnx2I8gfxSvWD05EPkwnzqu+9D/pFf4TXv+ieccuZ59ifR6mcUQwYDjXosWsl2NNecvRGpMOfqWKS02cpuvQABIBl2Fsee/ZzrAQBys/2AQMTKRqKcFauT0nGZ2sVL/cJHrAmLVC0qFAAYv32JXCCvwfvQkQwf+QEhzwbC4mpxNITigICAFSA0FhbHJ0h06diMe/+bGoxD4SdnOMeHUuY+gJufBRz4PbbHiJCkMsSxWCiT85LuWLROMNLhaCCViGIuXz+n3XsgB1lWcMN3SviXe6r4t7e8EFedfxqe8+0SvveUYhNTOZYBx7FYKnj3WDRRXEAm1bhA1IiETF73esGhx11hBpAtBcKi5lhMO/TVq+QAuWK7e32UvP/C2vOWJ9DtvbP+d6OiFsMBjFBzLEpMGKgsAS6fX6UqGf4m779gFRbbN/rvk7hcZveR6Myu7eQ2wwHhzOoJiwARFrkWbH8lUagAcWkCq+u0oxkgvcYWfYtEt+MxY8XkJkmcbcP40h7impx8DFAMFwJylfRYzG4ALv8AsOW6xs+Z6AOgkjjUgICAplGr5DwR42OYLk5DNUy4mSvP1f6ePmSvb7SF2xqKiZWy+fxodBO998/vxZvvenPtNg9yvbw4T37PVW3ikTUO09pjsWqY5DS6ZxTlUhkj/zGCqR9O4drXX4sLr76w9nhBtNc/QpEQZNfZzmYRUYfl6sfQVjkN/Tjr/LJ3YS9ObT8V3W1kYriTsLjY4LjZEXaeFKULkgk+YXvMybHYKM4UIG5UWZKhcmpDB6L1+Rot7+f5i1IRITYEpkXpDF77pAuddMR/qTfGxRo6FhmaaVpUoyiq9jmqPmL41yRWYVJSi/Hb1zMgICDgZCEQFo9DvvJvH296naIWbbo0694DSSeeSCGfqw8EH/7Ln8EwLKqT+9F504dwyXU3Yd1mErulKPZBskwxoGnau8diR5ftPl5obexBOsq7C4tarFfcI7KzP+M8aLjzSSLOfvlPw3jDNx/A3dgMAJDUxj+nCMeY3IONBDqARI82XCZEXs/iXP2iTI9ClQGTG5NpUti0EvEhjsZdRNnVhGdo0I0irQKWhZcAHxAQcAziw7HYFLT9mP6Pn/t2/UY4ZX6wYytw5YdqNxU2DFAMZubI2GJuye6Q0yPIAICmiGNxNl8v5v3uwT1gaBq/PSDhJy8K440veAZ2bV2HPx2W8YqfSETgsBCLhHBoUURFUlFS7ccxm7BYnvfdd8gL3anYw+Xsws7iiH2F4iwRwMIObklVBkoOs/6r2hgr2m5/rBGKBOz9dXPr8FGENceiyKeI4GnpC6S/d1ML9ahbs7C4UF845SCitprZPUCynzhqdWIdDlGoKoAWCXB8BBF+ZXH+AEjMKMOb973Z9QHfztJl038O6Wu42ohloJojgivjY4y57bnEnZg39HOfP0h+j72n+e9JqscTlwJhMSBgJcS4GOYr85ANtYO58pxnEndnpPGk4+984Tum28b+ZxtSG3DzlpsRP2yeMDQ/ZY5gNQpD1UrV1EsumoyiYpjktO+BfaAoCkv3L6H/9f248lVXYsO2eix0UbTXP8LRMGSP/iyJdMIkJFqJ83FkQva41GbpT7TuvFuRK7hyzZWe7rLF6qKn6Gbs+WhEj0J1Wldw6N3rR9gTtbGIyqkmAa1RFGqIDTV00PmJxixJJYSYxtvyi5dAGec0YTHchLDIx4izsAFOYm8jUqEUKFCmcb4bQ8kjEOO+QsLWXugBAQEBJzmBsHicsffJR/Hz//1G0+sV8sSRsDgzZXtscszc6yeWSJoci7sffwhDG7eg66WfRGjgFADAus1k9vfEqKVPEABJVhGKRCHKKjpf/DHMz9ln7KcybaA9Luq/d/8IfvXEpOvjtX2b1FwPDo9lozzKDslFNM1gw+kXAAASHk6smIuYkq+Qjb7k7AFcs6MbgkouNvJKYwEwzJt7LPrpn9hMj8XF2frnW61ojkWVMgmL9IqFRbbhNmJHuMciQMRTKnAsrgpeAnxAQMAxiNGxKDg78OhmerpYCiF7Rmbx6a//qH5HKAlbzlGyD5/aTYpYMhsm7iZN5OiI2s8hj+05aLqdTsQws1Su3b73sX3YvK4ff3plFNdsIOfunZvXAgAKxTKciEXCOLSgIPmxHPaXU7bHo5EQEjFDQaiaty2zYoxiGkD6KzICpsssnn/pTnJfYYa8h5zLBKuSg/NxJYw+4K9H4o7nkf8pBhBiNcdiVcgA5SXHiFYAmJyrC6HlihaFKvDm5zwSPWrm9pPeh0bhO96FW8/g8dBro8APbwO+ewtw/1dc3ZdNw0URYVvgWIx1ALc/DGy8annrZ8lvA8vo3dQU1/0bcO2/AIZC/KqgxwVnN/pbfvsNpDfp4b/U75vbR77LvWf4f96k5hSqekf6BQQEeBPjY1ioLJj6yS1UFmouQifiLuOX2vpTC/jmZ75Zu63IiknkOb3rdJzVdZZNzJmdNp9TjVGaTz30lEk8iSaiKOXqk6EOPHoAPWt6MPTOISTPJMe99dvq0dMlyT5xKhwJ16JQ9Z6LOrRCg6IoR9eikQ0ph562TdIXs/dxjiai2HZu832ae6I9OKvrLM9lFiuLng63nliP4/16nKyTCBdi7OMkPw6yqha9rzCKyfXYih6LTvtkpSyVEWbDph6Ly4WjOV+ORSrkfywS5+INHYsAEQmbRXcAix79wgESl9weXsZkuSMIR3O+BNiAgICAk4lAWDzO+OxH34OBtfWBpSyvvGDwyF/vNt2OxZPILy4i/+ivkXvoDhx46jFcfcOLwGXqMRzrNm113Z4oKwhHoui48CaE+rfjWz/9jW0ZhmGQyrjPcC5UJHzvAYdZ/S441YOyMcFRcAxHoggnyXPHPSI7G7m0zhnK4lM37cTZcf+zmCM868ulaCTE+l9+wSAci9VKLYrK5FhcoRvDj8jkFiO7mggsDZoNBnqrQYQPhMWAgOMKk2jjfMzfVH4AALCo+hB4LMWdt3z+5+gxuP1yZdnuWkR90o9K8wBFoytEikWbsjRUVYWiFXceGJfxu788alo3lYhhZqmI7z0h4hf7JNz96F68+FmXYEdnvZiybYN3ZFIsEkJfVxsqMvCp//654zIm12LVPcJ92Yw/bL69cBiIdaA9k8SWQc2NUZgmzjS3PkHlRUDQCp1WoXI57Pmlvx54l78feOMDQN8ZAB+v9VgUhSwRCV2KRBOz9Xhdk2PR6J4Tmp/13hTlBRLX2rkNMM4uj5NCZl+CAvrPAjZd09rn5aOItGookuwB4vaED3/rtq6XlicMQ8TbJse2TVOcIf93bPa3fHoQaN+sxaFqLonZfeT9bMZhGUqSqOFWCc8BAScpMS6GpcqSTVjkVPcDZiPB5sf/9mOEo/Xj++KMXchySiGYn6k7FmVJNgmLD9/7sMkNFolHIFdl5B7OYerHUzjw0AFcePWFiKytj5161tQFsqLk7FjURbLCQsEUA6/QClRVRabD25G4JbvF83E/9MbtkaqdPZ3oW2cXHN2YL5P37qzus9AZ9XaULlQWPPsPNupN6CSeLTcKVXcsSoxk2kajnoFujkW9l+e65DpfSRetdCzyDN+wxyLgT1jU40kTQsLXviX55icR6W7bRsJiKpTy5f48mjR67wMCAgJORoKj4nHGo/ffg1vfUY8Xm51qHG1arZp7D1Qr5pn9j9x/j+l2NBFHbmkBsz/7V1Sn9kOSRGzbZZ6Rlky7z6oTZRWhcASSTAYqC9MTOLD7SdtyTn0Wdf71hTvx6zdfDGlxCtWZQ67LedEec591VZFIkSHhIYDFBJ9OwSaEupjQfI9FP1GoOouzU7WLFVGsgtLiooQWRqE2EhZpCgg3sc+tgmdpUD5m2gU0j5t7NyAg4BjF2HPPyZk2+UTtT7lBjHe+qtrOcz+5+2l88u1/U7t9cHIBiNp75UQ0h5tKc7aJPrMLS1AZAfyHlvDhP1Tx+/seMz2eikexZ0bG879bwvCCglyhjPNPM0xqkioIh7xd6rFIGIUSGfMs5Yv48wNP2JYxCYuVVXAsTppfFxYP1cStGsVZIJxxFxareSKCAcD4Qyvfp+mngA1X+Fs2u458nwyORTGUJVGoorNTdHYxXxMUK6LmWGQpwBgRt9pClB45O3Cu+f4EKayO51XitHv+l+v9CFsRUcZHEWJWsa+hX4w9Dk8EUUwske9hM0Lr1ucAM7uBotYmYHYvERxDTRZG485xfQEBAf6JcTGU5TLyhmSAxcqip7Bojb2ULPHb9/3sPrzq7a+q3Z4bm/MlTOQW6pNfJkYmTALmI/c+Ylo2Go+ifLiMg/96EKUDJSxOL2L7GdtNyxhTmApiwbaf4UgYkiFG6S931Z3UKq1CUqWGjsVt2eZdhVZ0QU2tLP+csFglE4TO7T63ocNtsbLoGZ3pFGvaiJDDOMnrM6/109RaxEi05EuIND6fk+Cm39ce8eewK8tlhLgWCYs07x2Fqgu2Pt7eXJX8FvxGnKZDzcezZ0NZUKBQtfYXt5ARMk19NkcDgRZa4joNaC36xItT2k85ynsSEHByEgiLR4BCbgl/utN5pnyznHPJlTj9vItrt60xpk5MjY+abo8fNseNGR2LqiLjFz8gfZPSl74KmStuRTgaw9BG/7PkJFmBEI5AEuuDh29+4V9ty2XaSRFSpuwXFDGBw1BbFJXxpyHnZhyfZ7HkPeupLeY+mqrKivY87gMDnjXHlraCWIhrOoq0GWFRqlYwO00iZKuVCiit56DA1Lex0vZRjdyIAsuAY478oUVgGVCBY3FViPgV2QMCAo4NjD0WH/8BAJj6GuE3H8JKuOiUQTzvqvNrt4cnFhwL/pd1kJntKlRMz5nd/XuGxwAAoqbB/P6+x2oTYyqSii997xcYy6v4wCUCXnMaB5ZlcOYOQxSYjyjPaDiEfLGMZ28i5/oPfe5btmW62w1FErEAOPSOXhHTT9cENQoAcuNAyuIOKM0DkazZWafDR4mIp8+wn3gUyNlj7ZuCjwKnvLC5dYS6Y7HKpwGo9XhKC4oK7D88DgAoV8hYMMZ4F5RaTmkeCKWIMGokSURdhgKwGrPO+SjCzDEm5EnOAvBxR6S9uQjd7TcCchUYuY8Ik7kJoG1j8z1oE85xfQEBAf7RHV6TRXKdqqgK8tW8q7CoVlRb5KBqmSTRt7kPVz//6trtubG5hjGFlbJ5wvXo8KhJzHjs/scgiUQEVCUVd37vTpQPltF2VRsG3kic4FZh0UhBLNicWaFICGKxft/X/+3rptciKVJDx+KmzCbPx5tByfmf/PLQ1EOkF6aFhgIuRXolejnc/ESIWmnWsTh6gNTBqpW6sOi0DTeibLQlDrWyVG7ZtniG94xC5RkePM0DPsois2UyjtPjShuRFpoXFgcSA4hwEUiqQ48iA9lw1lE4PpYIHIvHJulQGne/6G5cu/bao70rAQEnJcFR8QjwwTf9Dd5/+y0t2dZr3/5+022nHocAIG66Amv+/v+Qr0iYGDE7/kYO7jfdHjt0ADOa8zF3/09q7sLEWc8FRVFYv/00MIx/YaEqKwiFo5C0Werbzr0Mv7vjx5gYNe9Htp0UIRWKgeSjmbOVPZM5z8czXsKi5lhsJJK1yqmlP18i1LzwZXQYhkKNZ3GNDu8DQKJQa45Frr6N5ToWwzw5XLR7vK8AEOLoFbsilwNxLB4bwuJ3XnsOXnPh2obv1fEAz9BHRSgOCAhYAUbH4u5fALlJPPooiRotHH4MePpnGJebLw7ofPr115iin4Yn5+0uPAAcTQpnCmgcGDEnLOweHgVUFSNvimFjlsbU7AKe2k/GNO+7q4o/3v842iLAey8WQFEUTt+6DpGwveDw3G1h/OiFYUC2FyxikRB2pQv40Qsj+K9XnYo7/nA/Hn36gGmZHqNLQCya4z3zKxPwqioLFGdAz5FxV1dEJn0J2wx94qQqcSTGOkkfSiuhlOak1IqQchXY+6sV7RfWnA+0rW+8nBEhAf3UnugeIn+4CIuA9vmiHoUaUe19p1ad1IDdnRYjY892hz6fLUGIQTgWHItGVqN36NEg1gHwTQiL7RtJTOvEoyQGFSrQe3rzbtlkf3PLBwQE2NAdUfvGyHXqoZFDUKCAV51db8qs/ThqLeg/763PM9Uo5sbtApiVyZFJ0+3D+w+bxIxysYzdj+4GAMzcMYO/3PkXCH0Cul7YBYqm0DnYiWTGLpYxLNmPXDVHhEXtlK1CRTgargmL8Wwcj9//OB740wO1dSVFQlund0TzQHz1460nC/X3Rh/jPTJDHJxF0R7xaqUgFvCrHBmfSCkJuWrOsydfMwKfjlGM7B4gbnKvPo6HtXGlHoUqUmJTrrhWRHPKqgxRET33sxn8iFtRLgqP9qU1ZrUe3kmffZIzYW8B3IkXbn4h/uWSf8GmtLc43hHpIILoMQzPeLtFA44eMT62rB6gAQEBKyeoFh8BFubcCy/N0rdmren21JhzH0KljczQ3j+dtwl6owZhkdEcbQ/f+ycAQOrCm/HmD37KtPymU85wfI7IxvOQufqNUCyzB0VZRSgSgag5FjfsOhfZjq6aE1JHdywCqMWmNsPTDYTFbNR9YFKVFHAMBZ71Hhi0SliUFPL6Vtp7kBcazOKiKYwMk89XrBqiUA2ux+X2WFzfEcd/veIMnDnkPaAMcUzTfSR10mlS6A7HnHsu6J/Hxk774wJLOxdljwJnDWXxD8/aguyJICyydNPxvQEBAUcZYyGksgTc/2VUtNnawpPfBZJ92Csv34Wzc705GvDg5AKQsMcFshQ596kUhwOWYt6eg6NgxBx6EzQ+epkAhqHx23tIAeudF/D4xifeXjtfvXwnj/N3OfdWO6WTwbM3ccDYA7bHYpEwYjR53RdvymDTUB8+843/My1j67HoIFAul8NKB8AI4KbJ6+qJaoXS7p31hbSiDlIu4kU4RYQhVSGuxb6zgEN3k9vLZccLSE/HZjAIdOkezTlace4xHeJZm7AYOhrCYnadXVjUnLVtEfdxSmH9dQCA1MAyouf4OHjqGBMWW/idPqrEu4FmC7NbriOu4YlHAYY3//b84qcfaUBAgCcxLgYKFMoccVAvFBYAAJwfW5WGtaC/7jSzI92PsDiuuel1RodHTcJiKBLCg3c/CADIXpHFOz77DrCJej1g7U5zLaaGdqm0VF2CKIlgZLKvEiSEI2FU8sQpGY6GsemUTfj6v329tqofx6KjmKGVT/ItmDxSkkr4wiNfqN22imD7F/ZbVzFxeOkwPnLvR7CgLAAAlIgCWZXRHnaPCl2OO80Yn9rd31hYHDlAamU1YVEVm3reGNekw92BspYa0KinpJXubvL6rN8NP4JsjI9B4RqPRXSnot+IU7/ORiMczWFH+46GIm1/vN9Xv8qjSSO3aEBAQMDJSCAsHicMrt+EG176Gtv9Ew2iUFUAkxZXoy48AQAfCiHb0YX/9+F3QsrNgokksXHHLtPyG0853XHbfNcGRLdcjPmCOd6qIikQwlGImmORYTjc9KrX46lHzEW/rKHHoig3X4R5eqKBY9EgLFoHKRVJAc80FkxiDfoJNks6srqOukQqi9FDBmFRj0I1CKjNRrEauXRzJ/rS3oNCgV2+Y3HzZlI4jkScLxBCHIO/vuty/M2F9ou6EEubewoFtASepVf0nQkICDgKGKP+MmuBB74OCuQ8yxYmgLWXQm3BLGyd4YkF4rizwOjCIs1ieNQsLOrCk876gW78/T9/GfvnFSRDFC4+aweKYn3S0fnbGxT3R+4jz6WS4xWlyohFQyhrfXUoisI/vPYm/OGBx02rmaJQK3mzY3GFSGCAwfPBzu+t38mGgPRQ/XZRK4SmB80r33IHcO4biVuqaoho3fRMoDizMhda/5nNryMY+u/wEeKKLTsLi52ZeC3qti4sFlCrvB4puncC1iQDH/3ynvXKv4f8tgMYuPilzT+nEAdPtzhOd7k020vwWCe9pvlx3o7nA1IJ2HcniTSNNO+2QGr1nUIBASc6NEUTYUWrPpUVIrZ49Vh04nDOvfYxN+YsLKqGLs8TlvSEw/sPm1xwa9avwdc//XWUR8ugBRo7z98JVaqvv2HnBnghKiIWq4tgJHLtLUNGOBpGYaQAAEgoCdx8+814+J6Ha+tUpErDHotOKHvJuO6O4TuwVFnyvZ61LqJAwbee+latfyIAUJbz9f7F/Z498kbyI8iGsrg0dikAQOXIe9YRsfffdnsOPzjFp0ZY9/FsTViskLFIFdWmHIuxZqOzHViusLhxI0m36BkgEwH1iN1GvS0BTRD1cbp83amvwwfO+wB2dexqvDCWJyw2Ym1qLZ6z/jk4vdO55ngsEWJCQRRqQEBAgIXgqHiMkn3Wm4G4vUhnxSoaOmF0LAqRaE14UlUVuT1/wezUBBRFAR0iYk44ah70rN/mPtCg+RDmiuZBpigrEEJhyFK9OPfM573Etm7GICzqUaF+KYkyxhbtPWNkkEE8Q6kmx2IoYh5wViQFAss0FMDiy4gu9SITWd14h2S2syYcV6tlUFoBJsTWf+r0Ks8EC/Ot701ppD0uYFOXfWDOswzUFjREDzAjBI7FgIDjD9Zwruk9A1gaxamJBQCAFG4Duk5taX+54cmFBsKi2bFIURT2HByr3b5jr4Tdw2MQJRltEXK8ScWjKBmMVuefaogPdWL6SaBaQFUTFhm5hGg4BFGsizwvvvYSdGZSptV0x2JRokkvQ6XF7q4tzwZjiBdDrAMIGc5hepyoNW5xzbnAVf9IBMdKri4stm0EOvz3vXbEIba2ITbnX7ersNiVSdSEY73HIi/lzRG9qw4FDJxjvzvq7p4wwkQzzcVu6vAxcDhGHIJvegJ4zmftfSaPV9qdXcuedG4HEn1EiE8PLk9sTfY2v05AQIANoyhRVsl1vAD/6S6KquDdf3y36+NuwmIlRtyCJZQwfmgcXEZL9OkRMHpgtNaXcfGeRex5fA9EUQSbJNeUnMCBNVxfDu4cbLif85X5mrAo0iJC4RAqC2QfBFXA+Vecj7Vb6pNkF6uLvoTF+T/Nm26rRTLGKkklfO7hz9l6O7rR3m0+Dz449SCennsaL9r8Itd1JooT2Luw13Z/b5wcHzenN+OfL/5nbEuZnf490ZX3qM2EyDiNoihHt6Efx6LeY7GqVpuKN9UjfFdCWS63ZFt6r3Q/fQ7jfByKj1h2nuFxw4Yb0Bfva7gssDrCosAI+OB5H8TOjp0t33Yr4RkeES5iOh4EBAQEBATC4jFLbPszoJ7zMtfHM1fehuwzb/cnLBp6LOrCkyxJmP35p5F74g847xlXo1TIg+bIQC0cNQ96Qi7uMZ3pnLkJelVSIITNAzYhFMZl1z0PAFApkYx+o2OxUG1udvf4gnOkVoEiM9CijIy0KQrVLozwXGPBJN5ix2IyurqOxVRbR62HplitgtGiU41RqKkVxrE2Isw1FmxXA4GjgSCaouUILL3qYnRAQMAqkhoAEj0QtH6Hha5zgERXS59ieGIe4OzFnloUKsOaeiwmIjz2HByDKEn425+X8cUHRFx3yVmoVEUkBHK84TgWQqi+zc5sA0GgMA1MPYmKQoa2jFRGLGLeJ5Zl8OoXPwcAkBfJcnqPxdkKDcgVrZ+hT+RK42U2XWO+negxO0pLcyS6NpxyXj/RS+Js9ehTigLOeYP/fXRiObHhIUtBLN5NBE8HOjNxWxQqK+YAobnZ+isi0VOLPTXh5HhjWxhbLhxDwqIQA3a9xP27dbzR1mBygRMUBWy5lvzdvnl54nbSX8E1ICDAG2PcYkkh1/JuPRad+N/d/4sHpuyx5zpzE3NQFLuYogssMmRMHJ4AEyfnQCErYHJ0EpVyBZP/O4nJ703izIvOhCIrYGP1c0UkVK9rdAy4O/B0FioLoGUyxpAoCeFoGExMExopERRF4WW3v8y0fLazsbAoL8mojJvHHaqi4rWnvBYThQn85vBvGm4DqPeDBICxApnkddnAZXjJFvtEcJ0wG3Z877ui5Dx7Sf8l2JDZYHNzeTkW/fLhCz6MV21/FQaTg44xoF4OxJH9I1BVFdVqFaABSZUQZf2fB9zEQN056SeWtCSR77rfPoZudEY78cadb8QLNr2g4bJxPg6ZaX16wmr1sKMp+ph3Ar7rnHfhpVtfuqzeoAEBAQEnMsf20ftkx+PkGt91DWKnXImp8VHIsvegYWLsMHRdINHWibnpSUwc2ofi039C6rRn4g3v+ohpeZVmEIn6j32Yc4lCtXLGeZcAAIq5BQBmx+JcwUdxzsDoQgnJsL04VKHIxQkFgGO8v94hH5GdK+2JaCW96o7FDowfGoYsSRCrVXCaCzXE1d+L1daIwivosbgSQiwD5RgfkB6PkJ6ZgbAYEHDcQlHA5utqN0U+CTQx29bP/JqZxSLyBfceeipoDI9OgufIxhLREArFMh548gC++nAVrz6Nw1c//hZbPFc64W8sslhWiTg3eh9EXVhUyohF7MWmZ19+IQBg/wK53a31rpnMa8VIFxfesol3Am2b6reTA2ZhsTBDXFRuPX9inYBUJnGOOqc0Liq1HKsomOwHyguOi3Zm4hifnkMuX6wLi9XFIycs0iyQXQ80KoDp7tSbvg5sebazENksfBQMZLDBcKS1hNNAtPmoQADAaS8j34U1FyxvEJzQHIvBJKuAgBWhO88A4lgMs2Hn3oEufPHRL+LsrrNdH5dFGXNT3n0WJ0YmEE+ScxEv8FAUBU888ATmfjOHzOUZfOA/PgBeMF+vh8P1sYQCbxcYTdHIV/O1mE8JRFi0cuEzL6z9na/mkcqmarf9Og911qXW4d3nuDs5/fCyrS+riYRO7Gzfiafnnm5qm2EmjGgTkzmyIedjfISL4O9O/zusTa4FS7O2HndeDsRyqYyZyRmIVRFMmKzXjHPQLQq1J9aD565/Lp697tkNt7HcKFQnXnPqa/CMgWc0XC7BJyBTqyAsao7FY10EXA3WJtfikv5LAsdiQEBAgIWT74xwgiFJIuamJ10fr5SLWJidQTROZkgJPBkoqzSL3td9GZH+rWjv6kF3f713kaKoteX9sFAyD34lRQUftg/wGF3o0wYi6Ww9hmO+6J7Z78TYQhlD2ZVFaoV8CGCJFjsWw9zqOuqS2Q5IkojJsRFUKxWwAvkc+CNY4QrzR8+xqJ6Eg9zVhmdpMKsYbRsQEHAEGLyw8TIu+P35Hxybcn1MUVUcHJtCXCuuFWWt95AkYv/fxnH1ehapRAw7tWgwXWBMxQ3nebHouv2qrAKD5wNTT+JggQh0lCo5CouM5byv79PooiYyleatqzQNr0W86fHs2Pys+oPtGwHjPhRniGjCucy412PxjYKnMer2SIkdRlGwNEecsJLzpLCuDCna7Tk4hnJVBMsyoMqLR67n37WfAs56tbkvpBP6/qcHibjYtWPlz60VOKNccN5sKbFOwCPuzpPObcDtDwJDyzwOsgIQziC4bA4IWBlG4aislBFhI6Cb+F2lhBTO6XaIuDZg7aFoZfzweE1YVCskVaFYKGLDxzcgfX4aQkjA1tO2mtaJhvwfe5J8Erlq3c0vUiJCEfvEIZqmoSra80tF0CuclPu8jc+r/V2U3MdLbqxJevexvnTgUixUFpraZpSP+nJ3PfKyR/CVq7+CDWnv/pU61m026pk4sn8E1UoVdIS8x/EmJjl5iYEfPP+DuHLwyobb8IxCXaWhQkJIQKRa1zNcRxcWl9MfMyAgICDgxCS4QjoK7HvqMQBAfmmhJdvzikOdnyBRVLFEEqXhh/DwD/8DADA9PgYmXB8o7Ti9PkiXVRXxhP/iz1JJhKKopvuYkH12V5glAxBZG/xxPA9Vi/ZaKjcXGzWTr2BzV+PZZlHeXcgLcY0Fk2S4tQ7DRi7KlZLKkriRkYP7IIoVsHoUKntkIkIZmkJUYI+Kwy3EMlCDQ1rLCbEMmGCWfkDA8Y0p/pH8nqfniFA1n7f3K26M/ZgwPOo+yWl6sYCqSIS+uw9LePm3ybL7RyaRCde3ddEZ2+srqSrSScNYQmkw83rTtUB+EktVvcdiGTEf53BdxBzThcVmolBd6JFIBP2MmiJ3bKk7RtF1qnnh4iwRLdziOGMOwiIAbNeKiI3Es1ZhLMSJZc94yM4MWXb38CgqVRECzxF34ypFaNlYewl5zxsVaqXlfPcboLkbYnxw3mwZQhxIDy2v56VOJLOySNhET+BYDAhYIZlw3bFYUksIs2EUFgsAgMJCoeH6lw5cijUJbwFsYmSiJthZkSoSluaXEE/GUTpYwt5/2wuGZTB6YNQUfXrKWafU11EkRKP+hcVUKIW8mIei1TgkSOBdxiL6fhbExq/dD6e2k/GF3Gi8tAy2ZLa4OgrdiHNx8Iy/cdjpnaf7dsFZtxlh3c8NNEPj8P7Dro5FYzyvkU3pTdjZvrMlPRZLUgk0RdsE0PRFaXAZDlW5uQn2fkjwCYhq64VFnuERYkInpWMxICAgIMCZ4IxwFHj8wb8CAPK5pZZsb3J8xPWxuUkiLJbGnsbUd9+HTN86xBMpTGmCo84pZ5xb+1uSVcSS/oXFxZKIqmyOBaEdZvbpl+OKYVClimS2eK5JYVEFcM468+A2V7YPnsx9Fs2E2MYRj4llRKHqFx9CyD57jl1l51c0mQbHCxgZ3o9qtQpO6wlhjEJdTT5x46m4flcv6KMhLHI05GD2XMsJ8Y0jgwMCAo597psj5yZVix3br83qzxWbiyJ3gmMZHBybIs5BB8Zmyez9Px8UcelXixjKcFjT04H9h8dNy118psExpkhIJ5qIjVpzHsBFcGaGjK1YMY+o4H9SzUxJJYkKVYOwWPSOVHMjqpJtqPo5qcPgfkhZiqKleSDaBrjNuNeFRWs/Q4/oLwBgGPLaea5Fke62KNRe10UjIR7tmWRNWAzxPFBeIs7MY4lVKObpPfxiq5t8f3Lxgq8DF73dHCF8pEkPtrYXZ0DASUhaqJ8D9CjUiUNkLFLxMRYZTAyCY9zPaZFkhDgWXdJKdfGyNF7CgY8cABtjMbBuAIf3mydpn3pOfQKQpEiINdEiJiWkUBALUEHGQ1VUXYXF2n5JhZoQeaxCUzSuGryqqXXifBw8TV473cLJ1c04Frv7uzFyYARiRQQXJ9+dJF+vc8U45892U2YTPn/F5zGQGFjx/palMgRGsH13uQy5fc/4PSt+DisJPoGqugpjHACvPfW1OKPzjFXZdkBAQEDA8UcgLB4Fivlc44V8EkumMeHhWJwdPwyKonHoDz9A7NSrcO5L3oL+tesxPW4RFs+sC4uirCDWRBTqYklEVbIIix55+gobgmRprJ4vS1BU54KkEzGBxbYe8wyysQX7zPOMl7DoI7JzOVGo7e0k4nX9lu22x1a79yBNUehdM4TRg/shVipgOOJYDB2hKNRLN3fg0k0rb9K+HHiWgaIGAlgroaA5FgNhMSDguEe2HB8nplcQ+WlxDg10JDE8OgnJpS42OkXEvvf+fBwv2MbhKy/uxZZ1/dg/YnY5XnjGNsMOV81RqI1gBWD95RiMkUIKI+URC/kX1WQFxFFnFBYf+TYwu8//PgDA0qj9PqPTKWQQ6GSRRLzGOtzddeE0QHPm/fIBx5LXvnmtu7OwKazOyIS7sAgAGwd7sefgKMqVKrJRFlBE8jpPdLTxbzRwLLaORBfQd9rRdQxe/THgwrfVPt+AgIDmMfVYVIiwODM+43v9Ro65THcGE4cnABfDXn6enEcf/O8HEdsew8bbN2Jw4yBGh83nbWMUalWuIhbzLyymhTRy1RxklexEFVUIYe9JCSWxBElpbpL10eCGDTc0tXxSSNZEwGzHMnvkOmAVFr16LPat7cPogVFUK1XwcVIX8huFGuWi4OiVT87ShUWWcq4rPTbzGKpSa0XAOB+HAgXUKoxFXrX9VXjuhue2fLsBAQEBAccngbB4DKP6iLFId/Z6R6FOjiIciWLtJTcic8WtoBkGvQNDKJdLpuW6euuzsXIVCbEmolDniyLKkowLrrimdh/Nu88ck7kIJIuroVCRIMr+Z+oNtUVtouHYYsm2XNZDWAxzdEPHYryJoqQVyiEiglumY1FoQhjsW7MOIwf3o1qtgOGJsMiucgTrsYDABo7FVvO2qzbjqm1dRyXaNiAgYHUplFYQA8ma+wWt6Ux5RqGOz+cRDvF40zN68NXrQ+BZGhvW9Noci21pw9hDFs1RqH7Y8YL6Lop5xJqdHBRtA6qGSLJwBvjtR5rbxsh97o8xvNl1pcebpjxmxFMU2S+rY9EnLUsQsBbifAiLumOxL6l9DvHu1uzLsUwQhXpikuoHtl4XuBYDAlaA0VkmQ4bACE0Ji43IdGcwOToJJedcUygsFUAzNLZdsw39r+8HIzDoG+rDyH5z+lMoXB/j5MU8ErHGcZjyAVK3SYVSWKou4fRLTwdAeixyDRKQCmLhqAuLfgS0TZlNTW0zJaRqLj2qhRNDbMKiFoXq9Bz9Q/04fIBEoerCYoI7QhHyGkWpSIRF2nlMOlmcxIPTD7b0OfXekHr8ayuhKAoMfWTa7AQEBAQEHPuc+GrDcchv/u/7AABZrguL6vP+GXuSp9mWzXT2YnLMLixK+TmU9t+P+clRbDplF3p3XlwbbPUOrrMtbxyIFSsS4omU7/2VFRVz+Sr6B9fXtyfYm5QbsYqIuYoE0SVCzYlNnTEkLYP0sQW7sNgWcy8ARAWu4SB3OY5FL5Yr8IU4/4O3vsG1GB3eB1GsghFCYGkKzCo7JY8FBI4mjpOgB07LuH5XL553el9LLwYDAgKODNd+q4Q790sk3nMZ/N9v73V/0FJcH+xMYXh0Ct96XDu3a66eqYKCHz8tYnRmCds3rMHrLuqqHU82DvZCFD0mUEkVpBMGEc6lIGNiw+WmmwmuyUJdpI04CHUue0/zLrvDf7Hfp08US/S6CIuD3tuMtgNH281gFRaFmP0+A0RYHEO5UkVPUhvDNBAjTwi07348iEINCAgIMGG9ngixIeSXvN34D939kO/tZ3oymByxT3KSChIW/7qIwnwBPWt6cMZNZ4DSJt30DfVhZtJd3Fyqkp6MjVDHVSiSgpSQgqiIYBLkvKeoiqewqFbUY0JYdBO9VkJbuK3l2wTI9wYAwhwRqtsj7bh68GpsTG+0Ldu3tg9jB8dQKpXAxTgwFFNb70hRkkoIMSFXMa472o0/j/0ZitK6ONyasBgJBMCAgICAgNXlxFcbjjEKDfoq7n3yUXzqfW9xfGwp2mcT5JIdPbYo1KceeQDjP/gY5n/zJcyOj6C71zwTvm/NkPc+VmVE483N5JrKmfsiUGwjYbEuIqrVEpZKIqQmHIvbe5M2kc4oLAphMmDMODS50WNYo3zjAfRKHItOLNf51UyPxN7BtZgaH0VhaREMJ4ClKZwMhjOeoUk3i2AGXUBAQADu2Cfj8q8XgZ5dtsdE0V7AUrWiUkmm8fT+EbzkbZ/w/VyDvR0YHp3Enjnt3J4exKNPH8CVX13CG39exuHpRQz1dWGOJjFoc3IMG9b0eG+0tIBUwhA7KBbcl9XhwiYBMkkV7cto50OGcpjMFOswOxaFBPDKX9gWY9wmCVULwNx+THP9AICwoI1B9IIhHzNHntaExQZxpXqfxaOJ07gu1uW6+MbBXiws5TEyOYPumPaa4+7LH5c4OU01YTGIEA8ICAjwJsR41wsmRyfx/lvf73t72Z4sJkYnTPeNHBjBU//8FMa+Noal6SV095ud831D3uffXDXnS1jU0ftIzlfqcfOMR79ntaAiL+YhyqLv59BpFC8qhMgksFb2N9ya3dp4IY2u6Oqc83XHoqq10WFpFh+78GM4v+d827J9Q32QJRmH9h4CG2U9nYOrRVkuQ2Ddn/fKwSuxf3E/hnPDLXvOOEe+s3QkKPcGBAQEBKwuwZnmCHNw/x7Xxxbn5/D+22/BwNoNrstY2xBmOntN/RLv/+3P8JZX3AA2lkXniz6C+akxdPWZCx+9a+yORSMlUUI86S8KVc6TQfN8yZwLT3HeUUEVyeDGLC4gV5FQ8nIuWOhN2WeajS+Wa4WctRvJoNcpClUXNWOhxgJUIty6gSfP0OCOhGNxzTqoqorhfbtBswIYmgJ9EjjOBO09opjWisEBAQEBJxp7D43Z7lP4BN7z2zL+7ZEwrn/Dh9DTRD+cwb5uTM8t4r0XkuPwz35+B8570VuRDlH44y1RTM4XMNTXBRHknCyCxcahBu614gzSCf/FvBrrr6j9GYNdWFS1uK8E7yQsdtp7GcY78ZWHqnh8qj5GScZc+vnM7QUAtJ/+HADAmadYZs9bT8WVHBEbrf0LrRwLgpzTOCLhLg5vHCSf76O7D6IrRhHBN5xxXf644w33AZe8035/0IMvICAgwBWmXL+mVQruk4pVVcV7Xv0ehCLu4qOimtfP9GQgVsRa6tOe+/bgtmffBlDA2nevRbVatQuLDfoQV6QKYk3EsqdCKQDAUqU+mVzm3Wscal6FqIgoSD4mT1m46vlXgfZIJeroIYkLyYz/FjfrU+vRHm53jUZ16xPoRHd0deLP9UhdvY8lADA0U4tdNdK/lkz0OvD0ATARxrPX4WpRkkoIM2HX572w90KkhTTumyBR+knB/+flRkxLxwgciwEBAQEBq00gLB5hDu3f7frYr370HVTKJbz/01/2vb10Zy9EkYh6uYd/iS+8/3acf9kz0Xndm8FE0yjlF039EwGgd8DbsVgWFcR8RqEqYgnxEIvFomWWHeudAWVcXi0uQFWBBes2HHjG5nbQlD1KpSopWCpL6E6aLz4yUXeBMy4cWcciz9LLnsEebkJY7NUcqaPD+0BzmrB4Esyc1/tQUmwgLAYEBAR48eQ+597M//j7Kn50z36MTc3iR595j/sGLLOuB1P14eR3Hhdx3d9/Ec8451T85OYE+pM0RFHGUK/ZdTfQ3e69k6V5cxSqVHFf1ohB2IlS9oh0nYwg22drxTotvQzJuVNUgLxh/hRlFR91ZvYC6UEgPaCt3ejcqwKhJHFaenGs9iZMuhdk1w2Qfd49PIrOKIiAynm7U44r2jYAg3Z3BGgGatCHLyAgIMARrly/TitMuotp1XIVh/Yewj9+8R9r91mjJBfKC6bbmW4yeUVVVOQezuEzt30GG7ZvwOa3bIbQSY7LXf3miTqJVAKJlPvknrJcbsqxmOAToCkauWp9LFGlq65tJXRxdbG66Ps5dLxExeXyg+f8AF+/5uvojK48KaE94j7Oazw+ckd3LFqFZSfautrACzxG9o+AiTJHx7EolRFiQ67Py9Ecbtp8E8oy6X2e4FfeA1LfRiAsBgQEBASsNoGweIQ5vM/dsQgA7/mXL6Gjp0EkloFMZ33Gf3hwJ2547dvxzn/6LGiDuNLZ229aJxz1nk1dFhXEE/5nSmWjPBbLIpRaHAUFlfEWFo0OR7W4AACYK1Zdlq7Ds7Sj2KevuyZrdhFktShUx4n2DRqpA0C8hT0WV2IaFJoQFlOZNkTjCSiKAorjwTL0yRGFqguLDb57AQEBASckoZS5f58HT+53FhZ1vvnJt2OjVzyYJRZzsCtd+/uiNQw+cMtV+P7/exdifP3kM2gRFhmGMUedWikvIm10CSyj/5CguAuLKUGxbzPeae6xaKWSB/70affHywtAz2mNHYgAQGnn9XDaOWbUSOJYFRYdokA1wiEBAz3tUBQF7SGVvCdGwY1fhhsVANo3k/87ty1v/SMAxbk4WgMCAgJOcthK/dp6YWTBc9m3feJtWL9tvevj06Vp021dWASAyPoIrnzllfj41z4ONlJ/zq4+ewKAl2uxLNmFRdU6KckATdHIhrLIi/UJSEW5CD7kfH2qFsi2jA7Ho01vrDX9kOMu5/k7b7wTn7r4UzXnYbPo63l9Djo0TaNvqA+KooAO0wix7r0OV4uyXEaYDYOh3J/35i031wTTVhBmw6ApGhRzEhSBAgICAgKOKoGweIQ56OBYDEVIYe3cS6/CKWec29T2OEGLgijnwSY7cMVNr7LNiLP2WAQAnncfuJRFCdG4u7CYr5gLcW0xgfRIVMjgTmBpqA0iJnKl+jZ0YXGpVHcsSk02r54vVEEBGMyai5S6g3Fzl31gm/DhRlxudGmrCWs9FlU0HkBTFIW+NWsBADTDaT0WT/xBZeBYDAgIOKm58kPAGa/0tegTew/Z7hN4cuzctXUdnnXJWbX7G591gIjAgqIoTOQVdMVovPWFF4NhGIyUyDl4sqBiqM8++93pvhqVJaTiK4iV5KKgqznwnPN4hKEAKJakhGiH67Jn9zHAff8JjD/i/bwbrwL8RHLrToNIprGweCz0WHSiQW9IPQ41G5aBUAIwTvwR/EfLmUj2Am/dA+x4wfLWPxJwQRxqQEBAgBPh+bqYNLNvxnU5mqFx2XMu89zWbGnW5FqjWRosx0KcF8FEGVz6kkvBWsYA3QPdqKgkAUEWSJRm76C7kFaSSgjHzAJYoUHP545Ih8mxWJbKEATn2ouaV31t83jETSjriHbg8sHLXV2cjQhpYyY/jkWg3keTDtFHxbFYkSqIsBFPQTMpJHHt2msBrMzNqUNRFKJsMBYJCAgICFh9jg3V5CTikEOPxUQyBQB49otuaWpb1ZlD+MI7bwFFUZCXpgAAj97zW9MynBBCKttmW7e9y70vTkVSEEu4z7ZfLJkLcW0xAQtFsSYGChwDUaVAewyejOKkWsmDYyjkyvX7ymJzwuJcsYpUhLPFm+oDM4G170ushW7E1UbvsSjJfkq8QN+g1keT5cHS1IrckscL+mccOBYDAgICvHFyLIYEcux852vMgk2pQUr5vjkFF/zdl0ABOLRIzlHfvYuIb0W5Psxc02sXx9b1ezjxKjmk403MZl+wiKWRDFDN1wRTR2TLi4s5x3a9cpd2XunZBTzvP+0LHPwT+Z8NA31n+NxhfT/bfAiLBodFo9jUIwGjjZ8S3q4GXVjMCAqJfG1VRGisA0j1N17uaMEHjsWAgIAAJ4yOxak9U67LpQ1JCG5MFidRlkh8pDgn4tOv+jRkWYY4R87tf/3pX23rdPd3QwGpM+jCot6Hz4mSVEI4YT7vLlQWPPerM9JpciyWpJK7Y7GigqVZ0/LLFdyONfhVuiYPMc3FquuOVCpEIcy69zpcDRRVQVWpIuqj//KbTn8Tbtt5GxJ+Ui98EPOZYhIQEBAQELASAmHxCFIplzAxYncJNEIS7VW90v77MfH1t4IPRbBm3SbwHcShdtcPvmFaLt3Z6zg4be92LwZVRAURD8eibVtxAYslEaJUdyzKigqOdx9M5kyuRxVtMQG5cuMei27MF6roiIdqcZh+aFXM6bZtWwEAA2s3tmR7TuiOQ3+yItCrORYphgXLUGBOkAsUL+qOxUBYDAgICLAyUtR60oDFU/tHfK+nn3cUhySBPxyUcPaXCpBlFWfu2IizeskEj8/+8M+2ZZ0EviGHSLIalRzS0SaO59a+h+EMUF5CiPc411uFxWiDvo8XvAnYdLXleYuAPmu+fTMRvZoh3lV3L7qhb5MCkFrjuMiWzVsAANvWOT/ui/PfBGTWAW5RnoKW/qAX9do2kEhXF/ehLiymOclf5OuJgo8CYkBAQMBJgcslKA8eo3tHEQr7Py/QoE3xlzOlGcyX51E6UMK+D+5DYaGAnefsRGQdOYf94bt/sMVlJtIG0YYCJEWqOxYd5kQXxAJYS81gseLdD7EnZp7AXZbKEEIuE2tUICNkUDTEsOvCF8Mwq9JHcTXp66snGfD0KgmLTY4lasIxD89eh6tBVSbtetxiYY0khSRuPfVWdMdaE38fDdITAgICAgKOAMfXSOU4Z2R4v2lwK1YruOvnP8Q7XvNCAMD+px93XO/XP/mu6fbU+Cim/vdDCPVvw+s/9c26Ow3AE3/9A0YPHqjdznQ6x1Q1ciyGIj5632gXCtkoD0UFZoskVkRgaVQlBSzn7hIoVCRT3GlHQrBFrDbDXLGKrmSzwmJrIjPb2kghspm+lKtN7TvBcGBp+uSKQmWOHydqQEBAwJHiqwfa0fepHA6W4yiVK7WYUVlR8INf/RnPeu37AAB/uM95LPKDX5nFwpn5RTzzG0Wc0knjnn9/Dbaur8eu3/P4QTzw+N7a7YFO5/PjWk9hcQlhrvG5Kyy4FK4iGaC84C0sSpYejI2ERcDeMPmx79X/Hji7Lr4Z0e/b9lz7Yyn3PoU1fIiVySR5j9szKxiLXPF+4DV3Adl1zo/rhTFV1p60D3j9X4F1lzouvnGwFzQFJDgJiGSBI9zX6KgRCIsBAQEBBO2UKanm63wOHBZnFtHRQ85vqqri7jvvxnte/R4AQCln75FMUzQe+OMDtdsqVDw18RSGPzkMLsPhTV99E9ZtqZ+/Jg9M4uF7HjbvjuUcXpJKtajM8EAYFblierwgFiDr5zwNJ8eiUTjsjpqFoZJUchcWAWTCGRQle3/nrRduxa6LdtX3nafAtR/Zlh8/v+HnuO3U22xiqRuhUF30a2XPQCPNblf/fMGT3oNHUljUv09+hMVWczSeMyAgICDg5CMQFo8gegyq7ib7f//4Tnz4ra/DwizpLzA/O21bRxJFfPMLnwYAqIoMVVXR0d2Lzps+iPYb3o1QJIbO3rp4GI4l8X/f+WrtdqbL2ZnYqTkWndyMZUkGK7jPBNPF0WtufCmSmXa0xcngbi5PZmSFOAaiooDl3GepFatyLdYzEoujKxFGviK7Lt+IsqigPx0G20RPxGOlf+Jq0LtmiPxBE8fiySEs6lGogbAYEBAQYIfCaE7Fk+PE2dfVngEA3PngAdzwxn/E2NQcAGBiZs62pqIo+OBnv0X+VlXIsoK2dBI/f0kEd9wcQSYRwaAh6rS3LYHPffuntdsD7S7CYr+HsFhaAGV1FDrwuhdeg3jUYcyiRaF6phNoPZ4BIB4Nk6hOJ2HQjcIMsPuO+u02l+QCigLeMwuc/Tr7Yy4ORBOsQKJEW9B3pyEhjwgu/b0x9qZsW0dclw5sWNOLtggFmoJr/8oTkkBYDAgICCC4dTchCaZo7yETeubG5vAPt/wDJkYmAACyaK8LqKqKr/7rV2t/CxAwI8+g5+U9GHrHEPgUj05D7+bOoU788Gs/rN0ORexjhdnSbF14AnDnwTtNj+fFfM11puMkLF77kmvBMORa1Og4i7ARVOQKeLdJUADawm2OwqKV7GVZ0CyN7+7+Ln66/6eYKZEaEk2Zaxqq74yjxvTF+3DrzlvRFra31mkE56ff9DJo1rGof74qryLCRWzv12qiC4sJvjXxplYoUHj2umc7PhYIiwEBAQEBR4ITV1k5Bjm0fzfS2XZs2r4TALBh6yn4z5/8AR/896+6rvObn34f44cPQqkUMfW/H8S3/uNTAIDQwCmgtJnfXb31vgBnXnUDfvH9b0PV3IDpThdhsZfMkE9k7IWesihDVtwHpLqzMJZIQghHkI3yoAAsaI2YBJaGKCngXIRFViohX5Egygo4PoSrnvdSdCdDK4pCBYCNXc3lyLP0iSu26eI1aJb0WDwJfukCdxK8yICAgIAV8uT+w4iEBbT3kfPEbIXBwz/6DO762sdc1/nxb+7BI08fQFFU8YLvlvC2T/03AODCNSx4hpxLjcLia689A9/4yV0QJa1/kYuw2N1Oeii1pxyEGLkCVJYavp5kPIoQ5yAeholw2hP3ONeX5mrPf+vzLyP3RbINn7PGvjtJxOfQJY2XZVgHwYkCkj57BTZyUya18Z6LyNcSdNHRIRbXicHeTvQl9X6MrYn2Oi4I+hoFBAQEmLD2tZOWJFAUhbWb1tbu+/z/fR5f/PkXXbfx8N0P49G/PgpFVDD6pVHM/vcsxovj4LIcaJ5GSSqhyzBh6YLnX4A//uKPUHOkrhF26FF8cOkgIrEIVK328YfRP5iEQ1mVURALpnXmy/O27YQjYVBabaEzUh8PRbkoynLZtccioAmLol1YLIpF5Ko52/1r4mtw56E7ceehO6FCRU+0p7Ydfb2jTYxbvfNgs47FZCaJWCoGsECMPbLnZ11YTAqrk2z14EsfxO2n3e74WCAsBgQEBAQcCYJK/CoyOz1pun1o/x4MrN2Ajh4ya+rVb3kvBtZu8NzGN/7jX3H6eRdj4r/fisroU9hy6hm2ZTq660Wpc5/1QuSWFlApk2mAmS7nKFS9zEY7uLvKouIpLM4WzLP2OIZGW4zHQlEXFhlUZRUM6+wSYOUycmUJoqyCZmhwPI/eVAhLpeVHoQLAlu7mZoKxzIkrLEZjcWw59XRw4ShY5uSIQuVPYAdqQEBAQLNEtb5FB7TZ/zpP7juMTUN9yCU3Yefn83je827EKZuGPLf1wc9+C+ft2oKLv1LAz/dKuOj0LbZl1vTUJyr9zTVnQJQkTM0uAAD6XaJQdVwTBIqznut5EiHCYlfUY+Z+mQiXPMsgoseURZuYlb9wCNh1MxBrfiY/AEBIAIJPd1sjx1/v6cCLvg1sdZ653hJ0x6LqT1hkWQZXna4VjZPuvb1POAJhMSAg4CSFsjjr9XSksX1jpvtLcyV09ncimiDnwA1nbsCmUzZ5bvtrn/4a1m1Zh+FPDGPx3kVsPXsrJgoTkJZIDaEsldHVWxcWz3rWWeA4DmMPk+dORO21golCfYwk3SOhLJfxs/0/My1j7ak4X7ELi0a6ovV9iHJRlKUyOMHdvdcR6UBezNvuny5NY6I4Ybv/VTtehR9f/2NwNNnmWIG8vv44qQktVr17QK4m7REyCWprduuqPUezwiJFUdh1KYmUPdJi22o7FhmacX1NSf7YadMTEBAQEHDiElTiW0AyzONl59aLcpdddyMA4BP/8LdQDLO6dWGxGcYOHcDTjz0MVaqi++ZPYttZF9qWMToW23rW4Izz671u3HoselGqmh2LomwuIOkCopGeVLjmZBRYGqLsHoVKhEURFakecdKdCqMq+ytUORHhGbTHmovFYE5gxyIA/Ns3f4poMgOOpsGcBMJi4FgMCAg4melesw7UmbfUbv/NjVcBAF7y1k9AMpxvn9x3CFvWknHDw5OKr76CDz6xD3sOjmE8p+KPt0Rx/TPOtC0z2FsXvrqzcdxwxXm1225RqA1ZibCoORY7Ix5jCwcnQFORne2bgV0vA6hlRnBH0gBrd1A4Eu9CwyjUTc8EenZ5L7MSBEuPRR985NbryR+xVXRSHmsIgbAYEBBwcsJ8hsETtz2B9jAZW4Sj5Bz3X+/8L1TL9cnJ+Yk81qx3jwKXJ+znmUfufQTzM/OojFcw9PdDePbzn42CWAAtkGvAilxBl6F3czgexuXPvbx2O9lhH4tMlaYgKaSGoS6puHHDjbhv8j7TMjnRPFawCo1WsqF68kGEizQWFsMdKFQLro870Rfvw/rUetN9utC4WFmsta450ujC8mr1VwSaj0IFgNs/Rlx98Wbi7ltArccid+Tdg6vlkgwICAgICDASVOJXgVSGDCbv//Nd+MHX63EeIwf2YWBdc8Jipr0TQxs2o+ul/wyuzTkuq7PHLB4++0X1wqJbj0WKJh+9k95UFmWTyKf3QtSZyVcgWUTA/kyk9rfA0ahKCljOeQDNyiUoKkwOxa5E8wNEI+1xAVGhucIeS5/4X39JVsEylOPnfKIROBYDAgJOZiYmzCkJyThxAdz7yNP4x899q3b/noNj2LKuHyG1DPV9CfBy48isrrY01vR04C+vjmJXNwPkp2zL9HaaXXuvf/G1tb/7tWJeniKCS4omz0nrYxG3J/aKQhXLwOxeYPiPgFPsFxcGuAiygoewWLE7BBDrtN/nxhmvBDLebk9PIlnSP9EP1ojTPk3cDTdZOEo0P+Gshl6QE0v+1ykvEPH0CBfzjipB/FhAQMBJykN/fQhKUakJS7pjcXJ4El/8eL0uUpwuYs36NQiDCI9spX4d/9grHoN0lz3JKJlNIpFOYN171yGyIYLB5CAAINRH6ggVuYJY0jyx4zkvfU7t70Sb3TU2VZxCSSrV9vX20263iWJW0a+RsMho7WoA4lgsSSXvKNRIGxRLM8olH1HwbsyX5yEqK2sxcywTYpqvG+mf8Wo5B90QFRE0aES4SOOFW0wQhRoQEBAQcCQIKvGrQJUOof/MK3DDS1+D//yXD2P/048DACRJxMDajQ3XV1UV4jyJtHj3P38BH/vS/4CJuBeOonHzAOmsiy6r/R2OOa+nOyf7N51if34AxWp9lqBkibyazlVQsjRUX2MQFkMs4ykschKJaV0o1mctdq5QWOxKhBAVmMYLGmjWsZiMrE4D8tVEUlRwJ0kUKol8JX+396ygcBoQEBBwgtDdnsF7bn0hPvS5b+NPDzxRu3/L2n6sxSEAwEDhIcd1VVXF3jly/v+vj74Jv/v6x9ET14aNDlGYLGs+B194xvba3+kYKRx2qESQ3MBNAKqCtjQZo+xY6+BmC2dqUaWO3P3/gF++G1g87L5MrBMZ3iNmvZoHFIsrwo+wqM+WTw0AdHNjDxORNiKA+qFzu1lEPP3lwK1/BtZc4P/53jkC3PAfy99nvdiqNBFdX5onDj7Gvah6wqE5Fvs700d5RwICAgKODa5743X43n9+D7sf3Q0AkPMy1mxYgwwy2PfBfcjMZUzLG8W9yiRxfb3hg2/Av//g38G3k/NJnI+jO9oNNkFEybJUtjn11m+ru/rCMfv5dqGygDmt3/JlN1yGOB/Ha055Te1xlmZRkOrCoqiIKMtl3687ykVRlIpgLROgRUUEzdJg+phab0Qjo/lR389hRVblmlPuRETwOyHLQFmrP6WEVIv3pjE8w9fcpEcSXVhMLjc1JCAgICAgwAeBsNhCpsfJAPCRjitAP+NvcdNtb0e/Jfq0URRqpVzCR972Okx87S1QKkXsOP1s8HxzgyeGqReMKDdBSbubc9l2sVovGrGU+WsyW6iaREEAWNNW7xEkcDQqsgKGdYtCJTPGlir1mXQrFRZ7UiGEueYKZWyTwuLxKM1JigKWpnCCp77W4FnyXU23n0SRawEBAQEGntxvLka9+9YX4ZxTN2FusR7ltWXdgOc2qlURr37Pp7Hz83lM5BVcdcHpiIQN52kvwU/DOP7gWBqQqjhdfgAAEKJEk8sw4hQRFu8yOxYlSyHvrNcC130aoDzO/fFuxFgPEUwsANZZ/XGjsOgSJdaKmecXvR3Y/Ky6SNmInS8GXvEzs/DZua253oVCHBg0CJFvfhJ43pd8xeEum9I86SW5jOiy4xaejIl72lJHdz8CAgICjjBtbUQk2/3wbtP9F7/4Ypx58ZmYnSIR53JerkWhlvaXkAqlbNuSZRmf+cBnsPdde1GZquD8q89HNG7uS7wtu632d1kuQ3aI6g5FyPmH481jDUom45SDuYOgaRrZLpI6dfPWm2vLJPkkiobxSkH0F1mqO+OibBSiIoIJmccqfxj5AwCA6Wi9sNjMfh6P9ER7wNN8Uy5A3bF4NFx8AiOApZcZmb8CasJiNhAWAwICAgJWj0BYbAEXXnwJAOD7X/2s6f7FKoV/+Kf6fZFoDNkOd8GjXCzirbc8D3f/9pfIXP0GMKGo67KNCEV8zoB3oVCpD8oZxq5KHZw1x2D1pevPJ+iORdYtCpUUB/Pl+nPwLI20D0fgTK6KxZI92qM/E3EXUV3w61hMho8/p6KOKKvgWOqkcCwC5LsXEBAQcDLy/Oc9FwDwkS/9wHQ/yzL4xifebrpv/UC34zZ+9MIwBKWEq/7mPfjaj36Dzz4rhK4YXY8yy2tOxZG/+Nqn3k5SpBM4FnjyR+YHc5MOaxhI9ACVHBDSCiLDfwKMToR1lwKnvwLgPfrZJXpcH6rIFIlClS3CYzM9FlfCma8CTnuZcya9ExQFZNcBvM9Cmu4QXHeZ+zKJHmDH81fmumxEaYF8hi6TzU5IvL6TAQEBAScwNzzvBgDAdz77HdP9NE3jHf/8jtptKSdhzfo1kCCh79Y+VOi6wy55bhIyI+Pdr3o3vv+V76PrhV0QOgTHa/3TOk+r/V2UipCtKQQA+rW+0kLMPKGalVmEmBAmChOm+43usqSQRFGqC4tFS/S6WyxqV5TUfHTxiwrX970oFnHH8B2128aejDorFRatr2m16IqQ15kQvCNG16XWtew5B5OD+M6138HO9p2+16lFoXJHNgoVIA5LZjXHWS4cjb6OAQEBAQEnH4Gw2AJiMSIA/vL738LM5LjpsTXrN2Hzjl0A8P/bu+8wqeqrD+Df6b1sb2ynd5e6WFBEsaFERQUV7BExr2LEYAVFRY1JNLHEEqO+dvOqMaJExRgFjY0ihKII0vsubN9p9/3j7vQ+e6fszvfzPDzsztx75zeX1Tl7zz3noKK2f8Tk1/Klb+HA3t343QtvwzDgWCjCJOZi071EUrst/B3+CrkMe5v8E4vlOT4zFpVyOF0C5AHVkAaTGNyYLRZYdCq0dPonCAtMwdWTMpkC2orhWLHlEG57ex2+3d4Yck0VOfFVDyjlMqhinMn30U0nYP6pA/zmSHbXqMocnDWsBBplcv8TFCsW5ZBnScmiKkQSnIgoG2g04mfoKx+sxI8/+1+QqupThF+cMgGA2B5VrQ6OLxSdRzAoX45Pv1qDdT/8jOV/vR+zRvgng9ytUbHzK6Ap9otWSnsTsOHvaBd8PucPboq8k7lMrIx0312+ZzWwZ03MrwkAsAS3xdZ0vfdmp0qsiHT6d2CAMUWJRSD2pGIi5HLg9n3AsTck7zXCadgKrHoR+GQx0PAToLN626hmA3XiNwYSEfVk7s5J33zyDX5c/6Pfc7mFuZgwWYxFnC1OGC1GNKAB1nFWNCgbPNsVnV+E7Tu2Y90367Dk+SXImywm3lwh2rD7Jpfa7e1wCCGuYQR81Bpk4v+jlQ4l+uX0w4G24LnRbjmaHE9SCgBa7P6zmXc17wq5nzvhZlCJr+Xymff80faPPDMQFUoFtEqtZ7tox41VpPckpV/0+wVuG3cbRheNDrvNiotW4KbRN0n6urU5tSg3l8e8fYejAwqZAlpV6rsnaBXatFYsEhERJRMTixIYOmw4Tr3gMmi0Orzx3BNBz5/6i4sARG+DajCa8NhrH2DA0JHJWGZc2h3BgbtbqUWL/U2dfg3CSizeIE2j6vqxCuh/X1giXuA7YcrZKDBq0Nbpf0ehbztUdytW/YAJkCmU+PFAM8pzg6swh5R2tRnRxBesaVWKmCsWC01azJ3Ut9vtWn3935wJeGj6cGjjbN8aL4dT8LQHzQbZ9F6JiHwNGTwIc847CUV5Vtz/1OtBz0+fIrbAHNa/KvQBBBcUchny9HJ89cYf/GYk+lr6Q9dNQevejHlt5n1fACoD1mjGeh9s/DnyTpZywF0JUFontvxc+3LMrwkAsAZfdDJ0tXTNLSoXKyKdAV0QDL4tyXr4zSoqXWoTpYBYrbf3ezH5DIgVk0OnB8WEvRoTi0SUpfr3749J501CcUUx/veP/xv0fPXwagBAXq6YLGyG2Kbd4dM9QCaXQa6X409v/QljJ44NOoavgbkDPV+32lvhcDmgVEa+LqCUic/LXXIMyRsSObGoy/FrK9pmb4NW4b0msKdljydJ6MtdsegmqMUrJ52yTny681PUl9QDAIr6iO3NczTembwOlwMH2ruXGGzsCH0zdjLMGDgDg/IGhX3eorH4taxNh3ZHe9pakmqVWigite1PEndiUdbTY1kiIspovAovgTsW3o1L5i3E2RdfiaVvBgfQ7tZdgYlFQRCw/L3/g61TbP0x8bSzUVAcvm1XPNSa7l3A6bT7J/1824+W5+pxqLkTTpc3taj0qf7TuttRhmt7JZOhwKRBa0BVpG9yMmDuOv5wwUg8M2tM0KFyDYm11oo1qZhMerU3sHW3kpV6XQ6XkPSqyEzCVqhElK0WzP81nlgwC7dcNhX/++4n2LYrdEXhoNrgZNsbH3yGlqajqMmR44NLjKgN0yoVAA60CsCgqcCu/0Rdk8kgfrapOw4BIy6CQ++T5Dq6E3B2hNkTYrWhrRVwOcRWnaOvBI7GeQe/yRtT6Zz+7crkOot47M6AeZGpaoXaG8lkwHVfAFd+DFy1HJj1LnDBi8AxM5NbnZlp2AqViLLU3OvnYu79czF9znR8vuxz2O3+SbeDOAgAyBsoJhZb4K0AXPHPFThy+AhUOSpUXl2J6gHVEV/L5rRBpfB2YGi1t8LmtAXdE2S2dN2IbAm+6WN4wXA0djZCCDNTOU+b55dYbLW3wujz//idzTvR0N4QtJ+h6wYTdyLLpRZv2j6gPAC1Qo1LBolzHOUy8ff0PJ23HeqBtgMhqzPj0djZGNMxXjjtBdx33H3QZFBXgVmDZwEA1ArpWqh7EouyNCQWFVq/9rqpwopFIiJKhezJOKTAWTOuCHmH3KH94sW9ipr+fo+//dIzeOA3c7Huuy8BIO4ZgZGU9KlMeF+9WoEOu38guuWAN+jvk6PDvqYOdIapanQnsgR5+GCwyKJBS0DFYpk1fKtRuUwWMon48PQRmDSgEKXW7s2U9FubWQysFSm8CLbiN5Ow7MbjUSFhu1VBEOB0CTG3fO0N1Fn0XomIQrnmvJORZzXj5fc+9Xu8qUWcCzSoxptYdLoEPPGvHbhw3gP4x9L3AQAl+uD5REEGngloLEEPKxX+N3cMqe5KUBoLxcRg14WVBljFJGF7V1LvyA7A0em3r2c+ok2sZkDhIGDgWdHXFuoYAIrafxTn/bnprOLfgRcENUwKhdV3svi3X1VnAGslUD4ayK0Wt0tD27G0Y8UiEWW5E885EcXlxWhv9R+f4nKJ1w/ySsVEWpPQBEEQsPWLrbjz6jux9NWlABK7LuIQHGizt0Fv9P99umZQDQDAkh8ct0SrpMvV5gYlFn0TNg7BgY0NG4P2c1eJ6ZQ6yCCDS+G9bnJS+UkYVjDMb/t8nfdztbvzEa0aKxo7GuFwhR9t41ZXVIeza8/2JDgzwfwx8/HJ9E8wIGeAZMdsc7SlrWJRp9SlZcaiu70uKxaJiCiZMieC6AWMZiumXXxV0OPbt/4AwFux6K5Q/Prz5bjpnt+jrv5ElF71JByy1N/JFIpJq0R7QMXilgPNnq8rcvVwuAQcaA5daeCuGnNFCNyKzVo0d/jfwVhijf/iU5FZi+cuH4MR5da49w3nq9smY9mNx4dsvZpMA4vNkiaXHV0VpdnUHtTThpeIKEvpdRrcfMW5sNv9Lyht3LoTgLdisc3mwHlvtOP1r/fi0dt+ieuHtcX+IkotcML8oIfVKv/Pfdm+78Uv6mYB+X09j++XFYrVggf+Kz7g7AT+djmwbIF3Z09iseuCnkwOnPn72Nfoewy3lY8C7vlL7sRo25Hw+6vD3OwzcmZ86+gtBp4B3LgOqJmU7pVkNndikdfyiChLKVVKzLxuJgILAVubxc90d2LxqP0odj21C9tWbsOV86/EzLnhP1+dQvQbn5rtzbDkBicQw6k0V/q1Ng2Uo83xe91Weyusaqvn+3xtPrYc2RK24lEOOQwqAxwKb0w2c+DMoGqyQp+ODrtbd8OsNsf8HtzO638eAGB8yXgc7jgcskVrT1GgL5A0GdfuaIdWmZ5Zh1qlNi2Vkkq5UkxsZ1PHCCIiSjlehZfYubOuDnps/27xYl5xnwq0t7Xi43ffAABcfdOdOP28mdjbDqjyyvGTqspvP6VKuvYPNpl4LKcQPbAwa1WwBVQj/uhXsSheaNvf5F9dUN7VztOd3JGrxSBdrQtO0ImJRYdfy9NinxmGyjS3KpU6yQcAx/WNcId/Etid4r9hNrVCzaYkKhFROHMuOhN5Vv+LUv0dmyAsNKO2wACbzY4bnv8Wy7c5sOS8/vifmVOgbd0Z8ljycJ+FY6/xfh3Yv9zzeFcsYSoV25l2aZDlisnJhp/8j2co8H5vCmjHaiwCTEWhXyccvfdz16k0AAc3AmteER/Qdl14tDeH2LFLuNZVU+4DLnsfqJwQ33p6A2sFYMiLvl0287TJ48U8IspeU86fAnnA72ZtXd0TLEUWuFwurP3dWjR914ShZw/FJb+6JOj373hbgjbZmqJv5EMhV6CvtW/Y531nHwJiYtHi07FhUN4g/Nz0s9iCNQyz2uyZJamX69E/t3/QNgU6b/yzu2U3ivRxxjsAyoxl+PaSb3FK5SnodHbiSOeRuI/RW7lboaajclCv1KfldQFv1SIREVGy8Cq8xCw5wRdbqvuLw6wVCgV0egOqBo1A0YwlqBkwFABQUSsGl2V9h/ofKz/+gDIcRU4ZAMBlEgeJt3W1Id3REFyhYNIq0eHw3plnd7qws8HbxqTApEGhSeM3d9H9OOBNZMlUYkJRawi+467QrIXDJXiq6gCg2GfGokaVubPyDF2zEePJfW5afBpuOyP8UPNkcDjFc6vN4HMpNQ1boRIRwWjQ4d5fXYiJQ7wVe5MqxM91a/s2qNUqTK3rgy+uMGBC3xxgz5qwx9JpwiTXFD53X//4IeCMXknQr5/YuaGmsg9QMhJo3OF98vQHgcuXiV/LVWJLUk0358PIvZ8JivLRYvJyy8fiA0o1oDIAHS1hdkbktqhVx3qTk0S+PBWLTCwSUfZSa9Se+YZu5q6bnsz5ZnQ4O2A5wYLqW6tRNMD/ukdOSQ7a7G14cu2TnsfCVQX68m1bGk5+sXjTkdEifsYPyQ/fDjVH659YbHO0+c1DHJI3BEc7j2JPy56wx7BoLGhzitdccvW50CqDKyQL9N7E4v7W/Sg1lAZtEwuNQuNJlB5oO5DQMXoTu8uO9YfWY3/bfuiUurRUDhrDzF2OVCkr2WurjGyFSkREScWr8Ckw/75HccPCh/CP118AAPQ7dx60FcOwxSUGpYqui3MaffQ7ihxOF5yu6EF1IKNRvDjX2dVu1dZVzdbYZocQUGlg0anR6TNjcfeRdjh9tpEBGFAcfLHPXdXgboXqrpgLpdAUPCC8yNwz5vA8eP5wTB/VB5X5sd8BplUpUC7h/MRA7iSn74+GO2mrUWZPMJnJCWkiolS61vo5Xp24A+gQ794fUN0Hf9tgx5PvrQIA3HTuWAwrUqC2LBfY+ZXYajSEmD5B9q8HPr0fcEZuu1VcJF44LCnIBSrrgdaAi16KgAs+xuJYXt3f2K7OEfoQVXWnPQCUjBC/bj8izgC0RUgsxvr6/U4R/9blRN6OsoNC3VWhmz3xFxFRKDqDeKOxO6FT1b8Kzd83Y9Xbq3Co/RByjs2BvkaP8sHlfvu1K9rx0DcP4eejP3sfjHIJRAYZ2u3tkTcCYDCKv8O7ZzEOzx8uvqYjeF+rxhr0mG/b0vqyeqjkKmw5siXs61k0lqiVl74zFtscbaiyVkXcPpJyUznkMjkaOhqib9zL3fr5rXjq+6egkClQV1QHlSL1o4eMqtCJxTemvoGZA2eiyCBdMUEgk9rEVqhERJRUTCwmmcvlwnOP3I9H774FWzeLs4QKi8XqQb0p/jvdHS4Bn/1wMO79jrSL7TkCqwwBoMPuH+ha9Sp0+MxY3HG4Laid5tDS8Gt3t6MMbKfqq9AUnEQ0a1N/B1kiLDoVfjt9BIaWZU6lglGjhF6t8Pw7A76tUHvGeZVCNrV9JSKKqHmf+HfTbgiCgCUfbMf0N9ux+qf9EAQBpVaxRXpJrgnYs8qbcEvE8b8GDv2AqFf9fFUdH30bUwKJxYrxwIKd3mSfL7kCOP958etDPwDGwsiJxVgNOx+4YS1Qc2L3j0XJd/0q4KTbAUt59G0TIZMBKj2YWCQi8hIEAd+//T22/2E79m7ai33uOAVAaa1/hZ7dZYdMJsNvxv4m5uMb1Ua0OeKYF93FXbEYqupQr9RDrfAfT+NbTahRaDCyYCQaOxvDHj9UcjKQb2IRAIbkhq+ijEalUKHEUMLEIoD6knrcNf4uPH/a8/jl8F9CFa7FfRKFm5dZbanGreNuRZmxLGmvHTjLk4iISGq8Cp9Ene1tWDzvarz+l8dwzfyF+J87H+z2MZs77Hh7ze649zvcIiacGlvtQZWEh1v9ZyVadEq/ZOP2w60oy/HOSWyzOTG8j5hUa+0Mbn0mkwFapdxTFekKMXup0Bxcseh7N5UiyTMWx1bnJvX4qSaTyVCZq0djmw2urkpFdytU98zLbJBN75WIKBadHZ2YveB3uP2dbVg0UYOXbpkqft7u+qZrgybA0QnUnpz4i5SNAi54Mb59+oyJvo0lwYstWjOg7IozDAHzjXVW8W+ZTJzbaIveNi0mOVWAviu2cM+KdL8WZZb8WmDiLcE/G1JS6ZlXJCLq4nQ48eidj2LlEyuRd2oeLlhyARrt4ZNxALB4wmKcXXt2zK9hUpkSSixWmasAIGQiTq1QB81ZLDX6J0FPLD8RQPh5kIHtVEPxTSyq5CrUWmuj7hNJpbkyprawvVmOJgcPnvAgpg+YjmpLNfSq5HWPiiSdyb0ifRH0yvS8byIiyg68Cp9E//fnB/Htyn9h0R+fx/TL5kjShuCTTQc8CSMAQW1Mw3G3xbQ5XX5tTgFg075mv+9z9Gq/isWdje2oLfBv4TC41Ow5Xig6tQIWnXhH2I8HgqsBtCoFjJrwlXQGdfJaWm64Z0rK5x2mQnW+AY1tdnR2VYraXeLf2iyq4nO34SUiItHdf12GNz74HK9cNRgLT9SIsYjLCTRsFTc49ANgKATKRkc91piBfTDz9PrQTw48I76Fac2APkpix1IR+/HUYdqTmyLMKTKVAJ3N4Z9PVM1E4OS7gQGnS39s6hlYsUhE5LH8f5fjvVfew8R5E1EyowRyhRwH2g6EnTN3Xr/zMKFsQlC1YCQmtQntjvaYr4+4KeSRf3/M03pbqytkCr8Zi4A3sRhOLIlF3+Rlvi4fZk3oKrdY1VhqurV/b5GuZKKvWCpWk2X+mPm4efTNYec8EhERdVf2ZBxSSHA6AABTL78Bj7z0D0yYNEWyY/9nWwMmDfQO9+6M0G7ULbBisN3u8Pv+58P+d7NZ9Wq0+SQWOx0uDAto+1meEzlI06kVnqrDLQdasL8peGZBgSn8LwrJrFjUq5WojmM+Yk/Rt9CIwy02dDrEfzt3Zao2i+YOZlMSlYgoEnvXTUgLZhyPz1/+LWaM9Znhsn+99+vWQ0DpMYDB50KZIADbPhO/dnlbqKuV8thm2W79FLDHUDVQHqVq0dIn+jGiMUeoejSViBWbyXD8jUDlhOQcmzKfmolFIiJX17WKE2eciEfeeASDzxjsee5g28GISTd5mNnP4ZjUJr8Zi9HmGsbKN5FoVBuhVfonQyvMkW+CiiWx5JvcLDGUhJ3LF6u+1r7d2p+kk86knkltwqjiUWlpAUtERNkhI67CP/7446iqqoJWq8W4cePw9ddfR9z+zTffxMCBA6HVajFs2DC8//77KVppdCuXf4A9f5kDR/MhmKy5qB2YeH/8UCxaFa48rtrzfVNH8MzEQIFzFQ82+7c+3dXY7lehaNYp4XR5k5EyGTA+oHWoPEriT69W+rVcXfbf/UHbFBhD36FIiaktNKKl0+H59/a0Qs2iKr6YLngTEYXQm2KRj1auwsDHmvFTgwtmgxZjhvX332D7l/7f9zvFv+Lv84eB/zwR/wu7LwLuWQO8+z/Rt482Z9EcodowVpGOYS4RE6Cu4LbuIRkKu78eyg5qI/OKRBS33hSLrPt6HVbdvAoduzpwxHUEQ0cP9Xv+UMehoNmC3WFUG9HqaEUfk3hT0ic7PoHdGf1aSTS+azSrzdAogke6KOXhOzHFW7FWZirzq7QzqOK/IbraUh19I0qJcDMWiYiIeoO0JxZff/113HTTTVi4cCFWrVqFESNGYMqUKThw4EDI7b/44gvMmDEDV155JVavXo1p06Zh2rRpWL9+fcjtU0UQBLz1wpO4+4YroC6ohlzrvTPprVW7cNWL36LN5ohwhNj8oq4MQ8usnu9DzTgMdKjFP5G4PyCxuOdIOxpbbZ7v3S1M3YpMWpRYdYiHTqWAresOxaFlZnzzc4NnzqNbsYWJxVi528YqIyR03VWYe492APC2v1Ups+fKloYVi0SUgN4SiwDAk298iNOvuQv98+QoMIT4/7/gAnZ9DRQM9D5WdYL/Ngc2AeOujf/F3RfbzvoDUDIi+vYV7raqYT6nIiUFrQEVAvaO0NuV1YXeHgCMXYlCR3BXhZBU8cVClMUMBYCSPy9EFLveFIv8651/4dczf428ojworUpsObLF73mHy4FmWzMKdaFv2OlwhPlMj8CkMqHV3ooSQwkA4Oemn/H0uqfhDLh5aHfLbgBiW9NYFOi93aLCJRbdcxpDsWgsYZ8Lpdpc7VetKUvgLhUmFjODDLKMaMdKRESULGm/Cv/73/8eV199NS6//HIMHjwYf/7zn6HX6/Hcc8+F3P7RRx/Faaedhvnz52PQoEFYvHgx6urq8Nhjj6V45V42mw1/uX8BXnjkPlx09f8gf9oCyFVaT+XYut1HAQA/Hez+AO1ja/Og85k/2BpDsvJQQEIvMNHoEoBN+70zhgITi9X5elj18bVPMGgUnjZspw0phsMp4OON/lWLxWYmFmN13y+G4oLRfVAVoYWr+7mDXf++nlaoPahi0d22ValI7H9N2dT2lYik0xtiEafTiRt/9wquu+85zJ15Fv4xwwCzRgYEtOxC489ilV7NRPH7goGAudh/u2lPACfdnvhiDPnA7PcAXVeLs8A1uLnblJaODPO8O7EY4jMh8IKgEOZGK3f7J0WIOMZYHHofSp4ZrwOTF3l/Nnqrsx4BTroNSKDShIiyU2+IRVwuF175wyt4ZP4jOHnayZj16CwojWJisdnmvd7QZBPbkLurC93au270WX84/uSoe8aiw+WAQqbA5UMuxw8NP+Cz3Z95tlm1fxU+3/05AKDSXBn1mEq50i/5adVYQyYWZbLwyb94E4tD84ZG3yiKWOY6UvJplVqo5bHPCSUiIupp0ppYtNls+O677zB58mTPY3K5HJMnT8aXX34Zcp8vv/zSb3sAmDJlStjtOzs70dTU5PdHaps2bsA3//oAN9zzCK644VbIwswDiHeQuC+lXIbRlTkoz/W/QNHS4QiaoRgoMJHY2GrzrKXQpIFFp8K2Q96kp1nrf/FtQJHJUzEHAHp19OSNXq30VCxa9WqcM7IU32xv9Num0BwclFNoJq0KD50/AkPLwv9iYtaqkKNXoaGr+tTdCrUnJdsWnj0YUwYXobogsQtxrFgkonj1llhk69ZteGHpSjx+2xV49PZroVR0XeRyxyS7vxP/PrBBrKZy34FfNgrQWgBF14WP8vHAoLMBbTdbN8nl0VuderYN00JMaxWrIOVy/1atUjEWhX581rvAGQ8DOqv0r5ntBpwGHDev91d/GguA6uMBRfj2eEREbr0lFtmzZw8+fO1DzJ4/G7f89hYoun4PbbG3YO3BtZ7t3InFKkuV3/4H2rqqM0Nc3jjaeTTia5vUJvG1bC0AgJGFI3H7eO9NUhsaNuD5/z7vaS0ay9w5pVzpN2PRqrHGPa8u3lao+Xrp2sNSemkV2ohtcomIiHq6tF6FP3ToEJxOJ4qK/C/sFBUVYd++fSH32bdvX1zbL1myBBaLxfOnvLxcmsX7GD5iJH7/1ueYNPV8yY/tZtapoFUp/OYWAkBzhyPosUCHfFqfKuQyHGm3e9pkymTAMRVW7D7ibQMWWLE4qNQc8S68UIwaJWw+67pxcv+gbQq7KhY77NIMVg/F3R500sDsmItUmWdAY6sNDqcLdpd4XjU9qBWqWavCU7NGo64isbssmVgkonj1llikX7++2PrOQ7juwlODn7S3eb8+skNMJroTdRpT8PbyDPl/qUwG6HPF5Gi4qke3RBKP+rzgykdArOYce3XoKkciIiKJ9ZZYpE+fPnjsw8dw7jXneq4fKGVKFOuL8f3B7z3bNXU2QSVXocjgv/79rWKHo1DXHpbvWB7xtd2JxWa7tzLyggEX4JTKUwAAPzb+iFFFozCvbl7M70cpV/rNWMzV5sZ9XSTexKJRZYy+UQwqTCFawCOx1qqUGK1SC4W859zkTUREFK8MuXKUPLfeeiuOHj3q+bNz586kvI7BHF+LC6kcbbd7KgPDOeCTWCwya9DQavNUswHAsX3zsbvRm1g0ByQWiy3x31UeWNVYnqvHhFrxbj93IrTQJFYsNnXEP1TdqI3tzi+1Uo4f7j0dF42V/henTFSTb0Bjmx2dDhccTgEyJN5WtCfS9KC2r0SUPVIVi+SYQyTX7G3Aujf9HxtwBqDsIV0Dqo4DLBXe6sH/WQuc9mDk+YuxksvFxCUREVEvl6pYxGgJSIzJgDHFY/DjkR897VCbbE2waqzQyf2vM+xv8x+d4mvtobXY1bwr7PMmlZhYbPO9mQpAP2s/AEBdYR3uGH8HKsyhE27h5Gm9FYu52vhjBr0yvhl7Bok6NNRYakI+NnPQTEmOT9HplDpWLBIRUa+W1oxDfn4+FAoF9u/3DyD379+P4uLQc2+Ki4vj2l6j0cBsNvv96U2OtNmiJhYP+8xYLDJp0dBqQ6fPPhNq8zwVjIDYOlOl8N7JZtXFf8e+QRMcQF07UQxufzogticp6qpYbO6IPicykCqOZJlaKYdenR0BXd9CIw63dKLD7oTd6YJCLoMiUypPUkCjyp73SkTS6DWxyA/LgF3fBD/ecgD44Z/e79UmMVnXHYEXSaJVE3bHL54GJt/lrazMrQLGX+tt1TriotBripWhoNtLJCIi6o7eEosIggCnK3jm8eji0XC6nPjv4f8CEBOLOdocaAJuctrbujfssbUKLf7x0z/CPm9UiwnNNod/YtFdwXhi+YmotdbG9kZ8+LZCLTOVxb1/vBWOoWY4JqLaWh302N+n/R2XD7lckuNTdDqlDopQnTGIiIh6ibRehVer1Rg1ahSWL/e2tXC5XFi+fDnq6+tD7lNfX++3PQB89NFHYbfv7TocLjS1h0/MuVwCjrTbYOqq8Csya+ESgIM+VYwDi80wBFQYmnzmLMZaHejLGCKxmGsQg2T3SEh3xWJzAhWLFFpNgREdDpenKlUpl0ER5y8zPZk6i6oziUgavSYW2bQU2BFirtKWj8SWn25lowBT6IuOMXPPY3Qzh7nQ5k4GdmfOnFweuTrxjIeAX60CSutCP2/tqkwIN0/RGMO5mL8VOPsx77GIiIgk1FtikafXPY1HVz+K3S27/R7P1eZieMFw2F3i7/2dzk7ka/OhDbgxKVLF4iWDLsGGhg1hn1cr1NApdWi1t3bjHQTTq7wVh4W6yONV5LLM+V20r7UvAARVzMWb6PQ1IHdAt9aUbXRKXdwzOYmIiHqStEc+N910E5555hm88MIL2LhxI+bMmYPW1lZcfrl4J9WsWbNw6623era/4YYbsGzZMvzud7/Dpk2bsGjRInz77be4/vrr0/UW4tbUVaHndIWYSp6AA80dYZ9r6XTAJQAFRjGJV2gW/z7Y4t1HIZfhmICZdmafZGIioWeoxGIgd1VjS2dwYrQ7AW82qykQW6fsbeqA3eWCQiFDNp1KViwSUSJ6XSxibweErs4ETXuAUVd4n6s+IbF5hL4CE4vhnP4QMPxCsZVpMuXVAqowVZOV9cCM18X2r6GYwiQcfRnygLpLAY00c4+IiIgC9YZY5HD7YRy1HcVf1v8FGw9v9Hvu3L7n+n1fZCjyS7o4XU4caj8U9thn156NPsY+EV/fqrEGtUKVkk4V/4iYdHHPWHQnGKVw5/g78eypz2JI3hDJjpkMw/KHYfaQ2Wldw9SaqRhbPJaJRSIi6tXS3h/ywgsvxMGDB3HXXXdh3759GDlyJJYtW+YZRL5jxw7IfVo5TpgwAa+88gruuOMO3HbbbejXrx/eeecdDB06NF1vIW7/3XMUANDaGdwmJBENbbawz7nnF5Zaddh6qBW5ejXUCjkaWv33ObZvHlZs8QbyvhWLidBrYm/5IITIrwZWUPYk6UyKVuTqIQNwuKUTgAxKuRxyefZkFjljkYgS0atikb3fA2te8X5fMgIYOQPY/Q3w0yeAJUx1oTvZGGrmYOM2IMenpVa4BNvUR4CP7gQUKu925z4dfq3uisb8JN8BP+C08M+ZJJjVSERE1E29JRbJ1+XDorbg6e+f9ptnOKV6ChZ+udDzfbmp3O/35oaOBriE8CNeZDIZ5o+Zjxv+dUPYbXK1udjbuley9pOB1X6JHtekNnnmS6aalFWUMpkM40rGSXa8ZHnlzFeib5Rks4bMQqezEyoFE4tERNR7pT2xCADXX3992DvrPv3006DHpk+fjunTpyd5VcnT2CZd60+1Qo6j7eGP566OLLGId/LLZECfHB0O+LRCBYD62nwAmz3fWyLMVdSoogfU+h6cGOyuqjw9cvQqTBuZ+ouVWpUCRRZxjqZJo4JSLkMm5RVr8g3Yeqg1aclOtZIVi0SUmF4RizT+DHz5GJDXDygfC2z7NzD6KsBaCUSb2aPPBc5+HDD6tPmauAD44o/AJ/cCJ/wm+uuPuAgYfE7413InL92tz9R64Nc/AK0Hox9bKu5kZuWx4t/mktS9NhERUQS9IRbRKDRYWL8Qf1r9J3yz3zv72aDy75ZQY6nx+z5SG1S3k8pPivh8rjbEzVHdIIuxd5NaHrmTg0VtSVtikYKNLxmPnc07oY61A0eCpJqXSURElKkyIrFIicszqiMmFpvb7TBqlH6Jvqqu5I6voaX+w9sjJRbdsxEDHd+vAN9ub4RcBujV2fujJZPJsPquUyGEKsVMgao8PRrb7FAp5FDIZZBnUC/UT24+EZv2NaE6r5tt+MLQMLFIRNlKny+2Ax12PjB2DpBTCexZBRQPE+cUxqLuEv/vT7oVGDUbeP5M4NMlgFwBWHyeP+1BYPsKQOsTQ0RqEzbkF8DGd8V2rG6mouB2pJVJnA+lUAG37gI6uy7whZu9SERERAnRqXR46pSnUPeS//zjPG0eDnccBgD0Mfm3Nd3fth8qucozhzGUaJ2B8nR5EZ/vLpPaFPLx357wWzz4zYMo0BWEfN6qsWJXyy5J1+I7+5Hi88ypz+Bg20EU6EP/exEREVFseBU+A+1rEucfhqpstDn924PkGdWeqsRQmjocsOpVUCm8/9S1BcFJHWXX80VdSUOLPv6WDTdM7oeP5p2A0VW5MGRxYtEtXS1Ra/INaGi1odPh6qpYzJzEIgAMLDYnrWKRrVCJKGudei9wxUfAKYuBokFiNWDVcYDWEnr7Ib8Q/+4zNvJxzaXAlR8BORWArcX/ufHXAhe+BJiKY1ujTAZMfx7od0r4bW7fB5zxcGzHS5TGJL4vgIlFIiKiJFApVCgz+rdf1yq985CNav+26vta93W74jBfl9+t/aMJ11a03FyOx05+DIPyBgEA6grFhGq+XlyPVWuVfC2/m/g7nNfvPJQY2HkhEUwqEhERdR8TiynmcIafGwAA7TYnHvtkS9jnXS7/Krh8gwZNEVuh2pFrUEOp8CZy+hWGvtPOV44+sbYQ/YpMsOrVcc1YjIUik/p5Zri+hSY0tNrQbndCqZBnVCvUZHO3Qs2wXCoRUfIp1UDxkPCJRGXX57p7PpA+F7jjIDBoavRjG/KBy/8JlNYBuTWAOsyMRSmodEBBkmcu+vJUS/KDg4iIKBkCE3J6pR5ahdbvsX2t+8JW/AHB8w5DibR/Kk0sn4ilv1iK+hKxA4NVY5X8NfJ0eVg0YRH65fST/NhEREREsWBiMYVcArA/YLahL0EQ8OyKrWhss8V8zDyjOuL2TR125Bs1UPq0QavKj96GMieBikVf3Z2xqNcEDErvyo797dp6TB1egnxj6MTnuXXiXZFDAlq7ZpOaAgMcLgGHmjszsmIxmdytULPnHRMRxejM3wN9J4stUt2Uam/CMRp9DnDlh8CQ84Dc6uSsMR3cFYthqhCIiIioe1yC/83Vudpc6JT+rdMPtB1Aob4Q4URLLBbqC5Grk3bGYndUmCtQZBBjDIsmzE1fRGGcXXs2ZJBheMHwdC+FiIgoLParTLG9R9vDPrd211EAwJXHVeMvK7aF3KbDHtAK1aAJesxXa6cTxWatX8VfdQyJRbO2e4nFZLVCHV2Vi9FV4X9hKDRpsfne07IqmRaoJl+sJDnY0onqfENWnQvOWCQiCsOQD1zyf907hkIF9D9VmvVkCpVOrMCMdQ4lERERxSWwYjFfl+/XFrXD2YE2RxvKTeVhjyELc+vovLp5eG/re9Ar9cjTJnfGYqKYWKR4mdQmrJm1Jt3LICIiiohXUVJs79GOiM9PGliAK46LvRIgXOWer/Ic/7sBY9nHrEtvxWJ3aJQKv5mS2aYsRwelXAa7U4BKIc+qa6Ualfhzlz2pVCIi6rZJdwI1J6V7FURERD3ar+p+hTkj5qDCVAEAOL//+QAAjULjt12BrsAv2Xik8wgAoNZaG/drXjHsCrxy5iuoslRlbGIxVCvUMmMZLhxwYdJe010RGnjuqeeQy+Rh53oSERFlAlYsptieI8EVi7KuijKVQoZfn9ofZVZd0Dbh5BmjB4pV+QZs2tcc9HqRWHwSi+oEqsAMGv5opYtCLkNZjg7bD7dlXStUtTuhnEXvmYiIumn8tYAgRN+OiIiIwsrV5uKcvud4vr9q2FU4s/pMT4tSd9Vhkb7Ib78jHUcAAH2tfcMeWyELf+Oyu/oxV+vtbGRUJXEedJzclZjFhmLPYx+c+wEEJC/2GJA7AGfVnIXJFZOT9hpERESU3Xj7S4rtORJcseieZ3jZhCoMKo7cJsPh8m97atYqvckUAIdb/Gc4ygBU5OqDjtMnJ3Ly0qzzJgYTqf7TKOWQM7eTNlV5YrtbpVyeVYlFlSJckxwiIqIIsuizkoiIKFVKjCWeqrm6ojoAQLGx2G+bxs5GWNQWWLXWsMdRK9QRvwcAs8bsqfCKNK+xu1Ty+Lo7aRVi4tO3clEmkyVUjZavy4952yXHL8HJlSfH/RpEREREsWBiMYVcgoD9TeFboepUCsjDZOMaWm34756jQY/LZDKUWLzzCTbsbYLgc9e9SaeEKcS8xGhzFn0rFrWq+NuaymSyhPbriWoKxHNZYMqcNiO1XWtSKWVZda1UJpNBrZQzuUhERERERJRB9ErxhufAW0GPdB5Bvi7f83woKoX/NQ2DKvh6hlwmD9l21New/GEAgFFFo2JZckj/vuDfuHvC3Z6Wr6mQzEQpERERUSLYrzKFmjsccLj821202Rz4948HAQBNHfaQ+2050AIAaGyzh2xjWpajw/aGNgDAxn3NONjsrVrM0amhVQfnj2sLjPj8x0Nh12rp5oxFQEyUttmcce3zztwJ+OlAK/Q9KCl50oBCvHr1OOTH0JY2VfoWiq1fsq1iEeiqsM2ut0xERERERNQj2V12FOgLoFeFTiyWGkuDHjMoQ98onaPJwdHO4Buy3YxqI76++Gs4XfFdp/Bl0phwbr9zE94/ER+f/zG+2vsVaiw1KX1dIiIionCYWEyhxlYbAMCqU+FIux2fbzmIz7cchN0pJht3h2iTCgDvrt3j+VoIMQPIt62pw+nC51sOer7PNaqhC5Gki1axaFBH/9FYNHUwnlv5M8pDtFoFAL1agcOtUQ/jV1E3sjwHI8tzou+UYeprY29Jkgo1BWJiUaWQQZFlPWlZsUhERERERJRZzqg5A69tfi1oxiIAlBpKPS1DfX198dfY3LA5qP2oUR16hmKONgfbm7ZHXIdOGXksTCaSyWQYXzo+3csgIiIi8mBiMYUa2mxQKWSoyjdgzc4jsDsFTBlchH5FJjz2ry0hkyFbD7Zgw96miMetzPMmCUeUW/Ht9iOeZGK+UROyJWn/IhMAoMQSOqgO15LV12XHVuPCMRXQqkJ31NXHkJwcVGLG1OElUbej+NR0JY5ViuybdalRyoPa6xAREREREVH6HFN4DD678DPPzEVf1ZbqkN2ZdEodRhaOjPk14plB2BP0tvdDREREvQdnLCaRK6DtaWObDflGDYaVWQAAN03uj4cvGIGJAwrCHuPdtXuQZ/AOJlcrgv/JfCsGT+pfiIPNndjR1Rq10KgRW0MG0Kndicfgoefx0KkVIX8B8H2NSD644XjMObG2W2ugYAUmDYwaJUxaZdh/n94q1M87ERERERERpVeONidky9P+Of09X3fnJtE8XV7C+2YitaJ712uIiIiIkoUVixJ4+J+bseVACy4aUw4AqMrT4+fDbfhuRyPqKr1tPRtb7SgyazzJQZkMMGkjzzJcv6cJF4+rwMtf7QCAkG0tfVuhDiwxoU+ODrsa2wEARZbgdiLxSrTizRBDYhFA1iW+UkEmk+H5y8fAFaJ1bm+nUcrBHykiIiIiIqLMp1FoUGwoBgAMyh2EaX2nhd129uDZONxxGAZV6NEuBbrwN23HalH9IthddijlvFxGREREFA4jJQm8+KXYw3/q8FLo1UrUFhjx8+E2fPNzA0ZX+SQW22wYWW6FShl71iPXoMaFY8o9iUVNiLamvolFuUyGi8dV4MFlmwEARebgNiPxSnRGn14j3Y+XnJmiuI2uyk33EtJCo2TFIhERERERUU+Qr833JArfmPpGxG1vHnNzxOenVE3BvtZ9QTMZ43Fe//MS3peIiIgoWzCxKKFOhxOAWImYq1chx6DGy//Z4UnMdTpcqMrXx5UkO21IMfoVmiJuU2D0Tx7OHFvpSSzm6EK3zqjumsF3THlOyOcB4K6pg+FwuqBRxlZ5GMigSWy/UHyTp0SR1BYa4RIEzlkkIiIiIiLKcAX6gpDtURPRx9QHt467lb8LEhERESUZE4sS6rCLiUVBAGRyGead0h83v7kWHXaXZ5uBxWb8sL855mNeNLbcb1ahMqB6MNeoDmolatF7786Th6k2tOhUWLvwVE8yNJQrjq2OeZ2hGNTS/XixYJFi9YcLRmLP0faYZnwSERERERFR+hQbiqFTSncjsVzGDjZEREREycaISwKVueLddV9sPQwAELrm2mmVCtx55mDPdnIZ0K/QGNex+wZsbwhoL1poCt3qNJYWqBadCoWm7s9gDMe9Vqs+8TYkJJ0/XjQSd5w5KOhnqLeRy2XokyPNHa9EREREREQkPXdVYYWpIqPnGY4rHoeh+UOhVoTuBkVERESUjZhYlECfrsTimh1H0Nxh93vu4vGVnq9zDGqYdbEn2UosWugDqv60qtj+yYrNiSUMiyzSJRqNXQksldx/zaw+TI+zR5bhquNroFLwP3siIiIiIiJKn3JTOa4bcR0m9pmY7qVE9OyUZ/HkyU8iV5ub7qUQERERZYzMvS2shyk0aXCwuRMfbdzvaT9aUyDOMbzrrMG4570NKDRpul0tFphojCaeJN671x+LhlZbnCsKL/C9Dik1I0evwlnDSyV7DSIiIiIiIiLqWWQyGeaMnJPuZcTEqrWmewlEREREGYWJRQk8dUkdvt7WgJf+swMrtxzGiD4WAN7EmlopVoiVWHQwaLo3903TdaxZ4yux60h7UKLRXRyoTKAqbXgfa7fWFsgQMONOJpNh9V2nSvoaRERERERERERERERElBpMLErAqFVh0qAiFFu0OOOPK7BqRyM0Km9SrbnDAQAos2ihUXYvseh2z7ShsDlcnqSlWimHzeFCrkGcrfiHC0bitrfXId8YfdZisujU0rxXIiIiIiIiIiIiIiIiSj8mFiU0uNSCif0L8O8fDvolFrccaAEAlHfNYpSKO6kIAF8umIR31+5BRddrVOTp8dJV4yR9Pa1Kjg67K+b2qoY427YSERERERERERERERFR5mLmR2K/PrU//v3DQb/Hth4SE4tlVl1cx1LKYx+QmGfU4PJjq+M6frw2LT4d63cfjfl9mLTij5cijvcR6C+zR2PV9kbkGNQJH4OIiIiIiIiIiIiIiIi6j4lFiQ3vY0V9TR62N7TC5nD5PedbxeirMk+sMhxYbPI8duawEkyozZNsXaVWLQDArFV16zhDyywxbzu6KheLpg5G30JDwq938qAinDyoKOH9iYiIiIiIiIgylVahxbiScZBDHn1jIiIiogzAxGISPD7zGHy59TByu6rsHptZh/uWbkBJV3KvxCL+7a7oKzRp8c3tk9Fhd3qPcXGdpGu6cEwFOh0ujKrMkfS4kSjkMlyW5CpKIiIiIiIiIqJEyZB4lyUpfHXxV2joaIBK0b0bwYmIiIhShYnFJMg1anDm8FLP92VWHZ64eJTn+0vGV+JImx19crwzFwtMmqSva1Z9VdJfg4iIiIiIiIioJyg3lWP6gOlpXYNcJke+Lt/z/cMnPIzNjZth0cTeMSrdBuQOAABMqpiU5pUQERFRKmRdYlEQBABAU1NTWtcxe0xRXOtwdbZ5treFaalKRESUKPfnkftzkpInU2IRIiKiTMJYJHWyJRbpaOmAs92J9pb2sO/11ZNfhQAhaeeipbkFznYnOls7Y36N+rx61OfVw9nuRFN7z/k3+uycz+CCq9f/XBFR78VYhCh2MiHL/kvZtWsXysvL070MIiKijLRz50706dMn3cvo1RiLEBERhcdYJPkYixAREYXHWIQouqxLLLpcLuzZswcmkwkymTR99JuamlBeXo6dO3fCbDZLcsxsxXMpHZ5L6fBcSofnUhrJOI+CIKC5uRmlpaWQy+WSHJNCYyyS2XgupcNzKR2eS+nwXEqDsUjPxlgks/FcSofnUjo8l9LhuZSO1OeSsQhR7LKuFapcLk/aHQdms5kfCBLhuZQOz6V0eC6lw3MpDanPo8XSc+a49GSMRXoGnkvp8FxKh+dSOjyX0mAs0jMxFukZeC6lw3MpHZ5L6fBcSkfKc8lYhCg2TL0TERERERERERERERERUVRMLBIRERERERERERERERFRVEwsSkCj0WDhwoXQaDTpXkqPx3MpHZ5L6fBcSofnUho8jxSIPxPS4bmUDs+ldHgupcNzKQ2eRwrEnwnp8FxKh+dSOjyX0uG5lA7PJVH6yARBENK9CCIiIiIiIiIiIiIiIiLKbKxYJCIiIiIiIiIiIiIiIqKomFgkIiIiIiIiIiIiIiIioqiYWCQiIiIiIiIiIiIiIiKiqJhYJCIiIiIiIiIiIiIiIqKomFiM0eOPP46qqipotVqMGzcOX3/9dcTt33zzTQwcOBBarRbDhg3D+++/n6KVZr54zuUzzzyD448/Hjk5OcjJycHkyZOjnvtsEu/Ppdtrr70GmUyGadOmJXeBPUi85/LIkSOYO3cuSkpKoNFo0L9/f/53jvjP4yOPPIIBAwZAp9OhvLwc8+bNQ0dHR4pWm7k+++wzTJ06FaWlpZDJZHjnnXei7vPpp5+irq4OGo0Gffv2xfPPP5/0dVJqMRaRDmMR6TAWkQ5jEWkwFpEGYxEKhbGIdBiLSIexiHQYi0iH8Uj3MRYhynACRfXaa68JarVaeO6554T//ve/wtVXXy1YrVZh//79IbdfuXKloFAohIceekjYsGGDcMcddwgqlUpYt25dileeeeI9lzNnzhQef/xxYfXq1cLGjRuFyy67TLBYLMKuXbtSvPLME++5dNu2bZtQVlYmHH/88cI555yTmsVmuHjPZWdnpzB69GjhjDPOEFasWCFs27ZN+PTTT4U1a9akeOWZJd7z+PLLLwsajUZ4+eWXhW3btgn//Oc/hZKSEmHevHkpXnnmef/994Xbb79deOuttwQAwttvvx1x+61btwp6vV646aabhA0bNgh/+tOfBIVCISxbtiw1C6akYywiHcYi0mEsIh3GItJgLCIdxiIUiLGIdBiLSIexiHQYi0iH8Yg0GIsQZTYmFmMwduxYYe7cuZ7vnU6nUFpaKixZsiTk9hdccIFw5pln+j02btw44Ze//GVS19kTxHsuAzkcDsFkMgkvvPBCspbYYyRyLh0OhzBhwgTh2WefFWbPns0Auku85/LJJ58UampqBJvNlqol9gjxnse5c+cKkyZN8nvspptuEo499tikrrOniSWAvuWWW4QhQ4b4PXbhhRcKU6ZMSeLKKJUYi0iHsYh0GItIh7GINBiLJAdjERIExiJSYiwiHcYi0mEsIh3GI9JjLEKUedgKNQqbzYbvvvsOkydP9jwml8sxefJkfPnllyH3+fLLL/22B4ApU6aE3T5bJHIuA7W1tcFutyM3NzdZy+wREj2X99xzDwoLC3HllVemYpk9QiLn8t1330V9fT3mzp2LoqIiDB06FPfffz+cTmeqlp1xEjmPEyZMwHfffedpCbJ161a8//77OOOMM1Ky5t6Enzu9G2MR6TAWkQ5jEekwFpEGY5H04udO78ZYRDqMRaTDWEQ6jEWkw3gkffi5Q5RaynQvINMdOnQITqcTRUVFfo8XFRVh06ZNIffZt29fyO337duXtHX2BImcy0C/+c1vUFpaGvRBkW0SOZcrVqzAX/7yF6xZsyYFK+w5EjmXW7duxSeffIKLL74Y77//PrZs2YLrrrsOdrsdCxcuTMWyM04i53HmzJk4dOgQjjvuOAiCAIfDgWuvvRa33XZbKpbcq4T73GlqakJ7ezt0Ol2aVkZSYCwiHcYi0mEsIh3GItJgLJJejEV6N8Yi0mEsIh3GItJhLCIdxiPpw1iEKLVYsUg9xgMPPIDXXnsNb7/9NrRabbqX06M0Nzfj0ksvxTPPPIP8/Px0L6fHc7lcKCwsxNNPP41Ro0bhwgsvxO23344///nP6V5aj/Lpp5/i/vvvxxNPPIFVq1bhrbfewtKlS7F48eJ0L42IKCTGIoljLCItxiLSYCxCRD0NY5HEMRaRFmMR6TAeIaKeiBWLUeTn50OhUGD//v1+j+/fvx/FxcUh9ykuLo5r+2yRyLl0e/jhh/HAAw/g448/xvDhw5O5zB4h3nP5008/4eeff8bUqVM9j7lcLgCAUqnE5s2bUVtbm9xFZ6hEfi5LSkqgUqmgUCg8jw0aNAj79u2DzWaDWq1O6pozUSLn8c4778Sll16Kq666CgAwbNgwtLa24pprrsHtt98OuZz3vsQq3OeO2WzmXXm9AGMR6TAWkQ5jEekwFpEGY5H0YizSuzEWkQ5jEekwFpEOYxHpMB5JH8YiRKnF/zNFoVarMWrUKCxfvtzzmMvlwvLly1FfXx9yn/r6er/tAeCjjz4Ku322SORcAsBDDz2ExYsXY9myZRg9enQqlprx4j2XAwcOxLp167BmzRrPn7PPPhsnnXQS1qxZg/Ly8lQuP6Mk8nN57LHHYsuWLZ5fQgDghx9+QElJSdYGz4mcx7a2tqAA2f1LiSAIyVtsL8TPnd6NsYh0GItIh7GIdBiLSIOxSHrxc6d3YywiHcYi0mEsIh3GItJhPJI+/NwhSjGBonrttdcEjUYjPP/888KGDRuEa665RrBarcK+ffsEQRCESy+9VFiwYIFn+5UrVwpKpVJ4+OGHhY0bNwoLFy4UVCqVsG7dunS9hYwR77l84IEHBLVaLfztb38T9u7d6/nT3NycrreQMeI9l4Fmz54tnHPOOSlabWaL91zu2LFDMJlMwvXXXy9s3rxZeO+994TCwkLh3nvvTddbyAjxnseFCxcKJpNJePXVV4WtW7cKH374oVBbWytccMEF6XoLGaO5uVlYvXq1sHr1agGA8Pvf/15YvXq1sH37dkEQBGHBggXCpZde6tl+69atgl6vF+bPny9s3LhRePzxxwWFQiEsW7YsXW+BJMZYRDqMRaTDWEQ6jEWkwVhEOoxFKBBjEekwFpEOYxHpMBaRDuMRaTAWIcpsTCzG6E9/+pNQUVEhqNVqYezYscJ//vMfz3MTJ04UZs+e7bf9G2+8IfTv319Qq9XCkCFDhKVLl6Z4xZkrnnNZWVkpAAj6s3DhwtQvPAPF+3PpiwG0v3jP5RdffCGMGzdO0Gg0Qk1NjXDfffcJDocjxavOPPGcR7vdLixatEiora0VtFqtUF5eLlx33XVCY2Nj6heeYf71r3+F/H+f+/zNnj1bmDhxYtA+I0eOFNRqtVBTUyP89a9/Tfm6KbkYi0iHsYh0GItIh7GINBiLSIOxCIXCWEQ6jEWkw1hEOoxFpMN4pPsYixBlNpkgsKaaiIiIiIiIiIiIiIiIiCLjjEUiIiIiIiIiIiIiIiIiioqJRSIiIiIiIiIiIiIiIiKKiolFIiIiIiIiIiIiIiIiIoqKiUUiIiIiIiIiIiIiIiIiioqJRSIiIiIiIiIiIiIiIiKKiolFIiIiIiIiIiIiIiIiIoqKiUUiIiIiIiIiIiIiIiIiioqJRSIiIiIiIiIiIiIiIiKKiolFIuqxZDIZ3nnnnXQvg4iIiLIUYxEiIiJKJ8YiRESUDkwsEmUpmUwW8c+iRYtStpYTTzzR87parRaDBw/GE088EXW/vXv34vTTT0/BComIiEhqjEWIiIgonRiLEBERJUaZ7gUQUXrs3bvX8/Xrr7+Ou+66C5s3b/Y8ZjQaPV8LggCn0wmlMnn/y7j66qtxzz33oK2tDS+++CLmzp2LnJwczJgxI2hbm80GtVqN4uLipK2HiIiIkouxCBEREaUTYxEiIqLEsGKRKEsVFxd7/lgsFshkMs/3mzZtgslkwgcffIBRo0ZBo9FgxYoVuOyyyzBt2jS/49x444048cQTPd+7XC4sWbIE1dXV0Ol0GDFiBP72t79FXY9er0dxcTFqamqwaNEi9OvXD++++y4A8c6966+/HjfeeCPy8/MxZcoUAMEtP3bt2oUZM2YgNzcXBoMBo0ePxldffeV5/u9//zvq6uqg1WpRU1ODu+++Gw6HI/GTSERERAljLMJYhIiIKJ0YizAWISKixLBikYjCWrBgAR5++GHU1NQgJycnpn2WLFmCl156CX/+85/Rr18/fPbZZ7jkkktQUFCAiRMnxvzaOp0ONpvN8/0LL7yAOXPmYOXKlSG3b2lpwcSJE1FWVoZ3330XxcXFWLVqFVwuFwDg888/x6xZs/DHP/4Rxx9/PH766Sdcc801AICFCxfGvC4iIiJKHcYiRERElE6MRYiIiIIxsUhEYd1zzz045ZRTYt6+s7MT999/Pz7++GPU19cDAGpqarBixQo89dRTMQXQTqcTr776Kr7//ntPgAsA/fr1w0MPPRR2v1deeQUHDx7EN998g9zcXABA3759Pc/ffffdWLBgAWbPnu1Z1+LFi3HLLbcwgCYiIspQjEWIiIgonRiLEBERBWNikYjCGj16dFzbb9myBW1tbUFBt81mwzHHHBNx3yeeeALPPvssbDYbFAoF5s2bhzlz5nieHzVqVMT916xZg2OOOcYTPAdau3YtVq5cifvuu8/zmNPpREdHB9ra2qDX66O9PSIiIkoxxiJERESUToxFiIiIgjGxSERhGQwGv+/lcjkEQfB7zG63e75uaWkBACxduhRlZWV+22k0moivdfHFF+P222+HTqdDSUkJ5HL/EbCBawmk0+kiPt/S0oK7774b5557btBzWq024r5ERESUHoxFiIiIKJ0YixAREQVjYpGIYlZQUID169f7PbZmzRqoVCoAwODBg6HRaLBjx4645gYAgMVi8WvREa/hw4fj2WefRUNDQ8i78+rq6rB58+ZuvQYRERGlF2MRIiIiSifGIkREREwsElEcJk2ahN/+9rd48cUXUV9fj5deegnr16/3tPMwmUy4+eabMW/ePLhcLhx33HE4evQoVq5cCbPZ7OnjnwwzZszA/fffj2nTpmHJkiUoKSnB6tWrUVpaivr6etx1110466yzUFFRgfPPPx9yuRxr167F+vXrce+99yZtXURERCQdxiJERESUToxFiIiIAHn0TYiIRFOmTMGdd96JW265BWPGjEFzczNmzZrlt83ixYtx5513YsmSJRg0aBBOO+00LF26FNXV1Uldm1qtxocffojCwkKcccYZGDZsGB544AEoFArP2t977z18+OGHGDNmDMaPH48//OEPqKysTOq6iIiISDqMRYiIiCidGIsQEREBMiGwMTgRERERERERERERERERUQBWLBIRERERERERERERERFRVEwsEhEREREREREREREREVFUTCwSERERERERERERERERUVRMLBIRERERERERERERERFRVEwsEhEREREREREREREREVFUTCwSERERERERERERERERUVRMLBIRERERERERERERERFRVEwsEhEREREREREREREREVFUTCwSERERERERERERERERUVRMLBIRERERERERERERERFRVEwsEhEREREREREREREREVFU/w/BlSNUgXTkDAAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABxYAAAH5CAYAAACs6ttbAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3wUdf4/8NfubM2WNJIQUlGqiiIWRD0Vz4Lo2U7PUxSwcPbuWX8qeGf5nqLYUE8UFPFOTxG7iAVQCFUBQSAkkALpfftO+/0xmSVl22zJ7ob38/HgEcjOzn52sySTec37/VaJoiiCEEIIIYQQQgghhBBCCCGEEEKCUCd6AYQQQgghhBBCCCGEEEIIIYSQ5EfBIiGEEEIIIYQQQgghhBBCCCEkJAoWCSGEEEIIIYQQQgghhBBCCCEhUbBICCGEEEIIIYQQQgghhBBCCAlJk+gFEEIIIYQQQgghhBBCCCGEDEY8z4Nl2UQvg5Cw6XQ6qNWB6xIpWCSEEEIIIYQQQgghhBBCCIkhURTR0NCAjo6ORC+FEEXUajWGDx8OnU7n93aVKIriAK+JEEIIIYQQQgghhBBCCCFk0Kqvr0dHRwdyc3ORlpYGlUqV6CUREpIgCKirq4NWq0VxcbHf9y1VLBJCCCGEEEIIIYQQQgghhMQIz/O+UDE7OzvRyyFEkZycHNTV1YHjOGi12n63B26SSgghhBBCCCGEEEIIIYQQQhSRZyqmpaUleCWEKCe3QOV53u/tFCwSQpLGokWLoFKpUFVV5fvcGWecgTPOOCNhayKEEEIIIYQQQgghhJBIUPtTkopCvW8pWCSEROW3337DZZddhpKSEhgMBhQUFODss8/Gyy+/HJfHq6urw+zZs7Fly5a47J8QQgghqamyshI33ngjDjvsMBgMBlitVpxyyil48cUX4XK5fNuxLIuXXnoJJ5xwAiwWC8xmM0444QS8/PLL4Diu335LS0uhUql8f0wmE0488US8++67A/n0CCGEEJIiwj0m4XkeCxcuxBlnnIGsrCzo9XqUlpbi2muvxaZNm3zbyRdhy38MBgNGjRqF2267DY2NjYl4ioQQQg5xNGOREBKxtWvXYvLkySguLsasWbMwdOhQ1NbWYt26dXjxxRdx++23R/0Y3377ba9/19XVYc6cOSgtLcX48eOj3j8hhBBCUt+XX36Jyy+/HHq9HtOnT8dRRx0Fr9eLn3/+GX//+9+xY8cO/Pvf/4bD4cD555+PVatW4YILLsDMmTOhVqvxzTff4I477sCyZcvw+eef92tXNH78eNx7770AgPr6eixYsAAzZsyAx+PBrFmzEvGUCSGEEJKEwj0mcblcuPTSS/HNN9/gtNNOw8MPP4ysrCxUVVXhww8/xDvvvIOamhoUFhb69v3EE09g+PDhcLvd+Pnnn/Haa6/hq6++wvbt26nVIiGEkAFFwSIhJGJPPvkk0tPTsXHjRmRkZPS6rampKSaPIfdzJoQQQgjxZ9++ffjrX/+KkpIS/PDDD8jPz/fdduutt6KiogJffvklAOCee+7BqlWr8PLLL+O2227zbXfzzTfj1VdfxW233Ya///3vePXVV3s9RkFBAa6++mrfv2fOnInDDjsML7zwAgWLhBBCCAGg7Jjk73//O7755hu88MILuOuuu3rt5/HHH8cLL7zQb//nnXcejj/+eADADTfcgOzsbDz//PP49NNPceWVV8bviRFCSJzMnDkTHR0dWLZsGQBpJNb48eMxb968iPcZi32Q0KgVKiEkYpWVlTjyyCP7hYoAkJub6/u7SqXCbbfdhiVLlmD06NEwGAw47rjjsHr16pCP0XPG4sqVK3HCCScAAK699lpfG5BFixbF4ukQQgghJAX961//gt1ux1tvvdXrBJ5sxIgRuPPOO7F//3689dZbOPPMM3uFirJbb70VkydPxr///W8cOHAg6GPm5ORgzJgxqKysjNnzIIQQQkhqU3JM8sYbb+Dss8/uFyoCAMMwuO+++3pVK/pz5plnApACTUIIiaWZM2f6zrvqdDqMGDECTzzxhN/REbG0dOlS/OMf/whr25UrV0KlUqGjoyPifZDIUbBICIlYSUkJNm/ejO3bt4fcdtWqVbjrrrtw9dVX44knnkBrayumTJkS1n1lY8eOxRNPPAEA+Nvf/obFixdj8eLFOO200yJ+DoQQQghJbZ9//jkOO+wwnHzyyUG3+/rrr8HzPKZPnx5wm+nTp4PjOHzzzTdB98VxHPbv34/MzMyI1kwIIYSQwUfJMQnHcbjmmmuiejz5Aqfs7Oyo9kMIIf5MmTIF9fX12LNnD+69917Mnj0bzz77bL/tvF5vzB4zKysLFosl4fsgoVGwSAiJ2H333Qen04nx48fj5JNPxgMPPIBvv/0WLMv223b79u345ptv8Oijj+L+++/H6tWrIYoiHnvssbAfLy8vD+eddx4AYNKkSbj66qtx9dVX47DDDovZcyKEEEJI6ujq6sKBAwcwbty4kNv+/vvvAIBjjjkm4DbybfK2MpZl0dLSgpaWFmzfvh3XXXcdGhoacNlll0WxekIIIYQMFkqOSXbu3AkAYW3bU2dnJ1paWrB//3588MEHeOKJJ2A0GnHBBRdEtGZCCAlGr9dj6NChKCkpwc0334yzzjoLn332GWbOnImLL74YTz75JIYNG4bRo0cDAGpra/GXv/wFGRkZyMrKwkUXXYSqqirf/niexz333IOMjAxkZ2fj/vvvhyiKvR7zjDPO6FXJ7fF48MADD6CoqAh6vR4jRozAW2+9haqqKkyePBkAkJmZCZVKhZkzZ/rdR3t7O6ZPn47MzEykpaXhvPPOw549e3y3L1q0CBkZGVi+fDnGjh0Ls9nsC1VJYDRjkRASsbPPPhtlZWV4+umnsXz5cpSVleFf//oXcnJysGDBAlx44YW+bSdNmoTjjjvO9+/i4mJcdNFF+Pzzz8HzPBiGScRTIIQQQkgK6+rqAoCwrki12Wwht5Vvk7eVffvtt8jJyen1uWuvvdbvFbuEEEIIOfQoOSZRsm1PZ511Vq9/l5SUYMmSJSgoKFC0H0JI4jidTuzatWvAH3fMmDFIS0uLah9GoxGtra0AgO+//x5WqxUrVqwAIF2Iee6552LSpEn46aefoNFo8M9//hNTpkzBtm3boNPpMHfuXCxatAhvv/02xo4di7lz5+KTTz7xtXX2Z/r06SgrK8NLL72EY445Bvv27UNLSwuKiorw8ccf489//jN2794Nq9UKo9Hodx8zZ87Enj178Nlnn8FqteKBBx7A1KlT8fvvv0Or1QKQvi7PPfccFi9eDLVajauvvhr33XcflixZEtVrNphRsEgIicoJJ5yApUuXwuv1YuvWrfjkk0/wwgsv4LLLLsOWLVtwxBFHAABGjhzZ776jRo2C0+lEc3Mzhg4dOtBLJ4QQQkiKs1qtAPoHgf4ECg17km/rOSsaACZOnIh//vOf4Hke27dvxz//+U+0t7dDp9NFunRCCCGEDCJKjkmUbNvTq6++ilGjRkGj0SAvLw+jR4+GWk3N6AhJJbt27epVeDFQNm/ejAkTJkR0X1EU8f3332P58uW4/fbb0dzcDJPJhAULFvh+H3rvvfcgCAIWLFgAlUoFAFi4cCEyMjKwcuVKnHPOOZg3bx4eeughXHrppQCA119/HcuXLw/4uOXl5fjwww+xYsUK34UVPbvWZWVlAZB+d8vIyPC7DzlQXLNmja9N9ZIlS1BUVIRly5bh8ssvByAFo6+//joOP/xwAMBtt93mG8dF/KNgkRASEzqdDieccAJOOOEEjBo1Ctdeey3+97//4fHHH0/00gghhBAySFmtVgwbNiysmc3yxU7btm3D+PHj/W6zbds2AOjXZn3IkCG+X2bPPfdcjBkzBhdccAFefPFF3HPPPVE8A0IIIYQMBkqOScaMGQMA+O233wIek/hz4okn4vjjj490iYSQJDBmzBhs3rw5IY+r1BdffAGz2QyWZSEIAq666irMnj0bt956K8aNG9frIsutW7eioqKiXyW22+1GZWUlOjs7UV9fj4kTJ/pu02g0OP744/u1Q5Vt2bIFDMPg9NNPV7x22c6dO6HRaHo9bnZ2NkaPHu1rSw0AaWlpvlARAPLz89HU1BTx4x4KKFgkhMScfKDbsxd1z97VsvLycqSlpfVrLRaMfNULIYQQQggAXHDBBfj3v/+NsrIyTJo0KeB25513HhiGweLFizF9+nS/27z77rvQ6XS46KKLgj7m+eefj9NPPx1PPfUUbrzxRphMpqieAyGEEEJSn9Jjkvfeew/XXHPNAK6QEJJoaWlpEVcODrTJkyfjtddeg06nw7Bhw6DRHIyS+v7+Y7fbcdxxx/ltHarkvG9PgVqbxoPcElWmUqkCBp5EQvXyhJCI/fjjj36/yX711VcA4BveCwBlZWX45ZdffP+ura3Fp59+inPOOUfRfEX5B1dHR0eEqyaEEELIYHL//ffDZDLhhhtuQGNjY7/bKysr8eKLL6KwsBDXX389vvvuO7z22mv9tnv99dfxww8/4MYbb0R2dnbIx33ggQfQ2tqKN998MybPgxBCCCGpLdxjkqKiIsyaNQvffvstXn755X7bCYKAuXPnYv/+/QOxbEII8ctkMmHEiBEoLi7uFSr6M2HCBOzZswe5ubkYMWJErz/p6elIT09Hfn4+1q9f77sPx3FBqzfHjRsHQRCwatUqv7fLFZM8zwfcx9ixY8FxXK/HbW1txe7du30dbUhkqGKREBKx22+/HU6nE5dccgnGjBkDr9eLtWvX4oMPPkBpaSmuvfZa37ZHHXUUzj33XNxxxx3Q6/WYP38+AGDOnDmKHvPwww9HRkYGXn/9dVgsFphMJkycOBHDhw+P6XMjhBBCSGo4/PDD8f777+OKK67A2LFjMX36dBx11FG+45L//e9/mDlzJgDg+eefx65du3DLLbfgm2++wZQpUwAAy5cvx6effoozzzwTzz77bFiPe9555+Goo47C888/j1tvvbXfVa6EEEIIObQoOSaZO3cuKisrcccdd2Dp0qW44IILkJmZiZqaGvzvf//Drl278Ne//jWxT4gQQsI0bdo0PPvss7jooovwxBNPoLCwENXV1Vi6dCnuv/9+FBYW4s4778QzzzyDkSNHYsyYMXj++eeDFo6UlpZixowZuO666/DSSy/hmGOOQXV1NZqamvCXv/wFJSUlUKlU+OKLLzB16lQYjUaYzeZe+xg5ciQuuugizJo1C2+88QYsFgsefPBBFBQUhOxSQ4KjikVCSMSee+45TJ48GV999RXuuece3HPPPdiwYQNuueUWrF+/vtfg3NNPPx3z5s3D4sWL8dhjjyErKwtff/01jj76aEWPqdVq8c4774BhGNx000248sorA165QgghhJBDw4UXXoht27bhsssuw6effopbb70VDz74IKqqqjB37ly89NJLAKSrbr/77jvMmzcPBw4cwH333YdbbrkFn376KWbMmIEVK1ZAr9eH/bj33Xcfamtr/bb8IYQQQsihJ9xjkrS0NHz99ddYsGABeJ7HP/7xD9x0001YtGgRJk6ciM2bN6OgoCDBz4YQQsKTlpaG1atXo7i4GJdeeinGjh2L66+/Hm63G1arFQBw77334pprrsGMGTMwadIkWCwWXHLJJUH3+9prr+Gyyy7DLbfcgjFjxmDWrFlwOBwAgIKCAsyZMwcPPvgg8vLycNttt/ndx8KFC3HcccfhggsuwKRJkyCKIr766iu6MDRKKpGaxRJC4kylUuHWW2/FK6+8kuilEEIIIYT00tXVhdNPPx2VlZVYvXo1xo8fn+glEUIIIYQQQlKc2+3Gvn37MHz4cBgMhkQvhxBFQr1/qWKREEIIIYQQcsiyWq34+uuvMWTIEEydOhXV1dWJXhIhhBBCCCGEEJK0aMYiIYQQQggh5JA2dOhQ7N27N9HLIIQQQgghhBBCkh5VLBJCCCGEEEIIIYQQQgghhBBCQqKKRUJI3NEoV0IIIYQQQgghhBBCCCEk9VHFIiGEEEIIIYQQQgghhBBCCCEkJAoWCSGEEEIIIYQQQgghhBBCCCEhHXKtUAVBQF1dHSwWC1QqVaKXQwghhCQFURRhs9kwbNgwqNV03VE80bEIIYQQ0h8diwwcOhYhhBBC+qNjEULCd8gFi3V1dSgqKkr0MgghhJCkVFtbi8LCwkQvY1CjYxFCCCEkMDoWiT86FiGEEEICo2MRQkI75IJFi8UCQPoGYbVaE7waQgghRBk3y+OEf34HEcATFx2BSyfE5qRQV1cXioqKfD8nSfzQsQghhBDSHx2LDBw6FiGDQaurFed/cj7GZo3Fq398FWnatEQvadBosDfg4s8uxtE5R+PfZ/875vt/cfOL+M/u/wAAHpv4GKYePjXmj0FS100rboKLc+GqMVcF/X+9tm4tPqn4BMOtw/GfC/4Tk8ceqGMRN8vDywtxfYyedIwaBi0zYI+nxMyZM9HR0YFly5YBAM444wyMHz8e8+bNi3ifsdhHKCtXrsTkyZPR3t6OjIyMuD1OvKlUKnzyySe4+OKLFd/3kAsW5TYfVquVDqAJIYSknJoDnVDp06ACoDdaYv6zjNphxR8dixBCCCGB0bFI/NGxCBkMvFovGCMDtUENs8UMs86c6CUNGg61A4yRgS5NF5fvEXVcHdKt6bCzdqRZ0uj7EOmljqvDqMxRyMjIgFatDbidwWQAY2SgTdOm1HkRN8vj2x0N6HSzcXuMvtINWpxz5NCww8WZM2finXfeAQBotVoUFxdj+vTpePjhh6HRxDdOWrp0KbTawF/3ngKFe0r2EamTTz4Z9fX1SE9PD/s+fUPUVHfIBYuEEEJIKtvTZEv0EgghhBBCCCEkKXACBwEDV/lDorevax+yDdmws/ZEL4UkGQfrQKu7FRmG4KFiKvPyAjrdLAwaBnpN/Oc4ejjp8by8oKhqccqUKVi4cCE8Hg+++uor3HrrrdBqtXjooYf6bev1eqHT6WKy3qysrKTYRyg6nQ5Dhw6N++P4E8vXOxo0hZQQQghJIeWN9MsXIYQQQgghhAAAJ3IQRTHRyyBh8vAe1NvrkWHISPRSSBKq6qoCAGTqMxO7kAGg16iRptPE/U+k4aVer8fQoUNRUlKCm2++GWeddRY+++wzAFLl3cUXX4wnn3wSw4YNw+jRowFILdb/8pe/ICMjA1lZWbjoootQVVXl2yfP87jnnnuQkZGB7Oxs3H///f2+f59xxhm46667fP/2eDx44IEHUFRUBL1ejxEjRuCtt95CVVUVJk+eDADIzMyESqXCzJkz/e6jvb0d06dPR2ZmJtLS0nDeeedhz549vtsXLVqEjIwMLF++HGPHjoXZbMaUKVNQX18f8PVZuXIlVCoVOjo6wtrH7Nmz8c477+DTTz+FSqWCSqXCypUrw3rd/L3eDz/8MCZOnNhvXccccwyeeOIJAMDGjRtx9tlnY8iQIUhPT8fpp5+OX375JeBzUoqCRUIIISSF7KrvgkZNLcIIIYQQQgghhBM4CCJVLKaKmq4aCBCQZYh/RRFJPVWdVQCAHGNOYhdC+jEajfB6vb5/f//999i9ezdWrFiBL774AizL4txzz4XFYsFPP/2ENWvW+MI1+X5z587FokWL8Pbbb+Pnn39GW1sbPvnkk6CPO336dPznP//BSy+9hJ07d+KNN96A2WxGUVERPv74YwDA7t27UV9fjxdffNHvPmbOnIlNmzbhs88+Q1lZGURRxNSpU8GyB9vROp1OPPfcc1i8eDFWr16Nmpoa3HfffYpeo2D7uO+++/CXv/zFFzbW19fj5JNPDut18/d6T5s2DRs2bEBlZaVvmx07dmDbtm246qqrAAA2mw0zZszAzz//jHXr1mHkyJGYOnUqbLbYdEKjVqiEEEJICilvtGOIRY+GTneil0IIIYQQQgghCUXBYmrZ17kPAJBtyE7wSkgyquqqgkVrgVVPczeThSiK+P7777F8+XLcfvvtvs+bTCYsWLDA15LzvffegyAIWLBggW9G5cKFC5GRkYGVK1finHPOwbx58/DQQw/h0ksvBQC8/vrrWL58ecDHLi8vx4cffogVK1bgrLPOAgAcdthhvtvllqe5ubm9Ziz2tGfPHnz22WdYs2YNTj75ZADAkiVLUFRUhGXLluHyyy8HALAsi9dffx2HH344AOC2227zVf6FK9g+zGYzjEYjPB5Prxaq4bxuQP/XG5CqE99//308+uijvuc1ceJEjBgxAgBw5pln9lrfv//9b2RkZGDVqlW44IILFD03f6hikRBCCEkRTi+Hug4XhpgT30udEEIIIYQQQhKNF3mISN1WqLVdtXii7AlwPJfopQyIfZ37kKZJQ7o+PdFLIUlob8deZBmzoGf0iV7KIe+LL76A2WyGwWDAeeedhyuuuAKzZ8/23T5u3LheIdfWrVtRUVEBi8UCs9kMs9mMrKwsuN1uVFZWorOzE/X19b3ad2o0Ghx//PEB17BlyxYwDIPTTz894uexc+dOaDSaXo+bnZ2N0aNHY+fOnb7PpaWl+QJBAMjPz0dTU5Oix4pkH6FeN1nf1xsApk2bhvfffx+AFAD/5z//wbRp03y3NzY2YtasWRg5ciTS09NhtVpht9tRU1Oj6HkFQhWLhBBCSIqoaLJDBJBjpoNsQgghhBBCCEn1isUtzVvwv/L/4YrRV2B01uhELyfuKjsrMcQ4BDqGLpYl/e3r3IdMfSa9P5LA5MmT8dprr0Gn02HYsGHQaHrHSCaTqde/7XY7jjvuOCxZsqTfvnJyImttazQaI7pfJLRaba9/q1QqxfN7I9lHuK9b39cbAK688ko88MAD+OWXX+ByuVBbW4srrrjCd/uMGTPQ2tqKF198ESUlJdDr9Zg0aVKvFqvRoGCREEIISRHljXYAQK7FkOCVEEIIIYQQQkji8SKf0sGizM0dGqMu9nbsRaaBgiPSnyAKqLHV4KT8k6hiMQmYTCZfS81wTJgwAR988AFyc3NhtfpvZZufn4/169fjtNNOAwBwHIfNmzdjwoQJfrcfN24cBEHAqlWrfK1Qe5Ir+HieD7iusWPHguM4rF+/3tcKtbW1Fbt378YRRxwR9vOLBZ1O12+t4bxugRQWFuL000/HkiVL4HK5cPbZZyM3N9d3+5o1azB//nxMnToVAFBbW4uWlpbon0g3aoVKCCGEpIg9jTZkmXQwG5hEL4UQQgghhBBCEo4TOMVVJcnIK8SmgiSZiaKI6q5qZOgzoFNTsEh6a3I2wcN7kKnPhFpFkUWqmTZtGoYMGYKLLroIP/30E/bt24eVK1fijjvuwP79+wEAd955J5555hksW7YMu3btwi233IKOjo6A+ywtLcWMGTNw3XXXYdmyZb59fvjhhwCAkpISqFQqfPHFF2hubobdbu+3j5EjR+Kiiy7CrFmz8PPPP2Pr1q24+uqrUVBQgIsuuigur0Ww57Nt2zbs3r0bLS0tYFk2rNctmGnTpuG///0v/ve///VqgwpIz33x4sXYuXMn1q9fj2nTpsW0CpT+lxJCCCEpYleDDbkWPXQM/fgmhBBCCCGEEF7kwYuBq1VSBcuziV5C3DU6G+Hm3cg0ZEKlUiV6OSTJ7OvcBwDINmYneCUDw8MJcHq5uP/xcANT0Z2WlobVq1ejuLgYl156KcaOHYvrr78ebrfbV4l377334pprrsGMGTMwadIkWCwWXHLJJUH3+9prr+Gyyy7DLbfcgjFjxmDWrFlwOBwAgIKCAsyZMwcPPvgg8vLycNttt/ndx8KFC3HcccfhggsuwKRJkyCKIr766qt+rUvjbdasWRg9ejSOP/545OTkYM2aNWG9bsFcdtllaG1thdPpxMUXX9zrtrfeegvt7e2YMGECrrnmGtxxxx29KhqjRa1QCSGEkBRR3mjD8CEm6BiqWCSEEEIIIYQQXuAHRcUiKw7+YNEXHBkOjeCIKFPVVQVGxWCIcUiilxJXOkaNdIMWnW4Wbm5gLopIN2gVXaC+aNGiiG4fOnQo3nnnnYD302g0mDdvHubNmxdwm5UrV/b6t8FgwPPPP4/nn3/e7/aPPvooHn300aD7yMzMxLvvvhvwMWfOnImZM2f2+tzFF18c9GfLGWec0ev2cPaRk5ODb7/9tt++Qr1uwb4eGRkZcLv9t9I+9thjsXHjxl6fu+yyy3r9O5qfnxQsEkIIISnA4eFQ3+nG8SWZ0DB0dSchhBBCCCGEcCJHFYspYl/nPmhUGuQYcyAg9ediktiqaK9AliELRk3sWjUmI4OWwTlHDoWXH7j/AzpGDYOWLlAnsUXBIiGEEJIC9jRJveKHWGiIOSGEEEIIIYTIWCH1QzlO4BK9hLjb27kXWUYpOHJwjkQvhySZ9Q3rUWQpgkFjSPRS4s6gZSjoIymPhjQRQgghKaC80QYVgHzr4D/IJoQQQgghhJBweXlvopcQtcEQjoayt2Mvsg3Z0GvoYlnSW4OjAdVd1RhmHjboKxYJGSwoWCSEEEJSwO4GG7LNOlgMAztcmhBCCCFx9t9pwPJHEr0KQghJWR7ek+glRO1QCBb3de1Dpj4TOkaX6KWQPliBhSAmrj3tuvp1UEGFEmsJ1CqKKwhJBfQ/lRBCCEkBuxtsyLHoYdDSj25CCCFkUKkpA+q3Aqw70SsJn6sDWHYL4GpP9EoIIQReYRBULA7yGYsO1oEWVwsyDBnQquli2WRz36r78PBPD0MUxYQ8/toDazHMPAxDjEMS8viEEOXo7CQhhBCSAsobbcg26agPPyGEEDKYeB2AsxXgWSCBlQKKVXwHbFkifSSEkAQbDK1QB0PVZTBVnVUAgCxDVmIXQvrhBA5rD6zFvq59cLADP/tSFEWsq1+HYksxLFrLgD8+ISQyFCwSQgghSa7LzaLJ5kGWSQctQz+6CSGEkEGjvVr6yHtSK1isLpM+Cnxi10EIIRgcoRw/yL+f1tprAVCwmIx2te2Cm3fDzbnBiwP/PixvL0e7px0F5gKav0lICqGzk4QQQkiS29NoBwDkWOggmxBCCEk5v38WuM1pe5X0kecAJKb9WESq1yR6BYQQ4jMY2ogOhnauwThZJwDApDUleCWkr82NmwEAHs6TkDmL6+rXQavWosRaMuCPTQiJHAWLhBBCSJLb02iDSgUMtRgSvRRCCCGEKNFeBXx4DfDpLYFvBwCBS52KRVcH0Lwr0asghBCfZKpY7PR0+kI0JVgh9cPRYJysE1q1Fhq1JtFLIX1satgEQAq3E1GxuLZuLYotxUjXpw/4YxNCIkfBIiGEEJLkyhttGGLSw2ygIfeEEEJISvFIXQfgbPd/uxwsinzqBIv7NyKlqisJIYNeMs1YvHvl3Xhq/VMQRWXfJwdD1WUwLs4FHaODWhX+qehx74zD/C3z47gqIogCfmn6BSqowArsgFcsenkvfmn8BYWWQph15gF9bJIYs2fPRl5eHlQqFZYtW5bo5cTF7NmzMX78eN+/Z86ciYsvvjiqfcZiH7FGwSIhhBCS5HY12JBj0cOgpR/bhBBCSEqRT3YHqtBo2yt9FDhA4UnohKlem+gVEEJIL24+QLvpBGhyNqHZ1ay4tSkncHFaUXJwsA7o1MqCRQB487c347QiAgD7Ovehy9uFYeZh4ARuwIPFrc1b4ebdKLIUQaumC6mTxcyZM6FSqaBSqaDT6TBixAg88cQT4Ljovk/t3LkTc+bMwRtvvIH6+nqcd955Ua+1b4gXbDv5OWk0GpSWluLuu++G3W6Peg2hvPjii1i0aFFY21ZVVUGlUmHLli0R72OgUP05IYQQkuTKG20YO9QKg5ZJ9FIIIYQQooRcgaIOcCLV1wqVT6FgcQ2Qlg04WxO9EkIIAZBcFYse3qO4WhE4BGYsck5oGa3iYJHE1+bGzVCr1CixlmBz4+YBb4VaVlcGk9aEInPRgD4uCW3KlClYuHAhPB4PvvrqK9x6663QarV46KGHFO+L53moVCpUVlYCAC666CKoVKpYLzmkI488Et999x04jsOaNWtw3XXXwel04o033ui3rdfrhU6ni8njpqdH3+Y3FvuINfpuTkiKarUnzwwBQkj8dDpZtNi9yDLroGXoxzYhhBCSUoJVLIoi0Fkr/V1IkVaonAeo+xXIKE70SgghxCeZZixGGnIO9opFJ+uUKhbpVHRS2dSwCcNMw5Cpz5QqFoWBPRZZW7cWpdZSWPSWAX1cEpper8fQoUNRUlKCm2++GWeddRY+++wzAIDH48F9992HgoICmEwmTJw4EStXrvTdd9GiRcjIyMBnn32GI444Anq9Htdddx3+9Kc/AQDUanWvYHHBggUYO3YsDAYDxowZg/nze7dA3r9/P6688kpkZWXBZDLh+OOPx/r167Fo0SLMmTMHW7du9VUjBqvq02g0GDp0KAoLC3HFFVdg2rRpvuckVz4uWLAAw4cPh8FgAAB0dHTghhtuQE5ODqxWK84880xs3bq1136feeYZ5OXlwWKx4Prrr4fb3buKvm8bU0EQ8K9//QsjRoyAXq9HcXExnnzySQDA8OHDAQDHHnssVCoVzjjjDL/78Hg8uOOOO5CbmwuDwYBTTz0VGzdu9N2+cuVKqFQqfP/99zj++OORlpaGk08+Gbt37w74+ihF380JSUH7Whw44cnv8GttgFkthJBBo7zJBgDIMcfmSilCCCGEDCChu2JR5afrgL0J4NyA3po6MxbrtkhhaQZVFhBCkkfSVSxGMId2sAeLDtZBFYsJIooi5m6ai30d+/rdtrlpMwrMBTBpTeBFfkD/L3V6OrGzdScKzYVI06QN2OOSyBiNRni90vvjtttuQ1lZGf773/9i27ZtuPzyyzFlyhTs2bPHt73T6cT//d//YcGCBdixYwdeeuklLFy4EABQX1+P+vp6AMCSJUvw2GOP4cknn8TOnTvx1FNP4dFHH8U777wDALDb7Tj99NNx4MABfPbZZ9i6dSvuv/9+CIKAK664Avfeey+OPPJI3z6vuOKKiJ4TAFRUVODjjz/G0qVLfa1IL7/8cjQ1NeHrr7/G5s2bMWHCBPzxj39EW1sbAODDDz/E7Nmz8dRTT2HTpk3Iz8/vF4z29dBDD+GZZ57Bo48+it9//x3vv/8+8vLyAAAbNmwAAHz33Xeor6/H0qVL/e7j/vvvx8cff4x33nkHv/zyC0aMGIFzzz3Xty7ZI488grlz52LTpk3QaDS47rrrwn59QqFWqISkoC4XC0EEyhtsOLYoM9HLIYTEUXmjDWoVkGc1JHophBBCCFHK1wrVz6/echtU0xDAYwciOBE94GrKAI0BSKeKRUJI8mDliziSQKStUDlxcAeLTs4JrZqCxURw824s2rEIaqhx9/F3+z5fZ69Dk7MJJ+WfhDStFOy5ONeArWtjw0YIEFBsKQajPrTGvvQM1mSZmZkYPnw43G43fv/99373mTBhAgBg9+7dcDgcvW4rLS1FVlYWmpubUVtb2+s2i8WCkSNHRrxWURTx/fffY/ny5bj99ttRU1ODhQsXoqamBsOGDQMA3Hffffjmm2+wcOFCPPXUUwAAlmUxf/58HHPMMb59ZWRkAACGDh3q+9zjjz+OuXPn4tJLLwUgVez9/vvveOONNzBjxgy8//77aG5uxsaNG5GVlQUAGDFihO/+ZrPZV4moxObNm/H+++/jzDPP9H3O6/Xi3XffRU5ODgDg559/xoYNG9DU1AS9Xg8AeO6557Bs2TJ89NFH+Nvf/oZ58+bh+uuvx/XXXw8A+Oc//4nvvvuuX9WizGaz4cUXX8Qrr7yCGTNmAAAOP/xwnHrqqQDge+zs7OyAz8nhcOC1117DokWLfHMq33zzTaxYsQJvvfUW/v73v/u2ffLJJ3H66acDAB588EGcf/75cLvdvorMaFCwSEgK83IpcFVziqltc+IP//oR/7vxJJwwPDvRyyEE5Q02DDHrYdbTIHNCCCEk5QRrhdpRLX005QKujtSoWKxeC2SUAjpzoldCCCE+ydIKlRf4iCsPB3vFootzUbCYIB5O+v/RN7ze3LgZAFBsKfaF807OOWDrKqsrwxDjEAw1KwuEBoM33ngDc+bM6fW5adOm4b333sP+/ftx3HHH9buPfMHCzJkzsW7dul63LV68GFdffTU+/PBD3Hbbbb1uO+ecc7B8+XLFa/ziiy9gNpvBsiwEQcBVV12F2bNnY+XKleB5HqNGjeq1vcfjQXb2wfOoOp0ORx99dNDHcDgcqKysxPXXX49Zs2b5Ps9xnG+m4JYtW3Dsscf6QsVo/PbbbzCbzeB5Hl6vF+effz5eeeUV3+0lJSW+YA8Atm7dCrvd3ut5AYDL5fLNi9y5cyduuummXrdPmjQJP/74o9817Ny5Ex6PB3/84x8jfh6VlZVgWRannHKK73NarRYnnngidu7c2Wvbnl+D/Px8AEBTUxOKi6O/SJCCRUJSmJsd2KHKh4JfaqT2sp/8WkfBIkkKuxpsyLHoYdDSL2CEkG6CAFR8B4w6J9ErIYSE4gsW/VyJ314F6C3SH1GQZi4mM0EAatcBhScAWmOiV0MIIT4snxwVi3LAGUkr1GSquowHJ+uEUWOkYDEB3Hx35VSft+Xmxs3ITctFliELbW6pfaKb819lFQ9r69eixFICs/bQu1jpxhtvxIUXXtjrc5mZUke6wsJCbN68OeB9Fy1a5LdiEQD+8pe/YNKkSb1us1gim185efJkvPbaa9DpdBg2bBg0GilGstvtYBgGmzdvBsP0Pr41mw9+LY1GY685iv7Y7XYAUrXdxIkTe90m79tojN0x5+jRo/HZZ59Bo9Fg2LBh0Ol6jxwymUz91pefn99rfqRMrr5UKpbPJxxa7cEiBfnrEatZqhQsEpLCKFgkZPDb02THUcOsMGgPrdYghJAgVj4FrH4WuHopMCLyKx0JIQMgWCvUtr1AWjag0QMCl/wViy27AXcnkF4EMNRJgRCSPJIllIsmWORFHqIohjwRn6rcvBsWnYWCxQSQw0IBvY8zNjVuQqG5ECatCXZWCngGqmKxzl6H/bb9OC73OBg1h97FSvn5+b7qsb4MBoOv7ak/o0ePDnhbTk5Or4q7aJhMpl4tR2XHHnsseJ5HU1MT/vCHP0T1GHl5eRg2bBj27t2LadOm+d3m6KOPxoIFC9DW1ua3alGn04Hnwzs/rtPp/D6nQCZMmICGhgZoNBpfeNvX2LFjsX79ekyfPt33ub4VpT2NHDkSRqMR33//PW644Qa/awQQ9Dkdfvjh0Ol0WLNmDUpKSgBIrWc3btyIu+66K4xnFhsJ/W6+evVq/OlPf8KwYcOgUqmwbNmykPdZuXIlJkyYAL1ejxEjRmDRokVxXychycrNJvlVzYSQqLQ5vGhzeJFl1kPL0C9g8UDHIiQl2Rqkj62ViV0HISS0YBWLbXsBYxag0XVXLCZ5sFhTBqjUUitUmbMtYcsZLOhYhJDoeQVvopcAILqWrJzARRRIpgonSzMWE0WuWOz5/mpzt6G6qxpDTUNh0BigY6QwY6BmLK6rXwcVVCi2FA/aMH2wGjVqFKZNm4bp06dj6dKl2LdvHzZs2ICnn34aX375peL9zZkzB08//TReeukllJeX47fffsPChQvx/PPPAwCuvPJKDB06FBdffDHWrFmDvXv34uOPP0ZZWRkAqVpz37592LJlC1paWuDxxK419llnnYVJkybh4osvxrfffouqqiqsXbsWjzzyCDZt2gQAuPPOO/H2229j4cKFKC8vx+OPP44dO3YE3KfBYMADDzyA+++/H++++y4qKyuxbt06vPXWWwCA3NxcGI1GfPPNN2hsbERnZ2e/fZhMJtx88834+9//jm+++Qa///47Zs2aBafT6Zv1OBAS+t3c4XDgmGOOwauvvhrW9vv27cP555+PyZMnY8uWLbjrrrtwww03RNQnmJDBwM1RxSIhg1l5ow0AkGPWhdiSRIqORQghhMRVsIrFjhrAkA4wBkDgkz9YrC4D0osBU/QzbshBdCxCSPSSpWJRrgwTI2htzQs8hGT/ORAFN+8Go2YoWEwAf+/LXxt/BQAUWAqgVqmhU3cHi+zABItrDqxBgbkA2UYaQZSKFi5ciOnTp+Pee+/F6NGjcfHFF2Pjxo0Rze274YYbsGDBAixcuBDjxo3D6aefjkWLFmH48OEApAq+b7/9Frm5uZg6dSrGjRuHZ555xtcq9c9//jOmTJmCyZMnIycnB//5z39i9jxVKhW++uornHbaabj22msxatQo/PWvf0V1dTXy8vIAAFdccQUeffRR3H///TjuuONQXV2Nm2++Oeh+H330Udx777147LHHMHbsWFxxxRVoamoCAGg0Grz00kt44403MGzYMFx00UV+9/HMM8/gz3/+M6655hpMmDABFRUVWL58ua+l7kBIaCvU8847D+edd17Y27/++usYPnw45s6dC0AqNf3555/xwgsv4Nxzz43XMglJWl4KFgkZ1PY02sCoVMizGhK9lEGLjkUIIYTElK0BWDoLuPQtwJIbOFjkPNK2RRO7KxZ59Bt+lGxq1gKZhwE6M+CxJXo1gwYdixASPU7gIIhCwkOraCoWeZEf1BWLbs7tq4ojA8s3Y7GHzY2bkanPxNC0oQDg+9o4OEe/bWNNEAWsb1iPI7OPhFl36M1XTAWhOiFotVrMmTMHc+bM8Xv7zJkzMXPmzH6fv/jii/1eeHHVVVfhqquuCvh4JSUl+Oijj/zeptfrA97W0+zZszF79mzFt1ssFrz00kt46aWXAt734YcfxsMPP9zrc//3f//n+3vf11OtVuORRx7BI4884nd/N9xwQ782qX33YTAYgq7rjDPO6Pdajx8/PqILXwJJqctEysrKcNZZZ/X63LnnnusrffXH4/Ggq6ur1x9CBgsPN3ivZiOEALsbbMix6GHW9z4ZueaL/8K179cErerQRscihBBCgqr8Edi3Gqj+Wfp3oFaoHbUARCAtSwodBR6I4S/6Mdd5AOjcD1gLAI0B73+7EZ/sTI4KoUMNHYsQ0p8cLCaar+VkhBWLsTzhm0w4gQMrsNCqaD5vIni4/oH3xsaNKLQUIk2TBgAD2gp1d9tudHo6UWguhJ7RR7yfnat3omNtR+wWRghRJKWCxYaGBl+ZqSwvLw9dXV1wufx/43v66aeRnp7u+1NUVDQQSyVkQHgpWCRkUNvVaEOORQeDRjoZyfM8Xv+/x/HBvMfgrt6a4NUdmuhYhBBCSFD1W6SP8slhOVjsW0XTUSV9NGYBKgaAeLC6MRnVSKGVmFGCx19egmmz38G3lVyCF3VoomMRQvrjBG7AQrm3fnsLXt7/TEd/AU64eHHwtkKVwyqqWEwMF9/7Z4ODdaC8rRz5pnykabuDxe5WqHLb1HhaV78OOrUORZbIfhaJoogP3vgA/33ov7Btsw3aQJ6QZJdSwWIkHnroIXR2dvr+1NbWJnpJhMQMBYuEDG4VjXZkmXQwaNVwOuyYfftMfPLem7jstkeRecbMRC+PhImORQghivAsMDsdaKtK9EpIJA780vvfgcLC9iopUDTnHGyTmtTB4jq49Lm48plleGL++3j6pgsx/3xq1Z4q6FiEDHacwEFA7M+PCKKAn/b/5Asu6ux1mPfLPNy78l6/2/trORmuwdwK1ck6AQAaf/OGSdz1Dby3Nm2FAAHDzMN87YPl+ZcDUbG4pm4Niq3FyDBkKL4v62Xx3APP4fUnX8cfrvkDCv9WCJVKFftFEkJCSqlgcejQoWhsbOz1ucbGRlitVhiNRr/30ev1sFqtvf4QMlh4eQoWCRmsWuwedLhYZJt00DBqvPD4vdi2qQz/nP8eTrv4mkQv75BFxyKEkLjbv0n6+O3DwbdTwmMHatbFbn/EP0EAGn/r/bkAVS1oq5LaoGqMB9ukBto2GVSvwV3fuPDZT1vw0YsP48Hp59CJvAShYxFC+uMEDrzAx3y/21u245bvb8H6hvUADgaHgQLEqGYsDuJWqFSxmFh9qxA3N22GWWtGvim/1+e1am1U4Xg4PLwHvzb+iiJLEUxak+L7v/XsW/j242/x4PMP4qybzoJKTccihCRKSgWLkyZNwvfff9/rcytWrMCkSZMStCJCEovlBQjC4DzwJORQV95oAwBkm6Rfvq6762G8+P4XOOEPZyZyWYc8OhYhhKSkHUuBhVOB1spEr2Rwa6sE2D5X+gcMFvcCadkAoztYsSgkZ8Wi4GwHmnZi9lUn46f3/oU/n3tqopd0SKNjEUL640QuLtV+DtYBAOj0dIa1fTRtJDkxOeZExoOTkyoWtWqasZgIfcPCjQ3SfEWzztzr81q1NqpwPBy/Nv0Kr+BFkblI0ftBEKT/G1feciVe+OAFnHvZufFaIiEkTAkNFu12O7Zs2YItW7YAAPbt24ctW7agpqYGgNSuY/r06b7tb7rpJuzduxf3338/du3ahfnz5+PDDz/E3XffnYjlE5JwLCeCH6RXtBFyqNvTaId79894896/wt7VifzCEpSOGJPoZQ06dCxCCDkkuLsAkffNySNxUrel/+eEAHMI26sAQwagMRwMFqOYzRUvX375JcZPOA5NDh75w8fiuKNGJXpJgw4dixASHRVU4IX4zCdUGrJEE8oIojBoW6HKFYt6Rp/glRyaegbeXt6L7S3bkW/Kh0nTu2JQx+jg4T1xrZxdV7cOZq0ZBZaCsO/z69pfcd3Z16Gprgnpmek46vij4ra+eJGDUUJSSajvBQltbr1p0yZMnjzZ9+977rkHADBjxgwsWrQI9fX1voNpABg+fDi+/PJL3H333XjxxRdRWFiIBQsW4Nxz6SoFcmjyCgIEChYJGXREUcRbLz+LxmXzceqUi6HT0y9g8ULHIoSQQ4I8L6fuV+DYq8O7z+x04JS7gbNnx21Zg079lv6f4/xULIoi0FENlJzSXbGYfK1QRVHEiy++iHvvvRd/OmkU0kxWIL0w0csalOhYhJDoMCoGrMCmfLAYr3A0GcgzFqkVamL0rFjc0boDrMCiwFQARj7+6KZVa+HlvOBFHhpVfCKDNXVrMDx9OCw6S1jbf/mfL/HCIy/g2EnHIs2UFpc1xZNOp4NarUZdXR1ycnKg0+molTxJCaIoorm5GSqVClqt/+rihAaLZ5xxRtDkc9GiRX7v8+uvv8ZxVYSkDp4XQRe9EDK4uN1u3HDDDfjpv0sw+vzrcc8Ts6HTU8uYeKFjEULIIcHbHSw27ZLmAKrDbFyz7T8ULCpx4BdAnw70bJnnLyx0tQNeO2DMlL4WcsVikgSLLMvi9ttvxxtvvIH7778fT4/4FWreBejNoe9MFKNjEUKiw6gZcAIXlyorpUFhNK1QeXHwz1g0MIYEr+TQ5OrRpn1z42boGb3fikEdo4NX8MYt4O5wd2B3226cW3puyPmKPM/jzWfexAdvfIALr74Qt8+5HRptQmOMiKjVagwfPhz19fWoq6tL9HIIUUSlUqGwsBAMw/i9PfX+RxJCfFieKhYJGWzWrl2LTz75BEV/fggnnX8xjDr/P8AJIYSQsHVXCqCjGvDaAEN6YtczGAkC0LANSC8CmnsGi35OSndUSx+NWdJHX7CYHDMWt2zZgnfffRcLFizA9TOuBp4uAkacRcEiISQpMSoGvMhDQIpXLIr8oG2FKs9YpIrFxOhZsbipYZPf+YpAd8UiL1UsxsP6hvUQIaLYWgy1KvhFbrWVtfh08ae4bfZtuPTaS1O6yk+n06G4uBgcx4Hn4/PaEhIPWq02YKgIULBISEqjYJGQwaO2thaFhYU488wzsWHbTpz/5m/INumgCbeqhBBCCAlEDhZt9YCzjYLFeOiokqoQLUOB5p0HP++vCrG9SvqYli19TJKKxf379yM/Px8nnHACqqqqkJubC9RukMLRjKKD6ySEkCQiVyzGo8rKq/D7clQVi4O4FaqLc4FRMRQsJohcMSqIArY0bcGEvAn95isC8a9YLKsrQ64xF3lpeQG3aW1sRXpWOkpHleL9n99H5pDMuKxloMntJAO1lCQkFdHZSkJSGCdQK1RCBoPly5fjqKOOwhtvvAEAaBek2QG5FpqtSAghJAZYB6BiAIEDGnckejWDU90W6aO1T2sxfzMW26sAbRpgzJD+Lc84Erg4LS601atXY/z48XjuuecAQAoVAaCmDNAYgIyShK2NEEKC0ag0cWsjqjQolAOcSAzqikXWCR2jgwqpW3WWyuT3cb2jHg7OgXxTPrRM/4BLp9aB5dm4VSyW1ZWh2FoMs9Z/B4TdW3fjxvNvxMLnFwLAoAkVCRmsKFgkJIWxvEgVi4SkuFdeeQVTp07FaaedhmnTpgEAyhtt0DIq5FppBgUhhJAYYN1AeqH09zqayxYX9Vul1qam7N6fF/y0N22vkqoVNd0XEMmVgGzkLfSisWjRIpx11lk4+uijMWvWrN43Vq+VQkWqciWEJClGzcSt2k9xxSIfecWiIAqDesaijtGBUdGYj0SQ35eVHZVgVAwKLYV+t9MxOrACCyEOFQy1tlrUOepQYC6AUWPsd/uqL1fhzsvvRF5hHv583Z9j/viEkNijYJGQFMYJ1AqVkFTFcRxuu+023H777bjzzjuxbNkyWCwWAFKwmGPRI01Lv3gRQgiJAdYJ6C2AMRNo3A7Q8WPsHfgFsA6Tqvt68ndSunWv9LWQt/VVLA5sK1RBEPDQQw/h2muvxYwZM7B8+XJkZWX13ACoWSfNjfQzi4kQQpIBo2LAifFphaq0YjGqVqji4G2F6uSc0Kq1KT0nL57sXjtYfxcixYj8vtxv348CcwHS9f4vFtIzeniF+MxYXFe/DmqVGiWWkl7vA1EUseSVJZh982yccs4peP6/zyMrJyvIngghyYKCRUJSGMeL4OnEECEpSaVS4cCBA3j99dfx/PPP9xqIvKtBChYNFCwSQgiJBdYFqLVSQNS29+DMRRIbogg0bAPMQ8MLFjuqAEMGoOmeNZWgGYsqlQq1tbV47rnn8O9//7v/3J+WcsDdIVW7amguFiEkOfkqFhGHYFFhBWLUFYuDtBWqw+uATp0cFYtt7rZEL6Gfa76+Bq/8+krc9u/hD3ZEKDAXwKTtP18R6FGxGIeAe+2BtSg0FyLbmN3vtqa6Jsy8eyb+38v/D3oDjYMhJFXQ9HVCUhgniHTBOSEpZt++faivr8fJJ5+MpUuX9rtqUxRF7Gmy4cThWdBr6fofQgghMcC6AEYLWIuBPSsAdxeg839SiUSgs1YK4KxDD4aEMr5PBYLAA111wNBjpLAXkOZfAv7nMcZBXV0dysvLccYZZ2Dx4sWBK0hqygCVGsgsHZB1EUJIJOQZi8lQsejhIm9pzQvxmROZDJycE1om8RWLtbZaXPDJBXj1zFdxauGpCV1LT/WOelS0V4AXeDDq2IevPWd/5pnyoGf8h3c6RgeO52JescgLPDY0bMC4IeNg6j7+7GzrRPn2cpxw2gm468m7Ev7eIIQoR2csCUlhHE+tUAlJJWvXrsXEiRNx1113QRRFvwfPDV1uODw8sk06aNT0Y5oQQkgMsC4p8Mo8TKpWbK1I9IoGl7ot0kdLQf/b+lYhdh0ABA5IywLk4wBm4CoWf/31V5x44om45ZZbwPN88BN5NWVSlWsatSQjhCQvRsXELZTrWekVjmgqFnkx8qpLTuDAC7FvXxkrcitUtSqxv982O5shiAJW1q5M6Dp6EkQBTtYJJ+eMSwtSoPf7uMhcFHA7PaOPS8XirrZd6PJ2odBSCD2jR/Weatxy4S2Y+8BceD1eChUJSVF0xpKQFMYJIniBgkVCUsGSJUswefJkjBkzBl999VXAg+fyRjsAINdMLUAIIYTECOeWquPkyjM5CCOxUb8VMKQDlrz+t/nCwu6f++1V0kdjj7BugFqhLlu2DKeeeiry8/Px/fff92rD7lf1WiCjGNDTfEVCSPJi1AwECOAELub7VhosRlOxKIhCxIHOsYuPxfjF45O24tHJxidY3Nm6E2V1ZWFv72AdAIDyjvKkCWJdnAsiRLg4V1zew0Dv93GWMfDFQjq1TgqpYxxwltWXQc/oUWQuwqbVm3DrJbdCb9Rj3ofzoNNTq3VCUhUFi4SkMI6nVqipSBRF1LTSbKNDybx583D11VfjyiuvxIoVKzBkyJCA2+5ptEHHqJFjNQTchhBCBgWelSrpAuE8wIrHB249gxnrkqriTEMAbRpQvyXRKxpc6n4BrAXSa9sX332SUNUzWFQBppyD26jkYLFP29QYevvtt3HppZdi6tSpWLVqFfLz84PfoatOavFqLQQ0xritixBCAlm9fzXGvTMO3hAXXchz+zxC5KFeIAM5Y5EXeUQ7YrHL2xXdDuLExbniEiy+v+t9PLn+Sdi99rC2d3BSsFjbVQs7G9594k1eu4tzgRPjGyzq1LqA8xWB7laoIhfzgHNt3VqUWEqw48cdeGDGAzjquKPw8tKXMbRoaEwfhxAysChYJCSFcYJAFYsp6PudTThz7kpUtzoSvRQyQM4880w8++yzWLhwIfT64JWIuxtsyLXqkaZN/GB7QgiJq5+eBxZdEHiu3Kr/A9bMA7b8Z0CXNShxLqliUc1IrS1bKwZsnt+gJ4pSxaJlKKDzFyx2h4W+YLEaMGb23nYAKhZPO+00zJkzBx988AHS0vyss6+a7gqQzJKDayeEkAH01m9vAQDW160Pup08ky5UABkJxRWLCrfvSRCFiFuhJrt4BYuCKMDFunrNEAzGyUoXeLe4W9DgaIjpWiIlB5xuzh23KkpX94V8WYYsGJjAFzDrGKl6UH6dYvLYnAtbmrag0FKIY084FtNunYYn33oSJgvN+iYk1VGwSEgKE0QpXCSpZdv+DnCCiIauyK9mJMmvoaEBN910E1wuF44++mjcd999Yc0O2NVgwxCzDgYKFgkhg52jWaqKcrb6v93bfVLD2TJwaxqsOI8ULAJAVqlUieZJzqqGlGOrl97D5qEA46edl9CnFWrbXmlmoabHiT21WrpdiG3FYmtrK2688UZ0dXVhxIgRePTRR6EOd35zdRlgzvXf3pUQQgaQVwivYtEbhwtmlLY2jSbcFCGCjfHPgWTh5JzQqDVQx+E0tIt3hd26s2dg9lvLbzFfSyR8wSLvjsuMRUEUfJWQKpUq6DkJnbo7WORiFyz+XPEzqt6uQhafhfyCfFx333VgNHSug5DBgIJFQlKch6VgMdXsbLAlegkkzrZu3YoTTzwRn3/+OWpra8O+nyiKqGy2I9ukp2CREHJo4L1AhPOESJgEXnqdme6quMzDpSCsqy6x6xos5HmV1gL/t/sqFrt/9W7bCxgyAU2fEFLNxLQV6u7du3HSSSfh448/xt69e5XvoHotkFEK6CwxWxMhhMSDXLEYTbVgIANZsQggbjP2Es3NueNSsQhI4W+4r5uDdSBNkwaNSoPfmpMjWHR4pU5WHj7856GEkveklpEuQnNzsbkIvqqqCtMvmI6u9V1Ac0x2SQhJIhQsEpLi3FxyDJwm4dtNweKg9sUXX+DUU0/FkCFDsGHDBowaNSrs+9Z1uuH08sg268Coqe0YIeQQILAULMabfHKI6VGxCNCcxVip3wroLYEr+/q2Qu2sBYzp/asbVczBeYxR+uGHH3DSSSdBq9Vi/fr1GD9+vLIduDuB5p1AeoH/9q6EEJJEfBWLKd4KFQC4GP0cSDYuzgWNWhNWBx+lvII3ZFWrzME6YNAYkJuWiz0deyKqEH17+9u468e7IMTo+NXGSueH4hYsKqi6lVuhhttaNpiysjJMnDgRXfYuTJk7BRMmToh6n4SQ5ELBIiEpzs3RybhU4vLyqG2LXVsJklx+//13XHTRRTjrrLPw008/oaAgQPVCAOXdoXOO2U8rNUIIGYx4FohD2yfSQ/dcHV+QZR0mhVhypR2JTt0vUrWiLsCsoJ5ViB67VC1qzDg4V1GmZnq0TY1cdXU1pkyZghNOOAFr167F4Ycfrnwn+zdKgX96ycFKS0IISVIalfT9NNxwSQklYaUoilGHm/F4DokmiAI8vMcXWsWD3WsPbzvWDh2jQ6GlEPtt+8O+X0/7Ovfh16Zf0eoK0MpfIQcrVSxyAhezcNzDe7Bw+0J4eA/cfPjVh3Ir1GiDxebmZpx99tk4bMRhKH6kGEcceQRMWpqpSMhgQ78lEJLiPF4KFlNJRZMdYqIXQWKO56WT4kcccQQ+//xzfPzxxzCZlB84lzfaoNeokWMJPFCdEEIGFWqFGn/yPCE5yFJrpHCxeZfUJpVEp34rYMkHtAEq+3zVECqgo1r6qzGr/3bq6CoWBUGAKIooKSnBZ599hq+++goZGRmR7axmHaC3AumFEa+HEEIGitwKNS7BooJ9sgILMcrf9gfjjEW5raZWnvUcB11hzo22s3bo1DqUWEvQ7mlHvb0+osfr9HTGrF1oz3DT5o1Nd6v3d76P5zc/j6/3fq1ondFWLIqiCEEQkJOTg08++QQPvfUQNFYNSiwlcWmDSwhJLPpfTUiK81Ar1JSyu5HaoA427e3tOOecc/DGG28AAKZOnQq1OrIfr7sbbMi16JGm04TemBBCBgOBAwQKFuOK7dMKFQAyS4D2asBDxyVRsTUC9kbAnAdo9P636dnWrL1K+piW3X87taZHCKmM3W7HxRdfjGeffRYAMGXKFGg0URxLVP0MZJYCenPk+yCEkAEit0KNVdDTk5LWpkoqwwJhYzhrN1k4OekCp3hWLDo4R3hrYZ3QMToUW4oBANtatkX0eLzIx6xi0c4eDBa7vOEFpMF0ebvw5m9vAoDyisXur5FcRamEy+XCVVddhUcffRQAcPbZZ2NT6ybkpeUhNy1X8f4IIcmPgkVCUhzNWEwtuxuiP1AkyaOiogInnXQStmzZgtGjR0e9v92NNgyx6GHQ0o9nQsghhI1+jgsJwlex2OOEXubhgK0ecLYlZk2DRf1W6aN1WHjbt1dLLWmNfoJFFSNVkCoM2mtra3Hqqadi5cqVOOqooxTd1y/OCxz4RapWpGCREJICfBWLcZixqGSfSmbZBTIYKxbl6rd4ViyG29LUwTqgVWuRk5YDPaPHb82/RfyY9c7Iqh376lml2DNkjNTC7Qt77VNRxWKErVAbGxtx5plnYtmyZTj22GMBSNWLa+vWothaDLOOjicIGYzozCUhKc5NrVBTys56G9Sxn1dOEmDVqlWYOHEiAGDdunU444wzotqfIIiobLYj26SDQcPEYIWEkEHj8zuB2emDt7osDhUGA2p2OrDo/ESvIjDfjMUeJ/TSC6TZlm2ViVlTpBytgL0p0as4qH6r1ALVEm6wuE+qVtT6aXmuZrqrG8Nvo7dhwwaceOKJ6OjowJo1azB16tSw7xtQ/VaA9wDpRf3nQPbkapc+ujuif0xCCImCXLEY62BR6czEmFQsDsJg0dl9gZMm2M+UKIVb6edgHdAxOmjVWgwzD0NFR0XEVaINjoaI7teX3WuHgZGOC2xRHus3OZuw+PfFGJ158KJnJe9LbfexopJg8bfffsOJJ56IqqoqrF69GpdddhkAoMZWg0ZnIwrNhb7nRwgZXChYJCTFUSvU1FLeaEO2KUCrLJIyRFHEnDlzcMwxx6CsrAwjR46Mep8HOlxwswKyzTqoKX0mhPS0+xvp44FfEruOeIlwjktSqfpZqvRKRvLr27NVZ3d1B1Kt5dq3jwAfXpM8r3Vdd2WfLsB8RbFPSNi2V5qv6K8dnNwKVcHM0aeffhqlpaVYv349xo0bp2DhQdSUAYweyCgJvp0cLLo6YvO4hBASoXjNWOQErt/MRL57NrEK/X9fi0XFIidEPms33pqcTRGFt3JIFc9WqOFW+jk5J7RqLVQqFUosJdhv3w8bG1mYF02w2OBo8L2XurxdsOqs0t/Z6Dpcvb71dWjUGkzIneD7nJL3pUalgQoqRVWOc+fORWZmJjZs2IATTjjB9/l1devAqBgUW4qhUtH5DUIGIwoWCUlxLpYqFlNFp5NFk82DIZb4HVCT+BIEAbW1tVCpVPj444+xfPlyZGVlxWTf5d3zN3PNFDwTQgJQEDhEzdYA/PLuwDwWm+IVi7KB/Poo4atYHAQ/Xzw2oPMA4EmS1vJ1WwDL0MDBYt8TxO3VgDHD/zxGdXcr1L5hZB+iKKKmpgYA8M477+CHH35AXl6e8rUHUr1WmsFpzIjdPgkhJI40KqkSTsk8xHD4q/Sqd0jtL616a7/b5Mf3FzqGK5krFmd8PQMv//qy4vvJMxb1cTwOcXjDn7GoVWvBqBgMTx+OLm8Xam21ET1mi6slovuxPIs/ffInfFT+EQApFLXoLNLfw2zp6k9VZxU+3vMxJg6diHxzvu/zSioWVSoVtGptyPv0PBaZP38+fv75ZxQVFfXaZk3dGhRZipBljM35EkJI8qFgkZAU52apYjFV7O4OjnIsg+DE3iHI4XDg8ssvx6mnngq3243MzExotbGbE1HeaIdBq8YQChYJIcngvT8Dn90OtFTE/7EGQ8VivNVuBDwRnmxi/VQspjJ3JxCDqpCoOVoBWx1gHgpoArT46lsR2lEDGDJ6t6WVqTVSEBkkoPZ4PJgxYwaOP/54dHZ2wmq1wmg0Rv4c+hJFqWIxvQigeUiEkBTha4Ua42p2f0FlTZcUpmQb+s/KlcOYaFp+xmNOZKzYWBvK28t9lXbh8lUsqhNfsejiXNCoNVCr1Ci2FgMAtjVti+gx29xtEVWYOjkn3LwbB+wHAEjtWU1aE1RQ9ZqNqNTLv76MdF06xueOh1Fz8NhASfUhILVDDVblyLIsbr31VowbNw6NjY1IS0uD2dz7mIEXeGxo2IBCcyHMWjqeIGSwomCRkBTnpVaoKWN3ow2MSoVcC/WXTzUHDhzAaaedhuXLl+OVV16BwRD7r+Guhi7kWgww6uI3e4IQQsLm7q4I66yJ/2MNlorFeHr3IuDn5yO772ALFj225Aij67dIH4PNV+x5gtjVLs0uNGYAKj+/hqvkikX/wWJzczP++Mc/4sMPP8RLL72E9PT0iJceUEu5NDMxvRDQUIcNQgYTlmchhqiIHmj/3fVfvL397aj3o1ZL31Nj3QrVX8hXY5OOi/xV38lhTDTBYjJXLAJAp6dTcWWoPGPREOginBhwsKErFkVRhJNz+r522YZsGDVG/NbyW0SP2eXpiigIloM+uc2unbVDz+ihZ/RhPQ9/drTswLfV3+Kk/JMwzNT7uETp10un1sHNu/1+v+jo6MD555+PN998E3Pnzg3YMWFH6w44WAcKLYVxbYEr79ukNcXtMQghgVGwSEiKc3NJ2naL9LO7vgs5Fj2MWibRSyEK/PrrrzjxxBPR1NSENWvW4E9/+lNcHmd3gw05Zh0MWvrRTAg5xFCwGBrvBbrqI7sv65Kq4dSD5fhDlKoFE61+K6AxAun5gbfpWbFob5I+BmoJxnRXLKL/ibydO3di4sSJ2LNnD1auXIm//vWvka87mJoyKfTMHB6f/RNCEmbCexNw44obE72MXp5c/yRe2PwCOtwdUe1HBRXUKnXMg0V/7SCru6pDbi+3Zo1ErJ9DuJqcTbjss8twwHYg6HYdng7FYZqLc0EFqcVmvLg4F4QQLek9vAeCKEDb3TVApVKhwFyAvZ17I2qj2+ntjCxY7H6fyMGdg3VAq9ZKwSIXWbD4wuYXkJeWh6OGHAV9nwvJXJzLV9UbDi2jhZf39ns99+7di5NPPhkbN27E8uXLccMNNwTcx7r6dTAwBl9VaLzIsynzTUGOxQghcUNnLwlJcR4KFlPGzgYbcix66Bj61ptKHA4HDjvsMGzYsAHHHHNMXB6DF0TsbXEgy6SDQTNYTvwSQkiYkqH6LBWEOT+oH84FMDr/VXKpyt6Q6BVI8xXTC4DuuUh+9TzhaG+UPppy/W+rYgDRf8Wi2+1GXl4eNmzYgJNOOinyNYdSXSZVK6bRPCRCBqPKzspEL8EvGxt5+0eZRqUB27f9dJT8Vix2Be7kIIdT0VQscrzy1pqxsKNlB3a378amxk1Bt+vydCkO4VycCzpGF9XrEoqH94AXg3fzkqsBe7ZkLbWW4oD9QEQtSG1eW0SBZN+KRSfrhJbRQq/Rw826FbeaLasrw/qG9Tgp/yQMNQ3td7uH9yh67bVq/8Gi1+uF2WzG+vXrceaZZwbdx5oDa1BqLfUFf4SQwWkQ/XZJyKHJSzMWU4IoitjTaEO2WQetJvJh7mRgiKKIDz74ABzH4dRTT8Xq1auRnx+/q+Bq25zwcgKGmPVQq+n9QQg5xCic/XLI4lxSq0yl2EEYLNqaEr0CoO5XwJIPaNMCb9M3WNRbAUOAWUNqbb9WqB999BE8Hg+OPfZYrF27FiUlJTFafAA1a4GMEkBP85AIIamFUTMxbyPqbzbdfvv+kNunYivUOkcdgNDz+OysHS5W2QVhTs4JHaODShW/33PdnDvkvEO5JWuvYDG9FHbWjqrOKsWP6eScvn0qIYeRoiiCF3g4OScMjAFGjREu3gVODD9cFkQBL2x+ASXWEhyRfYTftqMuzqWoWlSn1sEreH1B7bJly2C32zFmzBisX78eo0aNCnp/J+vEtuZtKLAU0HxFQga5QfTbJSGHJi+fXHMSiH9NNg+63ByGmHVg4nhATaLn9Xpx/fXX469//Su++eYbAIjrL0EAUN4oXSE5xDJI5l8RQpJf0y6gNUkqFxSeoDpksa7uVpkR3I/RDq5gUa7+SxRXuzR/1JwXfHZlr1aoDUBaNuBnLhcAqVWtwAGiAI7jcOedd+Lyyy/Hxx9/DCD+xyLoqgc6agBrgdTilRBCevi88nOMe2dcRBVaA0Gj0kTUljKYvvvr8nYF3d7De6BWqaGO4udtwoJFe3jBoggRjU5lP4OdrBM6tU5RO06l3HzoSj8nJ4WAcitUACi2SK06tzVvi+hxlb4WQO/XWF6TjtHBwBjg4TyKKha/rf4WO9t24qShJyEvzf+8QzfnVhYsMjqwPAuO5/D//t//wyWXXILFixcDCO9YZHPjZnAihyJLEZhB04afEOLPIPrtkpBDk4ejisVUsLtBCo5yzRQcJbPW1lacc845WLJkCd59911ccMEFA/K4e5rsSNMxyDHHb7A5IYT0Mn8i8PIEgEvMLJ9ewq1YbK8GZqcDvy6J73qSFeeOrGLR6xh8waIjwRWLDb9JHy3DgGAn2XqeIGZdgDEzcBCp1gACj67OTlx44YV49dVXMX/+fFx11VWxW3cwteukj5klwZ8TIeSQ9N9d/wUAbGoI3iozGtO+nIZx74yDK4IW6Rq1BpzA+ebWxULfGYu1ttqg23t4T9RzBBMVLMqVmP7mSvbV6FIWpjlYB7SMNqrANRQlrVD1PS7wSdenQwWVr2IzXPIczQan8tbsPV9jX3tWRgeDxgA37w67YpEVWLz0y0sYnTkao7JGBQzxFFcsMjo4XU5cc9U1eOqpp/Cvf/0LN910U9j3X1e/Dhn6DAwzDQv7PoSQ1BS/BteEkAHB8gJEUYz/Vcxh6HB6YdJroKUZgv3sbrBBp1Ejx2pAiy05r/I81LW2tuKkk05CR0cHfvjhB5xyyikD9ti/13ch16KHUUc/lgkhA8zVBlj6z2MZUOEGi60V0sfK74Fjp8VvPcmK80RYseiU2mzGO1is/AGo+B4455/xD6acrfHdfyh1W6TKw/SC4Nv1rZ4xZASpWNTA7vbilD9ORe2BOnz99dc4++yzY7Ha8FSXSfMfE/39gBCS1OIZfG1rkarGytvLcUyOstn2jJoBJ3AQRCFmlXF9KxZru4IHi3JlmAqR/wxMdMViOBWp9fZ6Rft2cS7o1Lr4BoucJ2QrVDnEM2gMvs+pVWoYNIaQ1ah9WXQWtHva0eBQHiz2fI3l2Y46tQ5GjRGNjsaQz0P2yZ5PsN+2H9PGTMMQ45CA27l5t6L2vAzPYM2ja8AeYLF06VJcfPHFYd8XkOYrllhLYAk2g5oQMijQ2X9CUhzLiRCSpBvqRa+uwcs/7En0MpLSroYu5Fn0MIUZHLU5vDG92pKElpWVhauvvhrr168f0FCRF0SsrWhBYWYajFpqFUIIOQTRjMXwcG4gxNX4frHOgalY3LsKKHsFqFkX5rrcwH+vBloiOHZ0dwB8BCEr5wHeniIFg9Go+1UKFUPNIuT7nCA2pANMgGNBtQZmLTDtij+jrKxsYENFAKhdD2QUATqah0QISaxIfg/WqDXgRA4ChNAbh6lvyFZjqwm6vdIAxx8ukp9tMSAHZOG0k1Xa/tPBOqBVx7liUQijYpHrDhYZQ6/Pp2nSYPfaFb3vjBoj1Cp11K1QfVWUGj2MGqNUeRlGdwon68T8LfMxbsg4jMwcGfS1dbHKKhbTDGnIPTkXX3z3heJQscXVgsrOShSYC5AWbAY1IWRQoGCRkBSmVkkVi3ySJItNXR7UtCofXn0o2NVgQ45FD4M29Lddlhcw4R8rcNv7vwzAysibb76Jjz/+GCqVCo8//jgOO+ywAX38rfs70O5kMXxIGgxhBoudbVKlhtdDJ+MJIYMAS5X8YYm0FepABYuyrf8Jb7v6rcCuz4Edy5Q/hrsLiGTOl6MFqCmTqiujUfcrYMkHQp0063uCNi3T72b/+WIl3ll7ABA4PHjP7Rg7dmx061OK8wBNO8J7Tt1sTqlVodNN/38JIYmnVWt9FYux0jdYrOqqQpYhK+D2bq47WIyiaJ8VB75i0ck60eHpABBexWKLq0XR/uVWnPGuWAw5Y5GVzlX1rFgEpJDQwTrCrhQEpFmDZq0ZLU5lrwXQuxWqnbX71uALFsO4iOz9Xe+jw9OB44cejwxDRsjHCyfwXvPtGix7dxl0jA755+XjqGOOCnmfvtbVSxeXlVhL4vr1lnm6j0FcDprXTkgiULBISApj1CqwggghSSrbPByP5FhJcuEFERVNdmSZdDBoQgdHHC+9inubHfFe2iGN53nce++9+Nvf/oa1a9cmbB3f72yESc9g+BBT2Pcp/30rAKCjLcGt4AghJBYiCYgORZwnwhmLLqkVqjrGv/qt/D/gi3uAvsehe1ZIcx1DaeyeU+hR1n7Md58wqir6kasEhChOPLu7gPZ9gDkP6HNysp++azRm9/qnKIqY/fJ7uOq+f+Gn8jbp6xvDk+Jha9wuVVemFwABZjT1tadKapvX3NYZz5URQkhYGBUT92CxpqsGmXr/F4gA0bdCVUGlKNyKlZ7tPMMJFjvcHYpatjpZpzRjMY6noL2CN+Rr52Sd0Kq1/UK2NG0anJxTcRtai86CDk8H2L7dCULwcAdfY7u3d7Do5b0h19Hp6cRbv72F4/KOw2Hph4UM8HyBdwCiKOKDNz7Ao7MexZa1W3whfTgBZ19ldWXIN+Ujx5ij+L6RqKmUqog72+lYhJBEoGCRkBTGqFXgeKHf+ZxEYHkBghhZ25LBrrbNCQ8nIMesh1qd+FmYBLDb7bjkkkswb948vPTSS5g7d27C1rLi90aMzLUgw6gL+z6NB4LP9yCEkJQSSUB0KIp0xiLnkioWY/2rX/0WoHqN1Ja0J1sdsHd1GPeXZmmBjeAqc48d4CIJFuWTeVGceG7cLn20DAs9S7LnyUYVA5gPzkByuT246t5/Yc6r7+PJu2bgzb+dJLW6TUSweOAXQK0B0ovDvktdE13cRAhJHnIYEsvzET0DIACotdUiXZ8ecPtoW6HK4ehAO2A/4Pt7OCFZp7czrJapMhfngkatiWsFmyAKcHHBjyccrAN6Rt9vHWmaNLhYFzhR2Wtv1VnR6ekMK4ztqW/FogoqGBgDDBoDOJHr1SrVnwW/LQArsJiQOwFWnTXk43l4T8D3JetlMfeBuXj9yddx5S1X4rH5j8GgMYAVWMUhvSiKKKsrQ7GlGOYBaqveuF95K1pCSOxQsEhICtOo1WB5EXwShHkuVrqaKfErST67G6WB3LlWfYJXcujpdLI46anvsW1/R6/P/+1vf8PKlSvxxRdf4Pbbb0/M4gAc6HChvNGO0iEmmA3h/xLaWEfBIiFkEOG90VWQDbTZ6cAnNw3840YaLLIuKTSKxwk91tV71qExU6ri2/ZB6Ps2dAeLkczY9Nqjq1iM5ti5botUAZpeEHrbnido07IAjdH3z3ueeROf/rAO/5v3MB6+6QqoGG13xWICjqb3bwKshdIMyDDVN7fFcUGEEKKMRq2Ja8Wim3Ojzd2GdF2QYJFzQ6OKPFhUq9RRB4uhwjV/6h31UKvU0DN6eIXQP1u7vF2KwrSBaIUKADavLejtDtYBHaPrtw6T1iRVLCqsPEzXpSt+LYD+Mxb1jB4atcY3+1Fuj+pPg6MBS3YuwYlDT0SxtRiqUBc4oTvYDfC+XDh3IZZ/vBwPzH0Asx6YBbVaDR2jAyuwiisW93XtQ7OrGQXmgn5zLOOl8QAFi4QkEgWLhKQwqRWqkBStUN1ysJj4pSSdvc0OGLUMsk3hV6SR2KjrdKGhy43NVe0ApPanAPDUU09h7dq1OO+88xK5PPywsxGMSoUROSaow/ilQNZwYH8cV0UIIQOM9yamSisa1Qlooc17pIo2pTh3/IJFzt077FRrgKFHA/tWAs4gwZPAA027Du4jksf1Bj7xFvh+MWi7W/erFCrqLaG37Rl+GjMBjd53LPL4rVdh9eL/w2VTTpVuV2sS1wp1/0bpOenCm68IAHWNFCwSQpKHRq0BJ3IQoqlI76NnYNTolAKMYPPs5IrFSFuhqlVqXxvMivaKiPahNBwDgDp7Haw6K3RqXchgUafWwe61R1SxGE4IFo1ggZx8u47RgVH1bvlt0prg5t2KQ90MfQbsrLLXAugdLNq8Nug1UhWlsfviI5sncEA6f8t8GBgDxueOh0UXxnEIpPcx06fNuXwscuXNV+KFD17AlMun+G7ztUJV2H5/Xd06aFSasAPPWKCKRUISi4JFQlKYRq0Cx4sQhMSneW6vdACf+JUkn8YuN6wGDfRhzFckseXwSL8cCBDx4Ycf4oQTTkB7eztKS0tx1FHKh5HH2oqdTRieY0KOOfxqVofdhs425UPiCSEkafFs6gWLiSAKABtBCMd2t0KNV8Vi37Cz5GTA1Q6ULw98v7a9UotWeR+RsEVwMimSELOvul8BS354IVzPE7zGDHy1ZjvGX3wbGlvaMTQnC8ePG3XwdrWm+7Uc4KNpVwfQVglYhvaqqAyGZTk0tLbHd12EEKKARqWJeSvUngGQPIcwy5AVdPtoWqGqVWrwIo8fa37EJZ9dgk/2fKJ4H5EEq/tt+5GuS4dGrQHLB2+BadaZ4ebd6PKGPx85UMWiHMBGMsuvJ3m/NjZ4xaKdtUOn9l+x6Obcyluh6q3w8B50epTN93NyTt/fbV4b9IwejJqBoXtuc6DnUdlRiU8rPsXE/IkoNBeG/Xh9W6FuKduC68++Hg37G2DJsOCo43ufF9Ez0rkJpdWva+vWoshShExD4DmksSSKIhoONITekBASNxQsEpLCNIw0YzEeuaKb5bGmIvzwws11HwwqOJDfsK8Nj3+2PSmC0XhqsrlhMmigYehb7kBzeHmIoogv3nkFV1xxBcaOHQujMbyTZvHm9HJYV9mK4UPSYDVqw75fdWV5HFdFCCEKxKp9Kc9GVol3KApyFXtAnEua7xePq8f7ViwCQPbhgCED+O3DwMeFDb9JHzV65a1wtSbpo6NJ8XKjrlj0OqQQzpQrtXwNpbuKQRRFvLSyCX+6/WkcVpQPk9HPfeVgcaBD9rpfpY/WwrDfIxU1deB5uhiAEJI8NIwGvMjHtBVqz1l4jc5GGDXGoDPtgs2yC4dapQYv8Nhvk7rTVHZUKt5HJMHqAccBWPXWg5VqQY7JzFppdp4ctIazHjfvhlbd//ddOcByss5+tykh78ceopOBk3X6bYWapk0DK7CK1yG/F8J9LWR9Zyzq1VLFotw+NFBL1xd/eREZhgwcPeRopGnD7zDg4T2+Ks0DPxzAfdPuw5ChQ2C2+J+DqGWkr5VLwYVfnMBhY8NGFFmKfO+ReGttbIXbEYMLxgghEaOz3ISkMI1aDU4Q49IK9fudTbh6wXpUtTjC2t7lVT5jcWNVGz7cuB/1XYP7YKDZ5oFJx0DLDEw7CHJQh82B1i+fx7IFL2DOnDl47733YDAMTL//UH7e0wIvL+CwIWZoFYTO1RW747gqQggJk6MFeCofqN0Q/b6oYjF8EQWLHoDRxSdY5L0A16cFmEoNFE8CatYBtnr/92vcLoWP+nRpfUq+/vruE1aJqFhs3CGtNX1YeBWgvBcsL+KWrzy4871tuPfaS7D05UdgNvm5yEnNSAHrQP9fOLAZ0Bql5xSmHXtq4rggQghRTqvSxnzGYs8AqN5RjyxDFnRM4PEmHt4DjSq6Vqi8yEOMonI9kvvW2+th1pmhZbQhqz7NOulncKMjvJ/BXsELQRR8YVVPek13IBiihWkocrAYzoxFf5WTJo10wVKnW1nloVXfHSw6FQaLPY5FurxdUsWiivG1Qu3y9K8G3dq8FT/W/oiT8k/CMEv4P68BwMt7wYgMGj5owO+v/Y6pV0zFM+88A3O6/wBQp5be4z0rK0PZ3rIdTs6JAktB0P8jsVRVXjUgj0MICYyCRUJSmNQKNT4zFu0eFiKALld4PfrlGYtKeTkeLDe4Tya22r1I02mgUdO33IH266aNcJavxd8en4fHHnvMb6//H3c3hR2gx9J3OxuRZ9GjKCv8qw0BChYJIUnC1SGFNAc2R78vgZVmy5HQlM4VFEWpfaqfE3ox4+9E3uGTAdYJ7Fjm/z51WwDrsIMVi0oqVrtPasIeSbAYZcVi3RapstAaZgsynsXWZjXe/U3Egkdm4l9/vx4ME6A1vq9icYA7eezfCKQXA2HOagKAHRXVcVwQIYQop1F3t0KNYTtpDycFhYAUpGXoM4IHi1z3LLsIr+NhVIziOX99KX3+Xt6LVncrrFqpYpEVgrdCNXV3DQi3Sk+uepPDqp7kCj0HG93v4r5gMUQrVAfr8Dtj0aiVAr1Or7JgUZ5xqLhisUewaPfafVWUcitUf0Hr55WfI1OfiaOGHOV7vuEQIcLDe2BvsKPthzaMnjkadz91NzTawJW18nu8Z7AeSll9GYwaI4otxWHfJ1oULBKSeHSWm5AUpmFUUsViHHI5N6tsp64Ig0Ve7NFGdZBqdXhh1DHQUMXigKmpqYEoiig56ngU3PgWTjzrT363q2iy4YZ3NuGZr3cOaEteQRDxw64mjMg1w2pQ1i5nX8Uu6I3KwkhCCImbaIMagCoWlVAaLMptZqNozRaS28+JvIxiaQ7hjk/8h8aN2w+2E+W8yoJlNSPdz9GsfK18lO/X+l8ByzDAELgVnmx/Qyt4rxvHFxmw77Nncf01fwl+BzUj/T8YyJBdFKWLA6zDAJ0p7Ltt31MNo35gKhIIISQcGrXUCpWP4ffQnq1Nu7xdsOqsflt6+ts+EmqVGoIoRFexqPDiFDkUs+gsvlaowYJFPaOHTq1DozO8i3vkqjd/r5tWrYUKqqiDRd9+vMH34+Sc0rZ9LjaWKxY7PB2KHlfP6KFn9GG/FrKegZ2DdUDLaMGoGN/z8BcscgIHo8aIdH26osdqbmiGwAnIK8nDqGdHofj8Yr8XW/fkCxYVdHlYc2ANSq2lQVsFx9q+8n0wpCVHNypCDlUULBKSwjRqFVg+Pq1QlVYgKg0ie3J5Bm+wyPICOl0sTDoG6ni0ICP9LF++HOPGjcNrr70Gp5cHY8rwu50oinj80x3gBRFtThbcAAaL2+s60WL3ojTbhDSdsl8+qyt2Y2hBUZxWRgghCsUiWBQoWAybvxAvGK57Pk4821L5adkFACg9VZrf17a39+cdrVK1oTlPCgiVViwCUtWiq015dV+079cDvwDWfCDEbKOfqjmM/8t9+NeSbwG1BrnZGaH3LZ+M5r3Bt4ulrjopoLXkS9WjYdpRUY1hudlxXBghhCijVWvBC9G1Ee2rb1CYrk8PGSz2rYZTQq1Sh2xFGorS+9Y56gBIz02j1oAVg1csAlII2epqDeuxXN3HIf4CV5VKBR2jU9RyMxAdo4ODCxEsslKw2PdrJM8rbPe0K35ci86CNneboha8nh7HInbWDp1aqlhUqVQwaAwhZ0WGy7XPhUf/8iialjZBo9ZAYw3vvIP8Hg838HWwDmxv2Y4Cc4GvonUgVJVXIa8gb8AejxDSHwWLhKQwDaMGLwjg4xCIKA0KPVFUHdq90bX7SGZtDunkkElheEQiM3/+fJx//vn4wx/+gGuuuQZ2d+BWvt9sb8CaylYYNGq4WT4u/48C+W5nE9J0DIbnKDvwtnd1orWpAXnDKFgkhCQJqlgcWCHmB/XDysHiALdCBYDhp0mh8baPen++8Tfpo2UooNEBgsKKRUCas+julN47SkQzY5F1Ay17pEBU62dGYrd3v96AP77rxNEjS3Dj+ccDKia8+ZaJCBblVsYZ4R9XeL0s9lTXIT83K06LIoQQ5bSMFpwY4xmLnLtXIJahzwi6vRxERjNjMeqKRYX3rbNLwWKWIUuq+hR4CAj+Glr1VnR4OuAVQv+8koNFfzMWASkQdLKxCRZD7cfFuaBRa/rNWEzTSMFip0dZK1QASNelo8PTAVYI/3ikb8Wi3AoVkKognZwzqnAZANZ/ux57n96LzKGZGHLuEKlFb5jkVqvhBr6bGjaBF3kUW4sVPU40RFFE9Z5qChYJSTAKFglJYRq11Ao1HqNY3KyysM/ljTxYdEZx32TXbJNOuKbpB+YAK5nZ3CwueXUN9jbH5gq8njiOwx133IFbb70Vd9xxBz799FNYLBbY3P7fxy4vjzlf/I4jh1lRlJUGDyeAi0dP4QC++70RI3PNyExTVkFS1T1fMa8gzNlOhBASb9G2lgQSW7HobAP2rFB+P6UVdrESos1XP3KwONCtUAHAlANkHQ7s+qx3ANiwXaqgTB8mfeS8yr/+eivg7lL+/osmWGzaIX3drfmAqv+v0YIg4JEX3sGMJ5dg+jFafPP6I8hK03S/9kkcLBqzpLA0TOVVB8BxPIZRsEgISSK+UCyGxxNe3tsrWMwyBP++13d7pdQqNTgxujmRSp9/nb0OVp0VRo3RN2MxVKiVoc9Ap7cTnjB+Bsthn17tvypez+jh5t1B1x3Oc9Izerg4V8BWuKIowsk5/c4n1DJaaNSayIJFfTq6PF2K2ob2fN3kKsqewaKbc4OP8DhTFEUseWUJ5t05D9ZjrbjltVugSdf4nXEZiNwKVQ6FQymrL0OmPhP5afkRrTkSzfXNcNgcyCukYJGQRKJgkZAUplGrwfEi+Dgkiy6FFYtKW6f2eqxBXLHYYpcOGi2GOFYKpIgDHS78WtuBNRURzEQKQaVSoa6uDq+99hqef/55MIwU5No8/t9b81dWoNXuwR9GDoHVqIWH5eMyq9Sfhk43fq/vQml2Gix65W1Q1QyDnKHD4rQ6QghRKBYhCM8N7Fy5nnZ8AvznSsCmbD4OuAEMf3pS2h7LFywmoBUqIFUtNu2UwkRZwzZpTqHWJLVCjSRYNlgBj0351yGaCtu6LVKgaPVf3adSqbC/oQXP3XoR3vyTATqtVgo+1YzfILIf+Sr/gQwWazcA6YWK5ivuqKgGAAoWCSExE0mg05dGJc1YVFrp9WPNj3jk50f8BlIeoXdr02AVi7zAgxM5aFTRBYu8wCOG3VxD2m/fj3R9OnSMzjdjMVSolaHPgM1rgzeMn1dyOKUP0G5bz+jh4TxBZ2MKogBOCH7OyLefAGv38B4IohCwctLIGNHlDXI8E0CmIRM2r01RxaLcClUQBbh5d6/XxqgxSgFpFBewNTc048+3/hmFNxUC3Yd/SgJvuRVquBWLaw+sRYm1BBa9RfFaI1VVXgUAVLFISIJRsEhIEvp2RwNmvL0h5HYaRgUR0hy/WFNagag0iOxpMFcsttilg+10ChZ97yk+hl/uffv24eeffwbDMPjf//6Hm266qdftDj/BYlWLA6+vqsQpI4ZgZK4FRi0zoBWLP+xqgloFjMg1Q61W1ianqnI3CoqHQ6OJ4wliQsihxa38JEovMZmxyCWuYlEUpGDL2absfgpOIMVUpBWLmjhWLHqChJ0lp0ih2tb/Hvxc/VapDao2TapY5NkIWqGmSy1YlYZwbHhX3/tVv1UKRA3WXp+ua2zFD+u2QKVSYdEz9+DeK8+ESm59ynulVqjhGOiKRYEH6rdI8xUVzETaUVGDoTmZMBkN8VsbIeSQEkmg05dGLQWLSgOZ7S3bsap2FZpd/S9+9XAHZywyKiZgOAYcrEKLpmKRUTFSODqArVAP2A7AqrNCq9ZK7WSF0O1kM/WZsHvtYVXpyeGUgfH/M0PP6OHhPeDE4MFhqMeSKx8DBZDyvMBAlXtGrREO1hE04PQnU58JO2uHS8HxhdwKVf7Ys5rToDEEfR6BdLZ1YsPKDVCpVLjzH3fistsug0ql8oW/kQSL4Xx9m5xN2Ne1DwXmAhg1gdvEx1pVeRUMRgOycugiJ0ISiYJFQpLQTe9txqryZuxqCH6AzXSHEp4oqgUDcSucmRhNxaI9QFXZYNBi98CoZWDUpX4r1IZON5pskbcQc8X4fbp27VpMnDgRd999N0RRPHgSrwe7p/9jzvl8B6wGLU4cnol0oxYGrRpeLj6zSv1Z8XsDSrNNyLUoPyFXXbEbJYePjsOqCCGHrGjn2igJQfasACpX9v98IluhypQGdpwX/XrRD0Qg5FX49ZLbWPlp/RUzweY+6s1A3hHAnm+kUI/zAq0VUptUrQHQ6KXXTemV+YZ06WumtLVpNK1Q634BrMMAXZrvU7/+XokT/3IXbpkzHxzH9z8W4bwKKha7T/pxAxRat5RL//+twwAm/BOOO/ZU48gRJXFcGCGEKCcHJ+HM/euLFVi/gaRX8PoqFrMMWX7baMrkkCjaVqjRzlhU2gq13lEPi9YCLaOFVqUFL4ZuJ5thyAAncmhzh74oy1exGOC1MzAGePjgFYtA77mEgfYTrIWo3JI1ULCYpkmDk3WGDDj7Stengxd5tHpaw76PHELLwV3PKkoDY4CH8ygKFqv3VOOWC2/B3Afnwuv29joWkYNFub1pOFQqFbRqbVjB4rr6dQCAEmtJv9mV8bSvfB+KRxT7PQdECBk4FCwSkoTkw8hA8+Fkmu5g0c3F/mSc0qCQZiz612zzwKxnfF+rVPbIst9w13+3RFwh64miqrWvJUuWYPLkyRgzZgy+/vrrgAeUfSsWv9/ZiB93N+PMMTkoyZSuzjdoGXh5IS4thftyeXmsrWzFYTkmWI3Kq1irK3ajdCQFi4SQJMIrCEHWvgSsfApgu09U7PpC+ihwiZtZKAuz3ZMP72cu4EA8B87VP9AMxlexGMdgMVjFIgAMPx1orwJq1gEtu6WvtyVPCtsYfYQVixZpP652ZfdjIwwWOS/QvAsw5wIaKVhc9t1anDrtPuTnZOGHRU9Do/FzERkvB4vhzFjsvn8EJ8UjcmAzABWQUazobjsqanDUSAoWCSHJxRcsRtCqPFCVnoc/WLGYrk8POqdObm8pV3tFQq1SS4FSFL+WKgklOYFDs6sZZp1ZUcViuj4dANDoDN1G3sk6oVPrwKj9X2it10gVi6EqTW3BLmJCj8rHAIGcXDkZqBVqmjYNTs6puFJQfi0a7A1h30cO+3wVi0zvVqhuPvwZi5tWb8Ktl9wKnUGHF//3InSG3u9RX7CosCW+Vq0Na4ZmWV0ZhpmGISctR9H+o1VVXoXho4cP6GMSQvqjYJGQFKZRS/+Fown1AlEcLEZRjeYcxDMWm2xumA1aaJjU/3br9PCobXPCHiLwDiRWFYsvvvgirr76alx55ZVYsWIFhgwZEnBbR4/3lpvlMfuzHRg91IJxBenQa6VfboxaBl5OAMfHP1gs29sCDyfgsBwTtArfE10dbWhraULpCAoWCSFJREmVnlzlJ7cRtdV37yOBrVBlSis3BT9h2ABcoALWLQVqYW8/EBWLIao9C0+QWp5u+wBo+E36nLVQ+qjRd1esRhAsAoC9Sdn9Iq1YbN4pBaCWfECtxsKPv8Wltz+JqaedgFWL/w/D8rL938/XCjWcYFGuWBygYHH/Jun5pIXfRszt8WJPdR1VLBJCko4vWIygewArsH4r5nruy6qzBgylgIMhERNu+2s/5IpFAVEcEyk4FGlyNkEQBV84Js9YDDWnMl0Xfpjm4lzQMtqA1Wy+isUQxwH7bfuD3m7QGODlvQH3I7dCDVQ5maZJg4tzgVVywRx6hKyO8GZ196yOlSsC+waLwQLSnlZ9uQoPzHgAR044Eq988gqGFg3tt41cwaukYhGQ3guhqkRFUURZXRmKrcUwa82K9h8NQRBQVV6F0lGlA/aYhBD/Uv9MNyGHMA3T3QpVYdvScLgVVpdFEw66vAk+mRhHzTYPTLrBUbEIAK0Or+I2ubJYBeB//OMf8eyzz2LhwoXQ64OfKO1ZDfvm6r2o73Tj9BFDMNR6sP+/XqPuDhbj/z787vdG5Jj1KMpIC71xH1UVuwEAJRQsEpLcXO3A7HSgbV+iVzIweDb8QC3QXEKRl8LFRFLaYhTwU7E4AMEi51ZW3eerWIzjbF7WBQSbU6zRA8MmABXfS1VyplzAmHFwXZEEy/ruOYf28E7k+XARzlis2wJA5QtETzthHJ6442p88MKDSAs2a1BJxaJ8MlphtUTE9m8E0gsVzVfcvW8/BEHAkSOUVTkSQki8aVRSsBgqDPFHhOi3haqX9/oCKYvOEnQfsZixqFappRmLURxPKKlYrLPXAZBCU0Cq5gtnTqW1+2dwgzN0sOhgHdCpdQGDRaPGKAWCIY5tamw1QW83aAxBAzn562jQ+P+ZbdKa4OJcyluhdoes9c76sLb39JhNLreJ7bkmOVgMZ9bjEccdgWm3TsNTbz8Fk8X/z3I5HA8WivujY3Qhvy6VHZVodbeiwFwQ8HWNh6YDTXA73RQsEpIEKFgkJIUdnLGY+FaoSoPIngb3jEUv0nQaXwicKIIgYkddZ9T7cXp5tNkju5I+morFhoYG3HjjjXA6nTjqqKNw3333hdVP39n93mqxefDKjxWYdHg2Rg21QN0j6DVoGYiIf0teURTx3c4mjMg1IT0tsjaojEaDguLD4rA6QkjMVHwvffzp+cSuY6AomY8ocAh4KX04lWTyNlG0GQu87wgCp34n3gYiWPQoq+5jnQBUUsVgvHBhVFEedgbgaAJ2fAJYhgLa7gtsGJ30fJRW6fkqFhUGi2zotl5+1W9BG5ODv72wDJ02Bw4vzsf/u/lKqNUhfp1WEizKcw65CNeoBOuSWrv2/FqEYceeagDAERQsEkKSjBzosYEuYgrB0+d7LydwUsjWHayEanHqb16eUnKwGA0lMxbrHFKwmGnIBCCFs+FULGrVWqRp0tDkDN01wMk5g1Ys6hk9vELgSkM50K211QZ9HANjgEcIXPno4By+7fwxa81wc27FrVAZNQOT1oQWV0tY2/cMvuW/p2kO/hw2aqWgNVDA6bQ5MffBueho7UDO0Bxcd991YPy1Yu/mFbxQQw2tStn7UqvWwst7g76f1tWvg0atQbF1YI8J9pVLF29SsEhI4lGwSEgKk6vgPPGYsahwn9GERp4YtchMRq12D4w6NbShTjzF2aryZlzw0s/4PQbhYm1bBFUdUB5Wy7Zt24YTTzwRn3/+OWpqgl+p2JccFi5eVwOjjsHE4VnISOt9clWvkb42jji35N1R14UmmwelQ0wwapW3yKmq2I3CksOg1cXx5DAhhCilpNos2MkaNoxgT56npwu/wipsngh+tvVrhToAHRh4ha1QOTfAaA/O74sHzhV6TUPHAToz4GyVKha13Z0D5MBTaStanQmASnkr1DDmBflT/usanPTKASz98RfsrQ1/jpLUClWDsH7tlisWI2jjp1jDb9LXzFoAKDhG3VFRg4K8bGRYB67lGSGEhEMOFsOZC+dP30pHudIr0GzAvuTHVTrLridGxUgVi1FcqKS0YtGkNcHUXbmuUWvCqlgEpMCvzd3Wq6JtV9surK9f32s7ecZiwFao3S1MAwV6cqArV1cGotfopf0E6IDh7D7OCFRZl6ZNg5t3R9RK16qzos3VFlaVobvHhXRuzg0VVL1aoRoYA3iRh8vPcbGr2YUHr3gQP37+I2r3Bg9aZV7eGzTYDcRXsRjkvbCmbg2KLcXI1Gcq2ne0qsqrYDQZkVeQN6CPSwjpj4JFQlKYPGMx0sAmGKVhXzTBopcXomr3kax4QUSni0WaTtOrQi4R9ne4IAIob7RHva/a9siCxUhaoX755Zc45ZRTkJ2djQ0bNmDMmDFh39fD8eAE6X1l93CYPCoXpdn9T0YbukM+uzu+AfcPu5pg1DI4fIg5rGrLvqordlMbVEJI8lFSschzgYv6wqlYjGewyIaYE+hPQlqhehS2QnVK4Z3CE0rK1hRG2KlmgKKJ0t8teVLYCRwMFpW2olWpAb0ZcIZXIdBrrQr9+N13OOnpTWA0Wqz/71wce8Th4d+ZZ6W1hvNzX26fNxDB4v5NUuVvepGiu+2oqKb5ioSQpOSrWFQ4I0/Wt2JRDgqLLNL3ySxD8Hm0vorFKLoqyDMWo2qFquC++237kaHL8M3fk9ceTjibrk9Hl6erVwvZyz+/HDd8ewO6vF2+z/kqFgOcfjZoDGAFNmSlabOzOWjoJ4dzds7/+Q4n64RWrQ3YqtakNUEQBdhYW9B1+GPVWdHp7Qzrdeu5jYtzwaAx9FqTHHzavL3XsX/7fqx/aD1cThdeXvoyxp0wLqy1eXkvtGqt4vMPOkYHVmADViyyAotNDZtQZCka0PmKgBQslowsieicCiEktihYJCSFMd3tNeMRLCqtWIxmDR5WAC8MvmCxzeGFIAImfRyrBMLUYpMOYBu6Ipwt1EOkFYtKw+ddu3bhwgsvxJlnnomffvoJhYWFiu7v9PR+vGOK0n0hYk8DVbG44vcGjMg1I9MU2VWs1ZW7UUrBIiEk2QhKKhaDnDRSEiwqmAkXNqUVc4CfYHEAKhYVB4suKcSLZ7DIesKrohx5DmDMBNJ7tMzSdF+lH8nrr7cAzvbg8x37UthmtLa2FlPOn4rj8tUomzsNh5cqOxYBz3ZXiyZhsJheCBisiu62o6KG5isSEoLda8c1X10zKC+cTWa+ikUhsorFvqGQ/O9iSzEen/Q4jhpyVND7yxWPuihaj6tV6rCq3oJRUrF4wH4AFr3FFyjKbVzDCcgy9Bno9Hb6Dft6tgV1sA5o1cFboQKAwxv8Aq82d5tvJqE/cotTu9d/sOhgHdAz+oDrkNuRdrg7gq7Dn0xDphSyhvHzu1crVM4NPaMHozp4jsKokTo69Aw4W1pasPiuxUgbmobnPn4Ow0cPD3ttEQeL6uAVi9uat8HNu1FoLoyq/W8kqsqrqA0qIUmCgkVCUpjcCjUZKhajChZ5Afwg/MWrxS4dkJt1kQ9wj5Vmm3QA29gV/dye+k7lV/sD4QeLPC9tN2bMGHzxxRdYunQpzGblV8H1nN15XEkm8tONfrc7WLEY2dWt4WiyufHbgS6UZqfBrFf+fmhvbUZHWytKDqdgkRCSZJRWLAY64aWkFWo82osrrZgD/DzvOB/LMLruYFHBhTBe1wBVLIbxMz6zBJj6LJAz8uDnIm2FCgB6K+DpUtbeNMxgURCkipGioiJ89vzd+OqqNGQUjFC+RjlYTLaKxQPdwaKC6l+X24PKmnocOZIqFgkJ5u3tb2NL8xa8s+OdRC8lrmxeG87+6Oyog7BY0ai6g0WFF5D8dOAnAL1bVAIHwzUto8UQ4xDfHMJAem4fKV/FYjStUBWcV6l31MOqtfratyp5DTP1mbB5bSFDSBfnCi9Y5AIHi4yKQYeno9/XyN9++lb6yRysAzomcEvWtO55w50e5aNjMvQZsLGhXwugTytUXgoWe85r7hmQiqIIQRAwZMgQXPH0FTjuseOQnp2uaG1ewQuNWhNZK1Qh8IzFdfXrkKZJQ6FF4QVXURIEAdV7qhWFq4SQ+KFgkZAkxvLBT9T5gsU4zFhUOrfRzUa+Bi8XecXiLUs2Y3V5c8SPHU9ysGiKIEiKtcbuikV5TdFotnvhjeA917eC0J+Ojg5MmTIF8+fPBwCcd955YJjIKj57ViCqATAB2tHKFYs2T/wqFlfuaoYKwIg8U8B1BFNdsRsAqBUqIST5KJqxGKxiMYyfT66O8B4nEkGugg+o34zFAQgWea+yYJF1xL9iMZxWqDKdGeg+eQfgYLAYyetvSO8OFhUEcWFUxtrtdlxyySV45plnAADnDhegTR8qVVsqxXuVt0Ll4hwsOtuAjmrAPBQIMGvKn52VtRBFkVqhEhKCXOETaGbcYLFk5xI0OBrwxrY3Er0UAAcrFpXOyNvZthMA0OzufU5BDonksC0UeV5euNv745uxGE0r1DBDSUEU0ORsgkln8r12SuZUZhgy4GAdcHLBLwwKFSz6gjQ28MgWq84KJ+dEu6c94Da+VqgB9mNn7dAxul7VgT35KhY9HQEfI5BMQ6b0WoRxkVTP0FauWOz52sitUFttrZg2bRoefvhhAMBhJxwGRqf8vIhcsRioFW0gcivUQBWLaw6sQWl6Kax6ZZ0PolVfUw+P20MVi4QkCQoWCUlCcmAYKojRMNJ/YaXVheFQGhxFU7EYTbD41W8NuHbRxogfO57kEC/dOLCtIfxp7g4W2x1eCFG2nW13eiOaqRnqPhUVFZg0aRI2b96MI444ItLl+TjCDAr1csViHIPFFb83oiQ7DXkW/1WToVRV7IZWq0NBMV2ZRwhJMopaoQb5OcCG0wq1LbzHiUQ4FZN99T3ZEu9WqBq9FFQFOMnjF+uSZunFM1hUGnb2pOkOFj2RBos2ZUFciJOl+/fvxx/+8Af88MMPOProo6VP2hul6siegWi4BC+gYhDWr93q7hOGIeZMRe3AL9LH9MLwAs9uOyqqAQBHUCtUQlLCG1vfCDm3LhpygJUsLV+jbYXaN5CUAyB1mF0SPLwHWrUWjDryMSixqFgMVGHWV4urBazAIl2X7muTqXTGoggRzc7gF3m7OFfQijl9d0v0YKFchj4DAFDTVRNwG3k/gSoW7awdOnXoisVIgsV0nVRF2OhsDLmtiz94vCNC7Bd2GjVGcJ0cnpjxBD755BMcd9xxitfTk4f3QKPWRDZjkfc/Y9HmtWFH6w4Umgth0sRhPEEQVeVVAIDho+i8CCHJgIJFQpKQjgnvv6Zc+aS0ujAUXhDBKQyfolmDl+MVjcfpK1l+memrxeaFXqNGWhJULMohZ6eLgzdEJWwo7Q5vRGG2M8gMw9WrV2PixIngeR7r16/HGWecEcUKJfYwKiQBwCDPWIxTsOhmefxc0YLDc8ywGiILmasrd6Nw+OHQaBMfUhNCSC+KgsUgrVDDqVhzJluwmIBWqDwr/QnXgFQsKmzP2pOvYjGCVqiGDMBjV9gKNXAIuWnTJpx44oloa2vD2rVrcf7550s3yF/WSF5DXyvUMLYdqFaoBzZLlaPWAkV321FRg+JhObCaIwhYCSEDanfbbryy5RU88tMjiV7KgPEFiwpbocr6BYvdP1vkNqGhyAGO0paTPalV6oAVYuEKN1iss9cBQK+KMw0Tfjgrh30Njoag24VdsRhgNmLPNdbYAgeLofbjZJ1BW6HKsw0jaYWarg8/WOz7/uy7pvqKelQ+UYmm/U1YtWoVLr/8csXr6ckreIO+/oHoGT04gfPb6nhjw0YIooBiS3FUQXokqsqrYLKYMGTokAF9XEKIfxQsEpKEtJrw/muqIIWLsQ4W/VUf/ra/E6UPfokfdvk/WIqmatLLi4NyxmKz3QOzQQNtBK0vY63NIf2i1OVmo36/2NxcRNV9gSoWRVHEE088gWOOOQbr1q3DyJEj/W6nlDPMNWoYNRiVCg5vfOaDrNvbChfLY/gQE3Rh/t/uq7qinOYrEkKSk8CF3wI0WOWEkhmL8RDJich+rVDjXLHI6ACIyuZBDsSMRUFh2NlTd+syeAPPVgrImCHNZlQSCgcJIZ955hkUFxdjw4YNGDdunPL1+H08tvu1D+P1l79G8a5Y3L8ByCgG9MqqDHbsqaY2qISkCFf3xTpuPoxuAElIDtcqOirCvo+vFaoQ2cUZfVvXykGjXMUXiptzR9Rysie5YjHccNCfcGdeyiFYpv5gm28lMxblKr1wgsWgFYshZiMCgElrgkalwX7b/oDb6LovVLKxgWcsBgvY1Co1DIwhqmCx3lEfctu+1aA6de+KxWVvLwOTxuCGN2/AiSeeqHgtfXl5Lxg1A1VYVzj1Xhcr+K9YXFe3DtmGbOSb86Nen1JVe6pQOqpUcQUmISQ+KFgkJAmFW7EISG1TI5l3F4zfYPGAdIC1eneL//tEVbEogIumZDFJNXV5YNZrfC1rE8Xh4eBmBZj1GtjcHDxc5AGajlFDBHCgQ3llR985nIIgoKamBiqVCh999BG++eYbZGVlRby2vpSEnzqNOqwZkJH4fmcTskw6FGdF1gZVFEVUVexGKc1XJIQkI0UzFoOEkGHMvoO7I+xlKca5obh9Qr9WqANQsQhI7T/DxbmkSrh4n4BRsqae5OcUScWo3gpABOwKZm33OVkqiiKqq6UWnwsXLsSPP/6IvLw85WsJRGDDn7GoUknVjVwcg0VRlFqhWvIBncJgsaKGgkVCyICQQ6YubxcAhFXFJ4dibIQXuvStWJRDWTmwCsXNuSNqOdmTHHpFM5+TE8O7rxxAapmDwakcooYzp9KsM0MFFZqcTUG3c3PuXo/Rl9zC1M4FrlhUQYVMQybq7HUBQ1eNWgNGxcAR4EIlB+sIOmMRkKoWbaxNcUcsk9YEtUod8rUADob+Mi0jhdEN+6WA9s5/3okjHzsSmuzYdL1iBTaiisVgMxbX1K1BibUEJu3AtkEFpIrF0pGlA/64hBD/Eh4svvrqqygtLYXBYMDEiROxYcOGoNvPmzcPo0ePhtFoRFFREe6++2643al5FRYhgchVTYHmDvY80NHEo2JR4f5YPvIZifL9B2GuiGa7GyadxjczM2Hr6J6vmGfVw+7hogqi09OkXwpqWpW3LOsZWDscDlx++eU45ZRT4HK5kJGRAZ0uvF/awqWktaleo4YrSKvWSImiiO92NmJkrhnpxsieX3tLM2yd7SihYDFu6FiEkMiJSlqh8kG+z4YTLEYaXoWDZ5XNLgT6B5EDUrEIIEi7sH5YV/xboQKApyuy+/mCxUhaoUoVAnCEbj0GQPp69ThZ6/F4MGPGDBx33HHo6OiAxWKB0RjZRUAB8aw0YzHcE80qJr4Vix010qxS67CDr30YHE439u1vwJE0XzGu6HiEEEnf8CjUrEhREH1VWeGEYv70fQx5P3IlZCguPnBl3j/K/oFbvrslZGAVk2AxivvKwaI7jGMytUoNi84SNEzjBA6swEKnCvzzRqfWQQVVwEBQlmXIQqu7Nej8Rz2jh4P1vx8n54RWrQ0a/Bo1RjhZZ9jhrEx+LZpdoS90klvmyjSiBi8/9jKuP+d6tDW1QW/QI82cBifnjMnIH07goFEpb9GrY3R+W6E2OBpQY6tBgbnA1z52oPA8j5qKGpSOKh3QxyWEBJbQYPGDDz7APffcg8cffxy//PILjjnmGJx77rloavL/g+n999/Hgw8+iMcffxw7d+7EW2+9hQ8++AAPP/zwAK+ckPiSg8VAVXyVlVJLkJa6WmgY9YBULMZy+768vDAoW6G22LxI0zHQMIkNFuX5inlWA7ycgE5X5CesMozSLxu17cpPAMqtUNtbGnH66adj+fLlePXVV2N/Eq+bktameq0abja6gNyf3Y021He6UZqdhjRdZPMHqip3AwBVLMYJHYsQEpkDdQcAAC6XK/xALVhwF06wGE+8p39r01AiqbKLhkYOFiOpWIzTr32RVFH2pFZLVXpsBF9/Q/dcKFvoCgEAvdqgtnQ6cNZZZ+HDDz/Eyy+/jIyMDOWPH9Zjds9YDJdaEzyAj9aBTdJHa6Giu+2slOZaHTmSKhbjhY5HCDmob3gUKCzr6OgAANTslr5HadSaiFuhBqpYlFt1huLhPAGDqw/LP8RPB34K2TZUrqYLFaQGE02wKM9YDLeFrlVnRYenI+B65eq8YBWLKpUKOkYHZ4hZy9nGbLS724OGngaNAS7e5TeQc7JSsBisYjFNKwV6kbyGVp0VHe6OkBWzbt7tm9vJO3gsf3Q5vvzPl7j5/92MrNysg8+DdSkOOAOJtBWqCBEuvvexblldGVRQodhaHNU80UjU19TD6/FSsEhIEklosPj8889j1qxZuPbaa3HEEUfg9ddfR1paGt5++22/269duxannHIKrrrqKpSWluKcc87BlVdeGfJKPkJSjdwKleP9hxxer3Sw4nY7oWVUYAUBQgwDEeXBYnTBJssL4AM811TW6vAgTcdAq05scbhcsZifLg00b7JFfvJWp1HDqGVQ16F8H26Wh7exEv/42yVobGzEzz//jAsvvDDitYSirGKRgZuLfbD4/c4m6DVqHJ5jjrgtTnXFbmh1euQXlcZ0bURCxyKERMbr7T4BJ7DhBYuCEHg7lTp0sBjPsAUAOK/yisW+VXYD1gpVYcViPINFjTwjMYpqUrU2smC5e6YR7GFWLHY/xs5mHhNveRXl5eX48ccfceWVVyp/7HAJCoPFeFcs7t8MpA0BLLmK7rajQjppP/awonisioCORwjpydnn52ugoIdjpc97XdIxCaNiIg7l+gaSXt4LNdRBg6iefLMEg5xmDRUU+SoWowiUhChaQckVi8GqAnsyaU1wsI6AYZr8dQw1p1LH6OAKcbFWrjEX7Z72oNvpGX3AQC7UrEegO1hkIwsWM/QZ6PR2hnzt3KzUMtfb7MXeJ/eicVcj/rX4X7jgqgt82xgYA9y8O+x5maGEel/6I7cA7vt6l9WVYZh5GIYYh8RkbUpUlVcBAIaPHj7gj00I8S9hZ7u9Xi82b96Ms8466+Bi1GqcddZZKCsr83ufk08+GZs3b/YdLO/duxdfffUVpk6dGvBxPB4Purq6ev0hJNkdrFgMfoKKY73QMmqplWgMT2YpDQqjrVhkeTFpKharq6UTJ3U1VVHtRxBEtDtYGHUM1Aluhdpi94BRq5BnkYLFxghCwZ4y0rRosrkVh3BuVoDAejEkvxAbNmzA+PHjo1pHKDa3slaoHpaPebC44vdGjMg1I8sUeZvXqj27UDR8BBgmsopHEhgdixASPZUYJDDsyXeiz8/3WTUDsCFOYrk7Fa9NEcGrvGKxz5ycWLVCbeyuUNq970DvGyKpDmTdcQ4WpWMLuKL4vsboIgsWNXoplHSEWbHYPV/RwwO5GWasX78ekyZNUv64SvCs9PqHSx3vYHEjkF4EKJyLtH1PNUoL8mA2DWzbs0PFQByP0LEIUarL24WarpqEPHbf6rVQQQ/ffT5Co9ZE3Aq172PIswHDrcqSW1wGu5hUngMZiPxYkc6JBMILJV2cy28LU3l9Xt4Lu0O6iGn/3v0B92PSmuDknFFVLALdgSDvCjg/EQCGpA0BJ3BocAWu+gwUyImiCCfnDFl9atKY4OJcEYXTGfoM2Ly2kMGi3DJX5EWoDWrMfH0mJpwyoffz0Bjg5txhzRYNh0alfPanL1jscawriALW1a9DsaUYFq0lJmtTYt/ufbCkW3yVnYSQxIvNNNgItLS0gOd55OXl9fp8Xl4edu3a5fc+V111FVpaWnDqqadCFEVwHIebbropaLuPp59+GnPmzInp2gmJt4MVi8FPUPGsFxq1CiwvIpZ5iMdPUBgsuIw2WOQFMebtXCO1f/9+AGlobqyLaj8dLha8KMKkT9i3WZ9muxdmvcYXbjXZIvtlS5aZpkOr3Qs3y4f1/ERRxAcffACX2wxD4Vg8dOMHyM/PByDNahyWYYCGif0JT5sn/F8IDFo1PBzf3X44NgFeq92DrbUdOP/ofFgMwX+ZCqaqYje1QY0TOhYhJHoqkQ8vUAt2kkyt6dWm0i9Xu7KFKRVJxaK371XzsTkYa2xsQB6A+uY29Prur4lgxiLnBpgBqFiMdMYicDBYFMXwZxEC0rZ6C+BsC2vzjz5eigs4EeOHMlj7ys1QlZZGtt6widJMxzCrXQB0B4uc8tciHDwHNGwDDp8M6NIU3XVHRTXNV4yjgTgeoWMRotTiHYvx5b4v8dGfPkKaVtn3jGjZ+/ycCxWWcZx0u0atibjar9+MRcGrKJBxc+6Qs+xChZRKKhbvX3U/zi45G2eXnt3r8z0D0nZ3O/Z27sXezr3Y17EPFR0V2Ne1D42ORogQYdQYe1VkyrP/PLwHnZ3SBV2d7YEv7DJrzajuqg4YxMkBsdz6MxA9o4eH84AXeKgDnBfINmQDAGq7ajEhd4LfbfQaPTy8p18g5+E9EEQhZMBp0prg5twRVSxm6jNh89pCBttbftgCVYEK+qF6HPboYRg2fFi/bQwaA1pdrVG1te2JUTPKZyyq+weLe9r3oN3TjkJzIfSa8FoEx1JVeRVKR5VG3AmKEBJ7ie3Pp9DKlSvx1FNPYf78+fjll1+wdOlSfPnll/jHP/4R8D4PPfQQOjs7fX9qa2sHcMWEREbLhFmxyLHQMmpwsa5Y5PqfWJPbaVqN/YMkV5TBorSPOLc4G2DyXENThHP1Yqmpyw2zXgOLUQO1CmiMohUqAGSbdOhwsmEFyl6vFzfccAOuvPJKtO2WrqiWDwR5QcQ581bh9VV7o1pPIA4PF/YkAYOGgSfGrVB/3N0MEcDhOSYwEVatiqKI6srdKB05JmbrItGhYxFCelOHGyzKJ538fZtVJUGwKHildq1K9K2yi1HFYkCRtELl3ECIE3pRka/+VxJ29tuHNrIZl4AULLo7ggbXPM/jrrvuwuXX3oqPfpe2G5CTUvLzUdISX56xGI/3UvNO6f1gHaasihJSsHgUzTRKKkqPR+hYhCjl5t2we+3o8g58daud7RMshqpY7D5/wagYsDwbtPItEFZge83mkysQw20h6eE9UoATZHsmRGtsOeTjwmj//tOBn7CiekW/z8uh5Cu/voLTPjgNM7+ZiX+U/QNf7fsKre5WlFhKcE7JObhy9JX429F/Q7Yx23dflUoFRsWE3QrVrDPDxbkCfn3kUEqufgtEz0iBYLBAVV5nsCpaI2OEh/P0W4+D/f/snXeYXFd9/t/bp23TrrpkSbZcsDEYMNhg03sSSCiBGJsOCQT8I3RTDKGaEqqxSeiYUBxaaA5uuACWJXdbsrq0atvL7E67/f7+OPfM3Llz68ysdmWfz/P4WWvmlnPL7j33vOd9vxXSjpj+UNzxRNGf6SeCrBYsxNq2jY9+9KP4+Yd/jvHbSYQ7x3GQxdY2ZcUsVKs9gTOIuCjaIOg189a0vHP0Tki8hJN6F2eiERUWGQzG0mHRrDRDQ0MQBAHj4801McbHx7Fq1arAdS6//HK89rWvxVve8hYAwNlnn41KpYJ//ud/xkc+8hHwAS9tiqJAUY7/TAoGoxPqUagxdQct3YCY545LFOqRGTLbrC/b2inptMYiAJTV7sQ8LBWmXCG2R2nfqdYtJkoaCooIWeBRUERMl5O9KIQxVFBQrE3HCsrT09N4xStegS1btuB7P/gBPrGzOYe/qptQDRv3Hp6B4zhdH+SraBYUkYeawA2rSN0XFm/aOY6TluWwqrf92LDpiTFUSvPYcApzLC4ErC/CYHQOj6RRqPSZERKFahlE2AsTYRbcsZiwVmTTOv4o1AWOdecE8l9SEc9xXMfiAvZFBAkAR+JZM31tbkMGLL09MS3TS2JyLT3wOOfn53HRRRfh+uuvx1Wf/RAu0a5qr43tQMX0thyL3UtQqHPsHuJcTTkgWCpXcXhkkjkWF5Dj0R9hfRFGHF/Y9gXMarP47IWfbUwEdawmse14QYUgSlw0KK21KPIiTNuE5VipHVpUkKTinmqqsdGmXlRLhSIokct307HowIFqqbAdu2m7VFQ9PH8YK3Ir8MINL8TK/ErkpTwUQYEiKJB4KbSdIi8mjmLNS3molhrq0qM1FuOExYyQIU7DiAlGWTGLrJjF0XJ4NGtGdKNQfY7FejtihMWcmINu601iWlL63LrPY9UxnDHYPCm4Wq3i9a9/PX75y1/iaW99Gvpf1I/DJSKQBsWzZsVsoPOyXcSUk4mARnytN5b4jpE7cFLvSejP9HelXWmwTAtHDhzB3170t8d93wwGI5xFcyzKsownPelJuPnmm+uf2baNm2++ObTWRbVabekg05pTi9HZYTAWikaNxegBlkaNRaergogW4Fg85AqLXIAHrNMo1G5tYykx6Yp3fbnFFxYnSxpysgBJ4NGblTBbNWJjdqNYlpdgWA7G58MFypmZGZx//vnYsWMHbr75Zrzi1a9pWaaqk2s+UlS74nr1U9bM+u9SHFmJ76qwqJs2/rxnEqcsz6M30/4cnuF9uwGARaEuEKwvwmBEQAeczOjJKALsZE4//yCVdx1ejBeW1GL8PjrBaicKter74Dj8DRAVwPBHsIZAB8aEBZ5LKiqAXolfLgxBbi+KFgAy/UTUDLhPK5UKLrjgAvzlL3/BH/7wB/zrJf/QfhvbgTpO0gzocSIR4RfieXL0HuJWzA2kWu3h/WTw86zNG7rfJgYA1h9hLA32z+3HgeIBlIxGHV/LtmDj+JcsaREWY2reNUWh2mZbvwOmbTY5HamwmKrGYkx0apz7sS4sJnSqBYlPdF0HDrJCFmcOnokNvRswlB1Cj9wDWZCj60DyInQ7WemUvJSH7dihrlbqWMwImcjtUMdinJA2oAxgvDoeen7qgpxPoKxHsga4A73QyN8w12EUfTIRFscrzRNEdF3Hs5/9bFx33XX45S9/ibNeeVaT0JoVWychZ8VsPRq2G7TlWHRFWCrK6paOe8fvxbrCOuRT1mnuBseGj8HQDeZYZDCWGIsahfqe97wH3/72t/HDH/4QO3fuxNvf/nZUKhW88Y1vBAC87nWvw4c+9KH68i95yUvwzW9+Ez/72c9w8OBB3Hjjjbj88svxkpe8pN6JZjAeCdAai0aM+EOFRRKF2r39BzkQD8/4B88aUFGoE79ZRX+kRaHqkAUeeXnxayxOlTXkFAGiwKE3I2G+ZkDvSFgkncwjEffEwMAAXve612Hr1q248MILoeqtneKKRq75+LyKitZ9YbGSQljMSAIM046NH07KtoMzqOgWNg3loUjtP58O7dsNJZPFqnXMJbBQsL4IgxFCzOxyCschun4ixT8o6P23IJJtRAmLCx6FaqSP4mxxLB6Hwdc0Ih4VIBcyChXoXFgUFSLstjOAlukjwmKAWyKfz+O1r30ttmzZghe+8IWt0bULDb3HU0Wheh2LXeboXUDvOkBONyC4Y99hcByHM05e1/02Meqw/ghjsTFtE45vgozpmIljMTvB73irGJUmcTBOWLTc8QiRF3HvxL2YqE6kboNhG00iqmqlcyxqZnwUahxphEUOHDRTq4uh1GnZqctN5NIJiwAwowbXOk4ahZoRM4mExcHsIGZqM6H3ZFbMQrf0lu0kjULNiR0Ii9SxWBlr+lyWZVxyySX485//jJe97GWomTWIXGOMKCsEC4u6rSd2jsbRjmORXrOaRa7hA5MPQLVUnNRzUltCZacc3HMQAJiwyGAsMRZ1xPvVr341Jicn8bGPfQxjY2M455xz8Mc//rFetPzw4cNNs/A++tGPguM4fPSjH8WxY8ewfPlyvOQlL8FnPvOZxToExqOAa7YM4+pb9+OODz4HfJt10tJCxRAjJgrVMHRkBA6G7XR1ZmqQe5DWWIxaXhTaPz9V7REmLJZU9GTEjs5JN3AcB9MVHWet6YXI8+jLSjg8U4Vu2si1Oc444K54dLZVWPzOd76D3t5evOpVr8Lll19e/zzIkUgdi7NVA8WqjuU93Y1nquhWXaSPIyMJ0K3uORZv3jmOgZyEDctyHW1neP9unHTyqS0z0tlE9O7B+iIMRgii+zc5kRsxwaBjfXDE8f0brmPRiHasLbSwGLf/IPzOwePxx1lQiKAZFRtLoe1byChU2iaj1v7xC7K7fpuORb3cJCz+7Gc/Q7VaxZve9CZ84AMfaCwb477tOnRgOFUUquiehy7fS1oZmNoNPOalgJQuon3H3kM4ef0q5LLRjhNGZ7D+CGOx8Yt3juPAciwcnj+Mk/tOPq5tqRrVpjjQOKGtHoXKiXDg4M3XvxnXv/L6VPs0bZM4xNw/2ZrpOhATTp/WLA0CJ7Q4HONEUS903aTraLZWbzPP8bAcq2OXG41CTVKnkgqLxZBUiapZhcAJiYRF3dZj2z6UHcLh0mHUzFqgay4jZqBbesv5o8JiRox+jlHHYlErRi4XREbMQBZkjFeJY/F3v/sdhoeHcemll+LSSy+tL0drcQLkmgWdm6yYhe3YqFrhE7nT0JGw6IrDW0a2oCAVsK6wOJOMhvcMo3egFwND6VIXGAzGwrKojkUAeOc734lDhw5B0zRs3boV5513Xv27W2+9FT/4wQ/q/xZFER//+Mexb98+1Go1HD58GFdddRX6+/uPf8MZJwQl1cDGy/6An20LL/Acx8d+swNjcyoeHj1+RcuTOxYNyAIPy+5uFKrfsRgnWtaFxTQzsn2UF8Cx1g1s28E//+hu3H843YDmRElDXhEhdiBGd+OKljUTumkjr5DOZH9OQlkzoCWoOxhGT4Yc15HZxoCqZVl43/veh7e+9a248847W9YJEhYrHjF530TCelEpqOkWpBSORd20O4qIpTiOgxt3juPUFQX0taveuhzatxsbNp/W8vm4Su6r0hL9vTnRYH0RBiMAKkYlieNK4gSj26EPN687gZfio1Cr02S5hcJqw7Go+4TFLkVWRSIq5HwnuS51x+ICC4tixnVvtvkM7dSxaOlAbQ6O4+ATn/gELrroIvz1r39tXfZ4OxapeM6lGNDjxYVxLI4+QLbZu5bUWUzBjn2HWQzqcYL1RxiLid8d5cDpWhRjWqpmtak9sY5Fs+FYBBpiSBoM22hybFLHYqoo1ACHY5p6fWmjUL3uPLpup45FiZdaYmHDoOLerBo8VlIzayR6NUaczQiZQKehn+XZ5ZjX5lEOqTWdETPEZeubSFQxK/X9REEdi2HHE0ev3Ivp2jS+9KUv4e///u9x++23t4ylaZZWd/wpghIo+tF2lrXujJG0VWPRbSO9f+8YuQMbezeiR+npSpvSMrxnGJtO35TYQcxgMI4Piy4sMhgLyUiRPAR//+Box9s6njUAJZE8LOPiKi3DcGssdjsKtflYo9yKZHkbIs+hk2d8dYlGoeqWjRt2jON3D4ykWo8IiwLEhI45L4IrRnbjnpsqk4HbgkJmxQ3kZJQ1C1oH2+Y4Dv05CWNzKhzHQblcxstf/nJ85Stfwde//nV86UtfalmnFhCFWvW0Ye94qeX7TqnqJpSEwqIi8nDQcFF2wv7JMo7O1rBxMI+83H4UleM4RFg8pbW+4rxB7pEYUzODwWC0j0AdiwlmzSdxgvnjnPyORduMFpaqM4DcmQs8kraiUH2Dhc5x6MuIGXK+kwwcunVxFtyxKCqAoXbmWIwTlsPI9AIA1JkjuPjii/Hv//7v+MxnPoPvfOc7rcsed8eie41SR6Fa3RcWj91Dfqf71qdedfveYZy1mUWyMxiPdEynNQrVgZNIYKKMVca6kqRUNZsdi3GRkHXHYhsCSn0bPjGNOsuSOhZ1Sw+MiPSKnHHCGY0zTVVj0fYJix2KwQIvJK5TmRddYVELFuJM2wx0cfqhTsO44x7KDsGBg5Fy8NhMXZAzmgU5WicwsWNRL0YuF0aBL+CmL9+E973vffjgBz+Ia6+9NlBopo5FRVDq17zpONx2zhvdMTe083vBczxETkTNrGFOm8PO6Z1YW1hbF1+PNwd3H2QxqAzGEoQJiwzGEkQWaIcyujNnmjpEgYNpdTcK1e8ui6qvSJdPWsvOD40K7Yags5DMVtPl20+VNeRkEVIbjkXa9yx3IR6WisIF17HYmxVh2SQetROW5WRMlzVopo23ve1tuOWWW/D73/8el156aeAssqC6nVXXbSfwHPZNdtexqJs2DMtJFYUKAOUuCNw37ZyALPA4eXm+oxl1k6PHUK2UsXFzuLDIYDAYC4boOq6T1HcJqG/XQn2wyO2vtNRYjBGWajOAtMCDGUbCyCn6t93viLCOh7CoEIEsjZN0wYXFDNlXu2KYILfnGAWIYxHAez/5Vfzv//4vfv7zn+PDH/5w8PP3uAuLtMZiyihU2+x+rO7Ru4H+9UAmndOgOF/GsfFpnHUqcywyGIvJj3f+GJdcd8mC7iPMFZhUqJrT5vCiX74INwzf0HFbamatSWQynOi+iO2m8XRbWBS5ZI5Fx3Gg23rg/r3CYpxIW3csJpioxIFrcvl1q8aixEuk3mSCZ7osyBA4ITQK1dvWKBRBgWEbsc7UwewgAODwfHAiGRXk/I7GqlGFzMux94fMk+OZ19oT9IZ/PoyDNx/E1d++GldccUVLOROgEZkLkPMXtEzYcbRLuzURJUGCaqm4a+wu2LBxUu9JdVH0eGLoBo4ePMqERQZjCcKERQZjCUJFurhYRsuNQjVtB9YC1liMExZVw4LUhjMPaMS+BkVlLiVKqpFKvJ0u68jJ7TkWKRXN6jjidqpMBtH6MrL7k3Qqx+c7G1wbLCiYKatQDQuf/exn8de//hUvfvGLQ5cPcl9WXBFvqCDj6GytKzGk9W27omxSwZs6G8tqF4TFh8dxyoo8Bgud1Ywc3r8bALCBCYsMBmMxqDsWkwhYCZ4p/u34o1Dj4h9rxdS14VJjVIk4+NevxSzo/g02fI7F4yEsSpkUUajUsdjdGsbBbdLaFxbFTNuORUssAAA+fvHTcfvtt+OVr3xl+MLHOwqVXqNUwuJCORbvBnrXAAE1qaJ4eB8ZvGWORQZjcfncts/hgckHcKB4YMH2YVpmYC2OJCIX4LrnHAs7Z3Z23BbVVJtciolrLHYgLPrFNM0MjjYNQnNrTQeJLt4o1DjRr15jMcmkLjTOuXfdbkWhJhn74DgOWTGLOX2uo31SIY3WQgxjIEPq6x0uhQiLIY7FilEhIl6MSMxxHDJiJvXxWBY55xdcfAEee/lj8Y8X/2PosjQyF2gIs2HHUdK7k+ok8+2VZ5F4CaqpYsvIFgxlh7Aqv6or7UnL0YNHYZkWExYZjCUIExYZjCWI7Lr4YmssmjpkkYfZ5ShUf2xlrGNRtyAJ7QkdPMdB4LnAqMylRFmzYh2kFMdxMFvVkZWEeqxpO9QMK/YeiGOypEHkORQypMPam6XCYmeDa8Udt+Per78NoxNTOOmkk3D22WdHLh8kHFc1E5LAYWVPBhMlDZUu3gNUtEwsLEpkuUqHNQtnKzruPTyLTUN59GTaf7EFSH3FTDaHlWuaY8ts20HFZMIig8FYYAR3ECKJgGW1E4Xq2S4vku8jhcVZIkAtJHoV+MuXgRs/Btz3k/jl/cedJDa2U8Ss61hM0D+gNRbFhRYWs505FkWZnLuUg6HX3XYXHn/RRzFasrFCquLcc8+NXuF4OxbbqrEokUjdbgqL5Qlg/hhQWJ36Xtix7zB4nscZJ6ePUGUwGN2naiZ01rdBmICYJgoVQMciE+A6Fj3tiRMWLfddM60zy3tspm02iXK6rZMYzwTDplRY7DQKNZU4yJH4VXoM3XIsirwIwzFaYnHDyEk5lI1yRxGsijsBKk5YlHgJvXIvjpWPBX5PBUq/IJdUWARIncWKXkl8399/5/140/PfhLEjY1g1tAr8Rj6yrqa3xqLMB7cpK5KJdPN6d6JQpTaTK2RBhm7puGPkDmzo2YCCVOhKe9IyvGcYALDptE2Lsn8GgxEOExYZjCUIz1NhMbozZ7g1Fk3bgd1FZdHvLjs0XYUYIZDVDKsjZ57Ic0vesVjVzcQi33zNhGE5yCudCUtAvLgcx1RZQ0ERIbnxun0dCouO4+Dab38Nf/z6ByEsWw/DSXaMQcJxRbegiAJW9mUwWdJQ0bo3IEsFwsRRqKLgrtdZG27bMwnbAU5ZnoeYpqZSAMP7dmPDKae1xKNMlDXYCWt9MBgMRtvQKNRENRaTRKH6hUXPOoLkCksRzzx1buGFRaNK9gMAlfH45f0DRwlrInWEmCWCZiLHojuYudCORbFTYTGTKgrVcRx8/cfX4SVv/wROOWkNevI5oDoVv+JiORbTDOjxAhGNuxmFeuxe8rN/HdIWRN+x7xA2n7QaGaU9twODwThxMOxgMSlpvT/KnJpeWPS74wzbaBJnFsqx6N2u6TS79DST1FhMIkbRtga5z7xisBmTbJC2xqJuN+oS0nXTCsF+RF6EaZmwkWw7OTGHilFJ7GwNIqmwCJA41JHyCPSAGP56bUKfIFc2yqHuQD9ZMUtqfCa4Bjf+/Ea8/+L3Y2jlEPI9efQr/bAcC1NqcJ/EdmwYttHkWAy6vxR3ElDJWHzH4kR1AkfLR7GuZ11d8DzeDO8ZxsDQAPqW9S3K/hkMRjhMWGQwljBmjLBoGjokgYdlO7AXsMbi8HQFA/nwzghxLLb/50QSeGim1VVxtNtUdCtW6KVMuvGj3REWg/f5wJEido7Gz2CbmNdQyIh1R2lGEiALfL32YhosQ8cD//0Z/PdVX8DfvP7/Yegl78N4LdkLR5BwXNFMyAKPVT0KNNPGsdnuDfiVU0ah0hqL8x1God60cxzrB7JY3dd5p/vQvt2BMagjxVrA0gwGg9FlqBiVJN7THwkaRItj0ReFapnhwpLjEMFvoaNQ/TUT47D0ZudgwuiyjpAyRMhN4kg4no5FS2tfDBNoFG78MRmmjXf8z2G86ws/wHve8DL86sqPoNDbB1Rn4vdvakCCQcWuQe+HNAPdtMZiQqdIIo7dAyi9QM/q1Kvu2HeI1VdkPOL58t1fxlhlbLGbseiECSlpnWgVoxK6zmh5NNCFFVRbb1adjfy+qY2m61jk0jmzvOKU37Go2URYTBOFGudYVK3o/lLaOFPDMurnmk5G7cQ5CLhRqE6yKFQAyEt5VI1q4vjWIJJGoQLA5v7NGJ4fRlErtnxHBUp/FGrZKIe6A/3kpFyssOjYDnb/aDeu/NCVePGrXozPX/N59PT3oE8hwtd4yOQ0ep/UhUU+WOyUeAkCJ3StxqIstCcsyoKMA3MHwIHDST0nJfpdWAiG9wyzGFQGY4nChEUGYwljxAhtpqFDFDhSY7GLopxmNotFR2dq6M+Gd9JrhgWJjyvJHY7Ic9AMu6t1IrtNTTcT1wCkdQ3zcueDV2H7/ML1u3DZLx+EZka/OEyUVORlsck915MRMV3RUtWMBIDp4Ycx/uDteP/nrsYlb38vOI7DkZlkg7CBNRY1C7LIY2UfeZHYO9GdqA+ybfIikElZY5Gu1w6GZePW3ZM4eXm+XsuyXWzbxqH9e7CRCYsMBmOxoI7FJANFSaJQ/QNd3gEbIabGoqkS0WmhhUU9ZcScX+A7HlGoUgrHolkjDjih84lOkYiKey7adEkIMjmeBCL29iNFXLNtGt/++L/gix94MwRBAJQeQJtrFquDMNV07sFOofd8WmHR6XKNxaN3Af0nAXL6CLMdew+z+oqMRzzf3/F9/MuN/7LYzVh0QoXFlNGaFTPcvfaCX74AF/z0gvp7KI0ZDRIOvZGqcTX/6o7FlM877379+9AtHSInIskoBxUMg2oseoXFJMIZBy6xY9GBg6pF+i5UNEvrMPVDaywmdT4WpAKqZjVW/I2iLggmENIes+wxUC0VD0w8ELod/3muGtVUUag1sxZ5PDNHZ3Dk+iN480fejHd/9t0QJXLfxQmL1NlKhUUqIAaRETOJ7pc4ePCpI4IpMi/Dciys61mHwexgx21pl+G9TFhkMJYqTFhkMJYwcUKWZRp1p6BqdG8AQjWsevdZMy1MlrV6hGYQJAq1/dlLksBDN+2uiqPdpqonr7FIhcUoMTYpesg9YFoOjhVrKMU47CZLGvKK0HR9ejIiilUzsQPz8OHDsG0bK049B8/6+P/gGS/6ewzkJHAAjs4mG4QNikItawZkkcfyggIOwN7xzjvOlKpbY1GRkom7VFgsdyAs3j08i7JmYtNQIfF+w5gYPQq1Vg10LB6draGrTgYGg8EIQkghLCaJmIyKQuVjolDpQJOUi99PJ6QVFv1tPi5RqCliQ40awMtAgoG0jttkG+0fP3XHGuETZ44ePQrTNPGETctw8N/Pxlte/tzGl5k+QJuPr6Fo1NKJfJ1it+tYtLoXheo4wMi9xK0op/v9mSmWMDo5g7M2M8ci45FPJ6LII4XQKNSUEZdJ3GtUbKORj0GxlkW12NS2KKGLOhbFNDVtffu1HKu5xqKlJ3csms1ONC/eSNeqEd/PEDghlZhb08m5pOJRp1GokuAKiwmjUAtSgdTE7KAPlBHIRGO/0zCIjX0bIXIitoxuafmO53jIgoyK3jyuUDEqkHgpkbCYl/KoGcHC4ujoKDRNw+BJg3jGVc/A37/x75vuj165FwBCHdB1xyLXEBbD2qQICmpmLfVkcD+SkOy4w9YFgPU961FoY3JSN9A1HUcPHmXCIoOxRGHCIoOxhIkTFk1Dh+TWPtRjnGtpUA27LkSNz5POz0AuQljUO6yxKHDQTLurca7dpqZbiesdTpU0iDyHvNK5YzHI6UeZrugoVqJf2qbKOrJys7DYl5UwrxqxbkcAuOGGG3D22WfjqquuAgAohX4AgCjw6MmIGCkmiy8NjELVLcgCD1nkMZCXcXCq0nHHmVJ2ayxmEwp8osBD4DlUAwTQpNy8cxx9WQkbBjsf+B7euwsAsPGUVmHxWLGGnLB0f1cYDMYjBCr22AnqJ8YJOkB0FKogRkdh0gGiha7tknZmuKk3C3zHIwpVVMi5ShI/a9SIQLzQwqLk1r7U25wgRN2xIQOuf/nLX3DOOefgc5/7HABgeY+vT5rpA9TSEnQs0hqLKQa6678LXZowOHOAxAj3rGlMFkjIjn2HAIA5FhmMRwlhEZppozWT1qcDGhGNQSKON+oyTuiqR6Em+Bv/wOQD2Dq6tWW/gY7FhBNDXnPdawAE17Jrciya8c9JgRdSiXS0hmPaGNUw0kahFuRCrMMvjrAI07D2re9djwcnHwwUsBVBaTnPFaOSuMZiXsqjZrUKpffccw/OPfdcfPSjHwUAyH2t11rkReTEHCZrk4HbpiIzFYFlQQ4VrjNChgi2HdSupG1qN8KU3s/rCuvq1+h4c+TAEdiWjU2nbVqU/TMYjGiYsMhgLGEM24msO2gaRl3Q67ZjkUZnjs6RjvBALnwwQnOjUNtF5Dnolp3YEbgYqKYNLeE5nirr6MmIkITOhcXZSvggmeMA+ybDC3o7joOZio6cLDRFofZlJZRUA7oZfTxXX301/uZv/gYXXnghXv/617d8P5CTMVnWEgmuNcOC4OvQVjQTkshB4Dms7FEwNq927T6uaCZEnms67jhkge9IWLxx5zhOXVHoilN1eN9u5PIFLF+9tulzy3YwUdJQEJfu7wqDwXiEUI9C7ZKw6B8k88Ze8iL5d5iYorkDTSkdV6lJ4CRowtYXx7EINFycURg1IqQdD8ci0L6wSAWvgPWvueYaPPe5z8XZZ5+Nf/3Xfw1eP9NPzkcSYfF4OhbrNRZT9At4kdTt7JaweOwe8rN/XepVd+w7BEHgcdqm9OsyGIwTj25FoaYRQ6hYEehY9AmLiaJQE/yNv+S6S/CWG96Csl5uEsO8jkXHcaDbemoHZFyNxVqCWs48x6c651REo7Gy3RAWLdtK7HzMS3loltbkzEwLFZiTRn+eMXAGhueHMV2bbvlOERSoptrU/qpZTexYLEgFqKbadG/86le/wtOf/nSsX78e733veyPX71V6Ma1OBwryNDJXFmRIvIS8lA/djiKS4+hGtC3P8aCRZGnci7IgQ+RFrO9Z31EbOmF4zzAAMMcig7FEYcIig7GEMS0n0sVnGTok14kW5AhrF82069sdnVMh8lyksFjzOBzbgUahRomoURwviWWulmBwFcB0RUNOFuvnsBOmI4RFANg3GT6wWNJM6JaNgtL8gtOflVFWzdCYVcuy8P/+3//DO97xDlx66aX47W9/i97e3pblluVlzFT0SFclpapZkETO95kJWeDBcxxW92UwUdLqEaadUtZMyCKPFLoiMhLf9v4PTJZxaLqKjUM55JXOBy0P7d+Nk045rWV24URJhWU7EF0hf17tYg0mBoPB8EJnJieoe5dIfIxyLNK6cmH7oiLagsUwuX9r9ZQ1bC3j+NdYTCUsVo6zsJigTUFQYdEz4GrbNj7ykY/g9a9/PS655BJcf/31WLZsWfD62X6y7zgX53GPQnXv54CaW6HwIuB00bF49G4gvwLIL0+96o69h3HqhrVQ5OPo8mQwGIuCZVuhjsC0wkbNrMVGoVKosKj5ajULnIB5bb6pDd2OQp1RZ1oETSr86G5aQ1DNxCjkAGe4N/40SQ1BgRNSuUSpWEnfG7viWIwRcr3k3Jh6rxCcFo7jIAtyoqhYADhj8AxoloZ7J+5t+Y46/bznsGokFxZzUg6WY6FikDSlK664Aq94xSvw0pe+FLfccgtWrVoVuX6f3Id5bb7lngY8jkVBwnuf9F6cu/Lc0O0oggLN1lI7hv3Q45Z4CZv7N+Pp656eeN3HL388zl15LgYyAx21oROG9wxjcMUgevp7Fq0NDAYjHCYsMhhLGNN2EKW1GYZer7GYJNYyKZrZiDYdnVOxLC9DFsP/XKimRYSONnU0USCOxXZrLB6vBNXZmNhRimU74DiAbzNywstMjLC4fyJ8Vt9kiXRm83LzC1F/TkJFt0JFNI7jMDY2hm9+85v4yle+AiHEebm8R0GxqicStWuGVb9XKRWdfMZzHNb0ZzFb1VGsdmdQtqqbUEQ+1TWQRR6q0d59+KddE5AEDicPFbpy3Q/t24ONAfUVjxXJi2MhXZoZg8FgpIfGiSWJQg0YPGnBPzDpFeGo2BM2210vAxwHyOEzuzuCF4j4ZqZ0LPprHR6PKFQaO6qFJxbU0Y9TFCoVFtM6Pil0INZTY5HjOIyMjOCLX/wivvOd70CWIx58Si8R4qoz0fsxtXTuwU6xjca9lRTqWOzWtLmjdwF969r63dmx7xCLQWUwHiVQh2GQmGQmmWDkQTXVQAdiEHVh0Zd8oAgK5vWGsGg50Q46v2MxqdvOL5pSMcgfWZl0G2FRqDmRiG8LUWPRL1Z2LEQJUuz59kJdd7PqbEf7VXilHusax4aeDZB4CVtGWussZsQMNEtrcs3WzFpyYdG9VkW1CI7jMDo6io997GP4yU9+gmw2PpK/X+nHnD4X+DtA7y+FV7C2Zy1W5FeEbkcWZBiW0bFQLPJi3c36rie+CxesuSDxuo9b/ji88rRXok/p66gNnTC8Z5i5FRmMJQwTFhmMJYxpRdcdNA2jLtboZvfUNc2w646oY8UaBnJypPtOM+yOaixKAg/DtGF1oBC263ZMQzHEsfizbYdx/Y7gAt2dEicsHpmthtbinHKFxYKv1mOvG9U5Md/8Ajc8PIzbb78dPM/j2muvxdve9rbIfQ8VZMzVDNQSxIdWdbNFWKzqFiSBA88Dq/oycBxg/1SbbgcfJdWEIgpIo/EpogDNtGDa6V0CNz48jlOWFzBU6Lz2gG3bOHxgLzZuPqPlu5GiipwsIBMh9DMYDEZXEN2/Z2aSKNQEy/jdfF4Rjg7cGSGOQb0CSPmFdZvxYrK6hV4so3l203GpsZjGsVglx9UtYfH2LwHbfxXQJvdeabvGIl2/ipGREdx0003gOA7f+9738L73vS++NlDGHfCqjEcvZ2nB7sF7fgBMH0jd7FgsE+BSnn/q3u2GY9HUgfHtQM9qQEofI7xj32E89tQNnbeDwWAseaIchoaT7tnmwMGcPpdoWerw032TmBRBaYrFNG0TTsSEC8ud6EqFxaRRrP66gFRQpKJQkpp83m0EOhbNal18S1pjMY2Y5Bcro2pRJkHkxVSORXpsM2rM5J4YZEFuiTANQ+AFbOzdiO3T21uWzwgZaGbD6ec4DqpmNfDaBJGTcjBLJm744w0AgK997Wv4xCc+AT5hFFK/0o+SXop2LCYQrBVBgW7piQXeMCRearvGIm3HYsKERQZjacNGJhmMJYxpO5FuPMsw6oKf2lXHYiPadHRORV9OahGFvKhu/TyuTcsirbHYrmMRQKQA2y1mQ9x0l/3qIfzLj+5JFAmaljhhcXxeRTVkv5Nl0pntyzZ3ovuosFhqdHbvuOMOPOUpT8G73/1u2LadqPM5WFBgO8BIMT46jjgWfVGorthIolDJ7L+94+0LixXNxMd+sx1P+cxNOFaskSjUFJ1oReShGTbS6opzNQN3H5rFpqE8ejOdD3qPHT0MTa1hQ4Bj8ehsFct7FIidmyIZDAYjGjqYliQCLZGr0V9j0bOOEONY1MpEGEkZSZYKXgrffxAcR8RSx/Kcq+MoLGoJhcVuRqHe/V3g3mtaBdQuORbv274bT3nKU/COd7wDpmkmHwjLuHHt5Rhh0Qioseg4wHXvB/70qZSNToBtuo7FFA9tXiAu2G4IixM7yO9Z79rUvztTs3OYmC7iLCYsMhiPCvwCm5d2HFNFtZhoubAoVEVQmgQz0zYj22FbNmzbbgiLCeNb/a4y+m8aiZpEAPJuIyg6tWpU6y64JDUWBU6AHfBCun1qe6Ab0S9WdupYFDmROBYTCpR50XUsah06FgUFmpU8+vP0Zafj0PyhlrqMGTED1VLr94tmabAdG5KQLLFg9tAs9n9yP7724a+hVqulFuUGMgOoGlXUAibLeWssxqEICgy7S47FhU6uWCB0VcfIoREmLDIYS5gT868Lg/EowbSTOxbVBK4xL5btBDrdHMeBZlqQ3BlZkyUNfRkxsoaiV4hsB0ngYXQsLLa9amKK1eiB07LWnfqAzfuMHqScKumoasHXfqqkQeQ55H2ORSosjs+Tju1PfvITPOc5z8Hpp5+O66+/PvFsvGV50iE+OhP/gqQadv2eotSoY5Hj0JsRoYg89k20Jyz+dd8UXvCV23HNlkOYKGk4PF1NHYWalQSobTgWb98zCct2cMryfEfOXcrwvt0AEBiFOlJUsbovA4FnyiKDwThOJHHhmQmWiXQsxkWhVgB5gYVFQUwnLPJiIwqVPt9SxsW1Rd3dl0RY7HIUanUa0OZba2rSeNYwx2kcgozf7DJw4du/hFWrVuGWW26BKKaYqEMjukoxwqKptQqLRo0cz8z+9I7VOGgUapqJd3XHYhc6tsfuIaJ3f/o40x17DwMAztrMhEUG49EAFeKCXIFpaywCyevtUWHRL/ApYnMspunEO+gM3UgtLLY4Fq1mx2KS92LvNoImWtfMGmRBhsiLyaJQeaFF1JtVZ3HRHy7CJ7d8MnD7XrrhcAOixWYvtMZix1GoogLVVBMLaY9Z9hgYtoFdM7uaPqdRqLT9VHhU+Hjn3d23342PXfQx8BKPd3/v3YmiT/30KX1w4GC82tonoQJ6ImGRV6DbeudCMS+2bQBYbA7vPwzbtrHp9E2L3RQGgxECExYZJzSaaWHL/unFbsaCYVpOjLCo1yNLaykdi6d8+Dps/sj/QTebO56GReo6eoXCvpwcOVNLDaiflwaR58h+O+gDHw/HYrHWHSeCZSZ/OZtXw/cpcBxqhhXqGJwq6+jJiJB8NRJ7XFfd+LyKK6+8EhdffDFe/epX46abbsLQ0FDitg26wuKhmfgXJNWwmu4px3FQM6x67U6O47CiR4mMdg2ipBr40K8exMXf2YqsxOMFZ64E0HBIptHfFImHbqYXuG/aOY61/Zm667JTDu3fjXxPLwZXNBeGNy0bEyUV6wZyXanjyGAwGIlIIJbZRoIai36BMkhYDI1CLRNXXIJIsrYRJBIdmbQ/wUuuY9EmcZfA8XUsqglqLEZEoVppO116hQivWrn1WvKuK7JNYfEHv/8rXnZtDS86dzNuv/12rFmzJt0G5BzZf2UiejkrwLFYcwdC544lE2vTYJvu+U8rLNroqFNMOXo30LcWyKavjbRj3yFIkohTN6S8FgwGoy0cx0kcPbkQRDoW2xA2krrXqJNKs1sdi17BzLTNWMFMV3WI7vM4qTjlFzRprUcqAElcOsdikDOsZtYg8iJkXq5HYUYRFL9KhaEd0ztavvOLlZ063Kizzx9PG4bIi5AFGXNasvhbL47jYMtNW+A4DokwtbTE7V/Xsw6KoGC0Mtr0eU7MNTkf6fmJc5/edt1t+ODrP4gzn3gmTv7oyZCG2qvJ3K/0AwDGa63Comqq4MDV79MoFFGBYRkdC8Uid+I6Fg/uOQgA2MDSExiMJcuJ+deFwXD5wC8exEXfvhN7xxMMrpyAmLYT6cQzDb0u6GltxnAe9olCNFJV9CgyA9nwTpVp2TBtB1IHDqq6Y7GDl6nj8R423yVhccf9d5HtzRVjly2pJowQoY06BvdPBg+Ejc+rKChiSwSpJPDISgImSxqe+9zn4gtf+AJ+8IMfQFHS5efnZOIyPFaMFxZrPvFZM23YDiB7RM+VvZnIaFc/t+6ewPO/fDt+fd8x/M3Zq/Ca807CGat6ABAhUxaFVMJiRhSgpRQWTcvGrbsnccryQt0J2inDe3dhwymnt4j54yUNtgOcurKQaoySwWAwOiLBwJKVxOnlH7T0/psO9pghAqVeBqTsAkehyqQGX0QNp+blXceiYzXadTwci7TWjZHUsRgsLG57gLjjR8ZixDhKZYr81Mut8bgcR5yUbQqLzzzv8fjEsxT8/LKXIpdLXwsQHA/IhUYbwzADaixSYbE6DZQTnoukWIYrhqcUFoFWV2g7HL0L6F1H6pOmZPveQzht41pI0gLWNWUwGHUed83j8PSfPX3R9h8lLLbjWEzrXtPN1hqLXmHRsq14YVHT647FpITVWKwLiwmiUJsciwEvaTWzBomXIAsyalYtVkAOFBbd7ZY9z34qnPnFym5EZwLJhUWAiHnz+nzqfT207SF8+E0fxsHdB5ERMtAtPfH9xnM8NvW2Otn8EaI0KlYWo12Cj33SY3HxOy/GFd+/AtmebFtCKUAciwAwWh5t+U41VUi8FBiZ64dFoQLDu4exfPVyFHoLi90UBoMRwon514XBcBmbI52oduMTlzqWHT1z0bYt8G5MhmpEd7TNhFGjmrsdrwg0VAgXnFSzdfm0iAJxLBpW+52m4+FYLKnJi5hHMXbsCABSCyKOimbCtIL3OVggneM9IcL6RElDXhEh+iJcZiYnMP3HKzE5O48zzngM3v/+97dd0HsgJ2N8XoMdc2/5HYsVNzaWOhYBYE1/JjLalTJXNfC+n9+PN3z/LvRlJbzpgk14wWNW4aRl+bqTj8aspjmujMSnFhbvPVzEXM3AxqE8MlJ3BryH9+0OiUElL9ePXZ3eecBgMBhtk0AsMw0t3mHldTw4TnCNxTCB0tIBcYGFRUEi+0k6M1yQiMBmH+caizxP4k31SvyyphrqWNx/ZAwAkve9qGhnVIPjcYUMEouyAGaKJfzz5V9Hcb6MTSetw+XPyoK324xSBQClF6gVm+8zP0FRqPU6YA4w8XD7+w+iXmMxRR+Z75L7VZ0DpvcDPasaUbUp2LH3EM7anD5ClcFgtM+cPtdSa/B4ESXmmE56YXFOTyfK+EWsFseiYwbGtDZtowvCIj3/9KcoxG8vsWNRkKGbeqxQFCQsUspGuUVgVS21aYzCtu2OXG7UTZdWWPTXOkzC/l37AQCmYUIRlVSORQA4Y9kZZP2Ae5TeL9SxKPOtwmK1XMWXLvsSZqdmMbhyEG9675sgiAIKUgEz6kxbYz95KQ+e40OjUCVBSjRGIQsyDNtoS9j3IvJi22M9i83wnmFWX5HBWOIwYZHBWASu3zGGB48WY5czLTu2dqDjDu5oZnTncfNH/g+nfPi62M6R6rrFaA03WeBRyIR3qOvLdyQsknVrevsd4OMhLFY0C2YXijlOjBxNvk/dhB4iQIo8h76shINTwZ34yZKGnCw0CXoHdj+MSy96MeZ234mxkaOh207KsryEmYped7qGoRp2k8BZdWuCegXpNX3ZyGhXALjx4XE87yu34bqHxvCSx63GRU9Zj3PW9bfco6phQ05ZYzEjCdBNO9U1vnnXOHoyIjYNpncDBGFZFo4c3IcNIcJiXhawuj/9ACGDwWC0jW3EioaWkUCQ84pRlcmQGosRwpKUaUSOLgSpo1BFIhw5tsexeByERYAIiwnqNMGouTGlrc/CA0fH0u2zSoXFWrDoJSZPPdhz8CjOf/W78csb/ooDrsAJQeqsxmGmh9R/DHO9AsHCYs3jqhnb3v7+g7CMNqJQ3Xsp6jiSMHI/AAfoXZ+6xqbjONix7zCrr8hgPIqoC2wBj8B2olBLWrpEKd3Sm8YpFEGp1zsEiAuv245FwzZaolDpPmkkahLHoleA4wOGWFVThciLUAQinMUdR9QxVI1qqxhqNotxlmN1NBmaHnMqYVFqT1g8uOtg/f+zQhaaraW6305fRt6ZxyrhfRrarozY/A49fmwcl778Utzyu1tw9EDz+Myq3CqMVkZb6lcmged49Eg9mKq1pihQ92rQfeKH1h+tWR1MugIRqpPsbymSRFjM8OS6Zjg2RsJgLAYn5l8XBuME519+dA9e+o2/hkZcUkgUanSn0DY0cAD0hDUW52vNM55M32ChRqNQXTFqWV5ucpX5qbkCkRwgLP7wjmH88p54EY3GqFa19mdjtav33T08g8d/4gZMluIHs6p6eCxpGiZGjyVaThZ5VHUrcp8rehSMzKl1gdfLdEVDTmkIi1tvuxH/dslL0NM3gOd88Dtw+tZGCtJfv3kvbtsdHQs2VFAwW9FjHbN+x2I14L5Z2Uc6g3sDHMgzFR2X/uRevPWau7G8IONNF2zEcx+zktQbDMg7tRwHIs+nGsvLygL0hM5eyk0Pj+O0FQX057oTgzp6ZBiGrgU6Fo/M1rCiV0FBYbFkDAbjOELFs8hFkgiLngEq20pYY9Hz91jMpBNo0kIdi0lFQloLz/Ss0+Gs8sSIGUCvxougEY7Fg2mFxcpkY5tBAmBCV9wtdz6A8//pPeB5Hlv/5yt44lmbyReCTLbdLpk+IixGRYhaEcKiXACmdre//yBs0z33ixCFeuwe4vLtT18jcWK6iOniPHMsMhiPIgz3mRfkCoyKSQ2jZJRSueZ0q9nJpwhK0/pJo1CTCIGUmlmLdSwGudz8GFZ0FKpqNYRF3Y6P+oxyLBq20bQ/2tamc+VYse7OKKhLM811z0t5VM0EE558HNzdEBYVUWm5D+JYU4h/xtEo1IzQ6Kc8fN/DePtL345qpYorf3Ulzn7K2U3rrC2sxUR1oq1jAoBepRdFtRgYtZvUQSgL5N6r6Z0JiyeqY1GtqRg9MhorLK7OrMbR7x7FGfwZx6dhDAajCSYsMhiLCBVXwrASCIuGYUAUuFjHIsXfySxWfZ0dXxRqf06CEiEsUiEyyLD48d/uwHt//gDKMYIhdSzGnY8o2p2Vt2NkHnM1A7vG4mdVEpGvM8dipTSPudnpRMtmJQFV3QqNQgVIXcLJea3l3DmOg5mKjpxEolCPDu/Hx975epxz3oX4yjW/wZq161BSTegR9813/nwA1959JPLcDhUUFGtGoLDpRTPtpjqcFZ3cE6LY+GxlD+ns+6Ndr3toFM/78m34064J/MM5a/Dqc9fjcev6YwU2ReTqhe6ToIiuYzGheHx4uor9kxVsGMoj3yWxb3gfGdTcuLm1YzxSrGFVX7Zr+2IwGIwm7r0G+M07Wz+3jC4Ji74BKq8jq+5Y9AlLXnFFzEZvv1MEmewvu4z8W42JcavXhax5olCPl7Aok/MXN6vfUAMdi7pu4PDoZLp9VjzL1+NDvW2KFxaPjk3hxf/8MTzprM3Y8rMvYfMGz4AgFRbbdVlk+gCtFC3ImXqAsFgk9Tt7VgPFQ23XiQzEMtwo1BQDelyX3K9H7wb61wNyT+pVd+w7BAB47KkbO2sDg7EEKapFnP3Ds7FtdNtiN2VJERV32k6sZtWopopwNGyjaT+KzwVv2vElSQzd6HoUqiQkcCwmiEKlNRaTOBbj6u/52+wXK23H7khYrDsWU0xwKUiFeuRoUhzHwcE9HseimIVhpYv+9J7vsPbSdlHH4nxxHu+/+P1Yc9IaXP2bq7Hp9NY6jWt71qJslAPrJCahT+7DnD7X0qaa5ToWEyQJUFG7XXGTIvDCCVlj8dDeQ3AcJ1EUavHPRfQo6fs7DAajc068vy4MxqMI03Zix1cMTYPAJxcWW9b3iShUIJLc2Mq+rBToRmwsH19jsRYjGFLBiYpN7dCuY3FsngxiltTofUsCh5phJRadwji4d1fiZbOSgFqMY3FVbwbTFQ1zteZO63zNhGE5yEocHMfBuo2n4NPf/DE+/rXvIZvPYyAnoayFx6yqhoV51XTrfIa3caigQDNtTJbDI7sM1wXovUdoHcWsR7SWRR79WQmHpyv1F8ev37wX//rje7G2P4s3XbgJzzljBdYO5BJFnEY5bYPIuMtXEgrcN+8ah8hz2Lw8nypyNYpD+3ajp28AA0PLmz43LBtTZQ3rB7LIyQtYY4zBYDx6+e2lwH0/AmYPNX9uRwuLlu3ATiA+tsRnegdb6iKdT1j0OuPk4yQs5gbJv2vFmOXdwUu92nAEpphl3xFixhXhYvZn1ogT08ee4WOw0vZnKp5Ir9pM6/dS+PWxbZv0RVYN4Xff/Diu+69PYqDPNwBEz3+7daEyA4BeDo8QdRziWPTXy6rNAlIO6F0LzI8CWhfrttvtRKF2y7F4NzkmOZd61R17D0OWRJxy0urO2sBgLEF2zuwEAPx8z88XuSVLC78LzkvaGm8cOFTNdMJikGPRi+VYsU62tmos+t1/ZkNY5MDV6w1GbsPTv/FPanUch9TV4yXiWEzgyPM6Fq/dfW2LuNUiLFp6k1hpO3ZHUajt1FgsyIXUsaGTo5OozDfiU5M6OsMIa2/FqEDmZQicANu20dvfi099+1P48k+/jIGhgcB11uTJxKfds+0lGfRn+jGvz7fUTKWOxUTCotAdYTGNi3cpMbxnGACwkU1yYjCWNExYZDCWMEkci7qmQuL5SOdZFIbpFxbJv+kYSE9GrDsKg6gZ4VGolLhoSbr9X99/DBsv+wMOz6TP52+3xiKt51eqRc8Mz7giX6c1Fof37YLjDpTO1aI7zTlZgGk7mFfD27ayV4HtAMPTzR3OybIGWy3jd5+/FL/5yXcBAE++8NkQBPKi0peVoZl26HFPlkgnOO7aDRZIh/foTHiHl94jktDqWMxIzSJZXhFQ9pznbQdncNqKAl75xLU4e20fcnLyl0UlZd1PxW1LUoH7xofHcfLyPIYK3cvzH963Gxs3n94SVzI2r8J2gNNW9pyQUSYMBuMEQptv/ndMFKpmAY6ZQFi0fH9bvQNjQohj0ftvMb1AkgoqbNEZz0HimRdvXUj6Z7mNOlRtQYXFqME3yyTfBwiL2/ceClghhvI4OUcAUJ1t/T7EUVqu1PDySz+Nz/znzwAAz7/giZCkgGe5ICVzYYaR6SNuQz2kD0kHj/2DztVpIiz2ryfXvBIdAZ8K23QdiCn6I/Uo3g6ExfkRcr16VidykvrZse8Qzjh5PUSRTWRiMB4tRMVepommBIgzLKgWYBS63SyOtQiLdnzdQF3TEwmBXvyioNexKPJirHsQiHYsUidmPQo1gbDoFUdVS8Xf/Ppv8Jk7PxPYZtrWphqLdmdRqO3UWCxIBagp48y9MahA45rT6NJuUTWqEC0R33j/N/CtK74FAHjiBU+EnAmPuV2eWw6e47F7pj1hcUAZQEkvtdbwbENYbKfOo5e0YvtSYXjPMFauW4lcYYH7/wwGoyOYsMhgpOSP28ew8bI/oNJBPcCkEGExehld1yAKHHSzvZlp/ghN6likn8fFLtYdjhEijr+Oox8qON0zTAaqtuxLFhXqpV1hcWyOOhajX3yykoCaEe0eTMLw3l3Qju2CY+q481B0zFrWFbpmKuGd+pW9ZMBo33jzDPv7tu/C6I/eh7H9OwJjNXuz5LpSx6afCVdYjDuty/Kkw3tkNrzDq+r0Hmm8mFVd8U7xCYsZSYCqW02CpiBwWJZXUrsCpbSORYksX45xrwLkftl2cAabhvLoyXSvs35o/25s2Hxay+dUAH/s2r6u7YvBYDASEScsmoBjxddhbBFKvM4yjicCTJSw2IbzKhWi3Bw/WUsahepp4/GssRgnwtGBqEBhcTj9PiuTQN5109cChMWAGotHx6bw9Evej5u3PIAnPOaU6O0L7vlv1/WZ6W20Mwh6nYJqLEpZoG89+ff4jvb2H0Q9CjXFOrR9bdQ0q3PsXvKzb11bq+/Yd5jVV2QwHmVEucSiYlKDyAiZwPqFURiWEelYtGEviGPRK56JvFj/NxUWkwhA3m34J4BSUUgWZGSEDHRbhxUzgcbrWDxz8Eyct+o83HLklvpnZb35vV+3m8VKGx06FoX0jsW8lE99n/iFRRpV6j++ThkbH8Ouz+7Cthu34fTHnZ5oHZEXMZQZwsG5g21FAfcr/dAsDXNac1+yZtZIzcMEHQP6O5A2YtbPiexYTBKDymAwFhcmLDIYKfnxVjLL+9bdXZzRHIJp27BjlEVd0yAJPAzbbisO1C+Qqm7NRFoXMR/jEKMxp1F1GGN0xbpjsV3XJdB+SR4qrM3HiEkZiYdm2nVHZ7sM790FSeCgHn4I9x0r12tUBpF1Iy9nI4TF/pwESeCwd6JRl/DPf/4z3vyKFwCOjQ9e9Qucc96FLev1ZUkHcyJEWJws0c+jT2xfVoLAcTiSwLEoeh2LmgWea3UVUgG3U2cokD4KVXFn5ieZNPDnvVMwbQenLM9HiuppMA0DRw7sw4ZTWl94RooqCopYF5IZDAbjuBEjGmqWAycmLhVAQBSq79+CCBi+GEtvvTu5kKCxHcDLbhvd41CLrS7LpuXdgT9vG9uN8UxLEscibVfAgNL2vYcgyykHmipTQH6I/H+gsNgs/N790B485R//DTNzJfz1p/+Bv33WU6K3L8gkqrTtKFR34k15PPh7KmS3CIszrrDoinDj29vbfxBtORa7EIV67G4SDduzKvWqjuNg+95DOOvUDe3vn8E4wXnBL16Ar97z1cVuRkdQx1rSOnmRjkXbSiWuZEQiLKausegZNKBuraRtBDqPQhU4oX6+aHxpEgGoybHo+3tPhUXqWPQLqEF4XZIyL+OfzvgnfPApH8RpA2Ty6YzanKgQFIXajhhGacexmJPST/46uPsgZKVxneuORaN7jsXt27fjq2/4KtQJFZ/+8afx7Jc8O/G6qwurMVoZbcsx2KeQPslYZazpc9VSIXJiogQi+jvQ6fnwCtUnEgf3HGQxqAzGCQATFhmMNokTy7pBXH07gAiLosDBNONjU4Mo+4VFVzijjrEowRAAVFcMjBJxYh2Lbo3FdutEAu07FqkzrxQjJtHITn8twzQ4joODe3dhwymnoXbgHhye1XB0JryjmkngWOQ5DkMFBUdmqrBtB47j4NOf/jTWbDod69/wZWzavDlwvf4c6ageKwbvn56XOHiOQ29WxOicGjozshbgaq3qJhRRAM83d6qzkgDNtGBZXRAW00ahuvdwXL1NALh55zhW92Wwtr97Dppjhw/CNA1s3NwqLB6drWJFj4K8cmK+GDAYjBOYGNFQtxDragTQKiT6Bzt5iQhLXrxuQGWBhUXqWKR9Fm2utT1eqBPQKyxGCZHdRMqQtnldD//eR/6jz2Ij3LH40J5hbFyzIt0+K1NAdgAAFyIsNkehfuG7v8BJa5Zj67VfweNO3xS/fepYbDcKVXEdi6HCYoRjUcwAch7ILgMm97S3/yBsE+D59mosmh0Ii0fuAvrXkWNKyejEDIrzZeZYZDyqGa2M4rvbv9t2rbelwEh5BACwf25/ouXjhMU0DrismIVqqYlFTbp/r+DGc3yLazFue7qmpxZRvNsUeI+waCZ3LHrPnX95Gg8qcRIyYqbFXRhE0DEMZYfw0lNeCgCY1WabljVso+lejXNExkHF2TSO07yU/nlzcPdBbPBMYmnXoXfO8nNQkAqBMbhf+9rXIOUkXPD5C3DGOa0pTlGsLazFRHUCJa0Uv7APKiyOV5v7JJpJBOtEUai8Kyx2GA17IjoWa5Uaxo+OM8cig3ECwIRFBmMJk6TGomFopMaibbclrvkFNdUgTjKRTzYIQmMuo4TFpDUWO5GS2jG4lVSj7rj0C6x+qMhXrLQfTTU7NYn54gw2bj4dtYP3wHKina8517E4FSEsAiQOdbRYw+79B8FxHK699lq87hP/hb7+Acgh9XHysgBJ4DA6FxKFOp9MWARIHOpUWYMeEhNLz7H3FqloFmSRh+C7zzKyANWwY8XoJGSldC+W9BrH3QuW7eBPuyaweXkBvZnuddQP7SM1HDYECIsjxRpW92VQiIkmZjAYjK5jWzFRqA4424qPDmhxLPqebUKAsEjFMVEh/y0k9ShOKiyWmuNa/VABqMmxeDxrLGrB+5s72twun7BYqao4cGQMm9atTL4/x3GdfXkiaqoBMbFSFo7jYHiGXOfvfebduOWHn8Oq5cuS7UNUyD3RaRRqrGPR99xW58j55AWgdy1QPNR8TTuBOhZTCYsd1li0bWD0PqBnDbleKdmxjySznLWZORYZjE5cX4tNXTBL+I4cF4VqI4VjUcjAdmyUjOSCDK1F6CXrq92rRU32AREW09ai1+zGNqlIZzs2VFOFwAmJtkddj0HL14VFQYIsyC3OzCDCXJdUvJv1TO4ReRGG1XzuLKezGotUoEsVhSqme95YloXhvcPY5Jl4RKNQS3o6Ie/NZ78Zlz3lMizPLa9/pk2S63rllVfi77/y9+hb1ZdIzPOytrAWqqXiSPlIqvUAEoUKBDsWBU5ocbYGQYVW1UhXu9LPiVhjcdiN7N90WoKJaQwGY1FhwiKDsYSxnXi3H4lC5WBaTlsuyvla80Cfalipoh1V04LIc3VxMIi4uoQCzyGhjhlKXGRsEGMeUa0aIyZRkarYgWNxeN8uAMCm0x4Dc+YY+jICbtszGToDVBF58BxQrEbvc3kGuPf7H8Nzn/V0VKtV9Pf3Y0Z10JORQgVijuPQl5UwPq8F7n90Lvmg2mBewWxFh6oHX2fqgvWKnBXNhCzyLXUTc7IAzbBixegkZFIKi9SxGBeFev+RImarBjYO5epxtd3g0P7d6BtYhoHB5U2f66aNqbKOdQO51GIpg8FgdIxtRoqGmgXASeJY9P1t9QuNvNTsGAQadQKlvBspuYDwEhG16OCqVooWd+hAje6ZWd+uKOY4jbp4SZCypG2BA8HutTKDo1Af3n8YAHDyuhQxmfRcyHmyb22+5Z7QHAlv+I2KJ339KGbnKyjks8hmUojBgisstjuxSMwQcbg8Ffw9dSwKvvuoRoVFEeg/CSiNAlqX6jtZpisUHkfH4vReQK8AvWtIvHBKduw7jIwi4+T16WNUGQzG0iGN2yxu+bSORSoQFdUiDs8fTuRcNG2zxcmXE5uTYeKELl1rfL82vzZRW5uiUHmPsGipxFmWYMiUtivI4Viz3BqLvAxFUGA7dv2zMMKEoIJEkhum1en6ZzJPxEqvS9F2OquxyHEcBE5IVTMxrWNx5NAIDM3AyWecXP+MCmllI/0zmDoELdPC9V+5Htsv246x0TFkMhmYkpnYJehldX41AGDPTPokg4yYgczLmKg2TyLXLA0CLyRqC10u7n4JY0VuBZ657plY19NeveXFZHjPMADgpFNZegKDsdRhwiKDsQTQTRuqETwYpZutncKSK+DwSt6NQuVhWO05Fv3uLM20IQpc4tl+NZ0IkVHCYFWPH2jrtE5dO31nWl+R50gbozrgGYm0b7bavmPx4J6dkJUMVq0js8BPX57FQ8fmMBexzawkoBjx/fTEGK773L+gvP9uXPapLyKXIy9gE/Mq8rIQKfj252TMVvXACNrxFI7FoR4ZxapRr8/ph97bXldrWTMhB9w3JArVhrEYwqJ7jeNicf+0axwFRcSmofROgCiG9+0OdCuOzalwAJyxuif1LFwGg8HomJiYU90CeCfa1Ui2k6DGoqU3b4fO0pZzrRGW3cYfberY0Y5FurzpERZjRNhQhv8CfPvZJMIyCSIVFiP6VyGOxYf2DIPjOJyUJgq16op1cp6IvFq5SdScmp3H8z76C1y73cDXXzqEgd42no80irYT16fSA9Smg69BUI1F2wL0UiPGtf8kEo0a5npMS1uOxQ5rLB67h/zsW9/W6jv2HcIZJ6+D4BdgGQzGCQUVCpM61wz/M9lDWgdcRiDC4pw2h4uvuxhX3391/P4TOBbjBEpDI8cg8RLOWXFOorZ6xUqRI+4/x3HqAlCSdy/arqevfXrLd7Q+nyzI9Zp5tRhXfFicqyIoEDgBs2rDsSgJEizHanJz2o6dymEahMiLqcTpjJhJVI+ScmDXAQBodiy69027NQXL82Vc9obLcN9v78P616zHqtWr6tuTBTl1TO5gdhAiL2LPbHsR6b1yL6Zr001jTPXanQn7BTIvt1XjESCxvK849RXY2LuxrfUXk+E9w1i9fjWyuWz8wgwGY1FhwiKDsQQ47aP/hzMu/yP0AIFHDxBriipZTigMQtdV17HYprDoqyenGRYkPoVj0bAhCVyL88xLnAMMiI5SpeimjQs+9yfctLN1wKedY6eOxf6c7MZvRgmLpCM6G+MejGJ4H6mvSAdrHrsqh9mqgfuPFkPXySsiSqoR6MicO7oH773kb1Gbm8aqi7+Ak57wjPp3k2UNOUWs168MYllORrGqQzNa77uJUvLIjaGCgpJmoqQGv3zQGoveep3UseiPQqXCYqc1FgWegxISAxuGyPMQeS5WCL/h4XGcuqKA/qwcuVxaDu3bjY2bW2s/HHPdo2et6e3q/hgMBiMRMcKiZjrgHDt9jUW/I4s6FpuERepYzCYXFvf/CZg5mGxZL7SGjre2T60Yvnw9CtXzvEwSCRsEFbKm9yZbXsqQ8xcxEFw/Dl+Nqu17hnHy+lXIKimeYRVXWJRyRFw0KvV97xqr4byLP4LdR2fwp9fncPETe5Jv1wuNQu2kNpTSQ6JNg5ycdcei57hppKvkumL63Fn949vbb4MXWmMxzSt3p1GoR+8GelYB+cG2Vt+x9zAe66l5xWAwTkzS1DcEEOlOsxwrVSwsdSzOarOomTVsn9oeW/fPX2MRaHXBJYlCTUtTjUU3CtVyLKimmtjlpts6euQePGnlk1q+o6KQIiqJHXlhjkWO45ATcyhqxfpntH6etw5fp45F2oY0wiLP8S1CcBTDu4fRt6wP/YP99c8kdyJUO8Li6OFRvPNl78Su+3fh1V98NVY8tzF5qmpW23Is8hyPFdkVGJ4fbqtuZa/Si6JWbBKvNVMjUagJ2yIJUj1Otx04LrlhYCkxvGeY1VdkME4QmLDIYCwhjs62FqoOcpNROEGEoWmQBB5Gm1GoZc1sEq1qhgVJSD7fTDVMSAIfuXxZi++IyQkci9MVDceKNdx3aLblO6uNgx+fV1FQRORlATU3fpOebstpPiJFJMcY5R6MY3jvLmw8tSEcbR7KQuA53Lwzus5iWbNgBByfbRpYtW4DvvLj6yCvPAV7xhsvKVNlHbkYx+KyvIRi1YAWIF5PlpI7FgfzZJDu6GzwbDpaY1HxtKWiW5AFvqWjm5EFmLaDmpE8eiUIReSRQh+vI4s8qnr4vo/OVrF3vIwNQ3kUMt1zzxi6jqOHDmBjSH3F3oyIFT2Zru2PwXhU8+u3AaUuOZIeDcQJixbAI4ljMSYKVQhwrNHBFDHXEFzi+N27gD99Kr3A53csAiQWM4x6ZKVXWEwgsAZB6yVVZ5ItL2YAOM0iqB8qePpqU27fewhnpx2socJipo8Ii3q1fj11y8HKwT5s+9a78bT1HTwXBYVEh3ZS00zpI2JhkNOUXidvNCw975L7fO1zo/PGd7Tfhiac4+9YPHoXcSu2UV/RcRzs2HeI1VdkMB4BpI5CjXIspoxCpQJTUS0CAEYro6iaEc8ruFGoPvEmJzVHoUa1EWhPWPSeJ4EXYNombMcmjkVOSOTC0y0dAie0tBdo1FhUeKXhWIxxoEU563JSDiWjVD9XVFisevoDfoG2HUROTBWFSttGibtfDu4+iJPPOLlpLIDneMi83HQsSbFtG7lCDlf971XYdG5zXb6q0Z6wCACrC6sxVhlrEm6T0qf0YU6faxLENUtLVfNQ5mVolnZC13tth+E9zfU3GQzG0oUJiwzGEidKWIQgujUWeZi202YUarNoVdMtIkYlGAO5Y/8UilWDRKEGOOMkgXxWiRBqKEoCx+JshXT8rYDj1AIiY+MYnVPRmxGRlQWohgXTdnCs5tZSRPOLAQfiWvTXpEyKbdsY3rcbmzzCoiLyOHkoj60HpwPFPYA4FiuaCcN18DmOg5/+9KewLRMDG8/CFd/9JdauXYOCIuLgVKW+zGyFCIt+R6AX6jSs+IRf07JTCaiDeTJoeWQm+CWgZljgOTSJnBXNhCRyELhWxyLQ6qRNiyLyLdtOul4twrH4p10TEDgOm5fnI126aTl2+AAs0wyMQj06W8OKHgV55cQrvM5gLDnUOeCBnwLXXrzYLTlxsKNFQ90CBCQQ1GKjUKXWKFQqBkmZ5MKiOk/WSzsIU3cgegb8IiMxObKOd4DQNoEUcXF13MFXVKcjF6vjukGgR7ge6m7PVmExtSOtMkl+UmHRqOLnP/8FarqJx63N4a/XfAob1yerZxWKqJB7pJMB0UxfeG1MKjZ6HYtUWKR1vMQMkBsEJne35zwNgk8rLFLHYhv9TUMFJh4GCqsaLswUHBufxny5yoRFBuME5MZDN+LsH56NbaPbAKR3LEYJkaZjphI2ZF4GB67urJuoTqCixwsz/lpyi+JYdIy6sCjyYiK3l2EZoSJkzayBAweJl+qOxThHnhDR38lLeVT0Sv16BQmLtmN3LESJfBvCoqcmphlYA7rBwT0HAx1psiDHitBe/nL9X1ApVbB241pc9b9X4aTNrTX52nUsAsC6wjpM1iZRjupvhdCv9KOkl+r3mOM40C29fs2SIAsydEvvilh8olApVTAxMsEciwzGCQITFhmMJU5QFCqFEyTougZZ4GHa7UWhVvWGaAU0HItxlFQDF397K/7w0CjEkCjUnEwG6ZJEoUoJhMWiG0MaFAtqWOk7WyNzNfRkJDd+04qN38zJAkqa2Va0yPixI1Br1Zaoy8et68P+yQpGisEzFwuusGhaNnRdx1ve8ha85jWvwehDfwWA+svOih4FI8UadNPGXM2AaTsoyNFC1EBehuMAY/PN+54q66mGRZe5jsXDIcKiapA6nN5bhDoW/a5CKizO1ToTFmUxWOyOQxEFqIYNKyQW98aHx7FpeR7LC0rg9+0yvHcXAIQ6Flf3Z1FgwiKD0Tl0NnzMgEcqyhPA917Uve0tNRJEofJJhEXLd86DhEXbbI7CpAN+YiZZFKrjELGtHVGIDvR4hcLSWPQ6gtTsjktSazKIqitwUaErDupCpPGtQdDj8Ahp07PzGJ2caU9YlAuAqMASc/i3Xx7Bq173Zvz8ziMA3L4Idf21K8hRx2onUajZPnL9A4VFGoXqdSwWyU+l0Pisdw0wd7hZYO4IDolm61HqjsU2hMWxh8jvUO9atBPbsH3vMADgrFNbB2YZDMbSZuf0TgDAvRP3AkjvWIwSgmzHTlVjkeM4ZMQM5vV5AIBqqThWORa7nmo0Rz7mRZ+wGFX3GJ07FkVehGmZsGHXaywmEaOoCBm0rGqqpL4fL9SFxThHnsiF93fyUh4VwyMsus80rwsy7fUKQuKlWHHQj9exGCWE6aqOowePBjrSFEFBzazFCqO2beO7X/wuLn/r5bj+F9cDQKAI7DgOamat7hZNy9rCWhi2gYNz6SP2B5QBlPVy3bVq2AZs2JHCsR9ZePQ5Fof3DAMAExYZjBMEJiwyGEscI0Ls4gQJhq65NRadQCdfHFS0oqiGDZGPjjYFSISqAyIQSQKPIA0nJ5NOUymB+yyJY7EY4RZsx7E4NqeikBGRk0W3xmJ0hy0rC6hqVmQtxjAOusLRptMe0/T549f1w7Id3Lp7MnC9noyIqm5hfHIKL3zhC/GjH/0IP/zhD7H2nGc2LbeyV8F0WUdVN+sxpnEOt4Ec6WAfm21+iUtTXxEgIl5eETBaDF6PCote8bmqmy2fAY1almWt/chZgAiE7TgKFZGHalqB90JFM3HngWmcPJRHbzb5TMMkDO/bjYHB5ejtX9b0uWZamKnoWD+QRUZij2wGY0ly078Dh7cA9/9ksVuyMCSIQhU4p40oVN8AYJBjkSJmSKRkHKbmtreNATUhrWMRRIz0DnS2W2Ox5kagUudiHEkdi4LUJMhu33sIAHD2aSnjpSpTgFLAfNXAS7+8Bd/YMo9vfOFTeN0zPNtJUVspEEEmjsVOhMXMAKCVg6NQqdgY5FiUPXUh+04C5kejz20a0joW6X2eUhQAABy7h1zv/vXp1wWpr5jLKti4dmVb6zMYjKVDWsei7n8me7DsdDUWAeJeK+mNyS/7Z/fHruOPCM3LPmHRjhEW9TaERc8kDoETiDvTdh2LnJgqCjXMsSjzMjiO64pjsUfuQdWstjgWvXUbu1VjMa1jsSA1JulE3S+H9x+Gbdk4+YyTW75TBAWapUUKk2pNxSff8Un895X/jX++7J/xsje8LHRZKspJQnvv7qsLqwEAu2d2p163P9MP0zExrZI0CtUiYyVpo1AN22irxuOJyvCeYfA8H+g+ZTAYSw82SslgLHHCIjIBUmNR1zSIAg/Tstsay6rqFnSPsFgzLIgCFzu5msZFWrZDajJyHCzThK41xCUqLEbVrKMkikKthr8sRJ2nMCbmNeQVAXlFgGaGu9QoOVlwHZ7pZ4wN79uFQm8fBlesavp8dV8G/VkJt+2ZDHwBKCgiyvNFvPi5z8RDDz2Em2++Ga973etalpMEHpbjwLAcTJaTCoukg32s2DxrcmKerB8Vo9q6LRkTJbVJpKZUdQuywDWJz1WdOGPDolDnu+FYbCOpVJF4aCGOxb/sm4JhOdg0lIeUoCZoGg7sfjgwBnV0ToUD4IxVPSdk4XUG41EBfdnvmsNpiZEgClXkuhGFKoeLmIKcTJxxHXzVWroJMgCCo1ArwZN+Gu3qlmORCovzSFQwuy4sRgxOGlX3vDWeV9v3DkOSRJy6YU269pXHUUUOF77l0/jLrnH84TV5vONNFzUvQx2L7UJdmG3UVqqT6SX3mTrX+l3dsejpG6lFct29bR/YQD6Pc6smJcJ5Erw8R8TFdmosHr0L6FtHImHb4IHdB/CYk9eDb6dINYPBWFJ0tcaik67GomZpyIm5JgFt79ze0OWpQ88vLHqjNYF4sTSJY9EveAXWWESjxmISx6Ju6xB4oeldTdd0aKoG1VIhCSSGk7rm4ur1RdVYLEgFIixazcKi91x3w7Eo8mLq+E1vdG2U2/HgbuL+C3Kk1YXFECHNNEy855/eg61/2opPfuuTuOhfL4p8R6bnReHbSxvqk/uQETLYM7sn/boKeRaPV8gkNeq4TROFmkRofaSxf+d+rD5pNZRMsmtWtao47QunYUzrUr+NwWCkgr01MBhLnKgai5wgQdc0yCIPw3ZihbEgaoYF0+OKVA1SYzFu+K7qqUMn8EQ0qpTnse/hB+ufZ11h0V/DLwhFjHciRNX906NqUQZgWDZmKjoKCnEsama8EzEvE/dglIs0jIN7dmLj5jNaOr4cx+HMNb146Ohci5hmGgZ6MhI0PouXv+o12Lp1K57+9KfH7os6Fvty0YNZBUWEyHMtMawTJQ0c1xCGkzCYlzFT0aEGXIeaYUES+aZjp7U8/XGl1JU336FjURa4VMJoff+iG4sbcC/cvHMcK3sUrF+Wvm5RFLqu4f6tf8E5513Y8t0x99qcuaa9QUIGg8HoGCc+ClXg0Bp16qclCtX3b96Nwgzal5zQDaeR2LV7dh5ItnzT/mkUqitAiRniaIs6LkFuFoBsC+3VWHSdc3o5mVMtSRSqobYIiw/tGcYZm9ZBkgL6B5YJ/PHDwHzzwIxl2UBlErl8D173kmdhy1fegBeeIgCqb9+85O6rgyhUoENh0X1WBjlNTY0Iwd5B4tosqRnpFRv7XLff+I722+ElReRZ0zptORbvBnrXAXL6fopt27jhr/fhOec/Pv1+GQzGkiO1sBixvOVYqYWqnJRrivw8NHcoVJykbjIaGendhpe4GotGgvdHv+DVJCxyrrDo2MSFyAe7EP1QEdK77PiRcQzvHEbVIPX9BK4RhVqLmYgWJSz2yD2ombWWKFSvsJhWCA5C4qXUYpbXsegXib0c2HUAK9euRL4n3/JdRsxAtdSmfWuaBrXiuv0kEc9/+fPxtV98DU9/Ufy4CL0H04h5XjiOw8r8ShwuHU79O9Uv9wNoCIv0/k5dY9HWHzVRqI7jYNut2/CEpz0h8Tqj2ijkFTLKTpeSJhgMRiqYsMhgLHGihEVekj01Fp22aizWDKupjqNmWJB4LrYTXTMa60g8ibR0HBu2p9YhdaN1y7E4UwmfhZhWWJwoaXAA9CgispIAPYFjMa8IqBpWoCsvjuF9u7Dp1DMCv3vC+n5MV3Q8cJQMLGoaeWn67Tcux94tfwQ4Dhe/7V045ZRTEu1rqqxDFnjkgwYOPXAch76sRM6F596ZKKnoyYipokQH8wpmqwZUo/UFpKq1RqHW3BqLfrrmWAyIWU2CIvGB7lXbdnDzzglsXllAb6a7tQ4fuvtO1KoVnP/M57d8N1KsoS8rYnlPd2s6MhgMRmIcJ7Lem+G4f2tjBvxahJKgKFQ7RFgUEwolbnyl1Ubd5ZYoVLlAnG9Rx0XjWylOu1GoRfJTrySrrUcddlpUFGrVdWE2noXb9x7C2WE1a2b2A3deRf7z8J+3j+LbNzwMyDm8700vx5mnuuurM83rc1xD8GwHKizqHTh/lV7yM1BYVF3x2BufMANI2eaY3d41ZJnx7e23w0u7wqKZUliszgCzw0DPqrZiae/evhfjU7P4u2c9JfW6DAZj6RHlQAxcPkpYbCcKVcqhajaExfHqeKjYRKMha1b7jkVe4BM5FiOFRb4hLKZxLBq2QYRFz7unZVmwLbsuLHIcB57jIXJi03kJIioKtSAVYNomym5/h4pUTTUW0R3HYuooVLkhLEbVkTy452BgfUWAOPR0U2+6TsXZIq77ynX4xXd/AQB42etfhtPOPi1Rm6g7VBbbq7EIAKvzqzFeGY+tjemn1+2TjFZHATSiUNPUWFQEBYZlpK53eaJy5MARHBs+hqc+96mJ15nSpwAg0e8qg8HoPuw3j8FY4mhGeCdekDPQNRWiwMGynUTpWX4cByh6RBzVtCEkiEL1OhZFgQPghA6mqRHHQEkmLIYP7ukpxb6xOdKx68kQYdGwnEgRFyDRoqqevsaioes4cnAfNoYIi2eu7oXIc7juQeIS0HUds7d8DyN334jx/WTG/HQ5+cvhVInUjpQSnNP+nITpit507ONzKnoUqeUWiDrq5T0y5moGagEics1orsNpOQ50y4YstN5kskjcsiW1M8eiJPJtORazUnAs7kPH5jBd0bFxWR45ubvC4p233oDlq9bi5NPPbPnu6GwNK3ozsbG2DAZjifPAtdGxlUsdM3ywzqbCYlBdu6YFYxyLokw+C4q/SurAog6+dsbT6o5Fj7CozUcfFy81C4ExsbGh1IXFakLHIhUWIxyLjgOAqzv0HMfB9r2H8NhTNwQvT6M/R+4HbFKf6ZO3aXjnHyrYsncKjpghx0trXlVng9vV7lgmHfSLGXCNJM6xyPsdizOAlGuqQwlRAXKDwNSe9kRiP+0Ii5zQ+vsSx8h95GffunQ1HV1+d8tWDPQV8LQntPZFGAzGiUdUzcTA5SNEu3Yci3kpj5pZgwMHEi9hsjoZKqhRccwv3Pgdi1FtFCQhkbDoF1C92xQ5IqY1ORYT/D0NcjfSSbs1s0aiUN2hV0mQIt18QLRjkcaN0rp9PMdD4IRmYbELNRbbcSx6o1CjxNPh3cOhwmJGzDRFfzqOg5lbZzB5+yQe2vZQ6uOi95TMty8sriusw5Q6hTktIGY9ApEXkRNzmKySWH3quE1TY1ERFBi28ahxLG65aQtkRcYTL3xi4nUm9ZiyBQwGY0FhwiKDsUSh3dKo2oGCpMDQNUhujcV2HItAs2CnmTZELj4K1SsgiTwPO2JmtWrEx3EoUvzAy0yle1Go4/NEWBzIKfX4zXKMmNWjiKgZVuoai8cOH4BlmqHCoiIJOHNNL/68bxITM0W89pKLMX/X/2LorKfhtf92OYDo+pJ+xue1esxpHMvyMopVo0lYHJtXUVDEFnFZNazQbQ4WFJi2g7H51rpWVd2EyHP1FzPNdTXKAcInx3FQJB4VrbNZeX6HZFIUiQ90r968cxw5WcDJy1sjWzrBcRzceduNOP+Zzwt8cR0p1rCmL0OuB4PBODHRq8Cv/xn471cudkvaxwqvWWjBfX7HCou+/oxfQIuqsZjpD9/u1N7GvqOEtjg4jghMdFuZHlLzMMr1IfqiUB0bbSlr2jwRvIyEjkUqkBnJxepj49OYK1XwWOo49EPFuNkDUOcncckll+Djt2p43wUKvvt3Ijg5D/C8R1icad2GqKD9KFRaY7ETx2IPAA4oT7R+Z6jEleoVFqlj0T/Ilx0AqtPx93QS3AHiqdm55AOivJg+CvXYvYCUdx2X6fn9rdvw4qefCzFBaQIGg7H0SeJYPPuHZ+N5P38egOiaeO1EaxakQl3sWpZZhpJRwlR1KnDZINcdkM6xKEpiW8Ki97glXmqKQpW4ZJGVuqW3OBZtd8Z3zaxB4qS6m0oRlFhhMUp4ouLdrNaY3CMLcquwuAg1Fr3XK+wYK6UKxo+NhwuLQga6rcOyLRiGgbe97W2Y/N9J5E7N4ePf/Hgiobdpf24/KSO2Xwd6TWENbMfG3mJ4ndAweuVezKgzsGyrfk7SiJzUsditGotzs3P1e3MpsuXmLXjiBU9EJpv8ejFhkcFYXJiwyGAsUajbKkrE4iUFhq5DEnjYTvSyUcx6IkZVwyKOxRj8jkVDCx98UUNq1nnxikxGyLJR4poeEMEZxdicCkng0JMRkHFFzVKMmJVTRGim3eTA9L5kSXzwn9SDe3YBADZuDhYWAeCpmwZxrKji9W/+F/z59tux4hWXo3/TY1FQyAvNTDn54NZkWUNBESAGRI36GcwTp6HmOX9EmBRaxOWKZoY6AQfzpIN8ZKb1JYI4Frn6BHpah1EKaV9GFFBJEJ8bBXVIluaKAIBScTrRejQW1+9KvXHnOE5dUUB/rv3ZjkEc2r8bY0cP4/xnv6DlO9WwMFs1sH5Zrn6PMhiMExA6aKV3IHotNhECi0VfJyLERwCtQol/0FOQW6NQeQlY9xSgf33INm3gPy8Etv4n+aeabjZ5C4LUOFall0SrRkahys3HFSaMRmGoJKYz00fiS5MIixxH9q0lFxYf2nMQAMKjUEskqgvzo/jA+9+PX/3qV/j5P2bxoQsVcI5FHJxAQ1isBTkW00dw1ulGjUVeIO7WSsDgtVkjgp2/xqKYbXUVKj1uLG06x09Ym+bLVZz07Dfg9rsSxqvyrmMxzUD+0bvI74nSk7qJR0Yncf/OA3jJs89LvS6DwViaJHUsjlfHoZpq5PK2Y6d2TOWlPIl+dIDB7CAAhAozVFj011ikNQkBgAMX2UZBTOZYjIpCVUQFlm3Bsi3olp7YWUajUL1RjI7tcyy630m8BN0iwlnosUQ4Fmkdw+la491W5gOExS44FtNGoTY5FkOe5Qd3k77IpjPCHYu6pcNyLHzyk5/E97//fay6aBV6zuoBHzLWEgWNQs0I7QuLq/OrAQC7Z3anXrdX6cWcNgfN0uqOxTQ1FhWROBa7ISyahomLL7wYW27a0vG2FoJSsYSH7noIT31e8hhUx3EwYwRMdGMwGMcNJiwyGEsIb/dPdMW9uBqLmkYEsrhlo5ipNjrUxLEYX6bcKywKPAdDC595pxo2rDjHokdYnCkHvxQUq+GDbWmPfWxeRV9Wgix6hEU1uvOcdyMw5zwC50SJdBBlgYckBp+1kcMH0TewDL39A6HbPmtNAZLAYeOL3ow/3nAjsqc8GQDqTrXpFI7FyZKGnCxCSuBYHMwrKKlG0/WcLGvIBTjkqm5dxCAn4LK6sNj6EqEaNkRPFKoa4VgEgIwkoKbH17yMQhZ5cByH0hwZ+DS0mAFvz751q3nfY3Mqdo6WsHEoj54uOwfvvPVGZLJZnPOUC1q+G5kjv1NnrOrt6j4ZDAYjNWb431CHvk5ExKUCaI0+9bsj6o5F93lk20S0611DHGRB6GXStvkRAIBR6nBwQZAbxyoXiLBUCxIrHc/yHdZYVIvkZ24ZcesldaqJSioRbt+hUciSiJPWLA9eoDQGywbgWLj8kmfiz3/+M155poRldCyOxtFSYVENEhY7cSy6A216B8IiQIS12gxa6gPQGoveLoxaJG32Dx4rPa6o3FksOwCAEzBdnEdN1TAzl3ByAZdSWHQc4Njd5HdFSp+s8IfbtkEQeLwwRfQYg8FY2kTVTPTjwGlaftb3973dKFTTNmHYBpYpywAA+4r7Apet11j0udy87jSBEyKPKamw6N+G9980CtWwDdiwE9fCMywDPM83R6G675KqqULkxSbHojfqM/BYIvabd5/BM546x5IgQbO0+jXqhmNREjqMQg3pnxwbPgYAWH9y8ISxjJiBZmgwbRPve9/7cOutt6LvvL5U7fBC29GJY7EgF1CQCtg3G3z/RjGgDGBen4dhG9DciWtewTwOWZDJ/dgFl2G1UkWlVEEpaV/kOLPttm2wLTtVfcVZdRaG04W+GoPBaBsmLDIYS4hpjytNdGdkRUV88qIMXdPqy6oRsalReIU8zbCIqBkTM1HzCFGSwEGPcCxqRgLHose9NlsLfimYq0UIiyndmiPFGnoyEiSBr0ehliK2DwA5mXTyZz0C564x0jFb2RveQZyZmsDA0IrQ72+//nf4t396IU7tdXD/jICTTz29/p0s8pAELlJU9TNd1pGTkzkWB/IybAcYc0Us23YwU9GRk0X45eWKbjbVSvRSUERIAocjs60Cs0prLLrbo45POcyxKPGoGRbMDjrQirttLaGgWN+36DoWPffTzbvGwXPA5uV58G3UbYxi62034YlPfSZkpfVlZ6RI2v6Y1endBwwGg9FVIlx7Np2hH+fu8gqJjhPgWJSI+EhdEVTgEyImdOhld3tkHTOo7l8aBE+0qeI69Eojzcs4bk3pqT0BjsV26iu6bc4OknOUNM5VcIXFhPscm5rFyqGB0Bn//3fbXTj7WxpGSg6WV/fi3HPPbV7AdUmAF8lx07qQTct04FgU3X5Ux8Jirxth67sfjZp7L3me47UiqQvpH8TN9HbVsViqpIx35cXm34U45o6Q6NaeNY1alSn4/S3b8PQnPRYDfay/wWA8UoiKDQ3C6+Tzi0KWnT4KlcZiOnAgCRJ65V4cnDsYuCzP8eA5njgcQxB4ITYK1dDi35f9jkXvvwVegO3Y9eMXuWQTSnVbh8iJdSHUNMy6sFezak3fyYJcd+SFEeVYlHkZIic2ib+KoBDRyr1E7ThM/XRaYzHsWs5MziDfk4eSCR47GX1gFDsu24GDBw6ir68PT3va01K1wU/FqJBzlqKu/i8/0gABAABJREFUYRCDmUGMV8dT/171K/0o6SWopoqa1UYUKq/AcqzU+w2iWu6wf7XAbLl5C0597KlYvjpkAlwAo5XRBWwRg8FIAhMWGYxFxPSJYQcnG5FWVL+IjkIlwmLdsZgyDpTuxxsxqpk2JIGDaUR3XpqiUHkemho+aKIFREsCwI4dO1ApzQMAFE9Nl+kAx6JtOyi5NRB1zzkRuPbcmqNzKgoZIoZl647F6JeRumPRI3zuHiPtH8iHdxBnpycxMNjaQXIcBz/51tfwqfe8FRtOOR1PPW0NRudU3Hek2R2Rk8XEwqLtOJip6sjKYmBkqZ9lbrTnyBzp/M9UdVi2gx6l9YWmqluQRS6wtgHHcejPyRifV2H7rnXNrc3I+RyLSkgdn4wkQE0gRkchu+7RqPsyCIXW2/Tc3zc9PI6Ng3ms6Gl/pmMQ88UZPHz/XTjvmc8P/H6kWEN/TsLyQnf3y2AwGKmJcCM6dAAswtUIwCcsWmhxtvES+Zw6G93t/faOXeEDmlSEo8JiJb2wuGvXLuiGu09BahwrjZSktQcp1GGozbtCpOf57Fjpo1CpQJcjjo7A2oVB5JYRMSnhYNP49CxWDva3fO44Dr7+9a/j7z5/MzavLKB3cBUwvr1VsMx6HANSLlgAFbNtGxYbUagx8a622Rxn6ifTR66N/7yYqi8K1QHUOSKG+ren9BKBM22dwyB4EeXUwqKQ7l46dg/52bcu3X4AVGsqbr7zAfzds56Sel0Gg7F0SVJjMenytmPDRrpnW05qro+4IrcCo+VwEUDkxZYoVC88x0dGc7btWPQcNxWfSm50PXUO6pqOn/3nz2BZwWMthmUQcdQdXlVrjeNQTRWiINbFwrpj0ReFun//fgCAZVqRjkWO45CTcpjTGuMFMi9Dt/XuOhZ5CRbSjS3JQmM8JOxazk7NYmAoOIXi//7n//CDd/0A0jIJYqE7KUFVowpZkJtiatuB53k4cCJrkQYxkBlAxaigZtbqjkVJSB6FSs8pjXTthFravshxxDItbLtlG85/7vmp1hurji1QixgMRlKYsMhgLCJecQ4A9k81Ogwcx0HguUjHIifI0DW1XquuZiTr8HsH6DKSUHcCOo4DzbQh8Dxmp0l9Gl0NntlU9dTAkwQuVli0rNbO7eTkJCyT7NsbixlUS7GkmgjSmWg9yKjzFMT4vIqCLEISeCiusDgfE4WaU1odiw+PEGExSsIrTk9hWYBj8cpPfxjf/9oVeN073ocPf/GbeNIpqyAJHK7b3jyImZMFlDQzkdA2XzNg2Q7yAcJgEAN50rE96joNJ+ZJh7eQae7Mm5YN3bShCOHbHczLmC7rLSKv6rpgaYRqXViUwqNQVcMKFKOTQu8nPaVjkYqdFfdeqOkW7tg/jZOX59GbTf4SkIRtf/4TbNvGec98XuD3R2arWNmTSXwtGQwGY8GIcCzWhcVYx6KnzxM0MEMHWuhglPvzm7/dhpGJkDq5GnUsuoNp1WJ0GwIYnxiH4zgkZkpQGmISrSlY8g1alCcb+xSUZmHRbiMKlToWc0PuvxMKi71rSV1EPdlg0/hUEat8g3mm7eBjV/4E73rXu/DuZw3h1+86D4VVpwAzB4g4R+G45tp9VFj0H6uURftRqK57wYgZ+DK11lqJXjJ9pG0twqK7nje61zaCXZZKD7nnO3VPAgDadCymqdd59B4gNwj0rEzdupu3PABV05mwyGA8wkhaY5ESFTNqOVZbNRa9rM6vxkRtInR5kROjHYucAMMyQtshSmLqGouO4zSJldShOK+T5x+thbfr/l34r8/+F47sPxK4Td3WIXBCffKtrnombVsacSy6owWKoEC3Wx2L42Pk/V+v6ZGORYCItmWa2ABSh0/z9NNsx25/ko9LmjqAXnpk0lcIu5azU7NYtnxZy+e//N4v8YX3fQHnvfQ8bHzPRgi57rz/VoxKV4TFdulT+uDAwUR1AqpFYnGTRuwCDWGxanbeH1nKwuL2e7ajNFdKFYMKACPlEchc+qQGBoPRPZiwyGAsIjOV5s7vvvFSk+gncNHCIi9K0HWtLiwaCcU1r+MvKwkoqQZs26kLQpLAww6ZkUepaF5hMc6xaIXWWHQcB47jNNVYnK3oLa63ILERAEQ+vbDoOA4mShryigCR5xpRqFqMsFiPQm20ZedYfGTZ7PQk+geHWj7fdvuN+NAXvonX/uv7wHEcZJHHY9f0YcvBYtNyeUVERTMj3auUafeeKiQUowoKcTaOFF1hsUReAnoyzS8TFY3WRQyXUAfzMmarel04pKiGDZHnG45F91pRp6ifnCQQl2uAGJ0U+juhqvHC4q+u+RZ23HcXANTvBXp/37F/Cppp4+Tl+fo2u8Wdt96A0856PAaXBw8EjhRVrO7PIN/luo4MBoORGiNcWKzXpzMi/t46TqN2ItBabxHwONZqTT9rRsSzQG9+BrcjLFKqmkFiJKljUcoR8arkcyxWXGERDlneOxjr2Okdi9QBWXCTDSohIqqf/vVAZaqxfgzj00WsHOpv+mzHhI1f3nAHvvWtb+E/nitCyPQAQ6cRMbV+nADknsb1AUi9RaOClpHL/BAgtemy5wUAXLzztV4rMaQ/kukngrPpu2frgqS7Hr13goRFKipXp5K2PhyeTyQs/tfPrsPNW+5313FrLCYdGT56F9C3vq36ir+7ZStO3bAGp5+c3u3IYDDa58k/fjJuOXzLgm2/kyhUP+0IVTQKlbImv6aldqMXkRcj2yxwAkzbDBUW23Es+sU9KviUjFJ9n0D8+6RhE8ciFQ/9jkWJl+qioyIokVGouqrHRrAWpEKTg43Gq1Icx0ntMPWTxlXnhV53LWRC2uxksGPx9utux79+7F/x+o+9HpzIoRKXXpCQslGGLMixYu1C0aeQtIex6ljjXoickt4MrcdYi5t0lYAkUajX/+J6bLlpS8f7SsuWm7ZgYPkATn/c6fELexgpj2BADKnDzmAwjgtMWGQwFhG/UHRgqtLkYuR5wIhwbXGCBEPX61GoSWsseusjZiUBFd2CbtnQXMejxCO2QHTFG4Uq8JG17HTTjnTbWYbR5FicqxlN4ifQXWFxrmZAN230ZkgnX+R5iDyHcoywmJEEcEA9ltS0bByYLEeuAzRHoY6PHKmf26t/fiOe87cva1r2/JMHMVVpnjFaUARUNLPlnARBY2QLcrKXAY7j0JeVMF5S64IrAPT73Hll16HqvU5+hgoKilWj5T5UDQsij/oLFRUew7aVlaljsYMai9SxGBOF+uDdW/DNz38Mt/7xN+56rmPRPd6bdo5jeUHB+v5c6DbawTQM3PWXW3D+s4JjUKu6ibmagQ3LcsiECLAMBoNx3IgSe+qOxQjx0R+xlsKxWIt6NPvjOL0uu5RUVQPgPTUWOZ4ITBWfw8IruPmjUO2AiNc4arNkOxl3YCRpFGrvWiLWTu1LtDiJQiX7ODI6CdOy8fhVAv7y48/hra+7iNRrlAvA4ClkuyP3NVaW843rA5Dl9EqriHrGS4CnXUqEyLRwHNmHETPwZWqkVmKY+yDbT0RP/z3rj0KlblcxxLEIEOG2UzgBpUr0Md27Yx/e/omr8KPf/Il8kMaxaJnA6ANAzyoi+KbAcRz8/tZtzK3IYCwCqqnic9s+t2Dbj3Igpl3ecqzUQlXW97d1ZX5lZDynyIuRcawCHy0sipIIXU/nWPQfM41CpaIWFdfiBEvDNpoci5pK+kMOHGiW1uT+UwQl0nmpq3qsoy0v5ZuEt4yQaTp3NuzYsZw42q1JSCNwQ4XFqVkMLCd9kamxKRg6afdnvvsZ/ONb/hEZkUxO6qqwyC+uYxEAxipj9XshTVvoPdgNx2I1pi9y5MAR/McH/wPXXXtdx/tKy5abt+D855wfWgc8CNuxMVGdwKA8uIAtYzAYcTBhkcHoMppp4cVfvR13HYwfGPI7u44Va5ipNjphcVGoEES3xqLrztKTdSC94mVWJqKVaTt1QUgQeNh2tEjZFIXKc9Bq4QKOHlJjsf69Vm0RFjVfrGtYjUHagY8SYP2MzVNXXqPDnJEEVGOERZ7jkJEEzLvRsQenKjBiXHW6pqJSmsfA4HLc/ddb8c8vew623nYjAKC3v3V21ePW9dWFYkpBEVHVrUSOVOqC7csln2U4kJMwWyFi7mRJQ0ERW8Qs6uCLcu0N9SioGRZmfcIoqdvZWE81LMgCH7qtrEwci53UWKTxtmrEfWmZJr7xmQ+T5ark5aXuXlVNOI6Dm3ZOYPOKfKrzmYSH7tmKarmE85/1gsDvR92al2esbmNwlsF4NKNXgb98dbFb0TnH7gV2dfhiv+f6+FjJpEQ5H+jgk98h5sU/YBk0gMn7hEXXARnpWNR8k3v0+Mk+YVRUAxCV5rYpvUT48/aJvMKiqLTWjkwdhVokTjMqZtXCHR1N9K4lPycfjl3UcRyMTxWxcrAff7lnB57wskvx3f8jdfmW9fU06khmeoD+DUR8O3p3YwNyoXGdASI0GtXWYxVEYNkpxMnZDoIcfR8B5P7ghHDHotJLBDm/29DUiBOw7lh07xUpQIyj1yKpyBuFIKJcDRfmbdvGOz/1TTiOg3LV/X3lhOSxulO7AbMG9KxpvkYJuHfHPoxOzuAlzz4v1XoMBmPpk8axaNhGrBCZVqgUeKHutgKAVflVkcuLvBgZ3ypwAkwnwrEoCbAtG1bMRGvvcfhdmtTV1lJjUY0RFi2jSQykwiIEIi563X8ZMUOiUEPGWpJEoRakQpPwJgty/dxRN1yYIzIp7Uah5kXinNdMLfBa0RqLux/cjbe/5O349Q9+DQAo9JGkAHrPlPT4VKgkLHYUakEqgOd4TFQmUDNrqYVFhSfnoxo36SoBUVGojuPgyo9fCdMwj3tk6rHhYzi87zCe9rynpVpvVp2FbutYk1mzQC1jMBhJYMIig9FlqpqFnWMlXL8jvpBwseYvHu7goaONQtwCx8G07aZ4VC+cIMLQGzUWEzsWPYJmThbqohUVOkWBi53l5nU9CgIX6FikYqJuBddYpOiqCtkjMs2rJjTfsYQ5FuvbSHjsADDmija9nrhPReRdwTV6EIfWO3QcB7vcGNShQvgAWtGtVbl7+/34yNsvxllPeDKecP4zQpeXBB5nrSo0fVbIEGExSc3BmYoGReSRl5MPLg3kaISpjfE5FT0ZsUX0o25OJcKxOJgn5+HwTKPja1hEIGwWFm0oIl+vuegnJ7cfhXrqigKe/5gVWNlDOuFRNRZ/+7MfYHjvLixftRY1V1ikjsWSZmLHyDwmSxo2DuVDY1vbZettN2JwxSpsfszZgd8fK9bAAXjMqr6u7pfBeMRz/YeBmz4O7L1xsVuSjspUs6C09T+BGz4CqHPh60RhGcBPXgX86GXxyyYhIuaUE8jzxokSMf0uhCBXAh14o9sx3SjUqDk/PiGR72CGe1XTWwWxTB+5Bl6xq8mxKPmExTaiUGszgJwlIqWoJK+xmB0gy0/ujl10vlyFphvYffAonvuGD+Gxp27Aq5/lef7QOpJKLzkHPauB8e2N7+V8Q/gFiNBoVNMfaxyClCAKNUGNRaA1wtbvWKT3jhIwgUdx+2F+t2o78NE1Fn/0mz9hy/07sWHNioYAKYiusJjg/B67hxxT/0mpm/b7W7eht5DDhU86K/W6DAZjaRMVbRq0bNzyaYVFoDkOtSAVWlyMXpJEoVp2eK1HwX2Hi3MXeo/Tf8zUpVc2yPNB4shzry4UhmDYwcKiLdhN2wXio1DzTj7Wsdgj96BmNp4rGSFTFxapaOWtHdkOcXGsYZy3ikxU0Syt5Rgty8LczBymxqbwrle+C0OrhvCCVzZPsu22Y7FqVFOLed2E53gUpAImakRYFHkxVVtojcVunI8ox+Jfb/gr7rrtLqxctxK16vEVFrfctAWSLOFJFz4p1XpjFdJ33ZDfsBDNYjAYCWnrr+uPfvQjXHDBBVizZg0OHToEAPjqV7+K3/zmN11tHOORxbxqYONlf8Bv7j+22E05LtBIyShmfTUWOQ6451BjYFHgOZiWg1A9iSeORVFojpiMwysK5qgbzrah1qNQ42ssel2PksBDD6g9UNZMZCQehuVExnjqarVFsKoZfmHRiEyjj3MOehmfV8GBCGqUjMRDNezYALOsLKCqWTAsB7vHSujLSpEi3vQk6fD89qffx0sveiM+9Y1rkMmGv1QBwJM3NItJvRkJNd1KFPc6VdFRUMQW12MUy/Iy5qoGNNPC6LwauD51LEbFclJh8ehMo+NLr6MkcJgvknt7rlyBLPLgw8ojSQJ0004U/epHkQS8+sknYY0bXRpW+3N2ahI/uPLz+NtXvRannfW4urDorbF4884JZCUBpwwV6s7YbnHnbTfivGc8L3S7I7M1DOQkLMuzYuRhsL4IIxAajTk/srjtSMsXTwE+v7HhjCtPELdSnHsrDLqdhPX3YomIOaXCoqVHCEL+AcvAKFT37x095kSOxeYZ7UIHUVEV1QA87goAQLaPxKt6j98rWAmyG1nptrGdKNTqDInj5AXiXEwa58pxQGEVMHMwuGalh7FJIlZe/dM/4OKXPBs3fPfT6C94aiGWRsnPrJuksOxkYHa48b2ca3bDKQVXAG4/WSAQ6liMmtxmuc7DsNfYTC/56RWAAbJdTkTFTQYpTlExtXkyFwBAKgDggGrCepdR8FJoFOpcqYIP/Mf3cNHfPhPPesrjGo5FXnTdrwn6QUfvJkJwblnqpv3+1m140dOfBElitZzbhfVFGEsVv4MtjljHYkRMaRhUSLQdGxzHYXl2eeiyEi8FOhape0/gBRi2ERqnKkidC4t0X2V34gkVdaKERcdxYNhGkxDndSwCgMw33ucUQYFhG6HColpT4x2LcqFJWKTxqoBHWIzpF8TRbo3Fc1aegw29G6BZrY7F4nQRtm3jdz/+Hc5/7vn46s+/iv5l/U3LZMUsJF7Cr/f9Gjumd7Tb/DrUsbhYNRYBEoda1Ip1YZHjOFimhVee+0rcd8d9kevSe7BmdS721crB29BUDd/4xDdw3nPOw9Oe97REtRi7yZabt+Ccp56DbD56jMzPaGUUEi9hVTbaDc1gMBaW1MLiN7/5TbznPe/B3/zN36BYLMJyxYf+/n589atf7Xb7GI8gDk+TB9Sv7310CIszFT00ypG6n+bV5g76YF7G9mPz9fGphrAYMnDDCzB0rV5nMLGw6FkuLwuo6UQooy7BRI5FzzYknocaIOBUNBM9iuT+f/jLiK7W6k4xykSpeYCyWNWRlcM7hP56lVGMzWkoZEQoUuNPoCIKqBlWbOoUcXiaMG0bO0bmsLJXAR+mkAGYdR2Lb3zXh/COD30aghg/eHPmqgLUI9vBlcmAVl4WoVt2i9gaxFSJHJsYEVnqZ6ggY141UNMtTLjCoujLt69oZN9Rzr2+nAQOwJHZxr2g6vSe4jE3O+1ui9TUFELOG91HWU3/AusnrPbnd7/6GQiCiDf+v8uQyeVRqzQ7FsuaiZt2jmHzigIGuizuHTm4D8cOHQiNQQWAo8UaVvRmkFdYfcUgWF+E8YiF1nSrTqHrok070FnVZvhAHe8OPhlaxECEX0iMdCzSGovkWaKmqLEodDDwUqnpxAHoJdMPqKXm4y/7hEWgEZ/q2G1Eoc6QOE5eIM5ArQTETO6q07uGiIIxM9nHp4sAgPe+8WX47mf+DbK/DnN5nIiqsiuyDW5uiI2AK3x6o1BdYbHrjkW3xmVUhJs/0tSPQh2LvuQQUwMEATPz5FxZtXly3oMGT3kekLJANWEsbRSCGOpY/Pdv/BiVmoovfuDNKOQyjeXS1Fg8ehfQty51fcWR8WncvX0vi0HtANYXYSxl0joMw6I569trQ1jM+aKmV+ZXhi4rcsE1Fjf2bgTgOhadVsciFRpFd4JEknqIlDDHIo3hrNdYjIhCpdvwutC0WrRj0XIs6CH9Kq2mJYpCtRyrXsdQEZVWx2IKx2oQ7dZYBFwHpdUa91p0+yIv+scX4WNXfQxKRmlZVxZkvOXst6BslPGaP7wGV2y9AlyKCdN+qubiOhYBoFfuxZw2h4pRgcRL4MChVqlhemIak6OTkevSaNiFdCz+9OqfYmZiBu/8+DuRK+SOq2OxPF/GA1sfwFOf99TU646URzCYHWxyRjMYjONP6r+uV155Jb797W/jIx/5CASh8cA799xz8dBDD3W1cQzGicxcTQ91mPW6tf38dQNX9WZwcKqCW2+7DdMToxA4DoZtRwiLIhzHgW2SjmPSmnRet2FOJoKaZlh1x6LMJ6mx2PheEblQx2Ih0xBqwjA0tanGIgCMFJu3N13WkeuSsDhSrKE3IzXtMysLUBMIi/V6h65jcaigQBI4mLbTtK46M4Yd92zB3CxxCbzqjf+auH2SwGP8J5chWyWDl3mF3C8zlegXJQCYKmvIy2JdbE7CQE6G7RAn50RJQ04W2nIsijyP3qxUrw8IeB2LfF3kMyxAFvlQt15DeO/shQgIdiw+/MA9uP7XP8Ob/u1D6O1fhlwuX3csCjwHkecwOqfioWPz2DSUQ0Hp7kz+O2+7EbKSwRPOvzB0mZFiDWv6s/Vrz2iG9UUYj3iq0+kFqi6z5c4tjWd9hGNREkXYjgMzSlisDxa6f/cDHYu0xqL7d5s6Fs0ox2Kzu0+yY2I0I6hqQY7FAUAvNR+/Nx6z7rL0Cotpo1CLgJQhYpKcJxGdSbfRt56Igv5aky6j8yZu2PIQJqZJpO6H/+Wfgp+9pTHi9KPXYHBzcxukPBHbKHKeXMOIiNy2oMJiVB/U1Egsa5iwKLnuT3+MqaUBnICaTq6VZKuuoBvynJXzxPHb6e8hF1xjcfueYVz537/F5W+/CGtXDqEnn/U4FoXoc0DRKyQKt2dVcK3ICK67/S7wPI8XP/3cVOsxGrC+yCOfMHfciUBdpEv4ShgnREbVPwwjL+Wb/r0mH14LTRKkwDbMz5LnvMAJMO3WGovzOvleBnkep3Es+vdHI0ipiCNz8Y5Fuo0gx6IjkPvHW6+QOtCqIQkLuqrHinr0vFLXoyIo9XPTrSjUdmss0vZollZvg1EycPctd2N2kkzWed27XgeeDx+KPnPwTFz25Mtw/urzce3uayH2tP8+vNhRqADQr/SjpJdQNar1KFS1lqz/RK+DGhcTn4Cg2okjh0bwk2/+BP/41n/Euk3rkMvnjmuNxbtvvxuWaeGpz00vLI5WRrEiu6KpliuDwTj+pP7revDgQTzhCU9o+VxRFFQq3cnBZjAeCczVjJY6gRTqvPPXWFy/LIeJkoY/37EVAMDzHCyfYNWE20HS9XRRaU1RqDIVOfW641EWSfHzyG143HOyKEBVmzvHpkWiValjsRQhEulqtUXIGplt7tAUq9HComk7sBMKq6NzNVJH0NOhzYgCNNOKfYHMyURYLFZ1jMypGCrI6M/KKKlmvSbgsd0P4MGr3oHvf+kTmJmaQG//MohS+s45dfRRYWu6HH+dZyo68opQj8dNAnXkHZ2tEQFXEVocjxXdBM8B48N7oreVkzBV1uqiel1Y5Hno7kuWbgOywEMIGRSk4mXUPZMUv+BtWRa+8ZkP4dQzH4cXv+JiAEDWIywCpI7kPcOz4DjglBX5UGdlu9x56w14wvkXIpMNHgSsaCbmVRMblmUjhdxHM6wvwnjEU53BYjsWb7zxRpCuABfpWJREAZoJmBE1beuOPjqwEyQs0kEsf43FqLFOr2PRtiGjfad7RQ1xLFo6UPPUuqSuUqAhxNG6UE4bUahqERAzAEeFxWrw+Qmibx2pHTh7qPGZmzhx//4xPOXKo3jH536AkYkpSJKIgb6A2E+ARAcrvQ2htH99cw1DpXlwGLL7b73ZMdoxYrxj0TZUHJ6M2C/HAXJPa4ypqQGCiJo76CzbNSJChjlDqMjbhkunCUFoiUJ1HAeXfvo/ccr61fi31/8DAKCQzzYESF5KVmNx9EFyrnrXhtecDOF3t2zD057wGAwO9KZaj9GA9UUe+XTq+lpM6Dtt0ijUuGONczQG4XcSrc6vDl1W4oOFxckx4ujiwcO0TTi+gZEpjTyTFYc8v1M5Fn3iGxUHacwoFRqjhEVaF7KpxmKtWVj0Ch/0/2kdRz9aNZlj0QuNWjVsoy6gtVMT00u7NRYB4qA0bAO2bWPs4Bi2f3w7/utj/4WJETLhZ2D5QOw2slIWF51xEd55zjsxt20OtX3tiV0L5VgsFouJBbiBzABKeolEoXJEWIyr20nhOA4SLzVF37ZLkGPx6k9djf5l/bjk0ksAANl89rg6Fu+46Q6cfMbJWLUuXZyp7diYqE5gdWF1vS4ng8FYHFL/dd20aRPuv//+ls//+Mc/4jGPeUw32sRgHFfe8sO78Jk/PBy7nD+2NH55M9SxSGeLz/tGy9b2k1xxedUpAIiwZEREoTpup9M0UgqLRqMTTd1hMxWjLixKIhfrWFSbHIs8dN+AInUo9rjuTK/D0Y+uqS0z6Efnm7c3U9UjRRbDinB2+hgLqCNIHIt2AscicXjuGSeDWst7FPRlRZRVE5pl4Sc/+Qmu/cRbkV2+Dpdf9WMUZ6YwMDiUqF3h+0zuWJyp6MhKQpNoGgetNblnvATdaojBXsqaCUev4ef/+YXIbQ0WFExXdKiuqE5dsKIA6BrppBo2qbkY1kR6T5YiR5OT4Xcs/vGXP8HeHQ/inR/5bH12ecYnLMoij8myhg2DOazsSZf1H0dprojt927Dec98fugyI0XS5jNWs8G+MFhfhPGIRq8SsWiRHYun9lvoUTg3ljG8nyFLIjQLsKL6IrTWDx3YCYxCpe4/GoWqwbC5aJlO9TgW9eBBuqRUVaNVWMz2k59lTyxo1Sss0ihUnRyb3YZjUZ0j++UFQOkhsaZRUaBeeteSn5O7Gm3ZdzN++9vf4sL3XoMVBQG3fvsjmCqWsGJZX3i94NIY2TcVSgWZxKxS5BBhUeuysBjnWHQc8LaOn93yYPR2lB7iBPXWmLI0gBdRcyPtiGMxG+FY7HFjadO7dJrgpZYo1P/5v9tx67YH8fWPvA2KG0tbyGWaHYtOgijUY/eQc9a3PlWTaqqGm7bch7971lNSrcdohvVFGI8k4hxueht/C/0CWFQUqszLkWIYz/MkChXNfxenVPJMzvPkudRJjUXqFPS3I1JY9EWQepenwiJ1KXr/P0wo0jU9VgTzO0EVt++iWQ1Rsh0h2IsodCAs8sSx+Kc//Qmff+3nwYs8Pv2TT6M8X0Y2n0Umm1wI2jywGUeuPoLanvRil+M4qJm1pvPfLXZs34HJo9ExppR+pR+qpWJenyeORSR3LALknumGsOivsbj1lq346w1/xds/+nZkc2TMI5vPwtAMmMbCT6qwLAtbb9mK8597fup1Z9VZ6LaOTb2bFrV+JoPBAFI/Ld7znvfgHe94B1RVheM42LZtG37605/iiiuuwHe+852FaCPjBOHKm/fiSzfuwf2XPx/9Xa5JlpSJeRVP+ezNuO/y5yeui7Z7rATdtFHRzMjYwZiSgy2UVDO25uG8ajbFlw4WZMgCD3v16bDVEgSOg2nbCDPiOdSxGNOB9lPTGwdDXYAzFR0Z9/9lgYdjkg4xHzII1VRjUeCh1mqAp49L3WYFV1iMEon0gLjKcZ+wOFs1Iuv7WZYTep78TMxrWNOXheRx5WUlHppp118AwigoIlTDwu7xEniOxNfO10yUdRPf+ubVuPyD78WZz/g79L3gHegbGERxehIDg+GF6pNA6+zFCYuOQ5yyeUWIrPvopycjQuA57BojA4RB0Z8VzQQsHVNj0TVShwoy9k2UoRoWejNS3R0ri0JdfDYdDrLAh95bGbf2ZVoxPwhNVevzdOeLM/juVz+LF/zDq3HmOY3or2wuj1qlMSBN6iwaOGWogN5M+zEwQdz1l1tgWxbOjxIW51RwHHDGKiYshsH6IoxHNHWn1eIKixed5j5zeKER9RmAJAnQLQeOnsCxyEc4FutRqO52jBp0O+ZZ5hW2OhS5KqrREOcoGVqvb7zeJugeJ1JdWLSIQOVY6QRhxyHiqJh1nXYFIiwnFRZ7VhJBc2IncPKzgL034JpvfhFv+OEevOxpp+GaFxvIr1iG8akiVg5GOARKo0DP6oZrFAAGNgFzR8n/hwqL5dQRnJEISvTxuwPbIzMxbrBMLxFsLR2gg6Om7gqLpH8rwIqOQlV6yHnpsrBYrtTw3s9/B//wvKfihU9/Uv3zQi6Lak2DZVkQeNF1LMbcS0fvIqKi0pOqSbdsfRDVmsbqK3YI64swHknEORZ1p40oVN+zY1lmWeiykiBFtiEsCnVKm4I5ZyIrE2Ek1rHomdjk3x8VKPwialSNRbqsN75Uq2mAHO1YrBrBUahaTQufBOTiFxapY1G39Lpz0krajwihoyhUUcHo1lG86muvwunnnY7cG3NYuX4lbpu8DQND8W7FQNoIENJtHbZj12tldhPHcWAYRouDNoh+pR8AMF4dx+b+zeA4ru5qTYLMy9AsreNoZq9jUdd0fOPfv4EnPO0JeNbfPav+ORUYa5UaevrT9S3SsvO+nZifncfTnve01OuOVsiEvzMGzwDmYxZmMBgLSmph8S1veQuy2Sw++tGPolqt4jWveQ3WrFmDr33ta/inf/qnhWgj4wThtj1kxs5dh2bw/DPTWdm7xa/uI6LHt24/gA+++IxE69QMCw7CBbR2sWwH0xUdJw3mQ5cpq0aTq5HnOKxflsX+SZsIi24UapgTz3Z7WHpKx2JV9zgWXTFxtqJhgCMdXVnkoey8DuPSQ1j+rPe07td2oLnt5jlAinQsulGokTUWm4VFgecwU9FhWHZd/JurGugfDB+8MiLOkxfNtFCsGSj4xLes7Eahxkx4yikiNNPG7rESVvRkUFAk9GUl6KaNc85/Or7whS9gYuPzseUAqa04OzWJgaEVTduY0gWsect/oqxa6IttcSOuNk5YrOombAfIy+n+tPMch96MiP0TRFwLEhZLqgnOJMKi4zihLzzLCwrmVQNl1cSKHtTFdUXkoWmN+1QU+dCIUXpPdqXGoqaCzon8wdc/D8sy8ZZ3f7RpmVy+ALVWhW3b4Hkeilt78+ShfEvtz07ZetuNOOWMx2L5qvAaI8dmq1iWk7FskSZonAiwvgjjEQ11xC2mY/HQlsb/80KkuKK4UahCVF+EDt7RWcVBrgTeJyyaKjQrpm/mdSl2KCxWtQDHYl1YHCM/K77Z6d7BKo4nx5nmumklIqJRcU7pIeJlUqcBLwK5IWBmf10ge2bfCD7xrjfiIy9YBX77/wAAxqdnsXKoP3w7lUlg8JSGCAcAQ6cBw3922+Vblw5q6mUAzX2cjhBl4v4MO4fuvTE6W4VhmJCkkP5Opg+YH3VrY+aIc9Eh4m/VO+hMnaJBKD3A9N7ksbRh8ELDiQjgM//5M0wXS/jyZW9tWqwnTwbzKjUNvUmjUI/dAwxsJIJ0Cn5/6zZsWrcKjzklndOR0QzrizAeSQS5Be8Zv6f+/5aVXqjKi+RZQcXAKCdeWBQqReAEmE6rsDhRm4Axa0BRkkWhep2ZfmGR4zgInNBSTzKRYxE+x6IMOGK4Y5HWcaTsx37yeTU+RlkW5Kbz5XUsFnjyPOg0CrUTYTEjZJA5OYNL33cpTnvVabhm1zUAgNmp2faFxTaoudH6Cr8wNfhsy0alVEGvEj0ZuE8hfcmKUalHoaZxLEqCBN3UE4mYUXijW3/xnV9g5PAIPvmtTzaN62QLrrBYXXhhcctNW9C3rA9nnJNs3NbLWGUMEi9hY89GjM6Pxq/AYDAWjLZGTC+++GLs3bsX5XIZY2NjOHr0KN785jd3u22ME5RFTu6K5cs37sGBycZAFI2/7LKuCAAYn48W/EoBcaknDzWESIHnYFpO6LgCdSyaKR2LXicldSxOVw1ohgWB5yAKPIzKHIq3/RCbBlsHK5rqKwo8OLRGTlLHYo8rUlW0iChU37oFRXRrVDYOfK5mQJHC/2SZVnyMKUDcigBQ8DnRspII3bRj54FR0e6BI3NY3qNAm5/BdVf/O2y9hsLKDXj/+9/f1DmbDXAsjmgypMF1GC8lE4QFnkNG4jEXEw1acd2BQc5bTa3hT3/4dei6AzkZI0XSwe3PBUShqiY4S4daraA8P9fyPWWwoMBxGnGetXrdzmbxWRL40N+5jNi9GotalQw0l2fG8fv/uQavf+cHMDDUfD0yuTwcx6nfwxlJQH9Wwvpl3Y1BtUwTd/35T5FuRQA4WqxhZW8m0kHNYH0RxhKGDpy1O1u8Mh2/zEJz2+cb/88JkXXm6lGoph4e75AkCpXnyb48jsVYYbGrjkW91bEo9wDggHKYsOhZvi6apnh21WbJT8mdAiMXyPGnqevXuxozo4fw1u/chdnsJmxYXsDl55aaJk8Rx2J/4Oq8pQPaPBHSvIO+y05u/L/i6wtSF0pKN59hmPjv3/4pfHBMkMmxhwmrbppG1XBwbDzi9yTTT+4HWhvUcvtbnihUAMQpGiYsZnqJe7ITxyIvAjxfdyzuGT6GL/3g17jsrf+ITb56QgXXJVCu1Nwo1Jh6nZUpYO4IcZr6BfEIHMfB72/dhr971lNiXTGMeFhfhLHUSVJj0XbsFsEOAHZM76j/v19sS0LOnTSjmY133uXZ5Xjyyie3CFciL0ZHoXI8LNtqaeekOgmjaCCb6dyxSNvh/zxKWKTb8zoW66IRTwRRr7AYVmNx1CHiSLmWLNbdW7+SCmeGbdQdi3HRtnG0U2OxWq7iPz74HzDnTXC9HN77kfdCEBvP2NmpWSxbHu5a7TZVkzj0/Peabdu44Zc3tCWW+5k8Fh+HSoVFgNwnHNI5Fmm0bLcci5Ojk/jR13+El7/x5dh0+qamZbyOxYVmy81bcN6zz6uXp0nDSHkEQ9mhFlc0g8E4/qQWFg8ePIi9e/cCAHK5HFasILNU9+7di+Hh4a42jvHo4y0/vBv/ddv+Bd3H12/ei1f9V2MmvmpYcODURY57D89iy/7uDOqNz0XPRCprJnSruXN86koyM0jsGQLPczDjnHiC2OIWjMNb71ASeIg8h7mqAdWwIQnk9UPXwjs73vVFN9JSU/2ORdLJ7nMFvIoe5VhsXjcvC5hzhU6AuAxrhoVc2Mx0INLZ6WXMjViltR8pGYkn9SxjJodTIfbwTBVC8TA++Pq/w8PbboU1P9US3woAs9NTLULWjE62kaZzuKIng+0j8zCs8AbSWN0gx+HW227CFR94OyZGg6NMB/IyLMdBVuKRC1i/7EahAsD4yNHQNlCX3ZEZ0nGlUaiKyEPXG/eUxHMQQga0eJ5EpZYjXK5JcBwH8/vuQWXXX7Dt6ndjw+bT8fcXvbFluWyOdEjVKmnz004ZxPknD6I/113H4I7770JpvojznxUtLI4WVazuz9QjcBmtsL4IY0lD3UNmujSBOt4afovB+HbgwC2Nf/MCcZGFPCBl0Y1CNXWECiF0sJCLiEIFiGOOOh+NKtS4MR9vLKlOhEXVbG/gpRoUhcrzRHCjgmI5QljkI0TTMNQi+UkHCJUCAAeiGe9YoOyt9uGpX3wQv7rrGA7MWsDJzwD2/wmYbzzvx6eLWBniEhB0d7KQP06z/6TG/4u+8yLI4YJcBLduexCv/cB/YMfeQ8ELiBly/sJEeVd0Vk0Hh0YmwneU6SduSioK0t9FXoLq7d9KmegoVLPW/u8x4J4jri4sXval72PtikF84C2vbFm0kCPicrlaI+7dOMfisXvJz751qWZHPrj7II6MTuIlz2b1FTuF9UUYC8kTfvQEnP3Dszt2KSUhLgYVaM8BR4VF1Wq8Iwu8ECh2Snx8FKplWy3nY0qdgjlr1uv2pXEsBh1TkMAZtU26LM83hla9y0u81HS8VFj018wroki2l7AUiDcO1Ru1Svdlp63j4yNtjcXxY+O49OWX4pbf3YL5Y/MwbKPlPB53x6J7jmVfH2b3g7txxbuvwMP3PtzxPiaORfRFXDJCpi5uCrwAnuMjxWo/siBDt7vgWHRrLH7vP76HbCGL1//b61uWyeYbjsWFZOzIGA7uPthWDCpAolBX5FbU/8YwGIzFI7Ww+IY3vAF33HFHy+dbt27FG97whm60ifEo5qad47ji/3ZBMzufPRSFYTnuTxumrzDfJ3/3MD71+4eb4kLbZXQ++oFc0awWYXGT17HIcbBsO1Iw4wQZhpFuBqFXGASIWFas6VANC5IrFEaJlbUmYZIDz5HISS/UbZZTBMgiT2r0haCrzTUG8oqIedWsOxaLVdIppRGZQcQKsC5jrti7zCca0fqNceOR1LFY238XrvvsW9HTN4AvXvN7SEPrWxyqpmmgNDeLgcGhps9njfSDcS88ayX2TZRxw8Pjscv2ZVsdhzNTZL2ZyeD1B11BsCcjQQqIKC1rxLEIIFSc9G7nyKwrLBoWOA6QeB666ncshg+EKWLnwqKuqbAtC1O/+RxgmXjnhz8DQWx9ScrmSIe05kbPXLB5CH9/zpp6BG232HrrjRgYXI7THntO6DJl1URJM7FxWd6t9cgIgvVFGEsa2X3JNdp8Ka8ssrB49w+A3jUYoZPmOcGNkgwRFiURmgnYphEuhFgJhUVearjLjBpix9e8wqLrWCxp7Q28BDoWASIwVWeI0BMZher+zU7jcKOORbc2FBWlRSOZ+/LWrQ/ivI/dBM6xsfVDT8STTioAp74QgAPs+FV9ufHp2VDHoqC6bfALi+6xHZjjWsU3jmurtuLo5Kz7cyZ4gYSORdUEDo9GCYt9RISk9wd1wbY4FjOt61KUHnI/14rhy8TBCQDHoeQZoPvqh/8Z2Uyrw7DuWKyqRGB34oTFu0kbe8Oj1YP4/a3bUMhl8Ywnn51qPUYrrC/CWEioyDZejX/3iyJJrb0gQc9fA9BfdzAJNApVNeMnQYthkzxcBE6A5Viw0fx3cVqbhjFrIJclz6ROHYtBkaxJaixKXKM/4BWNZEFuioANi0JNsi8vXmHR64ik++rUsZgmCvXh+x7G21/6dlQrVXzj19/A6U86HUDDMUiZnVwkYZFv7ttNTxATwcxESF8kBZMj8Y5FjuPQK5O4VJEXwXFcqihUWZChW3pXayz+y4f+BYXe1mQy6lisloNrgHaLLTdvgSiJOPcZ56Ze13ZsjFfHsTq/uv43hsFgLB6phcX77rsPF1xwQcvn559/Pu6///5utInxKGLjZX/AZ/7QOlOICn8LDRXYqB41rxp46OgcDMtuiSgN477Ds9h42R9w54FWl+NkRNQlxxHRpeYTTwY8gpdQdyyG758TZRh6uo6+X+TLKSLKmomqYUHkXaFQDR8QrRqN9SWBB89z0GqtUagcR5yAisC3iJle/CJmXhFRMyyU3BHF2So5vkxUFGrMeaKMz6uQBb7F1ZdxhUXDiZ71nVMEGLMjmPjlp3DqOefhK9f8Bhs2nASeAyZLzccxN0MGh71RqJbtYM5ML1g9eeMyDBVk/Ndt++vOxCAUMdhxODtF2jIzFdz5pU7DQkaEKLSe54pm1iPFJkaPhO4/IwnISgKOzrquAsOC7N4jXhesHHEtAUCReKi62VEHulppRMkMDC7H45/S+uwCGo5F7/JSwDnolC233Yjznvm8phmtfkbmyO/RmasXtqbBiQ7rizCWNDSWx2xTWFxsx+KRO4ENFzaeqbzg1g4MdyxqlgPHjhCE/I7FMFef0Cws1qJm+zgOYAQIi20mVwbWWASISKXOEVGrMtFcz64pCjVGNA2CilZU1HPvHdGMj0IbGZ/Gi956OZ54xknY8uY8NstTjW2d9NR6W8pVFdWaFiosiprbhkzrYF/VcDBaRqP+pZc2hMXxaSIsjk3NBi8Q5Fj0ThpL7Fh06x2Vx5vWAy+h1uRYjDgG2b0mfjE5DbwI3bBgePrNL33O+YGLUsdiqVIjQm6cY/HIXUDf+tT1FX93y1a88MInQpHbr5/FILC+CON4EBRR2m2CBLbds7ub/t2JY7FmxfeH4oSsoBqLhmVg3piH4ziQ3L9phh7dTu9xdCMKlUbEBkahghyXV1gUeVJjz+tY9DrROhUWBXeSk2F2VmMxTuillIolfOCSD2DNSWtw9W+uxqbTN9UdlFW9IU7Zto3Z6VkMLD/+wmLGN4lo1p3kNBM2ySkFSYRFAPU6jPQ+XwzHoldYfP7LgxOU6o7FBY5C3XLzFjz+vMcj35NeGJxRZ2DYBjb1bapH/zIYjMUj9cgpx3EolVpn0c7NzbWVUX3VVVdh48aNyGQyOO+887Bt27bI5YvFIt7xjndg9erVUBQFp512Gq677rrU+2UsHX51b7j7aaGp+YTFrQdmYDkOrBQP7XsPFwEAf9rZOsAxXQ7vAFDn22Q5vFNBhcWoTgQnSk0Rk0nw1kgkbRFQVk1UdbMuFEY5FqstjsXW5cuaiYwoQOB5yCKPmtEaXUIJqrEINESW2QrpGEc5yEiNxfjrZlgORIFrEc+osBilJ1uWhazEQxpYg7X/9Em87/PfQjafB89xyCsipsrNLwJUWOz3CIuTJQ12gloXfniOw4sfuwoPHp3Dn/eGd2B7MmKg43B2mqwzOxU8EFcXFhURktC6fkW3wJnxjkUAGMhJmCipsGynyQXrdbXKEeIaQK5HzUhWNzMMGm0KAC96xWtCl8vmC+7yyaPn0nLs0EEcObAX58XUVzw2WwPPAacxYTES1hdhLGnoAE+CGfqBdCJkdIPCSmDNExr/5gUiDIYJi7II3YIrFoZFobq/l3wSx6JBYleNGmpGxEPAqDa3SSuhZnItSRRJCXUsZvpIDUJLI1GoSoywmNqxyDXEoQSORdsm/Z01Kwfx+//8d/zff30SA1mu+b458x/c7c9gfJpEnYZGoWpFct6pGOdjRg1wLALtCYtTRQARwqIgk3vNK1D/6GXATZ8g/+91LEYN5mXcekZ1YZFGoQrNjkUpopYyFXurHZRH4AWUqo0++mv+7lmhaQ09eXI+y9UacTo6dnjhescBRu4lbkU5+XUYn5rFtgf34O+exWJQu0G3+yIA648sVd7wxzfgdf/3usVuRmLSChD1OE+PALZzemfgMmmgdQCTOBbjhEWe51uiUCdr5Dmw8mUrMWwNQ5KleMeiV1h0zJZY1m7UWPSKg5LQLCwCxEHnFRan1cZzJmkUao/ceFf0xq12y7EYV2PRcRxYloWe/h586tufwpd/+uW6G5EKnV7HYrlYhm3Zi+JYzAg+YXHq+AuLfTLpl1DhN1WNRUGBYRkdTbi2TAuGW6ro7CefHTrROVegSU4LJyxWy1Xcv+V+nP/c4IlWcYxVSN3z05ed3s1mMRiMNkktLD7jGc/AFVdc0dRZtiwLV1xxBS688MJU27r22mvxnve8Bx//+Mdx77334vGPfzxe+MIXYmIieOBb13U8//nPx/DwMH7xi19g9+7d+Pa3v421a9emPQwGA0Cj7h99SP/FFWy6VcqgWNNbok4ptH5alKtR4DjYSRyLEfUQg/C7BwuKiKpuoapZEN0ai/6aiV5Ub41FngfPAapPHCyrJjISqd+YkXhoRmvsLMXQmtel52bEdb3N1UjnvCfAiUejPa2EjsUwqBvSDHEsapUSPvy21+CP134fHICTz3kq8tmGs6EnI2K2qje5CYvTrY7Fo8X2YyUu2DyEvqyEq2/ZF7pMQQl2HP5/9t47XnKzvho/qtNv72WrveuOe8UNmxLAlJA3QELo8EIopoVOCA4xIXQI+RFMJ+UNJRSbahvbuOyuu43brrfv7W36qEu/Px5JI2kkjTT33l0bdD6f/dy9dyTNI41G+up7nnOORSiuBBGLplI2xzO+ar16xIxFgJCUK3VirduQNfCmXa6TfObZ8NtPhmMIGR26VDicCsQwlaClWBTWkVjcdduN4DgeZ11waehy0yUBfTkePZm1zXf8Y0NSiyR4asO8jyhPU2Jx08VA12jz9zZWqBxDQ1IBI2SZphWqObNYV5pEnBMMS+41BiEW60rIbB+p1vJ7XY0/ccdCQ1RaswQBINNL1JCqDNTmmko2gJCu5n4sWvb3WoxmnlgiBJ1lqWoTi/6Kxbqo4mXv/Cdc89X/AgBceeEZ4HJdQMpDCnY3r0fzi6RhGaxYLBJS0Y9UBbAsgHwuXvDxZ5lbhOLcYpBi0WOFWjpC8j5nHyLH31YsIlyxmApSLHqtUMOIRZPsXY01Mc2i2nBki4W4IbgyFpk2isXiAXLuFMYCPzc//PK2ewAAz7/0nMjrJAjGWtYiQFKPPJVx3/x9eGDhASwLq5hoEBFrkakYl1SyiLQwYrETK1TOvLdJWvteRVsrVDAwYLiIwYUG+W5QNIWqVo1GLHqsUC2ixx6zT9bjWioWAUK8OYnFw5XDze21Gb8FJ7FIUZR9rOcPk/teJ0SwE85JMF5CS5VVXPuua/G1f/oaAOCMC88An27eiyzFYt2RF11aLgHAUSUWLTtfr2LRIhTXgliMkrEIAL2mK4RFoMe1QlV0ZVXqZae1KR1Si6TSKVAUta6KxfvuuA+KrOCCKy7oaP25+hw4msOmwqa1HViCBAk6Qmw/vk9/+tO45JJLsH37dlx88cUAgNtvvx2VSgW/+93vYm3r85//PN70pjfhda97HQDga1/7Gn7xi1/gW9/6Fj74wQ+2LP+tb30LKysruOuuu8Bx5IK8adOmuLuQIIENr2Lx9ifXzn6MoShUBJIT6JeVRhSLki+xaBg6KIoGTbfPDqQYHrJphSqFNeAc8OZH5k21XUNWwdGt6rLW9R3EIkOBoijIogDnPMOyoCDFMaBpCimWgaho0HQDnI9bgVexaKk5Zy3FYkMBBZIF6YX18BU1YzEIVsai3yFUSnP4wT/8E5TqCl7xhncgc5BBX4631wGArjSHqqC6LHRLK6Q53OPIWJwudl6ksTSN5548jB/eO4XhrjQG8q3NpFyKBduBYrHXVCxmeMZ3/Yas2cRiO8Vifz6Fx2YrEBUNgqKBY32sUNtYjWY4cs6sJudQqLe3kgOODrG487Yb8YxzL0ImF96InSoJGO5Kt1j1JnAjqUUSPC2gxpv0Y+NYZyz2bCCWlBQFwGirWKQoCopOERViZCtUlajgvI1KS7Fo6IAqoC6F1DWyl1isoN6hDSoA1EUFYHysUC1iUZOA2kIroWbmQs6u1DA4zABxGrqNIslXtKyc2BRA0WDV1vvRVFnDiz5xI55cEPH6P3+O+8XCKFFV+mDeJCWCFYtFos5j/NUiKyL8FYsxLTiBCFaoDA/AaNrhPnED+Wk1gh1WqIdnwxSLJrFY9SgWGQ4N52S8VMg+WE3b1VgTUwxqQrSTMmtOVqs1RIAyMxb1gPN/+n7ys3si1nBuuPVunHfadgwFkMwJ4mEtaxEgqUeeDlgtWRMFkia1ECFxoQTZjQfAIiKdJNujy4+6t7mKfY+itApSLFIUBQMGKHPyr6w2r6nO/Emd0sGn+PbEotHcD0VXwNAMVMeEIJZiW3Ipw+xJ2ykWeZr3JRYlTYJu6KApGocqh5rbi6hYzHPu+xdPkxy+4kwR+b68r81rp9C6m8dDLsu4/h+vR3FfER/43Ad8l7eJRUcOdnmJuCf0Dfat2bjaQVAF8DTfQlrbVqhrkLG4NButRuhJ9QBwWKHGVCzK+uoyFqMqECmKQiaXWVfF4l033YWNx23E+KbOJsHM1GYwkBlAroMJbgkSJFh7xFYsnnTSSXj44Yfxl3/5l1hYWEC1WsWrX/1qPPHEEzjllFMib0eWZdx333248sorm4OhaVx55ZXYsWOH7zo///nPccEFF+Btb3sbhoeHccopp+Daa68NtRqRJAmVSsX1L0ECC06CbL4iYv9S3ZdU6QS5FIOKqEBWdWz64C/wwR8/3PI6EM0KNZRY7MQK1atYTLNoyCoaMlEs6qoKPeR71VCcikX/TMaKqCDFEpIyzTGQVC0wG9BLLPIsDZ6hMVch+1VsyMgGKOksaKskFlOWFapHsXjnnXdg7nvvga6q+Mp//xJnnP9M/NkpIzh5rBspR05gd4ZDVVIgqc1jU15eQr6rGzzfbFROrYJYBIDLtg0hm2IwV/EnfrM8A9bHytTKVlxZ9m/EFdIstg/nMdad8bXpasgqKLMxt9BGsTiY51FuKBAUooK1rFCd5ynHhn/P0hwDUYlmbxuERiMesRh1+bio16p4+N4dOO/SK9suO1sSMNadQS4hFkOR1CIJnhZQxWBiIAyrsV5cDU79SyA7YOcMWrZaBsW0zXvTQIEyNARaoWoeYlFXmmSaEwzfzNhTJdTkMMWi53skllGRO79nBFuh9hACVCgT0tdrPWkScva8olhWqCtEsWg1vSgK4LLgNDexeN999+G868pYqkq4878/i6uedZ57O93BzZn5lQoYhkZ/j7/FNisVicLPp6l73f0yfj9F+6tLO1EsLkYhFgFYuUyP/dx8wfxcFbdiMbBGYHhCjlukoKVYZHiIzgYx739MABD1JM0BjVU0Hj1WqGFgGAbZTKqZsQgEWwZP3QvkBoH8UOShSLKC3975AF54eWKDulZYq1oEODr1SFKLPD3gJbU6QVwS0GuFquoqDpQPuJZR46jxO0CQYpGyejPmPdapflxoLIABY74ckVj0KBa9lp+czySbIMWiYRi2YtFJjDrVaCzNttitppgUZE2GZk7GchKLcTMWreNh2Y8aZr9FC5roFQO01S42D9Gjjz6Khz/2MCqzFXzhB1/As170LN/1bGJRObaKRUEVwDOtxO5aKhZXFlYiqUwtxaJ1nsfJWEwzaWKFupq+SC26a1Ymm4FQWx9iUdd17Prdro5tUAFgpj6DoeyQK2c0QYIExw4ddS7HxsZw7bXXruqNl5aWoGkahoeHXX8fHh7GE0884bvO/v378bvf/Q5//dd/jV/+8pfYu3cv/vZv/xaKouDjH/+47zqf+tSn8IlPfGJVY03wx4u6Q7m3Yx9p5I33htgixUA+xWKlIUMyO02/+MMs/vllp9mvcwyxCV0OmV5vWaGG1RBsOgslRF3oB2/GYiHFQpA1CIoOlqGhyK3be+Kh+wFksPuRB5A7++zm+1v5eaII57y5mqgizdJgaAoplkZFVAKtUGWptXDpyrBYrEowDAPFuhyopLOgtjlO7RBkhfqZT/8zuIEN+MuPfgkTm7YCAP7slFHougHaQcD1ZDjsma+6rG9LK4suG1SAKNKytIqG3hlxxLM0rjxhGD97aMb39SzPgPPYfhqGgVIbxSJNUXj3ldugaK0HUVZ1KJoB3myWriwtQJYlF2HqxEA+BVnTsVCRICiaTT7LDntdngkP2s7yhIxejRlQVAUiw7LgU+l1y1i8985boKkqzr8sPF+xIiioyxo2DWbbWsUmSGqRBE8DqBIhyOJiNUTGasDyANdUSVi3OAM0qBDFIgCoBk3Ix0DFollvORWLlB+xyNlWqIYioOZRLO45OI1tAG688wE8e4PHQkmqoCIZGOxQ6NGQAqxQ7by+OUJU9Uy2jhmAXVrFUYo0Vogdp5Nk5XOgFHK8UhTZ6Gc/+1lMdDH42Uefi5Htm1u30z3Z+jcT88UqBvu6Ay3BGakM8Mf7Khbf9WsJx2/s999wmNovaCxmYzGQWDRJbSgNkmd5ZKf7dYdiUZAlLJcqGOjtDhhfgZD0huFSLAqmYlEDDYZrc7LwOWI56neuRgHNuKxQ26GQyxIrVNqsHYNI6ql7iFoxRr7ibXf/AbWGgKsuP6/9wgkiYy1qEeDo1CNJLfL0wGrsDi04bUujbM8iDS0C5kj1SIudqlPptx4IJBatYsS8x0p6k5CZr88jx+ZQUSswKIMQi22IOVfGoq6C8Uxy8huH5ImdKZrq+zt+fQc2vnwjALfaUxIlm/BkabbFbpWniWJRMzRw4HCg0iRx4xKLVn6lReZZxOJqMxYBot6UjeZ4vvKVr4BJM3jpp16Kk844KXA9i+SsK3WbqC0vlZFKp5DJrU2vLQoaasOXWFzLjEUAWJxdbKu+82YsdmKFuhrFYqMenVjM5rPrplh84qEnUFwq4sIrL+xofd3QsdBYwKkDp9oZrgkSJDi2iNTZfvjhh3HKKaeApmk8/PDDocuedtppoa+vBrquY2hoCF//+tfBMAzOOussTE9P4zOf+UxgM+9DH/oQ3vOe99i/VyoVTE4GP3wn+NOCU7l3595lTPRkUEixqMurn+GVT7OYKYuohdhZZHkGxRBikabaKxa5dBaKqsTSH3uJxVyKhajqaEgqWJqC4qOAXFqYA7AZSwtzbitUmlilea1TK6ICnqXBUCRjcbGmR1YsAkQBWDSJ2ZW6jCzPgvFR4lmwFIs3PDyDmx4jtig0TeYH0hQFUOTnE7P+s3NZmhC9qk7BMHRIFTLL/bvf/0+c++nfI1PocS1Pe0jO7gyHmqS67GjLK0suG1RZ1bFUlTDKa2jInSvSnn3SMH7z6JxvaZnl2Zax1asVKIqMsclNgRmLACGJfVx7bQKe0mQUunpQrZSwODuD8Y0+zU0AfaZF61SxQex1GZrY5TrOkTQXfsJmeAbSKhWLUa1QASCTzUJodJ5/GYZdt96ITcefgJHxDaHLzZjWvyePBjRJ/8SR1CIJjhnu+QYw9wjwgs8DIXmtLdCkYMVR4DoKUeL5KcTawTCabOAawGrmaaBBRyAWaWjBIdUtikXV316T4WxLVUMRICju7c0vl7ANwPTCSqsVqlhBWeycWKyLsq9qzyYWKzOAUAS8M6TNdRSrxonzmYtFgMsQ60sLfA5QZBiGgWqN7ON1110H5tO/RaYnoCEXYok5v1LFcH+wQoDWZUJQBVihBiJM7ecDVdWwVKxg64bR4IxFp2Jx9y9b38ckCNOZLGpyA4emF8KJRbFMzj2bWOTtjEWFSoHxy450gs8DYgXI9ETYQx9Q8YjFfDZNrFCtRrdfLpmmAHN/AI67svVcDMENt96NydFBnLptU+R1ErTiqVKLAPHrkaQWeXqgndIsiqLRSZ5ZirowWCSURcAcKB8ABcomMihQ665YDLNCBQBDJWNxKg7nGnM2sWgpFhU5nAB1HhtFV3wzFr3wkn31CpmMurywbG/DSVDKoowMMvb2vG5AKTZlE4sAcLB8sDmmqFaoph25oJDnR1uxaB2nNbDttRSL8hLZ/y9+8Yt48LwHURgOv/9bJGdDbaCbIffo0nIJvYO9vs5I64WGQohF72dcXCpibOMY5qfnoet64MSrdmDMidLz0/NticWJwgTOGj4LozmSYR5HsZhiUqvOWIyjQExn0+uWsbjz5p0odBdw8lknd7T+irgCRVewpXtLy6SABAkSHBtE6myffvrpmJubw9DQEE4//XTic+7TOKAoKtQKzImBgQEwDIP5+XnX3+fn5zEyMuK7zujoKDiOsy/gAHDiiSdibm4OsiyD51tnGadSKaRS/qqaBAnqEimQDQB37VvC9uGCS8W4GlgZaXPl4KIhy7MoC8FFHw1CxgURcgDAprIkuy7G5K8WK1RzrMt1GQN5HmobBWRD1sDQFDTdAMNQ0LVW69SapJokF0wrVB1qgCWc4qNY7M3yWKxJNrGY4RgwZiFabLiPmaFr0HQWugF8+86D2D1XRX+ONx+FiJLRAMyfBk4YKcBP/JjmGMh1GUvXfwmzM4+h/tk3obu7G1SEZlt3loOiGa7Ps7Sy5FIszpVFGACG0jpmVpEDleYYvO6izSg25BYVp2Wx64RFJm7ZfjLuueN3MAwjVlFvfU+gyRgam0C1UsLC7HQgsdifI9fcIysNiIoOjjEVi7KTWIyiWNRXpUJt1KMrEDPZ3LpkLGqahrtvvxl/9hevarvsTEkEQ1PY1uZh7U8VSS2S4Jhh/63A/GNA6SDQtyX6eqoUrOALglgiPy2byagXwfoS8NXzgJd9E9h6Wbz3DIB1l9BAgdPV0LFooEGHWaHqKtliWytUDlAEW7EohJVkUrXl96KgAT2dNa0aouJPzFqqtvIUIVe9Sj2zmWdbocZp5gkl04bUqVjMQytO43U/E/HT3VPY/6kV9PX1AVzIfnWNkZ8+nxEhFnvCx5EqxCez7XM0WqNrcaUMwzDwjO2b8b833gVJVpDiPfWVRSyqAvD4z4G+rYDs+JxVEZoBTAz3Y6ncwOHZRZx1yvEB+9RNSHpNahKLLAdBsohFHukAhUxzG3ny/lZmY1zQDGoxcpTy2QxqTitU1adYXHiM7FPXmP93yAeGYeD6W3bhqsvPPapN3T9GrEctAhydeiSpRZ4eaEceFMWAiRkOOBWLUfIWrTw+m1isHMBAZgCLwqL99/VWLAYRizbpYykWNbdiMUOTJkjUjEVn9qCfYtE7Dk3TQslKWZNb7E5FUbSJRZZmfTMWK1IFmqFBN3RM16ab24uoWLQyFhsamRhrkXmWZexaWOry4LH/+/tRuqOE6ddPY3x8HGymfQvZ2ueG0kB3ihCL5aXyUbVBBUxi0ZNxKQoiGrUGzrr4LMwcmkG1VEV3X2eTelmeHIuFmeCJ2xZ4hserT3q1/XucjEWLNJb8JhtFRBwFYiaXWTdiccfNO3Des84D4zebPQLm6nMAgO1929dyWAkSJFgFIhGLBw4cwODgoP3/tQDP8zjrrLNw88034yUveQkAMuvu5ptvxtvf/nbfdS666CL813/9l2tWyZ49ezA6OurbyEuQoB0s5d5iVcJSTcYVJ2awd35tctYssm6+GkzS5VIMqmJw14wyK0NFC37AYFIZqLIci1gUFff2cjaxKGGkO902s1GQNfAMDUHXwFI0VKl1+ZqkoifDgaEpZDgGsqoFRk35KRb7cjz2LdYgqRqKDQUZnraVm3+YLruWNTQVms6ZtrEGtgzm8KrzNoIzFY7W877zsb/gk2FHC0Uc/s+PQV4+guNe+BbkcjmISrSivCtNHkLmHdmH5eVFbDlum/37VIkU/iNZA1hlrMlZG/0L87zPfhVNG9Qt20/CHTf9Ao16Dbl8dPKqZhKLlCpjcHgU+554BPOzRwKXL6RZsDSFIyWBWKFaGYuiaD9ytVMsWrmcIZx6W8RRLKbXiVh84uH7US6u4PxLw21QAWC61EB/jkdXhAe2P0UktUiCdcMXTwMufDtw7pv9XxfMJl7cvERLsRiHsLFsUFnzpr78JFAYDl7eXm+Z2HTe8klg88XxxhkES7Fo2ZyGNDt1igENPdwK1dm805QAK1SeLGvogCq2KBZdkKrk2JrjMqQqSoIOwLPdX7wPUOrAi/8tVNFZD1QJmOtYpC/nJRa9VqgxmnliieTkOQiuJYnHS749jXumFHz1hXn0dUWwHM30AUwKdkfRgfliFVs2bwpfP6b6kKxjEotKNEXevGkd94wTtuB/b7wLC8slTI667eJtYrGxBBy4DTj+ucDMA83XVQmKTmOgp4BMOoVDYc28TDewvGgqFpsZi4LZzJMpvr3FKZ8nqsdOVQI0g2o9DrHoVSz6nJNT95LzvifcBcGJx/YexsHpebzwsiRfcbVYj1oESOqRBE2sdcZiFMWitbyl7Npf2o+h7JCLWFTjOjDERFQrVOf+LAgL6GXIM7EOHRzPxcpYjKJYbLs9XQFLsa5JG05ykKO5FmIxzaSxpC1B0zUsNBZchJGqqJEmJWQ5YgPZolg0Y01W+3nVKjU8/rnHUXykiLG/HsPo2Gis9Xmah6A2ezyl5dJRJxbrar3FCrVoOiZsPXErbv/V7VhZXOmYWKQoCj0DPZifmm+/MNBCcEaF9dlatredIFbGYi4Tyzo1KhZmFrD30b145Vtf2fE2Zuuz4GkeGwsb13BkCRIkWA0idTo2btwIiqKgKAo+8YlPQNd1bNy40fdfHLznPe/Bddddh+9+97t4/PHH8da3vhX1eh2ve93rAACvfvWr8aEPfche/q1vfStWVlZw9dVXY8+ePfjFL36Ba6+9Fm9729tivW+CBBYsS88DS3WwNIVNfWsXAJyzFYvBBUA+xdqkjRNWWcpTpDCU1TBiMetSgkWBlyyzxioqOrEDbbO9uqzaGXAsQ0HyURzWRBU8y5hWqAxk1QhRLJL3s0gxhqbQl+VREVWIsoZSQ0aaZWyLzyUze9GGpkDT3RP1czyDQppDIc2hK0P+dTv+ee1C9z7+CHZ//Z1Qa0WM/PW/oG/b2YiDrgx5CFlwEItexeJ0UUB3hkU+THWwSuR5H2LRVCxuPeFk1+9RYX1PKE0Gl0qhb2AICzNTgcvTFIXuDIe5sghB0cBZxKJJQNMw2mYsZjgGugHIaucP13GIwkw2F4uIjIqdt/4W3b19OOG0M9sue2RFwHBXypccTpDUIgnWEaVDwC/fH/y6WAZgAO1sE71Q5fiEhGASi5xJLAZlrAVh6l7g8I546wTA6pGpBtUk+wKggwGDEPLRSyRqsr/aiubJsoYOSpUQMveKWKGyTd9TQ6qiIvkQkTMPAId2AJXp1tccaEhKuP22UCI/WxSLHivUOJ+ZWCb7YB6LJ/YfwfnX7sKeRQW3vCaLN55ON0mxMFAUIaB96qx2VqgAiGIxLmxiMVrzycpVfMYJm12/u2BlXO6/lZwHA9vdxLwqQtYpUBSFDaOD4cRiugeQakStqJpkHcU0FYvg/e14nUgVALneObEY2wo1g2q90RyXnzph+l6ga7xp0RsB19+yC9lMCpef94zI6yTwx3rVIkBSjyQgWJOMRQf5FoVgcioWDRg4VD2EgUwzzoOhmHUnFmmKbiH5AIAyn9kNc6KRpcY0DANLjSWkaKLU0ykdXCoCsehQXira6olFWZPB0IxtGwq4SSOGYnwVi4quQDM0HKocAgCk1KaaOIqazRqnRd5Zx8HOWFzF5zV7eBZvf+nbUd1bxab3bkLfFX2oK/Em4PKMm1g8FopFURVbiF0rV3HrSVvJ7wsd5iyaNfLQ+BDmpudirx5HsWipUVdFLMYgCjPZ9VEs7rx5J2iGxrmXdj7JaaY2g/5MP3L82vVtEyRIsDrE8rzhOA4//vGP1+zNX/7yl+Ozn/0s/v7v/x6nn346HnzwQfz617+2Q8sPHz6M2dlZe/nJyUn85je/wT333IPTTjsN73znO3H11Vfjgx/84JqNKcGfFhoOUm9jfxb9+bWzh8lyDGjKrWDzopD2JxYtUGZBKIUQiyyfblvwOqFoOlSPDCzHNwtqJiBj0Ym6RBSL1vJ+isW6rIFnSbZemmMga+0zFrePkMYWS1PoyXHQdAOLNRllQUHKYYVaEVXXMTE0Baquh2ZRtoOqyMj0jWLk1Z8DP7w19vrdtmKRHAvDMFAtrbiIxSNFAcNdaZuUXQ90Z1ttZIrLS+D4FMY3Egu/sJxFP1hWqJQ5w3NodBwLs+EN2r4cj+WaBEHWwNKmFapJILN0+5gyyyp1NXmnjTgZi7n8uigWd952I869+AqXTZUfDMPAbFnEWE/GJvoT+COpRRIcdYhlMnMlwKYrGEb8jEVLschHUKkFveedX0agJWkMWLZeqkGbxGLw9VinGDDEdDxgAcV94Q9ULHJkWUMHNAmCGqZYrAGso24LIhaVBlCbb9phBsAwDIjOespbU1iKRS+h47VCjUosagohrbim5YSqahjqyWLXG3O4cNKyw4zYfNp0KdC7qUUhO79SaW+Fmm7zuh+spo4arfk0v1QCAJy23SQW/XIWLSu3/b8HejYCPZ78N1WCopPzcsPoIA6HKhZ7CPmsiuQY0hxA0WiYNasCrj2xmO4iatdO60uaQTWG/VghlzEVi+a4/K4fU/cCXROxrhE33Ho3nn3hGUinEhXbWmGtaxEgqUcSEKyJYjGC/akTTmJxRVyBrMkuYpGm6DXJ7GsHP9WipQTUzZuspe6ryBXIuowsS5R7BoxIVqjOY+NrheqJQGlnTSprMhiKscepKio0x8RYS23mRJpJQ9ZkaDohFmmKRlprTpQSY0xIsXIwU1Y9ZL71aohFXdeRK+Rw3jXnIX8yuddU5Hh2SzzDQ9REe8JWabmEvsG+jsfUCRpqa8Zi0ZzUdNyJxwFoEo1xodEaDNnAwOgAFqbj9VaADhWLWufEolATkEpH63Vm89lY1qlRcdfNd+G0c09DvrvTZxyiWBzODiMXI2M6QYIE64vY3e2XvOQl+OlPf7pmA3j729+OQ4cOQZIk7Nq1C+edd5792q233orvfOc7ruUvuOAC7Ny5E6IoYt++ffjwhz/ctmGbIEEQnKTFhr4s8ikWpnsEluurCMEDAAoopDks1YIbQoU028yv864MQDL9/KUwK1Q+3ZYIdMLP2tNJZLA0ZSsIndDN4pSiKDRk1bYZ5RgKouieASWrOmRVR9ok0FIcDU03bOtZLzRVgaoocOr4erOkgJopNVARVWQ4onqz0HB8doamQjcQqIgMgmEY+N0vfgJFlnHCaWfignd+BWxhoP2KPsimCJG8aH7euqbCMAz0OIjFmZKAse4MOGZ9iEWepZHxUywuL6JvYBD9g6QxEVexaFuhms3SobEJzIcoFgGgP8ejWFcgmHmcTsUiRxk2SXzfXbf5EoAZk1j05oHGgdCIQSyugxXq3PRhHHzyCZx3WXsb1LKgQFA0bB7Irdv58ceEpBZJcFQhVkAUi3GJRcQnFoUVoqxiO5zo1LsF2Pc7YHFPZ+s7YDfJbGIxhFyhWTBUiBWql0j0WqNaYHlAUwFVBm1o8MZQa1Y9RAGQyi7FIqXU/YlFuU7IxfpS8PhNNJwzyL2qEaFEiK8WxSL5rOwSJ2rzVTRt3dk0fvjr29EQRJyybRPu/MwrsLnXrdKLhBNfADzjlS6iEgCqDQnDAz2BqxkUTWxD48JWLEYkFpeL6OnKY3JkEBRF+SsWrQasXAUGTyDkoBOqaBKLFDaOD4UrFlNd5DwTy+QYMoRYFM0msQzOPgdv3fUwVkpV/23IjVUpFmsNqTVLMgDEClUIVixKVWDpSaAw0sz+bIOlYhk7HnwisUFdB6x1LQIk9UiCtVEseknAUDU+3FaoJakEABjJNrM9aYqGZmg2ibVe8MtZtNRmhjnRyFJtzTeI/WSWJsRiVMWik3Dzs0LlaTcRKImtfRbdrEUoULZi0aqZvMv77VOKSUHWZeiGjkOVQ+hN9YJx2LjHIZ2c2wTIZ02B6oigvuM3d6BWqWF80zj+9Sf/iu6JZm2wt7g39nhkTYZuWrSXl4++YlFQBV/FIs3QGBwbRDaf7ZxYZDVABobHhzE/Hc0K1Qm/8+qRex/xVVBa5+RqMxaz+WykZddDsSg0BNx/5/244IoLOt6GbuhYaCxgNDdqTyhIkCDBsUdsWcTxxx+Pa665BnfeeSfOOuss5HLumQLvfOc712xwCRKsN5yk3lh3BjzbzPGreLtZHaCQZlFsBG8nx3NQtOAC3TALX1kJfsCguTRk2acZEgBvviIAcAwNnqEhazpYhoLsM0uuuLwEdB+Pnv5BrMgaOMsKlaYhi+7lLSLKUualzXBmfxKVQPLkLPaY1qL7F+vQdKOFMGvIKvpyVpYAOcZymLLBA0WW8ZVPfgi/+vF/gv/St/DMK5+PrOM9DBfN2R40RSGfYrFck9CV4aCpZF97Bwbt8ZYEBRv7s+BW1oc4yvIMOLp13MWlBfT2DyJX6ALHp7CytBhru3WpaYUKpDA0Oo69jz8Sus5AIYU/zJTB0TRYmgJguBSLFEVBU1V8+P++Em/5wDV46ave6FrfIhYbsoreXAfNfABCvQ6W5aCq7b/LmWwWlWKHVigB2HnrjWBYFmdfdHnbZWdK5NicNNq1pmP4Y0VSi/yRQJWATw4Bz/knknH4VIRhkGZ+ugeIeV8AEEy0BaGxQvLugrLf2pFMGy8AHj4C7PjX1tf+oRs489XAi74SaSjWXB5FR9uMRYNmwVJG8DK65iYS9QArVCtj0bTX9CoWZ80G0GBvFyBWmwSsroDSVVT8ei6yOcmkdAjYcJ7PAk3UBRH99k559kUsEVLRq6iwrVDN36MqRYQSNN3A+75zN7748wfw7Wvfjdf++bNBeZVojWKrci8IvH+jJcwKVWPzYDshsq3Z4hGb4HOLRQz394BlGQz2dWNuyeeeyzoaugPbXMQxAEARIBsUQAEbx4bws5t3Br+hpSytzpmKRRagKNMKlTYVi+QcfNHffgJ/94aX4WN/+1fubaQKhCiOqMpsAU2j2hBQyGXsyYJhyGcz4RmLMw8CMIDuicjZrb/6/b3QdR0vWIX1WAJ/JLVIgvXAmhCLnmuHZmhgqeDWn0W2WSRYd6obfZmmuuxoWKECpjLLc9mzrFB1RQe4phXqQoNMLMmx5HtnwADP8yhLZRdJ54WTdFV1tdUK1TOJzI8AWponE5UKPQVIukQyFhFALPpMSkuzaSiaAtVQcaB8AL3pXhQrzck2qyEWAZMIjlF/6rqO73zhO/j+l76Pt338bfiLN/wFKIpyHZvHVx7HpZOXRt4mT/OQNBJfYxgGVEV9SlihFheL6OnrAcMw6Bvs65xYZDQYkoGRiREszC64sm6jwO+8uuZt1+Dyqy7HWz/6VtffLcWipEottrpR0ag1kMllbMVmGDK5tScWH7jzASiSgguu7JxYXBFXoOgKNndvblEaJ0iQ4NghNrH4zW9+Ez09Pbjvvvtw3333uV6jKCopoBM8reAkujb2kWbMozOVQMvOuOjOcCiHEYupNjdETQHAQFA0TBUbmOhtbRjRfApqPfrspSDVYJZnIAs6WJqG5KNYXF6YA7qBfKGAKVG1VVUsQ0H0kII1MxQpZRKKaY52/d0P3m1Ylp5PLtRc27AwWxKbx0MzCdiIeXyVUhH/+O434pH778b7r/0ynnnl8wEAGYclrID4dlGFNIeSoKCQ4aBaxGI/UUBOl8j+nTTWhSfXlr8CAJy5oRcMTfnarBaXF9E7MASKotA3MNiRFSpLU6DNGYfDYxNYnJ0OLaAH8inUJQ0co4NjKKiqYpP2LGWAoSkIjTp0Xcfh/a3KmjRPtht0vkaB0Kgjk82hWim1XTaTWXvF4q7bbsJpZ1+AXL59dtVMWQBDUzh+uIOcqz9BJLXIHwmszLrHfvrUJRblumkB2mFd0Ilikc83Wb244LLAxguBx3/m//r93wNe+KX2ftRoKhYVnWprhQqaBUuHEYvejMUgK1SeLGuq4LxzvI7MLQHDINaeUrVpnamQuqUapFgEgJX9weM30XA1eryKxSIhmrxNQtayQrUyFqMRi9XFKbzy/wn49b4H8a8feyte++emut2riKxMAWOnRdpmEMIUiyqXBxvb5heRFXMW5pdLGDGbiiMDvf6KRZoDQAG5QaBvs89gRSg6DYDChtEhLK6U0RBEZDM+Y0mbE3VqC+R8Mq1QBVECkIFMkd81TUO1LuDxfUdat2FlTwrlWPtqg2JQrTeQz2awVGxvI9eqWPScS9P3ETK9eyLyEG649W6cfcrxGB06uhZ0fwpIapEE64G1zliMsk2nFSpA1IoZtql+j0tUdQo/dZ9thSrrQLa5bwuNBVCgUODIddpSLCqyEkosehWLXqLGOwY/Amhueg4YA/qG+loVi57sPL/cSJ7hoRoqFF3BocohDGWHUELJfr0TYjHtmIhDUzRUI1r9KYkS/vk9/4xbb7gVb/7gm/Gy17/Mfs1pTbt7ZXes8aTYFCRNgm7o0E1Xqd7Bp4BicWkFfeb9cFXEoqVY3DYMRVJQWirZ240Cv4zFerWOQ3sPtfzdIo0lTXJ9L+OgUSfEYhSsh2LxrpvuwsTmCUxuiThRzgezdWIFfkLfCWs1rAQJEqwBYhOLBw4cWI9xJEjgiw/97x+wVJNw3avPXpftO+00u0wiyyIVqyEkWFT0ZDgcWAomK/LtstR0FQCDHfuWcfX/ewA3vvsSbBpwN5xoLm1bTEaBnxUqQEi1kqCAodGiQASApblZ4HgAoCDIGvIpFpdtG8SWgRzkg+7lKyJphKRYyvxJCuqwPEmx4bZTZWkauRSDg8vk+GV5d1F+cKmOczaT4s1WLIaoPy3UKmVc/dcvRKVUxL9864c49azz7dcyDvKyYXBQQixo/dCVYVERVOi60VQsmlaoMyURFAWcMNKFJ8PFfh3hlPFubB8p+Nporiwt4PgTSVOyd2AIpeV4isWarJqZh+TzHBqdhKLIKC0voW9wyHedflNNqmgGOIaGJDSLU5YyQFOwibypA/ta1rdUrmGK3nZo1GvI5CISi7l8rEzGKO/90N134o3v/Vik5aeLAgbyPLoynakz/9SQ1CIJjhqsXL2jRSw2lonqrMMZyZDrwEkvBQ7cFrJQvH1RNLRVLILhwhWLqkehGGSFaikWTYWYV7F4ZHYBGAZYhgGkSlOxaC7fYoWqa02VZ7H9daNu5dv5Wb+KZSA/1Jq12WKF2v4zFwQBz3zpG3DwsIpffOq1eO6Lr2q+6FUsVsIzjaNgJEQloLG5zmx+Y56jc0tFm+AcGei1Mxfd26QIYTm4vdUGFXBYoRLFIgAcmV3C9i0+RFvKVCzW58k5QLPQNAOSTD4fxZxAZtnf7j7gc5ytz0IqN0nsOKAYVOtEsRgFhVwW1brQ/G6oHku/qXuB7g1NwrMNZFnBr2+/D+993Z/HGXWCiEhqkQTrgbXIMvRuo50tpm2Fal57BjIDSDNuoupoWKH65RFaikXLClUyc4fnG/PIcTnbJlJH0wo1jeCJLy7FotGqWPTmPPplLM5PzQNjQDqTbmYsBigW/fbJIopqcg0ztRkc13OcTUwC8TIWvdsEohPBqqLiPa94D/Y9tg+f+PdP4JI/u8T1uvPYHKkeiWXFmWJSqEgVGDBgmP21o5mxaMCArMktx7+4WLSVk72DvSj65T1HgKVYHJ0YBQDMz8zHIha95LFhGBDqAo74THKyFYurIRZrDWRzEa1Q85k1zVg0DAM7b96JZ734WavazmxtFjzDY0NhwxqNLEGCBGuBWMTizp07cf3110OWZVxxxRV43vOet17jSnAM8OWbn8Sfnznuq4o7Vvjvuw8DABYqIoa62s+MLgsWwRSNEHJmLHqJK1ld/WzBniyPqhg8yznnk4fnhK4qAFIoCwoUzcDO/SutxCLLxyIWgzLrUqbSjab8FYtLC3OwTBobsoaeLIeXnzMJhqZw126yPJ3KoWHINoGY9igWLUtNP4hCA/A8BPRkOEwXSVHjPVYHlpskkGEqFqUIisVcoQvPecnLcelzX4SxDZtcrzkViyrFodyQkU9Hb7Z1pzlMlwRougFNU5DNFZBKk+LvSLGBvhxv27euB4Ky+UrLS7Yla9/AUEeKRZ6lrSx4DI2OAwDmZ6cCiUXnfnIM7bK6ZWliHWsRi0cOthKLGX719hZCvYZsLlo4eCabg7iGisX7d/weiiLj/Evb5ysCwO75Kib7Msi3uSYkSGqRBEcZlqrSMIjiLT8YungLpDoQ7TJE0Fgm2XWdKhYBoGsEGD4ZmH80PBexDawml2wrFsMzFnkGQFDWsa64iShN8SemKJpsI0CxeHh2ETjd/EWuNTP5FCex6Dh2smPCSHmabDtErVkXREIg6WorSarJhGjyWqGaisU4VqiZTAaveeFFeG5jHidfdKb7Rd5tp4jy6ohFmqYw0Btss62y2c6IxZiYXy7hlOM3AiDE4r4js/4LPvO9hLzlfJ5HlAY5H0Fhwxj5Lh6aWfAnFvk8AAqoLpgZiywEWUVZMnDLARX6NtJYrJkN3D0Hp0k2lfO7ZxF4YoWoKOOCYlBriJGJRaJYFIMzFqfvBQa2B1reenHH/Y+iUmsk+YrrgKQWSbBeEKPm6obAsgu10E6xqOkaKFComwr/3lSvy8JzPRWLO2d32uNrq1hEU7E4X59HF98FliHXSx06WI5tm7Ho3A9VV1veM4picX5qHjAvqxaxaKnirOUtotFLVAJNouhg+SBUQ0Vf2k1IiQ0RDMvEykl0ZkNaRHA7sByL57zsOTjhmhOw/bTtra9b9rkKUYvV5OiTcO2MRadi8ShaoWq6Bt3QW6xoVxZXMLGZ1Ax9g304vPdwZ9tnNRgysUIFyDlx4uknRlrXMIwWxaIkEtvYuSNzkCUZfKr5ea5FxqLYEGNlLCqyAkVWwEXMiA7Dnj/swfLC8qryFQFyDvan+5Hz1skJEiQ4pog81fRHP/oRLrroInzpS1/CN77xDbzgBS/AZz/72fUcW4KjjM/fuAev/HpIVskxRFQ7xCfnSbEzV45WkDfk5qxyqpPsJAf8ZvD1ZjnU5OCZ69k2Vqi8SeVYJOcj026SkgJAsTwUefWKRd4kpYIUi/Vq870FRQPL0KApCjRFNUkjhoNCcbblqZWLaCkWq1Jws82bsQgA3RnezqgspNxFzeHl5vLNjMXgh6Zf/fi/cPMNPwZFUXjlm97ZQioCQIZzF/57FuIp2LqzHKqiCt0ANFVFt2mDCgBTRQGjXen2KlUAumFg4wduQGPo5Fjv7wfDMFBcWrSVk70DQyjGzFisiipSLG33uYfHSDG+MDsVuI6bWHTb5TqtUAFis+tVC7I0BWY1jXUAjXodmRjE4lpaoe689bfYsOV43/PMi/mKiIWqhLM29KKQTojFMCS1SIKjDufkoE6afY4mTCSOr7ECsJkW0q1ai56lDICoFgFg8Yl46zlgE4saABihhBllEXxBTQ+v9amu+luh2sGO5Fi3KBbnlpq/SH7EIpm44loGIERVfcHObgxCQ5SaOX9+jVguAzDejEXLCtX8PeQ4/c///A/+/d//HQDwnv/zTJw8kiLbdMKrWKzOhI65HQa682CY4HpTYzKtKsy4CCKUHSAZi6YV6mCAFSoAjJwCDLU2OAEAiqlYpICJ4QFQFIXDswGTpWiakLSNJaJopVk0JAWyBjzrew3Uu44DAGI9av6cWVh2b8OypZVifv8cY6g2RBQiqgTyuQwEUYJmmOewkxyozgHVWaAw2po9GYDrb7kbY0P9OOOkrXFHniAESS2SYD0haqsnFr2KxXbEoqIrYGgG8415AEBvxk0AWdaaC/PxJqdGgTU2SZNc5JgFqxbRzAnK1r7N1eeQ5/M2cadTOvgU35ZYdFqEKrrSVrEYaIXq3AbtUCyahJGltPQjSy114f4ysWjvTbuPtyiIsTPkUqxbsRiWibnjph34wXU/AAC8+G9e7EsqAm5isSJXMFef813OdzxMCrIuk4xF3QDHc8gVjh4hZJ0nKdrtNuBULPYNdWaFqhs6dEaHIRkodBeQyWWwMBP9u6HIik22WrCsR3Vdx8whd93H0AwYKh7R7IWVsRgF1nKdKGf9sPPmnch15XDqOaeuajuz9VkMZ4eR4xJiMUGCpxIiE4uf+tSn8KY3vQnlchnFYhGf/OQnce21167n2BIcA6yFSu+pACs7cWWFNAj8MtyAYPVeHFiWjyv11iK2O8P5NhKtllchzSHDBReNTYtP8rnsXaxBd+Q/0pSpWJTDC2gngkhaK5uPoakWxaKmudcRFQ0cTcGslyE5iEgKTQLRIk4jZSwKrc2+vhwpxDmGalGwzVbEplVpCLGoaRqu++w1+Pzfvwe7//Bg4Ps7x2nhngMr0M19nzvS3u6oN8ujJqlQTSvUnj5CLBqGgZmSgLGeDHIRiEVrt6TBk9ou2w7VcgmqqtjEYicZizVTsWgh39WNTDaHhZlgYpFjaJskY2naRVYzMEBRcCkEpzyqRYqikOI6tAI0IZoZi1GQyeYgCo2WIr8T6LqOXb+/KbJa8aGpEhiawhUnDoOmV0em/rEjqUUSHHXYVqgdQq5BMu/Rew9FIIjEEiGaPMRivR5OiLWg/7h4y/vAuhrZ+cVq8CQm2poRHkS+6qpbKagp/lao9usmsejh6MpVxwQQudokAc33rcqG3cwjy5jEYn4YqC/ZBGQQ6g2xSVb6Eou5VsWiZYVq1Wc+uUaGYeCaa67BK17xCuzcuROGYZDMRi7bSlR61Wi1RUDXISsKHt0foPILwXBfuG2mymZDPws9CiPexv5VUVQslyouK9RAYjEMqmQqFgGOYzE21IdDYc28VBc5zqoE0CwE5wQ389ypORpnuw946houC4AKzxcNA02sUPPZaESgtZwd1eC0Qp02M/x6xiNtyzAMXH/LLrzwsnPdKswEq0ZSiyRYTwjq6i0IwxSLy/PL3sWh6ipYirUnSg+kB1yv0xQN3dCxZE7uWY1yKgiaobWoywAHsahoYCjG3reFxgJyXM4mBnXoYFPtFYtO0lXTtY4yFuen5u3/21aoVsai6SRFmzWPH1lqKRb3l/eDpVj0p/tdr4uC6JvNGIYoikXDMPDDb/wQH3nDR/DIvY+0fe61iUXzkD62/BgqpQqO7PbJJPYgzaZdisXuge5V3YsMvTMHDu/nubK0Ymc99g32obxShqrEiy1oKA1SJMvk/BwaG8LcVHTS1c9e15lpeGR/6/H1I6jjIFbGorlcI+6zRwDuuukunHvpuWC5zidQ64aOhcYCRnOjyLJPHYe9BAkSxCAWd+/ejfe97332jNf3vve9qFarWFhY+1lLCRKsFpYV5/IKmYFULvrPRGqEEItRSdbJPnJj2zPfOpu5OyAvzVlT+SnYhsqPk/+Yha9ijmWqKLgUkCwNUCwHOYZisRqQc2ipCl0KRBNL8+5mqCBr4BiqWUCLAlKZnP17TVRBU0DKVEGmuQgZi0LrQ1RflhTIWZ4F4yFclmqSTZJaVqheC1yhXsc173oDfvTdr+FvP/RJvPWD1wS+P4AWkvf+wyXICin8VubbN4S70hxU3UBdUolisY+QeRVRRUPWsHkg5yLogsCYTca1sJwpmnmKfQPEsrR3YAjF5cVYBFpdUsEztD0Tk6IoDI9NYD6EWAQI0QoQktGpWGQoA4zDChUIylnsnFg0DAONRi2yYjGdzZm2JKt/mN/zyIMoLS/hvMsiEotHytjUn8WG/qRIboekFklw1GFZoXYKuWY3mSpRHtDFMiGvVumisBaw7/HWrShEsUmzFrEY0NDTZI9iUQm1JLVITKdisVTxuAjIdV8rVF/FYmGUfJZSJfg9YSoWrZwiP0LNz37JHIMWoFgURRGvetWr8PGPfxyf/OQn8a1vfYscW6Fo5ml6moc0C5Vy1I/CCqARi6yppWB7/SAM94YTixobPgHHReYGoQ2xuLhCxm1lPY4M9KLeEFGrx7zn2hmLzZzFUGIxXSDfKblhKhZbz8+aI0eoJWeRoiPbjvqComNlLOazZLmqxajrHmIx3Q3kRyNta8+Baew7PJvYoK4DklokwXpiLaxQwzIW/Yg31VBdBFvGo6RnKAaqroISzGf9GJaYceCXR2iVQ6qigqVZKOY9dlFYRI7LuRSLVsZiGJxKPlVvzVj0EjheEkhVVBcJJGtyqGLRqSS0YCkWD5QPoC/T15KbJwlSk9SLCOf7MBTTolJVFRWf/9Dn8W/X/Bte8ZZX4B/+v3+wyc8gWMeWUikwFIPHVx6Hqqko+WUke8djKRZhwDAM9PT3xNofL+KSfxZ4tnlOCXUBYkO0sx6tn8XleBOdago5/w0z13tkYgTz0/Nhq7jgzVcE4Mo0DMtZ7BRCTYiesWjWIkLcGs0HS3NL2POHPau2QV0WlqHoCrZ0b4mt5k2QIMH6InLXttFooKurmc/B8zzS6TRqtfUpKhIkWA0aAfajFlloKdPCLFaDtuGF1b86sNRoUUAGEYtO+FkfbhD24dCnX4he3rIhI+OeK4soN5oPCgwFUAwHNYZiUZT9CSVrPxiaguLJbJw9csj1u6Borjw/SRTAZ5uNq6qkIsMxYBgrW4CoG30zFs039lMs9ppq0BRLg2XcTdaVmgxRtohFf8Xiv177YTyw83Zc86/fxUtf9ca2s+TSDmKR1WXsXaihZo7Zz6rVi64M+SxX6jI0VUGPaYU6VST7dspYcMaRH3S1swLaiaKpTuxxZCzqmoZKKbrth61YdBy+wdFxLMyG5z5Zal6OoV2EHUORxq/1mWeyORw+8GTL+ukQNW87KLIETVWRzhXQ//x3QWoTKZzNkcbqWtih7rz1RhS6enDy6ee0XbYhq3hyoYpnTPSgP9f64JnAjaQWSXDUsWrFYsxriqEDqaeIxY95zRcVk2ALUSjQnHn9ClI1WhmL1n04yArVgrkdp9HBgSlP00auN0lARYAOCpLuebSRzUlfXaNEdVYKztKhaYpkLIZZoaZ8JquYCgsDMDMi3ffuD37wg/jf//1f/OAHP8BHPvKRZi3SWAbYbKsCEoBKE+VaRWXJOWg2mhs+s9zbob1iMfx8Wy51aAPqgKVOHDYbixbBGFu1qEkmsUiwYXQIh2dC7N1T3cTGVDGtUMVWm9q62eDLZzN4wkcl0GJNGwcUjVpDiGyFahGQNYtYdJLUR+4Buif9yW0fXH/LLqRTPK644BmxhpygPZJaJMF6Yk2IRc8El6hWqBa85JqtgDMf56rK6u8LfvDaVjqhyoRYlHUZsiajJJWQ43KgzZamDh0cz0EJiV4BPMSih1AFWq1QvUSl1/JS1mUwcCgWrYxF83eLRHTtp/m3Q5VD6E31ukgjLsWRjMWY5Ek7xeL3v/x9/PqHv8b7P/t+vPlDb25LKgJokq4GMJQdwoEycXDyU9x5kWJSUDTFpVg8FnAeF8v21LZCNYnFlYV4dqg2sW4ehqGxoVhWqH4qWMt2NJPL4PC+1lp11cRiQ4icsWgt5yQ7O8WuW3aBpmmce/nqJjlZNrzb+wKs8hMkSHDMEGsazDe+8Q3k882HK1VV8Z3vfAcDA02rhHe+851rN7oECTqEL4EF4OAyafANd5GGTZgVaj2mTWpNUrFcl5Djm1+rrgjEYt6HWOR4UjhQ5kxlRSNNPVU38ORCs5BnKApgWMhSO9qkCUIKUnjW9iHMVURbpWeRlzTVaoU6O9UsbjQD0A2AY93EYrpgFYsUqoKCFMfYGXkURYFnaV+y1ql6hKd3YyneVN1oydurSiqKpv2spViULAWjqfR73dUfwl+85i3YvC1akLaTyOINCbNlAQtVcixksb3SpCtNPu+VugzVoVicLYtgaQrHDYc397zQ1PAHoygoLhPLGqdiEQCKS4u2VWs71CXNVCw2MTw2gccevC90vf48+fxYBpAcx4+hDNA0BaFB/rb1hFNarFCB1RGLVmYj0z2M/OiVWFy+O3R5yzJ1TYjF227EORc/Cwzb/lv56EwFugFcfsJQJDWrhdE8DUBHd3p1drFPRyS1SIKjCmfGYkfrhyvkfME9NdTL1jW/qVgMJhYZi4xrm7FoWZhHIxYFpaka3H+kaQNKGRoh8NimYlE2WGTTnsaLpVjsMu0jl/cDWy/3fctcmkdDcCgW/eCX6+Js9lCMTSxqmgaGYfDRj34Ur3rVq3D22We71xOKAJcOJha1Ksoqjy6hZB+PtSQW61w//vdxBaefNBS6vhEpHDQc86YaYMRs4o0MNonF4zaORd+QZYVq1oQbx4ew86GQHNFMDyGTU/lAYrFWJ3XemSdtbVUsApGJPD9oBg1JVmIrFmuC+Tlbdoa6Dsw+AExeEHk8N9x6N644/xnIZqLZsCaIh6QW+dNEXVm7PPYgrIXNqKy77xXtXHD8lHtO0BQNTddsxWKljfo/KrwEaBh5oirErrUsl3HWf5wFAMhzze+gjg4Vi3S4YtFLAs0edluSK7qCFJOyFYuWGs0i7sKIRQMGulPdrv3m03xHVqjO96Ep2nYnMsw+0l+++S9xzqXn4JSzT4m8TecYxvJjmK6Re2Q78tYaj2qo0AwNhr56xWKnSDsyiYvmZCavYjFuzqJXsTg8Poxbb7g18vq+ikVTHXj8Kcf7WqH6WerGQayMxTVULN510104+ayT0d27OmJ5tj4LnuaxobBh1WNKkCDB2iIysbhhwwZcd911rr+NjIzg+9//vv07RVFJAf00wrfvPIC/OX8jWOaPrzHdkDXfRsjeBVIEDBZSMAwDYohisR5i2xmEh4+UccHWpkc+x9DIcEyoMtIio5xgOfI3zbQ4VRwZh3+YajY5GRrQGQ6KEkOxqBCS6LLtQxjI8zaxZ9mtsj4Zi7NTTcWiYvYEecd5I4si+EyzsK+IKlIs7bIvTbFMoPUsy6d8FYuWmlM3DLAMBdUsjFMsDUnVcXDFXMehWJx+4FY8/otv4ZWn/hRDwyMYGBppf1BMODMWeV1CwyjggcNlcx/bF1aWQrXUkKFpzYzFYl1GIc362t6GYS3y/opLC0ilMzZx1mcqF1eWFiITrnVJxUA+5bLwHRqdwG2/+nnoeoN58oDDswyqjuPHmvkdQqOOdCaDjVu34fGH729ZfzXEolAnD/5sJhqZm14jYnFhdhr7nngEL3/D2yMt/+CREoYKKZw6Hq/YPq6bnKvd6T8tK5CkFvkTwKEdwOB2INt3rEdCIHSQA+dEJ3Zhq1FIrQNE69Yd0uxkuAjEIk0TggRoKhiDYCo2BEcptt+RX8MaZt1jWX+pAiSdQSblabxYx79rDAAFrLROYrGQTXFuxaIfMj7XaufyNFEs/vrXv8a73/1u3HjjjZiYmHCRDTaEIsnT9FElqEwaUICKyjUVd4A7IzAigohFhc3jZT8QsPd1k7G3GRdzi+R7NNRHjp+tWFyM+f1SRbsOBYgV6tT8kk3itiDdQ1Srai/AF9DwOX6WFepZJx+Hn9y0o3UbfLxJYU5YzxlxMxarXsXiyj5yHnSN2grZMBTLVdxx/6P46sf+Nv6gE7RFUov86aIqr49Sz4m1yFj0WqG2UyyqWqtyzwmvYnGtiMWSVHL93o5YZGgGu2Z32X8r8AXArFF0SgfLt3/WdhKLfhmLXsWil1icOeyOR5E1GVk2a/dUZFEGx3NkdpbWuj3AvZ/dfLeLzLSJxZiKRS+xqBkaDj94GLf9y2148fdejG3btsUiFQG47Fg3FDbgoYWHQNFUZMUiAAiKcEwVi2mmef+1CESLUOzp7wFFUR0Ti5ZicXhiGNVyFY1aI5Iq0LLLdcJSB247dRt+88PfwDAMl9vWahSLmqpBEqWjnrEoiRLuv+N+vPpdr17VdgBCLA5kBpBbxWSvBAkSrA8id7kPHjy4jsNIcLSxd6GKT1z/GB44XMKXX3nGsR7OmqOhqFB9Ap6fnCdFQI5nISo6wuZgh+UBBmHXgWUXsQgQe8wwYtHPLtWa4dYkFpuE2hOzVWw26yOGAnSKabEu9cJJsgqyBo6lQVNwFSvWe7A0DVkkDT2KJ0XF7JFDSKUzruU4hzWpKArgs13QQWroqqgizTGunKMUS0NUNOg6UasBgGQwAM2CT2d8s+2s8WU4BgzdJBa70hwWaxIOLBESyNBUGIaBn33v33D3Nz6HsTOvQDobX/HhzFjkdBk8Q+P+IyUy1gjZe1mejLMua4ABdJtWqGVBQS7FIsUdfRK/uLyI3v4B+1j29jeJxaioyyrG2LRbsTg6gWqlhEa9hmxAjuFodwY0RY7LouP4WYdBaNSRzuYwsWkrbrr+R9B13WXL4s28jAOLIGQz0Rr0FvEqrpJY3PX7m0AzDM6+6LK2y+q6gT9Ml3Hupj4MFBIb1ChIapE/AXz7eUBuEPi7vcd6JASNeM2GFgQRi4t7gMIIkPaxyE53TmSsB2yRV4hikeZSgAYYiuSfDqlbikWzttI1Qqid+3+BwztaVVg+Vqj7Ds8ib6qvGN0ci8MKVdRZZNMp2J0egJAxFENUoOluoOS2dncil+ZMxaLVvPFWiRSx1mzdecciDL7yi4fxru98E89//vPR3R3SSBNLQH7Yn1ikSc1VVnli4VojNrAdKRbbZCyCiTfpqRPML5fQ250Hz5Nj1dOVB8+x8a1QVQmKTsPS024YHYSqaphdLGJixIe8TXeTfEW5AaR70Gi0nsO1hogUz+Hk4zfii9/7GQRRQibtuCenVkMskmZ+VCvUpmJRJMS7RSxOmw4RPdFm6v/69vugaTpekOQrrguSWuRPF2VplS4GEbAWxKLsyTtWjfC+hqIrbRWLiq7YJF5FXhtisSi57wF+6j4LVsaiE918t0126tDBcubrIU0e57FQDdW2UrXQLmNx5tCMi6Cxjp21HVEQkTLvIZRG+RK2TsKuN93r6slwKa4jxaKTeGIoBk/85gns+MoO9J7Yi67eeHEszu1YmChMkOOVpe3s8CjjaaiNp5RikWZoFHrIfZ3lWHT3daMYc5KTTSyah2F4bBgAMD89j83bN7ddP0yxuO3UbfjRN36E8krZdcxWQyxa246csZhbG8XiA3c9AFEQV52vCAAztRkMZYeQ83MOSZAgwTHFH59ULUEkWLlxUXMEn24QZM0moZzYM9+cZdhu3+MSiyxN4ZGZCjSPUtJPkehEWA6jqshgqCahNphP4eBKHao545+hAYNmICvhxZ3kyB4UTMWiN2/QskJlGKJYTG98Bib+9ruoiDLmpg5hYHgUQFOx6FS6ypIIPtu8yVdEBTxL2wQiYBGLuovwXdbSoPg0+HTWV7FowSIWLWRTDFiasq1tdUXE8i+/gJ9/43M44fmvw5mv/bhNhMZBykNkbezP4ok58h5SBCtUiqJcqsQe0wq1LCgopFmXynO1uP23N+Du229uu1xxedG2PwWAVDqDXKHLzl6MgoZsZWo2P4OhUWIrtzA7FbjeiaMFvO/Z2zHanYHsUMEyFDkHxEYdmWwOk5u3QhIFLM25Z4Bm+NVbobLpaMSiRY42GqvLx9l5629x6pnnodDd03bZfUs1NGQNFx7XH1vNmiDBHzWE0rEeQRPrlbH41XOAL/lln1FAqrMG0HpBsG78qtxUHHrAmhmLshBwDdVUouaz7iOaqVjccilw+YeBvMeOUzMtLx3Yf2QOk6NkOcayebOakJqMhkq3KhalKsCmCXmXGwSqs2Q/fJBL86g7rVA9WYlIFfzVYmazR9MNvO36Kt75rV1417vehZ/+9KcoFEJIKaFEFJd+VqgMqWEqqvl+FWI/5qe4a4d2GYtHA/PLJVulCJB6aWSwF3NLMYl7TYLT/GLjGDkfDgdlG6W7ARhAYwmgWV/FZ60hIJ/NYPvmCRiGgb2HZjzb6Pz7KKoWsRitJrWWq9YF01bXHO/UvYSEzvaHrN3E9bfswhknbfUnWxMkSNAxjNBpyWuDNSEWY1qhyrocqpBjKMa1japSXROb7JKnxuJCFNmqrLoIOcDfChUI/px0Q3epNzVda7VC9YzBzwp1eIIQSRzNQdEU0DTtUiy6iEWflquzD9Ofdl/X+QxPMhY7JBYNw8De/9yLO79wJ05+7sk496PnIt/dmROGcwzj+XH7/+3sZoEmSVwVqjBgoGegp6MxRMEDdz2AG39yY8vfOZpzkdHFxSL6BvpcE5n7BvviKxatSYPmLdo6H6LmLPplLAoNAQzLYOuJWwEAR/a57VBXRSyaasioGYupdAo0Ta+aWNxx8w6MbRjDxuM3rmo7uqFjQVjAWH4MWfapEReRIEGCJhJiMUEgyg0l1Cr0qQzdABSf5pcznzDIltNCXGJxpDuN/Yu1pn2RiZ42OYtdPhmLFhRFBkNTUEzSb6Q7jZmSCNlsVDAUBYNioCrhjSanratgkkS0R1JgvQfPUJBFAUzXIOhUFsW6glkfYtFJkkmiCM5ShlFAzbRCZZ3EIsdAUjVoLUpSCnwqDTGEuEtxNFhHAUgB6MvxmC6SYkctzaKx+y684v2fwYkveEMLaRoVaY+i8LihPI6Y7xHFChVo2rcCQLdphVoRFXSluVgZeu1www++hx9952ttl1tZWrBVihb6BoYiKxYNkO+Kd+xDYxMAgPmZYGKRoihsGymgO8NBdFqhOhSLmUwOE5uOAwAc8eQsZvjOj5dgEot0qn0zrywoYEx17mqsUIVGHQ/svAPnXfbsSMs/dKSMLM/gmccNtl84QYIExwarJTnlkEkpwgrgbczxOXdm31MAds7h3CPAP08CxVbVH8eTGeGyEHAN1T2ZioZmWqEG3K9VCbLuvgfsn5rD5Ci5r7JW05RrzkRvqDSyGY/aQa6ZOYYMIS/rS4AnI4sxNKRYCtk0h4bosEJtIRbz/sSiufx83cD3Hmjg3994Dj73uc/5W3Pa+28AUoVYofqoGRSGNE7KqjmWErnXrmXG4tHE3GIRw/29rr+NDPR2oFiUoTgI5w0msXgokFg0SUG5DlCM7/EjxGIa2zeTuqYlZ3EVRL9gTuSMSixa52+tIZBz1lIsTt0DdE9GsklWVQ2/uv0+vDBRKyZI8LSErMW/znvhzWkUtVaFlBOqroJBuGLRScjV5JrLUrRTeBWLYTlymqq1KBadZIsGDUybSaneMXeSsThzeAYj482oFVmXwVCMnbEoiRJS5rWcUqm2fYnetPveyKU4SILka6EaBpqioUs6tKqGI789gjPfeCaufO+VoFfRf3ASizkuR6xnASg+ecVeWMRiuUFUvt39q7dCDYqJufEnN+J7X/xey995hncpRlcWV9A76D7efYN9WFmIRyzWlTr5bM3PvH+oHzRDY35qPtL6vlaodQGZbAbjm8ZBURQO7z/sej1Fd+5u1KiRZ5GoVqgURSGTy0BshF83wmAYBnbevBPnX3F+x705C8vCMlRdxZauLbEtghMkSLD+SIjFBIF4xjW/xckf/82xHkbH8CoWNd3AweVmg68dsRg3Y3GkK41iQ3G9BwD0ZMOJxUKIolGRTWLRLKLGezIoCwqqkkUsAkZYRpEJ574KigaOoVwKQMBJLNKQJBGM2SQUGnWUiyvoN7MKZcuW1UUsCmDTzdlDVUklikVHEZFmaYiqbqstLVAUZSoWW4k7a9k021pADOR5HD50EIahg833Y/wt38RJFz+/7bEIA0vToNAc3/bhgr2/URSLgFuh2mMSelVRRdcaKxYBYMpDxPmhtLzkUiwCQO/AIIpLi5HeQ9UMaLrRQiz2D42AZhgszE4HrOmGJAjQassQ9t+Hbpacj5YV6sj4JFiWw5EDbuvDLNe5is9SHlJceK5RTVLx8Z8/ip89tmKPqVM8uOtOKLKE8y+NSCxOlbBtuIDhrsQGNcFTFL/9GDD70LEexbHFahWLSsx8klTeV8F2LGErFmuzhKg7eEfLMixPrmOKGKRYNBWKlON3mgGCmg2qBEkDGPO+qaoaDs0sYMMoua8ydsZis0lSV+CvWGRShNQsjBDlmuKuN7ZLDwAwFYsNqUkeap7GGZ93256aOLJUh6IZGCvQOPCBCbz58s2thLEXigBosmv8rt03FYs1jQVAARWioutIsdihBZprPGp4zdxOuTK/XHQpFgFgZKCvs4xFo3nOdOWz6OnK4/BsQE3jJAXpIGJRRD6XwUBvF3q789h90DNhahVWqFb9bVmctgNN08hl06g1RPL90FViC7zwKDl/ufYz9e964DGUKrWEWEyQ4GkKr9qwE3gzFkUlnCBQdMWl4vLCzlg0UVNqazJOp2Ixx+XCMxblVitU1mnlTQGM5T4UcEvyHhfVaFVB+mUs0o5neKdiESDkJE01FYtOK1RoCM2uBFoVkqlMCqIgtl3Pi+X5Zag1FWwXi8v/7XJsf8n2wLlbUeE9NqM5c6K5pASSfBYsYrFm1oVroVisV4Kf02cOz0CR3Z9vikm5jmNxqWjnK1roHeyNrVisylVQSvPgMiyDwdFBzM9EIxaDrFAzuQxS6RSGJ4ZbFIthNsHtYGUlRiUWASCTzdiEZCfY9/g+LMwsrIkN6lydZKxv79u+6m0lSJBg7ZEQiwlCoenG09YuVdXcxc50UbCVfkB7K9SGTPIAo2K0mxAY9x50FyY92dYCWVJ1W7lXCFMsyjJYpmmFOtJF3mO2RsbO0IDeEbHoY4VqHhuapiCLItg0sTZdmiMNlsERt2Ix5SD7JFEEk2o2O2qiCp6h4Xw+SXMMZFXzdVFjs12+xF3DnOntl02oHH4Id37mDag99FsYugom2w1FDS9wo8D5TlsGm/auUTIWgaa1LUXTSGey0A0DNUlFT5Z32cdGhSIHP7Qtzs20JcKIYtFthRVHsWjZ6HpJUYZhMDg8ioUQxaJrO6IAQ5Gw8MOPY0MP+U4IphUqw7IY27CphShdjRWqdVwoNpxY/NmD06hJKuqyTpSzqyAWd976W4xv3ILJzce1XXaxKmG2LOKsjb3o9blGJEjwlMBdXwa+/WfHehTHFuIq85RUIdA+1Bf8U49YbFg3fktFsbK/ZRkuRa61fbv+GfjRG1o3oituhaJXweiFKkHUKJsonJpfgqpqmLSIRauhyTebJDUZ7mw8ABArxG6UooHCKFGu1Zddi+Q0khWVTXFoiJKvgpC8V64lj/CO+x7Fma/7ND75ezL7fKDAk31rRyxazdQ2xKJmUITYqs0CAARJhqbFcxMZ7O3MAs2JYiXcJnxuOfx7MrdUxLCnqRhbsahrgK5C1tz164bRwRDFokMhQZufrweWYpGiKGzfNIHdB9aeWIyqWAQICUkUiyz5zs09Qkju7nEgpPFv4fpb7sbwQC/OPuX4jsedIEGCY4e1UCzKmmyrqQCScxcGRQvPWGQoBpqh2RajdaUOxTv5pgM4FYsZNtOiFnTCSyzyNN+yPJUKZ9L8VJZeAs8vY9EiCqvlKmqVmotYVHTFRcDJotxULAZkLDrhnZjDpliIghhLsbjnD3vwlhe+BQs/IffCTHfGpTDtFN5zYjI/af8/jOQDmmrSukSWWwvFYqUUnO2pazpmD8+2jMG5DyuLK+gd8FEsdkAs0irt+o4Njw1jfjqiYjHACtUi/ia3TOLI/rUjFuNmLAKEhLQsVDvBzpt3IpPL4Bnn+8U+xMNsfRY8zWOya7L9wgkSJDjqSIjFBE8LlBrxC1fFQwruXay6fo+iWPSzUw1CPsWiK83i/sMl19/9FItTRQEPTZEmTFgGo6rIYGnKziXsz/NgaApzdTJ2hgL0CF/juoNEFU3FYqsVKnkPmiIZi5xpIbk0S4qagSFCLFrcnZPsk0QBrMNysi6p4BgajFOxyDGQlFbFIgDwuS6IPoWLtd853l1Yz+z4GW7+4rvBj52A3MmXAYYBmmrmRK4GjEOxmOVZDOVJUazKUlvLWQDozpKxsiz5WZdU6AYwUOisGKyUw5tu04daG7wWdF1HaWWpxQq1t38ocsaiZKoUUj6q0aGxiciKRVEUwJmKFs4kKa2MRQCY3HJ8i2Ixw62CWKzXwafSUENsfQ6vNHDr7kVQIOdaJptDo94ZsWgYBnbedmNkteLDUyXQFHDFCYOuLNKoECXyQKKpq3+oT5AgFGtgdfW0hlRtv0wYFJHYfkYFl20hr441BNmRsQgAxQMty/DOXOO5P7RuRFPdhJ2uEUVWEFQBotpUIO4/QmYrW8Qiq5tNGQcxV5EMZDOeySRSlViVWhmLALDinsSSMsjM8VyaQ91nFrkNLusifb9/XxVXvPZDOGnLON55njlBhGIIkdyuoSeY93Y+nFgEQMix+pL9a6lNM69l2D7377hYDmnmAcDug7Ohr88vlTDc3+P6W2xi0bT2kw133btxbCg4Y5FNNz8zhkVDlJDi3XV3rSHaisITtkzgif1eYrFzYtZyP4lDLBZyGZKxSLPkezJ9L/l/94ZI699w6914waXnhKqP1gqKWSMqbRStCRIkiA4vsehV2UXdhtMy0GuN6oWkSaEEmFexWFfqHSsWLcJLh46i6LFCDVMsqm51YYEvtJBvFBf+TOV3LL3kmfd3SZRsYtEirpxWqIqmuI61KMZTLHoJwFQmFStjsXhvEVf/xdUYGBlAz4U99j6sC7HoIHaq5fD62CLCRFUEBarjnEcnysXwSUxe+1CedluhFheLrcTiUGfEIqW6z7Xh8WEsTEfsrwiSnQdqwbJCBYANWze0ZiyynU9EthSLUTMWAZNYXEXG4l033YVzLjkHHB/c64yKmdoMBjIDrkxVJxSzRyeHTMhPkCDB+iHSE0elUon8L0GC9UBZiF9QS558yCfna0ixNDiGFAHtiEVB1lrsVNth80AO+xbds7q7PRmLzoxBVdORTQUXjbKZsWipLxmawnAhhWXBsH/XjPakhKX8A5qKRdqjWDx/S5+9TacCcXF2GplsDrkuMstM9iMWJcHOqAMIkZlm3arINEe7lJpOsOkcRKF1JuVp49147knDOGNDDwBA0zSs3PR1PPmTL+HCF74Sgy/7e3A9IzAMAyxN23auqwFDuce3qd+hhqi2V670ZEjRR5uN4YpImkpD+c6IxWobYvHIgWA71FqlBE1Vfa1QVyJaodqKRZ98hqHRidCMRdd2BAHpTA7dF7/KtpcVGg1ksuQ8m9y0tWVf0qsgFhv1GrK5HKSAU8IwDPznrkPoz/M4ZbwbiqYjnc11bIX65GMPY2VxHudHzFd88EgJm/pz2DTQ2UPW4489BgBYjkgQ/zEgqUUSHHWoEqCK4cq6MFA0IUNiEYsZX7vNY4m6VS9Zzc7KLCEKHbAyFgOhe4lFtQ2xKEJUDRexSFEUxof6AZhWqGzaRcJWJL1VsSg7rFDzpsJg2T0hhwHZv2yaRz0sT4bLADQLwzDw0d+JePX/LOCvXngZbvzah9GfNfeNZgBDRaAPmwUruzPA2tJFLGb6mkQk2qsH1wMrpfAG4u5Dc4GvybKClXK1xQp1eKAH88ultnZqNlTSGHdmLAJtFIsU1VQc0iwagtSSw1mrE8UiAGzfTBSLLgUJ37lisSaq4DkWfAxr93w2TRSLFEOUvlP3Al0TbvVlAPYemsET+4/gqsuPjg3qjJlLNRuzKft0RlKLJFhvyLrsugYtNqI9sznhVdEJWjhBoBpqKJFFU7TrWt1QGh0RngCg6eSeK6piK7EYlrEouzMWc1yuxarTSSz6EXp+ikVvZhtFUa738SMWXVaohup6L6fCkVLbKxZ1uO+BXIojxGKELLnFXyxi/5f247zLz8MXfvAF6IIOtaS2EMGdwnt8x/Pj9v+jEouKoYCi2mdNRkG1TS3SQsY5MhYNw/C3Qh3ohVAXYpFoVYVYoTr3aWh8KLJiURREpNPuutmlWNw6iZnDM1CV5vmaZtrU2SEQakdXsbiyuIInHnwCF1y5ehtUgCgWh3PDyAbUzLOz5Ht5eO9h39cTJEiwvoj0lNPT0xP5RhDXnidBgvVCxRMq/eRCDYOFFBYqpDHR1gpV0WITVduGC7YS0YKXWDyy4ibQvASfE4osg2NoCA4SdLw3g3vL5CbPUEAUt1a3YlFHd4Zred+/OncDnn3SMHqzPGRJRMahWByd2GhbPSg6UQfyjGMWpNAkFg1QUDQDvMe+lFih6tB87MHYbAFSuVX5RtMU/s/ZzZlxFEVBE8o47iXvxJv+7t34+M8fJS8YBhiaWiPFont8xw/lcPch8pnWKmX09A34rWbD/rzNbL+KSYqPdHeoWCyFE4tTB/cGvmbZnbYoFgcGUS0XIcsSeD58XJLib4UKAMOjE3j4nrtC17e3IwpID29C9sJXYPdKHeegmbEIABObtmJxbtq2RwUIGd0phHoN6WzOtu71YueBFexbrOPtlx+H3fNV7F+sIZ3NdmyFuuu2G5HNF3DKmee1XVZUNOyZr+GFp42iP5/YoEZFUov8ieL+75NsseOjkfZrCpv86fBhnuEIManHVCw+xaxQ69aMIotYrC+0ZEemUu2IRQWgHRMpDA0IUZRDFSEoBjLpJrE4OToAznQDYHSTWHQ0QkuC7qNYrAEMTywkuW5C2hb9J+Tk0v5WmTb4PCFHDQOLdQP//Gd9eP+17walOO4bFEM+78iKRf/JJSpt7ocBINsHLO22XzsWxOLyKojFhRVSQw23ZCz2QlU1rJSrGOiNYJEWQCxuHB/CoZ8twDAM/3tEqkCON00Ui9l0CsVy8xjWGiImRkhtt33zBCq1BuaXihixmo+2YjHeZEMAqIla5HxFC/lsBrW6lbFoKha7xwG+fUPwhlvvBs+xuPKCM2KPNUE0JLVIgvWGoimrVpvJuuwiCgWlDbGotycWnUSVaqioSKsnz1dE96QEb96ga4weK9Qcl2v5LhqseZ2OmLEIALSP1oKlWKgg/RNZksGbtcjM4RnkunLId5H7gkaRY+IclyiISGfTqKFGFItttBzez5rP8BDFaIpFtapi5MUj+Psv/T1omsbhrxBihX09C0mT2uYft4OX3BzMDEKXdRiagVo5vBZhaIZY6NKrvw7munKoV+qoFMPPOa99KEdzNrEo1AWIgojewVYrVICQYeO5cURBTa75KhaX5pagKirYNpOJJEFCKpNykbNOxeLklkloqoaZwzPYsJW4FYSpeduhUW+AZugWlWQYMtnOFYu7btkFADjv8vZ9kXbQDR0LwgLOGDoDWTY6MZogQYKjh0idi1tuucX+/8GDB/HBD34Qr33ta3HBBWQGwo4dO/Dd734Xn/rUp9ZnlAkSdACvfeqe+SoG8ryDWGyvWFQ0t7qwHY4fam0QWUSTVdc9MdfeVk2kUshsuwCqpVh0sIcb+3K45yBpSBErVIrMyA5Bw2OFOpDnW6xQKYrCUIE0smRJQp5PwwCwNDuF0cmN9nKKRmwxnW8pSyIojhBUljVryqNwy3AMZE33VYGyqRyqPopFC/MzRzB75BC2nHYeBl74PowP5DDgIWRYmoqtMPUDQxmuh5HjBpo5i9WKv2LxMx+5GoMjY3jtOz7QtLY1G1EWwT3U1Vljuj2xGGyFWlwi1ml9HsWi9XtpeQlDo+EFtGWF6mdLOjQ6juWFOaiKApYLL1QlSQSfJcfEeshxkohWLuH0oQM47sRTAt+zHQzDQGllCUKjjmw2bytsnRBkDT+89whOGu3C/zl7Al++eS8kVUc607liccetv8U5z7y87XEAgEdnKtAMA5efMOhrMZvAH0kt8ieKn7+d/PzIfOcEX6ewc/A6fF+aJ/ahYXayhuG+h3OZcCXfMYDtemDlKTWWAU+TMpVuQ57YikWqqeBkwohFCQ3FoVicmsOWiVH7ZVaXAT7lUkGWBB2Zfk/jRa4B2QGyHEUBuQGgPE3sSj1Wkdk072+Fan4+s1UDD99+H5578Vn42gvToPK95DVns4emTWIxYsZigM2mxHWhLhuoaiyQ7XdlfRYDmnnv+dTXoagavvKxt4a/dwwwDA1N09taoe45HEwszpt2p17FovX73GIxIrFIPhvZSyyODaFaF1Cu1tHT5XM8U+a2aRaCKLWoWq2MRYAQiwCw+8B0k1i0FIsxGrSGYYACUJOUWDaogEOxSDPEyndlPzB2RmAepxPX37ILl5/3DORjvmeC6EhqkQTrDVmTV08seqxQ22Usqrra1grVO6ZlcTlg6egoSSXX76GKRcWtWMz4XBNpH4cdJ/yIRb8sQ5ZmYZoZQJZkl2JxbMOYTWhaakPGMVFKEiV093VDn9HBMExsK1Q+xUNsiPax8JKn5WIZj977KC589oUYefkI0my6xfra7/PqBF7FIkMzWLpuCcXdRVSv8u9pfe9L38OR/UfwkS99BDzDQ6LDbXgrWgXbP78dy3Lw+ZRKpVBHva0V6pTHytyZsVg0axGvYtFFLG6KSCwqNUCFO2NxYhi6rmNpfgkjEyMha7tVsBaEumDbtE5uJRPrj+w7smpisbhUhFAXkM1lXeNth0wug9JyqaP33HHzDpx4xokttrOdYFlYhqqr2Ny1OZKKN0GCBEcfkYjFSy+91P7/Nddcg89//vN45Stfaf/tRS96EU499VR8/etfx2te85q1H2WCBB2g1FCaJzhFYf9iHedsbt7cGrKGFEvbVo+iqiHDO2f2aS7bzuV6e8/uDX2ts2gscsQi8nZHIBbvy56NoZdegNqD17kyFgFgY3/zPSwRGRUyuw9wk6iSooOlqdBcN1kSQHNpaAAWZ6dw2mmn2q8pOrHFZBzrS2IrsZj2ECaWYtFJ0C5oZF/YTA6i6D8j6rGH7sPH3/Ea9A0M49Pf/6VdXKdYBoU0i6ppNcoy1LpYoQ4VeBR//z2Ihx9GrVzyXee3P/0fAMBr3/EBH8WiCpamWpSrUdGOWDwSolgsBigWLWKxuLQQgVgkxzTN+1ihjk2QAnphFiPj4dk/kiCAzxRcZi/OjMWJTVsBEAWmRSzGtUKdnTqEz//9e/Ho/XfjrIsuQyaXb1E2AMD1D89AUDS84ZmbMNmbRSHNQlZ1pDLZjojFpYU5PPnow/jzv3lzpOUfmiphIM/jGZOrL7b/lJDUIn/ikOtHj1j85DDQtwW46kvkd7YzxTkYDtDENuo1D1nRKYm5jhAV3bR1NesgoeQiugAgnU5B0Qzbbr4FmtIkAS0FZ1izTRHRkN2KxeddfJb9MqNLAFtwqTuLgt5icwm5BnSNNZWNuUGgNg+oAsDnXIvm0jwagk8DLDuAh7qejas+cgP4VBqP3fA18M5Gn9O6lmZM4rQNCaVKZP8DGkUqk0X3P1fxrlcNEGJRrsPqlxYr/nXkF777UwBYU2KR5zgImrQqxaKVozg80OP6+4ipGphbKuKUbZvaDybQCpXUNIdmFvyJRctClGkqFp1wZixu3TAKmqax+8AULj33VHs9MClEVSxOzy/hC5/9Jj57JvDkTKkDYjGDSq1Bzu2iOXmsa6LtJMJytY7f3/sIvvihaLVIgs6Q1CIJ1huyLq/axtKrQGwo4cSi1zrVC4ZiWsa0LKw9sRiqWFRUcI777cauja0LmbtgBFyvo1ihAnC9jyRKKHSTCSazh2dx0pkn2a/ZxKJjG5YVqnGbgf4T+0P3CWglFtkMC0mQMNk1iXvm70FPqsd+7fC+w/jQaz8ESZBwxkVnBKqnrc8r6DhEhZ/aUt4vQ6togVao3/7ctwGAEIs0D4EOV73NKrPg+jjMS+1tRCttJjmFKRZXTOtuv4xFALFyFutKnVihOonFMWKPOz8935ZYFAURKU+9KjQEjGXHAAADwwPI5DKu/bGsZaOiuFTElz72Jdz2i9tw6fMvjZWvCBBicfZIeH62H2RJxr2/vxd/9ba/ir2uH2brZAwn9J+wJttLkCDB2iO2z9yOHTtw9tlnt/z97LPPxt13370mg0qQYC1QajSJQJVJoyap6Ms2GzgNSQXnsHf0TkQWPVaoC5WQ3B0TLENjqGASbOb2rILvzA2kiHlirr1tiGpWxQ1BBMvQLoJzorfZoLD6d22JRUfGoqhqYBka89OHcWDP4y3LGoYBSRRBm0RheXkBoxMOxaJOGodOK1VJFECZgdK6+XdvJl+KpWHAkdUEwKJ+2VQGYqP1geeWX/4U73vtn2N8wxZ8+hv/0zIbrz/X/DwZem2IRdZTgFMUhcqOH0CrrQQqFp3oyrgfyiqiglyK7ViZVimFF7lTB/YF2pwUlxeRzmSRybmbp1bmYpScRcsKNc0yqB73bCyOXWi/n0VKLsy22ti2bEcUwGXdDT+nYrGrpxfdvX2unEWL6G8nEtB1HT/9z2/gzS+5DI89eC8URUZxaQHZXK5FsThTEnDT4/O4fPsQLts+BJqmkEuxkDUd6WweQj2+xdzdv78ZNE3j3Iuf1XZZ3TDw8FQZJ412tahuE0RHUos8TVBfAn70hmM9ivhQRWDhMaBkPtB3SvYxnKlYDGkQei9wVuOgfASotL+2Hg1IikpIDnumvwGUDrmWSad4SGF9UGfGonU8aAbT80u475EnW5dXRdRlHWlTsTizsIwtk81GDWPIZnZisy5YbqjIpLzEYp0Qf1bTLz9MzksfW7hsivNVLF5/y9246GO/wGB/P277/qfB856ai6IgKFbRx0azQnWsGwTNACG1M6R+tCZ0HRsr1PDa9cDMImTZP29r3pzxPtTX4/r7cH+TWIwEU7HYYoU6RmqawzMBNU3afF8rYzFEsZjiOWyeGMbuA578aD7XthgxDAPf/NFvcNIL3oK7/7AHADC9XEMhRqYRABRyGVTrZsZiY4XYI3ePtV3vt3feD1XV8MLLjk6+IgBIIMdSojqcfPE0R1KLJFgPKLrbCrWuxJ/06FUsimp4H0PTtVA1kJ8CbklYij0uL8qS+9k6TJXltULl/PKorZfjWKH6THLyZizyZi2yNL+E0Q1N9wTNlDU6SVxREJFKp0CB8h+jB97jmkqlIAqivQ8WeXXfHffhbS9+Gziew5d//GXbNtMPDM2siWIxRZvXdh/jjXZWqID5ebYRyS2p5DyKQoK2s0ItLZdcOYwuYnGJ9FQsItFCobsAlmM7Ihad+zY0TmqRhemAzGcHJFFC2mPdL9SbGYsURWFi84SLWAxT8zphGAZu/tnNeO0Vr8WOm3YAIGRnJuYkp2wu25EV6kO7HoJQF3DBFWuXr5hiUpgoTKzJ9hIkSLD2iE0sTk5O4rrrrmv5+ze+8Q1MTk76rJEgwfpBUYJVhCsOhaHMk9nKg45GfkNWXXadXiJM0QyXhehsBGIRALYOEqJEdQScp1gahTQpUB+fDZ717VVoqYoC1qMsLKQ5pGhSeLFmQ8oi9YJQ91ih8gyFVz/3PLz5pZe3LKsoJDDeuU2vFSrH0C4rVUkSSQMVwYpF61hbY5krN48nw2cheRSL1/+/7+Dav3sLLnnuVfiXb/3QN9vQInEBgKVpqPpq5+W1KhadqFVKbdf32neWBQX5FNNiDRsV1QCVJACkMxkIjTqWF/1n+BWXF9E7MNjy957eflAUZSsawyCpGjiGAsfS0FJdkLODtgLWIhbnZ6bCNgEAEMUG2HST4NR1HaLQsIlFAJjcfDymDjqIRfNYhn2mU4f2472veSm+eu1H8ZyXvAIf+NRXAAANM7/R2YA0DAP/dfdhdGc4vOnizejPk/MnnyKKxXQmC8GH4G6Hnbf+Fiedfg66evraLntgqY6apOKCLf0opDtTsSZIapE1wfxjwD90A4d3rt97/OoDwCM/Ap741fq9x3rCysFrY0GoqP6EChieqKziZCxa997iAfJTDbeQ6hgxbB1lRSPEoubYz2V3TmGa5xDqMK9rTTtSw6xJKAYTl74aZ//F1a3LqxJqkm5boQLAFscMcFaXCenmmHC0XFdthWNz8HW34rQwAggrRMnoQS7Nt2Qs/sfPf4cXv+0aPOeiM/H7//gXjA/75ywLVplF00SxuMpcIxey7ntLkBXqemIlQJlgQdN07AuY2T6/VER/Txc4T+ZQLptGIZfB3GJUYpF8NrLhrqeGB3rAcywOzQTUNJmmFWpDlFpUrU7FIgCcsHnCn1gMqUYOTc/juW/4KN740S/hZc+5CB/+0Adw9a9FPDyv2aRlVOSzGWKFypjHq3uyaccagutv2YVTt23CxvHhWO+3GhygNuLN1ws4TPsoh/4EkNQiCdYDiqa41IFRn251R+9B1mUXYSao7TMWw7IArYxF51hWSyxKqgRRc/dX2lmhtiPqDCoga9eEr2LRJ+/ZSSzKYjNjEQDGNjQneliKRe/yXtIodMyeeoEznw81tXkO3PHbO/CBV38AJ5x+Av71J/+KsY3hk03WzArV2i+flluQYtGJKPadS0r086ga4p5gHXMnGeckFotLRbAca6tPLdA0jd6BXhSj1iIwiUVPxmImm0FXbxfmp9srLyWh1QpVbIgu8m/DcRtwZJ+DWIxwLJfnl/GxN30Mn3zHJ3HWM8/Cv/zHvwAgGYtxicVMLgOxEa3/6cSOm3ZgeHwYW07YEntdP8zWZjGQGUCe848OSJAgwbFHJCtUJ77whS/gZS97GX71q1/hvPNIGOvdd9+NJ598Ej/+8Y/XfIAJEoThiSd2A/lxyHJr460sKIA5SVjh8mBoCkOF5g21LmvgHGQP41OEloRmE22uLEYKwN42XMCO/Su2RacToqLhyEqTuPCq2BgPiagqMlgfW7FuHlgQm1aoaKNYrEvNsRCrsuAZibJICgjK0YgbndiIA4ukkSXrQJahbcWiqijQVBUGzQF6k1jM8u73sEjTmtl9u/HxZtFFpzIQPRmLZ5x/Md74no/iL1//tsAHBGduoZ2xuMpeXhixGEWx6ByrAXIeFtJcC3EdFZVycJE7tmEL9u9+FFMH9mJgqNVyY2VpocUGFQAYlkV3Xz9WIhCLsmYgn2Lt74eeKtjK0Ew2h66evmiKRUFANtWctS+JAgzDQNpBLE5s3op9jz9i/86zNJkI6PORaJqG//3+1/GdL38aA0Mj+Ox3/hfPOOdC3HMHyb4RG3Vkc3msOJ6p7jtcxBNzVbz5ki04daLH/nsuxUBSdfAdWKFKooAHdv4ef/2W90Ra/uGpMjIcjUu2t34uCaIjqUXWAIfJLFY8+hNgw/nr8x62dWb0WcBPKUgVQqi1ucfee+99uCALTM8vw2UuzXDkGMQhFrmjkI32y78DnvhF8/c2lmu2YtFJLBYPAINb7V/TKR411UDg1HTdxwo1RB1haDJqsu7KwyOKRTIGxlBMxWJzG4tVhajRrHJClYhS0kss6ipQngJ6NwFasz7KZXioqgZN0+0246XnnIpr3vkqfPj/vrzFNcGJpmKRIfmNa9DQs5Fx23YdG8Vi+wbi7gNTOHFrqy363FKxxQbVwshAbwzFor8VKk3TmBwdxOHZgJom7SAWBQkDvV32S4ZhEMVirllPbt88gZ/9zjPhIpUH5NaJR7qu49//51d4/2e+hd7uPH513TV43sVnY+eDT+DLu2RMjBg4oaOMRZGoXwGge7zFttcLTdPwy9vuxZv/8nmx3mstcN39Cs7/q/bE5x8jklokwXrAq1iMih07dgBdwIHdB6CybitUL4Hn957tMhYB2Ld4nuZRFIvoSnUFrtMOZbn1uTqMOFRVtS2xqEEDn+IDyVhFa50Ixvj0RbxWqCmHG8LoxlbFovPYiYLoIiLbwTtWa13F4QJw8pkn46/e9ld4zdWvARPBBYmhiGJx9VOugxGFWIxi37mkRScWwxSLY5vGsP/x/Ti87zDoPvJ5OMm4lcUV9PT3+PaV+gb7bKvUdlB1FZImIae23peHx4cjEYuiIPorFh2TnCa3TOLe399r/x52LA3DwG9+9Bt89RNfBZficM3Xr8HFz7sYh548ZG97IGBiXBAy2QwatXgTrg3DwI6bd+D8K84PJfjjYKY+g5HcCHJceB2UIEGCY4fYne7nP//52LNnD6666iqsrKxgZWUFV111Ffbs2YPnP//56zHGBAkCoVnNKR/Cryy4C8eBPI9sqlmI1SQVfFAWkAmnnepiVSI5Q22wqT9nL+/FvsUaNMdYQ3pUAAixyDkWsvLu+tJk3LYVKhteZNckN8kZmIEEU30IAI5tDo81rQcU3QDHNq1Q7eXNGW26+cSR8RCLKc6tWPzNI808HppLQZZECOVlLP/qy5CEOiY2bcXL3/D20KJkuOAgFhlqTRSL7CoVi07ohoGKoKCQZjsmFqshGYujkxtBMwyOHNzn+3ppedG2PfWir38oErEIELWpxXkbXA4NpXk+DY9NYCGCYlESBTDpJrFoWd+6FIubtmLqYNPalaYo8Czd8lB0aO9uvOtVV+G6z16Dq17+Gvz7T36HZ5xzoWuZRr1GMhYNkxClGPzPPUewbTiPV5wz6VIH53gWmm6AS+diE4sP3n0nREHABZc9J9ryR4o4friA4a54CoYEbiS1yB8Z5Pg2X0cFYoXYEIZlAQLQTHJKVjwTiixiMU5W0noRi3VHFtJjPwUGjm/+roQ3HJtWqE2lIUqHXcuwLBPBCpVBTZAgWqrAkDwnQxEhKIaHWBx1L8RwLnJysaa4lrdVic5mTN68J1qKS6nZpMqmSN2zUBbwxp8LWKmKmBwdxEff+spQUhFwKhYjZizGAZ93Z0k+Ba1QC7k0dh/wn2Q0v1zCiCfTyMLIYAxiUbOsUFs/iw2jg8GKRZtY5FoUi5KsQNN0l2Jx++YJHJiah+S0du0aJ9cCB/YdnsUVr/0w/vYTX8VfX3UZHrn+/8PzLnbbYlbrQmwrVFuxaH3m+ZG2Oa87H3oCy6UKrrr8vFjvlWB1SGqRBOsBRVc6ylhUVXIjUmUVsh7TCtXQQu9zNklp/siwGUIMruJW57VBBfzzDi14rVB9l9FVcDwXOC7VaJ347Zct6bVCdarL/BSLThJXklptLuPAUiw2yg1Mf3sa9eU6egd68fr3vj4SqWiNRzO0SJPiO8VaEIuCKqCuR38GKBeDJ3lnshkMjg66FYuOiYHFxSL6Bv3dhfoG+yJboVrWxF7FIhCdWJQEyTdjMe2Y5DS5ZRLllbKdK2mRpN6+yMLMAj74mg/i0+/9NC648gJ85+bv4OLnXexaplFvxM5YTOfSEBrxrFAP7jmIuSNzuPDKC9svHAG6oWNRWMRYbgxZLt74EyRIcPQQW7EIENuPa6+9dq3HkiDBmqIqqoDDLmkwn3LZczZkDXyIcg8ASvVmU2GpLrusUYNgqSBVrbWQ2zPfvgBzwmuFWjHJ0n6z5rAUi+0yFuuebp8zW9ILS7FoKTQy+QL4VLPIUXTTCtXchCSQgkM3C3CDosHSVIsa0zr2VVFFWVCwY3+zyUmZeY63fObNkCUJlaU5AJtC9wkABh1WqAxNQdX02LOjDMPAwuwUhseIZVG4FWp7xaITqmagIqrYNsyBDznmYaiEEIscx2F0YiOmDvgTiytLizjxGWcCIBacX7xpDz5+1cnoy/HoHRhCMULGIkCUg7aalqKwXFUwZvbphsYmoikWJRE03zyPLAIvnWkWiRObjiPWrgtzGBgmDeQ0x9jzBlRFwQ++/W/4j3/7HEYmN+KL/3E9Tjq9NdvG2n42m4dqKhsW81sgiyo+8LwTbPLfQs6ccMDluiDGJBZ33XojRiY2YMPWbW2XXa5JmC6JePZJw6681wSdIalFnoaozgOf2wa88wGgb0uT+Fl47NiOKwhimRB9sWfdmhctmiMqP59Mn0BEyOPpCLsdCsVL3g/k+oGDt0da1bZCtYjFTA9QnXMpGCmKQujcK00FaAa3P7gPk90UThliQmdXGaoIQYWLKBzo7cJh522L5V2kb0WC2+ZSqjaXs5AzicUV874pNO+xObOZd8k1v8NKRcVb5qtob3BN8LkdEv4wr+O9NEuI2g6aeYem5/1tLCmKkGMNUjcdCyvUdorF7RtHW+1DTcwtFjE25H8kYykWTQJcNlq/jxvHhvDE/oBJTgPHAxsuAAojEETJlcNZM5tmuYxbsajrOvYdnsVJx5kKzDNfB9TnAC4LTdPwlf+4Hh/+wncxMtCLm79zLZ51/um+b11rCCjEVCwWchmiWLQa7D3tLTVvuOVuDPR24dzT2tciCdYWSS2SYK2h6uqqbSxVXXXZirZTLKq6GkmxaJhxLGk2jZpc64gAteBHLIaOUWlPLOqGbuch+sFPsei3TUuxqGkaNFVzKRCHxoawWCLFiJ8VqiRIsRSLXljr/vff/TfKc2WUXlKKvY3VWKHOTc1hxGE9H4QoGYvtiMXZmr+FehAqbSY5TW6ZxJH9R7ARxJ7bzogEUSz2DvpPcuob7MPex/ZGGoNNLCr+xKJTZRgEL1mtyAoUWXEpFjeYDhBH9h3ByWed3GITbBgGbvivG/C1f/oasvksrv32tYG5hs78xqjI5rJQFRWKrBCyPgJ23rwT6UwapwfURHGxJCxB1VVs7t4cen1KkCDBsUVH387bb78dr3rVq3DhhRdiepo0lL///e/jjjvuWNPBJUiwGtRlFarebOz05nhbNQcADUkNVe4BbsXiSl12ZRV2gifmqujLRS80g6xQh7PkbzmO/KS58KLNS4iyISSXJJkzk8yCenDU3dCwiUVbsWgSi+ZMPR000hwDhqbwD1e/Hl/79McBOKxQJRW37l6A5vhsVg48CgDg0jmMvPrzGJxs2quFwUkssgwNTTdiz8y7+/ab8brnX4RGnRTHYVRzWN6hH2RVQ01S0ZPlQo95EBiGRaUUPntuctNWHDnoXwgXlxfRZyoWp4oN1GUN+01L276BwbaKxXKRWJMQxWLzPFysNx9Oh0bGMT8bQbEoCGD4ZkFrEYuZbJNYnNxMPvcjDqI0zdIwABzY/Sje+VcvwHe/8mm87DX/F1/70Y2BpCIA6JqGVDYHzVTQCnwvLjl+AFecOAzaYzmc5cnDIJPJ2+dBFBiGgZ233YTzL312JEL74ekyaAq40mcMCeIjqUWehnjyt+Tnzv/v2I4jKsSiqSCMef1e3E1+CkUABqg2ikAXImSodIRHf9L8f/ckUcFFhOTNWMz0AvXFlvxHr0WlC7pqk4B2KUaF3HFVGaLaVCz293S1XmcZ3rWNqmS4Mhkhkev5P37/VrzhI18kf2NTQKoAFIk9FMSSvfieKULcUTCw6405nH1cdMvqr92r4M4j5nEytNhWqHfe/yi2PPsNmAuaMe+wQ22Xd7jW6O3Ot1Usbt84EkgshioWB/raEotH5pbx2IGZZsair2JxKFixyGWBC94O9G5uUSzWzHrGmYO4fTMxNHbtD8MAXeN44uA0LnnV+/Gef74Ob/o/z8XDP/tqIKkIwFRDxs1YTEMQJVJXp7qAfPvMxOtvvRvPv+QcX0u/BOuLpBZJsNZQdKXpytQhvIpFWZNDn5GjZCyS/5AfaTaNmlJbFQHqZ4UahijEomqohJgLUiz6ZCz6KRYtpZsskV6QkwRykiyWFao1Lk3VoCpqS34eAHz1E1/F3//fvw8dPwCszJA6QK7L2PLRLRg/bbzNGq2wrFDjYv8T+/HKC1+JqYD7uRPtSD6gPbE4XWs/OdlCobsQaoUKAJNbJ125hE5L2+JSiGJxqL1ice7wHKb3T6OmkNrST7E4ND6E+en5tv0oURBdikUry9BJLI6btYilwHTaus4fmcd7X/lefP5Dn8flL7wc377p24GkIgDomt5RxiKAWKrFu266C2ddfNaqiHUn5urE4ezEvhPXZHsJEiRYH8TudP/4xz/Gc5/7XGQyGdx///2QJPKQVy6Xk9l6CZ5SaMgaHBnm6MvxLqWeN2PRD0WHnaqmG5haiWcH4MVjMxUMFcILLCdURfZVF2ZZUsj0pE2lVSq8UKi1KBZDrFBNxaJhPowMjE64Xlc0sr5NLIrkmGgmJWdQtG2deedNv8SPv/fvAAg5Rcai4tePzGGyNwPK0KEUZ/HQ/3wOAHD+278Atit6I68rzUKXyXg5mnIRyVExfXA/FEVG1cwyZBBchFdjWqE2ZA2abqA/H/0zd4Jh2bZk5sTmrZg+uL/l77quo7SyhB4zY7FiZn5WRHJO9w4MobQcrliUzc+WZ2kXEVZxfC+GxyawODsVWkAbhgFJFGxlKgA7U9NphTo6sREMy2LKQZSmWBpzh/biPa96PhRFxpf/+5d4w7s/4lLRBoHPujN/3nTxFhcZbcFSLNKpHEShAV2P9iC2f/djWJybxvmRbVBL2NCXxebBJHx8tUhqkQRHBWIZYDNA3IkAFlllkV5KmwkLzusn42lw+TTBYqOxAhz4fcerS4pKxmWNJTtA1HNaTGKRtjJvzOVCLM8oXYagNBWLJF/RAyZlq0kNioWiexSLpiL2v255BN/68W+bf88OAJVZQpSKpLE5W9Xxga//GgBww3svxHF9Hc6Mpuh4mZom9hyYhq7rWFgJaLQ6iMWjbYXa39OFlTbKhO0bR7DnYJAVahHDgcRiL+bbEIvlegOLxSpgWvmpPufZxvEhzC6uuO1LnaCJQrYhSiSH00RdsIjFZh09PNCLrnzWRSyqqoZPX/dDnP6St2NxpYzf/8e/4EsfeQvyERp1sa1QzW2KA6cCE+eQfMcQHJiaw6NPHkpsUI8BklokwXpA0ZWOsvGc63gViIoWbq+qGZrLztMLe1sOK9S6Ul+VYrEklULf0wtVbp+xqOpqeMaij4OEr2KRMolF0U0sehVvXsWiZFq9+1mh/uibP8Ltvwp3itDqGn7+2Z8DAF70iRchPdGZpSpDd0YsWoRilLzBSIrFNjbecYjFrt4uCHXBlT3pxeSWSUwfmrb7ErzDsaK4VERvQC3SO9iL4lIxtJ9RLVVRK9XaKhZFQWxLukqi2y5XNGsRJ/mXyWYwNDZkE6UWsVheLuMdz38HZg7N4DP/8Rm871/eh3xX+95CNmYtYo0las5ieaWMx+5/DBdcGUxwxsVsfRYpJoXxQnxyPUGCBEcPsZ+aP/nJT+JrX/sarrvuOnBc88Z+0UUX4f7771/TwSV4esFS1mkdkDvtoHdgKdWQVWiOgmog7545I8iaTbAN5PkWpzOachMoAGy1V6fYM19Ffz76DB5NdVuhepHlyVeYTYeHGXsVi2HEoixZxCIpkL3EogGApZuZexYRqTsOoKVYdMJSi5YaMm7bs4gtAxkYhgGudxSnv5rM3qPbZEV6QVEUVn77VdSfuB0sTUPV4hfQSwvEgqNRMxWLAVaouUIXauV4MyutbMuhQmeztmiGRaUUXuRObjoOc9OHIcvuBm+ltAJd09BrEotW5qg1pr6B8IxFoVG3v3c8Q4OhnMRi83waGh2HKAihykpFkaHruotYbCoWm+cuy3EYHp3A3FQzu2tlai/mD+7B/3n9O/DVH/wG2085PfB9vOAcxOKANI3TN/T4LmcpFmmeFNyWvW877LztRmSyOZx69vltl5UUDbvnqjhlvBv9MVTLCfyR1CIJjgrEMsCmAcQkFmXzIdyc8U4FZkia23Uq/7wNLk3GqrH7Vx2RXRZkVSMuBjax2A8oDdAOtR8AqD4WlQAIcWpoNtFqRzA7VALe+xylKRDUpgLRn1hsXks18/9Om0vLCrUqee6h+WGgvgAoDej1FeiGgdECjX+7+kUAgBy/CkU5zRK1YsyG3vQCUUtWgho4WTLLPpPij7oVal93HoIoQRClwGW2bxzFUrGCFY9lqiQrKJZrGO7v8V1vZLAXS8UKFG8+qQld16Gq5rmrSQDNwvB5fN04ZrozzC2F7ktD8CgWzZn4TlUhRVE4bsMYDkw1c5I+9qXv4cNf+C7e8aoX4cGf/iueedbJoe/jRFwrVGssxf4zgTP+hqgWQ/CLW+8Bx7F4zjPPjPU+CVaPpBZJsB5QdbUjwk6jTPUcWCia4lYs6nIo0aTqamjGop9icbXEYlkqI8eF9zCc0BStrWJR07VQK1Q/xaKTrLSIREuxqJgTci1i0ZmvCDiIRcpNLMZVbBmGAUM3wOQY/PmH/pyMIdu5Nb6lWIzr5LRk3kPrtfBokFxXLlLGYpoJJ0ana9PoosPvcRYKPeS5vhpizT65dRKKpKBmTsCy7EMNw8DKwkogsdg32AdVUUP3STXrFItYZNRWUnxknNSq8476wQ/ejEWhTmoRp2IRAMY3jWP2COlVcTTJDl2eXcaz/vxZ+NaN38LZlwS7N3kRN2PRGos1tnbYdcsu6LqO8y9v3xeJitnaLAYyA8hzyaTsBAmeyohNLO7evRuXXHJJy9+7u7tRKpXWYkwJ1gl7F9bXOimfIgWVqKzOugNoJRL98grbQZB1aI6hDBfchU1DVsHSNP7tr87E2y47zrbqtJBiGVvlZeHAcrQZO77jUTTMVyQMxCAVFFkOtdC0SEemjXqrIbs/E2f+oVedJZuzbXXz8uC1QgXcikWLiFQdeZYpZyafPVaSvXjf4RJqlTLu+ur7ULnnpwCA/m2kKNr3BLFEFWrRz1WtUYYu1cEyRLEY90xZnDOJRdMCM0WZIexwH7NCVzeqMTMW6yaJN9LlLhILXaSAXp4Ln6XHsCxUVbFJOD9MbN4KXdcxe/ig6+9FU41oWaFatr5W3mbvwBBEoQGh7r/tlcUm6UgUi83XKqJiTyAYGiPE8/xMsGWKRdRRjiawnbGY9eQddnWh7rAj5R/7JUZre/Cad/wdeD6e8pNJN4vQjCHbBKIX1rXLIhbDjrcTO2/9Lc6+6LJI43pstgJVN3D59qGWa02C+EhqkQRHBWIF4NKuHL9IsIhEi1hUPNcU676bKhDFnewgirxNMzWYzImMx34C9EezGPeDJFuKRfO+aJJcXPWIazlnHeCC1cizrFCtS6BDnVlzNi4MDRR0CAqQMi3Htvjl/ThmwmumuiDjbOaZx7UqeyqDdBegNFAvLeNlV1+Lf7iVHOMrziTH6L5HiWp+ajHePR+AmUWpxc5YtAixaj2IWBwgP1LcmikWB/tIWPL+I+EZR/09Zs0S0szbvpF8Pl471IXlEgBCIPrBskhdWCn5vr5cqjYPpSoRgtuH990wSiZRHZoJbuZpmgZJVlyKxZppP+ZVHvZ05Vwk78HpBVx6zin4zPvfgKyPEiUM8YlFsnytLpLrTxtcf8suXHrOKeiK2TRMsHoktUiC9YCiK5HdU5zQaJNYpFiougrGEfAha3IoCajqaqh60HrNyljMMBk01MaqrFCLYhEZNvr1UVPDVZVAU7EYaIVq+FihOuquWoncXy2y0VLHWUTh6IZR95jMfoFFRNqKxXT0+4QiK/jUuz6FvT8gtcfx5xwPAHjy0ScBAAuHwqNL/NBpxuLiLOkftCOTCt0F1Kv1tudpmBWqYRiYq89hKEN6FcX5cPeC7l5Ss5SLwbXZhi0kl7Bsuj+kWfI5NGoNyJIcbIVq/j1IqSlLMjRzkpOtWAywQgWA+elwYlEURNc5YhOLnnoh35W3FYMURYHSKPAZHm/5xFviE4XrbIW64+YdOOEZJ6B/uD/W+4Rhpj6DoexQrAkICRIkOPqITSyOjIxg797WPK877rgDW7ZsWZNBJVh7/O/9U7jy87/Hbx6dW7f3sJr2orK6sHGAqAlXvw23YrGQds/6EhSiWGRpCpN9rTfmFEujKjYVi4UUi8PLdTy0fwYAsHPfYiwSda5MmhdxrFCVACtUC5aTqzO7zg9exWLKYQHb8JB4tgLRvDwMjLRaD7BM0xpTNEkjJ/fLezL5nH9/6LE9WPyv92Nm7yPgh8k1w8pnrJnEnSxGJ3CH//IajL72y2AZipBdMZnF5QXynbCOQ4o2Zx56HjzyXT2oxbRCrZnHfajL/XCx7XjywPD4fXeFrs+YTdcwNeDkpuMAAEcO7nP9vbhEHgwsxWLFoVg0DAN9A+TvQarFlaVmQezM1ASAqqhCMdWhQ6Pk/FiYDSZJLbtcw2FHIvooFgEglyu4zklWqaKLlsGGzKINAp2KVnBnTfkMbX6PGo32Tdvi0iJ2/+EBnHfpsyO9x0NTZfTleJwRoJpMEA9JLfJHiA6cCXxhkYCraHbZkKqEvIqQoeqC4iYW4VUsCmbzJGWqqp3Eopc1CSAW9+8/AAAot5lVDgDYdwsweEL75QIgKSpRF1oEYcYkFmsz7qEGEYtWNiNtKRYtK9RmM8+VG2h+doJq2GSWr2LRQSyqIMfaSRpZx7XWIvqkMF1WcfHzXowbdz2Kc8YYc11yj7JIrpVqB/b3FE3UmTGLken5NopF85hn0zwqtQY0bfV18knHbcD4cD9+fft9ocv1myqBsJzF4zeQHEAvsWjlJw73hxOLc4v+DcVZZ+aRKppkdOv3cdIkFg/PBFu8C6YSxU0sWopFdx3dlc+i4iF5o2Qp+8G77XawiMhAktmBaq2BW+9+GC+87NyOxpZgdUhqkQTrAd3QIXfgVqDS5B7NgIEOPZZiMbIVqvkjw2ag6iqe3E/Ir2IbS2s/lKRSLGIRAKgwy3WQ/eB4LtgKVWu10XTud71MaiqLWLQUjJZazUsstigWBVKz+WUs+kGtqPjsGz+LW395K7q2kEk8Fom5PEfqAovsjINOMxaX5k3FYjW8tix0F2AYBuqV8OXCrFCLUhGiJmLb4DYAwN4HW6+lTnSZk5zCbEaHxofAp3iUzElNlmLSyk9sSywG5Cw6/15TaqAp2vdc7OnvAZ/iQ4lFwzBaFYsNf2Ixm8+6PgtK69xRIy6xaFmnRlEsKrKCe267B+dfsXZqRd3QsdhYxFhuDFkumTiVIMFTGbE7tW9605tw9dVXY9euXaAoCjMzM/jP//xPvO9978Nb3/rW9RhjgjXAIVNp98Rs+5BlL7xqtyDkLMWiuvpmR11SIavNYsgvFy0MHENBUHQ4NuEi0wDLCtWdHedEiqNRd+x7V4bDfFVCRSPF3n/eM4WzP3kTPvqTRyKNabYsgqEoDHe3v6nTZpGqKUqobamlWGT5uIrF5rGolNwPArIkAKACMxYBR1MQDsWi51h7FYsAIE89hrnvvQccpeMz37semY3PANAkFvUOrdqYbDc4mu5IsWhbobYhk/Jd3RAadahKsK+/F3VJA0NT6PVYmTAM2d/H7g0nFi1rWO9n5ERP/wByhS5MHfAQi6ZisaefqBzKpvq2IWtQdQO9ppJxedF/soFFuAKEWHRaoZYFxf5+9vQNgE+lsRCiWBQtYtHRRBYadbAsB453K3iz+QIa9bVRV9NtCHcL1rXLsmoVIygWd91+EwDg3EuuaLusbhh4aKqEk0YLGIh5LUvgj6QW+SPEWhCBAGAqj9dE6SdVVmmFSq5vLVaoDdOukTdV1VLI/SdgP6ZnyGQOSxEGxXxPzWd5XQUGT2o36kDIqkZIUotY5PMAw4Oru4lFPeixwso0oqyMRfPvjqannxpOUIC5JdLMCcxYtMZokOt4xtnMk2oAw8Pr0H/fgSLO/fJhLC2v4M7PvxZXbSf32pw5AU1dTR27SivUalADx1SJZlNkjKU2zbwooCgKz7v4LPzq9ntDl2sqFoOfIbLpFDaMDbYQi1Z+4khIxiIAzASoBGbM4wKgqVj0+T6mUzyGB3pxaCZY2dEwlSQZP8Vi1l1Hd+WywSRvTHSsWDTHFoYb73oAsqLihZcl+YrHAkktkmC9IKjxJ7ZYVqgW2eUkzKJkLIZNnvBmLFpKsINzBwEA8yFq8SCsF7HYzgrVmT3JUIzLAtYmFhk3sWgRS14rVNt+1pOx6CSNgiBOi9h3zT4sHF7AF//nixg+l0zQoVkaDMtAVTvP2LYyFuN2Riwr1HZkkpXp184O1VYs+nDWM+bktOP7yITrfQ/uC7Vu7eo1icVicC1C0zQmNk+0KBaL5uSlQGJxiPx9eX7Z93Xn3+tKHSkm5TqPLFAUheHx4VBiUZGJItlJPgdZoWbzWVfG4WqIxU4zFqMoFv9wzx9Qr9Zx4ZUXdjQ2PywJS1ANFVu6t/ge6wQJEjx1EG5S7oMPfvCD0HUdV1xxBRqNBi655BKkUim8733vwzve8Y71GGOCpwlyZqdoLaxQgabCrxOkWAZ1WYXmsGewMv4sEMVi8E0qxTJoSM196c5wWKo2G3YvPLEPyxKwYz8pNL22qV4s12WMdKVt28Uw0GSeIVQlXKlFUwBDU9BNK0bvPlrwfiZOK9RquQhgk/27JIqgHMqyVIYUIQ21WehxTHN9y+bSSSzyAcTizO//H7iBDXjDP/4btm3bBuy4GwCgmblMq5mBbysWY8AwDCzNW4rFcGKx0EXsN2rVMnr6BiJtvyapyPFMoPXloScfQaW0gq4e/yKXYcm5Ui2XAt+DoihMbtqKIwfds/yKS4vIZHO2IrBmqm/rkgpVMzA4Qh6MrP33glihkmV4lnIR8KWGAknVAHCgKApDo+OhikVZtHI7OZjPuhAa9Ra1IgBk83nMTweTlHFAcWkA7a8jKdbMDDVnVUaxQt1160044bQzbUVoGA4vN1AVVZy3pR9dHuV0gs6Q1CJ/hNA1F9HUMSy7HD+CLS6UBiEWpZiTHSwikQ6wQq1bxKI5Vjk+sdiCuUfc23aibyvQ0+o+EBW6bkCnGNBWg4qigGw/OMGtDtOCiEXNY4VqLRakWDQhqAa6zf/7qr44J7FoqQ5Tzau+XDOJYTe+8Ks9mOhm8bPf/Qojj10HmLfBtOm8oagaOph7SdChFWp7xSIh4CxVZbFSQ39vtFyiMPzZxWfjmz/6LQ5Nz2Pj+LDvMpZicaWNamL7pgnsPuiuBeaXS6AoyrZd9WJ4oAcMQ2N6wT8bcXZhBfaoVJEc34C+2saxQRyeDVMsku+SK2OxLoCmaaQ9jeiu/LEkFsk5W4vQzLvh1rtx4tZJbPWoaBIcHSS1SIL1gqC5v/9+2YBeWIpFy57TqViMYq8axQrVqVgEAJnpPAe6JJXQk+qJtY7RJh7HUiwKhv/1U9EVsBQL2SDjZmgGlOOmUiu7rVBl2b1/XuJHhw4KlH18oigWFVkBx3NYuXkFdJrGR7/xUZx00knAb5rLpLNpKLKCNOJZb1ug0ZkVqp2xGEGxCEQnFmm+taaaqc2AZ3hsLGwEAFRWKjiw+wC2nOCv9rbeM0yxCACTWyZRXC6C3cbahK+lqA3KWMxkM8h35e3992LZMcmpJteQZtKgA+rE4fFhLEwHT3KyyOooisVcIefKu1wVsdihdapQa1+L7Lh5BwaGB3Dcycd1NDY/zNbJ5P8T+jp3XEmQIMHRQeynZoqi8JGPfAQrKyt45JFHsHPnTiwuLuIf//Ef12N8CZ5GsFQ/cW1Ml+v+BelUqfMH+hRLwzCAktAsqHgHiagbBhTNAM8G35xTLA1BaRbx3RnONdbuNIs3PHMLXnI6IV8sa8gwDBZSSLPtG6eU2ZDSFBlsiGIRIOpMJiSDRdMNlz0tQ1PgnIpFD2klSyLYdGvhMVVrFvLOMUm2YrH5utcKdW76MABg4Kq/w/DL/xEnbfbM9ourBvEBaysWozfzquUiFJk8AAj1dorFHgBNu9YoqIkqcikWPOt/qTV0A/fd9fvA9WnbCjXcXmZ801ZMtVihLtikl6LpEBQdGY5GXSY2ptlcHtl8AUvzM36bxPJic6ad87sDnSgei/WmcnNobCI0Y9FSLOqOB1ahUW/JVwSAbK6AeoyMzVCE2K84QVEUMjwD3Xz4aEcsyrKE++66NYYNagkplsalx7cnIRNEQ1KL/BFizRSL5nVF6Xxykguc4yE/qjVZixWq5/5iKRYtK9RQxWLE/ahaOXk+98DBE4C0fzMlKnTvXMTcIDhpxbNMQH1jNUTNJqftxEA3J1r4EosKWggfF9hmrSLp5D7lyliUaq77wN5DhPT6+hvOwq1vncDI8BAglOzXaZpGNpMyicUOQTOxrVBlWbGVp4GKRZNYzJi19lrlLF5xwelgGDrUDrUrnwVN06GKRQDYtmnc1wq1v6cANqD2ZRgGY0P9dsakF7NOi1RFaH6nfLBhdCiSYtGbsZjPpluUOseWWIymWNR1Hb+47Z7EBvUYIqlFnhr4/H2fx7N/+OxQtdPTDaLn3l/3TlDygUUsWoSSS7GohysWgaadpx+8VqiWEmw1xGJFqtjbiYw2/Kqmx1MsshTruv4HWaEGbdOynLVUj2GKRc7MjD645yAAYOSVI9jykS3oH2vNpEun01BiuCS1wCBji9MXMQzDJtYabay4LZLPImKDwFvOHZzPhPPaDAYzgzZJzaU47LplV+C2aIZGvisfqlgEgIktE1jevYzR7Kj9Wa8sroDjOeS784HrDY4OYnHOf3KSi1hUamS/AtpXQ+NDoYpFUSDf7bQjr9lSLHrPm2w+i0b12CgW+RQPmqbbqlcNw8COm3bg/CvO79gy3g9z9TmkmBTGC51PjEyQIMHRQWxi8fWvfz2q1Sp4nsdJJ52Ec889F/l8HvV6Ha9//evXY4wJnibIpUjxKqyRYnGmtArFojkdfkkg1SetCq4bnWXjyIcoFvMpFoLcbHR2ZzhIamvjMxWBKLTQn+eR9pmx5YVlharrgcZirven+WACxft5cAwFp5iw6iGtJFFEKlsIfU/ncZPEBvh01k0sMm7F4jtf+QII9TroVBYUwyGfcjeGFM0Aw65OycV1kLHoVOu1I7MsxWI1BrFYlVQU0mzgeTa+6Tjcc/vNgevTNAOW5UIzFgEQxaKPFapld2rlK072ZVETVfuzGhwexeKcP7HozFjkHec4YzbIl+tNFQ1RLAYTi5aq1Uksio0GMtnWAnctrVANJqQh7X1fjoVhNizbEYsP37MDQqOOCy57TqRtP3ikhOOH8xjtiddcTBCMpBb5I0SbhldkWFaoSgf5eH5g001iLIJiAECTKKRJHhzltTSzVIVWZogccs2LaodW8b+WAwAGTwTY6NdDP2heG6L8MDjFfT80gtQOHitUGw73A18rVNVAJhUyQcQxqUpQSc3hyli0rWwJznrZ1VguVpBNschYsknBXQNl06m2qo5QdGCF6swRDCSz2BQ+u0PBnEYIxmKbZl5U9HTlceEZJ4baodIUjb7uvO9n9O4Ht+Ltd/QB6W5s3zyBvYdmXO4T80ulQBtUCxPDAzgyG0QsejIWaf+MRQDYODaEw2HEouBHLAq+ati1JRbjNfOymRQoimqrWLznD3uwsFzCVZcnNqjHCkkt8tTAtx/5NuYaczhQPnCsh7Jm8FqhNpT21yOV8igWPcRiOwUbFRAPA/hYoZrZdTLbObFYlav2diKjTamoGiq4VEjGoq64lJxexWK95CYWFYnUL0EKRA0aISfNbYimS4/f8haR9PaXvh2Ls4ugORpMxr9uSmfTUOXOrVChmwRzjL5IvVK3Sa9Gm/ufRdBFtkL1wXRtGiPZEZtY3HzKZtx9692+y3IbOKiMiq7errbE4uSWSUz/bhqvPf616E2ZNdNSEb0DvaHE1+DoIBYCaogVh117Va4SK9QwxWJILeJHPgt1Aels2mXLCwC5PFEsWpMmaK1zS9BMPqbtMEUhk8+0tUI9sv8Ipg9Or6kNKkCI54HMAPJcMBmcIEGCpwZiX5m++93vQhBaLy6CIOB73/vemgwqAfAPP38UB5dWn59yNJE1LaQ6IRZ1HwvL6WLrefbW/7gPmz74C9OGMRiWKrAm+RfQFkHIhhCLhTTr2pfuTOfEl/V+A3k+1NrUgkUsUiwHuk0FzTM06BDFYkNyF6VeNWGl7CEWJRF8Lg6x2EpEpljapXh7y/s/gUyuqU7TPTNKFU1HOrM60oVlKKgxm4FWvmI6k4HQJmOx0E0K01qILakXddEkFgMUiyecdSHuufOW4CYmBXT19LZVLE5s3opquegiIFeWFm3FomXTu3Uwj7qs2da4A8NjWJyfbd0gLCtUAuf4abMBXmw0HySHRyfCiUWRPJw4bfKCrFBzuUJbW9qo0EJm3nqR4RkY5vLt1Ku7brsRgyPj2LztxLbbLTZkHCkKOH2iB3251TX2EzSR1CJ/hOgwY7cFlhVqVKVf2+11cG9yKgtYHpTsadA0zJnP1r3Ym8HoRFQr1Kr/tRwA0DsZaROVag11wf/9NMNzHyuMgPI0KfWga65mEYue16lwxaIKJjAHG0CTmAUgaBRomgbHOd5DqmJZbI77H6/+m1b7UNFNjuYy0Zucfv06HXRsK1TLBjWbSQUrFgF85BYFct82AECxskbKfhA71Jt3PARZDlZH9Pd0+SoWjwhZ7JP7ATaF7ZsnICuqSzU4t7SC4TbE4uToAKbmV08sbhglVqhBNVXDzwrVVCx60ZXPolJvrIkCKp+L1zinaRq5TDr0XACIDWpvdx4XnN6+FkmwPkhqkacWRG2N7vtPAXj3JYpiUaM9GYt0PMUiE+Q6gFbFIkMzSDNpqExn5JeiK5B1GVk23sQLQw2/Jmu6Bi7FBRJqqq66CFeGYtyKRTO/2LLQtBWL6XDForUN2+bSQyzWq3VIErkHveItr8DgaLiLTSqTipyx6HefMnQjdsaipdZLZ9JticVcIQeKojomFlVdxYKwgPHCuK1aPf6M4+2sPi8G3zGIhzc/TIjFdlaoW0nNW54u29+BlYWVQBtU+z1GB7EYYKfuVSyGEaZDY0MoLhVtAtELW7GYdkyOawgtNqgAkC1koWu6va3VKBa9Nr5R12mnWNxx0w7wKR5nXHRGp0PzxWx9FsPZYeS41n5RggQJnlqITCxWKhWUy2UYhoFqtYpKpWL/KxaL+OUvf4mhoaH1HOufFL5z10H8zTeDrQCeirDIpk6IRdnHRnSq2FrQ/OoRojB7bCa8oEiZREhN9m8uWIrFVADhAxCiVFwjYtHCUCGiNaNVINIsqDbNVp6lQYcoEeoea1qecROLVQ+xKIsi+Ez4zCDWYSEriUILEVmZ3od3vOLP7N+fcd5Frte99a+s6Uj52K96IZmWmjUfBR/H0ND1eBHlS/NzoCgKYxu2tCWz8t3xFYt1WUVXmgskFk8+6yKUlpew9/E/BG6jq6e3hfz1YnIT8bN3qhaJYpE8tJRNxeLxQ3nX74OjY1gKUiw6iOGUg0imVQlplkZZaD7sDI9NoLSybH8+Xlh/1yMQi9l8vi2xFwUcn4ISg2fO8gxU3UAqnYbQCH6YMgwDO2/9Lc6/7NmR7D4eniqDAvCck4Z9c0cTxENSi/wRY82sUM17yVoRi3wHD7ROIpFJtaoO657GRZgValTlpVex6LzcRLRB/f5//wC7D/nn7qrehmO+NY/PoAOIRUvp6b1mOpqey34z0IO2B3PiiMMWs64QG1TndXn3wRmc9/k99qF4zkVntm7ISyz6kExeWE28Uq31HFMNxFYsTpsNqxM2T6LSzn4sXwDD0GtmhQoAf3bJ2ag1BNxx/6OBy/T3FHwVi05s30zsqpx2qFEVi8FWqI56z7JCDcpYHB+CJCtYXPGv0+IqFlVVgxRCtkZFXMUiQMjIdorF62+5G8+/5JxAm9kE64ekFkmw3hA89/66GsEK1VQs2sSiU7GotVcshmUsWsSiwTSftHNcDjrj3qZl4dqOCG2o5F4XV7HYllg0MxaDIOtyK7HozFg0s4THC+MYy41BkRRQFAWe9++1WIpFS71mkUapdArUZgpSQcLckTm8/aVvh2LeT857VnuVeRwSSPPpvVnHKc7kmCVzgs/k1sm2xCJFU8h35dtaoQYRcAuNBeiGjuN7jrfPreNOPw6aquH+O+/3XUflVXT3drdVLG7YsgEAUdJZKC4V0TfYF7pemBWqU7FYk4kVKu114TAxMjECAIGqRTuH06NY9PvMc3nyDGJ9HrRGx1KhOhE3YxEgOYvtbHF33LwDZz3zLJe162qhGzoWG4sYy48hy8Ufd4IECY4uIhOLPT096OvrA0VR2LZtG3p7e+1/AwMD/z97bx4uyV1XjZ/aq3rve/vus08ymSyTTMgespKwb4LKFkERFxQUCctPBUVERXgFRV9eURRERUAgAgbBkD2ByZ6ZySSZzGT25W7dt/fu2uv3Ry1dW1dV33uHJEOf58kzud3V1d+qruVTn/M95+BXf/VX8Z73vOdUjvVnDmqIiu+5QJj9ZxTEPmReFMLyCY+FKBZt9Ns1thKOY8yCsd2HWbCJTCZCsSgwpGfbWZpEml3Zw/t4NtkN161YjLOH42gSZISNaMdno8FQpMcK1Z+xKEldMDHEYkCxmPYqAChCx+TMOudvv7VkQLGoGmD5+ALaJtg0LdjoIYnBz5ny/EkUR8eQyxfQiSGzeCEFiqYDRGwU2rKGQorte5xtPPcCpNIZPHz/XX3XkS0U0YxRSc6s3wiCIHDs8LPOa+6MxYZo7q8zJmxi0ZxNGWWFWvEoFt1dPAPjOR4NUXF+x/Eps5m4MHsidF2iNZvb/SzYN2Mxk4WiyJDlhCqdPkil0wNNckizFGTNAC+kI61Qjxx4BnMnjuHy6xLmKx6rYc2IgE3jQxuP1cCwFjmNsVrEIrPKVqjLmSnrzlSkORB+krPlazZEWqEuU7FoNzxy0yu2QQUA1a9YzASb5n2tUO17totIBEkDLgeHpbDmFNm/ttEIxrO+tkx4bVAB6FIbEzkOY6PmxKBW2KxrH7HoX0cY6tZsei1EGafphHUsJ69Hjs+VIfAc1k6VYlVqBAEUshks1VaPWLxg6yZMjhUjcxZHC7lQVakba6fGIPAcnjnUqwXmylVMjBYiP7dmsoRjc+XQBqgnY1GVYq1QAfTNWbQVi0KAWAxRLFpk4ErtUBmGBhfR5O6HTEqIzFg8NruIXXsPDvMVnyMMa5EhTjX8VqiDKBb9VqgECKiGGlAsar7Jy26Fox8OGecqBcKURHcdM59pF7vhBI0N29pViHCFSNMh9VfEXA/SIE3FIsv0JdT8GYsUSXn+tjMWN+Q24H0veh9YjTXzFftMaPErFiVRAs3QoGgKxBUEKtMVqLqKdDaNTVs3AUCsAgxAIpLGth0P3VarPFGN5IpSW62XhFgEzJzFOPVgP2LxZMvsP5wzeo7zWnG8iLWb1/a1QwWAXCFesZjJZ1AsFXHsQI9YXFpcQnEsXrFYXaxCloL2vm7FYlttO9mRYZiYMSfezR8Pz1l0k882ohSLgItYVEkYy+wRL4tYjFEsNmtNPPHwE7j8hsuXNaZ+KHfLUA0VG3Mb+xK4QwwxxPMHiX3i7rrrLhiGgZe85CX49re/jZGR3owPlmWxfv16TE9Pn5JBDvHcIsymFADmGyJO1Lp40TrvTdpW+RmGge/tOonXb48P3JVDyMuTtcGbgotNs2lQSJkP8f0Ui7aVaiSxGEIiljIc2kvLbzLYdrFxcIhFiom1h2NpEkREcdPxKxZp0jOj35+xKIsiGCEdacBqKz2/97Uvo7I4DzaVgW4Y6Dx9L1JbrsSGs87DO77yX3jNRRshSyLEmMw6W7EYV/pGEWykoUNbhmJxdGISQjoTm+tHEASyuTxaAygWNd3AaKb/b0NRNC684ho8fN+duOk3fy90mVy+GJuxyPECxqdmcNxSLGqahnq1ghFXxmKKpTCdNwtW2xq1NDGNamURiiyDcc3ElGUJzXoVtg6V9c2Gn8rzqHUVKJoOjqYwPr0GADB/8jjWbjwjMD5ZEkHRNNynudhpOxmQbqQs9Wun1QQ7kkzhGwYhnRmMWORotJsS+FQ0sfjAXT8CLwjYfumL+y5jQ1Z1PD3XwEvPnkAps/xtGaKHYS1yGmO1iEW7MbYqikUiXLH4nd8Gdn4V+IMTABcyacCdhURzQXJwEMVi0u3wr9NGhAJhEKiGr6uWDlHjUH0IFCeb0k0sUnB36sJsNvuuDxaxaG3bXn0DfnLSgGBZlf3PPgWbNug4e9TA/X9wCbb++dNYqNSDRI1hAJL33p/ECrVSa6LQ5z3FAARd6x3PmgIsHQLKzwCLe4GFvcDi00DlgKPIPDFfwczEKHKZFA71aUS5MZLPrKpikSAIvOKqi/CDex/Bpz/0rj7fmcX+I+GTh2yQJIkz1097FYuVGiZjmnlrJkvoihKq9RZGCj0HDMMwLMWidRw4xGJ4Z3ndVI9YvPT8swLvd8UwxaKITEgzL5fpEYvjMcRoFLLLsB4DgEwqWrF4690PgaJIvOLqi5Y7tCFWgGEtMsSpht8KNUnGok6a9x2/FSpN0qYVqq+nsHNxJwCT/JE0KdKJxW+FCgAZNlj//PeB/waAWAtOW7EYZYUaNp4wdZ4NChRUQ0WK679OWZO9xGIfxSIApJgUVEntm68ImCQuR5i5uD+65Uc4duCYo0Rr7G2AHqcxsWYCf3fL3+FDN30IAGIz6wBLzRbT1IhSC+rWQ7f/N49Cea6MwmgB+WIeh585HLt8tpCNtULtR8CdbJ9Els1iIj3hObYvvfZS3PfD+2AYRujvny1ksf/J/bFjW7tpLY4ePOr8nVSxCACV+Qqm1k153qssVFCwKr+O0kGJL/U9X0qT5nvzJ8LrOdvW1E0exykWbXvYwqEC5vfPg3vbYH0FkiLBciwkUcL696+Hti/ZcSGkozMWH7rnIeiajituvGKg8cRhtm1Oltw6snVV1zvEEEOcGiQmFq+99loAwKFDh7Bu3bpEFnBDnN74tx1H8O8PHsE9H7we+VSv+SOqGjTdwDcfOYbfv+UJdGQNb710XcSaAEXzVk6GYWCu0Suok5JFs3XzxsfTFDiaRFcJ/6RNZAoR9kE8E3xvLMvhyAqIRZ5JNuOGsLaYoGhAi6bbWJoEwfRvvrV9GYsMSYCKyVik+VSAWJRcL/A0hUatir/7sz9AKpPFzPkvxuz//l+0dv0vSj/3B+CuO9MMfE6lIEtirBoQAGhfTmMYTGIxXD1CGDp0w8wUQELLyfLCLErjU0hlspEZgTYyuQKajVqidduIs7+99KqX4HN/+mE06zVk84XA+9lCEYf3PR37PWs2nIHjh01isVFbgq7rHivUNEdjIseBQO+YGJuchmEYWCrPY2K6l8FVLXtn+wu+c2E6z+PYUgeKaoCjgdL4FAiC6K9YFLvgeMFjTdrttDGVSuOPvrsHrzt/GpdsNIv9dMZ8SO20WiiMlGK3ux+EVNpjZRyHNEdDrnUhpNKRVqwP3PMjvOiKa8Fy8c3nvXMNKJqBa84aC72eDDE4hrXIaYzVyli0sRrEIiOEk1vP/MD89/B9wFmvDL7vtkKleRCaj1js+CaLSBGzr/2fDcNKc+AS5EgqfsUiw0OlUqC13rYSfYlFiwiiXNdBgvJYo4ap4fquD4BKsABBQtM0nP2J3chlUpgaG8HNn/xH/PX/dPChG+t45RYWBF9wrC4DakClHXCFcOfv9UOl1sDmfuPSDJNUfPK/gF1fB5YO9ohVNg1kJoH0GLD5JUB+LcCmTWJxfBS5dCpWsQgAxXxmVTMWAdMO9V/+63Ycm13E2pDsp9FCFg/siv/OszbOOMSiKMmoN9uYGI3JWJw0v+/4fNlDLNabbYiSjB6xKJqENBFeFxfzGWRSAo6eDCfZbcUiz/WOq1ani5F8sP50E4srwaD5ijayaSHyWLj17odw9UXnoZAbuiE8FxjWIkOcaixHsWjDVizSVq6xTSx2Ne867zx6JwBgKj2Fw43DzvJhcMg41208y3qvnZVuBc9Un0k0RptM8q8jDnpEzgWJnmKxHxRd8Sgz+2Us2pBEqW++ImCSuDRJgwCBz/7hZ0FRFFiOxZc/82Uc//JxGC+3ejoE4SjSuq0EisUUD8T85PVq/8nOhtVbi8vVdKM8V0ZpsoRUJhVrfwmYisXlWqEebx7HuDCONJP2EovXX4pvf+nbOLzvMDaetTHwuVwxF2uFCpjE4r49+wDA6nXEZyyOW5OTFmcXPcSipmqolWsOsdhW2mBIxkNIu8GwDEYnRjF/sg+x2M8KNUyxmPEqFhmJAVNjIjMewyCkBRAEAVmTkb0gC3UhmZI1lU5FKhZ33LEDZ553JsYmozNDB8VsaxY8xWMmGy9QGWKIIZ57DKwrvvPOO/Gtb30r8Po3v/lNfOUrX1mVQQ3xwoCq66h1FByueAsKUdGh6joqbdNGIInyUPIRALWu4lExlpvJrMDKLfM7CcLMTOv08eG3LU7ZCKLPT6YAwERu+aojnibBJ8xBIQ23YjH6xs/R1ECKRYYi3e5jQcWiJIEOmenXknv7kqMpiF2zwBG7HZx8+jG0nrgDo696P9JnvdixohXSZsMjSgHmrDMd/2ARpRYkrMJ5EDvUyvwcShNTSKXS6Lbjx5gZULEIAJO56KbSJVe/BLqu47Ed94S+byoW4+1XJ2fWYmHOJPaqZbOpVhjtEYtZjkaKpZEXGLQcYtEsmhfnvBZ6bhtUIEiIrxlJmeeobSnMshgdn8TCyXByVup2wQtpj4Vxt9MGl85hti7i8WO97UtlLMVijII0DkIqA1HRQRPJjoc0R0NRdXARisV6tYKndz2Cy65NaIN6vIaCwOCiddEPMkMMjmEtchpigOZHIqwGscimvPadSeFWFlBcCLFY8f7tVixyvnuhKgEhlpvez8c3WSLB52MXUfRgvaRwvmtbPyLQniDlVk/6LC39+X26AdBM/9pGI00r1LbVoGl3RcwuLuFz//Y9/Ml1PF51bhGQ2wDFIms1awIKMDG435IpFvvvb9W2Qt1/O9CtAlteCVz8TuDaPwBu/FPg6g8Al/0GsP2XgM3XA1wOJxbKWDNZssik+GZeMZdFNaaZNyheeuWFIEmyrx3qaCEXud02NsxM4JiVlzhfNu/tSaxQAQRyFj35ioBLsRgOgiCwbnqsvxVqV4LAcyBdRXCrLfbNWARWTiwuJ18RiLZCbXdE3LFj59AG9XmAYS0yxKmC6KthBiEW7SxFR7FoEYbu3EbDMHD70ds9yxMRE3PDFIs5xhuF8sPDP0w8xq7WBU3Sg2cs9pk0DpiKRc3QwHBM31npiq6AcrGjFOlVLLZr3v0sS3KsYtG2iZW6ErqdLrqdLv71c/+K8dePY/yKnrsDy5k1zWpZoYYRbDRj/tZ2xuKgxOLY5BhS6VQiK9RMPhOrWOxnY3myfRKT6UlkGO/kmO2XbQfHc33tUHNF0wo1Ljtycu2kY+3abrShSEossWgrFv05i9Vy1fN9HbUDjub6EouAaYcaZ4XK8ixmfnUGNdRMK9QwxWLWUiy2kp//YUhZtYhkP48knAsjpPtboWqqhofuemjVbVABYH9tf+jxMcQQQzw/MTCx+MlPfhKlUlBFMj4+jr/4i79YlUEN8cLCvnlvc0NSTMXiIKh2vbZG842VNwQFloLYh5OzScsoBWEYsTiZX56lEWA2PMiESjrbChUJiEWeJk1lYx/4FYs0RYL0KBZrnvdlSQTNBbez6fqJWIZwiEVd0yC26ph4y58hs+0GAEDKJhatDL04K1QAoIQkisUIgs1Su4TldfZDecEkFoV0Bp1WPJE1qBUqAIzHkNFjk9PYcObWvjmLuUIxoCoNA0n2wryrFbMgHnEpFrM8DZYmMZph0ZY06IaBsQnTpsmfs1hZmDPXaR0nfrXddEFAR9bQknoHxfjUTF/VpyR2wWW8D5/dTgeMpVK1bVWBHhndTvB7RCGVzkBUNDAJicUMR0NSdfBCqi+x+NB9d0LXdVx27Y2x6zMMA7uO1XH2VBbjMeTyEINjWIs8TyA1g+q75WK1rFBtKOLKVZC0sDwrUfd9m+EBzZXXYhhA173PCK8dp78Jo0rxpGtjNvr9VYBHJGBtn8J5baXIOMWiJ2OR8myrX7Go6KQnC88PDaYVatsiXzRNR7sj4vv/8Cd4x3brc3IboDlnPQGiJoSQTfEc9lXMjZWJ8Gu3nwT1jtsAYJi/WXocOPfngDNfDkxfAORngNSImQPqIrdsK9RsOpWIyCrmVtcKFQCK+Syu2L4VP7zvkdD3RwtZLNVb0GNIbooknQbcfKUGALFWqJOlIkiSxLFZbzPv5IJ5njhEoCYBRP+MRcDMWTw62z9j0Z+h2S9j0SajGwmI3iisyAq1TzPvjgd2QpIVvPb6IbH4XGNYi7ww8OMTP8a2r2zDofqh53ooiUARVECxaFuHJkGYYhHwqiD3Vfc5OXc2+UQTNN59/rvxyo2vDDT0CYIwSSI3sch5n+1uPXDrQArENJ0GHdHDCIOq9O+LUKCg6ipolu5rxaroimdyCU3QXsVive0hkSRRiiQWdeigCAqKqMAwDOiaDqkr4eP/8HGMvXrMq2a2/jeJFepyiUVbrbksK9R5U7EoZITEGYtxxGIYOkoHdamOddl14GnvdrI8i+1Xbu9LLOaLeaiKGkvOkq5aZKls1hIj49FWqKlMCulsGgu+yUmVeXMyIEmRMEgDqq6CJaOzyydmJgLrsSGJEiiagkZoKF5TxHHjeF/Fov1ap7myWsQmFv0Wy3GIyljc8+geNOtNXHnjlSsamx8dpYNna89iW2kbRvjo32yIIYZ4fmBgYvHo0aPYuDEoS1+/fj2OHj0a8okhTnfsnfMWFJKqD6QaA4BKyzubf76RTKEYhRRLQ9LCxyGrOiiSAEv1bxiGZSzG2VquFtxWqLoakVIOS3UZMYO7I2ugXYQmQxFu97GAYlESRVBssLBpWTMEKQKgSdIhFgFg6w2/AH7tec7fdpYkL1j2DQnUgIwQPyOp1YiYLe8Qi8mOPVkS0agtoTQ+iVQmi04nvkk3qBUqSQCj6ejCEwAuuep6PHz/XaGz73KFEbQadWhq8vD1JcvKtGgpFhtdFVmBAUuTKGU4dGQVqmYglclCSKVRnvcSi0uL86BpBgRJgdTVQBbpdME8PsrNXrN8fGoN5vsQi6LYBZv2PnyKnbbzm9c6imNbmnYyFlfWNBXSaUiqBppMTizKqg5OSPclwh+850fYcu4FGB2biF3fsWoXta6CyzaOIMcP9tA8RDyGtcjzBJ9cA3x6I6DEN0lisdpWqJq08nUyQuT9NRH8VqhSIzhhSIpozKgJtqN56olFj/mBZE6wUXhvQ52g7fud77qrWXWMm6T1EbZL9aa3macTELj+90+VoAGSRLvba5Jccv6ZeMXVF5urJwxTOUqzThMxoAa0FIu6Kz8yneLxxccUnPG3TYjZ9aHfvRRFLNr7yfnNoieUGYbRs0LNDGKFurrEImDaod6+YyeUkMbtaCEHXddRbyafNT+XULFI0xSmx0dwfD5cscjYbh+q5LXTDcG6qQjFoigFrG5bnVOtWFwusdhfsXjrXQ/hzPXT2LJxzUqGNsQqYFiLvDDw45M/BgDcfezu53QcSUGTdE9ZZGEgxaI1QdkmFO1/3SrIO4/dCZ7ikWfzDrFIERTOLZ2LV218VYDwARAgFt3kYxNN7KnsGSgTTWAEZ2xRmJam7Q2DKkUQi4RJLDKW3XXYRBhVUx2FIWBuk1t5pioqRNe1VxblSCtUDRookoLc7T0Tr9u8Dle/4uq+oVNJSLtExGKIi4BNLK7ECjWdSUNVVMiSHLl8EitUN2yy18nPGw0/Vi677jI88fAToYRWrmD2E5LYodpYsmqJOMUiYKoWF32TnCoLJrFIMzQMxtyGftmRNsanx/sqFqWuBF7gIeu9/dvthBOLLMeCYZkVKxaFjLlu/3Ul9nMRisUdt+/AyNgItmzbsqKx+bGnvAe6oeP6tdeDiYhEGGKIIZ4/GJhYHB8fx+7duwOv79q1C6Ojo6syqCGen9g338STJ4NqrUOLLW8zSNWhD0gsln3E4kJDBEcPfHh6kGYpTy6gG5Kqg/VZgvrB0mSgHTSW+ekQix4rVC2aWORpKpZYZF37kia9isVWsw5N6+0oWRJBheTHteyIJAK499b/xP0/+r7zXnrUtNQ0DAOEoYOxvo+01AlJrFApPjw70Y1IUs9SRKhxlnEWKgtmsVeamEIqnUlEZGVyebTqyRWLaZYGR8c/MF1y1Q1YWpzHs08/EXjPzl1sNZN/b62yiFQmC463cqUkBQWBBkuRGM9yaMsaFE0HQRAYm5wOWKEuLS6gWDKtW0hD9RwvgJmxCABLnd55ayoWwzMWpW4XrI847nbaoK3XltqyQyym7IzFFVuhpiEqOpiEVh8Znoas6eBTaXQ7wQc+RZbx8P134fLrXpZofbuO18BSJK7bOj7M3jkFGNYizzPUjq18HautWFSlWMV/LGhheVaonnX4iMV2ObiMHHH/0RIoFn8axKIevI4pgpdYJGmrAeAfr/07uJUJPsWipukeEkfSACGqmUfQ+M//fQBfvuVHzmtjxYLz/yxhjcGVQ9NPsSi5un+2ou1A1TCzEEMQqVi0JzclPPaWak1IsmIpFgVIsgJZjq77irnMqluhAsArrroIjVYH9z/6ZOC9kYJ1vx7ge+fLNZAkibGReKvdNROlUCvUXCbVc/tQpUA2px/rp8f7Zyx2pQBZ3U+xyLEMGIZehYzF5RGL2bQQtO6F2Si/9e6H8NrrL1vRuIZYHQxrkSFOBRiSCRAATTn6ucjdi7EViwxp3pPDFIt3HLkDZxTOAEmSjqotjuSjCMqTsZhhe892h3EYPMXjjPwZketwQ6AFD8nXD+vF9djzK3sAJFAsGi5iMcTFSNEVjz2nP2MR8BJ2khStWDQIA4uPLuK7X/6u81p+1CRrCZIItctMpFgMuS/5EUosMua2a6r5myYlFhVZQbVcdTIWgXgCNIkVqhs2sTjfmQcBAlsK4YTUpdddCkVW8Oj9QWv2rJXDHLbt/VBdNCc5jYzFq9/GpsZQ9tUilYUKSJL0EItxGYcTayawOLfo6bHZELsiWJ6FYvWuCBCmYrGPw0Eqk1qxYtFet6QPSCxmhL7H6447duDyGy73KIBXA7sWd2EqPdWXeB5iiCGefxj4KvDWt74Vv/u7v4u77roLmqZB0zTceeedeN/73oe3vOUtp2KMQ4Rgw+9/Hxt+//ux/uKriZf99b149d/ej64vs+9ETYTo8siSVG1gxeKiL0NxriGhkBpshoo7kxEwSR17GIavqJM1HRxNBggTN0iCCFhAZn9KyiPbCpWgmVjFIseQkY3Pjqx6SFqGJjzbbRgG2k1XAS12QTLhxaxh6Kjc9SX8459/GIf273Vepx2Fo0ksUr792m3HN6LoRMRiBLmmDaZYLC+YjdjR8Umk0hnIkghVCd/XmQtfDUknkc0VosfgQ9qyH43DtosuQzZfxL233Rp4L1cwZ9clyVm0Ua0sOmpFRdMhKjpG0xwIgsB4jkdLVJ1ztDQ5HbBCXSrPY3TMJhY1UD4L37EsB5IwLVZtTEyvweLcydACWpZEsKmeNY6mqlBVxcnyVHUDc5ZKmeV4UDSdyJo2Cql0BpKqg0moWEyzFCRVByek0Ak5Xvc89hA6rSYuvy5ZvuLOYzWcMZ521J1DrC6GtchpiNVWLCaxEI0Dww1OLPrrMkbwThDy5ysC0cSiKsfvm8bJ6PdXAXLIEIJWqCZpY2i+xp9NskUoFgGvHaqkEeDZ8DrQMAx89s45vPmDf4XHnnrWed2tRuNIa8B077WAGtBSLEpG73uWm7FoN1YUfTBi8YQ1E35mouSo5OJUi6fCChUAXnTuGVg3PYZv3XZ/4L1RSyWQJGfRxnylilIxBypGZQiYOYvH/MTiwhKm3I1ATQIoOnLy4rrpcSzVm6E2ol0puWKRIAjkElrTRmH5VqhC6HHw+FMHMLu4NMxXfJ5gWIsMcSpAkzRkzasWi1MsutVPtmLRyVi0CEPbTpXMk3im+gw25DcAgEexGAWKoPoqFiuoYOvIVhT4QuQ63BCoZIpFN2S5v4rOtkKlrP6NTa65oepexSJFUiBBQuv0lm26Jg9JouRkI/phGAbK/1vGjr/YgWd2PeO8zvFc4PdzI4likRPiJ7OHWqFapKqdRZnUCtVW5Q1CLGbzWbSb7ViLdBt2lme5W0aWzSLfJ997ZsMMNp61Eff8zz2B9/JF8zODKBar5SoYjnHyCqMwNjUWsDBdWlhCYbQAAgQMukcs6hETIiemJ6AqqqOWdEMSJfA87xCLQH/FIgCkM+lEx0wU7N90YMViHyvUE4dP4OizR3HFDVesaFx+yJqMp5eexrmj56Lkm7w4xBBDPH8xMLH4iU98ApdddhluuOEGCIIAQRDwspe9DC95yUuGWQLPAU7Ww21yDMMIEG2rBb+6cL4poi33GiiSqg+csehf51y9i7wwGLHoz2VMc72i0fAVrYpqquqiiEUgaIf601IeOVaoJA1Djbah4GkKRkTjsyWpHnKLIkn4ox7dGX6yJIJkvMVsW1Khy10s/tdfYOnB7+CX3//HuPG1v+C8T7K8s04SeoCISqRYtEimKLQa/ck1w2rcqgkzFm2Vnq1YBBBKKCmajtGX/RaerNPI5PNoDWCFmuWSEYs0w+CqG1+Fe3/4PRiG4exLHcSyiMWl8qLLBtXcL3bO32SOQ0tSnf00NjEVsEKtLM5jxLL7JHS1Nx5NA0lRoCkSY1kO9W7vvB+fmoGmqqiWgxZkotj1WN0q1kMh4bLcnaubRStBEEilsyvOWBTSGUiqBjbhXS7F0tB0AwwfboX6wN23YXR8EmecvS12XfWugiOVDravLWIkFW+FO8TgGNYipyFWw07VjSQWonGg+MGtUFXfQzvNg3A3mGzFojtLUY64R2pyPEl1ihSLsotwC7OWl1LT2D2vQaTM6zvFWMSif0KUTayS/RWLAFBxNYpEFaEZi6Ks4O3/JeIzPzqOT/zuL+H9v/xzzntuNRoXqlj0HWNSA6A56K7HIT/xFIYwxSLLmNsmqzaxmOzYs1V6tmIRiM/1K+YzaLQ6oRN5VgKCIPCLL78a3/rfHwfWvRxicW6xGmuDamPtZJhiseolFlUZIBi0uyLSfdQc66fNSVFHZ4OqxU7Xm7GoaTpESe67rlxmFYjFZVuh8qGKxf++60Hks2lcddG5KxrXEKuDYS0yxKkAQzJQfI5FLSV6MknXVUNp0ECAcAg0+197GYIx39uU3wSgR/gMqlj05ymeUTgDKTr+ed4GT/OJFItdsoux142BpEgoEYp+m1i0yTU1JEbEr1gkCRIggP1/sB8HP3kQAFCv9iYRy6IcqlhUVRUnv3ISc1+bw1lvOAu/8oFf6W2X4CWNAtvTRwHmVjcuO2NxmYpF2/5zbHJsIGLRMAy0G8lsOu2xLHQWUOSKEOj+98frXnMdfnzbjyGJ3po6V7SsUAeoRZYWlzBSGknUxxufGg+1Qh2dMBXobsWi2BH7qgwn1ph9lIUTwb6I1JXACT3ymSRIiB2xr0o1lU2t2ArVzlhcjhVqp90JiFl23L4DDMfgoqsuWtG4/Hh66WkouoJr11wbeXwMMcQQzy8MTCyyLItvfOMb2Lt3L7761a/illtuwYEDB/ClL30JLDtsoP600U+x+JHv7MGWj/4AC83BAnqXg1pHQbXVa5rJy8hYrLa95NlcQ0KOH4xYnAsQi/2LYwMwrVBj6otUSM7iTwO2FSoSKhYN61TWQki1lujNyKNJIlBYNes15/8lSQRBewvoxZaEpdv/EeKRXdj45j/Ca2/6dUhirygmWd75DsLQA/s1GbHYKx5kMbzgjrIhNawCXkl47FUWZiGk0khnskhlstY4+z+0yaCQzRfQ7bQ9ysaoWXrZhIpFALj2Fa/DyWOH8ezTTzi/jwYaubzZVBtYsVgyiUVbVThp5YOO53hIqo6WNRlgbHIai/NBK9QRR7GoOkSxpmugLCu7yRyPpqg4BOXE9FoAwPzJYM6i1O2CEXqzBGXZerC1iEUCQMV1DUhnMqEk7yDgUxkomgGWSqhYtCYi0Kls4Hg1DAMP3H0bLr/2pYkeSp44bh6nN5w9Dpoa+DY7RAIMa5HnCF+/CfjRn5yada82saglUPrFgeZClXWRUHyNGEYA4W4wdcrO6w7kNpCdBs77BYDxNeU0Od4mth6eb7tSfEe9BjffZl6bJTV4LdWZNC74QhtyzswipKxJSYbfwt3efrdyjQxaWrptNruqEZqx+H/+7Yf49tMKPve2c/HR334bOq6mU6hi0ZXPEiBqxHpgf7sVi/Pl8PtuGLnGWepKeUAr1BPzFRAEgclScSDFIgDUEjbzBsGbXnk1Fio13PvwHs/ro5b9WJQNrB/zlRomE2QaAaZi8fh82fNcM7u4hKkx8/MEDEex2Gx3+xJ2NrF45GQw28ifsWjnc4ZZoQLPNbEYnrF4690P4RVXXwSGGWY3Px8wrEV+OjjWOBZrBXqqEKU8GxTPLD0TvxAsxaI+mGLRViMCpmLRbfHpWKFqvXvLpvwmRxFkq9piFYukV7GYZrwKsM2FzR7SLg48zSdSLJaZMibeOAFGYKDK0Vaomq6BZs11JrFCtTMW1bqKzjPmPgwoFkNs2b/7pe+iel8V0++cxove+SJPHqHf5tIPsR3en5uSp2BoBmiS9hBWrWr4M3EosWjVIpoyGLFo23+WJgazQgWQ2A7Vvr+Xu2WMCCPRxOKrr0O33cXD9zzseV1IC6AZ2kP+xqFarqI4lqwWKU2VUC1XPQR2ZaGCkXGzH2MTiwJtEm79VIYTMyaxOH8iWIuIXdFDPhuGEUlSrooV6nIzFlMCNFULEPo77tiBC6+4sO/2Lxe7FndhlB/F9vHtq7reIYYY4tRi2R3PLVu24Bd/8Rfxmte8BuvXr1/NMQ2xCnjyhHmztRvcpxp753sFhazq0BLaUdqodRWPtdFiU4q0HdVDCNWTNW8jJopYBMwMRb+yzo/nilgk0MtY1JXoAoCnKeiEbfkRJCHbsgrWRW4wIdvcqPVsGiRRBEH3CmhNU1FuSihc83ZM3vRpjJ51CUgCELu9AoegOdCUuV4SRlCx2Ickoo3ewwHhsl9tLAVndwFeAtQP23ot6bFXnp9DacLMhhRsxWJEzqJqmFaogDfvcP6kmS2WzQcL1hzPePZ9FLZf+mLkCiO454ffc15TQCGdtyw/akErjR9jYvgAAQAASURBVH6olhd6ikXR3C/jVi6inRNa65jHytjENJYW5z1k6dLiPEZKZkFM6qrzYKprKigrM3KmmEJDVCFbD23j02sAIDRnURK7HqtbRTKPaZvAnszzWGrLznmdSmdXbIVqKyS5uNkDFuzrBSVkAsTi8cMHcPLYYVx2bUIb1OM1zBQEbJnIxi88xIowrEV+yth7K/Djv45W2C0XatxDs3VtVyVATvCAnSSbMA40F57nljXvHaEWpv5945uog3YZYNI9tZ5hmGTkzEXAtl8AaF8DKwlB2jjpJSpXCS2k8cVdBCiKDCUWHdDm/YVmrW31z9S3rVEJV11GUICv4eYm7LqK4VEsqpaC7nfedAPue2caL98+AwBod3s1ksCFEIuu/RK0Qq0DtIC92npnTG7i6eDxuZCNDSfXHGJRHZRYLGOiVADD0D3FYkwzzyYW3XaolQFswaJwybYtWD89jv/84X2e1wWeg8BzgykWy1VMlAqJll0zWUK7I6Le7J0/JrFoNvNIAibBTkYTi1NjI6AoMjRn0VQs9mpNm2gOs0IFgFxGiFWPxmG5GYuZFA9RkqG6rPxOzlfw6JPPDm1Qn4cY1iKnFq/6r1fhJf/5kud6GCvCofoh/MJ//wI++8hnY5dlSTZAaHb8k5Z8cOcn6tBBk7RDaoVlLG7Ib3AUhzb5RFODKRbdpGBGz2CEj8+wc4MjuYGISEZgYhWLOnSQjLnOfopFjxWqL2ORpEgPYSeJZsaiSqiYumkKkuVK8aqbXoVNv78JI9eOgCIoSJ1eLcLzfEBx6kanz32FBAmCIsBRHDiBQ/Mxs9Zo7elDLIZlLFq1iG7FFCW1Qi3Pl8HxHDL5jKNui1PJZfPm8eMmFmWxPxFvH2eVbgUloQSe6q/KXHfGOmw6exPuuvUuz+sEQSBXyA1khbq0YCoWk2BsagyGYTjWsPbnR8etzFzrkBdoAd1W1yHs/Ehn00jn0qHEoiRaikVr8oCqqDAMI9IKdaWKRZu0FLXBRCf2mNwq21ajhV0P7sLlN1y+ojH5oeka9pT34JzRczCWCs84H2KIIZ6fSDTd8eabb8YnPvEJpNNp3HzzzZHLfvaz8cXSEKcPUiyFjqxh33wTa4u9vDQ5oR2ljYaoQnEpv1qSimyEYrHeCRZrsz5b2DQbfXgzVFC550cqYh2nwhTVVr+RthUqRUOLIxYZ0smQDMsIbPutUKngyN2EnSyJzgz/9t778df/8Q284Y/+CXRmBMiMgCTM/EkvsciCIXuKxaAVangBPaPN4aA8AkbIenIdm0vl0OWbzTr6lYWGIgPgPcdRFMoLsw6xmI6wQrWhEZQzg69Zr6EwYs7yPLTvaQDAxi3BgOmcwIAJ2d9hoGgaV7/01bjnf7+HX/rtDwEAVIICSTEQUulIUtWPamURIyVz1n6jq4BAj1Acs5SL9jlUmpyCYRhYWpzH+PQaaKqK2lIZo2MTwIJJLFIOsdhTLK4tCvjJgTJkVUeKBdKZLNLZnEO0uiGKHeRdVreKZJ2rNAeSULChlMZsrQtZ1cEzFFKZVSAWU1mgBXAJFYv2uU5xGYjdDnRddzKzHrj7NrAcjwsvvyp2PYqm46mTDVy/dQylTLyl3hDJMaxFnkdQJYCNzyoZCErMw25nCUiXgD8zr234yDzQJw8YgJVNmIzc6QuqTx0yvR1YeBKoHAq+FyAWfWNslwEu01M2apI5Tj+huOYS4PjDlmIxpjHUmge47KqpPkVZgXvUHMugqxqxTw20baPu3+820Uj2VywyDG1lLJr7vCObxGJbNu/pb735U7j/P/4KhWwK66cpPElYdYpL1eVRLBJBYjGgABNrACPgcX0rrv+LhyH94llICz2V4on5kDxMhCsWbStUyY4hSNjMO7FQwZoJs57oKRY7yKb728kVLZWAO5PyiX2HAQAb10wm+t5+IAgCb3rl1fiX/7odf/fR3/K8N5LPYKmW3E1gvlzF5RcEa6MwrJ00m0jHZhdRsIhTh1iUAIaw9ivFoNXp9t0/NE1hzUQJR04GJ6h1RAnjIwXn71Y7RrH4HGYs2tvX7orIW7lQ37/nYZAkiVdeffGKxjTEyjCsRZ4biJoIRVfAkIM5Gj1XsMkrN5kCAMeaweckPxiKCVhpxioWXcSjZmigSJdi0ZrUI6q9e+Cm/CaHGHSIRSKGWPQpFt0YVUaRYlJAgjLE3jbOP/HKh1a9Bbhi+BiBic1YBADSysFIkrFIEiRI10Zl81k06kFiscW1wK/l8fk//TzOOf8cCGkBqTPN6zRFUJBck5xYng0oTt0Iy6xzoyk3wad4KEsK9vzKHmy/cnvocvVqHSl474WkNaFZk3uKRQbx50x5royxqTEQBOFkEcaN0yEWXZOtjjx7xDMONwzDQFtpQ9RETKWnnAzQfrj+Ndfjq5//asAONVvIer4zDtVyFWece0aiZcenzGeMxZOLmLTqqcpCBZdcewmO4igA8zzhaA7ydhm1M2qmo1PItkzMTIQTi13Jo1i0Vbh9FYvZFCp96tGkGCRj8VjzGBiSwWR60iGZu+2uk2/5yL2PQFO1Vc9XfLb2LLpqF1dOXxlQQw8xxBDPbyQiFh9//HEoFmHx+OOP913up5U/N8TzB4IVjn1goeUQiwDQkoIEl002hdmktkQ1kAmZEwaz+TlZ9RY/cWpDJoEVajpkHXTtKNTCOpCnwOFw7uhBTBfO62Us0pxFmPUHx1DQbWIxRLHYkTWvFarvPOV4wWOzKYkiDJJGfcd/onbvv+KCq25ETXHP7AsSi6BYMBZ5SUAPZFf2s0IlYQCGDpYmQRC9h4tmLUgsaqqKdrPRn1jUbDuJPgv4UJ6fw8y6DQDcisX+RaoKCqmsWVA1Gz3Fok0sjo4Fm3l5gRnounjNK16H73/z37D/6SesVwhouoFcoejJwYyCpmloVJccxWJdVCCwlJMXapNdbcmyQp2YBgAszs9ifHoNqkumFdnI2DiwoJsZi2Rv3aRFLK4bTaHRVSAqvfN2YmoNFvpYodKuPEXZIhYNigFLa9hUSmPPiTpERbOIxZVboVJ8xiQW6aSKRXP/EBYBKnY7TvbmA/f8CBdefhV4IT435Jm5JmRNx9VnlgIZrUOsDMNa5DRC2IV6UFKsehgYjyAtVsMKlerT9BrdbP5b2Rd8z9/8CxCLCyYpazcBpVb4d139AeDxfwcO3hW5HYShm2TlyEagFa72HxQ7n53F5S7RDccypmIxjljkrG0NEIu2YtF1TSS8xOJoIWspAc27fFvRIaQ5/HjXkwCAdVNjKGTTWLL6fZpNLHZ7jVJPxqKjWHTVpgEr1IZJTtvjoDmPFWp/YrFHgDrf57dCNZIqFiuYsbJ7bDKp0YohFm3Foss61iYWz1w/7bz2+fmL0T7yGD78ujwGwZtecTX+zz9/G/c8/ITn9dFCbiDF4nylljhjcc2kSa4eny9j21kb0e6IaLa7mBofAY65iMUYxSIArJseCycWu14r1HjFYgpzfexwk2LZVqhp8zhstrsOsXjr3Q/hygvPxqiVMTXEc4NhLTJEEtg2j1FZe/3AkEyAAOjEuDoErFBJylEsEoSZqehWLE6me8+tmmFmMpIxZmYU0Z9YJI3kjRGb4OT61VgWDu85jG3retn2tEBDVaKtUAEzQxIIJxYVXQFD9+7fbgIWMDP83Go4O2Px2ceexeHvHMbEpgnkijm0XI4VJElCdNUivBCtWOyXsWijrbYxyfd+n36kUqPaCBCLNgbNWCzPlVGy7sN8igdBEGg3B1csHtxr5lRuPGtjcEyG5hDsG3IbYsd07auvxT//n3/Gg3c9CLgOlXwxP5BisVquYmSsXwfJi7Eps3+yOGe6Hui6bmY0jvc+z9M8SIKEyqlQ8gpaSgt5LlhnTUxPYP54uBWqkBKcY8RW4UYpFo8+ezTR+PvBJgjdkwvCUBWr+NvH/hZrsmvwnu3v6SkWXSTzjjt2YNPWTQ7xulrYtbgLWTaLy6dWVwk5xBBDnHokYm7uuuuu0P8f4mcTLclb0I1lOByvdgOKQz/yglnENcVgodWSVCg+C8uCMFg2xQmfFWqKiycWqZiHvjA7VSIu62gZqNz296AzIzgmvAgvOv88p+lKsxxUNXpmEUeTLmIxuN87sknW2KAowpNhk80X0LRIK8MwoMgSnv2ff0Jtz33IX/lWvO39v4M7jigQKANdjQBFImCFalC0Y7EarliMJolMYrH3e4cpFpuNWuQ64ixj/agszOL8S8yZVmkrY7HTaQEIP+40UBAyZjOn5RrLof0msRjWQCimB5tVe8HFV6AwMor7/ve/genXAjCJ+FxhJJCxqNMc9JBZu/WlCnRdR8EmFjsKMlwv6zEvMKBJwjlHxybNJmR5/iQA0wYVAEbHJ4EnT5oZiwQBRZZhGAYoKyNruiBAN4BKW8KkZbM6PjWDhblwK1SS7TVrbcWiQTJgKRkbS2k0RRX1roJCikUqnUWtj2o1KSjLepVPyO3ZCmeStWbmddpIpTNo1mvY89hD+J2PfjLRenYdryEv0Lhs42B2QEPEY1iLnAawZ6eHNVzU1VHbOTC0lSsW+ykjbIKsciC4LbFWqIumFSoWvcv7FYsAIBTN9UdsB622zG3lVo9seOjpY7j8ht7fLMOgq+hAhEAU6CkWCf94NcVUKLpnZJEU3B3KkXzWUuBZucJdDT/Y8zh+stPMpPr0h9+FbCaFRTaLe4+oYC4w7cc9xKLLOpUjNZMwdO3/flaobsLTTTyFEYuyrFiElPfYoK17o2RPthkgY/Gqi84B0FPOxWYsWs08txWqTSwydG9bjihFfPfpND6cHsxS6qLzzsTGNZP4zx947VB75G88uqKERquT2Ap1slQESZI4Pmfu89lF0/59eswkFmnSqlttYjFCCbh+ehyHT4QrFt3ks61gjcpY3Hc4WNMMgiiCOAo22WmTn11Rwo9+8jj+5L1vW9F4hlg5hrXIEEnAW5OKBs00A0xisaV4n50HsULVoJkWny5/JT9ZmWN7NYOmm8uTMbOmKYICkXDCZhRsNV9Uxh4AHHziIPCq3t80T0ORFRAgYCA4Qc0hRq3bcz/FoidjEaRnP+UKuUDG4p5H9uDJR59E8ZoiXv76lyNXyKG10Pt9/FaoHM9FEspx2YUdtQPedV+y8w/9aFQbmEQ4ueMoFpNaoc6VMT5jqvUIgkAqk4pVLKayKRAE4SEWDz1jOnmk3Pc+AwBh9pkWRbP23ZgPEo9+rN20FmecewbuvvVu4Od7r+eKuVAb2DAYhmFmLCbMe05n00hlUlicNcfZqDagqRpKEyXAKis4yrTw1RQNOqejo3TCicU1E9j94O7A61JXQmGk4JwHihRNLKYyqdhjJg62ZWuUFapu6Pj3p/8doiZC0zUouhIgFjVNw4N3PYjXvO01KxpP2HfvWtyFs4tnD21QhxjiBYhToLka4oUMO48tCtW2V0E3keMw1xA9isNmN7ge2iKbGt1wu07FZZ9KEsBIejBi8WTdl7GYwAqVjJEsZmJyGlcLrce/j9p9/4Yje3d5XicZHkqE5QcAcDQFm5NVQ9SNHVl19j0AUCTpKMYAIJcvOqSV/Xpl38MYfc0HULj6JpAkiXJLQsaa/UfBAEkSEN32piTTUywaWoCw7adY7G0D6cl1DFMsxlmBhuVL9oOu66gszKM0bhbjfMokoaIyFhWQEDJm0diq9xSLBy3FYhhGBiTHKZrGVS99Ne770fed1zTdQLZQDGQsts58BeYnr/BkkwKmDSoAjJTMoqzWVZDlaSfrkSQJFNMsWpbtRjqbAy+ksDDnJRZHxiag7bsH6fYsSJJwyGE7Y3FNwSw0K63eMTc+vQbzYYpFSfRkaCqy+fClggJLk9hYMvf/bM08/tKrYIVKWgpJIbFi0dwue5z2Mfvw/XdB1zRcds2NseswDAM7j9WwdTKHsWxMB36IIX7aOHQf8Cd5QF5lAm8Q2LaUYTNm3eMadIZ/P6n6SonFMLLPjdoRU/Xmhj//McwKlXU1XGTrWhc2c5/mLGKxf2OIlq3vX0Vi8cGnvVZtHEujK8dPqmI58/cl/Go9XQ1mKhKU50+TtOrty/1LGh596iBecvkFAMzaBQAMisO1/9KBZDWlPFaoLmKRJTRz37syoAKKRakZyNF0KxZPLgSJRbf9qBv25KKBrVDnK5gZN1UCJEkikxJi7TezaQEURXqIxd37Qmx5lwnbDvXbt/0YmtbbjkEUi/PlGgCTMEwChqExWSrimKUSsInFKUslYCsWVZ2EKMnRisWp8VDFYlccXLG4UitUW3k48OespnLLaubd9eBudEUJr7nushWNZ4ghTgds+8o2XPhvFz7Xw4iETSzKavRzfBgYivEo3gzD8BCHYXATj45i0W03TjEetRJL9eobAwZI0kuwhSHOunJQpOjoiRcHnzjo+ZsWaMiS7Ml2dMNRLNL9J1z7iUV/xqI/v0/siNi/Zz+2vXobpt85HWrxSRLkYFaoMYrFjtoB76pFwgg+SZQgSxF5hop579YTTogvz5VN8syCkBZiFYskSSKTy5iWtRYOPH0gsBxhWApSQ0O5WwZP8SgJpcByYbju1ddhx+07PK/lijnUq/U+n/CiVW9BkZXEikUAGJscw4JVQ9hZi27FIkdxoAjKOb7K3XDid3x6PDJj0SafHcVin1oknU2vnFhMkLF47/F7sa+6D2PCGBRdgW7ozufsY/Dpx59Gfam+6jaoR5tH0ZAbuHTyUs+khyGGGOKFgUSsyRvf+MbEK7zllluWPZgh+mPD738f583kcOvvXD3Q55LaQtroKoPbhk3meTx6tIaO3PtsW+7fzGuIKnTd8JB6HVmD5PruvMA4NqtJMVcXwVCEo3yMs0KlKTJg2elHmGLxVOKZJ7yWOhTLmXY7EZvC0e6MxXDFojvnjyW9NqamYrGGuRNHwfFmgX/Be7+AJcYs+HQDqHZkbMgCi6LLClV0hcSTNFiSBFQZvN4NELbdGFtLliZhGL3Z/62lYDPPr9jzQ4+xjHWjvlSBqipOxiJFUeCFlDnOdHjhqYICzfGgaNpRT8qSiBNHDoYuDwD51OA5INe+/HW49Ztfhe0sr2o6cvkCahVv0WpQHBQ+i46sIcP3jtOlslkIFy1isdFVkBMYT85mKcOiI2lQdR00SWJschrluVkAQGVhHiRJojBSgr73DqxZ/3qQBOFYk9oZi9MWsVjruojFqRkszIYoFrtdkEyvmSdLIgiCgGIQYCkSG8fMrV1omcXualihguEASIgRLjuwrxcEa45TtIjFB+6+DWecvc1RdkbhRK2LakfBJRtGHIX2EKuHYS2yQuz4vPnv3v8Gzn/T6q7bblzsuw148AvA2/vsf9uWMoxYjLH56otdXwfu/yzwG/cGMxf9JN+g8JOCfnQqQMM3mSLOCtXOirRhW6GGfRfFATB6tqkhYBSrAcaH210aToXQH4amepZ5aK93mziGQVeJLygZ3tyGwPfZikU3SBKKy0rbVCy2cGyxiUnNQJEn8H8++Ms4cHwRdz6wCwFYTdGOK3tH4HuNUpKAuU9dDcSAElBqANRGzzJucvJECLEYp9gTFd2s2RIQi11RQqXWcKxQAZPMilMsEgSBQjbjWKHquo49+4/Eft8geNMrrsanvvhNz2sj+SwOHptL9HnbQnQiIbEIAGunSjhuKTNsUndqbASz6BGLHeuYiVICrp8ex4n5ClRVA+1ScHZEyfP7OorFPiRlLpNCI+a3iMNyrVDt7bPH+N93PYhNaydx9ua1KxrPECvHsBZ5fkDVVSx2Fp+36haeshSL+uCKRZZkPYo3VVdjLS0DVqg+xSJLRpNdfoKt3zLLRkgJkfZldUtdCXBdMg/tOeRxWbKtUGmSDlUE2sRinGLRk7HoU2lmC1mcPHISlfkKMvkMFEXB23/n7VgaX8J+Yn/oplEEhZbYe26NtUJtdT3bFXhf7YItRE9si7MCtXP7klihGoaBxflFxwoVMO03O+34Gjqbz3oVi3uDk5zcCtNyp4wCV3CI9zhc95rr8E+f/qfAdya1Ql2yJiklVSwCwNj0mGOFatvQjo736jSWYmHohjPxaklcCq4EZsZiu9lGq9FCxrKwB0wrVF7gIWvm+ahaLlJRisU4kjcOcRmLc+05fPfAd3HxxMWYTE/iodmHoBma8zmbDN9x+w4URgvYuj1ZfnZS7F7cDZ7icfWaq4c24kMM8QJEIsViPp93/svlcrjjjjvwyCOPOO8/+uijuOOOO5DPD5bhMcRg2HOiAXEZxN+pxkSWh6YbOFrpFR+tCOVjU1Qha97ZU6pueNSSeYHxkGFxUDUD1Y6CHN9r5qfiFIskEZqxePZUFiMpFjRJxJKTYZAswq0Vorrzwz0THAAOPvOUR01IMZyj7uoHN2HUzwrVnbHI0CSkbq9RkisUcfzwAbz752/Ed/7dLNyodN5RejQlHboBFHhL8UYYAStUnaDA0AQMVQKj98ZvF81JFIuger9ds7YYWCaOWNTkaM94N8oLJolmKxYBIJXOoB2VsWhQ0A0gm8ujZWUsHj24H7qmgeP7zDBbBjG97eIrUBjpFfaKriObL6IRotjU+Dy6PjK5ZikW7YzFhqggx9Oe42Qsw6Etq1AtEn5schqLthVqeR6FkZJjeWqTxN22+RvaisU0RyPH06i71MkT02vQaTWd/QOYx4Akdj3KH0USwQspSKoOjqGQ5xmMpllULDV0Kr18xSJt5WZQliIoaVQrR5uZq4SlGuq0W9BUFQ/ffycuuzZerQgAu4/XwVAEXrJ1bFgUnwIMa5FVwimw80bVaiR885eBA3cAc0+EL2c3kcKIRX/Gou4bZz9yrXESWNwH1EPyR+QVTlDw25iG4dgj3r/jrFC7S4B7lr4cQSzan40gFmmlYZJ2vHeGr27tv6VGPDHSKJ/0/P3siQoqrqYNyzLoyvH1J8f2aRTpiqVQdD12EBQ6rtn2o4UcDp+Yx0U3fx0fv0dCVzEwNlKI/U63FaqbNAJgErMk5dQirY7vuJNa3oxFAGmX/Zga0pSMU+w5k+QSqGVPLpjNKDexmE3HKxYBYCSfcRSLh0/Mo90RPVawK8WF52zG5nVTntdGC9m+ik0/5itmzZZUsQgAayZ6xOLsYhUCzyFnNbVsK9S2bBOL0RmLuq7jxLy3Du/0USymhfD9lksvX7FoW9IWc9llfd5ti2sYBm69+yG85rpLh7XF8wDDWuT5g6T5cc8FbJvP5VihshQL1XUPiVIZ2fBbodKE9wGIoRiHyAgDTdCxisUwpSClJuuVuBV9NvxWqI0l7/21udTEnGsyC82aVqhxikX7H3+fBQBUI2iFqrvqzVwxh/JcGe9+7bvxhT//AmRRRm4kB53oXzvTJA3RVV+wPBtuhWpxibquR6oNu2oXDBc9QTVOsWeTVUnOkUa1AUVSPMSikBESqeSyhR6xWF+qo7JQARdRiyx0FzDCj8Ta4NqY2TCDM8870/Navpj32NVGoWpNcnIrDuMwNjXmWKE6ikWX4pGlWCguB7a6HP5bTMxMAEBAtRhQLCrRisVUJgVZkiPzRfuBZsxzxc7DDLseabqGrzz5FeTYHN59/rsxkZqArMsexaJ9LOy4Ywcuu/4yp0+0Wti5sBNbRrZgMrO6uY1DDDHETweJiMUvf/nLzn8TExN405vehEOHDuGWW27BLbfcgoMHD+Itb3kLSqVkkvYhnt9QtcGajuM58+H3YLnXwGtGEIuypvesolwot1y+/z6FVX+YBXDVurnnXCohf86fHwxFhj6gf+ClZ+EPX7UVoxluWcSiTQR22/EFj51taENVFTy790nnb5LhElihuonF4LJdH7HI0iS6LlKwWlnE/qd245wLLsJVL301AEAH5WQk1UWzIB0VzH1BEeZseQ+xCNKx2nRDsXIPu53owpSlSBgECcNSHbaqYcRi+GwwZwwDWM2U582HlNGJXtMslclGZkEqIKHqOjK5gqNYPPjMUwCA9Zu3eJZNdeYBTV0WsUhRFK66sRco0RY15ArFwLECACBpzDe9BWK1soh0NgeWs5pSooq8wHh+n7Esh7akOcRiaWIK5XlLsbi4gJGxicBX2QpC0lVITuZ5NEXFsWMdn1oDAB7VoqLI5gMbxTiPq7IkQUilIaoaWJoETZLYMJpCtS1D0XSkMtllKxbPv/hyfPIfvw46lQUBONmfcSAIAgJLwbAI7m6njSd3PoxWo47Lr31ponXsPFbD5lIGM8XlZSoNEY1hLfICgD0DW+zT8LDJMyUBsegnQP3vexcGmkG7oRUTi1G2XzRvZjCefMz3nf2tUHnKMElVLoRY9KstgR6x6CcrXWDkOsDlPZNzADjX5bYYf2+sHng08NrDe/Y5/88xjMeVoh9Yoc+1T9e8pCIAkKRnbHPlKp5+9ijOXlPE+y9nIaqAwMfPaG933IpFXzOL5gCCgiTbzRsVsvX/0FVAkwKErp+c9KsK4hWL1n5K0Myzia9BFYsAUMxnUG2YY9ltZRpt27I+9nNJQRAE3vQKr0vKoFaoJElitJCcWFszWcLxeZtYXMLUWNGp023FYkuKJxbXT5s5UUdnvbVkpysh5TqmWhYZ269Blsuk0BWlUII5Di869wz84It/umyFoTtjcfczh3B8rozXXHfpstY1xOpiWIsMkQScNVExiszrB4ZkPMRUEnLSbYWqQTOtTQmvYjFKRedfPgxhikVGTebQooVMjvevr14J1o5P7+xFjlA8BVmWA6Sp876PWNRD+k2qrnq2kyRISC7ng+piFXPH51CaKOHNv/lm6LoOjuciiUWKoDzEIi/woepQ2/ISCLc3dd7TuqB9M2PdnwXiFYt2xmISK1RbnTc22VP/pjPJ7Dez+axjhXpwr+nitHFr//zESreCUWE0MbEIANe/5nrP37liDq1GK5Q49mNZisXJMZRnzVqkslBBrpgDw/aOc47iILV7x0xDCv8tbGJxwZf5LHUlj2LRzljk++Q9p7NWZE8CBakf0+un8al//RTOeZGZ5R12Lfnh4R/iZPsk3nHOO7B9YjsybAaSJkHXdTAcA5Ii0e10MXdsDoeeObTqNqhz7Tksdhdx0fhFKHCFVV33EEMM8dPBwBmLX/rSl/DBD37Q8xBGURRuvvlmfOlLX1rVwQ3x3MC2Ek2KHE+Do0kcXerd7NpSkFhcWOw94MsxxKI7Ey5yrII5e6hhqaZyfHIih2X6r7+QMtVVcarHyLFJ8bML60ve2dQMy2Hv7l6TMhGx6LKMVRVv0SmrOlTd8JCPHEU5qkoA2PPYQ0hlMvjE5/8NtKVG00B4iEUCQFHoKRYBr2JRA+khL220m03kiyOQJRFaiJrSGRNNQScoLN3+D2g8/B3o7Vpg+Ua96iG1/FBlOZDt2A/lhVmQFOWo+gBASKcjMxYNEOjKGjIuxeKh/U9jcs06pNIZz7K8Ugdai9g8lglbVSyufvlrnf9vSSpyhZG+is05X7boUnnB2S5J1SCpOkYzrOchaiLHoyWpUK0ZmmMT01h0ZSyOjI0HvsdvhQoA03kBDZcCeXzaJBbdOYuOOpZiYB+GitwFn0pDUnRwNAmKIrBpPIOltgJJ1ZFKpyF2O4keGPygaBoXv/g6SIoOlo63O3YjxdDQrVmwYqeNB+6+DcXRMWw5b3vsZ5uigkPlNs5fm8fogPmwy8GSZZbbUX821QvDWuQFCvt8DGuS+cnGQZUIzdngayGEnCiZ373/yMnAewOBIIHMOLDoy9n1k5kuxWKesbaJcdl/2WNkQkg5OwMpZDtShFkbMErDVCv2mcEvJ3C6EE/s8fw9khPw4K5nnL85lkEnQcZiP/W+Y4XqVyy6rLT/556HwTA0fvSnb8BoikRXNcBz8Qo8t2JR4HzXXpoDSBL1ZhuloqnodEg7+3jzEbrujEUAAcVapdaIbL52bXvXBFaoJyyLrRlXrlE2LaCRoHlUzGUdK9Qn9h3GSD6LqQEyhJLgTa/0E4tZNNvdHjkbgblyFWMj+YFmta+dHMOx2TIMw7CIxd720FZTt2kRi/3sSwEzYxGAJ2dR0zRIshJQLGb6NPKAHnnZXEYzjyAIvOLqi5etMBR4s25rdUT8910PIpMScO0l25a1riFOHYa1yBD9YKvqouxHgR6p4wZDMl7FYpjLgw/+jEW/ApEhmXgr1GVkLDKKSbjYOXr9oPtdKBBUQPrJstJMyUMs0jwNVVZjFYuGpXBPmrHoVlPe8b07AAL47Dc+69hXshwLnUxOLHI8F0rithot5EdMJXMUaddRO05OpA2bILPh3ldGiM+sTUQmIRbLllOAW7GYyqQSEYuZfMZRLB7cexAMx2DNxjWhy6q6irpcx0RqwpPxGYdrX32t5+9cMQfDMDzZjv2wtLgElmMdS08bmq7h3uP3Qgup1canx1FZqEBVVCwtLHlsUAHzXJJck9qactNzvtoYGR8BzdCYO+G1kBe7IjiBc85HRVbAsIyHvHQjZVmjd5rLq0Uudbkd+K8Bh+uHcdvh23D19NV47ebXgqM4pJk0ZE2GZmjmxOu0gG67ix137ADN0Lj4mosHHkcUdi3uAkMyuH7t9Z5zc4ghhnjhYOAzV1VV7N27N/D63r17QwuGIV54UAb8HQmCwHiWw3zDdYMNIRbn5no3VSVEFVl2Ka8yHA06AbGoW825ascsngoDZNqxZPz6l6NYtBFnYQqYWX9unHnONi+xSLOQY9bDRVih2tZlrMtWlqO9asMrX/IKEAQJiqYdwlEzXMSipCEnMBCs77G/zUssEqEK0067idFxUxUYZYfK0iQ0g4Qhd1C907RjrVa8D1qNWhXZbHiYM0FSUBQ5VqVqozI/h5HSuKcRkErF5/q1JM1jhXpo315s2nJOYDkdJKCricfjx3kX9malm8RiEZLY9RDCNpba3gKxVim78hXN33A8622cTeZNYtFWDpcmp7C0OA9NVS1iMahY7IYQi2tHUmh0Fed8HimNg6YZLMy6iEVrzDpJ94hFS7EoqRp4mgRFENgynkWlLaErq0ils57vXA5sNeQgP0GKo6Bbs2C7nTYeuOd2XHbtjYH8jTA8caIOA8CN50wkunatFLJhjlMdMEf3dMGwFnmBQw25r6m+61sCYsaDRhixGLyGdK3JDraN5IqQnQSqR7zqSr9tqat5kmdDiEWpZaoNqZD6xVF4BpsJF6VMZTjfmQW4nGk1GgIpgdqKsK1sLVy6dS0e3N0jFlmGRltKYIXal1iUg+MjSLRdKoE33HglZEV1rp9dxZuZ2A8eK1S/pSVlKhYbrY5D3tn2l87xRnubTf512OSfjUqtiULOmwvlhjSQYrGCTEpw7D4Bk8xKpFjM9axQn9h3GOeftXHVbTIv2LoJ73vH63H1xecCMBWLABLZoc5XqgPZoALAmslRtDpdNFqdALHIWI3iRgLFYjrFY7SQw9GTvTqya6lj3eRzqyM6ysAw2L/Lcu1QVwKSJJEWeLQ6Xdx690N4+VUvAtun6TjEc4dhLXL6I4y0GQRxisUwi1CGGlyx2FZ7z9maoYEivZmJLLXyjMUwpWCmY5JvnBE9EUgP6f3EKRY3nb8JTz/eIxZJlkxkhWqTPGEZi4queDMWCdJDCl718qsAwxyvbN03OJ6DjghikaQgumoRN2nkRqfVccg7O7MuDG21HbAwtck/G41qA6T9vBnys9mKxTDizI/yXBkEQXjsPoV0QitUV8biob2HsOHMDX0nFDVlc7m12cGU/NPrpwHAIZ1y1kSxODtYwLRCHRkfCRzb+2v78c1938Qj848EPjM2NQbDMFBZqKAyXwkQiyzFeojFhtwIPc9JksT41LhHsWgYBqSuBI7jehmLstrXBhUAUlmzFmm3VpazCHivJZIm4StPfQXjqXH8xvm/gfGUOSkrRaegGZpDjgupHrF4wWUXOArK1cKuxV3YlN+ENdlwQnqIIYZ4/mPg7uc73/lOvOtd78JnP/tZ3H///bj//vvxmc98Br/2a7+Gd77znadijEP8lKGEqAnjMJXvERcMRaAjR3uAd0KIx0UXsZhOoBScdSm1ql0FaZYCz3gLGS7KxSxBhmOScfSDmkSxWPU2rM4670I888Tjzt8msZjcChU+y6629TswrmUa5Vk8+fjDzt+XX/cytJsNaKoKyRqzZhBOPlCtq6GYYpz91SMWXVkOBhGqMO20WhgdN0mqKNKOpUlovqrYtua00axVkcn3b1LJspSYyCsvzKLkskEFLCvUGCKrLanI5ouOFeqhfU9h45lng8qV0FaCD57L7fGRrn3ZkVVk8wUA4TmTlbYC3fW7uxWLDdEsCCdz3oe9sQwHTTfQtN4fm5yGrutYKi9gqbyA0VKIFaplE0vSvZNqbVFAraM4jVSSJDE2NY0Ft2JRNI8pnaBAW7+PLIkmsajoYGkKFEngjPEMFM3AYlNCKmMSi8vNWQRMUp2jSScjMglSLGUqfHkBB/Y+iWMH9+Py616W6LM7j9UwneexdSKc/B5idTGsRV7gCGuS+Wfkr4ZiUVoF8jAKmQmgU3bUgwCCZCZBwLCaWFnGqq84lz2k3LRsVUMKFjubVurfTCCgm+tbgWJR6M56rGYv3boGD+3e59iAciwT6kThB2mpMxvwqfVDFItzDQV3PLDb+fttr7kOQE9R2lWNRJmBHsViwAqVNYnFdhfTVr6OQ9rZZLDPCtXfEPPn9FVqDYdgC4OTRZlEsbhQwRqXQgCwrVATKBZdGYu7nzmMbVs2QOBYtEOa1MsFQRD4mz/8TWw/ezMAYKRg/q5xdrAAMLdYxcRoYaDvs/fF8bkyZherXmLRUiw2uuZ+jSIWAdMO1a1Y7Fp5Vh7FYjtasfhcEouAuY0Hjs7iod378NrrL3tOxjBENIa1yOmPfoqvf3rin/Dz3/v52M8vxwqVJVkPoZkkY9GvWCQJ0qNAZKkYK1Tf8mEIUyzGKRWdMYUQiwHFYsWrWNx03ibs37Pf+SzFUZHEIml1KVRD7bstmq55iEWxIeInt//E+fv1v/R6AECz1nQsUjmeg0b2v6dTBOUhCjkuXLHYaXVQsiY5RZF2XbULyTcBL0As1hrIWbUI1w7WSqoVSxRFiLrXPTI24uTxAab9ZhLrTbcV6oG9B7DxrI3geM5DtNqoSyYRuCm/KXa9YSCsZ3p7u+PsYAFTsRhmg3qkccQzJjfGpsw+yuLsIioLlUA+I0MyHivbulwPz9QEMLFmwpOxqCqqaa/rVixKCoSoyVIZy6VoGYpFP9zXo+/s/w5qUg2/tu3XcHbp7N73WZMf7dzWVCaFykIFO3fsxBU3rq4NalWs4ljzGLaPbUeRH2wy2hBDDPH8wcCsyV/91V9hcnISn/nMZzA7azZxpqam8KEPfQgf+MAHVn2AQyTDjgMVPHCwgve/dEv8wjFQ9cFn5s0UU8Bhk/RgKDI2i2exJeGMiV5jjadJLLV7N2QhgVLw3n29mcjVjoKcwASsMDkS6DfJnrMIknq1ApblIaSDs2+SjKMfZCmJYtFbJG49/0X4r3//ItaKXYADCJqB2oq2nOLo/mO0CV7bplQ6+Qw+/cVPeuzFcgXzJt5s1CBbJJBqAITVFKuJKjZPpEGT5jgoa9a46MpNVA2THHTvfUWWIUsiSgkVi/7jrrzgtY1o1JaQyeXRr6RSFMUhruJQnp9zxmUjlc5gYe5En0+YaCsqMrk8Du/fi9pSGUvlBWzcshX3F24AAGi6sWyVYj90FR1rClZDtF7D2OS05/1qW/ZYC1cri07mY8PKHrVzUG2MZc3fv24pGscmzHUuzJ7AUnkh1ApV7LRBEKTHomLNSAqypqMuKihZqsiJqTWe/egoFomeYlGWJAilFCRVB8+QoEkCm8bM82+2LmLKIhbbCXJK/Xj8aBWPHq3C0M3szkHI3RRLQ1Z1CKk07vnh98AwLF50+TWxn1M1HU+ebOCaM0soZU+9DeoQw1rkBQ9VChIvfhXjoIrF1kLwtZVmLPZRATrImJMw1vOu5kYYmUmxXkUmn/cuT3FYanRBo+NRr8HKaILiW6dvEhHYdN88SDmBYrFoVAGxtw2Xnb0Wf/qvd+LgMfM+zLFMT4kXBeuCu5s4F1e5X9cVD6m4a07Da//ux1CpXrajncXX7kpIwVIs+q1NQ9B2KQ38+YigWMcK1c4xbHV8zS4uAyDcahwIVyyaYw0/tsQk+8lZd9mTrwhYVqithIrFegtdUcL+IyfxgXe+EU8fOIqdVsbRqcBgisUaNq+dil3OjbVWvtOxuUXMLpgZizYcYlGyicXoLON102M4Otu7JnSsJqf7GGl1REz7lAhuOMTiMqxQVwOZFI9v3fZjAMArV9l6bIjVwbAWeX5hperC0HX677cWPvfY5wAA9x2/D1evuTp0GcC0Huy3jn7wE2d+kikMHbUDGAAIk0zyqwFZiu1LfgA9K9RWvQXDMJANyccNy1hMijAFb0CxuBRULMqSbNrFFgCSIa3n/WjFYpRKT9VV53ulWQlf/chXoXd6Y3Or4TjrfsHyLDQimlj0WKEKXCih3Gq2HGIxSrEImCo4N/yWufVq3Rlrqhm8H9q5fUlQnit7bFCB5IpF2wpV13UcfuYwrnv1dRA7IqqLwbqqLtdBERRmsjOJxxYGm1hsJpjkVC1XPUpMGzax2FGD22gTiwsnF7C0sITzLz3f8z5P857fryW30FE6yHN5+DE+PY7jh9wRMea57M7hVGSlb74iAMfGdaWKRU3XoBpm74dcR+L+k/fjVRtfhZdueCkYsueIkLKiGewJDUJKwE9u/wkUWVn1fMXdi7tBEiRuWH9D3/N6iCGGeP5jYMUiSZL48Ic/jBMnTqBWq6FWq+HEiRP48Ic/PFCOxhCri7d+8QF87o79OLa08offMJvSOMwUerNsWIqEqGgeFZUfbnUiAKQ5GlVX1k4SpeBdz/iIRZ4JqJOiVmMr8D7+e+/Cv//9Z0KXWQlJpMpJMha9Dauzz38RgB6pRtJMrKVqmAWpDdu6jKVJtJ++F3P/8fsYm16HN73zt51lbDVcs15zFIuqboC0FIsNScdYhgNj7S97j7itUBU9OI6ORQqVJibN5SOIRY4mA9melQCxWEU2V+i7DkWWEqlQzXXPOuOykUpn0G1HF2yioiObK6DZqOHQPtP6aKPLCjWJomNQdGUVOUup2agtBd6vtGXH0hQAapVFFBzFogoCQCnjUyxaxGLDOuds9eaBvXugqSpGx737BgA67XbgGj9tnfflZu/cHZua8WQsira9Lkgw1vmkSFbGoqqDZyiQJIE1xRQYikClLSFtZVZGZV760RQV/MO9B/D5uw/ggYNLOFHvgmOogc7hNEtB0XTwqTSqlUVsv+zFoRMO/Ng334Kk6rjqzLEV5bIOkRzDWuQFjiTEYoJcGA86FUDXvQ28kGzCgRD3kJsaASgWo4xbsRj8ToNyXYNp3pvrJzUAmsOv/MkX8aFP/7P3g3Y+o+yr7ZZ85BGX8+YXupBEsZilZKB62Pn70rNNm6qHnjDtUFmGhpQgV8+G4d9vmmKStASJB09ouOrLbZSyLP7s997hLDJiNTFtAii5YrF33ASsUykWsqJDlGTMjNvEoq+Zx0ZnIZ9c8N534xSLnQSWsTZOzFeccdnIpRMqFnMZLNWbeOrZo9B1HeeftQETpSLmyv1J0pXC3u5KLV4lMF+pYaJUGGj9U2OmXdmBo7NYqjc9pJ9phUqg3pHBMDS4GFtQv2KxYylPBslYfK4Vi5m0gPlyFZdfsBXjA6o/h/jpYFiLPL+w2AnmFa4UfkvKQd+3s8oGgT9/LokVakfpgNTMOkCDqcpzTwZlyWjFom2d+rd//Lf464/8degyYVaoSWFoRsCa1E1mAEEr1HVb14GiKcweNUl72wqVIcKv/44VqhH+PK7pmqPmbD3VwoFPHABFU/idj/+Os4ybtHIrFnUiJmPRbYXKc5D04G/WabqsUGMsz+uyd19UfJOcGtUGciVzrGHqTDXGPcyN8nyQWExn0omtUFuNFk4cPgGxK2LT2ZtQLBWxVF4KkMl1qY4cm3OIq+ViICvUxWqkYrGtBGv2dDYNIS04isVR3wQwhmTQdU0AM2CgIlb8qwEATMxMYP54T7FoHyec0FO1KnKMYtGyHk3ye0TBfR0ht5DYkNuAd533LozwXuLVVizaywtpAdXFKtafud6xpV0t7FzcifXZ9diY37iq6x1iiCF+ulhWEJSqqrj99tvxta99zfGrPnnyJFoDNIHd+PznP48NGzaA53lcdtlleOihhxJ97utf/zoIgsDP/dzPLet7T0dU2oPbbfjRjVEbhsFrhUpCVHRERUss+IjFDE+jKfYKoCiyDDCVYffvL4PomA2UakdBlqfRsHL5Os0aAICLIJrs3MFqeRHtFWS59YMiS7H5GvWqV7E4uWYd8sURxwaUoAa0QvXBVo4+/r/fRPl7n0Z661X48N98FSRNY+Ktn8Ta3/sGsg5pVTUViwQJ3TAbiQCgG8B0kUfaUm+ytmLRRSyqmhGwobVJIVsZ2Ikg7ViahOwjtP2KxWa9hmw+OBPMhiInz1hcnJ8NkGdCOhNrvSkpGjK5PJr1Gg7tfxoMy2FmXa8QGnRGahJ0Fc1RlQasUA0D9a7iKBM1VUW9uoSRkqk4bHQVpDgqoLy1icaWRYRm8wVwvIBn9uwEgL4Zi6SvSWJPKFjq9I7Riek1HmJRsixzVYNwFIuaqkJIpU11oHXcUBa5WGkr4B1iMX4momEYePjwEv7ou0/iiRN1XLbRLI4lRTetUGNsfdxIc6ZikRfMB57Lrn1pos/tOl5DlqdxxabgjMghTh2GtcgLGJrs2G33XpPgKRwGJRbFGqBJ+Oa3vtV7bbmKxfGzgekLvQRgGAgSyPsyQVzE4lzV/H7D3SRkM948RdlULM5VGkECwyYk/WTlkZ94/+aDygIbmq6jlSCzDyd7NuylfBqb1k7iod37AFiKxQGIxQB0FSBJfPV/7sef3iPhxk007vvodRBc7gk2aWVbm9qKxTXW7P6RfPg2ejIWA4pFBk0rB8fOWPTkFxJU7G98YsFbpy3Vm466MgxxUQBuHA9VLKYSEVnFfAbNdhePP30AAHDuGesxWSqiWm+t7LeK+s7cYFaog2YsMgyNyVIRj+zZDwAeK1SKMKzfU0Y2IovIxrqpMRw5ueDUZR2LgE7xvd9bkhVkIpp5ufRzTCxapOdrrrs0ZskhnksMa5HTG8t9trvtttsAAK12q6+daj/4lTuiJoIloxX8HbUDQjePPx06KJJyyKvaQs1ULBrxVqhLi0t9CYwwK9RBUI2Z+OInFlmexaatmwLEIk2FE5wECJAE2VexaBOOB3ccxOHPHIawUcAv//0vI5PrTTCySatGreHJWGQEs27LFIOTkSjSp1jkg1aoqqJCEiWHpIojFls+p4qyz5a9WWsiU+o/MUqRFQ+xHIXF2cWgYjGTPGMRAJ54+AkAwKazNmFkfAS6pgcUhVWpihF+BAIdfw+PAsMyENICGgkmOS0tLgUUi3Wp7ihCu2o3cLwQBIGxqTEc3ncYsiQHMhY5ikOn3QFBEM62LInByd8AMD4zjspCBYpVl9lkNS/wjoJYV/XIjEU+xYMgCLSbK5ss6bdUfvcF78bmwubAcmnaskLVzGPUHttqqxXbShsHawexbWwbRvn+7hFDDDHE8x8DE4tHjhzBtm3b8PrXvx7vec97sLhoEjmf+tSn8MEPfnDgAXzjG9/AzTffjI997GN47LHHcMEFF+DlL385FhZCLK1cOHz4MD74wQ/i6qv7W0/8LOAU8BiodpKRk/Z3l1uSRxHFUARERYu0I/ErFrMcjZaLWIwjiA4utkxSxGq2LXVkZHgaJ4+YDZbF44cBRBOLnEVouAmy1YRhGKEKMzdqPitUgiBw1rYLe3/TNFQlhlhkoohFc5+ee/FVKFz3Kxh99c3geB5itwN+3TaQXBoybTZOmvUqZFkEYWU6bT7zTGc9G0bSGE2Z+0ugAE3THCUlw3BQdQO8bxztllmwjVrKwCgrVI4mPdmeqXQGFV/GYqNeRSYbTSzSZPwlrdtpo91shGYs2jmC/SAqOjL5PMRuB88+tRvrN28BRfcebuIyGpcDUdEhpLMgSRKNuveBjLKa5nN1s1CsVSswDAPFUfPhoNZVkOHogF1umqMhMJSjaCUIAmOT006+52gpaIXaabcCs69H0ywYivBMChifWoOlxXnI1vEhieb5pRmEo1gEAC6VgWYYSHO9/bexlEa1LYPhrZl5MVao9a6C/3f3AfzDvQextijgr37xAvzKizcAAGTNtFkdxAo1w9Hm51Lmg9rl18UTi4ZhYOexGrZOZjGWjSEhhlg1DGuRFzhUKZihqCne1wa1QhVrgCrixAmXpbVf6XcqMOLLinGRmc8cs+7xtIvwYtNeJaTUBOg+2XgUA4AAFN92HPmx92+uEDnEOBVbRyWA2V2e1y47/6ze6lkGsrICskqTAYLCtRefg186n8G33yQgnWI9pOBI3rzuti0lvalYZPGBX30j7viXv8AZfWZJR2YsUhzqlvqvZ4XqauaxqVhVapgVaj+SE0huharrOk4uLAWIRTNjMZkVKgDc98iT2LR2Epm04CgEFyq1RGMYFDRNoZDLxCoW210RrU4XEwMSiwCwdqqEh54wCW23FSoAgKTR7Eix+YqAqVjsdCUsWY1NR7HoO0aiFItpq5mXxJr2VMC2e33N9UNi8fmKYS1y+mNQtaGNY0ePAQC6UndwxaKPRJRUCRwVVPB/6qFPYdtXtqEm1tBVux7FIgnSUUotHlsES7FQtf4TXyjCVCyGZePZWKlVYWUhXNVlo7EUvLecvb2X/UYyFrEYoZxkSbbv/latCW1rz12LsdeMYcPNG5DKpjykoJAWQNGUSSxKPWIxP2H2IDacsyGw3gCxKHAB21nbxjI/kgfDMbHEYsdX94VlLNokJxHysDsIsRhmhZrOpKEqKlQlerJUxqrddj2wC7liDiPjI45CcGnR2wdrSA2MCqPgqZU/L+eKudiMRUM3UKvUUPTVEkebRwEAU+kpdNVuqMJ1fGocT+98GgDCicVWBzRNI8tmQYAIzWoEgMmZSRiGgcVZ897gVizaVqgAIhWLBEEglU2tXLHodoapAFevuTp0soCtWFRU8xgWMqeGWHyi/AR06HjJ2peAoaJdKIYYYojnNwYmFt/3vvfh4osvRrVahSD0LoBveMMbcMcddww8gM9+9rP49V//dbzzne/EOeecgy984QtIpVL40pe+1Pczmqbhpptuwsc//nFs2rS88N/TBbP1eLvNQbGUUPVo04YdWfMQgQxFQlJ1REU1Lra8DbQczzjqKXMd0WzAnpMNZDgahjXTXFIN5HgmQCJwdHA9NtHBW2RLFOG1UiwtRj8I+q1QAWCri1gEySRQLIbPHlxYWMBf/uHvQZc6WLthI/KX/QIIggBB9FRkACBk7Jl5VUiiCFYwC0TeFeC9edw7I85NxrJWHh7vG0fbUpuNjiWxQqUguRSLo+OTIRmLVUddGQZFlhNZodoWqyWfYjGVzsRab3YVzbFjfeLRB7Bxy9me9/1E8WpAVDXoIJDJFVCvegt0SqwBAOabouf7i5YVar0rI8sxoefTaIZFS1admbiliSkcPWiqBIohxGKYYpEkCUzkeNS6vfyQiWlTvVOeM4lhO2NRNbznNZc2jzu3mvKM8QwqbRkEa95b2n1+D8MwsONABX/03T14Zr6Jd1yxHp+/6UV41XlTjhWprOrgaAr5vPk9vBDfiHQUi+k0Nm45GxPTa2M/M1sXUWnLuHj9CAqpYVH808KwFnmBQ5ODxKEme1WKgzbzpCag9u6XBkF6cw1jscyZWqNnev9WOlDgvVZ6rFAtYnGh1sZTB09YxCKHVlgzjyBMctFPLB6+3/u3EE3gzC5GT3Lau0QA5X2e1y61iEVZUQa2QnWjWq3iXf/3bpTbBtZMlvDW8xiQBAGAdFRkAJASePAc61Us8hwIgsBLLt8eum7DMJx1EAQRtMekOUdtNjaSB01T3oxFWogkFgWei8hYDEcnYa7R4lIdqqqFZixKshJL5NrE4r2P7MH5Z5nOCROj5nEwfwrtUEfyGZRjmnmLVk7WxDLsO9dMlPD0AbMhPzXucwGgGDQ7YiJicd20WcfYdqj2ceK3y81EqARIkrQyL1c+QcH+Hvs3SoJsWsC66TFs27Jhxd8/xKnBsBY5/TGo2tAPDdrqKBapoGLx0Xkzp3h3eTc6SgeE5lUsugknjgqSXQBQnTXvF3bGYhThtZKMRQBYWoiuRfyKRQA4+8LeszbBECaxGHHf7pcl2Wq18Nu/+dtQqgqyI1lMvGECBGUqHN1kKkEQDmllq8tYPjqfkiZodF29FY4PZix2muZ9JJ1JQ0gJkfuZJumARWeAWKw2kC4G4zqIawkUrysmJhYlUUKj1nCyH23YuX5xZJatWNz90G5sPnszCILoTyzKDYwJY+DpVSAWC7lAJqcfrWYLqqIGrFCPNo5CoAVsKW5BR+k4hLMbpakSjj5rEpAjvlqEpVh0211QDAWKoFDgCoFMTBvjM2YtMn/CJPntjEWO956PUcQiYB43K81YdCsWaZ1Gjg239betam3iM5VOIVfI4dyLzl3R9/uxa2EXptPTOGvkrPiFhxhiiOc1BiYW77vvPnz0ox8Fy3qLmw0bNnhniSeALMt49NFHceONN/YGRJK48cYbsWPHjr6f+9M//VOMj4/jXe96V+x3SJKERqPh+e+FDL9CMSrHcLmoxRCLnRirVIYiIKkajAhmsdr2BplnBdqTT+e3QvXPAN9zso7NY2mPyWGWDxa7bAihYljNTI4mYRhGQLF4z/9+D7d95xt9xz4IlspxxGKQiNq67UXO/xMUDWUZVqh79uzBpZdeiofvvQNqY8GjaiRJwrPNDMuBF1Jo1muQJRFsOhtY73jWO0vS/Xk+bc7g89tt2iTdSGkcJElGqgFZijSPbcvaZHR80pOxKHY7kCUR2VyEYlGVQSewQrVtZgOKxXQGsiRGBr5LqoaURcTOnTgWJBYr0b/3ctCVNWi6gbO2bce9P/ye57whNQl5gXEskHXNHLtNDNY7KrI8HWotPJph0ZE0qNZ5OjYxBcMwkCuMgGGDD6+dTjBjEQCm8gJaouqsZ3zKDGRfmDXtUEXbClUH3KJWOmUeZxmut84tE1nUuwpakmYRvUHF4lJbxt/e+Sz++ceHsHksg8/+4gX40MvPwqaxjCdj1VQsUthiKW/POu/CwLr8yFrE4ht/9Xfxu3/0qdjlAWD38TpoksANZ4+Fzhgd4tRgWIu8wOEnEQGTFNRXoFiUmqadqv1xggGU7mDWDpYV646de3HnI88k+8yoX7HYhgpv08twKxaZFEAyEGUV37r9IdN5gQoqFr9/90P4+699H6BYL0HaqQD1Y97v5KJzAuMUi4/PaoF1XuYQi+qyrVCfffZZXH755fjOw0dwqKoA7qqNID1qQ8C0O7UzFkUNsTl6XVFy7okCzwavwRTrkEL5TAqZlODNL2SiicWZiVFPxqJhGLEZi7Ki9s27dMMmLGd8zTw71y9OtVi0VAKHT8w7xJNtPXoqcxYv3XYWvn3bj6Gq/c9PzZooNqgVKgCsmSzBMAwwDB3czyRjKRbj85nWW8Ti0VmLWAzJWASiFYuA+XusBrE4PTGKb33uD/HJm38l8Wc+9Ks/jy//xfuHtcXzGMNa5PTHSolFFeqqZCyGEYtudNWuh1i0rU2ddZJsKIEitsx7LkmQpmKxc+oUi36iyY/GUiNgPbv1gq3O/xN0MmLR/yx/7NgxXHXVVbjlW7dAnpc9+8VPLAJALp8LZCxGEYskSQasUN1qNKCnWEznzPy+TkSWcpbJoqO6ezUMyvNlz76pV+tIFcx7oWd7tpOY+ZUZKLKSiAi2CcuxyTHP6zaxGHU8AD1ice7YHDZak5xshaD/99YMDTPZmcRKyihsvWArfvyjHzt2tWHQrVrEb4V6uH4YU+kpTKYm0VbaoefF2NSYs7/9GYsCLTiKRQCYSE2gITdC1zMxbcbL2MSio1j0E4sxFu+pTMohp5cLd8bius3r+n+XRSzadr5vfOcb8ZG//QioPmKG5Y5lb3Uvziudh5JQiv/AEEMM8bzGwFd1XdehacHi6Pjx48hm+8/gDUO5XIamaZiY8OZ5TUxMYG5uLvQz999/P/75n/8ZX/ziFxN9xyc/+Unk83nnv7Vr4xUoz2dIEQ/yAFD2WYwuB5VOdPPIrSx0gxDNhxOWthWL/Zt59a4KReu9nxcYtF25NCzlPTR/5+uP48bP3uP8faTSwbrRlI9YDDagQrhGBxxDQlFkaKp3e776hb/Gj773zf4fHABLi/OR79erQcXiWR7FIg01hjDzE4s/+MEPcOWVVyKfz+MP//EWZCY3eSxCZVV3VGSA2XPNFYo9xaJF+NiZicUU47GrBACx41Ispm2FY9AKlZ3agqbBgk+lI5WhNvFFWgrU0oRXsWhnC9oZi2EXLtMKNQGxaK3XzlhcaIr4f3c/C0YwZ/3JYv8CWlJ1pFx2rJu2nON5v15ZXcUiQxHoKhpUXceb3/VeHNz3FB6850eeZdYWBVTbMtyPvQXLCrUhKsgJTKiqdTzDoy2rUK3zcGzSJARHxnpqRWLyLIik+Zt02y2QIXYZa4oC6qIKybKyHZs07ersnEVZEkHRpsWoW7HI8OZxk+F65+2mMfM3OFnvmta0LitUwzBw3/5F/PH39uBQuY13vXgj/vatF+Ll502GnvuabkBgyJ6aOkFfLs2b49yy7SKc96Jk1mM7j9WwaSyNNSGzRoc4dRjWIi9w6GqQONSVlSkWNRnouEggkgYUcTCC0rIxlWQFJ8u1ZJ/Jznj/VjrQfMQi3LZPjM9+U24BFONV0gH4yy9+E//8rf81bVQV13sLe4NjiGk4zsaoBB44KsFoLSDlGtaF5/RyV0wr1OTZgQBwzz334LLLLjPX//EbcMmGLDy2EiTlkD02RgtZh2A1CCqWUHGTse68Rgc0h7rViMllUsimBe9+ZgQgwkJ9ZnwUc+WqQ6I1212oqhapWJRkxcxujIFDLI4HFYtAfK5f0ZUJdf4Ws5k3NpIHQRCYP0VWqADw4V/7BRw8Nodv/ODe2GWXY4W6xrJjmywVg78/SaPZEWPJQMDcFzzHOorFbl8r1OhmXi6TQiOiATwIfv7lV4EeoDF30Xln9lXrPl8wZpRhfCyH0e6h53oozwmGtcjpj1VRLOorVCyq4YpFzzKaCFI372cGjACpxFJsqOWjDZuI7HailXQrQZwVqqqogRy5dWf0CBCSIaEoPWIxjLBlSMbz+kMPPYRLL70UtVoN3/3Rd5HemvZsB0mQjorMRq6YQ71a9xKLWv/+GKER0Kw6gaIp0AwdWN7erlQmhVQ6FalYzDJZdJXe+6WJEsSO6KxD13W06i3wuf73QlmWExF4dnaj3wrVUSzG3P+yLmv4TWebE+2ElAAhLYRmam7IbYgdUxK8+TffjHqljv/5z/+JXdZNLBqGgaPNo1ibXYvp7DTaSjt0UrlNtKazafCCdz8LtEkM28TiZHoSTbkZSj6zPIviWLGnWHRlLLqJyFjFYnYVFItqr/4lI2pfhmTAkAwk3RzrxrM24tJVznp+uvI0VF3FtWuuXRUF6xBDDPHcYmBi8WUvexn+5m/+xvmbIAi0Wi187GMfw6te9arVHFsAzWYTb3/72/HFL34RpVKymQ1/8Ad/gHq97vx37Nix+A/9jKPmy1j084P758NzzwjRtCOgSQKSEmGFqmtoSgpkl/VllmM8RCPhYwFectY40j5F3KaSt5E/mg4W3Fyf53dDkUCTpIcgA4BqeRGH9j3dZ+DhOHLAtA+rnDwSeC9OsdhpNSFLvllyBVcjhqSgyHJk5iRB9LLrmpUFvO51r8O1116L+++/H0JhAixNWrZjFgyv4rAlqcjmi2jWq5AkEWzKSxSOpFkIjHdHuolJNmXOKLctKN3bNvWOz+ITP3wWQiodmT9ok6MEYzZ8SuNT6LSa6LbNAsomFsdHCujs24GNCBK2iqyAouIvadXyAlLpDISUefzsnW3isaM1NA2zqLGzAcMgKrpjHQsAG8/0KharlcXY7x8EaY52FIvnX3wFzr3wUvzHP37OM2NxYymNpY4MzTrhsrkCWNbcj01JRV4It0Idz3FoSyZpCQClSVPBOTLWa2gwV/wyjhBmNkCn3QJJBR8o140IqHcUKNb5zPECCqMlLMyaM7VFsQuOF6BohifzlOTM/Z9xkdabrRD6xabksaZV2Sw++6N9+MqOI9g6mcNfv/kC3PyyLdhYSkc2nnmGClxLopDmaIhKb5/EoSWpOLDYwvlrChjNRD/wD7G6GNYizzG6q6CI8s/s1WQvmbicZl6jl81rELSpYByEoOxGE3Ch8D+cK92gFWpAseh6X25DJ7yKwFa7iwd2WQQixZqZlDYW9wKZSTQU89qpUGmAYnDwmLntTx4O1h3xikUVBAycN94bF8/1rmmDWqFWmhJe+cpX4oILLsCOHTtw5rhgkW1uxSKBto9MdSsWDTLeWrrjUhn4lWgAAIpzSKFcJoVMivcqAWk+VrGo6zrmK+b+s7MFYxWLCfKe7d/EzkW0kVyx2Gvm2YpFmqZQKuZOqWLxwnM241XXXoJP/uN/RjbLKYqMJGD7Ya3VzAvkKwIARSe2QiUIAuumxnD0pFmX2SS2+7gGgLQQ3dDKpVdHsXi6YhTmNXPEWMa18zTAsBb56SJMEXSqsRrE4oozFjUp8JobhmF4FIsAAopFJuaeamcsuolFd75ehsl4yMoxwatws1FZNMnDk/tPBt6LUywCQM03McZDgNCAIkUTiyzVy1hUugpe/vKXY8OGDXjwwQdx5tmmi42bcPPnIwJAtpBFs9aELMogKdIkCiMUi7rcO0ZsEsq/vMcKNUaxmGEyHsWiTfrZ6sJWowVd1yOJRUVRQCZo9dr2tP4cQZtYjCKaASCVTTnP4pu29hw8RsZGQq1v1+fWx44pCWY2zOC6116Hr3/h67E5kG5icUlcQkftYEthCyZSE5B12bOvbYxbrgd+G1Sgp1ikrP7YdGYaDakRsL+1MTE9gQVrkpNjherL4eRjJkyttmIxDgItRJLpK8XOxZ0oCSVcMH7BKfuOIYYY4qeHgacd/dVf/RVe8YpX4JxzzoEoinjb296G/fv3o1Qq4Wtf+9pA6yqVSqAoCvPzXpJgfn4ek5OTgeUPHDiAw4cP47Wvfa3zmv1QS9M0nnnmGWzevNnzGY7jwIXNYh6iL6o+xaLoU0nuORm0qQDgMJAsRULWdOh98oooTURLTENWXcQiH30onj2Vw/lr8viNfzOzBNYUBUzmeo2FFEMGiC1zLOGkgqGKIAkiYIP6+IP3hy4fhXq1DGAtWrVg8RSXsQgAtZCcRQcWsZimCPQRigIAKEKHbADZ0XH84Ac/wPXXXw+KotCRj4OjSbh5SYLs2VMCprIrVyiiUa+CYTmwvEn42IrFUoYL2Jx6MhaFNGQAKR/52Gm1AOvU4/iUqVjs02NiHWLRLKpGx01yq7wwi7Ubz0CjbjbJcoURLP7Xn2PLp/8+sA5FkRyCNQqapoGiew9XVZtIZ83tlkQRCHn2IqFDVDTwFrGYL46gWPI+VNWXVpdYzHA0FpsSVN0AQRB462/8Lj76W7+E3Q//xFlm83gGtz01j7RFLBasMUmKBlnVMZoJsYcDMJnj0ZQUh9Afs6xhRy0bVU03AD4HQ1mEAVOxmAmxQl1TTKElqWhLKoop86F3YmqNY4UqdbvghTQ03fBYslJcCpC8534+xaCYMq1dU5ks2u0mpOImNLa8Cp1aF795zSbcdNl6rB0RElmDpUOuCdHLU9ANQFGTWSfuOVGHAeDGreNgEpDaQ6wehrXIaQB/Q0hTvOpCdRkPtK2eqkMnGUAVLQIz4b6f3Q0UNwz8tRWZwShrjVfuQIN34pPhno3LprzKPbkN2fBeP+59ZE/PapJiPRavWHzaHGPNbDCpdBoMxWChUsMmAIv1YOMhLmPxyUUdBghsmyDx1KIOpLyNFI5lIMVk/gHmeUAYBkazHG699VZcffXVYBjG/G0J0rvdRD/FonkeGglUf17FYkjTlebQaNVA0xQEnkMmJaDV6cK5ydN8pLpw2mq0nZivYGaihErVRSwG55IBSK5Y1HQNFEUGLMaTKhazaQEURYKhaZyxvmftPjFawHxSte0y8Ye/+SZc9bYP4b/verDvMuMjhcgZ8f1gKxanxoLNPJAMmu0OpnyKrn5YPz3uyVgUeC4wpqRWqHRI/TPEEMNa5KeL0P7DKcagpGDg88vIWPSTgHGKRVVXoRu6o1gETMLMjTjFI0mQMHTDo957emdvsjUBwrPOfhM3mzVzAnq3ESSk4jIWAYSq3NJZs6YiKNMK1d4/YfuVpViomgpDN8AIDL773e/ikksugSAIOFg/aK6H8BKwASvUYg5Hnz0KSZLAWrVFFLGoSb1jhLVyfP0kuMcKNSZjMctkURbLYDkWsiQ7VpzluTI2bNmAhlWLcBkO6OMEqshK4BgIg33NoHx9nFTaZYXafy4VSJJEJpdBq9HCBlcecLFUDPyWaSaNAleIHVNSvO2334Zfe/mv4Y7v9s+z5QXeowY82jRzEy+YuMAh6+tSHWuyazyfG5sy+yl+whWqqdzttruOYnE6PY2G3ICoishzwdieiZkJzB/3WqEyvFdZm8QKtd1oIz/SPxYoDu6MxTik6BRk3YyuWm07dlVX8WT5SVw6denQBnWIIU4TDPzEt3btWuzatQsf+chH8P73vx8XXngh/vIv/xKPP/44xsfH41fgAsuyuOiiizzh5rqu44477sAVV1wRWH7r1q144oknsHPnTue/173udbj++uuxc+fOoZ1HBOz7QZJ6vNGNbh7tm2/2tUMFAIYiIas69D6SRVIV0ZLUgYhFAB7V3aZS2ktICHRoYz/NmJ8h/DMcFRkkgYA95+MPxFs7DYKlcrQVKgDUQnIWbRgkBVWRPVamgc/XajjxjY+h8dAtAIAbb7zRaVS1JA0sTXoUjwxFeohBTTeQzRfQrNcgSSJoyxLU3p9jWS5gt+rJaBRMlZmf2G23erkdfDqNbqd/k8wmnISNF2H9/3crcqPmA7Sds9i0SNtsIWQGuwVFlkEvg9xxiHTWLOj8ClJnjIRJLDKcAIqmsXHLOYFCK+q3dIO2CG9Fi37QzHA0JFV3LJAvvfoGbN56Hv7jHz/nLLN5LANJ1SETZqOg6Nigmse8Px/TxniOQ0fSnPzS0oRpYWorFpuiAoIkncfGbqcNMqSxNlM091ul1XsQHZ9e4ygWJbELziJjPYpF1mzm+W12R9IcRKWXsdiZuABkt4bPvWU73nfjmaYFcsICN53guuKGfQx3Yyynbew6VsNkjsPZ0xFPXEOcEgxrkdMAoVaorrpBGWBmrk3kNHoz5A2SNpV+g1ihnng0+bIuHGhbtpQEAWgSVJ9iER5isUc6EgQApQNR8y5/+08ed32W8yoW68eBfK8BolBpIELJAACzi9EKNlEF2nQBPG1dW1lzFtC6abOxwrEMZDl6Rni7I+IXf++T+KM7zbG+5CUvMUlFwCR3yRDFoj9jsdBTLBJ0vAq8HadYZATUm23k0uZ9I5sW0Gq7vpPmvOpRH2asZt5Jy76tYjVMV8MKtR+SKhYJgkAhm8G5Z6zzkJMTpaKjsDxVePGLzsU1F5+HP//CN/o2+v1KzKRYMxFFLNJodaVEikXAPH6PzvYUi34bVADIxKxrtTIWhzg9MaxFTn8YfSZKJ8VyFIt+SJoUqTi0LQtJzUUshlihRoEkSMii7LmmP3b/Y55lkmT2RSHOChUIKhYBk6QyB2Aq8WjCUiyG1HeURuHHn/kx5v7T7CFcc801EATzOm8rsOzPA+Y2BYjFQi9jkbPuG36i0L2fdKn3PG8vH8hYbLZBUiQ4nkMqk4rMLsyyWbTVNljB/M1K1n3Rti21iUU2xK3LhiqrK8oytMncKALUGW8+i+n10x5yrDgWJBaLXBECnez+nQSbz96MK2+8Ev/x//4DRp++Y9FnyX6kcQQZJoP12fUYFcwarykH3dhsK1S/YpFQCJAE6SEWJ9OTMGCg3A3vA43PjPcUi6IEiqZgkN7x2uTnLftvwc6FnYF1rIYVqqRGX0fcSDEpKLqyYsV2GPZX90PURLx4+sVIM8MomSGGOB0wUNdVURRs3boVt956K2666SbcdNNNKx7AzTffjF/+5V/GxRdfjEsvvRR/8zd/g3a7jXe+850AgHe84x2YmZnBJz/5SfA8j/POO8/z+UKhAACB139W0I+882M0YxY5ddFLGob1A1qS6tgqhmG2LuLYUv+HbIa2iMU+q6BUEW1JhaT0isGwjLQoTOUFR1EHABmeDuQyAnAy90jVOyveUCWQpFexaBgGHv1JPLFoJMwXIEkKS/PxisV6hGLRIMwcyH7ZgeW5k7jyyt9C98QxjF78xsD7LUkFS5O+mXleK1NR0ZArFHHy6GGMjk2A4dNQ0cvSnMhxASLHQyxaCke/qrHdagLWJC9OSGaFmrvs5wEAC9bUODsPsVGrgqJppNP9m3mqoiTKWPRjqW0V/pYNqySFF9AsqaMja9ANIF8YCdigAkAtxvrWxvlrCgCAA4ttnDdT6LucTbo1LZLQVi3+2c2/gelNr0I2xWPDqNmElBhz34xYisO6NUFgso9NyliWgwHzmjANAeNTXmKxZn3e/um77XZAWQEAMwWLWGz3HqDGp2bwwDNPATCtUO3czjBiMeMjFjMcBVnVIaSzlhWqAUpu4uINI6Gq5ChkuQEVi5Z3sqjENwBUXceekw1cuXkUpcwLd/b3CxHDWuQ0QZhi0f2aHPcA7SoyGMFUJ7oVi4RFLA7S0JvbnWwGlg2rUfdgrYhLi1UY1nw91VdeG32IRY4CoKsQde+96/YdO13fwQGqb0p6oWclpdICEGJTbYMkiUTWmGVjBBl4l7MVCSxjKxbDm1iLS3Vc80sfxjOHjuOdrw9pPPZTLPpyjUYLObSPWMRiTBMUgMdKNTxjUUCj1XHIukxKQNNtP0ZzkSRgqZgDw9BOHmJyK9TBalo3spZKIAmZVSrmHBtUG5OlIo7Nrq57Qhg+8u634OW/9lEcnV3EhWdvCrw/uYx8RQCYHh8BQRDhxCJFo9nuJiYW10+P47/vegiASSwKfPCYSqJYPD5Xxki+f/15WuHAnUC7DJz/pud6JM97DGuRnw20lZU184Fl2KkSpirKJrNETYwmFq0+h9sKNUAsxkxAoggqkDX46P2PAi6nwhVlLBLxVqgESZhk1LTvdYIwCV4K0DXdIcz8hG2n0cE9n74Hlf0VTL19Cn7YGZME6e6LhCgWC2bGoizKDlHoVywuyb1t0bq9cTjL+2wkO80O0hkzwoNP8aEEqo0sk0VH6YBLc2jVWmA5FrliziEW61UrfihiAq2iKCsiFvkUb1rjJiAWcyM5h4izMTI2gj2P7PG+xo+sep7eTe+9Ce/5ufegWW9iet104H0/MXi4fhjTmWlk2d49Pewcz+Qz4FN8ULGomOdKp91xSLHJtDkhfkkMP74nZiYwf2IehmEqgjmeCxDPNin70OxDeGbpGZw7ei4YqnfOr4YVqqiKYEk2Un3rfB+TgqKZxCLlnyy5Quxa3IUcm8Nlk5et6nqHGGKI5w4DVQcMw0AUk0uok+DNb34zFhcX8cd//MeYm5vD9u3b8cMf/tAJLj969OiyrHR+VtCRkzXMpvPmTXyxaRaMdo7i03ONwLJtSY1VUt2/v78yi6EI0zqxT3Oe1EToBrDkynJMolh0w5+nmOVoMHRyUslQglaoJ44ewuLcCWRy0RYDWsosMOL2EcNxHivUbjs8mzJSsUhQUGU5NCNPPP4k/vrv/wJT42PY9u7PocpNwEDNs0xbVsFQBKgIYlBUdU/GImVZVFQtomgqF2zguLMpKd5sgvEBK9Te9vJCOqAOdcMmhW2yiWE5ZHJ5lOfNzKhGvYZsvoCouDxFlhwl4CCwzwXCKnQVKdx/niN0tKz8vd//1P/D2o2bA8vUEyoWSxkOWyezOLDYgq4bIPsQojbp1hJ7sySvuvHVWLvxDEiqAoDHmmIKJAEoVoFcGDUL+4Y1iWAi34dYzJiv163tz+aLePO73ovLrrnRfN1WLhOEmbHYCc9YnMzzIADUur0xTkyvxcLsCei6DqlrEosyAI7pbaeZOaYHCOkMT2OpJUNIZ1BNoPiNQmbA64pN5CYhFp9daKGraHjxGaWA6nKIU4thLXKaQJEAtypNU7y5impMM6N6GBh3TfBgM0CrR6gYJGPmNg6iWFw6CMj9J8EEkDGPD926OZGWasBPLIJyZyz2iMUsZ36uq/SOrbnFJTyx7zAKOUsFSXOA5KrVUiNAfsb5UyGjSRaWpmKtUHmOwXE5iw19egcca2VAEnxo9uVvfuzvIPAc7v/qp7F910dxn38BXTWJxYBi0Xu/HclnUBYlaAYJhh1MsRhGGoFNod5qI2/NvM+mBRyfK8MhpWnOS3b6QBIEpsdGHGJxqd4CxzLh6kgLkqwA5PIbZzbRFadYBIB/+rP3OapKGxOjBTyyZ/+yvz8pXvriC3HRuWfg0SefDX1/YnR5xCLLMvjYe96GN9wYVGiBTJ6xCADrpsaxUKmhK0rodPsoFmPsx3KZlJPTedqjfgx4+J/NyRjpErD5Jc/1iJ7XGNYiPxvol5s2CJajWGRIxiEWJVXykAx+2GPUyd792U8sRn0eMMk7N7HYaXXw1ONP4Wz06qyVKBZJikRloRJpZ5sbyZmEW5AfsgZg/WttppuwFU+I+M+/+U/Iioxr/vwaLGQXAF8511exGJKx2Kq3IHbFvsSiG6rrOb2fwrHVbCGdM2uRVCaFbqcLHuG1QpbJwoABrsgBpgEQSpMlJ2PRtpul+P6/hyIrK/q9CIKAkBZiMxYB4Hf/9HcdhaONYqmIqs8toySUVp1YPOdF5+DCKy/E4z95PJRYdCsWdUPH8dZxXD1zNXJsDiRBggQZSiwSBIF3vO8d2H7Fdu/rCgGKoNBt9RSLYymz91KX6qFjnJiZgCzJqJar5jElcIHriq1YlHQJJ9sncax5DJsKvUlb6czKFYuiZloqt9X49aTpNKpSddUVi7qhY3d5N84ZOQel1NAGdYghThcMXJm+5z3vwac+9Smo6uqFZ7/3ve/FkSNHIEkSHnzwQVx2WW/2wt13341/+Zd/6fvZf/mXf8F3vvOdVRvLqcDXHjqKDb///UTN6lMFW+lj2xWKinmTOFkLPhB1ZC2SNMtyNB44tAT0sQaxLTQ7fexSSdX8zoWG5PkMSyc/HP1ETJqmBso4M1TTClV0kV2P77gXFE3jvAsvTbaOmPcZlsfSYo8Y0bXg/hDS2WhiEaSpxLO2zW1p2njwFkyu3YAHHngAuSlTveAv1tuSCpYi4X8Glbo+xWK+iGa9BlkUQVnknk0MF1LBBxE3MUlzJrGYClMsWuBSqRjFovlZgu41fUbHJlxWqFVk89FNKlVVwCzjYdtW5unWA5fUp0nAEKYKtyNruPDyq1CaCM6ErFaSqwSuO2sMhyudgIrYDVtB13ZZ0FEUhTe/673O3yxNYrogQGFNBYWtWGx0FRAEUMqEN2cncpaK2VEmEvi1mz+KmfUbzdddWauKLEFT1VDFIkdTGEmzaHS9ikVFllBfqkCWRJdi0fX7UCxYigyct1mOgaTp4FNpDzm9HOQGVELbmYz29TEKu4/XkeYoXHnGaOyyQ6w+hrXIaQA/gaf7MhZjFYs+cBmgu+QoDnWSNrMJfcSi7TogUCHnef0E0InPAOoH0moU+K1QDde9DXxv8lLGukS1XLeBOx/YBQC47tJt5gs0ZxKkdtVR3GhuqwUlhsTiGAqLS/VeZmMIxos57G/0J/I4loGqan0dG0rFPB78xl/jgq1B5RqAHrHoUSyS6Pjut6OFHO4/2MWOxTSEEBLID48Vqm95RScAirEUi2bDJpPiTcJOsWqgPqpImu79ftPjox7F4kg+G2nHLSs2ibo8kCSJTEpIRGZdddG52LjGm702OVZMpFBNjPrxoGIWZs3wkXe/pe/HJseWRywCwMfeexO2nbUx+AZpKxZTidazftqsh47NLqIrSaGEcJxiMZsWfjasUHUdePAfgFQRmNgG7Po60D21lrqnA4a1yOmPJOoeAPjMI5/Btq9sQ0MOTtoOs+yMg1uhGGuFauUwK6neWAMZiwkUi26CbdeDu6D56oaVEouKpKBV798PyI/kI5V8dudSD+lTLd21BIZj8Iuf/0UUthRCP26Tfe7tIAkyoNTMF/PQdR1Li0tgeRa6ofcnWAxAcT3L8wIP3dAddaSNTquDlOWeIKQEdCLuKxnGrPH40d79qTTRIxYb1Yb5PWT/59WVWqECFgGaYJLT2dvPxrrN6zyvjYyNoFapQdM0x054PDWe2IpzEPzS7/xS3/dGXO4HC50FSJqErSNbwVAMKJJCnsv3Jdre+ltvxdnbfQ5VinnMdNod0IxZE3MUhxF+BHW5P7EIAAsnFyCJEnieD1xXhLRgHjfWMfr4wuOe91OZVOQxkwRxWa2e72NSUDV1xTbOfhxpHEFTbuKyqcuQY4dRMkMMcbpgYJnFww8/jDvuuAO33XYbtm3bhnTaOzvllltuWbXBnS741x1HAAAPH17C1WeOxSx9alFpywGbU79iyiQW+9Nm0wUBe+caWD8S/mBvq8/6qSkpi1hcbHkbShmWwpK6vFkxAkd6MhhjoUqgfFaoj+24D2effxH4VBqiGFVEJbNJYzge3U4b3Xb/5mi+OIpapT+xqBOExwpV0zTMHjePp9JrPoDfuryI0dHRUBtYAOhIGhgquG/Ebgd2WSerOrL5AjrtFtrtJpgZswFnk5lhDTT3fqOsbEKB8Y6h41JocnwK1dljfbfTJpUJlyJudGIK5XnbCnUJuRhi0cxYNMe6e8dd+L2/fw8o0rSBJex/CRLl+V4Gl6LpznGq6AAvCJEZi4BJ1vZDfakcORPTjZeeM4Ev3HMQe2cbuGJz+IwtWwnXlb3nxQ2v+Xl8/ZmvgbCI1I2lNB49ZhZndsZivasgzdLg6fDL/GiGA0USjs1qYFtcWasdixQOy1gEgKkCj4aoQtV10CSJiWkz/2v+5DGIYheMYDbS3ceITjJg6KB9bZanIas6RlMZtFstLD+iPGizGgebHI+6/tnYeayGrZNZjGdXd+blEMkwrEVOA8htU31nQ1O9tqXqgEoQLg+IdcAwyQODYExCxP9QbJFjE3xIs1BXgLknBvteFwjdJhZ9VqhUuBWqrVh0OUnj9h07sW3LBkyMFkxLS9pnhZpbAzAZqIZ5PVWoOMUiDcMwsFCp9RUBjBVz2LMIoM9tlrWaJyBpQDMzmA4dm3Xe/7uPvhtT4yMw9D41nK4AZApe2wES7Y5fsZjFjuMaPvpwEUIM4QP4rFB9ikVJp8CQFBqtLnLpnhVqq9PtkdZ9Gq0pnnPIpJmJUZxwZSxG5SsC3ozFex5/Bh/4/IdBUjQIwmxGEQQRa0+bTfssWwfAxGgR9WYborRylQ0A4EcfA864Adj+tsBbr7/hcpxzxjqwTLBRODFaWJ3vd0EDCVlRk1uhzpjE4pGTC8tXLKZ/RjIWn70NqDwLXPcHwLlvAP7hGlO9ePUHIlW9P+sY1iIvbCTJT7RJuzj8+OSPAQC7F3fjqpmrPO91tXhyxg8/sciREUp5a4yEy1Z9UMUiSZCQXPfkx+5/zCFEnHVGZBLHwVbaRtmhOorFPrBz6dyE58kjJwEGmHzLJK5RroEwLaBaDb+/2mSO29KVIIiAFWrWus+X58rgeC6SXCbgVXqyPBtQKwJmxmI6Y8XHxCgBbZtOptj7zUqTJRx46gAAoFFrIFfMBew03VDknhXqwacO4v0fez9oigYI87cw+yKEY6saBltZuRwUx4rQdd3JgwSAidRExCeWjwuvvBBnX3i2Q/R5xuFSLB5tHAUAbB/f3nufL6KrdKEbejIiVjHPg06r4ygWAdMOtSk3oela4DyZWGNu9/zxedMKVeACVrlCSvAoavdV90HWZIcItIlFvV+dnQCiJoKj4iftAUCaSUPW5VVXLO5e3A2BFnDVmqsiJ+kNMcQQLywMTCwWCgX8/M///KkYy2mPOOvMnwaqbQWSb/ZZR9E8DfiOrEKNGOtMUcCde5sot8MLbdu2s92HWCS1oGIRMEmUpU6yWYF++EmtONhWqF2LINM1DTsfuh9vfPuv4+jBcFsnG1SnAjWf6kvm2WBY88a9FJG7lxsZRTVWsWgSi7oi4T8+9UEce+oR/NrHvwCSS4G2mjmstc/9uZYdRUOWoz1KR8DMvXOIRU3HRMFs7lYW5jF9Hg+aJBAVV9jtdsByPGRJBMnxIAiA9VmhtptuxaJphdpvlQxlJjm5h18an8SxQ+Zv0ahXkSsUnWLq0P6nAbzBsw5zP1mZC6qKs8/eBpIgzILIMKDrOgzDwNTaddh01rkAgKrLjldWdaTSWUiSGCrl7hGL/WduKbKEdjM4UzUM29cWkeFo7J1r9icWLQVdV/E+oNAMg01bt4GzjvszxjJ4wHoIKVpWqPWuggxH9VUCUySBUoZFow+xWHPtG5sc7/dAOZ0XsH+hBUU1QLOmYhEAFmZPQOp2wYyb7WzOZVesExRYigwcm1megaSYGYvdzgqJRZ4eKC7NJnLlmAkOcw0RC00JP7d9GgVh9WdeDhGPYS1yGiBMseh+gJUHbObzOaB6BDBMFbFhkWAIafAAwDivAooIMD4C68Sjg32vCz3Foq+8disWXc29LGte/5pW6WPAwO07duIXXvZidESrRqJ5S7FoIT0GkCSebuXw4mIZapwVqnVvnl1c6kssjo/kcHCxjeOT4dc+jjXHbJA0FM3Au//6B/j2jv+L//2nT3je7wtNhSk1cF3vSbK3jRZs0u7EYg3nnbkecWh3JcemNcV7f0fJoJAhKNSbbccuNJsW0OqIgG171SebMi3wHmLxyWfNCV2VWsOTr9jxOQ7QNGVlLJr7XFY0XHTOZhgEBd3QYRiwahFg09pJ/Mobbgz9/lxm+WSWnW04v1qqRU3yWAy7QZIk/vvvPxaa934qiEXFyg9LSizOjI+CIAgcnV1ER1yeYjGXSaHZ7iYiIF6waJeBXV8D1l1hEsiFdcD1HwF+9EfA4fuBjVc/1yN83mJYi7wwYTfX/c39MNj5hUkR1ojvKssgFl21ggEDLN1faWTbKhKGNzvQjTjFoj9r8NH7H8WLrnoRjqE3MdhtITooSKtvUrEm6oQhP5pMsahpGgzNwF1/dxc+/z+fxye//kmQNAmWZsFSbF+VVZhiEUAwY7Fo3ufLc2WMT4/HHiey5drDcix4IahGAyxi0bILTaWjlYBZxiIWCy5icaKEh6zM4Hq1jlwx54xr/mh4dAhp537LKjaftxk0YU40MwwDhm7+O7VuCle/4mrwQvBemMqkILaXZ/dsKwXdRPJE+tQQiwRB4ONf+Hiooq/ock840jiCAlfAdLpXDRf5IlpyC6quxqv5ngIolgKhEZAlGRRDQbd8eWcyM3hm6RnIugzBV5dn81nwKR7zJ+chdkXwAh9qhWpPELhg/AI8Ov8ojtSP4MyRMwHAUbv6j9VBIKrJicUMk4GsrS6xaBgGdi7uxFnFs04ZyTzEEEM8Nxi4Ovjyl798KsYxxE8Jta4csPnryKqHWOwqGpSQJoGNmYJ5s9x5tBb6vm1t2JXDm3mkpoAiCSy2vIV6lmcALG9WFE8PNoPOUGUQLivUZ59+Aq1GHRdefk0ssUgktDNhOLNAq5YXAFBoP/Qt4De9eSX5YinSChUAQNJQm0uY/9ofYG7pGD7yf/4fFCEFJ2AAvX3uJ1E6soqRFBOYbCx2O7Dn3EuWYhEAKgtzWMvwFtHXn1kUux3wQgqyJIKieTAUGchx7LSbsMszhs+g22mjn3kVQRDgGcqTy1kan8LjD9wPAGjUqli36UxHTfj4jnuB3/tDzzoUpZdFmckX8d73fBocE31c1Cwim7D2g5DOQJbE0MQDm1jsKNF2R0ntUCmSwBWbR/HkyTokRQsdK0maqrtuiDUnJwiOheyZExkoTBqgaBQtK9R6V0GGZyIthidyPFqiOZGA9hHl1U5yxeLakRQeOVKFrOkQQCGbL4IXUpifPQ5J7CLDmw9SvOs7FJj2x35iMcfTkFQN3CpYoWY4uq8iMwy29aysRZ/ju4/XQJEEbjxnom8+5hCnFsNa5DSA4msA6KrXttT/fhwI0swiNMwmgu4QixHns9LxEoupEjC7a7DvdYG0FYsE7ZkpY7gf5F0z5W3FYl0yF95/+CSOzS7ixisvxPfufMBciOYBTcGxJonJtA4IBXP7okKHXWCt+0SUQm58JIf9x8vYOadhOhu8Z9jEYbkDvOnfOthx4il86ZM3YyQfrd5zoCsm2eazQm37GiT2+k7MV3DJeWfGrrbdFZEWeEiyEqJYJAGCRKPdwdmZtQBMdVqz3emR1nR4gyXtIptmJtxWqF7FYsOnuGQZGqLUUyzm0gL+4QO/CbDJrDttmIrF5dXDE6UCAGA+qjk7KDTRPI9CJhdtWhu0hQdWZoXaD5LlJpCUWGRZBtPjIy7FYrC6S5KxaBiGRx17WsEwgIf/ycyBveoDQN48V3DFe4EnbwF2fhWYOt9j4TxED8Na5IUJgbbyzBKoEZMqFqPQVbuJG/o2/ERgEitUN7FIEzRU9J6B4kgTkiAdddrS4hIOPXMIN733Jg+xuGqKxT4OiLmRHE7sP4EMMqHv29afYkvEkc8dQXtPG7/3id/D6OQoUDOX4Sk+VDEIhCsWAQQyFnOFHrG4ZtOaRIpFkiTBcAxYng3N5ey0OhgZN8k2IS0EvtMNmqSRolOQcr1jrzRZwtLiEjRVQ6PaQK6Qc373haPhk9jt44HlWbz3z96LDBu+X/shlTYVi+Tg6VkYKZnb6s5ZtC1eTwXGpsJd4dxWqIcbhzGdmXYUoQBQ4ktY7CwmIhapAxRGJkegWK5ONE1Dhvlbz2Rm8PDcw1A0xbm+2CAIAhMzE6ZiUTQVi361qZDqEYtXTl2JJxafwOOLjzvEok1Kd5rLd1CQNCmx/WiGyUDSJIc4XQ3MtedQ7pbx+s2vR4ErrNp6hxhiiOceie8Suq7jU5/6FF784hfjkksuwe///u+j213eQ+8Qzx0UzQhkPVbb3hubqOgQXWrDrk95mONp5Hgax6rhv79NcvVTLAIGMhyNSsv7vVl+GbPgrFk0AjsgsahIoAgColVA739qN4RUGlu3XTj4GPqA4cwHiEp5Hkc+9Rpoz9wTWCZXHEVtqYzJt38Wa9//rXAbTZLCg5/7LWjNMn79L/8VL77hlYFF+pFHXTlohWoYhsfKVFY15ApmA0gSuyAYDjRFRjofmcSiWTQRDAeaJAIEkZsUYlJZdDv9LWEBgHepTmmWw+j4BJbK86aNRs1SLBoGRl/5u5hvBI89VZYHytkEeorF0QwLRdORSmf6Ziyy9sNMTP5elELVj5eeM4GTNREn6/0fLvICg66sRVqsbhrLAAQJpjDlUSzmeDqSWJzKC2hKaqj1Z81lhdrtmMRiWMYiAKwtCqh3FefaQhAExqdmsDB7AqLYcexyWes3pmgasgZwIcRiVmAgqTr4VAa6rkNfRi4JYJLF/tzPONgKSilGsbjzWA0bR1NY28cOeohTh2EtchpB8ikWDd2rzPMTi2Iten1sGpDbIK2HYINkTLJSagF/uT5cAenPcRzZAFQPJRp+GEirKRCwQvUoFl3EotXDqIvmNfixp54FTVO45uLzestbGYv/c4g0lxvQOoilKRAEgdkI+7HxkRwWlur4h0cV/NtuBf5gZtsK9cV/P4+nFnXc+ZdvwU2vvT75IOyMRY9ikQqQNbYasCtKiTMWbRLQb3MpaRRAUlbGonmtthWLhv27M17bQhtbN5p23iOFLKbHR9FoddBqdwOKRb+7B8cypiJxhblGuUwKYqcN42M5jFL986jCYCsFVy9nkQBUqa/yt/84TgWxaP4bRwa6sW5qHEdPmopFP/kMAJkYktI+dk5bO9QjPwZmdwIXvh1Yf0Xv+kKSwBu+aF6HHxmSZ34Ma5EXNgYhFpNmLEZBHNTaHUEiMYr06KrmsecmFv0koJ9M84MkSIfs2r9nPwDTYtKNlWQsEiSBVCaFpYX+tUicYtFWjn/7w99GZ38Hb/z0G/G6t7/OswxHcX0zLfsqFjsiRl8xiq1/txW6oTuKRUmUwHHxVqhyVwaf4kGAiFYsuqxQ41Dki0iNmfef4lgRpYmSmftYXjKJxWIulMD0j20lSGfT6ITYsgvbBYhM9DFtKwXdisXnwvrStkLVdA0n2yexPrveQ7CWUiV0lE4gE7MfCIJw9onbenVtdi0aUgOiFr5fJmYmzIzFrgSO5yIVi0W+iCumr8C+6j7nNVux2G4NmD/vgqRJyRWLbMa0Ql2B9aofuxZ3gSVZXL/m+hXnfw4xxBDPLyQ+o//8z/8cf/iHf4hMJoOZmRl87nOfw3ve855TObYXLJbaMvbP91faGIaBWx47/lMckRcVn1Lw2YXgDare7d3sDMBDRhIEgTMn+s9St1VjfkLSjQxHo+GzkMotg1gkLGsRPzkRB8cK1UV2XXDJlY616GqAohgwLIelRZNoCqulcsUR1CoVcNNbQLI8yq1ggUiQFISRSUy+47OYOuOc0O+yrVD96MgaGIrwEIuaqkB3KbL+f/b+O06yvC4Xx5+TT+Wqrs493ZNndmZnd2fzLrvLsoAISDIhKqioKCpeA9crJpSfqFe56vUncFEuF5WkIJJVJMdlYdmd2TRhJ/dMz0znyief7x+fk3NV92yiHl68ZrvqpDrxc97P+3keWTNRLFfd9bF8KPcuCKnXhZDLO9NzDO1Tbpmm6bNCpSzFYhK85DDDsBidmIKuaVhfWSbEYmUEHcVA8doXQImw0tBU1clYzIr1rgqepVEvClAcxWL0S6atWAwS86FlZlQsAsA9e4m68OEL67HTVHIcJFWHnkgskhcVdmQG1RFiq9qSNJRFLtGyd7oqoiWpUCKsj5teYtFRLEZfo1tqeeiG6bOWnZjegsWF85B7PTCClcNpWaFyQg6SqoNnmXDGosBC1gzwOTLo17XBiEWOpfsmmimKQo5jEm2ru4qGE4ttXLulinqhv+7jITaO4VjkGYQgqQcAXrswpc8iLV8AYKLMkPuQYVt2Hf0kISX/6/fC87Qu+f8e2QU0zqPPR4kDO2NRpwJjiRjFYtGyQl3rufec2w9e5Sc7WMGyiR1wmyhgbKSSQixWsLiyjk8f1/C/v6UAvH+MJ1hjo7Eig/t+voA7rt7S30YYGtmQgGIxaIU64lED5oQUSyqQjEWbUAwpFk0asKxQK1Yxr5gXSZOOfe7FKAn3WsRiMZ/DzDixUb1weSU1Y9FWdhoDdPd7USrksLtMilO3i8kuGkGMjVRA0zQuL69vaBt80HrJyt8ITI5uPrEoqf0pFgFg6/R4bMYiyzJufmgMHGJxwMzLpzTkJvDdfwAmrwVu/jlACKhJxnYDz/4fwPy3gHP3Pimb+FTFcCzy9IZNumUhFuPUb/3AJv4iETPeCBKJSYpFxVDA07yPSKIDDUI0RSeSizRF++w5d+zbgZGxEeRaOWc7N6JYBIh6LM0KtbHagNaI3ueG9S7O5Tjs/IOd2Hpj2DKdZ/hYkshRLAYsXSVJwtSrpsCWWFxoX4AgCuAEsr+jSKAg7Ny8pOm9VqhZiMURcQRsmWxntV7F6CR5v1++tJwpYxHwE82DIE5ZWX1FFecK5xLnFUQBhVIBa5vW5IRYi9sk2IrFi52L0AwN++r7fNfBWG4MbbXd13VuW64yHse0meIMDBhY6UWf3xMzE7h8gVihCrkwWZ0r5JzjWeSLeNnOl+Fy9zJOrZ8C4FEsbqDJSdZliGx6fjlAMhZlXd6U+5+NQ0uHsLO6EzPlmU1b5hBDDPHUQOY333/6p3/CO9/5Tnz2s5/Fxz/+cXzqU5/CBz7wgU3tYnim4Ka3fg7f99df9WWUefGer5/Gb3748JNGLp4PKA1PLoZJ0NWO/2F3YtHtmOYYCldPkU6uKJLFLuYnETBlkUWz539QVZ7ArDJTk0HTlE+5d/3tz97clVBAfWw8OWMxYIVqk0emaaLz2JdhaipoXsTNv/S/wJaic/gAovwKwjRNolgMfCcHOmolVUOh5Foc2URhomKxSxSLFCcADA+OoXxWqKoiQ9NUUFYllOYL0LXkgYkYsAKtj08CAJYuXUC7uY5ytYZuAlmtm2bIjjUNqx0FJYFFkWcdYjEOtgIuSbHI8QJWl7MTi2MlAXsmiji51InMKAKAat4iFiNUhc5yigIYQ0Vhahc4nryINiUVlTznEP1R2FLNYb2nQg2Qd4Zp+ixEe11yncRZoc7UyAuSlxgfn9qCxYsXiF2urVi0iEVeECBrBgSWDlmJFq0GA9qyT9VTbEnjEKWGzII8zyRmLD5yoQnDBJ67bzxRDTrElcFwLPIMQhSx6FUVan2+PFsdyFWWFApNu3AgJzS1rARIm/pOQFewpz7YtU3rCkDR0KmgYtHzIh+0QqU5tD332+ffHnBOYATA0NBnn4QPU2MjyVaotbJfkRV4lurW9fX5X9qG7bUBNkTXiD2ot8nJpCDJ/nGywHOOAjGzYjEXPb2s0wBN+xSLNmFL2cXktDwdwMlnXFhcCSkWg7BJKmODXfnlYh7dXnLBMA4Mw2C0Vsal5XgiuW+oUl+KRZZlUKtsvuVZT+ufWJybHsO5i4voyUqIWCzmc6kKime0YvGB9xHC+M7fBGrbo6e56zeBiQPAg+8HpI3Z0z+TMByLPDOQhVhMI5WyIJFYjHnUBYlEkYknBGRNDhGRbETiURI5GcxYvPHOGwEAOx/diaU3L2G6ML0hxSIAjIyP+BRsQVRGKjBNE8f/x3Ece+MxjOfHne+a321CsVy2fuAPfwDCdPSOS7JCdRSLdFixaEM1VFAUhUqV1EZ4kc9khZqznJx4wZ3e1Nx392672xexWBfr0Fj3d9jE4srlFTTXmqjUKr5zM8rZaKPEYqFUcOxxg9BpPTV/rzZaSzzegyBOjRq7DZZy8mzzLChQODh20Pf9aG4Uki71pSq29wnLutfYdJHkNq5I0cTi+Mw4Ll8gVqiiGM5Y9BLSOTaHZ295NkRGxKGlQwBcxeJGrVD7IRYN09gUxTYArPZWcaF9AQfHDqImbH7j2RBDDPHkInN14Ny5c3jxi1/s/P385z8fFEVhYWHhimzY0xk2P3B2JfrGv2oNii5YBF+jq2Lbmz6DLx2NDl7ebMyv+bfrdMR2rnsKGjmOwWMLTedvmqJw1RTp2I6yO6UpQj4mEos5Dq2AYpFkLBLIA6qUsmD1C/8X6qnvAICPWLzh9rs2fV0jYxNYXYo/rpVaHarif6nRVBXSye9g+VP/C90T94FiuFB2YhBRxKKkGjABCAEySJb8A0RZNQCaQb5odeEzyWSUvQyhUMaWX3kfFlG2FIvu9x3LBpWlLGJRSLeMzAeIxdEJkttz9uRxmKaJUrWGjofUC768UwwHqs9OtrWugnKOQynHQtENiHnXFi14XACgLHK+HMggqvWxzBmLNp6zdxynlzshBa+NWp5HT9WhJeSeUhSFvNFGbmI7dIPYHau6idGikFg0m6rmoOkmGoF1d2TNp5C0FYtxnarTVu5qw5PLOD69BZcXzkOSeqCs3E6b+OUFEbJKiMWgYtHOe6UEciwMfbBOOZ6h+1awAkQ5q+kmjJiL7vD5dYyXBByYHuYNPRkYjkWeQYgiFr3FN3UQxSJQZSxi0VYNJmU1rpz0/z1CiusTxQGJRUOx1In+e08sscgD4ER0ZPfe+fzbD/oXatmo5tgBJYsApsZquLiUQCyOhMkyXdex2iDP8i9/+yEAgEn17ywBwGOF6kKKaeCwcxajbCuD6EoyCnmyf0JWqAYNWTWgqBoqJcsKNWihmUF9MW0pFs8uLKLZ7oYUi11PIdZWdhrYWPG1VMg5RUIlxSUhCpOjtc1VLKrdzMQiRVGYqFdDapnNQE+xicXsNuRbp8cxf2kZ7W4P+VyQWEwvsJULz1BiceEQcOZrwDU/DOy8J2R/7IBmgB96NyA1gQf+8QndxKcyhmORZwaSSEObRNsMYrGbMA6h8lQkQRMkCpMIAVm3iEXP0CPqnS2Y2+gFDdpHsNnEIkBsVHmGT7VTTUN9vI6Vy/GKxXKdjEUM2YC6oqLAFWCaJi4fuoxzf3sOi18lzdpJhJbACqkZi16C1DRNyL3wO3/JetYLYrQVqr0OyqSgSMQKFYDfCtWzGZ22q1jMZ3iGjeZGfcRiZaQClmOxdGmJKBarfivUtagx3uDDRgCEAFWt8WnQQchgjVQF4cjYSPR2bQBZVYsURSFXyCFnjfvONs+inqtjLO/PYhwRiaKxKTdDywjCuMlAa2sLvbZFLHocD6YKpG7VkBuR807MTKC51kRjpeEoFm2FMSdwoCjKaXQosAWIrIi7ttxF7FA12bHR3agVajD/MQ55lpyjg9g4R+Gh5YfAUAyeO/fcDSufhxhiiKceMr/1aZoGMRB6z3EcVHVzuhi+l3HcUgx+6NvzKVO6ZORGEFQsnl/rhnJiVj3KI4oCHrvof9iOFZM7yXmGTlR2VXIc2rJ/0OfNWLySSqDOw58D3SWDWq8959adewEAX/6Pj+PQfV/flHXVRscdK9QolEfq/m1rNvA7v/jjUBZPo/7iX0fhqjsBhoWuJV9nUfurq5D9G1IsSv6XG5u0snMWTYYjisUEX36p14VYHgEt5NEDF7JbtYlFOzaR5tMHMWIgD686MgqaYXD68SMAgHKliq7inlMri34LO4phQaV0zgWx1lFRzXEoi26un62gW1sMFwfKORaypkOPUxeOjPZNLH7f/gl0FR3HLkV3go8UCLEYt04b1+2YxvjeGyBrOhqWjelYKfk6naqQe/pK239+efMVAaDbaUMQc6BiFICVHIcCz6Ah+a1QW401tBrroK3cTvsc4QQBkqZD4BjfeQO4ikVw5JxJU7rGYVDFYoEnJHOUglQ3TDx8oYGrp8sYTdm3Q1wZDMcizyCoUcSiFP3fWcCRl+AqR17MDbsAlkQsBvMU+SKQr0dPmwGUoThEoP8L8nw7us76CDaGpgBGQNvjcHHzNXsAAO/56H/hu4+e8BCLA28WJkdruJiQaxQkFtudHn7wDW9Fy7JF+7EXEUcHddDud0MLkXgdKfp5bRN3Ip/NCrWQE8EwtC93zwQg6TQabXIOBRWLDjKoLwp5EZVSAY88fhaA364VAE6fd5vHeNsKdYMqgXIhD8ZqjLm42r9KbKJexeWEnKq+oWQnFl/7Q9+Hd/3RGzZv3R50rDFgX4rFqTGoqoazC4uRisU02OdO44kgFtO6CDcLqgR8593AyE7gtl8BctXk6Sf2A3f8GsljPH//E7KJT3UMxyJPbSi6glONU5mmiyOpbHVfmt1kFvT0+PoNxVKRxFWQBExSLCqGAo7mfO/uUSQgx8QrFimK8lmhXnvLtQCAL3/my7hw5gKAjWUsAoRoSstY9EKWZLz1V9+KxYcWMfEjExh9IVHtJcVk8HS8FapmaGAoxtf4oilapNLYzlnkBR6qHj4+yzJxnGLAQOpJEPMiaIYmlpY24WfNpsgKVFl1VGdZFItj+TFojPs7aJpGfbyOi+cuQupKKFVLvvNm4VxEU8MGHymFYgGa1eDbbfqfgSZrpiq0a6O1TbVCBbJbEz/35c/Fb//lbzt/n22exUxxBqWA1X89R8b8TSWdWDTnTPSqPTRbZFqvFarIiqgK1djlTEyTGJ/zZ85DzBHFon2NctbY0T5v8tb7zEt3vhTLvWUcXzvuZiy2BiMWVUOFYRoosNHZ4kHY25B07+oHhxYPYWt5K7ZVtm3K8oYYYoinFjKXKUzTxM/8zM9AENyXMkmS8PrXvx6FgnuD+rd/+7fN3cIhfPip934bH3rdbRtaxsWGv1i32JJDKqzVgI3rIxf83Tdp1kECx6CjxA/EKzkOHdm/Tq9iMUhqpSnoBoVXsZj2mwpC/4PpkdFxPPrgd2K/r9Rce1ND7uKPXveD6DTWULj6HhSveT7ZLoaDfOkUkNsOqbUGIFz0FCI80mzb0GDGXlCxaJNWhSIZQJsUCzbNCrXXxdTWq7AEkiXEMbTPhrRrEYsCS6OrA+DTu8ILvP92xDAMRkbHceq4RSxWR3Cp6w5gF+bPYGxy2vl7EMXiek/BttE8qnkOikUs2oTS6sWwVbGtWNQNM5K0qtbHsLa8CIyFvorF9bNVFAUWRy+3cOuO8LGtF3h0lWTFIgDMTo7idNOEqpuO+nGqnLzfpyrkxSZo22wrD03LbqTXbSNXSB6ITlRENHoaDNMETVEYnyL++bqmASwPjqZg7zKOz5H9naBYNDmy7VHWLlkgcEzf1rgAsUKVNQO6aYYekKeW2ugqOm7fWXe2c4gnFsOxyDMIUYSfV6Wo9kks0gzAF1BlrfuXbfkVpYy00bxAbDq9qG4Fuv6O+n//5sOoUy3c+mIkgtZlYq+pBZ7JVuGyE1VzZgV0PE0ZnNUBrdmFM0u1kN+QYnEEX/72w7HfB4nFu179Wzh57iLJXlxtONmBi+sdVAXg1MIadsQ4J0bC0EIkXjdGiZemWGSUFsw/LOP+9il0ejKKeREff/sf4M4br3am+ZP7eOzZNY5pS31hq85CCrWMz4iZiToeOkZI6KAV6sn5i7h6N8l5shWLekJjVhaUCnnH/nxpvf8i0uRYDafPX8b2LeE86oFgqMkEvQe7t81g97bNzc8pcmRfdBQDAs8510gWbJ0mVnqapg+kWLRJTFXdvJyhWHzlz4HiBHDTa6/seh7+F6JAfN4fAWN7s83znN8Bjn6KqBbH9zkK8e9VDMcimwfTNPEvx/4Fz5l9DiYLk5uyzF/70q/h6xe+js/9yOcSl6kYCnRDBx3xHs3SLKA/AVaoAFRdhcD4709exSIFKqRg9ELWZPA0jx7c9UQSi31Yodrk16V5t5F3o8RifbyO1aVVlBCdVVwZ8ROLb/zxN+LEoycwd/ccyi8pQ4fubtMWYHl+GdjpX4bAxCsWbWLRW2dSYxyDytazPk6xuCSRRmLWZCF3ZYg5Eb//t7+PXft34Yxxxloh+cfOxXOsUDM0tYzmRqEyqk+FOjo5itNHyVikXPMrFhfOLuDATQd8y6CMDWYsFnMwrbGIHhizGUwGxeL4COZPzaOAzXteZFUsTsxMYGKGjIFUXcWl7iXcNHkTipzfpr0uktpLW22HlhGEKZigepRzPE3GBEuzTg1xsjCJptKEbughVd6ENR7TNR1CTnCaAVRDBWvVwGRdBgXKUSffOX0nClwBh5cO45qxayDmRN812g9kjTRd2oRhGgocOWaboVhsKS2capzCy3e+3CFyhxhiiGcWMsvCfvqnfxrj4+OoVCrO/1/96ldjenra99kQm4cohZJhmPjRd31z4GXmeQbLbRmap8NouSX7susYmsKax9LQNE0cjVFTxSHKmtOLco6DElBJehWLaYib1lbKKVK27hovsXglMDI6jtXleCvUcs19uNJCHs956Y/hbz/072ArbqYAxXAYX3sY5/76R4GVM5HLidrfHUuxGCIWAxmLPYu0EkQyyDVpBhyTpFck+43NuQMzYoUaRSySQRXNpau7clz4ZWV0fBKnjz0GACgFMhYvnj/rn5hhSVZMRhimiUZPxUiBRyXnKhZtKFI3RGpV8hzkBPVgpT6GtT4yFgGAZWjcumMEp5Y7kCMKrTWbWNSzqDHJMbDzS8fLyft9rCSAphCyYbUVj3aeTrfTQT5fDM7uw3Qlh5akQrXs7SamtrhfWipY+xzxZiwGCVqHsItS/fQBYrPav/K5IBDFYhSfefh8A3mewZ27+mCOh9hUDMcizyBEFdq8L7C63L+CRyijwpH7l6tYTBgPtBfDhMnoLgDwqakvLK1nWj2tKwDDo23ZatmKOVhFqZlCxH2c8ROLIVgFhg0rFhNybsZqfrLsZ3/oBfjmh/7SyS3kLcLM7gd79Gyf1v0RVqjB5jIbacQi3yHKidH1w07G4kvuuRXVsvuM+toChxV+Bs0O2f8Vq5jXj4WmFzPjdTx0/AwAhKxQT3mKrnbGom5uzHXDVsnZUJT+VFAT9Roub7JK4MnM1xvLkeumLWl9qRUBYOuMS67mAwqzLIpFjmMz5X1uGJoCXHqY5L7221TRD5YfB479J7D3xcBVL85kBwyAjLF/8N1AbxV48H1XbvueJhiORTYP8615/Ml9f4KXf/zl+NTJT23KMs+3SHPoifUTidMpuhJLVHTXydggSq3WL9KK85GKRQ+RKDBCog2pYighNSJDMY6NZa/VCy0zCIqiYvP0nGVu0MKwNlZDqxH/LBELIjjB/R0v/NEX4m8+8jeobCXXkgkToADNavRYvrAcWgbP8LEqVNVQwdCMr5k8ygYVSCcWL0tkHGRnLIp5ETc/+2bURmvuORNDLOaL6WOReq4OUABTdPf56MQoTh4lFv6VWsW3XRfPXQwtY8MZi0U/IdhuuuSbzuqpJN+VUCxmJRa9ON8+D8M0cHX96tA5PJIjVqjdLLnu1lCg2+mC5Viopgqe4R3CfaY4g5bSilQ5j06MOg0MIcWiYI+xZXA05zQAcAyH/fX9WJPXoOhKpvMmDpJO7kFFPlv+tU0sbkZjxSPLj8CEiefOPTexuWGIIYZ4+iJzmeK9733vldyOITywswkXW+GBzs88axs++O1zaPT665w1LS+EkshiraNA9ZAUHUX3rSvPM2h6rBAvN+WQbWkaUonFCGKwtAkKoFajAVSA1mo2csdrhbpRmBF+EyNjE2isxmcJlCrEfrT98OdRvOb5+IFX/yImAyozimGhKTJMpYels8cBPD+0HJ6LIBatoh3L+geVQdLVJq1EK3TcoBhihZrQyS/1uuBEd7DJBwgixwqVYwDoMJn0okyeD7+s1CemcPThBwEA5WoNHY+9xKX5c75pKYbLbNUFAC1Jg2ECkxXRskLVfRmLAHD+zEmMTLiqyGqOwzHNsIj58PZWR0ZxeGUJ/ZW9gO/bN4EvHlnExYaEbaP+bajmOeiGiW4f3fLNngqaAurFZCs5hqYwWhTQlPzLbvRU5DgGXWt/9jpt5ArJA9EttRxOLLah6AYEjkF9fBI0w8DQdctel/JYoYroaAZyPBM6z2wrVB00eCFbwHgUBI52rOT6QUFgoGpGJHl8aH4deydKmEghbIe4chiORZ5BiCqeK54Xe01xlH6ZkauiypHiipMHGGW5CuBSl8GkuBwmFkcIsbh7hO57/cQKlcdaqwuMAJfWrCKMdS+NVB2yPNrd6MIWQOzJKWQnFqNU3lPjI5AVFYh5Ogk8h5zAoyeTAsKvvuZloe8BwO59OXp2ES/NtjmEHO6DWLRJtZyQfp/t9CQUElRnDcsyyrFCzaBQi8LMRB2f+yYZiwQVi15i0d5P+gbtx4Lk2YNHTuLW667KPP9EvYpLm00syk8esWgPL1uS1jc5XC7mUSkV0Gh1QmR11vOhXMyjJ8Vfo5uC1ROAqQNKG9AVgBt8/BMLXQO+/XdAeRq489eAwmj6PF5MXwfc9svAve8AZm8Dpg9u/jY+TTAci2we7PdnkRXxu1//XXzl/FfwltvfgsIToIpNskLttXoQCsLmWKGmKRYzEIs0FV9bsQkJLziaQ7vVBvJAZ408C9MyFr1WqEEoktKXYjGqLlKfSFYrURSFfCHv5NS95CdeQr74iGcajoKuk/HD6kK4YSqo/PRCM7TQflRiGrvsjEVe5BMVi3Y2ZWnSbTpypreGObZ9pU0MiRmePbaSjq24g7/RyVEns7BcK0NdSLZCNVPcjtIQJLKOHDqCm599M4BsisXaaA3rK+vYgi2J0/WDQYj+c81zoCka145eG/qOozmUuBI6Me8KNgzTAKzLp9fpIV/Ik2xT2k8sPnD5Aai6GsoyZFgGY5NjuHzhMniRJ8QiFbZC5RjOd46W+TKWu8vQDA2FUgGrCU2CSbDzG4OKzTjYxKI930ZweOkwZooz2DOyZ8PLGmKIIZ6auHJBdkMMjMPz67HfFQUWb3qhW1ywc/TS8LXHSUcXBQrrXRWK5h9En7jsFgzyPIOWR8F0cindGiAIMUJ95kVZDHerCCnz9INgjmAckhSLWS0Yi+UqAKAZka1XHxuPXY5pGvjQ//kLAIBy6fHY5VMMB1Ulg95Txx+LnCaoSgTccyOXkrGoGSYk1XAUiwbFgGfoZMVitwtG8BCLMVaodlcYxaZ3J0USi2Ok01zM5cHzAjoexeLC/BnftP0Si7b953Qlh4LAQlYN8Dn/S+yjh/w2ttU8j56SkLE4gGIRAJ67jyhUD82HC4G1PBnFtqU+iEVJRUFgIbLpleiJsoi2rPlUzOtdxWf12eu0kU8hFudG8ljvKVCtiirDshgdJ/ZDJs36yGpeyEHRDeQj7MxsS1xZM5AvZhv8RkFkmZDNahYULcWiEbhul1oyLjUl3LC15hyTIYYYYgPQpDBx5yX5dLkvFToAQKw6JIRjhRqjWLzYY4kdYC9w3x0hHp83TNF9kymOFaqFnpyhAMIK6CSQFpJOnuG5FCtUO/tvqREe10yNjcTOZ5om3vrujzmkYhRswszmAh+fj8+ODsE+hp4ucc0w0YmxH7Nz8OIUi17YGYtxaHbIvnCJxX7bfgimx91iqK2otHFynhDZR17TwHvvImpKfaMZi4Fi3jcfPNLX/JNjNbQ6PXRjlBgDQXnyiEW7R6gp6X0rFgHXDnWQjEUAKA+wzr6xeJT821sHtCtEYh75BNBcAG77JWDimsGW8bw/BGrbge++F1A2J3tpiCEA4Plzz8eLt78YXzj3BfzgJ3/QUR1eSSiGEpvHZ/NiqrlxxWJacT5KFeQlFnmGTyYWNTkxY1G1VO9JGYsMxSTaLLYarUTVpI1ihby72SpJL+rj8cSiaZr4zD98Bo3VRuw0AEBztEMsriyEm7ft/RZFbKqGSjIWPSVQLaZZ36dYDJBZuqGjpbnPRLknI5dznxOKofj2VVCxSNN0KrloW0ayZXc5XmK2XCv7tmvhbJhY3KgVapBYfPT+R53/NhgDesoYfWRsBKZpRh6LQTGINefZ1lmM58ZjbThrYg09tRfbZABYNqU0BQoUeu0ecsUcZF32kf6zpVk0lIajDgzCtmYVRaJYdJSJlmJR0iRwNOc7d4pcEYpBGiA2oli0rVCDGZNxsC1TN9pYIWkSjq0ew4HRAxjN9dnMNMQQQzxtMCQWn4L49unkThRvFuGZlWyKu4fPk0FanmfQlFTIFrFokzle8rDAsz4C5+RSu281oRihoPMizfZ0owMQW5VXEciAipWjB6lJxKLUzUZOForkAb184Uzou9roeOgzADAUCUsf+1N8+v1/h1p9DLXnv973/V0veIn7B8tBVcnA8dTRaGJRsFSJ3uGQrQYIkryyFB7stGQVgmURRTITKSQxi1KvC0ZwB9AcQ/miijrtFjheAGVVeM0MLyKFiHNsdGIKAFErAiRfx0bQCpViWJjBrKwE2Ha/syN5FEUWJuCzdwWAxx683/d3Le9mLEahOjIGTVOhJuSLRmG8JOK62SqOXGr5CD6yTvKC1OpDNbzeJcQin6IcBoCpioi2pEHV3N+01lV912i324aYz0PVjchsSQCYqeUgqYbPVnXcskM1KIaoWq1ZGZEMVgsR9wGGppDjSM5hvpBt8BuFKJvVLCgILBTNQPAQHz6/DpoCnn/VuM/2d4ghhhgAFE0UicFmEG9Xv64QBU8/yNWc/zQpBgAVSyxe6jIATGDlpP8Lgdx3yP2jv2udNhSA4WAPr7tZiEWGRyeBAFq3nlX5lP4cmzQ5d3k99N3kaC30GQBImonXfEzCH7zzXzE7GX7h/7u3/Cqu2jHrWHwqVuPIqQt9NNDYnfsea2pVj983NqHoKBYNnVhERoBYocarE5pWMc+2QmVZBqLQf2PIjFXMKxVyYFn/mMqrWNxeIueztkFiMUie3XuoP2Jxol4FAFxeWfd/sXgE+PxbAG2AQnnGjMVNh646zQKNnjaQ6nRuitiXhzIWC9kVi1cci4+RHFJdBqRNVpsCQOMC8OjHgB33AAd+GGAHbJBiOOAH/w7oLAGHPrC52zjE9zxetP1FeMPBN+Bi5yI+dPRDV3x9hmnAMJKdCdRB7pcBpJEhrYjGDa8C0Wu3GIUoK1QvOWHn4yUpFgFA6iYTi1kUiyxD1ttaCf+mkZgmJ1MzsfCPC/iHP/sHTM1Ohb5/zkuf4/w3zdMwLOet1YXVUAN3kt2rTSx63XLUmLGITfxxPBdSLC713DEQbZJsSi9RqOqqo0YDgG7LTywCboZlHOIUizaK5WKqFaq5QfuEELH4gJ9YjFJyelEbs8aem8crxmYh3n/pfrzn4fdENiScbZzFTGkm1ga0JtbQ03qJRGnXMwbqdrrI5XNQdMVnUzxTnIFhGljtRddyx2dIXVDICZANV2VsZywqugKe9jcRlPgSZF3eMLFok50FNpsSPM+SdW3UCvrI6hFopobnbHlOopp4iCGGeHpjSCw+BfGt0/HWmUGcWspGLD66QIi1osDCMIHLTfJwEVgaBYHB6WX3YVkQGHQ8JMaJxTYmKv29yIuewsvjl8MDgJLIJZbr+o1VCkKxVHk2sUBZA3rb+tQmqqQEK9RWc72vdUYRiyNjE+EJAax94e8hnTmE3/3r/4e5HbtDdpDbd+9zt51moSqk6Hju1OORpJVN/C7IvDPA7lnWmUElqBxBprZlzen+00GBY+MVi6ZpQup1QfPugJhnmZAVasGjNjNAg01RLXoJUPvw24o3MUcGN17C+1KQWGQ5YvOUEetdBRQFjJcEFAUrC9KjwqyMTuKxgGKxkuchqXqI/LNRGyXFK1nuv4v7ZQencXq5g4U1/7xVq5rcjbGNi0Kjp6KUlVisimhKqi/zdL2nopxzj1ev00G+UCQ5lFy0EnBLjZwPSx5b5Ylpm1j0KxZttWshQqUKkHuQrBkOaT8IcjzjU9FmRVFgIUdYoR6eX8e2egFbR7MNyIcYYogE0BxRLAbvpYqnqKUp/SsW84FuZJb35zZ6cKlnFWtWT0Z+T+bv7yWYsjIWbcQpFu3nLQCA4dBOKOatdcgyslqhLq6HxzVxisXf/6KMf31MxYf+7A248cDu0Pfff9eNOPLvf+cqFq0GlOX1Ntab0cWdEJyihPs8UnTEKhZ161nkKBYXHwO+9CeEFAug05NTrFC74DnW2X5gMDtUm1gMKtkB4PT5S6HC9EYVi15icbxawDceOJLZRQNwieTLKwGCauEBYOkIsBrvkhGLpKzSKwlPMa/RVQfKydywYvFKE4uGTrIPJw+Qv9v9O18kwjSIBapYAe58I7FC3QhmbwZueR1w6ksY0Td5W4f4nsfO6k4ArsLmSiPNznGjih3apKHoSmLT9IoUobyj+1As6jJYmvXVE6JIwCTSjaGYRCvUVqPVV8airumh51a5VgbDhpex9JklrH1tDa9/6+tx7a1hu8rpWfeexeU56Bo5ZkpPweKC30HBIS8iHsOqroatUHvRx9cep3E8FzoHFtoedaAJyF3ZTywaKjke1kbYVqjezMJcyvMnz+XBGqyPWBybHHP+m6IoH7G3srgSVpz2mSYQ2gbP8zZXyuHIg0d849c0+9A4InkjaCvRY88jq0dwaOkQ/vw7f453P/RuLHbJeSFpEhZ7i9hW3ubYewZRz9XR1brx6mW4GYwUKGKFWswTItBzbc4UZwBEX8+AR7GYCygWrTGqpEuhJgKbWNRN3UdM9wtbNZ3VYpqlWfB0tA1wPzi0eAhjuTFcOxa+rocYYohnDobE4lMMmm7gwXPrmac/s9Lx5SXGwVZn2fllF9fdgcdYUcBCwx1IFngWXa9icbGD8VJ/xTXRQxj856OXcG7VP/BgaAq5GFIBALgMhEgSosgzgGTmAcDWncTjO0mx2G4mW3EEoaoKFNk/oKuNjPoG+bpGBizVZ78Gk6/+C9xy9/ehWo+2BXCIRZZzyERNUzF/OhxEL1gK0fOyiOU2mbYj66ApQAjYpCpyz8lTtNGRNWfbdZOyrFCjC2O6psA0TVCce07wLBWyQvWqzRTNSM3o81qhdlXyIlK3FIu2FWxX9ZBfqyvodjyDS5qD2cfgZ72roiiwyPOsY79JCe42jkxuwdmTx9Fuuh2XlRwHw4Tv+vDaEY+OkeJVlCo0DS+5dgomgO+e8xcCbWLRzl7NgkZPRVnMRizO1vJo9jSomrv8Zk9F1UssdjvIFYqQVD1WCThdJefUWtd9+RqbIgNsHTR4lnaUfjYpbe/3IGzVYC4/+AA6xzEDKQuLjmLRfRnuKTqOX27jmi2V1NzKJwp79pB72PTstid3Q4Z45sA0gT8eBy494v/8ShT3GDZakRhSLPZZFRGrgfUIsdu/IjMAzYYVixsAbSiENLWeh90YpfmZC55CWIpicbVNvkuzQvVireFXChTyoo+s0qz7/e/dJeBrry3gVS+8HeMj1djlsSzp8Nc83e8PHTsNmAb+4Nk86BjbJwCuKtVTkFR009k3X//g2/DeP/0N5zvbktUhFm1yefV0aNGdnhQii7xotrshUmgQYmrGsm+TlfAYQ1ZULCz6u9O1DRbzvNs8XS9jYXEF8xezEzgTFrF4aSlALK6dIf82LvS/UcqTpFhU3PeHRk8dyAp1bjpasZikdvVikHOmL6yfI0rFXVaGei97g2kmnPg8sHwcuPl1wJYbNmeZ3/fHQGUGB2jyTnLV9s3L0BpiiCcSacSiaqh9NXYEQYOGYiiJ61mVwgonrwIxqGIKQtZkcJQ7PQUqkgQMEote21GaohOtUNuNtk+Fl4VwCJJ+NE37yCabIKx/fx073rQDz/vR56FqKe7jwOU4H7l18jH/GC6LYtG7L+MyFu3PeZEPqbYW2guOnSqNsGLRSxoBxAqV5VjH8hIIqwGjIBoisUK1Tj+vYlEztRBZHVIt9tmbF4R3GwuVAjqtDs4+7jZ2d1OcDGp1MhbZTCvUjhZPZk4WJvGafa/BqcYp/Ml9f4JPnPgEzjXPAQCuHbs29hoay42ho3agJUTqeHNS7YxFRVcgsIJDBE4WSEN8I8YpbXzaVSyquupc47ZiUdZlcAznIxaLXNEhFtNUrkmwVdNZMxYBIMflNpSxqBkaHl15FPvr+6+4Der+/fvJvzfsv6LrGWKIIaIxJBavIDoZ8w+9eOxi00daBKEHBrbzqz20UrLX2p7Clm1veNEiEk3DwGRZxGLTfWgURRY9zzYstWWM9llMzwVUcn/4yUdDMsR+7VX7gW2FGsS5U6RLe3b7LhiGAamX0JnXp2IRAB5/zG/XxbAsKiOkIKUoMl73g/dgbXkJTKEGfnwHAKA64j5ovfvdIRYZDprqDnpPHnNtKGzYGYsqGHzlOBnEdxXNR+bYkHs9RwFoQ1INhwyzicU4yaKtnvQqOYLr6XZaKJTK7jy6ATGfPID2Es1dSxVRrlQBwCE5bWIxlyeDoovz7uCWYrm+rFBXuwrKIguBox3CHZz7UjAySYokRx95wPmsYpFt3mvqwjo5h8ZKAmp1UrxSBlAsjpdEXD9bxZGLLeie4m1RYMHQFLp9EItNiSgOhUxWqCTvsGGpR0zTRFNSUS14FYtt5PNEsRinBBwviWBoCo2e+/JlKxY165yyj7BNLMZZItvkXhoZnYQ40jINeYGFrOnQPQqUxy42oZsm7tk7BiGi0/bJwPQ06d4tFMspUw4xREY0zpPi9mfeeOXXRXOE8PMShzTrJxYNta/cXABArur/mxViFYumCSA/CjTm+1tHAogVKu8Qi1pM49eRk+c8M3Fod+OfGautHkAxyPdxS/vW4aOhz2wV22dPaNj/0l/C2QuXUctRuHmG3NPG65XY5VEUBZ5jfcq8h46dASet4P93j4jK6uH4jbGPoaegoxpAR1LAcyzuuOFq/MwPfZ/zXc/Km3SsUG10/WSLbphQVS01Y7ES6PAeRLFo51cG3SXsP0/N+4t52gZzjbxE1nSdrLsfO9R6tQSapsNWqOvWedcZQGWmdfsn+jcDnsLlamcwYtFVLPqPfXbF4hXOWFw6SmxQ97yINEP01jdv2Z1l4NAHgdlbgYM/AXCb9FtYAXjFu5w/x0bi7x9DDPFUhjdXTYnIGlZ1NTF7LQ0MGKJYTCAno6wTvYrFINkQhGIojgUpQN6boxqEg1aoXpKIpulUxaKXmFmT0y2bH/1uuGZhE4udYx287vteh3Mnz4ERGeR3k+deLca63QYr+scip46e8n2fSizSjG/fyDGNXbI1FhFEIZSBeb59HiM8+R0UKEhdCWIunljstDsolAq+MUSaYhEARJMQi4YlPSxV3abtKIvKILG4mVao+UoeNEP7jqmXbIsCL/IolAsbIuadZVnnbtI6GYrBz1/78/jkKz6JWyZvwTcWvoHH1x8HS7PYPxJPOI3lxohiMeGdw0ui9jokY1ExFIiM6BzXPJdHha+goUQTi5NbbCcuEYqhOL+Jc3LMZQi04GsKKPJFKLoCzdA2rFhkaTbx+ggiz+Y31FhxfO04ZF3GndN3OpmNVwp1q946t3Puiq5niCGGiMaQWLyC6Me60Ma3T6+SfLsYBO35VjqKQxLG4dilpvPfPENDYGmcvUwGg53mOiYrIlbaHmJRYNELkBjj5X6tUN1T67otFXzp6BLuO+/vMPJmRW42FCm6m+nsyeMAgHyxBDmBVASATquZ+H0UgtaZAFCrk4JGt93Gjj37kPdahBp+YnHZcxxs8oZiXMVirT6G08fDOYs2gcRBw388cgmmaaIj6xAsi1LvAFyWehBEdzBLUUBXdRWLmuEqIKOgyjax6A5MxADZ0mm1kPeQQopuQMwlD4a8ZLTL25F9UKpUYZomehaxWKqRfXbx/FmY1m+jaBamGt11GIXVjoKKRb4VbZKbd8/zYqWGSm0ERw991/nMJhY7nmv7vGVdOlYUkCsUIYg5aOpgthEvOziNMysdLKy75yZFUaiInI90ToJpmmjLGqp5HhyTfouftGyOVy27vZ6qQ9VNjBXdom6300GuUICsGrFKQIamMF4S0Oy5A9Dd+69FqVyFQTHEXtfaHFvtWkwiFnUDuQ1kLOaFwQjAosDAMOHLnDw0v47RIo/rZpNfdocY4hmFPho1+gbDAbqCleVl9zOaJfanNjSlf1/0ILGYoFgEABTGgNal+O/7BKXLRI2ZgiOn5p2ylskIyRmLzQ7A8sj1MWT65oNhEmpqbATv+LaCF3+wiz3bZjBS8d9fkxSLACDwnNNwUS/ncfiYW8wTtYTxkl388ikWiZozH0EKhhSLzhcrPmLLVtknW6F2QorFrGSSF3bRKLjPeJYca2/OIkCI043Au815kcPOuanIYxoHhmEwXq84GZMAALkJSFaxq7va/7WlSv1bE28GPIrF1fZgxOLBq3aiXMxjetxvy/aUsUJdPAJUtgClSaA8BUjrG8+EAMgy7n8PaeS4641AdZMLbtvuAOzMKml9c5c9xPcc0nIIrxS8SsJL8+HxgGqoDrGTBcEiPA2aLCOBnIyyTuxLsajLPtKQBh1qhAHCpNvZEy6xyFBMYsZiu9kGRVF9kQyP3P9I6LP6eB1rX1/Dmb84g7HpsZBCMU2xyOZYR+mYK+dw4jG/k5NAk3fMqN+vGpYVqucrVVIjp3WIRUGItEKtC3XftF6iUDEUX8Zlt9X12aAC6RmLAJAzcmArrJP958uG9ChGOZEDL/BYOOdatNIMDdPY2HNEzLukGc3Q2Llvp59Y1NMbqTfLDtU+d6UkhwwLY/kx3Dp1K2jQONc8h8n8JKpBRxMPRnOj6KrdEIHsRVCxmCvkoBoqcqz/OE4WJtFSWpF5jdv3bkehVMD49DhRLAasUG1rVW8TgW3fKmnSxjIWNSn1PhKETSwO2lhxeOkwKnwFN0/dPND8QwwxxNMHQ2LxKYZvnVrF3Eh/D43DKdapjy24BR+KolDNc2jI5AFhwsRUJQfJ49tUFPyKRZamMNUnsZjzqIWunq5gqiLiA4/47RLKWQODBoASQxraikUg2QYVAFqN9b7WKeTyeMxDQgGAqihorpMuREHM4Xff9i4fqafohs8K1U8oEbKG4UUoFrG4Y+/VOHksTCzalpd1qof7z6yh0VXRkTXwDAWaoiB7FJyy1PUpFgs8C0lxFYuaYYaIQv9vsgZ0nk48MaBQ7XZayHvy8bLYWuY954wU6LArV2uQNQP2+JjPFZDLF3Bx/oyjhqBYDoaWnVhc6yqo5nmIHOMQixTrOc8pCvsP3ozHHnKPqW0PaudXAi6xyNIUKIpCLcbaNgtecu00TAD3B+xQK3kOkqpH5jsFIWsGVN1EvZCtI226Sn6zbWG6btkmT3pyVXvdNnKFIhTd8B2nIKYqIlqSBs06UHsPHMS/3XsUukkseWn7hchSuxZiVMtFceOKxaIwWOOC/ftshahhmHj4QgP7p8p9K7eHGOJpjYgO+k0DwwG6DMNLXjKBPEQjwio1DcHCAcsTS9U4lCaJoicOfSomaVMH6PT7xGMnzsG+/algQxl9Xqw1WwDDZ1YsFkQO9x7yKxY1TcfC0gre8B8Sfu1WHp94+++jFChQJCkWAYtYtBSYe2brxArVAq8n5Ow4xS/GKUiquomOpEZaUfYs+7GQYrG37juWimWFlqhYbHdRDthYDkJM2ahX/cQiTZH8xZMBxWIfBgORCKoqn3X9vr6IRQCYqAcaYdYstWJhnFzbEWqHRKi9/hXEmwGPSmClLQ90/Pbu2ILG/f/qWMTayKpeDZ5DmwrTJIrF0d1AfgQozwBSq//jE4Vz9wILDwLXvxrY+ixXYruZOPDD5N/NVFkOMcQTCM0zDokizbIW1ifzRI1kZ7vZYMBAMZTIZRhW/WVNCqv/fIpFmkskBAzT8BGRNKIjTZz8QQtexSJLsYlWqC3bYj0jV8UJHB57wF+zMAwDlxcu48L/vYDqHVW89b1vRbnqd15JUyx6rVDrU/WQYjH4G71QdWKFGlQsihHPAlu9KoiCL5tR0RWsyWuYypG4FtNqRBU845koxWK+5H+OZCIWzRzYMhuy0c0Vcj4SjAKFqbkpLJx1iUWWY51tGxQ0TUPIu7/rwE0HfMRilmaAtOPZL3p95j1faF/AltIWlPl4h596rg4TJppyfJOcnbEIEGvbXMWKdQnkNk4Xp9FSWpFWwWNTY/j0o5/G9NZpqEYCsUj7rVABsq+D5HQ/sPMbvXbGachzxO51EGLRMA08tPQQ9tX3YSw/lj7DEEMM8bTGkFh8CsE0ge+cWcVMLftLM0tTOHR+PXGaRxf8D8mRPI+O5g6oJsqBzBGB9Y0ZJyuiq+jKCK8FI0UBP337VnQD9YjyFVQsxnm5e4nFXjc5cLrfjMXRma1EsehZ9aljj2J9lRQtc/k8aNp/ybUlzadYXO34C6AsTYHmBMcKdcfefTgdQSzaOYpjnIxGT8U3Ti6jo2jgWQY0BUhddzAk93rgPepBW6Eqyz2AJsde4OKJRc1SNhpeYjFgudlptVAoee06DIgpxGKOd5fR00zfy125OoKOx36UooCpLVtxcf6sY39KMRzMPojFRk9FLc+BZ2iH4DIY/zm5/7qbfPa2tmJR8sgR5lf9BHVtdDzzNgQxWhRww1wNRy/687GqOQ6SaoQUy1GwrZHHy/EvVl6MFQXQlDufbWU6bROLpolepw0uTwbkcSpDAJip5dCQ1FDuq6IZxC7XepEzra7DuPtKSWQhawbE/ODEYpzNahpsC1XZqgyfXumgLWu4fUf9iqqshxjiKYduuIN+00BzliLRUyxhOL+6UFf7V0gFrXZYMdm+sTyVTKAOQqSw6cTikVPzKPHkfijpycX+tUYbYHhk7cWaG6/ivsPHfHbOx89cwLmFJfyfHxDxV98vgmHCz/jxkSoe++UCzD8sR/5urxXqnpk6Hj5+1vlbNHvxClf7c5p2MgoVnVihRuUj2laoYrA5pLviOz8cxWICsdhodTbFCtVGkFgEgB2zkz7FIkVRG1Ys0jTt2ze3H9yHQ0dPxVrrRmEyWMxbP0dUwVufZe3LPtVBavfJIRY9isWVlrKpeYdPCcVi+zJRk04dBPgCURVK68kNEVkgt4DvvheYOADc/POAMLgDRCKuBFk5xBBPINIyxDRDy1RYv3HiRgDA0VV/Yw9t0ql2quvyeugzL1HI0myq0shLRFKg+lYswgDUiBxhG+1GO3H9QZTqJZx47ISPrFy8sIj5k/OY/LFJTL922iFUvEhTLNICDcN6Fo5Mj+DC6QuOuhDw77cgbMWil1hUeorPxtSGvUxe5IkC0SJklnukrrO1uBWASw57yUnVUH3b0Wl1QjaWWYjFPPLECjVw7pRr5ZCKcnpu2meFyvLshq1QAb9l6/4b9uP86fNOjSZJ4WdjsxSLNiRdykx0SbqEhtLAjsqOkLLQixGRbGNTjScWvYRmr9MDbzUbB5e7pbgFTbkZOj5BeK1QWcHNWBQYwXet28RlT++FyOl+IGlSiLRMQ4ErDKxYPNM4g7baxu1TtyeSupuFCx2SHX6qcSplyiGGGOJKYEgsPoVwsdlDo6diupKdWBwtCjh+OXmg98iCnyAbCahuxkoBYjGgSBovCb78uywIKth2jZewzXqnNawHcCX/xBbpNVXFwjm3wz5VsdhnxuLY9HasLi9iefEStMZlmIaBvddcj5f9+Gtj51ENw0csLrZkHynDMTQYXoSquorFtZUltBr+zkaeJQPkIq0gxzH4j0cuoSPr4FkaDE35fqsi9SAWXWUCIXF0KJIEiiXHREyyQrW2RffYNIiB86PbbiHvsbGUNQNCGrHIeSxDVBOaYUKx8hxL1Zov1xAApua24eL5c25XN8PCyGiFKqs6JNXAWEkATVMQWBosTYqBPO9eH/uvv8nNlARQdhSLpKBpmiYWAlbEds7ioHj5wWmcC5CV1TwHSdMzEouW4jCjyphlaNQLAprWfDaxOGndhwxdh2EY4PLkeCY1GczW8mj2NChagFjUDYgcg9k5krmYqxD7mELMfaUkcpA1HeIGFIuDEou2hapkFa0Pn19HjqPx7L3DbrshvsdwJYlFhiNKNu/LKsP7VTq62r9iMVhIY1Pug8WJTSFLSoxnuxOKWgB5bhw5OY8cR7a1l0YsNtsAIyCDszUAYOtEFe1uD48+fhbzDQOKbmL/rjn89ut+FK+/KZ70HBupYN+YdU9uLoS+91qh7tkyip4k49xFktUnGJ14IsTu2qYYdCybNWKFqkbamLpWqBEZi4r7bFSt50yU6tFGs9MN5eMNQkzZRbR6QFlBwcTO2SkfschzLNRNKOZ5icVnXb8PmqYnKluDmAgWZ9fPkvN9Yj9R6arJY2AfaNYiFp8MK1R3O5db0oYUpzZGa2X89ut+FHffck2m6a8osbh0FAAFbL+b/F3bBvTWNk4sPvA+cg+98zeBkR0b3cohhnjGoqMmNxpnLazbyqKjq0d9WW0MmNRltNV2SOEUVCxGEYVeeBVycYrFYMbiuRNu3rOeEuHTr2KxPFqGruk49tAxqOsqDNnA5Owkfva//yxGXzQa+3tSrVBF1lUsTtdhGAbmT7lZ2bZi0TRM6JT/N2mGBoZiHCtVAFCkFGJR4H3qsqXeEmjQ2FoixKJN3uVyXkcqv2Ixygo1n2EsUjALYMssNNM/Ti1Xy6GMxemtAWKRYx3ScyPwEqAHbjzg+y7OlvR04zQeXiKN2ZuhWDRMw7k+ZE1OzEL0wlZ6XjN6TeL1U8+RukRbia+peu8TvU4PghUZY1/3NmZLs2gojVQ1p6qrEK0Ini27SX1EMcJWqPbye1pv44rFQaxQdTWkmM2Cw0uHkWfzuGPmjr7nHQT2+DjKgnaIIYa48hgSi08i3vHlE3j2X3wJP/quewEAj1xogqEobO3DCnW8JIQUU17ohonjl9s+BaE3Ow0ABJZxlFgAUAhkk40WhURrzChEEVN3TJNlKFZXUKWfwKBNwIVzp6Fr7kAkjVjMqljcZ42Xrt5OLDG+8u8fxcJ7/xsW7vs0AKKsi4Oi6aiOuB79C42eT5nH0BQYTnAyFnfsIcHT58+e9i3HPr4mgAMzZdx3ehWNngqeIR2LXnWmLHUdkgggBIykEitUyrKozCUqFslAW/fcPvJBYrHTQqHkFuAUzfDZr0bBS153VROqbqBl2ciWKxHE4pY5LMyfcQrTFMNB18igM80xdM0iz6Ys8oyiKOR5hijrBPflYs/V14FhXYKKoSkUeMZRLK52FJ96EdiYYhEAfuCaqVBtvFbg0VN0aBmKlS1rP030YV88XhbQljRohkHOG5Z2rk9bLcsKZDCbRNjNjeTR7Knoqv5jpeomIW8t4tqgSPZnnDK2LHKQN2iFOiixaBOn9nE9PL+O3ROlvvbnEEM8I7ARYlFuJX9Pk4xFH1FBE3tUB0HicRCwKcrt4uTGlm/htppH9cgkKxYvLq76su+6agZiMYMK0saWsTJYlsEHP/NV3Pj3Hfyvr5CxzM7ZqcT5xr3FvIiHqNcKdfcMGbccPX2efKcnEYvW84Ci0e6SRhzVADqSmqhYzAmB32wavjxMJUPGYrPdQ6W4ccWiTYg6ikXrvCzxRLHotUIVeG7DikUAyHvtx3Zv7TsbcnIsaIV6hthsju0nhH27j2xRvkiUg0+iYtEwSZPaZhCLNE3jf77xtRgbSbb/tbFpxOLa2TA5u3iUEL7VWfJ3dSugtAEl5R6ahIsPAWe+Clz9Q8Cu5wL08HV/iCHi4LU4jEJWxaKNE+snsO7JHGXAEMViQk5jR+n4iCLN0HzqQm9eXxy801AmFSIQDMNvl9rr9LC44Nq2ZiYWMyJfziNXyOErn/4KTr7lJC58lCiKZrbNJM5XTcl7ZnjGUSxWp6qgaRpnj7vKS4dYlE0ojN/G0VYsyp5ca7kn+2xMbSiS3wrV3r+L3UXUxJqjwjLUGMWil1hsd1EoFXC+dd5RVGXNWKQYCjLI9tpNTpVaJaSIm5qbwsK83wrV6MPlIHYbPNs5sWUC9XFPtqQmR9oH/9V3/wp///Dfo6N2MDK+ccXi5e5lyLqMHJtDT+v1RXQJjICrRq5KnKYukt+U1GTQ0fzEIlckxzfP+scHM6UZ6KYeaW/shTefsVgl9Q5FVyAyou/aLVo5xoqmDJSxuCat4Z8e/Ses9lYhsEKme4mNAleItXFOgmmaOLR0CHtH9mI8v7G62BBDDPH0wPBN40nA/mkyEJmq5DBdFV3LQRArwZGM2WgAURuudOK7Wi83JSia4bM7rRfCgyevajGYe1bNc6Dp/qxuhAgikrWWYQ8/rqQVahS8NqhABivUVrwdghc5lsLZP38Jbtozh+rIKD7/L/8XwvRVqBz8fgDAyFj8A7Wn+BWLHVn35SxyDLFCtVWCU7NbIebyPuUl4GYsGqBwy7YRLLVkPLrQAMvQYELEYg+8h1gs5zjLClUCZRUvg4pTL1SFbJ/muX141YYAsULNF4pOJqKsGeDFtIxFd51theQE8gIZcG3duQedwAvP1JatuLzgdigynABdyWbttW7lCW7x2A4XBNbaTvd6FHN5h8y1URJJ3iEAXLCO1bjn+tlIxiIA1IsCbtzqLwiO5Hl0FR1aBrVCS9LA0FRf95Gpioi2rEHVTKx3FRQF1iH9NIuspUUymC0lKBanqzmYAFbb7suxbpjQDdN3Tim6AZ6hwcYUu8pWxuIgVqi7x4u4Ya7qkMb9wj4PFd3ASlvGhXUJN8xVMZIf5isO8T2GpOxBXQH6UE+FwHBhq1P7M2cd2sYVUqmKxTEgoqu/X/iWECAWgyqzI57OegBopQiT1puddILUA55lMDs5ir9+36dw1SiNX7yNPO+nUuyoomw+fcvlXMXiSDmHybEajjnEYhvQYnJv7GNKM2g7ikWTKBYjVAK2YpHjIp41LZfAy2qFGiSFigMQU7aN/XV7LeWX1YlOUcCO2SksrbqNaDzHhlT7g8BLujIMg1uv29vX/D7FoqETFWptKzBpqfQaYVVqLIQiyVjcqIpuEHiIRWBjGZmDYlOIxe4K8J9vAk592f/50hGgvpPkKwIuwdjy57RlhiYB33k3USk+61eB3ObmWw0xxDMNvbhnl4V+rQC7WhcPLT/k/E2DhmqokQSMjY7WCSkWvcRUFjLAS0RS1v9829Xu+qbxqhUBQJOSG0faTUvNlVGxSNEUpman8In3fQJclcPki0kjVxrRxIvJ71uMwDiKRZZjMbN9BmceP+N8b5OnhmxAozWfuk01SMai3PXYqktqZMairVgURAGq4RKLy71lTBYmHUJJt2oCkcSidQg6LZKx+Pmzn8c/H/1nQpJlaBbKmWQah1i0HoR7rt0TsiGdnpuGKrvnEMuxDum5EXiVmBRFYf+Nbl1E1uXEa6OltDZFsXhq/RQoUDg4dhCSLvWlSpssTKIsJFtxiqyIHJtLbDLoWi4PhmlAVVSwVvC5TfzZmCqQJr6VXnxzpmEa0E3dlwdqmiYUXUGO858XthWqbMghO900tJU23nHoHfjO5e/gXOscBFrwqSHTUOSLA2UsLnQWsCqt4qaJm1AVqn3NO8QQQzw9MSQWnwTUrAL1XbtG8TO3b8OLrnG7yLfUciFiz4vgmHS8lFxsml8jD0Gv2iaKcPDaJgatUAdRFkYpFu0BtWENzMoDKoqywh502jh38jhKlRrylgoqXbG43tf6Pvzed2B9dRn52iTGf+TNoERSpKuPTvims9WHAFGXeZV9AHBq2SUBWZoGzfHOPDRNY/uefbhw1u8fzlseabpJ4cBMBRxDYbmtgGdo0JSfRCUZi+4gqJrj0FN0/OQb3oT6FCloJCkWVUuxqBnuC0vee7xNoNNpoVAsQVYNcAwFJZMVqrtO3SRFw4O33oG/ft8ncdcLXhJWLM5ug65pTtGW5kUYGTMW17pWjmDVHbzleRaq7lcsAsC+6270/V3OEetY3TBxfq0HgaV9xPxGrVAB4OUH/d2c9SIhFrNaoeZ5JpEcDmKmmkOzp0HVDax1VZQE1j2nLFKbtga6aRmLALDc9rywWd2SXkWqk7kY8wQqiiwkVfdlgWbFdDWHD/z8bbhqarA8Ifv+p2gGHjrfAE0Bz9830XdzxRBDPO3RTcgelNskG2xQMBxgGqC8hRGW9xMXxgAZiwAaqucelUYsMjwgZlMtZUaAWPSqEwHgyMl58B7SrK0mD8VtK9QsME0Tf/VfZ3H6/GUURR6fe00e9Ty5904FFGzBImdU7qIXAs/6chuv27sDR08SkpSCGU9E20U9mnEUi4oOdHoK8hEqgd/9xR9DuZiPtq3quutQMhCLzXY3RAoNQkxdvXsrvvHB/4U3vPql1srtY0qFlKACz22KFWrwdz3r+n19zT9hFfPaXYmoEw0VGN9PMvwYvj9FMl8EYKYrka8ELGsye5f2q9zcDJQ3I9dx9RQA0/k9AIDeOrmPTl4D2IXPikUsDqoYf+gjxEr1Wf8NGN2zkS0eYoinPbJYJqZZoWqG1pdCiqZo3Ltwr/N3mhWqqZroqBHEItMnseixOaVBh56h7UbbN42dr8jYjaS9FGIxJmNR4ci4TaX823/2v87i1NFToBka29+0HVyV/B6v4m0QMILfynTnvp0+YpGlWNCgYSgGVEb17VdbsSh13UZkuSdHWqG+4qdfQRyNSnmfAlHSJUwVpiBYDV8OsehZhqIrPhK32yZWqAYMKLoCRc+mPqOtUq1BWQrNehXv+Pg78LNv/Fnnd9lk4/TWad+8LM/C1DbBlj2wnV47VFmXU6+NkdGNKxZPrp/EeH4cc+U5dNVuX9fjbHEWJT69JlATauiq3dgGALsBwbaXZXLkuskHst2ni+Q4NOR45zNbnSx63lE0U4MJEyLjPxdtAlvV1b4Ui5Im4Z2H3+lkguqmDoEV+spYLHKEWOzXCvXw0mHwNI97Zu9JtXAeYoghnhkYEotPMliG9h2E6WoukRAwAg+7Wp4Hl1Dwnl/toZbnfCqjKGJxyqOaFDlCRtmIUh+mIWqeVWsMp1lWqKUrrFjsBBSH5049jrkdu50MptSMxUY2K1QbvU4bz3nRy6HxRVA0AxMUDNMMWWOeP3sShkp2Rk/RfQ/c0SKPhfWeM6hhaAo0y/vIyB179mPp0gXfMl3FIg2OobF/ihQoOIYGTfsVi4rUA+shbCoWsfiCH/lp/Om7PwwAiZmaqiKD43goHpIr7zm/dE2DoesoFMvoqTrKIgcTAJdLVp8F19mSyb45cMMtoCgKHVkDx7j7amrWbzHL8AI0RclUiF7vKhA9dp8AUBRsK1R/oXP/dTf4/i6LHCTVgG6YmF/rYrwkOGpcwLVCDRLb/eAHrpmCyNIoWqH2tTwPSdWhZLA0aUkaigLrnBNZMFPNoSGpUDQd6z0V5RwLwSKLNds+mCP3iCRi0c6HtXMaATjKjZyHfFa1ZMViUWBhmAArDmaFmuOZge5bgJuxqOoGDs2vY24kj+1jg1uyDjHE0xbdBMUiQDLbBoXdie/tDqY5N4/PRj85cPZmeYlFLgMJUdjk/NQAsbjW9Bfjjpw6h90eK7A0xSKxQvV3NceBoig0ehpe9eK7IUkyBNZ9Nk0GFIvnL3mPb/qLv8BzPluta/duwxmPjVosEeIoFllHsajaGYsRxbyffOk9aNz/r+HlcHlCmFhyCSdjMcba1DRJxmIl0OE9iBUqADzrhv3ueE1xx1Q7Zv12ugLPQt6MYl6AdO2XWJy0iMXLK2vAuqVMmb6e2GJW58jxytqFbnfkS08CsWgV/fWnu2Jx1XYa8Vxry8fJv9vudPNhy9MARQMpNmqRWDkJHPt3YM+LgKteAjBXtoFziCGuJIK5clcK3ZRxRj+KRYZiMJGfwKGlQ9BB3gNpk060UzW7Jnpaz2eFytIsWMq9fr3/HQcvSRGlWGw1Wj6y6+yJsxibGgNlvcOqUmD8FYBthWpnCmpW7IXMk2ZSmZJ906sdFfe89B5oqgZacN/3ggq2djOasIwCTdGgedo3Ftm5b6cvW5CiKHAMB1M1oTFayGI2SCzGZSze/rzb8cWzXwTDEGLYS/TuqOxwiEZbFehVIMZZoQJwiJosVqhR2H/DfjAs4ygWDZmsfzIwFmE51kfADgoh7x+LXH3j1c5/ZyIWU9wysuBk4yS2lbdhIj+BntbLnLEIALtquxzL0STUxBpZdsx9x1Yz2vuUES1iMWCFWuAKKPNlNJT4OqJtY+u9Zu3jaSsUbTA0gxybg6xnVyyquoq/f+jvcblzGT9+1Y87n4uMmOleYqPIF1NVqVE4vHgYu6q7MFVMjmAYYoghnjkYEotPMcyNJD/4gs5jNE1hqho/z/xqF5MVESzjGdDlw4TepIdYpCjKpx6LUh+mIcs85Vz8g41nNn5qBjMSHWLRQq/bSeyiCSoWFTlss7m4cB7HHn4QAPDTv/o/8BO/8OvOdzpo6IYZskI9ffwojC7ZNjkw4NsxWsTFhuQo04gVKu/k3AHAjr37YQSUa67NLPn3lm1kEMexFGiKghSwQmU8tqTlHIeOokHTDYe4SlYsShBzeZ/Vl5cU1FTyYpEvFiGpOqrW+caI4W4xw9BhGtHrXAtY/LZkDTlPkXRiaotjTwYADCtAVWXA0FJdWlY7Ckoi58v4KwhsKGMRAK669iYAcBRrlTwHWXUVi1PVHFiGdkh/W7HozfPsF7UCj//6jbvxwzeS4nM1T8jZjpy+zEZPRUlk+7qGpqo5KJqBlqyj0VNRyfPO/M65ZxW2S0J8Q0COZ1DNcX5i0TqnvFa3ip6iWLSIampAYnEj4BkaDE2hLWs4ermFAzMV1PuwlR1iiGcMOkvJ369tgFi0CjS014KM5YGg6nwgYtG+R5npikUAKE2kTxOHKAVXYJ1rgS7/IyfnsW/HrPP3upT8xFpr+InFpfWwuuLS0iq+cOgMAOCPXrYDf/7fXxvK6g1anT58/AyotzRBvaUZr9o89WXgQ68CDN1nhQoA1121wz8W6cUQITZZTHkViyY6UrRiMRblKaC3SixyQRSLNE1D4KOfST1JhqbpYSvUCMXbPvM45N/N+614k+A5L8dGKr5l8hy3KVaohcC+ue26q0BRFJiMz3bbClXXDUIsCiVCKAJAbYe1LzNam9rEopItImBTYalD7TpyaTPUg31ic4jFk+HPFo8AYhUY85DGDEeaHXrr/S3f0ID73gWUJoE7f92yeR5iiCHSkEYsamZ/GYszxRmcbpx2yIM0xaLRNdDTepB0f53BW6PIolj02ipGKRZbjZaP7Dp34hy27rKadA1A7WUjFm2sXgy7WjTXm3joa8QGducrduI3/uQ3QtPwgfzk08dOh6aJA0uzoHna17y7c9/OkOU8z/AwNYtYjFAseq1QlZ7iy1iMUrCqup8ovHrUJdd0JWyFqhkaOIZzyF3bChUgpJJhGJmsUJOgGiooUA7RK4gCRifdOBaGYxw15UaQDzxzdx9wa2lZbDJrwbznPtGQG1iVVrFnZA8m8hNQDAWyLqfPaOHg2MFM09VzdXS1bixpKVkW+A6xaDUiF9gw2TdRmEBLbcXuG5tE9JKS9m8KEpX2Z7IhZ1Is6oaO9z76XpxunsbPHfg5vGj7i5zv+lUsFtgCIcL7cI9Z7i1jobOA68evR00YWrEPMcT3CobE4pOAk0ukyBSlPhor9t9JvbUe/5CZX+tirCj4lF5sRFFiohSQ3Vt2gOrKeYgDKH+y2DAmKYriRJhveuFe3Lp9BKUMNqotLzFompg/fcJHLErdLnIJ9pxBYnLZk+cHABcefwRveNWL8LH3vxsAeQGY27kHhkSOLw0Tqm446xBEMoA8c+Io9B4ZnEsB7/urpkq42JAgWUUplqYjFYtpuG62CoamwNEUaMqvzlSkHljBPWfKIgfDBLoKydgD0hWLQi4H2VM48x5ve1tzhRIUzXCsf5kIxeLhb3/T+e8Qsdj1F7zakuojrDmex9ika/tBcwKUjIrF1Y6Cco6F6FH1lUQWim6A4/3FvPEpso4dVxHrj2qOg6QZkFQNl5sSZms5jBUFYlVqmhixFIvmRvLHAMzV89haJ+dO1dqH7ZT8C4AoFssi15dicbpKrv/ltoxmT0U1x0FgbStU8kJmMDwo+AnCKExWRLQkzSHH7QJr3mP9p2gGBDZZsQgA4J94ZQJFUcjzDI5fbkM3TNyzd7wvW9khhnjGIIlYlJvA2pnBl20VyShvAYcRXNtMG0qg4Jeg1rPR0cj1ShtqtmzC0gY6aqX18GeBdQYVi4+dnMe+nS6x2JaTn1lEseiO0U4s+It5R8+v4ZZX/gb+4B+/ClkzQVEUZqfGMDFa9U1HB+63j3isw0IspDORpRxcPg6B9xOL1+7Z5p82jgjRXSvUTleCYZqQdaAr64k2pg7swkxlDuisOOeIqunIiwIpnj7+XyHFZLNDzp2gjWWU4m2udT/5j6Wj6dsDOIrF000KFEX5VIsCx0LeBCtUb8YiAFTLRXz6XX+EH/3+uzLNP+kt5q2dIee5TRCO7SH7S82WS+0Si/0T/RuGta81h1jMAa1LQOP8E7YJm6tY9MDOVwzmIJZnAKnpXjtZcORTQPMCcNsvA5PXbmxbhxjiewgdLd0KNYk8CX43XZyGrMtYF9YBEJJPN/VYwsLskufFWoJK2auWi4OXWMykWHz8LOZ2kWYTyqCg9JIbTaSuBE3VHNeE5Xm/q0Xncge/8vJfwYf/6sPQe8R1qFQtYevurVGLc+AlFtOUaBzNgeEZH7G4Y9+OyOmiiMU4xaKX5AtmF9rzeYnFraWtKHLkuagvk23xkpOqoTrHwzAM6JqOQtFVLGqGhlwxPBZ56D5CymoZmpMVXQkRztNzbl2EFTcnYzGYP8kLvEOSSlpy3qEJE1Vv3vMAONUg8T+3TNyCqkiW1VLS3RMm8hOYKkxhW2VbpvWM5kaJzWrE7zFN07FCtc89iifXmBDxnjFdmEZLbkWeS4BHseixPbWJxaBiESB2q6qupqpcDdPAB49+EI+uPIqfvOon8eP7ftw5TwEgx+RAU9nrQ3kuT+x7jez52g8tPQSGYvC8uef1RWIOMcQQT28MicUnAf/yHUJQSRFdRAWh/xvwzlH3AdQK2Fg0JQ1jJQF0oGhEBTRdo0V/95htB9g7/UBo3ixgLUIrC4x29hyRXeMlvO6uHRgvpRejvMSgLPUgSz3M7fQrFsVcHuXbX4n83jtC87cCxOLiBVed0TnyNfzTH/0Spma34Vd+90+dzxmGwbat1iCdgi9n5wWv+DEAwOnjRxzyK6hY3DtZgmaYuGBlY7IMBYrloWnucd2+N51YFDkGv3rPLlw/VwNF+a1QZakLmnf3n60cbcuaQ3YnESmaEqFY5MKKRS5fggmSDwgAtBAeDBmewVsww64VUOe1ZR35AFk2tcV9WXGyKDMQi2tdFZWcX7FYFFjImgGOjz63RJF8Xs3z6Ck6LjYkGCZw1WQZ42UBbVmDppubkrEYhE3OBvdJFNqyhnKuP2Jx0rIwXWpJkDUDYyXB6XTVLAWRQRF7VS5FLTFTzaEpqU62okMseuxybcUiE3OTcOxWM1iXXAnkOAbn13oYKfC4fq76pGzDEEM86UjKWDQ0YC17l3kIdpHMS2wwfFhBpQWIDG+OHxOtJDa9xbQrTSxGIWC/6lUsGqaJy8tr2L9zzvms3VOQE+O3syfJ0Ci3oHXSQyx+5riKH//L/0K9WsJH/+CHHOtTiqJw67V7Ezfz4eNnMv0cAICuEitUj0Lxqh2z4L1jBakRba3pZCwSK9Q/+oqMt35VRkdWQ+RZJC49ZM3PAL1VUFbxRdF0YoOqScD9/w849h/OLD+0S8WoQcaWlVK6YlGxLN1CxHYcLIXLF+bJcfESizzH+RqvBkUugnR98d03o14rR0wdxkjFo1BdP0fUiqI17+gecn0ryQV1B4L1npGSRXZFYO1rzRpPlwo54KEPA1//67DC+QphYGJx+XHyb3eVNGN4oUrkuIxdBeSq/u+qs4DcyK4obS4Aj3wU2H43cM2PEPX3EEMMkQk9r3NCBNKIxe9e/q7v77HcGDiaw2qBPKsZkOdkUJFow+iSZa9I8fUQL6kVBZ7mfUV8ClRkxqJ3ORfOXnBJP5NkDaah1WjZbuQ+YrF9pI17//xe0AyNX3/7rzv5c4DfOjMKXmJxXV5PnJalWFAc5VMojk+PhywieZoHdMBgDMfCEiDHkqEYP7EYUCxGkVaqoTqkbI7NocgXHYJGa2vgBd6XU+0lFm3LWHsbTZiQdClSsWhnRRoZok+CdqsAMDXnjmcZcXMUi7lceDtZjgVHc5B0KdEKdVVaDSlU+8XJ9ZOoCBVsr25HVagCANpqun3uS3e+FP/4wn/EltKWTOsZy42ho3YirVBVQ3V+p61YNDkTPMNHqolnijNoKI1QbqqzPMsdw5vPGGeFan+m6AoYngHLRYsrTNPEx058DN++9G388K4fxs8c+BnURH/TUjAPMg329LZaMwsOLR7CtvI2zJXn0iceYoghnjEYEotPMEzTxKML/pdLm1ApCmyiBWUctnqIxS8eXQx9P1kOF26KgfGprWI0rfyUAu8+tOLsCoOgrSKkaZKO+czERgYFQmZYgwFTlX1WplKH7HOfYrHXhZgvoLDvbohbD4asq1RF9tmfXpwnxGLjsa9j+ZN/jqtuvQdv+38fQalS9c2395rrAQCywUCzBoalchVijjycz5xwO+IlVfflZm4fLYChKZxfJy85LE2BCnQpFool1Mf9PvpRODBTwdXTxN7MTyxKoD2FTzvrsiVrDhmUaIWqyIRY9Ax6vSo2W7FIW6rIekGw/vYPlOZPn0jc/iBJ3pY1X04fAEzNbnP+m2Z5qKoCKkPAdKOnopbnHVUeQPZDlBVqELU8h56qY8E6RtduqWC8ZBGLholcIZv/fT+w7Yu7SvJvM2GiLWuo5LhUAtCL8ZIACsBCg5zvXgWzpqoQc3nIKWSgjS0jOTR7mnM9RVmhqroJkYtflmO3yvVhk7eJsLd1/1QJo6UnZxuGGGLD+MbfAH9UydRsEYkkYhEAVk8NtlzAtUL1WpAxfNiKUg0U/LxkZpaiexYr1OJ4+jRxqMyGPwtaoXoUi7aS26tY7Mhqau6fpLn3c5tY/PyxFl72zz3ctncSX3v/2zA14ncFuO3gVQDC2dw2Hnm8PytbgfOPRTiOxU6rO16jeEKcRFmJ2oUVmlih3r9g4PBlA11Jic1H9MFWIuZHAdMAaxVfVU0ndqERSsnfulHGLaVLACxS6Ny9wFnikBBULF5cTDnPoxCwzts56xbzBJ6FsgkqgUIW0jWIhz8CHPogAFehWhFA9uHIDpf0ru8CYBKFWxbQLMm4DF6PTwSsdarWtVPM58g51boUn+u5yRAFHmy/7i3z3wY+9wfAyS9GN2EsHydE/NwdhDT3orqNnNdZ7nGmAXz77wChDNz5mySjcYghhkiG18U7gVg0DRO6oScSix8/8XGs9tznCEMz2FbehnaZPPttYjFuPWaPbMyqFP8sSiUWGd6nRKJMCnSgzBdULBq64RCLlEFBl3RwMdbiNtrNtkssnifE4urDqzjzv86gPFfGOz72DozOjPrmsYnFoF2pjX6sUDmaAx2oBVAUhW0BBwWe4R2L0DWPTbtmaKAoKjFjMdIK1UMsjufHUeTd8ZaqqD5Vn32+2Go0m1jMe5qcJE0K2Vp2Wv017kQqFrd6FIs5dnOIxQhlJUAI1rS8w6BqdhCcWD+BudIcKnzFsdbsZGyKmipO+ZS8SbCJRTViHOu9dp3cStZS0Eao8uZKc2jIjVhCzlYAerMfHWKRD9eRilwRqqHChBlrh/rZM5/Fl+e/jBdvfzF+4bpfwGhuNDRNv8SiTXJmJRabShOnm6dx3dh1GMltPFtziCGGePpgSCw+wXhwfj30WTVHBnE7xwqJmX9xmK64D6UvHlvEYtO9+YscHanuK/PR6zEtm6OiRzmZRiTYMPLkAWL/hiSr0ysFZwBDUT7FoSL1IOZyGJ9yu5akXhdiLu+o98yI4pt3GcsL5wAA+S17UX3Oa/GKX31LJAm19+qDAAANNDoBIqjbaePS+XPu31ZWnw2BZbBzrICOZY3GMjQoNjzIn9m6PXoHxMBLLKqKDMpD2Ni2sj1F92Qs0vhvzyUkbK3gX78qSxByeagWcUQBPhJZU0jHI82TwcuYRcxQnH9ffeML/4E4UCAKRa86oiNryPNBYtGjWGSzKRYNw0RLUlEv8j7yrSQSxSLLJw9Aq3kekqrjwrqEsshioixivCyiq+iRKuTNQMUiFtOWL6sGdMPEWLG/7kCOoVEv8rhoEYu2NSoAGLqOfKGInqKDZ2iwTPL9YK6Wx3pPgWINvG2CMaiCFVjGyQYNwlYs6jSHTXgn6Ru2FfStO+ooi+n2Q0MM8ZTE599C/l04NNj8vQTCxbRy2waFVSSjvIpElndJKBshYvGM+99ZXpCzKBaLG8hYjEKgyLDWdLvf7carPdtmnM86PSXVErSjuc/CExcImXJwJoc/ulvA23/hLhQj7JFuvZYQi+0IezNN03Hk5Hzo8yTwEV3Se7eTMZXMVSzrxggixC7SUESx+OWfzuMTr8qh05OIYnHpKPD45+JXLFnjsBJpqOIsYlHRLCtVu2ho73dNRj0HyFYxr1zMAye/RKwiNSmkWPzkF7+F7dU+X4cCRS2/YpF17Ow3gkxqziAe+Shw5JO+7M9rJqz9MnWdO119F/m3dTn7ssXqQJmnG4KuOPcEzQByoofgM/Xo3MIrAIqiIi10E2Grq5sL5L5FBd6Jlo+Re9jMDeF5a1uJzXKW/X3yi8DSMeCmnwNmb+5vG4cY4hmALLaIQZxuumRWErFoKEaqYrGttvE3D/yN77O9I3ud9xfaJM+XuOK8bYW60otvlEizFAwSi3EZizztfz90MhYtxaKYMhbxKhaX5oldfml7CWMvGcNNv3oTipVw7MnVNxBiUVPCBJRpmjh9tL+MRYoLvxg6v8MCz/BOXcdL2KqGCoZi0Ou6xzz4u4OZm7qhw4TpELXThWkfIaQpmk99aKvUbItMm9yzrVABcs4FFYv3fem+2N8dBVmXExWLtEg7+Y8bQVwWpMiK0E09Me8weL71C0mTsNBewK7qLpT4EipWHnic+ncjqOfqMGBE3k+cc0J31aQ6oxNiMfhsBzBTmoFu6rEKXJu89J5HSRmLtmJRN/VIYvGr57+Kz5z+DO7Zcg/ecP0bMFmIFiB4bVGzwM6PzLq/H156GBQoPHfuuanNEEMMMcQzC0Ni8QpCi+jM+vThhdjpByEVAT/x15F1/OM3zzh/T1VyPgtCG+WU53zBM8+ggkKhDyvGzYJpPdwplke74bcy3bJtF2iaBl0agwHKsUK1Ca+gFScAtBvrAAC9s45H7/08Oq0muPIYKrf+cOzx2rrbtR8L5gSeOXHM93dX0R2VoI2Ds1Xnv1maAhVlsTDXH7Eodf2DZC+xaBMnPUWHqhmgAHAsjWu2VHD0j1+Iu/f41RyqIkMslJ1mT5ahfFl5mmr9Zmu/TpSjicVvfvE/Y7e3LNDoeBSUAMmALATy/aa2uDYLlGOFmmxl1pRUGCYwUfZvDyEW9VTFYiVHMinPrHQwURFRFFmMFclvbKQE3w8KgWUgcjR6KS8ILSuDcTxCpZyGibLoEIuTFf9LRK5QhKTqEDIoFmdqeai6iTVrX0QpFgEkqh9tS2hFM8Aw6Xmqm42CQPb3c/Zsvq3tEEM84ejDwsaB0k2eT9eIYmhQWIpFykscMnx6xqI3pyxLdkcWxSLf34t2EkwgTCw2/JZN27dM+KxP2z05VbnXkckTd10y8V/3n8TSagOjRRZ/cLcAJsZWws5A7Mrh59LjZxcgK/09r4QIJcNVO2xisQZIa9HEon1MGRbtbg93b2Pxsr0cuj2ZEIOf/yPg/vfEK2RtYjFfBxgenEKIRFUz/MSiDYvQsZtbKsUCAJNsmx5Wh37s8/ciZxcqpYBdZRwSiEWB50L52YMgk5ozDp5r99oJmpBaE9e43xfHAa4AdJcjZo5BrkqI/qx2sZsBz/WvGyZKwX2ykZzXPhHM6uwLKycdYtzB5ceA2jYgH9HVX50jzRtpx6e7Cjz4AWDLzcANrw7ZMD8hsO+fWZo4hhhik9FW2phv9dckAwCXu25TRZIax1RNGDB8Kqajq/4s3gOjB/CpU5/C2ZbrArC/7saWpFmhmpIJClSiYjENQYIjKmOx3Wj7FG7lWtnJv6MMCnJXDuXpBdFutGHChC7pOPXgKSxdXAJX5DDxgxOgY5xyZi2HBl0Lv8OuLq6iuZ7xuQtCLNIR9aUoxSJlkt/v3a9OxmInoFj0/O6O1vE1m9tEYUMmY5EtpS0+EldV1FC+IoCQYtFr19rTeqG8vK9/9uuxvzsKiq6EyBtvxiIt0pujWIxpqskx5PMgEesl4ScKG2vcO9M8AxMmbhi/AQzNoMSVQFN0qn3xIBgRybO4qYTPR8dO1+JQOZ6DahIVaxSxOFUgBO9yL/oZ7mQset5RkojFIl+EoiswTCNELH7n0nfwkeMfwS2Tt+DXbvw1zJYinFTs5fRLLFqKxSTy2IvDS4expbgFu2u70yceYoghnlEYEotXADdvIzL9b5zwP0x0w8SnH7p4Rde9Y7SAj3z3PDRL6TVeEiJtLcspTSS2ig2IJtyyICmn74lAy2OFCgBbd+4BANR/6v+Pb+q7IfW6yOULPpINAOhcGUyhZi2jAWXpDC6+741orS1j8WK6bRTLuvuu0fUX7s48ftSxpwIIsehVLALATVvJwEbWDJKxGEGszGwNB5UnwatYBODLpsrzDBiaQlc1oOqmjygUOSZE/qiyBD7vZvxwDO3L4VQVGYKYg2KQz2zFLMUJmP+bV+G5Iw1QvTUcOezPpPCiLDBoSZqTUakbJnqqgXIgg9RnhcpwUJV0K9Q165hsqfoHykWBg6waYPlk1r1iKYwvrPcwU8mhKLCOKrOREny/EYwVBVxuSZHKWhs2iTdZ7r+4NFkWoWgGWJpyrFdt5AoFQixyjI9EjsKMtV+XW3YOlp2x6D92IkeDiSHnBZYBx1CQNcOXWTEIbthaBQDcsTNsCRKHa7dUcceu0RDBOsQQ3zNIsxjsLgEYsOsI8CgWvcSiELbSDNod9Wu/mqXYPWBTVxRMigMo/z3Sa4UKAPt2+F/6O5KSaoXalA2cWDXwgvd1sdzs4PT5SzjWIc9hjYkmPLiEMVi/NqhAHLFIfovMV8mxkiOUI45ikUHbYz9mmqafPJMaiIT9OUUBlVlwCvlbUa2MxaAVaodEAshWI46jNNOJo4FXedZo9/DF+w678zbOR29DEIHz0m+FykHehGLeQIrFCFw7wQDFMSDvydqhKKKK664AMfZ04Q2qk1zAJ5JY9BQsdTNsY4vmhezbv0EMnLMIECvUqidvyNCA1RPA2F4gVwtPb1sst5fil2mahJCnGeDONwLVrfHTXknY6tfNzqodYogM6GgdnGv1756w7CHtZV2OVSSaChnnSLoE+RJ5r3nHoXfg5z77c840N4zfAJZm8b7H3ud8NlN0XQlspVusYtE0kefyWJfW+/4dNnia9zU8R2Usthot32c+lZ+lWIwjkbzLUFdVnP6T0+i1e5g/lU7q0gnvjWf6yXqGpVhkw2O27Xv8DdcCI0QqFh1isefPWPQSi22l7bP3tIlC0xrzlnhPfjEATdZ8ikfb0jJnNXpoWphYlA3ZRxCpipqoWIw6dxRDAcuErVANmZzLjMhAlzc+Fokjm21SrKP5x0NtxR3z9muFGswkPLV+CiIj4upRonqlKAplvnxFiMV6rg4gWgEdJBbzxTxkTQbHRFuhThcJwRunWLTPES+J6HwW4cZS4kqQdRm6qfuUr48sP4L3P/Z+XDN6DX7rpt/CzurOxN8YPHfTYG+LTYQmoaf1cHztOA6MHnD25RBDDPG9gyGxeAWwd5LctD95+CKW226Hx4nLbSy2ZMzWBi9Wp9W/rp+tYrElOzmO9SIfqRwsxVih2igKG5evb0SxmOf9AyU7p68ftJv+ItWsJ19RZkRIvS6EfAF0QElXf+GvYuSFvwoAePDer+LS+38LNJ8DQPkyGjNtg+wvwJx+/IiPFCSqPH9x1iZCCMlDAxHE4t4DBwEAk1Mzoe+iIPX83WSmp8ONoiiURRaSShSCbIAoDEJVZPAFt+OJY2gwHntMVVWIdaZVWKsVOPAsDZPhYUht7CybuP+rnwOdQBiVBBotSYVqFYy6ln1KWQwqFt2XIorloGSwQl23VKQzgeuwIDAwAVB88vVpE4uGCWwfzUPkGIxaisWWdGWsUAHgx26exWMLLZxZSc8VGC/3r3SYtgjBosCGmgJy+QJ6qkEUiyk3IXu/2vvZsUJlg8Qik9i0UBBYKJoOht2YYjHPszj21hfiFddnu1YA4Pd/YB/+5BXXYLRPS9khhnjGII1YbIfznPsCzQCg/MQiG6FYDFoBeq0Po0isILIoFi3EZRH2A4PmQpaHIWJx55zv7yxWqF87chG3/t8OTJgwTULofasxBuotTegju6Jnsn6PyIR/18OPn8HkWA3H31DAV34mgTDpuMXXKCvUg1eR8Ux1yhrXdCKIEPuY0gw6XX9xLBN55i2ojewAp6wD8CoWAyoPaxtkTYMo8OBtQlSTAdPwWaH+x72PQlU951zrIlGKpUHxH9Ot066zA8+xzvhnI8innBNZce04DZRnACFQUBrZSdSeWS3F8iOWYvHKjXNCsAhc0yRWqCECvrnwhNmzDkwsql2yn0c97w+rpwnhvuVmct8LomLFNgTVuF7M3wdc+C5w8CeB7XduaoPEEEM8nXC+lbEhxIOlnvussgv2UTAs9bmsyZAvyWg+0MTz557vUy3yDI8XbXsRADjLoSkatJWNnJaxCBCCIUoplRUck65YbDXcMZOhGZjb5XH9MahUK1SGZfD4o4/jzNvOQO+S37ll+5bY6bPgzLEzqfarXrA0C0SUD+ysyJmt5F2PZ3hQNAWYwJrsyVg0CbHY6/gz87zb0FSaPiLFVqvGZfVpiuYj34KKRVs16CUSFU0BL7j3/qP3HUW33UWpkp34UXQlZDVarVdhqmTMx/BMpP1sv8jHqPVtG8+u5n8G2+dxlJIvDjuqOzCeH8c3LnwDmu5u84n1E9hS2oKa6DbglPkyJE1KtCceBHWRkGFttR36rme5q1AKuabEvAhZlyHQQuTvLPElFLlirE1z0C4XIPchlmJ9Oaje5dkNEHZW54m1E3jPI+/BzupOvOnmNxH75RQMqlhUtHRi8bGVx6CbOp4z95zMuZZDDDHEMwdDYnET8L8/dxx/+IlHfEoimiKWi2//4uPOZ985u4ZqnsPWejiUNyvS8s0mK6KPuKzmuEjLzhHrfs/FPPAKHnUR169i0S5mcRlPLyZMYgYLfCkiqUgEFYtBUlDqdiEUAl1nhgFx20FQ1oP+/e/6K4izBzD5k38B09AjFYtt1cTW3/402nJ4gNMKEItnHj+KbbvcB39H1qDo/peZHaPuQ5+lKSDCCjVnEXuimI2kDioWjcAyyzkOPcWArBngaCpxf2uKDC7v7jeOoeA9RQxdR6FUdgprRYFFnmccMlPqdvDNL/wnrr3pdrBcNHFTFhi0ZM3JFLQJ2mpASVeqVEFZG0sxHDRNAXf+u+BXT8SSVmtdFTQVtgt1VLophWibWASA/dPE679uEVDtCMu5zcJr79iOHM/gs49eTlQtMhGKwyzYYt03iiILIXDt5vJFSJpOVIYp96BanoPA0mhYtqyKboBjKLABi5ygNWoQBZ6FrJmgN8EKVWAZ5FLW5wVFUZisiAPbUw8xxNMeacRiZymkzMsEW3EoNQCGB+UljWguglhMyFhMgWniytnztS9HEhoGzYYViwEr1P07/YrFtm0JGgOOZfBb7/0Grpug8a2fJ8/+k+c87hdBwsiGVXQpceHnxSOPn8WB3Vuxu87g2VvZdJLWNCIVi3mRPPtydau4GGVnaqiEbKUotLv+45lGqIYwuguUpRpQdR2FnBBrharrBipeMkiXAUND3mNZ9vGvPoQbr/YQs435bERVQLHIe/YNsULdDGJx440tFKyMxeocEOxUH9tLrmMtm8UVUSx2nhTFom4CugGUgllP7cX0e9UmYWBisW1ZLk7f6H62dIzc7+aeFT2PUATECslZjILSBu7/f8D4fuCW18XfA4YY4nsAZxpn+p5nqesSi4quQI9pmLBJmp7uPrt2VHfgd279Hd90z97y7NC8hSap99hKtyTL1SJXjCQ0soKjOR+RSJvhjMV2YCyybfc29w8DqVaoxVIRH/uHj4Eb4bDzzUQZtXA2PuInC84cOxOyMU0CR3ORikXWakiv1Mh7OU/zoFgKrM46FqYAUSwGMxYB+IlFuelTztkkYxThAxCr06iMRZt4M3QDvMCD84wTZF32HZ8Hv/QgZrbNYGwqewRHlBUqRVGgLMcoRmAcG9Z+YJgGvnXxWw5xl5SxCBDS3YuG5SpR7CNmQGAEvPn2N+N8+zw+e/azAEi25dnmWWwvb0eZd52yqkIVki7FXrODosAVkGNz6KjhBu6u1gVLsYC1ylwhB1mXY61QAWCyMImm0owkQBVdAUuzZJmezziG89ns2nCIRcNAoVgANU7hXQ+9C9OFabzp5jfhwNiBTDWLfo4J4Coqg0rSKBxeOoyJ/AQO1A/0tY4hhhjimYEhsbgJODS/jo989zwuNd0B42hRwP6pMj58/3nHHvG7Z9ewb6qUnXAbABRF4YUH3BwPOz8vCHsTmKDNmIWCRzEYJASCKFp5jJRF5NgZe1mtUCn2yoT7BhWLIWKx1wVfIAOVSUtFeHqpA4olgd+8IOClr/ppjP3Q74MWyIN1Yf5MaD3H18m/35oP78tOiFg8gu179gEA9G4Dhgm0Jf80XkKMZaiQ+mEQBIlFPbDMao6DrOmQNR0sk5yjZ5omWNElxzkmrGLLW5l8PEODZxnkOcZZ5/LlSzh039dxx/NeGLuOikjDNIF1y7bUJhZH8uEBdL5EXiIohoWiKBAuP4Ix5RK4mPNW1khWoBhQwtnnvJlSiLaJRZoC9k2VnH1QzrHobILlSBwKAotX3zaHw+fXcWE9vuu1wDMD2RBPWYrFsshBCKhJ84UiZFWHyDKE7E4ARVGYLIto9FSYpkmUt1HnCJ9MGBYFFoqugxcEsFfoHjHEEEPEIFWxeBnIRWSDpcG2mtRkgA0Qi6GiDeVXq2lytCIuAPv5pajalSMW7/s78m/QvpOKIBZTFYsyinkRB/ftwMuee1toVSPVMn7jFTfis6/OYyRHfpuPWEwBx5ihsOyHj5/BNb6iYkrxSVciiUUH+VEAVDQRomtEoUrRPitUAD6SLxPqe5z/NE0rhzBIZtpEDgJkkEYymL22bP9+72N4xfNv98/bzLBvE8hHnmUgpeQhZ0HfpGsEttcoFHkKGLsq7H4xugeQm/EWtEHkR0nmYfBc+eR/Az7yMxve1khY7ygdlcK5poGS93iKFQAmsPx49LybjK3T46hXByDw2pdJw9r4PvezxSNAdZZkXcahPE2OTZTV6wPvJ9a+d/wGUZ4OMcT3MAaxQl3sua4LdnZZFLyKRS+Cyh+GZjCe91/PedWyEbTUPnEZiwAhNaIIjawIZiwCCBEUXsUiAMzt9igWTQpST0KukMNNd92Eq2+8OrSOcq2MO19wJ+beMAe2woKiKFw4mx4Rk4Qzx85g+1Xb0ye0EKdYDEJgBFAcBUZn0JRdckezxgBexSIAX0ZiR+ug46mPOeqyGBWWaZo+YtJWOHptLoO5eEFryUNfOoQ7v//O9B/mgWqoIWIRAMoVUtuiBRqa3D+xeHL9JD5w5AP47mUSWRObsWgRp8H8vaZMFIv9quPu3nI3XrD1BfjS/Jew0F7AhfYFKIaCa8au8ZG6FaECSZNiVcaDgqIo1MU62ko71MDd1bo+dWG+mCeKRUaIJAIBkrPYUlq+fFYbNinsnVfW5cjrGCD3B1mXoRkaqjuq4H6EQ02o4U23vAk3Tt4Yuw1Ry+kHDM1AYIRUK1RVV/Ho8qPYX9+P0Vz26JkhhhjimYMhsbgJMEGy8r72uD9T8eZtI1A0AwvrZCDZ6KnYNVaKJTyyIItX+c1b3WKfTQomKZyiUBDcAgQXUCjVCv7in80X2B7jco8MxoLWh3Ew5StjYxQkFmfm/ANXqdcFlyODnj3X3QoAePDkBSz+61vQPfJVFEoVVGqjoKzfRTMsFs6d7msbOooGzSoKrK0sYX11Bdt2u8QiADR68YM+lqZhRni39wspqFgMXPrVPOmwl1XDUiAmn2deYpFn6JA6MF8soafoEDgaLE0hL7DQTUAQRXz5Pz8BTVPxrHviiUU7S3HVstO0CbtKLkxGMTbpRLMOqZ22/UDYNapoKRaZHBmQ54rl4Cxk2yxicawkoJp3r4V6QUBH0TbFTi8Or797JxiawmcfvRw7TVFgwQ9gQzxVIS9F1TwXViwWCpBUIzJzM3JZVdHJyFRiVLCFFAVhUWCgaCbmdl6Fud37EqcdYoghNhndlQiiz4P2ErFG7BOmRWKYMAFGAKV7XlaDloAM51csdrLZr9o5x21JAZjNsZMMwS5oBIqNBs2GLBbCxGIgY7Eno5AX8eDH3o5PvPPN5DMPAVctFTBeKzljsUpBxIlz2VUCHA2iGvTg5PwlHOhDJQBNirRCdUCzQGE0mqSyFYtA/4rFYEGm7idRCjkxTGZ6yGe/yswEAlZ0ra6EVzzvdt9nuPxY8jYBhGCLgcCx6A1KLHrUl+MjVQBAtTj4OXzthPWc9arlbNjZeM2MheHCKFEsBo9JZ5E0AHSWo+fbCNQuAAqXegxOrZkoeS3ZCmMAlwPW+88LHQR//Tu/gH/4s9/sf8bOMiEJHVWhCSwfBeq7o/MVbVRmAalJCEQvLj0MnP4ycPUPArufP5ilyxBDPIMw30rP+QtiueferxRDiSUpbMWibKQru73qIwDgOCs6QyJ1gCTFYokvJRKLwWUHwTFcKGMxiCCx6MtYNKyswZyIt33gbXj7x94OAFBk9/5TKBcg5kVQHFl2daKKhTMbUyyeffwstu+9QsSipVhsq22HHNQNHQzFQAo0OQVVecuSe36kEYuAP4fQJmF8RFTJTywGiermShN3vOCO1N/lha1wC22LSLaF5umBMhbtTEr7X9ueNahm5WgOLM2GzutBrFBtvPn2N0NkRfzLsX/BifUTYCgGN0/c7JtmRBy5IsQiAIznx9FRO76MTQDoql2IjOhcV7lCjljRMnxkxiIAbCltQUNuRJJyqqGCpdgQsRingCxyRZgwIekSxl44hnwxj9+++bdx2/RtseuPQlR+YxpybM7Jf4zDsbVjUAwFd83cNdA6hhhiiKc/hm8jm4jPH/EX+4sCizt3u10btTyHnWOFPmOM/QiSfFGIsoA8+tADAIDL506GvouC1wo1ODi1lUdveel+PH/fOGoWuUI7xCIpuIi8//Ryx7tXjnjxImiFynL+wVev2wErEmKRooBL58/hA7//05AXjoEbmUGhVPGRkyMTM1iYP4NumwzMv/Ch/4OL8wkFDdNAV9ahWRmKZx4/BgDYvvsqAIBhEYstKdzJZO8roljMfpnqenTHZVCxqAUu/VqeR08likWOTs5YBADGk0PIReTuFUpldBWiDGQZCnmegaobyOWLOPrQA9h99bUYn47PZSgJZPuaPbJvbOVnLZegmKBZqEq6B3wcbOWtaQ3SxXx0px1DUyjwDGaqOWceABgt8ugqOnTjyp3f1TyPV940iwfOrcWqI0siB36A5gWHWMyF588VipA1A6JFFKdhSy2PpqRC0QzIukFUrYH5vM0LUSiKHBTdAEUzzr1liCGGeILQXQGSLHM6i8lF8RicfJSMRb57fIFYoXqLdUEik+H8isWMuY6c1dTUldTIjOIrCSNKsRiwH6uU/B3D7a7kI9gWLq/g7tf8D+fvWrmI5Za7n3bNjODk/EUcPUXUn7/9l+/F0VPxhVWeRoicME0T1/RDLOpqsmIRIOSJHJERpauWYpEKKxbTMhaDRGWAWMyLAtBb90/jIbgqQfvKACG4a8sYrt7tKa4WJ4C100gdpyYpFjka3UGIxUc/Dnz8l4HVMwBcNedGiMVrxmksdgxgZFv4y7qVi9nKmJeaGyFqxaA9sY1NzjsCQBSLnOgIbkte5QRFA2P7SM6i3r8qIxWXHnYV1gBEgR8897K6zSUWO0vkd01fD/AJBbjqHCHNvdeuJgPf/nugtg24/VcGau4YYohnEhRd8ZGEWbHc9RCLXivUwOuToaSTgnFgrWYczXImSlIslvhSKKvOiyhlmm9dNBvKWAyi3fQrscY92cAwAakr+Qi2xmoD//0n/ru7jZUSISetRYzNjuHC2QtQrHfvI988glNHTyVuZxCKrGDH3h2Zp2dpFiZtgq2QfRtH+PIMD4ojxGJH7UDVVeiGDgMGaNAhK1Qh4J6wJrlNPmkZi4CfdLOntxV9AFAIjPsUw6+SLdfL2H/D/tjlR0E11FDGIuASejRPQx0gosX+7XY+oG0zmyuFlYslrhRSLHqtZ20oF7LVZypCBb936+/hVOMUPnf2c5gsTGI071fA1cQaulo3RP5tBibyEz4i2kZX7TrWr4BlhWoQxWIcgTpbmkVDaUTmE8q6HLI9lTSJKBYjah62hamkSTAoA2WhjIMTB1PvC15wNNfX9DbybB6KoSSKVB5aegg1oYYbJm7oe/lDDDHEMwNDYnET8eDZdbQk1TeUe8V1M85/758uOyTcZiEXY3m4rR6wXFDIQ1+VyUBq3BobFNdPRM7vtULlIrzsAWCmlserbp7DiKVgpC0ywiYWg9tWE8lyuF5EBk8EpN7gSkZeEEOKxajl28q71VOP4Nd/8gegyAomX/028JO7UCxXfOTkyNQsLs6fhaaRwca9n/ln/NQLb8UnPvReACGnMTCahLasQdUNlH/sf+KcxIMXREzNbgMA6F2y7KQCFEtTMDfFCtW/LzUzrEJ1MhbZZCtUAKAFD7HIUGHFYqGInmWdSYg4FopmgrGUJHc890WJyy9YBFbLehlryxp4loaQpMRjGGjq4BmHNkmoxJCzXty1eww3bxsJEIsCugo53lcSb3juLhimGWuHWhIHUyxOlEWURBbbRwvh45kvQtZ05Hgmk4f/bC2PRleFohuErGaoEPlcSiUWWSia7mSTDDHEEE8gOksAn2CZ0160rAj7g61Y7MkqwAYUi8EXXob3E4uty5GZzEGwFrHYlgZvNPHCCFoRShHkmQWTZkP25eutTngZHnR6EopWUeqBR0/gllf+Oi6vrDvf1ypFLDXd+/3O6RGcPHcRx88Qpdm/f+U72PfiX8Tv/fU/kW0IDEY42gypzCiKwv6AJWsi0qxQAaCyBZCaUHQTnOlZn6FbZGtExmJCnhOAMFFZmvavMs/5VYia4psnlIsXsP9/xbOv9T/TxvcRBVwSUWWa8eQaSKavpPRZ8Dp/P/DQPwMwLWJzc1DkKaz1TCCqgzxXA8QqkLUon7caCaLI4ysFpQN4irOhjMXp64nicgMWgpHQFeDrfwU88E/k/N0oRne7x2D9HAAK2B7OZPOhtp0oWL33wIf/lXz2rP9GSNUhhngK4h8e+Qe87r9ed0UK/5rpX+YgakUAMOA+k72KRYr3v6vYisWNEIuqRCwrk1Q/Jb6EXsJzJQqSJuHI6hEAAEf5FYt0RInP0A102249wKdwNCjIPdmxvTz7+Fn88st+GedPu80VpUrJl9M4umUUC2cXoFhjrU6jg597wc/hz37jzwAAZsZG2yjFIltlUdgXHoNyNAfQcHIWFTN6n4qM6CgWu1oXqqE65w5DMyErVK+VKU3RTk4g4FEsJljre+e3FWqixzEjaIWqGqqPWDz4nINgmP7qPYqhxOY+AgDN0dD6HYsAWOmRKIQoS9AginyRZP95fksUsdg+1IbaUDFXSh93vmj7i3DXzF1oq21sK2/z5SsCQE2ooaf1Nj1jESC5iC2lFSYWtS4hiq1LJl/MQ9GVRGJxpjgDzdCwpqyFvrMzFr3zyroMno5WLNoWpj2tv3uEF0l5kEnIc3mouhpvF20aeGj5Iewb2Reygx5iiCG+dzAkFjcJLE1hqS3j0Ll1XxnctlcEgG0jhVSVTr8IWhZmBUNTOPvnL8EkHz0gy/EMzMADZN9kCZNlMVY1aauKFFuxGCAW7bmojNYFS5cGt9fgxTw6rWbioLbX7YCxshMf//wHUZ/Zjsmf+kuYKnl5CCoWR6fncMFjhfrf3/Up/Pb/fDsMnfye5po/+4nVe2hbdpDsyBbwt78GW3fucQaOhtwFQ1OhHEYvOIaG0YdiMQ5BklYNjA3qBR5dRSO2lQyFNFEazbuDZYGlQ9M7ikWOBkfTKAgMFN3AyuIlAMCzEvIVAaLYHC0KTrZiR9aQ45hkxS7NQFXSrWriYF+bspZODL79J67HLz1npy9/dLwsoC3rUPUrS4SNl0S8/Lrp2O8rOW4gYpFjaHzhN+/Gj98aHvQLhSJU3fQ1HCRhdiSHjqKjI9vnVNgu13tvjEJJYCEHT9QhhhjiiUE7hVhU2gMRi7zhKc4FicWgFSrN+a1GO4tWll8yWMajWNwELHpIPgDA0tHYac2AYpGiCDHZ6cYXJb2Kxb99/ycxPV7Htz/8v53va+UiLq+5xYRd0yM44clY/MzfvQX/8tdvAmuNuc4v+4kfjoaPnOgoJnZsmUwn9bzQNfBcCrFY3QrIDTx02UDdWHQJGUN1MhY7Pf8zum/FYsD2cSwXeN52/SRZUB0aJARf8exr/d+P7wdaF5FHAlGlSUhSNAocg24/9mNrZ4Fv/i0wYqk25E0myYCw97uNke0kozILAWBnqj7RxCLnIRaDWU8zNxJVX5ZczH5w/n5yruhy2Pp1EMzc5B6DtTNAeYoQ8UmozhKC01bOrJ4Gjn4a2PP9wL6XPuFq7CGGyIr51jyOrBxxCIogHll+BNf84zU+VdiguNDyWzlniX4JWo6quuraKgr+ZdgZi0lqwzjYSi9FJnlqQWWXF0WuGCJNg5B67jZc7FzEqz7zKnddtN9WMe4RFbRDdWAAvU7PIcg+9YFPQcgJeOcn3+luY6XoUyyOzhJi0cZVt12FP373H6NYJeqqxmJ6fm9lpILaWNj9Ys9f7MH2394eIqlYmoVBu++GOqKftQJLrFA5nXPUbbaSkAYdskL1EoNVoerkBAIusZhE4tlKz7954G/w7UvfJp8lKRYDuZ4Hn3swdtlx0HQtcZsojoI6wDh4RbKIxQjlXhBFLkws2laoUfCq/pLwlme9BXOlOdwyeUvIWrMm1iDpUuL1NCimi9Noqa1QE0BX7fqOp22FKrJibMP1dJHUaqLug4qugKf5SCvUqLxEO6+yp2+MWGTp/scNeTYP1VBjrWdPNU6ho3Zw2/RtKPED5FAPMcQQzwgM30o2CbMjeZxb6eK/Hgtnn9EUYJgku2yjCD680lQ/aYizvKQpCobkt+964wv2otFTUYmxo6SZ6IzFSgqBYMR0HF1eOA+gv+BnG7yYh2maWF9dAlACHcwgMQFd09DrtAERuOmn/gCVUg6HF9pYOHMIdK6CYrmC1UV3wFyfmsMDn/8YyteTv1khh+e+9EdweI3BEQCm7v8drNZDW9Yga+7n2ywbVLINJsoii06CYpGhKZgbJBZ1TYMiuwNojhdC5Fc1z6Or6pA1AzmeibTT9YL2DAwjbS4LJSwpOsnkYygUBRaKh7DbtusqpIEQdRo03UBL0pDnGR+RFwLFQFUV6Pk6mpWd+ObJZVAUMYOhKGILQ1HA+bXoQZnAEpWkkoFYZBnal68IABMlEW2JbO+Vxq89fzf+7cELkbbK1Tw3cI7reDl6wC/kS4CcTgbamKmSwfdyW4asGuAj7HKLQvL9sCSykDUDhaFgcYghnnh0V3wF/UjYREMf4L0vxQwPyps9EiyQsLzfBrB9mayzlUwicCwDGEC7tzmKxbMLAavIxfgMPoNiAIpBnSHjoOunOAAK1pptzMTM0+720LNyjN75h78C0zR9lou1chEnT7u26zunR3D+0rJDsogChxfffTPmtNNA+z9CdtwUBaC7BpSm8Jp/5/Clo6u4+ZYD2X6888M0CHwe9y6Q8YoRpYCrbgV6a/jOgo5XTa0QUjA/QogZaxxDFIvucU4lNyMyGw1GBG0VeUdFHfA+cq18RZvXKxcC2xlQndx2dUApMU5UYNv5hIJ3gg0qAPAsja5iF+NSHmBSE/jq24h68IV/AXzwRwElpvB7JVDfBcx/mxD4aY1Dtu2mcgWIzzjYxKI1fAgRi1MWMbxyAhhPH1dmxumvkH9Vycon3WBW6+TV7n/rCtnvaVbSFSuLtbUEjOwE7nsXseq94zeA4lAVMMRTG2217RT+dUNHW22jIpBmpE+c+AQA4FMnP4WfuvqnNrSepd4SeJp3VGJpWWAAsNT1NwL71GMCUUVyFHlHcTIWByAxWIboFLjaAAEAAElEQVQFTKJY5Bk+cdtsRVISFi+4Y5G3fedtqIt1d10BwiDKChWAT3HogwnIPRmq5fzz+t97PRRZ8SntSpUS2s02KiY5jqOzo+i0OlA1FSxYUDSFO7//ThijBj7S+EgmxeK2vdsiiRnaitNZlVad8wYgikWTcpcbSywyAiiOAqdxWFVXoRoqOIMcU1uxWIG7XK+V6Yg44qjWOJpzCEkxIbNbzIswTRMn10+iyBdBg/blHwYVi7Iu+4iafbdEK9BtZa33N9tQDCXRnhUsBrJCtbMV22o7VXVc5stYl9ehmzpYq6ycRCxmxVh+DB992Ucjr7uqUHW2b7Mxnh+HYRpYV9Yxlh9zPu9pPYzlx5zrSiyIUA3VRzYGYROLa3KEYtEIKxZtojJJsbgRMlWg49WVSShwBaxIK7FNG4cXD6PAFXDHdH8ZoUMMMcQzC0PF4ibgK8eXcHq5g+1jBXzr1AqCvIJdZM9iIZgG0VIo/vANM7hjZz2kCtxMGL3wAzuOVATgkHcOsbjBbVu8eCH0mWEYmewu+RwZwK2tkO51hvVvt66Q4tJn3/2nMOQuWDGP40sSdo0VHU/TQqnsUyzWp+Yg9bJ3CrFaDyaARs/d3u17/APHco5DT01RLG4olTOsVhREMUSe1fI8TJNYjkbZVobA8k7zNc+EMxnzxSIkVUeOY8DSFPIC67MYzXIt2ESdqptoyYRY5GwCM/QCBZgUsUKV9rwQizN34f994wze8/XT+L9fP413f+00/v5rp/B3Xz2F+06voiiGz2OKIlmQWYjFKIyXRfRUHZK6+dYcQcyOFPC6Z+/AdbOV0L6vF1MUIAOAzZEOtKyKxWnrnrfSkaHo0YrFAp98fyjnOMiaMTRCHWKIJwPdlWj7RC8yqAeD4E3P84gVQXnVQEGbUyaKWKymrsNWLHYssq6fnOIonLvoL0Li8qOx05KMRQp5mqx7skTumctr0YUWRTchKyre9p6PYnFlHTlRCOW41SpFXFxzyaad0yMwTRPNdh928ZaS7+sLLC60TBzYszVlhgAMFQLP4p8Oq3j2ezswRvaEp6lsAWVoOLaso4qWqyLTFYBiYJimT7lJ0xR4LuWZEkEsqiVX6VXjA+PBzhJA0VjskudNyApV8xdlmGATTmEMKE1iZy6B3FOS97vAsehlUSzqGvD1vyRWrs97M7DjbnJ+22oau2ClDNChnkG1AwAY3UMyKbUMxSq7kSDl928qlLZ1HyLHM0QslqbJdnmyEDeM3hpw8SFAKBNic6N2jlwuTCJOXONmLsaharlHdFeAo58hFqq3vd4lU4cY4ikM3dSxLq8DAH7tS7+GO//5zoGyENOw3FvGiOg2ObXU9MaMpZ77TKd0ym+FSlM+i0U7Y3EgC0LrtUeRlFQr1GJSprWFywtu8/o1o9fglXtf6fwdzGWjApEnlPUOFqVYpEABKtBab+Fj//AxXJq/BJZjQ2SYnbFoEwyjW8gYUNlAE9fWPsciLMX6icUYFZXACKA5GozOQDEUdNWuo76jqXDGolex6BCL1vjUni8pn07Mi5B1GSZM6IYeIo0KRT9xHLSW5GKabZcZcs10ufBzVzXURGKR4ign3zMrDNPAurwOkREjLUGDKPNlQpJa14xpmk4240YhsqKPVLZRE8nz9EoQixOFCQDAurTu+7yrdZFn3etBLJHzxftZEGW+jAJb8KlfbSg6uSd4hQ+2YjEyY9FSLKra4A4KcctOQ54jtq9R15ppmji8dBh7a3uHNqhDDPE9jqFicRPAUBRMmLh6qoxPPbSAHWODqeyisNKW8ZXj7gDYJhFedGBq09YRh8a3Pgxt9QLojMQWTTOk400ig59BbVptLC6cB6p7fZ/9/MuejfnTJ/C5Ry8lzsuLpPjQbbdCZ7neXsPSR98CALj1R34RZ4U82rKKS00J33/1BL5qTVcoEytUe8gwOt1HHhEAxnoJWe+6A+6gUq+a41IzFgGKFEZjvM3T0Ov6u8uFXD6UI2iraVuSFqlADMJkePAMDVmz1GhB0qhYJhmLHAOWplEKKBazYKoq4tD5dai6gbasoSCwsJsf1TH/ecHQFEyDhqooMGka+bWT+NDv/xQ4hoJhmjBMMvgh/5Jzc6wUHowXBDbxeCRhtEhUGI3e5meKROF3XrQPTUlFLkDQTZQ3n1hkrCzSUi7bI2OyIoKmyL5QLBVs8BwppiyrJLBE7Zu1QDrEEENsHnqrQC2h4MMIbuYakPk6DVmhJikWQ8TiEjB1ffpKrFuNY4XKComZeGk4e2ERvtLG5UdipzUpxmc7yVm21I12WOW10jXwwx8m2/VzP/wCjN//F4TMeM6bfNNVS0WsNTowTBY0RWHXdD20rFT01sk610mB45o92/qb3yBWqPdsZ/C51xSwGFU4sqwdL7VNsgsu3E+UWjqxQg1a0xZyQnqTkbXdXqjlrRDWT4BjgCqrkEYjm/zpLAFCGZpJfmclRCxmsLObvR07lj4b/31Knh/PMujIKoCUAs65e4GlY8BzfhfY/zKi0M2PEjLLNFwr4s4Sub76aU7MOl4c3UN+T3fFVSR6oUlk3zI8IcJoJlWxualQu0DBLVaFiEWKAqYPAuvzJF8zaKc8CM58nfzOq14CPPpvGycWK7Pkuvbey7bfnX4883Vy71o7BVx4gGQyXvNK8tkQQzwNYBOJJ9ZPAACOrR7D6Ez/DUlJWOotoSpUcalL6gJZyAYvwUkZFFRdhebJ1fWqtGzFYhYlZBxUSUWJLiWSNDZxkITL5y8Dk+S/b5q8Cbuqu5zvWCpZschZGcntZttrGgAA0CUdJ95/Arqm43kvfx4mZyejt7FcRKfZca1QLWIxKUM6DVH5iklgaRYG5a5PgxappOIZ3slYBIgKz1Z9MRQTIhaFnHtfHRFHcGT1iHO8VEMNW80GIOZEh3zWTC00fb6UrFhMg8b4n0O6ocMwjWTFIgOYfcaztJU2dFPH3upeHFk5AlmXE+0zy0IZki45v0XSJbK/qCtXYrbJxqCl8WZgIk+IxaAFb0/roeCJh+Ctmk8uxdllojCBptKEYRq+8yFKnajoSqyq0FEsGhtQLCbkQSahwBVC1r02LrQvYE1ewysnXxlJAg8xxBDfOxgqFjcBD7z5+/CWl1+Ng7MVGCbw3bOrm7bsm976efzmhw87f6dZHJYCVoUbEUl2Hv485AtHUm0x3XWR6WzFoq1u5AbIewOAxYvhDuT50ycyzSuIZADX7fhfME4dewwX/+k3obWI3/ncwWeTz5fJNt+9x7U9KJaqaDXWnb9HJlPyUAJgrQFm09MtFlQs1vI8eglElq36pIJKjj4QIhbFXIjks4nFnqqDY+jU88agXbvNKJvLfLFEFIs8sRctiiwULcMA2no5oEBhupJDq6dC1Q10ZA0FnnXORSOgWmEty1hNU5zl7J4oYv90BQdmqrh2SxXXzdZw/VwNN2yt4erpSqSiNs/3T4DaGLWUguubZL+XBeUI5eVkjJ3pRkDz5HoqpdiX2uAYGvWigEZPhaIZ4Bn/OULBtUqOQ1HkoOomtAxWOkMMMcRmwiCETkInLgp1wJuVkvEFnzc8xRxWBOUttKURi4bqJzNT4FihJhVeMsCnWDRNYPFIaBr77mYGCjC8dZ9rtPz75/jp87jtPV08ukSeNy969k3A6ing4iGi0vKgVimi1ek53O1UvQhR6JNAsYokrQ7Z/wd2b+tvfl2FwHPgrZxjOmAlB8CxbtQMQDMZklMHkONG0Wj3m68IuPlyHqgl0uS1vUqjRMt+5Vd70acOS1MsRmLnczAtdFGJ27wUK1CBo7NlLGoSaRq7+gfd31AYJWSap8iNziLJ+usHMREDIdhkYlxu4uJRACaw5WbyQiFWN65YNE2gEXYkiYTSBXj3GBajrHO33Aw0z4eum4G37dSXSdbm1DXkGA2iGPWitiOcVzu6K3paLygKKE0B8/cBQhG46zeBSpyh8hBDPPXgVQZeKSz3llEWys7fUeqgILxWqJROmsO9FoNewsc0TFCgIGd5dsRAlS0rVCP+/TCTFWrAlt3bmJOmWLTzHoOKxUvnL+HsO8+ic5Y812573m2x6y9W/OSnWBBRG80+JotC34pFmnXsQQFC4kVlUwoMyVhkNLJfVqQVhyg0NAOG7lcLepVjI+II2kobXauJRtEVsBSb2Agl5j3EoqGlKhaDuYRpCBKL9m9JsuIEi0x2tF7YNqj7RvbBhIm1XnIOakWoQNbc32KrFb3X5GbDtkKVsjSK9YkRcQQMxaDtGU/ohg7VUFHi3LEmZ9XNCmzydTtVmEJbCWdVKoalWPSSjYZCVIUR5B/HcMTyeQMNDiIrDpSxWOSKfrtoDw4vHYbACLhn9p5NceYbYoghnr4YEoubAPs+Wi8KmCgLWG5vHrHwA9dO4deft9v5W0wh6ext+b79pOOGtYiYrLd6U9q4fYFiWW9uqxfwP75/L2ZrKXZqMbgcQSymwc5rFPNk8Ntt+18wTNMEW53A1E/8KfnbIuxU3cR4ScCucXfQUCxXfDainCBidCK7UpTRe6AAdGR3MFgfm/BNUyvw6CQUoPKCTSwO3vkVskLNFUJkjTcvMEgCRcGgGafAyLNhm8t8sQhJMxwysCiQvLw0VLvzZBtZClNVEZJmoK1o6MgaioKbsWjmqlA9LwUsQ8MEDU3Z2LVXEBhfJmY/GLcUkK0+bUc2GxOlK0EskmVGEZlxmK6IaEkqsUJlaXhjTnmWTm2SKFr5sVnOmyGGGGITofQAU/cV9EPIjfjVQRGWlVHgTU9xjhVBedVAwQYalicqpOB6baRYCfoUixuAL2NRahCrxABoy5rLsFRqdgc9bzWwNJphMmqySOH9ryRFuYLX/lT3P0NqZTKesZ/aNE1jR4yiIBZS06cq3b11ur/5DUIs2qCiFKD5EZisgC1lGiuokixKXXUUi51A000hl+G49MLnlWYp2KZLFApml6jBbLQXidLLQphYzFCI2nYXaAq4cy5m3JVCrPEs3d9zy1sQLo4DcsfK9fNA7rMzP7PKzhq7xSmOLz1M9u/MTeRvsUqsWwd00ABArIT//Y3ApXjlrwO16yPlSvmIIursLUSRvH42/F2/WD0FNC8AO59PCEEg870tBNE6Lyf2+7s8uXx6vqINSwWMG38W2HLLYNsxxBBPEpa7m299GsSqtIoy7yEWM+S7+axQDXJtdjX3vh4kAVia3ZBSSJEIYaDqYcUixVCgazR4hk+02sxzeVw6H+/WFKdYtAk0mqaRL+ZDGYs0TYPO09jxC+R+J+ZFfObUZ/D+I+8PKQFLFWvM5fl4ut+xRABbd/dPLHpzFTVokYpJnuFBcRRonbxrrklrjhJVk/3PRzFgPz8ijsCEiRWJNKE7isWEsqlXsWiYRog0ilQsZm0AAqAyYWIKSCYWTdrsW7Fo5wFeM3oNAGBVXnXOJTMinKTMl9HTes5vsZV+Nvl3JVDmy6BAobcBJ5I40BRNiGWP8tm+N3jJUrZArre0hoAtpS1oKI0QIagaaohEdFSMMXaleS6/sYzFARWLRb4Yq7A9tHQIu6q7HAvZIYYY4nsXQ2Jxk3Hdlqrz32xGpV8cjMYlvPTaaRyYcaXlWbtBbt1ex/9+5UHsmSCDwGnlPPTOOkaYeOLl8offDOlL/yfz9p0+fgRf+PRHQ5/bikVVUfDPf/bribmMSVhcOA919QIMuZue+Weh27Y6perjoCgK3XYbpmmid/4xKLKEnVddjYkf/zOwBfJSr3s6d/ZMFFEruNsqFMLdVtNz2zJvP2WaqOQ4tD0D2ODxqxd43/dBOAQgu3mKRb4QLsbW8u7yeZZKtULVwTpK1CjlX65QhqIZKFjkUIFnoepmatYV7SlWjVsE2WpHQVfRURI533bZykKGJttrUHSm/M0kFD12q/1ipMCDAtBVnjxikWMoVPKDnyvxCybHoihkH5BOV3NoSRpkzYAQIKv5DHa7tvp6SCwOMcQTDNlqMAqqbLwQq34lYIRlZRQob2GCDTRBhBSLQphg8dgi2lheWUFPCd/72xIZ75gWsTioXZePWGzMR07DWMSiaQ2r21aWoMhzqJQKaFh5iB8/qqLV7mLP9i04I1fxjsdJUa4QocR6wU4Grz3IucSiZ9ftmuuzmCe3fGQTl5ZtGISu+vIQaT2CoLMUVnMVCsv0KLB2mhCaepxiMYPqUo4iddxxhGi2AdFjv9RdJjmJFkJWqLqSToqN7EBDF3H3tpjnndoBaDZWTZ9jSbPaQCiME+VdkBhsLfS3nJRcpMy49BAwuhcoWvs0XwNUaWP2oEuW4vfSw+nTql2Ad8espUJEs8P0DeTflVODb5ON018h67v65YTkBeLVnGkoWoU2S8nrKF3ru8n9MwsO/Aiw/xXADa9JbvQYYoinIK5EpmIQhmmg6rmeshCLi133mU7p5F3Ea6sYJHwYmsmkFNK06PuiKqvgad4hLHXdXT5FURD2kzFKEkkhMiIuX7gc+30cGdFdJGMPTuacjEQAaD7QRHO9ifHpcWz/re0Q6mQbcrkczrfO4/5L9/v2E+ASi3buJLBxYrFQSldqesHRHAwYaD1AfgcFKlKxyFvjSZtYXJVW3f0faOjmc/6xiJ3Zaav3FF0BS2dXLAKEAPUek+DvHIRY9E5vn49icBztgcn0TyyuSqvgaA67a0TU0FJajt1qlGq3IlQg67JD2trXn52DeCXA0AyKXBE9ffOJRQAYy4+ho3ac32Qf1ypfdbchR45tWjbqbGkWDbkBJdAkqepqWLFoEYtxyLP5RNVzGgRGGChjscgVI61Ql7pLuNS5hBsmbvDl3A4xxBDfmxgSi5uMG+bcB+l0Ndl3Ow3G+kJq8T0JRZF1VEEcNJx/+6uxazz+ASidfgCCmb0Y8cXP/Bve/ie/G+pos4nFj3/wPfja5z6DB+79atTsidB1HUuXL2Lh3b+I+f/9StSL2RQHnRYZ0HCCiGKpgnazidXPvgPNB/4d3/zifwIgg3h7mw1P586BmYqjkgIAM8I3fXp2W1+/Y7QkJCoSawUePTX+e/sCpRK6GNMQskLNhz3QcxwDzlEgMqkEtg4avHVu5SKIRS5HzjObHHKUl1x2Nd1khUy71JKhGaZj12rDmxNpk/i6aW4ok893/Pucl2XoEJH8RKMkcpFE70ZhF+ZLfTQJzI7kXCtUlnbyYQFE5nIGYR+LTBa6QwwxxObBLsxxCYVssewnArsDWMAHnwc0628+YQW/FapYJZaAATzyyCNodyRouv9e0bWIxeUW+fdbh46mblJUVs+5i57i2vo8wPBYl/zT2bczw2pWsi1HRZ5BrVzExfUe3vhZCa/7lIwPfeYrAACKptHRreJEkFg0Dbz9RSJ++WYetZyl1Pd8vbNfxaLcIgTfoDA0CB77aipOvVGewVyFxjJGSW7f+jnLCpUJEYuFTFaoyUViQesAtjW6oRN1Wdl1loi0QjUM/NbnJHzjnBYmtwGAonBSn8TdW9lo61SlGz2fhTxL7GAHQmkSUCKO1dqZ/pazUbtSgDQLNOZJhqFduM/XiWJxQ8TiMfJv80IyyasrZD2i2+QXylgEiJ1rZQuxQ91IJrOuAme/AczeTPJlC1YW3KDEog2b+LbPJbEMn4VDEm56LfCyvwVG+sshG2KIpwJsYuZKw6uOaivtyOe4F4vdRXAmeZ+xFYteUihIVLEUm0kp1P3/2HvvMEnO8ur7VA4dJ6ed2awNCrvKCRRAEhJgksGykI3J2WAwWIYXE2xjjM2LE+CEwRj7NQ582JhkTBBGIFCWVnm1QZsmz/R07orfH09VdaWuqu6ZzfXTpWunu6urq6urq56+z3PObU0galS9gofaJO4kW9h6/IHHQ5/vFhbVkMlS/ihUN363o+0yKx8q48n3PImhlSFkC1mUS2XMfm0WRz53BN/6yreg6ipoiYZeJuMnyTrH6qaOB+ce9KzTERab7fP2xPpgPLPj7DsOnSzsKEc74rNlhgt0thhGmRQoUFhqLjlCkdry7lu/Y3FQHgQFynHfqQYRgSKFRckrLHI05+lzKfvGIibMroQxhVY8Tlr7b5GJEBZpE+hyLLLYWESez2NQHITIiCgrZed9u9+fTY7PwYTpuPrKShksxSaK9l0NBaGAhtaI/a73wog8gqraji8NcywyIhkPy1EtIwBMZCegGipKSslzv+1YtIVF0zShmVqkAzXDZaDqaqhzNAkiK/bU+zLDZUKF8EcWHgFLsXj+5PMj+4+mpKScHaRngTVm02AGEsfAME1PRGq3HPqTX4L6039Y461be6rlFSwveHsouB2L5N/4wbjfSbC8MAu9w8y/KFrN9ix6OZfF3vvuRHXP95Df/QJcd8vLnMfsi7Jmtgtlz9kyCIqiwA1OQRjdDDkXFODGuhQWh7ICapaDjQopJPjFMj+s9RxqFY7Fpk9Y5ORgYZaiKCfmUkjQE1M1iTgEhAuLlEAGWvY6becizScX2+1egXNlcvz0Z7wzClca7QG2E/nLcKsaZLp7lJbq3Rdh+7M86hE9M48nW4dz2DGaS/T5dYvJ8KS9Epd83ZP9GUdYFDnGE5fLs3SsozubOhZTUrrj6P3Avh+ufj12JHpU1KiQ88b7xfRhARAs+vsdigARF92PuwUWecAba2o7K8nKse+Yt4hZtaJQVes6r+rx5+Za3evEqyjAsjs6bOUQkBuFfxJ40LFICjAURSGfk/GfP3oQf/pzBW+/hMObb72l/XoN8noZX2EL049g6wDZ7mKGvGf37ts8lTyWXTVABLdV9GaBrkBwOxY7RYoWJjGZpzFvWpPsjtzrRKFWffs2tseioROXV9hxYsFqlXY8brNE/i22o9UCwqKuAKaGT/1UwXO+WAfy4W6L/foELhqjQbdKwQeVWqSwKDE62ee9kB0m6/cLmuUEjkX3AbIW/QZnHyP/br6hLYTJA0S07FVYNAxg8RkygaByjESYdsIWR13OB0dY9AuS4xeSfbSankvHHiT7fscvkKhSO1I3Yf/Y44YYTE9JSTkdKCtlR8w5XjAUg0Fx0LldVauxrznfmIcIcg63HW3uKFS/iMjSbCAeNYq5g14BUGkpjoMOgKe/n5ss1/59Xl7yTmjQdR3z0/P+p3i20Y0tas1Pz0Nb1jDcP4xMNoOf/eBnmP/PeQy/Yhi3vuVWJ/rSsH5ria5JTk8uPekRE7L5YP0gzLE4yAyi9nQN4t61b81hv0+KI++vZbQ69lgEAJMyIXMyVlorbcdi0+dY9KUnSKyEfrHfcd85jsWIxkKSLHmOIY7mPLGTfmER6K5HoML4hEVrbBwl4JlU947FxeYiCkIBIidiUBr0CPV1rR4Ql3JWokBNI9fJldYKMlymp8jNbigIBTT1Zmg852oZzYx6ziN25KrbhUkL5LwRJyyOZ8n3Y7Gx6Llf0RUIjOAIckl6Zmb4DBRD6bnOJbJiT30QZU4O9KEFgIfmHsLGwkasy63raXtSUlLOLFJhcY2haQrnjudBUxRaVmXhLddswq9cPoXJPnKxuHHnCDiGchyN6wfIoODc8faPR1OpQ2TbJ/8dozlct20o8STXE8mh/U97brca3c+UrpZLntvz00cBAOKmSyBvu7rr9WmtJpbm59GslTFy6+9Bmjrfu4BpC4vtfTxh9YLkhzeCFrPg5GBRdaKLKFQAGM4Lnh6LfmKFRctFKE6eh7E3fBa1Vvdil9+xyEnhxeK85UYTYnrfURQF1aCQEVicN5HH5qHgoJbmbWGxHYUKAFQXwqLEM8gKLOYq4cKiLTgCcNxvqxcW25/HTLkJo8t1DWYE1E6SsPj652zEn9y6G4M9TGSIQ6cYCEx8X0Q364oSDJM4S/1ip5DAsZizxOieI+VSUs42fvZXwDff6xPcQPoldoNdvIgqaPuLGbaoE4XqGxuE9T5091lkRa+wKPVH9kt84llv0a1uXS81KvnEnLmlkuf2oVnvbawcbkccuqCtyUqmFTNki2gtzcT+Q9OYXVzBN26T8NLt3m2xlwsIi3v/2/mzL0/2tftM2E0UqmpQ5PMJc98lRVfBu8akHYXF4hSmChTKpkw+v6P3WY7FYBRqoMeivxjcqgAwO8ZGiixAa4129Kkdx9u/yVmmkPUdp5ZjMY4l5MDSFDg1pO+4UgVCEi1sJMbs3bFoR/36v0+VmWhh2DSBB7/cvt1rX0A3M3vIsT68rX2fPEi+x11EuHkoHyHi39SV5D1FOZ1tQU8OERaVOnFU27Fek1cQYTHG4RrJ/juB/ASw8Vpym8+Q881auD9TUs5Cqko1UYRoN/h/4xWFIgTXuKCqVGNFwMXGIniT/Ka0o1DrrvFJteWdmMFSbGh/xE7MHPD2QlSbJAo1DrdItLLoPYeX5kvQIxJcOCbcsWi7HE3DxMGnD2JhegGT75jE4AvJZGpb8LDX7XbvHSwfxGy9Hb8q5+SAMDGxIehYpCgKB/7gAIa4ocBj3eIXZGxhkbYmurbMVuhnYzs4dUpHhs2grJSdY1Fr+nos+hIjWIrFSGYEFaUC3dChGEq8Y1EWPT3/WJoF7SrauaNQbdHNLUQmwS2Y2+8lSogyKKP7KNTGEvqEPoiMiGF52COwtfSgiFvgySR8+/uz0lpBls+eEGGxpXUXJ5uUscwYKkol4FgsCK7WVDw5FuKcmRNZ8v0o+SapqYbqcZsmEYqzXHZ1jsUId2sUtnjadLVAKLfKOFg+iF1Du9BvT+5LSUk5qzkFZarTn9suncKLLxhzRCOOoXHdtmHHuZgTOXz21RfhwskiAOLe+cvbL8JVmwc6rvM3b9qGX7500nGw+Sn22MfQDZMdiO2BF8ah/Xs9t23HYjeUlrwDxzlLWBx51Ucx9LIPJO9bZ+0fVpAwPDaB7NgmiH5REeSHCccLaLkGXH0+kY8WgzPzunUsjuRFVJudBz1FKfqHBme/n4F14AfX44mZ7vdto14HL7QHE6wUPmiReTII5GIcbywvQNEMSByDf3rjFbjl/KBzwo7OLMi8Z900392gZjAnYN4SFv2C2UKtXaRkLcGLYliYPfbRAryOxflKC40uRcKhnID6SYxCHc6LHmfgWsByvBNn2k00szsK2u90TBSFKnYf15GSclZj6iR+0i8sKj04brhMpIgH0TdBpVGKj9r0F/3DXF9udxor+ITFgrevo48nDnmFxVrDSk3oQlicX/IW856dJbP5B2UK/RKAlSNEXPFvNmXHq5Pzlm45EgSWwpapcZy/eQy3bA1uh+2QzLojHmsLwLGHsGLFreYyEhiGXp1j0dCAMPddUnQFgiudgDI6CHTFKYzlaNCmAhSngLkn2z0W6zE9Fp/5nve2LY7J4UWLsax1XbGjTxslAFS0Y1FrAiHuhiD29SmkgKPUIoVFkSH7pSdx0RFJXcdhcQNQmSbuvp/8GfDAl7wivWkCj3wFeOpbwKbn+ba/R0wTmHkYGNredu4BlrBY692xuPA0+Z2x+9XEdbj4TOdlbUHPVbRyIoOVChH+7Pi/dZcQAXupxz6LahOYfpgInm4Xq9Tf2/kzJSUFFbXSldOvE+7eXn5hsU/sc9xpAOmVGCVmqoaKqlqFYFpRmUawx+KK4h0HMDTT1fuYPeDthag0vY7FTuRc/WRXfGOR+aOd3YoAnIhD2iDXRcZKarBdjhRNYWrrFKa2TKFwaVsgWWx6hUU7CnVYHoZhGnho7iFnWZqmA67F8fXjaBywot+bMb/xe7gsHa54+1rbgiHlmuhUCZkAZB8TBmVA5mTU1JojjKhN72fpdyyyNIuJ7AQqSgWKoUDVVSIURpRNRVn0OhYZn2Mx1x6L2MdCN45FwBtFavfai+rJp1O6E4WaVIwqtUrol/ohMALGMmOeSFAAATewfcza72WltYIclzvu0Zh9Yh8aWiPUrbpaRjOjaOktZ4JBXa2DAuVxFIMn4n3U/geAPJ+HxEpOrC5Azme6qXsmRNifZ5QD0u512OsEeonprUWXLXa6j9dHFh4BBQrPn3x+IIY5JSXl7CQVFo8DBZnDVZsHI3ud0RTlmfnEMbSnf00YblGxVimjWm5fpP7oFy/Ar1+/GeOF3vs6rnvHl4Cr39Dx8Tu//R/47n/8S+B+v7Co1Luf3buy7BUW52eOIptvD3yT9q0zlQYqD38XNZPD5u3nQlHCf1yYpglRkqG4Kj9+oYMXZdCM9zPptsfiaF5EJcJlWIhxLGatDHfKmok4U+7ecdBs1CHJ7YEKJ4YLi3akqe2S7ATHC44LTeYZj8sPAFiWcwRbW6iz++VREcW4MEZyAuar4Y7FUr392Tqf3RpGoQLAYrW7mbbDeeGk9lg8HjAsh4aqW/GlyS8ZE33tz1rivftVYJlYYVHiGKyxRpqScubTLAeFxV5wF+3D8BfJWivxjji/iypMuHS/JsO33ZMAIOTbDiUX5+uPYChDB4TFqiUsauhdWDy02ATLMnj5do5Ek2otElfpq5A5wqI1rH5oRsef/5zsj0vO3xraLwkgkakMQ4N3xYziwI8AVsB/PkWeQ1EUirmspyy0fnw48XtSrcIpqguJnxPAJyzSeitcoCtMAgAyRhUY2AKUDhJBjGJQa7bAud5nwLF48C5g5tH2bdu110lYzFnvK285JprLxGUb1ZMvoWMxEqUWdOy6WJWwmLWERVcRCgNbyL6ozQFH7gGe+jbw9V8nQqJhAI/9f8Dj/wnseAlw4++S54T0QuqK6gyJN153qde5LPeTz7NX9+v800B2lAh4rACUnu28rC3oWT0KOYZpO0CUGjkf2Oeh0QsAigGWexQW5x4nEzO2PN8rGsv9lkPzzBrXpaScCGpqbU2ExeVm56j1Al/wiHZ1rR75mmWrZ6oAS1jUg8KiX6hiabarSFe/Y1FTNI/42Qm3sOiPQu0Ug2oskwuNXVPiNGtSuzXuKS2WnGV3Xrgz4Hq0+2A6jkVr8kaOy2F7/3Y8ueTtTW33WbQp9BdgtBz1KhJK6P5H3aHKIY8rzR+FChCXqh+3sJjlsqirdUcYURve40OQhIDzbSI7gbJShqqriXssul2vPM137LFoO8daXV5H3a63JNGZOsh7SupabGgNNPUmRuQRMDSDsSxx7rmP/U7Cov1eykoZOf4ECIsCERaPh2NxWCbj66UW+W40tAYEVvC4jk3GBMdwgQhiPxRFYUQeQVkpOxMkwj47+z6PeOkjx+fQMlo9OxalLmtwNo6w6HIsPjz3MCZzk9jUt6nT01JSUs4yUmHxNOVlV5yDl1/ZjieiaQq7Jvsixcwk0PnOxaqPv++t+OP/8+7A/QFhsdm9sBhwLB47guGx5JndhmHgr//oo6g88A0os/uggUEuX4RhdLj4WsJiVP82iqKQc4mbADxipw1jTQfTENz3w3khMspxMCNE9q0Tea+wOFftfqZSo16DJLeLYLQQPrCQrNfiYwRuThChaAYEjgYTMsjmeAFNKwY4L5EBlyzYjsXuBjWjBasHBgUUfK7cUl11okrbPRZZz8zWbskK3tfYO9ddgX4kL55xwiLLcWgoBgSW6SqKOSuwjlAr+Y7xJFGoFEVB5lPXYkpKd5jJ+rHFwWe8/Q7jaJbje/i1fI7FsBn8jF9YdJ1PeZ+YQ7OAYWDAJD/+nzjkFc7qLbI9OpX8fQQcizNLWDficyhmRzs+3wTw+3/5z/j7hzXcc9SAaZroy2dRqoS7nmqNFjKSr+/Jsz8BJi+Hu81vXyHrcSy6BTqbBY4IbHsbfZ77FVtYtKNCe0FrgXdFYVN6KzwOs0DGbRmzCgyeQ8Tk8jGAJo7FrCtyLNBjMT8B3PM3bUHJcSwGHaIAwNuToPLWWFGpkX58VvGEYxmw/vGM1ug+GtiPWgfCxjKWKC7QdvEIiK20+rEdi26XnB3tumiJZtteCExcAjzwD8B/vgPY82/AObcAN3wUGD2PCGxRvQuTMLOHOAu3PN97vy3y+r/LSVl4ChjYRN7n8LlA+Whn0c4u0lpRqJz7s1RqRPBkrO8BLwODW8mx1ssYcOYRImCOX+y9Xx4k+zIVFlNSuibOPZiU+UZnt16ez3scM3U1RlhUfMKidX10u8FWfJOgOJpblWMRQNeOxYCweGw+IOoBADrsXtM08dUvfLV92zCRK+RQWfH+rp2vk31rC4uC67p804ab8GzlWTCZ9rk3W/AKH930bKNoqusaxrPlZx3xE2g7FmlXulItpA+uvb8N2kCWz3odi3XVE1MqSEIglnQyN4lyq4ym3mwLix0slxRNgeO5YI9F10S4jCuW3d62ltGdsOh2vTlRqBEuNA3WdSvhJdEW8O2eeePZcVSUiqe3nv/77DgWrX1bUSrIC/njHoU6IA6grtWPi2NxRCbtDuz9XVfrEBmxHcPL0NBMDTzNez7jToxnxz0RzfY+dEeT2oJtVBRqhssQx2KX40r7O5NlO4uWUcgcEcUVjWx3Q2tgb2kvzh88H4NS+Pg8JSXl7CMVFs9Qmo06HvjZj0/IawWiUOvhBbQowhyLw2PB3P4wDKWJf/mj9+Gr//DXyJx/A/pvfCt00KEioI1pmpBkGa2IfgW6YSKbL8a+fhZkMFWlgnEIw7noiASaBvrk4I+Ni6esQoor4hMAFmuqx2WZhEa9BtElLDIdhEU7rtTfD88PZ0WhEqEpOMhmOR4NlexXW6hzHItdRqHacZoix4D3bddKo70vPD0WO4nJCcgI3gHioeXuRPKhLBFVqQQ/IE8XWJZDU9UhdOlYBIhjF2gfWzYClyxW1f95pKSkJGDlyOrXwcvdCYutSqiLydOnNuBYjIlCZXivSCD4ej5yErD/h87NJw/Ne4pWVWtWuoZO7yN4rZhf9jkWZ5cwNebqE8TJbVeZj5Zm4je+dB9+58++jJs3M/jyy4lg2JfPYqWDsNhotpCVfddktQ6c/yrPXX35bGBrr1jHwPxI3ul3qNASqI+VsSyt9yynGSBiU8u3/7tBVyC4HAK03gwXFq0YyQzVaAtiywcBikG13vS814Bj8ap3Ao0l4L4vktvNMjkG/IKyG5pti3EAkBlwhEUhRHyF1mG7u0GthzsWGbtPtdXDu5exCCeRdbsdGPlxgJXaEwbkAeA1/wnc+v+IkLvthcBNvwcMbAYoChByqxcWpx8hUbZF77HkxJKGuaKP3Edcpwd/AiyHOBFbZaA6CwzvJNu47hLynvy9V22UGhE3efK9d2L6dYX87++9OX5h9PqimNkDDG4LfrdXG/2aknIWoxqq4xBcDXP1uY6PZbiMxx2lGIrHOeZgnY5tYVECuU5QJgWaoj3CYkVZnWNx4cgClJZXgEkSF+gWFfzC4sKxBQxPJEsqMDUT9/3zffjMRz/j3EfRFLKFbEBYdEehirLoEdxumLoBpmkif4krBSBM3EwKFXS8xaEaKvbM73FuhzkWGyEOfVu8MykTOS6HulZ3XHVqXXUiXwFLWPQdM+PZcRgwsNRYIsIi09mxyPHkMfd2cAznHJcMy4BxTYyxt62bvp2A97i0xSmB6+yEtUW3pI5FW8CdzJLkiRF5BCZMlFw9n8O+GxIrkf6Lhoa6VseAOACRFaEY3YtgSSmKRTS1Ztf7MAm2Y9F+rzWtBomVnGOPYRm09BYRjxMIqBPZCawoK85nZm+z20FoP2aLeGHk+BxaeqtrcX4yP4mPXfkxXDF+RVfPs8mw5Lxkx7U+tvAYdFPH9VPXJ5owkZKScnaQCotnKH/w/rfhjje8Kn7BNWBxbga1SnsA3OrBsbjicyzOTx/FyHgyx+LyDz6PfQ/djdf++h2Qt14BiqKggQkVFp0ip6EFolD9tDQ94FgMg7IGTRVI0HwRW0O5+OiTgUzwovzvb7sK//7WK7F9lAzgHcdipZW836RFs16DKLUHKlSHPHhbxIwVFgURim440anBxwU0FCJE2Q4HkWVAoXvH4rjlWJQ4xtk+m1JddRynbsfiWkWhFiQWx0rNroRc+/NmMsWet+FUg+EsYTGhGOjGFoZlX4FXZJlQt6sfW5BOSUnpgrUQFrkOjkU+CwxsDd6vVIlo4+Phhx8GAOLYSxKF6nYssr5rY1iMz72fd/6sNhQcmWm7Fu1rgS0s2ukC9nZeOxYsRs37innPTi9ivbuYlx8n4mIIH/5hC9964Aj+4D2/hpu3sE4Rqq8QPUs4ILANngNsvMZzVzGXgf/S9oYLyb6SFh/1PsCEFDAzQ727zABAa3l7LGrNcLHFGl/QMMlrcjIAk/RYbDSRkdrjj8D77t8EXPN+4Nm7iEDVLJHjLapww2cBd2EtM0REOHQSFlveeN1eUBvhYqdVOOZtx2Kv+qXcT75P9gdOUaTXYWW6vQxFATteBLz5h8BL/oK49WzEAtnGXsdChgHMPkYche7+iva2AeHC4oP/ANz9GeDuvwB+/KmgwLdgTUKcuops/+QVpCdsJejuAUCez4oAa+1X1vo8rb5HgW2bvAKozAD1zrGJ3vdpfUD1JeKcHN8dFCuzg0Tg1FNhMSWlFxaaq4jgtogTFv2EORzvu/8+AMCxxWNgKMZxLAIkttLdP8wWH21Ymu3KsWgaJo4ePOq5z+59GEWOi3YsjkyMJHr9+W/P45kfP4M3/Ja3vU2ukGtHoVqXB3fMrB2Daif/iKyIXUO7ULi8XQvx91jsChqxDjP/b/ixzBieKj0FA/bv/WTCoh2FalImsnwWDa3hOO/UhgrRNRYRJTHgWBzPkElSC80FqDpxLHbqschav1U9wqJLdGJ89RKaoiEyoscJmISq2p5wpBoqWIqNFKx1UwcoJJ5wvdRcAg0ao1Yqh+3cW261j5GVkAlqWS6Lpt50hLgBaQCD0iDqap1sw3GgKBRhwvTsk7WCZ3gU+IKzbr9jkWEZtLRWoI9mJyZzkx5h0Rbo3G7TJNG2WS6LltZbFOorznkFdg7u7Pp5QPscax+vD80/hFF5FDv7e1tfSkrKmUkqLJ6hLM13+KF+nDh04Bnn71aje8diqQfHoq6RwWnxub+CN37i7zE0Ou48poFGLsRtaPfMU5ePQZIzUPQoYdFI5Fi0qZs8ak3vgHk4ibCYDZ/tc8mGfvRnrKgWq1BYVw3MVbobiPqjUClOBENTOHc8D4GlwVlxYrZI53cG+mEFCbphOtGpgcc53nG42UIUTVMQOQaUT1iM+4xHLMebaSIgLC7XFTQUMmBlbWcny8FcRRRqxhW9uW0kj6OlRlfRpoPZM09YZFkeTU2HyDKOgJuUdVafRf+xInLxPRYBpFGoEdjnjdTVmRKgfDR+mThYKVxYzI87Pc88GBrpyeaj2STFumZLCQqLoVGofOfH/ZMRqnPA09/x3PXEvsOe2y1FhWySMclzqPsBwyCiGIABIXitCPRY9DsWM8MBgVOzCnUfeK6Af3/vtdi5ZcrzeF9MIS7r7wN4zs3tvoH2OgpBx2JX5MaA5ip6b+otuBOtaa0ZHylKUUDfRutv2nIsuqNQQz7/a34LmLgYePifiegk5EL7ajqIea/zNTvqCNJ8p9YAyircfKZJBC8hxLVhbSdHk09K7XUokhkClLrXWTl2Ael76D8IGA7I+KKopOLqnJnL+0lk7IarAM43Ec12LCquIuzExUQUfs3XgTf9CNj1anK/3zW58DQRgoetYtS6i9v3h6HUyGdrFU45+/O0RU1/RO66SwCYwKI3RSWUxjLwL7cD+38EzFrC/OYbEch7zwyT7UgdiykpXWHHRi7UVy8s2nGdAAJF9SwfvL66ozNtajUyDlhprSDH5zwRhhzDoaE1HAHG37PPdixmtmWQ2R7hoHfx7F6va9tU4q/gbpF0xTcWWZheiBUWbdFw8KZB3PC+G3Dexed5Hne7DbVlDYqueIQZyUoUsMW/5eYyXrzpxchsz4DJk/3lj0IFgEw+2T6haCpWoPULjxcMXYD9pf2OaMda0fa0a0AS51jMcBmohuoIX61qy+NY5CU+4Fgcy44BID0543oschy5RrnFaYERHMciGzLJyXb5+ZnYQMZ+fMj4qKpWHeFV0RWPK9KPvZ8ojoKpJRQWG0vI8TnILJk8N5ohAuOK0j4W/f1HAfIdVHTF6QE5lhnDoDRIeqweB0chQIRFILy/5lowKA+iqlZhmAbqWt3rWGQYtIwWeIZP1EtyIjsBRVccUdaJsXX3WLT2k+0ODCPLZ6GZWteu39Vib6dqqFB0BU8sPoFzB8/FYIc2BSkpKWcnqbB4VtN9E20//YNkJv9hVxyqrqrQ1O4GEn7HYr1aiXQs3vW9b+FNL7sOWn0FTKaI0Y3bMDfT7iulgUa2ECx+Tq+Qwae6cBiCHONYVA1k8/mOj9NMcP8dLXkHtxmB7ejss7HFqDAc9yDTHpQeXu6uKBYUFgVwNIXP3X4R/uc912Kqnwwgm9b0eoGJ6bEokR8V/nhLG5bjUVd0CD6XocwzoH1FqptfcRtyfQP+VTgMW8KibpqOAAoAMDQYJrBQI4NyR6RiOJhG78Ji1uVY3D6Wg6IZOLiQXCgfzJEfAnSmL2bJ0wfiWDQg9uBYtI8t2Sd+STydqC+H20Ga4uW1V23AO6/fgks29J/sTUk51ajO9u5WsuGkaEEnjMpM9ON+x1ySKNQonvo2wAqwJ2MLHIsn93uFxWqtAYVyXWN/8PuRq/RHoR6dL2H9uKuYJw94nJb/fc9T2PGit+BQSUdRpLBrQz8OT3sLqX358OiwQ29u4RPPFzwuPgDA9hd5rvlkHVnUVe9nmsvYzrwEn1N+bNWORdpV0KX1hH3nBraQfym7x2JEFCpAhJ3zX0XEo9oCib+NKtwIBa/ztdgWdXl/Mc+e2b+aQpTeIvG8YeK6BUdZwmLC+LEAmUEiXroLrBMXA9X5ZP0hxSIRFnvtPTSzB2AEYOO1wccka2zjKcJS5Ls6dgEwsRvIdojrm38S6NvQdj0W15NtXTkcvrxSJecha2Kd02PR/vyyvqLW0HZyTikdinmDAJYOkH9n9pDY19wYMBTixLZF3m77xFVmgEf+BQAVHeWbknKGYotkc43ObsOkzNbbk6X9DqiwHmeLjcXAfTZ1o44sl/U4jXia94g8fvHE7rHISAwYOf56mylmcGif9zxkKPG/Td0iaXnZ51g8Gu1Y3PfAPrzm+tegNlcDLdAY2jyEuWPefe8WBU3dDAiwQsg1+QUbXgAYQOFScs0Li0IdGCK/48PEMA89RKHuGtqFpt7E00tkAorjWGS9jkW/05GnXT0WOfK+FxpkbNaqe4XFMMeixEoo8AWsKCuxwiLLBx2L7ohIxt/rGVa/PCN4XbnmFpJWwfPBfel2AKqGCoZiOjrmOOu6SXN04ijUxeYiCkIBojU2z/N5CIzgEe/ChLwcRyI67d6kw/Iw+sV+6KYe2v9yLbCFxZp2fNY/LA07/Vrrah0SF4xC5WneuS+KiSwRi+3YYVtcd08kUA0VFCgIYUkuFn7n4ImCoRkIjABFV/DU8lNQDAXXrLsm0l2ZkpJy9pEKi2cpFcXE+jv+C8e4sVWtR5RkDI9NBPosNkL6LDJWjJGhBwsj/h6LADA01llY/Ni7X4+N5+zwRGvOu4RF1aQhZ8OERTKbTK8sQJSziEqHUA0jNE41XySFFTpkMLFvPvi+OzkSbaLiUjmXEw8gkZ+z5WDcXBTNRt0jLILhwbE0aIrC1IDsDJRb1vR6LkQwdcOKZICe6eAm43gBdVWDyHqFKJkPOhbjsLdF4miPSMlaBdI5a1+wrh6Lq8EdvbllKAuGprB/MfmgdSAjgKbOMMcix6GlGhC5XhyLlrDoO1aSOhHTKNTOUBSF971gG3ZNFk/2pqScatQXuy+E++GloEMwjmowfsxDI0kUariweN8xPeigfPq/gYmLoZjk/nPWDeAJn7BYqTVQocl1XDEZ4K5PQzjwPwB8/R8t/I5FwzC9jkWx6Ahdn7tXwYt++4s4Z8ME+qT2vjo8490PUVGov/0cISiw2S4/911513jF2i/jw0SgycQV8wDSi281wqJpeI4pytAANcFYxI7opGjUGgkci9ayAAClQhyJUQK3VCQimM3AZudPwX+dsSc2rab/oO3U80dmumApq/DXq7CYHSHimdvZMbYLYT1BQ5H6VudYnH6Y7MdsSBGbYYnrsNt9aGhEzBvcSj4zgJxfxnaRvohh5yulZk1wIJ8j7xcW/bPlGZa4IctH40XvmvUdFYvAzCPA8I6g8xOw7jODbutO6Brw2NeAb72fRFJf+eskYjUl5SzDdj1FiXxJmanFTFryYQtIYdSNeqAvI8/wjosIIAKOW6jiaK4rQWxkwwiefcbrWDRanYVF24XpLtT7o1AbtQaGx8MnbSz/ZBmfeetnMDw+DN5Vc5ibJsLi1LunYNBGQBS0hQ6zSV5flIOTvYpiEdXHqyhcWoCqq+HC4ggRFqV89G98iqZC3YVRrMuuw5A0hKdLRFi0oz9tYVGkSaSoX3B2olBhImNN7lhsLoKhGLQaLcedCRBBNEwAG82MoqJUoBoqeIZ3XLh+OJ6DaZpo6u0xkci096XtaHQjc3LXbr6aWnNEKbvHXyfHnL2faIFOHIW62FxEUSg6205RFIakIU9fxTAhLy/k0dJbKCklUKAwJA+hXyTjU3+s8FpRtMZg3R5PSbE/e83Q0NAbgR6Liq54XKlRjGdJopodO2yfa0TX5ErFUMAz0UKlLZCfaGERIOdzxVDw8NzD6BP6cOHwhSd8G1JSUk5tUmHxLKVqjWWqbHHV65radE5QWKwFZzRlsmQwqinBYlRpKfjDw+9YVJX2oP/2t7wH/+dTfw3a1YNpfqYd/6aaNORciLBoOQpN04SQie6fqHaMQu1cbD1SqgdmzUU5EuMeZ2gKNNUWzMaLAuYqLehduPIa9Rp42fVDgOHAMUH3WdOKUImLQmVEMkCXO4g+LM+THos+IUrm2a57LDrPFViPsMi0KqApYLlODmTG1WNxNbiFLIGlcc5IFse6cIgyNIWCxIFKMNA8HaAAcByPlqb35Fh8/o5hvPfGrdg46J2xn1QwTB2LKSk90FgO7XfYFSF9i2Jx94ALo1ny3g77Ae0WFi3hsaGaeGwuRCRprQCjuxwBdMf6oUAUaqXWnoX+88YGYHArpDs/BqAdYerGLywC8PZYlIvQNB0f+F4T7/hWE7/+iqvw9c99GDmhfc4/PO0TFuOiUGXfdTHE4RTXpzEcsl80gwIKk8nFkU74CzhJnH/9m6xNsaNQ3Y7F8H7PDq0qcQZG9bCR+rzO1771zp+BHov2cv7ef91gFx9t514ILEXGZ120Z/aSHSHv3T0Jb3hHcgex1EfeYy9xWVqTRImOnt+OPQ2sv2g5KrsQTkuHiHg4frG3B+i6y4gA1wo5lpQa6dHpCIt2j8UKAKrtfHSz7hIiVCoxn7EtLCoVIrivuzw83tYWL5N8d+afBL5zB7Dn34ANVwOv+hJw/W8DudH4557O2D1nI5wWKWcfNEVDYqXQWNJucfdYjBP4GIrx9A30o0AJCIsCI3iK9Q294XkdlmZjewO6Gd04ikPPeB2LerPzRA9b+HFvk19YBICRdd7JHoZhYO47czj6t0dx6YsuxR99+Y/Aye3z6/yxeYgbROQvzOPw2OGAKLjUWAJN0TCrnYVFAGgeaYItsqhr9dAo1G4o+ceBMVAUhWsnr3U+D3+PRZmR0dAaMHx1EZZmYRqmx7G42LCERb9jUQ46FgESh2qLS3xEggbLs1AMxelNCcDjPPP3WAQsoaaLCYCCIaCqVp39oOpqZI8/RwQTGSDhHKNSs4R+sd+z7cPysEd0rSm1QJ0rzxNhcaW1AomVIDES+q3xg1uUXEsKAqnhHS9hcSwzhopKROWm2kSGyzjxsm7HYpIei7ZYa4ustlPVLT7brtgwB7bNyRQWJY5E9+5Z2IOdAzsxJA3FPyklJeWs4syofp8FKK2m01PweNLLa0xt2prIsWiLLUorWPD0OxZZjkffgPeidWDvE87fr33XHaB9vVAWZtpFTQM05GwwxvToSvu1OTmkiOBC0Q3kQhyLnehnFRwrNZ1ehTbD+d6FRQDgGdoRzDYOyJivtKAkzMsHgGa9DiHTfq8GzYJjqKCwaEehctGnBVogRYRsRBRqQ9UhcTRYl/sxIzCg/P16EpLlWa+T0tQxnBdRsoTFtXIsZnyC18VTfYF42zgGYj7P04lifz8mt+xASzMg82yi+FI3IsfgXc8/B+sHvIVyfzRqJ3Li6j7PlJSzkuZKMjdZFB2ERcM0Q51+oGigFtPb2V9QCjufsEHHosR1OO8Mbms74gDsmBoKOBar9fZ+MEAB1/wWTKsQHtaP1x+FCgCTo66xCCvimUPH8JVHFfzli0T8yTtfAsYXH35kdgG06/oaJyzGCmzoHKcaiXU9/PYRGShMAFoTuQTmxo74exO2EhSM5H4iUNEMERYzCRyLAHFIKjXy3KiJOpmhdl88Ie+JKA30WLSFRS2+KMOAHBtMw1cUtwWrTqIbABZ2VFnsy4STGyX71u1YZAWgf0uy58sDxFHYi2Nx/inyvE3XBeJ4HQrrgMZSd8LlwtNEIJ66wnv/1BVEpCyFxKHawiLDYXx0FOdvsfqot6rEfRpW6J28gji2qzHnopolVCwfIMLl5uvDl7NdjM0I10WrCvz8b4DvfZSc0278PeBlfwlsvu7siEG94JeArTcBG557srck5RShptZQ1+qQWdnpK7Ya3A5Ev6jhR2Ilp9dbJ2RWDjoWXbGUTa3pERK7dixuHMHhfYc926o1Oz8/zFFWK9egqd7njIx7hcW5Y3NY+tkSRm8dxW0fvg0c7/3NND897wiBJm0i6xuLLDYWkefzsC53HYVF2yzf0BqhjsVucPfrS8otG25x/rYFM7vHokzLgc8LIIKkqZkwadOJkFxuLoOhGTTrTc977eRYXJddh7JCeiy6RSA/LM8GBC738mFRqFk+GxqF2gnRFFFVql7HIhXvWOQyXKIoVNVQUVErGJKHnOcClnPPFQ3c0BqB70Kez6OltVBWysjyWfAMjwGRuFjDBNu1gKM5yKyM5mp/63RgNDOKmlpDQ22goTeQ43KgKApT66cwsXnCcSxGCYE2FEVhRB5BuVWGYRqOU9V2dQOWUEx3FoqBdhRqN4L0WiGzMg6uHERdq+PK8StDe9umpKSc3aTC4mnCiy7agFc+99wT+prr7/gGhl/10djlpjZtxfThg54iXT1EWLRRW8GizsrSomcAPjQ67giH2sosdE3DOefuityO+ZljYNn2YEjyCYumaWLGJSyyUvRFUenoWAxniG1httxEpeUt5ozkoouGcVGpLEM7gtmWoQwWqi1UW8l/4DTqNacvIkCERT7MsWhVwYSQAbAbu09imGMxk81hauu5aCi6FZ3p7rHYvWPRnoCYFYKi1ro+CSsNv2NxdUKU4ItvvXxTP8oRPwbDGMispnJ7aiHLMqRcAZphdnSodkNeZCGwNMYLyQTmfOpYTEnpnubK6uIeAUAIL4jf/eAT+NI37w4+wMmkJ17cdsXRTY/F8d2eOMQdU0OYWyxBcRXjKjXffhCyUC5+MwCgXwwp5tWbaDTbY5TBYhYZqwB1eMVAS9GwfdMkHnhLDm+9JHz7Dk8vIONy5hXz0eJCaK9BH3HriKKiskCe9HgpfyCPu14nxzyjA34XbFLn3/N+B9h8A6qNpkdEjXzfhgbABLIxs6Jzrjh/eQCwouSGBgawe4svTt8RFuO/GxsZEr13UeW7wIP/2HZnKrZjsfOkM8rUQFEU1B6TSJEZJL0U/Y7Q0fOTPV/uJwJoL47FmT3EuTdxaedlxnYB5enuzjHzTwH58aB7b+Ii8u/iM8HnqHWAlwGaQz6XxUDB+g60KpbgGPL9s9e3sDf4mJuqJSyuHCV9HwsdWi/IA+1t8WOawMG7gG++Fzj0E+D8XwJu/Sfg8reQ93q2QFHA7f8GnHPTyd6SlFOEbx74JspKGRkug7JSdqI+e0E11Fih0I3IioEeiX4yfAY0vI5Fd7HeL56wNNu1sNhqtlCvtM8bar272EsAWHElKLAci74h4pRXSypajRZG141i629txeAtg6ETP+em51AcLwIA9IwOlmM9Tr2F5oLj/AJIr8Eo5hvzq3YsVtXuexxfNHKR8zdN0aAp2nEsZtgM6lo94FgE4Dj1REYETdEotUptx6LsdSzWlGDdajI36Thuo3rfcTyHhu96aMdcjo2PYXLrZOA5GS7TlfNMNEQ09Sbq1rVIMRRwTLywyEpsoihU20k6lvG2SBrPjjuuQwoU6lo9IOIWhSKaehOlVgk5Lgee4ZHjc2Aoxtne40FBKKCu1aHqKlZaK2vqXhyRiYg/UydjwRxPBPVCoYBsMQtFV8CzyRyLgOV+VYn71RaUBa59TKlGtAMVaPdgPRnCYobLYLG5iCyXxZVjV57w109JSTn1SYXF04hqefWz/rpF2nQJVD162vXU5q0wDAOKSzAMcyzaqCGORU1TUa+2fwgMjZEiWOPgQ5j+4rvwjX/868htUJp1VMol8GJ7UOx26QFAuamh4ar02L0CO65TM5DJBV2PnRjkFBgmcGjFO+AajRFRBjIxjkWWdpwHmwZkGCa6ctE16jWPiGqAAc/SYKhwx2JcFKotDmZCHIuCICCTL6Cp6pA4xiPSZQW26x6L5Sb5IZYNEZjW98soNRSYJhFfAXSeYZ8QiqI87+vi9Z1dCZ0YjuiZeTpiO3A7OVS7YSAr4Ce/fT2uOSe8T4ifvJQ6FlNSusbQ2lF/vSIkv/YBIAJAo3P8GIBQYdGgfeKAJwo1RljMT3jO+TumiAhVdhXzqvXgtdK0esd18l+741DXj5JrwE8Pa7j4b2r48N9/HwA8PRU96zZNHJ1bxBGFFOum1VzA0egn28ElcPWVV6LfEhQ9rsdeigouoePqKbY9a6cbAlGoCcch+TFgaCuq9UayHotuMiF9/twUXAW7zCDpyQcgm5HbQpQNKwCgEu0/2rJwrIhTpJfnf77DKzBGRKFShgaB53qPQs1Y18dGyXv/xMXJni/1AXqL/N8t0w8TJ3BmoPMy4xcTx2LcRAI3C0+TWFy7v6KN3E9EvfLRYLSqWif9HP2Rya0ycVSHCYt9G4hrtXwkenvs86OpA8PntgVEP2KBRND6i86VGeCHHwfu/gyJ333J54BbPkkmO6xygltKypkCR3OoKtXE7WHDWGwsdiVMSqxE4hojnpPxJTLwtLfHYlNrQnc5vrt1LI5uJBMoVlwJCFq9+4kepaWS8/fg+CBomkbj2Qb2fWwf/uPT/wEAYOTO44v5Y/MojJGxiJYnr+92HC42FtEntK9lbtHRzc0vvBmCLASe3wt+oSmJuObvO8fTvNNjMctkiRAcEVVLURRkVkZFqYChiGPR/V55kQ911rldWZGORSHoWJQYsv58IY9cX3CfZblsVwKRaJLXt0V2RVcS9VhkZTaRY9EWUKfyU577xzJjzmeU5/OeOFabvJBHQ2ugolSQ44mwSFO0I/wBCKSMrQUFoYD7Zu/De3/0XnzoJx/CnoU9kZG13TBijT1nrSQWtwAPEGFXYITEwuJEdgIVpQJFV6DqKlia9ThD7T6eUT0bT6Zj0X7t7f3bnX2TkpKS4uaUEBY/+9nPYsOGDRBFEZdffjnuueeejsv+7d/+LZ773Oeir68PfX19uOGGGyKXT1k9RsxMp6lNJIqs1WwPqsJ6LNqYHeKZlpfaRYqh0Ql881+/jLl//TD4sXNw3ct+pcPKyLatLJALvyC0B36mr2w4veId9LFi9Kz9lqaHxql2osBokHkGMzVfFGqI0CSMb0Nu980AgMEYxyLHUE4U6oYBCRSA6ZVk0Q+maRJh0SWi6qDBMbQnqg1oC4t0TNwlZc2winKwNTUDMu/tsZgR4h2LkkQeF0Ty73KdDJ7Ceu1tGspiuaYCMEFT8PSiXA0y336t8aKEoS6jTYes6Nv+kbGYJU8PFFtYXCP34GBWjI3/tUnaizElZS04I8YidizPSki0YCeUGrB0AJh+qH2f0OWsdC5jCYcR44VmGarp/RFu+s/Z7lnhcQUCn7hzzuQAaJrGSrUtAgQcixHYV6u5xZJz39RoP/7ff/0Qz/tSHdsGabz/1ueEPtd+16VqE6qqoa9Axg6GNcyO6pGY6SAsnn/+udg0QcTSuDjVWLJr0OfNX8zocnZ4tdZlj0Ug3vmVd11nM8OOsBgORaIp1fhCZjZL9vfyxhcBb74T2Px84MlvAM/+lER6RsVA6Sp4joVqmOipop6xXJp+IX58d7Lni0Xyb6uCW295blBg7URzhZw3xi9sryOMMSs9ZGlfsvU2lkk86ci54ftt/EKgcizEEduwhEXfT9VWlXyOYeM9irIclUc7C8im6RUKNz6XRKuGQVGA2NdeXteAx74GfOt9pDfkle8ivRTPe0V4z8eUlB44I8YiIH25amq0yBeHu79iEkRGRFWtRkam+oVFgRUcF5GpmGjq3mhNlmahm8kt6MXRIkRJRLnUjlBuVbuf6FFaKDl/D40N4a7v3oX9H98PtsDi5jffHPoc252mKirKpTIKfUQQMXlyv9txuNRcciIrAUDokCJw7rnnon+YnN9WKyz24lgEgN1DuwGQugbHcG3HIpNBQ2s4EaGdkDkZBgzQFE2ERbdjURJDo1DdCEyMY9EvLLLR9Y4cn0skqhYK5PPrs8a7trAY53DjmLZjMUmPRVtYnMhOeO4fzbTHjnkhj5paC+zrPJ+Haqgot8rI83lH3OsT+kj/S9PALb90CwRxbSde//qFv44XbXwRbt12K9666634nct/Bx+58iPIcas7RgHSWxIgLl2AuDLdqLoKkRUTt4iZyk2h1CpB0RUohgKWYgMiIk/zARHdje287SZCd63IsOSceenopSQ+OSUlJcXHSRcW/+Vf/gXvfe978ZGPfAQPPPAAdu3ahRe84AWYmwsfSN5555247bbb8MMf/hB33303JicncdNNN+Ho0aMneMtTbAp9Ayj09XuFxQjHYidWlkifRdM0cOTAM/jTj70fuQtvwfCrPgqlw0wxO3K1skQu/LxLWNR8TsvpUhM0BZhWUSlO5GpqBuRc8h6LFEycP1HAfMPfY9G77e4fO6puoi8mOpNzRaGKHIPxooS5SjJhUVUVGLru9EUEAM2kA5GfALB1hAzEYoVFq/CbieiT11R1SDzrES8zAgOKjy4kXrDrAgBA1uptec05Q9g5lsfVW4KzydcPyGiouhPhyjE0mJj1J8HfZ3HXZPJjAGhH3xZ8PUJPVxTre5QXTvws/LUSM1NS4jhjxiL2rNqVBNtRtpZ58MvAn+8G/sU1gafbSRq8TJxEUbTKUOBdrxnlWIwTFn0ikshz2LhuBOVqtGMxDrvPommaODa/gtvf/8e49TwO3/tVGYMdRJqWQgotTYVUcAZ8M9SLuc7iTqIei6uMHwPLd3ZlAeExtf5ehFoXwmJI/8pawyssJnIs+qMz/VjuUwh5oH+jV5gOg88Aevz46eKLiTtww8QIMHoecPMnyAOtstXfL+L7oSsQOJZEofZST7fjX/1RqCPnAaCCDj4/tuDeqmL9+DAGkx47s4+Rf7fcEBTz3AxuJfu5nPBcZ8eSrr86vK/q5BXkfOXuY6grxHkthhSwlAqJau70GUxcStbX6vA7xH2e4mRg/VXR2y/3A1odWDoIfOe3gD3/RvoJ/tKXgOs/AAxsjt5fKSldcMaMRUD6ctW0trAYJ/6EMV/vLn1BZEXUtXqkmOkvjAuM4PQ9M1smWnrL48pK6kqyoWkak5snUV52CYu1aBEpTAh1OxabtSY+/KYPI3d+Dps+sAkT4xOB5QFgcW7RWiH5J9/Xfq+GaTjCIC3QqGt1j/uoY49FF0mjUIvPLYZ+BnW17nGD+qE6ZEl4emLSPBgrRUdmSH0jTrC0hRG7x6LHsSiFOxbdRAmF7h6L9rEiRU5yIuJ2M8FYZPfu3QCAbVu2AYAT2aroCni6s8PNFqiSRqEuNZeQ4TKB74YdCQoABb6AhtZA0zcJyI4JrWk1FISC48TrE/ucWOGhsSGImdXXaNxcs+4afOKaT+BDV3wI79j9DvzS9l/CxSMXO6LqashyWYiM6PR39QuLiqE4rtQkjOfG0dJJH0pFV8DSbOC8EvV5Am3n7WqxX6MbgTDLZyGxEq5dd21iMTUlJeXs4qT/Evr0pz+NN73pTXjd616HnTt34q/+6q8gyzK+8IUvhC7/T//0T3j729+O3bt3Y/v27fj85z8PwzDw/e9//wRveYqbqU3nQFEswY5mIh2LnVhZtgbDoMCwLN7xwY+j/8a3gerQGNk0TZhWnFd5kTgWeaFdVGqouqfn4rGVBvoyvOOYjBUWVQNyF1GoAHDphn7M1b0DOL9j0e4LaL8Hjon+GvIuYREAto1mMV9JNvOxaQmvjNB+r5qJ0CjUL7z2UnzyF8/H1pGYHw1WPJ3YoRejbphQdTMgCuVEDnTMQNs/oMqLHP7jHVfjRRcEXQtT/WRwpVkDZo6hQXOrnw3nF0wv29jdLPRhy7GoJogeOR2wo1Bz0okX+VLHYsqJ4owZi9iF+JWYKECg3WcsMwRc9FrgvF9sPxYnXvjhMkAzuq8RWhUopne9pl88dN+m6K63Y8emSdQa5PrI0HSsY1HXgwWu+SVSDKQoCjzH4g/e82v4+5eKENjOP6ZVq6/jwgq55g4UvWOHKGGxUxSqm0SORdPET18vg+k0PT1KpPMXNetLwP982Hufa3a9CaqrHnuqqqGlqJ73GttbkmYjI0cBtJ1mb70LuOT18RvCZ4KCaQgdP2m1Sfo4RgqLxLHYcxSqWCTv3R+/KeaBl34G2P6i6OfbcaN+YTKO6UeI63NoW/RyNEPiUiszQESB2GH+KRIpOrQ9/PF1lwKG6nVAKlaRVwz5/FtVgM91nngwdTl57+UOrm13TPTQtnb0bCfkAXKsP/GfRKy86ePAyz4HbLqOTKhISVlDzpixCIiw6O9X2C2z9dmuhD2RFVFX65GOxVBh0XAJi5pXWHRHFiZl/db1qFm/wWmGjnUs1ire8z3LsSi50hNYgcVtb78Nk++YBC3QHQWI6cPTAIBGhVyf866xiGqojrDI9ZP3NJlrx4nbLr6nl5/GvpVwR3o2Fz8WWdaXse4N63B0XVDcrmv1yOMhyrFlw9EcaJ68/wxDxlZhPRLd2C5V27HoFlFFSYztzxflWGR5FnWtDpqiHbdeVHQqQITOrqJQGRESKzkCqmKQKFSmQ43MPmYZgUkchZrn84H36XcsAsBKyzsRzRYWAWBQavc9HxAH0FBX9/0/WVAUhUFp0BEW3VGo9rkiTjx2M5EhEwEWGgsdY2yTRKv63da9wNEcPnzlh3H7jtsTP+f2HbfjTee/CetyHfpRp6SknPWcVGFRURTcf//9uOGGG5z7aJrGDTfcgLvvvjvROur1OlRVRX9/ePG/1WqhXC57/k9Ze+w4VADgJTnWsaiE9Fk8tP8ZNA48AIqicNtb3oOX3f6GyHUcOdge9JbmZ1EcGPRkuFdbGuRsewB8rNTwiHxUp+gji6aqQ3JFoUb9SLEJE6GGfMJiN/0RASICUq4+UueNFxyxJw7nc2BdTk7DBM8yAcdiQeJw66VT8TGVDAeeodt9DX3YDrecTxTqpcciQN6/ECJiru/3Dq44hloTx6JfzLpsY4TLIwR7/9Vap99AOgw7CjUnnnjHYlgEbkrKWnNGjUXsmMbqdPLnFKeAbTcDk5e37+tWWORl4iTqtFmmAaj1oGMxICxy0bdj2LG5XSTLiFysY3Gx5N3mrCxh36FpfONpUjh4963X4wNvuTVyhu6x2UXn7/mVGkSB9zjzAKAYIQwmcSzms/ECxjrlaVw5yeI682fhC+SiYkV945uf/rnX2UUxnmhJk5WIyJZgXAQQtyLgjX0NOhZ9+5jPxjsQ7bFN33riHItDyPXWo9JGaxCnbFShWVcg8HYUag9QFCD1hwuDF/4KsPXG6OfbYmzSHpgA+RxnHgGGt5NelXGMXQBUZ5KJywtPkd6H/v6Kzrp2EbF27vH2fXaROCxeVKmSqOZOn8H4ReTfxQ5RrVWX82tsd3yEaWaQCJ26StykF9waH9GbktIDZ9RYBO3CezkuzSCC+ca8R7iIfU1GQlNvRkaX+vuwuYVFtADN1DyurF4cUOu3rIe8mVy3M+szaMSMRdwiIgAU+guYOzaHlfuIiHP9y6/Hm+54Eyg6fCxCgUK13L5mVJbJ2CZXbO87zdACjsP1+fXOpVfyjVvCxEumw6RiN4ppxcpywWtgWJRmt/AMD5oj25bUsWgfQwzFoNVoed4rJwSjTP1EOcXsKFSBERzHpchGj+uyUXHqHRgQB5yYX03XInvy0RQNhmKIYzGBsLjYWERRKAa22y022oK8X1h0C/Vuh+OANECE5Ij+l6cyw/Iwygo5d7nfo+1u7kbkG8+SMcNya5kIiyExtjzDdxSKbWRubSYzveqcV+GmDTclXn5b/za86YI3BXpNpqSkpNicVGFxYWEBuq5jZMTbBHZkZAQzMzOJ1nHHHXdgfHzcMwh384lPfAKFQsH5f3JyMnS5052v//MX8e7bf+Gkvb5bWBSkDOoxjsXS0qLntpzN4//99Z9g+fufh2noGB6LnxFz710/dP5eWZjB0Kj3h36tpUHOtgfU0ytNjBXaA0mKFTw9AO1IzfZtHbzUHvjVlPiZ2bunioH7+mXvD5huhUWOoT3F1XMnkl/UbWGRcjn5FN2EwFABYTEpJs2CYyjPvnPTsvZj3icKZQQGtE/4e3KmjHqC/RpGQeY8IiDP0mC41Tft9guLO8fy2LWu4Dgk47CF5F7f16mGLSxm+BMv8mVPQvxqytnHGTcWEQtAbSF+uSg6CItXT7G47fyQ7yUnE8HG3yfNgrLuV9CFYzHsdgw7NrmERYmPdSzO+Yt5ORl/8qWv4Z3faqKpmVg/Fj+x5Ls/ecD5e36lhnWjg2BBCikCRf4t5rtwLNpFWNsNVpsHw8QX8zI6ed7F2ZnQKFIUIsZVfhdfYR3wks+2n8OKnihUg5PJZ52w71S1Tj5/93uVBN9n63d/Cdn4z7/L4wN8NpFjsSNqk7gko4R3Kwr1f/br2LPEh8d/xpEZDDoWk2L3R4yJdvNQXwQaS8Q9KCQo4k9cAlRmgUYpejldBZYPAgNbO/dt5ERg0zXA/JPtz0btICyaJqDWLVdnh5+w2SEgN0Zc22HCd22eHM/P/yhxascU8pAZImKm/Z1KY8BSjhNn2ljEjo9cTU+w2dpsV8KiLYws1ZY6LuN3xfEM33YsNsk5wy2Gsuj+98/UlilnQhIrsahXo8/Hy/PLnttSVsI3//mbOPYPx6A3dAxNxLfXePCnDzp/15ZrKA4UwXLtbVd0xdMjkaEYjGZGHTEsk/H1noxw6fWCaZioKtVVC008wwcci3HCYJYj9RzKJO/VHYXKiAyMsDGTC4mV8AubSZ1t58BOz2OswKKhNjz7K86x2Euk5aA0iLpKHJ+OYzHC4cYzPBiRSdRjcbm1jD6hLyAsUhSFIYkce7a45u9H2UlYHJQGUVNrkdG3pzL2e+FpHoJrkpt9PrPjdZPQL/aDZ3iUlTJaequjYzEqChVYG8diSkpKyvHgpEehroY//MM/xFe+8hV87WtfgyiGX8A/8IEPYGVlxfn/8OEO0TinOX/x+x/A4w/de9Jef9IjLMpo1KILIsuL7Sii+jP3olGrQMpkMXLbH4CiGQyOxs8GvvfHP3D+Li3MYHjU22+goerIWMIixcsoNzVM9rUHkibLe2JIVV9Pxoaqk7gvi5V6/Ay7vMihKJJ12uUMu8+gepTMxj6y1INj0RXpunMseTxro279kHEV31TdgMDR6FFXJMIiS3v6J7qx3ZR5yVt8zvAsiXR1uS+fmI6JzothwvV5sjQNOs7dkAC/S45nafzrW6/ESy8M72fhJ9bxeZphC4sno9+h/ZppGS/lVOaUG4tIRRJluRoihBMxLBKUj/6xS1sih2L6HYu+86X7WqVq0c6wEHZsnnL+lkUuVlicdQmL33xaw/T8EjiWxV2vz0BkKawfjRcWv/3j+/DQDDlP7pluYnJ0EFmDFCXHOfJvMSI+LOMXFm1x1i50dRE56jD7ePC+gq+A7I6n8gvRz/8osO0WOD8TOAHQW86EJJOzIkWNZOkJtnPU7eSkadr7fH+slJBP7lhMipBbnbCoNYmIzkQLizzH4k9/puDrM6PB95WEzFA7DrRbOJHst26Om6V9JHp48/OTLT+2C4AJLO+PXm75IDnO1l0Wvc92voIIgcsHyW1bVPW7HNUG+V7EReSOXwiUj4V/1tU58vwLXgVM7I5eD0CiUpUagF6zbVNSTgyn2lhkLfqBzdZnHVEoCbYw0kL4eV6AEIg2FRgBhmmAoimYiiUsqm1h0Wh2/91fv2W98zfLsajX6h37BwLA8mJbWKw+UcX0s9MwDAObPrQJjMRgaDxeWPz5D3/u/F1ZrmBozPucptb0CIt5Pu9xQImy6HETJokl7QqDiFKt1VyDQaIcKWscKjESKFCBvn9+cvaEGeujdDsWdS5e+OJZHv1iPx74lQfwvKnnebeH51DX6h4xsdOxrxkaaIruSSAalodRVYkwqxpqrBBlC7BxPRYN00CpVcKANADe3/fcel2AiLM0RQeERbfwPyS3j7lBaRB1rd5V5OuphB0DK7CC57vQi2ORoiiMyCMot8pQDTVUFBZYASwV/Z3r5lyYkpKSciI5qcLi4OAgGIbB7Oys5/7Z2VmMjkb0ggHwqU99Cn/4h3+I7373u7jgggs6LicIAvL5vOf/lGjCYkrjWO9zLMZFoZaWSBGr8tB3sPy9v0K+rx8XXHoVmEwRAMAL0cWiVrOBR+67G6JEBm7l+aBjsaEakDPkAsz0kce2jbYHPybNgmfbXwGB9X4dmqrhxHoCQFVJFt2xfYhsu+EayOmNCrSFgwCAI6XOxSKRC34leYYG5Ro4ruuTIPPJ+k00LWHRdDkeibDIdN18eXCQxGNRrACeCfZotLGFxYJfWLR6F9p9Fpvq6mewuV2EPEuDXgvHYoiAJrAM8gmjQPvk1W/DqYSiG6ApQEp4zK0ltns0NQikHE/OuLGI1A80S6tbR1hBKcqdFBPP09mx6BcW2+fZ5XK1e8eiKwo1K/KxUai2Y/Erj6p46b80MNRXwOUXbMO6PLnmDhajf8Rrmo7/+emD4CVSYJhZrGJytF1YKTCkgLbaKNSuefxrQdei37HoFhMP/dTr7uJFryOMFQFdBcuSz8/gs5ZjMZnzoOY4Fn0iW93V785fIBPyoZ+/7aowQccLj36EfEdXbTJMcqzHRaHaLpFeC7PZ4e57JLoR8t0Jiwt7ifDctz5+WQAY3knicUsxosTC02QfTF4Wvdy2m8n6DlsTJDv1WLT3iRwj+E9eBpSPeuN8bapz5PlJI8Vs92hCET0lpVfOtLGI7Vi0iXOFhTFXn+sq/s//mn5ESgwIZm6nmdki18GKK9pdTTCx2A0NGhMb2pNRWZ5Fo9aIdD4uLxBhsfxQGQc/dRC5Yg6btm2CMEy2bSBmkpNpmrj3R/eib4CcM6vLVQyPe/vHLjWXPFGoBaHgEcNEWcRy0+ucXFNMwITpxEv2isAIoDjyw5CmaGS5bKxj0XGX2cKiy7GoIv7ztY8rjuEcYdoeixSHi0RYdE10ErjwsUlDa0BkRKdfYTeMyCNOlKxqqB4XXRg8zYMW6Ngo1LJShmEamMhOhNaGbIGNpmgUhSJqmrfGl+EyoEGDp3lPVGa/SBIHVhOFfDIZy44BIOK1W/BzHItdisNjmTFUlAqaepOI4759LTJibG0uFRZTUlJOVU6qsMjzPC6++GJPg3G74fiVV17Z8Xl/9Ed/hN/7vd/Dd77zHVxyySUnYlPPKirllfiFfLgdhpwkoVGPLojYjkVxw27kL38lzrvwclRXSolf75F774bSaiJXKAIASotzAWGxqbajUJkieWz7aHsgZ1Ak0tOGZ4NfB3efvGrCnnnnj5LBpxFSEDMME9Mr7aKWv3egxAXFG87nDqEoCluGkw0sbIFXp9wzrUzIXPfFrqFBUiwlUah0xyhVRSOCYcCxaItEVhzqo8e6P878bBhwCYsMDZpdvaiXVEDsRK8Rs6cqimZAYOmO0bfHk4wlZqbCYsrx5Iwbi8j9QHOV59eweMC5JzovH+tYJEWfQI9F/+xo13VzaaUCdHlOL+QyGJCsWC+BTexYvHY9g49ey+Pmay4hgqZF3I/8e586guWVKsaHSdFvZrmKybF2j7oC0wRMA8VcF1Goa8HsY6Bm93jvy495b7t7zU0/DMw/1Xl9rAToKjhrzGJyOSJcJXYsBqNQARBXWSfEYqhwKFviJCUV42Ms/Qj51TkWAYDLdO79yQiApoAPmSTWFdmR1QmLYtESfhP2eazOACM74wU7G04E+jeR5/n7c7qZf4oI2tkYt41UBKYuB+afIPGpao0Izf4+VHaxPzMcWIWHdZeSaGbbAemmNm8JiwmdpJlBEvnbi3M4JaULzrSxCEuznn6G1R7OaQuNha6cj3G97QQEXUHubbSFRbcY0qx2PxnFHUHKckRYZND5elVaKAEA5C0yhl48hKtfeDUq5ba4yfujw33MHJjB3LE5jK0n1/naci0gLC63lj2OxX6x37O/JFnCUnOVaRcR2M65FaXz+PRwJd5ByzO841gEgLyQjxcWeZ+w6JrkFPdcIDzaVBDI+GRwHYkolVgJFEWBoZiAK9b9WhIr9SQsjmZGUVEqUDQFmqHFxq0KjEAcizHCov2ZT+TCk5nGMu2xY7/YH3AsUhSFDJdBjs95RHpHWFRPT2HRjkINOBYtV2+3/Q7XZdeholTQ0lqhPRbjzl1Ab705U1JSUk4EJz0K9b3vfS/+9m//Fl/60pfwxBNP4G1vextqtRpe97rXAQBe85rX4AMf+ICz/Cc/+Un8zu/8Dr7whS9gw4YNmJmZwczMDKrVVfwAT/FQWel+thrtmtke51g0lAa+/v++iGp5BVxxFLkLb0FxYBAry4sdn+Pn3rt+iOGxCQgSGRiqrQaGfFGoTdVwhEWKplGQOAxk2wNzDQx4JvorUGu1XXXluhaISw1j5zDZppYULNDMV1tQXQO8MDHTj+DaRtsEmTQOtWkLi74fM2HOyKSoukH6GcZFofoEOtnq0UdbfZQeeLbU8zbYbBxsD7A4hloTx6I/CnU16DHxI6cDJgCeZU6KYMoyNESWRhqGmnK8OaPGIlIf6UOWsP+dQ0xvD8yFxGvacBKivqeUIyx6hSLTLxy5hcVSpfseegC2DZL3MVVkHUErjJWmiS9+9buYWyxhLEfjQ9cIGBkoYn45uSj7nXueQl8hi8E+ck1utDSPYxEAoCuRwuJaOxb3aSNAfgLs09/0PpD3FY2qLleMWAQe/ffOK2VFQFfAWb0eDT7b1TEWFoUKIFpYlIrhAp59nMbFYYYhrtaxCCKihzkRKcoSwk3khFWOI7Ij3qjabpEK1vvswiE0dWV3sa2j5wOVmXYvUD+mSRyL/ZuTfVY7Xw4sHyDHhFInxxzr+/xb1vk1Mxh8vpux3eQ4WfJFtZom6SeZHUkeoytbr9Vrz8uUlC44o8Yi8DpsSq1SV89VDRVVtdqVS4en+dB4SNOaACFAAOObkOIWFmFdHtyuOrXSnWPRhrZ+v3M8F+lYNFoGfvBfP8DcsTmwWRYjLx9BcbCIkq8HdBjanRr0mo69d+8FL/AYmSBiiKqogSjUilLxCotSf8CxuNhIXovpGqO9HX7K95P9/cPDP4x1TfqFxaJQRFOPvq7bx5Atsrkdi3ExqkC8E7ahNRxhiKM50B1KrE2tCYmVUOALoY9HMSwPQzEUrLTIGDWuB6YtLMYNA+z1TWTDhcXxbHvi/oA0gEbIJJscn0Oez4Nzjdn6JSIs+oXI0wVbWJRYySMs2tGu3fRYBIB1uXUotUpo6a3Q81TcMQYAOS55v9mUlJSUE8lJFxZvvfVWfOpTn8KHP/xh7N69Gw899BC+853vOI3LDx06hOnpaWf5v/zLv4SiKHjlK1+JsbEx5/9PfepTJ+stnHFUunAOhiFIMuq18B80ysIhlO/5Kg7t34u56aPO/cW+AZSWOg9mDz21B5raHtjfe9cPcOlznufpVzA04p2N31B1JwoVAIZygiNuAYAGGkKIQ9CN27G43FAc0SyKgmjN6A+ZrXa01P2MZ97lajyyROKhzhtPNiBt1GugKAqqr+CbNEo1DNWwhMWIKFSKCr6GHYVK8SI03cAjR0s9b4PN+gFvFCq1Bo7FrLA6x6IbJcHxcjrAszRY+uRcLmSBTWXFlOPOGTUW8fclS4pdaB/YEv54lLBI0ZGuxY6OxYgei0sr0cKi2cGNxVjnKinCsbhvycCL/7mOJw8cwYEjM879Q30FzC91FhZ//sRhtFyx6N/++VO46eqLPM7GdaM+0UNTUCycuChUAzRw3W+DWdrrfSDndyy6hMWLXgPMPtp5pZwlLLK2sGg7FrsTFgP9JMtHQ5a26ORyK1p9NEfOS/TaHlYdhQoiToaNf2jWOV5zwiqvWtkYR14cUh+gduFYZHhg43XdvcbExZaw2KHo3lgmkcwj58U6mgEAO19C4nuP3EtEPE4KRs46Uaj90esSssRRuXLUGwncXCHbW5xKHoWQWSNh0d7mvo2rW0/KGc0ZNRaBV1jsVrSyxb1uhEWKokIdjipLzlO8GRxTeKJQlRDHYjn6mqF3aO0hiGS9jMCgXquH9k9Tl1Qc+swhHD1wFEcPtq+Hhf4CKqWgAGez94G9UJoKzMMmnnjHE9j3833YfeVuMK6agV9YrCpVj7A4Ko96RFZREo+rY9E2t4cJTdld5DPWDA1ffvzLkavhaR5ujbYoFOMdi1ZspS0siq6xSBLHItcppcCiqTWd446jOc+Ee/9yEichz+cje26GYfcvnG9YqV9x7lxGAMVTsY5F3RrHdXIG21GoADAsDQeiUAEiLBaEgkek7xPIhKLTVljMkHNuhs14HKg9OxZz69DUm6iqVfA0H5jgkGR9qWMxJSXlVGWNuzL3xjvf+U68853vDH3szjvv9Nw+ePDg8d+gs5w4YXFhdhqDPhEPAHgr4lKQMliaPRR4/MkH7sbMl38bNC/i4suuxqZtO4Gf3wcAKPQPYGV5EZ0uqZ9+5yvxWbE9k+fIwX14w3v+D77pqosNjY0De9oFQcXVYxEARvOip2ebagA8Ez2oa2jtHwtLNQWtVfYFPLrcgMQxaHSxnjBX48Ub+kBT7XjRTjTqNYiSjJbqFbjcAmu3aLoJgaXBdNh3LSs607/dGduxyIl4araCpmub4t6HDc+TAStrzWJ391jkGBo0wwH66j4jWwBdC5II0acDQoRD9XiTFdg0CjXlhHDGjEX8fcm6hepwDowSngAiuHSIOqO0BsDwMAzvuk2/cOgq3iytVIG+zjOynzgwjZ0XTgbupxkWgIacwKAaEsv+k4f34pc/X0NBBK66cCcu37UdsDTTof4CytU6gPBUgCve+TcQ+C/iyLsFADTue+oI3v6aVwL4ibPM5NgQ4K6fag3iWCyFv49s5jhEoe6+HcadfwjaLdzxvhFWpS2o4pLXA499DSg9G74+VgCaK+A4BoAGk88Ceguwes3EYTtHM5Lv81w50vlJVlEniHVBYLoYxyg14soUsoCugKWBni/PrgizjD+ezjqe88IqJ+JkYqJD4xD7AG1vsM9mJ/o3A7lO+7sD47uJSFeZDXcQLh8g/254TrL15UaB0QuAuceA7CiZ6OAv5io1IuAmiZEbvxB49qdEYLWP/ZrV07N/U7JtAtqORbUGYBWfi9wPvPP+1UXcppwVnDFjERDBwWax2aWwaIl73RbTM1wGVdX7PWtxJAKbQ1Ag4t2R7AYRhipqW9Srr9SBiGHVoccPYffY7uB6Bd7p39eoNRwhSeHJdfO+++7Dvt/dB1DApu2bcOFVFwI/IM/N9+c7Tp4CgI+/5uP4JPdJaCqZAL3nnj148wfejGW03X7DY8OoGu39UFEryOTbY5HJnHf8JGUkLCwv4LhhAnk+HxCaWnoLtFUzuG37bfjCo1+IXI3ACKBcNYiiWERjMZmwaFgXfn8UqsiIHV2PDMUEYiv9NHQScUqBAkuzocubpomG3kCWy4KhGUishLpWj1yvm2GJTDiyv0duIZAXQwRzlvSiXPz+IuTzZXC39TZx2nbuAUTcrKk1xwFs866L3oXp6rTHdSdzMkRGRENttKNoTyP6xX4wFIMMnwn0ZaVAJYoudWM7P8tKGRzDgaZoz3c8Sc9G9/k0JSUl5VTipDsWU049yjFRqI/ce3fo/SxHBiy8KAUci3PHjuALH38vxMlzUbjilWg2vAOpQt8AlFbnGYHv/rOv4HXv+m3nNsOyuPCK5zq3KYrCwJC3sX1TMyBm2hfgdX2SEwHKsDxamuFxA4bhFhKbqoGVRm9xKDaHl+sYzkdHV/gJExZ3jOXx379xDXZNFiOf26jXIMkZNDWv2LYa8UzVDfBMZ8ci6ckXjM5s91iU8eChEgoSa8VcJiefJ8WkTdt2AgDGCiIYmgJLU5ZjcfVuw+xqI8xcaAn7T53qnKwei4B1rKbCYkpKcnp1LEZhmsDck9HLCJ2d9LTWAFgJGViRmBS53geFxeQ9Fn/04NPhm2rNApYYgzgWnR/uJuaXVvCy930GF4zQ+NarM6g1vOOOoX7fe9C8wtk9n30L/uh9r2+/lmniBc+52LPMpN+xWJ2PjEKVxe7GBImgGWjP+S0AwI5iWE9B0+tYZAXgho91Xp8Vhcpa0W6GXQBpJRNJqvUGJFEAw/jGHpXp8CcAQH6882PdoLWA5WeBwXMckSi3mnADkRwjNE3jzS+9wvuY5XzJCTRet5vDmzZNA40e+p2uVliU+4mjNKmwOHJe8v6KNqPnk3/rHQrRi/sBqR8Y2Jx8nTtfAiw+Q/p/cnLQsdiqECdjknSKySvI8dVwOXBsYbEb16DcD4BaXTStzeAWIsimpJwluAvhy83lSLHMj+1YLESMLcIIcziqDPn9Hios+sYhAiN4xK96KVr8eeaBZ0Lvt/ssmrqJeq3uiIwrgysol8t4wQteAK6fw/r3rEej7hXGCv6xiI/3/9P78fYPv925rSoqLr/+cs8y/h6LNbUGKdcWfqbyU57HRVnsWvztlrAefT879jPn7wuHL8TNG26OXAfP8J7fhf1Cf6zrUGRE0BTtuEs9jkW9ESkSsTQb2W/bNE00taYjDHE0FxrHqxoqDNNAliXHZ4bLoDVDxmdx/bwBYNAav5SaJfIerG2WMzKu+6XrAsuLjAiKpdB4pgHxmAghpGd1Esaz4+BoDhk+g2F5GBWlEhAWr1l3DW7dfmugt2RRKIY6HE8HaIrG9v7tWJddFxAWOZrr2EezE+6oWZ7hA+Jzkl6y3bi3U1JSUk4kqbCYEiDOsfjwvT/t8IjVv0DKenosmqaJ4fF1ePNH/gJDr/gQhEwey4vznmcW+6MLGht3Xohf/LW3OLfPvfBSZLLtHyu5/kFH2LRpaTokuX0B3jKcdQZuLMtZAljnrwAFoOFz+s3ExKHEcWS5gfFCdzOcOm3j1pEchnLRg8Rmow5RzgQci5lVOBYNk2xTVDKmEBKdaUej0oKEBw+XcO54PtFAOgw7YoRlaLzo/DGcM5IDz9CgYqJKkrCWwuKZgsAxHR2qx5tsGoWaktIdnOQIHGtGdZbEGkYhxQiLnIQsZUVi0raw2HsU6p33PxV6v26SM0ZRolGtN9BvLMAwTQxSZQz1F/C1P34nvvMrMgZkGrOL3olUQWHRe82/dPs6vOs1L8X39pPi1O4t4xgbbscyygKHYt73w78yE7zPRUBsWyOMHS8FAKzPhggiptEWWWzOfVnnlbESoLWjUE3bQZLQfVWrt5D1x6AqdSIUdSI32vmxblh4mvSCnLrKEd0L4iquKjKxrtAUFXQssnYUKvCy7Sx+YV0J+Ma7gSe+DnQz0WjVUagDVg/MmCK+mCcxxpuuC+9nGfncApBf1/nxpX1EwOumF+a5rwB0FZh/kgiLfleqUgG4TFBwDGPdJeQ4X9zXvq82T47lbvYvzThickpKSne4e8ktt5adGMEklJUyBEbwFNONBH1jwxyOJkXOhWHxk/5edRIrecSvain6Orf3vr2Rj7McC7WlgjEZmKYJUzfxbOtZfP3rX8fG394IvsBj2TcWyfdHu7Ind0zi5b/2cuf22OQY1m1sn48pisKgb5JTValCcNUNxmRv+lTSKFSO7/239qA0iLraFmp1Q8f3D33fs8zHroqY5IRgBOiANICWHjaBqo0dkWuoBjie87yHulr39Jr008mBaKObOnRTd/rf8Ux4n09b/MxbjvsMl0HlkQoefe2jWJeNuJZaSKyEDJdBSSkBaEdnKpSCKh08RgVGWJNsuhyfw/970f/DjetvxKA0CN3UoWjJ0ir6xD40tSaMpJOcTjG+fMuX8cbz3xj4PG3HYTf0i/2OGBl2jCQRDZO4GlNSUlJOBqmweJZAWRcvXY+fcdursEhZgwwuk0ejVnUciD/6ztcBAFsuuAQUzYATJJQWvTOcC33RwqLqy4e/9OrneW4XB4PRrE1VR84lWJ473h6ksxznRHZ+613PwZ/dujsgtkk8g6YvsnSxmmwgFQbFcFiotjDZ310mO8/0/jW1HYstn2NRXmXcpxDRYxEARI4G6xOiBJaGqWsQpy7ASkPFlZsH1yTi8k9v3Y3XPWcjcSx2E43Wgf6MFbe6iv1+piGeRMfiW67ZhBt3joBLP4+UlOSstWsxqr+ijdj5NSmtAXCiM5nErjGYdIRjsVQhTroO3Hn/k6HuB82whEWRRr3RQrPVwqv+rYE/+REZdzxn91bwDAWapjC3uOJZx1BfMgHhtq82QH2sjJuv9ToExgaywQkzjQXHsch16dJ306lnT0eiLrBKNdhr0L28vzDLSYDWBGeJoIZdAFGSxXhV6w1kXdFj5M7Z8IUZjhwH3TroOjH3BBGpJi9xIjTzdg9ErQXc+3fdrU+yhGTTAJ76pldwt47fDE/W/1hJANY/B3jon4Fv/SYw+1iy11jte5f7yGcTV8wb2wW88QfA1ht7ex3btehHV0j/zKFt3YlyA5tJTKmpW45F35iuVSGxphETDhxGziXLueN9q3Pk3MhJHZ8WSjfiaEpKikPeFVtcapVCBaCmdS3yP1ZulZHjcx5nUBLHY5K4QIq2xyJmwLEosqKzTQBxLPodS272P7TfiSQNg7UnrLaAo58/imP/cAx/9+jf4eqrrwbN06BoCrVyDUqzXWOIcyz6ufS6Sz1jDykvOY5Jm4pSgcm095/kOg/SNA2KpVBRIib72O+H7f239pA05In/fGjhISy3vKKqu9dcmHjj/7yKQjHRa+f4HAzF8LgVASL4uSM8/bA0Gyki2cetfax3ciyGCYuMRMZU/vfUiUFx0HEsuh1uTy4Fx8MiKwIswOQYmBMmjlSOYKW14vRU7Ibt/duxPr8eQxJJU0gi8ANETGtojdNWWOQYzum16Ian+chzQhg0RWNYJpOawoRsKcG4JHUspqSknKqk1pyzBHNgI9bf8Q3sO/I03GUwM+RCX4mJQj367H4szM0E7qd0MiBmROJY/Oa/kubbkxu9MUgcL2BleRG6qxdewedYbGkGRK6z+HXpc73CYmEgeNFvqAbpuWdFj4zk2xdxhuPR0nQIHINzRnLYOR4cwGd41tMHMCeyWK4rTnRbXelukMQUx2CYwLbR7vLRo1yVcTQdYXHteiwCgMBF99wTOSYgRFEUBUNtInPu9ZA4BtdvG8Zf3rmvwxqSQ9MU8iJH9lOXg7wwto7k8JnbLsR5Ewl6+JwliBwD+iQ1Orxh5yiev2OkZ3drSspZidTXWbjphbknSJFej5hcE1F8p7UGIIiQRABNoN4i1+XoHosVgOlcXJsr1fDUgSPY4LvfdixmLfHoV/7uCTy7oOFTL/X+aKcpCs2Wgkqt4XRUDDgWY7jlOm8U5mh/yI/++rLjSszLvTtJDSfRdQ0KNHHHhr8fDidbUahk+x1hUY2OH3Nert4MOharwXEkAOC8VxLHbVjfvl6YfYyIVfIg0LKj9SjsGqGB//4AEZtsksxA9x/n3/xN4OLXkb9tYZGjAAWoqgzwyr8Dnv0J8N//B/jB7wHrLmsv3wmGI0J9nEs4ahtNPSgehzFxYW+vAZA+hk9/O3h/04p/XXcpcfx1w/YXAz/9cyIghkWh8tlk7kqGA4Z2ACtHAUMn21GdJcdBt8KiPNDuGZmSkpIYt8hXVsqhwuJTyyR9wB/D2dSbGOVGwbomjcb1ugNIH7/Y7SrkgAWgWW86wpFhGlBbKiRW8vTbq6xUwFIsNISLh0pDwdOPhkezA+1I1D1/vAeVgxVMvHECPzryI+xdJk5He9JQaankPCeTz4CJadcCAJkdGUy9cwqXipd6319fsNZQVatoqu335XZqMiyD5WZ0/WctGJaHUZ1uu+v+98j/YlNhE/av7A9dPuyzdIsyJkwUIya1uQWwX935q/jKj74CKeM9/ze0RqQYzdFc5HGnWONiR1hkwpe3hUXbxZvlsqCl7mo8g/IgHlsgE5T8zs2W3vLcZzsWR145AvNaE5+895POYyIjIsNlkOWyXbmIB6XuxmUD0gAOlg+etsJiJ3pxLALAeGYcR6tHQ2NpEzkWT8NelSkpKWcHqQXkLKEmEeHtyWMlAG1X4tLMkcCyfsei3y0IdOizaDkWVxZJkUbTyEBl8/bzPItxggjDMDwCZqHY71mmpekwXDOv/PGUdo895/lDXmGRhommorcLcb51sBwHRSeOxU4CmSwwHqffUFZAqaFCs/r+/PueBfzf7z6FGbMY+nw/TD+JuTh/orvCZViPxaQ06nWIkhwiLK7OsShyTKTQI3LBHosAYCp1UDSD7aM5jHUZCRsHx9LB2KweefGucWwYTGeF2ZxMxyKQrPdESkqKC7k/fplumH0MyAWTATxEOJMorQGwIkQrOrJmzcxv6r7rm+u7vrRS9ToWfSIkQ9O4855HAq9lWFFnR5dIAW2xquKu12fw/K3eH+S2AXBuseTcl5FFSGLn17S5dJzG518i4srdOzz3j/aHFKcaJRLvuErunbb2zUpw3NY1bjEtCZwEaC3wnB2Fau3LmL5GzsvVG8hIvmt+ZTrc5SrmgQtvXxthUVNIJOfQdvKdEMjnc+t5HH7+xgwRnG76ODCwhSyfpFDk3maxAAzvBO7+DNmn1vGacR82FAVsfxHw9p8B194BzD0GfOM3gGfvin6d1XyHbceycpx7G01c1PkxhidxpN1y3ivIv3wmKCC2quH3d2LdxUDlGImFBUgUaqYHYTGzRu7ZlJSzDLdgU1WqnhhMm2PVYwAQ6NsGEFdXt73MkjgWbbGvWSHjBN5KTygvliGyoqdnX6VUiXQn8RKPh+9+uOPjygoZ7zRmG9j42xsxsGsAFCj83aPELW+7J5fn23URiqJQSJCgMHrrKJgMg8JO77LZvpA4WJgotUrObbdLj+GYRDGoq2VYHkZVbQuLC40F3LLhlq7W4Xb36ZqOPiGZo3wyNwm5KUOSgsJipGORiu6xaIvltnMyqWMxy2cdx2JShqVhR/T2b7O/d6XESjAZEzRHw5wz8ZErP4J3X/hu/MqOX8Hzp56PHQM7UBSLkDkZ5w6cG9ln0qYXYbGu1s84YZGngz0SkzCRI30WJSZ4vEUdgzapYzElJeVUJRUWTwB/+39/Dzeeu0a9YnrEni1fLZHZgHYMQqsRLDr4hUXDF60wtWkrHrkvKCxS1sBq3wM/BgA854YXhW4LJ5CBi7vPIsfzyOTas9IMEyg32oU4v0jlH+DlfY5FgTZQV3UYLmVR9guLmgEpQiCTecYjyA3lBJTq7W164c4BVFsaDlDks20Z0QMMpn8dChKL4Vx3ghqfYMai8xq+uEgShSpDWWPHosRFP1/imNDoSiZHBqSXbOhDn5ws9iMpxLF4fHpVne2IHJNGw6aknE5IrkK41dtt/wEyI7zZ6kHkmn0UyAaTATyECIscRcYatNYgootVbLGFRZ3qXDBcWvFFofqKHpdum8CP7nm04/O/+hApkv3dr2zE7tHgtcEu/Nh9Fu3RwpC7txEXfr3+r1dn8IYLeXDVo577x8Ici41lwIju/xPKY18DVg47W/bwvDVWWToQ3zsvjuoccSEmhRMBU4fEkX1mMiJAMV04FhvIZnz7snwMyAwl34ZeWHoGMDRg/VVEjLKExVftZDFdNYFf/DvgkteT95IEivbGxIpF4HX/DdzwMbKPsuT9yGFDJE4Erv8g8La7gS03APOdHS4AVrdvRKvQGlLEX1NGL+j8WGGyN3F4bDew6XoS0+ofn6s1gM8li0IFgMkriJhYnSNO3/oiOY8lKKB6kI/zcZqScoZi950DSC+6hfoC9u0jaTWVFRK7aQuLYWS5bNeRg90U35s1ItJwrskKMit7olArpUqkuLnlwi14+OedhcXZB0lCwEW/eRHkLTJojcYVY1fge89+D0Dbsejvs1gcKMZuv2BNhKIE77kyUwx3NrljR/2OxaXmUmgPyrVkWB72OOTGMmO4acNNXa3DLSyqihrpWPTTqDUCjsWm1ozsXRfXY9GJQrXclTwTLjo5jkWhd8fiaKZdT/QLUfb3yP6+5Pk8TNoaK6rA86eejzde8Ebccdkd+MNr/hCfe/7n8IUXfAH/+MJ/xF/d8FdYn18f+/oyJ0f2o/QzJA2hqlbPPGGR6T4KFYDTSzNMRJQTjMmd4zSdb52SknKKkVaKTwD3/eTOk70JDtWV+NlocT0WL7j0Sjzi67NoGAbUEhk4X/7Kt1v3hWe4czwZkJQWichJS2QgVuz3FiAWa8n7Gfp7LPK0Cd0w0XS5LWVXtCrD8VB1E1KEc0/mWU+PxeGcgOV6e5ueu2UA//Pea7GTI32bGmb014miaIzkRWTF7gYiq3Ms1iDIGY+wSIH0QFwNUfsNIMJimGPR7vX5vO1DoNfYAcczaxOFmhJEFtL9mpJyWuEu6FdIsWF+nlyrKrUexIb5p+P7voUUdzaIZGY6pdZJvKVFrdkhCtUFiULtXMy7dtcG3Hmv17FomiaeXSZxZZ94MSnAFITw6519DZpbXPHcP9wffB9+HAd3y9uPaDQkfgyNRUDrQsy195Nd2DTI+3G0xIWngVYVPEf2jSR05+YAYEVCJnDEDW0j/1pCTNZ6Kd0wiEjXVRSqv8fiXLwLFgCKk+RfobsYeQAkwpcVgUmrCQAnAxSDgkChqpjA4FaA7WKSEysCrG9/MwzwnN8AfuNR4HkfBigGMhcxvulbD/zyPwG3/xtw1bs6u+dWIyzajsXjLSzmRsh5IazoOrA5su9qRygKuP3fgcveFHxMqQFiLrljceJi8u/CXhLPamjkeOo2BSE73N3yKSkpAILuwWO1Yzh6lEzIWZwjdYAoYVFiJbDU8RMWG1VyDeNd/Z5lVg5GoUb8vtx00SY8cs8jgR53zXmyjm0vIddRId8eA71gwwugWdd2x7G40L2w2ElgyPnSE9gW2f6yUnbuY1yTcRmGCItJ3J5+eCuJQnCnPXRgQPKOI2+YugGTucmuXs8tiGqalrjHIgA06iHCot709Cv008mBaBOIQqW50EnrDa0BCpRzfOb5fNeORXe/P7/r7UiFpFnY2ypxUltYDIGiKPAMjwyXQVEsJhbK+sXkaQr9Yj9UQ/V8n84EeJrvKQp1XS5cWORoLpEz2z52jvcEgJSUlJRuSYXFs4xaKYmwGJ2xv+vSq3D4wDNYnCdCYqvZwB+8/604/IMvw2jVwOeKAIBGrRr6fE4gA0LbsUjz5OJa6PMONheryYVFfxQqTxEhbaVFBlSM3vQIWQxPBpCZCMEkJ3p7LA7nRFSa7f4KoihB5BgMismdA+MFKRDrGsdqhMVmow4xk/eEy3AMDZZe3Vc/LkpV4qOjM0cLXTglEiKwTLIYs5Su6faYTUlJOcm4RaPFZ1a/Pq0RX1wPcSzatRXaVImAY91RtRyLBh0u6pimaQmLZLwwmg1eT667cCtm5pdhWI5MRdXwxg/9GV7xjwuYrRooWrUnVQvvi0RRxOU/63MJdNtn0c3YQEhRTqmBaq4E73djuGZz+4s7/klazRIwuweXnLcVALBuqId+wNXZZC6s274C/NI/kihRAFnr41JUlXzeSXr4AajZPRZd/Z3QWCKutjiueDvw4j9ti4PdMPc40LexLdJRFMBnILA9FmU4Kdj3zyYzSIRKToLExowLKQrYeiNw48cAK14/QJxDOAq7D6R6Aop5Y7vDxdHRC0ifxF5g2OD5xDDI8daNWNm/iQjSK0eIcxEA+jZ1vz2psJiS0hMBV1UtKCIe9Tn/3WS5bNftELJ8cmHRtJKN3C44iZU8vSDjHItbL96KRq0BxR7X6AY+89HP4NE/eBTKvAJeIus2Wu3rfEEo4OIRa+IDRXo+lhZKnvUmEhbt9+GLkfVHodI6DYmVUFG8k6FsGI7BQmPBcdN1w44LSST86Kb4dK4hyTvuuGzsMo9bNAnuz0JVVOT5fGKhpVlrQvJNclIN1REFO71eXI9Ft2AY5VgUGMHZ/izfvWNxWG5fi/z7bbYx6xG3RUaEQa+9U9AvDkdhi5D+mNbTHYEReotCzZIoVH/sbJx4bZPE1ZiSkpJyMkir8Kco3ODUcYl1rK4sxi5TjnMsXnIVAGDP/T+Drmt432tfgZ/d+T8YueBa0EIGtBUd1qiHz5RmWA6CKKG0tODcZ5omiv0+YbEWjA7L7roZY6/988CswOKgdzArWDO0Gpq1nK/GY4uZbhejn+Gc4HEsDuXiZ+J1ghHJYHPDoAwx4jXD4Jn2YLnbKIlmvQZe9g6WOYbq2FcyKZkYYVHmo/sRHI92fTxLwexhkJcST0ZI92tKymmF5BMWVxudCQDZmKKRGCNwuX5I28U8wyo6fn+/5giENqVyDYYlsr1gCwcYXtff1ZfuBsPQ0DQdSw0TL7jjH/Dlr/8Av/P8PEayNASaXL9VLTw9gQIREf2OxSF3XyOmu+u+Pwq1ZJLYIrru62lovdeaRpHxSStCeHS5ImuKSaI4jz0Ixj1ByNCxvXEvWcZMEFNVnUsmljAssPMXgAKZZW33Dmy1LGExoXDlOBYbrsltpkGEuDgoCrjkdcDwjvhl3RgaOfaHd7SFNqA356MNJ8W75TgJInMCvm9R2KJcQkfpqnjpZ4Dr7vBGxALAhueu7evY7ss457QbmgZGzwfKR4HyNLlvYHP3ry2vQb/PlJSzEPdvQZqiMVObCSwzXZvu+PwM3zmisuNzImItwzBN0yMscuAcFxpAUpnoiFSiqZ1TECURjXoDekPHX7/nr/G1L30NUy+fAj/Eg7Xaj+gt71jE7i2o0zqKg0UsLXgnfxdWMckp0GPRJP3xOgqLLIPF5mJov8KD5YOR/Re7EX79Pfqm8lOJnmcL1BRFeRyLqqqCpdnELtVGvQHRH8sORAqqHBMt+rT0FgRGcFyvHXssqg1PhGaOz3XtWHQLs35ha74+D8VoH7cCK8CkzDWv9vYiLFaVcLPB6QrP8B7Hb1LOHTwXt2+/Hef2nxtYXxJnNk2RCQKpYzElJeVUIxUWT1HG3/A5GFe8bs3Xa+h6QJSrVb2DzHq1Ak3tHNvVPzSMyY1bMHPkEBZmpzE3cwyf/of/QG7UymbnyICv3sGxCADF/gFPj0XNMIOOxZAo1IGb3wl+ZBOOlEixRBCteC7fc3lrhlYrvJ4IyopjjRJM8iKHhi8KtWesQffO8e5/JLgdi1GfSxiNeg2c7C2icSy96hjSTEyPxpwYXXjTjTUouvngWQZm6lg8LkQ5e1NSUk5B3I7FpQMkQnA18Bmnf1z449n4KGrfDN2W0r6erbRMHJ31TnwyTZMIac4TvGOVXEbExeduwd5FHVd8voY9B2bx/S/+AV62k8zo5UCcigHHouWuqpkSRgb6oh2LRrjb0U/OitZaN+S9xq+YpNhF1xe8T2iQ9zrXssYVjVLnlbfa0WWaARLvOP9Ue9tMA7j7s2BAxiu2mBlJcwUoTMQvZ2MVdzPWR6xqGnGOJXQsVusNS1j0JWIM70y+Dd1SPkrE6KkrvHGnXbhZAnByZ8eiDSuiy8T7cHKrcMnRDHmfCT+fVZEfB7be1BZci+vJ59qXrGCcGFtY7LZv48QlQPkIOR44ube+j0lig1NSUiLJsBnM+SbZmKYJ3ezwYx3BKNVEr9OlsFgulT1iVXO5Cd3UQbkirSmj8+9mhmNw3iXnoTHfwP6P78e+h/bhE3//CQxfQ87hDMOAZmjoTe/7HHRNWOgb7IuMQvU7EjuRzZPrW99YUCAclodDnWMmTKfHYljM5f8e+V8AcKJbsQrTVIbLePa1P86zEx9/zsdx84abMZoZ9YjAmkq2Kcpx6KZRbwQciwBQ5IsdnxPnJrOFRVsw7ORYrGt1iKzoLJflsqAFGuhCn3I7Fmlf+tRsfdbz+dq9EGl+bWsjw1LysYktQta14xzLfoIRGKGnKFSO5nDHZXdg18iuwP1J19ft+S0lJSXlRJBW4Y8DzzyxB//9ta90fLzZqON33vGagMDnh8p2MSu3C/xRp0ef3R9Yplppz57XTTMgEl5wKXEtMiyLz3zl2zjn3F2OK5CyigvNeudCZt/AkMexqBsmCj7H4kIl6Fi0sXsGylnyg4O2Zg3Ze5SnyF8tPXwfU5b4GReF6hYWcyILqUu3oZ/toz30LmDarxl3zPhp1GtgRe8vAI6hwXTbX8ZHJqZqlotxuB0PYVFg6VRYPE7kU2ExJeX0wj37euUIic/0YVjXk0TXlewoKcp3fL0EYg3nFRaPzi4QUQxAv0Rh77PBOLSyrxCn+dyH1112ASgKGMlS+Pln34LnXnKe8xgDFRRFBYVF6zrRBI/hMMeiW1iMKHi66bOKeaJv0k3L5AE+C7rlE9QqxLWxpFkFrkZETH3LN5ZadylQmyOfKwA89S3g8M9wmO0m4tEkEaFJscQ4kSGfl2mapI+flrzHYkYSvMIiwwN9G5JvQ7esHCGO06krvPeHORYvvJ38GzcDnZOJizNmGWEtHIur6bEIWK7FtR9rxXLp60mPxCQxt93gOBa7FAanriCTEhaeIs5VNoGj108vYmRKSoqHDJ/BcnPZI5Itu66Nhh5M5Qlz0MURVqDXKXIt1xG8ps8dnfOIVZV5MomJH+SRPdca2/iGEf5x064rd4GiKTAyg9/8+9/EZdde5nlczsjQGp0nKvUN9HmiUClQKLr6PZdapcBzwsjlyfVNkIKToUflUVTVkEnfJsDwDKpq1dPDz4/dw48qkBpCS+tcp+kERVFd9eizGZAG8MfX/jF2Duz0fFb255C0z2KjFi4s9omdj7MkPRZFVgRDM2BoBjIrh7o461odIuMSFq1xFSMmry25RSW/eNnSWx5HsB23udbCYtQx4sf+XOrHu9/zCUZgha57v9qEHRsCIyR2QHY6vlJSUlJOJmkV/jjwtlfeiE996Dc6Pv6vX/gsfnbnd/HYA/ecuI1yMTftLd4dORgUFiuuOFRNN3Hg6Sec29//xlexc/clAM2AETIYGvX2h7Gjy+r1CMfiwBBKCy7Hom6i6HMdLoU4FuPQYA3WGPLDQenkWGTJgDsndJ55nhU5T3ocRVFY15dsZl0n+uTwflJRcExvgwfDMNBs1MEI3plNPEOvQRRqjLAoddcvYS3gGBpGeko7LuSl7o/blJSUk4h7JrPeAmYfCyyyd+9eAMBThxcCjwXIjoT3UesG38z0Q8fmwWhENNvaT+Ppg0FhcaXudek/deCI8/e/fu8+XHb+Vmzqo/G/r5WxedxbrKL1FrKyAEXtXMwbGSw6jkWaogDT9AqLWvfjEDcmABSnQPuF3QqJfqvZU//9Tj43/gip0QuIOLJ8gNyuLQCXvAFHh67pbuMGz0m+rFUAE9z9eqRi4qjNUMdiZogI0pe9uXfBJwrTAPo3ABnf7PowZ8PV7wZ+41Fg8orgY244Od6Zy8tOHP+q8G93t4T0PD1hFCbiI2O7RenVsWj1MVvYS2JUezmPOWJmWsxLSemVDJfBSmvF09bjWLXdc/HAIwcCz/H3IuuFulpHUyDubc2vEAKYPTYLgW4LcaWjJedvaco6X/ietjDTHjc98sNHsGXnFghjAjZ+YCMGNwTPUVJGgtoITx2iDRp9Q17HogkThYH2ObzbicVhjGXHwqNQKYDKkXPbeKZDz18QYdH92S37J0wlxB2lycZdT0PgQ3pzJxUWm/UmpMzaCostveU4ET/53E/ixZteHLpcQ2sQAdISBG2RsNs+izZhcZiHK4edv21nKMWv7XXLjmONchrbsDSLPJ8/4xyLIiOuqbjXyeUaRupYTElJORVJq/AnAdWKs7T/XZidxo3njuKu733rhLz+3LS3cfrRZ/cFlqn4+izue/JR5+8/vOMdaDbqyF/yUhR/8WOOe9BGMwBRkqEW12P9Hd/A0WpwMFwcGPQ4FjXDCDgWl+rdF/SalOVEZHSILI1WSEtCUZKQHyID56go1FyIK2+qf3VNk7M9OL/cUajd0GqQgh8teLeZZ1cvLMoxjsTiSRAWeduxmM7iWnOyXcymTElJOQU5cn/gLrunoWE5yGt1Unh75mhIL2Z5AGBXEQcOBJ5/eGbec/vpA0FhseQbBzz05H7ohon3fbeJW//P3+DQNBlHUBQVEKZovYWcLEFVOxc/hvuLXseioXt7LK5FlGTfetD+HoqWY/Gi7VZcZJSw2CoDhoatG6yCH8sDG69tP771BcA173PiShNBs0Cxi6hKa90C49qXUj+gx4/TTNMkPRYzIlB3HVu5UYCXgRf+MfDO+7oTOpMyuCMYYyl2SI4oTpLtiYLPJIhClcAz3fXDDqUwAYCKdgpHIXXv9Dml6aXHIkCOs8wwEZrlwd72py1mpuPLlJSuMVUyxshwGawoKx7HoltYDHMscnHn2xhaWgtv+97bnNt0SOlr/th8O56TARaOBCdb2e/B5pnHnoFpmpj7jzl8/jc/j2ceewYAGYtU1KB4J2dkKNXw6yWrsygOFLHsi2V3R6GuBWOZcGFxaHQI4igZP23Ib+j4/APlAygr7Wh2999JMMrk83X3WXS7D5MihPS+LorFRM/t5FiM67EYJfropg6JkcDSLK6euBqXjV0WulxDa0BiJOeYznFkLNJtn0Ubt8NNZmUMSoOYrc069x0vx6ItDCftm1gUilCN7lr5nOrYPT/Xim56Nma4TNpjMSUl5ZQjFRZPAWaOHAIAPPZgvINx7+OPrPr15qaPeG4ffTY4Q9Afl/rUngedv3/z9z6Nl/zya0GLOXBD67FQ9UZhqJoBKZOFUSQxSEdrIdEmA0ORPRabqo6m2n7eSodZfn6aIANUCqTPX5hjkWFYGNYAUYpw3uVCRMCNg73PEhJYGtkeGu/0Kiw2G6QIQ/PewQ/PUKuOQpX56MFP/iQ5FgGA6mH2Y0o0vQjiKSkppwhCHph5OHaxUoUUCeZXQmLMs8NOhCgA3LXn2e63wyd8HZr2Cot7n/VOegKAJV8h7t49T+MV/9rAn/xMwZ//5i/jN37tZR1fjoKJnMwHo1BdEMdiqX2HoXgdi2tB/2ZQfuGwTN5r1o4rq0cIi80VQFfw6hddh0LGEk/PfXn78XWXEvGkG6Rid0IkKwAUA9HtWEzYd66lqDAMgzgW667I19x4u99hZvD4iDZTlwUF8YgCYix8Jt6Jx2fAU2sgLObHgdd8HdhyQ2/Pl4qr34ZTCUMjn2UvjsPx3eTf7EhvEyRYAeAySB2LKSndY9TJ+TDLZVFRKh73nVtYDCPO0fbE3U9EPv5Xj/wVHl98HHSr82/p2aOzjljVf20/ZvfPeh6nGRp6y1tQeGrPUzjy10cw9x9zePE7Xozb33m781iYeCdlJShLZDwTti19g31Y8cWyu6NQ14LRzGhor0ZBFFDTa6BAYSLbufdyQ2vg8cXHndvlVhmmaTrvt2lNxOIpUosxxPZ10GgZaD5AHh+RO0dpJhEaw5bpF5KNRxr1BsSMdxIaQzGRLjCe4WPdaSIrxkZj2o5F+5jO8KtzLPpdlNv6tmG+Me+4Su0ei2vtWLSF4TABPYwoN+jpyloLiwIjJHYsZlfTJ/wM5qKRiwAAV01cdZK3JCXl7CQVFk8z3vfaV+Dhe3+6qnXMB6JQg47Fssux2KzXcOd3/tO5ffMrXu38TVE0jpa8UViqYUKUZehaZzGw2D+I0lJ75npd0VF0ORZL9R5nNrkGfnmJhdKhtmO7LMNciTZhj20c6l1Y5FnaEb+6ep7rOZKU/PUbVo9Lu5+kezvoVX7z44SmqP16vHAE2Lj+RyldEyayp6SknCbkRoDFffD0WzNNbGiRApGWZCiY88Zj3XTHl/Dt/723u+3wC4vHfI5FXxQqz7FYdPVabikavvDV7+KHBzT8120Sfv2Xnhdb7BnKCdHC4kAfSmXXrGtdW3thcXAraH8MVGXGe7sR4hK1aZaCkazbblndNsmD3QmLFAVwEsaKpJiybmwYSOgQqNbJGDEri95eksV1ax+X6Ybhgamrg/evJiJUyMULoLwMbi2ERQDYdA0w0E3vTBdS932sTnk4ubdjZp3lIClO9i5gy32pYzElpRcsTS7DZaCbOlS2/Rv/aDWYVOAmzrH4N+/+G/zomz/q+PjhymG8bOvLwCqdf8fMHZuDYE04YDIMju31ip25Qg66q9+zoRv42t9/DeX7y5h8xyRuesNNoCgKtPV7PayfnCRLaC4TYY2tB7elf6jfSZGwWWvHYpSgp5kacnwOcoRrvygU8eTSk87tUqsE1VAxWydC7L2z98I0TXAU+cz0gu6JTrUZllcX8+0WFjduIb2i3fGqndBUDaqiBhyLIiuCozkU+PCxgf1+opBYKfZYbWpNSJzkCEhZjghEvQqLfiHqvMHzMFefc/a5LZavtWPRjkJN6lgcELtMGTgNkHtNkugATyePQs1y2bTHYggiK+KBX30AL9z4wpO9KSkpZyWpsHgKYxrBwdi28y/EB9/y6pClk5EtDmBuxjuIP3rogGf2oChJqJTas+d5QYQeEk9iM1P2RoUpmg5Jjp5N0zcwhFazLUiWG4rHsVhqrK6vEQDkOzgWAUDVDVAgLsJOhIlnGwdOfK6527HI8ckjQ2xhEazgqYXwDLOqKFSGpmIF0sJJ6MlnC7DU8SxUnoWwNAWBS6NQU1JON3Qr4hTZEWDlMCir2EDBBL79W5AMco0oGwl+IGe8IsWNF2/GS97+u4HFVD2iD5DLPZ+ReByanvM8vP/IDDStfdEeKOYxv9Iu0PEcA9M08ZPXZ/DCre3zfNTVbDTPQdM6j1+GB3yFJENde2Gxb4PvNQyg7hVVI6NQG8vBSNbVutEyw907v3gZg1my34uFfOJtqNbItmck0fs+C+u7e/1uGdgC5EIKmKsSFkP6M/rhM+Co+N5Dx50zUljMEMG4WzY8h/w7tL3315YHkDoWU1J6x3aFKUL7N/6RyhGEmOgAAEbNiBVrdt+4G7/7juBYxOalm1+K3UO7OxbixaxIhEVXvObSkSXPMrm+HLRGe4ISzdCgaRobP7ARhUvb1xPK+m1dVaqBnohyVkar6U14sjFhBkREmqKRK3aI7e6RKGERIHGgUU6s8wfPx75SezL6YnMRTb09NqmpNTy22O7nbUiG42J0YwtTveLuscj2kVpNkh6LTSvu3y8s2jGmX3/51/GbF/8m1uXWAWj3teQS1BVkTo6NsmxoDWS4jLOcLSz2EoVKgQo4Fs8fPB91rY5yi0TUHq8oVNuBWFUTCosJRN/TjbXucyiwyR2Lt++4HS/Z9JLQSOCzHY7meopXTklJWT2psHgKUquQAYGuB2fZ//5f/iMue+7zu16nrpMiR6bQhzmfY7FaXsHKcnu2fK7Qh/LKMqp7vofKQ9/B9OEDke7DRX8Uqm5CjHHWFfu9jc3LTc3jWFypq1hlG0AUpGhhkYtxEIbFlk4NrO0MpST0GoXqCIsM73E98iwFehUznTiGihQmGYqCyJ34UwvPkm2iUsfimiKwNNjVWlxTUlJOOE5ZKzsKaE2MCqSokn/k88C9n8eCES2SKIrruu8rNn31o7+MV7/oOue2f6Z9cFsogOZg19pkgQtEoWqajoNH2xFk/cUc5lYa+PfHVfzJ3S3MLFVRrTdx/kjyIsxwloFqCaxGSPFyZMAX0aQ2kcu43qsWXgjsir6N3tv1BcDwDU4apc7PNw2gNt/58YR9WTxkRwKfaSxcxttTMcqx6Cp4OY5FSSTuS5vCOI4bm68nEaJh4tpqhMUkYiqXAYtTQFjsthfh6QAvx/e4DGP9lcBrv0n+7RVpIHUspqSsAltIUfj2deRY7RgkM/xaZNZMMDQTOb741d/7VbzkV1/i3FZbZNyiL5JzcFEshosA1nhAkATMHp31FqNNgEX7t2S2kIXSUFB5uIK5r8+hWWtiZWkF8qbwmkBZKQd6ykkZCc1GeM9mgzHQN+gdizAUA3qNf3sVhIJHlPPTJ/Q58Zlh7Bra5emruNJaQaXljcP8r33/Bd3UPcv4GZJXKSyGCAdJeiw2rLGIlJE8Tko7nrRf7Mdrz3utE/XZ0lsdX89Phs0EhD43uqlDNVRk2fbEe4mVYBpmT45Fjg72fdwxsAMAUNNI/ed4RaHaUa41NaRtQgjunppnCmvtWBQYIXGPxfMGz8Nbd78VOX5tJx6kpKSkrIa0WnwK8thDnePFeF7Ah/7vX2PoZR/E0Cs/guWFiGKTiyPP7id/mGZAWAS8fRazuQJ+/qPvYfFbfwplbj+e3Uvi0tbf8Q2sv+MbMHyz8JZqClSXo1HRDIhytLDYN+gdZNRaOnihPZgt1dWu+/T5t6sgc9A6zIJUdRM8Q0cLZDQd6CU4VljbTPUk9BKfCrSFRYNmPeKkwDJgV6HacjH7TeB6i3xdLTxDPqvUsbi2CBwDhkmLaSkppy1Z4tqakq3+N8t7gV234XFzc+TT7nt0b/uGz93GMgy++In3OLefOex1H/oxGQGgGczMEyeAouk4dGwevss29j7bHp/05TP43j1P4FX/1sD90wYe3Bvei+m/nrFWElL0H86yuPcoGZ/M6kEhddgfNdZc9jkbIhyYEQgm2dcKOKCwzvtgZdp729CBVkyvmmrI/t1lpVf00m+lOImuM9F5n7CY1LFouQQKguEVVNe4R42HF/0JcM37AC6kSCqQYozQjR6bGwO23AiM7Ypfls+CQef43RPGmdZjESDHeq9jvA3PIX0re2XXL5N1pH28U1J6QmIl0BQNTWifH2dqMxDNDmKWtdizezv3dKZpGu/63Xc5t50Y05hL9+EDhwEQF9vi7KJHSAQARm9fILL5LI7+5Cie/dNn0TjQwJGnjwQciW7ChEU501mI0GkdBX96wnGAoqhIkadf7HciYcPYUtwSEGmna+3xzHmD5+FY7Rj21PY49x0oH4Cf1QpNYUJfnxDfx69Rs4RFWcJys52eIHNyqDPWERYjxFibuL53tnMzz7fHoRRFwWgYYMTuJ4exNBsQMoflYc9+OF6ORZuwfp1h2J930uVPB+xJEmuFyIiRwnRKSkrKqU56BjsF2XP/zyMfZ1gW8rarIG++FA89+ECidS4vkKKUnO/D4twMDMsNKVjOQrvPoqG2sDQ/i2ee2IO+69+A/hvfhmeffhxDo+1m3ks1b0zpYk1BS/UKi4LkGkCHDL79jsW64i3CLNcVFLsUFitN7zqKcvv5ouQtYCm6Eeu8A4K9AlcTIdorfAKRjrFENVVpz4ZsNkiEnE6zPsditDCYZHuini9yDNiTICxyjO1YTIXFtYQ4FlNhMSXltIXPeNxlKxtfDGy8NjZS8Mf3tyOtwpZ1z6a//0lS+HPmsDz8FU9fQIMRAYrB0goR0DIih2q9gXKtHXUq8JzTZ7GmmDh4dA4PPnkAH7tOwJdfLuLh/TPIZ4PFuXd+1wT1sTLQH+xF1y/RTinDNEOER3/sab0UWKYXCgYRUEtmjjgKLefctnWDQHWWOPokqwDUKiO2CtpYCt7Xi1PRZmBr98/hM14HZ4RDoOUa09Usl0ae9UXcd9PjsVtourMz0RIW80LEde3i15J/+6xjihWA2/4Z2HRd/GvzGTDmqSAsxhdaTzuEbG9RqGvBrluBGz4GiAnicFNSUgJQFEVcNtapt2W0UNfqkIzoSSZ77tkT+bh7MtChJw4l2pYjh48AAKRBCaZpolVuX9uKA0XAulyZmoljzx7D4R8dxuALBjH161OY3jsNlus8wWC5uRyIAJVcSQh+UdKkTfASD0E8/tGGYf0NbRF0UB6MjJ5laAZXjV/luW+u0Z70tK1vG64cuxIPqQ8594X10DwewmKoY5ECdFd0lSMsZiSnLyTQuT+iLSxGia02ce4xR1j0xanrDR203H3NhGfCe/Kd03+OZxmgHdG71lwyckmi5fpFMv5trUUCyCnCWkehRkUQp6SkpJwOpMLiKcie+36WeNm9jz8cer82eTHW3/ENKFZvIVtYzBb7YZomSksk+pRmGAyNjuPoITKjrPzzf0elsoItO85H/rKXg6IoHNr7ODZvP9dZt18nXKgqHmGwpRsQXT0WDzz2YGD78sV+T1Gy7sssXa6r6JO7Kx74Bc8+V58/yleAM81kAltePPkiVVQfSJtsluzvw5a7FACalmNRA+1xLIosvaqmzzxLg4l4vsidHCHKeY9pFOqaInL0qqJzU1JSTgGK7X52Kl9IVBz/3/seBWAVwWLOAfc/6SvmPfF14K+uhkSTsYFB8wDNYLFkCYsCuT7bDkYA2LJ+HHsPErfBR3+kYHpuCVumxvHhawVQFIWH981g9/ageOhgzc6uu5wG/Zn2te+BZ4KOR57nUMy7Zh43g7FdvZDXyWx4wx5m95H9n5V4oDxNhEZ7dnJUf0WACGHuCNG1YCBiP3aCz/qiUIPCnT222LO/7WJwolDR8C4c5iY8EVjHfqSwOLgV+OA0sO3m9n0MRwTGOHgZtNm5fcAJ44x0LOZ6dyyuyeuf+HYIKSlnEu5eeBWDjAdERF8LHr4nvNYRxuEnDida7tgKGQ/wY2QsUltuxzpObJiAXiN1iYXvLGD64DSGLhnC6C+PgqIpHH36KNZv7dwjWDEUlFolCE1yvZAgQcpIjoC0WFoMPMeAgeJgMdG2r4aRTLDPou3eS9L78OYN7WtiUShiseF9Lx+64kOe27O1Wei+6Pck7sIownrLjcqjGM+MYzQz6txHMzSmD7THIo1GuLAos7IT7+nGFhbj+nwCQIGPdpw2NPLaBcG7nNEwwEhMYB/FwdFcqMPtvIHznL9pigZHHZ/r5b2334vfvuy3Ey1rC4sGolsmnE7I7NqMBSjrv7UWKlNSUlJONKmweIrRajbw9KMPJV7+wJOPht6vT10KAHh6lgzaVZUUObJFcnF3R6hOrN+Ew/tJ5Fnu4pfgyute4DjgAODZvY9j87a2sBh4LcPETLk9M8/vWNz38M8wfdgbY0LTNAp97f4vdUXzzOBbaajoz65OWHQ7FsOIc94BQcfiyaCbWNFnn3oUSot8Fo16DSxL+kx6olC5VbgcEB+FKnHJo1bXUoC091PqWFxbxFVG56akpJwCDETHnvrRdR0/eeDxiCW85wTbseiw+9VAfREyQ4olJkuExVKFFO8y1qSd6fm2qHbOhgk8eYC4CN5/FY9ffuE1oF3nnof2zWBXlLBo8ePFdl+9oks82ntkEY8+fTCw/MhAEXM1q+ChxESSJkSAb2a2u89i5RiQcc3Yt4XFbbcAl76RuLLcZIaBxgrptbhW9NJ/j894t0HIw38c2Dx+cAYr1mdtR6HKZrJ+PMcdy7EocTHXNV5OJiT64WTQhtZhz5xAzkTHolhYnVM3JSXlpBImLMpm5yK9aZp45OePOLc1I9oNbguLlBx9Bl6YWwAAsDz5nV9dqDqPTW6aRKtEruEDNw7ghlfeAH6wXZM4+vRRbN4RPaZaaCyAU8k4hwEDKSOBHyDrMDMmHveNr3RTD/RZdGPCRF2td3w8KeOZYBy0ZjnsJ7OTsc9/zsRznL9HM6NYbi576jdT+SlclrsMAEBpFGZqM6hr3u2O6iVni1BRhEWTypyMr730a7hu8jrnPpZlsXB0AYuzRPx0R6HO1Gac5TJcJlxYtBx2Ah0/DnAf12HYwqI7ChUA9LoOWqQ9PR+TwDN8qLB4/uD5geWOByIrYmNhY/yCSPaZnm5k2LURAjmGw0eu/IjnuE1JSUk5HUmFxVOMJ/c8CFVV4he02P9kdDyIbpool9qOgEzeEhYX28Iiw7L4+Y++B62yCEbKYWL9RlRWSs7jpcV5j2PRjWFFb06vtGeitzQDvOS94H7mDz4YiP7oG2jPjGuoOnTX49WWhpFc5xmM/thTgMSnuinECYsxzjsAKEgnKXLJBZ/AsWijKS08+LMfAyDCoijLaGmGx/XYzfo6bU9sFGrC3k1ffsPleN72YQx0KSKHYb9HKnUsrikin/ZYTEk57elSWNzz9EFHGErCA08egmG4CiO5MeDmP4Sdkm6wMpqKjsNlcofOZcFxLPbNkWLeY/MGWIbGj+7Zg/3LBgoihZ1b1jvRqQDw9JFF7N4RLywaVuSpSbEo+OpBb/vYZ2EY3rHI8EABqj1ZXKli1YT1XhrY0v67MgNkXa6BxjJxL17/O8CL/m8wIjQ3QpyUZncz2iPheohd8gueNO2IdH503cA377wHAFCtNUBRFDi1cnzjT5MiHOcoSz4DCma8cHm8iYiqPW05E12YKSlnEW63Wlkvg6O5SMfizOEZLMwsJF7/9L5pKE0FFN/5/GsYBupVInbRNI18MY+V+XZaAcMx2Pvne9E82gQt0Fi/Yz3qK21x7Ngzx7Dl3C2B9bpZanrjy/09Fj/9wU9D19rXdN3U0TfQWVj8j2f+Ax+864ORr5mEsexYT4/ZyFz7fYzKo1hqLkH3jU1uGrwJAEAbNFaUFczX55GUJM4tlmZBhUzdkTnZ4whkGAY0Q+Ou794FoC0sirLoERZlTg4V6Zq61Zc8gThX6BS9btHQw4VFo2mAkZmuhUWO5kLTp3YO7AQAZ/+IzElKhnAxIPUwke0UhgIFcQ0TN37xnF/EJaPJYmVTUlJSTlVSYfEU49H7f45MLnnRY2lu2iMShrHvyfasOE4QkCv0YXlhDqZporL3Htz/kzuh6xpokQzmcoWiR1gEgM3bz0MYem0ZIkdjoeoV9TipXYC65MZX4J7//T4eufcnnmWKgy5hUTGg6d5i3ESxu4u237FYiOnRyLO0xw0RRpjrcfsoKaQlFc9WSzdCYGFwGHd971sAiLAoyRm0VN0jLIrc6rZbiNlvEpdciNo1WcQXXnspzhmJ7k2QBD4VFo8LYhcO1JSUlFOUkP6DUfz4vsfAR/QQ8kcClmsN7Ds07V1GyOFAjQhYBi3gsf1H8WyJXOdrkLBuZBBHZ0nx7d8fV/HV7/4Emq5jUKYgshT6i1ksrbSFPtM0vVGoMdFRBishy7fHFS+7egfuuv8x/Mu3/9ez3Ii7mNeqrN4ZGBanau9/pQbU5oH8hGv5EokZ7RSzmJ8gy3QZlRUJ10OMk7uHkO0a6RCpu3G8H//f//wUAHEsZmURVGPp+It6STje22Dt25i5bccf27F4JkWZ9+K0TUlJOWVwiwwVo4KiUAztFWfzyD2PeG7TMb+9Dc3A/qf2Ry4z7RurDE8MozRTAgCU7yvjO//6HdASDbZAxkDZYhZaoz2hWW2q2LKzs7CY5bIotUqe+6SMBGWJ1CmG+oew/4n9+NqXvuY8rhs6+oY6C4uaoeEFG16AlXtXoK303sN3RA5Godp0G8c4khnBcnM54CK1RTqhTGZ2HSgf6LiOJDGjfiiKSvQ8iqIwNDmEH3/bnnBNxD1BEjBXb/eGzHLZ0OfbUahJhEW/YOgnsseiSAfE2U7Yk/Q7bdNoZhQ5Ptf+DHpJXVhjOu3f0xWe4Xs6blNSUlLOZFJh8RTjkft/hvMuuqyr5+x9/JHIx/f54lKHxyawuDCLxW//GSqP/xjX3vwSGIYB2pp9ky/0oVppF8ZEOYPRdVPObd0zG9/EZJ+MxZoCE+37WaldgJrafgGuuPZG/PPn/ggAoFqHXV9/OwqsrmjQfC6C9QPdDXAXuxQWk0Q8hgmLQ7m1H6RdtqEfBYkLjT3tRtTZuHM3fvqD/4auaWjW6xDlDJqaAYFt/2hz/90LPBPt9JT5kyNEdRMZm5IcMUEv0pSUlFOcLmMR//e+R3HZBds6LxBSCLz/sWc6Lm4yPB56ytuHcWpsCIdnFvDubzfxtw+oeMWNVwFo977rz+c8LkiGprFzS3ssgnq0i8FgJWS59rjinHWDuP0XrsdH/uIfPcsND7hmmit1QF9lf7yVkB5P/VZkVH2BCJduobduCW5sh8lU+QnialztdrnpRVh0uxOrVlGuwyz9i8+ZxLd/fB8azRaq9QaysgTUF70uOnkw9LnHnQ4uyzXDcoNmTrZjkc+cebGhmfgeYCkpKacmLMUGolDzfD4yGvORex7BJteEIjqmdEUzNJ7e83TkMs/4xirD48NYOLqA2a/OYuYrM7jieVegeHURbNYSFgtZmKq3RrF5Z+cUiAFpAGWl7ElqkjMyDCtyvT/Xj5f86kvwxf/7RedxzdBQHCgG1lV9oorGwQY+cPkH8LtX/y4KlxbAFtiAIzIpYT0WbcROYxAfFwxeAICIWAYMLDaDPSMBgGtyKApFTFenQx9fDUkjPtdtXYcH734Q5VIZjVoDoiSiZbRQVduT1joJX7YYyMW0WKFAIctHi2cNrUHcub59bDQMiOtEHKocwhOLT+D+2fsj16MaZBwYFgcLEDH15Vteju1924mzLuFnejxxOyvdtcLTFZ4Oj6FNSUlJOZtJz4qnELqm4/EH78V5F12e+DmZXB57H4sRFp8KCovlxTnUn/oJihfdgl975285j1E0g1yh6M3L37LDM0Nw2SfgrR+QA25BWmwPsChQePsHf9+JTVVN8gOiOOAWFnVoutclsK6/u6iupWr3jsU4waTvBEWh/utbr8S33v1cTPYHi31hURed2LRjN8qlJTz6wM/RbNQhSTJaquFxPa6FYzGyx+JJEhZXG/GaEmTbSA4bBjMnzJ2bkpKyCg79DFjat+rVmAB+fP9jeO7FnXsr+5ka7Y8UFg2aw0NPemetT40P4cCxeXzpYQVvuojDX3zobZ7H+/Pe6+GO9YMQheA1mQIwnqMCjj6DlSAz3iLGp37rDVBV7+x6j2NRqQLGaoXFI8H7sr5i3pBLtG0sEYGu08zy3BhxCDZLq9suN730Ig4T5DrEbV60bRL1Rgvf/ckDqDWIYxGNZW+U5cnqh3y8Z/Bbca+ZiCi+EwJFAUIBnfpgnpakwmJKymlN0XXNqBpV5IU8GHQWFvfcswfnX3Z+x8f9jG4cjRcWH/eOVUYmRjC7fxZLP1jC4IsG8cE/+yCMVrsmkSvkYKjt232jfcgXOzvUBqVBlFtlj4giZb01jTe+/40QxPa1qKW1QnssGg0DaomMSQSmvfy39n8LRytHI99nGFGOxbjYTH+vvFF5FABQUzvH5u8c2InZ+mwXW5iMpI6xdVvXwTRM/PR/fopmowkpIwW2J86xGPdaAiN0FPpsGloDAiME3LnFq4pg8yw++9Bn8bmHP4fHFh8D0O576cc+pvqlzn0L33fJ+/DW3W8Fz/CnhLDoxtMy4TSFZ/jQnpwpKSkpZzNptfgko6kqVqweiM88uQfNRh0XXHJlYLnRX/008pe/MnD/hm3nRToWTRPY9+Rjzu3a8jwGR8ZAcyIm3voFyJM7MTox5QiHbHEUuULRs471W3dEvofNQ1ksVFpwGw4p3juAHlu3Hje97JcBkH6Kpmmi6HIs1hQNumsFMs903d9wua6AckWY5WOExTiBDIjv0wgALEMGiQyzupnhE8Ueeh75GJqYwtDoOO763rfaUaiaDtElusn86gZDPNd5v20ZzmJ9v3xSHG6pY3Ht+dvXXIK3Xbc5dSympJwOlK0ik1KPXi4ETdOxXCbFoWpDwezCMq65NDwCPYyLt6/H/Y/t7fi4SXN46Ml2PNlsuYXxoX6Uy1Xsf3cON29hMTLYR5xtFv057zVx16bR0HW/9gIKR9+bA/71V4H/fAfes4UImAYjQaS9YuPoUD8+9NbbAADlGikaeRyLrQqg9x4zBiDcsegW5SjG61i0BTe/4GWLKHmr71GMQ5NlyXglyv2xKsL6I3boeTc6kMe5W9fj//vuT0kUakay3mfnYtgJYy2jQcOKdqdKFCrQjqoN6/t5OpJGoaaknNa4eywCRNRxT17WdR3lUpn8rek4vP8wLrjsAufxOKfQ5I7JRI5F2vrNqK6o6Bvsw9L0ErZ+civ6r++HnJEhse3xR7bodSyObx2PXP+gOIhSq+TpmyfJ3vFMtpDF21yTqWpaLVRY7ESWy+JzD38OVLa765lfHHST6bIHcpbPosAHUws4jlz8KJrC7qHdmK5Nr/n8lqSORSkjYedFO/Hj7/wYjVoDkixhtuYTFju4De0ei7HCIivECk22sOhfjhbIcfi+i9+HP3/en2N7/3YA8EzwdzMsD+MDl30At2+/veNrURTl9Jo8FXosulEMJX6hUxyeSR2LKSkpKX7Ss+JJwL4Y/dYbXolbdk/io+96HQBgz30/gyBK2LrzgsBzhPFz0Hfda6H5Zvps2n4+no5wLGqKgkP790KSZTQOPoQf/tXv4NjhgwAAxoor5XgeoxPteLFcwTuwXb812rWwaYjEbZquwhktBJ13197yEgCAYjLQDBN9A+2Zx03VQFNtFwALEgeJS14cMwGUmyoEsz1giY1C5aIjPakE6wCAK64kQvC28y5MtK3HEwoUrr7hhbjre99CvVqBJGegaAYE175crbAosp332z+98Qq88ZpNXbks1wohdSyuOSxDYzh3av0oSUlJiSGsxx+AxZZ17rdmTNvn6c9/+wFw5/0CXvjmDwMAStUmaJrGVRfu7Pwavn6AF2/qxwOPd3ZL6hSLh5/cj9HBPtx9WMObvvS4s3y/RDnbc86Gdu/B/qxXaNu9ZSx03QUBqLRM4KJfAyYuaT9AAQIVdB/e9uJrAQCVBhkv2I7FUtMkwmI3jkVrRruH0iEYUVU0ud8rNDZKJKrWL1K9/xng9f8NrH9Oe7kILr74IgDAVRdGTwbrmbDiWwfHIgC84sar8PUf/hzLK1UUMgLZt6ea42w1gtuVvw485z3B+y1h8aRHoQLk86EoQD/9i3mg6MjjLSUl5dQnx3ud7+4o1L337sUNG2/ASy94KQBAs9IF3MJiXJTi5I5JHHiqc08/gDgWB0cG0Xi2gSc//SQe/OmDqJVqYLMsDMWKK823BbhsIevcDwDrtq2LXL8ThWptqw4dcjZYF7nh5Tc4f9dUr7CoxoxD3nnhO8HQDKgMuc7YsZ1x2DWoQTEYRd5L37j1+fWB+7Zu2QoA2HnhTuwe3o2W3gLNr+1v9G629ZpbrsG9/3svluaXIGZEzNRnPD0R5Q7R8K/Z8RoIjOCIdJ0QGTGRsCiynZc7f+h8XD95PQbE+Mkzr97xalw1cVXsckDyeNsTRdxxfToQ5jxNSUlJOdtJK/EngR27SPHnZb/yRrzv9/8UN7yk7UTcfv6F4PjOs7D8CQIbt5///7d33+FxVNffwL87s72verG6JffecMMGbGx6h5hQQyC0hJLAjwQILZSXlkIJSUiBJGAgAUIoDsSBgE0LxXQMNu62ZMuyurbP+8ds77saaVW+n+fxg3Z3dvZqJLRn77nnXOxrTt4Ko2X7Jvi8XqB9F/Y+dQMclfVYuvLYuOMqa+pCX5us0QFUTVOKyUUAtYG9EP2mcJAqaOMDmWAw6xd18PqkqFaoANAZsTG6w6jNqmVnr9sHvwQYVOHJk3R7Ceo0IoQElVhbbj8Sj50/D1UFxowSi8FKxXwk0xJZtOxItLbswWcb3oPeaITb54dRG5lY7F8wlOy6AXI70nwlooZSxeLECvkDS6rENRGRoq76BjjirqTJm03d8t9mKfB3qbJEnsBYOKkaf7j1clx13kmhY6eNr4M1wURYiC66Ddisxkp0dCVvh7W3w4Wunj40OzU45JFeVBfo8Z2TD487rrE2XAlQEPNeMr0hcWIRAJxeSU7ynP4E1nfIx/lFAzSIT6jErjQOViw2d/vlRKGrK+nrZKRjFzpU9uSPm4rC1X+SX26/aipOvB9e9UGAqVBORPYdSPmyqkAyUxyo1tUJKxaTVz+cuHwB2ju78fL6D1Bp1QCQAEviqtO88fejOnXFz4Dpq+LvDyTdTYPTST+1YEVpf77PoUJrAtRD4aISUa5i338tWgscxXJCrbS2FFfddRVufOjG0OMV1RUoKgvPFySr5AqqmlAFr8ebNAHp7nGjtbkV6AC23LYFarMaJ30nHPtILvl5hY5wgsdoMQIRf0Irx4UXQCVSZJDH61fJkzYeeOIqFoHoeYNeT29WFYsOvQO/W/670O3mnuaMnwsgqkq0PxrsyfeaFNUiJhVl3lI/G+n2PYy0aMUieFwevPnymzAYDWjuaQ79jABEVadGWlC5AP859T+YUzYn5flTJQyDer29cgJSNbgtNIdcxeIIWOTExCIRUbyhMxM/imj1cgBz4pnnY8UJ38KchYeGHpsy+6CszlU/PvW+A7s2y21Qm//3EszTVmD+t3+IqrrGuOMqa8OBoclij3qsqn4cUqlw6KERVZDMEYlCTepAxuv3R1UsAkCHM7yKqcCkgT6DisWOPvk5PS454jcmqE5IJlmCTaVSYUFDEURBlbad6lA0eeY82AsK0dVxADqjGR6fFPW9ZlMJmog+TcK2Py5aKv8eFlqynzwSBRWGSsfOF3+wGP+6/GDUF6fezJ2ISDEaPSBqATGziQsxsBhjxZyxOPekw7F8Qbjq/uDZmbdBBYBZTalbg23c3Q4A+OO6XTh1kgb3njYOUxpr446LrFi0aMNjBIBpDRkkpVSqUKtLv9oAMYO2S8GKxT1dgYnI3tQJPAAoTNa53N0NePvQKaZYdW4uDVW1wdUNOeGWPGkKALBWAJ7sW9wqKlFi0Zg8sThtfD3qxpShraMLVbZA3GCrGqDB5WggEm6Bn20+9pqOY3AAUAG+4V8lAK05f/tyEtGAcOgcoQRb7bRaHHnakVhy5JLQ41PnxXdxSqWyqTJl0uxAi/z+/sXfv4B5shlNP2hC05SmuOPKS8LvyYIgwKgPL7SqbMwusegW3AkrFiM5fc6sEosAMK5gHLBP/npv7960SdeB0OiIn1OKZNVaUWVR/n0/uN9kZOVhMhU1FRg7aSw62zvlVqi9LSg2huegUrW1tGqtaduuGkRD2kRTnyd1xeJASZY0HWzBn9eISSwO1JYDRETDFBOLQ8yUWdklFkvH1MBkSR5U7d68ESazBfVLT0bB8osgiCJKyuMD4jE14f1+RK0eGk04iNLqUycJ1YKAMQ4jYI5IFKYJwrz+6D0WgXByEAAKzbqMWlu2dMptyLoDzzVlkVg0aNIHd5lULA41oihi/iErAQA6o/y7YdKFv1dDPysWjbqBC6YmV9rw5S0rsbSpJKfna4dQ1eK4Mgv3JiSi/EvS5imVxbOyW2VebDehqjx5m8svdnXAqNfh/MOa8MjxemjVQsLjIxOLKucBFNjCbdOK7dnt/+NXGyD4nGm31CsptAMAmrsDk3LO9jQn9iV/rEfeB7FDmyIJaq0ENIHJnmB1pDX1RCVs1akfHwyJWqEm2WMRkBdpnbhcbtdVbgn8EOypW8gNuoFILGa5T9WAMhSMnFaoWnPazxZENPSpvOE3ZXua9sZT5kYvoPZJ0e+/sYkKrUGLmsb49pxB7S3tciXdkZNQdUkVRJ2IgpKC0J6LQZUxcyUmY/jveuGY1O0qbTob1IIaPq08VrfKDb0x9VyKy+eCxW5JeUxCgbBld8/u0J6AgylVxWLQ5MLEC9X6U70XbIWarjVu0OKViwEAeose+/v2o9yYZjFXFgwaQ9rWrE6fMz+JRc3QSCwGO2pk+vMaqiYUTkCdrY4Vi0REMYbOLDwBACZMm5XV8SqVCo0T4qsWvd1t6PvmfezZ8iVmLVyKyulLQisCC4pL446vjEgs+iXAYrNnNY6GYlNoJbFWFCCJupTHu73+uFaoPe7wBE+xWZu2tWifO/zhotvphUZUQSdEf+Cw6JMHcJm0BLUaBjcAVMqi5UcCADRG+UNK5L6Khn7uc9Dfisd09BoR6hwThLk+j4iIwhZnWbEIALMmjY27r7XHh+c2erBh234smjUJZy4ZG3pvT9RqtbEmovKxLzqxmC2/2gCV5IcpyXyPoJInOCwmeeKluSfQa97VmfrEX/8r+WO9rYCgQY82xV6CBfWhqsrQa6VLuNmHQmIxQcIszaRwMLFYZpTkvT3N8fFnXg1EYlHUJG5rmw/zLgRmnjX0WtDmQseKRaKRQO0KfybVpZkvmDZvWtTt2Kq8Dlf8ntKJKhC9PV50/K8DB5oPoGlKE2afNhuqwOJPURRRHLPQqboq/J7rl/wwm8ILa9K1ERVUAsqMZfAa5PcXt8oNqACtPn5hhN8rxx1OrzO0tUo2NGr5b+K+3n1o7W3N+vmZOHPimQCQsHKv3lYfd1+s6SXT5S8i/ny/ftrr+PnSnyfd3zCd4O9NbKI5mWBiUV2khgQJ9fb0486UUW3MaI9Fo9o46JVuQ60V6nD347k/xuWzLs/595aIaKTiLHwefP7h/wAA3Z3xwbDBmP1K58ZJUyHozVAXyhNTX378AfY8cwcO/Odh7Nr8JcbGJB4TBa5jasMBlk+Ssk4sNpWGJ/90GgH+NIFTZ58HWm34w4ROLUQlCksz2Kfvy+bw5F+XywurXgMxJhdp1SefhDBlUHmXS8VicbH84aSoVLnVcNmaPm8RrPYCmAvksZgjKhbV/dxXwaQduslWbQZVrkREBOxs2Q8AaOvqi3ssWMWXjVmTxsIZkaf5ZOMWnPTYAXz/JSfe/LIVMybGr2wvKojuuNBYE1El0NfR78QiABSbo9+zpECrWItGnqAMJjo7nJArotzdyU/q7AQ+fiL54z2tgLkYUqrKquIJ4a9dXYBKSJ9wK8h+EkyjkeOXQkf6VmEZ0WVXsQgAB00fj+qKYlRaBfn5Q2T1fMhA7T04RNqPobgJOOQnIySxaAXSVIUQ0dAXTCxqoIFG1KBtXxsAoOdA/D7NFTWp26x3ueP3RI5MLEqShJ1bduLLe77E7kd3o3NfJxonxbfvLK2Ifg+urg4nFj1+DyyW7GKRSkslvHr5/cUFF7x+L3T65ElUpze3asO6ujoAciXYxgMbczpHOlfPuRqvnvoqmhzxCdtSY/rFQtNK5ORw+YzwvIhD78DS6qVJn2PSpJ4PCyY5M62Aq22qRW1TLQyV8ntzoz38O5Cu2jAdg9qQNrHo9Dph1BgHfY/FodIKdaRQqVRR+3MSEZGMs/B58PI/5Emp7s40q+Iz1DhxGiov/hMqv/sQnnzkYfzwnBOhNheidNVtcPV2o2F8fEsztTo6iCouC0/meX1+WGxZ9vkvCwfcerUInyRATLHPU6czejLHYdSiJyKxWJxBYvGTXeHEbLfLC5tBAzGmyjFVYjCyPWgyuhz2EzSZ5GC4rDJ/FQZarQ4P/+O/mL/sGACAOSKJ2u/EYgbXLV80sZllIiJK6J2PvgQAdPe6Mn7O9Ie6UffLroTtVWdNGhua4nngn+9jwaofwaITsO5cE7x+CdPHxyfHxpREtxQriGwF5u5CgS33fWr9ojzG2MQiAi2ZCvU+IHZPImMR4IyYqPxoNfDPy8O3N68FhBRJw979gKUidcvGgtrw155eQGcB1GlinhwqFoMr46vKFJoESdQKNU3FoiAIeO9vv8K8pmI5MZTu+8yELpAoTTPxmJGBSixyNbuy5l8CNK5Q5veHiPJK45Q/m5sFM7SCFh+9/REAwNUXH4uk617U7YlfCNQ0pSnUIvT11a/j4mMvBlRA/XX1UKlVaEiwyKmkMnoLDrMh/H4nqkRYbdkt0KkyV0ES5UE44YTH74HekPzvl8vvgi+izbo3w/em4GLxIn0RtndtV6TV5OzS2aiz1UVVkxYZihLuRZju5wMATXY5Iamvzvzv9/PHP48fzf4RxlgSd3MIji3TfSVVKhV+8dQvMHn5ZOhEHcrN4SRnpTlNK/o0TBpTyn0aJUhw+VwwaUwZXa9c6JO8NzKxSEREg4GJxUHm9XiwZ8e2qPt0BvlNv3bsuJzO2ThpKgSNHl0fvYzf3XkdFh52BEqPuRKiSU4ONoyPb2nmKIpu+RFZxejx+7OuWBxbEg7AdRoBbp8PGm3ypF6nM3pPBIdJgz5POKBOV00oSRI+2dUR2oex2+WF3aiBLRD4m602AKkTi+YhXHmnBEdRMXyBHvDmiJawueYVg/sFpmovm28atkIlIkpLkiR8tXVX1H3qDBbSfNTix9Z2KWGrx1mBKoAnP/Pg+794FoceNA2/PrEYVTb57/L0CfGJxcrSFHsVubqiE43ptMuxVUODPGloL5InCotMib+vIr0/PrFkLgE8EVUTpmKgZHz49v5NwPRVycfgdQK2KtgdcoxlsyRIfuks8bcHILGouEStUAvqgIKGlBVxxQU2qJ3tgMEBqFO3vctI1Rxg9nnA+KP6f66BomECTFEzzwQOughIsWCRiIYH43554YVD5YBG0ODjdz7O+Vydrs6ohBwAjJ00Ft52L7o+6sLf7/47Gic3YtJlk6Ar1cHX7cPYBG3bSyqiE4uxCSCrPbvEYq2tNvS1E065YtGQ/P3P5XVFtfXMNkE41jEWu7p3xSUkjSb5WotZLJT+48o/4g8r/oBiY4qW7lnQBFpY+yV/xs8pMhbh7ElnJ60O0wYWeGVzTpvDhn2ufSjUF8KsiWhtmyIpmAmLNnWc6vF5IEGCRZN7B45Uvjv5u7hs5mUJH0uWcCQiIlISZ+EH2YfvrIu7z2YvAADMXnRITuesqKoFABhqp0NUa3DptbdBCFQkmu2FKCgqiXtOovuCepy+rBKLB3o8aCgOB2gGjQiPT4Jak3zFfo8r+kNAgUkb1QpVTFN5dqDXgwO9HkyqkAP9bqcXDpMWs2bJe1RW1ckfGuzGFInFIZwgU4orsHdD5B6LwQRhtiaUW3DTsZMws9quxNAGBBOLRESy9TuST7i881F8yyydSV6Q49LlVuEWbJ96cI0IlaDC/dddBGPEnr6NCVqaVaaqpnN3o8CaRcWiW04IlpXKrbk0Rjk+KDCkeF/weaJvm0tC5wEALLkaWPUEVn8aOK5oHDD7u6nHUdSIiZPlThGJqjTjKu309vQJt2BiUYX8tRNNNEFlcAAXvgHUL0n93L4DcttUpSa5jr4XGLdSmXMNBFYsKq+f3TaIKD8838jvn8FknV8txyY6SYedm3fC4/EkfJ7WmmAeIeYjbLurHS5fdKWj3qCH5JVgHGsEJOD7N38fJkl+3/V2eFGf4H05thVqLEsGbdl9m8PzGFWWqqjH3D43dLoUrVB9zoz3C0yk0d6Ivb170eGO3manMLB4y5plS/Rs2j0qURX37HHP4tp512b8ulp19olFAGjuaUaxoViRPfJ0og4aQYNSU+rfneDvp1WrUFv6GJfNugwnNp6Y8LGhklg8buxxAJC2ZSwREQ1P/JQ2gPp64vcK+O+afyj6Gjubm3H3dZfD5+yG2lYClaDCi0/9JfR4Rf34hG0X7IXJA7dulxdWe+atUHe390GvCa+E06kFeLx+aFIkFnvd0cFzoUkXlVjUp1lZt72tF2pBhXl1clK2z+NDsVkXlzRLlVg0agd3A+18cAWqQCOrDGPbxWZKpVLh7AW1aCgZmBV3StAysUhEBAA49m8SVDd1Yr+qIO6xJ156HVvb5QmZbkmeeJDUBqhu6sQ/92SfWGzv7sO5P74Xzd1+lJkFmA06PPj486HHK4ssCfd3riiOH1uIuweFthSTP+lahWkDVRGGFO95vujuCTCXAa7I1moqQKPHtyYHYom5FwBF8dUOUcqmZjSuEL09fcLN4Agkq1SAvSb1sQMlWeygNQH6mAmz2IStsx0wFACiAhWLwwETi0REAADfKz58es6nMHbLfxc7y+WtYPzw47XnX0v6PNEWHzP85I2f4NN9n4ZutznbovYndPW5cNfVd8FzwAPRJMJSYMEzf3om6hx6gx5aBBJTgSRncUXy6jy/5M8oMSe1SPAHFvTGtvDscHekrVjMNkkWqdEhd4zY0rEl53Pkaqxdjon6U/nXYG/At8Z/K+MkZbatUIPH7uvbh1JTqSLJUKPGiKeOeQrLq5enPM7pk38/rbqBSSymoheHRmLxuoOuw/MnPI+JhRPzPRQiIhoAnIUfAIsPPxoA8PSffxt1v8ftxvq1Lyn2Ou7W7bj9wpPwv3X/ga9zLwDgoOXH45m/PhwKtMrrxyd8bkFh8gC6x+VNuceiz586iNNrRLh9/pQVi92u6AnBIrMWPe7wfTpN6qTftv09qCk0otAcDtIrbPHBk7WfeywOd87ABxyTNrIV6sjdh1Cr5p80IiIAOOu4wwAAd/zx+aj7JQl4as0bWLsNmPLrbjSro1fWx7a8dKdZRL+5zY/53/8t/vGft7G9Q44Pzj96Hh564iV4ffJ70MSaxF0SKktTJDFd3SiwpEjQtKWZQBM0gKiFNVUuKzaxaC0HXF2JjwUAW2XCNrBRihoT3BnxvhubRMykRahKBVjjKz6HHJUKqJ4P7PoA8AaqSLxueS9Jc8noqTqLTR4TEY1SS49eCgB48oEnAQB+UY4LREnEq/98FUZz5n8vt3Vuw6oXw+3InT4nOlxylZ6nzYNfnvdLvPrPV+HrkAOXxactxpon18Ad2ILFWignd0TI7+N+nR9+yY/SytRVZ9m2Qh1jjk4stjvbodMnfp+X3JJcsejPvWLRoXeg3FSONmdbzufI1cLKhQCAAn2KhWIKCyUWs2gZ2+nuhMvnQrW1WrHKuQZ7AyotqfdodAViIbvOrshrZmOoVCwCQI21JmrfTiIiGjlGySf8geX3++H1hldnl5TLAcaTf3wQne3hAO+Dt19Hd2cHDlqSemVTKp7AJF3fN++j+c8/gk5vwv2rX4K2RG7rseiEc9C2rwWuvj4AQGVD4sSioyh5AN3rSd0K1elJHPgG9zPUa0S4vX6oNcmTen1uH7z+8Mq8Yosuqj1qbDXh397ficfeCe9NubvDiUkV1qi9GKsK4j+YpNxjcRglFtU5JgNdHh9EQRWVcMu1YnE40ARb6I7cb5GIKCG/3w+PN7xAp7hAbm16/1//iV0trXh3v9xW9K2NLdjVsh+nHXEwPt3rl/cRTMGTYhH9G9u8mPdwD3w+CW+vvhdzK+X35MtOXozu3j60tB4AAEyqTZxYHJNyj8VOFFhSTIrs3wT406zw11mQqJta+DVikoiWMsDVmfqcqRgL4/dQBIDAHkMoHhdf+WcuTp+sBADbmPTHDAUHXw107Qa2Blr/9wXiYMswSIwqJVCxOILDLSKijAQThy89+RJ2fLMj9Bmta28Xtm3ahqnz5Cr/TJJEF0+/GEfVRe+v29Lbgr4tfdh882b0tPfgvqfvg7lRjncWnbwIKpUK276W5xCKa6LjHb/aD6fXGd5jMclbsSWb/Z6BuFabne7OpBWLklNCn7cPXim+C8OE+RMwdX6aLggBs0pnZTVGpQQrFVWD+OFbJ8jXMpsqz+aeZgBy29jBFGyFmm4vxoEwVCoWiYhoZGNiUQE/uOQi/PbmH0bdZ7E54Pf58MTD94fu++9L/0BVfSNqGxMn+zIhAdi7Zxf2/v0W6Ksm4cpfrUZpRbjaoHBMPeYtWRa6XVE/IeF5SivkCSqzPX5Sr8/jgzVFYrGl05Xw/ppCOYjWqgW4vKkrFns9Pvh84Q8QhSYd+iISlkLMbEyZTYcPdrSHbvv8EhY3FkMdsfq9ypF5YlEtqIbVfny5VuK5vH5oRSHqOuW6x+JQ4DDKv1PLJiROjAevU2VtmlZ1REQjzFXXXIvjfvirqPtMRj1MBj1ufuBxvNLsgOqmTjz+9k5Ulhbi+BnFkG6wosC1PafXaz3QgSP+2ouppQLevv8CNNWFE19VpXacunJx6HayxGJ5oBWq3Zxg8sPVhQJzitXNrRuB7ubUg9RZYdakmHjq3R9921wGZLECPo6lHNCl2BdSjIiLVIEZzEwTbvYaDItVMw2HACUTgU3/ltvV9snJZdiqUj9vJAlMKjdWJd/PnIhotBAEAYUlhfjjPX8M3bf1k60wW80om1QGAPCYEu+1GEmv1mNlXfT+unva9mDrPVuhKdDgh4/+EA0TGkKPmR1mrDhlReh2cVX8Qqo2ZxvMgf2cDdWGhMmqbCsWY3V7upNXLPZJcHqd8PriE4tqnRoaXfJF0pHmV8zv1xiHE62YasWYLHYroJbeFggqAXW2uoEaVkLBVqg2rW1QXxcIVywWV6ZeQEhERNQfwyezMoS17tuL9//7cqhKEJD3MDz5nAvx7GN/wP69ewAA6/+zBktXHpvzEmbJ74MkSSgpr0TpaTej+MTroDfGT2Cdcs5Foa+LxtQmPFdwryONNn4yz+n2RbVCDVZJBjV3OmOfAiC8v51eI8itULWJgz7R50SvywtPREvVAlPqAPHSQxrxnx8uDd22GTSYXmUPv7ZagMMcf45kiUWtOjrZNtTlmgR1ef3QqoWo7mPDObEoCips/NlKnL2wNuHjwetkstoHb1BEREPA3n378K+3P0VbR3iPQKvJiJ9871T8/u//wldbdwEAnln7Lk5ZuRglKjnhU+DamfVr+Xw+FDlseOnbRqw5w4gCa8zCHk8ffnjuiaGbDRWJW2QFW3MbE02cST6UpOqQ5vMA299JPVC9FUYxRWIxWE2nAg6fPwUwxy5ayTLJaBsDaFMkFiMF35htqdtohZRNiWtTmzfGFJWmKhVw8I+AA1uAne+FE4v2YVJxqYTAz8lhGSI/LyKiQda2J9y1SavT4uwrzsar/3wVLqe8QHn3pt1YtHIRfGp5YbEkpn+/jayKkyQJNrUNPWIPai6rQd01dbAWxScAT/nuKaGvC8rjY5HN7Zujbne4O+KOybZiEQAK9eH3yW53N/SGJNVjTnm/yT5veB5JyGGKbm7Z3NDXX7R9kfXzc7V0zFIAQLW1etBeU5eufXxAZHKxpacFdp190Pc69Pg9EFRCXBXrYAhWLBos/d9TkoiIKJnhk1kZ4jxuFz55782o+04+5yLoDUZ0HJAD697uLixZcWxO5/e7erH37zfjyd/+HACgr54KVZLWWVPnLAh9LYrR7T4zmSLri2mFGvucPR19cHv90OoSB3V6tShXLKqTVAv6nOhx+UJ7LwFAQYKkYKzI5GNTqRnFlvDrW/Vq6BPsy1hoko+JrfjTikLWW/3kc09GbY6JRafHF1exOJwqNRPRqUVY9Yl/t3TcY5GIRjG/X8Ka9Rui7rv49KNRXlyAjVvkBKLb442qJszFVXf+HgCwuEYNrZh4scrMSeHKcXWO7ztFWnfyBwsbgeaP4LCmSOTpbNAIKSIfp9z2tLLQigXTmuR9AHMRaHUFe3VmbU0jWTNMLM46F/j2U4Apxb6U/bVqNTBtVerEIQCk2wtq4gnytfj6X3JVqKgFDIO3/1LeDZUEMBFRnnz6xqdRt1eevBJVDVVw9YU7Hx1y9CFZnTPYdtPv8WPXw7uw84870eHsgLHRCEGbOM4YE9FNQUgQi+zu2R11e2PbxrhjMqlYjD1mjCXQHUpjRo+nBxpt4s+uklOOUXq8PaH7xGzjCABlprLQ11s6tuDtPW9nfY5cTCicgNdPex1LqpYMyusBgFZIP28Uq7m3GUWGIhjVg5/g04k6aITMKk8Vfd0ME7BERET9wVl4Bf3v9X9H3TaZLfjW+d8P3a5tHI+aseOyPm/zru1o/suP4Nr1JcZNm532+NjWDwCgDvTt90ryj1wIVCyqElSvOb3+lBVfOw/0ob3XjaNOPQuFpfETYuE9FqODPp1BXi2lgxfdLi+8/shWqNkFiNPG2KOqEe0GLfQJkkrBZOT4suiVhrlULGqSTJ4OhlxbofZ5fNCqVVFJ1Hx+HwNtuCdNiYj66/nXP4i6rddpccMlp4duF9qtOGh69i3Z9+xtw/giAVoROHjO5IyeowtMpBm0iRfmhGKRJJ0c7JoUrdFqFgCtX+Oi4+bBEVsxGaSPnwzUqCMm7Jwx+ynmmljc8W7g+eXZPU8lJqiSTEJUA5UzE+/hqJRxRwAnPARYk7RnDSbM/PEt26IIArDwcmDvF8DuDwGdFdCMor1+Mq1aJSIaYSZ9MQl7Vu/Bl+u+jLpfVIv4zg+/A1eLnFj0tHowc+HMrM/f0daBrXdtRcc7HWiY3YB2V3va5xSXy60g9aaY9yFJ3nvP4wvHGrGJRUmSQq1SUzlq1VEQI+KLKovc/tuoMaLH2wNNkkWxold+To+nJ+HjuXpi4xP4+sDXip4zGYfeAat28CoBdWL2CbP9fftRqC/MS+WgTtRBLQz+AnWDKM+9Deb+l0RENPpwFl5B/3vj35Ck6JXxx37rnNDXuVQrfr7hPXz/W0dA8rpRfsbdmH7QwVGPR+5LGElvjA6adJIcxLslOXgtqaoHAJirJ8U91+XxwWRJ3gfe65ewsaULGq0Oojo+SNKpBfj8ElSa6KCvoqoWANA4tgFunx+9rvDY07VCjTWtyhY1EWk3ahJWLAbF7tmoU2dfsZhPuSYDXR4ftGpxWLV97Q9WLBLRaPfSuo/g8UQnfs45YXno61NWLkqayEtmwxebMffUy9HlkvD2eSYcvySzycAihzzRJCZ5DyoKrPCfWp84uWZSJW69DgCoPgiABO3ej5O/x+ntcXdZTBHxkbsL8Ee0SlXrAH0/9sExZPlcvW14Jdw0gcSilKZiEQBmnCFXV+79XE7wqofR99lfrFgkolGqoKsA+9fsx+fvfI6+3r6oxw4+8mB42+X4pHZiLdSa7JItOzfvxMXHXQzXHhfq/q8OC45ZgDZnW9rn2YvsAOQ9CyNp3Brs6d4jJ/UCocDWzq1RbUndfndUwjAZUS1GxVbFBjmZKapE9LgTJxYFUcC8xfMAAE5vingnQxVmeVHQyU0no95Wj/W712f0vDllcyCqsq+SzJdM9liM1eXugkPvyKnasb/ylVjUj6a4i4iI8oaz8AoxmCzY37IHm7/8LOp+nd4AbWkDSlfdjiUrs08sPv3n36KqrhFlZ94DTVFVzuPTSPJKPFcgsRhMSO7tjq8GcHp80BqST4oYNCK2tCZfVRdM8KmSTJbZjHLCsb0v3OLMrFNnlTwzxHwQKTBps0oqadUCxBz3uswHXeADjTrLBKPT64dumH2v/ZFrZScR0UhgNRnQ3tWDNz+M3l9HHTEpduyh87I+74OPvYCyIgfePd+EGeUioMAEWCRDohZhOiuEVCv4DQ6gcrbcajPVMam4ugF/TLtVY5atRvvaszs+kt42vBJu2iwSi2odMC+w57feId8eLZhYJKJRzGgxwuP24IN10R0UBEGAVicndqrGp57XkFzyYu29vXtD97381MvQ6rQoP6McPpcPJYYSuGPfw7Og8WjQ5+vDzu6dUAkqNDma0NrXiu2d20PH+NK1/k4imGS0aW3o8nRBnaBzgyAIsFvsAJRJLK6oWQEAKDWW4rfLf5vRcz466yPcuvDWnJJ1+ZLtWJ1eJ9x+Nwr1hVkvrFOCQW3Iqb1tfwVbobJikYiIBhJn4RUydvIMGM0WvPPfV+IeKz76Suirp8AV0fs+FUmS4Dkg9/v/4S0/xx0PPwHR2I8V9BGckhhVVenzS3FVln0eP3wptiRqKjVjR1svfFLig0IJviSTSBa9HFh39oUrKlQqFeyG3APaQpM2qz2cdDm0Qs2nYMLMn+SaJ+MKJhZHcPvTSEwsEtFoNrVxDMqK7Hj+tXfjHps/fQIAYObEsXGPJSJJEja1yUv477v+Ivz3z/8PFZbA31h3bi271JDf97VI00oTAEzFckVhUM+++GOmfUv+r6c38TlSJRZFLeDqBHwxY8m2Hequ97I7PpLBIY9juNAF2sFlOtE673ty61Zz6fBKoPaXxpDvERAR5U1JZQkq6irw1tq34h4rHSN3KBgzfkzcY5GkLvkz7+s7Xw+1Tz3rh2fh/mfuh6gX4Xf6QxV6udK4NVBBhW2d2wAAjY5GqAU1PtsfXije6e5M9vSMWHVW9Hh6IOjjP6P6JT+0ohYqqKISix/u/TCn14qsiis0FOLWhbcCkBONyQgqAeXZtnHPs2wTi8GfYYkxx3b3/aQX9XlthUpERDSQOAuvgJdeeAGfvPM6ZsxfgrcTJBbVGnklfq87/USay9mH2666EM2P/hB+Vy8MRhO0WuVWeTv9IjwxWUO3zx91u8/jg8+fPIE1rsyCne196HMnacMaqFiUkgR91kArkG53dLWkI8t2qJGKLdldI51azLkV6jkLagEARt3grTwLVnP6/WkOjOHy+KBTi1An2EtzJNJl0KqGiGgk+stjq7Fuw9c4+uCZCROLwbakmazWdrs9OP/6X2L6Q91o7vZDp9XAaIhIDLm7cxqjTeoAAJSr29MfbC4F3L34pDXwd33Px0Ds4ppJJ6Q+R6rWpAZ7ILEYU+2Q6Z6HQdvfye74SMaC/CbcLnoTOOZXgLEws+O1WSYWdRbgOy8DC38wvBKo/aVhxSIRjU5/fvTP2PrlVsw9dC7eXvs2nIIT9uX20OOawLyIkMGC4F5XL5666ylsunYTXHtdENUiTJbw39ciYxGEfkxnCZKAKksV9vTsASC3rJxWPA1bOraEjsmk1Woqdp0dAODRRs97dLjkeOiT1k9g1BjR5wu3X/3713/Hs5ue7dfrAkC1tRqAnGQcSbLdYzF4rctN+Umg6tV6qFWDn1hUC2r5/4/RMQ1ERER5wsSiAhYvWYoJs+Zj9uJl2PjJh2jf35rTeZy9vfjRuSfhrVdfRsHKSyHojPj4vbfwu3tuUWysvT4hLpHo9sYkFt2pE4tNpRZ4fBK2tyWuENBpAtV1QuJNyk06EYIK6HFFT0wVmBIfn4mxJek3VY+k0wgQc0y2HTahFBt+uhyLGrNrlza5Iveq02AlnoQcKhY1QtwekyOVNouqVSKikeSUk07A5IZKHH3wTHz5zQ5s2r4763N8cpEJZvRixXevx6P/+A8ePEqPMrOANz/4HNf94pHwga/dAay7N+exFooZJCYtZYCrCzVlBfLtlk+BruboY4wFqc+RYI/F8GMOwNkJeKL3gIIls+4SAACPE9j7WfrjEhm7HKiYld/EYukkYNbZgJhh/KXNLtaSX2MiUDMfGCVxCABAa0x/DBHRCHTGmWfAXmzH7ENmY//e/Xjf8T6KTiwKJe8y5XP5cMXZV2DvK3tR9q0y6Ep0+Prjr/Gne/8UOkYjaPpdhTa1eCqae8KxxaFVh2JH147Q7a7IzgnBsWXRHtWmkz//u9XRi5he2/GafL/PDYvGElWxeHT90Vi7fS22dW6Dxx+/bc1op0kyx5RMMLFYaspy4ZhCDGpD1mMGgMlFkwEAlebKnF5XpVJBp9axFSoREQ2owV86MwI9v+Zl/GPDLqBXbrPwv3WvwlaQ/cqwtS88DYPRhHseeQZ3feCFu3U7fnj2CbAXFsH23SMUGatbEuCJSSz2un2wRGwo3uv2whtxTOzx1Q4jjFoROw70wWGMD5L06og9Fj0SdMboldsqlQo2gwY9MRWchabsKzO1agGCCqgqyG4SR68Wc04sAoDdmN3K+09vWoHt+5O0asuANnBNs65YDLRCHT0Vi0wsEtHo9ORjfwY+fgrdXhV0Wg1e/O970GoyD/NE5wHoROCVtz5Cn8qEtX+8DYu//hm63RIWnv4jFNqt+NllgYPHHgbszq1VFwCYVK74SsFY1nJgy+uwGvWAdhywfxOw6d/xx2nNySso9eEFPVZDzLUw2AFIgPNAzOtmMYHTthmQ/ED5dGDPhsyfB8iVgu5u5Nw+IR+Cewf6M2hlO5qxFSoRjVK/uu9XWH75csAHmKwmOD1OqKFGu7M9YcWYEfJneNEd7jrj3u/Gtt9sg7fDi4XXL0RHnZwY+tFJP4LZakbheYF5FgmoslahuVdODHpzeG+aVToLL3zzQmjx7iHVh+Cu9+4KPd6TYK/nyCRpb7JW7AHBxKJP7wOcgM6oQ5+3D2/segOAvP+dRWeJ2ivyqjlXYUrRFNz+7u3Y2rk16+9ppCs1lUItqGHI8L22090JjaAJ/SwGm1FjzGmPxWnF07DmpDX9qsrNtrqTiIgoW8NoNmPosxUUYsK0Wehsz61lhslswf2rX8K4ydND992/+iU88drHWZ+rpDx63wJNRDvVHld00L230xV12y8hKunnlyT4IyoYBUGFmdXJ9y3Sa6L3WNQZ41e4O0xa9MZULBaZs2+TdfjEMtx18jRUOjKfxBFUgYrFQVw9b9apMbHCmvPzg1skJtvXMhmX1we9RoQwShKLGiYWiWiUMxv1OGTeVOxvz3ZfIAmioEKhUcA7T/4ci2dPDj3y5uP3oGX9X8OHzr0AuCR9C9BJY2sAAKUOOQ5QixETK+40i20sFXKrUkiA3gpUzQV2JHhNVYrJmojEYkHXF3ISMCi4/2JvTMwW1Qo1zXtn61eArRqwpd4rKiFBkL+vXJVNkf+rs+R+jmwFKxZ9rtTHjXZshUpEo5xao8bcJXPh96VeFWuA/Ble7Qwv/lEJKohWEXXX1eH0408P3X/bX2/DsxueDd12+92otdaGbne6Esc946aMAwCU18mJTY1WXhgtiiKmFU+L6ghUZalCtaU6dLvL3RVXobiza2fo68e+fAy//+T32Nm9E4kY1UZoBA3cKjlxaLKb8MbON6KSoBatBa6Y99XTJ5wOSqzeVo8XTngBB1cenNHxHa4OmDSmvCXZTGoTBFVucxSV5sp+7YGpE1mxSEREA4uz8Ao7aOnhKD3jLgin/Dyu0i+oTVOMmv97Hru63Fj7/N/hdsmB5JKVx6K4LLwJuVqjxbgpMyDksJrdYIyu4Dv48GNCX+/via4SaO6MaQMGoDs2+dgdHewuHCuvFEzUMjW4x2Jsy9VIRSYd+jwxicUs90kEAINWxEmzxqDEkl0rMb0691ao+ZDJnliJuL1+mLSjZ99BViwSEQHHHDIvq+OffOl1dPb0od4h4MHjHGiojp7EmD9jAkQx5r0kg4SW1SxPGAbfwxprwzEOevaFv06UqLKUyVWNwcrGphVAb5at5iMSi3B2ANveDN8OJhb72qOfY86irdqBrUDlTECTh3am874HnPsSULNAvj12mfzfhqUD95rqwAIwH1uzpcRWqEREmL9sPqTAXEFkRV4y6/61Du3726FxaFD34zpUNlTi8JrDQ49PmjsJojo6Fqm31Ye+TtS2FAAMpkAsEvjsX1kndyaoHluNels9DOroBcoHjwknrNpd7XFjj2yVekzdMdjSsQVv7n4Tfil+7kMFFQr1haGx+fw+vLrjVUwpmhI6xqa1RbVCTXQeilZhroA9Vbv7CO2udli0FmjztNezOZc28gphxSIREQ00zsIr7KAly6GvnAAA2NUen7ADgG61DZLPi3/+9fe44/8uwcfvvYUxP3gMXiH6jV9nUG7Fc2QQ3haTJDzQGx/oRyYWNYKAnRH7KRq1IhaOlfcX7HTGtxwRBRU0oipu78ZIhWZtXOVkkTn8/bu8me9dkK2Dm4oxodyacbJuGOUfo3h9fvglwKAdPR2PtUwsEhHhqCVz4u5bXtYO6QarnGAL8PklPPjqdpx2xR145tUPAMQvZFEn2rs2TeuvZKJWTe/fHE4otm8HYivyg3sdugNtyIrGAYVjs3vByMSiSgV8+nfAG3hNrRkQ1IGqyAjmLPbg8XuBcUcAqjy9z9YsABxyVSi0RuD6/cCkEwfwBYdpQDTYNIHEIi8XEY1ic5fOhXuPPM8Q3OcuEUmSsOPVHbj+/OvxwuMvAJBjkYUVC1FpCbcnj6wsDKq11Ya+7vZksH8zAItGXhhlN9ghCiImFEyIenxZzbLQ1+2udrhjWrdv69oWPrZ2GZ4/4fmUe+gVGYtCLVW/OvAVuj3dOH7s8aHHbTpbVMWiZwQu3gnuF5gPHa4OWDSjM7GoV+sZixAR0YDiLLzCahvHh74OzpHpDdErlyWPG3ufuhFb3n8NV958LypmHgrRYMU32rqo48z2grjz+3zZtcJMJDYZuL/HA3/MhF6fO5zYEwQVth+InkScWJ66fZdBI6asWCyx6NDrjk4eFpjCwd5AVhPet2oGvn1QTcbH/+OShThxRiWKc6iozCdnILFr0o2eikVNoglwIqJRpqayFFOaaqPuOyKwqN/SvRkA4PEBJz3Zhyfe3YNf/uR7OOeYRYEjo99/9Vns05iVrl3RycRt66MfDyb4gklMlQqYd2F2rxGZWJxxNtC1B/jin+HzmYoBZz8Si+YyYEx8EjeOOlDRWDIx83PnQlQDYvLJTQCAPfP4h3IUTCxyNo+IRjGbwwaLR07i7e/bDwBwFMvdAiwO+X6VpMLO3+zEjv/swHlXnYfTLwm3AD1u7HFR1YQ+KX7hcY0l/J7W5e7KqNqvxCR3JhhfIM/bTC+ZDkBOcALy3nZB3Z5udLrDcYJf8mN39+6o89n19qgEZ9zrGUpCSU+3341xjnGYXzE//HydPapicaR5a9VbuHzm5Xl7/U53J6w6a96q9+xae15eF2ArVCIiGnichVdYoiq44tJwS7G+3h588ez9cLdswonX/hpHnHR6KBlZPW5q2vM/8NomOD39q+br6IteBdfe646rLoxtU7ptf3RiMWEFQwSjVp2yYrHYootrt1oYkVhUx7R/zaEbbFJqUYBFn2biLcKUMXbce9p01BTmb88ck06e2M1mX0hX4GdoGk0Vi0wsEhEBAC45cgqunh9eWDK2Rm5DatCq4XZ7cPXjH2HtFi/+8cNF+MFZx6GiRG5xPq2hbHAG2NUsV/wFfbQacPWEbydK8E3Pcs8htR4IVhEUjgXGHw18vSbiNcoAd0yFQ7BFaiLGwujblTMyS0SqtcBVm4GFl2c07AHz413ACb8BhNGz4Cgv2AqViAgA0NDQAABoc7ZBkiRU1VcBkPca9Pv9eOm+l9D5ficOvuZgnPH9M0JzKRqVBo2OxoTnrBxXicZp8mOR+891uDri9irMxKzSWQCAA64DAAC1EP3ZeW/v3qjX8PizqygsNZVGJTyPaTgGZaZwrGXT2dDnTdzpaiQwa80Y68iy44SCOt2dsOvs0Ar5qVi06vqxn3Y/6dV5aNVPRESjyujJOAwRBqMJkw47CVsMTRgzcTaA8HpmtTb9KqodB3px57++zPn1jVoRXU4v/BF7I7b1uOGKSAIKKqDPHZ0U3Hkgu2DXmGZfvxKLPmXFYqzYRKPdmHlicCS47YTJ0Ioq1BVnntwM/kzNutHzv7mGrVCJiAAAFxS8DZXNJVfpWaL3TNRqNbhgxRQs8L+NKTMqox4z6nJ/f5X3Ycxwb6CuZiByhX7fAeCjx8K3dRY5MRh5jDbLBT4qlXyevjb59hF3AhtfDD9uLQdav45+TqqVTLHtrGoWA7oMW1yZiuR/+aQzAzXz0x+XTHCylYnJ1EKtUFklQESj29R5U7F502bs69sXl/QTBAHzj58P/9F+1M2XOzcFE3BNBU1w6KMX+gQfsxXbYFTLf2cjk4AHXAfg8XlgNBvhQuYJxuB+hzs6dyR8PFhtCQD7+vYlPCaVMmP0gq1Dqg6BoArHGnadHU7fyK1YzCe3zw2Xz4UCfUHG2+AoLa+JRVHPikUiIhpQnIUfJN2f/BtvPr8aADB1xSpoCiqTHhtM+h3ojV8Nd/3RE7GvK/3m58kUmrTocnrgi0gstvd6ovY7tOg16POEb/e4vHFVjukY07TfLLLEJxELTZm3p8hXYJgvFr0G95w6HZMrbekPDnAG9qk0jaLEIisWiYhkquCK+r720H1/+9yDu//2DgDge0dMxZTSBO/VCVqNZUqXadtUUQv07JOTiUFzvgtseS18O9iqtL/0ERM6tkrgoIvkr7v3AtbK+D0WI6VLZBbUpX48n4LJP0Nh6uOycchPgLJpQGHiKhIKEDWBJOzoilWJiGIFE2gtvS2hdqBdH3fhv3/4LwBg3tHzYKwPV3kHk3hd7q64c0mxezHH6HR3otvdDVtB+POy1+/FJ/s+iRpLrGAC0+2Pn2Mxqo1od7WHbrf2tcKus6ccR6xSU7izQaG+MKrKEshv4mmkC+7tWWIsydsYbNrM52+UZtFaIHIxGBERDSDOwg8wv9+PrWsexv4Xf4Hd32RWabirPXl14MxqBx75ztzQ7cgEYSo72uRzatUCOpxeeCKeJwFo7gyvkrMaNHB6whUHkY9lKl37zURJRKth9CTABoMr8DO06EfPddWxYpGIKJqnF5Ik4bYXt+KUp/rw4eaWxJNzez+X/9u2ZeDG0rZJ/m+B3BoNB7aGH1t+E2CKmfgxR9wWc2xhFTtht+Cy8GtbK+P3WIykTzLZZwjsga0Zwi2mRA1w4u+Agy5W7pwGO3Dh60DDIcqdc6TSGMDEIhGRzOv3YkfnDnz8zMfY9vNt2PPlHvi88QuZWnpbAOS+iDj4fAA44DyAe967B63OVgCI2q8xU2WmsqjE4v6+/Sg3lSd/QgKRSS2D2gCNEN0ZwqpVJrE4tVjeVqfIkOfuCENIcH/M2KrRSYWTYNfZ434WAyHTn+/pE+R2/0aNcu3UL51xKb4z+TuKnpOIiCgSZ+EHkKuvF7dccT52/nc1HId8Byd9/4aMnvf13u6Uj8+tKwh93dqdWZuPr/bKq/4MGhEdvR74fP7QbQDY2xk+j82ghisi0G/ucEIjZhfcp6uSK7LEJxYHogqxJPA6jaUZtiob5iKnioOtUEdTxaKGFYtERFFcbi/OvuYeXPvsFty4RIe/XH1M/Put5Ac+/Evg6xwqFnv3p35c8gMbHgf2b5Zv18yXE4Udu8LHaAzAUfdGP88cMREU24Y0U/qYleJiYBJJpZIrGL19gC9JV4ZkycyFgeRkcJIymGgz2HMb40CZeiow4ah8j2J00hiYVyQiCvIBj9z6CNY/uB6Fhxfi1NtPhaiOr6Rq7mkGgJzbN7b2tYYWTz399dPo9fTiiNojch52pbkyVPUWPP8Y85iszlFsSN19wabrX0VbsBJzadVSPHf8c1hYsbBf5xtJgj+72CrR1UevxuqjV8fdrzSdqINGzCx5efCYg7HuW+uwoGKBYq9fZanCUfVHQSdm3hmMiIgoG6Mn45AHf3/o/+G99a9iwpk3o7d8RsaJs43N8a0/kmnryawt6o62XgDyPoZunx+dgdanwWq2tt7weewGbVTCsrnDiRKLPmUlZazIff26nPETdoUp9lMEMq/ETMdh0uLdnxyGTqc3/cGD6PnvL8LG5i5YFEr6mbQiLDp1VHVpMDk8mvZY1LJikYgoyk2PvoonX3oLj313IlZV7ky879u2t1K3BE3nq5eBuqXJH//saaCnFTCXAt0tcpvIwrHy/o+Rxh8ZfdsaMeGjznFSJDaxGCm496QvySItvT3x/YsuB6atAoyBhV7TvgWMmZP6tWjoWPRDeT/PgVzBr2bFIhGNTrFdEdSCGt2vdGPzPzdjyRVLsH/afgiBxaCf7v8UQLgFanNvc9LziqrULR31oh7trvbQPojTi6fjwmkXwulz4qWtL+X0vVRbq/HRvo9Ctz1+D5oKmvDK9lcyPke6NpxKVSwCQJ1tCLdoz4NOdyfUKnXC5G2lOfnWREoxqA1R+4Cm098kMxER0WDjLPwAkHxyEuuYcy/DL/7yTxROzHzVkSRJoerCTOzvccGfZr8BAGjtlhOHBYGEXlvgtkoFVBcYoxKUdqMGTk+4YmF3Rx8qHdm1DolMZq3fvD/qfACg14gwaZN/ONBplPvVLLHqMbZkaFUsTq604aRZYyAIykw6qUUBS8YV4+uWbvS55WsdbIVqSHGdR5psK2uJiEYqj0+ODa5ZtRhv/PUurJpbmvhAvxf46HHA4Ii+P4PYIqRzJ/Dp3+LvdwZW+ffsAxZeDiz4fvix8qnxicWgYGsqS0XmYwgK7osYXCGeLDkIhBOLyaSaDLKUhl8DAAobAFOg/Viw0lEcPQt7hpVlPwUufhsoahq412DbMSIahR757BH8/tPfh/YrDLY7XXDqAsy+aTbGHTEudGyXuwvrdq0DICfsgHDFYkJpPuYVG4uj2paeM/kcHFRxUL/aXVZbqkPtNIOmFU3L6hzp2lAqmVikaB2uDpg0JujV+Wldrxf1UKsYCxIR0cg1JBKLDzzwAGpra6HX6zFv3jy8++67KY9/6qmnMH78eOj1ekyZMgUvvvjiII00vfVrX8Lu318Eb1crTDYHGsZPyur5e7tc6EpRXRc7z7e30xWXtIvl9YX3SwwmFtv7wonE2iIj2iMqFh1GLfoiztnW40ZNQXYTJOaIff18fgn/+Gh33DGOFFWLTA9l79hpFdjX7cKmfXIrXafXB42oGlXtQVmxSES5GkmxyCvrP8D4+7uwuc0Pq0mPOVMSJFBaNwb++xXQ1wbMPDv8mOQH3v+j/LUpg716Gg8HvloD+GK6KOwLvMbBVwGLr4hO8lXOjj8+ljWHFlUrbgMmnxROGsUmTPt7/kyMPxoonwY0HDow56f+M9gTV+8qRWsc2PMT0Yg03GORXd27sKN7B17f8To+efcTPLDqAfTt7EN9cT3cVW44vXJ3HQkSHv/y8ajnSpKElp6WRKfNSJGhCB3ujvQHZqHGWhN126q1oiKXRU8pmDSmUDtTUla7qx1mrTlvrUCzrVgkIiIabvIewTzxxBO48sorccMNN+CDDz7AtGnTsGLFCuzduzfh8W+++SZWrVqF8847Dx9++CGOP/54HH/88fj0008HeeTRJEnC04/8Gjdd9h1oi+sg6M0pE4TJfN2Sen9FV8wm5y2dLnT1JdkbKGBPRHtMq14DjaiKag06ttiM/REViwUmbajqDQD8EjChPLuVdJEVi5PKrfjvxn1xrVTTtUOl7BzcVAy9RsBHO9oByHssakUBaoWqIocDbSCJOnq+YyJSwkiJRQDg10++jCMu+CmaCgUUm5L8NfR7ga1ylQDatwFj5gL1S8OPv3kf8HWgzVdpBgukpq1K33I09vHy6enPa07dPixKsFWqzgyc/AdgzGz5dqrEotaU+96NqQgC8L3XgQnHKH9uGh40RjAaIaJsjKRY5IW/vYArV10Ja4kVGpsG1ZZq+CRfqCLxqwNf4ZPWT1BnDbfu7HJ3welzJjtlWiWGEhxwHuj32CNVWaqibpeZymDRWrI+T6rkkkqlglkztLorjRQdrg5YtJZ+Va32h0HDxCIREY1seU8s3nvvvTj//PNx7rnnYuLEiXjooYdgNBrxhz/8IeHxv/zlL7Fy5UpcddVVmDBhAm655RbMnDkT999//yCPPMztduP3t12DR35xK751/g9QdPw1EDS5tVv4am8XSq2Zr6jySRK2BvZPTGZnWzihp1IBJRY9OiOSkQ0l0UlQh1GDXnd0AnNaVXb93iMTi8fPqIRBK+Kp93dGHVNo5ibSStJrRCxsKMJXLV1weXxwenzQqgXF2q0OB6GKxdHzLRORAkZCLOLz+XD5PY/h4lv/gEtOPxr/XGWCVZfkj+G2N6Nvz7sQMBWHb+94F5h7PqDLcFGRxgAc/fPw7U1rgd621M/JJGFpLsvs9YHkbUsNaeIXc5IWsTQwlvwfMOucgUnoDiWTTpAT9pxQJKIMjYRYxO/348CzB/DNQ9+g/pB6nPmLM6G2qFFproSoErGnR26B/vn+zzG5aDKW1ywPPTfV/oqZKDIWxbUt7a8CfQH0YnheZ4x5TE5JwCJD6u4PbIc6MDrcHbBqrUOyYlHFCQsiIhoB8ppYdLvdeP/997Fs2bLQfYIgYNmyZXjrrbcSPuett96KOh4AVqxYkfR4l8uFzs7OqH9K+/KLz/G/V1/CZTf/At+57MdQ9aOVxcbmLtQXZx6sCipg54G+lMdsb+uJul1u00dVLNYVmaIetxu18PrDPVcLTFoUm7NLlJp04X39DFoRPz5ifNw4iy1MLCrtmGkV2N3hxLa2Hrg8fmjVo6xiUc2KRSLKzkiJRb75ZgseeWE9HvjJd/DLay+EOumesxLw+T/CN8umAnWLo9s2LroSOPjq7AYQWZ237wvgnz9IfbzWmLrKEQAswcSiEN9WMt1zQ8fZM3wNGhSH/AQ45peAfoRPos45Dzjs+vCen0REKYyUWKSrtQt71+7F4gsWw/BtA/Z79gMAtKIWtdZaSJDnGASVgIumXQR7xHt0S08LhH5MT5UYsuhykCGVSoUKc7j1aa2tFlox+65L6cYWWQWpU3OORCld7i7YdLacfmb9dUjVIZhePD1pteQfV/4RS6uWwqFP0VmDiIhoiMtrYrG1tRU+nw+lpdGrxUtLS9HcnHjFWnNzc1bH33777bDZbKF/VVVVCY/rj6nTpuPep9/Aocec3K/z9Li82N/jxsTyzNtrlNsMaO5I3TJkW0xFY4XdAF9E4jA2sWgzRgc/FTZ91J6JmTDpoo8/bU4VqgoMAABPYM/HYlYsKu6wCSVQCyp8sL0dTq8PWlGAOIoSi6NpP0kiUsZIiUUaG8fim2fvxMWnHZ76wLYtQOcuoHq+fLvqIHkfRV0g9jCXAgsuAczFyc+RTHDy5NgHgOnfDt+fbMFV6eTU5zMUACpRfr6hIP6xTKRNXg7QPotEuhFelUlEihkpsYitxIbF9y3Gz2/6OQxqA97Y9UbosYlFE0Nfn9p0KmaXzo6q2mruaY5KNGaryJi4KtDrz357mkjVlurQ13W2uhRHJldiTJ1YHIiKRVVgQdZorYzzST70eftQqC/Myx6WF027COdPPT9pUnNW6Szcd+h9Of9OERERDQUjfhb+xz/+MTo6OkL/duzYMSCvY7Jm1yoUAD7Y3o5H396K377xDQBg8z55f8WFDalbZUSqKTSipTN5YlGSJOw80BcVTgYTfEF2oxbWiMSh3RCdWBxTYIQl28SiNvp4lUqFG46WP0xs3it/n9m0fB3KFjQUAohP0OaDRa/B3LoCfNXSjT633ApVjK3yGMFYsUhEQ9FgxSIOa5L3IXc3sOt9+esd7wD2aqBuiXxbCIaCgb+cjrrU+xKmEmz3pDUCx/4KqF0s3062UrxiRprzCYDBLlcrCmLqY5NJl1i0jcntvERERMPIYMUiGrMGJq0J35v2PQDhxN604mmhYyYXTYZRY4x63p6ePSlbhqZLEFo0FhjUhrj7398rxz8f7fsos28gRo2tJvR1g60hp3OUmlK3Xbfpkscque6/OLVoKspN5VhRuyKn5w93PR65a1exMYeFcgpQqVQwafI/P0RERDSQ8ppYLCoqgiiKaGlpibq/paUFZWWJW1OVlZVldbxOp4PVao36l2/BvQW3t/Xiq+YuHOiV9zv0S3Lb0WxaodYUGNHS5Ur6eLfLi163D1UF4cC9ymGMO6464nG7MXoCsLbQmHUlWGzFIgCU2eRAXwoUSxaNkIrFCeVW/O/aZTh80tDYp+noqeXY0daLlk4XdGoBYtJ2eCOPVoyZICciSmPExyIbHgOehSAg1QAAJWFJREFUviB8u+8AMOFYwFio3Gto4uMKAOkTlOXT05/bWgmImnBL0+IJ8n8zTTQWjwMqZwOWJO/RiRKL444CJh4H5LhfNhERUTZGYixyxoQzom5PKZqS8viW3haUGpN/nnb5ks95AHIip9JcGXd/MCH52f7P8M6ed1KeI5aoElFnDVeUWTPdezpGsSF1citVYjFXKpUKL5/8Mo6sP1Lxcw8H3R55MXu5iZ0piIiIBkpeE4tarRazZs3C2rVrQ/f5/X6sXbsW8+fPT/ic+fPnRx0PAK+88krS44eiksDegrefMAX/uHQRfnZ8uBVYXaERdmPiPuyAnHyMVFNoimprGqu12w0AaCwJJysr7PEr+eqKw6upYisWG3KoxDNq00/4FY6QxCIg7xc5VL6flZPLoVIBzZ1O6NTiqKpYDCXAR8+3TET9NGJjEVNgEktvA6atCt+vMcq3c60ATCTXdqLlU+X/ptpP6Mi7gBlnhKseL3kbuOgtoCBQNWCtSP5cQP7+z31RTqYmkmjsqx4DTvhtuD0sERHRABqJsYhaUEe1AG20NyY91u1zo9PdiTGW5F0EDjgPpH3NyLalsaxaK5766ils79ye9jxBgkpAtVU+Z721HnadPePnRo0rcI5kLU8HIrE42gUrFstM3EubiIhooOS9FeqVV16J3/3ud3jkkUfwxRdf4KKLLkJPTw/OPfdcAMBZZ52FH//4x6HjL7vsMqxZswb33HMPvvzyS9x444147733cOmll+brW+iXUqs+qs3ouDIrrPrkiUVJik4iVhUYkGoLvdZuFwwaISqZWGGPX4HfEFElaTVoovIysRWMmTAnqFiMVWQe/E20R4MCkxbTq+wAAJ1mdO2xKAoqCCrmFYkoOyMiFnnp/4C37g/frjsY0JqBw34KHPPL8P2NK4CC+uzP39ce/jq4V80xvwKmnJK+3WgywWrBCcclP6b6IGDqqYAYEVeUTgy3cD3vX8DhtwKFY5OfQ60LVx8G27WKgWSmNUlSlNWKREQ0iEZELBJDI4TnNTRi8jmOdlc7AGCsPfl7+d7evWlfr9ZWm/SxMyacgQJ9AVZvXJ32PJGqLPJelBpRA1GV2aKs0L6GwS7zOrmDQ4U58WKo4OOknG5PN0SViAJdhntyExERUday2zhvAJx22mnYt28ffvrTn6K5uRnTp0/HmjVrQhuRb9++HYIQzn8uWLAAjz32GK677jr85Cc/QWNjI5599llMnjw52UsMKwvqCyCkSAR5fNGJRZ1aRE2hCVtaexIe39rtQqlVD506fA3LbfEVi2MjKhpFQQWzXo0up9w2RJ9B9WEso65/FYvZtl6laEdNLccH29uhV4ujKrEIRLZDJSLKzIiIRT78s/zfTa8Ck4KJusDff1EDFI0DWjcCYw+T90DMlKcP2PA48NVL4fuCVX6zzpb/JRNshZpsj0WtCfjBR0BsFcLkEzMfn94GLMhiElVvlZOhjYE9hyzBSb7R9V5JRERDy4iIRdIoM5Whuac57n6PX94apsnRlPS5Ha6OtOevs9UlfUyv1uPBwx7E6S+ensFIw0qMJdAIGgiq9J8xg8ecM+kcPP3106i3ZbaQK9cWq5Rcj6cHRo0RulRdMYiIiKhf8p5YBIBLL7006cq61157Le6+U045BaeccsoAj2rgdLvkhJ1fim9hOr4i+6ByUoU1RWLRjSmVNmgjEouJ9j+sLYxud2rVa0KJRUuKCspkMqlYtOqTHxOZCI10zcrxeOC1TdBrhm7ySK8RA//N3xiPnFKOW57/AjqNAHUgsegwalBbZIJ6hCfeNGqB88NElLURE4t8/Djgc4Yr84IK6uXEYoqKgTiuTmDbekDQyBWQmwMt1xLtSwgAFTOA7W+Gbx9xJ6DWy/scJlNQC6A2fPv6/UBfW+ZjzMVJD4e/NhXLFZhCivfGyz4GNr4I2OL3biIiIlLKiIlFkphSNAXNPc0J90u0aC0o0CevLutwd8R1b4qVqhUqAIx1jMWti27F1f+9GmaNOeWxQYJKQJmpDIJKgE/yZfQcu96O17/1ekbHAtEtUoX8NxUbEbx+L8waM3QiE4tEREQDZUgkFkebdZtaAQBtPe64xxw5tB2dUe3A8x/vAYC4/RY7+jyoLTRCI6bOtNTF7KNoM2iwq70PCxsKQ4mpbBg0IlQAUoX+qsDef6YsKiIvXNqAVfOqYckgcZkvFXYDTp9bhUVjU2/SPpDKbQZcckgDym360HX+4PrlaO50ZpT0Hc40osC8IhGNXhOOAz57BtDbUx9XPk3+r71G/q9tDKBSAVNOij/2pN8DtQuBuxpSn/PcF+VEZGmgWkKjB468M6vhQ1QD5pL0xylFVMv7NRpStMpy1AAHXTR4YyIiIhqGJhVNQrurHSa1KeHjhfpCAIDT64x7rEhfBKMmeUeFdmc73P74+ZNIwb0MU1lesxwPH/4wPJIn7bFBU4umotvTDbcv8etfMu0SXP7a5TCo4ztDZSJyj8VULWMpO1atFdpkXTOIiIio30Z2hmGI+mx3Z8L7tWoBNkP2geS0MeFA9Ou9XZhVE92jf3KlDXs6ooP3IrMWrd3hwDi2itFmDI9DUGWWpim3G4BtcjszlUoFg1ZErzv9qr5ghV+mcrlGg+22E6fmewi4asV4eH3+0G2VSpWwDe5Iky6JTkQ0Il36vlxROP3bcoXg63fJeywa5Um8ULVdcIJlzGzgBxvkZCIg//f6NiB2Nb69OtxadcaZciWkOsn+gyoVULtI0W9rUJy/FuhpzfcoiIiIhrWTm07GsQ3H5pTMKTGWwKhOnlhs7WuFyxtf6RgpmLhMZ1bZrKzGdtvi2/B+y/soNCQ+/2E1h+Ht09/OuTousmIxlkVryemcJF87JhaJiIgGDhOLg2xvV/zqvFKrPEE3q9qRU5vKiRHtUz/e2YETpocnBUWVCpMqrXGJxQqbISqxGBqLRQ6G7RHJu0xbet59ylRMr7JhfJk8HmOGiUUlnTizEne89CUm5dBSdiQa6W1PE5ErFplcJKJRpmis/A8ADr1WTiRufjXctnTl/wNsVYA1op1nQcxeRIIARLbg+u5aoGN3+PZx9w/I0PNOb5P/ERERUb/kmsgpN5WnrPjr8nThgOtA0seBcEckpQkqAXPK5sTdH1lpaNIkrtLMBBOLA8Oms0ErMLFIREQ0UJhYHGTvbY0PhsVAq1FLij0HUzFqw8/b2+XC21vCexMVWbQJ26tWOgz4eFfyDdAdpvBzPL7UexkE6dQizlsU3qBcHlfqdiVKK7HosfFnKzOusqSRRytyj0UiIsw6B5j6LUAdWD0vqoFFl2d3jjGzgSTbKeZkwtHAc5cCVXMVPCkRERENdw32hrSJwd3du1M+PljUghpev1exarjIBGUygkqAX/KnPY7CCvQFEIXsumMRERFR5phYHACFJi3297ix80AvplfZox57NyLpNxBqCo1Yt2lfaG/DSrsBFn1869BKe+qWmAURychcW0sas9g7UUk6NYPHoep3Z83CG1+3osA0cCsHucciEVGAJknL0nwxOIDr9uV7FERERDQIsqniG+cYl/JxUSVib+/e/g5JEf899b94ZdsrqLJUKXI+fbIW8xHWnrwWa7auwdTi/G+5MlwUG4rzPQQiIqIRbfT1SRwEkyvlVhbvbGmDxxtuBbq/x42d7X0oseTWez8Th08sxZbWXuxo6wUAVBcYYdbF54/L0yQWHQokfkw5JBZn1Thw6uwxcXs+FpkH7prR4Fk+sQw3HzcZhQP489Sq+WeNiGjIUmvlf0RERDSi/XrZr3Fq06motlanPbbMXJby8XJTOfY79ys1tH6x6qw4qemklC1MM1FkKMr8WGMRzph4Bgr0Bf16zdGkzJT6d4qIiIj6hxWLClj7RQs+3dWBhQ1yYBjc321PhxP//bo1dNymvd3QigIOqi/Acx/tyem1dGn2O5xV48CzG3ZjX5e8sXldkSnUajVSXZG8MXqipCMQvceiWsgtURObHMzE3y9aALfXH5ccMulYhUiZmTrGBpfXx30WiYiIiIiI8qTEWILr51+f0bFGtTHl43W2Omzv2p7ytQCg1lqLrZ1bMx5jvvxhxR/Q5+nL9zBGNCYWiYiIBhZLexTw9Ae78PJnLeh1eUP3FZq1mFBuwb+/aIHPLzcm3bS3G+PKzP1qA5kuVaIWBJw9vyZ0u7YocYBeYJIrxuqKErcnsRvDicV0FWDJWp5mmlgstUa3/mDFGfXHz46fjKtXjIchT614iYiIiIiIKHPp2qY2OhrR2tua8phIamFor6GfUzYHB1cdHHe/qOJnWCWooMqqIpSIiIiyxwyOAvwScKDXg837eqLuP3HGGLR2u7G7wwlAboV6UH0hDJqBDXLPXlAb+tqkjd9fMRORicXYBE1sm1R9kgROsmrISM9dshBXrWjKYYREialUKpRYh9i+YkRERERERBRHL+phUKfeqmWsfSx6vD1wep1R91u0loEc2qBTqdh1RwlmjTmjvSuJiIgod0wsKuiL5s6o23VFJhzcGN4wWqsWsHJSGfoTK2ZSzWfR55ZMjGQzBJKHCcYaTBjefuIUNJWakyYQM6lYnFplxyHjS3MeJxERERERERENL8GqwjJTGUQhdaVek0NejHzAeQAAoBXl+Yp131qHXy/7NepsdQM40sF3x+I7cN7k82DT2fI9lBCjJnW72qHEorVAJ+ryPQwiIqIRbWj3hxhmtrf1wu31R9133VETcPgv9gEAJpRZUF2YusVHOkJMVtKsT/wjHFdqwcaWrqTnqSmQg8JJFYkD1WDFogoqGDSJg/xVc6tx4sxK6NSJH7fEjK2+WP7e5zcUJh0XEREREREREY0sY+1jAYSrDCvMFQCACQUT0j63yloFtaCG1y9vP+PQOQAAgkrAospFAzHcvDqq/qgBOW+hPve5mDsPvhO/+OAXKDeVKziigWHVWaEVct+CiIiIiNJjYlFBO9r6sKcjegPuprJwa455dQUo7Mf+iomohcTlj3pN6spGh0mL969bBmdMIjTIZpATi4IKKSsskyUVgfjEolGrxuc3r4DHK6UcGxERERERERGNHKeNPw1VliqMsYyJuj+T9p8aQYMqcxW2dG4BEK5YpMz9Ztlv0OftS39gEg69AzctuEnBEQ0cm87G3xEiIqIBxsSiQmoLjdi6vxcf72pPesyMajuEJInAXJX2Yy+5QnPy1hAaUYBRK0YF+VtuPxLvbGlDpT31/gdBRq3861Uc8TpGrRpgfEdEREREREQ0qiyoXJDzcxvsDaHEokPvUGpIo0Z/rn0mgvtkDoW9De06OxOLREREA4x7LCpg54FeOL1+1BeZ8FVLN2Lr8SaUWwEAGjH1vgGZMGrlc0wdY0N1gRG6DPZczJVVr4mqVlSpVDiovjDj5GiyvReJiIiIiIiIiDLVVNAU+jpZm8sSY8lgDYdi1NvrcfzY43Fk3ZF5HcdJjSdhbunc0B6eRERENDD4TquAbft7AQBnza/Bk+/tgFWvUfT8bT3u0NcaUU4kPnfpIjR3OFHSj4rFdOY3FMKWZA/HTASToEREREREREREuWpyNKU95r5D78NjXzyGWmttv16LSanc3LLwlnwPAVfNuSq0FycRERENHEZLCnjrx4firU37UVdswqNvbcPW/T2KnfuG5z7DrvZwH/xgYhEAymzxSUVzTCIwg+0KkrrnlGlo63VHvWY2gmPpzxiIiIiIiIiIaGSxauXOTiaNKaPjG+2NaY8xaoz47tTv9mtcj658FLt7dkMjKLtgnAaHoBLYBpWIiGgQsBWqAsptBpw4awymV9lRaNKipdOl2LmLzFqcPb8mdNukS10FqNfIj8+uLQCQfVIvck9FQVChKMU+jOnMqS3AFcsbUV+c2QcFIiIiIiIiIhr5ppdMx3mTz8Nh1YdldHyluRJaQQtBNbDTWDNKZ+Co+qOi5kaIiIiIKBorFhWkUqmwpKkYT3+4S5HzlVp1+P05c1Bg1OKRt7YBQMbVg9cfPREnzKhEhV3eQHv5xFL8cu3XqC4wJn3OnFoHVkwq6//AAzSigMsOS9+uhIiIiIiIiIhGl8tnXZ7xsaIgotpaDVHFLVeIiIiI8o2JRYWtnFwWSiw2lpr7dS6jVt2visHJlbaorz+4fjnUYvJVd09duCDn1xoon964Aq9t3BtKkBIRERERERHRyNToSN7y9DuTv4OtnVu5ByIRERFRnjEaU9iixiJoRBVUCLcl1aZI5iVz+txqzKy2Kzq2AtPw6zNv1qtx9LSKfA+DiIiIiIiIiAbQG6e9gb19e5M+fkzDMfD4Pdz/kIiIiCjPuMeiwoxaNWbXOCCoVHB5/ACAX62agaVNxSi16gHIbUkBYIxDrsKrCbQnHVdmCZ3nthOn4OTZVVHnnlFlz3rPRCIiIiIiIiKioc6ut6PJkXo7leGWVJxaPBUAsLByoWLnLDYWK3YuIiIiolywYnEAXHn4OKz5ZA/0GjlvW1Nowp++Mzf0+IxqB967bllov8QSqx7vXnsYnG5/0nNuvu1IbG/rhU7N/QSIiIiIiIiIiIY6rajFB2d+AL+UfL4nW3cvuRt/+fwvqLPWKXZOIiIiomwwsTgA5tQWYFa1A4KQvLwwdu/EEos+5TlFQYW6IlPSx1++/GD8/YOdKLelPg8RERERERER0VDXYGvAzNKZEHJstnVS40n48+d/RqW5UuGRZUfpKkuD2oDzp56v6DmJiIiIssHE4gBJlVQcCE1lFvz4yAmD+ppERERERERERAPhmeOegdPnhCjk1rmpwd6Ad05/J+fnExEREVFiTCwSEREREREREdGQolKpYFAb+nUOo8ao0GiIiIiIKCi3fhJERERERERERERERERENKowsUhERERERERERKOOqBJxbMOx+R4GERER0bAy6lqhSpIEAOjs7MzzSIiIiIaO4Pti8H2SBg5jESIioniMRQYPY5GwV499FR6/J6/XwtfnAyD/PHSiLm/jICIa7RiLEGVu1CUWu7q6AABVVVV5HgkREdHQ09XVBZvNlu9hjGiMRYiIiJJjLDLwGIsMTSUXleR7CEREBMYiRJlQSaMsBe/3+7F7925YLBaoVCpFztnZ2Ymqqirs2LEDVqtVkXOOVryWyuG1VA6vpXJ4LZUxENdRkiR0dXWhoqICgsBO6QOJscjQxmupHF5L5fBaKofXUhmMRYY3xiJDG6+lcngtlcNrqRxeS+UofS0ZixBlbtRVLAqCgDFjxgzIua1WK98QFMJrqRxeS+XwWiqH11IZSl9HrsgbHIxFhgdeS+XwWiqH11I5vJbKYCwyPDEWGR54LZXDa6kcXkvl8FoqR8lryViEKDNMvRMRERERERERERERERFRWkwsEhEREREREREREREREVFaTCwqQKfT4YYbboBOp8v3UIY9Xkvl8Foqh9dSObyWyuB1pFj8nVAOr6VyeC2Vw2upHF5LZfA6Uiz+TiiH11I5vJbK4bVUDq+lcngtifJHJUmSlO9BEBEREREREREREREREdHQxopFIiIiIiIiIiIiIiIiIkqLiUUiIiIiIiIiIiIiIiIiSouJRSIiIiIiIiIiIiIiIiJKi4lFIiIiIiIiIiIiIiIiIkqLicUMPfDAA6itrYVer8e8efPw7rvvpjz+qaeewvjx46HX6zFlyhS8+OKLgzTSoS+ba/m73/0OixcvhsPhgMPhwLJly9Je+9Ek29/LoNWrV0OlUuH4448f2AEOI9ley/b2dlxyySUoLy+HTqdDU1MT/z9H9tfxF7/4BcaNGweDwYCqqipcccUVcDqdgzTaoev111/HMcccg4qKCqhUKjz77LNpn/Paa69h5syZ0Ol0GDt2LP70pz8N+DhpcDEWUQ5jEeUwFlEOYxFlMBZRBmMRSoSxiHIYiyiHsYhyGIsoh/FI/zEWIRriJEpr9erVklarlf7whz9In332mXT++edLdrtdamlpSXj8+vXrJVEUpTvvvFP6/PPPpeuuu07SaDTSJ598MsgjH3qyvZann3669MADD0gffvih9MUXX0jnnHOOZLPZpJ07dw7yyIeebK9l0JYtW6TKykpp8eLF0nHHHTc4gx3isr2WLpdLmj17tnTkkUdK69atk7Zs2SK99tpr0oYNGwZ55ENLttfxr3/9q6TT6aS//vWv0pYtW6R//etfUnl5uXTFFVcM8siHnhdffFG69tprpaeffloCID3zzDMpj//mm28ko9EoXXnlldLnn38u3XfffZIoitKaNWsGZ8A04BiLKIexiHIYiyiHsYgyGIsoh7EIxWIsohzGIsphLKIcxiLKYTyiDMYiREMbE4sZmDt3rnTJJZeEbvt8PqmiokK6/fbbEx5/6qmnSkcddVTUffPmzZO+973vDeg4h4Nsr2Usr9crWSwW6ZFHHhmoIQ4buVxLr9crLViwQHr44Yels88+mwF0QLbX8te//rVUX18vud3uwRrisJDtdbzkkkukQw89NOq+K6+8Ulq4cOGAjnO4ySSAvvrqq6VJkyZF3XfaaadJK1asGMCR0WBiLKIcxiLKYSyiHMYiymAsMjAYi5AkMRZREmMR5TAWUQ5jEeUwHlEeYxGioYetUNNwu914//33sWzZstB9giBg2bJleOuttxI+56233oo6HgBWrFiR9PjRIpdrGau3txcejwcFBQUDNcxhIddrefPNN6OkpATnnXfeYAxzWMjlWj733HOYP38+LrnkEpSWlmLy5Mm47bbb4PP5BmvYQ04u13HBggV4//33Qy1BvvnmG7z44os48sgjB2XMIwnfd0Y2xiLKYSyiHMYiymEsogzGIvnF952RjbGIchiLKIexiHIYiyiH8Uj+8H2HaHCp8z2Aoa61tRU+nw+lpaVR95eWluLLL79M+Jzm5uaExzc3Nw/YOIeDXK5lrP/7v/9DRUVF3BvFaJPLtVy3bh1+//vfY8OGDYMwwuEjl2v5zTff4D//+Q++/e1v48UXX8SmTZtw8cUXw+Px4IYbbhiMYQ85uVzH008/Ha2trVi0aBEkSYLX68WFF16In/zkJ4Mx5BEl2ftOZ2cn+vr6YDAY8jQyUgJjEeUwFlEOYxHlMBZRBmOR/GIsMrIxFlEOYxHlMBZRDmMR5TAeyR/GIkSDixWLNGzccccdWL16NZ555hno9fp8D2dY6erqwplnnonf/e53KCoqyvdwhj2/34+SkhL89re/xaxZs3Daaafh2muvxUMPPZTvoQ0rr732Gm677TY8+OCD+OCDD/D000/jhRdewC233JLvoRERJcRYJHeMRZTFWEQZjEWIaLhhLJI7xiLKYiyiHMYjRDQcsWIxjaKiIoiiiJaWlqj7W1paUFZWlvA5ZWVlWR0/WuRyLYPuvvtu3HHHHfj3v/+NqVOnDuQwh4Vsr+XmzZuxdetWHHPMMaH7/H4/AECtVmPjxo1oaGgY2EEPUbn8XpaXl0Oj0UAUxdB9EyZMQHNzM9xuN7Ra7YCOeSjK5Tpef/31OPPMM/Hd734XADBlyhT09PTgggsuwLXXXgtB4NqXTCV737FarVyVNwIwFlEOYxHlMBZRDmMRZTAWyS/GIiMbYxHlMBZRDmMR5TAWUQ7jkfxhLEI0uPiXKQ2tVotZs2Zh7dq1ofv8fj/Wrl2L+fPnJ3zO/Pnzo44HgFdeeSXp8aNFLtcSAO68807ccsstWLNmDWbPnj0YQx3ysr2W48ePxyeffIINGzaE/h177LE45JBDsGHDBlRVVQ3m8IeUXH4vFy5ciE2bNoU+hADAV199hfLy8lEbPOdyHXt7e+MC5OCHEkmSBm6wIxDfd0Y2xiLKYSyiHMYiymEsogzGIvnF952RjbGIchiLKIexiHIYiyiH8Uj+8H2HaJBJlNbq1aslnU4n/elPf5I+//xz6YILLpDsdrvU3NwsSZIknXnmmdI111wTOn79+vWSWq2W7r77bumLL76QbrjhBkmj0UiffPJJvr6FISPba3nHHXdIWq1W+tvf/ibt2bMn9K+rqytf38KQke21jHX22WdLxx133CCNdmjL9lpu375dslgs0qWXXipt3LhRev7556WSkhLpZz/7Wb6+hSEh2+t4ww03SBaLRXr88celb775Rnr55ZelhoYG6dRTT83XtzBkdHV1SR9++KH04YcfSgCke++9V/rwww+lbdu2SZIkSddcc4105plnho7/5ptvJKPRKF111VXSF198IT3wwAOSKIrSmjVr8vUtkMIYiyiHsYhyGIsoh7GIMhiLKIexCMViLKIcxiLKYSyiHMYiymE8ogzGIkRDGxOLGbrvvvuk6upqSavVSnPnzpXefvvt0GNLliyRzj777Kjjn3zySampqUnSarXSpEmTpBdeeGGQRzx0ZXMta2pqJABx/2644YbBH/gQlO3vZSQG0NGyvZZvvvmmNG/ePEmn00n19fXSrbfeKnm93kEe9dCTzXX0eDzSjTfeKDU0NEh6vV6qqqqSLr74YunAgQODP/Ah5tVXX034ty94/c4++2xpyZIlcc+ZPn26pNVqpfr6eumPf/zjoI+bBhZjEeUwFlEOYxHlMBZRBmMRZTAWoUQYiyiHsYhyGIsoh7GIchiP9B9jEaKhTSVJrKkmIiIiIiIiIiIiIiIiotS4xyIRERERERERERERERERpcXEIhERERERERERERERERGlxcQiEREREREREREREREREaXFxCIRERERERERERERERERpcXEIhERERERERERERERERGlxcQiEREREREREREREREREaXFxCIRERERERERERERERERpcXEIhERERERERERERERERGlxcQiEQ1bKpUKzz77bL6HQURERKMUYxEiIiLKJ8YiRESUD0wsEo1SKpUq5b8bb7xx0MaydOnS0Ovq9XpMnDgRDz74YNrn7dmzB0ccccQgjJCIiIiUxliEiIiI8omxCBERUW7U+R4AEeXHnj17Ql8/8cQT+OlPf4qNGzeG7jObzaGvJUmCz+eDWj1wfzLOP/983Hzzzejt7cWjjz6KSy65BA6HA6tWrYo71u12Q6vVoqysbMDGQ0RERAOLsQgRERHlE2MRIiKi3LBikWiUKisrC/2z2WxQqVSh219++SUsFgteeuklzJo1CzqdDuvWrcM555yD448/Puo8l19+OZYuXRq67ff7cfvtt6Ourg4GgwHTpk3D3/72t7TjMRqNKCsrQ319PW688UY0NjbiueeeAyCv3Lv00ktx+eWXo6ioCCtWrAAQ3/Jj586dWLVqFQoKCmAymTB79my88847ocf/8Y9/YObMmdDr9aivr8dNN90Er9eb+0UkIiKinDEWYSxCRESUT4xFGIsQEVFuWLFIREldc801uPvuu1FfXw+Hw5HRc26//Xb85S9/wUMPPYTGxka8/vrrOOOMM1BcXIwlS5Zk/NoGgwFutzt0+5FHHsFFF12E9evXJzy+u7sbS5YsQWVlJZ577jmUlZXhgw8+gN/vBwC88cYbOOuss/CrX/0KixcvxubNm3HBBRcAAG644YaMx0VERESDh7EIERER5RNjESIionhMLBJRUjfffDOWL1+e8fEulwu33XYb/v3vf2P+/PkAgPr6eqxbtw6/+c1vMgqgfT4fHn/8cXz88cehABcAGhsbceeddyZ93mOPPYZ9+/bhf//7HwoKCgAAY8eODT1+00034ZprrsHZZ58dGtctt9yCq6++mgE0ERHREMVYhIiIiPKJsQgREVE8JhaJKKnZs2dndfymTZvQ29sbF3S73W7MmDEj5XMffPBBPPzww3C73RBFEVdccQUuuuii0OOzZs1K+fwNGzZgxowZoeA51kcffYT169fj1ltvDd3n8/ngdDrR29sLo9GY7tsjIiKiQcZYhIiIiPKJsQgREVE8JhaJKCmTyRR1WxAESJIUdZ/H4wl93d3dDQB44YUXUFlZGXWcTqdL+Vrf/va3ce2118JgMKC8vByCEL0FbOxYYhkMhpSPd3d346abbsKJJ54Y95her0/5XCIiIsoPxiJERESUT4xFiIiI4jGxSEQZKy4uxqeffhp134YNG6DRaAAAEydOhE6nw/bt27PaNwAAbDZbVIuObE2dOhUPP/ww2traEq7OmzlzJjZu3Niv1yAiIqL8YixCRERE+cRYhIiIiIlFIsrCoYceirvuuguPPvoo5s+fj7/85S/49NNPQ+08LBYLfvSjH+GKK66A3+/HokWL0NHRgfXr18NqtYb6+A+EVatW4bbbbsPxxx+P22+/HeXl5fjwww9RUVGB+fPn46c//SmOPvpoVFdX4+STT4YgCPjoo4/w6aef4mc/+9mAjYuIiIiUw1iEiIiI8omxCBERESCkP4SISLZixQpcf/31uPrqqzFnzhx0dXXhrLPOijrmlltuwfXXX4/bb78dEyZMwMqVK/HCCy+grq5uQMem1Wrx8ssvo6SkBEceeSSmTJmCO+64A6Iohsb+/PPP4+WXX8acOXNw0EEH4ec//zlqamoGdFxERESkHMYiRERElE+MRYiIiACVFNsYnIiIiIiIiIiIiIiIiIgoBisWiYiIiIiIiIiIiIiIiCgtJhaJiIiIiIiIiIiIiIiIKC0mFomIiIiIiIiIiIiIiIgoLSYWiYiIiIiIiIiIiIiIiCgtJhaJiIiIiIiIiIiIiIiIKC0mFomIiIiIiIiIiIiIiIgoLSYWiYiIiIiIiIiIiIiIiCgtJhaJiIiIiIiIiIiIiIiIKC0mFomIiIiIiIiIiIiIiIgoLSYWiYiIiIiIiIiIiIiIiCgtJhaJiIiIiIiIiIiIiIiIKK3/D5u9Kqp6Co+cAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -735,12 +765,12 @@ "name": "stderr", "output_type": "stream", "text": [ - "100%|██████████| 50/50 [07:53<00:00, 9.48s/it]\n" + "100%|██████████| 10/10 [00:18<00:00, 1.90s/it]\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAC7AAAAPgCAYAAACx8HFwAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzde1yb9f3//ycJp6TUHkhtqS2ms9qkY3O2urEik3bTuYkDKU6dWa1nP5s70jmZTuvHrd0J99H5c85NrYrFfaSUTTxuWhU7nSvqHC6pdRrTWqwGS0+EY/L7g2/yKYWEACEk8Ljfbr01XNfrel3vcEyu6/V+vVMCgUBAAAAAAAAAAAAAAAAAAAAAAACMMcN4DwAAAAAAAAAAAAAAAAAAAAAAMDlQwA4AAAAAAAAAAAAAAAAAAAAAiAsK2AEAAAAAAAAAAAAAAAAAAAAAcUEBOwAAAAAAAAAAAAAAAAAAAAAgLihgBwAAAAAAAAAAAAAAAAAAAADEBQXsAAAAAAAAAAAAAAAAAAAAAIC4oIAdAAAAAAAAAAAAAAAAAAAAABAXFLADAAAAAAAAAAAAAAAAAAAAAOKCAnYAAAAAAAAAAAAAAAAAAAAAQFxQwA4AAAAAAAAAAAAAAAAAAAAAiIvU8R4AAAAAAAAAAAAAAAAAAAAAgPEXCATU3d0tv98/3kNBAjMYDEpLS1NKSsqIjqeAHQAAAAAAAAAAAAAAAAAAAJjEent75fV6deDAAXV3d4/3cJAE0tLSNHXqVFksFhmNxmEdmxIIBAJjNC4AAAAAAAAAAAAAAAAAAAAACay3t1c7d+5UZ2enpk2bpqysLBmNxhF318bEFggE1Nvbq4MHD2rfvn3KyMjQ/Pnzh1XETgE7AAAAAAAAACSoQ4cOafPmzXr66af1j3/8Qx9++KH27t0rk8kki8WiT33qUzr11FN13nnnae7cueM9XAAAAAAAAABAEtqzZ4/a2tqUm5srk8k03sNBEvH5fPJ4PJo+fbpmz54d9XEUsAMAAAAAAABAgunt7dWvf/1r/fznP5fX6x0y3mAw6Nxzz9VPf/pTHXfccXEYIQAAAAAAAABgIggEAvrPf/6jrKwszZkzZ7yHgyTU0tKiQ4cO6bjjjou6a3/qGI8JAAAAAAAAADAMbW1tOv/88/Xkk0+Gti1cuFBnnnmm7Ha7LBaLDh06pN27d+vZZ5/V888/r66uLv3xj39UR0eH6uvrx2/wAAAAAAAAAICk0t3dre7ubmVlZY33UJCkpk6dqra2NnV3dys9PT2qYyhgBwAAAAAAAIAE0dPTo6985StqbGyUJM2ePVu33367Vq5cOWjXkuuuu05er1e/+tWv9Jvf/CbewwUAAAAAAAAAJDm/3y9JMhqN4zwSJKvg907weykahrEaDAAAAAAAAABgeH70ox+Fitdzc3P10ksvqby8POKSmxaLRT/72c/08ssv6+Mf/3i8hgoAAAAAAAAAmEAiXYcGIhnJ9w4F7AAAAAAAAACQAHbv3q3bbrtNUt/F3gcffFBWqzXq4z/+8Y/rpz/96aD7fD6fbr/9dp1++unKyclRenq6srOzdcopp+j666/X7t27Bz2ura1NmZmZSklJ0XHHHRfVOPbs2aO0tDSlpKQoLy8vbNy+fftUVVWlL3zhC5o7d64yMjI0c+ZMLV26VJWVlXrvvfcinmf16tVKSUlRSkqK3G63JKm+vl5lZWU69thjlZGR0W+fJAUCAW3dulU33HCDTj/9dM2bN0+ZmZkymUyaN2+evvKVr+iee+5RV1dXVM9Vkh555BF95StfUU5OjjIzM5Wbm6vy8nI9/fTTkqRnn302NM61a9dGlW/VqlVauHChpk6dKrPZrAULFsjhcOivf/1r1OMCAAAAAAAAACBRpY73AAAAAAAAAAAA0h133KHOzk5J0plnnqlTTz01Jnn/8Y9/aOXKldq5c2e/7R999JE++ugjbdu2Tb/+9a/1m9/8Rpdcckm/mOnTp+vss89WbW2t3n77bb3wwgtDjqumpkY9PT2SpFWrVg0a8/DDD+uqq67SRx991G97V1eX9u7dq1deeUX/8z//ozvvvFMXXXTRkM+xq6tL5eXl2rRpU8S4Sy+9VPfee++g+9577z299957euSRR/TLX/5Sf/7zn3X88ceHzdXT06PVq1frwQcf7Ld9586d2rlzpzZt2qSKigoVFxcPOf7gceedd55efPHFAfvcbrfcbrcefPBBrVy5Uvfff7/MZnNUeQEAAAAAAAAASDQUsAMAAAAAAABAAnjiiSdCj6Mp2o7G66+/ruXLl+vQoUOSpMWLF+vrX/+6FixYoI8++kj19fV66qmn1N7erksvvVSBQECXXnppvxwXXXSRamtrJUkPPPDAkAXs999/vyTJYDDI4XAM2P/73/9eV155pQKBgNLT01VSUqLPfe5zmj17tg4ePKgXXnhBGzduVEdHh1avXq309HRdcMEFEc/53e9+V48//riOPfZYrVq1SjabTR0dHXr55ZeVkZERimtvb1d6erpOPfVUfeYzn9HChQt11FFHqbOzU2+99Zbq6ur0+uuvy+Vy6Utf+pJeeeUVHXXUUYOe86qrrgoVr6empsrhcOi0005TRkaGXn/9dd19992qqqoaMHFgMDt37tRnPvMZtbS0SJJOOukklZaWauHChTIYDNq+fbvuv/9+vf3229q0aZMOHTqkxx57jCV9AQAAAAAAAABJKSUQCATGexAAAAAAAAAAMJkdOnRIRx11lPx+v6S+guZ58+aNKqff79eJJ56o5uZmSdJll12m3/72t0pN7d/X5O6779bll1+uQCAgs9msN954Q1arNbS/p6dHxxxzjD744ANNnz5d77//fr+i8MO98cYbysvLkySdfvrpeuqpp/rtf/3113XKKaeoq6tLxx9/vP785z/LZrMNyON0OvWFL3xBu3fv1tSpU+V2uzVz5sx+MatXr9Z9990X+ri0tFQ1NTXKzMwM+zl5/vnn9YlPfEIzZswYdH8gENDPf/5zVVZWSpJuvvlmXX/99QPitmzZohUrVkiSjjrqKD311FP6zGc+0y/G6/XqC1/4gv75z3+Gtt14441au3btgHMWFBToxRdflNFo1G9/+1tdfvnlA87Z2dmp1atX66GHHpLUNxHgsssuC/tcAQAAAAAAACAaHR0deuedd7RgwYKI11cl6b02n/Ye6orTyMbOjCnpOma6abyHEVNWq1Xvvvuu7r33Xq1evTrqfbEwnO+hIDqwAwAAAAAAAMA4e//990PF6xkZGaMuXpekRx99NFS8/slPflJ33nmnjEbjgLhLL71U27Zt05133qn29nbdeuut+vWvfx3an5qaqgsuuEC33nqr2tra9Oc//1nnnnvuoOd84IEHQo9XrVo1YP/atWvV1dWlzMxMPfbYY1q4cOGgeex2uzZs2KAzzjhDBw4c0O9//3v98Ic/DPtcjznmGD3wwANDXhj/3Oc+F3F/SkqKrr32Wj366KN64YUXdN999w1awH745+eXv/zlgOJ1SbJYLHrooYf0iU98Qj09PWHP+cgjj+jFF1+U1Pf5Gax4Xer7vrjvvvv00ksvye12q6qqigJ2AAAAAAAAAHHzXptPK371rDp7/OM9lFHLSDXomTVFY1LEHggEVFtbq40bN+qVV17RBx98IKPRqNmzZysnJ0ef/vSnVVhYqM9//vNhVwCNp2DTldWrV/drbjPWDHE7EwAAAAAAAABgUK2traHH06dPj0nOurq60OOKiopBi9eDrr32WqWkpAw4Luiiiy4KPT68SP1wfr9fDz74oCQpKytLZWVl/fa3tbXpT3/6kyTpnHPOCVu8HnT66acrJydHkvTkk09GjL3kkkuUlZUVMWY4Tj31VEnSW2+91e9rI/V1knniiSck9X2tInWrsdls+tKXvhTxXMEu8hkZGfr2t78dMTY9PV0XXHCBJMnlcsnj8USMBwAAAAAAAIBY2Xuoa0IUr0tSZ49/TDrJt7W1afny5frqV7+q+vp6eTwe9fT0KCMjQx6PR1u3btWvf/1rlZWVDXotfqwcd9xxWrRokaZNmzZg30033aSbbrpJbrc7buOR6MAOAAAAAAAAAOMuEAjEPOff//730OMzzjgjYuyxxx4rm80mp9Mpj8ejlpaWUPG4JJ100knKy8tTc3OznnjiCX344YeaNWtWvxxbtmzRrl27JEkrV66U2Wzut3/r1q39uszX19cP+RymTp2qlpYW/fvf/44YV1hYOGSuoJ6eHtXV1am+vl6vvfaadu/erQMHDoTGdqRdu3YpOzs79PE///lPdXd3S5IKCgqUnp4e8XzLly/XI488Enb/888/L0maPXu2nnnmmSHHv3fv3tDjf//738rNzR3yGAAAAAAAAADA2Fu1apWee+45GY1Gffe739WVV16p4447TgaDQT09Pfr3v/+tJ554Qhs3bozruJ5++um4ni8aFLADAAAAAAAAwDg7vEC6ra0tJjlbWlok9RWBz5kzZ8j4E044QU6nM3Ts4QXsUt+F92uuuUbd3d2qqakZ0C388M7sq1atGpD/8O4tGzZs0IYNG6J9Kvroo48i7p83b15UebZv366ysrIhC+IPt3///n4f7969O/T4uOOOG/L4j33sY2H3HTp0SF6vV5Lk8Xh0zjnnRD0uaejPCwAAAAAAAAAgPnbs2BFqZvKTn/xE1157bb/9qamp+uQnP6lPfvKTuuaaa+Tz+cZjmAnDMN4DAAAAAAAAAIDJbs6cOTIY+i7XdnZ2hjqZj8aBAwckSVOmTIkqPisra8Cxh3M4HDIajZL6F6tLUnt7uzZt2iRJys3N1fLlywccP5rC/GDH83BMJtOQOfbt26cVK1aEitfnzp2ryy+/XLfccosefPBBbdq0SZs3b9bmzZt13nnnhY7r7e3tl+fQoUOhx0d2mR9MpM//aCcrdHXFfolbAAAAAAAAAMDwvfbaa6HHJSUlQ8YfeV3barUqJSVFGzZs0IEDB1RZWalFixbJZDLJYrGotLS038qrw3F47qDVq1crJSUl9PHy5cuVkpIS+me1Wkd0rmjRgR0AAAAAAAAAxllWVpZOOukkNTU1SZK2bt3ar4h6JKZOnaq2trZ+BdeRHDx4sN+xR8rJydEXvvAFPfnkk9q2bZucTqfsdrskafPmzaHjHQ5Hv4veQYcXyN9222361re+NaznM1q33357qHv6hRdeqHvuuUfp6emDxm7dujVsnsML0tvb24c8b6TP/+GfkyVLloS+/gAAAAAAAACA5LVr167Q9fPh2rt3r0455RRt375d6enpyszMVGtrq/70pz/pkUce0e9//3tdcsklox7jtGnTNHv2bO3Zs0eSNGPGjH7XzGfNmjXqc0RCB3YAAAAAAAAASABf/OIXQ4/vu+++UefLycmR1NdNPXgBOpI333wz9Hju3LmDxqxatSr0+P777x/08eExh5s3b17o8c6dO4ccT6w99dRTkvqWaf3Nb34Ttnhdkt55552w+w7/3PznP/8Z8rxvv/122H3Tpk0LFbHHous+AAAAAAAAAGB8nHLKKaHmLhUVFf2uuQ/HTTfdpA8++ED/+7//q0OHDmnfvn3697//rdNOO01+v19XXnmlXnnllVGP99Zbb9X7778f+riurk7vv/9+6N8//vGPUZ8jEgrYAQAAAAAAACABfOMb31BGRoYk6YknnojYBTwan/nMZ0KPg8Xb4Xg8HrlcLklSbm6u5syZM2jcOeeco6OOOkqS9OCDDyoQCKilpUVPP/20JOnTn/60Fi1aNOixhYWFoYv3TzzxxPCeTAwEL8RnZ2drxowZYeM6Ojr07LPPht1/4oknKi0tTZL0t7/9TV1dXRHPu2XLloj7TzvtNEnSBx98QAd2AAAAAAAAAEhSVqtVl112mSTpX//6l2w2m5YsWaJvfvObuueee9Tc3KxAIDBknn379unhhx/Wueeeq9TUVEmS3W7X448/ruOPP149PT368Y9/PKbPJR4oYAcAAAAAAACABHDMMcfo6quvliQFAgF97Wtf07vvvhv18U6nU9ddd13o45UrV4YeV1VVqbe3N+yxP//5z0MXzg8/7kgmk0nl5eWS+rqob9myRRs3bgzlDtd9XZKOPvpofelLX5LUd/G+pqYmimcVO1OmTJHUVyi+f//+sHG33nqrWltbw+7PzMwMdcvfu3evNmzYEDbW5XLp8ccfjziuiy66KPT4+uuvj+oGBgAAAAAAAAAg8dxxxx368Y9/rClTpigQCOjVV1/VHXfcoUsvvVSf+MQnNGfOHH3/+9+PuGpqQUGBPv/5zw/YbjKZ9IMf/EBSX5OYffv2jdnziAcK2AEAAAAAAAAgQaxfv14FBQWS+rqi5+fna9OmTRGLmj/66CNdf/31OuWUU/TGG2+Etn/5y1/WJz7xCUnSP//5T/3Xf/2Xenp6Bhy/YcMG3XnnnZIks9ms73znOxHHeHiR+v3336/7779fkpSenq7zzz8/4rE//elPlZ6eLkm67LLLhixi/+ijj3TLLbfor3/9a8S4aJxyyimS+iYHHF7of7iampqoOtd873vfCz3+wQ9+oL///e8DYrxer84///xBP+eHKy8vD3XLf+KJJ7Rq1SodPHgwbHxvb6+eeOIJ/eQnPxlynAAAAAAAAACA+ElNTdV///d/67333tMDDzygyy67TCeeeGLouvgHH3ygX//618rLy9PLL788aI4VK1aEzR/c5/f79corr8T+CcRR6ngPAAAAAAAAAADQJy0tTX/+85913nnn6a9//avef/99lZeX6/jjj9eZZ56pxYsXKzs7W4cOHdLu3bvV2NioZ599Vh0dHQNyGQwGVVdXa9myZTp06JB+//vf68UXX9TXv/51Wa1WffTRR/rTn/6kJ554InTMbbfdpmOPPTbiGD/3uc/JarXK7XarpqZGXV1dkvoK5rOzsyMe+6lPfUq/+93vdOmll6q9vV1f+9rX9Itf/EJnn322jj/+eJlMJu3bt09vvfWWXn75ZT3//PPq6enRAw88MILPZn9XX3217rnnHvX09Oj222/XK6+8ovLych1zzDHas2eP/vSnP+npp59WVlaWvvKVr2jTpk1hc61YsUKXXnqp7r77bu3fv1+FhYVyOBz63Oc+p4yMDL3++uu6++679eGHH+qrX/2q/vd//1dS39fkSCkpKdq0aZM++9nPaufOnaqurtajjz6qc889V0uXLtXMmTPV0dGh3bt365///Kf+8pe/6MMPP9TnP/95XX/99aP+vAAAAAAAAAAAYmvatGlyOBxyOBySpI6ODr3wwgu67bbb9Mgjj8jr9WrlypXasWOHMjMz+x17zDHHhM17+L4PPvhgbAYfJxSwAwAAAAAAAEACmTlzpp544gn96le/0i9/+Uu1trZqx44d2rFjR9hjjEajLrjgAt188839tn/yk5/Uli1bVFZWpl27dqm5uVk//OEPBxxvNpt122236dJLLx1yfCkpKfr617+um2++OVS8LvXvzB7J6tWrlZOTo0suuUS7d+/Wa6+9ptdeey1sfEZGhiwWS1S5I/nEJz6h3/3ud7ryyivV09Ojv/3tb/rb3/7WLyY7O1sbN27U3/72t4gF7JJ05513yufzaePGjeru7ta9996re++9t19MRUWFzjzzzFAB+9SpUwfNdcwxx2jbtm1avXq1Hn/8ce3du1d33XVXxPPPmzdvqKcMAAAAAAAAAEgAmZmZ+sIXvqAvfOELWr16te677z7t2rVLTzzxhEpLS8d7eONiYLsXAAAAAAAAAMC4MhqN+uEPfyi326377rtPq1at0uLFi2WxWJSamqqjjjpKxx13nMrKyvQ///M/2rVrlx544AFZrdYBuU455RS9+eabuu222/T5z39es2fPVlpammbMmKGlS5fqRz/6kXbs2BFV8XrQkcXq2dnZOuuss6I+/otf/KLefvtt3XPPPSovL9eCBQuUlZWl1NRUzZgxQyeddJJWr16t+++/X++//77OPPPMqHNHcskll+jvf/+7LrzwQs2bN09paWmaOXOmPvWpT+nHP/6xXn/9dZ1xxhlR5UpNTdWDDz6oP//5zyouLtbRRx+t9PR0zZs3TytXrtRf//pX/epXv1Jra2vomJkzZ4bNd/TRR+uxxx7Tiy++qKuvvlqf+tSnlJ2dLaPRqClTpui4445TcXGxfvazn6m5uVkbNmwY7acDAAAAAAAAABBnV1xxRejx9u3bB+x/7733wh57+L6jjz46tgOLMzqwAwAAAAAAAECCysrK0qpVq6Lubh6OyWTSt771LX3rW9+KybgWLlyoQCAwqhwZGRm6+OKLdfHFF4/o+A0bNoyoiHvJkiWqrq6OGLN27VqtXbs2qnxnn322zj777LD7X3755dDjE088cch8+fn5ys/Pj+rcAAAAAAAAAIDkkpWVFXqckZExYP+WLVvCHhvcZzAYdNJJJ8VkPCkpKQoEAqO+5j9cdGAHAAAAAAAAAGAM7Nu3Tw888IAkadasWcrLyxvnEQEAAAAAAAAAxsI777yjN998c8i4++67L/R4yZIlA/a/8MILevbZZwds7+joUFVVlaS+VU6nT58+4rEe7qijjpIktbW1xSRftChgBwAAAAAAAABgmN555x29++67Yfe3tbXp3HPP1YcffihJuuyyy5SayqKoAAAAAAAAADARvfHGG7Lb7TrrrLN0//33y+12h/Z1d3fr1Vdf1cUXX6xbbrlFkvTpT39ap5566oA806ZN08qVK1VbW6uenh5Jksvl0llnnSWXyyWj0aj//u//jtm4g41XHnzwQbW3t8cs71C4Wg4AAAAAAAAAwDA1NTXp/PPPV0FBgU477TQtXLhQU6ZM0d69e9XU1KSHHnoo1LFm4cKFuu6668Z3wAAAAAAAAACAMZOWlia/36/HHntMjz32mCQpPT1dWVlZ2rt3rwKBQCh2yZIl2rx5swyGgX3Ib7zxRv3ud7/Tueeeq4yMDGVmZmrfvn2SpJSUFP32t7/VySefHLNxX3XVVdq6das2bdqkP//5zzr66KOVmpqqefPm6YUXXojZeY5EATsAAAAAAAAAACPQ29ur559/Xs8//3zYmJNOOkl/+tOfNGXKlDiODAAAAAAAAAAQT1/84he1Y8cOPfbYY3rhhRfU3NysXbt2qa2tTWazWXPnztVJJ52ksrIynXvuuYMWr0vSjBkz9PLLL2v9+vXatGmTdu7cqZkzZ6qgoECVlZX67Gc/G9NxOxwOSdLvfvc7/etf/1JLS4v8fn9MzzGYlMDhJf0AAAAAAAAAAGBIBw4c0MMPP6y//OUveuONN+T1evXRRx/JaDTq6KOP1imnnKKVK1dGvBEBAAAAAAAAAOOto6ND77zzjhYsWKDMzMywce+1+bTiV8+qs2fsi5vHWkaqQc+sKdIx003jPZQQq9Wqd999V/fee69Wr1493sMZlmi/hw5HB/YE4Pf7tXv3bk2dOlUpKSnjPRwAAAAAAAAAQBTKy8tVXl4eMebgwYNxGg0AAAAAAACAySIQCOjAgQOaO3du3BpoHDPdpGfWFGnvoa64nG8szZiSnlDF65MRBewJYPfu3Zo/f/54DwMAAAAAAAAAAAAAAAAAAABJYufOnZo3b17cznfMdBOF34gJCtgTwNSpUyX1/SI56qijxnk0iCWbzaaWlhbl5OTI5XKN93AAAAAAAJiQeP8NAIgWfzMAANHg7wUAIFr8zQAAjJf9+/dr/vz5ofpTINlQwJ4AUlJSJElHHXUUBewTTHBpDoPBwNcWAAAAAIAxwvtvAEC0+JsBAIgGfy8AANHibwYAYLwF60+BZEMBOwAAAAAAAAAAAAAAAAAAAACME7fbPd5DiCvDeA8AAAAAAAAAAAAAAAAAAAAAADA5UMAOAAAAAAAAAAAAAAAAAAAAAIgLCtgBAAAAAAAAAAAAAAAAAAAAAHFBATsAAAAAAAAAAAAAAAAAAAAAIC4oYAcAAAAAAAAAAAAAAAAAAAAAxAUF7AAAAAAAAAAAAAAAAAAAAACAuKCAHQAAAAAAAAAAAAAAAAAAAAAQFxSwAwAAAAAAAAAAAAAAAAAAAADiggJ2AAAAAAAAAAAAAAAAAAAAAEBcUMAOAAAAAAAAAAAAAAAAAAAAAIgLCtgBAAAAAAAAAAAAAAAAAAAAAHFBATsAAAAAAAAAAAAAAAAAAAAAIC5Sx3sAAAAAAAAAAAAAAAAAAAAAABJc206pvXW8RzF65mxp+vzxHsWkRgE7AAAAAAAAAAAAAAAAAAAAgPDadkq3L5V6Osd7JKOXmiFd3TSmRey9vb3atGmTGhoa9NJLL+mDDz5Qe3u7pk+frhNOOEGFhYW68MILlZeXFzbHc889p40bN+r5559XS0uLOjo6NGvWLJ144ok6++yzddFFFykzMzPs8WvXrtVNN900YHt6erqys7P1iU98Queee64uuugipaWlxeR5R4sCdgAAAAAAAAAAAAAAAAAAAADhtbdOjOJ1qe95tLeOWQH7Sy+9pIsuukhvvvlmaFtaWpqmTp2q1tZWbd26VVu3btXPfvYzlZWVqaamRunp6aHY1tZWrVq1So899lhoW0ZGhjIzM7Vr1y7t2rVLjz76qH76059qw4YNWrFixZBjmj17dujxgQMH1NLSopaWFj311FP63e9+p6eeekozZsyI0WdgaIa4nQkAAAAAAAAAAAAAAAAAAAAAJqhHHnlERUVFevPNN5Wdna3169frzTffVFdXl1pbW9XV1aV//OMfuvbaa3XUUUeprq5O7e3toeP37Nmj/Px8PfbYYzIajfrWt76lN954Qx0dHWpra9PevXt17733av78+dq5c6fOPPNM1dfXDzmu999/P/Tv0KFDevfdd3X55ZdLkrZt26Zvf/vbY/UpGVRSF7B/8MEHamho0A033KAvfelLslgsSklJUUpKilavXj0m56ypqdEZZ5yhOXPmKDMzU8cee6wcDodefPHFMTkfAAAAAAAAAAAAAAAAAAAAgMS2Y8cOORwOdXZ2avHixXrttdd07bXX6vjjjw/FGI1GnXzyyVq/fr3eeecdlZSUhPYFAgF97Wtf01tvvaW0tDRt3rxZt912mxYvXhyKmT59ulavXq1XX31VJ554orq7u3XRRRfpP//5z7DGmpubq7vuuivUvf1///d/dfDgwVF+BqKXGrczjYHD29mPNZ/Pp/Ly8n7t+CXJ4/HowQcfVE1NjW644QbdeOONcRsTAAAAAAAAAAAAAAAAAAAAgPF3/fXXa//+/crMzNTmzZs1b968iPEzZ85UfX29AoGAJKmhoUHPPPOMJOm6667T2WefHfbY7OxsPfzww/rkJz+p/fv368Ybb1R1dfWwx3zmmWfqmWeeUVdXl3bs2KGTTjpp2DlGIqk7sB8uNzdXZ5xxxpjlv+SSS0LF68uXL1d9fb1efvll3X333TruuOPk9/u1du1a3XXXXWM2BgAAAAAAAAAAAAAAAAAAAACJZc+ePaqtrZUkXXjhhTrhhBOiPjYlJUWSdMcdd0iSpk6dqoqKiiGPO/7443XBBRdIkv74xz/K6/UOd9ih4nlJ6u3tHfbxI5XUBew33HCDHnnkEb3//vt699139bvf/W5MzvPMM8/ooYcekiSdffbZ+stf/qKSkhKdcsopuuSSS/TSSy8pNzdXkvTDH/5Qe/fuHZNxAAAAAAAAAAAAAAAAAAAAAEgsW7Zskd/vlySdc845wz6+p6dHjY2NkqQzzjhDWVlZUR1XVlYWOv75558f9nmffPJJSX1F9AsWLBj28SOV1AXsN910k4qLizV79uwxPc+vfvUrSVJqaqruuOMOGY3GfvstFot+/vOfS5La2tr0hz/8YUzHAwAAAAAAAAAAAAAAAAAAACAxvPHGG6HHJ5100rCPd7vdOnTo0LCP/9SnPhV6/Prrr0d9nMfj0RVXXKFnnnlGUl+D7+zs7KiPH63UuJ0pSR04cEBPP/20JOkLX/iC5s2bN2hcWVmZjjrqKO3fv1+bN2/WD37wg3gOEwAAAAAAAAAAAAAAAAAAAMA4aG1tDT2eOXPmqI4fTiG5xWIZNMeR5syZE3p84MABtbe3hz622Wy64447oj5nLCR1B/Z4+Mc//qGuri5J0mmnnRY2Lj09Xfn5+aFjuru74zI+AAAAAAAAAAAAAAAAAAAAAJNbZ2dn2H179uwJ/Tu8eH3VqlV69dVXdcwxx8RjiCEUsA/h3//+d+ixzWaLGBvc39PTox07dozpuAAAAAAAAAAAAAAAAAAAAACMv8O7pn/00UejOj5SJ/Ujeb3e0OMZM2aEjQsEAgoEAvL7/dq9e7fuvPNOTZ8+Xffff79uv/32YY93tFLjfsYks2vXrtDjefPmRYydP39+6PHOnTu1ePHiQeM6Ozv7zXLYv3//KEcJIBG0t7fL5XL12+bz+eR2u2W1WmUymfrts9lsMpvN8RzipMHXAgAAAAAAAAAAAAAAAAAQLx//+MdDj1999VXNnTt3WMcfe+yxmjJlig4dOqRXXnkl6uNeffXV0ONFixYNGZ+SkqKcnBxdeeWVWrRokVasWKFrrrlGS5Ys0YoVK4Y15tGggH0IBw4cCD3OysqKGDtlypTQ44MHD4aNW79+vW666abRDw5AQnG5XFq6dGnU8U1NTVqyZMkYjmjy4msBAAAAAAAAAAAAAAAAAIiX5cuXy2AwyO/3a/PmzTrrrLOGdXxaWpoKCwv1xBNP6KmnntKBAwc0derUIY+rq6sLPS4qKhrWOYuKivT1r39d999/v771rW/p9ddfl9FoHFaOkTLE5SxJrKOjI/Q4PT09YmxGRkbosc/nCxtXWVmpffv2hf7t3Llz9AMFMO5sNpuampr6/auurpYkVVdXD9hns9nGecQTF18LAAAAAAAAAAAAAAAAAEC8zJ49WytXrpQkbdy4UW+++WbUxwYCAUnSN77xDUl9TbRvueWWIY/bsWOHHnroIUnSqaeeqo997GPDHbZuuOEGGY1G/fvf/9Z999037ONHig7sQ8jMzAw97urqihjb2dkZemwymcLGZWRk9Ct2BzAxmM3msF287XY7Hb7jiK8FAAAAAAAAAAAAAAAAACCefvKTn+jxxx/XwYMHVVZWpieffFLHHHNM2Pi9e/fqsssu0913363p06eruLhYRUVFevbZZ/XTn/5US5cuVXFx8aDHtra26txzz1VHR4dSUlL0k5/8ZERjPu6443Teeedp48aNuvnmm/X1r39daWlpI8o1HHRgH8Lh7fcPHjwYMfbQoUOhx1lZWWM2JgAAAAAAAAAAAAAAAAAAAACJ44QTTtADDzyg9PR0vfHGG/rUpz6ln//853rrrbdCMb29vXr11Vd1ww036GMf+5jq6upC+1JSUlRTU6OPfexj6u7u1jnnnKPvfOc7cjqdoZh9+/bpvvvu05IlS/TPf/5TUl8X9dNOO23E466srFRKSorcbrfuvvvuEecZDgrYhzBv3rzQ4127dkWM3blzZ+jx/Pnzx2xMAAAAAAAAAAAAAAAAAAAAABJLaWmpnnnmGS1cuFBer1fXXnutjj/+eGVkZCg7O1vp6elasmSJbr75Zu3bt08XXHCBpkyZEjp+zpw5eumll3TGGWeop6dHt912mxYvXiyTyaQZM2Zo+vTpWr16tTwej9LS0vSLX/xCa9euHdWY8/Ly9JWvfEWS9NOf/lSdnZ2jyhcNCtiHsHjx4tBjl8sVMTa4PzU1Vccff/yYjgsAAAAAAAAAAAAAAAAAAACIC3O2lJox3qOIjdSMvuczRgoKCuRyuVRTU6MLL7xQCxcuVGZmpg4cOKCZM2fq1FNP1XXXXSen06mNGzcqLS2t3/GzZs3Sk08+qaefflqXXXaZFi1apPT0dLW1tYVi5s6dq+bmZv3gBz+IyZivu+46SX3Nvn/3u9/FJGckqWN+hiR3yimnKD09XV1dXXruued07bXXDhrX1dWll156KXTMkd9MAAAAAAAAAAAAAAAAAAAAQFKaPl+6uklqbx3vkYyeObvv+Ywho9Go888/X+eff/6Ic6xYsUIrVqzot+2Pf/yjLrjgAu3evVsPPPCAbr755rDHr127Nuru7KeccooCgcCIxzpcFLAPYerUqfr85z+vxx9/XH/961+1a9cuzZs3b0BcXV2d9u/fL0k655xz4j1MAAAAAAAAAAAAAIiovb19wKrTPp9PbrdbVqtVJpOp3z6bzSaz2RzPIQIAAAAAEtn0+WNe+I3IzjvvPLW0tOh73/uefvKTn2jq1Km65pprxntYwzbpC9g3bNigiy++WJJ04403DjrTYM2aNXr88cfV09Ojb37zm6qrq5PRaAzt93q9+uEPfyhJmj59ui677LK4jB0AAAAAAAAAAAAAouVyubR06dKo45uamrRkyZIxHBEAAAAAABiu7373u3rvvff0q1/9Sj/84Q+VlZWlb3zjG+M9rGFJ6gL2F154QW+99VboY6/XG3r81ltvacOGDf3iV69ePaLzrFixQueff74eeugh/fnPf9bpp5+u7373u5o7d67+9a9/6ac//ak8Ho8k6ec//7lmzJgxovMAABITHWkAAAAAAAAAABOBzWZTU1NTv21Op1MOh0PV1dWy2+0D4gEAAAAAQOL55S9/qV/+8pfjPYwRS+oC9j/84Q+67777Bt23detWbd26td+2kRawS9I999yj/fv367HHHtOWLVu0ZcuWfvsNBoN+/OMf64orrhjxOYDhoqgWiA860gAAAAAAAAAAJgKz2Rz2+rXdbufaNgAAAAAAiIukLmCPJ5PJpEcffVQbN27Uhg0b9M9//lNtbW2aPXu2CgsLdfXVV+uzn/3seA8TkwxFtUB80JEGAAAAAAAAAAAAAAAAAIDYSOoC9g0bNmjDhg2jyrF69ephdWb/2te+pq997WujOicQKxTVAvFBRxoAAAAAAAAAAAAAAAAAAGIjqQvYgcmOoloAAAAAAAAAAAAAAAAAAAAkE8N4DwAAAAAAAAAAAAAAAAAAAAAAMDnQgR0ARsjj8cjr9UaMcTqd/f6PxGKxKDc3NyZjAwAAAAAAAAAAAAAAAAAASEQUsAPACHg8Hi2y2dXha48q3uFwDBmTaTJru8tJETsAAAAAAAAAAAAAAAAAAJiwKGAHgBHwer3q8LUru7hCadnzw8YFerrUs2+PUqfNVkpqeti47tadam2oktfrpYAdAAAAAAAAAAAAAAAAAABMWBSwA8AopGXPV8achZGD5i2Oz2AAAAAAAAAAAAAAAAAAAAASHAXsAAAAAAAAwBDa29vlcrn6bfP5fHK73bJarTKZTKHtNptNZrM53kMEAAAAAAAAAAAAkgIF7AAAAAAAAMAQXC6Xli5dGlVsU1OTlixZMsYjAgAAAAAAAAAAAJITBewAAAAAAADAEGw2m5qamvptczqdcjgcqq6ult1u7xcLAAAAAAAAAAAAYHAUsANJxuPxyOv1ht3vdDr7/R+JxWJRbm5uzMYGjJehfi4kfjYAAAAAjI7ZbA7bVd1ut9NxHQAAAAAAAAAAAIgSBexAEvF4PFpks6vD1z5krMPhGDIm02TWdpeTQl0kteH8XEj8bMRbe3u7XC5Xv20+n09ut1tWq1Umk6nfPpvNJrPZHM8hAgAAAAAAAAAAAAAAAIhCy8EW7e3cO97DGLUZGTOUk5Uz3sOY1ChgB5KI1+tVh69d2cUVSsueP2hMoKdLPfv2KHXabKWkpofN1d26U60NVfJ6vRTpIqlF83Mh8bMxXlwul5YuXRp1fFNTU8TOlRTEAwAAAAAAAAAAAAAAAPHXcrBFxfXF6urtGu+hjFq6MV0NpQ1jWsTe29urTZs2qaGhQS+99JI++OADtbe3a/r06TrhhBNUWFioCy+8UHl5eWFzvP7663rwwQe1ZcsWvfvuu9q7d69MJpOOOeYYnXLKKSorK9OXv/xlpaWl9TuuqKhIzz333IB8ZrNZxxxzjJYtW6arrrpK+fn5MX/e0aKAHUhCadnzlTFnYfiAeYvjN5hJyufzSeordo6FYJ5gXgzfkD8XEj8b48Bms6mpqanfNqfTKYfDoerqatnt9gHxkcS6IB4AAAAAAAAAJjKPxyOv1xsxxul09vs/EovFQvMXAAAAAJik9nbunRDF65LU1dulvZ17x6yA/aWXXtJFF12kN998M7QtLS1NU6dOVWtrq7Zu3aqtW7fqZz/7mcrKylRTU6P09P9rynrgwAFdddVVqqmpUSAQkCSlpKRo2rRp8vl8cjqdcjqduv/++3XcccfpwQcf1Gc+85kB40hLS9PMmTNDH3u9Xu3YsUM7duzQ/fffrxtvvFE33njjmHwOhkIBOwCMgNvtliS1NlTFPG9BQUFMcwLjyWw2hy0gt9vtwy4uj3VBPAAAAAAAAABMVB6PR4tsdnX42qOKdzgcQ8Zkmsza7nJSxA4AAAAAQBiPPPKIzj33XHV2dio7O1tr1qzRypUrdfzxx0vq68z+6quvatOmTbrjjjtUV1en9vb2UAH73r17VVhYqDfeeEMpKSk6//zz9V//9V/Kz88PxezevVuPP/64brvtNr3++ut68cUXBy1gX7ZsmZ599tnQx11dXXruuef0jW98Q2+99ZbWrl2rk08+WWedddbYf2KOQAE7AIyA1WqVJGUXVygte/6o83W37lRrQ1UoL4DBxbogHgAAAAAAAAAmKq/Xqw5f+5D3MgI9XerZt0ep02YrJTU9bFzwXobX66WAHQAAAACAQezYsUMOh0OdnZ1avHixnnzySc2bN69fjNFo1Mknn6yTTz5ZP/jBD3TJJZf023/hhRfqjTfeUGpqqjZu3Khzzz13wHnmzp2rSy+9VJdcconuvPNOpaSkRDW+9PR0nX766frTn/6kk046SV1dXbr99tspYAeAZGEymSRJadnzlTFnYczzAkCy6e3tVWNjo1paWpSTk6PCwkIZjcbxHhYAAAAAAAAw6UV1L2Pe4vgMBgAAAACACez666/X/v37lZmZqc2bNw8oXj/SzJkzVV9fr0AgIEl6/PHH9fjjj0uSbrjhhkGL1w+XkpKi//qv/5Lf7x/WOBcvXqylS5fqxRdf1D/+8Y9hHRsrFLADAABgVOrq6lRRUSG32x3aZrVaVVVVpbKysvEbGAAAAAAAABJCe3u7XC5Xv20+n09ut1tWq3VAcxebzSaz2RzPIQIAAAAAAIzKnj17VFtbK6mvi/oJJ5wQ9bHBDuq33367JGnatGn6/ve/H/XxBoNhGCPtEyyu379//7CPjQUK2AEAADBidXV1Ki8vV3FxsWpqapSXl6fm5matW7dO5eXlqq2tpYgdAAAAAABgknO5XFq6dGnU8U1NTVqyZMkYjggAAAAAACC2tmzZEuqEfs455wz7+J6eHj3//POSpNNPP11TpkyJ6fiOFGxUOXPmzDE9TzgUsAMAkprP55MkdbfujEm+YJ5gXgDh9fb2qqKiQsXFxaqvrw/N5szPz1d9fb1KS0u1Zs0alZSUyGg0jvNoAQAAAAAAMF5sNpuampr6bXM6nXI4HKqurpbdbh8QDwAAAAAAkEzeeOON0OOTTjpp2Me/++67Onjw4IiPH46XX345dK0mPz9/TM8VDgXsAJCghrOk6mReTjU4E6y1oSrmeQsKCmKaE5hoGhsb5Xa7VVNTM2ApIoPBoMrKSi1btkyNjY0qKioan0ECAAAAAABg3JnN5rAd1e12O93WAQAAAABA0mttbQ09HklX89EeH43du3fr6aef1jXXXCO/36+UlBR997vfHZNzDYUCdgBIUMNZUnUyL6dqtVolSdnFFUrLnj/qfN2tO9XaUBXKCyC8lpYWSVJeXt6g+4Pbg3EAAAAAAAAA4ocVTAEAAAAAmNyee+45paSkDLovLS1Nt9xyy7g1paSAHQBGYaiLvoGeLvXs26PUabOVkpo+rDzDWVJ1Mi+nGuxEn5Y9XxlzFsY8L4DwcnJyJEnNzc2DLifU3NzcLw4AAAAAAABA/LCCKQAAAAAA8ZOdnR16/NFHH2nu3LmjOj4W0tLSQt3cU1JSZDKZNHfuXC1btkyXXXaZTjjhhJicZyQoYAeAEbBYLMo0mWN60TfTZJbFYgl9zJKqABJdYWGhrFar1q1bp/r6ehkMhtA+v9+v9evXa8GCBSosLBzHUQIAAAAAAACTEyuYAgAAAAAQPx//+MdDj1999dVhF7Afe+yxysrK0sGDB/Xqq6/GZEzLli3Ts88+G5NcsUYBOwCMQG5urra7nPJ6vRHjwnVMH4zFYlFubm4shwkAIe3t7XK5XP22+Xw+ud1uWa3WAasO2Gw2mc3miDmNRqOqqqpUXl6u0tJSVVZWKi8vT83NzVq/fr0aGhpUW1sro9EY8+cDAAAw1jweT1Tv+Q7/Pxze7wEAAGA8sIIpAAAAAADxs3z5chkMBvn9fm3evFlnnXXWsI5PTU3V5z73OT322GP6y1/+okOHDmnKlCljNNrxRwE7AIxQbm5u1AUIdEwHMN5cLpeWLl0adXxTU1NUv7fKyspUW1uriooKLVu2LLR9wYIFqq2tVVlZ2YjGCwAAMJ48Ho8W2ezq8LVHFe9wOCLuzzSZtd3lpIgdAAAAAAAAAABggpo9e7ZWrlyphx9+WBs3btQ111yjE044IapjA4GAUlJS9M1vflOPPfaY9u3bp1tuuUU//vGPozre7/fLYDCMZvhxRwE7gJCx6M4LJKuhOihG22lRotsiEoPNZlNTU1O/bZFWibDZbFHnLisrU0lJiRobG9XS0qKcnBwVFhbSeR0AACQtr9erDl+7sosrlJY9P2xcoKdLPfv2KHXabKWkpg8a0926U60NVfJ6vbwvAAAAAAAAAAAAmMB+8pOf6PHHH9fBgwdVVlamJ598Usccc0zY+L179+qyyy7T3XffrenTp+vLX/6yzjjjDD311FP67//+b9ntdpWXl0c851133aVAIKArr7wy1k9nTFHADiQRn88nqe/m92gFcwRzSmPXnRdIJr0H98qQMnQHxaBo4symTDld2ylWwbgym81hf2fHYpUIo9GooqKiUeUAAABINGnZ85UxZ2HkoHmL4zMYhDABHwAAAAAAAAAAJKITTjhBDzzwgM477zy98cYb+tSnPqU1a9Zo5cqVWriw755Tb2+vXn/9dW3evFm/+c1v1NbWprvvvjuUY+PGjSosLJTT6dRXv/pVXXDBBbrqqquUn5+vtLQ0SVJLS4ueeuop3XbbbXrllVf061//elye72hQwA4kEbfbLUlqbaiKac6CggJJY9udF0gW/s6D8gek6nNMss8Kv6yKrycgd5tf1ukGmVJTwsY5P/TLsdlHt0UAAAAAiBEm4AMAAAAAAAAAgERVWlqqZ555RqtXr9Zbb72la6+9Vtdee63S09OVlZWltrY2+f1+SVJKSoouuOACTZkyJXR8dna2XnrpJV1++eV6+OGHtXHjRm3cuFEpKSmaPn26fD6fOjo6QvF2u12FhYVxf56jRQE7kESsVqskDbmEeTSCS5gHc0pj350XSCb2WQYtyTFGjCkY3Y8hAAAAAGAEmIAPAACQOFgdBwAAAACAgQoKCuRyufTwww+roaFBf//73/XBBx/owIEDmjlzpmw2m0477TR9/etf16JFiwYcf9RRR+mPf/yjfvSjH6m6ulrPPvus3n33Xe3du1cmk0kLFizQpz/9aZ177rk688wzZTRGrnNLRBSwA0kkeJEvqiXMh5kTAAAAAAAgGTABHwAAIHGwOg4AAAAATB4zMmYo3Ziurt6u8R7KqKUb0zUjY8aYnsNoNOr888/X+eefP+IcJ554ok488cRhH/fss8+O+JzxQgE7AAAAho3OSgAAAAAAAEBy6G7dGXF/oKdLPfv2KHXabKWkpg8rD6vjAAAAAMDkkZOVo4bSBu3t3DveQxm1GRkzlJOVM97DmNQoYAcAAMCw0VkpcfX29qqxsVEtLS3KyclRYWFhUi4VlayGM7mDiR0AkLh8Pp+koQt9ohHMEcwJAAAAxIvFYlGmyazWhqqY5cw0mWWxWEIfszoOAAAAAEwuOVk5FH4jJihgBwAAwLDRWSkx1dXVqaKiQm63O7TNarWqqqpKZWVl4zewSWQ4kzuY2AEAiSv4tzSWhT5ut1sFBQUxywcAAAAMJTc3V9tdTnm93ohxka7rHclisSg3NzeWwwQAAAAAAJMQBewAACBheTyeqG6uHP5/JNxciR06KyWeuro6lZeXq7i4WDU1NcrLy1Nzc7PWrVun8vJy1dbWUsQeB8OZ3MHEDgBIXFarVZKUXVyhtOz5o8rV3bpTrQ1VoZwAAABAPOXm5kZ9TZTregAAAAAAIF4oYAcATAjdrTsj7g/0dKln3x6lTputlNT0sHE9+/bEemgYIY/HI7ttkdp9HVHFOxyOIWPMpkw5XdspYseE09vbq4qKChUXF6u+vl4Gg0GSlJ+fr/r6epWWlmrNmjUqKSmR0Wgc59FObEzuAICJwWQySZLSsucrY87CmOYEAAAAAAAAAAAAJjsK2AFgEmhvb5fL5eq3zefzye12y2q1DiiksNlsMpvN8RziiFksFmWazGptqBrvoUCx7ZjudDrV7utQ9Tkm2WcZwsb5egJyt/llnW6QKTUlfL4P/XJs9snr9VLAjgmnsbFRbrdbNTU1oeL1IIPBoMrKSi1btkyNjY0qKioan0ECAAAAAAAAAAAAwBjo7e1VY2OjWlpalJOTo8LCQhp7AUCCo4AdACYBl8ulpUuXRh3f1NSUNB1ic3Nztd3ljKpo2uFwqLq6Wna7PWzca6+9pksvvVROb29MxhfM4/P5YpIvkXk8Hi2y2dXha48qPpqO6ZJkn2XQkpzIbywL5keVCpiwWlpaJEl5eXmD7g9uD8YBAAAAAAAAAAAAwERQV1eniooKud3u0Dar1aqqqiqVlZWN38AAABFRwA4Ak4DNZlNTU1O/bZEKum02WzyHN2q5ublRd9S22+0Ri/ODXcEddR0xGVuQ2+1WQUGBpInbEd/r9arD167s4gqlZYevKA/0dKln3x6lTputlNT0sHG+t7dpX2P1WAwVmHBycnIkSc3NzcrPzx+wv7m5uV8cAAAAAAAAAAAAACS7uro6lZeXq7i4WDU1NcrLy1Nzc7PWrVun8vJy1dbWUsQOAAmKAnYgCXW37gy7L9rC0Eg5MPGYzeawRdtDFXRPNlarVZJUXZYpu2X0y0k5vb1y1HWE8koTuyO+JKVlz1fGnIWRg+YtHjIPv6eA6BUWFspqtWrdunWqr6+XwWAI7fP7/Vq/fr0WLFigwsLCcRwlAAAAAAAAAAAAAMRGb2+vKioqVFxc3O8eaX5+vurr61VaWqo1a9aopKRERuPo6z8AALFFATuQRCwWizJNZrU2VMUkX6bJLIvFEpNcwEQR7H5utxi1JCd2b2AO76o+0TviA4g/o9GoqqoqlZeXq7S0VJWVlaHuAuvXr1dDQ4Nqa2u5MAMAQIKYqKsyAQAAAAAAAEC8NDY2yu12q6ampl+DL0kyGAyqrKzUsmXL1NjYqKKiovEZJJBkAoHAeA8BSWok3zsUsANJJDc3V9tdTnm93rAxkYpgj2SxWJSbmxvrYQIYAh3xAYyFsrIy1dbWqqKiQsuWLQttX7BgAUvjAQAwQkOtChTNKmiD5ZjoqzIBAAAAAAAAwFhraWmRJOXl5Q26P7g9GAcgvOAkkN7e3nEeCZJV8HvnyAlFkVDADiSZ3NzcqIrOKYJNPh6PJ+LkBKlvgsLh/4fD5AQAmJzKyspUUlKixsZGtbS0KCcnR4WFhXReBwBgmMZ6BTRWZQIAAAAAAACA0cnJyZEkNTc3Kz8/f8D+5ubmfnEAwktLS1NaWpoOHjyorKys8R4OktCBAwdC30fRooAdwJhhSfToeTwe2W2L1O7riCre4XBE3G82Zcrp2k4ROwBMQkajkSXwAAAYpWhWQJOiXwXtyEnGrMoEAAAmulg2bJFo2gIAAABgoMLCQlmtVq1bt0719fX9uv76/X6tX79eCxYsUGFh4TiOEkgOKSkpmjp1qtra2jRt2rQBdX1AJD6fT/v379f06dOVkpIS9XEUsAMYMyyJHj2v16t2X4eqzzHJPiv8Mhq+noDcbX5ZpxtkSh38l73zQ78cm33yer1c0AcAAACAEYp2BTSJonMAAIDDeTweLbLZ1eFrjyp+qIYtUt+KNttdTq55AwAAAAgxGo2qqqpSeXm5SktLVVlZqby8PDU3N2v9+vVqaGhQbW0tq1UDUbJYLPL5fPJ4PDrqqKM0depUGY3GYRUkY/IIBALq7e3VgQMHtH//fmVkZPRbjTgaFLADGDMsiT589lkGLcmJ/MK5YH6cBgMMk8/nkyR1t+6MSb6efXv68vYEYpIPSCRHrlLCCiUAAAAAAGCi8Hq96vC1K7u4QmnZ4S9oB3q61LNvj1KnzVZKanrYuO7WnWptqKJpCwAAAIABysrKVFtbq4qKCi1btiy0fcGCBaqtrVVZWdk4jg5ILkajUfPnz5fX69WBAwfU1tY23kNCEkhLS9P06dNlsViGPWGIAnYAY4Yl0YHJxe12S5JaG6pim7fNz8QNTDjDWaVkMq9QAgAAAAAAklda9nxlzFkYOWje4vgMBgAAAMCEVVZWppKSEjU2NqqlpUU5OTkqLCyk8zowAkajUbNnz9bRRx+t7u5u+f3+8R4SEpjBYFBaWtqIu/RTwA4AAGLCarVK0pCdlaLle3ub9jVWyzrdMOpcSHxHdiSXJnZX8iNXKWGFEgAAAAAAgOhNtmtJAAAAACIzGo0qKioa72EAE0ZKSorS08OvlgbEAgXsAAAgJoI3haLqrBSF7tadfXlTRzZLD8llOB3JpeTvSh5ulRJWKAEAAAAAABjaZLuWBAAAAAAAMNFQwA4AY6S3t1fbtm2TJG3btk0nnngiyxMBQBhHdiSX6EoOAAAAAACAwXEtCQAAAAAAILlRwA4AMXL4kqXPPPOMbrnlFrW0tEiSrrzySq1du1bf//73tWLFCkksWQoAhwvXkVyiKzkAAAAAAAD641oSAAAAAABAcqOAHQBiZKglS1taWvSDH/wg9DFLlgIAAAAAMDSPxyOv1xsxxul09vs/EovFotzc3JiMDQAAAAAAAAAAAMNHATsAxIjNZtPLL7+sL37xi9q7d68KCwt14YUXKjU1VT09PXrwwQfV2NiomTNn6oknnmDJUgAAAAAAhuDxeLTIZleHrz2qeIfDMWRMpsms7S4nRewAAAAAAAAAAADjhAJ2AIgRs9ms/fv3a+/evTr11FP17LPPymAwhPZffvnl+tznPqetW7dq//79MpvN4zhaAACAia29vV0ul6vfNp/PJ7fbLavVKpPJ1G+fzWbj9RkAJCCv16sOX7uyiyuUlj0/bFygp0s9+/YoddpspaSmh43rbt2p1oYqeb1eCtgBAAAAAAAAAADGyYQoYH/33Xd122236dFHH9XOnTuVkZGh4447Tl/96lf1zW9+MyZFCO+8845uu+02/eUvf9G7774rv9+vuXPn6vTTT9c3v/lNffzjH4/BMwGQ7J599llJ0k033dSveF2SDAaD1q5dq9NPP13PPvusPv/5z4/DCIHkEejtliQ5vb0xyRfM4/P5YpIPAJDYXC6Xli5dGnV8U1OTlixZMoYjAgCMRlr2fGXMWRg5aN7i+AwGAAAAAAAAAAAAo5L0BeyPPPKIHA6H9u/fH9rW3t6ubdu2adu2bfrDH/6gRx99VAsXDnGDK4K77rpL3/rWt9TV1dVv+1tvvaW33npLd999t6qqqnT11VeP+BwAgNgZrOOq0+ns9//h6LiamHoPfiRJctR1xDSv2+1WQUFBTHMCABKPzWZTU1NTv21Op1MOh0PV1dWy2+0D4gEAAAAAoxdsINHdujMm+YJ5aEwBAAAAAAAwcSR1Afurr76q8847Tz6fT1lZWaqsrNTy5cvl8/n00EMP6fe//73efPNNnXXWWdq2bZumTp067HM89NBDuvLKKyVJ06ZNU0VFhVasWKGMjAy9+uqr+sUvfqG33npL3/72t3X00Ufrq1/9aqyfJoAkUlRUpJ/85Ce68cYbVVRU1K8Lu9/v10033RSKw9iJ1HHV4XAM2EbH1cRkzJopSaouy5TdYhx1Pqe3V466Dlmt1lHnAgAkPrPZHPbvu91u528/ACBksEnQPp9PbrdbVqtVJpOp3z4mQQMAEJnb7ZYktTZUxTwvjSkAAAAAAAAmhqQuYP/Od74jn8+n1NRUPfXUU/rsZz8b2rdixQodf/zxuuaaa/Tmm2+qqqpKa9euHVb+9vZ2fec735EkZWVl6YUXXlBeXl5o/8knn6zzzjtPp556qv71r3/p29/+tr785S8rKysrJs8PQPIpKirSrFmz9MILL6ikpEQ/+tGPlJeXp+bmZq1bt04vvPCCjj766AEF7MHOMU5v76jHEMwxmbvRDNZxdajiA8TOUJ2VAj1d6tm3R6nTZislNT1sXLADu91i1JKc0RewBx359QeSHQVXAAAAoxNpEvRgmAQNAEBkwQYS2cUVSsueP+p83a071dpQRWOKGBntCqYej0derzfiOSLlO5LFYlFubu6QcQAAAAAAYGJJ2gL2l19+WY2NjZKkSy+9tF/xelBFRYXuvfdeOZ1O3XrrrbruuuuUlpYW9Tkee+wxffDBB5L6iuUPL14POuqoo3TLLbfo9NNP1549e7RhwwZdffXVI3xWAJKd0WjUnXfeqZUrV+rpp59WQ0NDaF/wAu9vf/tbGY39i3GDHWkcdR0xG8tk7kYTruPqZP18xIvFYlGmyRzzzkoAIqPgCgAAYHQGmwTtdDrlcDhUXV0tu90+IB4AAIQXnEyflj1fGXMWxjwvRmc0K5h6PB7ZbYvU7ovuXsZg+Y5kNmXK6dpOETsAAAAAAJNM0haw19fXhx5ffPHFg8YYDAatWrVKlZWVamtr05YtW3TGGWdEfY5t27aFHn/pS18KG1dUVKTMzEx1dHSotraWAnZgkisrK9OmTZv0/e9/X++++25o+9FHH62qqiqVlZUNOCbYOaa6LFN2y+g6TTu9vXLUddCNBnGXm5ur7S5nVN13whWCDBYHIDIKrgAAAEYn3CRoSbLb7Uz+AwAAE8poVjD1er1q93Wo+hyT7LMMYc/h6wnI3eaXdbpBptSUsHHOD/1ybPbJ6/VSwA4AAAAAwCSTtAXsL7zwgiRpypQpETtOnnbaaaHHW7duHVYBe2tra+jx7Nmzw8alpqZq5syZ2r17t1588UX19PQoNTVpP7UAYqCsrEwlJSVqbGxUS0uLcnJyVFhYOKDzelDwgrDdYtSSnNEVsB+ZE4in3NzcqG80UAgCxAYFVwAAAAAAAIhWLFYwtc8yDHkvo2D+sIcGAAAAAAAmkaStsnY6nZKkhQsXRiwWP7wrQPCYaGVlZYUe79u3L2xcIBDQ/v37JUldXV1666236GwJQEajUUVFReM9DAAAAAAAAAAAgEH19vZG3YwHAAAAAAAgVpKygL2jo0Ner1eSNG/evIixM2bM0JQpU3To0CHt3LlzWOex2+2hx88991zYTu+vvvqqDh48GPrY4/FQwA4AQBJob2+Xy+Xqt22o5XLNZnM8hwgAAIAEMdhrx2CzhCObJvC6EQAAAMmgrq5OFRUVcrvdoW1Wq1VVVVUqKysbv4EBAAAAAIAJLykL2A8cOBB6fHiX9HCCBeyHF5lH40tf+pJSU1PV09OjW265RatWrZLFYukX4/f7dd1114Ud32A6OzvV2dkZ+jjYvR0AAMSXy+UKO0FtME1NTYMurwtg8vJ4PKHJteGEK248ksViUW5ubszGBgCIrUivHR0OR7+Ped0IAACARFdXV6fy8nIVFxerpqZGeXl5am5u1rp161ReXq7a2lqK2AEAAAAAwJhJygL2jo6O0OP09PQh4zMyMiT1dVQdjvnz5+uqq67S7bffrvfee08FBQX6xS9+oeXLlys9PV2vvfaa1q5dqyeffFLp6enq6uqK6jzr16/XTTfdNKyxAADiy/mhP+J+X09A7ja/rNMNMqWmjDgPxpfNZlNTU1O/bU6nUw6HQ9XV1f1WYwnGA0CQx+OR3bZI7b6OoYM1sLjxSGZTppyu7RSxA0CCGuy1Y7jVe4583RjLCU8Sk54AAAAwOr29vaqoqFBxcbHq6+tlMBgkSfn5+aqvr1dpaanWrFmjkpISGY3GcR4tAAAAAACYiJKygD0zMzP0OFg0Hkmw2/nhNxKj9atf/Upvv/22HnvsMb355psqLS0dEHPyySfrlFNO0W9/+1tJ0tSpUyPmrKys1Pe///3Qx/v379f8+fOHPTYAQOxZLBaZTZlybB7epKdIzKbMASt4IDGYzeawnTHtdntSd82kSAoYe16vV+2+DlWfY5J9liFsXDSTnpwf+uXY7JPX6+VnDQASVLjXjgUFBRGPi/WEJ2lyTXoKNorobt0Zk3zBPMNtdAEAADCRNDY2yu12q6amJlS8HmQwGFRZWally5apsbFRRUVF4zNIAAAAAAAwoSVlAfvhBeIHDx4cMv7QoUOSpKysrGGfKyMjQ4888ojuuece/X//3/+nf/7znwoEApKko48+Wpdffrmuv/56fe973wsdM2PGjCFzBrvCA+OJ4kZgoNzcXDld26P62QjXpftI/Gwg3jwejxbZ7OrwtUcVH02RVKbJrO0uJ9/LwCDsswxakhO5G1kB81UBYNKK5YQnafJNenK73ZKk1oaqmOcdavIBAAAYnaEmoAV6utSzb49Sp81WSmr4FZdjNZEN/6elpUWSlJeXN+j+4PZgHAAAAPq0t7fL5XL12xZulUapb6VGs9kczyECAJA0krKAPTMzU9nZ2WptbdWuXbsixu7duzdUwD7SLucGg0GXXXaZLrvsMh04cEB79uyR2WzWnDlzQl0JduzYEYpfvHjxiM4DxBMd4IDwcnNzo/4+TvYu3ZiYvF6vOnztyi6uUFp2+Nc/w7lJ2NpQNWmKpAAAAMYCE55Gxmq1StKQr22jFXxtG8wLAABiz2KxKNNkjukEtEyTmVUuYygnJ0eS1NzcrPz8/AH7m5ub+8UBAACgj8vl0tKlS6OOb2pqop4AAIAwkrKAXeorEm9sbNRbb72lnp4epaYO/lQOn/U2VIfcaEydOrVfB3hJ6u3t1WuvvSZJ+tjHPsYFNCQFOsABwMSXlj1fGXMWRg6ax8Q7AAAAJK5g16qoXtuOIC8AAIi93NxcbXc5WeUygRUWFspqtWrdunWqr68PNeySJL/fr/Xr12vBggUqLCwcx1ECAMYbnaaBgWw2m5qamvpti/S61mazxXN4AAAklaQtYD/11FPV2NioQ4cOqampSZ/5zGcGjXvuuedCj8dqWeAtW7aotbVVknTeeeeNyTmAsUIHOAAAAAAAAAAAEEuscpnYjEajqqqqVF5ertLSUlVWViovL0/Nzc1av369GhoaVFtbK6Mx8v0jAMDERqdpYCCz2Rz2+5zXtQAADE/SFrCXlpZq/fr1kqR777130AJ2v9+v+++/X5I0ffp0LV++PObjCAQCWrt2rSQpLS1Nl19+eczPAQDAZOb80B9x/3BWigAAAAAAAAAASGVlZaqtrVVFRYWWLVsW2r5gwQLV1taqrKxsHEcHAEgEdJoGAADAWEraAvZPf/rTKiwsVGNjo+6++25ddNFF+uxnP9svpqqqSk6nU5L0ne98R2lpaf32P/vss6Gi9osuukgbNmwYcJ7W1lZlZWUpIyNjwL7e3l59+9vf1tatWyVJlZWVWrBgQSyeHgAAk57FYpHZlCnHZl/McppNmbJYLDHLBwAAAAAAAADJqqysTCUlJWpsbFRLS4tycnJUWFhI53UA46q9vV0ul6vfNp/PJ7fbLavVKpPJ1G+fzWaT2WyO5xAnDTpNAwAAYCwlbQG7JN16660qKCiQz+fTGWecoR/96Edavny5fD6fHnroId11112SpBNOOEEVFRUjOseWLVt09dVX6/zzz9dpp52m3NxcdXR06PXXX9ddd92l1157TZL0pS99Sdddd12snhoAAJNebm6unK7t8nq9EeMidXo4ksViiXrpYgAAAAAAAACY6IxGo4qKisZ7GAAQ4nK5tHTp0qjjm5qaKKQGhomJIgAAIBEkdQH7SSedpD/+8Y9yOBzav3+/fvSjHw2IOeGEE/Too49q6tSpIz7Pnj17dOutt+rWW28dsC8lJUUXX3yx7rjjDqWnp4/4HAAgSc4P/RH3+3oCcrf5ZZ1ukCk1ZUQ5gGSSm5sbdcE5nR7GXnBlm6H2DxUnMZkAAAAAAAAAAAAMZLPZ1NTU1G9bpGZGNpstbC6KdIHBMVEEAAAkgqQuYJeks88+W6+//rpuvfVWPfroo9q1a5fS09O1cOFCnXvuubr66qtH9QajsLBQv/zlL/XMM8/I5XJpz549MhgMmjt3rpYvX66LL75Yn/nMZ2L4jABMRhaLRWZTphybfTHJZzZlymKxxCQXAPQe3CtDiuRwOKKKjybObMqU07WdInaMO25gAAAAAACQ+DweT1QrNR7+fzg0VgCAxGY2m8MWyg63mRFFuomF6/GJI5YTRQAAAEYq6QvYJenYY4/VLbfcoltuuWVYxxUVFSkQCESMmT17ttasWaM1a9aMZogAEFFubq6cru1RXYAP96bxcFyABxBL/s6D8gek6nNMss8yhI2LZpUIqW+lCMdmn7xeL7+rMO64gQEAGGs+X99EZae3Nyb5gnmCeQEAACY6j8cju22R2n0dUcUP1VyBxgojx2tbAMmGIt3EwvX4xBHLiSIYHSZ2AAAmswlRwA4AE0Fubm7UF8yHetPo8Xj0yiuvRMwRbTcaiYJ4AH3sswxakmOMGFMwP06DAWKEGxgAgLHmdrslSY666AquhpO3oKAgpjkBAAASkdfrVbuvIybNFWisMDrxeG1LEReAWKJIN7FwPR4YiIkdAIDJjAJ2AJhgPB6PFtkWqSNG3WgkKdOUqe10pAGASWGy3STkBgYAYKxZrVZJUnVZpuyWyJMBo+H09spR1xHKCwAAMFnQXGH8xeO1LUVcmAgm2zVWIFpcjwcGYmIHAGAyo4AdACYYr9erDl+H5l0xTxlzM8LG+bv86vZ2K82SJkN6+K41nbs7teuuXXSkAYBJgpuEAADEVrAwwW4xDllwNZK8AAAAQLzE47UtRVyYCLjGCow9JopgomBix8jxewAAkh8F7AAwQWXMzZDJOkRBwwnxGQsAIHlwkxAYHBdCAWB8dbfujLg/0NOlnn17lDpttlJS00ecBwAAAOOLIi5MBFxjBcYeE0UA8HsAAJIfBexAEhusiMbpdPb7/3AU0QAAgKFwkzB6Pp9PUt9y16MVzBHMicTDhVAAGB8Wi0WZJrNaG6piljPTZJbFYolZPgAAAAA4HNdYgbHHRBEA/B4AgORHATuQxCIV0TgcjgHbKKIBgMkhWAAbq+6SPfv29OXtCcQkHzBRuN1uSZKjriOmOQsKCmKWD7HDhVAAGB+5ubna7nLK6/VGjIv0O/lIFotFubm5sRwmAAAYAg15AABALDFRJLGwginGA78HACD5UcAOJLEji2h6e3v10ksvyeVyyWazKT8/X0ajsV88AGDiCxbVxrJLpSS52/wqmB/TlJOGx+OJWHQV6YbtkSi4ShxWq1WSVF2WKbvFGDl4CE5vrxx1HaGcSDxcCAWA8ZObmxv16x9+JwMAkJhoyAMAADBxsYIpAAAYCQrYgSR2eBFNXV2dKioqQkWLUl9RVVVVlcrKysZphACA8RAsgM0urlBa9ugrzn1vb9O+xmpZpxtGnWsy8ng8WmSzq8PXPmTsYDdsj5RpMmu7y0kRewIIdgyxW4xakjO6AvYjcwIAAAAAMJEMtqrVUF05AQAAkBxYwRQAAIwEBezABFBXV6fy8nIVFxerpqZGeXl5am5u1rp161ReXq7a2lqK2AFgEgne8EvLnq+MOQtHna+7dWdf3tSUUeeajLxerzp87REnFAR6utSzb49Sp81WSmp62FzdrTvV2lAlr9dLATsAAAAAAEga4Va1KigoGIfRAIhGe3u7XC5Xv21DTTwxm83xHCIAIEGwgikAABgJCtiBJNfb26uKigoVFxervr5eBkNfd9z8/HzV19ertLRUa9asUUlJiYzG2HQGBQAAwzfkhIJ5i6PO5XQ6o9o/VJwkWSwWiuEBAAAAAAAA9ONyubR06dKo45uamihQBAAASYvJewAQfxSwA0musbFRbrdbNTU1oeL1IIPBoMrKSi1btkyNjY0qKioan0ECk5zH45HX640YE22xabIVmg72Ji/Sc+VNHhBZ78G9MqRIDocjqvho4symTDld25PqdwuAyY2LyAAAAABiifcYwOBsNpuampr6bXM6nXI4HKqurpbdbh8QDwAAkKyYvAcA8UcBO5DkWlpaJEl5eXmD7g9uD8YBiC+Px6NFtkXq8HVEFT9UsWmmKVPbk6jQNNKbvMGeK2/yElOgt1uS5PT2xiRfMI/P54tJvsnE33lQ/oBUfY5J9lmGsHG+noDcbX5ZpxtkSk0JG+f80C/HZp+8Xm/S/F4BAC4iAwAAAIgl3mMAgzObzWG/1+12Oz8HAABgQmHyHgDEHwXsQJLLycmRJDU3Nys/P3/A/ubm5n5xQcGiQYoRgbHl9XrV4evQvCvmKWNuRtg4f5df3d5upVnSZEgfvCi1c3endt21K6kKTQ9/k/fMM8/o17/+tXbv3h3aP3fuXH3ve9/TihUrQvFIPL0HP5IkOeqim4gRLbfbrYKCgpjmnCzsswxakmOMGFMwP06DAYA44yIyAAAAgFjiPQYAAAAAJu8BQPxRwA4kucLCQlmtVq1bt0719fUyGP6v8NXv92v9+vVasGCBCgsL+x3ndrslUYwIxEvG3AyZrKbIQSfEZyzxFHyTV1dXp2uuuUbFxcXatGmT8vLy1NzcrHXr1umaa65RbW2tysrKxnw8Ho9HXq83YozT6ez3fyQWiyVpJhOMhjFrpiSpuixTdkvkouloOL29ctR1yGq1jjoXAGDy4SIygNGK5fuCyfKeAACAiYz3GAASXXt7u1wuV79tPp9PbrdbVqtVJlP/+082m01mszmeQwQAAACAYaOAHUhyRqNRVVVVKi8vV2lpqSorK0OFoevXr1dDQ4Nqa2tlNPYvOAwWDVKMCGCs9fb2qqKiQsXFxf0m2uTn56u+vl6lpaVas2aNSkpKBvyuiiWPx6NFtkXq8EU3ccfhcAwZk2nK1HbX9glfsJJiTJMk2S3GIbt+D8eRF9UB9MeNKQAAYs/j8chuW6T2GL0vMJsy5ZwE7wkAAAAO5/zQH3G/rycgd5tf1ukGmVJTRpwHQB+Xy6WlS5dGHd/U1MTkGwAAAAAJjwJ2YAIoKytTbW2tKioqtGzZstD2BQsWhO1qHCx4ohgRwFhrbGyU2+1WTU1Nv1UiJMlgMKiyslLLli1TY2OjioqKxmwcXq9XHb4OzbtinjLmZoSN83f51e3tVpolTYZ0Q9i4zt2d2nXXLnm9XopVAIwJbkwBABB7Xq9X7b4OVZ9jkn1W+Nf70RRdOT/0y7HZx3sCAEmFibIARsNischsypRjsy9mOc2mTFkslpjlAyYim82mpqamftucTqccDoeqq6tlt9sHxAMAAABAoqOAHZggysrKVFJSosbGRrW0tCgnJ0eFhYVj2s0Yicnn67tw3Lm7Myb5gnmCeYHhamlpkSTl5eUNuj+4PRg31jLmZshkHWKyzQlxGQoARMSNqeHxeDzyer0RY5xOZ7//I7FYLBQjAkgaFCMOn32WYcgJ/QXz4zQYAIgjJsoCGI3c3Fw5Xdujev8d7vrFkXj/jUSQ6O+pzGZz2L/Hdrudv9UAAAAAkhIF7MAEYjQax7R7MZKD2+2WJO26a1fM8xYUFMQ0JyaHnJwcSVJzc7Py8/MH7G9ubu4XBwDow42p6Hk8Htlti9Tu64gq3uFwDBljNmXK6drOTXQASYFiRABAtJgoC2C0cnNzo36vzPULJAveUwEAAABA/FHADgATjNVqlSTNu2KeMuZmjDpf5+5O7bprVygvMFyFhYWyWq1at26d6uvrZTAYQvv8fr/Wr1+vBQsWqLCwcBxHCQBIZl6vV+2+DlWfY5J9liFsnK8nIHebX9bpBplSU8LGOT/0y7HZJ6/XSwE7gKRAMSImikTvfAlMBEyUBQBgIN5TIVq8ZwEAAABihwJ2AJhgghdGMuZmyGQ1DRE9/LzAcBmNRlVVVam8vFylpaWqrKxUXl6empubtX79ejU0NKi2tlZGo3G8hwoASHL2WQYtyYn896RgfpwGAwBxRDEixkusizfofAkAAIDxwHsqRGuiv2fxeDzyer0RY5xOZ7//I7FYLDQIATBpMekJAIZGATsAABhzZWVlqq2tVUVFhZYtWxbavmDBAtXW1qqsrGwcRwcAAAAAsTHZbkzFuniDzpcAAAAAEtlEfs/i8Xi0yGZXh689qniHwzFkTKbJrO0uJ0XsMTDZrjdMZEwUGblk+9xN9ElPyYTfoUDiooAdmEB6e3vV2NiolpYW5eTkqLCwkI7GABJGWVmZSkpK+D0FAACAScn5oT/ifl9PQO42v6zTDTKlpow4D8bXZLsxFeviDTpfTlzcKAQAAMBEMJHfs3i9XnX42pVdXKG07PDLWAZ6utSzb49Sp81WSmp62Lju1p1qbaiS1+udNMW1Y2myXW+YqDwej+y2RWr3dUQVH81EEbMpU07X9gn/c5aMk2wm8qSnZMPvUCBxUcAOTBB1dXWqqKiQ2+0ObbNaraqqqqKzMYCEYTQaVVRUNN7DAAAAAOLGYrHIbMqUY7MvZjnNpkxZLJaY5UPsTLYbUxO5eAOxxY1CAAAAIDmkZc9XxpyFkYPmLY7PYBAy2a43TFRer1ftvg5Vn2OSfZYhbNxwGl04NvsmxUSRZJxkw3WzxMHvUCBxUcAOTAB1dXUqLy9XcXGxampqlJeXp+bmZq1bt07l5eWqra2liB0AkHCGWrotkZZ4AwAAGKnc3Fw5XdujWt423AXzI/HaJ3FxYwoYHDcKAQAAAGDkuN4wsdhnGbQkJ/Iq5QXha7QnNSbZYCT4HQokLgrYgSTX29uriooKFRcXq76+XgZD3yzN/Px81dfXq7S0VGvWrFFJSYmMxsgvgAFgrPX29qqxsVEtLS3KyclRYWEhv5smoZaDfikluqXbpGiXeMvU9kmwPB4AAEhOubm5Ub9O4YI5gImIG4UAAIy99vZ2uVyuftt8Pp/cbresVqtMJlO/fTabTWazOZ5DBAAAAAAghAJ2IMk1NjbK7XarpqYmVLweZDAYVFlZqWXLlqmxsVFFRUXjM0gAUN9qERUVFXK73aFtVqtVVVVVrBIxybR1BKSANO+KecqYmxE2zt/lV7e3W2mWNBnSwy+j17m7U7vu2jUplscL9HZLkpze3pjkC+bx+XwxyQcAAAAAAABgfLhcLi1dujTq+KamJiaRAQAAAADGDQXsQJJraWmRJOXl5Q26P7g9GAdg+AbrWuJ0Ovv9fzi6lgxUV1en8vJyFRcXq6amRnl5eWpubta6detUXl6u2tpaitgnoYy5GTJZTZGDTojPWMZSsDi8u3XnqHN1vb9DkuSo6xh1rsO53W4VFBTENOdk4vzQH3G/rycgd5tf1ukGmVJTRpRjMqBLGAAAAAAAwMjZbDY1NTX12+Z0OuVwOFRdXS273T4gHgAARObxeOT1eiPGRKodGCwOAAD0oYAd445CldHJycmRJDU3Nys/P3/A/ubm5n5xYy3aF+TRvDC3WCwTvpMukkOkriUOh2PANrqW9Nfb26uKigoVFxervr4+tFpEfn6+6uvrVVpaqjVr1qikpERGo3GcRwvEXnDVgdaGqpjlvHl5ur58fNqo8zi9vXLUdchqtY5+UJOQxWKR2ZQpx+bYdLA3mzJlsVhikisZ0SUMAAAAADCYYHOAWKxIx2p0mMjMZnPYayV2u53rKAAwicWyCFuaPLUcHo9Hi2x2dfjao4ofrHYAAACERwE7xh2FKqNTWFgoq9WqdevW9SsMlSS/36/169drwYIFKiwsHNNxtBz0SynRvyCPJi7TlKntru2T4o0PEttgXUuGmmiD/9PY2Ci3262ampp+v6MkyWAwqLKyUsuWLVNjY6OKiorGZ5CISiy6TEvSO3sDsR5aQgsWh2cXVygte/6ocvne3qZ9jdVaviBVS3JiN+HjyN9jiE5ubq6cru1RXfQN1+nqcJPlgm84dAkDAAAAAAwm2BwglivSsRodAACYLDwej+y2RWr3RfdaKppaDrMpU85JUMvh9XrV4Wsf8h5foKdLPfv2KHXabKWkpoeNC97nAwAAfShgx7ijUGV0jEajqqqqVF5ertLSUlVWViovL0/Nzc1av369GhoaVFtbO+Zdjds6AlJAmnfFPGXMzQgb5+/yq9vbrTRLmgzphrBxnbs7teuuXfJ6vRP+TQ8SX7iuJdzgiE5LS4skKS8vb9D9we3BOCQeQ0aWDCmKWZfpySZYHJ6WPV8ZcxaOKld3686+nBEmCCCysegyEu3kSjpdRUaXMAAAAADAYILNAarLMmW3jO5eB6vRAUDiieU128neJAQYjNfrVbuvQ9XnmGSfFb5GI9pGVc4P/XJs9k2qWo6o7vHNWzxknuB9PgAA0IcCdgxbe3u7XC5Xv21DdSI2m81h81GoMnplZWWqra1VRUWFli1bFtq+YMEC1dbWqqysLG5jyZibIZN1iC6uJ8RnLAASQ05OjiSpublZ+fn5A/Y3Nzf3i0PiMWbNkD+gIbtHR9tlOhgHxNtYLPWYaTJru8s5aS7SAgCQ7Hy+vkmZTm/vqHMFcwRzAgCAsRG872S3GGO2Ih2r0QGIpbFomjFZrjfG+pot12uB8OyzDEO+lioY3ULCAAAAw0IBO4bN5XJp6dKlUcc3NTVRhB4HZWVlKikpUWNjo1paWpSTk6PCwsIx77wOILJgIUPn7s5R5wrmSLbiiMLCQlmtVq1bt0719fUyGP5vZr/f79f69eu1YMECFRYWjuMoEY1oJ5YxAQ2JKtZLPXa37lRrQ9Wk6jICAECyc7vdkiRHXXTLZkebkxW6AAAAgMnJ4/HIblukdl907zGiaZphNmXK6do+Ka45xvKabfB6bWNj45BNdg7/P5LJNJkAAAAAiDcK2DFsNptNTU1N/bZF6rhqs9niObxJzWg0qqioaLyHgRgZbLWDcBdUhlrpAOMnWByx665dMc2ZTMURRqNRVVVVKi8vV2lpqSorK5WXl6fm5matX79eDQ0Nqq2tZcINgLiJ1VKPAAAg+VitVklSdVmm7JbRvQdxenvlqOsI5QQAJJ7hrCjLNVYAwEh4vV61+zpUfY5J9lmGsHG+noDcbX5ZpxtkSk0JG+f80C/HZt+ka5oRi2u2vQf3ypAS3SQBickEAAAAwHijgB3DZjabw3ZVpeMqEDuRVjs48oIKKx0krmAhw7wr5iljbsaocnXu7tSuu3YlZXFEWVmZamtrVVFRoWXLloW2L1iwQLW1tSorKxvzMcSyG/7heZKtIz4AAAAwmQULFe0W45DLZg83JwAg8QxnRVmusQIARsM+yzDke4yC8A3GEQP+zoPyB8RkAgAAACBJUMAOAAlqsNUOInUHQmIKfp0y5mbIZI1NUUOyFkeUlZWppKREjY2NamlpUU5OjgoLC+PWeX0suuEH8yZqR/zu1p0R90ez5GY0eQAAAAAAABLRcFaU5RorAAATA5MJACSqQG+3pL5V/WIhmIeGawCAZEUBOwAkqHCrHSRqoSwQDaPRqKKionE5dyy74UuJ3RHfYrEo02RWa0NVzHJmmsyyWCwxywcAAAAAADDWWFEWAAAAQKLoPfiRJMlR1xHTvInccA0AgEgoYAcAAJPCWHTDPzxvIsnNzdV2l1NerzdiXLiOY4OxWCwskQkAAICE0N7eLpfL1W+b0+ns9//hbDabzGZzXMYGAAAAAACQSILduen6Pf6MWTMlSdVlmbJbRr9KudPbK0ddR0I2XAMAIBoUsAMAAExAubm5URec03Es+Tg/9Efc7+sJyN3ml3W6QabUlBHnAQAASEQul0tLly4ddJ/D4Riwrampide7AICEM9iELJ/PJ7fbLavVOqBpAhOygImvt7dXjY2NamlpUU5OjgoLC2U0jr64DQAwubndbkl0/R6JYJF+d+vOmOQLdmC3TjdoSU7s/sYnYsM1AACiQQE7AAAAkCQMGVkypEiOzbHramE2ZcpiscQsHwAAwFiz2Wxqamrqt22ogj8AABJNpAlZg2FCFjCx1dXVqaKiIlRkKElWq1VVVVUqKysbv4EBAJJesDs3Xb+HL/h3ubWhKrZ52/wqmB/TlCETdaJsrCcTBPOwkgAAjC8K2AEAAIAkYcyaIX9Aqq6ult1uDxvndDrlcDiGjJMki8USdbd+AACARGA2mwct4JvoXb+A8URHWCD2BpuQFen9PBOykKgGK5JyOp39/j9cshRJxVNdXZ3Ky8tVXFysmpoa5eXlqbm5WevWrVN5eblqa2spYgcw5pKhONTj8cjr9YbdH+nvz5Em072RYMGy3WKk6/cwBYv0s4srlJY9+opz39vbtK+xWtbphlHnCmeiTpQds8kEk2AlAQBIZBSwAwAAAEnGbrdHdTEp2jgAAABgIpqoXcfijY6wwNgINyFL4v08kkukIimHwzFgW7IUScVLb2+vKioqVFxcrPr6ehkMfQVt+fn5qq+vV2lpqdasWaOSkhImj8XQUEWwUvSFsNEUygLJINGLQz0ejxbZFqnD1zFk7GB/f46UacrUdtf2SVPEjpEJXjdIy56vjDkLR50vOLHDlJoy6lzhTNSJsrGeTNDdulOtDVWTYiUBAEhkFLADAAAAAAAAACacidp1LJ7oCAsAGMpgRVJDTRjD/2lsbJTb7VZNTU2oeD3IYDCosrJSy5YtU2Njo4qKisZnkBNMXxGsXR2+9qjioymEBSaCsSoO7ezs1CuvvBI2bjiTRTp8HZp3xTxlzM0YNMbf5Ve3t1tpljQZ0sN3uO7c3aldd+2S1+ulgB0TzkSdKBvryQRBbrc74moCrOwAAGOLAnYAAAAAAAAAwIQzUbuOxQsdYQEA0QhXJBWLbruTQUtLiyQpLy9v0P3B7cE4jJ7X61WHr33IIt1AT5d69u1R6rTZSklNDxvne3ub9jVWj8VQJwWfzyfp/7oSj0bPvj19OXsCo841GcW6OLT34F4ZUqRLL700qvhoJ4tkzM2QyRq+2FQnRJUGwCQX/B0V7e+eaOLMpkw5WdkhJlhVEZg8KGAHAAAAAAAAAEw4E7XrWLzQERZAonF+6I+439cTkLvNL+t0g0ypKSPKAcRbTk6OJKm5uVn5+fkD9jc3N/eLQ+xEVaQ7b/GQeWJReD2Zud1uSVJrQ1Xscrb5VTD6BuIYJX/nQfkDUvU5Jtlnhe+GHs3fb0l6bEePfrylcyyGCmASivXvKOeHfjk2+1jZIUZGu6qix+OR1+uNeAzd9YHEQAE7JhxmYQEAAACTS7BTk9PbG5N8wTzBvAAAAJMRHWEBJAqLxSKzKVOOzbF5j2Y2ZcpiscQkFzBahYWFslqtWrduXb8VTyTJ7/dr/fr1WrBggQoLC8dxlMDYsVqtkjRkR/xoBLvhW6eHL0RE/NlnGbQkJ/KKTdFMOIjVtV8AOFysfkchtkazqqLH49Ei2yJ1+DqiOlc03fUzTZnaTnd9YExQwI4JZ7SzsAAAAIDxQDeAkQt2anLURXcxajh5WfIcAABMVnSETQw0bAGk3NxcOV3bo3rPHK6g4XCT6f0yEp/RaFRVVZXKy8tVWlqqyspK5eXlqbm5WevXr1dDQ4Nqa2tlNEYurAKSVfC1TFQd8YcQ7IYfqUMuAABIfKNZVdHr9arD16F5V8xTxtyMsHH+Lr+6vd1Ks6TJkB5+8lvn7k7tumsX3fWBMUIBOyac0czCAgAktsFu2kYq5uSmLYBkQTeA0Ql2aqouy5TdMvobuk5vrxx1HaG8AACgDxPuJhc6wiYGGrYAfXJzc6P+mzFUQQOQaMrKylRbW6uKigotW7YstH3BggWqra1VWVnZOI4OAAAASD4ZczNkspoiB50Qn7EACI8Cdkw4o5mFBUwknbs7I+4fzmxCIFFEumk7WDEnN20BJAu6AYxOsFOT3WIccqnHkeQFAADBCXd2dfjao4qPbsKdWdtdzknxeiUZ0RE2MdCwBQAmh7KyMpWUlKixsVEtLS3KyclRYWEhf2cBAJiAnB/6I+739QTkbvPLOt0QcVWJofIAAJDoKGDHkOisBCQXi8WiTFOmdt21K2Y5M02ZslgsMcsHjNRgN22HWjYbSBTB5UsHE+jpUs++PUqdNlspqekjyoGJgW4AAAAgUfVNuGtXdnGF0rLnh40bzmvb1oaqSTPhLlnREXb80bAFiD3ueyFRGY1GFRUVjfcwAADAGDFkZMmQIjk2+2KW00wtBwAgiVHAjojGorNSRkamNm2qVU5OTtgYLgwCI5ebm6vtru1RXYAP16npSPycIVGEu2lbUFAwDqMBotM3scis1oaqmOTLNJm5EDVCPl/fBcFYTQQI5gnmBQAAmAzSsucrY87CyEHzFsdnMIibQCDQ72O/P3KXN4pDEwdfC6C/vvtei9Th64gqProVRTK13bWdnw1gkgr0dkuSnN7emOQL5uGaIzC5xfJ1fDSv8xEfxqwZ8gc0ZI0GtRxIRu3t7XK5XP22DdWM0Gw2x3OIABIQBeyIKNadlTp2vaH9z/xexcXFUZ0/mguDZlOmnFwYHLFYLU30zt5A2H2Iv9zc3Kh/JujUFB+duzsj7vd3+dXt7VaaJU2GdMOIcgBITH0Ti5wRLzRyISo+3G63JMVsMsHheZlIAwAAgImorq5O5eXlKi4u1kMPPaS8vDw1Nzdr3bp1Ki8vH7QLO8WhiYOvRWxxM35i6Lvv1aF5V8xTxtyMsHHRXK+V+q7Z7rprFyuKYEJg0tPI9B78SJLkqIvu7220uOY4fEwmwEQxFo0mMTpDNUYa7krL0dZoUMuBZOJyubR06dKo45uamvj+BkABO6ITq85K3a07+2YTnmOSfVb4C37RFk07P/TLsdnHhcERsFgsMpsyY7o0EYCB+jovZ2rXXbtiki+TJcCApBTtxCIuRI0tq9UqSUNOzoxWd+tOtTZUhfICABCtwQrgIhWCHFkAR2HJ6MViQv9QOYBk19vbq4qKChUXF6u+vl4GQ9/13Pz8fNXX16u0tFRr1qxRSUmJjEZj6DiKQxMHX4vY4mb8xJIxN0Mmqyly0AnxGctkx2vbxMCkp5EzZs2UJFWXZcpuMQ4RPTSnt1eOug6uOY4AkwkwUcS60aTv7W3a11g9FkOd8GK9yrLESsuYuGw2m5qamvpti9TEzWazxXN4ABIUBewYF/ZZBi3JifwGvmD0NUWIIDc3V07X9qguCkbTETYYB6C/vs7LsftZ4+L76MWiG340eQAknmA3vKgmZ44gLwAA0YpUADfYe+vDC+AoLBmdWE/oNzPJGBNYY2Oj3G63ampqQsXrQQaDQZWVlVq2bJkaGxtVVFQ04HiKQxMHX4vY4GY8EHu8tk0cTHoauRRjmiTJbjEOef97OLjmOHxMJsBEE8tGk1JsJvNHk2ciiWaVZYmVlpMRq3bEntlsDjuJmyZuAMKZMAXs7777rm677TY9+uij2rlzpzIyMnTcccfpq1/9qr75zW/GZJlGt9ut3/72t/rrX/+q//znPzp06JCmTp0qm82mM888U1dddZWOPvroGDwbID6i7QYr8WICGA1+1hJDrLvhS3TEx8RAlysgvKG+56P92eDnAsCRBiuA8/l8crvdslqtAwoVDi+Ao7BkdGI9oZ/f8ZjIWlpaJEl5eXmD7g9uD8YBEx0344HY47Vt4mHSE5IZkwmAwRkysmRIUcwm80uTa0I/9/onJlbtAIDEMCEK2B955BE5HA7t378/tK29vV3btm3Ttm3b9Ic//EGPPvqoFi4ceZfFBx54QFdeeeWAmVJ79+7Viy++qBdffFG33nqrHnroIZ1++ukjPg8AAIheb2+vGhsb1dLSopycHBUWFvZbtvxwse6GL1GsguRHlytgcC0H/VJKdN/z0tBx/FwAOFK4Arjh3NygsGTkYnnj0ePx6JVXXomYg8mAkcVqwpg0OT9/YyknJ0eS1NzcrPz8/AH7m5ub+8UBADBSvLYFkMh4z4JkZ8yaIX9AQ9775B4pJhNW7QCAxJD0BeyvvvqqzjvvPPl8PmVlZamyslLLly+Xz+fTQw89pN///vd68803ddZZZ2nbtm2aOnXqsM+xdetWrV69Wn6/XwaDQRdddJFKSko0d+5ceTwe3XfffXrkkUf00UcfqaSkRM3NzfrYxz42Bs82+bEECwAgVurq6lRRUSG32x3aZrVaVVVVpbKyskGPYYY80B9droDBtXUEpIBi8rPBzwUATFxMBhyd3oN7+zrAxWjCmNTXAc45ST5/8VBYWCir1ap169apvr5eBsP/vd7x+/1av369FixYoMLCwnEcJQAAADA2Yt3kQppc7/liXRvyzl6/pL5rshiZaO99co80ubDS8siM1aodbrc74sodfC0AoL+kL2D/zne+I5/Pp9TUVD311FP67Gc/G9q3YsUKHX/88brmmmv05ptvqqqqSmvXrh32OdavXy+/v+9F8G9+8xt94xvfCO075ZRTtHLlSlVUVOiWW26Rz+fTLbfcottvv33Uz20iYgkWAEAs1NXVqby8XMXFxaqpqVFeXp6am5u1bt06lZeXq7a2NmwRO8ZfcOJZ5+7OmOQL5mFC28jR5QoYHD8bAIBImAw4Ov7Og30d4M4xyT4r/OfF1xOQu80v63SDTKkpYeOcH/rl2OybNJ+/eDAajaqqqlJ5eblKS0tVWVkZev+9fv16NTQ0qLa2NuxKaAAAAIkoeB25u3VnTPL17NvTl7cnEJN8SByxbHIhJc97vqF+NgI9XerZt0ep02YrJTU9bFzX+zskxb42pNvbzTVZ4P+huULiYNITAIxMUhewv/zyy2psbJQkXXrppf2K14MqKip07733yul06tZbb9V1112ntLS0YZ3nb3/7myQpOzu7X/H64W644QbdcsstkqQXX3xxWPknE5ZgAQCMVm9vryoqKlRcXNyvA1x+fr7q6+tVWlqqNWvWqKSkhJvoCSrYNX/XXbtinpcJbQAweu3t7XK5XP22+Xw+ud1uWa3WAd1DbDabzGZzPIcIAAmFCU+jY59lGLLTVcH8OA0GA5SVlam2tlYVFRVatmxZaPuCBQuYPA4AwCjx/nt8BK9PtzZUxTZvmz+mr1uH6sxKB9f4mSzv+SwWizJN5pj/bMSqNuSxHd368ZYupVmGV+8DTGSTsblCrCbZBCegxcpknfQEAKOV1AXs9fX1occXX3zxoDEGg0GrVq1SZWWl2tratGXLFp1xxhnDOk9XV5ekvovy4UybNk0Wi0VerzcUj4HGagmWSMuvID7opjv2ent71djYqJaWFuXk5KiwsJDiXExKjY2Ncrvdqqmp6bd8udT3d7+yslLLli1TY2OjioqKxmeQiCg48WyoN/DRCr6BZ0IbAMSGy+XS0qVLo45vampiSVkAmAToVDl5lZWVqaSkhOtSAADE2Gjff3s8Hnm93ojHRFvkHE0R9EQRvI6cXVyhtOzRV5z73t6mfY3Vsk4PX4Q2HHRwxXjJzc3Vdpczqt8rDodD1dXVstvtQ8bFqjbE6e2VpIgFn8BkNRkm2ozVJJtYmwxfCwCIpaQuYH/hhRckSVOmTIn45v60004LPd66deuwC9gXLVqkV155Re+8807YmP3794deyC9atGhY+YGJgG66Y6uurk4VFRWhz7PUd4GtqqqKTleYdFpaWiRJeXl5g+4Pbg/GIfEEJ55F9QZ+BHkBAKNjs9nU1NTUb1ukG1M2my2ewwMAjJNk6VSJsWE0GpkkDgBAjI3m/bfH45Hdtkjtvo6ozhVtMfRkELyOnJY9XxlzFo46X3CCpyk1ZdS5JDq4Ynzl5uZG/X1it9vj2tSi8/9Nfo5FQz2a6QHJZ6wm2QAAxldSF7AHZ4IvXLhQqanhn8rhb+ZHMnv8qquu0hVXXKHW1lbdeeeduuqqqwbE3Hzzzf3iR8TrlTpj0706VlL37pVFUnbHQaW37xt1vozOdqVISvUFpEP+0Y/PF5BFfePUhx+Gj/t/z2OouFib2durzv/3fzzPG0vRfu4WTp+u6ZLmrspRxuwYdNPd06nd97do4fTpSfu5i5WGhgZddcklOuOMM/TwHXfIZrPJ5XLpf/7nf3TVypVKv+ceFRcXDzvveP1cYHB8PaKXazLJIsnV2KiTTz55wH7XP/4hy/+LG8nncjJ9LWL9XKPNF4ybeahXmft7Rn1e06Fe7YvivImMr0V8xPq1bVfHQfUoNq9FJ9vXIlrD/V6O1fuMjM5AzL4eyfi1MEtaMr9/JWHwc/yJOXP0ySP26dChvn/jaDL9/cbgJsL772jxNyM++Ps9UPDaz8zTv6G0mXNHnc/nfk37/16rhRkpk+I64WSS6D8bE+FvBu/5RieWvwfG6/38/8/evce3Vd/3H39L8lVJCMGCYEiMPEKQwJQSczE2Kk5b6AUHG2HoALVAL7BRGAMFVkPpRsts2mLSbL08RqGh4GJohXFbp+062gKiDYRo3NRJ4Sqc/OIlKJCrZceW/fsjk4jx3T62JOv1fDx4WD7nc77nowhLOud8zueLkfH5nXnS+fWYjc+L6Rx/73r9dVljPfrpZwu0vGj04uVY/6C27BnQ0sPMYxZYP/lWv5r+fCAtXwujpfv178R5qeKFOSo4Infs4KPHvybbsz+uHqXnayF98Hoctm2zcnv2jRo32H9A/XveVc5hR8qUkzdijOXdd2bktciGv4vJSNU52+h7B8cwsqHe1ldflZZPvxWy0Z8ZfV1dOlySddtrY/5dTJTlvW06/P/Gnc3j5Wz6bst1vtlRUliokg9/P/qQMb9LjRDHZ8bMSsXxd7b9XWjv3lRnAEyLaXBwMCPnaO3p6UneHX3BBReoo6NjzPj58+dr//79qqio0IYNGya1r3g8ri9+8Yt66KGHZDab9cUvflEXXnihiouL1dnZqYcffljt7e2SpNtvv1133XXXpMbfs2ePFi5cqN2SDpvUljOvW1J4BsZ16OBJGQAAAAAAAAAAAAAAAGA0M1G7kq51K/8tqXwGxg1Imr2e+QCA2bBH0kJJu3fv1mGHpVvlKTC+jO3AvveQu0fmz58/bvy8efO0f/9+7ds3+bsTLRaLfvrTn2rVqlVqbGzU/fffr/vvv39IzMqVK3Xbbbfpk5/85Ljj9fb2qveQTut79uyZdE6zJSy+GAMAAAAAAAAAAAAAACA1rMqeGhOHDtbUzMS4AAAA6SRjC9h7enqSj/PyRp4i6lD5+Qenz4rFYlPaXygU0kMPPaRXX311xPUbNmzQAw88IKfTqWOPPXbMsZqamnTnnXdOKY/ZxhdjAAAAAAAAAAAAAAAAYOZlU7E+AADIbhlbwF5QUJB8fODAgXHjEx3PCwsLJ70vv9+vVatWaffu3TruuON011136bzzztMRRxyh7du361e/+pXuuOMOPfroo3rmmWf0+9//XieffPKo4zU0NOjmm29O/r5nzx4tXbp00nnNBr4YAwAAAAAAAAAAAAAAAAAAADBKxhawL1iwIPl4375948bv379fkjR//vxJ7ae3t1eXXXaZdu/eraOPPlrPPfecjj766OT6JUuW6LrrrtO5556r008/Xdu2bdOVV16pTZs2jTpmfn5+siP8EG++KR3yvNLBK6+8ok988pNa/Lm7lHdU6bTH2x9+Vu/914/0h89b9ZHF5mmP5wv16e/X96r0FrsKlhaMv8E4erb06O3vRvSHJ5/URz7ykWmP95GPfERd//u/Kj76aL3yyivTHi8VEv8PjPdvkohL19ciU8XjcZ155plyOp166KGHZDZ/8HczMDCgL3zhCwqHw3r++edlsVgmNfZEX1vMDl6P9JFNr4XRz5XPjKnjtZgdRn+3PbDjbW1/7OsT/nceKy7bXouJmuz/y+l4nJFtr4XRtm7dqrMrz1ZPT69hYxYU5GvDXzZoyZIlho2J1JsLx98TxWfG7ODze7h0P0/4yvYBfeLhbkO+m2F6nt+4UZ+uqdExXyhW/uIRzoNPUu/2Xm17qEu/6+jQWWeeOe3x5sJnBsd802Pk+0CqjucxMj6/M086vx6p+ryYC+dCpPT+2zD6e23s7Rf1Xsc9GjAgt0Nlw2sxGan4/E7n96hUmgvvU+leF5LO1zIOjeNv4wNc50sfc+E9Spobr4XE5/es2LtXOv74VGcBTFnGFrAXFBSoqKhIO3fu1NatW8eMff/995MF7JPtdP673/1O/+///T9J0g033DCkeP1QJ598sjwej+6//34FAgG9/PLLOvXUUye1L9ls0mGHTW6bGda/aJGiknIK5ivfunDa4+3Lt2qnpP5CkzRv+l8AevNNikpaOM+iwsOm/79zbJ5FUR183jryyGmP957l4Hj5Fosh46VC4v+B8f5NEnHp+lpkKouk27/3PdXX12vPV76ihoYGlZWVKRgMqqmpSR3/9V/y+XyyjPLeNJaJvraYHbwe6SObXgujnyufGVPHazE7jP5u21swf1L/zmPFZdtrMVGT/X85HY8zsu21GEl3d7fC4fCQZbFYTJFIRHa7fdhMaQ6HQ1arVZK0Y8sWbe3p1ZJrlij/mNEL4AYODKgv2qdcW67MeaP/P9C7rVdb79uqHYODWpLBrweGmwvH3xPFZ8bs4PN7uHQ/T9hfOGjYdzNMzxu7dmmXpF0PdRk+7lmcs5XEMd90Gfk+kKrjeYyMz+/Mk86vR6o+L+bCuRApvf82DD9HWLREOyS1tLTI6XSOGhcKheTxeCYclw2vxWSk4vM7nd+jUmkuvE+le11IOl/LODSOv40PcJ0vfcyF9yhpbrwWEp/fs2KkJspABsnYAnZJOumkk+T3+/XGG2+ov79fOTkjP51DL5SPdTA4klAolHy8YsWKMWPLy8t1//33J/c56QJ2ABiB2+2Wz+eT1+tVZWVlcnlpaal8Pp/cbncKswMAAIcaqVA3cUxx6LGFNLRIF5jLwuGwysvLJxwfCASGHX/nH5OvQnvhKFv8n+VTyQ4AABjNbrdL0rg3oE1U4ga0xLgAMB2xWEzSwfcWIyTGSYwLIHs5nc5x6wkmEwcAAAAAc11GF7Cfc8458vv92r9/vwKBgM4666wR455++unk46qqqknt49Ci+P7+/jFj+/r6RtwOAKbL7XartrZWfr9fXV1dKi4ulsvlksViSXVqAADgEGMV6no8niG/j1SkC8xFDodDgUBgyLKxuo45HI7ZTA8AABgsMbvKhG5Am8K4mDgKdYHhIpGIJGnrfWPP7jyVcSd7DRIAAAAAACCbZXSVdV1dnZqamiRJ69atG7GAfWBgQA899JAk6fDDD9fKlSsntY/S0tLkY7/fr5qamlFjDy2UP3Q7ADCCxWJRdXV1qtMAAABjGKlQNxaLKRKJyG63Dym6oUgX2cJqtY56swZdxwAgew3GDzYDCUXjhoyXGIfCWuADFOoCwzFLBAAAAAAAQHrI6AL2M888Uy6XS36/Xw888ICuvPJKnX322UNimpubFQqFJEk33nijcnNzh6x/6qmnkkXtV155pR588MEh6z/xiU/IarWqu7tbP/rRj+TxeHTKKacMy+W3v/2tnnjiCUnSscceq49+9KMGPUsAAAAAmWK0Ql2KOwAARqGbLuaK+L73JEmeth5Dx6WwFvgAhbrAcMwSASChb+eWMdcP9h9Q/+7tylm4WKacvCmPAwAAAAAYWUYXsEvS2rVrVVVVpVgspvPPP1+33XabVq5cqVgspkcffVT33XefJGn58uXyer2THv/www/X1772NX3jG9/Q3r17VVlZqRtuuEHnnXeeFi1apO3bt+uXv/ylfvzjH2tgYECSdPfdd8tsNhv6POea0LsDY66P9Q8qsmtA9sPNKswxjRr39vuDRqcGAACQNSiAAwAg89BNF3OFZf4RkqQWd4GcNsu0xwtF4/K09VBYCxyCQl0A6Y5zU0gFm82mgkKrdnY0GzZmQaFVNpvNsPEAAAAAIBtkfAH7aaedpscee0wej0d79uzRbbfdNixm+fLlWr9+vRYsWDClfXz961/Xe++9p7Vr12rfvn1qampSU1PTsLjc3Fw1NjbK4/FMaT/ZwJw/X2aT5HmCE0cAAMwl8XhcmzZtkiRt2rRJp556qiyW6RehYGZRAAcAQOahmy7mCpPl4EyZTptFK4qNO3agsBaAUTo7OxWNRseMScwAnPg5FpvNppKSEkNyg9Td3a1wODxk2Vivh8PhkNVqnZXcMHGcm5q6RJF+KBo3ZLy33z/YfGzgwNhNyOaCkpISbQ6HJvQe7/F41NLSIqfTOWYs7/EAAAAAMHkZX8AuSatWrdIrr7yitWvXav369dq6davy8vK0bNkyXXLJJbr++uundVLKZDJpzZo18ng8uv/++/Xss8/qnXfeUXd3t+bPn69ly5bp3HPP1bXXXqvly5cb+MzSh1FTqA307tPAoMY90J/oCYGXXnpJX/rSl+jMAADALDv0IuEf//hHrVmzRtu2bZMkXXvttbrzzjt100036eMf/7gkLhKmq2wtgGN6YABAJqObLlLNqO9S/bu3G50aABims7NTTseJ6o71TCh+Io2NrIUFCoU3U+BokHA4rPLy8hHXjfR6BAIBrVixYqbTwiRl67kpIySK/z1tE3ufmqi+aJ80Ny93D1FSUjLh92On08n7R5ZilggA6Y73KQBAppsTBeySdNxxx+nee+/VvffeO6ntqqurNTg4OKHY8vLyUU+GzVUzNYWay+Wa0EmB8U4IJLpo0JkBGBvdaAAYbayLhJK0bds23XLLLcnfuUiYnrKtAI7pgQEAgJGy7SLhTHyXAoB0FY1G1R3rUctFhXIeaR41LtY/qMiuAdkPN6swxzRqXOjdAXmeiCkajVLAbhCHw6FAIDBkWSwWUyQSkd1uH3ZuwuFwzGZ6mKBsOzdlpESRfou7QE7b9GezaQ8f0Lee6dNA/4Bikel/H03377bARDBLBIB0x/vU9IXeHXv2mYke8739/sRqDwEAQ82ZAnbMjHSfQo3ODMDE0I0GgNEcDoc2btyouro6LVu2TM3Nzert7U1eJMzPz5fX69Wbb76pJ554gouEM4iblCYunb/bZlsBHAAAc0G2XSQ0+rtUIs5oI30HHmn9eHGSsecxAcyOzs7OCb1PHfpzrBjnkWatKB67MLRq6cTz4z3KOFardcRz2On4GQrMhESRvtNmGfd9aiJ+8/rBgqxtP9k27bEOla7fbYGJoBbBGBSHAjOH96mps9lsshYWyPME19EAIJUoYMe40nkKNTozABNDNxoARrNardq/f7+2bdumxx9/XKeddpr8fr/MZrP6+vpUUVGhu+++W5WVldq/f3/WFkzPBm5Smpx0/W6bbQVwM4WLIQCA2ZSNFwnT9buUJHXtG5BMI38HHslE4goKC7Q5vDmrC0SBTNLZ2akTHU71xLonFD8TN9GMhvcoAOnumAUHz5Nk03dbYDzUIkwPxaHAzON9aupKSkoUCm82rFHDSy+9pC996Us0qpoio25Gn8h6AOmFAnYAyAJ0owEwE7q6uiRJb775pi677LJkAa50sJjnrrvuGhKHmcFNSnNDNhbAGYmLIQCAVOAiYXrZ1TMoDY7/fWrgwID6on3KteXKnGceNS7xfSoajVIcCmSIaDSqnli3imq8yi0avS36YP8B9e/erpyFi2XKyRsxJvbWJu32txiWG+9RANJd/v/d6M93WwBGMbo4dKZm8QKQvYxs1JAomqZR1eR1dnbK6ThR3bGeCcVP9LOAmwmAzEABOwAAAKakuLhY0sGDxFWrVqm1tVVlZWUKBoNqbGxMHjwm4jAzuElpbqAAbnrSuVMGJ7YAAJhdE/o+tXx2cgGQGrlFS5V/9LKxg5acNObqvp1bDMzoA7xHAQCAbJLOs3gBU9Xd3a1wODxk2VidoR0OBzNVZwEaVU1dNBpVd6xHLRcVynnk6DdyT3SW5fv/+4B+tKmPmwmADEEBOwAAAKaksrJSOTk5KioqUltbm3JyDn61rKioUFtbm5YsWaKdO3eqsrIyxZkCyAbp3imDE1sAAAAAAAAAgIka76bKicwsNNo4FGFPXTgcVnl5+YjrRuoMHQgEuDkjC9CoavqcR5q1otgyZkzV6JOtJZ1+zMEieG4mADIDBewAAACYkr/85S/q7+/Xjh075Ha71dDQkOzA3tTUpB07dmhwcFB/+ctfVF1dnep0AWDCjOyUwYktAAAAAAAAAMBE2Ww2FRRatbOj2bAxCwqtstlsyd8pwp46h8OhQCAwZFksFlMkEpHdbh9WcOxwOGYzPSDr5f9fd3ZuJgAyAwXsAAzVu613zPUDBwbUF+1Tri1X5rzRp34ZbxwAQOp1dXVJkh5++GF9/etfH9JpvbS0VA8//LA8Hk8yDgAyxUx0yuDEFgAAAAAAAABgPCUlJdocDikajY4ZFwqF5PF41NLSIqfTOWaszWYbMoMpRdhTZ7VaRyzmn+oMrHTDBwBkMwrYARji4F3ABdp631bDxiwoLBhyFzAAIL0UFxdLko4//ni98cYb8vv96urqUnFxsVwulzZu3Dgk7sO46QkAAAAAAAAAgA/EYjFJxp33ToyTGBdAZigpKRlScD4Wp9M56e7oRhdhY+rohg8AyGYUsAMwxMG7gDfP6F3AAID04nK5ZLfb1djYqPb2dlVXVyfXDQwMqKmpSaWlpXK5XEO246YnAAAAAAAAAACGi0QikmTo+fPEuBSmYi4Y6+YOGiMhE9ENHwCQzShgB2CYmb4LGACQXiwWi5qbm1VfX6+6ujo1NDSorKxMwWBQTU1N6ujokM/nk8ViGbIdNz0BkKTOzs4JvQ8c+nMsvA8AAAAAAIBsE3p3YMz1sf5BRXYNyH64WYU5plHj3n5/0OjUMEV2u12StOSaJco/Jn/a4/Vu69XW+7YmxwUyldHNkWiMNHXMFGEsuuEDALIZBewAAACYMrfbLZ/PJ6/Xq8rKyuTy0tJS+Xw+ud3uEbfjpicgu3V2dupEh1M9se4JxY80TeaHFRRatTkcoogdAAAAAADMeTabTdbCAnmeyM5iv7ks0Wk3/5h8FdoLx4me/LhApppIcyQaI80OZooAAABGoYAdAIBZ1t3drXA4PGTZWB1mHQ6HrFbrrOQGTIXb7VZtba38fr+6urpUXFwsl8s1rPM6ACREo1H1xLpVVONVbtHSUeMG+w+of/d25SxcLFNO3qhxfTu3aGdHs6LRKBcdAAAADDDSuYvxpjD/8LmL8brxDRwYUF+0T7m2XJnzzKPGGdXVD5iMwXifJCkUjRsy3tvvH+yQPHBg7E7JADBRJSUlChk4y2UiDgDS2USbI9EYafLi8fiEr/MxUwQAADAKBewAAMyycDis8vLyEdeNdII4EAhwkgVpz2KxqLq6OtVpAMgwuUVLlX/0srGDlpw0O8kAAAAgaaxzFyM59NyFzWZTQWGBod34CgoLZLPZDBsPGE9833uSJE9bj6Hj9kX7pOWGDgkgizHLJQDACG1tbfJ6vcnO6tLBIvXm5uYRZ1pmpggARorFDs4oxA3kQHaigB1zAt18AGQSh8OhQCAwZNl4XcyA6aLzPwAAAIB0FHp37ItJsf5BRXYNyH64WYU5plHj3n5/0OjUstpI5y7G6uB66LmLkpISbTawI6x0sCiemXYwmyzzj5AktbgL5LRNf4a537zepzv+dEC5ttxpjwUAAAAYpa2tTfX19aqpqVFra6vKysoUDAbV2Nio+vp6+Xy+EYvYAcAoiZtnuIEcyE4UsCOj0c0HQCayWq0jdjqpqqpKQTbIFnT+BwAAAJBObDabrIUF8jwRS3UqGMFo5y6kiXVwpSMsMp3JcrDQ3GmzaEXx9AvYX/rffkkHL6DH8qb/vpdoxpPoVAcAAABMVjwel9frVU1Njdrb22U2H2wGWVFRofb2dtXV1Wn16tWqra2VxTL978SA0WjgNjfY7XZJ3EAOZCsK2JHR6OYDAMDE0Pk/vXz4hAonUwAAAJBtSkpKFDLwvF4iDgDS0ba9B2eJMLIZj3SwUx1NMQAAADAVfr9fkUhEra2tyeL1BLPZrIaGBlVWVsrv96u6ujo1SQJjoIHb3JCoUzDqBvJQNC5JMueZx4kEkA4oYEfGo5sPAADjo/N/ehnthAonUwAAAJBNOK8HIFscs8AkSVpyzRLlH5M/7fF6t/Vq631bk53qAAAAgMnq6uqSJJWVlY24PrE8EYf0lZihaTQDBwbUF+1Tri13zKLe8cZJNzRwA4DMRwE7AAAAMMs+fEKFkykAAADA9MRiMUnGXWxNjJMYFwCmIz/nYAF7/jH5KrQXjhM9cR8+hwAAAABMVHFxsSQpGAyqoqJi2PpgMDgkDunHZrOpoLDA0JmeCgoLZLPZDBtvJtHADQAyHwXsAAAAwCwb6YQKJ1MAYDiKEQEAExWJRCTJ0Iu2iXH5rg4AAIzQ2dmpaDQ6ZkwoFBrycyw2m23Cs9kAAPBhLpdLdrtdjY2Nam9vl9n8QWfugYEBNTU1qbS0VC6XK4VZYiwlJSXaHN48oe8XHo9HLS0tcjqdY8by/QIAMJsoYAcAAACANJGt0zwCo6EYEQAwUXa7XZK05Jolyj8mf9rj9W7r1db7tibHBTIZxxkAkHqdnZ060eFUT6x7QvEej2fcmIJCqzaHQxSZGaC7u1vhcHjIsrFuJnA4HLJarTOaE5/fAGaaxWJRc3Oz6uvrVVdXp4aGBpWVlSkYDKqpqUkdHR3y+XyyWCypThVjKCkpmfB3AafTOWLHcmAqjLo5cyI3bgKYuyhgBwAAAIAUy/ZpHoHRUIwIjI5iBmCowsJCSVL+MfkqtBcaPi6QiTjOAID0EY1G1RPrVlGNV7lFS0eNG+w/oP7d25WzcLFMOXmjxvXt3KKdHc2KRqMUsBsgHA6rvLx8xHUj3UwQCARmrACQz28As8ntdsvn88nr9aqysjK5vLS0VD6fT263O4XZAUhXM3FzJoDsRAE7Ui4d72gHAAAAZhPTPAIjoxgRGI5iBgDARGXbcUYsFpN0sKhzuvp3bz84Zv/gtMcCgEPlFi1V/tHLxg5actLsJIMkh8OhQCAwZFksFlMkEpHdbh92HsHhcMxYLtn2+Q0g9dxut2pra+X3+9XV1aXi4mK5XC46rwMYlZE3Z8be2qTd/paZShVAmqOAHSmXTne0AwAAAKnCNI8AgImgmAEAMBnZdJwRiUQkSTs7mo0bc9eAqka/Fg8AmCOsVuuIn4FVVVUpyCa7Pr8BpAeLxaLq6upUpwEgwxhxc6YRN6EDyFwUsCPl0umOdgAAAAAAgHRHMUN66d3WO+b6gQMD6ov2KdeWK3OeecrjpCNmVgSQTux2uySN2wFuIhId4OyHj/6+DQAAAAAA0lM2n7MFMgkF7Ei5dLujHQAAAAAAABiPzWZTQWGBtt631bAxCwoLZLPZDBtvpjGzIoB0kmiGM6EOcONIdIArzDFNOy+kJ4oZAAAAABiN44zUO7zAJJmU1edsgUxCATsAAAAAAAAATFJJSYk2hzcrGo2OGRcKheTxeNTS0iKn0zlmrM1mm3B3/XTAzIqA8To7Oyf0vnLoz7Fk2vsKMNO4AQ0AAACA0TjOSB/F883SoMY9FzuXz9kCmYQCdgAAAAAAAABZq7u7W+FweMiysYpDHQ6HrFarpINF7BO9eOF0Oudc93FmVgSM1dnZKafjRHXHeiYUP9JMBx9mLSxQKLyZC63A/+EGNAAAJm46x8uY++g0DXyA44z0M9FzsXPxnC2QSShgBwAAAAAAAJC1wuGwysvLR1w3UnFoIBDgogaAGRGNRtUd61HLRYVyHjl6gUesf1CRXQOyH25WYY5p1LjQuwPyPBFTNBrlojdwiGy/AQ0YC8WIwHDZ/HfB8TJGQqdpYGQcZwDA5FHADgAAAAAAACBrORwOBQKBIctisZgikYjsdrsKCwuHxQPATHIeadaKYsuYMVVLZykZAEDGmE6nZIoRMVfxdzE9Rh8v09F9bqDTNAAAMAoF7Jg0DioAAAAAAAAwV1it1hE7HlVVVaUgGwAAgOyTDd2NY7GYJKlv5xZDxkuMkxhXml6nZIoRMVfxdzE9Rh8v09F97qDTNOYi6uEAYPZRwI5J46ACAABgbsmGi4QAAAAAAABIL9nU3TgSiUiSdnY0Gz5uopB0up2SKUZEujCygJC/i/TCDGgA0hn1cAAw+yhgx6RxUAEAADA3ZNNFQgAAAAAAAKSXbOpubLfbJUlFNV7lFi2d9nh9O7doZ0dzclyJmYUwdxhZQMjfRXrh9QCQzqiHA4DZRwE7Jo2DCgAAgLkhmy4SAgAAAAAAIP1kS3fjRMFTbtFS5R+9zPBxkV6M7CCejSggBACkAvVwADD7KGAHAAAAsli2XCQEAAAAAAAAgNlgZAfxbEQBIQAAAJAdKGAHAABZiy4oAAAAADC39G7rHXP9wIEB9UX7lGvLlTnPPOVxAAAAgNHQQRwAAAAAxkcBOwAAyFp0QQEAAAAA48Tjcfn9fnV1dam4uFgul0sWi2VW9m2z2VRQWKCt9201bMyCwgLZbDbDxgMAAEB2oIM4AAAAAIyPAnYAAJC16IICABiLER1c6d4KAMgWbW1t8nq9ikQiyWV2u13Nzc1yu90zvv+SkhJtDm9WNBodMy4UCsnj8ailpUVOp3PMWJvNppKSEiPTTFudnZ0T+rc79OdYsunfDpgMZokAAAAAAAAADqKAHQAAZC26oAAARmJ0B1e6twIA5rq2tjbV19erpqZGra2tKisrUzAYVGNjo+rr6+Xz+WatiH2iRdNOp5MZtv5PZ2ennI4T1R3rmVD8SDOWfZi1sECh8GaK2JESfTu3jLl+sP+A+ndvV87CxTLl5I0Y0797u6E5HV5gkkxilggAAAAAAADg/1DADgAAAACYc7q7uxUOh4csG6trqMPhkNVqlWR8B1c6kAIA5rJ4PC6v16uamhq1t7fLbD7YMbiiokLt7e2qq6vT6tWrVVtbK4vFkuJsMZJoNKruWI9aLiqU88jROz7H+gcV2TUg++FmFeaYRo0LvTsgzxMxRaNRvgNhVh28EdWqnR3NqU5lmOL5ZmlQ4x47MEsEAAAAAAAAsgUF7AAAAACAWRWLxSSN3xlxohLjJMaVpHA4rPLy8hHjR+oaGggEhnRhpYMrAAAT4/f7FYlE1NraqsHBQT311FPq6upScXGxXC6XGhoaVFlZKb/fr+rq6lSnizE4jzRrRfHYNxlULZ2lZIApOHgjasiQG1ETMUab6LEDxxgAAAAAgHRl5HW+xAxosf7BaY8FIPNQwA4AAAAga02nSzemLhKJSJLhnREjkYiqqqokHXytAoHAkPWxWEyRSER2u12FhYVD1jkcDkNzAQAgW3R1dUmS3nzzTV122WXJz3lJstvtuuuuu4bEAcBM4kZUAAAAzEVcywCQTmbiOl9k1wCNE4AsRAE7AAAAgKw13S7dmBq73S5JKqrxKrdo+mej+nZu0c6O5uS4kmS1Wkd8rRIF7gAAwBjFxcWSpM9//vOqqalRa2urysrKFAwG1djYqM9//vND4gAAAAAAwORwLQNAOjHyOl/srU3a7W9Rb5/0313x0eP6BxXZNSD74WYV5phGjQu9OzCtfADMLgrYAQAAAGQtunSnRuLfNbdoqfKPXmb4uAAAYPZUVlYqJydHRUVFamtrU07OwVPOFRUVamtr05IlS7Rz505VVlamOFMAmLzxLnxzAR0AAACzgWsZANKJkdf54vvel9kkfenXPUakJkmyFhbIZrMZNh6AmUMBOwAAAICsRZduAACA6fnLX/6i/v5+bd++XW63Ww0NDckO7E1NTdq+fXsyrrq6OrXJAsAE2Ww2WQsL5HkiZtiYXEAHIB2cRW4sg/0H1L97u3IWLpYpJ2/K4wAA5hauZQCYqyzzF2lgUGppaZHT6Rw1LhQKyePxjBsnHTymLykpMTpVADOAAnYAAAAAAAAAwJR0dXVJOniR6etf//qQTuulpaVqaWmRx+NJxgFAJigpKVEovFnRaHTMOC6gA5gom82mgkKrdnY0GzZmQaF1zBtj4vG4/H6/urq6VFxcLJfLJYvFYtj+AQAAAKM4nc4Rb9SZahyAzEABOwAAAAAAAABgSoqLiyVJxx9/vN54441hRVIbN24cEgdgdLHYwW7foWjckPES4yTGxeSUlJRMuOCcC+gAxlNSUqLN4dCs3RjT1tYmr9erSCSSXGa329Xc3Cy32z3p/AEAAAAAMBoF7AAAAAAAAACAKXG5XLLb7WpsbFR7e7uqq6uT6wYGBtTU1KTS0lK5XK7UJQlkiESRoaetx/Bxq6qqDB0TADB5s3VjTFtbm+rr61VTU6PW1laVlZUpGAyqsbFR9fX18vl8FLEDAAAAAFKOAnYAAAAAAABMWnd3t8Lh8JBlsVhMkUhEdrtdhYWFQ9Y5HA5ZrdbZTBHALLBYLGpublZ9fb3q6urU0NCQLJJqampSR0eHfD6fLBZLqlMF0p7dbpcktbgL5LRN/28mFI3L09aTHBcAMPfF43F5vV7V1NSovb1dZrNZklRRUaH29nbV1dVp9erVqq2t5fvZGOLx+LCZhfj3AozH3xoAAEB2o4AdAAAAAAAAkxYOh1VeXj7h+EAgMOUOggDSm9vtls/nk9frVWVlZXJ5aWkpHT4haeSbnkKh0JCfh8rWm54SN385bRatKDaucOfDN5UBAOYuv9+vSCSi1tbWZPF6gtlsVkNDgyorK+X3+4fMnIMPtLW1yev1JmdGkQ7eZNbc3Mz3WsBA0/1b4xgDAAAg81HADgAAAAAAgElzOBwKBAJDloVCIXk8HrW0tMjpdA6LBzB3ud1u1dbW0j0PIxrrpiePxzNsGTc9AQAwNV1dXZKksrKyEdcnlifiMFRbW5vq6+tVU1Oj1tbW5MxCjY2Nqq+v5+ZMwCBG/K1xjAEAAJD5KGAHAAAAAADApFmt1lEv/DmdTi4KAlnIYrHQyRMjGummp1gspkgkIrvdPqxDODc9AQAwNcXFxZKkYDCoM844Y9jNhcFgcEgcPhCPx+X1elVTU6P29vZkB/uKigq1t7errq5Oq1evVm1tLTdpAtNg1N8axxgAAACZjwJ2AAAAAAAAAACyVCwWkySFonFDxkuMkxhXGv2mp6qqKkP2CQAADnK5XLLb7brhhhv07rvv6p133kmuO+6443TkkUeqtLRULpcrhVmmJ7/fr0gkotbW1mRBbYLZbFZDQ4MqKyvl9/u5aROYBqP+1jjGAAAAyHwUsGPO6e7uVjgcHrIsFAoN+Xkoh8Mhq9U6K7kBAAAAwFzX2dmpaDQ6ZsxYx2gjxfVu6x0zbuDAgPqifcq15cqcZx41brxxAADIRpFIRJLkaesxfFyKRwAAmF0Wi0WXXHKJvvvd72rx4sW67777VFNTo46ODt1xxx3atGmTbrnlFjqIj6Crq0uSVFZWNuL6xPJEHICp4W8NAAAACRSwY84Jh8MqLy8fcZ3H4xm2LBAIMK35/6H4HwAAAMB0dHZ2yuk4Ud2xiRXAjXSMNoxJ2nrf1mlm9oGCwgLZbDbDxgMAINPZ7XZJUou7QE7b9IvZQtG4PG09yXEBAMDsicfj+sUvfqHTTz9d0WhU11xzTXJdaWmpTj/9dPl8PjU1NVHE/iHFxcWSpGAwqIqKimHrg8HgkDgAU8PfGgAAABLmTAH7O++8o3/7t3/T+vXrtWXLFuXn5+v444/XpZdeqq9+9atTLrKNRCIqLS2d1DbHHXdcsmsNZp/D4VAgEBiyLBaLKRKJyG63q7CwcFg8DqL4HwAAAMB0RKNRdcd61HJRoZxHjt4JPdY/qMiuAdkPN6swxzRqXOjdAXmeiKmlpUVOp3P0uFBIHo9n3DhJstlsKikpGf/JAACQJRLnS502i1YUG1fI9uHzsAAAYOb5/X5FIhG1trbqjDPOkN/vV1dXl4qLi+VyubRx40ZVVlbK7/eruro61emmFZfLJbvdrsbGRrW3t8ts/uC8xsDAgJqamlRaWiqXy5XCLIHMx98aAAAAEuZEAfuvf/1reTwe7dmzJ7msu7tbmzZt0qZNm3T//fdr/fr1WrZs2azkc+KJJ87KfjAyq9U6YlE109WOj+J/AAAAAEZwHmketwCuaukkxnM6J3Tz7ETjAAAAAACYi7q6uiRJZWVlslgsw4rUy8rKhsThAxaLRc3Nzaqvr1ddXZ0aGhpUVlamYDCopqYmdXR0yOfz0bkemCb+1gAAAJCQ8QXsL774oj73uc8pFotp/vz5amho0MqVKxWLxfToo4/qxz/+sV577TVdcMEF2rRpkxYsWDCp8Y899li9+uqr48Y1NTXpkUcekSRdeeWVU3ouQKpR/A8AAAAAAAAAAABkpuLiYklSMBhURUXFsPXBYHBIHIZyu93y+Xzyer2qrKxMLi8tLZXP55Pb7U5hdsDcwd8aAAAApDlQwH7jjTcqFospJydHv//973X22Wcn13384x/XCSecoFtvvVWvvfaampub9S//8i+TGj83Nzd5J/po4vG4nnrqKUnSggULdNFFF032aQAAAAAAAAAAAAAAMGUul0t2u12NjY1qb2+X2WxOrhsYGFBTU5NKS0vlcrlSmGV6c7vdqq2tld/vV1dXl4qLi+VyuegGDRiMvzUAAABkdAH7xo0b5ff7JUlf+tKXhhSvJ3i9Xq1bt06hUEhr167V7bffrtzcXEPzePLJJ7Vt2zZJUn19vQoLCw0dHwAAAAAAABhNd3e3wuHwkGWhUGjIz0M5HA5ZrdZZyQ0AAADA7LFYLGpublZ9fb3q6urU0NCgsrIyBYNBNTU1qaOjQz6fjwLRcVgsFlVXV6c6DWDO428NAAAgu2V0AXt7e3vy8dVXXz1ijNls1he+8AU1NDRo165d+tOf/qTzzz/f0Dweeuih5OMrr7zS0LEBAAAAAACAsYTDYZWXl4+4zuPxDFsWCAS0YsWKmU4LmDRuxgAAAJg+t9stn88nr9erysrK5PLS0lL5fD653e4UZgcAmIs4ngcAAFOR0QXszz77rCRp3rx5o16kk6Rzzz03+fjPf/6zoQXse/fuTRbS2+12fexjHzNsbAAAAAAAAGA8DodDgUBgyLJYLKZIJCK73T5stkCHwzGb6QETxs0YAAAAxnC73aqtrZXf71dXV5eKi4vlcrnovA4AmBEczwMAgKnI6AL2xF16y5YtU07O6E/l0ItyI93ZNx0+n0/d3d2SpM9//vMymUyGjg8AAAAAAACMxWq1jnjRr6qqKgXZAFPHzRgAAADGsVgsqq6uTnUaAIAswPE8AACYiowtYO/p6VE0GpUkLVmyZMzYRYsWad68edq/f7+2bNliaB4PPfRQ8vEXvvCFCW3T29ur3t7e5O979uwxNCcAAAAAAAAAyDTcjAEAAAAAQObheB4AAExFxhaw7927N/l4/vz548YnCtj37dtnWA6dnZ16+umnJUmVlZVatmzZhLZramrSnXfeaVgeAAAAAAAAAAAAAAAAAAAAs6Fv59iNhAf7D6h/93blLFwsU07elMYAMLdlbAF7T09P8nFe3shvcIfKz8+XdHCKGqO0tLRocHBQ0sS7r0tSQ0ODbr755uTve/bs0dKlSw3LCwAAAAAAAAAAZKbQuwNjro/1Dyqya0D2w80qzDFNeRwAAAAAAIDJstlsKii0amdHsyHjFRRaZbPZDBkLQGaZsQL2rVu36n//93/V3d2tM844Q4WFhYaOX1BQkHx84MCBceN7e3slydA8Hn74YUkHi+M/97nPTXi7/Pz8ZEE9AADAXBCPx+X3+9XV1aXi4mK5XC5ZLJZUpwUAAAAAQMaw2WyyFhbI84RxjXishQVcBAYAAAAAAIYpKSnR5nBI0Wh0zLhQKCSPx6OWlhY5nc5R42w2m0pKSoxOE0AGMLSAfe/evfrOd76jBx98UNu2bUsuf/XVV3XSSSclf3/00UfV1tamhQsX6sc//vGU9rVgwYLk43379o0bv3//fknS/Pnzp7S/D9u4caPC4bAk6cILL9Thhx9uyLgAAACZpq2tTV6vV5FIJLnMbrerublZbrc7dYkBAAAAAJBBSkpKFApvNuwCsMRFYADA1HV3dyevhyeEQqEhPw/lcDhktVpnJTcAADAyPr8xW0pKSiZ8vsHpdGrFihUznBGATGRYAfvrr7+uz372s3rrrbc0ODiYXG4yDZ++sqKiQh6PR4ODg7ryyit1zjnnTHp/BQUFKioq0s6dO7V169YxY99///1kAfvSpUsnva+RPPTQQ8nHX/jCFwwZEwAAINO0tbWpvr5eNTU1am1tVVlZmYLBoBobG1VfXy+fz0cROwAAAAAAE8QFYGD2UeSTXrLp9Uj35xoOh1VeXj7iOo/HM2xZIBDgcwkAgBTj8xsAkEkMKWDv6enRBRdcoDfffFPz5s3TV7/6VX3sYx9TTU3NiPF2u10rV67UH//4R/3qV7+aUgG7JJ100kny+/1644031N/fr5yckZ/OoQf+43UjmYi+vj49+uijkqSjjjpKn/70p6c9JgAAQKaJx+Pyer2qqalRe3u7zGazpIM3K7a3t6uurk6rV69WbW2tLBZLirMFAAAAAAAAhqPIJ71k0+uR7s/V4XAoEAgMWRaLxRSJRGS321VYWDgsHpjr0v3GEwDg8xsAkEkMKWD/0Y9+pDfeeEPz5s2T3+/XRz/60XG3+cxnPqM//OEP2rBhw5T3e84558jv92v//v0KBAI666yzRox7+umnk4+rqqqmvL+E9evXa+fOnZKkyy+/fNTCeSDbcQAPAHOb3+9XJBJRa2trsng9wWw2q6GhQZWVlfL7/aqurk5NkgAAAAAAAMAYKPJJL9n0eqT7c7VarSMWzBtxvR2TwzXX9JHuN54AAJ/fAIBMYkjldVtbm0wmk2688cYJFa9L0qmnnipJev3116e837q6OjU1NUmS1q1bN2IB+8DAgB566CFJ0uGHH66VK1dOeX8JifEk6corr5z2eMBcxQE8AMxtXV1dkqSysrIR1yeWJ+IA4MP6dm4Zc/1g/wH1796unIWLZcrJm/I4AAAAAACMhiKf9JJNr0c2PVdMD9dc00e633gCAAAAZBJDCtgTd/Wef/75E96mqKhIkrRr164p7/fMM8+Uy+WS3+/XAw88oCuvvFJnn332kJjm5uZkfjfeeKNyc3OHrH/qqaeSRe1XXnmlHnzwwTH3+d5772n9+vWSpFNOOWXCBftANuIAHgDmtuLiYklSMBhURUXFsPXBYHBIHAAk2Gw2FRRatbOj2bAxCwqtstlsho0HAACQbULvDoy5PtY/qMiuAdkPN6swxzTlcQAcRDddAMBEcc01fXDjCQAAAGAcQwrY9+3bJ0maP3/+hLfp7e2VpGEF5ZO1du1aVVVVKRaL6fzzz9dtt92mlStXKhaL6dFHH9V9990nSVq+fLm8Xu+09iVJjz76qA4cOCCJ7uvAeDiAB4C5zeVyyW63q7GxUe3t7TKbzcl1AwMDampqUmlpqVwuVwqzBJCOSkpKtDkcUjQaHTMuFArJ4/GopaVFTqdzzFibzaaSkhIj0wQAAMgKNptN1sICeZ6IGTamtbCAmwuBcdBNFwAwUVxzBQAAADAXGVLAXlRUpP/93/9VJBKZ8Mmzv/71r5Kko48+elr7Pu200/TYY4/J4/Foz549uu2224bFLF++XOvXr9eCBQumtS9JeuihhyRJFotFV1xxxbTHAwAAyFQWi0XNzc2qr69XXV2dGhoaVFZWpmAwqKamJnV0dMjn88lisaQ6VQBpqKSkZMIF506nk0INAACAGVJSUqJQeDM3F2YJun6nD7rpAgAAAMDcxfE3AIzPkAL2FStW6De/+Y2eeeYZud3uCW3z0EMPyWQy6eyzz572/letWqVXXnlFa9eu1fr167V161bl5eVp2bJluuSSS3T99dcb8gb/+uuv6/nnn5cknXfeedMuvgcAAMh0brdbPp9PXq9XlZWVyeWlpaXy+XwT/m4IAAAAAEgdbi7MHnT9Th900wUAAACAuYvjbwAYnyEF7PX19Vq/fr3uu+8+3XzzzeOe6P7e976nZ555RiaTSZdddpkRKei4447Tvffeq3vvvXdS21VXV2twcHBCsSeccMKEYwEAALKF2+1WbW2t/H6/urq6VFxcLJfLRed1AAAAAADSDF2/AQAAAACYeRx/A8D4DClg//znP681a9bolVdeUXV1tX7wgx/o05/+dHK9yWTS4OCgNm3apO9973t69NFHZTKZ5HK59JnPfMaIFAAAAJBCFotF1dXVU96eKdQAAAAAAJh5dP2eOs5dAAAAAAAmiuPvqeP4G8gehhSwm81m/epXv9I555yjSCSimpoaWa1WmUwmSQe7nO/du1e9vb2SpMHBQR1//PH6+c9/bsTuAQAAkOGYQg0AAAAAAKQzzl0AAAAAADDzOP4GsochBeySVFJSopdeekk33HCDfv7zn2v//v3Jde+++27ysclk0qWXXqof/ehHWrRokVG7BwAAQAZjCrX0wR3tAAAAAAAMx7kLAAAAAABmHsffQPYwrIBdko444gj97Gc/U2Njo9avX69NmzZpx44disfjKioq0mmnnaZVq1Zp+fLlRu4WAAAAGY4p1NIHd7QDAAAAADAc5y4AzLQDBw7ohz/8od58800df/zxuu6665SXl5fqtAAAAIBZxfE3kD0MLWBPOO6443TdddfNxNAAAAAAZhB3tAOYjlgsJkkKReOGjJcYJzEuAAAAMBmTmWWMGcYApNKtt96qNWvWqL+/P7nslltu0U033aTvfOc7KcwMAAAAAICZMSMF7AAAAAAyE3e0A5iOSCQiSfK09Rg+Lu9DAAAAmKzJzDLGDGMAUuXWW2/Vd7/7XS1evFh33XWXampq1NHRoa9//ev67ne/K0kUsQMAAAAA5hwK2AEAAAAAyGKdnZ2KRqNjxozWpfLDent7JUkt7gI5bZZp5xaKxuVp65Hdbp/2WAAAIH3E43H5/X51dXWpuLhYLpdLFsv0vzsAHzaZWcaYYQxAKhw4cEBr1qzR4sWLtXXrVuXkHLx8/+Uvf1lXXXWVlixZojVr1uiuu+5SXl5eirMFAGBiOOYDAAATYUgB+zPPPDPpbUwmkwoKCrRw4ULZ7XYOuAEAAAAAmGWdnZ060eFUT6x7QvEf7lI5GqfNohXFxl2QOLSwCAAAZLa2tjZ5vd7kzC2SZLfb1dzcLLfbnbrEMCcxyxiAdPfDH/5Q/f39uuuuu5LF6wk5OTn65je/qWuvvVY//OEP9Y//+I+pSRIAgEngmA9Auunu7lY4HB6ybKzGTQ6HQ1ardVZyA7KdIQXs1dXVMplMU08iJ0cf/ehHddVVV+nLX/6ycnNzjUgLAAAAAACMIRqNqifWraIar3KLlo4aN9h/QP27tytn4WKZcka/AT321ibt9rfMRKoAAGAOaGtrU319vWpqatTa2qqysjIFg0E1Njaqvr5ePp+PggYAQFZ58803JUk1NTUjrk8sT8QBAJDOOOYDkI7C4bDKy8tHXDdS46ZAIDDizfAAjGdIAbskDQ4OTnnbvr4+vfDCC9q0aZN+9KMfqaOjQyUlJUalBgAAAAAAxpBbtFT5Ry8bO2jJSeOO07dzi0EZAUBmoptPeuH1SC/xeFxer1c1NTVqb2+X2WyWJFVUVKi9vV11dXVavXq1amtrmVoeAJA1jj/+eElSR0eHvvzlLw9b39HRMSQOAIB0xTEfgHTlcDgUCASGLIvFYopEIrLb7cNmAXY4HLOZHpDVDClg/9Of/qS+vj7dcccdev7553XMMcfokksu0emnn64jjzxSkvTuu+9q06ZN+sUvfqFt27bprLPO0p133qlYLKZgMKjHHntMwWBQwWBQn/3sZ/XSSy8NmyYNAAAAAAAAANIV3XzSC69HevH7/YpEImptbU0WMiSYzWY1NDSosrJSfr9f1dXVqUkSAIBZdt111+mWW27R17/+dV111VVDro/39/frG9/4hnJycnTdddelMEukm3g8Lr/fr66uLhUXF8vlclEMCiDlOOYDkK6sVuuI5/yqqqpSkA2AQxlSIX7uuefqwgsv1MaNG3XDDTfo29/+tgoKCobFXXHFFbr77ru1evVq/eAHP9D3vvc9/eY3v1Ftba1uv/123XHHHfrXf/1XhUIhrVu3Tl/5yleMSA8AAAAAAAAAZhzdfNILr0d66erqkiSVlZWNuD6xPBEHAEA2yMvL00033aTvfve7WrJkib75zW+qpqZGHR0d+sY3vqHt27frlltuUV5eXqpTRZpoa2uT1+tVJBJJLrPb7Wpubpbb7U5dYgCyHsd8AABgsgwpYF+3bp06Ojp0wQUXaO3atWPG5ufn69///d/19ttv67e//a3uu+8+XXPNNZKkb33rW3r22Wf19NNPq62tjQJ2AAAAAAAAABmDbj7phdcjvRQXF0uSgsGgKioqhq0PBoND4gAAyBbf+c53JElr1qzRtddem1yek5OjW265JbkeaGtrU319vWpqatTa2qqysjIFg0E1Njaqvr5ePp+PInYAKcMxHwAAmCzz+CHj+8lPfiKTyZQsRJ+Ia6+9VoODg/rpT386ZPlVV10lSXr55ZeNSA0AAAAAAAAAAKSYy+WS3W5XY2OjBgYGhqwbGBhQU1OTSktL5XK5UpQhAACp853vfEf79+/XmjVrdP3112vNmjXav38/xetIisfj8nq9qqmpUXt7uyoqKjR//nxVVFSovb1dNTU1Wr16teLxeKpTBZClOOYDAACTZUgH9lAoJElasmTJhLdJxIbD4SHLnU6nJOm9994zIjUAAAAAyEjd3d3DjpcSx16Jn4dyOByyWq2zkhsAAAAwWRaLRc3Nzaqvr1ddXZ0aGhqSXUObmprU0dEhn88ni8WS6lQBAEiJvLw8/eM//mOq00Ca8vv9ikQiam1tldk8tE+h2WxWQ0ODKisr5ff7VV1dnZokAWQ1jvkAAMBkGVLA3tPTI0naunWrTjvttAlts3XrVklSb2/vkOW5ubmSROEFAABAFovH4/L7/erq6lJxcbFcLhcntJB1wuGwysvLR1zn8XiGLQsEAlqxYsVMpwUAAABMmdvtls/nk9frVWVlZXJ5aWmpfD6f3G53CrMDAABIX11dXZKksrKyEdcnlifiACAVOOYDAACTYUgB+/HHH69gMKj7779fq1atmtA2P/7xj5PbHmrbtm2SpCOPPNKI1AAAAJBh2tra5PV6FYlEksvsdruam5s5sYWs4nA4FAgEhiyLxWKKRCKy2+0qLCwcFg8AAACkO7fbrdraWm5aBgAAmITi4mJJUjAYVEVFxbD1wWBwSBwApArHfAAAYKIMKWCvr6/Xq6++qo6ODq1evVpNTU3JTuof1tfXp6997Wvq6OiQyWTSJZdcMmT9n//8Z0nSsmXLjEgNAAAAGaStrU319fWqqalRa2trcmrBxsZG1dfX050BWcVqtY7YUb2qqioF2QAAAADGsVgsqq6uTnUaAAAAGcPlcslut6uxsVHt7e0ym83JdQMDA2pqalJpaalcLlcKswSAgzjmAwAAE2FIAfvq1av18MMP64033tCaNWv0i1/8QpdcconKy8uTndTfffddBQIB/eIXv9DWrVslHey+7vV6k+PE43E98sgjMplMOv/8841IDQAAABkiHo/L6/WqpqZmyAn4iooKtbe3q66uTqtXr1ZtbS1dGgAAAAAAAAAAWcNisai5uVn19fWqq6tTQ0NDsgFMU1OTOjo65PP5OHcOAAAAIGMYUsBeWFioP/7xj7rgggv06quvasuWLVqzZs2IsYODg5KksrIyrV+/fsi091u3btXVV18t6WBXdwAAAGQPv9+vSCSi1tbWId1jJMlsNquhoUGVlZXy+/10bQAAAACAQ3R3dyscDg9ZFovFFIlEZLfbh5yHlySHwyGr1TqbKQIAAGCa3G63fD6fvF6vKisrk8tLS0uZvRQAAKTUSOemQqHQkJ+H4twUAMmgAnZJWrJkiQKBgH7wgx/oP/7jP4a9ISUsX75c1157ra6//nrl5uYOWXfcccfpn//5n41KCQAAABmkq6tL0sEbHUeSWJ6IAwAAAAAcFA6HVV5ePuH4QCCgFStWzGBGAABgsuLxuPx+v7q6ulRcXCyXy0U3bQzjdrtVW1vL/ysAACCtjHVuyuPxDFvGuSkAkoEF7JKUk5OjG2+8UTfeeKO2bdumYDCo999/X5K0aNEinXzyyTr22GON3CUAAADmiOLiYklSMBhURUXFsPXBYHBIHAAAAADgIIfDoUAgMGRZKBSSx+NRS0uLnE7nsHgAAJA+2tra5PV6FYlEksvsdruam5vpqo1hLBYLs5QCAIC0MtK5qfFmBwQAQwvYD3XMMcfomGOOmanhAQAAMMe4XC7Z7XY1Njaqvb1dZrM5uW5gYEBNTU0qLS2Vy+VKYZZA6tCFCwAAAKOxWq2jdq1yOp10tAIAII21tbWpvr5eNTU1am1tVVlZmYLBoBobG1VfXy+fz0cROwAAANLaaOemqqqqUpANgExhHj8EAAAAmHkWi0XNzc3q6OhQXV2dNmzYoL1792rDhg2qq6tTR0eH7rnnHgp2kZXa2tq0bNkyrVy5UpdffrlWrlypZcuWqa2tLdWpAQAAAAAAYIri8bi8Xq9qamrU3t6uiooKzZ8/XxUVFWpvb1dNTY1Wr16teDye6lQBAAAAADDUjHVgBwAAACbL7XbL5/PJ6/WqsrIyuby0tJROQ8hadOECAAAAMkd3d7fC4fCQZeNNmW21WmczRQBAGvH7/YpEImptbR0yI6Ukmc1mNTQ0qLKyUn6/X9XV1alJEgAAAACAGWB4AfvevXv15JNP6uWXX1Y0GlUsFtPg4OCo8SaTSQ888IDRaQBIQ/F4XH6/X11dXSouLpbL5aKLLgBgGLfbrdraWj4zAA3vwpW4kJnowlVXV6fVq1ertraWvxEAAAAgDYTDYZWXl084PhAIjDjFNgAgO3R1dUmSysrKRlyfWJ6IAwAAAABgrjCsgH1gYEDf+ta31NzcrP37909om8HBQQrYgSzR1tYmr9erSCSSXGa329Xc3EzHUADAMBaLhY5CgOjCBQAAYCSaK2A2OBwOBQKBIctCoZA8Ho9aWlrkdDqHxQMAsldxcbEkKRgMqqKiYtj6YDA4JA4AAAAAgLnCsAL2q666Sj/72c80ODgoi8WioqIi7dixQyaTSUuWLNH777+vffv2STrYdd1mszEtJpAl2traVF9fr5qaGrW2tqqsrEzBYFCNjY2qr6+Xz+ejiB0AAGAEdOECAAAwBs0VMFusVuuoHdWdTifd1gEAQ7hcLtntdjU2Ng6ZfU862ECuqalJpaWlcrlcKcwSAAAAAADjmccPGd9//ud/qqWlRdLBQvYdO3boySefTK5/5513tGfPHoVCIf3DP/yDzGazFi1apN/+9rd6++23jUgBQJqKx+Pyer2qqalRe3u7KioqNH/+fFVUVKi9vV01NTVavXq14vF4qlMFAABIO4d24RoJXbgAAADGl2iucMopp2jDhg3au3evNmzYoFNOOUX19fVqa2tLdYpZJx6P66mnnlJra6ueeuopzg0CALKWxWJRc3OzOjo6VFdXN+S7Sl1dnTo6OnTPPfcwawwAAAAAYM4xpAP7unXrJEknn3yyfvKTn0iStm3bNizuxBNP1Pe+9z194hOfkNvt1mc/+1m9+OKLWrhwoRFpAEhDfr9fkUhEra2tQ7pGSJLZbFZDQ4MqKyvl9/tVXV2dmiQBAADSFF240kd3d7fC4fCQZaFQaMjPQzkcDmYdmyG8FgCAyfhwc4XE96lEc4W6ujqtXr1atbW1FIbNErrhp5d4PC6/36+uri4VFxfL5XLxtwAAs8ztdsvn88nr9aqysjK5vLS0lFmMAQAAAABzliEF7M8995xMJpO++tWvTih+1apVuvLKK7Vu3Tr927/9m+644w4j0gCQhrq6uiRJZWVlI65PLE/EAQAA4AOJLlz19fWqq6tTQ0ODysrKFAwG1dTUpI6ODvl8PgpMZkE4HFZ5efmI6zwez7BlgUBAK1asmOm0shKvBQBgMmiukF4S3fBramrU2tqa/G7b2Nio+vp6ivRmGTcTAED6cLvdqq2t5aYiAAAAAEDWMKSAfceOHZKk5cuXJ5cdejDd29ur/Pz8IdvU19frJz/5iZ544gkK2IE5rLi4WJIUDAZVUVExbH0wGBwSBwAAgKHowpUeHA6HAoHAkGWxWEyRSER2u12FhYXD4jEzeC0AAJNBc4X0QTf8qZmp2We4mQAA0o/FYuGGOgAAAABA1jCkgD3hiCOOSD5esGBB8vGOHTu0dOnSIbFHHXWUJA3p7AFg7nG5XLLb7WpsbBxyYUqSBgYG1NTUpNLSUrlcrhRmCQAAkN7owpV6Vqt1xC7eVVVVKcgmu/FaAAAmg+YK6YNu+FMzE7PPcDMBAAAAAAAAgFQzpIB98eLF6uzs1HvvvTdkWV5envr6+vTKK68MK2B/5513JEk9PT1GpAAgTVksFjU3N6u+vl51dXVqaGhIdvNpampSR0eHfD4fF0IAAADGQRcuAKnW2dmpaDQ6ZsxYHWE/zGazqaSkxJDcAGA0NFdIH3TDn5qZmH2GmwkAAAAAAAAApJohBeynnHKKOjs79T//8z9auXLlwYFzcnTaaadp48aNWrdunS644IIh2/zoRz+SJB133HFGpAAgjbndbvl8Pnm9XlVWViaXl5aWMhUtAAAAMAeF3h0Yc32sf1CRXQOyH25WYY5pyuNg9nR2dupEx4nqiU2sEcFIHWE/rKCwQJvDmyliBzCjaK6QPuiGPzUzMfsMNxMAAAAAAAAASDVDCtirq6vV0dGhJ598Ul/96leTyz0ej55//nk98cQTuvLKK3XppZdq//79+ulPf6onn3xSJpNJtbW1RqQAIM253W7V1tbK7/erq6tLxcXFcrlcXBwEAAAA5hBz/nyZTZLniZhhY1oLC2Sz2QwbD1MTjUbVE+vRkmuWKP+Y/FHjBg4MqC/ap1xbrsx55lHjerf1aut9WxWNRilgBzDjaK6QHuiGnz64mQAAAAAAAABAqhlSwH7RRRdp9erV+t3vfqft27dr8eLFkqRrr71W69at03//93+rpaVFLS0tQ7YrKSnRP/3TPxmRAoAMYLFYmHIWAAAAmMMs8xdpYFBqaWmR0+kcNS4UCsnj8YwbJ0k2m40C5zSSf0y+Cu2FYwctn51cAGAyaK6QenTDTx/cTAAAAAAAAAAg1QwpYC8tLdVbb72leDyuww477IPBc3L0X//1X/qHf/gH/fznP1dfX58kyWQy6YILLtCPfvQjLVq0yIgUAAAAAABAmnA6nVqxYoVhcQAAGIHmCqlHN/z0wM0EAAAAAAAAAFLNkAJ2SbLb7SMuX7RokR5++GH98Ic/1Ouvv67+/n4tW7ZMRxxxhFG7BgAAAAAAAAAAGYBu+OmBmwkAAAAAAAAApJJhBezjWbBgAV3VAAAAAAAAAADIcnTDTw/cTAAAAAAAAAAgVQwpYDebzTKbzWpsbNStt95qxJAAAAAAAAAAAACYQdxMAAAAAAAAACAVzEYMkpeXp8HBQblcLiOGAwAAAAAAAAAAAAAAAAAAAADMQYYUsB9zzDGSpJwcQxq6AwAAAAAAAAAAAAAAAAAAAADmIEMK2D/2sY9JkgKBgBHDAQAAAAAAAAAAAAAAAAAAAADmIEMK2G+44QZZLBbdc8892rNnjxFDAgAAAAAAAAAAAAAAAAAAAADmGEMK2MvLy/Xv//7veuedd3TuuefqL3/5ixHDAgAAAAAAAAAAAAAAAAAAAADmkBwjBvniF78oSTrxxBP18ssvy+VyaenSpfrIRz6iRYsWyWKxjLqtyWTSAw88YEQaAAAAAAAAAABgmrq7uxUOh5O/x+Nxtbe3S5Ief/xxxePxIef9HQ6HrFbrbKcJAAAAAAAAAMhQhhSwP/jggzKZTJIOFqQPDg6qs7NTW7ZsGXO7wcFBCtgBAAAAAAAAAEgj4XBY5eXlI65rbGxUY2PjkGWBQEArVqyYjdQAAAAAAAAAAHOAIQXsJSUlyQJ2AAAAAAAAAACQuRwOhwKBgP74xz/q1ltvlcvl0uWXX66cnBz19/frkUcekd/v13e+8x19/OMfl8PhSHXKAAAAAAAAAIAMYkgBeyQSMWIYAAAAAAAAAACQYlarVaeeeqouvvhi1dTUqL29XWazObn+K1/5iurq6vTDH/5QN910kywWSwqzBQAAAAAAAABkGkMK2AEAAAAAQOaJxWKSpL6dWwwZLzFOYlwAAJC5/H6/IpGIWltbhxSvS5LZbFZDQ4MqKyvl9/tVXV2dmiQBAAAAAAAAABmJAnYAAAAAALJUYka1nR3Nho9bVVVl6JgAAGB2dXV1SZLKyspGXJ9YnogDAAAAAAAAAGCiZqyAfWBgQO+99566u7t17LHHMoUoAAAAAABpxm63S5KKarzKLVo67fH6dm7Rzo7m5LgAACBzFRcXS5KCwaAqKiqGrQ8Gg0PiAAAAAAAAAACYKEML2OPxuB588EE9+OCDeuGFF9TX1yeTyaRXXnlFJ510UjKuo6NDzzzzjBYuXKjbb7/dkH2/8847+rd/+zetX79eW7ZsUX5+vo4//nhdeuml+upXvyqr1WrIfiTpySefVEtLi5599ll1dXUpJydHixcv1kc+8hF94hOf0Oc//3nNnz/fsP0BAAAAADATCgsLJUm5RUuVf/Qyw8cFAACZy+VyyW63q7GxUe3t7TKbzcl1AwMDampqUmlpqVwuVwqzBAAAAAAAAABkIsMK2Hfs2KG6ujo9//zzGhwcHDPWbrfrwgsvlMlk0gUXXKCPfvSj09r3r3/9a3k8Hu3Zsye5rLu7W5s2bdKmTZt0//33a/369Vq2bHoX499//31dffXV+uUvfzls3Z49e/T666/r8ccf19lnnz3t5wQAAAAAAAAAQKpYLBY1Nzervr5edXV1amhoUFlZmYLBoJqamtTR0SGfz8fsqwAAAAAAAACASTOPHzK+eDyuVatW6bnnnpPJZNKll16q73//+6PGl5WV6ayzzpIkPfHEE9Pa94svvqjPfe5z2rNnj+bPn69//dd/1V/+8hf94Q9/0Fe+8hVJ0muvvaYLLrhAe/funfJ+du/erfPOOy9ZvH7RRRfpZz/7mZ577jm98MILamtr04033qglS5ZM6/kAAAAAAAAAAJAO3G63fD6fXn31VVVWVuqwww5TZWWlgsGgfD6f3G53qlMEAAAAAAAAAGQgQzqw//SnP9ULL7yg3Nxc/epXv9KnPvUpSdL1118/6jYXXnihnn/+eT377LPT2veNN96oWCymnJwc/f73v9fZZ5+dXPfxj39cJ5xwgm699Va99tpram5u1r/8y79MaT833HCDAoGA8vPz9fOf/1wXXnjhkPWnn366LrroIq1Zs0bxeHw6TwkAAAAAAAAAgLTgdrtVW1srv9+vrq4uFRcXy+Vy0XkdAAAAAAAAADBlhhSwt7a2ymQy6dprr00Wr4/ntNNOkyRt3rx5yvvduHGj/H6/JOlLX/rSkOL1BK/Xq3Xr1ikUCmnt2rW6/fbblZubO6n9PPvss3r44YclSXfdddew4vVDmUwm5eQY8s8KAAAAAAAAAEDKWSwWVVdXpzqNtNTZ2aloNDpmTCgUGvJzLDabTSUlJYbkBgAAAAAAAADpypBK61deeUWSxizs/rCjjjpKkrRz584p77e9vT35+Oqrrx4xxmw26wtf+IIaGhq0a9cu/elPf9L5558/qf18//vflyQtXLhwzK7yAAAAAAAAAAAgO3R2dupEh1M9se4JxXs8nnFjCgqt2hwOUcQOAAAAAAAAYE4zpIB9165dkqSioqIJbxOPxyVpWtOMPvvss5KkefPmqby8fNS4c889N/n4z3/+86QK2A8cOKBf/vKXkqTzzjtPBQUFkg7mv23bNsXjcR199NHJ5QAAAAAAAAAAYO6LRqPqiXWrqMar3KKlo8YN9h9Q/+7tylm4WKacvFHj+nZu0c6OZkWjUQrYAQAAAAAAAMxphhSwH3HEEdqxY4e2bNmi0047bULbvP7665KkI488csr7TUy3uWzZMuXkjP5UHA7HsG0m6uWXX1ZPT48k6ZRTTtGePXv0jW98Qz/96U+Thft5eXn62Mc+pttvv51pVAEAAAAAAAAAM6qzs1PRaHTMmMS58ImcE7fZbBRMT0Nu0VLlH71s7KAlJ81OMgAAAAAAAACQAQwpYD/55JO1Y8cOvfDCC7rwwgsntM1jjz0mk8mkM844Y0r77OnpSZ6gX7JkyZixixYt0rx587R//35t2bJlUvv5n//5n+TjgYEBnX766cni+4QDBw7oySef1B/+8Ac1NTXpn/7pnya1DwAAAAAAAAAAJqKzs1MnOpzqiXVPKN7j8YwbU1Bo1eZwiCJ2AAAAAAAAAMCsMKSAva6uTn/84x/1/e9/XzfffLMWLVo0ZrzP59Ovf/1rmUwmXXzxxVPa5969e5OP58+fP258ooB93759k9rPe++9l3z87W9/Wz09Pfr0pz+tb37zm/rIRz6iPXv26PHHH9fXvvY17d69W1/72tfkcDhUW1s76pi9vb3q7e1N/r5nz55J5QQAAAAAADBZ3d3dCofDQ5bFYjFFIhHZ7XYVFhYOWedwOGS1WpNxktS7rVdGSIyTGBcAMHHRaFQ9sW4V1XiVW7R01LjB/gPq371dOQsXy5STN2pc384t2tnRrGg0SgE7AAAAAAAAAGBWGFLA/pWvfEX33HOPtmzZovPPP18//elPddJJw6fD3LFjh9auXavvfve7MplMKisr06WXXjqlffb09CQf5+WNfvI9IT8/X9LkL4zu379/yD7PO+88dXR0yGKxSJKOPPJI/d3f/Z3Kysp07rnnamBgQA0NDbrwwgtlMplGHLOpqUl33nnnpPIAAAAAAACYjnA4rPLy8gnHBwIBrVixQpIUiUQkSVvv22poTpFIRFVVVYaOCQDZIrdoqfKPXjZ20JLh5+kBAAAAAAAAAEg1QwrY8/Pz9ctf/lLV1dUKBAI65ZRTdOKJJybXezwe7du3T2+99ZYGBwc1ODiooqIiPf7446MWeY+noKAg+fjAgQPjxic6nn+4m9hk9iMd7MKeKF4/1DnnnCO32y2fz6dQKKRXX31VH/nIR0Ycs6GhQTfffHPy9z179mjp0tE75QAAAADAXDdSZ+hQKDTk56EO7QwNYGIcDocCgcCQZaFQSB6PRy0tLXI6ncPiE+x2uyRpyTVLlH9M/rRz6d3Wq633bU2OCwAAAAAAAAAAACB7GFLALkmnnnqqXnjhBV155ZXasGHDkMKDl19+WYODg8nfzzzzTD3yyCP6m7/5mynvb8GCBcnH+/btGzc+0Ul9/vz5U97PkUceqdNOO23U2E996lPy+XySpBdeeGHUAvb8/PxkR3gAAAAAwNidoT0ez7Blh3aGBjAxVqt11L8bp9M55t9UoiFA/jH5KrRPrjnAWCbbaAAAAAAAAAAAAABA5jOsgF2Sli1bpj//+c969tln9atf/UqbNm3Sjh07FI/HVVRUpNNOO00XXnihzjvvvGnvq6CgQEVFRdq5c6e2bh17+ur3338/WcA+2U7nh8YvWbJkwrHvvvvupPYDAAAAANlspM7QsVhMkUhEdrt9WJHroZ2hAQAAAAAAAAAAAABA5jC0gD3hnHPO0TnnnDMTQw9x0kknye/364033lB/f79yckZ+Ood2g//wdNjjOfnkk5OP4/H4mLGHrh8tFwAAAADAcKN1hq6qqkpBNgAAAAAAAAAAAAAAYKaYU53AdCSK5Pfv3z+sU9+hnn766eTjyRY/HHfccSopKZEkRSIRDQ4Ojhr75ptvJh8fe+yxk9oPAAAAAAAAAAAAAAAAAAAAAMx1hhSw/+3f/q06OjrU399vxHATVldXl3y8bt26EWMGBgb00EMPSZIOP/xwrVy5ctL7ufjiiyVJe/bs0R/+8IdR49ra2pKPZ6MDPQAAAAAAAAAAAAAAAAAAAABkEkMK2H/+85+rtrZWRx99tK677jo9++yzRgw7rjPPPFMul0uS9MADD2jDhg3DYpqbmxUKhSRJN954o3Jzc4esf+qpp2QymWQymXTVVVeNuJ9//Md/VEFBgSTp5ptv1p49e4bFtLS06KmnnpIkXXDBBVq6dOlUnxYAAAAAAAAAAAAAAAAAAAAAzEmGFLAvWLBAg4ODeu+99/Qf//EfOvfcc1VaWqrbb79df/3rX43YxajWrl2rwsJC9ff36/zzz1dTU5Oee+45/elPf9K1116rW2+9VZK0fPlyeb3eKe2jpKRE3/zmNyVJr776qs4880ytW7dOgUBAf/rTn3TDDTcki98PO+wwrVmzxpDnBgAAAAAAAAAAAAAAAAAAAABzSY4Rg+zYsUMdHR165JFH9Jvf/Ea9vb165513dPfdd+vuu+/WKaecIo/Ho7/927/VkiVLjNhl0mmnnabHHntMHo9He/bs0W233TYsZvny5Vq/fr0WLFgw5f3ccssteu+99/Ttb39bmzdv1he/+MVhMUcddZTa29t1wgknTHk/AAAAAAAAAAAAAAAAAAAAADBXGdKBPT8/XxdffLEef/xxbd++Xffff78+/vGPy2QyaXBwUK+88or+6Z/+SXa7XStXrtQDDzyg3bt3G7FrSdKqVav0yiuv6KabbtLy5ctltVp1+OGH6/TTT9e3v/1tvfjii1q2bNm099PU1KQ///nP+vznPy+73a78/HwtXLhQZ5xxhr71rW/ptdde09lnn23AMwIAAAAAAAAAAAAAAAAAAACAuceQDuyHOuyww/TFL35RX/ziF9XV1aVHH31UjzzyiAKBgAYHB/XMM8/omWee0fXXX6/PfOYz8ng8crvd097vcccdp3vvvVf33nvvpLarrq7W4ODghOPPPvtsitQBAAAAAAAAAMhysVhMktS3c4sh4yXGSYwLAAAAAAAAAHOV4QXshyouLtZNN92km266Sa+//rpaWlr06KOP6vXXX1dvb6/a29v1q1/9Sv39/TOZBgAAAAAAAAAAgKEikYgkaWdHs+HjVlVVGTomAAAAAAAAAKSTGS1gP9QJJ5ygO++8U3feeaceffRRXXfdddq1a9ekup8DAAAAAAAAAACkA7vdLkkqqvEqt2jptMfr27lFOzuak+MCAAAAAAAAwFw1awXs7777rh577DH97Gc/08aNG2drtwAAAAAAAAAAAIYrLCyUJOUWLVX+0csMHxcAAAAAAAAA5qoZLWDfv3+/2tra9Mgjj+gPf/iD4vF4suO6yWRSVVWVrrjiiplMAQAAAAAAAAAAAAAAAAAAAACQJgwvYO/v79dvf/tbPfLII/r1r3+tWCwmScnC9ZNOOklXXHGFLr/8ch133HFG7x4AAAAAAAAAAAAAAAAAAAAAkKYMK2D3+/362c9+Jp/Pp/fff1/SB0Xrxx57rC677DJdccUVOvXUU43aJQAAAAAAAAAAAAAAAAAAAAAggxhSwH7cccdp69atkj4oWl+4cKHq6+t1xRVX6Nxzz5XJZDJiVwAAAAAAAAAAAAAAAAAAAACADGVIAfuWLVskSfn5+brgggt0xRVX6IILLlBeXp4RwwMAAAAAAAAAAAAAAAAAAAAA5gBDCthXrlypK664QhdffLEWLlxoxJAAAAAAAAAAAAAAAAAAAAAAgDnGkAL2P/zhD0YMAwAAAAAAAAAAAAAAAAAAAACYw8ypTgAAAAAAAAAAAAAAAAAAAAAAkB0M6cD+YYFAQE8++aSCwaDee+89SdIRRxyhsrIyffKTn1R5eflM7BYAAAAAAAAAAAAAAAAAAAAAkMYMLWB/9dVXdc0112jjxo2jxtx2220666yz9B//8R865ZRTjNw9AAAAAACYgr6dW8ZcP9h/QP27tytn4WKZcvImNU53d7fC4fCQZaFQaMjPQzkcDlmt1omkDQAAAAAAAAAAAADIQIYVsD/55JNatWqVDhw4oMHBQUlSbm6uioqKJEk7d+5UX1+fJOm5557TmWeeqY6ODn3iE58wKgUAAAAAADAJNptNBYVW7exoNmzMgkKrbDZb8vdwODzqTGwej2fYskAgoBUrVhiWDwAAc00sFpM0/g1oE5UYJzEuAAAAAAAAAAAzzZAC9mg0qksuuUS9vb0ym8360pe+pK985Ss67bTTlJNzcBfxeFwvvviifvzjH+snP/mJent7dckll+j1119PFrkDAAAAAIDZU1JSos3hkKLR6JhxoVBIHo9HLS0tcjqdY8babDaVlJQkf3c4HAoEAkNiYrGYIpGI7Ha7CgsLh6xzOByTfBaYTb3besdcP3BgQH3RPuXacmXOM095HADA6CKRiCQZegNaYtyqqipDxwQAAAAAAAAAYCSGFLCvXbtWu3fvVl5enn75y1/qU5/61LAYi8Wi008/XaeffrouvvhirVq1Srt379batWv1zW9+04g0AAAAAADAJJWUlAwpOB+L0+mcdHd0q9U64jYUyGWWg936C7T1vq2GjVlQWDCkWz8AYGLsdrskqajGq9yipdMer2/nFu3saE6OCwAAAAAAAADATDOkgH39+vUymUy6/vrrRyxe/7Dzzz9fN9xwg+69916tX7+eAnYAAAAAAIA0drBb/+YZ7dYPAJiYxOwluUVLlX/0MsPHBQAAAAAAAABgphlSwP72229Lki688MIJb3PhhRfq3nvv1VtvvWVECgAAAAAAAJhBM92tHwCATNW3c8uY6wf7D6h/93blLFwsU07elMcBAAAAAAAAgLnCkAL2np4eSdK8efMmvE0itre314gUAAAAAAAAAAAAZo3NZlNBoVU7O5oNG7Og0CqbzWbYeAAAAAAAAACQjgwpYD/66KPV2dmpF198UeXl5RPa5sUXX5QkLV682IgUAAAAAAAAAAAAZk1JSYk2h0OKRqNjxoVCIXk8HrW0tMjpdI4Za7PZJjzjCQAAAAAAAABkKkMK2F0ul1paWnT33Xfr0ksv1WGHHTZm/N69e/Xtb39bJpNJLpfLiBQAAAAAAAAAAABmVUlJyYQLzp1Op1asWDHDGQEAAAAAAABA+jMbMci1114rSXr77bf1sY99TJs2bRo1dtOmTTr33HP15ptvDtkWAAAAAAAAAAAAAAAAAAAAADC3GdKBvaqqStddd51++MMf6tVXX9VZZ52lk08+WWeddZaOOuoomUwmbd++Xc8//7z++te/Jre77rrrVFVVZUQKAAAAAAAAAAAAAAAAAAAAAIA0Z0gBuyT9+7//u6xWq+69914NDAwoGAwOKVaXpMHBQUmS2WzW6tWrdffddxu1ewAAAAAAAAAAAAAAAAAAAABAmjMbNZDJZNJ3vvMdvfTSS/r7v/97nXDCCRocHBzy3wknnKC///u/10svvaRvf/vbMplMRu0eAAAAAAAAAAAAAAAAAAAAAJDmDOvAnlBWVqYf/OAHkqQDBw7o/ffflyQtWrRIeXl5Ru8OAAAAAAAAAAAAAAAAAAAAAJAhDC9gP1ReXp4WL148k7sAAAAAAAAAAAAAAAAAAAAAAGQI81Q2+u1vf6sVK1ZoxYoVeuSRRya17SOPPJLc9sknn5zK7gEAAAAAAAAAAAAAAAAAAAAAGWjSBeyDg4O66aab9PLLL+vII4/U5ZdfPqntL7vsMtlsNr300kvyer2T3T0AAAAAAAAAAAAAAAAAAAAAIENNuoD9j3/8o1577TWZzWatWbNm0js0mUz63ve+J4vFomAwqKeffnrSYwAAAAAAAAAAAAAAAAAAAAAAMs+kC9gff/xxSdJ5552nk046aUo7Pemkk/SpT31KkuTz+aY0BgAAAAAAAAAAAAAAAAAAAAAgs0y6gH3jxo0ymUxatWrVtHZcU1OjwcFBPffcc9MaBwAAAAAAAAAAAAAAAAAAAACQGSZdwP7OO+9Ikk488cRp7Xj58uWSpEgkMq1xAAAAAAAAAAAAAAAAAAAAAACZYdIF7Lt375YkHXHEEdPacWL7PXv2TGscAAAAAAAAAAAAAAAAAAAAAEBmmHQB+2GHHSZJ2rVr17R2nNh+wYIF0xoHAAAAAAAAAAAAAAAAAAAAAJAZJl3AfuSRR0qS/ud//mdaOw6FQpKko446alrjAAAAAAAAAAAAAAAAAAAAAAAyw6QL2M8880wNDg7q17/+9bR2/Mtf/lImk0lnnHHGtMYBAAAAAAAAAAAAAAAAAAAAAGSGSRewf+Yzn5Ek/f73v9ezzz47pZ0+88wz+v3vfz9kPAAAAAAAAAAAAAAAAAAAAADA3JYz2Q0uvvhi2e12RSIRXXLJJXrmmWd0wgknTHj71157TZdeeqlMJpPsdrvq6+snmwIAAAAAAAAAAFmtb+eWMdcP9h9Q/+7tylm4WKacvCmPAwAAAAAAAACA0SZdwJ6bm6t77rlH9fX12rFjh8rLy/Wtb31LX/7ylzVv3rxRt9u3b5/uv/9+feMb39C+fftkMpnU3NysnJxJpwAAAAAAAAAAQFay2WwqKLRqZ0ezYWMWFFpls9kMGw8AAAAAAAAAgLFMqXrc7Xbrzjvv1D//8z9r//79uvnmm3XHHXfI5XKpvLxcRx11lObNm6f9+/dr+/bt+u///m/5/X7t379fg4ODkqQ777xTdXV1Rj4XAAAAAAAAAADmtJKSEm0OhxSNRseMC4VC8ng8amlpkdPpHDPWZrOppKTEyDQBAAAAAAAAABjVlNuf33HHHVqyZIluuOEGdXd3a9++ffrd736n3/3udyPGJwrXrVarvv/97+uqq66a6q4BAAAAAAAAAMhaJSUlEy44dzqdWrFixQxnBAAAAAAAAADAxJmns/HVV1+t1157TTfffLNsNpsGBwdH/c9ms8nr9eq1116jeB0AAAAAAAAAAAAAAAAAAAAAstCUO7AnHHPMMbrnnnt0zz336K9//atefvll7dy5U3v37tWCBQtUVFSkU089VSeffLIR+QIAAAAAAAAAAAAAAAAAAAAAMtS0C9gPdfLJJ1OoDgAAAAAAAAAAAAAAAAAAAAAYkTnVCQAAAAAAAAAAAAAAAAAAAAAAsgMF7AAAAAAAAAAAAAAAAAAAAACAWUEBOwAAAAAAAAAAAAAAAAAAAABgVlDADgAAAAAAAAAAAAAAAAAAAACYFRSwAwAAAAAAAAAAAAAAAAAAAABmBQXsAAAAAAAAAAAAAAAAAAAAAIBZQQE7AAAAAAAAAAAAAAAAAAAAAGBWUMAOAAAAAAAAAAAAAAAAAAAAAJgVc6aA/Z133pHX65XD4dC8efN0xBFH6IwzztB3v/tddXd3T2vsBx98UCaTaUL/Pfjgg8Y8IQAAAAAAAAAAAAAAAAAAAACYY3JSnYARfv3rX8vj8WjPnj3JZd3d3dq0aZM2bdqk+++/X+vXr9eyZctSmCUAAAAAAAAAAAAAAAAAAAAAZLeML2B/8cUX9bnPfU6xWEzz589XQ0ODVq5cqVgspkcffVQ//vGP9dprr+mCCy7Qpk2btGDBgmnt7z//8z91zDHHjLp+yZIl0xofAAAAAAAAAAAAAAAAAAAAAOaqjC9gv/HGGxWLxZSTk6Pf//73Ovvss5PrPv7xj+uEE07Qrbfeqtdee03Nzc36l3/5l2ntb/ny5bLb7dNLGgAAAAAAAAAAAAAAAAAAAACyUEYXsG/cuFF+v1+S9KUvfWlI8XqC1+vVunXrFAqFtHbtWt1+++3Kzc2d7VQBAAAAAADmlO7uboXD4SHLQqHQkJ+Hcjgcslqts5IbAAAAAAAAAAAAgPSV0QXs7e3tycdXX331iDFms1lf+MIX1NDQoF27dulPf/qTzj///FnKEAAAAAAAwBjxeFx+v19dXV0qLi6Wy+WSxWJJWT7hcFjl5eUjrvN4PMOWBQIBrVixYqbTAgAAAAAAAAAAAJDmMrqA/dlnn5UkzZs3b9QLppJ07rnnJh//+c9/poAdAAAAAABklLa2Nnm9XkUikeQyu92u5uZmud3ulOTkcDgUCASGLIvFYopEIrLb7SosLBwWDwAAAAAAAAAAAAAZXcCemI562bJlyskZ/akceoF0pCmsJ+Pqq6/W5s2bFY1Gddhhh2nZsmX65Cc/qb//+7/XscceO62xAQAAAAAAPqytrU319fWqqalRa2urysrKFAwG1djYqPr6evl8vpQUsVut1hE7qldVVc16LgAApIvu7m6Fw+EhyxLXJUa6PuFwOGS1WmclNwAAAAAAAABIFxlbwN7T06NoNCpJWrJkyZixixYt0rx587R//35t2bJlWvt96qmnko937typnTt36vnnn1dzc7O+973v6dprr53W+AAAAAAAAAnxeFxer1c1NTVqb2+X2WyWJFVUVKi9vV11dXVavXq1amtrZbFYUpwtAAAIh8Ojzhjr8XiGLQsEAiPeEAYAAAAAAAAAc1nGFrDv3bs3+Xj+/PnjxicK2Pft2zel/f3N3/yN3G63zj77bC1dulSS9NZbb+nxxx+Xz+dTT0+P/u7v/k4mk0nXXHPNmGP19vaqt7c3+fuePXumlBMAAAAAAJjb/H6/IpGIWltbk8XrCWazWQ0NDaqsrJTf71d1dXVqkgQAAEkOh0OBQGDIslgspkgkIrvdrsLCwmHxAAAAAAAAAJBtMraAvaenJ/k4Ly9v3Pj8/HxJB08UT9ZFF12kK6+8UiaTacjyM844Q5/73OfU0dEht9utvr4+3XTTTbrwwgt19NFHjzpeU1OT7rzzzknnAQAAAAAAsktXV5ckqaysbMT1ieWJOAAAkFpWq3XEjupVVVUpyAYAAAAAAAAA0pN5/JD0VFBQkHx84MCBceMTHc8/3N1kIhYuXDiseP1QNTU1+sY3viFJ6u7u1gMPPDDmeA0NDdq9e3fyvy1btkw6JwAAAAAAMPcVFxdLkoLB4IjrE8sTcQAAAAAAAAAAAACQ7jK2gH3BggXJx/v27Rs3fv/+/ZKk+fPnz0g+11xzTbLI/emnnx4zNj8/X4cddtiQ/wAAAAAAAD7M5XLJbrersbFRAwMDQ9YNDAyoqalJpaWlcrlcKcoQAAAAAAAAAAAAACYnYwvYCwoKVFRUJEnaunXrmLHvv/9+soB96dKlM5LPUUcdlczn//2//zcj+wAAAAAAANnFYrGoublZHR0dqqur04YNG7R3715t2LBBdXV16ujo0D333COLxZLqVAEAAAAAAAAAAABgQjK2gF2STjrpJEnSG2+8of7+/lHjwuFw8rHT6ZyxfBId2AEAAAAAAIzidrvl8/n06quvqrKyUocddpgqKysVDAbl8/nkdrtTnSIAAAAAAAAAAAAATFhOqhOYjnPOOUd+v1/79+9XIBDQWWedNWLc008/nXxcVVU1I7m8++67ikajkqRjjjlmRvYBAAAAAACyk9vtVm1trfx+v7q6ulRcXCyXy0XndQAA0lw8HufzGwAAAAAAAAA+JKM7sNfV1SUfr1u3bsSYgYEBPfTQQ5Kkww8/XCtXrpyRXO677z4NDg5Kks4999wZ2QcAAAAAAMheFotF1dXVuuyyy1RdXU3xGwAAaa6trU3Lli3TypUrdfnll2vlypVatmyZ2traUp0aAAAAAAAAAKRURhewn3nmmXK5XJKkBx54QBs2bBgW09zcrFAoJEm68cYblZubO2T9U089JZPJJJPJpKuuumrY9pFIRC+++OKYeXR0dOib3/ymJKmwsFBXX331VJ4OAAAAAAAAAACYA9ra2lRfX69TTjlFGzZs0N69e7Vhwwadcsopqq+vp4gdAAAAAAAAQFbLSXUC07V27VpVVVUpFovp/PPP12233aaVK1cqFovp0Ucf1X333SdJWr58ubxe76THj0QiWrlypc4++2ytWrVKp556qo466ihJ0ltvvSWfzyefz5fsvn7PPffo2GOPNe4JAgAAAAAAAACAjBGPx+X1elVTU6P29naZzQd7CVVUVKi9vV11dXVavXq1amtrmVEFAAAAAAAAQFbK+AL20047TY899pg8Ho/27Nmj2267bVjM8uXLtX79ei1YsGDK+9mwYcOIHd4TrFar1qxZo2uuuWbK+wAAAAAAAAAAAJnN7/crEomotbU1WbyeYDab1dDQoMrKSvn9flVXV6cmSQAAAAAAAABIoYwvYJekVatW6ZVXXtHatWu1fv16bd26VXl5eVq2bJkuueQSXX/99bJarVMau7y8XC0tLdqwYYM2bdqkrq4uRaNR9ff3a9GiRTr55JP1iU98Ql/+8peTndkBAAAAAAAAAEB26urqkiSVlZWNuD6xPBEHAAAAAAAAANlmThSwS9Jxxx2ne++9V/fee++ktquurtbg4OCo6xcsWKArrrhCV1xxxXRTBAAAAAAAAAAAc1xxcbEkKRgMqqKiYtj6YDA4JA4AAAAAAAAAso15/BAAAAAAAAAAAABMhMvlkt1uV2NjowYGBoasGxgYUFNTk0pLS+VyuVKUIQAAAAAAAACkFgXsAAAAAAAAAAAABrFYLGpublZHR4fq6uq0YcMG7d27Vxs2bFBdXZ06Ojp0zz33yGKxpDpVAAAAAAAAAEiJnFQnAAAAAAAAAAAAMJe43W75fD55vV5VVlYml5eWlsrn88ntdqcwOwAAAAAAAABILQrYAQAAAAAAAAAADOZ2u1VbWyu/36+uri4VFxfL5XLReR0AAAAAAABA1jOnOgEAAAAAAAAAAAAAAAAAAAAAQHaggB0AAAAAAAAAAMBgbW1tWrZsmVauXKnLL79cK1eu1LJly9TW1pbq1AAAAAAAAAAgpShgBwAAAAAAAAAAMFBbW5vq6+t1yimnaMOGDdq7d682bNigU045RfX19RSxAwAAAAAAAMhqOalOAAAAAAAAAMbr7OxUNBodMyYUCg35ORabzaaSkhJDcgMAYC6Lx+Pyer2qqalRe3u7zOaDvYQqKirU3t6uuro6rV69WrW1tbJYLCnOFgAAAAAAAABmHwXsAAAAAAAgqbu7W+FweMiysYqcHQ6HrFbrrOSGievs7JTTcaK6Yz0Tivd4POPGWAsLFApvpogdAIBx+P1+RSIRtba2JovXE8xmsxoaGlRZWSm/36/q6urUJAkAAAAAAAAAKUQBOwAAAAAASAqHwyovLx9x3UhFzoFAQCtWrJjptDBJ0WhU3bEetVxUKOeR5lHjYv2DiuwakP1wswpzTKPGhd4dkOeJmKLRKAXsAACMo6urS5JUVlY24vrE8kQcAAAAAAAAAGQbCtgBAAAAAECSw+FQIBAYsiwWiykSichut6uwsHBYPGbGSN3wx3stPtwN33mkWSuKLWPup2qpMfkCAICDiouLJUnBYFAVFRXD1geDwSFxAAAAAAAAAJBtKGAHAAAAAABJVqt1xI7qVVVVKcgmu43VDX8kdMMHACA9uFwu2e12NTY2qr29XWbzB7OhDAwMqKmpSaWlpXK5XCnMEgAAAAAAAABShwJ2AAAAAACANDRSN/xQKCSPx6OWlhY5nc5h8QAAIPUsFouam5tVX1+vuro6NTQ0qKysTMFgUE1NTero6JDP55PFMvYsKQAAAAAAAAAwV1HADgAAAAAAkIZG64YvSU6nk27rAACkMbfbLZ/PJ6/Xq8rKyuTy0tJS+Xw+ud3uFGYHAAAAAAAAAKlFATsAAAAAAAAAAIDB3G63amtr5ff71dXVpeLiYrlcLjqvAwAAAAAAAMh6FLADAAAAAAAAAADMAIvFourq6lSnAQAAAAAAAABpxZzqBAAAAAAAAAAAAAAAAAAAAAAA2YECdgAAAAAAAAAAAAAAAAAAAADArKCAHQAAAAAAAAAAAAAAAAAAAAAwKyhgBwAAAAAAAAAAAAAAAAAAAADMCgrYAQAAAAAAAAAAAAAAAAAAAAD/n707D4+izBo2fp5OQljCvkZBQAKCgooIsphhUXEcUDDioA4iOjooyovIouAoKCK4gOK4jAruiguDoOCoCIIBQYVRNhNZBAmyCbImISHJ+f7g6zJNdki6T5L7d11chlR1dXXd7ztNdZ+uDgoG2AEAAAAAAAAAAAAAAAAAAAAAQcEAOwAAAAAAAAAAAAAAAAAAAAAgKBhgBwAAAAAAAAAAAAAAAAAAAAAEBQPsAAAAAAAAAAAAAAAAAAAAAICgYIAdAAAAAAAAAAAAAAAAAAAAABAUDLADAAAAAAAAAAAAAAAAAAAAAIKCAXYAAAAAAAAAAAAAAAAAAAAAQFCEh3oHAAAAAAAAAAAAyqLMzEyJj4+XnTt3SnR0tMTGxkpYWFiodwsAAAAAAAAAQoorsAMAAAAAAAAAABSz2bNnS0xMjHTv3l1uuOEG6d69u8TExMjs2bNDvWsAAAAAAAAAEFIMsAMAAAAAAAAAABSj2bNnS79+/aRNmzayfPlyOXz4sCxfvlzatGkj/fr1Y4gdAAAAAAAAQLnGADsAAAAAAAAAAEAxyczMlBEjRkjv3r1lzpw50rFjR4mKipKOHTvKnDlzpHfv3jJy5EjJzMwM9a4CAAAAAAAAQEgwwA4AAAAAAAAAAFBM4uPjZevWrTJ27Fjx+QLfhvH5fDJmzBjZsmWLxMfHh2gPAQAAAAAAACC0GGAHAAAAAAAAAAAoJjt37hQRkdatW+e63P97/3oAAAAAAAAAUN4wwA4AAAAAAAAAAFBMoqOjRURk3bp1uS73/96/HgAAAAAAAACUN+Gh3gEAAAAAAAAAAHDyUlJSJDExMeB3CQkJAf/NrmXLllK5cuWg7Ft5FBsbK02aNJFHH31U5syZIz7fH9cSysrKkkmTJknTpk0lNjY2hHsJAAAAAAAAAKHDADsAAAAAAAAAAKVYYmKitGvXLtdlAwYMyPG7VatWyQUXXFDSu1VuhYWFyZQpU6Rfv37St29fGTNmjLRu3VrWrVsnkyZNknnz5smsWbMkLCws1LsKAAAAAAAAACHBADsAAAAAAAAAAKVYy5YtZdWqVQG/S01Nla1bt0qTJk2kUqVKOdZHyYqLi5NZs2bJiBEjpHPnzt7vmzZtKrNmzZK4uLgQ7h0AAAAAAAAAhBYD7AAAAAAAAAAAlGKVK1fO9YrqXbp0CcHewC8uLk769Okj8fHxsnPnTomOjpbY2FiuvA4AAAAAAACg3GOAHQAAAAAAAKcsMzOTAT0AAE4QFhYm3bp1C/VuAAAAAAAAAIApvlDvAAAAAAAAAEq32bNnS7NmzaR79+5yww03SPfu3aVZs2Yye/bsUO8aAAAAAAAAAAAAAGMYYAcAAAAAAMBJmz17tlxzzTWyZ8+egN/v2bNHrrnmGobYAQAAAAAAAAAAAARggB0AAAAAAAAnJTMzU26//XYREbnkkktk+fLlcvjwYVm+fLlccsklIiJyxx13SGZmZih3EwAAAAAAAAAAAIAhDLADAAAAAADgpCxevFh+++03ufjii2Xu3LnSsWNHiYqKko4dO8rcuXPl4osvlj179sjixYtDvasAAAAAAAAAAAAAjGCAHQAAAAAAACfFP5j+0EMPic8X+DKTz+eTcePGBawHAAAAAAAAAAAAAOGh3gEAAAAAAAAAAFB8MjMzJT4+Xnbu3CnR0dESGxsrYWFhod4tAAAAAAAAAABEhCuwAwAAAAAA4CR169ZNRETGjRsnWVlZAcuysrJk/PjxAesBAEre7NmzJSYmRrp37y433HCDdO/eXWJiYmT27Nmh3jUAAAAAAAAAAESEAXYAAAAAAACcpG7dukm9evVk6dKl0qdPH1m+fLkcPnxYli9fLn369JFly5ZJvXr1GGAHgCCZPXu29OvXT9q0aRPwv8lt2rSRfv36McQOAAAAAAAAADAhPNQ7AAAAAAAAgNIpLCxMXnjhBenXr58sXLhQ5s2b5y2rXLmyOOfkhRdekLCwsBDuJQCUD5mZmTJixAjp3bu3zJkzR3y+49ev6dixo8yZM0f69u0rI0eOlD59+vC/ywAAAAAAAACAkOIK7AAAAAAAADhpcXFxMmvWLKlfv37A7+vXry+zZs2SuLi4EO0ZAJQv8fHxsnXrVhk7dqw3vO7n8/lkzJgxsmXLFomPjw/RHgIAAAAAAAAAcBxXYAcAAAAAAMApiYuLkz59+kh8fLzs3LlToqOjJTY2liv8AkAQ7dy5U0REWrdunety/+/96wEAAAAAAAAAECoMsAMAAAAAAOCUhYWFSbdu3UK9GwBQbkVHR4uIyLp166Rjx445lq9bty5gPQAAAAAAAAAAQsVX8CoAAAAAAAAAAMCy2NhYadKkiTz66KOSlZUVsCwrK0smTZokTZs2ldjY2BDtIQAAAAAAAAAAxzHADgAAAAAAAABAKRcWFiZTpkyRefPmSd++fWX58uVy+PBhWb58ufTt21fmzZsnTz75pISFhYV6VwEAAAAAAAAA5VyZGWD/5ZdfZMSIEdKyZUupUqWK1KpVS9q3by9PPPGEpKSklMh9pqSkyJlnninOOXHOSZMmTUrkfgAAAAAAAAAAKEhcXJzMmjVL1q5dK507d5Zq1apJ586dZd26dTJr1iyJi4sL9S4CAAAAAAAAACDhod6B4vDxxx/LgAED5NChQ97vUlJSZOXKlbJy5UqZPn26zJ8/X2JiYor1fh988EHZsmVLsW4TAAAAAADgVKWmpoqISMLezGLZnn87/u0CAOyKi4uTPn36SHx8vOzcuVOio6MlNjaWK68DAAAAAAAAAMwo9QPs33//vfTv319SU1MlKipKxowZI927d5fU1FR599135eWXX5YNGzZIr169ZOXKlVK1atViu9+nn35aKlasKBEREXL48OFi2S4AAAAAAMCp2rp1q4iIDJh9tNi326VLl2LdJgCg+IWFhUm3bt1CvRsAAAAAAAAAAOSq1A+wDxs2TFJTUyU8PFw+//xz6dSpk7esR48e0rx5cxk9erRs2LBBpkyZIuPHjz/l+8zMzJTbbrtNMjMzZdy4cTJjxgwG2AEAAAAAgBlNmjQREZG34ipKqzqnfsXdhL2ZMmD2UW+7AAAAAAAAAAAAAHCySvUA+7fffivx8fEiIvL3v/89YHjdb8SIEfLqq69KQkKCTJs2Te6//36JiIg4pfudNm2arFq1Ss466yy59957ZcaMGae0PQAAAAAAgOJUqVIlERFpVSdMLog+9QH2E7cLAAAAAAAAAAAAACfLF+odOBVz5szxfr755ptzXcfn88nAgQNFROTAgQPy5ZdfntJ9/vLLL/Lggw+KiMi///1vqVChwiltDwAAAAAAAAAAAAAAAAAAAADKi1I9wL506VIREalSpYq0a9cuz/W6du3q/bxs2bJTus8hQ4ZIcnKy3HjjjdKtW7dT2hYAAAAAAAAAAAAAAAAAAAAAlCeleoA9ISFBRERiYmIkPDw8z/VatmyZ4zYn491335VPPvlEatasKVOmTDnp7QAAAAAAAAAAAAAAAAAAAABAeZT31LdxR48elb1794qISMOGDfNdt2bNmlKlShVJTk6WpKSkk7q//fv3y9133y0iIpMnT5a6deue1HZERNLS0iQtLc37+6FDh056WwAAAAAAABZkZmZKfHy87Ny5U6KjoyU2NlbCwsJCvVsAAAAAAAAAAAAAjCm1V2A/fPiw93NUVFSB61epUkVERI4cOXJS9zdq1CjZvXu3dOrUSW677baT2obfpEmTpHr16t6fRo0andL2AAAAAAAAQmn27NkSExMj3bt3lxtuuEG6d+8uMTExMnv27FDvGgAAAAAAAAAAAABjSvUV2P0qVKhQ4PqRkZEiIpKamlrk+/rqq6/klVdekfDwcPn3v/8tzrkibyO7MWPGyD333OP9/dChQwyxAwAAAABQzm3bts37trm8JCQkBPy3oPWCYfbs2dKvXz/p3bu3zJw5U1q3bi3r1q2TRx99VPr16yezZs2SuLi4oO0PAAAAAAAAAAAAANtK7QB7xYoVvZ/T09MLXD8tLU1ERCpVqlSk+0lLS5N//OMfoqoybNgwOffcc4u2o7mIjIz0BuoBAAAAAAC2bdsmZ7VsJUdTUwq1/oABA0p4jwonMzNTRowYIb1795Y5c+aIz3f8y/46duwoc+bMkb59+8rIkSOlT58+EhYWFuK9BQAAAAAAAAAAAGBBqR1gr1q1qvfzkSNHClw/OTlZRESioqKKdD8TJ06Un376SRo1aiQPPfRQ0XYSAAAAAACgEPbu3StHU1Okdu8RElE7729p04x0yTi4W8Kr1xcXnvc30qX+vFIOxr9VErsaID4+XrZu3SozZ870htf9fD6fjBkzRjp37izx8fHSrVu3Et8fAAAAAAAAAAAAAPaV2gH2ihUrSu3atWXfvn2yffv2fNfdv3+/N8DeqFHebwLn5rHHHhMRkUsvvVQ+/vjjXNfxbzs5OVneffddERGpV6+e9OjRo0j3BQAAAAAAyreI2o0kskFM/is1PLvA7Rzbl1RMe5S/nTt3iohI69atc13u/71/PQAAAAAAAAAAAAAotQPsIiJnn322xMfHy6ZNmyQjI0PCw3N/OImJid7PrVq1KtJ9pKeni4jIq6++Kq+++mq+6+7du1euv/56ERHp2rUrA+wAAAAAAKBMi46OFhGRdevWSceOHXMsX7duXcB6AAAAAAAAAAAAAOAreBW7Lr74YhE5fuXzVatW5bnekiVLvJ+7dOlS4vsFAAAAAABQHsTGxkqTJk3k0UcflaysrIBlWVlZMmnSJGnatKnExsaGaA8BAAAAAAAAAAAAWFOqB9j79u3r/ZzX1dGzsrLkjTfeEBGRGjVqSPfu3Yt0H6pa4J/GjRuLiEjjxo293y1evPikHhMAAAAAAEBpERYWJlOmTJF58+ZJ3759Zfny5XL48GFZvny59O3bV+bNmydPPvmkhIWFhXpXAQAAAAAAAAAAABhRqgfYO3To4F3Ba8aMGbJ8+fIc60yZMkUSEhJERGTYsGESERERsHzx4sXinBPnnAwaNKjE9xkAAAAAAKAsiYuLk1mzZsnatWulc+fOUq1aNencubOsW7dOZs2aJXFxcaHeRQAAAAAAAAAAAACGhId6B07VtGnTpEuXLpKamio9e/aUsWPHSvfu3SU1NVXeffddeemll0REpEWLFjJixIgQ7y0AAAAAAEDZExcXJ3369JH4+HjZuXOnREdHS2xsLFdeBwAAAAAAAAAAAJBDqR9gb9u2rbz33nsyYMAAOXTokIwdOzbHOi1atJD58+dL1apVQ7CHAAAAAAAAZV9YWJh069Yt1LsBAAAAAAAAAAAAwDhfqHegOFx55ZWyZs0aGT58uLRo0UIqV64sNWrUkAsvvFAee+wx+f777yUmJibUuwkAAAAAAAAAAAAAAAAAAAAA5VqpvwK7X+PGjWXq1KkyderUIt2uW7duoqqndN9bt249pdsDAAAAAAAAAAAAAAAAAAAAQHlQJq7ADgAAAAAAAAAAAAAAAAAAAACwjwF2AAAAAAAAAAAAAAAAAAAAAEBQMMAOAAAAAAAAAAAAAAAAAAAAAAgKBtgBAAAAAAAAAAAAAAAAAAAAAEHBADsAAAAAAAAAAAAAAAAAAAAAICgYYAcAAAAAAAAAAAAAAAAAAAAABAUD7AAAAAAAAAAAAAAAlv+wMgABAABJREFUAAAAAACAoGCAHQAAAAAAAAAAAAAAAAAAAAAQFAywAwAAAAAAAAAAAAAAAAAAAACCggF2AAAAAAAAAAAAAAAAAAAAAEBQMMAOAAAAAAAAAAAAAAAAAAAAAAgKBtgBAAAAAAAAAAAAAAAAAAAAAEHBADsAAAAAAAAAAAAAAAAAAAAAICgYYAcAAAAAAAAAAAAAAAAAAAAABEV4qHcAAAAAAAAAJSPht6x8l6dmqGw9kCVNavikUrg76e0AAAAAAAAAAAAAQGExwA4AAAAAAFDG+CKjxOdEBnyYWmzbrFypotSpU6fYtgcAAAAAAAAAAACgfGKAHQAAAAAAoIwJi6opWSry1ltvSatWrfJcLyEhQQYMGFDgeiIiderUkTPOOKO4dxUAAAAAAAAAAABAOcMAOwAAAAAAQBnVqlUrueCCC4ptPQAAAAAAAAAAAAA4VQywAwAAAAAAhFhqaqqIiBzbl1Qs2/Nvx79dAAAAAAAAAAAAALCCAXYAAAAAAIAQ27p1q4iI7Js3pdi326VLl2LdJgAAAAAAAAAAAACcCgbYAQAAAAAAQqxJkyYiIlK79wiJqN3olLd3bF+S7Js3xdsuAAAAAAAAAAAAAFjBADsAAAAAAECIVapUSUREImo3ksgGMcW+XQAAAAAAAAAAAACwwhfqHQAAAAAAAAAAAAAAAAAAAAAAlA8MsAMAAAAAAAAAAAAAAAAAAAAAgoIBdgAAAAAAAAAAAAAAAAAAAABAUDDADgAAAAAAAAAAAAAAAAAAAAAICgbYAQAAAAAAAAAAAAAAAAAAAABBwQA7AAAAAAAAAAAAAAAAAAAAACAoGGAHAAAAAAAAAAAAAAAAAAAAAAQFA+wAAAAAAAAAAAAAAAAAAAAAgKBggB0AAAAAAAAAAAAAAAAAAAAAEBQMsAMAAAAAAAAAAAAAAAAAAAAAgoIBdgAAAAAAAAAAAAAAAAAAAABAUDDADgAAAAAAAAAAAAAAAAAAAAAICgbYAQAAAAAAAAAAAAAAAAAAAABBwQA7AAAAAAAAAAAAAAAAAAAAACAoGGAHAAAAAAAAAAAAAAAAAAAAAAQFA+wAAAAAAAAAAAAAAAAAAAAAgKBggB0AAAAAAAAAAAAAAAAAAAAAEBQMsAMAAAAAAAAAAAAAAAAAAAAAgiI81DsAAAAAAACA447tS8p3uWakS8bB3RJevb648AonvR0AAAAAAAAAAAAACBUG2AEAAAAAAEKsTp06UrFSZdk3b0qxbbNipcpSp06dYtseAAAAAAAAAAAAABQHBtgBAAAAAABC7IwzzpCfEhNk7969+a6XkJAgAwYMkLfeektatWqV77p16tSRM844ozh3EwAAAAAAAAAAAABOGQPsAAAAAAAABpxxxhmFHjhv1aqVXHDBBSW8RwAAAAAAAAAAAABQ/Hyh3gEAAAAAAAAAAAAAAAAAAAAAQPnAADsAAAAAAAAAAAAAAAAAAAAAICgYYAcAAAAAAAAAAAAAAAAAAAAABAUD7AAAAAAAAAAAAAAAAAAAAACAoGCAHQAAAAAAAAAAAAAAAAAAAAAQFAywAwAAAAAAAAAAAAAAAAAAAACCggF2AAAAAAAAAAAAAAAAAAAAAEBQMMAOAAAAAAAAAAAAAAAAAAAAAAgKBtgBAAAAAAAAAAAAAAAAAAAAAEFRJgbYf/nlFxkxYoS0bNlSqlSpIrVq1ZL27dvLE088ISkpKae07YSEBHn22WflpptukgsuuEAaNmwoFStWlCpVqsiZZ54p/fv3l7lz54qqFtOjAQAAAAAAAAAAAAAAAAAAAICyKTzUO3CqPv74YxkwYIAcOnTI+11KSoqsXLlSVq5cKdOnT5f58+dLTEzMSW1/4sSJ8vbbb+e6bMuWLbJlyxZ5//33pWvXrvKf//xHateufVL3AwAAAAAAAAAAAAAAAAAAAABlXakeYP/++++lf//+kpqaKlFRUTJmzBjp3r27pKamyrvvvisvv/yybNiwQXr16iUrV66UqlWrFvk+wsPD5aKLLpIuXbpImzZtpEGDBlK3bl3Zv3+/JCYmyosvvijr1q2TJUuWyJVXXilLly4Vn69MXNgeAAAAAAAAAAAAAAAAAAAAAIpVqR5gHzZsmKSmpkp4eLh8/vnn0qlTJ29Zjx49pHnz5jJ69GjZsGGDTJkyRcaPH1/k+5g+fbqEh+d+mC699FK544475K9//avMnj1bli9fLvPmzZOrrrrqZB8SAAAAAAAAAAAAAAAAAAAAAJRZpfZS4d9++63Ex8eLiMjf//73gOF1vxEjRkirVq1ERGTatGly7NixIt9PXsPrfmFhYTJq1Cjv7/59AgAAAAAAAAAAAAAAAAAAAAAEKrUD7HPmzPF+vvnmm3Ndx+fzycCBA0VE5MCBA/Lll1+WyL5UrVrV+/no0aMlch8AAAAAAAAAAAAAAAAAAAAAUNqV2gH2pUuXiohIlSpVpF27dnmu17VrV+/nZcuWlci+vPvuu97PLVu2LJH7AAAAAAAAAAAAAAAAAAAAAIDSLjzUO3CyEhISREQkJiZGwsPzfhjZB8r9tykOe/fulY0bN8r06dPl1VdfFRGROnXqyN/+9rdiuw8AAAAAAAAAAAAAAAAAAAAAKEtK5QD70aNHZe/evSIi0rBhw3zXrVmzplSpUkWSk5MlKSnplO63W7dusmTJklyX1alTRz788EOpUaNGgdtJS0uTtLQ07++HDh06pf0CAAAAAAAAAAAAAAAAAAAAgNLAF+odOBmHDx/2fo6Kiipw/SpVqoiIyJEjR0pkf/7v//5PEhIS5OKLLy7U+pMmTZLq1at7fxo1alQi+wUAAAAAAAAAAAAAAAAAAAAAlpTKAfajR496P1eoUKHA9SMjI0VEJDU19ZTu99VXX5W1a9fKmjVr5KuvvpKpU6dK8+bN5dlnn5Wbb75Zdu/eXajtjBkzRg4ePOj9OdUrwwMAAAAAAAAAAAAAAAAAAABAaRAe6h04GRUrVvR+Tk9PL3D9tLQ0ERGpVKnSKd1v06ZNA/4eGxsrd9xxh1x77bUyb948ad++vXz99dfSsGHDfLcTGRnpDdUDAAAAAAAAAAAAAAAAAAAAQHlRKq/AXrVqVe/nI0eOFLh+cnKyiIhERUUV+75UrFhRXn31ValcubIkJSXJ6NGji/0+AAAAAAAAAAAAAAAAAAAAAKAsKJUD7BUrVpTatWuLiMj27dvzXXf//v3eAHujRo1KZH/q1KkjXbp0ERGRuXPnyrFjx0rkfgAAAAAAAAAAAAAAAAAAAACgNCuVA+wiImeffbaIiGzatEkyMjLyXC8xMdH7uVWrViW2P3Xr1hURkZSUFNm7d2+J3Q8AAAAAAAAAAAAAAAAAAAAAlFaldoD94osvFhGR5ORkWbVqVZ7rLVmyxPvZf5X0kvDrr796P0dFRZXY/QAAAAAAAAAAAAAAAAAAAABAaVVqB9j79u3r/fzqq6/muk5WVpa88cYbIiJSo0YN6d69e4nsy/bt22X58uUiItK4cWOpWrVqidwPAAAAAAAAAAAAAAAAAAAAAJRmpXaAvUOHDhIbGysiIjNmzPAGyLObMmWKJCQkiIjIsGHDJCIiImD54sWLxTknzjkZNGhQjttv2LBBFi1alO9+HDx4UG644QZJT08XEZGBAweezMMBAAAAAAAAAAAAAAAAAAAAgDIvPNQ7cCqmTZsmXbp0kdTUVOnZs6eMHTtWunfvLqmpqfLuu+/KSy+9JCIiLVq0kBEjRhR5+zt27JBLLrlEzjvvPOnbt6+0a9dOGjRoIOHh4bJr1y5ZtmyZzJgxQ3bt2iUiIq1bt5b77ruvWB8jAAAAAAAAAAAAAAAAAAAAAJQVpXqAvW3btvLee+/JgAED5NChQzJ27Ngc67Ro0ULmz58vVatWPen7Wb16taxevTrfdXr16iWvvvqqVK5c+aTvBwAAAAAAAAAAAAAAAAAAAADKslI9wC4icuWVV8qaNWtk2rRpMn/+fNm+fbtUqFBBYmJi5Nprr5W77rrrpIfKu3TpIp999pl88cUXsnLlStm+fbvs3r1bUlJSpFq1atK0aVPp2LGjXH/99dKlS5difmQAAAAAAAAAAAAAAAAAAAAAULaU+gF2EZHGjRvL1KlTZerUqUW6Xbdu3URV81weEREhPXv2lJ49e57qLgIAAAAAAAAAAAAAAAAAAABAuecL9Q4AAAAAAAAAAAAAAAAAAAAAAMoHBtgBAAAAAAAAAAAAAAAAAAAAAEHBADsAAAAAAAAAAAAAAAAAAAAAICgYYAcAAAAAAAAAAAAAAAAAAAAABEV4qHcAAAAAAAAAJS8lJUUSExMDfpeQkBDw3+xatmwplStXDsq+AQAAAAAAAAAAACg/GGAHAAAAAAAoBxITE6Vdu3a5LhswYECO361atUouuOCCkt4tAAAAAAAAAAAAAOUMA+wAAAAAAADlQMuWLWXVqlUBv0tNTZWtW7dKkyZNpFKlSjnWBwAAAAAAAAAAAIDixgA7AAAAAABAOVC5cuVcr6jepUuXEOwNAAAAAAAAAAAAgPLKF+odAAAAAAAAAAAAAAAAAAAAAACUDwywAwAAAAAAAAAAAAAAAAAAAACCggF2AAAAAAAAAAAAAAAAAAAAAEBQMMAOAAAAAAAAAAAAAAAAAAAAAAgKBtgBAAAAAAAAAAAAAAAAAAAAAEHBADsAAAAAAAAAAAAAAAAAAAAAICgYYAcAAAAAAAAAAAAAAAAAAAAABAUD7AAAAAAAAAAAAAAAAAAAAACAoGCAHQAAAAAAAAAAAAAAAAAAAAAQFAywAwAAAAAAAAAAAAAAAAAAAACCggF2AAAAAAAAAAAAAAAAAAAAAEBQMMAOAAAAAAAAAAAAAAAAAAAAAAgKBtgBAAAAAAAAAAAAAAAAAAAAAEHBADsAAAAAAAAAAAAAAAAAAAAAICgYYAcAAAAAAAAAAAAAAAAAAAAABAUD7AAAAAAAAAAAAAAAAAAAAACAoGCAHQAAAAAAAAAAAAAAAAAAAAAQFAywAwAAAAAAAAAAAAAAAAAAAACCggF2AAAAAAAAAAAAAAAAAAAAAEBQMMAOAAAAAAAAAAAAAAAAAAAAAAgKBtgBAAAAAAAAAAAAAAAAAAAAAEHBADsAAAAAAAAAAAAAAAAAAAAAICgYYAcAAAAAAAAAAAAAAAAAAAAABAUD7AAAAAAAAAAAAAAAAAAAAACAoGCAHQAAAAAAAAAAAAAAAAAAAAAQFAywAwAAAAAAAAAAAAAAAAAAAACCggF2AAAAAAAAAAAAAAAAAAAAAEBQMMAOAAAAAAAAAAAAAAAAAAAAAAgKBtgBAAAAAAAAAAAAAAAAAAAAAEHBADsAAAAAAAAAAAAAAAAAAAAAICgYYAcAAAAAAAAAAAAAAAAAAAAABEV4qHcAAAAAAAAAOaWkpEhiYmLA7xISEgL+m13Lli2lcuXKQdk3AAAAAAAAAAAAADhZDLADAAAAAAAYlJiYKO3atct12YABA3L8btWqVXLBBReU9G4BAAAAAAAAAAAAwClhgB0AAAAAAMCgli1byqpVqwJ+l5qaKlu3bpUmTZpIpUqVcqwPAAAAAAAAAAAAANYxwA4AAAAAAGBQ5cqVc72iepcuXUKwNwAAAAAAAAAAAABQPHyh3gEAAAAAAAAAAAAAAAAAAAAAQPnAADsAAAAAAAAAAAAAAAAAAAAAICgYYAcAAAAAAAAAAAAAAAAAAAAABAUD7AAAAAAAAAAAAAAAAAAAAACAoGCAHQAAAAAAAAAAAAAAAAAAAAAQFAywAwAAAAAAAAAAAAAAAAAAAACCggF2AAAAAAAAAAAAAAAAAAAAAEBQMMAOAAAAAAAAAAAAAAAAAAAAAAgKBtgBAAAAAAAAAAAAAAAAAAAAAEHBADsAAAAAAAAAAAAAAAAAAAAAICjKzAD7L7/8IiNGjJCWLVtKlSpVpFatWtK+fXt54oknJCUl5ZS2nZKSIrNnz5Y77rhD2rdvLzVr1pSIiAipXbu2dOrUScaPHy+7du0qpkcCAAAAAAAAAAAAAAAAAAAAAGVTeKh3oDh8/PHHMmDAADl06JD3u5SUFFm5cqWsXLlSpk+fLvPnz5eYmJgib3vNmjXSpUsXOXLkSI5lv//+u6xYsUJWrFghTz31lLz00kvSv3//U3osAAAAAAAAAAAAAAAAAAAAAFBWlforsH///ffSv39/OXTokERFRcnEiRPl66+/loULF8ptt90mIiIbNmyQXr16yeHDh4u8/UOHDnnD6126dJFJkybJggUL5H//+5989tlnMnjwYPH5fHLo0CH529/+Jv/973+L9fEBAAAAAAAAAAAAAAAAAAAAQFlR6q/APmzYMElNTZXw8HD5/PPPpVOnTt6yHj16SPPmzWX06NGyYcMGmTJliowfP75I2/f5fPLXv/5Vxo0bJ2effXaO5T179pQrrrhCrr76asnMzJShQ4fKxo0bxTl3qg8NAAAAAAAAAAAAAAAAAAAAAMqUUn0F9m+//Vbi4+NFROTvf/97wPC634gRI6RVq1YiIjJt2jQ5duxYke6jc+fO8t577+U6vO7Xp08fiYuLExGRzZs3y/fff1+k+wAAAAAAAAAAAAAAAAAAAACA8qBUD7DPmTPH+/nmm2/OdR2fzycDBw4UEZEDBw7Il19+WSL70r17d+/nzZs3l8h9AAAAAAAAAAAAAAAAAAAAAEBpVqoH2JcuXSoiIlWqVJF27drluV7Xrl29n5ctW1Yi+5KWlub9HBYWViL3AQAAAAAAAAAAAAAAAAAAAAClWakeYE9ISBARkZiYGAkPD89zvZYtW+a4TXFbsmSJ93OrVq1K5D4AAAAAAAAAAAAAAAAAAAAAoDQrtQPsR48elb1794qISMOGDfNdt2bNmlKlShUREUlKSir2fVm9erXMnz9fRETatGnDADsAAAAAAAAAAAAAAAAAAAAA5CLvy5Ybd/jwYe/nqKioAtevUqWKJCcny5EjR4p1P9LS0uTWW2+VzMxMERGZOHFioW6Tlpbm/f3QoUPFuk8AAAAAAAAAAAAAAAAAAAAAYFGpvgK7X4UKFQpcPzIyUkREUlNTi3U/7rrrLlm5cqWIiNx0001y5ZVXFnibSZMmSfXq1b0/jRo1KtZ9AgAAAAAAAAAAAAAAAAAAAACLSu0Ae8WKFb2f09PTC1zff8XzSpUqFds+TJo0SaZPny4iIu3bt5fnnnuuULcbM2aMHDx40PuTlJRUbPsEAAAAAAAAAAAAAAAAAAAAAFaFh3oHTlbVqlW9n48cOVLg+snJySIiEhUVVSz3/+KLL8rYsWNFRKRly5byySefSJUqVQp128jISO+K8AAAAAAAAAAAAAAAAAAAAABQXpTqK7DXrl1bRES2b9+e77r79+/3BtgbNWp0yvc9c+ZMGTJkiIiING7cWBYsWCB16tQ55e0CAAAAAAAAAAAAAAAAAAAAQFlWagfYRUTOPvtsERHZtGmTZGRk5LleYmKi93OrVq1O6T4/+ugjGThwoGRlZUl0dLQsXLhQGjZseErbBAAAAAAAAAAAAAAAAAAAAIDyIDzUO3AqLr74YomPj5fk5GRZtWqVXHTRRbmut2TJEu/nLl26nPT9LVy4UP76179KRkaG1K5dWxYsWCDNmjU76e35qaqIiBw6dOiUtwVbsrKyvP/SFwAAAACAksH5NwCgsHjOAAAUBs8XAIDC4jkDABAq/ucd//wpUNo4LcX/1/vtt996Q+uDBw+Wf//73znWycrKktatW0tCQoLUqFFD9uzZIxEREUW+r6+//lp69uwpycnJUr16dVm4cKG0a9fulB+DiMj27dulUaNGxbItAAAAAAAAAAAAAAAAAAAAlH1JSUnSsGHDUO8GUGSl+grsHTp0kNjYWImPj5cZM2bITTfdJJ06dQpYZ8qUKZKQkCAiIsOGDcsxvL548WLp3r27iIjcdNNN8tprr+W4nx9++EF69eolycnJUqVKFZk/f36xDa+LiJx22mmSlJQkVatWFedcsW23NDt06JA0atRIkpKSpFq1aqHenXKNFrbQww5a2EELO2hhBy1soYcdtLCDFnbQwg5a2EIPO2hhBy3soIUdtLCFHnbQwg5a2EELO2hhCz3soIUdtLCDFnbQIneqKocPH5bTTjst1LsCnJRSPcAuIjJt2jTp0qWLpKamSs+ePWXs2LHSvXt3SU1NlXfffVdeeuklERFp0aKFjBgxosjb37x5s1x++eVy4MABERF55JFHpHr16rJu3bo8b1OvXj2pV69eoe/D5/PxCZg8VKtWjScdI2hhCz3soIUdtLCDFnbQwhZ62EELO2hhBy3soIUt9LCDFnbQwg5a2EELW+hhBy3soIUdtLCDFrbQww5a2EELO2hhBy1yql69eqh3AThppX6AvW3btvLee+/JgAED5NChQzJ27Ngc67Ro0ULmz58vVatWLfL24+PjZc+ePd7fhw8fXuBtxo0bJ+PHjy/yfQEAAAAAAAAAAAAAAAAAAABAWeYL9Q4UhyuvvFLWrFkjw4cPlxYtWkjlypWlRo0acuGFF8pjjz0m33//vcTExIR6NwEAAAAAAAAAAAAAAAAAAACgXCv1V2D3a9y4sUydOlWmTp1apNt169ZNVDXP5YMGDZJBgwad4t6hqCIjI2XcuHESGRkZ6l0p92hhCz3soIUdtLCDFnbQwhZ62EELO2hhBy3soIUt9LCDFnbQwg5a2EELW+hhBy3soIUdtLCDFrbQww5a2EELO2hhBy2AsslpftPbAAAAAAAAAAAAAAAAAAAAAAAUE1+odwAAAAAAAAAAAAAAAAAAAAAAUD4wwA4AAAAAAAAAAAAAAAAAAAAACAoG2AEAAAAAAAAAAAAAAAAAAAAAQcEAOwAAAAAAAAAAAAAAAAAAAAAgKBhgh3mZmZmh3gUAAAAAAAAAAAAAAAAAAAAAxYABdpiWnp4u//rXv+Tuu+8O9a4AAAAAAAAAAAAAAAAAAAAAOEXhod4BIC/p6enyxhtvyAMPPCDJycmSmZkp//rXv0K9WwAAAAAAAAAAAAAAAAAAAABOEldgh0np6eny+uuvy/DhwyU5OVkiIyPlueeek1tuuSXUu1YuqWquPyP4aGEHLeyghS30sIMWdtDCDlrYQQtb6AEAAAAAAAAAAAAgmBhghzn+K6+PGDFCkpOTpVatWpKRkSEi4v0XJevEgQXnXI6fGWoIDlrYQQs7aGELPeyghR20sIMWdtDCFnrYceJxzsrKCtGegBZ20MIOWthCDztoYQct7KCFHbSwhR520MIOWthBCztoYQctbKEHUPaFh3oHgOz8w+v33HOPHDlyRLp06SItWrSQ9957T+rWrSs333yziBx/gsr+BjuKl//Ybt26VdasWSPr16+XnTt3SlhYmLRs2VIuvPBCadOmjVSoUEFE6FGSaGEHLeyghS30sIMWdtDCDlrYQQtb6GFD9uMaHx8vZ511ltSrV08yMjIkPJyX7IKJFnbQwg5a2JK9x6ZNmyQmJkZ8Pp9kZmZKWFhYiPeufKGFHbSwgxZ20MIWethBCztoYQfnfHbQwg5a2EIPoHzg/5thxonD6xdeeKEMGTJEnnvuOUlJSZHmzZtLhw4dRER447wEqaocOXJE7r//fvnqq69kzZo1Acudc+Lz+eTGG2+Uv/zlL9KvXz9xzjHQUAJoYQct7KCFLfSwgxZ20MIOWthBC1voYUP247lo0SJ55JFHZP369bJ06VJp3rx5iPeufKGFHbSwgxa2ZO/xxRdfyCOPPCLt27eXJ554giGfIKOFHbSwgxZ20MIWethBCztoYQfnfHbQwg5a2EIPoBxRwIC0tDR9+eWXtWrVquqc0zZt2ujMmTP1nXfe0bp162qtWrV0xYoVqqqamZkZ4r0tu44cOaJz5szRHj16qHPO+1O/fn097bTTtFGjRtqiRQt1zqnP59OqVavquHHjvNtnZWWFbufLGFrYQQs7aGELPeyghR20sIMWdtDCFnrYkP04LliwQK+88koNCwtT55w+9NBDqsprH8FCCztoYQctbDmxR9++fb3n748//pjn5iCihR20sIMWdtDCFnrYQQs7aGEH53x20MIOWthCD6B8YYAdIXfi8Pq5556r7777rqqqjh49Wp1zetlll+nOnTtDvKdl28GDB/WFF17Qtm3bqnNOw8PDtV69ejp8+HD9+uuvdf/+/Xro0CE9ePCgvvjii3r11Verz+dT55wOGzbM2w4nl6eOFnbQwg5a2EIPO2hhBy3soIUdtLCFHjbk9uK7/w3b2267zVvmfwGeF+JLDi3soIUdtLAlvx733ntvjvXpUXJoYQct7KCFHbSwhR520MIOWtjBOZ8dtLCDFrbQAyh/GGBHSJ04vH7eeefpzJkz9dixY7p48WLvSeidd94J9a6WacnJyfrKK6/o2Wefrc45jYiI0Ouvv17nzJkTsF72fyj8/PPP+sQTT3gDDQ888ECwd7tMooUdtLCDFrbQww5a2EELO2hhBy1soYcNJ7743qdPn4Ar4Z9zzjlas2ZN7dKli/7zn//0PsifkZERql0us2hhBy3soIUt+fUIDw/XQYMGac+ePfWRRx7Rzz//3FuXHsWPFnbQwg5a2EELW+hhBy3soIUdnPPZQQs7aGELPYDyiQF2hExuw+vvvPOOHjhwQFVV7733XvX5fHrNNdfo0aNHVTXnld74JNWp8R/PRYsWabt27bxBhrvvvlt/+OEHb73sT/bZGxw9elSnTZumPp9PIyMj9Y033gjezpcxtLCDFnbQwhZ62EELO2hhBy3soIUt9LAjv6/KbtmypV588cU6fPhwveiii7R+/frqnNN27drpzz//nOP2ODW0sIMWdtDClvx61KlTRxs1aqQXXnihhoeHq3NOo6Ki9PHHH8/19jg1tLCDFnbQwg5a2EIPO2hhBy3s4JzPDlrYQQtb6AGUXwywIyTyuvL6oUOHVFV18+bNWq9ePXXO6WOPPVbg9hISEvS5557ToUOHlvSulxnZn7x79erlDTLceeed+tNPP+W6Xm527typgwcPVp/Pp3/96191//79/MOgiGhhBy3soIUt9LCDFnbQwg5a2EELW+hhR34vvt9yyy367bffampqqqqq7t+/X7/44gvt3LmzOuc0JiZG9+/fH6I9L3toYQct7KCFLfn1uP766/XDDz/U3377TTMyMvTrr7/WMWPGeMvHjRsXuh0vg2hhBy3soIUdtLCFHnbQwg5a2ME5nx20sIMWttADKN8YYEfQ5TW8fuTIEVVVTU1N1aFDh6pzTjt16uRdCc5/tXX/f1NSUnTv3r06YsQI7dChg/fkxRB70TzyyCPqnNOwsDDt1auXfvfdd0Xexty5czUiIkJ9Pp8uWLCgBPayfKCFHbSwgxa20MMOWthBCztoYQctbKFHaOX34vvIkSMD1s1+JfxFixZp+/btdfjw4bpjx46g7W9ZRgs7aGEHLWzJr8c999yT6wfIUlNTdezYsVqhQgW955579ODBg8Hc5TKLFnbQwg5a2EELW+hhBy3soIUdnPPZQQs7aGELPQAwwI6gKmh4XVV179692rlzZ61QoYI+88wzqnr8a8uzW7dunQ4ePFjbtm3rvRHvnNNKlSp5n8BCwbKysjQuLk59Pp865/T1118/6W1dc8016pzTwYMHa1paWjHuZflACztoYQctbKGHHbSwgxZ20MIOWthCj9DK78X3UaNG5bqe3+HDh3XhwoW6ZcuWYOxqmUcLO2hhBy1sya/H6NGjc13P78cff9S3337b+9psnBpa2EELO2hhBy1soYcdtLCDFnZwzmcHLeyghS30AKDKADuC6OjRozpjxox8h9dVVcePH6/OOa1du7auXbs2YNncuXN19OjR3jYqVaqk0dHR+re//U0bNmzoPZHdfPPNeuDAgWA+vFJp9erV3jEbMGCA9/uifB28/xNu999/vzrndPjw4d5V8lF4tLCDFnbQwhZ62EELO2hhBy3soIUt9Aidwr5hm/2qMSfK/kGBTz/9VPfv36/p6emqqjQoAlrYQQs7aGFLYd+wza9H9q/LPvHKY/QoPFrYQQs7aGEHLWyhhx20sIMWdnDOZwct7KCFLfQA4McAO4IiKytLX3/9de/J5sThdf8T04YNG7Rdu3bqnNNnn31WVY9/amrOnDn6j3/8Q51zGh4ers45veKKK/TZZ5/Vt956S2+55RZv28OHD9dff/01ZI+1NFm0aJF3PP3HO78n//zMmTNH+/fvr7///ntx7mK5QQs7aGEHLWyhhx20sIMWdtDCDlrYQo/QW7BggcbFxRX5xffs/B/079Spk06ePFl/++23It0ex9HCDlrYQQtbFi5ceFJv2GY3bNgwbdy4sY4dO1a/+uqrIt8ex9HCDlrYQQs7aGELPeyghR20sINzPjtoYQctbKEHAAbYETSJiYnqnNMzzjhD33vvvYArr/sH2N955x31+Xzatm1bffvtt3XBggXaqVMnrVGjhvdk1b9/f33++ec1IyNDv/rqK73uuusYXi8i//GeOXOmOue0SpUqum7dulPa5rZt2zQ5OVlV+UdAUdDCDlrYQQtb6GEHLeyghR20sIMWttDDhsTERO3atespvfienp6uc+bM0QsuuEArV66szjnt0aOHbtu2rUjbKe9oYQct7KCFLYsXL9YePXpoWFhYka5Qmd3u3bv11ltvVZ/Pp845bdasmfcBtqJsp7yjhR20sIMWdtDCFnrYQQs7aGEH53x20MIOWthCDwCqDLAjyDZv3qz/+c9/9PDhwzmW/fLLLxoTE6POOW3YsKF2795d69evr845bdSokfbu3Vs/+ugjb/3vvvtOe/fu7T2R3XPPPQyvF9Gnn37qHb8vv/yyWLZZlK+ixx9oYQct7KCFLfSwgxZ20MIOWthBC1voEXp33nlnkd6wzev4JiUl6csvv6xt2rRR55w2adJEt27dqqp8HWph0cIOWthBCzuSkpK0WrVq6pzT++67z/v9ybzROmvWLL3xxhu9fwM8+OCD3jJ6FIwWdtDCDlrYQQtb6GEHLeyghS2c89lBCztoYQs9ADDAjqDL68nkf//7n0ZFRXknIP5B9r59++qaNWt0165dqnr8ieWrr77Sq666iuH1U/T99997J5Bz585V1eIdRuCTbIVHCztoYQctbKGHHbSwgxZ20MIOWthCj9DJ/qL4nDlzvJ/zOmYndjl27FiOddLS0vSbb77Rjh07qnNOzzvvPN2xY0cx7XHZRQs7aGEHLWxavXq1jhs3zvt7YXvkZvv27froo496r59PmjSpuHazXKCFHbSwgxZ20MIWethBCztoEXqc89lBCztoYQs9APgxwA5TpkyZos45jYqK0tGjR+vSpUsDnnSysrJ0yZIl2rdvX4bXi8mVV16pzjnt3bu37tu3r1i2uWjRIu9nPslWeLSwgxZ20MIWethBCztoYQct7KCFLfQInRNfRM/rxXf/MUxKStI33nhDb775Zo2Li9Np06bleuX8ZcuW6TnnnKPOOR02bJgePXq02Pe9rKGFHbSwgxa2FdRjz549umzZMn3qqaf0X//6l37//ff6+++/q+ofb+oePnxYJ0yYoM45rV69esAbwig8WthBCztoYQctbKGHHbSwgxahwzmfHbSwgxa20AOAKgPsMCL7G95LlizRr776Ksc6WVlZ+tVXX53U8Lr/SS4rK0sPHz5cfDteivlP+GbMmKG1a9fWM844Q+fOnXvKwwePPPKIOud06NChxbGb5QIt7KCFHbSwhR520MIOWthBCztoYQs9Sgd/p59++kn/9Kc/ae3atQO+ma5GjRo6fvz4gNscOXJER40apc457dSpk6ampoZi18scWthBCztoYYv/OXzDhg16xRVX6Gmnnea1aNSokV5yySW6YcOGgNv89NNP2r17dw0LC9MRI0aoavF+G0t5RQs7aGEHLeyghS30sIMWdtDCDs757KCFHbSwhR5A2ccAO8zI7U10/6etTmZ4/cQTliNHjujkyZO1W7duOmjQoOLd+VJsz5492rNnT3XOaefOnXXdunUnvS3/J5+dc3r55ZdrUlKS14ETyILRwg5a2EELW+hhBy3soIUdtLCDFrbQw76tW7d6X2tapUoVbdKkiV599dXeVWKcc3rHHXd4VyBTVf3qq6+8ZcuWLQvh3pcttLCDFnbQwpZNmzZpu3btvONbq1YtbdCggdaoUUOdc1qvXj1duHBhwG3uvfdedc5pdHS0HjhwgOfsYkILO2hhBy3soIUt9LCDFnbQwg7O+eyghR20sIUeQNnGADvMyv4meFGG10/8SpFVq1bp1KlT9eyzzw74FNbAgQNL/DGUFps3b9ZmzZqpc05jY2P1iy++0EOHDqnqHx8sKOgqfQ8//LB3bLt166bvv/++7tixI+B2J26Dk8qcaGEHLeyghS30sIMWdtDCDlrYQQtb6GGT/3hNnTpVq1evrpGRkXrrrbdqUlKSqqomJCTok08+6R33v//977pz505VVf3xxx+1WrVqGhYWpt99913IHkNZQQs7aGEHLew5evSoDh06VCtUqKDVqlXTW265Rbds2aK//vqrfvDBBxobG6vOOa1Tp45+9NFHmpaWpqqqc+fO1QoVKmjLli01JSUlxI+ibKCFHbSwgxZ20MIWethBCztoYQPnfHbQwg5a2EIPoHxggB0mnezwenbx8fH6+OOPa82aNbVy5crqnPM+seuc04YNG+ru3btL+qGUGomJidqwYUN1zulZZ52ld999t65Zs8a7Cn5+/F8h7/9TvXp1rVGjhjZu3Fivu+46ffvtt711/R8wyD7I8PHHH3v/iAAtLKGFHbSwhR520MIOWthBCztoYQs97OrTp4865/T000/Xn3/+Ocfy999/3zv2//jHPzQpKUnvu+8+dc5pq1at9PDhwyHY67KJFnbQwg5a2HHkyBG94IIL1Dmn559/vv7yyy8By3/77Tf9y1/+os45rV27tn766ad69OhRHThwoDrntGPHjiHa87KHFnbQwg5a2EELW+hhBy3soIUtnPPZQQs7aGELPYCyjQF2mFOU4XX/p638t9m3b5+uWbNGBw0apI0bN/Zu16hRI73mmmt09uzZ2rRpU3XO6dChQ/Xo0aPBf4CGbdq0SXv06OEN/EdGRmq3bt309ttv1y+++CLX20ycONE7zlFRUdquXTu99dZbdcCAAQFXvX/ooYdyvf3MmTO1ffv2GhUVpZs2bSrJh1eq0MIOWthBC1voYQct7KCFHbSwgxa20MOWrKwsTUlJ0fbt26tzTnv16uUtO/Fq9nPmzPGOdWxsrLZs2VJ9Pp8OHz5c09LSCryCPvJHCztoYQct7FmzZo1WrVpVw8LC9LHHHlPV3D84duWVV6pzTmvVqqVDhgzRmJgYrVy5sj799NOqWvC3rqBgtLCDFnbQwg5a2EIPO2hhBy1s4JzPDlrYQQtb6AGUDwyww6SsrCxdunRpvsPr/pMYVdUDBw5ofHy8/vnPf9azzjpLnXNaoUIFjYqK0mHDhunSpUtVVXXChAnqnNNKlSrpDz/8EPTHVRrs2rVLn3/+ef3zn/+szjkNCwvTHj16eF8vn132QYZLL71Un3vuuYDlmzdv1smTJ3vr/Otf/wpYvmfPHu3evbu3/LXXXivRx1ba0MIOWthBC1voYQct7KCFHbSwgxa20MOe//u//1PnnJ599tmamJgYsCwrK8u7Sv6sWbO8Y+nc8Q/rr1q1KhS7XGbRwg5a2EELOw4fPqxt27ZV55z2799fjxw5ErA8++vlvXr18l4Hd87pOeeco+vXrw/2LpdZtLCDFnbQwg5a2EIPO2hhBy1s4ZzPDlrYQQtb6AGUbQyww6Svv/5ae/To4T2p3HPPPbp9+3ZV/eNTt/5PR7344ot63XXXacWKFb31a9asqRMmTNAFCxZ420xISNCWLVtqWFiYjhw5MmAbyN2cOXN05syZeuDAAVUNPFnMPsgQFxenixYt8tpkv7L9kSNHdPTo0Xruuefq/Pnzc9zH559/rs45feaZZ0r40ZRutLCDFnbQwhZ62EELO2hhBy3soIUt9LDh7bff9o71448/rsnJyd4y/4vvhw8f1nfeeUdbtGjhrfvpp58GbCev1zh47aPwaGEHLeyghR2pqal6yy23qHNOzzvvPP3mm28Clmd/Hn/55Ze1Tp066pzTiIiIHN+0kv3Klig6WthBCztoYQctbKGHHbSwgxa2cM5nBy3soIUt9ADKNgbYYVJSUpL6fD51zunIkSN127ZtAcv37t2rTz75pPeJ27CwMHXOaceOHXXkyJG6cePGHNt86aWX1DmnPp9PP/zwwyA9ktIptxM9/5O+auAgwzXXXONd4T6v265YsUJXrlzpLV+9enXA8uxX1ucfBoFoYQct7KCFLfSwgxZ20MIOWthBC1voYc+9997rHfOHHnpIV6xYoaqqycnJum3bNv373//ufeOcc04/+ugjVT1+vLO/sauq+ttvv+nWrVt1165dAb/n2BcOLeyghR20sGPz5s3aqFEjde74V2J/9dVXun//fm/53r17dcSIEXr++ecXqofq8X8DZP93gCo9CoMWdtDCDlrYQQtb6GEHLeyghS2c89lBCztoYQs9gLKLAXaYtXbtWh0zZozu3r3b+923336rL730kjZv3lzDw8O9J57w8HCNi4tTVdWUlBRVDXxiSUhI8E6ABg0aFNwHUsY88sgj3nHv16+fLlu2zFtW0Cecs7KydObMmXreeefp//3f/+W4Hf8YKBpa2EELO2hhCz3soIUdtLCDFnbQwhZ6BFf2F88feOABjYiI8K4qdsEFF+jZZ5+tNWvW9Jo453TevHmqevy4pqenq6rq7t279ZVXXtErr7xSGzZsqGFhYVq/fn298sor9ZlnntHffvstx/0hEC3soIUdtLDpp59+8q4o1rBhQ42NjdW7775bBw0apGeeeWbAN5X6vx0le499+/bpl19+qYMHD9ZevXrpRRddpD169NAZM2bo8uXLvfuhR8FoYQct7KCFHbSwhR520MIOWoQe53x20MIOWthCD6DsY4Adpvnf5P7yyy918uTJWrduXa1atao657RWrVrauHHjgE/dfvXVV6p6/Akl+6eoXn75Za1evbrWq1fPu/o6b5wX3aRJk4o8yJD9OL/33nt6ySWXeNvIfuKIoqGFHbSwgxa20MMOWthBCztoYQctbKFHaGR/UXzOnDk6atQo7d69u5577rkaHR3tfeucc04//vhjVQ188X3jxo3ao0cPjY6OVuecVqhQIeAF+8qVK2vXrl31l19+yXF/CEQLO2hhBy1s2rp1q95999167rnnao0aNTQyMlIjIyMLfMN28+bNes0112izZs3UORfQr0KFCtqyZUt95plnvPuhR8FoYQct7KCFHbSwhR520MIOWoQe53x20MIOWthCD6BsY4Ad5u3du1e7dOkS8OTRtm1b/fe//61r1qzRVatW6WWXXeYtW7Bggar+8YSSnp6u7du3V+ecduzYUQ8dOlTgfWZmZnpPTDjuySefLPIgQ/bfv//++9q9e3dvG88//3yJ73NZRQs7aGEHLWyhhx20sIMWdtDCDlrYQo/QOvFD9r/99ps+88wzesEFF3jHNPvXnvpffP/pp5+0YcOG3jpRUVE6atQoffzxx3XGjBkaFxenZ555pjrntEmTJrp169Zc7w9/oIUdtLCDFjalp6drZmamrlq1Su+//35t3rx5vm/YJiYmapMmTbx1IiMjtXfv3nrTTTfp1VdfrTExMd6yBx980LsfehSMFnbQwg5a2EELW+hhBy3soEXocc5nBy3soIUt9ADKLgbYUSqsX79ew8PDtUuXLjp27Fg9evSotyw9PV2/+OKLXIfYMzMz9amnnlLnnNasWVM//fRT7/d5yczM1O+++07PPvtsvfHGG0v2gZUia9euVZ/Ppz179tSvv/7a+31BgwxZWVk5BhleeOEFb73MzMwCv4YegWhhBy3soIUt9LCDFnbQwg5a2EELW+hhy9dff61NmzbN9cV3/wf2N2/e7L1hW7t2bb3qqqt07dq1Ads5cOCALlq0SDt16qTOOb3gggt0586dQX88pRkt7KCFHbSwwf/8+vrrr2urVq1yHfI5duyYqqpu2LBBTz/9dO918m7duul3333nLVdV/fbbb/WBBx7wtvP4448H/0GVUrSwgxZ20MIOWthCDztoYQct7OGczw5a2EELW+gBlB0MsKPU2LVrl27bts0bPs/IyPBOZo4dO6YLFy7MdYj92muvVeectmvXTjdv3pzvffiH13v06OFt58477yzZB1aKJCUl6TfffOP9/WSuwnfiIENuHybg61gKRgs7aGEHLWyhhx20sIMWdtDCDlrYQg9bBg0apM4FflW2/9jv27dPr776anXOaa1atXTQoEG6ZcsWVf3j+GY/9qtWrdLzzz9fnXM6cuRITUtLC+6DKeVoYQct7KCFHZs3b/aehz/55BNVDeyxa9cu7datmzrntE6dOjpo0CDvdfLsr7GrqiYnJ+vjjz/utfP3ReHQwg5a2EELO2hhCz3soIUdtLCFcz47aGEHLWyhB1A2MMCOUim3N9FzG2IfOXKk9/OLL76Y7zb9w+v+k56KFStqWFiYOud06NChJfVQSq3iHmSYNGmS3nfffSW3w2UYLeyghR20sIUedtDCDlrYQQs7aGELPUIn+3Fbv369qv7x4rv/+C9atEibNWumzjnt3r2794ZtXt3S0tL0hRde0Bo1auhZZ52lv/76awk/irKBFnbQwg5a2LR+/Xr97LPPVPWPHv5W06dP1wYNGqhzTvv06eO9YZtXjx07duiAAQM0IiJC77rrroCrWaJgtLCDFnbQwg5a2EIPO2hhBy1Cj3M+O2hhBy1soQdQtjDAjjLlxCF2n8+nzjm99NJLddeuXaqa+5PRicPrFSpU0BtuuEHvv/9+bxt33XVXsB9OqXOygwzPPPOMt97UqVODus9lFS3soIUdtLCFHnbQwg5a2EELO2hhCz2C58Sr1J/4WsZtt92mzjmNjIzU7777Ltd1TrRt2zaNiorSevXq6dGjR4t3h8swWthBCztoYVf2N2v9evfurc45jYqK0nXr1nnr5ee9995T55x27NiRb045SbSwgxZ20MIOWthCDztoYQctQotzPjtoYQctbKEHUHYwwI4y5+jRo/rtt99q586dveHz0aNH57l+bsPrAwYM0BUrVqiq6owZM7ztjBgxIlgPo9Q52UGGp556SiMiItQ5p+3btw9Y178+ioYWdtDCDlrYQg87aGEHLeyghR20sIUedmRlZenll1+uYWFh2qdPH83MzCzwTVh/v08++UQPHz6sqhz74kALO2hhBy1s2bVrl0ZHR2uFChV0zJgxqprzTd7s/C2OHj2qw4YN04MHDwb8HiePFnbQwg5a2EELW+hhBy3soIUdnPPZQQs7aGELPYDSxSdAGaKqEhkZKWeeeab391atWsn999/v/T27rKws+d///iejRo2SJUuWSEREhPz1r3+Vu+66Sy666CIRERk4cKA8//zz4pyTqVOnyuOPPx7cB1UKqKo450RE5IMPPpAXXnhBFi9eLCIizz//vNx+++0icvx4i4j4fMf/p2fatGkyZswYycjIkOjoaGnQoIHUrFlTli5dKhs3bvTWzczMDPIjKr1oYQct7KCFLfSwgxZ20MIOWthBC1voYUt6errs3r1bsrKypE6dOuLz+bxjnhd/vyuuuEKioqIkIyOjwNugYLSwgxZ20MKWI0eOyK5du+TYsWNSt25dEREJCwvLc33nnPca+9NPPy3VqlWTjIwMrxFOHi3soIUdtLCDFrbQww5a2EELOzjns4MWdtDCFnoApUxQx+WBEub/xNR///tfbdq0qYaFheno0aM1PT09xyejCrryuuofn7Dat2+fjho1Sn0+n5533nne14vgD1lZWTpr1qxCX4Vv2rRpWqFCBW/dSpUqeVe6d85pTEyMPv300wG3R+HQwg5a2EELW+hhBy3soIUdtLCDFrbQw460tDTt3LmzOuf0+uuvL/Lt/a91ZL/qGFcgOzm0sIMWdtDClqSkJK1Vq5b6fD595513VLVoz7n+Y5/9NllZWTQ5CbSwgxZ20MIOWthCDztoYQct7OCczw5a2EELW+gBlC4MsKPMyP5kMWDAAG8oPbdhc//wemxsrLfejTfeqMuWLct1e6qqH330kfdG+/Tp00vugZRSc+bM0bZt2xZ6kCE8PFydc1q7dm29+eabNT4+Xjdu3KgffPCBDh061NvOQw89FIqHU6rRwg5a2EELW+hhBy3soIUdtLCDFrbQwxb/MW7VqpX+8MMPhbrNia9zJCYm6urVq/XLL7/UxYsXa1pamqalpakqHygoClrYQQs7aGFLjx49vDdt/V+DXZATe6SkpOjvv/+uycnJeuDAgYBl9Cg8WthBCztoYQctbKGHHbSwgxZ2cM5nBy3soIUt9ABKDwbYUea88cYb3hvhDz74oKoGfnrWP7zetWtXdc6pz+fTdu3a6YYNG7xtZH9S8j/p7N+/X+vWravOOe3Xr1+O9cq7rVu3egMKL774ovf7/AYZzjvvPH322WdzbOvw4cP65JNPeh8umDVrVlAeQ1lBCztoYQctbKGHHbSwgxZ20MIOWthCD1sWLVqkZ5xxhjrndOLEiZqamuoty+21Cn+jzMxMXbZsmY4aNUpr166tlSpV8l5DiY2N1XvvvVd37typqn98yx3yRws7aGEHLWzwH+tJkyZpRESEnnXWWbp06dICb+fvkZWVpT///LM+9thj2qlTJ61Vq5Y2atRITz/9dB0zZox+8skn3m3okT9a2EELO2hhBy1soYcdtLCDFvZwzmcHLeyghS30AEoPBthRphw8eFBvvPFGrVixolarVk3nzp2rqoFfCfXdd99pt27d1DnnvanunNOpU6d62znxk1IZGRn6zjvveF9/ft111wVsF8etWbNGX3nlFe/v+Q0ynH/++QHrZn9iz8zM1M2bN+v555+vYWFhOm7cuKDsf1lCCztoYQctbKGHHbSwgxZ20MIOWthCD1seffRR7zWNadOm6Z49e7xluX0w/9ixYzpx4kS98MILvdudeeaZeuGFF2qlSpU0LCzMa7d161ZV5UX4wqKFHbSwgxZ2bN++Xdu1a6fOOe3WrZuuWbNGjx07pqo5X9/O3uOpp57yrnLp/1OvXj3vojA1atTQyZMn57gt8kYLO2hhBy3soIUt9LCDFnbQwhbO+eyghR20sIUeQOnAADvKlOxXSb/55psDlp04vF6hQgW9/vrr9fbbb/eeeB577DFv/exPVr/++qv269fPW+/ll18O2mMqrYoyyJDXSWCXLl3UOac9evTQjIwMnvhPEi3soIUdtLCFHnbQwg5a2EELO2hhCz1CJ/vxHDFihPdaxa233qpz584NOI7+1zaOHTumo0aN0vr163vrv/vuu/r777+rquqGDRt06tSp2qZNG3XOaUxMjCYlJQVsAznRwg5a2EELmzZs2OAd3w4dOuhrr73mXTHML/sbtqNHj9bTTjvN6zFjxgxdsGCB7t69W59//nm99tprvWXjx4/3tkGPgtHCDlrYQQs7aGELPeyghR20CD3O+eyghR20sIUeQOnCADvKnLVr1+r555+vH3zwgfe73IbXBwwYoCtWrNCsrKyAT13985//1P3793u3TUhI0IEDB3rLu3fvrmvXrg3BIytdTnaQISsrSzMzM3X9+vV61llnaXh4uI4aNarA+0DeaGEHLeyghS30sIMWdtDCDlrYQQtb6BFa2V9kf/jhh7VGjRret8bde++9AetmZmbq5MmTA96wdc4FXF1MVTU1NVW/+eYb7dixozrn9Oqrr9YDBw4E5fGUZrSwgxZ20MKmn376yXujtVatWlqnTh1duHBhwDoZGRk6fvz4gDdsa9asmeNYb926VSdNmhQwCITCo4UdtLCDFnbQwhZ62EELO2gRepzz2UELO2hhCz2A0oMBdpRJO3fu9D4Fldfw+vLly731jxw5ouPGjfOehGJjY7V///7aq1cvveCCC7zfN2vWTF944YVQPaxSafLkyVqpUqVCDTJk//uECRO84z548GD97LPPdMaMGbpw4UL9+eefvfW4Ql/h0cIOWthBC1voYQct7KCFHbSwgxa20CN0sh+buXPn6p133qkXXnihHjp0SFX/uPLLunXr9OKLL1bnnIaFhelNN93kHfsxY8Z42/Cv/8knn2h0dLQ2btxYv/vuuyA+otKLFnbQwg5a2LRt2za95557NCYmRuvUqaNHjhxR1T+O74IFC7Rt27bqnNPIyEg955xz1Dmn9evX14SEhIB1jxw5oqNHj1bnnP75z3/Wffv2cdWxIqCFHbSwgxZ20MIWethBCztoEXqc89lBCztoYQs9gNKBAXaUaceOHdOvv/5aL7300oDh9RUrVnjr+J9gNm3apJdddlnAp6my/7nwwgv12WefzXE75O3333/XOnXqqHNO27dvX+hBhpdffjng2NevX18jIyO9v5911ln6zDPP5Lkt5EQLO2hhBy1soYcdtLCDFnbQwg5a2EKP0Mt+bDIzM70X5Y8dO+b9fvz48d6xnT59uqqqPv30097v7r///oBt7tq1S1u3bq3OOZ04cWIQHkXZQAs7aGEHLWw6evSo7ty5U48ePaqqgT3uuusu79i/+eab+ttvv3kXhqlfv75u2LBBVf94E/jzzz/X8PBwjYyMLNK3lvLa+nG0sIMWdtDCDlrYQg87aGEHLULPwjmfv395vwgGLeyghS30AOxjgB1lWmpqql555ZXqnNMqVarkObzuN2TIEO/N8quvvlovu+wyPe+88/TRRx/V+Ph4b73cvgI9v7+XZ+vXr9c//elP+vzzz3u/y2+QYcaMGd4/Alq0aKE33nijrly5UhMSEvTDDz/UO++801s+bty4YD2MMoEWdtDCDlrYQg87aGEHLeyghR20sIUe9vhfk8jMzNTDhw973ywXFxfnvTCfmpqa74vwgwYNUuecPvLII0Hf/7KEFnbQwg5a2JL9OXrdunVavXp1dc7p0KFDvd+vX78+12Ef1eNv+LZu3VrDwsJ00aJF+d7XmjVr9J133vH+zmvogWhhBy3soIUdtLCFHnbQwg5a2BHMc761a9fqPffc433ogOHQQLSwgxa20AOwhQF2lHmrV6/WevXqaZ8+ffSbb77xfp/9RCI9PV1V//gE1SWXXOL9zv/VIX5c+a3oDhw44P1c2EGG2NhYnT59esCn3lSP93jiiSe89d59992S3fkyhhZ20MIOWthCDztoYQct7KCFHbSwhR52/f7771q7dm11zul9990XsCw9PT3XF+F37typLVq0UOecPvbYY6HY7TKJFnbQwg5a2PL9999rpUqVNDw8XF999VVV/eM19MTExFyHfVauXKkVK1ZU55x+8skneW77xx9/9C4ec/PNN3u/Z9gnd7SwgxZ20MIOWthCDztoYQct7CjJc74ff/xRhw4dqs45jYiI0NWrV6sqw6F5oYUdtLCFHkDoMcCOcuHXX3/VlStXen/P64rpcXFx6pzTVq1aeU8YuT1x+Nfft2+fbtiwQf/5z3/qnXfeqf3799f+/fvrxIkTdcmSJXrkyJGSekilUmEHGf70pz/pzJkzveUnfqXLxo0b9ZxzzlHnnI4ZMyY4O1/G0MIOWthBC1voYQct7KCFHbSwgxa20MOelJQUbdKkiVaoUEFfeeUVVVVNS0vzlp/4Ivzo0aP1o48+0gYNGmjt2rX1yy+/9NY98bUUPuBfNLSwgxZ20MKWRYsWqXNOa9asqd9//72qBh7HE4d9Vq9erW+//bZWqVJF27Rpozt37sx1uz/++KPeeeedWrNmTa/lnXfe6S1n2CcnWthBCztoYQctbKGHHbSwgxZ2FOc5X3b+Fv4r7TvntEaNGlzhOB+0sIMWttADCD0G2FHu5HXicOzYMe3cubM65/Syyy7TzMzMfN/o+Prrr7Vfv37atGlT78km+x+fz6eDBg3ianF5KOwgQ/Ze2X+OjY1V55x27dq1wFbIHy3soIUdtLCFHnbQwg5a2EELO2hhCz1CLzMzUw8cOOC9bjFq1Khc10tPT9dp06Z5jRo0aKDOHb9KfmpqqqoGtlm4cKEmJSWpKi+0FxYt7KCFHbSwJSsrS5cuXarOHb8qWF5vwGYf9qlVq5aeeeaZ6pzTq6++Wo8ePZpjff8btjVq1FDnnDZu3Fh9Pp865/Suu+4KuH8cRws7aGEHLeyghS30sIMWdtDCjpI65zuxRYsWLbRDhw4Mh+aDFnbQwhZ6ADYwwA78f2+++ab3ZPP888/nuV5GRoa+/vrrGhkZ6Z2UREVFaZ06dbRnz57arl07bd++vTrnNCwsTKtUqaIPPfRQEB+JfdmfuAs7yJDdN998ow0bNlTnnI4dOzYo+1xW0cIOWthBC1voYQct7KCFHbSwgxa20MMG//F95JFH1DmnnTp18r4a+0Tp6en61FNPea2aN2+uCQkJ3jK/Tz/9VKOjozU6Olq3bNlS4o+hrKCFHbSwgxb2ZGRkeEM8Q4cOzfPbRRMTE/VPf/qT16NFixa5fmjgxDdsW7durZ9++qn++9//ZtinALSwgxZ20MIOWthCDztoYQctbCiuc75jx4556+XWYuHChZqQkKCXX365Nxy6bt06VeWbufxoYQctbKEHYAMD7Cj3/E9I9913n0ZERGiVKlV00aJFua574MABffLJJ70nJOecNmnSRN966y3v66eSk5P16NGjOmPGDO3Xr5930jJ8+PBgPaRS47nnnivyIEN6err3jwfnnL722mvB3OUyixZ20MIOWthCDztoYQct7KCFHbSwhR42LFy4UE877TR1zunjjz8ecCWx7B3S09N14sSJ2qBBA/3oo49UNfAN2/nz52vr1q01IiJCnXPeh/V5Y7bwaGEHLeyghQ1ZWVl67NgxnTBhgvp8Pj333HP1m2++yXP9xMREbdOmjVauXFkXLFigqgW/YfvFF19460yfPt173fzee+8t2QdXytDCDlrYQQs7aGELPeyghR20sOdUzvmyD3bm1mLBggVei02bNmnPnj3VOadNmzbVjRs35riP8o4WdtDCFnoAocUAO6CqW7Zs0Xr16qlzTnv27Jnnetm/EqR+/fp6/fXX6+7du/Ncf+vWrfrkk096Jy1jxowpid0vdbKysvTAgQPecenRo0ehBhlUVV955RWvwcCBA4O1y2UWLeyghR20sIUedtDCDlrYQQs7aGELPeyZOHGid1ynTZumv/32m7cs+wDosWPHdOPGjTm+Lnv+/Pnapk0b9fl8Wq9ePR00aJD++uuvAbfnK08LhxZ20MIOWtixfft2bdu2rTrntFu3brpmzRrv2J34/L1p0yZdsmSJpqWlBfze/4Zt9erVA96wzX61/GPHjunzzz/v/VvhxRdfLPkHV8rQwg5a2EELO2hhCz3soIUdtLDlVM/5CtPCv16nTp3UOafXXHON/v777yX7wEohWthBC1voAYQOA+wo1/xvnn/44Ydas2ZNDQsL867Oc+Ib6++//773ZNWoUSO95557dN++faqa8w2Q7Cc9KSkp+q9//cs7aZk+fXqJP67SYu3atdqrVy997bXXCjXI8Nprr3kNLr/8cl27dq2q8pUqxYEWdtDCDlrYQg87aGEHLeyghR20sIUeoZf92I0aNco7vkOGDNHPPvusUNuYP3++nnvuud5VjZ1zWrt2bT399NP1wgsv1JEjR+qOHTtUlQHR/NDCDlrYQQubNmzYoNHR0eqc044dO+o777yje/bsUdWCrwp24tXGzjnnnICrjWW3e/du7d+/v4aHh2tcXJweOnSoRB5PaUYLO2hhBy3soIUt9LCDFnbQIvSK45zvxx9/1CFDhnhDofm1yMjI0KlTp6pzTs8880z94YcfVJWrG6vSwhJa2EIPIPQYYAdUtV+/fuqc06ioKO8N8uz+97//aa1atdQ5p3Xq1NG77rpLDxw4oKqFeyP9999/13vuuUd9Pp/GxsZqQkJCsT+G0urgwYNFHmTo3r27fvbZZ3l+Sjo7/zKe7AtGCztoYQctbKGHHbSwgxZ20MIOWthCj9DLPrD54IMPakREhPp8Pq1du7becsstunz5ck1JSfHWyX4sP/nkE23Tpo03GNq0aVPt1KmT3nHHHXrRRRfp6aefrs45bdWqlW7dulVV+cBBfmhhBy3soIVNP/30k5511lnqnNMGDRroZZddpp999lm+30bqf8M2KipKnXN6/vnn66JFizQ1NTXP20yYMEGdcxoWFqbffvttSTyUUo8WdtDCDlrYQQtb6GEHLeygRegV9ZwvuxNbtGrVSleuXJnr+v5zxZUrV2qFChXUOacTJkwomQdVStHCDlrYQg8gtBhgR7m3f/9+Pf/889U5p9dee62mpqZ6b2RkZmZqenq6jh49WitVqqTOOf3LX/6ie/fu9ZYX1uLFi/WMM85Q55y++uqrJfFQSrX8hg1effXVgEGGTz75JMfXrKiqLl++XOfMmaPjx4/XZ555RpcuXapJSUnect6gKhxa2EELO2hhCz3soIUdtLCDFnbQwhZ6hFb2F+HffPNNveqqq7xjPnnyZO94nzgY2rp1a+8b5Xr16qWbN2/2vtb0999/1yVLlmjHjh3VOafnnXee7ty5M7gPrBSihR20sIMWNm3dulUHDhyojRs3VuecRkdH6yuvvJLr8+369et1yJAhWq1aNa/dbbfd5i0/8er3/m28+OKL3vpz584t2QdUitHCDlrYQQs7aGELPeyghR20CL3CnvNl578Kvv+Kxs45PeOMM/TXX39VVc31ysaqqp9//rm3/vjx40vmAZVitLCDFrbQAwgdBtgBPX4i4pzTsWPH5liWnJysrVu3Vuecnnbaabpt2zZVPbk3xkeOHKnOOW3WrBlvmBRSYQYZPv/8cx0xYoQ657RixYre+hUrVtRLLrlEp0+f7q3LVwWfPFrYQQs7aGELPeyghR20sIMWdtDCFnoET/bXMX799Vf973//qxMnTtTk5GRVDTx28+fP1zZt2qjP59OqVavq0KFDA5ZnHyJdvHixnnnmmVqhQgV96qmncixHTrSwgxZ20MKm/fv365dffql33XWX3n333d4VxLIfw/Xr1we8YRsdHe09Vz/xxBPeeie+nr59+3b985//7D2nf/HFF8F5UKUULeyghR20sIMWttDDDlrYQYvQK+icL/ty/1BojRo11DmnMTEx2qxZM3XOacuWLXXPnj2q+sd5or/j7t279R//+Id3ZePHH388YDmOo4UdtLCFHkBoMMAO/H9JSUnep6CyPzHMnz/fO9nwf/IptzfE83sy8T+JxcfHa40aNfT000/XtWvXFuful0mFGWSYMmWKtm3bNmC9q666Snv37q316tXL9VNrXJWv6GhhBy3soIUt9LCDFnbQwg5a2EELW+gRfHm9dpH9uM+fP1/PPfdc70X0IUOGeK+D5PZ6yN69e7VDhw7qnNO4uLiS2fEyiBZ20MIOWtjmv3JY9iuInTjk06ZNG50/f74+/PDD3nP0Y489lmNbe/fu1WeffdYbCmrcuLH3racoGC3soIUdtLCDFrbQww5a2EGL0MnrnC97ixOHQlu3bq1ffPGFrlixQs8//3xvOHT79u0B29i9e7e+8MILesYZZ6hzTuvWratbt24t0cdTmtHCDlrYQg8g+BhgBwowY8YM76Rk3rx5ua7jf3N837593ievcrN//35t2rSpXn311SWyr2XJCy+8oGFhYfkOMjz66KPasGFDr8+YMWNU9Y9/OCxZskTvvvvufE8qUTBa2EELO2hhCz3soIUdtLCDFnbQwhZ62JF94P+TTz7RNm3aaEREhDrntFu3bvkOhvpf0B8yZIg657Rz58566NCh4Ox4GUQLO2hhBy1CL/ubt9l7rF+/XocMGRIw5PPFF1/osWPHNC0tTR955BHvOXrs2LG6Zs0azczM1NWrV+sDDzygTZo08d6wfe2113JsHznRwg5a2EELO2hhCz3soIUdtLApe5fchkIXLFjgvRa4cuVKbzg0JiZGX3vtNY2Pj9fFixfr4MGDvaHQWrVq6ZQpU1SVFkVBCztoYQs9gJLFADtQgBdffNH7tOyOHTtUNfdPXG3cuFHPPvtsvfvuu/XAgQM5lmdmZurhw4f1zTffDPhdXtsrzw4cOOCdIF522WW5DjK88cYb2qJFC+9k0bnjX+O1efPmHNt6/PHHvX8AfPrpp8F8KKUeLeyghR20sIUedtDCDlrYQQs7aGELPew48RvozjnnHO94161bV7/++mtVzX0w1G/v3r164YUXqnNOr7jiihLf57KKFnbQwg5a2OV/w/bEIZ/sz+cpKSk6efJkr9npp5+uLVu21EqVKmlUVJT33D1q1Cjdtm1bCB9N6UYLO2hhBy3soIUt9LCDFnbQwo7169fr0KFD822hqrp69Wpt166dOue0UqVK6pxTn8+n4eHh6pzT2rVr68iRI/Xnn38O0SMp/WhhBy1soQdQMhhgBwrw7rvvqnNOq1atquvWrctzvc8//9w7aclriD07/xsr/jditm3bpjNnziy+HS/lVq9erVdddZXOmTPHe7L3D/wfPnxY+/fv7x3vf/7zn3rppZeqc07r1aunGzZsCFh/x44d2rdvXw0LC9OJEyeG5gGVYrSwgxZ20MIWethBCztoYQct7KCFLfQIvbwGQ+vXr69Vq1bVBg0a6C+//JLn7f2va/z000/e1cYGDRrEFWNOAi3soIUdtLArMTFRBw4cqHXq1Al4wzb712lnN2PGDK1atapGRkYGfDCtTp06+tBDD+mmTZuC/AjKDlrYQQs7aGEHLWyhhx20sIMWduzatUsHDBig1apVK1SL33//Xa+66io97bTTAlrUr19fp06dylDoKaCFHbSwhR5AyWGAHSjA4sWLNTw8XMPDw3XBggX5rvvmm296TzrDhg0rcIjd/0bMjh07dMiQIerz+fRvf/tbse17aXfkyJFcn+zff/997zg/8MADqqq6YcMG7dq1q/eEf+JAwwMPPOD9IyItLY03q4qIFnbQwg5a2EIPO2hhBy3soIUdtLCFHqGT22Coz+fT6tWr69ChQ/VPf/qTtm/fPs/b+wdDjx07ppdffrn34YJvvvmmxPe9rKGFHbSwgxa27dy5Uxs3bqzOOW3btm2+b9j6LV26VCdNmqQXX3yx9urVS6+//nr93//+p0eOHAnSXpdNtLCDFnbQwg5a2EIPO2hhBy1sGTVqlDrntHXr1rpw4cI8W2Q/3/viiy/08ccf13vvvVcnT56cYyA0+7klCo8WdtDCFnoAJYMBdqAQ/G909O3bV/fu3ZtjefYnFP8V251zetddd+n+/ftz3ab/Nr/++qsOGTJEGzZs6N1uzZo1JfI4Sjv/Mbvnnnu8fxT89NNP3rLExETt1q1bjoEGVdW33npLnXPaoUOHkOx7WUMLO2hhBy1soYcdtLCDFnbQwg5a2EKP4MjrqsbVq1fXUaNGaUpKil5xxRVaoUIFXbVqVY7b+1+AT09P1yFDhqhzTitWrKg33XST7tq1q9D3DVpYQgs7aFE6rF69Wrt06aL//e9/8x3yyeuY+n/v/8DZievRovBoYQct7KCFHbSwhR520MIOWoRe9mP06KOP6vz58wv8IEF+F64o6KIWNMkbLeyghS30AEoWA+xAPvxPCtOnT9eaNWtqkyZNdN68ebk+Wfh/l5GRodddd503jD5u3LgcT1wnDq9HR0d7b8R8/PHHJfyoSi//cbvkkkvUOaddu3bNsc6JAw2bN29WVdUbb7xRnXMaFxcXzF0us2hhBy3soIUt9LCDFnbQwg5a2EELW+gRXP/9738DBkNHjhzpDX6OGDFCfT6fTpw4UY8ePZrjtunp6fqPf/zD+8rUZs2a6aJFi3Ksl5GRoRkZGXm+LoLjaGEHLeyghX3JyckFvmGbXWZmpnds09LSApb9/PPP+uOPP+qGDRt0x44dOW6H/NHCDlrYQQs7aGELPeyghR20CL3sx78oxyn7uVt6err3c1pami5evFhnzZqlr7/+us6aNUsPHjyoqampRb6P8oYWdtDCFnoAJYcBdqAQdu3apZdeeqk657RLly4BV0jP/mSzbds2nThxotaqVUudc9qkSRN98cUXvSeY7OufOLweFRXF8Hoh3XTTTeqc07/97W+qGvgkrxo40FCvXj199dVX9bzzzlPnnE6cOFFVebIvLrSwgxZ20MIWethBCztoYQct7KCFLfQoeZ9//rmedtppGhkZ6Q2GZj9ms2bN8j6YP2nSJP3uu+9UVXXz5s26ePFijY2N9ZbXq1dP//Of/wRsf/Xq1frBBx9o37599bLLLtMrr7xS77zzTl24cKH+/vvvqvrHVZLLO1rYQQs7aFG2ZT+2b775pt52220aGRmpYWFhGhUVpVWqVNGhQ4fqhx9+mOttUHxoYQct7KCFHbSwhR520MIOWtiRfbD06aef1j59+njnhP4/HTp00KFDh3ofLKBFyaCFHbSwhR5A3hhgBwpp8+bNeuaZZ3pXgVu5cmXAFX6SkpJ04sSJWrNmTXXO6VlnnaWvv/66HjhwwFunKMPrXOknbyNHjlTnnLZo0UL37NmT6zqJiYnatWtXdc5plSpV1DmnZ5xxRo5POp/sp+RwHC3soIUdtLCFHnbQwg5a2EELO2hhCz1K3ubNm70P3997773escl+vO6//37vxfM6depox44dtXbt2lq/fn3vuLdu3TrgjVhV1bfffltbtWqlNWrUyPEifKNGjbRPnz6alJSkqrwIr0oLS2hhBy3KruwNb7nlFm3QoEFAg6ioKHXOaVhYmFarVk0nT57srU+P4kULO2hhBy3soIUt9LCDFnbQwo7sLa6//nqtVKlSwLlidHS0+nw+73fnn3++bt26VVVpUdxoYQctbKEHkD8G2IEiSExM1EaNGqlzTtu2bavPPfec7ty5Uw8dOpRjeP3VV1/VgwcPerf1v9FS1OH1+Ph4femll4LzAI3zH5dvv/1WzzzzTK1Ro4a+8847eT5hJyYm6p/+9CfvSf+LL75Q1T+e4P3/SEhJSdEff/xRVRloKCxa2EELO2hhCz3soIUdtLCDFnbQwhZ6BFdiYqI++OCD3jHxH7fsx+iBBx7QunXr5hjybNCggQ4fPlyXLVsWsM2nnnoqYL2WLVvqFVdcoYMHD9azzjpL69Wrp845bd68uW7ZsiXgfsszWthBCztoUfZkP5ZXXXWVN9DjnNO77rpLn3/+ef3qq690woQJ2rt3b6/Tgw8+6N2O5/HiQQs7aGEHLeyghS30sIMWdtDCjuwtrrzySnXOaUREhFavXl0feughXbZsme7YsUO//fZbnTBhgp577rnqnNOmTZvqtm3bVJUWxYUWdtDCFnoABWOAHSiijRs3aqdOndQ5p5UqVdKYmBj929/+ViLD6998841ee+216pzTwYMHB+cBlgIHDhzwjkvnzp113bp1ea67fv167dmzp7700ksBn2rLPsjQvHlzdc7pypUrS3zfyxpa2EELO2hhCz3soIUdtLCDFnbQwhZ6BN+JA5rZ/7548WL997//rbfffrvec889+uSTT+qWLVs0OTk54DbPPPOM96bseeedp/fcc48ePHjQa7F9+3adNWuWdujQwRsc/fXXX1WVb6HLjhZ20MIOWpR+2Y/h9ddfr845rVixonbu3Fnff//9HOv/8ssv+thjj3nNnnvuuWDubplGCztoYQct7KCFLfSwgxZ20MKmm2++2WvRtWtXnTt3bo51UlNTdeXKld6sz2WXXaZ79+4Nwd6WbbSwgxa20APIGwPswEn49ddf9b777tO2bdsGfKL27LPPLrbh9RUrVnhv2Pv/3HvvvcF5gKXAzz//rGeeeaY657Rr1666bNky742pE99UOnjwoKampubYxpEjR7yGzjk9/fTTdf/+/bwpVUS0sIMWdtDCFnrYQQs7aGEHLeyghS30CL2CruySffl//vMf7zh36tRJX3nlFU1PT1fV44Om/mOelZWlP/zwg7Zv316dczpw4EA9dOhQjm1nb0QvWlhCCztoUTo99dRTWrFiRY2IiNBu3bp5356ierxZ9g8npKSk6Pjx49U5p23atNHvv/8+x/Y4/iePFnbQwg5a2EELW+hhBy3soIUdb775ptavX1/DwsK0S5cuOVqcaMmSJdqiRQuNiorS6dOn51h+Ygu+lavwaGEHLWyhB5A/BtiBk5SSkqK//PKLjhw5Unv06KExMTE6Y8aMYhte79+/v/fGSlRUlDrn9M9//nPA9su7n376SU877TR1zmnr1q31oYce0o0bNxb69s8//3zAIMPMmTNLcG/LNlrYQQs7aGELPeyghR20sIMWdtDCFnrYkn3AM7tt27Zp165d1TmnzZs315deesl70Ty3F+CzsrL0P//5jzZo0ECbNm2a48r4ub3gnv3q+qCFJbSwgxb2paam6lVXXaXOOa1Zs6Z+9NFH3rK8BnbWr1+vl156qTrn9KWXXgpY5m+RlJSkiYmJqsrXahcWLeyghR20sIMWttDDDlrYQQtbbrvtNu/1vw8++MD7fV4tDh06pGPHjlXnnPbt21ePHj3qLfO32Lp1q7788ss5fo/80cIOWthCDyB/DLADxSA5OVl37typR44c8X53KsPr1113nffk5b+dc07ffvvt4DygUmTjxo3apUsXDQ8PV+ec1qpVS5955hnv5K4g//znP9U5p7NmzfJ+xyecTw4t7KCFHbSwhR520MIOWthBCztoYQs97Fu5cqXWqlVLnXN60003eYOc+R3nPXv2aM+ePdU5l+tXbKuqjh49Wm+99dYS2eeyihZ20MIOWtixcOFC73XuCRMmeL8v6Hl59OjR6pzTJUuWqGrgBwa2bNmiN954o9atW1c///zzktnxMogWdtDCDlrYQQtb6GEHLeyghR2bNm3SiIgIdc7p0KFDvd8X1GLZsmVasWJF/eSTT1T1+IcS/BeS3LJli95+++3qnNM+ffqU2L6XNbSwgxa20AMoGAPswCnI6wmluIbXR40apXfccYf6fD5t0KCB/vDDDyX3YEqxHTt26IQJE7RDhw7qnNMhQ4bo/v37871N9k+frV+/3vuZQYZTQws7aGEHLWyhhx20sIMWdtDCDlrYQg/bHn74YXXOacOGDfXnn39W1cJdKWzOnDl6//33e3//7LPPvK4PP/yw1q1bV51zOmzYsJLY7TKJFnbQwg5a2DFz5kx1zmm9evV0xYoVqpp/C/+yffv26Zo1a1RV9fDhw/rkk0/qiy++qMnJyXrHHXd4r72ff/75mpqaynN9IdDCDlrYQQs7aGELPeyghR20sGPt2rXq8/nUOacvvviiqhb+6vW7du1S1eMXq5w8ebJedtllunTpUh0+fLjWr19fnXN62mmneeshf7Swgxa20AMoGAPsQDHzn0ic6vD6kCFD9JtvvtHmzZvzqalCSE9P13379umsWbN0z549qlrwYMKJ/yjgJLB40MIOWthBC1voYQct7KCFHbSwgxa20MMu/xXEGjZsqLt27Tqp47xo0SKNjo7WRo0a6fDhw7VevXoaHh6uzZs311deeaUE9rpsooUdtLCDFna8+OKL6pzT008/XXfv3l3k22dmZuoPP/ygZ511ljrntG3btlqvXj11zumFF16oP/30UwnsddlECztoYQct7KCFLfSwgxZ20MKOtWvXasWKFbVq1aq6fPlyVQ28qEVh/Pbbb3rzzTerc06rVKnifYNX27ZtdePGjarKa4qFQQs7aGELPYCC+QRAsVFVcc7Jzp07ZeLEifLhhx/Krl27pEqVKjJz5kzp3bt3jnVFRL755ht5+umn5b333hMRkVtvvVXGjRsnkZGRkpqaKj6fTy655BIREcnMzAz+AysFIiIipFatWnLNNddI3bp1JSsrS5xzkpGREbBe9uPn8wX+T6C/B04NLeyghR20sIUedtDCDlrYQQs7aGELPexRVRERqVixooiIREdHS/369cU55y0rjMzMTGnVqpXExMTI9u3b5dlnn5XffvtNmjVrJuPHj5ebb7454P6QEy3soIUdtLCncuXKIiKyd+9e2bVrV5Fv75yT8847T6699loREfnhhx/kt99+k3bt2smsWbOkRYsWvHZeSLSwgxZ20MIOWthCDztoYQct7IiKipKMjAw5cuSIxMfHi4hIWFhYoW+vqlKnTh25/vrrpX79+pKSkiL79++XVq1ayZdffikxMTGSmZnJa4qFQAs7aGELPYCCMcAOFCPnnOzatUvuu+8+mTdv3kkNrw8ePFj++c9/Sr169eSNN96QX3/9VSpVqiSXX365iAQ+kfHGSN58Pp9kZGRIeHi4JCcny9SpU0Xk+PHjhC+4aGEHLeyghS30sIMWdtDCDlrYQQtb6BF6/tc1OnbsKCLH33D99NNPA5YVJDMzU8LCwqRBgwZy3nnnSYUKFSQzM1PCw8NlyJAhcsMNN4iIeB9YQO5oYQct7KCFPZdffrm0adNGMjIy5LPPPpP09PRC39b/evr27dtl9+7dEhUV5R3z9u3bS+PGjb318tsGjqOFHbSwgxZ2hLoFAtHDDlrYQQsbVFWaNGkiAwcOFJ/PJ998843s2LGjSLf3t5g9e3ZAx99//927MAYtCkYLO2hhCz2AQireC7oD2Llzp7Zs2VKdc1qzZk39+OOPA5Zn/9qOFStW6HXXXafOOXXO6e23365bt2711rviiivU5/Np3759NT09PeDrz7Nv54MPPtCHH364hB9Z6XLs2DFVVU1JSdF27dqpc06HDx8e4r0qn2hhBy3soIUt9LCDFnbQwg5a2EELW+hhx+bNm/Wiiy5S55yOGjVKDx8+XKjbZX+NY8KECVqnTh11zmmlSpXUOaeNGjXSX375RVVz/1rV7LfHcbSwgxZ20MKOw4cP66BBg9Q5p+3bt9fVq1cX6nb+18G3bdumgwcP1rp166pzThs2bOi9rj5mzBhvfX+PrKwsPXjwoH722Wc5tlXe0cIOWthBCzuC3QL5o4cdtLCDFra89dZbGhERoc45ffrppzU1NdVbltdza14tWrZs6b3OePrpp+vPP/+sqn+8Dqma81yPc78/0MIOWthCDyB/DLADJWDNmjXasGFD/c9//hPw+4KG1/1veqiqLly40Fv2+OOP57mdefPmaevWrdU5p7feemsJPaLSKSUlRZs1a+YdR+dcoU8g85PbPyAyMjJynETyYuMfaGEHLeyghS30sIMWdtDCDlrYQQtb6GHH008/7TV49tln9dChQ96y3F4gz2swNCYmRh9//HHt2rWr9ybuli1bVDXwjVv/7b/88ksdN25cyTyoUooWdtDCDlrYsWXLFm3evLk657Rbt266YsUKTU5OVtXcn1f9v0tKSgp4w/b888/XH3/8UWfMmOG1ffDBB73b+XusXLlSnXN63XXXBeHRlS60sIMWdtDCjmC1QOHQww5a2EGL0Mt+nB944AHv+E2ePFk3bNhQ4O1ya7F582bdsWOHdu7cWZ1z2qRJE920aVOu9/nRRx95y8r7hw1oYQctbKEHUDgMsAMl5MSr+RRleF1VdcqUKVqxYkVt2rSprl+/3ttG9u18/PHH2rp1a42MjFTnnP7lL38pwUdU+vz888/eMT799NN11qxZp7zN7E/qycnJ+u677+r999+vf/nLX7RPnz46depU/fzzz711GGg4jhZ20MIOWthCDztoYQct7KCFHbSwhR6hl33Ic/To0V6Pe++9V+Pj4wu8TfbB0GbNmunMmTNVVTUhIUG7dOnitfUPiGa//ddff60+n0+dc/qvf/2rBB5d6UILO2hhBy1sSkxM1OjoaHXOaevWrfXhhx/WlStX5lgvvzdsN27cqKrHP8yW/QMKDzzwgHf7vXv3aocOHdQ5pxUrVtSvvvoqOA+wFKGFHbSwgxZ2lGQLhkOLjh520MIOWoRe9vO3UaNGecfvL3/5i44bNy7gw8uqhWuRlZWl69at8z643KRJE01LSwu4uvGcOXO0TZs2Wr169Vybl0e0sIMWttADKBgD7EAQFHV4PTU1Vdu3b6/OOb3ooou8rw/JbXg9PDxcnXN64403esvL+xvo2f3444965pln6jvvvOP97mSPj3+QITMzU59//nmNi4tT55zXwP+nTp06ev/995/y/ZU1tLCDFnbQwhZ62EELO2hhBy3soIUt9Ai97EP/999/v3ecGjZsqIMHD/auQKaa/1WN/YOhfuvXr/cGRJ955pmA+1q2bJn3tautWrXSSZMmaVpaWkk+zFKBFnbQwg5a2LRx40bt1q2bVqlSRZ1zWq1aNd2zZ4+3vDBv2Pp7paen62OPPabOOV20aJGqqh49elQnTJig1apV07CwML3mmmt0+/btQX6UpQMt7KCFHbSwo6RboGjoYQct7KBF6GU/53vqqaf0nHPO8c771q1b5y0rTIvs21q9erV27dpVv/jii4D7mz17tl588cVasWLF/8feeYdFcfx/fOaoIipgN6KIvffeezdqYktiEhM19hJb7L1r1IgtaqxoosYe4zf2XhI7IB0ULCjY6HDc+/cHvx3v6MqV4fi8nodHuZ1dZud1u7Mz+5kZEaeT1speuRFyIQ/kQi7IB0FkDAWwE4QRuXHjRobB60qFcffuXTg7OyNPnjxwc3MDkNxgUUgZvP7ll1+KioyW/UiN9oi1jw0s0G449u/fXzwoKC+xmjdvjs8//xz169cXsytNmjRJL/k3J8iFPJALeSAXckE+5IFcyAO5kAdyIQ/kQi7Ih+nR7ovYsWMHevbsCSsrK4wcOVJ8ntXAUO10np6e2LFjh87f0g4MrVatGtauXYu3b98a4rRyJORCHsiFPJALOXn+/Dm2bNmCbt264e+//xaff0iQj0JCQgKePXsmfteeJd/GxgbXr183whnlXMiFPJALeSAX8mAoF+m9T00ruCe3D1rWhnzIA7mQB3JherTL6s6dO9i0aZNY3USj0YjyCQ0NxbBhw7LkAkieGV8bJSjUwsICnHP0798fERERhjqtHAm5kAdyIRfkgyDShwLYCcJI/Pfff+jatWu6wevaLFmyRKQ7f/68zjYKXv9w9DUzfVhYGJo0aSLccJ68fNeNGzfEg0JwcDDWrl0rAho2btyY7fybE+RCHsiFPJALuSAf8kAu5IFcyAO5kAdyIRfkQw60O9DfvHkDLy8v8bv28qWLFi0SgaFly5ZNNzA0LVIGhq5Zs0YEhub2l7XakAt5IBfyQC7kRSn/pKQkUU7Pnz/HmDFjsvzCNiVDhw4Vdfm6desAkIOsQC7kgVzIA7mQB0O40CZl+t27d2P9+vXid3KkC/mQB3IhD+TCtKRVntouXr58iQkTJqBIkSJZdqH9ecqg0D59+uD169f6PxEzgFzIA7mQC/JBEGlDAewEYSRCQ0PFC4xRo0alGbyelJSE2NhYdO7cGSqVCj179tRpaBw9ehRVq1YVwetfffUVBa8bGKWyDwwMRP369cE5R548eVC1alX8/vvvae7z7t07/PDDD+Cco1+/fjoPHMTHQy7kgVzIA7mQC/IhD+RCHsiFPJALeSAXckE+9Eta5aDdX/Hrr7+iVKlSHxQYqnx++fJl0a9StWpVrFmzRsy+T+WfGnIhD+RCHsiF/Gg0GiQmJsLNzQ2lS5cG5xy1a9eGv78/gKwF+WzevFkEhvbs2VPsS3wY5EIeyIU8kAt50IcL5TjavHv3Dps3b0a/fv2Ep8GDB+s9/+YG+ZAHciEP5EIelLL+/fffUa5cOXDOUbNmzUyDQrXLnoJC9QO5kAdyIRfkg8jtUAA7QRiRBw8eYMKECQgKCko3jZeXF+zs7MA5x48//ig+p+B146OMkn716hUaNGgAzjny5s2Ldu3a4cyZMyJdWi+h3NzcwDmHra1thr6JrEEu5IFcyAO5kAvyIQ/kQh7IhTyQC3kgF3JBPoxLSEgIOnXqBM45ihUrBnd3d7Ets8DQS5cuicDQOnXqYM2aNYiKigJAfSIfA7mQB3IhD+RCHiIjI0W9XKpUKfj6+gLIWpDPw4cP0bVrV6hUKlhbW2PLli1ppkurbqeBBqkhF/JALuSBXMhDdlykTOPp6Yk//vgDNWvWhLW1tQgKtbW1BeccS5YsMcg5mBPkQx7IhTyQC7lo27YtOOcoXLhwpgMJMgoK/fzzzykoNJuQC3kgF3JBPojcCgWwE4SR0V6SVhvlZcby5cvBOUeJEiXg7e0NADh8+HC2gtc/dPkp4n2ZJSYmokWLFuCcw87ODl27dsXly5dFupSdhgkJCQCAP/74A/b29ihYsCBCQkKMl3EzhFzIA7mQB3IhF+RDHsiFPJALeSAX8kAu5IJ8GJ+DBw+KF6xubm7i8w8JDC1dujQmT56M69evQ6PRIC4uDgAFiH4o5EIeyIU8kAt5OHr0qAjGOXToEIDMy1Dx4ebmJl7Yfv/992K7dn2uHEutVuPixYvYtm1bquMQyZALeSAX8kAu5OFjXKTE29sba9euhaurKxwdHcE5R/HixdGoUSNUrVoVnCev0HXt2jUDnIF5QT7kgVzIA7mQh6dPn6JQoULgnGPmzJkAsh4U2qRJE6hUKprRWE+QC3kgF3JBPojcDAWwE4RkdO/eHZxzVKlSBYmJiTh27NhHBa+nfMkeFhaGEydOGDTv5kZSUhKGDBkCzjlsbGzQqlUrXLp0SWzPaMaLYcOGgXOO/Pnz4/Hjx8bIrllDLuSBXMgDuZAL8iEP5EIeyIU8kAt5IBdyQT6My5EjR8A5xyeffIJbt24ByDww9PLlyyIwVHkpa2dnh0KFCqFmzZoYOXIknjx5AoACRD8EciEP5EIeyIU8+Pj4oHTp0rCzs8Nvv/2W5f1u3bqFPHnygHOOpk2b4tGjRwDSLvu4uDhMmjQJtWvXBuccQ4cO1Vv+zQlyIQ/kQh7IhTx8qAulfRcZGYnQ0FAMHz4c9evXF/W4g4MDmjZtiv/973+4dOkSBgwYAJVKhUGDBiE2NpYGEGQC+ZAHciEP5EIeYmJi0KVLFzGITJmgIiUpg0KbNm0qgkKrVasm2ndZIa0BagS5kAlyIRfkg8jNUAA7QUjEzZs34eTkBAsLC2zfvh0XLlxA5cqVPyh4PWXD5O7du9ixYwfKli2balYHImMOHjyIcuXKiWW9Tp48KbZlFMhw69Yt1KpVC5xzdO/eHfHx8bS8YzYhF/JALuSBXMgF+ZAHciEP5EIeyIU8kAu5IB/G5ebNm3BxcQHnHCtXrkw3nfasxkp/iEqlQuHChdGnTx+MGDECrVu3RsmSJcE5R+XKlREcHKyzL5Ex5EIeyIU8kAt5ePXqFbp16wbOOVq3bi2CPDPiyZMnYmKYQoUKYdmyZYiPjwegW6eHh4fj3LlzIhDIwsJCvOhdu3atwc4pp0Iu5IFcyAO5kIesuEhZ9968eRPfffcdqlWrBs65qMuHDh2KPXv2IDY2FgDw+++/i4DRnTt3GuV8cjrkQx7IhTyQC7lYv369KLO0BhRo18l//vknmjVrJuph5WfevHmIiorK9G8px7pw4QLu3bsHgIJDtSEX8kAu5IJ8ELkVCmAnCInYsWOHGD07ePBg1KhRQywnmNWZ14HkisbX1xeLFy+Gq6urmNXB1tYWnHOMGzfOGKeT4xk6dKio5Hfs2CE+TyswQfuzefPmif2WLVtmlLyaO+RCHsiFPJALuSAf8kAu5IFcyAO5kAdyIRfkw/gsWrQow074tAJDy5Yti2+//RZBQUEi3du3b3HlyhU0atQInHPUqlULz58/N9ZpmAXkQh7IhTyQC3nw9/cXgwA6d+6sU77aKE727NmDUqVKgXOOBg0aICwsLFXaf//9Fz/88IM4brFixVC6dGlwzlG7dm1EREQY8pRyLORCHsiFPJALeUjpIjAwEEDq96ju7u4YNmyYeOfKOYejoyNGjRqFQ4cO6aT18/NDzZo1wTlHv379jHUqZgH5kAdyIQ/kwvRo9+lNmTJFDAzYsGFDmmlSBoUOHDhQp604Z84cREdHp/v3lPr/3LlzYp8HDx4Y4MxyHuRCHsiFXJAPIrdDAewEIQFJSUmIjIxEu3btRKB5xYoVRcB5VoPXIyMjERgYiEGDBqFOnTqioilZsiRKly4tlrQdMWKEsU4tx3Lt2jXxImrkyJHi88wCGfbt2yfKvWvXroiMjEx3PyJrkAt5IBfyQC7kgnzIA7mQB3IhD+RCHsiFXJAP46I9o9jEiRNFGW7bti1VGu3A0KpVq2LZsmUiYCdln8ipU6fg7OwMW1tbrF+/HgC5yAxyIQ/kQh7IhZx4e3ujePHi4JyjS5cuYrZiBcVJbGwsmjRpAs6TJ4a5ffu2Trrw8HDs2rULDg4O4Jwjf/786NOnDw4fPoxatWrB0dERGzZsgFqtplny04FcyAO5kAdyIQ8pXSQmJgIAXr9+DXd3d/Tp0weccxHgU6ZMGYwbNw4PHjwQMxkDEA7/97//oVixYrC1tcWmTZsA0CoqHwL5kAdyIQ/kwvRot9UmTZokgkNfvHihU3Ypg0L79OmDt2/fAgBWrVqVaXCo0t47c+aMSMs5xzfffEMzG/8/5EIeyIVckA8iN0MB7AQhCeHh4ShSpAgsLS2hUqnEi5D0gtdTVhznzp3DoEGD4OrqKioyzjnGjx+PvXv34qeffkK+fPlQvXp1+Pr6AqAXJhlx+PBhWFhYwNbWFnv37gWQeSDD33//LQYJlC9fHr/99hs1FvUAuZAHciEP5EIuyIc8kAt5IBfyQC7kgVzIBfkwPtr9GOPHjwfnHAsXLgTw/kXrxYsXRX9GqVKlsHjxYtEBn5afiIgIMYC/f//+meYhKSkJISEh+jidHA25kAdyIQ/kQk48PT1RokQJnD17Nt00yooqefLkwZw5c5CQkCC27d+/H1999ZV4Idu5c2dR748bNw6cc7Rs2RLBwcEGP5ecDrmQB3IhD+RCHjw8PPDJJ5/g9u3biIiIwL59+1CjRg04OTmJ8i1YsKD4/8GDBwFA+FDq8YSEBLRs2VIMVHvz5o3JziknQz7kgVzIA7kwPSmDQ8+dO6ezPWVQaN++ffH69WudNKtXr043OFRpN2oHhTo4OOCLL77As2fPDHZeORFyIQ/kQi7IB5FboQB2gpCER48eiSWhlJnXv/zyS9EYUUbipnwZsn37dgwbNkxnZJSzszPGjx+P//3vfwCSX5Y0aNBAvCyJiooy7snlQJRK3dXVNd0XUdq///PPPyhUqBA457C3t8eIESMyXJKFyDrkQh7IhTyQC7kgH/JALuSBXMgDuZAHciEX5MM0aHfCnz59WmebdmAo5xw9evRAeHg4gLQDQ5V+ki+++EIE/GREUlISrl27hqpVq2L06NHZPZUcD7mQB3IhD+RCTpRZJ9OaCezgwYMoV64cOOeoUaMG7t27BwB49+4dRowYIWY0zps3L2bMmCFWTtm0aRM457CwsMC1a9eMdzI5HHIhD+RCHsiFPCQkJODIkSNwdHQUAaGWlpaws7PDwoULsW7dOrESNudcvEPVaDTCn7u7O/Lnz48CBQrA3d0dAM1q/LGQD3kgF/JALkxPerMLHzx4MMOgUO39UgaHRkVFpRsU2q9fP4SFhQF470lpK+Z2yIU8kAu5IB9EboQC2AlCIry8vMQL8a+//lq8/IiLi9NJFxoaip07d6Jz5846geuNGzfG0KFDERISojOLgzJrUKFCheDl5QWAZl/PjHXr1oFzDkdHRwQGBmaY9sSJE3B0dBQeevXqJUY7U4Mx+5ALeSAX8kAu5IJ8yAO5kAdyIQ/kQh7IhVyQD9ORVif8pUuXxGB+CwsL2NnZwdPTE0DG/RevX79G5cqVwTlHp06d0k2XlJSE69evo1WrVsLjf//9l/2TyeGQC3kgF/JALuQjvQFmsbGxGDRokCizAwcOIC4uDtu2bROzUtra2uKrr77CkSNHxP7//vsv6tWrB5VKhSVLlqT5N4DU3wXqTycXMkEu5IFcyMX9+/eRL18+cJ48M/HYsWNx69YtAMlldv78ebRv3154+eeff3T2/+GHH8A5h4uLC+7fv2+KUzAryIc8kAt5IBfy4e7ujqZNm8La2jrNoFAF7T5A7eDQ2bNnA/iwoNCoqCgxAIF4D7mQB3IhF+SDMHcogJ0gJMPT0xNDhgwRnU3aFYyHhwf27t2LChUqiJkZbGxs0KhRI8ycOROBgYGIj48H8H45qdDQULRq1QoqlQrff/+9zsgqIn08PT3h6uoKJycnnc5D7YEBCQkJ2Llzp6jgLS0t0bFjR7x69QpA+iPjiA+DXMgDuZAHciEX5EMeyIU8kAt5IBfyQC7kgnzIQ0BAgCjjatWqoVixYqhSpQoiIyN1fGij9JkcPnwYxYsXh0qlwrx583S2KSiBoc2bNxed8xs3bhQz7xPvIRfyQC7kgVzIy9atW4WbMWPGICAgAF26dBH95kWKFMGff/6Jp0+f6uw3f/58qFQqNG7cGHfu3Mnwb8TGxmL//v3idwoQTRtyIQ/kQh7Ihenw8vLC4MGD8ejRI7FqltJ2S0hIwJkzZ3SCQ0+dOgUA+PPPP8Vnq1atMlX2zQ7yIQ/kQh7IhVysWrVKlGv//v3TDApV0I6z0d7vm2++yTQoVCEqKgrdu3cH5xzz5883yDnlVMiFPJALuSAfhLlDAewEITmJiYkICgrCvHnzUKVKFdjY2IBzDjs7O1G5rF69Wmcf7cplw4YNIt2BAweMnf0cy6tXr8QM9y1atMCtW7d0XkqdOHECP/74oyhbR0dH9OnTRzwoUCCD/iAX8kAu5IFcyAX5kAdyIQ/kQh7IhTyQC7kwhQ8KKEmfr7/+GiVKlMDy5ctRpUoV1K9fP9202i91e/XqBc6TZ0S+du1aqrQpA0Pt7e2xadMmREZGGuxccjrkQh7IhTyQC/m4evUqSpUqJerorl27okCBAuCco0yZMvjuu+/g4+OTar8LFy6Iut3NzU1nm3Y9/fbtW9y6dQuNGjUSL3qJtCEX8kAu5IFcyE1iYmKq4NCDBw9izpw5sLS0RJ06dfDw4UMA1IYzBuRDHsiFPJAL4/P111+jffv2GQaFKmjH4mzbtg2cc6hUKnDOUaBAgQyDQgFg8eLFIt6nXbt2qQaz5XbIhTyQC7kgH4Q5QwHsBCExz549Q8+ePdGiRQvROOGco1mzZhg/fjyaNWsmPjt9+jSA5EaK0lDx9vZGtWrVwDnHoEGDTHkqORJ/f384OzuDc47KlSujV69eGDVqFLp06YKCBQuKsq9evTomT54sZkaiwBL9Qy7kgVzIA7mQC2P6oA7JjCEX8mCK+5SyGhGhC7mQB2O60O54pPo/bUz1PKXd4Zvb6xLtsjx//jxCQ0PRsmVLFChQAA8ePMhw3yFDhojA0Dlz5gDQLU8KDP0wyIU8kAt5IBdykpiYiKlTp4Jzjjx58ohy5pyjY8eO+Pvvv8VqKdrPQ4GBgWjYsCE45/j222/F5ynr9Vu3buGnn36Ci4sLOOewsrIC5xwXLlzI9fV2SsiFPJALeSAXOYO0gkOV2fGHDh36Qceics8+5EMeyIU8kAvjoF3PxsTEZHk/ZRKMO3fuCD92dnZpBoWm1Y84YMAAtGnTBrdu3cpO9s0KciEP5EIuyAeRG6AAdoKQGH9/f1haWorKpFWrVpgxYwYSExMRFxeHy5cvp7l8lFIRHT58GE5OTrC0tMSmTZsAZN5A8fT0xLZt2wx6XjkJX19f1K5dG9bW1jqDCJQOx/79++PIkSOIjY0FkPboNEI/GNuFsj816lNDLuSBXMiFsX14eXnh3r17VPekAbmQB2O5SEpKgqenJz7//HPs2bMHwcHBYhvds5IhF/Jg7HvUrl27sHHjRp3l58nFe4ztw9PTEwMGDNB52ZjbfaQs0xEjRoBzjmXLlolyV1Cr1Xjz5g2+++47cJ48c0y3bt1w8+bNVMekwNAPh1zIA7mQB3IhJ97e3siXL5+os6tUqYLJkyenmz4+Ph4rV66EnZ0datasKV7Aag+6TEhIwN69e+Hi4oL8+fODc46iRYuib9+++N///qdzPGr7vYdcyAO5kAdykTNITEzE2bNn0aZNG9EOrFSpkujHSNkX/vbtW/j5+eHIkSO4ffs2wsPDxbGozLMP+ZAHciEP5MI4fGjZKOlPnTolvOTLly/DoNCYmBg8f/5c5ziBgYHZzbrZQS7kgVzIBfkgzB0KYCcIyfHy8kK5cuWwdu1a+Pn56WxLSEhINfJW6aiKiIhAjRo1wDlH48aNszQDoo+PDwYOHAjOOQYMGGCQ88mJhIaGYs2aNejduzcaNmyIatWqYcaMGXB3d9dJl9uDDoyBIV2kHFX47t07qNXqVEvwkOdkyIU8kAu5MFad4evriy+//BKcc0ybNg1Xr17V27HNBXIhD8Zw4eXlhW7duolAoR49emDHjh16ObY5QS7kwVj3qGvXrsHV1RWcczRv3hxbt27V27HNCWP58PT0xOjRo0X7feTIkXo7tjmxd+9eUUbz58/H5cuXERkZiaCgILi5uaFz587iHtO6dWscPXpUZ38KDNUf5EIeyIU8kAt58PDwgL29PQYPHqwTvJnWKjSPHz9GzZo1wTnH1KlTER0drXOsEydOiMEJyk/58uXxxx9/4NGjRzppQ0JCsG7dulSf52bIhTyQC3kgFzmH33//HUWKFAHnybPfv3v3TmxT2mmBgYH47rvvUKZMGXDOYWlpic6dO2Pz5s0iLa18ph/IhzyQC3kgF/Kg1ONnzpwRdbKDg0OmQaEtW7ZEvnz5EBQUZJJ8myPkQh7IhVyQDyInQgHsBJEDSLkMiHYHV1rLR508eRKnT59G/vz5UbBgQfzxxx8AMm6UKMHrSuPH0tISAQEBhjmhHE5cXJzO7zRi2XQYwsXp06exevVqNGnSBHXr1kWVKlUwYcIE7Nu3T6Sh4JLUkAt5IBdyYQgfSUlJOHv2LBo0aADOk5cKbtasGdauXSvSkI/UkAt5MISLV69eYcGCBRgwYACsrKygUqlgbW2NqVOnijTkIjXkQh4M2cb45ZdfUKdOHVhYWMDS0hJz5swR28hF2hjCh6enJ0aNGiXa7VZWVuCcY9SoUSIN+XjP9OnTRVkVLFgQ1atXR6FChZA3b14xk+Vnn32G48eP6+xHgaH6h1zIA7mQB3IhD69evRKrkQK6dbZ2vfrZZ5+Bc44qVarozCimVqsxfvx4VKlSRTitXLkyBg0ahIiIiFR/7+nTp1ixYoVI+/TpUwOdWc6DXMgDuZAHcpEzUAYHWFhY4Nq1a6m2P3/+HL179xardjk5OYnBapxznTY2vS/MPuRDHsiFPJALOfiYoNDo6Gj06NFDpP/uu++yNPEkkTHkQh7IhVyQDyKnQgHsBJEDUDqy0nuZnVYQu/IipHTp0vDx8cnw+ErwesGCBcE5R6lSpXDlyhW9n0dORrvsKajAtBjChUajwatXrzBixAgxiCPlj62tLX766Se9/+2cDLmQB3IhF8aoM2JjY3Ht2jUx87fSETlixAiD/+2cBLmQB0O6SHm8AwcOYNCgQcLF2LFjDfa3cyLkQh4MfY/SfiF18+ZNjB8/nlxkgCF9pAxe//bbb7Fu3Trhg4LY36P9vZ09ezZKlCih8/yZL18+5MuXD6tXr4aHh0eqfTMLDM3t5fshkAt5IBfyQC5yJhs2bADnHI6Ojjh79iwA4NmzZzh8+DDatGmj4/CLL77AkSNHxGC2xMREcZynT59i6dKlKFSoEDhPnv04ODjYJOeUUyEX8kAu5IFcmJbTp0+jePHiUKlUGDZsGIDU9fGpU6dQtGhRWFlZYeDAgfDy8sIff/yhMyv+ggULRHoKDv14yIc8kAt5IBdyoJT5xwaF5s2bF3369MGNGzdMcwJmBLmQB3IhF+SDyMlQADtBmAlpBbFzznWWhUqLlMHrn3zyCQWvE2ZDRqsOKA9wMTEx+Pvvv9GhQwedwMOOHTvim2++wcSJE9GpUyfx+ZQpU4yVfbOCXMgDuZCLj1myMWXn5PLly1GqVClYWlqCc46vvvpKX9nLVZALefjYpUy1O96fP38ONzc3cZ9avHixvrKXqyAX8qAPF8+ePcOqVauEi+nTp+sre7mOzHxo1w8pg9cHDRqEqKgoAMDmzZspiD0NtMv3ypUr2LVrF6ZOnYrJkyfj8OHDqYJCgawFhqb3gja3l3dGkAt5IBfyQC5yBkq5BQQEoH379rC0tBQD+B48eIABAwagXLly4JzDxsYGFStWxIoVK3SOoe06ZWBow4YNafXSLEIu5IFcyAO5MD2Kg9mzZ4u22q5du9JMq8xqX7RoUQQFBYnPX7x4gWXLlon9N2zYYIysmyXkQx7IhTyQC3lQ2mpnz5796KDQ3r1749atW6Y5ATOCXMgDuZAL8kHkdCiAnSDMiLi4OJw6dQoVKlSASqVC7dq14enpCSDtlx0UvE6YIzExMbh79674Pa3gEuV6ePfuHbZu3Yp69eqBcw5LS0u0bt0a69at00n/4sULEXhlbW2NPXv2GPYkzARyIQ/kQi6y4iMztOv1//77D82bNxfLQ9asWROPHz/WS17NHXIhD/pwAej6iIuLw6JFi6BSqVCpUiVcv3492/nMDZALedCXi5THXLJkCVQqFezt7bFv375sHzO38DE+PDw8MHLkSNFpPHjwYLx+/VrnGFu2bKEg9jTIbDYw7fLJSmCoNmfOnMHatWtx9+5dREdHZ+nv5WbIhTyQC3kgF3KjXf4LFiwA5xwuLi7Yvn079u/fDwcHB1E3582bF5MnT8aFCxd09tc+RlqBof7+/kY9p5wKuZAHciEP5EIe/v33X9ja2oJzjs8//1x8nrIt5ubmBs45nJycUvXzxcTEYNasWeCco0qVKpnOWBkUFIQXL17o7yTMCPIhD+RCHsiFPPz99996CwpNSkoyyurB5gq5kAdyIRfkg8jJUAA7QZgJSoVz8eJF2NjYgHPdZeFTQsHrxkVZylEfQSdE+sTFxWHfvn2wtLTE999/n2HayMhIuLm5oXr16iJId9y4cbh27ZpIo70EZ3h4uHiIGzNmjMHOwVwgF/JALuTiQ3ykh3Yj8eLFi/jiiy/EjN/t27fH7du3qSGZBciFPOjDRXrcvHkTxYoVA+ccW7Zs0euxzRFyIQ8f6yKte07Kz/z9/cVS9ErANN2rMuZjfISEhGDQoEGi07h58+aIi4sDACQkJIh0KYPYBw8ebJBzMFc+NDA0MDAQvXr1Aucc5cuXx5gxY/Ds2TMA1F7PLuRCHsiFPJAL03L8+HFRDzds2BAjRoxAnjx5xMvcatWq4eLFi4iNjRX7pBwsQIGh+oFcyAO5kAdyYVoSExPFSlnFihXDjh07UqVR2slhYWGoUqUKOOeYNm0aYmJidNJ5eXmJlUyXLFmSbp3t6+uL3r17w9LSkmbITwH5kAdyIQ/kQi5Gjx4NzjkKFCiAAQMGfHRQqHafYEpo4HLWIBfyQC7kgnwQORkKYCcIMyIsLAzt2rUD5xy1a9fGkydPAKSuRCh43TTcv38f33zzDYKDg02dFbMkLi4Ou3fvhqurq+j43blzZ5ppY2NjsXPnTtSsWVME6S5atAghISEiTVpBPNOnTxcvEcPDww12LjkdciEP5EIuPsRHemg7uHLlCgYMGEAB0x8BuZAHfbjIjGbNmoFzjn79+ukMwiF0IRfyoA8XR44cwalTp8TvKe9HM2fOBOccjo6OePTokV7yba5kx8eaNWvQoEED2NnZIV++fPjxxx/FNu1rQK1WY+vWreL42jMsEunzoYGhCufPn0evXr3wySefgHOOOnXqiHY6BYh+HORCHsiFPJAL0xIYGIiOHTvCxsYG1tbWKFiwIKysrMA5R/369TFv3jzR35Feu+3p06dYsmSJ6ENv3LgxfHx8xHZq72UNciEP5EIeyIUc+Pr6gnOO4sWLIyIiAgDw+PHjVEGbUVFRGDt2rPCjrHyt3aZbvnw5OOfYvn17mn8rNjYWAwcOFG2+xYsXUwBQCsiHPJALeSAXcjFp0iR06NAhWzMaA8mTXowZMwYDBgzAkCFD8Pvvv4v3q9TmyxrkQh7IhVyQDyKnQgHsBGEGKBXE6dOnUbZsWXDO8d133yEqKipVWgpeNz4ajQaxsbEoWrQoOOfo27evTkAooR/evXuHypUri4b8gAEDcO/ePZ00Sqft5cuX0ahRIxGku2LFCtHwTwulgT9ixAhwzlGtWjWdmU8IXciFPJALuciKj4yggGn9QS7kIbsuMuPNmzcoX748OOfo1q0beckAciEP2XXx4MED0d77888/dbYps2csWrQINjY2KFSoEEJDQ/Waf3Mjuz58fHywfPly5M2bF5xzfPnll2KbdmevWq3Gnj174ObmhufPn+v1HMyRrASGpuxM12g04t4THh6OAwcOoG7duuCco0yZMmIwB72g/TDIhTyQC3kgF6bn5cuXKF26NDjnYpUTzjm++OIL+Pj4iFkp0ytPJTDU0dERnHNUqFABPj4+YjUVBfKROeRCHsiFPJALefD29saxY8cAADdu3EDVqlXh7u4OQLf/7+HDh2JVuW+++UZ8rtTn8fHx+Oeff8TnafV5nDx5EpxzTJw4UaywQuhCPuSBXMgDuTA92m03pU33oUGhyjvV//77D6VKlRJ1vzLBSNu2bfH48eNUf4/QhVzIA7mQC/JB5HQogJ0gzIhPP/1UVDb3798HoNtBRcHrpuXChQuws7MD5xyfffYZBbEbgPv376NMmTLo1q0bHj58qLNNuRaSkpLQvXt3EaQ7f/58vHz5Mt1jajfge/fuDc456tati1evXlHgVQaQC3kgF3KRkY+MoIBp/UMu5OFjXaSHcm9LSEjA9u3bUbhwYXDOMXLkyGwf29whF/KQHRdv3rzB8OHDRefib7/9pjPjUkxMDPr16wfOOWxsbHRm6SPS5mN8aNcFcXFx2LNnD+zt7cE5x6RJk9LdL2XQCZEajUaDixcvilUdMpvV+M2bN2k+2yYlJeHu3bto2LAhOOdo2rSpmJ2GyBrkQh7IhTyQC3nw8PAQA8i6dOmC9evXZ2m/p0+fYunSpaIPnXMOJycnlCtXDi4uLvj+++/x+++/i/T04jZzyIU8kAt5IBfyoLTdRo0aBc6TV7jWHuit9G0cPnxY9AFu3rw51f4K2mWecsXSgIAAGrCcCeRDHsiFPJAL06Mdc6OUZ1aDQpX0YWFhcHFxEYPPunfvjmbNmqFkyZLgnMPFxYVW38oC5EIeyIVckA8iJ0MB7ARhJuzevRucc9jZ2WHUqFEAkisMpaKh4HXTojwsXL16VSwFSUHshiE0NBTe3t7pbp82bRo457CwsMCQIUNSLbOWHjt27BAdwgsWLNBXds0aciEP5EIuMvOREgqYNhzkQh5SushqOWqn0/5/QkICDh06hA4dOoj71MGDB/WXYTOGXMhDei6y4iQiIgI//PCDKPMffvgBbm5u2L17N7755hvx+dChQw2Wf3MjOz6A5IEDCxcuhLW1NVxcXHDq1CmD5DO3sGrVKtHhvnnz5lSBoS9fvsThw4fRrFkzuLi4IH/+/BgyZAh27dqlky4pKQnHjh2Dq6sr7Ozs4ObmBiDrXglyIRPkQh7IhTx4enpi7dq18PX1FZ9l9JJVCQwtVKgQOOcoWbIkGjVqhEmTJmHAgAGoVauWeI6aN2+e2I9mOc4cciEP5EIeyIVcnDp1CmXLloWDgwM2bdqE+Ph4AO9XSXn58iV69+4NCwsLDBo0KNPj+fn5oXv37hgxYoShs26WkA95IBfyQC7kQWmTRUdHo1evXukGhWqzefNmcM5RpEgR7Nu3D3FxcXj37h2OHz+OBg0agHOOWrVq4cmTJwCo/s4q5EIeyIVckA8iJ0EB7ARhJgQHByNfvnzgnOPQoUM62yh4XQ60g9itra3BOUeHDh1oFLMRCQoKQt26daFSqVCtWjWcOXMmS/vdvn0bHTt2hIWFBQoVKoS//vrLwDk1f8iFPJALuaGAaXnQp4uU6cihLul1eKQMilar1YiLi0NUVBRiYmLw5MkT3Lp1CydPnkSfPn1QpUoV8eL2xx9/1JmBmsga5EIetIOlfXx8sjQDa2BgoFilS/kpUKCA+H+TJk1w9OhRQ2fdLNH2ERAQkO6suim5du2aCDZZvHixIbOYK5gwYQJWrVqVqvzDwsIwf/58uLq6gnOOPHnyiMGaygz42oFBL1++ROfOncE5x6effmrkszAPyIU8kAt5IBdyklHbK2VgaN26dXHixAmdGfL9/f2xaNEi8Ty1dOlSY2TbLCEX8kAu5IFcmJbXr19j0KBB4JyjTp06uH37ttim9I/MnDlTTCamPfAgJX5+fjqDx0+ePGnw/Jsb5EMeyIU8kAu5SEhIECtvFShQIMOgUABYt26dmME45Qz6t27dQv369cE5R69evfDq1StjnILZQC7kgVzIBfkgcgoUwE4QZsS9e/cwcuRInc8oeF0utIPYlRFu9+/fN3Gucg+HDx8WDfH58+eLzzPqGH727Bl++ukn8ULxq6++SpVG8fr8+XOdpdYoIDF9DOWC+HAM6eJDZybNrSizYwBpL+8F6C9gOjo6Wo85Nz+M6eLOnTv4+eef0/wbRPJMxRcuXMDgwYMxYsQIDBgwAD169EDfvn3Ro0cPtGjRAq1atUKLFi1Qo0YNVK1aFaVLl4a1tTXs7Ox0AnZHjhwJT0/PVH+DrousYQwXANUZWeXGjRto27YttmzZAiDj8kpISMDy5cvBOUePHj1gY2MjXPTt2xf79u0TadOaQZ9cZM7NmzfRpk0b/P777wCyVmZdunQB5xwtWrRAVFRUhmm16yXy8R7tQTDKbGPA+9kq3d3dUaZMGXDO4ezsjJ9//hnTpk1D3759dVYl0A72+fXXX2FhYYHq1asjIiLCeCeTwyEX8kAu5IFc5ExSBoY2bNgw3RmRo6Oj8dNPP4FzjvLly+POnTsZHpvq8A+DXMgDuZAHcmE8Hj9+jHr16oFzjlatWuHWrVs69fmcOXPAOYetrS3u3buX5jH8/PwwcOBAUa9PnToVT58+NdYpmBXkQx7IhTyQC7kYOnSoCObUHlCQFqdOnRJlvnfv3lTbT5w4gbJlyyJfvnxwd3enOvoDIRfyQC7kgnwQOQEKYCcIM0P7JYmPjw+++uorEbxesmRJCl6XACUg7s6dOzh79iwSEhKyfUyNRkPLs2SAUjbjxo0D5xxVqlQRgeYZldubN2+watUq5M2bF5xzNGvWTMx2mXIpz3PnzsHZ2Rnff/89/v77b/E5PbTpYmgXKY9B5Z8+hnCh1EEpg0LfvXuncwzyootSHpcuXcLu3btTzdB3+fJl9O/fX8zI16FDB9y5c+eDy/HOnTto06YNNm/ejODg4FR/nzC8CyWdh4cHWrduDc45hg4dmmo7Afz1119iVsqP+SlUqBCqVq2KzZs3ZzgLAF0XmWMoFynrmtevXyMhISFVUBa50EUJRGjcuHGWZmEPCAiAlZUV5s6di0ePHuHSpUu4fv26zoutlO2Rt2/fQq1W482bNzqfkwtdEhISMH78eHDO0bZtW51Aw/SIiYlB3bp1wTlHgwYNdDwopLw2Xrx4gaioqFTHJx9pk5SUhDp16ogB/EFBQWLby5cvsWnTJnF/+v777xEWFga1Wo0ff/wRnHM0atRIL210glzIBLmQB3IhJykDQxs1aoSAgIAM9zlw4AAsLCxgbW2t0w+YEqVej4mJwevXr/WZbbOEXMgDuZAHcmF8/Pz8ULx4cXCePMPx/Pnzce7cOaxZs0bU0y1atMCLFy8A6LbN/Pz88NVXX4l006dPz1LbnUgf8iEP5EIeyIXp0e6/27x5M65fv66zPSYmJlUsQVRUFPr16weVSoX+/fsjJCREZ/vr16/FrPhz5syhtl8WIRfyQC7kgnwQOQkKYCcIM8XX1xeffvqp6NQqUaIE/v33X1Nni/h/shtskJVgdQpoSM33338Pzjnq1asHIOMyevXqFTZs2CCCdKtXr44jR46ku8/cuXOhUqlgYWEBFxcXrFixQmwjF6nRl4uMZqRUq9UU0J4FDHVd/PPPP+jRoweaN2+OevXqYf78+TpLEJILXZQRzeXKlcOePXsQExMDIDmQWh/B6y9evMC3334rOiW/+OKLdGfeze0YykXK4HVbW1vhY9SoUanS5XYCAwNhZWUFzjmsrKzQuHFjdO3aFV999RUGDRqE/v37Y/DgwZg8eTJGjx6N8ePHY+nSpVi1ahV27doFX1/fTDve6brIGoZwoV22L168wJ49e1C7dm1Ur14dZcuWxZQpU3D48OE00+d2jh49ChcXFxQuXBg7duzQGcCsjfIM5OHhgQIFCqBnz55pptPuYDx79iyWLFmC2rVro27duqhRowbmzp2L48ePizTk4j1qtRrbtm1DiRIlULx4cezZsydTH8+ePUPt2rXBOUfr1q1TrQCh3WG8d+9ejBkzBiVLlkTZsmVRunRpTJw4EX/++adIQz5SExgYCAcHB9jZ2WHWrFkAgNjYWJ00Bw8eFPf+IUOG4P79+2jbti045xg+fDjUajWVrR4gF/JALuSBXMjHhwaGKmV/+fJl0abbtGlThn8jKioKU6ZMQf369TMNOs3NkAt5IBfyQC5Mh4+PD6pUqSLqZO1+vOLFi2PhwoWp9sksKJQmofp4yIc8kAt5IBemJ2Xgp0JMTAz+/vtv3Lp1K1W6LVu2wMLCAra2tmJFR+1yv337Nvr06YMTJ04YMOfmB7mQB3IhF+SDyClQADtBmClPnjxBqVKlwDmHvb09jX4yI7RfUvn4+GDnzp2YOnUqhg8fjt27d+sMVKAXWrpMmDABnHNUrVo11ay62g9djx8/xooVK0SQbsWKFbFhw4ZUs0in5NChQ+jbty9UKhU45/jpp5/ENnKhiyFcPHz4EFu2bEGfPn3QsWNHNGjQAB07dsSvv/6Ka9euiXTkQhd9uVAGFKjVap1ZHrR/ihUrhtmzZ4tjkov3eHl5wdraGpxz1KpVC/v27cM///yDL774ItvB60ByQ3T//v3o1KkTOOdQqVQoUqQI3afSwBAuUgavW1pawsbGBg0bNhR1BgWxp8bLy0u8pG3ZsiU8PT0/6jjplSddF1nHUC6ePHmCyZMnp1lnODk5YcaMGenum1t59eoVvv76azH4LK0lH7XLavXq1WJQTlxcnM427Xp+2bJlqFy5cpouHB0dyUU6hIeHo0+fPuA8eUb1O3fupEqj3fk7a9YsUa7Lli1LN93EiRORL1++NH3kzZuX7lMZ4OfnJ8pq8uTJ6aY7evSoSKesMmFjYyM67YnsQy7kgVzIA7mQi5CQECxfvvyDZjUGktsRM2bMgJWVFZycnHDx4sV00yYlJWH27NkoUqQIOOeoUaNGqkELBLmQCXIhD+TC9Dx69AijR48Wg5A5T16NdN68eanaYZkFhWqnTxlIRG26rEE+5IFcyAO5kJPff/8dnCdPmKOg3Q+rTKpTsGBBeHt7A3j/jhVI7jNXSBnfk14wKpE25EIeyIVckA9CNiiAnSDMGA8PD9G5VatWLbi7u6cKTiRyHmq1Gi9evMBXX32lM7Ja+SlXrhzmzZsn0lOj8n0Z/PXXXyhUqBA++eQTnY5b7TK6fPkyRo0aBTs7O3DOUblyZaxcuRKvXr1K9/jaD3M+Pj6YPXu2CEgcP358mn8nt2IIF15eXli9ejUcHBzEDANKkKn2dbFkyZI0/05uxVDXhfaLdicnJ7i4uKBTp05wdXUV18XYsWPT/Du5HW9vb1FvV6hQAY0bN9YJmL59+3a2ykuj0eDdu3cYM2YMHB0dhY8ffvhBj2dhHujTRXrB63379kVoaCj27NlDQewZoB043aZNG9FRAuiWUXr/zwy6LrKOPl0on2/cuFHUGaVLl0atWrXQt29fVKtWjeqMDHj8+DHq168PzjlatWqFe/fuiU5C7c7B48ePo1q1auCco1+/fjrH0C7LhQsXwtbWVpR58+bN0bt3b/zwww9o3Lix+HzChAnGOcEcRnBwMGrUqCF83Lp1K82gj5UrV4rve/Xq1dN97ho3bpzOc2yXLl0watQoTJo0Ce3atRM+Jk6caJTzy2lERUWhQ4cOsLS0xGeffYZnz56JbRqNRqfttmvXLlGetra22LhxIwCacUxfkAt5IBfyQC7kQa1Wi4F+HxIYCgA3b94UA//q1KmTaX/71atXwTlH/vz58ffff+sj+2YFuZAHciEP5EIe4uPjERUVhUuXLuHy5ct48eJFqjSZBYVqc/fuXUyYMAFbtmyBl5eX+Jzq96xBPuSBXMgDuZCP3377DZwnz4R/6tQp8bmycmNoaCjq1asn+r7j4+PTLF/toNAlS5YgODgYAAWHfgjkQh7IhVyQD0I2KICdIMychw8fikCTmjVrUhB7DufFixfYsWMH6tatC865eJFVsWJF1KpVC8WKFRMBdtqB00QyYWFhaNGiBThPnj308uXLiIqKAgC8ffsWa9asQe3atWFjYyMGfmzevBmvX7/O9NjaQSdv377F+vXrhZ/ly5cb6pRyLPpysW/fPvTs2VN0unzyySdo2LAh1qxZgw0bNmDy5Mlo2rSpcDFu3DixLwXBJaPP6+LVq1dipodKlSph3rx5eP78OQDg3r17WLhwoXAxc+ZMY55mjuHhw4coWLCgmGFPCRT18PDIdgeh9nd+/vz5yJcvn6gz5s6dm92smx36cJFe8HqfPn3EtREfH48tW7ZQEHsGaD/PtmnTBj4+Pno7Nl0XH4Y+XTx79gwlSpQA58kzV+/cuRNv3rwBkDyIZOnSpeK6mDNnjr5OwWzw8/PTKb/Nmzfj6dOnYvv27dvRpEkTsaKE9gzq2uzbtw8lS5bUeVZKSEgQ18bjx4/h5uYmtv/8889GOb+chq+vL4oXLw7OOWrXro1p06bh2rVr8PX1xcmTJzF69GjxvGpra6uzIo02a9euFelKliyJRYsW6Wx/9uwZ1q1bJ3ysXbvWCGeX8/j5559FOa5ZsybV6k1RUVHw8PAQs+dbW1tjxowZOoGk9GJWP5ALeSAX8kAu5MHHx0f0q2Y1MNTHx0f0e5QsWVKs+Kc4Uf5NOQPZ5cuXcfr0aT3m3rwgF/JALuSBXOQMPiQo9O3bt1i3bp1I26RJE2zbtk1sp0Cf7EM+5IFcyAO5MD5eXl5o3bq1eN/z8uVLsU2tViMxMRE//PCDGGymBIxqo93mU1Z0LFasGB4/fmyUczAXyIU8kAu5IB+EbFAAO0HkAiiI3Tx49OgRfvrpJ7F0cL58+dC2bVts27ZNBJLeu3cPq1atogCTDNAO9ilVqhRq1qyJZs2aoWbNmqJBrgRlnT17VgTypocS3JMyyPD169eYNGkSVCoVatWqBQ8PD4OdU04luy5+/fVXVK9eXXzfO3TogN27d6eaFdzHxwfLly8X6dILGMrNfKyLlN/7N2/eoGLFiuCcY+TIkSIQUSEyMhIrVqyASqVC4cKFcfToUaOdY07Cy8sLTk5O4Dx5FvuFCxfi7du3ALIX0Kw0JH18fFC1alXhtVq1anjw4IFe8m5u6MPFrVu30LJlS1hZWcHW1hb9+vUTx1CcqNVqnSB27RmniWQMFcRO18WHk10X2oHRRYsWhbW1NZYtW4bo6GiddJGRkViyZAlUKhVKliypMwsEkYy3tzfKly8Pzjny5s2LYsWKoUWLFmjcuDE457C0tATnHF27dhX7aD+7ajQaDB48WNx7Jk+eLNJpv5CKjY3F3LlzoVKp0LJlyzRnciKS7yPaK2RZWFjA0dERjo6O4rMCBQrgxx9/FPso9yCNRoPXr1+jc+fOwseKFStEOu0Ak+joaEydOhUqlQqdO3fG27dvacDT/6NdDhMnThTlPmzYMOzbtw+enp64fv06Jk+ejEaNGolBalOmTEk3KOjGjRvYt28fDhw4gD///BNv3rxBfHw8AAogzQhyIQ/kQh7IhZwEBQUhKCgoS2l9fHxQp04d8VJ248aNOquuKGUeHR2NCRMmYPHixWkeh+rttCEX8kAu5IFcyId2+XxIUKg2y5cvR+fOncV+2hMoUP39YZAPeSAX8kAu5GDr1q2wsrIC5xyrV69GTEyMznbtlRpv376ts027X3batGliBfKiRYvi5MmTYhvV2VmDXMgDuZAL8kHIBAWwE0QugYLYczaBgYH44YcfxKx+Tk5OWLJkSaqgaI1Gg5iYGMycOROWlpZo164dwsPDTZRrefHz80PTpk3FzLraPzVr1sSYMWN0OnfTQhllqLwYBFI/gJ05cwZ58uQB5xy7d+/W/4mYAR/rYsuWLShTpowI8OnUqRNu3bqlk0bbTVxcnJg91N7eHvv27TP4ueU09HFdhIWFiUD4hw8fAkjdmeXh4YFSpUqJzjIibTw9PYWLmjVr4vfff081M9+HoHjw9PTUCa6rVq0avL29AdDsGemRXRfr1q1D0aJFoVKpYGVlhalTp4pt2gGJShC7Mlvy4MGD9Xoe5kDKwGlfX99sHY+ui4/nQ1yk91Lj0aNHKFCgAGxsbMSKBCnT3r59W/ydlDNRE8kEBQWhb9++YpBryp+ePXuKAWUpv8++vr6wtbUF5xzdunUTn6f1vT937pwIiL969aphTyoH8+jRIwwbNizVIEDOOdq2basTlJ6ynP/77z+R9ssvvxSfp3UNHT9+HJwnr8h17949w51QDkS7XBcvXoySJUuKci1cuLBYVUUJDP3pp5/g7++vc4zw8HCcOnUKbdu2FQPZlHZHo0aNMHnyZLHiAdUT6UMu5IFcyAO5yLloB4YWLVoUK1eu1An+0Q4MnTt3ruj3mDdvXqpjkZfsQS7kgVzIA7kwPv7+/hkGhaZVjtozVz58+FDMVJnSBQX6fDjkQx7IhTyQC9OQcsVXpfyWLl0q3jkEBQVhyJAhaQaGpgwKLVy4MFQqFVxdXTFz5kwEBATg9evXItCU6u30IRfyQC7kgnwQMkIB7ASRi0griD2z2aUJ0xMSEoKRI0eiSJEi4oXWwYMHdYLnUjYUjxw5Ih4mbty4Yews5wieP3+OI0eOYMyYMfjyyy8xYsQIuLu76wRgZTaK/NmzZ/jkk0/g7u6u87n2fs2aNQPnHF9//TU0Gg2NTE+DrLjQfrDdv38/atSoAZVKBQsLC3DOUbp0aZQsWRKff/55ujOsv3z5Ej/88AMsLCzQv39/GtyRBllxoR1w+/z5c5w7dw47d+7E8ePHcefOHYwbNw6cc1y+fDndv9OpUydwzuHi4oLIyEi6LtJBu96uXr06du/enWr0c1bIKEg3vYEGhC7ZdfHPP/9g3LhxYlDTwIEDxTbtTmG1Wo2NGzeCc441a9bo9RzMBW0XLVu2/OiZ2Om6yD5ZcaFdf9+9exf79+/HwoUL4e7ujrNnz2LIkCGwsbHB/fv3dfbTfrZVnqVq1aqFuLg46uxKg1evXuHixYsYOnQoWrZsidKlS2PQoEFYuXKlSJPWi6X79+8jb968sLa2xowZMwAg1VKQ2kvNV6tWDZxzHDt2zIBnk/OJiorC8+fPsW7dOixYsAALFy7EoUOH8OzZM5EmvUECFhYWyJcvH7Zu3QpA97lLe78XL16gTJkysLW1xfXr1w14NjkT7fK9ceMGdu3ahbFjx2L06NGwt7cH5xzW1taYMmVKqsDQ4OBgTJkyRaxuoMxCU6xYMTHgQ7knBQcHp/p7hC7kQh7IhTyQi5xHWoGhygBM4H0ZR0dHY/bs2XBxcQHnHEWKFMFff/2lcyztZ63AwEAA1O74EMiFPJALeSAXxicgIACffvppukGh2nh6euLu3buIj49HXFyczrbo6GgsXbpUHEdpBxIfBvmQB3IhD+TCtGjXnZMmTRLlV6dOHfTs2RMdO3YUn/Xt21ekTRkUWrRoUZGOcy7eL5UpUwYDBw5EaGhoqv0IXciFPJALuSAfhGxQADtB5DK0A03q1KmDHTt2IDo62tTZItLh1atXmDNnDj755BMRvH7q1Kl00yuBKX5+fnBwcADnHEePHjVWds2KrHTMao88379/PwDd4KDbt2+LWfOHDx9usLyaO9oubt++jW7duonZxTjncHBwQLly5VCoUCGdWURDQkIA6Ha8Hz58GJxz9OnTx+jnYQ5oB1H99ttvOo0XzjmKFy+OUqVKwc7ODitXrkw1Y3tSUhKePn2K6tWrQ6VSoWrVqvQSJBMePnwIR0dH8b1Nb+n49KAgXf3xMS6064RXr15hx44dyJcvHzjn+P7778U2bQdqtTrbM4ubO97e3uI5Z/LkyR/8LEvXhf7IyIV2GS5ZsgTVq1fXqTMcHBxQsGBB2NraYuPGjTorpyg8ePBAdIC1bt3aKOdkDqQcpJxe5+C1a9eEj/Xr12d4zIsXL4rnryNHjugtr7mR9GapOnXqlPCR2epNhw4dEmkvXLhgiGzmeFLex1+9eoX+/fuLwNDJkyenCgxVZtBX2nCFChXCpEmTcOTIEXh6euLGjRuYOnUqatSoITriHz16lObfI95DLuSBXMgDucg5fGxgaLFixXDmzJl0jzthwgRwznH27FmDn4O5QC7kgVzIA7kwDU+ePBHtsVmzZqUKCo2Ojsbx48fRs2dPsZJZ3bp18f333yMoKEgnbUhICL777juoVCp0796dVs7+CMiHPJALeSAXpke7P3bhwoVwdnbWebfNOUfnzp1x8eJFALrvX6dPny7ieZR33iNGjMCvv/6KL7/8EhUrVgTnHOXKlRMDl6nNlz7kQh7IhVyQD0ImKICdIHIhDx8+FIEgbdq0wevXr02dJSIFysPC0aNHUaFCBfFi6n//+1+W9tuxYwesra1ha2uLK1euGDy/ORXt4BHtB6asLn328uVLjBw5UjyYrVq1Cn5+fgCSA7rmzp2LvHnzgnOOadOm6TfzZkZ6LlJuX7RokZh13dnZGb1798aDBw8QFhYGf39/HDx4UATSde/eXeyv/QC+ZcuWNP8ukUxmLgBg27ZtKF++vHBRoUIFVKtWDWXKlEGBAgXAOUf58uVx9uzZVAGJBw8eFAG87du3N+i5mAsPHz5EixYtsGrVqg/aj4J09c/HulBQq9XYunUr7OzswDmHm5tbhunJT/o8fPgQffr0wb59+z5oP7ou9E9mLpYuXQpbW1tRZ9SrVw8tWrRA7dq1RQdXxYoVcfr0aZ2BTxEREVizZo14lurfv7+xTilHol1/Z3U2i4iICDRs2BAqlQrjxo0DkPb3X61WY8WKFciTJw8KFy6Me/fu6SfTuYSsPm+GhISgevXqsLKywpw5cwC8d6l9jLCwMIwaNQrW1taoWrUqnj59qv9MmyEbNmwQgaFTp05NFRj67t07zJ07FyVKlBBBPVevXk31LBsdHY3r16+jcePGYnDNy5cvM/zbERERej+fnAy5kAdyIQ/kQk58fX0/OjD09OnTOsfavn07fvnlFwDJE2IoL4WbNGmSqSOCXMgEuZAHcmFaPDw8sGDBAp2VtgAgLi4OmzdvRr169cA5F30hyk+JEiVSvbPbsWOH2J5yhToia5APeSAX8kAuTI92H+3Zs2exYsUK1K1bF23atMHEiRPh6+ubqh93+vTpcHJyAuccBQsWxNq1a6HRaETfYHR0NG7cuIFGjRqBc45GjRrhxYsXRj2vnAi5kAdyIRfkg5AFCmAniFyKp6cnKleuTMuNS4hSscfFxYkXTo6OjtizZ0+W9gMgZm3KmzevWOqRyBra5ZiVB6mXL1/i22+/FQ33KlWqoGPHjqhWrZpY+rlOnTr0UKYHrl+/LpbHLl++PBYtWoTw8PBU6f7991/kz58fnHNMmjRJfJ4yIEt7ZnYi69y9exctW7YULzIGDRoEHx8faDQaPHv2DOfPnxdBoZUrV8bq1atx//593Lx5E+vXrxcNGmdnZ7i7uwOgYNGs8ObNG/H/rATCUZCu4dB2oT3aPK37UVqEhoaia9eu4Jzjs88+S7UsJ5F1Us4ynRl0XRiO9Fz8/fffKFeunKgzJkyYIILUIyIicP36deGiYsWKWLx4Ma5du4a///4bU6dOFYPSKlasiGvXrgEgR/pm9OjRYrCs8gIqZRn//fffov5u166dKbKZaxg6dKjw4eHhkWr7q1ev8Ouvv4oBg5999pkJcplzGTduHEaOHKkTGKp0wN+/f1/cj4oVKwZvb28A75+7Ul4Xly9fRuXKlWFjY4O1a9eme2/y8/PDiBEjxKAEIhlyIQ/kQh7IhVz4+fmhTJkyegkM9fHxEdubNGkCzjlUKhWaN2+OP/74w6jnlRMhF/JALuSBXMiBdjCPUtd6eHiIcuScY926dfjjjz8wf/581K9fX7T3jh07JvZ59+4dnJ2dwTnHP//8Y5JzMQfIhzyQC3kgF6YnZVtM+50SoPu+b9q0aShcuDA4T561OOWEMdrHOnr0KIoWLYqCBQvi0KFDqY5FpIZcyAO5kAvyQcgABbATRC5GCZjK6gx9hHGZPHmyCEKfOnVqhoFx2hW9m5ubGDE9duzYVNuJrHHp0iX89ttvADIvvytXrqB69ergnIsAa+WnZs2aOHDgABITE8nDR5KUlISkpCT8+OOP4JzDwcEBU6dOFUGk2uWqBKWPHTsWlpaWaN26tc5srkT22bRpk/h+f/vttzrbFBdhYWHi5bqFhYUYUKDMouvs7IzRo0enmvmByJysBG5SkK5x0C7DAwcOYPv27QCyVueuXLlSeLlx44bB8phboEEd8pDSxdy5c0VZ//jjjzrp0qozOOewsbHR+bdChQpYsWIF3r59a9RzMReUcn737p1OuSvf98TERLRv314EPly4cEEsK+zh4YEtW7aI4PWSJUuKDkm6Xj4OpfyVVdBS+oiLi0O7du3AOUeRIkXwv//9TyyxefHiRcycOVMEr1eoUAH//vuvzv5E2mgPXE2vXd23b19wzuHk5CSCejLqK4mKisLMmTPFgM60HPj5+eGnn34Sg3j27t2bzTPJ+ZALeSAX8kAu5CQwMBCcc1haWmLVqlUfFRiq0WhE2o0bN4rjqVQqtGzZEkePHtVJS6QNuZAHciEP5EJexo0bJ/o3jhw5Ij5Xq9UIDAxEp06dxGyVR44cQVJSEk6dOgU7OzvY2trSimd6hnzIA7mQB3JhWrTbZtorak2bNg1FixYF5xx2dnb4/fff09xH4fHjxyhWrFiqfnci65ALeSAXckE+CFNAAewEkYuhTid5iY2NFQ3ESpUqZXmm/FOnTqFp06bgnMPe3j7ViDciazx8+BAtWrSAnZ0dbt26lWn6+Ph4dO7cGS4uLti+fTvq1auH9u3b4+uvv4anpyfNrqsnlO92lSpVxIz26d3HtAPmlMBEInuo1Wqo1Wq0atUKnHOUKVNGzPqm/eJc+f+FCxdQuHBhlChRAqNGjUK+fPng5OSEBg0aYO3atQgNDTXJeZgTUVFRCAoKQnR0NADdF08UpGs8Ll26hDJlyqBgwYLimkgPJThl7969sLe3h6WlJc6cOWOMbOYa6LqQg6SkJMTGxqJixYrgnKN69erCSVp1xv/+9z84ODigXLlymD59OooWLYry5cujY8eOOH78OF69emWS8zAX/P39MW7cOBHsrKCUf2BgoAiazps3L1xdXdG2bVuUKFECdnZ24prp1KkTQkJCTHEKZsW9e/fQu3fvVD6U+1BAQIDwYWtri0KFCqFu3brImzevGNhhb2+PYcOGISIiwhSnkCPJqP/j1atXqFmzJjjn6N27d5bL9datW6hbty7Wr1+P+Ph4nb/h5+eHyZMnw9raGpxz9OzZEy9fvsz2eZgD5EIeyIU8kAs58fHxgZubG54+fSo++5jAUAD46aefxKzGnOuuoqL9QphIG3IhD+RCHsiFfGg0GvTu3VsMAnj37h3UarVOn5NarUb37t1FcOiff/6JMWPGgPPk1eeoz1x/kA95IBfyQC7kQbvMp02bhkKFCok+2KVLl4ptGbUVmzVrBs45vvvuu0zTEulDLuSBXMgF+SCMCQWwEwRBSMilS5dE5b9kyZJ002lX8Ldv38bAgQPFfsrs68SHExYWJh6mxo4dK2b6TgvFgTJr1X///Uedugbg2bNnKF68OCwtLbFs2TIAac82pixptGDBAtjY2MDOzg4+Pj5Gzau507FjR3DOUbVq1VRLSGnz7NkzVK1aFfnz58fZs2fx5MkTBAcHU8NET0RGRsLNzQ3du3fH9u3bERkZKbZ5eHhQkK4RuXPnDmrVqgXOOebOnYuoqKhM91m9enWas5wQ2YOuC/lQlp1t1qwZgPTL+tGjR3BxcUGxYsVw9+5dvHz5MsPnLyLrJCYmYs2aNbCwsEC3bt3SHQwQHx+PiRMnonnz5qhUqZKY5VsJbHNwcMjSwE4iY+Li4jBlyhRwzvHVV1+l+z1Xq9WYNWsWunTpgmbNmqFIkSI6PmrWrEmDNPXInTt3RP2wevXqLO2jPNN6eXnh3bt3OttSBoZ+SMBpbodcyAO5kAdyYVrSGnz5oYGh06dPF4Ghrq6uwufMmTPT/DtE2pALeSAX8kAu5KNXr15iEp6UK6tol2OPHj3AOUe+fPlEmW/ZskUnfVr96OTiwyAf8kAu5IFcmJ6U9bCDgwMsLCzAOUfdunXFyioZvbe4f/8+PvnkE3DOMWvWLIPn2VwhF/JALuSCfBDGRsUIgiAI6UhISGA2NjbM3t6e1a9fnzHGmEaj0UkDgHHOGWOMeXp6ss2bN7Pdu3czxhjr3bs3W7JkCWOMsaSkJCPm3DxwcHBg3bt3Z3Z2duzEiRPsv//+Szet4uXp06eMMcZCQkKYtbV1qu3Ex6PRaFhiYiKLj49nSUlJLF++fIwxxiwsLHTSAWBWVlYsIiKC7dq1iyUkJDBnZ2dWokQJU2TbbClZsiRjjLE3b96wN2/epJkmKSmJFStWjBUtWpTFxMSwt2/fshIlSrDSpUszzjldF3pAo9GwHTt2sOPHj7M1a9awI0eOMMYY8/PzY3379mUPHz5kjDFWtWpVtn//flapUiWm0WiYSkWP//qmfPnyrEOHDoxzzvbt28du376dYfpHjx6xf/75h3HOmaOjI3N2djZSTs0fui7kw9XVlTHGWFhYGHvz5k2aZZ2UlMQcHR2Zvb09Cw8PZ+Hh4axQoUKsQIECjDF6lsouKpWKOTk5sTx58jAvLy/277//pkqjVquZtbU1W7ZsGbt48SL79ddfWbVq1VjevHlZYmIiU6lU7MCBA6xOnToMgAnOwnywtLRkrq6uLE+ePOzmzZvszp07qdIkJiYyCwsLNnfuXPbXX3+xlStXMnt7e2ZjY8MSExOZk5MT+/XXX1mlSpXIh55wdHRkjo6OLE+ePKxIkSKMsWQPGaG0xStWrCjaJ4wx5u/vzzZv3sxWr17NEhMTWa9evdjmzZuZk5OT4U7AjCAX8kAu5IFcmBal7ykpKYlZWFiwmJgYtmzZMrZjxw726NEjVrRoUbZ7927Wtm1bxlhy35RGoxH7zZgxgy1atIhxzlmjRo3YkiVL2Lp16xhjjC1YsIBNnz5d/B2q1zOGXMgDuZAHciEfLVu2ZDY2Nuzdu3fs+vXrOuWm3S9+8OBBVqFCBRYVFcUYY2z06NFs4MCBjLFkT9rv//bv3882bNjAGCMXHwr5kAdyIQ/kwrQodTZjyfXw+vXr2bt371i5cuUYY4wVLFhQtPvS6ktXyvb27dsiNkF5b0t8GORCHsiFXJAPwiQYPkaeIAiC+FAOHDggRjXfvXs31XbtkWz//vsvhg4dKkY/d+jQAf/9958xs2uWPHv2TMw03axZM3h6eoptyojyxMREAICvry+KFi36QbNhER9Ou3btwDnHsGHDEBcXp7NNcfL27VvMmDED+fPnB+ccffv2RUxMDM36rQeUMjx+/DhKlCgBBwcH7Nu3L1XZKr8/fvwYJUqUAOccCxYs0NlG6AdPT08ULlxYjHZeunQpKlWqRDNMm4DQ0FCxckeLFi3g6emZqq4AgDdv3mDdunXiHtWuXTtTZdlsoetCDpTv/549e1CkSBEULlwYx44dS5VOceDl5QUnJydwzvHrr7/qHIPIPi9evECnTp3AOUfz5s3h4eEhyj7lrEje3t6oV68e7O3twTmHpaUlDhw4AICc6Ivnz5+jbdu2os548OCBqCu070vR0dE4d+6cmKWEcw5bW1tcvnw5VVoiezx+/BiOjo7gnGPevHkffRya1Tj7kAt5IBfyQC7kITo6GpMmTUK5cuU+eFbjJk2a4ODBgyLdqlWrRP2+ePFio59LTodcyAO5kAdyIQePHz8W/VAtWrTA3bt3ERsbq5PG09MTkyZNEmX81Vdf6bx/0m7rHT16FE2aNAHnHBMmTDDaeZgL5EMeyIU8kAvTkbIeVtp5lSpVwqZNm1C5cmX069cv3f2Vvtnr16+L1TNbtWqVatUtInPIhTyQC7kgH4SpoAB2giAICXny5AkqV64MlUqFdevWiYCGlJ2MR48eRd++fUUDsnXr1jh9+jQtz6UngoKCUKFCBdGIP3/+fKqHq8DAQNSoUQOcc5QsWRI3b940UW7NF41Gg6SkJMydOxecc9SuXRv3798XD8AJCQkAgIiICCxfvlx0vFhbW5MPA/Dy5UudwR1eXl6is0px8fz5c3z77bfgnMPe3h6HDh0yYY7Nm4cPH6JQoUKplnKsUaMGvLy8AFCAm7EICAgQyzM3a9YMhw8f1gkIuX//PlasWAEHBwexROeFCxcAkCN9Q9eFPISFhaF169YicNrT01M8pyp1RkhICNq0aQPOOYoUKYJr166ZMstmS2BgIMqUKQPOORo3bozdu3fj2bNnYvuVK1fwyy+/oGDBguKasbCwwPHjx02Ya/MlICAApUuXBuccDRs2xObNm/Ho0SOx/dixY5gwYYKoM6ysrODs7CyuD7qH6Q+lTTFixAioVCp07twZjx8//uDjUGBo9iEX8kAu5IFcyMXLly9FH6Czs/NHBYYqaRMSErB69Wo4OTlhxowZRj0Pc4BcyAO5kAdyIQ/e3t4oVaoUOOeoXr06xo0bh0OHDuH48eMYM2aM6CfhnOPrr7/WmZBK29ORI0fQtGlTUX+PGjUKwPv2IA0yzxrkQx7IhTyQC+OTUVDo4cOHoVarUaRIEVSoUAEBAQEibcqyvH37Nho0aADOOQoXLoylS5eKfnYia5ALeSAXckE+CFNCAewEQRASEhkZiS+//FIEwd27d0+MflYeHBYsWICaNWuKBmSnTp1w4cIFqvz1jI+Pj5j1sFKlShgyZAjOnj2LY8eOYevWrShevLjo7O3UqZNOIBChXx4/fozq1auDc46WLVvi6NGjePXqFSIjI+Hv74+BAweibNmyYrbQrVu3AqAAH0Pg7+8vOreaN2+O/fv34+XLl0hKSkJISAi++eYbODs7i4aJr6+vqbNs1jx8+FDMXGxtbQ1nZ2fRoag9+zdheLy9vUVAYpEiRVC1alV8/fXX6N+/P1xcXJA3b15wzlG2bFn8/PPPePPmjamzbLbQdSEPfn5+KFmypHiu3bVrF54/f47Xr1/Dy8sLrVu3FgMN6tati9DQUFNn2Wzx8fFB+fLlwTlH/vz5UaJECbRo0QKtW7eGjY0N7OzswDmHk5MTateuLYKl6WWTYfDx8UHFihXFzOqOjo6oUaMGateuDc45bGxsxCDZXr16iZW56NnWMOzbtw+2trbgnOPnn3/WWfEps2uAAkP1C7mQB3IhD+RCHjw8PFCxYkWcOHFCfKZMvKCQUWCodrqEhATcunXLOBk3Q8iFPJALeSAX8hAQEIAePXqgSJEi4n2FstKZ8jNw4MAMg0KbN28OCwsL5MmTBx06dEBgYCBCQ0Px+vXrNPch0od8yAO5kAdyYRpmzZqlExSqPQFY3759oVKpsHLlSsTExKTa98qVK6hduzasrKzAOUePHj2obZcNyIU8kAu5IB+EKaAAdoIgCEnRniWxXr16GD58OHbu3Inhw4ejffv2Og3IAQMGwMPDg4IZDISfnx8aNmwIS0tL0bnLOUeePHlEwEnVqlVx584dU2fV7NEeUODk5ISyZcuiRo0aYgkixY+bmxuio6NNnV2zxtvbWwQkOjo6wtXVFS1atEDhwoWFC0tLSzFzKwW/GRYvLy8RrFu5cmUcP36cgqNNhL+/P9q1ayc6fpU6Q/m3evXqcHNzw8uXL02dVbOHrgt50J7VJ2/evChRogQqVaqk81LEzs6OZl83AoGBgejfvz8qV66s055Qfho2bIilS5eKwWfUvjAsQUFB+Pbbb3UGJis/+fPnR9u2bXHgwAExsIOepwzLzJkzRfkvW7YMgYGBYlt6ZZ8yMLRXr14IDw/PcB8ic8iFPJALeSAX8qDd36TRaHTKcs6cORnOapweNMj24yAX8kAu5IFcyMPr169x7949bNq0Cdu3bxcrx3LO8eWXX2YYFNqiRQvxPkoZ4Kz0LbZo0QIbN25Mc18ifciHPJALeSAXxmXBggWirFIGhQLA1q1bRXnOmDEDx48fx7t373D8+HEsX75cBIRyztGmTRs8f/4cAPXffgzkQh7IhVyQD8JUUAA7QRCExPj4+Og0FrUrfEtLS5QtW5aWcDQST548wYwZM9CwYUOdwJJSpUqhf//+uH//PgB6AWgM/P390alTJxHIrvw4ODjA2dkZR48eJQ9Gwt/fHx06dECxYsXAOYeFhQU4T57tOH/+/Pjrr79MncVchZeXFwoWLAjOOWrVqoU9e/bg3bt3ps5WriQsLAzu7u7o3bs3ypQpA1tbWzRu3Bhff/01AgIC0hyVThgGui7kwd/fH126dBGDn5QXGo6OjqhSpYoIXqeOLMPz9u1b+Pv7Y8WKFZg6dSrGjBmDNWvW4ODBg1Cr1eI5ip6njENUVBSeP3+OLVu2YMWKFVixYgXc3d1x48YNU2ct16B935k0aZJoX3Tv3h2LFi1Kdz8/Pz9MnDhRtNP79++f6UCplEFEhC7kQh7IhTyQC/lIr4x+/fVXFChQIEuBoVl95iUfGUMu5IFcyAO5kJOpU6eKOvyLL77I0ozGnHN07NgR8+bNw6lTp7B06VJ89tln4jhz5swR+5GLD4N8yAO5kAdyYXi8vb3h5OSEIkWK4PDhw+Jz7fKdMmWKzrtvFxcXnb50Z2dn9OvXTwSF0uCAj4NcyAO5kAvyQZgKDgCMIAiCkJbHjx+zrVu3svPnzzN/f3+WJ08eZm9vz77//ntWo0YN1rJlS8YYYxqNhqlUqg8+PgDGORe/azQaxjnX+SxlmtxKYmIiS0xMZMePH2fx8fEsMjKStW3blhUtWpQ5ODhQORmRiIgI5uXlxU6cOMHi4+NZfHw869ixI6tevTorU6aMqbOXq3jx4gW7dOkSO3ToEHv+/DnTaDSsRYsWrHfv3qxGjRp0XRgZb29v1qJFCxYeHs5Kly7NNmzYwDp06PBR9QOhH969e8eioqJYkSJFmKWlpamzkyuh60IeIiIi2K1bt9iff/7JXr9+zdRqNevWrRtr3rw5K1++/Ec/zxL6hTzIRVJSErOwsDB1Nswe7XL++eef2aZNm5ifnx9zdHRkBw4cYM2bN9epx/39/dmvv/7KVq9ezdRqNatQoQJbsWIFq1ChAuOcM5VKxQoUKMCsra2ZWq1m9vb2zNramsXGxrI8efKQ1wwgF/JALuSBXMhPVFQUGzBgADtx4gQrW7YsW7hwIevTpw9jLO2+V+VZKygoiD1+/JidOXOGvXv3juXJk4e1bNmSubq6sgoVKjDG6FngQyEX8kAu5IFcmJawsDBWvHhxxhhj33zzDRs1ahSrW7cuY0y3/I4ePcpWrFjBrl69yjQaDRs1ahT75ZdfdI718uVLtmPHDjZ58mTGGGO//PILGzVqlBHPJudDPuSBXMgDuTAeAQEBzNvbm3Xt2pUx9r4e1i7nBQsWMHd3d+bj46Ozb5cuXdinn37K+vTpwxwcHKgOzibkQh7IhVyQD8IUUAA7QRBEDkCj0TCNRsMeP37MHBwcmEqlYg4ODjrbPzTIJOU+O3bsYEFBQez69etMpVKxdu3asapVq7KOHTsyxiiIncg50HfVdKjVamZhYSHKn1yYBm9vb1a1alVWqFAhdvLkSVa7dm1TZylXkt73nwJDTQNdF/JDdYbpoPuSXNC1YDq0O9Rv3LjB7t+/z+zs7Fi3bt1YgQIFRDp/f3+2efNmtnr1apaYmMgKFSrEXr16xaytrZlKpWJqtZppNBrm5OTELC0tWUxMDCtYsCArUKAAS0hIYEePHmUuLi507WUAuZAHciEP5EJu7t27J9oYM2fOZHPnzmWMZfyctWXLFrZt2zZ269YtlpCQID7nnLOaNWuyIUOGsOHDhzPGKED0QyAX8kAu5IFcmB5PT0/m5ubGvvnmG9aoUSPGWMZBoZMmTWJLly4V6ZQBaIwx9vbtWzZu3Di2a9cu1qpVK7Z3715WuHBh05xYDoV8yAO5kAdyYXxS1sPa5e3t7c38/f1ZcHAwK1iwICtcuDBr166d6Dek9pp+IRfyQC7kgnwQxoIC2AmCIHIA+g5iUB4s3r59yw4ePMj+/PNPduLECaZSqZhGo2GMJXdEOjo6smHDhrEFCxYYJB85HSoP06Jd/srjDPkwDSmvBbo2TE9wcDB7/vw5q1evHs36TRD/D10XckB1BkEQMpNZx3rKwNCvvvqK1alTh02ePJmp1WpWvHhxFhkZyeLi4pidnZ1YLYoxxiwsLFhSUhKztbVlXl5ezMXFxUhnlTMhF/JALuSBXMhLWFgYa968OXv69Clbu3YtGzRoUKqATm1/U6dOFQE/RYsWZY0aNWLlypVjz58/Z9euXWOBgYGMMcZmzZrF5syZk2p/In3IhTyQC3kgF3IQHx/PbGxsGGMfFhSa1uCAuXPnsrlz57ICBQqw//77j5UtW9Z4J2ImkA95IBfyQC5MT2b16cfWt2n1wdMAtIwhF/JALuSCfBCGgN7aEwRB5AAyCurJaInHtFAq+efPn7MJEyawq1evskePHjHGGCtcuDCrVasWs7GxYc+fP2f//vsvW7RoEYuPj2fLly+n4KIUUHmYFu3yJxemJWX5kw/T4+LiQgEHBJECui7kgOoMgiBkJmVbWru9HRAQoBMY2qNHD7Z+/Xq2f/9+plarWZkyZdjly5dZfHw8i4qKYra2tiwmJoZFREQwS0tLBoC9fv2aBQYGssDAQKqTMoFcyAO5kAdyIS92dnasWrVqzN/fn23bto21bduWlSpVSmzX7q+dPHkyW7FiBWOMsTx58rDJkyez8ePHi7R37txhf/zxB1u2bBmbN28ey5cvH5swYQIFhmYRciEP5EIeyIUc6CsolDHGrKysGGPJwabR0dFGyL35QT7kgVzIA7kwPRm1+dLanhW0j3H27FkWEBDAhgwZwiwsLGgAWgaQC3kgF3JBPgiDAIIgCCLHotFoxP8DAgLE/9VqdZrplc9DQkJQp04dcM7Fz4IFC3Du3DmRNjg4GGvXroVKpQLnHBs2bDDMSeQikpKSTJ0F4v9J7xohjA+5kIvExERTZ4H4f8iFPJALeSAX8kDPtXJBz1OGx9vbG5MnT0aePHnAOUfv3r0RHh4OANiyZQs45yhRogTevHmDpKQknba69v8z+ozIGuRCHsiFPJALOQgICEDp0qXBOUe7du3w6NGjVGmWLl0q+mILFy4MzjmKFi2KoKAgnXRv377FsmXLwDmHs7Mzrl+/bqSzMA/IhTyQC3kgF/Kxf/9+tG7dGhYWFuCcY/LkyWJbRm28u3fvonbt2uCco1OnToiJiTFGds0e8iEP5EIeyIV5ceXKFfTr1w+cc3z55Zemzk6uhlzIA7mQC/KRe6EhCgRBEDkYZRTahQsXWLt27dikSZMYYyzN0c7KKOiQkBDWsmVLdufOHcY5Z0WLFmUnT55k06dPZ61atRLpS5cuzb755hs2bNgwxjlnFy5cMMo5mTMqlYppNBp27NgxFhYWZurs5GqUpbG3b9/Onj59aurs5GrIhVxYWloytVrNVq5cyUJDQ02dnVwNuZAHciEP5EIe6LlWLuh5yvB4e3uz5cuXs7i4OPb555+zzZs3s4IFC+qksbKyYhqNhjGW+WpRtPrEx0Mu5IFcyAO5kANXV1f2v//9jzk5ObEzZ86wyZMns8jISLH9woUL7JdffmGMMdasWTM2a9Ys1rJlS/bixQvWqFEj5ufnxxhLngk5f/787PPPP2cNGzZkoaGh7MGDByY5p5wKuZAHciEP5EIuoqKi2G+//cbOnz//QTMah4aGsn379jF/f3/GGGP169dnefLkMVq+zRXyIQ/kQh7IhXlx8+ZNNn/+fHb8+HHGGGM3btxg9+7dM3GucifkQh7IhVyQj1yOqSPoCYIgiOxx6tQpNG3aFNbW1uCcY/HixanSKDMkhoSEoHz58uCcI0+ePKhfvz5u3rwJIP3Zldzc3MA5h7W1NYKDgw13IrmEVatWwcrKCp9++ilCQkJMnZ1czYQJE8A5R69evciFiSEXcqGMbP7ss8/Ih4khF/JALuSBXMgDPdfKBT1PGZ4vvvgCrVu3RkREBID3q0IobeZKlSohPj7elFnMNZALeSAX8kAu5OHhw4eoWrUqpk6dqvP5unXrYGtrC845Vq5cCQDw9/dHy5YtxSzHvr6+AN730w4dOlTMqp+UlESrrnwg5EIeyIU8kAt58PLyQr58+TBq1CjxWUZlGBoaisWLF8PJyQmcc3To0EFso9VTsg/5kAdyIQ/kwnwICwtDiRIlwDlHy5YtceTIEcTGxpo6W7kSciEP5EIuyEfuhgLYCYIgcjAxMTFo3bq1WNaxYsWKuH37tk4apUH4/PlzNG7cGJxz2NraolmzZrhz545OGm2UF13Hjh1D3rx54ejoSAHseuD27dvC1+eff07BJSbkxo0bYtk7CoIzLeRCLi5fviwGRZEP00Iu5IFcyAO5kAd6rpULep4yHNovZ6Ojo8X/lXb0+vXrwTlHuXLlEBkZafT85SbIhTyQC3kgF3Ly6tUr8f+kpCTEx8ejefPm4JyjVatWOmm9vb3RqlWrVAGiADBp0iRwzvHtt98aLe/mBrmQB3IhD+RCHsLCwsT/PyQotGnTpnj58mWm+xEfBvmQB3IhD+Qi56NMdOjr64uuXbti3759iIuLM3GucifkQh7IhVyQD0Jl6hngCYIgiI8nT548bP369YwxxooUKcL+/PNPVrt2bZ00nHMWGRnJ5s6dy+7cucMYY6xy5crsl19+YbVq1WIA0lwa2NLSkjHG2JEjR1hMTAyzsrKiJb6yCQBWu3ZtdvnyZWZtbc3+/PNPNm7cOBYaGmrqrOU6NBoNa9CgAbt48SKzsrJiBw8eJBcmglzIhUajYU2bNmXnz58nHyaGXMgDuZAHciEP9FwrF/Q8ZVgsLCyYRqNhjDFmZ2cnPlfa0cqy2RqNhiUmJjK1Wm38TOYSyIU8kAt5IBdy4ujoyBhLLneVSsUAsLi4OMYYY66urowxJlxUrFiRbdy4kbVs2ZK9ePGCNW/enD158oQxxti5c+cYY+/dAjDqeZgD5EIeyIU8kAt5KFKkCGOMsaSkJFFnp+Tp06ds165dbPny5ez169escePGbPfu3axQoUIMQLr7ER8O+ZAHciEP5CLno1KpmFqtZuXLl2f79u1jn376KbOxsTF1tnIl5EIeyIVckA+CAtgJgiByOJUqVWJ+fn7s7NmzrGrVqjrblBdY169fZxcuXGDx8fEsX758bP369ax27drpBq8r+/n7+zMvLy/GGGNVqlRhdnZ2Yhvx4XDOmUajYU2aNGHnzp1jlpaW7ODBg2zUqFEUXGJkVCqVcHH+/HnhYsSIEaIDnjAO5EIuFB+NGzfW8TFs2DDyYWTIhTyQC3kgF/JAz7VyQc9ThkelSt2FqrSNlWAfGxsbZmdnJwaDE4aBXMgDuZAHciEvihsLCwvm4ODAOOesZMmSOtsYSx0gWqdOHTZy5Ej24MEDVqRIEfbNN9+YJP/mBLmQB3IhD+RCHjIKCt25c6dOUKi7uztzcXFhjLE03+8R2Yd8yAO5kAdyIT8ZDSRT2oF2dnbM2traWFnKtZALeSAXckE+iPSgAHaCIAgzoGzZsqxKlSqpPlc6Gbdv384ePnzIGGNs165drFGjRhkGryv7bdu2jV27do0xxlj//v2Zvb19mi/FiKyjHXh14cIFxhhjR48eZb/99htLSEgwce5yF2m5OH78ODty5AjNSGZkyIVcpOXjxIkT7OrVqzSIyciQC3kgF/JALuSBnmvlgp6nTEdiYiJjLNkBtZdNC7mQB3IhD+RCDiwtLZmzszMDwE6cOMFevHiRyocSINqiRQv28uVLtmXLFpaQkMAaN27MSpUqxRijACB9QC7kgVzIA7mQk8yCQgnjQj7kgVzIA7mQB+24D2UQc1JSkimzlGsxtgtaASd9THFdkI/0MaYPxQPdB3MO1GNJEARh5ly7do0dPXqUMcbY8OHDWefOnRljaXcmAhAdk7/++itbvHgxY4yxrl27sk8//VSk0SYyMpLFxMToHIPIGO3gkqtXr7KOHTuyunXr0khCE5DSxZAhQ1i9evVoRjITQC7kQtvHtWvX2Lx581i9evUo4MEEkAt5IBfyQC7kgZ5r5YKep4yLcs/JkycPYyy5LRwbG5vtjnHtNjW1r7MGuZAHciEP5EIelHLq06cPK168OHv69Cm7fv16muVXsWJFtmnTJta0aVOWmJjIypUrxyZNmsSKFStm7GybJeRCHsiFPJALOQkJCWG7d++moFBJIB/yQC7kgVzIg3ZQ6Llz59ioUaOYr68vs7CwoAlfjIwxXURFRTHGaABhehj7unj16hV7+fIl45xT0HQaGNPH69ev2aZNm5inpyezsLAgHzkFEARBEGbN/v37wTkH5xy7du1KN51GoxH/37t3L4oVKwbOOYoXL44NGzakuc/9+/fx448/4scff8SFCxfSPBaRPklJSQCAt2/fZus4VN7ZR3ERHR2dreOQi+xDLuRC8ZGQkPBR+yseyEf2IRfyQC7kgVzIAz3XyoW+nqcA4M2bN/jll1+we/duvHz5UnxOrt6zefNmcM5RpUoVxMfHZ6ts1Gp1lj4j0oZcyAO5kAdyIQ8vX75E165dwTlHs2bN4OHhkW7ahw8fomvXrjh+/LgRc5h7IBfyQC7kgVzIg1qtxqpVq8R7vSZNmiAoKMjU2cq1kA95IBfyQC7k5OLFi/jqq6+El0ePHun1+Ep/o0ajEf9X/iV0MbSLwMBATJ06FQMHDsStW7dEnzz5SI2hXQBAeHg4Zs2ahapVq+L27dsAqK8kPQztQ6PR4NChQ+Ccw9LSEg8ePABAPnICHKBpMgiCIMyZtWvXsrFjx7LKlSuza9eusfz58+uMcGOMMY1GI2ZmOnDgAJs2bRoLDAxkGo2GDRs2jK1fv54xxlLtd/jwYda7d2/GGGNVq1ZlQ4YMYWPGjEkzLZE5H1Jm2s4YSx7V+ebNGxYREcHs7e1ZmTJlmK2t7Qcfl/hwUroICQlhT58+ZREREaxIkSLM1dWVOTk5McbIhaEhF3Kh7UOtVjMfHx/m6+vL3rx5w8qUKcPKli3LnJ2dGWPkw9CQC3kgF/JALgwLPdeaB3FxcezAgQPs66+/ZowxNmTIENa9e3fWrVs3xhj50Gbw4MHs6NGj7NmzZ8zCwuKjjpGUlCT2HTlyJLOzs2PLly9njFFZfwjkQh7IhTyQC3kIDAxkrVu3ZiEhIaxZs2Zszpw5rH79+ixfvnypnoliYmKYnZ0dY4zK2BCQC3kgF/JALuTBx8eHVa5cmVWuXJn99ddfepvRWK1WM0tLy1Q+iYwhH/JALuSBXMhFYGAgGzZsGDtz5gwDwCpVqsR+/vln1qlTp2wfO2U9/+rVK5aQkMCKFSsmPJGv9xjSBWOMhYeHs7Vr17Lly5ezuLg4VqVKFdaiRQs2efJk5uLiotN2z+0Y2gVjjEVERLDNmzezbdu2MT8/P5Y/f3526dIlVr16dXKRAmP4UP7Ot99+yy5fvswKFCjALl26xKpVq0Y+ZMcoYfIEQRCEyVizZg0453BycoK/v3+q7dozL7m7u8PV1RVWVlbgnOOzzz4T29IbsbllyxZ8+umnUKlU4Jxj+vTpaR6b0B/aLq5cuYKVK1eidOnSKFSoEKysrKBSqdCrVy+4ubmJdOTC8Bw6dAgTJkxAgQIFYGdnJ0aOdujQAatWrRLpyIXhIRdysWnTJvTv3x/W1tawsLDQmZVj+fLlIh35MDzkQh7IhTyQC9NCz7Vyk5CQgO3bt6Nx48bgnEOlUqFs2bKYNWuWSJPbZ/bRnr1l48aNCA0NzfZ3dMaMGShatCg45xg4cGB2s5hrIBfyQC7kgVzIibe3N5ydncE5R6VKlTBp0iT4+fmZOlu5EnIhD+RCHsiFPAQFBel1VsonT55g1apVuHv3LgBqy30o5EMeyIU8kAu5GDNmDDjnaNy4MY4fP47Y2Fi9Hdvb2xurV69Gly5dUK5cORQtWhRt27bF7NmzERgYCIBmONbGkC4A4O+//8aSJUtQrlw52NjYgHOOqlWrwtPTEwC50MaQLsLDw7F48WKUL18enHPkzZsXnHM4ODjQzN/pYOhrQyEgIAAdO3YkHzkICmAnCIIwcx48eABXV1c4OTnh0KFD4kVVYmKiTrpffvkF+fPnF4E7Xbt2FdsyWyLYw8MDP/30kwhiHzt2rNhGASaGY+nSpahataoYcMA5h62trVgSh3OOH3/8UaQnF4YhLi4OkydPRv78+YULKysr5M+fX8fF+PHjxT7kwjCQC9OjlKdarYaPjw+GDBmiU/YFChRA4cKFoVKpxGfjxo1LtT+RfciFPJALeSAX8kLPtfKSkJCAsLAwDBs2TASxc84xbNgwU2dNGvTZ8b1gwQKoVCrRLh89ejR93z8AciEP5EIeyIWc+Pv7o23btsiTJ4949lm+fDmeP39u6qzlOsiFPJALeSAX5sezZ8+wevVq0b5WgkMJ00A+5IFcyAO5+Hi0A/1XrlyJP/74A3FxcR99PO023tOnT+Hu7o6CBQuK5wKlb1D5qVy5sgiczu2DDvTtIjMePXqE5cuXo27duuCco1ChQuTi/zG0i5TB646Ojjhx4gS6d+9OQdNpYOxrA0hu01AQe86BAtgJgiDMnIiICHTu3Bmcc7Ro0QL//fefeBjQaDQ4d+4cRo8erdPQ6Nevn9g/ZaC7NtoNmNevX8PNzU00WubPn2+4k8rlhIeHY/jw4TrO2rRpg1mzZuHKlSvYsWMHJk6cKFzMnj3b1Fk2S5KSknD79m30799fx0WvXr2wdetWeHl54eDBg5gxY4ZwMW/ePFNn2ywhF3Kg1Anx8fE4fPgwOnXqJFwULlwY3333Hc6ePYvQ0FD8888/mD9/vvCxcOFCE+fevCAX8kAu5IFcyAk91+YsFixYgNKlS4vARfKhf4KDg+Hk5CTKN7e/bDIl5EIeyIU8kAv98vz5c6xevRpNmjSBtbU19u3bh8jISL0dnwYXZB1yIQ/kQh7IhfkQGRmJuXPnijrc1tYWs2fPRkJCgqmzlishH/JALuSBXGQf7XiO7ARnatfPV69exahRo8QM3/b29vjkk08wceJELF68GN99950InC5RogR8fHyydQ7mgr5cZIbiKjY2Frdu3UK7du3AOUeNGjX0ujJCTkbfLpQyTyt43cPDA0DyagUdOnSgoOk0MNa1oQ0FseccKICdIAgiF+Dv749SpUqBc44qVaqgZ8+emDJlCtq0aQNXV1cRLFK+fHlMmDBB7JdR8HpavH37VgT7uLq64vz58/o+lVxPQEAAvvzyS+GsdOnSmDJlSqp0UVFRWLt2LVQqFYoXL46zZ8+aILfmS2JiIs6dO4cuXboIF40bN8bPP/+cKm10dDRWr14NCwsLlC1bFjdu3DBBjs0XciEHSqM9Li4O27dvR5MmTYSP3r17Y8+ePan2iYmJwfLly2FhYYFq1aqJWQGI7EEu5IFcyAO5kBN6rs1ZPH36FAsWLBCzLVWuXBlbtmwx+EwpuQml49zPzw+LFi2ijnQTQi7kgVzIA7kwDBqNBgkJCbh//77els4OCgpCSEgIAHop+yGQC3kgF/JALsyHRYsWgXOOIkWKYPbs2QgODjZ1lnI15EMeyIU8kAvTox28fvLkSfTo0UOsllm7dm3MmjVLJzA6ISEBHh4eaNWqFTjn+Oyzz/D27VtTZJ0AcPv2bVSrVg2WlpaYM2cOkpKSaNC5AQgLC8OyZctQpkwZcM7h5OSE+/fvA3j/bEtB03Lh7++vM6ggpS9CDiiAnSAIIpfg6+uLWrVqiVGyyo8ye97XX3+NvXv3ivQZVdjR0dHi/ylnyvjvv/9QunRpqFSqNANIiY/n0aNH6Nu3r3DXqlUrbNu2TWzXbohoNBr4+vqicuXK4Jxj3bp1Jsq1+ZGUlISLFy+iffv2wsWAAQPw999/izRqtVpcGxqNBg8ePECJEiXAOceOHTtMlXWzg1zIRXx8PHbv3o169eoJHz/++KPOUo8p65YbN24gX7584Jzjzz//NHaWzRZyIQ/kQh7IhVzQc23O4tGjR5g1axbs7e3BOUfVqlWxZ88evc7ASCTzoYPICcNBLuSBXMgDudA/+p6BOCgoCCNGjECpUqVw7do1vR7b3CEX8kAu5IFcmBdLly7FmDFj8PjxY1NnhQD5kAlyIQ/kwnRo1/knTpxAmzZtYGlpCc452rVrh9OnTyMqKgqAbh96UlISdu/eDWtra5QtWxaBgYFGzzuRTHx8PL7++mtwztGsWTNTZ8csiY+Px+rVq1GsWDFwzmFjY4Njx46JbdoDBrSD2PPmzavzHoowPgEBAWIyxAIFCuDevXsAKIhdJiiAnSAIIhcRGhqKtWvXomfPnmjSpAlq166NiRMn4uDBgzrpMhqN6evri9GjR+Po0aPppunRowc456hfvz7i4+NpOchsoLiIjo7GwIEDRZBP165dxQOxdrqUtG7dGpxz9OzZM8N0ROYo32MvLy90795duBg8eDD+/fdfkS69MlaWURs6dGiG6YjMIRfyodFocPLkSTRr1kz4mDlzJkJDQ3XSpIUSkDhr1iwA5CO7kAt5IBfyQC7kgJ5rcyaPHj3CnDlzRPB69erV4e7uTsHr2UD7u0ttZdNCLuSBXMiDoV2QX8Ph5+eHCRMmiFU4XV1dERYWZups5UrIhTyQC3kgF6ZDOzCHZsY1PeRDHsiFPJALebhw4QK6du0qgte7deuWaVB6cHAwnJycwDnH77//bqScEtoo19CaNWvAOYednR18fHxMnCvzJDg4GP369UO1atXAOUejRo1w4cIFAMn9Kdp9HgEBAWjbti045xg/fjxNCmBkUganb9u2TUxyaG9vL4LYCTmwZARBEESu4ZNPPmGjRo1io0aNYklJSUyj0TArK6tU6VQqVZr7A2D3799nbm5uzM3Nje3fv5999tlnDADjnLOkpCRmYWHBbGxsGGOMJSQkMM4545wb9LzMFQDCxbRp09ju3bsZY4x16tSJjRkzhnXo0CFVOu19OedMrVYzxhizs7NjjDFy8ZFoNBpRxkuXLmXHjx9njDE2aNAgNnr0aFajRg3GWGoXABhjjEVGRrKYmBjGGGMODg6MMXLxsZALuVB8vHjxgq1fv55duXKFMZZ8zxo1ahQrUqSISKtdzsp+3t7e7PXr14wxxgoXLswYS78OIjKGXMgDuZAHciEP9FybM3n8+DHbtm0bW7FiBYuOjmbVqlVjP/30E+vRowezt7c3dfZyJNrPsuHh4axQoUKiHU0YF0O70D5+Wr8T7zHGdaHUJWn9TeI9xnCheIiMjGT58uWje6AeCQgIYD///DNjjLEyZcqwH374gb7nJoJcyAO5kAdyYVy0n30sLCzE7/nz5zdxznIn5EMeyIU8kAv5CAwMZDt27GD//PMPS0pKYt26dWNbtmzR6UNPi6dPn7I3b94wxhiztKQQRFOgtKnDw8MZY4zFxsayuLg4U2bJLNFoNKx06dJs69at7N9//2XLli1jJ0+eZO3bt2dnz55lTZs2FfEIjDHm6urKNmzYwE6ePMm6detG14eRUeqWY8eOsfPnz7N169aJeic6OppNmjSJHTlyhNna2po4pwRjjFHLkCAIIpehPDRZWFgwKysrnYeozOCcszZt2rBBgwYxxhjr06cP+/XXX1lERIQ4pru7Oztw4ABjjLE6deqkGSBPZA3lAWrjxo3sl19+YYwx1rhxY/bDDz/oBPmkFbzDOWd///03u3z5MmOMsZo1a+ock/gwlM70+fPns507dzLGGOvVqxcbOnSoCJhmLHX5KgM4jh8/zry9vRljjFWoUCHNtETWIBdyoT2Y4NixY4wxxkaMGMGGDBmSYaeWst/p06dZWFgYY4wxZ2dnA+fWvCEX8kAu5IFcyAM91+Y8KHhd/yQlJYn7y+jRo1nz5s2Zt7e36EwnjIehXWgHAd+5c4cx9r5uIde6GOO60K5fLl26xPz8/JhKpWJJSUl6Ob65YMx71N69e9lXX33FHjx4wCwsLMiFnujYsSMbO3Yss7S0ZGPGjGHfffcdK1SokKmzlSshF/JALuSBXBiHyMhIxhgTE04pUPvZNJAPeTCki5TPytTmyxhjXhcajUbvxzRHlHL6+++/mbu7O1Or1axDhw5s3bp1GfahK/4CAwOZnZ0dU6lUYuIwwjho32/u3LnDjhw5wjjnrGLFiqxEiRImzJl5olKpGACWN29e1qpVK7Zx40bWq1cvlpiYyAYOHMg8PDxS3cvKly/PRowYwcqUKWOiXOcOUta9oaGh7NKlS6xLly5s2LBhbPXq1SwxMZElJCSwmjVrsoULF7Jly5ZR8LpMGHJ6d4IgCCLnkHIJlYwIDw/H999/D845OOfo0KEDBg0ahFGjRonPnJycsG7dOgPmOHfg6+uLtm3bwsLCAo6Ojli/fr3YltGyy8+fP8fQoUNhbW0NR0dH/PPPP5nuQ2TM5cuXUaFCBXDOUaNGDRw8eFBsy6hcHz58iA4dOkClUqFy5crw9vY2RnbNGnIhFwcPHoSNjQ045+jYsSOuXr2apf2uXr2KcuXKgXOOFi1a0NKQeoBcyAO5kAdyIQ/0XJtzePToEebMmQN7e3twzlG9enW4u7sjMjLS1FkzC6ZMmYLSpUuDcw4rKyu8fPlSL8dVrgm6NrKOoVwobN68GRUrVkTnzp1x8OBBcfykpCS9/h1zwNDXBQCcP38erq6ucHBwwN27dwF8WF9YbsHQ10V0dDSmTJkilmx+8OABAHKRXbTvK9euXcPz589NmJvcDbmQB3IhD+TCODx79gxz5szBjBkzxGfUNjAdxvBBfVVZwxgu1Gq1zvsmuvbSxhgurl27hjlz5hjs+ObKnTt3YGdnB845GjRogGvXrmWYXinX8PBwVKxYEZxzVK1aFXFxccbIbq5D+1kqrbbzlStXMHToUOTLlw+cc/Ts2dOY2TNLstp3d/PmTdSoUQOWlpYYN24cEhISqN/PyGjf5589e4YDBw6gQYMG+OSTT0TsGucc3bt3x+zZsxEdHW3C3BLpQesTEARBEEyj0Yilhf744w/WuHFj5uzsnO5o54IFC7IxY8YwDw8PdvPmTXbhwgWWkJAgttvZ2bFevXqx4cOHGyX/5syDBw/YpUuXmEajYf369RNlmt5y1/j/mcUuXLjADh48yBITE1mdOnVY+/btGWM0s0N2ePDgAQsODmaMMdazZ0/Wq1cvxlj6s4Uylrz80PHjx9mNGzcYAFa9enVWsWJFY2XZbCEXcqCU971798QMDZ9++ilr3LhxpvuGhoayvXv3smfPnjHGGKtduzYtDZkNyIU8kAt5IBfyQc+1OQOaed2wHD16lC1btkz8PmLECObk5JStYyrXinJNvHz5ksXFxbGAgACmVqtZ/fr1maWlJbO3t0/3esuNGMKFNrdv32bHjx9n/v7+zNfXl3l4eLBGjRqxRYsWsXLlyrGkpCTRD5PbMZQL7fbh+fPn2YQJE9izZ89YXFwca9WqFbt06RKrVq0audDC0NcFY8l9hoMHD2a3bt1iZ86cYc2bNycXekClUol7fKNGjUydnVwNuZAHciEP5MLwPH36lO3bt4+5ubmxiIgIplKp2Ny5c/XWblaeqzLqfyfeY2gfcXFx7MyZM+ynn35iY8aMYU2bNmVVqlRhjGX8jiQ3YmgXjCX3a124cIFNmjSJ1ahRg23bto2ulzQwhotXr16xgQMHsoCAAPbq1Su2Zs0acpEJAJharWYbN25ksbGxrGjRouzLL79ktWrVynAfzjmLiopi8+fPZ4GBgSxPnjysW7duzMrKivqePoCMvptqtVq810hMTNQp97i4OKZWq9m1a9eYj48P27FjB4uIiGCxsbGsVq1abO3atYwx3X73lO1tan+nz6NHj1hcXByrWLFipt/nWrVqserVq7MHDx6wf/75hy1ZsoRZWVkZMbe5F8WNcq2sWLGCXblyhZ08eVKkcXJyYnXq1GFffPEF69+/v5hxXfv7T9eGJBg1XJ4gCIKQGmVW9evXr2c5vYODA6ZNmwYXFxcUK1YMXbt2xbx588RINxph+HFoNBrEx8ejW7du4JyjTp06Ytar9GalUj6/f/8+SpQoAc45ypcvjxs3bmS4H5E5b9++Rd26dcE5R6tWrcTnmX2/jx07hiJFioiZwp88eZKl/Yj0IRdy8fz5czE7X48ePcTnGc1q8fbtW6xbtw5OTk7gnKNhw4aIjY3NdD8iY8iFPJALeSAXckDPtfKgPPe8efNGzDSi/b2mmdeNw/Dhw8E5x7Rp07L9LKq9f1hYGLZs2YJ69eqhWLFiYnaZ6tWr44svvoCvry8Aun600aeLtPD09MTx48fRvHlz0RZxcXGBh4cHAGqLaKNvF9r3tnPnzqFOnTpQqVSws7ODq6srOOdwcHCg2b/TwNDXhYK/vz86duxILrIJlZc8kAt5IBfyYGgX1EZPRq1WY+3atVCpVOCco1ixYhg9ejRev36tl2Nr8/jxYzx79gwhISE6zwnk4j2G9KFw/vx5VK9eHZxzWFpaok2bNvj111/FdvKRjDFcJCUl4cyZM+jSpYtog48cOVJsJxfJGMMFkOzDzc0N1tbW4Jxj1KhRYhu5SJ/o6Gjx3rVOnTp4+vRppvvExcVh69atqFSpEjjncHJywu3bt42QW/Pk6tWrmDt3Lj799FN07twZPXr0QNu2bdGoUSM0bdoU9evXR5UqVVC5cmW4uLjAyclJvL/Q/qlbty4uX74MQPc7r12f//TTT7QqXQb4+/tjyJAh6Nevn/gsvfuHUn67du0S952srgBMfBwp+6kCAwMxY8YMNG/eXOdaKFu2LFq3bo2rV6+KmBAFujbkhALYCYIgCADAu3fvUK9ePXDO8dVXXyE8PDzdtAkJCQCArVu3gnOOEydO4O3bt3jy5IlOZU4vY7NHXFycaDB27do1w+VslHIPCgpCqVKlwDlHkSJFMHv2bLx588ZYWTZbXr9+LZZAGzJkCBITEzN9cL1w4YIIuCpdujS2bdsGtVpNnSTZhFzIRWhoqFiCa/78+QAybtRFR0dj586dIoCnUqVKOH/+fKb7EZlDLuSBXMgDuZAHeq6Vh3///Reffvopdu3ahXfv3onPg4ODKXjdwGjfR44dO5bt+4r2/u7u7ujbt69OR32BAgWgUqlgaWkpAqc9PT0BUFtd3y5SkrKd8fz5c7i7u6Np06bgnKNo0aJ4+PBhmmlzG4ZwkV7wur29PUaOHAkPDw8RYEKB0+8x9HWRFhTE/nH4+vriyJEj4ncqL9NhaBfK/Sy31xVZwZAu0ip/cpI+hr4u4uPjxXMUQC4UfHx8wDmHjY0NZs+ejcePH+vt2NHR0fjtt98waNAglClTBiVKlECxYsUwaNAg/PbbbyIduXiPIX0AQHh4OLZt24Zhw4bBwcFBBAVPnjxZpCEfyRjSRVrB60r7mwKnU2Po60JBrVZjy5Yt4rogF5lz4cIFWFlZwdraGu7u7gAyfv5JSEjAoUOH0LhxY/Hd//PPP42aZ3MiODgYHTp0EPePD/mxsbEB5xwtWrTAkCFD0hwUov0sNnHiRNFneO/evVTbieR+JFtbW3DOcfDgwSzts2bNGuHkzJkz6abLrD+W7lHpk/J7evr0aSxatAgFCxYU146lpSUcHBzwww8/4Pz58zrvPoDU5UvXhlxQADtBEAQBILnC3rBhAwoWLAgXFxccOXIk04eoZcuWgXOO1atXp3k8IntERESgRo0asLCwwIoVKwBk/GDr7+8vZhktUKAA+vTpA39/f2Nl16wJCgpCyZIlYWlpKTplM/qOnzlzRgTMFStWDJMmTcLz58+NlV2zhlzIxb1792Bvbw8rKyscOHAgw7SvX7/Gtm3bULRoURFEtW7dOgqM0xPkQh7IhTyQC3mg51rTo8yE37BhQ3DOUatWLezZswfx8fF49uwZZs+eTcHrRkBfHd/ax5k5c6YY4Mk5R6NGjTB48GBcvHgR586dg5ubm5iFxtXVFQEBAXrJQ07HWC8hlLZKYmIiPDw80LZtW3DO0bx58yzNapYbMJSLlMHrI0aMQFxcHIDk4AkKnE6NKc6fgtg/jKCgIPFi9fvvv9f78bUDpnP7YKfMMLSLt2/f4vDhw7hy5YrO9UB97qkxpAvtVWa3bduGpUuXptpGvMcY96j//e9/sLa2xqBBg3Q+J5IHD8yfPx/BwcF6OV58fDzu3LmDRo0aIV++fKmC5pTg0EmTJol9yMV79O1DIWX9fOLECYwcOVL4GD9+vNhGPpIxhIu0gtfXrFmDrVu3UuB0BhjqukgJBbF/GJcuXYKlpSXy5MmDU6dOAUhdTsrvcXFxOHr0KFq2bCm++wsWLKC2QzYZO3YsOOewsLCAg4MDBg8ejKFDh+Kbb77B2LFjMX36dIwfPx7Tp0/Hzz//jBUrVmD16tU4efIkrl69Kvo6AN16QrsdMWHCBHDORXA2tb/TxtfXF127doWVlRW+/vprhIaGpptWrVYjISEBI0aMgI2NDWxsbPDff/+lSpfyejp16hS2bNmChQsXYsGCBbh58yZevHgBgCYdyYikpCScO3cO48aNQ/78+cV3OU+ePHB0dMTixYvFPUwhs9nzAbo2ZIEC2AmCIAhBWFgYevbsCc45GjduLJa1VtB+YPL29kaLFi3AOcf06dONndVcQ6dOncA5R79+/XRmqky5POONGzfg7OwMzjns7e3Rrl078WBFZB+1Wi0a40OGDEFsbKzYpu0iIiIC+/fvR/HixcE5R+HChTF48GAEBgaaIttmCbmQi9jYWDHLwoQJE9LtJPH398fKlStRuHBhcM7h7OyMBQsWiAY5kX3IhTyQC3kgF3JBz7Vy4OXlJb7rtWrVwpo1azB16lQRkEDB6/Kj3XE+evRonWCS0aNH4969ezrXVVJSEjw9PdGoUSNwzvHjjz/SakQm5OzZs/jkk09QqFAh7N27FwC9nDIEJ0+eRP369aFSqZAvXz6MHz9e1D1KeacMnFb6wOjllPHx9/dH+/bthQua7SptgoODMXz4cLFCjYWFBS5evKiXY2flPkT1xnsM6QJI7tPasGEDnJycwDnH8OHDdWa0JhfvMaQL7eD1P/74A02aNBH9kSnTEIa/LhT2798vnn0pIDE1iYmJejnO06dPsXHjRjGw3MrKCra2thgzZgyWLFmClStX4uuvvxbBofSOMG305SMtUr4LWb9+vfCxcuVKg/3dnIo+XGjXCymD19euXQuAAqezgiGvC23IRdZ58OAB7OzswDkX/RTaKPeb6Oho7N69W6wuxznHxIkTERISYuwsmw3a9/IxY8aIct26detHHU/7u51WgK6lpSUaNGiAevXqUaBuBri7uyNv3rzgnGP58uU675WUclLc3bt3D8WKFQPnHDVr1kxVjkq68PBwHD58GF26dBEz5ys/zs7OaNOmjVhliFzoEhcXhxMnTqB9+/YoW7asTtk1aNAAs2fPhpeXl84+GZUhXRtyQgHsBEEQhA7BwcGoVq0aOOdo1aoVrl+/jqioKJ00QUFBWLBgARwcHMA5x7Jly0yUW/NFaWCsXLkSVlZWqFmzJm7fvp3qAcnf3x+bN28WQboODg7o3Lkz7ty5Y4JcmycajQYajQZz5swB5xx169bFvXv3Urn477//MHPmTBEQVLx4cQwfPhy+vr4myrn5QS7kIyEhQTTuGjRogHv37qXqgDx9+jS++eYbODo6gnOOMmXKYOnSpTTjpJ4hF/JALuSBXMgBPdfKx8OHD1GoUCFwzvHJJ5+I2UVq1KiB3bt3U/C6xGi/2BoxYoROh/2SJUvSTatWqzFt2jRxPzTWC2MiNdHR0ahVq5YY0EPonzdv3qBz587ihWDZsmXx77//AkieSVT7ha52EDvnHPfv3zdVtnM9jx8/Rvfu3VMFsdMAj/eEhYWhfPnyYkWNNWvW6GWFOeWaUKvVePDgAdavX48ff/wR3377LbZt24Zr166lSpvbMZQLhaioKEydOhXVq1cXsxwXL14c8+fPF2nIRTKGvi6SkpLw+++/i4l8KHA6fQx9XSio1Wqa4djABAYGYvbs2SIYq1ixYvjyyy9TDUh48+YN3NzcoFKp4ODggOPHj5soxwQAxMTEYMaMGVCpVKhfvz68vb1NnSWzRK1W4/Tp02KSBs45NmzYkKr9rR04PXr0aLGN7lPGJaWLkSNHim3kIhmNRoOIiAh07twZKpUKEyZMSHPikYiICEyfPl08nyorPtC9Jvto95GPGzdO594SHx8vtiUlJel8bzP6DqcXoNuiRQv89ddfePLkibiPUaDue7TLdPHixcLF6tWr03xf5OPjIwZvFi5cGD///DOA9+Wo/BsQEICBAweiXLlyYmCgpaUl6tati+LFi6NIkSLgnKNEiRLw9PQEQH0hKZk1a5ZOe6xbt26YP38+4uPjRVll5b5O14a8UAA7QRAEkQofHx+dkYJTpkzB3bt3ERwcjL/++gvffvutmAGmZs2aePnypamzbLaEhISIxmCLFi2we/du+Pv7w9fXFzt27EDHjh1FwFWJEiUwcODAVDPnE/rh0aNHqFy5MjhPXu5948aN8PDwwIULF7Bq1SpUqVJFzH7o6uqKmTNnGnwZvNwKuZCL4OBgVKxYEZxzNGnSBMuXL8fNmzfh7u6O6dOno0CBAiIwrmrVqti6dWu26g3qWEwfY7qgzpOMIRfyQPcoeZDhuZb8vOfhw4coWLCgmB3R2dkZW7Zs0XkxQsiF9vd3ypQpyJMnDzjnsLGxEbO9pUwHvO9gP3jwICwsLODk5ETPxiYiISEBANC1a1cxmIAwDCEhIZg9ezYaNGggBqidP38eQOqXvgEBAWIGOSUNYRyU59iYmBgEBwdj0KBBYuCBlZUVBUOkwf3791G5cmUsWbJEb/2xiYmJePToEXr27IkKFSrovBTmnMPFxQVz584V6el5KhlDuNBGmeVv3bp16Nixowi8Gjt2rEhDLpLRt4uUwevKSpCccwwaNIgCpzPA0NeFAs2qaziCg4MxadIkMTGMi4sLVq9erdN+0O6HCg0NFSs9adcVhGk4ffq0eJY6ePCgqbNjlnh6eurUCwMGDBDblPYe8P4+ZWFhAc45vv/+e1Nkl0Cyl507d4o6Y9iwYWIb1RnvWbdunfher1ixQgRtBgYG4vLly2jQoIHot+WcY9asWdS3pEe0g2PHjx8vynnjxo0fPAmFdj39448/igDd5s2b4+jRo2Kbr6+vzqp0FKibjHb5TZ48Wbjo27cv3NzccPfuXRw7dgyLFy9GiRIlwDlHvnz50KNHD/j7+4t9lXL08vJC9erVRf1sY2ODyZMn4/Dhw4iLi0NISAj++usvtGnTRkww8/jxY6Ofd05gypQpaNSoEfbu3YvXr1+Lz7P6jpSuDbmhAHaCIAgiTXx9fVGzZk3xUJY3b164uLjAwsICVlZW4JyjUqVK+P3331O9/CP0i4+Pj1iqMW/evChYsCCcnZ11XiZVqVIFP//8Mx49emTq7Jo1Pj4+cHFxEYE+BQoUQP78+XVc1K1bF4cOHUJ4eLips2vWmMIFzUaaPj4+PnB1ddWpM1K+9G7VqhXu3r2rs9RadoiIiNDLccwNY7jQrvP//PNP3Lx5M93tuRlyIQ+muEfdu3dPZ/lUcpGMKZ5rPT098fvvv4vfycV7vLy8xMDkMmXKYOvWrTovXAk52bRpk7iOOOdYt26d2JZRh/3s2bPBOYe1tTWCgoKMkFNCG203TZo0AeccpUuXRlRUFA1G0zNKecbFxeHWrVvo2bMnOOfIkycPrl69CiB1XeDv7y9W/KB6wrBol298fDx8fHzw9ddfo06dOuCci8CSMmXKYOPGjeQjDV69eqW3fo4nT55g06ZNYpIApfyrVauGBg0aoGTJkuKz8ePH6+VvmhP6dJES7e++t7c3li5dKlxMnz7dIH8zJ6MvFxkFr2/ZsgUAKHA6Ewx5XWhDQez6JywsDPPnzxezgJYtWxb79u3D27dvM9xv0KBB4JyjadOmiI2NpWdbE6B85yMjI8UK21OnTjVxrsyXdevWoVu3brCzs4ONjQ2GDx8utmkHmir3KWWiBiUAjjA8Ke9DDx8+RPfu3cWAgqFDh5ooZ/KRcrIE5bmnRIkSaNmyJYoVKyYC11UqFSwtLbFz5068e/cuW383pSOqu/UbxA4AQ4YMEe/QGzVqpDNgXylv7VXptAN1c7sPbRczZsyAhYWFeOZUJgFVJhZxcnJC586dxSpyGo1G7P/gwQORnvPkFePPnz+f5vf/33//RZUqVZAnTx5s2LBBfE7o1q1hYWE62z6mjOjakBMKYCcIgiDS5fHjxxg9erRY3lr7p06dOvjrr7+y3UAhskZAQAB69uyJsmXLigcqZRRmv379EBgYmK2AK+Vhix66MicwMBADBgxApUqVRAAI5xzt27fHuHHjEBUVla3jZ8UBeUrG0C60uXLlCnr27InNmzfrzCpALt4TFBSE7777Tsyua2dnB1tbW3zxxRdYvny5Xsvq+PHjqF27NtatWwc/Pz/xOflIxlgu1qxZI5a8GzduHP766y+xjVwkQy7kwZj3qOXLl4Nzjj59+ujMeEUukjH0c602Pj4+GDNmjJgtUYFcvMfLy0vMxF67dm3s3r2bBu1JiPKd9fT01FmqfOXKlSJNeoEiGo0Gr169Qq9evWBpaYlGjRrpLAdNGBaNRqNzz1HqCM51l5InDMejR4/QvXt3cM5Rq1YtnfZDSlL6IvRHypmqDh06hB9++EEMpFJ+KlWqhLFjx8Lb25vuVQbG19cX48aNQ8mSJcWL9y5duuDAgQPiWcDDwwNr1qwRL+tXr15t4lznLrTvR3FxcXBzc4NKpYKDgwPNrGtAkpKS8Mcff6B58+bi3rRp0yaxPT4+Pt3AaQrcNS4UxK4flO+tu7u7mEnU1dUVR48ezbBtnpCQgMTERLRv3x6cc3Tu3NlYWSbS4Zlq4e0AAPFtSURBVM6dOyKgjgaeGZagoCCsWbMG9vb24Jxj4MCBYpv2c69arcbRo0dx9OhRxMbGmiKruYqU9/6rV69izZo1KFy4MAoUKKDTD3np0iUT5VI+tL+zCxcu1JkIRvlxdXXFF198gWvXrunsGxQUhPv3739Qvau9Etf58+d19s3t9be+gtgfPXqE6tWriz7fWrVqwcvLC0ByMLB2OWsH6trZ2dFkif+PtosdO3agd+/eqa6LSpUqYfr06Xj48CGA5O+v4snT0xOFChUSwe5NmzaFp6enSKf9LwDExsaKFRt79eplrNPMMehr0AtdG/JCAewEQRBEhkRHR+Px48dYsWIFZs6cialTp2LdunV6DQwlssabN2/g4+ODTZs2wd3dHQcPHtT7EkJv375FQEAA9uzZgx07duD8+fMUrJsGkZGRCAkJwR9//IF//vkH58+fR0xMjNj+MUsIpSzb4OBg3Lp1CytXrsTPP/+Mv/76SzxAp5U+t2IIFykJDQ3FyJEjRYP0yy+/xL59+8R2cvGemJgYhIeH49SpU7h16xbu3r2rs10fPgICAnQ6Cvr06YM9e/aI7eQjGUO7iIyMxLRp09CgQQNwnrzMmrOzMxYuXCjSkItkyIU8GOMeBQBjx45FgQIFYG1tjSJFimDJkiViG7lIxhjPtd7e3hgzZozoKKaAhvR5+PChWCK+Ro0a2L9/P+Lj402dLSINli5dKr7PkyZNEp9nFLwOAEeOHBGBPRQ0/XFkZ6BxYmIiEhMTMWfOHJQoUQIqlQq2trbYsWOHvrOZK9D+vmflBa5Go8GJEydQvHhxODg4YP369amOQxiGlNdEUlIStm3bhu+++w6cc7HCo6OjI0qUKIH169fj1q1bGR6D0A9eXl745ptvRP3/ySefYM2aNWKAh3J9aDQaREdHY9q0abC0tESnTp3w5s0bU2Y9V/Po0SO0aNECKpUKEydONHV2zBKNRoPffvsNjRo1Es9c27dvB5Bc5yjXRkaB04RxSUxMxK+//ipcaM+ETHVI5ijf6cDAQJQpU0asErR3716dPvb09ouKihIzfn/++eepAn8Iw6OU96tXrzB79mzky5cv1WBnQn9of78TEhLg7u4ugtgzWiGFJhEzHCnLNjIyEg8ePMDIkSNTBWIXKlQI48aNw9GjR02ZZSnR7hf/77//sHPnTowePRrTp0/HqlWr8OTJE9EOUAZ+v3z5EkOGDIGjoyN27dr1Qd/vyMhIzJs3DwULFkSbNm2wa9cuMbNybm+rpxfE/ssvv3zQ+4vw8HBs3rwZLVq0EAOWlZmmUw7e9/f3R5s2bVC/fn3qE9ZC+7v45s0bXL9+Hb/99ht++eUX7Ny5E+Hh4WJwkvbM635+fihfvrwIfO7QoQN8fHxSHVNB6dtSfLdp08bQp5aroWtDTiiAnSAIgvhoqKEtDx/TmEvpb+/evejWrZt4eaWMRG/cuDGWLVuW7n6ELh9TPtr+Xr9+jfXr16NKlSo6M5GpVCrUqFEDixYtytbfyk3oq3xiYmLw559/itlkVCoVihQpgilTpog0ub1DxZhER0fjyJEjYiS6MvuY9stbujaMQ2xsLGJiYvB/7J11WBZLG8ZneOkQREQxULAV7O7u7u5jix1HPXZ3d3uwj92B3aKCkpIGIChKI7xwf3/w7bj7Bh0K87suruNhZ5fZefaZvOeZDRs2oEWLFmyxcPLkySwNt0X2wG3x+3Hz5k0MGTKE2YLXUaknM9pUQbwuRNIoW7Ysj8qXAm5ubqzvuX79+pzODkcFLi4u7Njm9u3bs6gvKYnXX716Jdmg8Pr162Tv4ygjXiAMCAhAQEAAAgMD4evrCzc3N3h5ecHFxQVPnjzB8+fP8fz5c1y8eBH29vbYtWsXunfvjnr16rG+q2IbrQoh2mVmba7KjZw8eZJt8k7pe46NjUWNGjVAKUXTpk2zI3t5GkV7vH//HqdPn0bDhg2ZwEc857R//354enom+wyA+0Vm4eXlhREjRrB2v0SJErh+/bok4r1iH+nUqVPMbq9evcruLHNEjB07lgmwgoODczo7uY74+Hjs3bsX5ubmkMlkMDQ0xObNmyXXBeRyOfbt28ciuW7YsCEHcpx3UWwnVq9ezfpZo0aNyqFc/ZlER0ejXbt2oJSiYMGCWLZsGUJDQ9WmF7cR06ZNY+IsLgjNOfz9/bFp0yaUK1eO2dHb2zuns/VHk9pIx+Hh4fj777+hqakJGxsbpc2YnOwjPDwcr1+/Rrdu3VCpUiXJ+Lt27doYNWoUvL29Je0HnxeRklJ5qJpHHTZsGCilMDIywrFjx1I913r//n107tyZjTEKFSqEzp07s3FhXh/zid9faGtLlCgBd3f3VN0v2DI+Ph7u7u7o0aMHKKUwNjbG8+fPVd4TFBTE6r68Xv5iUtqApHg9KCgIXbp0YXMeTZo0Yd91cj4WGxvLNtE2bNiQ109ZBPeN3xcuYOdwOBwOJw8i7vQ+f/4ckydPluxCNzExQYECBaCtrc0m4cVHDnKxT+pJqazEtjh79iz69+8vsUXhwoVRokQJmJiYcFtkkIyUVUJCAsLCwjBp0iSYmJiojOrDSRvpsYf4nujoaEybNg2FCxdm9hg9enRmZjHPkBn1iKurK5YvX85s8ffff2dCzvIe3Ba/D+m1hbhd9/HxwdKlS5ktpk2bllnZ4ySDIF4XRFn16tVDZGQkjh07xkXsKeDp6YkFCxbwMvlNcXBwgImJCSilWLJkSbIL6oINPTw80KZNG8hkMmhra2Ps2LH8NLUM8M8//6BOnTooVqwYihQpAgsLC+TPnx/58+eHsbExdHR0oKurCwMDAzae09TUlGxKLlSokCR6vqqFDycnJ9SqVQsvX75Umyavs2vXLpiZmWHcuHEpphUiJA0YMACampooVaqURKibWnjdmHbc3d2xf/9+lC5dmm2kEeY1Bg0ahK1bt0rqsuTKmPtF5vDlyxfMnj0b5ubmoJSiZMmSePLkidr0gk3evHnD6rYbN25kV3Y5IuLi4gAA8+bNg4aGBszMzBAYGJjDucq9PHjwAP/88w/09PRAKUW/fv3YNXH9I5fLsW3bNjRu3BgPHjzIiazmeT59+oRr166hfv36kmAwc+bMyems/fYIdfyzZ89Y9PWWLVsqbSpTx4ULF1CtWjVQSlG6dGk4OTllZXbzBMJmPSBp7vvnz5+IiYnB9+/fERoaiuDgYPj7+8Pb2xuOjo44evQoNmzYgKpVq6Jw4cIsiuju3bsBSOeoVPWzeP9WNT9//sTr16+TPYVAzM2bN9nJQjt37szi3HEA5bHAsWPH0K9fP+TLl0+yvlqrVi3MnTsXAQEBLEoy94vUk5yAVlxOQ4YMYZuZ0iJi9/X1xd27d9GuXTsULVoUlFIUL14c7969S/Hv5wXE3/mSJUuwfv16fP/+PV3P8vLyQps2bUApRYsWLfD582e1afN6uaeXhIQEJCYmYvv27ex7LlWqFAu8kJIA/tq1ayhRogQ0NDRYP5bXR1kP943fBy5g53A4HA4nFyEsZgDqF/PEnatjx46x6BpCdMo+ffrg6dOn8PT0xM2bN7F48WIm9lm2bFmWv8OfjjCYEE9upcYWa9euZRHhKKVo0KAB7Ozs4OPjg8DAQDx+/BgrVqxgtli5cmXWvkguIC22SAmxrWbNmgVTU1Noa2uDUooFCxZkKJ95BcEe4eHh7HfptYf4vqlTp0JfX58JITZu3JixjOYBMtMW4gmUmJgYbNu2DRoaGjAwMMDJkyczltE8ALfF70NW2SIyMpLZglKKLVu2ZCyjeYjU9GsV8fDwkERer1u3LlsAjomJwd69e7mInfPHMn/+fFBKUaxYsWQFa8L37OXlhX79+rGo7ba2tmwSnn/zaefq1asSIbp4UVz4nba2NjQ0NKCrqwt9fX3o6uqiQIECKFmyJGxsbLB8+XJcunSJPVNV3ebi4oKqVasy8Ymzs7PatHkVQSwo+MO9e/dSdZ8QAcvAwABBQUGp/nuC0EGAL1hJEeoToVyioqLw9etXTJ8+nZ08IN6gP2jQIJw9e1byjJS+b+4XGUcoqxMnTsDS0hKUUlhaWuLhw4epum/Xrl3Q0tKCkZER20TAyT4EPwsODkb16tVBKUWZMmUkYxdO5iCu4yMiImBvbw8jIyOlIBbivlRCQgJCQkJ4+5ANCHVSfHw8oqOjsX79erRo0YLN0QrtfJs2bbBv374czu2fw8KFC1n5XblyJVX3uLi4oHfv3uw+8UkFnLTz+fNnHDp0CA0aNECrVq3QqFEjVKpUCdWqVUONGjVgbW2NkiVLokyZMrCwsICpqSkb54l/TE1NsXHjRqW+rrjOOnToEObPn6/yGiepfjl69CiKFy+Oy5cvJ5tWKLv4+HjUrl0blFIMHjwYcrmcl2s2EB8fjy1btqBfv36SzeOFChVCxYoVYW9vn+yGHO4XGUe8GXnQoEGpFrErRqwODg7G6dOn0ahRI1BKYWFhwSKN53VbiMe84rkJod8ZEREhmUNXR3x8PPbs2QNNTU1YWFjg1q1bAHj5ZjZyuRyNGzcGpRR6enp49uwZAPXzSOLfDx06lLXnfNN4+uG+8efCBewcDofD4eQSoqOjceTIEaxdu5b9TrFzJf7/Xbt2oU6dOqwz3KNHD5w+fVopkl90dDTWrFkDDQ0N2Nraws3NLWtf5A9GKN/Q0FAsXLhQIvhXtIV4UDJ//nwW5USIIv306VMlW8TExLCourVr14a/v38Wvs2fTVpskdpnAcDTp09Rt25dFoGpQoUKCAkJyZxM52KEMgwMDMTgwYMlk4HpfRaQFN2kUKFCzHdat26d7ggEeYXMtIUqPn/+jBYtWkjEoXygrxpui9+HzLaFYjmHhIRg7Nix0NDQQLNmzRAQEJCh5+cFUtOvVeTt27eYMGECi1Bdv359dk18xKNYxG5nZ5c1L8DhZAGLFy8GpRTly5dX298RR14fOHAgzMzM2ALu+/fvAXDxbUaYMGECE6vXrl0bhw4dwsmTJ/Hvv//i7NmzuHXrFq5evQoHBwe8fPkSjo6OcHFxQVhYmFLke1V2cHFxga2tLTsVTfjv27dvAXCxrpgXL16gbt260NDQwKRJk/Dt27dk0z9+/BjFixeHTCZDs2bNlMpS3MYEBwfjzZs3mDBhAnr06IGWLVuid+/eOHDgAD58+ACA20IdLi4uGDlyJBPYCj9Vq1ZFz5494ebmhh8/fqT5mdwvMobwff/48YOVpYWFBc6dO5fsfeJ6qn379qCU8qjfmUhiYqKk7hGL3eLj49m3LdghKCgIS5cuZXMgzZo1S3VkWE76iY+Px86dO6GnpwdDQ0Ps378/p7OU51AcBwYHB2P27Nlo2bKlZGNhyZIlUb9+fdy6dYuPuVOJUL/06NGD1Svx8fEpjr39/f0xZswYyVqG8Cw+1kg7CQkJ2LFjh+TkJnU/4o20GhoakMlk0NHRQbVq1dCxY0c8e/aMnT4kILbn6dOnUa5cOVBKMWrUKJVp8jrh4eHo3r07KKXo1asXvn79muI9/v7+rH3u3bu32nSp8Q9uC2UUy83FxQV79uxBjRo1WFAjSikMDQ3RrFkz/Pfff/Dz80v2GdwvMg9VInYtLS08ffo0VfeLN0S7uLigefPm7ESQL1++ZEme/3TEgSumTp3KyimlbzY0NBQWFhaglGLYsGGpuoeTNoRgC9ra2izYWmrE64sWLWJ12ZgxY7Ilr7kZ7ht/JlzAzuFwOBxOLiAqKgpnzpxhi4TTpk1TSiPuaO3du5dFr6KUYuLEifDy8lKKnCXw7NkzGBoaglKKM2fOZO3L/OF8+/YNGzduRJkyZUApxfTp05XSiG2xaNEiFClShNli0aJFkqMiFTvId+7cYROVN2/ezLoXyQWkxhZp4eHDh6hduzYTr1esWBGhoaEAoLTZgKPM58+fMWXKFHacaXrsIfaHq1evsmPPBfF6WFgYAG6PlMgMWyTHzJkzQSlF/vz58fHjx0x9dm6D2+L3ITNsIV4kV2y/T506xSNopJLU9GsVSUhIwH///ccWDDU0NLBq1Sp2XdwuCCJ2IUrfxIkTs+Q9OJzM5ty5c5DJZLCwsJBEvxXGbkK98+bNG3Tq1AmmpqZMvP7ixQsAXOiZXsTlZmdnx+rzw4cPp/oZKS18iEW6RYoUwT///INmzZpxsW4y7N69m9li06ZNknG0WLjz5csXzJkzh42jk2vj7969i379+qFYsWJKgiEjIyNUrVoVLi4uALhAS4ynpycGDBgAAwMDVs7a2tooVaoUZs+eDTc3NxYtLi2LgNwvMo/ExESMGzcOlFIYGxtj8eLFyW7+Fttp5cqVoJRCR0cHf//9t9J1Ttby+fNnPHr0CF27dkWJEiVYZMtHjx4ppU1OnMWR8uPHj1SJEoEkAYQQBGb48OFZnDOOgOL3/ODBAyxbtkwSBEbo6/br1w+PHj1SsmliYiL3i2QQykdoW/v06aM2nYCPj4+kP9yxY0c21uCkHw8PDzZHoa2tjX79+mHSpEmYM2cOVq5ciUWLFmHZsmXYvXs3du3ahW3btuHkyZO4fv067t+/j4iICNb/FdtL/O9Tp06hbNmy0NLSYvbjJ9MpExcXh23btqFgwYKwtLTEmTNn1Pb7hT7oy5cvUbRoUdZOpFTvPHr0CCdPnsS4ceMwYcIEHDlyBI8fP1abnpOEo6Mjtm7diiJFirATCAS/GTNmDOzt7VP1HO4XmY943rV///5o2bJlup91+fJlFChQABYWFuwUBD72ViYiIgKdO3cGpRSLFy9OMf3Pnz8RGRnJ1st79eqVDbnMe0yfPh2UUhQtWjTZTRzib3r79u2SoHkpbTTnJA/3jT8XLmDncDgcDicXcP78eVhbW7Nj0jp27Kg2OveZM2dQv359NhifOXMmIiIiUvwblStXBqWURbLmA0ZlEhISsGXLFhQsWJBNnowbN07tgsiWLVtQunRpZovVq1erfbYwURIbG8vuOXjwoOQa5xdptUVKPHz4EHXq1OHi9XQil8sxc+ZM6OjosIXvVatWSUQmKZGceL1NmzYskh8XLyRPZthCHcJCydy5c6GtrY0CBQrg8+fPGX5uboXb4vchM2xx9OhRUEpx/Phxye/Fkb/Lli0LSimLKs7bb9WkpV+ryJkzZzBhwgTo6uqCUoqBAweya4oidiHC2dy5cyVHsHI4vytv3rxBhQoVQCnFihUrVEZdvX37NqytrZkPFCpUCE+ePAHA65yMIu5jTpkyhfVDd+7cqRTlMK28e/dOItLduHEjQkJC8OHDB7Rp04aLdRUQf8vCyQSUUqxcuZIdMy7w9u1bLFy4kImqmzRpgqCgIADK5Xj48GHo6uqy6JeFCxdG9erVMXHiRLRo0QIVK1ZkNuLHmSsj+IWJiQmKFy+Offv2KQna0lJe3C8yl4iICDRt2hSUUlSuXBlv3rxRm1Zsp4sXL6J27dqsvC9dupQd2c2VfPnyBQ8ePMC5c+dw9OhRHD9+HAcOHMDmzZuxYcMGLF++HHPmzMGMGTPw119/oXPnzmjdujVKlCjBxFlCdNEDBw4AUC9SFI6qV/w9J4mvX79i165dbOyWmjISxCiamprw9vbO6ixyRFy/fh1z5syBrq4u9PX12SYOHR0dLFy4EFeuXJGk536RdgYPHgxKKRo1aoSoqCjJNXH7+urVK4waNYrVR82aNcPly5d5eWYSrq6uKFCgACilaNGiBTw9PdP8jJTE65RSmJqaokuXLqx/zMW6ygQHB6Njx46glKJu3bpwdnZm18SnpQi0bduWtdHXrl2TPEtYR5XL5Xj27BmmTJkCbW1tNmYXgjCULFkSixYtUvo7nKSAIf369UO1atUkG5iKFCkCOzs7pTJPblzA/SLrULVOmp4xWlhYGBOSjhgxIjOyliuJiIjAjBkzQGnSKaSvX79Wm1Z8IpcQvKdNmzaSa5yMI5fL2Zi7Z8+eatOJ9TX79u1DsWLFWN0jbgc46YP7xp8LF7BzOBwOh5ML8PHxYYP2YcOGKe3qFDpZbm5u7Pg7IfJYXFxcss9OTEzEixcvkC9fPlBKsWPHjix7j9yAl5cXK9958+apXdS4desWGjZsKFlsF0iuU3zx4kV2z+nTpzM9/7mJ1NoiJRTF65UqVeLi9XTg6ekpEfoI0dJTAxevZy4ZsYU6xGUvtDM6Ojrw8fHJ8LNzM9wWvw8ZsUV8fDwmTJjA7heEEOLJyCNHjrDr27Zty/T85yZS6teqQlzWISEh2L9/P4yMjJSiJIrTyeVyvH37NtnooxzO74YQBVfo3168eBEBAQE4cOAA7OzsJEfKly5dGm5ubjmd5VxFciL29I4LXFxcUKlSJRahacOGDUxgDQDv37/nYl0ViOtzYWGKUoqaNWvCzs4Oy5Ytg52dHWrXrs38olq1ajhy5IjSHEhYWJjEt/T19dGwYUO8fv2a2SI8PBwvX75EixYtmGCLH2eehNgW69atw44dO+Dr66s2TWrgfpH5XL9+nX3j27dvV5tOPPZ+8uQJevXqxe5bsGBBNuQ0d/Lx40eMHj2anRaUnh8zMzNYW1vj+vXrSvWY2G729vaglOKvv/5SeZ0DXLp0CTKZDGZmZilulBXa9zVr1rAAGe/evVObXihrXuZpQ7G8goKC8Pz5c3Tt2hWWlpYSX6hUqRIWL16M58+fS+5JLuIx9wvVCGVw8OBBGBkZoUyZMpLNZ4plKESzpJSiZcuWOHXqFP/mMxlXV1eYmZmBUormzZtLNmempYyTE+kuWLAAiYmJOHz4MBfrJoOvry/bwNq0aVM8ffpUaYNHYmIi+vXrB0optLS00Lx5c8nGA6FvGhsbi5UrV6JBgwZK9VnNmjVhbW3NbDF16tRsfc8/AT8/P0m51a1bFyNGjICPj0+aNpNzv8h6xG1xeoLgCX1c4eSbjh07ZlreciO3bt1i3/HcuXNVBisUB8dbtmwZNDQ0IJPJsGTJEsl1TsaRy+XsVBt1AnaxX+zcuRMlSpSATCYDpRSjR49WmY6Tdrhv/JlwATuHw+FwOLkEV1dXjB49Gg8fPmS/U+xcLViwgA3yx4wZw0Sf6hBPYgr3nTp1KvMzn8twc3PDokWLlKJkiO0xduxYifhEQN2gRLh35cqVbALl/v37WZD73IU6W6QWHnk9c3Fzc8OePXtSrHvEKIrXxQu+XLyeflJjC8UJR/GilHBNsZ1ZvXo1NDQ0oKGhgU6dOiEmJoYP9FOA2+L3QZUtUjtZGBISgvHjx7P6afny5Szq8ZkzZ9CtWzd27b///suS/OcmVPVr0zJxK5fLcfDgQRahb/369VmRTQ4n2xB//7NmzZIs3hYrVgyUUrbgUbp0afTt2xefPn3K1L/LSSIzRexubm7MfkZGRpg3bx57vrjN9vLyYmJdIyMjSQTAvIzYFkuWLIGZmRkbKwsRDYX/b9CgAQ4cOKAkOgkNDcU///zD7Fi+fHlMmzZN5eJWQkICrly5AjMzMxQuXJiPx0WIv311fdPUwv0ia7h06RK0tLRgYmKCx48fS8YRAuLyffXqFYYMGcJ8Y8iQIcwOvG1IO8HBwSySpNA/LVasGIoXL458+fKhSJEiqFChAkqWLAlra2vUrl0bderUQd26dfHXX39hzpw5uHfvnspTtcR2O3r0KExMTJjdxo0bpzJdXsfBwQGWlpbQ19fHunXrkj2NKTExEXK5HEOHDgWlFMbGxvDy8lKZTkxYWBg+f/4MLy8veHt7S/yG20I9oaGhuHz5Mpo0aYISJUpI+rzt2rXDnDlzEB4enmIZcr9IGwEBAey0jSZNmuDatWsIDQ3F9+/f4eHhgSFDhkjs0a1bN1y7do2L17MINzc3iYjdw8Mj3c86ffo0E3AVKFBAsg4VGxuLvXv3qhTr8rY+CQ8PD1hYWDCx+ZgxY3DlyhVcu3YNu3fvlgjSzc3NJWunQv84JiYGw4cPZ5FdKaUYMGAAduzYgejoaPz8+RPv3r3D+vXrmS02bNiQQ2/8++Lq6oqGDRti/vz5CAoKYsL19Hyr3C9+T4SxRkxMDEqVKsU2K4jXQjjKbNq0idUtW7dulcx5CKfLxsXF4dKlS6hfvz5L++DBg5zKcq5mzZo1kMlkaNSoET58+KDy1A4AWLFiBUxNTVldIz5Flq91Zw7cN/48uICdw+FwOJxchHjCXXFAd/XqVdb5at++PZycnFL1zDdv3rDJlYYNG2b4ePS8QnKR7Y8dO8ZsMXjwYHz79g1AypO9jx49gpaWFt95nkZSOmVAHVy8njWkN1pMZkZe5xNeSYjLISOTIt++fYO7uzsmTJggWRTcsmVLZmQzT8Bt8fugzhYpReYDkqLEDRgwgJV7gQIFULlyZRgaGrLfiScjOckj7teKbZHaTVBBQUHo3bs3EzuoEiNyOH8SYj/YuHEjO5ZW+ClYsCD69euHS5cuKZ0scOjQIYnIJDUIaZ2cnLBy5Up8/fqV9avzel9KnYh9165daRoneHp6onbt2kzUWK1aNTg6OrK/oSjWbdmyJRMWpWVDaG5GbIsLFy5g6tSpMDY2ZqdwlChRAiNGjICLiwtboBLuiY+Px7Jly5j9qlevjs2bN7P2R1WfLDQ0FKVLl1baiM7JPLhfZA1C9GETExOVp3OIBTkPHz7EoEGDJEJFIco9J/28e/eOCRIrVqyIhw8fIjo6GiEhIayf+vPnT1ZXAaqFUmIfUBTpCuMO8TH0PHqoMmFhYewErSpVqqg98UloBwIDA1G9enVQSlGoUCF8/fpVZToA+PTpEzZu3IgGDRogf/78MDY2hqamJnr16iU5/YDb4hcJCQkICwvDpk2b0KVLF0n/Nl++fGjWrBl27dqFiIgI5hPJzZtwv0gfnp6eKFq0KJvLKFmyJCwtLVGkSBGJTaZMmQI3NzdWbukRdPIyT5nMELEfPHiQ9adMTEywaNEidk3sS2Kx7qRJkzLrFXINnp6eqFq1qsQPKKWsbtHR0YGlpSUOHz7M7hHGzdHR0ejRowe0tbXZfevXr0dISIjS34mKisKcOXMgk8nQunVr3q9VgeK8XnrqEu4XvyfiNkUI/qarq4sVK1ZIrnN+IW5/xZvy58+fLwkIExsbix07dqBJkyYszbJly3Iiy3mCK1eusHW5TZs2SepyuVwOZ2dnSYBDSilGjhwpScPJGNw3/ly4gJ3D4XA4nFyIeDAndNRmz54NHR0dmJqaYteuXaka8H38+BHDhg2DgYEBNDQ0MH369HSLgTlJtoiOjkbPnj1BKUXZsmVx5cqVVN3r7u7ORCpmZmbYunWryohZnMwho+J1LnDPOFkReV0ciZRPev1CXIb379/H1atXcenSJRw7dgxHjhzBoUOHsGnTJqxZswbr16/HwoULMXHiREyYMAG9e/dG2bJlYWVlJYlyOX36dPZMXtaph9vi92T79u3Ytm0bgOTLMDExEVevXmWRFIVNZ8JPnz594O3tDYBH7UkL4jJ/8eIFzp49q/R7dezcuZOV/927d7MqixxOtiFuJ4KDg/H06VNcvXoVDg4OcHV1laQV6pl79+7ByMgIurq6OHr0aJraglevXrFj0+vVq4eVK1ey/lRer8fUidg3bNiQqrIR7BAeHo7z58+jVatWbJFWiOytaCsvLy+MHz9eIoDjKH+LHz58gIeHBxwdHZU2oInT7tq1i9mtZs2a2LdvX7KR/OLj4/Hjxw/Y2tqCUioRO3AyB+4XWYefnx/Kli0LLS0t7NmzRxLVXlyfnThxAp07d2a+0aFDBzx8+JCPIzIJV1dXFChQgAkS379/D0Aq2hHmkxITEyVzS4o2EP//sWPHmJCufPnyWLduHXbv3s3Fusnw4cMH1KlTh22Aefv2LStvxTm9rl27qhVSiX1p06ZNaNu2rUqBIx+fqycqKgrdu3dnZUwphZWVFRo1aoR79+7h48ePkvQpjckFuF+kHS8vL7Rq1UpJtK6vr4+WLVvi4MGDkvTR0dFwdHREYGBgqv+GuKyfPXuGd+/eqb2e11EUsaf1hNl169bBysoKMpkMOjo6WLx4MbsmrucEsa6Ojg4opZgxY0amvUNu4ePHj5g+fTpq1aol8Q0DAwMMHjwYly5dYmmF9dOYmBj06dOHpdXV1cWxY8eS/Tv//fcfSy9s4OQok5F6gvtF1pERu4SFhSEwMBADBgxA/vz5QSmFqakpbt++nYk5zH2Ix3EzZ86UBNVp06YNWrdujXLlykkCHU2cOBE+Pj4AeJubVSxYsICV9/Dhw7Fq1SocPXoUvXr1QrVq1dg1S0tL/P333+y+9IrXFe/jInjuG38qXMDO4XA4HE4eIDw8HBUqVAClFI0aNZIshqjj69evWLNmDYu8UapUKXz58iW7spxrCQkJgaWlJSil6Nq1a6o6wf7+/hg/fjxb5GrUqJFS1HbemU4bP3/+xIcPH9iRUYrRxjIiXhcGRj9+/ICDgwM/JjgVfP36FW5uboiMjAQgtUdmRV5/8+YNjI2N0b9/f/Y7bg8pY8aMYeLn9PzIZDJUqVJFsktdlY2cnJxw9erVZE8Nyetkly1UwW0h5dq1azA2NoaxsXGqIl5FR0ejatWqaNiwIW7cuIG+ffti2rRp2Lx5syRdWsSNnCQ8PT3RokULaGtrw9nZOdm0Qnv9+PFj1n86ceKEyrS8nDl/Guq+2eSiIAqnQxgaGuLYsWOp/u7t7e3Rq1cv5MuXD5RS6OnpoWHDhix6b15fFFElYu/du3eqN32Lx3I+Pj5so7OFhQVevXql8h6hvyy+n/MLdQJPRb+4du0a6zfZ2Nhg+/btTLyeXLm+fv2aiRiWLFmSybnnANwvsorw8HAmomrUqBHevHmD6OhoAEn9JrlcjlmzZrFNS5RS9OjRA0+fPs3zG5Yym8yIqiu2iTjCdLly5bBhwwbmB1ysmzxeXl4oXrw426h34MABfP78GQDw/ft3PHv2DB07dgSlFFpaWmjUqBGePHnC7hfPrw8bNkwyd9W4cWOMGzcO165dw44dOzB+/HhmC36ChzLOzs4wNTWFpqYmhg4ditu3byudKJTSd8v9InP4+vUrHj16hKVLl2LBggVYtWoV3rx5I4kYnZiYiMTERFy5cgWUUrRu3Vppo0FKnD17Fs2bNwelFH///Tdu3boleT4nCXGb0bBhQ7bxKbU8ePAAc+fOhb6+Piilknlx8VhGLpdj69atMDU1xevXrzMr+7mK2NhYREdH48yZMzh8+DDs7e3h7u7O1peAX+3Cz58/MW7cOLa+ZGJigv/++4+lU/zGBVt4eXnB3NwcmpqauHfvXja8Vd6E+0XmI5RbdHQ0PDw84OLignfv3uHVq1e4f/8+Hj58iHv37uHcuXM4c+YMzp8/j71792Lp0qWYN28eGjRoAGtra8n6xq5du5L9m0JEfj4v9ev916xZg/Lly6tdM5o3b57SBlpxHZYeIiMjmV4hr9tC3Bf9+++/JZtYhXkk4ad37944cuSI5H7xeml62LVrF9sYmNdtAeS8b3DSDhewczgcDoeTB/jw4QMKFy4MLS0trFu3DkDyQtzv379j165dbMBYuHBhdpyqOLKMOvgko3qcnJygr68PAwMDnDx5EkDyA4lPnz7h77//hoWFBSilKFq0KHx9fZXui4+Px4cPH7Bnzx7s2bMHDg4OPNq0GmJjY3HgwAG0aNECBw4cQHh4OLuWUfG6QHh4OAoXLgxKKWbNmsWixQHcFooEBwdj3rx5aNKkCQ4dOoSwsDB2LbPE605OTpKF+HHjxrFr3B5JBAcHo1SpUqCUQltbGxoaGihSpAgMDQ2RL18+FCtWDEWLFkXRokVRtmxZVKxYEZUrV0bjxo3Rvn17jB8/HmfPnpWISlXZyM3NjUXRmDp1KhwcHNg1boskssMW3t7euHXrFiZMmIDp06fjxIkTkvTcFr8QHxW8aNEiiUBKHZ06dUL+/Pnx6dMntYtSAo6Ojjhz5gymTZuGhQsX4vz580wYCnBbiHFzc2NRb2fNmiVpv9Wxf/9+VvcfPXo02bReXl549OgRVqxYgS1btuDmzZuSyL3cFpw/EXGdM3jwYBZB8fjx42n6pl1cXDBmzBg22V+oUCG2KJLXhY3iMj58+LCS2CotvH37FvXr1welFAMGDEi2nuN1Uvrx8fFBs2bNWPSlf/75B7GxsQCSL9fQ0FCMGDGCjctfvHiRXVnO03C/yDy8vb1RsmRJUEpRvXp1DBs2DDt37sTQoUNZGQs/o0ePhoeHR4bqeG4P9WSGiB0A/v33XxY1rnz58tiyZYvkJAkheigX66rHw8OD+YWRkREsLS3RuXNnVKpUif1eW1sblStXZvO4wK8IuwkJCejQoYPEfxYvXsyi9wmEh4djy5Yt0NDQgJmZGa5fv56t7/kn8PHjR1y7dk3yu/R8p9wvsgZVQXQcHR0lm55SK2KPjo7G4sWL2VytpqYmSpcujdWrVyv9PU7SybzChox169ax7zk5xO13eHg4/v33XxgZGbE2XkDxJGdh3p2fLqtMShvJxRtnt2/fztoQTU1NnD59OsXnAMCGDRuYT718+TITc88BuF9kNaGhoRgyZAhKly4NExMTGBgYsNMAdXR02CkrwsZAVSJSQ0NDlC5dGvv27WPPVTUeOX/+PIoUKcJOKsjrYl3x+z9+/BibNm1ClSpVUKFCBdjY2KBfv34qT4P38PBA/fr1YW9vn652NyIiAps2bULhwoXZZnNui1/vv3//fgwdOhSGhoYwNzeHlZUVOnTogBMnTjDRv4Cfnx/69u2LkydPpssW58+fB6UU+fLlw9u3b5XyklfJKd8IDw/HrVu3EBwczOow3rdNGS5g53A4HA4nl5OYmIh3796xwaHijk5FQkJCsG3bNpQpUwaUUpiZmWH//v2Ij49XGijGxcUhNjYWT58+xb179/D8+XOlKBC8Q/aLxMREPHnyhA3Gz58/n2x6Pz8/zJgxA8WKFWMbCYRoJOJOt5+fH9asWcMiuwu7elu2bIlNmzZJ/j4naVAtTJBXr14d9vb2AJKOLa1du3aGxetAknhFEKBqaGigTp06WL9+PbvObfGL0NBQVt9Uq1aN2ePWrVuZJl4Xi634ApV6XFxcmLjc0tISd+/eha+vL3x9fREaGorQ0FAEBQUhIiICsbGxCA8PV7toompiMSEhAUeOHGH+p6GhgerVq2PVqlUsDbdFEllpi4cPH6JDhw5MMCH8cFuoJioqCnPmzIFMJkPFihXx8OHDZNMHBQWhRo0a0NfXV4rOIy7TqKgobN++Hfny5WOLJcJPzZo1sWbNGpX35WWioqIwf/58aGtro3z58rhz547atEKZCRGRKaUqJyMFjh8/DltbW5iamkr6Uo0bN+btN+ePR9yPHTRoEBNipXR8uWLk6rCwMDg4OLBIiVZWVmmOAJhbUTVWELe/nz9/Rnx8fIp1yM+fPzFr1ixQSmFtbZ3mSJac5BFscv78eTbO6NChg8pToFRx48YNdrJd5cqVlRYcOSkj9gHuFzmDh4eHZHO3TCZj/9bV1UX58uUl/VAgKaqeEK09tYj9SRjHc6RkVMT+4sULJv7R1NREjx492DVx9D5Fse6YMWMy7R1yC97e3ujWrRtKlCghiZRIadLpMx07dsTZs2dZerEYWugXaWpqokiRIjh48KDk2eI+gq+vL2rVqgUNDQ3JfC1HmfQKbrhfZA6K4s3k0jx+/Bja2tppFrFHREQgMDAQK1asQN26dZktJk+erDIfeR0PDw9MnjwZz58/T9f98fHx2LlzJ/T09KCvr48DBw5kbgbzIIrfp+ArHz58QNu2bVk7Il6PVfVNC7+Ty+UYMmQI2yzr4+PDfSCL4X6Rudjb27PvXmgXZDIZW2/V0dFBvnz5YGBgABMTE5ibm6NgwYIoUaIE6tWrh9atW+PIkSOSjeKq2qBr166xPnSBAgVYUJ68LtZVLKuoqCjEx8cjLi5Oac5KqFv++ecfUEphYGCQptMagaR2fM+ePWwNy9TUlNvi/yi+f0BAAAIDAxEeHs6CJwgIdtu0aRMbk6fVFkBSoIbWrVuD0qRTP7iI/RfZ7RtRUVHYs2cPKKWoXbs2Dh48iODgYJV54UjhAnYOh8PhcPIAcrkcDRo0YBFvxUdjCz9AUgd38eLFsLKyYoO/DRs2KC3MhoaGwsnJCV27dkXNmjUlg1JdXV0MHz48xYmZvEp0dDRq1aoFSpOOHBc6x4o7MN++fYvhw4ezKN6FChXCf//9p1SWYWFhWLJkCUunpaXFJuqFhcipU6ey9NwWSbx79w6FChVios358+ejZs2amSJeB5Ls/O7dOyYSEibheeRv1bi4uDB71KhRAzNnzkTBggVZ3dK6desMi9eLFy+OTZs2YePGjVzEngyurq4oUKAA2zTg7u4uKRuxP4gH26ktv5iYGLx//x5Dhw5V6xucJLLCFi4uLmjZsiUMDAxYRIZChQpBU1OTLxYmw+fPn9G0aVNQmnQUvIuLC7sm1EmCDezt7VlZio/ABn6VZ2hoKObMmSMRrVtYWKBs2bIwNjbmtkiGz58/o0mTJqCUolGjRhJbKPaphMgjlFK0bNlSUobif2/evFliC1NTU1hYWEBbW5v1pbgtOH864jajf//+oJSiadOmkhObUourqysaNmwISpOO2k7NaQh5mYMHD6JBgwYsUmtKkftev37N2ukdO3Ykew8nfbRq1YqNDz58+ABA/SKS0M4HBwejcePGLCrcjRs3AHDbpBfuFznLhw8fsGTJErRo0QIlS5ZEpUqVUK9ePezfv5+dvijw/ft3bNiwAWPHjpWcTJNajh8/jvbt2+Pw4cPw9vZmv+f2S0IsYm/VqhXc3d3TdP/hw4fRp08fFrRk4sSJ7Jq47ZfL5di3bx+bu/38+XOmvUNu4evXr7h+/TqGDRuGFi1aoHbt2mjTpg1OnTol2Vwgrrc6d+7MyrRChQo4c+YMS6euXenYsSMopejSpUuWvk9ehvtF9iF8548fP2brEb1794afn1+y9ym2AW/evMGiRYvYXMisWbOyLM9/MuLAFcK3LJfLERgYmKr7vby8ULt2bVBKMWzYsCzJIwdYsmQJm19asmQJ+31KfR+x+NfOzi6rs5krEeok7hc5x4QJE9h33L59e1y+fBmPHz+Gg4MDHj58iLdv3+LNmzdwcnKCr68v/P398fHjR3ZCihhVPnPt2jV2yoqwKZ2LdVUj7osmJ5oVn9aYWqGuIF7Ply8fC77HbSFFXTkmZ4sBAwakWzQNJNVnbdq04bZIgaz0DQAIDAzE+PHjWV1YsmRJ9O7dm40puT3UwwXsHA6Hw+HkchITE/Hz509MnToVlFLUqlULb9++VeogPX/+HN27d2cDjYIFC2LLli0ICgqSpHvx4gUmTZrEooJramqyxV8hirKGhgY0NTUxZ84cST44ScLm0aNHg1KKunXr4u3bt0oC6Vu3bqFq1aowNjZmorbz58+rjK7r5ubGIq+XKFECM2bMwI0bN7B//36MGzeOTfxOmzYtu17xj0G8UGhsbMyiAtjY2ODr168A0ideV/zWN2zYgHLlyjERnFg0zfmF2B76+vpscNe2bVt8//4dQMbE61u3bkVISAgA8KOCUyCzjjNXRLF816xZg9KlS7N2ZNKkSZnyd3ITmWULoeyPHj3KIkzb2Njg0qVL8PT0xOXLlzF79mzmFzNnzszM18gV+Pj4sA1+jRo1wtWrV1ndJCAWTNerV49thFJk7dq1LF2VKlUwadIkfPz4EV+/fsWDBw+wZMkSZouFCxdmw9v9WXh7e8Pa2prZ4sqVKxJbhIaG4vjx46yMhQ1McrlcqR46dOiQJF3Pnj3h7OwMX19fXL9+HfPmzWO2mD9/fja/KYeTuYj7tYsWLVKKEJqW52zduhWUUpQtW1YiSORI8fDwYHXMoUOHUnWPg4MDu2fr1q1ZnMO8x48fP2BrawtKKYYOHYq4uDi1YwzxJrX27duD0qRIvFOmTFHbxnNShvvF70FiYiISEhLw4cMHhIeHs5MIBISF3ODgYDbX17NnzzRFwD9//jzbeCiM7fft2yfJAydpzCds6G/Tpg2bj0oOcdl9+PABO3bsgKGhISilGDx4MLsmXpCXy+U4deoUnJycMvcFciE/f/5EbGys0jysuL0QBFoymQxly5aVnLKZ3LfdokULUJp0Agj3gcyF+0XOIBaxC/O5o0aNSlWEScVT6nbs2MHWlQ4fPpxlef7TEcrt58+fWLVqFf7991/J75NDONVGS0sLnp6eWZrPvEZiYiI+fvyISpUqgVKKFi1apLqMHRwcWDAfGxsbduIgbyfSDveLnEHcR7Kzs2P9f3HfPyVSspVYvF61alVs3LgRLVu25GLddKLqtEYDAwMcP348WVsoitcbNmyIkydP8ujfGUBcTmmxhSq4iD3jpNc3xPj5+eH48ePMTwTdlTDm4JHYVcMF7BwOh8Ph5BH8/PyYmLN+/frYsGEDHB0dceTIESxatAi6urpMoGNhYYGjR48qCbNu3LiBGjVqwMjIiO0anDJlCu7cuYPv378jISEBp0+fxvjx49mzpk+fzu7nEy5J+Pr6sgXAOnXqYPHixbh9+zbWrl3LxO3Cj6WlJR49eqT2WQsWLAClSccKHjt2THI087dv3yTRpvnxtMq4ubkxMadMJkOxYsVYVDEhqlJ6EQY5Hz58YEI7XV1d1K9fHz4+PhnOe25EbA9tbW1UrlyZRQZNy2aCN2/eoEKFCsyHdu7cKYm6ER8fLxGxi6Mx8XoqiawSsYu5d+8e24CTL18+DBw4UGnTFCdzRey9evUCpRTlypVDQECA5HpERAQ2bdoEDQ0NaGhoYM+ePZmR/VyFu7s7+2ZLliyJjh074sCBA1i2bBnGjBnD2m5zc3P8888/KtuR69evs3Q1a9bE/v37lY6OjI2NxdatW6GhoQELCwu2cMX5hYeHB4oXL876QA0aNMA///yDUaNGoV27dpKJwZEjRyr1aQHg6dOnrM2xtrbGokWLEB0dLUkTHR2Nbdu2QUNDAyYmJrh8+XI2vSGHkzWo6k+lp+/z/v17NibcuHFjZmQtV/Lp0yf07dsXOjo66N69e7Jif2Hx4tSpU6yPunnz5uzKap7Bz8+PnXCze/duAKp9QPw7cYTdVq1aKUWo5qQN7he/B2mp++/fvw8dHR1QStGjR49Ui9i/ffuGQ4cOoV+/fmzOUUNDA7Nnz05XPnIzrq6uKFKkCEaOHJnqiKHispPL5bC3t2di3QULFiR7L18wV01qv8fDhw+zeb78+fPj9OnTqXrGzZs3YW5uDk1NTSxfvjzD+eUow/0iZxDK7u7du7Cyskr3BteQkBD06NGDbTpISEjg7UQyHD9+HPr6+rCwsEhxrUHYkLN8+XLo6OhAT08vzad+cFLGycmJ1Tni/k5yPHv2DM2aNWPBlcaOHasykBUndXC/yDnEAtkpU6awudmdO3emK1CYGEXx+rFjxxAVFYUPHz5w4XQGUCXUpZTiwoULKtMritcbNGiAJ0+eIDExET4+Plw4nQHU2eLs2bNpfhYXsWectPqGOjw8PNC8eXNWf1FK4ebmltnZzTVwATuHw+FwOHkIDw8PlCxZknWShCOYhcjQ+fPnR/Xq1eHq6qp076VLl1CsWDG2aGhjY4NXr16xI+PFIq3Q0FBs376dpV23bl22veOfgoeHB0qXLs1sIUxQCZGIra2t0bVrVybeFR9/J5CYmMiiAzRp0oQtcokndkNCQjBmzBjIZDK0atUq1QtheQlXV1dJROKLFy9mWkQ9Nzc31KxZk0UV79KlC548eZIpz86tiO1ha2uL8+fPqxQeqiIxMRGfPn1CkSJFWN3Wr18/trFDXE/J5XLs3buX+dz48eOz4nX+aLJKxB4XF4dr166xiDTGxsaYOHEiH7gnQ1ptIbQD4vYgNjYW3bt3B6WUnZCiOHn88eNHdOvWDZqamujXr1+GJ5dzI15eXmjatKkkeoK4L1W0aFEMHz4c3759k9wn2GL27NnQ1taGtrY2Fi5cyMTriouyfn5+qFevHt+Algzv379H06ZNkT9/flBKWb9TqNfLlCmD8ePHM1soChK2b9/OFhZHjBjBxOuK6QICAtC2bVtQSrFs2bLseTkO5zfn+fPnTMzIx3rJc+bMGdaGL1++HDExMeyaYnvt7e2NypUrg9Kk07WcnZ1zJM+5mYCAAGaPVatWJZs2PDwcHTp0YNH4qlevjosXL2ZTTnM33C/+HMSRdbW0tFItYlfs2168eBGjR49m/bXJkyerTZtXCQkJYQEVgLQLDMLCwjB9+nRoamqidu3aKud2ORknISEB/fr1Y+NAYTMUkPKGqPnz57P7jh49mi35zW1wv/h9EdoLQRCa3vmklStXsrWSrAimkZu4f/8+ypYtC21tbaxbt05pQ74qhg0bxvq23B8yn8uXL7PAFq9fvwagPMckbhccHR3RpUsXtjm8Xr167FQcvqkmfXC/yFmyQsR+7do1dlp59erVYW9vz3QJABfrZhSxXYRNZAcOHFCyV3h4OPbs2cPm0hs3boxHjx5J1ly5LTKGuMx79+4NSpNO501NPaaIl5eXZHOHMI/CbZF6UusbiiieMDRr1ix2SpGpqSmOHDnC23g1cAE7h8PhcDh5DB8fHwwfPpwdmy1Evu3atSu2bNnCjqoVd8Bu3LiBEiVKsEG8oaEhtm/fjjt37rABCCDt+MbExGDFihXQ0NCAjY0Nnj17ln0v+Yfg5+eHCRMmoEaNGjAwMIBMJkOpUqUwbNgwXLx4EWFhYQAgibjw8+dPxMfHIyoqCkDSIqCOjg4mTZqk9u/s3LmT2fru3btZ+k5/Kq6urmwBvWrVqrC3t0dERESGnunp6YkaNWqAUgpDQ0N07txZIl7ni7TqEdujWrVqabbHhg0b0KtXL+jq6oJSigkTJrBr4rpNLpdj9+7doJSiUKFCcHR0zNT3yA2IhdMtW7bM8OJRXFwcbty4gYoVK7LJkwkTJnDxeipIjy0+f/6MgIAAfPr0CREREdi1axcopVi/fr3ae2bPns1EwHzSXjWBgYHYsGEDmjdvzuoZSimaNWuGdevWsU03ihNRcXFxaNCgAYuCL0y2q2sPBg8eDEopWrduDYBPMKoiKCgIO3bsQNu2bVGoUCFoamrCwsICffr0wZkzZ1gZK9oiISGBiRKLFy+OL1++qEwnMGnSJFBKUaNGDcTHx3NbcPIswrd/6tQptmglRBDlfVsp4vJYvXo1ayu2bt0q2Swr1Ds+Pj4YNmwYW5ht1qxZpm2q5UgZOXIkNDU1MXz4cPz48YPZSlh4jYyMxJMnT9CsWTMmoKpSpQpOnjzJnsG/9/TB/eLPRJWIvXPnzqz/lBziPtOXL1/YKUOUUqxcuTLL8vynI5RbYmIi/vvvP0RFRaVqkfvixYvMrw4dOpTV2cyTHDt2jJXxjBkz2O9Tss+FCxfYfV27ds3qbOZKhDLmfvF7k94+krD+sW/fPhgaGkJPTw9OTk6ZmbVcR1hYGCZMmABKKSpXrpziKUEvX75kaxVWVlb4+PEj79NmMmfOnGFrqKrsIS7vp0+fomPHjixAho2NDYKDgwHw+b+MwP0i58lMEfutW7fY/ebm5pI1DXEfQCycNjAwkOgWOCkjtsvdu3eZTkTg58+fOHLkCLOFhYUFjh8/zq6rs4Wuri7evXuX9S+QixDb4tSpU/D19U33s3x9fZktjI2NWb+KtzGpJyXfSI5Pnz5h2bJlLGBfmTJlcOjQoVQH7MuLcAE7h8PhcDh5kJiYGHz9+hV37tzBs2fPlAZz4s7r8+fPUbNmTchkMrbIJP4xNjbGoEGDmNhaPLh3dXVFgwYNoKGhgf379/OBvwri4uIQHR2Nt2/fws3NTSlCurhzfP36dYwYMQI1atSAjY0NunfvjjFjxsDS0hKNGzdmE1wCwqDx5s2bbJFx7969Wf9Sfyhubm4wNzcHpRSlS5fGjRs30r0LlovXM47YHlZWVrh7926K5Sa+7uvriy1btjBx1eDBg9k1cR0nl8tx/vx5yYQLR4qbmxsKFSrEolwEBQWl6zmCeF2IvM7F62kntbaIiorCrl27UKpUKVhYWKBAgQKoVasW2rdvDzMzM/Tv35+dTAAk+Y7Q3qxfvx4ymQyampp49OhRtrzXn8yzZ8/w+PFjPHjwAHFxcazdUNV+REZGsqjq7du3V5tOEND99ddfLMolJ2U+fPgALy8vdnqNgKq2IyEhAR07dgSlFLVr10ZMTIzKdIJfLFy4EJRSNGrUKGsyz+HkAOJvPjX/FvDw8EDRokVBKYWlpSVcXFyyNqN/MOI6XtggRinFuHHjcOLECcTFxcHf3x93795Fo0aNUKBAARaRR+gf8XFD5nPw4EFmi82bN+PDhw/smre3NxYsWIAqVaqwBdfGjRvj/PnzLA23ScbgfvFnIhaxC/ZIz7gwNjYWy5Ytg4aGBqpWrcrFiSkwatQoFCpUCC9fvkxV+u/fv6N48eKglGLs2LEAuL9kFkI52tnZQSaToUyZMnjw4IHkmjoePnzINqOXKlUKhw8fTtV9HNVwv8h9iPsGgvCUUornz5/nYK7+DD5+/Ig6deqA0qQTet+9e8fmvcVBkT58+MA25lNKMXv27JzKcq4mMDAQNjY20NXVxZ49e1SeqgwkRZSuV68eW7eoWLEiC1TChYUZh/tFzqNOxL5r1640idjd3d3RunVrtp5ka2vL2v+EhARJe+7l5YUWLVqwzYJCEDhO6kip7vH29kbPnj3Z6WiVKlVia96KtvD29mYBASZMmMBOoOWkjoy2A2JbXLlyBaVLl2ZjeB7ELe2kxx6fP3/G8uXL2cnB5cqVw4EDByRrshxluICdw+FwOBwOQ1FEFRQUhFGjRsHAwIDtXLa0tMSsWbMwd+5c/PXXXyxCQPv27fHt2zcAUtH1qlWrUKVKlRSPF+ZIURzwHTt2DBoaGtDU1JRsIBD+39LSEleuXJFEaQKAr1+/YuTIkSw9F+kmj5ubG3R0dGBlZYUHDx6ka0GDi9czDzc3N8hkMtSoUQNeXl6pukdcvvHx8Th69CibDJ47d26K9/Oju1Tj5uYGSimaN2+OmJiYNN/PxeuZhzpbCN9+ZGQk5syZI2kr9PT0QCmFjo4OKKWwtraGg4MDazOE7/79+/csOr6FhQU/rjkZ0luXjxkzBpRS1KlTh/WbVOHt7Q0LCwtQSmFnZ5febOYJ1Nkipfp8+vTpbKHw8+fPatMFBASgWrVqoJSif//+Gcorh5PTpKfuksvliI2NxYMHD7B161ZWNxkbG2PEiBFK0ZAV/0Ze7/uKFzr+/vtvSftctmxZFChQADKZjP0uf/787NSszFy0Ang/V4zYFnXr1kXv3r3Ro0cPGBsbs36ToaEh/vrrL9y7d4/dl9HvWbBpXhem5KRfcNKPUIe8efMG3t7eANLnEw8ePGBHaB85ciRT85ibCAgIQNu2bUEpxaBBg5I9fUCww48fP9gms969e0uucTJObGwsbGxsQClF27ZtU3XPs2fPULVqVWhoaEBDQwNDhw7N8ImPeRnuF38Oiptihf9PTEyURNMXc/z4cRQrVgwaGhqwtbVNdpzO+YWXlxeKFSsGSinq1auHI0eOSAIdXb58mc1FCfXX+/fvAXBfyGzCw8PRp08fUErRoEEDODk5sSAVQJKgbefOndDV1WXBwmxsbODj4wOA2yMz4X6R86gTsW/atClVZSy0FZGRkbh69Spr/3V0dNRuIvT29sbs2bNx8eLFTHwTjmCLqKgo3L59G+3bt2e2ePjwIQDVtli/fn2KpyBwMg/x+mBQUBDGjx+P+vXrg9KkkwXFgXw4WQcXr6cfLmDncDgcDoejhDCwvHHjBhMoFC5cGLNmzYKzs7Mk7fPnz9lxzn369FF6BgA2mcwXzNPHpUuX2OKtjo4O6tevjyNHjuDAgQOYN28eSpUqBUopKlSogPPnz7NjnD9//ozt27ez3bX58+eHn59fDr/N74+fnx9u3rwpicaQWrh4PfP5+PEj3N3dWdmltR4JDw/H7NmzoampiSpVqvAj6zJAQEAAIiMj03wfF69nPsnZYvPmzWxCuEqVKpg0aRLc3d1x9+5d7N27F2XLlmVthr29Pfz9/QEAzs7O6NWrF2vTa9euzU5X4WQeW7duZcJPQRAnbPwT+k4BAQGYMmUKDA0NYWRkhLNnzwLg/ajM5sCBA6CUwsjICDdv3gQApU0dP378wKZNm1C4cGFQStlRtdwWnD8R4ft++/YtDhw4gK1bt2LXrl3YuHEj5s+fjyVLlmDp0qWws7PD2LFjMXnyZPTr1w9NmjRB3bp1oaOjw4S9pqamaNu2bbL9qrdv37JNzHldcCp+/x07dqBp06ZKJ5sVLFgQlStXZtGIFaNXpXUcIU5/69YtJorgtvj1/gsXLoSJiYmSLfT19VGsWDEcP35cEp0dSBpjp3dMFxAQgB49euDVq1dKecmL5LRfcNKHuAwz0h8SxoYDBw5Uei4niZ8/f2LDhg0wMjKCtbU1Lly4kGI5CWMNmUzG+q2czCM+Ph61a9eWBEhQjCIqttHTp09Rt25d6Orqsg1TwrHzfDyRPrhf/J5kpA6Pjo5GREQEVq5cicqVKzNR74wZM1SmF/sObzt+4e7uDmtrazbHYWlpiebNm6N27dowNTVlfavGjRvj9OnTWVIHcXsk4e3tDSsrK1CadHrm+PHjsX//fowZM4ZFhxaCjbRo0SLZjTjphdsiid/BL/I64jGfnZ0dKKWYM2dOqu8Xf8t+fn7o0aMHKKUoXrw43rx5o/IeVQF/OBlHXJb+/v7MFlZWVkq6EQHxBh5O1qBYbz179gwjR45k423hx9bWFv369WNrgZysgYvXMwYXsHM4HA6Hw1HJz58/2aS8ubk5li9fzqJeCAMVYfB55coVFj3p6NGj7BkpHT/PSZ7ExEQEBQWhZcuW0NDQgI6ODkaNGqV03Ja/vz+LAGRpaYmGDRvCzs4ONWvWZEekmpqaYvfu3QD4IklaSMt3y8XrWY/423V0dERgYGCq7rt27RobqO/ZsyerssdRARevZy+Ojo6sPa5cuTIOHjyotKAeEBDA2gxzc3OUL18erVu3RoECBVgkBjMzM5VCIU7qSEmQ1rFjR1b+ihO8fn5++Pvvv2FpaQlKk46YFzamcdJOSrbo3Lkzs4WiEDcoKAi7du1C+fLlmYiOnyjE+dO5e/cutLS0lESiafkpV64cZs6cmWxb7uzsjN69e0NfXx+vX78GwMW64vf39/fHhQsXMHbsWAwdOhSTJ0/G+fPnERQUBEDa5125ciW0tLRw5MiRVLfJ4nQ3btxAgwYNYGBgwBZ4uS1+vf/ly5exfPly1K5dG61bt8bQoUNx+PBhfPr0Sem+o0ePQlNTE4cPH06XcHru3LlsY/nbt2+V8pIXyU6/EHPu3DksXboUbm5uTODA+7xZj2DD8PBwtqm2a9euAHj5q+PLly9o164dKKWoX7++Un9V7EMvXrxgfVtKKf7777/szm6eQCjjnj17SuZnFb/he/fuwdbWlo2xK1SowMZ1eb3uzyjcL34vxO2zl5cXHB0d8erVKzx+/Bi3b9/GjRs3cP78eRw/fhzHjx/H3r17sXr1aixfvhxTpkxBo0aNUL16dVBKmXh9wIABKp8vzG+JBXG8/fiFt7c3OnXqxNaDhPIU/tu9e3dcuHBB4iMJCQkZFlWJ5+e5PZLw8PBAhQoVWN2jaIsGDRpg7ty5iIqKYvckJiZm6IQOBwcHrFmzRvI8Ts75BecX4rK9cuWKpF5P61r1q1evUKtWLVBKMXr0aMTExPBvPYd49uwZqlSpAplMhsmTJyM+Pp7bIhtR9J1jx45h8uTJ0NTUlARnKFKkCObPn483b96wfhTXiGQNXLyecbiAncPhcDgcjkqeP3+OwoULQyaToW/fviximyKJiYn48OEDW3xatGhRNuc0d/P+/XuYmZmxo+6io6MB/JqoFQb/fn5+LBJ78eLFWXREQby+devWVIt9OVKEwVxCQoLaHeNcvJ697Nq1C5RS3L59O9l04nK3tbWVRHjjg/SMI9Q/crlc5YkFXLye/fz3339MmDh+/HilyN7Cf93c3FCiRAlQSlGjRg0mes+fPz/Kli0LR0dHANxP0oM4creDgwMA5Y1/AQEBLOpSgQIFMH36dGzYsAGbNm2CjY0NiwabL18+Hn09AwhlFhERoXScqWCLoKAgNG/enAnUly5diiNHjuDEiRPo0KEDO27YwMAAGzdulDyXw/kTmTp1Kjs6VldXF5aWlrC2tkbp0qVRtmxZVKtWDVWrVkX16tXRrFkztGzZEs2bN0f//v0xf/587NixA0FBQUobasU4OTnhr7/+YgvCpqamXKz7f1IzJlBM079/f9YmHDt2LMVniK9fu3YNnTp1Yqd5ceH0LxTrclXlIaQRyrRfv37sFJXU2EIRDw8Pduy5iYkJt8X/yQ6/EPPy5Ut06tSJ9YPXrl2LgIAAANwWWYm4bDdu3Mjmq5YtW5aDufoz8PHxYRsqmzRpggcPHigtgj948AAjRoxg5TpkyJCcyWwuRqhnNm7cCC0tLVSqVAmOjo5K9U9sbCxOnDghmZe1tbVlc7K8nskcuF/8fqxduxYNGjSQjDWEsk/tBloTExOMHTtW6WQ04Jd4PTo6GiVLlpScBMzn3X/x9etXXL16FUOHDkXDhg1hZWWFXr16YcOGDYiKipKUlVwux4ABAzBo0KB0b9Z3dXVFoUKF0L9/f/Y7bo8kPnz4gPnz56NJkyawtLSEmZkZWrdujWXLlsHLy4t904mJiUhISMC8efMwYcIEpROgUkNwcDDq1q0LSinGjRvHfs9tkUR2+4Wbmxtu3LiR7Ea3vIaq/o/4d+7u7khISEhxzjUmJgZjxowBpRRly5ZFSEhIin87MTEx3ac75zViY2Ph4eEBIOWyiomJwcCBA9lGzYxswOGkDsV6JDQ0FKdOnULfvn2hoaHB5v6MjIxgZWWFvXv34vnz55J7FOe5uG9kDly8njlwATuHw+FwOByVbN++nU0e3rp1K9m0ERERLKJAz549symHeYPLly+znbJCBHXFaLpyuRyJiYmYNm0aZDIZxo0bh2vXrmHmzJlYtWoVXFxcciLruYro6Gjs3r0b58+fZwNxYWDHxevZy7dv31iUhb59+7Ljl9WRmJiIwMBAJkLs1asX+z0n40RERGDx4sU4efKkZJKKi9dzhvXr1zOxoCBCV5wgTkhIQHR0NLp37w5KKVasWIEXL15gz549uHPnDpv45ZNW6ScqKgqWlpawsLBggihFvn79ip49e7LNA4o/urq6GDNmDDv9hpM+YmJi0LhxY5QqVUrtIuCXL1/QtWtXtYvoWlpa6NChAxMacjh/OpMnT2bf98yZM/Hp0yeEhYUhNDQUYWFhiI6ORnR0NOLi4pCYmKg09gDU96OcnJwwatQo9nxhgy0X66pG3NYqlqn4/4cOHcrGhMmJdVWJ18WR87kt1KMYcU8dqbWFOry8vNCmTRtui2TIbL9QxN3dHdOmTWORyQoVKoRmzZqxeRNuC/UoinsEhPYCSJqvEq6JxSICO3fuRIkSJaChoYGCBQuyzZqc5PHw8ICFhQUTiPTu3RsnTpyAvb09pkyZwk7QpJSibdu2/MSNLOTTp0+oXLkyKKVo3Lgx/vvvP3h6euLbt2/Yv38//vrrL0nUw6ZNm7LI66r6VOmBz2clwf3i9+HHjx9o2LAhKKWsfTU1NZUI042MjKCnpwdzc3MUKVIEhQsXRpkyZVCrVi20b98eW7ZswbVr19gzxd+5WLwuiHS5UDd1REZGqr3m6+vLAid17949zWJdNzc3VKtWjdsjGYRyCA4ORkhIiFJwJOF6QEAAW1/t1q1bmm2RkJCAffv2MVtMmDBB6W9wfpGVfuHl5YXChQuDUopp06bhzp077Bq3hWqmTJmCunXrsv9XV07COPHOnTtsk9SJEyeSTSugGBCOr3so8/PnTwwYMAAtWrRIMa1QjmfOnIG2tjZkMlmKwcY46UfRJzw8PHDu3DlUrlwZhQoVkqxjtGvXDps2bVJak1I1zxIWFoadO3fC3d0dAO8jq0MoO3EbLi5PLl7PPLiAncPhcDgcjko2bdoEDQ0NVK5cGd+/f0dCQoJSJ1nooAUEBLBIrr17986J7OZarl69yo60+/fff5NNK0xSqbIBH5BnjLVr10JDQwOVKlWCvb09wsPDASQNFLl4PXuJi4vD1q1bUbBgQZQoUQJnz55V+30L5X/nzh02gLezs8vO7OZ6pkyZwiKK2dvbs1Mirl+/jooVK3Lxejazc+dOUEohk8lw//79ZNMuXLgQMpkMc+fOVbrG24yM8eTJExQtWhSmpqbYu3evklBB3Da8ffsWZ86cwcqVK5EvXz5oaGhAU1MTTZo0waNHj7I767mOt2/fonLlytDV1cWWLVvUnqQCAPfu3cOJEyewdu1a5MuXD9ra2qCUwsrKChcuXMjGXHM4WYN4IcLOzo71jXbs2MF+L66fVPVjk+vbKorXx48fj3fv3nGxbgYQtx+DBg1ikZRUiXWTE6/PmzcPoaGhPPp3BlBlC0NDQy5izwHS4hfqCAsLw9WrV1G0aFF2WoSJiQmcnJwA8HG8KpL7PsXXYmNjWSTLHz9+wN3dHU5OTli9ejUGDBjA5rcopRg1alSq/jYfmyTx/v171KxZk0Uy1tTUZP1V4adjx464e/cuC3SRGYjLn9siCU9PT1haWrLTTYyNjdnJpMJP5cqVMWnSJHz79i3Df0+wpfh0VF5PJZFTfsFRxsXFhZ0mV6hQIZw5cwYvXrzAy5cv4ePjA29vb7i6uuLz58/49u0b+298fLzSqY7idkUsXq9Tpw7zOyHKKBfqKqNunKCqfB49esT8p0ePHqkW67q5uaFKlSqglMLMzIzbQw1ptYWwASQtthCQy+XYu3cv62dxW0jJDr9ITEyEvb0924wgk8lQo0YNrF69Wm0+8jqPHj1i7fXx48eTTSuU3bFjx9g9qgTs4v7qzZs3sXDhQtStWxcdO3bE5MmT8f79ewB8/K3IzZs3WbmeOXMm2bSCLdatW8fuEU6iVUVKYwjuF+oRl01AQAA2bdqEGjVqIF++fKzsNTQ0MGjQIMn8LqC63IXnRUREYNu2bShUqBA0NTXZXAj3CyniQIYrV67Eu3fvJNczKl7nviGFC9g5HA6Hw+GoZO3ataCUomjRovj06ZPSdXGnShAq6Ovrw97ePjuzmesJDw9HzZo1QSnF6NGjERUVpZRGEGMJkXerVq2qMh0n/Xh5ecHY2JiV74kTJ/Dq1Ssl8frTp0/ZPXltYJGdfPnyBR07dgSlFPXq1ZNExRWivAl1lKenJ4sCZGZmxiK88YXXzMHDw4NFVapWrRoOHTqEc+fOscjr+fPnx8SJE7l4PZvw9fVFxYoVoaGhgeXLl6sV60ZGRqJbt26glKJr167cHzKZ8PBwFnmvdu3abAIQ+FX3CAu04eHhePToEerXr88W3KtUqYLLly/nSN5zG5GRkZgwYQIopahZsyaLugf8ai8EWyQkJCAoKAjNmzdnE8D58+fHkSNHcir7HE6mI16ImDp1KvvWd+7cmaGooE5OTpKIo2PHjkVMTAyAJGERF+umH7FdBg8ezMr44cOH7PfJidfnzJnDrrm7u3NbZAB1thBH1UstXMSeMVLjF8khlLOfnx/q16/PxvqUUvj7+2dJnnMLe/bswZAhQ9CtWze0a9cOrVu3Rv369VG7dm3Url0b5cuXR8mSJVG2bFkWGdnAwEAiJtXU1MTQoUPZM1V99+/fv8eKFSvY//P5lSQ+fvyIRYsWsTkOoTyLFCmCyZMn4+PHj0pjuy1btqRZBCcQHx+Pa9euYfHixex33BZJeHl5oUOHDuy0GeHH2NgYw4cPh4ODA9vgL2Bvb5/uE7YEgdeYMWPY77gtkshuv5DL5TyiohpcXV1RoEABFvXe09NTcl3diTfqvmWxeF2IqG9mZgY7OzssW7aMC3UziGCDx48fM7Fuz5491Z5eJ+Dq6spOorCwsMC6deuwfv16bo8MkF5bKMJF7Bkno7aIiYmBh4cHOy1KsIX4hALOL3x9fdGzZ09oaWmhf//+qRqLrV69mrX3iqc5iduWbdu2wdDQUNJPE+otQYTK10R+4enpiU6dOkFLSwtDhw5VqQsBpHXJ9OnTWbneu3cv2ef/+PEDL1++xMqVK7Fs2TLMnz8fDx8+RHBwMABuC3XEx8cjKCgIdnZ2aNSokeRbtra2RpcuXeDg4MDmYAH1ZSkWr2/ZsgW2traSNRA+L6WakJAQdjLHxIkT4erqCgAIDAzEsmXLMhx5nfvGL7iAncPhcDgcjkqcnJxgZWUFExMTnDp1StJBEi8Wbty4kUVfL1WqFJ4/f54T2c21xMTEYPLkyUw4/erVK8l1sS2aNGnCRKRcwJ75uLm5oWDBgqA06WhaKysriXidR17PXgShLqUUTZs2xZMnTxARESFJ4+7ujkGDBjGBdeXKldmgj5N5iH2jdOnSKFq0KJv04JHXs5fw8HAm4qlVq5bS5g6Bt2/fwsbGBpRS9OrVi09KZQH+/v5sErBJkya4d+8eO71DwMvLC0uXLmV1ma6uLurUqYNz587lUK5zJ/7+/qhatSprLx49eqTUXnz69AlHjhxhmwYFwcP+/ftzKNccTtYhrvOFk1QyImJ3dHSUiNcnT56sNBYRi3XFiyJ5aRI+I4jt0rlzZ9SrV0/lgsiFCxfYJk9KKZYsWcKuCXbntsgYYlt069YN5cqVg7Ozc7qe5eXlhdatWzMRu/Ac3i9LHan1C0XE3/rFixdZ208pRadOnZT6a5xfbNmyhYlw0vqjq6sLTU1NDBgwAFu3bmXPVPW9+/r6sii7Y8eOZb/n8yxJxMfHIzY2FteuXcPFixdx7949pUhwQlmNGDEi3ZFc4+PjcefOHTam4bZQJjQ0FG5ubti+fTt27NiBixcv4uXLl5I0Qp3zzz//gFKK7t27p0s4ffz4ceZPXJCoTHb6xfXr11G5cmWsXr1aMt/FbZGEm5sbE/k0b94cHh4e6XqO0M5HRUVJxOuTJ09mwngu1M04YrGurq4uKKXo27cvQkNDVaZ3dXVlkdctLCywYcMGfPnyBQC3R0YR20JHRweUJp20HBISkqbncBF7xkmrXwgolu/q1atRunRpFll/4sSJWZbnP5njx4+zDcWrVq1CbGwsuyYEHxG4f/8+ihQpwtbL1W0s2Lx5M+s3de/eHQsWLMDChQvRoEEDUEpRsWLFNG8QyQv8+++/bPPxmjVrJLZISEiQjKUvXbrEyrhFixaS01TENvvx4wfu3LmD6tWro1ixYpIxYpEiRdC8eXO4u7sD4HMhity6dQuTJ09ma0fCT4UKFTBgwAC4ubmxeim5UyXEvxfE68JGNJlMhrp16/LgCikwceJEyby3g4MDVq5cmWbxOveN5OECdg6Hw+FwOCoJDQ1F586dQSlF48aN4ezsLBmsAJCIriil2LRpUw7lNnfj7+8vEeq+ePFCSXg1cOBAUEqho6OD6dOnA+ATUlmBm5sbiySjoaEBXV1dtG/fHo6OjiwNL/fsw8PDA4ULF2aTTiNHjsTNmzdx5swZHDhwAGXLlmVHqZmbm8PFxQUAF+hkBYq+YWBggNGjR8Pb2zuns5bn8PX1RZkyZVibcf/+fXz//h1A0gTVmzdvWLQGIyOjFI+E5KQfT09PNqleunRp9OjRAwcPHsTatWsxf/58WFhYsAl6IyMj9OjRAzdv3szpbOdKPD09WRTQChUqYMiQIbh48SL+/fdf7Ny5E9WrV2e20tfXR+3atVUeQ8vh5BYyS8T+/ft3zJgxg91ftmxZtuFWLpdL+lxi4bSGhgabhOekDrFdFCO6AkBwcDCGDx8uWdASorz+/PlTMkYR24JSmm5hUV5FbIsPHz6ke/yXmJiIgIAAtGzZEpQmRe3lxzanjZT8QhFxnXT8+HHUq1eP+UH//v25eD0FPD092eZwPT091KxZE/369cPo0aMxbNgw/PXXX5g5cybmzJmDefPmYe3atdi2bRsOHjwIR0fHZCPxCvj6+kpOJqKUYvz48ew6n29JvgwU5zoePnwIbW3tNIt1BfF6tWrVuC3SiaItnj9/zsoxPcJpLkhMnuzwCyDp5I6ePXsyv+jatSsOHz6cqnzkJTIqYhfKUVG8Pm3aNBb1Ekiqq7hfZBzBRx4+fAgjIyN06tQJfn5+SulcXFwk4vUtW7ZIIvQq2kMs1uX2SB1iW+jr66NixYpKm3FSA28zMk5q/SI5Hj9+zIJgGRgYoE+fPuk+iSU3Iv4WV65cycZlW7ZsUblx4/Hjx+jUqRP09PRAKcXgwYNVjifOnTvHnrVs2TJ8/fqVXXNyckKlSpVgZGSES5cuZc2L/YGIbbFixQqJ5iMgIEAp/dWrV1G5cmVoaGhAU1MTc+bMUSmgfv78OaZPny458UxLSwuVKlWCtbU1W08sUqQIX7tVwbRp01i5GRsbw8LCAsuWLVPaMJsS6iKvy2QyPHjwABEREZLgClzE/gvx9ygEm6SUokGDBuy7LleuHPbv358m8Tr3DdVwATuHw+FwOBy1eHt7w9LSEpQmRXKdMmUKTpw4gU2bNqFNmzZs9zmlFPPmzcvp7OZqxELdypUrY/DgwTh06BCWL1+Opk2bMjtYWFjg8uXLOZ3dXI2rqytbtC1QoAAWLVrEruWFAcTvhqenJ6pXr858QCaTKUV7Mzc3x+PHjwFwG2UlYt8oXLgw1qxZw8qbT45nLx4eHkysW6ZMGbRs2RJLlixBp06d2IYofX199OrVi4vWspj379+jSZMmbDONqrrKwsICW7du5bbIYt6/f4969eqx/quqCKImJiaYMWOG5FQVDie3klki9o8fP2Ly5MmoVasWKKWwsrLC/fv3AST1uxSF0w0bNgSlFAcOHOD9sjSSUnkFBARg3rx5LHJx8eLFcefOHXav2Bbe3t6oV68eNDU1cfv27azMdq4kvd+uYp84LCwM06dPZ6cZGRsb482bN5mRxTxDam0hTnfixAmJeH3gwIFcvJ5KXFxc2GJqq1at4O/vn67nqBofisXrpqam6NWrFxdeZQBx9NC0iHUVxesFCxbEqFGjuC0ygGCLR48epVs4DXBBYmaQXr8QiI6OxsmTJ9GtWzdJAIfJkyezNNwWSWRUxB4XF4fSpUuz+ZM2bdrAx8eHXRMQ/EKYYxFvtOGkHsE3vLy82IZKMQEBAewUZplMhj59+rCor6rsoWrjEyd1CLZwcXHB3bt30/WMxMREJCQkSNqM0aNHS65zUiYlv1BHfHw8bt26xfpSRkZGGDt2rOSkVE4S4jHarFmz2Phs2LBh2L9/P0JCQuDs7Iz9+/ejQoUKLDq4+BRy4XtOSEhAfHw8O2ll5MiRiIyMZM9PTExEWFgYO4Fr8eLF2fuyvzliW8ycOZPZom/fvti6dSs8PT1x5coVrFq1Cvr6+qyeb9GiBWJiYgBI5xmvXr2K1q1bM5uVLVsWQ4cOxfPnzxEaGoqvX7/i0qVLaNGiBSilqFKlCo+Kr4LRo0fD3NwcO3bsUHvSU3IkJ14XtzHv379ngS64iF2KuAzEInZKKUqWLIlDhw4pBZ1URNzuct9QDxewczgcDofDSRYPDw+UK1dOIrjS0tJiuwEplR5Nzsk6PDw8YGNjI7GFMNmura2NIkWK4MCBAzmdzTyBq6srW7StXr06jh49yhe8c5CPHz9i1qxZTDgl/JQpUwYdOnRgUcD55GzWI/aNatWqcd/IQTw9PVGrVi0WlUQs1jUyMkLv3r2ZwJCTtQQFBeHQoUPo06cPbG1tYWxsjPLly6N79+5YtmxZuo6Q56SPgIAAbNu2DZ06dYKlpSW0tLRgbm6Opk2b4q+//oKrq6vkyFMOJ7cjnoSfOnUqayf+/fffNN0fExODp0+fshO8dHV12eZBxf6Xv78/rly5IomCxck4gi1iY2Px6tUrdO3aldlC2JSjaIsPHz7A0dGR13vZgKpIvFu2bEHp0qWho6MjmV/5+++/cyiXuZfkIq8PGjSIj1fSiKurKxMlNmnShIkS5XI5q2fE/07NOFxRvL5ixQr4+/vj4MGDXKybAcRiXaGO6dChgyRirhhF8bq5uTns7e0RHh6Offv2cVtkAFW26NSpExex5wBp9QtVJCYmYu7cuShYsCCzxbBhw7Iqy38sYhF7y5Yt0yxiX7JkCTp06ABdXV3IZDJMmzaNXRNvuJXL5dizZw9r22/dupVp75CXUKxDFP9/3bp16NGjBwsKIK5/1NnDzMwMz58/z9qM50JSskVq7/348SNGjx7N6qmhQ4dmWh7zCmm1hdCXqlq1KiilyJcvH8aMGcPF68kgnpeaO3euZB3DwsIChoaGkjW/atWqsQ1NisEXQkNDUbJkSVBKcejQIZV/o0WLFtDS0sKxY8ey+M3+PMTlNG/ePGhqarINYmZmZkrBw5o0acLE6+J5pTNnzqBGjRpsrqN+/fq4du0avn37BuCX3RISEvDy5UtUqlQJhoaG2LdvHwDepwWkthA2awiktXzCw8OxatUqFthKS0uLBU4Q+5D4tMYCBQrA2dk5XX8vNyK2x8SJE5kPtGrVCk+fPmXXVJWV+HfcN5KHC9g5HA6Hw+GkiL+/P2bNmoUGDRpAS0sL+fLlg4WFBYYOHYrjx4/ndPbyFP7+/pg2bRo7PlOI0ta3b1+cO3cup7OXpxBPwteoUQP79+9XGkhyso+4uDhERkbi1KlTOHr0KA4cOABPT08mRuARPrMPsW9UrVoVR44cQXR0dE5nK0/y6dMnrFy5Es2aNYORkREKFy6M0qVLY8eOHek6gpaTcaKjoxEcHKzUXvA6Kvv58uULfH192VGogg24LTh5DfEkvJ2dHSilePToUbqe5efnhy5duoBSChsbG7i5ualMl9sn3H8H/Pz82IaC6tWr4/379zmdJQ6AJ0+eYMmSJShYsCBbiBcil02ePBknTpzI6SzmOrh4PWvIaGRdMb6+vswupqamWLp0KT5//gwgyX579uzhYt0MIBbrijeqKfZ5FQVX5ubmOHz4MBvLC4JEbov0o8oWGzdulEQvTg1cxJ5xUusXqhD3ncePH89OIqSU4vz581mW5z8VNzc3mJubg9KkE37TslEASArOsH79ehalctCgQeya2BZyuRz29vZYs2ZNpuWdk4S4XvHx8cHmzZtZP3bw4MHsmqI9zp07hyNHjmRrXvMyQvnHx8cjKioK69evR5s2bVgALOEnvVHdOSnDxevpR1x/7NmzB+3bt5d8t0Kk486dOyMsLAyA6j5PSEgISpQoAQ0NDZw+fRqAdDy4ceNGJpDnm2tUI7bFwYMH0aNHDyVb1KhRA+PGjUNsbCwAqXj90qVLqFKlCqt7WrVqhaCgILV/LyIiAi1btgSlFL169cq6F/sDEX+7GVmv+PDhAzp37szGDg0aNEBgYCAA6cZzIEnE3q5dO2brvBL5OzWomj8X5vJSs9bKfSNluICdw+FwOBxOqoiLi0NcXBxevHiBd+/eISAggA1OAD5Bnp3ExsYiMjIS165dw82bN/H+/Xt8//49p7OVJ3Fzc4OFhQUopWjWrFmKx0RxcgZeP2U/bm5uKFiwICil6N+/P9/ckYMkJCQgMTERb9++hb+/P494m0Ooi9jDxdLZj7o2gduCk5cRT8L7+fkBkPqKXC5P9dG0N2/ehLW1NQwNDbF69WoA3L8yk9jYWKUoY6pITEzEpUuXYGFhARMTE+zYsQMAt0V2oBh1+tu3b3B3d0f//v1RoUIFycJvuXLlYGdnp7RphB/TnDlw8XrWkhkidi8vL3aSmrGxMVatWsWijwkoinXHjRuXWa+QZxB84cmTJ5g7d66SreRyOW7cuIFKlSqBUor8+fOzgCViP1K0xdixY7PvJXIJYlsMHjw43aeixcfHq/UL3tanjpT8Ijl+/PiBkydPMpGikZER5s2bx06A5Ehxc3ODTCZD+fLlU11G4rFIXFwcjh07xkTTM2bMSPF+3pfKXMT2iI+Px9GjR5k95syZk+L9vF7KGhTnt758+YL58+czwZvQRpQoUQKNGzfGzZs3WbRkTubCxesZR1xvh4SE4Pbt21i4cCGmT5+OjRs34tGjR2zTn6o6PjExET9+/EDr1q1BKcXEiRMl44pt27Yhf/78oJTyzU4pIK6zIyMj8eTJE2zfvh0bNmzAv//+i48fP0o2zQg8ePAATZo0YdGl27Ztm+z8lVCHTZ48mY0peSCsrCE4OBhbtmxBgwYN2Hjv3r17AJLsoChib9CgAZo0acJOO+AkIa57hO9W2FDs7u6u9j7uG6mDC9g5HA6Hw+GkClVH//KJp98Hbouc4+3btyhfvjxcXV1zOisczm+Fq6srWrZsyRfwchhV7Tff1MHhcDgcRRQXAMXth7OzMxP1pDTuiIqKQrNmzUApRe3atZNNz8cwaSMqKgrXrl2Dr68vgJTLLzo6mp3c1bhx42zIIUdsk5iYGNy+fRudO3eGtbW1RLjesGFDjBs3DoGBgSmKSITrXIiVNrh4PXtQFLF7enqm+t7ExERs27YNlFLo6urCyMgI06dPZ9fFkfzkcjn27dvHbLhs2bJMfY+8gOAT4nIVkMvl2L59O/T19aGrqwtjY2PMnTuXXRdHCFe0xZYtW7I+87kMwRaRkZHpul88nt+8eTPf3JEBkvMLdURGRuLYsWOoXLkyKKUwMDDAP//8wzaBclTz8eNHvHv3TuUcVWqIiorC4sWLoaWlhbJly+Lx48dZkc08S1rtERERgTlz5kBLSwu2trZwcnLKopxxVKE4Lnjw4AGWLVsGS0tLyZjD1NQUffv2xe3bt5U2CHIyDy5ezzxSUxelNA9y+PBh5gPdu3fHkCFD0K9fP/a7sWPHsjkVjnpS016Lr3369AmjRo2Cnp4eKKVo3bo1u57cXEZwcDDb0Ny1a9dMyj1HjOAz8fHxcHFxYVH1DQ0N8ezZMwCqN0QJp9ZypKgSsRsZGeHUqVMq03PfSD0ahMPhcDgcDicVUEol/yWEEA0N3pX4XeC2yDlsbGyIs7MzqVChAklISMjp7HA4vw0VKlQgV69eJdbW1jmdlTyNqvZb/G8Oh8PhcAghRCaTSf5faCtevnxJunTpQubOnUsISX7cIZfLib6+PmnWrBmRyWTk06dP5MOHDyrTAmDP+v79O3F3dyfh4eEkPDycEEJIYmJiht8pN5GYmEiuXLlCBgwYQBYtWkQISd4W8fHxRE9Pj9SsWZPIZDLy5csX8v379xT/DoBk/5+jGuF7FWyyc+dOMnr0aNKyZUty8eJF4uvrS/Lly0eqVq1K1q9fT06ePEm2bt1KChcuTHR0dNQ+99mzZ6Rz587E2dmZyGQyPt5MBvH3nZCQwGxx4sQJsmnTJvL06VNCCCEDBw4k27ZtI0ZGRql+NvcL9ZQvX548ePCAFChQgNy5c4eMHTuWuLm5pepeSikZN24cuXv3Lpk4cSKRy+Vk3bp1ZPDgwYQQQrS1tYlcLieEJLVRQ4YMIbt37yY2NjZES0sry94ptyL4hLa2ttI1mUxGxo4dS27dukWmTp1K4uPjyfLly8mgQYMIIYRoaWmx+kewxa5du0jLli1JwYIFs+8lcgmCLQwMDAghqa9TBBsIfbSzZ88Sb29voq+vTzQ1NcmOHTvI+PHjsyDHuZfk/EIVUVFR5OLFi2TlypXk7du3RF9fn0ybNo2MGDGClChRIiuz+sdTrFgxUqlSJUIpJYmJiew7dnNzIwEBASner6+vT5o2bUoopeT9+/fkyZMnKd7DxxOpR7CHs7MzCQoKSjG9oaEhadq0KZHL5eTdu3esn8XJHoSxu4ODA5k3bx5p3749WbZsGfn48SPR1dUlenp6ZN68eeTff/8lx44dI82bNyempqasvVHV7vD+bfqQy+Xk4cOHZMqUKcTJyYkYGRmR/v37k/HjxxMbG5uczt4fh+KaRWJiotJ3q24eRLg+aNAgsnnzZkIpJRcvXiSHDx8mx48fJ4QQsnDhQjJ16lRSsmRJQghRO76Oi4tL9npeQHFNSVUdIbTphBDy9OlTcvz4cRIbG0saNmxITpw4QSilJCEhQWm+kZBfZfvlyxfWDyhSpEiWvEteR/AZTU1NUrFiRbJ69WrSrl07EhUVRWbMmEH8/f2VfM/c3JxYWFjkRHZ/e8Rzcxs2bCCzZs0iHTt2JJ07d5ak476RdjRzOgMcDofD4XA4HM6fjqZmUrda1WCDw8nLCL7B4XA4HA7nz+Tdu3fEz8+PREVFkVu3bpGWLVuqTSu0+x4eHiQhIYHExsaq3TRFKSUxMTFkzpw55N69e+TNmzekXLlyxMrKiqxfv56UL19e7WR+XuXLly8kNDSU3L17l9y7d480adJEbVotLS0CgHh5eZGEhAQSGRmZKlECpZQAUFqsTExM5JumFRCXiYaGBgkMDCRnzpwhV65cIVevXmVlZ25uTgoVKkSWLFlCypUrR8qVK8eeIS5rRV69ekVmz55N7t27Rxo0aEAeP35MbG1tuV+oYMuWLcTNzY2MHz+eVKpUiZVPZojXCeF+kRLly5cnDx8+JI0bNyYODg7k8OHDZPny5SlumhXKr3HjxqRy5crE1taWjB8/nvz7779EX1+f7Ny5k2hqarKyl8lkZPjw4aRRo0YSP+JkHMEW9erVIzY2NqRSpUpkzJgxxN7enuTLl49s27aNyGQyiS1GjBhB2rZtS4oXL57T2f/jSc5XxHWPTCYjsbGx5MyZM+TWrVvk4MGDRFNTk8jlcmJsbEy0tbVJo0aNsivbeQ6xeN3Z2Zno6+uTqVOnkuHDh3PxehoR2s4LFy6QcePGkb1796ZKmNOoUSNSs2ZN8uTJE3Lp0iViZ2fH6iR1fwcAiYyMJHp6emysklz/Ky9z5MgRMmTIEHL9+nVSuHBhtemE8mvVqhWpUqUKcXJyInfu3CGjRo1KVd8IgGQzMyd5hPIW/vvlyxfi7+9PVq1aRV6+fEk+fvzI0pYvX5706tWLdO7cmdSoUYP9Xhg/KPZl7927R9zc3MiYMWOU+rucX+UGgMTHxyttdspM8Tr3C9WIyyOlb1MQU2toaJAJEyYQKysr8u7dO/LixQtSsWJF0qRJE9KiRQtCCJH0aQXc3d3Jly9fyIULF8jnz5/JrFmzSLVq1bLmxf5A1JW/hoYG+fLlC5k+fTqJiIgglSpVIqtWrSImJiYEgMo2OjExkchkMhITE0MmTpxIAgICiIWFBRk5cmRWv0auJjQ0lBgbG6c4X2RpaUn69u1LHjx4QDw8PIizszMpUaIEbwPSgCBil8lkZMWKFezf4vk67htph6sJOBwOh8PhcDicDMIHdRwOh8PhcDic3Ei1atVIkyZNyP3798m5c+dIlSpVVEZbFU/WBwYGEkKSRNTqIlq+ffuWzJ07l1y6dIlN2n/69Il4eHgQR0dHcvfuXVKhQgW+gPJ/NDQ0SO3atUndunXJs2fPyLlz54itrS0xNTVVSiss2vr5+ZGQkBBCCCEmJiZKEYsVBSZ3794lt2/fJg8fPiSampokX758pG3btkygyIXTUoSye/36NXnz5g1ZvHgxCQ0NJREREURDQ4MkJiaSPn36kG7dupGWLVtKbCV818mJ1+3s7MjTp0+JtrY2iYqKIo0bNyYPHjwgNjY23BYiHj58SCZNmkQISapzJkyYQMqUKUNOnTqVLvE694v0Ua5cOeLg4EAWL17MBIUpIS5nExMT0r9/f/Lz509iZ2dH9u3bR6pUqULGjh2rdBKkIF7nGwgyD3E5GhkZkT59+pCIiAgyZcoUcvDgQVK9enUyYsQIJVsI4nXeVmc+iu2El5cX8fT0JEuXLiWenp4kNDSUEJIknmvYsCHp27cvad26NSldunROZjvXok68ziOvp5/IyEhy8OBBEhAQQDZt2kSqV69OzM3N1aaXy+WEUkqio6MJIUnRcYVNTmIE33FzcyN37twh586dI8HBwaRs2bKkUaNGZOLEiVyoq4IfP36Q7du3E0II2bt3L6lWrRoxMzNTmVYQiX79+pXVRT9//mTXFFFsr1X1gbk9VCMul+/fv5Nnz56RNWvWEB8fH8lJZ61btybVq1cnM2bMICYmJkplKfRVxc97+vQp2bRpEzl37hx59eoV2b17N/cNBWQyGfn58yfZsGEDKV26NGnbti0xNDQkhGRcvM79ImsQxuEaGhqkQ4cOpEOHDpLrQpnGx8eTkJAQ8ubNG3Lnzh3y7t078ujRIxIbG8uiH7u6upL79+8TY2Njbgc1CGV98+ZNEhwcTHR1dUm3bt2Ira0tIUR1myBs1IiLiyMLFiwgz58/JzKZjDRs2FCymU3dWI/7hWo+fPhAbt68STp06EAKFy6c7FhZU1OTtG/fnhQsWJD4+vqSI0eOkE6dOqktV24L1Shu8BaL0rPSN3IzXMDO4XA4HA6Hw+FwOBwOh8PhcDgcJapWrUoGDhxIHjx4QLZv305Kly5Nxo4dS3R0dAghv442FSbpFy5cSO7cuUMIIWTIkCGSI2eFCfxv376R2bNnk6tXr5J8+fKRPXv2kIIFC5KwsDCyadMmcvfuXTJhwgRy8uRJUqBAgWx+49+XWrVqkaFDhzKxgZWVFRk9ejSzRXx8PNHS0mILS2vXriVv3rwhhBAybNgwiXBXLLq9dOkSuX79Otm2bZvS37x27RopU6YMOXbsGKlQoQIXjIr4+fMnmTlzJjl//jz58eMHCQ8PJ5RSoq2tTSZMmEBq165NevfuzdKLyy65RT5F8XqbNm1IeHg4uXPnDmnUqBEXsSvQsGFDMnbsWLJjxw6yZcsWoqGhQYoVK0bOnDmTZvE694uMUalSJXLs2DFWFoKoUDhxQ09PL9n7ZTIZadWqFWncuDG5ceMGefToERk7dqza9OIyz+uL56kFAImKimLiK3XIZDLSsmVLUqNGDfLo0SPy9OlTMmLECLXpedlnLuLv2d/fn9y6dYusX7+eBAcHk2/fvrF0/fr1IzVr1iRTpkxRulexXuI+kn5UidenTZvGI69nED09PdK5c2fy5MkT8vbtW3Lnzh3Ss2dPlX0bAERTU5O4uroSDw8PQghhYwzF75pSSp48eUImTpxIXF1dSWxsLCGEEGdnZ3L69Gni4+NDNmzYwP1BAQMDAzJ48GDi4+NDnj59Sh48eEC6dOmiVrCmoaFBvL292cblQoUKEUKU7SGkBUDc3NzIo0ePiKenJ/n+/Ttp3LgxKVeuHKlTpw4XTiugWIdv2LCBPHjwgJw7d479ztjYmFStWpX069eP9OvXj/VzExMT1QrjhN8/efKEbNiwgT1v7969REdHh2zZsoXbQoH58+eTNWvWEFtbWxIXF0e6detG9PT0yIMHD8jUqVPTJV7nfpG1UEqVxsrfv38ncrmc3Lt3j7x7947cvXuXvHnzhoSHhxNCktqk4sWLs5OhOnXqRAhJ2mTLUY9QT927d4/ExMQQQ0NDMnDgQLVjDfEGgr1795JLly6RmJgYoq2tTf766y/WlgjP/vr1K3FxcSF+fn6kYsWKpFixYsTCwoLPhSgQExNDDh06RBYsWECmTJlC1q1bl+z8REJCAilQoAApXbo08fX1JWFhYUQul6s9TZvbQj3i+llxszchWeMb6tqFXDEvBQ6Hw+FwOBwOh8PhcDgcDofD4XBEJCYmsn8vWbIElFJQSrF27Vp4e3srpV+0aBFLU6pUKZw9e1blc0eOHAlKKczNzfH69WvJtRs3bqBgwYKwsrKCn59fZr7OH43YFosXL2blvGrVKri5uUnS/vjxA3Z2dixNw4YN8fTpU3ZdLpezfy9duhQVK1ZkaYsXL46aNWvCzs4Obdu2RYUKFUApRZEiRdjfEeclrzNkyBBWdra2thg1ahRevHghSSMu75RwdHREw4YNIZPJoKenh0GDBuH79+8IDg5G69atQSmFiYkJ3r59m+Zn50bE7z958mRmi6JFi7J/Dx48GD9+/EjTs7hfZA5Cmdy4cQOLFy8GACQkJKR43/Lly0EphZaWFl69epWhv82RcuDAAWzcuBFA6mwxe/ZsUEphYGAADw+PrM5enkf4bmNiYhAaGopp06ahcePGrC4S6rdu3brh7NmzEhuK6zDx9+/k5KTy95wkUvKDyMhIHDt2DFWqVGG+MH/+fN5HzSRCQkLQvXt3UEpRp04dyfcqIHy3QUFBGDlyJLS0tKCpqYmVK1cCULbhs2fPULJkSVBKUbt2bUyePBm7d+/GpEmToKGhwcYyHGWCg4PRqVMnUEpRt25d1t8EftlBKG9fX180b94clFKYmpri5MmTkusC8fHx+PTpE3r27Ily5cpJ6jNKKaysrLBo0SKlv8MBAgICMHXqVLRr105SZiVKlEDdunVx+/Zt+Pv7S+5RV37i3z9+/Bi9evViz+vevTvzjQkTJqT4rLyGh4cHTE1NQSlFtWrVcPjwYVy+fBnVqlUDpRT58uXDmDFjJP6SEtwvMhdVbXlUVBRCQkJw6NAhLFmyBLVq1YKlpaWknGvWrInBgwdj//79cHJywtevX1U+l5d/yrRp04bVJwAQFxenlEYoz/j4eBw8eBA1a9Zktti/f78k7bdv33D+/HmUKlUKenp6oJSiYMGCqFatGlxcXCTP4ySNHebOnQtKKWrUqIHnz5+neM/Hjx9RpkwZUErRunVrteXJbZExMtM3VJXz169flea7/mR7cAE7h8PhcDgcDofD4XA4HA6Hw+FwlBBPfM+YMYNNojdv3hxz5szBf//9h6VLl6JHjx7smq6uLhYuXKjyec7OzihYsCC0tLRw8+ZN9jeERUFnZ2cYGRmBUsquc5IQ22LmzJmsvGvVqoWJEydi69atGDNmDJo1aybZSLBz5052X3x8PPv3+PHjJQu4AwYMwJUrVxAVFQUgaRHsxYsXaNGiBSilaNasGb58+ZJ9L/wbo7i5Y+zYsQgJCUF0dLTS9dQiiNc1NTWhp6eHgQMHskX0xMREeHl5scUvLmL/hfj9J02aJPmmO3XqxL7n5Gwifgb3i8zF0dERlFIYGhri06dPyaYVbLRr1y5QSqGnp4cHDx6oTCvUh4GBgXjy5AlWrVqFo0ePwsHBQel5nCSuX7/ONo8FBAQkm1You6VLlzL7JSfMSo1gjqMaRYGBk5MT7OzsmDBO+KlUqRK6desGFxcXJYGVGHGZX7hwAVWrVsXIkSNVXs/riOv+x48fIyIiAsCvMlIlXv/nn39SLV7nfpE6/Pz8YGtrC0opmjZtihcvXrA2V/CPz58/Y9GiRShRogSrx3x8fJSe9fnzZ9ZX6tixI16+fMnKOyoqCv/88w80NTXRo0eP7HvBPwxfX1+2ia9p06Z4+vQpIiMjJWl8fHwwfPhwmJmZgVKK8uXL4/Pnz0rPCggIwN69e2FjYwNKKRNJV6xYETVr1kTRokUhk8lAKcWUKVOy6xX/GPz8/FCkSBFQSqGjo4N8+fJh6NChuHXrlpJYLbl6RVG83rt3b9a2LF68GHFxcdi7dy8XsSeDm5sbChYsCEopypQpw+qi9IjXuV9kDdHR0QgKCsLRo0exePFiVK5cmfmPUMY1a9ZEz549YW9vjxcvXuDnz5+SZyhu1OGkjFwuR0JCAurWrQtKqdr2Vehz/fz5Ezt37kTt2rVZPbR06VJJ2uDgYKxevRoFChQApRRly5aFpaUlrKysQClF4cKF+cZaFdy7d4/1p/7++2+EhYWpTCfYQggeQilF3759Vdb33BbpJ7N9Q5jLjYuLQ1hYGJYtW4bevXvDzMwMVlZWaNq0KRYsWABfX1/Jc/80uICdw+FwOBwOh8PhcDgcDofD4XA4KhFPfC9atAgmJibQ1NRki+ligZWFhQXmzZvH0isu/t24cYNFjvv48SOApIVC4W84ODigQIECKFeuHAIDA7Ph7f4sxLZYvHgxzM3N2QK3lpaWxBY1atTA1q1bWXrxAu2wYcPYYq6urq7EZsCvxZHExERcvXoVhQsXRrFixSSR3PM6qhaE0ivycHR0ROXKlaGpqQktLS1069aNXRNHaBKL2AsWLIg3b96k6+/lNsS2mDhxIvOB0aNHw93dPdX3cr/IfO7evQtra2vo6upi+fLlTJSoCsEWGzduZG3MpUuXlNIJ7crLly/RuHFjtvBOKYWxsTFmzJjB0nLh1S+uX7+OEiVKwNDQEOvXr0dMTIzatMK3Pn36dGhpacHAwEBtJD9xO5+YmAg3Nzf4+vrCy8sLsbGxkmucXyj2j86ePYtZs2ZBV1eXCa10dXVRuHBhzJ49Gy9fvmTlmRph9IULF9C2bVvmG+PHj1eZjgO0bNkSlSpVgr29PcLDwwEAEREROHr0aLojr3O/SBuenp4oXLgwKKWoUqUKpk+fjufPn+P58+e4ffs22rVrx05XyZcvHy5evAhAOTruvXv3YGpqihIlSuDWrVvsuvDf/fv3s/HK9+/fs/9F/xA8PDyYPSpVqoQxY8bAwcEBly5dwtGjR2FjYwNjY2O2qVI4LUXcp/L29sbUqVNRvHhxlq5NmzY4fvw487O3b99i48aNrM7bsGFDTrzub83bt29RqFAhzJs3j333AmkV2T558gQ9e/Zk7cLChQuZ78THx6sVsXMxbxJubm5MxKmhoQE9PT2MGDEiTeJN7heZy9OnT3Hy5EksWLAAderUkZzCRSlF/fr10aNHDxw/fhwODg5K37JQZ/G2OOOsWLEClCadfOLv78/KVDzXFxMTg4ULF6Jy5crMRnPmzGFCayGdvb09O/VgxIgR+PHjBwIDA/Hy5Us0adIElFIMGzYMMTEx3HYKbNmyhZXtli1bWIAFIKl8hfIKCQlhm2gKFy6Me/fuAVDexMFtkXEywzeEsXloaCjWrFmDpk2bglLK5oLFP+XKlfujI+NzATuHw+FwOBwOh8PhcDgcDofD4XDUIhYknDp1CqNHj2ZiW2GifMiQITh06JDKewSePn0KPT09WFpa4t27d5Jr8fHxTJzbrl07tRGD8jricj1//jymTJkCAwMD6OvrQ0dHBwYGBpg1axZu3LjB0onF62PGjGGLHcWKFcPmzZvZNVULHJ8+fUKxYsVYlD7OL8SLdBlZsHNzc0Pbtm1hYWEBSinq1q3LhNfiEwqAJBF7hw4d2AaSsLAwvlgIqV/Y2dmxesnOzk6prhEQf+/cL7KGiIgITJkyBZRS2Nra4uHDhyrTCd/wp0+fUK5cORbhLSgoSGW6J0+ewNDQEJRSlCxZEjVr1kSdOnXYIu7s2bOz9sX+QMLCwtgJA1WqVFG78UL43n18fNjmgKpVqyYreI+MjMTff/+NLl26QFdXF/nz54e+vj66d++O7du3s3S8rpISGhqKq1evYsiQIdDR0WF9KkNDQxQvXhw7duzA48ePJfeoEyIoiteF/hSllG0I4VF1lQkICGBC3CpVquDkyZMIDAzEqVOnmIgkreJ1Ae4XacPT05NFDqWUQltbGzo6OhJxjpGREQ4fPizZ3Af8KsNZs2aBUopWrVqxa2Kf2bNnDyhNOr1ILOriKOPp6Sk5CUKwg9geJiYmuHPnDgCpMM7DwwPDhw+Hubk5E8etX7+eCX3F4q2oqCjMnTsXmpqaaNOmDd9YoALFzX/pEaTdvXsXXbt2VYrqKj6dSy6XqxWxc5JwdXVlYs5ChQph5cqVShtl1MH9IvNZs2aNRLhZuXJl9O/fH0ePHsWjR48AQCnKOpDU/wJ+ff9/aqTi34krV64gf/78oJRi8+bNklMi4uLi8PnzZ3Tp0oVtAhHG0N++fZM858OHD2yMPW7cOKU+0rZt20ApRcOGDXn/SYS4/pk/f76kjF+8eMGuhYWFwdHRkfW3DA0NMWDAAJUnpXFbZA4Z9Q2hfgoMDETnzp3ZBkNKKapXr45Ro0Zh06ZNGDNmDKpXrw5KKYoVK6bUtvwpcAE7h8PhcDgcDofD4XA4HA6Hw+FwkkVxUdbT0xP37t3D7du34ezsnGxaATc3N1hbWzOBobe3N75+/QpnZ2e0a9eORZYWxLt/2mR7dqFYvh8/fsS7d+/w7t07JYGVWJgwb948FjXO0tISu3btYtcUF26Fso+Li2PH2HKhbtYRFhaG06dPo0WLFqCUQl9fH/fv3weg7Aeenp5o2rQp9u7dmxNZ/W0Rf8OTJ09mC3sTJkzAhw8fJGnFZcr9Imv5+PEj6tevD0opGjduDFdXV0nUXOHfgYGB+Ouvv2BgYABKKXr27ImIiAil5zk7OzPxT/fu3fHo0SNER0fj8+fP2LJlCzQ0NGBubq42Ynhe5sOHD+wY8yZNmuDdu3eSNkKwhZ+fH1q3bs3qohkzZkg20wj//fLlC/7991/Uq1dPIiDS09OT/D+Piq+MXC5H69atlSLntWjRAuvXr1eqs5ITxiUnXl++fDlOnjypUpDIbZGEm5sbzMzM2EabCRMmsKiUBgYG+Oeff1IlXud+kXH8/f0xfvx4VK1aVVJWZmZmqFChAu7evZvs/YsXLwalFJ06dUJsbKzEb54+fYoyZcqAUooFCxZk8ZvkDj5+/Ijp06ejZs2aEntYWVmhVatWcHV1BSD9fn18fDBq1CjmU0WLFsXly5cRGRnJ0ih+7//99x979suXL7Pn5f4gMlo/xMXFwd7eHrq6ukywuGLFCsl1Ablcjn379rG2admyZRn627kRV1dXJjSsVq0ajh49yqKnq4P7RdaxfPly7Nq1C8+fP5dspBH+Kz71xN7eHpMmTULZsmXRqVMnTJ8+XUkkykk/CxcuZN/syJEjsWbNGhw4cADDhw+HlZWVpB3Zvn27ZAwi2Gv79u2glKJmzZrsujjdwYMHmUA3KCjoj4wwnVWIv+GZM2dK2uyePXti9OjRaNGiBTupwMDAAA0bNsSTJ09UPo/bIvNIr28IZfrp0ydJdHZKKbZt28YirQNJ9nd2dmbR2bt27fpHbn7iAnYOh8PhcDgcDofD4XA4HA6Hw+GkmuQW0lNaZN+1axebdK9SpQoqVKjAJu3NzMyYaFe8AKJ4lG1q/k5eIbXlcPToUVhaWrKIiVu3bmXXkltsunz5MosKu3Pnzgznl6OMOHKft7c3evbsCUopChQoAEdHR5X3JCd4yMuIF24nTpwISik6dOjAIlApwv0ie/Dy8kKJEiVAKUWDBg1w/PhxSaS39+/fo2/fvihSpAgTer569UryDCEi5YgRI0Bp0kkdgYGBkjR+fn4oW7YsKKU4d+5ctrzbn4aXlxeKFy8OSinq1auHAwcOMHFuWFgYXr9+jbp167KNBCVLlpSIFIX6xtvbGxMmTGCb0vT19VG2bFnMmzcP//77L3bv3o3Ro0cz4fS8efNy7J1/V96+fctOEujXrx+2bNkiuZ4aIUhy4vWVK1eya7t37+Yi9mQQi9jz5cvHvulFixbB19c3xfu5X2Qe0dHRCAoKwo4dO7B+/XosXrwYt27dwpcvXwCo/maF3x06dAgaGhooWbIk7t+/z/pK9+7dY5tyWrVqhffv3wNIXyTrvMbPnz8RHh6OY8eO4fDhw9i5cydcXV2ZKErc7woJCcHcuXNRqFAhJmp78OCB2mcLdnv37h2MjIxAKcXVq1ez9H3yMjdv3sTMmTPZZpqBAweya4qR2Ldv3w5bW1vs2bNH6cQDjrTNqFq1Ko4cOaL2VAfuF1mDOsG5+PfqTugSbyqzsbFBSEgIAN4mpBdxuf3999+g9NfpP4qb0Ro3boyLFy+qfdb06dNBKUX79u2Vnh0TE4OpU6eCUophw4Zl3Qv9wYi/+ZUrV6JUqVJqbdG1a1d2UoEquC0yTkZ8Q7Dlx48fUbJkSVBKoaWlBWtrazg4OEj+jtCGJyYmwt7eHgYGBihXrpzShug/AS5g53A4HA6Hw+FwOBwOh8PhcDgcTpYiFpxs374dFhYW0NfXB6UU5ubmqFu3Lt69ewfg10S/qoXJHz9+MBELX2RMHaGhoejXrx9bIBFHjFZXhkJk5L///hva2trQ0dHB9evXsyvLuYq0CgRdXFxY5KQ+ffrg69evWZSz3Im43tizZw8uXLigMh33i+zF3d2didjNzMxgbW2Nfv36oV27dpIjs3V0dHD58mUAynaIiIhA5cqVoaWlhcOHDyttbkpISGCR8c+fP5+9L/gH4e7uzhbCjY2NUaRIEbRv3x41atRg4l3hmhDJPiEhgZWzu7s7unXrxuxmYmKC5cuXK0UIjYiIwObNm1lU/Nu3b2f7u/7uuLu74+bNm5IIoenp25w/fx6tWrVitlu7dq3keXK5HHv37uUi9mRwdXWFqakpKKXQ1dVFt27dWL8UUF9Owu+5X2Q9KflGREQEGjRoAEoprK2t0bZtW4wcORI6OjqglKJWrVo4ffp0siJ4TuoRykzod50+fZptSi5atGiKEfOF+/bu3QstLS0YGBjw01OyALHffP/+HYcOHWLC6NGjR6tMl5CQAB8fH0RFRWVrXv8k3NzcULBgQVBK0atXL6VTg7hfZC+Kdbj4/8eMGQNKKbS1tTF//nxcuXIFfn5+GDhwINvszL/1jCEefwuRpQsUKABTU1NUqlQJLVq0wNmzZ+Hl5cXSqWp39+7dC21tbTRr1gxBQUGS5589e5Zt/BSfmMaRIrbF7du3sWLFClhZWaFIkSIoU6YM6tSpg6NHj3JbZBPp8Q1h41hAQAAqVqzINsXWqVMHz549A6C+3+rk5MROXDl27FgWvlnWwAXsHA6Hw+FwOBwOh8PhcDgcDofDyXLEC+MvX77E9evXsXXrVjx9+pRFvgKkk/FxcXF49eoV9u3bh3HjxqFixYqwsLCAs7Nztub9T+bMmTOSI2sF1AmBhN8/evSIReFt2bJltuQ1tyEuY3d3dyQkJKQokoqNjcWCBQuYAMvNzS2rs5nrULX5RbHcuV9kP97e3mjfvj2LtC7+0dXVhampKW7duqX2/hcvXjCRuxAxTuxTN27cYM9LSSCU1/Hx8UG3bt3YpgLFKHDVqlVjwlu5XM6+fw8PD7Rp04YJ3c3MzHDt2jVJ5FFxJFdfX19UqVIFlFJs3Lgxe1/yDyQ9ItpXr16hUaNGzH7dunVj12JiYti/BRG7TCbjERPV4OLiwkTsFStWxIkTJyQnnigi2Iv7Rc4jtPvfv39HgwYN2GYN4ad37964cuUKS6f4XwGxnbioPWWEMoqIiEC1atXYxuT//vsv2fvEfa0uXbqAUor8+fNLTmfhZA3x8fHYu3cv9PT0oKmpiW3btuV0lv5YXF1d0bhxY7i4uEh+z/3i92HNmjVMvH706FHJhkEAsLW1RfHixeHj45NDOcw9KLannz9/ho+PD75//57sBgMxt2/fZtHxp02bhjt37uD27dtYtmwZ23gzfPjwLHuH3ILifMb3798RHByMb9++Sfo5ycFtkXmkxTeEtF+/fkXLli1Z/VWvXj12Ql1yGzHfv38Pc3NzUEpx/PjxrHidLIUL2DkcDofD4XA4HA6Hw+FwOBwOh5MtCIspqibdBaHVs2fPYG9vj0GDBsHW1lZyzGr+/PlRoUIFLFiwgB9pngIJCQmIjY1Fx44dQSlFlSpV4OTkxK6puwcAPD09UaxYMVBKYWVlhdOnTwOAUpkr2pFHxVfNvn37MGbMGPb/KYmiXFxcYGxsDEopli1bpjJNSgvB3BaqyQq/4GWdeoKDg3HhwgX0798fVatWRalSpdCiRQssXrwYrq6uANT7x5cvX2BrawsDAwMcPnxYUu5PnjxBhQoVQCnFqFGjsuVd/nS+fv0KBwcHjBw5Es2bN0e9evXQo0cP2NvbMyGPeIOAr68vevfuzeqmggUL4s2bNyn+nR49eoBSir59+6rcXMLJOHv27EH79u2hr68PfX19SYR1sVBFLpdj3759LEL4+/fvcyK7vzWurq4wMzMDpRRVq1bFkSNHkhWxc7/4fRC+9fDwcBw+fBjTp0/HwoULceDAAURFRSXbtty9excLFy5E9+7dMXbs2OzMdq7Azs4OlFLky5cPCxYsQGhoqNq0YjusXbsWlFJoaWlhxowZStc5qefnz58IDw9PVVp/f3+0adOG1UGc9COMjVXV49wvcpbQ0FC0atUKMpkMixYtkvSHYmJiIJfLUb9+fVBK+YlamURy32lqx8tbt26VnAalqanJ5gMHDx7M0ol9TpX/8fG5ergtsp+0+EZ0dDTmzJkDExMTUEpRqVIlvHjxIsXnAMCyZctYu6N4CtSfgCbhcDgcDofD4XA4HA6Hw+FwOBwOJwtJTEwkGhoaRENDgxBCCKWUEEKIXC4njx8/JiEhIeT06dPE39+fPH36lN1XtGhRUqNGDdKqVStSrVo1Uq1aNWJlZUUAsGdwVKOhoUHkcjlxd3cnhBBibW1NKlSowK4pItjI19eX/PXXX+Tz589EW1ub1KtXjzRq1IgQQoiWlhYhhJDg4GDy8uVLcvv2bRITE0OqVKlCWrduTaysrEhCQgKRyWTZ9Ja/P+/fvye7du0iL168IBUrViQTJ05U++0K37WmpibR1dUl4eHh5OfPn2rTEcJtkVaywi+E+3h5p0zBggVJp06dSKdOnUh4eDiRy+XE1NSUfdPJ1e0mJibExsaGvHv3jqxYsYIQQkjhwoVJSEgImT59OgkKCiKtWrUidnZ2hJBftuOopkCBAqRZs2akWbNmJC4ujiQmJhJdXV12HQArv+/fv5Ndu3aRu3fvkvDwcGJmZkbu379Pypcvn2w5R0REkPfv37Pncf/IGkaOHElatmxJLl68SObMmUO2bdtGfvz4QY4cOUI0NTVZ3SSTyciQIUNI/vz5iampKSlZsmROZ/23o0KFCuTBgwekUaNGxMnJiWzatIkULVqUNG3aVKlu4n7xeyF860ZGRmTQoEEq00RFRRFKKXn48CFxdnYmd+7cIY6OjiQ4OJgQQlg71KxZM9KrV6/szP4fS1RUFHFxcSGEEGJpaUm6dOlC8ufPrzKtuI2/evUqOX36NCGEED09PdKgQQNCSJINkutP8TGgMnK5nDx48IAEBgaSgQMHplhGlpaWpHHjxuTGjRvkxIkTZPbs2aRKlSoq03JbJI+mZpLcTrGMssIvOGnj48eP5P79+0Qmk5EGDRowW8nlcqKrq0vCwsLI9+/fSZEiRUi5cuVyOLe5g+S+05TGZEK/afz48URfX5/s3r2b+Pr6kp8/f5JmzZqRpk2bkpkzZxJCCImNjSW6urrsHsH/QkNDibOzMylatCgpU6YMHwuqgdsi+0mNbwhl5O/vT27dukXCwsKIlpYW2bFjB6lZs6baNle4LywsjDx//pwQQoiBgQExNjbOmpfJQriAncPhcDgcDofD4XA4HA6Hw+FwOJmKMIkuTLILk/Lx8fHk5cuXxMfHh5w5c4Z8/vyZTbITQkiRIkVI9erVSffu3Ym1tTVp0qQJMTExIXp6ekrP54KflImKiiKRkZFES0uLdO/enWhpaRG5XM4WcAXEIt0JEyYwm1hbW5MFCxYQc3NzlvbatWvk0KFD5MSJE+x3GhoaxNLSkly8eJFUqlQpzy9QicmfPz+xtbUlL168IDdu3CCtW7dWu0guLEi9fv2aiakUF57EC1fcFukjM/0iMTGRUEoJpZTVSe7u7iQ4OJgkJiYSGxsboq+vT/T19bkt/o/wDRsZGSn9LrnNHdra2mT79u3Ew8ODvH79mowePZrExsayNB07diTTpk1T2pCgbrGXC69+lYGWlhYrC7EtBOGao6MjOXv2LAkJCSGmpqbk6tWrpHz58mqFbcLvP3/+zDbhWFtbS57PyRyE8ixZsiQZO3YsMTMzI6NGjSL29vakZMmSZMmSJRIbyWQy0q1btxzM8e9P+fLlyYMHD0jz5s1JbGwssbKyknyz3C9+T1SNDWJiYkh8fDy5ffs2+fTpE7lw4QLx9/cnXl5eLE2FChVI/fr1SdOmTUndunVJyZIlJf1eTvI8e/aMODg4EEII+euvv0i1atVUphN/4y9evCCHDx8mz549I4QQMn78eNKlSxeWTrDjrVu3iL+/PzE0NCSFCxcmTZo0SXGzW17k3bt3pGfPniQmJoY0bNgw2c1JQj1UqlQpVpY/fvxQm57bInnUvXtm+4UY8Xgir5d/cgh1ia6uLhtzAGDjvVGjRhF3d3dSvXp1ki9fvpzMKockjduEb3vYsGGkTZs2JD4+nkRERBBLS0uJjYQNt1+/fiXe3t7kyZMn5N69e8TNzY14eXkRTU1N4uLiQsqUKZNTr/NHw22RMwj1+o4dO8iLFy8IIYTs27ePNGrUKNn5DOG+bdu2kQsXLhBCCBk7diwpXbq0JN2f0FZwATuHw+FwOBwOh8PhcDgcDofD4XAyBUXB+rdv30hAQABxdHQkDg4OxMXFhbx584alL1KkCKlatSrp3r07KVmyJOnYsSPR1tYm+vr6kucqCj+5eD11JCYmkujoaBIfH08+fvxICCFqRbpeXl5k9OjR5NmzZyQ2NpaYmZmR48ePk7Jly7K0ly5dIosXLyaOjo7E0NCQdOnShURHRxN/f3/y6tUr0rFjR+Lg4ECsrKyy9T1/Z8zMzEjXrl3JtWvXyOXLl0ndunXJ1KlTlTZlCAQGBpLbt28TmUxGEhISSJEiRSTXhYUnbov0k1l+kZCQwIS+Pj4+xMHBgRw+fJi4urqS0NBQQkiSELJWrVpk3rx5pEyZMjxKO/n1DYsXUVMS9gtiahMTE+Lg4EAmTpxI3N3diZOTEylXrhzp2LEjmTx5MilYsKDS4qxYiH3//n0SFRVF2rVr90cs4mY1qmwh/rfwra5YsYJ4enqSfPnykV27dpEaNWqo3Ugm/v3GjRuJp6cnoZSSVq1aKT2fk3pUbbIhRFqempqapGPHjsTOzo6sXr2anD9/nnTt2pXUqFEjO7OaKyhfvjx59uwZ+fnzJylZsqRE+MH94vdAsT0VNs5GRkYSBwcH4uvrS06dOkVCQkIkgvVKlSqR9u3bk27dupHSpUuTqlWrqoxSyTedpY64uDiipaVF9PT0SPXq1QkhymUn9h8nJyeya9cutvmyf//+ZNGiRZJnvn//nkyaNIncvn2bxMfHE0KSNnSOGjWKrFq1igunFYiNjSUmJiYkKiqK2NvbkylTpiiNpRXx8PAghCTVZ8ltHvTy8uK2SAeZ6ReK7b9Qz8nlcvLz509SqFAhlc/M6xgZGRErKyvi6upKHBwcSJkyZYihoSGJi4sjo0aNIqdOnSKmpqZk+/btJH/+/LzsfgOEk9I0NTVJoUKFlPpT3t7eJDIykly+fJm4uLiQu3fvksDAQEJIUj+qcOHCpGvXrqR06dIkKCiIi6YzALdF9gOAhISEkHv37hFCCOnUqRNp3bo1IUT1OEFcZx06dIjMmzePEEJIgwYNSIcOHQghv/rKQrq4uDiiqanJ5rB+t74uF7BzOBwOh8PhcDgcDofD4XA4HA4nU6CUkqioKLJ06VISHBxMnj17Rry9vVmkyQIFCpCGDRuSZs2akQoVKpCmTZsSHR0dpSO1AUiiyfxOk+p/EoULFyY9e/YkBw8eJO/fvyc/fvwgxsbGSsLR169fk759+xJvb2+SmJhITExMyLVr10jlypXZooenpyfZvXs3cXR0JK1btybjxo0jnTp1InK5nLx//54MHjyYODo6kosXLxI7Ozu+CEx+LSp17NiRTJkyhcyYMYP8888/xMTEhAwcOFBJMPX161dy+vRpYm9vTxISEkiTJk1Inz59lJ7LbZExMsMvxGLEhw8fkilTppAPHz6QkJAQFolMX1+fuLu7E3d3d+Lg4ECuX79OKlas+NstFP4pCJs6jI2Nyb59+0hCQgIJDg4mBgYGpECBAkrpIyIiiJOTE/H19SVnz54l/v7+5PXr14QQQoYNG0b27duX3a/wRyHUG/v37yd37twhOjo65K+//iLNmzcnhKhul8Xt9o4dO8iBAwcIpZR07dqV2NrasmdyH0gbkZGR5O3bt6RGjRpEW1s72bRGRkakWbNmZN26deTdu3fk5cuXyQrYuS3UU7x4cUKIVCCSlX7BSRtCG/zp0yfi6upKnJycyPXr14mPjw/x8/Nj6WxsbEjLli1Jnz59SLFixUiLFi1UinYVfYH7ReoICwsj8fHxRE9Pj5iamhJCpGUnLtenT5+SXbt2kUOHDhFCkk5OmTFjBtHS0mLjjSdPnpApU6aQFy9eEFNTU2JlZUUSEhKIk5MTWbNmDaGUkpUrV3KfEWFjY0N69OhB1q9fT06cOEGaNGlCGjZsqJROvOnj/v37LEJ1sWLFJOkEm3FbpJ/M9AtBvJ6YmEhOnTpFLl26RB49ekTi4+NJeHg46dGjB2nYsCEZPnw431AgwtramvTp0+d/7d13WBTn2gbwe3aXLoIIShPpCiKoqICxIR4LxF6i0dgSe48x5SRGY5rBE03UFJNoNMZj7wW7WBGxoAIKFooiYkEFpCy7vN8ffjsBQeOJyoLev+vKlXVndnhnnik7O/e8g+nTp+Pf//43IiMjodVqkZWVhdOnT6NGjRr47rvv0Lx5cy4zPXr03EC3viuVSqSmpuL27dvYuHEjrl69ih07diA7OxsFBQVQKBSoWbMm+vXrB29vb7Rt2xYeHh6lbuig/w1roV+SJOHGjRs4e/YsACAgIOCxTwQquc9as2YNpk2bBgCoXr06Xn/9dfnGKaVSCbVajfPnz+O///0vzp07B41GA39/fwwbNqzydbAgiIiIiIiIiIiIiIieo9GjRwtJkoSRkZEICQkRU6ZMEZs3bxbp6ekiLy+vzPgajUbcvHlTxMTEiNu3b4v8/Hz5fXo2v//+u5AkSUiSJL7//ntx9epVeVhMTIyYP3++MDc3l8dxdXUVsbGxQgghtFqtKC4uFkIIsXTpUqFQKISzs7PYsWOHPA21Wi2EEGLgwIFCkiQxatSoCpy7yk+r1cqvP/roI3k5v/vuu2LLli1Cq9UKrVYr9uzZIz788ENhZmYmJEkSDRo0EJs2bSozDSFYi+fhWbcLIR4u7z///FMoFAp5PBsbGzFz5kyxbt06ERsbK3788UfRunVrIUmS8PDwEJcvX9bL/L5MioqKhBBC3jfpZGZmiqioKLFgwQLRq1cv4ePjI9dFV8P27duL7777Tvzyyy/6aHqVNGXKFPl4vnfv3seOV7IeW7ZsEc2bNxeSJAmVSiV+/fXXcj+jVqvFjRs3Su3jHq3rqy4/P18sXLhQ1K9fX+zcufOpPpOXlyeaNm0qJEkSQ4YMeaplylr8b17kdkFPlpaWJlauXCk+++wz0bFjR+Hg4FBqX+/l5SW6d+8ufv31V7Fz506Rn59f7rmH7lhCzyY1NVXUq1dPqFQqsXDhQvncrbi4uNR53Jo1a0SPHj3kOnXq1EkcPHiw1D7nzp07IigoSEiSJBo2bCgSEhJEbm6uSE9PF99//71QKpXC2tpaHDp0qMLns7K7evWqaNGihZAkSbRu3VrExcXJy/bR8+lRo0YJSZKEoaGhGD16tBDir32V7jOsxbN5ntuFEEJs2LBBDBkypNS+ztjYWEiSJJ+HvP/++/L4r/rxu+Ty++CDD4RSqRRKpVJedvb29iIiIkIUFhbqsZWvpkf3NSXdvHlTHD9+XMyYMUO8+eabonr16vJ6bmxsLMzNzcWAAQPEtGnTxKlTp0R6enqZaeimW970qTTWovI5ffq0MDExETVr1hQxMTFCiLLfV0suz7Vr14r69esLlUolJEkSgwcPLjXugwcPxLfffiv8/f1LHT8kSRIODg4iLi5OCFF5jhnsgZ2IiIiIiIiIiIiIngvx/z3B/Pjjj+jTpw/s7e1Rr169UuNotdpS/87IyMDYsWNx/vx5JCYmwtPTEz4+Pvj5559hbW1duXqEqUJ0tRgyZAiSkpIwa9YsTJo0CevWrYOtrS0kScLRo0dx69YtFBYWws7ODk2aNMHs2bNRv379Uj3DFRQUYNmyZRBCoE+fPujYsSOAh7U0MDAA8FevcsXFxezRtQSFQiGvw1999RUAYNasWZg7dy7mzp0Lb29vAJB7+S4qKkL9+vUxYsQItGnTRp6GDmvxbJ7XdpGdnY2lS5di0qRJEEKgVq1aaNq0KebPnw8XFxf57zVs2BBt27bF0KFDcfz4ccybNw/h4eFQqVSsy1MQ5fSIqOsNLj09Hffv30dERATOnj2LgwcPIi0tTR7P2toaISEhaN++PRo0aIDg4GBIkgRTU9MnTp8e0mq1UKvV2L59OwCgR48eci/Tjyq5HPft24eff/4ZMTExAIBRo0bhnXfeKTXdzMxMTJ8+HfHx8Th37hzatGmD1q1b4/3332fvoY8oLCzEgQMHkJiYiN9++w1NmzaVe3N9nPv37yMjI0N+/bhlyVr8717EdvG0x2nW4iEDAwOMGTMGd+/ehYGBAWxsbNCnTx+0aNECTZs2RdOmTaFQKOTvRDo5OTmQJAmSJMHMzAwqlYrfkZ6DGjVqoHHjxkhKSsKff/6JgIAA1KtXD8bGxvITtT755BNs3rwZ8fHxAIBu3brh/fffR/PmzUst/0mTJuHYsWNwdnZGREQEHBwcAABmZmbo2bMnlixZgjNnzuDWrVt6mdfKzNHREX/88QfatWuHQ4cOYeTIkZgwYQJat24NW1tbFBQU4MGDB5g6dSqWLFkCSZJgZ2eHDh06AIC8b9HVg7V4Ns9zu5gxYwY2bNiAc+fOAQA8PDxQv359dO7cGVlZWbhw4QKWL1+O2bNnQ6FQ4Ouvv37ljxUlz79nzZqFwMBAXL16FcnJyfDz80NISEiZJw9QxdCtm1qtFjk5OThx4gROnDiBmJgYREVFyd9fVSoVrKysEBYWBldXV3Tv3h1WVlZwdXUtNT3ddyPd//kEx6fHWlQ+hoaGKCwsREFBARITE9G0aVP5tw8d3fJcvnw5PvnkE6Snp0Or1aJLly5YsmSJPF5hYSHmz5+PuXPn4v79+2jYsCHefvttpKam4vjx4zhy5Ah69eqFPXv2VJr9IQPsRERERERERERERPRcSJIkXywMDg4GUPZRtLowenFxMSIjIzF58mScO3cO1tbW8PDwgEajwfr163HhwgUcOHAANWvWZGjnHyhZi6+++gqGhob47rvvcOTIERQXF5caNzAwEP3790evXr1gb29fJtCjUCiQl5cHALC0tAQAFBUVyeGgyMhIREZGQqFQICwsjBepHqFUKkvVws7ODitWrEB0dDQSEhJKjRsYGIixY8ciLCwMFhYWZabFWjybZ9kudJ8rLCzE4sWLMWXKFAgh4OnpiV69emHy5MmlbroRQkChUMDDwwNt2rTB8ePHERMTAwMDA+7P/oZuH1RyOaWmpuL+/fvYvHkzUlJSsGPHDmRlZaGgoAAAULNmTXTr1g2+vr5o1aoVGjRogNq1a5faBh69gYp1eDyFQgEjIyP5onnNmjUBABqNptSF9JLHiz179uCnn36Sw719+/bFd999J4+bn5+PHTt2IDw8HNHR0TAwMEBRURF27tyJ7du3IyMjA3PnzmVdSjA1NUWLFi2wc+dOREdH4+DBg+jatWu5+3ZdLeLi4iCEAADUrl273O9QrMU/87y3C7VaDUNDQ/lzx48fx5UrV3D48GEYGhqicePG8PT0REBAAG8o+H+2trY4dOgQtm7dirZt28LFxQU2NjalxlGr1fLrQ4cO4eDBg1i3bh20Wi3c3NzQs2dPDBw4EAqFgiH2Z2Rubo6vvvoKx44dw+HDhzFs2DA0btwYgYGBiIqKwqVLl3Do0CF5/GHDhmHq1Knw9PQstS5nZ2cjLi4Opqam+PHHH+Hg4FBquzIxMYFGo4EQAllZWRU+n1WBm5sbdu3ahQ4dOuDo0aNITEyEtbU1WrVqhYsXL+Lu3bs4e/YsFAoFzMzM8N5776F79+5lpsNaPLvntV2MGTMGK1aswP379wE8vPnpjTfekG9yBoB79+4hMDAQ48ePx4IFCxAUFISuXbtW3MxWUiXPv8tbz7nv15/Y2FgMHDgQubm5pW4+tre3R48ePdCkSRN06NAB1tbWcHFxeex3n5I1fNW/G/1TrEXlIYRA3bp10blzZ2zfvh2nTp1C9+7dYWZmVmocSZIwZ84cfPDBByguLoYQAqGhodi0aROAh8F1IyMjHD58GMuWLUNubi5Gjx6NkSNHol69etBoNEhISMAbb7yB5ORknDhxggF2IiIiIiIiIiIiInr5PNpb+qM9uukuJCYkJGDixImIj49H48aN8d///he2trawsLDA4MGDsWzZMnzyySeYN29emV4U6emUvHA7Y8YMNGvWDPHx8di6dSskSYK/vz9cXFwwcuRIOVSrC92WZGBgAD8/P0RFRSExMRF3795FjRo1AABHjx7FwoULcfXqVbmnYyqrZC3Gjx+P9u3b48yZM1i7di3u3bsHd3d31KlTB5MmTYKpqeljL/yxFs/un2wXWq1Wrsny5cvl8HqDBg0wdOhQvPPOO6hevTqKi4vlfaBufJVKJT+J4uTJk7h48SI8PDx4cfcJtFotcnNzceXKFWzbtg2XLl3Cli1boFarkZubC6VSCaVSia5du8o9wdnZ2aFOnTrlBtZ1F3v5NI+np+up2M3NDXFxccjIyCgT0i35hJT169fj119/xc6dOwEAXbt2RXh4OJRKpfy5Q4cOYfr06YiLi0P9+vXx5ZdfIicnB6mpqZgxYwa+//571KtXD6NGjdLLPFdGBgYG6Nu3L3bu3ImtW7fim2++gbu7O3x8fORxdL256tb9RYsWyb0mhoaGltrX6AImrMU/8zy3i6KiIjm8vm/fPuzevRvh4eEwMTGRb1QDgLp162LIkCGYPn06Q+z/z9vbW36CDfDXeq27cUO3XHW9U6alpUEIgRo1auDcuXPYuHEjbty4gffee48BxufAxcUFO3fuRPfu3XH69GmcPn0aS5culY/BhoaGcHZ2xuDBg/HRRx+V+bwQAmlpaYiNjQUA+bxPpVLJ29eVK1dw584d2NjYlNr/UWn16tXD/v37MX78eJw+fRqJiYlISkoqtW3Uq1cPY8aMwciRIwGUDh6yFs/Ps24Xw4YNw9KlS+XahYeH47333pOH626AsrS0RI8ePbB+/XpERkbizJkzDLD/vyd97+e+X38aNWqEoKAgREREoH379ujYsSMaN26Mhg0blrkhDXj43SshIQFXr15FamoqvL294efnB3Nz8zLfweh/w1pUHronBOkC7HPnzoW9vT1CQ0Ph6emJ/Px8bNq0CXv37pV7WjcwMECvXr3w3//+F8DDG2qNjIwAACtWrEBCQgLatWuHMWPGwN3dXT5f9PX1hb29PRITE5GcnKyvWS5LEBERERERERERERFVILVaLVq0aCEkSRLNmzcXd+7cEUIIUVBQIIQQ4tatW6JGjRqiTZs2QqvV6rOpL4VHl2FRUZHQaDRPHOdRq1atEpIkCUmSxODBg8W3334rpk6dKho3biwkSRJubm5i48aNz73tL5vi4uJnHoe1eD7+l+1CV5Pdu3fLy97Ly0t89913Iicnp9Q45X1+3rx5wsDAQFhYWIgrV6481XrwqsrLyxPjxo0TKpVKGBgYCEmShIGBgbC0tBQ9e/YUU6ZMEUePHhVJSUl/Oy0eP/453To6Z84cYWBgILy8vMTp06fLHTc8PFw0aNBA3jZ69Oghzp8/X2qcgoICERwcLCRJEh06dBDJycnysJycHDFhwgR5n0ZlJScny8u4TZs2IioqSuTm5pYap6ioSLzzzjtCkiShUChE9+7dRVpaWplpsRb/3PPaLkoea7744gvh7+8vj2dubi5cXV1FixYthKurq1AoFEKSJDFlypQXPn8vkxUrVggTExMhSZLo06eP+PPPP8XNmzfF2rVrhaWlpZAkid+VnrO0tDQxc+ZMERwcLJycnISXl5do3ry5+PXXX8XRo0fl8co7NmdnZ4vGjRuLatWqiRUrVpQa59atW6JJkybyPis/P79C5qcq063rffv2FY0aNRKenp7Cz89PfPfdd+LQoUPyeKzFi/e024VarZZfjx8/Xv4ObGxsLBYuXPi3f2fo0KFCkiTx2muvyb+pEFU2Jb//XL9+vdQ5se51UVGR/N61a9fEjz/+KMzMzIRSqRSSJIlq1aqJtm3bips3b5aZJj091qJyKbn8P/zwQ/m8wMPDQ7Ro0ULUr19fVK9eXX6/UaNGYtq0afJnStbqxo0bwsXFRSgUCrFlyxZ5+rrjeX5+vvDx8RGSJIkFCxZU0Bz+PQbYiYiIiIiIiIiIiKhCbd26VahUKuHg4CAuXbokhCj9g/vJkyeFUqkUtWvXFunp6QwhVhLz58+XL5jo/jMyMhKvvfaaWLdunTyeVquVL8CUdxGLF7b+8k+DzKxFxYuPjxcuLi5CkiRRp04dMXPmTJGdnS2EeHIdb9++LRo1aiQkSRKBgYEMrz+F+Ph44eTkJLp06SI+/vhjcfjwYZGYmFhqnJLr7vnz58WuXbvEhx9+KP7888+/DWfR07t27Zq8/rZq1Ups3LhRpKamiuvXr4v169eLN954o9R+aMCAAeLatWvy53Xr++zZs4UkScLW1lZcvHhRCFH6uD9nzhwhSZLw9fUVubm5rFs5EhMThb29vZAkSTRo0EC88847YvPmzWLXrl1i9uzZIjQ0VA6ve3l5iRUrVpQ7Hdbi2T3LdlFyeb7zzjvC0NBQHq9///5i8eLF4s6dO6KoqEjEx8eLOXPmyCH2uXPn6mmOq5ZTp07JwZzRo0fL5xo6v/zyi5AkScyYMUNPLXx56QJSqamp4v79+/L3JJ3H7U8KCwtF//795RsEly5dKiIiIsSyZcuEr6+v/P7169efOB0qKysrS9y9e1fcv3+/1PusRcX5u+2i5Hfa8PBwUatWLfkGzkWLFsnDnrSs+/btK59rMMBOldmj6/Hj1uvLly+LiRMnyt+BXn/9dTFs2DDx2muvyQHeu3fvVkCLX16sReXy6A2udevWlZe5JEnC1NRUSJIkJk6cKHbs2FHu54R4eBNb7dq1hSRJYtmyZUKIv2qbl5cnfvnlF2Fqairc3d1FSkpKBczZ02H//URERERERERERERUoS5dugStVgs7OzvUqlULAOTHzWq1WkRHR0MIgbZt28Le3l6fTSX89Wj5cePGoXbt2tizZw8SEhKgUqkwcOBANG7cGE2aNAEAFBUVyY+bB4DCwkJkZWXh+PHjOHXqFHr06AF/f399zUqlI0nS/zQ+a1HxiouLodVqsWrVKty5cwcA0LJlS4wdOxbm5uYQQjy2jhqNBtu2bcOtW7cAAI0bN4ZWq4VCoeCj65/A29sbZ86cgaWlZZlhxcXFEEJAqVQCANasWYPPP/8cly5dQkFBAQDA1NQUM2fOxLvvvguFQvHEGtGTOTg4YPXq1WjXrh0OHz6Ms2fPyuuvRqNBdnY2JEmCtbU1hgwZgm+++abU53XL/fr16wCAvn37wt3dHVqtFiqVCkIIaLVaXL16FQDg4+MDMzOzip3JKsLT0xORkZHo06cPzp49i4SEBCxatAhKpRIqlQqFhYWQJAkNGzbEuHHj0K9fPwAos/6zFs/un24XWq1W3nf169cPq1evhiRJkCQJ06dPx7Rp0wD8td14e3vD2dkZN2/eRHh4OLZv346hQ4fCwsJCPzNeyenW9TNnziAxMRG+vr4YMWIE3NzcAAAFBQUwNjaW1+tTp07x+PACKBQKODk5PXbYo4QQMDQ0xI8//ogLFy4gNjYWo0aNQkFBAYyMjFBYWAhvb2+sWbMGdnZ2pbYj3Wvd9+OS03zV66pbBjVq1Ch3OGtRsZ5muzhw4AA2bNggnzfMmzcPw4YNA4Ayy7Wk8+fP48KFC1AoFPDz84ORkdELmAOi5+PR9fjRf+v2GStWrMD8+fNRrVo1fPLJJ5g6dao8zhtvvIE1a9Zg0aJFmDJlCvcz/xBrUbkolUr5WPrxxx+jXbt2uHTpEqKjo1FUVIRWrVrB2dkZLVu2lD9TXFwsH4d1zMzM0KxZM2zbtg0nTpxAp06dYG1tjfz8fKxduxYLFixAfn4+OnbsCCsrq4qezcdigJ2IiIiIiIiIiIiIKlTNmjUBPLxAkpeXB3NzcwAPL5AcPXoUX3/9NYQQCAgI0Gcz6f8pFAr5onmfPn3QvXt3CCFQVFRUJtyWn5+P3NxcbN++HRcvXsS2bduQkpIiB3+///57XLlyBTY2NvqYlSqPtah4CoUChYWF2Lx5M3JycuDk5ITZs2fDysrqsWES3ftpaWlYsmQJrl+/DkNDQwwdOlS+WQdgqOdJdAHNkuEo4GGwU7fMlyxZIgd7goODUb9+fVhbW2PevHl47733UK1aNYwYMYLL+Bl5eHggMjISkyZNQkJCApKTkwE8vPHM2NgY77zzDoKDg9GjRw8A5Yes8vPzAQAZGRlyiBR4WM+EhATs3LkTABAYGPjYadDDWmzduhULFizA/v37ERMTA61WC61WCwAYMWIEwsLC8PrrrwNgLV6k/3W7UKvVMDQ0BAAMGDAAq1evhlKphJ2dHT755BOMGDGi3L9jamqKpk2bQgiBPXv2IDk5GY0aNaqQeayKiouLsWnTJmg0Gvj7+8vLSqPRyOv6iRMnADy8QYDHh+frnyxPSZKg1WphaWmJ/fv3Y+LEiTh//jxOnDiBZs2aoX79+vjmm29Qo0aNMiFp3feD+/fvIyUlBYmJiejXrx/rCtaiMvm7ZaAbvmnTJhw7dgwA8Pnnn2PUqFEAHn8c1p1HHD58GOfOnQMA1KtX73k2najCSZKEAwcOyDf1TZ8+He+++y4A4MGDBzAzM8OECROwZs0aXLlyRf4MPX+sRcUreVwNCgpCUFAQ3nrrrceOX96xwdTUFL1798a2bdswb948XLp0CW5uboiNjcWFCxdw69YtdO7cGe+++678W3x5Kvq3KgbYiYiIiIiIiIiIiKhC2dnZwczMDDExMfjzzz8RGhoKrVaLo0eP4quvvsK1a9fQuXNnjBs3Tt9Npf+nUCjkHr11vXobGhri3r17KCgowO7du5GWlob169fjxo0byMjIkD8bGBiIjh07onv37rCyspJvYKB/hrWoeNu3b8eZM2dgZmaGr776Cg4ODmWC1Tol3//oo48QGRkJlUqF6dOno1mzZtBqtXIIu7i4GGq1GhcvXoStrS1MTExgbm7OwCj+uvj96DLWvb9x40Y5vD5lyhSMGzcOTk5OkCQJrVq1QocOHfDzzz+jW7duqFWrFi+mPyM3NzcsW7YMmZmZOHz4MNRqNZycnODu7l4qLPW4dbdhw4YAgNOnTyMqKgpBQUHQaDQ4efIk3n//fZw/fx4BAQF48803AZR/MZ4ecnR0xGeffYYZM2Zg586dyMnJgbm5OZydneHr6yuv66zFi/e020VRUZEcXh87dixWrFgBhUIBZ2dnfPrpp3Iw5dGa6Y4nnp6esLGxwf379+UnTVBZut7sdWEc3XckIYR889gvv/yC7777DgAQEhKil3ZSWbpeRy0sLPDLL79Ao9EgOTkZHh4eACBvP7rvBLdu3UJ2dja2b9+OuLg47N+/H2lpadBoNIiJicG3336rt3mp6lgL/di7d6+8bxo4cCAmTpwI4Mk3kUmShCNHjmD8+PEAHj4hSnc8EULI4xBVNRs2bAAA9OnTRw5MazQa+Yb96OhoAMDt27dRXFwMgN9XXxTWouI9y/LThc4HDx6MnJwcTJgwAdu3b5eHOzk5YejQofjoo4/g6uoqH2PK+21Ld/x43O9ezxsD7ERERERERERERERUoUJCQjB+/HjMmjULU6dOxfz585Gbm4v8/Hzk5+cjODgYGzZsgIGBAYOceqRb9rqLILogUGpqKg4fPowLFy5gy5YtyMrKwrVr1+TPtWzZEsHBwejduzfs7Ozg7+9fqtdp+t+xFvqluwlArVbD3d0dQNlgNVD6Ec6DBw/GmjVroFAoEBYWhtDQUAB/9SB+8eJFLFu2DBERETh//jwcHBxQv359zJo1C15eXhV2obAqysjIwA8//AAAGD16NGbMmCFfRBdCoH379vDz80NiYiJyc3NRu3ZtfTb3pWFpaQlLS8syvXuW7J3tccfrt956C8uWLUN0dDSGDh2K+vXr48GDB0hJSUF6ejo8PDywbt061KxZs9zjfsm/wScXPAwQSpKEbt26lXpfF1gDWIuK8nfbhRBCPmbPmzcPK1asAADUqlULn3zyyWPD68Bfx5n9+/fj1q1bL3pWqjzd+u/m5gYAOHnyJM6ePQsnJydYWlpi7ty5+PzzzwEA06ZNQ/v27fXWVipL9z1XqVTC0NAQDRo0kIddvXoVeXl52LJlC1JSUrBt2zbcvHkT+fn5UCgUqF69OkJDQ1G/fn14eXkhLy8Ppqamepybqo21qDi6Y8XZs2dhYGAAIyMjdOrUSV5mT/od5Ny5c5g6dSrUajUsLCzwr3/9CxYWFmWOzWq1GhqNplQdePymykoIgQsXLgAArKysADwMTOt+w0hMTMT+/fsBAKGhofyt8AViLaoeSZLkc4px48bB3d0dJ0+exJUrV2BhYYH+/fvD2dm5zFMYdecc6enpiI2NxenTp3HgwAF88cUXFfZkVP5KSUREREREREREREQVRvdj+ldffQUDAwMsXboUGRkZKCoqQuPGjfHaa6/h22+/hYGBAQOceqa7qH3hwgUkJSXh0KFDclg6OztbHqdJkyZo2bIlevbsCUdHRwQGBpZbO96M8M+xFvqhC3foerxt0KABmjdvXmpYSbplOnToUCxbtgwKhQJ+fn4YNGgQ/Pz85HHOnTuHYcOG4dSpUxBCwNTUFFevXsXFixdx7NgxREZGwsvLi+GSx7h//z5iY2NhYWGBbt26yYEc3bp++/ZtOTDF0NSL93frqFarhbm5OSIiItCtWzccO3YMaWlpAB6GeENDQ/Hbb7/B1tZWfrrEo/soSZLkmupCwa/ytvG4eWctKg/dMtH9Pz4+Hps2bcK9e/cAAB9//DEGDx4M4MnH5Dt37uDIkSNQKBSoV68e6tSp8+IbX0XplvWQIUPw+++/4+TJk+jfvz+MjIxgYWGBAwcOAABGjhyJgQMH6rOphL++R+nW/5JPXrl//z6uXr2KHTt24NKlS9i6dSvy8vLk7UelUqFLly5wcXFBjx49ULt2bfkGQ/rfsRb6JYTAli1bUFRUBF9fX/kJKE9y4cIFzJgxA/Hx8QAAX19fjBkzRr5hCngYRNyyZQtWrVqFjIwMNGvWDE2bNsXEiRN5/KZKS5Ik+Pn5Yc+ePcjLy8ODBw/kG5WvXLmCX375Bdu2bYOXl5d8fk0vBmtRNeme9KdQKNCpUyd06tSpzDi64ZcvX0ZGRgZ27tyJU6dO4fjx47h796483v3797F//3657i8SA+xEREREREREREREVGFKPp70s88+Q8+ePZGdnY0HDx7Ax8cH9vb28g/uDK9XPI1Gg9jYWNy5cwcbNmzAxYsXER0djby8PACAiYkJ6tWrB39/f7Rp0wbu7u5yoFdXN93rRzEw/b9hLfRPF+rw8PAAAFy+fBkxMTFo1qyZHPzQjSeEwK1btzBp0iSsXLkSCoUCrq6umDhxInr06CFPMzExEW+99RbOnj2LgIAAdO3aFSEhIbh06RIWL16Mffv2YeTIkdi0aRNq1KhR8TNdBZw5cwZ37tyBg4MDvL29IUlSqd7gFi9ejIsXL8LX1xcqlYoBHT1TKpXQaDSwtLTE9u3bsW3bNqSkpAAAAgIC0LhxY1SvXh0A5OCVQqFAXl4eMjIycOTIESQkJGDjxo147bXXsGjRItbzH2It9Gf37t1yL5UffPABxo4dC+Dx4XXd+4cOHcKGDRtQXFyMgIAAODg4VGi7q6K6deti165d6NGjB1JTU5GXlycfH2bNmoU+ffrAxcVFz618dT0akhZCIDc3FwkJCThx4gRiYmKwf/9+XL9+HRqNBkqlEiYmJmjbti1cXV3Rq1cv1KpVq8xTDx6dPv091kL/dMve2NgYAFC/fn0AkG8iK8/58+fxxRdfIDIyEjk5OahTpw6WL1+OmjVryuPs3r0bv/32G9asWSO/d/nyZSxfvhwpKSmYO3cuj99UaXl5eaG4uBjLli2Dk5MT/P39kZqaiv3792Pz5s1QqVSYOnUqGjVqpO+mvvRYi6pHCFHqd/eSzp07h3v37mH9+vVISUnB/v375Q4xjI2N4ejoiB49esDf3x9BQUGoXbt2hYTXAQbYiYiIiIiIiIiIiKiCKZVK+YJ2eT316H5wp4q3atUqvPXWW3IA2tzcHLVr10ZYWBh8fX3RsmVLuLi4wMDAoFSN1Go1DA0N5fd4A8KzYy0qj3r16qFBgwaIj4/H3r174ePjAxMTEzn4cffuXRw5cgQLFizArl27oFAo4OPjg4kTJ2LQoEEAHvZ8XFhYiLlz5+Ls2bNo2bIlZs+eDT8/PxgbG6Np06aws7NDbGwskpOTkZ2dzQD7Y3h4eKBWrVrQarVITEyEo6OjHE788ccf8eGHHwIApk6dWubx2KQfKpUKWq0WZmZm6Nu3b5nhugvssbGxuHDhAg4fPoxjx44hOTlZ7gXOwMAAGo0GkZGRaNu2bQXPwcuDtah4aWlp+P777wEAHTp0wHvvvQfg8eFO3ffg06dPY9CgQdBoNPD19cWECRMAoNQNO+XhTTuAp6cndu3ahRMnTiA2NhZubm7w8PBAQECAvpv2ysvPz4eZmRn27t2L5ORk7Ny5E+fPn8f58+flGwOtra3Rvn17NGrUCP/6179ga2sLLy8veRq68UreSKjDc8inx1pUHlZWVgCAGzduoKCgQA606+j267GxsZgxYwYOHjyIe/fuwcHBAdu3b4ejo6N8/D58+DDCw8Oxd+9e1KpVC2PHjoWlpSXS0tIwZ84cfP/993BycsLkyZP1MatEf2vIkCFISEjAf/7zH3z55ZdQKpXy+l27dm189tlnGDJkiL6b+UpgLSo/3flEeU9RuXLlCq5evYoNGzYgOTkZERERkCQJRUVFMDMzQ7Vq1fDmm2/Cw8MDoaGhqF27NiwtLUtNv6LOKxhgJyIiIiIiIiIiIqIK96QL2q966EafBgwYgGPHjkGhUMDNzQ2hoaGwsbGBhYVFueOnpaVhx44dOHXqFADAx8cHAwYMQI0aNf42YEVPxlpUHvXr18dbb72FDz/8EP/+97+Rm5uL1157Dfb29rh79y7mzJmDixcvIjExEUqlEu3atcPbb78th0N1NxHoHsFsaGiIIUOGoHHjxjA0NJQvAnt4eECSJKSnpyMzMxN169bV85xXTk5OTnBzc0NUVBQ+++wzJCYmQqVSIT4+HvPnzwcAfPLJJxgwYICeW0rAXxfVS95Io+tZNCYmBhkZGdi4cSMuXLiA6OhoOQRnbm4Od3d3vPXWW2jdujUaNmwIDw8PqNVqfc1Klcda6Edubq7cu6G/v78cVHxceF2SJMTHx2P48OHIzc1F9erVERISAjc3NwCQj+darRbR0dFITk6GSqVC3bp1ERgYKD8V5FX/Pu3g4AAHBwd069ZN302h/6dWqzFy5Ejs2rULt2/flt+3s7NDYGAgOnbsiKZNm8LX17dUIPdRkiSxd+9nxFpUDrp9dUhICDZu3IiUlBScOXMGzZs3L7UPlyQJkZGRGDduHFJSUpCXlwdHR0esXbsWDRo0kOtTXFyM5cuXY+/evQgICMCnn36Kzp07AwDy8vKgVCoRHh6O/fv3Y9SoUTAxMdHXrBOVS7cuh4eHw8bGBhEREbh48SIMDAzQu3dvBAcHy+s0vVisReWmO37ojr9FRUW4ceMG4uPjceDAAcTFxeHAgQPyExyrV68Oe3t7hIaGwtnZGV27dkWNGjVQu3btUtPVHdN106+o8wlJ6M48iYiIiIiIiIiIiIjolfWkkLPuIkbJ8MLSpUuxbNky7Nu3r9S4jRs3xo4dO2BjY8NAwz/EWlQeJZfbhx9+iPDwcAAPeyA2NzdHfn4+8vPzATwMI06ZMgXdu3dHUFBQmc9v2LABvXr1Qp06dRAdHQ1bW1totVq5p6wDBw4gODgYKpUKsbGx8Pb21sMcVw1JSUkIDg5GRkZGmWEzZszAmDFjYG1trYeW0aO9wOkIIRAdHY3MzEysXbsW6enpiIyMlIfb2dnBxsYGoaGh8PLyQlBQEFxcXOT9nO4iOvdlT4+1qBw2b96M7t27w9LSEgcOHEDDhg3LDZjr3rtw4QJGjx6NqKgoqNVqtGjRAqtWrYKDg4M87o4dO7BmzRr8/vvv8nuWlpYYPnw4vvnmm1LTI6pM4uLi8NZbb8HY2Bjdu3eHi4sLWrdujVq1asn7k5LrblZWFo4cOYK4uDi4ubnB3t4eLVu2BPD4pxjQ02EtKo+MjAx069YNJ06cQOvWrfHvf/8bDRo0gIODA3bt2oXo6GhMnz5dHt/FxQXbt29HvXr1Sk0nIiICYWFhAIC1a9eiZ8+eAP4Koq5cuRJvvvkmPD09ERUVxac9UaVU8neOu3fvorCwECqViud2esBaVG6XL19GTEwMEhMTsWfPHly4cAF37tyRh7u6uiI4OBgNGjRA586dYWJiAicnJ3m4EKLSPAGV3W0QEREREREREREREVG5gelHe/XRXbxauHAhwsPDkZaWBh8fH4wYMQL29vZYtmwZNm3ahB49eiAiIgLm5uYVOg8vC9ai8ih5s8CsWbNga2uLdevWITo6GllZWQAADw8PODo64qOPPkLr1q1haGgIAGUuBtrb28PIyAjAw6BKrVq15DrGx8fjs88+A/Cw932G15/M09MTBw8exIwZM3Dx4kXcunULDRs2xKBBg+SwDlUsXXitZC9wSUlJiI+Px/bt23H58mVERUXJvUPXrFkT9evXR+/eveHi4iJfVH/0KRO67U8XoKsMF9grO9aicsrJyUFBQQGAsk8b0tUsLi4OY8aMwalTp6BWq+Hs7IylS5eWCq+vXr0a33zzDU6fPg0AaN26NTIzM5GUlITZs2dDkiTMmjWL4XWqlHx8fHDgwAEAD3sDLankPkaj0SA6OhrvvPMOEhMTATz8fmxkZITPP/8ckyZNKtVDKP3vWIvKw87ODsuXL0dISAgOHjyIxMREKBQK2Nvb48KFC3jw4AGAh+cSTZo0wcKFC2FnZ1fmxoHz588DAHr16lUmvA48DDsCgJmZmXxOQlTZKJVKeX9iaWkp71e4j6l4rEXltnz5csyYMUP+t4+PD0JCQtC2bVsEBATAxcUFlpaWZeqVm5sLIyMjqFSqMp1j6AsD7EREREREREREREREVK6SFzl0Fz0OHz6MRYsW4erVqxg4cCDGjRsHf39/AEDPnj3Rrl07HD58GKdOnUKbNm301fSXDmuhP0qlUr6oN2nSJPTu3RvXrl1DRkYGioqK0KpVK5iamsLCwgIlH3z86EVdCwsL1KlTB5cuXcLatWthYWEBV1dXREdHY+bMmYiMjIS/vz/efvttAOzN8u+4ublh0aJFMDAwQEFBAVQqFQwMDPTdrFeWQqFAamoq1q5di9TUVERFReHkyZPy8Fq1aqFhw4YICwuDq6srwsLCYGxsXKb3z0e3IX1fTK+KWIvKJSAgAN7e3rh8+TLi4uLQtGlTSJJUKiyiUCgQExODwYMH49KlS9BoNKhVqxYiIiLg5uYmP5nl6NGjmDdvHmJjYxEWFoa3334b3bt3R2pqKiIiIjBu3DgsWrQIvXr1QrNmzfQ850Tl04WlHw1U6YJyALBx40ZMnDgRGRkZaNKkCZo2bQpzc3MsWLAA7777LkxMTDBy5EgG6J4Ra1F5eHh4YN++fRg1ahSSkpLkcw2d119/Hd26dUOvXr1gaWlZbuAwOzsbAJCZmYns7GyYmZnJtUxMTMTBgwdhYGCA3r17w9TUlCFUqrR062XJ9ZPrqn6wFpXXp59+CmNjY9ja2sLNzQ2+vr6lOq7QarUAHtYrKysLFy5cwI8//ojU1FSYmZmhUaNGeP/992FlZaX3EDsD7ERERERERERERERE9Ld0F6m2bt2KEydOoFmzZpgwYQIaN24M4GEvPtWqVUNAQAAiIyORkpLC0PQLwlpUvJK9jzk4OMDR0bHc8Z50Mbd+/fqYMmUKRo8eja+//hrr1q2DlZUVjh07BgDw8/PD+PHj0bx5cwClezdmmL18BgYGkCQJJiYmKC4u1ndzXnlFRUX44IMPUFxcDENDQwQFBSEwMBD+/v5o2bIlzM3Ny4Ski4qKUFRUhPv376NGjRowNjYG8HCdZzjin2MtKg9TU1M0aNAACQkJWLRoEfz9/eHt7S0/bSUxMRFHjx7FmDFjUFhYCABwd3fH1q1b4enpCa1WK4+7a9cuHD16FK+99ho++OADtGzZEsDDXnk7deoEd3d3OfjIADtVdo97EsGZM2cwefJkZGRkoFu3bli5cqXcW3S7du0QFhaGn376CaGhoXB0dOT+6TlgLSoHd3d3rFy5EpcvX8aePXtQVFQEBwcH2NvbIywsTB6vuLi43KChj48PDA0NcfXqVZw9exYBAQFQKpU4fvw4fvrpJ+zevRtubm5o27YtAIZQiYiqKt3Nre+//36ZYbowuu73o2vXrmH+/PlYvXo1UlNT5ScG7tq1CxEREdi7dy+sra31+psTA+xERERERERERERERPRUbt26hdWrVwMARo4cKQemtVotqlWrBiEEYmJiAEAOvtGLwVpUvPJ6H3tauvD7yJEjIYTAjBkzkJSUJA9/4403MGTIEAQHB8PQ0FC+6PjoxUddz4rVq1fXey9ZlUHJWjDgr3/u7u64dOkSTp06BV9fXzg5OckXyIG/eoEDgMLCQiQlJeGDDz5AWloaUlNTERgYiP79+2PYsGFQKBS8ceMZsBaVh7m5Ob7++mscP34cR48exZAhQ/Daa6+hfv36uHjxIo4ePYrY2FhoNBrY2NigSZMm+OGHH+Dq6lpqP5+eno7vv/8eADBo0CA5vK7RaGBgYABnZ2dYWFgAAB48eKCfmSV6BgqFAtnZ2Rg+fDjS09MREhKCdevWQaFQoLCwEEZGRujcuTNatGiBCxcuoLCwkAHcF4S10B9ra2tYW1sjICCgzDDd+cTjjsedOnVCs2bNcOTIEQwePBhNmzZFcXExzp07h6SkJFhaWmL27NkICgoq9/M81hMRVQ26m1vLozt3kCQJN2/eRHh4OBYvXgwTExP069cP48ePh6GhIf7zn/9g1apVGDBgADZu3AgTE5OKan4ZDLATEREREREREREREdFTEUIgNzcXwMMeRYG/ev4pLCzETz/9hIMHD6JOnTpo166dPpv60mMtqhZJkuRQyKhRoxAUFISMjAzcv38f1atXR+fOneVQCvDXRcfs7Gzk5uZix44dOHfuHPbu3Yvbt29j69at7F2XKiVnZ2c4OzsDgNwrvm7d1q3XWVlZWLNmDb788ktcu3YNNjY2qFatGvbu3Yu9e/ciKysL7733HkNUz4i1qDxcXV2xc+dOdO/eHbGxsYiNjZWH6W4QCAgIQJcuXTBs2DDY2tqW6WE3Pz8farUa5ubmcrBRd9wXQmDNmjU4ceIEjIyM5JvaiKqaGzduICMjA3Z2dpgzZw4UCgWKiorkXr/Pnz+PlJQU5OTkIC8vT8+tfbmxFpXPk24S0N3EvGXLFoSGhuLYsWNITk4GABgZGSEwMBAff/yx3JO77ntByZvUHj3Wlzw3ISKiqkO3X4+IiMCaNWtgbm6OyZMn45133oGVlRUA4L///S+SkpJw8uRJXL16FZ6ennprLwPsRERERERERERERET0VKpVq4YmTZpg7969SEhIQG5uLqpVq4aioiL89ttvWLhwIVQqFYYNGwZLS0te9H6BWIuqp2RAxM/PD35+fqWGS5KEzMxMFBYWYtu2bUhJScGmTZtw48YNuef1atWqwdnZGWvXrmWAnSo9XRBKt+8RQgAANm/ejBkzZiAzMxNdu3bFnDlzYGlpiZMnT2LAgAF4//330ahRI7Rv315vbX/ZsBb65+npiZ07d+LXX3/FkSNHkJSUhJycHLRv3x5eXl6YNGkSqlWrBiMjo3J7wbWwsICzszNSUlJw+vRpeHl5wcDAAAAQFRWF5cuXQwiBN954A87OzjzuU5V04cIFpKenw9zcXL6BQ7eeCyFw8OBB3L59G23atIGLi4s+m/rSYy2qFqVSCY1GA0tLS+zcuROrVq1CSkoK7t69i9DQULi7u6NevXoAyva0npGRgRs3bmD37t2IioqCpaUlli5dymMIEVEVpdvH//rrr8jMzMTgwYPl8HpxcTE0Gg0MDQ3h4uKC06dP49atWwywExERERERERERERFR5WdqaoqQkBDs2rULX3zxBS5fvoy6desiKioKJ06cgFqtRq9evdC/f3854EAvBmtR9ZQXSHzw4AHS09Oxe/duXLlyBZs3b0ZOTg5u3rwpj9O5c2fUrVsXPXv2hK2tLXx8fCq66UTPhSRJSE5OxsyZM5GZmYlhw4Zh3rx5MDU1hUajwb/+9S98/PHHmDx5Ms6ePcvQ9AvEWuhHnTp18Nlnn0GSJGRlZUGj0aBWrVplxiuvx3tLS0s0bNgQ58+fR3h4OAoLC9GkSRPs27cPEREROHDgALy9vTFo0CCYmZlVxOwQPXf16tWDo6MjNBoNbt++Lb//4MED7NmzB++//z7UajXatWsHc3NzPbb05cdaVD0qlQparRbm5uZ4++23IUlSuTczJScnIycnBxs3bsSVK1ewa9cu+dzD0NAQarUa/fv3R6dOnfQxG0RE9BzEx8fj1KlTqF69Oj788ENYWVnJT28yNDREQkICDh06BAAwNjbWa1sZYCciIiIiIiIiIiIior+lu/g9depU3Lp1C//5z3+wYsUKebiDgwO6d++O0aNH67XnnlcBa1E1aLVaucdKHbVajcTERJw8eRLHjx/H3r17kZ6ejry8PEiSBKVSidatW8PV1RV9+vSBnZ0dfHx8yg2fsHddqoq+/PJLpKSkoHnz5liwYAGMjY3lC+nAw+AUAFy+fBlA+Td+0PPBWuiXlZVVqX8/aZ8uhICBgQF+/vlnXLp0CadOncKECRNgZGSEnJwcGBkZoVmzZpg2bRratWsnfwZ4eLNCebVjPakyqlmzJurUqYOoqCh8/PHH6N+/PwwNDREbG4s//vgDubm5GDBgAD788EMA/C70IrEWVYtu+etqUPL/165dQ0ZGBjZt2oSUlBRERERArVbjwYMHUCqVMDc3x1tvvQUPDw906dIFNjY2qFmzpj5nh4iInpEQAgUFBdBqtcjMzISHh4d8npeamoq5c+fi1q1b6NatG/z9/fXaVgbYiYiIiIiIiIiIiIjob0mSJAdyw8PD4e3tjdjYWKSlpcHS0hKjRo2Ci4sLbGxs9N3Ulx5rUTXowutHjhxBWloaduzYgYSEBJw7dw5qtRoAYGFhgWbNmsHX1xcdOnSAg4MDGjVqVO70Hg0GMSREVVFGRgYAoHfv3jA2NoZarZaD0tevX8e+ffsAQH7SAAO2Lw5roR+P23c/aZ+uO+5bWlpi7969mDBhAs6cOYNr166hTp06GDlyJNq1a4fAwEAAKFVL4GHt7ty5g9u3byM+Ph49e/ZkPalSsra2xu+//47g4GAcOXIER48elW/GAIDBgwfj999/B8CbMF401qJq0J0T6o4hWq0Wd+7cQWJiIg4cOIBz585h165duHfvHoCHT/EyMTFB9+7d4eLigp49e8La2hqOjo6lpluy1kREVPVYWVnB19cXcXFxiImJgbe3N6ytrREfH4+ffvoJq1evhpOTE/r166fvpjLATkRERERERERERERET0epVMoXyYcMGQKgdA+fVHFYi8rr7t27+OOPP3Do0CFcu3YNx48fl4dZWVnB29sbHTt2RNOmTeHn5wc3NzcIIUoFf4qLiyGEkEPwrCm9LAoKCgAAt2/fhhBCDtlmZ2dj8+bN2LVrF9zc3BAUFKTPZr4SWIuqRXfct7CwwKJFi3Dv3j1kZ2ejevXqsLa2LjWuoaEhCgsLERsbi1OnTuHkyZM4ePAgbty4gdzcXAwdOhSLFi3S05wQPZmnpycOHjyIzz77DJcvX8aVK1fQoUMHBAUFYdSoUQAYmK4orEXl8+gNrVqtFg8ePMChQ4eQkJCAAwcOIC4uDmlpafI4jo6O6NSpE7y9vREaGgpLS0u4uro+cfo89yAiqtrs7e3Rq1cvnD17FlOnTsXmzZthb2+PiIgIZGdnw9bWFsOHD0fXrl313VQG2ImIiIiIiIiIiIiI6OnpArU6vLitP6xF5VSjRg1cvnwZ69evR506ddCwYUN0794drq6uCAkJQe3atWFgYFDqM4WFhcjJyUFqaipsbW1hbW0NY2Nj+SYFoqpOd4ONr68v9u/fj8OHD+PYsWNo0qQJkpKSsH37doSHhyMnJwejR49+7JMI6NmxFlWXUqmERqOBSqWCtbW1HFzPz8+HiYkJDh8+jMuXLyMiIgJnz57FhQsX5M/WqFEDQUFBaNq0KXx9fcuEIIkqEzc3NyxcuBBGRka4efMmbG1t5WEMTFcs1qJykSQJxcXF+OOPP1BQUICVK1ciNTUVqamp8jjOzs4ICwtDmzZt8Nprr8HJyQkODg7y8OLiYgCQjyePTp+IiKo23fF52rRpePDgAcLDw3Ho0CF5eNu2bdG7d28MGTIEJiYmemzpQ5Lgcz+IiIiIiIiIiIiIiIiInlnJQODWrVvRvHlzGBgYoEaNGqXGKyoqkkPshw8fxpo1a7B582akp6fDyckJ/v7++OGHH2Btbc0QO71UkpOT0aZNG1y7dg1169ZFzZo1kZaWhpycHBQWFmL48OFYuHChvpv5SmAtqobHBUQLCwtx6NAh3LhxA+vWrUN6ejpOnDghD3dxcYGjoyM6dOgAPz8/+Pr6wsnJqSKbTvRMdN+pSm4DvPFCP1iLyuXatWul9ucNGzaEra0tunXrBnd3dzRr1qzMuQcAPHjwAFqtFtWqVZPryJsQiIheTiV/R9q6dSuSkpLkntf79u2L6tWrl7mJSV8YYCciIiIiIiIiIiIiIiJ6Tv4ucF4y8LN582aMHz8eV69ehampKVxcXJCfn48rV67A29sbBw4cQM2aNRkSopdKUlIS+vTpg8uXLyMvLw8AEBgYiI4dO2L69Ol6bt2rhbWofHT7+0f3+wUFBYiJicHFixexfv16pKen48yZM/JwJycn2NnZoXfv3nB1dUXr1q1RrVo1GBkZlZo+b4oiIqr6EhMTceTIETg4OKBVq1ZQKpWl9ve6Y4hGo0FycjIWL16M/fv3IyMjA0FBQQgNDcWgQYMAMMRORPSyqirf+xlgJyIiIiIiIiIiIiIiIqpgu3fvxoABA3D79m307NkTgwYNQvv27VFUVITx48fjzz//xNChQ7Fw4cJK0zMW0fOSmZmJ06dP49q1a7C2tkbTpk3h6Oio72a9kliLyunOnTtITk5GTEwMIiMjkZCQgPj4eHm4s7MzateujR49esDJyQlhYWFQqVQwMTEpNR0GE4mIXg2P9pSvVquxbt06/Pzzzzh06BAAwNzcHDk5OQCA8PBwvPfee/psMhEREQPsRERERERERERERERERBXpxo0bGDZsGHbs2IF+/fph+vTpqFevnjw8KysLXl5ecHFxwZEjR6pEr1lERPTsiouLMWHCBCxbtgxFRUUoKCgAANjY2MDX1xfBwcHw8vJC69atoVKpYGFh8cRpMbxORPTqKS4uxvr16zFz5kzExcWhSZMmmDlzJjw8PJCQkIChQ4fi3r172LRpE7p06aLv5hIR0SuM3TUQERERERERERERERERVaC0tDQcPnwYlpaWGDhwINzd3QH89Yjn7OxsCCGQlpaG3NzcJwYUiYjo5aFQKPD2229j7dq1CAwMhL+/P1q3bo0mTZrA0tIShoaGpcYXQqCwsBARERG4efMmLCws4OLigoCAACgUCobYiYheIbpe2LOysrB48WLExcWhS5cumDlzJvz8/CCEgIeHB77++muMHj0a0dHRDLATEZFeMcBOREREREREREREREREVAF0oZIDBw4gNzcXTZs2RWhoKACgqKgIBgYGAIBt27bh9u3baNGiBQwNDeXPERHRy69x48a4cuUKTE1NS72v1WoBABqNBiqVChqNBitWrMDq1auxbds2eTxTU1N8/vnnmDx5MhQKBY8hRESvCN2+/vfff8eOHTtgaWmJadOmwc/PD8DD8w1DQ0O4uLgAeHhTLRERkT4xwE5ERERERERERERERERUAXShEgcHBwAPQ4hXr15FnTp15PD66tWr8dFHHwEAhg0bBhMTE/00loiI9KZkeF3Xi7pSqQQAObw+f/58zJs3D2lpaXByckK/fv2gVquxcOFCTJkyBcbGxhg9ejTD60REr5ikpCQAwPDhw9G0aVMIISCEgKGhIR48eIDVq1cDAKysrPTZTCIiIvBZUUREREREREREREREREQVyN7eHubm5oiNjcWGDRsQHx+PO3fuYMGCBRg5ciRyc3MxYsQI9OvXT99NJSIiPVMo/op1CCEAAJs2bcLPP/+MzMxMDBs2DBs3bsSsWbMwZ84cbNmyBQYGBvjll19w8+ZNfTWbiIj05N69ewCA69evQ61WQwgBhUKB/Px8bN68GXv37oWtrS369+8P4K9jCxERUUVjgJ2IiIiIiIiIiIiIiIioArVt2xZjx44FAEyaNAnBwcEIDAzEhAkTcP/+fQwaNAhjxowp1QMvERGRrjf1DRs24OLFiwgNDcV7772HRo0aobi4GGq1Gu3atUOzZs1w7tw5OcRIRESvDn9/fwAPe2JPSEgAAOTn52PJkiX45ptvkJqaio4dO8LV1RUA+KQOIiLSG0nwNioiIiIiIiIiIiIiIiKiClFcXCz3pjt9+nT8/vvvuHbtGoyMjKBUKvHpp5+if//+qFOnjp5bSkREldHx48cRGBgIANi7dy+Cg4MB/HV8uXv3LgIDA5GSkoJz587B09NTn80lIqIKlpKSguDgYKSmpsLT0xO2trbIzMxEcnIy1Go1OnXqhO+//x4eHh76bioREb3iGGAnIiIiIiIiIiIiIiIiqkBarRZKpRIAcP78edy4cQNmZmaoVq0avL299dw6IiKqzPbv34+QkBA4Ojri1KlTsLa2hkajgUqlQm5uLr766ivMmjULjRo1QkxMjHy8ISKiV0diYiK6deuG5ORkFBUVAQBcXV3RsWNHTJ48Ge7u7npuIREREaDSdwOIiIiIiIiIiIiIiIiIXiVKpVLuKdfLywteXl76bhIREVURNjY2sLa2RkFBAc6dO4fWrVtDpVIhJycHS5YswcqVK1GjRg2MGzcOSqUSQghIkqTvZhMRUQWqV68e9u3bh8OHDyMtLQ0qlQrdunVDzZo1Ub16dX03j4iICAB7YCciIiIiIiIiIiIiIiIiIiKqErKyshAWFobo6Gi0atUKXbt2hZeXF3799VdERUXh3r17eOuttzB9+nQ4Ojrqu7lERERERETlYoCdiIiIiIiIiIiIiIiIiIiIqIpISkpCcHAwMjIyAABGRkYoLCyEnZ0dunXrhnfffRfu7u56biUREekbn8JBRESVGQPsRERERERERERERERERERERFXIpUuX8Pnnn+Ps2bNQq9WwtbXF5MmT4e/vDzs7O303j4iIiIiI6IkYYCciIiIiIiIiIiIiIiIiIiKqYtRqNYqKiqBWq1GjRg19N4eIiIiIiOipMcBOREREREREREREREREREREVMUJISBJkr6bQURERERE9LcU+m4AERERERERERERERERERERET0bhteJiIiIiKiqYICdiIiIiIiIiIiIiIiIiIiIiIiIiIiIiCoEA+xEREREREREREREREREREREREREREREVCEYYCciIiIiIiIiIiIiIiIiIiIiIiIiIiKiCsEAOxERERERERERERERERERERERERERERFVCAbYiYiIiIiIiIiIiIiIiIiIiIiIiIiIiKhCMMBORERERERERERERERERERERERERERERBWCAXYiIiIiIiIiIiIiIiIiIiIiIiIiIiIiqhAMsBMRERERERERERERERERERERERERERFRhWCAnYiIiIiIiIiIiIiIiIiIiIiIiIiIiIgqBAPsRERERERERERERERERERERERERERERFQhGGAnIiIiIiIiIiIiIiIiIiIiIiIiIiIiogqh0ncDiIiIiIiIiIiIiKhiaTQabNq0CTt37kRUVBQyMzNx9+5dmJqawsbGBg0bNkSLFi3Qu3dvuLi46Lu5RERERERERERERET0EpGEEELfjSAiIiIiIiIiIiKiirF582ZMmTIFly5deqrxw8LCMGvWLPj4+LzglhERERERERERERER0auAPbATERERERERERERvSK++OILfPrpp9D1a9K2bVu8/vrr8PX1Rc2aNZGXl4eMjAwcPHgQW7duRUpKCrZt2wZHR0f8/PPPem49ERERERERERERERG9DNgDOxEREREREREREdErYPHixXj77bcBALVr18bKlSvRtm3bx46v1WqxcuVK/Pvf/0bnzp0ZYCciIiIiIiIiIiIioueCAXYiIiIiIiIiIiKil9zVq1fh6emJgoICVK9eHSdPnoS7u/tTffbevXs4dOgQunTp8oJbSURERERERERERERErwKFvhtARERERERERERERC/WnDlzUFBQAAD48ssvnzq8DgCWlpZlwuspKSmQJAmSJGHJkiUAgPXr1yM0NBT29vZQqVTl9u6+ZcsW9O7dG46OjjAyMkLNmjURFBSEWbNmITc397FtmDFjhvz3niQyMlIeLzIysszwtm3bQpIkuW2JiYkYMWIEXFxcYGxsDDs7O/Tt2xfHjh174t/RarVYsmQJOnbsCFtbWxgaGsLCwgIeHh4ICQnBV199hYSEhCdOg4iIiIiIiIiIiIjoVaXSdwOIiIiIiIiIiIiI6MURQmDZsmUAAHNzcwwdOvS5T3/QoEHy3yhPQUEB3nzzTWzYsKHU+1lZWTh27BiOHTuG+fPnY9u2bWjUqNFzbd/jREREoE+fPnjw4IH83o0bN7BmzRqsW7cO3377LSZNmlTmc7m5uQgNDcWhQ4dKvV9UVITs7GxcunQJ+/btw6lTp7B27doXPRtERERERERERERERFUOA+xEREREREREREREL7G4uDjcuXMHANCqVSuYmZk91+l/9913OHv2LFq1aoXRo0fD09MT9+7dQ0pKijzO4MGD5fC6n58fpkyZAi8vL2RlZWHlypVYsmQJrl+/jpCQEJw9exYODg7PtY2Pun79Ot58802oVCp89dVXco/s+/fvxzfffIPs7GxMnjwZzs7O6N69e6nPzpgxQw6vv/766xgwYACcnJxgbGyMmzdv4vTp09i6devf9hZPRERERERERERERPSqYoCdiIiIiIiIiIiI6CV29uxZ+XWTJk1eyPQHDRqEJUuWlBva3rZtG1avXg0ACAkJwfbt22FoaCgP79ChA4KCgjBixAhkZWXh3XffxapVq557O0u6ePEiLCwsEBUVBS8vL/n9oKAgdOvWDS1atEB2djbGjRuHsLAwGBgYyOPo5qV3795Ys2ZNmWl36tQJH330EbKysl7oPBARERERERERERERVVUKfTeAiIiIiIiIiIiIiF6c27dvy69tbGweO15xcTHi4uIe+19RUVG5n7O0tMSCBQse2+P4Dz/8AAAwMDDA77//Xiq8rjN8+HC0b98eALB+/XpkZGQ89fz9U9OmTSsVXtdp0KABPv74YwBAeno6Nm3aVGr4jRs3ADzszf5JrKysnlNLiYiIiIiIiIiIiIheLgywExEREREREREREb3EcnJy5NdmZmaPHS87OxsNGzZ87H/p6enlfq5Lly4wNzcvd5hGo8GBAwcAPOxpvU6dOo/9+8OHD5c/ExkZ+Xez9UwkScLgwYMfO3zo0KFyIH/Pnj2lhtnZ2QEAVq1ahby8vBfXSCIiIiIiIiIiIiKilxQD7EREREREREREREQvsZLh8gcPHjz36fv6+j522JUrV+SQd0BAwBOnU3J4XFzc82ncY7i4uMDa2vqxw21sbODs7AwAOHfuXKlhuuD70aNH4eLignHjxmHDhg24devWC2svEREREREREREREdHLhAF2IiIiIiIiIiIiopdYzZo15ddPCllbWlpCCFHqvyf1Uq5To0aNxw7LysqSX9eqVeuJ07G1tS33cy/C37UFAGrXrl1uW6ZNm4Zhw4ZBkiTcvHkTP/zwA3r27IlatWrBx8cH06dPR2Zm5gtpNxERERERERERERHRy4ABdiIiIiIiIiIiIqKXmJ+fn/z69OnTz336SqXyqcaTJOm5/+1/6lnaYmBggEWLFiEuLg6ffPIJWrRoAUNDQwBAfHw8Zs6cCXd3d2zatOl5NZeIiIiIiIiIiIiI6KXCADsRERERERERERHRS8zHx0fuhf3QoUPIy8ursL9tZWUlv/67Xslv3LhR7ucAQKH466fs4uLix07jwYMHT9Wup+khXTfOo23R8fb2xueff44jR47g/v372L17N4YOHQqlUonc3Fz0798fGRkZT9UeIiIiIiIiIiIiIqJXCQPsRERERERERERERC8xSZIwcOBAAEB2djaWLl1aYX/b1dUVpqamAIDo6Ognjnv8+HH5tY+PT6lh5ubm8uu7d+8+dhpJSUlP1a7k5GTcuXPnscNv3bqFlJSUcttSHmNjY7Rv3x6LFy/G7NmzAQD5+fnYunXrU7WHiIiIiIiIiIiIiOhVwgA7ERERERERERER0Uvu3XffhbGxMQDgo48+QnJycoX8XZVKhTZt2gAAdu/ejWvXrj123N9++03+TNu2bUsNc3FxkV+fOHHisdNYuXLlU7VLCIE//vjjscOXLFkCIQQAoH379k81TZ2QkBD59e3bt/+nzxIRERERERERERERvQoYYCciIiIiIiIiIiJ6yTk5OWHevHkAgPv376Nly5Y4fPjwEz8jhMC9e/ee+W+PHTsWAKBWq/H222+jqKiozDiLFy/Grl27AAA9e/aEnZ1dqeEtWrSASqUCAMydO1cOl5c0e/bsUr24/53PP/8ciYmJZd4/f/48vvzySwCAnZ0dunXrJg/LysrCli1byv37Orr5AEoH74mIiIiIiIiIiIiI6CGVvhtARERERERERERERC/e8OHDkZ6ejs8++wzXr19Hq1at0K5dO3Tp0gUNGzaElZUVtFotbty4gVOnTmH16tWIj48HACiVShgaGv6jvxsWFoY+ffpgzZo12LVrFwIDA/Huu++ifv36uHv3LlauXInFixcDAKysrDBnzpwy06hVqxb69OmDFStWYOfOnejatSvGjh2L2rVrIy0tDcuWLcO6devQokULHD169G/b5O7ujlu3biEwMBAffPCB3ON7ZGQkZs2ahfv37wMA5s+fX2q+s7Oz0bVrVzg7O6Nnz54ICAhA3bp1oVKpkJGRgS1btsg9yTs4OOD111//R8uMiIiIiIiIiIiIiOhlJokndRVDRERERERERERERC+VDRs24L333sOVK1f+dlxJktCxY0fMnj0bPj4+8vspKSly7+K///47hgwZ8sTpFBQU4M0338SGDRseO469vT22bduGRo0alTs8MzMTrVq1wsWLF8sd3q9fP7zzzjto3749AGD//v1yMF2nbdu2OHDgANq0aYOpU6eib9++yMvLKzMthUKB8PBwTJkypdT7Jef7Sezs7LBlyxb4+/v/7bhERERERERERERERK8a9sBORERERERERERE9Arp0aMHunTpgg0bNmDnzp2IiorCzZs3ce/ePZiamqJmzZpo2LAhgoKC8MYbbzxVYPvvGBsbY/369diyZQuWLFmCY8eO4fbt2zAzM4Onpye6d++OcePGoVq1ao+dRu3atREdHY1vvvkG69evR1paGszMzODj44MRI0ZgwIABiIyMfOo2hYWF4cSJE5g9ezb27duHjIwMWFpaolWrVpgyZQqCgoLKfKZu3bo4fvw4tm/fjqNHjyI1NRWZmZnIzc2FpaUlvL290aVLF4wYMQLVq1f/J4uKiIiIiIiIiIiIiOilxx7YiYiIiIiIiIiIiOiVULIH9v8l7E5ERERERERERERERM+PQt8NICIiIiIiIiIiIiIiIiIiIiIiIiIiIqJXAwPsRERERERERERERERERERERERERERERFQhGGAnIiIiIiIiIiIiIiIiIiIiIiIiIiIiogrBADsRERERERERERERERERERERERERERERVQgG2ImIiIiIiIiIiIiIiIiIiIiIiIiIiIioQkhCCKHvRhARERERERERERERERERERERERERERHRy489sBMRERERERERERERERERERERERERERFRhWCAnYiIiIiIiIiIiIiIiIiIiIiIiIiIiIgqBAPsRERERERERERERERERERERERERERERFQhGGAnIiIiIiIiIiIiIiIiIiIiIiIiIiIiogrBADsRERERERERERERERERERERERERERERVQgG2ImIiIiIiIiIiIiIiIiIiIiIiIiIiIioQjDATkREREREREREREREREREREREREREREQVggF2IiIiIiIiIiIiIiIiIiIiIiIiIiIiIqoQ/wd2hSHLOrkH7AAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAC7AAAAPgCAYAAACx8HFwAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzde1zb5d3/8TcJp6T0SLSlthhmbUmHU1u7MZBZnXq7iStSOnWLWk/Te3OH3+iczKnd5sp2T9yt8+GcrlMrFjeRomI9TG0Va50r6jpcqO00Qi1Wg6Unwjm/P7iTlUJCgEAS8no+HjwI3+/1vb6fBJKQ6/u5Plecx+PxCAAAAAAAAAAAAAAAAAAAAACAMWYIdwAAAAAAAAAAAAAAAAAAAAAAgNhAAjsAAAAAAAAAAAAAAAAAAAAAYFyQwA4AAAAAAAAAAAAAAAAAAAAAGBcksAMAAAAAAAAAAAAAAAAAAAAAxgUJ7AAAAAAAAAAAAAAAAAAAAACAcUECOwAAAAAAAAAAAAAAAAAAAABgXJDADgAAAAAAAAAAAAAAAAAAAAAYFySwAwAAAAAAAAAAAAAAAAAAAADGBQnsAAAAAAAAAAAAAAAAAAAAAIBxQQI7AAAAAAAAAAAAAAAAAAAAAGBcxIc7AAAAAAAAAAAAAAAAAAAAAADh5/F41NXVpd7e3nCHgghmMBiUkJCguLi4ER1PAjsAAAAAAAAAAAAAAAAAAAAQw3p6euRyuXTw4EF1dXWFOxxEgYSEBE2ePFkWi0VGo3FYx8Z5PB7PGMUFAAAAAAAAAAAAAAAAAAAAIIL19PSoqalJHR0dmjp1qlJSUmQ0GkdcXRsTm8fjUU9Pjw4dOqT9+/crKSlJc+fOHVYSOwnsAAAAAAAAABChDh8+rA0bNujFF1/U3//+d33yySfat2+fTCaTLBaLTjnlFJ1++um66KKLNHv27HCHCwAAAAAAAACIQnv37lVra6vS09NlMpnCHQ6iiNvtVmNjo6ZNm6aZM2cGfRwJ7AAAAAAAAAAQYXp6evTb3/5Wv/71r+VyuYZsbzAYtGLFCv3yl7/UCSecMA4RAgAAAAAAAAAmAo/Ho3//+99KSUnRrFmzwh0OolBzc7MOHz6sE044Ieiq/fFjHBMAAAAAAAAAYBhaW1t18cUX67nnnvNtmzdvns477zzZbDZZLBYdPnxYe/bs0ebNm/XKK6+os7NTf/7zn9Xe3q7q6urwBQ8AAAAAAAAAiCpdXV3q6upSSkpKuENBlJo8ebJaW1vV1dWlxMTEoI4hgR0AAAAAAAAAIkR3d7e+9rWvqba2VpI0c+ZM3X333Vq+fPmgVUtuuukmuVwu3X777frd73433uECAAAAAAAAAKJcb2+vJMloNIY5EkQr79+O928pGIaxCgYAAAAAAAAAMDw/+clPfMnr6enpev3111VUVBRwyU2LxaJf/epXeuONN/TZz352vEIFAAAAAAAAAEwggcahgUBG8rdDAjsAAAAAAAAARIA9e/borrvuktQ32PvII4/IarUGffxnP/tZ/fKXvxx0n9vt1t13361zzjlHaWlpSkxMVGpqqpYsWaKf/vSn2rNnz6DHtba2Kjk5WXFxcTrhhBOCimPv3r1KSEhQXFycsrKy/Lbbv3+/ysrKdPbZZ2v27NlKSkrSjBkztHjxYpWUlOjDDz8MeJ6VK1cqLi5OcXFxcjqdkqTq6moVFhbq+OOPV1JSUr99kuTxeLRlyxbdcsstOuecczRnzhwlJyfLZDJpzpw5+trXvqY//elP6uzsDOq+StJTTz2lr33ta0pLS1NycrLS09NVVFSkF198UZK0efNmX5yrV68Oqr/LLrtM8+bN0+TJk2U2m5WRkSG73a4XXngh6LgAAAAAAAAAAIhU8eEOAAAAAAAAAAAg3XPPPero6JAknXfeeTr99NND0u/f//53LV++XE1NTf22f/rpp/r000+1bds2/fa3v9Xvfvc7XXnllf3aTJs2TRdccIEqKyv13nvv6dVXXx0yroqKCnV3d0uSLrvsskHbPPbYY7ruuuv06aef9tve2dmpffv26c0339T//u//6t5779Xll18+5H3s7OxUUVGRHn/88YDtrrrqKj3wwAOD7vvwww/14Ycf6qmnntJvfvMbPfnkkzrxxBP99tXd3a2VK1fqkUce6be9qalJTU1Nevzxx1VcXKz8/Pwh4/ced9FFF2nr1q0D9jmdTjmdTj3yyCNavny51q1bJ7PZHFS/AAAAAAAAAABEGhLYAQAAAAAAACACPPvss77bwSRtB2P79u0688wzdfjwYUnSwoULdemllyojI0Offvqpqqur9fzzz6utrU1XXXWVPB6Prrrqqn59XH755aqsrJQkPfzww0MmsK9bt06SZDAYZLfbB+y///77de2118rj8SgxMVHLli3Tl770Jc2cOVOHDh3Sq6++qvXr16u9vV0rV65UYmKiLrnkkoDn/MEPfqBnnnlGxx9/vC677DJlZmaqvb1db7zxhpKSknzt2tralJiYqNNPP11f+MIXNG/ePE2ZMkUdHR3atWuXqqqqtH37djU0NOgrX/mK3nzzTU2ZMmXQc1533XW+5PX4+HjZ7XadccYZSkpK0vbt27V27VqVlZUNmDgwmKamJn3hC19Qc3OzJOnUU09VQUGB5s2bJ4PBoB07dmjdunV677339Pjjj+vw4cPauHEjS/oCAAAAAAAAAKJSnMfj8YQ7CAAAAAAAAACIZYcPH9aUKVPU29srqS+hec6cOaPqs7e3VyeffLLq6+slSVdffbV+//vfKz6+f12TtWvX6pprrpHH45HZbNY777wjq9Xq29/d3a3jjjtOH3/8saZNm6aPPvqoX1L4kd555x1lZWVJks455xw9//zz/fZv375dS5YsUWdnp0488UQ9+eSTyszMHNCPw+HQ2WefrT179mjy5MlyOp2aMWNGvzYrV67UQw895Pu5oKBAFRUVSk5O9vuYvPLKKzrppJM0ffr0Qfd7PB79+te/VklJiSTpF7/4hX76058OaLdp0yadddZZkqQpU6bo+eef1xe+8IV+bVwul84++2z94x//8G279dZbtXr16gHnzM3N1datW2U0GvX73/9e11xzzYBzdnR0aOXKlXr00Ucl9U0EuPrqq/3eVwAAAAAAAAAIRnt7u95//31lZGQEHF+VpA9b3dp3uHOcIhs70ycl6rhppnCHEVJWq1UffPCBHnjgAa1cuTLofaEwnL8hLyqwAwAAAAAAAECYffTRR77k9aSkpFEnr0vS008/7Ute/9znPqd7771XRqNxQLurrrpK27Zt07333qu2tjbdeeed+u1vf+vbHx8fr0suuUR33nmnWltb9eSTT2rFihWDnvPhhx/23b7ssssG7F+9erU6OzuVnJysjRs3at68eYP2Y7PZ9OCDD+rcc8/VwYMHdf/99+vHP/6x3/t63HHH6eGHHx5yYPxLX/pSwP1xcXG68cYb9fTTT+vVV1/VQw89NGgC+5GPz29+85sByeuSZLFY9Oijj+qkk05Sd3e333M+9dRT2rp1q6S+x2ew5HWp7+/ioYce0uuvvy6n06mysjIS2AEAAAAAAACMmw9b3Trr9s3q6O4NdyijlhRv0Eurlo5JErvH41FlZaXWr1+vN998Ux9//LGMRqNmzpyptLQ0ff7zn1deXp6+/OUv+10BdDx5i66sXLmyX3GbsWYYtzMBAAAAAAAAAAbV0tLiuz1t2rSQ9FlVVeW7XVxcPGjyuteNN96ouLi4Acd5XX755b7bRyapH6m3t1ePPPKIJCklJUWFhYX99re2tuqJJ56QJF144YV+k9e9zjnnHKWlpUmSnnvuuYBtr7zySqWkpARsMxynn366JGnXrl39fjdSXyWZZ599VlLf7ypQtZrMzEx95StfCXgubxX5pKQkfe973wvYNjExUZdccokkqaGhQY2NjQHbAwAAAAAAAECo7DvcOSGS1yWpo7t3TCrJt7a26swzz9TXv/51VVdXq7GxUd3d3UpKSlJjY6O2bNmi3/72tyosLBx0LH6snHDCCVqwYIGmTp06YN/PfvYz/exnP5PT6Ry3eCQqsAMAAAAAAABA2Hk8npD3+be//c13+9xzzw3Y9vjjj1dmZqYcDocaGxvV3NzsSx6XpFNPPVVZWVmqr6/Xs88+q08++UTHHHNMvz42bdqk3bt3S5KWL18us9ncb/+WLVv6VZmvrq4e8j5MnjxZzc3N+te//hWwXV5e3pB9eXV3d6uqqkrV1dV6++23tWfPHh08eNAX29F2796t1NRU38//+Mc/1NXVJUnKzc1VYmJiwPOdeeaZeuqpp/zuf+WVVyRJM2fO1EsvvTRk/Pv27fPd/te//qX09PQhjwEAAAAAAAAAjL3LLrtML7/8soxGo37wgx/o2muv1QknnCCDwaDu7m7961//0rPPPqv169ePa1wvvvjiuJ4vGCSwAwAAAAAAAECYHZkg3draGpI+m5ubJfUlgc+aNWvI9vPnz5fD4fAde2QCu9Q38H7DDTeoq6tLFRUVA6qFH1mZ/bLLLhvQ/5HVWx588EE9+OCDwd4VffrppwH3z5kzJ6h+duzYocLCwiET4o904MCBfj/v2bPHd/uEE04Y8vjPfOYzfvcdPnxYLpdLktTY2KgLL7ww6LikoR8XAAAAAAAAAMD42Llzp6+YyW233aYbb7yx3/74+Hh97nOf0+c+9zndcMMNcrvd4QgzYhjCHQAAAAAAAAAAxLpZs2bJYOgbru3o6PBVMh+NgwcPSpImTZoUVPuUlJQBxx7JbrfLaDRK6p+sLkltbW16/PHHJUnp6ek688wzBxw/msR8b8Vzf0wm05B97N+/X2eddZYveX327Nm65pprdMcdd+iRRx7R448/rg0bNmjDhg266KKLfMf19PT06+fw4cO+20dXmR9MoMd/tJMVOjtDv8QtAAAAAAAAAGD43n77bd/tZcuWDdn+6HFtq9WquLg4Pfjggzp48KBKSkq0YMECmUwmWSwWFRQU9Ft5dTiO7Ntr5cqViouL8/185plnKi4uzvdltVpHdK5gUYEdAAAAAAAAAMIsJSVFp556qurq6iRJW7Zs6ZdEPRKTJ09Wa2trv4TrQA4dOtTv2KOlpaXp7LPP1nPPPadt27bJ4XDIZrNJkjZs2OA73m639xv09joyQf6uu+7Sd7/73WHdn9G6++67fdXTv/nNb+pPf/qTEhMTB227ZcsWv/0cmZDe1tY25HkDPf5HPiaLFi3y/f4BAAAAAAAAANFr9+7dvvHz4dq3b5+WLFmiHTt2KDExUcnJyWppadETTzyhp556Svfff7+uvPLKUcc4depUzZw5U3v37pUkTZ8+vd+Y+THHHDPqcwRCBXYAAAAAAAAAiAD/9V//5bv90EMPjbq/tLQ0SX3V1L0D0IG8++67vtuzZ88etM1ll13mu71u3bpBbx/Z5khz5szx3W5qahoynlB7/vnnJfUt0/q73/3Ob/K6JL3//vt+9x352Pz73/8e8rzvvfee331Tp071JbGHouo+AAAAAAAAACA8lixZ4ivuUlxc3G/MfTh+9rOf6eOPP9Zf/vIXHT58WPv379e//vUvnXHGGert7dW1116rN998c9Tx3nnnnfroo498P1dVVemjjz7yff39738f9TkCIYEdAAAAAAAAACLAt7/9bSUlJUmSnn322YBVwIPxhS98wXfbm7ztT2NjoxoaGiRJ6enpmjVr1qDtLrzwQk2ZMkWS9Mgjj8jj8ai5uVkvvviiJOnzn/+8FixYMOixeXl5vsH7Z599dnh3JgS8A/GpqamaPn2633bt7e3avHmz3/0nn3yyEhISJEmvvfaaOjs7A55306ZNAfefccYZkqSPP/6YCuwAAAAAAAAAEKWsVquuvvpqSdI///lPZWZmatGiRfrOd76jP/3pT6qvr5fH4xmyn/379+uxxx7TihUrFB8fL0my2Wx65plndOKJJ6q7u1s333zzmN6X8UACOwAAAAAAAABEgOOOO07XX3+9JMnj8egb3/iGPvjgg6CPdzgcuummm3w/L1++3He7rKxMPT09fo/99a9/7Rs4P/K4o5lMJhUVFUnqq6K+adMmrV+/3te3v+rrknTsscfqK1/5iqS+wfuKioog7lXoTJo0SVJfoviBAwf8trvzzjvV0tLid39ycrKvWv6+ffv04IMP+m3b0NCgZ555JmBcl19+ue/2T3/606AuYAAAAAAAAAAAIs8999yjm2++WZMmTZLH49Fbb72le+65R1dddZVOOukkzZo1Sz/84Q8Drpqam5urL3/5ywO2m0wm/ehHP5LUVyRm//79Y3Y/xgMJ7AAAAAAAAAAQIUpLS5Wbmyupryp6dna2Hn/88YBJzZ9++ql++tOfasmSJXrnnXd827/61a/qpJNOkiT94x//0H//93+ru7t7wPEPPvig7r33XkmS2WzW97///YAxHpmkvm7dOq1bt06SlJiYqIsvvjjgsb/85S+VmJgoSbr66quHTGL/9NNPdccdd+iFF14I2C4YS5YskdQ3OeDIRP8jVVRUBFW55v/9v//nu/2jH/1If/vb3wa0cblcuvjiiwd9zI9UVFTkq5b/7LPP6rLLLtOhQ4f8tu/p6dGzzz6r2267bcg4AQAAAAAAAADjJz4+Xj//+c/14Ycf6uGHH9bVV1+tk08+2Tcu/vHHH+u3v/2tsrKy9MYbbwzax1lnneW3f+++3t5evfnmm6G/A+MoPtwBAAAAAAAAAAD6JCQk6Mknn9RFF12kF154QR999JGKiop04okn6rzzztPChQuVmpqqw4cPa8+ePaqtrdXmzZvV3t4+oC+DwaDy8nLl5OTo8OHDuv/++7V161Zdeumlslqt+vTTT/XEE0/o2Wef9R1z11136fjjjw8Y45e+9CVZrVY5nU5VVFSos7NTUl/CfGpqasBjTznlFP3hD3/QVVddpba2Nn3jG9/Q//zP/+iCCy7QiSeeKJPJpP3792vXrl1644039Morr6i7u1sPP/zwCB7N/q6//nr96U9/Und3t+6++269+eabKioq0nHHHae9e/fqiSee0IsvvqiUlBR97Wtf0+OPP+63r7POOktXXXWV1q5dqwMHDigvL092u11f+tKXlJSUpO3bt2vt2rX65JNP9PWvf11/+ctfJPX9To4WFxenxx9/XF/84hfV1NSk8vJyPf3001qxYoUWL16sGTNmqL29XXv27NE//vEP/fWvf9Unn3yiL3/5y/rpT3866scFAAAAAAAAABBaU6dOld1ul91ulyS1t7fr1Vdf1V133aWnnnpKLpdLy5cv186dO5WcnNzv2OOOO85vv0fu+/jjj8cm+HFCAjsAAAAAAAAARJAZM2bo2Wef1e23367f/OY3amlp0c6dO7Vz506/xxiNRl1yySX6xS9+0W/75z73OW3atEmFhYXavXu36uvr9eMf/3jA8WazWXfddZeuuuqqIeOLi4vTpZdeql/84he+5HWpf2X2QFauXKm0tDRdeeWV2rNnj95++229/fbbftsnJSXJYrEE1XcgJ510kv7whz/o2muvVXd3t1577TW99tpr/dqkpqZq/fr1eu211wImsEvSvffeK7fbrfXr16urq0sPPPCAHnjggX5tiouLdd555/kS2CdPnjxoX8cdd5y2bdumlStX6plnntG+fft03333BTz/nDlzhrrLAAAAAAAAAIAIkJycrLPPPltnn322Vq5cqYceeki7d+/Ws88+q4KCgnCHFxYDy70AAAAAAAAAAMLKaDTqxz/+sZxOpx566CFddtllWrhwoSwWi+Lj4zVlyhSdcMIJKiws1P/+7/9q9+7devjhh2W1Wgf0tWTJEr377ru666679OUvf1kzZ85UQkKCpk+frsWLF+snP/mJdu7cGVTyutfRyeqpqak6//zzgz7+v/7rv/Tee+/pT3/6k4qKipSRkaGUlBTFx8dr+vTpOvXUU7Vy5UqtW7dOH330kc4777yg+w7kyiuv1N/+9jd985vf1Jw5c5SQkKAZM2bolFNO0c0336zt27fr3HPPDaqv+Ph4PfLII3ryySeVn5+vY489VomJiZozZ46WL1+uF154QbfffrtaWlp8x8yYMcNvf8cee6w2btyorVu36vrrr9cpp5yi1NRUGY1GTZo0SSeccILy8/P1q1/9SvX19XrwwQdH+3AAAAAAAAAAAMbZt771Ld/tHTt2DNj/4Ycf+j32yH3HHntsaAMbZ1RgBwAAAAAAAIAIlZKSossuuyzo6ub+mEwmffe739V3v/vdkMQ1b948eTyeUfWRlJSkK664QldcccWIjn/wwQdHlMS9aNEilZeXB2yzevVqrV69Oqj+LrjgAl1wwQV+97/xxhu+2yeffPKQ/WVnZys7OzuocwMAAAAAAAAAoktKSorvdlJS0oD9mzZt8nusd5/BYNCpp54aknji4uLk8XhGPeY/XFRgBwAAAAAAAABgDOzfv18PP/ywJOmYY45RVlZWmCMCAAAAAAAAAIyF999/X+++++6Q7R566CHf7UWLFg3Y/+qrr2rz5s0Dtre3t6usrExS3yqn06ZNG3GsR5oyZYokqbW1NST9BYsEdgAAAAAAAAAAhun999/XBx984Hd/a2urVqxYoU8++USSdPXVVys+nkVRAQAAAAAAAGAieuedd2Sz2XT++edr3bp1cjqdvn1dXV166623dMUVV+iOO+6QJH3+85/X6aefPqCfqVOnavny5aqsrFR3d7ckqaGhQeeff74aGhpkNBr185//PGRxewuvPPLII2prawtZv0NhtBwAAAAAAAAAgGGqq6vTxRdfrNzcXJ1xxhmaN2+eJk2apH379qmurk6PPvqor2LNvHnzdNNNN4U3YAAAAAAAAADAmElISFBvb682btyojRs3SpISExOVkpKiffv2yePx+NouWrRIGzZskMEwsA75rbfeqj/84Q9asWKFkpKSlJycrP3790uS4uLi9Pvf/16nnXZayOK+7rrrtGXLFj3++ON68skndeyxxyo+Pl5z5szRq6++GrLzHI0EdgAAAAAAAAAARqCnp0evvPKKXnnlFb9tTj31VD3xxBOaNGnSOEYGAAAAAAAAABhP//Vf/6WdO3dq48aNevXVV1VfX6/du3ertbVVZrNZs2fP1qmnnqrCwkKtWLFi0OR1SZo+fbreeOMNlZaW6vHHH1dTU5NmzJih3NxclZSU6Itf/GJI47bb7ZKkP/zhD/rnP/+p5uZm9fb2hvQcg4nzHJnSDwAAAAAAAAAAhnTw4EE99thj+utf/6p33nlHLpdLn376qYxGo4499lgtWbJEy5cvD3ghAgAAAAAAAADCrb29Xe+//74yMjKUnJzst92HrW6ddftmdXSPfXLzWEuKN+ilVUt13DRTuEPxsVqt+uCDD/TAAw9o5cqV4Q5nWIL9GzoSFdgjQG9vr/bs2aPJkycrLi4u3OEAAAAAAAAAAIJQVFSkoqKigG0OHTo0TtEAAAAAAAAAiBUej0cHDx7U7Nmzx62AxnHTTHpp1VLtO9w5LucbS9MnJUZU8nosIoE9AuzZs0dz584NdxgAAAAAAAAAAAAAAAAAAACIEk1NTZozZ864ne+4aSYSvxESJLBHgMmTJ0vqeyGZMmVKmKNBKGVmZqq5uVlpaWlqaGgIdzgAAAAAAExIfP4GAASL9wwAQDB4vwAABIv3DABAuBw4cEBz58715Z8C0YYE9ggQFxcnSZoyZQoJ7BOMd2kOg8HA7xYAAAAAgDHC528AQLB4zwAABIP3CwBAsHjPAACEmzf/FIg2JLADAAAAAAAAAAAAAAAAAAAAQJg4nc5whzCuDOEOAAAAAAAAAAAAAAAAAAAAAAAQG0hgBwAAAAAAAAAAAAAAAAAAAACMCxLYAQAAAAAAAAAAAAAAAAAAAADjggR2AAAAAAAAAAAAAAAAAAAAAMC4IIEdAAAAAAAAAAAAAAAAAAAAADAuSGAHAAAAAAAAAAAAAAAAAAAAAIwLEtgBAAAAAAAAAAAAAAAAAAAAAOOCBHYAAAAAAAAAAAAAAAAAAAAAwLgggR0AAAAAAAAAAAAAAAAAAAAAMC6iOoH9448/Vk1NjW655RZ95StfkcViUVxcnOLi4rRy5coxOWdFRYXOPfdczZo1S8nJyTr++ONlt9u1devWMTkfAAAAAAAAAAAAAAAAAAAAAEwU8eEOYDRmzpw5budyu90qKirSxo0b+21vbGzUI488ooqKCt1yyy269dZbxy0mAAAAAAAAAAAAAAAAAAAAAIgmUV2B/Ujp6ek699xzx6z/K6+80pe8fuaZZ6q6ulpvvPGG1q5dqxNOOEG9vb1avXq17rvvvjGLAQAAAAAAAAAAAAAAAAAAAACiWVRXYL/lllu0ZMkSLVmyRDNnzpTT6VRGRkbIz/PSSy/p0UcflSRdcMEF2rBhg4xGoyRpyZIl+trXvqbFixersbFRP/7xj7VixQpNnz495HEAAAAAAAAAAAAAAAAAAAAAYdHaJLW1hDuK0TOnStPmhjuKmBbVCew/+9nPxuU8t99+uyQpPj5e99xzjy953ctisejXv/61LrnkErW2tuqPf/yjfvSjH41LbAAAAAAAAAAAAAAAAAAAAMCYam2S7l4sdXeEO5LRi0+Srq8b0yT2np4ePf7446qpqdHrr7+ujz/+WG1tbZo2bZrmz5+vvLw8ffOb31RWVpbfPl5++WWtX79er7zyipqbm9Xe3q5jjjlGJ598si644AJdfvnlSk5O9nv86tWrB821TkxMVGpqqk466SStWLFCl19+uRISEkJyv4NlGNezRaGDBw/qxRdflCSdffbZmjNnzqDtCgsLNWXKFEnShg0bxi0+AAAAAAAAAAAAAAAAAAAAYEy1tUyM5HWp736MYSX5119/XQsXLtRFF12khx9+WDt37lRbW5smT56slpYWbdmyRb/61a900kknafny5ers7Ox3fEtLi84//3wtXbpU9913nxoaGtTe3q7k5GTt3r1bTz/9tK677jrNnz9fL730UlAxzZw50/cVHx+v5uZmPf/887rmmmuUk5Ojffv2jcVD4RcJ7EP4+9//7vvDOOOMM/y2S0xMVHZ2tu+Yrq6ucYkPAAAAAAAAAAAAAAAAAAAAQPg99dRTWrp0qd59912lpqaqtLRU7777rjo7O9XS0qLOzk79/e9/14033qgpU6aoqqpKbW1tvuP37t2r7Oxsbdy4UUajUd/97nf1zjvvqL29Xa2trdq3b58eeOABzZ07V01NTTrvvPNUXV09ZFwfffSR7+vw4cP64IMPdM0110iStm3bpu9973tj9ZAMigT2IfzrX//y3c7MzAzY1ru/u7tbO3fuHNO4AAAAAAAAAAAAAAAAAAAAAESGnTt3ym63q6OjQwsXLtTbb7+tG2+8USeeeKKvjdFo1GmnnabS0lK9//77WrZsmW+fx+PRN77xDe3atUsJCQnasGGD7rrrLi1cuNDXZtq0aVq5cqXeeustnXzyyerq6tLll1+uf//738OKNT09Xffdd5/OOussSdJf/vIXHTp0aJSPQPBIYB/C7t27fbfnzJkTsO3cuXN9t5uamsYsJgAAAAAAAAAAAAAAAAAAAACR46c//akOHDig5ORkbdiwYci84xkzZqi6ulpTp06VJNXU1Oill16SJN1000264IIL/B6bmpqqxx57TMnJyTpw4IBuvfXWEcV83nnnSZI6OzvHtXg3CexDOHjwoO92SkpKwLaTJk3y3Q40C6Gjo0MHDhzo9wUAAAAAAAAAAAAAAAAAAAAg+uzdu1eVlZWSpG9+85uaP39+0MfGxcVJku655x5J0uTJk1VcXDzkcSeeeKIuueQSSdKf//xnuVyu4YYtj8fju93T0zPs40eKBPYhtLe3+24nJiYGbJuUlOS77Xa7/bYrLS3V1KlTfV9HVm4HAAAAAAAAAAAAAAAAAAAAED02bdqk3t5eSdKFF1447OO7u7tVW1srSTr33HOHLLrtVVhY6Dv+lVdeGfZ5n3vuOUl9SfQZGRnDPn6kSGAfQnJysu92Z2dnwLYdHR2+2yaTyW+7kpIS7d+/3/fV1NQ0+kABAAAAAAAAAAAAAAAAAAAAjLt33nnHd/vUU08d9vFOp1OHDx8e9vGnnHKK7/b27duDPq6xsVHf+ta39NJLL0mSLrjgAqWmpgZ9/GjFj9uZotTkyZN9tw8dOhSwrfcPR1LAmQ9JSUn9qrUDAAAAAAAAAAAAAAAAAAAAiE4tLS2+2zNmzBjV8cNJJLdYLIP2cbRZs2b5bh88eFBtbW2+nzMzM3XPPfcEfc5QoAL7EObMmeO7vXv37oBtj6ykPnfu3DGLCQAAAAAAAAAAAAAAAAAAAAC8Ojo6/O7bu3ev7+vI5PXLLrtMb731lo477rjxCNGHBPYhLFy40He7oaEhYFvv/vj4eJ144oljGhcAAAAAAAAAAAAAjEZPT482b96siooKbd68WT09PeEOCQAAAACAqHRk1fRPP/10VMcHqqR+NJfL5bs9ffp0v+08Ho88Ho96e3u1Z88e3XvvvZo2bZrWrVunu+++e9jxjlb8uJ8xyixZskSJiYnq7OzUyy+/rBtvvHHQdp2dnXr99dd9xyQkJIxnmAAiQFtb24CJLm63W06nU1arVSaTqd++zMxMmc3m8QwRAAAAAAAAAABAklRVVaXi4mI5nU7fNqvVqrKyMhUWFoYvMAAAAAAAotBnP/tZ3+233npLs2fPHtbxxx9/vCZNmqTDhw/rzTffDPq4t956y3d7wYIFQ7aPi4tTWlqarr32Wi1YsEBnnXWWbrjhBi1atEhnnXXWsGIeDSqwD2Hy5Mn68pe/LEl64YUXtHv37kHbVVVV6cCBA5KkCy+8cNziAxA5GhoatHjx4n5fp59+uux2u04//fQB+4Za1QEAAAAAAAAAAGAsVFVVqaioSCeddJK2bt2qgwcPauvWrTrppJNUVFSkqqqqcIcIAAAAAEBUOfPMM2Uw9KVlb9iwYdjHJyQkKC8vT5L0/PPP6+DBg0Edd+Rn+KVLlw7rnEuXLtWll14qj8ej7373u+O6MlvMJ7A/+OCDiouLU1xcnFavXj1om1WrVkmSuru79Z3vfGfAL8jlcunHP/6xJGnatGm6+uqrxzRmAJEpMzNTdXV1/b7Ky8slSeXl5QP2ZWZmhjliAAAAAAAAAAAQa3p6elRcXKz8/HxVV1crOztbKSkpys7OVnV1tfLz87Vq1apxvWgNAAAAAEC0mzlzppYvXy5JWr9+vd59992gj/V4PJKkb3/725KkQ4cO6Y477hjyuJ07d+rRRx+VJJ1++un6zGc+M9ywdcstt8hoNOpf//qXHnrooWEfP1Lx43amMfDqq69q165dvp9dLpfv9q5du/Tggw/2a79y5coRneess87SxRdfrEcffVRPPvmkzjnnHP3gBz/Q7Nmz9c9//lO//OUv1djYKEn69a9/renTp4/oPACim9ls1qJFiwbdZ7PZ/O4DAAAAAAAAAAAYL7W1tXI6naqoqPBVhvMyGAwqKSlRTk6Oamtrh125DQAAAACAWHbbbbfpmWee0aFDh1RYWKjnnntOxx13nN/2+/bt09VXX621a9dq2rRpys/P19KlS7V582b98pe/1OLFi5Wfnz/osS0tLVqxYoXa29sVFxen2267bUQxn3DCCbrooou0fv16/eIXv9Cll16qhISEEfU1HFGdwP7HP/7Rb7b/li1btGXLln7bRprALkl/+tOfdODAAW3cuFGbNm3Spk2b+u03GAy6+eab9a1vfWvE5wAAAAAAAAAAAACAsdTc3CxJysrKGnS/d7u3HQAAAAAACM78+fP18MMP66KLLtI777yjU045RatWrdLy5cs1b948SX0ro23fvl0bNmzQ7373O7W2tmrt2rWSpLi4OFVUVCg3N1fvvfeeLrzwQn3729/WddddJ5vNJknav3+/qqurdcstt/iKb99yyy0644wzRhx3SUmJKioq5HQ6tXbtWl133XWjfCSGZhi6CSTJZDLp6aef1iOPPKJzzjlHxx57rBITEzV37lx94xvf0KuvvqrVq1eHO0wAAAAAAAAAAAAA8CstLU2SVF9fP+h+73ZvOwAAAAAAELyCggK99NJLmjdvnlwul2688UadeOKJSkpKUmpqqhITE7Vo0SL94he/0P79+3XJJZdo0qRJvuNnzZql119/Xeeee666u7t11113aeHChTKZTJo+fbqmTZumlStXqrGxUQkJCfqf//mfUecvZ2Vl6Wtf+5ok6Ze//KU6OjpG1V8woroC+4MPPqgHH3xwVH2sXLlyWJXZv/GNb+gb3/jGqM4JABhbbW1tamho6LfN7XbL6XTKarXKZDL125eZmSmz2TyeIQIAAAAAAAAAEBZ5eXmyWq1as2aNqqurZTD8p+ZZb2+vSktLlZGRoby8vDBGCQAAAACIOOZUKT5J6h775OYxF5/Ud3/GSG5urhoaGvTYY4+ppqZGf/vb3/Txxx/r4MGDmjFjhjIzM3XGGWfo0ksv1YIFCwYcf8wxx+i5557TSy+9pIqKCtXW1qq5uVmtra2+NrNnz9amTZs0f/78kMR800036YknntDu3bv1hz/8Qd/73vdC0q8/UZ3ADgDAYBoaGrR48eKg29fV1WnRokVjGBEAAAAAAAAAAJHBaDSqrKxMRUVFKigoUElJibKyslRfX6/S0lLV1NSosrJSRqMx3KECAAAAACLJtLnS9XVSW0u4Ixk9c2rf/RlDRqNRF198sS6++OIR93HWWWfprLPO6rftz3/+sy655BLt2bNHDz/8sH7xi1/4PX716tVBV2dfsmSJPB7PiGMdLhLYAQATTmZmpurq6vptczgcstvtKi8vl81mG9AeAAAAAAAAAIBYUVhYqMrKShUXFysnJ8e3PSMjQ5WVlSosLAxjdAAAAACAiDVt7pgnfiOwiy66SM3Nzfp//+//6bbbbtPkyZN1ww03hDusYSOBHQAw4ZjNZr8V1W02G9XWAQAAAAAAAAAxr7CwUMuWLfMtQ56Wlqa8vDwqrwMAAAAAEOF+8IMf6MMPP9Ttt9+uH//4x0pJSdG3v/3tcIc1LCSwAwAAAAAAAAAAAEAMMhqNWrp0abjDAAAAAAAAw/Sb3/xGv/nNb8IdxogZwh0AAAAAAAAAAAAAAAAAAAAAACA2kMAOAAAAAAAAAAAAAAAAAAAAABgXJLADAAAAAAAAAAAAAAAAAAAAAMYFCewAAAAAAAAAAAAAAAAAAAAAgHERH+4AAIxcW1ubGhoa+m1zu91yOp2yWq0ymUz99mVmZspsNo9niBNaY2OjXC5XwDYOh6Pf90AsFovS09NDEhtCi+caAAAAAAAAAAAAAAAAAAChQQI7EMUaGhq0ePHioNvX1dVp0aJFYxhR7GhsbNSCTJva3W1Btbfb7UO2STaZtaPBQRJ7BOK5BgAAAAAAAAAAAAAAAABAaJDADkSxzMxM1dXV9dvmcDhkt9tVXl4um802oD1Cw+Vyqd3dptT8YiWkzvXbztPdqe79exU/dabi4hP9tutqaVJLTZlcLhcJ7CMw1tXwea4BAAAAGM7KTKzKBAAAAAAAAAAAAPhHAjsQxcxms98qzzabjQrQ4yAhda6SZs0L3GjOwvEJJkaNRzV8nmsAAAAAhrMyE6syAQAAAAAAAAAAAP6RwA4AiGpUw48tw6l6KVH5EgAAAKEznJWZWJUJAAAAAAAAAAAA8I8EdgDAhEA1/NgwnKqXEpUvAQAAEDqszAQAAAAAAAAAAACEBgnsAAAgagyn6qW3PQAAAAAAAAAAAAAAAAAgcpDADgAAogZVLwEAAAAAAAAAAAAAAAAgupHADgAAAAAAAAAAAAAxoK2tTQ0NDf22ud1uOZ1OWa1WmUymfvsyMzNlNpvHM0QAAAAAABADSGAH4MOgJfAfDocjqP1DtZMki8Wi9PT0kMQFAAAAAAAAAMBINTQ0aPHixUG3r6urY+VLAAAAAIBP86Fm7evYF+4wRm160nSlpaSFO4yYRgI7AB8GLQGp59A+GeIku90eVPtg2plNyXI07CCJHQAAAAAAAAAQVpmZmaqrq+u3zeFwyG63q7y8XDabbUB7AAAAAACkvuT1/Op8dfZ0hjuUUUs0JqqmoGZMk9h7enr0+OOPq6amRq+//ro+/vhjtbW1adq0aZo/f77y8vL0zW9+U1lZWX772L59ux555BFt2rRJH3zwgfbt2yeTyaTjjjtOS5YsUWFhob761a8qISGh33FLly7Vyy+/PKA/s9ms4447Tjk5ObruuuuUnZ0d8vsdLBLYAfgwaBlZhlMRP5ar4bvdbklSV0tTSPrr/Pjf6vVIay9I1ilpRv/n7fbI2dor6zSDTPFxfts5PumVfYNbLpeLBHYAAAAAAAAAQFiZzWa/xYlsNhuFiwAAAAAAfu3r2DchktclqbOnU/s69o1ZAvvrr7+uyy+/XO+++65vW0JCgiZPnqyWlhZt2bJFW7Zs0a9+9SsVFhaqoqJCiYmJvrYHDx7Uddddp4qKCnk8HklSXFycpk6dKrfbLYfDIYfDoXXr1umEE07QI488oi984QsD4khISNCMGTN8P7tcLu3cuVM7d+7UunXrdOutt+rWW28dk8dgKCSwA/Bh0DKyDKcifixXw3c6nZKklpqykPablCAtCpDALkm5c0N6yglpOBMxpNiejAEAAAAAAAAAAAAAAAAguj311FNasWKFOjo6lJqaqlWrVmn58uU68cQTJfVVZn/rrbf0+OOP65577lFVVZXa2tp8Cez79u1TXl6e3nnnHcXFxeniiy/Wf//3fys7O9vXZs+ePXrmmWd01113afv27dq6deugCew5OTnavHmz7+fOzk69/PLL+va3v61du3Zp9erVOu2003T++eeP/QNzFBLYASBCDacifixXw7darZKk1PxiJaSOPqPc/d427a8tl3WaYdR9YXgTMaTYnowBAAAAAAAAAAAAAAAAIHrt3LlTdrtdHR0dWrhwoZ577jnNmTOnXxuj0ajTTjtNp512mn70ox/pyiuv7Lf/m9/8pt555x3Fx8dr/fr1WrFixYDzzJ49W1dddZWuvPJK3XvvvYqLiwsqvsTERJ1zzjl64okndOqpp6qzs1N33303CewAgP+gIn5wvBW8E1LnKmnWvFH319XS1NdvfHBv6ghsOBMxvO0BAAAAAAAAAAAAAAAAINr89Kc/1YEDB5ScnKwNGzYMSF4/2owZM1RdXS2PxyNJeuaZZ/TMM89Ikm655ZZBk9ePFBcXp//+7/9Wb2/vsOJcuHChFi9erK1bt+rvf//7sI4NFRLYAQDAmGEiBgAAAAAAAAAAAAAAAICJbu/evaqsrJTUV0V9/vz5QR/rraB+9913S5KmTp2qH/7wh0EfbzAYhhFpH29y/YEDB4Z9bCiQwA4AAAAAAAAcpbGxUS6XK2Abh8PR77s/FotF6enpIYsNAAAAAAAAAAAAkWXTpk2+SugXXnjhsI/v7u7WK6+8Ikk655xzNGnSpJDGdzSn0ymprwp8OJDADgAj4Ha7JUldLU0h6c/bj7dfAAAAAED4NDY2akGmTe3utqDa2+32gPuTTWbtaHCQxA4AAIBxF8qJmRKTMwEAAAAA8Oedd97x3T711FOHffwHH3ygQ4cOjfj44XjjjTdUV1cnScrOzh7Tc/lDAjsQZYYaaGSQcXx4Zx+11JSFvN/c3NyQ9gkAAAAAGB6Xy6V2d5tS84uVkDrXbztPd6e69+9V/NSZiotPHLRNV0uTWmrK5HK5+AwOAACAcRXqiZkSkzMBAAAAAPCnpaXFd3skVc1He3ww9uzZoxdffFE33HCDent7FRcXpx/84Adjcq6hkMAORJHhDDQyyDi2rFarJA2ZzBAsb0JDR0eH3nzzTb/tWJ4eAAAAAMZPQupcJc2aF7jRnIXjEwwAAAAwTKGcmCkxORMAAAAAgGjz8ssvKy4ubtB9CQkJuuOOO7R06dLxDer/kMAORJFgBhoZZBwfJpNJUpDJDEHoObRPhjjpqquuCqr9UBMUzKZkORp28LsFAAAAAAAAACDGMTETAAAAAICxl5qa6rv96aefavbs2aM6PhQSEhJ81dzj4uJkMpk0e/Zs5eTk6Oqrr9b8+fNDcp6RIIEdiEJDDjQyyBh1ejsOqdcjlV9oku0Yg9927m6PnK29sk4zyBQ/+Mwoxye9sm9wMzkBAAAAAAAAAIAY5na7JfUVNQoFbz/efgEAAAAAwH989rOf9d1+6623hp3AfvzxxyslJUWHDh3SW2+9FZKYcnJytHnz5pD0FWoksANABLEdY9CiNGPANrn+V/kEAAAAAAAAAACQJDmdTklSS01ZyPvNzc0NaZ8AAAAAAES7M888UwaDQb29vdqwYYPOP//8YR0fHx+vL33pS9q4caP++te/6vDhw5o0adIYRRt+JLADUSSUlTKokgEAAAAAAAAAAMZDW1ubGhoa+m1zu91yOp2yWq0ymUz99mVmZspsNo9niBOS1WqVJKXmFyshdfTVcbpamtRSU+brFwAAAAAA/MfMmTO1fPlyPfbYY1q/fr1uuOEGzZ8/P6hjPR6P4uLi9J3vfEcbN27U/v37dccdd+jmm28O6vje3l4ZDIbRhD/uSGAHoshYVMqgSgbQn6enS5LkcPWEpD9vP0wWAQAAAAAAABCrGhoatHjx4qDb19XVadGiRWMYUWw4emKAP57uTnXv36v4qTMVF58Ysn4BAAAAAIg1t912m5555hkdOnRIhYWFeu6553Tcccf5bb9v3z5dffXVWrt2raZNm6avfvWrOvfcc/X888/r5z//uWw2m4qKigKe87777pPH49G1114b6rszpkhgB6JIKCtlUCUDGFzPoU8lSfaq9pD2y2QRAAAAAAAAALEqMzNTdXV1/bY5HA7Z7XaVl5fLZrMNaI/Rs1gsSjaZQ1oYKdlklsVi8f1MdX0AAAAAAP5j/vz5evjhh3XRRRfpnXfe0SmnnKJVq1Zp+fLlmjdvniSpp6dH27dv14YNG/S73/1Ora2tWrt2ra+P9evXKy8vTw6HQ1//+td1ySWX6LrrrlN2drYSEhIkSc3NzXr++ed111136c0339Rvf/vbsNzf0SCBHYgi3kG+hNS5Spo1L6R9IrxCWfU7Vit+d7U0BdwfbAUZT0+3JKm8MFk2i3HUcTlcPbJXtTNZBBGnp6dHtbW1am5uVlpamvLy8mQ0jv5vHgAAYCLwfp4a6nNGMLx9xNpnNAAAgCOZzWa/FdVtNhvV1sdIenq6djQ45HK5fNu8EweCdfQEA4vFovT0dN/PVNcHAAAAAKC/goICvfTSS1q5cqV27dqlG2+8UTfeeKMSExOVkpKi1tZW9fb2SpLi4uJ0ySWXaNKkSb7jU1NT9frrr+uaa67RY489pvXr12v9+vWKi4vTtGnT5Ha71d7+n+KsNptNeXl5434/R4sEdgAYhVAlTXd+tFNSaKt+x0rF77GoICNJNotRi9JCl8zLZBFEkqqqKhUXF8vpdPq2Wa1WlZWVqbCwMHyBAQAARAjv/0mh/JwRK5/RAAAAEFnS09P7JZwPVg1/NBXTqa4PAAAAAMBAubm5amho0GOPPaaamhr97W9/08cff6yDBw9qxowZyszM1BlnnKFLL71UCxYsGHD8lClT9Oc//1k/+clPVF5ers2bN+uDDz7Qvn37ZDKZlJGRoc9//vNasWKFzjvvvKgsWkkCOwCMwFglTYei6nesVfwerILMYAINmA/WDpioqqqqVFRUpPz8fFVUVCgrK0v19fVas2aNioqKVFlZSRI7AACIed7PU6n5xUpInTuqvrpamtRSUxYzn9EAAAAQ2fxVwx/pZEuq6wMAAABA7JieNF2JxkR19nSGO5RRSzQmanrS9DE9h9Fo1MUXX6yLL754xH2cfPLJOvnkk4d93ObNm0d8zvFCAjsAjMBYJU2Hsup3LFX8PrqCTCAMmEeXxsbGoJ5nR34P5OjlbWNNT0+PiouLlZ+fr+rqahkMBklSdna2qqurVVBQoFWrVmnZsmVROTMTAAAgVLyfpxJS5ypp1ryQ9gkAAAAAAAAAABCN0lLSVFNQo30d+8IdyqhNT5qutJS0cIcR00hgB4ARImkaGCiUCefNzc1aUbRc7vaOoM4dTOV8sylZjoYdMZvEXltbK6fTqYqKCl/yupfBYFBJSYlycnJUW1urpUuXhidIAAAAYAhtbW1qaGjot83tdsvpdMpqtQ6YLJCZmSmz2TyeIQIAAAAAAAAAMCGlpaSR+I2QIIEdAACERGNjoxZk2tTubguqfTAJ55JUfqFJtmMMfve7uz1ytvbKOs0gU3yc33aOT3pl3+CWy+WK2QT25uZmSVJWVtag+73bve0AAACASNTQ0KDFixcH3b6uro5J5QAAAAAAAAAAABGEBHYAABASLpdL7e42peYXKyF1rt92nu5Ode/fq/ipMxUXn+i3nfu9bdpfWy7bMQYtSjMGPHeu/9PhCGlpfTNg6+vrlZ2dPWB/fX19v3YAAACxrqulKeD+YP63HaoPDF9mZqbq6ur6bXM4HLLb7SovL5fNZhvQHgAAAAAAAAAAAJGDBHYACJHBljB3OBz9vh+JJcwxUSWkzlXSrHmBG81ZOGQ/JPqEXl5enqxWq9asWaPq6moZDP+pbN/b26vS0lJlZGQoLy8vjFECAACEn8ViUbLJrJaaspD0l2wyy2KxhKQvSGaz2W9FdZvNRrV1AAAAAAAAAACACEcCOwCESKAlzO12+4BtLGEOYLwZjUaVlZWpqKhIBQUFKikpUVZWlurr61VaWqqamhpVVlbKaAxc8R4AAGCiS09P144Gh1wuV8B2gap+H8lisSg9PT3UYQIAAAAAAAAAAABRiQR2AAiRwZYwd7vdcjqdslqtMplMA9ojcjk+6Q24393tkbO1V9ZpBpni40bcDzDeCgsLVVlZqeLiYuXk5Pi2Z2RkqLKyUoWFhWGMDgAAIHKkp6cHnXQ+3Krfg63gNdTnR1bwAgAAwFjo6elRbW2tmpublZaWpry8PApcAAAAAACAMUcCOwCEiL8lzHNzc8MQDUbKYrHIbEqWfYM7ZH2aTcmyWCwh6w8YrcLCQi1btowLUwAAAGESaAWvwbCCFwAAAMZCVVWViouL5XQ6fdusVqvKysoodAEAAAAAAMYUCexAFOpqafK7z9Pdqe79exU/dabi4hNH1AcQy9LT0+Vo2CGXyxWwncPhkN1uV3l5uWw2W8C2Fosl6MqNwHgxGo1aunRpuMMAAACISYOt4BXoMwYreAEAgGjT2NgY1Bjrkd8DYYw19KqqqlRUVKT8/HxVVFQoKytL9fX1WrNmjYqKilitEQAAAAAAjCkS2IEoYrFYlGwyq6WmLCT9JZvMVIUGBpGenh70xRCbzUYlRAAAAADD4m8FL4nPGAAAIPo1NjZqQaZN7e62oNrb7fYh2ySbzNrR4CCJPUR6enpUXFys/Px8VVdXy2AwSJKys7NVXV2tgoICrVq1SsuWLWPVRgAAAACIIR6PJ9whIEqN5G+HBHYgiqSnp2tHgyNg1RKqQgMAAAAAAAAAgHBxuVxqd7cpNb9YCalz/bYbzoqyLTVlcrlcXNMIkdraWjmdTlVUVPiS170MBoNKSkqUk5Oj2tpaVnEEAAAAgBjg/WzY09MT5kgQrbx/O0ePMwRCAjsQZYKtDE3FNsSytrY2NTQ09NsWaDnazMxMmc3mcYkNAAAAAAAAAGJBQupcJc2aF7jRnIXjEwz6aW5uliRlZWUNut+73dsOAAAAADCxJSQkKCEhQYcOHVJKSkq4w0EUOnjwoO/vKFgksAMxrLGxMWA1dylw0u/RqOiOSNHQ0KDFixcPum+w5Wjr6uqY8AEAAAAAAAAAiAlpaWmSpPr6emVnZw/YX19f368dAAAAAGBii4uL0+TJk9Xa2qqpU6fKZDKFOyREEbfbrQMHDmjatGmKi4sL+jgS2IEY1djYKFvmArW524NqP1jS79HMpmQ5GnaQxI6wy8zMVF1dXb9tbrdbTqdTVqt1wD9ZmZmZ4xkeguTp6ZIkOVyhWZ7I24/b7Q5JfwAAAAAAAAAQjfLy8mS1WrVmzRpVV1f3W967t7dXpaWlysjIUF5eXhijBAAAAACMJ4vFIrfbrcbGRk2ZMkWTJ0+W0WgcVkIyYofH41FPT48OHjyoAwcOKCkpSRaLZVh9kMAOxCiXy6U2d7vKLzTJdozBbzt3t0fO1l5Zpxlkivf/ZuT4pFf2DW65XC4S2EfB8UlvwP3B/D6G6iMWmM3mQSuq5+bmhiEajFTPoU8lSfaq4CbaBMvpdPK3EIHa2trU0NDQb9tQE0/MZvN4hggAAAAAAABMCEajUWVlZSoqKlJBQYFKSkqUlZWl+vp6lZaWqqamRpWVlTIajeEOFQAAAAAwToxGo+bOnSuXy6WDBw+qtbU13CEhCiQkJGjatGmyWCzDHkcggR2IcbZjDFqUFviFI3fuOAUTwywWi8ymZNk3hKYytNmUPOwZTUCkMabMkCSVFybLZhn9hRKHq0f2qnZZrdZR94XQa2ho0OLFi4NuX1dXN+hEFQAAAAAAAABDKywsVGVlpYqLi5WTk+PbnpGRocrKShUWFoYxOgAAAABAOBiNRs2cOVPHHnusurq61NtLIVX4ZzAYlJCQMOIq/SSwA0AESE9Pl6Nhh1wuV8B2DodDdrtd5eXlstlsfttZLBYq4SPqxRkTJEk2i3HIiTbDcXQlb0SGzMxM1dXV9dsW6DUvMzNzPMMDAAAAAAAAJpzCwkItW7ZMtbW1am5uVlpamvLy8qi8DgAAAAAxLi4uTomJieEOAxPchEhg/+CDD3TXXXfp6aefVlNTk5KSknTCCSfo61//ur7zne/IbDaP+hzvv/++7rrrLv31r3/VBx98oN7eXs2ePVvnnHOOvvOd7+izn/1sCO4JgFiWnp4edNK5zWaj8jAijtvdt4JAV0tTSPrr3r+3r99uT0j6Q2Qzm81+X9d4zQMAAAAAAADGhtFo1NKlS8MdBgAAAAAAiDFRn8D+1FNPyW6368CBA75tbW1t2rZtm7Zt26Y//vGPevrppzVv3rwRn+O+++7Td7/7XXV2dvbbvmvXLu3atUtr165VWVmZrr/++hGfAwCAaOd0OiVJLTVloe23tVe5c0PaJQAAAAAAAIAxEupCF95+vP0CAAAAAAAg+kV1Avtbb72liy66SG63WykpKSopKdGZZ54pt9utRx99VPfff7/effddnX/++dq2bZsmT5487HM8+uijuvbaayVJU6dOVXFxsc466ywlJSXprbfe0v/8z/9o165d+t73vqdjjz1WX//610N9NwEAiApWq1WSlJpfrITU0Wecu9/bpv215bJOM4y6LwzU09PD0sAAAADD0NbWpoaGhn7bHA5Hv+9emZmZIVkREAAAIBqNWaELp1O5ubkh7RMAAAAAAADhEdUJ7N///vfldrsVHx+v559/Xl/84hd9+8466yydeOKJuuGGG/Tuu++qrKxMq1evHlb/bW1t+v73vy9JSklJ0auvvqqsrCzf/tNOO00XXXSRTj/9dP3zn//U9773PX31q19VSkpKSO4fAADRxGQySZISUucqadbIVz7x8lZWMsXHjbov9FdVVaXi4mLfxUSpbwJCWVmZCgsLwxdYjGIyAQAA0aGhoUGLFy8edJ/dbu/3c11dnRYtWjQeYQEAAEScUBe66GppUktNma9fhBZjUwAAAIhGgxUccbvdcjqdslqtvvwFL4qOAEDkidoE9jfeeEO1tbWSpKuuuqpf8rpXcXGxHnjgATkcDt1555266aablJCQEPQ5Nm7cqI8//lhSX7L8kcnrXlOmTNEdd9yhc845R3v37tWDDz6o66+/foT3CgCA6DfU0sCe7k5179+r+KkzFRef6Ldd9/69oQ4N6kteLyoqUn5+vioqKpSVlaX6+nqtWbNGRUVFqqysJIl9HDGZAACA6JGZmam6urp+2/xdEMnMzBzv8Ca0xsZGuVyugG38VcMfjMViUXp6ekhiAwAAAx2dKOJPsOOEw+0XwWNsCgAAANEqUMGRwVB0BAAiT9QmsFdXV/tuX3HFFYO2MRgMuuyyy1RSUqLW1lZt2rRJ5557btDn2LZtm+/2V77yFb/tli5dquTkZLW3t6uyspIEdgBATLJYLEo2mUO+NDBCp6enR8XFxcrPz1d1dbUMBoMkKTs7W9XV1SooKNCqVau0bNkyqiyNAyYTAAAQXcxm86AXOHJzc4c8lgTskWtsbNSCTJva3W1BtT+6Gv5gkk1m7WhwxMxjCADAeBuLccJkk1kWiyVk/YGxKQAAAES3wQqOOBwO2e12lZeXy2azDWgPAIgsUZvA/uqrr0qSJk2aFHA21RlnnOG7vWXLlmElsLe0tPhuz5w502+7+Ph4zZgxQ3v27NHWrVvV3d2t+PiofWgBRIjBljvyl9DAUkeIBOnp6drR4AgqMcffh8bB2jk+6Q3Yn7vbI2drr6zTDDLFx/nvb4h+YkFtba2cTqcqKip8yeteBoNBJSUlysnJUW1trZYuXRqeIGMEkwkAAIgdjY2NsmUuUJu7Paj2wSRgm03JcjTsiIkEbJfLpXZ3m1Lzi5WQOtdvu2AruHa1NKmlpkwulysmHj8AAMIh1OOEUmxN4BsPoxmbYnImAAAAIoG/giOSZLPZqLYOAFEgarOsvQMe8+bNC5gsfuTsqWAGSY6UkpLiu71//36/7Twejw4cOCBJ6uzs1K5du5i1BWDUAi13dHRCA0sdIVKkp6cHfbFhqA+NFotFZlOy7BvcoQpPZlNyTFdqam5uliRlZWUNut+73dsOY4fJBAAAxA6Xy6U2d7vKLzTJdozBb7vhTMy0b3DHXAJ2QupcJc2aF7jRnIXjEwwAABhSKMcJEXojHZticiYAAAAAAAiVqExgb29v983snzNnTsC206dP16RJk3T48GE1NTUN6zxHVnt4+eWX/SaSvvXWWzp06JDv58bGRhLYAYzaYMsdud1uOZ1OWa1WmUymfm2BiSY9PV2Ohh1UagqhtLQ0SVJ9fb2ys7MH7K+vr+/XDmOHyQQAAMQe2zEGLUoLvLJKrv8C4wAAAEDIjHRsismZAAAAAAAgVKIygf3gwYO+20dWSffHm8B+ZJJ5ML7yla8oPj5e3d3duuOOO3TZZZcNqNra29urm266yW98g+no6FBHR4fvZ2/1dgA4kr/ljnJzc8MQDRAeVGoKrby8PFmtVq1Zs6bf0sBS3/80paWlysjIUF5eXhijjA1MJgAAAAAAAEC4jHZsismZAAAAAABgtPxPjY9g7e3/WZYuMTFxyPZJSUmS+ioXD8fcuXN13XXXSZI+/PBD5ebm6oknntCBAwfU3t6u119/XV/96lf17LPP9otjqPOUlpZq6tSpvq+5cxnBAQAAY89oNKqsrEw1NTUqKCjQ1q1bdfDgQW3dulUFBQWqqanR7bffLqMx8MWnwfT09Gjz5s2qqKjQ5s2b1dPTMwb3YOI4cjJBb29vv31MJgBCo62tTW+++Wa/ry1btuiRRx7Rli1bBuxra2sLd8gAAAAAAIwLxqYAAAAAAEC4RWUF9uTkZN/tzs7OIdt7q52bTKZhn+v222/Xe++9p40bN+rdd99VQUHBgDannXaalixZot///veSpMmTJwfss6SkRD/84Q99Px84cIAkdgAAMC4KCwtVWVmp4uJi5eTk+LZnZGSosrJShYWFw+6zqqpKxcXFcjqdvm1Wq1VlZWUj6i8WeCcTFBUVqaCgQCUlJcrKylJ9fb1KS0tVU1OjysrKEU0mANCnoaFBixcvDrp9XV0dK3kAAAAAAGICY1MAAAAAACDcorIC+5EJ4ocOHRqy/eHDhyVJKSkpwz5XUlKSnnrqKd1///065ZRTFBcX59t37LHH6qabblJtba08Ho9v+/Tp04fsc8qUKf2+AAAAxkthYaF27dqlTZs2af369dq0aZN27tw54uT1oqIinXTSSf0qup900kkqKipSVVXVGNyDicE7mWD79u3KycnRlClTlJOTo3/+858jnkwA4D8yMzNVV1fX76u8vFySVF5ePmBfZmZmmCMGAAAAAGD8eMem/vnPf/Ybm6qvr2dsCgAAAAAAjLmorcCempqqlpYW7d69O2Dbffv2+RLYR1rl3GAw6Oqrr9bVV1+tgwcPau/evTKbzZo1a5YMhr45ADt37vS1X7hw4YjOAwBjpa2tTQ0NDf22ud1uOZ1OWa3WAStUZGZmymw2j2eImKAG+9tzOBz9vh+Jv73xYzQatXTp0lH10dPTo+LiYuXn56u6utr3f1F2draqq6tVUFCgVatWadmyZVRrCuDICZIAQsdsNvutqG6z2ai2DgAAAACIeYWFhVq2bJlqa2vV3NystLQ05eXlMZYHAAAAAADGXFQmsEt9SeK1tbXatWuXuru7FR8/+F05MmnOZrON+ryTJ0/uVwFe6kveevvttyVJn/nMZ2SxWEZ9HmCsud1uSZLD1ROS/rz9ePtFZGloaNDixYuDbl9XV0dSF0Ii0N+e3W4fsI2/vehSW1srp9OpiooKX/K6l8FgUElJiXJyclRbWzvqZPmJyFu9Pj8/XxUVFb5lmtesWaOioiIqXQEAAAAAgAmDQheRKxSFLgAAAAAAAIYrahPYTz/9dNXW1urw4cOqq6vTF77whUHbvfzyy77bubm5YxLLpk2b1NLSIkm66KKLxuQcQKg5nU5Jkr2qPeT9jtVzDSOXmZmpurq6ftscDofsdrvKy8sHTPDJzMwcz/AwgQ32tzdU9X9Ej+bmZklSVlbWoPu9273t8B9UrwcAAAAAALGEQhcAAAAAAAA4UtQmsBcUFKi0tFSS9MADDwyawN7b26t169ZJkqZNm6Yzzzwz5HF4PB6tXr1akpSQkKBrrrkm5OcA/BlNxRKr1SpJKi9Mls0y+sQ4h6tH9qp2X7/+4hsqcZWKKmPDbDb7Hey32WxcCMCY8fe3x0SXiSEtLU2SVF9fr+zs7AH76+vr+7XDf1C9HgAAAAAAxBIKXUwMrO4LAAAAAABCJWoT2D//+c8rLy9PtbW1Wrt2rS6//HJ98Ytf7NemrKzMl8T7/e9/XwkJCf32b9682ZfUfvnll+vBBx8ccJ6WlhalpKQoKSlpwL6enh5973vf05YtWyRJJSUlysjICMXdA4Iymool3sFgm8WoRWmhq+x65CBzoPgGQ0UVjJWenh7V1taqublZaWlpysvLo6IxEAJ5eXmyWq1as2ZNvyriUt9EwtLSUmVkZCgvLy+MUUYmqtcDAAAAAIBYEk2FLhhP9o/VfQEAAAAAQKhEbQK7JN15553Kzc2V2+3Wueeeq5/85Cc688wz5Xa79eijj+q+++6TJM2fP1/FxcUjOsemTZt0/fXX6+KLL9YZZ5yh9PR0tbe3a/v27brvvvv09ttvS5K+8pWv6KabbgrVXQOCEukVSwaLz+FwyG63q7y8XDabbUB7INSqqqpUXFzsG1iX+lYgKCsrU2FhYfgCAyYAo9GosrIyFRUVqaCgQCUlJcrKylJ9fb1KS0tVU1OjyspKLvANgur1AADEDqpUAgAAhN5YrQDLeHJg47G6LwAAAAAAiA1RncB+6qmn6s9//rPsdrsOHDign/zkJwPazJ8/X08//bQmT5484vPs3btXd955p+68884B++Li4nTFFVfonnvuUWJi4ojPAYxEpFcs8RefJNlsNqqtY8xVVVWpqKhI+fn5qqio8CXWrlmzRkVFRaqsrOSiAzBKhYWFqqysVHFxsXJycnzbMzIyeI4FQPV6AABiB1UqAQAAQm8sVoBlPHlo47G6LwAAAAAAiA1RncAuSRdccIG2b9+uO++8U08//bR2796txMREzZs3TytWrND1118fVEUFf/Ly8vSb3/xGL730khoaGrR3714ZDAbNnj1bZ555pq644gp94QtfCOE9AgCEQk9Pj4qLi5Wfn98vOTQ7O1vV1dUqKCjQqlWrtGzZMqpDA6NUWFioZcuWsbTyMFC9HgCA2EGVytHxVprvamkKSX/efqhgDwBAdAv1CrCMJwMAAAAAAIyvqE9gl6Tjjz9ed9xxh+64445hHbd06VJ5PJ6AbWbOnKlVq1Zp1apVowkRADDOamtr5XQ6VVFR0a+ysSQZDAaVlJQoJydHtbW1Wrp0aXiCBCYQo9HIc2mYqF4PAEBsoErl6Hgr2LfUlIW8X38V7Ht6epicCQBAhAv1CrCMJwMAAAAAAIyvCZHADqAPF1iB/2hubpYkZWVlDbrfu93bDgDCger1AAAAgXkrzafmFyshde6o++tqaVJLTZnfCvZVVVUqLi72Jc57YygrK2OCIQAAExjjyQAAAAAAAOOLBHZgguACK9BfWlqaJKm+vl7Z2dkD9tfX1/drBwDhQvX68Gpra1NDQ0O/bW63W06nU1ardUB128zMTJnN5vEM0YfJigCAWOR9L05InaukWfNC3u+RqqqqVFRUpPz8fFVUVCgrK0v19fVas2aNioqKWCUHAIAJjPFkAAAAAACA8UUCOzABcIEVGCgvL09Wq1Vr1qxRdXV1v2Vfe3t7VVpaqoyMDOXl5YUxSgBAuDU0NGjx4sVBt6+rqxv2MuShwGRFAADGVk9Pj4qLi5Wfn9/vM2R2draqq6tVUFCgVatWadmyZUwgAwBgAmI8GQAAAAAAYHyRwA5EOS6wAoMzGo0qKytTUVGRCgoKVFJS4pvcUVpaqpqaGlVWVgb1vBisOq/D4ej3/UjhrM4LABiezMxM1dXV9dvmcDhkt9tVXl4um802oP14Y7IiAABjr7a2Vk6nUxUVFf0S1iTJYDCopKREOTk5qq2tZfUcAAAmoFCOJwMAAAAAAGBoJLADUY4LrIB/hYWFqqysVHFxsXJycnzbMzIyhpXsF6g6r91uH7AtXNV5AQDDZzab/b5m22y2sL+eM1kRACYOxye9Afe7uz1ytvbKOs0gU3zciPvB8LW1tem1116TJHV3d+vNN9+U2+2W0+mU1WqVyWRSd3e3JOm1117T5z//eSYtAwAwAYVqPBkAgIlisCJfR39ePhJFvgAAADAcJLADUa65uVmSlJWVNeh+73ZvOyDWFBYWatmyZaqtrVVzc7PS0tKUl5c3rCS/warzDjU4AwBAKDBZEQCin8VikdmULPsGd8j6NJuSZbFYQtZfNOhqaQq439Pdqe79exU/dabi4hOH1U9DQ4NuuukmSVJeXl7A89x0000677zzwj7JDQAAjI1QjCfHAiZnAkBsCFTkazAU+QIAAMBwkMAORLm0tDRJUn19vbKzswfsr6+v79cOiEVGo3FUSX3+qvPm5uaOIiqMxGCVHhwOR7/vR6LSA4Box2RFAIh+6enpcjTskMvlCtjO4XDIbrervLxcNpstYFuLxaL09PRQhhmxLBaLkk1mtdSUhazPZJO53wSAzMxMvfHGGyooKNC8efNUVlamHTt2+H4fCxYsUHFxsf79739rw4YNTFoGAGCCG+148kTG5EwAiC2DFfkKNH7B52UAAAAMBwnsQJTLy8uT1WrVmjVrVF1d3a8yZ29vr0pLS5WRkTFkBTEA44fl9kYuUKUHu90+YBuVHgBEOyYrAsDEkJ6eHnTCuc1m43/YI6Snp2tHg2NMJwCYzWYtWbJEv/vd71RUVKSf//znKiwslCR1dXXp5z//uWpra1VZWaklS5aM/k4BAABEKSZnAkBs8VfkS2L8AgAAAKNHAjsQ5YxGo8rKylRUVKSCggKVlJQoKytL9fX1Ki0tVU1NjSorK1neEoggLLc3coNVehgq+T9WNTY29ruQ5H2cgnX048mFJCA8mKwIAMD4TQAoLCxUZWWliouL9dRTT0mSrrjiCmVkZKiystKX1A4AAMbf0WNdgwm0UuORGOcaHSZnAgAAAACAUCCBHZgAjrzAmpOT49vOBdbYFcrBfIkB/VBjub2R81fpITc3NwzRRK7GxkYtyLSp3d0Wsj6TTWbtaHDwWhAFenp6VFtbq+bmZqWlpSkvL4+JbFGMyYoAgGCwylPoFBYWatmyZVq7dq2uvfZa/eEPf9BVV13Fey0AAGHU2NgoW+YCtbnbg2o/2EqNRzKbkuVo2ME4FwAAAAAAQBiRwA5MEN4LrMNNWHN80htwv7vbI2drr6zTDDLFx424H4yfvsTVBWoP0WC+JCWbkrWDAf2QYbk9jDWXy6V2d5tS84uVkDpXkuTp7lT3/r1B9xE/dabi4hMlSV0tTWqpKZPL5eJ1IMJVVVWpuLi4X7V9q9WqsrIyJrRFMSYrAgCGwipPoWU0GnXaaadJkk477TSS1wEACDOXy6U2d7vKLzTJdozBb7tgrmc4PumVfYObcS4AAAAAAIAwI4EdmECMRqOWLl0aVFuLxSKzKVn2De6Qnd9sSpbFYglZfxiZvsTVds351hwlzU7y2663s1ddri4lWBJkSPQ/6N+xp0O779vNgD4QhRJS5ypp1rz/bJizMHzBYMxVVVWpqKhI+fn5qqio8FXpXrNmjYqKikh0jnIjnawIAIgNrPIEAABige0YgxalBf4cnDt3nIIBAAAAAADAqJDADsSo9PR0ORp2yOVyBWwX6IL30SwWCwnOESRpdpJMVlPgRvPHJxYAwNjq6elRcXGx8vPzVV1dLYOhb2JSdna2qqurVVBQoFWrVmnZsmUkPEex4UxWBADEFlZ5AgAAAAAAAKJPW1ubGhoa+m1zu91yOp2yWq0ymfrnfGRmZspsNo9niAAAjBkS2IEYlp6eHnTCORe8ASB6uN19q2t0tTSFpD9vP95+EXlqa2vldDpVUVHhS173MhgMKikpUU5Ojmpra0mABgAAAAAAUcU7JuVw9Yy6L28fjHMBAAAgEjQ0NGjx4sVBt6+rqyN3BwAwYZDADgAAMME4nU5JUktNWcj7zc3NDUlfjY2NQa0CcuT3QGJ9FZDm5mZJUlZW1qD7vdu97QKh0gMAAAAAAIgk3rEue1V7SPsM1TgXAAAAMFKZmZmqq6vrt83hcMhut6u8vFw2m21AewAAJgoS2AEAACaY0047TYlJyersCN1FvcSkZJ122mkh6auxsVELMheo3R1cfHa7fcg2yaZk7WjYEbNJ7GlpaZKk+vp6ZWdnD9hfX1/fr10gVHoAAAAAAACRxGq1SpLKC5NlsxhH1ZfD1SN7VbuvTwAAAIwexZFGzmw2+73OZrPZuAYHAJjQSGAHAACYYBYsWKCd7+7oV+HcO0gUrKMHk0JZ4dzlcqnd3a4535qjpNlJftv1dvaqy9WlBEuCDIkGv+069nRo93275XK5YjaBPS8vT1arVWvWrFF1dbUMhv88Xr29vSotLVVGRoby8vKG7ItKDwAAAAAAIJJ4x6hsFqMWpY0ugf3oPgEAADB6FEcCAAAjQQI7AADABJSenj4gmTvSlkVOmp0kk3WIi4XzxyeWaGc0GlVWVqaioiIVFBSopKREWVlZqq+vV2lpqWpqalRZWSmjceiLvFR6AAAAAAAAAAAAQLAojgQAAEaCBHYAPoMt6+RwOPp9PxLLOgEAEDkKCwtVWVmp4uJi5eTk+LZnZGSosrJShYWFYYwOAAAAAAAAAAAAExHFkQAAwEiQwA7AJ9CyTna7fcA2lnUCACCyFBYWatmyZaqtrVVzc7PS0tKUl5cXVOV1AAAAAAAAYLgojgQAQPQZ7P3b7XbL6XTKarXKZOq/gjLv38Dw8TwDgKGRwA7AZ7BlnYb65wnA0BobG+VyuQK2CTSgfySLxaL09PSQxRbr+NCIichoNGrp0qXhDgMAAAAAAAAxgOJIAABEn0Dv34Ph/RuxINS5AzzPIgd5IUDkIoEdgI+/ZZ1yc3PDEA1Gyu12S5I69nSEpD9vP95+MTyNjY1akLlA7e72oNoPNqB/pGRTsnY07CCJPUT40Agg1IYzAMLgBzAyDDQCAAAAscnxSW/A/e5uj5ytvbJOM8gUHzeiPjB8FEcCACD6DPb+7XA4ZLfbVV5eLpvNNqA9EG6hLBwoDSweGOrcAZ5nkYO8ECBykcAOIGTG+p9FBMfpdEqSdt+3O+T9Mplh+Fwul9rd7ZrzrTlKmp3kt11vZ6+6XF1KsCTIkGgYtE3Hng7tvm+3XC4Xz40Q4UMjwuXo5EsSLyeO4QyAMPgBjAwDjQAAAEBssVgsMpuSZd8QmiIrZlOyLBZLSPoCxZEAhB7FC4Cx5+/9W5JsNhvjqYg4fYUDbWp3twXVfqjCgZKUbDJrR4PDl3sR6twBnmeRg7wQIHKRwA4gJEJdZVqi0vRIWa1WSRoyYTpY3qRpb78YmaTZSTJZTYEbzR+fWCaSnp4e1dbWqrm5WWlpacrLy5PRaAz6eD40YrwcPcnL+4E4GEd/aGaCV2QbzgAIgx/AyDDQCAAAAMSW9PR0ORp2BFVAx9/ngiMxthJdRjsGDCD6ULwAAHC0vsKBbUrNL1ZC6ly/7Tzdnerev1fxU2cqLj7Rb7uulia11JT1Kx5I7sDExe8WiFwksAMIiVBWmZaoND0a3qoDQSVMj6BfIFJUVVWpuLjYt+qA1DeBo6ysTIWFheELDDjKcCsCHO3oRPejqwEgvIJZgcafo6sIcQEdCA4DjQAAAEDsSU9PD/ozM58LJg7GgIHYRPECAIA/CalzlTRrXuBGcxaOTzAAgFEjgR1ASFFlGsB4qKqqUlFRkfLz81VRUaGsrCzV19drzZo1KioqUmVlJRcwEDGCqQgwmmoAoxVMArbD4ej3PZBYSsJubGyULXOB2kK0Ao3ZlCwHq88AAAAAAAAwBgzEMIoXAAAAALGBBHYAABBVenp6VFxcrPz8fFVXV8tg6FvNITs7W9XV1SooKNCqVau0bNkylpJFRBmyIkAYqgH0VYdfoPYQJWBLUrIpWTtiJAnb5XKpzd2u8gtNsh3jf2UZd7dHztZeWacZZIqPG7SN45Ne2Te4WX0GAIAgtLW1DVjJJNCEu8zMTJnN5nGJDQAAAKPHGDAAhAcFbyYufrcAACASkcAOAACiSm1trZxOpyoqKnwXLrwMBoNKSkqUk5Oj2tpaLV26tN9+BmeA/vqqw7drzrfmKGl2kt92vZ296nJ1KcGSIEOi/0Ttjj0d2n3f7phLwrYdY9CitMAXS3MHL74PAABGoKGhQYsXLx5032AT7urq6qjQBwAAEEVGMwYMAEcabAK02+2W0+mU1WqVydR/ZfFYngDdV/DGpnZ3W1Dtgyt4Y9aOBkdMXS+IRKFeTVZiRVkAABAaJLADAICo0tzcLEnKysoadL93u7edF5WmAf+SZifJZDUFbjR/fGIBAAAYSmZmpurq6vptGyoBAQAAANFjpGPAAHC0QBOgBxPLE6D7Ct60KTW/WAmp/iuyeLo71b1/r+KnzlRcfKLfdl0tTWqpKYu5gjeRKJSryUqsKDtaFFwDAOA/SGAHAABRJS0tTZJUX1+v7OzsAfvr6+v7tfOi0nRoUbUEAAAA4WI2mwdNKMjNzQ3q+FBeKOQiIQAAQOiNdAwYAI422ARoh8Mhu92u8vJy2Wy2Ae1jXULqXCXNmhe40ZyF4xMMQorVZMOPavgAAPRHAjsAAIgqeXl5slqtWrNmjaqrq/stIdvb26vS0lJlZGQoLy9v0OOpND0yRyf5eAd4g3XkQHAw1QIQPCYTAAAABC/UFwq5SAgAABB6ox0DBgAvfxOgJclms8VstXUA4UE1fAAA+iOBHQCAMeR2uyX1VeseLW8f3j5jldFoVFlZmYqKilRQUKCSkhJlZWWpvr5epaWlqqmpUWVlpYzGwBUEELzhJvkMZjjJ7hON9znb1dI06r68fRz5OsASqAAAAMEL5YVCLhICAACMDcaAAWBioiAP0Idq+AAA9CGBHQCAMeR0OiVJu+/bHdI+c3NzQ9ZfNCosLFRlZaWKi4uVk5Pj256RkaHKykoVFhaGMbqJJ9TVADbu7NbNm0Y/qSNaeF8HWmrKQtqn93WAJVABAACGjwuFAAAAkY0xYACYeCjIAwAAgCORwA4AwBiyWq2SpDnfmqOk2Umj6qtjT4d237fb12esKyws1LJly1RbW6vm5malpaUpLy+PqjtjKFRJPg5XT4giig7e52xqfrESUkeXBdXV0qSWmrJ+rwMsgQoAAAAAAGLNYBVcHQ5Hv+9HooJrdGIMGAAmFgryAAAA4EgksAMAMIa8S90lzU6SyWoaovXw+kTfUrJLly4NdxhAQN7nbELqXCXNmhfSPgH8R2Njo1wuV8A2gZIZjmaxWJSenh6S2AAAAAAAoRWogqvdbh+wjQqu0YsxYACYOCjIAwAAgCORwA4AAAAAiGqNjY2yZS5Qm7s9qPaDJTMczWxKlqNhB0nsAMYEFUMBAOEy2HuQ2+2W0+mU1WodMGGa9yBEqsEquA71twwAwGjxvxQAXgcAAAgdEtgBAACAcdDV0uR3n6e7U9379yp+6kzFxSeOqA8EJ5RVuoOp4o3x4XK51OZuV/mFJtmOMfht5+72yNnaK+s0g0zxcX7bOT7plX2DWy6XiwR2AGOCiqEAgHAJ9B40GN6DEKn8VXDNzc0NQzQAgFjB/1IAeB0AACB0SGAHAAAAxpDFYlGyyayWmrKQ9JdsMstisYSkr1jT2NioBZk2tbvbgmofTJVuRBbbMQYtSjMGbJM7d5yCAYAAqBgaPm63W5LkcPWMui9vH94+YxFVx4DoM9h7kMPhkN1uV3l5uWw224D2AAAgvPi/O3LwvxQAXgcmlmCLWQVT1MpisVAUCQCGiQR2AAAAYAylp6drR4MjYNXvQANbR2PwY+RcLpfa3W1KzS9WQqr/LOZgK+K739um/bXlYxEqAGCCo2Jo+DidTkmSvao9pH3G6u+OqmMIFklXkcPfe5Ak2Ww2nqMAgJgU6f+r8H935OB/KQC8DkwMPYf2yRAXfDGrYNqZTclyNOzgOi4ADAMJ7AAAABhXHd2evu97OkLT3//1E8mVL9PT0/sNVgx2QcQfEjdCLyF1rpJmzQvcaM7CIfvpamkKUUQAAGC8WK1WSVJ5YbJslsCrdgzF4eqRvard12csouoYgkXSFQAAYy/Sk7AjWaT/r8L/3cBAvOYBGI3ejkPq9UjlF5pkO8bgt5272yNna6+s0wwyxcf5bef4pFf2DW65XC4S2AFgGEhgBwAAMcGb3BxLSdOh4r2PDldPSPrbtqevn9337Q5Jf17RVPnS3wWRwWbvk7gBAAAQOt4L2DaLUYvSRpfAfnSfsYiqYwgWSVcAAIy9SE/CjmSR/r8K/3cDA/Gah2gU6muu3n5i4Xr1WLEdYxhyjDDX/6LOAzgcjqD2D9VOYlVuALGBBHYAmKCGStLt7exVl6tLCZYEGRL9zygNVbIvEG5Op1NSbCdNj5T3sbNXtYe032MLj9Xkz00edT8dezq0+77dUVX58ugLIkNVBUFsooJMZOH3AQAAMHIkXQEAMPYiPQk7kvG/ChB9eM1DNBqra66xcL060jUf6pXiBi9WNphg2iWbkrWjYQdJ7AAmNBLYAWCCsVgsSjYlhzRJN9mULIvFErL+gHDwJjfP+dYcJc1OGnV/0Zg0faSenh7V1taqublZaWlpysvLk9E4+Oxy730sL0yWzTL6KpUbd3bp5k2dmpQ5SSZr6KpVRlPly8EuiDCwhKNRQSay8PsAAAAAAACRjCRsRKvGxka5XK6AbYKtWEu12tjBax7GSyhfozo6+ooHhuqaq8PVI3tVe9Rer55IWts9kmfoXIThFJrcfd9uuVwu3tcATGgksAPABJOenq4dDTuC+hDlbwb60RjswUTgTW5Omp0Us0nTXlVVVSouLvbN8pf6ktTLyspUWFg4oL33PtosxiGXUAuGdzm7QB/KAVBBJtLw+wAAAACAiYkVtwAgfBobG7Ug06Z2d1tQ7YeqWJtsMmtHg4PrmgBCItSvUV6huubqFY3XqyeqoHIR5o9PLAAQDUhgB4AJKD09PeiBGWagA7GlqqpKRUVFys/PV0VFhbKyslRfX681a9aoqKhIlZWVgyaxAxh/VJCJLPw+AAAAAGBiYsUtAAgfl8uldnebUvOLlZA61287T3enuvfvVfzUmYqLTxy0TVdLk1pqyqhWCyBkQvkaJUnu97Zpf235WIQKAEBUIoEdYUdlCwAAxkdPT4+Ki4uVn5+v6upqGQx9FdCzs7NVXV2tgoICrVq1SsuWLZPRGLpZ/8BE5enpkvSfVQVGw9uH2+0edV8AAAAAACB4rLgFDI5ruBhPCalzlTRrXuBGcxaOTzAAcJRQvUZ1tTSFKCIAACYGEtgRdlS2ABALOvZ0BNzf29mrLleXEiwJMiQaRtQHMJTa2lo5nU5VVFT4kte9DAaDSkpKlJOTo9raWi1dujQ8QQJRpOfQp5Ike1V7yPp0Op3Kzc0NWX8AAGBwjk96A+53d3vkbO2VdZpBpvi4EfUBAEAgJIZGDlbcimw9PT2qra1Vc3Oz0tLSlJeXR/GNccI1XACRprGxUS6Xy+9+h8PR73sgFouFSv0AAABhRgI7wo7KFgAmMovFomRTsnbftzsk/SWbkmWxWELSF2JPc3OzJCkrK2vQ/d7t3nYAAjOmzJAklRcmy2YZ3YVTh6tH9qp2Wa3WEEQGAAD8sVgsMpuSZd8QmlVPzHxGCymSOQHEEhJDgaFVVVWpuLhYTqfTt81qtaqsrEyFhYXhCyxGcA0XQCRpbGzUgswFancPXVDGbrcP2SbZlKwdDTtIYgeihHcF41BVse/ev7ev325PSPoDAIwMCewIOypbAJjI0tPTtaNhR8BqAFLgQd8jUQ0Ao5GWliZJqq+vV3Z29oD99fX1/dodLRRVKiXp/X0MBCA8Qj245a3Abp1m0KK00FT+OjopC+E1VKWeYCv68P4NAJEjPT1dDj6jRSySOSeOoSojSlRHBEgMBQKrqqpSUVGR8vPzVVFRoaysLNXX12vNmjUqKipSZWUlSexjjGu4ACKJy+VSu7tdc741R0mzkwZtE8yK11Lfqte779stl8sVE58zvNdGHK6ekPTn7cfb70RG0nTk8E5obKkpC2m/m97vDnhdO1jv7+u7jt7byYqNADAcJLADADDG0tPTgx78YNAXYykvL09Wq1Vr1qxRdXW1DIb/DN719vaqtLRUGRkZysvL63dcqKtUYnRCmQgSTKLIRDJWg1vO1l7lzg1plwiz5kO9UlxwlXqkodtRzQdAqJEYOjpj+RmNCuKjQzLnxDCcyogS1RERu0gMBfzr6elRcXGx8vPz+41jZmdnq7q6WgUFBVq1apWWLVsmozE0RQUAINaFOlHX20+ok5yTZifJZA1QCGZ+SE83IXivjdirgvuMNpx+c3NzQ9pnpOG6UuTwrmCcml+shNTRP3iHtj+nQ289o5s3dermTZ2j7s+ry9XF6xAADAMJ7AAAADHCaDSqrKxMRUVFKigoUElJia9yUWlpqWpqalRZWTngok+oq1R622H4GhsbZctcoLYQJoLEklAPbrnf26b9teWyTvNfyQXRqbXdI3kUsJqPFFxFn1ir5gNg7JEYGtmoID46JHNODMFURpSojggA8K+2tlZOp1MVFRX9inBIksFgUElJiXJyclRbW6ulS5eGJ0gAEStUqypKsTXhe8wSdWMgyTnSea+NlBcmy2YZ/cQvh6tH9qp2X78TGdeVIoe3KERC6lwlzZo36v46P35P0jMhe15s3Nmlmzd1KsGSMOq+ACCWkMCOYYv0SlKRHh8AAOFUWFioyspKFRcXKycnx7c9IyMj4LK7rCQQGVwul9rc7Sq/0CTbMf4Ht9zdHjlbe2WdZgi47N3Gnd26eVPHWIQakUI9uOWtIBOKpQURmYas5iNRSQPAuCMxNLJRQRz4D/6XAhCpWM0m8jU3N0uSsrKyBt3v3e5tBwCS1HNonwwhXFVRksymZDliZMJ3qBN1u1qa1FJTFhNJzpHOe23EZjFqUVroVi45OvdmIuK60sQVZ+xLNA/V88Lh6pGkgOOwAICBSGDHsEV6JalIjw8AgHArLCzUsmXLVFtbq+bmZqWlpSkvL4/ldqOI7RjDkIMpwSw96B1MAQAA0YfE0MhEBXEAACIbq9lEh7S0NElSfX29srOzB+yvr6/v1w4AJKm345B6PQpZARjHJ72yb3DHzITvUCfqHt0vAAAAcDQS2DFskV5JKtLjAwAgEhiNRpbXBQAAAAAAQExhNZvokJeXJ6vVqjVr1qi6uloGw39+B729vSotLVVGRoby8vLCGCWiGSsxTGyhKgADAGPF8UlvwP3DmWgDAEA0I4EdwxbplaQiPT4AaGtrU0NDQ79tgQZCMzMzZTabxyW2WNCxpyPg/uFcnAKiXUe3p+97iP6evf243e6Q9BeLhrogxoUzAAAiC4kvAABEJ1aziWxGo1FlZWUqKipSQUGBSkpKlJWVpfr6epWWlqqmpkaVlZWsKIkR6VuJwaZ2d1tQ7YNbicGsHQ0O/pcfAe9YcldL06j76t6/t6/P/xv3BoBQGeo1ytPdqe79exU/dabi4hP9tutxH5AhTrJvCN11NLMpWRaLJWT9AQAwniZMAvsHH3ygu+66S08//bSampqUlJSkE044QV//+tf1ne98JySJf06nU7///e/1wgsv6N///rcOHz6syZMnKzMzU+edd56uu+46HXvssSG4NwCAiayhoUGLFy8edN9gA6F1dXVMvgkBi8WiZFOydt+3O2R9JjMggCi352DfQH4onxdS3//Nubm5Ie1zoms+1CvFBXdBTGIJcwAAIkFf4ssCtbvbg2rP+zcAAEDwCgsLVVlZqeLiYuXk5Pi2Z2RkqLKyUoWFhWGMLjIwmXJk+lZiaFNqfrESUv2X4Q42GbGrpUktNWWsxDBCTqdTktRSUxa6Plt7qbAOICT6ri+bQ/oalZSUrMcfr1RaWprfNg6HQ3a7XeXl5bLZbEPGeOT7z2DF9Nxut5xOp6xWq0ym/pM4KaYHAAinCZHA/tRTT8lut+vAgQO+bW1tbdq2bZu2bdumP/7xj3r66ac1b968EZ/j4Ycf1rXXXjugmuS+ffu0detWbd26VXfeeaceffRRnXPOOSM+DwBg4svMzFRdXV2/bUN9aMTopaena0fDjqAG9Ec6IABEm9mT+5YdHGrZ7GB5l822Wq2j7iuahGKpx7eaeyXP0L+LibyEOYOqAIBo05f40h7T798AAABjqbCwUMuWLVNtba2am5uVlpamvLw8Kq+rL3ndlrlAbSGcTGk2JcsRQ5MpE1LnKmnWEPkDcxaOqG/GuYLnHUseakJBMNzvbdP+2nJZp/n/3AUAw9F3fdkRtuvLNptt2IXuAhXTGwzF9EKDVa8jCxM9gegR9Qnsb731li666CK53W6lpKSopKREZ555ptxutx599FHdf//9evfdd3X++edr27Ztmjx58rDPsWXLFq1cuVK9vb0yGAy6/PLLtWzZMs2ePVuNjY166KGH9NRTT+nTTz/VsmXLVF9fr8985jNjcG8BABOB2Wwe9EMg1YrHXnp6+pgOCESTnp4eLvxASf+XTB3UstnDcPQFmInKkJQS8qUeY3kJcwZVAQDRKpbfvwEg0g0ngTCWkweBSGY0GrV06dJwhxFxXC6X2tztKr/QJNsx/pN1gymsIPUVaLBvcDOZMkQY5wqe9704qAkFQ+hqaerrM8DfOgAMV7RdXx6smF6gBHuK6YUGq15HDlbNBKJL1Cewf//735fb7VZ8fLyef/55ffGLX/TtO+uss3TiiSfqhhtu0LvvvquysjKtXr162OcoLS1Vb29fVcXf/e53+va3v+3bt2TJEi1fvlzFxcW644475Ha7dccdd+juu+8e9X0DAAAYC1VVVSouLvYtzSn1VTkpKytj6V1gGIwp09Xr0ZAVNYKpvOFtE8sYVAUAAKFG5UsAw0kgjOXkQQDRy3aMQYvSAhcmyR1dUWuMAONcAIBw8VdMT4qMBPtIE4pVliWps6fvO6tehx+rZgLRJaoT2N944w3V1tZKkq666qp+yetexcXFeuCBB+RwOHTnnXfqpptuUkJCwrDO89prr0mSUlNT+yWvH+mWW27RHXfcIUnaunXrsPqPNaFepqOjo0NJSYHf/Fn2AwCAPlVVVSoqKlJ+fr4qKiqUlZWl+vp6rVmzRkVFRaqsrCSJPYJ5l4lzuHpC0t/7+/oGZXo7Aw/OILBgB/wYGAyMQVUAQLgMluQcaCyJJOfoQeVLAMNJICR5EAAQKoxzTSxD5RiQixBYqB6/YB5fjC+eG4hmY7HKssSq15GEVTOB6BDVCezV1dW+21dcccWgbQwGgy677DKVlJSotbVVmzZt0rnnnjus83R2dkqSMjIy/LaZOnWqLBaLXC6Xr/1EEcqE8+bmZq0oWi53e0dQ5w6qCmWcJE9Q3bHsBwAgpvX09Ki4uFj5+fmqrq6WwdA3kzg7O1vV1dUqKCjQqlWrtGzZMhmNgav2IDy8VfPtVcEteRasLldXTH1A9y4l64+nu1Pd+/cqfupMxcUnjrgfAKER6knQXAwBcLRASc6DjSWR5Bw9qHwJIJISCPm/FgCA6NJ8qFeKCzJnQeQiHK3n0L6+5NAQPn4YnVBVmq79oJvnBqJeKFdZPrIdAGB4ojqB/dVXX5UkTZo0KWAlnTPOOMN3e8uWLcNOYF+wYIHefPNNvf/++37bHDhwwDfwuGDBgmH17+NySR3BJXaPl927dys3J1ft7UPPOLNI+kEQb8aTJK37arLmp/pffsPd7VHTgV7NnRL4H+MX3utW6ZZOzb40TUmzhlj249MuJcwYYtmPjzq05+Fmte7cqfQQzGKb0dOjjv/7rk8+GXV/kSx+3z5ZJM043KPkA92j7s90uEf7/6/fif7YhYv3d8ZjDPQ3kZ8br2/ZokNOp2655x4ZWlr67TNIuvm66/TV88/X6089pdzc3GH3H+xjx3vGyM2bNk3TJN371WSdmOr/f6RgvfB+t0pf7dK0g90yvXPIb7tg/5cyfNQR0c+fY+PiNCfZpPaaMg31lxcnaag693GS5iSbdGxcXFB/84EeF54Xgxvu60q82yMdHv2KAkkdnpD9PibK7yKUenp69Prrr2vv3r2aOXOmsrOz/U6c6vtM+kW1BzEJOtjPpMnJSdr62lbNmTNnuKEjgvH5e+R4nZIyU1P1jxde6LfN7XarqalJc+fOHVDpaF5qqvTJJ/wu/Aj1Z6rR9GeWtGju3EH7O2nWLH3uqH06fLjvC6MS6c+NWHrPCNZEHgsZTDjuL//XRo5If41C5Ij094tQj4XEuz3DG4OJ4r95731IbT+kxLb9o+6vs/2QujX+j91E+F1Iof19JLTtV4+knbt7JPfonxfvNHZrmkeac8ksmeYk+20XrlyEUPP+Lqbs2aGEdv/XCzzdneo+8InipxwTsACMcfc78nik34c4NyQSx2zH4z2jra1Nu3bt6rct4NjFvHm+1eOOjYtTenKSfhDCStMWKWLzdMIh0l/jJ8J7xli9fw86PjTIeYNtx+eM8Iu538XBg+GOABiVOI/HE2Tt6shzzDHHyOVy6eSTT9bbb7/tt92+ffs0Y8YMSdKKFSv0l7/8ZVjnuf/++/Wtb31LkvT73/9e11133YA2P/rRj3T77bdLkv7617/q7LPPDrr/AwcOaOrUqdovacqwIgMAAAAAAEAsaZPUMAb9Zqov2RcAAAAAgGj0piT/ZQ9Hrk4Sa3ABAIBIdEDSVEn79+/XlClkniL6RG0F9vb2dl/F86GqS0yfPl2TJk3S4cOH1dTUNOxzXXnllXr11Ve1bt06fec731FdXZ2+9rWvKS0tTY2NjXr44YdVXV0tSbrpppuGTF7v6OhQxxGV1g8cODDsmAAAAAAAABB7GsQFeQAAAAAAjpapvs+2Y9Evho8J+AAAABhK1CawHzxi+YOUlJQh23sT2A8d8r/UkT9Go1EPPfSQLrjgAq1Zs0Z//OMf9cc//rFfmzPPPFM/+clPgqq8Xlpaqp/97GfDjmMi4EMKAAAAMBD/JwMAgsUFeQAAAAAABjKLidmRhAn4AAAAGErUJrC3t7f7bicmJg7ZPikpSZLkdrtHdD6Hw6F169bpn//856D7t27dqrVr18pms+m4444L2FdJSYl++MMf+n4+cOCA5s6dO6K4og0fUgAAAICB+D8ZABAsLsgDAAAAAIBIxwR8AAAADCVqE9iTk5N9tzs7O4ds39HRIUkymUzDPldtba0uuOAC7d+/X8cff7xuu+02nXPOOZoxY4b27t2rJ598UjfffLMeffRRvfLKK3r++ef12c9+1m9/SUlJvoT6fv79b2ny5GHHN5a2b9+uL599tmZedJsSj80YdX8H39mkaS/9Ufd+NVknpsaNur8X3u9W6atduuYH6Zr0mdHXlmxvatf7v3HqxRde0Oc+97lR9/e5z31OzR99pLRZs7R9+/ZR9xfJvH8rGT+yKnlu8tAHDCHUvwsM5P2d8RgD/cXCc6Ompka33nqrGpuafNuOT0/X6tWrlZ+fP+J+g33seM8YOd9jfKlZn5tpGH1/e3v15Yfbgv6dxcJjLIX+/gbTX9cbb2hafr5mX5ampJmDfFYYpo69HdqzrlldNTXS5z8/6v7CZbivK6F6blQ6uvTfT3eE5HUqll6jAqmqqtK1112n9997b9BV1A4dOqSMz3xGf7j3XhUW/n/27j26rfrK+/9Hkh1bSkIIFhCHRMjTECQwBWIKxkbF6RR6wWDjGvoUNATaGZiHwsMU59epYZgZ2mfZ7QwG0pkOq1waSl0CrTBu69DLQ8tFsCgQlQLqSCEUhOOJS5AhV8uOL/r9kUqNsSzL9rEl2e/XWl0W52ztsx3XlnTOPvvbkNzOawYyxefv6eP3YvoW2s/C6POEh3a/rXcf/ac5fy+60N7bZkOu/24spNcMSerp6dH777+fNuaNN97Q/77+et3zX/+ltWvXpo095phjtGrVKiNLnHPZ+DuQ678XC8mLL72kT8/C5+9fdHXpnDz+/I3xcv31IpfPhUi5/Xdqtt7XTvY6avTr7Xx5X2vkz+Ng+Dm9///uMez34ofBQ7rhF4d4zfiQTP+/9+Zrr+lTOfp3ar58xsjW52Xe2443k59F4rmZmskx8vnfWBr/+TYWi2nnEde7Jam7u1ut3/ymmr/2NTkcjjH7Vq9ePaZv0MjXW34vcseC+1ns3y995CPZrgKYtrxtYF96RKP3gQMHJo0/ePCgJKW8UJ7O4OCgvvCFL2jv3r1asWKFfvvb32rFihXJ/atWrdL111+v888/X2eddZZ27dqlDRs2aNu2bVM6jiTJbpeOOmrqz5tFw8uXKyqpoHiJimzLZpzvgG2Z9kg6aZVF60otM84XOhjXHg1p79GFOnTUzP/vHFtsUVSHv28de+yM871vOZyvyGIxJF8uS/x/Zdlii6w5+LPAeImfGf/GwFgL4Xej9ppr9JmrrpLf71dvb69KS0vl8XhksczstTnTfzteM6Yv+W9sNUmLZ37Cd9gan9LPbCH8G0vGf7+Z5CssLdUeSSV/ZZPZOfWbbj9scLFFe/6cN59/ZlP9u2LU78Zgkcmwv1ML6W9UOsecfLKikoLvvqvKsvEXI19/801F/xx35L8TrxnIFJ+/p4/fi+lbaD8Lo88TDhYvUVTS63/60+HveQKhP/0pozhJstvt4y5OfthCe2+bDbn+u7GQXjO6u7t1cnWVBmIDkwdLuuz66yeNKbYWa3t4+6S/a7ksG38Hcv33YiF5c88e7ZG056Few/Oew89iXsn114tcPhci5fbfqf3FxYpKih/8QIX7ptY7kMrAe93aq8xeR5VhnM1arNAkr7fz5X2tkZ8zDhTZ1Cfjfi/eHhSvGSlwzna8bL1mZONaxpFxC+E1I5X+/n6Fw+Ex29Kdu3C5XLLZJh7Iuebcc/XLwNj1CmKxmCKRiJxO57hBrWtcLilNvlTmy2vGqmOP1ZHt5r/73e902cUXp4xt+uY3x20LBAL66LqprW3J70X+WXA/i1RDlIE8krcN7MXFxSopKVFfX596enrSxn7wwQfJBvbVq1dP6Ti/+MUv9D//8z+SpBtvvHFM8/qRTj31VHm9Xt1///0KBAJ69dVXdfrpp0/pWAAAAHPFYrGopqYm22VgmkLvjabdHxuOK7JnVM6jzbIWTLzqzWR5AMAoHo9HTqdTLS0t6uzslNn8l4tWo6Ojam1tVVlZmTweTxarBADMpZEDH8hskrxeb0bxmcRl0ugDLCTRaFQDsQGtunaVilZOfEFz9NCohqJDKrQXyrxo4uaiwV2D6rm3R9FolN8z5C2n0ylJk/5eZCrxe5HICyD3RSIRSVJfV5uheb+xvkifPWni9oupnLP1Ph7j9TYHrFx6+OfEawaAI4XDYVVUVKTcl+rcRSAQ0Lo0TdM2my3l/urq6ozq6e7uVjQaTRsTCoXGfE0nk+EAucLlcikwheZ/l8s1l+UBADKQtw3sknTKKafI7/frzTff1PDwsAoKUn87R9755na7p3SMI1+8072hkKSKigrdf//9yWPSwA4AAAAj2e122azF8j4eMyynzVosu91uWD4ASMVisaitrU2NjY2qr69Xc3OzysvLFQwG1draqq6uLvl8vhmvBgIAyB+jgwc0GpfaL7XKfezEDbM0+gAzV7SySNbJVnpaOze1ANmWaGLJ6PdiGnkB5L5E83BJbZMKS6Y2/C6V2FvbtNffrvVlk69AXj3zw2EOFf3588dCfs1IOWk6TSPsZJOmgfkgl5qmu7u7dbLr5IxX3cpkOEA+rbo10+Z/AED25XUD+3nnnSe/36+DBw8qEAjonHPOSRn3zDPPJB9P9UXqyKb44eHhtLFDQ0MpnwcAADDfcNIyOxwOh0Lh7RlNUvB6vWpvb5/0Bs58mqQAIL81NDTI5/OpqalJVVVVye1lZWXy+XxqaGjIYnUAgGxxH2um0QcAAABzJtFYWFiyWkUr1sw431DfzsN509xsCeQroydNI3OzPVWb63zTl0tN06y6BQDId3ndZV1fX6/W1lZJ0ubNm1M2sI+Ojuqhhx6SJB199NFav379lI5RVlaWfOz3+1VbWzth7JGN8kc+DwAAYL7hpGX2OByOjE8aud1u/t0B5JSGhgbV1dXJ7/ert7dXpaWl8ng8TF4HAAAAAAAAckwuTZpeSA5P1XZrINafUXxmU7Vt2h4OJa8vcZ1vfmHVLQBAvsrrBvazzz5bHo9Hfr9fDzzwgDZs2KBzzz13TExbW1vy7sCbbrpJhYWFY/Y//fTTyab2DRs26MEHHxyz/6//+q9ls9nU39+ve+65R16vV6eddtq4Wn7+85/r8ccflySdcMIJOuOMMwz6LgEAAHKPESctB3cNpj3GVKYBAADyh8ViUU1NTbbLAAAAAAAAAJBGLk2aXkgOT9XuV0ltkwpLJl6SLD58SMN731XBsuNlKlg0YdxQ3071dbWNmarNzQkAACAX5HUDuyRt2rRJ1dXVisViuvDCC3XLLbdo/fr1isVieuSRR3TvvfdKktauXaumpqYp5z/66KP1ta99Tf/8z/+s/fv3q6qqSjfeeKMuuOACLV++XO+++65+8pOf6L777tPo6Kgk6Zvf/KbM5ombrAAAAPLdTE5a2u12FVuL1XNvj2H1FFuLZbfbDcsHAAAAAAAAAADmxlDfzrT7M2nUHd777myUBmRNYclqFa1Ykz5o1SnTys3NCQAAIBfkfQP7mWeeqUcffVRer1f79u3TLbfcMi5m7dq12rp1q5YuXTqtY/zTP/2T3n//fW3atEkHDhxQa2urWltbx8UVFhaqpaUlo+V5AAAAFiqHw6Ht4e2KRqNp40KhkLxer9rb2+V2u9PG2u325NQIAAAAAAAAAACQ+w4PvLGpr6st26UAAAAAmGN538AuSRdffLFee+01bdq0SVu3blVPT48WLVqkNWvW6LLLLtMNN9wgm8027fwmk0l33XWXvF6v7r//fj333HN655131N/fryVLlmjNmjU6//zzdd1112nt2rUGfmfzV+i90bT7Y8NxRfaMynm0WdYC04Rxb38QN7o0AAAwBxwOR8YN5263O+UUCCAX9ff3KxwOj9kWCoXGfE1wuVwz+pwCAAAwl2KxmKTJJyNmKjEdMTbM+T0A+SHV571YLKZIJCKn0ymr1TpmH5/5ctvgrsG0+0cPjWooOqRCe6HMiyZedXmyPADmv/jIkCQpFB0xJF8iz+9///v0cROcc0wllwfAHB54EzJk4E0iBgAAAEB+mBcN7JJ04okn6s4779Sdd945pefV1NQoHs/sIklFRYUqKiqmUx7+zFy0RGaT5H08lu1SYLDERUyjTtYm8iTyAgAA5INwODzhZ4YPXzwJBALcnGGQxHtGoy4Uvv3B4RtuRw+lv/EWAICFJBKJSJLhkxEje0ZVvdrQlAAwK9J93kuFz3y56fCk32L13NtjWM5ia7Hsdrth+QDkl5ED70uSvB0Dhub90pe+lFFcJg3bxdZibQ9vz+kmdgbeAAAAAAvPvGlgx+wwerLS6OABjcalBx54QGecccaEcZncQX1kHLIvcRHTyJO+ibzV1dWG5gQAAJgtLpdLgUBgzLaJJvK5XK65Lm/eSrwXNfpC4VB0SGKRLQAAJElOp1OSVFLbpMKSmXecx97apr3+djmPnniqLQDkklSf99Jdy+AzX246POl3uyGTfhNyebIxgNlnWXKMJKm9oVhuu2XG+Z7YMaTbnjqklV9cKavDOmHcVFaK6Lm3R9FolL9VAAAAAHIKDexIa7YmKxUVFWV0ZzR3UOePxEXMVdeuUtHKohnnS5xMSeQFAADIBzabLeX7V27Im12J94xGXygstBfOOBcAAPNF4ka8wpLVKlqxZsb5EgMzrAWmGecCgLkw0ec9iWsZ+YZJv5gPWI0ud5gsh88fue0WrSud+XmpxM/U6rDK6py4gV0SgxeQF0Lvpf+7EhuOK7JnVM6jzWk/H779Qdzo0oC8l3g/MLhr0JB8iTyJvAtNf3+/wuHwmG2hUGjM1yO5XC7ZbLY5qQ0A5isa2JGW0ZOVhvp2qq+rjabkeShxEbNoZdHkJ1OmkRcAAACYSOI9o9EXCtNNrwIAALkp1QXFVPsni5OYqAsAAHIXq9EByHV2u102a7G8jxvbCGtEo+5Cb9LF/JF4P9Bzb4/heRfiYKZwOKyKioqU+7xe77htgUCAm10BYIZoYEdaRk9W+nBeAAAAAH8x2cn3qSwNDAAAkMviI0OSjJsa6u8elpT6gmIqmcQVW4u1PbydJnYAAJBzjF6NrjN8SN94dkijw6OKRWbe0ElzKLKJid+5weFwKBTermg0mjYuFArJ6/Wqvb1dbrd7wrgnnnhCt912m6GNurnapJv425lYuWymEnn4mzz/JN4PrLp2lYpWFs043+CuQfXc27Ngh5K6XC4FAoEx22KxmCKRiJxO57heN5fLNZflAcC8RAM7AABYsFgGDECusNvtKrYWG3ryvdhaLLvdbli+hWRw+PDFKab5AAAwe0YOvC/J+KmhxzUcp6UfXTrh/qncENhzb4+i0SgN7AAwz3GOEPnI6NXonthxuIl31/d2zTjXkXK1OVSavDE0PnxIw3vfVcGy42UqWDRh3PDed40uDdM0WxO/MX0OhyPjz1NutzvtJOPE+VUjGnVzvUk3MVW7r6vN8Ly5+jcZ05N4P1C0skhWp3GDRBfqUFKbzZby7xC/NwAwe2hgBwAACxbLgAHIFQ6HQ9sNnEYjHb5gQ7PV9Ozaf7iBfSFM8wEAIFssS46RZNzU0Cd2DOm2pw5psWvx5Bdt1874cACAeYRzhIC0cunhBvaFMMH18CAJm+GNocg+oyd+J+JYNTM3zEajbq426Sb+dpbUNqmwZPWM8w317VRfV1tO/k0GAAALGw3sAABgwWIZMAC55MPTaFJNgEuHCXDGLQ98aOTw14UwzQcAgGwxWQolGTc19Pd/GpYkDUWHFFs084mLrKICAAsH5wizq7u7e0yzaeLfPlMf/hlxQ//0FP35PMlCmOB6eJBEyPAmZ+QGIyd+s2omsiXxt7OwZLWKVqwxPC8AAECuoIEdgKG4Ax1APmEZMMwHLHM9M7n878cEuMzN1vLAC2GaDwAA2WbUDWjbdh3OY2RzicQqKgCwEHCOMHu6u7t1sutkDcQGDMtZbC3W9vB2mtiRlpFNzpi/WDUTAAAAmF00sAMwBHegAwCQHTQ5z0wu//sxAS5zs7U8MLIvMfXWqBtcmaaL+YQbyJHvzEVLZDbJ8BvQjFhBRWIVFQAA5kI0GtVAbGDM63fifWymjny/m3j9jkajNIgCMAQ3OwAAAACzhwZ2ZGSob2fa/fHhQxre+64Klh0vU8GiaedB/uIOdAAAsoMm55nJ5X8/JsBNDReT5qfEsvFM0wX+ghvIMV9YlizXaFwZ31iWaZyRK6hIrKICAMBcGPf6vTZ7tQBAOrm8oifmH/p0AADAfEcDO9I6fFHUpr6uNsNyFltthl0UZRpfbqFpKHdxMgVAruPv1PTR5Dwz/PsBuS0x9ZZpusBfcAM5ss3oC+iZniPiXBIWqlSflye76ZbPywAAzL3Qe6Np98eG44rsGZXzaLOsBaYJ497+IG50aTBQLq/oifmDPh0AALBQ0MCOtA5fFA3l7EVRpvEBmeFkCoBcx98pAEAqiYYspukCY3EDObIh1y+gA/NVus/LqSz0z8vd3d0ZXc848utEuMELwEI0WTPi6KFRDUWHVGgvlHmRedp55hO73S6btVjex41tvKQxNDfl8oqemD/o0wGw0HEzP7Bw0MCOSeXyRVGm8QGZ4WQKgFzH3ykAuciIi7YL6YItAGB+y/UL6MB8lerzcrrfs4X8ebm7u1snu9waiPVnFJ/qhvkjFRUV67HHfCotLZ0wJtNm+Mn2A8B0GTX1O3owLpmMbUYsthYviJsVHQ6HQgaukvXEE0/otttuozE0R7GiJ+YKfToAFjJu5gcWDhrYkXWp7ppKd9L3yLummMYHZIaTKbltZGREfr9fvb29Ki0tlcfjkcViyXZZwJzi7xSAXHJ4wmyxYRcKF8oFWwDA/DfbF9Bncp4QmK8m+rwsscrGh0WjUQ3E+lVS26TCktUTxsWHD2l477sqWHa8TAWLUsYM9PxB+35zn2prazM69mTN8ABgtNmY+l1cVCTfY49NeuMONyuOZ+T75MSkdBpDAeQq+nRyDyuoYL7hZn5g4aCBHVmX7q6pVCd9uWsKwHzS0dGhpqam5FJr0uG71tva2tTQ0JC9wgAAmGXd3d0ZTaY68ms6Rl4UPTxh1rjJWQvpgi0ALCSJxhKjLu4l8iTyLkScJwRghMKS1SpasSZ90KpT0u4e6tup0bjUfqlV7mMnbvDIdLJxZ3hI33j2EK8ZwIfwfmr6jJ76LU3t/AU3Uc0eGkMBAJkyehiPxECemeJmAmNwMz+wcNDAjqxLdddULBZTJBKR0+kc92Gau6YAzBcdHR1qbGxUbW2ttmzZovLycgWDQbW0tKixsVE+n48mdgBzjqmXmAvd3d062eXWQKw/o/hMphkWW23aHg4Z2sTORVsAQDqJG5GNvEiYyJsvKxEZ/d6R84QAco37WLPWlaZfKbF64mHvSU/sGJK0sF8zgFQW+vupVO+lJnvvc+R7Kc5dYL7iHDXSSdfUSWMoFhqjh/FIDOSZLm4mAIDpoYEdWTfRXVP5cGIJAKZrZGRETU1Nqq2tVWdnp8zmwydRKisr1dnZqfr6em3cuFF1dXWyWNJfJINxRkZG5Pf71dvbq9LSUnk8Hv79seAw9RJzIRqNaiDWr5LaJhWWTNztER8+pOG976pg2fEyFSyaMG6ob6f6utoUjUY5sQoAmDNOp1OStOraVSpaWTTjfIO7BtVzb08ybz4w+r0j5wnnB6bpAuOtXHp4OvtCfs0AUlno76fSvZdKhfNwWCg4R41UjG4OpTEU8wU3tOUGbiYAgOmhgR3zAkuwAMg3fr9fkUhEW7ZsSTavJ5jNZjU3N6uqqkp+v181NTXZKXKB6ejoUFNTU3Lqj3T4AkpbWxuT8LGgMPUSc6mwZLWKVqxJH7TqlLkpBgCAKUq8LypaWSSr0zpJ9NTz5gPeO85fM5kIu9Cn6QKpFBUcbmBfyK8ZQCoL/f1UqvdS6ZqaeC+FhYLPGUglk+ZQGkMBZBM3EwDA1NHAjrzGEiwA8lVvb68kqby8POX+xPZEHGZXR0eHGhsbVVtbqy1btqi8vFzBYFAtLS1qbGyUz+ejiR0LBlMvAQAAkCneO85fM5kIu9Cn6QIAkKmJ3ktJNDVhYeNzBiaSaXMof0MBAADyAw3syGsswQIgX5WWlkqSgsGgKisrx+0PBoNj4jB7RkZG1NTUpNraWnV2diYn4ldWVqqzs1P19fXauHGj6urqZLFYslwtAAAAAACzbyYTYRf6NN1cEovFJBm38mgiTyIvAABArku1slAoFBrz9UhHriwEAADyD+dCgPxCAzvyHkuwAMhHHo9HTqdTLS0tY5qmJWl0dFStra0qKyuTx+PJYpULg9/vVyQS0ZYtW8b8HCTJbDarublZVVVV8vv9qqmpyU6RAAAAAHLWZBdDRg+Naig6pEJ7ocyLzBPGGXVRBTACE2Hnh0gkIkmGrmCayMsEVAAAkA/SrSzk9XrHbTtyZSEAAJB/OBcC5Bca2DFl3KUMADNnsVjU1tamxsZG1dfXq7m5WeXl5QoGg2ptbVVXV5d8Ph8Tv+dAb2+vJKm8vDzl/sT2RBwAAAAASIdX8Su2Fht6MaTYWiy73W5YPgALm9PplCStunaVilYWzTjf4K5B9dzbk8wLAEbhhkAAsyXVykKxWEyRSEROp3PcKj9HriwEAADyD+dCgPxCAzumjLuUAcAYDQ0N8vl8ampqUlVVVXJ7WVmZfD6fGhoasljdwlFaWipJCgaDqqysHLc/GAyOiQMAAAAA6fCqgNvD2xWNRtPGhUIheb1etbe3y+12p4212+0ZrzQIAJNJNGQVrSyS1WmdJHrqeQFgprghEMBsm2hlISaoAgAwP3EuBMgvNLBjyrhLGQCM09DQoLq6Ovn9fvX29qq0tFQej4fJ63PI4/HI6XSqpaVFnZ2dMpv/MsFndHRUra2tKisrk8fjyWKVAAAAAHKRw+HIuOHc7XYz5AEAAOAIqW4ITNz8l6kP3yTIDYEAkLv6+/sVDofHbAuFQmO+Hsnlcslms81JbQAAAJh7NLBjyrhLGQCMZbFYVFNTk+0yFiyLxaK2tjY1Njaqvr5ezc3NKi8vVzAYVGtrq7q6uuTz+bipAAAAAAAAAAAM9uEbAqczSIvmRgDID+FwWBUVFSn3pbp5KRAIcCM4AADAPEYDOwAAWPAaGhrk8/nU1NSkqqqq5PaysjL5fD41NDRksToAAAAAAAAAWBgYpAUA89d0blICAOSHVKtscCMqgMnQwA4AAKDDTex1dXXy+/3q7e1VaWmpPB4Pk9cBAAAAII8M7hpMu3/00KiGokMqtBfKvMg87TyYHD8LAADyW6ompFAoNObrkWhCMhbvpTAfcZPS9PE3GUCuS7fKRiqssgFAooEdAAAgyWKxqKamJttlAAAwrzB1AwAwF+x2u4qtxeq5t8ewnMXWYtntdsPyLRT8LAAAmB/SNSF5vd5x22hCMgbvpQCkwt9kALku1SoboVBIXq9X7e3tcrvd4+IBgAZ2AAAAAAAwa5i6AQCYCw6HQ9vD2xWNRtPGpbtw9mF2u10Oh8PIMhcEfhYAAMwPqZqQJrshHTPHeykAqfA3GUCum2iVDUlyu91c9wGQEg3sAAAAAABg1jB1AwAwVxwOR8aNOVw4m138LAAAmHupVkALhUJjvh5pshXQJmpCqq6unmGlmAzvpQB8GH+TAQDAfEQDOwAAAAD82cjIiPx+v3p7e1VaWiqPxyOLxZLtsoA5leqC92TTfKZzwVviIisAAAByU3xkSJIUio4Yku/tD0YlSaOHRg3JBwCppFsBzev1jtvGCmgAAAAAgGyigR0AAAAAJHV0dKipqUmRSCS5zel0qq2tTQ0NDdkrDJhj6S54p8IFbwAAAMw3IwfelyR5OwYMzTsUHZLWGpoSQB7p7u5WNBpNG5NuYvqH2e32MVO6U62ANtkN6QAAAAAAZAsN7AAAAAAWvI6ODjU2Nqq2tlZbtmxReXm5gsGgWlpa1NjYKJ/PRxM7FoxUF7xDoZC8Xq/a29vldrvHxQMAAADziWXJMZKk9oZiue0zX5XriR1Duu2pQyq0F844F4D81N3drZNdbg3E+jOKTzUx/cOKrTZtD4eSTewTrYBWXV09tWIBAACAOWTkjZ6Z3AgKIHfQwA4AAABgQRsZGVFTU5Nqa2vV2dkps9ksSaqsrFRnZ6fq6+u1ceNG1dXVyWKZeeMCkOsmuuAtSW63m2nrQA7q7+9XOBwesy3dCX2XyyWbzTYntQEAkI9MlsON5m67RetKZ/45MBQdkSSZF5lnnAtAfopGoxqI9auktkmFJasnjIsPH9Lw3ndVsOx4mQoWTRg31LdTfV1tikajY6awAwAwVwZ3DabdP3poVEPRIRXaC9O+D54sD6aG84TIN93d3XK7TlZ/LLMV0DK50RNA/qCBHQAAAMCC5vf7FYlEtGXLlmTzeoLZbFZzc7Oqqqrk9/tVU1OTnSIBAEgjHA6roqIi5b5UJ/QDgQA3owAAAABZUFiyWkUr1qQPWnXK3BQDAMA02O12FVuL1XNvj2E5i63FstvthuVbyDhPiHwTjUbVHxtQ+6VWuY+d+GaX2HBckT2jch5tlrXANGHcEzuGddtT3BgD5Asa2AEAAAAsaL29vZKk8vLylPsT2xNxAADkGpfLpUAgMGZbLBZTJBKR0+mU1WodFw8AwHwTi8UkHZ5KPFPDe989nHM4PuNcAAAAwHzicDi0Pbxd0Wg0bVwoFJLX61V7e7vcbnfaWLvdzooiBuE8IfKV+1jzpCugVU+8kFFSYgU0APmBBnYAAAAAC1ppaakkKRgMqrKyctz+YDA4Jg4zZ2RjyZF5EnkBYKGx2WwpJyVVV1dnoRoAALIjEolIkvq62ozLuWc0owvkAAAAwELicDgybjh3u91M+J5DnCcEAOQTGtgBAAAALGgej0dOp1MtLS3q7OyU2fyX5elGR0fV2tqqsrIyeTyeLFYpjYyMyO/3q7e3V6WlpfJ4PLJY0k8iyFWz0ViSyMtJWAAAAGBhcjqdkqSS2iYVlsys6zz21jbt9bfLefTEy5cDAAAAAAAAmD4a2AEAAAAsaBaLRW1tbWpsbFR9fb2am5tVXl6uYDCo1tZWdXV1yefzZbVZvKOjQ01NTcnGb+lwc0ZbW5saGhqyVtd0GdlYIh2ewN7X1ZbMCwAAAGDhsVqtkqTCktUqWrFmRrkSqzxZC0wzrgsAAAAAAADAeDSwAwAAAFjwGhoa5PP51NTUpKqqquT2srIy+Xy+rDaJd3R0qLGxUbW1tdqyZUuyub6lpUWNjY1Zr286jGwsSZUXAAAAAAAAAAAAyJb+/n6Fw+Ex20Kh0JivR3K5XLLZbHNSGwDkChrYAQAAAECHm9jr6urk9/vV29ur0tJSeTyerE5eHxkZUVNTk2pra9XZ2Smz+fDy9ZWVlers7FR9fb02btyourq6rNYJAAAAIHcN7hpMu3/00KiGokMqtBfKvMg87TwAMBtGRkZy6lzNdMViMUl/WeFhphJ5EnkxM0Y3mNGwBgAAwuGwKioqUu7zer3jtgUCAa1bt262ywKAnEIDOwAAAAD8mcViUU1NTbbLSPL7/YpEItqyZUuyeT3BbDarublZVVVV8vv9OVU3AAAAgOyz2+0qthar594ew3IWW4tlt9sNywcA6XR0dKipqUmRSCS5zel0qq2tLe9Wo0t8D31dbYbnra6uNjTnQmR0gxkNawAAwOVyKRAIjNkWi8UUiUTkdDrHrSrscrnmsjwAyAk0sGPe4Y52AAAAzBe9vb2SpPLy8pT7E9sTcQAAAACQ4HA4tD28XdFoNG1cKBSS1+tVe3u73G532li73S6Hw2FkmTkt9N5o2v2x4bgie0blPNosa4Fpwri3P4gbXRow73V0dKixsVG1tbXasmWLysvLFQwG1dLSosbGRvl8vrxqYnc6nZKkktomFZasnnG+ob6d6utqS+bFzBjdYEbDGgAAsNlsKW9Q4+ZDAPgLGtgx73BHOwAAAOaL0tJSSVIwGFRlZeW4/cFgcEwcAAAAABzJ4XBk3HDudrs5V/5n5qIlMpsk7+OxbJcCLEgjIyNqampSbW2tOjs7k6vSVVZWqrOzU/X19dq4caPq6upksViyXG1mEg3LhSWrVbRijeF5MTNGN5jRsAZgoWHQJAAAmA4a2DHvcEc7AAAA5guPxyOn06mWlpYxF2wlaXR0VK2trSorK5PH48lilQAAAAAwv1iWLNdoXJNOpc90en0iDkBm/H6/IpGItmzZMuZciCSZzWY1NzerqqpKfr9fNTU12SkSAAAkMWgSAABMBw3smHe4ox0AAADzhcViUVtbmxobG1VfX6/m5ubkktmtra3q6uqSz+fLm2ljAAAAAJBPMp1Kz/R6wFi9vb2SpPLy8pT7E9sTcQAAILsYNAkAAKaDBnYAAAAAyGENDQ3y+XxqampSVVVVcntZWZl8Pp8aGhqyWB0AAAAAAICxSktLJUnBYFCVlZXj9geDwTFxAAAguxg0CQAApoMGdgAAAADIcQ0NDaqrq5Pf71dvb69KS0vl8XiYvA4AAAAAAOYdj8cjp9OplpYWdXZ2ymw2J/eNjo6qtbVVZWVl8ng8WawSAAAAAADMBA3sAAAAAJAHLBaLampqsl0GMKnu7m5Fo9G0MaFQaMzXyeIAAACA+WBw12Da/aOHRjUUHVKhvVDmReYJ4ybLA+Q7i8WitrY2NTY2qr6+Xs3NzSovL1cwGFRra6u6urrk8/m4sR8AAABASnz+BvIDDewAAAAAAMAQ3d3dcrtOVn9sIKN4r9c7yxUBAABgoRnq25l2f3z4kIb3vquCZcfLVLBoWjmmym63q9harJ57ewzLWWwtlt1uNywfkGsaGhrk8/nU1NSkqqqq5PaysjL5fD41NDRksToAAAAAuejoYpNkEp+/gTxBAzsAAAAAYN7p7+9XOBwesy3d1G+XyyWbzTZn+earaDSq/tiA2i+1yn3sxBMrYsNxRfaMynm0WdYC04RxT+wY1m1PMd0CAAAAkzvcJG5TX1ebIfmKrTbDLlA7HA5tD2/PaKUir9er9vZ2ud3utLF2u10Oh8OQ+oBc1dDQoLq6Ovn9fvX29qq0tFQej4fJ6wAAAABSKl1iluKa9HM1n7+B3EADOwAAAABg3gmHw6qoqEi5L9XU70AgoHXr1s1ZvvnOfaxZ60rTNxRUr548Tyg6YlBFAAAA+aG7uzujJucjv6azkC6yHm4SDxnWJG70v53D4cg4n9vtXtCfJ4AjWSwW1dTUZLsMAAAAALMgFotJMu56UCKP0+nM6HM1n7+B7KKBHQAAAAAw77hcLgUCgTHbYrGYIpGInE6nrFbruPi5zAcAAAB8WHd3t9yuk9UfG8goPtWNlB9msxYrFN6+oJrYaRIHAAAAACA/RCIRSZK3I7NzIVPJW11dbWhOAMajgR0AAAAAMO/YbLaUzSjTPVlldD4AAADgw6LRqPpjA2q/1Cr3seYJ42LDcUX2jMp5tFnWAtOEcaH3RuV9PKZoNLpgGtgBAACwMPT39yscDo/Zlm6lIpfLJZvNNie1AQAy53Q6JUntDcVy29Ov7JuJUHRE3o6BZF4AuW3eNLC/8847+va3v62tW7dq586dKioq0kc+8hFdfvnl+vKXvzztN6KRSERlZWVTes6JJ56YvDsIAAAAAAAAAAAgU+5jzVpXmv6ibfXqOSoGWIBGRkbk9/vV29ur0tJSeTweWSwzb6QAAADGCYfDqqioSLkv1UpFgUCA1XcAIAclVjh22y2TnguZTl4AuW1eNLD/7Gc/k9fr1b59+5Lb+vv7tW3bNm3btk3333+/tm7dqjVr1sxJPSeffPKcHAcAAAAAAAAAAACAMTo6OtTU1DRmUJXT6VRbW5saGhqyVxgAABjD5XIpEAiM2RaLxRSJROR0Osc1LrpcrrksDwAAABnI+wb2V155RZ///OcVi8W0ZMkSNTc3a/369YrFYnrkkUd033336Y033tBFF12kbdu2aenSpVPKf8IJJ+j111+fNK61tVUPP/ywJGnDhg3T+l4AAAAAAAAAAJhr3d3dikajaWNCodCYr+nY7XY5HA5DagOAudLR0aHGxkbV1tZqy5YtKi8vVzAYVEtLixobG+Xz+WhiBwAgR9hstpQT1aurq7NQDQAsPEadS8rkPBOA+SvvG9hvuukmxWIxFRQU6Fe/+pXOPffc5L5PfOITOumkk/TVr35Vb7zxhtra2vSv//qvU8pfWFio8vLytDEjIyN6+umnJUlLly7VpZdeOtVvAwAAAAAAAACAOdfd3S2362T1xwYyivd6vZPG2KzFCoW308QOIG+MjIyoqalJtbW16uzslNlsliRVVlaqs7NT9fX12rhxo+rq6mSxGLesPQAAAADkm+7ubp3scmsg1p9RfCbnkgAsTHndwP7SSy/J7/dLkr70pS+NaV5PaGpq0ubNmxUKhbRp0ybdeuutKiwsNLSOJ598Urt27ZIkNTY2jluKCFio+vv7FQ6Hx2xLd3edy+WSzWabk9oAAAAAAACMxrkQ5KNoNKr+2IDaL7XKfax5wrjYcFyRPaNyHm2WtcA0YVzovVF5H48pGo3SwA4gb/j9fkUiEW3ZsiXZvJ5gNpvV3Nysqqoq+f1+1dTUZKdIIMtGRkbk9/vV29ur0tJSeTwebugAAABYgKLRqAZi/SqpbVJhyeoJ4+LDhzS8910VLDtepoJFKWNib23TXn/7bJUKIMfldQN7Z2dn8vE111yTMsZsNuuqq65Sc3Oz9uzZo6eeekoXXnihoXU89NBDyccbNmwwNDeQz8LhsCoqKlLuS3V3XSAQSLnMFwAAAAAAQD7gXAjymftYs9aVpm9Cq574miQA5LXe3l5JmnBV5sT2RBwwXUN9O9Puz6TJJ5M8Ruvo6FBTU5MikUhym9PpVFtbmxoaGua0loWIG2UBAEAuKixZraIVa9IHrTol7e65fl8LILfkdQP7c889J0lavHjxhBeGJOn8889PPn7++ecNbWDfv39/spHe6XTq4x//uGG5gXzncrkUCATGbIvFYopEInI6neNWK3C5XHNZHgAAAAAAgKE4FwKkRtMVgFxXWloqSQoGg6qsrBy3PxgMjokDpsput6vYalNfV5thOYutNtntdsPyTaSjo0ONjY2qra3Vli1bVF5ermAwqJaWFjU2Nsrn89HEPsu4URYAAADAfJTXDeyJE9tr1qxRQcHE38qRF4JSnQyfCZ/Pp/7+fknS3/zN38hkmnjpVGChsdlsKU+OVFdXZ6EaAAAAAAAWhpGREfn9fvX29qq0tFQej0cWS/qpyjAG50KA1Gi6ApDrPB6PnE6nWlpa1NnZKbPZnNw3Ojqq1tZWlZWVyePxZLFK5DOHw6Ht4ZCi0WjauFAoJK/Xq/b2drnd7rSxdrtdDofDyDLHGRkZUVNTk2pra8f8blRWVqqzs1P19fXauHGj6urq+Mwxi7hRFgAAAMB8lLcN7AMDA8kP+KtWrUobu3z5ci1evFgHDx7Uzp3GLjvx0EMPJR9fddVVGT1ncHBQg4ODyf/et2+foTUBAAAAAABgYero6FBTU5MikUhym9PpVFtbG1MRseAw9TszsVhMkhSKjhiSL5EnkVei6QpA7rNYLGpra1NjY6Pq6+vV3NycnDLd2tqqrq4u+Xw+GnQxIw6HI+OGc7fbnRM3c/n9fkUiEW3ZsmXMjR2SZDab1dzcrKqqKvn9ftXU1GSnyAWAG2UBAAAAzEd528C+f//+5OMlS5ZMGp9oYD9w4IBhNXR3d+uZZ56RJFVVVWnNmjUZPa+1tVW33367YXUAAAAAAAAAHR0damxsVG1trbZs2ZJsumppaVFjY6N8Ph9N7FhQmPqdmcQNL96OAcPzJpqqaLoCkA8aGhrk8/nU1NSkqqqq5PaysjLeR2HB6u3tlSSVl5en3J/YnogDAAAAACBTedvAPjDwl5PpixYtmjS+qKhI0tipLzPV3t6ueDwuKfPp65LU3Nysm2++Ofnf+/bt0+rVqw2rCwAAAAAAAAvLyMiImpqaVFtbq87OzuR0xMrKSnV2dqq+vl4bN25UXV0dk0OxYDD1OzNOp1OS1N5QLLd95n8fQtEReTsGknkBIJ80NDSorq5Ofr9fvb29Ki0tlcfj4f0TFqzS0lJJUjAYVGVl5bj9wWBwTBwAAAAAAJnK2wb24uLi5ONDhw5NGj84OChJ4y5KzMQPfvADSYeb4z//+c9n/LyioqJkQz0AAAAAAAAwU36/X5FIRFu2bEk2ryeYzWY1NzerqqpKfr9fNTU12SkSmGNM/c5M4py5227RulLjGjSNPBcPAHPJYrHwfgn4M4/HI6fTqZaWljE3ykrS6OioWltbVVZWJo/Hk8UqAQAAAAD5KG8b2JcuXZp8fODAgUnjDx48KElasmSJIcd/6aWXFA6HJUmXXHKJjj76aEPyAgAAAAAAAFPV29srSSovL0+5P7E9EQcAALKrv78/eZ0pIRQKjfl6JJfLJZvNNie1AUCCxWJRW1ubGhsbVV9fr+bmZpWXlysYDKq1tVVdXV3y+XysUgAAAIAZCb03mnZ/bDiuyJ5ROY82y1pgmnYeALklbxvYi4uLVVJSor6+PvX09KSN/eCDD5IN7KtXrzbk+A899FDy8VVXXWVITgAAAAAA8lksFpMkhaIjhuR7+4PDJxpHD3HCEZhMaWmpJCkYDKqysnLc/mAwOCYOAABkVzgcVkVFRcp9Xq933LZAIJByVQkAmG0NDQ3y+XxqampSVVVVcntZWZl8Pp8aGhqyWB0AAADymbloicwmyft4zLCcNmux7Ha7YfkAzJ68bWCXpFNOOUV+v19vvvmmhoeHVVCQ+ts5coKF2+2e8XGHhob0yCOPSJKOO+44ffrTn55xTgAAAAAA8l0kEpEkeTsGDM07FB2S1hqaEph3PB6PnE6nWlpa1NnZKbPZnNw3Ojqq1tZWlZWVyePxZLFKAADm1lSmnM/1hHOXy6VAIDBmWywWUyQSkdPplNVqHRcPANnS0NCguro6+f1+9fb2qrS0VB6Ph8nrAAAAmBHLkuUajUvt7e1p+zpDoZC8Xu+kcZJkt9vlcDiMLhXALJi1Bvaenh796U9/Un9/vz72sY+NO9FmhPPOO09+v18HDx5UIBDQOeeckzLumWeeST6urq6e8XG3bt2qvr4+SdIVV1wxYeM8AAAAAAALidPplCS1NxTLbZ/5RewndgzptqcOqdBeOONcwHxnsVjU1tamxsZG1dfXq7m5WeXl5QoGg2ptbVVXV5d8Ph8NJgCABWUqU87nesK5zWZLeTwjrmMBwGywWCyqqanJdhkAAACYh9xud0afyTONA5AfDO283r9/v/7t3/5NDz74oHbt2pXc/vrrr+uUU05J/vcjjzyijo4OLVu2TPfdd9+0j1dfX6/W1lZJ0ubNm1M2sI+Ojuqhhx6SJB199NFav379tI+XkMgnSRs2bJhxPgAAAAAA5oPEzetuu0XrSmfeJBuKjkiSzIvMk0QCkA5PRfT5fGpqalJVVVVye1lZmXw+nxoaGrJYHQAAc28qU86ZcA4AAAAAAADMHcMa2Hfs2KHPfvazeuuttxSPx5PbTSbTuNjKykp5vV7F43Ft2LBB55133rSOefbZZ8vj8cjv9+uBBx7Qhg0bdO65546JaWtrSy4DedNNN6mwcOzUtqeffjrZ1L5hwwY9+OCDaY/5/vvva+vWrZKk0047TWeccca0agcAAAAAAACM1tDQoLq6Ovn9fvX29qq0tFQej4fJ6wCABYkp5wAAAAAAGCsWi0mShvp2zjhXIkciJ4CFxZAG9oGBAV100UX64x//qMWLF+vLX/6yPv7xj6u2tjZlvNPp1Pr16/Wb3/xGP/3pT6fdwC5JmzZtUnV1tWKxmC688ELdcsstWr9+vWKxmB555BHde++9kqS1a9eqqalp2sdJeOSRR3To0CFJTF8HAAAAAGAuDO4aTLt/9NCohqJDKrQXpp3WPlkeYL6wWCyqqanJdhkAAAAAAAAAgHkmEolIkvq62gzNyc3mwMJjSAP7PffcozfffFOLFy+W3+/PaCr5Zz7zGf3617/WCy+8MKNjn3nmmXr00Ufl9Xq1b98+3XLLLeNi1q5dq61bt2rp0qUzOpYkPfTQQ5IOXwi88sorZ5wPAAAAAACkdnSxSTJJPff2GJaz2Fosu91uWD4AAAAAAKajv79f4XB4zLbEyuKJr0dyuVyy2WxzUhsAAAAwEafTKUkqqW1SYcnqGeUa6tupvq62ZE4AC4shDewdHR0ymUy66aabMmpel6TTTz9dkrRjx44ZH//iiy/Wa6+9pk2bNmnr1q3q6enRokWLtGbNGl122WW64YYbDPkwv2PHDr344ouSpAsuuEArVqyYcU4AAAAAAJBa6RKzFJfa29vldrsnjAuFQvJ6vZPGSZLdbpfD4TC6VAAAAAAApiQcDquioiLlPq/XO25bIBDQunXrZrssAAAAIC2r1SpJKixZraIVawzNCWBhMaSBPXEH+IUXXpjxc0pKSiRJe/bsMaIEnXjiibrzzjt15513Tul5NTU1isfjGcWedNJJGccCAAAAAABjuN3ujC7SZxoHAAAATBWTkgEYzeVyKRAIjNkWi8UUiUTkdDrHNfG4XK65LA8AAAAAgFllSAP7gQMHJElLlizJ+DmDg4OSpMLCQiNKAAAAAAAAAAAAyFuxWEySFIqOGJIvkSeRFzPDpGQARrPZbCn/TlRXV2ehGgAAAAAA5pYhDewlJSX605/+pEgkkvHJuD/84Q+SpBUrVhhRAgAAAAAAAAAAQN6KRCKSJG/HgOF5aYacOSYlAwAAAAAAAMYxpIF93bp1euKJJ/Tss8+qoaEho+c89NBDMplMOvfcc40oAQAAAAAAAAAAIG85nU5JUntDsdx2y4zzhaIj8nYMJPNiZpiUDAAAAAAAABjHkAb2xsZGbd26Vffee69uvvlmORyOtPF33323nn32WZlMJn3hC18wogQAAAAAAAAAAIC8lZjg7bZbtK505g3sH84rSf39/QqHw2P2h0KhMV+P5HK5ZLPZDKsFAAAAAAAAACSDGtj/5m/+RnfddZdee+011dTU6Dvf+Y4+/elPJ/ebTCbF43Ft27ZNd999tx555BGZTCZ5PB595jOfMaIEAAAAAAAAAAAApBEOh1VRUZFyn9frHbctEAiknDoOAAAAAAAAADNhSAO72WzWT3/6U5133nmKRCKqra2VzWaTyWSSJNXU1Gj//v0aHByUJMXjcX3kIx/Rj370IyMODwAAAAAAAAAAgEm4XC4FAoEx22KxmCKRiJxO55hp7Yl4AAAAAACADxvq25l2f3z4kIb3vquCZcfLVLBoWjkAzG+GNLBLksPh0O9//3vdeOON+tGPfqSDBw8m97333nvJxyaTSZdffrnuueceLV++3KjDAwAAAAAAAAAAIA2bzZZyonp1dXUWqgEAAAAAAPnGbrer2GpTX1ebIfmKrTbZ7XZDcgHIL4Y1sEvSMcccox/+8IdqaWnR1q1btW3bNu3evVsjIyMqKSnRmWeeqYsvvlhr16418rAAAAAAAAAAAAAAAAAAAACYRQ6HQ9vDIUWj0bRxoVBIXq9X7e3tcrvdE8bZ7XY5HA6jywSQBwxtYE848cQTdf31189GagAAAAAAAAAAAAAAAAAAAGSBw+HIuOnc7XanXA0OAGalgR0AAAAAgMkM9e1Muz8+fEjDe99VwbLjZSpYNO08AAAAAAAAAAAAAAAgd9DADgAAAACYU3a7XcVWm/q62gzLWWy1yW63G5YPAAAAAAAAAAAAAADMDkMa2J999tkpP8dkMqm4uFjLli2T0+nUokUTT9MDAAAAgIVuZGREfr9fvb29Ki0tlcfjkcViyXZZ0+JwOLQ9HFI0Gk0bFwqF5PV61d7eLrfbnTbWbrdnvFQhZl/ovdG0+2PDcUX2jMp5tFnWAtO08wAAAAAAAAAAAAAA8o8hDew1NTUymSa+4DxpEQUFOuOMM3T11Vfrb//2b1VYWGhEWQAAAAAwL3R0dKipqUmRSCS5zel0qq2tTQ0NDdkrbAYcDkfGDedut1vr1q2b5YpgBLvdLpu1WN7HY4bltFmLma4PAAAAAAAAAAAAAPOIIQ3skhSPx6f93KGhIb388svatm2b7rnnHnV1dTE5DwAAAAB0uHm9sbFRtbW12rJli8rLyxUMBtXS0qLGxkb5fL68bWLH/ONwOBQKb2e6PgAAAAAAAAAAAABgQoY0sD/11FMaGhrSbbfdphdffFErV67UZZddprPOOkvHHnusJOm9997Ttm3b9OMf/1i7du3SOeeco9tvv12xWEzBYFCPPvqogsGggsGgPvvZz+r3v/+9CgoM668HAAAAgLwzMjKipqYm1dbWqrOzU2azWZJUWVmpzs5O1dfXa+PGjaqrq5PFYslytcBhTNcHAAAAAADAQjAyMiK/36/e3l6VlpbK4/FwnhYAAADIkNmIJOeff76+/e1v66WXXtKNN96oN998U3fddZeuvPJKXXjhhbrwwgt15ZVX6q677tIf//hHffnLX9aLL76ou+++W3V1dbr11lv12muv6dZbb5V0eBLb5s2bjSgNAAAAAPKW3+9XJBLRLbfckmxeTzCbzWpubtbbb78tv9+fpQoBAAAAAAAAYOHp6OjQmjVrtH79el1xxRVav3691qxZo46OjmyXBgAAAOQFQxrYN2/erK6uLn32s5/Vpk2bVFxcPGFsUVGR/uM//kOf/exn9ctf/lL33ntvct83vvENnX/++YrH47ypBwAAALDg9fb2SpLKy8tT7k9sT8QBAAAA0xV6b1S/6x2Z8H/P7xzWD18/pOd3DqeNC703mu1vBQAAAJhVHR0damxs1GmnnaYXXnhB+/fv1wsvvKDTTjtNjY2N9LsAAAAAGSgwIsn3vvc9mUwmXXvttRk/57rrrtMTTzyh73//+2Oed/XVV+uZZ57Rq6++akRpAAAAAJC3SktLJUnBYFCVlZXj9geDwTFxAAAAwFTZ7XbZrMXyPh4zLKfNWiy73W5YPgAAACBXjIyMqKmpSbW1ters7EyunFlZWanOzk7V19dr48aNqqurk8ViyXK1AAAAQO4ypIE9FApJklatWpXxcxKx4XB4zHa32y1Jev/9940oDQAAAADylsfjkdPpVEtLy5iLIZI0Ojqq1tZWlZWVyePxZLFK5Lvu7m5Fo9G0MYnP/Ymv6djtdjkcjuR/9/f3j/vsny6fy+WSzWab9DgAAMAYDodDofD2jN4PeL1etbe3J8/jT+TD7wcAAACA+cLv9ysSiWjLli1jztdKktlsVnNzs6qqquT3+1VTU5OdIgEAAIA8YEgD+8DAgCSpp6dHZ555ZkbP6enpkSQNDg6O2V5YWChJXKwGAAAAsOBZLBa1tbWpsbFR9fX1am5uVnl5uYLBoFpbW9XV1SWfz8ckH0xbd3e3Tna5NRDrzyje6/VOGlNstWl7OJRsWguHw6qoqMg4XyAQ0Lp16zKqBwAAGMPhcGTccO52u3mtBgAAwILV29srSSovL0+5P7E9EQcAALKLQUtA7jKkgf0jH/mIgsGg7r//fl188cUZPee+++5LPvdIu3btkiQde+yxRpQGAAAAAHmtoaFBPp9PTU1NqqqqSm4vKyuTz+dTQ0NDFqtDvotGoxqI9auktkmFJasnjIsPH9Lw3ndVsOx4mQoWTRg31LdTfV1tikajySY4l8ulQCAwJi4WiykSicjpdMpqtY7Z53K5ZvAdAQAAAAAAALOntLRUkhQMBlVZWTlufzAYHBMHAACyi0FLQO4ypIG9sbFRr7/+urq6urRx40a1trYmJ6l/2NDQkL72ta+pq6tLJpNJl1122Zj9zz//vCRpzZo1RpQGAAAAAHmvoaFBdXV18vv96u3tVWlpqTweD5PXYZjCktUqWjHJ5/BVp0wrt81mS3mir7q6elr5AAAAAAAAgGzxeDxyOp1qaWlRZ2enzGZzct/o6KhaW1tVVlYmj8eTxSoBAEACg5aA3GVIA/vGjRv1gx/8QG+++abuuusu/fjHP9Zll12mioqK5CT19957T4FAQD/+8Y/V09Mj6fD09aampmSekZERPfzwwzKZTLrwwguNKA0AAAAA5gWLxaKamppslwEAAAAAAAAAC5bFYlFbW5saGxtVX1+v5uZmlZeXKxgMqrW1VV1dXfL5fAwfAQAgRzBoCchdhjSwW61W/eY3v9FFF12k119/XTt37tRdd92VMjYej0uSysvLtXXr1jF3sPT09Oiaa66RdHiqOwAAAAAAAAAAAAAAAJArGhoa5PP51NTUpKqqquT2srIy+Xw+NTQ0ZLE6AAAAID8Y0sAuSatWrVIgENB3vvMdffe731U4HE4Zt3btWl133XW64YYbVFhYOGbfiSeeqH/5l38xqiQAAAAAAAAAAAAAAADAUA0NDaqrq5Pf71dvb69KS0vl8XiYvA4AAABkyLAGdkkqKCjQTTfdpJtuukm7du1SMBjUBx98IElavny5Tj31VJ1wwglGHhIAAAAAAAAAAGDeCL03mnZ/bDiuyJ5ROY82y1pgmnYeAAAAzIzFYlFNTU22ywAAAADykqEN7EdauXKlVq5cOVvpAQAAAAAAAAAA5g273S6btVjex2OG5bRZi2W32w3LBwAAAAAAAABGmLUGdgAAAAAAAAAAAGTG4XAoFN6uaDSaNi4UCsnr9aq9vV1utzttrN1ul8PhMLJMAAAAAAAAAJgxGtgBAAAAAAAAAABygMPhyLjh3O12a926dbNcEQAAAAAAQHr9/f0Kh8NjtoVCoTFfj+RyuWSz2eakNgC5y/AG9v379+vJJ5/Uq6++qmg0qlgspng8PmG8yWTSAw88YHQZAAAAAAAAAAAAAAAAAAAAmEXhcFgVFRUp93m93nHbAoEAN+UDMK6BfXR0VN/4xjfU1tamgwcPZvSceDxOAzsAAAAAAAAAAAAAAAAAAEAecrlcCgQCY7bFYjFFIhE5nU5ZrdZx8QBgWAP71VdfrR/+8IeKx+OyWCwqKSnR7t27ZTKZtGrVKn3wwQc6cOCApMNT1+12O8tAAAAAAAAAAAAAAAAAAAAA5CmbzZZyonp1dXUWqgGQL8xGJPnlL3+p9vZ2SYcb2Xfv3q0nn3wyuf+dd97Rvn37FAqF9H/+z/+R2WzW8uXL9fOf/1xvv/22ESUAAAAAAAAAAAAAAAAAAAAAAHKcIQ3smzdvliSdeuqp+t73vqfly5fLZDKNizv55JN19913q6OjQ3/84x/12c9+Vnv37jWiBAAAAAAAAAAAAAAAAAAAAABAjjOkgf23v/2tTCaTvvzlL2cUf/HFF2vDhg1655139O1vf9uIEgAAAAAAAAAAAAAAAAAAAAAAOc6QBvbdu3dLktauXZvcZrFYko8HBwfHPaexsVHxeFyPP/64ESUAAAAAAAAAAAAAAAAAAAAAAHJcgZHJjjnmmOTjpUuXJh/v3r1bq1evHhN73HHHSZIikYiRJQAAAAAAAGAO9Pf3KxwOj9kWi8UUiUTkdDpltVrH7HO5XLLZbHNZIgAAAAAAAAAAAIAcZEgD+/HHH6/u7m69//77Y7YtWrRIQ0NDeu2118Y1sL/zzjuSpIGBASNKAAAAAAAAwBwKh8OqqKjIOD4QCGjdunWzWBEAAAAAAAAAAMhnqYbnhEKhMV+PxPAcIH8Z0sB+2mmnqbu7W//93/+t9evXH05cUKAzzzxTL730kjZv3qyLLrpozHPuueceSdKJJ55oRAkAAAAAAMyZkZER+f1+9fb2qrS0VB6PRxaLJdtlAXPK5XIpEAiM2RYKheT1etXe3i632z0uHgAAAAAAAAAAYCLphud4vd5x2xieA+QvQxrYa2pq1NXVpSeffFJf/vKXk9u9Xq9efPFFPf7449qwYYMuv/xyHTx4UN///vf15JNPymQyqa6uzogSAAAAAACYEx0dHWpqalIkEkluczqdamtrU0NDQ/YKA+aYzWab8KSw2+3mhDEAAAAAAAAAAJiSVMNzYrGYIpGInE6nrFbruHgA+cmQBvZLL71UGzdu1C9+8Qu9++67Ov744yVJ1113nTZv3qzf/e53am9vV3t7+5jnORwO/eM//qMRJQAAAAAAMOs6OjrU2Nio2tpabdmyReXl5QoGg2ppaVFjY6N8Ph9N7AAAAAAAAAAAAMA0TDQ8p7q6OgvVAJhNZiOSlJWV6a233lIwGNRRRx2V3F5QUKD/9//+n6688koVFBQoHo8rHo9Lki666CL5/X4tX77ciBIAAAAAAJhVIyMjampqUm1trTo7O1VZWaklS5aosrJSnZ2dqq2t1caNGzUyMpLtUgEAAAAAAAAAAAAAyFmGTGCXDi+Xnsry5cv1gx/8QP/1X/+lHTt2aHh4WGvWrNExxxxj1KEBAAAAAJh1fr9fkUhEW7Zskdk89n5ws9ms5uZmVVVVye/3q6amJjtFAgAAAAAAAAAAAACQ4wxrYJ/M0qVLUy7tAAAAAABAPujt7ZUklZeXp9yf2J6Iw+zo7+9XOBwesy0UCo35eiSXyyWbzTYntQEAAAAAAAAAAAAAJmdIA7vZbJbZbFZLS4u++tWvGpESAAAAAICcUlpaKkkKBoOqrKwctz8YDI6Jw+wIh8OqqKhIuc/r9Y7bFggEuKEeAAAAAAAAAAAAAHKIIQ3sixYt0tDQkDwejxHpAAAAAADIOR6PR06nUy0tLers7JTZbE7uGx0dVWtrq8rKyvhsPMtcLpcCgcCYbbFYTJFIRE6nU1ardVw8AAAAAAAAAAAAACB3GNLAvnLlSr3zzjsqKDAkHQAAAAAAOcdisaitrU2NjY2qr69Xc3OzysvLFQwG1draqq6uLvl8PlkslmyXOq/ZbLaUE9Wrq6uzUA0AAAAAAAAAAAAAYKrMk4dM7uMf/7gkjZuABgAAAADAfNLQ0CCfz6fXX39dVVVVOuqoo1RVVaVgMCifz6eGhoZslwgAAAAAAAAAAAAAQE4zZGT6jTfeqIcfflh33HGHrrjiCh111FFGpAUAAAAAIOc0NDSorq5Ofr9fvb29Ki0tlcfjYfI6AAAADNff369wODxmWygUGvP1SC6XSzabbU5qAwAAAAAAAIDpMqSBvaKiQv/xH/+hG264Qeeff76+853vqKqqyojUAAAAAADkHIvFopqammyXAQAAgHkuHA6roqIi5T6v1ztuWyAQ0Lp162a7LAAAAAAAAACYEUMa2L/4xS9Kkk4++WS9+uqr8ng8Wr16tT760Y9q+fLlaafQmUwmPfDAA0aUAQAAAAAAAAAAMG+4XC4FAoEx22KxmCKRiJxOp6xW67h4AAAAAAAAAMh1hjSwP/jggzKZTJION6TH43F1d3dr586daZ8Xj8dpYAcAAAAAAAAAAEjBZrOlnKheXV2dhWoAAAAAAAAAwBiGNLA7HI5kAzsAAAAAAAAAAAAAAAAAAAAAAKkY0sAeiUSMSAMAAAAAAAAAAAAAAAAAAAAAmMfM2S7AKO+8846amprkcrm0ePFiHXPMMfrYxz6mf//3f1d/f7+hx3ryySd19dVXa82aNVq8eLGWLVumtWvXqrGxUffcc48OHDhg6PEAAAAAAAAAAAAAAAAAAAAAYD4wZAJ7tv3sZz+T1+vVvn37ktv6+/u1bds2bdu2Tffff7+2bt2qNWvWzOg4H3zwga655hr95Cc/Gbdv37592rFjhx577DGde+65OuOMM2Z0LAAAAAAAAAAAAAAAAAAAAACYb2atgX10dFTvv/+++vv7dcIJJ8hisczKcV555RV9/vOfVywW05IlS9Tc3Kz169crFovpkUce0X333ac33nhDF110kbZt26alS5dO6zh79+7VBRdcoEAgIEm69NJL1djYqI985COyWCzauXOnnnnmGT322GNGfnsAAAAAAAAAAAAAAAAAAAAAMG8Y2sA+MjKiBx98UA8++KBefvllDQ0NyWQy6bXXXtMpp5ySjOvq6tKzzz6rZcuW6dZbb53RMW+66SbFYjEVFBToV7/6lc4999zkvk984hM66aST9NWvflVvvPGG2tra9K//+q/TOs6NN96oQCCgoqIi/ehHP9Ill1wyZv9ZZ52lSy+9VHfddZdGRkZm8i0BAAAAAAAAAJA1/f39CofDY7aFQqExX4/kcrlks9nmpDYAAAAAAAAAQP4zrIF99+7dqq+v14svvqh4PJ421ul06pJLLpHJZNJFF12kM844Y1rHfOmll+T3+yVJX/rSl8Y0ryc0NTVp8+bNCoVC2rRpk2699VYVFhZO6TjPPfecfvCDH0iS/u///b/jmtePZDKZVFAwa4PtAQAAAAAAAACYVeFwWBUVFSn3eb3ecdsCgYDWrVs322UBAAAAAAAAAOYJQzqtR0ZGdPHFF+vll1+W2WzWZZddpo9//OO64YYbUsaXl5frnHPO0UsvvaTHH3982g3snZ2dycfXXHNNyhiz2ayrrrpKzc3N2rNnj5566ildeOGFUzrOf/7nf0qSli1bNuH3BAAAAAAAAADAfOByuRQIBMZsi8ViikQicjqdslqt4+IBAAAAAAAAAMiUIQ3s3//+9/Xyyy+rsLBQP/3pT/WpT31KktI2e19yySV68cUX9dxzz037uInnLl68eMJpMJJ0/vnnJx8///zzU2pgP3TokH7yk59Iki644AIVFxdLOty0v2vXLo2MjGjFihXJ7QAAAAAAAAAA5DObzZZyonp1dXUWqgEAAAAAAAAAzDdmI5Js2bJFJpNJ1113XbJ5fTJnnnmmJGn79u3TPm4oFJIkrVmzRgUFE/fiHzn9JfGcTL366qsaGBiQJJ122mnat2+f/uEf/kF2u10Oh0NlZWVatmyZLrjgAj399NNT/yYAAAAAAAAAAAAAAAAAAAAAYIEwpIH9tddek3R4qnqmjjvuOElSX1/ftI45MDCgaDQqSVq1alXa2OXLl2vx4sWSpJ07d07pOP/93/+dfDw6OqqzzjpLmzZt0p49e5LbDx06pCeffFKf+MQn9K1vfWvSnIODg9q3b9+Y/wEAAAAAAAAAAAAAAAAAAADAfDfx2PIpSDRzl5SUZPyckZERSZLFYpnWMffv3598vGTJkknjFy9erIMHD+rAgQNTOs7777+ffPytb31LAwMD+vSnP62vf/3r+uhHP6p9+/bpscce09e+9jXt3btXX/va1+RyuVRXVzdhztbWVt1+++1TqgMAAAAAAAAAAOS2/v5+hcPhMdtisZgikYicTqesVuuYfS6XSzabbS5LBAAAAAAAAICsM6SB/ZhjjtHu3bu1c+dOnXnmmRk9Z8eOHZKkY489dlrHHBgYSD5etGjRpPFFRUWSDp8onoqDBw+OOeYFF1ygrq6uZOP9scceq7//+79XeXm5zj//fI2Ojqq5uVmXXHKJTCZTypzNzc26+eabk/+9b98+rV69ekp1AQAAAAAAAACA3BIOh1VRUZFxfCAQ0Lp162axIgAAAAAAAADIPYY0sJ966qnavXu3Xn75ZV1yySUZPefRRx+VyWTSxz72sWkds7i4OPn40KFDk8YPDg5K0rjpJlM5jnR4CnuqqfHnnXeeGhoa5PP5FAqF9Prrr+ujH/1oypxFRUXJhnoAAAAAAAAAAGaCqd+5w+VyKRAIjNkWCoXk9XrV3t4ut9s9Lh4AAAAAAAAAFhpDGtjr6+v1m9/8Rv/5n/+pm2++WcuXL08b7/P59LOf/Uwmk0mf+9znpnXMpUuXJh8fOHBg0vjEJPUlS5ZM+zjHHnts2gnzn/rUp+Tz+SRJL7/88oQN7AAAAAAAAAAAGIWp37nDZrNN+G/rdrv5dwcAAAAAAAAAGdTA/nd/93e64447tHPnTl144YX6/ve/r1NOOWVc3O7du7Vp0yb9+7//u0wmk8rLy3X55ZdP65jFxcUqKSlRX1+fenp60sZ+8MEHyQb21atXT+k4R8avWrUq49j33ntvSscBAAAAAAAAAGA6mPoNAAAAAAAAAMgnhjSwFxUV6Sc/+YlqamoUCAR02mmn6eSTT07u93q9OnDggN566y3F43HF43GVlJTosccek8lkmvZxTznlFPn9fr355psaHh5WQUHqb+fIpVM/fKJ+Mqeeemry8cjISNrYI/dPVAsAAAAAALkiFotJkob6dhqSL5EnkRcAAMwNpn4DAAAAAAAAAPKJYV3Wp59+ul5++WVt2LBBL7zwwpim8VdffVXxeDz532effbYefvhh/dVf/dWMjnneeefJ7/fr4MGDCgQCOuecc1LGPfPMM8nH1dXVUzrGiSeeKIfDoe7ubkUiEcXj8Qmb7v/4xz8mH59wwglTOg4AAAAAAHMtEolIkvq62gzPO9XP3wAAAAAAAAAAAACAhcHQMeFr1qzR888/r+eee04//elPtW3bNu3evVsjIyMqKSnRmWeeqUsuuUQXXHCBIcerr69Xa2urJGnz5s0pG9hHR0f10EMPSZKOPvporV+/fsrH+dznPqe77rpL+/bt069//Wt98pOfTBnX0dGRfHzeeedN+TgAAAAAAMwlp9MpSSqpbVJhyeoZ5xvq26m+rrZkXgAAAAAAAAAAAAAAPszQBvaE8847b04auM8++2x5PB75/X498MAD2rBhg84999wxMW1tbQqFQpKkm266SYWFhWP2P/3008mm9g0bNujBBx8cd5x/+Id/0D333KOBgQHdfPPNeu6553TUUUeNiWlvb9fTTz8tSbrooou0evXML/wDAAAAADCbrFarJKmwZLWKVqwxPC8AAJgfRkZG5Pf71dvbq9LSUnk8HlkslmyXBQAAAAAAAADIU+ZsFzBTmzZtktVq1fDwsC688EK1trbqt7/9rZ566ildd911+upXvypJWrt2rZqamqZ1DIfDoa9//euSpNdff11nn322Nm/erEAgoKeeeko33nijrr76aknSUUcdpbvuusuQ7w0AAAAAAAAAgGzq6OjQmjVrtH79el1xxRVav3691qxZM2ZFUgAAAAAAAAAApsKQCez/63/9L3m9Xn36059WQcGsDHWf0JlnnqlHH31UXq9X+/bt0y233DIuZu3atdq6dauWLl067eP8f//f/6f3339f3/rWt7R9+3Z98YtfHBdz3HHHqbOzUyeddNK0jwMAAAAAAAAAQC7o6OhQY2OjamtrtWXLFpWXlysYDKqlpUWNjY3y+XxqaGjIdpkAAAAAAAAAgDxjyAT2H/3oR6qrq9OKFSt0/fXX67nnnjMibcYuvvhivfbaa/rKV76itWvXymaz6eijj9ZZZ52lb33rW3rllVe0Zs3Ml0JvbW3V888/r7/5m7+R0+lUUVGRli1bpo997GP6xje+oTfeeEPnnnuuAd8RAAAAAAAAAADZMzIyoqamJtXW1qqzs1OVlZVasmSJKisr1dnZqdraWm3cuFEjIyPZLhUAAAAAAAAAkGcMGZe+dOlS7d+/X++//76++93v6rvf/a4cDoeuuOIKXXHFFTr11FONOExaJ554ou68807deeedU3peTU2N4vF4xvHnnnsuTeoAAAAAAAAAgHnN7/crEoloy5YtMpvHzsIxm81qbm5WVVWV/H6/ampqslMkAAAAAAAAACAvGTKBfffu3frxj3+sSy+9VIsWLVI8Htc777yjb37zm/roRz+qM844Q3fccYd6enqMOBwAAAAAAAAAAJhFvb29kqTy8vKU+xPbE3EAAAAAAAAAAGTKkAb2oqIife5zn9Njjz2md999V/fff78+8YlPyGQyKR6P67XXXtM//uM/yul0av369XrggQe0d+9eIw4NAAAAAAAAAAAMVlpaKkkKBoMp9ye2J+IAAAAAAAAAAMhUgdEJjzrqKH3xi1/UF7/4RfX29uqRRx7Rww8/rEAgoHg8rmeffVbPPvusbrjhBn3mM5+R1+tVQ0OD0WUAAAAAAADAQN3d3YpGo2ljQqHQmK/p2O12ORwOQ2oDABjP4/HI6XSqpaVFnZ2dMpv/Mg9ndHRUra2tKisrk8fjyWKVAAAAAAAAAIB8ZHgD+5FKS0v1la98RV/5yle0Y8cOtbe365FHHtGOHTs0ODiozs5O/fSnP9Xw8PBslgEAAAAAAIAZ6O7u1smukzUQG8go3uv1ThpTbC3W9vB2mtgBIEdZLBa1tbWpsbFR9fX1am5uVnl5uYLBoFpbW9XV1SWfzyeLxZLtUgEAAAAAAAAAeWZWG9iPdNJJJ+n222/X7bffrkceeUTXX3+99uzZo3g8PlclAAAAAAAAYBqi0agGYgNade0qFa0smjBu9NCohqJDKrQXyrzIPGHc4K5B9dzbo2g0SgM7AOSwhoYG+Xw+NTU1qaqqKrm9rKxMPp+P1VUBAAAAAAAAANMyZw3s7733nh599FH98Ic/1EsvvTRXhwUAAAAAAIBBilYWyeq0pg9aOze1AADmRkNDg+rq6uT3+9Xb26vS0lJ5PB4mrwMAAAAAAAAApm1WG9gPHjyojo4OPfzww/r1r3+tkZGR5MR1k8mk6upqXXnllbNZAgAAAAAAAAAAmAGLxaKamppslwEAAAAAAAAAmCcMb2AfHh7Wz3/+cz388MP62c9+plgsJknJxvVTTjlFV155pa644gqdeOKJRh8eAAAAAAAAAAAAAAAAAAAAAJCjDGtg9/v9+uEPfyifz6cPPvhA0l+a1k844QR94Qtf0JVXXqnTTz/dqEMCAAAAAAAAAAAAAAAAAAAAAPKIIQ3sJ554onp6eiT9pWl92bJlamxs1JVXXqnzzz9fJpPJiEMBAAAAAAAAAAAAAAAAAAAAAPKUIQ3sO3fulCQVFRXpoosu0pVXXqmLLrpIixYtMiI9AAAAAAAAAAAAAAAAAAAAAGAeMKSBff369bryyiv1uc99TsuWLTMiJQAAAAAAAAAAQE7r7u5WNBpNGxMKhcZ8Tcdut8vhcBhSGwAAAAAAAADkKkMa2H/9618bkQYAAAAAAAAAACAvdHd362SXWwOx/ozivV7vpDHFVpu2h0M0sQMAAAAAAACY1wxpYAcAAAAAAAAAAFhIotGoBmL9KqltUmHJ6gnj4sOHNLz3XRUsO16mgkUTxg317VRfV5ui0SgN7AAAAAAAAADmtVlpYA8EAnryyScVDAb1/vvvS5KOOeYYlZeX65Of/KQqKipm47AAAAAAAAAAAABzqrBktYpWrEkftOqUuSkGAAAAAAAAAPKAoQ3sr7/+uq699lq99NJLE8bccsstOuecc/Td735Xp512mpGHBwAAAAAAAAAAAAAAAAAAAADkMMMa2J988kldfPHFOnTokOLxuCSpsLBQJSUlkqS+vj4NDQ1Jkn7729/q7LPPVldXl/76r//aqBIAAAAAAAAwgf7+foXD4THbYrGYIpGInE6nrFbrmH0ul0s2m20uSwQAAAAAAAAAAACwABjSwB6NRnXZZZdpcHBQZrNZX/rSl/R3f/d3OvPMM1VQcPgQIyMjeuWVV3Tffffpe9/7ngYHB3XZZZdpx44dySZ3AAAAAAAAzI5wOKyKioqM4wOBgNatWzeLFQEAAAAAAAAAAABYiAxpYN+0aZP27t2rRYsW6Sc/+Yk+9alPjYuxWCw666yzdNZZZ+lzn/ucLr74Yu3du1ebNm3S17/+dSPKAAAAAAAAwARcLpcCgcCYbaFQSF6vV+3t7XK73ePiAQAAAAAAAAAAAMBohjSwb926VSaTSTfccEPK5vUPu/DCC3XjjTfqzjvv1NatW2lgBwAAAAAAmGU2m23Cieput5tp6wAAAAAAAAAAAADmhNmIJG+//bYk6ZJLLsn4OYnYt956y4gSAAAAAAAAAAAAAAAAAAAAAAA5zpAG9oGBAUnS4sWLM35OInZwcNCIEgAAAAAAAAAAAAAAAAAAAAAAOc6QBvYVK1ZIkl555ZWMn5OIPf74440oAQAAAAAAAAAAAAAAAAAAAACQ4wqMSOLxeNTe3q5vfvObuvzyy3XUUUeljd+/f7++9a1vyWQyyePxGFECAAAAACCP9ff3KxwOj9kWCoXGfD2Sy+WSzWabk9oWgqG+nWn3x4cPaXjvuypYdrxMBYumnQcAABiju7tb0Wg0bUy691IfZrfb5XA4DKkNAAAAAAAAAIDJGNLAft1116m9vV1vv/22Pv7xj+v+++/XWWedlTJ227Ztuvbaa/XHP/5RJpNJ1113nRElAAAAAADyWDgcVkVFRcp9Xq933LZAIKB169bNdlnznt1uV7HVpr6uNsNyFlttstvthuUDAABjdXd362SXWwOx/oziU72X+rBiq03bwyGa2AEAAAAAAAAAc8KQBvbq6mpdf/31+q//+i+9/vrrOuecc3TqqafqnHPO0XHHHSeTyaR3331XL774ov7whz8kn3f99derurraiBIAAAAAAHnM5XIpEAiM2RaLxRSJROR0OmW1WsfFY+YcDoe2h0MZTXD1er1qb2+X2+1OG8sEVwAAZlc0GtVArF8ltU0qLFk9YdxUVlDp62pTNBrlNRwAAAAAAAAAMCcMaWCXpP/4j/+QzWbTnXfeqdHRUQWDwTHN6pIUj8clSWazWRs3btQ3v/lNow4PAAAAAMhjNpst5UR1bnqefQ6HI+NmNbfbzeR7AAByRGHJahWtWJM+aNUpc1PMAhWLxSQdvgnACIk8ibwAAAAAAAAAMF8Z1sBuMpn0b//2b7rqqqt0zz336Mknn9SOHTvGxJx00kn65Cc/qf/9v/+3ysvLjTo0AAAAAAAAAADAnIpEIpKkvq42w/NyIycAAAAAAACA+cywBvaE8vJyfec735EkHTp0SB988IEkafny5Vq0aOJlSgEAAAAAAAAAAPKF0+mUJJXUNqmwZPWM8w317VRfV1syLwAAAAAAAADMV4Y3sB9p0aJFOv7442fzEAAAAAAAAJhlsVhMkjS4a9CQfIk8ibwAAOQjq9UqSSosWa2iFWsMzwsAAAAAAAAA89W0Gth//vOf69Zbb5Ukbdy4UVdccUXGz3344Yd1xx13SJL+7d/+TZ/85CenUwIAAAAAAADmSCQSkST13NtjeN7q6mpDcwIAAAAAAAAAAADIbVNuYI/H4/rKV76iHTt26JOf/OSUmtcl6Qtf+IIefPBBPfnkk2pqatKrr7461RIAAAAAAAAwh5xOpyRp1bWrVLSyaMb5BncNqufenmReAEDmEqtXDPXtNCRfIg+rYgAAAAAAAAAA5sqUG9h/85vf6I033pDFYtFdd9015QOaTCbdfffdOv300xUMBvXMM8/o/PPPn3IeAAAAAAAAzA2r1SpJKlpZJKvTanheAEDmEqti9HW1GZ6XVTEAAAAAAAAAAHNhyg3sjz32mCTpggsu0CmnnDKtg55yyin61Kc+pZ///Ofy+Xw0sAMAAAAAAAAAkIHE6hUltU0qLFk943xDfTvV19XGqhgAAAAAAAAAgDkz5Qb2l156SSaTSRdffPGMDlxbW6snnnhCv/3tb2eUBwAAAAAAAACAhSKxekVhyWoVrVhjeF4AAAAAAAAAAGabeapPeOeddyRJJ5988owOvHbtWkl/We4UAAAAAAAAAAAAAAAAAAAAADC/TbmBfe/evZKkY445ZkYHTjx/3759M8oDAAAAAAAAAAAAAAAAAAAAAMgPU25gP+qooyRJe/bsmdGBE89funTpjPIAAAAAAAAAAAAAAAAAAAAAAPLDlBvYjz32WEnSf//3f8/owKFQSJJ03HHHzSgPAAAAAAAAAAAAAAAAAAAAACA/TLmB/eyzz1Y8HtfPfvazGR34Jz/5iUwmkz72sY/NKA8AAAAAAAAAAAAAAAAAAAAAID9MuYH9M5/5jCTpV7/6lZ577rlpHfTZZ5/Vr371qzH5AAAAAAAAAAAAAAAAAAAAAADz25Qb2D/3uc/J6XQqHo/rsssu044dO6b0/DfeeEOXX365TCaTnE6nGhsbp1oCAAAAAAAAAAAAAAAAAAAAACAPTbmBvbCwUHfccYckaffu3aqoqNCmTZt08ODBtM87cOCA7r77bp111lnavXu3JKmtrU0FBQXTKBsAAAAAAAAAAAAAAAAAAAAAkG+m1T3e0NCg22+/Xf/yL/+igwcP6uabb9Ztt90mj8ejiooKHXfccVq8eLEOHjyod999V7/73e/k9/t18OBBxeNxSdLtt9+u+vp6I78XAAAAAAAAAAAAAAAAAAAAAEAOm/b489tuu02rVq3SjTfeqP7+fh04cEC/+MUv9Itf/CJlfKJx3Waz6T//8z919dVXT/fQAAAAAAAAAAAAAAAAAAAAAIA8ZJ7Jk6+55hq98cYbuvnmm2W32xWPxyf8n91uV1NTk9544w2a1wEAAAAAAAAAAAAAAAAAAABgAZr2BPaElStX6o477tAdd9yhP/zhD3r11VfV19en/fv3a+nSpSopKdHpp5+uU0891Yh6AQAAAAAAAAAAAAAAAAAAAAB5asYN7Ec69dRTaVQHAAAAAAAAAAAAAAAAAAAAAKRkznYBAAAAAAAAAAAAAAAAAAAAAICFgQZ2AAAAAAAAAAAAAAAAAAAAAMCcoIEdAAAAAAAAAAAAAAAAAAAAADAnaGAHAAAAAAAAAAAAAAAAAAAAAMwJGtgBAAAAAAAAAAAAAAAAAAAAAHOiINsFAAAAAACA3NHf369wODxmWygUGvP1SC6XSzabbU5qAwAAfzHUtzPt/vjwIQ3vfVcFy46XqWDRtPMAAAAAAAAAAGC0edPA/s477+jb3/62tm7dqp07d6qoqEgf+chHdPnll+vLX/7yjC6mP/jgg7rmmmsyit28ebOuvvrqaR8LAAAAAIBsCofDqqioSLnP6/WO2xYIBLRu3brZLgsAAPyZ3W5XsdWmvq42w3IWW22y2+2G5QMAAAAAAAAAIJ150cD+s5/9TF6vV/v27Utu6+/v17Zt27Rt2zbdf//92rp1q9asWZPFKgEAAAAAyH0ul0uBQGDMtlgspkgkIqfTKavVOi4eAADMHYfDoe3hkKLRaNq4UCgkr9er9vZ2ud3utLF2u10Oh8PIMgEAAAAAAAAAmFDeN7C/8sor+vznP69YLKYlS5aoublZ69evVywW0yOPPKL77rtPb7zxhi666CJt27ZNS5cundHxfvnLX2rlypUT7l+1atWM8gMAAAAAkE02my3lRPXq6uosVAMAAFJxOBwZN5y73W5WSwEAAAAAAAAA5JS8b2C/6aabFIvFVFBQoF/96lc699xzk/s+8YlP6KSTTtJXv/pVvfHGG2pra9O//uu/zuh4a9euldPpnFnRAAAAAAAAAAAAAAAAAAAAALAAmbNdwEy89NJL8vv9kqQvfelLY5rXE5qampLLo27atElDQ0NzWiMAAAAAAAAAAAAAAAAAAAAA4LC8bmDv7OxMPr7mmmtSxpjNZl111VWSpD179uipp56ai9IAAAAAAAAAAAAAAAAAAAAAAB+S1w3szz33nCRp8eLFqqiomDDu/PPPTz5+/vnnZ70uAAAAAAAAAAAAAAAAAAAAAMB4ed3AHgqFJElr1qxRQUHBhHEul2vcc6brmmuu0cqVK7Vo0SLZ7XZVVlbqn/7pn/Q///M/M8oLAAAAAAAAAAAAAAAAAAAAAPPdxF3fOW5gYEDRaFSStGrVqrSxy5cv1+LFi3Xw4EHt3LlzRsd9+umnk4/7+vrU19enF198UW1tbbr77rt13XXXzSg/AAAAAABArhrcNZh2/+ihUQ1Fh1RoL5R50cRzEybLAwBAPhnqS3/dIT58SMN731XBsuNlKlg07TwAAAAAAAAAMF/kbQP7/v37k4+XLFkyaXyigf3AgQPTOt5f/dVfqaGhQeeee65Wr14tSXrrrbf02GOPyefzaWBgQH//938vk8mka6+9Nm2uwcFBDQ7+5ULtvn37plUTAAAAAADAXLDb7Sq2Fqvn3h7DchZbi2W32w3LBwDAXDv8+mhTX1ebYTmLrTZeHwEAAAAAAADMe3nbwD4wMJB8vGjRxBNLEoqKiiRJsVhsyse69NJLtWHDBplMpjHbP/axj+nzn/+8urq61NDQoKGhIX3lK1/RJZdcohUrVkyYr7W1VbfffvuU6wAAAAAAAMgGh8Oh7eHtydXwJhIKheT1etXe3i6325021m63y+FwGFkmAABz6vDrY4jXRwAAAAAAAACYorxtYC8uLk4+PnTo0KTxiYnnVqt1ysdatmxZ2v21tbX653/+Z912223q7+/XAw88oFtvvXXC+ObmZt18883J/963b19yqjsAAAAAAEAucjgcGTfUud1urVu3bpYrAgAg+3h9BAAAAAAAAICpM2e7gOlaunRp8vGBAwcmjT948KAkacmSJbNSz7XXXpuc0P7MM8+kjS0qKtJRRx015n8AAAAAAAAAAAAAAAAAAAAAMN/lbQN7cXGxSkpKJEk9PT1pYz/44INkA/tsTTo/7rjjkvX8z//8z6wcAwAAAAAAAAAAAAAAAAAAAADyWd42sEvSKaecIkl68803NTw8PGFcOBxOPna73bNWT2ICOwAAAAAAAAAAAAAAAAAAAABgvLxuYD/vvPMkSQcPHlQgEJgw7plnnkk+rq6unpVa3nvvPUWjUUnSypUrZ+UYAAAAAAAAAAAAAAAAAAAAAJDP8rqBvb6+Pvl48+bNKWNGR0f10EMPSZKOPvporV+/flZquffeexWPxyVJ559//qwcAwAAAAAAAAAAAAAAAAAAAADyWV43sJ999tnyeDySpAceeEAvvPDCuJi2tjaFQiFJ0k033aTCwsIx+59++mmZTCaZTCZdffXV454fiUT0yiuvpK2jq6tLX//61yVJVqtV11xzzXS+HQAAAAAAAAAAAAAAAAAAAACY1wqyXcBMbdq0SdXV1YrFYrrwwgt1yy23aP369YrFYnrkkUd07733SpLWrl2rpqamKeePRCJav369zj33XF188cU6/fTTddxxx0mS3nrrLfl8Pvl8vuT09TvuuEMnnHCCcd8gAAAAAAAAAAAAAAAAAAAAAMwTed/AfuaZZ+rRRx+V1+vVvn37dMstt4yLWbt2rbZu3aqlS5dO+zgvvPBCygnvCTabTXfddZeuvfbaaR8DAAAAAAAAAAAAAAAAAAAAAOazvG9gl6SLL75Yr732mjZt2qStW7eqp6dHixYt0po1a3TZZZfphhtukM1mm1buiooKtbe364UXXtC2bdvU29uraDSq4eFhLV++XKeeeqr++q//Wn/7t3+bnMwOAAAAAAAAAAAAAAAAAAAAABhvXjSwS9KJJ56oO++8U3feeeeUnldTU6N4PD7h/qVLl+rKK6/UlVdeOdMSAQAAAAAAAAAAAAAAAAAAAGBBM2e7AAAAAAAAAAAAAAAAAAAAAADAwkADOwAAAAAAAAAAAAAAAAAAAABgTtDADgAAAAAAAAAAAAAAAAAAAACYEzSwAwAAAAAAAAAAAAAAAAAAAADmBA3sAAAAAAAAAAAAAAAAAAAAAIA5QQM7AAAAAAAAAAAAAAAAAAAAAGBO0MAOAAAAAAAAAAAAAAAAAAAAAJgTNLADAAAAAAAAAAAAAAAAAAAAAOYEDewAAAAAAAAAAAAAAAAAAAAAgDlRkO0CAAAAAAAAAAAA5oP+/n6Fw+Ex20Kh0JivR3K5XLLZbHNSGwAAAAAAAADkChrYAQAAAAAAAAAADBAOh1VRUZFyn9frHbctEAho3bp1s10WAAAAAAAAAOQUGtgBAAAAAAAAAAAM4HK5FAgExmyLxWKKRCJyOp2yWq3j4gEAAAAAAABgoaGBHQAAAAAAAAAAwAA2my3lRPXq6uosVAMAAAAAAAAAucmc7QIAAAAAAAAAAAAAAAAAAAAAAAsDDewAAAAAAAAAAAAAAAAAAAAAgDlRkO0CAAAAAAAAAADA9PX39yscDo/ZFgqFxnw9ksvlks1mm5PaAAAAAAAAAAD4MBrYAQAAAAAAAADIY+FwWBUVFSn3eb3ecdsCgYDWrVs322UBAAAAAAAAAJASDewAAAAAAAAAAOQxl8ulQCAwZlssFlMkEpHT6ZTVah0XDwAAAAAAAABAttDADgAAAAAAAABAHrPZbCknqldXV2ehGgAAAAAAAAAA0jNnuwAAAAAAAAAAAAAAAAAAAAAAwMJAAzsAAAAAAAAAAAAAAAAAAAAAYE7QwA4AAAAAAAAAAAAAAAAAAAAAmBM0sAMAAAAAAAAAAAAAAAAAAAAA5gQN7AAAAAAAAAAAAAAAAAAAAACAOUEDOwAAAAAAAAAAAAAAAAAAAABgTtDADgAAAAAAAAAAAAAAAAAAAACYEzSwAwAAAAAAAAAAAAAAAAAAAADmBA3sAAAAAAAAAAAAAAAAAAAAAIA5QQM7AAAAAAAAAAAAAAAAAAAAAGBO0MAOAAAAAAAAAAAAAAAAAAAAAJgTNLADAAAAAAAAAAAAAAAAAAAAAOYEDewAAAAAAAAAAAAAAAAAAAAAgDlBAzsAAAAAAAAAAAAAAAAAAAAAYE7QwA4AAAAAAAAAAAAAAAAAAAAAmBM0sAMAAAAAAAAAAAAAAAAAAAAA5gQN7AAAAAAAAAAAAAAAAAAAAACAOUEDOwAAAAAAAAAAAAAAAAAAAABgTtDADgAAAAAAAAAAAAAAAAAAAACYEzSwAwAAAAAAAAAAAAAAAAAAAADmBA3sAAAAAAAAAAAAAAAAAAAAAIA5QQM7AAAAAAAAAAAAAAAAAAAAAGBO0MAOAAAAAAAAAAAAAAAAAAAAAJgTNLADAAAAAAAAAAAAAAAAAAAAAOZEQbYLAAAAAAAAQP7p7+9XOBwesy0UCo35eiSXyyWbzTYntQEAAAAAAAAAAADIXTSwAwAAAAAAzEPd3d2KRqNpY9I1nH+Y3W6Xw+FI/nc4HFZFRUXKWK/XO25bIBDQunXrJj0OAAAAAAAAAAAAgPmNBnYAAAAAAIB5pru7W27XyeqPDWQUn6rh/MNs1mKFwtuTTewul0uBQGBMTCwWUyQSkdPplNVqHbPP5XJlWD0AAAAAAAAA4P9n797jbKr3x4+/P3uGmWHcx63IbRJFSIRJLpVOSUl11ElSp1LKVxJFp3siRSkpRfdQqXTRqUSEQpwimsk9d+U65m5m3r8//PZqj7kzs+c94/V8PDwas9dee+31epyzrL3fe20AAMoyBtgBAAAAAADKmL1790pScoq8e1WENK/py3W55HSVLQczpWFVn0SEulyXi/0rU/p9kix79+71BtgrVKiQ4xXVY2JiTvwJAAAAAAAAAAAAACizGGAHAAAAAAAoo5rX9Mk5dUPyXCamfpA2BgAAAAAAAAAAAABEJPdLcAEAAAAAAAAAAAAAAAAAAAAAUIQYYAcAAAAAAAAAAAAAAAAAAAAABAUD7AAAAAAAAAAAAAAAAAAAAACAoGCAHQAAAAAAAAAAAAAAAAAAAAAQFAywAwAAAAAAAAAAAAAAAAAAAACCggF2AAAAAAAAAAAAAAAAAAAAAEBQlJkB9j/++EOGDRsmzZo1k4oVK0r16tWlXbt28swzz0hSUlKxPGZSUpI0btxYnHPinJOGDRsWy+MAAAAAAAAAAAAAAAAAAAAAQFkQWtIbUBQ+//xz6devn8THx3u/S0pKkhUrVsiKFStk6tSpMmfOHImOji7Sx3344Ydl8+bNRbpOAAAAAAAAAAAAAAAAAAAAACirSv0V2H/++Wfp27evxMfHS2RkpIwePVp++OEHmTdvntx2220iIrJu3Trp2bOnHD58uEgf9/nnn5fw8HCpVKlSka0XAAAAAAAAAAAAAAAAAAAAAMqqUj/APmTIEElOTpbQ0FD55ptvZNSoUdKxY0fp3r27vPrqqzJu3DgROTrEPn78+CJ5zIyMDLntttskIyNDRo0aJdWrVy+S9QIAAAAAAAAAAAAAAAAAAABAWVaqB9iXL18uixYtEhGRf//739KxY8dsywwbNkyaN28uIiITJ06UI0eOnPDjTpw4UVauXClnnHGG3H///Se8PgAAAAAAAAAAAAAAAAAAAAA4GZTqAfbZs2d7P9988805LuPz+aR///4iInLw4EH57rvvTugx//jjD3n44YdFROSVV16R8uXLn9D6AAAAAAAACiIjI0MWLFggM2bMkAULFkhGRkZJbxIAAAAAAAAAAAAAFFqpHmBfvHixiIhUrFhR2rZtm+tyXbp08X5esmTJCT3moEGDJDExUW688Ubp2rXrCa0LAAAAAACgID7++GOJjo6Wbt26yb/+9S/p1q2bREdHy8cff1zSmwYAAAAAAAAAAAAAhVKqB9hjY2NFRCQ6OlpCQ0NzXa5Zs2bZ7nM8Zs6cKV9++aVUq1ZNxo8ff9zrAQAAAAAAKKiPP/5YrrnmGmnZsqX8+OOPcvjwYfnxxx+lZcuWcs011zDEDgAAAAAAAAAAAKBUKbUD7CkpKbJ3714REalXr16ey1arVk0qVqwoIiLbtm07rsc7cOCA3HPPPSIiMnbsWKlZs+ZxrQcAAAAAAKCgMjIyZNiwYXL55ZfL7NmzpUOHDhIZGSkdOnSQ2bNny+WXXy733XefZGRklPSmAgAAAAAAAAAAAECBlNoB9sOHD3s/R0ZG5ru8f4A9ISHhuB5v+PDhsmfPHunYsaPcdtttx7UOv9TUVImPj8/yBwAAAAAA4FiLFi2SLVu2yKhRo8Tny/oyjs/nk5EjR8rmzZtl0aJFJbSFAAAAAAAAAAAAAFA4pXaAPSUlxfu5fPny+S4fFhYmIiLJycmFfqzvv/9eXn/9dQkNDZVXXnlFnHOFXkegMWPGSJUqVbw/9evXP6H1AQAAAACAsmnXrl0iItKiRYscb/f/3r8cAAAAAAAAAAAAAFhXagfYw8PDvZ/T0tLyXT41NVVERCIiIgr1OKmpqXL77beLqsqQIUPk7LPPLtyG5mDkyJFy6NAh78+2bdtOeJ0AAAAAAKDsqVu3roiIrFmzJsfb/b/3LwcAAAAAAAAAAAAA1pXaAfZKlSp5PyckJOS7fGJiooiIREZGFupxRo8eLb///rvUr19fHnvsscJtZC7CwsKkcuXKWf4AAAAAAAAcq3PnztKwYUN56qmnJDMzM8ttmZmZMmbMGGnUqJF07ty5hLYQAAAAAAAAAAAAAAontKQ34HiFh4dLjRo1ZN++fbJ9+/Y8lz1w4IA3wF6/fv1CPc7TTz8tIiIXXXSRfP755zku4193YmKizJw5U0REatWqJd27dy/UYwEAAAAAAAQKCQmR8ePHyzXXXCO9e/eWkSNHSosWLWTNmjUyZswY+eKLL2TWrFkSEhJS0psKAAAAAAAAAAAAAAVSagfYRUTOPPNMWbRokWzYsEHS09MlNDTnpxMXF+f93Lx580I9RlpamoiIvPHGG/LGG2/kuezevXvl+uuvFxGRLl26MMAOAAAAAABOWJ8+fWTWrFkybNgw6dSpk/f7Ro0ayaxZs6RPnz4luHUAAAAAAAAAAAAAUDileoD9/PPPl0WLFkliYqKsXLlSzjvvvByXW7hwofdzTExMsDYPAAAAAACgSPTp00euvPJKWbRokezatUvq1q0rnTt35srrAAAAAAAAAAAAAEodX0lvwIno3bu393NuV0fPzMyUt99+W0REqlatKt26dSvUY6hqvn8aNGggIiINGjTwfrdgwYLjek4AAAAAAAA5CQkJka5du8r1118vXbt2ZXgdAAAAAAAAAAAAQKlUqgfY27dvL507dxYRkWnTpsmPP/6YbZnx48dLbGysiIgMGTJEypUrl+X2BQsWiHNOnHMyYMCAYt9mAAAAAAAAAAAAAAAAAAAAADhZhZb0BpyoiRMnSkxMjCQnJ0uPHj1k1KhR0q1bN0lOTpaZM2fKq6++KiIiTZs2lWHDhpXw1gIAAAAAAAAAAAAAAAAAAADAyavUD7C3adNG3n//fenXr5/Ex8fLqFGjsi3TtGlTmTNnjlSqVKkEthAAAAAAAAAAAAAAAAAAAAAAICLiK+kNKAq9evWS1atXy9ChQ6Vp06ZSoUIFqVq1qpx77rny9NNPy88//yzR0dElvZkAAAAAAAAAAAAAAAAAAAAAcFIr9Vdg92vQoIFMmDBBJkyYUKj7de3aVVT1hB57y5YtJ3R/AAAAAAAAAAAAAAAAAAAAADgZlIkrsAMAAAAAAAAAAAAAAAAAAAAA7GOAHQAAAAAAAAAAAAAAAAAAAAAQFAywAwAAAAAAAAAAAAAAAAAAAACCggF2AAAAAAAAAAAAAAAAAAAAAEBQhJb0BgAAAAAAAKBoJScni4hI7N6MIlmffz3+9QIAAAAAAAAAAADA8WKAHQAAAAAAoIzZsmWLiIj0+zilyNcbExNTpOsEAAAAAAAAAAAAcHJhgB0AAAAAAKCMadiwoYiIvNsnXJpHhZzw+mL3Zki/j1O89QIAAAAAAAAAAADA8WKAHQAAAAAAoIyJiIgQEZHmUSFyTt0TH2A/dr0AAAAAAAAAAAAAcLx8Jb0BAAAAAAAAAAAAAAAAAAAAAICTAwPsAAAAAAAAAAAAAAAAAAAAAICgYIAdAAAAAAAAAAAAAAAAAAAAABAUDLADAAAAAAAAAAAAAAAAAAAAAIKCAXYAAAAAAAAAAAAAAAAAAAAAQFAwwA4AAAAAAAAAAAAAAAAAAAAACAoG2AEAAAAAAAAAAAAAAAAAAAAAQcEAOwAAAAAAAAAAAAAAAAAAAAAgKBhgBwAAAAAAAAAAAAAAAAAAAAAEBQPsAAAAAAAAAAAAAAAAAAAAAICgYIAdAAAAAAAAAAAAAAAAAAAAABAUDLADAAAAAAAAAAAAAAAAAAAAAIKCAXYAAAAAAAAAAAAAAAAAAAAAQFAwwA4AAAAAAAAAAAAAAAAAAAAACIrQkt4AAAAAAAAAZJeUlCRxcXFZfpecnCxbtmyRhg0bSkRERJbbmjVrJhUqVAjmJgIAAAAAAAAAAABAoTHADgAAAAAAYFBcXJy0bdu2wMuvXLlSzjnnnGLcIgAAAAAAAAAAAAA4cQywAwAAAAAAGNSsWTNZuXJllt/FxsZKv3795N1335XmzZtnWx4AAAAAAAAAAAAArGOAHQAAAAAAwKAKFSrkekX15s2bc7V1AAAAAAAAAAAAAKWSr6Q3AAAAAAAAAAAAAAAAAAAAAABwcmCAHQAAAAAAAAAAAAAAAAAAAAAQFAywAwAAAAAAAAAAAAAAAAAAAACCggF2AAAAAAAAAAAAAAAAAAAAAEBQMMAOAAAAAAAAAAAAAAAAAAAAAAgKBtgBAAAAAAAAAAAAAAAAAAAAAEHBADsAAAAAAAAAAAAAAAAAAAAAICgYYAcAAAAAAAAAAAAAAAAAAAAABAUD7AAAAAAAAAAAAAAAAAAAAACAoGCAHQAAAAAAAAAAAAAAAAAAAAAQFAywAwAAAAAAAAAAAAAAAAAAAACCggF2AAAAAAAAAAAAAAAAAAAAAEBQMMAOAAAAAAAAAAAAAAAAAAAAAAgKBtgBAAAAAAAAAAAAAAAAAAAAAEHBADsAAAAAAAAAAAAAAAAAAAAAICgYYAcAAAAAAAAAAAAAAAAAAAAABAUD7AAAAAAAAAAAAAAAAAAAAACAoGCAHQAAAAAAAAAAAAAAAAAAAAAQFAywAwAAAAAAAAAAAAAAAAAAAACCggF2AAAAAAAAAAAAAAAAAAAAAEBQMMAOAAAAAAAAAAAAAAAAAAAAAAgKBtgBAAAAAAAAAAAAAAAAAAAAAEERWtIbAAAAAAAAAJGtW7fK3r1781wmNjY2y3/zWw4AAAAAAAAAAAAArGGAHQAAAAAAoIRt3bpVzmjWXFKSkwq0fL9+/Qq0XOxfmXnenpyusuVgpjSs6pOIUHfc6wEAAAAAAAAAAACAgmKAHQAAAAAAoITt3btXUpKTpMblw6Rcjfq5LqfpaZJ+aI+EVqktLrR8rsulbF8r8fNfk36fJBfZNlaICJeoqKgiWx8AAAAAAAAAAACAkxMD7AAAAAAAAEaUq1FfwupE571QvTMLtK6DKvLuu+9K8+bNc10mNjZW+vXrl+9yIiJRUVFy2mmnFeixAQAAAAAAAAAAACA3DLADAAAAAACUUc2bN5dzzjmnyJYDAAAAAAAAAAAAgBPlK+kNAAAAAAAAAAAAAAAAAAAAAACcHMrEAPsff/whw4YNk2bNmknFihWlevXq0q5dO3nmmWckKSnphNYdGxsrkyZNkptuuknOOeccqVevnoSHh0vFihWlcePG0rdvX/n0009FVYvo2QAAAAAAAAAAAAAAAAAAAABA2RRa0htwoj7//HPp16+fxMfHe79LSkqSFStWyIoVK2Tq1KkyZ84ciY6OPq71jx49Wt57770cb9u8ebNs3rxZPvjgA+nSpYt89NFHUqNGjeN6HAAAAAAAAAAAAAAAAAAAAAAo60r1APvPP/8sffv2leTkZImMjJSRI0dKt27dJDk5WWbOnCmvvfaarFu3Tnr27CkrVqyQSpUqFfoxQkND5bzzzpOYmBhp2bKl1KlTR2rWrCkHDhyQuLg4mTJliqxZs0YWLlwovXr1ksWLF4vPVyYubA8AAAAAAAAAAAAAAAAAAAAARapUD7APGTJEkpOTJTQ0VL755hvp2LGjd1v37t3l9NNPlxEjRsi6detk/Pjx8uijjxb6MaZOnSqhoTnvposuukjuvPNO+ec//ykff/yx/Pjjj/LFF1/IFVdccbxPCQAAAAAAAAAAAAAAAAAAAADKrFJ7qfDly5fLokWLRETk3//+d5bhdb9hw4ZJ8+bNRURk4sSJcuTIkUI/Tm7D634hISEyfPhw7+/+bQIAAAAAAAAAAAAAAAAAAAAAZFVqB9hnz57t/XzzzTfnuIzP55P+/fuLiMjBgwflu+++K5ZtqVSpkvdzSkpKsTwGAAAAAAAAAAAAAAAAAAAAAJR2pXaAffHixSIiUrFiRWnbtm2uy3Xp0sX7ecmSJcWyLTNnzvR+btasWbE8BgAAAAAAAAAAAAAAAAAAAACUdqElvQHHKzY2VkREoqOjJTQ096cROFDuv09R2Lt3r6xfv16mTp0qb7zxhoiIREVFyQ033FBkjwEAAAAAAAAAAAAAAAAAAAAAZUmpHGBPSUmRvXv3iohIvXr18ly2WrVqUrFiRUlMTJRt27ad0ON27dpVFi5cmONtUVFR8sknn0jVqlVP6DEAAAAAAAAAAAAAAAAAAAAAoKzylfQGHI/Dhw97P0dGRua7fMWKFUVEJCEhoVi25//+7/8kNjZWzj///AItn5qaKvHx8Vn+AAAAAAAAAAAAAAAAAAAAAEBZV2qvwO5Xvnz5fJcPCwsTEZHk5OQTetw33nhDEhMTRVXl4MGDsmLFCnn55Zdl0qRJsmnTJpk6darUrl073/WMGTNGHnvssRPaFgAAAAAAAAAAAAAAAAAAAAAobUrlFdjDw8O9n9PS0vJdPjU1VUREIiIiTuhxGzVqJC1atJCWLVtK586dZejQobJ69Wq57LLL5IsvvpB27drJ9u3b813PyJEj5dChQ96fbdu2ndB2AQAAAAAAAAAAAAAAAAAAAEBpUCqvwF6pUiXv54SEhHyXT0xMFBGRyMjIIt+W8PBweeONN6RBgwaybds2GTFihEyfPj3P+4SFhXlXhQcAAAAAAPB/4KUl/QABAABJREFUa9yRfUXzIXf/ek702+gAAAAAAAAAAAAAoKiVygH28PBwqVGjhuzbty/fK54fOHDAG2CvX79+sWxPVFSUxMTEyNy5c+XTTz+VI0eOSLly5YrlsQAAAAAAQNmzZcsWERHZ98X4Il9vTExMka4TAAAAAAAAAAAAAE5EqRxgFxE588wzZdGiRbJhwwZJT0+X0NCcn0pcXJz3c/PmzYtte2rWrCkiIklJSbJ3716pW7dusT0WAAAAAAAoWxo2bCgiIjUuHyblapz4B/CP7Nsm+74Y760XAAAAAAAAAAAAAKwotQPs559/vixatEgSExNl5cqVct555+W43MKFC72fi/OKYzt27PB+joyMLLbHAQAAAAAAZU9ERISIiJSrUV/C6kQX+XoBAAAAAAAAAAAAwApfSW/A8erdu7f38xtvvJHjMpmZmfL222+LiEjVqlWlW7duxbIt27dvlx9//FFERBo0aCCVKlUqlscBAAAAAAAAAAAAAAAAAAAAgNKs1A6wt2/fXjp37iwiItOmTfMGyAONHz9eYmNjRURkyJAhUq5cuSy3L1iwQJxz4pyTAQMGZLv/unXrZP78+Xlux6FDh+Rf//qXpKWliYhI//79j+fpAAAAAAAAAAAAAAAAAAAAAECZF1rSG3AiJk6cKDExMZKcnCw9evSQUaNGSbdu3SQ5OVlmzpwpr776qoiING3aVIYNG1bo9e/cuVMuvPBCadWqlfTu3Vvatm0rderUkdDQUNm9e7csWbJEpk2bJrt37xYRkRYtWsgDDzxQpM8RAAAAAAAAAAAAAAAAAAAAAMqKUj3A3qZNG3n//felX79+Eh8fL6NGjcq2TNOmTWXOnDlSqVKl436cVatWyapVq/JcpmfPnvLGG29IhQoVjvtxAAAAAAAAAAAAAAAAAAAAAKAsK9UD7CIivXr1ktWrV8vEiRNlzpw5sn37dilfvrxER0fLtddeK3ffffdxD5XHxMTI119/Ld9++62sWLFCtm/fLnv27JGkpCSpXLmyNGrUSDp06CDXX3+9xMTEFPEzAwAAAAAAAAAAAAAAAAAAAICypdQPsIuINGjQQCZMmCATJkwo1P26du0qqprr7eXKlZMePXpIjx49TnQTAQAAAAAAAAAAAAAAAAAAAOCk5yvpDQAAAAAAAAAAAAAAAAAAAAAAnBzKxBXYAQAAAAAAyoIj+7blebump0n6oT0SWqW2uNDyx70eAAAAAAAAAAAAACgpDLADAAAAAACUsKioKAmPqCD7vhhfZOsMj6ggUVFRRbY+AAAAAAAAAAAAACgKDLADAAAAAACUsNNOO01+j4uVvXv35rlcbGys9OvXT959911p3rx5nstGRUXJaaedVpSbCQAAAAAAAAAAAAAnjAF2AAAAAAAAA0477bQCD5w3b95czjnnnGLeIgAAAAAAAAAAAAAoer6S3gAAAAAAAAAAAAAAAAAAAAAAwMmBAXYAAAAAAAAAAAAAAAAAAAAAQFAwwA4AAAAAAAAAAAAAAAAAAAAACAoG2AEAAAAAAAAAAAAAAAAAAAAAQcEAOwAAAAAAAAAAAAAAAAAAAAAgKBhgBwAAAAAAAAAAAAAAAAAAAAAEBQPsAAAAAAAAAAAAAAAAAAAAAICgCC3pDQAAAAAAAEDxS0pKkri4uCy/i42NzfLfQM2aNZMKFSoEZdsAAAAAAAAAAAAAnDwYYAcAAAAAADgJxMXFSdu2bXO8rV+/ftl+t3LlSjnnnHOKe7MAAAAAAAAAAAAAnGQYYAcAAAAAADgJNGvWTFauXJnld8nJybJlyxZp2LChREREZFseAAAAAAAAAAAAAIoaA+wAAAAAAAAngQoVKuR4RfWYmJgS2BoAAAAAAAAAAAAAJytfSW8AAAAAAAAAAAAAAAAAAAAAAODkwAA7AAAAAAAAAAAAAAAAAAAAACAoGGAHAAAAAAAAAAAAAAAAAAAAAAQFA+wAAAAAAAAAAAAAAAAAAAAAgKBggB0AAAAAAAAAAAAAAAAAAAAAEBQMsAMAAAAAAAAAAAAAAAAAAAAAgoIBdgAAAAAAAAAAAAAAAAAAAABAUDDADgAAAAAAAAAAAAAAAAAAAAAICgbYAQAAAAAAAAAAAAAAAAAAAABBwQA7AAAAAAAAAAAAAAAAAAAAACAoGGAHAAAAAAAAAAAAAAAAAAAAAAQFA+wAAAAAAAAAAAAAAAAAAAAAgKBggB0AAAAAAAAAAAAAAAAAAAAAEBQMsAMAAAAAAAAAAAAAAAAAAAAAgoIBdgAAAAAAAAAAAAAAAAAAAABAUDDADgAAAAAAAAAAAAAAAAAAAAAICgbYAQAAAAAAAAAAAAAAAAAAAABBwQA7AAAAAAAAAAAAAAAAAAAAACAoGGAHAAAAAAAAAAAAAAAAAAAAAAQFA+wAAAAAAAAAAAAAAAAAAAAAgKBggB0AAAAAAAAAAAAAAAAAAAAAEBQMsAMAAAAAAAAAAAAAAAAAAAAAgoIBdgAAAAAAAAAAAAAAAAAAAABAUDDADgAAAAAAAAAAAAAAAAAAAAAIitCS3gAAAAAAAABkl5SUJHFxcVl+Fxsbm+W/gZo1ayYVKlQIyrYBAAAAAAAAAAAAwPFigB0AAAAAAMCguLg4adu2bY639evXL9vvVq5cKeecc05xbxYAAAAAAAAAAAAAnBAG2AEAAAAAAAxq1qyZrFy5MsvvkpOTZcuWLdKwYUOJiIjItjwAAAAAAAAAAAAAWMcAOwAAAAAAgEEVKlTI8YrqMTExJbA1AAAAAAAAAAAAAFA0fCW9AQAAAAAAAAAAAAAAAAAAAACAkwMD7AAAAAAAAAAAAAAAAAAAAACAoGCAHQAAAAAAAAAAAAAAAAAAAAAQFAywAwAAAAAAAAAAAAAAAAAAAACCggF2AAAAAAAAAAAAAAAAAAAAAEBQMMAOAAAAAAAAAAAAAAAAAAAAAAgKBtgBAAAAAAAAAAAAAAAAAAAAAEHBADsAAAAAAAAAAAAAAAAAAAAAICgYYAcAAAAAAAAAAAAAAAAAAAAABAUD7AAAAAAAAAAAAAAAAAAAAACAoGCAHQAAAAAAAAAAAAAAAAAAAAAQFGVmgP2PP/6QYcOGSbNmzaRixYpSvXp1adeunTzzzDOSlJR0QutOSkqSjz/+WO68805p166dVKtWTcqVKyc1atSQjh07yqOPPiq7d+8uomcCAAAAAAAAAAAAAAAAAAAAAGVTaElvQFH4/PPPpV+/fhIfH+/9LikpSVasWCErVqyQqVOnypw5cyQ6OrrQ6169erXExMRIQkJCttv2798vS5culaVLl8pzzz0nr776qvTt2/eEngsAAAAAAAAAAAAAAAAAAAAAlFWl/grsP//8s/Tt21fi4+MlMjJSRo8eLT/88IPMmzdPbrvtNhERWbdunfTs2VMOHz5c6PXHx8d7w+sxMTEyZswYmTt3rvzvf/+Tr7/+WgYOHCg+n0/i4+PlhhtukP/+979F+vwAAAAAAAAAAAAAAAAAAAAAoKwo9VdgHzJkiCQnJ0toaKh888030rFjR++27t27y+mnny4jRoyQdevWyfjx4+XRRx8t1Pp9Pp/885//lEceeUTOPPPMbLf36NFDLr30UrnqqqskIyNDBg8eLOvXrxfn3Ik+NQAAAAAAAAAAAAAAAAAAAAAoU0r1FdiXL18uixYtEhGRf//731mG1/2GDRsmzZs3FxGRiRMnypEjRwr1GJ06dZL3338/x+F1vyuvvFL69OkjIiIbN26Un3/+uVCPAQAAAAAAAAAAAAAAAAAAAAAng1I9wD579mzv55tvvjnHZXw+n/Tv319ERA4ePCjfffddsWxLt27dvJ83btxYLI8BAAAAAAAAAAAAAAAAAAAAAKVZqR5gX7x4sYiIVKxYUdq2bZvrcl26dPF+XrJkSbFsS2pqqvdzSEhIsTwGAAAAAAAAAAAAAAAAAAAAAJRmpXqAPTY2VkREoqOjJTQ0NNflmjVrlu0+RW3hwoXez82bNy+WxwAAAAAAAAAAAAAAAAAAAACA0iz3qW/jUlJSZO/evSIiUq9evTyXrVatmlSsWFESExNl27ZtRb4tq1atkjlz5oiISMuWLfMdYE9NTc1yxfb4+Pgi3yYAAAAAAAAAAAAAAAAAAAAAsKbUXoH98OHD3s+RkZH5Ll+xYkUREUlISCjS7UhNTZVbb71VMjIyRERk9OjR+d5nzJgxUqVKFe9P/fr1i3SbAAAAAAAAAAAAAAAAAAAAAMCiUjvAnpKS4v1cvnz5fJcPCwsTEZHk5OQi3Y67775bVqxYISIiN910k/Tq1Svf+4wcOVIOHTrk/SmOq8IDAAAAAAAAAAAAAAAAAAAAgDWhJb0Bxys8PNz7OS0tLd/lU1NTRUQkIiKiyLZhzJgxMnXqVBERadeunbz00ksFul9YWJg3UA8AAAAAAAAAAAAAAAAAAAAAJ4tSewX2SpUqeT8nJCTku3xiYqKIiERGRhbJ40+ZMkVGjRolIiLNmjWTL7/8UipWrFgk6wYAAAAAAAAAAAAAAAAAAACAsqjUDrCHh4dLjRo1RERk+/bteS574MABb4C9fv36J/zYM2bMkEGDBomISIMGDWTu3LkSFRV1wusFAAAAAAAAAAAAAAAAAAAAgLIstKQ34ESceeaZsmjRItmwYYOkp6dLaGjOTycuLs77uXnz5if0mJ999pn0799fMjMzpW7dujJv3jypV6/eCa1TVUVEJD4+/oTWA3syMzO9/9IXAAAAAIDiwfk3AKCgOGYAAAqC4wUAoKA4ZgAASor/uOOfPwVKm1I9wH7++efLokWLJDExUVauXCnnnXdejsstXLjQ+zkmJua4H2/evHnyz3/+U9LT06VGjRoyd+5cadKkyXGvz+/w4cMiUjRXh4dNu3btkipVqpT0ZgAAAAAAUKZx/g0AKCiOGQCAguB4AQAoKI4ZAICScvjwYY5BKJWcluKPXyxfvtwbWh84cKC88sor2ZbJzMyUFi1aSGxsrFStWlX+/PNPKVeuXKEf64cffpAePXpIYmKiVKlSRebNmydt27Y94efg38adO3dKpUqVxDlXJOss7eLj46V+/fqybds2qVy5cklvzkmNFrbQww5a2EELO2hhBy1soYcdtLCDFnbQwg5a2EIPO2hhBy3soIUdtLCFHnbQwg5a2EELO2hhCz3soIUdtLCDFnbQImeqKocPH5ZTTjlFfD5fSW8OUGil+grs7du3l86dO8uiRYtk2rRpctNNN0nHjh2zLDN+/HiJjY0VEZEhQ4ZkG15fsGCBdOvWTUREbrrpJnnzzTezPc4vv/wiPXv2lMTERKlYsaLMmTOnyIbXRUR8Pp/Uq1evyNZXllSuXJmDjhG0sIUedtDCDlrYQQs7aGELPeyghR20sIMWdtDCFnrYQQs7aGEHLeyghS30sIMWdtDCDlrYQQtb6GEHLeyghR20sIMW2XHldZRmpXqAXURk4sSJEhMTI8nJydKjRw8ZNWqUdOvWTZKTk2XmzJny6quviohI06ZNZdiwYYVe/8aNG+WSSy6RgwcPiojIk08+KVWqVJE1a9bkep9atWpJrVq1juv5AAAAAAAAAAAAAAAAAAAAAEBZVeoH2Nu0aSPvv/++9OvXT+Lj42XUqFHZlmnatKnMmTNHKlWqVOj1L1q0SP7880/v70OHDs33Po888og8+uijhX4sAAAAAAAAAAAAAAAAAAAAACjLfCW9AUWhV69esnr1ahk6dKg0bdpUKlSoIFWrVpVzzz1Xnn76afn5558lOjq6pDcThRAWFiaPPPKIhIWFlfSmnPRoYQs97KCFHbSwgxZ20MIWethBCztoYQct7KCFLfSwgxZ20MIOWthBC1voYQct7KCFHbSwgxa20MMOWthBCztoYQctgLLJqaqW9EYAAAAAAAAAAAAAAAAAAAAAAMq+MnEFdgAAAAAAAAAAAAAAAAAAAACAfQywAwAAAAAAAAAAAAAAAAAAAACCggF2AAAAAAAAAAAAAAAAAAAAAEBQMMAOAAAAAAAAAAAAAAAAAAAAAAgKBthhXkZGRklvAgAAAAAAAAAAAAAAAAAAAIAiwAA7TEtLS5MXX3xR7rnnnpLeFAAAAAAAAAAAAAAAAAAAAAAnKLSkNwDITVpamrz99tvy0EMPSWJiomRkZMiLL75Y0psFAAAAAAAAAAAAAAAAAAAA4DhxBXaYlJaWJm+99ZYMHTpUEhMTJSwsTF566SW55ZZbSnrTTkqqmuPPCD5a2EELO2hhCz3soIUdtLCDFnbQwhZ6AAAAAAAAAAAAAAgmBthhjv/K68OGDZPExESpXr26pKeni4h4/0XxOnZgwTmX7WeGGoKDFnbQwg5a2EIPO2hhBy3soIUdtLCFHnYcu58zMzNLaEtACztoYQctbKGHHbSwgxZ20MIOWthCDztoYQct7KCFHbSwgxa20AMo+0JLegOAQP7h9XvvvVcSEhIkJiZGmjZtKu+//77UrFlTbr75ZhE5eoAKfIMdRcu/b7ds2SKrV6+WtWvXyq5duyQkJESaNWsm5557rrRs2VLKly8vIvQoTrSwgxZ20MIWethBCztoYQct7KCFLfSwIXC/Llq0SM444wypVauWpKenS2goL9kFEy3soIUdtLAlsMeGDRskOjpafD6fZGRkSEhISAlv3cmFFnbQwg5a2EELW+hhBy3soIUdnPPZQQs7aGELPYCTA/9rhhnHDq+fe+65MmjQIHnppZckKSlJTj/9dGnfvr2ICG+cFyNVlYSEBHnwwQfl+++/l9WrV2e53TknPp9PbrzxRrnsssvkmmuuEeccAw3FgBZ20MIOWthCDztoYQct7KCFHbSwhR42BO7P+fPny5NPPilr166VxYsXy+mnn17CW3dyoYUdtLCDFrYE9vj222/lySeflHbt2skzzzzDkE+Q0cIOWthBCztoYQs97KCFHbSwg3M+O2hhBy1soQdwElHAgNTUVH3ttde0UqVK6pzTli1b6owZM3T69Olas2ZNrV69ui5dulRVVTMyMkp4a8uuhIQEnT17tnbv3l2dc96f2rVr6ymnnKL169fXpk2bqnNOfT6fVqpUSR955BHv/pmZmSW38WUMLeyghR20sIUedtDCDlrYQQs7aGELPWwI3I9z587VXr16aUhIiDrn9LHHHlNVXvsIFlrYQQs7aGHLsT169+7tHb8///xzjs1BRAs7aGEHLeyghS30sIMWdtDCDs757KCFHbSwhR7AyYUBdpS4Y4fXzz77bJ05c6aqqo4YMUKdc3rxxRfrrl27SnhLy7ZDhw7pyy+/rG3atFHnnIaGhmqtWrV06NCh+sMPP+iBAwc0Pj5eDx06pFOmTNGrrrpKfT6fOud0yJAh3no4uTxxtLCDFnbQwhZ62EELO2hhBy3soIUt9LAhpxff/W/Y3nbbbd5t/hfgeSG++NDCDlrYQQtb8upx//33Z1ueHsWHFnbQwg5a2EELW+hhBy3soIUdnPPZQQs7aGELPYCTDwPsKFHHDq+3atVKZ8yYoUeOHNEFCxZ4B6Hp06eX9KaWaYmJifr666/rmWeeqc45LVeunF5//fU6e/bsLMsF/kNh06ZN+swzz3gDDQ899FCwN7tMooUdtLCDFrbQww5a2EELO2hhBy1soYcNx774fuWVV2a5Ev5ZZ52l1apV05iYGP3Pf/7jfZA/PT29pDa5zKKFHbSwgxa25NUjNDRUBwwYoD169NAnn3xSv/nmG29ZehQ9WthBCztoYQctbKGHHbSwgxZ2cM5nBy3soIUt9ABOTgywo8TkNLw+ffp0PXjwoKqq3n///erz+fTqq6/WlJQUVc1+pTc+SXVi/Ptz/vz52rZtW2+Q4Z577tFffvnFWy7wYB/YICUlRSdOnKg+n0/DwsL07bffDt7GlzG0sIMWdtDCFnrYQQs7aGEHLeyghS30sCOvr8pu1qyZnn/++Tp06FA977zztHbt2uqc07Zt2+qmTZuy3R8nhhZ20MIOWtiSV4+oqCitX7++nnvuuRoaGqrOOY2MjNRx48bleH+cGFrYQQs7aGEHLWyhhx20sIMWdnDOZwct7KCFLfQATl4MsKNE5Hbl9fj4eFVV3bhxo9aqVUudc/r000/nu77Y2Fh96aWXdPDgwcW96WVG4MG7Z8+e3iDDXXfdpb///nuOy+Vk165dOnDgQPX5fPrPf/5TDxw4wD8MCokWdtDCDlrYQg87aGEHLeyghR20sIUeduT14vstt9yiy5cv1+TkZFVVPXDggH777bfaqVMndc5pdHS0HjhwoIS2vOyhhR20sIMWtuTV4/rrr9dPPvlE//rrL01PT9cffvhBR44c6d3+yCOPlNyGl0G0sIMWdtDCDlrYQg87aGEHLezgnM8OWthBC1voAZzcGGBH0OU2vJ6QkKCqqsnJyTp48GB1zmnHjh29K8H5r7bu/29SUpLu3btXhw0bpu3bt/cOXgyxF86TTz6pzjkNCQnRnj176k8//VTodXz66adarlw59fl8Onfu3GLYypMDLeyghR20sIUedtDCDlrYQQs7aGELPUpWXi++33fffVmWDbwS/vz587Vdu3Y6dOhQ3blzZ9C2tyyjhR20sIMWtuTV4957783xA2TJyck6atQoLV++vN5777166NChYG5ymUULO2hhBy3soIUt9LCDFnbQwg7O+eyghR20sIUeABhgR1DlN7yuqrp3717t1KmTli9fXl944QVVPfq15YHWrFmjAwcO1DZt2nhvxDvnNCIiwvsEFvKXmZmpffr0UZ/Pp845feutt457XVdffbU653TgwIGamppahFt5cqCFHbSwgxa20MMOWthBCztoYQctbKFHycrrxffhw4fnuJzf4cOHdd68ebp58+ZgbGqZRws7aGEHLWzJq8eIESNyXM7vt99+0/fee8/72mycGFrYQQs7aGEHLWyhhx20sIMWdnDOZwct7KCFLfQAoMoAO4IoJSVFp02blufwuqrqo48+qs45rVGjhv76669Zbvv00091xIgR3joiIiK0bt26esMNN2i9evW8A9nNN9+sBw8eDObTK5VWrVrl7bN+/fp5vy/M18H7P+H24IMPqnNOhw4d6l0lHwVHCztoYQctbKGHHbSwgxZ20MIOWthCj5JT0DdsA68ac6zADwp89dVXeuDAAU1LS1NVpUEh0MIOWthBC1sK+oZtXj0Cvy772CuP0aPgaGEHLeyghR20sIUedtDCDlrYwTmfHbSwgxa20AOAHwPsCIrMzEx96623vIPNscPr/gPTunXrtG3btuqc00mTJqnq0U9NzZ49W2+//XZ1zmloaKg65/TSSy/VSZMm6bvvvqu33HKLt+6hQ4fqjh07Suy5libz58/39qd/f+d18M/L7NmztW/fvrp///6i3MSTBi3soIUdtLCFHnbQwg5a2EELO2hhCz1K3ty5c7VPnz6FfvE9kP+D/h07dtSxY8fqX3/9Vaj74yha2EELO2hhy7x5847rDdtAQ4YM0QYNGuioUaP0+++/L/T9cRQt7KCFHbSwgxa20MMOWthBCzs457ODFnbQwhZ6AGCAHUETFxenzjk97bTT9P33389y5XX/APv06dPV5/NpmzZt9L333tO5c+dqx44dtWrVqt7Bqm/fvjp58mRNT0/X77//Xq+77jqG1wvJv79nzJihzjmtWLGirlmz5oTWuXXrVk1MTFRV/hFQGLSwgxZ20MIWethBCztoYQct7KCFLfSwIS4uTrt06XJCL76npaXp7Nmz9ZxzztEKFSqoc067d++uW7duLdR6Tna0sIMWdtDClgULFmj37t01JCSkUFeoDLRnzx699dZb1efzqXNOmzRp4n2ArTDrOdnRwg5a2EELO2hhCz3soIUdtLCDcz47aGEHLWyhBwBVBtgRZBs3btSPPvpIDx8+nO22P/74Q6Ojo9U5p/Xq1dNu3bpp7dq11Tmn9evX18svv1w/++wzb/mffvpJL7/8cu9Adu+99zK8XkhfffWVt/++++67IllnYb6KHn+jhR20sIMWttDDDlrYQQs7aGEHLWyhR8m76667CvWGbW77d9u2bfraa69py5Yt1TmnDRs21C1btqgqX4daULSwgxZ20MKObdu2aeXKldU5pw888ID3++N5o3XWrFl64403ev8GePjhh73b6JE/WthBCztoYQctbKGHHbSwgxa2cM5nBy3soIUt9ADAADuCLreDyf/+9z+NjIz0TkD8g+y9e/fW1atX6+7du1X16IHl+++/1yuuuILh9RP0888/eyeQn376qaoW7TACn2QrOFrYQQs7aGELPeyghR20sIMWdtDCFnqUnMAXxWfPnu39nNs+O7bLkSNHsi2Tmpqqy5Yt0w4dOqhzTlu1aqU7d+4soi0uu2hhBy3soIVNq1at0kceecT7e0F75GT79u361FNPea+fjxkzpqg286RACztoYQct7KCFLfSwgxZ20KLkcc5nBy3soIUt9ADgxwA7TBk/frw65zQyMlJHjBihixcvznLQyczM1IULF2rv3r0ZXi8ivXr1UuecXn755bpv374iWef8+fO9n/kkW8HRwg5a2EELW+hhBy3soIUdtLCDFrbQo+Qc+yJ6bi+++/fhtm3b9O2339abb75Z+/TpoxMnTszxyvlLlizRs846S51zOmTIEE1JSSnybS9raGEHLeyghW359fjzzz91yZIl+txzz+mLL76oP//8s+7fv19V/35T9/Dhw/rEE0+oc06rVKmS5Q1hFBwt7KCFHbSwgxa20MMOWthBi5LDOZ8dtLCDFrbQA4AqA+wwIvAN74ULF+r333+fbZnMzEz9/vvvj2t43X+Qy8zM1MOHDxfdhpdi/hO+adOmaY0aNfS0007TTz/99ISHD5588kl1zungwYOLYjNPCrSwgxZ20MIWethBCztoYQct7KCFLfQoHfydfv/9d73gggu0Ro0aWb6ZrmrVqvroo49muU9CQoIOHz5cnXPasWNHTU5OLolNL3NoYQct7KCFLf5j+Lp16/TSSy/VU045xWtRv359vfDCC3XdunVZ7vP7779rt27dNCQkRIcNG6aqRfttLCcrWthBCztoYQctbKGHHbSwgxZ2cM5nBy3soIUt9ADKPgbYYUZOb6L7P211PMPrx56wJCQk6NixY7Vr1646YMCAot34UuzPP//UHj16qHNOO3XqpGvWrDnudfk/+eyc00suuUS3bdvmdeAEMn+0sIMWdtDCFnrYQQs7aGEHLeyghS30sG/Lli3e15pWrFhRGzZsqFdddZV3lRjnnN55553eFchUVb///nvvtiVLlpTg1pcttLCDFnbQwpYNGzZo27Ztvf1bvXp1rVOnjlatWlWdc1qrVi2dN29elvvcf//96pzTunXr6sGDBzlmFxFa2EELO2hhBy1soYcdtLCDFnZwzmcHLeyghS30AMo2BthhVuCb4IUZXj/2K0VWrlypEyZM0DPPPDPLp7D69+9f7M+htNi4caM2adJEnXPauXNn/fbbbzU+Pl5V//5gQX5X6Xv88ce9fdu1a1f94IMPdOfOnVnud+w6OKnMjhZ20MIOWthCDztoYQct7KCFHbSwhR42+ffXhAkTtEqVKhoWFqa33nqrbtu2TVVVY2Nj9dlnn/X2+7///W/dtWuXqqr+9ttvWrlyZQ0JCdGffvqpxJ5DWUELO2hhBy3sSUlJ0cGDB2v58uW1cuXKesstt+jmzZt1x44d+uGHH2rnzp3VOadRUVH62WefaWpqqqqqfvrpp1q+fHlt1qyZJiUllfCzKBtoYQct7KCFHbSwhR520MIOWtjAOZ8dtLCDFrbQAzg5MMAOk453eD3QokWLdNy4cVqtWjWtUKGCOue8T+w657RevXq6Z8+e4n4qpUZcXJzWq1dPnXN6xhln6D333KOrV6/2roKfF/9XyPv/VKlSRatWraoNGjTQ6667Tt977z1vWf8HDAIHGT7//HPvHxGghSW0sIMWttDDDlrYQQs7aGEHLWyhh11XXnmlOuf01FNP1U2bNmW7/YMPPvD2/e23367btm3TBx54QJ1z2rx5cz18+HAJbHXZRAs7aGEHLexISEjQc845R51z2rp1a/3jjz+y3P7XX3/pZZddps45rVGjhn711VeakpKi/fv3V+ecdujQoYS2vOyhhR20sIMWdtDCFnrYQQs7aGEL53x20MIOWthCD6BsY4Ad5hRmeN3/aSv/ffbt26erV6/WAQMGaIMGDbz71a9fX6+++mr9+OOPtVGjRuqc08GDB2tKSkrwn6BhGzZs0O7du3sD/2FhYdq1a1e944479Ntvv83xPqNHj/b2c2RkpLZt21ZvvfVW7devX5ar3j/22GM53n/GjBnarl07jYyM1A0bNhTn0ytVaGEHLeyghS30sIMWdtDCDlrYQQtb6GFLZmamJiUlabt27dQ5pz179vRuO/Zq9rNnz/b2defOnbVZs2bq8/l06NChmpqamu8V9JE3WthBCztoYc/q1au1UqVKGhISok8//bSq5vzBsV69eqlzTqtXr66DBg3S6OhorVChgj7//POqmv+3riB/tLCDFnbQwg5a2EIPO2hhBy1s4JzPDlrYQQtb6AGcHBhgh0mZmZm6ePHiPIfX/ScxqqoHDx7URYsW6T/+8Q8944wz1Dmn5cuX18jISB0yZIguXrxYVVWfeOIJdc5pRESE/vLLL0F/XqXB7t27dfLkyfqPf/xDnXMaEhKi3bt3975ePlDgIMNFF12kL730UpbbN27cqGPHjvWWefHFF7Pc/ueff2q3bt282998881ifW6lDS3soIUdtLCFHnbQwg5a2EELO2hhCz3s+b//+z91zumZZ56pcXFxWW7LzMz0rpI/a9Ysb186d/TD+itXriyJTS6zaGEHLeyghR2HDx/WNm3aqHNO+/btqwkJCVluD3y9vGfPnt7r4M45Peuss3Tt2rXB3uQyixZ20MIOWthBC1voYQct7KCFLZzz2UELO2hhCz2Aso0Bdpj0ww8/aPfu3b2Dyr333qvbt29X1b8/dev/dNSUKVP0uuuu0/DwcG/5atWq6RNPPKFz58711hkbG6vNmjXTkJAQve+++7KsAzmbPXu2zpgxQw8ePKiqWU8WAwcZ+vTpo/Pnz/faBF7ZPiEhQUeMGKFnn322zpkzJ9tjfPPNN+qc0xdeeKGYn03pRgs7aGEHLWyhhx20sIMWdtDCDlrYQg8b3nvvPW9fjxs3ThMTE73b/C++Hz58WKdPn65Nmzb1lv3qq6+yrCe31zh47aPgaGEHLeyghR3Jycl6yy23qHNOW7VqpcuWLctye+Bx/LXXXtOoqCh1zmm5cuWyfdNK4JUtUXi0sIMWdtDCDlrYQg87aGEHLWzhnM8OWthBC1voAZRtDLDDpG3btqnP51PnnN533326devWLLfv3btXn332We8TtyEhIeqc0w4dOuh9992n69evz7bOV199VZ1z6vP59JNPPgnSMymdcjrR8x/0VbMOMlx99dXeFe5zu+/SpUt1xYoV3u2rVq3KcnvglfX5h0FWtLCDFnbQwhZ62EELO2hhBy3soIUt9LDn/vvv9/b5Y489pkuXLlVV1cTERN26dav++9//9r5xzjmnn332maoe3d+Bb+yqqv7111+6ZcsW3b17d5bfs+8LhhZ20MIOWtixceNGrV+/vjp39Cuxv//+ez1w4IB3+969e3XYsGHaunXrAvVQPfpvgMB/B6jSoyBoYQct7KCFHbSwhR520MIOWtjCOZ8dtLCDFrbQAyi7GGCHWb/++quOHDlS9+zZ4/1u+fLl+uqrr+rpp5+uoaGh3oEnNDRU+/Tpo6qqSUlJqpr1wBIbG+udAA0YMCC4T6SMefLJJ739fs011+iSJUu82/L7hHNmZqbOmDFDW7Vqpf/3f/+X7X78Y6BwaGEHLeyghS30sIMWdtDCDlrYQQtb6BFcgS+eP/TQQ1quXDnvqmLnnHOOnnnmmVqtWjWviXNOv/jiC1U9ul/T0tJUVXXPnj36+uuva69evbRevXoaEhKitWvX1l69eukLL7ygf/31V7bHQ1a0sIMWdtDCpt9//927oli9evW0c+fOes899+iAAQO0cePGWb6p1P/tKIE99u3bp999950OHDhQe/bsqeedd552795dp02bpj/++KP3OPTIHy3soIUdtLCDFrbQww5a2EGLksc5nx20sIMWttADKPsYYIdp/je5v/vuOx07dqzWrFlTK1WqpM45rV69ujZo0CDLp26///57VT16QAn8FNVrr72mVapU0Vq1anlXX+eN88IbM2ZMoQcZAvfz+++/rxdeeKG3jsATRxQOLeyghR20sIUedtDCDlrYQQs7aGELPUpG4Ivis2fP1uHDh2u3bt307LPP1rp163rfOuec088//1xVs774vn79eu3evbvWrVtXnXNavnz5LC/YV6hQQbt06aJ//PFHtsdDVrSwgxZ20MKmLVu26D333KNnn322Vq1aVcPCwjQsLCzfN2w3btyoV199tTZp0kSdc1n6lS9fXps1a6YvvPCC9zj0yB8t7KCFHbSwgxa20MMOWthBi5LHOZ8dtLCDFrbQAyjbGGCHeXv37tWYmJgsB482bdroK6+8oqtXr9aVK1fqxRdf7N02d+5cVf37gJKWlqbt2rVT55x26NBB4+Pj833MjIwM78CEo5599tlCDzIE/v6DDz7Qbt26eeuYPHlysW9zWUULO2hhBy1soYcdtLCDFnbQwg5a2EKPknXsh+z/+usvfeGFF/Scc87x9mng1576X3z//ffftV69et4ykZGROnz4cB03bpxOmzZN+/Tpo40bN1bnnDZs2FC3bNmS4+Phb7SwgxZ20MKmtLQ0zcjI0JUrV+qDDz6op59+ep5v2MbFxWnDhg29ZcLCwvTyyy/Xm266Sa+66iqNjo72bnv44Ye9x6FH/mhhBy3soIUdtLCFHnbQwg5alDzO+eyghR20sIUeQNnFADtKhbVr12poaKjGxMToqFGjNCUlxbstLS1Nv/322xyH2DMyMvS5555T55xWq1ZNv/rqK+/3ucnIyNCffvpJzzzzTL3xxhuL94mVIr/++qv6fD7t0aOH/vDDD97v8xtkyMzMzDbI8PLLL3vLZWRk5Ps19MiKFnbQwg5a2EIPO2hhBy3soIUdtLCFHrb88MMP2qhRoxxffPd/YH/jxo3eG7Y1atTQK664Qn/99dcs6zl48KDOnz9fO3bsqM45Peecc3TXrl1Bfz6lGS3soIUdtLDBf3x96623tHnz5jkO+Rw5ckRVVdetW6ennnqq9zp5165d9aeffvJuV1Vdvny5PvTQQ956xo0bF/wnVUrRwg5a2EELO2hhCz3soIUdtLCHcz47aGEHLWyhB1B2MMCOUmP37t26detWb/g8PT3dO5k5cuSIzps3L8ch9muvvVadc9q2bVvduHFjno/hH17v3r27t5677rqreJ9YKbJt2zZdtmyZ9/fjuQrfsYMMOX2YgK9jyR8t7KCFHbSwhR520MIOWthBCztoYQs9bBkwYIA6l/Wrsv37ft++fXrVVVepc06rV6+uAwYM0M2bN6vq3/s3cN+vXLlSW7durc45ve+++zQ1NTW4T6aUo4UdtLCDFnZs3LjROw5/+eWXqpq1x+7du7Vr167qnNOoqCgdMGCA9zp54GvsqqqJiYk6btw4r52/LwqGFnbQwg5a2EELW+hhBy3soIUtnPPZQQs7aGELPYCygQF2lEo5vYme0xD7fffd5/08ZcqUPNfpH173n/SEh4drSEiIOud08ODBxfVUSq2iHmQYM2aMPvDAA8W3wWUYLeyghR20sIUedtDCDlrYQQs7aGELPUpO4H5bu3atqv794rt//8+fP1+bNGmizjnt1q2b94Ztbt1SU1P15Zdf1qpVq+oZZ5yhO3bsKOZnUTbQwg5a2EELm9auXatff/21qv7dw99q6tSpWqdOHXXO6ZVXXum9YZtbj507d2q/fv20XLlyevfdd2e5miXyRws7aGEHLeyghS30sIMWdtCi5HHOZwct7KCFLfQAyhYG2FGmHDvE7vP51DmnF110ke7evVtVcz4YHTu8Xr58ef3Xv/6lDz74oLeOu+++O9hPp9Q53kGGF154wVtuwoQJQd3msooWdtDCDlrYQg87aGEHLeyghR20sIUewXPsVeqPfS3jtttuU+echoWF6U8//ZTjMsfaunWrRkZGaq1atTQlJaVoN7gMo4UdtLCDFnYFvlnrd/nll6tzTiMjI3XNmjXecnl5//331TmnHTp04JtTjhMt7KCFHbSwgxa20MMOWthBi5LFOZ8dtLCDFrbQAyg7GGBHmZOSkqLLly/XTp06ecPnI0aMyHX5nIbX+/Xrp0uXLlVV1WnTpnnrGTZsWLCeRqlzvIMMzz33nJYrV06dc9quXbssy/qXR+HQwg5a2EELW+hhBy3soIUdtLCDFrbQw47MzEy95JJLNCQkRK+88krNyMjI901Yf78vv/xSDx8+rKrs+6JACztoYQctbNm9e7fWrVtXy5cvryNHjlTV7G/yBvK3SElJ0SFDhuihQ4ey/B7HjxZ20MIOWthBC1voYQct7KCFHZzz2UELO2hhCz2A0sUnQBmiqhIWFiaNGzf2/t68eXN58MEHvb8HyszMlP/9738yfPhwWbhwoZQrV07++c9/yt133y3nnXeeiIj0799fJk+eLM45mTBhgowbNy64T6oUUFVxzomIyIcffigvv/yyLFiwQEREJk+eLHfccYeIHN3fIiI+39H/65k4caKMHDlS0tPTpW7dulKnTh2pVq2aLF68WNavX+8tm5GREeRnVHrRwg5a2EELW+hhBy3soIUdtLCDFrbQw5a0tDTZs2ePZGZmSlRUlPh8Pm+f58bf79JLL5XIyEhJT0/P9z7IHy3soIUdtLAlISFBdu/eLUeOHJGaNWuKiEhISEiuyzvnvNfYn3/+ealcubKkp6d7jXD8aGEHLeyghR20sIUedtDCDlrYwTmfHbSwgxa20AMoZYI6Lg8UM/8npv773/9qo0aNNCQkREeMGKFpaWnZPhmV35XXVf/+hNW+fft0+PDh6vP5tFWrVt7Xi+BvmZmZOmvWrAJfhW/ixIlavnx5b9mIiAjvSvfOOY2Ojtbnn38+y/1RMLSwgxZ20MIWethBCztoYQct7KCFLfSwIzU1VTt16qTOOb3++usLfX//ax2BVx3jCmTHhxZ20MIOWtiybds2rV69uvp8Pp0+fbqqFu6Y69/3gffJzMykyXGghR20sIMWdtDCFnrYQQs7aGEH53x20MIOWthCD6B0YYAdZUbgwaJfv37eUHpOw+b+4fXOnTt7y9144426ZMmSHNenqvrZZ595b7RPnTq1+J5IKTV79mxt06ZNgQcZQkND1TmnNWrU0JtvvlkXLVqk69ev1w8//FAHDx7sreexxx4riadTqtHCDlrYQQtb6GEHLeyghR20sIMWttDDFv8+bt68uf7yyy8Fus+xr3PExcXpqlWr9LvvvtMFCxZoamqqpqamqiofKCgMWthBCztoYUv37t29N239X4Odn2N7JCUl6f79+zUxMVEPHjyY5TZ6FBwt7KCFHbSwgxa20MMOWthBCzs457ODFnbQwhZ6AKUHA+woc95++23vjfCHH35YVbN+etY/vN6lSxd1zqnP59O2bdvqunXrvHUEHpT8B50DBw5ozZo11Tmn11xzTbblTnZbtmzxBhSmTJni/T6vQYZWrVrppEmTsq3r8OHD+uyzz3ofLpg1a1ZQnkNZQQs7aGEHLWyhhx20sIMWdtDCDlrYQg9b5s+fr6eddpo653T06NGanJzs3ZbTaxX+RhkZGbpkyRIdPny41qhRQyMiIrzXUDp37qz333+/7tq1S1X//pY75I0WdtDCDlrY4N/XY8aM0XLlyukZZ5yhixcvzvd+/h6ZmZm6adMmffrpp7Vjx45avXp1rV+/vp566qk6cuRI/fLLL7370CNvtLCDFnbQwg5a2EIPO2hhBy3s4ZzPDlrYQQtb6AGUHgywo0w5dOiQ3njjjRoeHq6VK1fWTz/9VFWzfiXUTz/9pF27dlXnnPemunNOJ0yY4K3n2E9Kpaen6/Tp072vP7/uuuuyrBdHrV69Wl9//XXv73kNMrRu3TrLsoEH9oyMDN24caO2bt1aQ0JC9JFHHgnK9pcltLCDFnbQwhZ62EELO2hhBy3soIUt9LDlqaee8l7TmDhxov7555/ebTl9MP/IkSM6evRoPffcc737NW7cWM8991yNiIjQkJAQr92WLVtUlRfhC4oWdtDCDlrYsX37dm3btq0657Rr1666evVqPXLkiKpmf307sMdzzz3nXeXS/6dWrVreRWGqVq2qY8eOzXZf5I4WdtDCDlrYQQtb6GEHLeyghS2c89lBCztoYQs9gNKBAXaUKYFXSb/55puz3Hbs8Hr58uX1+uuv1zvuuMM78Dz99NPe8oEHqx07dug111zjLffaa68F7TmVVoUZZMjtJDAmJkadc9q9e3dNT0/nwH+caGEHLeyghS30sIMWdtDCDlrYQQtb6FFyAvfnsGHDvNcqbr31Vv3000+z7Ef/axtHjhzR4cOHa+3atb3lZ86cqfv371dV1XXr1umECRO0ZcuW6pzT6Oho3bZtW5Z1IDta2EELO2hh07p167z92759e33zzTe9K4b5Bb5hO2LECD3llFO8HtOmTdO5c+fqnj17dPLkyXrttdd6tz366KPeOuiRP1rYQQs7aGEHLWyhhx20sIMWJY9zPjtoYQctbKEHULowwI4y59dff9XWrVvrhx9+6P0up+H1fv366dKlSzUzMzPLp67+85//6IEDB7z7xsbGav/+/b3bu3Xrpr/++msJPLPS5XgHGTIzMzUjI0PXrl2rZ5xxhoaGhurw4cPzfQzkjhZ20MIOWthCDztoYQct7KCFHbSwhR4lK/BF9scff1yrVq3qfWvc/fffn2XZjIwMHTt2bJY3bJ1zWa4upqqanJysy5Yt0w4dOqhzTq+66io9ePBgUJ5PaUYLO2hhBy1s+v333703WqtXr65RUVE6b968LMukp6fro48+muUN22rVqmXb11u2bNExY8ZkGQRCwdHCDlrYQQs7aGELPeyghR20KHmc89lBCztoYQs9gNKDAXaUSbt27fI+BZXb8PqPP/7oLZ+QkKCPPPKIdxDq3Lmz9u3bV3v27KnnnHOO9/smTZroyy+/XFJPq1QaO3asRkREFGiQIfDvTzzxhLffBw4cqF9//bVOmzZN582bp5s2bfKW4wp9BUcLO2hhBy1soYcdtLCDFnbQwg5a2EKPkhO4bz799FO966679Nxzz9X4+HhV/fvKL2vWrNHzzz9fnXMaEhKiN910k7fvR44c6a3Dv/yXX36pdevW1QYNGuhPP/0UxGdUetHCDlrYQQubtm7dqvfee69GR0drVFSUJiQkqOrf+3fu3Lnapk0bdc5pWFiYnnXWWeqc09q1a2tsbGyWZRMSEnTEiBHqnNN//OMfum/fPq46Vgi0sIMWdtDCDlrYQg87aGEHLUoe53x20MIOWthCD6B0YIAdZdqRI0f0hx9+0IsuuijL8PrSpUu9ZfwHmA0bNujFF1+c5dNUgX/OPfdcnTRpUrb7IXf79+/XqKgodc5pu3btCjzI8Nprr2XZ97Vr19awsDDv72eccYa+8MILua4L2dHCDlrYQQtb6GEHLeyghR20sIMWttCj5AXum4yMDO9F+SNHjni/f/TRR719O3XqVFVVff75573fPfjgg1nWuXv3bm3RooU653T06NFBeBZlAy3soIUdtLApJSVFd+3apSkpKaqatcfdd9/t7ft33nlH//rrL+/CMLVr19Z169ap6t9vAn/zzTcaGhqqYWFhhfrWUl5bP4oWdtDCDlrYQQtb6GEHLeygRcmzcM7n73+yXwSDFnbQwhZ6APYxwI4yLTk5WXv16qXOOa1YsWKuw+t+gwYN8t4sv+qqq/Tiiy/WVq1a6VNPPaWLFi3ylsvpK9Dz+vvJbO3atXrBBRfo5MmTvd/lNcgwbdo07x8BTZs21RtvvFFXrFihsbGx+sknn+hdd93l3f7II48E62mUCbSwgxZ20MIWethBCztoYQct7KCFLfSwx/+aREZGhh4+fNj7Zrk+ffp4L8wnJyfn+SL8gAED1DmnTz75ZNC3vyyhhR20sIMWtgQeo9esWaNVqlRR55wOHjzY+/3atWtzHPZRPfqGb4sWLTQkJETnz5+f52OtXr1ap0+f7v2d19CzooUdtLCDFnbQwhZ62EELO2hhRzDP+X799Ve99957vQ8dMByaFS3soIUt9ABsYYAdZd6qVau0Vq1aeuWVV+qyZcu83weeSKSlpanq35+guvDCC73f+b86xI8rvxXewYMHvZ8LOsjQuXNnnTp1apZPvake7fHMM894y82cObN4N76MoYUdtLCDFrbQww5a2EELO2hhBy1soYdd+/fv1xo1aqhzTh944IEst6WlpeX4IvyuXbu0adOm6pzTp59+uiQ2u0yihR20sIMWtvz8888aERGhoaGh+sYbb6jq36+hx8XF5Tjss2LFCg0PD1fnnH755Ze5rvu3337zLh5z8803e79n2CdntLCDFnbQwg5a2EIPO2hhBy3sKM5zvt9++00HDx6szjktV66crlq1SlUZDs0NLeyghS30AEoeA+w4KezYsUNXrFjh/T23K6b36dNHnXPavHlz74CR04HDv/y+fft03bp1+p///Efvuusu7du3r/bt21dHjx6tCxcu1ISEhOJ6SqVSQQcZLrjgAp0xY4Z3+7Ff6bJ+/Xo966yz1DmnI0eODM7GlzG0sIMWdtDCFnrYQQs7aGEHLeyghS30sCcpKUkbNmyo5cuX19dff11VVVNTU73bj30RfsSIEfrZZ59pnTp1tEaNGvrdd995yx77Wgof8C8cWthBCztoYcv8+fPVOafVqlXTn3/+WVWz7sdjh31WrVql7733nlasWFFbtmypu3btynG9v/32m951111arVo1r+Vdd93l3c6wT3a0sIMWdtDCDlrYQg87aGEHLewoynO+QP4W/ivtO+e0atWqXOE4D7Swgxa20AMoeQyw46ST24nDkSNHtFOnTuqc04svvlgzMjLyfKPjhx9+0GuuuUYbNWrkHWwC//h8Ph0wYABXi8tFQQcZAnsF/ty5c2d1zmmXLl3ybYW80cIOWthBC1voYQct7KCFHbSwgxa20KPkZWRk6MGDB73XLYYPH57jcmlpaTpx4kSvUZ06ddS5o1fJT05OVtWsbebNm6fbtm1TVV5oLyha2EELO2hhS2Zmpi5evFidO3pVsNzegA0c9qlevbo2btxYnXN61VVXaUpKSrbl/W/YVq1aVZ1z2qBBA/X5fOqc07vvvjvL4+MoWthBCztoYQctbKGHHbSwgxZ2FNc537EtmjZtqu3bt2c4NA+0sIMWttADsIEBduD/e+edd7yDzeTJk3NdLj09Xd966y0NCwvzTkoiIyM1KipKe/TooW3bttV27dqpc05DQkK0YsWK+thjjwXxmdgXeOAu6CBDoGXLlmm9evXUOaejRo0KyjaXVbSwgxZ20MIWethBCztoYQct7KCFLfSwwb9/n3zySXXOaceOHb2vxj5WWlqaPvfcc16r008/XWNjY73b/L766iutW7eu1q1bVzdv3lzsz6GsoIUdtLCDFvakp6d7QzyDBw/O9dtF4+Li9IILLvB6NG3aNMcPDRz7hm2LFi30q6++0ldeeYVhn3zQwg5a2EELO2hhCz3soIUdtLChqM75jhw54i2XU4t58+ZpbGysXnLJJd5w6Jo1a1SVb+byo4UdtLCFHoANDLDjpOc/ID3wwANarlw5rVixos6fPz/HZQ8ePKjPPvusd0ByzmnDhg313Xff9b5+KjExUVNSUnTatGl6zTXXeCctQ4cODdZTKjVeeumlQg8ypKWlef94cM7pm2++GcxNLrNoYQct7KCFLfSwgxZ20MIOWthBC1voYcO8efP0lFNOUeecjhs3LsuVxAI7pKWl6ejRo7VOnTr62WefqWrWN2znzJmjLVq00HLlyqlzzvuwPm/MFhwt7KCFHbSwITMzU48cOaJPPPGE+nw+Pfvss3XZsmW5Lh8XF6ctW7bUChUq6Ny5c1U1/zdsv/32W2+ZqVOneq+b33///cX75EoZWthBCztoYQctbKGHHbSwgxb2nMg5X+BgZ04t5s6d67XYsGGD9ujRQ51z2qhRI12/fn22xzjZ0cIOWthCD6BkMcAOqOrmzZu1Vq1a6pzTHj165Lpc4FeC1K5dW6+//nrds2dPrstv2bJFn332We+kZeTIkcWx+aVOZmamHjx40Nsv3bt3L9Agg6rq66+/7jXo379/sDa5zKKFHbSwgxa20MMOWthBCztoYQctbKGHPaNHj/b268SJE/Wvv/7ybgscAD1y5IiuX78+29dlz5kzR1u2bKk+n09r1aqlAwYM0B07dmS5P195WjC0sIMWdtDCju3bt2ubNm3UOaddu3bV1atXe/vu2OP3hg0bdOHChZqamprl9/43bKtUqZLlDdvAq+UfOXJEJ0+e7P1bYcqUKcX/5EoZWthBCztoYQctbKGHHbSwgxa2nOg5X0Fa+Jfr2LGjOuf06quv1v379xfvEyuFaGEHLWyhB1ByGGDHSc3/5vknn3yi1apV05CQEO/qPMe+sf7BBx94B6v69evrvffeq/v27VPV7G+ABJ70JCUl6YsvvuidtEydOrXYn1dp8euvv2rPnj31zTffLNAgw5tvvuk1uOSSS/TXX39VVb5SpSjQwg5a2EELW+hhBy3soIUdtLCDFrbQo+QF7rvhw4d7+3fQoEH69ddfF2gdc+bM0bPPPtu7qrFzTmvUqKGnnnqqnnvuuXrffffpzp07VZUB0bzQwg5a2EELm9atW6d169ZV55x26NBBp0+frn/++aeq5n9VsGOvNnbWWWdludpYoD179mjfvn01NDRU+/Tpo/Hx8cXyfEozWthBCztoYQctbKGHHbSwgxYlryjO+X777TcdNGiQNxSaV4v09HSdMGGCOue0cePG+ssvv6gqVzdWpYUltLCFHkDJY4AdUNVrrrlGnXMaGRnpvUEe6H//+59Wr15dnXMaFRWld999tx48eFBVC/ZG+v79+/Xee+9Vn8+nnTt31tjY2CJ/DqXVoUOHCj3I0K1bN/36669z/ZR0IP9tHOzzRws7aGEHLWyhhx20sIMWdtDCDlrYQo+SFziw+fDDD2u5cuXU5/NpjRo19JZbbtEff/xRk5KSvGUC9+WXX36pLVu29AZDGzVqpB07dtQ777xTzzvvPD311FPVOafNmzfXLVu2qCofOMgLLeyghR20sOn333/XM844Q51zWqdOHb344ov166+/zvPbSP1v2EZGRqpzTlu3bq3z58/X5OTkXO/zxBNPqHNOQ0JCdPny5cXxVEo9WthBCztoYQctbKGHHbSwgxYlr7DnfIGObdG8eXNdsWJFjsv7zxVXrFih5cuXV+ecPvHEE8XzpEopWthBC1voAZQsBthx0jtw4IC2bt1anXN67bXXanJysvdGRkZGhqalpemIESM0IiJCnXN62WWX6d69e73bC2rBggV62mmnqXNO33jjjeJ4KqVaXsMGb7zxRpZBhi+//DLb16yoqv744486e/ZsffTRR/WFF17QxYsX67Zt27zbeYOqYGhhBy3soIUt9LCDFnbQwg5a2EELW+hRsgJfhH/nnXf0iiuu8Pb52LFjvf197GBoixYtvG+U69mzp27cuNH7WtP9+/frwoULtUOHDuqc01atWumuXbuC+8RKIVrYQQs7aGHTli1btH///tqgQQN1zmndunX19ddfz/F4u3btWh00aJBWrlzZa3fbbbd5tx979Xv/OqZMmeIt/+mnnxbvEyrFaGEHLeyghR20sIUedtDCDlqUvIKe8wXyXwXff0Vj55yedtppumPHDlXVHK9srKr6zTffeMs/+uijxfOESjFa2EELW+gBlBwG2AE9eiLinNNRo0Zluy0xMVFbtGihzjk95ZRTdOvWrap6fG+M33fffeqc0yZNmvCGSQEVZJDhm2++0WHDhqlzTsPDw73lw8PD9cILL9SpU6d6y/JVwcePFnbQwg5a2EIPO2hhBy3soIUdtLCFHsET+DrGjh079L///a+OHj1aExMTVTXrvpszZ462bNlSfT6fVqpUSQcPHpzl9sAh0gULFmjjxo21fPny+txzz2W7HdnRwg5a2EELmw4cOKDfffed3n333XrPPfd4VxAL3Idr167N8oZt3bp1vWP1M8884y137Ovp27dv13/84x/eMf3bb78NzpMqpWhhBy3soIUdtLCFHnbQwg5alLz8zvkCb/cPhVatWlWdcxodHa1NmjRR55w2a9ZM//zzT1X9+zzR33HPnj16++23e1c2HjduXJbbcRQt7KCFLfQASgYD7MD/t23bNu9TUIEHhjlz5ngnG/5PPuX0hnheBxP/QWzRokVatWpVPfXUU/XXX38tys0vkwoyyDB+/Hht06ZNluWuuOIKvfzyy7VWrVo5fmqNq/IVHi3soIUdtLCFHnbQwg5a2EELO2hhCz2CL7fXLgL3+5w5c/Tss8/2XkQfNGiQ9zpITq+H7N27V9u3b6/OOe3Tp0/xbHgZRAs7aGEHLWzzXzks8Apixw75tGzZUufMmaOPP/64d4x++umns61r7969OmnSJG8oqEGDBt63niJ/tLCDFnbQwg5a2EIPO2hhBy1KTm7nfIEtjh0KbdGihX777be6dOlSbd26tTccun379izr2LNnj7788st62mmnqXNOa9asqVu2bCnW51Oa0cIOWthCDyD4GGAH8jFt2jTvpOSLL77IcRn/m+P79u3zPnmVkwMHDmijRo30qquuKpZtLUtefvllDQkJyXOQ4amnntJ69ep5fUaOHKmqf//DYeHChXrPPffkeVKJ/NHCDlrYQQtb6GEHLeyghR20sIMWttDDjsCB/y+//FJbtmyp5cqVU+ecdu3aNc/BUP8L+oMGDVLnnHbq1Enj4+ODs+FlEC3soIUdtCh5gW/eBvZYu3atDho0KMuQz7fffqtHjhzR1NRUffLJJ71j9KhRo3T16tWakZGhq1at0oceekgbNmzovWH75ptvZls/sqOFHbSwgxZ20MIWethBCztoYVNgl5yGQufOneu9FrhixQpvODQ6OlrffPNNXbRokS5YsEAHDhzoDYVWr15dx48fr6q0KAxa2EELW+gBFC8G2IF8TJkyxfu07M6dO1U1509crV+/Xs8880y955579ODBg9luz8jI0MOHD+s777yT5Xe5re9kdvDgQe8E8eKLL85xkOHtt9/Wpk2beieLzh39Gq+NGzdmW9e4ceO8fwB89dVXwXwqpR4t7KCFHbSwhR520MIOWthBCztoYQs97Dj2G+jOOussb3/XrFlTf/jhB1XNeTDUb+/evXruueeqc04vvfTSYt/msooWdtDCDlrY5X/D9tghn8DjeVJSko4dO9Zrduqpp2qzZs00IiJCIyMjvWP38OHDdevWrSX4bEo3WthBCztoYQctbKGHHbSwgxZ2rF27VgcPHpxnC1XVVatWadu2bdU5pxEREeqcU5/Pp6Ghoeqc0xo1auh9992nmzZtKqFnUvrRwg5a2EIPoHgwwA7kY+bMmeqc00qVKumaNWtyXe6bb77xTlpyG2IP5H9jxf9GzNatW3XGjBlFt+Gl3KpVq/SKK67Q2bNnewd7/8D/4cOHtW/fvt7+/s9//qMXXXSROue0Vq1aum7duizL79y5U3v37q0hISE6evToknlCpRgt7KCFHbSwhR520MIOWthBCztoYQs9Sl5ug6G1a9fWSpUqaZ06dfSPP/7I9f7+1zV+//1372pjAwYM4Ioxx4EWdtDCDlrYFRcXp/3799eoqKgsb9gGfp12oGnTpmmlSpU0LCwsywfToqKi9LHHHtMNGzYE+RmUHbSwgxZ20MIOWthCDztoYQct7Ni9e7f269dPK1euXKAW+/fv1yuuuEJPOeWULC1q166tEyZMYCj0BNDCDlrYQg+g+DDADuRjwYIFGhoaqqGhoTp37tw8l33nnXe8g86QIUPyHWL3vxGzc+dOHTRokPp8Pr3hhhuKbNtLu4SEhBwP9h988IG3nx966CFVVV23bp126dLFO+AfO9Dw0EMPef+ISE1N5c2qQqKFHbSwgxa20MMOWthBCztoYQctbKFHyclpMNTn82mVKlV08ODBesEFF2i7du1yvb9/MPTIkSN6ySWXeB8uWLZsWbFve1lDCztoYQctbNu1a5c2aNBAnXPapk2bPN+w9Vu8eLGOGTNGzz//fO3Zs6def/31+r///U8TEhKCtNVlEy3soIUdtLCDFrbQww5a2EELW4YPH67OOW3RooXOmzcv1xaB53vffvutjhs3Tu+//34dO3ZstoHQwHNLFBwt7KCFLfQAigcD7EAB+N/o6N27t+7duzfb7YEHFP8V251zevfdd+uBAwdyXKf/Pjt27NBBgwZpvXr1vPutXr26WJ5HaeffZ/fee6/3j4Lff//duy0uLk67du2abaBBVfXdd99V55y2b9++RLa9rKGFHbSwgxa20MMOWthBCztoYQctbKFHcOR2VeMqVaro8OHDNSkpSS+99FItX768rly5Mtv9/S/Ap6Wl6aBBg9Q5p+Hh4XrTTTfp7t27C/zYoIUltLCDFqXDqlWrNCYmRv/73//mOeST2z71/97/gbNjl6NFwdHCDlrYQQs7aGELPeyghR20KHmB++ipp57SOXPm5PtBgrwuXJHfRS1okjta2EELW+gBFC8G2IE8+A8KU6dO1WrVqmnDhg31iy++yPFg4f9denq6Xnfddd4w+iOPPJLtwHXs8HrdunW9N2I+//zzYn5WpZd/v1144YXqnNMuXbpkW+bYgYaNGzeqquqNN96ozjnt06dPMDe5zKKFHbSwgxa20MMOWthBCztoYQctbKFHcP33v//NMhh63333eYOfw4YNU5/Pp6NHj9aUlJRs901LS9Pbb7/d+8rUJk2a6Pz587Mtl56erunp6bm+LoKjaGEHLeyghX2JiYn5vmEbKCMjw9u3qampWW7btGmT/vbbb7pu3TrduXNntvshb7SwgxZ20MIOWthCDztoYQctSl7g/i/Mfgo8d0tLS/N+Tk1N1QULFuisWbP0rbfe0lmzZumhQ4c0OTm50I9xsqGFHbSwhR5A8WGAHSiA3bt360UXXaTOOY2JiclyhfTAg83WrVt19OjRWr16dXXOacOGDXXKlCneASZw+WOH1yMjIxleL6CbbrpJnXN6ww03qGrWg7xq1oGGWrVq6RtvvKGtWrVS55yOHj1aVTnYFxVa2EELO2hhCz3soIUdtLCDFnbQwhZ6FL9vvvlGTznlFA0LC/MGQwP32axZs7wP5o8ZM0Z/+uknVVXduHGjLliwQDt37uzdXqtWLf3oo4+yrH/VqlX64Ycfau/evfXiiy/WXr166V133aXz5s3T/fv3q+rfV0k+2dHCDlrYQYuyLXDfvvPOO3rbbbdpWFiYhoSEaGRkpFasWFEHDx6sn3zySY73QdGhhR20sIMWdtDCFnrYQQs7aGFH4GDp888/r1deeaV3Tuj/0759ex08eLD3wQJaFA9a2EELW+gB5I4BdqCANm7cqI0bN/auArdixYosV/jZtm2bjh49WqtVq6bOOT3jjDP0rbfe0oMHD3rLFGZ4nSv95O6+++5T55w2bdpU//zzzxyXiYuL0y5duqhzTitWrKjOOT3ttNOyfdL5eD8lh6NoYQct7KCFLfSwgxZ20MIOWthBC1voUfw2btzoffj+/vvv9/ZN4P568MEHvRfPo6KitEOHDlqjRg2tXbu2t99btGiR5Y1YVdX33ntPmzdvrlWrVs32Inz9+vX1yiuv1G3btqkqL8Kr0sISWthBi7IrsOEtt9yiderUydIgMjJSnXMaEhKilStX1rFjx3rL06No0cIOWthBCztoYQs97KCFHbSwI7DF9ddfrxEREVnOFevWras+n8/7XevWrXXLli2qSouiRgs7aGELPYC8McAOFEJcXJzWr19fnXPapk0bfemll3TXrl0aHx+fbXj9jTfe0EOHDnn39b/RUtjh9UWLFumrr74anCdonH+/LF++XBs3bqxVq1bV6dOn53rAjouL0wsuuMA76H/77beq+vcB3v+PhKSkJP3tt99UlYGGgqKFHbSwgxa20MMOWthBCztoYQctbKFHcMXFxenDDz/s7RP/fgvcRw899JDWrFkz25BnnTp1dOjQobpkyZIs63zuueeyLNesWTO99NJLdeDAgXrGGWdorVq11Dmnp59+um7evDnL457MaGEHLeygRdkTuC+vuOIKb6DHOad33323Tp48Wb///nt94okn9PLLL/c6Pfzww979OI4XDVrYQQs7aGEHLWyhhx20sIMWdgS26NWrlzrntFy5clqlShV97LHHdMmSJbpz505dvny5PvHEE3r22Werc04bNWqkW7duVVVaFBVa2EELW+gB5I8BdqCQ1q9frx07dlTnnEZERGh0dLTecMMNxTK8vmzZMr322mvVOacDBw4MzhMsBQ4ePOjtl06dOumaNWtyXXbt2rXao0cPffXVV7N8qi1wkOH0009X55yuWLGi2Le9rKGFHbSwgxa20MMOWthBCztoYQctbKFH8B07oBn49wULFugrr7yid9xxh95777367LPP6ubNmzUxMTHLfV544QXvTdlWrVrpvffeq4cOHfJabN++XWfNmqXt27f3Bkd37NihqnwLXSBa2EELO2hR+gXuw+uvv16dcxoeHq6dOnXSDz74INvyf/zxhz799NNes5deeimYm1um0cIOWthBCztoYQs97KCFHbSw6eabb/ZadOnSRT/99NNsyyQnJ+uKFSu8WZ+LL75Y9+7dWwJbW7bRwg5a2EIPIHcMsAPHYceOHfrAAw9omzZtsnyi9swzzyyy4fWlS5d6b9j7/9x///3BeYKlwKZNm7Rx48bqnNMuXbrokiVLvDemjn1T6dChQ5qcnJxtHQkJCV5D55yeeuqpeuDAAd6UKiRa2EELO2hhCz3soIUdtLCDFnbQwhZ6lLz8ruwSePtHH33k7eeOHTvq66+/rmlpaap6dNDUv88zMzP1l19+0Xbt2qlzTvv376/x8fHZ1h3YiF60sIQWdtCidHruuec0PDxcy5Urp127dvW+PUX1aLPADyckJSXpo48+qs45bdmypf7888/Z1sf+P360sIMWdtDCDlrYQg87aGEHLex45513tHbt2hoSEqIxMTHZWhxr4cKF2rRpU42MjNSpU6dmu/3YFnwrV8HRwg5a2EIPIG8MsAPHKSkpSf/44w+97777tHv37hodHa3Tpk0rsuH1vn37em+sREZGqnNO//GPf2RZ/8nu999/11NOOUWdc9qiRQt97LHHdP369QW+/+TJk7MMMsyYMaMYt7Zso4UdtLCDFrbQww5a2EELO2hhBy1soYctgQOegbZu3apdunRR55yefvrp+uqrr3ovmuf0AnxmZqZ+9NFHWqdOHW3UqFG2K+Pn9IJ74NX1QQtLaGEHLexLTk7WK664Qp1zWq1aNf3ss8+823Ib2Fm7dq1edNFF6pzTV199Nctt/hbbtm3TuLg4VeVrtQuKFnbQwg5a2EELW+hhBy3soIUtt912m/f634cffuj9PrcW8fHxOmrUKHXOae/evTUlJcW7zd9iy5Yt+tprr2X7PfJGCztoYQs9gLwxwA4UgcTERN21a5cmJCR4vzuR4fXrrrvOO3j57+ec0/feey84T6gUWb9+vcbExGhoaKg657R69er6wgsveCd3+fnPf/6jzjmdNWuW9zs+4Xx8aGEHLeyghS30sIMWdtDCDlrYQQtb6GHfihUrtHr16uqc05tuuskb5MxrP//555/ao0cPdc7l+BXbqqojRozQW2+9tVi2uayihR20sIMWdsybN897nfuJJ57wfp/fcXnEiBHqnNOFCxeqatYPDGzevFlvvPFGrVmzpn7zzTfFs+FlEC3soIUdtLCDFrbQww5a2EELOzZs2KDlypVT55wOHjzY+31+LZYsWaLh4eH65ZdfqurRDyX4LyS5efNmveOOO9Q5p1deeWWxbXtZQws7aGELPYD8McAOnIDcDihFNbw+fPhwvfPOO9Xn82mdOnX0l19+Kb4nU4rt3LlTn3jiCW3fvr0653TQoEF64MCBPO8T+OmztWvXej8zyHBiaGEHLeyghS30sIMWdtDCDlrYQQtb6GHb448/rs45rVevnm7atElVC3alsNmzZ+uDDz7o/f3rr7/2uj7++ONas2ZNdc7pkCFDimOzyyRa2EELO2hhx4wZM9Q5p7Vq1dKlS5eqat4t/Lft27dPV69eraqqhw8f1meffVanTJmiiYmJeuedd3qvvbdu3VqTk5M51hcALeyghR20sIMWttDDDlrYQQs7fv31V/X5fOqc0ylTpqhqwa9ev3v3blU9erHKsWPH6sUXX6yLFy/WoUOHau3atdU5p6eccoq3HPJGCztoYQs9gPwxwA4UMf+JxIkOrw8aNEiXLVump59+Op+aKoC0tDTdt2+fzpo1S//8809VzX8w4dh/FHASWDRoYQct7KCFLfSwgxZ20MIOWthBC1voYZf/CmL16tXT3bt3H9d+nj9/vtatW1fr16+vQ4cO1Vq1amloaKiefvrp+vrrrxfDVpdNtLCDFnbQwo4pU6aoc05PPfVU3bNnT6Hvn5GRob/88oueccYZ6pzTNm3aaK1atdQ5p+eee67+/vvvxbDVZRMt7KCFHbSwgxa20MMOWthBCzt+/fVXDQ8P10qVKumPP/6oqlkvalEQf/31l958883qnNOKFSt63+DVpk0bXb9+varymmJB0MIOWthCDyB/PgFQZFRVnHOya9cuGT16tHzyySeye/duqVixosyYMUMuv/zybMuKiCxbtkyef/55ef/990VE5NZbb5VHHnlEwsLCJDk5WXw+n1x44YUiIpKRkRH8J1YKlCtXTqpXry5XX3211KxZUzIzM8U5J+np6VmWC9x/Pl/W/wv098CJoYUdtLCDFrbQww5a2EELO2hhBy1soYc9qioiIuHh4SIiUrduXaldu7Y457zbCiIjI0OaN28u0dHRsn37dpk0aZL89ddf0qRJE3n00Ufl5ptvzvJ4yI4WdtDCDlrYU6FCBRER2bt3r+zevbvQ93fOSatWreTaa68VEZFffvlF/vrrL2nbtq3MmjVLmjZtymvnBUQLO2hhBy3soIUt9LCDFnbQwo7IyEhJT0+XhIQEWbRokYiIhISEFPj+qipRUVFy/fXXS+3atSUpKUkOHDggzZs3l++++06io6MlIyOD1xQLgBZ20MIWegD5Y4AdKELOOdm9e7c88MAD8sUXXxzX8PrAgQPlP//5j9SqVUvefvtt2bFjh0RERMgll1wiIlkPZLwxkjufzyfp6ekSGhoqiYmJMmHCBBE5uv844QsuWthBCztoYQs97KCFHbSwgxZ20MIWepQ8/+saHTp0EJGjb7h+9dVXWW7LT0ZGhoSEhEidOnWkVatWUr58ecnIyJDQ0FAZNGiQ/Otf/xIR8T6wgJzRwg5a2EELey655BJp2bKlpKeny9dffy1paWkFvq//9fTt27fLnj17JDIy0tvn7dq1kwYNGnjL5bUOHEULO2hhBy3sKOkWyIoedtDCDlrYoKrSsGFD6d+/v/h8Plm2bJns3LmzUPf3t/j444+zdNy/f793YQxa5I8WdtDCFnoABVS0F3QHsGvXLm3WrJk657RatWr6+eefZ7k98Gs7li5dqtddd50659Q5p3fccYdu2bLFW+7SSy9Vn8+nvXv31rS0tCxffx64ng8//FAff/zxYn5mpcuRI0dUVTUpKUnbtm2rzjkdOnRoCW/VyYkWdtDCDlrYQg87aGEHLeyghR20sIUedmzcuFHPO+88dc7p8OHD9fDhwwW6X+BrHE888YRGRUWpc04jIiLUOaf169fXP/74Q1Vz/lrVwPvjKFrYQQs7aGHH4cOHdcCAAeqc03bt2umqVasKdD//6+Bbt27VgQMHas2aNdU5p/Xq1fNeVx85cqS3vL9HZmamHjp0SL/++uts6zrZ0cIOWthBCzuC3QJ5o4cdtLCDFra8++67Wq5cOXXO6fPPP6/JycnebbkdW3Nr0axZM+91xlNPPVU3bdqkqn+/Dqma/VyPc7+/0cIOWthCDyBvDLADxWD16tVar149/eijj7L8Pr/hdf+bHqqq8+bN824bN25cruv54osvtEWLFuqc01tvvbWYnlHplJSUpE2aNPH2o3OuwCeQecnpHxDp6enZTiJ5sfFvtLCDFnbQwhZ62EELO2hhBy3soIUt9LDj+eef9xpMmjRJ4+PjvdtyeoE8t8HQ6OhoHTdunHbp0sV7E3fz5s2qmvWNW//9v/vuO33kkUeK50mVUrSwgxZ20MKOzZs36+mnn67OOe3atasuXbpUExMTVTXn46r/d9u2bcvyhm3r1q31t99+02nTpnltH374Ye9+/h4rVqxQ55xed911QXh2pQst7KCFHbSwI1gtUDD0sIMWdtCi5AXu54ceesjbf2PHjtV169ble7+cWmzcuFF37typnTp1UuecNmzYUDds2JDjY3722WfebSf7hw1oYQctbKEHUDAMsAPF5Nir+RRmeF1Vdfz48RoeHq6NGjXStWvXeusIXM/nn3+uLVq00LCwMHXO6WWXXVaMz6j02bRpk7ePTz31VJ01a9YJrzPwoJ6YmKgzZ87UBx98UC+77DK98sordcKECfrNN994yzDQcBQt7KCFHbSwhR520MIOWthBCztoYQs9Sl7gkOeIESO8Hvfff78uWrQo3/sEDoY2adJEZ8yYoaqqsbGxGhMT47X1D4gG3v+HH35Qn8+nzjl98cUXi+HZlS60sIMWdtDCpri4OK1bt64657RFixb6+OOP64oVK7Itl9cbtuvXr1fVox9mC/yAwkMPPeTdf+/evdq+fXt1zml4eLh+//33wXmCpQgt7KCFHbSwozhbMBxaePSwgxZ20KLkBZ6/DR8+3Nt/l112mT7yyCNZPrysWrAWmZmZumbNGu+Dyw0bNtTU1NQsVzeePXu2tmzZUqtUqZJj85MRLeyghS30APLHADsQBIUdXk9OTtZ27dqpc07PO+887+tDchpeDw0NVeec3njjjd7tJ/sb6IF+++03bdy4sU6fPt373fHuH/8gQ0ZGhk6ePFn79Omjzjmvgf9PVFSUPvjggyf8eGUNLeyghR20sIUedtDCDlrYQQs7aGELPUpe4ND/gw8+6O2nevXq6cCBA70rkKnmfVVj/2Co39q1a70B0RdeeCHLYy1ZssT72tXmzZvrmDFjNDU1tTifZqlACztoYQctbFq/fr127dpVK1asqM45rVy5sv7555/e7QV5w9bfKy0tTZ9++ml1zun8+fNVVTUlJUWfeOIJrVy5soaEhOjVV1+t27dvD/KzLB1oYQct7KCFHcXdAoVDDztoYQctSl7gOd9zzz2nZ511lnfet2bNGu+2grQIXNeqVau0S5cu+u2332Z5vI8//ljPP/98DQ8P9+Z0cvpmr5MRLeyghS30APLGADsQRMuWLctzeN1/wPjll1+0fv36GhERoZMmTVLVoycsfscOr99www3egYyv/cgu8BNrxztYEHjieN1113n/UPC/idW5c2e95pprtF27dt7VlYYPH14k21+W0MIOWthBC1voYQct7KCFHbSwgxa20KPkBb4W8dZbb2nv3r21XLlyetddd3m/L+hgaOBya9eu1bfeeivLYwUOhrZo0UJffPFFPXToUHE8rVKJFnbQwg5a2LR7926dOnWqXn755frf//7X+31hhnz80tLSdNeuXd7fA6+SHxYWpkuXLg3CMyq9aGEHLeyghR3F1SK391NzGu452T+0HIgedtDCDlqUvMB99fPPP+uUKVO8bzfJzMz09s/27dv1jjvuKFAL1aNXxg/kHwoNCQlR55xed911um/fvuJ6WqUSLeyghS30AHLHADsQJCtWrNCePXvmOrweaOzYsd5yCxYsyHIbw+uFV1RXpt+zZ4926tTJa+Pc0a/vWrZsmfcPhS1btuiLL77oDTS88sorJ7z9ZQkt7KCFHbSwhR520MIOWthBCztoYQs9bAh8Af3gwYP622+/eX8P/PrSp556yhsMbdKkSa6DoTk5djB04sSJ3mDoyf5mbSBa2EELO2hhl3//Z2RkePtp9+7d+n//938FfsP2WLfffrt3LH/ppZdUlQYFQQs7aGEHLewojhaBjl3+3Xff1cmTJ3t/p1FW9LCDFnbQomTltD8DW/z11186bNgwrVWrVoFbBP7+2KHQa6+9Vg8cOFD0T6QMoIUdtLCFHkDOGGAHgmT79u3eGxh33313jsPrGRkZmpycrJdeeqn6fD7t3bt3lhONzz77TM866yxveL1fv34Mrxcz/8F+06ZN2q5dO3XOaUREhJ511lk6c+bMHO8THx+vAwcOVOec9u3bN8s/OHD8aGEHLeyghS30sIMWdtDCDlrYQQtb6FG0ctoPga9XvPrqq3raaacVajDU//vFixd7r6ucddZZOnHiRO/q++z/7GhhBy3soIV9mZmZeuTIEZ00aZI2aNBAnXPapk0b3bBhg6oWbMjntdde8wZDe/fu7d0XhUMLO2hhBy3sKIoW/vUEio+P19dee0379u3rdbr11luLfPvLGnrYQQs7aGGHf1/PnDlTo6Oj1TmnrVq1yncoNHDfMxRaNGhhBy1soQdOdgywA0H066+/6rBhw3Tz5s25LvPbb79phQoV1Dmn9957r/d7hteDz/8p6f3792v79u3VOacVK1bUiy66SOfNm+ctl9ObUJMmTVLnnIaHh+fZGwVDCztoYQctbKGHHbSwgxZ20MIOWthCj+Datm2b/uMf/1DnnNapU0ffe+8977b8BkMXLVrkDYaec845OnHiRE1ISFBVXhM5HrSwgxZ20MKOw4cPe8fl0047TdetW6eqBRvyiY2N1Z49e6rP59Py5cvr1KlTc1wup2M7HzTIjhZ20MIOWthxIi2OXWbt2rX6/vvva6tWrbR8+fLeUGh4eLg653Ts2LHF8hzKEnrYQQs7aGHLhRdeqM45rVmzZr4fJMhrKPSaa65hKPQE0cIOWthCD5ysGGAHgizwK2kD+d/MeOaZZ9Q5p6eccorGxcWpqurs2bNPaHi9sF8/hb/32ZEjR/SCCy5Q55xWqFBBe/bsqYsXL/aWO/ZFw7S0NFVVff/99zUyMlJr1Kih27ZtC96Gl0G0sIMWdtDCFnrYQQs7aGEHLeyghS30CL6PP/7Ye4N10qRJ3u8LMxjaoEEDHTFihC5dulQzMzM1JSVFVRkQLSxa2EELO2hhx2effeYN43zyySeqmv8+9PeYNGmS94btv//9b+/2wOO5f13p6en6/fff6xtvvJFtPTiKFnbQwg5a2HE8LY4VFxenL774ojZu3FirVaumzjmtW7eudujQQc866yx17ug3dP3444/F8AzKFnrYQQs7aGHHzp07NSoqSp1z+tBDD6lqwYdCO3XqpD6fjysaFxFa2EELW+iBkxkD7IAxvXr1UuecnnnmmXrkyBH9/PPPj2t4/dg32ffs2aNffvllsW57WZORkaG33XabOuc0LCxMu3btqosWLfJuz+uKF3fccYc657Ry5cq6devWYGxumUYLO2hhBy1soYcdtLCDFnbQwg5a2EKP4Pr000/VOaennnqqrly5UlXzHwxdvHixNxjqf1O2QoUKGhUVpa1atdK77rpLd+zYoaoMiBYGLeyghR20sOP333/XBg0aaIUKFfT1118v8P1WrlypERER6pzTmJgY/eOPP1Q1532fkpKiw4cP1zZt2qhzTm+//fYi2/6yhBZ20MIOWthR2Bb+87vDhw/r9u3b9c4779R27dp5x/GqVatqTEyMfv3117po0SK9/vrr1efz6c0336zJycl8gCAf9LCDFnbQwo6kpCS97LLLvA+R+S9Qcaxjh0JjYmK8odAWLVp453cFkdMH1EALS2hhCz1wMmOAHTBk+fLlWr16dQ0JCdE333xTFy5cqM2bNy/U8PqxJya//PKLvvXWW9qkSZNsV3VA3j7++GONjo72vtbrq6++8m7La5Bh5cqV2rp1a3XOaa9evTQ1NZWvdzxBtLCDFnbQwhZ62EELO2hhBy3soIUt9Aiu5cuXa8OGDdU5p+PHj891ucCrGvtfD/H5fFqzZk299tprddCgQdqtWzetV6+eOue0efPmumXLliz3Rd5oYQct7KCFHfv379fLL79cnXParVs3b8gzLzt27PAuDBMVFaXjxo3T1NRUVc16TN+7d69+99133iBQSEiI90bviy++WGzPqbSihR20sIMWdhSkxbHH3uXLl+stt9yiLVq0UOecdyy//fbbdfr06ZqcnKyqqjNnzvQGRt9+++2gPJ/Sjh520MIOWtgyefJkb5/l9IGCwGPyRx99pOeff753HPb/efzxxzUhISHfx/Kva+HChbpq1SpVZTg0EC3soIUt9MDJigF2wJC33nrL+/Tsrbfeqmeffbb3dYIFvfK66tEDzbp163TMmDHauHFj76oO4eHh6pzTe+65JxhPp9S7/fbbvYP8W2+95f0+p8GEwN89/vjj3v3GjRsXlG0t62hhBy3soIUt9LCDFnbQwg5a2EELW+gRfE899VSeL8LnNBjapEkTHTBggG7evNlb7tChQ7pkyRLt0KGDOue0devWunv37mA9jTKBFnbQwg5a2LFhwwbvQwCXXnpplv0byN9k+vTpetppp6lzTtu3b6979uzJtuxPP/2kAwcO9NZbp04dbdCggTrntE2bNrpv377ifEqlFi3soIUdtLDj2BabNm1S1ezvo7733nt6xx13eO+5/j/2zjssiuP/4zNHFUEBFUtEEXvB3gv2XqLma0uixiQae4kt9t577C3GKJqosceY2EtsiR2QjtgLYqHDce/fH/x2vKMrV4bj83oenpjb2b3Zed3u7Mx+ZoZzDicnJwwfPhwHDhzQSRsYGIhq1aqBc45evXoZ61TMAvIhD+RCHsiF6dHu05s4caIYGLB+/fo006QMCu3bt69OW3HmzJmIjo5O9/uU+v/MmTNin7t37xrgzHIe5EIeyIVckA8it0MB7AQhAUlJSYiMjESrVq1EoHn58uVFwHlWg9cjIyMREhKCAQMGoGbNmqKiKV68OEqWLCmWtB06dKixTi3HcvnyZfEiatiwYeLzzAIZ9uzZI8q9Y8eOiIyMTHc/ImuQC3kgF/JALuSCfMgDuZAHciEP5EIeyIVckA/joj2j2Lhx40QZbtu2LVUa7cDQypUrY/HixSJgJ2WfyIkTJ+Dq6gpbW1usW7cOALnIDHIhD+RCHsiFnPj5+aFo0aLgnKNDhw5itmIFxUlsbCwaNmwIzpMnhrlx44ZOuvDwcOzYsQOOjo7gnCNfvnzo0aMHDh48iOrVq8PJyQnr16+HWq2mWfLTgVzIA7mQB3IhDyldJCYmAgBev34NLy8v9OjRA5xzEeBTqlQpjB49Gnfv3hUzGQMQDv/66y8UKVIEtra22LhxIwBaReVDIB/yQC7kgVyYHu222vjx40Vw6IsXL3TKLmVQaI8ePfD27VsAwIoVKzINDlXae6dOnRJpOefo378/zWz8/5ALeSAXckE+iNwMBbAThCSEh4fDxcUFlpaWUKlU4kVIesHrKSuOM2fOYMCAAXB3dxcVGeccY8aMwe7du/HDDz/AwcEBHh4eCAgIAEAvTDLi4MGDsLCwgK2tLXbv3g0g80CGP//8UwwSKFu2LH766SdqLOoBciEP5EIeyIVckA95IBfyQC7kgVzIA7mQC/JhfLT7McaMGQPOOebNmwfg/YvW8+fPi/6MEiVKYMGCBaIDPi0/r169EgP4e/funWkekpKS8PDhQ32cTo6GXMgDuZAHciEnPj4+KFasGE6fPp1uGmVFlTx58mDmzJlISEgQ2/bu3Ysvv/xSvJBt3769qPdHjx4NzjmaNm2K+/fvG/xccjrkQh7IhTyQC3nw9vbGJ598ghs3buDVq1fYs2cPqlatCmdnZ1G+BQoUEP/ev38/AAgfSj2ekJCApk2bioFqb968Mdk55WTIhzyQC3kgF6YnZXDomTNndLanDArt2bMnXr9+rZNm5cqV6QaHKu1G7aBQR0dHfP7553j69KnBzisnQi7kgVzIBfkgcisUwE4QkhAWFiaWhFJmXv/iiy9EY0QZiZvyZcjPP/+MwYMH64yMcnV1xZgxY/DXX38BSH5ZUrduXfGyJCoqyrgnlwNRKnV3d/d0X0Rp///ff/+NggULgnMOe3t7DB06NMMlWYisQy7kgVzIA7mQC/IhD+RCHsiFPJALeSAXckE+TIN2J/zJkyd1tmkHhnLO0aVLF4SHhwNIOzBU6Sf5/PPPRcBPRiQlJeHy5cuoXLkyRowYkd1TyfGQC3kgF/JALuREmXUyrZnA9u/fjzJlyoBzjqpVq+L27dsAgHfv3mHo0KFiRuO8efNi6tSpYuWUjRs3gnMOCwsLXL582Xgnk8MhF/JALuSBXMhDQkICDh06BCcnJxEQamlpCTs7O8ybNw9r164VK2FzzsU7VI1GI/x5eXkhX758yJ8/P7y8vADQrMYfC/mQB3IhD+TC9KQ3u/D+/fszDArV3i9lcGhUVFS6QaG9evXC8+fPAbz3pLQVczvkQh7IhVyQDyI3QgHsBCERvr6+4oV4v379xMuPuLg4nXSPHj3CL7/8gvbt2+sErjdo0ACDBg3Cw4cPdWZxUGYNKliwIHx9fQHQ7OuZsXbtWnDO4eTkhJCQkAzTHjt2DE5OTsJDt27dxGhnajBmH3IhD+RCHsiFXJAPeSAX8kAu5IFcyAO5kAvyYTrS6oS/cOGCGMxvYWEBOzs7+Pj4AMi4/+L169eoWLEiOOdo165duumSkpJw5coVNGvWTHj877//sn8yORxyIQ/kQh7IhXykN8AsNjYWAwYMEGW2b98+xMXFYdu2bWJWSltbW3z55Zc4dOiQ2P/ff/9F7dq1oVKpsHDhwjS/A0j9W6D+dHIhE+RCHsiFXNy5cwcODg7gPHlm4lGjRuH69esAksvs7NmzaN26tfDy999/6+z/3XffgXMONzc33LlzxxSnYFaQD3kgF/JALuTDy8sLjRo1grW1dZpBoQrafYDawaEzZswA8GFBoVFRUWIAAvEeciEP5EIuyAdh7lAAO0FIho+PDwYOHCg6m7QrGG9vb+zevRvlypUTMzPY2Nigfv36mDZtGkJCQhAfHw/g/XJSjx49QrNmzaBSqfDNN9/ojKwi0sfHxwfu7u5wdnbW6TzUHhiQkJCAX375RVTwlpaWaNu2LSIiIgCkPzKO+DDIhTyQC3kgF3JBPuSBXMgDuZAHciEP5EIuyIc8BAcHizKuUqUKihQpgkqVKiEyMlLHhzZKn8nBgwdRtGhRqFQqzJ49W2ebghIY2qRJE9E5v2HDBjHzPvEeciEP5EIeyIW8bN26VbgZOXIkgoOD0aFDB9Fv7uLigt9//x1PnjzR2W/OnDlQqVRo0KABbt68meF3xMbGYu/eveL/KUA0bciFPJALeSAXpsPX1xfffvstwsLCxKpZStstISEBp06d0gkOPXHiBADg999/F5+tWLHCVNk3O8iHPJALeSAXcrFixQpRrr17904zKFRBO85Ge7/+/ftnGhSqEBUVhc6dO4Nzjjlz5hjknHIq5EIeyIVckA/C3KEAdoKQnMTERISGhmL27NmoVKkSbGxswDmHnZ2dqFxWrlyps4925bJ+/XqRbt++fcbOfo4lIiJCzHDv6emJ69ev67yUOnbsGL7//ntRtk5OTujRo4d4UKBABv1BLuSBXMgDuZAL8iEP5EIeyIU8kAt5IBdyYQofFFCSPv369UOxYsWwZMkSVKpUCXXq1Ek3rfZL3W7duoHz5BmRL1++nCptysBQe3t7bNy4EZGRkQY7l5wOuZAHciEP5EI+Ll26hBIlSog6umPHjsifPz845yhVqhS+/vpr+Pv7p9rv3Llzom5fs2aNzjbtevrt27e4fv066tevL170EmlDLuSBXMgDuZCbxMTEVMGh+/fvx8yZM2FpaYmaNWvi3r17AKgNZwzIhzyQC3kgF8anX79+aN26dYZBoQrasTjbtm0D5xwqlQqcc+TPnz/DoFAAWLBggYj3adWqVarBbLkdciEP5EIuyAdhzlAAO0FIzNOnT9G1a1d4enqKxgnnHI0bN8aYMWPQuHFj8dnJkycBJDdSlIaKn58fqlSpAs45BgwYYMpTyZEEBQXB1dUVnHNUrFgR3bp1w/Dhw9GhQwcUKFBAlL2HhwcmTJggZkaiwBL9Qy7kgVzIA7mQC2P6oA7JjCEX8mCK+5SyGhGhC7mQB2O60O54pPo/bUz1PKXd4Zvb6xLtsjx79iwePXqEpk2bIn/+/Lh7926G+w4cOFAEhs6cOROAbnlSYOiHQS7kgVzIA7mQk8TEREyaNAmcc+TJk0eUM+ccbdu2xZ9//ilWS9F+HgoJCUG9evXAOcdXX30lPk9Zr1+/fh0//PAD3NzcwDmHlZUVOOc4d+5crq+3U0Iu5IFcyAO5yBmkFRyqzI4/aNCgDzoWlXv2IR/yQC7kgVwYB+16NiYmJsv7KZNg3Lx5U/ixs7NLMyg0rX7EPn36oEWLFrh+/Xp2sm9WkAt5IBdyQT6I3AAFsBOExAQFBcHS0lJUJs2aNcPUqVORmJiIuLg4XLx4Mc3lo5SK6ODBg3B2doalpSU2btwIIPMGio+PD7Zt22bQ88pJBAQEoEaNGrC2ttYZRKB0OPbu3RuHDh1CbGwsgLRHpxH6wdgulP2pUZ8aciEP5EIujO3D19cXt2/fpronDciFPBjLRVJSEnx8fPC///0Pu3btwv3798U2umclQy7kwdj3qB07dmDDhg06y8+Ti/cY24ePjw/69Omj87Ixt/tIWaZDhw4F5xyLFy8W5a6gVqvx5s0bfP311+A8eeaYTp064dq1a6mOSYGhHw65kAdyIQ/kQk78/Pzg4OAg6uxKlSphwoQJ6aaPj4/HsmXLYGdnh2rVqokXsNqDLhMSErB79264ubkhX7584JyjcOHC6NmzJ/766y+d41Hb7z3kQh7IhTyQi5xBYmIiTp8+jRYtWoh2YIUKFUQ/Rsq+8Ldv3yIwMBCHDh3CjRs3EB4eLo5FZZ59yIc8kAt5IBfG4UPLRkl/4sQJ4cXBwSHDoNCYmBg8e/ZM5zghISHZzbrZQS7kgVzIBfkgzB0KYCcIyfH19UWZMmWwevVqBAYG6mxLSEhINfJW6ah69eoVqlatCs45GjRokKUZEP39/dG3b19wztGnTx+DnE9O5NGjR1i1ahW6d++OevXqoUqVKpg6dSq8vLx00uX2oANjYEgXKUcVvnv3Dmq1OtUSPOQ5GXIhD+RCLoxVZwQEBOCLL74A5xyTJ0/GpUuX9HZsc4FcyIMxXPj6+qJTp04iUKhLly7Yvn27Xo5tTpALeTDWPery5ctwd3cH5xxNmjTB1q1b9XZsc8JYPnx8fDBixAjRfh82bJjejm1O7N69W5TRnDlzcPHiRURGRiI0NBRr1qxB+/btxT2mefPmOHz4sM7+FBiqP8iFPJALeSAX8uDt7Q17e3t8++23OsGbaa1C8+DBA1SrVg2cc0yaNAnR0dE6xzp27JgYnKD8lS1bFr/99hvCwsJ00j58+BBr165N9XluhlzIA7mQB3KRc/j111/h4uICzpNnv3/37p3YprTTQkJC8PXXX6NUqVLgnMPS0hLt27fH5s2bRVpa+Uw/kA95IBfyQC7kQanHT506JepkR0fHTINCmzZtCgcHB4SGhpok3+YIuZAHciEX5IPIiVAAO0HkAFIuA6LdwZXW8lHHjx/HyZMnkS9fPhQoUAC//fYbgIwbJUrwutL4sbS0RHBwsGFOKIcTFxen8/80Ytl0GMLFyZMnsXLlSjRs2BC1atVCpUqVMHbsWOzZs0ekoeCS1JALeSAXcmEIH0lJSTh9+jTq1q0LzpOXCm7cuDFWr14t0pCP1JALeTCEi4iICMydOxd9+vSBlZUVVCoVrK2tMWnSJJGGXKSGXMiDIdsYP/74I2rWrAkLCwtYWlpi5syZYhu5SBtD+PDx8cHw4cNFu93KygqccwwfPlykIR/vmTJliiirAgUKwMPDAwULFkTevHnFTJafffYZjh49qrMfBYbqH3IhD+RCHsiFPERERIjVSAHdOlu7Xv3ss8/AOUelSpV0ZhRTq9UYM2YMKlWqJJxWrFgRAwYMwKtXr1J935MnT7B06VKR9smTJwY6s5wHuZAHciEP5CJnoAwOsLCwwOXLl1Ntf/bsGbp37y5W7XJ2dhaD1TjnOm1sel+YfciHPJALeSAXcvAxQaHR0dHo0qWLSP/1119naeJJImPIhTyQC7kgH0ROhQLYCSIHoHRkpfcyO60gduVFSMmSJeHv75/h8ZXg9QIFCoBzjhIlSuCff/7R+3nkZLTLnoIKTIshXGg0GkRERGDo0KFiEEfKP1tbW/zwww96/+6cDLmQB3IhF8aoM2JjY3H58mUx87fSETl06FCDf3dOglzIgyFdpDzevn37MGDAAOFi1KhRBvvunAi5kAdD36O0X0hdu3YNY8aMIRcZYEgfKYPXv/rqK6xdu1b4oCD292j/bmfMmIFixYrpPH86ODjAwcEBK1euhLe3d6p9MwsMze3l+yGQC3kgF/JALnIm69evB+ccTk5OOH36NADg6dOnOHjwIFq0aKHj8PPPP8ehQ4fEYLbExERxnCdPnmDRokUoWLAgOE+e/fj+/fsmOaecCrmQB3IhD+TCtJw8eRJFixaFSqXC4MGDAaSuj0+cOIHChQvDysoKffv2ha+vL3777TedWfHnzp0r0lNw6MdDPuSBXMgDuZADpcw/Nig0b9686NGjB65evWqaEzAjyIU8kAu5IB9EToYC2AnCTEgriJ1zrrMsVFqkDF7/5JNPKHidMBsyWnVAeYCLiYnBn3/+iTZt2ugEHrZt2xb9+/fHuHHj0K5dO/H5xIkTjZV9s4JcyAO5kIuPWbIxZefkkiVLUKJECVhaWoJzji+//FJf2ctVkAt5+NilTLU73p89e4Y1a9aI+9SCBQv0lb1cBbmQB324ePr0KVasWCFcTJkyRV/Zy3Vk5kO7fkgZvD5gwABERUUBADZv3kxB7GmgXb7//PMPduzYgUmTJmHChAk4ePBgqqBQIGuBoem9oM3t5Z0R5EIeyIU8kIucgVJuwcHBaN26NSwtLcUAvrt376JPnz4oU6YMOOewsbFB+fLlsXTpUp1jaLtOGRhar149Wr00i5ALeSAX8kAuTI/iYMaMGaKttmPHjjTTKrPaFy5cGKGhoeLzFy9eYPHixWL/9evXGyPrZgn5kAdyIQ/kQh6Uttrp06c/Oii0e/fuuH79umlOwIwgF/JALuSCfBA5HQpgJwgzIi4uDidOnEC5cuWgUqlQo0YN+Pj4AEj7ZQcFrxPmSExMDG7duiX+P63gEuV6ePfuHbZu3YratWuDcw5LS0s0b94ca9eu1Un/4sULEXhlbW2NXbt2GfYkzARyIQ/kQi6y4iMztOv1//77D02aNBHLQ1arVg0PHjzQS17NHXIhD/pwAej6iIuLw/z586FSqVChQgVcuXIl2/nMDZALedCXi5THXLhwIVQqFezt7bFnz55sHzO38DE+vL29MWzYMNFp/O233+L169c6x9iyZQsFsadBZrOBaZdPVgJDtTl16hRWr16NW7duITo6Okvfl5shF/JALuSBXMiNdvnPnTsXnHO4ubnh559/xt69e+Ho6Cjq5rx582LChAk4d+6czv7ax0grMDQoKMio55RTIRfyQC7kgVzIw7///gtbW1twzvG///1PfJ6yLbZmzRpwzuHs7Jyqny8mJgbTp08H5xyVKlXKdMbK0NBQvHjxQn8nYUaQD3kgF/JALuThzz//1FtQaFJSklFWDzZXyIU8kAu5IB9EToYC2AnCTFAqnPPnz8PGxgac6y4LnxIKXjcuylKO+gg6IdInLi4Oe/bsgaWlJb755psM00ZGRmLNmjXw8PAQQbqjR4/G5cuXRRrtJTjDw8PFQ9zIkSMNdg7mArmQB3IhFx/iIz20G4nnz5/H559/Lmb8bt26NW7cuEENySxALuRBHy7S49q1ayhSpAg459iyZYtej22OkAt5+FgXad1zUn4WFBQklqJXAqbpXpUxH+Pj4cOHGDBggOg0btKkCeLi4gAACQkJIl3KIPZvv/3WIOdgrnxoYGhISAi6desGzjnKli2LkSNH4unTpwCovZ5dyIU8kAt5IBem5ejRo6IerlevHoYOHYo8efKIl7lVqlTB+fPnERsbK/ZJOViAAkP1A7mQB3IhD+TCtCQmJoqVsooUKYLt27enSqO0k58/f45KlSqBc47JkycjJiZGJ52vr69YyXThwoXp1tkBAQHo3r07LC0taYb8FJAPeSAX8kAu5GLEiBHgnCN//vzo06fPRweFavcJpoQGLmcNciEP5EIuyAeRk6EAdoIwI54/f45WrVqBc44aNWrg8ePHAFJXIhS8bhru3LmD/v374/79+6bOilkSFxeHnTt3wt3dXXT8/vLLL2mmjY2NxS+//IJq1aqJIN358+fj4cOHIk1aQTxTpkwRLxHDw8MNdi45HXIhD+RCLj7ER3poO/jnn3/Qp08fCpj+CMiFPOjDRWY0btwYnHP06tVLZxAOoQu5kAd9uDh06BBOnDgh/j/l/WjatGngnMPJyQlhYWF6ybe5kh0fq1atQt26dWFnZwcHBwd8//33Ypv2NaBWq7F161ZxfO0ZFon0+dDAUIWzZ8+iW7du+OSTT8A5R82aNUU7nQJEPw5yIQ/kQh7IhWkJCQlB27ZtYWNjA2traxQoUABWVlbgnKNOnTqYPXu26O9Ir9325MkTLFy4UPShN2jQAP7+/mI7tfeyBrmQB3IhD+RCDgICAsA5R9GiRfHq1SsAwIMHD1IFbUZFRWHUqFHCj7LytXabbsmSJeCc4+eff07zu2JjY9G3b1/R5luwYAEFAKWAfMgDuZAHciEX48ePR5s2bbI1ozGQPOnFyJEj0adPHwwcOBC//vqreL9Kbb6sQS7kgVzIBfkgcioUwE4QZoBSQZw8eRKlS5cG5xxff/01oqKiUqWl4HXjo9FoEBsbi8KFC4Nzjp49e+oEhBL64d27d6hYsaJoyPfp0we3b9/WSaN02l68eBH169cXQbpLly4VDf+0UBr4Q4cOBeccVapU0Zn5hNCFXMgDuZCLrPjICAqY1h/kQh6y6yIz3rx5g7Jly4Jzjk6dOpGXDCAX8pBdF3fv3hXtvd9//11nmzJ7xvz582FjY4OCBQvi0aNHes2/uZFdH/7+/liyZAny5s0Lzjm++OILsU27s1etVmPXrl1Ys2YNnj17ptdzMEeyEhiasjNdo9GIe094eDj27duHWrVqgXOOUqVKicEc9IL2wyAX8kAu5IFcmJ6XL1+iZMmS4JyLVU445/j888/h7+8vZqVMrzyVwFAnJydwzlGuXDn4+/uL1VQUyEfmkAt5IBfyQC7kwc/PD0eOHAEAXL16FZUrV4aXlxcA3f6/e/fuiVXl+vfvLz5X6vP4+Hj8/fff4vO0+jyOHz8OzjnGjRsnVlghdCEf8kAu5IFcmB7ttpvSpvvQoFDlnep///2HEiVKiLpfmWCkZcuWePDgQarvI3QhF/JALuSCfBA5HQpgJwgz4tNPPxWVzZ07dwDodlBR8LppOXfuHOzs7MA5x2effUZB7Abgzp07KFWqFDp16oR79+7pbFOuhaSkJHTu3FkE6c6ZMwcvX75M95jaDfju3buDc45atWohIiKCAq8ygFzIA7mQi4x8ZAQFTOsfciEPH+siPZR7W0JCAn7++WcUKlQInHMMGzYs28c2d8iFPGTHxZs3bzBkyBDRufjTTz/pzLgUExODXr16gXMOGxsbnVn6iLT5GB/adUFcXBx27doFe3t7cM4xfvz4dPdLGXRCpEaj0eD8+fNiVYfMZjV+8+ZNms+2SUlJuHXrFurVqwfOORo1aiRmpyGyBrmQB3IhD+RCHry9vcUAsg4dOmDdunVZ2u/JkydYtGiR6EPnnMPZ2RllypSBm5sbvvnmG/z6668iPb24zRxyIQ/kQh7IhTwobbfhw4eD8+QVrrUHeit9GwcPHhR9gJs3b061v4J2madcsTQ4OJgGLGcC+ZAHciEP5ML0aMfcKOWZ1aBQJf3z58/h5uYmBp917twZjRs3RvHixcE5h5ubG62+lQXIhTyQC7kgH0ROhgLYCcJM2LlzJzjnsLOzw/DhwwEkVxhKRUPB66ZFeVi4dOmSWAqSgtgNw6NHj+Dn55fu9smTJ4NzDgsLCwwcODDVMmvpsX37dtEhPHfuXH1l16whF/JALuQiMx8poYBpw0Eu5CGli6yWo3Y67X8nJCTgwIEDaNOmjbhP7d+/X38ZNmPIhTyk5yIrTl69eoXvvvtOlPl3332HNWvWYOfOnejfv7/4fNCgQQbLv7mRHR9A8sCBefPmwdraGm5ubjhx4oRB8plbWLFihehw37x5c6rA0JcvX+LgwYNo3Lgx3NzckC9fPgwcOBA7duzQSZeUlIQjR47A3d0ddnZ2WLNmDYCseyXIhUyQC3kgF/Lg4+OD1atXIyAgQHyW0UtWJTC0YMGC4JyjePHiqF+/PsaPH48+ffqgevXq4jlq9uzZYj+a5ThzyIU8kAt5IBdyceLECZQuXRqOjo7YuHEj4uPjAbxfJeXly5fo3r07LCwsMGDAgEyPFxgYiM6dO2Po0KGGzrpZQj7kgVzIA7mQB6VNFh0djW7duqUbFKrN5s2bwTmHi4sL9uzZg7i4OLx79w5Hjx5F3bp1wTlH9erV8fjxYwBUf2cVciEP5EIuyAeRk6AAdoIwE+7fvw8HBwdwznHgwAGdbRS8LgfaQezW1tbgnKNNmzY0itmIhIaGolatWlCpVKhSpQpOnTqVpf1u3LiBtm3bwsLCAgULFsQff/xh4JyaP+RCHsiF3FDAtDzo00XKdORQl/Q6PFIGRavVasTFxSEqKgoxMTF4/Pgxrl+/juPHj6NHjx6oVKmSeHH7/fff68xATWQNciEP2sHS/v7+WZqBNSQkRKzSpfzlz59f/Lthw4Y4fPiwobNulmj7CA4OTndW3ZRcvnxZBJssWLDAkFnMFYwdOxYrVqxIVf7Pnz/HnDlz4O7uDs458uTJIwZrKjPgawcGvXz5Eu3btwfnHJ9++qmRz8I8IBfyQC7kgVzISUZtr5SBobVq1cKxY8d0ZsgPCgrC/PnzxfPUokWLjJFts4RcyAO5kAdyYVpev36NAQMGgHOOmjVr4saNG2Kb0j8ybdo0MZmY9sCDlAQGBuoMHj9+/LjB829ukA95IBfyQC7kIiEhQay8lT9//gyDQgFg7dq1YgbjlDPoX79+HXXq1AHnHN26dUNERIQxTsFsIBfyQC7kgnwQOQUKYCcIM+L27dsYNmyYzmcUvC4X2kHsygi3O3fumDhXuYeDBw+KhvicOXPE5xl1DD99+hQ//PCDeKH45ZdfpkqjeH327JnOUmsUkJg+hnJBfDiGdPGhM5PmVpTZMYC0l/cC9BcwHR0drcecmx/GdHHz5k0sX748ze8gkmcqPnfuHL799lsMHToUffr0QZcuXdCzZ0906dIFnp6eaNasGTw9PVG1alVUrlwZJUuWhLW1Nezs7HQCdocNGwYfH59U30HXRdYwhguA6oyscvXqVbRs2RJbtmwBkHF5JSQkYMmSJeCco0uXLrCxsREuevbsiT179oi0ac2gTy4y59q1a2jRogV+/fVXAFkrsw4dOoBzDk9PT0RFRWWYVrteIh/v0R4Eo8w2BryfrdLLywulSpUC5xyurq5Yvnw5Jk+ejJ49e+qsSqAd7LNp0yZYWFjAw8MDr169Mt7J5HDIhTyQC3kgFzmTlIGh9erVS3dG5OjoaPzwww/gnKNs2bK4efNmhsemOvzDIBfyQC7kgVwYjwcPHqB27drgnKNZs2a4fv26Tn0+c+ZMcM5ha2uL27dvp3mMwMBA9O3bV9TrkyZNwpMnT4x1CmYF+ZAHciEP5EIuBg0aJII5tQcUpMWJEydEme/evTvV9mPHjqF06dJwcHCAl5cX1dEfCLmQB3IhF+SDyAlQADtBmBnaL0n8/f3x5ZdfiuD14sWLU/C6BCgBcTdv3sTp06eRkJCQ7WNqNBpaniUDlLIZPXo0OOeoVKmSCDTPqNzevHmDFStWIG/evOCco3HjxmK2y5RLeZ45cwaurq745ptv8Oeff4rP6aFNF0O7SHkMKv/0MYQLpQ5KGRT67t07nWOQF12U8rhw4QJ27tyZaoa+ixcvonfv3mJGvjZt2uDmzZsfXI43b95EixYtsHnzZty/fz/V9xOGd6Gk8/b2RvPmzcE5x6BBg1JtJ4A//vhDzEr5MX8FCxZE5cqVsXnz5gxnAaDrInMM5SJlXfP69WskJCSkCsoiF7oogQgNGjTI0izswcHBsLKywqxZsxAWFoYLFy7gypUrOi+2UrZH3r59C7VajTdv3uh8Ti50SUhIwJgxY8A5R8uWLXUCDdMjJiYGtWrVAuccdevW1fGgkPLaePHiBaKiolIdn3ykTVJSEmrWrCkG8IeGhoptL1++xMaNG8X96ZtvvsHz58+hVqvx/fffg3OO+vXr66WNTpALmSAX8kAu5CRlYGj9+vURHByc4T779u2DhYUFrK2tdfoBU6LU6zExMXj9+rU+s22WkAt5IBfyQC6MT2BgIIoWLQrOk2c4njNnDs6cOYNVq1aJetrT0xMvXrwAoNs2CwwMxJdffinSTZkyJUttdyJ9yIc8kAt5IBemR7v/bvPmzbhy5YrO9piYmFSxBFFRUejVqxdUKhV69+6Nhw8f6mx//fq1mBV/5syZ1PbLIuRCHsiFXJAPIidBAewEYaYEBATg008/FZ1axYoVw7///mvqbBH/T3aDDbISrE4BDan55ptvwDlH7dq1AWRcRhEREVi/fr0I0vXw8MChQ4fS3WfWrFlQqVSwsLCAm5sbli5dKraRi9Toy0VGM1Kq1WoKaM8Chrou/v77b3Tp0gVNmjRB7dq1MWfOHJ0lCMmFLsqI5jJlymDXrl2IiYkBkBxIrY/g9RcvXuCrr74SnZKff/55ujPv5nYM5SJl8Lqtra3wMXz48FTpcjshISGwsrIC5xxWVlZo0KABOnbsiC+//BIDBgxA79698e2332LChAkYMWIExowZg0WLFmHFihXYsWMHAgICMu14p+siaxjChXbZvnjxArt27UKNGjXg4eGB0qVLY+LEiTh48GCa6XM7hw8fhpubGwoVKoTt27frDGDWRnkG8vb2Rv78+dG1a9c002l3MJ4+fRoLFy5EjRo1UKtWLVStWhWzZs3C0aNHRRpy8R61Wo1t27ahWLFiKFq0KHbt2pWpj6dPn6JGjRrgnKN58+apVoDQ7jDevXs3Ro4cieLFi6N06dIoWbIkxo0bh99//12kIR+pCQkJgaOjI+zs7DB9+nQAQGxsrE6a/fv3i3v/wIEDcefOHbRs2RKccwwZMgRqtZrKVg+QC3kgF/JALuTjQwNDlbK/ePGiaNNt3Lgxw++IiorCxIkTUadOnUyDTnMz5EIeyIU8kAvT4e/vj0qVKok6Wbsfr2jRopg3b16qfTILCqVJqD4e8iEP5EIeyIXpSRn4qRATE4M///wT169fT5Vuy5YtsLCwgK2trVjRUbvcb9y4gR49euDYsWMGzLn5QS7kgVzIBfkgcgoUwE4QZsrjx49RokQJcM5hb29Po5/MCO2XVP7+/vjll18wadIkDBkyBDt37tQZqEAvtHQZO3YsOOeoXLlyqll1tR+6Hjx4gKVLl4og3fLly2P9+vWpZpFOyYEDB9CzZ0+oVCpwzvHDDz+IbeRCF0O4uHfvHrZs2YIePXqgbdu2qFu3Ltq2bYtNmzbh8uXLIh250EVfLpQBBWq1WmeWB+2/IkWKYMaMGeKY5OI9vr6+sLa2Bucc1atXx549e/D333/j888/z3bwOpDcEN27dy/atWsHzjlUKhVcXFzoPpUGhnCRMnjd0tISNjY2qFevnqgzKIg9Nb6+vuIlbdOmTeHj4/NRx0mvPOm6yDqGcvH48WNMmDAhzTrD2dkZU6dOTXff3EpERAT69esnBp+lteSjdlmtXLlSDMqJi4vT2aZdzy9evBgVK1ZM04WTkxO5SIfw8HD06NEDnCfPqH7z5s1UabQ7f6dPny7KdfHixemmGzduHBwcHNL0kTdvXrpPZUBgYKAoqwkTJqSb7vDhwyKdssqEjY2N6LQnsg+5kAdyIQ/kQi4ePnyIJUuWfNCsxkByO2Lq1KmwsrKCs7Mzzp8/n27apKQkzJgxAy4uLuCco2rVqqkGLRDkQibIhTyQC9MTFhaGESNGiEHInCevRjp79uxU7bDMgkK106cMJKI2XdYgH/JALuSBXMjJr7/+Cs6TJ8xR0O6HVSbVKVCgAPz8/AC8f8cKJPeZK6SM70kvGJVIG3IhD+RCLsgHIRsUwE4QZoy3t7fo3KpevTq8vLxSBScSOQ+1Wo0XL17gyy+/1BlZrfyVKVMGs2fPFumpUfm+DP744w8ULFgQn3zyiU7HrXYZXbx4EcOHD4ednR0456hYsSKWLVuGiIiIdI+v/TDn7++PGTNmiIDEMWPGpPk9uRVDuPD19cXKlSvh6OgoZhhQgky1r4uFCxem+T25FUNdF9ov2p2dneHm5oZ27drB3d1dXBejRo1K83tyO35+fqLeLleuHBo0aKATMH3jxo1slZdGo8G7d+8wcuRIODk5CR/fffedHs/CPNCni/SC13v27IlHjx5h165dFMSeAdqB0y1atBAdJYBuGaX378yg6yLr6NOF8vmGDRtEnVGyZElUr14dPXv2RJUqVajOyIAHDx6gTp064JyjWbNmuH37tugk1O4cPHr0KKpUqQLOOXr16qVzDO2ynDdvHmxtbUWZN2nSBN27d8d3332HBg0aiM/Hjh1rnBPMYdy/fx9Vq1YVPq5fv55m0MeyZcvE793DwyPd567Ro0frPMd26NABw4cPx/jx49GqVSvhY9y4cUY5v5xGVFQU2rRpA0tLS3z22Wd4+vSp2KbRaHTabjt27BDlaWtriw0bNgCgGcf0BbmQB3IhD+RCHtRqtRjo9yGBoQBw7do1MfCvZs2amfa3X7p0CZxz5MuXD3/++ac+sm9WkAt5IBfyQC7kIT4+HlFRUbhw4QIuXryIFy9epEqTWVCoNrdu3cLYsWOxZcsW+Pr6is+pfs8a5EMeyIU8kAv5+Omnn8B58kz4J06cEJ8rKzc+evQItWvXFn3f8fHxaZavdlDowoULcf/+fQAUHPohkAt5IBdyQT4I2aAAdoIwc+7duycCTapVq0ZB7DmcFy9eYPv27ahVqxY45+JFVvny5VG9enUUKVJEBNhpB04TyTx//hyenp7gPHn20IsXLyIqKgoA8PbtW6xatQo1atSAjY2NGPixefNmvH79OtNjawedvH37FuvWrRN+lixZYqhTyrHoy8WePXvQtWtX0enyySefoF69eli1ahXWr1+PCRMmoFGjRsLF6NGjxb4UBJeMPq+LiIgIMdNDhQoVMHv2bDx79gwAcPv2bcybN0+4mDZtmjFPM8dw7949FChQQMywpwSKent7Z7uDUPs3P2fOHDg4OIg6Y9asWdnNutmhDxfpBa/36NFDXBvx8fHYsmULBbFngPbzbIsWLeDv76+3Y9N18WHo08XTp09RrFgxcJ48c/Uvv/yCN2/eAEgeRLJo0SJxXcycOVNfp2A2BAYG6pTf5s2b8eTJE7H9559/RsOGDcWKEtozqGuzZ88eFC9eXOdZKSEhQVwbDx48wJo1a8T25cuXG+X8choBAQEoWrQoOOeoUaMGJk+ejMuXLyMgIADHjx/HiBEjxPOqra2tzoo02qxevVqkK168OObPn6+z/enTp1i7dq3wsXr1aiOcXc5j+fLlohxXrVqVavWmqKgoeHt7i9nzra2tMXXqVJ1AUnoxqx/IhTyQC3kgF/Lg7+8v+lWzGhjq7+8v+j2KFy8uVvxTnCj/TTkD2cWLF3Hy5Ek95t68IBfyQC7kgVzkDD4kKPTt27dYu3atSNuwYUNs27ZNbKdAn+xDPuSBXMgDuTA+vr6+aN68uXjf8/LlS7FNrVYjMTER3333nRhspgSMaqPd5lNWdCxSpAgePHhglHMwF8iFPJALuSAfhGxQADtB5AIoiN08CAsLww8//CCWDnZwcEDLli2xbds2EUh6+/ZtrFixggJMMkA72KdEiRKoVq0aGjdujGrVqokGuRKUdfr0aRHImx5KcE/KIMPXr19j/PjxUKlUqF69Ory9vQ12TjmV7LrYtGkTPDw8xO+9TZs22LlzZ6pZwf39/bFkyRKRLr2AodzMx7pI+bt/8+YNypcvD845hg0bJgIRFSIjI7F06VKoVCoUKlQIhw8fNto55iR8fX3h7OwMzpNnsZ83bx7evn0LIHsBzUpD0t/fH5UrVxZeq1Spgrt37+ol7+aGPlxcv34dTZs2hZWVFWxtbdGrVy9xDMWJWq3WCWLXnnGaSMZQQex0XXw42XWhHRhduHBhWFtbY/HixYiOjtZJFxkZiYULF0KlUqF48eI6s0AQyfj5+aFs2bLgnCNv3rwoUqQIPD090aBBA3DOYWlpCc45OnbsKPbRfnbVaDT49ttvxb1nwoQJIp32C6nY2FjMmjULKpUKTZs2TXMmJyL5PqK9QpaFhQWcnJzg5OQkPsufPz++//57sY9yD9JoNHj9+jXat28vfCxdulSk0w4wiY6OxqRJk6BSqdC+fXu8ffuWBjz9P9rlMG7cOFHugwcPxp49e+Dj44MrV65gwoQJqF+/vhikNnHixHSDgq5evYo9e/Zg3759+P333/HmzRvEx8cDoADSjCAX8kAu5IFcyEloaChCQ0OzlNbf3x81a9YUL2U3bNigs+qKUubR0dEYO3YsFixYkOZxqN5OG3IhD+RCHsiFfGiXz4cEhWqzZMkStG/fXuynPYEC1d8fBvmQB3IhD+RCDrZu3QorKytwzrFy5UrExMTobNdeqfHGjRs627T7ZSdPnixWIC9cuDCOHz8utlGdnTXIhTyQC7kgH4RMUAA7QeQSKIg9ZxMSEoLvvvtOzOrn7OyMhQsXpgqK1mg0iImJwbRp02BpaYlWrVohPDzcRLmWl8DAQDRq1EjMrKv9V61aNYwcOVKnczctlFGGyotBIPUD2KlTp5AnTx5wzrFz5079n4gZ8LEutmzZglKlSokAn3bt2uH69es6abTdxMXFidlD7e3tsWfPHoOfW05DH9fF8+fPRSD8vXv3AKTuzPL29kaJEiVEZxmRNj4+PsJFtWrV8Ouvv6aame9DUDz4+PjoBNdVqVIFfn5+AGj2jPTIrou1a9eicOHCUKlUsLKywqRJk8Q27YBEJYhdmS3522+/1et5mAMpA6cDAgKydTy6Lj6eD3GR3kuNsLAw5M+fHzY2NmJFgpRpb9y4Ib4n5UzURDKhoaHo2bOnGOSa8q9r165iQFnK33NAQABsbW3BOUenTp3E52n97s+cOSMC4i9dumTYk8rBhIWFYfDgwakGAXLO0bJlS52g9JTl/N9//4m0X3zxhfg8rWvo6NGj4Dx5Ra7bt28b7oRyINrlumDBAhQvXlyUa6FChcSqKkpg6A8//ICgoCCdY4SHh+PEiRNo2bKlGMimtDvq16+PCRMmiBUPqJ5IH3IhD+RCHshFzkU7MLRw4cJYtmyZTvCPdmDorFmzRL/H7NmzUx2LvGQPciEP5EIeyIXxCQoKyjAoNK1y1J658t69e2KmypQuKNDnwyEf8kAu5IFcmIaUK74q5bdo0SLxziE0NBQDBw5MMzA0ZVBooUKFoFKp4O7ujmnTpiE4OBivX78WgaZUb6cPuZAHciEX5IOQEQpgJ4hcRFpB7JnNLk2YnocPH2LYsGFwcXERL7T279+vEzyXsqF46NAh8TBx9epVY2c5R/Ds2TMcOnQII0eOxBdffIGhQ4fCy8tLJwArs1HkT58+xSeffAIvLy+dz7X3a9y4MTjn6NevHzQaDY1MT4OsuNB+sN27dy+qVq0KlUoFCwsLcM5RsmRJFC9eHP/73//SnWH95cuX+O6772BhYYHevXvT4I40yIoL7YDbZ8+e4cyZM/jll19w9OhR3Lx5E6NHjwbnHBcvXkz3e9q1awfOOdzc3BAZGUnXRTpo19seHh7YuXNnqtHPWSGjIN30BhoQumTXxd9//43Ro0eLQU19+/YV27Q7hdVqNTZs2ADOOVatWqXXczAXtF00bdr0o2dip+si+2TFhXb9fevWLezduxfz5s2Dl5cXTp8+jYEDB8LGxgZ37tzR2U/72VZ5lqpevTri4uKosysNIiIicP78eQwaNAhNmzZFyZIlMWDAACxbtkykSevF0p07d5A3b15YW1tj6tSpAJBqKUjtpearVKkCzjmOHDliwLPJ+URFReHZs2dYu3Yt5s6di3nz5uHAgQN4+vSpSJPeIAELCws4ODhg69atAHSfu7T3e/HiBUqVKgVbW1tcuXLFgGeTM9Eu36tXr2LHjh0YNWoURowYAXt7e3DOYW1tjYkTJ6YKDL1//z4mTpwoVjdQZqEpUqSIGPCh3JPu37+f6vsIXciFPJALeSAXOY+0AkOVAZjA+zKOjo7GjBkz4ObmBs45XFxc8Mcff+gcS/tZKyQkBAC1Oz4EciEP5EIeyIXxCQ4OxqeffppuUKg2Pj4+uHXrFuLj4xEXF6ezLTo6GosWLRLHUdqBxIdBPuSBXMgDuTAt2nXn+PHjRfnVrFkTXbt2Rdu2bcVnPXv2FGlTBoUWLlxYpOOci/dLpUqVQt++ffHo0aNU+xG6kAt5IBdyQT4I2aAAdoLIZWgHmtSsWRPbt29HdHS0qbNFpENERARmzpyJTz75RASvnzhxIt30SmBKYGAgHB0dwTnH4cOHjZVdsyIrHbPaI8/37t0LQDc46MaNG2LW/CFDhhgsr+aOtosbN26gU6dOYnYxzjkcHR1RpkwZFCxYUGcW0YcPHwLQ7Xg/ePAgOOfo0aOH0c/DHNAOovrpp590Gi+ccxQtWhQlSpSAnZ0dli1blmrG9qSkJDx58gQeHh5QqVSoXLkyvQTJhHv37sHJyUn8btNbOj49KEhXf3yMC+06ISIiAtu3b4eDgwM45/jmm2/ENm0HarU62zOLmzt+fn7iOWfChAkf/CxL14X+yMiFdhkuXLgQHh4eOnWGo6MjChQoAFtbW2zYsEFn5RSFu3fvig6w5s2bG+WczIGUg5TT6xy8fPmy8LFu3boMj3n+/Hnx/HXo0CG95TU3kt4sVSdOnBA+Mlu96cCBAyLtuXPnDJHNHE/K+3hERAR69+4tAkMnTJiQKjBUmUFfacMVLFgQ48ePx6FDh+Dj44OrV69i0qRJqFq1quiIDwsLS/P7iPeQC3kgF/JALnIOHxsYWqRIEZw6dSrd444dOxacc5w+fdrg52AukAt5IBfyQC5Mw+PHj0V7bPr06amCQqOjo3H06FF07dpVrGRWq1YtfPPNNwgNDdVJ+/DhQ3z99ddQqVTo3LkzrZz9EZAPeSAX8kAuTI92f+y8efPg6uqq826bc4727dvj/PnzAHTfv06ZMkXE8yjvvIcOHYpNmzbhiy++QPny5cE5R5kyZcTAZWrzpQ+5kAdyIRfkg5AJCmAniFzIvXv3RCBIixYt8Pr1a1NniUiB8rBw+PBhlCtXTryY+uuvv7K03/bt22FtbQ1bW1v8888/Bs9vTkU7eET7gSmrS5+9fPkSw4YNEw9mK1asQGBgIIDkgK5Zs2Yhb9684Jxj8uTJ+s28mZGei5Tb58+fL2Zdd3V1Rffu3XH37l08f/4cQUFB2L9/vwik69y5s9hf+wF8y5YtaX4vkUxmLgBg27ZtKFu2rHBRrlw5VKlSBaVKlUL+/PnBOUfZsmVx+vTpVAGJ+/fvFwG8rVu3Nui5mAv37t2Dp6cnVqxY8UH7UZCu/vlYFwpqtRpbt26FnZ0dOOdYs2ZNhunJT/rcu3cPPXr0wJ49ez5oP7ou9E9mLhYtWgRbW1tRZ9SuXRuenp6oUaOG6OAqX748Tp48qTPw6dWrV1i1apV4lurdu7exTilHol1/Z3U2i1evXqFevXpQqVQYPXo0gLR//2q1GkuXLkWePHlQqFAh3L59Wz+ZziVk9Xnz4cOH8PDwgJWVFWbOnAngvUvtYzx//hzDhw+HtbU1KleujCdPnug/02bI+vXrRWDopEmTUgWGvnv3DrNmzUKxYsVEUM+lS5dSPctGR0fjypUraNCggRhc8/Llywy/+9WrV3o/n5wMuZAHciEP5EJOAgICPjow9OTJkzrH+vnnn/Hjjz8CSJ4QQ3kp3LBhw0wdEeRCJsiFPJAL0+Lt7Y25c+fqrLQFAHFxcdi8eTNq164NzrnoC1H+ihUrluqd3fbt28X2lCvUEVmDfMgDuZAHcmF6tPtoT58+jaVLl6JWrVpo0aIFxo0bh4CAgFT9uFOmTIGzszM45yhQoABWr14NjUYj+gajo6Nx9epV1K9fH5xz1K9fHy9evDDqeeVEyIU8kAu5IB+ELFAAO0HkUnx8fFCxYkVablxClIo9Li5OvHBycnLCrl27srQfADFrU968ecVSj0TW0C7HrDxIvXz5El999ZVouFeqVAlt27ZFlSpVxNLPNWvWpIcyPXDlyhWxPHbZsmUxf/58hIeHp0r377//Il++fOCcY/z48eLzlAFZ2jOzE1nn1q1baNq0qXiRMWDAAPj7+0Oj0eDp06c4e/asCAqtWLEiVq5ciTt37uDatWtYt26daNC4urrCy8sLAAWLZoU3b96If2clEI6CdA2Htgvt0eZp3Y/S4tGjR+jYsSM45/jss89SLctJZJ2Us0xnBl0XhiM9F3/++SfKlCkj6oyxY8eKIPVXr17hypUrwkX58uWxYMECXL58GX/++ScmTZokBqWVL18ely9fBkCO9M2IESPEYFnlBVTKMv7zzz9F/d2qVStTZDPXMGjQIOHD29s71faIiAhs2rRJDBj87LPPTJDLnMvo0aMxbNgwncBQpQP+zp074n5UpEgR+Pn5AXj/3JXyurh48SIqVqwIGxsbrF69Ot17U2BgIIYOHSoGJRDJkAt5IBfyQC7kIjAwEKVKldJLYKi/v7/Y3rBhQ3DOoVKp0KRJE/z2229GPa+cCLmQB3IhD+RCDrSDeZS61tvbW5Qj5xxr167Fb7/9hjlz5qBOnTqivXfkyBGxz7t37+Dq6grOOf7++2+TnIs5QD7kgVzIA7kwPSnbYtrvlADd932TJ09GoUKFwHnyrMUpJ4zRPtbhw4dRuHBhFChQAAcOHEh1LCI15EIeyIVckA9CBiiAnSByMUrAVFZn6COMy4QJE0QQ+qRJkzIMjNOu6NesWSNGTI8aNSrVdiJrXLhwAT/99BOAzMvvn3/+gYeHBzjnIsBa+atWrRr27duHxMRE8vCRJCUlISkpCd9//z0453B0dMSkSZNEEKl2uSpB6aNGjYKlpSWaN2+uM5srkX02btwoft9fffWVzjbFxfPnz8XLdQsLCzGgQJlF19XVFSNGjEg18wOROVkJ3KQgXeOgXYb79u3Dzz//DCBrde6yZcuEl6tXrxosj7kFGtQhDyldzJo1S5T1999/r5MurTqDcw4bGxud/5YrVw5Lly7F27dvjXou5oJSzu/evdMpd+X3npiYiNatW4vAh3Pnzollhb29vbFlyxYRvF68eHHRIUnXy8ehlL+yClpKH3FxcWjVqhU453BxccFff/0lltg8f/48pk2bJoLXy5Urh3///VdnfyJttAeupteu7tmzJzjncHZ2FkE9GfWVREVFYdq0aWJAZ1oOAgMD8cMPP4hBPLt3787mmeR8yIU8kAt5IBdyEhISAs45LC0tsWLFio8KDNVoNCLthg0bxPFUKhWaNm2Kw4cP66Ql0oZcyAO5kAdyIS+jR48W/RuHDh0Sn6vVaoSEhKBdu3ZitspDhw4hKSkJJ06cgJ2dHWxtbWnFMz1DPuSBXMgDuTAt2m0z7RW1Jk+ejMKFC4NzDjs7O/z6669p7qPw4MEDFClSJFW/O5F1yIU8kAu5IB+EKaAAdoLIxVCnk7zExsaKBmKFChWyPFP+iRMn0KhRI3DOYW9vn2rEG5E17t27B09PT9jZ2eH69euZpo+Pj0f79u3h5uaGn3/+GbVr10br1q3Rr18/+Pj40Oy6ekL5bVeqVEnMaJ/efUw7YE4JTCSyh1qthlqtRrNmzcA5R6lSpcSsb9ovzpV/nzt3DoUKFUKxYsUwfPhwODg4wNnZGXXr1sXq1avx6NEjk5yHOREVFYXQ0FBER0cD0H3xREG6xuPChQsoVaoUChQoIK6J9FCCU3bv3g17e3tYWlri1KlTxshmroGuCzlISkpCbGwsypcvD845PDw8hJO06oy//voLjo6OKFOmDKZMmYLChQujbNmyaNu2LY4ePYqIiAiTnIe5EBQUhNGjR4tgZwWl/ENCQkTQdN68eeHu7o6WLVuiWLFisLOzE9dMu3bt8PDhQ1Ocgllx+/ZtdO/ePZUP5T4UHBwsfNja2qJgwYKoVasW8ubNKwZ22NvbY/DgwXj16pUpTiFHklH/R0REBKpVqwbOObp3757lcr1+/Tpq1aqFdevWIT4+Xuc7AgMDMWHCBFhbW4Nzjq5du+Lly5fZPg9zgFzIA7mQB3IhJ/7+/lizZg2ePHkiPvuYwFAA+OGHH8SsxpzrrqKi/UKYSBtyIQ/kQh7IhXxoNBp0795dDAJ49+4d1Gq1Tp+TWq1G586dRXDo77//jpEjR4Lz5NXnqM9cf5APeSAX8kAu5EG7zCdPnoyCBQuKPthFixaJbRm1FRs3bgzOOb7++utM0xLpQy7kgVzIBfkgjAkFsBMEQUjIhQsXROW/cOHCdNNpV/A3btxA3759xX7K7OvEh/P8+XPxMDVq1Cgx03daKA6UWav+++8/6tQ1AE+fPkXRokVhaWmJxYsXA0h7tjFlSaO5c+fCxsYGdnZ28Pf3N2pezZ22bduCc47KlSunWkJKm6dPn6Jy5crIly8fTp8+jcePH+P+/fvUMNETkZGRWLNmDTp37oyff/4ZkZGRYpu3tzcF6RqRmzdvonr16uCcY9asWYiKisp0n5UrV6Y5ywmRPei6kA9l2dnGjRsDSL+sw8LC4ObmhiJFiuDWrVt4+fJlhs9fRNZJTEzEqlWrYGFhgU6dOqU7GCA+Ph7jxo1DkyZNUKFCBTHLtxLY5ujomKWBnUTGxMXFYeLEieCc48svv0z3d65WqzF9+nR06NABjRs3houLi46PatWq0SBNPXLz5k1RP6xcuTJL+yjPtL6+vnj37p3OtpSBoR8ScJrbIRfyQC7kgVyYlrQGX35oYOiUKVNEYKi7u7vwOW3atDS/h0gbciEP5EIeyIV8dOvWTUzCk3JlFe1y7NKlCzjncHBwEGW+ZcsWnfRp9aOTiw+DfMgDuZAHcmF6UtbDjo6OsLCwAOcctWrVEiurZPTe4s6dO/jkk0/AOcf06dMNnmdzhVzIA7mQC/JBGBsVIwiCIKQjISGB2djYMHt7e1anTh3GGGMajUYnDQDGOWeMMebj48M2b97Mdu7cyRhjrHv37mzhwoWMMcaSkpKMmHPzwNHRkXXu3JnZ2dmxY8eOsf/++y/dtIqXJ0+eMMYYe/jwIbO2tk61nfh4NBoNS0xMZPHx8SwpKYk5ODgwxhizsLDQSQeAWVlZsVevXrEdO3awhIQE5urqyooVK2aKbJstxYsXZ4wx9ubNG/bmzZs00yQlJbEiRYqwwoULs5iYGPb27VtWrFgxVrJkScY5p+tCD2g0GrZ9+3Z29OhRtmrVKnbo0CHGGGOBgYGsZ8+e7N69e4wxxipXrsz27t3LKlSowDQaDVOp6PFf35QtW5a1adOGcc7Znj172I0bNzJMHxYWxv7++2/GOWdOTk7M1dXVSDk1f+i6kA93d3fGGGPPnz9nb968SbOsk5KSmJOTE7O3t2fh4eEsPDycFSxYkOXPn58xRs9S2UWlUjFnZ2eWJ08e5uvry/79999UadRqNbO2tmaLFy9m58+fZ5s2bWJVqlRhefPmZYmJiUylUrF9+/axmjVrMgAmOAvzwdLSkrm7u7M8efKwa9eusZs3b6ZKk5iYyCwsLNisWbPYH3/8wZYtW8bs7e2ZjY0NS0xMZM7OzmzTpk2sQoUK5ENPODk5MScnJ5YnTx7m4uLCGEv2kBFKW7x8+fKifcIYY0FBQWzz5s1s5cqVLDExkXXr1o1t3ryZOTs7G+4EzAhyIQ/kQh7IhWlR+p6SkpKYhYUFi4mJYYsXL2bbt29nYWFhrHDhwmznzp2sZcuWjLHkvimNRiP2mzp1Kps/fz7jnLP69euzhQsXsrVr1zLGGJs7dy6bMmWK+B6q1zOGXMgDuZAHciEfTZs2ZTY2Nuzdu3fsypUrOuWm3S++f/9+Vq5cORYVFcUYY2zEiBGsb9++jLFkT9rv//bu3cvWr1/PGCMXHwr5kAdyIQ/kwrQodTZjyfXwunXr2Lt371iZMmUYY4wVKFBAtPvS6ktXyvbGjRsiNkF5b0t8GORCHsiFXJAPwiQYPkaeIAiC+FD27dsnRjXfunUr1XbtkWz//vsvBg0aJEY/t2nTBv/9958xs2uWPH36VMw03bhxY/j4+IhtyojyxMREAEBAQAAKFy78QbNhER9Oq1atwDnH4MGDERcXp7NNcfL27VtMnToV+fLlA+ccPXv2RExMDM36rQeUMjx69CiKFSsGR0dH7NmzJ1XZKv//4MEDFCtWDJxzzJ07V2cboR98fHxQqFAhMdp50aJFqFChAs0wbQIePXokVu7w9PSEj49PqroCAN68eYO1a9eKe1SrVq1MlWWzha4LOVB+/7t27YKLiwsKFSqEI0eOpEqnOPD19YWzszM459i0aZPOMYjs8+LFC7Rr1w6cczRp0gTe3t6i7FPOiuTn54fatWvD3t4enHNYWlpi3759AMiJvnj27Blatmwp6oy7d++KukL7vhQdHY0zZ86IWUo457C1tcXFixdTpSWyx4MHD+Dk5ATOOWbPnv3Rx6FZjbMPuZAHciEP5EIeoqOjMX78eJQpU+aDZzVu2LAh9u/fL9KtWLFC1O8LFiww+rnkdMiFPJALeSAXcvDgwQPRD+Xp6Ylbt24hNjZWJ42Pjw/Gjx8vyvjLL7/Uef+k3dY7fPgwGjZsCM45xo4da7TzMBfIhzyQC3kgF6YjZT2stPMqVKiAjRs3omLFiujVq1e6+yt9s1euXBGrZzZr1izVqltE5pALeSAXckE+CFNBAewEQRAS8vjxY1SsWBEqlQpr164VAQ0pOxkPHz6Mnj17igZk8+bNcfLkSVqeS0+EhoaiXLlyohF/9uzZVA9XISEhqFq1KjjnKF68OK5du2ai3JovGo0GSUlJmDVrFjjnqFGjBu7cuSMegBMSEgAAr169wpIlS0THi7W1NfkwAC9fvtQZ3OHr6ys6qxQXz549w1dffQXOOezt7XHgwAET5ti8uXfvHgoWLJhqKceqVavC19cXAAW4GYvg4GCxPHPjxo1x8OBBnYCQO3fuYOnSpXB0dBRLdJ47dw4AOdI3dF3Iw/Pnz9G8eXMROO3j4yOeU5U64+HDh2jRogU453BxccHly5dNmWWzJSQkBKVKlQLnHA0aNMDOnTvx9OlTsf2ff/7Bjz/+iAIFCohrxsLCAkePHjVhrs2X4OBglCxZEpxz1KtXD5s3b0ZYWJjYfuTIEYwdO1bUGVZWVnB1dRXXB93D9IfSphg6dChUKhXat2+PBw8efPBxKDA0+5ALeSAX8kAu5OLly5eiD9DV1fWjAkOVtAkJCVi5ciWcnZ0xdepUo56HOUAu5IFcyAO5kAc/Pz+UKFECnHN4eHhg9OjROHDgAI4ePYqRI0eKfhLOOfr166czIZW2p0OHDqFRo0ai/h4+fDiA9+1BGmSeNciHPJALeSAXxiejoNCDBw9CrVbDxcUF5cqVQ3BwsEibsixv3LiBunXrgnOOQoUKYdGiRaKfncga5EIeyIVckA/ClFAAO0EQhIRERkbiiy++EEFwt2/fFqOflQeHuXPnolq1aqIB2a5dO5w7d44qfz3j7+8vZj2sUKECBg4ciNOnT+PIkSPYunUrihYtKjp727VrpxMIROiXBw8ewMPDA5xzNG3aFIcPH0ZERAQiIyMRFBSEvn37onTp0mK20K1btwKgAB9DEBQUJDq3mjRpgr179+Lly5dISkrCw4cP0b9/f7i6uoqGSUBAgKmzbNbcu3dPzFxsbW0NV1dX0aGoPfs3YXj8/PxEQKKLiwsqV66Mfv36oXfv3nBzc0PevHnBOUfp0qWxfPlyvHnzxtRZNlvoupCHwMBAFC9eXDzX7tixA8+ePcPr16/h6+uL5s2bi4EGtWrVwqNHj0ydZbPF398fZcuWBecc+fLlQ7FixeDp6YnmzZvDxsYGdnZ24JzD2dkZNWrUEMHS9LLJMPj7+6N8+fJiZnUnJydUrVoVNWrUAOccNjY2YpBst27dxMpc9GxrGPbs2QNbW1twzrF8+XKdFZ8yuwYoMFS/kAt5IBfyQC7kwdvbG+XLl8exY8fEZ8rECwoZBYZqp0tISMD169eNk3EzhFzIA7mQB3IhD8HBwejSpQtcXFzE+wplpTPlr2/fvhkGhTZp0gQWFhbIkycP2rRpg5CQEDx69AivX79Ocx8ifciHPJALeSAXpmH69Ok6QaHaE4D17NkTKpUKy5YtQ0xMTKp9//nnH9SoUQNWVlbgnKNLly7UtssG5EIeyIVckA/CFFAAO0EQhKRoz5JYu3ZtDBkyBL/88guGDBmC1q1b6zQg+/TpA29vbwpmMBCBgYGoV68eLC0tRecu5xx58uQRASeVK1fGzZs3TZ1Vs0d7QIGzszNKly6NqlWriiWIFD9r1qxBdHS0qbNr1vj5+YmARCcnJ7i7u8PT0xOFChUSLiwtLcXMrRT8Zlh8fX1FsG7FihVx9OhRCo42EUFBQWjVqpXo+FXqDOW/Hh4eWLNmDV6+fGnqrJo9dF3Ig/asPnnz5kWxYsVQoUIFnZcidnZ2NPu6EQgJCUHv3r1RsWJFnfaE8levXj0sWrRIDD6j9oVhCQ0NxVdffaUzMFn5y5cvH1q2bIl9+/aJgR30PGVYpk2bJsp/8eLFCAkJEdvSK/uUgaHdunVDeHh4hvsQmUMu5IFcyAO5kAft/iaNRqNTljNnzsxwVuP0oEG2Hwe5kAdyIQ/kQh5ev36N27dvY+PGjfj555/FyrGcc3zxxRcZBoV6enqK91HKAGelb9HT0xMbNmxIc18ifciHPJALeSAXxmXu3LmirFIGhQLA1q1bRXlOnToVR48exbt373D06FEsWbJEBIRyztGiRQs8e/YMAPXffgzkQh7IhVyQD8JUUAA7QRCExPj7++s0FrUrfEtLS5QuXZqWcDQSjx8/xtSpU1GvXj2dwJISJUqgd+/euHPnDgB6AWgMgoKC0K5dOxHIrvw5OjrC1dUVhw8fJg9GIigoCG3atEGRIkXAOYeFhQU4T57tOF++fPjjjz9MncVcha+vLwoUKADOOapXr45du3bh3bt3ps5WruT58+fw8vJC9+7dUapUKdja2qJBgwbo168fgoOD0xyVThgGui7kISgoCB06dBCDn5QXGk5OTqhUqZIIXqeOLMPz9u1bBAUFYenSpZg0aRJGjhyJVatWYf/+/VCr1eI5ip6njENUVBSePXuGLVu2YOnSpVi6dCm8vLxw9epVU2ct16B93xk/frxoX3Tu3Bnz589Pd7/AwECMGzdOtNN79+6d6UCplEFEhC7kQh7IhTyQC/lIr4w2bdqE/PnzZykwNKvPvOQjY8iFPJALeSAXcjJp0iRRh3/++edZmtGYc462bdti9uzZOHHiBBYtWoTPPvtMHGfmzJliP3LxYZAPeSAX8kAuDI+fnx+cnZ3h4uKCgwcPis+1y3fixIk6777d3Nx0+tJdXV3Rq1cvERRKgwM+DnIhD+RCLsgHYSo4ADCCIAhCWh48eMC2bt3Kzp49y4KCgliePHmYvb09++abb1jVqlVZ06ZNGWOMaTQaplKpPvj4ABjnXPy/RqNhnHOdz1Kmya0kJiayxMREdvToURYfH88iIyNZy5YtWeHChZmjoyOVkxF59eoV8/X1ZceOHWPx8fEsPj6etW3blnl4eLBSpUqZOnu5ihcvXrALFy6wAwcOsGfPnjGNRsM8PT1Z9+7dWdWqVem6MDJ+fn7M09OThYeHs5IlS7L169ezNm3afFT9QOiHd+/esaioKObi4sIsLS1NnZ1cCV0X8vDq1St2/fp19vvvv7PXr18ztVrNOnXqxJo0acLKli370c+zhH4hD3KRlJTELCwsTJ0Ns0e7nJcvX842btzIAgMDmZOTE9u3bx9r0qSJTj0eFBTENm3axFauXMnUajUrV64cW7p0KStXrhzjnDOVSsXy58/PrK2tmVqtZvb29sza2prFxsayPHnykNcMIBfyQC7kgVzIT1RUFOvTpw87duwYK126NJs3bx7r0aMHYyztvlflWSs0NJQ9ePCAnTp1ir17947lyZOHNW3alLm7u7Ny5coxxuhZ4EMhF/JALuSBXJiW58+fs6JFizLGGOvfvz8bPnw4q1WrFmNMt/wOHz7Mli5dyi5dusQ0Gg0bPnw4+/HHH3WO9fLlS7Z9+3Y2YcIExhhjP/74Ixs+fLgRzybnQz7kgVzIA7kwHsHBwczPz4917NiRMfa+HtYu57lz5zIvLy/m7++vs2+HDh3Yp59+ynr06MEcHR2pDs4m5EIeyIVckA/CFFAAO0EQRA5Ao9EwjUbDHjx4wBwdHZlKpWKOjo462z80yCTlPtu3b2ehoaHsypUrTKVSsVatWrHKlSuztm3bMsYoiJ3IOdBv1XSo1WpmYWEhyp9cmAY/Pz9WuXJlVrBgQXb8+HFWo0YNU2cpV5Le758CQ00DXRfyQ3WG6aD7klzQtWA6tDvUr169yu7cucPs7OxYp06dWP78+UW6oKAgtnnzZrZy5UqWmJjIChYsyCIiIpi1tTVTqVRMrVYzjUbDnJ2dmaWlJYuJiWEFChRg+fPnZwkJCezw4cPMzc2Nrr0MIBfyQC7kgVzIze3bt0UbY9q0aWzWrFmMsYyfs7Zs2cK2bdvGrl+/zhISEsTnnHNWrVo1NnDgQDZkyBDGGAWIfgjkQh7IhTyQC9Pj4+PD1qxZw/r378/q16/PGMs4KHT8+PFs0aJFIp0yAI0xxt6+fctGjx7NduzYwZo1a8Z2797NChUqZJoTy6GQD3kgF/JALoxPynpYu7z9/PxYUFAQu3//PitQoAArVKgQa9Wqleg3pPaafiEX8kAu5IJ8EMaCAtgJgiByAPoOYlAeLN6+fcv279/Pfv/9d3bs2DGmUqmYRqNhjCV3RDo5ObHBgwezuXPnGiQfOR0qD9OiXf7K4wz5MA0prwW6NkzP/fv32bNnz1jt2rVp1m+C+H/oupADqjMIgpCZzDrWUwaGfvnll6xmzZpswoQJTK1Ws6JFi7LIyEgWFxfH7OzsxGpRjDFmYWHBkpKSmK2tLfP19WVubm5GOqucCbmQB3IhD+RCXp4/f86aNGnCnjx5wlavXs0GDBiQKqBT29+kSZNEwE/hwoVZ/fr1WZkyZdizZ8/Y5cuXWUhICGOMsenTp7OZM2em2p9IH3IhD+RCHsiFHMTHxzMbGxvG2IcFhaY1OGDWrFls1qxZLH/+/Oy///5jpUuXNt6JmAnkQx7IhTyQC9OTWX36sfVtWn3wNAAtY8iFPJALuSAfhCGgt/YEQRA5gIyCejJa4jEtlEr+2bNnbOzYsezSpUssLCyMMcZYoUKFWPXq1ZmNjQ179uwZ+/fff9n8+fNZfHw8W7JkCQUXpYDKw7Rolz+5MC0py598mB43NzcKOCCIFNB1IQdUZxAEITMp29La7e3g4GCdwNAuXbqwdevWsb179zK1Ws1KlSrFLl68yOLj41lUVBSztbVlMTEx7NWrV8zS0pIBYK9fv2YhISEsJCSE6qRMIBfyQC7kgVzIi52dHatSpQoLCgpi27ZtYy1btmQlSpQQ27X7aydMmMCWLl3KGGMsT548bMKECWzMmDEi7c2bN9lvv/3GFi9ezGbPns0cHBzY2LFjKTA0i5ALeSAX8kAu5EBfQaGMMWZlZcUYSw42jY6ONkLuzQ/yIQ/kQh7IhenJqM2X1vasoH2M06dPs+DgYDZw4EBmYWFBA9AygFzIA7mQC/JBGAQQBEEQORaNRiP+HRwcLP6tVqvTTK98/vDhQ9SsWROcc/E3d+5cnDlzRqS9f/8+Vq9eDZVKBc451q9fb5iTyEUkJSWZOgvE/5PeNUIYH3IhF4mJiabOAvH/kAt5IBfyQC7kgZ5r5YKepwyPn58fJkyYgDx58oBzju7duyM8PBwAsGXLFnDOUaxYMbx58wZJSUk6bXXtf2f0GZE1yIU8kAt5IBdyEBwcjJIlS4JzjlatWiEsLCxVmkWLFom+2EKFCoFzjsKFCyM0NFQn3du3b7F48WJwzuHq6oorV64Y6SzMA3IhD+RCHsiFfOzduxfNmzeHhYUFOOeYMGGC2JZRG+/WrVuoUaMGOOdo164dYmJijJFds4d8yAO5kAdyYV78888/6NWrFzjn+OKLL0ydnVwNuZAHciEX5CP3QkMUCIIgcjDKKLRz586xVq1asfHjxzPGWJqjnZVR0A8fPmRNmzZlN2/eZJxzVrhwYXb8+HE2ZcoU1qxZM5G+ZMmSrH///mzw4MGMc87OnTtnlHMyZ1QqFdNoNOzIkSPs+fPnps5OrkZZGvvnn39mT548MXV2cjXkQi4sLS2ZWq1my5YtY48ePTJ1dnI15EIeyIU8kAt5oOdauaDnKcPj5+fHlixZwuLi4tj//vc/tnnzZlagQAGdNFZWVkyj0TDGMl8tilaf+HjIhTyQC3kgF3Lg7u7O/vrrL+bs7MxOnTrFJkyYwCIjI8X2c+fOsR9//JExxljjxo3Z9OnTWdOmTdmLFy9Y/fr1WWBgIGMseSbkfPnysf/973+sXr167NGjR+zu3bsmOaecCrmQB3IhD+RCLqKiothPP/3Ezp49+0EzGj969Ijt2bOHBQUFMcYYq1OnDsuTJ4/R8m2ukA95IBfyQC7Mi2vXrrE5c+awo0ePMsYYu3r1Krt9+7aJc5U7IRfyQC7kgnzkckwdQU8QBEFkjxMnTqBRo0awtrYG5xwLFixIlUaZIfHhw4coW7YsOOfIkycP6tSpg2vXrgFIf3alNWvWgHMOa2tr3L9/33AnkktYsWIFrKys8Omnn+Lhw4emzk6uZuzYseCco1u3buTCxJALuVBGNn/22Wfkw8SQC3kgF/JALuSBnmvlgp6nDM/nn3+O5s2b49WrVwDerwqhtJkrVKiA+Ph4U2Yx10Au5IFcyAO5kId79+6hcuXKmDRpks7na9euha2tLTjnWLZsGQAgKCgITZs2FbMcBwQEAHjfTzto0CAxq35SUhKtuvKBkAt5IBfyQC7kwdfXFw4ODhg+fLj4LKMyfPToERYsWABnZ2dwztGmTRuxjVZPyT7kQx7IhTyQC/Ph+fPnKFasGDjnaNq0KQ4dOoTY2FhTZytXQi7kgVzIBfnI3VAAO0EQRA4mJiYGzZs3F8s6li9fHjdu3NBJozQInz17hgYNGoBzDltbWzRu3Bg3b97USaON8qLryJEjyJs3L5ycnCiAXQ/cuHFD+Prf//5HwSUm5OrVq2LZOwqCMy3kQi4uXrwoBkWRD9NCLuSBXMgDuZAHeq6VC3qeMhzaL2ejo6PFv5V29Lp168A5R5kyZRAZGWn0/OUmyIU8kAt5IBdyEhERIf6dlJSE+Ph4NGnSBJxzNGvWTCetn58fmjVrlipAFADGjx8Pzjm++uoro+Xd3CAX8kAu5IFcyMPz58/Fvz8kKLRRo0Z4+fJlpvsRHwb5kAdyIQ/kIuejTHQYEBCAjh07Ys+ePYiLizNxrnIn5EIeyIVckA9CZeoZ4AmCIIiPJ0+ePGzdunWMMcZcXFzY77//zmrUqKGThnPOIiMj2axZs9jNmzcZY4xVrFiR/fjjj6x69eoMQJpLA1taWjLGGDt06BCLiYlhVlZWtMRXNgHAatSowS5evMisra3Z77//zkaPHs0ePXpk6qzlOjQaDatbty47f/48s7KyYvv37ycXJoJcyIVGo2GNGjViZ8+eJR8mhlzIA7mQB3IhD/RcKxf0PGVYLCwsmEajYYwxZmdnJz5X2tHKstkajYYlJiYytVpt/EzmEsiFPJALeSAXcuLk5MQYSy53lUrFALC4uDjGGGPu7u6MMSZclC9fnm3YsIE1bdqUvXjxgjVp0oQ9fvyYMcbYmTNnGGPv3QIw6nmYA+RCHsiFPJALeXBxcWGMMZaUlCTq7JQ8efKE7dixgy1ZsoS9fv2aNWjQgO3cuZMVLFiQAUh3P+LDIR/yQC7kgVzkfFQqFVOr1axs2bJsz5497NNPP2U2NjamzlauhFzIA7mQC/JBUAA7QRBEDqdChQosMDCQnT59mlWuXFlnm/IC68qVK+zcuXMsPj6eOTg4sHXr1rEaNWqkG7yu7BcUFMR8fX0ZY4xVqlSJ2dnZiW3Eh8M5ZxqNhjVs2JCdOXOGWVpasv3797Phw4dTcImRUalUwsXZs2eFi6FDh4oOeMI4kAu5UHw0aNBAx8fgwYPJh5EhF/JALuSBXMgDPdfKBT1PGR6VKnUXqtI2VoJ9bGxsmJ2dnRgMThgGciEP5EIeyIW8KG4sLCyYo6Mj45yz4sWL62xjLHWAaM2aNdmwYcPY3bt3mYuLC+vfv79J8m9OkAt5IBfyQC7kIaOg0F9++UUnKNTLy4u5ubkxxlia7/eI7EM+5IFcyAO5kJ+MBpIp7UA7OztmbW1trCzlWsiFPJALuSAfRHpQADtBEIQZULp0aVapUqVUnyudjD///DO7d+8eY4yxHTt2sPr162cYvK7st23bNnb58mXGGGO9e/dm9vb2ab4UI7KOduDVuXPnGGOMHT58mP30008sISHBxLnLXaTl4ujRo+zQoUM0I5mRIRdykZaPY8eOsUuXLtEgJiNDLuSBXMgDuZAHeq6VC3qeMh2JiYmMsWQH1F42LeRCHsiFPJALObC0tGSurq4MADt27Bh78eJFKh9KgKinpyd7+fIl27JlC0tISGANGjRgJUqUYIxRAJA+IBfyQC7kgVzISWZBoYRxIR/yQC7kgVzIg3bchzKIOSkpyZRZyrUY2wWtgJM+prguyEf6GNOH4oHugzkH6rEkCIIwcy5fvswOHz7MGGNsyJAhrH379oyxtDsTAYiOyU2bNrEFCxYwxhjr2LEj+/TTT0UabSIjI1lMTIzOMYiM0Q4uuXTpEmvbti2rVasWjSQ0ASldDBw4kNWuXZtmJDMB5EIutH1cvnyZzZ49m9WuXZsCHkwAuZAHciEP5EIe6LlWLuh5yrgo95w8efIwxpLbwrGxsdnuGNduU1P7OmuQC3kgF/JALuRBKacePXqwokWLsidPnrArV66kWX7ly5dnGzduZI0aNWKJiYmsTJkybPz48axIkSLGzrZZQi7kgVzIA7mQk4cPH7KdO3dSUKgkkA95IBfyQC7kQTso9MyZM2z48OEsICCAWVhY0IQvRsaYLqKiohhjNIAwPYx9XURERLCXL18yzjkFTaeBMX28fv2abdy4kfn4+DALCwvykVMAQRAEYdbs3bsXnHNwzrFjx45002k0GvHv3bt3o0iRIuCco2jRoli/fn2a+9y5cwfff/89vv/+e5w7dy7NYxHpk5SUBAB4+/Ztto5D5Z19FBfR0dHZOg65yD7kQi4UHwkJCR+1v+KBfGQfciEP5EIeyIU80HOtXOjreQoA3rx5gx9//BE7d+7Ey5cvxefk6j2bN28G5xyVKlVCfHx8tspGrVZn6TMibciFPJALeSAX8vDy5Ut07NgRnHM0btwY3t7e6aa9d+8eOnbsiKNHjxoxh7kHciEP5EIeyIU8qNVqrFixQrzXa9iwIUJDQ02drVwL+ZAHciEP5EJOzp8/jy+//FJ4CQsL0+vxlf5GjUYj/q38l9DF0C5CQkIwadIk9O3bF9evXxd98uQjNYZ2AQDh4eGYPn06KleujBs3bgCgvpL0MLQPjUaDAwcOgHMOS0tL3L17FwD5yAlwgKbJIAiCMGdWr17NRo0axSpWrMguX77M8uXLpzPCjTHGNBqNmJlp3759bPLkySwkJIRpNBo2ePBgtm7dOsYYS7XfwYMHWffu3RljjFWuXJkNHDiQjRw5Ms20ROZ8SJlpO2MseVTnmzdv2KtXr5i9vT0rVaoUs7W1/eDjEh9OShcPHz5kT548Ya9evWIuLi7M3d2dOTs7M8bIhaEhF3Kh7UOtVjN/f38WEBDA3rx5w0qVKsVKly7NXF1dGWPkw9CQC3kgF/JALgwLPdeaB3FxcWzfvn2sX79+jDHGBg4cyDp37sw6derEGCMf2nz77bfs8OHD7OnTp8zCwuKjjpGUlCT2HTZsGLOzs2NLlixhjFFZfwjkQh7IhTyQC3kICQlhzZs3Zw8fPmSNGzdmM2fOZHXq1GEODg6pnoliYmKYnZ0dY4zK2BCQC3kgF/JALuTB39+fVaxYkVWsWJH98ccfepvRWK1WM0tLy1Q+iYwhH/JALuSBXMhFSEgIGzx4MDt16hQDwCpUqMCWL1/O2rVrl+1jp6znIyIiWEJCAitSpIjwRL7eY0gXjDEWHh7OVq9ezZYsWcLi4uJYpUqVmKenJ5swYQJzc3PTabvndgztgjHGXr16xTZv3sy2bdvGAgMDWb58+diFCxeYh4cHuUiBMXwo3/PVV1+xixcvsvz587MLFy6wKlWqkA/ZMUqYPEEQBGEyVq1aBc45nJ2dERQUlGq79sxLXl5ecHd3h5WVFTjn+Oyzz8S29EZsbtmyBZ9++ilUKhU455gyZUqaxyb0h7aLf/75B8uWLUPJkiVRsGBBWFlZQaVSoVu3blizZo1IRy4Mz4EDBzB27Fjkz58fdnZ2YuRomzZtsGLFCpGOXBgeciEXGzduRO/evWFtbQ0LCwudWTmWLFki0pEPw0Mu5IFcyAO5MC30XCs3CQkJ+Pnnn9GgQQNwzqFSqVC6dGlMnz5dpMntM/toz96yYcMGPHr0KNu/0alTp6Jw4cLgnKNv377ZzWKugVzIA7mQB3IhJ35+fnB1dQXnHBUqVMD48eMRGBho6mzlSsiFPJALeSAX8hAaGqrXWSkfP36MFStW4NatWwCoLfehkA95IBfyQC7kYuTIkeCco0GDBjh69ChiY2P1dmw/Pz+sXLkSHTp0QJkyZVC4cGG0bNkSM2bMQEhICACa4VgbQ7oAgD///BMLFy5EmTJlYGNjA845KleuDB8fHwDkQhtDuggPD8eCBQtQtmxZcM6RN29ecM7h6OhIM3+ng6GvDYXg4GC0bduWfOQgKICdIAjCzLl79y7c3d3h7OyMAwcOiBdViYmJOul+/PFH5MuXTwTudOzYUWzLbIlgb29v/PDDDyKIfdSoUWIbBZgYjkWLFqFy5cpiwAHnHLa2tmJJHM45vv/+e5GeXBiGuLg4TJgwAfny5RMurKyskC9fPh0XY8aMEfuQC8NALkyPUp5qtRr+/v4YOHCgTtnnz58fhQoVgkqlEp+NHj061f5E9iEX8kAu5IFcyAs918pLQkICnj9/jsGDB4sgds45Bg8ebOqsSYM+O77nzp0LlUol2uUjRoyg3/sHQC7kgVzIA7mQk6CgILRs2RJ58uQRzz5LlizBs2fPTJ21XAe5kAdyIQ/kwvx4+vQpVq5cKdrXSnAoYRrIhzyQC3kgFx+PdqD/smXL8NtvvyEuLu6jj6fdxnvy5Am8vLxQoEAB8Vyg9A0qfxUrVhSB07l90IG+XWRGWFgYlixZglq1aoFzjoIFC5KL/8fQLlIGrzs5OeHYsWPo3LkzBU2ngbGvDSC5TUNB7DkHCmAnCIIwc169eoX27duDcw5PT0/8999/4mFAo9HgzJkzGDFihE5Do1evXmL/lIHu2mg3YF6/fo01a9aIRsucOXMMd1K5nPDwcAwZMkTHWYsWLTB9+nT8888/2L59O8aNGydczJgxw9RZNkuSkpJw48YN9O7dW8dFt27dsHXrVvj6+mL//v2YOnWqcDF79mxTZ9ssIRdyoNQJ8fHxOHjwINq1aydcFCpUCF9//TVOnz6NR48e4e+//8acOXOEj3nz5pk49+YFuZAHciEP5EJO6Lk2ZzF37lyULFlSBC6SD/1z//59ODs7i/LN7S+bTAm5kAdyIQ/kQr88e/YMK1euRMOGDWFtbY09e/YgMjJSb8enwQVZh1zIA7mQB3JhPkRGRmLWrFmiDre1tcWMGTOQkJBg6qzlSsiHPJALeSAX2Uc7niM7wZna9fOlS5cwfPhwMcO3vb09PvnkE4wbNw4LFizA119/LQKnixUrBn9//2ydg7mgLxeZobiKjY3F9evX0apVK3DOUbVqVb2ujJCT0bcLpczTCl739vYGkLxaQZs2bShoOg2MdW1oQ0HsOQcKYCcIgsgFBAUFoUSJEuCco1KlSujatSsmTpyIFi1awN3dXQSLlC1bFmPHjhX7ZRS8nhZv374VwT7u7u44e/asvk8l1xMcHIwvvvhCOCtZsiQmTpyYKl1UVBRWr14NlUqFokWL4vTp0ybIrfmSmJiIM2fOoEOHDsJFgwYNsHz58lRpo6OjsXLlSlhYWKB06dK4evWqCXJsvpALOVAa7XFxcfj555/RsGFD4aN79+7YtWtXqn1iYmKwZMkSWFhYoEqVKmJWACJ7kAt5IBfyQC7khJ5rcxZPnjzB3LlzxWxLFStWxJYtWww+U0puQuk4DwwMxPz586kj3YSQC3kgF/JALgyDRqNBQkIC7ty5o7els0NDQ/Hw4UMA9FL2QyAX8kAu5IFcmA/z588H5xwuLi6YMWMG7t+/b+os5WrIhzyQC3kgF6ZHO3j9+PHj6NKli1gts0aNGpg+fbpOYHRCQgK8vb3RrFkzcM7x2Wef4e3bt6bIOgHgxo0bqFKlCiwtLTFz5kwkJSXRoHMD8Pz5cyxevBilSpUC5xzOzs64c+cOgPfPthQ0LRdBQUE6gwpS+iLkgALYCYIgcgkBAQGoXr26GCWr/Cmz5/Xr1w+7d+8W6TOqsKOjo8W/U86U8d9//6FkyZJQqVRpBpASH09YWBh69uwp3DVr1gzbtm0T27UbIhqNBgEBAahYsSI451i7dq2Jcm1+JCUl4fz582jdurVw0adPH/z5558ijVqtFteGRqPB3bt3UaxYMXDOsX37dlNl3ewgF3IRHx+PnTt3onbt2sLH999/r7PUY8q65erVq3BwcADnHL///ruxs2y2kAt5IBfyQC7kgp5rcxZhYWGYPn067O3twTlH5cqVsWvXLr3OwEgk86GDyAnDQS7kgVzIA7nQP/qegTg0NBRDhw5FiRIlcPnyZb0e29whF/JALuSBXJgXixYtwsiRI/HgwQNTZ4UA+ZAJciEP5MJ0aNf5x44dQ4sWLWBpaQnOOVq1aoWTJ08iKioKgG4felJSEnbu3Alra2uULl0aISEhRs87kUx8fDz69esHzjkaN25s6uyYJfHx8Vi5ciWKFCkCzjlsbGxw5MgRsU17wIB2EHvevHl13kMRxic4OFhMhpg/f37cvn0bAAWxywQFsBMEQeQiHj16hNWrV6Nr165o2LAhatSogXHjxmH//v066TIajRkQEIARI0bg8OHD6abp0qULOOeoU6cO4uPjaTnIbKC4iI6ORt++fUWQT8eOHcUDsXa6lDRv3hycc3Tt2jXDdETmKL9jX19fdO7cWbj49ttv8e+//4p06ZWxsozaoEGDMkxHZA65kA+NRoPjx4+jcePGwse0adPw6NEjnTRpoQQkTp8+HQD5yC7kQh7IhTyQCzmg59qcSVhYGGbOnCmC1z08PODl5UXB69lA+7dLbWXTQi7kgVzIg6FdkF/DERgYiLFjx4pVON3d3fH8+XNTZytXQi7kgVzIA7kwHdqBOTQzrukhH/JALuSBXMjDuXPn0LFjRxG83qlTp0yD0u/fvw9nZ2dwzvHrr78aKaeENso1tGrVKnDOYWdnB39/fxPnyjy5f/8+evXqhSpVqoBzjvr16+PcuXMAkvtTtPs8goOD0bJlS3DOMWbMGJoUwMikDE7ftm2bmOTQ3t5eBLETcmDJCIIgiFzDJ598woYPH86GDx/OkpKSmEajYVZWVqnSqVSqNPcHwO7cucPWrFnD1qxZw/bu3cs+++wzBoBxzllSUhKzsLBgNjY2jDHGEhISGOeccc4Nel7mCgDhYvLkyWznzp2MMcbatWvHRo4cydq0aZMqnfa+nHOmVqsZY4zZ2dkxxhi5+Eg0Go0o40WLFrGjR48yxhgbMGAAGzFiBKtatSpjLLULAIwxxiIjI1lMTAxjjDFHR0fGGLn4WMiFXCg+Xrx4wdatW8f++ecfxljyPWv48OHMxcVFpNUuZ2U/Pz8/9vr1a8YYY4UKFWKMpV8HERlDLuSBXMgDuZAHeq7NmTx48IBt27aNLV26lEVHR7MqVaqwH374gXXp0oXZ29ubOns5Eu1n2fDwcFawYEHRjiaMi6FdaB8/rf8n3mOM60KpS9L6TuI9xnCheIiMjGQODg50D9QjwcHBbPny5YwxxkqVKsW+++47+p2bCHIhD+RCHsiFcdF+9rGwsBD/ny9fPhPnLHdCPuSBXMgDuZCPkJAQtn37dvb333+zpKQk1qlTJ7ZlyxadPvS0ePLkCXvz5g1jjDFLSwpBNAVKmzo8PJwxxlhsbCyLi4szZZbMEo1Gw0qWLMm2bt3K/v33X7Z48WJ2/Phx1rp1a3b69GnWqFEjEY/AGGPu7u5s/fr17Pjx46xTp050fRgZpW45cuQIO3v2LFu7dq2od6Kjo9n48ePZoUOHmK2trYlzSjDGGLUMCYIgchnKQ5OFhQWzsrLSeYjKDM45a9GiBRswYABjjLEePXqwTZs2sVevXoljenl5sX379jHGGKtZs2aaAfJE1lAeoDZs2MB+/PFHxhhjDRo0YN99951OkE9awTucc/bnn3+yixcvMsYYq1atms4xiQ9D6UyfM2cO++WXXxhjjHXr1o0NGjRIBEwzlrp8lQEcR48eZX5+fowxxsqVK5dmWiJrkAu50B5McOTIEcYYY0OHDmUDBw7MsFNL2e/kyZPs+fPnjDHGXF1dDZxb84ZcyAO5kAdyIQ/0XJvzoOB1/ZOUlCTuLyNGjGBNmjRhfn5+ojOdMB6GdqEdBHzz5k3G2Pu6hVzrYozrQrt+uXDhAgsMDGQqlYolJSXp5fjmgjHvUbt372Zffvklu3v3LrOwsCAXeqJt27Zs1KhRzNLSko0cOZJ9/fXXrGDBgqbOVq6EXMgDuZAHcmEcIiMjGWNMTDilQO1n00A+5MGQLlI+K1ObL2OMeV1oNBq9H9McUcrpzz//ZF5eXkytVrM2bdqwtWvXZtiHrvgLCQlhdnZ2TKVSiYnDCOOgfb+5efMmO3ToEOOcs/Lly7NixYqZMGfmiUqlYgBY3rx5WbNmzdiGDRtYt27dWGJiIuvbty/z9vZOdS8rW7YsGzp0KCtVqpSJcp07SFn3Pnr0iF24cIF16NCBDR48mK1cuZIlJiayhIQEVq1aNTZv3jy2ePFiCl6XCUNO704QBEHkHFIuoZIR4eHh+Oabb8A5B+ccbdq0wYABAzB8+HDxmbOzM9auXWvAHOcOAgIC0LJlS1hYWMDJyQnr1q0T2zJadvnZs2cYNGgQrK2t4eTkhL///jvTfYiMuXjxIsqVKwfOOapWrYr9+/eLbRmV671799CmTRuoVCpUrFgRfn5+xsiuWUMu5GL//v2wsbEB5xxt27bFpUuXsrTfpUuXUKZMGXDO4enpSUtD6gFyIQ/kQh7IhTzQc23OISwsDDNnzoS9vT045/Dw8ICXlxciIyNNnTWzYOLEiShZsiQ457CyssLLly/1clzlmqBrI+sYyoXC5s2bUb58ebRv3x779+8Xx09KStLr95gDhr4uAODs2bNwd3eHo6Mjbt26BeDD+sJyC4a+LqKjozFx4kSxZPPdu3cBkIvson1fuXz5Mp49e2bC3ORuyIU8kAt5IBfG4enTp5g5cyamTp0qPqO2gekwhg/qq8oaxnChVqt13jfRtZc2xnBx+fJlzJw502DHN1du3rwJOzs7cM5Rt25dXL58OcP0SrmGh4ejfPny4JyjcuXKiIuLM0Z2cx3az1JptZ3/+ecfDBo0CA4ODuCco2vXrsbMnlmS1b67a9euoWrVqrC0tMTo0aORkJBA/X5GRvs+//TpU+zbtw9169bFJ598ImLXOOfo3LkzZsyYgejoaBPmlkgPWp+AIAiCYBqNRiwt9Ntvv7EGDRowV1fXdEc7FyhQgI0cOZJ5e3uza9eusXPnzrGEhASx3c7OjnXr1o0NGTLEKPk3Z+7evcsuXLjANBoN69WrlyjT9Ja7xv/PLHbu3Dm2f/9+lpiYyGrWrMlat27NGKOZHbLD3bt32f379xljjHXt2pV169aNMZb+bKGMJS8/dPToUXb16lUGgHl4eLDy5csbK8tmC7mQA6W8b9++LWZo+PTTT1mDBg0y3ffRo0ds9+7d7OnTp4wxxmrUqEFLQ2YDciEP5EIeyIV80HNtzoBmXjcshw8fZosXLxb/P3ToUObs7JytYyrXinJNvHz5ksXFxbHg4GCmVqtZnTp1mKWlJbO3t0/3esuNGMKFNjdu3GBHjx5lQUFBLCAggHl7e7P69euz+fPnszJlyrCkpCTRD5PbMZQL7fbh2bNn2dixY9nTp09ZXFwca9asGbtw4QKrUqUKudDC0NcFY8l9ht9++y27fv06O3XqFGvSpAm50AMqlUrc4+vXr2/q7ORqyIU8kAt5IBeG58mTJ2zPnj1szZo17NWrV0ylUrFZs2bprd2sPFdl1P9OvMfQPuLi4tipU6fYDz/8wEaOHMkaNWrEKlWqxBjL+B1JbsTQLhhL7tc6d+4cGz9+PKtatSrbtm0bXS9pYAwXERERrG/fviw4OJhFRESwVatWkYtMAMDUajXbsGEDi42NZYULF2ZffPEFq169eob7cM5ZVFQUmzNnDgsJCWF58uRhnTp1YlZWVtT39AFk9NtUq9XivUZiYqJOucfFxTG1Ws0uX77M/P392fbt29mrV69YbGwsq169Olu9ejVjTLffPWV7m9rf6RMWFsbi4uJY+fLlM/09V69enXl4eLC7d++yv//+my1cuJBZWVkZMbe5F8WNcq0sXbqU/fPPP+z48eMijbOzM6tZsyb7/PPPWe/evcWM69q/f7o2JMGo4fIEQRCE1Cizql+5ciXL6R0dHTF58mS4ubmhSJEi6NixI2bPni1GutEIw49Do9EgPj4enTp1AuccNWvWFLNepTcrlfL5nTt3UKxYMXDOUbZsWVy9ejXD/YjMefv2LWrVqgXOOZo1ayY+z+z3feTIEbi4uIiZwh8/fpyl/Yj0IRdy8ezZMzE7X5cuXcTnGc1q8fbtW6xduxbOzs7gnKNevXqIjY3NdD8iY8iFPJALeSAXckDPtfKgPPe8efNGzDSi/bummdeNw5AhQ8A5x+TJk7P9LKq9//Pnz7FlyxbUrl0bRYoUEbPLeHh44PPPP0dAQAAAun600aeLtPDx8cHRo0fRpEkT0RZxc3ODt7c3AGqLaKNvF9r3tjNnzqBmzZpQqVSws7ODu7s7OOdwdHSk2b/TwNDXhUJQUBDatm1LLrIJlZc8kAt5IBfyYGgX1EZPRq1WY/Xq1VCpVOCco0iRIhgxYgRev36tl2Nr8+DBAzx9+hQPHz7UeU4gF+8xpA+Fs2fPwsPDA5xzWFpaokWLFti0aZPYTj6SMYaLpKQknDp1Ch06dBBt8GHDhont5CIZY7gAkn2sWbMG1tbW4Jxj+PDhYhu5SJ/o6Gjx3rVmzZp48uRJpvvExcVh69atqFChAjjncHZ2xo0bN4yQW/Pk0qVLmDVrFj799FO0b98eXbp0QcuWLVG/fn00atQIderUQaVKlVCxYkW4ubnB2dlZvL/Q/qtVqxYuXrwIQPc3r12f//DDD7QqXQYEBQVh4MCB6NWrl/gsvfuHUn47duwQ952srgBMfBwp+6lCQkIwdepUNGnSROdaKF26NJo3b45Lly6JmBAFujbkhALYCYIgCADAu3fvULt2bXDO8eWXXyI8PDzdtAkJCQCArVu3gnOOY8eO4e3bt3j8+LFOZU4vY7NHXFycaDB27Ngxw+VslHIPDQ1FiRIlwDmHi4sLZsyYgTdv3hgry2bL69evxRJoAwcORGJiYqYPrufOnRMBVyVLlsS2bdugVqupkySbkAu5ePTokViCa86cOQAybtRFR0fjl19+EQE8FSpUwNmzZzPdj8gcciEP5EIeyIU80HOtPPz777/49NNPsWPHDrx79058fv/+fQpeNzDa95EjR45k+76ivb+Xlxd69uyp01GfP39+qFQqWFpaisBpHx8fANRW17eLlKRsZzx79gxeXl5o1KgROOcoXLgw7t27l2ba3IYhXKQXvG5vb49hw4bB29tbBJhQ4PR7DH1dpAUFsX8cAQEBOHTokPh/Ki/TYWgXyv0st9cVWcGQLtIqf3KSPoa+LuLj48VzFEAuFPz9/cE5h42NDWbMmIEHDx7o7djR0dH46aefMGDAAJQqVQrFihVDkSJFMGDAAPz0008iHbl4jyF9AEB4eDi2bduGwYMHw9HRUQQFT5gwQaQhH8kY0kVawetK+5sCp1Nj6OtCQa1WY8uWLeK6IBeZc+7cOVhZWcHa2hpeXl4AMn7+SUhIwIEDB9CgQQPx2//999+Nmmdz4v79+2jTpo24f3zIn42NDTjn8PT0xMCBA9McFKL9LDZu3DjRZ3j79u1U24nkfiRbW1twzrF///4s7bNq1Srh5NSpU+mmy6w/lu5R6ZPyd3ry5EnMnz8fBQoUENeOpaUlHB0d8d133+Hs2bM67z6A1OVL14ZcUAA7QRAEASC5wl6/fj0KFCgANzc3HDp0KNOHqMWLF4NzjpUrV6Z5PCJ7vHr1ClWrVoWFhQWWLl0KIOMH26CgIDHLaP78+dGjRw8EBQUZK7tmTWhoKIoXLw5LS0vRKZvRb/zUqVMiYK5IkSIYP348nj17ZqzsmjXkQi5u374Ne3t7WFlZYd++fRmmff36NbZt24bChQuLIKq1a9dSYJyeIBfyQC7kgVzIAz3Xmh5lJvx69eqBc47q1atj165diI+Px9OnTzFjxgwKXjcC+ur41j7OtGnTxABPzjnq16+Pb7/9FufPn8eZM2ewZs0aMQuNu7s7goOD9ZKHnI6xXkIobZXExER4e3ujZcuW4JyjSZMmWZrVLDdgKBcpg9eHDh2KuLg4AMnBExQ4nRpTnD8FsX8YoaGh4sXqN998o/fjawdM5/bBTplhaBdv377FwYMH8c8//+hcD9TnnhpDutBeZXbbtm1YtGhRqm3Ee4xxj/rrr79gbW2NAQMG6HxOJA8emDNnDu7fv6+X48XHx+PmzZuoX78+HBwcUgXNKcGh48ePF/uQi/fo24dCyvr52LFjGDZsmPAxZswYsY18JGMIF2kFr69atQpbt26lwOkMMNR1kRIKYv8wLly4AEtLS+TJkwcnTpwAkLqclP+Pi4vD4cOH0bRpU/Hbnzt3LrUdssmoUaPAOYeFhQUcHR3x7bffYtCgQejfvz9GjRqFKVOmYMyYMZgyZQqWL1+OpUuXYuXKlTh+/DguXbok+joA3XpCux0xduxYcM5FcDa1v9MmICAAHTt2hJWVFfr164dHjx6lm1atViMhIQFDhw6FjY0NbGxs8N9//6VKl/J6OnHiBLZs2YJ58+Zh7ty5uHbtGl68eAGAJh3JiKSkJJw5cwajR49Gvnz5xG85T548cHJywoIFC8Q9TCGz2fMBujZkgQLYCYIgCMHz58/RtWtXcM7RoEEDsay1gvYDk5+fHzw9PcE5x5QpU4yd1VxDu3btwDlHr169dGaqTLk849WrV+Hq6grOOezt7dGqVSvxYEVkH7VaLRrjAwcORGxsrNim7eLVq1fYu3cvihYtCs45ChUqhG+//RYhISGmyLZZQi7kIjY2VsyyMHbs2HQ7SYKCgrBs2TIUKlQInHO4urpi7ty5okFOZB9yIQ/kQh7IhVzQc60c+Pr6it969erVsWrVKkyaNEkEJFDwuvxod5yPGDFCJ5hkxIgRuH37ts51lZSUBB8fH9SvXx+cc3z//fe0GpEJOX36ND755BMULFgQu3fvBkAvpwzB8ePHUadOHahUKjg4OGDMmDGi7lHKO2XgtNIHRi+njE9QUBBat24tXNBsV2lz//59DBkyRKxQY2FhgfPnz+vl2Fm5D1G98R5DugCS+7TWr18PZ2dncM4xZMgQnRmtycV7DOlCO3j9t99+Q8OGDUV/ZMo0hOGvC4W9e/eKZ18KSExNYmKiXo7z5MkTbNiwQQwst7Kygq2tLUaOHImFCxdi2bJl6NevnwgOpXeEaaMvH2mR8l3IunXrhI9ly5YZ7HtzKvpwoV0vpAxeX716NQAKnM4KhrwutCEXWefu3buws7MD51z0U2ij3G+io6Oxc+dOsboc5xzjxo3Dw4cPjZ1ls0H7Xj5y5EhRrlu3bv2o42n/ttMK0LW0tETdunVRu3ZtCtTNAC8vL+TNmxeccyxZskTnvZJSToq727dvo0iRIuCco1q1aqnKUUkXHh6OgwcPokOHDmLmfOXP1dUVLVq0EKsMkQtd4uLicOzYMbRu3RqlS5fWKbu6detixowZ8PX11dknozKka0NOKICdIAiC0OH+/fuoUqUKOOdo1qwZrly5gqioKJ00oaGhmDt3LhwdHcE5x+LFi02UW/NFaWAsW7YMVlZWqFatGm7cuJHqASkoKAibN28WQbqOjo5o3749bt68aYJcmycajQYajQYzZ84E5xy1atXC7du3U7n477//MG3aNBEQVLRoUQwZMgQBAQEmyrn5QS7kIyEhQTTu6tati9u3b6fqgDx58iT69+8PJycncM5RqlQpLFq0iGac1DPkQh7IhTyQCzmg51r5uHfvHgoWLAjOOT755BMxu0jVqlWxc+dOCl6XGO0XW0OHDtXpsF+4cGG6adVqNSZPnizuh8Z6YUykJjo6GtWrVxcDegj98+bNG7Rv3168ECxdujT+/fdfAMkziWq/0NUOYuec486dO6bKdq7nwYMH6Ny5c6ogdhrg8Z7nz5+jbNmyYkWNVatW6WWFOeWaUKvVuHv3LtatW4fvv/8eX331FbZt24bLly+nSpvbMZQLhaioKEyaNAkeHh5iluOiRYtizpw5Ig25SMbQ10VSUhJ+/fVXMZEPBU6nj6GvCwW1Wk0zHBuYkJAQzJgxQwRjFSlSBF988UWqAQlv3rzBmjVroFKp4OjoiKNHj5ooxwQAxMTEYOrUqVCpVKhTpw78/PxMnSWzRK1W4+TJk2KSBs451q9fn6r9rR04PWLECLGN7lPGJaWLYcOGiW3kIhmNRoNXr16hffv2UKlUGDt2bJoTj7x69QpTpkwRz6fKig90r8k+2n3ko0eP1rm3xMfHi21JSUk6v9uMfsPpBeh6enrijz/+wOPHj8V9jAJ136NdpgsWLBAuVq5cmeb7In9/fzF4s1ChQli+fDmA9+Wo/Dc4OBh9+/ZFmTJlxMBAS0tL1KpVC0WLFoWLiws45yhWrBh8fHwAUF9ISqZPn67THuvUqRPmzJmD+Ph4UVZZua/TtSEvFMBOEARBpMLf319npODEiRNx69Yt3L9/H3/88Qe++uorMQNMtWrV8PLlS1Nn2Wx5+PChaAx6enpi586dCAoKQkBAALZv3462bduKgKtixYqhb9++qWbOJ/RDWFgYKlasCM6Tl3vfsGEDvL29ce7cOaxYsQKVKlUSsx+6u7tj2rRpBl8GL7dCLuTi/v37KF++PDjnaNiwIZYsWYJr167By8sLU6ZMQf78+UVgXOXKlbF169Zs1RvUsZg+xnRBnScZQy7kge5R8iDDcy35ec+9e/dQoEABMTuiq6srtmzZovNihJAL7d/vxIkTkSdPHnDOYWNjI2Z7S5kOeN/Bvn//flhYWMDZ2ZmejU1EQkICAKBjx45iMAFhGB4+fIgZM2agbt26YoDa2bNnAaR+6RscHCxmkFPSEMZBeY6NiYnB/fv3MWDAADHwwMrKioIh0uDOnTuoWLEiFi5cqLf+2MTERISFhaFr164oV66czkthzjnc3Nwwa9YskZ6ep5IxhAttlFn+1q5di7Zt24rAq1GjRok05CIZfbtIGbyurATJOceAAQMocDoDDH1dKNCsuobj/v37GD9+vJgYxs3NDStXrtRpP2j3Qz169Eis9KRdVxCm4eTJk+JZav/+/abOjlni4+OjUy/06dNHbFPae8D7+5SFhQU45/jmm29MkV0CyV5++eUXUWcMHjxYbKM64z1r164Vv+ulS5eKoM2QkBBcvHgRdevWFf22nHNMnz6d+pb0iHZw7JgxY0Q5b9iw4YMnodCup7///nsRoNukSRMcPnxYbAsICNBZlY4CdZPRLr8JEyYIFz179sSaNWtw69YtHDlyBAsWLECxYsXAOYeDgwO6dOmCoKAgsa9Sjr6+vvDw8BD1s42NDSZMmICDBw8iLi4ODx8+xB9//IEWLVqICWYePHhg9PPOCUycOBH169fH7t278fr1a/F5Vt+R0rUhNxTAThAEQaRJQEAAqlWrJh7K8ubNCzc3N1hYWMDKygqcc1SoUAG//vprqpd/hH7x9/cXSzXmzZsXBQoUgKurq87LpEqVKmH58uUICwszdXbNGn9/f7i5uYlAn/z58yNfvnw6LmrVqoUDBw4gPDzc1Nk1a0zhgmYjTR9/f3+4u7vr1BkpX3o3a9YMt27d0llqLTu8evVKL8cxN4zhQrvO//3333Ht2rV0t+dmyIU8mOIedfv2bZ3lU8lFMqZ4rvXx8cGvv/4q/p9cvMfX11cMTC5VqhS2bt2q88KVkJONGzeK64hzjrVr14ptGXXYz5gxA5xzWFtbIzQ01Ag5JbTRdtOwYUNwzlGyZElERUXRYDQ9o5RnXFwcrl+/jq5du4Jzjjx58uDSpUsAUtcFQUFBYsUPqicMi3b5xsfHw9/fH/369UPNmjXBOReBJaVKlcKGDRvIRxpERETorZ/j8ePH2Lhxo5gkQCn/KlWqoG7duihevLj4bMyYMXr5TnNCny5Sov3b9/Pzw6JFi4SLKVOmGOQ7czL6cpFR8PqWLVsAgAKnM8GQ14U2FMSuf54/f445c+aIWUBLly6NPXv24O3btxnuN2DAAHDO0ahRI8TGxtKzrQlQfvORkZFihe1JkyaZOFfmy9q1a9GpUyfY2dnBxsYGQ4YMEdu0A02V+5QyUYMSAEcYnpT3oXv37qFz585iQMGgQYNMlDP5SDlZgvLcU6xYMTRt2hRFihQRgesqlQqWlpb45Zdf8O7du2x9b0pHVHfrN4gdAAYOHCjeodevX19nwL5S3tqr0mkH6uZ2H9oupk6dCgsLC/HMqUwCqkws4uzsjPbt24tV5DQajdj/7t27Ij3nySvGnz17Ns3f/7///otKlSohT548WL9+vfic0K1bnz9/rrPtY8qIrg05oQB2giAIIl0ePHiAESNGiOWttf9q1qyJP/74I9sNFCJrBAcHo2vXrihdurR4oFJGYfbq1QshISHZCrhSHrbooStzQkJC0KdPH1SoUEEEgHDO0bp1a4wePRpRUVHZOn5WHJCnZAztQpt//vkHXbt2xebNm3VmFSAX7wkNDcXXX38tZte1s7ODra0tPv/8cyxZskSvZXX06FHUqFEDa9euRWBgoPicfCRjLBerVq0SS96NHj0af/zxh9hGLpIhF/JgzHvUkiVLwDlHjx49dGa8IhfJGPq5Vht/f3+MHDlSzJaoQC7e4+vrK2Zir1GjBnbu3EmD9iRE+c36+PjoLFW+bNkykSa9QBGNRoOIiAh069YNlpaWqF+/vs5y0IRh0Wg0OvccpY7gXHcpecJwhIWFoXPnzuCco3r16jrth5Sk9EXoj5QzVR04cADfffedGEil/FWoUAGjRo2Cn58f3asMTEBAAEaPHo3ixYuLF+8dOnTAvn37xLOAt7c3Vq1aJV7Wr1y50sS5zl1o34/i4uKwZs0aqFQqODo60sy6BiQpKQm//fYbmjRpIu5NGzduFNvj4+PTDZymwF3jQkHs+kH53Xp5eYmZRN3d3XH48OEM2+YJCQlITExE69atwTlH+/btjZVlIh1u3rwpAupo4JlhCQ0NxapVq2Bvbw/OOfr27Su2aT/3qtVqHD58GIcPH0ZsbKwpspqrSHnvv3TpElatWoVChQohf/78Ov2QFy5cMFEu5UP7Nztv3jydiWCUP3d3d3z++ee4fPmyzr6hoaG4c+fOB9W72itxnT17Vmff3F5/6yuIPSwsDB4eHqLPt3r16vD19QWQHAysXc7agbp2dnY0WeL/o+1i+/bt6N69e6rrokKFCpgyZQru3bsHIPn3q3jy8fFBwYIFRbB7o0aN4OPjI9Jp/xcAYmNjxYqN3bp1M9Zp5hj0NeiFrg15oQB2giAIIkOio6Px4MEDLF26FNOmTcOkSZOwdu1avQaGElnjzZs38Pf3x8aNG+Hl5YX9+/frfQmht2/fIjg4GLt27cL27dtx9uxZCtZNg8jISDx8+BC//fYb/v77b5w9exYxMTFi+8csIZSybO/fv4/r169j2bJlWL58Of744w/xAJ1W+tyKIVyk5NGjRxg2bJhokH7xxRfYs2eP2E4u3hMTE4Pw8HCcOHEC169fx61bt3S268NHcHCwTkdBjx49sGvXLrGdfCRjaBeRkZGYPHky6tatC86Tl1lzdXXFvHnzRBpykQy5kAdj3KMAYNSoUcifPz+sra3h4uKChQsXim3kIhljPNf6+flh5MiRoqOYAhrS5969e2KJ+KpVq2Lv3r2Ij483dbaINFi0aJH4PY8fP158nlHwOgAcOnRIBPZQ0PTHkZ2BxomJiUhMTMTMmTNRrFgxqFQq2NraYvv27frOZq5A+/eelRe4Go0Gx44dQ9GiReHo6Ih169alOg5hGFJeE0lJSdi2bRu+/vprcM7FCo9OTk4oVqwY1q1bh+vXr2d4DEI/+Pr6on///qL+/+STT7Bq1SoxwEO5PjQaDaKjozF58mRYWlqiXbt2ePPmjSmznqsJCwuDp6cnVCoVxo0bZ+rsmCUajQY//fQT6tevL565fv75ZwDJdY5ybWQUOE0Yl8TERGzatEm40J4JmeqQzFF+0yEhIShVqpRYJWj37t06fezp7RcVFSVm/P7f//6XKvCHMDxKeUdERGDGjBlwcHBINdiZ0B/av++EhAR4eXmJIPaMVkihScQMR8qyjYyMxN27dzFs2LBUgdgFCxbE6NGjcfjwYVNmWUq0+8X/++8//PLLLxgxYgSmTJmCFStW4PHjx6IdoAz8fvnyJQYOHAgnJyfs2LHjg37fkZGRmD17NgoUKIAWLVpgx44dYmbl3N5WTy+I/ccff/yg9xfh4eHYvHkzPD09xYBlZabplIP3g4KC0KJFC9SpU4f6hLXQ/i2+efMGV65cwU8//YQff/wRv/zyC8LDw8XgJO2Z1wMDA1G2bFkR+NymTRv4+/unOqaC0rel+G7RooWhTy1XQ9eGnFAAO0EQBPHRUENbHj6mMZfS3+7du9GpUyfx8koZid6gQQMsXrw43f0IXT6mfLT9vX79GuvWrUOlSpV0ZiJTqVSoWrUq5s+fn63vyk3oq3xiYmLw+++/i9lkVCoVXFxcMHHiRJEmt3eoGJPo6GgcOnRIjERXZh/TfnlL14ZxiI2NRUxMDFasWIGWLVuKl4WjR48WaciFcSAX8nHixAn0799fuKB7VNbRR52qBK8rM2mUK1eOZuXLhHv37olnz+XLl5s6O0Qa+Pj4iGWbO3ToIGZ9ySx4/caNGzoDFG7evJnhfkRqtF8QPnnyBE+ePMHTp08RGhqKe/fuISgoCD4+Prh8+TKuXbuGa9eu4ciRI/Dy8sLGjRvRvXt3NGjQQDy7pqyj00KZ7VJfg6vMkT179ohB3pn9nuPi4lCrVi1wztGsWTNjZC9Xk9JHYGAg9u3bh8aNG4sAH+0+p59++gkBAQEZHgOg60JfBAUF4ZtvvhH1fsmSJfHXX3/pzHif8hlp7969wtuNGzeMnWVCiyFDhogArBcvXpg6O2ZHYmIitmzZAhcXF1hYWMDe3h4//vijznYFtVqNrVu3iplcV6xYYYIc515S1hOLFy8Wz1mDBg0yUa5yJjExMWjfvj045yhUqBDmzZuHiIiIdNNr1xFjx44VwVkUEGo6wsLCsGrVKpQvX154DA4ONnW2cjRZnen43bt3mDRpEiwtLVGlSpVUgzEJ4/Hu3TvcvHkT3bp1Q+XKlXXa33Xr1sWgQYMQHBysU39Qv4gumZVHWv2oAwYMAOccDg4O2L17d5b7Ws+fP48uXbqINkbhwoXRpUsX0S7M7W0+7fNX6tqSJUvCz88vS/srLhMTE+Hn54fPPvsMnHPkz58f165dS3OfZ8+eiXtfbi9/bTIbgJRy+7Nnz/Dpp5+KPo+mTZuK33VG11hcXJwYRNu4cWO6PxkIujbkhQLYCYIgCCIXov3Qe+3aNYwePVpnFLqjoyMKFCgAa2tr0QmvveQgBftknczKStvFgQMH8Pnnn+u4KFKkCEqWLAlHR0dykU2yU1ZJSUl4+/YtRo0aBUdHxzRn9SE+jI/xob1PTEwMxo4diyJFiggf3333nT6zmGvQx33E19cX8+fPFy4mTZqkh5zlPsiFPHysC+16PSQkBHPnzhUuxo4dq6/sERmgBK8rQVkNGjRAVFQUdu/eTUHsmRAQEIAZM2ZQmUjK6dOn4ejoCM455syZk+ELdcWhv78/2rZtCwsLC1hbW2PIkCG0mlo2mDZtGurVq4fixYujWLFiKFq0KJycnODk5IT8+fPDxsYGtra2yJs3r2jPWVpa6gxKLly4sM7s+Wm9+Lh9+zbq1KmD//77L900uZ2NGzeiYMGCGDp0aKZplRmSvvjiC1haWqJ06dI6gbpZhe6NH46fnx9++uknlClTRgykUfo1+vbtizVr1ujcyzIqY7ou9Nf0H9oAAOkLSURBVMPz58/xww8/wMXFBZxzuLm54fLly+mmV5zcunVL3Nv+/vtvY2WX0CIhIQEAMHXqVKhUKhQsWBBPnz41ca7MlwsXLmDatGnIkycPOOfo06eP2KZ9/1Gr1Vi7di08PT1x4cIFU2Q11/Po0SMcP34cDRs21JkMZvLkyabOmvQo9/irV6+K2ddbtWqValBZehw+fBg1atQA5xxlypTB7du3DZndXIEyWA9I7vuOj49HbGwsXr9+jYiICLx48QJhYWEIDg7G9evXsWvXLqxYsQLVq1dHkSJFxCyimzZtAqDbR5XWcxY936ZNfHw8bt68meEqBNqcOHFCrCy0YcMGA+eOAFK3BXbv3o0+ffogX758Ou9X69SpgylTpuDJkydilmS6LrJORgG02uXUv39/MZjpQ4LYQ0NDcfbsWbRv3x6ffPIJOOdwdXWFt7d3pt+fG9D+nc+ZMwfLly/H69evP+pYQUFBaNu2LTjnaNmyJR4/fpxu2txe7h9LUlISNBoN1q1bJ37PpUuXFhMvZBYAf/z4cZQsWRIqlUo8x9L9yPDQtSEPFMBOEARBEGaE8jIDSP9lnvbD1e7du8XsGsrslL169cKVK1cQEBCAEydOYPbs2SLYZ968eQY/h5yO0pjQ7tzKioulS5eKGeE452jUqBFGjhyJkJAQPH36FJcuXcKCBQuEi4ULFxr2RMyAD3GRGdquJk6cCGdnZ1hbW4NzjhkzZmQrn7kFxce7d+/EZx/rQ3u/77//HnZ2diIQYuXKldnLaC5Any60O1BiY2Oxdu1aqFQq5M2bF3v27MleRnMB5EIeDOUiKipKuOCcY/Xq1dnLaC4iK8+1KfH399eZeb1+/friBXBsbCy2bNlCQexEjmX69OngnKN48eIZBqwpv+egoCD06dNHzNru4eEhOuHpN//h/PnnnzqB6NovxZXPrK2toVKpYGtrCzs7O9ja2qJAgQJwc3NDlSpVMH/+fBw9elQcM617m4+PD6pXry6CT+7cuZNu2tyKEiyoXA/nzp3L0n7KDFh58+bFs2fPsvx9SqCDAr2w0kW5nyjlEh0djfDwcIwbN06sPKA9QL9v3744cOCAzjEy+33TdZF9lLL67bffUKJECXDOUaJECVy8eDFL+23cuBFWVlZwcHAQgwgI46FcZy9evEDNmjXBOUfZsmV12i6EftC+x0dGRsLLywsODg6pJrHQfpZKSkrCy5cvqX4wAso9KTExETExMVi+fDlatmwp+miVer5t27bYunWriXObc5g5c6Yov2PHjmVpHx8fH/Ts2VPsp71SAfHhPH78GNu3b0ejRo3QunVrNGnSBJUrV0aNGjVQq1YtuLu7w83NDWXLlkXRokXh7Ows2nnaf87Ozli5cmWqZ13te9b27dsxffr0NLcRyfeXXbt2wdXVFX/88UeGaZWyS0xMRN26dcE5R79+/aBWq6lcjUBiYiJWr16NPn366AweL1y4MCpVqgQvL68MB+TQdZF9tAcj9+3bN8tB7ClnrH7x4gX27duHJk2agHOOokWLipnGc7sL7Tavdt+E8twZGRmp04eeHomJidi8eTMsLS1RtGhRnDx5EgCVr75Rq9Xw9PQE5xx58uTB1atXAaTfj6T9+VdffSXqcxo0/vHQtZFzoQB2giAIgjATYmJisGPHDixdulR8lvLhSvv/N27ciHr16omH4c8++wz79u1LNZNfTEwMlixZApVKBQ8PD9y7d8+wJ5KDUco3IiICM2fO1An4T+lCu1Eyffp0McuJMov0lStXUrmIjY0Vs+rWrVsXYWFhBjybnM2HuMjqsQDgypUrqF+/vpiBqWLFinj58qV+Mm3GKGX49OlT9OvXT6cz8GOPBSTPblK4cGFx7bRp0+ajZyDILejTRVo8fvwYLVu21AkOpYZ+2pALedC3i5Tl/PLlSwwZMgQqlQrNmzfHkydPsnX83EBWnmtTcvfuXQwfPlzMUN2wYUOxTXuJR+0g9pEjRxrmBAjCAMyePRucc1T4P/bOOqyq7Ovja3MpQQQRAwOFsRWTsbvH7h57bB1bf+qYY41jjd012GN3YHeikpKiiKAoIH3h+/7Be7bnFg0q7M/z3Ee8Z59zz9nrrJ3fvXb58jrbO/LI6/3794eVlRWfwH316hUAIb7NCGPHjuVi9Vq1amH37t04dOgQ/v33Xxw7dgyXL1/GuXPn4OTkhEePHuHx48dwcXFBWFiYRuR7bXZwcXGBvb093xVN+vfFixcAhFhXzsOHD1GnTh3o6enh999/x8ePH5NNf+fOHZQoUQIKhQJNmzbVyEt5HRMcHIxnz55h7Nix6NatG1q0aIGePXti586deP36NQBhC124uLhg2LBhXGArfapVq4bu3bvDzc0Nnz9/TvM1hV9kDOn9/vz5M89La2trHD9+PNnz5OVU27ZtwRgTUb8zkcTERJWyRy52i4+P5++2ZIegoCD8+eeffAykadOmqY4MK0g/8fHx2LRpE/LkyYO8efNix44d3/qWch3q/cDg4GDMmDEDLVq0UFlYWKpUKdSrVw+XL18Wfe5UIpUv3bp14+VKfHx8in1vf39/jBw5UmUuQ7qW6GuknYSEBGzcuFFl5yZdH/lCWj09PSgUChgZGaF69epo37497t+/z3cfkpDb88iRIyhXrhwYYxg+fLjWNLmd8PBwdO3aFYwx9OjRAx8+fEjxHH9/f14/9+zZU2e61PiHsIUm6vnm4uKCrVu3ombNmjyoEWMMefPmRdOmTfHff//Bz88v2WsIv8g8tInYDQwMcO/evVSdL18Q7eLigmbNmvEdQd6/f58l9/yjIw9cMWnSJJ5PKb2zoaGhsLa2BmMMgwcPTtU5grQhBVswNDTkwdZSI16fP38+L8tGjhyZLfeakxG+8WMiBOwCgUAgEOQAIiMjcfToUT5JOHnyZI008obWtm3bePQqxhjGjRsHLy8vjchZEvfv30fevHnBGMPRo0ez9mF+cD5+/IjVq1ejTJkyYIxhypQpGmnktpg/fz6KFi3KbTF//nyVrSLVG8hXr17lA5WXLl3KugfJAaTGFmnh1q1bqFWrFhevV6xYEaGhoQCgsdhAoMnbt28xceJEvp1peuwh94dz587xbc8l8XpYWBgAYY+UyAxbJMe0adPAGEP+/PkREBCQqdfOaQhbfD9khi3kk+Tq9ffhw4dFBI1Ukpp2rToJCQn477//+IShnp4eli1bxo/L6wVJxC5F6Rs3blyWPIdAkNkcP34cCoUC1tbWKtFvpb6bVO48e/YMHTp0gKWlJRevP3z4EIAQeqYXeb6NHz+el+d79uxJ9TVSmviQi3SLFi2KP/74A02bNhVi3WTYsmULt8WaNWtU+tFy4c779+8xc+ZM3o9Oro6/du0a+vTpg+LFi2sIhszMzFCtWjW4uLgAEAItOZ6enujXrx9MTU15PhsaGuKnn37CjBkz4ObmxqPFpWUSUPhF5pGYmIjRo0eDMQZzc3MsWLAg2cXfcjstXboUjDEYGRnhf//7n8ZxQdby9u1b3L59G507d0bJkiV5ZMvbt29rpE1OnCVQ5fPnz6kSJQJJAggpCMyQIUOy+M4EEurv882bN7Fo0SKVIDBSW7dPnz64ffu2hk0TExOFXySDlD9S3dqrVy+d6SR8fHxU2sPt27fnfQ1B+vHw8OBjFIaGhujTpw9+//13zJw5E0uXLsX8+fOxaNEibNmyBZs3b8b69etx6NAhXLhwATdu3EBERARv/8rtJf/78OHDKFu2LAwMDLj9xM50msTFxWH9+vUoWLAgbGxscPToUZ3tfqkN+ujRIxQrVozXEymVO7dv38ahQ4cwevRojB07Fnv37sWdO3d0phck8fjxY6xbtw5FixblOxBIfjNy5Eg4Ojqm6jrCLzIf+bhr37590aJFi3Rf68yZMyhQoACsra35Lgii761JREQEOnbsCMYYFixYkGL62NhYfPnyhc+X9+jRIxvuMvcxZcoUMMZQrFixZBdxyN/pDRs2qATNS2mhuSB5hG/8uAgBu0AgEAgEOYATJ07Azs6Ob5PWvn17ndG5jx49inr16vHO+LRp0xAREZHib1SpUgWMMR7JWnQYNUlISMDatWtRsGBBPngyevRonRMia9euRenSpbkt/vrrL53XlgZKYmJi+Dm7du1SOSb4SlptkRK3bt1C7dq1hXg9nSiVSkybNg1GRkZ84nvZsmUqIpOUSE683rp1ax7JT4gXkiczbKELaaJk1qxZMDQ0RIECBfD27dsMXzenImzx/ZAZtti3bx8YYzhw4IDK9/LI32XLlgVjjEcVF/W3dtLSrlXn6NGjGDt2LIyNjcEYQ//+/fkxdRG7FOFs1qxZKluwCgTfK8+ePUOFChXAGMOSJUu0Rl29cuUK7OzsuA8ULlwYd+/eBSDKnIwib2NOnDiRt0M3bdqkEeUwrbx8+VJFpLt69WqEhITg9evXaN26tRDrqiF/l6WdCRhjWLp0Kd9mXOLFixeYN28eF1U3btwYQUFBADTzcc+ePTA2NubRL4sUKYIaNWpg3LhxaN68OSpWrMhtJLYz10TyCwsLC5QoUQLbt2/XELSlJb+EX2QuERERaNKkCRhjqFKlCp49e6YzrdxOp06dQq1atXh+nz59OjtuN0fy/v173Lx5E8ePH8e+fftw4MAB7Ny5E//88w9WrVqFxYsXY+bMmZg6dSp+++03dOzYEa1atULJkiW5OEuKLrpz504AukWK0lb16t8Lkvjw4QM2b97M+26pySNJjKKvrw9vb++svkWBjAsXLmDmzJkwNjaGiYkJX8RhZGSEefPm4ezZsyrphV+knQEDBoAxhoYNGyIyMlLlmLx+ffLkCYYPH87Lo6ZNm+LMmTMiPzMJV1dXFChQAIwxNG/eHJ6enmm+RkridcYYLC0t0alTJ94+FmJdTYKDg9G+fXswxlCnTh08f/6cH5PvliLRpk0bXkefP39e5VrSPKpSqcT9+/cxceJEGBoa8j67FIShVKlSmD9/vsbvCJIChvTp0wfVq1dXWcBUtGhRjB8/XiPPk+sXCL/IOrTNk6anjxYWFsaFpEOHDs2MW8uRREREYOrUqWAsaRfSp0+f6kwr35FLCt7TunVrlWOCjKNUKnmfu3v37jrTyfU127dvR/HixXnZI68HBOlD+MaPixCwCwQCgUCQA/Dx8eGd9sGDB2us6pQaWW5ubnz7OynyWFxcXLLXTkxMxMOHD5EvXz4wxrBx48Yse46cgJeXF8/f2bNn65zUuHz5Mho0aKAy2S6RXKP41KlT/JwjR45k+v3nJFJri5RQF69XqlRJiNfTgaenp4rQR4qWnhqEeD1zyYgtdCHPe6meMTIygo+PT4avnZMRtvh+yIgt4uPjMXbsWH6+JISQD0bu3buXH1+/fn2m339OIqV2rTbkeR0SEoIdO3bAzMxMI0qiPJ1SqcSLFy+SjT4qEHxvSFFwpfbtqVOnEBgYiJ07d2L8+PEqW8qXLl0abm5u3/qWcxTJidjT2y9wcXFBpUqVeISmVatWcYE1ALx69UqIdbUgL8+liSnGGBwcHDB+/HgsWrQI48ePR61atbhfVK9eHXv37tUYAwkLC1PxLRMTEzRo0ABPnz7ltggPD8ejR4/QvHlzLtgS25knIbfFihUrsHHjRvj6+upMkxqEX2Q+Fy5c4O/4hg0bdKaT973v3r2LHj168PPmzp2bDXeaMwkICMCIESP4bkHp+VhZWcHOzg4XLlzQKMfkdnN0dARjDL/99pvW4wLg9OnTUCgUsLKySnGhrFS/L1++nAfIePnypc70Ul6LPE8b6vkVFBSEBw8eoHPnzrCxsVHxhUqVKmHBggV48OCByjnJRTwWfqEdKQ927doFMzMzlClTRmXxmXoeStEsGWNo0aIFDh8+LN75TMbV1RVWVlZgjKFZs2YqizPTksfJiXTnzp2LxMRE7NmzR4h1k8HX15cvYG3SpAnu3bunscAjMTERffr0AWMMBgYGaNasmcrCA6ltGhMTg6VLl6J+/foa5ZmDgwPs7Oy4LSZNmpStz/kj4Ofnp5JvderUwdChQ+Hj45OmxeTCL7IeeV2cniB4UhtX2vmmffv2mXZvOZHLly/z93jWrFlagxXKg+MtWrQIenp6UCgUWLhwocpxQcZRKpV8VxtdAna5X2zatAklS5aEQqEAYwwjRozQmk6QdoRv/JgIAbtAIBAIBDkEV1dXjBgxArdu3eLfqTeu5s6dyzv5I0eO5KJPXcgHMaXzDh8+nPk3n8Nwc3PD/PnzNaJkyO0xatQoFfGJhK5OiXTu0qVL+QDKjRs3suDucxa6bJFaROT1zMXNzQ1bt25NseyRoy5el0/4CvF6+kmNLdQHHOWTUtIx9Xrmr7/+gp6eHvT09NChQwdER0eLjn4KCFt8P2izRWoHC0NCQjBmzBhePi1evJhHPT569Ci6dOnCj/33339Zcv85CW3t2rQM3CqVSuzatYtH6Fu5cmVW3KZAkG3I3//p06erTN4WL14cjDE+4VG6dGn07t0bb968ydTfFSSRmSJ2Nzc3bj8zMzPMnj2bX19eZ3t5eXGxrpmZmUoEwNyM3BYLFy6ElZUV7ytLEQ2l/9evXx87d+7UEJ2Ehobijz/+4HYsX748Jk+erHVyKyEhAWfPnoWVlRWKFCki+uMy5O++rrZpahF+kTWcPn0aBgYGsLCwwJ07d1T6ERLy/H3y5AkGDhzIfWPgwIHcDqJuSDvBwcE8kqTUPi1evDhKlCiBfPnyoWjRoqhQoQJKlSoFOzs71KpVC7Vr10adOnXw22+/YebMmbh+/brWXbXkdtu3bx8sLCy43UaPHq01XW7HyckJNjY2MDExwYoVK5LdjSkxMRFKpRKDBg0CYwzm5ubw8vLSmk5OWFgY3r59Cy8vL3h7e6v4jbCFbkJDQ3HmzBk0btwYJUuWVGnz/vLLL5g5cybCw8NTzEPhF2kjMDCQ77bRuHFjnD9/HqGhofj06RM8PDwwcOBAFXt06dIF58+fF+L1LMLNzU1FxO7h4ZHuax05coQLuAoUKKAyDxUTE4Nt27ZpFeuKuj4JDw8PWFtbc7H5yJEjcfbsWZw/fx5btmxREaQXKlRIZe5Uah9HR0djyJAhPLIrYwz9+vXDxo0bERUVhdjYWLx8+RIrV67ktli1atU3euLvF1dXVzRo0ABz5sxBUFAQF66n510VfvF9IvU1oqOj8dNPP/HFCvK5EIEma9as4WXLunXrVMY8pN1l4+LicPr0adSrV4+nvXnz5re65RzN8uXLoVAo0LBhQ7x+/Vrrrh0AsGTJElhaWvKyRr6LrJjrzhyEb/x4CAG7QCAQCAQ5CPmAu3qH7ty5c7zx1bZtWzg7O6fqms+ePeODKw0aNMjw9ui5heQi2+/fv5/bYsCAAfj48SOAlAd7b9++DQMDA7HyPI2ktMuALoR4PWtIb7SYzIy8Lga8kpDnQ0YGRT5+/Ah3d3eMHTtWZVJw7dq1mXGbuQJhi+8HXbZIKTIfkBQlrl+/fjzfCxQogCpVqiBv3rz8O/lgpCB55O1auS1SuwgqKCgIPXv25GIHbWJEgeBHQu4Hq1ev5tvSSp+CBQuiT58+OH36tMbOArt371YRmaQGKa2zszOWLl2KDx8+8HZ1bm9L6RKxb968OU39BE9PT9SqVYuLGqtXr47Hjx/z31AX67Zo0YILi9KyIDQnI7fFyZMnMWnSJJibm/NdOEqWLImhQ4fCxcWFT1BJ58THx2PRokXcfjVq1MA///zD6x9tbbLQ0FCULl1aYyG6IPMQfpE1SNGHLSwstO7OIRfk3Lp1C7/++quKUFGKci9IPy9fvuSCxIoVK+LWrVuIiopCSEgIb6fGxsbysgrQLpSS+4C6SFfqd8i3oRfRQzUJCwvjO2hVrVpV545PUj3w7t071KhRA4wxFC5cGB8+fNCaDgDevHmD1atXo379+sifPz/Mzc2hr6+PHj16qOx+IGzxlYSEBISFhWHNmjXo1KmTSvs2X758aNq0KTZv3oyIiAjuE8mNmwi/SB+enp4oVqwYH8soVaoUbGxsULRoURWbTJw4EW5ubjzf0iPoFHmeMpkhYt+1axdvT1lYWGD+/Pn8mNyX5GLd33//PbMeIcfg6emJatWqqfgBY4yXLUZGRrCxscGePXv4OVK/OSoqCt26dYOhoSE/b+XKlQgJCdH4ncjISMycORMKhQKtWrUS7VotqI/rpacsEX7xfSKvU6Tgb8bGxliyZInKccFX5PWvfFH+nDlzVALCxMTEYOPGjWjcuDFPs2jRom9xy7mCs2fP8nm5NWvWqJTlSqUSz58/VwlwyBjDsGHDVNIIMobwjR8XIWAXCAQCgSAHIu/MSQ21GTNmwMjICJaWlti8eXOqOnwBAQEYPHgwTE1NoaenhylTpqRbDCxIskVUVBS6d+8OxhjKli2Ls2fPpupcd3d3LlKxsrLCunXrtEbMEmQOGRWvC4F7xsmKyOvySKRi0Osr8jy8ceMGzp07h9OnT2P//v3Yu3cvdu/ejTVr1mD58uVYuXIl5s2bh3HjxmHs2LHo2bMnypYtC1tbW5Uol1OmTOHXFHmdeoQtvk82bNiA9evXA0g+DxMTE3Hu3DkeSVFadCZ9evXqBW9vbwAiak9akOf5w4cPcezYMY3vdbFp0yae/9euXcuqWxQIsg15PREcHIx79+7h3LlzcHJygqurq0paqZy5fv06zMzMYGxsjH379qWpLnjy5AnfNr1u3bpYunQpb0/l9nJMl4h91apVqcobyQ7h4eE4ceIEWrZsySdppcje6rby8vLCmDFjVARwAs138fXr1/Dw8MDjx481FqDJ027evJnbzcHBAdu3b082kl98fDw+f/4Me3t7MMZUxA6CzEH4Rdbh5+eHsmXLwsDAAFu3blWJai8vzw4ePIiOHTty32jXrh1u3bol+hGZhKurKwoUKMAFia9evQKgKtqRxpMSExNVxpbUbSD///79+7mQrnz58lixYgW2bNkixLrJ8Pr1a9SuXZsvgHnx4gXPb/Uxvc6dO+sUUsl9ac2aNWjTpo1WgaPon+smMjISXbt25XnMGIOtrS0aNmyI69evIyAgQCV9Sn1yCeEXacfLywstW7bUEK2bmJigRYsW2LVrl0r6qKgoPH78GO/evUv1b8jz+v79+3j58qXO47kddRF7WneYXbFiBWxtbaFQKGBkZIQFCxbwY/JyThLrGhkZgTGGqVOnZtoz5BQCAgIwZcoU/Pzzzyq+YWpqigEDBuD06dM8rTR/Gh0djV69evG0xsbG2L9/f7K/899///H00gJOgSYZKSeEX2QdGbFLWFgY3r17h379+iF//vxgjMHS0hJXrlzJxDvMecj7cdOmTVMJqtO6dWu0atUK5cqVUwl0NG7cOPj4+AAQdW5WMXfuXJ7fQ4YMwbJly7Bv3z706NED1atX58dsbGzwv//9j5+XXvG6+nlCBC9840dFCNgFAoFAIMgFhIeHo0KFCmCMoWHDhiqTIbr48OEDli9fziNv/PTTT3j//n123XKOJSQkBDY2NmCMoXPnzqlqBPv7+2PMmDF8kqthw4YaUdtFYzptxMbG4vXr13zLKPVoYxkRr0sdo8+fP8PJyUlsE5wKPnz4ADc3N3z58gWAqj0yK/L6s2fPYG5ujr59+/LvhD1UGTlyJBc/p+ejUChQtWpVlVXq2mzk7OyMc+fOJbtrSG4nu2yhDWELVc6fPw9zc3OYm5unKuJVVFQUqlWrhgYNGuDixYvo3bs3Jk+ejH/++UclXVrEjYIkPD090bx5cxgaGuL58+fJppXq6zt37vD208GDB7WmFfks+NHQ9c4mFwVR2h0ib9682L9/f6rfe0dHR/To0QP58uUDYwx58uRBgwYNePTe3D4pok3E3rNnz1Qv+pb35Xx8fPhCZ2trazx58kTrOVJ7WX6+4Cu6BJ7qfnH+/HnebqpcuTI2bNjAxevJ5evTp0+5iGHhwoWZfPcCQPhFVhEeHs5FVA0bNsSzZ88QFRUFIKndpFQqMX36dL5oiTGGbt264d69e7l+wVJmkxlRdeU2kUeYLleuHFatWsX9QIh1k8fLywslSpTgC/V27tyJt2/fAgA+ffqE+/fvo3379mCMwcDAAA0bNsTdu3f5+fLx9cGDB6uMXTVq1AijR4/G+fPnsXHjRowZM4bbQuzgocnz589haWkJfX19DBo0CFeuXNHYUSil91b4Rebw4cMH3L59G3/++Sfmzp2LZcuW4dmzZyoRoxMTE5GYmIizZ8+CMYZWrVppLDRIiWPHjqFZs2ZgjOF///sfLl++rHJ9QRLyOqNBgwZ84VNquXnzJmbNmgUTExMwxlTGxeV9GaVSiXXr1sHS0hJPnz7NrNvPUcTExCAqKgpHjx7Fnj174OjoCHd3dz6/BHytF2JjYzF69Gg+v2RhYYH//vuPp1N/xyVbeHl5oVChQtDX18f169ez4alyJ8IvMh8p36KiouDh4QEXFxe8fPkST548wY0bN3Dr1i1cv34dx48fx9GjR3HixAls27YNf/75J2bPno369evDzs5OZX5j8+bNyf6mFJFfjEt9ff7ly5ejfPnyOueMZs+erbGAVl6GpYcvX75wvUJut4W8Lfq///1PZRGrNI4kfXr27Im9e/eqnC+fL00Pmzdv5gsDc7stgG/vG4K0IwTsAoFAIBDkAl6/fo0iRYrAwMAAK1asAJC8EPfTp0/YvHkz7zAWKVKEb6cqjyyjCzHIqBtnZ2eYmJjA1NQUhw4dApB8R+LNmzf43//+B2trazDGUKxYMfj6+mqcFx8fj9evX2Pr1q3YunUrnJycRLRpHcTExGDnzp1o3rw5du7cifDwcH4so+J1ifDwcBQpUgSMMUyfPp1HiwOELdQJDg7G7Nmz0bhxY+zevRthYWH8WGaJ152dnVUm4kePHs2PCXskERwcjJ9++gmMMRgaGkJPTw9FixZF3rx5kS9fPhQvXhzFihVDsWLFULZsWVSsWBFVqlRBo0aN0LZtW4wZMwbHjh1TEZVqs5GbmxuPojFp0iQ4OTnxY8IWSWSHLby9vXH58mWMHTsWU6ZMwcGDB1XSC1t8Rb5V8Pz581UEUrro0KED8ufPjzdv3uiclJJ4/Pgxjh49ismTJ2PevHk4ceIEF4YCwhZy3NzceNTb6dOnq9TfutixYwcv+/ft25dsWi8vL9y+fRtLlizB2rVrcenSJZXIvcIWgh8ReZkzYMAAHkHxwIEDaXqnXVxcMHLkSD7YX7hwYT4pktuFjfI83rNnj4bYKi28ePEC9erVA2MM/fr1S7acE2VS+vHx8UHTpk159KU//vgDMTExAJLP19DQUAwdOpT3yx8+fJhdt5yrEX6ReXh7e6NUqVJgjKFGjRoYPHgwNm3ahEGDBvE8lj4jRoyAh4dHhsp4YQ/dZIaIHQD+/fdfHjWufPnyWLt2rcpOElL0UCHW1Y2Hhwf3CzMzM9jY2KBjx46oVKkS/97Q0BBVqlTh47jA1wi7CQkJaNeunYr/LFiwgEfvkwgPD8fatWuhp6cHKysrXLhwIVuf80cgICAA58+fV/kuPe+p8IusQVsQncePH6ssekqtiD0qKgoLFizgY7X6+vooXbo0/vrrL43fEyTtzCstyFixYgV/n5NDXn+Hh4fj33//hZmZGa/jJdR3cpbG3cXuspqktJBcvnB2w4YNvA7R19fHkSNHUrwOAKxatYr71KNHjzLx7gWA8IusJjQ0FAMHDkTp0qVhYWEBU1NTvhugkZER32VFWhioTUSaN29elC5dGtu3b+fX1dYfOXHiBIoWLcp3KsjtYl3589+5cwdr1qxB1apVUaFCBVSuXBl9+vTRuhu8h4cH6tWrB0dHx3TVuxEREVizZg2KFCnCF5sLW3x9/h07dmDQoEHImzcvChUqBFtbW7Rr1w4HDx7kon8JPz8/9O7dG4cOHUqXLU6cOAHGGPLly4cXL15o3Etu5Vv5Rnh4OC5fvozg4GBehom2bcoIAbtAIBAIBDmcxMREvHz5kncO1Vd0qhMSEoL169ejTJkyYIzBysoKO3bsQHx8vEZHMS4uDjExMbh37x6uX7+OBw8eaESBEA2yryQmJuLu3bu8M37ixIlk0/v5+WHq1KkoXrw4X0ggRSORN7r9/PywfPlyHtldWtXbokULrFmzRuX3BUmdammAvEaNGnB0dASQtG1prVq1MixeB5LEK5IAVU9PD7Vr18bKlSv5cWGLr4SGhvLypnr16twely9fzjTxulxsJSaodOPi4sLF5TY2Nrh27Rp8fX3h6+uL0NBQhIaGIigoCBEREYiJiUF4eLjOSRNtA4sJCQnYu3cv9z89PT3UqFEDy5Yt42mELZLISlvcunUL7dq144IJ6SNsoZ3IyEjMnDkTCoUCFStWxK1bt5JNHxQUhJo1a8LExEQjOo88TyMjI7Fhwwbky5ePT5ZIHwcHByxfvlzrebmZyMhIzJkzB4aGhihfvjyuXr2qM62UZ1JEZMaY1sFIiQMHDsDe3h6WlpYqbalGjRqJ+lvwwyNvx/76669ciJXS9uXqkavDwsLg5OTEIyXa2tqmOQJgTkVbX0Fe/759+xbx8fEpliGxsbGYPn06GGOws7NLcyRLQfJINjlx4gTvZ7Rr107rLlDauHjxIt/ZrkqVKhoTjoKUkfuA8Itvg4eHh8riboVCwf82NjZG+fLlVdqhQFJUPSlae2qR+5PUjxeoklER+8OHD7n4R19fH926dePH5NH71MW6I0eOzLRnyCl4e3ujS5cuKFmypEqkRMaSdp9p3749jh07xtPLxdBSu0hfXx9FixbFrl27VK4tbyP4+vri559/hp6ensp4rUCT9ApuhF9kDurizeTS3LlzB4aGhmkWsUdERODdu3dYsmQJ6tSpw20xYcIErfeR2/Hw8MCECRPw4MGDdJ0fHx+PTZs2IU+ePDAxMcHOnTsz9wZzIervp+Qrr1+/Rps2bXg9Ip+P1fZOS98plUoMHDiQL5b18fERPpDFCL/IXBwdHfl7L9ULCoWCz7caGRkhX758MDU1hYWFBQoVKoSCBQuiZMmSqFu3Llq1aoW9e/eqLBTXVgedP3+et6ELFCjAg/LkdrGuel5FRkYiPj4ecXFxGmNWUtnyxx9/gDEGU1PTNO3WCCTV41u3buVzWJaWlsIW/4/68wcGBuLdu3cIDw/nwRMkJLutWbOG98nTagsgKVBDq1atwFjSrh9CxP6V7PaNyMhIbN26FYwx1KpVC7t27UJwcLDWexGoIgTsAoFAIBDkApRKJerXr88j3sq3xpY+QFIDd8GCBbC1teWdv1WrVmlMzIaGhsLZ2RmdO3eGg4ODSqfU2NgYQ4YMSXFgJrcSFRWFn3/+GYwlbTkuNY7VV2C+ePECQ4YM4VG8CxcujP/++08jL8PCwrBw4UKezsDAgA/USxORkyZN4umFLZJ4+fIlChcuzEWbc+bMgYODQ6aI14EkO798+ZKLhKRBeBH5WzsuLi7cHjVr1sS0adNQsGBBXra0atUqw+L1EiVKYM2aNVi9erUQsSeDq6srChQowBcNuLu7q+SN3B/kne3U5l90dDRevXqFQYMG6fQNQRJZYQsXFxe0aNECpqamPCJD4cKFoa+vLyYLk+Ht27do0qQJGEvaCt7FxYUfk8okyQaOjo48L+VbYANf8zM0NBQzZ85UEa1bW1ujbNmyMDc3F7ZIhrdv36Jx48ZgjKFhw4YqtlBvU0mRRxhjaNGihUoeyv/+559/VGxhaWkJa2trGBoa8raUsIXgR0deZ/Tt2xeMMTRp0kRlx6bU4urqigYNGoCxpK22U7MbQm5m165dqF+/Po/UmlLkvqdPn/J6euPGjcmeI0gfLVu25P2D169fA9A9iSTV88HBwWjUqBGPCnfx4kUAwjbpRfjFt+X169dYuHAhmjdvjlKlSqFSpUqoW7cuduzYwXdflPj06RNWrVqFUaNGqexMk1oOHDiAtm3bYs+ePfD29ubfC/slIRext2zZEu7u7mk6f8+ePejVqxcPWjJu3Dh+TF73K5VKbN++nY/dvn37NtOeIafw4cMHXLhwAYMHD0bz5s1Rq1YttG7dGocPH1ZZXCAvtzp27MjztEKFCjh69ChPp6tead++PRhj6NSpU5Y+T25G+EX2Ib3nd+7c4fMRPXv2hJ+fX7LnqdcBz549w/z58/lYyPTp07Psnn9k5IErpHdZqVTi3bt3qTrfy8sLtWrVAmMMgwcPzpJ7FAALFy7k40sLFy7k36fU9pGLf8ePH5/Vt5kjkcok4RffjrFjx/L3uG3btjhz5gzu3LkDJycn3Lp1Cy9evMCzZ8/g7OwMX19f+Pv7IyAggO+QIkebz5w/f57vsiItShdiXe3I26LJiWbluzWmVqgridfz5cvHg+8JW6iiKx+Ts0W/fv3SLZoGksqz1q1bC1ukQFb6BgC8e/cOY8aM4WVhqVKl0LNnT96nFPbQjRCwCwQCgUCQw0lMTERsbCwmTZoExhh+/vlnvHjxQqOB9ODBA3Tt2pV3NAoWLIi1a9ciKChIJd3Dhw/x+++/86jg+vr6fPJXiqKsp6cHfX19zJw5U+U+BEnC5hEjRoAxhjp16uDFixcaAunLly+jWrVqMDc356K2EydOaI2u6+bmxiOvlyxZElOnTsXFixexY8cOjB49mg/8Tp48Obse8YdBPlFobm7OowJUrlwZHz58AJA+8br6u75q1SqUK1eOi+DkomnBV+T2MDEx4Z27Nm3a4NOnTwAyJl5ft24dQkJCAEBsFZwCmbWduTrq+bt8+XKULl2a1yO///57pvxOTiKzbCHl/b59+3iE6cqVK+P06dPw9PTEmTNnMGPGDO4X06ZNy8zHyBH4+PjwBX4NGzbEuXPneNkkIRdM161bly+EUufvv//m6apWrYrff/8dAQEB+PDhA27evImFCxdyW8ybNy8bnu7HwtvbG3Z2dtwWZ8+eVbFFaGgoDhw4wPNYWsCkVCo1yqHdu3erpOvevTueP38OX19fXLhwAbNnz+a2mDNnTjY/qUCQucjbtfPnz9eIEJqW66xbtw6MMZQtW1ZFkChQxcPDg5cxu3fvTtU5Tk5O/Jx169Zl8R3mPj5//gx7e3swxjBo0CDExcXp7GPIF6m1bdsWjCVF4p04caLOOl6QMsIvvg8SExORkJCA169fIzw8nO9EICFN5AYHB/Oxvu7du6cpAv6JEyf4wkOpb799+3aVexAk9fmkBf2tW7fm41HJIc+7169fY+PGjcibNy8YYxgwYAA/Jp+QVyqVOHz4MJydnTP3AXIgsbGxiImJ0RiHldcXkkBLoVCgbNmyKrtsJvduN2/eHIwl7QAifCBzEX7xbZCL2KXx3OHDh6cqwqT6LnUbN27k80p79uzJsnv+0ZHyLTY2FsuWLcO///6r8n1ySLvaGBgYwNPTM0vvM7eRmJiIgIAAVKpUCYwxNG/ePNV57OTkxIP5VK5cme84KOqJtCP84tsgbyONHz+et//lbf+USMlWcvF6tWrVsHr1arRo0UKIddOJtt0aTU1NceDAgWRtoS5eb9CgAQ4dOiSif2cAeT6lxRbaECL2jJNe35Dj5+eHAwcOcD+RdFdSn0NEYteOELALBAKBQJBL8PPz42LOevXqYdWqVXj8+DH27t2L+fPnw9jYmAt0rK2tsW/fPg1h1sWLF1GzZk2YmZnxVYMTJ07E1atX8enTJyQkJODIkSMYM2YMv9aUKVP4+WLAJQlfX18+AVi7dm0sWLAAV65cwd9//83F7dLHxsYGt2/f1nmtuXPngrGkbQX379+vsjXzx48fVaJNi+1pNXFzc+NiToVCgeLFi/OoYlJUpfQidXJev37NhXbGxsaoV68efHx8MnzvORG5PQwNDVGlShUeGTQtiwmePXuGChUqcB/atGmTStSN+Ph4FRG7PBqTKKeSyCoRu5zr16/zBTj58uVD//79NRZNCTJXxN6jRw8wxlCuXDkEBgaqHI+IiMCaNWugp6cHPT09bN26NTNuP0fh7u7O39lSpUqhffv22LlzJxYtWoSRI0fyurtQoUL4448/tNYjFy5c4OkcHBywY8cOja0jY2JisG7dOujp6cHa2ppPXAm+4uHhgRIlSvA2UP369fHHH39g+PDh+OWXX1QGBocNG6bRpgWAe/fu8TrHzs4O8+fPR1RUlEqaqKgorF+/Hnp6erCwsMCZM2ey6QkFgqxBW3sqPW2fV69e8T7h6tWrM+PWciRv3rxB7969YWRkhK5duyYr9pcmLw4fPszbqP/880923Wquwc/Pj+9ws2XLFgDafUD+nTzCbsuWLTUiVAvShvCL74O0lP03btyAkZERGGPo1q1bqkXsHz9+xO7du9GnTx8+5qinp4cZM2ak6z5yMq6urihatCiGDRuW6oih8rxTKpVwdHTkYt25c+cme66YMNdOat/HPXv28HG+/Pnz48iRI6m6xqVLl1CoUCHo6+tj8eLFGb5fgSbCL74NUt5du3YNtra26V7gGhISgm7duvFFBwkJCaKeSIYDBw7AxMQE1tbWKc41SAtyFi9eDCMjI+TJkyfNu34IUsbZ2ZmXOfL2TnLcv38fTZs25cGVRo0apTWQlSB1CL/4dsgFshMnTuRjs5s2bUpXoDA56uL1/fv3IzIyEq9fvxbC6QygTajLGMPJkye1plcXr9evXx93795FYmIifHx8hHA6A+iyxbFjx9J8LSFizzhp9Q1deHh4oFmzZrz8YozBzc0ts283xyAE7AKBQCAQ5CI8PDxQqlQp3kiStmCWIkPnz58fNWrUgKurq8a5p0+fRvHixfmkYeXKlfHkyRO+ZbxcpBUaGooNGzbwtCtWrMi2Z/xR8PDwQOnSpbktpAEqKRKxnZ0dOnfuzMW78u3vJBITE3l0gMaNG/NJLvnAbkhICEaOHAmFQoGWLVumeiIsN+Hq6qoSkfjUqVOZFlHPzc0NDg4OPKp4p06dcPfu3Uy5dk5Fbg97e3ucOHFCq/BQG4mJiXjz5g2KFi3Ky7Y+ffrwhR3yckqpVGLbtm3c58aMGZMVj/NDk1Ui9ri4OJw/f55HpDE3N8e4ceNExz0Z0moLqR6Q1wcxMTHo2rUrGGN8hxT1weOAgAB06dIF+vr66NOnT4YHl3MiXl5eaNKkiUr0BHlbqlixYhgyZAg+fvyocp5kixkzZsDQ0BCGhoaYN28eF6+rT8r6+fmhbt26YgFaMrx69QpNmjRB/vz5wRjj7U6pXC9TpgzGjBnDbaEuSNiwYQOfWBw6dCgXr6unCwwMRJs2bcAYw6JFi7Ln4QSC75wHDx5wMaPo6yXP0aNHeR2+ePFiREdH82Pq9bW3tzeqVKkCxpJ213r+/Pk3ueecTGBgILfHsmXLkk0bHh6Odu3a8Wh8NWrUwKlTp7LpTnM2wi9+HOSRdQ0MDFItYldv2546dQojRozg7bUJEyboTJtbCQkJ4QEVgLQLDMLCwjBlyhTo6+ujVq1aWsd2BRknISEBffr04f1AaTEUkPKCqDlz5vDz9u3bly33m9MQfvH9ItUXkiA0veNJS5cu5XMlWRFMIydx48YNlC1bFoaGhlixYoXGgnxtDB48mLdthT9kPmfOnOGBLZ4+fQpAc4xJXi88fvwYnTp14ovD69aty3fFEYtq0ofwi29LVojYz58/z3crr1GjBhwdHbkuARBi3Ywit4u0iGznzp0a9goPD8fWrVv5WHqjRo1w+/ZtlTlXYYuMIc/znj17grGk3XlTU46p4+XlpbK4QxpHEbZIPan1DXXUdxiaPn0636XI0tISe/fuFXW8DoSAXSAQCASCXIaPjw+GDBnCt82WIt927twZa9eu5VvVyhtgFy9eRMmSJXknPm/evNiwYQOuXr3KOyCAasM3OjoaS5YsgZ6eHipXroz79+9n30P+IPj5+WHs2LGoWbMmTE1NoVAo8NNPP2Hw4ME4deoUwsLCAEAl4kJsbCzi4+MRGRkJIGkS0MjICL///rvO39m0aRO39bVr17L0mX5UXF1d+QR6tWrV4OjoiIiIiAxd09PTEzVr1gRjDHnz5kXHjh1VxOtiklY3cntUr149zfZYtWoVevToAWNjYzDGMHbsWH5MXrYplUps2bIFjDEULlwYjx8/ztTnyAnIhdMtWrTI8ORRXFwcLl68iIoVK/LBk7FjxwrxeipIjy3evn2LwMBAvHnzBhEREdi8eTMYY1i5cqXOc2bMmMFFwGLQXjvv3r3DqlWr0KxZM17OMMbQtGlTrFixgi+6UR+IiouLQ/369XkUfGmwXVd9MGDAADDG0KpVKwBigFEbQUFB2LhxI9q0aYPChQtDX18f1tbW6NWrF44ePcrzWN0WCQkJXJRYokQJvH//Xms6id9//x2MMdSsWRPx8fHCFoJci/TuHz58mE9aSRFERdtWFXl+/PXXX7yuWLduncpiWanc8fHxweDBg/nEbNOmTTNtUa1AlWHDhkFfXx9DhgzB58+fua2kidcvX77g7t27aNq0KRdQVa1aFYcOHeLXEO97+hB+8WOiTcTesWNH3n5KDnmb6f3793yXIcYYli5dmmX3/KMj5VtiYiL+++8/REZGpmqS+9SpU9yvdu/endW3mSvZv38/z+OpU6fy71Oyz8mTJ/l5nTt3zurbzJFIeSz84vsmvW0kaf5j+/btyJs3L/LkyQNnZ+fMvLUcR1hYGMaOHQvGGKpUqZLiLkGPHj3icxW2trYICAgQbdpM5ujRo3wOVZs95Pl97949tG/fngfIqFy5MoKDgwGI8b+MIPzi25OZIvbLly/z8wsVKqQypyFvA8iF06ampiq6BUHKyO1y7do1rhORiI2Nxd69e7ktrK2tceDAAX5cly2MjY3x8uXLrH+AHITcFocPH4avr2+6r+Xr68ttYW5uzttVoo5JPSn5RnK8efMGixYt4gH7ypQpg927d6c6YF9uRAjYBQKBQCDIhURHR+PDhw+4evUq7t+/r9GZkzdeHzx4AAcHBygUCj7JJP+Ym5vj119/5WJreefe1dUV9evXh56eHnbs2CE6/lqIi4tDVFQUXrx4ATc3N40I6fLG8YULFzB06FDUrFkTlStXRteuXTFy5EjY2NigUaNGfIBLQuo0Xrp0iU8ybtu2Lesf6gfFzc0NhQoVAmMMpUuXxsWLF9O9ClaI1zOO3B62tra4du1aivkmP+7r64u1a9dycdWAAQP4MXkZp1QqceLECZUBF4Eqbm5uKFy4MI9yERQUlK7rSOJ1KfK6EK+nndTaIjIyEps3b8ZPP/0Ea2trFChQAD///DPatm0LKysr9O3bl+9MACT5jlTfrFy5EgqFAvr6+rh9+3a2PNePzP3793Hnzh3cvHkTcXFxvN7QVn98+fKFR1Vv27atznSSgO63337jUS4FKfP69Wt4eXnx3WsktNUdCQkJaN++PRhjqFWrFqKjo7Wmk/xi3rx5YIyhYcOGWXPzAsE3QP7Op+ZvCQ8PDxQrVgyMMdjY2MDFxSVrb/QHRl7GSwvEGGMYPXo0Dh48iLi4OPj7++PatWto2LAhChQowCPySO0j0W/IfHbt2sVt8c8//+D169f8mLe3N+bOnYuqVavyCddGjRrhxIkTPI2wScYQfvFjIhexS/ZIT78wJiYGixYtgp6eHqpVqybEiSkwfPhwFC5cGI8ePUpV+k+fPqFEiRJgjGHUqFEAhL9kFlI+jh8/HgqFAmXKlMHNmzdVjuni1q1bfDH6Tz/9hD179qTqPIF2hF/kPORtA0l4yhjDgwcPvuFd/RgEBASgdu3aYCxph96XL1/ycW95UKTXr1/zhfmMMcyYMeNb3XKO5t27d6hcuTKMjY2xdetWrbsqA0kRpevWrcvnLSpWrMgDlQhhYcYRfvHt0SVi37x5c5pE7O7u7mjVqhWfT7K3t+f1f0JCgkp97uXlhebNm/PFglIQOEHqSKns8fb2Rvfu3fnuaJUqVeJz3uq28Pb25gEBxo4dy3egFaSOjNYDclucPXsWpUuX5n14EcQt7aTHHm/fvsXixYv5zsHlypXDzp07VeZkBZoIAbtAIBAIBAKOuogqKCgIw4cPh6mpKV+5bGNjg+nTp2PWrFn47bffeISAtm3b4uPHjwBURdfLli1D1apVU9xeWKCKeodv//790NPTg76+vsoCAun/NjY2OHv2rEqUJgD48OEDhg0bxtMLkW7yuLm5wcjICLa2trh582a6JjSEeD3zcHNzg0KhQM2aNeHl5ZWqc+T5Gx8fj3379vHB4FmzZqV4vti6Sztubm5gjKFZs2aIjo5O8/lCvJ556LKF9O5/+fIFM2fOVKkr8uTJA8YYjIyMwBiDnZ0dnJyceJ0hvfevXr3i0fGtra3Fds3JkN6yfOTIkWCMoXbt2rzdpA1vb29YW1uDMYbx48en9zZzBbpskVJ5PmXKFD5R+PbtW53pAgMDUb16dTDG0Ldv3wzdq0DwrUlP2aVUKhETE4ObN29i3bp1vGwyNzfH0KFDNaIhq/9Gbm/7yic6/ve//6nUz2XLlkWBAgWgUCj4d/nz5+e7ZmXmpBUg2rly5LaoU6cOevbsiW7dusHc3Jy3m/LmzYvffvsN169f5+dl9H2WbJrbhSnf0i8E6UcqQ549ewZvb28A6fOJmzdv8i209+7dm6n3mJMIDAxEmzZtwBjDr7/+muzuA5IdPn/+zBeZ9ezZU+WYIOPExMSgcuXKYIyhTZs2qTrn/v37qFatGvT09KCnp4dBgwZleMfH3Izwix8H9UWx0v8TExNVounLOXDgAIoXLw49PT3Y29sn208XfMXLywvFixcHYwx169bF3r17VQIdnTlzho9FSeXXq1evAAhfyGzCw8PRq1cvMMZQv359ODs78yAVQJKgbdOmTTA2NubBwipXrgwfHx8Awh6ZifCLb48uEfuaNWtSlcdSXfHlyxecO3eO1/9GRkY6FxF6e3tjxowZOHXqVCY+iUCyRWRkJK5cuYK2bdtyW9y6dQuAdlusXLkyxV0QBJmHfH4wKCgIY8aMQb169cBY0s6C8kA+gqxDiNfTjxCwCwQCgUAg0EDqWF68eJELFIoUKYLp06fj+fPnKmkfPHjAt3Pu1auXxjUA8MFkMWGePk6fPs0nb42MjFCvXj3s3bsXO3fuxOzZs/HTTz+BMYYKFSrgxIkTfBvnt2/fYsOGDXx1bf78+eHn5/eNn+b7x8/PD5cuXVKJxpBahHg98wkICIC7uzvPu7SWI+Hh4ZgxYwb09fVRtWpVsWVdBggMDMSXL1/SfJ4Qr2c+ydnin3/+4QPCVatWxe+//w53d3dcu3YN27ZtQ9myZXmd4ejoCH9/fwDA8+fP0aNHD16n16pVi++uIsg81q1bx4WfkiBOWvgntZ0CAwMxceJE5M2bF2ZmZjh27BgA0Y7KbHbu3AnGGMzMzHDp0iUA0FjU8fnzZ6xZswZFihQBY4xvVStsIfgRkd7vFy9eYOfOnVi3bh02b96M1atXY86cOVi4cCH+/PNPjB8/HqNGjcKECRPQp08fNG7cGHXq1IGRkREX9lpaWqJNmzbJtqtevHjBFzHndsGp/Pk3btyIJk2aaOxsVrBgQVSpUoVHI1aPXpXWfoQ8/eXLl7koQtji6/PPmzcPFhYWGrYwMTFB8eLFceDAAZXo7EBSHzu9fbrAwEB069YNT5480biX3Mi39gtB+pDnYUbaQ1LfsH///hrXFSQRGxuLVatWwczMDHZ2djh58mSK+ST1NRQKBW+3CjKP+Ph41KpVSyVAgnoUUbmN7t27hzp16sDY2JgvmJK2nRf9ifQh/OL7JCNleFRUFCIiIrB06VJUqVKFi3qnTp2qNb3cd0Td8RV3d3fY2dnxMQ4bGxs0a9YMtWrVgqWlJW9bNWrUCEeOHMmSMkjYIwlvb2/Y2tqCsaTdM8eMGYMdO3Zg5MiRPDq0FGykefPmyS7ESS/CFkl8D36R25H3+caPHw/GGGbOnJnq8+Xvsp+fH7p16wbGGEqUKIFnz55pPUdbwB9BxpHnpb+/P7eFra2thm5EQr6AR5A1qJdb9+/fx7Bhw3h/W/rY29ujT58+fC5QkDUI8XrGEAJ2gUAgEAgEWomNjeWD8oUKFcLixYt51AupoyJ1Ps+ePcujJ+3bt49fI6Xt5wXJk5iYiKCgILRo0QJ6enowMjLC8OHDNbbb8vf35xGAbGxs0KBBA4wfPx4ODg58i1RLS0ts2bIFgJgkSQtpeW+FeD3rkb+7jx8/xrt371J13vnz53lHfevWrVl1ewItCPF69vL48WNeH1epUgW7du3SmFAPDAzkdUahQoVQvnx5tGrVCgUKFOCRGKysrLQKhQSpIyVBWvv27Xn+qw/w+vn54X//+x9sbGzAWNIW89LCNEHaSckWHTt25LZQF+IGBQVh8+bNKF++PBfRiR2FBD86165dg4GBgYZINC2fcuXKYdq0acnW5c+fP0fPnj1hYmKCp0+fAhBiXfnz+/v74+TJkxg1ahQGDRqECRMm4MSJEwgKCgKg2uZdunQpDAwMsHfv3lTXyfJ0Fy9eRP369WFqasoneIUtvj7/mTNnsHjxYtSqVQutWrXCoEGDsGfPHrx580bjvH379kFfXx979uxJl3B61qxZfGH5ixcvNO4lN5KdfiHn+PHj+PPPP+Hm5sYFDqLNm/VINgwPD+eLajt37gxA5L8u3r9/j19++QWMMdSrV0+jvSr3oYcPH/K2LWMM//33X3bfbq5AyuPu3burjM+qv8PXr1+Hvb0972NXqFCB9+tye9mfUYRffF/I62cvLy88fvwYT548wZ07d3DlyhVcvHgRJ06cwIEDB3DgwAFs27YNf/31FxYvXoyJEyeiYcOGqFGjBhhjXLzer18/rdeXxrfkgjhRf3zF29sbHTp04PNBUn5K/3bt2hUnT55U8ZGEhIQMi6rk4/PCHkl4eHigQoUKvOxRt0X9+vUxa9YsREZG8nMSExMztEOHk5MTli9frnI9wbfzC8FX5Hl79uxZlXI9rXPVT548wc8//wzGGEaMGIHo6Gjxrn8j7t+/j6pVq0KhUGDChAmIj48XtshG1H1n//79mDBhAvT19VWCMxQtWhRz5szBs2fPeDtKaESyBiFezzhCwC4QCAQCgUArDx48QJEiRaBQKNC7d28esU2dxMREvH79mk8+zZ8/P5vvNGfz6tUrWFlZ8a3uoqKiAHwdqJU6/35+fjwSe4kSJXh0REm8vm7dulSLfQWqSJ25hIQEnSvGhXg9e9m8eTMYY7hy5Uqy6eT5bm9vrxLhTXTSM45U/iiVSq07Fgjxevbz33//cWHimDFjNCJ7S/+6ubmhZMmSYIyhZs2aXPSeP39+lC1bFo8fPwYg/CQ9yCN3Ozk5AdBc+BcYGMijLhUoUABTpkzBqlWrsGbNGlSuXJlHg82XL5+Ivp4BpDyLiIjQ2M5UskVQUBCaNWvGBep//vkn9u7di4MHD6Jdu3Z8u2FTU1OsXr1a5boCwY/IpEmT+NaxxsbGsLGxgZ2dHUqXLo2yZcuievXqqFatGmrUqIGmTZuiRYsWaNasGfr27Ys5c+Zg48aNCAoK0lhQK8fZ2Rm//fYbnxC2tLQUYt3/JzV9AvU0ffv25XXC/v37U7yG/Pj58+fRoUMHvpuXEE5/Rb0s15YfUhopT/v06cN3UUmNLdTx8PDg255bWFgIW/w/2eEXch49eoQOHTrwdvDff/+NwMBAAMIWWYk8b1evXs3HqxYtWvQN7+rHwMfHhy+obNy4MW7evKkxCX7z5k0MHTqU5+vAgQO/zc3mYKRyZvXq1TAwMEClSpXw+PFjjfInJiYGBw8eVBmXtbe352OyopzJHIRffH/8/fffqF+/vkpfQ8r71C6gtbCwwKhRozR2RgO+itejoqJQqlQplZ2Axbj7Vz58+IBz585h0KBBaNCgAWxtbdGjRw+sWrUKkZGRKnmlVCrRr18//Prrr+lerO/q6orChQujb9++/DthjyRev36NOXPmoHHjxrCxsYGVlRVatWqFRYsWwcvLi7/TiYmJSEhIwOzZszF27FiNHaBSQ3BwMOrUqQPGGEaPHs2/F7ZIIrv9ws3NDRcvXkx2oVtuQ1v7R/6du7s7EhISUhxzjY6OxsiRI8EYQ9myZRESEpLibycmJqZ7d+fcRkxMDDw8PACknFfR0dHo378/X6iZkQU4gtShXo6Ehobi8OHD6N27N/T09PjYn5mZGWxtbbFt2zY8ePBA5Rz1cS7hG5mDEK9nDkLALhAIBAKBQCsbNmzgg4eXL19ONm1ERASPKNC9e/dsusPcwZkzZ/hKWSmCuno0XaVSicTEREyePBkKhQKjR4/G+fPnMW3aNCxbtgwuLi7f4tZzFFFRUdiyZQtOnDjBO+JSx06I17OXjx8/8igLvXv35tsv6yIxMRHv3r3jIsQePXrw7wUZJyIiAgsWLMChQ4dUBqmEeP3bsHLlSi4WlETo6gPECQkJiIqKQteuXcEYw5IlS/Dw4UNs3boVV69e5QO/YtAq/URGRsLGxgbW1tZcEKXOhw8f0L17d754QP1jbGyMkSNH8t1vBOkjOjoajRo1wk8//aRzEvD9+/fo3Lmzzkl0AwMDtGvXjgsNBYIfnQkTJvD3e9q0aXjz5g3CwsIQGhqKsLAwREVFISoqCnFxcUhMTNToewC621HOzs4YPnw4v760wFaIdbUjr2vV81T+/0GDBvE+YXJiXW3idXnkfGEL3ahH3NNFam2hCy8vL7Ru3VrYIhky2y/UcXd3x+TJk3lkssKFC6Np06Z83ETYQjfq4h4Jqb4AksarpGNysYjEpk2bULJkSejp6aFgwYJ8saYgeTw8PGBtbc0FIj179sTBgwfh6OiIiRMn8h00GWNo06aN2HEjC3nz5g2qVKkCxhgaNWqE//77D56envj48SN27NiB3377TSXqYZMmTXjkdW1tqvQgxrOSEH7x/fD582c0aNAAjDFev1paWqoI083MzJAnTx4UKlQIRYsWRZEiRVCmTBn8/PPPaNu2LdauXYvz58/za8rfc7l4XRLpCqFu6vjy5YvOY76+vjxwUteuXdMs1nVzc0P16tWFPZJByofg4GCEhIRoBEeSjgcGBvL51S5duqTZFgkJCdi+fTu3xdixYzV+Q/CVrPQLLy8vFClSBIwxTJ48GVevXuXHhC20M3HiRNSpU4f/X1c+Sf3Eq1ev8kVSBw8eTDathHpAODHvoUlsbCz69euH5s2bp5hWysejR4/C0NAQCoUixWBjgvSj7hMeHh44fvw4qlSpgsKFC6vMY/zyyy9Ys2aNxpyUtnGWsLAwbNq0Ce7u7gBEG1kXUt7J63B5fgrxeuYhBOwCgUAgEAi0smbNGujp6aFKlSr49OkTEhISNBrJUgMtMDCQR3Lt2bPnt7jdHMu5c+f4lnb//vtvsmmlQSptNhAd8ozx999/Q09PD5UqVYKjoyPCw8MBJHUUhXg9e4mLi8O6detQsGBBlCxZEseOHdP5fkv5f/XqVd6BHz9+fHbebo5n4sSJPKKYo6Mj3yXiwoULqFixohCvZzObNm0CYwwKhQI3btxINu28efOgUCgwa9YsjWOizsgYd+/eRbFixWBpaYlt27ZpCBXkdcOLFy9w9OhRLF26FPny5YOenh709fXRuHFj3L59O7tvPcfx4sULVKlSBcbGxli7dq3OnVQA4Pr16zh48CD+/vtv5MuXD4aGhmCMwdbWFidPnszGuxYIsgb5RMT48eN522jjxo38e3n5pK0dm1zbVl28PmbMGLx8+VKIdTOAvP749ddfeSQlbWLd5MTrs2fPRmhoqIj+nQG02SJv3rxCxP4NSItf6CIsLAznzp1DsWLF+G4RFhYWcHZ2BiD68dpI7v2UH4uJieGRLD9//gx3d3c4Ozvjr7/+Qr9+/fj4FmMMw4cPT9Vvi75JEq9evYKDgwOPZKyvr8/bq9Knffv2uHbtGg90kRnI81/YIglPT0/Y2Njw3U3Mzc35zqTSp0qVKvj999/x8ePHDP+eZEv57qiinEriW/mFQBMXFxe+m1zhwoVx9OhRPHz4EI8ePYKPjw+8vb3h6uqKt2/f4uPHj/zf+Ph4jV0d5fWKXLxeu3Zt7ndSlFEh1NVEVz9BW/7cvn2b+0+3bt1SLdZ1c3ND1apVwRiDlZWVsIcO0moLaQFIWmwhoVQqsW3bNt7OErZQJTv8IjExEY6OjnwxgkKhQM2aNfHXX3/pvI/czu3bt3l9feDAgWTTSnm3f/9+fo42Abu8vXrp0iXMmzcPderUQfv27TFhwgS8evUKgOh/q3Pp0iWer0ePHk02rWSLFStW8HOknWi1kVIfQviFbuR5ExgYiDVr1qBmzZrIly8fz3s9PT38+uuvKuO7gPZ8l64XERGB9evXo3DhwtDX1+djIcIvVJEHMly6dClevnypcjyj4nXhG6oIAbtAIBAIBAKt/P3332CMoVixYnjz5o3GcXmjShIqmJiYwNHRMTtvM8cTHh4OBwcHMMYwYsQIREZGaqSRxFhS5N1q1appTSdIP15eXjA3N+f5e/DgQTx58kRDvH7v3j1+Tm7rWGQn79+/R/v27cEYQ926dVWi4kpR3qQyytPTk0cBsrKy4hHexMRr5uDh4cGjKlWvXh27d+/G8ePHeeT1/PnzY9y4cUK8nk34+vqiYsWK0NPTw+LFi3WKdb98+YIuXbqAMYbOnTsLf8hkwsPDeeS9WrVq8QFA4GvZI03QhoeH4/bt26hXrx6fcK9atSrOnDnzTe49p/HlyxeMHTsWjDE4ODjwqHvA1/pCskVCQgKCgoLQrFkzPgCcP39+7N2791vdvkCQ6cgnIiZNmsTf9U2bNmUoKqizs7NKxNFRo0YhOjoaQJKwSIh104/cLgMGDOB5fOvWLf59cuL1mTNn8mPu7u7CFhlAly3kUfVSixCxZ4zU+EVySPns5+eHevXq8b4+Ywz+/v5Zcs85ha1bt2LgwIHo0qULfvnlF7Rq1Qr16tVDrVq1UKtWLZQvXx6lSpVC2bJleWRkU1NTFTGpvr4+Bg0axK+p7b1/9eoVlixZwv8vxleSCAgIwPz58/kYh5SfRYsWxYQJExAQEKDRt1u7dm2aRXAS8fHxOH/+PBYsWMC/E7ZIwsvLC+3ateO7zUgfc3NzDBkyBE5OTnyBv4Sjo2O6d9iSBF4jR47k3wlbJJHdfqFUKkVERR24urqiQIECPOq9p6enynFdO97oepfl4nUpor6VlRXGjx+PRYsWCaFuBpFscOfOHS7W7d69u87d6yRcXV35ThTW1tZYsWIFVq5cKeyRAdJrC3WEiD3jZNQW0dHR8PDw4LtFSbaQ71Ag+Iqvry+6d+8OAwMD9O3bN1V9sb/++ovX9+q7OcnrlvXr1yNv3rwq7TSp3JJEqGJO5Cuenp7o0KEDDAwMMGjQIK26EEC1LJkyZQrP1+vXryd7/c+fP+PRo0dYunQpFi1ahDlz5uDWrVsIDg4GIGyhi/j4eAQFBWH8+PFo2LChyrtsZ2eHTp06wcnJiY/BArrzUi5eX7t2Lezt7VXmQMS4lHZCQkL4zhzjxo2Dq6srAODdu3dYtGhRhiOvC9/4ihCwCwQCgUAg0IqzszNsbW1hYWGBw4cPqzSQ5JOFq1ev5tHXf/rpJzx48OBb3G6OJTo6GhMmTODC6SdPnqgcl9uicePGXEQqBOyZj5ubGwoWLAjGkramtbW1VRGvi8jr2Ysk1GWMoUmTJrh79y4iIiJU0ri7u+PXX3/lAusqVarwTp8g85D7RunSpVGsWDE+6CEir2cv4eHhXMTz888/ayzukHjx4gUqV64Mxhh69OghBqWyAH9/fz4I2LhxY1y/fp3v3iHh5eWFP//8k5dlxsbGqF27No4fP/6N7jpn4u/vj2rVqvH64vbt2xr1xZs3b7B3716+aFASPOzYseMb3bVAkHXIy3xpJ5WMiNgfP36sIl6fMGGCRl9ELtaVT4rkpkH4jCC3S8eOHVG3bl2tEyInT57kizwZY1i4cCE/Jtld2CJjyG3RpUsXlCtXDs+fP0/Xtby8vNCqVSsuYpeuI9plqSO1fqGO/F0/deoUr/sZY+jQoYNGe03wlbVr13IRTlo/xsbG0NfXR79+/bBu3Tp+TW3vu6+vL4+yO2rUKP69GGdJIj4+HjExMTh//jxOnTqF69eva0SCk/Jq6NCh6Y7kGh8fj6tXr/I+jbCFJqGhoXBzc8OGDRuwceNGnDp1Co8ePVJJI5U5f/zxBxhj6Nq1a7qE0wcOHOD+JASJmmSnX1y4cAFVqlTBX3/9pTLeJWyRhJubGxf5NGvWDB4eHum6jlTPR0ZGqojXJ0yYwIXxQqibceRiXWNjYzDG0Lt3b4SGhmpN7+rqyiOvW1tbY9WqVXj//j0AYY+MIreFkZERGEvaaTkkJCRN1xEi9oyTVr+QUM/fv/76C6VLl+aR9ceNG5dl9/wjc+DAAb6geNmyZYiJieHHpOAjEjdu3EDRokX5fLmuhQX//PMPbzd17doVc+fOxbx581C/fn0wxlCxYsU0LxDJDfz777988fHy5ctVbJGQkKDSlz59+jTP4+bNm6vspiK32efPn3H16lXUqFEDxYsXV+kjFi1aFM2aNYO7uzsAMRaizuXLlzFhwgQ+dyR9KlSogH79+sHNzY2XS8ntKiH/XhKvSwvRFAoF6tSpI4IrpMC4ceNUxr2dnJywdOnSNIvXhW8kjxCwCwQCgUAg0EpoaCg6duwIxhgaNWqE58+fq3RWAKiIrhhjWLNmzTe625yNv7+/ilD34cOHGsKr/v37gzEGIyMjTJkyBYAYkMoK3NzceCQZPT09GBsbo23btnj8+DFPI/I9+/Dw8ECRIkX4oNOwYcNw6dIlHD16FDt37kTZsmX5VmqFChWCi4sLACHQyQrUfcPU1BQjRoyAt7f3t761XIevry/KlCnD64wbN27g06dPAJIGqJ49e8ajNZiZmaW4JaQg/Xh6evJB9dKlS6Nbt27YtWsX/v77b8yZMwfW1tZ8gN7MzAzdunXDpUuXvvVt50g8PT15FNAKFSpg4MCBOHXqFP79919s2rQJNWrU4LYyMTFBrVq1tG5DKxDkFDJLxP7p0ydMnTqVn1+2bFm+4FapVKq0ueTCaT09PT4IL0gdcruoR3QFgODgYAwZMkRlQkuK8hobG6vSR5HbgjGWbmFRbkVui9evX6e7/5eYmIjAwEC0aNECjCVF7RXbNqeNlPxCHXmZdODAAdStW5f7Qd++fYV4PQU8PT354vA8efLAwcEBffr0wYgRIzB48GD89ttvmDZtGmbOnInZs2fj77//xvr167Fr1y48fvw42Ui8Er6+vio7EzHGMGbMGH5cjLcknwfqYx23bt2CoaFhmsW6kni9evXqwhbpRN0WDx484PmYHuG0ECQmT3b4BZC0c0f37t25X3Tu3Bl79uxJ1X3kJjIqYpfyUV28PnnyZB71Ekgqq4RfZBzJR27dugUzMzN06NABfn5+GulcXFxUxOtr165VidCrbg+5WFfYI3XIbWFiYoKKFStqLMZJDaLOyDip9YvkuHPnDg+CZWpqil69eqV7J5aciPxdXLp0Ke+XrV27VuvCjTt37qBDhw7IkycPGGMYMGCA1v7E8ePH+bUWLVqEDx8+8GPOzs6oVKkSzMzMcPr06ax5sB8QuS2WLFmiovkIDAzUSH/u3DlUqVIFenp60NfXx8yZM7UKqB88eIApU6ao7HhmYGCASpUqwc7Ojs8nFi1aVMzdamHy5Mk838zNzWFtbY1FixZpLJhNCV2R1xUKBW7evImIiAiV4ApCxP4V+fsoBZtkjKF+/fr8vS5Xrhx27NiRJvG68A3tCAG7QCAQCAQCnXh7e8PGxgaMJUVynThxIg4ePIg1a9agdevWfPU5YwyzZ8/+1rebo5ELdatUqYIBAwZg9+7dWLx4MZo0acLtYG1tjTNnznzr283RuLq68knbAgUKYP78+fxYbuhAfG94enqiRo0a3AcUCoVGtLdChQrhzp07AISNshK5bxQpUgTLly/n+S0Gx7MXDw8PLtYtU6YMWrRogYULF6JDhw58QZSJiQl69OghRGtZzKtXr9C4cWO+mEZbWWVtbY1169YJW2Qxr169Qt26dXn7VVsEUQsLC0ydOlVlVxWBIKeSWSL2gIAATJgwAT///DMYY7C1tcWNGzcAJLW71IXTDRo0AGMMO3fuFO2yNJJSfgUGBmL27Nk8cnGJEiVw9epVfq7cFt7e3qhbty709fVx5cqVrLztHEl63131NnFYWBimTJnCdzMyNzfHs2fPMuMWcw2ptYU83cGDB1XE6/379xfi9VTi4uLCJ1NbtmwJf3//dF1HW/9QLl63tLREjx49hPAqA8ijh6ZFrKsuXi9YsCCGDx8ubJEBJFvcvn073cJpQAgSM4P0+oVEVFQUDh06hC5duqgEcJgwYQJPI2yRREZF7HFxcShdujQfP2ndujV8fHz4MQnJL6QxFvlCG0HqkXzDy8uLL6iUExgYyHdhVigU6NWrF4/6qs0e2hY+CVKHZAsXFxdcu3YtXddITExEQkKCSp0xYsQIleOClEnJL3QRHx+Py5cv87aUmZkZRo0apbJTqiAJeR9t+vTpvH82ePBg7NixAyEhIXj+/Dl27NiBChUq8Ojg8l3Ipfc5ISEB8fHxfKeVYcOG4cuXL/z6iYmJCAsL4ztwLViwIHsf9jtHbotp06ZxW/Tu3Rvr1q2Dp6cnzp49i2XLlsHExISX882bN0d0dDQA1XHGc+fOoVWrVtxmZcuWxaBBg/DgwQOEhobiw4cPOH36NJo3bw7GGKpWrSqi4mthxIgRKFSoEDZu3Khzp6fkSE68Lq9jXr16xQNdCBG7KvI8kIvYGWMoVaoUdu/erRF0Uh15vSt8QzdCwC4QCAQCgSBZPDw8UK5cORXBlYGBAV8NyJjq1uSCrMPDwwOVK1dWsYU02G5oaIiiRYti586d3/o2cwWurq580rZGjRrYt2+fmPD+hgQEBGD69OlcOCV9ypQpg3bt2vEo4GJwNuuR+0b16tWFb3xDPD098fPPP/OoJHKxrpmZGXr27MkFhoKsJSgoCLt370avXr1gb28Pc3NzlC9fHl27dsWiRYvStYW8IH0EBgZi/fr16NChA2xsbGBgYIBChQqhSZMm+O233+Dq6qqy5alAkNORD8JPmjSJ1xP//vtvms6Pjo7GvXv3+A5exsbGfPGgevvL398fZ8+eVYmCJcg4ki1iYmLw5MkTdO7cmdtCWpSjbovXr1/j8ePHotzLBrRF4l27di1Kly4NIyMjlfGV//3vf9/oLnMuyUVe//XXX0V/JY24urpyUWLjxo25KFGpVPJyRv53avrh6uL1JUuWwN/fH7t27RJi3QwgF+tKZUy7du1UIubKURevFypUCI6OjggPD8f27duFLTKANlt06NBBiNi/AWn1C20kJiZi1qxZKFiwILfF4MGDs+qWf1jkIvYWLVqkWcS+cOFCtGvXDsbGxlAoFJg8eTI/Jl9wq1QqsXXrVl63X758OdOeITehXoao/3/FihXo1q0bDwogL3902cPKygoPHjzI2hvPgaRki9SeGxAQgBEjRvByatCgQZl2j7mFtNpCaktVq1YNjDHky5cPI0eOFOL1ZJCPS82aNUtlHsPa2hp58+ZVmfOrXr06X9CkHnwhNDQUpUqVAmMMu3fv1vobzZs3h4GBAfbv35/FT/bjIc+n2bNnQ19fny8Qs7Ky0gge1rhxYy5el48rHT16FDVr1uRjHfXq1cP58+fx8eNHAF/tlpCQgEePHqFSpUrImzcvtm/fDkC0aQFVW0iLNSTSmj/h4eFYtmwZD2xlYGDAAyfIfUi+W2OBAgXw/PnzdP1eTkRuj3HjxnEfaNmyJe7du8ePacsr+XfCN5JHCNgFAoFAIBCkiL+/P6ZPn4769evDwMAA+fLlg7W1NQYNGoQDBw5869vLVfj7+2Py5Ml8+0wpSlvv3r1x/Pjxb317uQr5IHzNmjWxY8cOjY6kIPuIi4vDly9fcPjwYezbtw87d+6Ep6cnFyOICJ/Zh9w3qlWrhr179yIqKupb31au5M2bN1i6dCmaNm0KMzMzFClSBKVLl8bGjRvTtQWtIONERUUhODhYo74QZVT28/79e/j6+vKtUCUbCFsIchvyQfjx48eDMYbbt2+n61p+fn7o1KkTGGOoXLky3NzctKbL6QPu3wN+fn58QUGNGjXw6tWrb31LAgB3797FwoULUbBgQT4RL0UumzBhAg4ePPitbzHHIcTrWUNGI+vK8fX15XaxtLTEn3/+ibdv3wJIst/WrVuFWDcDyMW68oVq6m1edcFVoUKFsGfPHt6XlwSJwhbpR5stVq9erRK9ODUIEXvGSa1faEPedh4zZgzfiZAxhhMnTmTZPf+ouLm5oVChQmAsaYfftCwUAJKCM6xcuZJHqfz111/5MbktlEolHB0dsXz58ky7d0ES8nLFx8cH//zzD2/HDhgwgB9Tt8fx48exd+/ebL3X3IyU//Hx8YiMjMTKlSvRunVrHgBL+qQ3qrsgZYR4Pf3Iy4+tW7eibdu2Ku+tFOm4Y8eOCAsLA6C9zRMSEoKSJUtCT08PR44cAaDaH1y9ejUXyIvFNdqR22LXrl3o1q2bhi1q1qyJ0aNHIyYmBoCqeP306dOoWrUqL3tatmyJoKAgnb8XERGBFi1agDGGHj16ZN2D/YDI392MzFe8fv0aHTt25H2H+vXr4927dwBUF54DSSL2X375hds6t0T+Tg3axs+lsbzUzLUK30gZIWAXCAQCgUCQKuLi4hAXF4eHDx/i5cuXCAwM5J0TQAyQZycxMTH48uULzp8/j0uXLuHVq1f49OnTt76tXImbmxusra3BGEPTpk1T3CZK8G0Q5VP24+bmhoIFC4Ixhr59+4rFHd+QhIQEJCYm4sWLF/D39xcRb78RuiL2CLF09qOrThC2EORm5IPwfn5+AFR9RalUpnpr2kuXLsHOzg558+bFX3/9BUD4V2YSExOjEWVMG4mJiTh9+jSsra1hYWGBjRs3AhC2yA7Uo05//PgR7u7u6Nu3LypUqKAy8VuuXDmMHz9eY9GI2KY5cxDi9awlM0TsXl5efCc1c3NzLFu2jEcfk1AX644ePTqzHiHXIPnC3bt3MWvWLA1bKZVKXLx4EZUqVQJjDPnz5+cBS+R+pG6LUaNGZd9D5BDkthgwYEC6d0WLj4/X6Reirk8dKflFcnz+/BmHDh3iIkUzMzPMnj2b7wApUMXNzQ0KhQLly5dPdR7J+yJxcXHYv38/F01PnTo1xfNFWypzkdsjPj4e+/bt4/aYOXNmiueLcilrUB/fev/+PebMmcMFb1IdUbJkSTRq1AiXLl3i0ZIFmYsQr2ccebkdEhKCK1euYN68eZgyZQpWr16N27dv80V/2sr4xMREfP78Ga1atQJjDOPGjVPpV6xfvx758+cHY0wsdkoBeZn95csX3L17Fxs2bMCqVavw77//IiAgQGXRjMTNmzfRuHFjHl26TZs2yY5fSWXYhAkTeJ9SBMLKGoKDg7F27VrUr1+f9/euX78OIMkO6iL2+vXro3Hjxny3A0ES8rJHem+lBcXu7u46zxO+kTqEgF0gEAgEAkGq0Lb1rxh4+n4Qtvh2vHjxAuXLl4erq+u3vhWB4LvC1dUVLVq0EBN43xht9bdY1CEQCAQCddQnAOX1x/Pnz7moJ6V+R2RkJJo2bQrGGGrVqpVsetGHSRuRkZE4f/48fH19AaScf1FRUXznrkaNGmXDHQrkNomOjsaVK1fQsWNH2NnZqQjXGzRogNGjR+Pdu3cpikik40KIlTaEeD17UBexe3p6pvrcxMRErF+/HowxGBsbw8zMDFOmTOHH5ZH8lEoltm/fzm24aNGiTH2O3IDkE/J8lVAqldiwYQNMTExgbGwMc3NzzJo1ix+XRwhXt8XatWuz/uZzGJItvnz5kq7z5f35f/75RyzuyADJ+YUuvnz5gv3796NKlSpgjMHU1BR//PEHXwQq0E5AQABevnypdYwqNURGRmLBggUwMDBA2bJlcefOnay4zVxLWu0RERGBmTNnwsDAAPb29nB2ds6iOxNoQ71fcPPmTSxatAg2NjYqfQ5LS0v07t0bV65c0VggKMg8hHg980hNWZTSOMiePXu4D3Tt2hUDBw5Enz59+HejRo3iYyoC3aSmvpYfe/PmDYYPH448efKAMYZWrVrx48mNZQQHB/MFzZ07d86kuxfIkXwmPj4eLi4uPKp+3rx5cf/+fQDaF0RJu9YKVNEmYjczM8Phw4e1phe+kXr0SCAQCAQCgSAVMMZU/iUi0tMTTYnvBWGLb0flypXp+fPnVKFCBUpISPjWtyMQfDdUqFCBzp07R3Z2dt/6VnI12upv+d8CgUAgEBARKRQKlf9LdcWjR4+oU6dONGvWLCJKvt+hVCrJxMSEmjZtSgqFgt68eUOvX7/WmhYAv9anT5/I3d2dwsPDKTw8nIiIEhMTM/xMOYnExEQ6e/Ys9evXj+bPn09EydsiPj6e8uTJQw4ODqRQKOj9+/f06dOnFH8HQLL/F2hHel8lm2zatIlGjBhBLVq0oFOnTpGvry/ly5ePqlWrRitXrqRDhw7RunXrqEiRImRkZKTzuvfv36eOHTvS8+fPSaFQiP5mMsjf74SEBG6LgwcP0po1a+jevXtERNS/f39av349mZmZpfrawi90U758ebp58yYVKFCArl69SqNGjSI3N7dUncsYo9GjR9O1a9do3LhxpFQqacWKFTRgwAAiIjI0NCSlUklESXXUwIEDacuWLVS5cmUyMDDIsmfKqUg+YWhoqHFMoVDQqFGj6PLlyzRp0iSKj4+nxYsX06+//kpERAYGBrz8kWyxefNmatGiBRUsWDD7HiKHINnC1NSUiFJfpkg2kNpox44dI29vbzIxMSF9fX3auHEjjRkzJgvuOOeSnF9oIzIykk6dOkVLly6lFy9ekImJCU2ePJmGDh1KJUuWzMpb/eEpXrw4VapUiRhjlJiYyN9jNzc3CgwMTPF8ExMTatKkCTHG6NWrV3T37t0UzxH9idQj2eP58+cUFBSUYvq8efNSkyZNSKlU0suXL3k7S5A9SH13Jycnmj17NrVt25YWLVpEAQEBZGxsTHny5KHZs2fTv//+S/v376dmzZqRpaUlr2+01TuifZs+lEol3bp1iyZOnEjOzs5kZmZGffv2pTFjxlDlypW/9e39cKjPWSQmJmq8t7rGQaTjv/76K/3zzz/EGKNTp07Rnj176MCBA0RENG/ePJo0aRKVKlWKiEhn/zouLi7Z47kB9TklbWWEVKcTEd27d48OHDhAMTEx1KBBAzp48CAxxighIUFjvJHoa96+f/+etwOKFi2aJc+S25F8Rl9fnypWrEh//fUX/fLLLxQZGUlTp04lf39/Dd8rVKgQWVtbf4vb/e6Rj82tWrWKpk+fTu3bt6eOHTuqpBO+kXb0v/UNCAQCgUAgEAgEPzr6+knNam2dDYEgNyP5hkAgEAgEgh+Tly9fkp+fH0VGRtLly5epRYsWOtNK9b6HhwclJCRQTEyMzkVTjDGKjo6mmTNn0vXr1+nZs2dUrlw5srW1pZUrV1L58uV1DubnVt6/f0+hoaF07do1un79OjVu3FhnWgMDAwJAXl5elJCQQF++fEmVKIExRgA0JisTExPFomk15Hmip6dH7969o6NHj9LZs2fp3LlzPO8KFSpEhQsXpoULF1K5cuWoXLly/BryvFbnyZMnNGPGDLp+/TrVr1+f7ty5Q/b29sIvtLB27Vpyc3OjMWPGUKVKlXj+ZIZ4nUj4RUqUL1+ebt26RY0aNSInJyfas2cPLV68OMVFs1L+NWrUiKpUqUL29vY0ZswY+vfff8nExIQ2bdpE+vr6PO8VCgUNGTKEGjZsqOJHgowj2aJu3bpUuXJlqlSpEo0cOZIcHR0pX758tH79elIoFCq2GDp0KLVp04ZKlCjxrW//hyc5X5GXPQqFgmJiYujo0aN0+fJl2rVrF+nr65NSqSRzc3MyNDSkhg0bZtdt5zrk4vXnz5+TiYkJTZo0iYYMGSLE62lEqjtPnjxJo0ePpm3btqVKmNOwYUNycHCgu3fv0unTp2n8+PG8TNL1OwDoy5cvlCdPHt5XSa79lZvZu3cvDRw4kC5cuEBFihTRmU7Kv5YtW1LVqlXJ2dmZrl69SsOHD09V2wiAymJmQfJI+S39+/79e/L396dly5bRo0ePKCAggKctX7489ejRgzp27Eg1a9bk30v9B/W27PXr18nNzY1Gjhyp0d4VfM03ABQfH6+x2CkzxevCL7Qjz4+U3k1JTK2np0djx44lW1tbevnyJT18+JAqVqxIjRs3pubNmxMRqbRpJdzd3en9+/d08uRJevv2LU2fPp2qV6+eNQ/2A6Ir//X09Oj9+/c0ZcoUioiIoEqVKtGyZcvIwsKCAGitoxMTE0mhUFB0dDSNGzeOAgMDydramoYNG5bVj5GjCQ0NJXNz8xTHi2xsbKh379508+ZN8vDwoOfPn1PJkiVFHZAGJBG7QqGgJUuW8L/l43XCN9KOUBMIBAKBQCAQCAQZRHTqBAKBQCAQCAQ5kerVq1Pjxo3pxo0bdPz4capatarWaKvywfp3794RUZKIWldEyxcvXtCsWbPo9OnTfND+zZs35OHhQY8fP6Zr165RhQoVxATK/6Onp0e1atWiOnXq0P379+n48eNkb29PlpaWGmmlSVs/Pz8KCQkhIiILCwuNiMXqApNr167RlStX6NatW6Svr0/58uWjNm3acIGiEE6rIuXd06dP6dmzZ7RgwQIKDQ2liIgI0tPTo8TEROrVqxd16dKFWrRooWIr6b1OTrw+fvx4unfvHhkaGlJkZCQ1atSIbt68SZUrVxa2kHHr1i36/fffiSipzBk7diyVKVOGDh8+nC7xuvCL9FGuXDlycnKiBQsWcEFhSsjz2cLCgvr27UuxsbE0fvx42r59O1WtWpVGjRqlsROkJF4XCwgyD3k+mpmZUa9evSgiIoImTpxIu3btoho1atDQoUM1bCGJ10Vdnfmo1xNeXl7k6elJf/75J3l6elJoaCgRJYnnGjRoQL1796ZWrVpR6dKlv+Vt51h0iddF5PX08+XLF9q1axcFBgbSmjVrqEaNGlSoUCGd6ZVKJTHGKCoqioiSouNKi5zkSL7j5uZGV69epePHj1NwcDCVLVuWGjZsSOPGjRNCXS18/vyZNmzYQERE27Zto+rVq5OVlZXWtJJI9MOHD7wsio2N5cfUUa+vtbWBhT20I8+XT58+0f3792n58uXk4+OjstNZq1atqEaNGjR16lSysLDQyEuprSq/3r1792jNmjV0/PhxevLkCW3ZskX4hhoKhYJiY2Np1apVVLp0aWrTpg3lzZuXiDIuXhd+kTVI/XA9PT1q164dtWvXTuW4lKfx8fEUEhJCz549o6tXr9LLly/p9u3bFBMTw6Mfu7q60o0bN8jc3FzYQQdSXl+6dImCg4PJ2NiYunTpQvb29kSkvU6QFmrExcXR3Llz6cGDB6RQKKhBgwYqi9l09fWEX2jn9evXdOnSJWrXrh0VKVIk2b6yvr4+tW3blgoWLEi+vr60d+9e6tChg858FbbQjvoCb7koPSt9IycjBOwCgUAgEAgEAoFAIBAIBAKBQCDQoFq1atS/f3+6efMmbdiwgUqXLk2jRo0iIyMjIvq6tak0SD9v3jy6evUqERENHDhQZctZaQD/48ePNGPGDDp37hzly5ePtm7dSgULFqSwsDBas2YNXbt2jcaOHUuHDh2iAgUKZPMTf7/8/PPPNGjQIC42sLW1pREjRnBbxMfHk4GBAZ9Y+vvvv+nZs2dERDR48GAV4a5cdHv69Gm6cOECrV+/XuM3z58/T2XKlKH9+/dThQoVhGBURmxsLE2bNo1OnDhBnz9/pvDwcGKMkaGhIY0dO5Zq1apFPXv25OnleZfcJJ+6eL1169YUHh5OV69epYYNGwoRuxoNGjSgUaNG0caNG2nt2rWkp6dHxYsXp6NHj6ZZvC78ImNUqlSJ9u/fz/NCEhVKO27kyZMn2fMVCgW1bNmSGjVqRBcvXqTbt2/TqFGjdKaX53lunzxPLQAoMjKSi690oVAoqEWLFlSzZk26ffs23bt3j4YOHaozvcj7zEX+Pvv7+9Ply5dp5cqVFBwcTB8/fuTp+vTpQw4ODjRx4kSNc9XLJeEj6UebeH3y5Mki8noGyZMnD3Xs2JHu3r1LL168oKtXr1L37t21tm0AkL6+Prm6upKHhwcREe9jqL/XjDG6e/cujRs3jlxdXSkmJoaIiJ4/f05HjhwhHx8fWrVqlfAHNUxNTWnAgAHk4+ND9+7do5s3b1KnTp10Ctb09PTI29ubL1wuXLgwEWnaQ0oLgNzc3Oj27dvk6elJnz59okaNGlG5cuWodu3aQjithnoZvmrVKrp58yYdP36cf2dubk7VqlWjPn36UJ8+fXg7NzExUacwTvr+7t27tGrVKn69bdu2kZGREa1du1bYQo05c+bQ8uXLyd7enuLi4qhLly6UJ08eunnzJk2aNCld4nXhF1kLY0yjr/zp0ydSKpV0/fp1evnyJV27do2ePXtG4eHhRJRUJ5UoUYLvDNWhQwciSlpkK9CNVE5dv36doqOjKW/evNS/f3+dfQ35AoJt27bR6dOnKTo6mgwNDem3337jdYl07Q8fPpCLiwv5+flRxYoVqXjx4mRtbS3GQtSIjo6m3bt309y5c2nixIm0YsWKZMcnEhISqECBAlS6dGny9fWlsLAwUiqVOnfTFrbQjbx8Vl/sTZQ1vqGrXsgR41IQCAQCgUAgEAgEAoFAIBAIBAKBQEZiYiL/e+HChWCMgTGGv//+G97e3hrp58+fz9P89NNPOHbsmNbrDhs2DIwxFCpUCE+fPlU5dvHiRRQsWBC2trbw8/PLzMf5oZHbYsGCBTyfly1bBjc3N5W0nz9/xvjx43maBg0a4N69e/y4Uqnkf//555+oWLEiT1uiRAk4ODhg/PjxaNOmDSpUqADGGIoWLcp/R34vuZ2BAwfyvLO3t8fw4cPx8OFDlTTy/E6Jx48fo0GDBlAoFMiTJw9+/fVXfPr0CcHBwWjVqhUYY7CwsMCLFy/SfO2ciPz5J0yYwG1RrFgx/veAAQPw+fPnNF1L+EXmIOXJxYsXsWDBAgBAQkJCiuctXrwYjDEYGBjgyZMnGfptgSo7d+7E6tWrAaTOFjNmzABjDKampvDw8Mjq28v1SO9tdHQ0QkNDMXnyZDRq1IiXRVL51qVLFxw7dkzFhvIyTP7+Ozs7a/1ekERKfvDlyxfs378fVatW5b4wZ84c0UbNJEJCQtC1a1cwxlC7dm2V91VCem+DgoIwbNgwGBgYQF9fH0uXLgWgacP79++jVKlSYIyhVq1amDBhArZs2YLff/8denp6vC8j0CQ4OBgdOnQAYwx16tTh7U3gqx2k/Pb19UWzZs3AGIOlpSUOHTqkclwiPj4eb968Qffu3VGuXDmV8owxBltbW8yfP1/jdwRAYGAgJk2ahF9++UUlz0qWLIk6dergypUr8Pf3VzlHV/7Jv79z5w569OjBr9e1a1fuG2PHjk3xWrkNDw8PWFpagjGG6tWrY8+ePThz5gyqV68Oxhjy5cuHkSNHqvhLSgi/yFy01eWRkZEICQnB7t27sXDhQvz888+wsbFRyWcHBwcMGDAAO3bsgLOzMz58+KD1uiL/U6Z169a8PAGAuLg4jTRSfsbHx2PXrl1wcHDgttixY4dK2o8fP+LEiRP46aefkCdPHjDGULBgQVSvXh0uLi4q1xMk9R1mzZoFxhhq1qyJBw8epHhOQEAAypQpA8YYWrVqpTM/hS0yRmb6hrZ8/vDhg8Z4149sDyFgFwgEAoFAIBAIBAKBQCAQCAQCgQbyge+pU6fyQfRmzZph5syZ+O+///Dnn3+iW7du/JixsTHmzZun9XrPnz9HwYIFYWBggEuXLvHfkCYFnz9/DjMzMzDG+HFBEnJbTJs2jef3zz//jHHjxmHdunUYOXIkmjZtqrKQYNOmTfy8+Ph4/veYMWNUJnD79euHs2fPIjIyEkDSJNjDhw/RvHlzMMbQtGlTvH//Pvse+DtGfXHHqFGjEBISgqioKI3jqUUSr+vr6yNPnjzo378/n0RPTEyEl5cXn/wSIvavyJ//999/V3mnO3TowN/n5Gwiv4bwi8zl8ePHYIwhb968ePPmTbJpJRtt3rwZjDHkyZMHN2/e1JpWKg/fvXuHu3fvYtmyZdi3bx+cnJw0ridI4sKFC3zxWGBgYLJppbz7888/uf2SE2alRjAn0I66wMDZ2Rnjx4/nwjjpU6lSJXTp0gUuLi4aAis58jw/efIkqlWrhmHDhmk9ntuRl/137txBREQEgK95pE28/scff6RavC78InX4+fnB3t4ejDE0adIEDx8+5HWu5B9v377F/PnzUbJkSV6O+fj4aFzr7du3vK3Uvn17PHr0iOd3ZGQk/vjjD+jr66Nbt27Z94A/GL6+vnwRX5MmTXDv3j18+fJFJY2Pjw+GDBkCKysrMMZQvnx5vH37VuNagYGB2LZtGypXrgzGGBdJV6xYEQ4ODihWrBgUCgUYY5g4cWJ2PeIPg5+fH4oWLQrGGIyMjJAvXz4MGjQIly9f1hCrJVeuqIvXe/bsyeuWBQsWIC4uDtu2bRMi9mRwc3NDwYIFwRhDmTJleFmUHvG68IusISoqCkFBQdi3bx8WLFiAKlWqcP+R8tjBwQHdu3eHo6MjHj58iNjYWJVrqC/UEaSMUqlEQkIC6tSpA8aYzvpVanPFxsZi06ZNqFWrFi+H/vzzT5W0wcHB+Ouvv1CgQAEwxlC2bFnY2NjA1tYWjDEUKVJELKzVwvXr13l76n//+x/CwsK0ppNsIQUPYYyhd+/eWst7YYv0k9m+IY3lxsXFISwsDIsWLULPnj1hZWUFW1tbNGnSBHPnzoWvr6/KdX80hIBdIBAIBAKBQCAQCAQCgUAgEAgEWpEPfM+fPx8WFhbQ19fnk+lygZW1tTVmz57N06tP/l28eJFHjgsICACQNFEo/YaTkxMKFCiAcuXK4d27d9nwdD8WclssWLAAhQoV4hPcBgYGKraoWbMm1q1bx9PLJ2gHDx7MJ3ONjY1VbAZ8nRxJTEzEuXPnUKRIERQvXlwlkntuR9uEUHpFHo8fP0aVKlWgr68PAwMDdOnShR+TR2iSi9gLFiyIZ8+epev3chpyW4wbN477wIgRI+Du7p7qc4VfZD7Xrl2DnZ0djI2NsXjxYi5K1IZki9WrV/M65vTp0xrppHrl0aNHaNSoEZ94Z4zB3NwcU6dO5WmF8OorFy5cQMmSJZE3b16sXLkS0dHROtNK7/qUKVNgYGAAU1NTnZH85PV8YmIi3Nzc4OvrCy8vL8TExKgcE3xFvX107NgxTJ8+HcbGxlxoZWxsjCJFimDGjBl49OgRz8/UCKNPnjyJNm3acN8YM2aM1nQCoEWLFqhUqRIcHR0RHh4OAIiIiMC+ffvSHXld+EXa8PT0RJEiRcAYQ9WqVTFlyhQ8ePAADx48wJUrV/DLL7/w3VXy5cuHU6dOAdCMjnv9+nVYWlqiZMmSuHz5Mj8u/btjxw7eX/n06VP2P+gPgoeHB7dHpUqVMHLkSDg5OeH06dPYt28fKleuDHNzc76oUtotRd6m8vb2xqRJk1CiRAmernXr1jhw4AD3sxcvXmD16tW8zFu1atW3eNzvmhcvXqBw4cKYPXs2f+8l0iqyvXv3Lrp3787rhXnz5nHfiY+P1yliF2LeJNzc3LiIU09PD3ny5MHQoUPTJN4UfpG53Lt3D4cOHcLcuXNRu3ZtlV24GGOoV68eunXrhgMHDsDJyUnjXZbKLFEXZ5wlS5aAsaSdT/z9/Xmeysf6oqOjMW/ePFSpUoXbaObMmVxoLaVzdHTkux4MHToUnz9/xrt37/Do0SM0btwYjDEMHjwY0dHRwnZqrF27luft2rVreYAFICl/pfwKCQnhi2iKFCmC69evA9BcxCFskXEywzekvnloaCiWL1+OJk2agDHGx4Lln3Llyv3QkfGFgF0gEAgEAoFAIBAIBAKBQCAQCAQ6kQsSDh8+jBEjRnCxrTRQPnDgQOzevVvrORL37t1Dnjx5YGNjg5cvX6oci4+P5+LcX375RWfEoNyOPF9PnDiBiRMnwtTUFCYmJjAyMoKpqSmmT5+Oixcv8nRy8frIkSP5ZEfx4sXxzz//8GPaJjjevHmD4sWL8yh9gq/IJ+kyMmHn5uaGNm3awNraGowx1KlThwuv5TsUAEki9nbt2vEFJGFhYWKyEKp+MX78eF4ujR8/XqOskZC/78IvsoaIiAhMnDgRjDHY29vj1q1bWtNJ7/CbN29Qrlw5HuEtKChIa7q7d+8ib968YIyhVKlScHBwQO3atfkk7owZM7L2wX5AwsLC+A4DVatW1bnwQnrffXx8+OKAatWqJSt4//LlC/73v/+hU6dOMDY2Rv78+WFiYoKuXbtiw4YNPJ0oq1QJDQ3FuXPnMHDgQBgZGfE2Vd68eVGiRAls3LgRd+7cUTlHlxBBXbwutacYY3xBiIiqq0lgYCAX4latWhWHDh3Cu3fvcPjwYS4iSat4XUL4Rdrw9PTkkUMZYzA0NISRkZGKOMfMzAx79uxRWdwHfM3D6dOngzGGli1b8mNyn9m6dSsYS9q9SC7qEmji6empshOEZAe5PSwsLHD16lUAqsI4Dw8PDBkyBIUKFeLiuJUrV3Khr1y8FRkZiVmzZkFfXx+tW7cWCwu0oL74Lz2CtGvXrqFz584aUV3lu3MplUqdInZBEq6urlzMWbhwYSxdulRjoYwuhF9kPsuXL1cRblapUgV9+/bFvn37cPv2bQDQiLIOJLW/gK/v/48aqfh74uzZs8ifPz8YY/jnn39UdomIi4vD27dv0alTJ74IROpDf/z4UeU6r1+/5n3s0aNHa7SR1q9fD8YYGjRoINpPMuTlz5w5c1Ty+OHDh/xYWFgYHj9+zNtbefPmRb9+/bTulCZskTlk1Dek8undu3fo2LEjX2DIGEONGjUwfPhwrFmzBiNHjkSNGjXAGEPx4sU16pYfBSFgFwgEAoFAIBAIBAKBQCAQCAQCQbKoT8p6enri+vXruHLlCp4/f55sWgk3NzfY2dlxgaG3tzc+fPiA58+f45dffuGRpSXx7o822J5dqOdvQEAAXr58iZcvX2oIrOTChNmzZ/OocTY2Nti8eTM/pj5xK+V9XFwc38ZWCHWzjrCwMBw5cgTNmzcHYwwmJia4ceMGAE0/8PT0RJMmTbBt27ZvcavfLfJ3eMKECXxib+zYsXj9+rVKWnmeCr/IWgICAlCvXj0wxtCoUSO4urqqRM2V/n737h1+++03mJqagjGG7t27IyIiQuN6z58/5+Kfrl274vbt24iKisLbt2+xdu1a6OnpoVChQjojhudmXr9+zbcxb9y4MV6+fKlSR0i28PPzQ6tWrXhZNHXqVJXFNNK/79+/x7///ou6deuqCIjy5Mmj8n8RFV8TpVKJVq1aaUTOa968OVauXKlRZiUnjEtOvL548WIcOnRIqyBR2CIJNzc3WFlZ8YU2Y8eO5VEpTU1N8ccff6RKvC78IuP4+/tjzJgxqFatmkpeWVlZoUKFCrh27Vqy5y9YsACMMXTo0AExMTEqfnPv3j2UKVMGjDHMnTs3i58kZxAQEIApU6bAwcFBxR62trZo2bIlXF1dAai+vz4+Phg+fDj3qWLFiuHMmTP48uULT6P+vv/333/82o8ePcqeh/uByGj5EBcXB0dHRxgbG3PB4pIlS1SOSyiVSmzfvp3XTYsWLcrQb+dEXF1dudCwevXq2LdvH4+ergvhF1nH4sWLsXnzZjx48EBlIY30r3zXE0dHR/z+++8oW7YsOnTogClTpmiIRAXpZ968efydHTZsGJYvX46dO3diyJAhsLW1ValHNmzYoNIHkey1YcMGMMbg4ODAj8vT7dq1iwt0g4KCfsgI01mF/B2eNm2aSp3dvXt3jBgxAs2bN+c7FZiamqJBgwa4e/eu1usJW2Qe6fUNKU/fvHmjEp2dMYb169fzSOtAkv2fP3/Oo7N37tz5h1z8JATsAoFAIBAIBAKBQCAQCAQCgUAgSDXJTaSnNMm+efNmPuhetWpVVKhQgQ/aW1lZcdGufAJEfSvb1PxObiG1+bBv3z7Y2NjwiInr1q3jx5KbbDpz5gyPCrtp06YM369AE3nkPm9vb3Tv3h2MMRQoUACPHz/Wek5ygofcjHzidty4cWCMoV27djwClTrCL7IHLy8vlCxZEowx1K9fHwcOHFCJ9Pbq1Sv07t0bRYsW5ULPJ0+eqFxDikg5dOhQMJa0U8e7d+9U0vj5+aFs2bJgjOH48ePZ8mw/Gl5eXihRogQYY6hbty527tzJxblhYWF4+vQp6tSpwxcSlCpVSkWkKJU33t7eGDt2LF+UZmJigrJly2L27Nn4999/sWXLFowYMYILp2fPnv3Nnvl75cWLF3wngT59+mDt2rUqx1MjBElOvL506VJ+bMuWLULEngxyEXu+fPn4Oz1//nz4+vqmeL7wi8wjKioKQUFB2LhxI1auXIkFCxbg8uXLeP/+PQDt76z03e7du6Gnp4dSpUrhxo0bvK10/fp1viinZcuWePXqFYD0RbLObcTGxiI8PBz79+/Hnj17sGnTJri6unJRlLzdFRISglmzZqFw4cJc1Hbz5k2d15bs9vLlS5iZmYExhnPnzmXp8+RmLl26hGnTpvHFNP379+fH1COxb9iwAfb29ti6davGjgcC1TqjWrVq2Lt3r85dHYRfZA26BOfy73Xt0CVfVFa5cmWEhIQAEHVCepHn2//+9z8w9nX3H/XFaI0aNcKpU6d0XmvKlClgjKFt27Ya146OjsakSZPAGMPgwYOz7oF+YOTv/NKlS/HTTz/ptEXnzp35TgXaELbIOBnxDcmWAQEBKFWqFBhjMDAwgJ2dHZycnFR+R6rDExMT4ejoCFNTU5QrV05jQfSPgBCwCwQCgUAgEAgEAoFAIBAIBAKBIEuRC042bNgAa2trmJiYgDGGQoUKoU6dOnj58iWArwP92iYmP3/+zEUsYpIxdYSGhqJPnz58gkQeMVpXHkqRkf/3v//B0NAQRkZGuHDhQnbdco4irQJBFxcXHjmpV69e+PDhQxbdWc5EXm5s3boVJ0+e1JpO+EX24u7uzkXsVlZWsLOzQ58+ffDLL7+obJltZGSEM2fOANC0Q0REBKpUqQIDAwPs2bNHY3FTQkICj4x/4sSJ7H3AHwh3d3c+EW5ubo6iRYuibdu2qFmzJhfvSsekSPYJCQk8n93d3dGlSxduNwsLCyxevFgjQmhERAT++ecfHhX/ypUr2f6s3zvu7u64dOmSSoTQ9LRtTpw4gZYtW3Lb/f333yrXUyqV2LZtmxCxJ4OrqyssLS3BGIOxsTG6dOnC26WA7nySvhd+kfWk5BsRERGoX78+GGOws7NDmzZtMGzYMBgZGYExhp9//hlHjhxJVgQvSD1SnkntriNHjvBFycWKFUsxYr503rZt22BgYABTU1Oxe0oWIPebT58+Yffu3VwYPWLECK3pEhIS4OPjg8jIyGy91x8JNzc3FCxYEIwx9OjRQ2PXIOEX2Yt6GS7//8iRI8EYg6GhIebMmYOzZ8/Cz88P/fv354udxbueMeT9bymydIECBWBpaYlKlSqhefPmOHbsGLy8vHg6bfXutm3bYGhoiKZNmyIoKEjl+seOHeMLP+U7pglUkdviypUrWLJkCWxtbVG0aFGUKVMGtWvXxr59+4Qtson0+Ia0cCwwMBAVK1bki2Jr166N+/fvA9DdbnV2duY7ruzfvz8LnyxrEAJ2gUAgEAgEAoFAIBAIBAKBQCAQZDnyifFHjx7hwoULWLduHe7du8cjXwGqg/FxcXF48uQJtm/fjtGjR6NixYqwtrbG8+fPs/Xef2SOHj2qsmWthC4hkPT97du3eRTeFi1aZMu95jTkeezu7o6EhIQURVIxMTGYO3cuF2C5ubll9W3mOLQtflHPd+EX2Y+3tzfatm3LI63LP8bGxrC0tMTly5d1nv/w4UMucpcixsl96uLFi/x6KQmEcjs+Pj7o0qULX1SgHgWuevXqXHirVCr5++/h4YHWrVtzobuVlRXOnz+vEnlUHsnV19cXVatWBWMMq1evzt6H/AFJj4j2yZMnaNiwIbdfly5d+LHo6Gj+tyRiVygUImKiDlxcXLiIvWLFijh48KDKjifqSPYSfvHtker9T58+oX79+nyxhvTp2bMnzp49y9Op/ysht5MQtaeMlEcRERGoXr06X5j833//JXuevK3VqVMnMMaQP39+ld1ZBFlDfHw8tm3bhjx58kBfXx/r16//1rf0w+Lq6opGjRrBxcVF5XvhF98Py5cv5+L1ffv2qSwYBAB7e3uUKFECPj4+3+gOcw7q9enbt2/h4+ODT58+JbvAQM6VK1d4dPzJkyfj6tWruHLlChYtWsQX3gwZMiTLniGnoD6e8enTJwQHB+Pjx48q7ZzkELbIPNLiG1LaDx8+oEWLFrz8qlu3Lt+hLrmFmK9evUKhQoXAGMOBAwey4nGyFCFgFwgEAoFAIBAIBAKBQCAQCAQCQbYgTaZoG3SXhFb379+Ho6Mjfv31V9jb26tss5o/f35UqFABc+fOFVuap0BCQgJiYmLQvn17MMZQtWpVODs782O6zgEAT09PFC9eHIwx2Nra4siRIwCgkefqdhRR8bWzfft2jBw5kv8/JVGUi4sLzM3NwRjDokWLtKZJaSJY2EI7WeEXIq9TT3BwME6ePIm+ffuiWrVq+Omnn9C8eXMsWLAArq6uAHT7x/v372Fvbw9TU1Ps2bNHJd/v3r2LChUqgDGG4cOHZ8uz/Oh8+PABTk5OGDZsGJo1a4a6deuiW7ducHR05EIe+QIBX19f9OzZk5dNBQsWxLNnz1L8nW7duoExht69e2tdXCLIOFu3bkXbtm1hYmICExMTlQjrcqGKUqnE9u3beYTwV69efYvb/a5xdXWFlZUVGGOoVq0a9u7dm6yIXfjF94P0roeHh2PPnj2YMmUK5s2bh507dyIyMjLZuuXatWuYN28eunbtilGjRmXnbecIxo8fD8YY8uXLh7lz5yI0NFRnWrkd/v77bzDGYGBggKlTp2ocF6Se2NhYhIeHpyqtv78/WrduzcsgQfqR+sbaynHhF9+W0NBQtGzZEgqFAvPnz1dpD0VHR0OpVKJevXpgjIkdtTKJ5N7T1PaX161bp7IblL6+Ph8PHDBgAE8n9zlt/if657oRtsh+0uIbUVFRmDlzJiwsLMAYQ6VKlfDw4cMUrwMAixYt4vWO+i5QPwL6JBAIBAKBQCAQCAQCgUAgEAgEAkEWkpiYSHp6eqSnp0dERIwxIiJSKpV0584dCgkJoSNHjpC/vz/du3ePn1esWDGqWbMmtWzZkqpXr07Vq1cnW1tbAsCvIdCOnp4eKZVKcnd3JyIiOzs7qlChAj+mjmQjX19f+u233+jt27dkaGhIdevWpYYNGxIRkYGBARERBQcH06NHj+jKlSsUHR1NVatWpVatWpGtrS0lJCSQQqHIpqf8/nn16hVt3ryZHj58SBUrVqRx48bpfHel91pfX5+MjY0pPDycYmNjdaYjErZIK1nhF9J5Ir9TpmDBgtShQwfq0KEDhYeHk1KpJEtLS/5OJ1e2W1hYUOXKlenly5e0ZMkSIiIqUqQIhYSE0JQpUygoKIhatmxJ48ePJ6KvthNop0CBAtS0aVNq2rQpxcXFUWJiIhkbG/PjAHj+ffr0iTZv3kzXrl2j8PBwsrKyohs3blD58uWTzeeIiAh69eoVv57wj6xh2LBh1KJFCzp16hTNnDmT1q9fT58/f6a9e/eSvr4+L5sUCgUNHDiQ8ufPT5aWllSqVKlvfevfHRUqVKCbN29Sw4YNydnZmdasWUPFihWjJk2aaJRNwi++L6R33czMjH799VetaSIjI4kxRrdu3aLnz5/T1atX6fHjxxQcHExExOuhpk2bUo8ePbLz9n9YIiMjycXFhYiIbGxsqFOnTpQ/f36taeV1/Llz5+jIkSNERJQnTx6qX78+ESXZILn2lOgDaqJUKunmzZv07t076t+/f4p5ZGNjQ40aNaKLFy/SwYMHacaMGVS1alWtaYUtkkdfP0lup55HWeEXgrQREBBAN27cIIVCQfXr1+e2UiqVZGxsTGFhYfTp0ycqWrQolStX7hvfbc4gufc0pT6Z1G4aM2YMmZiY0JYtW8jX15diY2OpadOm1KRJE5o2bRoREcXExJCxsTE/R/K/0NBQev78ORUrVozKlCkj+oI6ELbIflLjG1Ie+fv70+XLlyksLIwMDAxo48aN5ODgoLPOlc4LCwujBw8eEBGRqakpmZubZ83DZCFCwC4QCAQCgUAgEAgEAoFAIBAIBIJMRRpElwbZpUH5+Ph4evToEfn4+NDRo0fp7du3fJCdiKho0aJUo0YN6tq1K9nZ2VHjxo3JwsKC8uTJo3F9IfhJmcjISPry5QsZGBhQ165dycDAgJRKJZ/AlZCLdMeOHcttYmdnR3PnzqVChQrxtOfPn6fdu3fTwYMH+Xd6enpkY2NDp06dokqVKuX6CSo5+fPnJ3t7e3r48CFdvHiRWrVqpXOSXJqQevr0KRdTqU88ySeuhC3SR2b6RWJiIjHGiDHGyyR3d3cKDg6mxMREqly5MpmYmJCJiYmwxf8jvcNmZmYa3yW3uMPQ0JA2bNhAHh4e9PTpUxoxYgTFxMTwNO3bt6fJkydrLEjQNdkrhFdf88DAwIDnhdwWknDt8ePHdOzYMQoJCSFLS0s6d+4clS9fXqewTfr+7du3fBGOnZ2dyvUFmYOUn6VKlaJRo0aRlZUVDR8+nBwdHalUqVK0cOFCFRspFArq0qXLN7zj75/y5cvTzZs3qVmzZhQTE0O2trYq76zwi+8TbX2D6Ohoio+PpytXrtCbN2/o5MmT5O/vT15eXjxNhQoVqF69etSkSROqU6cOlSpVSqXdK0ie+/fvk5OTExER/fbbb1S9enWt6eTv+MOHD2nPnj10//59IiIaM2YMderUiaeT7Hj58mXy9/envHnzUpEiRahx48YpLnbLjbx8+ZK6d+9O0dHR1KBBg2QXJ0nl0E8//cTz8vPnzzrTC1skj65nz2y/kCPvT+T2/E8OqSwxNjbmfQ4AvL83fPhwcnd3pxo1alC+fPm+5a0KKKnfJr3bgwcPptatW1N8fDxFRESQjY2Nio2kBbcfPnwgb29vunv3Ll2/fp3c3NzIy8uL9PX1ycXFhcqUKfOtHueHRtji2yCV6xs3bqSHDx8SEdH27dupYcOGyY5nSOetX7+eTp48SUREo0aNotKlS6uk+xHqCiFgFwgEAoFAIBAIBAKBQCAQCAQCQaagLlj/+PEjBQYG0uPHj8nJyYlcXFzo2bNnPH3RokWpWrVq1LVrVypVqhS1b9+eDA0NycTEROW66sJPIV5PHYmJiRQVFUXx8fEUEBBARKRTpOvl5UUjRoyg+/fvU0xMDFlZWdGBAweobNmyPO3p06dpwYIF9PjxY8qbNy916tSJoqKiyN/fn548eULt27cnJycnsrW1zdbn/J6xsrKizp070/nz5+nMmTNUp04dmjRpksaiDIl3797RlStXSKFQUEJCAhUtWlTluDTxJGyRfjLLLxISErjQ18fHh5ycnGjPnj3k6upKoaGhRJQkhPz5559p9uzZVKZMGRGlnb6+w/JJ1JSE/ZKY2sLCgpycnGjcuHHk7u5Ozs7OVK5cOWrfvj1NmDCBChYsqDE5Kxdi37hxgyIjI+mXX375ISZxsxpttpD/Lb2rS5YsIU9PT8qXLx9t3ryZatasqXMhmfz71atXk6enJzHGqGXLlhrXF6QebYtsiFTzU19fn9q3b0/jx4+nv/76i06cOEGdO3emmjVrZuet5gjKly9P9+/fp9jYWCpVqpSK8EP4xfeBen0qLZz98uULOTk5ka+vLx0+fJhCQkJUBOuVKlWitm3bUpcuXah06dJUrVo1rVEqxaKz1BEXF0cGBgaUJ08eqlGjBhFp5p3cf5ydnWnz5s188WXfvn1p/vz5Ktd89eoV/f7773TlyhWKj48noqQFncOHD6dly5YJ4bQaMTExZGFhQZGRkeTo6EgTJ07U6Eur4+HhQURJ5Vlyiwe9vLyELdJBZvqFev0vlXNKpZJiY2OpcOHCWq+Z2zEzMyNbW1tydXUlJycnKlOmDOXNm5fi4uJo+PDhdPjwYbK0tKQNGzZQ/vz5Rd59B0g7penr61PhwoU12lPe3t705csXOnPmDLm4uNC1a9fo3bt3RJTUjipSpAh17tyZSpcuTUFBQUI0nQGELbIfABQSEkLXr18nIqIOHTpQq1atiEh7P0FeZu3evZtmz55NRET169endu3aEdHXtrKULi4ujvT19fkY1vfW1hUCdoFAIBAIBAKBQCAQCAQCgUAgEGQKjDGKjIykP//8k4KDg+n+/fvk7e3NI00WKFCAGjRoQE2bNqUKFSpQkyZNyMjISGNLbQAq0WS+p0H1H4kiRYpQ9+7dadeuXfTq1Sv6/PkzmZubawhHnz59Sr179yZvb29KTEwkCwsLOn/+PFWpUoVPenh6etKWLVvo8ePH1KpVKxo9ejR16NCBlEolvXr1igYMGECPHz+mU6dO0fjx48UkMH2dVGrfvj1NnDiRpk6dSn/88QdZWFhQ//79NQRTHz58oCNHjpCjoyMlJCRQ48aNqVevXhrXFbbIGJnhF3Ix4q1bt2jixIn0+vVrCgkJ4ZHITExMyN3dndzd3cnJyYkuXLhAFStW/O4mCn8UpEUd5ubmtH37dkpISKDg4GAyNTWlAgUKaKSPiIggZ2dn8vX1pWPHjpG/vz89ffqUiIgGDx5M27dvz+5H+KGQyo0dO3bQ1atXycjIiH777Tdq1qwZEWmvl+X19saNG2nnzp3EGKPOnTuTvb09v6bwgbTx5csXevHiBdWsWZMMDQ2TTWtmZkZNmzalFStW0MuXL+nRo0fJCtiFLXRTokQJIlIViGSlXwjShlQHv3nzhlxdXcnZ2ZkuXLhAPj4+5Ofnx9NVrlyZWrRoQb169aLixYtT8+bNtYp21X1B+EXqCAsLo/j4eMqTJw9ZWloSkWreyfP13r17tHnzZtq9ezcRJe2cMnXqVDIwMOD9jbt379LEiRPp4cOHZGlpSba2tpSQkEDOzs60fPlyYozR0qVLhc/IqFy5MnXr1o1WrlxJBw8epMaNG1ODBg000skXfdy4cYNHqC5evLhKOslmwhbpJzP9QhKvJyYm0uHDh+n06dN0+/Ztio+Pp/DwcOrWrRs1aNCAhgwZIhYUyLCzs6NevXrR3LlzaebMmXTt2jVKSEig0NBQevr0KeXPn59Wr15NtWrVEnn2DVHvG0jvu0KhIH9/f/rw4QMdP36cAgIC6Pz58xQeHk4xMTGkp6dHBQoUoN69e1PFihWpSZMmVKZMGZUFHYK0IWzxbWGMUVBQED1//pyIiGrXrq1zRyB5mXX48GH6448/iIgoX7581L59e75wSqFQUFxcHLm5udG+ffvoxYsXpFQqqWbNmjRkyJDvL8ACBAKBQCAQCAQCgUAgEAgEAoFAIMhERo0aBcYYjIyM0Lx5c0yePBknT57E27dvERUVpZFeqVQiODgYDx8+xIcPHxAdHc2/F2SMnTt3gjEGxhjWrFmDgIAAfuzhw4dYu3YtzMzMeBo7Ozs8e/YMAJCQkIDExEQAwO7du6Gnp4dSpUrh/Pnz/BpxcXEAgP79+4MxhpEjR2bj033/JCQk8L//97//8XyeNGkSTp06hYSEBCQkJODy5cuYMWMGTE1NwRhDpUqVcOLECY1rAMIWmUFG/QJIyu9///0Xenp6PF3BggWxYMEC/Pfff3j27Bk2bNiARo0agTGGMmXKwNvb+5s8b04iPj4eAHjZJPH+/XvcvXsX69atQ7du3VC5cmVuF8mGLVq0wOrVq7Fly5Zvces/JJMnT+b1+ZUrV3Smk9vj1KlTqFWrFhhj0NfXx9atW7WeExcXh6CgIJUyTt2uuZ3o6Ghs3rwZ5cuXx4ULF1J1TlRUFBwcHMAYw6BBg1KVp8IWaSMr/UKQPK9fv8aBAwcwf/58tG7dGsWKFVMp6ytUqIDOnTtj69atuHDhAqKjo7X2PaS6RJAx/P39Ua5cOejr62Pz5s2875aYmKjSjzt8+DC6dOnC7dSmTRvcuHFDpcz5+PEj6tatC8YY7O3t4erqii9fvuDt27dYs2YNFAoFrKyscPPmzWx/zu+dgIAA1KtXD4wxNGrUCC9fvuR5q96fHjlyJBhjMDQ0xKhRowB8Laukc4QtMkZm+gUAHDt2DIMGDVIp64yNjcEY4/2QadOm8fS5vf6W59/06dOhUCigUCh43hUtWhTnzp1DbGzsN7zL3Il6WSMnODgYDx48wLx589C3b1/ky5ePv+fGxsYwMzNDv3798Mcff+DJkyd4+/atxjWk62q7vkAVYYvvj6dPnyJPnjwoUKAAHj58CECzvSrPzyNHjqB8+fLQ19cHYwwDBw5USRsZGYkVK1agZs2aKvUHYwzFihXDy5cvAXw/dYaIwC4QCAQCgUAgEAgEAoFAIBAIBIJMAf8fCWbDhg3Uo0cPKlq0KJUrV04lTUJCgsr/3717R2PGjCE3Nzfy8PCgsmXLUuXKlWnTpk1kZWX1fUWE+YGQbDFo0CDy9PSkpUuX0oQJE+i///6jIkWKEGOM7ty5QyEhIRQbG0vW1tZUo0YNWr58OZUvX14lMlxMTAzt3buXAFCPHj2odevWRJRkSwMDAyL6GlUuMTFRRHSVoaenx9/hxYsXExHR0qVLadWqVbRq1SqqWLEiERGP8h0fH0/ly5en4cOHU+PGjfk1JIQtMkZm+UV4eDjt3r2bJkyYQACoUKFC5ODgQGvXriVbW1v+e/b29tSkSRMaPHgwPXjwgP755x/666+/SF9fX9glFUBLREQpGtzbt28pLCyMzp07R8+fP6cbN27Q69eveTorKytq3rw5tWjRgipVqkRNmzYlxhiZmJgke31BEgkJCRQXF0dnz54lIqIuXbrwKNPqyPPRycmJNm3aRA8fPiQiopEjR9KwYcNUrvv+/XuaO3cuubi40IsXL6hx48bUqFEjmjZtmogeqkZsbCxdv36dPDw8aNu2beTg4MCjueoiLCyM3r17x//WlZfCFmknK/witfW0sEUSBgYGNHr0aPr06RMZGBhQwYIFqUePHlSvXj1ycHAgBwcH0tPT420iiYiICGKMEWOMTE1NSV9fX7SRMoH8+fNT9erVydPTk/7991+qXbs2lStXjoyNjfmOWrNnz6aTJ0+Si4sLERF16tSJpk2bRrVq1VLJ/wkTJtC9e/eoVKlSdO7cOSpWrBgREZmamlLXrl1p165d5OzsTCEhId/kWb9nihcvTnv27KFmzZrRzZs3acSIETR+/Hhq1KgRFSlShGJiYigyMpKmTp1Ku3btIsYYWVtbU6tWrYiIeNki2UPYImNkpl/MmzePjh07Ri9evCAiojJlylD58uXpl19+odDQUHJ3dydHR0davnw56enp0ZIlS3J9XSHvfy9dupTq1KlDAQEB5OvrS1WrVqXmzZtr7DwgyB6kdzMhIYEiIiLo0aNH9OjRI3r48CHdvXuXt1/19fXJ0tKS2rVrR3Z2dtS5c2eytLQkOzs7letJbSPpX7GDY+oRtvj+MDQ0pNjYWIqJiSEPDw9ycHDgYx8SUn46OjrS7Nmz6e3bt5SQkEAdOnSgXbt28XSxsbG0du1aWrVqFYWFhZG9vT0NHTqU/P396cGDB3T79m3q1q0bXb58+bspD4WAXSAQCAQCgUAgEAgEAoFAIBAIBJkCY4xPFjZt2pSINLeilcToiYmJdO3aNZo4cSK9ePGCrKysqEyZMqRUKuno0aPk7u5O169fpwIFCgjRTjqQ22Lx4sVkaGhIq1evptu3b1NiYqJK2jp16lCfPn2oW7duVLRoUQ1Bj56eHkVFRRERkYWFBRERxcfHc3HQtWvX6Nq1a6Snp0ft2rUTk1RqKBQKFVtYW1vT/v376f79++Tq6qqStk6dOvR/7d13fBR1/sfx924qCSEBAiQEAiEJEEooASFIhxMMUgUVUZoKomBDLKceWA/hDhW7HojHeSC9V5FeQg0lgdBSKKEGCCE9md8f/HZMSEBOIRvg9Xw8eLjulHxnP7Mzuzvv73eef/55denSRZ6enoXWRS3+nD/zvrAtl5mZqcmTJ2vkyJEyDEM1a9bUww8/rJdffrlApxvDMGS1WhUcHKw2bdpo69at2rZtm5ycnDie/Q7bMSj/65SQkKBLly5pwYIFio+P17Jly5ScnKyMjAxJUvny5dW9e3eFhoaqVatWqlu3ripVqlTgPXBtByrqcH1Wq1UuLi7mRfPy5ctLknJycgpcSM9/vvjll1/09ddfm+HeRx55RJ9++qk5b3p6upYtW6Zx48YpMjJSTk5Oys7O1vLly7VkyRIlJSXpk08+oS75uLm5qUWLFlq+fLkiIyO1bt06devWrchju60W+/btk2EYkqRKlSoV+RmKWvwxt/p9kZWVJWdnZ3O5rVu36ujRo9qwYYOcnZ3VqFEj1axZU82aNaNDwf/z8fHR+vXrtWjRIrVt21YBAQGqUKFCgXmysrLMx+vXr9e6des0e/Zs5ebmKjAwUL169dITTzwhq9VKiP1P8vDw0EcffaQtW7Zow4YNGjx4sBo1aqTmzZtr8+bNOnz4sNavX2/OP3jwYI0aNUo1a9YssC+npKRo3759cnNz01dffSU/P78C76tSpUopJydHhmEoOTm52LfzThAYGKgVK1bogQce0KZNmxQbGytvb2+1atVKhw4d0oULF7Rnzx5ZrVa5u7vr1VdfVY8ePQqth1r8ebfqffHcc89p2rRpunTpkqSrnZ8effRRs5OzJF28eFHNmzfXiBEj9MUXXyg8PFzdunUrvo0tofJ//y5qP+fYbz9RUVF64oknlJqaWqDzceXKldWzZ081btxYDzzwgLy9vRUQEHDdzz75a3ivfzb6o6hFyWEYhqpVq6YHH3xQS5Ys0c6dO9WjRw+5u7sXmMdisWjChAl6/fXXlZeXJ8MwFBERofnz50u6Glx3cXHRhg0bNHXqVKWmpmrYsGEaOnSoatWqpZycHMXExOjRRx9VXFyctm/fToAdAAAAAAAAAHD3uXa09GtHdLNdSIyJidGLL76o6OhoNWrUSP/973/l4+MjT09PDRgwQFOnTtXbb7+tiRMnFhpFETcn/4XbMWPGqGnTpoqOjtaiRYtksVgUFhamgIAADR061AzV2kK3+Tk5OalBgwbavHmzYmNjdeHCBZUtW1aStGnTJn377bc6duyYOdIxCstfixEjRqhjx47avXu3Zs2apYsXLyooKEhVq1bVSy+9JDc3t+te+KMWf94feV/k5uaaNfnpp5/M8HrdunU1aNAgPf300ypTpozy8vLMY6BtfkdHR/NOFDt27NChQ4cUHBzMxd0byM3NVWpqqo4eParFixfr8OHDWrhwobKyspSamioHBwc5ODioW7du5khwvr6+qlq1apGBddvFXu7mcfNsIxUHBgZq3759SkpKKhTSzX+HlDlz5uj777/X8uXLJUndunXTuHHj5ODgYC63fv16jR49Wvv27VPt2rX14Ycf6vLly0pISNCYMWP02WefqVatWnr22Wftss0lkZOTkx555BEtX75cixYt0scff6ygoCDVq1fPnMc2mqtt3580aZI5amJERESBY40tYEIt/phb+b7Izs42w+u//vqrVq5cqXHjxqlUqVJmRzVJqlatmgYOHKjRo0cTYv9/derUMe9gI/22X9s6btheV9volImJiTIMQ2XLltXevXs1b948nTp1Sq+++ioBxlsgICBAy5cvV48ePbRr1y7t2rVLP/74o3kOdnZ2VvXq1TVgwAC9+eabhZY3DEOJiYmKioqSJPN7n6Ojo/n+Onr0qM6fP68KFSoUOP6hoFq1amn16tUaMWKEdu3apdjYWB08eLDAe6NWrVp67rnnNHToUEkFg4fU4tb5s++LwYMH68cffzRrN27cOL366qvmdFsHKC8vL/Xs2VNz5szRmjVrtHv3bgLs/+9Gn/s59ttPw4YNFR4erqVLl6pjx47q1KmTGjVqpPr16xfqkCZd/ewVExOjY8eOKSEhQXXq1FGDBg3k4eFR6DMY/jfUouSw3SHIFmD/5JNPVLlyZUVERKhmzZpKT0/X/PnztWrVKnOkdScnJz388MP673//K+lqh1oXFxdJ0rRp0xQTE6P27dvrueeeU1BQkPl9MTQ0VJUrV1ZsbKzi4uLstcmFGQAAAAAAAAAAFKOsrCyjRYsWhsViMe677z7j/PnzhmEYRkZGhmEYhnH27FmjbNmyRps2bYzc3Fx7NvWucO1rmJ2dbeTk5Nxwnmv9/PPPhsViMSwWizFgwADjn//8pzFq1CijUaNGhsViMQIDA4158+bd8rbfbfLy8v70PNTi1vhf3he2mqxcudJ87UNCQoxPP/3UuHz5coF5ilp+4sSJhpOTk+Hp6WkcPXr0pvaDe1VaWpoxfPhww9HR0XBycjIsFovh5ORkeHl5Gb169TJGjhxpbNq0yTh48ODvrovzxx9n20cnTJhgODk5GSEhIcauXbuKnHfcuHFG3bp1zfdGz549jf379xeYJyMjw2jXrp1hsViMBx54wIiLizOnXb582XjhhRfMYxoKi4uLM1/jNm3aGJs3bzZSU1MLzJOdnW08/fTThsViMaxWq9GjRw8jMTGx0LqoxR93q94X+c81H3zwgREWFmbO5+HhYdSoUcNo0aKFUaNGDcNqtRoWi8UYOXLkbd++u8m0adOMUqVKGRaLxejTp4/xn//8xzhz5owxa9Ysw8vLy7BYLHxWusUSExON9957z2jXrp3h7+9vhISEGPfdd5/x/fffG5s2bTLnK+rcnJKSYjRq1MgoXbq0MW3atALznD171mjcuLF5zEpPTy+W7bmT2fb1Rx55xGjYsKFRs2ZNo0GDBsann35qrF+/3pyPWtx+N/u+yMrKMh+PGDHC/Azs6upqfPvtt7/7dwYNGmRYLBbj/vvvN39TAUqa/J9/Tp48WeA7se1xdna2+dzx48eNr776ynB3dzccHBwMi8VilC5d2mjbtq1x5syZQuvEzaMWJUv+1/+NN94wvxcEBwcbLVq0MGrXrm2UKVPGfL5hw4bGO++8Yy6Tv1anTp0yAgICDKvVaixcuNBcv+18np6ebtSrV8+wWCzGF198UUxb+PsIsAMAAAAAAAAAitWiRYsMR0dHw8/Pzzh8+LBhGAV/cN+xY4fh4OBgVKpUyThx4gQhxBLi888/Ny+Y2P65uLgY999/vzF79mxzvtzcXPMCTFEXsbiw9Zs/GmSmFsUvOjraCAgIMCwWi1G1alXjvffeM1JSUgzDuHEdz507ZzRs2NCwWCxG8+bNCa/fhOjoaMPf39/o2rWr8dZbbxkbNmwwYmNjC8yTf9/dv3+/sWLFCuONN94w/vOf//xuOAs37/jx4+b+26pVK2PevHlGQkKCcfLkSWPOnDnGo48+WuA41K9fP+P48ePm8rb9ffz48YbFYjF8fHyMQ4cOGYZR8Lw/YcIEw2KxGKGhoUZqaip1K0JsbKxRuXJlw2KxGHXr1jWefvppY8GCBcaKFSuM8ePHGxEREWZ4PSQkxJg2bVqR66EWf96feV/kfz2ffvppw9nZ2Zyvb9++xuTJk43z588b2dnZRnR0tDFhwgQzxP7JJ5/YaYvvLDt37jSDOcOGDTO/a9h89913hsViMcaMGWOnFt69bAGphIQE49KlS+bnJJvrHU8yMzONvn37mh0Ef/zxR2Pp0qXG1KlTjdDQUPP5kydP3nA9KCw5Odm4cOGCcenSpQLPU4vi83vvi/yfaceNG2dUrFjR7MA5adIkc9qNXutHHnnE/K5BgB0l2bX78fX26yNHjhgvvvii+RnooYceMgYPHmzcf//9ZoD3woULxdDiuxe1KFmu7eBarVo18zW3WCyGm5ubYbFYjBdffNFYtmxZkcsZxtVObJUqVTIsFosxdepUwzB+q21aWprx3XffGW5ubkZQUJARHx9fDFt2cxi/HwAAAAAAAABQrA4fPqzc3Fz5+vqqYsWKkmTebjY3N1eRkZEyDENt27ZV5cqV7dlU6Ldbyw8fPlyVKlXSL7/8opiYGDk6OuqJJ55Qo0aN1LhxY0lSdna2ebt5ScrMzFRycrK2bt2qnTt3qmfPngoLC7PXppQ4Fovlf5qfWhS/vLw85ebm6ueff9b58+clSS1bttTzzz8vDw8PGYZx3Trm5ORo8eLFOnv2rCSpUaNGys3NldVq5db1N1CnTh3t3r1bXl5ehabl5eXJMAw5ODhIkmbOnKn3339fhw8fVkZGhiTJzc1N7733nl555RVZrdYb1gg35ufnpxkzZqh9+/basGGD9uzZY+6/OTk5SklJkcVikbe3twYOHKiPP/64wPK21/3kyZOSpEceeURBQUHKzc2Vo6OjDMNQbm6ujh07JkmqV6+e3N3di3cj7xA1a9bUmjVr1KdPH+3Zs0cxMTGaNGmSHBwc5OjoqMzMTFksFtWvX1/Dhw/XY489JkmF9n9q8ef90fdFbm6ueex67LHHNGPGDFksFlksFo0ePVrvvPOOpN/eN3Xq1FH16tV15swZjRs3TkuWLNGgQYPk6elpnw0v4Wz7+u7duxUbG6vQ0FANGTJEgYGBkqSMjAy5urqa+/XOnTs5P9wGVqtV/v7+1512LcMw5OzsrK+++koHDhxQVFSUnn32WWVkZMjFxUWZmZmqU6eOZs6cKV9f3wLvI9tj2+fj/Ou81+tqew3Kli1b5HRqUbxu5n2xdu1azZ071/zeMHHiRA0ePFiSCr2u+e3fv18HDhyQ1WpVgwYN5OLichu2ALg1rt2Pr/1/2zFj2rRp+vzzz1W6dGm9/fbbGjVqlDnPo48+qpkzZ2rSpEkaOXIkx5k/iFqULA4ODua59K233lL79u11+PBhRUZGKjs7W61atVL16tXVsmVLc5m8vDzzPGzj7u6upk2bavHixdq+fbs6d+4sb29vpaena9asWfriiy+Unp6uTp06qVy5csW9mddFgB0AAAAAAAAAUKzKly8v6eoFkrS0NHl4eEi6eoFk06ZN+vvf/y7DMNSsWTN7NhP/z2q1mhfN+/Tpox49esgwDGVnZxcKt6Wnpys1NVVLlizRoUOHtHjxYsXHx5vB388++0xHjx5VhQoV7LEpdzxqUfysVqsyMzO1YMECXb58Wf7+/ho/frzKlSt33TCJ7fnExERNmTJFJ0+elLOzswYNGmR21pEI9dyILaCZPxwlXQ122l7zKVOmmMGedu3aqXbt2vL29tbEiRP16quvqnTp0hoyZAiv8Z8UHBysNWvW6KWXXlJMTIzi4uIkXe145urqqqefflrt2rVTz549JRUdskpPT5ckJSUlmSFS6Wo9Y2JitHz5cklS8+bNr7sOXK3FokWL9MUXX2j16tXatm2bcnNzlZubK0kaMmSIunTpooceekgStbid/tf3RVZWlpydnSVJ/fr104wZM+Tg4CBfX1+9/fbbGjJkSJF/x83NTU2aNJFhGPrll18UFxenhg0bFss23ony8vI0f/585eTkKCwszHytcnJyzH19+/btkq52EOD8cGv9kdfTYrEoNzdXXl5eWr16tV588UXt379f27dvV9OmTVW7dm19/PHHKlu2bKGQtO3zwaVLlxQfH6/Y2Fg99thj1FXUoiT5vdfANn3+/PnasmWLJOn999/Xs88+K+n652Hb94gNGzZo7969kqRatWrdyqYDxc5isWjt2rVmp77Ro0frlVdekSRduXJF7u7ueuGFFzRz5kwdPXrUXAa3HrUofvnPq+Hh4QoPD9eTTz553fmLOje4ubmpd+/eWrx4sSZOnKjDhw8rMDBQUVFROnDggM6ePasHH3xQr7zyivlbfFGK+7cqAuwAAAAAAAAAgGLl6+srd3d3bdu2Tf/5z38UERGh3Nxcbdq0SR999JGOHz+uBx98UMOHD7d3U/H/rFarOaK3bVRvZ2dnXbx4URkZGVq5cqUSExM1Z84cnTp1SklJSeayzZs3V6dOndSjRw+VK1fO7MCAP4ZaFL8lS5Zo9+7dcnd310cffSQ/P79CwWqb/M+/+eabWrNmjRwdHTV69Gg1bdpUubm5Zgg7Ly9PWVlZOnTokHx8fFSqVCl5eHgQGNVvF7+vfY1tz8+bN88Mr48cOVLDhw+Xv7+/LBaLWrVqpQceeEDffPONunfvrooVK3Ix/U8KDAzU1KlTdfr0aW3YsEFZWVny9/dXUFBQgbDU9fbd+vXrS5J27dqlzZs3Kzw8XDk5OdqxY4dee+017d+/X82aNdPjjz8uqeiL8biqSpUqevfddzVmzBgtX75cly9floeHh6pXr67Q0FBzX6cWt9/Nvi+ys7PN8Przzz+vadOmyWq1qnr16vrb3/5mBlOurZntfFKzZk1VqFBBly5dMu80gcJso9nbwji2z0iGYZidx7777jt9+umnkqQOHTrYpZ0ozDbqqKenp7777jvl5OQoLi5OwcHBkmS+f2yfCc6ePauUlBQtWbJE+/bt0+rVq5WYmKicnBxt27ZN//znP+22LXc6amEfq1atMo9NTzzxhF588UVJN+5EZrFYtHHjRo0YMULS1TtE2c4nhmGY8wB3mrlz50qS+vTpYwamc3JyzA77kZGRkqRz584pLy9PEp9XbxdqUfz+zOtnC50PGDBAly9f1gsvvKAlS5aY0/39/TVo0CC9+eabqlGjhnmOKeq3Ldv543q/e91qBNgBAAAAAAAAAMWqQ4cOGjFihMaOHatRo0bp888/V2pqqtLT05Wenq527dpp7ty5cnJyIshpR7bX3nYRxBYESkhI0IYNG3TgwAEtXLhQycnJOn78uLlcy5Yt1a5dO/Xu3Vu+vr4KCwsrMOo0/nfUwr5snQCysrIUFBQkqXCwWip4C+cBAwZo5syZslqt6tKliyIiIiT9NoL4oUOHNHXqVC1dulT79++Xn5+fateurbFjxyokJKTYLhTeiZKSkvTll19KkoYNG6YxY8aYF9ENw1DHjh3VoEEDxcbGKjU1VZUqVbJnc+8aXl5e8vLyKjS6Z/7R2a53vn7yySc1depURUZGatCgQapdu7auXLmi+Ph4nThxQsHBwZo9e7bKly9f5Hk//9/gzgVXA4QWi0Xdu3cv8LwtsCZRi+Lye+8LwzDMc/bEiRM1bdo0SVLFihX19ttvXze8Lv12nlm9erXOnj17uzfljmfb/wMDAyVJO3bs0J49e+Tv7y8vLy998sknev/99yVJ77zzjjp27Gi3tqIw2+dcBwcHOTs7q27duua0Y8eOKS0tTQsXLlR8fLwWL16sM2fOKD09XVarVWXKlFFERIRq166tkJAQpaWlyc3NzY5bc2ejFsXHdq7Ys2ePnJyc5OLios6dO5uv2Y1+B9m7d69GjRqlrKwseXp66i9/+Ys8PT0LnZuzsrKUk5NToA6cv1FSGYahAwcOSJLKlSsn6Wpg2vYbRmxsrFavXi1JioiI4LfC24ha3HksFov5nWL48OEKCgrSjh07dPToUXl6eqpv376qXr16obsw2r5znDhxQlFRUdq1a5fWrl2rDz74oNjujMqvlAAAAAAAAACAYmP7Mf2jjz6Sk5OTfvzxRyUlJSk7O1uNGjXS/fffr3/+859ycnIiwGlntovaBw4c0MGDB7V+/XozLJ2SkmLO07hxY7Vs2VK9evVSlSpV1Lx58yJrR2eEP45a2Ict3GEb8bZu3bq67777CkzLz/aaDho0SFOnTpXValWDBg3Uv39/NWjQwJxn7969Gjx4sHbu3CnDMOTm5qZjx47p0KFD2rJli9asWaOQkBDCJddx6dIlRUVFydPTU927dzcDObZ9/dy5c2ZgitDU7fd7+2hubq48PDy0dOlSde/eXVu2bFFiYqKkqyHeiIgI/etf/5KPj495d4lrj1EWi8WsqS0UfC+/N6637dSi5LC9Jrb/RkdHa/78+bp48aIk6a233tKAAQMk3ficfP78eW3cuFFWq1W1atVS1apVb3/j71C213rgwIH64YcftGPHDvXt21cuLi7y9PTU2rVrJUlDhw7VE088Yc+mQr99jrLt//nvvHLp0iUdO3ZMy5Yt0+HDh7Vo0SKlpaWZ7x9HR0d17dpVAQEB6tmzpypVqmR2MMT/jlrYl2EYWrhwobKzsxUaGmreAeVGDhw4oDFjxig6OlqSFBoaqueee87sMCVdDSIuXLhQP//8s5KSktS0aVM1adJEL774IudvlFgWi0UNGjTQL7/8orS0NF25csXsqHz06FF99913Wrx4sUJCQszv17g9qMWdyXanP6vVqs6dO6tz586F5rFNP3LkiJKSkrR8+XLt3LlTW7du1YULF8z5Ll26pNWrV5t1v50IsAMAAAAAAAAAik3+25O+++676tWrl1JSUnTlyhXVq1dPlStXNn9wJ7xe/HJychQVFaXz589r7ty5OnTokCIjI5WWliZJKlWqlGrVqqWwsDC1adNGQUFBZqDXVjfb42sRmP7fUAv7s4U6goODJUlHjhzRtm3b1LRpUzP4YZvPMAydPXtWL730kqZPny6r1aoaNWroxRdfVM+ePc11xsbG6sknn9SePXvUrFkzdevWTR06dNDhw4c1efJk/frrrxo6dKjmz5+vsmXLFv9G3wF2796t8+fPy8/PT3Xq1JHFYikwGtzkyZN16NAhhYaGytHRkYCOnTk4OCgnJ0deXl5asmSJFi9erPj4eElSs2bN1KhRI5UpU0aSzOCV1WpVWlqakpKStHHjRsXExGjevHm6//77NWnSJOr5B1EL+1m5cqU5SuXrr7+u559/XtL1w+u259evX6+5c+cqLy9PzZo1k5+fX7G2+05UrVo1rVixQj179lRCQoLS0tLM88PYsWPVp08fBQQE2LmV965rQ9KGYSg1NVUxMTHavn27tm3bptWrV+vkyZPKycmRg4ODSpUqpbZt26pGjRp6+OGHVbFixUJ3Pbh2/fh91ML+bK+9q6urJKl27dqSZHYiK8r+/fv1wQcfaM2aNbp8+bKqVq2qn376SeXLlzfnWblypf71r39p5syZ5nNHjhzRTz/9pPj4eH3yySecv1FihYSEKC8vT1OnTpW/v7/CwsKUkJCg1atXa8GCBXJ0dNSoUaPUsGFDezf1rkct7jyGYRT43T2/vXv36uLFi5ozZ47i4+O1evVqc0AMV1dXValSRT179lRYWJjCw8NVqVKlYgmvSwTYAQAAAAAAAADFzMHBwbygXdRIPbYf3FH8fv75Zz355JNmANrDw0OVKlVSly5dFBoaqpYtWyogIEBOTk4FapSVlSVnZ2fzOTog/HnUouSoVauW6tatq+joaK1atUr16tVTqVKlzODHhQsXtHHjRn3xxRdasWKFrFar6tWrpxdffFH9+/eXdHXk48zMTH3yySfas2ePWrZsqfHjx6tBgwZydXVVkyZN5Ovrq6ioKMXFxSklJYUA+3UEBwerYsWKys3NVWxsrKpUqWKGE7/66iu98cYbkqRRo0YVuj027MPR0VG5ublyd3fXI488Umi67QJ7VFSUDhw4oA0bNmjLli2Ki4szR4FzcnJSTk6O1qxZo7Zt2xbzFtw9qEXxS0xM1GeffSZJeuCBB/Tqq69Kun640/Y5eNeuXerfv79ycnIUGhqqF154QZIKdNgpCp12pJo1a2rFihXavn27oqKiFBgYqODgYDVr1szeTbvnpaeny93dXatWrVJcXJyWL1+u/fv3a//+/WbHQG9vb3Xs2FENGzbUX/7yF/n4+CgkJMRch22+/B0JbfgOefOoRclRrlw5SdKpU6eUkZFhBtptbMf1qKgojRkzRuvWrdPFixfl5+enJUuWqEqVKub5e8OGDRo3bpxWrVqlihUr6vnnn5eXl5cSExM1YcIEffbZZ/L399fLL79sj00FftfAgQMVExOjf/zjH/rwww/l4OBg7t+VKlXSu+++q4EDB9q7mfcEalHy2b5PFHUXlaNHj+rYsWOaO3eu4uLitHTpUlksFmVnZ8vd3V2lS5fW448/ruDgYEVERKhSpUry8vIqsP7i+l5BgB0AAAAAAAAAUOxudEH7Xg/d2FO/fv20ZcsWWa1WBQYGKiIiQhUqVJCnp2eR8ycmJmrZsmXauXOnJKlevXrq16+fypYt+7sBK9wYtSg5ateurSeffFJvvPGG/vrXvyo1NVX333+/KleurAsXLmjChAk6dOiQYmNj5eDgoPbt2+upp54yw6G2TgS2WzA7Oztr4MCBatSokZydnc2LwMHBwbJYLDpx4oROnz6tatWq2XnLSyZ/f38FBgZq8+bNevfddxUbGytHR0dFR0fr888/lyS9/fbb6tevn51bCum3i+r5O9LYRhbdtm2bkpKSNG/ePB04cECRkZFmCM7Dw0NBQUF68skn1bp1a9WvX1/BwcHKysqy16bc8aiFfaSmppqjG4aFhZlBxeuF1y0Wi6Kjo/XMM88oNTVVZcqUUYcOHRQYGChJ5vk8NzdXkZGRiouLk6Ojo6pVq6bmzZubdwW51z9P+/n5yc/PT927d7d3U/D/srKyNHToUK1YsULnzp0zn/f19VXz5s3VqVMnNWnSRKGhoQUCudeyWCyM7v0nUYuSwXas7tChg+bNm6f4+Hjt3r1b9913X4FjuMVi0Zo1azR8+HDFx8crLS1NVapU0axZs1S3bl2zPnl5efrpp5+0atUqNWvWTH/729/04IMPSpLS0tLk4OCgcePGafXq1Xr22WdVqlQpe206UCTbvjxu3DhVqFBBS5cu1aFDh+Tk5KTevXurXbt25j6N24talGy284ft/Judna1Tp04pOjpaa9eu1b59+7R27VrzDo5lypRR5cqVFRERoerVq6tbt24qW7asKlWqVGC9tnO6bf3F9X3CYti+eQIAAAAAAAAAgHvWjULOtosY+cMLP/74o6ZOnapff/21wLyNGjXSsmXLVKFCBQINfxC1KDnyv25vvPGGxo0bJ+nqCMQeHh5KT09Xenq6pKthxJEjR6pHjx4KDw8vtPzcuXP18MMPq2rVqoqMjJSPj49yc3PNkbLWrl2rdu3aydHRUVFRUapTp44dtvjOcPDgQbVr105JSUmFpo0ZM0bPPfecvL297dAyXDsKnI1hGIqMjNTp06c1a9YsnThxQmvWrDGn+/r6qkKFCoqIiFBISIjCw8MVEBBgHudsF9E5lt08alEyLFiwQD169JCXl5fWrl2r+vXrFxkwtz134MABDRs2TJs3b1ZWVpZatGihn3/+WX5+fua8y5Yt08yZM/XDDz+Yz3l5eemZZ57Rxx9/XGB9QEmyb98+Pfnkk3J1dVWPHj0UEBCg1q1bq2LFiubxJP++m5ycrI0bN2rfvn0KDAxU5cqV1bJlS0nXv4sBbg61KDmSkpLUvXt3bd++Xa1bt9Zf//pX1a1bV35+flqxYoUiIyM1evRoc/6AgAAtWbJEtWrVKrCepUuXqkuXLpKkWbNmqVevXpJ+C6JOnz5djz/+uGrWrKnNmzdztyeUSPl/57hw4YIyMzPl6OjIdzs7oBYl25EjR7Rt2zbFxsbql19+0YEDB3T+/Hlzeo0aNdSuXTvVrVtXDz74oEqVKiV/f39zumEYJeYOqAy3AQAAAAAAAAAAigxMXzuqj+3i1bfffqtx48YpMTFR9erV05AhQ1S5cmVNnTpV8+fPV8+ePbV06VJ5eHgU6zbcLahFyZG/s8DYsWPl4+Oj2bNnKzIyUsnJyZKk4OBgValSRW+++aZat24tZ2dnSSp0MbBy5cpycXGRdDWoUrFiRbOO0dHRevfddyVdHX2f8PqN1axZU+vWrdOYMWN06NAhnT17VvXr11f//v3NsA6Kly28ln8UuIMHDyo6OlpLlizRkSNHtHnzZnN06PLly6t27drq3bu3AgICzIvq195lwvb+swXoSsIF9pKOWpRMly9fVkZGhqTCdxuy1Wzfvn167rnntHPnTmVlZal69er68ccfC4TXZ8yYoY8//li7du2SJLVu3VqnT5/WwYMHNX78eFksFo0dO5bwOkqkevXqae3atZKujgaaX/5jTE5OjiIjI/X0008rNjZW0tXPxy4uLnr//ff10ksvFRghFP87alFy+Pr66qefflKHDh20bt06xcbGymq1qnLlyjpw4ICuXLki6ep3icaNG+vbb7+Vr69voY4D+/fvlyQ9/PDDhcLr0tWwoyS5u7ub30mAksbBwcE8nnh5eZnHFY4xxY9alGw//fSTxowZY/5/vXr11KFDB7Vt21bNmjVTQECAvLy8CtUrNTVVLi4ucnR0LDQ4hr0QYAcAAAAAAAAAAEXKf5HDdtFjw4YNmjRpko4dO6YnnnhCw4cPV1hYmCSpV69eat++vTZs2KCdO3eqTZs29mr6XYda2I+Dg4N5Ue+ll15S7969dfz4cSUlJSk7O1utWrWSm5ubPD09lf/Gx9de1PX09FTVqlV1+PBhzZo1S56enqpRo4YiIyP13nvvac2aNQoLC9NTTz0lidEsf09gYKAmTZokJycnZWRkyNHRUU5OTvZu1j3LarUqISFBs2bNUkJCgjZv3qwdO3aY0ytWrKj69eurS5cuqlGjhrp06SJXV9dCo39e+x6y98X0OxG1KFmaNWumOnXq6MiRI9q3b5+aNGkii8VSICxitVq1bds2DRgwQIcPH1ZOTo4qVqyopUuXKjAw0Lwzy6ZNmzRx4kRFRUWpS5cueuqpp9SjRw8lJCRo6dKlGj58uCZNmqSHH35YTZs2tfOWA0WzhaWvDVTZgnKSNG/ePL344otKSkpS48aN1aRJE3l4eOiLL77QK6+8olKlSmno0KEE6P4kalFyBAcH69dff9Wzzz6rgwcPmt81bB566CF1795dDz/8sLy8vIoMHKakpEiSTp8+rZSUFLm7u5u1jI2N1bp16+Tk5KTevXvLzc2NECpKLNt+mX//ZF+1D2pRcv3tb3+Tq6urfHx8FBgYqNDQ0AIDV+Tm5kq6Wq/k5GQdOHBAX331lRISEuTu7q6GDRvqtddeU7ly5eweYifADgAAAAAAAAAAfpftItWiRYu0fft2NW3aVC+88IIaNWok6eooPqVLl1azZs20Zs0axcfHE5q+TahF8cs/+pifn5+qVKlS5Hw3uphbu3ZtjRw5UsOGDdPf//53zZ49W+XKldOWLVskSQ0aNNCIESN03333SSo4ujFh9qI5OTnJYrGoVKlSysvLs3dz7nnZ2dl6/fXXlZeXJ2dnZ4WHh6t58+YKCwtTy5Yt5eHhUSgknZ2drezsbF26dElly5aVq6urpKv7POGIP45alBxubm6qW7euYmJiNGnSJIWFhalOnTrm3VZiY2O1adMmPffcc8rMzJQkBQUFadGiRapZs6Zyc3PNeVesWKFNmzbp/vvv1+uvv66WLVtKujoqb+fOnRUUFGQGHwmwo6S73p0Idu/erZdffllJSUnq3r27pk+fbo4W3b59e3Xp0kVff/21IiIiVKVKFY5PtwC1KBmCgoI0ffp0HTlyRL/88ouys7Pl5+enypUrq0uXLuZ8eXl5RQYN69WrJ2dnZx07dkx79uxRs2bN5ODgoK1bt+rrr7/WypUrFRgYqLZt20oihAoAdypb59bXXnut0DRbGN32+9Hx48f1+eefa8aMGUpISDDvGLhixQotXbpUq1atkre3t11/cyLADgAAAAAAAAAAbsrZs2c1Y8YMSdLQoUPNwHRubq5Kly4twzC0bds2STKDb7g9qEXxK2r0sZtlC78PHTpUhmFozJgxOnjwoDn90Ucf1cCBA9WuXTs5OzubFx2vvfhoG1mxTJkydh8lqyTIXwsC/vYXFBSkw4cPa+fOnQoNDZW/v795gVz6bRQ4ScrMzNTBgwf1+uuvKzExUQkJCWrevLn69u2rwYMHy2q10nHjT6AWJYeHh4f+/ve/a+vWrdq0aZMGDhyo+++/X7Vr19ahQ4e0adMmRUVFKScnRxUqVFDjxo315ZdfqkaNGgWO8ydOnNBnn30mSerfv78ZXs/JyZGTk5OqV68uT09PSdKVK1fss7HAn2C1WpWSkqJnnnlGJ06cUIcOHTR79mxZrVZlZmbKxcVFDz74oFq0aKEDBw4oMzOTAO5tQi3sx9vbW97e3mrWrFmhabbvE9c7H3fu3FlNmzbVxo0bNWDAADVp0kR5eXnau3evDh48KC8vL40fP17h4eFFLs+5HgDuDLbOrUWxfXewWCw6c+aMxo0bp8mTJ6tUqVJ67LHHNGLECDk7O+sf//iHfv75Z/Xr10/z5s1TqVKliqv5hRBgBwAAAAAAAAAAN8UwDKWmpkq6OqKo9NvIP5mZmfr666+1bt06Va1aVe3bt7dnU+961OLOYrFYzFDIs88+q/DwcCUlJenSpUsqU6aMHnzwQTOUIv120TElJUWpqalatmyZ9u7dq1WrVuncuXNatGgRo+uiRKpevbqqV68uSeao+LZ927ZfJycna+bMmfrwww91/PhxVahQQaVLl9aqVau0atUqJScn69VXXyVE9SdRi5KjRo0aWr58uXr06KGoqChFRUWZ02wdBJo1a6auXbtq8ODB8vHxKTTCbnp6urKysuTh4WEGG23nfcMwNHPmTG3fvl0uLi5mpzbgTnPq1CklJSXJ19dXEyZMkNVqVXZ2tjnq9/79+xUfH6/Lly8rLS3Nzq29u1GLkudGnQRsnZgXLlyoiIgIbdmyRXFxcZIkFxcXNW/eXG+99ZY5krvtc0H+TmrXnuvzfzcBANw5bMf1pUuXaubMmfLw8NDLL7+sp59+WuXKlZMk/fe//9XBgwe1Y8cOHTt2TDVr1rRbewmwAwAAAAAAAACAm1K6dGk1btxYq1atUkxMjFJTU1W6dGllZ2frX//6l7799ls5Ojpq8ODB8vLy4qL3bUQt7jz5AyINGjRQgwYNCky3WCw6ffq0MjMztXjxYsXHx2v+/Pk6deqUOfJ66dKlVb16dc2aNYsAO0o8WxDKduwxDEOStGDBAo0ZM0anT59Wt27dNGHCBHl5eWnHjh3q16+fXnvtNTVs2FAdO3a0W9vvNtTC/mrWrKnly5fr+++/18aNG3Xw4EFdvnxZHTt2VEhIiF566SWVLl1aLi4uRY6C6+npqerVqys+Pl67du1SSEiInJycJEmbN2/WTz/9JMMw9Oijj6p69eqc93FHOnDggE6cOCEPDw+zA4dtPzcMQ+vWrdO5c+fUpk0bBQQE2LOpdz1qcWdxcHBQTk6OvLy8tHz5cv3888+Kj4/XhQsXFBERoaCgINWqVUtS4ZHWk5KSdOrUKa1cuVKbN2+Wl5eXfvzxR84hAHCHsh3jv//+e50+fVoDBgwww+t5eXnKycmRs7OzAgICtGvXLp09e5YAOwAAAAAAAAAAKPnc3NzUoUMHrVixQh988IGOHDmiatWqafPmzdq+fbuysrL08MMPq2/fvmbAAbcHtbjzFBVIvHLlik6cOKGVK1fq6NGjWrBggS5fvqwzZ86Y8zz44IOqVq2aevXqJR8fH9WrV6+4mw7cEhaLRXFxcXrvvfd0+vRpDR48WBMnTpSbm5tycnL0l7/8RW+99ZZefvll7dmzh9D0bUQt7KNq1ap69913ZbFYlJycrJycHFWsWLHQfEWNeO/l5aX69etr//79GjdunDIzM9W4cWP9+uuvWrp0qdauXas6deqof//+cnd3L47NAW65WrVqqUqVKsrJydG5c+fM569cuaJffvlFr732mrKystS+fXt5eHjYsaV3P2px53F0dFRubq48PDz01FNPyWKxFNmZKS4uTpcvX9a8efN09OhRrVixwvzu4ezsrKysLPXt21edO3e2x2YAAG6B6Oho7dy5U2XKlNEbb7yhcuXKmXdvcnZ2VkxMjNavXy9JcnV1tWtbCbADAAAAAAAAAIDfZbv4PWrUKJ09e1b/+Mc/NG3aNHO6n5+fevTooWHDhtl15J57AbW4M+Tm5pojVtpkZWUpNjZWO3bs0NatW7Vq1SqdOHFCaWlpslgscnBwUOvWrVWjRg316dNHvr6+qlevXpHhE0bXxZ3oww8/VHx8vO677z598cUXcnV1NS+kS1eDU5J05MgRSUV3/MCtQS3sq1y5cgX+/0bHdMMw5OTkpG+++UaHDx/Wzp079cILL8jFxUWXL1+Wi4uLmjZtqnfeeUft27c3l5GudlYoqnbUEyVR+fLlVbVqVW3evFlvvfWW+vbtK2dnZ0VFRenf//63UlNT1a9fP73xxhuS+Cx0O1GLO4vt9bfVIP9/jx8/rqSkJM2fP1/x8fFaunSpsrKydOXKFTk4OMjDw0NPPvmkgoOD1bVrV1WoUEHly5e35+YAAP4kwzCUkZGh3NxcnT59WsHBweb3vISEBH3yySc6e/asunfvrrCwMLu2lQA7AAAAAAAAAAD4XRaLxQzkjhs3TnXq1FFUVJQSExPl5eWlZ599VgEBAapQoYK9m3rXoxZ3Blt4fePGjUpMTNSyZcsUExOjvXv3KisrS5Lk6emppk2bKjQ0VA888ID8/PzUsGHDItd3bTCIkBDuRElJSZKk3r17y9XVVVlZWWZQ+uTJk/r1118lybzTAAHb24da2Mf1jt03OqbbzvteXl5atWqVXnjhBe3evVvHjx9X1apVNXToULVv317NmzeXpAK1lK7W7vz58zp37pyio6PVq1cv6okSydvbWz/88IPatWunjRs3atOmTWZnDEkaMGCAfvjhB0l0wrjdqMWdwfad0HYOyc3N1fnz5xUbG6u1a9dq7969WrFihS5evCjp6l28SpUqpR49eiggIEC9evWSt7e3qlSpUmC9+WsNALjzlCtXTqGhodq3b5+2bdumOnXqyNvbW9HR0fr66681Y8YM+fv767HHHrN3UwmwAwAAAAAAAACAm+Pg4GBeJB84cKCkgiN8ovhQi5LrwoUL+ve//63169fr+PHj2rp1qzmtXLlyqlOnjjp16qQmTZqoQYMGCgwMlGEYBYI/eXl5MgzDDMFTU9wtMjIyJEnnzp2TYRhmyDYlJUULFizQihUrFBgYqPDwcHs2855ALe4stvO+p6enJk2apIsXLyolJUVlypSRt7d3gXmdnZ2VmZmpqKgo7dy5Uzt27NC6det06tQppaamatCgQZo0aZKdtgS4sZo1a2rdunV69913deTIER09elQPPPCAwsPD9eyzz0oiMF1cqEXJc22H1tzcXF25ckXr169XTEyM1q5dq3379ikxMdGcp0qVKurcubPq1KmjiIgIeXl5qUaNGjdcP989AODOVrlyZT388MPas2ePRo0apQULFqhy5cpaunSpUlJS5OPjo2eeeUbdunWzd1MJsAMAAAAAAAAAgJtnC9TacHHbfqhFyVS2bFkdOXJEc+bMUdWqVVW/fn316NFDNWrUUIcOHVSpUiU5OTkVWCYzM1OXL19WQkKCfHx85O3tLVdXV7OTAnCns3WwCQ0N1erVq7VhwwZt2bJFjRs31sGDB7VkyRKNGzdOly9f1rBhw657JwL8edTizuXg4KCcnBw5OjrK29vbDK6np6erVKlS2rBhg44cOaKlS5dqz549OnDggLls2bJlFR4eriZNmig0NLRQCBIoSQIDA/Xtt9/KxcVFZ86ckY+PjzmNwHTxohYli8ViUV5env79738rIyND06dPV0JCghISEsx5qlevri5duqhNmza6//775e/vLz8/P3N6Xl6eJJnnk2vXDwC4s9nOz++8846uXLmicePGaf369eb0tm3bqnfv3ho4cKBKlSplx5ZeZTG47wcAAAAAAAAAAADwp+UPBC5atEj33XefnJycVLZs2QLzZWdnmyH2DRs2aObMmVqwYIFOnDghf39/hYWF6csvv5S3tzchdtxV4uLi1KZNGx0/flzVqlVT+fLllZiYqMuXLyszM1PPPPOMvv32W3s3855ALe4M1wuIZmZmav369Tp16pRmz56tEydOaPv27eb0gIAAValSRQ888IAaNGig0NBQ+fv7F2fTgT/F9pkq/3uAjhf2QS1KluPHjxc4ntevX18+Pj7q3r27goKC1LRp00LfPSTpypUrys3NVenSpc060gkBAO5O+X9HWrRokQ4ePGiOvP7II4+oTJkyhTox2QsBdgAAAAAAAAAAAOAW+b3Aef7Az4IFCzRixAgdO3ZMbm5uCggIUHp6uo4ePao6depo7dq1Kl++PCEh3FUOHjyoPn366MiRI0pLS5MkNW/eXJ06ddLo0aPt3Lp7C7UoeWzH+2uP+xkZGdq2bZsOHTqkOXPm6MSJE9q9e7c53d/fX76+vurdu7dq1Kih1q1bq3Tp0nJxcSmwfjpFAcCdLzY2Vhs3bpSfn59atWolBweHAsd72zkkJydHcXFxmjx5slavXq2kpCSFh4crIiJC/fv3l0SIHQDuVnfK534C7AAAAAAAAAAAAEAxW7lypfr166dz586pV69e6t+/vzp27Kjs7GyNGDFC//nPfzRo0CB9++23JWZkLOBWOX36tHbt2qXjx4/L29tbTZo0UZUqVezdrHsStSiZzp8/r7i4OG3btk1r1qxRTEyMoqOjzenVq1dXpUqV1LNnT/n7+6tLly5ydHRUqVKlCqyHYCIA3BuuHSk/KytLs2fP1jfffKP169dLkjw8PHT58mVJ0rhx4/Tqq6/as8kAABBgBwAAAAAAAAAAAIrTqVOnNHjwYC1btkyPPfaYRo8erVq1apnTk5OTFRISooCAAG3cuPGOGDULAPDn5eXl6YUXXtDUqVOVnZ2tjIwMSVKFChUUGhqqdu3aKSQkRK1bt5ajo6M8PT1vuC7C6wBw78nLy9OcOXP03nvvad++fWrcuLHee+89BQcHKyYmRoMGDdLFixc1f/58de3a1d7NBQDcwxiuAQAAAAAAAAAAAChGiYmJ2rBhg7y8vPTEE08oKChI0m+3eE5JSZFhGEpMTFRqauoNA4oAgLuH1WrVU089pVmzZql58+YKCwtT69at1bhxY3l5ecnZ2bnA/IZhKDMzU0uXLtWZM2fk6empgIAANWvWTFarlRA7ANxDbKOwJycna/Lkydq3b5+6du2q9957Tw0aNJBhGAoODtbf//53DRs2TJGRkQTYAQB2RYAdAAAAAAAAAAAAKAa2UMnatWuVmpqqJk2aKCIiQpKUnZ0tJycnSdLixYt17tw5tWjRQs7OzuZyAIC7X6NGjXT06FG5ubkVeD43N1eSlJOTI0dHR+Xk5GjatGmaMWOGFi9ebM7n5uam999/Xy+//LKsVivnEAC4R9iO9T/88IOWLVsmLy8vvfPOO2rQoIGkq983nJ2dFRAQIOlqp1oAAOyJADsAAAAAAAAAAABQDGyhEj8/P0lXQ4jHjh1T1apVzfD6jBkz9Oabb0qSBg8erFKlStmnsQAAu8kfXreNou7g4CBJZnj9888/18SJE5WYmCh/f3899thjysrK0rfffquRI0fK1dVVw4YNI7wOAPeYgwcPSpKeeeYZNWnSRIZhyDAMOTs768qVK5oxY4YkqVy5cvZsJgAA4l5RAAAAAAAAAAAAQDGqXLmyPDw8FBUVpblz5yo6Olrnz5/XF198oaFDhyo1NVVDhgzRY489Zu+mAgDszGr9LdZhGIYkaf78+frmm290+vRpDR48WPPmzdPYsWM1YcIELVy4UE5OTvruu+905swZezUbAGAnFy9elCSdPHlSWVlZMgxDVqtV6enpWrBggVatWiUfHx/17dtX0m/nFgAAihsBdgAAAAAAAAAAAKAYtW3bVs8//7wk6aWXXlK7du3UvHlzvfDCC7p06ZL69++v5557rsAIvAAA2EZTnzt3rg4dOqSIiAi9+uqratiwofLy8pSVlaX27duradOm2rt3rxliBADcO8LCwiRdHYk9JiZGkpSenq4pU6bo448/VkJCgjp16qQaNWpIEnfqAADYjcWgGxUAAAAAAAAAAABQLPLy8szRdEePHq0ffvhBx48fl4uLixwcHPS3v/1Nffv2VdWqVe3cUgBASbR161Y1b95ckrRq1Sq1a9dO0m/nlwsXLqh58+aKj4/X3r17VbNmTXs2FwBQzOLj49WuXTslJCSoZs2a8vHx0enTpxUXF6esrCx17txZn332mYKDg+3dVADAPY4AOwAAAAAAAAAAAFCMcnNz5eDgIEnav3+/Tp06JXd3d5UuXVp16tSxc+sAACXZ6tWr1aFDB1WpUkU7d+6Ut7e3cnJy5OjoqNTUVH300UcaO3asGjZsqG3btpnnGwDAvSM2Nlbdu3dXXFycsrOzJUk1atRQp06d9PLLLysoKMjOLQQAQHK0dwMAAAAAAAAAAACAe4mDg4M5Um5ISIhCQkLs3SQAwB2iQoUK8vb2VkZGhvbu3avWrVvL0dFRly9f1pQpUzR9+nSVLVtWw4cPl4ODgwzDkMVisXezAQDFqFatWvr111+1YcMGJSYmytHRUd27d1f58uVVpkwZezcPAABJjMAOAAAAAAAAAAAAAABwR0hOTlaXLl0UGRmpVq1aqVu3bgoJCdH333+vzZs36+LFi3ryySc1evRoValSxd7NBQAAAIAiEWAHAAAAAAAAAAAAAAC4Qxw8eFDt2rVTUlKSJMnFxUWZmZny9fVV9+7d9corrygoKMjOrQQA2Bt34QAAlGQE2AEAAAAAAAAAAAAAAO4ghw8f1vvvv689e/YoKytLPj4+evnllxUWFiZfX197Nw8AAAAAbogAOwAAAAAAAAAAAAAAwB0mKytL2dnZysrKUtmyZe3dHAAAAAC4aQTYAQAAAAAAAAAAAAAA7nCGYchisdi7GQAAAADwu6z2bgAAAAAAAAAAAAAAAAD+HMLrAAAAAO4UBNgBAAAAAAAAAAAAAAAAAAAAAMWCADsAAAAAAAAAAAAAAAAAAAAAoFgQYAcAAAAAAAAAAAAAAAAAAAAAFAsC7AAAAAAAAAAAAAAAAAAAAACAYkGAHQAAAAAAAAAAAAAAAAAAAABQLAiwAwAAAAAAAAAAAAAAAAAAAACKBQF2AAAAAAAAAAAAAAAAAAAAAECxIMAOAAAAAAAAAAAAAAAAAAAAACgWBNgBAAAAAAAAAAAAAAAAAAAAAMWCADsAAAAAAAAAAAAAAAAAAAAAoFgQYAcAAAAAAAAAAAAAAAAAAAAAFAtHezcAAAAAAAAAAFC8cnJyNH/+fC1fvlybN2/W6dOndeHCBbm5ualChQqqX7++WrRood69eysgIMDezQUAAAAAAAAAAHcRi2EYhr0bAQAAAAAAAAAoHgsWLNDIkSN1+PDhm5q/S5cuGjt2rOrVq3ebWwYAAAAAAAAAAO4FjMAOAAAAAAAAAPeIDz74QH/7299kG9ekbdu2euihhxQaGqry5csrLS1NSUlJWrdunRYtWqT4+HgtXrxYVapU0TfffGPn1gMAAAAAAAAAgLsBI7ADAAAAAAAAwD1g8uTJeuqppyRJlSpV0vTp09W2bdvrzp+bm6vp06frr3/9qx588EEC7AAAAAAAAAAA4JYgwA4AAAAAAAAAd7ljx46pZs2aysjIUJkyZbRjxw4FBQXd1LIXL17U+vXr1bVr19vcSgAAAAAAAAAAcC+w2rsBAAAAAAAAAIDba8KECcrIyJAkffjhhzcdXpckLy+vQuH1+Ph4WSwWWSwWTZkyRZI0Z84cRUREqHLlynJ0dCxydPeFCxeqd+/eqlKlilxcXFS+fHmFh4dr7NixSk1NvW4bxowZY/69G1mzZo0535o1awpNb9u2rSwWi9m22NhYDRkyRAEBAXJ1dZWvr68eeeQRbdmy5YZ/Jzc3V1OmTFGnTp3k4+MjZ2dneXp6Kjg4WB06dNBHH32kmJiYG64DAAAAAAAAAIB7laO9GwAAAAAAAAAAuH0Mw9DUqVMlSR4eHho0aNAtX3///v3Nv1GUjIwMPf7445o7d26B55OTk7VlyxZt2bJFn3/+uRYvXqyGDRve0vZdz9KlS9WnTx9duXLFfO7UqVOaOXOmZs+erX/+85966aWXCi2XmpqqiIgIrV+/vsDz2dnZSklJ0eHDh/Xrr79q586dmjVr1u3eDAAAAAAAAAAA7jgE2AEAAAAAAADgLrZv3z6dP39ektSqVSu5u7vf0vV/+umn2rNnj1q1aqVhw4apZs2aunjxouLj4815BgwYYIbXGzRooJEjRyokJETJycmaPn26pkyZopMnT6pDhw7as2eP/Pz8bmkbr3Xy5Ek9/vjjcnR01EcffWSOyL569Wp9/PHHSklJ0csvv6zq1aurR48eBZYdM2aMGV5/6KGH1K9fP/n7+8vV1VVnzpzRrl27tGjRot8dLR4AAAAAAAAAgHsVAXYAAAAAAAAAuIvt2bPHfNy4cePbsv7+/ftrypQpRYa2Fy9erBkzZkiSOnTooCVLlsjZ2dmc/sADDyg8PFxDhgxRcnKyXnnlFf3888+3vJ35HTp0SJ6entq8ebNCQkLM58PDw9W9e3e1aNFCKSkpGj58uLp06SInJydzHtu29O7dWzNnziy07s6dO+vNN99UcnLybd0GAAAAAAAAAADuVFZ7NwAAAAAAAAAAcPucO3fOfFyhQoXrzpeXl6d9+/Zd9192dnaRy3l5eemLL7647ojjX375pSTJyclJP/zwQ4Hwus0zzzyjjh07SpLmzJmjpKSkm96+P+qdd94pEF63qVu3rt566y1J0okTJzR//vwC00+dOiXp6mj2N1KuXLlb1FIAAAAAAAAAAO4uBNgBAAAAAAAA4C52+fJl87G7u/t150tJSVH9+vWv++/EiRNFLte1a1d5eHgUOS0nJ0dr166VdHWk9apVq1737z/zzDPmMmvWrPm9zfpTLBaLBgwYcN3pgwYNMgP5v/zyS4Fpvr6+kqSff/5ZaWlpt6+RAAAAAAAAAADcpQiwAwAAAAAAAMBdLH+4/MqVK7d8/aGhodeddvToUTPk3axZsxuuJ//0ffv23ZrGXUdAQIC8vb2vO71ChQqqXr26JGnv3r0FptmC75s2bVJAQICGDx+uuXPn6uzZs7etvQAAAAAAAAAA3E0IsAMAAAAAAADAXax8+fLm4xuFrL28vGQYRoF/Nxql3KZs2bLXnZacnGw+rlix4g3X4+PjU+Ryt8PvtUWSKlWqVGRb3nnnHQ0ePFgWi0VnzpzRl19+qV69eqlixYqqV6+eRo8erdOnT9+WdgMAAAAAAAAAcDcgwA4AAAAAAAAAd7EGDRqYj3ft2nXL1+/g4HBT81ksllv+t/+oP9MWJycnTZo0Sfv27dPbb7+tFi1ayNnZWZIUHR2t9957T0FBQZo/f/6tai4AAAAAAAAAAHcVAuwAAAAAAAAAcBerV6+eOQr7+vXrlZaWVmx/u1y5cubj3xuV/NSpU0UuJ0lW628/Zefl5V13HVeuXLmpdt3MCOm2ea5ti02dOnX0/vvva+PGjbp06ZJWrlypQYMGycHBQampqerbt6+SkpJuqj0AAAAAAAAAANxLCLADAAAAAAAAwF3MYrHoiSeekCSlpKToxx9/LLa/XaNGDbm5uUmSIiMjbzjv1q1bzcf16tUrMM3Dw8N8fOHCheuu4+DBgzfVrri4OJ0/f/6608+ePav4+Pgi21IUV1dXdezYUZMnT9b48eMlSenp6Vq0aNFNtQcAAAAAAAAAgHsJAXYAAAAAAAAAuMu98sorcnV1lSS9+eabiouLK5a/6+joqDZt2kiSVq5cqePHj1933n/961/mMm3bti0wLSAgwHy8ffv2665j+vTpN9UuwzD073//+7rTp0yZIsMwJEkdO3a8qXXadOjQwXx87ty5/2lZAAAAAAAAAADuBQTYAQAAAAAAAOAu5+/vr4kTJ0qSLl26pJYtW2rDhg03XMYwDF28ePFP/+3nn39ekpSVlaWnnnpK2dnZheaZPHmyVqxYIUnq1auXfH19C0xv0aKFHB0dJUmffPKJGS7Pb/z48QVGcf8977//vmJjYws9v3//fn344YeSJF9fX3Xv3t2clpycrIULFxb5921s2yEVDN4DAAAAAAAAAICrHO3dAAAAAAAAAADA7ffMM8/oxIkTevfdd3Xy5Em1atVK7du3V9euXVW/fn2VK1dOubm5OnXqlHbu3KkZM2YoOjpakuTg4CBnZ+c/9He7dOmiPn36aObMmVqxYoWaN2+uV155RbVr19aFCxc0ffp0TZ48WZJUrlw5TZgwodA6KlasqD59+mjatGlavny5unXrpueff16VKlVSYmKipk6dqtmzZ6tFixbatGnT77YpKChIZ8+eVfPmzfX666+bI76vWbNGY8eO1aVLlyRJn3/+eYHtTklJUbdu3VS9enX16tVLzZo1U7Vq1eTo6KikpCQtXLjQHEnez89PDz300B96zQAAAAAAAAAAuJtZjBsNFQMAAAAAAAAAuKvMnTtXr776qo4ePfq781osFnXq1Enjx49XvXr1zOfj4+PN0cV/+OEHDRw48IbrycjI0OOPP665c+ded57KlStr8eLFatiwYZHTT58+rVatWunQoUNFTn/sscf09NNPq2PHjpKk1atXm8F0m7Zt22rt2rVq06aNRo0apUceeURpaWmF1mW1WjVu3DiNHDmywPP5t/tGfH19tXDhQoWFhf3uvAAAAAAAAAAA3GsYgR0AAAAAAAAA7iE9e/ZU165dNXfuXC1fvlybN2/WmTNndPHiRbm5ual8+fKqX7++wsPD9eijj95UYPv3uLq6as6cOVq4cKGmTJmiLVu26Ny5c3J3d1fNmjXVo0cPDR8+XKVLl77uOipVqqTIyEh9/PHHmjNnjhITE+Xu7q569eppyJAh6tevn9asWXPTberSpYu2b9+u8ePH69dff1VSUpK8vLzUqlUrjRw5UuHh4YWWqVatmrZu3aolS5Zo06ZNSkhI0OnTp5WamiovLy/VqVNHXbt21ZAhQ1SmTJk/8lIBAAAAAAAAAHDXYwR2AAAAAAAAAMA9If8I7P9L2B0AAAAAAAAAANw6Vns3AAAAAAAAAAAAAAAAAAAAAABwbyDADgAAAAAAAAAAAAAAAAAAAAAoFgTYAQAAAAAAAAAAAAAAAAAAAADFggA7AAAAAAAAAAAAAAAAAAAAAKBYEGAHAAAAAAAAAAAAAAAAAAAAABQLi2EYhr0bAQAAAAAAAAAAAAAAAAAAAAC4+zECOwAAAAAAAAAAAAAAAAAAAACgWBBgBwAAAAAAAAAAAAAAAAAAAAAUCwLsAAAAAAAAAAAAAAAAAAAAAIBiQYAdAAAAAAAAAAAAAAAAAAAAAFAsCLADAAAAAAAAAAAAAAAAAAAAAIoFAXYAAAAAAAAAAAAAAAAAAAAAQLEgwA4AAAAAAAAAAAAAAAAAAAAAKBYE2AEAAAAAAAAAAAAAAAAAAAAAxeL/AKURrElTqK7kAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -750,7 +780,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAC7AAAAPgCAYAAACx8HFwAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdf3jXdb0//vt+wH4AAjr1gDhnB3EzrIQ0BQmw8vQ56lEJT79W2imt06mPFZ1O2jmmZXE8J+x4zrk6ZXU042SeEPETWvk5KTY5arnsB7WJdpxIkjYCQTYGbPv+4Zd9nDDY2NgY3G7XtWuvvV6P5+P5eCu1y3Hf813Q2dnZGQAAAAAAAAAAAAAA2M8Kh3oAAAAAAAAAAAAAAAAODQLsAAAAAAAAAAAAAAAMCgF2AAAAAAAAAAAAAAAGhQA7AAAAAAAAAAAAAACDQoAdAAAAAAAAAAAAAIBBIcAOAAAAAAAAAAAAAMCgEGAHAAAAAAAAAAAAAGBQCLADAAAAAAAAAAAAADAoBNgBAAAAAAAAAAAAABgUAuwAAAAAAAAAAAAAAAyK4qEeAAAAAAAAAAAAAAAYep2dndm+fXs6OjqGehQOYIWFhRkxYkQKCgr2ab0AOwAAAAAAAAAAAAAcwtrb29Pc3JzNmzdn+/btQz0Ow8CIESMyZsyYVFRUpKioqE9rCzo7Ozv301wAAAAAAJAkueSSS/KNb3wjSfLkk0+mqqpqn3utWLEic+fOTZJ8+tOfztVXX93v+XaeEjN79uysWLGi3/0AAAAAAIaL9vb2PP3002lra8vYsWMzevToFBUV7fPp2hzcOjs7097enhdeeCHPP/98SkpKcuyxx/YpxO4EdgAAAACAQ8jkyZPzm9/8Jknyy1/+MlOnTt1j/Rvf+Mb88Ic/TJJMmjQpTz/99B7rW1paMn78+Gzbti3FxcXZsGFDRo8ePTDD98E//dM/ZePGjRk3blw+8pGPDPr+AAAAAADDRXNzc9ra2lJZWZmysrKhHodhYvTo0Rk7dmzWrFmT5ubmHH300b1eW7gf5wIAAAAA4ACz8+TyJHs9aXzbtm357//+766v165dmyeeeGKPa1auXJlt27YlSU499dQhCa8nLwbYr7nmmvzTP/3TkOwPAAAAADAcdHZ2ZvPmzRk7dqzwOn1WVlaWww47LJs3b05nZ2ev1wmwAwAAAAAcQl4aYL/vvvv2WPvwww+ntbW12729rXlpKP6le918883p7OxMZ2dnqqqqej8wAAAAAAD7zfbt27N9+/YhO4yE4W/MmDFdf456S4AdAAAAAOAQMmfOnK7rH/3oR3s8EWVnGH3MmDE588wzu93b25qke4AdAAAAAIADT0dHR5KkqKhoiCdhuNr5Z2fnn6XeEGAHAAAAADiETJw4MVOmTEmSNDc355e//GWPtTvD6GeeeWbe8IY3dLu3Oy0tLfnJT36SJBk5cmRmzpw5MEMDAAAAALBfFRQUDPUIDFP78mdHgB0AAAAA4BDz0pPRewqkb9u2LQ8++GCSF09tnz17dpLkmWeeyerVq3e7ZuXKlV1vEfq6170uZWVlXc8uueSSFBQUpKCgIE1NTXuc7wc/+EEuvPDCTJgwIaWlpamsrMy8efNyzz337PW1VVVVpaCgIE899VSS5Kmnnura96UfV1999R77bN26Nf/8z/+cM844I0cccUTKysoyefLk/OVf/mWefPLJvc4BAAAAAADsngA7AAAAAMAh5qUB9vvuu2+3NQ8//HBaW1uTvBhgP/300zNy5Mg9rnlpGP6le/RWR0dHLr300rz5zW/OsmXL8rvf/S5tbW15+umnc8cdd+RP/uRP8pGPfKTPffvqySefzGmnnZbLL788Dz30UP7whz9k69at+c1vfpMvf/nLOfnkk/d4Ej0AAAAAANCz4qEeAAAAAACAwTVnzpyu6x/96Efp7Ozc5S0+dwa0x4wZk2nTpqW4uDinnXZaHnjggaxYsSLvf//7d+nb3wD7Rz/60Xzta19LkhQVFeWd73xn5syZk5KSkvzsZz/L17/+9dxwww15+umne+xx4403pqWlJZdddll+//vf58gjj8yNN964S111dfVu12/atCnnnHNOGhoacvbZZ+e8887L0UcfnXXr1uUb3/hGfvrTn2bLli1529veloaGhowfP77PrxMAAAAAAA5lAuwAAAAAAIeYo48+OjU1NWloaMgf/vCH/PznP89rXvOabjU7w+gzZ85McfGLP0p+/etf3xVgf7mWlpb85Cc/SZKUlpbmjDPO6NNMK1euzL/8y78kSUaNGpXvf//7OfPMM7uev+Md78hHP/rRnHXWWVm6dGmPfc4+++wk6Tqpvby8PBdccEGv53j00UdTXFyc73znO5k/f363Zx/84Adz3nnn5fvf/36effbZ3HTTTfnYxz7W694AAAAAAMPZbze2ZsOWbUM9Rr+NHzUyx4wrG+oxBlRVVVWeeuqp3HTTTbnkkkt6/WyoCLADAAAAAByC5s6dm4aGhiQvhtVfGmDftm1bHnzwwSTdT2ufPXt2Pv/5z+d3v/tdGhsbu51ivnLlymzfvj1JcsYZZ6SkpKRP8yxatCidnZ1Jkuuuu65beH2nCRMm5Lbbbsu0adPS3t7ep/59ceWVV+4SXk+S4uLifPGLX8z3v//9JMn3vvc9AXYAAAAA4JDw242tOesLK9K2o2OoR+m3kuLC3PvxOfslxN7Z2ZklS5bkW9/6Vn7605/mueeeS1FRUY4++uhMmDAhp512WmbNmpU3vOENOeywwwZ8/766+uqrkySXXHJJqqqqBm3fwkHbCQAAAACAA8bcuXO7ru+7775uzx566KG0trYmeTG0vtOMGTO6TmN/+ZqXfv3S0HtvtLW15a677kqSjB07Nu973/t6rH3Vq17Vdcr6/lBYWJjLL7+8x+fV1dWZNGlSkmTVqlX7bQ4AAAAAgAPJhi3bDorwepK07ejYLyfJb9y4MXPnzs2f//mfZ9myZVmzZk127NiRkpKSrFmzJitXrswXv/jFzJs3b4/vNDrQ/viP/zgnnnhixo4du8uza665Jtdcc02ampoGbZ5EgB0AAAAA4JA0e/bsFBQUJEnq6urS0fH//uJhxYoVSZLRo0fnta99bdf90aNHZ/r06d1qXr4m6R6O742f//zn2bbtxb8smDlz5l5Pb3/DG97Qp/59ceKJJ+bwww/fY83OAPuGDRv22xwAAAAAAAwv7373u3P//fenqKgoCxYsyOrVq9PW1pb169entbU1P//5z3Pdddfl1a9+9aDO9cMf/jCNjY258MILB3XfPRFgBwAAAAA4BB155JF55StfmeTFIPbPfvazrmc7w+gzZ87sOnF9p50nsr80sL5ly5Y88sgjSZKysrK87nWv69MszzzzTNf15MmT91rfm5p9VVFRsdeanQH7tra2/TYHAAAAAADDx+OPP57vfve7SZJrr702X/jCF3LCCSeksPDFqHZxcXFe9apX5ROf+ER+9rOf5a1vfetQjjvkBNgBAAAAAA5RLz0pfWcgva2tLQ899FCS/xdWf6md95577rn8+te/TpKsXLky27dvT/Ji6H3kyJF9muOFF17oui4vL99r/ahRo/rUvy92/mUCAAAAAAD01ksPiTn//PP3Wl9WVtbt66qqqhQUFOTmm2/O5s2bc8UVV+TEE09MWVlZKioqcsEFF+Thhx/ep9le2nunSy65pOtdWpMX/76goKCg66Oqqmqf9uotP4kHAAAAADhEzZkzp+v6vvvuS5I8/PDDaW1t3eX5TmeeeWaKioq6rXnpaewvDcX31ujRo7uuW1pa9lq/ZcuWPu8BAAAAAACDYe3atfu8dsOGDTn11FPz93//92lqasrIkSOzfv363HnnnZkxY0b+/d//fUBmHDt2bI4++uiur8ePH5+jjz666+PII48ckH16IsAOAAAAAHCImj17dtcJK3V1dWlvb+8Ko48aNSqnnnrqLmsOO+ywvPrVr04ycAH2Y445puv6iSee2Gt9b2oAAAAAAGCwnHrqqV0/b1+wYEFWr169T32uueaaPPfcc/nP//zPbNmyJc8//3x+/etfZ/bs2eno6Mj73//+/PSnP+33vDfccEN+97vfdX29dOnS/O53v+v6+MlPftLvPfZEgB0AAAAA4BB1xBFH5FWvelWS5Pnnn8+jjz7aFUafMWNGiouLd7tu9uzZSZL7778/L7zwQh555JEkL56kvrvQ+9686lWvSklJSZJk5cqVaWtr22P9D3/4w732LCx88cffnZ2dfZ4HAAAAAAD6oqqqKu973/uSJL/85S9TXV2dadOm5a/+6q/y7//+71m1alWvfl79/PPP5zvf+U4uuuiirp/R19TU5Hvf+15OOOGE7NixI3/3d3+3X1/LYBBgBwAAAAA4hL30xPTvf//7eeihh5Ikc+bM6XHNzgB7c3NzvvKVr2T79u1JkjPPPLPH0PuelJSU5E//9E+TvPjD+T29BeqqVatyzz337LXn6NGjkyRbtmzp8zwAAAAAANBXX/rSl/J3f/d3GTVqVDo7O/Poo4/mS1/6Ut773vfm5JNPzh/90R/lYx/7WJ599tkee8ycOTNveMMbdrlfVlaWv/7rv07y4s/yn3/++f32OgaDADsAAAAAwCHspUH1f/mXf0lra+su919u1qxZXW+F+g//8A9d918ahu+rBQsWdPX8m7/5mzz44IO71Dz77LN561vfmvb29r32O/7445Mk69evz5o1a/Z5LgAAAAAA6I3i4uJ85jOfyW9/+9t885vfzPve9768+tWvzsiRI5Mkzz33XL74xS9m6tSp+fGPf7zbHmeddVaP/Xc+6+joyE9/+tOBfwGDSIAdAAAAAOAQ9vrXvz6FhS/+qPi5555LkpSXl+fUU0/tcc3hhx+ek08+uduapH8B9pkzZ+bDH/5wkmTz5s15/etfn/e85z25+eabc+utt+Zv/uZvctJJJ+XXv/515s2bt9d+b3zjG7uuL7zwwnz1q1/N3Xffne9///v5/ve/nyeeeGKfZwUAAAAAgJ6MHTs2tbW1+epXv5qf/exnef755/N//+//zXnnnZfkxXc3fctb3pKtW7fusvaYY47pse9Ln730Z/PDkQA7AAAAAMAhbPz48XnNa17T7d6MGTMyYsSIPa6bPXt2t68PO+ywTJs2rV+zfPGLX8x73/veJMmOHTty88035z3veU/e8Y535B/+4R/yhz/8IZdffnlX0H1P/uIv/iLV1dVJkp/+9Ke57LLLcs455+R//a//lf/1v/5XFi9e3K9ZAQAAAACgN0pLS/PGN74x/+f//J9cfPHFSZK1a9fm+9///hBPNnQE2AEAAAAADnEvPzl9zpw5e13z8gD7rFmzUlRU1K85CgsL87WvfS3f+9738md/9mc56qijMnLkyEyaNCkXXnhhvv/97+ef/umfetVr1KhReeihh3LVVVflta99bcaOHdt10jwAAAAAAAyFyy67rOv6scce2+X5b3/72x7XvvTZUUcdNbCDDbLioR4AAAAAAICh9YUvfCFf+MIX+rTmLW95Szo7O3tdf/PNN+fmm2/uVe2b3/zmvPnNb+7x+Zw5c3q199ixY3PNNdfkmmuu2WttX17LihUrel0LAAAAAAA7jR49uuu6pKRkl+f33Xdfj2t3PissLMwpp5wyIPMUFBSks7OzTz8jHwiOmwEAAAAAAAAAAAAA2EdPPvlkVq9evde6b3zjG13X06ZN2+X5Aw88sNtDVLZu3ZpFixYlSf7kT/4k48aN2+dZX+qwww5LkmzcuHFA+vWWADsAAAAAAAAAAAAAwD761a9+lZqampxzzjm55ZZb0tTU1PVs+/btefTRR/Oe97wn119/fZLktNNOy5lnnrlLn7Fjx+Ytb3lLlixZkh07diRJGhsbc84556SxsTFFRUX5zGc+M2BzT506NUnyH//xH2lpaRmwvntTPGg7AQAAAAAAAAAAAAAcZEaMGJGOjo7cfffdufvuu5MkI0eOzOjRo7Nhw4Z0dnZ21U6bNi133HFHCgt3PYf805/+dL7yla/koosuSklJSUpLS/P8888nSQoKCvJv//Zvee1rXztgc3/gAx/IypUrc/vtt+f//J//k6OOOirFxcWZNGlSHnjggQHb5+UE2AEAAAAAAAAAAAAA9tGf/Mmf5PHHH8/dd9+dBx54IKtWrcratWuzcePGlJeXZ+LEiTnllFMyb968XHTRRbsNryfJ+PHj8+Mf/zgLFy7M7bffnqeffjqHH354Zs6cmSuuuCJnnHHGgM5dW1ubJPnKV76SX/7yl1m3bl06OjoGdI/dKeh8aaQfAAAAAAAAAAAAADgkbN26NU8++WSOP/74lJaW9lj3242tOesLK9K2Y/+Hm/e3kuLC3PvxOTlmXNlQj9KlqqoqTz31VG666aZccsklQz1On/T2z9BLOYH9ANDR0ZFnnnkmY8aMSUFBwVCPAwAAAAAAAAAAAMABqrOzM5s3b87EiRN7PMl7oB0zriz3fnxONmzZNij77U/jR408oMLrhyIB9gPAM888k2OPPXaoxwAAAAAAAAAAAABgmHj66aczadKkQdvvmHFlgt8MCAH2A8CYMWOSvPh/JIcddtgQT8NAqq6uzrp16zJhwoQ0NjYO9TgAAABwUPLf3wD0lu8ZAPSG7xcA9JbvGQAMlU2bNuXYY4/typ/CcCPAfgAoKChIkhx22GEC7AeZnW/NUVhY6N8tAAAA7Cf++xuA3vI9A4De8P0CgN7yPQOAobYzfwrDjQA7AAAAAAAAAAAAAMAQaWpqGuoRBlXhUA8AAAAAAAAAAAAAAMChQYAdAAAAAAAAAAAAAIBBIcAOAAAAAAAAAAAAAMCgEGAHAAAAAAAAAAAAAGBQCLADAAAAAAAAAAAAADAoBNgBAAAAAAAAAAAAABgUAuwAAAAAAAAAAAAAAAwKAXYAAAAAAAAAAAAAAAaFADsAAAAAAAAAAAAAAINCgB0AAAAAAAAAAAAAgEEhwA4AAAAAAAAAAAAAwKAQYAcAAAAAAAAAAAAAYFAUD/UAAAAAAAAAAAAAAMABbuPTScv6oZ6i/8qPSMYdO9RTHNIE2AEAAAAAAAAAAACAnm18OvnX6cmOtqGepP+KS5IP1e/XEHt7e3tuv/32LF++PA899FCee+65tLS0ZNy4cZkyZUpmzZqVd77znZk6dWqPPe6///5861vfyo9+9KOsW7cuW7duzZFHHplXv/rVOe+883LxxRentLS0x/VXX311rrnmml3ujxw5MkcccUROPvnkXHTRRbn44oszYsSIAXndvSXADgAAAAAAAAAAAAD0rGX9wRFeT158HS3r91uA/aGHHsrFF1+c1atXd90bMWJExowZk/Xr12flypVZuXJl/v7v/z7z5s3LrbfempEjR3bVrl+/Pu9+97tz9913d90rKSlJaWlp1q5dm7Vr1+auu+7K5z73udx8880566yz9jrT0Ucf3XW9efPmrFu3LuvWrcs999yTr3zlK7nnnnsyfvz4AfonsHeFg7YTAAAAAAAAAAAAAMBB6rvf/W7mzJmT1atX54gjjsjChQuzevXqbNu2LevXr8+2bdvyk5/8JJ/85Cdz2GGHZenSpWlpaela/+yzz+b000/P3XffnaKionz4wx/Or371q2zdujUbN27Mhg0bctNNN+XYY4/N008/nTe/+c1ZtmzZXuf63e9+1/WxZcuWPPXUU7n00kuTJI888kj+9//+3/vrH8luCbADAAAAAAAAAAAAAPTD448/ntra2rS1teWkk07Kz372s3zyk5/MCSec0FVTVFSU1772tVm4cGGefPLJnH/++V3POjs78453vCNPPPFERowYkTvuuCP//M//nJNOOqmrZty4cbnkkkvy6KOP5tWvfnW2b9+eiy++OL/5zW/6NGtlZWVuvPHGrtPb//M//zMvvPBCP/8J9N5BE2B/6qmnsmDBglRXV2fUqFE5/PDDc+qpp+Yf//Efu/1mwkD4r//6r1xyySWZPHlyRo0albFjx2bKlCmZP39+/u3f/m1Q/wUCAAAAAAAAAAAAAEPrb//2b7Np06aUlpbmjjvuyKRJk/ZYf/jhh2fZsmUZO3ZskmT58uW59957kySf+tSnct555/W49ogjjsh3vvOdlJaWZtOmTfn0pz+9TzO/+c1vTpJs27Ytjz/++D712BcHRYD9u9/9bl71qlfl+uuvz2OPPZaWlpZs2LAhjzzySD7xiU/klFNOyRNPPNHvfTZs2JALLrggb3rTm/KNb3wjv/nNb9LS0pJNmzbl8ccfz+23354PfvCDA7IXAAAAAAAAAAAAAHDge/bZZ7NkyZIkyTvf+c5MmTKl12sLCgqSJF/60peSJGPGjMmCBQv2uu6EE07I29/+9iTJbbfdlubm5r6Onc7Ozq7r9vb2Pq/fV8M+wP7oo4/mrW99azZt2pTRo0fnc5/7XP77v/87P/zhD3PppZcmSVavXp1zzjknmzdv3ud9nn/++bzpTW/KnXfemSS58MIL8x//8R956KGH8pOf/CRLly7N5ZdfvtfflgAAAAAAAAAAAAAADh733XdfOjo6kryYMe6rHTt2pK6uLkly9tlnZ/To0b1aN2/evK71P/rRj/q87w9+8IMkL4bojz/++D6v31fFg7bTfnL55ZentbU1xcXFueeee3LGGWd0PTvrrLNywgkn5BOf+ERWr16dRYsW5eqrr96nfT784Q+nvr4+JSUl+c///M/82Z/9Wbfnr33ta3PhhRfmi1/84qD+BgIAAAAAAAwn7e3tqaury7p16zJhwoTMmjUrRUVFQz0WAAAAAMA++9WvftV1fcopp/R5fVNTU7Zs2dLn9a95zWu6rn/xi190Bdr3Zs2aNbn22mtz7733JknOO++8HHHEEb0fuJ+G9QnsP/7xj7t+2+C9731vt/D6TgsWLEhNTU2S5IYbbsj27dv7vM8DDzyQb37zm0mSa6+9dpfw+ksVFBSkuHjY/14AAAAAAAAMuKVLl2by5MmZO3du3vGOd2Tu3LmZPHlyli5dOtSjAQAAAADss/Xr13ddH3744f1a35cgeUVFxW57vNwf/dEfdX2MGjUqxx13XL761a8mSaqrq/OlL32pzzP3x7AOsC9btqzr+j3vec9uawoLC/Pud787SbJx48bcd999fd7nX//1X5MkY8eOzYc+9KG+DwoAAAAAAIe4pUuXZv78+Tn55JPz4IMPZvPmzXnwwQdz8sknZ/78+ULsAAAAAAD90NbW1uOzZ599tuujpaWl6/673/3uPProoznmmGMGY8QuwzrA/sADDyRJRo0alenTp/dYN3v27K7rlStX9mmPbdu25c4770ySvOlNb0ppaWmSF9/i9Omnn05TU1O2bt3a19EBAAAAAOCQ0d7engULFuTcc8/NsmXLcvrpp2f06NE5/fTTs2zZspx77rn5+Mc/nvb29qEeFQAAAACgz156avof/vCHfq3f00nqL9fc3Nx1PX78+B7rOjs709nZmY6OjjzzzDP58pe/nHHjxuWWW27pOuh7MA3rAHtDQ0OSZPLkySkuLu6xrrq6epc1vfXzn/+8K6B+8sknZ9OmTfnIRz6SioqKVFZW5vjjj8/YsWPzpje9KStWrOj7iwAAAAAAgINcXV1dmpqacuWVV6awsPtfTRQWFuaKK67Ik08+mbq6uiGaEAAAAABg373yla/sun700Uf7vP64447LqFGjkiQ//elPe73upXudeOKJe60vKCjIhAkT8v73vz933HFHCgoK8olPfCL33ntvn2fuj2EbYN+6dWvXbw1MmjRpj7Xjx4/v+pf69NNP92mfX//6113XHR0dee1rX5sbbrghGzdu7Lq/bdu2/Nd//VfOOuusXHfddXvt2dbWlk2bNnX7AAAAAACAg9W6deuSJFOnTt3t8533d9YBAAAAAAwnc+fO7Tq844477ujz+hEjRmTWrFlJknvuuSebN2/u1bqlS5d2Xc+ZM6dPe86ZMyfvete70tnZmQ9/+MOD+g6ZwzbA/tJ/MaNHj95r/c4A+wsvvNCnfV56jP91112Xxx9/PG9+85vz4x//OFu3bs1zzz2Xf/u3f8vYsWPT2dmZT37yk7nzzjv32HPhwoUZO3Zs18exxx7bp5kAAAAAAGA4mTBhQpJk1apVu32+8/7OOgAAAACA4eToo4/OW97yliTJt771raxevbrXazs7O5MkH/zgB5O8mHW+/vrr97ru8ccfz7e//e0kyZlnnplXvOIVfR07V111VYqKivLrX/863/jGN/q8fl8N2wD71q1bu65Hjhy51/qSkpIkSWtra5/22bJlS7c93/SmN2X58uU59dRTU1JSkiOPPDIf+MAHsnz58q7fnLjiiiu6/jDtzhVXXJHnn3++66Ovp8IDAAAAAMBwMmvWrFRVVeXzn/98Ojo6uj3r6OjIwoULc/zxx3edMAQAAAAAMNxce+21GT16dFpbWzNv3rz89re/3WP9hg0b8pa3vCXPP/98kuTcc8/tOkX9c5/7XJYvX97j2vXr1+eiiy7K1q1bU1BQkGuvvXafZv7jP/7jvPWtb02SfPazn8327dv3qU9fDdsAe2lpadf1tm3b9lrf1taWJCkrK9vnfZIXT2EvKirape7MM8/MvHnzkiQNDQ355S9/2WPPkpKSHHbYYd0+AAAAAADgYFVUVJRFixZl+fLlueCCC/Lggw9m8+bNefDBB3PBBRdk+fLl+cIXvrDbn78DAAAAAAwHU6ZMyTe/+c2MHDkyv/rVr/Ka17wm1113XZ544omumvb29jz66KO56qqr8opXvCJLly7telZQUJBbb701r3jFK7J9+/ZceOGFufzyy9PQ0NBV8/zzz+cb3/hGpk2blp///OdJXjxFffbs2fs89xVXXJGCgoI0NTXl61//+j736YthG2AfM2ZM1/ULL7yw1/qdJ6mPHj16n/c58sgjc8opp/RY+yd/8idd1z/5yU/6tA8AAAAAABzM5s2blyVLluSXv/xlZsyYkcMOOywzZszIqlWrsmTJkq5DYgAAAAAAhqsLLrgg9957byZPnpzm5uZ88pOfzAknnJCSkpIcccQRGTlyZKZNm5bPfvazef755/P2t789o0aN6lr/R3/0R3nooYdy9tlnZ8eOHfnnf/7nnHTSSSkrK8v48eMzbty4XHLJJVmzZk1GjBiRf/iHf8jVV1/dr5mnTp2aP/uzP0vy4snvOw8N35+K9/sO+0lpaWmOOOKIrF+/PmvXrt1j7YYNG7oC7Mcee2yf9nlp/aRJk3pd+/vf/75P+wAAAAAAwMFu3rx5Of/881NXV5d169ZlwoQJmTVrlpPXAQAAAOBAV35EUlyS7Nj/4eb9rrjkxdezn8ycOTONjY35zne+k+XLl+fhhx/Oc889l82bN+fwww9PdXV1Zs+enXe961058cQTd1l/5JFH5gc/+EHuvffe3HrrrV0/T924cWNXzcSJE3PfffdlypQpAzLzpz71qdx5551Zu3ZtvvKVr+R//+//PSB9ezJsA+xJctJJJ6Wuri5PPPFEduzYkeLi3b+cxsbGruuampo+7fHKV76y67q9vX2PtS993tMsAAAAAABwKCsqKsqcOXOGegwAAAAAoC/GHZt8qD5pWT/Uk/Rf+REvvp79qKioKG9729vytre9bZ97nHXWWTnrrLO63bvtttvy9re/Pc8880y++c1v5rOf/WyP66+++upen85+6qmnprOzc59n7athnbI+88wzU1dXly1btqS+vj6ve93rdlt3//33d13PnDmzT3scd9xxqayszJo1a9LU1JTOzs4UFBTstvY3v/lN1/UxxxzTp30AAAAAAAAAAAAA4IA17tj9Hvxmz9761rdm3bp1+ehHP5prr702Y8aMySc+8YmhHqvPCod6gP644IILuq5vuumm3dZ0dHTklltuSZKMGzcuc+fO7fM+b3nLW5IkmzZtyg9/+MMe65YuXdp1feaZZ/Z5HwAAAAAAAAAAAACAnnzkIx/Jxz/+8STJ3/zN3+RLX/rSEE/Ud8M6wH7aaadl1qxZSZKvf/3refDBB3epWbRoURoaGpIkl19+eUaMGNHt+YoVK1JQUJCCgoJccsklu93nIx/5SEpLS5MkH/vYx7Jp06ZdahYvXpwVK1YkSc4555wce6zfMAEAAAAAAAAAAAAABtY//uM/prOzM52dnfngBz841OP02bAOsCfJDTfckLKysuzYsSNnn312Fi5cmIceeij33Xdf3v/+93cdiz9lypQsWLBgn/aorKzMZz7zmSTJL3/5y5x22mm56aabUl9fn/vuuy8f/vCHu8Lvhx12WL74xS8OyGsDAAAAAAAAAAAAADiYFA/1AP11yimn5LbbbkttbW02bdqUK6+8cpeaKVOm5K677sqYMWP2eZ+//uu/zh/+8Idcd911eeyxx/IXf/EXu9QcddRRWbZsWU444YR93gcAAAAAAAAAAAAA4GA17E9gT5Lzzjsvv/jFL/LRj340U6ZMSXl5ecaNG5fXvva1ue666/Loo49m8uTJ/d5n4cKFWblyZd71rnelqqoqJSUlGTt2bE499dR89rOfzerVq3PGGWcMwCsCAAAAAAAAAAAAADj4DPsT2Hc67rjjcv311+f666/v07o5c+aks7Oz1/VnnHGGkDoAAAAAAAAAAAAAwD44KE5gBwAAAAAAAAAAAADgwCfADgAAAAAAAAAAAADAoBBgBwAAAAAAAAAAAABgUAiwAwAAAAAAAAAAAAAwKATYAQAAAAAAAAAAAAAYFALsAAAAAAAAAAAAAAAMCgF2AAAAAAAAAAAAAAAGhQA7AAAAAAAAAAAAAACDQoAdAAAAAAAAAAAAAIBBUTzUAwAAAACw/7W0tKSxsbHbvdbW1jQ1NaWqqiplZWXdnlVXV6e8vHwwRwQAAAAAAOAAtu6FddnQtmGox+i38SXjM2H0hKEe45AmwA4AAABwCGhsbMz06dN7XV9fX59p06btx4kAAAAAAAAYLta9sC7nLjs329q3DfUo/TayaGSWX7B8v4bY29vbc/vtt2f58uV56KGH8txzz6WlpSXjxo3LlClTMmvWrLzzne/M1KlTe+zxi1/8Iv/xH/+R++67L0899VQ2bNiQsrKyHHPMMTn11FMzb968/Omf/mlGjBjRbd2cOXNy//3379KvvLw8xxxzTGbMmJEPfOADOf300wf8dfeWADsAAADAIaC6ujr19fXd7jU0NKS2tjaLFy9OTU3NLvUAAAAAAACQJBvaNhwU4fUk2da+LRvaNuy3APtDDz2Uiy++OKtXr+66N2LEiIwZMybr16/PypUrs3Llyvz93/995s2bl1tvvTUjR47sqt28eXM+8IEP5NZbb01nZ2eSpKCgIGPHjk1ra2saGhrS0NCQW265JX/8x3+c//iP/8jrXve6XeYYMWJEDj/88K6vm5ub8/jjj+fxxx/PLbfckk9/+tP59Kc/vV/+GexN4ZDsCgAAAMCgKi8vz7Rp07p97Ayt19TU7PKsvLx8iCcGAAAAAACA4eW73/1u5syZk9WrV+eII47IwoULs3r16mzbti3r16/Ptm3b8pOf/CSf/OQnc9hhh2Xp0qVpaWnpWr9hw4acccYZ+da3vpUkedvb3pb7778/W7duzYYNG7J169b89re/zde+9rW86lWvym9+85s8+OCDu51lxowZ+d3vftf10dLSknvuuSeTJ09OZ2dnrr766tx1112D8s/l5QTYAQAAAAAAAAAAAAD64fHHH09tbW3a2tpy0kkn5Wc/+1k++clP5oQTTuiqKSoqymtf+9osXLgwTz75ZM4///xuPd75znfmV7/6VYqLi3Pbbbfl1ltvzetf//puJ7RPnDgx733ve/Ozn/0sX/rSl1JaWtqr+UaOHJk3velNufPOO7v6/eu//usAvPK+Kx6SXQEAAAAAAAAAAAAADhJ/+7d/m02bNqW0tDR33HFHJk2atMf6ww8/PMuWLUtnZ2eS5Hvf+16+973vJUmuuuqqXHTRRXtcX1BQkL/8y79MR0dHn+Y86aSTMn369Dz44IP5yU9+0qe1A8UJ7AAAAAAAAAAAAAAA++jZZ5/NkiVLkrx4ivqUKVN6vbagoCDJ/zsNfezYsfnYxz7W6/WFhX2Pg+8M12/atKnPaweCADsAAAAAAAAAAAAAwD667777uk5Cv/DCC/u8fseOHfnRj36UJHnTm96UUaNGDeh8L9fU1JTkxVPgh4IAOwAAAAAAAAAAAADAPvrVr37VdX3KKaf0ef1TTz2VF154YZ/X98WPf/zj1NfXJ0lOP/30/bpXTwTYAQAAAAAAAAAAAAD20fr167uu9+VU8/6u741nnnkm3/zmN3P++eeno6MjBQUF+chHPrJf9tqb4iHZFQAAAAAAAAAAAACA/eL+++9PQUHBbp+NGDEi119/febMmTO4Q/3/BNgBAAAAAAAAAAAAAPbREUcc0XX9hz/8IRMnTuzX+oEwYsSIrtPcCwoKUlZWlokTJ2bGjBl53/velylTpgzIPvtCgB0AAAAAAOAQ0NLSksbGxm73Wltb09TUlKqqqpSVlXV7Vl1dnfLy8sEcEQAAAACGpVe+8pVd148++mifA+zHHXdcRo8enRdeeCGPPvrogMw0Y8aMrFixYkB6DTQBdgAAAAAAgENAY2Njpk+f3uv6+vr6TJs2bT9OBAAAAAAHh7lz56awsDAdHR254447cs455/RpfXFxcV7/+tfn7rvvzv/9v/83W7ZsyahRo/bTtEOvcKgHAAAAAAAAYP+rrq5OfX19t4/FixcnSRYvXrzLs+rq6iGeGAAAAACGh6OPPjpvectbkiTf+ta3snr16l6v7ezsTJL81V/9VZLk+eefz/XXX9/r9R0dHX2Y9MAgwA4AAAAAAHAIKC8vz7Rp07p91NTUJElqamp2eVZeXj7EEwMAAADA8HHttddm9OjRaW1tzbx58/Lb3/52j/UbNmzIW97yljz//PNJkj/90z/N2WefnST5zGc+kyVLlux1zxtvvDFf/epX+z/8IBNgBwAAAAAAAAAAAADohylTpuSb3/xmRo4cmV/96ld5zWtek+uuuy5PPPFEV017e3seffTRXHXVVXnFK16RpUuXduvxrW99KzU1NdmxY0f+/M//PO985ztTV1eX7du3d9WsW7cu3/jGNzJ9+vS8//3vT2tr66C9xoFSPNQDAAAAAAAAAAAAAAAMdxdccEHuvffeXHLJJXniiSfyyU9+Mp/85CczcuTIjB49Ohs3bkxHR0eSpKCgIG9/+9szatSorvVHHHFEHnrooVx66aX5zne+k29961v51re+lYKCgowbNy6tra3ZunVrV31NTU1mzZo16K+zvwTYAQAAAOizlpaWNDY2drvX2tqapqamVFVVpaysrNuz6urqlJeXD+aIAAAAAAAAMOhmzpyZxsbGfOc738ny5cvz8MMP57nnnsvmzZtz+OGHp7q6OrNnz8673vWunHjiibusP+yww3LbbbflyiuvzOLFi7NixYo89dRT2bBhQ8rKynL88cfntNNOy0UXXZQ3v/nNKSoqGoJX2T8C7AAAAAD0WWNjY6ZPn97r+vr6+kybNm0/TgQAAAAAAMD+Mr5kfEYWjcy29m1DPUq/jSwamfEl4/frHkVFRXnb296Wt73tbfvc49WvfnVe/epX93ndihUr9nnPwSLADgAAAECfVVdXp76+vtu9hoaG1NbWZvHixampqdmlHgAAAAAAgOFpwugJWX7B8mxo2zDUo/Tb+JLxmTB6wlCPcUgTYAcAAACgz8rLy3s8Ub2mpsZp6wAAAAAAAAeZCaMnCH4zIATYAQAAAACA/aalpSWNjY3d7rW2tqapqSlVVVUpKyvr9qy6ujrl5eWDOSIAAAAAAINIgB0AAAAAANhvGhsbM3369F7X19fXeycPAAAAAICDmAA7AAAAAACw31RXV6e+vr7bvYaGhtTW1mbx4sWpqanZpR4AAAAAgIOXADsAAAAAALDflJeX93iiek1NjdPWAQAAAAAOMYVDPQAAAAAAAAAAAAAAAIcGAXYAAAAAAAAAAAAAAAaFADsAAAAAAAAAAAAAAINCgB0AAAAAAAAAAAAADmGdnZ1DPQLD1L782RFgBwAAAAAAAAAAAIBDUGHhi1Hi9vb2IZ6E4Wrnn52df5Z6Q4AdAAAAAAAAAAAAAA5BI0aMyIgRI/LCCy8M9SgMU5s3b+76c9RbAuwAAAAAAAAAAAAAcAgqKCjImDFj8vzzz6e1tXWox2GYaW1tzaZNmzJmzJgUFBT0el3xfpwJAAAAAAAAAAAAADiAVVRUpLW1NWvWrMlhhx2WMWPGpKioqE+BZA4dnZ2daW9vz+bNm7Np06aUlJSkoqKiTz0E2AEAAAAAAAAAAADgEFVUVJRjjz02zc3N2bx5czZu3DjUIzEMjBgxIuPGjUtFRUWKior6tFaAHQAAAAAAAAAAAAAOYUVFRTn66KNz1FFHZfv27eno6BjqkTiAFRYWZsSIEft8Sr8AOwAAAAAAAAAAAACQgoKCjBw5cqjH4CBXONQDAAAAAAAAAAAAAABwaBBgBwAAAAAAAAAAAABgUAiwAwAAAAAAAAAAAAAwKATYAQAAAAAAAAAAAAAYFALsAAAAAAAAAAAAAAAMCgF2AAAAAAAAAAAAAAAGhQA7AAAAAAAAAAAAAACDQoAdAAAAAAAAAAAAAIBBUTzUAwAAAAAw8NasWZPm5uY91jQ0NHT7vCcVFRWprKwckNkAAAAAAACAQ5cAOwAAAMBBZs2aNampPjEtrVt7VV9bW7vXmvKy0jQ0PibEDgAAAAAAAPSLADsAAADAQaa5uTktrVuz+MKy1BxZ2GNd647ONG3sSNW4wpQVF/RY1/D7jtTe0Zrm5mYBdgAAAAAAAKBfBNgBAAAADlI1RxZm2oSiPdbMPHaQhgEAAAAAAABI0vMRXAAAAAAAAAAAAAAAMIAE2AEAAAAAAAAAAAAAGBQC7AAAAAAAAAAAAAAADAoBdgAAAAAAAAAAAAAABoUAOwAAAAAAAAAAAAAAg0KAHQAAAAAAAAAAAACAQSHADgAAAAAAAAAAAADAoBBgBwAAAAAAAAAAAABgUAiwAwAAAAAAAAAAAAAwKATYAQAAAAAAAAAAAAAYFALsAAAAAAAAAAAAAAAMiuKhHgAAAAAAADh4rFmzJs3NzXusaWho6PZ5TyoqKlJZWTkgswEAAAAAMPQE2AEAAAAAgAGxZs2anFh9Yra2bu1VfW1t7V5rSstK81jjY0LsAAAAAAAHCQF2AAAAAABgQDQ3N2dr69ZMumxSSiaW9FjXsa0j25u3Z0TFiBSOLOyxru2Ztqy9cW2am5sF2AEAAAAADhIC7AAAAAAAwIAqmViSsqqyPRdNGZxZAAAAAAA4sPR8rAkAAAAAAAAAAAAAAAwgAXYAAAAAAAAAAAAAAAaFADsAAAAAAAAAAAAAAINCgB0AAAAAAAAAAAAAgEEhwA4AAAAAAAAAAAAAwKAQYAcAAAAAAAAAAAAAYFAIsAMAAAAAAAAAAAAAMCiKh3oAAAAAAAAABt6aNWvS3Ny8x5qGhoZun/ekoqIilZWVAzIbAAAAAHDoEmAHAAAAAAA4yKxZsyYnVp+Yra1be1VfW1u715rSstI81viYEDsAAAAA0C8C7AAAAAAAAAeZ5ubmbG3dmkmXTUrJxJIe6zq2dWR78/aMqBiRwpGFPda1PdOWtTeuTXNzswA7AAAAANAvAuwAAAAAAAAHqZKJJSmrKttz0ZTBmQUAAAAAIEl6PkoDAAAAAAAAAAAAAAAGkBPYAQAAAA4yra2tSZKG5vYB6bezz86+AAAAAAAAAPtKgB0AAADgINPU1JQkqV26dcD7zpw5c0B7AgC9197enrq6uqxbty4TJkzIrFmzUlRUNNRjAQAAAAD0iQA7AAAAwEGmqqoqSbJ4XmlqKvofamtobk/t0q1dfQGAwbd06dIsWLCg6xfVkhe/5y9atCjz5s0busEAAAAAAPpIgB0AAADgIFNWVpYkqakoyrQJA3cq686+AMDgWrp0aebPn59zzz03t956a6ZOnZpVq1bl85//fObPn58lS5YIsQMAAAAAw0bhUA8AAAAAAADA7rW3t2fBggU599xzs2zZspx++ukZPXp0Tj/99CxbtiznnntuPv7xj6e9vX2oRwUAAAAA6BUBdgAAAAAAgANUXV1dmpqacuWVV6awsPtf6xQWFuaKK67Ik08+mbq6uiGaEAAAAACgbwTYAQAAAAAADlDr1q1LkkydOnW3z3fe31kHAAAAAHCgE2AHAAAAAAA4QE2YMCFJsmrVqt0+33l/Zx0AAAAAwIGueKgHAAAAAGB4aGho6NXzvdUlSUVFRSorKwdkLgAOHK2trUmStmfaBqTfzj47+x6KZs2alaqqqnz+85/PsmXLUlj4/84m6ujoyMKFC3P88cdn1qxZQzglAAAAAEDvCbADAAAAsEfrXuhICpLa2tpe1femrrSsNI81PibEDnCQaWpqSpKsvXHtgPedOXPmgPYcLoqKirJo0aLMnz8/F1xwQa644opMnTo1q1atysKFC7N8+fIsWbIkRUVFQz0qAAAAAECvCLADAAAAsEcbt3YmncmkyyalZGJJj3Ud2zqyvXl7RlSMSOHIwh7r2p5py9ob16a5uVmAHeAgU1VVlWTv3zN6a+f3jJ19D1Xz5s3LkiVLsmDBgsyYMaPr/vHHH58lS5Zk3rx5QzgdAAAAAEDfCLADAAAA0CslE0tSVlW256IpgzMLAAemsrIXv0/06nvGPvQ9lM2bNy/nn39+6urqsm7dukyYMCGzZs1y8joAAAAAMOwIsAMAAAAAAAwDRUVFmTNnzlCPAQAAAADQLz2/lzMAAAAAAAAAAAAAAAwgAXYAAAAAAAAAAAAAAAaFADsAAAAAAAAAAAAAAIPioAmwP/XUU1mwYEGqq6szatSoHH744Tn11FPzj//4j2lpaelX75tvvjkFBQW9+rj55psH5gUBAAAAAAAAAAAAABxkiod6gIHw3e9+N7W1tdm0aVPXvZaWljzyyCN55JFH8rWvfS133XVXJk+ePIRTAgAAAAyuht937PF5647ONG3sSNW4wpQVF/RY9+SGzoEeDQAAAAAAADhEDfsA+6OPPpq3vvWtaW1tzejRo3PFFVdk7ty5aW1tzbe//e189atfzerVq3POOefkkUceyZgxY/q13w9+8INMnDixx+eTJk3qV38AAACA/qqoqEh5WWlq72gd6lEAAAAAAAAAuhn2AfbLL788ra2tKS4uzj333JMzzjij69lZZ52VE044IZ/4xCeyevXqLFq0KFdffXW/9psyZUqqqqr6NzQAAADAflRZWZmGxsfS3Ny8x7qGhobU1tZm8eLFqamp2WsdAAAAAAAAQH8N6wD7j3/849TV1SVJ3vve93YLr++0YMGC3HTTTWloaMgNN9yQT33qUxkxYsRgjwoAAAAwqCorK1NZWdmr2pqamkybNm0/TwQAAAAAAACQFA71AP2xbNmyruv3vOc9u60pLCzMu9/97iTJxo0bc9999w3GaAAAAAAAAAAAAAAAvMywDrA/8MADSZJRo0Zl+vTpPdbNnj2763rlypX7fS4AAAAAAAAAAAAAAHY1rAPsDQ0NSZLJkyenuLi4x7rq6upd1uyr97znPZk4cWJGjhyZioqKnH766fnbv/3b/Pa3v+1XXwAAAAAAAAAAAACAg92wDbBv3bo1zc3NSZJJkybtsXb8+PEZNWpUkuTpp5/u174rVqzIunXrsn379qxfvz4PP/xwPve5z2Xy5Mn5yle+0q/eAAAAAAAAAAAAAAAHs56PLT/Abd68uet69OjRe60fNWpUtmzZkhdeeGGf9nvFK16RefPm5Ywzzsixxx6bJPmf//mf3H777VmyZEm2bt2aD3zgAykoKMhll122x15tbW1pa2vr+nrTpk37NBMAAAAAAAAAAAAAwHAybAPsW7du7boeOXLkXutLSkqSJK2trX3e68ILL8zFF1+cgoKCbvdPPfXUvPWtb83y5cszb968bN++PR/96EfzZ3/2Z/mjP/qjHvstXLgw11xzTZ/nAAAAAAAAAAAAAAAYzoZtgL20tLTretu2bXut33nieVlZWZ/3Gjt27B6fn3vuubnqqqvyd3/3d2lpacnXv/71fOpTn+qx/oorrsjHPvaxrq83bdrUdao7AAAAAAAMpZaWljQ2Nna719ramqamplRVVe3yc/bq6uqUl5cP5ogAAAAAAAxjwzbAPmbMmK7rF154Ya/1W7ZsSZKMHj16v8xz2WWX5aqrrkpnZ2fuv//+PQbYS0pKuk6EBwAAAACAA0ljY2OmT5/e6/r6+vpMmzat2722Z9r2uKZjW0e2N2/PiIoRKRxZ2GPd3voAAAAAADD8DNsAe2lpaY444oisX78+a9eu3WPthg0bugLs++uk86OOOipHHHFEmpub89vf/na/7AEAAACHOifCAsD+V11dnfr6+m73GhoaUltbm8WLF6empmaX+p0qKipSWlaatTfu+ef2fVFaVpqKiooB63eoaG1tTTJwvwSws8/OvgAAAAAA+2rYBtiT5KSTTkpdXV2eeOKJ7NixI8XFu385L/2L7Zf/YH0gFRQU7LfeAAAAwMCcCAsA7Fl5eXmP3z9ramr2+L21srIyjzU+lubm5j3usadA/MtVVFSksrJy74PTTVNTU5IM6C8T7Ow7c+bMAe0JAAAAABxahnWA/cwzz0xdXV22bNmS+vr6vO51r9tt3f333991vb9+qPr73/++6wfyEydO3C97AAAAwKGuPyfCAgCDo7KysteB870F4tl3VVVVSZJJl01KycSSfvdre6Yta29c29UXAAAAAGBfDesA+wUXXJCFCxcmSW666abdBtg7Ojpyyy23JEnGjRuXuXPn7pdZbrzxxnR2diZJZs+evV/2AAAAgENdf06EZd+1trYmeTG4NhB29tnZFwAYeGVlZUmSkoklKasqG/C+AAAAAAD7algH2E877bTMmjUrdXV1+frXv56LL744Z5xxRreaRYsWpaGhIUly+eWXZ8SIEd2er1ixoivUfvHFF+fmm2/u9rypqSkbNmzIKaec0uMcy5cvz2c+85kkL/7g9j3veU9/XxoAAADAAaOpqSlJsvbGtQPed3+9Wx4AAAAAAABwYBrWAfYkueGGGzJz5sy0trbm7LPPzpVXXpm5c+emtbU13/72t3PjjTcmSaZMmZIFCxb0uX9TU1Pmzp2bM844I+edd15e/epX56ijjkqS/M///E+WLFmSJUuWdJ2+/oUvfCHHHHPMwL1AAAAAgCFWVVWVJJl02aSUTCzpd7+2Z9qy9sa1XX0BAAAAAACAQ8ewD7Cfcsopue2221JbW5tNmzblyiuv3KVmypQpueuuuzJmzJh93ufBBx/Mgw8+2OPz8vLyfPGLX8xll122z3sAAAAAHIjKysqSJCUTS1JWVTbgfQEAAAAAAIBDx7APsCfJeeedl1/84he54YYbctddd2Xt2rUZOXJkJk+enIsuuigf+tCHUl5evk+9p0+fnsWLF+fBBx/MI488knXr1qW5uTk7duzI+PHj88pXvjJveMMb8r73va/rZHYAAAAAAAAAAAAAAHZ1UATYk+S4447L9ddfn+uvv75P6+bMmZPOzs4en48ZMybvfOc78853vrO/IwIAAAAAAAAAAAAAHNIOmgA7AAAAAADAwaSlpSWNjY3d7rW2tqapqSlVVVUpKyvr9qy6unqf35EWAAAAAGCwCLADAAAAAAAcgBobGzN9+vRe19fX12fatGn7cSIAAAAAgP4TYAcAAAAAADgAVVdXp76+vtu9hoaG1NbWZvHixampqdmlHgAAAADgQCfADgAAAAAAcAAqLy/v8UT1mpoap60DAAAAAMNS4VAPAAAAAAAAAAAAAADAoUGAHQAAAAAAAAAAAACAQSHADgAAAAAAAAAAAADAoBBgBwAAAAAAAAAAAABgUBQP9QAAAAAAAADsH23PtO3xece2jmxv3p4RFSNSOLLnc4/21gcAAAAAoLcE2AEAAAAAAA4yFRUVKS0rzdob1w5Yz9Ky0lRUVAxYPwAAAADg0CTADgAAAAAAcJCprKzMY42Ppbm5eY91DQ0Nqa2tzeLFi1NTU7PH2oqKilRWVg7kmAAAAADAIUiAHQAAAAAA4CBUWVnZ68B5TU1Npk2btp8nAgAAAABICod6AAAAAAAAAAAAAAAADg0C7AAAAAAAAAAAAAAADAoBdgAAAAAAAAAAAAAABkXxUA8AAAAAwPDQ9kzbHp93bOvI9ubtGVExIoUjez43YW99AAAAAAAAgIOXADsAAAAAe1RRUZHSstKsvXHtgPUsLStNRUXFgPUDAAAAAAAAhgcBdgAAAAD2qLKyMo81Ppbm5uY91jU0NKS2tjaLFy9OTU3NHmsrKipSWVk5kGMCAAAAAAAAw4AAOwAAAAB7VVlZ2evAeU1NTaZNm7afJwIAAAAAAACGo8KhHgAAAAAAAAAAAAAAgEODADsAAAAAAAAAAAAAAINCgB0AAAAAAAAAAAAAgEEhwA4AAAAAAAAAAAAAwKAQYAcAAAAAAAAAAAAAYFAIsAMAAAAAAAAAAAAAMCgE2AEAAAAAAAAAAAAAGBQC7AAAAAAAAAAAAAAADIrioR4AAAAAAAAYOmvWrElzc/MeaxoaGrp93pOKiopUVlYOyGwAAAAAABx8BNgBAAAAAOAQtWbNmtRUn5iW1q29qq+trd1rTXlZaRoaHxNiBwAAAABgtwTYAQAAAADgENXc3JyW1q1ZfGFZao4s7LGudUdnmjZ2pGpcYcqKC3qsa/h9R2rvaE1zc7MAOwAAAAAAuyXADgAAAAAAh7iaIwszbULRHmtmHjtIwwAAAAAAcFDr+TgVAAAAAAAAAAAAAAAYQE5gBwAAAPablpaWNDY2drvX2tqapqamVFVVpaysrNuz6urqlJeXD+aIAAAHjDVr1qS5uXmPNQ0NDd0+70lFRUUqKysHZDYAAAAAgIEiwA4AAADsN42NjZk+fXqv6+vr6zNt2rT9OBEAwIFpzZo1qak+MS2tW3tVX1tbu9ea8rLSNDQ+JsQOAAAAABxQBNgBAACA/aa6ujr19fXd7jU0NKS2tjaLFy9OTU3NLvUAAIei5ubmtLRuzeILy1JzZGGPda07OtO0sSNV4wpTVlzQY13D7ztSe0drmpubBdgBAAAAgAOKADsAAACw35SXl/d4onpNTY3T1gEAXqbmyMJMm1C0x5qZxw7SMAAAAAAA+0HPR3gAAAAAAAAAAAAAAMAAEmAHAAAAAAAAAAAAAGBQCLADAAAAAAAAAAAAADAoBNgBAAAAAAAAAAAAABgUAuwAAAAAAAAAAAAAAAwKAXYAAAAAAAAAAAAAAAaFADsAAAAAAAAAAAAAAIOieKgHAAAAAAAAhkZra2uSpKG5fUD67eyzsy8AAAAAALycADsAAAAAAByimpqakiS1S7cOeN+ZM2cOaE8AAAAAAA4OAuwAAADAAWvNmjVpbm7eY01DQ0O3z3tSUVGRysrKAZkNAA4GVVVVSZLF80pTU1HU734Nze2pXbq1qy8AAAAAALycADsAAABwQFqzZk1OrD4xW1t7dyJsbW3tXmtKy0rzWONjQuwA8P8rKytLktRUFGXahP4H2F/eFwAAAAAAXk6AHQAAADggNTc3Z2vr1ky6bFJKJpb0WNexrSPbm7dnRMWIFI4s7LGu7Zm2rL1xbZqbmwXYAQAAAAAAAIaIADsAAABwQCuZWJKyqr2c4jplcGYBAAAAAAAAoH96PpYMAAAAAAAAAAAAAAAGkBPYAQAAAA4BLS0taWxs7HavoaGh2+eXqq6uTnl5+aDMBgAkra2tSZKG5vYB6bezz86+AAAAAAAHCgF2AAAAgENAY2Njpk+fvttntbW1u9yrr6/PtGnT9vdYABwC/BJV7zQ1NSVJapduHfC+M2fOHNCeAAAAAAD9IcAOAAAAcAiorq5OfX19t3utra1pampKVVVVysrKdqkHgIHgl6h6p6qqKkmyeF5paiqK+t2vobk9tUu3dvUFAAAAADhQCLADAAAAHALKy8t3GwZ0IisA+5tfouqdnf8caiqKMm1C/wPsL+8LAAAAAHCgEGAHAAAAAAD2G79EBQAAAADASxUO9QAAAAAAAAAAAAAAABwaBNgBAAAAAAAAAAAAABgUAuwAAAAAAAAAAAAAAAwKAXYAAAAAAAAAAAAAAAaFADsAAAAAAAAAAAAAAIOieKgHAAAAgANdS0tLGhsbu91rbW1NU1NTqqqqUlZW1u1ZdXV1ysvLB3NEAAAAAAAAABgWBNgBAABgLxobGzN9+vRe19fX12fatGn7cSIAgIHV8PuOPT5v3dGZpo0dqRpXmLLign3uAwAAAAAAAuwAAACwF9XV1amvr+92r6GhIbW1tVm8eHFqamp2qQcAGA4qKipSXlaa2jtaB6xneVlpKioqBqwfAAAAAAAHFwF2AAAA2Ivy8vIeT1Svqalx2joAMGxVVlamofGxNDc377FuT7+893IVFRWprKwcyDEBAAAAADiICLADAAAA0GctLS1pbGzsdq+hoaHb55eqrq5OeXn5oMwGQN9UVlb2OnDul/cAAAAAAOgvAXYAAAAA+qyxsTHTp0/f7bPa2tpd7tXX1ws8AkAvNPy+Y4/PW3d0pmljR6rGFaasuGCf+wAAAAAADBUBdgAAAAD6rLq6OvX19d3utba2pqmpKVVVVSkrK9ulHgDoWUVFRcrLSlN7R+uA9SwvK01FRcWA9QMAAAAAGAgC7AAAAAD0WXl5+W5PVJ85c+YQTAMAw19lZWUaGh9Lc3PzHusaGhpSW1ubxYsXp6amZo+1FRUVqaysHMgxAQAAAAD6TYAdAAAAAADgAFBZWdnrwHlNTc1uf5kMAAAAAOBAJ8AOAAAAHJBaW1uTJG3PtA1Iv519dvYFADjUtLS0pLGxsdu9hoaGbp9fqrq6OuXl5YMyGwAAAABw6BBgBwAAAA5ITU1NSZK1N64d8L4zZ84c0J4AAMNBY2Njpk+fvttntbW1u9yrr693yjsAAAAAMOAE2AEAAIADUlVVVZJk0mWTUjKxpN/92p5py9ob13b1BQA41FRXV6e+vr7bvdbW1jQ1NaWqqiplZWW71AMAAAAADDQBdgAAAOCAtDNAVTKxJGVVZXup7ntfAIBDTXl5+W5PVPfuNAAAAADAYCoc6gEAAAAAAAAAAAAAADg0OIEdAAAAGDBr1qxJc3PzHmsaGhq6fd5bHQAAAAAAAAAHDwF2AAAAYECsWbMmNdUnpqV1a6/qa2tr9/NEAAAAAAAAABxoBNgBAACAAdHc3JyW1q1ZfGFZao4s7LGudUdnmjZ2pGpcYcqKC3qsu/vxHfm7+9r2x6gAAAAAAAAADBEBdgAAAGBA1RxZmGkTivZYM/PYvfdpaG4foIkAAAAAAAAAOFD0fBwaAAAAAAAAAAAAAAAMIAF2AAAAAAAAAAAAAAAGhQA7AAAAAAAAAAAAAACDQoAdAAAAAAAAAAAAAIBBIcAOAAAAAAAAAAAAAMCgEGAHAAAAAAAAAAAAAGBQCLADAAAAAAAAAAAAADAoBNgBAAAAAAAAAAAAABgUxUM9AAAAAHBwaG1tTZI0NLcPSL8nN3QkSTq2dQxIPwAAAAAAAACGngA7AAAAMCCampqSJLVLtw5o3+3N25MpA9oSAAAA6IP29vbU1dVl3bp1mTBhQmbNmpWioqKhHgsAAIBhSoAdAAAAGBBVVVVJksXzSlNT0f+/xL778e35u/u2ZUTFiH73AgAAAPbN0qVLs2DBgq5fXE9e/BnAokWLMm/evKEbDAAAgGFLgB0AAAAYEGVlZUmSmoqiTJvQ/wB7Q3N7khdPYG8d2dpjXce2jmxv3p4RFSNSOLKwx7q2Z9r6PRMAAAAcSpYuXZr58+entLS02/1nn3028+fPz5IlS4TYAQAA6DMBdgAAAOCANK60IClI1t64dsB6lpaVpqKiYsD6AQAAwMGqvb09f/mXf5nOzs684Q1vyKc+9alMnTo1q1atyuc+97ksX748f/mXf5nzzz8/RUX9/0V2AAAADh0C7AAAAMABacLowqQzWbx4cWpqanqsa2hoSG1t7V7rkqSioiKVlZUDPSoAAAAcdFasWJHnnnsuZ555Zu68884UFr74rmenn3567rzzzrz+9a/PypUrs2LFirzhDW8Y4mkBAGBXLS0taWxs7HavtbU1TU1Nqaqq6np34Z2qq6tTXl4+mCPCIUuAHQAAADig1dTUZNq0aQNWBwAAAOzdihUrkiTXXHNNV3h9p8LCwlx99dV505veJMAOAMABq7GxMdOnT+91fX19vb9rgkEiwA4AAAAAAAAAAADAQaW6ujr19fXd7u3pnX2rq6sHczw4pAmwAwAAANBv7e3tqaury7p16zJhwoTMmjUrRUVFQz0WAAAA+2jOnDm59tpr8+lPfzpz5szpdgp7R0dHrrnmmq46AAA4EJWXl/d4orp39oWhVbj3EgAAAADo2dKlSzN58uTMnTs373jHOzJ37txMnjw5S5cuHerRAAAA2Edz5szJkUcemQceeCDnn39+HnzwwWzevDkPPvhgzj///DzwwAM56qijBNgBAADoMwF2AAAAAPbZ0qVLM3/+/Jx88sndwgwnn3xy5s+fL8QOAAAwTBUVFeXLX/5ykuSHP/xhZsyYkcMOOywzZszIvffemyT5t3/7N+++BQAAQJ8JsAMAAACwT9rb27NgwYKce+65WbZsWU4//fSMHj06p59+epYtW5Zzzz03H//4x9Pe3j7UowIAALAP5s2bl9tvvz1HHXVUt/tHHXVUbr/99sybN2+IJgMAAGA4Kx7qAQAAAAAYnurq6tLU1JRbb701hYXdz0koLCzMFVdckRkzZqSurs5bygMAAAxT8+bNy/nnn5+6urqsW7cuEyZMyKxZs5y8DgAAwD4TYAcAAICXWbNmTZqbm/dY09DQ0O1zTyoqKlJZWTlgs8GBZN26dUmSqVOn7vb5zvs76wAAABieioqK/GIyAAAAA0aAHQAAAF5izZo1ObH6xGxt3dqr+tra2j0+Ly0rzWONjwmxc1CaMGFCkmTVqlU5/fTTd3m+atWqbnUAAAAAAAAAB02A/amnnso///M/56677srTTz+dkpKS/PEf/3H+/M//PH/1V3+V8vLyAd+zpaUlU6dOzZNPPpkkOe6449LU1DTg+wAAADB4mpubs7V1ayZdNiklE0t6rOvY1pHtzdszomJECkcW7ram7Zm2rL1xbZqbmwXYOSjNmjUrVVVV+fznP59ly5alsPD//W+ho6MjCxcuzPHHH59Zs2YN4ZQAAAAAAADAgeSgCLB/97vfTW1tbTZt2tR1r6WlJY888kgeeeSRfO1rX8tdd92VyZMnD+i+V111VVd4HQAAgINLycSSlFWV7bloyuDMAgeqoqKiLFq0KPPnz88FF1yQK664IlOnTs2qVauycOHCLF++PEuWLElRUdFQjwoAAAAAAAAcIHZ/RNww8uijj+atb31rNm3alNGjR+dzn/tc/vu//zs//OEPc+mllyZJVq9enXPOOSebN28e0H3/6Z/+KaWlpRkzZsyA9QUAAAAYTubNm5clS5bkl7/8ZWbMmJHDDjssM2bMyKpVq7JkyZLMmzdvqEcEAAAAAAAADiDD/gT2yy+/PK2trSkuLs4999yTM844o+vZWWedlRNOOCGf+MQnsnr16ixatChXX311v/dsb2/PpZdemvb29nz605/O17/+9QENxwMAAAAMJ/Pmzcv555+furq6rFu3LhMmTMisWbOcvA4AAAAAAADsYlifwP7jH/84dXV1SZL3vve93cLrOy1YsCA1NTVJkhtuuCHbt2/v97433HBD6uvrc+KJJ+Zv/uZv+t0PAAAAYLgrKirKnDlz8va3vz1z5swRXgcAAAAAAAB2a1gH2JctW9Z1/Z73vGe3NYWFhXn3u9+dJNm4cWPuu+++fu351FNP5aqrrkqSfPnLX87IkSP71Q8AAAAAAAAAAAAA4FBRPNQD9McDDzyQJBk1alSmT5/eY93s2bO7rleuXJmzzz57n/f84Ac/mC1btuRd73pX5syZs899AAAA4GDV8PuOPT5v3dGZpo0dqRpXmLLign3uAwAAAAAAAMDwM6wD7A0NDUmSyZMnp7i455dSXV29y5p98e1vfzt33313xo8fn0WLFu1zHwAAADgYVVRUpLysNLV3tA5Yz/Ky0lRUVAxYPwAAAAAAAACG1rANsG/dujXNzc1JkkmTJu2xdvz48Rk1alS2bNmSp59+ep/227BhQz7ykY8kSf7+7/8+Rx555D71AQAAgINVZWVlGhof6/rv9Z40NDSktrY2ixcvTk1NzR5rKyoqUllZOZBjAgB70dLSksbGxm73dh4Os7tDYqqrq1NeXj4oswEAAAAAMPwN2wD75s2bu65Hjx691/qdAfYXXnhhn/b767/+6zz77LM544wzcumll+5Tj53a2trS1tbW9fWmTZv61Q8AAAAOFJWVlb0OnNfU1GTatGn7eSIAoK8aGxszffr03T6rra3d5V59fb3v6QAAAAAA9NqwDbBv3bq163rkyJF7rS8pKUmStLb2/W3Mf/SjH+Xf//3fU1xcnC9/+cspKCjoc4+XWrhwYa655pp+9QAAAAAAgP2huro69fX13e61tramqakpVVVVKSsr26We/cNp+AAAAADAwWjYBthLS0u7rrdt27bX+p0nnr/8B+u9WXfZZZels7Mzl19+eV71qlf1bdDduOKKK/Kxj32s6+tNmzbl2GOP7XdfAAAAAADor/Ly8t2eqD5z5swhmObQ5jR8AAAAAOBgNGwD7GPGjOm6fuGFF/Zav2XLliTJ6NGj+7TP5z73uTz22GM59thjB+zU9JKSkq4T4QEAAAAAAHbHafgAAAAAwMFo2AbYS0tLc8QRR2T9+vVZu3btHms3bNjQFWDv60nn1113XZLkjW98Y7773e/utmZn7y1btuTb3/52kuSoo47KWWed1ae9AAAAAAAAdnIaPgAAAABwMBq2AfYkOemkk1JXV5cnnngiO3bsSHHx7l9OY2Nj13VNTU2f9ti2bVuS5KabbspNN920x9rm5ua8/e1vT5LMnj1bgB0AAGAYam1tTZK0PdPW7147e+zsCQAAADActLS0dPt79mTv7wJSXl4+mCMCAAAwjA3rAPuZZ56Zurq6bNmyJfX19Xnd616327r777+/69qpJAAAAOxJU1NTkmTtjXt+t6++9vTfowAAAMBw0djYmOnTp/e6vr6+frfvGgIAAAC7M6AB9o6Ojvz617/O//zP/2Tz5s1pb2/f65p3v/vd+7zfBRdckIULFyZ58YT03QXYOzo6cssttyRJxo0bl7lz5/Zpj87Ozr3WVFVV5amnnspxxx3XFXQAAABgeKqqqkqSTLpsUkomlvSrV9szbVl749qungAAAADDQXV1derr67vda2hoSG1tbRYvXrzLO59XV1cP5ngAAAAMcwMSYG9tbc21116br371q1m/fn2v1xUUFPQrwH7aaadl1qxZqaury9e//vVcfPHFOeOMM7rVLFq0KA0NDUmSyy+/PCNGjOj2fMWKFV2h9osvvjg333zzPs8DAADA8LfzLbBLJpakrKpsL9V96wkAAAAwHJSXl/d4onpNTY3T1gEAAOiXfgfYW1tbc9ZZZ+XHP/5xr04rH2g33HBDZs6cmdbW1px99tm58sorM3fu3LS2tubb3/52brzxxiTJlClTsmDBgkGfDwAAAAAAAAAAAACAF/U7wP7FL34xDz/8cJJk6tSp+dCHPpTp06fn8MMPT2FhYb8H3JtTTjklt912W2pra7Np06ZceeWVu9RMmTIld911V8aMGbPf5wEAAAAAAAAAAAAAYPf6HWC/7bbbkiQzZszIvffem5EjR/Z7qL4677zz8otf/CI33HBD7rrrrqxduzYjR47M5MmTc9FFF+VDH/pQysvLB30uAAAAAAAAAAAAAAD+n34H2H/zm9+koKAgn/jEJ4YkvL7Tcccdl+uvvz7XX399n9bNmTMnnZ2d/dq7qampX+sBAAAAAAAAAAAAAA4F/Q6wjxw5Mq2tramsrByIeQAAAAB61NLSksbGxm73Ghoaun1+qerqau/KBgAcNNrb21NXV5d169ZlwoQJmTVrVoqKioZ6LAAAAACAPul3gL26ujoPP/xwfve73w3EPAAAAAA9amxszPTp03f7rLa2dpd79fX1mTZt2v4eCwBgv1u6dGkWLFjQ7V1hq6qqsmjRosybN2/oBgMAAAAA6KN+B9gvueSSPPTQQ/nOd76TN7/5zQMxEwAAAMBuVVdXp76+vtu91tbWNDU1paqqKmVlZbvUAwAMd0uXLs38+fNz7rnn5tZbb83UqVOzatWqfP7zn8/8+fOzZMkSIXYAAAAAYNjod4D90ksvzX/+53/mlltuyRvf+Ma8/e1vH4i5AAAAYJ+1tLSksbGx2729hZzLy8sHc0T2UXl5+W5PVJ85c+YQTAMAsP+1t7dnwYIFOffcc7Ns2bIUFhYmSU4//fQsW7YsF1xwQT7+8Y/n/PPPT1FR0RBPCwAAAACwd70OsK9Zs6bHZ//yL/+SSy+9NLW1tbnjjjvyjne8o9d/+V9ZWdnbEQAAAKBXGhsbM3369F7X19fX7zYUDQAAQ62uri5NTU259dZbu8LrOxUWFuaKK67IjBkzUldXlzlz5gzNkAAAAAAAfdDrAPvxxx+/15rOzs7cfvvtuf3223vVs6CgIDt27OjtCAAAANAr1dXVqa+v73avoaEhtbW1Wbx4cWpqanapBwCAA9G6deuSJFOnTt3t8533d9YBAAAAABzoeh1g7+zsHNA6AAAA2F/Ky8t7PFG9pqbGaesAAAwbEyZMSJKsWrUqp59++i7PV61a1a0OAAAAAOBA1+sA+0033bQ/5wAAAAAAAOBlZs2alaqqqnz+85/PsmXLUlhY2PWso6MjCxcuzPHHH59Zs2YN4ZQAAAAAAL3X6wD7xRdfvD/nAAAAAAAA4GWKioqyaNGizJ8/PxdccEGuuOKKTJ06NatWrcrChQuzfPnyLFmyJEVFRUM9KgAAAABAr/Q6wA4AAAAAAMDgmzdvXpYsWZIFCxZkxowZXfePP/74LFmyJPPmzRvC6QAAAAAODGvWrElzc/MeaxoaGrp93pOKiopUVlYOyGxAd/0OsH/mM59Jknzwgx9MRUVFr9Zs2LAh//Iv/5Ikueqqq/o7AgAAAAAAwEFt3rx5Of/881NXV5d169ZlwoQJmTVrlpPXAQAAAPJieP3E6hOztXVrr+pra2v3WlNaVprHGh8TYof9oN8B9quvvjoFBQWZP39+rwPsf/jDH7rWCbADAAAAAADsXVFRUebMmTPUYwAAAAAccJqbm7O1dWsmXTYpJRNLeqzr2NaR7c3bM6JiRApHFvZY1/ZMW9beuDbNzc0C7LAf9DvADgAAAAAAAAAAAABDrWRiScqqyvZcNGVwZgF61vOvj+xH27dvT5KMGDFiKLYHAAAAAAAAAAAAAGAIDEmA/Wc/+1mS5MgjjxyK7QEAAAAAAAAAAAAAGALFfV1wyy237Pb+nXfemUceeWSPa9va2vKb3/wm//7v/56CgoKceuqpfd0eAAAAAAAAAAAAAIBhqs8B9ksuuSQFBQXd7nV2duZv//Zve92js7MzhYWFufzyy/u6PQAAAAyKtmfa9vi8Y1tHtjdvz4iKESkcufs3ONtbDwAAAAAAAAA41PQ5wJ68GEDvzb3dGTlyZE499dRcccUVmT179r5sDwAAAPtNRUVFSstKs/bGtQPSr7SsNBUVFQPSCwAAAAAAAACGuz4H2J988smu687OzrziFa9IQUFBfvCDH+SEE07ocV1BQUFKS0tzxBFHpKioaN+mBQAAgP2ssrIyjzU+lubm5j3WNTQ0pLa2NosXL05NTU2PdRUVFamsrBzoMQEAAAAAAABgWOpzgP24447b7f2JEyf2+AwAAACGk8rKyl6HzmtqajJt2rT9PBEAAAAAAAAAHBz6HGB/uY6OjoGYAwAAAAAAAAAAAACAg1zhUA8AAAAAAAAAAAAAAMChod8nsAMAADDwWlpa0tjY2O1ea2trmpqaUlVVlbKysm7PqqurU15ePpgjAgAAAHCAam9vT11dXdatW5cJEyZk1qxZKSoqGuqxAAAAIEkfAuxnnXXWgG9eUFCQH/7whwPeFwAAYLhrbGzM9OnTe11fX1+fadOm7ceJAAAAABgOli5dmgULFqSpqanrXlVVVRYtWpR58+YN3WAAAADw/+t1gH3FihUpKChIZ2dnjzUFBQXdvt5Z29v7AAAAvKi6ujr19fXd7jU0NKS2tjaLFy9OTU3NLvUAAAAAHNqWLl2a+fPn59xzz82tt96aqVOnZtWqVfn85z+f+fPnZ8mSJULsAAAADLleB9hf//rX7zFw/swzz+Txxx9P8mIwvaqqKkcffXT+P/buP7qxu77z/8vSeGwpCQkbDaBhoshNmJHAObvYCRh7FJxsT7ospnYUA6dUhfawJ7QLXRY00DqUL3Ba7F3AsHS7Z0+mcMLp8eJ0VzjuMgFafgQiEiiMaEO1R5oEGlUxY8hcmskvyR6P5O8fUymjsSTL9rX1kfR8nJNjz73v+fjjeef6Wrrvz/sjSb/4xS+UyWS0vr6urq4uveIVr9DBgwd3OHUAAAAAaF9ut7tmR/VgMEi3dQAAAAAAAFQoFAqKRqMaGxvT4uKiHA6HJGloaEiLi4uamJjQsWPHND4+LqfT2eTZAgAAAAA62ZY6sNfy1a9+Vb/5m7+pF73oRfrQhz6k3/md35HH46mIsSxL99xzj6anp3XmzBn9t//23/SGN7xh2xMHAAAAAKAkm83Ksqy6MalUquJjPR6PRz6fz5a5AQAAAAAA7IV4PK5MJqP5+fly8XqJw+HQ1NSUhoeHFY/HNTo62pxJAgAAALskn89LklZPr9oyXmmc0rgA7NVwAXstjz76qN7ylrdo3759euihh/SqV72qapzH49EHPvABvfGNb9TIyIje+ta36uTJkzp8+PBOpwAAAAAA6GDZbFbBwBHl8isNxUcikU1j3K5epdKnKGIHAAAAAAAtY3l5WZLU399f9XzpeCkOAAAAaCeZTEaStHR8yfZxR0ZGbB0TgA0F7LOzs3r++ef18Y9/vGbx+sVe+cpX6oMf/KA+9KEP6VOf+pSOHz++0ykAAAAAADqYZVnK5Vc0d7tLwQOOmnH58+vKnC3Kf5VDrn1dNeNSZ4qK3JeXZVkUsAMAAAAAgJbh9XolSclkUkNDQxvOJ5PJijgAAACgnfj9fknSoTsPqedgz47HWz29qqXjS+VxAdhrxwXsX//619XV1aVbb7214b9zyy23SJK+8Y1v7PTLAwAAAAAgSQoecGjA66wbM3LNHk0GAAAAAABgj4VCIfn9fk1PT2txcVEOxwsL/YvFomZmZtTX16dQKNTEWQIAAAC15XI5pdPpimP5fF6ZTEZ+v18ul6viXCAQkNvtlqTyuZ6DPXL5K+N24tKvCcAeOy5g3872Yl1dFzrd/fznP9/plwcAAAAAAAAAAAAAoOM5nU7Nzs5qcnJSExMTmpqaUn9/v5LJpGZmZnTixAnFYjE5nfUbAAAAAADNkk6nNTg42HB8IpHQwMDALs4IwG7ZcQH7VVddpSeffFLf+c539NrXvrahv/Ptb39bknTllVfu9MsDAAAAAAAAAAAAAABJ4XBYsVhM0WhUw8PD5eN9fX2KxWIKh8NNnB0AAABQXyAQUCKRqDiWSqUUiUQ0NzenYDC4IR5Aa9pxAXsoFFIsFtN/+S//RRMTEzp8+HDd+EcffVT/9b/+V3V1deno0aM7/fIAAAAAAAAAAAAAAOBfhMNhjY+PKx6Pa3l5WV6vV6FQqG7n9Ww2K8uy6o6bSqUqPtbj8Xjk8/m2NnEAAAB0PLfbXbOjejAYpNs60EZ2XMD+/ve/XwsLC3r66ac1NDSk/+//+//09re/Xf/qX/2ririnnnpKf/EXf6E//uM/1tmzZ+VwOBSNRnf65QEAAAAAgMFyuZzS6XTFsXoPvAOBgNxu957MDQAAAACAduV0OjU6OtpQbDab1ZHAEa3kVxqKj0Qim8b0unp1Kn2KInYAAAAAQFU7LmAfGhrSJz/5SUWjUT399NOKRqM6duyY+vr69JKXvERdXV36xS9+occff1zr6+taX1+XJH3iE5/Q0NDQjr8BAAAAAABgrnQ6rcHBwarnqj3wTiQSdM8AAAAAAGAPWZallfyKDt15SD0He2rGFc8VtWatqdvTLcd+R8241dOrWjq+JMuyKGAHAAAAAFS14wJ2SXrf+94nv9+v3//939fp06e1vr6un/70p/rHf/xHSSoXrUuS1+vVf//v/13hcNiOLw0AAAAAAAwWCASUSCQqjuXzeWUyGfn9frlcrg3xAAAAAABg7/Uc7JHL76ofdHhv5gIAAAAAaG+2FLBL0u23366xsTH91V/9lb7xjW/oH/7hH/TP//zPkqQXv/jFuuGGG/Srv/qrmpiYUHd3t11fFgAAAAAAGMztdlftqD4yMtKE2QAAAAAAAAAAAAAAms22AnZJ6u7u1uTkpCYnJ+0cFgAAAAAAAAAAAAAAAAAAAADQBhzNngAAAAAAAAAAAAAAAAAAAAAAoDNQwA4AAAAAAAAAAAAAAAAAAAAA2BP7mj0BAAAAAAAAAAAAAACwfblcTul0uuJYPp9XJpOR3++Xy+WqOBcIBOR2u/dyigAAAAAAlDVcwO50OiVJXV1dOn/+/Ibj23HpWAAAAAAAAAAAAEC7o9AUgN3S6bQGBwcbjk8kEhoYGNjFGQEAAAAAUFvDBezr6+tbOg4AAAAAwF7I5/OSpJRVsGW80jilcQEAAADAbhSaArBbIBBQIpGoOJZKpRSJRDQ3N6dgMLghHgAAAACAZmm4gP0jH/nIlo4DAAAAALAXMpmMJCmysGL7uCMjI7aOCQAAAAAShaYA7Od2u2sudAkGgyyCAQAAAAAYhQJ2AAAAAEBL8/v9kqS5cK+CHueOx0tZBUUWVsrjAgAAAIDdKDQFAABAuyoUCorH41peXpbX61UoFJLTufP37gEAQHtpuIBdku6++27dfPPNG7o+AAAAAADQLC6XS5IU9Dg14LXvTfDSuAAAAAAAAAAAYHMLCwuKRqPlnVOlC01oZmdnFQ6HmzcxAABgnC0VsP/e7/2eurq65PF4dPToUd188826+eab9W/+zb9RV1fXbs0RhmPlpDnIhVnIhznIhTnIhTnIhTnIhVnIhznIhTnIhTnIhVnIhznIhTnIhTnIhTnIhVnIhznIhTnIhTnIhTnIhVnIhznIhTlMzcXCwoImJyc1Njam+fl59ff3K5lManp6WpOTk4rFYm1XxG5qLjoRuTAL+QDQiC0VsEvS+vq6zpw5o8XFRS0uLkqSXvSiF2l4eLhc0H7TTTdp374tD40WxMpJc5ALs5APc5ALc5ALc5ALc5ALs5APc5ALc5ALc5ALs5APc5ALc5ALc5ALc5ALs5APc5ALc5ALczQ7F/l8XpK0enrVlvFK45TGbSXNzgUqkQ9zkAtzmJqLQqGgaDSqsbExLS4uyuFwSJKGhoa0uLioiYkJHTt2TOPj421TxGpqLjoRuTAL+QDQKMdWgr/whS/one98pw4fPqz19fXyf08//bS+9rWv6a677tLRo0d15ZVX6tZbb9VHP/pRfetb32rJF6bYXGnl5A033KDvfe97evbZZ/W9731PN9xwgyYnJ7WwsNDsKXYMcmEW8mEOcmEOcmEOcmEOcmEW8mEOcmEOcmEOcmEW8mEOcmEOcmEOcmEOcmEW8mEOcmEOcmEOE3JRKi5aOr6kn370pzv+b+n4UsW4rcKEXOAF5MMc5MIcJuciHo8rk8norrvu0vr6ur797W9rfn5e3/72t7W+vq6pqSk9/vjjisfjTZujnUzORachF2YhHwC2omt9fX19O3/xzJkzisfj5f8eeeQRFQqFFwbu6ip/3t3drYGBgXKH9qNHj+pFL3rRzmffJp555hldeeWVevrpp1vm36VQKOj666/XDTfcULFyUpKKxaImJiaUTCb12GOPtc3Kye04dOiQfvazn+nlL3+5lpaWduVrkAuzkA9zkAtzkAtzkAtzkAuztFI+fvSjH2lwcFCJREIDAwNNnctu2G4uyv8ud16mAe/Oc/Sj5YIGjz+/6b9zO+ejla6LdkcuGrMXr78l8mEScmEOcmEOctEY3rPtPK2Uj3Z+jSG1Vi7aHbnYXLu8xmj058pDDz2ko0eP6tCdh9RzsGdb38vFVk+vaun4kr773e9qZGRkx+PtBZOvi1wup3Q6XXEsn88rk8nI7/fL5XJVnAsEAnK73Xs5RduZnI9OQy421y73jJ2an5/X2972Ns3NzemP/uiPNnRe/pM/+RNFIhF98Ytf1G/8xm/s+fzsZHouOgm5MMtu5qPR32tLcdd99Dq5/K6acY3KZ/L66Ud/auzr9FasOwUutqUO7Bc7cOCAwuGwPvOZz+jkyZN66qmn9LWvfU0f+tCHdPPNN6unp6fcof3cuXP627/9W33yk5/Um970Jl199dUaGBjQ+973Pju/F+yhi1dOXnyzkSSHw9F2KydNRi7MQj7MQS7MQS7MQS7MQS7MQj7MYXIucrmcfvSjH1X8l0qlJEmpVGrDuVwut+dztJPJueg05MIs5MMc5MIc5MIc5MIc5MIs5MMc5MIc5MIcpuSiVADdc7BHLr9rx/+ViuAvLaw2mSm5qCadTmtwcLDiv6NHjyoSiejo0aMbzl1a7N6KTM5HpyEX5jA9F16vV5L0W7/1W1U7L//Wb/1WRVwrMz0XnYRcmIV8ANiqfXYNdPnll+u2227TbbfdJklaW1vTD3/4Q8XjcT344IN6+OGH9fTTT0u6sNrm7//+7/XII4/oM5/5jF1TwB5aXl6WJPX391c9XzpeisPuIRdmIR/mIBfmIBfmIBfmIBdmIR/mMDkXpQeF1UQikQ3HTO3E0CiTc9FpyIVZyIc5yIU5yIU5yIU5yIVZyIc5yIU5yIU5yIU5TM5FIBBQIpGoOJZKpRSJRDQ3N6dgMLghvtWZnI9OQy7MYXouhoeHtW/fPl199dVaWFjQvn0XStKGhoa0sLCgQ4cO6Ze//KWGh4ebMj87mZ6LTkIuzGJSPlZPr9Y9XzxX1Jq1pm5Ptxz7a/eA3mwcADtjWwH7pbq7uzU8PKzh4WH9wR/8gc6dO6cvfOEL+sQnPqHHH39c6+vru/WlsQdKKyKTyaSGhoY2nE8mkxVx2D3kwizkwxzkwhzkwhzkwhzkwix25mMr2/m2w1a+djP52qj2oHCzrZpbmcm56DTkwizkwxzkwhzkwhzkwhzkwizkwxzkwhzkwhzkwhwm58LtdtdslBAMBlu6iUItJuej05ALc5iei4cffljnz5/XL37xC4XDYU1NTam/v1/JZFIzMzP6xS9+UY4bHR1tyhztYnouOgm5MIsJ+fB4POp19Wrp+JJtY/a6euXxeGwbD8ALutZ3qZJ8dXVV3//+9/Xggw8qHo/r+9//vp5//nlJKhevd3V1qVAo7MaXbynPPPOMrrzySj399NN60Yte1OzpNKRQKOj666/XDTfcoMXFxYptP4rFoiYmJpRMJvXYY4/J6XQ2cabNdejQIf3sZz/Ty1/+ci0t2XdjvBi5MAv5MAe5MAe5MAe5MAe5MIud+fjRj35Us0v3pbbTobs0fqt3965lu7ko/7vceZkGvDu/Zn60XNDg8efb9t+5EfycMge5aMxevP6WyIdJyIU5yIU5yEVjeM+287RSPnjNZ04u2h252Fy7vMZo9OdKKe66j14nl99VM65R+UxeP/3oT1vq51mrXRfcM8zKRzsjF5trl3vGTs3Pz+ttb3ub5ubm9Ed/9EfKZDLlc319ffrjP/5jRSIRffGLX9Rv/MZv7Pn87GR6LjoJuTDLbuZjK7/7ZLNZWZZVN6bebjaX8ng88vl8W5rvXmnFulPgYrZ1YH/66af10EMPKR6P68EHH1QikdDa2pqkFwrWnU6nbrjhBh09elRHjx5VKBSy68tjD5W6Sr773e/WBz/4Qd1yyy1629veJqfTqUKhoC9+8YuKx+P6xCc+oUceeYTOkruIXJiFfJiDXJiDXJiDXJhldXWVXBjC7mtjK9v5tnqHbrvxc8oc5MIc5MIsW8nH6uoqudhFXBvmIBfmIBfmIBdm4f5tDq4Nc5ALc5ALc5ALs5APc5ALc7RCLkodla+77jr95Cc/UTwe1/Lysrxer0KhkH7wgx9UxLWqVshFpyAXZjEpHz6fr+GC83bdzQZoFdvuwP7zn/9c8Xi8XLCeTCbLheqlj263W695zWvKBeuve93rdMUVV9g3+zbRaithttJVUtpeZ8l2sdsrbcmFWciHOciFOciFOciFWXa7SzcatxfXhp3dkNq5s9JOckEHdntxzzAHuWjcXnS64v5tDq4Nc5ALc5CLxvGebWdptfs3r/le0I7/BqYgF40x7TWGtLvvS3V6B/ZWvC64Z7ygHf8NTEEuGtMu94yd6pRO2K2Qi05BLsyy2/mw+3efdvldqtXqToFLbakD+xe+8IVy0fpPf/rT8vFSwbrH49HIyEi5u/rAwID27bOtyTsMcWlXyUKhoMXFRU1PT+uuu+7SxMRExS+bdJbcPeTCLOTDHOTCHOTCHOTCLBfng1w0F9eGOciFOciFOciFWbaSD3Kxu7g2zEEuzEEuzEEuzML92xxcG+YgF+YgF+YgF2YhH+YgF+ZohVw4nU7Nzs5qcnJSExMTmpqaUn9/v5LJpGZmZnTixAnFYrGWLl6XWiMXnYJcmIV8ANiOLXVgdzgc6urqKhesX3fddeXu6kePHtWRI0d2baLtrB1WwrTLqiS77cVK20uRC7OQD3OQC3OQC3OQC3OQC7OYvIK/0/5f2WqXsLnbXQoecNSMy59fV+ZsUf6rHHLt66oZlzpTVOS+fMf8Ozei0/7fMxm5qK4Zr78l8mEScmEOcmEOclEd79nC5HyYPLfd0Gnfr8nIxUbt8hqDDuzbZ/p1Yfr87NZp36/JyMVG7XLPsMvCwoKi0agymUz5WF9fnz71qU8pHA43b2K7yNRcdCJyYRaTn5G2y/8r7VB3is62rfbo+/bt05vf/GZNTk7q6NGjOnDggN3zAgAAAACgIR6PR25XryL35W0b0+3qlcfjsW08AAAAAAAAAADaXTgc1vj4uOLxuJaXl+X1ehUKhVq+8zoAALDflgrYX/ziF+upp57S+fPnde+99+ree++VJL3iFa/Q0aNHFQqFdPToUV133XW7MlkAAAAAe6tQKPAmI4zn8/mUSp+SZVl141KplCKRiObm5hQMBuvGejwe+Xw+O6cJAAAAAAAAAIBx7H4W5HQ6NTo6at8EAQBAW9pSAfsvf/lL/b//9/8Uj8f14IMPKh6P62c/+5keffRRPfroo7rnnnskSS996Ut19OjR8n+vfvWr1dVVe3t2AAAAAOapts2j3+/X7Oxs227z2EzZbLahAuyLP9bTaQXYPp+v4e83GAy29HaAAAAAAAAAAADYgWdBAACgWbZUwC5Jr3rVq/SqV71Kv/u7vytJymQy5WL2eDyuRx99VD//+c8Vi8X0pS99SZJ0+eWXa2hoqNylfWhoSL29vfZ+JwAAAABss7CwoMnJSY2NjWl+fl79/f1KJpOanp7W5OSkYrEYb1zaKJvN6kjgiFbyKw3FRyKRTWN6Xb06lT7VUUXsAAAAAAAAAACgMTwLAmACmnwBnWvLBeyX8vv98vv9evvb3y5JOnPmTEVB+yOPPKJnn31WX//61/WNb3zjwhfdt0+vfvWrFQqF9MlPfnKnUwAAAABgo0KhoGg0qrGxMS0uLsrhcEiShoaGtLi4qImJCR07dkzj4+M72kISL7AsSyv5FR2685B6DvbUjCueK2rNWlO3p1uO/Y6acaunV7V0fEmWZfEGDQAAwL+we0t0AAAAAABaFc+CAJggm80qGDiinI1NvtyuXqVo8gW0hB0XsF/qwIEDuuOOO3THHXdIkp599lk99NBDisfjevDBB3Xy5Emtrq7qBz/4gX74wx9SwA4AAAAYJh6PK5PJaH5+vvyGZYnD4dDU1JSGh4cVj8c1OjranEm2qZ6DPXL5XfWDDu/NXAAAANoJW6IDAAAAAPACngUBMIFlWcrlVzR3u0vBA7Wbd+XPrytztij/VQ659nXVjEudKSpyX54mX0CLsL2A/VJXXHGFfuVXfkU/+9nP9MQTTyiTyej06dNaX1/f7S8NAAAAYBuWl5clSf39/VXPl46X4gAAAACTsSU6AAAAAACVeBYEwCTBAw4NeOvv9jByzR5NBsCesb2AfX19XX//93+veDxe/u/MmTMbYgAAAACYyev1SpKSyaSGhoY2nE8mkxVxAAAAgKnYEh0AAAAA2l+hUFA8Htfy8rK8Xq9CoRCv8TbBsyAAANBsOy5gX1tb09/+7d+Wi9UffvhhPfvss+XzlxarX3fddQqFQrr55pt188037/TLAwAAALBZKBSS3+/X9PR0RZGPJBWLRc3MzKivr0+hUKiJswQAAAA2x5boAAAAANDeFhYWFI1Glclkysf8fr9mZ2fZbasOO58F5XI5pdPpimP5fF6ZTEZ+v18ul6viXCAQkNvttucbAQAALWvLBezPPfecHn74YT344IOKx+P64Q9/qNXV1fL5iwvWu7q61N/fr5tvvrlctM7KPAAAAMBsTqdTs7Ozmpyc1MTEhKamptTf369kMqmZmRmdOHFCsViM7iUAAAAwHluiAwAAAED7WlhY0OTkpMbGxjQ/P19+ljE9Pa3JyUnFYjGK2Guw81lQOp3W4OBgw187kUhoYGBgJ9MHAABtYEsF7DfeeKMeeeQRFYvF8rGLC9b37dunV7/61eWC9VAopBe/+MX2zRYAAADAngiHw4rFYnr/+9+v4eHh8nG/388bvgAAAGgZbIkOAAAAAO2pUCgoGo1qbGysooP40NCQFhcXNTExoWPHjml8fJyGPDWUngVFo9GKZ0F9fX1behYUCASUSCQqjqVSKUUiEc3NzSkYDG6IBwAA2FIB+49+9KOKP/f29uo1r3mNbr75Zt1888163etep8suu8zWCQIAAABonq6urmZPAQAAANg2O7dEBwAAaHerp1frni+eK2rNWlO3p1uO/Y6acZuNAwB2iMfjymQymp+fr3itJ0kOh0NTU1MaHh5WPB7X6OhocybZAsLhsMbHxxWPx7W8vCyv16tQKLSlon+3212zo3owGKTbOgAAqGpLBeyXX365RkZGygXrN910k/bv379bcwMAAADQJGy7CQAAgHZg55boAAAA7crj8ajX1aul40u2jdnr6pXH47FtPAC41PLysiSpv7+/6vnS8VIcXpDL5ZROpyuOdXd3q1gsqru7W4888kjFuUAgILfbvZdTBAAAHWBLBexnz57dsGoRAAAAQHth200AAAC0E7u2RAcAADBJNpuVZVl1Y1KpVMXHer71zW+pp6dn0/EikYjm5uYUDAbrxno8Hvl8vk2/LgBsl9frlSQlk0kNDQ1tOJ9MJivi8IJ0Oq3BwcGG4xOJBF3UAQCA7bZUwE7xOgAAAND+2HYTAAAA7caOLdEBAABMkc1mFQwcUS6/0lB8JBLZNMbt6lUqfaqhovNgMEghI4CmC4VC8vv9mp6ermjGI0nFYlEzMzPq6+tTKBRq4izNFAgElEgkKo7VW6QUCAT2cnoAOkg+n5ckpayCLeOVximNC8BsWypgBwAAAND+2HYTAAAA7cjpdLIAEwAAtAXLspTLr2judpeCB2o3ocufX1fmbFH+qxxy7euqGZc6U1Tkvrwsy6JrOoCW4XQ6NTs7q8nJSU1MTGhqakr9/f1KJpOamZnRiRMnFIvFWLhchdvtrrkQiUVKAPZSJpORJEUWGluYuZVxR0ZGbB0TgP0oYEfbyeVySqfTFcfy+bwymYz8fr9cLlfFuUAgILfbvZdTBAAAMBrbbgIAAKAd8D4hAABod8EDDg146xdmjlyzR5MBgCYIh8OKxWKKRqMaHh4uH+/r61MsFlM4HG7i7AAAm/H7/ZKkuXCvgp6dLzhKWQVFFlbK4wIwGwXsaDvpdFqDg4MNxycSCVaPAgAAXIRtNwEAANAOeJ8QAAAAANpfOBzW+Pi44vG4lpeX5fV6FQqF6LwOAC2g1GAi6HFuujBzO+MCMBsF7Gg7gUBAiUSi4lgqlVIkEtHc3JyCweCGeAAAALyAbTf3Xj6flyStnl61ZbzSOKVxAQAAOhHvEwIAAABAZ3A6nRodHW32NAAAALAFFLCj7bjd7pqdkoLBIF2UAAAAGsC2m3srk8lIkpaOL9k+7sjIiK1jAgAAtAreJwQAAAAAAAAAwEwUsAMAAACoim03947f75ckHbrzkHoO9ux4vNXTq1o6vlQeFwAAAAAAAAAAAAAAwBQUsAMAAACoiW0394bL5ZIk9Rzskcvvsn1cAAAAAEBzZbNZWZZVNyaVSlV8rMfj8cjn89kyNwAAAAAAAGCvUcAOAAAAoKZCoUAHdgAAAAAAdiCbzepI4IhW8isNxUcikU1jel29OpU+RRE70KHy+bwkKWUVbBmvNE5pXAAAAAAAdhsF7AAAAACqWlhYUDQaVSaTKR/z+/2anZ1VOBxu3sQAAAAAAGghlmVpJb+iQ3ceUs/BnppxxXNFrVlr6vZ0y7HfUTNu9fSqlo4vybIsCtiBDlV6vy6y0NjCmK2MOzIyYuuYAAAAAABUQwE7AAAAgA0WFhY0OTmpsbExzc/Pq7+/X8lkUtPT05qcnFQsFqOIHQAAAACALeg52COX31U/6PDezAVAa/P7/ZKkuXCvgp6d75aYsgqKLKyUxwUAAAAAYLdRwA4AAACgQqFQUDQa1djYmBYXF+VwXOj6NjQ0pMXFRU1MTOjYsWMaHx+X07nzB2QAAAAAAAAAGudyXVgME/Q4NeC17/250rgAAAAAAOw2CtgBAAAAVIjH48pkMpqfny8Xr5c4HA5NTU1peHhY8Xhco6OjzZkksIlcLqd0Ol1xLJVKVXy8WCAQkNvt3pO5AQAAAAAAALVks1lZllU3pt77XJfyeDzy+Xy2zA0AAAAA7EIBOwAAAIAKy8vLkqT+/v6q50vHS3GAidLptAYHB6uei0QiG44lEgkNDAzs9rQAAAAAAACAmrLZrI4Ejmglv9JQfLX3uS7V6+rVqfQpitgBAICxUmeKdc/nz68rc7Yo/1UOufZ1bXscAGahgB0AAABABa/XK0lKJpMaGhracD6ZTFbEASYKBAJKJBIVx/L5vDKZjPx+/4YtsQOBwF5ODwAAAAAAANjAsiyt5Fd06M5D6jnYUzOueK6oNWtN3Z5uOfY7asatnl7V0vElWZZFATsAADCOx+OR29WryH1528Z0u3rl8XhsGw/A7qGAHQAAAECFUCgkv9+v6elpLS4uyuF44QFIsVjUzMyM+vr6FAqFmjhLoD632121o/rIyEgTZgMAAAAAAAA0rudgj1x+V/2gw3szFwAAgN3i8/mUSp+SZVl141KplCKRiObm5hQMBuvGejweFu4BLYICdmwqm802dJO4+GM93CR2ZrN8kIu9w7VhDnJhDnJhDnJhlla7fzudTs3OzmpyclITExOamppSf3+/ksmkZmZmdOLECcViMTmdzl2dx27g2jAHuTAHuTAHuTCLnfkgFzvDtWEOcmEOcmEOcmEW7t/m4NowB7kwh525aCRXqI3rwizcv83BtWEOcmEOcmEOcmEWu+/f1ZpSVRMMBhuOBWA+CthRVzab1ZFAUCv5XEPxkUhk05hel1un0il+CdiGreSDXOwurg1zkAtzkAtzkAuztOr9OxwOKxaLKRqNanh4uHy8r69PsVhM4XB4V7/+buDaMAe5MAe5MAe5MIvd+SAX28e1YQ5yYQ5yYQ5yYRbu3+bg2jAHuTDHbuQC28N1YRbu3+bg2jAHuTAHuTAHuTAL928AdqGAHXVZlqWVfE5Xj0XVffU1NePWz5/T+ad/oX1XvlRd+/bXjFv75RP65YlZWZbFTWcbGskHudgbXBvmIBfmIBfmIBdmaeX7dzgc1vj4uOLxuJaXl+X1ehUKhVqy87rEtWEScmEOcmEOcmEWO/NBLnaGa8Mc5MIc5MIc5MIs3L/NwbVhDnJhDrtzkf/Hk3o6PrcbU217XBdm4f5tDq4Nc5ALc5ALc5ALs7Ta/TuXyymdTlccq9cdPhAIyO1278pcAFSigB0N6b76GvW87Pr6QYdeuTeTweb5IBd7hmvDHOTCHOTCHOTCLK16/3Y6nRodHW32NGzFtWEOcmEOcmEOcmEW8mEOcmEOcmEOcmEOcmEW8mEOcmEOcmEOu3Kx9ssnbJpR5+K6MAv5MAe5MAe5MAe5MAe5MEur5COdTmtwcLDquWrd4ROJhAYGBnZ7WgBEATsAAAAA7Ei1lfnVzteL22wMAAAAAAAA4FKpM8W65/Pn15U5W5T/Kodc+7q2PQ4AAADQqgKBgBKJRMWxfD6vTCYjv98vl8u1IR7A3qCAHQAAAEBZtS3UNnsB36lbqBWee0qOruor86tpNA4AAAAA0F7y+bwkafX0qi3jlcYpjQug8zh6Lr/wvtR99v0ccLt65fF4bBsPAAAAMIHb7a7aUX1kZKQJswFwMQrYAQAAAJTV20Ktmk7eQq24+pyK69Lc7S4FDzhqxjXS6eorj53Xhx+wp5ABAAAAAGCWTCYjSVo6vmT7uDxwBzqT8/IXX3hfam5OwWCwZlwqlVIkEtk0TpI8Ho98Pp/dU+1INAkBAAAAgM1RwA4AAACgrNoWavUedLGFmhQ84NCA11k3ZuSa+mOkrIKNMwIAAAAAmMTv90uSDt15SD0He3Y83urpVS0dXyqPC6BzBYPBhppLNBoHe9AkBNh9LBQBGlMoFBSPx7W8vCyv16tQKCSns/4zLQAA9goF7AAAAADKam2hJvGgCwAAAACAkq0UgpQKqHoO9sjld1WN2Y5LC7MAAGagSQiw+1goAmxuYWFB0Wi0vCOUdGFx7ezsrMLhcPMmBgDAv6CAHQAAAAAMsXp6te754rmi1qw1dXu65djv2PY4AAAAAIDtoxAEAFAPTUKA3cdCEaC+hYUFTU5OamxsTPPz8+rv71cymdT09LQmJycVi8V47QIAaDoK2AEAAACgya7q7ZK6pKXjS7aN2evqlcfjsW08AAAAAACFIAAAACZgoQhQW6FQUDQa1djYmBYXF+VwXGiINDQ0pMXFRU1MTOjYsWMaHx+vuYsUAAB7gQJ21JXP5yVJa798wpbxSuOUxsXW2JkPcrEzXBvmIBfmIBfmIBdm4f5tDruvjfNP/+LCuOfXdzyW93KHtK6qnWEuVq+DzKU8Ho98Pt+O57Yb+DllDnJhDnJhFu7f5uDaMAe5MAe5MAe5MMte3L8pBGkM14Y5yIU5yIU5yIVZeP1tDq4Nc7RCLrLZrCzLqhuTSqUqPtZj6vOMVshFNfF4XJlMRvPz8+XXLCUOh0NTU1MaHh5WPB7X6Ojors7FLq2ai3bF/RuAXShgR12l7S9/eWLW9nFHRkZsHbMT7EY+yMX2cG2Yg1yYg1yYg1yYhfu3OXbt2jhb1Mg19ozVaGeYVu8gw88pc5ALc5ALs3D/NgfXhjnIhTnIhTnIhVn24v7djoUgu4Frwxzkwhzkwhzkwiy8/jYH14Y5TM9FNpvVkcARreRXGoqPRCKbxvS6enUqfcq4InbTc1HL8vKyJKm/v7/q+dLxUlwraNVctCvu3wDsQgE76vL7/ZKkq8ei6r5651U5a798Qr88MVseF1tjZz7Ixc5wbZiDXJiDXJiDXJiF+7c57L428v94Uk/H5+S/yrF5MCrwc8oc5MIc5MIs3L/NwbVhDnJhDnJhDnJhlr24f19cCFIoFBSPx7W8vCyv16tQKNSShSC7gWvDHOTCHOTCHOTCLLz+NgfXhjlMz4VlWVrJr+jQnYfUc7CnZlzxXFFr1pq6Pd1y7K/9HGX19KqWji/JsizjCthNz0UtXq9XkpRMJjU0NLThfDKZrIhrBa2ai3bF/RuAXdqigP2f/umf9Kd/+qe6//779cQTT6inp0fXXXed3vKWt+jd73633G73tsdOpVL65je/qR/+8If6h3/4Bz355JOyLEtOp1MvfelLddNNN+ltb3ubfv3Xf11dXV02fldmcLlckqTuq69Rz8uut31cbM1u5INcbA/XhjnIhTnIhTnIhVm4f5vD7lyUtrRz7Wu/1wG7jZ9T5iAX5iAXZuH+bQ6uDXOQC3OQC3OQC7Psxf27VODxZ3/2Z7r77rvLXeekCw/w77zzzoq4TsW1YQ5yYQ5yYQ5yYRZef5uDa8McrZKLnoM9cvk3GfOwrV9yz7VKLi4VCoXk9/s1PT2txcXFit2jisWiZmZm1NfXp1AotKvzsFOr5qJdcf8GYJeWL2D/8pe/rEgkomeeeaZ8LJfL6eTJkzp58qQ+97nP6f7779f112/vh+XHP/5x/a//9b+qnnv88cf1+OOP63//7/+t17/+9frSl76kq6++eltfBwAAAAAAAAAAAOYKhUI6cOCApqamNDY2pvn5efX39yuZTOrjH/+47rrrLr3kJS9pqUIQAAAAdIZUKtXQ+UbjYC6n06nZ2VlNTk5qYmJCU1NT5dctMzMzOnHihGKxmJxOZ7OnCgDocC1dwP53f/d3eutb36p8Pq/LL79cU1NTuuWWW5TP53Xvvffqz//8z/Xoo4/qjW98o06ePKkrrrhiy19j3759eu1rX6uRkRHdcMMNetnLXqYDBw7oqaeeUjqd1t13361kMqnvfOc7etOb3qTvfve7FSvXAAAAAAAAAAAA0B4u3o13fX29/B8AAABgosJzT8nRJUUikYbiG42D2cLhsGKxmKLRqIaHh8vH+/r6FIvFFA6Hmzg7AAAuaOkC9ve+973K5/Pat2+f/uZv/kave93ryuduvfVWveIVr9AHP/hBPfroo5qdndVHP/rRLX+Nz33uc9q3r/o/06/+6q/q937v9/SWt7xFCwsL+t73vqcTJ07o13/917f7LQEAAAAAAAAAAMBA8XhcTz75pGZmZnT33XdvKASZnp7WXXfdpXg8rtHR0eZNFAAAAPgXxdXnVFyX5m53KXigdkPO/Pl1Zc4W5b/KIde+rppxX3nsvD78wOpuTBU2C4fDGh8fVzwe1/Lysrxer0KhEJ3XAQDGaNkC9h/84AeKx+OSpHe+850Vxesl0WhU99xzj1KplD772c/qQx/6kLq7u7f0dWoVr5c4nU594AMf0MLCgqQLb15SwL63stmsLMuqG9PoVkeS5PF45PP5bJkbAAAAAAAAAABoD8vLy5Kk97znPfrABz6woRAkl8vprrvuKscBALBV+XxekrR62p7i0NI4pXEBdK7gAYcGvPULl0eu2XyclFWwaUbYC06nk8W1AABjtWwB++LiYvnz3/md36ka43A49Pa3v11TU1M6e/asHnjgAd122222z+WKK64of76ysmL7+Kgtm83qSOCIVvKN/bs3stVRr6tXp9KnKGIHAABAXeuFNUn2vFlbGoMHSQAAAABgLq/XK0lKJpMaGhraUAiSTCYr4gAA2KpMJiNJWjq+ZPu4IyMjto7ZiXK5nNLpdMWxfD6vTCYjv98vl8tVcS4QCMjtdu/lFAEAhuCeAQCba9kC9u9+97uSpMsuu0yDg4M1417/+teXP3/ooYd2pYD93nvvLX8eCARsHx+1WZallfyKDt15SD0He2rGFc8VtWatqdvTLcf+2lsirZ5e1dLxJVmWRQE7AAAA6io898+SpMiCfYtYeZAEAAAAAGbK5XK67LLLdPDgQf3BH/yBZmdntbq6Wi4+6Onp0R/+4R/q5S9/uS677DLlcjmKDwAAW+b3+yVp0+ffjSo9/y6Ni51Jp9N161MulUgkNDAwsIszAgCYinsGAGyuZQvYU6mUJOn666/Xvn21v42LC8pLf8cOlmXpscce0+c+9zndc889kiSPx6Pf/M3ftO1roHE9B3vk8rvqBx3em7kAAACgMzgv/1eSpLlwr4Ke+ttubiZlFRRZWOFBEgAAAAAYKp1O6zWveY0k6fTp07rppptqxr7mNa+h+AAAsC2lbqwNPf/exrjYmUAgoEQiUXEslUopEolobm5OwWBwQzwAoDNxzwCAzbVkAfvKyoosy5IkHTp0qG7si1/8Yl122WV6/vnn9cQTT+zo646Ojuo73/lO1XMej0f33Xefrrrqqk3HWV1d1erqavnPzzzzzI7mBQAAAGDvdTm7JUlBj1MD3p0VsJfwIAkAAAAAzHRx8cG3vvUtfeYzn9Hp06fL51/+8pfrP//n/6xbb721HH+p1dOrG45dbCu7yQIAgL3ndrtrLlALBoMsXgMAlHHPAIDNtWQB+7PPPlv+/PLLL980vlTA/txzz+3KfP7Tf/pP+vCHPyyPx9NQ/MzMjD72sY/tylwAAAAAAAAAAABgr4uLDwYGBvS+971Pn//85/Wud71Ld999t975znfK6ay+uNnj8ajX1aul40u2zafX1dvwcykAAAAAAADANC1ZwL6yslL+fP/+/ZvG9/T0SJLy+fyOvu4999yj559/Xuvr6zp79qxOnjyp//k//6f+7M/+TP/4j/+oz33uc3rpS1+66ThTU1N6//vfX/7zM888o2uuuWZHcwMAAAAAAAAAAMDecDqduvHGGyVJN954Y83idUny+Xw6lT5V3l24lnrbyV/K4/HI5/NtfeIAAAAAAACAAVqygL23t7f8+blz5zaNX129sJWiy+Xa0dft6+ur+HMoFNLv/d7v6c1vfrNOnDihm266SQ8//LAOHTpUd5yenp5yUX2rWPvlE3XPr58/p/NP/0L7rnypuvbVXlSw2ThoTL1/R3Kxt7g2zEEuzEEuzEEuzML92xx2XRvnn/6F3VPrOPycMge5MAe5MIsd+SAX9uDaMAe5MAe5MAe5MIup92+fz9dwwXm7bCfPtWEOcmGOVspFLpdTOp2uOJZKpSo+XiwQCMjtdu/6vOzSSrnoBKbevzsR14Y5eJZhDq4Lc5ALs3D/BrBTLVnAfsUVV5Q/f+655zaNf/755yVJl19+ue1z6e3t1T333KNrr71WTzzxhD74wQ/qi1/8ou1fp1kubGvp1i9PzNo2Zq/LXbGtZbU3P/L5vDKZjPx+/4aFB6325oed7M7HpblA4/bi2kBjyIU5yIU5yIVZTL9/Z7PZhjrAXfyxHpM7wO3GtYHt4eeUOciFOciFWUy/f3cSrg1zkAtzkAtzkAuzcP82B9eGOciFOZr1zHUnBefpdFqDg4NVz0UikQ3HEolESyy+4bowC/dvc3BtmINnGebgujAHuTAL928AdmnJAvbe3l5dffXV+uUvf6mlpaW6sU899VS5gP2aa67Zlfl4PB6NjIzo61//uv7qr/5Ka2tr6u7u3pWvtdcubGuZ2tVtLeu9+VHNxW9+5PN5SdLq6dWG/349pXFK45qmkXywxeje2ItrA40hF+YgF+YgF2Yx+f6dzWZ1JHBEK/mVhuKrPZi6VK+rV6fSp4z8/8Xua6MUh63j55Q5yIU5yIVZ7M4Hudg+rg1zkAtzkAtzkAuzcP82B9eGOciFOZr9zHU7BeeBQECJRKLi2GZNyFoB14VZuH+bg2vDHDzLMAfXhTnIhVm4fwOwS0sWsEvSK1/5SsXjcf3kJz/R+fPntW9f9W/l4lXmm92YduLAgQOSLqxstyxLXq93177WXtvtbS2rvflR7wZ28ZsfmUxGkrR0vP5Chq3KZDIaGRmxdUy7NJqPdtli1GSduOWrqciFOciFOciFWUy9f1uWpZX8ig7deUg9B3tqxhXPFbVmranb0y3HfkfNuNXTq1o6viTLsox9k4FrwxzkwhzkwhzkwizkwxzkwhzkwhzkwhzkwizkwxzkwhzkwhzNeOa6k4Jzt9tddQ6mPkPdCq4Ls5APc5ALc5ici9Xz6xc+dlCjSVNz0WnIhVnIBwA7tGwB+9GjRxWPx/X8888rkUjota99bdW473znO+XPd/PF9M9+9rPy55dffvmufZ12VOvND2nzG5jf75ekTYuuGlUquiqNCwAA0Al6DvbI5XfVDzq8N3MBAAAAAAAAsHXtXHAOADDH6WcvFLB3UqNJAACwO1q2gH1iYkIzMzOSpHvuuadqAXuxWNRf/MVfSJKuuuoq3XLLLbsyl6WlJX3ve9+TJF177bW64oorduXrYKNSp4CGiq62MS4AAECrKRQKisfjWl5eltfrVSgUktPpbPa0AAAAgF2XzWYb2rr44o/1sH0xAAAAGmHn76GN/J4KAM108IouSTSaBLB7crmc0ul0xbF6v0sFAgG53e49mRsAe7VsAftrXvMahUIhxeNxff7zn9c73vEOve51r6uImZ2dLf/Qeu9736vu7u6K89/+9rfLRe3veMc79IUvfKHi/KOPPqqlpSXdeuutNefx9NNP621ve5vOnTsnSXr729++028NAAAA2JaFhQVFo1FlMpnyMb/fr9nZWYXD4eZNrM2lzhTrns+fX1fmbFH+qxxy7eva1hgAAACoL5vN6kjgiFbyKw3FRyKRTWN6Xb06lT5FETsAAABqymazCgaOKGfj76EAYLKef3nOQaNJe1Qr1M3n88pkMvL7/Rv+XSjURSdIp9MaHByseq7a71KJRKLqTkQAzNeyBeyS9NnPflYjIyPK5/O67bbbdNddd+mWW25RPp/Xvffeq+PHj0uSDh8+rGg0uuXxT58+rX/7b/+t/vW//teamJjQ4OCgXvayl2nfvn36+c9/roceekif//zn9fOf/1yS1N/frz/8wz+09XsEAAAAGrGwsKDJyUmNjY1pfn5e/f39SiaTmp6e1uTkpGKxGEXsNvN4PHK7ehW5L2/LeG5Xrzwejy1jAQAAdBrLsrSSX9m0A1zxXFFr1pq6Pd1y7HfUjCt1gLMsiwJ2AAAA1GRZlnL5Fc3d7lLwQO3fLxtpciFJX3nsvD78wOpuTBVAh8rnLzzDSFkFW8Z7/KkLDXmK52jMY4d6hbrVUKiLThAIBJRIJCqObbawA0BraukC9le/+tX6y7/8S0UiET3zzDO66667NsQcPnxY999/v6644optf51HHnlEjzzySN2YN77xjbrnnntY5QYAAIA9VygUFI1GNTY2psXFRTkcFx6UDA0NaXFxURMTEzp27JjGx8fldDqbPNv24fP5lEqfamh74Egkorm5OQWDwZpxHo+H4igAAIAdaqgD3OG9mQsAAEAzFQoFxeNxLS8vy+v1KhQK8d7gLgoecGjAW//fd+Sazcexq8AUMBGdppujtGtvZKGxnSIatWat8fraBtUKdes9V6JQF53A7XZXXagxMjLShNkA2E0tXcAuSW9605v04x//WJ/97Gd1//33a2lpSfv379f111+vN7/5zXrPe96z7V9oR0ZG9Nd//df6xje+oZMnT2ppaUm/+MUvlMvl9KIXvUh9fX0aGhrSb/zGb/ADEgAAAE0Tj8eVyWQ0Pz9fLl4vcTgcmpqa0vDwsOLxuEZHR5szyTbl8/kaLjoPBoN0xQAAAAAAAMCuW1hYUDQaLRctSpLf79fs7Cy7NAJoGjpNN4ff75ckzYV7FfTsfCHTVx5b04cfOKduT/eOx0LtQl2J50oAgPbX8gXsknTttdfq05/+tD796U9v6e+Njo5qfX295vnu7m7ddtttuu2223Y6RQAAAGDXLC8vS5L6+/urni8dL8UBAAAAAAAAaE8LCwuanJzU2NiY5ufn1d/fr2QyqenpaU1OTioWi1HE3gJWT6/WPV88V9SataZuT7cc+x014zYbB9hLdJpujlJn+6DHuelOEY0o7RRR72cPmoedDtCO2FkIaF9tUcCO1pLNZmVZVt2YVCpV8XGzOAAAgE6Vy+X07LPPSpK+9KUv6YYbbtjwRtSPf/xjSdKzzz6rXC7HG1EAAAAAAABAGyoUCopGoxobG9Pi4mJ5t8ahoSEtLi5qYmJCx44d0/j4OEU/hrqqt0vqkpaOL9k2Zq+rVx6Px7bxgO2i0zSw+9jpAO2GnYWA9kYBO/ZUNptVMHBEufxKQ/GRSGSXZwQAANDa0um03vWud0mSfvu3f7tu7Lve9S7deOON5Tei8vm8JPu68JTGKY0LAAAAAAAAYO/E43FlMhnNz8+Xi9dLHA6HpqamNDw8rHg8rtHR0eZMEnV5L3dI66rajfpi9bpWX8rj8cjn89k9VQCAgdjpAO2EnYWA9kcBO/aUZVnK5Vc0d7tLwQO1txPKn19X5mxR/qsccu3rqhn3lcfO68MPsO0ZAADoXKU3or71rW/pgx/8oEKhkG655RZ97GMf00c+8hE98MADisfj+sQnPqFbb7214o2o0kp1O7v5lMYdGRmxdUwAAAAAAAAA9S0vL0uS+vv7q54vHS/FwVyNdqOmazUA4GLsdIB2wc5CQGeggB1NETzg0IC3/s1j5JrNx0lZBZtmBAAA0JpKb0QNDAzoV37lVxSNRvWxj31MkvSxj31MfX19NVef+/1+SdKhOw+p52DPjueyenpVS8eXyuMCAAAAANCqstmsLMuqG5NKpSo+1kP3WwB7wev1SpKSyaSGhoY2nE8mkxVxAAAAgInYWQjoDBSwAwAAAG0iHA5rfHxcn//85/Wud71Ld999t975znfWXHXucrkkST0He+Tyu2ybR2lcAAAAAABaUTabVTBwRLn8SkPxkUhk0xi3q1ep9CmK2AHsqlAoJL/fr+np6YpOlZJULBY1MzOjvr4+hUKhJs4SANAMqTPFuufz59eVOVuU/yqHXPu6asY9/tS6pAtNjeopnitqzVpTt6dbjv2OmnGbjQOgM7GzENAZKGBHW+AXYwAAgAucTqduvPFGSdKNN97IlmkAAABoGblcTul0uuJYPp9XJpOR3+/fsFAyEAjI7Xbv5RQBdAjLspTLr2judpeCB2o/U2i0yCd1pqjIfXlZlkUBO4Bd5XQ6NTs7q8nJSU1MTGhqakr9/f1KJpOamZnRiRMnFIvFeM8QADqIx+OR29WryH15+wbtkpaOL9k2XK+rVx6Px7bxALQ+dhYCOgMF7GhpV/V28YsxAAAAAAAA0AbS6bQGBwcbjk8kEhoYGNjFGQHodMEDDg146xd5jlyzR5MBgAaFw2HFYjFFo1ENDw+Xj/f19SkWiykcDjdxdgCAvebz+ZRKn5JlWXXjUqmUIpGI5ubmFAwG68aurq6qp6fHtvE8Hg8LPQFUYGchoDNQwI6W5r3cIa1r0194+cUYAAAAraZaB9JUKlXx8WJ0IAUAAK0uEAgokUhUHKv3vl4gENjL6QEAALSMcDis8fFxxeNxLS8vy+v1KhQK0XkdADqUz+druA4mGAzauljc7vEAdAZ2FgI6AwXsaAuN/sLLL8YAAABoFfU6kEYikQ3H6EAKAABandvtrvn7DO/rAQAAwET5fF6SlLIKtoxXGqc0LoAXZLPZul3E6zWAuRSNDQHAfOwsBLQ/CtgBAACADrd6erXu+eK5otasNXV7uuXY76gZt9k42JpqHUjz+bwymYz8fr9cLteGeAAAgE5VKvCx63fS0jgUDgEAgFa0sLCgaDSqTCZTPub3+zU7O0uhj81K/8aRhRXbxx0ZGbF1TKCVZbNZHQkc0Up+82utWgOYS/W6enUqfYoidgAwHDsLAe2NAnYAAACgQ3k8HvW6erV0fMm2MXtdvfJ4PLaN18lqdSDlwRUAAMBGpcIhO3+3LY3L719A56GbLoBWtrCwoMnJSY2NjWl+fl79/f1KJpOanp7W5OQk3Spt5vf7JUlz4V4FPTsvpEpZBUUWVsrjArjAsiyt5Fd06M5D6jnYUzVmK814lo4vybIsCtgBoAU4nU6Njo42exoAdgEF7NhTvOkLAABgDp/Pp1PpU3W33JQubLcZiUQ0NzenYDBYN5ZtNwEAANAMpQKfesUMW1EqaKBwCOhMdNMF0KoKhYKi0ajGxsa0uLgoh+NCAefQ0JAWFxc1MTGhY8eOaXx8nK6VNintkhj0ODXgte/f9NLdF7E9uVxO6XS64thmu1y63e69nCK2qOdgj1z+OtfH4b2bCwAAAHaGAnbsKd70BQAAMIvP52u44DwYDFbtCA4AAAA0W6nwZNNihm2OC6Cz7EU33WoFdalUquLjxSioA9CIeDyuTCaj+fn5cvF6icPh0NTUlIaHhxWPx+liiY6QTqc1ODjYcHwikeA9cAAAAGCPUMCOPcUWagAAoBq6oAAAAAAAAFPsRTfdegV1kUhkwzEK6gA0Ynl5WZLU399f9XzpeCkOaHeBQECJRKLiWL0dRwOBQMWfs9lsQzuYXvyxHnYwBQAAAF5AATv2FFuoAQCAauiCAgAAAAAAOkm1grrNFvMDwGa8Xq8kKZlMamhoaMP5ZDJZEQe0O7fbXfNZwmY7jmazWR0JHNFKvrHd5astQLtUr6tXp9KnKGIHAAAARAE7AAAADLDTLigAAAAAAACtpFZB3cjISBNmA6BdhEIh+f1+TU9Pa3FxUQ6Ho3yuWCxqZmZGfX19CoVCTZwl0Bosy9JKfkWH7jyknoM9NeOK54pas9bU7emWY7+jZtzq6VUtHV+SZVkUsAMAAACigB0AAAAG2EkXFMAkuVxO6XS64litLWQDgYDcbveezQ0AAAAAAADtzel0anZ2VpOTk5qYmNDU1JT6+/uVTCY1MzOjEydOKBaLyem0b6dsoN31HOyRy7/JjvCH92YuAAAAQDuhgB0AAAAAbJJOpzU4OFj13KVbyCYSCRZnAAAAAIDBUmeKdc/nz68rc7Yo/1UOufZ1bXscALBTOBxWLBZTNBrV8PBw+XhfX59isZjC4XATZwcAAAAAwAUUsAMAAACATQKBgBKJRMWxfD6vTCYjv98vl8tVEQsAAAAAMI/H45Hb1avIfXnbxnS7euXxeGwbDwDqCYfDGh8fVzwe1/Lysrxer0KhEJ3XdxGLngAAzZDNZmVZVt2YWjsFV+PxeOTz+WyZGwAAm6GAHQAAAABs4na7q3ZVHxkZacJsAAAAAADb4fP5lEqfaqgQJBKJaG5uTsFgsG4shSAA9prT6dTo6Gizp9H2WPQEAGiWbDarI4EjWsmvNBR/6U7B1fS6enUqfaojX7vkcjml0+mKY7WaVEkXGlW53e69nCIAtB0K2NEUrEAHAAAAAAAAAACm8vl8DRdtBIPBqouZAQDtj0VPAIBmsSxLK/kVHbrzkHoO9tSMK54ras1aU7enW479jppxq6dXtXR8SZZldeR9KJ1Oa3BwsOH4RCLB60AA2CEK2LGnWIEOAAAAAAAAAAAAAGgXLHoCADRTz8Eeufyu+kGH92YurSwQCCiRSFQcq7cALRAIVPw5m802tKDt4o/1sKANQCeggB1bVm3LlHo32Iu3TGEFur12kgvYj3yYg1yYg1yYg1yY5dJ8kIvm4dowB7kwB7kwB7kwy1byQS52F9eGOXaaCzsf7DXy4K+dcV2Yg1yYhfu3Obg2zEEuzEEuzEEuzEI+zEEuzEEuzEEuzGF3Ltxud81FZpstQMtmszoSOKKV/EojU1ckEtk0ptfVq1PpUy1TE8e1AWA7KGDHltXbMqXaDfbSLVNYgW6fneYC9iIf5iAX5iAX5iAXZqmVD3Kx97g2zEEuzEEuzEEuzLKVfJCL3cW1YY6d5CKbzSoYOKKcjQ/2OhnXhTnIhVm4f5uDa8Mc5MIc5MIc5MIs5MMc5MIc5MIcO80Fi/ntY9J1YVmWVvIrOnTnIfUc7KkZVzxX1Jq1pm5Ptxz7HTXjVk+vaun4kizLapkCdpPyAaB1UMCOLau2ZUo+n1cmk5Hf75fL5doQv5c6aUWX6bnoNOTDHOTCHOTCHOTCLJfmg1w0D9eGOciFOciFOciFWbaSD3Kxu7g2zLGTXFiWpVx+RXO3uxQ8UPuBXf78ujJni/Jf5ZBrX1fNuK88dl4ffmBVq6dX6855Kw8KWwnXhTnIhVm4f5uDa8Mc5MIc5MIc5MIs5MMcJuUin89Lsue1WmmM0pitwKRcdLqd5ILF/PYy8broOdgjl99VP+jwrk+jKUzMBwDzUcCOLau1ZcrIyEgTZrNRJ63oMj0XnYZ8mINcmINcmINcmKVaPhrNhZ2dGSTJ4/G0zMr93cC1YQ5yYQ5yYQ5yYRbyYQ5yYQ47chE84NCA11k3ZuSazcdZfq4odUlLx5ca/tqb6XX1yuPx2DbebuK6MAe5MAv5MAe5MAe5MAe5MAe5MMtO8kFnY3uZdG1kMhlJ9r7my2QyLXOdm5SLTreTXOzWYv5OxXVhFvIBYDsoYEfbYUUXAABoV7vRmcHt6lUqfaqji9gBAADQ+ryXO6R1aW5uTsFgsGZcKpVSJBLZNE5isScAAADQSnars7FduzO1Ytdvk/j9fknSoTsPqedgz47GWj29qqXjS+Uxgb1m12L+lFWwaUYAADQHBexoO6zoAgAA7cruzgypM0VF7svLsqxyYU4ul1M6na6Mq9ORJhAIyO12b+fbAQAAAGwXDAYb2m2x0TgAAAAArcHu988/96Nz+p8n12zt+C21Vtdvk5QaFfYc7JHL79okemtjAq1q9fz6hY8stAEAtCgK2AEAAIAWY1dnhmrS6bQGBwernqvWkSaRSFD4AwAAAAAAAAAwgl3vn9948EIRvB0dvyW6fgOw3+lnLxSws9AGANCqKGAHAAAAUBYIBJRIJCqO5fN5ZTIZ+f3+DR1JAoHAXk4PAAAAAAAAAIBd1/Mv3dnt7Pgt0fUbgH0OXnHh5xQLbQAArYoCdgAAAABlbre7akd1Oi0AAADATqXtqFNWwZbxSuOwzTUAAAAAAOgELLQBALQ6CtgBAAAAAAAAAHsqk8lIkiILK7aPy+JLAAAAoPPYvUj28aeKkqTiuaIt4wEAAACoRAE7mi6XyymdTlccS6VSFR8vFggE5Ha792RuAABgd2SzWVmWVTem3u8Dl/J4PPL5fLbMDQAAAMDuK21HPRfuVdDj3PF4KaugyMIK21wDAAAAHWq3FsmuWWvSYVuHBAAAACAK2GGAdDqtwcHBqucikciGY4lEQgMDA7s9LQAAsEuy2ayOBI5oJd/Ym8jVfh+4VK+rV6fSpyhiBwAAAFpEaTvqoMepAe/OC9gvHRcAAABAZ7F7kexXHlvThx84p25P947HAgCJnSIAALgUBexoukAgoEQiUXEsn88rk8nI7/dveOgUCAT2cnoAAMBmlmVpJb+iQ3ceUs/BnppxxXNFrVlr6vZ0y7HfUTNu9fSqlo4vybKsti9gt/uNrdI4pXEBAAAAAAAAAGhFdi+SLb1/Xu/5BABsBTtFAABQiQJ2NJ3b7a7aUX1kZKQJswEAAHul52CPXP5NuiPyZkuF3XpjK5PJ8LsXAAAAAAAAAAAAsEvYKQIAgEoUsAMAAAAtwu43tlJWQZGFlfK4AAAAAAAAAAAAdshms7Isq25MKpWq+LhZHMyUy+WUTqcrjtXLbSAQkNvt3pO5mYSdItpXabfr1dOrtoxXGoddtAG0OwrYAQAAgBZh9xtbl44LAAAAAAAAAACwU9lsVsHAEeXyje0oG4lEdnlG2E3pdFqDg4NVz1XLbSKR0MDAwG5PC9gzpV20l44v2T4uu2gDaGcUsAMAAAAAAAAAAAAAAACwhWVZyuVXNHe7S8EDtbtD58+vK3O2KP9VDrn2ddWM+8pj5/XhB+zpbAz7O6YHAgElEomKY/l8XplMRn6/f0MjpUAgsN2pA0Yq7XZ96M5D6jnYs+PxVk+vaun4ErtoA2h7FLADAAAAAAAAAAAAddhd5AMAAHZH6kyx7vlGC6Yff2rd7ql1pOABx6Y7yo5cs/k4Kasg6UJRZy3Fc0WtWWvq9nTLsb920Xy9MTqF3R3T3W531fN0jobJstmsLMuqG1PvNd/FSh3Yew72yOW3b+drdtEG0O4oYAcAAAAAAAAAAADqsLvIBwAA2Mvj8cjt6lXkvnyzp4JdcFVvl9QlLR1fsmW8XlevPB6PLWO1Ijqmt5fNFmWwuGOjbDarYOCIcvmVhuKrveYDAOwcBewAAAAAAAAAAABAHRT5AABgNp/Pp1T6VEPddCORiObm5hQMBjeNozDUDN7LHdK66uat0dxKFxY8+Hy+3ZhqS6Bjenuwe2GH1DmLOyzLUi6/ornbXQoeqP2zu9FdO77y2Hl9+AF+zgPAVlHADgAAAKCmQqGgeDyu5eVleb1ehUIhOZ31t/sEAAAAGpU6U6x7vtEHhZuNAwA7RZEPAADm8/l8DRclB4PBuruleDwe9bp6KQw1zGZ5azQGaCa73gs5m9emCzskFnfUEzzg0IC3/nPPkWs2HydlFWyaEQB0FgrYAQAAsKfy+Qvbd9rVbaQ0TmncTrBXRT4LCwuKRqPKZDLlY36/X7OzswqHw1uaMwAAAHAxj8cjt6tXkfvs+z3eTTEIAAAAAJv4fD6dsrGju9R5haEAKu3WeyGhUKihny0s7gAAmIYCdgAAAOypUjG0nV1LSuO2e9ezvSzyWVhY0OTkpMbGxjQ/P6/+/n4lk0lNT09rcnJSsViMInYAAABsm8/nU4piEAAtjB3LAABof3Z2dAcA3gsxR6kxml2d0x9/6kLTsOI5dggEgK2ggB0AAAB7yu/3S5IO3XlIPQd7djze6ulVLR1fKo/bzvbqja1CoaBoNKqxsTEtLi7K4XBIkoaGhrS4uKiJiQkdO3ZM4+PjPJwHAADAtlEMAqBVsWMZAAAAgO3gvRAzlF7LRRZWbB13zVqTDts6JAC0NQrYAQBAx8rlckqn0xXH8vm8MpmM/H6/XC5XxblAICC3272XU2xLpX/XnoM9cvldm0Rvfdx2txdvbMXjcWUyGc3Pz5eL10scDoempqY0PDyseDyu0dHRLY8PAAAAAECrKu1Y9sY3vlEf+MAH5HK5lM/n9dWvfpUdywAAkqo/e0ilUhUfL8azBwAA9lapMdpcuFdBz86bdX3lsTV9+IFz6vZ073gsAOgkFLADAICOlU6nNTg42HB8IpFglXsNbJvdXpaXlyVJ/f39Vc+XjpfiAAAAUB2/JwNAeyntWDY4OKh/+Id/0IkTJ8rnrr32Wg0ODrJjGQCg7rOHSCSy4RjPHgAA2FulxmhBj1MD3p2/dktZBUmSY79jk0gAwMUoYAcAAB0rEAgokUhUHEulUopEIpqbm1MwGNwQj43YNrv9eL1eSVIymdRNN920oegqmUxWxAEAAGAjfk8GgPZT2rEsk8noTW96k+6991719/crmUxqenpaX/7yl8tx7FgGAJ2r2rOHzXZ/BQAAAIBOQwE7AADoWG63u2ZXk2AwSMeTBpS2zR4bG9P8/HzFQ1u2zW5doVBIfr9fv//7v68zZ87on/7pn8rnrr32Wh04cEB9fX0KhUJNnCUAAIC5+D0ZANrTz372M0nSG97wBi0uLsrhuNBdb2hoSIuLixobG9NXv/rVchwAoDPVevYwMjLShNkAAIC9snp6te754rmi1qw1dXu663Zr32wcAGgXFLADAABgW0rbZo+NjVV9aDsxMcG22S3K6XTqzW9+sz75yU/qpS99qY4fP66xsTGdOHFCH/7wh3Xy5El94AMfIK8AAABVXPx78pe+9CU99NBD+vKXvyyv16svfelLuuOOO/g9GQBa1JkzZyRJ4XC4/D5IicPh0MTEhL761a+W4wAAsEMul1M6na44lkqlKj5eLBAIyO1278ncAACAdFVvl9QlLR1fsm3MXlevPB6PbeMBgIkoYAcAAMC2lLbNnp+fr/rQdmpqSsPDw2yb3YIKhYL+z//5P7rxxhtlWZbuvPPO8rm+vj7deOONisVimpmZoegKAADgEqXfk9/1rnfp8OHDymQy5XN+v1933nmnvvzlL/N7MgC0oAMHDki6sNPGO97xDj300ENaXl6W1+vVyMiIFhcXK+IAALBDOp3W4OBg1XORSGTDsUQiwQ6zaLp8Pi9JSlkFW8YrjVMaFwBM4r3cIa1Lc3NzCgaDNeNSqZQikcimcZLk8Xjk8/nsnioAGIUCdgAAAGzL8vKyJKm/v7/q+dLxUhxax8WLE2666SbF4/HyA/lQKKQf/OAHLE4AAACoofT771133aWxsTHNz8+rv79fyWRS09PT+tCHPlQRBwBoHS9/+cslSV/72td05ZVXVhRQuVwuraysVMQBAGCHQCCgRCJRcSyfzyuTycjv98vlcm2IB5qttJg7srBi+7gjIyO2jgkAdgkGgw0tIms0DgDaHQXsAAAA2Bav1ytJSiaTGhoa2nA+mUxWxKF1XLw4wel0bihSZ3ECAABAbS95yUskqdyJt7Rb0dDQkBYXF/X6179e3/3ud8txAIDWEQqFdODAAZ05c2bDua6uLq2vr+slL3mJQqFQE2YHAGhXbre7apEbRbwwmd/vlyTNhXsV9Ox8J9eUVVBkYaU8LgAAAFofBewAAADYllAoJL/fr+np6YrCHEkqFouamZlRX18fD21bEIsTAAAAds/6+nqzpwAA2IGuri5J0q233qo3vOENcrlcyufz+upXv6r777+/ybMDAAAXy+VySqfTFcdSqVTFx4sFAgG53e49mVu7K+0MEPQ4NeDdeQH7peMCgB1SZ4p1z+fPrytztij/VQ659nVtexwAQHUUsAMAAGDLSm/6vvvd79YHP/hB3XLLLXrb294mp9OpQqGgL37xi4rH4/rEJz6hRx55hDd9WwyLEwAAALbvySeflCR997vf1cTEhKamptTf369kMqmZmRk99NBDFXEAgNYRj8f15JNPamZmRnfffXdFwXpfX5+mp6d11113KR6Pb9jNDAAA7L10Oq3BwcGq5yKRyIZjiUSiard7AEB78Xg8crt6Fbkvb9uYblevPB6PbeMBQCeggB0AAABbdumbvg8++KAefPDBDXEf+MAHJPGmb6txOp2anZ3V5ORk1aKrEydOKBaLyem0r2sKAABAuyjtUlMqbhweHi6fu7i4kd1sAKD1LC8vS5Le85736AMf+IDi8biWl5fl9XoVCoWUy+V01113leMAAEBzBQIBJRKJimP5fF6ZTEZ+v39DN+9AILCX0wMANInP51MqfUqWZdWNS6VSikQimpubUzAYrBvr8Xjk8/nsnCYAtD0K2AEAALBll77pWygUtLi4WC7GmZiYqChu5k3f1hMOhxWLxRSNRjcUXcViMYXD4SbODgAAwFyl3WwefvhhPfroo3rooYfKxY0jIyO644472M0GAFpUafFRMpnU0NDQhi7ryWSyIg4AADSX2+2u2lxnZGSkCbMBAJjE5/M1XHAeDAZp1gYAu4ACdgAAAGxZtTd9nU6npqendccdd/ACvk2Ew2GNj49v6ChH53UAAIDaLt7N5o477tDU1JTGxsaUTCZ1xx13sJsNALSw0iKl6elpLS4uyuFwlM8Vi0XNzMywSAkAAAAAAABoAAXsAAAAAGpyOp0bOsoBAACgPnazAYD2dPEipYmJCU1NTam/v1/JZFIzMzMsUmqiQqHAAnwAAAAAAIAWQgE7AAAAmmL19Grd88VzRa1Za+r2dMux31EzbrNxAAAAgGZgNxsAaE8sUjLPwsKCotGoMplM+Zjf79fs7Cz5AAAAAAAAMBQF7AAAANhTHo9Hva5eLR1fsm3MXlevPB6PbeO1klwup3Q6XXEslUpVfLxYIBCQ2+3ek7kBAAB0OnazAYD2xCIlcywsLGhyclJjY2Oan58vd8Sfnp7W5OQkiwoAAAAAAAAMRQE7AAAA9pTP59Op9ClZllU3LpVKKRKJaG5uTsFgsG6sx+ORz+ezc5otI51Oa3BwsOq5SCSy4VgikdDAwMBuTwsAAAAAgLbGIqXmKxQKikajGhsb0+LiohyOCzv4DQ0NaXFxURMTEzp27JjGx8dZXAAAAAAAAGAYCtgBAACw53w+X8MF58FgkILrOgKBgBKJRMWxfD6vTCYjv98vl8u1IR4AAAAAAKDVxeNxZTIZzc/Pl4vXSxwOh6ampjQ8PKx4PF53sUG13e02e2+F3e0AAAAAAAB2hgJ2AAAAoIW53e6qBf4jIyNNmA0AAEDroWgNAIDWtLy8LEnq7++ver50vBRXS73d7aphdzsAABqXOlOsez5/fl2Zs0X5r3LIta9r2+MAAACg9VDADgAAAAAAAKBjUbQGAEBr8nq9kqRkMqmhoaEN55PJZEVcLdV2t0ulUopEIpqbm1MwGNwQDwAA6vN4PHK7ehW5L2/bmG5Xrzwej23jAQAAoLkoYAcAAAAAAADQsShaa1/VuuunUqmKjxejuz4AtJZQKCS/36/p6WktLi7K4XCUzxWLRc3MzKivr0+hUKjuOLV2t5OkYDDIwjUAALbB5/MplT4ly7LqxtV7/X0pj8cjn89n5zSBpuO9CwBAJ6OAHQAAAAAAAEDHomitfdXrrh+JRDYco7s+ALQWp9Op2dlZTU5OamJiQlNTU+rv71cymdTMzIxOnDihWCwmp9PZ7KkCANCRfD5fwwXnvP5Gp+K9CwBAJ6OAHQAAAAAAAADQdHZ3HavWXT+fzyuTycjv98vlcm2IBwC0lnA4rFgspmg0quHh4fLxvr4+xWIxhcPhJs4OAAAAqI/3LgAAnYwCdgAAAAAAAABA09nddaxWd/2RkZHtTxIAYJxwOKzx8XHF43EtLy/L6/UqFArReR0AAADGs/u9C7ubA2D7yAUAbI4CdgAAAAAAAABA09F1DACwXU6nU6Ojo82eBgAAANBUdjcH6CR2F5yTCwDYHAXsAAAAAAAAAICmo2M6AAAAAADA9tEcYPvsLjgnFwCwOQrYAQAAAAAAAAAAAAAAAABoYTQH2D67C87JBQBsjgJ2AAAAAAAAAAAAAAAAAADQkSg4B4C9RwE7AADoGNlsVpZl1Y1JpVIVH+vxeDzy+Xy2zA0AAABA68vlckqn0xXHNuvU5Ha793KKHa1QKCgej2t5eVler1ehUEhOp7PZ0wIAbAP3XAAAAAAAgNZGATsAAOgI2WxWRwJHtJJfaSg+EolsGtPr6tWp9KmOKGKn+B8AAADYXDqd1uDgYMPxiUSiamcn2G9hYUHRaFSZTKZ8zO/3a3Z2VuFwuHkTAwBsC/dcAAAAAACA1kYBOwAA6AiWZWklv6JDdx5Sz8GemnHFc0WtWWvq9nTLsd9RM2719KqWji/Jsqy2L8TOZrMKBo4oZ2Pxv9vVq1SHFP8DAACgcwQCASUSiYpjqVRKkUhEc3NzCgaDG+Kx+xYWFjQ5OamxsTHNz8+rv79fyWRS09PTmpycVCwWo4gdAFoM91wAAAAAAIDWRgE7AADoKD0He+Tyu+oHHd6bubQKy7KUy69o7naXggdqF/Xnz68rc7Yo/1UOufZ11YxLnSkqcl++I4r/AQAA0FncbnfN7q7BYJDOr01QKBQUjUY1NjamxcVFORwXXtMMDQ1pcXFRExMTOnbsmMbHx+V0Ops8WwBAo7jnAgAAAAAAtDYK2AEAANCQ4AGHBrz1CzpGrtmjyQAAAABAA+LxuDKZjObn58vF6yUOh0NTU1MaHh5WPB7X6OhocyYJAAAAoCXkcjml0+mKY6lUquLjxQKBgNxu957MDQAAAGg1FLADAACgrnw+L0lKWQVbxiuNUxoXAAAAAHbL8vKyJKm/v7/q+dLxUhwAAAAA1JJOpzU4OFj1XCQS2XAskUiwKwgAAABQAwXsAAAAqCuTyUiSIgsrto87MjJi65gAAAAAcDGv1ytJSiaTGhoa2nA+mUxWxAEAAABALYFAQIlEouJYPp9XJpOR3++Xy+XaEA8AAACgOgrYAQDYokKhoHg8ruXlZXm9XoVCITmdzmZPC9g1fr9fkjQX7lXQs/P/11NWQZGFlfK4AAAAALBbQqGQ/H6/pqentbi4KIfDUT5XLBY1MzOjvr4+hUKhJs4SAAAAQCtwu91VO6rTrGfv5XI5pdPpimOpVKri48UCgYDcbveezA0AAACNoYAdAIAtWFhYUDQaLXekli4U987OziocDjdvYthUPp+XJK2eXrVlvNI4pXHbWaljSNDj1IDXvsUal3YiAQAAAAC7OZ1Ozc7OanJyUhMTE5qamlJ/f7+SyaRmZmZ04sQJxWIxFqYDAAAAQAtJp9MaHBysei4SiWw4lkgkqi4+AAAAQPNQwA4AQIMWFhY0OTmpsbExzc/Plx94T09Pa3JyUrFYjCJ2g5UWHSwdX7J9XDprAAAAAIC5wuGwYrGYotGohoeHy8f7+vp4LQ8AAAAALSgQCCiRSFQcy+fzymQy8vv9G5ooBQKBvZweAAAAGkABOwAADSgUCopGoxobG6vYcnxoaEiLi4uamJjQsWPHND4+Ttc2Q/n9fknSoTsPqedgz47HWz29qqXjS+VxAQAAgEZV2+Z6s4esbHMN7Ew4HNb4+Lji8biWl5fl9XoVCoV4DQ8AAAAALcjtdlftqE7TKQAAgNZBATsAAA2Ix+PKZDKan58vF6+XOBwOTU1NaXh4WPF4XKOjo82ZZAfYSaFP6VzPwR65/JVxO3Hp1wQAAAA2U2+b62rY5hqwh9Pp5DU7AAAAAAAAAAAGoIAdAIAGLC8vS5L6+/urni8dL8Vhd1DoAwAAgHZQbZvrVCqlSCSiubk5BYPBDfEAAAAAAAAAAABAu6CAHQCABni9XklSMpnU0NDQhvPJZLIiDruDQh8AAAC0g1rbXEtSMBhkESYAAMAuymazsiyrbkwqlar4WI/H45HP57NlbgAAAAAAAJ2CAnYAABoQCoXk9/s1PT2txcVFORyO8rlisaiZmRn19fUpFAptOlYul1M6na44ls/nlclk5Pf75XK5Ks4FAgG53W57vpEWR6FPc6XOFOuez59fV+ZsUf6rHHLt69r2OAAAAAAAAMBuyGazOhI4opX8SkPxkUhk05heV69OpU9RxA4AAAAAALAFFLADANAAp9Op2dlZTU5OamJiQlNTU+rv71cymdTMzIxOnDihWCwmp9O56VjpdFqDg4MNf+1EIkFhNprK4/HI7epV5L68bWO6Xb3yeDy2jQcAAAA0ys6uq3RcBQCgtViWpZX8ig7deUg9B3tqxhXPFbVmranb0y3HfkfNuNXTq1o6viTLsjr2dwIatgAAAAAAgO2ggB0AgAaFw2HFYjFFo1ENDw+Xj/f19SkWiykcDjc0TiAQUCKRqDiWSqUUiUQ0NzenYDC4IR5oJp/Pp1T6VENFPrX+P74UhT4AAABohmw2q2DgiHI2dV11u3qVouMqAAAtp+dgj1x+V/2gw3szl1ZHwxYAAAAAALAdFLADALAF4XBY4+PjisfjWl5eltfrVSgUaqjzeonb7a75Bn0wGOTNexjJ5/M1XJTD/8cAAAAwlWVZyuVXNHe7S8EDtbup5s+vK3O2KP9VDrn2dVWNSZ0pKnJfvqM7rgIAANCwBQAAAAAAbAcF7AAAbJHT6dTo6GizpwEAAAAA2KbgAYcGvPUXIo9cs0eTAQAAm8pmsw3tDnjxx3oxsA8NWwAAjcrlckqn0xXH6t2/A4GA3G73nswNAAAAe48CdgAAAAAAAAAAAABGymazCgaOKJdfaSg+Eons8owAAMB2pNNpDQ4OVj1X7f6dSCRYCAUAANDGKGAHAAAdZfX0at3zxXNFrVlr6vZ0y7Hfse1xAAAAAHSGzTq5NtINtsTj8cjn89kyLwAA2oVlWcrlVzR3u0vBA7Xfr8ufX1fmbFH+qxxy7euqGvOVx87rww/wvh4AAM0QCASUSCQqjuXzeWUyGfn9frlcrg3xAAAAaF8UsAMAgI7g8XjU6+rV0vEl28bsdfXK4/HYNl4nY9tIAAAAtJrl54pSV+NdXhuJ63X16lT6FEXsAABUETzg0IDXWTdm5Jr6Y6Ssgo0zAgAAW+F2u6t2VB8ZGWnCbAAAANBsFLADAICO4PP5dCp9SpZl1Y1LpVKKRCKam5tTMBisG0t3RPuwbSQAAABazdmVdWldOnTnIfUc7KkZt5VdnpaOL8myLF5nAAAAAAAAAACAtkYBOwAA6Bg+n6/hQpBgMEiB9B5i20gAAAC0qp6DPXL5XfWDDu/NXAAAAAAAAAAAAFoBBewAAABoOraNBAAAAAAAAAAAAAAAADpD7T1rAQAAAAAAAAAAAAAAAAAAAACwER3YAQAAsGW5XE7pdLriWCqVqvh4sUAgILfbvSdzAwAAAGrJ5/OSpJRV2PFYjz9VlCQVzxV3PBYAAAAAAAAAAEAnaZsC9n/6p3/Sn/7pn+r+++/XE088oZ6eHl133XV6y1veone/+907KpjK5XL62te+pq9//es6efKkfvKTn+i5557Ti170Ih0+fFi/9mu/pt/93d/Vy172Mhu/I6D9FAoFxeNxLS8vy+v1KhQKyel0NntaAIBtSKfTGhwcrHouEolsOJZIJDQwMLDb0wIAAADqymQykqTIwoptY65Za9Jh24YDAAAAAAAAAABoe21RwP7lL39ZkUhEzzzzTPlYLpfTyZMndfLkSX3uc5/T/fffr+uvv37LY//4xz/WyMiInnvuuQ3n/vmf/1nf//739f3vf1+f+cxndPz4cb31rW/d0fcCtKuFhQVFo9Hyg2JJ8vv9mp2dVTgcbt7EWggLAACYJBAIKJFIVBzL5/PKZDLy+/1yuVwb4gEAAIBm8/v9kqS5cK+Cnp29pv7KY2v68APn1O3ptmFmAACgFnZQAQAAAAAAaD8tX8D+d3/3d3rrW9+qfD6vyy+/XFNTU7rllluUz+d177336s///M/16KOP6o1vfKNOnjypK664YkvjP/PMM+Xi9ZGREY2NjenGG2/U1VdfrTNnzmhhYUF//ud/rmeeeUa/+Zu/qRe96EV6wxvesBvfKtCyFhYWNDk5qbGxMc3Pz6u/v1/JZFLT09OanJxULBajiH0TLABAp8pms7Isq25MKpWq+FiPx+ORz+ezZW6dzu12V+2oPjIy0oTZAAAAAI0pLbQMepwa8O6sgL1UROfY79jxvAAAQG27sYPK8+nnbbmHr55elfRCkT0AAAAAAAAa0/IF7O9973uVz+e1b98+/c3f/I1e97rXlc/deuutesUrXqEPfvCDevTRRzU7O6uPfvSjWxrf4XDoLW95iz7ykY/ola985Ybzt912m97whjfo9ttvV6FQ0O///u/rscceU1dX106/NaAtFAoFRaNRjY2NaXFxUQ7HhTeEh4aGtLi4qImJCR07dkzj4+N0E6+BBQDNl8vllE6nK45t1mna7Xbv5RTbUjabVTBwRLl8Yw+mIpHIpjFuV69S6VMUsQMAAAAAAAAtws4dVD73o1X9z5Pn9eTCk3py4UkbZndBJpOhsQMAAAAAAMAWtHQB+w9+8APF43FJ0jvf+c6K4vWSaDSqe+65R6lUSp/97Gf1oQ99SN3djW/rOzw8rOHh4box4+PjCofD+tKXvqSf/vSn+ru/+7uqHUmBVlMoFBSPx7W8vCyv16tQKLTlIvN4PK5MJqP5+fly8XqJw+HQ1NSUhoeHFY/HNTo6auPs2wMLAMyQTqc1ODjYcHwikeA+YAPLspTLr2judpeCB2p3Q8qfX1fmbFH+qxxy7au9gCx1pqjIfXlZlkUB+y6w454BAADQrthZqD2tnl+/8PFfOq/ueDw6uAIAUJWdO6jceNAp6bwO3XlIPQd7djy31dOrWjq+VC6yBwAAAAAAQGNauoB9cXGx/Pnv/M7vVI1xOBx6+9vfrqmpKZ09e1YPPPCAbrvtNtvncsstt+hLX/qSJOmnP/0phYtoeQsLC4pGo+WtOaULXU5mZ2e31O17eXlZktTf31/1fOl4KQ6VWABghkAgoEQiUXEslUopEolobm5OwWBwQzzsEzzg2PTB1Mg1ezQZVGXXPQMAAKAdsbNQ+zr97IUC9qXjS7aOSwdXAAB2T8+/NMDoOdgjl9+1SXTjLt2lEwAAAAAAAPW1dAH7d7/7XUnSZZddVrcz7utf//ry5w899NCuFLCvrr7QaYluo2h1CwsLmpyc1NjYmObn59Xf369kMqnp6WlNTk4qFos1XJDo9XolSclkUkNDQxvOJ5PJijhUYgGAGdxud82FScFgkEVL6Gh23jMAAADaETsLta+DV1zIEx1cAQAAAAAAAAAAtqalC9hLWypff/312rev9rdycSfcRrZh3o7vfOc75c8v7cQLtJJCoaBoNKqxsTEtLi6Wu34PDQ1pcXFRExMTOnbsmMbHxxtarBEKheT3+zU9PV0xniQVi0XNzMyor69PoVBo176nVsYCAAAms/ueAQAA0M52c2ehXC6ndDpdcSyfzyuTycjv92/oCBoIBOR2u7f3xVBGB1cAAAAAAAAAAIDtadkC9pWVFVmWJUk6dOhQ3dgXv/jFuuyyy/T888/riSeesH0ujzzyiO6//35J0g033EABO1paPB5XJpPR/Px8RbG5JDkcDk1NTWl4eFjxeFyjo6Objud0OjU7O6vJyUmNj4/r3/27fyeXy6V8Pq+vfe1ruv/++xWLxShsrIEFAABMZvc9AwAAANuTTqfr7k54qUQi0fE7SaXOFOueb6Qj/uNPre/G1AAAAAAAAAAAANpeyxawP/vss+XPL7/88k3jSwXszz33nK3zWF1d1X/4D/9BhUJBkvTxj3+8ob+zurpa/vMzzzxj65yAnVheXpYk9ff3Vz1fOl6Ka0Q4HNaxY8f0mc98RidOnCgf37dvn44dO6ZwOLyDGbe3ixcATExMaGpqSv39/Uomk5qZmdGJEycaWgBANz4Au2E37hkAAADYukAgoEQiUXEslUopEolobm5uQ7OFi3cr7DQej0duV68i9+WbPRUAALBFLEADAAAAAABoHy1bwL6yslL+fP/+/ZvG9/T0SLpQsGmn97znPTp58qQk6R3veIfe9KY3bfp3ZmZm9LGPfczWeQB28Xq9kqRkMqmhoaEN55PJZEVcIxYWFvSpT31Kb3zjG/WGN7yh3IH9q1/9qj71qU9paGiIIvY6wuGwYrGYotGohoeHy8f7+voUi8Ua+rejGx+A3bAb9wwAAABsndvtrvkaLhgM8vruIj6fT6n0qfLOjrXUWwBwaQwAANhdLEADAAAAAABoPy1bwN7b21v+/Ny5c5vGlzqeX9pleCdmZmb0uc99TpJ000036X/8j//R0N+bmprS+9///vKfn3nmGV1zzTW2zQvYiVAoJL/fr+npaS0uLsrhcJTPFYtFzczMqK+vT6FQqKHxCoWCotGoxsbGNoz3u7/7u5qYmNCxY8c0Pj6+aRfxThYOhzU+Pq54PK7l5WV5vV6FQqGG/83oxodWVFp0lrIKtoxXGsfuxWydzO57BgAAALAXfD6ffD5fQ7EsAAAAoPlYgAYAAAAAANB+WraA/Yorrih//txzz20a//zzz0uSLr/8clu+/t1336277rpL0oVCz6985Su67LLLGvq7PT095Y7wgGmcTqdmZ2c1OTmpiYkJTU1Nqb+/X8lkUjMzMzpx4oRisVjDhdPxeFyZTEbz8/MVhY2S5HA4NDU1peHhYcXjcY2Oju7CdwSJbnxoTZlMRpIUWVipH7iNcUdGRmwds1PZfc8AAAAAAAAAqmEBGgAAAAAAQHtp2QL23t5eXX311frlL3+ppaWlurFPPfVUuYDdjk7n8/Pz+o//8T9Kkq699lp9/etfl8fj2fG4gCnC4bBisZii0aiGh4fLx/v6+hSLxRQOhxsea3l5WZLU399f9XzpeCkO1S0sLCgajZYLeiXJ7/drdnZ2S/lAc2Sz2Ya6A138sRaPx9Pwg5pW5/f7JUlz4V4FPTsvgE5ZBUUWVsrjwh523jMAAADaETsLAQAAAAAAAAAAAJVatoBdkl75ylcqHo/rJz/5ic6fP699+6p/O+l0uvx5rS0DG/V//+//1dvf/nYVi0V5vV5985vf1KFDh3Y0JmCicDis8fFxxeNxLS8vy+v1KhQKbbmLrtfrlSQlk0kNDQ1tOJ9MJivisNHCwoImJyc1Njam+fn5cnfj6elpTU5OUiBquGw2qyOBI1rJN9ZFfLPta3tdvTqVPtURRewul0uSFPQ4NeC1r4N3aVzYx657BgAAQDtiZ6H2t3p6te754rmi1qw1dXu65djvqBm32TgAAAAAAAAAAADtoqUL2I8ePap4PK7nn39eiURCr33ta6vGfec73yl/vpMHe9/85jf1lre8RefPn9fVV1+tr3/967ruuuu2PR5gOqfTqdHR0R2NEQqF5Pf7NT09rcXFRTkcLzyoLRaLmpmZUV9fn0Kh0A5n254KhYKi0ajGxsYq/v2Ghoa0uLioiYkJHTt2TOPj4xSKGsqyLK3kV3TozkPqOdhTM66RgobV06taOr4ky7I6ooAdrcWOewYAAEA7Ymeh9uXxeNTr6tXS8fq7Q25Fr6uXnR4BAAAAAAAAAEDba+kC9omJCc3MzEiS7rnnnqoF7MViUX/xF38hSbrqqqt0yy23bOtrPfzwwxofH9fq6qquvPJK/fVf/7Ve9apXbX/yQIdwOp2anZ3V5OSkJiYmNDU1Ve4gPjMzoxMnTigWi1F8XUM8Hlcmk9H8/HxF8b8kORwOTU1NaXh4WPF4nMJRw/Uc7JHLv0nn78N7MxcAAAAAe4edhdqXz+fTqfQpWZZVNy6VSikSiWhubm7T3SE9Hg8LlgEAgNGy2WxDv/9c/LEefv8BAAAAAKAztXQB+2te8xqFQiHF43F9/vOf1zve8Q697nWvq4iZnZ0tvzny3ve+V93d3RXnv/3tb5eL2t/xjnfoC1/4woav8/d///d64xvfqOeff16XXXaZ7r//fg0ODu7ONwW0oXA4rFgspmg0quHh4fLxvr4+xWIxhcPhJs7ObMvLy5Kk/v7+qudLx0txANAshUJB8Xhcy8vL8nq9CoVCLE4CAABA2/P5fA0XXAWDQQ0MDOzyjAAAAHZPNptVMHBEufxKQ/GRSGTTGLerV6n0KYrYAQAAAADoMC1dwC5Jn/3sZzUyMqJ8Pq/bbrtNd911l2655Rbl83nde++9On78uCTp8OHDikajWx7/pz/9qX7t135NZ8+elST9yZ/8ia688kolk8maf+clL3mJXvKSl2zr+wHaVTgc1vj4OMWNW+T1eiVJyWRSQ0NDG86XfhaV4gCgGRYWFhSNRpXJZMrH/H6/ZmdnWaQEAAAAAAAAtAnLspTLr2judpeCBxw14/Ln15U5W5T/Kodc+7pqxqXOFBW5Ly/LsihgBwAAAACgw7R8AfurX/1q/eVf/qUikYieeeYZ3XXXXRtiDh8+rPvvv19XXHHFlsePx+N68skny39+3/vet+nf+chHPqKPfvSjW/5aQLtzOp0aHR1t9jRaSigUkt/v1/T0tBYXF+VwvPCGcLFY1MzMjPr6+hQKhZo4S2B3pc4U657fysMQ2G9hYUGTk5MaGxvT/Py8+vv7lUwmNT09rcnJSXbaAAAAAAAAANpM8IBDA976DYpGrtmjyQAAAAAAgJbU8gXskvSmN71JP/7xj/XZz35W999/v5aWlrR//35df/31evOb36z3vOc9crvdzZ4m0HFyuZzS6XTFsXw+r0wmI7/fL5fLVXEuEAhwrV7C6XRqdnZWk5OTmpiY0NTUVLk4dGZmRidOnFAsFqOTPdqSx+OR29WryH1528Z0u3rl8XjKf672cyqVSlV8vBg/pyoVCgVFo1GNjY1VLLIZGhrS4uKiJiYmdOzYMY2Pj/NzCgAAAAAAAMZYPb1a93zxXFFr1pq6Pd1y7K/daXyzcQAAAAAAAFBdWxSwS9K1116rT3/60/r0pz+9pb83Ojqq9fX1mud/+7d/W7/927+9w9kBnSmdTmtwcLDh+EQioYGBgV2cUWsKh8OKxWKKRqMaHh4uH+/r66OzMdqaz+dTKn1KlmXVjUulUopEIpqbm1MwGKwb6/F4KrairfdzKhKJbDjGz6lK8XhcmUxG8/PzFTtESJLD4dDU1JSGh4cVj8fZgQMAAAAAAABN5/F41Ovq1dLxJdvG7L2kaQYAAAAAAAA21zYF7ADMEwgElEgkKo7VKzQNBAJ7Ob2WEg6HNT4+rng8ruXlZXm9XoVCIToa75JsNttQ0fTFHzeLw/b4fL6KgvN6gsHglovLq/2c2mynCLxgeXlZktTf31/1fOl4KQ4AAKCTpc4U657Pn19X5mxR/qsccu3r2vY4AAAAqM3n8+nULjfNAAAAAAAAwOYoYAewa9xud81i0u0UmnY6p9NJB+M9kM1mFQwcUS6/0lB8tS7daB21fk6NjIw0YTatx+v1SpKSyaSGhoY2nE8mkxVxAAAAncjj8cjt6lXkvrxtY7rp8gkAALBtu900AwAAAAAAAJujgB0A2pCdHcSlzuogY1mWcvkVzd3uUvCAo2Zco90RF9Nr+uMHz2n19OqO51YaI5+3r/AF2IlQKCS/36/p6WktLi7K4XjhmikWi5qZmVFfX59CoVATZwkAANBcPp9PKbp8AgAAAAAAAAAAAGUUsAMoy+VySqfTFcfy+bwymYz8fr9cLlfFuUAgILfbvZdT7ChbycfFuchmszoSOKIVGzuI97p6dSp9qqMKJIIHHBrwOuvGjFyz+ThfeWxNkrR0fMmOaUmSMpkMHcJhBKfTqdnZWU1OTmpiYkJTU1Pq7+9XMpnUzMyMTpw4oVgsJqez/rUEAADQ7ujyCQAAADSGZ1UAAAAAAHQGCtgBlKXTaQ0ODjYcn0gkeKi+i7aSj4tzYVmWVvIrOnTnIfUc7Kn5d4rnilqz1tTt6ZZjf+1O46unV7V0fEmWZXVUAbtdDl5xoTv7ZvloRCkXfr/fhpkB9giHw4rFYopGoxoeHi4f7+vrUywWUzgcbuLsAAAAgM1VK5Kqt2sZRVIAAAC7h2dVAAAAAAB0BgrYAZQFAgElEomKY/W2MA8EAns5vY6zlXxUy0XPwR65/K4NxysctmWqqKNn34UC9oby0aBLO8wAzRYOhzU+Pq54PK7l5WV5vV6FQiE6rwMAAKAl1CuSqrZrGUVSAAAAu4dnVQAAAAAAdAYK2AGUud3umg9g2cJ875EPAK3E6XRqdHS02dMAAAAAtqxakVQ+n1cmk5Hf79+wiJgiKQAAmo8dVNoXz0YAAAAAAOgMFLADAAAAAAAA6Fi1iqRGRkaaMBsAANAIdlBpjnw+L0lKWQVbxiuNUxoXAAAAAAB0DgrYAQAAAAAAgBaSzWZlWVbdmHodSC/l8Xjk8/lsmRsAAMBeYAeV5shkMpKkyMKK7eOyeBAAAAAAgM5CATsAAAAAAADQIrLZrI4Ejmgl31jRULUOpJfqdfXqVPoURewAAKBlsINKc/j9fknSXLhXQY9zx+OlrIIiCyvlcQEAAAAAQOeggB0AgD2wenq17vniuaLWrDV1e7rl2O/Y1hgAAAAA2p9lWVrJr+jQnYfUc7CnZlwjrzGkC68zlo4vybIsCtgBAABQV6mzfdDj1IB35wXsl44LAAAAAAA6BwXsAABcJJ/PS7rQ+cUOVm5dkrR0fMmW8XpdvfJ4PLaMBQAAAKB19Rzskcu/SaHP4b2ZCwAAAAAAAAAAALAVFLADAHCRTCYjSYosrNg67h//8R/r3//7f1/zfCqVUiQS0dzcnILBYM04j8dDV0QAAAAAAAAAAAAAAAAAQMuigB0A2kypg/jq6VVbxiuNUxq33fn9fknSXLhXQc/Ot0BNWQVFFlZ0yy23aGBgYNP4YDDYUBwAAAAAwDy5XE7pdLriWCqVqvh4sUAgILfbvSdzAwAAAAAAAAAAMAUF7ADQZkodxJeOL9k+7sjIiK1jmsjlckmSgh6nBrw7L2C/dFwAAAAAQPtKp9MaHBysei4SiWw4lkgkWMQMAABaTupMse75/Pl1Zc4W5b/KIde+rm2PAwAAAAAA2hcF7ADQZkodxA/deUg9B3t2PN7q6VUtHV8qjwsAAAAAAKoLBAJKJBIVx/L5vDKZjPx+/4bFzYFAYC+nBwAAsCMej0duV68i99m3Y6vb1SuPx2PbeAAAAAAAoDVQwA4Abab0MLznYI9cfvu6ftNBHCbI5XJKp9MVx1KpVMXHiwUCAbnd7j2ZGwAAAAC43e6qHdU7YUczAADQ/nw+n1LpU7Isq25cKpVSJBLR3NycgsFg3ViPxyOfz2fnNAEAAAAAQAuggB0AALSMdDqtwcHBqucikciGY4lEomrxCAAAAAAAAABg63w+X8MF58FgkPdnAQAAAABAVRSwA7BNNpttqOvGxR/roesGgEsFAgElEomKY/l8XplMRn6/f8NOAYFAYC+nBwAAAAAAAAAAAAAAAADYBAXsAGyRzWZ1JHBEK/mVhuKrdUq+VK+rV6fSpyhiB1DmdrurduwZGRlpwmwAAAAAAAAAAAAAAAAAAFtFATsAW1iWpZX8ig7deUg9B3tqxhXPFbVmranb0y3HfkfNuNXTq1o6viTLsjqmgN2uDvaNdLfH5lJninXP58+vK3O2KP9VDrn2dW17HAAAAAAAAAAAAAAAAAAAOgkF7ABs1XOwRy6/q37Q4b2ZSyvJZrMKBo4oZ2MHe2yPx+OR29WryH1528Z0u3rl8XhsGw8vKBQKisfjWl5eltfrVSgUktPpbPa0AAAAgF2Tz194rbJ6etWW8UrjlMYFAAAAAAAAAAAAdhsF7ABgAMuylMuvaO52l4IHanemb6Tr91ceO68PP2BPIUMn8vl8SqVPNdQNPxKJaG5uTsFgsG6sx+PpmJ0E9tLCwoKi0agymUz5mN/v1+zsrMLhcPMmBgAAAOyi0u+/S8eXbB93ZGTE1jHBolsAAAAAAAAAAIBqKGAHAIMEDzg04K3/IHvkmvpjpKyCpM278RXPFbVmranb0y3H/tpF83Z19WslPp+v4YLzYDCogYGBXZ4RLrWwsKDJyUmNjY1pfn5e/f39SiaTmp6e1uTkpGKxGEXsAID/n737jo6qzv8/fj+TQEjoEGlSAqICgjRRBFFkLauiYMRVdrHg2r4gq0hRLGtBitgVdVGxCxbEYFeKCCqioNJDj3SkSklCIHn9/uA315l0IOWd5Pk4x6PM3Jncuc9dbu6d99wBALOSk5O9xMTEsNuWLVsW9u9QzZo182JiYjzPO/yhTc/zvPo31/ei6kUd87oc2HTA2/DSBv95UXD40C0AAAAAAAAAAED2GGAHgFKmWgXnea5gr8ZXIbqCFxsbW2DPBxyL9PR0b9CgQV737t29hIQELxA4/AGMjh07egkJCV7Pnj29wYMHez169ODKhgAAADApMTHRa9++fbb39enTJ8tt8+fP9z84Gx0d7Xme50XVi/Ki46ILbJ2Cz4uCwYduAQAAAAAAAAAAcsYAO1CGrVu3ztu+fXuuy+R2BbhQv/32m+d5BXe17uDzpKSkFMjzlSV1KwU8T5739ttve82bN89xuWXLlnl9+vTJcznP87zY2Nh8X5EcKGyzZ8/2kpKSvIkTJ/rD60GBQMAbNmyY16lTJ2/27Nle165di2clAQAAgFw0a9bMmz9/fthtKSkpXlJSkhcXF5dlmLxZs2ZFuXo4RnzoFgAAAAAAAAAAIHcMsANl1Lp167zmzU72klNS87V8dleAy05BXvXb8zwvKSnJ69y5c4E+Z1nRvHlz/wp9BbEcYMXmzZs9z/O8li1bZnt/8PbgcgAAAIA1MTEx2R6HcfxbOvChWwAAgPwryIsteR4X5AEAAAAAoKRggB0oo7Zv3+4lp6R6b18e7TU/LpDjcimH5CXtzvDiqgW86EiX43IJiQe94bPSvPo31/ei6kUd8/od2HTA2/DSBi8uLu6Yn6skCF5pftn29GN+ruBzcPV6lFZ169b1PM/zFi9e7HXs2DHL/YsXLw5bDgAAAACKEh+6BQAAyJ9169Z5Jzc72UstwIstVYiu4C1PXM4QOwAAAAAAxjHADpRxzY8LeO3q5v511Z0b5P08waHpqHpRXnRcdB5L51/mr00vrZKSkjzP87w+k/N3kja/z8nV+1AadenSxYuLi/NGjhzpJSQkhF3RMCMjwxs1apTXuHFjr0uXLsW4lgAAAADKKj50CwAAkD/bt2/3UlNS87w4UkZahndw+0GvXGw5L1A+54syBS+OtH37dgbYAQAAAAAwjgF2ADAgeKX5t+MreM1jc/9AQV6WbU/3+kxOLTNXr0fZExER4T3xxBNer169vJ49e3rDhg3zWrZs6S1evNgbNWqU9+mnn3qTJk3yIiKO7f9LAAAAAHA0+NAtAADAkcnXxZFOKpp1AQAAAAAARYMBdgAwIHil+eaxEXleEf9InxMojeLj471JkyZ5gwYN8jp16uTf3rhxY2/SpElefHx8Ma4dAAAAgLKMD90CAAAAAAAAAADkjgF2AABQIsXHx3s9evTwZs+e7W3evNmrW7eu16VLF4ZAAAAAABQ7PnQLAAAAAAAAAACQMwbYAQBAiRUREeF17dq1uFcDAAAAKHIHNh3I9f6MtAzv4PaDXrnYcl6gfOConwdHjw/dAgBQMiQnJ3uJiYlhty1btizs36GaNWvmxcTEFMm6AQAAAAAAlFYMsAMAkAfewAAAAABgRWxsrFchuoK34aUNBfacFaIreLGxsQX2fPgLH7oFAMC+xMREr3379tne16dPnyy3zZ8/32vXrl1hrxYAAAAAAECpxgA7gALFFeCOzbJtGbnen3JIXtLuDC+uWsCLjnRH9Rw4cryBAQAAAMCKhg0bessTl3vbt2/Pdblly5Z5ffr08d5++22vefPmuS4bGxvrNWzYsCBXEwAAoMRo1qyZN3/+/LDbUlJSvKSkJC8uLs6Ljo7OsjwAAAAAAACODQPsQBmVkpLieZ7nLdueXiDPtz1Znud5XAHuKMXGxnox0RW8Ph+lFMjzxZShbVcUCvoNDK7oDgAAAOBYNGzYMN8D582bN+cDtgAAALmIiYnJ9velzp07F8PaAAAAAAAAlA0MsANlVFJSkud5ntdncmqBPu/w4cO9iy++OMf7uQJc9ho2bOgtK8Ar6JWlbVcUCvoNDK7oDgAAAAAAAAAAAAAAAAAoqxhgB8qouLg4z/M87+34Cl7z2Ihjfr5l29O9PpNTvXPPPTdfg7ZcAS4rrqBXdoRe0X3GjBneU0895W3atMm/v169et7AgQO9bt26+csDAAAAAAAAAAAAAAAAAFAaMMAOlFHR0dGe53le89gIr13dYx9gz/y8AHIWvKL75MmTvaFDh3rdu3f3PvzwQ69ly5be4sWLvZEjR3pDhw71Jk2a5MXHxxf36gIAAAAAAAAAAAAAAAAAUGACxb0CAACURenp6d6gQYO87t27ewkJCV7Hjh29SpUqeR07dvQSEhK87t27e4MHD/bS09OLe1UBAAAAAAAAAAAAAAAAACgwDLADAFAMZs+e7SUlJXn33HOPFwiE744DgYA3bNgwb+3atd7s2bOLaQ0BAAAAAAAAAAAAAAAAACh4kcW9AgAAlEWbN2/2PM/zWrZsme39wduDywEAAAAAAAAAUJqkpKR4nud5BzYdKJDnCz5P8HkBAAAAAIBdDLADZdyybRm53p9ySF7S7gwvrlrAi450R/08AMLVrVvX8zzPW7x4sdexY8cs9y9evDhsOQAAAAAAAAAArElOTvYSExPDblu2bFnYv0M1a9bMi4mJ8TzP85KSkjzP87wNL20o0HVKSkryOnfuXKDPCQAAAAAAChYD7EAZFRsb68VEV/D6fFRwV6GIia7gxcbGFtjzAaVZly5dvLi4OG/kyJFeQkKCFwgE/PsyMjK8UaNGeY0bN/a6dOlSjGsJAAAAAAAAAEDOEhMTvfbt22d7X58+fbLcNn/+fK9du3ae53leXFyc53meV//m+l5UvahjXpcDmw54G17a4D8vAAAAAACwiwF2oIxq2LChtyxxubd9+/Zcl1u2bJnXp08f7+233/aaN2+e67KxsbFew4YNC3I1gVIrIiLCe+KJJ7xevXp5PXv29IYNG+a1bNnSW7x4sTdq1Cjv008/9SZNmuRFREQU96oCAAAAAAAAAJCtZs2aefPnzw+7LSUlxUtKSvLi4uK86OjoLMsHBe+LqhflRceFL3csMv9MAAAAAABgDwPsQBnWsGHDfA+cN2/e3L8iBoCCER8f702aNMkbNGiQ16lTJ//2xo0be5MmTfLi4+OLce0AAAAAAAAAAMhdTExMtu8fde7cuRjWBgAAAAAAlBQMsAMAUIzi4+O9Hj16eLNnz/Y2b97s1a1b1+vSpQtXXgcAAAAAAAAAAAAAAAAAlEoMsAMAUMwiIiK8rl27FvdqAAAAAAAAAAAAAAAAAABQ6BhgBwCjkpOTvcTExLDbli1bFvbvoGbNmnkxMTFFtm4AAAAAAAAAAAAF4cCmA7nen5GW4R3cftArF1vOC5QPHPXzAAAAAAAAOxhgBwCjEhMTvfbt22d7X58+fcL+PH/+fK9du3Y5PteRDMN7HgPxAAAAAAAAAACgcMXGxnoVoit4G17aUGDPWSG6ghcbG1tgzwcAAAAAAAoHA+wAYFSzZs28+fPnh92WkpLiJSUleXFxcV50dHTYsrk5kmF4z8t7IB4AAAAAAAAAAOBYNGzY0FueuNzbvn17rsstW7bM69Onj/f22297zZs3z3XZ2NhYr2HDhgW5mgAAAAAAoBAwwA4ARsXExGQ7RN65c+cjfq4jGYYPLg8AAAAAAAAAAFCYGjZsmO+B8+bNm3PxHQAAAAAASgkG2AGgDCjIYXgAAAAAAAAAAAAAAAAAAICjxQA7AABHKD093Zs9e7a3efNmr27dul6XLl28iIiI4l4tAAAAAAAAAAAAAAAAAADMY4AdAEoIhqZtmDx5sjdo0CAvKSnJvy0uLs574oknvPj4+OJbMQAAAAAAAAAAAAAAAAAASgAG2AEUmuTkZC8xMTHstmXLloX9O1SzZs28mJiYIlm3koahaRsmT57s9erVy+vevbs3ceJEr2XLlt7ixYu9kSNHer169fImTZpEDwAAAAAAAAAAAAAAAAAAcsEAO4BCk5iY6LVv3z7b+/r06ZPltvnz53vt2rUr7NUqcRiatiE9Pd0bNGiQ1717dy8hIcELBAKe53lex44dvYSEBK9nz57e4MGDvR49enBlfAAAAAAAAAAAAAAAAAAAcsAAO4BC06xZM2/+/Plht6WkpHhJSUleXFycFx0dnWV5hGNo2o7Zs2d7SUlJ3sSJE/0OQYFAwBs2bJjXqVMnb/bs2V7Xrl2LZyUBAAAAAAAAAAAAAAAAADCOAXYAhSYmJibbK6p37ty5GNamZGJo2o7Nmzd7nud5LVu2zPb+4O3B5QAAAACgqCQnJ3uJiYlhty1btizs36GaNWvmxcTEFMm6AQAAAAAAAAAAAJkxwA4AhjE0bUfdunU9z/O8xYsXex07dsxy/+LFi8OWAwAAAICikpiY6LVv3z7b+/r06ZPltvnz52f7gXMAAAAAAAAAAACgKDDADgCGMTRtR5cuXby4uDhv5MiRXkJCQtgV8TMyMrxRo0Z5jRs39rp06VKMawkAAACgLGrWrJk3f/78sNtSUlK8pKQkLy4uzouOjs6yPAAAAAAAAAAAAFBcGGAH4OMrx+1haNqOiIgI74knnvB69erl9ezZ0xs2bJjXsmVLb/Hixd6oUaO8Tz/91Js0aZIXERFR3KsKAAAAoIyJiYnJ9orqnTt3Loa1AQAAAAAAAAAAAHLHADsAH185bg9D07bEx8d7kyZN8gYNGuR16tTJv71x48bepEmTvPj4+GJcOwAAAAAAAAAAAAAAAAAA7GOAHYCvsL9yPD093Zs9e7a3efNmr27dul6XLl0YvM4HhqZtiY+P93r06MH/lgEAAAAAAAAAAAAAAAAAOAoMsAPwFeZXjk+ePNkbNGiQl5SU5N8WFxfnPfHEEwxg5wND07ZERER4Xbt2Le7VAAAAAAAAAAAAAAAAAACgxAkU9woAsCs9Pd2bOXOmN3HiRG/mzJleenr6UT3P5MmTvV69enmtWrXy5syZ4+3du9ebM2eO16pVK69Xr17e5MmTC3jNS6fg0HTv3r29rl27MrwOAAAAAAAAAAAAAAAAAABKHAbYAWRr8uTJXtOmTb1zzz3X++c//+mde+65XtOmTY942Dw9Pd0bNGiQ1717dy8hIcHr2LGjV6lSJa9jx45eQkKC1717d2/w4MFHPRwPAAAAAAAAAAAAAAAAAACAkoMBdgBZFOQV02fPnu0lJSV599xzjxcIhP+VEwgEvGHDhnlr1671Zs+eXdAvAwAAAAAAAAAAAAAAAAAAAMYwwA4gTEFfMX3z5s2e53ley5Yts70/eHtwOQAAAAAAAAAAAAAAAAAAAJReDLADCFPQV0yvW7eu53met3jx4mzvD94eXA4AAAAAAAAAAAAAAAAAAAClFwPsAMIU9BXTu3Tp4sXFxXkjR470MjIywu7LyMjwRo0a5TVu3Njr0qXLMaw1AAAAAAAAAAAAAAAAAAAASgIG2AGEKegrpkdERHhPPPGE9+mnn3o9e/b05syZ4+3du9ebM2eO17NnT+/TTz/1Hn/8cS8iIqJgXgAAAAAAAAAAAAAAAAAAAADMiizuFQBgS+gV0xMSErxA4K/PuRztFdPj4+O9SZMmeYMGDfI6derk3964cWNv0qRJXnx8fIG+BgAAAAAAAAAAAJQ8ycnJXmJiYthty5YtC/t3qGbNmnkxMTFFsm4AAAAAAKDgMMAOIEzwium9evXyevbs6Q0bNsxr2bKlt3jxYm/UqFHep59+6k2aNOmIr5geHx/v9ejRw5s9e7a3efNmr27dul6XLl248joAAAAAAAAAAAA8z/O8xMREr3379tne16dPnyy3zZ8/32vXrl1hrxYAAAAAAChgDLADyKKwrpgeERHhde3atYDWEgAAAAAAAAAAAKVJs2bNvPnz54fdlpKS4iUlJXlxcXFedHR0luUBAAAAAEDJwwA7gGxxxXQAAAAAAAAAAAAUpZiYmGyvqN65c+diWBsAAAAAAFBYGGAHkCOumA4AAAAAAAAAAAAAAAAAAICCFCjuFQAAAAAAAAAAAAAAAAAAAAAAlA0MsAMAAAAAAAAAAAAAAAAAAAAAigQD7AAAAAAAAAAAAAAAAAAAAACAIsEAOwAAAAAAAAAAAAAAAAAAAACgSDDADgAAAAAAAAAAAAAAAAAAAAAoEgywAwAAAAAAAAAAAAAAAAAAAACKBAPsAAAAAAAAAAAAAAAAAAAAAIAiwQA7AAAAAAAAAAAAAAAAAAAAAKBIMMAOAAAAAAAAAAAAAAAAAAAAACgSDLADAAAAAAAAAAAAAAAAAAAAAIoEA+wAAAAAAAAAAAAAAAAAAAAAgCLBADsAAAAAAAAAAAAAAAAAAAAAoEgwwA4AAAAAAAAAAAAAAAAAAAAAKBIMsAMAAAAAAAAAAAAAAAAAAAAAigQD7AAAAAAAAAAAAAAAAAAAAACAIsEAOwAAAAAAAAAAAAAAAAAAAACgSDDADgAAAAAAAAAAAAAAAAAAAAAoEgywAwAAAAAAAAAAAAAAAAAAAACKBAPsAAAAAAAAAAAAAAAAAAAAAIAiwQA7AAAAAAAAAAAAAAAAAAAAAKBIMMAOAAAAAAAAAAAAAAAAAAAAACgSDLADAAAAAAAAAAAAAAAAAAAAAIoEA+wAAAAAAAAAAAAAAAAAAAAAgCLBADsAAAAAAAAAAAAAAAAAAAAAoEhEFvcKwPMkeZ7neXv27CnmNUFBy8jI8P9NXwAAAAAACgfH3wCA/GKfAQDID/YXAID8Yp8BACguwf1OcP4UKGmc+F9vsduwYYPXoEGD4l4NAAAAAAAAAAAAAAAAAAAAlBDr16/36tevX9yrARwxBtgNyMjI8DZt2uRVrlzZc84V9+qYsGfPHq9Bgwbe+vXrvSpVqhT36pRptLCFHnbQwg5a2EELO2hhCz3soIUdtLCDFnbQwhZ62EELO2hhBy3soIUt9LCDFnbQwg5a2EELW+hhBy3soIUdtLCDFtmT5O3du9erV6+eFwgEint1gCMWWdwrAM8LBAJ8AiYHVapUYadjBC1soYcdtLCDFnbQwg5a2EIPO2hhBy3soIUdtLCFHnbQwg5a2EELO2hhCz3soIUdtLCDFnbQwhZ62EELO2hhBy3soEVWVatWLe5VAI4aH7sAAAAAAAAAAAAAAAAAAAAAABQJBtgBAAAAAAAAAAAAAAAAAAAAAEWCAXaYFBUV5T3wwANeVFRUca9KmUcLW+hhBy3soIUdtLCDFrbQww5a2EELO2hhBy1soYcdtLCDFnbQwg5a2EIPO2hhBy3soIUdtLCFHnbQwg5a2EELO2gBlE5Okop7JQAAAAAAAAAAAAAAAAAAAAAApR9XYAcAAAAAAAAAAAAAAAAAAAAAFAkG2AEAAAAAAAAAAAAAAAAAAAAARYIBdgAAAAAAAAAAAAAAAAAAAABAkWCAHQAAAAAAAAAAAAAAAAAAAABQJBhgh3np6enFvQoAAAAAAAAAAAAAAAAAAAAACgAD7DAtLS3Ne+6557w77rijuFcFAAAAAAAAAAAAAAAAAAAAwDGKLO4VAHKSlpbmvfnmm97999/v7d+/30tPT/eee+654l4tAAAAAAAAAAAAAAAAAAAAAEeJK7DDpLS0NO+NN97wBg4c6O3fv9+Liorynn/+ee+GG24o7lUrkyRl+98oerSwgxZ20MIWethBCztoYQct7KCFLfQAAAAAAAAAAAAAUJQYYIc5wSuvDxo0yNu/f79Xo0YN79ChQ57nef6/UbgyDyw457L8N0MNRYMWdtDCDlrYQg87aGEHLeyghR20sIUedmTezhkZGcW0JqCFHbSwgxa20MMOWthBCztoYQctbKGHHbSwgxZ20MIOWthBC1voAZR+kcW9AkCo4PD6nXfe6e3bt8/r3Lmzd9JJJ3nvvfeed9xxx3l9+/b1PO/wDir0DXYUrOC2TUpK8hYuXOgtWbLE27x5sxcREeE1a9bMO+2007xWrVp55cuX9zyPHoWJFnbQwg5a2EIPO2hhBy3soIUdtLCFHjaEbtfZs2d7J598slerVi3v0KFDXmQkp+yKEi3soIUdtLAltMeqVau8pk2beoFAwEtPT/ciIiKKee3KFlrYQQs7aGEHLWyhhx20sIMWdnDMZwct7KCFLfQAygb+3wwzMg+vn3baaV6/fv28559/3ktOTvZOPPFE7/TTT/c8z+ON80Ikydu3b5937733erNmzfIWLlwYdr9zzgsEAt4111zjXXzxxV6vXr085xwDDYWAFnbQwg5a2EIPO2hhBy3soIUdtLCFHjaEbs8ZM2Z4jzzyiLdkyRLvu+++80488cRiXruyhRZ20MIOWtgS2mPatGneI4884nXo0MF77LHHGPIpYrSwgxZ20MIOWthCDztoYQct7OCYzw5a2EELW+gBlCECDDhw4IBefvllVa5cWc45tWrVShMnTtSECRN03HHHqUaNGvrxxx8lSenp6cW8tqXXvn37lJCQoG7dusk55/9Tu3Zt1atXTw0aNNBJJ50k55wCgYAqV66sBx54wH98RkZG8a18KUMLO2hhBy1soYcdtLCDFnbQwg5a2EIPG0K349SpU3XppZcqIiJCzjk99NBDkjj3UVRoYQct7KCFLZl79OzZ099/f/LJJ+ybixAt7KCFHbSwgxa20MMOWthBCzs45rODFnbQwhZ6AGULA+wodpmH10899VS9++67kqShQ4fKOafzzz9fmzdvLuY1Ld3+/PNPvfjii2rbtq2cc4qMjFStWrU0cOBA/fDDD9q1a5f27NmjP//8U+PGjdPll1+uQCAg55xuv/12/3k4uDx2tLCDFnbQwhZ62EELO2hhBy3soIUt9LAhu5PvwTdsb7rpJv++4Al4TsQXHlrYQQs7aGFLbj3uuuuuLMvTo/DQwg5a2EELO2hhCz3soIUdtLCDYz47aGEHLWyhB1D2MMCOYpV5eL1169aaOHGiDh48qJkzZ/o7oQkTJhT3qpZq+/fv16uvvqoWLVrIOady5cqpd+/eSkhICFsu9BeFNWvW6LHHHvMHGu6///6iXu1SiRZ20MIOWthCDztoYQct7KCFHbSwhR42ZD753qNHj7Ar4Z9yyimqXr26OnfurPvuu8//IP+hQ4eKa5VLLVrYQQs7aGFLbj0iIyN1/fXX64ILLtAjjzyir7/+2l+WHgWPFnbQwg5a2EELW+hhBy3soIUdHPPZQQs7aGELPYCyiQF2FJvshtcnTJig3bt3S5LuuusuBQIBXXHFFUpNTZWU9UpvfJLq2AS354wZM9S+fXt/kOGOO+7Qb7/95i8XurMPbZCamqpnnnlGgUBAUVFRevPNN4tu5UsZWthBCztoYQs97KCFHbSwgxZ20MIWetiR21dlN2vWTGeddZYGDhyoM844Q7Vr15ZzTu3bt9eaNWuyPB7HhhZ20MIOWtiSW4/Y2Fg1aNBAp512miIjI+WcU6VKlTRmzJhsH49jQws7aGEHLeyghS30sIMWdtDCDo757KCFHbSwhR5A2cUAO4pFTlde37NnjyRp9erVqlWrlpxzevTRR/N8vmXLlun555/XgAEDCnvVS43Qnfcll1ziDzL0799fy5cvz3a57GzevFm33HKLAoGA/vGPf2jXrl38YnCEaGEHLeyghS30sIMWdtDCDlrYQQtb6GFHbiffb7jhBv30009KSUmRJO3atUvTpk1Tp06d5JxT06ZNtWvXrmJa89KHFnbQwg5a2JJbj969e+ujjz7Stm3bdOjQIf3www8aNmyYf/8DDzxQfCteCtHCDlrYQQs7aGELPeyghR20sINjPjtoYQctbKEHULYxwI4il9Pw+r59+yRJKSkpGjBggJxzOvPMM/0rwQWvth78d3JysrZv365Bgwbp9NNP93deDLEfmUceeUTOOUVEROiSSy7Rzz//fMTPMWXKFJUrV06BQEBTp04thLUsG2hhBy3soIUt9LCDFnbQwg5a2EELW+hRvHI7+T548OCwZUOvhD9jxgx16NBBAwcO1KZNm4psfUszWthBCztoYUtuPe68885sP0CWkpKie+65R+XLl9edd96pP//8syhXudSihR20sIMWdtDCFnrYQQs7aGEHx3x20MIOWthCDwAMsKNI5TW8Lknbt29Xp06dVL58eT377LOSDn9teajFixfrlltuUdu2bf034p1zio6O9j+BhbxlZGQoPj5egUBAzjm98cYbR/1cV1xxhZxzuuWWW3TgwIECXMuygRZ20MIOWthCDztoYQct7KCFHbSwhR7FK7eT70OGDMl2uaC9e/dq+vTpWrt2bVGsaqlHCztoYQctbMmtx9ChQ7NdLmjp0qV65513/K/NxrGhhR20sIMWdtDCFnrYQQs7aGEHx3x20MIOWthCDwASA+woQqmpqRo/fnyuw+uS9OCDD8o5p5o1a2rRokVh902ZMkVDhw71nyM6Olp169bVv/71L9WvX9/fkfXt21e7d+8uypdXIi1YsMDfZn369PFvP5Kvgw9+wu3ee++Vc04DBw70r5KP/KOFHbSwgxa20MMOWthBCztoYQctbKFH8cnvG7ahV43JLPSDAl9++aV27dqltLQ0SaLBEaCFHbSwgxa25PcN29x6hH5dduYrj9Ej/2hhBy3soIUdtLCFHnbQwg5a2MExnx20sIMWttADQBAD7CgSGRkZeuONN/ydTebh9eCOacWKFWrfvr2ccxo7dqykw5+aSkhI0M033yznnCIjI+Wc00UXXaSxY8fq7bff1g033OA/98CBA7Vx48Zie60lyYwZM/ztGdzeue38c5OQkKCrrrpKO3fuLMhVLDNoYQct7KCFLfSwgxZ20MIOWthBC1voUfymTp2q+Pj4Iz75Hir4Qf8zzzxTo0eP1rZt247o8TiMFnbQwg5a2DJ9+vSjesM21O23365GjRrpnnvu0axZs4748TiMFnbQwg5a2EELW+hhBy3soIUdHPPZQQs7aGELPQAwwI4ik5iYKOecGjZsqPfeey/syuvBAfYJEyYoEAiobdu2eueddzR16lSdeeaZqlatmr+zuuqqq/TCCy/o0KFDmjVrlq6++mqG149QcHtPnDhRzjlVrFhRixcvPqbnXLdunfbv3y+JXwKOBC3soIUdtLCFHnbQwg5a2EELO2hhCz1sSExM1DnnnHNMJ9/T0tKUkJCgdu3aKSYmRs45devWTevWrTui5ynraGEHLeyghS0zZ85Ut27dFBERcURXqAy1detW3XjjjQoEAnLO6YQTTvA/wHYkz1PW0cIOWthBCztoYQs97KCFHbSwg2M+O2hhBy1soQcAiQF2FLHVq1frww8/1N69e7Pc9/vvv6tp06Zyzql+/fo699xzVbt2bTnn1KBBA3Xv3l0ff/yxv/zPP/+s7t27+zuyO++8k+H1I/Tll1/62++bb74pkOc8kq+ix19oYQct7KCFLfSwgxZ20MIOWthBC1voUfz69+9/RG/Y5rR9169fr5dfflmtWrWSc05xcXFKSkqSxNeh5hct7KCFHbSwY/369apSpYqcc7r77rv924/mjdZJkybpmmuu8X8H+O9//+vfR4+80cIOWthBCztoYQs97KCFHbSwhWM+O2hhBy1soQcABthR5HLamfzyyy+qVKmSfwASHGTv2bOnFi5cqC1btkg6vGOZNWuWLrvsMobXj9Gvv/7qH0BOmTJFUsEOI/BJtvyjhR20sIMWttDDDlrYQQs7aGEHLWyhR/EJPSmekJDg/3dO2yxzl4MHD2ZZ5sCBA5o7d646duwo55xat26tTZs2FdAal160sIMWdtDCpgULFuiBBx7w/5zfHtnZsGGDRo4c6Z8/HzVqVEGtZplACztoYQct7KCFLfSwgxZ20KL4ccxnBy3soIUt9AAQxAA7THniiSfknFOlSpU0dOhQfffdd2E7nYyMDH377bfq2bMnw+sF5NJLL5VzTt27d9eOHTsK5DlnzJjh/zefZMs/WthBCztoYQs97KCFHbSwgxZ20MIWehSfzCfRczr5HtyG69ev15tvvqm+ffsqPj5ezzzzTLZXzv/+++91yimnyDmn22+/XampqQW+7qUNLeyghR20sC2vHn/88Ye+//57PfXUU3ruuef066+/aufOnZL+elN37969Gj58uJxzqlq1atgbwsg/WthBCztoYQctbKGHHbSwgxbFh2M+O2hhBy1soQcAiQF2GBH6hve3336rWbNmZVkmIyNDs2bNOqrh9eBOLiMjQ3v37i24FS/Bggd848ePV82aNdWwYUNNmTLlmIcPHnnkETnnNGDAgIJYzTKBFnbQwg5a2EIPO2hhBy3soIUdtLCFHiVDsNPy5ct19tlnq2bNmmHfTFetWjU9+OCDYY/Zt2+fhgwZIueczjzzTKWkpBTHqpc6tLCDFnbQwpbgPnzFihW66KKLVK9ePb9FgwYN9Le//U0rVqwIe8zy5ct17rnnKiIiQoMGDZJUsN/GUlbRwg5a2EELO2hhCz3soIUdtLCDYz47aGEHLWyhB1D6McAOM7J7Ez34aaujGV7PfMCyb98+jR49Wl27dtX1119fsCtfgv3xxx+64IIL5JxTp06dtHjx4qN+ruAnn51zuvDCC7V+/Xq/AweQeaOFHbSwgxa20MMOWthBCztoYQctbKGHfUlJSf7XmlasWFFxcXG6/PLL/avEOOf0f//3f/4VyCRpFPp9tQABAABJREFU1qxZ/n3ff/99Ma596UILO2hhBy1sWbVqldq3b+9v3xo1aqhOnTqqVq2anHOqVauWpk+fHvaYu+66S8451a1bV7t372afXUBoYQct7KCFHbSwhR520MIOWtjBMZ8dtLCDFrbQAyjdGGCHWaFvgh/J8HrmrxSZP3++nnzySbVo0SLsU1jXXnttob+GkmL16tU64YQT5JxTly5dNG3aNO3Zs0fSXx8syOsqfQ8//LC/bbt27ar3339fmzZtCntc5ufgoDIrWthBCztoYQs97KCFHbSwgxZ20MIWetgU3F5PPvmkqlatqqioKN14441av369JGnZsmV6/PHH/e3+73//W5s3b5YkLV26VFWqVFFERIR+/vnnYnsNpQUt7KCFHbSwJzU1VQMGDFD58uVVpUoV3XDDDVq7dq02btyoDz74QF26dJFzTrGxsfr444914MABSdKUKVNUvnx5NWvWTMnJycX8KkoHWthBCztoYQctbKGHHbSwgxY2cMxnBy3soIUt9ADKBgbYYdLRDq+Hmj17tsaMGaPq1asrJiZGzjn/E7vOOdWvX19bt24t7JdSYiQmJqp+/fpyzunkk0/WHXfcoYULF/pXwc9N8Cvkg/9UrVpV1apVU6NGjXT11VfrnXfe8ZcNfsAgdJDhk08+8X+JAC0soYUdtLCFHnbQwg5a2EELO2hhCz3s6tGjh5xzOv7447VmzZos97///vv+tr/55pu1fv163X333XLOqXnz5tq7d28xrHXpRAs7aGEHLezYt2+f2rVrJ+ec2rRpo99//z3s/m3btuniiy+Wc041a9bUl19+qdTUVF177bVyzqljx47FtOalDy3soIUdtLCDFrbQww5a2EELWzjms4MWdtDCFnoApRsD7DDnSIbXg5+2Cj5mx44dWrhwoa6//no1atTIf1yDBg10xRVXaPLkyWrcuLGccxowYIBSU1OL/gUatmrVKnXr1s0f+I+KilLXrl116623atq0adk+ZsSIEf52rlSpktq3b68bb7xRffr0Cbvq/UMPPZTt4ydOnKgOHTqoUqVKWrVqVWG+vBKFFnbQwg5a2EIPO2hhBy3soIUdtLCFHrZkZGQoOTlZHTp0kHNOl1xyiX9f5qvZJyQk+Nu6S5cuatasmQKBgAYOHKgDBw7keQV95I4WdtDCDlrYs3DhQlWuXFkRERF69NFHJWX/wbFLL71UzjnVqFFD/fr1U9OmTRUTE6Onn35aUt7fuoK80cIOWthBCztoYQs97KCFHbSwgWM+O2hhBy1soQdQNjDADpMyMjL03Xff5Tq8HjyIkaTdu3dr9uzZ+vvf/66TTz5ZzjmVL19elSpV0u23367vvvtOkjR8+HA55xQdHa3ffvutyF9XSbBlyxa98MIL+vvf/y7nnCIiItStWzf/6+VDhQ4ynHfeeXr++efD7l+9erVGjx7tL/Pcc8+F3f/HH3/o3HPP9e9//fXXC/W1lTS0sIMWdtDCFnrYQQs7aGEHLeyghS30sOc///mPnHNq0aKFEhMTw+7LyMjwr5I/adIkf1s6d/jD+vPnzy+OVS61aGEHLeyghR179+5V27Zt5ZzTVVddpX379oXdH3q+/JJLLvHPgzvndMopp2jJkiVFvcqlFi3soIUdtLCDFrbQww5a2EELWzjms4MWdtDCFnoApRsD7DDphx9+ULdu3fydyp133qkNGzZI+utTt8FPR40bN05XX321KlSo4C9fvXp1DR8+XFOnTvWfc9myZWrWrJkiIiI0ePDgsOdA9hISEjRx4kTt3r1bUvjBYuggQ3x8vGbMmOG3Cb2y/b59+zR06FCdeuqp+uyzz7L8jK+//lrOOT377LOF/GpKNlrYQQs7aGELPeyghR20sIMWdtDCFnrY8M477/jbesyYMdq/f79/X/Dk+969ezVhwgSddNJJ/rJffvll2PPkdI6Dcx/5Rws7aGEHLexISUnRDTfcIOecWrdurblz54bdH7off/nllxUbGyvnnMqVK5flm1ZCr2yJI0cLO2hhBy3soIUt9LCDFnbQwhaO+eyghR20sIUeQOnGADtMWr9+vQKBgJxzGjx4sNatWxd2//bt2/X444/7n7iNiIiQc04dO3bU4MGDtXLlyizP+dJLL8k5p0AgoI8++qiIXknJlN2BXnCnL4UPMlxxxRX+Fe5zeuyPP/6oefPm+fcvWLAg7P7QK+vzi0E4WthBCztoYQs97KCFHbSwgxZ20MIWethz1113+dv8oYce0o8//ihJ2r9/v9atW6d///vf/jfOOef08ccfSzq8vUPf2JWkbdu2KSkpSVu2bAm7nW2fP7SwgxZ20MKO1atXq0GDBnLu8Fdiz5o1S7t27fLv3759uwYNGqQ2bdrkq4d0+HeA0N8DJHrkBy3soIUdtLCDFrbQww5a2EELWzjms4MWdtDCFnoApRcD7DBr0aJFGjZsmLZu3erf9tNPP+mll17SiSeeqMjISH/HExkZqfj4eElScnKypPAdy7Jly/wDoOuvv75oX0gp88gjj/jbvVevXvr+++/9+/L6hHNGRoYmTpyo1q1b6z//+U+Wx/HLwJGhhR20sIMWttDDDlrYQQs7aGEHLWyhR9EKPXl+//33q1y5cv5Vxdq1a6cWLVqoevXqfhPnnD799FNJh7drWlqaJGnr1q169dVXdemll6p+/fqKiIhQ7dq1demll+rZZ5/Vtm3bsvw8hKOFHbSwgxY2LV++3L+iWP369dWlSxfdcccduv7669WkSZOwbyoNfjtKaI8dO3bom2++0S233KJLLrlEZ5xxhrp166bx48drzpw5/s+hR95oYQct7KCFHbSwhR520MIOWhQ/jvnsoIUdtLCFHkDpxwA7TAu+yf3NN99o9OjROu6441S5cmU551SjRg01atQo7FO3s2bNknR4hxL6KaqXX35ZVatWVa1atfyrr/PG+ZEbNWrUEQ8yhG7n9957T3/729/85wg9cMSRoYUdtLCDFrbQww5a2EELO2hhBy1soUfxCD0pnpCQoCFDhujcc8/Vqaeeqrp16/rfOuec0yeffCIp/OT7ypUr1a1bN9WtW1fOOZUvXz7shH1MTIzOOecc/f7771l+HsLRwg5a2EELm5KSknTHHXfo1FNPVbVq1RQVFaWoqKg837BdvXq1rrjiCp1wwglyzoX1K1++vJo1a6Znn33W/zn0yBst7KCFHbSwgxa20MMOWthBi+LHMZ8dtLCDFrbQAyjdGGCHedu3b1fnzp3Ddh5t27bV//73Py1cuFDz58/X+eef7983depUSX/tUNLS0tShQwc559SxY0ft2bMnz5+Znp7u75hw2OOPP37Egwyht7///vs699xz/ed44YUXCn2dSyta2EELO2hhCz3soIUdtLCDFnbQwhZ6FK/MH7Lftm2bnn32WbVr187fpqFfexo8+b58+XLVr1/fX6ZSpUoaMmSIxowZo/Hjxys+Pl5NmjSRc05xcXFKSkrK9ufhL7SwgxZ20MKmtLQ0paena/78+br33nt14okn5vqGbWJiouLi4vxloqKi1L17d1133XW6/PLL1bRpU/++//73v/7PoUfeaGEHLeyghR20sIUedtDCDloUP4757KCFHbSwhR5A6cUAO0qEJUuWKDIyUp07d9Y999yj1NRU/760tDRNmzYt2yH29PR0PfXUU3LOqXr16vryyy/923OSnp6un3/+WS1atNA111xTuC+sBFm0aJECgYAuuOAC/fDDD/7teQ0yZGRkZBlkePHFF/3l0tPT8/waeoSjhR20sIMWttDDDlrYQQs7aGEHLWyhhy0//PCDGjdunO3J9+AH9levXu2/YVuzZk1ddtllWrRoUdjz7N69WzNmzNCZZ54p55zatWunzZs3F/nrKcloYQct7KCFDcH96xtvvKHmzZtnO+Rz8OBBSdKKFSt0/PHH++fJu3btqp9//tm/X5J++ukn3X///f7zjBkzpuhfVAlFCztoYQct7KCFLfSwgxZ20MIejvnsoIUdtLCFHkDpwQA7SowtW7Zo3bp1/vD5oUOH/IOZgwcPavr06dkOsV955ZVyzql9+/ZavXp1rj8jOLzerVs3/3n69+9fuC+sBFm/fr3mzp3r//lorsKXeZAhuw8T8HUseaOFHbSwgxa20MMOWthBCztoYQctbKGHLddff72cC/+q7OC237Fjhy6//HI551SjRg1df/31Wrt2raS/tm/otp8/f77atGkj55wGDx6sAwcOFO2LKeFoYQct7KCFHatXr/b3w59//rmk8B5btmxR165d5ZxTbGysrr/+ev88eeg5dknav3+/xowZ47cL9kX+0MIOWthBCztoYQs97KCFHbSwhWM+O2hhBy1soQdQOjDAjhIpuzfRsxtiHzx4sP/f48aNy/U5g8PrwYOeChUqKCIiQs45DRgwoLBeSolV0IMMo0aN0t133114K1yK0cIOWthBC1voYQct7KCFHbSwgxa20KP4hG63JUuWSPrr5Htw+8+YMUMnnHCCnHM699xz/Tdsc+p24MABvfjii6pWrZpOPvlkbdy4sZBfRelACztoYQctbFqyZIm++uorSX/1CLZ65ZVXVKdOHTnn1KNHD/8N25x6bNq0SX369FG5cuV02223hV3NEnmjhR20sIMWdtDCFnrYQQs7aFH8OOazgxZ20MIWegClCwPsKFUyD7EHAgE553Teeedpy5YtkrLfGWUeXi9fvrz++c9/6t577/Wf47bbbivql1PiHO0gw7PPPusv9+STTxbpOpdWtLCDFnbQwhZ62EELO2hhBy3soIUt9Cg6ma9Sn/lcxk033STnnKKiovTzzz9nu0xm69atU6VKlVSrVi2lpqYW7AqXYrSwgxZ20MKu0Ddrg7p37y7nnCpVqqTFixf7y+Xmvffek3NOHTt25JtTjhIt7KCFHbSwgxa20MMOWthBi+LFMZ8dtLCDFrbQAyg9GGBHqZOamqqffvpJnTp18ofPhw4dmuPy2Q2v9+nTRz/++KMkafz48f7zDBo0qKheRolztIMMTz31lMqVKyfnnDp06BC2bHB5HBla2EELO2hhCz3soIUdtLCDFnbQwhZ62JGRkaELL7xQERER6tGjh9LT0/N8EzbY7/PPP9fevXslse0LAi3soIUdtLBly5Ytqlu3rsqXL69hw4ZJyvomb6hgi9TUVN1+++36888/w27H0aOFHbSwgxZ20MIWethBCztoYQfHfHbQwg5a2EIPoGQJeEApIsmLiorymjRp4v+5efPm3r333uv/OVRGRob3yy+/eEOGDPG+/fZbr1y5ct4//vEP77bbbvPOOOMMz/M879prr/VeeOEFzznnPfnkk96YMWOK9kWVAJI855zneZ73wQcfeC+++KI3c+ZMz/M874UXXvBuvfVWz/MOb2/P87xA4PBfPc8884w3bNgw79ChQ17dunW9OnXqeNWrV/e+++47b+XKlf6y6enpRfyKSi5a2EELO2hhCz3soIUdtLCDFnbQwhZ62JKWluZt3brVy8jI8GJjY71AIOBv85wE+1100UVepUqVvEOHDuX5GOSNFnbQwg5a2LJv3z5vy5Yt3sGDB73jjjvO8zzPi4iIyHF555x/jv3pp5/2qlSp4h06dMhvhKNHCztoYQct7KCFLfSwgxZ20MIOjvnsoIUdtLCFHkAJU6Tj8kAhC35i6osvvlDjxo0VERGhoUOHKi0tLcsno/K68rr01yesduzYoSFDhigQCKh169b+14vgLxkZGZo0aVK+r8L3zDPPqHz58v6y0dHR/pXunXNq2rSpnn766bDHI39oYQct7KCFLfSwgxZ20MIOWthBC1voYceBAwfUqVMnOefUu3fvI3588FxH6FXHuALZ0aGFHbSwgxa2rF+/XjVq1FAgENCECRMkHdk+N7jtQx+TkZFBk6NACztoYQct7KCFLfSwgxZ20MIOjvnsoIUdtLCFHkDJwgA7So3QnUWfPn38ofTshs2Dw+tdunTxl7vmmmv0/fffZ/t8kvTxxx/7b7S/8sorhfdCSqiEhAS1bds234MMkZGRcs6pZs2a6tu3r2bPnq2VK1fqgw8+0IABA/zneeihh4rj5ZRotLCDFnbQwhZ62EELO2hhBy3soIUt9LAluI2bN2+u3377LV+PyXyeIzExUQsWLNA333yjmTNn6sCBAzpw4IAkPlBwJGhhBy3soIUt3bp189+0DX4Ndl4y90hOTtbOnTu1f/9+7d69O+w+euQfLeyghR20sIMWttDDDlrYQQs7OOazgxZ20MIWegAlBwPsKHXefPNN/43w//73v5LCPz0bHF4/55xz5JxTIBBQ+/bttWLFCv85QndKwZ3Orl27dNxxx8k5p169emVZrqxLSkryBxTGjRvn357bIEPr1q01duzYLM+1d+9ePf744/6HCyZNmlQkr6G0oIUdtLCDFrbQww5a2EELO2hhBy1soYctM2bMUMOGDeWc04gRI5SSkuLfl925imCj9PR0ff/99xoyZIhq1qyp6Oho/xxKly5ddNddd2nz5s2S/vqWO+SOFnbQwg5a2BDc1qNGjVK5cuV08skn67vvvsvzccEeGRkZWrNmjR599FGdeeaZqlGjhho0aKDjjz9ew4YN0+eff+4/hh65o4UdtLCDFnbQwhZ62EELO2hhD8d8dtDCDlrYQg+g5GCAHaXKn3/+qWuuuUYVKlRQlSpVNGXKFEnhXwn1888/q2vXrnLO+W+qO+f05JNP+s+T+ZNShw4d0oQJE/yvP7/66qvDnheHLVy4UK+++qr/59wGGdq0aRO2bOiOPT09XatXr1abNm0UERGhBx54oEjWvzShhR20sIMWttDDDlrYQQs7aGEHLWyhhy0jR470z2k888wz+uOPP/z7svtg/sGDBzVixAiddtpp/uOaNGmi0047TdHR0YqIiPDbJSUlSeIkfH7Rwg5a2EELOzZs2KD27dvLOaeuXbtq4cKFOnjwoKSs57dDezz11FP+VS6D/9SqVcu/KEy1atU0evToLI9FzmhhBy3soIUdtLCFHnbQwg5a2MIxnx20sIMWttADKBkYYEepEnqV9L59+4bdl3l4vXz58urdu7duvfVWf8fz6KOP+suH7qw2btyoXr16+cu9/PLLRfaaSqojGWTI6SCwc+fOcs6pW7duOnToEDv+o0QLO2hhBy1soYcdtLCDFnbQwg5a2EKP4hO6PQcNGuSfq7jxxhs1ZcqUsO0YPLdx8OBBDRkyRLVr1/aXf/fdd7Vz505J0ooVK/Tkk0+qVatWcs6padOmWr9+fdhzICta2EELO2hh04oVK/zte/rpp+v111/3rxgWFPqG7dChQ1WvXj2/x/jx4zV16lRt3bpVL7zwgq688kr/vgcffNB/DnrkjRZ20MIOWthBC1voYQct7KBF8eOYzw5a2EELW+gBlCwMsKPUWbRokdq0aaMPPvjAvy274fU+ffroxx9/VEZGRtinru677z7t2rXLf+yyZct07bXX+vefe+65WrRoUTG8spLlaAcZMjIylJ6eriVLlujkk09WZGSkhgwZkufPQM5oYQct7KCFLfSwgxZ20MIOWthBC1voUbxCT7I//PDDqlatmv+tcXfddVfYsunp6Ro9enTYG7bOubCri0lSSkqK5s6dq44dO8o5p8svv1y7d+8uktdTktHCDlrYQQubli9f7r/RWqNGDcXGxmr69Olhyxw6dEgPPvhg2Bu21atXz7Ktk5KSNGrUqLBBIOQfLeyghR20sIMWttDDDlrYQYvixzGfHbSwgxa20AMoORhgR6m0efNm/1NQOQ2vz5kzx19+3759euCBB/ydUJcuXXTVVVfpkksuUbt27fzbTzjhBL344ovF9bJKpNGjRys6Ojpfgwyhfx4+fLi/3W+55RZ99dVXGj9+vKZPn641a9b4y3GFvvyjhR20sIMWttDDDlrYQQs7aGEHLWyhR/EJ3TZTpkxR//79ddppp2nPnj2S/rryy+LFi3XWWWfJOaeIiAhdd911/rYfNmyY/xzB5T///HPVrVtXjRo10s8//1yEr6jkooUdtLCDFjatW7dOd955p5o2barY2Fjt27dP0l/bd+rUqWrbtq2cc4qKitIpp5wi55xq166tZcuWhS27b98+DR06VM45/f3vf9eOHTu46tgRoIUdtLCDFnbQwhZ62EELO2hR/Djms4MWdtDCFnoAJQMD7CjVDh48qB9++EHnnXde2PD6jz/+6C8T3MGsWrVK559/ftinqUL/Oe200zR27Ngsj0POdu7cqdjYWDnn1KFDh3wPMrz88sth27527dqKiory/3zyySfr2WefzfG5kBUt7KCFHbSwhR520MIOWthBCztoYQs9il/otklPT/dPyh88eNC//cEHH/S37SuvvCJJevrpp/3b7r333rDn3LJli1q2bCnnnEaMGFEEr6J0oIUdtLCDFjalpqZq8+bNSk1NlRTe47bbbvO3/VtvvaVt27b5F4apXbu2VqxYIemvN4G//vprRUZGKioq6oi+tZRz64fRwg5a2EELO2hhCz3soIUdtCh+Fo75gv3L+kUwaGEHLWyhB2AfA+wo1VJSUnTppZfKOaeKFSvmOLwe1K9fP//N8ssvv1znn3++WrdurZEjR2r27Nn+ctl9BXpufy7LlixZorPPPlsvvPCCf1tugwzjx4/3fwk46aSTdM0112jevHlatmyZPvroI/Xv39+//4EHHiiql1Eq0MIOWthBC1voYQct7KCFHbSwgxa20MOe4DmJ9PR07d271/9mufj4eP/EfEpKSq4n4a+//no55/TII48U+fqXJrSwgxZ20MKW0H304sWLVbVqVTnnNGDAAP/2JUuWZDvsIx1+w7dly5aKiIjQjBkzcv1ZCxcu1IQJE/w/cw49HC3soIUdtLCDFrbQww5a2EELO4rymG/RokW68847/Q8dMBwajhZ20MIWegC2MMCOUm/BggWqVauWevTooblz5/q3hx5IpKWlSfrrE1R/+9vf/NuCXx0SxJXfjtzu3bv9/87vIEOXLl30yiuvhH3qTTrc47HHHvOXe/fddwt35UsZWthBCztoYQs97KCFHbSwgxZ20MIWeti1c+dO1axZU8453X333WH3paWlZXsSfvPmzTrppJPknNOjjz5aHKtdKtHCDlrYQQtbfv31V0VHRysyMlKvvfaapL/OoScmJmY77DNv3jxVqFBBzjl9/vnnOT730qVL/YvH9O3b17+dYZ/s0cIOWthBCztoYQs97KCFHbSwozCP+ZYuXaoBAwbIOady5cppwYIFkhgOzQkt7KCFLfQAih8D7CgTNm7cqHnz5vl/zumK6fHx8XLOqXnz5v4OI7sdR3D5HTt2aMWKFbrvvvvUv39/XXXVVbrqqqs0YsQIffvtt9q3b19hvaQSKb+DDGeffbYmTpzo35/5K11WrlypU045Rc45DRs2rGhWvpShhR20sIMWttDDDlrYQQs7aGEHLWyhhz3JycmKi4tT+fLl9eqrr0qSDhw44N+f+ST80KFD9fHHH6tOnTqqWbOmvvnmG3/ZzOdS+ID/kaGFHbSwgxa2zJgxQ845Va9eXb/++quk8O2YedhnwYIFeuedd1SxYkW1atVKmzdvzvZ5ly5dqv79+6t69ep+y/79+/v3M+yTFS3soIUdtLCDFrbQww5a2EELOwrymC9UsEXwSvvOOVWrVo0rHOeCFnbQwhZ6AMWPAXaUOTkdOBw8eFCdOnWSc07nn3++0tPTc32j44cfflCvXr3UuHFjf2cT+k8gEND111/P1eJykN9BhtBeof/dpUsXOed0zjnn5NkKuaOFHbSwgxa20MMOWthBCztoYQctbKFH8UtPT9fu3bv98xZDhgzJdrm0tDQ988wzfqM6derIucNXyU9JSZEU3mb69Olav369JE605xct7KCFHbSwJSMjQ999952cO3xVsJzegA0d9qlRo4aaNGki55wuv/xypaamZlk++IZttWrV5JxTo0aNFAgE5JzTbbfdFvbzcRgt7KCFHbSwgxa20MMOWthBCzsK65gvc4uTTjpJp59+OsOhuaCFHbSwhR6ADQywA//fW2+95e9sXnjhhRyXO3TokN544w1FRUX5ByWVKlVSbGysLrjgArVv314dOnSQc04RERGqWLGiHnrooSJ8JfaF7rjzO8gQau7cuapfv76cc7rnnnuKZJ1LK1rYQQs7aGELPeyghR20sIMWdtDCFnrYENy+jzzyiJxzOvPMM/2vxs4sLS1NTz31lN/qxBNP1LJly/z7gr788kvVrVtXdevW1dq1awv9NZQWtLCDFnbQwp5Dhw75QzwDBgzI8dtFExMTdfbZZ/s9TjrppGw/NJD5DduWLVvqyy+/1P/+9z+GffJACztoYQct7KCFLfSwgxZ20MKGgjrmO3jwoL9cdi2mT5+uZcuW6cILL/SHQxcvXiyJb+YKooUdtLCFHoANDLCjzAvukO6++26VK1dOFStW1IwZM7Jddvfu3Xr88cf9HZJzTnFxcXr77bf9r5/av3+/UlNTNX78ePXq1cs/aBk4cGBRvaQS4/nnnz/iQYa0tDT/lwfnnF5//fWiXOVSixZ20MIOWthCDztoYQct7KCFHbSwhR42TJ8+XfXq1ZNzTmPGjAm7klhoh7S0NI0YMUJ16tTRxx9/LCn8DdvPPvtMLVu2VLly5eSc8z+szxuz+UcLO2hhBy1syMjI0MGDBzV8+HAFAgGdeuqpmjt3bo7LJyYmqlWrVoqJidHUqVMl5f2G7bRp0/xlXnnlFf+8+V133VW4L66EoYUdtLCDFnbQwhZ62EELO2hhz7Ec84UOdmbXYurUqX6LVatW6YILLpBzTo0bN9bKlSuz/IyyjhZ20MIWegDFiwF2QNLatWtVq1YtOed0wQUX5Lhc6FeC1K5dW71799bWrVtzXD4pKUmPP/64f9AybNiwwlj9EicjI0O7d+/2t0u3bt3yNcggSa+++qrf4Nprry2qVS61aGEHLeyghS30sIMWdtDCDlrYQQtb6GHPiBEj/O36zDPPaNu2bf59oQOgBw8e1MqVK7N8XfZnn32mVq1aKRAIqFatWrr++uu1cePGsMfzlaf5Qws7aGEHLezYsGGD2rZtK+ecunbtqoULF/rbLvP+e9WqVfr222914MCBsNuDb9hWrVo17A3b0KvlHzx4UC+88IL/u8K4ceMK/8WVMLSwgxZ20MIOWthCDztoYQctbDnWY778tAgud+aZZ8o5pyuuuEI7d+4s3BdWAtHCDlrYQg+g+DDAjjIt+Ob5Rx99pOrVqysiIsK/Ok/mN9bff/99f2fVoEED3XnnndqxY4ekrG+AhB70JCcn67nnnvMPWl555ZVCf10lxaJFi3TJJZfo9ddfz9cgw+uvv+43uPDCC7Vo0SJJfKVKQaCFHbSwgxa20MMOWthBCztoYQctbKFH8QvddkOGDPG3b79+/fTVV1/l6zk+++wznXrqqf5VjZ1zqlmzpo4//niddtppGjx4sDZt2iSJAdHc0MIOWthBC5tWrFihunXryjmnjh07asKECfrjjz8k5X1VsMxXGzvllFPCrjYWauvWrbrqqqsUGRmp+Ph47dmzp1BeT0lGCztoYQct7KCFLfSwgxZ20KL4FcQx39KlS9WvXz9/KDS3FocOHdKTTz4p55yaNGmi3377TRJXN5ZoYQktbKEHUPwYYAck9erVS845VapUyX+DPNQvv/yiGjVqyDmn2NhY3Xbbbdq9e7ek/L2RvnPnTt15550KBALq0qWLli1bVuCvoaT6888/j3iQ4dxzz9VXX32V46ekQwXvY2efN1rYQQs7aGELPeyghR20sIMWdtDCFnoUv9CBzf/+978qV66cAoGAatasqRtuuEFz5sxRcnKyv0zotvz888/VqlUrfzC0cePGOvPMM/V///d/OuOMM3T88cfLOafmzZsrKSlJEh84yA0t7KCFHbSwafny5Tr55JPlnFOdOnV0/vnn66uvvsr120iDb9hWqlRJzjm1adNGM2bMUEpKSo6PGT58uJxzioiI0E8//VQYL6XEo4UdtLCDFnbQwhZ62EELO2hR/I70mC9U5hbNmzfXvHnzsl0+eKw4b948lS9fXs45DR8+vHBeVAlFCztoYQs9gOLFADvKvF27dqlNmzZyzunKK69USkqK/0ZGenq60tLSNHToUEVHR8s5p4svvljbt2/378+vmTNnqmHDhnLO6bXXXiuMl1Ki5TZs8Nprr4UNMnz++edZvmZFkubMmaOEhAQ9+OCDevbZZ/Xdd99p/fr1/v28QZU/tLCDFnbQwhZ62EELO2hhBy3soIUt9CheoSfh33rrLV122WX+Nh89erS/vTMPhrZs2dL/RrlLLrlEq1ev9r/WdOfOnfr222/VsWNHOefUunVrbd68uWhfWAlECztoYQctbEpKStK1116rRo0ayTmnunXr6tVXX812f7tkyRL169dPVapU8dvddNNN/v2Zr34ffI5x48b5y0+ZMqVwX1AJRgs7aGEHLeyghS30sIMWdtCi+OX3mC9U8Cr4wSsaO+fUsGFDbdy4UZKyvbKxJH399df+8g8++GDhvKASjBZ20MIWegDFhwF2QIcPRJxzuueee7Lct3//frVs2VLOOdWrV0/r1q2TdHRvjA8ePFjOOZ1wwgm8YZJP+Rlk+PrrrzVo0CA551ShQgV/+QoVKuhvf/ubXnnlFX9Zvir46NHCDlrYQQtb6GEHLeyghR20sIMWttCj6ISex9i4caO++OILjRgxQvv375cUvu0+++wztWrVSoFAQJUrV9aAAQPC7g8dIp05c6aaNGmi8uXL66mnnspyP7KihR20sIMWNu3atUvffPONbrvtNt1xxx3+FcRCt+GSJUvC3rCtW7euv69+7LHH/OUyn0/fsGGD/v73v/v79GnTphXNiyqhaGEHLeyghR20sIUedtDCDloUv7yO+ULvDw6FVqtWTc45NW3aVCeccIKcc2rWrJn++OMPSX8dJwY7bt26VTfffLN/ZeMxY8aE3Y/DaGEHLWyhB1A8GGAH/r/169f7n4IK3TF89tln/sFG8JNP2b0hntvOJLgTmz17tqpVq6bjjz9eixYtKsjVL5XyM8jwxBNPqG3btmHLXXbZZerevbtq1aqV7afWuCrfkaOFHbSwgxa20MMOWthBCztoYQctbKFH0cvp3EXodv/ss8906qmn+ifR+/Xr558Hye58yPbt23X66afLOaf4+PjCWfFSiBZ20MIOWtgWvHJY6BXEMg/5tGrVSp999pkefvhhfx/96KOPZnmu7du3a+zYsf5QUKNGjfxvPUXeaGEHLeyghR20sIUedtDCDloUn5yO+UJbZB4KbdmypaZNm6Yff/xRbdq08YdDN2zYEPYcW7du1YsvvqiGDRvKOafjjjtOSUlJhfp6SjJa2EELW+gBFD0G2IE8jB8/3j8o+fTTT7NdJvjm+I4dO/xPXmVn165daty4sS6//PJCWdfS5MUXX1RERESugwwjR45U/fr1/T7Dhg2T9NcvDt9++63uuOOOXA8qkTda2EELO2hhCz3soIUdtLCDFnbQwhZ62BE68P/555+rVatWKleunJxz6tq1a66DocET+v369ZNzTp06ddKePXuKZsVLIVrYQQs7aFH8Qt+8De2xZMkS9evXL2zIZ9q0aTp48KAOHDigRx55xN9H33PPPVq4cKHS09O1YMEC3X///YqLi/PfsH399dezPD+yooUdtLCDFnbQwhZ62EELO2hhU2iX7IZCp06d6p8LnDdvnj8c2rRpU73++uuaPXu2Zs6cqVtuucUfCq1Ro4aeeOIJSbQ4ErSwgxa20AMoXAywA3kYN26c/2nZTZs2Scr+E1crV65UixYtdMcdd2j37t1Z7k9PT9fevXv11ltvhd2W0/OVZbt37/YPEM8///xsBxnefPNNnXTSSf7BonOHv8Zr9erVWZ5rzJgx/i8AX375ZVG+lBKPFnbQwg5a2EIPO2hhBy3soIUdtLCFHnZk/ga6U045xd/exx13nH744QdJ2Q+GBm3fvl2nnXaanHO66KKLCn2dSyta2EELO2hhV/AN28xDPqH78+TkZI0ePdpvdvzxx6tZs2aKjo5WpUqV/H33kCFDtG7dumJ8NSUbLeyghR20sIMWttDDDlrYQQs7lixZogEDBuTaQpIWLFig9u3byzmn6OhoOecUCAQUGRkp55xq1qypwYMHa82aNcX0Sko+WthBC1voARQOBtiBPLz77rtyzqly5cpavHhxjst9/fXX/kFLTkPsoYJvrATfiFm3bp0mTpxYcCtewi1YsECXXXaZEhIS/J19cOB/7969uuqqq/ztfd999+m8886Tc061atXSihUrwpbftGmTevbsqYiICI0YMaJ4XlAJRgs7aGEHLWyhhx20sIMWdtDCDlrYQo/il9NgaO3atVW5cmXVqVNHv//+e46PD57XWL58uX+1seuvv54rxhwFWthBCztoYVdiYqKuvfZaxcbGhr1hG/p12qHGjx+vypUrKyoqKuyDabGxsXrooYe0atWqIn4FpQct7KCFHbSwgxa20MMOWthBCzu2bNmiPn36qEqVKvlqsXPnTl122WWqV69eWIvatWvrySefZCj0GNDCDlrYQg+g8DDADuRh5syZioyMVGRkpKZOnZrrsm+99Za/07n99tvzHGIPvhGzadMm9evXT4FAQP/6178KbN1Lun379mW7s3///ff97Xz//fdLklasWKFzzjnH3+FnHmi4//77/V8iDhw4wJtVR4gWdtDCDlrYQg87aGEHLeyghR20sIUexSe7wdBAIKCqVatqwIABOvvss9WhQ4ccHx8cDD148KAuvPBC/8MFc+fOLfR1L21oYQct7KCFbZs3b1ajRo3knFPbtm1zfcM26LvvvtOoUaN01lln6ZJLLlHv3r31yy+/aN++fUW01qUTLeyghR20sIMWttDDDlrYQQtbhgwZIuecWrZsqenTp+fYIvR4b9q0aRozZozuuusujR49OstAaOixJfKPFnbQwhZ6AIWDAXYgH4JvdPTs2VPbt2/Pcn/oDiV4xXbnnG677Tbt2rUr2+cMPmbjxo3q16+f6tev7z9u4cKFhfI6SrrgNrvzzjv9XwqWL1/u35eYmKiuXbtmGWiQpLffflvOOZ1++unFsu6lDS3soIUdtLCFHnbQwg5a2EELO2hhCz2KRk5XNa5ataqGDBmi5ORkXXTRRSpfvrzmz5+f5fHBE/BpaWnq16+fnHOqUKGCrrvuOm3ZsiXfPxu0sIQWdtCiZFiwYIE6d+6sL774Itchn5y2afD24AfOMi9Hi/yjhR20sIMWdtDCFnrYQQs7aFH8QrfRyJEj9dlnn+X5QYLcLlyR10UtaJIzWthBC1voARQuBtiBXAR3Cq+88oqqV6+uuLg4ffrpp9nuLIK3HTp0SFdffbU/jP7AAw9k2XFlHl6vW7eu/0bMJ598UsivquQKbre//e1vcs7pnHPOybJM5oGG1atXS5KuueYaOecUHx9flKtcatHCDlrYQQtb6GEHLeyghR20sIMWttCjaH3xxRdhg6GDBw/2Bz8HDRqkQCCgESNGKDU1Nctj09LSdPPNN/tfmXrCCSdoxowZWZY7dOiQDh06lON5ERxGCztoYQct7Nu/f3+eb9iGSk9P97ftgQMHwu5bs2aNli5dqhUrVmjTpk1ZHofc0cIOWthBCztoYQs97KCFHbQofqHb/0i2U+ixW1pamv/fBw4c0MyZMzVp0iS98cYbmjRpkv7880+lpKQc8c8oa2hhBy1soQdQeBhgB/Jhy5YtOu+88+ScU+fOncOukB66s1m3bp1GjBihGjVqyDmnuLg4jRs3zt/BhC6feXi9UqVKDK/n03XXXSfnnP71r39JCt/JS+EDDbVq1dJrr72m1q1byzmnESNGSGJnX1BoYQct7KCFLfSwgxZ20MIOWthBC1voUfi+/vpr1atXT1FRUf5gaOg2mzRpkv/B/FGjRunnn3+WJK1evVozZ85Uly5d/Ptr1aqlDz/8MOz5FyxYoA8++EA9e/bU+eefr0svvVT9+/fX9OnTtXPnTkl/XSW5rKOFHbSwgxalW+i2feutt3TTTTcpKipKERERqlSpkipWrKgBAwboo48+yvYxKDi0sIMWdtDCDlrYQg87aGEHLewIHSx9+umn1aNHD/+YMPjP6aefrgEDBvgfLKBF4aCFHbSwhR5AzhhgB/Jp9erVatKkiX8VuHnz5oVd4Wf9+vUaMWKEqlevLuecTj75ZL3xxhvavXu3v8yRDK9zpZ+cDR48WM45nXTSSfrjjz+yXSYxMVHnnHOOnHOqWLGinHNq2LBhlk86H+2n5HAYLeyghR20sIUedtDCDlrYQQs7aGELPQrf6tWr/Q/f33XXXf62Cd1e9957r3/yPDY2Vh07dlTNmjVVu3Ztf7u3bNky7I1YSXrnnXfUvHlzVatWLctJ+AYNGqhHjx5av369JE7CS7SwhBZ20KL0Cm14ww03qE6dOmENKlWqJOecIiIiVKVKFY0ePdpfnh4FixZ20MIOWthBC1voYQct7KCFHaEtevfurejo6LBjxbp16yoQCPi3tWnTRklJSZJoUdBoYQctbKEHkDsG2IEjkJiYqAYNGsg5p7Zt2+r555/X5s2btWfPnizD66+99pr+/PNP/7HBN1qOdHh99uzZeumll4rmBRoX3C4//fSTmjRpomrVqmnChAk57rATExN19tln+zv9adOmSfprBx/8JSE5OVlLly6VxEBDftHCDlrYQQtb6GEHLeyghR20sIMWttCjaCUmJuq///2vv02C2y10G91///067rjjsgx51qlTRwMHDtT3338f9pxPPfVU2HLNmjXTRRddpFtuuUUnn3yyatWqJeecTjzxRK1duzbs55ZltLCDFnbQovQJ3ZaXXXaZP9DjnNNtt92mF154QbNmzdLw4cPVvXt3v9N///tf/3HsxwsGLeyghR20sIMWttDDDlrYQQs7Qltceumlcs6pXLlyqlq1qh566CF9//332rRpk3766ScNHz5cp556qpxzaty4sdatWyeJFgWFFnbQwhZ6AHljgB04QitXrtSZZ54p55yio6PVtGlT/etf/yqU4fW5c+fqyiuvlHNOt9xyS9G8wBJg9+7d/nbp1KmTFi9enOOyS5Ys0QUXXKCXXnop7FNtoYMMJ554opxzmjdvXqGve2lDCztoYQctbKGHHbSwgxZ20MIOWthCj6KXeUAz9M8zZ87U//73P916662688479fjjj2vt2rXav39/2GOeffZZ/03Z1q1b684779Sff/7pt9iwYYMmTZqk008/3R8c3bhxoyS+hS4ULeyghR20KPlCt2Hv3r3lnFOFChXUqVMnvf/++1mW//333/Xoo4/6zZ5//vmiXN1SjRZ20MIOWthBC1voYQct7KCFTX379vVbnHPOOZoyZUqWZVJSUjRv3jx/1uf888/X9u3bi2FtSzda2EELW+gB5IwBduAobNy4UXfffbfatm0b9onaFi1aFNjw+o8//ui/YR/856677iqaF1gCrFmzRk2aNJFzTuecc46+//57/42pzG8q/fnnn0pJScnyHPv27fMbOud0/PHHa9euXbwpdYRoYQct7KCFLfSwgxZ20MIOWthBC1voUfzyurJL6P0ffvihv53PPPNMvfrqq0pLS5N0eNA0uM0zMjL022+/qUOHDnLO6dprr9WePXuyPHdoI3rRwhJa2EGLkumpp55ShQoVVK5cOXXt2tX/9hTpcLPQDyckJyfrwQcflHNOrVq10q+//prl+dj+R48WdtDCDlrYQQtb6GEHLeyghR1vvfWWateurYiICHXu3DlLi8y+/fZbnXTSSapUqZJeeeWVLPdnbsG3cuUfLeyghS30AHLHADtwlJKTk/X7779r8ODB6tatm5o2barx48cX2PD6VVdd5b+xUqlSJTnn9Pe//z3s+cu65cuXq169enLOqWXLlnrooYe0cuXKfD/+hRdeCBtkmDhxYiGubelGCztoYQctbKGHHbSwgxZ20MIOWthCD1tCBzxDrVu3Tuecc46cczrxxBP10ksv+SfNszsBn5GRoQ8//FB16tRR48aNs1wZP7sT7qFX1wctLKGFHbSwLyUlRZdddpmcc6pevbo+/vhj/76cBnaWLFmi8847T845vfTSS2H3BVusX79eiYmJkvha7fyihR20sIMWdtDCFnrYQQs7aGHLTTfd5J//++CDD/zbc2qxZ88e3XPPPXLOqWfPnkpNTfXvC7ZISkrSyy+/nOV25I4WdtDCFnoAuWOAHSgA+/fv1+bNm7Vv3z7/tmMZXr/66qv9nVfwcc45vfPOO0XzgkqQlStXqnPnzoqMjJRzTjVq1NCzzz7rH9zl5b777pNzTpMmTfJv4xPOR4cWdtDCDlrYQg87aGEHLeyghR20sIUe9s2bN081atSQc07XXXedP8iZ23b+448/dMEFF8g5l+1XbEvS0KFDdeONNxbKOpdWtLCDFnbQwo7p06f757mHDx/u357Xfnno0KFyzunbb7+VFP6BgbVr1+qaa67Rcccdp6+//rpwVrwUooUdtLCDFnbQwhZ62EELO2hhx6pVq1SuXDk55zRgwAD/9rxafP/996pQoYI+//xzSYc/lBC8kOTatWt16623yjmnHj16FNq6lza0sIMWttADyBsD7MAxyGmHUlDD60OGDNH//d//KRAIqE6dOvrtt98K78WUYJs2bdLw4cN1+umnyzmnfv36adeuXbk+JvTTZ0uWLPH/m0GGY0MLO2hhBy1soYcdtLCDFnbQwg5a2EIP2x5++GE551S/fn2tWbNGUv6uFJaQkKB7773X//NXX33ld3344Yd13HHHyTmn22+/vTBWu1SihR20sIMWdkycOFHOOdWqVUs//vijpNxbBO/bsWOHFi5cKEnau3evHn/8cY0bN0779+/X//3f//nn3tu0aaOUlBT29flACztoYQct7KCFLfSwgxZ20MKORYsWKRAIyDmncePGScr/1eu3bNki6fDFKkePHq3zzz9f3333nQYOHKjatWvLOad69er5yyF3tLCDFrbQA8gbA+xAAQseSBzr8Hq/fv00d+5cnXjiiXxqKh/S0tK0Y8cOTZo0SX/88YekvAcTMv9SwEFgwaCFHbSwgxa20MMOWthBCztoYQctbKGHXcEriNWvX19btmw5qu08Y8YM1a1bVw0aNNDAgQNVq1YtRUZG6sQTT9Srr75aCGtdOtHCDlrYQQs7xo0bJ+ecjj/+eG3duvWIH5+enq7ffvtNJ598spxzatu2rWrVqiXnnE477TQtX768ENa6dKKFHbSwgxZ20MIWethBCztoYceiRYtUoUIFVa5cWXPmzJEUflGL/Ni2bZv69u0r55wqVqzof4NX27ZttXLlSkmcU8wPWthBC1voAeQt4AEoMJI855y3efNmb8SIEd5HH33kbdmyxatYsaI3ceJEr3v37lmW9TzPmzt3rvf000977733nud5nnfjjTd6DzzwgBcVFeWlpKR4gUDA+9vf/uZ5nuelp6cX/QsrAcqVK+fVqFHDu+KKK7zjjjvOy8jI8Jxz3qFDh8KWC91+gUD4X4HBHjg2tLCDFnbQwhZ62EELO2hhBy3soIUt9LBHkud5nlehQgXP8zyvbt26Xu3atT3nnH9ffqSnp3vNmzf3mjZt6m3YsMEbO3ast23bNu+EE07wHnzwQa9v375hPw9Z0cIOWthBC3tiYmI8z/O87du3e1u2bDnixzvnvNatW3tXXnml53me99tvv3nbtm3z2rdv702aNMk76aSTOHeeT7SwgxZ20MIOWthCDztoYQct7KhUqZJ36NAhb9++fd7s2bM9z/O8iIiIfD9ekhcbG+v17t3bq127tpecnOzt2rXLa968uffNN994TZs29dLT0zmnmA+0sIMWttADyBsD7EABcs55W7Zs8e6++27v008/Parh9VtuucW77777vFq1anlvvvmmt3HjRi86Otq78MILPc8L35HxxkjOAoGAd+jQIS8yMtLbv3+/9+STT3qed3j7ccBXtGhhBy3soIUt9LCDFnbQwg5a2EELW+hR/ILnNTp27Oh53uE3XL/88suw+/KSnp7uRUREeHXq1PFat27tlS9f3ktPT/ciIyO9fv36ef/85z89z/P8Dywge7SwgxZ20MKeCy+80GvVqpV36NAh76uvvvLS0tLy/djg+fQNGzZ4W7du9SpVquRv8w4dOniNGjXyl8vtOXAYLeyghR20sKO4WyAcPeyghR20sEGSFxcX51177bVeIBDw5s6d623atOmIHh9sMXny5LCOO3fu9C+MQYu80cIOWthCDyCfCvaC7gA2b96sZs2ayTmn6tWr65NPPgm7P/RrO3788UddffXVcs7JOadbb71VSUlJ/nIXXXSRAoGAevbsqbS0tLCvPw99ng8++EAPP/xwIb+ykuXgwYOSpOTkZLVv317OOQ0cOLCY16psooUdtLCDFrbQww5a2EELO2hhBy1soYcdq1ev1hlnnCHnnIYMGaK9e/fm63Gh5ziGDx+u2NhYOecUHR0t55waNGig33//XVL2X6sa+ngcRgs7aGEHLezYu3evrr/+ejnn1KFDBy1YsCBfjwueB1+3bp1uueUWHXfccXLOqX79+v559WHDhvnLB3tkZGTozz//1FdffZXluco6WthBCztoYUdRt0Du6GEHLeyghS1vv/22ypUrJ+ecnn76aaWkpPj35bRvzalFs2bN/POMxx9/vNasWSPpr/OQUtZjPY79/kILO2hhCz2A3DHADhSChQsXqn79+vrwww/Dbs9reD34pockTZ8+3b9vzJgxOT7Pp59+qpYtW8o5pxtvvLGQXlHJlJycrBNOOMHfjs65fB9A5ia7XyAOHTqU5SCSk41/oYUdtLCDFrbQww5a2EELO2hhBy1soYcdTz/9tN9g7Nix2rNnj39fdifIcxoMbdq0qcaMGaNzzjnHfxN37dq1ksLfuA0+/ptvvtEDDzxQOC+qhKKFHbSwgxZ2rF27VieeeKKcc+ratat+/PFH7d+/X1L2+9XgbevXrw97w7ZNmzZaunSpxo8f77f973//6z8u2GPevHlyzunqq68ugldXstDCDlrYQQs7iqoF8ocedtDCDloUv9DtfP/99/vbb/To0VqxYkWej8uuxerVq7Vp0yZ16tRJzjnFxcVp1apV2f7Mjz/+2L+vrH/YgBZ20MIWegD5wwA7UEgyX83nSIbXJemJJ55QhQoV1LhxYy1ZssR/jtDn+eSTT9SyZUtFRUXJOaeLL764EF9RybNmzRp/Gx9//PGaNGnSMT9n6E59//79evfdd3Xvvffq4osvVo8ePfTkk0/q66+/9pdhoOEwWthBCztoYQs97KCFHbSwgxZ20MIWehS/0CHPoUOH+j3uuusuzZ49O8/HhA6GnnDCCZo4caIkadmyZercubPfNjggGvr4H374QYFAQM45Pffcc4Xw6koWWthBCztoYVNiYqLq1q0r55xatmyphx9+WPPmzcuyXG5v2K5cuVLS4Q+zhX5A4f777/cfv337dp1++ulyzqlChQqaNWtW0bzAEoQWdtDCDlrYUZgtGA49cvSwgxZ20KL4hR6/DRkyxN9+F198sR544IGwDy9L+WuRkZGhxYsX+x9cjouL04EDB8KubpyQkKBWrVqpatWq2TYvi2hhBy1soQeQNwbYgSJwpMPrKSkp6tChg5xzOuOMM/yvD8lueD0yMlLOOV1zzTX+/WX9DfRQS5cuVZMmTTRhwgT/tqPdPsFBhvT0dL3wwguKj4+Xc85vEPwnNjZW99577zH/vNKGFnbQwg5a2EIPO2hhBy3soIUdtLCFHsUvdOj/3nvv9bdT/fr1dcstt/hXIJNyv6pxcDA0aMmSJf6A6LPPPhv2s77//nv/a1ebN2+uUaNG6cCBA4X5MksEWthBCztoYdPKlSvVtWtXVaxYUc45ValSRX/88Yd/f37esA32SktL06OPPirnnGbMmCFJSk1N1fDhw1WlShVFREToiiuu0IYNG4r4VZYMtLCDFnbQwo7CboEjQw87aGEHLYpf6DHfU089pVNOOcU/7lu8eLF/X35ahD7XggULdM4552jatGlhP2/y5Mk666yzVKFCBX9OJ7tv9iqLaGEHLWyhB5A7BtiBIjR37txch9eDO4zffvtNDRo0UHR0tMaOHSvp8AFLUObh9X/961/+joyv/cgq9BNrRztYEHrgePXVV/u/KATfxOrSpYt69eqlDh06+FdXGjJkSIGsf2lCCztoYQctbKGHHbSwgxZ20MIOWthCj+IXei7ijTfeUM+ePVWuXDn179/fvz2/g6Ghyy1ZskRvvPFG2M8KHQxt2bKlnnvuOf3555+F8bJKJFrYQQs7aGHTli1b9Morr6h79+764osv/NuPZMgnKC0tTZs3b/b/HHqV/KioKP34449F8IpKLlrYQQs7aGFHYbXI6f3U7IZ7yvqHlkPRww5a2EGL4he6rX799VeNGzfO/3aTjIwMf/ts2LBBt956a75aSIevjB8qOBQaEREh55yuvvpq7dixo7BeVolECztoYQs9gJwxwA4UkXnz5umSSy7JcXg91OjRo/3lZs6cGXYfw+tHrqCuTL9161Z16tTJb+Pc4a/vmjt3rv+LQlJSkp577jl/oOF///vfMa9/aUILO2hhBy1soYcdtLCDFnbQwg5a2EIPG0JPoO/evVtLly71/xz69aUjR470B0NPOOGEHAdDs5N5MPSZZ57xB0PL+pu1oWhhBy3soIVdwe2fnp7ub6ctW7boP//5T77fsM3s5ptv9vflzz//vCQa5Act7KCFHbSwozBahMq8/Ntvv60XXnjB/zONwtHDDlrYQYvild32DG2xbds2DRo0SLVq1cp3i9DbMw+FXnnlldq1a1fBv5BSgBZ20MIWegDZY4AdKCIbNmzw38C47bbbsh1eT09PV0pKii666CIFAgH17Nkz7EDj448/1imnnOIPr/fp04fh9UIW3NmvWbNGHTp0kHNO0dHROuWUU/Tuu+9m+5g9e/bolltukXNOV111VdgvHDh6tLCDFnbQwhZ62EELO2hhBy3soIUt9ChY2W2H0PMVL730kho2bHhEg6HB27/77jv/vMopp5yiZ555xr/6Pts/K1rYQQs7aGFfRkaGDh48qLFjx6pRo0Zyzqlt27ZatWqVpPwN+bz88sv+YGjPnj39x+LI0MIOWthBCzsKokXweULt2bNHL7/8sq666iq/04033ljg61/a0MMOWthBCzuC2/rdd99V06ZN5ZxT69at8xwKDd32DIUWDFrYQQtb6IGyjgF2oAgtWrRIgwYN0tq1a3NcZunSpYqJiZFzTnfeead/O8PrRS/4KemdO3fq9NNPl3NOFStW1Hnnnafp06f7y2X3JtTYsWPlnFOFChVy7Y38oYUdtLCDFrbQww5a2EELO2hhBy1soUfRWr9+vf7+97/LOac6deronXfe8e/LazB09uzZ/mBou3bt9Mwzz2jfvn2SOCdyNGhhBy3soIUde/fu9ffLDRs21IoVKyTlb8hn2bJluuSSSxQIBFS+fHm98sor2S6X3b6dDxpkRQs7aGEHLew4lhaZl1myZInee+89tW7dWuXLl/eHQitUqCDnnEaPHl0or6E0oYcdtLCDFrb87W9/k3NOxx13XJ4fJMhtKLRXr14MhR4jWthBC1vogbKKAXagiIV+JW2o4JsZjz32mJxzqlevnhITEyVJCQkJxzS8fqRfP4W/ttnBgwd19tlnyzmnmJgYXXLJJfruu+/85TKfNExLS5Mkvffee6pUqZJq1qyp9evXF92Kl0K0sIMWdtDCFnrYQQs7aGEHLeyghS30KHqTJ0/232AdO3asf/uRDIY2atRIQ4cO1Y8//qiMjAylpqZKYkD0SNHCDlrYQQs7Pv74Y38Y56OPPpKU9zYM9hg7dqz/hu2///1v//7Q/XnwuQ4dOqRZs2bptddey/I8OIwWdtDCDlrYcTQtMktMTNRzzz2nJk2aqHr16nLOqW7duurYsaNOOeUUOXf4G7rmzJlTCK+gdKGHHbSwgxZ2bNq0SbGxsXLO6f7775eU/6HQTp06KRAIcEXjAkILO2hhCz1QljHADhhz6aWXyjmnFi1a6ODBg/rkk0+Oang985vsW7du1eeff16o617apKen66abbpJzTlFRUeratatmz57t35/bFS9uvfVWOedUpUoVrVu3rihWt1SjhR20sIMWttDDDlrYQQs7aGEHLWyhR9GaMmWKnHM6/vjjNX/+fEl5D4Z+9913/mBo8E3ZmJgYxcbGqnXr1urfv782btwoiQHRI0ELO2hhBy3sWL58uRo1aqSYmBi9+uqr+X7c/PnzFR0dLeecOnfurN9//11S9ts+NTVVQ4YMUdu2beWc080331xg61+a0MIOWthBCzuOtEXw+G7v3r3asGGD/u///k8dOnTw9+PVqlVT586d9dVXX2n27Nnq3bu3AoGA+vbtq5SUFD5AkAd62EELO2hhR3Jysi6++GL/Q2TBC1RklnkotHPnzv5QaMuWLf3ju/zI7gNqoIUltLCFHijLGGAHDPnpp59Uo0YNRURE6PXXX9e3336r5s2bH9HweuYDk99++01vvPGGTjjhhCxXdUDuJk+erKZNm/pf6/Xll1/69+U2yDB//ny1adNGzjldeumlOnDgAF/veIxoYQct7KCFLfSwgxZ20MIOWthBC1voUbR++uknxcXFyTmnJ554IsflQq9qHDwfEggEdNxxx+nKK69Uv379dO6556p+/fpyzql58+ZKSkoKeyxyRws7aGEHLezYuXOnunfvLueczj33XH/IMzcbN270LwwTGxurMWPG6MCBA5LC9+nbt2/XN9984w8CRURE+G/0Pvfcc4X2mkoqWthBCztoYUd+WmTe9/7000+64YYb1LJlSznn/H35zTffrAkTJiglJUWS9O677/oDo2+++WaRvJ6Sjh520MIOWtjywgsv+Nssuw8UhO6TP/zwQ5111ln+fjj4z8MPP6x9+/bl+bOCz/Xtt99qwYIFkhgODUULO2hhCz1QVjHADhjyxhtv+J+evfHGG3Xqqaf6XyeY3yuvS4d3NCtWrNCoUaPUpEkT/6oOFSpUkHNOd9xxR1G8nBLv5ptv9nfyb7zxhn97doMJobc9/PDD/uPGjBlTJOta2tHCDlrYQQtb6GEHLeyghR20sIMWttCj6I0cOTLXk/DZDYaecMIJuv7667V27Vp/uT///FPff/+9OnbsKOec2rRpoy1bthTVyygVaGEHLeyghR2rVq3yPwRw0UUXhW3fUMEmEyZMUMOGDeWc0+mnn66tW7dmWfbnn3/WLbfc4j9vnTp11KhRIznn1LZtW+3YsaMwX1KJRQs7aGEHLezI3GLNmjWSsr6P+s477+jWW2/133N1zql69eq67bbb9NFHH4Utu3LlSrVu3VrOOV111VVF9VJKBXrYQQs7aFH8Qs/p3XXXXf4HA1588cVsl8k8FHrNNdeEHSs++OCD2r9/f44/L7j//+abb/zHLFq0qBBeWclDCztoYQs9UNYxwA4YkJ6err179+q8887zB81PPvlkf+A8v8Pre/fu1Zo1a9S3b1+1a9fO39HUr19fjRo18r/Stl+/fkX10kqsOXPm+G9E9e/f3789r0GG999/39/ul1xyifbu3Zvj45A/tLCDFnbQwhZ62EELO2hhBy3soIUt9ChaoVcUGzx4sL8NX3vttSzLhA6GnnLKKRozZow/sJP5nMjUqVPVoEEDVahQQS+88IIkWuSFFnbQwg5a2JSYmKi6devKOaeLL77Yv1pxULBJSkqKOnXqJOcOXxjml19+CVtu+/bteuutt1StWjU551SlShVdeeWVSkhIUJs2bVS9enW9+OKLOnToEFfJzwEt7KCFHbSwI3OLgwcPSpJ27dqld955R1deeaWcc/6AT+PGjXXHHXdo0aJF/pWMJfkNv/rqK9WpU0cVKlTQuHHjJPEtKkeCHnbQwg5aFL/QY7UhQ4b4w6F//PFH2LbLPBR65ZVX6s8//5QkPfXUU3kOhwaP96ZPn+4v65zTddddx5WN/z9a2EELW+iBsowBdsCI7du3q1atWoqMjFQgEPDfCMlpeD3zjuObb75R37591aRJE39H5pzTwIEDNXHiRN19992qXLmyWrVqpRUrVkjiDZPcJCQkKCIiQhUqVNDEiRMl5T3I8MUXX/gfEjjxxBP16quvcrBYAGhhBy3soIUt9LCDFnbQwg5a2EELW+hR9ELPYwwcOFDOOY0YMULSX2+0zpo1yz+f0bBhQ40aNco/AZ9dnx07dvgf4L/66qvzXIf09HStX7++IF5OiUYLO2hhBy1sWrJkierVq6cZM2bkuEzwG1Wio6P14IMPKi0tzb/vgw8+UJ8+ffw3ZC+66CJ/v3/HHXfIOadzzjlHSUlJhf5aSjpa2EELO2hhx+LFi3X88cfrl19+0Y4dO/T+++/r1FNPVY0aNfztW7NmTf+/J0+eLEl+j+B+PC0tTeecc47/QbXdu3cX22sqyehhBy3soEXxyzwc+s0334Tdn3ko9B//+Id27doVtszTTz+d43Bo8LgxdCi0WrVq+uc//6nNmzcX2usqiWhhBy1soQfKKgbYASN+//13/yuhglde/9e//uUfjAQ/iZv5zZDXX39dt956a9gnoxo0aKCBAwfqq6++knT4zZLTTz/df7Nk3759RfviSqDgTr1JkyY5vhEV+uevv/5asbGxcs6pUqVK6tevX65fyYL8o4UdtLCDFrbQww5a2EELO2hhBy1soUfxCD0JP23atLD7QgdDnXO67LLLtH37dknZD4YGz5P885//9Ad+cpOenq45c+bolFNO0YABA471pZR4tLCDFnbQwqbgVSezuxLY5MmT1bRpUznndOqpp2rBggWSpD179qhfv37+FY0rVqyo++67z//mlHHjxsk5p4iICM2ZM6foXkwJRws7aGEHLexIS0vTlClTVL16dX8gNDIyUjExMRoxYoSef/55/5uwnXP+e6gZGRl+v3feeUdVqlRR1apV9c4770jiqsZHix520MIOWhS/nK4uPHny5FyHQkMfl3k4dN++fTkOhV511VXaunWrpL86BY8Vyzpa2EELW+iBsogBdsCQpUuX+m+IX3vttf6bH6mpqWHLbdiwQW+++aYuuuiisMH1M888UzfffLPWr18fdhWH4FWDYmNjtXTpUklcfT0vzz//vJxzql69utasWZPrsp9//rmqV6/ud7j88sv9TztzwHjsaGEHLeyghS30sIMWdtDCDlrYQQtb6FF8sjsJP3v2bP/D/BEREYqJidGSJUsk5X7+YteuXWrevLmcc/r73/+e43Lp6en68ccf1bVrV7/jvHnzjv3FlHC0sIMWdtDCnpw+YJaSkqK+ffv622zSpElKTU3Va6+95l+VskKFCurTp4+mTJniP/7nn3/WaaedpkAgoNGjR2f7M6Ss/1vgfDotLKGFHbSwZeHChapcubKcO3xl4ttvv13z58+XdHibzZw5U+eff77f5euvvw57/C233CLnnOLi4rRw4cLieAmlCj3soIUdtLDnnXfeUefOnVW+fPlsh0KDQs8Bhg6HPvDAA5KObCh03759/gcQ8Bda2EELW+iB0o4BdsCYJUuW6KabbvJPNoXuYBYvXqyJEyfqpJNO8q/MEBUVpY4dO+r+++/XmjVrdODAAUl/fZ3Uhg0b1LVrVwUCAf373/8O+2QVcrZkyRI1adJENWrUCDt5GPrBgLS0NL355pv+Dj4yMlIXXnihdu7cKSnnT8bhyNDCDlrYQQtb6GEHLeyghR20sIMWttDDjtWrV/vbuGXLlqpTp45atGihvXv3hvUIFTxnkpCQoLp16yoQCOjhhx8Ouy8oOBjapUsX/+T8//73P//K+/gLLeyghR20sGv8+PF+m//85z9avXq1Lr74Yv+8ea1atfThhx9q06ZNYY8bPny4AoGAzjzzTP3666+5/oyUlBR98MEH/p8ZEM0eLeyghR20KD5Lly7VjTfeqN9//93/1qzgsVtaWpqmT58eNhw6depUSdKHH37o3/bUU08V1+qXOvSwgxZ20MKWp556yt+uV199dbZDoUGhczahj7vuuuvyHAoN2rdvny699FI55zR8+PBCeU0lFS3soIUt9EBpxwA7YNzBgwe1du1aPfzww2rRooWioqLknFNMTIy/c3n66afDHhO6c3nxxRf95SZNmlTUq19i7dy507/C/dlnn6358+eHvSn1+eef68477/S3bfXq1XXllVf6vygwyFBwaGEHLeyghS30sIMWdtDCDlrYQQtbiqMHAyU5u/baa1WvXj099thjatGihTp06JDjsqFv6l5++eVy7vAVkefMmZNl2cyDoZUqVdK4ceO0d+/eQnstJR0t7KCFHbSw54cfflDDhg39ffQll1yiqlWryjmnxo0b64YbbtDy5cuzPO7bb7/19+1jx44Nuy90P/3nn39q/vz56tixo/9GL7JHCztoYQctbDt48GCW4dDJkyfrwQcfVGRkpNq1a6dly5ZJ4hiuKNDDDlrYQYuid+211+r888/PdSg0KHQW57XXXpNzToFAQM45Va1aNdehUEkaNWqUP+9z3nnnZfkwW1lHCztoYQs9UJoxwA4YtnnzZvXs2VNnn322f3DinNNZZ52lgQMH6qyzzvJvmzZtmqTDBynBA5XExES1bNlSzjn17du3OF9KibRq1So1aNBAzjk1b95cl19+uW677TZdfPHFqlmzpr/tW7VqpaFDh/pXRmKwpODRwg5a2EELW4qyByckc0cLO4rj76ngtxEhHC3sKMoWoSce2f9nr7h+nwo94VvW9yWh23LmzJnasGGDzjnnHFWtWlWLFi3K9bE33XSTPxj64IMPSgrfngyGHhla2EELO2hh08GDBzVs2DA55xQdHe1vZ+ecLrzwQn3xxRf+t6WE/j60Zs0anXHGGXLO6frrr/dvz7xfnz9/vu6++27FxcXJOady5crJOadvv/22zO+3M6OFHbSwgxYlQ3bDocGr4998881H9Fxs92NHDztoYQctikbofjY5OTnfjwteBOPXX3/1+8TExGQ7FJrdecTevXurW7dumj9//rGsfqlCCztoYQs9UBYwwA4YtmrVKkVGRvo7k65du+q+++7TwYMHlZqaqu+++y7br48K7ogSEhJUo0YNRUZGaty4cZLyPkBZsmSJXnvttUJ9XSXJihUr1LZtW5UvXz7sQwTBE45XX321pkyZopSUFEnZfzoNBaOoWwQfz0F9VrSwgxa2FHWPpUuXasGCBex7skELO4qqRXp6upYsWaJevXppwoQJSkpK8u/j76zDaGFHUf8d9dZbb+l///tf2NfP0+IvRd1jyZIl6t27d9ibjWW9R+Zt2q9fPznnNGbMGH+7Bx06dEi7d+/WDTfcIOcOXzmme/fu+umnn7I8J4OhR44WdtDCDlrYlJiYqMqVK/v77BYtWmjo0KE5Ln/gwAE98cQTiomJUevWrf03YEM/dJmWlqaJEycqLi5OVapUkXNOtWvX1j/+8Q999dVXYc/Hsd9faGEHLeygRclw8OBBzZgxQ926dfOPA5s1a+afx8h8LvzPP//UypUrNWXKFP3yyy/avn27/1xs82NHDztoYQctisaRbpvg8lOnTvW7VK5cOdeh0OTkZG3ZsiXsedasWXOsq17q0MIOWthCD5R2DLADxi1dulRNmzbVc889p5UrV4bdl5aWluWTt8ETVTt27NCpp54q55zOPPPMfF0Bcfny5brmmmvknFPv3r0L5fWURBs2bNAzzzyj+Ph4nXHGGWrZsqXuu+8+vfPOO2HLlfWhg6JQmC0yf6pwz549OnToUJav4KHzYbSwgxa2FNU+Y8WKFfrXv/4l55zuuece/fDDDwX23KUFLewoihZLly5V9+7d/UGhyy67TG+88UaBPHdpQgs7iurvqDlz5qhJkyZyzqlLly4aP358gT13aVJUPZYsWaIBAwb4x+/9+/cvsOcuTSZOnOhvo+HDh+u7777T3r17tXbtWo0dO1YXXXSR/3fMueeeq48//jjs8QyGFhxa2EELO2hhx+LFi1WpUiXdeOONYcOb2X0Lzbp169S6dWs55zRs2DDt378/7Lk+//xz/8MJwX9OPPFEvffee/r999/Dll2/fr2ef/75LLeXZbSwgxZ20KLkePfdd1WrVi05d/jq93v27PHvCx6nrVmzRjfccIMaN24s55wiIyN10UUX6eWXX/aX5ZvPCgY97KCFHbSwI7gfnz59ur9PrlatWp5Doeecc44qV66stWvXFst6l0a0sIMWttADJRED7EAJkPlrQEJPcGX39VFffvmlpk2bpipVqqhmzZp67733JOV+UBIcXg8e/ERGRmr16tWF84JKuNTU1LA/84nl4lMYLaZNm6ann35anTp1Uvv27dWiRQsNGjRI77//vr8MwyVZ0cIOWthSGD3S09M1Y8YMnX766XLu8FcFn3XWWXruuef8ZeiRFS3sKIwWO3fu1COPPKLevXurXLlyCgQCKl++vIYNG+YvQ4usaGFHYR5jPPvss2rXrp0iIiIUGRmpBx980L+PFtkrjB5LlizRbbfd5h+3lytXTs453Xbbbf4y9PjLvffe62+rmjVrqlWrVoqNjVXFihX9K1leccUV+vTTT8Mex2BowaOFHbSwgxZ27Ny50/82Uil8nx26X73iiivknFOLFi3Crih26NAhDRw4UC1atPCbNm/eXH379tWOHTuy/LxNmzbp8ccf95fdtGlTIb2ykocWdtDCDlqUDMEPB0RERGjOnDlZ7t+yZYvi4+P9b+2qUaOG/2E151zYMTbvFx47ethBCztoYcPRDIXu379fl112mb/8DTfckK8LTyJ3tLCDFrbQAyUVA+xACRA8kZXTm9nZDbEH3whp1KiRli9fnuvzB4fXa9asKeecGjZsqO+//77AX0dJFrrtGSooXoXRIiMjQzt37lS/fv38D3Fk/qdChQq6++67C/xnl2S0sIMWthTFPiMlJUVz5szxr/wdPBHZr1+/Qv/ZJQkt7CjMFpmfb9KkSerbt6/f4vbbby+0n10S0cKOwv47KvQNqZ9++kkDBw6kRS4Ks0fm4fXrr79ezz//vN+DIfa/hP7v9oEHHlC9evXCfv+sXLmyKleurKefflqLFy/O8ti8BkPL+vY9ErSwgxZ20KJkevHFF+WcU/Xq1TVjxgxJ0ubNm5WQkKBu3bqFNfznP/+pKVOm+B9mO3jwoP88mzZt0qOPPqrY2Fg5d/jqx0lJScXymkoqWthBCztoUbymTZumunXrKhAI6NZbb5WUdX88depU1a5dW+XKldM111yjpUuX6r333gu7Kv4jjzziL89w6NGjhx20sIMWNgS3+dEOhVasWFFXXnml5s6dWzwvoBShhR20sIUeKMkYYAdKieyG2J1zYV8LlZ3Mw+vHH388w+soNXL71oHgL3DJycn64osvdMEFF4QNHl544YW67rrrNHjwYP3973/3b7/rrruKavVLFVrYQQtbjuYrGzOfnHzsscfUsGFDRUZGyjmnPn36FNTqlSm0sONov8o09MT7li1bNHbsWP/vqVGjRhXU6pUptLCjIFps3rxZTz31lN/i3nvvLajVK3Py6hG6f8g8vN63b1/t27dPkvTyyy8zxJ6N0O37/fff66233tKwYcM0dOhQJSQkZBkKlfI3GJrTG7RlfXvnhhZ20MIOWpQMwe22evVqnX/++YqMjPQ/wLdo0SL17t1bTZs2lXNOUVFROvnkk/X444+HPUdo68yDoWeccQbfXppPtLCDFnbQovgFGzzwwAP+sdpbb72V7bLBq9rXrl1ba9eu9W//448/NGbMGP/xL774YlGseqlEDztoYQct7Ageq82YMeOoh0Lj4+M1f/784nkBpQgt7KCFLfRASccAO1CKpKamaurUqTrppJMUCATUtm1bLVmyRFL2b3YwvI7SKDk5Wb/99pv/5+yGS4L/f9izZ4/Gjx+v0047Tc45RUZG6txzz9Xzzz8ftvwff/zhD16VL19eEyZMKNwXUUrQwg5a2JKfHnkJ3a/PmzdPXbp08b8esnXr1lq3bl2BrGtpRws7CqKFFN4jNTVVI0eOVCAQULNmzfTjjz8e83qWBbSwo6BaZH7O0aNHKxAIqFKlSnr//feP+TnLiqPpsXjxYvXv398/aXzjjTdq165dYc/xyiuvMMSejbyuBha6ffIzGBpq+vTpeu655/Tbb79p//79+fp5ZRkt7KCFHbSwLXT7P/LII3LOKS4uTq+//ro++OADVatWzd83V6xYUUOHDtW3334b9vjQ58huMHTVqlVF+ppKKlrYQQs7aGHHzz//rAoVKsg5p169evm3Zz4WGzt2rJxzqlGjRpbzfMnJyfrvf/8r55xatGiR5xUr165dqz/++KPgXkQpQg87aGEHLez44osvCmwoND09vUi+Pbi0ooUdtLCFHijJGGAHSongDmfWrFmKioqSc+FfC58Zw+tFK/hVjgUxdIKcpaam6v3331dkZKT+/e9/57rs3r17NXbsWLVq1cof0r3jjjs0Z84cf5nQr+Dcvn27/0vcf/7zn0J7DaUFLeyghS1H0iMnoQeJs2bN0j//+U//it/nn3++fvnlFw4k84EWdhREi5z89NNPqlOnjpxzeuWVVwr0uUsjWthxtC2y+zsn822rVq3yv4o+ODDN31W5O5oe69evV9++ff2Txl26dFFqaqokKS0tzV8u8xD7jTfeWCivobQ60sHQNWvW6PLLL5dzTieeeKL+85//aPPmzZI4Xj9WtLCDFnbQonh9+umn/n74jDPOUL9+/RQdHe2/mduyZUvNmjVLKSkp/mMyf1iAwdCCQQs7aGEHLYrXwYMH/W/KqlOnjt54440sywSPk7du3aoWLVrIOad77rlHycnJYcstXbrU/ybT0aNH57jPXrFiheLj4xUZGckV8jOhhx20sIMWtgwYMEDOOVWtWlW9e/c+6qHQ0HOCmfHB5fyhhR20sIUeKMkYYAdKka1bt+q8886Tc05t27bVxo0bJWXdiTC8XjwWLlyo6667TklJScW9KqVSamqq3n77bTVp0sQ/8fvmm29mu2xKSorefPNNtW7d2h/SHTlypNavX+8vk90Qz7333uu/ibh9+/ZCey0lHS3soIUtR9IjJ6ENvv/+e/Xu3ZuB6aNACzsKokVezjrrLDnndNVVV4V9CAfhaGFHQbSYMmWKpk6d6v85899H999/v5xzql69un7//fcCWe/S6lh6PPPMMzr99NMVExOjypUr68477/TvC/3/wKFDhzR+/Hj/+UOvsIicHelgaNDMmTN1+eWX6/jjj5dzTu3atfOP0xkQPTq0sIMWdtCieK1Zs0YXXnihoqKiVL58edWsWVPlypWTc04dOnTQww8/7J/vyOm4bdOmTRo9erR/Dv3MM8/U8uXL/fs53ssfWthBCztoYcOKFSvknFPdunW1Y8cOSdK6deuyDG3u27dPt99+u98n+M3Xocd0jz32mJxzev3117P9WSkpKbrmmmv8Y75Ro0YxAJQJPeyghR20sGXIkCG64IILjumKxtLhi1785z//Ue/evXXTTTfp3Xff9d9f5Zgvf2hhBy1soQdKKgbYgVIguIOYNm2aTjjhBDnndMMNN2jfvn1ZlmV4vehlZGQoJSVFtWvXlnNO//jHP8IGQlEw9uzZo+bNm/sH8r1799aCBQvClgmetP3uu+/UsWNHf0j38ccf9w/8sxM8wO/Xr5+cc2rZsmXYlU8QjhZ20MKW/PTIDQPTBYcWdhxri7zs3r1bJ554opxz6t69O11yQQs7jrXFokWL/OO9Dz/8MOy+4NUzRo4cqaioKMXGxmrDhg0Fuv6lzbH2WL58uR577DFVrFhRzjn961//8u8LPdl76NAhTZgwQWPHjtWWLVsK9DWURvkZDM18Mj0jI8P/u2f79u2aNGmS2rdvL+ecGjdu7H+Ygzdojwwt7KCFHbQoftu2bVOjRo3knPO/5cQ5p3/+859avny5f1XKnLZncDC0evXqcs7ppJNO0vLly/1vUwmiR95oYQct7KCFHYmJifrkk08kSXPnztUpp5yid955R1L4+b9ly5b53yp33XXX+bcH9+cHDhzQ119/7d+e3TmPL7/8Us45DR482P+GFYSjhx20sIMWxS/02C14THekQ6HB91TnzZunhg0b+vv+4AVG/va3v2ndunVZfh7C0cIOWthCD5R0DLADpUiPHj38nc3ChQslhZ+gYni9eH377beKiYmRc05XXHEFQ+yFYOHChWrcuLG6d++uZcuWhd0X/P9Cenq6Lr30Un9Id/jw4dq2bVuOzxl6AB8fHy/nnNq3b6+dO3cyeJULWthBC1ty65EbBqYLHi3sONoWOQn+3ZaWlqbXX39dxx13nJxz6t+//zE/d2lHCzuOpcXu3bv1f//3f/7JxVdffTXsikvJycm66qqr5JxTVFRU2FX6kL2j6RG6L0hNTdWECRNUqVIlOec0ZMiQHB+XeegEWWVkZGjWrFn+tzrkdVXj3bt3Z/u7bXp6un777TedccYZcs6pc+fO/tVpkD+0sIMWdtDCjsWLF/sfILv44ov1wgsv5OtxmzZt0qOPPuqfQ3fOqUaNGmratKni4uL073//W++++66/PG/c5o0WdtDCDlrYETx2u+222+Tc4W+4Dv2gd/DcRkJCgn8O8OWXX87y+KDQbZ75G0tXr17NB5bzQA87aGEHLYpf6MxNcHvmdyg0uPzWrVsVFxfnf/js0ksv1VlnnaX69evLOae4uDi+fSsfaGEHLWyhB0oyBtiBUuLtt9+Wc04xMTG67bbbJB3eYQR3NAyvF6/gLws//PCD/1WQDLEXjg0bNigxMTHH+++55x455xQREaGbbropy9es5eSNN97wTwg/8sgjBbW6pRot7KCFLXn1yIyB6cJDCzsyt8jvdgxdLvS/09LS9NFHH+mCCy7w/56aPHlywa1wKUYLO3JqkZ8mO3bs0C233OJv81tuuUVjx47V22+/reuuu86//eabby609S9tjqWHdPiDAyNGjFD58uUVFxenqVOnFsp6lhVPPfWUf8L95ZdfzjIYum3bNiUkJOiss85SXFycqlSpoptuuklvvfVW2HLp6en65JNP1KRJE8XExGjs2LGS8t8VtLCEFnbQwo4lS5boueee04oVK/zbcnuTNTgYGhsbK+ec6tevr44dO2rIkCHq3bu32rRp4/8e9fDDD/uP4yrHeaOFHbSwgxa2TJ06VSeccIKqVaumcePG6cCBA5L++paUbdu2KT4+XhEREerbt2+ez7dy5Updeuml6tevX2GveqlEDztoYQct7Agek+3fv1+XX355jkOhoV5++WU551SrVi29//77Sk1N1Z49e/Tpp5/q9NNPl3NObdq00caNGyWx/84vWthBC1vogZKEAXaglEhKSlLlypXlnNNHH30Udh/D6zaEDrGXL19ezjldcMEFfIq5CK1du1bt27dXIBBQy5YtNX369Hw97pdfftGFF16oiIgIxcbG6rPPPivkNS39aGEHLWxjYNqOgmyReTkahsvphEfmoehDhw4pNTVV+/btU3JysjZu3Kj58+fryy+/1JVXXqkWLVr4b9zeeeedYVegRv7Qwo7QYenly5fn6wqsa9as8b+lK/hP1apV/f/u1KmTPv7448Je9VIptMfq1atzvKpuZnPmzPGHTUaNGlWYq1gmDBo0SE899VSW7b9161YNHz5cTZo0kXNO0dHR/oc1g1fADx0M2rZtmy666CI559SjR48ifhWlAy3soIUdtLApt2OvzIOh7du31+effx52hfxVq1Zp5MiR/u9Tjz76aFGsdqlECztoYQctiteuXbvUt29fOefUrl07/fLLL/59wfMj999/v38xsdAPHmS2cuXKsA+Pf/nll4W+/qUNPeyghR20sCUtLc3/5q2qVavmOhQqSc8//7x/BePMV9CfP3++OnToIOecLr/8cu3cubMoXkKpQQs7aGELPVBSMMAOlCILFixQ//79w25jeN2W0CH24CfcFi5cWMxrVXYkJCT4B+LDhw/3b8/txPDmzZt19913+28o9unTJ8sywa5btmwJ+6o1BhJzVlgtcOQKs8WRXpm0rApeHUPK/uu9pIIbmN6/f38BrnnpU5Qtfv31Vz355JPZ/gwcvlLxt99+qxtvvFH9+vVT7969ddlll+kf//iHLrvsMp199tnq2rWrzj77bJ166qk65ZRT1KhRI5UvX14xMTFhA7v9+/fXkiVLsvwM/n+RP0XRQmKfkV9z5879f+yddXgUx//HZy5KSCAJFgJBgru7S5EiRb5YKbS0heJQtLi7prhroEULBGmhuFM8ThQNJASiRC73/v2R3w578ZC73Cb5vJ4nT+nt7N7svG92ZN/zGbRr1w7bt28HkHZ5xcXFYcWKFeCco3v37jAzMxNa9O3bF4cOHRJpU4qgT1qkz927d9G2bVv88ccfADJWZl9//TU452jZsiUiIyPTTCtvl0iPz8gXwUjRxoDP0SqdnZ1RtmxZcM7h4OCA1atXY/r06ejbt6/WrgRys8/WrVthZGSEGjVq4P3799l3Mzkc0kI5kBbKgbTImSQ1hjZq1CjViMhRUVH47bffwDlHhQoV8PDhwzSvTW145iAtlANpoRxIi+zj+fPnqF+/PjjnaN26Ne7fv6/Vns+dOxecc5ibm+Px48cpXuPZs2cYNGiQaNenTZuG169fZ9ct5CpID+VAWigH0kJZDBs2TJg55QsKUuL8+fOizA8ePJjs+JkzZ1CuXDlYWVnB2dmZ2uhMQlooB9JCWZAeRE6ADOwEkcuQvyTx8vLCd999J8zrJUuWJPO6ApAMcQ8fPsTFixcRFxeX5WtqNBraniUNpLIZP348OOeoWrWqMJqnVW4fP37EmjVrkD9/fnDO0bx5cxHtMulWnpcuXYKDgwN++uknnD17VnxOnTZt9K1F0mtQ+aeOPrSQ2qCkptDw8HCta5Au2kjlce3aNezfvz9ZhL7r16+jf//+IiJfhw4d8PDhw0yX48OHD9G2bVts27YNAQEByb6f0L8WUjpXV1e0adMGnHMMGzYs2XECOH36tIhK+SV/hQsXRrVq1bBt27Y0owBQvUgffWmRtK358OED4uLikpmySAttJCNCkyZNMhSF3dfXFyYmJpg3bx4CAwNx7do13L59W+vFVtLxSFhYGNRqNT5+/Kj1OWmhTVxcHH799VdwztGuXTsto2FqREdHo169euCco2HDhlo6SCStG+/evUNkZGSy65MeKZOQkIC6deuKBfz+/v7iWHBwMLZs2SKeTz/99BPevn0LtVqNCRMmgHOOxo0b62SMTpAWSoK0UA6khTJJagxt3LgxfH190zznyJEjMDIygqmpqdY8YFKkdj06OhofPnzQZbZzJaSFciAtlANpkf08e/YMxYsXB+eJEY4XLFiAS5cuwcnJSbTTLVu2xLt37wBoj82ePXuG7777TqSbMWNGhsbuROqQHsqBtFAOpIXhkc/fbdu2Dbdv39Y6Hh0dncxLEBkZiX79+kGlUqF///548eKF1vEPHz6IqPhz586lsV8GIS2UA2mhLEgPIidBBnaCyKV4e3vjm2++EZNa9vb2uHfvnqGzRfw/WTUbZMSsToaG5Pz000/gnKN+/foA0i6j0NBQbNq0SZh0a9SogRMnTqR6zrx586BSqWBkZIQyZcpg5cqV4hhpkRxdaZFWREq1Wk2G9gygr3rxzz//oHv37mjRogXq16+PBQsWaG1BSFpoI61oLl++PA4cOIDo6GgAiUZqXZjX3717hx9++EFMSn777bepRt7N6+hLi6TmdXNzc6HH6NGjk6XL6/j5+cHExAScc5iYmKBJkybo0qULvvvuOwwZMgT9+/fHzz//jClTpmDMmDH49ddfsWzZMqxZswb79u2Dt7d3uhPvVC8yhj60kJftu3fvcODAAdSpUwc1atRAuXLlMHXqVPz1118pps/rnDx5EmXKlEGRIkWwZ88erQXMcqQ+kKurKwoWLIgePXqkmE4+wXjx4kUsXboUderUQb169VCzZk3MmzcPLi4uIg1p8Rm1Wo1du3bB3t4exYsXx4EDB9LV482bN6hTpw4452jTpk2yHSDkE8YHDx7E2LFjUbJkSZQrVw6lS5fGpEmTcPToUZGG9EiOn58frK2tYWFhgdmzZwMAPn36pJXm2LFj4tk/dOhQPHnyBO3atQPnHCNGjIBaraay1QGkhXIgLZQDaaE8MmsMlcr++vXrYky3ZcuWNL8jMjISU6dORYMGDdI1neZlSAvlQFooB9LCcHh5eaFq1aqiTZbP4xUvXhyLFi1Kdk56plAKQvXlkB7KgbRQDqSF4Ulq/JSIjo7G2bNncf/+/WTptm/fDiMjI5ibm4sdHeXl/uDBA/Tp0wdnzpzRY85zH6SFciAtlAXpQeQUyMBOELmUV69eoVSpUuCcw9LSklY/5SLkL6m8vLywd+9eTJs2DSNGjMD+/fu1FirQCy1tJk6cCM45qlWrliyqrrzT9fz5c6xcuVKYdCtVqoRNmzYliyKdlOPHj6Nv375QqVTgnOO3334Tx0gLbfShhYeHB7Zv344+ffqgY8eOaNiwITp27IitW7fi1q1bIh1poY2utJAWFKjVaq0oD/I/Ozs7zJkzR1yTtPiMu7s7TE1NwTlH7dq1cejQIfzzzz/49ttvs2xeBxIHoocPH0anTp3AOYdKpULRokXpOZUC+tAiqXnd2NgYZmZmaNSokWgzyMSeHHd3d/GStlWrVnBzc/ui66RWnlQvMo6+tHj16hWmTJmSYptha2uLmTNnpnpuXiU0NBSDBw8Wi89S2vJRXlZr164Vi3JiYmK0jsnb+eXLl6NKlSopamFjY0NapEJISAj69OkDzhMjqj98+DBZGvnk7+zZs0W5Ll++PNV0kyZNgpWVVYp65M+fn55TafDs2TNRVlOmTEk13cmTJ0U6aZcJMzMzMWlPZB3SQjmQFsqBtFAWL168wIoVKzIV1RhIHEfMnDkTJiYmsLW1xdWrV1NNm5CQgDlz5qBo0aLgnKNmzZrJFi0QpIWSIC2UA2lheAIDAzFmzBixCJnzxN1I58+fn2wclp4pVJ4+qZGIxnQZg/RQDqSFciAtlMkff/wBzhMD5kjI52GloDqFChWCp6cngM/vWIHEOXOJpP6e1MyoRMqQFsqBtFAWpAehNMjAThC5GFdXVzG5Vbt2bTg7OyczJxI5D7VajXfv3uG7777TWlkt/ZUvXx7z588X6WlQ+bkMTp8+jcKFC6NEiRJaE7fyMrp+/TpGjx4NCwsLcM5RpUoVrFq1CqGhoaleX96Z8/Lywpw5c4Qh8ddff03xe/Iq+tDC3d0da9euhbW1tYgwIJlM5fVi6dKlKX5PXkVf9UL+ot3W1hZlypRBp06d4OjoKOrFuHHjUvyevI6np6dotytWrIgmTZpoGaYfPHiQpfLSaDQIDw/H2LFjYWNjI/T45ZdfdHgXuQNdapGaeb1v3754+fIlDhw4QCb2NJAbp9u2bSsmSgDtMkrt3+lB9SLj6FIL6fPNmzeLNqN06dKoXbs2+vbti+rVq1ObkQbPnz9HgwYNwDlH69at8fjxYzFJKJ8cdHFxQfXq1cE5R79+/bSuIS/LRYsWwdzcXJR5ixYt0KtXL/zyyy9o0qSJ+HzixInZc4M5jICAANSsWVPocf/+/RRNH6tWrRK/9xo1aqTa7xo/frxWP/brr7/G6NGjMXnyZLRv317oMWnSpGy5v5xGZGQkOnToAGNjY/Tu3Rtv3rwRxzQajdbYbd++faI8zc3NsXnzZgAUcUxXkBbKgbRQDqSFclCr1WKhX2aMoQBw9+5dsfCvbt266c6337x5E5xzFChQAGfPntVF9nMVpIVyIC2UA2mhHGJjYxEZGYlr167h+vXrePfuXbI06ZlC5Tx69AgTJ07E9u3b4e7uLj6n9j1jkB7KgbRQDqSF8ti5cyc4T4yEf/78efG5tHPjy5cvUb9+fTH3HRsbm2L5yk2hS5cuRUBAAAAyh2YG0kI5kBbKgvQglAYZ2Akil+Ph4SGMJrVq1SITew7n3bt32LNnD+rVqwfOuXiRValSJdSuXRt2dnbCYCc3ThOJvH37Fi1btgTnidFDr1+/jsjISABAWFgYnJycUKdOHZiZmYmFH9u2bcOHDx/SvbbcdBIWFoaNGzcKfVasWKGvW8qx6EqLQ4cOoUePHmLSpUSJEmjUqBGcnJywadMmTJkyBc2aNRNajB8/XpxLJrhEdFkvQkNDRaSHypUrY/78+QgKCgIAPH78GIsWLRJazJo1KztvM8fg4eGBQoUKiQh7klHU1dU1yxOE8t/8ggULYGVlJdqMefPmZTXruQ5daJGaeb1Pnz6ibsTGxmL79u1kYk8DeX+2bdu28PLy0tm1qV5kDl1q8ebNG9jb24PzxMjVe/fuxcePHwEkLiJZtmyZqBdz587V1S3kGp49e6ZVftu2bcPr16/F8d27d6Np06ZiRwl5BHU5hw4dQsmSJbX6SnFxcaJuPH/+HOvXrxfHV69enS33l9Pw9vZG8eLFwTlHnTp1MH36dNy6dQve3t44d+4cxowZI/qr5ubmWjvSyFm3bp1IV7JkSSxevFjr+Js3b7Bhwwahx7p167Lh7nIeq1evFuXo5OSUbPemyMhIuLq6iuj5pqammDlzppaRlF7M6gbSQjmQFsqBtFAOXl5eYl41o8ZQLy8vMe9RsmRJseOfpIn036QRyK5fv44LFy7oMPe5C9JCOZAWyoG0yBlkxhQaFhaGDRs2iLRNmzbFrl27xHEy+mQd0kM5kBbKgbTIftzd3dGmTRvxvic4OFgcU6vViI+Pxy+//CIWm0mGUTnyMZ+0o6OdnR2eP3+eLfeQWyAtlANpoSxID0JpkIGdIPIAZGLPHQQGBuK3334TWwdbWVmhXbt22LVrlzCSPn78GGvWrCGDSRrIzT6lSpVCrVq10Lx5c9SqVUsMyCVT1sWLF4WRNzUkc09Sk+GHDx8wefJkqFQq1K5dG66urnq7p5xKVrXYunUratSoIX7vHTp0wP79+5NFBffy8sKKFStEutQMQ3mZL9Ui6e/+48ePqFSpEjjnGDVqlDAiSkRERGDlypVQqVQoUqQITp48mW33mJNwd3eHra0tOE+MYr9o0SKEhYUByJqhWRpIenl5oVq1akLX6tWr4+nTpzrJe25DF1rcv38frVq1gomJCczNzdGvXz9xDUkTtVqtZWKXR5wmEtGXiZ3qRebJqhZyY3SxYsVgamqK5cuXIyoqSitdREQEli5dCpVKhZIlS2pFgSAS8fT0RIUKFcA5R/78+WFnZ4eWLVuiSZMm4JzD2NgYnHN06dJFnCPvu2o0Gvz888/i2TNlyhSRTv5C6tOnT5g3bx5UKhVatWqVYiQnIvE5It8hy8jICDY2NrCxsRGfFSxYEBMmTBDnSM8gjUaDDx8+oHPnzkKPlStXinRyg0lUVBSmTZsGlUqFzp07IywsjBY8/T/ycpg0aZIo9+HDh+PQoUNwc3PD7du3MWXKFDRu3FgsUps6dWqqpqA7d+7g0KFDOHLkCI4ePYqPHz8iNjYWABlI04K0UA6khXIgLZSJv78//P39M5TWy8sLdevWFS9lN2/erLXrilTmUVFRmDhxIpYsWZLidajdThnSQjmQFsqBtFAe8vLJjClUzooVK9C5c2dxnjyAArXfmYP0UA6khXIgLZTBjh07YGJiAs451q5di+joaK3j8p0aHzx4oHVMPi87ffp0sQN5sWLFcO7cOXGM2uyMQVooB9JCWZAehJIgAztB5BHIxJ6z8fPzwy+//CKi+tna2mLp0qXJTNEajQbR0dGYNWsWjI2N0b59e4SEhBgo18rl2bNnaNasmYisK/+rVasWxo4dqzW5mxLSKkPpxSCQvAP277//Il++fOCcY//+/bq/kVzAl2qxfft2lC1bVhh8OnXqhPv372ulkWsTExMjoodaWlri0KFDer+3nIYu6sXbt2+FEd7DwwNA8sksV1dXlCpVSkyWESnj5uYmtKhVqxb++OOPZJH5MoOkg5ubm5a5rnr16vD09ARA0TNSI6tabNiwAcWKFYNKpYKJiQmmTZsmjskNiZKJXYqW/PPPP+v0PnIDSY3T3t7eWboe1YsvJzNapPZSIzAwEAULFoSZmZnYkSBp2gcPHojvSRqJmkjE398fffv2FYtck/716NFDLChL+nv29vaGubk5OOfo2rWr+Dyl3/2lS5eEIf7mzZv6vakcTGBgIIYPH55sESDnHO3atdMypSct5//++0+kHThwoPg8pTrk4uICzhN35Hr8+LH+bigHIi/XJUuWoGTJkqJcixQpInZVkYyhv/32G3x8fLSuERISgvPnz6Ndu3ZiIZs07mjcuDGmTJkidjygdiJ1SAvlQFooB9Ii5yI3hhYrVgyrVq3SMv/IjaHz5s0T8x7z589Pdi3SJWuQFsqBtFAOpEX24+Pjk6YpNKVylEeu9PDwEJEqk2pBRp/MQ3ooB9JCOZAWhiHpjq9S+S1btky8c/D398fQoUNTNIYmNYUWKVIEKpUKjo6OmDVrFnx9ffHhwwdhNKV2O3VIC+VAWigL0oNQImRgJ4g8REom9vSiSxOG58WLFxg1ahSKFi0qXmgdO3ZMyzyXdKB44sQJ0Zm4c+dOdmc5RxAUFIQTJ05g7NixGDhwIEaOHAlnZ2ctA1Z6q8jfvHmDEiVKwNnZWetz+XnNmzcH5xyDBw+GRqOhlekpkBEt5B3bw4cPo2bNmlCpVDAyMgLnHKVLl0bJkiXxv//9L9UI68HBwfjll19gZGSE/v370+KOFMiIFnLDbVBQEC5duoS9e/fCxcUFDx8+xPjx48E5x/Xr11P9nk6dOoFzjjJlyiAiIoLqRSrI2+0aNWpg//79yVY/Z4S0TLqpLTQgtMmqFv/88w/Gjx8vFjUNGjRIHJNPCqvVamzevBmcczg5Oen0HnILci1atWr1xZHYqV5knYxoIW+/Hz16hMOHD2PRokVwdnbGxYsXMXToUJiZmeHJkyda58n7tlJfqnbt2oiJiaHJrhQIDQ3F1atXMWzYMLRq1QqlS5fGkCFDsGrVKpEmpRdLT548Qf78+WFqaoqZM2cCQLKtIOVbzVevXh2cc5w6dUqPd5PziYyMRFBQEDZs2ICFCxdi0aJFOH78ON68eSPSpLZIwMjICFZWVtixYwcA7X6X/Lx3796hbNmyMDc3x+3bt/V4NzkTefneuXMH+/btw7hx4zBmzBhYWlqCcw5TU1NMnTo1mTE0ICAAU6dOFbsbSFFo7OzsxIIP6ZkUEBCQ7PsIbUgL5UBaKAfSIueRkjFUWoAJfC7jqKgozJkzB2XKlAHnHEWLFsXp06e1riXva/n5+QGgcUdmIC2UA2mhHEiL7MfX1xfffPNNqqZQOW5ubnj06BFiY2MRExOjdSwqKgrLli0T15HGgUTmID2UA2mhHEgLwyJvOydPnizKr27duujRowc6duwoPuvbt69Im9QUWqxYMZGOcy7eL5UtWxaDBg3Cy5cvk51HaENaKAfSQlmQHoTSIAM7QeQx5EaTunXrYs+ePYiKijJ0tohUCA0Nxdy5c1GiRAlhXj9//nyq6SVjyrNnz2BtbQ3OOU6ePJld2c1VZGRiVr7y/PDhwwC0zUEPHjwQUfNHjBiht7zmduRaPHjwAF27dhXRxTjnsLa2Rvny5VG4cGGtKKIvXrwAoD3x/tdff4Fzjj59+mT7feQG5CaqnTt3ag1eOOcoXrw4SpUqBQsLC6xatSpZxPaEhAS8fv0aNWrUgEqlQrVq1eglSDp4eHjAxsZG/G5T2zo+Ncikqzu+RAt5mxAaGoo9e/bAysoKnHP89NNP4phcA7VaneXI4rkdT09P0c+ZMmVKpvuyVC90R1payMtw6dKlqFGjhlabYW1tjUKFCsHc3BybN2/W2jlF4unTp2ICrE2bNtlyT7mBpIuUU5scvHXrltBj48aNaV7z6tWrov914sQJneU1L5JalKrz588LPdLbven48eMi7ZUrV/SRzRxP0ud4aGgo+vfvL4yhU6ZMSWYMlSLoS2O4woULY/LkyThx4gTc3Nxw584dTJs2DTVr1hQT8YGBgSl+H/EZ0kI5kBbKgbTIOXypMdTOzg7//vtvqtedOHEiOOe4ePGi3u8ht0BaKAfSQjmQFobh1atXYjw2e/bsZKbQqKgouLi4oEePHmIns3r16uGnn36Cv7+/VtoXL17gxx9/hEqlQrdu3Wjn7C+A9FAOpIVyIC0Mj3w+dtGiRXBwcNB6t805R+fOnXH16lUA2u9fZ8yYIfw80jvvkSNHYuvWrRg4cCAqVaoEzjnKly8vFi7TmC91SAvlQFooC9KDUBJkYCeIPIiHh4cwgrRt2xYfPnwwdJaIJEidhZMnT6JixYrixdTff/+dofP27NkDU1NTmJub48aNG3rPb05Fbh6Rd5gyuvVZcHAwRo0aJTpma9aswbNnzwAkGrrmzZuH/Pnzg3OO6dOn6zbzuYzUtEh6fPHixSLquoODA3r16oWnT5/i7du38PHxwbFjx4SRrlu3buJ8eQd8+/btKX4vkUh6WgDArl27UKFCBaFFxYoVUb16dZQtWxYFCxYE5xwVKlTAxYsXkxkSjx07Jgy8X331lV7vJbfg4eGBli1bYs2aNZk6j0y6uudLtZBQq9XYsWMHLCwswDnH+vXr00xP+qSOh4cH+vTpg0OHDmXqPKoXuic9LZYtWwZzc3PRZtSvXx8tW7ZEnTp1xARXpUqVcOHCBa2FT+/fv4eTk5PoS/Xv3z+7bilHIm+/MxrN4v3792jUqBFUKhXGjx8PIOXfv1qtxsqVK5EvXz4UKVIEjx8/1k2m8wgZ7W++ePECNWrUgImJCebOnQvgs5bya7x9+xajR4+GqakpqlWrhtevX+s+07mQTZs2CWPotGnTkhlDw8PDMW/ePNjb2wtTz82bN5P1ZaOionD79m00adJELK4JDg5O87vfv3+v8/vJyZAWyoG0UA6khTLx9vb+YmPohQsXtK61e/du/P777wASA2JIL4WbNm2arkYEaaEkSAvlQFoYFldXVyxcuFBrpy0AiImJwbZt21C/fn1wzsVciPRnb2+f7J3dnj17xPGkO9QRGYP0UA6khXIgLQyPfI724sWLWLlyJerVq4e2bdti0qRJ8Pb2TjaPO2PGDNja2oJzjkKFCmHdunXQaDRibjAqKgp37txB48aNwTlH48aN8e7du2y9r5wIaaEcSAtlQXoQSoEM7ASRR3Fzc0OVKlVou3EFIjXsMTEx4oWTjY0NDhw4kKHzAIioTfnz5xdbPRIZQ16OGelIBQcH44cffhAD96pVq6Jjx46oXr262Pq5bt261CnTAbdv3xbbY1eoUAGLFy9GSEhIsnT37t1DgQIFwDnH5MmTxedJDVnyyOxExnn06BFatWolXmQMGTIEXl5e0Gg0ePPmDS5fvixMoVWqVMHatWvx5MkT3L17Fxs3bhQDGgcHBzg7OwMgs2hG+Pjxo/h3RoxwZNLVH3It5KvNU3oepcTLly/RpUsXcM7Ru3fvZNtyEhknaZTp9KB6oT9S0+Ls2bMoX768aDMmTpwoTOrv37/H7du3hRaVKlXCkiVLcOvWLZw9exbTpk0Ti9IqVaqEW7duASCNdM2YMWPEYlnpBVTSMj579qxov9u3b2+IbOYZhg0bJvRwdXVNdjw0NBRbt24VCwZ79+5tgFzmXMaPH49Ro0ZpGUOlCfgnT56I55GdnR08PT0BfO53Ja0X169fR5UqVWBmZoZ169al+mx69uwZRo4cKRYlEImQFsqBtFAOpIWyePbsGcqWLasTY6iXl5c43rRpU3DOoVKp0KJFC/z555/Zel85EdJCOZAWyoG0UAZyM4/U1rq6uopy5Jxjw4YN+PPPP7FgwQI0aNBAjPdOnTolzgkPD4eDgwM45/jnn38Mci+5AdJDOZAWyoG0MDxJx2Lyd0qA9vu+6dOno0iRIuA8MWpx0oAx8mudPHkSxYoVQ6FChXD8+PFk1yKSQ1ooB9JCWZAehBIgAztB5GEkw1RGI/QR2cuUKVOECX3atGlpGuPkDf369evFiulx48YlO05kjGvXrmHnzp0A0i+/GzduoEaNGuCcC4O19FerVi0cOXIE8fHxpMMXkpCQgISEBEyYMAGcc1hbW2PatGnCRCovV8mUPm7cOBgbG6NNmzZa0VyJrLNlyxbx+/7hhx+0jklavH37VrxcNzIyEgsKpCi6Dg4OGDNmTLLID0T6ZMS4SSbd7EFehkeOHMHu3bsBZKzNXbVqldDlzp07estjXoEWdSiHpFrMmzdPlPWECRO00qXUZnDOYWZmpvXfihUrYuXKlQgLC8vWe8ktSOUcHh6uVe7S7z0+Ph5fffWVMD5cuXJFbCvs6uqK7du3C/N6yZIlxYQk1ZcvQyp/aRe0pHrExMSgffv24JyjaNGi+Pvvv8UWm1evXsWsWbOEeb1ixYq4d++e1vlEysgXrqY2ru7bty8457C1tRWmnrTmSiIjIzFr1iyxoDMlDZ49e4bffvtNLOI5ePBgFu8k50NaKAfSQjmQFsrEz88PnHMYGxtjzZo1X2QM1Wg0Iu3mzZvF9VQqFVq1aoWTJ09qpSVShrRQDqSFciAtlMv48ePF/MaJEyfE52q1Gn5+fujUqZOIVnnixAkkJCTg/PnzsLCwgLm5Oe14pmNID+VAWigH0sKwyMdm8h21pk+fjmLFioFzDgsLC/zxxx8pniPx/Plz2NnZJZt3JzIOaaEcSAtlQXoQhoAM7ASRh6FJJ+Xy6dMnMUCsXLlyhiPlnz9/Hs2aNQPnHJaWlslWvBEZw8PDAy1btoSFhQXu37+fbvrY2Fh07twZZcqUwe7du1G/fn189dVXGDx4MNzc3Ci6ro6QfttVq1YVEe1Te47JDXOSMZHIGmq1Gmq1Gq1btwbnHGXLlhVR3+QvzqV/X7lyBUWKFIG9vT1Gjx4NKysr2NraomHDhli3bh1evnxpkPvITURGRsLf3x9RUVEAtF88kUk3+7h27RrKli2LQoUKiTqRGpI55eDBg7C0tISxsTH+/fff7MhmnoHqhTJISEjAp0+fUKlSJXDOUaNGDaFJSm3G33//DWtra5QvXx4zZsxAsWLFUKFCBXTs2BEuLi4IDQ01yH3kFnx8fDB+/HhhdpaQyt/Pz0+YpvPnzw9HR0e0a9cO9vb2sLCwEHWmU6dOePHihSFuIVfx+PFj9OrVK5ke0nPI19dX6GFubo7ChQujXr16yJ8/v1jYYWlpieHDh+P9+/eGuIUcSVrzH6GhoahVqxY45+jVq1eGy/X+/fuoV68eNm7ciNjYWK3vePbsGaZMmQJTU1NwztGjRw8EBwdn+T5yA6SFciAtlANpoUy8vLywfv16vH79Wnz2JcZQAPjtt99EVGPOtXdRkb8QJlKGtFAOpIVyIC2Uh0ajQa9evcQigPDwcKjVaq05J7VajW7duglz6NGjRzF27Fhwnrj7HM2Z6w7SQzmQFsqBtFAO8jKfPn06ChcuLOZgly1bJo6lNVZs3rw5OOf48ccf001LpA5poRxIC2VBehDZCRnYCYIgFMi1a9dE47906dJU08kb+AcPHmDQoEHiPCn6OpF53r59KzpT48aNE5G+U0LSQIpa9d9//9Gkrh548+YNihcvDmNjYyxfvhxAytHGpC2NFi5cCDMzM1hYWMDLyytb85rb6dixIzjnqFatWrItpOS8efMG1apVQ4ECBXDx4kW8evUKAQEBNDDREREREVi/fj26deuG3bt3IyIiQhxzdXUlk2428vDhQ9SuXRucc8ybNw+RkZHpnrN27doUo5wQWYPqhfKQtp1t3rw5gNTLOjAwEGXKlIGdnR0ePXqE4ODgNPtfRMaJj4+Hk5MTjIyM0LVr11QXA8TGxmLSpElo0aIFKleuLKJ8S8Y2a2vrDC3sJNImJiYGU6dOBecc3333Xaq/c7VajdmzZ+Prr79G8+bNUbRoUS09atWqRYs0dcjDhw9F+7B27doMnSP1ad3d3REeHq51LKkxNDOG07wOaaEcSAvlQFoYlpQWX2bWGDpjxgxhDHV0dBR6zpo1K8XvIVKGtFAOpIVyIC2UR8+ePUUQnqQ7q8jLsXv37uCcw8rKSpT59u3btdKnNI9OWmQO0kM5kBbKgbQwPEnbYWtraxgZGYFzjnr16omdVdJ6b/HkyROUKFECnHPMnj1b73nOrZAWyoG0UBakB5HdqBhBEAShOOLi4piZmRmztLRkDRo0YIwxptFotNIAYJxzxhhjbm5ubNu2bWz//v2MMcZ69erFli5dyhhjLCEhIRtznjuwtrZm3bp1YxYWFuzMmTPsv//+SzWtpMvr168ZY4y9ePGCmZqaJjtOfDkajYbFx8ez2NhYlpCQwKysrBhjjBkZGWmlA8BMTEzY+/fv2b59+1hcXBxzcHBg9vb2hsh2rqVkyZKMMcY+fvzIPn78mGKahIQEZmdnx4oVK8aio6NZWFgYs7e3Z6VLl2acc6oXOkCj0bA9e/YwFxcX5uTkxE6cOMEYY+zZs2esb9++zMPDgzHGWLVq1djhw4dZ5cqVmUajYSoVdf91TYUKFViHDh0Y55wdOnSIPXjwIM30gYGB7J9//mGcc2ZjY8McHByyKae5H6oXysPR0ZExxtjbt2/Zx48fUyzrhIQEZmNjwywtLVlISAgLCQlhhQsXZgULFmSMUV8qq6hUKmZra8vy5cvH3N3d2b1795KlUavVzNTUlC1fvpxdvXqVbd26lVWvXp3lz5+fxcfHM5VKxY4cOcLq1q3LABjgLnIPxsbGzNHRkeXLl4/dvXuXPXz4MFma+Ph4ZmRkxObNm8dOnz7NVq1axSwtLZmZmRmLj49ntra2bOvWraxy5cqkh46wsbFhNjY2LF++fKxo0aKMsUQd0kIai1eqVEmMTxhjzMfHh23bto2tXbuWxcfHs549e7Jt27YxW1tb/d1ALoK0UA6khXIgLQyLNPeUkJDAjIyMWHR0NFu+fDnbs2cPCwwMZMWKFWP79+9n7dq1Y4wlzk1pNBpx3syZM9nixYsZ55w1btyYLV26lG3YsIExxtjChQvZjBkzxPdQu542pIVyIC2UA2mhPFq1asXMzMxYeHg4u337tla5yefFjx07xipWrMgiIyMZY4yNGTOGDRo0iDGWqJP8/d/hw4fZpk2bGGOkRWYhPZQDaaEcSAvDIrXZjCW2wxs3bmTh4eGsfPnyjDHGChUqJMZ9Kc2lS2X74MED4U2Q3tsSmYO0UA6khbIgPQiDoH+PPEEQBJFZjhw5IlY1P3r0KNlx+Uq2e/fuYdiwYWL1c4cOHfDff/9lZ3ZzJW/evBGRpps3bw43NzdxTFpRHh8fDwDw9vZGsWLFMhUNi8g87du3B+ccw4cPR0xMjNYxSZOwsDDMnDkTBQoUAOccffv2RXR0NEX91gFSGbq4uMDe3h7W1tY4dOhQsrKV/v/58+ewt7cH5xwLFy7UOkboBjc3NxQpUkSsdl62bBkqV65MEaYNwMuXL8XOHS1btoSbm1uytgIAPn78iA0bNohnVPv27Q2V5VwL1QtlIP3+Dxw4gKJFi6JIkSI4depUsnSSBu7u7rC1tQXnHFu3btW6BpF13r17h06dOoFzjhYtWsDV1VWUfdKoSJ6enqhfvz4sLS3BOYexsTGOHDkCgDTRFUFBQWjXrp1oM54+fSraCvlzKSoqCpcuXRJRSjjnMDc3x/Xr15OlJbLG8+fPYWNjA8455s+f/8XXoajGWYe0UA6khXIgLZRDVFQUJk+ejPLly2c6qnHTpk1x7NgxkW7NmjWifV+yZEm230tOh7RQDqSFciAtlMHz58/FPFTLli3x6NEjfPr0SSuNm5sbJk+eLMr4u+++03r/JB/rnTx5Ek2bNgXnHBMnTsy2+8gtkB7KgbRQDqSF4UjaDkvjvMqVK2PLli2oUqUK+vXrl+r50tzs7du3xe6ZrVu3TrbrFpE+pIVyIC2UBelBGAoysBMEQSiQV69eoUqVKlCpVNiwYYMwNCSdZDx58iT69u0rBpBt2rTBhQsXaHsuHeHv74+KFSuKQfzly5eTda78/PxQs2ZNcM5RsmRJ3L1710C5zb1oNBokJCRg3rx54JyjTp06ePLkiegAx8XFAQDev3+PFStWiIkXU1NT0kMPBAcHay3ucHd3F5NVkhZBQUH44YcfwDmHpaUljh8/bsAc5248PDxQuHDhZFs51qxZE+7u7gDI4JZd+Pr6iu2Zmzdvjr/++kvLEPLkyROsXLkS1tbWYovOK1euACCNdA3VC+Xw9u1btGnTRhin3dzcRD9VajNevHiBtm3bgnOOokWL4tatW4bMcq7Fz88PZcuWBeccTZo0wf79+/HmzRtx/MaNG/j9999RqFAhUWeMjIzg4uJiwFznXnx9fVG6dGlwztGoUSNs27YNgYGB4vipU6cwceJE0WaYmJjAwcFB1A96hukOaUwxcuRIqFQqdO7cGc+fP8/0dcgYmnVIC+VAWigH0kJZBAcHizlABweHLzKGSmnj4uKwdu1a2NraYubMmdl6H7kB0kI5kBbKgbRQDp6enihVqhQ456hRowbGjx+P48ePw8XFBWPHjhXzJJxzDB48WCsglVynEydOoFmzZqL9Hj16NIDP40FaZJ4xSA/lQFooB9Ii+0nLFPrXX39BrVajaNGiqFixInx9fUXapGX54MEDNGzYEJxzFClSBMuWLRPz7ETGIC2UA2mhLEgPwpCQgZ0gCEKBREREYODAgcIE9/jxY7H6Weo4LFy4ELVq1RIDyE6dOuHKlSvU+OsYLy8vEfWwcuXKGDp0KC5evIhTp05hx44dKF68uJjs7dSpk5YRiNAtz58/R40aNcA5R6tWrXDy5EmEhoYiIiICPj4+GDRoEMqVKyeihe7YsQMAGXz0gY+Pj5jcatGiBQ4fPozg4GAkJCTgxYsX+P777+Hg4CAGJt7e3obOcq7Gw8NDRC42NTWFg4ODmFCUR/8m9I+np6cwJBYtWhTVqlXD4MGD0b9/f5QpUwb58+cH5xzlypXD6tWr8fHjR0NnOddC9UI5PHv2DCVLlhT92n379iEoKAgfPnyAu7s72rRpIxYa1KtXDy9fvjR0lnMtXl5eqFChAjjnKFCgAOzt7dGyZUu0adMGZmZmsLCwAOcctra2qFOnjjBL08sm/eDl5YVKlSqJyOo2NjaoWbMm6tSpA845zMzMxCLZnj17ip25qG+rHw4dOgRzc3NwzrF69WqtHZ/SqwNkDNUtpIVyIC2UA2mhHFxdXVGpUiWcOXNGfCYFXpBIyxgqTxcXF4f79+9nT8ZzIaSFciAtlANpoRx8fX3RvXt3FC1aVLyvkHY6k/4GDRqUpim0RYsWMDIyQr58+dChQwf4+fnh5cuX+PDhQ4rnEKlDeigH0kI5kBaGYfbs2VqmUHkAsL59+0KlUmHVqlWIjo5Odu6NGzdQp04dmJiYgHOO7t2709guC5AWyoG0UBakB2EIyMBOEAShUORREuvXr48RI0Zg7969GDFiBL766iutAeSAAQPg6upKZgY98ezZMzRq1AjGxsZicpdzjnz58gnDSbVq1fDw4UNDZzXXI19QYGtri3LlyqFmzZpiCyJJn/Xr1yMqKsrQ2c3VeHp6CkOijY0NHB0d0bJlSxQpUkRoYWxsLCK3kvlNv7i7uwuzbpUqVeDi4kLmaAPh4+OD9u3bi4lfqc2Q/lujRg2sX78ewcHBhs5qrofqhXKQR/XJnz8/7O3tUblyZa2XIhYWFhR9PRvw8/ND//79UaVKFa3xhPTXqFEjLFu2TCw+o/GFfvH398cPP/ygtTBZ+itQoADatWuHI0eOiIUd1J/SL7NmzRLlv3z5cvj5+YljqZV9UmNoz549ERISkuY5RPqQFsqBtFAOpIVykM83aTQarbKcO3dumlGNU4MW2X4ZpIVyIC2UA2mhHD58+IDHjx9jy5Yt2L17t9g5lnOOgQMHpmkKbdmypXgfJS1wluYWW7Zsic2bN6d4LpE6pIdyIC2UA2mRvSxcuFCUVVJTKADs2LFDlOfMmTPh4uKC8PBwuLi4YMWKFcIQyjlH27ZtERQUBIDmb78E0kI5kBbKgvQgDAUZ2AmCIBSMl5eX1mBR3uAbGxujXLlytIVjNvHq1SvMnDkTjRo10jKWlCpVCv3798eTJ08A0AvA7MDHxwedOnUSRnbpz9raGg4ODjh58iTpkE34+PigQ4cOsLOzA+ccRkZG4Dwx2nGBAgVw+vRpQ2cxT+Hu7o5ChQqBc47atWvjwIEDCA8PN3S28iRv376Fs7MzevXqhbJly8Lc3BxNmjTB4MGD4evrm+KqdEI/UL1QDj4+Pvj666/F4ifphYaNjQ2qVq0qzOs0kaV/wsLC4OPjg5UrV2LatGkYO3YsnJyccOzYMajVatGPov5U9hAZGYmgoCBs374dK1euxMqVK+Hs7Iw7d+4YOmt5BvlzZ/LkyWJ80a1bNyxevDjV8549e4ZJkyaJcXr//v3TXSiV1EREaENaKAfSQjmQFsojtTLaunUrChYsmCFjaEb7vKRH2pAWyoG0UA6khTKZNm2aaMO//fbbDEU05pyjY8eOmD9/Ps6fP49ly5ahd+/e4jpz584V55EWmYP0UA6khXIgLfSPp6cnbG1tUbRoUfz111/ic3n5Tp06Vevdd5kyZbTm0h0cHNCvXz9hCqXFAV8GaaEcSAtlQXoQhoIDACMIgiAUy/Pnz9mOHTvY5cuXmY+PD8uXLx+ztLRkP/30E6tZsyZr1aoVY4wxjUbDVCpVpq8PgHHOxf9rNBrGOdf6LGmavEp8fDyLj49nLi4uLDY2lkVERLB27dqxYsWKMWtrayqnbOT9+/fM3d2dnTlzhsXGxrLY2FjWsWNHVqNGDVa2bFlDZy9P8e7dO3bt2jV2/PhxFhQUxDQaDWvZsiXr1asXq1mzJtWLbMbT05O1bNmShYSEsNKlS7NNmzaxDh06fFH7QOiG8PBwFhkZyYoWLcqMjY0NnZ08CdUL5fD+/Xt2//59dvToUfbhwwemVqtZ165dWYsWLViFChW+uD9L6BbSQVkkJCQwIyMjQ2cj1yMv59WrV7MtW7awZ8+eMRsbG3bkyBHWokULrXbcx8eHbd26la1du5ap1WpWsWJFtnLlSlaxYkXGOWcqlYoVLFiQmZqaMrVazSwtLZmpqSn79OkTy5cvH+maBqSFciAtlANpoXwiIyPZgAED2JkzZ1i5cuXYokWLWJ8+fRhjKc+9Sn0tf39/9vz5c/bvv/+y8PBwli9fPtaqVSvm6OjIKlasyBijvkBmIS2UA2mhHEgLw/L27VtWvHhxxhhj33//PRs9ejSrV68eY0y7/E6ePMlWrlzJbt68yTQaDRs9ejT7/fffta4VHBzM9uzZw6ZMmcIYY+z3339no0ePzsa7yfmQHsqBtFAOpEX24evryzw9PVmXLl0YY5/bYXk5L1y4kDk7OzMvLy+tc7/++mv2zTffsD59+jBra2tqg7MIaaEcSAtlQXoQhoAM7ARBEDkAjUbDNBoNe/78ObO2tmYqlYpZW1trHc+sySTpOXv27GH+/v7s9u3bTKVSsfbt27Nq1aqxjh07MsbIxE7kHOi3ajjUajUzMjIS5U9aGAZPT09WrVo1VrhwYXbu3DlWp04dQ2cpT5La75+MoYaB6oXyoTbDcNBzSVlQXTAc8gn1O3fusCdPnjALCwvWtWtXVrBgQZHOx8eHbdu2ja1du5bFx8ezwoULs9DQUGZqaspUKhVTq9VMo9EwW1tbZmxszKKjo1mhQoVYwYIFWVxcHDt58iQrU6YM1b00IC2UA2mhHEgLZfP48WMxxpg1axabN28eYyztftb27dvZrl272P3791lcXJz4nHPOatWqxYYOHcpGjBjBGCODaGYgLZQDaaEcSAvD4+bmxtavX8++//571rhxY8ZY2qbQyZMns2XLlol00gI0xhgLCwtj48ePZ/v27WOtW7dmBw8eZEWKFDHMjeVQSA/lQFooB9Ii+0naDsvL29PTk/n4+LCAgABWqFAhVqRIEda+fXsxb0jjNd1CWigH0kJZkB5EdkEGdoIgiByArk0MUsciLCyMHTt2jB09epSdOXOGqVQqptFoGGOJE5E2NjZs+PDhbOHChXrJR06HysOwyMtf6s6QHoYhaV2gumF4AgICWFBQEKtfvz5F/SaI/4fqhTKgNoMgCCWT3sR6UmPod999x+rWrcumTJnC1Go1K168OIuIiGAxMTHMwsJC7BbFGGNGRkYsISGBmZubM3d3d1amTJlsuqucCWmhHEgL5UBaKJe3b9+yFi1asNevX7N169axIUOGJDN0yvWbNm2aMPwUK1aMNW7cmJUvX54FBQWxW7duMT8/P8YYY7Nnz2Zz585Ndj6ROqSFciAtlANpoQxiY2OZmZkZYyxzptCUFgfMmzePzZs3jxUsWJD9999/rFy5ctl3I7kE0kM5kBbKgbQwPOm1p1/a3qY0B08L0NKGtFAOpIWyID0IfUBv7QmCIHIAaZl60triMSWkRj4oKIhNnDiR3bx5kwUGBjLGGCtSpAirXbs2MzMzY0FBQezevXts8eLFLDY2lq1YsYLMRUmg8jAs8vInLQxL0vInPQxPmTJlyHBAEEmgeqEMqM0gCELJJB1Ly8fbvr6+WsbQ7t27s40bN7LDhw8ztVrNypYty65fv85iY2NZZGQkMzc3Z9HR0ez9+/fM2NiYAWAfPnxgfn5+zM/Pj9qkdCAtlANpoRxIC+ViYWHBqlevznx8fNiuXbtYu3btWKlSpcRx+XztlClT2MqVKxljjOXLl49NmTKF/frrryLtw4cP2Z9//smWL1/O5s+fz6ysrNjEiRPJGJpBSAvlQFooB9JCGejKFMoYYyYmJoyxRLNpVFRUNuQ+90F6KAfSQjmQFoYnrTFfSsczgvwaFy9eZL6+vmzo0KHMyMiIFqClAWmhHEgLZUF6EHoBBEEQRI5Fo9GIf/v6+op/q9XqFNNLn7948QJ169YF51z8LVy4EJcuXRJpAwICsG7dOqhUKnDOsWnTJv3cRB4iISHB0Fkg/p/U6giR/ZAWyiI+Pt7QWSD+H9JCOZAWyoG0UA7Ur1UW1J/SP56enpgyZQry5csHzjl69eqFkJAQAMD27dvBOYe9vT0+fvyIhIQErbG6/N9pfUZkDNJCOZAWyoG0UAa+vr4oXbo0OOdo3749AgMDk6VZtmyZmIstUqQIOOcoVqwY/P39tdKFhYVh+fLl4JzDwcEBt2/fzqa7yB2QFsqBtFAOpIXyOHz4MNq0aQMjIyNwzjFlyhRxLK0x3qNHj1CnTh1wztGpUydER0dnR3ZzPaSHciAtlANpkbu4ceMG+vXrB845Bg4caOjs5GlIC+VAWigL0iPvQksUCIIgcjDSKrQrV66w9u3bs8mTJzPGWIqrnaVV0C9evGCtWrViDx8+ZJxzVqxYMXbu3Dk2Y8YM1rp1a5G+dOnS7Pvvv2fDhw9nnHN25cqVbLmn3IxKpWIajYadOnWKvX371tDZydNIW2Pv3r2bvX792tDZydOQFsrC2NiYqdVqtmrVKvby5UtDZydPQ1ooB9JCOZAWyoH6tcqC+lP6x9PTk61YsYLFxMSw//3vf2zbtm2sUKFCWmlMTEyYRqNhjKW/WxTtPvHlkBbKgbRQDqSFMnB0dGR///03s7W1Zf/++y+bMmUKi4iIEMevXLnCfv/9d8YYY82bN2ezZ89mrVq1Yu/evWONGzdmz549Y4wlRkIuUKAA+9///scaNWrEXr58yZ4+fWqQe8qpkBbKgbRQDqSFsoiMjGQ7d+5kly9fzlRE45cvX7JDhw4xHx8fxhhjDRo0YPny5cu2fOdWSA/lQFooB9Iid3H37l22YMEC5uLiwhhj7M6dO+zx48cGzlXehLRQDqSFsiA98jiGdtATBEEQWeP8+fNo1qwZTE1NwTnHkiVLkqWRIiS+ePECFSpUAOcc+fLlQ4MGDXD37l0AqUdXWr9+PTjnMDU1RUBAgP5uJI+wZs0amJiY4JtvvsGLFy8MnZ08zcSJE8E5R8+ePUkLA0NaKAtpZXPv3r1JDwNDWigH0kI5kBbKgfq1yoL6U/rn22+/RZs2bfD+/XsAn3eFkMbMlStXRmxsrCGzmGcgLZQDaaEcSAvl4OHhgWrVqmHatGlan2/YsAHm5ubgnGPVqlUAAB8fH7Rq1UpEOfb29gbweZ522LBhIqp+QkIC7bqSSUgL5UBaKAfSQjm4u7vDysoKo0ePFp+lVYYvX77EkiVLYGtrC845OnToII7R7ilZh/RQDqSFciAtcg9v376Fvb09OOdo1aoVTpw4gU+fPhk6W3kS0kI5kBbKgvTI25CBnSAIIgcTHR2NNm3aiG0dK1WqhAcPHmilkQaEQUFBaNKkCTjnMDc3R/PmzfHw4UOtNHKkF12nTp1C/vz5YWNjQwZ2HfDgwQOh1//+9z8ylxiQO3fuiG3vyARnWEgLZXH9+nWxKIr0MCykhXIgLZQDaaEcqF+rLKg/pT/kL2ejoqLEv6Vx9MaNG8E5R/ny5REREZHt+ctLkBbKgbRQDqSFMgkNDRX/TkhIQGxsLFq0aAHOOVq3bq2V1tPTE61bt05mEAWAyZMng3OOH374IdvyntsgLZQDaaEcSAvl8PbtW/HvzJhCmzVrhuDg4HTPIzIH6aEcSAvlQFrkfKRAh97e3ujSpQsOHTqEmJgYA+cqb0JaKAfSQlmQHoTK0BHgCYIgiC8nX758bOPGjYwxxooWLcqOHj3K6tSpo5WGc84iIiLYvHnz2MOHDxljjFWpUoX9/vvvrHbt2gxAilsDGxsbM8YYO3HiBIuOjmYmJia0xVcWAcDq1KnDrl+/zkxNTdnRo0fZ+PHj2cuXLw2dtTyHRqNhDRs2ZFevXmUmJibs2LFjpIWBIC2UhUajYc2aNWOXL18mPQwMaaEcSAvlQFooB+rXKgvqT+kXIyMjptFoGGOMWVhYiM+lcbS0bbZGo2Hx8fFMrVZnfybzCKSFciAtlANpoUxsbGwYY4nlrlKpGAAWExPDGGPM0dGRMcaEFpUqVWKbN29mrVq1Yu/evWMtWrRgr169YowxdunSJcbYZ20BZOt95AZIC+VAWigH0kI5FC1alDHGWEJCgmizk/L69Wu2b98+tmLFCvbhwwfWpEkTtn//fla4cGEGINXziMxDeigH0kI5kBY5H5VKxdRqNatQoQI7dOgQ++abb5iZmZmhs5UnIS2UA2mhLEgPggzsBEEQOZzKlSuzZ8+esYsXL7Jq1appHZNeYN2+fZtduXKFxcbGMisrK7Zx40ZWp06dVM3r0nk+Pj7M3d2dMcZY1apVmYWFhThGZB7OOdNoNKxp06bs0qVLzNjYmB07doyNHj2azCXZjEqlElpcvnxZaDFy5EgxAU9kD6SFspD0aNKkiZYew4cPJz2yGdJCOZAWyoG0UA7Ur1UW1J/SPypV8ilUaWwsmX3MzMyYhYWFWAxO6AfSQjmQFsqBtFAukjZGRkbM2tqacc5ZyZIltY4xltwgWrduXTZq1Cj29OlTVrRoUfb9998bJP+5CdJCOZAWyoG0UA5pmUL37t2rZQp1dnZmZcqUYYyxFN/vEVmH9FAOpIVyIC2UT1oLyaRxoIWFBTM1Nc2uLOVZSAvlQFooC9KDSA0ysBMEQeQCypUrx6pWrZrsc2mScffu3czDw4Mxxti+fftY48aN0zSvS+ft2rWL3bp1izHGWP/+/ZmlpWWKL8WIjCM3Xl25coUxxtjJkyfZzp07WVxcnIFzl7dISQsXFxd24sQJikiWzZAWyiIlPc6cOcNu3rxJi5iyGdJCOZAWyoG0UA7Ur1UW1J8yHPHx8YyxRA1ovGxYSAvlQFooB9JCGRgbGzMHBwcGgJ05c4a9e/cumR6SQbRly5YsODiYbd++ncXFxbEmTZqwUqVKMcbIAKQLSAvlQFooB9JCmaRnCiWyF9JDOZAWyoG0UA5y34e0iDkhIcGQWcqzZLcWtANO6hiiXpAeqZOdekg60HMw50AzlgRBELmcW7dusZMnTzLGGBsxYgTr3LkzYyzlyUQAYmJy69atbMmSJYwxxrp06cK++eYbkUZOREQEi46O1roGkTZyc8nNmzdZx44dWb169WgloQFIqsXQoUNZ/fr1KSKZASAtlIVcj1u3brH58+ez+vXrk+HBAJAWyoG0UA6khXKgfq2yoP5U9iI9c/Lly8cYSxwLf/r0KcsT4/IxNY2vMwZpoRxIC+VAWigHqZz69OnDihcvzl6/fs1u376dYvlVqlSJbdmyhTVr1ozFx8ez8uXLs8mTJzM7O7vsznauhLRQDqSFciAtlMmLFy/Y/v37yRSqEEgP5UBaKAfSQjnITaGXLl1io0ePZt7e3szIyIgCvmQz2alFZGQkY4wWEKZGdteL0NBQFhwczDjnZJpOgezU48OHD2zLli3Mzc2NGRkZkR45BRAEQRC5msOHD4NzDs459u3bl2o6jUYj/n3w4EHY2dmBc47ixYtj06ZNKZ7z5MkTTJgwARMmTMCVK1dSvBaROgkJCQCAsLCwLF2HyjvrSFpERUVl6TqkRdYhLZSFpEdcXNwXnS/pQHpkHdJCOZAWyoG0UA7Ur1UWuupPAcDHjx/x+++/Y//+/QgODhafk1af2bZtGzjnqFq1KmJjY7NUNmq1OkOfESlDWigH0kI5kBbKITg4GF26dAHnHM2bN4erq2uqaT08PNClSxe4uLhkYw7zDqSFciAtlANpoRzUajXWrFkj3us1bdoU/v7+hs5WnoX0UA6khXIgLZTJ1atX8d133wldAgMDdXp9ab5Ro9GIf0v/JbTRtxZ+fn6YNm0aBg0ahPv374s5edIjOfrWAgBCQkIwe/ZsVKtWDQ8ePABAcyWpoW89NBoNjh8/Ds45jI2N8fTpUwCkR06AAxQmgyAIIjezbt06Nm7cOFalShV269YtVqBAAa0VbowxptFoRGSmI0eOsOnTpzM/Pz+m0WjY8OHD2caNGxljLNl5f/31F+vVqxdjjLFq1aqxoUOHsrFjx6aYlkifzJSZXDPGEld1fvz4kb1//55ZWlqysmXLMnNz80xfl8g8SbV48eIFe/36NXv//j0rWrQoc3R0ZLa2towx0kLfkBbKQq6HWq1mXl5ezNvbm338+JGVLVuWlStXjjk4ODDGSA99Q1ooB9JCOZAW+oX6tbmDmJgYduTIETZ48GDGGGNDhw5l3bp1Y127dmWMkR5yfv75Z3by5En25s0bZmRk9EXXSEhIEOeOGjWKWVhYsBUrVjDGqKwzA2mhHEgL5UBaKAc/Pz/Wpk0b9uLFC9a8eXM2d+5c1qBBA2ZlZZWsTxQdHc0sLCwYY1TG+oC0UA6khXIgLZSDl5cXq1KlCqtSpQo7ffq0ziIaq9VqZmxsnExPIm1ID+VAWigH0kJZ+Pn5seHDh7N///2XAWCVK1dmq1evZp06dcrytZO286GhoSwuLo7Z2dkJnUivz+hTC8YYCwkJYevWrWMrVqxgMTExrGrVqqxly5ZsypQprEyZMlpj97yOvrVgjLH379+zbdu2sV27drFnz56xAgUKsGvXrrEaNWqQFknIDj2k7/nhhx/Y9evXWcGCBdm1a9dY9erVSQ+lky02eYIgCMJgODk5gXMOW1tb+Pj4JDsuj7zk7OwMR0dHmJiYgHOO3r17i2Oprdjcvn07vvnmG6hUKnDOMWPGjBSvTegOuRY3btzAqlWrULp0aRQuXBgmJiZQqVTo2bMn1q9fL9KRFvrn+PHjmDhxIgoWLAgLCwuxcrRDhw5Ys2aNSEda6B/SQlls2bIF/fv3h6mpKYyMjLSicqxYsUKkIz30D2mhHEgL5UBaGBbq1yqbuLg47N69G02aNAHnHCqVCuXKlcPs2bNFmrwe2UcevWXz5s14+fJlln+jM2fORLFixcA5x6BBg7KaxTwDaaEcSAvlQFooE09PTzg4OIBzjsqVK2Py5Ml49uyZobOVJyEtlANpoRxIC+Xg7++v06iUr169wpo1a/Do0SMANJbLLKSHciAtlANpoSzGjh0LzjmaNGkCFxcXfPr0SWfX9vT0xNq1a/H111+jfPnyKFasGNq1a4c5c+bAz88PAEU4lqNPLQDg7NmzWLp0KcqXLw8zMzNwzlGtWjW4ubkBIC3k6FOLkJAQLFmyBBUqVADnHPnz5wfnHNbW1hT5OxX0XTckfH190bFjR9IjB0EGdoIgiFzO06dP4ejoCFtbWxw/fly8qIqPj9dK9/vvv6NAgQLCuNOlSxdxLL0tgl1dXfHbb78JE/u4cePEMTKY6I9ly5ahWrVqYsEB5xzm5uZiSxzOOSZMmCDSkxb6ISYmBlOmTEGBAgWEFiYmJihQoICWFr/++qs4h7TQD6SF4ZHKU61Ww8vLC0OHDtUq+4IFC6JIkSJQqVTis/Hjxyc7n8g6pIVyIC2UA2mhXKhfq1zi4uLw9u1bDB8+XJjYOecYPny4obOmGHQ58b1w4UKoVCoxLh8zZgz93jMBaaEcSAvlQFooEx8fH7Rr1w758uUTfZ8VK1YgKCjI0FnLc5AWyoG0UA6kRe7jzZs3WLt2rRhfS+ZQwjCQHsqBtFAOpMWXIzf6r1q1Cn/++SdiYmK++HryMd7r16/h7OyMQoUKiX6BNDco/VWpUkUYp/P6ogNda5EegYGBWLFiBerVqwfOOQoXLkxa/D/61iKped3GxgZnzpxBt27dyDSdAtldN4DEMQ2Z2HMOZGAnCILI5bx//x6dO3cG5xwtW7bEf//9JzoDGo0Gly5dwpgxY7QGGv369RPnJzW6y5EPYD58+ID169eLQcuCBQv0d1N5nJCQEIwYMUJLs7Zt22L27Nm4ceMG9uzZg0mTJgkt5syZY+gs50oSEhLw4MED9O/fX0uLnj17YseOHXB3d8exY8cwc+ZMocX8+fMNne1cCWmhDKQ2ITY2Fn/99Rc6deoktChSpAh+/PFHXLx4ES9fvsQ///yDBQsWCD0WLVpk4NznLkgL5UBaKAfSQplQvzZnsXDhQpQuXVoYF0kP3RMQEABbW1tRvnn9ZZMhIS2UA2mhHEgL3RIUFIS1a9eiadOmMDU1xaFDhxAREaGz69PigoxDWigH0kI5kBa5h4iICMybN0+04ebm5pgzZw7i4uIMnbU8CemhHEgL5UBaZB25nyMr5kx5+3zz5k2MHj1aRPi2tLREiRIlMGnSJCxZsgQ//vijME7b29vDy8srS/eQW9CVFukhafXp0yfcv38f7du3B+ccNWvW1OnOCDkZXWshlXlK5nVXV1cAibsVdOjQgUzTKZBddUMOmdhzDmRgJwiCyAP4+PigVKlS4JyjatWq6NGjB6ZOnYq2bdvC0dFRmEUqVKiAiRMnivPSMq+nRFhYmDD7ODo64vLly7q+lTyPr68vBg4cKDQrXbo0pk6dmixdZGQk1q1bB5VKheLFi+PixYsGyG3uJT4+HpcuXcLXX38ttGjSpAlWr16dLG1UVBTWrl0LIyMjlCtXDnfu3DFAjnMvpIUykAbtMTEx2L17N5o2bSr06NWrFw4cOJDsnOjoaKxYsQJGRkaoXr26iApAZA3SQjmQFsqBtFAm1K/NWbx+/RoLFy4U0ZaqVKmC7du36z1SSl5Cmjh/9uwZFi9eTBPpBoS0UA6khXIgLfSDRqNBXFwcnjx5orOts/39/fHixQsA9FI2M5AWyoG0UA6kRe5h8eLF4JyjaNGimDNnDgICAgydpTwN6aEcSAvlQFoYHrl5/dy5c+jevbvYLbNOnTqYPXu2ljE6Li4Orq6uaN26NTjn6N27N8LCwgyRdQLAgwcPUL16dRgbG2Pu3LlISEigRed64O3bt1i+fDnKli0LzjlsbW3x5MkTAJ/7tmSaVhY+Pj5aiwqS6kUoAzKwEwRB5BG8vb1Ru3ZtsUpW+pOi5w0ePBgHDx4U6dNqsKOiosS/k0bK+O+//1C6dGmoVKoUDaTElxMYGIi+ffsK7Vq3bo1du3aJ4/KBiEajgbe3N6pUqQLOOTZs2GCgXOc+EhIScPXqVXz11VdCiwEDBuDs2bMijVqtFnVDo9Hg6dOnsLe3B+cce/bsMVTWcx2khbKIjY3F/v37Ub9+faHHhAkTtLZ6TNq23LlzB1ZWVuCc4+jRo9md5VwLaaEcSAvlQFooC+rX5iwCAwMxe/ZsWFpagnOOatWq4cCBAzqNwEgkktlF5IT+IC2UA2mhHEgL3aPrCMT+/v4YOXIkSpUqhVu3bun02rkd0kI5kBbKgbTIXSxbtgxjx47F8+fPDZ0VAqSHkiAtlANpYTjkbf6ZM2fQtm1bGBsbg3OO9u3b48KFC4iMjASgPYeekJCA/fv3w9TUFOXKlYOfn1+2551IJDY2FoMHDwbnHM2bNzd0dnIlsbGxWLt2Lezs7MA5h5mZGU6dOiWOyRcMyE3s+fPn13oPRWQ/vr6+IhhiwYIF8fjxYwBkYlcSZGAnCILIQ7x8+RLr1q1Djx490LRpU9SpUweTJk3CsWPHtNKltRrT29sbY8aMwcmTJ1NN0717d3DO0aBBA8TGxtJ2kFlA0iIqKgqDBg0SJp8uXbqIDrE8XVLatGkDzjl69OiRZjoifaTfsbu7O7p16ya0+Pnnn3Hv3j2RLrUylrZRGzZsWJrpiPQhLZSHRqPBuXPn0Lx5c6HHrFmz8PLlS600KSEZEmfPng2A9MgqpIVyIC2UA2mhDKhfmzMJDAzE3LlzhXm9Ro0acHZ2JvN6FpD/dmmsbFhIC+VAWigHfWtB+uqPZ8+eYeLEiWIXTkdHR7x9+9bQ2cqTkBbKgbRQDqSF4ZAbcygyruEhPZQDaaEcSAvlcOXKFXTp0kWY17t27ZquKT0gIAC2trbgnOOPP/7IppwScqQ65OTkBM45LCws4OXlZeBc5U4CAgLQr18/VK9eHZxzNG7cGFeuXAGQOJ8in/Pw9fVFu3btwDnHr7/+SkEBspmk5vRdu3aJIIeWlpbCxE4oA2NGEARB5BlKlCjBRo8ezUaPHs0SEhKYRqNhJiYmydKpVKoUzwfAnjx5wtavX8/Wr1/PDh8+zHr37s0AMM45S0hIYEZGRszMzIwxxlhcXBzjnDPOuV7vK7cCQGgxffp0tn//fsYYY506dWJjx45lHTp0SJZOfi7nnKnVasYYYxYWFowxRlp8IRqNRpTxsmXLmIuLC2OMsSFDhrAxY8awmjVrMsaSawGAMcZYREQEi46OZowxZm1tzRgjLb4U0kJZSHq8e/eObdy4kd24cYMxlvjMGj16NCtatKhIKy9n6TxPT0/24cMHxhhjRYoUYYyl3gYRaUNaKAfSQjmQFsqB+rU5k+fPn7Ndu3axlStXsqioKFa9enX222+/se7duzNLS0tDZy9HIu/LhoSEsMKFC4txNJG96FsL+fVT+n/iM9lRL6S2JKXvJD6THVpIOkRERDArKyt6BuoQX19ftnr1asYYY2XLlmW//PIL/c4NBGmhHEgL5UBaZC/yvo+RkZH4/wIFChg4Z3kT0kM5kBbKgbRQHn5+fmzPnj3sn3/+YQkJCaxr165s+/btWnPoKfH69Wv28eNHxhhjxsZkQTQE0pg6JCSEMcbYp0+fWExMjCGzlCvRaDSsdOnSbMeOHezevXts+fLl7Ny5c+yrr75iFy9eZM2aNRN+BMYYc3R0ZJs2bWLnzp1jXbt2pfqRzUhty6lTp9jly5fZhg0bRLsTFRXFJk+ezE6cOMHMzc0NnFOCMcZoZEgQBJHHkDpNRkZGzMTERKsTlR6cc9a2bVs2ZMgQxhhjffr0YVu3bmXv378X13R2dmZHjhxhjDFWt27dFA3yRMaQOlCbN29mv//+O2OMsSZNmrBffvlFy+STknmHc87Onj3Lrl+/zhhjrFatWlrXJDKHNJm+YMECtnfvXsYYYz179mTDhg0ThmnGkpevtIDDxcWFeXp6MsYYq1ixYoppiYxBWigL+WKCU6dOMcYYGzlyJBs6dGiak1rSeRcuXGBv375ljDHm4OCg59zmbkgL5UBaKAfSQjlQvzbnQeZ13ZOQkCCeL2PGjGEtWrRgnp6eYjKdyD70rYXcBPzw4UPG2Oe2hbTWJjvqhbx9uXbtGnv27BlTqVQsISFBJ9fPLWTnM+rgwYPsu+++Y0+fPmVGRkakhY7o2LEjGzduHDM2NmZjx45lP/74IytcuLChs5UnIS2UA2mhHEiL7CEiIoIxxkTAKQkaPxsG0kM56FOLpH1lGvOlTXbWC41Go/Nr5kakcjp79ixzdnZmarWadejQgW3YsCHNOXRJPz8/P2ZhYcFUKpUIHEZkD/LnzcOHD9mJEycY55xVqlSJ2dvbGzBnuROVSsUAsPz587PWrVuzzZs3s549e7L4+Hg2aNAg5urqmuxZVqFCBTZy5EhWtmxZA+U6b5C07X358iW7du0a+/rrr9nw4cPZ2rVrWXx8PIuLi2O1atViixYtYsuXLyfzupLQZ3h3giAIIueQdAuVtAgJCcFPP/0Ezjk45+jQoQOGDBmC0aNHi89sbW2xYcMGPeY4b+Dt7Y127drByMgINjY22LhxoziW1rbLQUFBGDZsGExNTWFjY4N//vkn3XOItLl+/ToqVqwIzjlq1qyJY8eOiWNplauHhwc6dOgAlUqFKlWqwNPTMzuym6shLZTFsWPHYGZmBs45OnbsiJs3b2bovJs3b6J8+fLgnKNly5a0NaQOIC2UA2mhHEgL5UD92pxDYGAg5s6dC0tLS3DOUaNGDTg7OyMiIsLQWcsVTJ06FaVLlwbnHCYmJggODtbJdaU6QXUj4+hLC4lt27ahUqVK6Ny5M44dOyaun5CQoNPvyQ3ou14AwOXLl+Ho6Ahra2s8evQIQObmwvIK+q4XUVFRmDp1qtiy+enTpwBIi6wif67cunULQUFBBsxN3oa0UA6khXIgLbKHN2/eYO7cuZg5c6b4jMYGhiM79KC5qoyRHVqo1Wqt901U91ImO7S4desW5s6dq7fr51YePnwICwsLcM7RsGFD3Lp1K830UrmGhISgUqVK4JyjWrVqiImJyY7s5jnkfamUxs43btzAsGHDYGVlBc45evTokZ3Zy5VkdO7u7t27qFmzJoyNjTF+/HjExcXRvF82I3/Ov3nzBkeOHEHDhg1RokQJ4V3jnKNbt26YM2cOoqKiDJhbIjVofwKCIAiCaTQasbXQn3/+yZo0acIcHBxSXe1cqFAhNnbsWObq6sru3r3Lrly5wuLi4sRxCwsL1rNnTzZixIhsyX9u5unTp+zatWtMo9Gwfv36iTJNbbtr/H9ksStXrrBjx46x+Ph4VrduXfbVV18xxiiyQ1Z4+vQpCwgIYIwx1qNHD9azZ0/GWOrRQhlL3H7IxcWF3blzhwFgNWrUYJUqVcquLOdaSAtlIJX348ePRYSGb775hjVp0iTdc1++fMkOHjzI3rx5wxhjrE6dOrQ1ZBYgLZQDaaEcSAvlQf3anAFFXtcvJ0+eZMuXLxf/P3LkSGZra5ula0p1RaoTwcHBLCYmhvn6+jK1Ws0aNGjAjI2NmaWlZar1LS+iDy3kPHjwgLm4uDAfHx/m7e3NXF1dWePGjdnixYtZ+fLlWUJCgpiHyevoSwv5+PDy5cts4sSJ7M2bNywmJoa1bt2aXbt2jVWvXp20kKHvesFY4pzhzz//zO7fv8/+/fdf1qJFC9JCB6hUKvGMb9y4saGzk6chLZQDaaEcSAv98/r1a3bo0CG2fv169v79e6ZSqdi8efN0Nm6W+lVpzb8Tn9G3HjExMezff/9lv/32Gxs7dixr1qwZq1q1KmMs7XckeRF9a8FY4rzWlStX2OTJk1nNmjXZrl27qL6kQHZoERoaygYNGsR8fX1ZaGgoc3JyIi3SAQBTq9Vs8+bN7NOnT6xYsWJs4MCBrHbt2mmewzlnkZGRbMGCBczPz4/ly5ePde3alZmYmNDcUyZI67epVqvFe434+Hitco+JiWFqtZrdunWLeXl5sT179rD379+zT58+sdq1a7N169YxxrTn3ZOOt2n8nTqBgYEsJiaGVapUKd3fc+3atVmNGjXY06dP2T///MOWLl3KTExMsjG3eRdJG6murFy5kt24cYOdO3dOpLG1tWV169Zl3377Levfv7+IuC7//VPdUAjZapcnCIIgFI0UVf327dsZTm9tbY3p06ejTJkysLOzQ5cuXTB//nyx0o1WGH4ZGo0GsbGx6Nq1KzjnqFu3roh6lVpUKunzJ0+ewN7eHpxzVKhQAXfu3EnzPCJ9wsLCUK9ePXDO0bp1a/F5er/vU6dOoWjRoiJS+KtXrzJ0HpE6pIWyCAoKEtH5unfvLj5PK6pFWFgYNmzYAFtbW3DO0ahRI3z69Cnd84i0IS2UA2mhHEgLZUD9WuUg9Xs+fvwoIo3If9cUeT17GDFiBDjnmD59epb7ovLz3759i+3bt6N+/fqws7MT0WVq1KiBb7/9Ft7e3gCo/sjRpRYp4ebmBhcXF7Ro0UKMRcqUKQNXV1cANBaRo2st5M+2S5cuoW7dulCpVLCwsICjoyM457C2tqbo3ymg73oh4ePjg44dO5IWWYTKSzmQFsqBtFAO+taCxuiJqNVqrFu3DiqVCpxz2NnZYcyYMfjw4YNOri3n+fPnePPmDV68eKHVTyAtPqNPPSQuX76MGjVqgHMOY2NjtG3bFlu3bhXHSY9EskOLhIQE/Pvvv/j666/FGHzUqFHiOGmRSHZoASTqsX79epiamoJzjtGjR4tjpEXqREVFifeudevWxevXr9M9JyYmBjt27EDlypXBOYetrS0ePHiQDbnNndy8eRPz5s3DN998g86dO6N79+5o164dGjdujGbNmqFBgwaoWrUqqlSpgjJlysDW1la8v5D/1atXD9evXweg/ZuXt+e//fYb7UqXBj4+Phg6dCj69esnPkvt+SGV3759+8RzJ6M7ABNfRtJ5Kj8/P8ycORMtWrTQqgvlypVDmzZtcPPmTeEJkaC6oUzIwE4QBEEAAMLDw1G/fn1wzvHdd98hJCQk1bRxcXEAgB07doBzjjNnziAsLAyvXr3SaszpZWzWiImJEQPGLl26pLmdjVTu/v7+KFWqFDjnKFq0KObMmYOPHz9mV5ZzLR8+fBBboA0dOhTx8fHpdlyvXLkiDFelS5fGrl27oFaraZIki5AWyuLly5diC64FCxYASHtQFxUVhb179woDT+XKlXH58uV0zyPSh7RQDqSFciAtlAP1a5XDvXv38M0332Dfvn0IDw8XnwcEBJB5Xc/InyOnTp3K8nNFfr6zszP69u2rNVFfsGBBqFQqGBsbC+O0m5sbABqr61qLpCQdZwQFBcHZ2RnNmjUD5xzFihWDh4dHimnzGvrQIjXzuqWlJUaNGgVXV1dhMCHj9Gf0XS9SgkzsX4a3tzdOnDgh/p/Ky3DoWwvpeZbX24qMoE8tUip/0iR19F0vYmNjRT8KIC0kvLy8wDmHmZkZ5syZg+fPn+vs2lFRUdi5cyeGDBmCsmXLwt7eHnZ2dhgyZAh27twp0pEWn9GnHgAQEhKCXbt2Yfjw4bC2tham4ClTpog0pEci+tQiJfO6NP4m43Ry9F0vJNRqNbZv3y7qBWmRPleuXIGJiQlMTU3h7OwMIO3+T1xcHI4fP44mTZqI3/7Ro0ezNc+5iYCAAHTo0EE8PzLzZ2ZmBs45WrZsiaFDh6a4KETeF5s0aZKYM3z8+HGy40TiPJK5uTk45zh27FiGznFychKa/Pvvv6mmS28+lp5RqZP0d3rhwgUsXrwYhQoVEnXH2NgY1tbW+OWXX3D58mWtdx9A8vKluqEsyMBOEARBAEhssDdt2oRChQqhTJkyOHHiRLqdqOXLl4NzjrVr16Z4PSJrvH//HjVr1oSRkRFWrlwJIO2OrY+Pj4gyWrBgQfTp0wc+Pj7Zld1cjb+/P0qWLAljY2MxKZvWb/zff/8Vhjk7OztMnjwZQUFB2ZXdXA1poSweP34MS0tLmJiY4MiRI2mm/fDhA3bt2oVixYoJE9WGDRvIGKcjSAvlQFooB9JCOVC/1vBIkfAbNWoEzjlq166NAwcOIDY2Fm/evMGcOXPIvJ4N6GriW36dWbNmiQWenHM0btwYP//8M65evYpLly5h/fr1IgqNo6MjfH19dZKHnE52vYSQxirx8fFwdXVFu3btwDlHixYtMhTVLC+gLy2SmtdHjhyJmJgYAInmCTJOJ8cQ908m9szh7+8vXqz+9NNPOr++3DCd1xc7pYe+tQgLC8Nff/2FGzduaNUHmnNPjj61kO8yu2vXLixbtizZMeIz2fGM+vvvv2FqaoohQ4ZofU4kLh5YsGABAgICdHK92NhYPHz4EI0bN4aVlVUy05xkDp08ebI4h7T4jK71kEjaPp85cwajRo0Sevz666/iGOmRiD60SMm87uTkhB07dpBxOg30VS+SQib2zHHt2jUYGxsjX758OH/+PIDk5ST9f0xMDE6ePIlWrVqJ3/7ChQtp7JBFxo0bB845jIyMYG1tjZ9//hnDhg3D999/j3HjxmHGjBn49ddfMWPGDKxevRorV67E2rVrce7cOdy8eVPMdQDa7YR8HDFx4kRwzoU5m8bfKePt7Y0uXbrAxMQEgwcPxsuXL1NNq1arERcXh5EjR8LMzAxmZmb477//kqVLWp/Onz+P7du3Y9GiRVi4cCHu3r2Ld+/eAaCgI2mRkJCAS5cuYfz48ShQoID4LefLlw82NjZYsmSJeIZJpBc9H6C6oRTIwE4QBEEI3r59ix49eoBzjiZNmohtrSXkHSZPT0+0bNkSnHPMmDEju7OaZ+jUqRM45+jXr59WpMqk2zPeuXMHDg4O4JzD0tIS7du3Fx0rIuuo1WoxGB86dCg+ffokjsm1eP/+PQ4fPozixYuDc44iRYrg559/hp+fnyGynSshLZTFp0+fRJSFiRMnpjpJ4uPjg1WrVqFIkSLgnMPBwQELFy4UA3Ii65AWyoG0UA6khbKgfq0ycHd3F7/12rVrw8nJCdOmTROGBDKvKx/5xPmYMWO0zCRjxozB48ePtepVQkIC3Nzc0LhxY3DOMWHCBNqNyIBcvHgRJUqUQOHChXHw4EEA9HJKH5w7dw4NGjSASqWClZUVfv31V9H2SOWd1DgtzYHRy6nsx8fHB1999ZXQgqJdpUxAQABGjBghdqgxMjLC1atXdXLtjDyHqN34jD61ABLntDZt2gRbW1twzjFixAitiNakxWf0qYXcvP7nn3+iadOmYj4yaRpC//VC4vDhw6LvS4bE5MTHx+vkOq9fv8bmzZvFwnITExOYm5tj7NixWLp0KVatWoXBgwcLcyi9I0wZXemREknfhWzcuFHosWrVKr19b05FF1rI24Wk5vV169YBION0RtBnvZBDWmScp0+fwsLCApxzMU8hR3reREVFYf/+/WJ3Oc45Jk2ahBcvXmR3lnMN8mf52LFjRbnu2LHji64n/22nZNA1NjZGw4YNUb9+fTLqpoGzszPy588PzjlWrFih9V5JKidJu8ePH8POzg6cc9SqVStZOUrpQkJC8Ndff+Hrr78WkfOlPwcHB7Rt21bsMkRaaBMTE4MzZ87gq6++Qrly5bTKrmHDhpgzZw7c3d21zkmrDKluKBMysBMEQRBaBAQEoHr16uCco3Xr1rh9+zYiIyO10vj7+2PhwoWwtrYG5xzLly83UG5zL9IAY9WqVTAxMUGtWrXw4MGDZB0kHx8fbNu2TZh0ra2t0blzZzx8+NAAuc6daDQaaDQazJ07F5xz1KtXD48fP06mxX///YdZs2YJQ1Dx4sUxYsQIeHt7GyjnuQ/SQnnExcWJwV3Dhg3x+PHjZBOQFy5cwPfffw8bGxtwzlG2bFksW7aMIk7qGNJCOZAWyoG0UAbUr1UeHh4eKFy4MDjnKFGihIguUrNmTezfv5/M6wpG/mJr5MiRWhP2S5cuTTWtWq3G9OnTxfMwu14YE8mJiopC7dq1xYIeQvd8/PgRnTt3Fi8Ey5Urh3v37gFIjCQqf6ErN7FzzvHkyRNDZTvP8/z5c3Tr1i2ZiZ0WeHzm7du3qFChgthRw8nJSSc7zEl1Qq1W4+nTp9i4cSMmTJiAH374Abt27cKtW7eSpc3r6EsLicjISEybNg01atQQUY6LFy+OBQsWiDSkRSL6rhcJCQn4448/RCAfMk6njr7rhYRaraYIx3rGz88Pc+bMEWYsOzs7DBw4MNmChI8fP2L9+vVQqVSwtraGi4uLgXJMAEB0dDRmzpwJlUqFBg0awNPT09BZypWo1WpcuHBBBGngnGPTpk3Jxt9y4/SYMWPEMXpOZS9JtRg1apQ4RlokotFo8P79e3Tu3BkqlQoTJ05MMfDI+/fvMWPGDNE/lXZ8oGdN1pHPkY8fP17r2RIbGyuOJSQkaP1u0/oNp2bQbdmyJU6fPo1Xr16J5xgZdT8jL9MlS5YILdauXZvi+yIvLy+xeLNIkSJYvXo1gM/lKP3X19cXgwYNQvny5cXCQGNjY9SrVw/FixdH0aJFwTmHvb093NzcANBcSFJmz56tNR7r2rUrFixYgNjYWFFWGXmuU91QLmRgJwiCIJLh5eWltVJw6tSpePToEQICAnD69Gn88MMPIgJMrVq1EBwcbOgs51pevHghBoMtW7bE/v374ePjA29vb+zZswcdO3YUhit7e3sMGjQoWeR8QjcEBgaiSpUq4Dxxu/fNmzfD1dUVV65cwZo1a1C1alUR/dDR0RGzZs3S+zZ4eRXSQlkEBASgUqVK4JyjadOmWLFiBe7evQtnZ2fMmDEDBQsWFMa4atWqYceOHVlqN2hiMXWyUwuaPEkb0kI50DNKOSihX0v6fMbDwwOFChUS0REdHBywfft2rRcjhLKQ/36nTp2KfPnygXMOMzMzEe0taTrg8wT7sWPHYGRkBFtbW+obG4i4uDgAQJcuXcRiAkI/vHjxAnPmzEHDhg3FArXLly8DSP7S19fXV0SQk9IQ2YPUj42OjkZAQACGDBkiFh6YmJiQGSIFnjx5gipVqmDp0qU6m4+Nj49HYGAgevTogYoVK2q9FOaco0yZMpg3b55IT/2pRPShhRwpyt+GDRvQsWNHYbwaN26cSENaJKJrLZKa16WdIDnnGDJkCBmn00Df9UKCourqj4CAAEyePFkEhilTpgzWrl2rNX6Qz0O9fPlS7PQkbysIw3DhwgXRlzp27Jihs5MrcXNz02oXBgwYII5J4z3g83PKyMgInHP89NNPhsgugURd9u7dK9qM4cOHi2PUZnxmw4YN4ne9cuVKYdr08/PD9evX0bBhQzFvyznH7NmzaW5Jh8jNsb/++qso582bN2c6CIW8nZ4wYYIw6LZo0QInT54Ux7y9vbV2pSOjbiLy8psyZYrQom/fvli/fj0ePXqEU6dOYcmSJbC3twfnHFZWVujevTt8fHzEuVI5uru7o0aNGqJ9NjMzw5QpU/DXX38hJiYGL168wOnTp9G2bVsRYOb58+fZft85galTp6Jx48Y4ePAgPnz4ID7P6DtSqhvKhgzsBEEQRIp4e3ujVq1aolOWP39+lClTBkZGRjAxMQHnHJUrV8Yff/yR7OUfoVu8vLzEVo358+dHoUKF4ODgoPUyqWrVqli9ejUCAwMNnd1cjZeXF8qUKSOMPgULFkSBAgW0tKhXrx6OHz+OkJAQQ2c3V2MILSgaaep4eXnB0dFRq81I+tK7devWePTokdZWa1nh/fv3OrlObiM7tJC3+UePHsXdu3dTPZ6XIS2UgyGeUY8fP9baPpW0SMQQ/Vo3Nzf88ccf4v9Ji8+4u7uLhclly5bFjh07tF64Espky5Ytoh5xzrFhwwZxLK0J+zlz5oBzDlNTU/j7+2dDTgk5cm2aNm0KzjlKly6NyMhIWoymY6TyjImJwf3799GjRw9wzpEvXz7cvHkTQPK2wMfHR+z4Qe2EfpGXb2xsLLy8vDB48GDUrVsXnHNhLClbtiw2b95MeqRAaGiozuY5Xr16hS1btoggAVL5V69eHQ0bNkTJkiXFZ7/++qtOvjM3oUstkiL/7Xt6emLZsmVCixkzZujlO3MyutIiLfP69u3bAYCM0+mgz3ohh0zsuuft27dYsGCBiAJarlw5HDp0CGFhYWmeN2TIEHDO0axZM3z69In6tgZA+s1HRESIHbanTZtm4FzlXjZs2ICuXbvCwsICZmZmGDFihDgmN5pKzykpUINkgCP0T9LnkIeHB7p16yYWFAwbNsxAOVMeSYMlSP0ee3t7tGrVCnZ2dsK4rlKpYGxsjL179yI8PDxL35tUI2q7dWtiB4ChQ4eKd+iNGzfWWrAvlbd8Vzq5UTev6yHXYubMmTAyMhJ9TikIqBRYxNbWFp07dxa7yGk0GnH+06dPRXrOE3eMv3z5coq//3v37qFq1arIly8fNm3aJD4ntNvWt2/fah37kjKiuqFMyMBOEARBpMrz588xZswYsb21/K9u3bo4ffp0lgcoRMbw9fVFjx49UK5cOdGhklZh9uvXD35+flkyXEmdLep0pY+fnx8GDBiAypUrCwMI5xxfffUVxo8fj8jIyCxdPyMakE6J6FsLOTdu3ECPHj2wbds2ragCpMVn/P398eOPP4rouhYWFjA3N8e3336LFStW6LSsXFxcUKdOHWzYsAHPnj0Tn5MeiWSXFk5OTmLLu/Hjx+P06dPiGGmRCGmhHLLzGbVixQpwztGnTx+tiFekRSL67tfK8fLywtixY0W0RAnS4jPu7u4iEnudOnWwf/9+WrSnQKTfrJubm9ZW5atWrRJpUjOKaDQahIaGomfPnjA2Nkbjxo21toMm9ItGo9F65khtBOfaW8kT+iMwMBDdunUD5xy1a9fWGj8kJalehO5IGqnq+PHj+OWXX8RCKumvcuXKGDduHDw9PelZpWe8vb0xfvx4lCxZUrx4//rrr3HkyBHRF3B1dYWTk5N4Wb927VoD5zpvIX8excTEYP369VCpVLC2tqbIunokISEBf/75J1q0aCGeTVu2bBHHY2NjUzVOk3E3eyETu26QfrfOzs4ikqijoyNOnjyZ5tg8Li4O8fHx+Oqrr8A5R+fOnbMry0QqPHz4UBjqaOGZfvH394eTkxMsLS3BOcegQYPEMXm/V61W4+TJkzh58iQ+ffpkiKzmKZI++2/evAknJycUKVIEBQsW1JqHvHbtmoFyqTzkv9lFixZpBYKR/hwdHfHtt9/i1q1bWuf6+/vjyZMnmWp35TtxXb58WevcvN5+68rEHhgYiBo1aog539q1a8Pd3R1AohlYXs5yo66FhQUFS/x/5Frs2bMHvXr1SlYvKleujBkzZsDDwwNA4u9X0snNzQ2FCxcWZvdmzZrBzc1NpJP/FwA+ffokdmzs2bNndt1mjkFXi16obigXMrATBEEQaRIVFYXnz59j5cqVmDVrFqZNm4YNGzbo1BhKZIyPHz/Cy8sLW7ZsgbOzM44dO6bzLYTCwsLg6+uLAwcOYM+ePbh8+TKZdVMgIiICL168wJ9//ol//vkHly9fRnR0tDj+JVsIJS3bgIAA3L9/H6tWrcLq1atx+vRp0YFOKX1eRR9aJOXly5cYNWqUGJAOHDgQhw4dEsdJi89ER0cjJCQE58+fx/379/Ho0SOt47rQw9fXV2uioE+fPjhw4IA4Tnokom8tIiIiMH36dDRs2BCcJ26z5uDggEWLFok0pEUipIVyyI5nFACMGzcOBQsWhKmpKYoWLYqlS5eKY6RFItnRr/X09MTYsWPFRDEZGlLHw8NDbBFfs2ZNHD58GLGxsYbOFpECy5YtE7/nyZMni8/TMq8DwIkTJ4Sxh0zTX0ZWFhrHx8cjPj4ec+fOhb29PVQqFczNzbFnzx5dZzNPIP+9Z+QFrkajwZkzZ1C8eHFYW1tj48aNya5D6IekdSIhIQG7du3Cjz/+CM652OHRxsYG9vb22LhxI+7fv5/mNQjd4O7uju+//160/yVKlICTk5NY4CHVD41Gg6ioKEyfPh3Gxsbo1KkTPn78aMis52kCAwPRsmVLqFQqTJo0ydDZyZVoNBrs3LkTjRs3Fn2u3bt3A0hsc6S6kZZxmshe4uPjsXXrVqGFPBIytSHpI/2m/fz8ULZsWbFL0MGDB7Xm2FM7LzIyUkT8/t///pfM+EPoH6m8Q0NDMWfOHFhZWSVb7EzoDvnvOy4uDs7OzsLEntYOKRRETH8kLduIiAg8ffoUo0aNSmbELly4MMaPH4+TJ08aMsuKRD4v/t9//2Hv3r0YM2YMZsyYgTVr1uDVq1diHCAt/A4ODsbQoUNhY2ODffv2Zer3HRERgfnz56NQoUJo27Yt9u3bJyIr5/Wxemom9t9//z1T7y9CQkKwbds2tGzZUixYliJNJ1287+Pjg7Zt26JBgwY0JyxD/lv8+PEjbt++jZ07d+L333/H3r17ERISIhYnySOvP3v2DBUqVBDG5w4dOsDLyyvZNSWkuS1J77Zt2+r71vI0VDeUCRnYCYIgiC+GBtrK4UsGc0n1O3jwILp27SpeXkkr0Zs0aYLly5eneh6hzZeUj1y/Dx8+YOPGjahatapWJDKVSoWaNWti8eLFWfquvISuyic6OhpHjx4V0WRUKhWKFi2KqVOnijR5fUIlO4mKisKJEyfESnQp+pj85S3Vjezh06dPiI6Oxpo1a9CuXTvxsnD8+PEiDWmRPZAWyuP8+fP4/vvvhRb0jMo4umhTJfO6FEmjYsWKFJUvHTw8PETfc/Xq1YbODpECbm5uYtvmr7/+WkR9Sc+8/uDBA60FCg8fPkzzPCI58heEr1+/xuvXr/HmzRv4+/vDw8MDPj4+cHNzw61bt3D37l3cvXsXp06dgrOzM7Zs2YJevXqhSZMmou+atI1OCSnapa4WV+VGDh06JBZ5p/d7jomJQb169cA5R+vWrbMje3mapHo8e/YMR44cQfPmzYXBRz7ntHPnTnh7e6d5DYDqha7w8fHBTz/9JNr90qVL4++//9aKeJ+0j3T48GGh24MHD7I7y4SMESNGCAPWu3fvDJ2dXEd8fDy2b9+OokWLwsjICJaWlvj999+1jkuo1Wrs2LFDRHJds2aNAXKcd0naTixfvlz0s4YNG2agXOVMoqOj0blzZ3DOUaRIESxatAihoaGpppe3ERMnThTmLDKEGo7AwEA4OTmhUqVKQkdfX19DZytHk9FIx+Hh4Zg2bRqMjY1RvXr1ZIsxiewjPDwcDx8+RM+ePVGtWjWt8XfDhg0xbNgw+Pr6arUfNC+iTXrlkdI86pAhQ8A5h5WVFQ4ePJjhudarV6+ie/fuYoxRrFgxdO/eXYwL8/qYT37/UltbunRpeHp6Zuh8Scv4+Hh4enqid+/e4JyjYMGCuHv3bornBAUFiWdfXi9/OektQEp6PCgoCN98842Y82jVqpX4XadVx2JiYsQi2ubNm9PzSU9Q3VAuZGAnCIIgiDyIvNN79+5djB8/XmsVurW1NQoVKgRTU1MxCS/fcpDMPhknvbKSa3H8+HF8++23WlrY2dmhdOnSsLa2Ji2ySFbKKiEhAWFhYRg3bhysra1TjOpDZI4v0UN+TnR0NCZOnAg7Ozuhxy+//KLLLOYZdPEccXd3x+LFi4UW06ZN00HO8h6khXL4Ui3k7bqfnx8WLlwotJg4caKuskekgWRel0xZTZo0QWRkJA4ePEgm9nTw9vbGnDlzqEwUysWLF2FtbQ3OORYsWJDmC3VJQy8vL3Ts2BFGRkYwNTXFiBEjaDe1LDBr1iw0atQIJUuWhL29PYoXLw4bGxvY2NigYMGCMDMzg7m5OfLnzy/Gc8bGxlqLkosVK6YVPT+lFx+PHz9GgwYN8N9//6WaJq+zZcsWFC5cGCNHjkw3rRQhaeDAgTA2Nka5cuW0jLoZhZ6NmcfT0xM7d+5E+fLlxUIaaV5j0KBBWL9+vdazLK0ypnqhG96+fYvffvsNRYsWBeccZcqUwa1bt1JNL2ny6NEj8Wz7559/siu7hIy4uDgAwMyZM6FSqVC4cGG8efPGwLnKvVy7dg2zZs1Cvnz5wDnHgAEDxDH580etVmPDhg1o2bIlrl27Zois5nlevnyJc+fOoWnTplrBYKZPn27orCke6Rl/584dEX29ffv2yRaVpcbJkydRp04dcM5Rvnx5PH78WJ/ZzRNIi/WAxLnv2NhYfPr0CR8+fEBoaCjevXuHwMBA+Pr64v79+zhw4ADWrFmD2rVrw87OTkQR3bp1KwDtOaqU+lnUv02Z2NhYPHz4MM1dCOScP39e7Cy0efNmPeeOAJKPBQ4ePIgBAwagQIECWu9XGzRogBkzZuD169ciSjLVi4yTloFWXk7ff/+9WMyUGRO7v78/Ll++jM6dO6NEiRLgnMPBwQGurq7pfn9eQP47X7BgAVavXo0PHz580bV8fHzQsWNHcM7Rrl07vHr1KtW0eb3cv5SEhARoNBps3LhR/J7LlSsnAi+kZ4A/d+4cSpcuDZVKJfqx9DzSP1Q3lAMZ2AmCIAgiFyG9zABSf5kn71wdPHhQRNeQolP269cPt2/fhre3N86fP4/58+cLs8+iRYv0fg85HWkwIZ/cyogWK1euFBHhOOdo1qwZxo4dCz8/P7x58wY3b97EkiVLhBZLly7V743kAjKjRXrItZo6dSpsbW1hamoKzjnmzJmTpXzmFSQ9wsPDxWdfqof8vAkTJsDCwkIYIdauXZu1jOYBdKmFfALl06dP2LBhA1QqFfLnz49Dhw5lLaN5ANJCOehLi8jISKEF5xzr1q3LWkbzEBnp1ybFy8tLK/J648aNxQvgT58+Yfv27WRiJ3Iss2fPBuccJUuWTNOwJv2efXx8MGDAABG1vUaNGmISnn7zmefs2bNaRnT5S3HpM1NTU6hUKpibm8PCwgLm5uYoVKgQypQpg+rVq2Px4sVwcXER10zp2ebm5obatWsL88mTJ09STZtXkcyCUn24cuVKhs6TImDlz58fQUFBGf4+yeggQS+stJGeJ1K5REVFISQkBJMmTRI7D8gX6A8aNAjHjx/XukZ6v2+qF1lHKqs///wTpUqVAuccpUqVwvXr1zN03pYtW2BiYgIrKyuxiIDIPqR69u7dO9StWxecc1SoUEFr7ELoBvkzPiIiAs7OzrCyskoWxELel0pISEBwcDC1D9mA9EyKj49HdHQ0Vq9ejXbt2ok5Wqmd79ixI3bs2GHg3OYc5s6dK8rvzJkzGTrHzc0Nffv2FefJdyogMs+rV6+wZ88eNGvWDF999RVatGiBatWqoU6dOqhXrx4cHR1RpkwZVKhQAcWLF4etra0Y58n/bG1tsXbt2mR9Xfkza8+ePZg9e3aKx4jE58uBAwfg4OCA06dPp5lWKrv4+Hg0bNgQnHMMHjwYarWayjUbiI+Px7p16zBgwACtxePFihVD1apV4ezsnOaCHKoXWUe+GHnQoEEZNrEnjVj97t07HDlyBC1atADnHMWLFxeRxvO6FvIxr3xuQup3RkREaM2hp0Z8fDy2bdsGY2NjFC9eHBcuXABA5atr1Go1WrZsCc458uXLhzt37gBIfR5J/vkPP/wg2nNaNP7lUN3IuZCBnSAIgiByCdHR0di3bx9WrlwpPkvauZL//5YtW9CoUSPRGe7duzeOHDmSLJJfdHQ0VqxYAZVKhRo1asDDw0O/N5KDkco3NDQUc+fO1TL8J9VCPiiZPXu2iHIiRZG+fft2Mi0+ffokouo2bNgQgYGBerybnE1mtMjotQDg9u3baNy4sYjAVKVKFQQHB+sm07kYqQzfvHmDwYMHa00Gfum1gMToJsWKFRN1p0OHDl8cgSCvoEstUuLVq1do166dljmUBvopQ1ooB11rkbScg4ODMWLECKhUKrRp0wavX7/O0vXzAhnp1ybl6dOnGD16tIhQ3bRpU3FMvsWj3MQ+duxY/dwAQeiB+fPng3OOypUrp9rfkUde/+6771C4cGHxAvfZs2cAyHybFUaPHi3M6g0bNsSePXtw6NAh7N+/H8ePH8eFCxdw9uxZXLx4Ef/99x/u378PNzc3hIWFJYt8n5IObm5uqFGjhtgVTfrv06dPAZBZV869e/fQuHFjqFQqjBs3Du/fv08z/c2bN+Hg4AAjIyO0adMmWVnK25h3797h0aNHGD16NHr37o327dujb9++2LVrF54/fw6AtEgNNzc3/Pzzz8JgK/3Vrl0b//vf/+Dh4YGPHz9m+ppUL7KG9Pv++PGjKMvixYvjr7/+SvM8+XPq66+/Buecon7rEI1Go/XskZvd4uPjxW9b0iEoKAgLFy4UcyBt2rTJcGRY4suJj4/H5s2bkS9fPlhaWmLnzp2GzlKeI+k48N27d/jtt9/Qvn17rYWFZcqUQdOmTXHhwgUac2cQ6fnSu3dv8VyJj49Pd+wdGBiI4cOHa73LkK5FY43Mk5CQgE2bNmnt3JTan3whrUqlgpGREczMzFCnTh107doVd+7cEbsPScj1PHLkCCpVqgTOOYYNG5ZimrxOeHg4evXqBc45+vTpg5CQkHTPCQwMFO1z3759U02XkfpBWiQnabm5ublh27ZtqFevnghqxDmHpaUl2rRpg6NHjyIgICDNa1C90B0pmdhNTExw+/btDJ0vXxDt5uaGtm3bih1B3r59q5c853TkgSsmTJggyim932xoaCiKFy8OzjmGDBmSoXOIzCEFWzA1NRXB1jJiXp83b554lg0fPjxb8pqbobqRMyEDO0EQBEHkAqKionDs2DHxknDixInJ0sg7Wtu3bxfRqzjnGDNmDHx8fJJFzpK4c+cOLC0twTnHsWPH9HszOZz3799j7dq1qFChAjjnmDRpUrI0ci3mzZsHe3t7ocW8efO0topM2kG+dOmSmKg8f/68/m4kF5ARLTLD9evX0bBhQ2Fer1q1KkJDQwEg2WIDIjmvXr3Cr7/+KrYz/RI95PXh7NmzYttzybweFhYGgPRID11okRZTpkwB5xw2NjZ48eKFTq+d2yAtlIMutJC/JE/afh8+fJgiaGSQjPRrk5KQkICjR4+KF4YqlQrLli0Tx+XtgmRil6L0jRkzRi/3QRC65q+//oKRkRGKFy+uFf1WGrtJz51Hjx6hW7dusLW1Feb1e/fuASCj55ciL7exY8eK5/nevXszfI30XnzITbr29vaYNWsW2rRpQ2bdNNi6davQwsnJSWscLTfuvH37FtOnTxfj6LTa+MuXL2PAgAEoWbJkMsOQlZUVateuDTc3NwBk0JLj7e2NgQMHIn/+/KKcTU1NUa5cOfz222/w8PAQ0eIy8xKQ6oXu0Gg0GDlyJDjnKFiwIObPn5/m4m+5TkuXLgXnHGZmZpg2bVqy44R+efXqFW7cuIEePXqgdOnSIrLljRs3kqVNy5xFaPPx48cMmRKBRAOEFATmxx9/1HPOCImkv+dr165h0aJFWkFgpL7ugAEDcOPGjWSaajQaqhdpIJWP1Lb269cv1XQSfn5+Wv3hrl27irEG8eV4eXmJOQpTU1MMGDAA48aNw/Tp07F06VLMmzcPixYtwtatW7FlyxZs2LABhw4dwt9//42rV68iIiJC9H/lesn/ffjwYVSsWBEmJiZCP9qZLjlxcXHYsGEDihQpglKlSuHYsWOp9vulPuh///2HEiVKiHYivefOjRs3cOjQIYwcORKjR4/Gvn37cPPmzVTTE4ncv38f69evh729vdiBQKo3w4cPh7Ozc4auQ/VC98jnXb/99lu0b9/+i691+vRpFCpUCMWLFxe7INDYOzkRERHo3r07OOeYP39+uuljY2MRGRkp3pf36dMnG3KZ95g0aRI45yhRokSaizjkv+mNGzdqBc1Lb6E5kTZUN3IuZGAnCIIgiFzAiRMn4OjoKLZJ69q1a6rRuY8dO4amTZuKwfiUKVMQERGR7nfUrFkTnHMRyZoGjMlJSEjAunXrUKRIETF5MnLkyFRfiKxbtw7ly5cXWixfvjzVa0sTJTExMeKc3bt3ax0jPpNZLdLj+vXraNSoEZnXvxC1Wo0pU6bAzMxMvPhetmyZlskkPdIyr3fs2FFE8iPzQtroQovUkF6UzJgxA6ampihUqBBevXqV5evmVkgL5aALLQ4cOADOOf744w+tz+WRvytWrAjOuYgqTu13ymSmX5uUY8eOYfTo0TA3NwfnHN999504ltTELkU4mzFjhtYWrAShVB49eoQqVaqAc44lS5akGHX133//haOjo6gDxYoVw61btwDQMyeryPuYv/76q+iHbt68OVmUw8zi6uqqZdJdu3YtgoOD8fz5c3Ts2JHMukmQ/5alnQk451i6dKnYZlzi6dOnmDt3rjBVt2rVCkFBQQCSl+PevXthbm4uol/a2dmhbt26GDNmDNq1a4eqVasKjWg78+RI9cLa2hoODg7YsWNHMkNbZsqL6oVuiYiIQOvWrcE5R82aNfHo0aNU08p1OnXqFBo2bCjK28XFJTuymyt5+/Ytrl27hr/++gsHDhzAH3/8gV27duH333/HmjVrsHjxYkyfPh2TJ0/G0KFD0b17d3To0AGlS5cW5iwpuuiuXbsApG5SlLaqT/o5kUhISAi2bNkixm4ZKSPJjGJsbAxfX199Z5GQ8ffff2P69OkwNzeHhYWFWMRhZmaGuXPn4syZM1rpqV5knsGDB4NzjhYtWiAqKkrrmLx9ffDgAYYNGyaeR23atMHp06epPHWEu7s7ChUqBM452rVrB29v70xfIz3zOucctra2+Oabb0T/mMy6yXn37h26du0KzjkaN26MJ0+eiGPy3VIkOnXqJNroc+fOaV1Leo+qVqtx584d/PrrrzA1NRVjdikIQ5kyZTBv3rxk30MkBgwZMGAA6tSpo7WAyd7eHmPHjk1W5mmNC6he6I+U3pN+yRgtLCxMGEl/+uknXWQtVxIREYHJkyeD88RdSB8+fJhqWvmOXFLwno4dO2odI7KOWq0WY+7//e9/qaaT+2t27NiBkiVLimePvB0gvgyqGzkXMrATBEEQRC7Az89PDNqHDBmSbFWn1Mny8PAQ299Jkcfi4uLSvLZGo8G9e/dQoEABcM6xadMmvd1HbsDHx0eU78yZM1N9qXHhwgU0b95c62W7RFqd4lOnTolzjhw5ovP85yYyqkV6JDWvV6tWjczrX4C3t7eW0UeKlp4RyLyuW7KiRWrIy15qZ8zMzODn55fla+dmSAvlkBUt4uPjMXr0aHG+ZISQT0bu27dPHN+wYYPO85+bSK9fmxLysg4ODsbOnTthZWWVLEqiPJ1arcbTp0/TjD5KEEpDioIr9W9PnTqF169fY9euXRg7dqzWlvLly5eHh4eHobOcq0jLxP6l4wI3NzdUq1ZNRGhas2aNMFgDwLNnz8ismwLy57n0Yopzjvr162Ps2LFYtGgRxo4di4YNG4p6UadOHezbty/ZHEhYWJhW3bKwsEDz5s3x8OFDoUV4eDj+++8/tGvXThi2aDvzRORarFq1Cps2bYK/v3+qaTIC1Qvd8/fff4vf+MaNG1NNJx9737p1C3369BHnzZkzJxtymjt58eIFfvnlF7Fb0Jf8FS5cGI6Ojvj777+TPcfkujk7O4NzjqFDh6Z4nABcXFxgZGSEwoULp7tQVmrfV6xYIQJkuLq6pppeKmsq88yRtLyCgoJw9+5d9OjRA6VKldKqC9WqVcP8+fNx9+5drXPSinhM9SJlpDLYvXs3rKysUKFCBa3FZ0nLUIpmyTlH+/btcfjwYfrN6xh3d3cULlwYnHO0bdtWa3FmZso4LZPunDlzoNFosHfvXjLrpoG/v79YwNq6dWvcvn072QIPjUaDAQMGgHMOExMTtG3bVmvhgdQ3jYmJwdKlS9GsWbNkz7P69evD0dFRaDFhwoRsvc+cQEBAgFa5NW7cGD/99BP8/PwytZic6oX+kbfFXxIET+rjSjvfdO3aVWd5y41cuHBB/I5nzJiRYrBCeXC8RYsWQaVSwcjICAsWLNA6TmQdtVotdrVJzcAurxebN29G6dKlYWRkBM45fvnllxTTEZmH6kbOhAzsBEEQBJFLcHd3xy+//ILr16+Lz5J2rubMmSMG+cOHDxemz9SQT2JK5x0+fFj3mc9leHh4YN68ecmiZMj1GDFihJb5RCK1QYl07tKlS8UEytWrV/WQ+9xFalpkFIq8rls8PDywbdu2dJ89cpKa1+UvfMm8/uVkRIukE47yl1LSsaTtzPLly6FSqaBSqdCtWzd8+vSJBvrpQFooh5S0yOhkYXBwMEaNGiWeT4sXLxZRj48dO4aePXuKY0ePHtVL/nMTKfVrMzNxq1arsXv3bhGhb/Xq1frIJkFkG/Lf/9SpU7Ve3pYsWRKcc/HCo3z58ujfvz9evnyp0+8lEtGlid3Dw0PoZ2VlhZkzZ4rry9tsHx8fYda1srLSigCYl5FrsWDBAhQuXFiMlaWIhtL/N2vWDLt27UpmOgkNDcWsWbOEjpUrV8bEiRNTfLmVkJCAM2fOoHDhwrCzs6PxuAz5bz+1vmlGoXqhH1xcXGBiYgJra2vcvHlTaxwhIS/fBw8e4Pvvvxd14/vvvxc6UNuQed69eyciSUr905IlS8LBwQEFChSAvb09qlSpgjJlysDR0RENGzZEo0aN0LhxYwwdOhTTp0/HlStXUtxVS67bgQMHYG1tLXQbOXJkiunyOhcvXkSpUqVgYWGBVatWpbkbk0ajgVqtxg8//ADOOQoWLAgfH58U08kJCwvDq1ev4OPjA19fX616Q1qkTmhoKE6fPo1WrVqhdOnSWn3ezp07Y/r06QgPD0+3DKleZI7Xr1+L3TZatWqFc+fOITQ0FB8+fICXlxe+//57LT169uyJc+fOkXldT3h4eGiZ2L28vL74WkeOHBEGrkKFCmm9h4qJicH27dtTNOtSW5+Il5cXihcvLszmw4cPx5kzZ3Du3Dls3bpVy5BetGhRrXenUv/406dP+PHHH0VkV845Bg4ciE2bNiE6OhqxsbFwdXXF6tWrhRZr1qwx0B0rF3d3dzRv3hyzZ89GUFCQMK5/yW+V6oUykcYanz59Qrly5cRiBfm7ECI5Tk5O4tmyfv16rTkPaXfZuLg4uLi4oGnTpiLttWvXDJXlXM2KFStgZGSEFi1a4Pnz5ynu2gEAS5Ysga2trXjWyHeRpXfduoHqRs6DDOwEQRAEkYuQT7gnHdCdPXtWdL6+/vprPH78OEPXfPTokZhcad68eZa3R88rpBXZ/uDBg0KLwYMH4/379wDSn+y9ceMGTExMaOV5Jklvl4HUIPO6fvjSaDG6jLxOE16JyMshK5Mi79+/h6enJ0aPHq31UnDdunW6yGaegLRQDqlpkV5kPiAxStzAgQNFuRcqVAg1a9aEpaWl+Ew+GUmkjbxfK9cio4uggoKC0LdvX2F2SMmMSBA5CXk9WLt2rdiWVvorUqQIBgwYABcXl2Q7C+zZs0fLZJIRpLSPHz/G0qVLERISIvrVeb0vlZqJfcuWLZkaJ3h7e6Nhw4bC1FinTh3cv39ffEdSs2779u2FsSgzC0JzM3ItTp48iQkTJqBgwYJiF47SpUvjp59+gpubm3hBJZ0THx+PRYsWCf3q1q2L33//XbQ/KfXJQkNDUb58+WQL0QndQfVCP0jRh62trVPcnUNuyLl+/ToGDRqkZVSUotwTX46rq6swJFatWhXXr19HdHQ0goODRT81NjZWPKuAlI1S8jqQ1KQrjTvk29BT9NDkhIWFiR20atWqleqOT1I78ObNG9StWxeccxQrVgwhISEppgOAly9fYu3atWjWrBlsbGxQsGBBGBsbo0+fPlq7H5AWn0lISEBYWBicnJzwzTffaPVvCxQogDZt2mDLli2IiIgQdSKteROqF1+Gt7c3SpQoIeYyypQpg1KlSsHe3l5Lk19//RUeHh6i3L7E0Ellnj66MLHv3r1b9Kesra0xb948cUxel+Rm3XHjxunqFnIN3t7eqF27tlY94JyLZ4uZmRlKlSqFvXv3inOkcXN0dDR69+4NU1NTcd7q1asRHByc7HuioqIwffp0GBkZoUOHDtSvTYGk83pf8iyheqFM5G2KFPzN3NwcS5Ys0TpOfEbe/soX5c+ePVsrIExMTAw2bdqEVq1aiTSLFi0yRJbzBGfOnBHv5ZycnLSe5Wq1Gk+ePNEKcMg5x88//6yVhsgaVDdyLmRgJwiCIIhciHwwJ3XUfvvtN5iZmcHW1hZbtmzJ0IDvxYsXGDJkCPLnzw+VSoVJkyZ9sRmYSNQiOjoa//vf/8A5R8WKFXHmzJkMnevp6SlMKoULF8b69etTjJhF6IasmtfJ4J519BF5XR6JlCa9PiMvw6tXr+Ls2bNwcXHBwYMHsW/fPuzZswdOTk5YsWIFVq9ejblz52LMmDEYPXo0+vbti4oVK6Js2bJaUS4nTZokrkllnXFIC2WyceNGbNiwAUDaZajRaHD27FkRSVFadCb99evXD76+vgAoak9mkJf5vXv3cPz48WSfp8bmzZtF+V++fFlfWSSIbEPeTrx79w63b9/G2bNncfHiRbi7u2ullZ4zV65cgZWVFczNzXHgwIFMtQUPHjwQ26Y3adIES5cuFf2pvP4cS83EvmbNmgyVjaRDeHg4Tpw4ga+++kq8pJUieyfVysfHB6NGjdIywBHJf4vPnz+Hl5cX7t+/n2wBmjztli1bhG7169fHjh070ozkFx8fj48fP6JGjRrgnGuZHQjdQPVCfwQEBKBixYowMTHBtm3btKLay59nf/75J7p37y7qRpcuXXD9+nUaR+gId3d3FCpUSBgSnz17BkDbtCPNJ2k0Gq25paQayP//4MGDwkhXuXJlrFq1Clu3biWzbho8f/4cjRo1Egtgnj59Kso76Zxejx49UjVSyeuSk5MTOnXqlKLBkcbnqRMVFYVevXqJMuaco2zZsmjRogWuXLmCFy9eaKVPb0wuQfUi8/j4+OCrr75KZlq3sLBA+/btsXv3bq300dHRuH//Pt68eZPh75CX9Z07d+Dq6prq8bxOUhN7ZneYXbVqFcqWLQsjIyOYmZlh/vz54pj8OSeZdc3MzMA5x+TJk3V2D7mFFy9eYNKkSWjQoIFW3cifPz8GDx4MFxcXkVZ6f/rp0yf069dPpDU3N8fBgwfT/J6jR4+K9NICTiI5WXlOUL3QH1nRJSwsDG/evMHAgQNhY2MDzjlsbW3x77//6jCHuQ/5OG7KlClaQXU6duyIDh06oFKlSlqBjsaMGQM/Pz8A1Obqizlz5ojy/vHHH7Fs2TIcOHAAffr0QZ06dcSxUqVKYdq0aeK8LzWvJz2PTPBUN3IqZGAnCIIgiDxAeHg4qlSpAs45WrRoofUyJDVCQkKwYsUKEXmjXLlyePv2bXZlOdcSHByMUqVKgXOOHj16ZKgTHBgYiFGjRomXXC1atEgWtZ0605kjNjYWz58/F1tGJY02lhXzujQw+vjxIy5evEjbBGeAkJAQeHh4IDIyEoC2HrqKvP7o0SMULFgQ3377rfiM9NBm+PDhwvz8JX9GRkaoVauW1ir1lDR6/Pgxzp49m+auIXmd7NIiJUgLbc6dO4eCBQuiYMGCGYp4FR0djdq1a6N58+b4559/0L9/f0ycOBG///67VrrMmBuJRLy9vdGuXTuYmpriyZMnaaaV2uubN2+K/tOff/6ZYloqZyKnkdpvNq0oiNLuEJaWljh48GCGf/fOzs7o06cPChQoAM458uXLh+bNm4vovXn9pUhKJva+fftmeNG3fCzn5+cnFjoXL14cDx48SPEcqb8sP5/4TGoGz6T14ty5c6LfVL16dWzcuFGY19Mq14cPHwoTw4IFC3ScewKgeqEvwsPDhYmqRYsWePToEaKjowEk9pvUajWmTp0qFi1xztG7d2/cvn07zy9Y0jW6iKor10QeYbpSpUpYs2aNqAdk1k0bHx8fODg4iIV6u3btwqtXrwAAHz58wJ07d9C1a1dwzmFiYoIWLVrg1q1b4nz5/PqQIUO05q5atmyJkSNH4ty5c9i0aRNGjRoltKAdPJLz5MkT2NrawtjYGD/88AP+/fffZDsKpfe7pXqhG0JCQnDjxg0sXLgQc+bMwbJly/Do0SOtiNEajQYajQZnzpwB5xwdOnRIttAgPY4fP462bduCc45p06bhwoULWtcnEpG3Gc2bNxcLnzLKtWvXMGPGDFhYWIBzrjUvLh/LqNVqrF+/Hra2tnj48KGusp+riImJQXR0NI4dO4a9e/fC2dkZnp6e4v0S8LldiI2NxciRI8X7JWtraxw9elSkS/obl7Tw8fFB0aJFYWxsjCtXrmTDXeVNqF7oHqncoqOj4eXlBTc3N7i6uuLBgwe4evUqrl+/jitXruCvv/7CsWPHcOLECWzfvh0LFy7EzJkz0axZMzg6Omq939iyZUua3ylF5Kd5qc/3v2LFClSuXDnVd0YzZ85MtoBW/gz7EiIjI4VfIa9rIe+LTps2TWsRqzSPJP317dsX+/bt0zpf/r70S9iyZYtYGJjXtQAMXzeIzEMGdoIgCILIAzx//hx2dnYwMTHBqlWrAKRtxP3w4QO2bNkiBox2dnZiO1V5ZJnUoEnG1Hn8+DEsLCyQP39+HDp0CEDaA4mXL19i2rRpKF68ODjnKFGiBPz9/ZOdFx8fj+fPn2Pbtm3Ytm0bLl68SNGmUyEmJga7du1Cu3btsGvXLoSHh4tjWTWvS4SHh8POzg6cc0ydOlVEiwNIi6S8e/cOM2fORKtWrbBnzx6EhYWJY7oyrz9+/FjrRfzIkSPFMdIjkXfv3qFcuXLgnMPU1BQqlQr29vawtLREgQIFULJkSZQoUQIlSpRAxYoVUbVqVdSsWRMtW7bE119/jVGjRuH48eNaptKUNPLw8BBRNCZMmICLFy+KY6RFItmhha+vLy5cuIDRo0dj0qRJ+PPPP7XSkxafkW8VPG/ePC2DVGp069YNNjY2ePnyZaovpSTu37+PY8eOYeLEiZg7dy5OnDghjKEAaSHHw8NDRL2dOnWqVvudGjt37hTP/gMHDqSZ1sfHBzdu3MCSJUuwbt06nD9/XityL2lB5ETkz5zBgweLCIp//PFHpn7Tbm5uGD58uJjsL1asmHgpkteNjfIy3rt3bzKzVWZ4+vQpmjZtCs45Bg4cmOZzjp5JX46fnx/atGkjoi/NmjULMTExANIu19DQUPz0009iXH7v3r3synKehuqF7vD19UWZMmXAOUfdunUxZMgQbN68GT/88IMoY+nvl19+gZeXV5ae8aRH6ujCxA4A+/fvF1HjKleujHXr1mntJCFFDyWzbup4eXmJemFlZYVSpUqhe/fuqFatmqiisdYAAMeaSURBVPjc1NQUNWvWFPO4wOcIuwkJCejSpYtW/Zk/f76I3icRHh6OdevWQaVSoXDhwvj777+z9T5zAi9evMC5c+e0PvuS3ynVC/2QUhCd+/fvay16yqiJPTo6GvPnzxdztcbGxihfvjyWL1+e7PuIxJ15pQUZq1atEr/ntJC33+Hh4di/fz+srKxEGy+RdCdnad6ddpdNTnoLyeULZzdu3CjaEGNjYxw5ciTd6wDAmjVrRJ3677//dJh7AqB6oW9CQ0Px/fffo3z58rC2tkb+/PnFboBmZmZilxVpYWBKJlJLS0uUL18eO3bsENdNaTxy4sQJ2Nvbi50K8rpZV37/N2/ehJOTE2rVqoUqVaqgevXqGDBgQIq7wXt5eaFp06Zwdnb+onY3IiICTk5OsLOzE4vNSYvP979z50788MMPsLS0RNGiRVG2bFl06dIFf/75pzD9SwQEBKB///44dOjQF2lx4sQJcM5RoEABPH36NFle8iqGqhvh4eG4cOEC3r17J55h1LdNHzKwEwRBEEQuR6PRwNXVVQwOk67oTEpwcDA2bNiAChUqgHOOwoULY+fOnYiPj082UIyLi0NMTAxu376NK1eu4O7du8miQFCH7DMajQa3bt0Sg/ETJ06kmT4gIACTJ09GyZIlxUICKRqJvNMdEBCAFStWiMju0qre9u3bw8nJSev7icRBtTRBXrduXTg7OwNI3La0YcOGWTavA4nmFcmAqlKp0KhRI6xevVocJy0+ExoaKp43derUEXpcuHBBZ+Z1udmKXlCljpubmzCXlypVCpcvX4a/vz/8/f0RGhqK0NBQBAUFISIiAjExMQgPD0/1pUlKE4sJCQnYt2+fqH8qlQp169bFsmXLRBrSIhF9anH9+nV06dJFGCakP9IiZaKiojB9+nQYGRmhatWquH79eprpg4KCUK9ePVhYWCSLziMv06ioKGzcuBEFChQQL0ukv/r162PFihUpnpeXiYqKwuzZs2FqaorKlSvj0qVLqaaVykyKiMw5T3EyUuKPP/5AjRo1YGtrq9WXatmyJbXfRI5H3o8dNGiQMGKlt3150sjVYWFhuHjxooiUWLZs2UxHAMytpDRWkLe/r169Qnx8fLrPkNjYWEydOhWcczg6OmY6kiWRNpImJ06cEOOMLl26pLgLVEr8888/Yme7mjVrJnvhSKSPvA5QvTAMXl5eWou7jYyMxL/Nzc1RuXJlrX4okBhVT4rWnlHk9UkaxxPaZNXEfu/ePWH+MTY2Ru/evcUxefS+pGbd4cOH6+wecgu+vr7o2bMnSpcurRUpkfPE3We6du2K48ePi/RyM7TULzI2Noa9vT12796tdW15H8Hf3x8NGjSASqXSmq8lkvOlhhuqF7ohqXkzrTQ3b96Eqalppk3sERERePPmDZYsWYLGjRv/H3tnHRdV9v7x58zQiCAqioFiIUqI2N3dratrrGt3rd/VXWt1jV27O9ZaXbtbsRuUblBQseia4fP7g989zjBDSBrn/XrxAuaee+fe89zn5Oc8h9ti0qRJWu/je8fb2xuTJk3C/fv3s3V+cnIyNm7cCENDQxgZGWHHjh25e4PfIWnfT8lXQkJC0K5dO16PqM7Hanunpc8UCgUGDx7MF8sGBAQIH8hjhF/kLnv37uXvvVQvyOVyPt+qr6+PwoULw9jYGGZmZrCwsEDx4sVRrlw51K9fH23atMGePXvUFoprq4POnTvH29BFixblQXm+d7Fu2ryKjY1FcnIykpKSNMaspLLlt99+A2MMxsbGn7VbI5Baj2/ZsoXPYZmbmwtb/D9pnz8sLAzh4eGIioriwRMkJLutWrWK98k/1xZAaqCGNm3agLHUXT+EiP0T+e0bsbGx2LJlCxhjqFOnDnbu3Ik3b95ovReBOkLALhAIBALBd4BCoUDDhg15xFvVrbGlHyC1gTt//nxYW1vzzt+KFSs0Jmbfv38PV1dXdOvWDbVq1VLrlBoYGGDYsGGZDsx8r8TFxaF27dpgLHXLcalxnHYF5rNnzzBs2DAexbtEiRL477//NPIyMjISCxYs4Ol0dXX5QL00ETllyhSeXtgilefPn6NEiRJctPn777+jVq1auSJeB1Lt/Pz5cy4SkgbhReRv7bi7u3N7ODs7Y8aMGShevDgvW9q0aZNj8XrZsmWxatUqrFy5UojYM8DDwwNFixbliwa8vLzU8kbVH1Q721nNv/j4ePj6+mLIkCHp+oYglbywhbu7O1q1agVjY2MekaFEiRLQ0dERk4UZ8PLlSzRr1gyMpW4F7+7uzo9JZZJkg7179/K8VN0CG/iUn+/fv8evv/6qJlq3tLRElSpVYGpqKmyRAS9fvkTTpk3BGEPjxo3VbJG2TSVFHmGMoVWrVmp5qPr36tWr1Wxhbm4OS0tL6Onp8baUsIXga0e1zhgwYAAYY2jWrJnajk1ZxcPDA40aNQJjqVttZ2U3hO+ZnTt3omHDhjxSa2aR+548ecLr6Q0bNmR4jiB7tG7dmvcPQkJCAKQ/iSTV82/evEGTJk14VLgLFy4AELbJLsIvCpaQkBAsWLAALVu2RPny5VG9enXUr18f27dv57svSnz48AErVqzA6NGj1XamySoHDhxAhw4dsHv3bvj7+/PPhf1SURWxt27dGl5eXp91/u7du9G3b18etGT8+PH8mGrdr1AosG3bNj52+/Lly1x7hm+Ft2/f4vz58xg6dChatmyJOnXqoG3btjh06JDa4gLVcqtLly48T21tbXHkyBGeLr16pVOnTmCMoWvXrnn6PN8zwi/yD+k9v337Np+P6NOnD4KCgjI8L20d8PTpU8ybN4+Phfzyyy95ds9fM6qBK6R3WaFQIDw8PEvn+/n5oU6dOmCMYejQoXlyjwJgwYIFfHxpwYIF/PPM2j6q4t8JEybk9W1+k0hlkvCLgmPcuHH8Pe7QoQNOnz6N27dv48qVK7h58yaePXuGp0+fwtXVFYGBgQgODkZoaCjfIUUVbT5z7tw5vsuKtChdiHW1o9oWzUg0q7pbY1aFupJ4vXDhwjz4nrCFOunlY0a2+OGHH7ItmgZSy7O2bdsKW2RCXvoGAISHh2Ps2LG8LCxfvjz69OnD+5TCHukjBOwCgUAgEHzjpKSkIDExEVOmTAFjDLVr18azZ880Gkj3799Hjx49eEejePHiWLNmDV69eqWW7sGDB5g4cSKPCq6jo8Mnf6UoyjKZDDo6Ovj111/V7kOQKmweOXIkGGOoV68enj17piGQvnTpEmrUqAFTU1Muajt+/LjW6Lqenp488nq5cuUwffp0XLhwAdu3b8eYMWP4wO/UqVPz6xG/GlQnCk1NTXlUADs7O7x9+xZA9sTrad/1FStWwMbGhovgVEXTgk+o2sPIyIh37tq1a4cPHz4AyJl4fe3atYiIiAAAsVVwJuTWduZpSZu/y5YtQ6VKlXg9MnHixFz5nm+J3LKFlPf79u3jEabt7Oxw6tQp+Pj44PTp05g5cyb3ixkzZuTmY3wTBAQE8AV+jRs3xtmzZ3nZJKEqmK5fvz5fCJWWv/76i6dzdHTExIkTERoairdv38LFxQULFizgtpg7d24+PN3Xhb+/PypUqMBtcebMGTVbvH//HgcOHOB5LC1gUigUGuXQrl271NL16tULbm5uCAwMxPnz5zF79mxui99//z2fn1QgyF1U27Xz5s3TiBD6OddZu3YtGGOoUqWKmiBRoI63tzcvY3bt2pWlc65cucLPWbt2bR7f4ffHx48fYW9vD8YYhgwZgqSkpHT7GKqL1Dp06ADGUiPxTp48Od06XpA5wi++DFJSUqBUKhESEoKoqCi+E4GENJH75s0bPtbXq1evz4qAf/z4cb7wUOrbb9u2Te0eBKl9PmlBf9u2bfl4VEao5l1ISAg2bNiAQoUKgTGGH3/8kR9TnZBXKBQ4dOgQXF1dc/cBvkESExORkJCgMQ6rWl9IAi25XI4qVaqo7bKZ0bvdsmVLMJa6A4jwgdxF+EXBoCpil8ZzR4wYkaUIk2l3qduwYQOfV9q9e3ee3fPXjpRviYmJWLJkCf755x+1zzNC2tVGV1cXPj4+eXqf3xspKSkIDQ1F9erVwRhDy5Yts5zHV65c4cF87Ozs+I6Dop74fIRfFAyqbaQJEybw9r9q2z8zMrOVqni9Ro0aWLlyJVq1aiXEutlE226NxsbGOHDgQIa2SCteb9SoEf79918R/TsHqObT59hCG0LEnnOy6xuqBAUF4cCBA9xPJN2V1OcQkdi1IwTsAoFAIBB8JwQFBXExZ4MGDbBixQo8evQIe/bswbx582BgYMAFOpaWlti3b5+GMOvChQtwdnaGiYkJXzU4efJkXL16FR8+fIBSqcThw4cxduxYfq1p06bx88WASyqBgYF8ArBu3bqYP38+Ll++jL/++ouL26UfKysr3Lp1K91rzZkzB4ylbiu4f/9+ta2Z3717pxZtWmxPq4mnpycXc8rlcpQpU4ZHFZOiKmUXqZMTEhLChXYGBgZo0KABAgICcnzv3yKq9tDT04ODgwOPDPo5iwmePn0KW1tb7kMbN25Ui7qRnJysJmJXjcYkyqlU8krErsr169f5ApzChQtj4MCBGoumBLkrYu/duzcYY7CxsUFYWJja8ejoaKxatQoymQwymQxbtmzJjdv/pvDy8uLvbPny5dGpUyfs2LEDCxcuxKhRo3jdbWFhgd9++01rPXL+/HmerlatWti+fbvG1pEJCQlYu3YtZDIZLC0t+cSV4BPe3t4oW7YsbwM1bNgQv/32G0aMGIH27durDQwOHz5co00LAHfv3uV1ToUKFTBv3jzExcWppYmLi8O6desgk8lgZmaG06dP59MTCgR5g7b2VHbaPr6+vrxPuHLlyty4tW+SFy9eoF+/ftDX10ePHj0yFPtLkxeHDh3ibdTVq1fn161+NwQFBfEdbjZv3gxAuw+ofqYaYbd169YaEaoFn4fwiy+Dzyn7b9y4AX19fTDG0LNnzyyL2N+9e4ddu3ahf//+fMxRJpNh5syZ2bqPbxkPDw+UKlUKw4cPz3LEUNW8UygU2Lt3LxfrzpkzJ8NzxYS5drL6Pu7evZuP8xUpUgSHDx/O0jUuXrwICwsL6OjoYNGiRTm+X4Emwi8KBinvrl27Bmtr62wvcI2IiEDPnj35ogOlUinqiQw4cOAAjIyMYGlpmelcg7QgZ9GiRdDX14ehoeFn7/ohyBxXV1de5qi2dzLi3r17aN68OQ+uNHr0aK2BrARZQ/hFwaEqkJ08eTIfm924cWO2AoWpkla8vn//fsTGxiIkJEQIp3OANqEuYwwnTpzQmj6teL1hw4a4c+cOUlJSEBAQIITTOSA9Wxw9evSzryVE7Dnnc30jPby9vdGiRQtefjHG4Onpmdu3+80gBOwCgUAgEHxHeHt7o3z58ryRJG3BLEWGLlKkCGrWrAkPDw+Nc0+dOoUyZcrwSUM7Ozs8fvyYbxmvKtJ6//491q9fz9P+/fff+faMXwve3t6oVKkSt4U0QCVFIq5QoQK6devGxbuq299JpKSk8OgATZs25ZNcqgO7ERERGDVqFORyOVq3bp3libDvCQ8PD7WIxCdPnsy1iHqenp6oVasWjyretWtX3LlzJ1eu/a2iag97e3scP35cq/BQGykpKXjx4gVKlSrFy7b+/fvzhR2q5ZRCocDWrVu5z40dOzYvHuerJq9E7ElJSTh37hyPSGNqaorx48eLjnsGfK4tpHpAtT5ISEhAjx49wBjjO6SkHTwODQ1F9+7doaOjg/79++d4cPlbxM/PD82aNVOLnqDalipdujSGDRuGd+/eqZ0n2WLmzJnQ09ODnp4e5s6dy8XraSdlg4KCUL9+fbEALQN8fX3RrFkzFClSBIwx3u6UyvXKlStj7Nix3BZpBQnr16/nE4s//fQTF6+nTRcWFoZ27dqBMYaFCxfmz8MJBF849+/f52JG0dfLmCNHjvA6fNGiRYiPj+fH0tbX/v7+cHBwAGOpu2u5ubkVyD1/y4SFhXF7LFmyJMO0UVFR6NixI4/GV7NmTZw8eTKf7vTbRvjF14NqZF1dXd0si9jTtm1PnjyJkSNH8vbapEmT0k37vRIREcEDKgCfLzCIjIzEtGnToKOjgzp16mgd2xXkHKVSif79+/N+oLQYCsh8QdTvv//Oz9u3b1++3O+3hvCLLxepvpAEodkdT1q8eDGfK8mLYBrfEjdu3ECVKlWgp6eHv//+W2NBvjaGDh3K27bCH3Kf06dP88AWT548AaA5xqRaLzx69Ahdu3bli8Pr16/Pd8URi2qyh/CLgiUvROznzp3ju5XXrFkTe/fu5boEQIh1c4qqXaRFZDt27NCwV1RUFLZs2cLH0ps0aYJbt26pzbkKW+QM1Tzv06cPGEvdnTcr5Vha/Pz81BZ3SOMowhZZJ6u+kZa0Owz98ssvfJcic3Nz7NmzR9Tx6SAE7AKBQCAQfGcEBARg2LBhfNtsKfJtt27dsGbNGr5VrWoD7MKFCyhXrhzvxBcqVAjr16/H1atXeQcEUG/4xsfH488//4RMJoOdnR3u3buXfw/5lRAUFIRx48bB2dkZxsbGkMvlqFixIoYOHYqTJ08iMjISANQiLiQmJiI5ORmxsbEAUicB9fX1MXHixHS/Z+PGjdzW165dy9Nn+lrx8PDgE+g1atTA3r17ER0dnaNr+vj4wNnZGYwxFCpUCF26dFETr4tJ2vRRtYeTk9Nn22PFihXo3bs3DAwMwBjDuHHj+DHVsk2hUGDz5s1gjKFEiRJ49OhRrj7Ht4CqcLpVq1Y5njxKSkrChQsXUK1aNT54Mm7cOCFezwLZscXLly8RFhaGFy9eIDo6Gps2bQJjDMuXL0/3nJkzZ3IRsBi01054eDhWrFiBFi1a8HKGMYbmzZvj77//5otu0g5EJSUloWHDhjwKvjTYnl598OOPP4IxhjZt2gAQA4zaePXqFTZs2IB27dqhRIkS0NHRgaWlJfr27YsjR47wPE5rC6VSyUWJZcuWxevXr7Wmk5g4cSIYY3B2dkZycrKwheC7RXr3Dx06xCetpAiiom2rjmp+LF26lNcVa9euVVssK5U7AQEBGDp0KJ+Ybd68ea4tqhWoM3z4cOjo6GDYsGH4+PEjt5U08RoTE4M7d+6gefPmXEDl6OiIf//9l19DvO/ZQ/jF14k2EXuXLl14+ykjVNtMr1+/5rsMMcawePHiPLvnrx0p31JSUvDff/8hNjY2S5PcJ0+e5H61a9euvL7N75L9+/fzPJ4+fTr/PDP7nDhxgp/XrVu3vL7NbxIpj4VffNlkt40kzX9s27YNhQoVgqGhIVxdXXPz1r45IiMjMW7cODDG4ODgkOkuQQ8fPuRzFdbW1ggNDRVt2lzmyJEjfA5Vmz1U8/vu3bvo1KkTD5BhZ2eHN2/eABDjfzlB+EXBk5si9kuXLvHzLSws1OY0VNsAqsJpY2NjNd2CIHNU7XLt2jWuE5FITEzEnj17uC0sLS1x4MABfjw9WxgYGOD58+d5/wDfEKq2OHToEAIDA7N9rcDAQG4LU1NT3q4SdUzWycw3MuLFixdYuHAhD9hXuXJl7Nq1K8sB+75HhIBdIBAIBILvkPj4eLx9+xZXr17FvXv3NDpzqo3X+/fvo1atWpDL5XySSfXH1NQUgwYN4mJr1c69h4cHGjZsCJlMhu3bt4uOvxaSkpIQFxeHZ8+ewdPTUyNCumrj+Pz58/jpp5/g7OwMOzs79OjRA6NGjYKVlRWaNGnCB7gkpE7jxYsX+STj1q1b8/6hvlI8PT1hYWEBxhgqVaqECxcuZHsVrBCv5xxVe1hbW+PatWuZ5pvq8cDAQKxZs4aLq3788Ud+TLWMUygUOH78uNqAi0AdT09PlChRgke5ePXqVbauI4nXpcjrQrz++WTVFrGxsdi0aRMqVqwIS0tLFC1aFLVr10aHDh1QrFgxDBgwgO9MAKT6jlTfLF++HHK5HDo6Orh161a+PNfXzL1793D79m24uLggKSmJ1xva6o+YmBgeVb1Dhw7pppMEdD///DOPcinInJCQEPj5+fHdayS01R1KpRKdOnUCYwx16tRBfHy81nSSX8ydOxeMMTRu3Dhvbl4gKABU3/ms/C3h7e2N0qVLgzEGKysruLu75+2NfsWolvHSAjHGGMaMGYODBw8iKSkJwcHBuHbtGho3boyiRYvyiDxS+0j0G3KfnTt3clusXr0aISEh/Ji/vz/mzJkDR0dHPuHapEkTHD9+nKcRNskZwi++TlRF7JI9stMvTEhIwMKFCyGTyVCjRg0hTsyEESNGoESJEnj48GGW0n/48AFly5YFYwyjR48GIPwlt5DyccKECZDL5ahcuTJcXFzUjqXHzZs3+WL0ihUrYvfu3Vk6T6Ad4RffHqptA0l4yhjD/fv3C/Cuvg5CQ0NRt25dMJa6Q+/z58/5uLdqUKSQkBC+MJ8xhpkzZxbULX/ThIeHw87ODgYGBtiyZYvWXZWB1IjS9evX5/MW1apV44FKhLAw5wi/KHjSE7Fv2rTps0TsXl5eaNOmDZ9Psre35/W/UqlUq8/9/PzQsmVLvlhQCgInyBqZlT3+/v7o1asX3x2tevXqfM47rS38/f15QIBx48bxHWgFWSOn9YCqLc6cOYNKlSrxPrwI4vb5ZMceL1++xKJFi/jOwTY2NtixY4fanKxAEyFgFwgEAoFAwEkronr16hVGjBgBY2NjvnLZysoKv/zyC2bNmoWff/6ZRwjo0KED3r17B0BddL1kyRI4Ojpmur2wQJ20Hb79+/dDJpNBR0dHbQGB9L+VlRXOnDmjFqUJAN6+fYvhw4fz9EKkmzGenp7Q19eHtbU1XFxcsjWhIcTruYenpyfkcjmcnZ3h5+eXpXNU8zc5ORn79u3jg8GzZs3K9HyxdZd2PD09wRhDixYtEB8f/9nnC/F67pGeLaR3PyYmBr/++qtaXWFoaAjGGPT19cEYQ4UKFXDlyhVeZ0jvva+vL4+Ob2lpKbZrzoDsluWjRo0CYwx169bl7SZt+Pv7w9LSEowxTJgwIbu3+V2Qni0yK8+nTZvGJwpfvnyZbrqwsDA4OTmBMYYBAwbk6F4FgoImO2WXQqFAQkICXFxcsHbtWl42mZqa4qefftKIhpz2O773tq/qRMf//vc/tfq5SpUqKFq0KORyOf+sSJEifNes3Jy0AkQ7VxVVW9SrVw99+vRBz549YWpqyttNhQoVws8//4zr16/z83L6Pks2/d6FKQXpF4LsI5UhT58+hb+/P4Ds+YSLiwvfQnvPnj25eo/fEmFhYWjXrh0YYxg0aFCGuw9Idvj48SNfZNanTx+1Y4Kck5CQADs7OzDG0K5duyydc+/ePdSoUQMymQwymQxDhgzJ8Y6P3zPCL74e0i6Klf5PSUlRi6avyoEDB1CmTBnIZDLY29tn2E8XfMLPzw9lypQBYwz169fHnj171AIdnT59mo9FSeWXr68vAOELuU1UVBT69u0LxhgaNmwIV1dXHqQCSBW0bdy4EQYGBjxYmJ2dHQICAgAIe+Qmwi8KnvRE7KtWrcpSHkt1RUxMDM6ePcvrf319/XQXEfr7+2PmzJk4efJkLj6JQLJFbGwsLl++jA4dOnBb3Lx5E4B2WyxfvjzTXRAEuYfq/OCrV68wduxYNGjQAIyl7iyoGshHkHcI8Xr2EQJ2gUAgEAgEGkgdywsXLnCBQsmSJfHLL7/Azc1NLe39+/f5ds59+/bVuAYAPpgsJsyzx6lTp/jkrb6+Pho0aIA9e/Zgx44dmD17NipWrAjGGGxtbXH8+HG+jfPLly+xfv16vrq2SJEiCAoKKuCn+fIJCgrCxYsX1aIxZBUhXs99QkND4eXlxfPuc8uRqKgozJw5Ezo6OnB0dBRb1uWAsLAwxMTEfPZ5Qrye+2Rki9WrV/MBYUdHR0ycOBFeXl64du0atm7diipVqvA6Y+/evQgODgYAuLm5oXfv3rxOr1OnDt9dRZB7rF27lgs/JUGctPBPajuFhYVh8uTJKFSoEExMTHD06FEAoh2V2+zYsQOMMZiYmODixYsAoLGo4+PHj1i1ahVKliwJxhjfqlbYQvA1Ir3fz549w44dO7B27Vps2rQJK1euxO+//44FCxbgjz/+wIQJEzB69GhMmjQJ/fv3R9OmTVGvXj3o6+tzYa+5uTnatWuXYbvq2bNnfBHz9y44VX3+DRs2oFmzZho7mxUvXhwODg48GnHa6FWf249QTX/p0iUuihC2+PT8c+fOhZmZmYYtjIyMUKZMGRw4cEAtOjuQ2sfObp8uLCwMPXv2xOPHjzXu5XukoP1CkD1U8zAn7SGpbzhw4ECN6wpSSUxMxIoVK2BiYoIKFSrgxIkTmeaT1NeQy+W83SrIPZKTk1GnTh21AAlpo4iq2uju3buoV68eDAwM+IIpadt50Z/IHsIvvkxyUobHxcUhOjoaixcvhoODAxf1Tp8+XWt6Vd8RdccnvLy8UKFCBT7GYWVlhRYtWqBOnTowNzfnbasmTZrg8OHDeVIGCXuk4u/vD2trazCWunvm2LFjsX37dowaNYpHh5aCjbRs2TLDhTjZRdgilS/BL753VPt8EyZMAGMMv/76a5bPV32Xg4KC0LNnTzDGULZsWTx9+lTrOdoC/ghyjmpeBgcHc1tYW1tr6EYkVBfwCPKGtOXWvXv3MHz4cN7fln7s7e3Rv39/PhcoyBuEeD1nCAG7QCAQCAQCrSQmJvJBeQsLCyxatIhHvZA6KlLn88yZMzx60r59+/g1Mtt+XpAxKSkpePXqFVq1agWZTAZ9fX2MGDFCY7ut4OBgHgHIysoKjRo1woQJE1CrVi2+Raq5uTk2b94MQEySfA6f894K8Xreo/ruPnr0COHh4Vk679y5c7yjvmXLlry6PYEWhHg9f3n06BGvjx0cHLBz506NCfWwsDBeZ1hYWKBq1apo06YNihYtyiMxFCtWTKtQSJA1MhOkderUied/2gHeoKAg/O9//4OVlRUYS91iXlqYJvh8MrNFly5duC3SCnFfvXqFTZs2oWrVqlxEJ3YUEnztXLt2Dbq6uhoi0c/5sbGxwYwZMzKsy93c3NCnTx8YGRnhyZMnAIRYV/X5g4ODceLECYwePRpDhgzBpEmTcPz4cbx69QqAept38eLF0NXVxZ49e7JcJ6umu3DhAho2bAhjY2M+wSts8en5T58+jUWLFqFOnTpo06YNhgwZgt27d+PFixca5+3btw86OjrYvXt3toTTs2bN4gvLnz17pnEv3yP56ReqHDt2DH/88Qc8PT25wEG0efMeyYZRUVF8UW23bt0AiPxPj9evX6N9+/ZgjKFBgwYa7VVVH3rw4AFv2zLG8N9//+X37X4XSHncq1cvtfHZtO/w9evXYW9vz/vYtra2vF/3vZf9OUX4xZeFav3s5+eHR48e4fHjx7h9+zYuX76MCxcu4Pjx4zhw4AAOHDiArVu3YunSpVi0aBEmT56Mxo0bo2bNmmCMcfH6Dz/8oPX60viWqiBO1B+f8Pf3R+fOnfl8kJSf0u8ePXrgxIkTaj6iVCpzLKpSHZ8X9kjF29sbtra2vOxJa4uGDRti1qxZiI2N5eekpKTkaIeOK1euYNmyZWrXExScXwg+oZq3Z86cUSvXP3eu+vHjx6hduzYYYxg5ciTi4+PFu15A3Lt3D46OjpDL5Zg0aRKSk5OFLfKRtL6zf/9+TJo0CTo6OmrBGUqVKoXff/8dT58+5e0ooRHJG4R4PecIAbtAIBAIBAKt3L9/HyVLloRcLke/fv14xLa0pKSkICQkhE8+zZs3L5/v9NvG19cXxYoV41vdxcXFAfg0UCt1/oOCgngk9rJly/LoiJJ4fe3atVkW+wrUkTpzSqUy3RXjQryev2zatAmMMVy+fDnDdKr5bm9vrxbhTXTSc45U/igUCq07Fgjxev7z33//cWHi2LFjNSJ7S789PT1Rrlw5MMbg7OzMRe9FihRBlSpV8OjRIwDCT7KDauTuK1euANBc+BcWFsajLhUtWhTTpk3DihUrsGrVKtjZ2fFosIULFxbR13OAlGfR0dEa25lKtnj16hVatGjBBep//PEH9uzZg4MHD6Jjx458u2FjY2OsXLlS7boCwdfIlClT+NaxBgYGsLKyQoUKFVCpUiVUqVIFTk5OqFGjBmrWrInmzZujVatWaNGiBQYMGIDff/8dGzZswKtXrzQW1Kri6uqKn3/+mU8Im5ubC7Hu/5OVPkHaNAMGDOB1wv79+zO9hurxc+fOoXPnznw3LyGc/kTaslxbfkhppDzt378/30UlK7ZIi7e3N9/23MzMTNji/8kPv1Dl4cOH6Ny5M28H//XXXwgLCwMgbJGXqObtypUr+XjVwoULC/Cuvg4CAgL4gsqmTZvCxcVFYxLcxcUFP/30E8/XwYMHF8zNfsNI5czKlSuhq6uL6tWr49GjRxrlT0JCAg4ePKg2Lmtvb8/HZEU5kzsIv/jy+Ouvv9CwYUO1voaU91ldQGtmZobRo0dr7IwGfBKvx8XFoXz58mo7AYtx90+8ffsWZ8+exZAhQ9CoUSNYW1ujd+/eWLFiBWJjY9XySqFQ4IcffsCgQYOyvVjfw8MDJUqUwIABA/hnwh6phISE4Pfff0fTpk1hZWWFYsWKoU2bNli4cCH8/Pz4O52SkgKlUonZs2dj3LhxGjtAZYU3b96gXr16YIxhzJgx/HNhi1Ty2y88PT1x4cKFDBe6fW9oa/+ofubl5QWlUpnpmGt8fDxGjRoFxhiqVKmCiIiITL87JSUl27s7f28kJCTA29sbQOZ5FR8fj4EDB/KFmjlZgCPIGmnLkffv3+PQoUPo168fZDIZH/szMTGBtbU1tm7divv376udk3acS/hG7iDE67mDELALBAKBQCDQyvr16/ng4aVLlzJMGx0dzSMK9OrVK5/u8Pvg9OnTfKWsFEE9bTRdhUKBlJQUTJ06FXK5HGPGjMG5c+cwY8YMLFmyBO7u7gVx698UcXFx2Lx5M44fP8474lLHTojX85d3797xKAv9+vXj2y+nR0pKCsLDw7kIsXfv3vxzQc6Jjo7G/Pnz8e+//6oNUgnxesGwfPlyLhaUROhpB4iVSiXi4uLQo0cPMMbw559/4sGDB9iyZQuuXr3KB37FoFX2iY2NhZWVFSwtLbkgKi1v375Fr169+OKBtD8GBgYYNWoU3/1GkD3i4+PRpEkTVKxYMd1JwNevX6Nbt27pTqLr6uqiY8eOXGgoEHztTJo0ib/fM2bMwIsXLxAZGYn3798jMjIScXFxiIuLQ1JSElJSUjT6HkD67ShXV1eMGDGCX19aYCvEutpRrWvT5qnq/0OGDOF9wozEutrE66qR84Ut0idtxL30yKot0sPPzw9t27YVtsiA3PaLtHh5eWHq1Kk8MlmJEiXQvHlzPm4ibJE+acU9ElJ9AaSOV0nHVMUiEhs3bkS5cuUgk8lQvHhxvlhTkDHe3t6wtLTkApE+ffrg4MGD2Lt3LyZPnsx30GSMoV27dmLHjTzkxYsXcHBwAGMMTZo0wX///QcfHx+8e/cO27dvx88//6wW9bBZs2Y88rq2NlV2EONZqQi/+HL4+PEjGjVqBMYYr1/Nzc3VhOkmJiYwNDSEhYUFSpUqhZIlS6Jy5cqoXbs2OnTogDVr1uDcuXP8mqrvuap4XRLpCqFu1oiJiUn3WGBgIA+c1KNHj88W63p6esLJyUnYIwOkfHjz5g0iIiI0giNJx8PCwvj8avfu3T/bFkqlEtu2beO2GDdunMZ3CD6Rl37h5+eHkiVLgjGGqVOn4urVq/yYsIV2Jk+ejHr16vH/08snqZ949epVvkjq4MGDGaaVSBsQTsx7aJKYmIgffvgBLVu2zDStlI9HjhyBnp4e5HJ5psHGBNknrU94e3vj2LFjcHBwQIkSJdTmMdq3b49Vq1ZpzElpG2eJjIzExo0b4eXlBUC0kdNDyjvVOlw1P4V4PfcQAnaBQCAQCARaWbVqFWQyGRwcHPDhwwcolUqNRrLUQAsLC+ORXPv06VMQt/vNcvbsWb6l3T///JNhWmmQSpsNRIc8Z/z111+QyWSoXr069u7di6ioKACpHUUhXs9fkpKSsHbtWhQvXhzlypXD0aNH032/pfy/evUq78BPmDAhP2/3m2fy5Mk8otjevXv5LhHnz59HtWrVhHg9n9m4cSMYY5DL5bhx40aGaefOnQu5XI5Zs2ZpHBN1Rs64c+cOSpcuDXNzc2zdulVDqKBaNzx79gxHjhzB4sWLUbhwYchkMujo6KBp06a4detWft/6N8ezZ8/g4OAAAwMDrFmzJt2dVADg+vXrOHjwIP766y8ULlwYenp6YIzB2toaJ06cyMe7FgjyBtWJiAkTJvC20YYNG/jnquWTtnZsRm3btOL1sWPH4vnz50KsmwNU649BgwbxSEraxLoZiddnz56N9+/fi+jfOUCbLQoVKiRE7AXA5/hFekRGRuLs2bMoXbo03y3CzMwMrq6uAEQ/XhsZvZ+qxxISEngky48fP8LLywuurq5YunQpfvjhBz6+xRjDiBEjsvTdom+Siq+vL2rVqsUjGevo6PD2qvTTqVMnXLt2jQe6yA1U81/YIhUfHx9YWVnx3U1MTU35zqTSj4ODAyZOnIh3797l+PskW6rujirKqVQKyi8Emri7u/Pd5EqUKIEjR47gwYMHePjwIQICAuDv7w8PDw+8fPkS796947+Tk5M1dnVUrVdUxet169blfidFGRVCXU3S6ydoy59bt25x/+nZs2eWxbqenp5wdHQEYwzFihUT9kiHz7WFtADkc2whoVAosHXrVt7OErZQJz/8IiUlBXv37uWLEeRyOZydnbF06dJ07+N759atW7y+PnDgQIZppbzbv38/P0ebgF21vXrx4kXMnTsX9erVQ6dOnTBp0iT4+voCEP3vtFy8eJHn65EjRzJMK9ni77//5udIO9FqI7M+hPCL9FHNm7CwMKxatQrOzs4oXLgwz3uZTIZBgwapje8C2vNdul50dDTWrVuHEiVKQEdHh4+FCL9QRzWQ4eLFi/H8+XO14zkVrwvfUEcI2AUCgUAgEGjlr7/+AmMMpUuXxosXLzSOqzaqJKGCkZER9u7dm5+3+c0TFRWFWrVqgTGGkSNHIjY2ViONJMaSIu/WqFFDazpB9vHz84OpqSnP34MHD+Lx48ca4vW7d+/yc763jkV+8vr1a3Tq1AmMMdSvX18tKq4U5U0qo3x8fHgUoGLFivEIb2LiNXfw9vbmUZWcnJywa9cuHDt2jEdeL1KkCMaPHy/E6/lEYGAgqlWrBplMhkWLFqUr1o2JiUH37t3BGEO3bt2EP+QyUVFRPPJenTp1+AAg8KnskSZoo6KicOvWLTRo0IBPuDs6OuL06dMFcu/fGjExMRg3bhwYY6hVqxaPugd8qi8kWyiVSrx69QotWrTgA8BFihTBnj17Cur2BYJcR3UiYsqUKfxd37hxY46igrq6uqpFHB09ejTi4+MBpAqLhFg3+6ja5ccff+R5fPPmTf55RuL1X3/9lR/z8vIStsgB6dlCNapeVhEi9pyRFb/ICCmfg4KC0KBBA97XZ4whODg4T+75W2HLli0YPHgwunfvjvbt26NNmzZo0KAB6tSpgzp16qBq1aooX748qlSpwiMjGxsbq4lJdXR0MGTIEH5Nbe+9r68v/vzzT/6/GF9JJTQ0FPPmzeNjHFJ+lipVCpMmTUJoaKhG327NmjWfLYKTSE5Oxrlz5zB//nz+mbBFKn5+fujYsSPfbUb6MTU1xbBhw3DlyhW+wF9i79692d5hSxJ4jRo1in8mbJFKfvuFQqEQERXTwcPDA0WLFuVR7318fNSOp7fjTXrvsqp4XYqoX6xYMUyYMAELFy4UQt0cItng9u3bXKzbq1evdHevk/Dw8OA7UVhaWuLvv//G8uXLhT1yQHZtkRYhYs85ObVFfHw8vL29+W5Rki1UdygQfCIwMBC9evWCrq4uBgwYkKW+2NKlS3l9n3Y3J9W6Zd26dShUqJBaO00qtyQRqpgT+YSPjw86d+4MXV1dDBkyRKsuBFAvS6ZNm8bz9fr16xle/+PHj3j48CEWL16MhQsX4vfff8fNmzfx5s0bAMIW6ZGcnIxXr15hwoQJaNy4sdq7XKFCBXTt2hVXrlzhY7BA+nmpKl5fs2YN7O3t1eZAxLiUdiIiIvjOHOPHj4eHhwcAIDw8HAsXLsxx5HXhG58QAnaBQCAQCARacXV1hbW1NczMzHDo0CG1BpLqZOHKlSt59PWKFSvi/v37BXG73yzx8fGYNGkSF04/fvxY7biqLZo2bcpFpELAnvt4enqiePHiYCx1a1pra2s18bqIvJ6/SEJdxhiaNWuGO3fuIDo6Wi2Nl5cXBg0axAXWDg4OvNMnyD1UfaNSpUooXbo0H/QQkdfzl6ioKC7iqV27tsbiDolnz57Bzs4OjDH07t1bDErlAcHBwXwQsGnTprh+/TrfvUPCz88Pf/zxBy/LDAwMULduXRw7dqyA7vrbJDg4GDVq1OD1xa1btzTqixcvXmDPnj180aAkeNi+fXsB3bVAkHeolvnSTio5EbE/evRITbw+adIkjb6IqlhXdVLkexqEzwmqdunSpQvq16+vdULkxIkTfJEnYwwLFizgxyS7C1vkDFVbdO/eHTY2NnBzc8vWtfz8/NCmTRsuYpeuI9plWSOrfpEW1Xf95MmTvO5njKFz584a7TXBJ9asWcNFOJ/7Y2BgAB0dHfzwww9Yu3Ytv6a29z0wMJBH2R09ejT/XIyzpJKcnIyEhAScO3cOJ0+exPXr1zUiwUl59dNPP2U7kmtycjKuXr3K+zTCFpq8f/8enp6eWL9+PTZs2ICTJ0/i4cOHammkMue3334DYww9evTIlnD6wIED3J+EIFGT/PSL8+fPw8HBAUuXLlUb7xK2SMXT05OLfFq0aAFvb+9sXUeq52NjY9XE65MmTeLCeCHUzTmqYl0DAwMwxtCvXz+8f/9ea3oPDw8eed3S0hIrVqzA69evAQh75BRVW+jr64Ox1J2WIyIiPus6QsSecz7XLyTS5u/SpUtRqVIlHll//PjxeXbPXzMHDhzgC4qXLFmChIQEfkwKPiJx48YNlCpVis+Xp7ewYPXq1bzd1KNHD8yZMwdz585Fw4YNwRhDtWrVPnuByPfAP//8wxcfL1u2TM0WSqVSrS996tQpnsctW7ZU201F1WYfP37E1atXUbNmTZQpU0atj1iqVCm0aNECXl5eAMRYSFouXbqESZMm8bkj6cfW1hY//PADPD09ebmU0a4Sqp9L4nVpIZpcLke9evVEcIVMGD9+vNq495UrV7B48eLPFq8L38gYIWAXCAQCgUCglffv36NLly5gjKFJkyZwc3NT66wAUBNdMcawatWqArrbb5vg4GA1oe6DBw80hFcDBw4EYwz6+vqYNm0aADEglRd4enrySDIymQwGBgbo0KEDHj16xNOIfM8/vL29UbJkST7oNHz4cFy8eBFHjhzBjh07UKVKFb6VmoWFBdzd3QEIgU5ekNY3jI2NMXLkSPj7+xf0rX13BAYGonLlyrzOuHHjBj58+AAgdYDq6dOnPFqDiYlJpltCCrKPj48PH1SvVKkSevbsiZ07d+Kvv/7C77//DktLSz5Ab2Jigp49e+LixYsFfdvfJD4+PjwKqK2tLQYPHoyTJ0/in3/+wcaNG1GzZk1uKyMjI9SpU0frNrQCwbdCbonYP3z4gOnTp/Pzq1SpwhfcKhQKtTaXqnBaJpPxQXhB1lC1S9qIrgDw5s0bDBs2TG1CS4rympiYqNZHUbUFYyzbwqLvFVVbhISEZLv/l5KSgrCwMLRq1QqMpUbtFds2fx6Z+UVaVMukAwcOoH79+twPBgwYIMTrmeDj48MXhxsaGqJWrVro378/Ro4ciaFDh+Lnn3/GjBkz8Ouvv2L27Nn466+/sG7dOuzcuROPHj3KMBKvRGBgoNrORIwxjB07lh8X4y0Z50HasY6bN29CT0/vs8W6knjdyclJ2CKbpLXF/fv3eT5mRzgtBIkZkx9+AaTu3NGrVy/uF926dcPu3buzdB/fEzkVsUv5mFa8PnXqVB71Ekgtq4Rf5BzJR27evAkTExN07twZQUFBGunc3d3VxOtr1qxRi9Cb1h6qYl1hj6yhagsjIyNUq1ZNYzFOVhB1Rs7Jql9kxO3bt3kQLGNjY/Tt2zfbO7F8i6i+i4sXL+b9sjVr1mhduHH79m107twZhoaGYIzhxx9/1NqfOHbsGL/WwoUL8fbtW37M1dUV1atXh4mJCU6dOpU3D/YVomqLP//8U03zERYWppH+7NmzcHBwgEwmg46ODn799VetAur79+9j2rRpajue6erqonr16qhQoQKfTyxVqpSYu9XC1KlTeb6ZmprC0tISCxcu1FgwmxnpRV6Xy+VwcXFBdHS0WnAFIWL/hOr7KAWbZIyhYcOG/L22sbHB9u3bP0u8LnxDO0LALhAIBAKBIF38/f1hZWUFxlIjuU6ePBkHDx7EqlWr0LZtW776nDGG2bNnF/TtftOoCnUdHBzw448/YteuXVi0aBGaNWvG7WBpaYnTp08X9O1+03h4ePBJ26JFi2LevHn82PfQgfjS8PHxQc2aNbkPyOVyjWhvFhYWuH37NgBho7xE1TdKliyJZcuW8fwWg+P5i7e3NxfrVq5cGa1atcKCBQvQuXNnviDKyMgIvXv3FqK1PMbX1xdNmzbli2m0lVWWlpZYu3atsEUe4+vri/r16/P2q7YIomZmZpg+fbrarioCwbdKbonYQ0NDMWnSJNSuXRuMMVhbW+PGjRsAUttdaYXTjRo1AmMMO3bsEO2yzySz/AoLC8Ps2bN55OKyZcvi6tWr/FxVW/j7+6N+/frQ0dHB5cuX8/K2v0my++6mbRNHRkZi2rRpfDcjU1NTPH36NDdu8bshq7ZQTXfw4EE18frAgQOFeD2LuLu788nU1q1bIzg4OFvX0dY/VBWvm5ubo3fv3kJ4lQNUo4d+jlg3rXi9ePHiGDFihLBFDpBscevWrWwLpwEhSMwNsusXEnFxcfj333/RvXt3tQAOkyZN4mmELVLJqYg9KSkJlSpV4uMnbdu2RUBAAD8mIfmFNMaiutBGkHUk3/Dz8+MLKlUJCwvjuzDL5XL07duXR33VZg9tC58EWUOyhbu7O65du5ata6SkpECpVKrVGSNHjlQ7LsiczPwiPZKTk3Hp0iXeljIxMcHo0aPVdkoVpKLaR/vll194/2zo0KHYvn07IiIi4Obmhu3bt8PW1pZHB1fdhVx6n5VKJZKTk/lOK8OHD0dMTAy/fkpKCiIjI/kOXPPnz8/fh/3CUbXFjBkzuC369euHtWvXwsfHB2fOnMGSJUtgZGTEy/mWLVsiPj4egPo449mzZ9GmTRtusypVqmDIkCG4f/8+3r9/j7dv3+LUqVNo2bIlGGNwdHQUUfG1MHLkSFhYWGDDhg3p7vSUERmJ11XrGF9fXx7oQojY1VHNA1URO2MM5cuXx65duzSCTqZFtd4VvpE+QsAuEAgEAoEgQ7y9vWFjY6MmuNLV1eWrARlT35pckHd4e3vDzs5OzRbSYLuenh5KlSqFHTt2FPRtfhd4eHjwSduaNWti3759YsK7AAkNDcUvv/zChVPST+XKldGxY0ceBVwMzuY9qr7h5OQkfKMA8fHxQe3atXlUElWxromJCfr06cMFhoK85dWrV9i1axf69u0Le3t7mJqaomrVqujRowcWLlyYrS3kBdkjLCwM69atQ+fOnWFlZQVdXV1YWFigWbNm+Pnnn+Hh4aG25alA8K2jOgg/ZcoUXk/8888/n3V+fHw87t69y3fwMjAw4IsH07a/goODcebMGbUoWIKcI9kiISEBjx8/Rrdu3bgtpEU5aW0REhKCR48eiXIvH9AWiXfNmjWoVKkS9PX11cZX/ve//xXQXX67ZBR5fdCgQaK/8pl4eHhwUWLTpk25KFGhUPByRvXvrPTD04rX//zzTwQHB2Pnzp1CrJsDVMW6UhnTsWNHtYi5qqQVr1tYWGDv3r2IiorCtm3bhC1ygDZbdO7cWYjYC4DP9QttpKSkYNasWShevDi3xdChQ/Pqlr9aVEXsrVq1+mwR+4IFC9CxY0cYGBhALpdj6tSp/JjqgluFQoEtW7bwuv3SpUu59gzfE2nLkLT///333+jZsycPCqBa/qRnj2LFiuH+/ft5e+PfIJnZIqvnhoaGYuTIkbycGjJkSK7d4/fC59pCakvVqFEDjDEULlwYo0aNEuL1DFAdl5o1a5baPIalpSUKFSqkNufn5OTEFzSlDb7w/v17lC9fHowx7Nq1S+t3tGzZErq6uti/f38eP9nXh2o+zZ49Gzo6OnyBWLFixTSChzVt2pSL11XHlY4cOQJnZ2c+1tGgQQOcO3cO7969A/DJbkqlEg8fPkT16tVRqFAhbNu2DYBo0wLqtpAWa0h8bv5ERUVhyZIlPLCVrq4uD5yg6kOquzUWLVoUbm5u2fq+bxFVe4wfP577QOvWrXH37l1+TFteqX4mfCNjhIBdIBAIBAJBpgQHB+OXX35Bw4YNoauri8KFC8PS0hJDhgzBgQMHCvr2viuCg4MxdepUvn2mFKWtX79+OHbsWEHf3neF6iC8s7Mztm/frtGRFOQfSUlJiImJwaFDh7Bv3z7s2LEDPj4+XIwgInzmH6q+UaNGDezZswdxcXEFfVvfJS9evMDixYvRvHlzmJiYoGTJkqhUqRI2bNiQrS1oBTknLi4Ob9680agvRBmV/7x+/RqBgYF8K1TJBsIWgu8N1UH4CRMmgDGGW7duZetaQUFB6Nq1KxhjsLOzg6enp9Z03/qA+5dAUFAQX1BQs2ZN+Pr6FvQtCQDcuXMHCxYsQPHixflEvBS5bNKkSTh48GBB3+I3hxCv5w05jayrSmBgILeLubk5/vjjD7x8+RJAqv22bNkixLo5QFWsq7pQLW2bN63gysLCArt37+Z9eUmQKGyRfbTZYuXKlWrRi7OCELHnnKz6hTZU285jx47lOxEyxnD8+PE8u+evFU9PT1hYWICx1B1+P2ehAJAanGH58uU8SuWgQYP4MVVbKBQK7N27F8uWLcu1exekolquBAQEYPXq1bwd++OPP/Jjae1x7Ngx7NmzJ1/v9XtGyv/k5GTExsZi+fLlaNu2LQ+AJf1kN6q7IHOEeD37qJYfW7ZsQYcOHdTeWynScZcuXRAZGQlAe5snIiIC5cqVg0wmw+HDhwGo9wdXrlzJBfJicY12VG2xc+dO9OzZU8MWzs7OGDNmDBISEgCoi9dPnToFR0dHXva0bt0ar169Svf7oqOj0apVKzDG0Lt377x7sK8Q1Xc3J/MVISEh6NKlC+87NGzYEOHh4QDUF54DqSL29u3bc1t/L5G/s4K28XNpLC8rc63CNzJHCNgFAoFAIBBkiaSkJCQlJeHBgwd4/vw5wsLCeOcEEAPk+UlCQgJiYmJw7tw5XLx4Eb6+vvjw4UNB39Z3iaenJywtLcEYQ/PmzTPdJkpQMIjyKf/x9PRE8eLFwRjDgAEDxOKOAkSpVCIlJQXPnj1DcHCwiHhbQKQXsUeIpfOf9OoEYQvB94zqIHxQUBAAdV9RKBRZ3pr24sWLqFChAgoVKoSlS5cCEP6VmyQkJGhEGdNGSkoKTp06BUtLS5iZmWHDhg0AhC3yg7RRp9+9ewcvLy8MGDAAtra2ahO/NjY2mDBhgsaiEbFNc+4gxOt5S26I2P38/PhOaqampliyZAmPPiaRVqw7ZsyY3HqE7wbJF+7cuYNZs2Zp2EqhUODChQuoXr06GGMoUqQID1ii6kdpbTF69Oj8e4hvBFVb/Pjjj9neFS05OTldvxB1fdbIzC8y4uPHj/j333+5SNHExASzZ8/mO0AK1PH09IRcLkfVqlWznEeqfZGkpCTs37+fi6anT5+e6fmiLZW7qNojOTkZ+/bt4/b49ddfMz1flEt5Q9rxrdevX+P333/ngjepjihXrhyaNGmCixcv8mjJgtxFiNdzjmq5HRERgcuXL2Pu3LmYNm0aVq5ciVu3bvFFf9rK+JSUFHz8+BFt2rQBYwzjx49X61esW7cORYoUAWNMLHbKBNUyOyYmBnfu3MH69euxYsUK/PPPPwgNDVVbNCPh4uKCpk2b8ujS7dq1y3D8SirDJk2axPuUIhBW3vDmzRusWbMGDRs25P2969evA0i1Q1oRe8OGDdG0aVO+24EgFdWyR3pvpQXFXl5e6Z4nfCNrCAG7QCAQCASCLKFt618x8PTlIGxRcDx79gxVq1aFh4dHQd+KQPBF4eHhgVatWokJvAJGW/0tFnUIBAKBIC1pJwBV6w83Nzcu6sms3xEbG4vmzZuDMYY6depkmF70YT6P2NhYnDt3DoGBgQAyz7+4uDi+c1eTJk3y4Q4FqjaJj4/H5cuX0aVLF1SoUEFNuN6oUSOMGTMG4eHhmYpIpONCiPV5CPF6/pBWxO7j45Plc1NSUrBu3TowxmBgYAATExNMmzaNH1eN5KdQKLBt2zZuw4ULF+bqc3wPSD6hmq8SCoUC69evh5GREQwMDGBqaopZs2bx46oRwtPaYs2aNXl/898Yki1iYmKydb5qf3716tVicUcOyMgv0iMmJgb79++Hg4MDGGMwNjbGb7/9xheBCrQTGhqK58+fax2jygqxsbGYP38+dHV1UaVKFdy+fTsvbvO75XPtER0djV9//RW6urqwt7eHq6trHt2ZQBtp+wUuLi5YuHAhrKys1Poc5ubm6NevHy5fvqyxQFCQewjxeu6RlbIos3GQ3bt3cx/o0aMHBg8ejP79+/PPRo8ezcdUBOmTlfpa9diLFy8wYsQIGBoagjGGNm3a8OMZjWW8efOGL2ju1q1bLt29QBXJZ5KTk+Hu7s6j6hcqVAj37t0DoH1BlLRrrUAdbSJ2ExMTHDp0SGt64RtZR0YCgUAgEAgEWYAxpvabiEgmE02JLwVhi4LDzs6O3NzcyNbWlpRKZUHfjkDwxWBra0tnz56lChUqFPStfNdoq79V/xYIBAKBgIhILper/S/VFQ8fPqSuXbvSrFmziCjjfodCoSAjIyNq3rw5yeVyevHiBYWEhGhNC4Bf68OHD+Tl5UVRUVEUFRVFREQpKSk5fqZviZSUFDpz5gz98MMPNG/ePCLK2BbJyclkaGhItWrVIrlcTq9fv6YPHz5k+j0AMvxfoB3pfZVssnHjRho5ciS1atWKTp48SYGBgVS4cGGqUaMGLV++nP79919au3YtlSxZkvT19dO97r1796hLly7k5uZGcrlc9DczQPX9ViqV3BYHDx6kVatW0d27d4mIaODAgbRu3ToyMTHJ8rWFX6RP1apVycXFhYoWLUpXr16l0aNHk6enZ5bOZYzRmDFj6Nq1azR+/HhSKBT0999/048//khERHp6eqRQKIgotY4aPHgwbd68mezs7EhXVzfPnulbRfIJPT09jWNyuZxGjx5Nly5doilTplBycjItWrSIBg0aREREurq6vPyRbLFp0yZq1aoVFS9ePP8e4htBsoWxsTERZb1MkWwgtdGOHj1K/v7+ZGRkRDo6OrRhwwYaO3ZsHtzxt0tGfqGN2NhYOnnyJC1evJiePXtGRkZGNHXqVPrpp5+oXLlyeXmrXz1lypSh6tWrE2OMUlJS+Hvs6elJYWFhmZ5vZGREzZo1I8YY+fr60p07dzI9R/Qnso5kDzc3N3r16lWm6QsVKkTNmjUjhUJBz58/5+0sQf4g9d2vXLlCs2fPpg4dOtDChQspNDSUDAwMyNDQkGbPnk3//PMP7d+/n1q0aEHm5ua8vtFW74j2bfZQKBR08+ZNmjx5Mrm6upKJiQkNGDCAxo4dS3Z2dgV9e18daecsUlJSNN7b9MZBpOODBg2i1atXE2OMTp48Sbt376YDBw4QEdHcuXNpypQpVL58eSKidPvXSUlJGR7/Hkg7p6StjJDqdCKiu3fv0oEDByghIYEaNWpEBw8eJMYYKZVKjfFGok95+/r1a94OKFWqVJ48y/eO5DM6OjpUrVo1Wrp0KbVv355iY2Np+vTpFBwcrOF7FhYWZGlpWRC3+8WjOja3YsUK+uWXX6hTp07UpUsXtXTCNz4fnYK+AYFAIBAIBAKB4GtHRye1Wa2tsyEQfM9IviEQCAQCgeDr5Pnz5xQUFESxsbF06dIlatWqVbpppXrf29ublEolJSQkpLtoijFG8fHx9Ouvv9L169fp6dOnZGNjQ9bW1rR8+XKqWrVquoP53yuvX7+m9+/f07Vr1+j69evUtGnTdNPq6uoSAPLz8yOlUkkxMTFZEiUwxgiAxmRlSkqKWDSdBtU8kclkFB4eTkeOHKEzZ87Q2bNned5ZWFhQiRIlaMGCBWRjY0M2Njb8Gqp5nZbHjx/TzJkz6fr169SwYUO6ffs22dvbC7/Qwpo1a8jT05PGjh1L1atX5/mTG+J1IuEXmVG1alW6efMmNWnShK5cuUK7d++mRYsWZbpoVsq/Jk2akIODA9nb29PYsWPpn3/+ISMjI9q4cSPp6OjwvJfL5TRs2DBq3Lixmh8Jco5ki/r165OdnR1Vr16dRo0aRXv37qXChQvTunXrSC6Xq9nip59+onbt2lHZsmUL+va/ejLyFdWyRy6XU0JCAh05coQuXbpEO3fuJB0dHVIoFGRqakp6enrUuHHj/Lrt7w5V8bqbmxsZGRnRlClTaNiwYUK8/plIdeeJEydozJgxtHXr1iwJcxo3bky1atWiO3fu0KlTp2jChAm8TErvewBQTEwMGRoa8r5KRu2v75k9e/bQ4MGD6fz581SyZMl000n517p1a3J0dCRXV1e6evUqjRgxIkttIwBqi5kFGSPlt/T79evXFBwcTEuWLKGHDx9SaGgoT1u1alXq3bs3denShZydnfnnUv8hbVv2+vXr5OnpSaNGjdJo7wo+5RsASk5O1ljslJvideEX2lHNj8zeTUlMLZPJaNy4cWRtbU3Pnz+nBw8eULVq1ahp06bUsmVLIiK1Nq2El5cXvX79mk6cOEEvX76kX375hZycnPLmwb5C0st/mUxGr1+/pmnTplF0dDRVr16dlixZQmZmZgRAax2dkpJCcrmc4uPjafz48RQWFkaWlpY0fPjwvH6Mb5r379+TqalppuNFVlZW1K9fP3JxcSFvb29yc3OjcuXKiTrgM5BE7HK5nP7880/+t+p4nfCNz0eoCQQCgUAgEAgEghwiOnUCgUAgEAgEgm8RJycnatq0Kd24cYOOHTtGjo6OWqOtqg7Wh4eHE1GqiDq9iJbPnj2jWbNm0alTp/ig/YsXL8jb25sePXpE165dI1tbWzGB8v/IZDKqU6cO1atXj+7du0fHjh0je3t7Mjc310grTdoGBQVRREQEERGZmZlpRCxOKzC5du0aXb58mW7evEk6OjpUuHBhateuHRcoCuG0OlLePXnyhJ4+fUrz58+n9+/fU3R0NMlkMkpJSaG+fftS9+7dqVWrVmq2kt7rjMTrEyZMoLt375Kenh7FxsZSkyZNyMXFhezs7IQtVLh58yZNnDiRiFLLnHHjxlHlypXp0KFD2RKvC7/IHjY2NnTlyhWaP38+FxRmhmo+m5mZ0YABAygxMZEmTJhA27ZtI0dHRxo9erTGTpCSeF0sIMg9VPPRxMSE+vbtS9HR0TR58mTauXMn1axZk3766ScNW0jidVFX5z5p6wk/Pz/y8fGhP/74g3x8fOj9+/dElCqea9SoEfXr14/atGlDlSpVKsjb/mZJT7wuIq9nn5iYGNq5cyeFhYXRqlWrqGbNmmRhYZFueoVCQYwxiouLI6LU6LjSIidVJN/x9PSkq1ev0rFjx+jNmzdUpUoVaty4MY0fP14IdbXw8eNHWr9+PRERbd26lZycnKhYsWJa00oi0bdv3/KyKDExkR9LS9r6WlsbWNhDO6r58uHDB7p37x4tW7aMAgIC1HY6a9OmDdWsWZOmT59OZmZmGnkptVVVr3f37l1atWoVHTt2jB4/fkybN28WvpEGuVxOiYmJtGLFCqpUqRK1a9eOChUqREQ5F68Lv8gbpH64TCajjh07UseOHdWOS3manJxMERER9PTpU7p69So9f/6cbt26RQkJCTz6sYeHB924cYNMTU2FHdJByuuLFy/SmzdvyMDAgLp370729vZEpL1OkBZqJCUl0Zw5c+j+/fskl8upUaNGaovZ0uvrCb/QTkhICF28eJE6duxIJUuWzLCvrKOjQx06dKDixYtTYGAg7dmzhzp37pxuvgpbaCftAm9VUXpe+sa3jBCwCwQCgUAgEAgEAoFAIBAIBAKBQIMaNWrQwIEDycXFhdavX0+VKlWi0aNHk76+PhF92tpUGqSfO3cuXb16lYiIBg8erLblrDSA/+7dO5o5cyadPXuWChcuTFu2bKHixYtTZGQkrVq1iq5du0bjxo2jf//9l4oWLZrPT/zlUrt2bRoyZAgXG1hbW9PIkSO5LZKTk0lXV5dPLP3111/09OlTIiIaOnSomnBXVXR76tQpOn/+PK1bt07jO8+dO0eVK1em/fv3k62trRCMqpCYmEgzZsyg48eP08ePHykqKooYY6Snp0fjxo2jOnXqUJ8+fXh61bzLaJIvrXi9bdu2FBUVRVevXqXGjRsLEXsaGjVqRKNHj6YNGzbQmjVrSCaTUZkyZejIkSOfLV4XfpEzqlevTvv37+d5IYkKpR03DA0NMzxfLpdT69atqUmTJnThwgW6desWjR49Ot30qnn+vU+eZxUAFBsby8VX6SGXy6lVq1bk7OxMt27dort379JPP/2UbnqR97mL6vscHBxMly5douXLl9ObN2/o3bt3PF3//v2pVq1aNHnyZI1z05ZLwkeyjzbx+tSpU0Xk9RxiaGhIXbp0oTt37tCzZ8/o6tWr1KtXL61tGwCko6NDHh4e5O3tTUTE+xhp32vGGN25c4fGjx9PHh4elJCQQEREbm5udPjwYQoICKAVK1YIf0iDsbEx/fjjjxQQEEB3794lFxcX6tq1a7qCNZlMRv7+/nzhcokSJYhI0x5SWgDk6elJt27dIh8fH/rw4QM1adKEbGxsqG7dukI4nYa0ZfiKFSvIxcWFjh07xj8zNTWlGjVqUP/+/al///68nZuSkpKuME76/M6dO7RixQp+va1bt5K+vj6tWbNG2CINv//+Oy1btozs7e0pKSmJunfvToaGhuTi4kJTpkzJlnhd+EXewhjT6Ct/+PCBFAoFXb9+nZ4/f07Xrl2jp0+fUlRUFBGl1klly5blO0N17tyZiFIX2QrSRyqnrl+/TvHx8VSoUCEaOHBgun0N1QUEW7dupVOnTlF8fDzp6enRzz//zOsS6dpv374ld3d3CgoKomrVqlGZMmXI0tJSjIWkIT4+nnbt2kVz5syhyZMn099//53h+IRSqaSiRYtSpUqVKDAwkCIjI0mhUKS7m7awRfqols9pF3sT5Y1vpFcvfBPjUhAIBAKBQCAQCAQCgUAgEAgEAoFAhZSUFP73ggULwBgDYwx//fUX/P39NdLPmzePp6lYsSKOHj2q9brDhw8HYwwWFhZ48uSJ2rELFy6gePHisLa2RlBQUG4+zleNqi3mz5/P83nJkiXw9PRUS/vx40dMmDCBp2nUqBHu3r3LjysUCv73H3/8gWrVqvG0ZcuWRa1atTBhwgS0a9cOtra2YIyhVKlS/HtU7+V7Z/DgwTzv7O3tMWLECDx48EAtjWp+Z8ajR4/QqFEjyOVyGBoaYtCgQfjw4QPevHmDNm3agDEGMzMzPHv27LOv/S2i+vyTJk3itihdujT/+8cff8THjx8/61rCL3IHKU8uXLiA+fPnAwCUSmWm5y1atAiMMejq6uLx48c5+m6BOjt27MDKlSsBZM0WM2fOBGMMxsbG8Pb2zuvb++6R3tv4+Hi8f/8eU6dORZMmTXhZJJVv3bt3x9GjR9VsqFqGqb7/rq6uWj8XpJKZH8TExGD//v1wdHTkvvD777+LNmouERERgR49eoAxhrp166q9rxLSe/vq1SsMHz4curq60NHRweLFiwFo2vDevXsoX748GGOoU6cOJk2ahM2bN2PixImQyWS8LyPQ5M2bN+jcuTMYY6hXrx5vbwKf7CDld2BgIFq0aAHGGMzNzfHvv/+qHZdITk7Gixcv0KtXL9jY2KiVZ4wxWFtbY968eRrfIwDCwsIwZcoUtG/fXi3PypUrh3r16uHy5csIDg5WOye9/FP9/Pbt2+jduze/Xo8ePbhvjBs3LtNrfW94e3vD3NwcjDE4OTlh9+7dOH36NJycnMAYQ+HChTFq1Cg1f8kM4Re5i7a6PDY2FhEREdi1axcWLFiA2rVrw8rKSi2fa9WqhR9//BHbt2+Hq6sr3r59q/W6Iv8zp23btrw8AYCkpCSNNFJ+JicnY+fOnahVqxa3xfbt29XSvnv3DsePH0fFihVhaGgIxhiKFy8OJycnuLu7q11PkNp3mDVrFhhjcHZ2xv379zM9JzQ0FJUrVwZjDG3atEk3P4UtckZu+oa2fH779q3GeNfXbA8hYBcIBAKBQCAQCAQCgUAgEAgEAoEGqgPf06dP54PoLVq0wK+//or//vsPf/zxB3r27MmPGRgYYO7cuVqv5+bmhuLFi0NXVxcXL17k3yFNCrq5ucHExASMMX5ckIqqLWbMmMHzu3bt2hg/fjzWrl2LUaNGoXnz5moLCTZu3MjPS05O5n+PHTtWbQL3hx9+wJkzZxAbGwsgdRLswYMHaNmyJRhjaN68OV6/fp1/D/wFk3Zxx+jRoxEREYG4uDiN41lFEq/r6OjA0NAQAwcO5JPoKSkp8PPz45NfQsT+CdXnnzhxoto73blzZ/4+Z2QT1WsIv8hdHj16BMYYChUqhBcvXmSYVrLRpk2bwBiDoaEhXFxctKaVysPw8HDcuXMHS5Yswb59+3DlyhWN6wlSOX/+PF88FhYWlmFaKe/++OMPbr+MhFlZEcwJtJNWYODq6ooJEyZwYZz0U716dXTv3h3u7u4aAitVVPP8xIkTqFGjBoYPH671+PeOatl/+/ZtREdHA/iUR9rE67/99luWxevCL7JGUFAQ7O3twRhDs2bN8ODBA17nSv7x8uVLzJs3D+XKlePlWEBAgMa1Xr58ydtKnTp1wsOHD3l+x8bG4rfffoOOjg569uyZfw/4lREYGMgX8TVr1gx3795FTEyMWpqAgAAMGzYMxYoVA2MMVatWxcuXLzWuFRYWhq1bt8LOzg6MMS6SrlatGmrVqoXSpUtDLpeDMYbJkyfn1yN+NQQFBaFUqVJgjEFfXx+FCxfGkCFDcOnSJQ2xWkblSlrxep8+fXjdMn/+fCQlJWHr1q1CxJ4Bnp6eKF68OBhjqFy5Mi+LsiNeF36RN8TFxeHVq1fYt28f5s+fDwcHB+4/Uh7XqlULvXr1wt69e/HgwQMkJiaqXSPtQh1B5igUCiiVStSrVw+MsXTrV6nNlZiYiI0bN6JOnTq8HPrjjz/U0r558wZLly5F0aJFwRhDlSpVYGVlBWtrazDGULJkSbGwVgvXr1/n7an//e9/iIyM1JpOsoUUPIQxhn79+mkt74Utsk9u+4Y0lpuUlITIyEgsXLgQffr0QbFixWBtbY1mzZphzpw5CAwMVLvu14YQsAsEAoFAIBAIBAKBQCAQCAQCgUArqgPf8+bNg5mZGXR0dPhkuqrAytLSErNnz+bp007+XbhwgUeOCw0NBZA6USh9x5UrV1C0aFHY2NggPDw8H57u60LVFvPnz4eFhQWf4NbV1VWzhbOzM9auXcvTq07QDh06lE/mGhgYqNkM+DQ5kpKSgrNnz6JkyZIoU6aMWiT37x1tE0LZFXk8evQIDg4O0NHRga6uLrp3786PqUZoUhWxFy9eHE+fPs3W931rqNpi/Pjx3AdGjhwJLy+vLJ8r/CL3uXbtGipUqAADAwMsWrSIixK1Idli5cqVvI45deqURjqpXnn48CGaNGnCJ94ZYzA1NcX06dN5WiG8+sT58+dRrlw5FCpUCMuXL0d8fHy6aaV3fdq0adDV1YWxsXG6kfxU6/mUlBR4enoiMDAQfn5+SEhIUDsm+ETa9tHRo0fxyy+/wMDAgAutDAwMULJkScycORMPHz7k+ZkVYfSJEyfQrl077htjx47Vmk4AtGrVCtWrV8fevXsRFRUFAIiOjsa+ffuyHXld+MXn4ePjg5IlS4IxBkdHR0ybNg3379/H/fv3cfnyZbRv357vrlK4cGGcPHkSgGZ03OvXr8Pc3BzlypXDpUuX+HHp9/bt23l/5cOHD/n/oF8J3t7e3B7Vq1fHqFGjcOXKFZw6dQr79u2DnZ0dTE1N+aJKabcU1TaVv78/pkyZgrJly/J0bdu2xYEDB7ifPXv2DCtXruRl3ooVKwricb9onj17hhIlSmD27Nn8vZf4XJHtnTt30KtXL14vzJ07l/tOcnJyuiJ2IeZNxdPTk4s4ZTIZDA0N8dNPP32WeFP4Re5y9+5d/Pvvv5gzZw7q1q2rtgsXYwwNGjRAz549ceDAAVy5ckXjXZbKLFEX55w///wTjKXufBIcHMzzVHWsLz4+HnPnzoWDgwO30a+//sqF1lK6vXv38l0PfvrpJ3z8+BHh4eF4+PAhmjZtCsYYhg4divj4eGG7NKxZs4bn7Zo1a3iABSA1f6X8ioiI4ItoSpYsievXrwPQXMQhbJFzcsM3pL75+/fvsWzZMjRr1gyMMT4WrPpjY2PzVUfGFwJ2gUAgEAgEAoFAIBAIBAKBQCAQpIuqIOHQoUMYOXIkF9tKA+WDBw/Grl27tJ4jcffuXRgaGsLKygrPnz9XO5acnMzFue3bt083YtD3jmq+Hj9+HJMnT4axsTGMjIygr68PY2Nj/PLLL7hw4QJPpypeHzVqFJ/sKFOmDFavXs2PaZvgePHiBcqUKcOj9Ak+oTpJl5MJO09PT7Rr1w6WlpZgjKFevXpceK26QwGQKmLv2LEjX0ASGRkpJguh7hcTJkzg5dKECRM0yhoJ1fdd+EXeEB0djcmTJ4MxBnt7e9y8eVNrOukdfvHiBWxsbHiEt1evXmlNd+fOHRQqVAiMMZQvXx61atVC3bp1+STuzJkz8/bBvkIiIyP5DgOOjo7pLryQ3veAgAC+OKBGjRoZCt5jYmLwv//9D127doWBgQGKFCkCIyMj9OjRA+vXr+fpRFmlzvv373H27FkMHjwY+vr6vE1VqFAhlC1bFhs2bMDt27fVzklPiJBWvC61pxhjfEGIiKqrSVhYGBfiOjo64t9//0V4eDgOHTrERSSfK16XEH7xefj4+PDIoYwx6OnpQV9fX02cY2Jigt27d6st7gM+5eEvv/wCxhhat27Nj6n6zJYtW8BY6u5FqqIugSY+Pj5qO0FIdlC1h5mZGa5evQpAXRjn7e2NYcOGwcLCgovjli9fzoW+quKt2NhYzJo1Czo6Omjbtq1YWKCFtIv/siNIu3btGrp166YR1VV1dy6FQpGuiF2QioeHBxdzlihRAosXL9ZYKJMewi9yn2XLlqkJNx0cHDBgwADs27cPt27dAgCNKOtAavsL+PT+f62Rir8kzpw5gyJFioAxhtWrV6vtEpGUlISXL1+ia9eufBGI1Id+9+6d2nVCQkJ4H3vMmDEabaR169aBMYZGjRqJ9pMKquXP77//rpbHDx484MciIyPx6NEj3t4qVKgQfvjhB607pQlb5A459Q2pfAoPD0eXLl34AkPGGGrWrIkRI0Zg1apVGDVqFGrWrAnGGMqUKaNRt3wtCAG7QCAQCAQCgUAgEAgEAoFAIBAIMiTtpKyPjw+uX7+Oy5cvw83NLcO0Ep6enqhQoQIXGPr7++Pt27dwc3ND+/bteWRpSbz7tQ225xdp8zc0NBTPnz/H8+fPNQRWqsKE2bNn86hxVlZW2LRpEz+WduJWyvukpCS+ja0Q6uYdkZGROHz4MFq2bAnGGIyMjHDjxg0Amn7g4+ODZs2aYevWrQVxq18squ/wpEmT+MTeuHHjEBISopZWNU+FX+QtoaGhaNCgARhjaNKkCTw8PNSi5kp/h4eH4+eff4axsTEYY+jVqxeio6M1rufm5sbFPz169MCtW7cQFxeHly9fYs2aNZDJZLCwsEg3Yvj3TEhICN/GvGnTpnj+/LlaHSHZIigoCG3atOFl0fTp09UW00i/X79+jX/++Qf169dXExAZGhqq/S+i4muiUCjQpk0bjch5LVu2xPLlyzXKrIyEcRmJ1xctWoR///1XqyBR2CIVT09PFCtWjC+0GTduHI9KaWxsjN9++y1L4nXhFzknODgYY8eORY0aNdTyqlixYrC1tcW1a9cyPH/+/PlgjKFz585ISEhQ85u7d++icuXKYIxhzpw5efwk3wahoaGYNm0aatWqpWYPa2trtG7dGh4eHgDU39+AgACMGDGC+1Tp0qVx+vRpxMTE8DRp3/f//vuPX/vhw4f583BfETktH5KSkrB3714YGBhwweKff/6pdlxCoVBg27ZtvG5auHBhjr77W8TDw4MLDZ2cnLBv3z4ePT09hF/kHYsWLcKmTZtw//59tYU00m/VXU/27t2LiRMnokqVKujcuTOmTZumIRIVZJ+5c+fyd3b48OFYtmwZduzYgWHDhsHa2lqtHlm/fr1aH0Sy1/r168EYQ61atfhx1XQ7d+7kAt1Xr159lRGm8wrVd3jGjBlqdXavXr0wcuRItGzZku9UYGxsjEaNGuHOnTtarydskXtk1zekPH3x4oVadHbGGNatW8cjrQOp9ndzc+PR2bt16/ZVLn4SAnaBQCAQCAQCgUAgEAgEAoFAIBBkmYwm0jObZN+0aRMfdHd0dIStrS0ftC9WrBgX7apOgKTdyjYr3/O9kNV82LdvH6ysrHjExLVr1/JjGU02nT59mkeF3bhxY47vV6CJauQ+f39/9OrVC4wxFC1aFI8ePdJ6TkaCh+8Z1Ynb8ePHgzGGjh078ghUaRF+kT/4+fmhXLlyYIyhYcOGOHDggFqkN19fX/Tr1w+lSpXiQs/Hjx+rXUOKSPnTTz+BsdSdOsLDw9XSBAUFoUqVKmCM4dixY/nybF8bfn5+KFu2LBhjqF+/Pnbs2MHFuZGRkXjy5Anq1avHFxKUL19eTaQolTf+/v4YN24cX5RmZGSEKlWqYPbs2fjnn3+wefNmjBw5kgunZ8+eXWDP/KXy7NkzvpNA//79sWbNGrXjWRGCZCReX7x4MT+2efNmIWLPAFURe+HChfk7PW/ePAQGBmZ6vvCL3CMuLg6vXr3Chg0bsHz5csyfPx+XLl3C69evAWh/Z6XPdu3aBZlMhvLly+PGjRu8rXT9+nW+KKd169bw9fUFkL1I1t8biYmJiIqKwv79+7F7925s3LgRHh4eXBSl2u6KiIjArFmzUKJECS5qc3FxSffakt2eP38OExMTMMZw9uzZPH2e75mLFy9ixowZfDHNwIED+bG0kdjXr18Pe3t7bNmyRWPHA4F6nVGjRg3s2bMn3V0dhF/kDekJzlU/T2+HLtVFZXZ2doiIiAAg6oTsoppv//vf/8DYp91/0i5Ga9KkCU6ePJnutaZNmwbGGDp06KBx7fj4eEyZMgWMMQwdOjTvHugrRvWdX7x4MSpWrJiuLbp168Z3KtCGsEXOyYlvSLYMDQ1F+fLlwRiDrq4uKlSogCtXrqh9j1SHp6SkYO/evTA2NoaNjY3GguivASFgFwgEAoFAIBAIBAKBQCAQCAQCQZ6iKjhZv349LC0tYWRkBMYYLCwsUK9ePTx//hzAp4F+bROTHz9+5CIWMcmYNd6/f4/+/fvzCRLViNHp5aEUGfl///sf9PT0oK+vj/Pnz+fXLX9TfK5A0N3dnUdO6tu3L96+fZtHd/ZtolpubNmyBSdOnNCaTvhF/uLl5cVF7MWKFUOFChXQv39/tG/fXm3LbH19fZw+fRqAph2io6Ph4OAAXV1d7N69W2Nxk1Kp5JHxjx8/nr8P+BXh5eXFJ8JNTU1RqlQpdOjQAc7Ozly8Kx2TItkrlUqez15eXujevTu3m5mZGRYtWqQRITQ6OhqrV6/mUfEvX76c78/6pePl5YWLFy+qRQjNTtvm+PHjaN26NbfdX3/9pXY9hUKBrVu3ChF7Bnh4eMDc3ByMMRgYGKB79+68XQqkn0/S58Iv8p7MfCM6OhoNGzYEYwwVKlRAu3btMHz4cOjr64Mxhtq1a+Pw4cMZiuAFWUfKM6nddfjwYb4ouXTp0plGzJfO27p1K3R1dWFsbCx2T8kDVP3mw4cP2LVrFxdGjxw5Ums6pVKJgIAAxMbG5uu9fk14enqiePHiYIyhd+/eGrsGCb/IX9KW4ar/jxo1Cowx6Onp4ffff8eZM2cQFBSEgQMH8sXO4l3PGar9bymydNGiRWFubo7q1aujZcuWOHr0KPz8/Hg6bfXu1q1boaenh+bNm+PVq1dq1z969Chf+Km6Y5pAHVVbXL58GX/++Sesra1RqlQpVK5cGXXr1sW+ffuELfKJ7PiGtHAsLCwM1apV44ti69ati3v37gFIv93q6urKd1zZv39/Hj5Z3iAE7AKBQCAQCAQCgUAgEAgEAoFAIMhzVCfGHz58iPPnz2Pt2rW4e/cuj3wFqA/GJyUl4fHjx9i2bRvGjBmDatWqwdLSEm5ubvl6718zR44cUduyViI9IZD0+a1bt3gU3latWuXLvX5rqOaxl5cXlEplpiKphIQEzJkzhwuwPD098/o2vzm0LX5Jm+/CL/Iff39/dOjQgUdaV/0xMDCAubk5Ll26lO75Dx484CJ3KWKcqk9duHCBXy8zgdD3TkBAALp3784XFaSNAufk5MSFtwqFgr//3t7eaNu2LRe6FytWDOfOnVOLPKoayTUwMBCOjo5gjGHlypX5+5BfIdkR0T5+/BiNGzfm9uvevTs/Fh8fz/+WROxyuVxETEwHd3d3LmKvVq0aDh48qLbjSVokewm/KHikev/Dhw9o2LAhX6wh/fTp0wdnzpzh6dL+llC1kxC1Z46UR9HR0XBycuILk//7778Mz1Nta3Xt2hWMMRQpUkRtdxZB3pCcnIytW7fC0NAQOjo6WLduXUHf0leLh4cHmjRpAnd3d7XPhV98OSxbtoyL1/ft26e2YBAA7O3tUbZsWQQEBBTQHX47pK1PX758iYCAAHz48CHDBQaqXL58mUfHnzp1Kq5evYrLly9j4cKFfOHNsGHD8uwZvhXSjmd8+PABb968wbt379TaORkhbJF7fI5vSGnfvn2LVq1a8fKrfv36fIe6jBZi+vr6wsLCAowxHDhwIC8eJ08RAnaBQCAQCAQCgUAgEAgEAoFAIBDkC9JkirZBd0lode/ePezduxeDBg2Cvb292jarRYoUga2tLebMmSO2NM8EpVKJhIQEdOrUCYwxODo6wtXVlR9L7xwA8PHxQZkyZcAYg7W1NQ4fPgwAGnme1o4iKr52tm3bhlGjRvH/MxNFubu7w9TUFIwxLFy4UGuazCaChS20kxd+IfI667x58wYnTpzAgAEDUKNGDVSsWBEtW7bE/Pnz4eHhASB9/3j9+jXs7e1hbGyM3bt3q+X7nTt3YGtrC8YYRowYkS/P8rXz9u1bXLlyBcOHD0eLFi1Qv3599OzZE3v37uVCHtUFAoGBgejTpw8vm4oXL46nT59m+j09e/YEYwz9+vXTurhEkHO2bNmCDh06wMjICEZGRmoR1lWFKgqFAtu2beMRwn19fQvidr9oPDw8UKxYMTDGUKNGDezZsydDEbvwiy8H6V2PiorC7t27MW3aNMydOxc7duxAbGxshnXLtWvXMHfuXPTo0QOjR4/Oz9v+JpgwYQIYYyhcuDDmzJmD9+/fp5tW1Q5//fUXGGPQ1dXF9OnTNY4Lsk5iYiKioqKylDY4OBht27blZZAg+0h9Y23luPCLguX9+/do3bo15HI55s2bp9Yeio+Ph0KhQIMGDcAYEztq5RIZvadZ7S+vXbtWbTcoHR0dPh74448/8nSqPqfN/0T/PH2ELfKfz/GNuLg4/PrrrzAzMwNjDNWrV8eDBw8yvQ4ALFy4kNc7aXeB+hrQIYFAIBAIBAKBQCAQCAQCgUAgEAjykJSUFJLJZCSTyYiIiDFGREQKhYJu375NERERdPjwYQoODqa7d+/y80qXLk3Ozs7UunVrcnJyIicnJ7K2tiYA/BoC7chkMlIoFOTl5UVERBUqVCBbW1t+LC2SjQIDA+nnn3+mly9fkp6eHtWvX58aN25MRES6urpERPTmzRt6+PAhXb58meLj48nR0ZHatGlD1tbWpFQqSS6X59NTfvn4+vrSpk2b6MGDB1StWjUaP358uu+u9F7r6OiQgYEBRUVFUWJiYrrpiIQtPpe88AvpPJHfmVO8eHHq3Lkzde7cmaKiokihUJC5uTl/pzMq283MzMjOzo6eP39Of/75JxERlSxZkiIiImjatGn06tUrat26NU2YMIGIPtlOoJ2iRYtS8+bNqXnz5pSUlEQpKSlkYGDAjwPg+ffhwwfatGkTXbt2jaKioqhYsWJ048YNqlq1aob5HB0dTb6+vvx6wj/yhuHDh1OrVq3o5MmT9Ouvv9K6devo48ePtGfPHtLR0eFlk1wup8GDB1ORIkXI3NycypcvX9C3/sVha2tLLi4u1LhxY3J1daVVq1ZR6dKlqVmzZhplk/CLLwvpXTcxMaFBgwZpTRMbG0uMMbp58ya5ubnR1atX6dGjR/TmzRsiIl4PNW/enHr37p2ft//VEhsbS+7u7kREZGVlRV27dqUiRYpoTatax589e5YOHz5MRESGhobUsGFDIkq1QUbtKdEH1EShUJCLiwuFh4fTwIEDM80jKysratKkCV24cIEOHjxIM2fOJEdHR61phS0yRkcnVW6XNo/ywi8En0doaCjduHGD5HI5NWzYkNtKoVCQgYEBRUZG0ocPH6hUqVJkY2NTwHf7bZDRe5pZn0xqN40dO5aMjIxo8+bNFBgYSImJidS8eXNq1qwZzZgxg4iIEhISyMDAgJ8j+d/79+/Jzc2NSpcuTZUrVxZ9wXQQtsh/suIbUh4FBwfTpUuXKDIyknR1dWnDhg1Uq1atdOtc6bzIyEi6f/8+EREZGxuTqalp3jxMHiIE7AKBQCAQCAQCgUAgEAgEAoFAIMhVpEF0aZBdGpRPTk6mhw8fUkBAAB05coRevnzJB9mJiEqVKkU1a9akHj16UIUKFahp06ZkZmZGhoaGGtcXgp/MiY2NpZiYGNLV1aUePXqQrq4uKRQKPoEroSrSHTduHLdJhQoVaM6cOWRhYcHTnjt3jnbt2kUHDx7kn8lkMrKysqKTJ09S9erVv/sJKlWKFClC9vb29ODBA7pw4QK1adMm3UlyaULqyZMnXEyVduJJdeJK2CJ75KZfpKSkEGOMGGO8TPLy8qI3b95QSkoK2dnZkZGRERkZGQlb/D/SO2xiYqLxWUaLO/T09Gj9+vXk7e1NT548oZEjR1JCQgJP06lTJ5o6darGgoT0JnuF8OpTHujq6vK8ULWFJFx79OgRHT16lCIiIsjc3JzOnj1LVatWTVfYJn3+8uVLvginQoUKatcX5A5SfpYvX55Gjx5NxYoVoxEjRtDevXupfPnytGDBAjUbyeVy6t69ewHe8ZdP1apVycXFhVq0aEEJCQlkbW2t9s4Kv/gy0dY3iI+Pp+TkZLp8+TK9ePGCTpw4QcHBweTn58fT2NraUoMGDahZs2ZUr149Kl++vFq7V5Ax9+7doytXrhAR0c8//0xOTk5a06m+4w8ePKDdu3fTvXv3iIho7Nix1LVrV55OsuOlS5coODiYChUqRCVLlqSmTZtmutjte+T58+fUq1cvio+Pp0aNGmW4OEkqhypWrMjz8uPHj+mmF7bImPSePbf9QhXV/sT3nv8ZIZUlBgYGvM8BgPf3RowYQV5eXlSzZk0qXLhwQd6qgFL7bdK7PXToUGrbti0lJydTdHQ0WVlZqdlIWnD79u1b8vf3pzt37tD169fJ09OT/Pz8SEdHh9zd3aly5coF9ThfNcIWBYNUrm/YsIEePHhARETbtm2jxo0bZzieIZ23bt06OnHiBBERjR49mipVqqSW7muoK4SAXSAQCAQCgUAgEAgEAoFAIBAIBLlCWsH6u3fvKCwsjB49ekRXrlwhd3d3evr0KU9fqlQpqlGjBvXo0YPKly9PnTp1Ij09PTIyMlK7blrhpxCvZ42UlBSKi4uj5ORkCg0NJSJKV6Tr5+dHI0eOpHv37lFCQgIVK1aMDhw4QFWqVOFpT506RfPnz6dHjx5RoUKFqGvXrhQXF0fBwcH0+PFj6tSpE125coWsra3z9Tm/ZIoVK0bdunWjc+fO0enTp6levXo0ZcoUjUUZEuHh4XT58mWSy+WkVCqpVKlSaseliSdhi+yTW36hVCq50DcgIICuXLlCu3fvJg8PD3r//j0RpQoha9euTbNnz6bKlSuLKO306R1WnUTNTNgvianNzMzoypUrNH78ePLy8iJXV1eysbGhTp060aRJk6h48eIak7OqQuwbN25QbGwstW/f/quYxM1rtNlC9W/pXf3zzz/Jx8eHChcuTJs2bSJnZ+d0F5Kpfr5y5Ury8fEhxhi1bt1a4/qCrKNtkQ2Ren7q6OhQp06daMKECbR06VI6fvw4devWjZydnfPzVr8JqlatSvfu3aPExEQqX768mvBD+MWXQdr6VFo4GxMTQ1euXKHAwEA6dOgQRUREqAnWq1evTh06dKDu3btTpUqVqEaNGlqjVIpFZ1kjKSmJdHV1ydDQkGrWrElEmnmn6j+urq60adMmvvhywIABNG/ePLVr+vr60sSJE+ny5cuUnJxMRKkLOkeMGEFLliwRwuk0JCQkkJmZGcXGxtLevXtp8uTJGn3ptHh7exNRanmW0eJBPz8/YYtskJt+kbb+l8o5hUJBiYmJVKJECa3X/N4xMTEha2tr8vDwoCtXrlDlypWpUKFClJSURCNGjKBDhw6Rubk5rV+/nooUKSLy7gtA2ilNR0eHSpQoodGe8vf3p5iYGDp9+jS5u7vTtWvXKDw8nIhS21ElS5akbt26UaVKlejVq1dCNJ0DhC3yHwAUERFB169fJyKizp07U5s2bYhIez9BtczatWsXzZ49m4iIGjZsSB07diSiT21lKV1SUhLp6OjwMawvra0rBOwCgUAgEAgEAoFAIBAIBAKBQCDIFRhjFBsbS3/88Qe9efOG7t27R/7+/jzSZNGiRalRo0bUvHlzsrW1pWbNmpG+vr7GltoA1KLJfEmD6l8TJUuWpF69etHOnTvJ19eXPn78SKamphrC0SdPnlC/fv3I39+fUlJSyMzMjM6dO0cODg580sPHx4c2b95Mjx49ojZt2tCYMWOoc+fOpFAoyNfXl3788Ud69OgRnTx5kiZMmCAmgenTpFKnTp1o8uTJNH36dPrtt9/IzMyMBg4cqCGYevv2LR0+fJj27t1LSqWSmjZtSn379tW4rrBFzsgNv1AVI968eZMmT55MISEhFBERwSORGRkZkZeXF3l5edGVK1fo/PnzVK1atS9uovBrQVrUYWpqStu2bSOlUklv3rwhY2NjKlq0qEb66OhocnV1pcDAQDp69CgFBwfTkydPiIho6NChtG3btvx+hK8KqdzYvn07Xb16lfT19ennn3+mFi1aEJH2elm13t6wYQPt2LGDGGPUrVs3sre359cUPvB5xMTE0LNnz8jZ2Zn09PQyTGtiYkLNmzenv//+m54/f04PHz7MUMAubJE+ZcuWJSJ1gUhe+oXg85Dq4BcvXpCHhwe5urrS+fPnKSAggIKCgng6Ozs7atWqFfXt25fKlClDLVu21CraTesLwi+yRmRkJCUnJ5OhoSGZm5sTkXreqebr3bt3adOmTbRr1y4iSt05Zfr06aSrq8v7G3fu3KHJkyfTgwcPyNzcnKytrUmpVJKrqystW7aMGGO0ePFi4TMq2NnZUc+ePWn58uV08OBBatq0KTVq1Egjneqijxs3bvAI1WXKlFFLJ9lM2CL75KZfSOL1lJQUOnToEJ06dYpu3bpFycnJFBUVRT179qRGjRrRsGHDxIICFSpUqEB9+/alOXPm0K+//krXrl0jpVJJ79+/pydPnlCRIkVo5cqVVKdOHZFnBUjavoH0vsvlcgoODqa3b9/SsWPHKDQ0lM6dO0dRUVGUkJBAMpmMihYtSv369aNq1apRs2bNqHLlymoLOgSfh7BFwcIYo1evXpGbmxsREdWtWzfdHYFUy6xDhw7Rb7/9RkREhQsXpk6dOvGFU3K5nJKSksjT05P27dtHz549I4VCQc7OzjRs2LAvL8ACBAKBQCAQCAQCgUAgEAgEAoFAIMhFRo8eDcYY9PX10bJlS0ydOhUnTpzAy5cvERcXp5FeoVDgzZs3ePDgAd6+fYv4+Hj+uSBn7NixA4wxMMawatUqhIaG8mMPHjzAmjVrYGJiwtNUqFABT58+BQAolUqkpKQAAHbt2gWZTIby5cvj3Llz/BpJSUkAgIEDB4IxhlGjRuXj0335KJVK/vf//vc/ns9TpkzByZMnoVQqoVQqcenSJcycORPGxsZgjKF69eo4fvy4xjUAYYvcIKd+AaTm9z///AOZTMbTFS9eHPPnz8d///2Hp0+fYv369WjSpAkYY6hcuTL8/f0L5Hm/JZKTkwGAl00Sr1+/xp07d7B27Vr07NkTdnZ23C6SDVu1aoWVK1di8+bNBXHrXyVTp07l9fnly5fTTadqj5MnT6JOnTpgjEFHRwdbtmzRek5SUhJevXqlVsaltev3Tnx8PDZt2oSqVavi/PnzWTonLi4OtWrVAmMMQ4YMyVKeClt8HnnpF4KMCQkJwYEDBzBv3jy0bdsWpUuXVivrbW1t0a1bN2zZsgXnz59HfHy81r6HVJcIckZwcDBsbGygo6ODTZs28b5bSkqKWj/u0KFD6N69O7dTu3btcOPGDbUy5927d6hfvz4YY7C3t4eHhwdiYmLw8uVLrFq1CnK5HMWKFYOLi0u+P+eXTmhoKBo0aADGGJo0aYLnz5/zvE3bnx41ahQYY9DT08Po0aMBfCqrpHOELXJGbvoFABw9ehRDhgxRK+sMDAzAGOP9kBkzZvD033v9rZp/v/zyC+RyOeRyOc+7UqVK4ezZs0hMTCzAu/w+SVvWqPLmzRvcv38fc+fOxYABA1C4cGH+nhsYGMDExAQ//PADfvvtNzx+/BgvX77UuIZ0XW3XF6gjbPHl8eTJExgaGqJo0aJ48OABAM32qmp+Hj58GFWrVoWOjg4YYxg8eLBa2tjYWPz9999wdnZWqz8YYyhdujSeP38O4MupM0QEdoFAIBAIBAKBQCAQCAQCgUAgEOQK+P9IMOvXr6fevXtTqVKlyMbGRi2NUqlU+z88PJzGjh1Lnp6e5O3tTVWqVCE7OzvauHEjFStW7MuKCPMVIdliyJAh5OPjQ4sXL6ZJkybRf//9RyVLliTGGN2+fZsiIiIoMTGRLC0tqWbNmrRs2TKqWrWqWmS4hIQE2rNnDwGg3r17U9u2bYko1Za6urpE9CmqXEpKiojoqoJMJuPv8KJFi4iIaPHixbRixQpasWIFVatWjYiIR/lOTk6mqlWr0ogRI6hp06b8GhLCFjkjt/wiKiqKdu3aRZMmTSIAZGFhQbVq1aI1a9aQtbU1/z57e3tq1qwZDR06lO7fv0+rV6+mpUuXko6OjrBLFoCWiIhSNLiXL19SZGQknT17ltzc3OjGjRsUEhLC0xUrVoxatmxJrVq1ourVq1Pz5s2JMUZGRkYZXl+QilKppKSkJDpz5gwREXXv3p1HmU6Laj5euXKFNm7cSA8ePCAiolGjRtHw4cPVrvv69WuaM2cOubu707Nnz6hp06bUpEkTmjFjhogemobExES6fv06eXt709atW6lWrVo8mmt6REZGUnh4OP87vbwUtvh88sIvslpPC1ukoqurS2PGjKEPHz6Qrq4uFS9enHr37k0NGjSgWrVqUa1atUgmk/E2kUR0dDQxxogxRsbGxqSjoyPaSLlAkSJFyMnJiXx8fOiff/6hunXrko2NDRkYGPAdtWbPnk0nTpwgd3d3IiLq2rUrzZgxg+rUqaOW/5MmTaK7d+9S+fLl6ezZs1S6dGkiIjI2NqYePXrQzp07ydXVlSIiIgrkWb9kypQpQ7t376YWLVqQi4sLjRw5kiZMmEBNmjShkiVLUkJCAsXGxtL06dNp586dxBgjS0tLatOmDRERL1skewhb5Izc9Iu5c+fS0aNH6dmzZ0REVLlyZapatSq1b9+e3r9/T15eXrR3715atmwZyWQy+vPPP7/7ukK1/7148WKqV68ehYaGUmBgIDk6OlLLli01dh4Q5A/Su6lUKik6OpoePnxIDx8+pAcPHtCdO3d4+1VHR4fMzc2pY8eOVKFCBerWrRuZm5tThQoV1K4ntY2k32IHx6wjbPHloaenR4mJiZSQkEDe3t5Uq1YtPvYhIeXn3r17afbs2fTy5UtSKpXUuXNn2rlzJ0+XmJhIa9asoRUrVlBkZCTZ29vTTz/9RMHBwXT//n26desW9ezZky5duvTFlIdCwC4QCAQCgUAgEAgEAoFAIBAIBIJcgTHGJwubN29ORJpb0Upi9JSUFLp27RpNnjyZnj17RsWKFaPKlSuTQqGgI0eOkJeXF12/fp2KFi0qRDvZQNUWixYtIj09PVq5ciXdunWLUlJS1NLWq1eP+vfvTz179qRSpUppCHpkMhnFxcUREZGZmRkRESUnJ3Nx0LVr1+jatWskk8moY8eOYpIqDXK5XM0WlpaWtH//frp37x55eHiopa1Xrx6NHTuWOnbsSKamphrXErbIGTnxC+m8xMRE2r59O02dOpUAUJUqVahnz540efJktUU3AEgmk1HlypWpadOmdP/+fXrw4AHp6uqK8iwTpDJINZ+Cg4MpMjKSTpw4QUFBQXTu3Dl6//49JSQkEBFR0aJFqWvXruTg4ECNGzem6tWrU4kSJdR8IO0CKmGH9JHJZKSvr88nzYsWLUpERAqFQm0iXbW+uHTpEm3YsIGLe/v06UMrV67kaePj4+ncuXO0dOlSunfvHunq6lJycjKdP3+ezpw5Q+Hh4bRixQphFxWMjIyoQYMGdP78ebp37x7duHGDunTporVsl2zx/PlzAkBERCVKlNDahhK2yB657RdJSUmkp6fHz7t//z4FBATQzZs3SU9Pj5ycnKhKlSpUt25dsaDg/ylZsiS5uLjQqVOnqFmzZmRtbU3FixdXS5OUlMT/dnFxoRs3btB///1HSqWSKlasSD169KCBAweSTCYTIvYcYmJiQosWLaK7d+/SzZs3adiwYeTk5ET16tWjO3fukJ+fH7m4uPD0w4YNo+nTp1OVKlXU3uWoqCh6/vw5GRkZ0fr166l06dJqfmVoaEgKhYIA0Pv37/P9Ob8GKlasSBcuXKA2bdrQ7du3ydvbm4oVK0aNGzcmX19f+vDhA7m5uZFMJiNjY2OaNm0adevWTeM6whY5J7f8YsyYMbR//36KjIwkotTFT3379uWLnImIPn78SPXq1aPx48fT2rVrqX79+tSlS5f8e9gvFNX+t7b3XJT9BcfTp09p4MCBFBMTo7b4uFSpUtS9e3eqWbMmtWnThooVK0bW1tbptn1Ubfi9t42yi7DFlwMAKleuHLVv357OnDlDjx8/pm7dupGxsbFaGsYYLV++nH755RdKSUkhANShQwc6fvw4EaUK1/X19enmzZu0Z88eiomJodGjR9PIkSPJxsaGFAoFeXh4UN++fSkwMJAePnwoBOwCgUAgEAgEAoFAIBAIBAKBQCD49kgbLT1tRDdpItHDw4MmTpxI7u7u5OTkRPv27aOSJUuSqakpDR48mPbs2UOzZ8+m1atXa0RRFGQN1YnbuXPnUu3atcnd3Z1OnTpFjDFydnYma2trGjlyJBfVSqJbVXR1dcnR0ZHu3LlD3t7e9OHDBypSpAgREd2+fZs2bdpEoaGhPNKxQBNVW4wfP55atWpFrq6udPjwYfr48SNVqlSJypYtS5MmTSIjI6N0J/6ELXJOdvxCqVRym+zdu5eL16tXr05Dhw6l4cOHU+HChSklJYWXgVJ6HR0dvhPFo0ePyNfXlypXriwmdzNAqVRSTEwMBQQE0OnTp8nPz49OnjxJSUlJFBMTQ3K5nORyOXXp0oVHgrO0tKSyZctqFaxLk71iN4+sI0UqrlixIj1//pzCw8M1RLqqO6QcOXKEtmzZQufPnycioi5dutDSpUtJLpfz81xcXGjOnDn0/Plzqlq1Ki1cuJCio6MpODiY5s6dS6tWrSIbGxsaNWpUgTzzl4iuri716dOHzp8/T6dOnaIlS5ZQpUqVyM7OjqeRorlK7/62bdt41MQOHTqolTWSwETYInvkpl8kJydz8fqVK1fo4sWLtHTpUjI0NOQL1YiIypUrR0OGDKE5c+YIEfv/U61aNb6DDdGn91pauCHlqxSdMiQkhABQkSJF6NmzZ3Ts2DF69eoVTZs2TQgYcwFra2s6f/48devWjZ48eUJPnjyhXbt28TpYT0+PypcvT4MHD6b//e9/GucDoJCQEHr69CkREe/36ejocP8KCAigd+/eUfHixdXKP4E6NjY2dPXqVRo/fjw9efKEvL29ycfHR803bGxsaMyYMTRy5EgiUhceClvkHjn1i2HDhtGuXbu47ZYuXUrTpk3jx6UFUGZmZtS9e3c6cuQIXbt2jVxdXYWA/f/JqN0vyv6Co0aNGlS/fn06e/YstWrVitq2bUtOTk5kb2+vsSCNKLXt5eHhQaGhoRQcHEzVqlUjR0dHMjEx0WiDCT4PYYsvB2mHIEnAvmLFCipVqhR16NCBqlSpQvHx8XT8+HG6fPkyj7Suq6tLPXv2pH379hFR6oJafX19IiLav38/eXh4UIsWLWjMmDFUqVIl3l90cHCgUqVKkbe3NwUGBhbUI2sCgUAgEAgEAoFAIBAIBAKBQCAQCPKRpKQkNGjQAIwx1KlTB+/evQMAJCQkAAAiIiJQpEgRNG3aFEqlsiBv9ZsgbR4mJydDoVBkmCYtBw8eBGMMjDEMHjwYf//9N6ZPnw4nJycwxlCxYkUcO3Ys1+/9WyMlJSXHaYQtcofP8QvJJhcvXuR5b2tri5UrVyI6OlotjbbzV69eDV1dXZiamiIgICBL78H3SlxcHMaNGwcdHR3o6uqCMQZdXV2YmZmhR48emDp1Km7fvg0fH59MryXqj+wjvaPLly+Hrq4ubG1t8eTJE61ply5diurVq3Pf6N69Ozw9PdXSJCQkoHnz5mCMoU2bNggMDOTHoqOjMWHCBF6mCTQJDAzkedy0aVPcuXMHMTExammSk5MxfPhwMMYgk8nQrVs3hISEaFxL2CL75JZfqNY1f/zxB5ydnXk6ExMTVKhQAQ0aNECFChUgk8nAGMPUqVPz/Pm+Jfbv3w9DQ0MwxtC7d2/8888/ePPmDQ4fPgwzMzMwxkRbKZcJCQnB/Pnz0bx5c1hZWcHW1hZ16tTBli1bcPv2bZ5OW90cFRUFJycnFCpUCPv371dLExERgZo1a/IyKz4+Pl+e52tGetf79OmDGjVqoEqVKnB0dMTKlSvh4uLC0wlb5D1Z9YukpCT+9/jx43kb2MDAAJs2bcr0e4YOHQrGGBo2bMjHVASCLw3V9k9YWJhan1j6Ozk5mX/24sULrF+/HsbGxpDL5WCMoVChQmjWrBnevHmjcU1B1hG2+LJQzf+ZM2fyfkHlypXRoEEDVK1aFYULF+af16hRA7/99hs/R9VWr169grW1NWQyGU6ePMmvL9Xn8fHxsLOzA2MMa9euzacnzBwhYBcIBAKBQCAQCAQCgUAgEAgEAkG+curUKejo6KB06dLw8/MDoD7g/ujRI8jlcpQoUQIvX74UIsQvhDVr1vAJE+lHX18fDRs2xH///cfTKZVKPgGjbRJLTGx9IrtCZmGL/Mfd3R3W1tZgjKFs2bKYP38+oqKiAGRsx7dv36JGjRpgjKFevXpCvJ4F3N3dYWVlhc6dO2PWrFm4efMmvL291dKovruenp64cOECZs6ciX/++SdTcZYg67x48YK/v40bN8axY8cQHByMsLAwHDlyBH379lUrh3744Qe8ePGCny+978uWLQNjDCVLloSvry8A9Xp/+fLlYIzBwcEBMTExwm5a8Pb2RqlSpcAYQ/Xq1TF8+HCcOHECFy5cwLJly9ChQwcuXre1tcX+/fu1XkfYIufkxC9U83P48OHQ09Pj6fr374/t27fj3bt3SE5Ohru7O5YvX85F7CtWrCigJ/66ePz4MRfmjB49mvc1JDZv3gzGGObOnVtAd/jtIgmkgoODERkZydtJEumVJ4mJiejfvz9fILhr1y6cPXsWe/bsgYODA/88LCwsw+sINHn//j0+fPiAyMhItc+FLfKPzPxCtU27dOlSWFhY8AWc27Zt48cyyus+ffrwvoYQsAu+ZNK+x+m91/7+/pg4cSJvA3Xq1AnDhg1Dw4YNuYD3w4cP+XDH3y7CFl8WaRe4litXjuc5YwxGRkZgjGHixIk4d+6c1vOA1EVsJUqUAGMMe/bsAfDJtnFxcdi8eTOMjIxQqVIlBAUF5cOTZQ0Rv18gEAgEAoFAIBAIBAKBQCAQCAT5ip+fHymVSrK0tCQLCwsiIr7drFKppHv37hEAatasGZUqVaogb1VAn7aWHzduHJUoUYIuXbpEHh4epKOjQwMHDiQnJyeqWbMmERElJyfz7eaJiBITE+n9+/d0//59evz4MXXv3p2cnZ0L6lG+OBhjn5Ve2CL/SUlJIaVSSQcPHqR3794REVGjRo1o7NixZGJiQgDStaNCoaDTp09TREQEERE5OTmRUqkkmUwmtq7PgGrVqpGrqyuZmZlpHEtJSSEAJJfLiYjo0KFDtGDBAvLz86OEhAQiIjIyMqL58+fTlClTSCaTZWgjQcaULl2a/v33X2rRogXdvHmT3Nzc+PurUCgoKiqKGGNUrFgxGjJkCC1ZskTtfCnfw8LCiIioT58+VKlSJVIqlaSjo0MASKlUUmhoKBER2dnZkbGxcf4+5FdClSpV6Nq1a9S7d29yc3MjDw8P2rZtG8nlctLR0aHExERijJG9vT2NGzeO+vXrR0Sk8f4LW+Sc7PqFUqnkZVe/fv3o33//JcYYMcZozpw59NtvvxHRJ7+pVq0alS9fnt68eUNLly6lM2fO0NChQ8nU1LRgHvwLR3rXXV1dydvbmxwcHGjEiBFUsWJFIiJKSEggAwMD/l4/fvxY1A95gEwmIysrq3SPpQUA6enp0fr168nLy4uePn1Ko0aNooSEBNLX16fExESqVq0aHTp0iCwtLdX8SPpbah+rXvN7t6uUB0WKFNF6XNgif8mKX1y/fp2OHj3K+w2rV6+mYcOGERFp5Ksqnp6e5OXlRTKZjBwdHUlfXz8PnkAgyB3Svsdp/5fKjP3799OaNWuoUKFCNHv2bJo+fTpP07dvXzp06BBt27aNpk6dKsqZbCJs8WUhl8t5XTpr1ixq0aIF+fn50b179yg5OZkaN25M5cuXp0aNGvFzUlJSeD0sYWxsTLVr16bTp0/Tw4cPqV27dlSsWDGKj4+nw4cP09q1ayk+Pp7atm1L5ubm+f2Y6SIE7AKBQCAQCAQCgUAgEAgEAoFAIMhXihYtSkSpEyRxcXFkYmJCRKkTJLdv36Y///yTAFDdunUL8jYF/49MJuOT5r1796Zu3boRAEpOTtYQt8XHx1NMTAydOXOGfH196fTp0xQUFMSFv6tWraKAgAAqXrx4QTzKV4+wRf4jk8koMTGRTpw4QdHR0WRlZUXLli0jc3PzdMUk0uchISG0c+dOCgsLIz09PRo6dChfrEMkRD0ZIQk0VcVRRKnCTinPd+7cyYU9zZs3p6pVq1KxYsVo9erVNG3aNCpUqBCNGDFC5HEOqVy5Ml27do0mTZpEHh4eFBgYSESpC88MDAxo+PDh1Lx5c+revTsRaRdZxcfHExFReHg4F5ESpdrTw8ODzp8/T0RE9erVS/caglRbnDp1itauXUtXr16lBw8ekFKpJKVSSUREI0aMoI4dO1KnTp2ISNgiL/lcv0hKSiI9PT0iIvrhhx/o33//JblcTpaWljR79mwaMWKE1u8xMjKiWrVqEQC6dOkSBQYGUo0aNfLlGb9GUlJS6Pjx46RQKMjZ2ZnnlUKh4O/6w4cPiSh1gYCoH3KX7OQnY4yUSiWZmZnR1atXaeLEieTp6UkPHz6k2rVrU9WqVWnJkiVUpEgRDZG01D6IjIykoKAg8vb2pn79+gm7krDFl0RmeSAdP378ON29e5eIiBYsWECjRo0iovTrYakfcfPmTXr27BkREdnY2OTmrQsE+Q5jjK5fv84X9c2ZM4emTJlCRESxsbFkbGxMEyZMoEOHDlFAQAA/R5D7CFvkP6r1av369al+/fo0aNCgdNNrqxuMjIyoV69edPr0aVq9ejX5+flRxYoV6enTp+Tl5UURERHUvn17mjJlCh+L10Z+j1UJAbtAIBAIBAKBQCAQCAQCgUAgEAjyFUtLSzI2NqYHDx7QP//8Qx06dCClUkm3b9+mRYsW0YsXL6h9+/Y0bty4gr5Vwf8jk8l4RG8pqreenh59/PiREhIS6OLFixQSEkJHjhyhV69eUXh4OD+3Xr161LZtW+rWrRuZm5vzBQyC7CFskf+cOXOGXF1dydjYmBYtWkSlS5fWEFZLqH7+v//9j65du0Y6Ojo0Z84cql27NimVSi7CTklJoaSkJPL19aWSJUuSoaEhmZiYCMEofZr8TpvH0ufHjh3j4vWpU6fSuHHjyMrKihhj1LhxY2rTpg1t3LiRunbtShYWFmIyPYdUrFiR9uzZQ69fv6abN29SUlISWVlZUaVKldTEUum9u/b29kRE9OTJE7pz5w7Vr1+fFAoFPXr0iGbMmEGenp5Ut25dGjBgABFpn4wXpFKmTBmaN28ezZ07l86fP0/R0dFkYmJC5cuXJwcHB/6uC1vkPVn1i+TkZC5eHzt2LO3fv59kMhmVL1+efv/9dy5MSWszqT6pUqUKFS9enCIjI/lOEwJNpGj2khhHaiMB4IvHNm/eTCtXriQiopYtWxbIfQo0kaKOmpqa0ubNm0mhUFBgYCBVrlyZiIj7j9QmiIiIoKioKDpz5gw9f/6crl69SiEhIaRQKOjBgwf0999/F9izfO0IWxQMly9f5mXTwIEDaeLEiUSU8SIyxhjdunWLxo8fT0SpO0RJ9QkAnkYg+No4evQoERH17t2bC6YVCgVfsH/v3j0iInr79i2lpKQQkWiv5hXCFvlPTvJPEp0PHjyYoqOjacKECXTmzBl+3MrKioYOHUr/+9//qEKFCryO0Ta2JdUf6Y175TZCwC4QCAQCgUAgEAgEAoFAIBAIBIJ8pWXLljR+/HhavHgxTZ8+ndasWUMxMTEUHx9P8fHx1Lx5czp69Cjp6uoKIWcBIuW9NAkiCYGCg4Pp5s2b5OXlRSdPnqT379/Tixcv+HmNGjWi5s2bU69evcjS0pKcnZ3Vok4LPh9hi4JFWgSQlJRElSpVIiJNYTWR+hbOgwcPpkOHDpFMJqOOHTtShw4diOhTBHFfX1/as2cPnT17ljw9Pal06dJUtWpVWrx4Mdna2ubbROHXSHh4OK1bt46IiEaPHk1z587lk+gAqFWrVuTo6Eje3t4UExNDJUqUKMjb/WYwMzMjMzMzjeieqtHZ0quvBw0aRHv27KF79+7R0KFDqWrVqhQbG0tBQUH08uVLqly5Mv33339UtGhRrfW+6neInQtSBYSMMeratava55JgjUjYIr/IzC8A8Dp79erVtH//fiIisrCwoNmzZ6crXif6VM9cvXqVIiIi8vpRvnqk979ixYpERPTo0SNyc3MjKysrMjMzoxUrVtCCBQuIiOi3336jVq1aFdi9CjSR2rlyuZz09PSoevXq/FhoaCjFxcXRyZMnKSgoiE6fPk1v3ryh+Ph4kslkVLhwYerQoQNVrVqVbG1tKS4ujoyMjArwab5uhC3yD6mucHNzI11dXdLX16d27drxPMtoHOTZs2c0ffp0SkpKIlNTU2rdujWZmppq1M1JSUmkUCjU7CDqb8GXCgDy8vIiIiJzc3MiShVMS2MY3t7edPXqVSIi6tChgxgrzEOELb4+GGO8TzFu3DiqVKkSPXr0iAICAsjU1JT69+9P5cuX19iFUepzvHz5kp4+fUpPnjyh69ev0x9//JFvO6OKUUqBQCAQCAQCgUAgEAgEAoFAIBDkG9Jg+qJFi0hXV5d27dpF4eHhlJycTE5OTtSwYUP6+++/SVdXVwg4CxhpUtvLy4t8fHzIxcWFi6WjoqJ4mpo1a1KjRo2oR48eVKZMGapXr55W24nFCNlH2KJgkMQdUsTb6tWrU506ddSOqSLl6dChQ2nPnj0kk8nI0dGRfvzxR3J0dORpnj17RsOGDaPHjx8TADIyMqLQ0FDy9fWlu3fv0rVr18jW1laIS9IhMjKSnj59SqamptS1a1cuyJHe9bdv33LBlBBN5T2ZvaNKpZJMTEzo7Nmz1LVrV7p79y6FhIQQUaqIt0OHDrR161YqWbIk310ibRnFGOM2lUTB37NvpPfswhZfDlKeSL/d3d3p+PHj9PHjRyIimjVrFg0ePJiIMq6T3717R7du3SKZTEY2NjZUtmzZvL/5rxQpr4cMGUI7duygR48eUf/+/UlfX59MTU3p+vXrREQ0cuRIGjhwYEHeqoA+taOk919155XIyEgKDQ2lc+fOkZ+fH506dYri4uK4/+jo6FDnzp3J2tqaunfvTiVKlOALDAWfj7BFwQKATp48ScnJyeTg4MB3QMkILy8vmjt3Lrm7uxMRkYODA40ZM4YvmCJKFSKePHmSDh48SOHh4VS7dm2qVasWTZw4UdTfgi8Wxhg5OjrSpUuXKC4ujmJjY/lC5YCAANq8eTOdPn2abG1tef9akDcIW3ydSDv9yWQyateuHbVr104jjXTc39+fwsPD6fz58/T48WO6f/8+ffjwgaeLjIykq1evcrvnJULALhAIBAKBQCAQCAQCgUAgEAgEgnxDdXvSefPmUY8ePSgqKopiY2PJzs6OSpUqxQfchXg9/1EoFPT06VN69+4dHT16lHx9fenevXsUFxdHRESGhoZkY2NDzs7O1LRpU6pUqRIX9Ep2k/5OixBMfx7CFgWPJOqoXLkyERH5+/vTgwcPqHbt2lz4IaUDQBERETRp0iQ6cOAAyWQyqlChAk2cOJG6d+/Or+nt7U2DBg0iNzc3qlu3LnXp0oVatmxJfn5+tH37drpy5QqNHDmSjh8/TkWKFMn/h/4KcHV1pXfv3lHp0qWpWrVqxBhTiwa3fft28vX1JQcHB9LR0RECnQJGLpeTQqEgMzMzOnPmDJ0+fZqCgoKIiKhu3brk5OREhQsXJiLiwiuZTEZxcXEUHh5Ot27dIg8PDzp27Bg1bNiQtm3bJuyZTYQtCo6LFy/yKJW//PILjR07lojSF69Ln7u4uNDRo0cpJSWF6tatS6VLl87X+/4aKVeuHF24cIG6d+9OwcHBFBcXx+uHxYsXU+/evcna2rqA7/L7Ja1IGgDFxMSQh4cHPXz4kB48eEBXr16lsLAwUigUJJfLydDQkJo1a0YVKlSgnj17koWFhcauB2mvL8gcYYuCR8p7AwMDIiKqWrUqERFfRKYNT09P+uOPP+jatWsUHR1NZcuWpb1791LRokV5mosXL9LWrVvp0KFD/DN/f3/au3cvBQUF0YoVK0T9LfhisbW1pZSUFNqzZw9ZWVmRs7MzBQcH09WrV+nEiROko6ND06dPpxo1ahT0rX7zCFt8fQBQG3dX5dmzZ/Tx40c6cuQIBQUF0dWrV3lADAMDAypTpgx1796dnJ2dqX79+lSiRIl8Ea8TCQG7QCAQCAQCgUAgEAgEAoFAIBAI8hm5XM4ntLVF6pEG3AX5z8GDB2nQoEFcAG1iYkIlSpSgjh07koODAzVq1Iisra1JV1dXzUZJSUmkp6fHPxMLEHKOsMWXg42NDVWvXp3c3d3p/9q787Cq6r3//6/NrIIggjKJIENpiOaQYDl7UiGH1EqzHFOzzJPZ3CmHTmXabXfTKe+OQ3X3zZxnFMNZEUdSUMGBQQlwQEVQ5v37w9/eSaJ5n5QN+Hxcl1e7/Vl77ffys12LzXqt94qJiVFISIhq1aplDn5cuHBBO3bs0Jdffqno6GhZWVkpJCREf//73zV06FBJ1zofFxYW6tNPP9XBgwf1yCOPaObMmWrRooUcHBzUpk0beXp6Kj4+XikpKcrNzSXAfhNBQUFq0KCBSktLlZSUJB8fH3M48V//+pfefPNNSdJrr712w+2xYRk2NjYqLS1VnTp19OSTT94wbjrBHh8fr6NHj2r79u3atWuXUlJSzF3gbG1tVVJSos2bN6tz586VvAU1B3NR+dLT0/XZZ59Jkh599FG9+uqrkm4e7jT9HHzgwAENHTpUJSUlCg0N1YQJEySp3AU7FeGiHSk4OFjR0dHau3ev4uPjFRAQoKCgILVr187Spd3zrl69qjp16igmJkYpKSlav369jhw5oiNHjpgvDHRzc1P37t3VsmVL/e1vf5OHh4eaNm1qXodpuesvJDThO+TtYy6qDldXV0lSVlaWCgoKzIF2E9N+PT4+XlOmTNHWrVt18eJFeXt7a+3atfLx8TEfv7dv364ZM2YoJiZGDRo00IsvvigXFxelp6dr1qxZ+uyzz+Tr66uJEydaYlOBPzV8+HAdPnxYn3zyiT744ANZW1ubP98NGzbU1KlTNXz4cEuXeU9gLqo+0/eJiu6icvLkSZ06dUrLli1TSkqKoqKiZDAYVFxcrDp16sjR0VFPP/20goKCFBERoYYNG8rFxaXc+ivrewUBdgAAAAAAAABApbvVCe17PXRjSUOGDNGuXbtkZWWlgIAARUREyN3dXc7OzhUun56ernXr1mn//v2SpJCQEA0ZMkT16tX704AVbo25qDruv/9+Pfvss3rzzTf19ttvKy8vTw8//LC8vLx04cIFzZo1S8eOHVNSUpKsra3VtWtXjRo1yhwONV1EYLoFs52dnYYPH64HH3xQdnZ25pPAQUFBMhgMysjIUHZ2tho3bmzhLa+afH19FRAQoNjYWE2dOlVJSUmysbFRYmKivvjiC0nSP/7xDw0ZMsTClUL6/aT69RfSmDqL7tmzR5mZmVq+fLmOHj2quLg4cwjOyclJgYGBevbZZ9WxY0c1b95cQUFBKioqstSmVHvMhWXk5eWZuxu2bt3aHFS8WXjdYDAoMTFRo0ePVl5enurWratu3bopICBAkszH89LSUsXFxSklJUU2NjZq3LixwsLCzHcFudd/nvb29pa3t7f69u1r6VLw/ysqKtLYsWMVHR2tc+fOmZ/39PRUWFiYevTooTZt2ig0NLRcIPePDAYD3b3/IuaiajDtq7t166bly5crNTVVv/76qx566KFy+3CDwaDNmzdr/PjxSk1N1ZUrV+Tj46PFixfrgQceMM9PWVmZfvzxR8XExKhdu3Z677331KtXL0nSlStXZG1trRkzZmjTpk16/vnnVatWLUttOlAh02d5xowZcnd3V1RUlI4dOyZbW1sNHDhQXbp0MX+mcXcxF1Wb6fhhOv4WFxcrKytLiYmJ2rJlixISErRlyxbzHRzr1q0rLy8vRUREyM/PT3369FG9evXUsGHDcus1HdNN66+s7xMGo+mbJwAAAAAAAAAAuGfdKuRsOolxfXjhu+++0w8//KCNGzeWW/bBBx/UunXr5O7uTqDhP8RcVB3X/729+eabmjFjhqRrHYidnJx09epVXb16VdK1MOKkSZPUr18/hYeH3/D6ZcuWacCAAWrUqJHi4uLk4eGh0tJSc6esLVu2qEuXLrKxsVF8fLyaNWtmgS2uHpKTk9WlSxdlZmbeMDZlyhS98MILcnNzs0Bl+GMXOBOj0ai4uDhlZ2dr8eLFysjI0ObNm83jnp6ecnd3V0REhJo2barw8HD5+/ub93Omk+jsy24fc1E1rFy5Uv369ZOLi4u2bNmi5s2bVxgwNz139OhRjRs3TrGxsSoqKlL79u31888/y9vb27zsunXrtGjRIs2bN8/8nIuLi0aPHq2PP/643PqAqiQhIUHPPvusHBwc1K9fP/n7+6tjx45q0KCBeX9y/Wc3JydHO3bsUEJCggICAuTl5aVHHnlE0s3vYoDbw1xUHZmZmerbt6/27t2rjh076u2339YDDzwgb29vRUdHKy4uTpMnTzYv7+/vr7Vr1+q+++4rt56oqChFRkZKkhYvXqz+/ftL+j2IumDBAj399NMKDg5WbGwsd3tClXT97zkuXLigwsJC2djY8N3OApiLqu3EiRPas2ePkpKS9Msvv+jo0aM6f/68ebxJkybq0qWLHnjgAfXq1Uu1atWSr6+vedxoNFaZO6DSbgMAAAAAAAAAAFQYmP5jVx/TyavZs2drxowZSk9PV0hIiMaMGSMvLy/98MMPWrFihR5//HFFRUXJycmpUrehpmAuqo7rLxaYPn26PDw8tGTJEsXFxSknJ0eSFBQUJB8fH7311lvq2LGj7OzsJOmGk4FeXl6yt7eXdC2o0qBBA/M8JiYmaurUqZKudd8nvH5rwcHB2rp1q6ZMmaJjx47p7Nmzat68uYYOHWoO66BymcJr13eBS05OVmJiotauXasTJ04oNjbW3B26fv36uv/++zVw4ED5+/ubT6r/8S4Tpn9/pgBdVTjBXtUxF1XT5cuXVVBQIOnGuw2Z5iwhIUEvvPCC9u/fr6KiIvn5+em7774rF15fuHChPv74Yx04cECS1LFjR2VnZys5OVkzZ86UwWDQ9OnTCa+jSgoJCdGWLVskXesGer3r9zElJSWKi4vTc889p6SkJEnXfj62t7fX+++/r5dffrlch1D83zEXVYenp6d+/PFHdevWTVu3blVSUpKsrKzk5eWlo0ePKj8/X9K17xKtWrXS7Nmz5enpecOFA0eOHJEkDRgw4IbwunQt7ChJderUMX8nAaoaa2tr8/7ExcXFvF9hH1P5mIuq7ccff9SUKVPM/x8SEqJu3bqpc+fOateunfz9/eXi4nLDfOXl5cne3l42NjY3NMewFALsAAAAAAAAAACgQtef5DCd9Ni+fbvmzJmjU6dO6ZlnntH48ePVunVrSVL//v3VtWtXbd++Xfv371enTp0sVXqNw1xYjrW1tfmk3ssvv6yBAwfq9OnTyszMVHFxsTp06KDatWvL2dlZ19/4+I8ndZ2dndWoUSMdP35cixcvlrOzs5o0aaK4uDhNmzZNmzdvVuvWrTVq1ChJdLP8MwEBAZozZ45sbW1VUFAgGxsb2draWrqse5aVlZXS0tK0ePFipaWlKTY2Vvv27TOPN2jQQM2bN1dkZKSaNGmiyMhIOTg43ND984//hix9Mr06Yi6qlnbt2qlZs2Y6ceKEEhIS1KZNGxkMhnJhESsrK+3Zs0fDhg3T8ePHVVJSogYNGigqKkoBAQHmO7Ps3LlTn3/+ueLj4xUZGalRo0apX79+SktLU1RUlMaPH685c+ZowIABatu2rYW3HKiYKSz9x0CVKSgnScuXL9ff//53ZWZmqlWrVmrTpo2cnJz05Zdf6pVXXlGtWrU0duxYAnR/EXNRdQQFBWnjxo16/vnnlZycbP6uYfLYY4+pb9++GjBggFxcXCoMHObm5kqSsrOzlZubqzp16pjnMikpSVu3bpWtra0GDhyo2rVrE0JFlWX6XF7/+eSzahnMRdX13nvvycHBQR4eHgoICFBoaGi5xhWlpaWSrs1XTk6Ojh49qn/9619KS0tTnTp11LJlS73++utydXW1eIidADsAAAAAAAAAAPhTppNUq1ev1t69e9W2bVtNmDBBDz74oKRrXXwcHR3Vrl07bd68WampqYSm7xLmovJd333M29tbPj4+FS53q5O5999/vyZNmqRx48bpo48+0pIlS+Tq6qpdu3ZJklq0aKGXXnpJDz30kKTy3Y0Js1fM1tZWBoNBtWrVUllZmaXLuecVFxfrjTfeUFlZmezs7BQeHq6wsDC1bt1ajzzyiJycnG4ISRcXF6u4uFiXLl1SvXr15ODgIOnaZ55wxH+Ouag6ateurQceeECHDx/WnDlz1Lp1azVr1sx8t5WkpCTt3LlTL7zwggoLCyVJgYGBWr16tYKDg1VaWmpeNjo6Wjt37tTDDz+sN954Q4888oika115e/bsqcDAQHPwkQA7qrqb3Yng119/1cSJE5WZmam+fftqwYIF5m7RXbt2VWRkpL7++mtFRETIx8eH/dMdwFxUDYGBgVqwYIFOnDihX375RcXFxfL29paXl5ciIyPNy5WVlVUYNAwJCZGdnZ1OnTqlgwcPql27drK2ttbu3bv19ddfa8OGDQoICFDnzp0lEUIFgOrKdHHr66+/fsOYKYxu+v3R6dOn9cUXX2jhwoVKS0sz3zEwOjpaUVFRiomJkZubm0V/50SAHQAAAAAAAAAA3JazZ89q4cKFkqSxY8eaA9OlpaVydHSU0WjUnj17JMkcfMPdwVxUvoq6j90uU/h97NixMhqNmjJlipKTk83jTz31lIYPH64uXbrIzs7OfNLxjycfTZ0V69ata/EuWVXB9XNBwN/yAgMDdfz4ce3fv1+hoaHy9fU1nyCXfu8CJ0mFhYVKTk7WG2+8ofT0dKWlpSksLEyDBw/WyJEjZWVlxYUbfwFzUXU4OTnpo48+0u7du7Vz504NHz5cDz/8sO6//34dO3ZMO3fuVHx8vEpKSuTu7q5WrVrpq6++UpMmTcrt5zMyMvTZZ59JkoYOHWoOr5eUlMjW1lZ+fn5ydnaWJOXn51tmY4G/wMrKSrm5uRo9erQyMjLUrVs3LVmyRFZWViosLJS9vb169eql9u3b6+jRoyosLCSAe5cwF5bj5uYmNzc3tWvX7oYx0/eJmx2Pe/bsqbZt22rHjh0aNmyY2rRpo7KyMh06dEjJyclycXHRzJkzFR4eXuHrOdYDQPVguri1IqbvDgaDQWfOnNGMGTM0d+5c1apVS4MGDdJLL70kOzs7ffLJJ/r55581ZMgQLV++XLVq1aqs8m9AgB0AAAAAAAAAANwWo9GovLw8Sdc6ikq/d/4pLCzU119/ra1bt6pRo0bq2rWrJUut8ZiL6sVgMJhDIc8//7zCw8OVmZmpS5cuqW7duurVq5c5lCL9ftIxNzdXeXl5WrdunQ4dOqSYmBidO3dOq1evprsuqiQ/Pz/5+flJkrkrvumzbfpc5+TkaNGiRfrggw90+vRpubu7y9HRUTExMYqJiVFOTo5effVVQlR/EXNRdTRp0kTr169Xv379FB8fr/j4ePOY6QKBdu3aqXfv3ho5cqQ8PDxu6LB79epVFRUVycnJyRxsNB33jUajFi1apL1798re3t58URtQ3WRlZSkzM1Oenp6aNWuWrKysVFxcbO76feTIEaWmpury5cu6cuWKhaut2ZiLqudWFwmYLmJetWqVIiIitGvXLqWkpEiS7O3tFRYWpnfeecfcyd30c8H1F6n98Vh//XcTAED1YdqvR0VFadGiRXJyctLEiRP13HPPydXVVZL0//7f/1NycrL27dunU6dOKTg42GL1EmAHAAAAAAAAAAC3xdHRUa1atVJMTIwOHz6svLw8OTo6qri4WP/+9781e/Zs2djYaOTIkXJxceGk913EXFQ/1wdEWrRooRYtWpQbNxgMys7OVmFhodasWaPU1FStWLFCWVlZ5s7rjo6O8vPz0+LFiwmwo8ozBaFM+x6j0ShJWrlypaZMmaLs7Gz16dNHs2bNkouLi/bt26chQ4bo9ddfV8uWLdW9e3eL1V7TMBeWFxwcrPXr1+vbb7/Vjh07lJycrMuXL6t79+5q2rSpXn75ZTk6Osre3r7CLrjOzs7y8/NTamqqDhw4oKZNm8rW1laSFBsbqx9//FFGo1FPPfWU/Pz8OO6jWjp69KgyMjLk5ORkvoDD9Dk3Go3aunWrzp07p06dOsnf39+SpdZ4zEX1Ym1trZKSErm4uGj9+vX6+eeflZqaqgsXLigiIkKBgYG67777JN3YaT0zM1NZWVnasGGDYmNj5eLiou+++45jCABUU6Z9/Lfffqvs7GwNGzbMHF4vKytTSUmJ7Ozs5O/vrwMHDujs2bME2AEAAAAAAAAAQNVXu3ZtdevWTdHR0frnP/+pEydOqHHjxoqNjdXevXtVVFSkAQMGaPDgweaAA+4O5qL6qSiQmJ+fr4yMDG3YsEEnT57UypUrdfnyZZ05c8a8TK9evdS4cWP1799fHh4eCgkJqezSgTvCYDAoJSVF06ZNU3Z2tkaOHKnPP/9ctWvXVklJif72t7/pnXfe0cSJE3Xw4EFC03cRc2EZjRo10tSpU2UwGJSTk6OSkhI1aNDghuUq6njv4uKi5s2b68iRI5oxY4YKCwvVqlUrbdy4UVFRUdqyZYuaNWumoUOHqk6dOpWxOcAdd99998nHx0clJSU6d+6c+fn8/Hz98ssvev3111VUVKSuXbvKycnJgpXWfMxF9WNjY6PS0lI5OTlp1KhRMhgMFV7MlJKSosuXL2v58uU6efKkoqOjzd897OzsVFRUpMGDB6tnz56W2AwAwB2QmJio/fv3q27dunrzzTfl6upqvnuTnZ2dDh8+rG3btkmSHBwcLForAXYAAAAAAAAAAPCnTCe/X3vtNZ09e1affPKJfvrpJ/O4t7e3+vXrp3Hjxlm0c8+9gLmoHkpLS80dK02KioqUlJSkffv2affu3YqJiVFGRoauXLkig8Ega2trdezYUU2aNNETTzwhT09PhYSEVBg+obsuqqMPPvhAqampeuihh/Tll1/KwcHBfCJduhackqQTJ05IqvjCD9wZzIVlubq6lvv/W+3TjUajbG1t9c033+j48ePav3+/JkyYIHt7e12+fFn29vZq27at3n33XXXt2tX8GunaxQoVzR3ziaqofv36atSokWJjY/XOO+9o8ODBsrOzU3x8vL7//nvl5eVpyJAhevPNNyXxs9DdxFxUL6a/f9McXP/f06dPKzMzUytWrFBqaqqioqJUVFSk/Px8WVtby8nJSc8++6yCgoLUu3dvubu7q379+pbcHADAX2Q0GlVQUKDS0lJlZ2crKCjI/D0vLS1Nn376qc6ePau+ffuqdevWFq2VADsAAAAAAAAAAPhTBoPBHMidMWOGmjVrpvj4eKWnp8vFxUXPP/+8/P395e7ubulSazzmonowhdd37Nih9PR0rVu3TocPH9ahQ4dUVFQkSXJ2dlbbtm0VGhqqRx99VN7e3mrZsmWF6/tjMIiQEKqjzMxMSdLAgQPl4OCgoqIic1D6t99+08aNGyXJfKcBArZ3D3NhGTfbd99qn2467ru4uCgmJkYTJkzQr7/+qtOnT6tRo0YaO3asunbtqrCwMEkqN5fStbk7f/68zp07p8TERPXv35/5RJXk5uamefPmqUuXLtqxY4d27txpvhhDkoYNG6Z58+ZJ4iKMu425qB5M3wlNx5DS0lKdP39eSUlJ2rJliw4dOqTo6GhdvHhR0rW7eNWqVUv9+vWTv7+/+vfvLzc3N/n4+JRb7/VzDQCoflxdXRUaGqqEhATt2bNHzZo1k5ubmxITE/X1119r4cKF8vX11aBBgyxdKgF2AAAAAAAAAABwe6ytrc0nyYcPHy6pfIdPVB7mouq6cOGCvv/+e23btk2nT5/W7t27zWOurq5q1qyZevTooTZt2qhFixYKCAiQ0WgsF/wpKyuT0Wg0h+CZU9QUBQUFkqRz587JaDSaQ7a5ublauXKloqOjFRAQoPDwcEuWeU9gLqoX03Hf2dlZc+bM0cWLF5Wbm6u6devKzc2t3LJ2dnYqLCxUfHy89u/fr3379mnr1q3KyspSXl6eRowYoTlz5lhoS4BbCw4O1tatWzV16lSdOHFCJ0+e1KOPPqrw8HA9//zzkghMVxbmour54wWtpaWlys/P17Zt23T48GFt2bJFCQkJSk9PNy/j4+Ojnj17qlmzZoqIiJCLi4uaNGlyy/Xz3QMAqjcvLy8NGDBABw8e1GuvvaaVK1fKy8tLUVFRys3NlYeHh0aPHq0+ffpYulQC7AAAAAAAAAAA4PaZArUmnNy2HOaiaqpXr55OnDihpUuXqlGjRmrevLn69eunJk2aqFu3bmrYsKFsbW3LvaawsFCXL19WWlqaPDw85ObmJgcHB/NFCkB1Z7rAJjQ0VJs2bdL27du1a9cutWrVSsnJyVq7dq1mzJihy5cva9y4cTe9EwH+Ouai+rK2tlZJSYlsbGzk5uZmDq5fvXpVtWrV0vbt23XixAlFRUXp4MGDOnr0qPm19erVU3h4uNq0aaPQ0NAbQpBAVRIQEKDZs2fL3t5eZ86ckYeHh3mMwHTlYi6qFoPBoLKyMn3//fcqKCjQggULlJaWprS0NPMyfn5+ioyMVKdOnfTwww/L19dX3t7e5vGysjJJMh9P/rh+AED1Zjo+v/vuu8rPz9eMGTO0bds283jnzp01cOBADR8+XLVq1bJgpdcYjNz3AwAAAAAAAAAAAPjLrg8Erl69Wg899JBsbW1Vr169cssVFxebQ+zbt2/XokWLtHLlSmVkZMjX11etW7fWV199JTc3N0LsqFFSUlLUqVMnnT59Wo0bN1b9+vWVnp6uy5cvq7CwUKNHj9bs2bMtXeY9gbmoHm4WEC0sLNS2bduUlZWlJUuWKCMjQ3v37jWP+/v7y8fHR48++qhatGih0NBQ+fr6VmbpwF9i+pnq+n8DXHhhGcxF1XL69Oly+/PmzZvLw8NDffv2VWBgoNq2bXvDdw9Jys/PV2lpqRwdHc3zyEUIAFAzXf97pNWrVys5Odncef3JJ59U3bp1b7iIyVIIsAMAAAAAAAAAAAB3yJ8Fzq8P/KxcuVIvvfSSTp06pdq1a8vf319Xr17VyZMn1axZM23ZskX169cnJIQaJTk5WU888YROnDihK1euSJLCwsLUo0cPTZ482cLV3VuYi6rHtL//436/oKBAe/bs0bFjx7R06VJlZGTo119/NY/7+vrK09NTAwcOVJMmTdSxY0c5OjrK3t6+3Pq5KAoAqr+kpCTt2LFD3t7e6tChg6ytrcvt703HkJKSEqWkpGju3LnatGmTMjMzFR4eroiICA0dOlQSIXYAqKmqy8/9BNgBAAAAAAAAAACASrZhwwYNGTJE586dU//+/TV06FB1795dxcXFeumll/S///u/GjFihGbPnl1lOmMBd0p2drYOHDig06dPy83NTW3atJGPj4+ly7onMRdV0/nz55WSkqI9e/Zo8+bNOnz4sBITE83jfn5+atiwoR5//HH5+voqMjJSNjY2qlWrVrn1EEwEgHvDHzvlFxUVacmSJfrmm2+0bds2SZKTk5MuX74sSZoxY4ZeffVVS5YMAAABdgAAAAAAAAAAAKAyZWVlaeTIkVq3bp0GDRqkyZMn67777jOP5+TkqGnTpvL399eOHTuqRdcsAMBfV1ZWpgkTJuiHH35QcXGxCgoKJEnu7u4KDQ1Vly5d1LRpU3Xs2FE2NjZydna+5boIrwPAvaesrExLly7VtGnTlJCQoFatWmnatGkKCgrS4cOHNWLECF28eFErVqxQ7969LV0uAOAeRrsGAAAAAAAAAAAAoBKlp6dr+/btcnFx0TPPPKPAwEBJv9/iOTc3V0ajUenp6crLy7tlQBEAUHNYWVlp1KhRWrx4scLCwtS6dWt17NhRrVq1kouLi+zs7MotbzQaVVhYqKioKJ05c0bOzs7y9/dXu3btZGVlRYgdAO4hpi7sOTk5mjt3rhISEtS7d29NmzZNLVq0kNFoVFBQkD766CONGzdOcXFxBNgBABZFgB0AAAAAAAAAAACoBKZQyZYtW5SXl6c2bdooIiJCklRcXCxbW1tJ0po1a3Tu3Dm1b99ednZ25tcBAGq+Bx98UCdPnlTt2rXLPV9aWipJKikpkY2NjUpKSvTTTz9p4cKFWrNmjXm52rVr6/3339fEiRNlZWXFMQQA7hGmff28efO0bt06ubi46N1331WLFi0kXfu+YWdnJ39/f0nXLqoFAMCSCLADAAAAAAAAAAAAlcAUKvH29pZ0LYR46tQpNWrUyBxeX7hwod566y1J0siRI1WrVi3LFAsAsJjrw+umLurW1taSZA6vf/HFF/r888+Vnp4uX19fDRo0SEVFRZo9e7YmTZokBwcHjRs3jvA6ANxjkpOTJUmjR49WmzZtZDQaZTQaZWdnp/z8fC1cuFCS5OrqaskyAQAQ94oCAAAAAAAAAAAAKpGXl5ecnJwUHx+vZcuWKTExUefPn9eXX36psWPHKi8vT2PGjNGgQYMsXSoAwMKsrH6PdRiNRknSihUr9M033yg7O1sjR47U8uXLNX36dM2aNUurVq2Sra2t/ud//kdnzpyxVNkAAAu5ePGiJOm3335TUVGRjEajrKysdPXqVa1cuVIxMTHy8PDQ4MGDJf1+bAEAoLIRYAcAAAAAAAAAAAAqUefOnfXiiy9Kkl5++WV16dJFYWFhmjBhgi5duqShQ4fqhRdeKNeBFwAAUzf1ZcuW6dixY4qIiNCrr76qli1bqqysTEVFReratavatm2rQ4cOmUOMAIB7R+vWrSVd68R++PBhSdLVq1c1f/58ffzxx0pLS1OPHj3UpEkTSeJOHQAAizEYuYwKAAAAAAAAAAAAqBRlZWXmbrqTJ0/WvHnzdPr0adnb28va2lrvvfeeBg8erEaNGlm4UgBAVbR7926FhYVJkmJiYtSlSxdJvx9fLly4oLCwMKWmpurQoUMKDg62ZLkAgEqWmpqqLl26KC0tTcHBwfLw8FB2drZSUlJUVFSknj176rPPPlNQUJClSwUA3OMIsAMAAAAAAAAAAACVqLS0VNbW1pKkI0eOKCsrS3Xq1JGjo6OaNWtm4eoAAFXZpk2b1K1bN/n4+Gj//v1yc3NTSUmJbGxslJeXpw8//FDTp09Xy5YttWfPHvPxBgBw70hKSlLfvn2VkpKi4uJiSVKTJk3Uo0cPTZw4UYGBgRauEAAAycbSBQAAAAAAAAAAAAD3Emtra3On3KZNm6pp06aWLgkAUE24u7vLzc1NBQUFOnTokDp27CgbGxtdvnxZ8+fP14IFC1SvXj2NHz9e1tbWMhqNMhgMli4bAFCJ7rvvPm3cuFHbt29Xenq6bGxs1LdvX9WvX19169a1dHkAAEiiAzsAAAAAAAAAAAAAAEC1kJOTo8jISMXFxalDhw7q06ePmjZtqm+//VaxsbG6ePGinn32WU2ePFk+Pj6WLhcAAAAAKkSAHQAAAAAAAAAAAAAAoJpITk5Wly5dlJmZKUmyt7dXYWGhPD091bdvX73yyisKDAy0cJUAAEvjLhwAgKqMADsAAAAAAAAAAAAAAEA1cvz4cb3//vs6ePCgioqK5OHhoYkTJ6p169by9PS0dHkAAAAAcEsE2AEAAAAAAAAAAAAAAKqZoqIiFRcXq6ioSPXq1bN0OQAAAABw2wiwAwAAAAAAAAAAAAAAVHNGo1EGg8HSZQAAAADAn7KydAEAAAAAAAAAAAAAAAD4awivAwAAAKguCLADAAAAAAAAAAAAAAAAAAAAACoFAXYAAAAAAAAAAAAAAAAAAAAAQKUgwA4AAAAAAAAAAAAAAAAAAAAAqBQE2AEAAAAAAAAAAAAAAAAAAAAAlYIAOwAAAAAAAAAAAAAAAAAAAACgUhBgBwAAAAAAAAAAAAAAAAAAAABUCgLsAAAAAAAAAAAAAAAAAAAAAIBKQYAdAAAAAAAAAAAAAAAAAAAAAFApCLADAAAAAAAAAAAAAAAAAAAAACoFAXYAAAAAAAAAAAAAAAAAAAAAQKUgwA4AAAAAAAAAAAAAAAAAAAAAqBQ2li4AAAAAAAAAAFC5SkpKtGLFCq1fv16xsbHKzs7WhQsXVLt2bbm7u6t58+Zq3769Bg4cKH9/f0uXCwAAAAAAAAAAahCD0Wg0WroIAAAAAAAAAEDlWLlypSZNmqTjx4/f1vKRkZGaPn26QkJC7nJlAAAAAAAAAADgXkAHdgAAAAAAAAC4R/zzn//Ue++9J1Nfk86dO+uxxx5TaGio6tevrytXrigzM1Nbt27V6tWrlZqaqjVr1sjHx0fffPONhasHAAAAAAAAAAA1AR3YAQAAAAAAAOAeMHfuXI0aNUqS1LBhQy1YsECdO3e+6fKlpaVasGCB3n77bfXq1YsAOwAAAAAAAAAAuCMIsAMAAAAAAABADXfq1CkFBweroKBAdevW1b59+xQYGHhbr7148aK2bdum3r173+UqAQAAAAAAAADAvcDK0gUAAAAAAAAAAO6uWbNmqaCgQJL0wQcf3HZ4XZJcXFxuCK+npqbKYDDIYDBo/vz5kqSlS5cqIiJCXl5esrGxqbC7+6pVqzRw4ED5+PjI3t5e9evXV3h4uKZPn668vLyb1jBlyhTz+93K5s2bzctt3rz5hvHOnTvLYDCYa0tKStKYMWPk7+8vBwcHeXp66sknn9SuXbtu+T6lpaWaP3++evToIQ8PD9nZ2cnZ2VlBQUHq1q2bPvzwQx0+fPiW6wAAAAAAAAAA4F5lY+kCAAAAAAAAAAB3j9Fo1A8//CBJcnJy0ogRI+74+ocOHWp+j4oUFBTo6aef1rJly8o9n5OTo127dmnXrl364osvtGbNGrVs2fKO1nczUVFReuKJJ5Sfn29+LisrS4sWLdKSJUv0X//1X3r55ZdveF1eXp4iIiK0bdu2cs8XFxcrNzdXx48f18aNG7V//34tXrz4bm8GAAAAAAAAAADVDgF2AAAAAAAAAKjBEhISdP78eUlShw4dVKdOnTu6/v/+7//WwYMH1aFDB40bN07BwcG6ePGiUlNTzcsMGzbMHF5v0aKFJk2apKZNmyonJ0cLFizQ/Pnz9dtvv6lbt246ePCgvL2972iNf/Tbb7/p6aeflo2NjT788ENzR/ZNmzbp448/Vm5uriZOnCg/Pz/169ev3GunTJliDq8/9thjGjJkiHx9feXg4KAzZ87owIEDWr169Z92iwcAAAAAAAAA4F5FgB0AAAAAAAAAarCDBw+aH7dq1equrH/o0KGaP39+haHtNWvWaOHChZKkbt26ae3atbKzszOPP/roowoPD9eYMWOUk5OjV155RT///PMdr/N6x44dk7Ozs2JjY9W0aVPz8+Hh4erbt6/at2+v3NxcjR8/XpGRkbK1tTUvY9qWgQMHatGiRTesu2fPnnrrrbeUk5NzV7cBAAAAAAAAAIDqysrSBQAAAAAAAAAA7p5z586ZH7u7u990ubKyMiUkJNz0T3FxcYWvc3Fx0ZdffnnTjuNfffWVJMnW1lbz5s0rF143GT16tLp37y5JWrp0qTIzM297+/5T7777brnwuskDDzygd955R5KUkZGhFStWlBvPysqSdK2b/a24urreoUoBAAAAAAAAAKhZCLADAAAAAAAAQA12+fJl8+M6dercdLnc3Fw1b978pn8yMjIqfF3v3r3l5ORU4VhJSYm2bNki6Vqn9UaNGt30/UePHm1+zebNm/9ss/4Sg8GgYcOG3XR8xIgR5kD+L7/8Um7M09NTkvTzzz/rypUrd69IAAAAAAAAAABqKALsAAAAAAAAAFCDXR8uz8/Pv+PrDw0NvenYyZMnzSHvdu3a3XI9148nJCTcmeJuwt/fX25ubjcdd3d3l5+fnyTp0KFD5cZMwfedO3fK399f48eP17Jly3T27Nm7Vi8AAAAAAAAAADUJAXYAAAAAAAAAqMHq169vfnyrkLWLi4uMRmO5P7fqUm5Sr169m47l5OSYHzdo0OCW6/Hw8KjwdXfDn9UiSQ0bNqywlnfffVcjR46UwWDQmTNn9NVXX6l///5q0KCBQkJCNHnyZGVnZ9+VugEAAAAAAAAAqAkIsAMAAAAAAABADdaiRQvz4wMHDtzx9VtbW9/WcgaD4Y6/93/qr9Ria2urOXPmKCEhQf/4xz/Uvn172dnZSZISExM1bdo0BQYGasWKFXeqXAAAAAAAAAAAahQC7AAAAAAAAABQg4WEhJi7sG/btk1XrlyptPd2dXU1P/6zruRZWVkVvk6SrKx+/1V2WVnZTdeRn59/W3XdTod00zJ/rMWkWbNmev/997Vjxw5dunRJGzZs0IgRI2Rtba28vDwNHjxYmZmZt1UPAAAAAAAAAAD3EgLsAAAAAAAAAFCDGQwGPfPMM5Kk3Nxcfffdd5X23k2aNFHt2rUlSXFxcbdcdvfu3ebHISEh5cacnJzMjy9cuHDTdSQnJ99WXSkpKTp//vxNx8+ePavU1NQKa6mIg4ODunfvrrlz52rmzJmSpKtXr2r16tW3VQ8AAAAAAAAAAPcSAuwAAAAAAAAAUMO98sorcnBwkCS99dZbSklJqZT3tbGxUadOnSRJGzZs0OnTp2+67L///W/zazp37lxuzN/f3/x47969N13HggULbqsuo9Go77///qbj8+fPl9FolCR17979ttZp0q1bN/Pjc+fO/Z9eCwAAAAAAAADAvYAAOwAAAAAAAADUcL6+vvr8888lSZcuXdIjjzyi7du33/I1RqNRFy9e/Mvv/eKLL0qSioqKNGrUKBUXF9+wzNy5cxUdHS1J6t+/vzw9PcuNt2/fXjY2NpKkTz/91Bwuv97MmTPLdXH/M++//76SkpJueP7IkSP64IMPJEmenp7q27eveSwnJ0erVq2q8P1NTNshlQ/eAwAAAAAAAACAa2wsXQAAAAAAAAAA4O4bPXq0MjIyNHXqVP3222/q0KGDunbtqt69e6t58+ZydXVVaWmpsrKytH//fi1cuFCJiYmSJGtra9nZ2f1H7xsZGaknnnhCixYtUnR0tMLCwvTKK6/o/vvv14ULF7RgwQLNnTtXkuTq6qpZs2bdsI4GDRroiSee0E8//aT169erT58+evHFF9WwYUOlp6frhx9+0JIlS9S+fXvt3LnzT2sKDAzU2bNnFRYWpjfeeMPc8X3z5s2aPn26Ll26JEn64osvym13bm6u+vTpIz8/P/Xv31/t2rVT48aNZWNjo8zMTK1atcrcSd7b21uPPfbYf/R3BgAAAAAAAABATWYw3qpVDAAAAAAAAACgRlm2bJleffVVnTx58k+XNRgM6tGjh2bOnKmQkBDz86mpqebu4vPmzdPw4cNvuZ6CggI9/fTTWrZs2U2X8fLy0po1a9SyZcsKx7Ozs9WhQwcdO3aswvFBgwbpueeeU/fu3SVJmzZtMgfTTTp37qwtW7aoU6dOeu211/Tkk0/qypUrN6zLyspKM2bM0KRJk8o9f/1234qnp6dWrVql1q1b/+myAAAAAAAAAADca+jADgAAAAAAAAD3kMcff1y9e/fWsmXLtH79esXGxurMmTO6ePGiateurfr166t58+YKDw/XU089dVuB7T/j4OCgpUuXatWqVZo/f7527dqlc+fOqU6dOgoODla/fv00fvx4OTo63nQdDRs2VFxcnD7++GMtXbpU6enpqlOnjkJCQjRmzBgNGTJEmzdvvu2aIiMjtXfvXs2cOVMbN25UZmamXFxc1KFDB02aNEnh4eE3vKZx48bavXu31q5dq507dyotLU3Z2dnKy8uTi4uLmjVrpt69e2vMmDGqW7fuf/JXBQAAAAAAAABAjUcHdgAAAAAAAADAPeH6Duz/l7A7AAAAAAAAAAC4c6wsXQAAAAAAAAAAAAAAAAAAAAAA4N5AgB0AAAAAAAAAAAAAAAAAAAAAUCkIsAMAAAAAAAAAAAAAAAAAAAAAKgUBdgAAAAAAAAAAAAAAAAAAAABApSDADgAAAAAAAAAAAAAAAAAAAACoFAaj0Wi0dBEAAAAAAAAAAAAAAAAAAAAAgJqPDuwAAAAAAAAAAAAAAAAAAAAAgEpBgB0AAAAAAAAAAAAAAAAAAAAAUCkIsAMAAAAAAAAAAAAAAAAAAAAAKgUBdgAAAAAAAAAAAAAAAAAAAABApSDADgAAAAAAAAAAAAAAAAAAAACoFATYAQAAAAAAAAAAAAAAAAAAAACVggA7AAAAAAAAAAAAAAAAAAAAAKBSEGAHAAAAAAAAAAAAAAAAAAAAAFSK/w/B9tHvRAGdjAAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAC7AAAAPgCAYAAACx8HFwAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdf3ifZXk3/neStvnRlp8B1lpi6kpJsPgjFVdaIi1uzk0YEMpUyAQflTm3fXHWOYsbglM6N4sydzitOpB1oLOW+giK7lHAyFNUIs5VEwqOUCoVTC1Qmk/TkuT7B0+zhjZp0qRJ07xex5Ejd677vM77/NQelqbvXJ+inp6engAAAAAAAAAAAAAAwCFWPNYDAAAAAAAAAAAAAAAwMQiwAwAAAAAAAAAAAAAwKgTYAQAAAAAAAAAAAAAYFQLsAAAAAAAAAAAAAACMCgF2AAAAAAAAAAAAAABGhQA7AAAAAAAAAAAAAACjQoAdAAAAAAAAAAAAAIBRIcAOAAAAAAAAAAAAAMCoEGAHAAAAAAAAAAAAAGBUCLADAAAAAAAAAAAAADAqJo31AAAAAAAAAAAAAADA2Ovp6cnu3bvT3d091qNwGCsuLs7kyZNTVFR0UPsF2AEAAAAAAAAAAABgAuvq6kp7e3u2b9+e3bt3j/U4jAOTJ0/O9OnTU1lZmZKSkiHtLerp6ek5RHMBAAAAAECS5PLLL88XvvCFJMkjjzyS6urqg+519913Z8mSJUmSD37wg7nmmmuGPd+eU2LOPvvs3H333cPuBwAAAAAwXnR1deWxxx5LZ2dnjj766EybNi0lJSUHfbo2R7aenp50dXXl2WefzdNPP53S0tKcfPLJQwqxO4EdAAAAAGACmTNnTn7+858nSf7rv/4r8+bNG7D+t3/7t/Ptb387STJr1qw89thjA9Z3dHTk2GOPza5duzJp0qRs27Yt06ZNG5nhh+ATn/hEnnrqqRxzzDF597vfPerPBwAAAAAYL9rb29PZ2ZmqqqqUl5eP9TiME9OmTcvRRx+dTZs2pb29PSeddNKg9xYfwrkAAAAAADjM7Dm5PMkBTxrftWtX/u///b+9X2/evDkPP/zwgHvuvffe7Nq1K0lyxhlnjEl4PXk+wH7ttdfmE5/4xJg8HwAAAABgPOjp6cn27dtz9NFHC68zZOXl5TnqqKOyffv29PT0DHqfADsAAAAAwASyd4D9rrvuGrD2+9//fgqFQp+1A+3ZOxS/97Nuuumm9PT0pKenJ9XV1YMfGAAAAACAQ2b37t3ZvXv3mB1Gwvg3ffr03t9HgyXADgAAAAAwgSxevLj3+rvf/e6AJ6LsCaNPnz49Z511Vp+1A+1J+gbYAQAAAAA4/HR3dydJSkpKxngSxqs9v3f2/F4aDAF2AAAAAIAJZObMmZk7d26SpL29Pf/1X//Vb+2eMPpZZ52V1772tX3W9qejoyM//OEPkyRTpkzJokWLRmZoAAAAAAAOqaKiorEegXHqYH7vCLADAAAAAEwwe5+M3l8gfdeuXVm/fn2S509tP/vss5Mkjz/+eDZu3LjfPffee2/vW4T+1m/9VsrLy3vvXX755SkqKkpRUVHa2toGnO+b3/xmLrzwwsyYMSNlZWWpqqpKQ0NDvvWtbx3wtVVXV6eoqCiPPvpokuTRRx/tfe7eH9dcc82AfXbu3Jl//Md/zJlnnpnjjz8+5eXlmTNnTv7kT/4kjzzyyAHnAAAAAAAA9k+AHQAAAABggtk7wH7XXXftt+b73/9+CoVCkucD7AsWLMiUKVMG3LN3GH7vZwxWd3d33vGOd+T1r3991q1bl1/+8pfp7OzMY489lttuuy2/+7u/m3e/+91D7jtUjzzySF796lfnyiuvzH333Zdf//rX2blzZ37+85/n05/+dE4//fQBT6IHAAAAAAD6N2msBwAAAAAAYHQtXry49/q73/1uenp69nmLzz0B7enTp6euri6TJk3Kq1/96nzve9/L3XffnT/+4z/ep+9wA+x/8Rd/kc997nNJkpKSklx66aVZvHhxSktL8+Mf/zif//znc8MNN+Sxxx7rt8eqVavS0dGRK664Ir/61a9ywgknZNWqVfvU1dTU7Hf/M888kze84Q1paWnJ6173upx33nk56aSTsmXLlnzhC1/Ij370o+zYsSNvetOb0tLSkmOPPXbIrxMAAAAAACYyAXYAAAAAgAnmpJNOSm1tbVpaWvLrX/86//mf/5lXvOIVfWr2hNEXLVqUSZOe/1bya17zmt4A+wt1dHTkhz/8YZKkrKwsZ5555pBmuvfee/PJT34ySTJ16tTceeedOeuss3rvX3LJJfmLv/iLnHPOOVm7dm2/fV73utclSe9J7RUVFbngggsGPccDDzyQSZMm5ctf/nKWLl3a59673vWunHfeebnzzjvzxBNP5MYbb8x73vOeQfcGAAAAABjPfvFUIdt27BrrMYbt2KlT8qJjysd6jBFVXV2dRx99NDfeeGMuv/zyQd8bKwLsAAAAAAAT0JIlS9LS0pLk+bD63gH2Xbt2Zf369Un6ntZ+9tln57rrrssvf/nLtLa29jnF/N57783u3buTJGeeeWZKS0uHNM/KlSvT09OTJPnoRz/aJ7y+x4wZM/KlL30pdXV16erqGlL/objqqqv2Ca8nyaRJk/Lxj388d955Z5LkG9/4hgA7AAAAADAh/OKpQs752N3pfK57rEcZttJJxfnOexcfkhB7T09P1qxZk1tuuSU/+tGP8uSTT6akpCQnnXRSZsyYkVe/+tWpr6/Pa1/72hx11FEj/vyhuuaaa5Ikl19+eaqrq0ftucWj9iQAAAAAAA4bS5Ys6b2+6667+ty77777UigUkjwfWt9j4cKFvaexv3DP3l/vHXofjM7Oztxxxx1JkqOPPjpvf/vb+6192cte1nvK+qFQXFycK6+8st/7NTU1mTVrVpJkw4YNh2wOAAAAAIDDybYdu46I8HqSdD7XfUhOkn/qqaeyZMmS/OEf/mHWrVuXTZs25bnnnktpaWk2bdqUe++9Nx//+MfT0NAw4DuNjrTf/M3fzKmnnpqjjz56n3vXXnttrr322rS1tY3aPIkAOwAAAADAhHT22WenqKgoSdLU1JTu7v/5h4e77747STJt2rS86lWv6l2fNm1a5s+f36fmhXuSvuH4wfjP//zP7Nr1/D8WLFq06ICnt7/2ta8dUv+hOPXUU3PccccNWLMnwL5t27ZDNgcAAAAAAOPLW97yltxzzz0pKSnJsmXLsnHjxnR2dmbr1q0pFAr5z//8z3z0ox/Ny1/+8lGd69vf/nZaW1tz4YUXjupzByLADgAAAAAwAZ1wwgl56UtfmuT5IPaPf/zj3nt7wuiLFi3qPXF9jz0nsu8dWN+xY0fuv//+JEl5eXl+67d+a0izPP74473Xc+bMOWD9YGoOVmVl5QFr9gTsOzs7D9kcAAAAAACMHw899FC+9rWvJUk+/OEP52Mf+1hOOeWUFBc/H9WeNGlSXvayl+V973tffvzjH+eNb3zjWI475gTYAQAAAAAmqL1PSt8TSO/s7Mx9992X5H/C6nvbs/bkk0/mZz/7WZLk3nvvze7du5M8H3qfMmXKkOZ49tlne68rKioOWD916tQh9R+KPf+YAAAAAAAAg7X3ITHnn3/+AevLy8v7fF1dXZ2ioqLcdNNN2b59e5YvX55TTz015eXlqayszAUXXJDvf//7BzXb3r33uPzyy3vfpTV5/t8LioqKej+qq6sP6lmD5TvxAAAAAAAT1OLFi3uv77rrriTJ97///RQKhX3u73HWWWelpKSkz569T2PfOxQ/WNOmTeu97ujoOGD9jh07hvwMAAAAAAAYDZs3bz7ovdu2bcsZZ5yRv/u7v0tbW1umTJmSrVu35qtf/WoWLlyYf/mXfxmRGY8++uicdNJJvV8fe+yxOemkk3o/TjjhhBF5Tn8E2AEAAAAAJqizzz6794SVpqamdHV19YbRp06dmjPOOGOfPUcddVRe/vKXJxm5APuLXvSi3uuHH374gPWDqQEAAAAAgNFyxhln9H6/fdmyZdm4ceNB9bn22mvz5JNP5t///d+zY8eOPP300/nZz36Ws88+O93d3fnjP/7j/OhHPxr2vDfccEN++ctf9n69du3a/PKXv+z9+OEPfzjsZwxEgB0AAAAAYII6/vjj87KXvSxJ8vTTT+eBBx7oDaMvXLgwkyZN2u++s88+O0lyzz335Nlnn83999+f5PmT1PcXej+Ql73sZSktLU2S3Hvvvens7Byw/tvf/vYBexYXP//t756eniHPAwAAAAAAQ1FdXZ23v/3tSZL/+q//Sk1NTerq6vKnf/qn+Zd/+Zds2LBhUN+vfvrpp/PlL385F198ce/36Gtra/ONb3wjp5xySp577rn8zd/8zSF9LaNBgB0AAAAAYALb+8T0O++8M/fdd1+SZPHixf3u2RNgb29vz2c+85ns3r07SXLWWWf1G3ofSGlpaX7/938/yfPfnB/oLVA3bNiQb33rWwfsOW3atCTJjh07hjwPAAAAAAAM1ac+9an8zd/8TaZOnZqenp488MAD+dSnPpW3ve1tOf300/Mbv/Ebec973pMnnnii3x6LFi3Ka1/72n3Wy8vL85d/+ZdJnv9e/tNPP33IXsdoEGAHAAAAAJjA9g6qf/KTn0yhUNhn/YXq6+t73wr17//+73vX9w7DD9WyZct6e/7VX/1V1q9fv0/NE088kTe+8Y3p6uo6YL/Zs2cnSbZu3ZpNmzYd9FwAAAAAADAYkyZNyoc+9KH84he/yL/+67/m7W9/e17+8pdnypQpSZInn3wyH//4xzNv3rz84Ac/2G+Pc845p9/+e+51d3fnRz/60ci/gFEkwA4AAAAAMIG95jWvSXHx898qfvLJJ5MkFRUVOeOMM/rdc9xxx+X000/vsycZXoB90aJF+fM///Mkyfbt2/Oa17wmb33rW3PTTTfl1ltvzV/91V/ltNNOy89+9rM0NDQcsN9v//Zv915feOGF+exnP5uvf/3rufPOO3PnnXfm4YcfPuhZAQAAAACgP0cffXQaGxvz2c9+Nj/+8Y/z9NNP5z/+4z9y3nnnJXn+3U0vuuii7Ny5c5+9L3rRi/rtu/e9vb83Px4JsAMAAAAATGDHHntsXvGKV/RZW7hwYSZPnjzgvrPPPrvP10cddVTq6uqGNcvHP/7xvO1tb0uSPPfcc7npppvy1re+NZdcckn+/u//Pr/+9a9z5ZVX9gbdB/K//tf/Sk1NTZLkRz/6Ua644oq84Q1vyO/93u/l937v97J69ephzQoAAAAAAINRVlaW3/7t387//t//O5dddlmSZPPmzbnzzjvHeLKxI8AOAAAAADDBvfDk9MWLFx9wzwsD7PX19SkpKRnWHMXFxfnc5z6Xb3zjG/mDP/iDnHjiiZkyZUpmzZqVCy+8MHfeeWc+8YlPDKrX1KlTc9999+Xqq6/Oq171qhx99NG9J80DAAAAAMBYuOKKK3qvH3zwwX3u/+IXv+h37973TjzxxJEdbJRNGusBAAAAAAAYWx/72MfysY99bEh7LrroovT09Ay6/qabbspNN900qNrXv/71ef3rX9/v/cWLFw/q2UcffXSuvfbaXHvttQesHcprufvuuwddCwAAAAAAe0ybNq33urS0dJ/7d911V79799wrLi7OK1/5yhGZp6ioKD09PUP6HvlIcNwMAAAAAAAAAAAAAMBBeuSRR7Jx48YD1n3hC1/ova6rq9vn/ve+9739HqKyc+fOrFy5Mknyu7/7uznmmGMOeta9HXXUUUmSp556akT6DZYAOwAAAAAAAAAAAADAQfrpT3+a2travOENb8jNN9+ctra23nu7d+/OAw88kLe+9a25/vrrkySvfvWrc9ZZZ+3T5+ijj85FF12UNWvW5LnnnkuStLa25g1veENaW1tTUlKSD33oQyM297x585Ik//Zv/5aOjo4R63sgk0btSQAAAAAAAAAAAAAAR5jJkyenu7s7X//61/P1r389STJlypRMmzYt27ZtS09PT29tXV1dbrvtthQX73sO+Qc/+MF85jOfycUXX5zS0tKUlZXl6aefTpIUFRXln//5n/OqV71qxOZ+5zvfmXvvvTdf+cpX8r//9//OiSeemEmTJmXWrFn53ve+N2LPeSEBdgAAAAAAAAAAAACAg/S7v/u7eeihh/L1r3893/ve97Jhw4Zs3rw5Tz31VCoqKjJz5sy88pWvTENDQy6++OL9hteT5Nhjj80PfvCDrFixIl/5ylfy2GOP5bjjjsuiRYuyfPnynHnmmSM6d2NjY5LkM5/5TP7rv/4rW7ZsSXd394g+Y3+KevaO9AMAAAAAAAAAAAAAE8LOnTvzyCOPZPbs2SkrK+u37hdPFXLOx+5O53OHPtx8qJVOKs533rs4LzqmfKxH6VVdXZ1HH300N954Yy6//PKxHmdIBvt7aG9OYD8MdHd35/HHH8/06dNTVFQ01uMAAAAAAAAAAAAAcJjq6enJ9u3bM3PmzH5P8h5pLzqmPN957+Js27FrVJ53KB07dcphFV6fiATYDwOPP/54Tj755LEeAwAAAAAAAAAAAIBx4rHHHsusWbNG7XkvOqZc8JsRIcB+GJg+fXqS5/+P5KijjhrjaRhJNTU12bJlS2bMmJHW1taxHgcAAACOSP7+DcBg+TMDgMHw5wUAg+XPDADGyjPPPJOTTz65N38K440A+2GgqKgoSXLUUUcJsB9h9rw1R3Fxsf9tAQAA4BDx928ABsufGQAMhj8vABgsf2YAMNb25E9hvBFgBwAAAAAAAAAAAAAYI21tbWM9wqgqHusBAAAAAAAAAAAAAACYGATYAQAAAAAAAAAAAAAYFQLsAAAAAAAAAAAAAACMCgF2AAAAAAAAAAAAAABGhQA7AAAAAAAAAAAAAACjQoAdAAAAAAAAAAAAAIBRIcAOAAAAAAAAAAAAAMCoEGAHAAAAAAAAAAAAAGBUCLADAAAAAAAAAAAAADAqBNgBAAAAAAAAAAAAABgVAuwAAAAAAAAAAAAAAIwKAXYAAAAAAAAAAAAAAEbFpLEeAAAAAAAAAAAAAAA4zD31WNKxdaynGL6K45NjTh7rKSY0AXYAAAAAAAAAAAAAoH9PPZb80/zkuc6xnmT4JpUmf9Z8SEPsXV1d+cpXvpLbb7899913X5588sl0dHTkmGOOydy5c1NfX59LL7008+bN67fHPffck1tuuSXf/e53s2XLluzcuTMnnHBCXv7yl+e8887LZZddlrKysn73X3PNNbn22mv3WZ8yZUqOP/74nH766bn44otz2WWXZfLkySPyugdLgB0AAAAAAAAAAAAA6F/H1iMjvJ48/zo6th6yAPt9992Xyy67LBs3buxdmzx5cqZPn56tW7fm3nvvzb333pu/+7u/S0NDQ2699dZMmTKlt3br1q15y1vekq9//eu9a6WlpSkrK8vmzZuzefPm3HHHHfnIRz6Sm266Keecc84BZzrppJN6r7dv354tW7Zky5Yt+da3vpXPfOYz+da3vpVjjz12hH4FDqx41J4EAAAAAAAAAAAAAHCE+trXvpbFixdn48aNOf7447NixYps3Lgxu3btytatW7Nr16788Ic/zPvf//4cddRRWbt2bTo6Onr3P/HEE1mwYEG+/vWvp6SkJH/+53+en/70p9m5c2eeeuqpbNu2LTfeeGNOPvnkPPbYY3n961+fdevWHXCuX/7yl70fO3bsyKOPPpp3vOMdSZL7778//9//9/8dql+S/RJgBwAAAAAAAAAAAAAYhoceeiiNjY3p7OzMaaedlh//+Md5//vfn1NOOaW3pqSkJK961auyYsWKPPLIIzn//PN77/X09OSSSy7Jww8/nMmTJ+e2227LP/7jP+a0007rrTnmmGNy+eWX54EHHsjLX/7y7N69O5dddll+/vOfD2nWqqqqrFq1qvf09n//93/Ps88+O8xfgcETYAcAAAAAAAAAAAAAGIa//uu/zjPPPJOysrLcdtttmTVr1oD1xx13XNatW5ejjz46SXL77bfnO9/5TpLkAx/4QM4777x+9x5//PH58pe/nLKysjzzzDP54Ac/eFAzv/71r0+S7Nq1Kw899NBB9TgYAuwAAAAAAAAAAAAAAAfpiSeeyJo1a5Ikl156aebOnTvovUVFRUmST33qU0mS6dOnZ9myZQfcd8opp+TNb35zkuRLX/pS2tvbhzp2enp6eq+7urqGvP9gCbADAAAAAAAAAAAAAByku+66K93d3UmSCy+8cMj7n3vuuTQ1NSVJXve612XatGmD2tfQ0NC7/7vf/e6Qn/vNb34zyfMh+tmzZw95/8ESYAcAAAAAAAAAAAAAOEg//elPe69f+cpXDnl/W1tbduzYMeT9r3jFK3qvf/KTnwx636ZNm3LFFVfkO9/5TpLkvPPOy/HHHz/o/cM1adSeBAAAAAAAAAAAAABwhNm6dWvv9XHHHTes/UMJkldWVu63xwv9xm/8Ru/19u3b09HR0ft1TU1NPvWpTw36mSNBgB0AAAAAAAAAAAAAYBzr7Ozs994TTzyx3/W3vOUt+cxnPpOysrJDNdZ+FY/q0wAAAAAAAAAAAAAAjiB7n5r+61//elj7BzpJ/YXa29t7r4899th+63p6etLT05Pu7u48/vjj+fSnP51jjjkmN998c/7pn/5pyPMOlxPYAQAAAACAQ6ajoyOtra191gqFQtra2lJdXZ3y8vI+92pqalJRUTGaIwIAAAAADMtLX/rS3usHHnggM2fOHNL+F7/4xZk6dWp27NiRH/3oR4Pe98ADD/Ren3rqqQesLyoqyowZM/LHf/zHOfXUU3POOefkfe97X+rq6nLOOecMaebhEGAHAAAAAAAOmdbW1syfP3/Q9c3NzamrqzuEEwEAAAAAjKwlS5akuLg43d3due222/KGN7xhSPsnT56c+vr63HnnnfnWt76V7du3Z/r06Qfct3bt2t7rxYsXD+mZixcvzh/90R/l5ptvzp//+Z/nJz/5SUpKSobU42AVj8pTAAAAAACACammpibNzc19PlavXp0kWb169T73ampqxnhiAAAAAIChOemkk3LRRRclSW655ZZs3Lhx0Ht7enqSJO9617uSJM8++2yuv/76A+576KGH8sUvfjFJctZZZ+UlL3nJUMfO1VdfnZKSkvzsZz/LF77whSHvP1gC7AAAAAAAwCFTUVGRurq6Ph+1tbVJktra2n3uVVRUjPHEAAAAAABD9+EPfzjTpk1LoVBIQ0NDfvGLXwxYv23btlx00UV5+umnkyTnnntu7ynqH/nIR3L77bf3u3fr1q25+OKLs3PnzhQVFeXDH/7wQc38m7/5m3njG9+YJPnbv/3b7N69+6D6DJUAOwAAAAAAAAAAAADAMMydOzf/+q//milTpuSnP/1pXvGKV+SjH/1oHn744d6arq6uPPDAA7n66qvzkpe8JGvXru29V1RUlFtvvTUveclLsnv37lx44YW58sor09LS0lvz9NNP5wtf+ELq6uryn//5n0meP0X97LPPPui5ly9fnqKiorS1teXzn//8QfcZCgF2AAAAAAAAAAAAAIBhuuCCC/Kd73wnc+bMSXt7e97//vfnlFNOSWlpaY4//vhMmTIldXV1+du//ds8/fTTefOb35ypU6f27v+N3/iN3HfffXnd616X5557Lv/4j/+Y0047LeXl5Tn22GNzzDHH5PLLL8+mTZsyefLk/P3f/32uueaaYc08b968/MEf/EGS509+7+zsHFa/wRBgBwAAAAAAAAAAAAD6V3F8Mql0rKcYGZNKn389h8iiRYvS2tqaW2+9NZdeemnmzJmTsrKybN++Pccdd1zOOuusfOADH0hLS0tuueWWTJ48uc/+E044Id/85jfz7W9/O29/+9tz6qmnZsqUKXnqqad6a2bOnJkNGzbkL//yL0dk5g984ANJks2bN+czn/nMiPQcyKRD/gQAAAAAAAAAAAAAYPw65uTkz5qTjq1jPcnwVRz//Os5hEpKSvKmN70pb3rTmw66xznnnJNzzjmnz9qXvvSlvPnNb87jjz+ef/3Xf83f/u3f9rv/mmuuGfTp7GeccUZ6enoOetahEmAHAAAAAAAAAAAAAAZ2zMmHPPjNwN74xjdmy5Yt+Yu/+It8+MMfzvTp0/O+971vrMcasuKxHgAAAAAAAAAAAAAAgAN797vfnfe+971Jkr/6q7/Kpz71qTGeaOgE2AEAAAAAAAAAAAAAxol/+Id/SE9PT3p6evKud71rrMcZMgF2AAAAAAAAAAAAAABGhQA7AAAAAAAAAAAAAACjQoAdAAAAAAAAAAAAAIBRIcAOAAAAAAAAAAAAAMCoEGAHAAAAAAAAAAAAAGBUCLADAAAAAAAAAAAAADAqBNgBAAAAAAAAAAAAABgVAuwAAAAAAAAAAAAAAIwKAXYAAAAAAAAAAAAAAEaFADsAAAAAAAAAAAAAAKNCgB0AAAAAAAAAAAAAgFEhwA4AAAAAAAAAAAAAwKgQYAcAAAAAAAAAAAAAYFRMGusBAAAAAAAAAAAAAIDD25Znt2Rb57axHmPYji09NjOmzRjrMSY0AXYAAAAAAAAAAAAAoF9bnt2Sc9edm11du8Z6lGGbUjIlt19w+yENsXd1deUrX/lKbr/99tx333158skn09HRkWOOOSZz585NfX19Lr300sybN6/fHj/5yU/yb//2b7nrrrvy6KOPZtu2bSkvL8+LXvSinHHGGWloaMjv//7vZ/LkyX32LV68OPfcc88+/SoqKvKiF70oCxcuzDvf+c4sWLBgxF/3YAmwAwAAAAAAAAAAAAD92ta57YgIryfJrq5d2da57ZAF2O+7775cdtll2bhxY+/a5MmTM3369GzdujX33ntv7r333vzd3/1dGhoacuutt2bKlCm9tdu3b8873/nO3Hrrrenp6UmSFBUV5eijj06hUEhLS0taWlpy88035zd/8zfzb//2b/mt3/qtfeaYPHlyjjvuuN6v29vb89BDD+Whhx7KzTffnA9+8IP54Ac/eEh+DQ6keEyeCgAAAAAAAAAAAABwBPna176WxYsXZ+PGjTn++OOzYsWKbNy4Mbt27crWrVuza9eu/PCHP8z73//+HHXUUVm7dm06Ojp692/bti1nnnlmbrnlliTJm970ptxzzz3ZuXNntm3blp07d+YXv/hFPve5z+VlL3tZfv7zn2f9+vX7nWXhwoX55S9/2fvR0dGRb33rW5kzZ056enpyzTXX5I477hiVX5cXEmAHAAAAAAAAAAAAABiGhx56KI2Njens7Mxpp52WH//4x3n/+9+fU045pbempKQkr3rVq7JixYo88sgjOf/88/v0uPTSS/PTn/40kyZNype+9KXceuutec1rXtPnhPaZM2fmbW97W3784x/nU5/6VMrKygY135QpU/I7v/M7+epXv9rb75/+6Z9G4JUP3aQxeSoAAAAAAAAAAAAAwBHir//6r/PMM8+krKwst912W2bNmjVg/XHHHZd169alp6cnSfKNb3wj3/jGN5IkV199dS6++OIB9xcVFeVP/uRP0t3dPaQ5TzvttMyfPz/r16/PD3/4wyHtHSkC7AAAAAAAABNAR0dHWltb+6wVCoW0tbWluro65eXlfe7V1NSkoqJiNEcEAAAAgHHpiSeeyJo1a5I8f4r63LlzB723qKgoyf+chn700UfnPe95z6D3FxcXD2HS5+0J1z/zzDND3jsSBNgBAAAAAAAmgNbW1syfP3/Q9c3NzamrqzuEEwEAAADAkeGuu+7qPQn9wgsvHPL+5557Lt/97neTJL/zO7+TqVOnjuh8L9TW1pbk+VPgx4IAOwAAAAAAwARQU1OT5ubmPmstLS1pbGzM6tWrU1tbu089AAAAAHBgP/3pT3uvX/nKVw55/6OPPppnn332oPcPxQ9+8IPe7xMuWLDgkD6rPwLsAAAAAAAAE0BFRUW/J6rX1tY6bR0AAAAADtLWrVt7rw/mVPPh7h+Mxx9/PN/+9rfzvve9L93d3SkqKsq73/3uQ/KsAxFgBwAAAAAAAAAAAAA4gtxzzz0pKira773Jkyfn+uuvz+LFi0d3qP9HgB0AAAAAAAAAAAAA4CAdf/zxvde//vWvM3PmzGHtHwmTJ0/uPc29qKgo5eXlmTlzZhYuXJi3v/3tmTt37og852AIsAMAAABMQF1dXWlqasqWLVsyY8aM1NfXp6SkZKzHAgAAAAAAgHHnpS99ae/1Aw88MOQA+4tf/OJMmzYtzz77bB544IERmWnhwoW5++67R6TXSCse6wEAAAAAGF1r167NnDlzsmTJklxyySVZsmRJ5syZk7Vr1471aAAAAAAAADDuLFmyJMXFz8eyb7vttiHvnzRpUl7zmtckSf7jP/4jO3bsGNH5DjcC7AAAAAATyNq1a7N06dKcfvrpWb9+fbZv357169fn9NNPz9KlS4XYAQAAAAAAYIhOOumkXHTRRUmSW265JRs3bhz03p6eniTJn/7pnyZJnn766Vx//fWD3t/d3T2ESQ8PAuwAAAAAE0RXV1eWLVuWc889N+vWrcuCBQsybdq0LFiwIOvWrcu5556b9773venq6hrrUQEAAAAAAGBc+fCHP5xp06alUCikoaEhv/jFLwas37ZtWy666KI8/fTTSZLf//3fz+te97okyYc+9KGsWbPmgM9ctWpVPvvZzw5/+FEmwA4AAAAwQTQ1NaWtrS1XXXVV71sY7lFcXJzly5fnkUceSVNT0xhNCAAAAAAAAOPT3Llz86//+q+ZMmVKfvrTn+YVr3hFPvrRj+bhhx/urenq6soDDzyQq6++Oi95yUv2eXfkW265JbW1tXnuuefyh3/4h7n00kvT1NSU3bt399Zs2bIlX/jCFzJ//vz88R//cQqFwqi9xpEyaawHAAAAAGB0bNmyJUkyb968/d7fs76nbiAdHR1pbW3ts1YoFNLW1pbq6uqUl5f3uVdTU5OKioqDGRsAAAAAAADGhQsuuCDf+c53cvnll+fhhx/O+9///rz//e/PlClTMm3atDz11FPp7u5OkhQVFeXNb35zpk6d2rv/+OOPz3333Zd3vOMd+fKXv5xbbrklt9xyS4qKinLMMcekUChk586dvfW1tbWpr68f9dc5XALsAAAAABPEjBkzkiQbNmzIggUL9rm/YcOGPnUDaW1tzfz58wf97Obm5tTV1Q26HgAAAAAAAMajRYsWpbW1NV/+8pdz++235/vf/36efPLJbN++Pccdd1xqampy9tln54/+6I9y6qmn7rP/qKOOype+9KVcddVVWb16de6+++48+uij2bZtW8rLyzN79uy8+tWvzsUXX5zXv/71KSkpGYNXOTwC7AAAAAATRH19faqrq3Pddddl3bp1KS4u7r3X3d2dFStWZPbs2YM6paGmpibNzc191lpaWtLY2JjVq1entrZ2n3oAAAAAAADGp2NLj82UkinZ1bVrrEcZtiklU3Js6bGH9BklJSV505velDe96U0H3ePlL395Xv7ylw953913333QzxwtAuwAAAAAE0RJSUlWrlyZpUuX5oILLsjy5cszb968bNiwIStWrMjtt9+eNWvWDOqUhoqKin5PVK+trXXaOgAAAAAAwBFkxrQZuf2C27Otc9tYjzJsx5YemxnTDvyOxBw6AuwAAAAAE0hDQ0PWrFmTZcuWZeHChb3rs2fPzpo1a9LQ0DCG0wEAAAAAAHC4mjFthuA3I0KAHQAAAGCCaWhoyPnnn5+mpqZs2bIlM2bMSH19/aBOXgcAAAAAAAAYDgF2AAAAgAmopKQkixcvHusxAAAAAAAAgAlGgB0AAAAAABgxmzZtSnt7+4A1LS0tfT4PpLKyMlVVVSMyGwAAAAAAY0+AHQAAAAAAGBGbNm3KqTWnZmdh56DqGxsbD1hTVl6WB1sfFGIHAAAAADhCCLADAAAAAAAjor29PTsLOzPrilkpnVnab133ru7sbt+dyZWTUzyluN+6zsc7s3nV5rS3twuwAwAAAAAcIQTYAQAAAACAEVU6szTl1eUDF80dnVkAAAAAADi89H+sCQAAAAAAAAAAAAAAjCABdgAAAAAAAAAAAACYwHp6esZ6BMapg/m9I8AOAAAAAAAAAAAAABNQcfHzUeKurq4xnoTxas/vnT2/lwZDgB0AAAAAAAAAAAAAJqDJkydn8uTJefbZZ8d6FMap7du39/4+GiwBdgAAAAAAAAAAAACYgIqKijJ9+vQ8/fTTKRQKYz0O40yhUMgzzzyT6dOnp6ioaND7Jh3CmQAAAAAAAAAAAACAw1hlZWUKhUI2bdqUo446KtOnT09JScmQAslMHD09Penq6sr27dvzzDPPpLS0NJWVlUPqIcAOAAAAAAAAAAAAABNUSUlJTj755LS3t2f79u156qmnxnokxoHJkyfnmGOOSWVlZUpKSoa0V4AdAAAAAAAAAAAAACawkpKSnHTSSTnxxBOze/fudHd3j/VIHMaKi4szefLkgz6lX4AdAAAAAAAYEYVCIUnS+XjniPTb02dPXwAAAADg0CoqKsqUKVPGegyOcALsAAAAAADAiGhra0uSbF61ecT7Llq0aER7AgAAAAAwNgTYAQAAAACAEVFdXZ0kmXXFrJTOLB12v87HO7N51ebevgAAAAAAjH8C7AAAAAAAwIgoLy9PkpTOLE15dfmI9wUAAAAAYPwrHusBAAAAAAAAAAAAAACYGI6YAPujjz6aZcuWpaamJlOnTs1xxx2XM844I//wD/+Qjo6OYfW+6aabUlRUNKiPm266aWReEAAAAAAAAAAAAADAEWbSWA8wEr72ta+lsbExzzzzTO9aR0dH7r///tx///353Oc+lzvuuCNz5swZwykBAAAAAAAAAAAAACa2cR9gf+CBB/LGN74xhUIh06ZNy/Lly7NkyZIUCoV88YtfzGc/+9ls3Lgxb3jDG3L//fdn+vTpw3reN7/5zcycObPf+7NmzRpWfwAAAAAAAAAAAACAI9W4D7BfeeWVKRQKmTRpUr71rW/lzDPP7L13zjnn5JRTTsn73ve+bNy4MStXrsw111wzrOfNnTs31dXVwxsaAAAAAAAAAAAAAGACKh7rAYbjBz/4QZqampIkb3vb2/qE1/dYtmxZamtrkyQ33HBDdu/ePaozAgAAAAAAAAAAAADwvHEdYF+3bl3v9Vvf+tb91hQXF+ctb3lLkuSpp57KXXfdNRqjAQAAAAAAAAAAAADwAuM6wP69730vSTJ16tTMnz+/37qzzz679/ree+895HMBAAAAAAAAAAAAALCvcR1gb2lpSZLMmTMnkyZN6reupqZmnz0H661vfWtmzpyZKVOmpLKyMgsWLMhf//Vf5xe/+MWw+gIAAAAAAAAAAAAAHOnGbYB9586daW9vT5LMmjVrwNpjjz02U6dOTZI89thjw3ru3XffnS1btmT37t3ZunVrvv/97+cjH/lI5syZk8985jOD6tHZ2ZlnnnmmzwcAAAAAAAAAAAAAwJGu/2PLD3Pbt2/vvZ42bdoB66dOnZodO3bk2WefPajnveQlL0lDQ0POPPPMnHzyyUmS//7v/85XvvKVrFmzJjt37sw73/nOFBUV5Yorrhiw14oVK3Lttdce1BwAAAAAAACDsWnTpt7DgPqz551rB/MOtpWVlamqqhqR2QAAAACAiWvcBth37tzZez1lypQD1peWliZJCoXCkJ914YUX5rLLLktRUVGf9TPOOCNvfOMbc/vtt6ehoSG7d+/OX/zFX+QP/uAP8hu/8Rv99lu+fHne85739H79zDPP9IbiAQAAAAAAhmvTpk05tebU7CzsPHBxksbGxgPWlJWX5cHWB4XYAQAAAIBhGbcB9rKyst7rXbt2HbC+s7MzSVJeXj7kZx199NED3j/33HNz9dVX52/+5m/S0dGRz3/+8/nABz7Qb31paWlvoB4AAAAAAGCktbe3Z2dhZ2ZdMSulM/v/N4nuXd3Z3b47kysnp3hKcb91nY93ZvOqzWlvbxdgBwAAAACGZdwG2KdPn957/eyzzx6wfseOHUmSadOmHZJ5rrjiilx99dXp6enJPffcM2CAHQAAAGC82bRpU9rb2wesaWlp6fN5IJWVlcJvADAKSmeWprz6AIf7zB2dWQAAAAAAknEcYC8rK8vxxx+frVu3ZvPmzQPWbtu2rTfAfvLJJx+SeU488cQcf/zxaW9vzy9+8YtD8gwAAACAsbBp06acWnNqdhZ2Dqq+sbHxgDVl5WV5sPVBIXYAAAAAAACYYMZtgD1JTjvttDQ1NeXhhx/Oc889l0mT9v9yWltbe69ra2sP2TxFRUWHrDcAAADAWGlvb8/Ows7MumJWSmeW9lvXvas7u9t3Z3Ll5BRPKe63rvPxzmxetTnt7e0C7AAAAAAAADDBjOsA+1lnnZWmpqbs2LEjzc3N+a3f+q391t1zzz2914sWLToks/zqV7/qfRvtmTNnHpJnAAAAAIyl0pmlKa8uH7ho7ujMAgAAAAAAAIxP/R+FNQ5ccMEFvdc33njjfmu6u7tz8803J0mOOeaYLFmy5JDMsmrVqvT09CRJzj777EPyDAAAAAAAAAAAAACA8WxcB9hf/epXp76+Pkny+c9/PuvXr9+nZuXKlWlpaUmSXHnllZk8eXKf+3fffXeKiopSVFSUyy+/fJ/9bW1teeCBBwac4/bbb8+HPvShJEl5eXne+ta3HszLAQAAAACAI0Ln450ptBX6/dixcUee+r9PZcfGHQPWdT7eOdYvBQAAAACAETZprAcYrhtuuCGLFi1KoVDI6173ulx11VVZsmRJCoVCvvjFL2bVqlVJkrlz52bZsmVD7t/W1pYlS5bkzDPPzHnnnZeXv/zlOfHEE5Mk//3f/501a9ZkzZo1vaevf+xjH8uLXvSikXuBAAAAACOgo6Mjra2tfdYKhULa2tpSXV2d8vLyPvdqampSUVExmiMCcASorKxMWXlZNq/aPGI9y8rLUllZOWL9AAAAAAAYW+M+wP7KV74yX/rSl9LY2JhnnnkmV1111T41c+fOzR133JHp06cf9HPWr1+/3xPe96ioqMjHP/7xXHHFFQf9DAAAAIBDpbW1NfPnzx90fXNzc+rq6g7hRAAciaqqqvJg64Npb28fsK6lpSWNjY1ZvXp1amtrB6ytrKxMVVXVSI4JAAAAAMAYGvcB9iQ577zz8pOf/CQ33HBD7rjjjmzevDlTpkzJnDlzcvHFF+fP/uzPDvrEsPnz52f16tVZv3597r///mzZsiXt7e157rnncuyxx+alL31pXvva1+btb39778nsAAAAAIebmpqaNDc391kbKDxYU1MzmuMBcASpqqoadOC8trbWD0wBAAAAAEwwR0SAPUle/OIX5/rrr8/1118/pH2LFy9OT09Pv/enT5+eSy+9NJdeeulwRwQAAAAYMxUVFf0GBIUHAQAAAAAAgNFSPNYDAAAAAAAAAAAAAAAwMQiwAwAAAAAAAAAAAAAwKgTYAQAAAAAAAAAAAAAYFQLsAAAAAAAAAAAAAACMCgF2AAAAAAAAAAAAAABGhQA7AAAAAAAAAAAAAACjQoAdAAAAAAAAAAAAAIBRIcAOAAAAAAAAAAAAAMCoEGAHAAAAAAAAAAAAAGBUCLADAAAAAAAAAAAAADAqJo31AAAAAAAAAIysQqGQJOl8vHNE+u3ps6cvAAAAAMDBEmAHAAAAAAA4wrS1tSVJNq/aPOJ9Fy1aNKI9AQAAAICJRYAdAAAAAADgCFNdXZ0kmXXFrJTOLB12v87HO7N51ebevgAAAAAAB0uAHQAAAIABFQqFJM8H10bCnj57+gIAI6+8vDxJUjqzNOXV5SPeFwAAAADgYAmwAwAAADCgtra2JMnmVZtHvO+iRYtGtCcAAAAAAABweBNgBwAAAGBA1dXVSZJZV8xK6czSYffrfLwzm1dt7u0LAAAAAAAATBwC7AAAAAAMqLy8PElSOrM05dXlI94XAAAAAAAAmDgE2AEAAIBxo6OjI62trX3WCoVC2traUl1dvU8guqamJhUVFaM5IgAAAAAAAAADEGAHAAAAxo3W1tbMnz9/0PXNzc2pq6s7hBMBAAAAAAAAMBQC7AAAAMC4UVNTk+bm5j5rLS0taWxszOrVq1NbW7tPPQAAAAAAAACHDwF2AAAAYNyoqKjo90T12tpap60DAAAAAAAAHOaKx3oAAAAAAAAAAAAAAAAmBgF2AAAAAAAAAAAAAABGhQA7AAAAAAAAAAAAAACjQoAdAAAAAAAAAAAAAIBRIcAOAAAAAAAAAAAAAMCoEGAHAAAAAAAAAAAAAGBUCLADAAAAAAAAAAAAADAqJo31AAAAAACMD52Pdw54v3tXd3a3787kyskpntL/uQkH6gMAAAAAAAAcuQTYAQAAABhQZWVlysrLsnnV5hHrWVZelsrKyhHrBwAAAAAAAIwPAuwAAAAADKiqqioPtj6Y9vb2AetaWlrS2NiY1atXp7a2dsDaysrKVFVVjeSYAAAAAAAAwDggwA4AAADAAVVVVQ06cF5bW5u6urpDPBEAAAAAAAAwHgmwAwAAAByBNm3aNKgT0/f+PBAnpgMAAAAAAAAjQYAdAAAA4AizadOm1Nacmo7CzkHVNzY2HrCmorwsLa0PCrEDAAAAAAAAwyLADgAAAHCEaW9vT0dhZ1ZfWJ7aE4r7rSs815O2p7pTfUxxyicV9VvX8qvuNN5WSHt7uwA7AAAAAAAAMCwC7AAAAABHqNoTilM3o2TAmkUnj9IwAAAAAAAAAEn6P4ILAAAAAAAAAAAAAABGkAA7AAAAAAAAAAAAAACjQoAdAAAAAAAAAAAAAIBRMWmsBwAAAAAAAODQ6Hy8c8D73bu6s7t9dyZXTk7xlP7PPTpQHwAAAACAwRJgBwAAAAAAOMJUVlamrLwsm1dtHrGeZeVlqaysHLF+AAAAAMDEJMAOAAAAAABwhKmqqsqDrQ+mvb19wLqWlpY0NjZm9erVqa2tHbC2srIyVVVVIzkmAAAAADABCbADAAAAAAAcgaqqqgYdOK+trU1dXd0hnggAAAAAICke6wEAAAAAAAAAAAAAAJgYnMAOAAAAAAAcMh0dHWltbe2z1tLS0ufz3mpqalJRUTEqswEAAAAAMPoE2AEAAAAAgEOmtbU18+fP3++9xsbGfdaam5tTV1d3qMcCAAAAAGCMCLADAAAAAACHTE1NTZqbm/usFQqFtLW1pbq6OuXl5fvUAwAAAABw5BJgBwAAADjCFAqFJElLe9eI9NvTZ09fABiKioqK/Z6ovmjRojGYBgAAAACAsSbADgAAAHCEaWtrS5I0rt054n2FDQEAAAAAAIDhEGAHAAAAOMJUV1cnSVY3lKW2smTY/Vrau9K4dmdvXwAAAAAAAICDJcAOAAAAcIQpLy9PktRWlqRuxvAD7C/sCwAAAAAAAHCwisd6AAAAAAAAAAAAAAAAJgYBdgAAAAAAAAAAAAAARsWksR4AAAAAAACAA+vq6kpTU1O2bNmSGTNmpL6+PiUlJWM9FgAAAADAkAiwAwAAAAAAo0YI++CsXbs2y5YtS1tbW+9adXV1Vq5cmYaGhrEbDAAAAABgiIrHegAAAAAAAGBiWLt2bebMmZMlS5bkkksuyZIlSzJnzpysXbt2rEc7rK1duzZLly7N6aefnvXr12f79u1Zv359Tj/99CxdutSvHwAAAAAwrgiwAwAAAAAAh5wQ9sHp6urKsmXLcu6552bdunVZsGBBpk2blgULFmTdunU599xz8973vjddXV1jPSoAAAAAwKAIsAMAAAAAAIeUEPbBa2pqSltbW6666qoUF/f9Z53i4uIsX748jzzySJqamsZoQgAAAACAoZk01gMAAAAA9GfTpk1pb28fsKalpaXP54FUVlamqqpqRGYDAAZvTwj71ltv7TeEvXDhwjQ1NWXx4sVjM+RhasuWLUmSefPm7ff+nvU9dQAAAAAAhzsBdgAAAOCwtGnTppxac2p2FnYOqr6xsfGANWXlZXmw9UEhdgAYZULYB2/GjBlJkg0bNmTBggX73N+wYUOfOgAAAACAw50AOwAAAHBYam9vz87Czsy6YlZKZ5b2W9e9qzu723dncuXkFE8p7reu8/HObF61Oe3t7RMmwN7yq+4B7xee60nbU92pPqY45ZOKDroPAByIEPbBq6+vT3V1da677rqsW7euzwn23d3dWbFiRWbPnp36+voxnBIAAAAAYPAE2AEAAIDDWunM0pRXlw9cNHd0ZhkvKisrU1FelsbbCiPWs6K8LJWVlSPWD4CJRQj74JWUlGTlypVZunRpLrjggixfvjzz5s3Lhg0bsmLFitx+++1Zs2ZNSkpKxnpUAAAAAIBBEWAHAAAAOMJUVVWlpfXBtLe3D1jX0tKSxsbGrF69OrW1tQPWVlZWTpiT6wEYeULYw9PQ0JA1a9Zk2bJlWbhwYe/67Nmzs2bNmjQ0NIzhdAAAAAAAQyPADgAAAHAEqqqqGnTgvLa2NnV1dYd4IgAmOiHs4WloaMj555+fpqambNmyJTNmzEh9fb3QPwAAAAAw7giwAwAAAAAAo0IIe3hKSkqyePHisR4DAAAAAGBYBNgBAAAAAIBRI4QNAAAAADCxFY/1AAAAAAAAAAAAAAAATAwC7AAAAAAAAAAAAAAAjAoBdgAAAAAAAAAAAAAARsWksR4AAAAAAAA4fHR0dKS1tbXPWqFQSFtbW6qrq1NeXt7nXk1NTSoqKkZzRAAAAAAAxjEBdgAAAAAAoFdra2vmz58/6Prm5ubU1dUdwokAAAAAADiSCLADAAAAAAC9ampq0tzc3GetpaUljY2NWb16dWpra/epBwAAAACAwRJgBwAAAAAAelVUVPR7onptba3T1gEAAAAAGJbisR4AAAAAAAAAAAAAAICJQYAdAAAAAAAAAAAAAIBRIcAOAAAAAAAAAAAAAMCoEGAHAAAAAAAAAAAAAGBUCLADAAAAAAAAAAAAADAqBNgBAAAAAAAAAAAAABgVAuwAAAAAAAAAAAAAAIyKSWM9AAAAAMD+FAqFJEnn450j0m9Pnz19J5qOjo60trb2WWtpaenzeW81NTWpqKgYldkAAAAAAACAiUOAHQAAADgstbW1JUk2r9o84n0XLVo0oj3Hg9bW1syfP3+/9xobG/dZa25uTl1d3aEeCwAYRX6gDQAAAAA4HAiwAwAAAIel6urqJMmsK2aldGbpsPt1Pt6Zzas29/adaGpqatLc3NxnrVAopK2tLdXV1SkvL9+nfiACcAAw/viBNgAAAADgcCDADgAAAByW9gSqS2eWpry6/ADVQ+870VRUVOw3gHawp9ELwAHA+DPSP9AGAAAAAHAwBNgBAAAAGDIBOAAYf0b6B9oAAAAAAA6GADsAAAAAQyYABwAAAAAAAByM4rEeAAAAAAAAAAAAAACAiUGAHQAAAAAAAAAAAACAUTFprAcAAAAAYPzr6upKU1NTtmzZkhkzZqS+vj4lJSVjPRYAAAAAAABwmHECOwAAAADDsnbt2syZMydLlizJJZdckiVLlmTOnDlZu3btWI8GAAAAAAAAHGYE2AEAAAA4aGvXrs3SpUtz+umnZ/369dm+fXvWr1+f008/PUuXLhViBwAAAAAAAPqYNNYDAAAAADA+dXV1ZdmyZTn33HOzbt26FBc/f1bCggULsm7dulxwwQV573vfm/PPPz8lJSVjPC0A/dm0aVPa29sHrGlpaenzeSCVlZWpqqoakdkAAAAAADjyCLADAAAAcFCamprS1taWW2+9tTe8vkdxcXGWL1+ehQsXpqmpKYsXLx6bIQEY0KZNm1Jbc2o6CjsHVd/Y2HjAmorysrS0PijEDgAAAADAfgmwAwAAAHBQtmzZkiSZN2/efu/vWd9TB8Dhp729PR2FnVl9YXlqTyjut67wXE/anupO9THFKZ9U1G9dy6+603hbIe3t7QLsAAAAAADslwA7AAAAAAdlxowZSZINGzZkwYIF+9zfsGFDnzoADl+1JxSnbkbJgDWLTh6lYQAAAAAAOKL1f5wKAAAAAAygvr4+1dXVue6669Ld3d3nXnd3d1asWJHZs2envr5+jCYEAAAAAAAADjdOYAcAAADgoJSUlGTlypVZunRpLrjggixfvjzz5s3Lhg0bsmLFitx+++1Zs2ZNSkoGPtEXgLFTKBSSJC3tXSPSb0+fPX0BAAAAAOCFBNgBAAAAOGgNDQ1Zs2ZNli1bloULF/auz549O2vWrElDQ8MYTgfAgbS1tSVJGtfuHPG+ixYtGtGeAAAAAAAcGQTYAQAAABiWhoaGnH/++WlqasqWLVsyY8aM1NfXO3kdYByorq5OkqxuKEtt5fD/f7ulvSuNa3f29gUAAAAAgBcSYAcAAABg2EpKSrJ48eKxHgOAISovL0+S1FaWpG7GyP3g0Z6+AAAAAADwQsVjPQAAAAAAAAAAAAAAABODADsAAAAAAAAAAAAAAKNi0lgPAAAAAONNV1dXmpqasmXLlsyYMSP19fUpKSkZ67EAAAAAAAAA4LDnBHYAAAAYgrVr12bOnDlZsmRJLrnkkixZsiRz5szJ2rVrx3o0AAAAAAAAADjsCbADAADAIK1duzZLly7N6aefnvXr12f79u1Zv359Tj/99CxdulSIHQAAAAAAAAAOQIAdAAAABqGrqyvLli3Lueeem3Xr1mXBggWZNm1aFixYkHXr1uXcc8/Ne9/73nR1dY31qAAAAAAAAABw2BJgBwAAgEFoampKW1tbrrrqqhQX9/3rdHFxcZYvX55HHnkkTU1NYzQhAAAAAAAAABz+Jo31AAAAADAebNmyJUkyb968/d7fs76njpHT+XjngPe7d3Vnd/vuTK6cnOIp/f+s/oH6AACMtU2bNqW9vb3360KhkLa2tkHvr66uTnl5ee/XlZWVqaqqGskRAQAAAACGTYAdAAAABmHGjBlJkg0bNmTBggX73N+wYUOfOoavsrIyZeVl2bxq84j1LCsvS2Vl5Yj1AwAYKZs2bUptzanpKOwcsZ4V5WVpaX1QiB0AAAAAOKwIsAMAAMAg1NfXp7q6Otddd13WrVuX4uL/Oem7u7s7K1asyOzZs1NfXz+GUx5Zqqqq8mDrg31OId2flpaWNDY2ZvXq1amtrR2w1imkAMDhqr29PR2FnVl9YXlqT3j+vzULz/Wk7anuQfeoPqY45ZOKkiQtv+pO422FtLe3++8fAAAAAOCwIsAOAAAAg1BSUpKVK1dm6dKlueCCC7J8+fLMmzcvGzZsyIoVK3L77bdnzZo1KSkpGetRjyhVVVWDDlzV1tamrq7uEE8EAHBo1Z5QnLoZ//PflItOHsNhAAAAAAAOAQF2AAAAGKSGhoasWbMmy5Yty8KFC3vXZ8+enTVr1qShoWEMpwMAYDwrFApJkpb2rhHpt6fPnr4AAAAAAIcLAXYAAAAYgoaGhpx//vlpamrKli1bMmPGjNTX1zt5HQCAYWlra0uSNK7dOeJ9Fy1aNKI9AQAAAACGQ4AdAAAAhqikpCSLFy8e6zEAADiCVFdXJ0lWN5SltnL4PxzZ0t6VxrU7e/sCAAAAABwuBNgBAAAAAADGWHl5eZKktrIkdTNG7t199vQFAAAAADhcCLADAAAAAMAE1/Kr7gHvF57rSdtT3ak+pjjlk4oOug8AAAAAABwxAfZHH300//iP/5g77rgjjz32WEpLS/Obv/mb+cM//MP86Z/+aSoqKkb8mR0dHZk3b14eeeSRJMmLX/zitLW1jfhzAAAAAADgUKisrExFeVkabyuMWM+K8rJUVlaOWD8AAAAAAI4sR0SA/Wtf+1oaGxvzzDPP9K51dHTk/vvvz/3335/Pfe5zueOOOzJnzpwRfe7VV1/dG14HAAAAAIDxpqqqKi2tD6a9vX3AupaWljQ2Nmb16tWpra0dsLaysjJVVVUjOSYAAAAAAEeQcR9gf+CBB/LGN74xhUIh06ZNy/Lly7NkyZIUCoV88YtfzGc/+9ls3Lgxb3jDG3L//fdn+vTpI/bcT3ziEykrK8vkyZOzffv2EekLAAAAAACjqaqqatCB89ra2tTV1R3iiQAAAAAAOJKN+wD7lVdemUKhkEmTJuVb3/pWzjzzzN5755xzTk455ZS8733vy8aNG7Ny5cpcc801w35mV1dX3vGOd6Srqysf/OAH8/nPf16AHQAAAAAAGLaWX3UPeL/wXE/anupO9THFKZ9UdNB9AAAAAADGyrgOsP/gBz9IU1NTkuRtb3tbn/D6HsuWLcuNN96YlpaW3HDDDfnABz6QyZMnD+u5N9xwQ5qbm3Pqqafmr/7qr/L5z39+WP0AAAAAAICJrbKyMhXlZWm8rTBiPSvKy1JZWTli/QAAAAAARsK4DrCvW7eu9/qtb33rfmuKi4vzlre8JcuXL89TTz2Vu+66K6973esO+pmPPvporr766iTJpz/96UyZMuWgewEAAAAAACRJVVVVWlofTHt7+4B1LS0taWxszOrVq1NbWztgbWVlZaqqqkZyTAAAAACAYRvXAfbvfe97SZKpU6dm/vz5/dadffbZvdf33nvvsALs73rXu7Jjx4780R/9URYvXnzQfQAAAAAAAPZWVVU16MB5bW1t6urqDvFEAAAAAAAjr3isBxiOlpaWJMmcOXMyaVL/Wfyampp99hyML37xi/n617+eY489NitXrjzoPgAAAAAAAAAAAAAAE9G4DbDv3Lmz9200Z82aNWDtsccem6lTpyZJHnvssYN63rZt2/Lud787SfJ3f/d3OeGEEw6qDwAAAAAAAAAAAADARNX/seWHue3bt/deT5s27YD1U6dOzY4dO/Lss88e1PP+8i//Mk888UTOPPPMvOMd7zioHnt0dnams7Oz9+tnnnlmWP0AAAAAAAAAAAAAAMaDcX0C+x5Tpkw5YH1paWmSpFAoDPlZ3/3ud/Mv//IvmTRpUj796U+nqKhoyD32tmLFihx99NG9HyeffPKw+gEAAAAAAAAAAAAAjAfjNsBeVlbWe71r164D1u858by8vHxIz+ns7MwVV1yRnp6eXHnllXnZy142tEH3Y/ny5Xn66ad7Px577LFh9wQAAAAAAAAAAAAAONxNGusBDtb06dN7r5999tkD1u/YsSNJMm3atCE95yMf+UgefPDBnHzyybn22muHNmQ/SktLe0+EBwAAAAAAAAAAAACYKMZtgL2srCzHH398tm7dms2bNw9Yu23btt4A+8knnzyk53z0ox9Nkvz2b/92vva1r+23Zk/vHTt25Itf/GKS5MQTT8w555wzpGcBAADAka6rqytNTU3ZsmVLZsyYkfr6+pSUlIz1WAAAAAAAAACMknEbYE+S0047LU1NTXn44Yfz3HPPZdKk/b+c1tbW3uva2tohPWPXrl1JkhtvvDE33njjgLXt7e1585vfnCQ5++yzBdgBAABgL2vXrs173vOePProo71rL37xi3P99denoaFhDCcDAAAAAAAAYLQUj/UAw3HWWWclef7k8+bm5n7r7rnnnt7rRYsWHfK5AAAAgL7Wrl2biy66KE8++WSf9SeffDIXXXRR1q5dO0aTAQAAAAAAADCaxnWA/YILLui97u909O7u7tx8881JkmOOOSZLliwZ0jN6enoO+PHiF784yfOnxu1Zu/vuuw/qNQEAAMCRpqurK+985zuTJK997Wuzfv36bN++PevXr89rX/vaJMmf/MmfpKurayzHBAAAAAAAAGAUTBrrAYbj1a9+derr69PU1JTPf/7zueyyy3LmmWf2qVm5cmVaWlqSJFdeeWUmT57c5/7dd9/dG2q/7LLLctNNN43K7AAAAIwfHR0daW1t7bNWKBTS1taW6urqlJeX97lXU1OTioqK0RzxsHb33XfnV7/6Vc4666x89atfTXHx8z9Pv2DBgnz1q1/N2Wefne9973u5++67ewPtAAAAAAAAAByZxnWAPUluuOGGLFq0KIVCIa973ety1VVXZcmSJSkUCvniF7+YVatWJUnmzp2bZcuWjfG0AAAAjEetra2ZP3/+oOubm5tTV1d3CCcaX/a8S9m1117bG17fo7i4OB/84AfzO7/zOwLsAAAAAAAAABPAuA+wv/KVr8yXvvSlNDY25plnnslVV121T83cuXNzxx13ZPr06WMwIQAAAONdTU1Nmpub+6y1tLSksbExq1evTm1t7T71AAAwXPt7J6A97zq75/PevBMQAAAAADAejPsAe5Kcd955+clPfpIbbrghd9xxRzZv3pwpU6Zkzpw5ufjii/Nnf/ZnvmELAADAQauoqOj3RPXa2lqnrR/A4sWL8+EPfzgf/OAHs3jx4j6nsHd3d+eaa67prQMA4H8M9E5AjY2N+6x5JyAAAAAAYDw4IgLsSfLiF784119/fa6//voh7Vu8eHF6enqG9ey2trZh7QcAAIAj2eLFi3PiiSfme9/7Xs4///xcddVVmTdvXjZs2JDrrrsu9957b0488UQBdgA4TDj1+/Cxv3cCKhQKaWtrS3V1dcrLy/epBwAAAAA43B0xAXYAAAAYKZs2bUp7e/uANQOFuPZWWVmZqqqqEZttPCopKck///M/Z+nSpfn2t7+d22+/vfdeRUVFioqK8s///M8pKSkZwykBgD2c+n346O+dgBYtWjQG0wAAAAAAjAwBdgAAANjLpk2bcmrNqdlZ2Dmo+v2FuPZWVl6WB1sfnPAh9oaGhqxZsybLli3r805mJ510Uj72sY+loaFh7IYDAPpw6jcAAAAAAIeSADsAAADspb29PTsLOzPrilkpnVnab133ru7sbt+dyZWTUzyleL81nY93ZvOqzWlvb5/wAfbk+RD7+eefn6ampmzZsiUzZsxIfX29k9cB4DDj1G8AAAAAAA4lAXYAAADYj9KZpSmvLh+4aO7ozHIkKSkpyeLFi8d6DAAAAAAAAADGyP6PiAMAAAAAAAAAAAAAgBHmBHYAAAAAAAAAoFdHR0daW1v7rBUKhbS1taW6ujrl5X3fta6mpiYVFRWjOSIAAADjmAA7AAAAAAAAANCrtbU18+fPH3R9c3Nz6urqDuFEAAAAHEkE2AEAAAAAAACAXjU1NWlubu6z1tLSksbGxqxevTq1tbX71AMAAMBgCbADAAAAAAAAAL0qKir6PVG9trbWaesAAAAMS/FYDwAAAAAAAAAAAAAAwMQgwA4AAAAAAAAAAAAAwKiYNNYDAAAAwOGkUCgkSTof7xx2rz099vQEAAAAAAAAgIlOgB0AAAD20tbWliTZvGrziPZctGjRiPUbTzo6OtLa2tpnrVAopK2tLdXV1SkvL+9zr6amJhUVFaM5IgAAAAAAAACjSIAdAAAA9lJdXZ0kmXXFrJTOLB1Wr87HO7N51ebenhPBpk2b0t7e3vt1S0tLGhsbB71/9erVqa2t7f26srIyVVVVIzojAAAAAAAARz4HLcHhS4AdAAAA9rLnG1WlM0tTXl1+gOqh9TzSbdq0KbU1p6ajsPOge7ww7F5RXpaW1geF2AEAAAAAABiS1tbWzJ8/f9D1zc3NqaurO4QTAXsIsAMAAAAjor29PR2FnVl9YXlqTyjut67wXE/anupO9THFKZ9U1G9dy6+603hbIe3t7QLsAAAAAAAADElNTU2am5v7rO159+AXvivwnnpgdAiwAwAAACOq9oTi1M0oGbBm0cmjNAwAAAAAAAATUkVFRb8nqtfW1jptHcZQ/8ehAQAAAAAAAAAAAADACHICOwAAAOxH5+Odvdfdu7qzu333oPdOrpyc4inFfXpMBIVCIUnS0t41Iv329NnTFwAAAAAAAIDxT4AdAAAA9lJZWZmy8rJsXrV5RPqVlZelsrJyRHod7tra2pIkjWt3jnjfRYsWjWhPAAAAAAAAAMaGADsAAADspaqqKg+2Ppj29vbetUKh0BvOHozq6uqUl5cneT4QX1VVNdJjHpaqq6uTJKsbylJbWTLsfi3tXWlcu7O3b5J0dHSktbW1b11LS5/Pe6upqUlFRcWwZwEAAAAAAABgZAiwAwAAwAtUVVXtEzp3AviB7Qnt11aWpG7G8APsL+ybJK2trZk/f/5+6xobG/dZa25uTl1d3YjNAgAAAAAAAMDwCLADAAAAI6rlV90D3i8815O2p7pTfUxxyicVDalPTU1Nmpub+/b7fyfk733y/d71AAAAAAAAABw+BNgBAACAEVFZWZmK8rI03lYYsZ4V5WWprKz8n68rKvZ7oroT8gEAAAAAAADGBwF2AAAAYERUVVWlpfXBtLe3D1jX0tKSxsbGrF69OrW1tQPWVlZWpqqqaiTHBAAAAAAAAGAMCbADAAAAI6aqqmrQgfPa2tr9nqYOAAAAAAAAwJGreKwHAAAAAAAAAAAAAABgYhBgBwAAAAAAAAAAAABgVEwa6wEAAAAAAAAAgLGzadOmtLe3D1jT0tLS5/NAKisrU1VVNSKzAQAAcOQRYAcAAAAAAACACWrTpk05tebU7CzsHFR9Y2PjAWvKysvyYOuDQuwAAADs14gG2Lu7u/Ozn/0s//3f/53t27enq6vrgHve8pa3jOQIAAAAAAAAAMAgtbe3Z2dhZ2ZdMSulM0v7reve1Z3d7bszuXJyiqcU91vX+XhnNq/anPb2dgF2AAAA9mtEAuyFQiEf/vCH89nPfjZbt24d9L6ioiIBdgAAAAAAAAAYY6UzS1NeXT5w0dzRmQUAAIAj27AD7IVCIeecc05+8IMfpKenZyRmAgAAAAAAAAAAAADgCDTsAPvHP/7xfP/730+SzJs3L3/2Z3+W+fPn57jjjktxcf9vGwYAAAAc+To6OtLa2tpnraWlpc/nvdXU1KSiomJUZgMAAAAAAABg9A07wP6lL30pSbJw4cJ85zvfyZQpU4Y9FAAAAHBkaG1tzfz58/d7r7GxcZ+15ubm1NXVHeqxAAAAAAAAABgjww6w//znP09RUVHe9773Ca8DAAAAfdTU1KS5ubnPWqFQSFtbW6qrq1NeXr5PPQAAAAAAAABHrmEH2KdMmZJCoZCqqqqRmAcAAAA4glRUVPQ5Ub2rqytNTU0pLi7O7t27s2DBgpSUlIzhhAAAAAAAAACMpuLhNthzMtovf/nLYQ8DAAAAHLnWrl2bOXPmZMmSJbnkkkuyZMmSzJkzJ2vXrh3r0QAAAAAAAAAYJcMOsF9++eXp6enJl7/85ZGYBwAAADgCrV27NkuXLs3pp5+e9evXZ/v27Vm/fn1OP/30LF26VIgdAAAAAAAAYIIYdoD9He94R84555zcfPPNufXWW0diJgAAAOAI0tXVlWXLluXcc8/NunXrsmDBgkybNi0LFizIunXrcu655+a9731vurq6xnpUAAAAAAAAAA6xSYMt3LRpU7/3PvnJT+Yd73hHGhsbc9ttt+WSSy5JTU1NKioqDti3qqpqsCMAAAAA41BTU1Pa2tpy6623pri478/SFxcXZ/ny5Vm4cGGampqyePHisRkSAAAAAAAAgFEx6AD77NmzD1jT09OTr3zlK/nKV74yqJ5FRUV57rnnBjsCAAAAMA5t2bIlSTJv3rz93t+zvqcOAAAAAAAAgCNX8YFLntfT03PAj8HWvXAPAAAAcOSaMWNGkmTDhg37vb9nfU8dAAAAAAAAAEeuQZ/AfuONNx7KOQAAAIAjVH19faqrq3Pddddl3bp1KS7+n5+n7+7uzooVKzJ79uzU19eP4ZQAAAAAAACMZ5s2bUp7e/uANS0tLX0+D6SysjJVVVUjMhvQ16AD7JdddtmhnAMAAADGja6urjQ1NWXLli2ZMWNG6uvrU1JSMtZjHbZKSkqycuXKLF26NBdccEGWL1+eefPmZcOGDVmxYkVuv/32rFmzxq8hAAAAAAAAB2XTpk05tebU7CzsHFR9Y2PjAWvKysvyYOuDQuxwCAw6wA4AAAAka9euzbJly9LW1ta7Vl1dnZUrV6ahoWHsBjvMNTQ0ZM2aNVm2bFkWLlzYuz579uysWbPGrx0AAAAAAAAHrb29PTsLOzPrilkpnVnab133ru7sbt+dyZWTUzyluN+6zsc7s3nV5rS3twuwwyEw7AD7hz70oSTJu971rlRWVg5qz7Zt2/LJT34ySXL11VcPdwQAAAAYFWvXrs3SpUtz7rnn5tZbb+09Rfy6667L0qVLBbEPoKGhIeeff77T6wEAAAAAADgkSmeWpry6fOCiuaMzC9C/YQfYr7nmmhQVFWXp0qWDDrD/+te/7t0nwA4AAMB40NXVlWXLluXcc8/NunXrUlz8/IkMCxYsyLp163LBBRfkve99b84//3yB7AGUlJRk8eLFYz0GAAAA8P8UCoUkz58wORL29NnTFwAAAF5o2AF2AAAAmAiamprS1taWW2+9tTe8vkdxcXGWL1+ehQsXpqmpSUAbAAAAGDfa2tqSJJtXbR7xvosWLRrRngAAABwZxiTAvnv37iTJ5MmTx+LxAAAAMGRbtmxJksybN2+/9/es76kDAAAAGA+qq6uTJLOumJXSmaXD7tf5eGc2r9rc2xcAAABeaEwC7D/+8Y+TJCeccMJYPB4AAACGbMaMGUmSDRs2ZMGCBfvc37BhQ586AAAAgPGgvLw8SVI6szTl1eUj3hcAAABeaMgB9ptvvnm/61/96ldz//33D7i3s7MzP//5z/Mv//IvKSoqyhlnnDHUxwMAAMCYqK+vT3V1da677rqsW7cuxcXFvfe6u7uzYsWKzJ49O/X19WM4JQAAAAAAAAAc3oYcYL/88stTVFTUZ62npyd//dd/PegePT09KS4uzpVXXjnUxwMAAMCYKCkpycqVK7N06dJccMEFWb58eebNm5cNGzZkxYoVuf3227NmzZqUlJSM9agAAMBhrqOjI62trX3WCoVC2traUl1dvc+pxTU1NamoqBjNEQEAAADgkBlygD15PoA+mLX9mTJlSs4444wsX748Z5999sE8HgAAAMZEQ0ND1qxZk2XLlmXhwoW967Nnz86aNWvS0NAwhtMBAADjRWtra+bPnz/o+ubm5tTV1R3CiQAAAABg9Aw5wP7II4/0Xvf09OQlL3lJioqK8s1vfjOnnHJKv/uKiopSVlaW448/3ml0AAAAjFsNDQ05//zz09TUlC1btmTGjBmpr6/3d10AAGDQampq0tzc3GetpaUljY2NWb16dWpra/epBwAAAIAjxZAD7C9+8Yv3uz5z5sx+7wEAAMCRpKSkJIsXLx7rMQAAgHGqoqKi3xPVa2trnbYOAAAAwBFtyAH2F+ru7h6JOQAAAAAAAAAAAAAAOMIVj/UAAAAAAAAAAAAAAABMDMM+gR0AAAAONx0dHWltbe2zVigU0tbWlurq6pSXl/e5V1NTk4qKitEcEQAAAAAAAAAmpEEH2M8555wRf3hRUVG+/e1vj3hfAAAAJrbW1tbMnz9/0PXNzc2pq6s7hBMBAAAAAAAAAMkQAux33313ioqK0tPT029NUVFRn6/31A52HQAAAEZCTU1Nmpub+6y1tLSksbExq1evTm1t7T71AAAAAAAAAMChN+gA+2te85oBA+ePP/54HnrooSTPB9Orq6tz0kknJUmeeOKJtLW1paenJ0VFRTnllFMyc+bMYY4OAAAA+1dRUdHvieq1tbVOWwcAAAAAAACAMTKkE9j7841vfCOXXnppjjrqqHzgAx/IW9/61lRWVvapaW9vz4033pjrrrsuv/rVr/KJT3wiv/d7v3fQgwMAAAAAAAAAADB2Ojo60tra2metUCikra0t1dXVKS8v73OvpqYmFRUVozkiAHAYGnSAvT8bN27MH/7hH2bSpEm5995789KXvnS/dZWVlfnLv/zLvOENb8iiRYvyxje+Mffff3/mzp073BEAAABgVHV1daWpqSlbtmzJjBkzUl9fn5KSkrEeCwAAAAAARlVra2vmz58/6Prm5mbvkgocEoVCIUnS+XjniPTb02dPX2BkDTvAvnLlyuzYsSMf+chH+g2v7+20007L+973vnzgAx/Ixz72saxatWq4IwAAAMCoWbt2bZYtW5a2trbeterq6qxcuTINDQ1jNxgAAAAAAIyympqaNDc391lraWlJY2NjVq9endra2n3qAQ6FPf92t3nV5hHvu2jRohHtCYxAgP0//uM/UlRUlHPOOWfQe5YsWZIk+T//5/8M9/EAAAAwatauXZulS5fm3HPPza233pp58+Zlw4YNue6667J06dKsWbNGiB0A+P/Zu//oxu76zv8vS+OxpPwaNhpAw0RcN2lGaj3fLTYBY0fBabvpspjaEYaeUp3QbvfklO0PvsXTnnW6WcKhHe8WTA/s7ul2gG84Pd4O3TqO2U5YWspJghKG0igtrfZITkgjFGcMmUszM0l07fFY/v4xlRmNZVm2r6WPpOfjnDly7v34o4/9ytW1rt738wEAAAAAoG0EAoFNZ1SPRqPMtg6gbizLkiQdvvewug517bq/5TPLWjixsN4vAHftuoB9cXFx29/T0dEhSfre976326cHAAAAgJZUKBSUzWbLtjmOo1wuJ8uy5Pf7y/ZFIhEFAoF6DrHtrK6uanx8XMPDw5qbm5PH45Ek9ff3a25uTqOjozp27JhGRkbk9XobPFoAAAAAAAAAAACgfZQ+P+061CW/5d+i9fb7BeCuXRewHzhwQC+99JIef/xxvf3tb6/pex577DFJ0g033LDbpwcAAACAlpTNZtXX11dz+1QqxSwmeyyZTCqXy+nkyZPrxeslHo9HExMTGhgYUDKZ1NDQUGMGCQAAAAAAAAAAAACA4XZdwB6LxTQzM6P//J//s0ZHR3XrrbdWbf/MM8/ov/yX/6KOjg7dfvvtu316AAAAAGhJkUhEqVSqbFsmk1EikdD09LSi0eiG9thbpRXIenp6Ku4vbd/JSmUAAAAAAAC7wWp+AAAAAIBmsusC9o985COanZ3V+fPn1d/fr//0n/6T7rnnHv2Lf/Evytq9/PLL+uM//mN9/OMf17lz5+TxeDQ+Pr7bpwcAAACAlhQIBDadUT0ajTLbegOEQiFJUjqdVn9//4b96XS6rB0AAAAAAEC9sJofAAAAAKCZ7LqAvb+/X5/4xCc0Pj6u8+fPa3x8XMeOHVN3d7de//rXq6OjQ9///vf1/PPPa21tTWtra5Kk3//936/4gT8AAAAAACaKxWKyLEvHjx/X3NycPB7P+r5isajJyUl1d3crFos1cJQAAAAAAKAdsZofAAAAAKCZ7LqAXZJ+8zd/U5Zl6dd//dd15swZra2t6bnnntM//uM/StJ60bp0eSa6//pf/6vi8bgbTw0AAAAAQF14vV5NTU1pbGxMo6OjmpiYUE9Pj9LptCYnJ3Xq1CnNzMzI6/U2eqgAAAAAAKDNsJofAAAAAKCZuFLALkl33323hoeH9aUvfUl/9Vd/pX/4h3/QP/3TP0mSXve61+no0aP66Z/+aY2Ojqqzs9OtpwUAAAAAoG7i8bhmZmY0Pj6ugYGB9e3d3d2amZnhZm0AAAAAAAAAAAAAALbgWgG7JHV2dmpsbExjY2NudgsAAAAAgDHi8bhGRkaUTCa1uLioUCikWCzGzOsAAAAAAAAAAAAAANTA1QJ2AAAAAADagdfr1dDQUKOHAQAAAAAAgBZXKBSUzWbLtjmOo1wuJ8uy5Pf7y/ZFIhEFAoF6DhEAAAAAto0CdgAAAABA08vn87Jtu2qbTCZT9lhNMBhUOBx2ZWwAAAAAAADATmWzWfX19dXcPpVKqbe3dw9HBAAAAAC7RwE7AAAAAKCp5fN5RSNHVHCWamqfSCS2bBPw+5TJzlPEDgAAAAAAgIaKRCJKpVJl2zKZjBKJhKanpxWNRje0BwAAAADT1VzA7vV6JUkdHR26dOnShu07cXVfAAAAAABs1wsvvKCCs6SP39ml7td1bNpu+ZJ05pWiDl3nUVeVd8PPv7ym+x9d0gsvvEABOwAAAAAAABoqEAhsOqN6NBpltnUAAICrLJ9Zrrq/eLGoFXtFncFOefZ7dtwPgN2puYB9bW1tW9sBAAAAAKiHXC4nSbr/UXcvIuVyOQ0ODrraJwAAAAAAAAAAAAD3BYNB+fw+LZxYcK1Pn9+nYDDoWn8AfqjmAvaPfvSj29oOAAAAAEA9WJYlSZqO+xQN7nyVsJKMvarE7NJ6vwAAAAAAAAAAAADMFg6HNZ+dl23bVdtlMhklEglNT08rGo1WbRsMBlmxGdgjFLADAAAAAJqa3++XJEWDXvWGdl/AfnW/AAAAAAAApsnn8zUV5lz5uFU7AAAAoNmFw+GaC86j0ah6e3v3eEQANlNzAbsk/dEf/ZHuuOOOLe86AQAAAAAAAAAAAAAA7svn84pGjqjgLNXUPpFI7PGIAAAAAADYnm0VsH/oQx9SR0eHgsGgbr/9dt1xxx2644479BM/8RPq6OjYqzECAAAAAAAAAAAAAABJtm2r4Cxp+m6/ogc9m7ZzLq0pd64o64BH/n2bf57/5Wcv6f5Hl/diqAAAAAAAVLStAnZJWltb09mzZzU3N6e5uTlJ0vXXX6+BgYH1gvbbbrtN+/Ztu2sAAAAAhlldXVUymdTi4qJCoZBisZi8Xm+jhwUAAAAAAAC0vehBj3pD1a/VDd60dT8Ze9WlEQEAAAAAUJttVZl/4QtfUDKZVDKZ1DPPPLO+/fz58/rKV76ir3zlK5Ikn8+nt7/97esF7e94xzvk9/vdHTkAAACAPTU7O6vx8XHlcrn1bZZlaWpqSvF4vHEDAwAAAAAAAAAAAAAAQNPaVgH7Pffco3vuuUeSdPbs2fVi9mQyqW9/+9taXb18Z7bjOHr88cf1+OOPS5I6OzvV29u7XtB+++236/rrr3f5R0GjMCunOcjCLORhDrIwB1mYgyzMYWoWs7OzGhsb0/DwsE6ePKmenh6l02kdP35cY2NjmpmZackidlPzaEdkYQ6yMAdZmIU8zEEW5iALc5CFOcjCLORhDrIwB1mYgyzMQRZmIQ9zkIU5yMIcZGEOsjALeQCoxbYK2K908OBBxePx9aKVV199Vd/4xjfWC9q/9a1vaWlpSZJ08eJF/fVf/7X++q//Wp/4xCfk8Xh09OhRvfOd79Qf/MEfuPOToCGYldMcZGEW8jAHWZiDLMxBFuYwNYvV1VWNj49reHhYc3Nz8ng8kqT+/n7Nzc1pdHRUx44d08jISEtdaGh0Hvl8XrZtV22TyWTKHqsJBoMKh8OujK3eGp0FfogszEEWZiEPc5CFOcjCHGRhDrIwC3mYgyzMQRbmIAtzkIVZyMMcZGEOsjAHWZiDLMxCHgBq5XGro2uvvVZ33XWXPv7xj+uxxx7T+fPn9cQTT2hyclLvete7dP3112ttbU1ra2taXV3V3/3d3+kzn/mMW0+PBijNynn06FGdPn1ar7zyik6fPq2jR49qbGxMs7OzjR5i2yALs5CHOcjCHGRhDrIwh8lZJJNJ5XI53XfffevF6yUej0cTExN6/vnnlUwmGzRC9zU6j3w+ryORI+rr66v6L5FISJISicSWbY9Ejiifz+/puPdCo7PAD5GFOcjCLORhDrIwB1mYgyzMQRZmIQ9zkIU5yMIcJmWxfGZZTs7Z9N9rz7ymc984p9eeea1qu+Uzy3Ubs5tMygLkYRKyMAdZmIMszEEWZiEPANvRsba2tlaPJ7p48aK+8IUv6Pd///f1/PPPa21tTR0dHVpdXa3H0xvtwoULuuGGG3T+/Hldf/31jR5OTVZXV3XLLbfo6NGjZbNySlKxWNTo6KjS6bSeffbZlpqVc7sOHz6sF198UW9605u0sLCwJ89BFmYhD3OQhTnIwhxkYQ7Tszh58qQ+8IEP6JVXXtG11167Yf8rr7yi66+/Xn/yJ3+in//5n6/7+NxmQh5PP/20+vr6dPjew+o61LVpu+LFolbsFXUGO+XZv/n9yMtnlrVwYkGpVEq9vb17MeQ9sdMsSr+/6bv9ih7c/PfiXFpT7lxR1gGP/Ps6Nm2XOVtU4mGn6X5/bjLhuMBlZFGberz/lsjDJGRhDrIwB1nUhmu27aeZ8ii9t2nV9yLNlEWrI4utmf4eY/314t5r1BvafUaPPLui4ZOO5GLlgM/v03x2vmlWCGy244Jzhll5tDKy2Jrp54xGaeXXqWbLopWRhVmaKY9WeY1qxrpT4Er79qrj5eVlffOb39TXv/51JZNJffOb39Rrr70mSapTzTz2UGlWzpMnT246K+fAwICSyaSGhoYaM8g2QRZmIQ9zkIU5yMIcZGEO07MIhUKSpHQ6rf7+/g370+l0WbtmZ1IeXYe65Lf81RvduqdDaKidZhEMBhXw+5R42HFtLAG/T8Fg0LX+mo1Jx0W7IwuzkIc5yMIcZGEOsjAHWZiFPMxBFuYgC3OYkkXoWo+0Jk1PTysajW7aLpPJKJFIbNlOuny9plmK1yVzssBl5GEOsjAHWZiDLMxBFmYhDwDb5VoB+/nz5/Xkk08qmUzq61//ulKplFZWViT9sGDd6/Xq6NGjuv3223X77bcrFou59fSos8XFRUlST09Pxf2l7aV22DtkYRbyMAdZmIMszEEW5jA9i1gsJsuydPz48Yp3x09OTqq7u7tl/p43PY92stMswuGwMtl52bZdtf9W/pDVbRwX5iALs5CHOcjCHGRhDrIwB1mYhTzMQRbmIAtzmJZFNBqtaQbKWts1E9OyaHfkYQ6yMAdZmIMszEEWZiEPANu1+drqW/je976nP/uzP9Nv/MZv6Cd+4id044036j3veY9+//d/X6dPn9bFixfl9/v1zne+U//xP/5HfeUrX9E//dM/6emnn9ZnPvMZvf/972+ZGRvb0ZWzclbSarNymowszEIe5iALc5CFOcjCHKZn4fV6NTU1pVOnTml0dFSnT5/WK6+8otOnT2t0dFSnTp3SJz/5yYYv7eYW0/NoJ7vJIhwOq7e3t+q/UtF66UPWav/auXhd4rgwCVmYhTzMQRbmIAtzkIU5yMIs5GEOsjAHWZiDLMxBFmYhD3OQhTnIwhxkYQ6yMAt5ANiujrXS9Og1+MIXvqBkMqlkMqnnnntufXupi2AwqMHBwfXZ1Xt7e7Vvn2uTvLesCxcu6IYbbtD58+d1/fXXN3o4NVldXdUtt9yio0ePVpyVc3R0VOl0Ws8++2zLFDbtxOHDh/Xiiy/qTW96kxYWFvbkOcjCLORhDrIwB1mYgyzM0SxZzM7Oanx8XLlcbn1bd3e3PvnJTyoejzdsXG4zIY+nn35afX19uvmBm+W3/Lvuz8k5eu6B55RKpZpqNqy9zqL0e26230sjmHBc4DKyqE093n9L5GESsjAHWZiDLGrDNdv200x5tPp7lmbKotWRxdZMf4+x/npx7zXqDe0+o6cXV9V34rUtX39a+XWq2Y6LVs5Car48WhlZbM30c0ajtPLrVLNl0crIwizNlEervEY1Y90pcKVtzcD+b//tv9UXvvAFfec739Ha2pp+5Ed+RPfcc48++9nPKpPJ6KWXXtLDDz+s8fFxve1tb6N4vYW126ycJiMLs5CHOcjCHGRhDrIwR7NkEY/H9Z3vfEePPvqo/uRP/kSPPvqonn322ZYqXpeaJ492QBbmIAtzkIVZyMMcZGEOsjAHWZiDLMxCHuYgC3OQhTnIwhxkYRbyMAdZmIMszEEW5iALs5iaR6FQ0NNPP132L5PJSJIymcyGfYVCoa7jA9ra2jZ0dHSseTyetc7OzrUPfOADa7Ozs2svvfTSdrpABefPn1+TtHb+/PlGD2XbHnrooTXLstYkrf/r7u5ee+ihhxo9NCO86U1vWpO09qY3vWnPn4sszEIe5iALc5CFOcjCHGRhlkbmkUql1iSt3fzAzWs9X+jZ9b+bH7h5TdJaKpXa87Hvhb3KovR7btbfSyPwOmUOsqiunu+/19bIwyRkYQ6yMAdZVMc12/bVDHm0y3uWZsiiXZDF5kx/j7H+enHvNWtrH71+1/9S915T0+tPO7xONctx0Q5ZrK01Tx7tgCw2Z/o5o1Ha4XWqWbJoB2RhFtPyKL0e1fqvmV63mrnuFFhbW1vrWFtbW6tc2r7RjTfeqJdfflmS1NHRsb79R3/0R3X77bcrFovp9ttv180331xrl1DzL+WwurqqZDKpxcVFhUIhxWIx7lz7Z/VaKqqELMxCHuYgC3OQhTnIwhxkYZZG5VFapu7mB26W3/Lvuj8n5+i5B55r6mXv9iKLVlkOsN54nTIHWWyu3u+/JfIwCVmYgyzMQRab45ptezM9j3Z6z2J6Fu2ELCoz/T3G+uvFvdeoN7T7vJ5eXFXfide2fP1pl9epZjgu2iULqTnyaBdkUZnp54xGaZfXqWbIol2QhVlMyqNQKCibzZZtcxxHuVxOlmXJ7y//bDYSiSgQCNRziDvW7HWnwL7tNP7BD36g//t//6+SyaS+/vWvK5lM6sUXX9QzzzyjZ555Rg8++KAk6Q1veINuv/329X9vectbygre0Vq8Xq+GhoYaPQyILExDHuYgC3OQhTnIwhxkYRbyMAdZmIMszEEWZiEPc5CFOcjCHGRhDrIwC3mYgyzMQRbm2E4WjuNIkjL2qivPXeqn1G+747gwC3mYgyzMQRbmIAtzkIVZdpOH2wXngUCg4o00g4ODOxofAPdsq4Bdkn78x39cP/7jP65f+ZVfkSTlcrn1YvZkMqlnnnlG3/ve9zQzM6OHHnpIknTttdeqv79/fZb2/v5++Xw+d38SAAAAAAAAAAAAAABaXC6XkyQlZpdc75dCHgAAADRSNptVX19fze1bfaUHoJVtu4D9apZlybIs3XPPPZKks2fPlhW0f/vb39Yrr7yir371q/qrv/qry0+6b5/e8pa3KBaL6ROf+MRuhwAAAAAARtjOjADNtPwcAAAAAAAAzGFZliRpOu5TNOjddX8Ze1WJ2aX1ftFY+Xxetm1XbZPJZMoeqwkGgwqHw66MDQAAYK9FIhGlUqmybZlMRolEQtPT04pGoxvaA2hOuy5gv9rBgwf13ve+V+9973slSa+88oqefPJJJZNJff3rX9dTTz2l5eVlfetb39Lf/M3fUMAOAAAAoGVsZ0YAZgMAAAAAAADATpQmSYgGveoN7b6A/ep+0Tj5fF5HIke05NQ2u34ikdiyjc/v03x2niJ2AADQFAKBwKafoUajUT5fBVqI6wXsV7vuuuv0Iz/yI3rxxRf1wgsvKJfL6cyZM1pbW9vrpwYAAACAutrOjADMBrC3Ks2GX21mKmbEBwAAAAAAQKPZtq0lZ0mH7z2srkNdm7YrXixqxV5RZ7BTnv2eTdstn1nWwokF2bZNATsA17BSBAAAcIPrBexra2v6u7/7OyWTyfV/Z8+e3dAGAAAAAFoNMwKYo9ps+JVmpmJGfAAAAAAAAJii61CX/NYWM+LfWp+xAMCVWCkCAAC4ZdcF7CsrK/rrv/7r9WL1b3zjG3rllVfW919drH7zzTcrFovpjjvu0B133LHbpwcAAAAAYINKs+E7jqNcLifLsjYsic2M+AAAAAD2ErNUAgAAoBWwUgQAAHDLtgvYX331VX3jG9/Q17/+dSWTSf3N3/yNlpeX1/dfWbDe0dGhnp4e3XHHHetF66FQyJ2RAwAAAACwic1mwx8cHGzAaAAAAAC0M2apBAAAQKthpQgAALBb2ypgf+tb36pvf/vbKhaL69uuLFjft2+f3vKWt6wXrMdiMb3uda9zb7QAAAAAAAAAAOzA6uqqksmkFhcXFQqFFIvF5PV6Gz0sAG2AWSoBAAAAAACActsqYH/66afL/tvn8+ltb3ub7rjjDt1xxx16xzveoWuuucbVAQIAAAAAAAAAsBuzs7MaHx9XLpdb32ZZlqamphSPxxs3MABthVkqAQAAAAAAgMu2VcB+7bXXanBwcL1g/bbbbtP+/fv3amwAAAAAAAAAAOzK7OysxsbGNDw8rJMnT6qnp0fpdFrHjx/X2NiYZmZmKGIHAAAAALSNQqGgbDZbts1xHOVyOVmWJb+//KbLSCSiQCBQzyECAIA2sK0C9nPnzsnj2XzJQgAAAAAAAAAATLG6uqrx8XENDw9rbm5u/fp2f3+/5ubmNDo6qmPHjmlkZERer7fBowUAAAAAYO9ls1n19fXV3D6VSqm3t3cPRwQAANrRtgrYKV4HAAAAAAAAADSLZDKpXC6nkydPbri+7fF4NDExoYGBASWTSQ0NDTVmkAAAAAAA1FEkElEqlSrblslklEgkND09rWg0uqE9AACA27ZVwA4AAAAAAAAAQLNYXFyUJPX09FTcX9peagcAAAAAQKsLBAKbzqgejUaZbR1AXeXzedm2XbVNJpMpe6wmGAwqHA67MjYAe4sCdgAAAABoMMdxJEnLZ5Zd6a/UT6lfAACAdhUKhSRJ6XRa/f39G/an0+mydgAAAAAAAADqI5/PKxo5ooKzVFP7RCKxZZuA36dMdp4idqAJUMAOAAAAAA2Wy+UkSQsnFlzvd3Bw0NU+AQAAmkksFpNlWTp+/Ljm5ubk8XjW9xWLRU1OTqq7u1uxWKyBowQAAAAAAADaj23bKjhLmr7br+hBz6btnEtryp0ryjrgkX9fx6btMmeLSjzsyLZtCtiBJkABOwAAAAA0mGVZkqTD9x5W16GuXfe3fGZZCycW1vsFAABoV16vV1NTUxobG9Po6KgmJibU09OjdDqtyclJnTp1SjMzM/J6vY0eKgAAwLZlzhar7t9OoQ8AAADQKNGDHvWGql+fG7ypToMBUDcUsAMAAABAg/n9fklS16Eu+S2/6/0CAAC0s3g8rpmZGY2Pj2tgYGB9e3d3t2ZmZhSPxxs4OgAAgO0LBoMK+H1KPOy41mfA71MwGHStPwAAAAAAqqGAHS2nUCgom82WbXMcR7lcTpZlbSjiiUQiCgQC9RwiAAAAAAAAgDqKx+MaGRlRMpnU4uKiQqGQYrEYM68DAICmFA6HlcnOy7btqu0ymYwSiYSmp6cVjUartg0GgwqHw24OEwAAAACATVHAjm0zvUA8m82qr6+v5vapVEq9vb17OKK9Y3oW7YY8zEEW5iALc5CFWa7Ogywah2PDHGRhDrIwB1mYZTt5kMXe4tgwR7Nl4fV6NTQ01LDn30vNlkUrIwuzcP42B8eGOcjCHLvNIhwO11xwHo1Gm/bz0HrguDALeZiDLMxBFuYgC3OQhVnIA8BOUMCObTO9QDwSiSiVSpVtqza7QCQSqdvY3GZ6Fu2GPMxBFuYgC3OQhVm2kwdZ7C2ODXOQhTnIwhxkYRbO3+bg2DAHWZiDLMxBFmbh/G0Ojg1zkIU5yMIcZGEW8jAHWZhjt1nk8/maVu248nGrdu2K48IcZGEW8gCwEy1RwP7d735Xn/nMZ/TII4/ohRdeUFdXl26++Wa9//3v16/+6q/u6m6dTCajr33ta/qbv/kb/cM//INeeukl2bYtr9erN7zhDbrtttv0gQ98QD/7sz+rjo4OF38qc5leIB4IBDY9wbXa7AKmZ9FuyMMcZGEOsjAHWZjl6jzIonE4NsxBFuYgC3OQhVm2kwdZ7C2ODXOQhTnIwhxkYRbO3+bg2DAHWZiDLMxBFmYhD3OQhTl2k0U+n1c0ckQFZ6mm50okEjW1Wz6zXFO7WvtxHMeV/vYax4U5yMIs5AFgJ5q+gP3P//zPlUgkdOHChfVthUJBTz31lJ566il97nOf0yOPPKJbbrllR/3/3u/9nv7n//yfFfc9//zzev755/W//tf/0jvf+U499NBDuvHGG3f0PM2knQrETUcWZiEPc5CFOcjCHGRhls3yIIv649gwB1mYgyzMQRZmIQ9zkIU5yMIcZGEOsjALeZiDLMxBFuYgC3OQhVnIwxxkYY7dZGHbtgrOkqbv9it60LNpO+fSmnLnirIOeOTft/kEnp97+qL+8KkVLZxYqP0HqEEul9Pg4KCrfe4FjgtzkIVZyAPATjR1Afvf/u3f6ud+7ufkOI6uvfZaTUxM6M4775TjOPriF7+oz372s3rmmWf07ne/W0899ZSuu+66bT/Hvn379Pa3v12Dg4M6evSo3vjGN+rgwYN6+eWXlc1m9Ud/9EdKp9N6/PHH9Z73vEdPPPGEPJ7N/+BrRm4uJSRJwWBQ4XDYlbG1o63yIIv64dgwB1mYgyzMQRZm4fxtDo4Nc5CFOcjCHGRhFjfzIIvd4dgwB1mYgyzMQRZm4fxtDo4Nc5CFOcjCHGRhFs7f5uDYMIebWZT2Rw961BvyVm07eNPWY3vrocs1UYfvPayuQ11bf8MWls8sa+HEgizL2nVfe4HjwhxkYRa38qglKwCtq6kL2D/84Q/LcRzt27dPf/mXf6l3vOMd6/t+8id/Uj/6oz+q3/7t39YzzzyjqakpPfDAA9t+js997nPat6/yr+mnf/qn9aEPfUjvf//7NTs7q9OnT+vUqVP62Z/92Z3+SMbJ5/M6EolqySnU1L6WpYR8/oDmsxn+CNiB7eRBFnuLY8McZGEOsjAHWZiF87c5ODbMQRbmIAtzkIVZ3M6DLHaOY8McZGEOsjAHWZiF87c5ODbMQRbmIAtzkIVZOH+bg2PDHHuRhZu6/nl29q5DXfJbftf69fvd68stHBfmIAuzmP46BaB5NG0B+7e+9S0lk0lJ0i//8i+XFa+XjI+P68EHH1Qmk9GnP/1p/c7v/I46Ozu39TybFa+XeL1e/dZv/ZZmZ2clSclksqUK2G3b1pJT0I3D4+q8cfNbLdcuXdSl89/XvhveoI59+zdtt/KDF/SDU1OybZs/AHagljzIoj44NsxBFuYgC3OQhVk4f5uDY8McZGEOsjAHWZjFzTzIYnc4NsxBFuYgC3OQhVk4f5uDY8McZGEOsjAHWZiF87c5ODbM4XYWzj8+pfPJ6b0YasvjuDAHWZjFzTx4jQLaW9MWsM/Nza1//Uu/9EsV23g8Ht1zzz2amJjQuXPn9Oijj+quu+5yfSzXXXfd+tdLS0uu92+CzhtvUtcbb6ne6PCP1Wcw2DoPsqgbjg1zkIU5yMIcZGEWzt/m4NgwB1mYgyzMQRZmIQ9zkIU5yMIcZGEOsjCLiXk4jiNJWj6z7Ep/pX5K/ZrKxCzaFVmYgyzMQRZmIQ9zkIU53Mpi5QcvuDSi9sVxYQ6yMIsbefAaBbS3pi1gf+KJJyRJ11xzjfr6+jZt9853vnP96yeffHJPCti/+MUvrn8diURc7x8AAAAAAAAAAADNKZfLSZIWTiy43u/g4KCrfQIAAAAAAAD10LQF7JlMRpJ0yy23aN++zX+MKwvKS9/jBtu29eyzz+pzn/ucHnzwQUlSMBjUL/zCL7j2HAAAAAAAAAAAAGhulmVJkg7fe1hdh7p23d/ymWUtnFhY7xcAAAAAAABoNk1ZwL60tCTbtiVJhw8frtr2da97na655hq99tpreuGF3S05MTQ0pMcff7zivmAwqIcfflgHDhzY1XMAAAAAAAAAAACgdfj9fklS16Eu+S2/6/0CgCQVCgVls9mybaUJ3ipN9BaJRBQIBOoyNgAAAAAArtaUBeyvvPLK+tfXXnvtlu1LBeyvvvrqnoznN37jN3T//fcrGAzW1H55eVnLy8vr/33hwoU9GRcAAACAvbfVSk/VPiistQ8AAAAAAACgmmw2q76+vor7EonEhm2pVEq9vb17PSwAAAAAACpqygL2paWl9a/379+/ZfuursvLMTqOs6vnffDBB/Xaa69pbW1N586d01NPPaU//MM/1H/7b/9N//iP/6jPfe5zesMb3rBlP5OTk/rYxz62q7EAAAAAaKzVV1+Wp6PyB4CV1NoOAAAAAAAA2K5IJKJUKlW2zXEc5XI5WZa1YdWGSCRSz+EBLaHSSgdbHWesdAAAAABU1pQF7D6fb/3rixcvbtm+NNv5bpdS7O7uLvvvWCymD33oQ3rf+96nU6dO6bbbbtM3vvENHT58uGo/ExMT+shHPrL+3xcuXNBNN920q7EBAAAAqK/i8qsqrknTd/sVPejZtJ1zaU25c0VZBzzy7+uo2ObLz17S/Y8uV9wHAAAAAAAAbCUQCFScUX1wcLABowFaU7WVDiphpQMAAKpbW12RJGXsVVf6K/Wz24mOAdRHUxawX3fddetfv/rqq1u2f+211yRJ1157retj8fl8evDBB/XmN79ZL7zwgn77t39bf/Inf1L1e7q6utZnhTdd6cV85QcvuNJfqR9OEjvjZh5ksTscG+YgC3OQhTnIwiycv83h9rFx6fz3JUnW6zrUG/JWbTu4xf2qbl2UaRa8TpmDLMxBFmbh/G0Ojg1zkIU5yMIcZGEWzt/m4NgwB1mYgyzMQRZmabbzd6WVDjKZjBKJhKanpxWNRje0bxYcG+bYq88ynEtrrvTXTjguzEEWZnEzj4vfe1aSlJhd2nVfV8rlctzICTSBpixg9/l8uvHGG/WDH/xACwsLVdu+/PLL6wXsezXLeTAY1ODgoL761a/qS1/6klZWVtTZ2bknz1VvuVxOkvSDU1Ou9+vWSSKfz8u27aptMplM2WM1wWBQ4XDYlbG5bS/y4IS9M81wbLQLsjAHWZiDLMzC+dsce3ZsnCtuWaCOcrxOmYMszEEWZuH8bQ6ODXOQhTnIwhxkYRbO3+bg2DAHWZiDLMxBFmZptvP3ZisdSFI0Gm3q2dY5NszBZxnm4LgwB1mYZS/y+Pid+/VvfnT39ZYZe1WJ2SVZlrX7QQHYc01ZwC5JP/ZjP6ZkMqnvfOc7unTpkvbtq/yjZLPZ9a+vvtvVTQcPHpQkFQoF2batUCi0Z89VT6UX8xuHx9V54+7/kl35wQv6wakp104S+XxeRyJHtOTUdhdWIpHYso3P79N8dt7IInY383A7i3Zj+rHRTsjCHGRhDrIwC+dvc7h9bDj/+JTOJ6dlHfDsuq+S5TPLVfcXLxa1Yq+oM9gpz/7Nn3erfhqN1ylzkIU5yMIsnL/NwbFhDrIwB1mYgyzMwvnbHBwb5iALc5CFOcjCLJy/zdFsx0ahUCirB5Iuzwicy+VkWZb8fn/ZvkgkokAgsCdjcVszfJbRLprtuGhlZGEWN/MovUbd2b1vyxWvt+Pq8wAAMzVtAfvtt9+uZDKp1157TalUSm9/+9srtnv88cfXv97LO6ZefPHF9a+vvfbaPXueeiu9mHfeeJO63niL6/3ulm3bWnKWdPjew+o61LVpu+0U+iycWJBt20YWsO9FHpywd8b0Y6OdkIU5yMIcZGEWzt/mcDuL0rJ4/n0du+7rgK9D6pAWTlRfYWo7fH6fgsGga/25idcpc5CFOcjCLJy/zcGxYY5mzKJVCxqaMYtWRRZm4fxtDo4Nc5CFOcjCHGRhFs7f5mi2YyObzaqvr6/m9qlUqmlmyDf5s4x202zHRSsjC7O4mQevUUB7a9oC9tHRUU1OTkqSHnzwwYoF7MViUX/8x38sSTpw4IDuvPPOPRnLwsKCTp8+LUl685vfrOuuu25Pngeb6zrUJb+1xR8Vt9ZnLAAAAM2sVYt8TBe61iOtSdPT01VXjspkMkokElu2k6RgMGjkTZkAAAD10soFDQAAAADQziKRiFKpVNm2atfPI5FIPYcHANimzNli1f3OpTXlzhVlHfBULXbfqh8AZmnaAva3ve1tisViSiaT+vznP68PfvCDesc73lHWZmpqSplMRpL04Q9/WJ2dnWX7H3vssfWi9g9+8IP6whe+ULb/mWee0cLCgn7yJ39y03GcP39eH/jAB3Tx4kVJ0j333LPbHw0AAABoGIp8Gisajdb0+6y1HQAAQDujoAEAAAAAWlMgENj0GjnXzwGgeXi6rpWnQ0o87LjWZ8DgVaoBlGvaAnZJ+vSnP63BwUE5jqO77rpL9913n+688045jqMvfvGLOnHihCTp1ltv1fj4+Lb7P3PmjH7qp35K//Jf/kuNjo6qr69Pb3zjG7Vv3z5973vf05NPPqnPf/7z+t73vidJ6unp0X/4D//B1Z8RAAAAqCeKfAAAANAqKGgAAADYuUorNZYmjys9XomVGgEAALBd3mtfpyKrVANtq6kL2N/ylrfoT//0T5VIJHThwgXdd999G9rceuuteuSRR3Tdddft+Hm+/e1v69vf/nbVNu9+97v14IMP8qYcAAAATY0iHwAAAAAA9sbymeWq+4sXi1qxV9QZ7JRnv2fH/QCAG6qt1JhIJDZsY6VGdzjO5dlH3XqtL/VT6hcAAMBErFINtKemLmCXpPe85z36+7//e33605/WI488ooWFBe3fv1+33HKL3ve+9+nXfu3XdlxUPjg4qL/4i7/QX/3VX+mpp57SwsKCvv/976tQKOj6669Xd3e3+vv79fM///MaHBx0+Sczy8oPXqi6f+3SRV06/33tu+EN6ti3f8f9oDbVfo9kUV8cG+YgC3OQhTnIwiycv83h1rFx6fz33R5a2+F1yhxkYQ6yMIsbeZCFOzg2zEEW5iALc5CFWUw8fweDQfn8Pi2cWHCtT18TLInOsWEOsjBHM2VRaaVGx3GUy+VkWZb8fv+G9s3E1CxyuZwkuXrOKPVrck2DiefvdmXqsdGO+CzDHBwX5mimLCqtZrPV31LNNnEu528Au9X0BeyS9OY3v1mf+tSn9KlPfWpb3zc0NKS1tbVN93d2duquu+7SXXfdtdshNq3LF1UD+sGpKdf69PkDxl9UNZXbeZDFznFsmIMszEEW5iALs3D+NsdeHBuSlLFXXeujXWZC4nXKHGRhDrIwC+dvc3BsmIMszEEW5iALs5h8/g6Hw5rPzsu27artWmVJdI4Nc5CFOZoxi81WajS5CLoWpmdhWZYk6fC9h9V1qGvX/S2fWdbCiYX1fk1j8vm73Zh+bLSTvfosA9vHcWGOZsyi2mo2lTTTajacvwG4pSUK2LF3Ll9UzRh7UbXdllCrJY9WucBtOtOPjXZCFuYgC3OQhVk4f5vD7WPjy1/+su6//34lZpdcG6PpMyG5hdcpc5CFOcjCLG7nQRY7x7FhDrIwB1mYgyzMYvr5OxwO19xfsy+JzrFhDrIwB1mYw/QsSrOxdh3qkt/yb9F6+/2axvTzdzsx/dhoJ25nUWqH7eO4MEczZlFpNZtq42um1Ww4fwNwCwXs2JLJF1XbcQm1WvNo9gvczcDkY6PdkIU5yMIcZGEWzt/mcPPYKN30OB33KRr07mpcGXtVidklY2dC2gu8TpmDLMxBFmYhD3OQhTnIwhxkYQ6yMAt5mIMszEEW5iALc5CFWcjDHGRhjr34LMON1WQl6fmXi5Kk4sWiK/2ZjuPCHM2WxWar2UhmjG+3mi0PAGaigB1Nrd2WUAMAAIA5SrMWRYNe9YZ2V8B+dZ8AAAAAAAAAAAC7VZoY0s3VZCVpxV6RbnW1SwAA0GYoYEdTa7cl1AAAAAAAAAAAAAAAAIBalCZwdGM1WUn68rMruv/Ri+oMdu66LwAA0N4oYAcAAAAAAAAAAAAAAACAFuP2arIZe1WS5Nnv2XVfAACgvVHADgAAAAAAAAAAAAAAAAAtKnO2WHW/c2lNuXNFWQc88u/r2LTd8y+vuT00AADQpihgBwAAAAAAAAAAAKooFArKZrNl2xzHUS6Xk2VZ6zNblkQiEQUCgXoOEQAAANggGAwq4Pcp8bDjar/LZ5ar7i9eLGrFXlFnsLPqbO1b9QMAAFoXBewAAAAAAAAAAABAFdlsVn19fTW3T6VS6u3t3cMRAQAAAFsLh8PKZOdl23bVdplMRolEQtPT04pGo5u2W1xc1HvH3quFEwuujdHn9ykYDLrWHwAAaA4UsAMAAAAAAAAAAABVRCIRpVKpsm3VinwikUg9hwcAAABsKhwOKxwO19Q2Go1ueSPmM/PPuFYQL12eJb7W8QEAgNZBATsAAADQxvL5fE0XGa98rIaLjAAAAACAVhQIBDYt5KmlyAcAAABoFW4XxAMAgPZEATsAAADQpvL5vI5EjmjJWaqpfSKR2LKNz+/TfHaeInYXFAoFZbPZsm3VbiaIRCIKBAJ1GRsAAAAAAAAAAAAAAMBOUcAOAAAAtCnbtrXkLOnwvYfVdahr03bFi0Wt2CvqDHbKs9+zabvlM8taOLEg27YpYHdBNptVX19fxX2VbiZIpVLMYgIAAAAAAAAAAAAAAIxHATu2jZkgzUEWZiEPc5CFOcjCHGRhlqvzaHQWXYe65Lf81RvduqdDaBiTj41IJKJUKlW2zXEc5XI5WZYlv9+/oX0zMzmLdkMW5iALs2wnD7LYWxwb5iALc5CFOcjCLJy/zcGxYQ6yMAdZmIMszEIe5iALc5CFOcjCHGRhFvIAsBMUsGPbmAnSHGRhFvIwB1mYgyzMQRZm2SwPsqg/k4+NQCBQ8bkGBwfr8vz1ZnIW7YYszEEWZtlOHmSxtzg2zEEW5iALc5CFWUw+f7fbh/scG+YgC3OQhTnIwizkYQ6yMAdZmMP0LCq9z9hqcqRmfZ9hehbtxs082u39MtDOKGDHtpk4E+TymeWq+4sXi1qxV9QZ7JRnv2fH/ZjGxCzaGXmYgyzMQRbmIAuzXJ0HWTQOx4Y5yMIcZGEOsjDLdvIgi73FsWEO07LI5/Oybbtqm2ofdl0tGAwqHA67Mra9ZloW7YwszGLy+bvdii04NsxBFuYgC3O4nUU7FQ/uBY4Nc5CFOcjCHKZnUe19RiXN/D7D9CzajZt5tNv7ZaCddaytra01ehDt7sKFC7rhhht0/vx5XX/99Y0eTlPJ5/M6EjmiJWfJtT59fp/ms/OufDh1+PBhvfjii3rTm96khYUFF0YHAADgnqefflp9fX26+YGb5bf8W3/DFpyco+ceeK5tLhKUfn+pe69Rb8i7u74WV9V34rW2+d0BgNt4/w3A9OuEMAfnDLhp/X3hDt7LUdwImI3zBXajdH6o1ZXnEa7ZNp/d/D0AdzUqi1Y5Z7j9++PYaIzNZq5OJBKanp5WNBot28f7jPriuKgN75drR90pmh0zsKPhdnPSCYfDms/O1zSz0mZ/jF2tmWZWAgAAAAAAACDZtq0lZ0mH7z2srkNdm7bbzkqNCycWZNs21woB7IlAIFCxYGFwcLABowEAuKnSDKRbFQ8CAOCGzd5nSFI0GqVoGk2B98tA+6CAHQ232+VrwuFwzR8i8ccYAADADzmOI+lycY4bSv2U+gUAAADqretQ19YzVd5an7EAAACgPVE8CAAAAABbo4AdDccd6AAAAI2Ry+UkSQsn3F3SMpfLtdUd8Jmzxar7nUtryp0ryjrgkX9fx476AAAAAAAAAAAAAK6Uz+dl23bVNplMpuyxmmAwyEp0AIC6oYAdDccd6AAAAI1hWZYk6fC9h9V1qGvX/S2fWdbCiYX1fltdMBhUwO9T4mF3ZpwP+H0KBoOu9AUAAAAA2B0KQQAAjbTVqpnFi0Wt2CvqDHbKs9+z434AAM0rn8/rSOSIlpylmtonEokt2/j8Ps1n53nvAgCoCwrYAQAAgDbl9/slSV2HuuS3/K732+rC4bAy2fmaCho2W13oShQzAAAAAIAZ8vm8opEjKrhYCBLw+5ShEAQAsIVgMCif3+fqqpk+Js4AgJZk27aWnKUtJ6razk1PCycWZNs271sAAHVBATsAAAAA7FA4HK75Ih6rCwEAAABAc7BtWwVnSdN3+xU9uHmBh3NpTblzRVkHPPLv69i0XeZsUYmHHQpBAABbCofDmndx0gyJiTMAwGSFQkHZbLZsm+M4yuVysixrw6RRkUhEgUCgbFtNE1Xd6spwAQBwFQXsAAAAAAAAAAAAwFWiBz3qDXmrthm8qU6DAQC0DSbNAID2kc1m1dfXV3P7VCrF6z4AoGVQwI66y+fzNd0xfuVjNdwxDgAAsDvLZ5ar7t/O0oIAAAAAAAAAAAAAthaJRJRKpcq2VVtlIxKJ1HN4AADsKQrYUVf5fF7RyBEVnKWa2icSiS3bBPw+ZbLzFLEDAABsUzAYlM/v08KJBdf69Pl9CgaDrvUHAAAAAAAAAAAAtKJAILDpjOqssgEAaHUUsKOubNtWwVnS9N1+RQ9uPnunc2lNuXNFWQc88u/r2LRd5mxRiYcd2bZNATsAAMA2hcNhzWfna1odZ7OZHq7G6jgAAAAAAAAAAADmKhQKymazZdsymUzZ45UikYgCgUBdxgYAANoHBexoiOhBj3pD3qptBm+q02AAAADaWDgcrrngnJketradi75c8AUAAAAAAAAAc+Xz+ZomgLnysRomgIEpstms+vr6Ku5LJBIbtqVSKT4fAgAArqOAHQAAAABcsp2LvlzwBQAAAAAAAJofRc6tKZ/P60jkiJacpZraVyr6vZrP79N8dp580XCRSESpVKpsm+M4yuVysixLfr9/Q3sAAAC3UcAOAAAAAC7ZzkVfLvgCAAAAAAAAzS2fzysaOaKCi0XOAb9PGYqcG862bS05Szp872F1HeratF3xYlEr9oo6g53y7Pds2m75zLIWTizItm2yRcMFAoGKE+wMDg42YDTYKcdxJF1+fXFDqZ9Sv9gebmgDgO2jgB0AAAAAXMJFXwAAAPesrq4qmUxqcXFRoVBIsVhMXq+30cMC0AZKBRsZe9WV/kr9UAgCAK3Htm0VnCVN3+1X9ODmxcvOpTXlzhVlHfDIv69j03aZs0UlHnYocjZI16Eu+S1/9Ua31mcsAHClXC4nSVo4seB6v3yutT2s2gEAO0MBO3aND5LMQRZmIQ9zkIU5yMIcpmVRKBSUzWbLtm21VGEgEKjnEPeMaVm0O/IwB1mYgyzMQRZmIQ9zkIU53MxidnZW4+Pj6x/GSpJlWZqamlI8HndpxK2L48IcZGGWWvMovfYkZmsrPqgVhSA/xLFhDrIwB1mYYydZRA961Buq3mbwJjdH2T44NsxBFuYgC3M0MgvLsiRpy5UialVaKaLUb7NpZBas2rERr1MAakEBO3Zlux8kMWvJ3uFDPbOQhznIwhxkYQ4Ts8hms+rr66u5fSqVqjjLdbMxMYt2Rh7mIAtzkIU5yMIs5GEOsjCHm1nMzs5qbGxMw8PDOnnypHp6epROp3X8+HGNjY1pZmaGfKvguDAHWZhlO3mUCjam4z5Fg7v/gD1jryoxu9S0hSBu49gwB1mYgyzMQRZmIQ9zkIU5yMIcjc6iNAFYTStF7KDfZtLoLEpYteMyU/IAYL7Nb+UBtlD6IOno0aM6ffq0XnnlFZ0+fVpHjx7V2NiYZmdnN3zPlbOW9J14bdf/SrOfXHnCa0c7yQJ7hzzMQRbmIAtzmJpFJBJRKpUq+zc9PS1Jmp6e3rAvEok0ZJxuMjWLdkUe5iALc5CFOcjCLORhDrIwh5tZrK6uanx8XMPDw5qbm1N/f7+uvfZa9ff3a25uTsPDwzp27JhWV92ZIKPVcFyYgyzMst08SgUb0aBXvaHd/ysVwTdjIYjbODbMQRbmIAtzkIVZyMMcZGEOsjAHWZiDLMxCHgC2o2NtbW2t0YNodxcuXNANN9yg8+fP6/rrr2/0cGqyurqqW265RUePHtXc3Jw8nh/eC1EsFjU6Oqp0Oq1nn322bPmPJ598Urfffrvrs5Y88cQTVZfdfPrpp9XX11f32VoPHz6sF198UW9605u0sLCwJ8+x0yywN8jDHGRhDrIwR7Nl0ajzdz24mUWhUFA2my3b5jiOcrmcLMva8OF4JBJRIBDY1nhbOQup+Y6NVkYW5iALc5BFberx/lsiD5OQhTnczuKxxx7TnXfeqdOnT6u/v3/D/tOnT2tgYECPPvqohoaG1reX/ma9+YGbXZl1zMk5eu6B55rqb2COi9pwzbb97CSP9ffB916j3tDuM3p6cVV9J15rqteUvcCxYQ6y2BrvMdrPTrNo1DmDa7Z7f2zwHuMyE7KoVSvXhUjNlYXU2q9Te51Frb87XqfMOS7I4jJT8mgnzVh3ClxpX6MHgOaUTCaVy+V08uTJspONJHk8Hk1MTGhgYEDJZLLsg6T1Aqq1jqr9O5fWlDtXlHXAI/++Km3/uZ92nrVkp1lgb5CHOcjCHGRhDrIwh5tZZLNZ9fX11fzcW13oqFQQn8lkyh6vtJOCeNNwbJiDLMxBFuYgC7OQhznIwhxuZ7G4uChJ6unpqbi/tL3UrsRxHEnS8pnl7f4IFZX6KfXbDDguzEEWZiEPc5CFOcjCHGRhjp1mUfp7MWO7s0JQqZ9m+jt0L3BsmIMszEEW5iALc5CFWcgDwHZRwI4d2ekHScFgUAG/T4mH3XvDHfD7FAwGXeuv2ew0C+wN8jAHWZiDLMxBFuZwM4tIJKJUKlW2LZPJKJFIaHp6WtFodEP7aqoVxCcSiQ3bmu3O/0o4NsxBFuYgC3OQhVnIwxxkYQ63swiFQpKkdDpdcQb2dDpd1q4kl8tJkhZOuDvbXS6Xq7ryo0k4LsxBFmYhD3OQhTnIwhxkYY6dZlH6OzQxu+TqeJrp79C9wLFhDrIwB1mYgyzMQRZmIQ8A20UBO3Zkpx8khcNhZbLzsm27av/Viq6uFgwGFQ6HtzP8lrLTLLA3yMMcZGEOsjAHWZhjN1nk8/kt/5aq5urZ1a/+W6pSQbzjOMrlcrIsa8PKN1sVxDcDjg1zkIU5yMIcZGEW8jAHWZjD7SxisZgsy9Lx48crLjU8OTmp7u5uxWKxsu+zLEuSdPjew+o61LWTH6XM8pllLZxYWO+3GXBcmIMszEIe5iALc5CFOcjCHDvNovT34nTcp2jQu+txZOxVJWaXmurv0L3AsWEOsjAHWZiDLMxBFmYhDwDb1bG2trbW6EG0uwsXLuiGG27Q+fPndf311zd6ODVZXV3VLbfcoqNHj1b8IGl0dFTpdFrPPvusvN7tv1F/+umn1dfXt6MZPQuFwobCrK1mIQ0EAtseYy0OHz6sF198UW9605u0sODu7E8le50Ftoc8zEEW5iALczRbFrv5e8B0O80in88rGjmiguPebD4Bv0+Z7Hxb3xDYbMdGKyMLc5CFOciiNvV4/y2Rh0nIwhx7kcXs7KzGxsY0PDysiYkJ9fT0KJ1Oa3JyUqdOndLMzIzi8XjZ95TeP2xVwF68WNSKvaLOYKc8+z2btisVsDfT+xGOi9pwzbb97CSP9WsS916j3tDuM3p6cVV9J15rqteUvcCxYQ6y2BrvMdrPTrNo1Dmjla+fS2YcG6Xf8c0P3Cy/5d/6G7bg5Bw998BzTZeZCVnUqlHHBeeMylr5dcqUmilep8w5LsjiMlPyaCfNWHcKXIkZ2LEjXq9XU1NTGhsb0+jo6KYfJDXiZJPNZtXX11dxXyKR2LCt2U72VzM5i3ZEHuYgC3OQhTnIwhw7zcK2bRWcJU3f7Vf04ObFNs6lNeXOFWUd8Mi/r2PTdpmzRSUedmTbdlsXsHNsmIMszEEW5iALs5CHOcjCHHuRRTwe18zMjMbHxzUwMLC+vbu7u2LxunR5ZSGf36eFE+4VC/j8PgWDQdf622scF+YgC7OQhznIwhxkYQ6yMAdZmGWv8lhdXVUymdTi4qJCoZBisdimfTiOI+nyza1uKPVT6rdZcGyYgyzMsZssallpOZPJlD1u1a6dmXJccM64zJQ8ADQPCtixYzv5IKkeIpGIUqlU2TbHcZTL5WRZlvx+/4b2zc7ULNoVeZiDLMxBFuYgC3PsJovoQc+Ws/kM3uTaUNsCx4Y5yMIcZGEOsjALeZiDLMyxF1nE43GNjIzUXFwSDoc1n52v6UPgzVZqvFowGGy6Gz05LsxBFmYhD3OQhTnIwhxkYQ6yMIvbeczOzmp8fFy5XG59m2VZmpqaqthXqZ2bN8mW+h0cHHS1z73GsWEOsjDHTrLY7krLlSbpxEYmHBecM37IhDwANI+OtbW1tUYPot01+1IO27lLuVatspRQvZaKKtmLLLBz5GEOsjAHWZijGbJolb8HtrKdLFjCfO81w7HRLsjCHGRhDrLYXL3ff0vkYRKyMEczZMH7DHDNtr3Vmgfvv/cex4Y5yKIy3mO0t2a4Ztsuf9dK7hwbs7OzGhsb0/DwsO6777712WCPHz++Phvs1QV1Tz75pG6//XYdvvewug517frnWD6zrIUTC3riiSearhixpNGvU1vNXN2oG5Y5Z1TWLq9TOzlnuLXS8pefvaT7H13WzQ/cLL/l37RdrZyco+ceeK5pM2vkccE5Y6NmeJ1qBc1edwowAzt2zev1amhoqNHDgMjCNORhDrIwB1mYgyzMQRZmIQ9zkIU5yMIcZGEW8jAHWZiDLMxBFuYgC7OQhznIwhxkYQ6yMAdZmGW3eayurmp8fFzDw8Oam5uTx3O5aLS/v19zc3MaHR3VsWPHNDIyUlZYV1rZvetQlyuFoVf324waeWzk83kdiRzRUg0zV9cya7XP79N8dr7pVt0q4XXKHDvJwq2VljP26raet9U18rjgnLERr1MAakEBOwAAAAAAAAAAAHCVzNli1f21zoy4VT8AAGDvJJNJ5XI5nTx5cr14vcTj8WhiYkIDAwNKJpMU2hnMtm0tOUtVZzcuXixqxV5RZ7BTnv2bz25dmtnYtu2mLWAHAABoBRSwo+EKhYKy2WzZtkwmU/Z4pUgkokAgUJexAQAAAAAAAKiPStcJHcdRLpeTZVkbZp3iOiGAvRIMBhXw+5R42HGtz4Dfp2Aw6Fp/AACzcNOTuRYXFyVJPT09FfeXtpfawWxbzm58a/3GAgAAgN2hgB0Nl81m1dfXV3FfpaWdUqmUent793pYAAAAAAAAAOqo2nXCSrhOCGCvhMNhZbLzsm27artMJqNEIqHp6WlFo9GqbYPBIDN8AkAL4qYn84VCIUlSOp3WbbfdpmQyqcXFRYVCIcViMaXT6bJ2AAAAAOqDAnY0XCQSUSqVKtu21cxKAAAAAAAAAFpLpeuE1YpDuU4IYC+Fw+GaC86j0Sg31ABAm+KmJ/PFYjFZlqVf//Vfl23byuVy6/ssy1IwGFR3d7disVjjBgk0uUorqmUymbLHK7GiGgAAkChghwECgUDFC7uDg4MNGA0AAAAAAACAesjn81sW+lRz9YfjFPoAAACgEbjpyWxer1fve9/79IlPfEJveMMbdOLECQ0PD+vUqVO6//779dRTT+m3fuu35PV6Gz1UoGlVW1EtkUhs2MaKajBRpRsxtpqAlRsxAGB3KGAHAAAAAAAAANRVPp9XNHJEBWeppvaVPvC+WsDvUyY7TxE7AAAAgHWrq6v6sz/7M731rW/V2bNnde+9967vsyxLb33rWzUzM6PJyUmK2IEdqrSi2laFv4Bpqt2IUQk3YgDA7lHADgAAAAAAAACoK9u2VXCWNH23X9GDnk3bOZfWlDtXlHXAI/++jk3bZc4WlXjYkW3bFLADAAAAWJdMJpXL5XTy5EnddtttSiaTWlxcVCgUUiwW07e+9S0NDAwomUxqaGio0cMFmlIgEKhYyDs4ONiA0QA7U+lGjEwmo0QioenpaUWj0Q3tAQC7QwE7AAAAAAAAAKAhogc96g1Vn+Vw8KY6DQYAAABAy1lcXJQk9fT0yOv1bihS7+npKWsHAM1m+cxy1f3Fi0Wt2CvqDHbKs3/zSQS26qfVbXYjhiRFo1FmWweAPUABOwAAANAkHMeRJGXsVVf6K/VT6hcAAACoF/62BQAAAFAPoVBIkpROp9Xf379hfzqdLmuHvVMoFJTNZsu2OY6jXC4ny7Lk9/vL9kUiEQUCgXoOEdhTbl8LsQtrkqSFEwuu9CdJPr9PwWDQtf4AAKiGAnYAAACgSeRyOUlSYnbJ9X5ZxhEAAAD1xN+2AAAAaFWVinQzmUzZ45Uo0t1bsVhMlmXp+PHjmpubk8fzw9mHi8WiJicn1d3drVgs1sBRtodsNqu+vr6a26dSKWY8RkvZq2shH//4x/Vv/s2/2XR/JpNRIpHQ9PS0otFo1b6CwaDC4bCr4wMAYDMUsAMAAABNwrIsSdJ03Kdo0Lvr/jL2qhKzS+v9AgAAAPXC37YAAABoVdWKdBOJxIZtFOnuLa/Xq6mpKY2NjWl0dFQTExPq6elROp3W5OSkTp06pZmZGXm9u39fguoikYhSqVTZtmqFtZFIpJ7DA/bcXl0LufPOO2s6j0SjUc43AACjUMAOAACAusvn87Jtu2qbajPSXK1dZgNYXz5zraNqO+fSmnLnirIOeOTfV6XtP/dz9bKcAAAAwF7jb1sAAAC0qkpFuo7jKJfLybKsDX+zUqS79+LxuGZmZjQ+Pq6BgYH17d3d3ZqZmVE8Hm/g6NpHIBDYtHiWwlq0g9LrfzToVW/IvZtmuBYCAGhWFLADAACgrvL5vI5EjmjJqW15vEoz0lzN5/dpPjvf8kXswWBQAb9PiYcd1/oM+H0KBoOu9QcAAADUgr9tAQAA0Ko2K9IdHBxswGhQEo/HNTIyomQyqcXFRYVCIcViMWZebxKOc/m94/KZ5V33Veqj1CcAAAAagwJ2AAAA1JVt21pylnT43sPqOtS1abvixaJW7BV1Bjvl2e/ZtN3ymWUtnFiQbdstX8AeDoeVyc7XNHv9ZktuXq1dZq8HAACAWfjbFgAAAEC9eb1eDQ0NNXoY2IFcLidJWjix4Gqf3FiCRsicLVbdX+tqdFv1g+rcXDG8tH+rm2y28/k3ALQDCtgBAADQEF2HuuS3tljS7tb6jKWZhMPhmotyWHITAAAAJuNvWwAAAABALSzLkqQtJ0eqRWlipFKfQL2wGp058vm8opEjKri4Yrg63L3Jxke2ANoABewAAAAAAAAAAAAAAAAAjOT3X54QqabJkbbZJ1AvrEZnDtu2VXCWNH23X9GDm8+Evp3Z8BMPO1tmRrYAUI4CdgAAAAAAAABAyykUCspms2Xbqi39HIlEFAgE6jI2AAAAAM1h+cxy1f3Fi0Wt2CvqDHbKs3/zIsit+gHQHliNzizRgx71hrxV2wzetI3+asyMbAHgMgrYAQAAgCZGUQ4AAABahdt/22azWfX19VXcV2np51QqxYeHAAAAACRdnvnW5/dp4cSCa336/D4Fg0HX+gPQ/PicDwDQzihgBwAAAJoYRTkAAABoFW7/bRuJRJRKpcq2OY6jXC4ny7I2LBcfiUR2MGoAAAAArSgcDms+Oy/btqu2y2QySiQSmp6eVjQardo2GAzWPPMygPbA53wAgHZGATsAAGhble5o36qYgTvaYRqKcgAAANAq3P7bNhAIVPxQd3BwcPeDBdB2mBkRAIDms9vPgcLhcM0F59FolKJSANvG53wAgHZGATsAAGhb1e5or4Q72mEiinIAAADQKq7+23Z1dVXJZFIej0crKyvq7++X1+tt4AgBtDNmRgQAwHz5fL5sxvTS7Oi1unoWdWZMB7DX+JwPANDOKGAHAABtq9Id7dWWeuSOdgAAAACoj9nZWY2PjyuXy61vsyxLU1NTisfjjRsYgLbFzIgAAJgtn88rGjmigrO04z6uLnYP+H3KZOcpYgeAFuM4jiQpY6+60l+pn1K/AIDaUMAOAADa1mZ3tEss9QgAAAAAjTI7O6uxsTENDw/r5MmT6unpUTqd1vHjxzU2NqaZmRmK2AHUHTMjAgBgthdeeEEFZ0kfv7NL3a/r2LTd8iXpzCtFHbrOo64qFTPPv7ym+x9d0gsvvEABOwC0mNKECYnZnd/0tFm/vEcEgNpRwA4AAAAAAAAAMMLq6qrGx8c1PDysubk5eTweSVJ/f7/m5uY0OjqqY8eOaWRkRF6vt8GjBQAAAGCKUjHi/Y8uu94vxYgA0Fosy5IkTcd9igZ3f30pY68qMbu03i8AoDYUsAMAAKCuSkunLZ9x5yJyqR+WZAMAAACaXzKZVC6X08mTJ9eL10s8Ho8mJiY0MDCgZDKpoaGhxgwSAAAAgHEoRjRPPp+XbdtV22QymbLHrdoBgBv8fr8kKRr0qjfk3gQJpX4BALWhgB0AAAB1VZoFZeHEguv9MgsKAAAA0NwWFxclST09PRX3l7aX2m3H6uqqksmkFhcXFQqFFIvFmMUdAAAAaBEUI5oln88rGjmigrNUU/tEIrHHIwIAAIBpKGAHAABAXZVmKzl872F1HeradX/LZ5a1cGKBWVAAAACAFhAKhSRJ6XRa/f39G/an0+mydrWanZ3V+Pj4+g210uX3JlNTU4rH4zsfMAAAAABgA9u2VXCWNH23X9GDnk3bOZfWlDtXlHXAI/++jk3bffnZS7r/UXdW9gWAkszZ4vrXpdejWl35unVlPwCA2lHADgAAgLoqzVbSdahLfsu9mUuYBQUAAABofrFYTJZl6fjx45qbm5PH88NCh2KxqMnJSXV3dysWi9Xc5+zsrMbGxjQ8PKyTJ0+qp6dH6XRax48f19jYmGZmZihiBwAAgLEKhYKy2WzZtkwmU/Z4pUgkokAgUJexmWirIsJaC6YpRnRH9KBnyxnxB2/aup+MverSiABACgaDCvh9SjzsuNZnwO9TMBh0rT8AaAcUsAMAAAAAAAAAjOD1ejU1NaWxsTGNjo5qYmJiveB8cnJSp06d0szMjLze6gUQJaurqxofH9fw8HBZQXx/f7/m5uY0OjqqY8eOaWRkpOY+AQAAgHrKZrPq6+uruC+RSGzYlkql1Nvbu9fDMg7FiACAWoXDYWWy87Jte32b4zhlK/dtxbKssgnWgsGgwuGwm8MEgJZHATsAAAAAAAAAwBjxeFwzMzMaHx/XwMDA+vbu7u5tz5aeTCaVy+V08uTJstncJcnj8WhiYkIDAwNKJpMaGhpy60cAAAAAXBOJRJRKpcq2lYrsri6eK7VvR5WKESvJZDJKJBKanp5WNBqt2vbqYkRmw2+85TPLm+4rXixqxV5RZ7BTnv2eTdtV6wNA+wiHwxsKzgcHBxs0GgBoTxSwAwAAAAAAAACMEo/HNTIyomQyqcXFRYVCIcVisW3Pkr64uChJ6unpqbi/tL3UDgAAADBNIBCoOKM6RXYbVSpG3Ew0Gt32TPXMht84B3wdUoe0cGLBlf58zK4PAADQcBSwAwAAAAAAAACM4/V6dz0reigUkiSl02n19/dv2J9Op8vaAQAAAMBmmA2/do7jSJIy9qor/Z1bWpPWpM9//vP6iZ/4iYptdjO7PgAAAOqPAnYAAAAAAAAAQEuKxWKyLEvHjx/X3NycPJ4fLiNfLBY1OTmp7u5uxWKxBo4SANBIhUJB2Wy2bNtWxYiBQKCeQwQAGILZ8GuXy+UkSYnZJVf77erq2nJW+53Mrg8AAID6o4AdAAAAAAAAANCSvF6vpqamNDY2ptHRUU1MTKinp0fpdFqTk5M6deqUZmZm5PV6Gz1UAECDZLNZ9fX11dw+lUpRFAcAwBYsy5IkTcd9igZ3/34rY68qMbu03i8AAACaHwXsAAAAAAAAAICWFY/HNTMzo/HxcQ0MDKxv7+7u1szMjOLxeANHBwBotEgkolQqVbYtk8kokUhoenpa0Wh0Q3sAQHOotMpGJpMpe7wSq2y4p7SCSTToVW/IvRuGr14ZBQAAAM2LAnYAAAAAAAAAQEuLx+MaGRlRMpnU4uKiQqGQYrEYM68DABQIBDadUT0ajTLbOgA0sWqrbCQSiQ3bWGUDAAAAqB8K2AEAAAAAAAAALc/r9WpoaKjRwwAAAABQJ5VW2XAcR7lcTpZlbZjNm1U2AAAAgPqhgB0AAAAAAAAAAAAAAAAtZbNVNgYHBxswGgDYe4VCQdlstmxbJpMpe7xSJBJRIBCoy9gAALgaBewAAAAAAAAAAAAAAAAAADSxbDarvr6+ivsSicSGbalUquKNPgAA1AMF7AAAAAAAAAAAAAAAAAAANLFIJKJUKlW2zXEc5XI5WZYlv9+/oT0AAI1CATsAAAAAAAAAAAAAAAAAAE0sEAhUnFF9cHCwAaMBAKA6CtgBAAAAAAAAAAAAAAAAAAAkra6uKplManFxUaFQSLFYTF6vt9HDAoCWQgE7AAAAAAAAAAAAAAAAAFdlzhar7ncurSl3rijrgEf+fR077gcA3DQ7O6vx8XHlcrn1bZZlaWpqSvF4vHEDA4AWQwE7AAAAtq1QKCibzZZtcxxHuVxOlmXJ7/eX7YtEIgoEAvUcIgAAAAAAAAAAABogGAwq4Pcp8bDjWp8Bv0/BYNC1/gCgktnZWY2NjWl4eFgnT55UT0+P0um0jh8/rrGxMc3MzNRUxF7p8/RMJlP2eCU+TwfQjihgBwAAwLZls1n19fXV3D6VSqm3t3cPRwQAAAAAAAAAAAAThMNhZbLzsm27artMJqNEIqHp6WlFo9GqbYPBoMLhsJvDBIAyq6urGh8f1/DwsObm5uTxeCRJ/f39mpub0+joqI4dO6aRkRF5vd6qfVX7PD2RSGzYxufpANoRBewAAADYUj6fL7vI6DiOpqeny9o8//zzuv/++/Xxj39c3d3dZfscx9HTTz8tqfId5QAAAAAAAAAAAGgd4XC45oLzaDRK4SaAhksmk8rlcjp58uR68XqJx+PRxMSEBgYGlEwmNTQ0VLWvSCSiVCpVtm2rFc0BoN1QwA4AAICq8vm8opEjKjhLNbW///77a2q3fGa56v7ixaJW7BV1Bjvl2e/ZtN1W/QAAAAAAAAAAAAAAUM3i4qIkqaenp+L+0vZSu2oCgUDFG3MGBwd3MUIAaC0UsAMAAKAq27ZVcJY0fbdf0YObF5I7l9aUO1eUdcAj/76OTdslv3tJ/+9fLmvhxIJrY/T5fQoGg671BwAAAAAAAAAAAABoH6FQSJKUTqfV39+/YX86nS5rBwDYHQrYAQAAUJPoQY96Q96qbQZvqrGztWVNT08rGo1u2iSTySiRSGzZTpKCwWDNy1ACAAAAAAAAAAAAAHClWCwmy7J0/Phxzc3NyeP54eRuxWJRk5OT6u7uViwWa+AoAaB1UMAOAACAhohGoxWXTdtpOwAAAAAAAAAAAAAAdsLr9WpqakpjY2MaHR3VxMSEenp6lE6nNTk5qVOnTmlmZkZeb/VJ3wAAtaGAHQAAAAAAAAAAAAAAAAAAtLV4PK6ZmRmNj49rYGBgfXt3d7dmZmYUj8cbODoAaC0UsAMAAAAAAAAAAAAAAAAAgLYXj8c1MjKiZDKpxcVFhUIhxWIxZl4HAJdRwA4AAICqHMeRJGXsVVf6K/VT6hcAAAAAAAAAAAAAAFN4vV4NDQ01ehgA0NIoYAcAAE1rdXWVu57rIJfLSZISs0uu9zs4OOhqnwAAAAAAAAAAAAAAAADMRgE7AABoSrOzsxofH18vrpYky7I0NTWleDzeuIG1IMuyJEnTcZ+iwd3fIJCxV5WYXVrvFwAAAAAAAAAAAAAAAED7oIAdAAA0ndnZWY2Njcnn85Vt//73v6+xsTHNzMxULGLP5/Oybbtq35lMpuyxmmAwqHA4vI2RNye/3y9Jiga96g25N8N9qV8AAAAAAAAAAAAAAAAA7YMCdgAA0FRWV1f1oQ99SGtra/qpn/op/c7v/I56enqUTqf1e7/3ezp16pQ+9KEPaWRkRF7vD4ut8/m8jkSOaMlZqul5EonElm18fp/ms/NtUcQOAAAAAAAAAAAAAAAAAG6ggB0AADSVxx57TC+99JJuv/12felLX5LH45Ek9ff360tf+pLuuOMOPfnkk3rsscf0Uz/1U+vfZ9u2lpwlHb73sLoOdW3af/FiUSv2ijqDnfLs92zabvnMshZOLMi2bQrYAQAAAAAAAAAAAAAAAKBGFLADAICm8thjj0mSPvaxj60Xr5d4PB498MAD+lf/6l9tKGAv6TrUJb/lr/4kt7o1WgAAAAAAAAAAAAAAAADAlShgBwAAAAAAAAAAAAAAANAUCoWCstls2bZMJlP2eKVIJKJAIFCXsQEAAKA2FLADAICmMjQ0pN/93d/VRz/6UQ0NDZXNwl4sFvWxj31svR3clTlbrLrfubSm3LmirAMe+fd17LgfAAAAAAAAAAAAYDPZbFZ9fX0V9yUSiQ3bUqmUent793pYAAAA2AYK2AEAQFMZGhrSwYMH9cQTT2hkZET33Xefenp6lE6ndfz4cT3xxBN6/etfTwG7i4LBoAJ+nxIPO671GfD7FAwGXesPAAAAAAAA7aPSrKuO4yiXy8myLPn9/rJ9V866ms/nZdt21f6rzeB6tWAwqHA4vJ3hAwCAXYpEIkqlUmXbtvpbAAAAAGahgB0AADQVr9er//E//ofe+9736mtf+5pOnTq1vq/0IdQf/uEfyuv1NmqILSccDiuTna/pg71EIqHp6WlFo9GqbflgDwAAAAAAADtVbdbVSkqzrubzeR2JHNGSs1TT91WawfVqPr9P89l5rnUBALCFSjegVbtp7Mob0K4WCAQqzqg+ODjowkgBAABQDxSwAwCAphOPx/XQQw/pIx/5iL773e+ub3/961+vqakpxePxDd/jOJdnD18+s+zKGEr9lPptdeFwuOYP4aLRKMswAgAAAAAAYM9UmnW12uQKpVlXbdvWkrOkw/ceVtehrk37L14sasVeUWewU579nk3bLZ9Z1sKJBdm2TQE7AABbqHYDWqWbxko3oAEAAKA1UcAOAACaUjwe18jIiJLJpBYXFxUKhRSLxTadeT2Xy0mSFk4suDqOXC7HbA4AAAAAAABAHW0266pU2+QKXYe65Lf81Z/k1p2ODgAAVFLpBjTHcZTL5WRZlvx+/4b2AAAAaF0UsAMAgKbl9Xo1NDRUU1vLsiRpy9mValWaXanULwAAAAAAAAAAAIDKrr4BbXV1VclkUh6PRysrK+rv7990oioAAAC0HgrYAQBAWyjN2lDT7Eo76Be7UygUlM1my7ZlMpmyxytFIhEFAoG6jA0AAAAAAAAAAADumZ2d1fj4+PoKytLlyaimpqYUj8cbNzAAAADUDQXsAAAAaLhsNqu+vr6K+xKJxIZtqVRqy6WgAQAAAAAA0Bry+bxs267aptpkCFe3AQAAjTM7O6uxsTENDw/r5MmT6unpUTqd1vHjxzU2NqaZmRmK2AEAANoABewAAABouEgkolQqVbbNcRzlcjlZlrVhpvtIJFLP4QEAAKCFVVoNaKu/RTdbDcjNvgAAwGXz8/P6iX/5/2hp+WJN7StNhnC14sXibocFAAB2YHV1VePj4xoeHtbc3Jw8Ho8kqb+/X3NzcxodHdWxY8c0MjIir9fb4NECAABgL1HADgAAgIYLBAIVZ1QfHBxswGgAAADQTqqtBlRJtdWA3OwLAABc9tRTT9VcvF6rFXtFutXVLgEAQA2SyaRyuZxOnjy5Xrxe4vF4NDExoYGBASWTSQ0NDTVmkAAAAKgLCtgBANim1dVVJZNJLS4uKhQKKRaLMQMAAAAAgJoxS7dZKq0GlMlklEgkND09rWg0uqF9PfoCAACXWZYlSZqO+xQN7u467JefXdH9j15UZ7DThZEBAIDtWlxclCT19PRU3F/aXmoHAACA1kUBOwAA2zA7O6vx8XHlcrn1bZZlaWpqSvF4vHEDAwAAANA0mKXbLJutBiRJ0Wh0W797N/sCAACXlW7uiwa96g3troA9Y69Kkjz7PVu0BAAAeyEUCkmS0um0+vv7N+xPp9Nl7QAAANC6uDoDAECNZmdnNTY2pqNHj+r06dN65ZVXdPr0aR09elRjY2OanZ1t9BABAAAANIHSLN1X/puenpYkTU9Pb9jHLN0AAAAAAKAVxGIxWZal48ePq1gslu0rFouanJxUd3e3YrFYg0YIAACAemEGdgAAarC6uqrx8XENDw9rbm5OHs/le8D6+/s1Nzen0dFRHTt2TCMjI/J6dzcLEAAAAIDWxizdjZXP52XbdtU2mUym7HEzwWBQ4XDYtbEBAIDNZc4Wq+53Lq0pd64o64BH/n0dFds8//LaXgwNAADUyOv1ampqSmNjYxodHdXExIR6enqUTqc1OTmpU6dOaWZmhs9bAQAA2gAF7AAA1CCZTCqXy+nkyZPrxeslHo9HExMTGhgYUDKZ1NDQUGMGCQAAAACoKp/PKxo5ooKzVFP7RCJRdX/A71MmO08ROwAAeygYDCrg9ynxsNPooQAAABfE43HNzMxofHxcAwMD69u7u7s1MzOjeDzewNEBAACgXlqmgP273/2uPvOZz+iRRx7RCy+8oK6uLt188816//vfr1/91V9VIBDYcd+FQkFf+cpX9NWvflVPPfWUvvOd7+jVV1/V9ddfr1tvvVU/8zM/o1/5lV/RG9/4Rhd/IgCASRYXFyVJPT09FfeXtpfaVVMoFJTNZsu2OY6jXC4ny7Lk9/vL9kUikV2dxwAAAAAAl9m2rYKzpOm7/Yoe9GzarpYZXDNni0o87Mi2bQrYAQDYQ+FwWJnsfE0rqCQSCU1PTysajVZtAwAAGisej2tkZETJZFKLi4sKhUKKxWLMvA4AANBGWqKA/c///M+VSCR04cKF9W2FQkFPPfWUnnrqKX3uc5/TI488oltuuWXbff/93/+9BgcH9eqrr27Y90//9E/65je/qW9+85v6gz/4A504cUI/93M/t6ufBQBgplAoJElKp9Pq7+/fsD+dTpe1qyabzaqvr6/m506lUurt7a25PQAAAACguuhBj3pD1T8UH7ypToMBAABbCofDNd8wFo1GuZ4KAEAT8Hq9rGwNAADQxpq+gP1v//Zv9XM/93NyHEfXXnutJiYmdOedd8pxHH3xi1/UZz/7WT3zzDN697vfraeeekrXXXfdtvq/cOHCevH64OCghoeH9da3vlU33nijzp49q9nZWX32s5/VhQsX9Au/8Au6/vrr9a53vWsvflQAQAPFYjFZlqXjx49rbm5OHs8PZ+orFouanJxUd3e3YrHYln1FIhGlUqmybdVmB4pEIu78EICLKq0kkMlkyh6vxEoCAAAAMIHjOJKkjL26675KfZT6BAAAAAAAAAAAQG2avoD9wx/+sBzH0b59+/SXf/mXesc73rG+7yd/8if1oz/6o/rt3/5tPfPMM5qamtIDDzywrf49Ho/e//7366Mf/ah+7Md+bMP+u+66S+9617t09913a3V1Vb/+67+uZ599Vh0dlZcWBgA0J6/Xq6mpKY2NjWlkZET/+l//a/n9fjmOo6985St65JFHNDMzU9OydoFAYNMZgJgdCM2i2koClZZhZiUBAAAAmCCXy0mSErNLrvY5ODjoWn8AAAAAAAAAAACtrqkL2L/1rW8pmUxKkn75l3+5rHi9ZHx8XA8++KAymYw+/elP63d+53fU2dlZ83MMDAxoYGCgapuRkRHF43E99NBDeu655/S3f/u3FGgBQAuKx+M6duyY/uAP/kCnTp1a375v3z4dO3ZM8Xi8gaNDrZbPLFfdX7xY1Iq9os5gpzz7PZu226qfVldpJQHHcZTL5WRZlvx+/4b2AAAAQKNZliVJmo77FA1ufQNyNRl7VYnZpfU+AQAAAAAAAAAAUJumLmCfm5tb//qXfumXKrbxeDy65557NDExoXPnzunRRx/VXXfd5fpY7rzzTj300EOSpOeee44CdgBoQbOzs/rkJz+pd7/73XrXu961PgP7//k//0ef/OQn1d/fTxG7wYLBoHx+nxZOLLjWp8/vUzAYdK2/ZrLZSgLMPAkAAACTlW60jAa96g3troD96j4BAID5HMeR5N7kFKV+Sv0CAAAAAACgNk1dwP7EE09Ikq655hr19fVt2u6d73zn+tdPPvnknhSwLy//8EKX1+vOh18AAHOsrq5qfHxcw8PDmpubk8fzw5m5f+VXfkWjo6M6duyYRkZGOA8YKhwOaz47L9u2q7bLZDJKJBKanp5WNBqt2jYYDCocDrs5TAAAAAB1kDlbrLrfubSm3LmirAMe+fd17KgPAABgnlwuJ0muTnJR6peJHQAAAAAAAGrX1AXsmUxGknTLLbdo377Nf5RIJLLhe9z2+OOPr3+9VbEbAKD5JJNJ5XI5nTx5sqx4Xbq82sfExIQGBgaUTCY1NDTUmEFiS+FwuOaC82g0yooqAAAAQIsJBoMK+H1KPOzOLKmBNl6VCQCAZmRZliTp8L2H1XWoa9f9LZ9Z1sKJhfV+21GhUFA2my3b5jiOcrmcLMvasFpNJBJRIBCo5xABAAAAAICBmraAfWlpaX0G1cOHD1dt+7rXvU7XXHONXnvtNb3wwguuj+Xb3/62HnnkEUnS0aNHtyxgX15eLpux/cKFC66PCQDgrsXFRUlST09Pxf2l7aV2cEc+ny+bMb30wUetrv6AhBnTAQAAgPYWDoeVcXFlpuXlZdm2XbW/0oQatUyswXsWAABqU6louto5t1Q0XbpW2HWoS37Lv6HdTl1dpN1Ostls1ZWyr5ZKpZg4BAAAAAAANG8B+yuvvLL+9bXXXrtl+1IB+6uvvurqOJaXl/Xv/t2/0+rqqiTp937v97b8nsnJSX3sYx9zdRwAgL0VCoUkSel0Wv39/Rv2p9PpsnbYvXw+r2jkiArOkmt9Bvw+ZbLzFIQAAACgrq6+MbMSipzrx62VmfL5vI5EjmipxvcsiURiyzY+v0/zvGcBAGBL1YqmK51zKZreO5FIRKlUqmxbtZsBr1w5GwAAAAAAtK+mLWBfWvrhB0P79+/fsn1X1+VlAB3HneWBS37t135NTz31lCTpgx/8oN7znvds+T0TExP6yEc+sv7fFy5c0E033eTquAAA7orFYrIsS8ePH9fc3Jw8Hs/6vmKxqMnJSXV3dysWizVwlK3Ftm0VnCVN3+1X9ODl37dzaU25c8Wa+7AOeOTf1yFJypwtKvGwI9u2KQYBAABA3Wz3xsxaipy5MdMML7zwgpacJb0+/nrtD25+fbJ4qahL5y5p34F98uzzbNruon1RL82+pBdeeIFsAQDYQqWi6dLqjVevylhqj70RCAQ2vTmg2s2AAAAAAACgvTVtAbvP51v/+uLFi1u2X15eluTuEn6Tk5P63Oc+J0m67bbb9N//+3+v6fu6urrWC+oBAM3B6/VqampKY2NjGh0d1cTEhHp6epROpzU5OalTp05pZmZGXq+30UNtGes3nXWsrW/z7+tQNLjD3/E/9+P2zWwAAABANZVuzKykdLPmlTdhVsKNmebI5XKSpJdmX3K938HBQVf7BACg1WxWNM05FAAAAAAAoDk0bQH7ddddt/71q6++umX71157TZJ07bXXuvL8f/RHf6T77rtP0uVZG7785S/rmmuucaVvAICZ4vG4ZmZmND4+roGBgfXt3d3dmpmZUTweb+DoWk+pGCQxW9tMldvplw+yAAAAUG/Rgx71hqrfjDnIAn1NxbIsSdLhew+r69DuJ6tYPrOshRML6/0CAAAAAAAAAAC0qqYtYPf5fLrxxhv1gx/8QAsLC1Xbvvzyy+sF7DfdtPtPAk+ePKl//+//vSTpzW9+s7761a8qGAzuul8AqJfV1VUlk0ktLi4qFAopFosxc3iN4vG4RkZG+P3VQalo4+N3dqn7dZvPQLl8STrzSlGHrvOoq8pfNs+/vKb7H12mGAQAAACAK0orPXYd6pLfcm/VRzdXkAQAoF1wzRsAAAAAAKC5NG0BuyT92I/9mJLJpL7zne/o0qVL2rev8o+TzWbXv45Go7t6zv/9v/+37rnnHhWLRYVCIX3ta1/T4cOHd9UnANTT7OysxsfH12e3li4XCk9NTTGDeI28Xq+GhoYaPYyWd9NNNyng9+n+R92bgT3g97lyMxsAAABQK8dxJEkZe9WV/kr9lPrF7hUKhbLrh5KUyWTKHq8UiUQUCATqMjYAALA1rnkDAAAAAAA0n6YuYL/99tuVTCb12muvKZVK6e1vf3vFdo8//vj614ODgzt+vq997Wt6//vfr0uXLunGG2/UV7/6Vd1888077g8A6m12dlZjY2MaHh7WyZMn1dPTo3Q6rePHj2tsbEwzMzNc0IcxwuGwMtl52bZdtV0mk1EikdD09PSWN6oFg0GFw2E3hwkAAABUVSqkSsy6d2Nmqd/dXOfCD2WzWfX19VXcl0gkNmxLpVLq7e3d62EBAIAacM0bAAAAAACgOTV1Afvo6KgmJyclSQ8++GDFAvZisag//uM/liQdOHBAd955546e6xvf+IZGRka0vLysG264QX/xF3+hH//xH9/54AGgzlZXVzU+Pq7h4WHNzc3J4/FIkvr7+zU3N6fR0VEdO3ZMIyMjLK0KY4TD4bKC80ozI1bDzIgAAABoNMuyJEnTcZ+iwd2/18rYq0rMLq33i92LRCJKpVJl2xzHUS6Xk2VZ8vv9G9oDAIDG45o3AAAAAABA82rqAva3ve1tisViSiaT+vznP68PfvCDesc73lHWZmpqan2p3w9/+MPq7Ows2//YY4+tF7V/8IMf1Be+8IUNz/N3f/d3eve7363XXntN11xzjR555JFNZ2UCAFMlk0nlcjmdPHly/UJ+icfj0cTEhAYGBpRMJjU0NNSYQQJbYGZEAAAANJtS8XM06FVvyL3CqauLqrFzgUCg4vsGZrgHAMBsXPNujHw+X9OqmVc+VsOqmQAAAAAAtKemLmCXpE9/+tMaHByU4zi66667dN999+nOO++U4zj64he/qBMnTkiSbr31Vo2Pj2+7/+eee04/8zM/o3PnzkmSfvd3f1c33HCD0un0pt/z+te/Xq9//et39PMAwF5ZXFyUJPX09FTcX9peageYiJkRAQAAAAAAAEhc826EfD6vaOSICs5STe0rTTpytYDfp0x2niJ2AAAAAADaTNMXsL/lLW/Rn/7pnyqRSOjChQu67777NrS59dZb9cgjj+i6667bdv/JZFIvvfTS+n//5m/+5pbf89GPflQPPPDAtp8LAPZSKBSSJKXTafX392/YX7oxp9QOMBEzIwIAAAAAAACQuObdCLZtq+Asafpuv6IHPZu2cy6tKXeuKOuAR/59HZu2y5wtKvGwI9u2KWAHAAAAAKDNNH0BuyS95z3v0d///d/r05/+tB555BEtLCxo//79uuWWW/S+971Pv/Zrv6ZAINDoYQJAQ8ViMVmWpePHj2tubq5sSdVisajJyUl1d3crFos1cJTA9qyuriqZTGpxcVGhUEixWExer7fRwwIAAADQRpbPLFfdX7xY1Iq9os5gpzz7Ny/02qofAABQjmvejRM96FFvqPp12MGb6jQYAAAAAADQlFqigF2S3vzmN+tTn/qUPvWpT23r+4aGhrS2trbp/l/8xV/UL/7iL+5ydADQeF6vV1NTUxobG9Po6KgmJibU09OjdDqtyclJnTp1SjMzMxT/omnMzs5qfHxcuVxufZtlWZqamlI8Hm/cwAAAAIAKMmeLVfdvZ5ZKmCEYDMrn92nhxIJrffr8PgWDQdf6AwCglXHNGwAAAAAAoHm1TAE7AGBr8XhcMzMzGh8f18DAwPr27u5uzczMUPSLpjE7O6uxsTENDw/r5MmT6x9MHT9+XGNjY/z/DAAAAGMEg0EF/D4lHnZc6zNAkbMRwuGw5rPzsm27artMJqNEIqHp6WlFo9GqbYPBoMLhsJvDBACgpXHNGwAAAAAAoDlRwA4AbSYej2tkZETJZFKLi4sKhUKKxWLMQoOmsbq6qvHxcQ0PD5ctDdzf36+5uTmNjo7q2LFjGhkZ2fL/60KhoGw2W7Ytk8mUPV4pEokoEAi49JMAAACgHYTDYWUocm5Z4XC45iyi0ah6e3v3eEQAALQfrnkDAAAAAAA0HwrYAaANeb1eDQ0NNXoYbSOfz9dUrHLl42YoVJGSyaRyuZxOnjy5Xrxe4vF4NDExoYGBASWTyS3/P89ms+rr66u4L5FIbNiWSqUoOAEAAMC2UeQMAACwt7jmXR+Oc3lVoYy96kp/pX5K/QIAAAAAgPZBATsAAHson8/rSOSIlpylmtpXKpq+ks/v03x2vq2L2BcXFyVJPT09FfeXtpfaVROJRJRKpcq2OY6jXC4ny7Lk9/s3tAcAAAAAAACAdpTL5SRJidnarndvp9/BwUFX+wQAAAAAAGajgB0AgD1k27aWnCUdvvewug51bdqueLGoFXtFncFOefZ7KrZZPrOshRMLsm27rQvYQ6GQJCmdTqu/v3/D/nQ6XdaumkAgUHF2Sz4sAQAAQDMpFArKZrNl27a6MTMQCNRziAAAAGgBlmVJkqbjPkWD3l33l7FXlZhdWu8XAAAAAAC0DwrYAQCog65DXfJb/uqNbq3PWJpdLBaTZVk6fvy45ubm5PH8sOC/WCxqcnJS3d3disViDRwlAAAAUD/ZbFZ9fX01t0+lUhVv5AQAAACqKd0YGQ161RvafQH71f0CAAAAAID2QQE7gD3DDHDmIAu0Eq/Xq6mpKY2NjWl0dFQTExPq6elROp3W5OSkTp06pZmZGXm97n2AAgAAAJgsEokolUqVbctkMkokEpqenlY0Gt3QHgAAAAAAAAAAAGgUCtgB7BlmgNud7RSdb1VwThZoNfF4XDMzMxofH9fAwMD69u7ubs3MzCgejzdwdAAAAEB1ld7vZTKZsscrbfWeLxAIbPoeLhqN8v4OAAAAAAAAAAAARqGAHcCeYQa43dlO0flWBedk0TiO40iSls8s77qvUh+lPttdPB7XyMiIksmkFhcXFQqFFIvFmHkdAAAAxqv2fi+RSGzYxk3GAAAAAAAAAAAAaCUUsAPYM8wAtzvbKTrfquCcLHZnO7PhS+WzI+ZyOUnSwokF18aTy+U0ODjoWn/NzOv1amhoqNHDAAAAALal0vu9rd5jAAAAAAAAAAAAAK2CAnYA63ZTpAv3UXTeOPl8XrZtr/936caBWl15g8Hy8uVZ0w/fe1hdh7p2Na7lM8taOLEgy7J21Q8AAACAxtrs/R43qgIAAKAZZM4Wq+53Lq0pd64o64BH/n0dO+4HAAAAAAC0LgrYAayrtoR5JSxhjlaUz+cVjRxRwVnacR+Vit27DnXJb/krtN6+q28mAQAAAACYodLkAJlMpuzxSkwOAAAAmkkwGFTA71PiYce1PgN+n4LBoGv9AQAAAACA5kABO4B1lZYwL808feWM0le2B1qNbdsqOEuavtuv6EHPpu1qnUHmy89e0v2PLu/FUAEAAAAAhqk2OUClm52ZHAAAgMZYPlP9mm3xYlEr9oo6g53y7N/8OvFW/bSacDisTHa+bAXTSqp9tnS1YDCocDjs5jABAAAAAEAToIAdwLrNljCXpGg0ygeqaCvRgx71hrxV2wzetHU/GXvVpREBAAAAAExXaXIAx3GUy+VkWdaGFbWYHAAAgPoKBoPy+X1aOLHgWp++NptBPBwO11xwzmdLAAAAAABgMxSwAwBwBce5vPSpW4Xnz79clHR5xh4AAAAAcEM+n69p1ssrH6th1kv3bDY5wODgYANGAwAArhYOhzXPDOIAAAAAAAANRwE7ABjCzQIELpjvXC6XkyQlZpdc7XfFXpFudbVLAAAAAG0on8/rSOSIlpza3rMkEokt2/j8Ps1n53kfCQAA2gIziLurUCgom82Wbav2WUYkElEgEKjL2AAAAAAAgLkoYAcAA+TzeUUjR1RwqQDB19WlmYceUigU2rQNs/FVZlmWJGk67lM06N11f19+dkX3P3pRncHOXfcFAAAAALZta8lZ0uF7D6vrUNem7YoXi1qxV9QZ7JRnv2fTdstnlrVwYkG2bbfN+z4AAAC4J5vNqq+vr+K+Sp9lpFIpbgoAAAAAAAAUsAOACWzbVsFZ0vTdfkUPbl5Y4FxaU+5cUdYBj/z7Oiq2SX73kv7fv1zW8PBwTc/NbHzl/H6/JCka9Ko3tPsC9oy9KklVC0YAAAAAYLu6DnXJb/mrN2IVKAAAgC0xg/juRCIRpVKpsm2O4yiXy8myrPVr7le2BwAAAAAAoIAdAAwSPejZsmh68KbqfWTsVWlNzMYHAAAAAAAAAMAWmEF8dwKBQMXfx+DgYANGAwAAAAAAmgUF7ADQopiNDwAAAAAAAACA6phBHAAAAAAAoP4oYAcAAAAAAAAAAADQlphB3CyFQkHZbLZs21Y3FAQCgXoOEQAAAAAAuIACdqCN5fN52bZdtU0mkyl7rCYYDCocDrsyNqDRMmeLVfc7l9aUO1eUdcAj/76OTds9//Ka20MDAAAAAAAAAKAlZbNZ9fX11dw+lUpVvAEBAAAAAACYjQJ2oE3l83lFI0dUcJZqap9IJLZsE/D7lMnOU8TeYMuXLhdML59Zdqe/f+7HcRxX+jNdMBhUwO9T4uH2+HkBAAAAAAAAADBFJBJRKpUq25bJZJRIJDQ9Pa1oNLqhPQAAAAAAaD4UsANtyrZtFZwlTd/tV/SgZ9N2tc4ynTlbVOJhR7ZtU8DeYGdeuVzAvnBiwdV+c7lcWyyZGg6HlcnO17Q6wWYXzCu1AwAAAAAAAAAA1QUCgU1nVI9Go8y2DgAAAABAi6CAHWhz0YMe9Ya8VdsM3lR7f5lMpqb9W7WTLs+E3S7F8KXZzTP26q77urh6uYD90L89JH/Yv+v+ls8sa+HEgizL2nVfzSIcDtf8/x4XzAEAAAAAAAAAAAAAAAAAqB0F7ABcsfhqUepQzTNN19LO5/dpPjvfFkXsuVxOkpSYXXKtT88+j/zW7gvYS/x+9/oCAAAAAAAAAAAAAAAAAADtiQJ2AK44t7QmrUmH7z2srkNdm7YrXixqxV5RZ7BTnv2eTduVZv22bbstCthLs5tPx32KBqvPiL+VLz+7ovsfvajOYKcLI4Nbls8sV91fy7GxVR8AAAAAAAAAAAAAAAAAAJiOAnYAruo61LX1rN+31mcszaQ0u3k06FVvaHcF7Bl7VZKq3iCA+gkGg/L5fVo4seBKfz6/T8Fg0JW+AAAAADQfx3EkuXeDa6mfUr8AAAAAAAAAAADAXqOAHQCAPRQOhzWfnZdt21XbZTIZJRIJTU9PKxqNbtouGAy2xaoEAAAAACrL5XKS5NpNslf2Ozg46GqfAAAAAAAAAAAAQCUUsAOAQTJni1X3O5fWlDtXlHXAI/++joptnn95bS+Ghl0Ih8M1F51Ho1H19vbu8YgAAAAANCvLsiRJh+89rK5DXbvub/nMshZOLKz3CwAAAAAAAAAAAOw1CtgBwADBYFABv0+Jh91bsn2r5eSLF4tasVfUGeyUZ79nx/20g0KhoGw2W7Ytk8mUPV4pEokoEAjUZWwAAAAA2ovf75ckdR3qkt/yu94vAAAAAAAAAAAAsNcoYAcAA4TDYWWy87Jtu2q7TCajRCKh6elpRaPRim0WFxf13rH3urqcvM/vUzAYdK2/ZpPNZtXX11dxXyKR2LAtlUoxizoAAAAAAAAAAAAAAAAAABVQwA4AhgiHwwqHwzW1jUajVQukn5l/xpVi+JJgMFjz2FpRJBJRKpUq2+Y4jnK5nCzL2jBTYSQSqefwAAAAAACGWl1dVTKZ1OLiokKhkGKxmLxeb6OHBQAAAAAAAAAA0FAUsANAC3KzGB5SIBCo+DsaHBxswGgAAAAAAM1gdnZW4+PjyuVy69ssy9LU1JTi8XjjBgYAAAAAAAAAANBgnkYPAAAAAAAAAABayezsrMbGxnT06FGdPn1ar7zyik6fPq2jR49qbGxMs7OzjR4iAAAAAAAAAABAwzADO9CmHMeRJGXsVVf6m//nfpy840p/y2eWL/fnuNMfAAAAAABAPayurmp8fFzDw8Oam5uTx3N5DpH+/n7Nzc1pdHRUx44d08jIiLxeb4NHCwAAAAAAAAAAUH8UsANtqrR8dWJ2ydV+z/x/Z1ztL5fLaXBw0NU+AQAAAAAA9koymVQul9PJkyfXi9dLPB6PJiYmNDAwoGQyqaGhocYMEgAAwBD5fF62bVdtk8lkyh6rCQaDCofDrowNAAAAAADsHQrYgTZlWZYkaTruUzS4+9m+5rIX9fGvr+jQvz0kf9i/6/6Wzyxr4cTC+jgBAAAAAACaweLioiSpp6en4v7S9lI7AACAdpXP53UkckRLTm2TLSUSiS3b+Pw+zWfnKWIHAAAAAMBwFLADbcrvv1xkHg161RvafQF7xvZKWpE/7Jff2n0Be0lpnEArKRQKymazZduqzSATiUQUCATqMjYAAAAAwO6EQiFJUjqdVn9//4b96XS6rB0AAEC7sm1bS86SDt97WF2HujZtV7xY1Iq9os5gpzz7PZu2K02OZNs2BewAAAAAABiOAnYAAOosm82qr6+v4r5KM8ikUin19vbu9bAAAAAAAC6IxWKyLEvHjx/X3NycPJ4fFlkVi0VNTk6qu7tbsVisgaMEAAAwR9ehrq0nR7q1PmMBAAAAAAD1QQE7AAB1FolElEqlyrY5jqNcLifLsjasPBCJROo5PAAAAABNYPnMctX925mlEu7yer2amprS2NiYRkdHNTExoZ6eHqXTaU1OTurUqVOamZmR17v7FfEAAAAAAAAAAACaEQXsQJvLnC1W3e9cWlPuXFHWAY/8+zo2bff8y2uS+AAdqEUgEKg4o/rg4GADRgMAAACgmQSDQfn8Pi2cWHCtT5/fp2Aw6Fp/kOLxuGZmZjQ+Pq6BgYH17d3d3ZqZmVE8Hm/g6AAAAAAAAAAAABqLAnagTQWDQQX8PiUedtzrtEN8gA4AAAAAwB4Kh8Oaz87Ltu2q7TKZjBKJhKanpxWNRqu2DQaDCofDbg4TulzEPjIyomQyqcXFRYVCIcViMWZeBwAAAAAAAAAAbY8CdqBNhcNhZa76wLv04Xatrv4QfHl5WV1dXVW/hw/Qa1coFJTNZsu2ZTKZsseSSCSiQCBQt7EBAAAAABonHA7X/H45Go1WXAEK9eH1ejU0NNToYQAAAAAAAAAAABiFAnagjV39gXckElEqlSpr4ziOcrmcLMuS3+8v27ebomk+QN9aNptVX19fxX1X32iQSqX4fQIAAAAAAAAAAAAAAAAAAONRwA5gXSAQqFgEPTg42IDRYDs3FEQikXoPDwAAAAAAAAAAAAAAAAAAYNsoYAcAQ7l5Q0GhUFA2my3blslkyh6vtJvZ9QEAAAAAAAAAAAAAAAAAADZDATsAtIFsNqu+vr6K+xKJxIZtqVSqYvE8AAAAAAAAAAAAAAAAAADAblDADgBtIBKJKJVKlW1zHEe5XE6WZcnv929oDwAAAAAAAAAAAAAAAAAA4DYK2AGgDQQCgYozqg8ODjZgNAAAAAAAAAAAAAAAAAAAoF15Gj0AAAAAAAAAAAAAAAAAAAAAAEB7oIAdAAAAAAAAAAAAAAAAAAAAAFAXFLADAAAAAAAAAAAAAP5/9u47PIp67cP4/jaB0HvvUpQqTZAiglixiyLiQQUbHooKAooNFFFEj1gQRUBFBRRRwa4UFVBAQaWE3qT3GhIISb7vH7w77qYDKU/C/bkur6O7s5vduQ9MZvaZWQAAAAAAgCwRnt0vAAAAAAAAAAAAAABwdomJifH5fD7f8e3HM+T5As8TeF4AAAAAAGAXA+wAAAAAAAAAAAAAgCy1adMmn8/n8219Z2uGP2/r1q0z9DkBAAAAAEDGYoAdQKaJjo72rVq1KuS2lStXhvxvsNq1a/sKFCiQJa8NAAAAAAAAAAAA2adatWo+n8/nq3R/JV9EhYgzfr7j24/7tr6z1XteAAAAAABgFwPsADLNqlWrfE2bNk32vq5duya5bfHixb4mTZpk9ssCAAAAAAAAAABANsufP7/P5/P5IipE+PJXy5/hzwsAAAAAAOxigB1Apqldu7Zv8eLFIbfFxMT4Nm3a5KtWrVqSA4i1a9fOypcHAAAAAAAAAAAAAAAAAACALMYAO4BMU6BAgWSvqN66detseDUAAAAAAAAAAAAAAAAAAADIbv7sfgEAAAAAAAAAAAAAAAAAAAAAgLMDA+wAAAAAAAAAAAAAAAAAAAAAgCzBADsAAAAAAAAAAAAAAAAAAAAAIEswwA4AAAAAAAAAAAAAAAAAAAAAyBLh2f0CAAAAAAAAAAAAAABnp+Pbj6d6f0Jsgu/E3hO+PKXy+Px5U74+W1rPAwAAAAAA7GCAHQAAAAAAAAAAAACQpUqVKuXLlz+fb+s7WzPsOfPlz+crVapUhj0fAAAAAADIHAywAwAAAAAAAAAAAACyVJUqVXyrV6327d27N9XlVq5c6evatavvo48+8tWpUyfVZUuVKuWrUqVKRr5MAAAAAACQCRhgBwAAAAAAAAAAAABkuSpVqqR74LxOnTq+Jk2aZPIrAgAAAAAAWcGf3S8AAAAAAAAAAAAAAAAAAAAAAHB2YIAdAAAAAAAAAAAAAAAAAAAAAJAlGGAHAAAAAAAAAAAAAAAAAAAAAGSJ8Ox+AQAAAAAAAABOX3R0tG/VqlUht61cuTLkf4PVrl3bV6BAgSx5bQAAAAAAAAAAAEBiDLADAAAAAAAAOdiqVat8TZs2Tfa+rl27Jrlt8eLFviZNmmT2ywIAAAAAAAAAAACSxQA7AAAAAAAAkIPVrl3bt3jx4pDbYmJifJs2bfJVq1bNlz9//iTLAwAAAAAAAAAAANmFAXYAAAAAAAAgBytQoECyV1Rv3bp1NrwaAAAAAAAAAAAAIHX+7H4BAAAAAAAAAAAAAAAAAAAAAICzAwPsAAAAAAAAAAAAAAAAAAAAAIAswQA7AAAAAAAAAAAAAAAAAAAAACBLhGf3CwAAAAAAAAAAAAAAIDo62rdq1aqQ21auXBnyv8Fq167tK1CgQJa8NgAAAAAAkHEYYAcAAAAAAAAAAAAAZLtVq1b5mjZtmux9Xbt2TXLb4sWLfU2aNMnslwUAAAAAADIYA+wAAAAAAAAAAAAAgGxXu3Zt3+LFi0Nui4mJ8W3atMlXrVo1X/78+ZMsDwAAAAAAch4G2AEAAAAAAAAAAAAA2a5AgQLJXlG9devW2fBqAAAAAABAZvFn9wsAAAAAAAAAAAAAAAAAAAAAAJwdGGAHAAAAAAAAAAAAAAAAAAAAAGQJBtgBAAAAAAAAAAAAAAAAAAAAAFmCAXYAAAAAAAAAAAAAAAAAAAAAQJZggB0AAAAAAAAAAAAAAAAAAAAAkCUYYAcAAAAAAAAAAAAAAAAAAAAAZAkG2AEAAAAAAAAAAAAAAAAAAAAAWYIBdgAAAAAAAAAAAAAAAAAAAABAlmCAHQAAAAAAAAAAAAAAAAAAAACQJRhgBwAAAAAAAAAAAAAAAAAAAABkCQbYAQAAAAAAAAAAAAAAAAAAAABZggF2AAAAAAAAAAAAAAAAAAAAAECWYIAdAAAAAAAAAAAAAAAAAAAAAJAlGGAHAAAAAAAAAAAAAAAAAAAAAGQJBtgBAAAAAAAAAAAAAAAAAAAAAFmCAXYAAAAAAAAAAAAAAAAAAAAAQJZggB0AAAAAAAAAAAAAAAAAAAAAkCUYYAcAAAAAAAAAAAAAAAAAAAAAZAkG2AEAAAAAAAAAAAAAAAAAAAAAWYIBdgAAAAAAAAAAAAAAAAAAAABAlmCAHQAAAAAAAAAAAAAAAAAAAACQJRhgBwAAAAAAAAAAAAAAAAAAAABkCQbYAQAAAAAAAAAAAAAAAAAAAABZggF2AAAAAAAAAAAAAAAAAAAAAECWYIAdAAAAAAAAAAAAAAAAAAAAAJAlwrP7BcDnk+Tz+Xy+w4cPZ/MrQUZLSEjw/pe+AAAAAABkDva/AQDpxTYDAJAebC8AAOnFNgMAkF0C253A/CmQ0zjx/95st3XrVl/lypWz+2UAAAAAAAAAAAAAAAAAAAAgh9iyZYuvUqVK2f0ygFPGALsBCQkJvu3bt/sKFy7sc85l98sx4fDhw77KlSv7tmzZ4itSpEh2v5yzGi1soYcdtLCDFnbQwg5a2EIPO2hhBy3soIUdtLCFHnbQwg5a2EELO2hhCz3soIUdtLCDFnbQwhZ62EELO2hhBy3soEXyJPmOHDniq1Chgs/v92f3ywFOWXh2vwD4fH6/nzNgUlCkSBE2OkbQwhZ62EELO2hhBy3soIUt9LCDFnbQwg5a2EELW+hhBy3soIUdtLCDFrbQww5a2EELO2hhBy1soYcdtLCDFnbQwg5aJFW0aNHsfgnAaeO0CwAAAAAAAAAAAAAAAAAAAABAlmCAHQAAAAAAAAAAAAAAAAAAAACQJRhgh0kRERG+wYMH+yIiIrL7pZz1aGELPeyghR20sIMWdtDCFnrYQQs7aGEHLeyghS30sIMWdtDCDlrYQQtb6GEHLeyghR20sIMWttDDDlrYQQs7aGEHLYDcyUlSdr8IAAAAAAAAAAAAAAAAAAAAAEDuxxXYAQAAAAAAAAAAAAAAAAAAAABZggF2AAAAAAAAAAAAAAAAAAAAAECWYIAdAAAAAAAAAAAAAAAAAAAAAJAlGGAHAAAAAAAAAAAAAAAAAAAAAGQJBthhXnx8fHa/BAAAAAAAAAAAAAAAAAAAAAAZgAF2mBYbG+t74403fA8//HB2vxQAAAAAAAAAAAAAAAAAAAAAZyg8u18AkJLY2FjfBx984Hvqqad8R48e9cXHx/veeOON7H5ZAAAAAAAAAAAAAAAAAAAAAE4TV2CHSbGxsb4JEyb4+vbt6zt69KgvIiLC9+abb/ruvvvu7H5pZyVJyf47sh4t7KCFHbSwhR520MIOWthBCztoYQs9AAAAAAAAAAAAAGQlBthhTuDK64888ojv6NGjvhIlSvji4uJ8Pp/P+19krsQDC865JP/OUEPWoIUdtLCDFrbQww5a2EELO2hhBy1soYcdiddzQkJCNr0S0MIOWthBC1voYQct7KCFHbSwgxa20MMOWthBCztoYQct7KCFLfQAcr/w7H4BQLDA8Hq/fv18UVFRvtatW/vOPfdc3yeffOIrXbq0r3v37j6f7+QGKvgDdmSswLrdtGmTb+nSpb7IyEjfjh07fGFhYb7atWv7LrjgAl+DBg18efPm9fl89MhMtLCDFnbQwhZ62EELO2hhBy3soIUt9LAheL3OnTvXd9555/nKlCnji4uL84WHc8guK9HCDlrYQQtbgnusW7fOV7NmTZ/f7/fFx8f7wsLCsvnVnV1oYQct7KCFHbSwhR520MIOWtjBPp8dtLCDFrbQAzg78KcZZiQeXr/gggt8PXv29L355pu+6OhoX61atXzNmzf3+Xw+PjjPRJJ8UVFRvieeeMI3Z84c39KlS0Pud875/H6/74477vBdffXVvltuucXnnGOgIRPQwg5a2EELW+hhBy3soIUdtLCDFrbQw4bg9Tl79mzfc88954uMjPTNmzfPV6tWrWx+dWcXWthBCztoYUtwj5kzZ/qee+45X7NmzXwvvfQSQz5ZjBZ20MIOWthBC1voYQct7KCFHezz2UELO2hhCz2As4gAA44fP66xY8eqcOHCcs6pQYMGmjx5siZNmqTSpUurRIkSWrBggSQpPj4+m19t7hUVFaVp06apffv2cs55/5QtW1YVKlRQ5cqVde6558o5J7/fr8KFC2vw4MHe4xMSErLvxecytLCDFnbQwhZ62EELO2hhBy3soIUt9LAheD3OmDFD1113ncLCwuSc0zPPPCOJYx9ZhRZ20MIOWtiSuMeNN97obb+/+uorts1ZiBZ20MIOWthBC1voYQct7KCFHezz2UELO2hhCz2AswsD7Mh2iYfXzz//fH388ceSpIEDB8o5p8svv1w7duzI5leaux06dEhvvfWWGjduLOecwsPDVaZMGfXt21e//fabDhw4oMOHD+vQoUMaM2aMbrrpJvn9fjnn9NBDD3nPw87lmaOFHbSwgxa20MMOWthBCztoYQctbKGHDckdfA98YHvfffd59wUOwHMgPvPQwg5a2EELW1Lr8eijjyZZnh6ZhxZ20MIOWthBC1voYQct7KCFHezz2UELO2hhCz2Asw8D7MhWiYfXGzZsqMmTJ+vEiRP6+eefvY3QpEmTsvul5mpHjx7Vu+++q7p168o5pzx58qhLly6aNm1ayHLBvyhs2LBBL730kjfQ8NRTT2X1y86VaGEHLeyghS30sIMWdtDCDlrYQQtb6GFD4oPvN9xwQ8iV8OvVq6fixYurdevWevLJJ70T+ePi4rLrJedatLCDFnbQwpbUeoSHh6tbt2664oor9Nxzz+nHH3/0lqVHxqOFHbSwgxZ20MIWethBCztoYQf7fHbQwg5a2EIP4OzEADuyTXLD65MmTdLBgwclSY8++qj8fr9uvvlmHTt2TFLSK71xJtWZCazP2bNnq2nTpt4gw8MPP6y///7bWy54Yx/c4NixY3rttdfk9/sVERGhDz74IOtefC5DCztoYQctbKGHHbSwgxZ20MIOWthCDztS+6rs2rVr66KLLlLfvn114YUXqmzZsnLOqWnTptqwYUOSx+PM0MIOWthBC1tS61GqVClVrlxZF1xwgcLDw+WcU6FChTRixIhkH48zQws7aGEHLeyghS30sIMWdtDCDvb57KCFHbSwhR7A2YsBdmSLlK68fvjwYUnS+vXrVaZMGTnn9OKLL6b5fCtXrtSbb76pPn36ZPZLzzWCN97XXHONN8jQq1cvrV69OtnlkrNjxw716NFDfr9ft956qw4cOMAvBqeIFnbQwg5a2EIPO2hhBy3soIUdtLCFHnakdvD97rvv1u+//66YmBhJ0oEDBzRz5ky1atVKzjnVrFlTBw4cyKZXnvvQwg5a2EELW1Lr0aVLF33xxRfas2eP4uLi9Ntvv2nQoEHe/YMHD86+F54L0cIOWthBCztoYQs97KCFHbSwg30+O2hhBy1soQdwdmOAHVkupeH1qKgoSVJMTIz69Okj55xatmzpXQkucLX1wP9GR0dr7969euSRR9S8eXNv48UQ+6l57rnn5JxTWFiYrrnmGv3xxx+n/BzTp09Xnjx55Pf7NWPGjEx4lWcHWthBCztoYQs97KCFHbSwgxZ20MIWemSv1A6+9+/fP2TZ4Cvhz549W82aNVPfvn21ffv2LHu9uRkt7KCFHbSwJbUe/fr1S/YEspiYGD3++OPKmzev+vXrp0OHDmXlS861aGEHLeyghR20sIUedtDCDlrYwT6fHbSwgxa20AMAA+zIUmkNr0vS3r171apVK+XNm1evv/66pJNfWx5s+fLl6tGjhxo3bux9EO+cU/78+b0zsJC2hIQEdezYUX6/X845TZgw4bSf6+abb5ZzTj169NDx48cz8FWeHWhhBy3soIUt9LCDFnbQwg5a2EELW+iRvVI7+D5gwIBklws4cuSIZs2apY0bN2bFS831aGEHLeyghS2p9Rg4cGCyywWsWLFCEydO9L42G2eGFnbQwg5a2EELW+hhBy3soIUd7PPZQQs7aGELPQBIDLAjCx07dkzjx49PdXhdkoYMGSLnnEqWLKlly5aF3Dd9+nQNHDjQe478+fOrfPny+s9//qNKlSp5G7Lu3bvr4MGDWfn2cqQlS5Z466xr167e7afydfCBM9yeeOIJOefUt29f7yr5SD9a2EELO2hhCz3soIUdtLCDFnbQwhZ6ZJ/0fmAbfNWYxIJPFPj+++914MABxcbGShINTgEt7KCFHbSwJb0f2KbWI/jrshNfeYwe6UcLO2hhBy3soIUt9LCDFnbQwg72+eyghR20sIUeAAIYYEeWSEhI0IQJE7yNTeLh9cCGac2aNWratKmccxo1apSkk2dNTZs2Tffff7+ccwoPD5dzTh06dNCoUaP00Ucf6e677/aeu2/fvtq2bVu2vdecZPbs2d76DKzv1Db+qZk2bZo6d+6s/fv3Z+RLPGvQwg5a2EELW+hhBy3soIUdtLCDFrbQI/vNmDFDHTt2POWD78ECJ/q3bNlSw4cP1549e07p8TiJFnbQwg5a2DJr1qzT+sA22EMPPaSqVavq8ccf15w5c0758TiJFnbQwg5a2EELW+hhBy3soIUd7PPZQQs7aGELPQAwwI4ss2rVKjnnVKVKFX3yySchV14PDLBPmjRJfr9fjRs31sSJEzVjxgy1bNlSxYoV8zZWnTt31ujRoxUXF6c5c+botttuY3j9FAXW9+TJk+WcU8GCBbV8+fIzes7Nmzfr6NGjkvgl4FTQwg5a2EELW+hhBy3soIUdtLCDFrbQw4ZVq1apbdu2Z3TwPTY2VtOmTVOTJk1UoEABOefUvn17bd68+ZSe52xHCztoYQctbPn555/Vvn17hYWFndIVKoPt2rVL9957r/x+v5xzqlGjhncC26k8z9mOFnbQwg5a2EELW+hhBy3soIUd7PPZQQs7aGELPQBIDLAji61fv16fffaZjhw5kuS+f/75RzVr1pRzTpUqVdIll1yismXLyjmnypUr69prr9WXX37pLf/HH3/o2muv9TZk/fr1Y3j9FH3//ffe+vvpp58y5DlP5avo8S9a2EELO2hhCz3soIUdtLCDFnbQwhZ6ZL9evXqd0ge2Ka3fLVu2aOzYsWrQoIGcc6pWrZo2bdokia9DTS9a2EELO2hhx5YtW1SkSBE55/TYY495t5/OB61Tp07VHXfc4f0O8PTTT3v30SNttLCDFnbQwg5a2EIPO2hhBy1sYZ/PDlrYQQtb6AGAAXZkuZQ2Jn/++acKFSrk7YAEBtlvvPFGLV26VDt37pR0csMyZ84cXX/99Qyvn6G//vrL24GcPn26pIwdRuBMtvSjhR20sIMWttDDDlrYQQs7aGEHLWyhR/YJPig+bdo0799TWmeJu5w4cSLJMsePH9fChQvVokULOefUsGFDbd++PYNece5FCztoYQctbFqyZIkGDx7s/Xd6eyRn69atev75573j5y+88EJGvcyzAi3soIUdtLCDFrbQww5a2EGL7Mc+nx20sIMWttADQAAD7DDlf//7n5xzKlSokAYOHKh58+aFbHQSEhL0yy+/6MYbb2R4PYNcd911cs7p2muv1b59+zLkOWfPnu39O2eypR8t7KCFHbSwhR520MIOWthBCztoYQs9sk/ig+gpHXwPrMMtW7bogw8+UPfu3dWxY0e99tpryV45/9dff1W9evXknNNDDz2kY8eOZfhrz21oYQct7KCFbWn12L17t3799VeNHDlSb7zxhv766y/t379f0r8f6h45ckRDhw6Vc05FixYN+UAY6UcLO2hhBy3soIUt9LCDFnbQIvuwz2cHLeyghS30ACAxwA4jgj/w/uWXXzRnzpwkyyQkJGjOnDmnNbwe2MglJCToyJEjGffCc7DADt/48eNVsmRJValSRdOnTz/j4YPnnntOzjn16dMnI17mWYEWdtDCDlrYQg87aGEHLeyghR20sIUeOUOg0+rVq3XxxRerZMmSId9MV6xYMQ0ZMiTkMVFRURowYICcc2rZsqViYmKy46XnOrSwgxZ20MKWwDZ8zZo16tChgypUqOC1qFy5si699FKtWbMm5DGrV6/WJZdcorCwMD3yyCOSMvbbWM5WtLCDFnbQwg5a2EIPO2hhBy3sYJ/PDlrYQQtb6AHkfgyww4zkPkQPnG11OsPriXdYoqKiNHz4cLVr107dunXL2Befg+3evVtXXHGFnHNq1aqVli9fftrPFTjz2TmnK6+8Ulu2bPE6sAOZNlrYQQs7aGELPeyghR20sIMWdtDCFnrYt2nTJu9rTQsWLKhq1arppptu8q4S45zTf//7X+8KZJI0Z84c775ff/01G1997kILO2hhBy1sWbdunZo2beqt3xIlSqhcuXIqVqyYnHMqU6aMZs2aFfKYRx99VM45lS9fXgcPHmSbnUFoYQct7KCFHbSwhR520MIOWtjBPp8dtLCDFrbQA8jdGGCHWcEfgp/K8HrirxRZvHixXnnlFdWtWzfkLKw777wz099DTrF+/XrVqFFDzjm1adNGM2fO1OHDhyX9e2JBWlfpe/bZZ711265dO02ZMkXbt28PeVzi52CnMila2EELO2hhCz3soIUdtLCDFnbQwhZ62BRYX6+88oqKFi2qiIgI3XvvvdqyZYskaeXKlXr55Ze99X7PPfdox44dkqQVK1aoSJEiCgsL0x9//JFt7yG3oIUdtLCDFvYcO3ZMffr0Ud68eVWkSBHdfffd2rhxo7Zt26ZPP/1Ubdq0kXNOpUqV0pdffqnjx49LkqZPn668efOqdu3aio6OzuZ3kTvQwg5a2EELO2hhCz3soIUdtLCBfT47aGEHLWyhB3B2YIAdJp3u8HqwuXPnasSIESpevLgKFCgg55x3xq5zTpUqVdKuXbsy+63kGKtWrVKlSpXknNN5552nhx9+WEuXLvWugp+awFfIB/4pWrSoihUrpqpVq+q2227TxIkTvWUDJxgEDzJ89dVX3i8RoIUltLCDFrbQww5a2EELO2hhBy1soYddN9xwg5xzqlixojZs2JDk/ilTpnjr/v7779eWLVv02GOPyTmnOnXq6MiRI9nwqnMnWthBCztoYUdUVJSaNGki55waNWqkf/75J+T+PXv26Oqrr5ZzTiVLltT333+vY8eO6c4775RzTi1atMimV5770MIOWthBCztoYQs97KCFHbSwhX0+O2hhBy1soQeQuzHADnNOZXg9cLZV4DH79u3T0qVL1a1bN1WtWtV7XOXKlXXzzTfr888/1znnnCPnnPr06aNjx45l/Rs0bN26dWrfvr038B8REaF27drpgQce0MyZM5N9zLBhw7z1XKhQITVt2lT33nuvunbtGnLV+2eeeSbZx0+ePFnNmjVToUKFtG7dusx8ezkKLeyghR20sIUedtDCDlrYQQs7aGELPWxJSEhQdHS0mjVrJuecrrnmGu++xFeznzZtmreu27Rpo9q1a8vv96tv3746fvx4mlfQR+poYQct7KCFPUuXLlXhwoUVFhamF198UVLyJ45dd911cs6pRIkS6tmzp2rWrKkCBQro1VdflZT2t64gbbSwgxZ20MIOWthCDztoYQctbGCfzw5a2EELW+gBnB0YYIdJCQkJmjdvXqrD64GdGEk6ePCg5s6dq6uuukrnnXeenHPKmzevChUqpIceekjz5s2TJA0dOlTOOeXPn19///13lr+vnGDnzp0aPXq0rrrqKjnnFBYWpvbt23tfLx8seJDhsssu05tvvhly//r16zV8+HBvmTfeeCPk/t27d+uSSy7x7n///fcz9b3lNLSwgxZ20MIWethBCztoYQct7KCFLfSw58EHH5RzTnXr1tWqVatC7ktISPCukj916lRvXTp38mT9xYsXZ8dLzrVoYQct7KCFHUeOHFHjxo3lnFPnzp0VFRUVcn/w8fJrrrnGOw7unFO9evUUGRmZ1S8516KFHbSwgxZ20MIWethBCztoYQv7fHbQwg5a2EIPIHdjgB0m/fbbb2rfvr23UenXr5+2bt0q6d+zbgNnR40ZM0a33Xab8uXL5y1fvHhxDR06VDNmzPCec+XKlapdu7bCwsLUv3//kOdA8qZNm6bJkyfr4MGDkkJ3FoMHGTp27KjZs2d7bYKvbB8VFaWBAwfq/PPP1zfffJPkZ/z4449yzun111/P5HeTs9HCDlrYQQtb6GEHLeyghR20sIMWttDDhokTJ3rresSIETp69Kh3X+Dg+5EjRzRp0iSde+653rLff/99yPOkdIyDYx/pRws7aGEHLeyIiYnR3XffLeecGjZsqIULF4bcH7wdHzt2rEqVKiXnnPLkyZPkm1aCr2yJU0cLO2hhBy3soIUt9LCDFnbQwhb2+eyghR20sIUeQO7GADtM2rJli/x+v5xz6t+/vzZv3hxy/969e/Xyyy97Z9yGhYXJOacWLVqof//+Wrt2bZLnfOedd+Sck9/v1xdffJFF7yRnSm5HL7DRl0IHGW6++WbvCvcpPXbBggVatGiRd/+SJUtC7g++sj6/GISihR20sIMWttDDDlrYQQs7aGEHLWyhhz2PPvqot86feeYZLViwQJJ09OhRbd68Wffcc4/3jXPOOX355ZeSTq7v4A92JWnPnj3atGmTdu7cGXI76z59aGEHLeyghR3r169X5cqV5dzJr8SeM2eODhw44N2/d+9ePfLII2rUqFG6ekgnfwcI/j1Aokd60MIOWthBCztoYQs97KCFHbSwhX0+O2hhBy1soQeQezHADrOWLVumQYMGadeuXd5tv//+u9555x3VqlVL4eHh3oYnPDxcHTt2lCRFR0dLCt2wrFy50tsB6tatW9a+kVzmueee89b7Lbfcol9//dW7L60znBMSEjR58mQ1bNhQDz74YJLH8cvAqaGFHbSwgxa20MMOWthBCztoYQctbKFH1go+eP7UU08pT5483lXFmjRporp166p48eJeE+ecvv76a0kn12tsbKwkadeuXXr33Xd13XXXqVKlSgoLC1PZsmV13XXX6fXXX9eePXuS/DyEooUdtLCDFjatXr3au6JYpUqV1KZNGz388MPq1q2bqlevHvJNpYFvRwnusW/fPv3000/q0aOHrrnmGl144YVq3769xo8fr/nz53s/hx5po4UdtLCDFnbQwhZ62EELO2iR/djns4MWdtDCFnoAuR8D7DAt8CH3Tz/9pOHDh6t06dIqXLiwnHMqUaKEqlatGnLW7Zw5cySd3KAEn0U1duxYFS1aVGXKlPGuvs4H56fuhRdeOOVBhuD1/Mknn+jSSy/1niN4xxGnhhZ20MIOWthCDztoYQct7KCFHbSwhR7ZI/ig+LRp0zRgwABdcsklOv/881W+fHnvW+ecc/rqq68khR58X7t2rdq3b6/y5cvLOae8efOGHLAvUKCA2rZtq3/++SfJz0MoWthBCztoYdOmTZv08MMP6/zzz1exYsUUERGhiIiIND+wXb9+vW6++WbVqFFDzrmQfnnz5lXt2rX1+uuvez+HHmmjhR20sIMWdtDCFnrYQQs7aJH92OezgxZ20MIWegC5GwPsMG/v3r1q3bp1yMajcePGevvtt7V06VItXrxYl19+uXffjBkzJP27QYmNjVWzZs3knFOLFi10+PDhNH9mfHy8t2HCSS+//PIpDzIE3z5lyhRdcskl3nOMHj06019zbkULO2hhBy1soYcdtLCDFnbQwg5a2EKP7JX4JPs9e/bo9ddfV5MmTbx1Gvy1p4GD76tXr1alSpW8ZQoVKqQBAwZoxIgRGj9+vDp27Kjq1avLOadq1app06ZNyf48/IsWdtDCDlrYFBsbq/j4eC1evFhPPPGEatWqleoHtqtWrVK1atW8ZSIiInTttdfqrrvu0k033aSaNWt69z399NPez6FH2mhhBy3soIUdtLCFHnbQwg5aZD/2+eyghR20sIUeQO7FADtyhMjISIWHh6t169Z6/PHHdezYMe++2NhYzZw5M9kh9vj4eI0cOVLOORUvXlzff/+9d3tK4uPj9ccff6hu3bq64447MveN5SDLli2T3+/XFVdcod9++827Pa1BhoSEhCSDDG+99Za3XHx8fJpfQ49QtLCDFnbQwhZ62EELO2hhBy3soIUt9LDlt99+0znnnJPswffACfvr16/3PrAtWbKkrr/+ei1btizkeQ4ePKjZs2erZcuWcs6pSZMm2rFjR5a/n5yMFnbQwg5a2BDYvk6YMEF16tRJdsjnxIkTkqQ1a9aoYsWK3nHydu3a6Y8//vDul6Tff/9dTz31lPc8I0aMyPo3lUPRwg5a2EELO2hhCz3soIUdtLCHfT47aGEHLWyhB5B7MMCOHGPnzp3avHmzN3weFxfn7cycOHFCs2bNSnaIvVOnTnLOqWnTplq/fn2qPyMwvN6+fXvveXr16pW5bywH2bJlixYuXOj99+lchS/xIENyJxPwdSxpo4UdtLCDFrbQww5a2EELO2hhBy1soYct3bp1k3OhX5UdWPf79u3TTTfdJOecSpQooW7dumnjxo2S/l2/wet+8eLFatSokZxz6t+/v44fP561byaHo4UdtLCDFnasX7/e2w5/++23kkJ77Ny5U+3atZNzTqVKlVK3bt284+TBx9gl6ejRoxoxYoTXLtAX6UMLO2hhBy3soIUt9LCDFnbQwhb2+eyghR20sIUeQO7AADtypOQ+RE9uiL1///7ev48ZMybV5wwMrwd2evLly6ewsDA559SnT5/Meis5VkYPyBFIgQABAABJREFUMrzwwgt67LHHMu8F52K0sIMWdtDCFnrYQQs7aGEHLeyghS30yD7B6y0yMlLSvwffA+t/9uzZqlGjhpxzuuSSS7wPbFPqdvz4cb311lsqVqyYzjvvPG3bti2T30XuQAs7aGEHLWyKjIzUDz/8IOnfHoFW48aNU7ly5eSc0w033OB9YJtSj+3bt6tr167KkyePevfuHXI1S6SNFnbQwg5a2EELW+hhBy3soEX2Y5/PDlrYQQtb6AHkLgywI1dJPMTu9/vlnNNll12mnTt3Skp+Y5R4eD1v3ry6/fbb9cQTT3jP0bt376x+OznO6Q4yvP76695yr7zySpa+5tyKFnbQwg5a2EIPO2hhBy3soIUdtLCFHlkn8VXqEx/LuO++++ScU0REhP74449kl0ls8+bNKlSokMqUKaNjx45l7AvOxWhhBy3soIVdwR/WBlx77bVyzqlQoUJavny5t1xqPvnkEznn1KJFC7455TTRwg5a2EELO2hhCz3soIUdtMhe7PPZQQs7aGELPYDcgwF25DrHjh3T77//rlatWnnD5wMHDkxx+eSG17t27aoFCxZIksaPH+89zyOPPJJVbyPHOd1BhpEjRypPnjxyzqlZs2YhywaWx6mhhR20sIMWttDDDlrYQQs7aGEHLWyhhx0JCQm68sorFRYWphtuuEHx8fFpfggb6Pftt9/qyJEjklj3GYEWdtDCDlrYsnPnTpUvX1558+bVoEGDJCX9kDdYoMWxY8f00EMP6dChQyG34/TRwg5a2EELO2hhCz3soIUdtLCDfT47aGEHLWyhB5Cz+H1ALiLJFxER4atevbr333Xq1PE98cQT3n8HS0hI8P3555++AQMG+H755Rdfnjx5fLfeequvd+/evgsvvNDn8/l8d955p2/06NE+55zvlVde8Y0YMSJr31QOIMnnnPP5fD7fp59+6nvrrbd8P//8s8/n8/lGjx7te+CBB3w+38n17fP5fH7/yb96XnvtNd+gQYN8cXFxvvLly/vKlSvnK168uG/evHm+tWvXesvGx8dn8TvKuWhhBy3soIUt9LCDFnbQwg5a2EELW+hhS2xsrG/Xrl2+hIQEX6lSpXx+v99b5ykJ9OvQoYOvUKFCvri4uDQfg7TRwg5a2EELW6Kionw7d+70nThxwle6dGmfz+fzhYWFpbi8c847xv7qq6/6ihQp4ouLi/Ma4fTRwg5a2EELO2hhCz3soIUdtLCDfT47aGEHLWyhB5DDZOm4PJDJAmdMfffddzrnnHMUFhamgQMHKjY2NsmZUWldeV369wyrffv2acCAAfL7/WrYsKH39SL4V0JCgqZOnZruq/C99tpryps3r7ds/vz5vSvdO+dUs2ZNvfrqqyGPR/rQwg5a2EELW+hhBy3soIUdtLCDFrbQw47jx4+rVatWcs6pS5cup/z4wLGO4KuOcQWy00MLO2hhBy1s2bJli0qUKCG/369JkyZJOrVtbmDdBz8mISGBJqeBFnbQwg5a2EELW+hhBy3soIUd7PPZQQs7aGELPYCchQF25BrBG4uuXbt6Q+nJDZsHhtfbtGnjLXfHHXfo119/Tfb5JOnLL7/0PmgfN25c5r2RHGratGlq3LhxugcZwsPD5ZxTyZIl1b17d82dO1dr167Vp59+qj59+njP88wzz2TH28nRaGEHLeyghS30sIMWdtDCDlrYQQtb6GFLYB3XqVNHf//9d7oek/g4x6pVq7RkyRL99NNP+vnnn3X8+HEdP35cEicUnApa2EELO2hhS/v27b0PbQNfg52WxD2io6O1f/9+HT16VAcPHgy5jx7pRws7aGEHLeyghS30sIMWdtDCDvb57KCFHbSwhR5AzsEAO3KdDz74wPsg/Omnn5YUevZsYHi9bdu2cs7J7/eradOmWrNmjfccwRulwEbnwIEDKl26tJxzuuWWW5Isd7bbtGmTN6AwZswY7/bUBhkaNmyoUaNGJXmuI0eO6OWXX/ZOLpg6dWqWvIfcghZ20MIOWthCDztoYQct7KCFHbSwhR62zJ49W1WqVJFzTsOGDVNMTIx3X3LHKgKN4uPj9euvv2rAgAEqWbKk8ufP7x1DadOmjR599FHt2LFD0r/fcofU0cIOWthBCxsC6/qFF15Qnjx5dN5552nevHlpPi7QIyEhQRs2bNCLL76oli1bqkSJEqpcubIqVqyoQYMG6dtvv/UeQ4/U0cIOWthBCztoYQs97KCFHbSwh30+O2hhBy1soQeQczDAjlzl0KFDuuOOO5QvXz4VKVJE06dPlxT6lVB//PGH2rVrJ+ec96G6c06vvPKK9zyJz5SKi4vTpEmTvK8/v+2220KeFyctXbpU7777rvffqQ0yNGrUKGTZ4A17fHy81q9fr0aNGiksLEyDBw/Oktefm9DCDlrYQQtb6GEHLeyghR20sIMWttDDlueff947pvHaa69p9+7d3n3JnZh/4sQJDRs2TBdccIH3uOrVq+uCCy5Q/vz5FRYW5rXbtGmTJA7Cpxct7KCFHbSwY+vWrWratKmcc2rXrp2WLl2qEydOSEp6fDu4x8iRI72rXAb+KVOmjHdRmGLFimn48OFJHouU0cIOWthBCztoYQs97KCFHbSwhX0+O2hhBy1soQeQMzDAjlwl+Crp3bt3D7kv8fB63rx51aVLFz3wwAPehufFF1/0lg/eWG3btk233HKLt9zYsWOz7D3lVKcyyJDSTmDr1q3lnFP79u0VFxfHhv800cIOWthBC1voYQct7KCFHbSwgxa20CP7BK/PRx55xDtWce+992r69Okh6zFwbOPEiRMaMGCAypYt6y3/8ccfa//+/ZKkNWvW6JVXXlGDBg3knFPNmjW1ZcuWkOdAUrSwgxZ20MKmNWvWeOu3efPmev/9970rhgUEf2A7cOBAVahQwesxfvx4zZgxQ7t27dLo0aPVqVMn774hQ4Z4z0GPtNHCDlrYQQs7aGELPeyghR20yH7s89lBCztoYQs9gJyFAXbkOsuWLVOjRo306aeferclN7zetWtXLViwQAkJCSFnXT355JM6cOCA99iVK1fqzjvv9O6/5JJLtGzZsmx4ZznL6Q4yJCQkKD4+XpGRkTrvvPMUHh6uAQMGpPkzkDJa2EELO2hhCz3soIUdtLCDFnbQwhZ6ZK/gg+zPPvusihUr5n1r3KOPPhqybHx8vIYPHx7yga1zLuTqYpIUExOjhQsXqkWLFnLO6aabbtLBgwez5P3kZLSwgxZ20MKm1atXex+0lihRQqVKldKsWbNClomLi9OQIUNCPrAtXrx4knW9adMmvfDCCyGDQEg/WthBCztoYQctbKGHHbSwgxbZj30+O2hhBy1soQeQczDAjlxpx44d3llQKQ2vz58/31s+KipKgwcP9jZCbdq0UefOnXXNNdeoSZMm3u01atTQW2+9lV1vK0caPny48ufPn65BhuD/Hjp0qLfee/TooR9++EHjx4/XrFmztGHDBm85rtCXfrSwgxZ20MIWethBCztoYQct7KCFLfTIPsHrZvr06erVq5cuuOACHT58WNK/V35Zvny5LrroIjnnFBYWprvuustb94MGDfKeI7D8t99+q/Lly6tq1ar6448/svAd5Vy0sIMWdtDCps2bN6tfv36qWbOmSpUqpaioKEn/rt8ZM2aocePGcs4pIiJC9erVk3NOZcuW1cqVK0OWjYqK0sCBA+Wc01VXXaV9+/Zx1bFTQAs7aGEHLeyghS30sIMWdtAi+7HPZwct7KCFLfQAcgYG2JGrnThxQr/99psuu+yykOH1BQsWeMsENjDr1q3T5ZdfHnI2VfA/F1xwgUaNGpXkcUjZ/v37VapUKTnn1KxZs3QPMowdOzZk3ZctW1YRERHef5933nl6/fXXU3wuJEULO2hhBy1soYcdtLCDFnbQwg5a2EKP7Be8buLj472D8idOnPBuHzJkiLdux40bJ0l69dVXvdueeOKJkOfcuXOn6tevL+echg0blgXvIneghR20sIMWNh07dkw7duzQsWPHJIX26N27t7fuP/zwQ+3Zs8e7MEzZsmW1Zs0aSf9+CPzjjz8qPDxcERERp/StpRxbP4kWdtDCDlrYQQtb6GEHLeygRfazsM8X6H+2XwSDFnbQwhZ6APYxwI5cLSYmRtddd52ccypYsGCKw+sBPXv29D4sv+mmm3T55ZerYcOGev755zV37lxvueS+Aj21/z6bRUZG6uKLL9bo0aO921IbZBg/frz3S8C5556rO+64Q4sWLdLKlSv1xRdfqFevXt79gwcPzqq3kSvQwg5a2EELW+hhBy3soIUdtLCDFrbQw57AMYn4+HgdOXLE+2a5jh07egfmY2JiUj0I361bNznn9Nxzz2X5689NaGEHLeyghS3B2+jly5eraNGics6pT58+3u2RkZHJDvtIJz/wrV+/vsLCwjR79uxUf9bSpUs1adIk7785hh6KFnbQwg5a2EELW+hhBy3soIUdWbnPt2zZMvXr18876YDh0FC0sIMWttADsIUBduR6S5YsUZkyZXTDDTdo4cKF3u3BOxKxsbGS/j2D6tJLL/VuC3x1SABXfjt1Bw8e9P49vYMMbdq00bhx40LOepNO9njppZe85T7++OPMffG5DC3soIUdtLCFHnbQwg5a2EELO2hhCz3s2r9/v0qWLCnnnB577LGQ+2JjY5M9CL9jxw6de+65cs7pxRdfzI6XnSvRwg5a2EELW/766y/lz59f4eHheu+99yT9ewx91apVyQ77LFq0SPny5ZNzTt9++22Kz71ixQrv4jHdu3f3bmfYJ3m0sIMWdtDCDlrYQg87aGEHLezIzH2+FStWqE+fPnLOKU+ePFqyZIkkhkNTQgs7aGELPYDsxwA7zgrbtm3TokWLvP9O6YrpHTt2lHNOderU8TYYyW04Asvv27dPa9as0ZNPPqlevXqpc+fO6ty5s4YNG6ZffvlFUVFRmfWWcqT0DjJcfPHFmjx5snd/4q90Wbt2rerVqyfnnAYNGpQ1Lz6XoYUdtLCDFrbQww5a2EELO2hhBy1soYc90dHRqlatmvLmzat3331XknT8+HHv/sQH4QcOHKgvv/xS5cqVU8mSJfXTTz95yyY+lsIJ/qeGFnbQwg5a2DJ79mw551S8eHH99ddfkkLXY+JhnyVLlmjixIkqWLCgGjRooB07diT7vCtWrFCvXr1UvHhxr2WvXr28+xn2SYoWdtDCDlrYQQtb6GEHLeyghR0Zuc8XLNAicKV955yKFSvGFY5TQQs7aGELPYDsxwA7zjop7TicOHFCrVq1knNOl19+ueLj41P9oOO3337TLbfconPOOcfb2AT/4/f71a1bN64Wl4L0DjIE9wr+9zZt2sg5p7Zt26bZCqmjhR20sIMWttDDDlrYQQs7aGEHLWyhR/aLj4/XwYMHveMWAwYMSHa52NhYvfbaa16jcuXKybmTV8mPiYmRFNpm1qxZ2rJliyQOtKcXLeyghR20sCUhIUHz5s2TcyevCpbSB7DBwz4lSpRQ9erV5ZzTTTfdpGPHjiVZPvCBbbFixeScU9WqVeX3++WcU+/evUN+Pk6ihR20sIMWdtDCFnrYQQs7aGFHZu3zJW5x7rnnqnnz5gyHpoIWdtDCFnoANjDADvy/Dz/80NvYjB49OsXl4uLiNGHCBEVERHg7JYUKFVKpUqV0xRVXqGnTpmrWrJmccwoLC1PBggX1zDPPZOE7sS94w53eQYZgCxcuVKVKleSc0+OPP54lrzm3ooUdtLCDFrbQww5a2EELO2hhBy1soYcNgfX73HPPyTmnli1bel+NnVhsbKxGjhzptapVq5ZWrlzp3Rfw/fffq3z58ipfvrw2btyY6e8ht6CFHbSwgxb2xMXFeUM8ffr0SfHbRVetWqWLL77Y63Huuecme9JA4g9s69evr++//15vv/02wz5poIUdtLCDFnbQwhZ62EELO2hhQ0bt8504ccJbLrkWs2bN0sqVK3XllVd6w6HLly+XxDdzBdDCDlrYQg/ABgbYcdYLbJAee+wx5cmTRwULFtTs2bOTXfbgwYN6+eWXvQ2Sc07VqlXTRx995H391NGjR3Xs2DGNHz9et9xyi7fT0rdv36x6SznGm2++ecqDDLGxsd4vD845vf/++1n5knMtWthBCztoYQs97KCFHbSwgxZ20MIWetgwa9YsVahQQc45jRgxIuRKYsEdYmNjNWzYMJUrV05ffvmlpNAPbL/55hvVr19fefLkkXPOO1mfD2bTjxZ20MIOWtiQkJCgEydOaOjQofL7/Tr//PO1cOHCFJdftWqVGjRooAIFCmjGjBmS0v7AdubMmd4y48aN846bP/roo5n75nIYWthBCztoYQctbKGHHbSwgxb2nMk+X/BgZ3ItZsyY4bVYt26drrjiCjnndM4552jt2rVJfsbZjhZ20MIWegDZiwF2QNLGjRtVpkwZOed0xRVXpLhc8FeClC1bVl26dNGuXbtSXH7Tpk16+eWXvZ2WQYMGZcbLz3ESEhJ08OBBb720b98+XYMMkvTuu+96De68886sesm5Fi3soIUdtLCFHnbQwg5a2EELO2hhCz3sGTZsmLdeX3vtNe3Zs8e7L3gA9MSJE1q7dm2Sr8v+5ptv1KBBA/n9fpUpU0bdunXTtm3bQh7PV56mDy3soIUdtLBj69ataty4sZxzateunZYuXeqtu8Tb73Xr1umXX37R8ePHQ24PfGBbtGjRkA9sg6+Wf+LECY0ePdr7XWHMmDGZ/+ZyGFrYQQs7aGEHLWyhhx20sIMWtpzpPl96WgSWa9mypZxzuvnmm7V///7MfWM5EC3soIUt9ACyDwPsOKsFPjz/4osvVLx4cYWFhXlX50n8wfqUKVO8jVXlypXVr18/7du3T1LSD0CCd3qio6P1xhtveDst48aNy/T3lVMsW7ZM11xzjd5///10DTK8//77XoMrr7xSy5Ytk8RXqmQEWthBCztoYQs97KCFHbSwgxZ20MIWemS/4HU3YMAAb/327NlTP/zwQ7qe45tvvtH555/vXdXYOaeSJUuqYsWKuuCCC9S/f39t375dEgOiqaGFHbSwgxY2rVmzRuXLl5dzTi1atNCkSZO0e/duSWlfFSzx1cbq1asXcrWxYLt27VLnzp0VHh6ujh076vDhw5nyfnIyWthBCztoYQctbKGHHbSwgxbZLyP2+VasWKGePXt6Q6GptYiLi9Mrr7wi55yqV6+uv//+WxJXN5ZoYQktbKEHkP0YYAck3XLLLXLOqVChQt4H5MH+/PNPlShRQs45lSpVSr1799bBgwclpe+D9P3796tfv37y+/1q06aNVq5cmeHvIac6dOjQKQ8yXHLJJfrhhx9SPEs6WOA+NvZpo4UdtLCDFrbQww5a2EELO2hhBy1soUf2Cx7YfPrpp5UnTx75/X6VLFlSd999t+bPn6/o6GhvmeB1+e2336pBgwbeYOg555yjli1b6r///a8uvPBCVaxYUc451alTR5s2bZLECQepoYUdtLCDFjatXr1a5513npxzKleunC6//HL98MMPqX4baeAD20KFCsk5p0aNGmn27NmKiYlJ8TFDhw6Vc05hYWH6/fffM+Ot5Hi0sIMWdtDCDlrYQg87aGEHLbLfqe7zBUvcok6dOlq0aFGyywf2FRctWqS8efPKOaehQ4dmzpvKoWhhBy1soQeQvRhgx1nvwIEDatSokZxz6tSpk2JiYrwPMuLj4xUbG6uBAwcqf/78cs7p6quv1t69e7370+vnn39WlSpV5JzTe++9lxlvJUdLbdjgvffeCxlk+Pbbb5N8zYokzZ8/X9OmTdOQIUP0+uuva968edqyZYt3Px9QpQ8t7KCFHbSwhR520MIOWthBCztoYQs9slfwQfgPP/xQ119/vbfOhw8f7q3vxIOh9evX975R7pprrtH69eu9rzXdv3+/fvnlF7Vo0ULOOTVs2FA7duzI2jeWA9HCDlrYQQubNm3apDvvvFNVq1aVc07ly5fXu+++m+z2NjIyUj179lSRIkW8dvfdd593f+Kr3weeY8yYMd7y06dPz9w3lIPRwg5a2EELO2hhCz3soIUdtMh+6d3nCxa4Cn7gisbOOVWpUkXbtm2TpGSvbCxJP/74o7f8kCFDMucN5WC0sIMWttADyD4MsAM6uSPinNPjjz+e5L6jR4+qfv36cs6pQoUK2rx5s6TT+2C8f//+cs6pRo0afGCSTukZZPjxxx/1yCOPyDmnfPnyecvny5dPl156qcaNG+cty1cFnz5a2EELO2hhCz3soIUdtLCDFnbQwhZ6ZJ3g4xjbtm3Td999p2HDhuno0aOSQtfdN998owYNGsjv96tw4cLq06dPyP3BQ6Q///yzqlevrrx582rkyJFJ7kdStLCDFnbQwqYDBw7op59+Uu/evfXwww97VxALXoeRkZEhH9iWL1/e21a/9NJL3nKJj6dv3bpVV111lbdNnzlzZta8qRyKFnbQwg5a2EELW+hhBy3soEX2S2ufL/j+wFBosWLF5JxTzZo1VaNGDTnnVLt2be3evVvSv/uJgY67du3S/fff713ZeMSIESH34yRa2EELW+gBZA8G2IH/t2XLFu8sqOANwzfffOPtbATOfEruA/HUNiaBjdjcuXNVrFgxVaxYUcuWLcvIl58rpWeQ4X//+58aN24cstz111+va6+9VmXKlEn2rDWuynfqaGEHLeyghS30sIMWdtDCDlrYQQtb6JH1Ujp2Ebzev/nmG51//vneQfSePXt6x0GSOx6yd+9eNW/eXM45dezYMXNeeC5ECztoYQctbAtcOSz4CmKJh3waNGigb775Rs8++6y3jX7xxReTPNfevXs1atQobyioatWq3reeIm20sIMWdtDCDlrYQg87aGEHLbJPSvt8wS0SD4XWr19fM2fO1IIFC9SoUSNvOHTr1q0hz7Fr1y699dZbqlKlipxzKl26tDZt2pSp7ycno4UdtLCFHkDWY4AdSMP48eO9nZKvv/462WUCH47v27fPO/MqOQcOHNA555yjm266KVNea27y1ltvKSwsLNVBhueff16VKlXy+gwaNEjSv784/PLLL3r44YdT3alE2mhhBy3soIUt9LCDFnbQwg5a2EELW+hhR/DA/7fffqsGDRooT548cs6pXbt2qQ6GBg7o9+zZU845tWrVSocPH86aF54L0cIOWthBi+wX/OFtcI/IyEj17NkzZMhn5syZOnHihI4fP67nnnvO20Y//vjjWrp0qeLj47VkyRI99dRTqlatmveB7fvvv5/k+ZEULeyghR20sIMWttDDDlrYQQubgrskNxQ6Y8YM71jgokWLvOHQmjVr6v3339fcuXP1888/q0ePHt5QaIkSJfS///1PEi1OBS3soIUt9AAyFwPsQBrGjBnjnS27fft2ScmfcbV27VrVrVtXDz/8sA4ePJjk/vj4eB05ckQffvhhyG0pPd/Z7ODBg94O4uWXX57sIMMHH3ygc88919tZdO7k13itX78+yXONGDHC+wXg+++/z8q3kuPRwg5a2EELW+hhBy3soIUdtLCDFrbQw47E30BXr149b32XLl1av/32m6TkB0MD9u7dqwsuuEDOOXXo0CHTX3NuRQs7aGEHLewKfGCbeMgneHseHR2t4cOHe80qVqyo2rVrK3/+/CpUqJC37R4wYIA2b96cje8mZ6OFHbSwgxZ20MIWethBCztoYUdkZKT69OmTagtJWrJkiZo2bSrnnPLnzy/nnPx+v8LDw+WcU8mSJdW/f39t2LAhm95JzkcLO2hhCz2AzMEAO5CGjz/+WM45FS5cWMuXL09xuR9//NHbaUlpiD1Y4IOVwAcxmzdv1uTJkzPuhedwS5Ys0fXXX69p06Z5G/vAwP+RI0fUuXNnb30/+eSTuuyyy+ScU5kyZbRmzZqQ5bdv364bb7xRYWFhGjZsWPa8oRyMFnbQwg5a2EIPO2hhBy3soIUdtLCFHtkvpcHQsmXLqnDhwipXrpz++eefFB8fOK6xevVq72pj3bp144oxp4EWdtDCDlrYtWrVKt15550qVapUyAe2wV+nHWz8+PEqXLiwIiIiQk5MK1WqlJ555hmtW7cui99B7kELO2hhBy3soIUt9LCDFnbQwo6dO3eqa9euKlKkSLpa7N+/X9dff70qVKgQ0qJs2bJ65ZVXGAo9A7Swgxa20APIPAywA2n4+eefFR4ervDwcM2YMSPVZT/88ENvo/PQQw+lOcQe+CBm+/bt6tmzp/x+v/7zn/9k2GvP6aKiopLd2E+ZMsVbz0899ZQkac2aNWrbtq23wU880PDUU095v0QcP36cD6tOES3soIUdtLCFHnbQwg5a2EELO2hhCz2yT3KDoX6/X0WLFlWfPn108cUXq1mzZik+PjAYeuLECV155ZXeyQULFy7M9Nee29DCDlrYQQvbduzYoapVq8o5p8aNG6f6gW3AvHnz9MILL+iiiy7SNddcoy5duujPP/9UVFRUFr3q3IkWdtDCDlrYQQtb6GEHLeyghS0DBgyQc07169fXrFmzUmwRvL83c+ZMjRgxQo8++qiGDx+eZCA0eN8S6UcLO2hhCz2AzMEAO5AOgQ86brzxRu3duzfJ/cEblMAV251z6t27tw4cOJDscwYes23bNvXs2VOVKlXyHrd06dJMeR85XWCd9evXz/ulYPXq1d59q1atUrt27ZIMNEjSRx99JOecmjdvni2vPbehhR20sIMWttDDDlrYQQs7aGEHLWyhR9ZI6arGRYsW1YABAxQdHa0OHToob968Wrx4cZLHBw7Ax8bGqmfPnnLOKV++fLrrrru0c+fOdP9s0MISWthBi5xhyZIlat26tb777rtUh3xSWqeB2wMnnCVejhbpRws7aGEHLeyghS30sIMWdtAi+wWvo+eff17ffPNNmicSpHbhirQuakGTlNHCDlrYQg8gczHADqQisFEYN26cihcvrmrVqunrr79OdmMRuC0uLk633XabN4w+ePDgJBuuxMPr5cuX9z6I+eqrrzL5XeVcgfV26aWXyjmntm3bJlkm8UDD+vXrJUl33HGHnHPq2LFjVr7kXIsWdtDCDlrYQg87aGEHLeyghR20sIUeWeu7774LGQzt37+/N/j5yCOPyO/3a9iwYTp27FiSx8bGxur+++/3vjK1Ro0amj17dpLl4uLiFBcXl+JxEZxECztoYQct7Dt69GiaH9gGi4+P99bt8ePHQ+7bsGGDVqxYoTVr1mj79u1JHofU0cIOWthBCztoYQs97KCFHbTIfsHr/1TWU/C+W2xsrPfvx48f188//6ypU6dqwoQJmjp1qg4dOqSYmJhT/hlnG1rYQQtb6AFkHgbYgXTYuXOnLrvsMjnn1Lp165ArpAdvbDZv3qxhw4apRIkScs6pWrVqGjNmjLeBCV4+8fB6oUKFGF5Pp7vuukvOOf3nP/+RFLqRl0IHGsqUKaP33ntPDRs2lHNOw4YNk8TGPqPQwg5a2EELW+hhBy3soIUdtLCDFrbQI/P9+OOPqlChgiIiIrzB0OB1NnXqVO/E/BdeeEF//PGHJGn9+vX6+eef1aZNG+/+MmXK6LPPPgt5/iVLlujTTz/VjTfeqMsvv1zXXXedevXqpVmzZmn//v2S/r1K8tmOFnbQwg5a5G7B6/bDDz/Ufffdp4iICIWFhalQoUIqWLCg+vTpoy+++CLZxyDj0MIOWthBCztoYQs97KCFHbSwI3iw9NVXX9UNN9zg7RMG/mnevLn69OnjnVhAi8xBCztoYQs9gJQxwA6k0/r161W9enXvKnCLFi0KucLPli1bNGzYMBUvXlzOOZ133nmaMGGCDh486C1zKsPrXOknZf3795dzTueee652796d7DKrVq1S27Zt5ZxTwYIF5ZxTlSpVkpzpfLpnyeEkWthBCztoYQs97KCFHbSwgxZ20MIWemS+9evXeyffP/roo966CV5fTzzxhHfwvFSpUmrRooVKliypsmXLeuu9fv36IR/EStLEiRNVp04dFStWLMlB+MqVK+uGG27Qli1bJHEQXqKFJbSwgxa5V3DDu+++W+XKlQtpUKhQITnnFBYWpiJFimj48OHe8vTIWLSwgxZ20MIOWthCDztoYQct7Ahu0aVLF+XPnz9kX7F8+fLy+/3ebY0aNdKmTZsk0SKj0cIOWthCDyB1DLADp2DVqlWqXLmynHNq3Lix3nzzTe3YsUOHDx9OMrz+3nvv6dChQ95jAx+0nOrw+ty5c/XOO+9kzRs0LrBefv/9d1WvXl3FihXTpEmTUtxgr1q1ShdffLG30Z85c6akfzfwgV8SoqOjtWLFCkkMNKQXLeyghR20sIUedtDCDlrYQQs7aGELPbLWqlWr9PTTT3vrJLDegtfRU089pdKlSycZ8ixXrpz69u2rX3/9NeQ5R44cGbJc7dq11aFDB/Xo0UPnnXeeypQpI+ecatWqpY0bN4b83LMZLeyghR20yH2C1+X111/vDfQ459S7d2+NHj1ac+bM0dChQ3Xttdd6nZ5++mnvcWzHMwYt7KCFHbSwgxa20MMOWthBCzuCW1x33XVyzilPnjwqWrSonnnmGf3666/avn27fv/9dw0dOlTnn3++nHM655xztHnzZkm0yCi0sIMWttADSBsD7MApWrt2rVq2bCnnnPLnz6+aNWvqP//5T6YMry9cuFCdOnWSc049evTImjeYAxw8eNBbL61atdLy5ctTXDYyMlJXXHGF3nnnnZCz2oIHGWrVqiXnnBYtWpTprz23oYUdtLCDFrbQww5a2EELO2hhBy1soUfWSzygGfzfP//8s95++2098MAD6tevn15++WVt3LhRR48eDXnM66+/7n0o27BhQ/Xr10+HDh3yWmzdulVTp05V8+bNvcHRbdu2SeJb6ILRwg5a2EGLnC94HXbp0kXOOeXLl0+tWrXSlClTkiz/zz//6MUXX/Savfnmm1n5cnM1WthBCztoYQctbKGHHbSwgxY2de/e3WvRtm1bTZ8+PckyMTExWrRokTfrc/nll2vv3r3Z8GpzN1rYQQtb6AGkjAF24DRs27ZNjz32mBo3bhxyRm3dunUzbHh9wYIF3gf2gX8effTRrHmDOcCGDRtUvXp1OefUtm1b/frrr94HU4k/VDp06JBiYmKSPEdUVJTX0DmnihUr6sCBA3wodYpoYQct7KCFLfSwgxZ20MIOWthBC1vokf3SurJL8P2fffaZt55btmypd999V7GxsZJODpoG1nlCQoL+/vtvNWvWTM453XnnnTp8+HCS5w5uRC9aWEILO2iRM40cOVL58uVTnjx51K5dO+/bU6STzYJPToiOjtaQIUPknFODBg30119/JXk+1v/po4UdtLCDFnbQwhZ62EELO2hhx4cffqiyZcsqLCxMrVu3TtIisV9++UXnnnuuChUqpHHjxiW5P3ELvpUr/WhhBy1soQeQOgbYgdMUHR2tf/75R/3791f79u1Vs2ZNjR8/PsOG1zt37ux9sFKoUCE553TVVVeFPP/ZbvXq1apQoYKcc6pfv76eeeYZrV27Nt2PHz16dMggw+TJkzPx1eZutLCDFnbQwhZ62EELO2hhBy3soIUt9LAleMAz2ObNm9W2bVs551SrVi2988473kHz5A7AJyQk6LPPPlO5cuV0zjnnJLkyfnIH3IOvrg9aWEILO2hhX0xMjK6//no551S8eHF9+eWX3n0pDexERkbqsssuk3NO77zzTsh9gRZbtmzRqlWrJPG12ulFCztoYQct7KCFLfSwgxZ20MKW++67zzv+9+mnn3q3p9Ti8OHDevzxx+Wc04033qhjx4559wVabNq0SWPHjk1yO1JHCztoYQs9gNQxwA5kgKNHj2rHjh2KiorybjuT4fXbbrvN23gFHuec08SJE7PmDeUga9euVevWrRUeHi7nnEqUKKHXX3/d27lLy5NPPinnnKZOnerdxhnOp4cWdtDCDlrYQg87aGEHLeyghR20sIUe9i1atEglSpSQc0533XWXN8iZ2nrevXu3rrjiCjnnkv2KbUkaOHCg7r333kx5zbkVLeyghR20sGPWrFnece6hQ4d6t6e1XR44cKCcc/rll18khZ4wsHHjRt1xxx0qXbq0fvzxx8x54bkQLeyghR20sIMWttDDDlrYQQs71q1bpzx58sg5pz59+ni3p9Xi119/Vb58+fTtt99KOnlSQuBCkhs3btQDDzwg55xuuOGGTHvtuQ0t7KCFLfQA0sYAO3AGUtqgZNTw+oABA/Tf//5Xfr9f5cqV099//515byYH2759u4YOHarmzZvLOaeePXvqwIEDqT4m+OyzyMhI798ZZDgztLCDFnbQwhZ62EELO2hhBy3soIUt9LDt2WeflXNOlSpV0oYNGySl70ph06ZN0xNPPOH99w8//OB1ffbZZ1W6dGk55/TQQw9lxsvOlWhhBy3soIUdkydPlnNOZcqU0YIFCySl3iJw3759+7R06VJJ0pEjR/Tyyy9rzJgxOnr0qP773/96x94bNWqkmJgYtvXpQAs7aGEHLeyghS30sIMWdtDCjmXLlsnv98s5pzFjxkhK/9Xrd+7cKenkxSqHDx+uyy+/XPPmzVPfvn1VtmxZOedUoUIFbzmkjhZ20MIWegBpY4AdyGCBHYkzHV7v2bOnFi5cqFq1anHWVDrExsZq3759mjp1qnbv3i0p7cGExL8UsBOYMWhhBy3soIUt9LCDFnbQwg5a2EELW+hhV+AKYpUqVdLOnTtPaz3Pnj1b5cuXV+XKldW3b1+VKVNG4eHhqlWrlt59991MeNW5Ey3soIUdtLBjzJgxcs6pYsWK2rVr1yk/Pj4+Xn///bfOO+88OefUuHFjlSlTRs45XXDBBVq9enUmvOrciRZ20MIOWthBC1voYQct7KCFHcuWLVO+fPlUuHBhzZ8/X1LoRS3SY8+ePerevbuccypYsKD3DV6NGzfW2rVrJXFMMT1oYQctbKEHkDa/D0CGkeRzzvl27NjhGzZsmO+LL77w7dy501ewYEHf5MmTfddee22SZX0+n2/hwoW+V1991ffJJ5/4fD6f79577/UNHjzYFxER4YuJifH5/X7fpZde6vP5fL74+Pisf2M5QJ48eXwlSpTw3Xzzzb7SpUv7EhISfM45X1xcXMhywevP7w/9KzDQA2eGFnbQwg5a2EIPO2hhBy3soIUdtLCFHvZI8vl8Pl++fPl8Pp/PV758eV/ZsmV9zjnvvvSIj4/31alTx1ezZk3f1q1bfaNGjfLt2bPHV6NGDd+QIUN83bt3D/l5SIoWdtDCDlrYU6BAAZ/P5/Pt3bvXt3PnzlN+vHPO17BhQ1+nTp18Pp/P9/fff/v27Nnja9q0qW/q1Km+c889l2Pn6UQLO2hhBy3soIUt9LCDFnbQwo5ChQr54uLifFFRUb65c+f6fD6fLywsLN2Pl+QrVaqUr0uXLr6yZcv6oqOjfQcOHPDVqVPH99NPP/lq1qzpi4+P55hiOtDCDlrYQg8gbQywAxnIOefbuXOn77HHHvN9/fXXpzW83qNHD9+TTz7pK1OmjO+DDz7wbdu2zZc/f37flVde6fP5QjdkfDCSMr/f74uLi/OFh4f7jh496nvllVd8Pt/J9ccOX9aihR20sIMWttDDDlrYQQs7aGEHLWyhR/YLHNdo0aKFz+c7+YHr999/H3JfWuLj431hYWG+cuXK+Ro2bOjLmzevLz4+3hceHu7r2bOn7/bbb/f5fD7vhAUkjxZ20MIOWthz5ZVX+ho0aOCLi4vz/fDDD77Y2Nh0PzZwPH3r1q2+Xbt2+QoVKuSt82bNmvmqVq3qLZfac+AkWthBCztoYUd2t0AoethBCztoYYMkX7Vq1Xx33nmnz+/3+xYuXOjbvn37KT0+0OLzzz8P6bh//37vwhi0SBst7KCFLfQA0iljL+gOYMeOHapdu7accypevLi++uqrkPuDv7ZjwYIFuu222+Sck3NODzzwgDZt2uQt16FDB/n9ft14442KjY0N+frz4Of59NNP9eyzz2byO8tZTpw4IUmKjo5W06ZN5ZxT3759s/lVnZ1oYQct7KCFLfSwgxZ20MIOWthBC1voYcf69et14YUXyjmnAQMG6MiRI+l6XPAxjqFDh6pUqVJyzil//vxyzqly5cr6559/JCX/tarBj8dJtLCDFnbQwo4jR46oW7ducs6pWbNmWrJkSboeFzgOvnnzZvXo0UOlS5eWc06VKlXyjqsPGjTIWz7QIyEhQYcOHdIPP/yQ5LnOdrSwgxZ20MKOrG6B1NHDDlrYQQtbPvroI+XJk0fOOb366quKiYnx7ktp25pSi9q1a3vHGStWrKgNGzZI+vc4pJR0X499v3/Rwg5a2EIPIHUMsAOZYOnSpapUqZI+++yzkNvTGl4PfOghSbNmzfLuGzFiRIrP8/XXX6t+/fpyzunee+/NpHeUM0VHR6tGjRreenTOpXsHMjXJ/QIRFxeXZCeSg43/ooUdtLCDFrbQww5a2EELO2hhBy1soYcdr776qtdg1KhROnz4sHdfcgfIUxoMrVmzpkaMGKG2bdt6H+Ju3LhRUugHt4HH//TTTxo8eHDmvKkcihZ20MIOWtixceNG1apVS845tWvXTgsWLNDRo0clJb9dDdy2ZcuWkA9sGzVqpBUrVmj8+PFe26efftp7XKDHokWL5JzTbbfdlgXvLmehhR20sIMWdmRVC6QPPeyghR20yH7B6/mpp57y1t/w4cO1Zs2aNB+XXIv169dr+/btatWqlZxzqlatmtatW5fsz/zyyy+9+872kw1oYQctbKEHkD4MsAOZJPHVfE5leF2S/ve//ylfvnw655xzFBkZ6T1H8PN89dVXql+/viIiIuSc09VXX52J7yjn2bBhg7eOK1asqKlTp57xcwZv1I8ePaqPP/5YTzzxhK6++mrdcMMNeuWVV/Tjjz96yzDQcBIt7KCFHbSwhR520MIOWthBCztoYQs9sl/wkOfAgQO9Ho8++qjmzp2b5mOCB0Nr1KihyZMnS5JWrlyp1q1be20DA6LBj//tt9/k9/vlnNMbb7yRCe8uZ6GFHbSwgxY2rVq1SuXLl5dzTvXr19ezzz6rRYsWJVkutQ9s165dK+nkyWzBJyg89dRT3uP37t2r5s2byzmnfPnyac6cOVnzBnMQWthBCztoYUdmtmA49NTRww5a2EGL7Be8/zZgwABv/V199dUaPHhwyMnLUvpaJCQkaPny5d6Jy9WqVdPx48dDrm48bdo0NWjQQEWLFk22+dmIFnbQwhZ6AGljgB3IAqc6vB4TE6NmzZrJOacLL7zQ+/qQ5IbXw8PD5ZzTHXfc4d1/tn+AHmzFihWqXr26Jk2a5N12uusnMMgQHx+v0aNHq2PHjnLOeQ0C/5QqVUpPPPHEGf+83IYWdtDCDlrYQg87aGEHLeyghR20sIUe2S946P+JJ57w1lOlSpXUo0cP7wpkUupXNQ4MhgZERkZ6A6Kvv/56yM/69ddfva9drVOnjl544QUdP348M99mjkALO2hhBy1sWrt2rdq1a6eCBQvKOaciRYpo9+7d3v3p+cA20Cs2NlYvvviinHOaPXu2JOnYsWMaOnSoihQporCwMN18883aunVrFr/LnIEWdtDCDlrYkdktcGroYQct7KBF9gve5xs5cqTq1avn7fctX77cuy89LYKfa8mSJWrbtq1mzpwZ8vM+//xzXXTRRcqXL583p5PcN3udjWhhBy1soQeQOgbYgSy0cOHCVIfXAxuMv//+W5UrV1b+/Pk1atQoSSd3WAISD6//5z//8TZkfO1HUsFnrJ3uYEHwjuNtt93m/aIQ+BCrTZs2uuWWW9SsWTPv6koDBgzIkNefm9DCDlrYQQtb6GEHLeyghR20sIMWttAj+wUfi5gwYYJuvPFG5cmTR7169fJuT+9gaPBykZGRmjBhQsjPCh4MrV+/vt544w0dOnQoM95WjkQLO2hhBy1s2rlzp8aNG6drr71W3333nXf7qQz5BMTGxmrHjh3efwdfJT8iIkILFizIgneUc9HCDlrYQQs7MqtFSp+nJjfcc7aftByMHnbQwg5aZL/gdfXXX39pzJgx3rebJCQkeOtn69ateuCBB9LVQjp5ZfxggaHQsLAwOed02223ad++fZn1tnIkWthBC1voAaSMAXYgiyxatEjXXHNNisPrwYYPH+4t9/PPP4fcx/D6qcuoK9Pv2rVLrVq18to4d/LruxYuXOj9orBp0ya98cYb3kDD22+/fcavPzehhR20sIMWttDDDlrYQQs7aGEHLWyhhw3BB9APHjyoFStWeP8d/PWlzz//vDcYWqNGjRQHQ5OTeDD0tdde8wZDz/YPa4PRwg5a2EELuwLrPz4+3ltPO3fu1IMPPpjuD2wTu//++71t+ZtvvimJBulBCztoYQct7MiMFsESL//RRx9p9OjR3n/TKBQ97KCFHbTIXsmtz+AWe/bs0SOPPKIyZcqku0Xw7YmHQjt16qQDBw5k/BvJBWhhBy1soQeQPAbYgSyydetW7wOM3r17Jzu8Hh8fr5iYGHXo0EF+v1833nhjyI7Gl19+qXr16nnD6127dmV4PZMFNvYbNmxQs2bN5JxT/vz5Va9ePX388cfJPubw4cPq0aOHnHPq3LlzyC8cOH20sIMWdtDCFnrYQQs7aGEHLeyghS30yFjJrYfg4xXvvPOOqlSpckqDoYHb582b5x1XqVevnl577TXv6vus/6RoYQct7KCFfQkJCTpx4oRGjRqlqlWryjmnxo0ba926dZLSN+QzduxYbzD0xhtv9B6LU0MLO2hhBy3syIgWgecJdvjwYY0dO1adO3f2Ot17770Z/vpzG3rYQQs7aGFHYF1//PHHqlmzppxzatiwYZpDocHrnqHQjEELO2hhCz1wtmOAHchCy5Yt0yOPPKKNGzemuMyKFStUoEABOefUr18/73aG17Ne4Czp/fv3q3nz5nLOqWDBgrrssss0a9Ysb7nkPoQaNWqUnHPKly9fqr2RPrSwgxZ20MIWethBCztoYQct7KCFLfTIWlu2bNFVV10l55zKlSuniRMnevelNRg6d+5cbzC0SZMmeu211xQVFSWJYyKngxZ20MIOWthx5MgRb7tcpUoVrVmzRlL6hnxWrlypa665Rn6/X3nz5tW4ceOSXS65bTsnGiRFCztoYQct7DiTFomXiYyM1CeffKKGDRsqb9683lBovnz55JzT8OHDM+U95Cb0sIMWdtDClksvvVTOOZUuXTrNEwlSGwq95ZZbGAo9Q7Swgxa20ANnKwbYgSwW/JW0wQIfZrz00ktyzqlChQpatWqVJGnatGlnNLx+ql8/hX/X2YkTJ3TxxRfLOacCBQrommuu0bx587zlEh80jI2NlSR98sknKlSokEqWLKktW7Zk3QvPhWhhBy3soIUt9LCDFnbQwg5a2EELW+iR9T7//HPvA9ZRo0Z5t5/KYGjVqlU1cOBALViwQAkJCTp27JgkBkRPFS3soIUdtLDjyy+/9IZxvvjiC0lpr8NAj1GjRnkf2N5zzz3e/cHb88BzxcXFac6cOXrvvfeSPA9OooUdtLCDFnacTovEVq1apTfeeEPVq1dX8eLF5ZxT+fLl1aJFC9WrV0/OnfyGrvnz52fCO8hd6GEHLeyghR3bt29XqVKl5JzTU089JSn9Q6GtWrWS3+/nisYZhBZ20MIWeuBsxgA7YMx1110n55zq1q2rEydO6Kuvvjqt4fXEH7Lv2rVL3377baa+9twmPj5e9913n5xzioiIULt27TR37lzv/tSuePHAAw/IOaciRYpo8+bNWfFyczVa2EELO2hhCz3soIUdtLCDFnbQwhZ6ZK3p06fLOaeKFStq8eLFktIeDJ03b543GBr4ULZAgQIqVaqUGjZsqF69emnbtm2SGBA9FbSwgxZ20MKO1atXq2rVqipQoIDefffddD9u8eLFyp8/v5xzat26tf755x9Jya/7Y8eOacCAAWrcuLGcc7r//vsz7PXnJrSwgxZ20MKOU20R2L87cuSItm7dqv/+979q1qyZtx0vVqyYWrdurR9++EFz585Vly5d5Pf71b17d8XExHACQRroYQct7KCFHdHR0br66qu9k8gCF6hILPFQaOvWrb2h0Pr163v7d+mR3AlqoIUltLCFHjibMcAOGPL777+rRIkSCgsL0/vvv69ffvlFderUOaXh9cQ7Jn///bcmTJigGjVqJLmqA1L3+eefq2bNmt7Xen3//ffefakNMixevFiNGjWSc07XXXedjh8/ztc7niFa2EELO2hhCz3soIUdtLCDFnbQwhZ6ZK3ff/9d1apVk3NO//vf/1JcLviqxoHjIX6/X6VLl1anTp3Us2dPXXLJJapUqZKcc6pTp442bdoU8likjhZ20MIOWtixf/9+XXvttXLO6ZJLLvGGPFOzbds278IwpUqV0ogRI3T8+HFJodv0vXv36qeffvIGgcLCwrwPet94441Me085FS3soIUdtLAjPS0Sb3t///133X333apfv76cc962/P7779ekSZMUExMjSfr444+9gdEPPvggS95PTkcPO2hhBy1sGT16tLfOkjuhIHib/Nlnn+miiy7ytsOBf5599llFRUWl+bMCz/XLL79oyZIlkhgODUYLO2hhCz1wtmKAHTBkwoQJ3tmz9957r84//3zv6wTTe+V16eSGZs2aNXrhhRdUvXp176oO+fLlk3NODz/8cFa8nRzv/vvv9zbyEyZM8G5PbjAh+LZnn33We9yIESOy5LXmdrSwgxZ20MIWethBCztoYQct7KCFLfTIes8//3yqB+GTGwytUaOGunXrpo0bN3rLHTp0SL/++qtatGgh55waNWqknTt3ZtXbyBVoYQct7KCFHevWrfNOAujQoUPI+g0WaDJp0iRVqVJFzjk1b95cu3btSrLsH3/8oR49enjPW65cOVWtWlXOOTVu3Fj79u3LzLeUY9HCDlrYQQs7ErfYsGGDpKSfo06cOFEPPPCA95mrc07FixdX79699cUXX4Qsu3btWjVs2FDOOXXu3Dmr3kquQA87aGEHLbJf8DG9Rx991Dsx4K233kp2mcRDoXfccUfIvuKQIUN09OjRFH9eYPv/008/eY9ZtmxZJryznIcWdtDCFnrgbMcAO2BAfHy8jhw5ossuu8wbND/vvPO8gfP0Dq8fOXJEGzZsUPfu3dWkSRNvQ1OpUiVVrVrV+0rbnj17ZtVby7Hmz5/vfRDVq1cv7/a0BhmmTJnirfdrrrlGR44cSfFxSB9a2EELO2hhCz3soIUdtLCDFnbQwhZ6ZK3gK4r179/fW4fvvfdekmWCB0Pr1aunESNGeAM7iY+JzJgxQ5UrV1a+fPk0evRoSbRICy3soIUdtLBp1apVKl++vJxzuvrqq72rFQcEmsTExKhVq1Zy7uSFYf7888+Q5fbu3asPP/xQxYoVk3NORYoUUadOnTRt2jQ1atRIxYsX11tvvaW4uDiukp8CWthBCztoYUfiFidOnJAkHThwQBMnTlSnTp3knPMGfM455xw9/PDDWrZsmXclY0lewx9++EHlypVTvnz5NGbMGEl8i8qpoIcdtLCDFtkveF9twIAB3nDo7t27Q9Zd4qHQTp066dChQ5KkkSNHpjkcGtjfmzVrlresc0533XUXVzb+f7Swgxa20ANnMwbYASP27t2rMmXKKDw8XH6/3/sgJKXh9cQbjp9++kndu3dX9erVvQ2Zc059+/bV5MmT9dhjj6lw4cJq0KCB1qxZI4kPTFIzbdo0hYWFKV++fJo8ebKktAcZvvvuO+8kgVq1aundd99lZzED0MIOWthBC1voYQct7KCFHbSwgxa20CPrBR/H6Nu3r5xzGjZsmKR/P2idM2eOdzyjSpUqeuGFF7wD8Mn12bdvn3cC/2233Zbma4iPj9eWLVsy4u3kaLSwgxZ20MKmyMhIVahQQbNnz05xmcA3quTPn19DhgxRbGysd9+nn36qrl27eh/IdujQwdvuP/zww3LOqW3bttq0aVOmv5ecjhZ20MIOWtixfPlyVaxYUX/++af27dunKVOm6Pzzz1eJEiW89VuyZEnv3z///HNJ8noEtuOxsbFq27atd6LawYMHs+095WT0sIMWdtAi+yUeDv3pp59C7k88FHrrrbfqwIEDIcu8+uqrKQ6HBvYbg4dCixUrpttvv107duzItPeVE9HCDlrYQg+crRhgB4z4559/vK+EClx5/T//+Y+3MxI4EzfxhyHvv/++HnjggZAzoypXrqy+ffvqhx9+kHTyw5LmzZt7H5ZERUVl7ZvLgQIb9erVq6f4QVTwf//4448qVaqUnHMqVKiQevbsmepXsiD9aGEHLeyghS30sIMWdtDCDlrYQQtb6JE9gg/Cz5w5M+S+4MFQ55yuv/567d27V1Lyg6GB4yS33367N/CTmvj4eM2fP1/16tVTnz59zvSt5Hi0sIMWdtDCpsBVJ5O7Etjnn3+umjVryjmn888/X0uWLJEkHT58WD179vSuaFywYEE9+eST3jenjBkzRs45hYWFaf78+Vn3ZnI4WthBCztoYUdsbKymT5+u4sWLewOh4eHhKlCggIYNG6Y333zT+yZs55z3GWpCQoLXb+LEiSpSpIiKFi2qiRMnSuKqxqeLHnbQwg5aZL+Uri78+eefpzoUGvy4xMOhUVFRKQ6Fdu7cWbt27ZL0b6fAvuLZjhZ20MIWeuBsxAA7YMiKFSu8D8TvvPNO78OPY8eOhSy3detWffDBB+rQoUPI4HrLli11//33a8uWLSFXcQhcNahUqVJasWKFJK6+npY333xTzjkVL15cGzZsSHXZb7/9VsWLF/c63HTTTd7Zzuwwnjla2EELO2hhCz3soIUdtLCDFnbQwhZ6ZJ/kDsLPnTvXO5k/LCxMBQoUUGRkpKTUj18cOHBAderUkXNOV111VYrLxcfHa8GCBWrXrp3XcdGiRWf+ZnI4WthBCztoYU9KJ5jFxMSoe/fu3jqbOnWqjh07pvfee8+7KmW+fPnUtWtXTZ8+3Xv8H3/8oQsuuEB+v1/Dhw9P9mdISf+/wPF0WlhCCztoYcvSpUtVuHBhOXfyysQPPfSQFi9eLOnkOvv55591+eWXe11+/PHHkMf36NFDzjlVq1ZNS5cuzY63kKvQww5a2EELeyZOnKjWrVsrb968yQ6FBgQfAwweDh08eLCkUxsKjYqK8k5AwL9oYQctbKEHcjsG2AFjIiMjdd9993kHm4I3MMuXL9fkyZN17rnneldmiIiIUIsWLfTUU09pw4YNOn78uKR/v05q69atateunfx+v+65556QM6uQssjISFWvXl0lSpQIOXgYfGJAbGysPvjgA28DHx4eriuvvFL79++XlPKZcTg1tLCDFnbQwhZ62EELO2hhBy3soIUt9LBj/fr13jquX7++ypUrp7p16+rIkSMhPYIFjplMmzZN5cuXl9/v17PPPhtyX0BgMLRNmzbewfm3337bu/I+/kULO2hhBy3sGj9+vNfmwQcf1Pr163X11Vd7x83LlCmjzz77TNu3bw953NChQ+X3+9WyZUv99ddfqf6MmJgYffrpp95/MyCaPFrYQQs7aJF9VqxYoXvvvVf//POP961ZgX232NhYzZo1K2Q4dMaMGZKkzz77zLtt5MiR2fXycx162EELO2hhy8iRI731ettttyU7FBoQPGcT/Li77rorzaHQgKioKF133XVyzmno0KGZ8p5yKlrYQQtb6IHcjgF2wLgTJ05o48aNevbZZ1W3bl1FRETIOacCBQp4G5dXX3015DHBG5e33nrLW27q1KlZ/fJzrP3793tXuL/44ou1ePHikA+lvv32W/Xr189bt8WLF1enTp28XxQYZMg4tLCDFnbQwhZ62EELO2hhBy3soIUt2dGDgZKU3XnnnapQoYJeeukl1a1bV82aNUtx2eAPdW+66SY5d/KKyPPnz0+ybOLB0EKFCmnMmDE6cuRIpr2XnI4WdtDCDlrY89tvv6lKlSreNvqaa65R0aJF5ZzTOeeco7vvvlurV69O8rhffvnF27aPGjUq5L7g7fShQ4e0ePFitWjRwvugF8mjhR20sIMWtp04cSLJcOjnn3+uIUOGKDw8XE2aNNHKlSslsQ+XFehhBy3soEXWu/POO3X55ZenOhQaEDyL895778k5J7/fL+ecihYtmupQqCS98MIL3rzPZZddluRktrMdLeyghS30QG7GADtg2I4dO3TjjTfq4osv9nZOnHO66KKL1LdvX1100UXebTNnzpR0ciclsKOyatUq1a9fX845de/ePTvfSo60bt06Va5cWc451alTRzfddJN69+6tq6++WiVLlvTWfYMGDTRw4EDvykgMlmQ8WthBCztoYUtW9uCAZOpoYUd2/D0V+DYihKKFHVnZIvjAI9v/5GXX71PBB3zP9m1J8Lr8+eeftXXrVrVt21ZFixbVsmXLUn3sfffd5w2GDhkyRFLo+mQw9NTQwg5a2EELm06cOKFBgwbJOaf8+fN769k5pyuvvFLfffed920pwb8PbdiwQRdeeKGcc+rWrZt3e+Lt+uLFi/XYY4+pWrVqcs4pT548cs7pl19+Oeu324nRwg5a2EGLnCG54dDA1fHvv//+U3ou1vuZo4cdtLCDFlkjeDsbHR2d7scFLoLx119/eX0KFCiQ7FBocscRu3Tpovbt22vx4sVn8vJzFVrYQQtb6IGzAQPsgGHr1q1TeHi4tzFp166dnnzySZ04cULHjh3TvHnzkv36qMCGaNq0aSpRooTCw8M1ZswYSWnvoERGRuq9997L1PeVk6xZs0aNGzdW3rx5Q04iCBxwvO222zR9+nTFxMRISv7sNGSMrG4ReDw79UnRwg5a2JLVPVasWKElS5aw7UkGLezIqhbx8fGKjIzULbfcokmTJmnTpk3effyddRIt7Mjqv6M+/PBDvf322yFfP0+Lf2V1j8jISHXp0iXkw8azvUfiddqzZ0855zRixAhvvQfExcXp4MGDuvvuu+XcySvHXHvttfr999+TPCeDoaeOFnbQwg5a2LRq1SoVLlzY22bXrVtXAwcOTHH548eP63//+58KFCighg0beh/ABp90GRsbq8mTJ6tatWoqUqSInHMqW7asbr31Vv3www8hz8e+379oYQct7KBFznDixAnNnj1b7du39/YDa9eu7R3HSHws/NChQ1q7dq2mT5+uP//8U3v37vWei3V+5uhhBy3soEXWONV1E1h+xowZXpfChQunOhQaHR2tnTt3hjzPhg0bzvSl5zq0sIMWttADuR0D7IBxK1asUM2aNfXGG29o7dq1IffFxsYmOfM2cKBq3759Ov/88+WcU8uWLdN1BcTVq1frjjvukHNOXbp0yZT3kxNt3bpVr732mjp27KgLL7xQ9evX15NPPqmJEyeGLHe2Dx1khcxskfiswsOHDysuLi7JV/DQ+SRa2EELW7Jqm7FmzRr95z//kXNOjz/+uH777bcMe+7cghZ2ZEWLFStW6Nprr/UGha6//npNmDAhQ547N6GFHVn1d9T8+fNVvXp1OefUpk0bjR8/PsOeOzfJqh6RkZHq06ePt//eq1evDHvu3GTy5MneOho6dKjmzZunI0eOaOPGjRo1apQ6dOjg/R1zySWX6Msvvwx5PIOhGYcWdtDCDlrYsXz5chUqVEj33ntvyPBmct9Cs3nzZjVs2FDOOQ0aNEhHjx4Nea5vv/3WOzkh8E+tWrX0ySef6J9//glZdsuWLXrzzTeT3H42o4UdtLCDFjnHxx9/rDJlysi5k1e/P3z4sHdfYD9tw4YNuvvuu3XOOefIOafw8HB16NBBY8eO9Zblm88yBj3soIUdtLAjsB2fNWuWt00uVqxYmkOhbdu2VeHChbVx48Zsed25ES3soIUt9EBOxAA7kAMk/hqQ4ANcyX191Pfff6+ZM2eqSJEiKlmypD755BNJqe+UBIbXAzs/4eHhWr9+fea8oRzu2LFjIf/NGcvZJzNazJw5U6+++qpatWqlpk2bqm7dunrkkUc0ZcoUbxmGS5KihR20sCUzesTHx2v27Nlq3ry5nDv5VcEXXXSR3njjDW8ZeiRFCzsyo8X+/fv13HPPqUuXLsqTJ4/8fr/y5s2rQYMGecvQIila2JGZ+xivv/66mjRporCwMIWHh2vIkCHefbRIXmb0iIyMVO/evb399jx58sg5p969e3vL0ONfTzzxhLeuSpYsqQYNGqhUqVIqWLCgdyXLm2++WV9//XXI4xgMzXi0sIMWdtDCjv3793vfRiqFbrODt6s333yznHOqW7duyBXF4uLi1LdvX9WtW9drWqdOHXXv3l379u1L8vO2b9+ul19+2Vt2+/btmfTOch5a2EELO2iRMwRODggLC9P8+fOT3L9z50517NjR+9auEiVKeCerOedC9rH5vPDM0cMOWthBCxtOZyj06NGjuv76673l77777nRdeBKpo4UdtLCFHsipGGAHcoDAgayUPsxObog98EFI1apVtXr16lSfPzC8XrJkSTnnVKVKFf36668Z/j5ysuB1z1BB9sqMFgkJCdq/f7969uzpncSR+J98+fLpsccey/CfnZPRwg5a2JIV24yYmBjNnz/fu/J34EBkz549M/1n5yS0sCMzWyR+vqlTp6p79+5ei4ceeijTfnZORAs7MvvvqOAPpH7//Xf17duXFqnIzB6Jh9e7deumN9980+vBEPu/gv9/O3jwYFWoUCHk98/ChQurcOHCevXVV7V8+fIkj01rMPRsX7+nghZ20MIOWuRMb731lpxzKl68uGbPni1J2rFjh6ZNm6b27duHNLz99ts1ffp072S2EydOeM+zfft2vfjiiypVqpScO3n1402bNmXLe8qpaGEHLeygRfaaOXOmypcvL7/frwceeEBS0u3xjBkzVLZsWeXJk0d33HGHVqxYoU8++STkqvjPPfectzzDoaePHnbQwg5a2BBY56c7FFqwYEF16tRJCxcuzJ43kIvQwg5a2EIP5GQMsAO5RHJD7M65kK+FSk7i4fWKFSsyvI5cI7VvHQj8AhcdHa3vvvtOV1xxRcjg4ZVXXqm77rpL/fv311VXXeXd/uijj2bVy89VaGEHLWw5na9sTHxw8qWXXlKVKlUUHh4u55y6du2aUS/vrEILO073q0yDD7zv3LlTo0aN8v6eeuGFFzLq5Z1VaGFHRrTYsWOHRo4c6bV44oknMurlnXXS6hG8fUg8vN69e3dFRUVJksaOHcsQezKC1++vv/6qDz/8UIMGDdLAgQM1bdq0JEOhUvoGQ1P6gPZsX9+poYUdtLCDFjlDYL2tX79el19+ucLDw70T+JYtW6YuXbqoZs2acs4pIiJC5513nl5++eWQ5whunXgw9MILL+TbS9OJFnbQwg5aZL9Ag8GDB3v7ah9++GGyywaual+2bFlt3LjRu3337t0aMWKE9/i33norK156rkQPO2hhBy3sCOyrzZ49+7SHQjt27KjFixdnzxvIRWhhBy1soQdyOgbYgVzk2LFjmjFjhs4991z5/X41btxYkZGRkpL/sIPhdeRG0dHR+vvvv73/Tm64JPDn4fDhwxo/frwuuOACOecUHh6uSy65RG+++WbI8rt37/YGr/LmzatJkyZl7pvIJWhhBy1sSU+PtARv1xctWqQ2bdp4Xw/ZsGFDbd68OUNea25HCzsyooUU2uPYsWN6/vnn5ff7Vbt2bS1YsOCMX+fZgBZ2ZFSLxM85fPhw+f1+FSpUSFOmTDnj5zxbnE6P5cuXq1evXt5B43vvvVcHDhwIeY5x48YxxJ6MtK4GFrx+0jMYGmzWrFl644039Pfff+vo0aPp+nlnM1rYQQs7aGFb8Pp/7rnn5JxTtWrV9P777+vTTz9VsWLFvG1zwYIFNXDgQP3yyy8hjw9+juQGQ9etW5el7ymnooUdtLCDFnb88ccfypcvn5xzuuWWW7zbE++LjRo1Ss45lShRIslxvujoaD399NNyzqlu3bppXrFy48aN2r17d8a9iVyEHnbQwg5a2PHdd99l2FBofHx8lnx7cG5FCztoYQs9kJMxwA7kEoENzpw5cxQRESHnQr8WPjGG17NW4KscM2LoBCk7duyYpkyZovDwcN1zzz2pLnvkyBGNGjVKDRo08IZ0H374Yc2fP99bJvgrOPfu3ev9Evfggw9m2nvILWhhBy1sOZUeKQneSZwzZ45uv/1274rfl19+uf788092JNOBFnZkRIuU/P777ypXrpyccxo3blyGPnduRAs7TrdFcn/nJL5t3bp13lfRBwam+bsqdafTY8uWLerevbt30LhNmzY6duyYJCk2NtZbLvEQ+7333psp7yG3OtXB0A0bNuimm26Sc061atXSgw8+qB07dkhif/1M0cIOWthBi+z19ddfe9vhCy+8UD179lT+/Pm9D3Pr16+vOXPmKCYmxntM4pMFGAzNGLSwgxZ20CJ7nThxwvumrHLlymnChAlJlgnsJ+/atUt169aVc06PP/64oqOjQ5ZbsWKF902mw4cPT3GbvWbNGnXs2FHh4eFcIT8RethBCztoYUufPn3knFPRokXVpUuX0x4KDT4mmBgnLqcPLeyghS30QE7GADuQi+zatUuXXXaZnHNq3Lixtm3bJinpRoTh9eyxdOlS3XXXXdq0aVN2v5Rc6dixY/roo49UvXp178DvBx98kOyyMTEx+uCDD9SwYUNvSPf555/Xli1bvGWSG+J54oknvA8R9+7dm2nvJaejhR20sOVUeqQkuMGvv/6qLl26MDB9GmhhR0a0SMtFF10k55w6d+4cchIOQtHCjoxoMX36dM2YMcP778R/Hz311FNyzql48eL6559/MuR151Zn0uO1115T8+bNVaBAARUuXFj9+vXz7gv+MxAXF6fx48d7zx98hUWk7FQHQwN+/vln3XTTTapYsaKcc2rSpIm3n86A6OmhhR20sIMW2WvDhg268sorFRERobx586pkyZLKkyePnHNq1qyZnn32We94R0r7bdu3b9fw4cO9Y+gtW7bU6tWrvfvZ30sfWthBCztoYcOaNWvknFP58uW1b98+SdLmzZuTDG1GRUXpoYce8voEvvk6eJ/upZdeknNO77//frI/KyYmRnfccYe3z/fCCy8wAJQIPeyghR20sGXAgAG64oorzuiKxtLJi148+OCD6tKli+677z59/PHH3uer7POlDy3soIUt9EBOxQA7kAsENhAzZ85UjRo15JzT3XffraioqCTLMrye9RISEhQTE6OyZcvKOadbb701ZCAUGePw4cOqU6eOtyPfpUsXLVmyJGSZwEHbefPmqUWLFt6Q7ssvv+zt+CcnsIPfs2dPOedUv379kCufIBQt7KCFLenpkRoGpjMOLew40xZpOXjwoGrVqiXnnK699lq6pIIWdpxpi2XLlnn7e5999lnIfYGrZzz//POKiIhQqVKltHXr1gx9/bnNmfZYvXq1XnrpJRUsWFDOOf3nP//x7gs+2BsXF6dJkyZp1KhR2rlzZ4a+h9woPYOhiQ+mJyQkeH/37N27V1OnTlXTpk3lnNM555zjnczBB7SnhhZ20MIOWmS/PXv2qGrVqnLOed9y4pzT7bffrtWrV3tXpUxpfQYGQ4sXLy7nnM4991ytXr3a+zaVAHqkjRZ20MIOWtixatUqffXVV5KkhQsXql69epo4caKk0ON/K1eu9L5V7q677vJuD2zPjx8/rh9//NG7PbljHt9//72cc+rfv7/3DSsIRQ87aGEHLbJf8L5bYJ/uVIdCA5+pLlq0SFWqVPG2/YELjFx66aXavHlzkp+HULSwgxa20AM5HQPsQC5yww03eBubpUuXSgo9QMXwevb65ZdfVKBAATnndPPNNzPEngmWLl2qc845R9dee61WrlwZcl/gz0J8fLyuu+46b0h36NCh2rNnT4rPGbwD37FjRznn1LRpU+3fv5/Bq1TQwg5a2JJaj9QwMJ3xaGHH6bZISeDvttjYWL3//vsqXbq0nHPq1avXGT93bkcLO86kxcGDB/Xf//7XO7j47rvvhlxxKTo6Wp07d5ZzThERESFX6UPyTqdH8Lbg2LFjmjRpkgoVKiTnnAYMGJDi4xIPnSCphIQEzZkzx/tWh7Suanzw4MFkf7eNj4/X33//rQsvvFDOObVu3dq7Og3ShxZ20MIOWtixfPly7wSyq6++WqNHj07X47Zv364XX3zRO4bunFOJEiVUs2ZNVatWTffcc48+/vhjb3k+uE0bLeyghR20sCOw79a7d285d/IbroNP9A4c25g2bZp3DHDs2LFJHh8QvM4Tf2Pp+vXrOWE5DfSwgxZ20CL7Bc/cBNZneodCA8vv2rVL1apV804+u+6663TRRRepUqVKcs6pWrVqfPtWOtDCDlrYQg/kZAywA7nERx99JOecChQooN69e0s6ucEIbGgYXs9egV8WfvvtN++rIBlizxxbt27VqlWrUrz/8ccfl3NOYWFhuu+++5J8zVpKJkyY4B0Qfu655zLq5eZqtLCDFrak1SMxBqYzDy3sSNwivesxeLngf4+NjdUXX3yhK664wvt76vPPP8+4F5yL0cKOlFqkp8m+ffvUo0cPb5336NFDo0aN0kcffaS77rrLu/3+++/PtNef25xJD+nkiQPDhg1T3rx5Va1aNc2YMSNTXufZYuTIkd4B97FjxyYZDN2zZ4+mTZumiy66SNWqVVORIkV033336cMPPwxZLj4+Xl999ZWqV6+uAgUKaNSoUZLS3xW0sIQWdtDCjsjISL3xxhtas2aNd1tqH7IGBkNLlSol55wqVaqkFi1aaMCAAerSpYsaNWrk/R717LPPeo/jKsdpo4UdtLCDFrbMmDFDNWrUULFixTRmzBgdP35c0r/fkrJnzx517NhRYWFh6t69e5rPt3btWl133XXq2bNnZr/0XIkedtDCDlrYEdgnO3r0qG666aYUh0KDjR07Vs45lSlTRlOmTNGxY8d0+PBhff3112revLmcc2rUqJG2bdsmie13etHCDlrYQg/kJAywA7nEpk2bVLhwYTnn9MUXX4Tcx/C6DcFD7Hnz5pVzTldccQVnMWehjRs3qmnTpvL7/apfv75mzZqVrsf9+eefuvLKKxUWFqZSpUrpm2++yeRXmvvRwg5a2MbAtB0Z2SLxcjQMldIBj8RD0XFxcTp27JiioqIUHR2tbdu2afHixfr+++/VqVMn1a1b1/vgtl+/fiFXoEb60MKO4GHp1atXp+sKrBs2bPC+pSvwT9GiRb1/b9Wqlb788svMfum5UnCP9evXp3hV3cTmz5/vDZu88MILmfkSzwqPPPKIRo4cmWT979q1S0OHDlX16tXlnFP+/Pm9kzUDV8APHgzas2ePOnToIOecbrjhhix+F7kDLeyghR20sCm1fa/Eg6FNmzbVt99+G3KF/HXr1un555/3fp968cUXs+Jl50q0sIMWdtAiex04cEDdu3eXc05NmjTRn3/+6d0XOD7y1FNPeRcTCz7xILG1a9eGnDz+/fffZ/rrz23oYQct7KCFLbGxsd43bxUtWjTVoVBJevPNN70rGCe+gv7ixYvVrFkzOed00003af/+/VnxFnINWthBC1vogZyCAXYgF1myZIl69eoVchvD67YED7EHznBbunRpNr+qs8e0adO8HfGhQ4d6t6d2YHjHjh167LHHvA8Uu3btmmSZQNedO3eGfNUaA4kpy6wWOHWZ2eJUr0x6tgpcHUNK/uu9pIwbmD569GgGvvLcJytb/PXXX3rllVeS/Rk4eaXiX375Rffee6969uypLl266Prrr9ett96q66+/XhdffLHatWuniy++WOeff77q1aunqlWrKm/evCpQoEDIwG6vXr0UGRmZ5Gfw5yJ9sqKFxDYjvRYuXKhLL71U48aNk5T6+oqNjdVLL70k55yuv/56RUREeC1uvfVWTZkyxVs2uSvo0yJtv//+u9q3b6+PP/5YUvrW2dVXXy3nnC6++GJFRUWlumzwdoke/wo+CSZwtTHp36tVTpw4Ueecc46cc6pcubJeeeUVPf7447r11ltDvpUgeNjnnXfeUVhYmBo0aKB9+/Zl3ZvJ4WhhBy3soEXOlHgw9MILL0zxishHjx7VY489JuecatWqpb/++ivV52YbfmpoYQct7KBF1tm8ebMuuOACOefUrl07LV68OGR7PmTIEDnnlC9fPi1ZsiTZ51i7dq3uuOMOb7s+aNAgbd++PaveQq5CDztoYQctbLn//vu9Yc7gEwqSM2PGDG+dT548Ocn93377rWrUqKHChQtr4sSJbKNPES3soIUt9EBOwAA7kMsEf0iyevVqde3a1Rter1SpEsPrBgQG4v766y/Nnj1bsbGxZ/ycCQkJfD1LKgLr5uGHH5ZzTnXr1vUGzVNbbwcPHtTIkSNVsGBBOed00UUXeVe7TPxVnj/99JMqV66se+65R9999513O7+0hcrsFomfg/WfssxoEdgGJR4KPXz4cMhz0CVUYH3MnTtXH330UZIr9M2bN0+33Xabd0W+K664Qn/99dcpr8e//vpL7du319ixY7Vp06YkPx+Z3yKw3PLly3XJJZfIOaf7778/yf2QvvnmG++qlKfzT6lSpVSvXj2NHTs21asA8OcibZnVIvG25sCBA4qNjU0ylEWLUIFBhJYtW6brKuzr169Xnjx59Mwzz+iff/7R3LlztWDBgpAPthLvjxw6dEhxcXE6ePBgyO20CBUbG6u+ffvKOadLL700ZNAwJdHR0WratKmcc2revHlIh4DEfzZ2796tqKioJM9Pj+TFx8erSZMm3gn8Gzdu9O7bs2ePxowZ4/39dM8992jXrl2Ki4tTv3795JxTixYtMmQfHbSwhBZ20MKmxIOhLVq00Pr161N9zNSpUxUWFqa8efOGHAdMLLBdj46O1oEDBzLyZedKtLCDFnbQIuutXbtW5cuXl3Mnr3A8dOhQ/fTTT3rttde87fTFF1+s3bt3SwrdN1u7dq26du3qLffEE0+ka98dKaOHHbSwgxbZL/j43dixY7VgwYKQ+6Ojo5PMEkRFRalz587y+/267bbbtGXLlpD7Dxw44F0Vf8iQIez7pRMt7KCFLfRATsIAO5BLrVmzRjfccIN3UKtChQr6448/svtl4f+d6bBBeobVGWhI6p577pFzThdccIGk1NfR/v379dZbb3lDug0aNND06dNTfMwzzzwjv9+vsLAwVatWTS+//LJ3Hy2SyqgWqV2RMi4ujoH2dMisPxc//vijrr/+erVp00YXXHCBhg4dGvIVhLQIFTijuWbNmpo0aZKio6MlnRykzojh9d27d6tbt27eQcnbb789xSvvnu0yq0Xi4fV8+fJ5PXr37p1kubPdhg0blCdPHjnnlCdPHrVs2VLXXHONunbtqu7du+u2227Tvffeq4EDB6pPnz7q27evXnzxRY0cOVIffvih1qxZk+aBd/5cpE9mtAhet7t379akSZPUuHFjNWjQQDVq1NCjjz6qadOmJbv82e7LL79UtWrVVLp0aU2YMCHkBOZggd+Bli9frqJFi+rGG29MdrngA4yzZ8/W8OHD1bhxYzVt2lTnn3++nnnmGX399dfeMrT4V1xcnN577z1VqFBB5cuX16RJk9LssWPHDjVu3FjOOV1yySVJvgEi+IDx5MmT9eCDD6pSpUqqUaOGqlatqv79++uzzz7zlqFHUhs2bFCxYsVUoEABPf3005KkmJiYkGU+//xz7+/+++67T0uXLtWll14q55z++9//Ki4ujnWbAWhhBy3soIU9pzoYGlj38+bN8/bpxowZk+rPiIqK0qOPPqpmzZqlOXR6NqOFHbSwgxbZZ/Xq1apbt663TQ4+jle+fHkNGzYsyWPSGgrlIlSnjx520MIOWmS/xIOfAdHR0fruu++0ePHiJMuNGzdOYWFhypcvn/eNjsHr/c8//1SnTp307bffZuIrz31oYQctbKEHcgoG2IFcatu2bapSpYqccypUqBBnP+UiwR9SrV69Wh988IEGDRqk//73v/roo49CTlTgA61QjzzyiJxzqlevXpKr6gb/0rV582a9/PLL3pDueeedp7feeivJVaQT++KLL3TrrbfK7/fLOafHHnvMu48WoTKjxcqVKzVu3Dh16tRJV155pZo3b64rr7xS77zzjubPn+8tR4tQGdUicEJBXFxcyFUegv8pV66cBg8e7D0nLf61YsUK5c2bV845NWrUSFOmTNGPP/6o22+//YyH16WTO6KffvqprrrqKjnn5Pf7VaZMGf6eSkZmtEg8vB4eHq6IiAhdeOGF3jaDIfakVqxY4X1I27ZtW0VGRp7W86S0PvlzkX6Z1WLbtm0aOHBgstuMEiVK6Mknn0zxsWer/fv368477/ROPkvuKx+D19Wrr77qnZRz7NixkPuCt/MjRoxQnTp1km1RvHhxWqRg79696tSpk5w7eUX1v/76K8kywQd/n376aW+9jhgxIsXl+vfvr8KFCyfbo2DBgvw9lYq1a9d662rgwIEpLvfll196ywW+ZSIiIsI7aI8zRws7aGEHLWzZsmWLXnrppVO6qrF0cj/iySefVJ48eVSiRAnNmTMnxWXj4+M1ePBglSlTRs45nX/++UlOWgAtLKGFHbTIfv/884/69OnjnYTs3MlvI3322WeT7IelNRQavHziQSL26dKHHnbQwg5a2PTxxx/LuZMXzAkIPg4buKhOyZIltWrVKkn/fsYqnTxmHpB4vielYVQkjxZ20MIWesAaBtiBXGz58uXewa1GjRpp4sSJSYYTkfPExcVp9+7d6tq1a8iZ1YF/atasqWeffdZbnp3Kf9fBN998o1KlSqlixYohB26D19G8efPUu3dvFShQQM451alTR//73/+0f//+FJ8/+Je51atXa/Dgwd5AYt++fZP9OWerzGixYsUKvfrqqypWrJh3hYHAkGnwn4vhw4cn+3POVpn15yL4g/YSJUqoWrVquuqqq1S9enXvz8VDDz2U7M85261atcrbbp977rlq2bJlyMD0n3/+eUbrKyEhQYcPH9aDDz6o4sWLez169OiRge8id8jIFikNr996663aunWrJk2axBB7KoIHp9u3b+8dKJFC11FK/54W/lykX0a2CNz+9ttve9uMqlWrqlGjRrr11ltVv359thmp2Lx5s5o1aybnnNq1a6clS5Z4BwmDDw5+/fXXql+/vpxz6ty5c8hzBK/LYcOGKV++fN46b9OmjTp27KgePXqoZcuW3u2PPPJI1rzBHGbTpk06//zzvR6LFy9Odujjf//7n/f/9wYNGqT4e9fDDz8c8nvs1Vdfrd69e2vAgAG67LLLvB79+/fPkveX00RFRemKK65QeHi4br75Zu3YscO7LyEhIWTf7cMPP/TWZ758+fT2229L4opjGYUWdtDCDlrYERcX553odyqDoZL0+++/eyf+NWnSJM3j7b/99puccypSpIi+++67jHj5uQot7KCFHbSw4/jx44qKitLcuXM1b9487d69O8kyaQ2FBvv777/1yCOPaNy4cVqxYoV3O9v39KGHHbSwgxb2vPvuu3Lu5JXwZ8yY4d0e+ObGrVu36oILLvCOfR8/fjzZ9Rs8FDp8+HBt2rRJEsOhp4IWdtDCFnrAGgbYgVxu5cqV3qBJw4YNGWLP4Xbv3q0JEyaoadOmcs55H2Sdd955atSokcqVK+cN2AUPTuOkXbt26eKLL5ZzJ68eOm/ePEVFRUmSDh06pNdee02NGzdWRESEd+LH2LFjdeDAgTSfO3jo5NChQxo9erTX56WXXsqst5RjZVSLKVOm6MYbb/QOulSsWFEXXnihXnvtNb311lsaOHCgWrdu7bV4+OGHvccyBHdSRv652L9/v3elh9q1a+vZZ5/Vzp07JUlLlizRsGHDvBZPPfVUVr7NHGPlypUqWbKkd4W9wKDo8uXLz/gAYfD/54cOHarChQt724xnnnnmTF96rpMRLVIaXu/UqZP3Z+P48eMaN24cQ+ypCP59tn379lq9enWGPTd/Lk5NRrbYsWOHKlSoIOdOXrn6gw8+0MGDByWdPInkxRdf9P5cDBkyJKPeQq6xdu3akPU3duxYbd++3bv//fffV6tWrbxvlAi+gnqwKVOmqFKlSiG/K8XGxnp/NjZv3qxRo0Z597/yyitZ8v5ymjVr1qh8+fJyzqlx48Z6/PHHNX/+fK1Zs0bff/+9+vTp4/2+mi9fvpBvpAn2xhtveMtVqlRJzz//fMj9O3bs0Jtvvun1eOONN7Lg3eU8r7zyirceX3vttSTf3hQVFaXly5d7V8/PmzevnnzyyZBBUj6YzRi0sIMWdtDCjtWrV3vHVdM7GLp69WrvuEelSpW8b/wLNAn8b+IrkM2bN08zZ87MwFefu9DCDlrYQYuc4VSGQg8dOqQ333zTW7ZVq1Z67733vPsZ9Dlz9LCDFnbQIuutWLFCl1xyifd5z549e7z74uLidOLECfXo0cM72SwwMBoseJ8v8I2O5cqV0+bNm7PkPeQWtLCDFrbQA9YwwA6cBRhizx3++ecfPfbYY95XBxcuXFiXXnqp3nvvPW+QdMmSJRo5ciQDJqkIHvapUqWKGjZsqIsuukgNGzb0dsgDQ1mzZ8/2BnlTEhjuSTxkeODAAQ0YMEB+v1+NGjXS8uXLM+095VRn2uKdd95RgwYNvP+/X3HFFfroo4+SXBV89erVeumll7zlUhoYOpudbovE/78/ePCgzjvvPDnn1KtXL28QMeDIkSN6+eWX5ff7Vbp0aX355ZdZ9h5zkhUrVqhEiRJy7uRV7IcNG6ZDhw5JOrOB5sCO5OrVq1WvXj2va/369bVs2bIMee25TUa0WLx4sdq2bas8efIoX7586ty5s/ccgSZxcXEhQ+zBV5zGSZk1xM6fi1N3pi2CB6PLli2rvHnzasSIETp69GjIckeOHNHw4cPl9/tVqVKlkKtA4KRVq1apVq1acs6pYMGCKleunC6++GK1bNlSzjmFh4fLOadrrrnGe0zw764JCQm69957vb97Bg4c6C0X/IFUTEyMnnnmGfn9frVt2zbZKznh5N8jwd+QFRYWpuLFi6t48eLebUWLFlW/fv28xwT+DkpISNCBAwfUoUMHr8fLL7/sLRc8YHL06FENGjRIfr9fHTp00KFDhzjh6f8Fr4f+/ft76/2BBx7QlClTFBkZqQULFmjgwIFq0aKFd5Lao48+muJQ0MKFCzVlyhRNnTpVn332mQ4ePKjjx49LYoA0NbSwgxZ20MKmjRs3auPGjeladvXq1WrSpIn3oezbb78d8q0rgXV+9OhRPfLII3rhhReSfR6228mjhR20sIMW9gSvn1MZCg320ksvqUOHDt7jgi+gwPb71NDDDlrYQQsbxo8frzx58sg5p1dffVXR0dEh9wd/U+Off/4Zcl/wcdnHH3/c+wbysmXL6vvvv/fuY5udPrSwgxa20AOWMMCO/2PvvMOqONo2PnOoIgqioqIoYu/d2HtvsUSj8dXEJBq7xhp77733LpqowahYYu81dro0wYKCqCBIOZz7+4Nvxz30cg5nhed3XVwx7OwyO/fO7pR7niFyCWRi/7rx8/PDb7/9JqL62djYYPHixUlM0RqNBlFRUZgxYwaMjY3Rpk0bhIaGGijXyuXZs2do3LixiKwr/6lRowZGjx6tNbibHNIqQ2liEEjaALtw4QLy5MkDzjn279+v+xvJAWRWi+3bt6N06dLC4NOhQwfcv39fK41cm+joaBE91NLSEocOHdL7vX1t6KJevHnzRhjhPTw8ACQdzHJ1dUXJkiXFYBmRPG5ubkKLGjVq4M8//0wSmS8jSDq4ublpmeuqVq0KT09PABQ9IyWyqsWGDRtQpEgRqFQqmJiYYMqUKeKY3JAomdilaMm//vqrTu8jJ5DYOO3t7Z2l61G9yDwZ0SKlSY3nz5/DysoKZmZmYkeCxGkfPHgg/k7iSNREAv7+/ujTp49Y5Jr4p3v37mJBWeLn2dvbG+bm5uCco0uXLuL3yT33ly5dEob4mzdv6vemvmKeP3+OoUOHJlkEyDlH69attUzpicv5v//+E2n79+8vfp9cHXJxcQHnCTtyPX78WH839BUiL9dFixahRIkSolwLFy4sdlWRjKF//PEHfHx8tK4RGhqKc+fOoXXr1mIhm9TvaNCgASZNmiR2PKDvRMqQFsqBtFAOpMXXi9wYWqRIEaxYsULL/CM3hs6ZM0eMe8ydOzfJtUiXrEFaKAfSQjmQFtmPj49PqqbQ5MpRHrnSw8NDRKpMrAUZfTIO6aEcSAvlQFoYhsQ7vkrlt2TJEjHn4O/vj8GDBydrDE1sCi1cuDBUKhUcHR0xY8YM+Pr64v3798JoSt/tlCEtlANpoSxID0KJkIGdIHIRyZnY04ouTRieoKAgjBgxAra2tmJCy9nZWcs8l7ijeOzYMdGYuHPnTnZn+asgODgYx44dw+jRo9G/f38MHz4cTk5OWgastFaRv379GsWLF4eTk5PW7+XnNWnSBJxzDBw4EBqNhlamJ0N6tJA3bA8fPozq1atDpVLByMgInHOUKlUKJUqUwHfffZdihPWQkBD89ttvMDIyQt++fWlxRzKkRwu54TY4OBiXLl3C3r174eLigocPH2Ls2LHgnOP69esp/p0OHTqAcw4HBwdERERQvUgB+Xe7WrVq2L9/f5LVz+khNZNuSgsNCG2yqsXZs2cxduxYsahpwIAB4ph8UFitVmPz5s3gnGPNmjU6vYecglyL5s2bZzoSO9WLrJMeLeTf70ePHuHw4cNYsGABnJyccPHiRQwePBhmZmZ48uSJ1nnytq3UlqpZsyaio6NpsCsZwsLCcPXqVQwZMgTNmzdHqVKlMGjQIKxYsUKkSW5i6cmTJ8ibNy9MTU0xffp0AEiyFaR8q/mqVauCc44TJ07o8W6+fj59+oTg4GBs2LAB8+fPx4IFC3D06FG8fv1apElpkYCRkRHy5cuHHTt2ANBud8nPe/v2LUqXLg1zc3Pcvn1bj3fzdSIv3zt37mDfvn0YM2YMRo0aBUtLS3DOYWpqismTJycxhgYEBGDy5MlidwMpCk3RokXFgg/pnRQQEJDk7xHakBbKgbRQDqTF10dyxlBpASbwpYwjIyMxa9YsODg4gHMOW1tbnDx5Uuta8raWn58fAOp3ZATSQjmQFsqBtMh+fH198e2336ZoCpXj5uaGR48eISYmBtHR0VrHIiMjsWTJEnEdqR9IZAzSQzmQFsqBtDAs8m/nxIkTRfnVrl0b3bt3R/v27cXv+vTpI9ImNoUWKVJEpOOci/ml0qVLY8CAAXjx4kWS8whtSAvlQFooC9KDUBpkYCeIXIbcaFK7dm3s2bMHkZGRhs4WkQJhYWGYPXs2ihcvLszr586dSzG9ZEx59uwZrK2twTnH8ePHsyu7OYr0DMzKV54fPnwYgLY56MGDByJq/rBhw/SW15yOXIsHDx6gS5cuIroY5xzW1tYoW7YsChUqpBVFNCgoCID2wPs///wDzjl69+6d7feRE5CbqHbu3KnVeeGco1ixYihZsiQsLCywYsWKJBHb4+Pj8erVK1SrVg0qlQpVqlShSZA08PDwQIECBcRzm9LW8SlBJl3dkRkt5N+EsLAw7NmzB/ny5QPnHL/88os4JtdArVZnObJ4TsfT01O0cyZNmpThtizVC92RmhbyMly8eDGqVaum9c2wtrZGwYIFYW5ujs2bN2vtnCLx9OlTMQDWsmXLbLmnnEDiRcopDQ7eunVL6LFx48ZUr3n16lXR/jp27JjO8pobSSlK1blz54Qeae3edPToUZH2ypUr+sjmV0/i93hYWBj69u0rjKGTJk1KYgyVIuhLfbhChQph4sSJOHbsGNzc3HDnzh1MmTIF1atXFwPxz58/T/bvEV8gLZQDaaEcSIuvh8waQ4sWLYoLFy6keN3x48eDc46LFy/q/R5yCqSFciAtlANpYRhevnwp+mMzZ85MYgqNjIyEi4sLunfvLnYyq1OnDn755Rf4+/trpQ0KCsLPP/8MlUqFrl270s7ZmYD0UA6khXIgLQyPfDx2wYIFsLe315rb5pyjY8eOuHr1KgDt+ddp06YJP4805z18+HBs3boV/fv3R4UKFcA5R9myZcXCZerzpQxpoRxIC2VBehBKggzsBJEL8fDwEEaQVq1a4f3794bOEpEIqbFw/PhxlC9fXkxM/fvvv+k6b8+ePTA1NYW5uTlu3Lih9/x+rcjNI/IGU3q3PgsJCcGIESNEw2zVqlV49uwZgARD15w5c5A3b15wzjF16lTdZj6HkZIWiY8vXLhQRF23t7dHz5498fTpU7x58wY+Pj5wdnYWRrquXbuK8+UN8O3btyf7d4kE0tICAHbt2oVy5coJLcqXL4+qVauidOnSsLKyAucc5cqVw8WLF5MYEp2dnYWBt23btnq9l5yCh4cHmjVrhlWrVmXoPDLp6p7MaiGhVquxY8cOWFhYgHOO9evXp5qe9EkZDw8P9O7dG4cOHcrQeVQvdE9aWixZsgTm5ubim1G3bl00a9YMtWrVEgNcFSpUwPnz57UWPr179w5r1qwRbam+fftm1y19lci/3+mNZvHu3Tt88803UKlUGDt2LIDkn3+1Wo3ly5cjT548KFy4MB4/fqybTOcS0tveDAoKQrVq1WBiYoLZs2cD+KKl/Bpv3rzByJEjYWpqiipVquDVq1e6z3QOZNOmTcIYOmXKlCTG0PDwcMyZMwd2dnbC1HPz5s0kbdnIyEjcvn0bDRs2FItrQkJCUv3b79690/n9fM2QFsqBtFAOpIUy8fb2zrQx9Pz581rX2r17N9auXQsgISCGNCncqFGjNDUiSAslQVooB9LCsLi6umL+/PlaO20BQHR0NLZt24a6deuCcy7GQqQfOzu7JHN2e/bsEccT71BHpA/SQzmQFsqBtDA88jHaixcvYvny5ahTpw5atWqFCRMmwNvbO8k47rRp02BjYwPOOQoWLIh169ZBo9GIscHIyEjcuXMHDRo0AOccDRo0wNu3b7P1vr5GSAvlQFooC9KDUApkYCeIXIqbmxsqVapE240rEOnDHh0dLSacChQogAMHDqTrPAAialPevHnFVo9E+pCXY3oaUiEhIfjpp59Ex71y5cpo3749qlatKrZ+rl27NjXKdMDt27fF9tjlypXDwoULERoamiTdvXv3kD9/fnDOMXHiRPH7xIYseWR2Iv08evQIzZs3FxMZgwYNgpeXFzQaDV6/fo3Lly8LU2ilSpWwevVqPHnyBHfv3sXGjRtFh8be3h5OTk4AyCyaHj58+CD+nR4jHJl09YdcC/lq8+TeR8nx4sULdO7cGZxz9OrVK8m2nET6SRxlOi2oXuiPlLQ4ffo0ypYtK74Z48ePFyb1d+/e4fbt20KLChUqYNGiRbh16xZOnz6NKVOmiEVpFSpUwK1btwCQRrpm1KhRYrGsNAGVuIxPnz4tvt9t2rQxRDZzDUOGDBF6uLq6JjkeFhaGrVu3igWDvXr1MkAuv17Gjh2LESNGaBlDpQH4J0+eiPdR0aJF4enpCeBLuytxvbh+/ToqVaoEMzMzrFu3LsV307NnzzB8+HCxKIFIgLRQDqSFciAtlMWzZ89QunRpnRhDvby8xPFGjRqBcw6VSoWmTZvir7/+ytb7+hohLZQDaaEcSAtlIDfzSN9aV1dXUY6cc2zYsAF//fUX5s2bh3r16on+3okTJ8Q54eHhsLe3B+ccZ8+eNci95ARID+VAWigH0sLwJO6LyeeUAO35vqlTp6Jw4cLgPCFqceKAMfJrHT9+HEWKFEHBggVx9OjRJNcikkJaKAfSQlmQHoQSIAM7QeRiJMNUeiP0EdnLpEmThAl9ypQpqRrj5B/69evXixXTY8aMSXKcSB/Xrl3Dzp07AaRdfjdu3EC1atXAORcGa+mnRo0aOHLkCOLi4kiHTBIfH4/4+HiMGzcOnHNYW1tjypQpwkQqL1fJlD5mzBgYGxujZcuWWtFciayzZcsW8Xz/9NNPWsckLd68eSMm142MjMSCAimKrr29PUaNGpUk8gORNukxbpJJN3uQl+GRI0ewe/duAOn75q5YsULocufOHb3lMbdAizqUQ2It5syZI8p63LhxWumS+2ZwzmFmZqb13/Lly2P58uX4+PFjtt5LTkEq5/DwcK1yl573uLg4tG3bVhgfrly5IrYVdnV1xfbt24V5vUSJEmJAkupL5pDKX9oFLbEe0dHRaNOmDTjnsLW1xb///iu22Lx69SpmzJghzOvly5fHvXv3tM4nkke+cDWlfnWfPn3AOYeNjY0w9aQ2VvLp0yfMmDFDLOhMToNnz57hjz/+EIt4Dh48mMU7+fohLZQDaaEcSAtl4ufnB845jI2NsWrVqkwZQzUajUi7efNmcT2VSoXmzZvj+PHjWmmJ5CEtlANpoRxIC+UyduxYMb5x7Ngx8Xu1Wg0/Pz906NBBRKs8duwY4uPjce7cOVhYWMDc3Jx2PNMxpIdyIC2UA2lhWOR9M/mOWlOnTkWRIkXAOYeFhQX+/PPPZM+RCAwMRNGiRZOMuxPph7RQDqSFsiA9CENABnaCyMXQoJNy+fz5s+ggVqxYMd2R8s+dO4fGjRuDcw5LS8skK96I9OHh4YFmzZrBwsIC9+/fTzN9TEwMOnbsCAcHB+zevRt169ZF27ZtMXDgQLi5uVF0XR0hPduVK1cWEe1Teo/JDXOSMZHIGmq1Gmq1Gi1atADnHKVLlxZR3+QT59K/r1y5gsKFC8POzg4jR45Evnz5YGNjg/r162PdunV48eKFQe4jJ/Hp0yf4+/sjMjISgPbEE5l0s49r166hdOnSKFiwoKgTKSGZUw4ePAhLS0sYGxvjwoUL2ZHNXAPVC2UQHx+Pz58/o0KFCuCco1q1akKT5L4Z//77L6ytrVG2bFlMmzYNRYoUQbly5dC+fXu4uLggLCzMIPeRU/Dx8cHYsWOF2VlCKn8/Pz9hms6bNy8cHR3RunVr2NnZwcLCQtSZDh06ICgoyBC3kKN4/PgxevbsmUQP6T3k6+sr9DA3N0ehQoVQp04d5M2bVyzssLS0xNChQ/Hu3TtD3MJXSWrjH2FhYahRowY45+jZs2e6y/X+/fuoU6cONm7ciJiYGK2/8ezZM0yaNAmmpqbgnKN79+4ICQnJ8n3kBEgL5UBaKAfSQpl4eXlh/fr1ePXqlfhdZoyhAPDHH3+IqMaca++iIp8QJpKHtFAOpIVyIC2Uh0ajQc+ePcUigPDwcKjVaq0xJ7Vaja5duwpz6N9//43Ro0eD84Td52jMXHeQHsqBtFAOpIVykJf51KlTUahQITEGu2TJEnEstb5ikyZNwDnHzz//nGZaImVIC+VAWigL0oPITsjAThAEoUCuXbsmPv6LFy9OMZ38A//gwQMMGDBAnCdFXycyzps3b0RjasyYMSLSd3JIGkhRq/777z8a1NUDr1+/RrFixWBsbIylS5cCSD7amLSl0fz582FmZgYLCwt4eXlla15zOu3btwfnHFWqVEmyhZSc169fo0qVKsifPz8uXryIly9fIiAggDomOiIiIgLr169H165dsXv3bkRERIhjrq6uZNLNRh4+fIiaNWuCc445c+bg06dPaZ6zevXqZKOcEFmD6oXykLadbdKkCYCUy/r58+dwcHBA0aJF8ejRI4SEhKTa/iLST1xcHNasWQMjIyN06dIlxcUAMTExmDBhApo2bYqKFSuKKN+Ssc3a2jpdCzuJ1ImOjsbkyZPBOcf//ve/FJ9ztVqNmTNnolOnTmjSpAlsbW219KhRowYt0tQhDx8+FN+H1atXp+scqU3r7u6O8PBwrWOJjaEZMZzmdkgL5UBaKAfSwrAkt/gyo8bQadOmCWOoo6Oj0HPGjBnJ/h0ieUgL5UBaKAfSQnn06NFDBOFJvLOKvBy7desGzjny5csnynz79u1a6ZMbRyctMgbpoRxIC+VAWhiexN9ha2trGBkZgXOOOnXqiJ1VUpu3ePLkCYoXLw7OOWbOnKn3POdUSAvlQFooC9KDyG5UjCAIglAcsbGxzMzMjFlaWrJ69eoxxhjTaDRaaQAwzjljjDE3Nze2bds2tn//fsYYYz179mSLFy9mjDEWHx+fjTnPGVhbW7OuXbsyCwsLdurUKfbff/+lmFbS5dWrV4wxxoKCgpipqWmS40Tm0Wg0LC4ujsXExLD4+HiWL18+xhhjRkZGWukAMBMTE/bu3Tu2b98+Fhsby+zt7ZmdnZ0hsp1jKVGiBGOMsQ8fPrAPHz4kmyY+Pp4VLVqUFSlShEVFRbGPHz8yOzs7VqpUKcY5p3qhAzQaDduzZw9zcXFha9asYceOHWOMMfbs2TPWp08f5uHhwRhjrEqVKuzw4cOsYsWKTKPRMJWKmv+6ply5cqxdu3aMc84OHTrEHjx4kGr658+fs7NnzzLOOStQoACzt7fPppzmfKheKA9HR0fGGGNv3rxhHz58SLas4+PjWYECBZilpSULDQ1loaGhrFChQszKyooxRm2prKJSqZiNjQ3LkycPc3d3Z/fu3UuSRq1WM1NTU7Z06VJ29epVtnXrVla1alWWN29eFhcXx1QqFTty5AirXbs2A2CAu8g5GBsbM0dHR5YnTx529+5d9vDhwyRp4uLimJGREZszZw47efIkW7FiBbO0tGRmZmYsLi6O2djYsK1bt7KKFSuSHjqiQIECrECBAixPnjzM1taWMZagQ2pIffEKFSqI/gljjPn4+LBt27ax1atXs7i4ONajRw+2bds2ZmNjo78byEGQFsqBtFAOpIVhkcae4uPjmZGREYuKimJLly5le/bsYc+fP2dFihRh+/fvZ61bt2aMJYxNaTQacd706dPZwoULGeecNWjQgC1evJht2LCBMcbY/Pnz2bRp08Tfoe966pAWyoG0UA6khfJo3rw5MzMzY+Hh4ez27dta5SYfF3d2dmbly5dnnz59YowxNmrUKDZgwADGWIJO8vm/w4cPs02bNjHGSIuMQnooB9JCOZAWhkX6ZjOW8B3euHEjCw8PZ2XLlmWMMVawYEHR70tuLF0q2wcPHghvgjRvS2QM0kI5kBbKgvQgDIL+PfIEQRBERjly5IhY1fzo0aMkx+Ur2e7du4chQ4aI1c/t2rXDf//9l53ZzZG8fv1aRJpu0qQJ3NzcxDFpRXlcXBwAwNvbG0WKFMlQNCwi47Rp0waccwwdOhTR0dFaxyRNPn78iOnTpyN//vzgnKNPnz6IioqiqN86QCpDFxcX2NnZwdraGocOHUpSttL/BwYGws7ODpxzzJ8/X+sYoRvc3NxQuHBhsdp5yZIlqFixIkWYNgAvXrwQO3c0a9YMbm5uSb4VAPDhwwds2LBBvKPatGljqCznWKheKAPp+T9w4ABsbW1RuHBhnDhxIkk6SQN3d3fY2NiAc46tW7dqXYPIOm/fvkWHDh3AOUfTpk3h6uoqyj5xVCRPT0/UrVsXlpaW4JzD2NgYR44cAUCa6Irg4GC0bt1afDOePn0qvhXy91JkZCQuXbokopRwzmFubo7r168nSUtkjcDAQBQoUACcc8ydOzfT16GoxlmHtFAOpIVyIC2UQ2RkJCZOnIiyZctmOKpxo0aN4OzsLNKtWrVKfN8XLVqU7ffytUNaKAfSQjmQFsogMDBQjEM1a9YMjx49wufPn7XSuLm5YeLEiaKM//e//2nNP8n7esePH0ejRo3AOcf48eOz7T5yCqSHciAtlANpYTgSf4elfl7FihWxZcsWVKpUCd9//32K50tjs7dv3xa7Z7Zo0SLJrltE2pAWyoG0UBakB2EoyMBOEAShQF6+fIlKlSpBpVJhw4YNwtCQeJDx+PHj6NOnj+hAtmzZEufPn6ftuXSEv78/ypcvLzrxly9fTtK48vPzQ/Xq1cE5R4kSJXD37l0D5TbnotFoEB8fjzlz5oBzjlq1auHJkyeiARwbGwsAePfuHZYtWyYGXkxNTUkPPRASEqK1uMPd3V0MVklaBAcH46effgLnHJaWljh69KgBc5yz8fDwQKFChZJs5Vi9enW4u7sDIINbduHr6yu2Z27SpAn++ecfLUPIkydPsHz5clhbW4stOq9cuQKANNI1VC+Uw5s3b9CyZUthnHZzcxPtVOmbERQUhFatWoFzDltbW9y6dcuQWc6x+Pn5oXTp0uCco2HDhti/fz9ev34tjt+4cQNr165FwYIFRZ0xMjKCi4uLAXOdc/H19UWpUqXAOcc333yDbdu24fnz5+L4iRMnMH78ePHNMDExgb29vagf9A7THVKfYvjw4VCpVOjYsSMCAwMzfB0yhmYd0kI5kBbKgbRQFiEhIWIM0N7ePlPGUCltbGwsVq9eDRsbG0yfPj1b7yMnQFooB9JCOZAWysHT0xMlS5YE5xzVqlXD2LFjcfToUbi4uGD06NFinIRzjoEDB2oFpJLrdOzYMTRu3Fh8v0eOHAngS3+QFpmnD9JDOZAWyoG0yH5SM4X+888/UKvVsLW1Rfny5eHr6yvSJi7LBw8eoH79+uCco3DhwliyZIkYZyfSB2mhHEgLZUF6EIaEDOwEQRAKJCIiAv379xcmuMePH4vVz1LDYf78+ahRo4boQHbo0AFXrlyhj7+O8fLyElEPK1asiMGDB+PixYs4ceIEduzYgWLFionB3g4dOmgZgQjdEhgYiGrVqoFzjubNm+P48eMICwtDREQEfHx8MGDAAJQpU0ZEC92xYwcAMvjoAx8fHzG41bRpUxw+fBghISGIj49HUFAQfvzxR9jb24uOibe3t6GznKPx8PAQkYtNTU1hb28vBhTl0b8J/ePp6SkMiba2tqhSpQoGDhyIvn37wsHBAXnz5gXnHGXKlMHKlSvx4cMHQ2c5x0L1Qjk8e/YMJUqUEO3affv2ITg4GO/fv4e7uztatmwpFhrUqVMHL168MHSWcyxeXl4oV64cOOfInz8/7Ozs0KxZM7Rs2RJmZmawsLAA5xw2NjaoVauWMEvTZJN+8PLyQoUKFURk9QIFCqB69eqoVasWOOcwMzMTi2R79Oghduaitq1+OHToEMzNzcE5x8qVK7V2fEqrDpAxVLeQFsqBtFAOpIVycHV1RYUKFXDq1CnxOynwgkRqxlB5utjYWNy/fz97Mp4DIS2UA2mhHEgL5eDr64tu3brB1tZWzFdIO51JPwMGDEjVFNq0aVMYGRkhT548aNeuHfz8/PDixQu8f/8+2XOIlCE9lANpoRxIC8Mwc+ZMLVOoPABYnz59oFKpsGLFCkRFRSU598aNG6hVqxZMTEzAOUe3bt2ob5cFSAvlQFooC9KDMARkYCcIglAo8iiJdevWxbBhw7B3714MGzYMbdu21epA9uvXD66urmRm0BPPnj3DN998A2NjYzG4yzlHnjx5hOGkSpUqePjwoaGzmuORLyiwsbFBmTJlUL16dbEFkaTP+vXrERkZaejs5mg8PT2FIbFAgQJwdHREs2bNULhwYaGFsbGxiNxK5jf94u7uLsy6lSpVgouLC5mjDYSPjw/atGkjBn6lb4b032rVqmH9+vUICQkxdFZzPFQvlIM8qk/evHlhZ2eHihUrak2KWFhYUPT1bMDPzw99+/ZFpUqVtPoT0s8333yDJUuWiMVn1L/QL/7+/vjpp5+0FiZLP/nz50fr1q1x5MgRsbCD2lP6ZcaMGaL8ly5dCj8/P3EspbJPbAzt0aMHQkNDUz2HSBvSQjmQFsqBtFAO8vEmjUajVZazZ89ONapxStAi28xBWigH0kI5kBbK4f3793j8+DG2bNmC3bt3i51jOefo379/qqbQZs2aifkoaYGzNLbYrFkzbN68OdlziZQhPZQDaaEcSIvsZf78+aKsEptCAWDHjh2iPKdPnw4XFxeEh4fDxcUFy5YtE4ZQzjlatWqF4OBgADR+mxlIC+VAWigL0oMwFGRgJwiCUDBeXl5anUX5B9/Y2BhlypShLRyziZcvX2L69On45ptvtIwlJUuWRN++ffHkyRMANAGYHfj4+KBDhw7CyC79WFtbw97eHsePHycdsgkfHx+0a9cORYsWBeccRkZG4Dwh2nH+/Plx8uRJQ2cxV+Hu7o6CBQuCc46aNWviwIEDCA8PN3S2ciVv3ryBk5MTevbsidKlS8Pc3BwNGzbEwIED4evrm+yqdEI/UL1QDj4+PujUqZNY/CRNaBQoUACVK1cW5nUayNI/Hz9+hI+PD5YvX44pU6Zg9OjRWLNmDZydnaFWq0U7itpT2cOnT58QHByM7du3Y/ny5Vi+fDmcnJxw584dQ2ct1yB/70ycOFH0L7p27YqFCxemeN6zZ88wYcIE0U/v27dvmgulEpuICG1IC+VAWigH0kJ5pFRGW7duhZWVVbqMoelt85IeqUNaKAfSQjmQFspkypQp4hv+ww8/pCuiMecc7du3x9y5c3Hu3DksWbIEvXr1EteZPXu2OI+0yBikh3IgLZQDaaF/PD09YWNjA1tbW/zzzz/i9/LynTx5stbct4ODg9ZYur29Pb7//nthCqXFAZmDtFAOpIWyID0IQ8EBgBEEQRCKJTAwkO3YsYNdvnyZ+fj4sDx58jBLS0v2yy+/sOrVq7PmzZszxhjTaDRMpVJl+PoAGOdc/L9Go2Gcc63fJU6TW4mLi2NxcXHMxcWFxcTEsIiICNa6dWtWpEgRZm1tTeWUjbx79465u7uzU6dOsZiYGBYTE8Pat2/PqlWrxkqXLm3o7OUq3r59y65du8aOHj3KgoODmUajYc2aNWM9e/Zk1atXp3qRzXh6erJmzZqx0NBQVqpUKbZp0ybWrl27TH0fCN0QHh7OPn36xGxtbZmxsbGhs5MroXqhHN69e8fu37/P/v77b/b+/XumVqtZly5dWNOmTVm5cuUy3Z4ldAvpoCzi4+OZkZGRobOR45GX88qVK9mWLVvYs2fPWIECBdiRI0dY06ZNtb7jPj4+bOvWrWz16tVMrVaz8uXLs+XLl7Py5cszzjlTqVTMysqKmZqaMrVazSwtLZmpqSn7/Pkzy5MnD+maCqSFciAtlANpoXw+ffrE+vXrx06dOsXKlCnDFixYwHr37s0YS37sVWpr+fv7s8DAQHbhwgUWHh7O8uTJw5o3b84cHR1Z+fLlGWPUFsgopIVyIC2UA2lhWN68ecOKFSvGGGPsxx9/ZCNHjmR16tRhjGmX3/Hjx9ny5cvZzZs3mUajYSNHjmRr167VulZISAjbs2cPmzRpEmOMsbVr17KRI0dm4918/ZAeyoG0UA6kRfbh6+vLPD09WefOnRljX77D8nKeP38+c3JyYl5eXlrndurUiX377besd+/ezNramr7BWYS0UA6khbIgPQhDQAZ2giCIrwCNRsM0Gg0LDAxk1tbWTKVSMWtra63jGTWZJD5nz549zN/fn92+fZupVCrWpk0bVqVKFda+fXvGGJnYia8HelYNh1qtZkZGRqL8SQvD4OnpyapUqcIKFSrEzpw5w2rVqmXoLOVKUnr+yRhqGKheKB/6ZhgOei8pC6oLhkM+oH7nzh325MkTZmFhwbp06cKsrKxEOh8fH7Zt2za2evVqFhcXxwoVKsTCwsKYqakpU6lUTK1WM41Gw2xsbJixsTGLiopiBQsWZFZWViw2NpYdP36cOTg4UN1LBdJCOZAWyoG0UDaPHz8WfYwZM2awOXPmMMZSb2dt376d7dq1i92/f5/FxsaK33POWY0aNdjgwYPZsGHDGGNkEM0IpIVyIC2UA2lheNzc3Nj69evZjz/+yBo0aMAYS90UOnHiRLZkyRKRTlqAxhhjHz9+ZGPHjmX79u1jLVq0YAcPHmSFCxc2zI19pZAeyoG0UA6kRfaT+DssL29PT0/m4+PDAgICWMGCBVnhwoVZmzZtxLgh9dd0C2mhHEgLZUF6ENkFGdgJgiC+AnRtYpAaFh8/fmTOzs7s77//ZqdOnWIqlYppNBrGWMJAZIECBdjQoUPZ/Pnz9ZKPrx0qD8MiL3+pOUN6GIbEdYHqhuEJCAhgwcHBrG7duhT1myD+H6oXyoC+GQRBKJm0BtYTG0P/97//sdq1a7NJkyYxtVrNihUrxiIiIlh0dDSzsLAQu0UxxpiRkRGLj49n5ubmzN3dnTk4OGTTXX2dkBbKgbRQDqSFcnnz5g1r2rQpe/XqFVu3bh0bNGhQEkOnXL8pU6YIw0+RIkVYgwYNWNmyZVlwcDC7desW8/PzY4wxNnPmTDZ79uwk5xMpQ1ooB9JCOZAWyiAmJoaZmZkxxjJmCk1uccCcOXPYnDlzmJWVFfvvv/9YmTJlsu9Gcgikh3IgLZQDaWF40vqeZvZ7m9wYPC1ASx3SQjmQFsqC9CD0Ac3aEwRBfAWkZupJbYvH5JA+8sHBwWz8+PHs5s2b7Pnz54wxxgoXLsxq1qzJzMzMWHBwMLt37x5buHAhi4mJYcuWLSNzUSKoPAyLvPxJC8OSuPxJD8Pj4OBAhgOCSATVC2VA3wyCIJRM4r60vL/t6+urZQzt1q0b27hxIzt8+DBTq9WsdOnS7Pr16ywmJoZ9+vSJmZubs6ioKPbu3TtmbGzMALD3798zPz8/5ufnR9+kNCAtlANpoRxIC+ViYWHBqlatynx8fNiuXbtY69atWcmSJcVx+XjtpEmT2PLlyxljjOXJk4dNmjSJ/f777yLtw4cP2V9//cWWLl3K5s6dy/Lly8fGjx9PxtB0QlooB9JCOZAWykBXplDGGDMxMWGMJZhNIyMjsyH3OQ/SQzmQFsqBtDA8qfX5kjueHuTXuHjxIvP19WWDBw9mRkZGtAAtFUgL5UBaKAvSg9ALIAiCIL5aNBqN+Levr6/4t1qtTja99PugoCDUrl0bnHPxM3/+fFy6dEmkDQgIwLp166BSqcA5x6ZNm/RzE7mI+Ph4Q2eB+H9SqiNE9kNaKIu4uDhDZ4H4f0gL5UBaKAfSQjlQu1ZZUHtK/3h6emLSpEnIkycPOOfo2bMnQkNDAQDbt28H5xx2dnb48OED4uPjtfrq8n+n9jsifZAWyoG0UA6khTLw9fVFqVKlwDlHmzZt8Pz58yRplixZIsZiCxcuDM45ihQpAn9/f610Hz9+xNKlS8E5h729PW7fvp1Nd5EzIC2UA2mhHEgL5XH48GG0bNkSRkZG4Jxj0qRJ4lhqfbxHjx6hVq1a4JyjQ4cOiIqKyo7s5nhID+VAWigH0iJncePGDXz//ffgnKN///6Gzk6uhrRQDqSFsiA9ci+0RIEgCOIrRlqFduXKFdamTRs2ceJExhhLdrWztAo6KCiINW/enD18+JBxzlmRIkXYmTNn2LRp01iLFi1E+lKlSrEff/yRDR06lHHO2ZUrV7LlnnIyKpWKaTQaduLECfbmzRtDZydXI22NvXv3bvbq1StDZydXQ1ooC2NjY6ZWq9mKFSvYixcvDJ2dXA1poRxIC+VAWigHatcqC2pP6R9PT0+2bNkyFh0dzb777ju2bds2VrBgQa00JiYmTKPRMMbS3i2Kdp/IPKSFciAtlANpoQwcHR3Zv//+y2xsbNiFCxfYpEmTWEREhDh+5coVtnbtWsYYY02aNGEzZ85kzZs3Z2/fvmUNGjRgz549Y4wlRELOnz8/++6779g333zDXrx4wZ4+fWqQe/paIS2UA2mhHEgLZfHp0ye2c+dOdvny5QxFNH7x4gU7dOgQ8/HxYYwxVq9ePZYnT55sy3dOhfRQDqSFciAtchZ3795l8+bNYy4uLowxxu7cucMeP35s4FzlTkgL5UBaKAvSI5djaAc9QRAEkTXOnTuHxo0bw9TUFJxzLFq0KEkaKUJiUFAQypUrB8458uTJg3r16uHu3bsAUo6utH79enDOYWpqioCAAP3dSC5h1apVMDExwbfffougoCBDZydXM378eHDO0aNHD9LCwJAWykJa2dyrVy/Sw8CQFsqBtFAOpIVyoHatsqD2lP754Ycf0LJlS7x79w7Al10hpD5zxYoVERMTY8gs5hpIC+VAWigH0kI5eHh4oEqVKpgyZYrW7zds2ABzc3NwzrFixQoAgI+PD5o3by6iHHt7ewP4Mk47ZMgQEVU/Pj6edl3JIKSFciAtlANpoRzc3d2RL18+jBw5UvwutTJ88eIFFi1aBBsbG3DO0a5dO3GMdk/JOqSHciAtlANpkXN48+YN7OzswDlH8+bNcezYMXz+/NnQ2cqVkBbKgbRQFqRH7oYM7ARBEF8xUVFRaNmypdjWsUKFCnjw4IFWGqlDGBwcjIYNG4JzDnNzczRp0gQPHz7USiNHmug6ceIE8ubNiwIFCpCBXQc8ePBA6PXdd9+RucSA3LlzR2x7RyY4w0JaKIvr16+LRVGkh2EhLZQDaaEcSAvlQO1aZUHtKf0hn5yNjIwU/5b60Rs3bgTnHGXLlkVERES25y83QVooB9JCOZAWyiQsLEz8Oz4+HjExMWjatCk452jRooVWWk9PT7Ro0SKJQRQAJk6cCM45fvrpp2zLe06DtFAOpIVyIC2Uw5s3b8S/M2IKbdy4MUJCQtI8j8gYpIdyIC2UA2nx9SMFOvT29kbnzp1x6NAhREdHGzhXuRPSQjmQFsqC9CBUho4ATxAEQWSePHnysI0bNzLGGLO1tWV///03q1WrllYazjmLiIhgc+bMYQ8fPmSMMVapUiW2du1aVrNmTQYg2a2BjY2NGWOMHTt2jEVFRTETExPa4iuLAGC1atVi169fZ6ampuzvv/9mY8eOZS9evDB01nIdGo2G1a9fn129epWZmJgwZ2dn0sJAkBbKQqPRsMaNG7PLly+THgaGtFAOpIVyIC2UA7VrlQW1p/SLkZER02g0jDHGLCwsxO+lfrS0bbZGo2FxcXFMrVZnfyZzCaSFciAtlANpoUwKFCjAGEsod5VKxQCw6Ohoxhhjjo6OjDEmtKhQoQLbvHkza968OXv79i1r2rQpe/nyJWOMsUuXLjHGvmgLIFvvIydAWigH0kI5kBbKwdbWljHGWHx8vPhmJ+bVq1ds3759bNmyZez9+/esYcOGbP/+/axQoUIMQIrnERmH9FAOpIVyIC2+flQqFVOr1axcuXLs0KFD7Ntvv2VmZmaGzlauhLRQDqSFsiA9CDKwEwRBfOVUrFiRPXv2jF28eJFVqVJF65g0gXX79m125coVFhMTw/Lly8c2btzIatWqlaJ5XTrPx8eHubu7M8YYq1y5MrOwsBDHiIzDOWcajYY1atSIXbp0iRkbGzNnZ2c2cuRIMpdkMyqVSmhx+fJlocXw4cPFADyRPZAWykLSo2HDhlp6DB06lPTIZkgL5UBaKAfSQjlQu1ZZUHtK/6hUSYdQpb6xZPYxMzNjFhYWYjE4oR9IC+VAWigH0kK5SNoYGRkxa2trxjlnJUqU0DrGWFKDaO3atdmIESPY06dPma2tLfvxxx8Nkv+cBGmhHEgL5UBaKIfUTKF79+7VMoU6OTkxBwcHxhhLdn6PyDqkh3IgLZQDaaF8UltIJvUDLSwsmKmpaXZlKddCWigH0kJZkB5ESpCBnSAIIgdQpkwZVrly5SS/lwYZd+/ezTw8PBhjjO3bt481aNAgVfO6dN6uXbvYrVu3GGOM9e3bl1laWiY7KUakH7nx6sqVK4wxxo4fP8527tzJYmNjDZy73EVyWri4uLBjx45RRLJshrRQFsnpcerUKXbz5k1axJTNkBbKgbRQDqSFcqB2rbKg9pThiIuLY4wlaED9ZcNCWigH0kI5kBbKwNjYmNnb2zMA7NSpU+zt27dJ9JAMos2aNWMhISFs+/btLDY2ljVs2JCVLFmSMUYGIF1AWigH0kI5kBbKJC1TKJG9kB7KgbRQDqSFcpD7PqRFzPHx8YbMUq4lu7WgHXBSxhD1gvRImezUQ9KB3oNfDzRiSRAEkcO5desWO378OGOMsWHDhrGOHTsyxpIfTAQgBia3bt3KFi1axBhjrHPnzuzbb78VaeRERESwqKgorWsQqSM3l9y8eZO1b9+e1alTh1YSGoDEWgwePJjVrVuXIpIZANJCWcj1uHXrFps7dy6rW7cuGR4MAGmhHEgL5UBaKAdq1yoLak9lL9I7J0+ePIyxhL7w58+fszwwLu9TU/86fZAWyoG0UA6khXKQyql3796sWLFi7NWrV+z27dvJll+FChXYli1bWOPGjVlcXBwrW7YsmzhxIitatGh2ZztHQlooB9JCOZAWyiQoKIjt37+fTKEKgfRQDqSFciAtlIPcFHrp0iU2cuRI5u3tzYyMjCjgSzaTnVp8+vSJMUYLCFMiu+tFWFgYCwkJYZxzMk0nQ3bq8f79e7Zlyxbm5ubGjIyMSI+vBRAEQRA5msOHD4NzDs459u3bl2I6jUYj/n3w4EEULVoUnHMUK1YMmzZtSvacJ0+eYNy4cRg3bhyuXLmS7LWIlImPjwcAfPz4MUvXofLOOpIWkZGRWboOaZF1SAtlIekRGxubqfMlHUiPrENaKAfSQjmQFsqB2rXKQlftKQD48OED1q5di/379yMkJET8nrT6wrZt28A5R+XKlRETE5OlslGr1en6HZE8pIVyIC2UA2mhHEJCQtC5c2dwztGkSRO4urqmmNbDwwOdO3eGi4tLNuYw90BaKAfSQjmQFspBrVZj1apVYl6vUaNG8Pf3N3S2ci2kh3IgLZQDaaFMrl69iv/9739Cl+fPn+v0+tJ4o0ajEf+W/ktoo28t/Pz8MGXKFAwYMAD3798XY/KkR1L0rQUAhIaGYubMmahSpQoePHgAgMZKUkLfemg0Ghw9ehSccxgbG+Pp06cASI+vAQ5QmAyCIIiczLp169iYMWNYpUqV2K1bt1j+/Pm1VrgxxphGoxGRmY4cOcKmTp3K/Pz8mEajYUOHDmUbN25kjLEk5/3zzz+sZ8+ejDHGqlSpwgYPHsxGjx6dbFoibTJSZnLNGEtY1fnhwwf27t07ZmlpyUqXLs3Mzc0zfF0i4yTWIigoiL169Yq9e/eO2draMkdHR2ZjY8MYIy30DWmhLOR6qNVq5uXlxby9vdmHDx9Y6dKlWZkyZZi9vT1jjPTQN6SFciAtlANpoV+oXZsziI6OZkeOHGEDBw5kjDE2ePBg1rVrV9alSxfGGOkh59dff2XHjx9nr1+/ZkZGRpm6Rnx8vDh3xIgRzMLCgi1btowxRmWdEUgL5UBaKAfSQjn4+fmxli1bsqCgINakSRM2e/ZsVq9ePZYvX74kbaKoqChmYWHBGKMy1gekhXIgLZQDaaEcvLy8WKVKlVilSpXYyZMndRbRWK1WM2Nj4yR6EqlDeigH0kI5kBbKws/Pjw0dOpRduHCBAWAVK1ZkK1euZB06dMjytRN/58PCwlhsbCwrWrSo0In0+oI+tWCMsdDQULZu3Tq2bNkyFh0dzSpXrsyaNWvGJk2axBwcHLT67rkdfWvBGGPv3r1j27ZtY7t27WLPnj1j+fPnZ9euXWPVqlUjLRKRHXpIf+enn35i169fZ1ZWVuzatWusatWqpIfSyRabPEEQBGEw1qxZA845bGxs4OPjk+S4PPKSk5MTHB0dYWJiAs45evXqJY6ltGJz+/bt+Pbbb6FSqcA5x7Rp05K9NqE75FrcuHEDK1asQKlSpVCoUCGYmJhApVKhR48eWL9+vUhHWuifo0ePYvz48bCysoKFhYVYOdquXTusWrVKpCMt9A9poSy2bNmCvn37wtTUFEZGRlpROZYtWybSkR76h7RQDqSFciAtDAu1a5VNbGwsdu/ejYYNG4JzDpVKhTJlymDmzJkiTW6P7COP3rJ582a8ePEiy8/o9OnTUaRIEXDOMWDAgKxmMddAWigH0kI5kBbKxNPTE/b29uCco2LFipg4cSKePXtm6GzlSkgL5UBaKAfSQjn4+/vrNCrly5cvsWrVKjx69AgA9eUyCumhHEgL5UBaKIvRo0eDc46GDRvCxcUFnz9/1tm1PT09sXr1anTq1Ally5ZFkSJF0Lp1a8yaNQt+fn4AKMKxHH1qAQCnT5/G4sWLUbZsWZiZmYFzjipVqsDNzQ0AaSFHn1qEhoZi0aJFKFeuHDjnyJs3LzjnsLa2psjfKaDvuiHh6+uL9u3bkx5fEWRgJwiCyOE8ffoUjo6OsLGxwdGjR8VEVVxcnFa6tWvXIn/+/MK407lzZ3EsrS2CXV1d8ccffwgT+5gxY8QxMpjojyVLlqBKlSpiwQHnHObm5mJLHM45xo0bJ9KTFvohOjoakyZNQv78+YUWJiYmyJ8/v5YWv//+uziHtNAPpIXhkcpTrVbDy8sLgwcP1ip7KysrFC5cGCqVSvxu7NixSc4nsg5poRxIC+VAWigXatcql9jYWLx58wZDhw4VJnbOOYYOHWrorCkGXQ58z58/HyqVSvTLR40aRc97BiAtlANpoRxIC2Xi4+OD1q1bI0+ePKLts2zZMgQHBxs6a7kO0kI5kBbKgbTIebx+/RqrV68W/WvJHEoYBtJDOZAWyoG0yDxyo/+KFSvw119/ITo6OtPXk/fxXr16BScnJxQsWFC0C6SxQemnUqVKwjid2xcd6FqLtHj+/DmWLVuGOnXqgHOOQoUKkRb/j761SGxeL1CgAE6dOoWuXbuSaToZsrtuAAl9GjKxfz2QgZ0gCCKH8+7dO3Ts2BGcczRr1gz//fefaAxoNBpcunQJo0aN0upofP/99+L8xEZ3OfIOzPv377F+/XrRaZk3b57+biqXExoaimHDhmlp1qpVK8ycORM3btzAnj17MGHCBKHFrFmzDJ3lHEl8fDwePHiAvn37amnRo0cP7NixA+7u7nB2dsb06dOFFnPnzjV0tnMkpIUykL4JMTEx+Oeff9ChQwehReHChfHzzz/j4sWLePHiBc6ePYt58+YJPRYsWGDg3OcsSAvlQFooB9JCmVC79uti/vz5KFWqlDAukh66JyAgADY2NqJ8c/tkkyEhLZQDaaEcSAvdEhwcjNWrV6NRo0YwNTXFoUOHEBERobPr0+KC9ENaKAfSQjmQFjmHiIgIzJkzR3zDzc3NMWvWLMTGxho6a7kS0kM5kBbKgbTIOnI/R1bMmfLv882bNzFy5EgR4dvS0hLFixfHhAkTsGjRIvz888/COG1nZwcvL68s3UNOQVdapIWk1efPn3H//n20adMGnHNUr15dpzsjfM3oWgupzJMzr7u6ugJI2K2gXbt2ZJpOhuyqG3LIxP71QAZ2giCIXICPjw9KliwJzjkqV66M7t27Y/LkyWjVqhUcHR2FWaRcuXIYP368OC8183pyfPz4UZh9HB0dcfnyZV3fSq7H19cX/fv3F5qVKlUKkydPTpLu06dPWLduHVQqFYoVK4aLFy8aILc5l7i4OFy6dAmdOnUSWjRs2BArV65MkjYyMhKrV6+GkZERypQpgzt37hggxzkX0kIZSJ326Oho7N69G40aNRJ69OzZEwcOHEhyTlRUFJYtWwYjIyNUrVpVRAUgsgZpoRxIC+VAWigTatd+Xbx69Qrz588X0ZYqVaqE7du36z1SSm5CGjh/9uwZFi5cSAPpBoS0UA6khXIgLfSDRqNBbGwsnjx5orOts/39/REUFASAJmUzAmmhHEgL5UBa5BwWLlwIzjlsbW0xa9YsBAQEGDpLuRrSQzmQFsqBtDA8cvP6mTNn0K1bN7FbZq1atTBz5kwtY3RsbCxcXV3RokULcM7Rq1cvfPz40RBZJwA8ePAAVatWhbGxMWbPno34+HhadK4H3rx5g6VLl6J06dLgnMPGxgZPnjwB8KVtS6ZpZeHj46O1qCCxXoQyIAM7QRBELsHb2xs1a9YUq2SlHyl63sCBA3Hw4EGRPrUPdmRkpPh34kgZ//33H0qVKgWVSpWsgZTIPM+fP0efPn2Edi1atMCuXbvEcXlHRKPRwNvbG5UqVQLnHBs2bDBQrnMe8fHxuHr1Ktq2bSu06NevH06fPi3SqNVqUTc0Gg2ePn0KOzs7cM6xZ88eQ2U9x0FaKIuYmBjs378fdevWFXqMGzdOa6vHxN+WO3fuIF++fOCc4++//87uLOdYSAvlQFooB9JCWVC79uvi+fPnmDlzJiwtLcE5R5UqVXDgwAGdRmAkEsjoInJCf5AWyoG0UA6khe7RdQRif39/DB8+HCVLlsStW7d0eu2cDmmhHEgL5UBa5CyWLFmC0aNHIzAw0NBZIUB6KAnSQjmQFoZD/s0/deoUWrVqBWNjY3DO0aZNG5w/fx6fPn0CoD2GHh8fj/3798PU1BRlypSBn59ftuedSCAmJgYDBw4E5xxNmjQxdHZyJDExMVi9ejWKFi0KzjnMzMxw4sQJcUy+YEBuYs+bN6/WPBSR/fj6+opgiFZWVnj8+DEAMrErCTKwEwRB5CJevHiBdevWoXv37mjUqBFq1aqFCRMmwNnZWStdaqsxvb29MWrUKBw/fjzFNN26dQPnHPXq1UNMTAxtB5kFJC0iIyMxYMAAYfLp3LmzaBDL0yWmZcuW4Jyje/fuqaYj0kZ6jt3d3dG1a1ehxa+//op79+6JdCmVsbSN2pAhQ1JNR6QNaaE8NBoNzpw5gyZNmgg9ZsyYgRcvXmilSQ7JkDhz5kwApEdWIS2UA2mhHEgLZUDt2q+T58+fY/bs2cK8Xq1aNTg5OZF5PQvIn13qKxsW0kI5kBbKQd9akL7649mzZxg/frzYhdPR0RFv3rwxdLZyJaSFciAtlANpYTjkxhyKjGt4SA/lQFooB9JCOVy5cgWdO3cW5vUuXbqkaUoPCAiAjY0NOOf4888/symnhBypDq1Zswacc1hYWMDLy8vAucqZBAQE4Pvvv0fVqlXBOUeDBg1w5coVAAnjKfIxD19fX7Ru3Rqcc/z+++8UFCCbSWxO37VrlwhyaGlpKUzshDIwZgRBEESuoXjx4mzkyJFs5MiRLD4+nmk0GmZiYpIknUqlSvZ8AOzJkyds/fr1bP369ezw4cOsV69eDADjnLP4+HhmZGTEzMzMGGOMxcbGMs4545zr9b5yKgCEFlOnTmX79+9njDHWoUMHNnr0aNauXbsk6eTncs6ZWq1mjDFmYWHBGGOkRSbRaDSijJcsWcJcXFwYY4wNGjSIjRo1ilWvXp0xllQLAIwxxiIiIlhUVBRjjDFra2vGGGmRWUgLZSHp8fbtW7Zx40Z248YNxljCO2vkyJHM1tZWpJWXs3Sep6cne//+PWOMscKFCzPGUv4GEalDWigH0kI5kBbKgdq1XyeBgYFs165dbPny5SwyMpJVrVqV/fHHH6xbt27M0tLS0Nn7KpG3ZUNDQ1mhQoVEP5rIXvSthfz6yf0/8YXsqBfStyS5v0l8ITu0kHSIiIhg+fLlo3egDvH19WUrV65kjDFWunRp9ttvv9FzbiBIC+VAWigH0iJ7kbd9jIyMxP/nz5/fwDnLnZAeyoG0UA6khfLw8/Nje/bsYWfPnmXx8fGsS5cubPv27Vpj6Mnx6tUr9uHDB8YYY8bGZEE0BFKfOjQ0lDHG2OfPn1l0dLQhs5Qj0Wg0rFSpUmzHjh3s3r17bOnSpezMmTOsbdu27OLFi6xx48bCj8AYY46OjmzTpk3szJkzrEuXLlQ/shnp23LixAl2+fJltmHDBvHdiYyMZBMnTmTHjh1j5ubmBs4pwRhj1DMkCILIZUiNJiMjI2ZiYqLViEoLzjlr1aoVGzRoEGOMsd69e7OtW7eyd+/eiWs6OTmxI0eOMMYYq127drIGeSJ9SA2ozZs3s7Vr1zLGGGvYsCH77bfftEw+yZl3OOfs9OnT7Pr164wxxmrUqKF1TSJjSIPp8+bNY3v37mWMMdajRw82ZMgQYZhmLGn5Sgs4XFxcmKenJ2OMsfLlyyeblkgfpIWykC8mOHHiBGOMseHDh7PBgwenOqglnXf+/Hn25s0bxhhj9vb2es5tzoa0UA6khXIgLZQDtWu/Psi8rnvi4+PF+2XUqFGsadOmzNPTUwymE9mHvrWQm4AfPnzIGPvybSGttcmOeiH/vly7do09e/aMqVQqFh8fr5Pr5xSy8x118OBB9r///Y89ffqUGRkZkRY6on379mzMmDHM2NiYjR49mv3888+sUKFChs5WroS0UA6khXIgLbKHiIgIxhgTAackqP9sGEgP5aBPLRK3lanPlzrZWS80Go3Or5kTkcrp9OnTzMnJianVatauXTu2YcOGVMfQJf38/PyYhYUFU6lUInAYkT3I3zcPHz5kx44dY5xzVqFCBWZnZ2fAnOVMVCoVA8Dy5s3LWrRowTZv3sx69OjB4uLi2IABA5irq2uSd1m5cuXY8OHDWenSpQ2U69xB4m/vixcv2LVr11inTp3Y0KFD2erVq1lcXByLjY1lNWrUYAsWLGBLly4l87qS0Gd4d4IgCOLrIfEWKqkRGhqKX375BZxzcM7Rrl07DBo0CCNHjhS/s7GxwYYNG/SY49yBt7c3WrduDSMjIxQoUAAbN24Ux1Lbdjk4OBhDhgyBqakpChQogLNnz6Z5DpE6169fR/ny5cE5R/Xq1eHs7CyOpVauHh4eaNeuHVQqFSpVqgRPT8/syG6OhrRQFs7OzjAzMwPnHO3bt8fNmzfTdd7NmzdRtmxZcM7RrFkz2hpSB5AWyoG0UA6khXKgdu3Xw/PnzzF79mxYWlqCc45q1arByckJERERhs5ajmDy5MkoVaoUOOcwMTFBSEiITq4r1QmqG+lHX1pIbNu2DRUqVEDHjh3h7Owsrh8fH6/Tv5MT0He9AIDLly/D0dER1tbWePToEYCMjYXlFvRdLyIjIzF58mSxZfPTp08BkBZZRf5euXXrFoKDgw2Ym9wNaaEcSAvlQFpkD69fv8bs2bMxffp08TvqGxiO7NCDxqrSR3ZooVarteabqO4lT3ZocevWLcyePVtv18+pPHz4EBYWFuCco379+rh161aq6aVyDQ0NRYUKFcA5R5UqVRAdHZ0d2c11yNtSyfWdb9y4gSFDhiBfvnzgnKN79+7Zmb0cSXrH7u7evYvq1avD2NgYY8eORWxsLI37ZTPy9/zr169x5MgR1K9fH8WLFxfeNc45unbtilmzZiEyMtKAuSVSgvYnIAiCIJhGoxFbC/3111+sYcOGzN7ePsXVzgULFmSjR49mrq6u7O7du+zKlSssNjZWHLewsGA9evRgw4YNy5b852SePn3Krl27xjQaDfv+++9Fmaa03TX+P7LYlStXmLOzM4uLi2O1a9dmbdu2ZYxRZIes8PTpUxYQEMAYY6x79+6sR48ejLGUo4UylrD9kIuLC7tz5w4DwKpVq8YqVKiQXVnOsZAWykAq78ePH4sIDd9++y1r2LBhmue+ePGCHTx4kL1+/ZoxxlitWrVoa8gsQFooB9JCOZAWyoPatV8HFHldvxw/fpwtXbpU/P/w4cOZjY1Nlq4p1RWpToSEhLDo6Gjm6+vL1Go1q1evHjM2NmaWlpYp1rfciD60kPPgwQPm4uLCfHx8mLe3N3N1dWUNGjRgCxcuZGXLlmXx8fFiHCa3oy8t5P3Dy5cvs/Hjx7PXr1+z6Oho1qJFC3bt2jVWtWpV0kKGvusFYwljhr/++iu7f/8+u3DhAmvatClpoQNUKpV4xzdo0MDQ2cnVkBbKgbRQDqSF/nn16hU7dOgQW79+PXv37h1TqVRszpw5Ous3S+2q1MbfiS/oW4/o6Gh24cIF9scff7DRo0ezxo0bs8qVKzPGUp8jyY3oWwvGEsa1rly5wiZOnMiqV6/Odu3aRfUlGbJDi7CwMDZgwADm6+vLwsLC2Jo1a0iLNADA1Go127x5M/v8+TMrUqQI69+/P6tZs2aq53DO2adPn9i8efOYn58fy5MnD+vSpQszMTGhsacMkNqzqVarxbxGXFycVrlHR0cztVrNbt26xby8vNiePXvYu3fv2OfPn1nNmjXZunXrGGPa4+6J+9vU/06Z58+fs+joaFahQoU0n+eaNWuyatWqsadPn7KzZ8+yxYsXMxMTk2zMbe5F0kaqK8uXL2c3btxgZ86cEWlsbGxY7dq12Q8//MD69u0rIq7Ln3+qGwohW+3yBEEQhKKRoqrfvn073emtra0xdepUODg4oGjRoujcuTPmzp0rVrrRCsPModFoEBMTgy5duoBzjtq1a4uoVylFpZJ+/+TJE9jZ2YFzjnLlyuHOnTupnkekzcePH1GnTh1wztGiRQvx+7Se7xMnTsDW1lZECn/58mW6ziNShrRQFsHBwSI6X7du3cTvU4tq8fHjR2zYsAE2NjbgnOObb77B58+f0zyPSB3SQjmQFsqBtFAG1K5VDlK758OHDyLSiPy5psjr2cOwYcPAOcfUqVOz3BaVn//mzRts374ddevWRdGiRUV0mWrVquGHH36At7c3AKo/cnSpRXK4ubnBxcUFTZs2FX0RBwcHuLq6AqC+iBxdayF/t126dAm1a9eGSqWChYUFHB0dwTmHtbU1Rf9OBn3XCwkfHx+0b9+etMgiVF7KgbRQDqSFctC3FtRHT0CtVmPdunVQqVTgnKNo0aIYNWoU3r9/r5NrywkMDMTr168RFBSk1U4gLb6gTz0kLl++jGrVqoFzDmNjY7Rq1Qpbt24Vx0mPBLJDi/j4eFy4cAGdOnUSffARI0aI46RFAtmhBZCgx/r162FqagrOOUaOHCmOkRYpExkZKeZda9eujVevXqV5TnR0NHbs2IGKFSuCcw4bGxs8ePAgG3KbM7l58ybmzJmDb7/9Fh07dkS3bt3QunVrNGjQAI0bN0a9evVQuXJlVKpUCQ4ODrCxsRHzF/KfOnXq4Pr16wC0n3n59/yPP/6gXelSwcfHB4MHD8b3338vfpfS+0Mqv3379on3Tnp3ACYyR+JxKj8/P0yfPh1NmzbVqgtlypRBy5YtcfPmTeEJkaC6oUzIwE4QBEEAAMLDw1G3bl1wzvG///0PoaGhKaaNjY0FAOzYsQOcc5w6dQofP37Ey5cvtT7mNBmbNaKjo0WHsXPnzqluZyOVu7+/P0qWLAnOOWxtbTFr1ix8+PAhu7KcY3n//r3YAm3w4MGIi4tLs+F65coVYbgqVaoUdu3aBbVaTYMkWYS0UBYvXrwQW3DNmzcPQOqdusjISOzdu1cYeCpWrIjLly+neR6RNqSFciAtlANpoRyoXasc7t27h2+//Rb79u1DeHi4+H1AQACZ1/WM/D1y4sSJLL9X5Oc7OTmhT58+WgP1VlZWUKlUMDY2FsZpNzc3ANRX17UWiUnczwgODoaTkxMaN24MzjmKFCkCDw+PZNPmNvShRUrmdUtLS4wYMQKurq7CYELG6S/ou14kB5nYM4e3tzeOHTsm/p/Ky3DoWwvpfZbbvxXpQZ9aJFf+pEnK6LtexMTEiHYUQFpIeHl5gXMOMzMzzJo1C4GBgTq7dmRkJHbu3IlBgwahdOnSsLOzQ9GiRTFo0CDs3LlTpCMtvqBPPQAgNDQUu3btwtChQ2FtbS1MwZMmTRJpSI8E9KlFcuZ1qf9Nxumk6LteSKjVamzfvl3UC9Iiba5cuQITExOYmprCyckJQOrtn9jYWBw9ehQNGzYUz/7ff/+drXnOSQQEBKBdu3bi/ZGRHzMzM3DO0axZMwwePDjZRSHyttiECRPEmOHjx4+THCcSxpHMzc3BOYezs3O6zlmzZo3Q5MKFCymmS2s8lt5RKZP4OT1//jwWLlyIggULirpjbGwMa2tr/Pbbb7h8+bLW3AeQtHypbigLMrATBEEQABI+2Js2bULBggXh4OCAY8eOpdmIWrp0KTjnWL16dbLXI7LGu3fvUL16dRgZGWH58uUAUm/Y+vj4iCijVlZW6N27N3x8fLIruzkaf39/lChRAsbGxmJQNrVn/MKFC8IwV7RoUUycOBHBwcHZld0cDWmhLB4/fgxLS0uYmJjgyJEjqaZ9//49du3ahSJFiggT1YYNG8gYpyNIC+VAWigH0kI5ULvW8EiR8L/55htwzlGzZk0cOHAAMTExeP36NWbNmkXm9WxAVwPf8uvMmDFDLPDknKNBgwb49ddfcfXqVVy6dAnr168XUWgcHR3h6+urkzx87WTXJITUV4mLi4Orqytat24NzjmaNm2arqhmuQF9aZHYvD58+HBER0cDSDBPkHE6KYa4fzKxZwx/f38xsfrLL7/o/Ppyw3RuX+yUFvrW4uPHj/jnn39w48YNrfpAY+5J0acW8l1md+3ahSVLliQ5RnwhO95R//77L0xNTTFo0CCt3xMJiwfmzZuHgIAAnVwvJiYGDx8+RIMGDZAvX74kpjnJHDpx4kRxDmnxBV3rIZH4+3zq1CmMGDFC6PH777+LY6RHAvrQIjnz+po1a7Bjxw4yTqeCvupFYsjEnjGuXbsGY2Nj5MmTB+fOnQOQtJyk/4+Ojsbx48fRvHlz8ezPnz+f+g5ZZMyYMeCcw8jICNbW1vj1118xZMgQ/PjjjxgzZgymTZuG33//HdOmTcPKlSuxfPlyrF69GmfOnMHNmzfFWAeg/Z2Q9yPGjx8PzrkwZ1P/O3m8vb3RuXNnmJiYYODAgXjx4kWKadVqNWJjYzF8+HCYmZnBzMwM//33X5J0ievTuXPnsH37dixYsADz58/H3bt38fbtWwAUdCQ14uPjcenSJYwdOxb58+cXz3KePHlQoEABLFq0SLzDJNKKng9Q3VAKZGAnCIIgBG/evEH37t3BOUfDhg3FttYS8gaTp6cnmjVrBs45pk2blt1ZzTV06NABnHN8//33WpEqE2/PeOfOHdjb24NzDktLS7Rp00Y0rIiso1arRWd88ODB+Pz5szgm1+Ldu3c4fPgwihUrBs45ChcujF9//RV+fn6GyHaOhLRQFp8/fxZRFsaPH5/iIImPjw9WrFiBwoULg3MOe3t7zJ8/X3TIiaxDWigH0kI5kBbKgtq1ysDd3V086zVr1sSaNWswZcoUYUgg87rykQ+cjxo1SstMMmrUKDx+/FirXsXHx8PNzQ0NGjQA5xzjxo2j3YgMyMWLF1G8eHEUKlQIBw8eBECTU/rgzJkzqFevHlQqFfLly4fff/9dfHuk8k5snJbGwGhyKvvx8fFB27ZthRYU7Sp5AgICMGzYMLFDjZGREa5evaqTa6fnPUTfjS/oUwsgYUxr06ZNsLGxAeccw4YN04poTVp8QZ9ayM3rf/31Fxo1aiTGIxOnIfRfLyQOHz4s2r5kSExKXFycTq7z6tUrbN68WSwsNzExgbm5OUaPHo3FixdjxYoVGDhwoDCH0hxh8uhKj+RIPBeyceNGoceKFSv09ne/VnShhfy7kNi8vm7dOgBknE4P+qwXckiL9PP06VNYWFiAcy7GKeRI75vIyEjs379f7C7HOceECRMQFBSU3VnOMcjf5aNHjxblumPHjkxdT/5sJ2fQNTY2Rv369VG3bl0y6qaCk5MT8ubNC845li1bpjWvJJWTpN3jx49RtGhRcM5Ro0aNJOUopQsNDcU///yDTp06icj50o+9vT1atWoldhkiLbSJjo7GqVOn0LZtW5QpU0ar7OrXr49Zs2bB3d1d65zUypDqhjIhAztBEAShRUBAAKpWrQrOOVq0aIHbt2/j06dPWmn8/f0xf/58WFtbg3OOpUuXGii3ORepg7FixQqYmJigRo0aePDgQZIGko+PD7Zt2yZMutbW1ujYsSMePnxogFznTDQaDTQaDWbPng3OOerUqYPHjx8n0eK///7DjBkzhCGoWLFiGDZsGLy9vQ2U85wHaaE8YmNjReeufv36ePz4cZIByPPnz+PHH39EgQIFwDlH6dKlsWTJEoo4qWNIC+VAWigH0kIZULtWeXh4eKBQoULgnKN48eIiukj16tWxf/9+Mq8rGPnE1vDhw7UG7BcvXpxiWrVajalTp4r3YXZNGBNJiYyMRM2aNcWCHkL3fPjwAR07dhQTgmXKlMG9e/cAJEQSlU/oyk3snHM8efLEUNnO9QQGBqJr165JTOy0wOMLb968Qbly5cSOGmvWrNHJDnNSnVCr1Xj69Ck2btyIcePG4aeffsKuXbtw69atJGlzO/rSQuLTp0+YMmUKqlWrJqIcFytWDPPmzRNpSIsE9F0v4uPj8eeff4pAPmScThl91wsJtVpNEY71jJ+fH2bNmiXMWEWLFkX//v2TLEj48OED1q9fD5VKBWtra7i4uBgoxwQAREVFYfr06VCpVKhXrx48PT0NnaUciVqtxvnz50WQBs45Nm3alKT/LTdOjxo1Shyj91T2kliLESNGiGOkRQIajQbv3r1Dx44doVKpMH78+GQDj7x79w7Tpk0T7VNpxwd612Qd+Rj52LFjtd4tMTEx4lh8fLzWc5vaM5ySQbdZs2Y4efIkXr58Kd5jZNT9grxMFy1aJLRYvXp1svNFXl5eYvFm4cKFsXLlSgBfylH6r6+vLwYMGICyZcuKhYHGxsaoU6cOihUrBltbW3DOYWdnBzc3NwA0FpKYmTNnavXHunTpgnnz5iEmJkaUVXre61Q3lAsZ2AmCIIgkeHl5aa0UnDx5Mh49eoSAgACcPHkSP/30k4gAU6NGDYSEhBg6yzmWoKAg0Rls1qwZ9u/fDx8fH3h7e2PPnj1o3769MFzZ2dlhwIABSSLnE7rh+fPnqFSpEjhP2O598+bNcHV1xZUrV7Bq1SpUrlxZRD90dHTEjBkz9L4NXm6FtFAWAQEBqFChAjjnaNSoEZYtW4a7d+/CyckJ06ZNg5WVlTDGValSBTt27MjSd4MGFlMmO7WgwZPUIS2UA72jlIMS2rWkzxc8PDxQsGBBER3R3t4e27dv15oYIZSF/PmdPHky8uTJA845zMzMRLS3xOmALwPszs7OMDIygo2NDbWNDURsbCwAoHPnzmIxAaEfgoKCMGvWLNSvX18sULt8+TKApJO+vr6+IoKclIbIHqR2bFRUFAICAjBo0CCx8MDExITMEMnw5MkTVKpUCYsXL9bZeGxcXByeP3+O7t27o3z58lqTwpxzODg4YM6cOSI9tacS0IcWcqQofxs2bED79u2F8WrMmDEiDWmRgK61SGxel3aC5Jxj0KBBZJxOBX3XCwmKqqs/AgICMHHiRBEYxsHBAatXr9bqP8jHoV68eCF2epJ/KwjDcP78edGWcnZ2NnR2ciRubm5a34V+/fqJY1J/D/jynjIyMgLnHL/88oshsksgQZe9e/eKb8bQoUPFMfpmfGHDhg3iuV6+fLkwbfr5+eH69euoX7++GLflnGPmzJk0tqRD5ObY33//XZTz5s2bMxyEQv6dHjdunDDoNm3aFMePHxfHvL29tXalI6NuAvLymzRpktCiT58+WL9+PR49eoQTJ05g0aJFsLOzA+cc+fLlQ7du3eDj4yPOlcrR3d0d1apVE99nMzMzTJo0Cf/88w+io6MRFBSEkydPolWrViLATGBgYLbf99fA5MmT0aBBAxw8eBDv378Xv0/vHCnVDWVDBnaCIAgiWby9vVGjRg3RKMubNy8cHBxgZGQEExMTcM5RsWJF/Pnnn0km/wjd4uXlJbZqzJs3LwoWLAh7e3utyaTKlStj5cqVeP78uaGzm6Px8vKCg4ODMPpYWVkhf/78WlrUqVMHR48eRWhoqKGzm6MxhBYUjTRlvLy84OjoqPXNSDzp3aJFCzx69Ehrq7Ws8O7dO51cJ6eRHVrIv/l///037t69m+Lx3AxpoRwM8Y56/Pix1vappEUChmjXurm54c8//xT/T1p8wd3dXSxMLl26NHbs2KE14Uooky1btoh6xDnHhg0bxLHUBuxnzZoFzjlMTU3h7++fDTkl5Mi1adSoETjnKFWqFD59+kSL0XSMVJ7R0dG4f/8+unfvDs458uTJg5s3bwJI+i3w8fERO37Qd0K/yMs3JiYGXl5eGDhwIGrXrg3OuTCWlC5dGps3byY9kiEsLExn4xwvX77Eli1bRJAAqfyrVq2K+vXro0SJEuJ3v//+u07+Zk5Cl1okRv7se3p6YsmSJUKLadOm6eVvfs3oSovUzOvbt28HADJOp4E+64UcMrHrnjdv3mDevHkiCmiZMmVw6NAhfPz4MdXzBg0aBM45GjdujM+fP1Pb1gBIz3xERITYYXvKlCkGzlXOZcOGDejSpQssLCxgZmaGYcOGiWNyo6n0npICNUgGOEL/JH4PeXh4oGvXrmJBwZAhQwyUM+WROFiC1O6xs7ND8+bNUbRoUWFcV6lUMDY2xt69exEeHp6lv5tYI/p269bEDgCDBw8Wc+gNGjTQWrAvlbd8Vzq5UTe36yHXYvr06TAyMhJtTikIqBRYxMbGBh07dhS7yGk0GnH+06dPRXrOE3aMv3z5crLP/71791C5cmXkyZMHmzZtEr8ntL+tb9680TqWmTKiuqFMyMBOEARBpEhgYCBGjRoltreW/9SuXRsnT57McgeFSB++vr7o3r07ypQpIxpU0irM77//Hn5+flkyXEmNLWp0pY2fnx/69euHihUrCgMI5xxt27bF2LFj8enTpyxdPz0akE4J6FsLOTdu3ED37t2xbds2ragCpMUX/P398fPPP4vouhYWFjA3N8cPP/yAZcuW6bSsXFxcUKtWLWzYsAHPnj0Tvyc9EsguLdasWSO2vBs7dixOnjwpjpEWCZAWyiE731HLli0D5xy9e/fWinhFWiSg73atHC8vL4wePVpES5QgLb7g7u4uIrHXqlUL+/fvp0V7CkR6Zt3c3LS2Kl+xYoVIk5JRRKPRICwsDD169ICxsTEaNGigtR00oV80Go3WO0f6RnCuvZU8oT+eP3+Orl27gnOOmjVravUfEpNYL0J3JI5UdfToUfz2229iIZX0U7FiRYwZMwaenp70rtIz3t7eGDt2LEqUKCEm3jt16oQjR46ItoCrqyvWrFkjJutXr15t4FznLuTvo+joaKxfvx4qlQrW1tYUWVePxMfH46+//kLTpk3Fu2nLli3ieExMTIrGaTLuZi9kYtcN0nPr5OQkIok6Ojri+PHjqfbNY2NjERcXh7Zt24Jzjo4dO2ZXlokUePjwoTDU0cIz/eLv7481a9bA0tISnHMMGDBAHJO3e9VqNY4fP47jx4/j8+fPhshqriLxu//mzZtYs2YNChcuDCsrK61xyGvXrhkol8pD/swuWLBAKxCM9OPo6IgffvgBt27d0jrX398fT548ydB3V74T1+XLl7XOze3fb12Z2J8/f45q1aqJMd+aNWvC3d0dQIIZWF7OcqOuhYUFBUv8f+Ra7NmzBz179kxSLypWrIhp06bBw8MDQMLzK+nk5uaGQoUKCbN748aN4ebmJtLJ/wsAnz9/Fjs29ujRI7tu86tBV4teqG4oFzKwEwRBEKkSGRmJwMBALF++HDNmzMCUKVOwYcMGnRpDifTx4cMHeHl5YcuWLXBycoKzs7POtxD6+PEjfH19ceDAAezZsweXL18ms24yREREICgoCH/99RfOnj2Ly5cvIyoqShzPzBZCics2ICAA9+/fx4oVK7By5UqcPHlSNKCTS59b0YcWiXnx4gVGjBghOqT9+/fHoUOHxHHS4gtRUVEIDQ3FuXPncP/+fTx69EjruC708PX11Roo6N27Nw4cOCCOkx4J6FuLiIgITJ06FfXr1wfnCdus2dvbY8GCBSINaZEAaaEcsuMdBQBjxoyBlZUVTE1NYWtri8WLF4tjpEUC2dGu9fT0xOjRo8VAMRkaUsbDw0NsEV+9enUcPnwYMTExhs4WkQxLliwRz/PEiRPF71MzrwPAsWPHhLGHTNOZIysLjePi4hAXF4fZs2fDzs4OKpUK5ubm2LNnj66zmSuQP+/pmcDVaDQ4deoUihUrBmtra2zcuDHJdQj9kLhOxMfHY9euXfj555/BORc7PBYoUAB2dnbYuHEj7t+/n+o1CN3g7u6OH3/8UXz/ixcvjjVr1ogFHlL90Gg0iIyMxNSpU2FsbIwOHTrgw4cPhsx6rub58+do1qwZVCoVJkyYYOjs5Eg0Gg127tyJBg0aiDbX7t27ASR8c6S6kZpxmshe4uLisHXrVqGFPBIyfUPSRnqm/fz8ULp0abFL0MGDB7XG2FM679OnTyLi93fffZfE+EPoH6m8w8LCMGvWLOTLly/JYmdCd8if79jYWDg5OQkTe2o7pFAQMf2RuGwjIiLw9OlTjBgxIokRu1ChQhg7diyOHz9uyCwrEvm4+H///Ye9e/di1KhRmDZtGlatWoWXL1+KfoC08DskJASDBw9GgQIFsG/fvgw93xEREZg7dy4KFiyIVq1aYd++fSKycm7vq6dkYl+7dm2G5i9CQ0Oxbds2NGvWTCxYliJNJ1687+Pjg1atWqFevXo0JixD/ix++PABt2/fxs6dO7F27Vrs3bsXoaGhYnGSPPL6s2fPUK5cOWF8bteuHby8vJJcU0Ia25L0btWqlb5vLVdDdUOZkIGdIAiCyDTU0VYOmenMJdbv4MGD6NKli5i8klaiN2zYEEuXLk3xPEKbzJSPXL/3799j48aNqFy5slYkMpVKherVq2PhwoVZ+lu5CV2VT1RUFP7++28RTUalUsHW1haTJ08WaXL7gEp2EhkZiWPHjomV6FL0MfnkLdWN7OHz58+IiorCqlWr0Lp1azFZOHbsWJGGtMgeSAvlce7cOfz4449CC3pHpR9dfFMl87oUSaN8+fIUlS8NPDw8RNtz5cqVhs4OkQxubm5i2+ZOnTqJqC9pmdcfPHigtUDh4cOHqZ5HJEU+Qfjq1Su8evUKr1+/hr+/Pzw8PODj4wM3NzfcunULd+/exd27d3HixAk4OTlhy5Yt6NmzJxo2bCjarom/0ckhRbvU1eKqnMihQ4fEIu+0nufo6GjUqVMHnHO0aNEiO7KXq0msx7Nnz3DkyBE0adJEGHzkY047d+6Et7d3qtcAqF7oCh8fH/zyyy/iu1+qVCn8+++/WhHvE7eRDh8+LHR78OBBdmeZkDFs2DBhwHr79q2hs5PjiIuLw/bt22FrawsjIyNYWlpi7dq1Wscl1Go1duzYISK5rlq1ygA5zr0k/k4sXbpUtLOGDBlioFx9nURFRaFjx47gnKNw4cJYsGABwsLCUkwv/0aMHz9emLPIEGo4nj9/jjVr1qBChQpCR19fX0Nn66smvZGOw8PDMWXKFBgbG6Nq1apJFmMS2Ud4eDgePnyIHj16oEqVKlr97/r162PIkCHw9fXV+n7QuIg2aZVHcuOogwYNAucc+fLlw8GDB9M91nr16lV069ZN9DGKFCmCbt26iX5hbu/zye9f+taWKlUKnp6e6Tpf0jIuLg6enp7o1asXOOewsrLC3bt3kz0nODhYvPtye/nLSWsBUuLjwcHB+Pbbb8WYR/PmzcVznVodi46OFotomzRpQu8nPUF1Q7mQgZ0gCIIgciHyRu/du3cxduxYrVXo1tbWKFiwIExNTcUgvHzLQTL7pJ+0ykquxdGjR/HDDz9oaVG0aFGUKlUK1tbWpEUWyUpZxcfH4+PHjxgzZgysra2TjepDZIzM6CE/JyoqCuPHj0fRokWFHr/99psus5hr0MV7xN3dHQsXLhRaTJkyRQc5y32QFsohs1rIv+t+fn6YP3++0GL8+PG6yh6RCpJ5XTJlNWzYEJ8+fcLBgwfJxJ4G3t7emDVrFpWJQrl48SKsra3BOce8efNSnVCXNPTy8kL79u1hZGQEU1NTDBs2jHZTywIzZszAN998gxIlSsDOzg7FihVDgQIFUKBAAVhZWcHMzAzm5ubImzev6M8ZGxtrLUouUqSIVvT85CY+Hj9+jHr16uG///5LMU1uZ8uWLShUqBCGDx+eZlopQlL//v1hbGyMMmXKaBl10wu9GzOOp6cndu7cibJly4qFNNK4xoABA7B+/Xqtd1lqZUz1Qje8efMGf/zxB2xtbcE5h4ODA27dupViekmTR48eiXfb2bNnsyu7hIzY2FgAwPTp06FSqVCoUCG8fv3awLnKuVy7dg0zZsxAnjx5wDlHv379xDH5+0etVmPDhg1o1qwZrl27Zois5npevHiBM2fOoFGjRlrBYKZOnWrorCke6R1/584dEX29TZs2SRaVpcTx48dRq1YtcM5RtmxZPH78WJ/ZzRVIi/WAhLHvmJgYfP78Ge/fv0dYWBjevn2L58+fw9fXF/fv38eBAwewatUq1KxZE0WLFhVRRLdu3QpAe4wquXYWtW+TJyYmBg8fPkx1FwI5586dEzsLbd68Wc+5I4CkfYGDBw+iX79+yJ8/v9b8ar169TBt2jS8evVKREmmepF+UjPQysvpxx9/FIuZMmJi9/f3x+XLl9GxY0cUL14cnHPY29vD1dU1zb+fG5A/5/PmzcPKlSvx/v37TF3Lx8cH7du3B+ccrVu3xsuXL1NMm9vLPbPEx8dDo9Fg48aN4nkuU6aMCLyQlgH+zJkzKFWqFFQqlWjH0vtI/1DdUA5kYCcIgiCIHIQ0mQGkPJknb1wdPHhQRNeQolN+//33uH37Nry9vXHu3DnMnTtXmH0WLFig93v42pE6E/LBrfRosXz5chERjnOOxo0bY/To0fDz88Pr169x8+ZNLFq0SGixePFi/d5IDiAjWqSFXKvJkyfDxsYGpqam4Jxj1qxZWcpnbkHSIzw8XPwus3rIzxs3bhwsLCyEEWL16tVZy2guQJdayAdQPn/+jA0bNkClUiFv3rw4dOhQ1jKaCyAtlIO+tPj06ZPQgnOOdevWZS2juYj0tGsT4+XlpRV5vUGDBmIC+PPnz9i+fTuZ2ImvlpkzZ4JzjhIlSqRqWJOeZx8fH/Tr109Eba9WrZoYhKdnPuOcPn1ay4gunxSXfmdqagqVSgVzc3NYWFjA3NwcBQsWhIODA6pWrYqFCxfCxcVFXDO5d5ubmxtq1qwpzCdPnjxJMW1uRTILSvXhypUr6TpPioCVN29eBAcHp/vvSUYHCZqw0kZ6n0jlEhkZidDQUEyYMEHsPCBfoD9gwAAcPXpU6xppPd9UL7KOVFZ//fUXSpYsCc45SpYsievXr6frvC1btsDExAT58uUTiwiI7EOqZ2/fvkXt2rXBOUe5cuW0+i6EbpC/4yMiIuDk5IR8+fIlCWIhb0vFx8cjJCSEvg/ZgPROiouLQ1RUFFauXInWrVuLMVrpO9++fXvs2LHDwLn9epg9e7Yov1OnTqXrHDc3N/Tp00ecJ9+pgMg4L1++xJ49e9C4cWO0bdsWTZs2RZUqVVCrVi3UqVMHjo6OcHBwQLly5VCsWDHY2NiIfp78x8bGBqtXr07S1pW/s/bs2YOZM2cme4xIeL8cOHAA9vb2OHnyZKpppbKLi4tD/fr1wTnHwIEDoVarqVyzgbi4OKxbtw79+vXTWjxepEgRVK5cGU5OTqkuyKF6kXXki5EHDBiQbhN74ojVb9++xZEjR9C0aVNwzlGsWDERaTy3ayHv88rHJqR2Z0REhNYYekrExcVh27ZtMDY2RrFixXD+/HkAVL66Rq1Wo1mzZuCcI0+ePLhz5w6AlMeR5L//6aefxPecFo1nHqobXy9kYCcIgiCIHEJUVBT27duH5cuXi98lblzJ/3/Lli345ptvRGO4V69eOHLkSJJIflFRUVi2bBlUKhWqVasGDw8P/d7IV4xUvmFhYZg9e7aW4T+xFvJOycyZM0WUEymK9O3bt5No8fnzZxFVt379+nj+/Lke7+brJiNapPdaAHD79m00aNBARGCqVKkSQkJCdJPpHIxUhq9fv8bAgQO1BgMzey0gIbpJkSJFRN1p165dpiMQ5BZ0qUVyvHz5Eq1bt9Yyh1JHP3lIC+Wgay0Sl3NISAiGDRsGlUqFli1b4tWrV1m6fm4gPe3axDx9+hQjR44UEaobNWokjsm3eJSb2EePHq2fGyAIPTB37lxwzlGxYsUU2zvyyOv/+9//UKhQITGB++zZMwBkvs0KI0eOFGb1+vXrY8+ePTh06BD279+Po0eP4vz58zh9+jQuXryI//77D/fv34ebmxs+fvyYJPJ9cjq4ubmhWrVqYlc06b9Pnz4FQGZdOffu3UODBg2gUqkwZswYvHv3LtX0N2/ehL29PYyMjNCyZcskZSn/xrx9+xaPHj3CyJEj0atXL7Rp0wZ9+vTBrl27EBgYCIC0SAk3Nzf8+uuvwmAr/dSsWRPfffcdPDw88OHDhwxfk+pF1pCe7w8fPoiyLFasGP75559Uz5O/pzp16gTOOUX91iEajUbr3SM3u8XFxYlnW9IhODgY8+fPF2MgLVu2THdkWCLzxMXFYfPmzciTJw8sLS2xc+dOQ2cp15G4H/j27Vv88ccfaNOmjdbCQgcHBzRq1Ajnz5+nPnc6kd4vvXr1Eu+VuLi4NPvez58/x9ChQ7XmMqRrUV8j48THx2PTpk1aOzel9CNfSKtSqWBkZAQzMzPUqlULXbp0wZ07d8TuQxJyPY8cOYIKFSqAc44hQ4Ykmya3Ex4ejp49e4Jzjt69eyM0NDTNc54/fy6+z3369EkxXXrqB2mRlMTl5ubmhm3btqFOnToiqBHnHJaWlmjZsiX+/vtvBAQEpHoNqhe6IzkTu4mJCW7fvp2u8+ULot3c3NCqVSuxI8ibN2/0kuevHXnginHjxolySuuZDQsLQ7FixcA5x6BBg9J1DpExpGALpqamIthaeszrc+bMEe+yoUOHZkteczJUN75OyMBOEARBEDmAyMhIODs7i0nC8ePHJ0kjb2ht375dRK/inGPUqFHw8fFJEjlL4s6dO7C0tATnHM7Ozvq9ma+cd+/eYfXq1ShXrhw455gwYUKSNHIt5syZAzs7O6HFnDlztLaKTNxAvnTpkhioPHfunP5uJAeQHi0ywvXr11G/fn1hXq9cuTLCwsIAIMliAyIpL1++xO+//y62M82MHvL6cPr0abHtuWRe//jxIwDSIy10oUVqTJo0CZxzFChQAEFBQTq9dk6DtFAOutBCPkme+Pt9+PBhiqCRTtLTrk1MfHw8/v77bzFhqFKpsGTJEnFc/l2QTOxSlL5Ro0bp5T4IQtf8888/MDIyQrFixbSi30p9N+m98+jRI3Tt2hU2NjbCvH7v3j0AZPTMLPJyGz16tHif7927N93XSGviQ27StbOzw4wZM9CyZUsy66bC1q1bhRZr1qzR6kfLjTtv3rzB1KlTRT86tW/85cuX0a9fP5QoUSKJYShfvnyoWbMm3NzcAJBBS463tzf69++PvHnzinI2NTVFmTJl8Mcff8DDw0NEi8vIJCDVC92h0WgwfPhwcM5hZWWFuXPnprr4W67T4sWLwTmHmZkZpkyZkuQ4oV9evnyJGzduoHv37ihVqpSIbHnjxo0kaVMzZxHafPjwIV2mRCDBACEFgfn555/1nDNCIvHzfO3aNSxYsEArCIzU1u3Xrx9u3LiRRFONRkP1IhWk8pG+rd9//32K6ST8/Py02sNdunQRfQ0i83h5eYkxClNTU/Tr1w9jxozB1KlTsXjxYsyZMwcLFizA1q1bsWXLFmzYsAGHDh3Cv//+i6tXryIiIkK0f+V6yf99+PBhlC9fHiYmJkI/2pkuKbGxsdiwYQMKFy6MkiVLwtnZOcV2v9QG/e+//1C8eHHxnUjrvXPjxg0cOnQIw4cPx8iRI7Fv3z7cvHkzxfREAvfv38f69ethZ2cndiCQ6s3QoUPh5OSUrutQvdA98nHXH374AW3atMn0tU6ePImCBQuiWLFiYhcE6nsnJSIiAt26dQPnHHPnzk0zfUxMDD59+iTmy3v37p0Nucx9TJgwAZxzFC9ePNVFHPJneuPGjVpB89JaaE6kDtWNrxcysBMEQRBEDuDYsWNwdHQU26R16dIlxejczs7OaNSokeiMT5o0CREREWn+jerVq4NzLiJZU4cxKfHx8Vi3bh0KFy4sBk+GDx+e4oTIunXrULZsWaHF0qVLU7y2NFASHR0tztm9e7fWMeILGdUiLa5fv45vvvmGzOuZRK1WY9KkSTAzMxMT30uWLNEymaRFaub19u3bi0h+ZF5IHV1okRLSRMm0adNgamqKggUL4uXLl1m+bk6FtFAOutDiwIED4Jzjzz//1Pq9PPJ3+fLlwTkXUcXp+508GWnXJsbZ2RkjR46Eubk5OOf43//+J44lNrFLEc6mTZumtQUrQSiVR48eoVKlSuCcY9GiRclGXb1w4QIcHR1FHShSpAhu3boFgN45WUXexvz9999FO3Tz5s1JohxmFFdXVy2T7urVqxESEoLAwEC0b9+ezLqJkD/L0s4EnHMsXrxYbDMu8fTpU8yePVuYqps3b47g4GAASctx7969MDc3F9EvixYtitq1a2PUqFFo3bo1KleuLDSi7cyTItULa2tr2NvbY8eOHUkMbRkpL6oXuiUiIgItWrQA5xzVq1fHo0ePUkwr1+nEiROoX7++KG8XF5fsyG6O5M2bN7h27Rr++ecfHDhwAH/++Sd27dqFtWvXYtWqVVi4cCGmTp2KiRMnYvDgwejWrRvatWuHUqVKCXOWFF10165dAFI2KUpb1Sf+PZFAaGgotmzZIvpu6SkjyYxibGwMX19ffWeRkPHvv/9i6tSpMDc3h4WFhVjEYWZmhtmzZ+PUqVNa6aleZJyBAweCc46mTZsiMjJS65j8+/rgwQMMGTJEvI9atmyJkydPUnnqCHd3dxQsWBCcc7Ru3Rre3t4ZvkZa5nXOOWxsbPDtt9+K9jGZdZPy9u1bdOnSBZxzNGjQAE+ePBHH5LulSHTo0EF8o8+cOaN1LWkeVa1W486dO/j9999hamoq+uxSEAYHBwfMmTMnyd8hEgKG9OvXD7Vq1dJawGRnZ4fRo0cnKfPU+gVUL/RHcvOkmemjffz4URhJf/nlF11kLUcSERGBiRMngvOEXUgfPnyYYlr5jlxS8J727dtrHSOyjlqtFn3u7777LsV0cn/Njh07UKJECfHukX8HiMxBdePrhQzsBEEQBJED8PPzE532QYMGJVnVKTWyPDw8xPZ3UuSx2NjYVK+t0Whw79495M+fH5xzbNq0SW/3kRPw8fER5Tt9+vQUJzXOnz+PJk2aaE22S6TWKD5x4oQ458iRIzrPf04ivVqkRWLzepUqVci8ngm8vb21jD5StPT0QOZ13ZIVLVJCXvbSd8bMzAx+fn5ZvnZOhrRQDlnRIi4uDiNHjhTnS0YI+WDkvn37xPENGzboPP85ibTatckhL+uQkBDs3LkT+fLlSxIlUZ5OrVbj6dOnqUYfJQilIUXBldq3J06cwKtXr7Br1y6MHj1aa0v5smXLwsPDw9BZzlGkZmLPbL/Azc0NVapUERGaVq1aJQzWAPDs2TMy6yaD/H0uTUxxzlG3bl2MHj0aCxYswOjRo1G/fn1RL2rVqoV9+/YlGQP5+PGjVt2ysLBAkyZN8PDhQ6FFeHg4/vvvP7Ru3VoYtmg78wTkWqxYsQKbNm2Cv79/imnSA9UL3fPvv/+KZ3zjxo0pppP3vW/duoXevXuL82bNmpUNOc2ZBAUF4bfffhO7BWXmp1ChQnB0dMS///6b5D0m183JyQmccwwePDjZ4wTg4uICIyMjFCpUKM2FstL3fdmyZSJAhqura4rppbKmMs8YicsrODgYd+/eRffu3VGyZEmtulClShXMnTsXd+/e1TontYjHVC+SRyqD3bt3I1++fChXrpzW4rPEZShFs+Sco02bNjh8+DA98zrG3d0dhQoVAuccrVq10lqcmZEyTs2kO2vWLGg0Guzdu5fMuqng7+8vFrC2aNECt2/fTrLAQ6PRoF+/fuCcw8TEBK1atdJaeCC1TaOjo7F48WI0btw4yfusbt26cHR0FFqMGzcuW+/zayAgIECr3Bo0aIBffvkFfn5+GVpMTvVC/8i/xZkJgie1caWdb7p06aKzvOVEzp8/L57jadOmJRusUB4cb8GCBVCpVDAyMsK8efO0jhNZR61Wi11tUjKwy+vF5s2bUapUKRgZGYFzjt9++y3ZdETGobrxdUIGdoIgCILIIbi7u+O3337D9evXxe8SN65mzZolOvlDhw4Vps+UkA9iSucdPnxY95nPYXh4eGDOnDlJomTI9Rg2bJiW+UQipU6JdO7ixYvFAMrVq1f1kPucRUpapBeKvK5bPDw8sG3btjTfPXISm9flE75kXs886dEi8YCjfFJKOpb4O7N06VKoVCqoVCp07doVnz9/po5+GpAWyiE5LdI7WBgSEoIRI0aI99PChQtF1GNnZ2f06NFDHPv777/1kv+cRHLt2owM3KrVauzevVtE6Fu5cqU+skkQ2Yb8+Z88ebLW5G2JEiXAORcTHmXLlkXfvn3x4sULnf5dIgFdmtg9PDyEfvny5cP06dPF9eXfbB8fH2HWzZcvn1YEwNyMXIt58+ahUKFCoq8sRTSU/r9x48bYtWtXEtNJWFgYZsyYIXSsWLEixo8fn+zkVnx8PE6dOoVChQqhaNGi1B+XIX/2U2qbpheqF/rBxcUFJiYmsLa2xs2bN7X6ERLy8n3w4AF+/PFHUTd+/PFHoQN9GzLO27dvRSRJqX1aokQJ2NvbI3/+/LCzs0OlSpXg4OAAR0dH1K9fH9988w0aNGiAwYMHY+rUqbhy5Uqyu2rJdTtw4ACsra2FbsOHD082XW7n4sWLKFmyJCwsLLBixYpUd2PSaDRQq9X46aefwDmHlZUVfHx8kk0n5+PHj3j58iV8fHzg6+urVW9Ii5QJCwvDyZMn0bx5c5QqVUqrzduxY0dMnToV4eHhaZYh1YuM8erVK7HbRvPmzXHmzBmEhYXh/fv38PLywo8//qilR48ePXDmzBkyr+sJDw8PLRO7l5dXpq915MgRYeAqWLCg1jxUdHQ0tm/fnqxZl771CXh5eaFYsWLCbD506FCcOnUKZ86cwdatW7UM6ba2tlpzp1L7+PPnz/j5559FZFfOOfr3749NmzYhKioKMTExcHV1xcqVK4UWq1atMtAdKxd3d3c0adIEM2fORHBwsDCuZ+ZZpXqhTKS+xufPn1GmTBmxWEE+F0IkZc2aNeLdsn79eq0xD2l32djYWLi4uKBRo0Yi7bVr1wyV5RzNsmXLYGRkhKZNmyIwMDDZXTsAYNGiRbCxsRHvGvkusjTXrRuobnx9kIGdIAiCIHIQ8gH3xB2606dPi8ZXp06d8Pjx43Rd89GjR2JwpUmTJlneHj23kFpk+4MHDwotBg4ciHfv3gFIe7D3xo0bMDExoZXnGSStXQZSgszr+iGz0WJ0GXmdBrwSkJdDVgZF3r17B09PT4wcOVJrUnDdunW6yGaugLRQDilpkVZkPiAhSlz//v1FuRcsWBDVq1eHpaWl+J18MJJIHXm7Vq5FehdBBQcHo0+fPsLskJwZkSC+JuT1YPXq1WJbWumncOHC6NevH1xcXJLsLLBnzx4tk0l6kNI+fvwYixcvRmhoqGhX5/a2VEom9i1btmSon+Dt7Y369esLU2OtWrVw//598TcSm3XbtGkjjEUZWRCak5Frcfz4cYwbNw5WVlZiF45SpUrhl19+gZubm5igks6Ji4vDggULhH61a9fG2rVrxfcnuTZZWFgYypYtm2QhOqE7qF7oByn6sLW1dbK7c8gNOdevX8eAAQO0jIpSlHsi87i6ugpDYuXKlXH9+nVERUUhJCREtFNjYmLEuwpI3iglrwOJTbpSv0O+DT1FD03Kx48fxQ5aNWrUSHHHJ+k78Pr1a9SuXRuccxQpUgShoaHJpgOAFy9eYPXq1WjcuDEKFCgAKysrGBsbo3fv3lq7H5AWX4iPj8fHjx+xZs0afPvtt1rt2/z586Nly5bYsmULIiIiRJ1IbdyE6kXm8Pb2RvHixcVYhoODA0qWLAk7OzstTX7//Xd4eHiIcsuMoZPKPG10YWLfvXu3aE9ZW1tjzpw54pi8LsnNumPGjNHVLeQYvL29UbNmTa16wDkX7xYzMzOULFkSe/fuFedI/eaoqCj06tULpqam4ryVK1ciJCQkyd+JjIzE1KlTYWRkhHbt2lG7NhkSj+tl5l1C9UKZyL8pUvA3c3NzLFq0SOs48QX591e+KH/mzJlaAWGio6OxadMmNG/eXKRZsGCBIbKcKzh16pSYl1uzZo3Wu1ytVuPJkydaAQ455/j111+10hBZg+rG1wsZ2AmCIAgiByLvzEkNtT/++ANmZmawsbHBli1b0tXhCwoKwqBBg5A3b16oVCpMmDAh02ZgIkGLqKgofPfdd+Cco3z58jh16lS6zvX09BQmlUKFCmH9+vXJRswidENWzetkcM86+oi8Lo9ESoNeX5CX4dWrV3H69Gm4uLjg4MGD2LdvH/bs2YM1a9Zg2bJlWLlyJWbPno1Ro0Zh5MiR6NOnD8qXL4/SpUtrRbmcMGGCuCaVdfohLZTJxo0bsWHDBgCpl6FGo8Hp06dFJEVp0Zn08/3338PX1xcARe3JCPIyv3fvHo4ePZrk9ymxefNmUf6XL1/WVxYJItuQfyfevn2L27dv4/Tp07h48SLc3d210krvmStXriBfvnwwNzfHgQMHMvQtePDggdg2vWHDhli8eLFoT+X291hKJvZVq1alq2wkHcLDw3Hs2DG0bdtWTNJKkb0Ta+Xj44MRI0ZoGeCIpM9iYGAgvLy8cP/+/SQL0ORpt2zZInSrW7cuduzYkWokv7i4OHz48AHVqlUD51zL7EDoBqoX+iMgIADly5eHiYkJtm3bphXVXv4+++uvv9CtWzdRNzp37ozr169TP0JHuLu7o2DBgsKQ+OzZMwDaph1pPEmj0WiNLSXWQP7/Bw8eFEa6ihUrYsWKFdi6dSuZdVMhMDAQ33zzjVgA8/TpU1Heicf0unfvnqKRSl6X1qxZgw4dOiRrcKT+ecpERkaiZ8+eoow55yhdujSaNm2KK1euICgoSCt9Wn1yCaoXGcfHxwdt27ZNYlq3sLBAmzZtsHv3bq30UVFRuH//Pl6/fp3uvyEv6zt37sDV1TXF47mdxCb2jO4wu2LFCpQuXRpGRkYwMzPD3LlzxTH5e04y65qZmYFzjokTJ+rsHnIKQUFBmDBhAurVq6dVN/LmzYuBAwfCxcVFpJXmTz9//ozvv/9epDU3N8fBgwdT/Tt///23SC8t4CSSkpX3BNUL/ZEVXT5+/IjXr1+jf//+KFCgADjnsLGxwYULF3SYw5yHvB83adIkraA67du3R7t27VChQgWtQEejRo2Cn58fAPrm6otZs2aJ8v7555+xZMkSHDhwAL1790atWrXEsZIlS2LKlCnivMya1xOfRyZ4qhtfK2RgJwiCIIhcQHh4OCpVqgTOOZo2bao1GZISoaGhWLZsmYi8UaZMGbx58ya7spxjCQkJQcmSJcE5R/fu3dPVCH7+/DlGjBghJrmaNm2aJGo7NaYzRkxMDAIDA8WWUYmjjWXFvC51jD58+ICLFy/SNsHpIDQ0FB4eHvj06RMAbT10FXn90aNHsLKywg8//CB+R3poM3ToUGF+zsyPkZERatSoobVKPTmNHj9+jNOnT6e6a0huJ7u0SA7SQpszZ87AysoKVlZW6Yp4FRUVhZo1a6JJkyY4e/Ys+vbti/Hjx2Pt2rVa6TJibiQS8Pb2RuvWrWFqaoonT56kmlb6Xt+8eVO0n/76669k01I5E18bKT2zqUVBlHaHsLS0xMGDB9P93Ds5OaF3797Inz8/OOfIkycPmjRpIqL35vZJkeRM7H369En3om95X87Pz08sdC5WrBgePHiQ7DlSe1l+PvGFlAyeievFmTNnRLupatWq2LhxozCvp1auDx8+FCaGefPm6Tj3BED1Ql+Eh4cLE1XTpk3x6NEjREVFAUhoN6nVakyePFksWuKco1evXrh9+3auX7Cka3QRVVeuiTzCdIUKFbBq1SpRD8ismzo+Pj6wt7cXC/V27dqFly9fAgDev3+PO3fuoEuXLuCcw8TEBE2bNsWtW7fE+fLx9UGDBmmNXTVr1gzDhw/HmTNnsGnTJowYMUJoQTt4JOXJkyewsbGBsbExfvrpJ1y4cCHJjkJpPbdUL3RDaGgobty4gfnz52PWrFlYsmQJHj16pBUxWqPRQKPR4NSpU+Cco127dkkWGqTF0aNH0apVK3DOMWXKFJw/f17r+kQC8m9GkyZNxMKn9HLt2jVMmzYNFhYW4JxrjYvL+zJqtRrr16+HjY0NHj58qKvs5yiio6MRFRUFZ2dn7N27F05OTvD09BTzS8CX70JMTAyGDx8u5pesra3x999/i3SJn3FJCx8fH9ja2sLY2BhXrlzJhrvKnVC90D1SuUVFRcHLywtubm5wdXXFgwcPcPXqVVy/fh1XrlzBP//8A2dnZxw7dgzbt2/H/PnzMX36dDRu3BiOjo5a8xtbtmxJ9W9KEflpXOrL/S9btgwVK1ZMcc5o+vTpSRbQyt9hmeHTp0/Cr5DbtZC3RadMmaK1iFUaR5J++vTpg3379mmdL58vzQxbtmwRCwNzuxaA4esGkXHIwE4QBEEQuYDAwEAULVoUJiYmWLFiBYDUjbjv37/Hli1bRIexaNGiYjtVeWSZlKBBxpR5/PgxLCwskDdvXhw6dAhA6h2JFy9eYMqUKShWrBg45yhevDj8/f2TnBcXF4fAwEBs27YN27Ztw8WLFynadApER0dj165daN26NXbt2oXw8HBxLKvmdYnw8HAULVoUnHNMnjxZRIsDSIvEvH37FtOnT0fz5s2xZ88efPz4URzTlXn98ePHWhPxw4cPF8dIjwTevn2LMmXKgHMOU1NTqFQq2NnZwdLSEvnz50eJEiVQvHhxFC9eHOXLl0flypVRvXp1NGvWDJ06dcKIESNw9OhRLVNpchp5eHiIKBrjxo3DxYsXxTHSIoHs0MLX1xfnz5/HyJEjMWHCBPz1119a6UmLL8i3Cp4zZ46WQSolunbtigIFCuDFixcpTkpJ3L9/H87Ozhg/fjxmz56NY8eOCWMoQFrI8fDwEFFvJ0+erPX9TomdO3eKd/+BAwdSTevj44MbN25g0aJFWLduHc6dO6cVuZe0IL5G5O+cgQMHigiKf/75Z4aeaTc3NwwdOlQM9hcpUkRMiuR2Y6O8jPfu3ZvEbJURnj59ikaNGoFzjv79+6f6nqN3Uubx8/NDy5YtRfSlGTNmIDo6GkDq5RoWFoZffvlF9Mvv3buXXVnO1VC90B2+vr5wcHAA5xy1a9fGoEGDsHnzZvz000+ijKWf3377DV5eXll6x5MeKaMLEzsA7N+/X0SNq1ixItatW6e1k4QUPZTMuinj5eUl6kW+fPlQsmRJdOvWDVWqVBG/NzU1RfXq1cU4LvAlwm58fDw6d+6sVX/mzp0rovdJhIeHY926dVCpVChUqBD+/fffbL3Pr4GgoCCcOXNG63eZeU6pXuiH5ILo3L9/X2vRU3pN7FFRUZg7d64YqzU2NkbZsmWxdOnSJH+PSNiZV1qQsWLFCvE8p4b8+x0eHo79+/cjX7584hsvkXgnZ2ncnXaXTUpaC8nlC2c3btwoviHGxsY4cuRImtcBgFWrVok69d9//+kw9wRA9ULfhIWF4ccff0TZsmVhbW2NvHnzit0AzczMxC4r0sLA5EyklpaWKFu2LHbs2CGum1x/5NixY7CzsxM7FeR2s678/m/evIk1a9agRo0aqFSpEqpWrYp+/foluxu8l5cXGjVqBCcnp0x9dyMiIrBmzRoULVpULDYnLb7c/86dO/HTTz/B0tIStra2KF26NDp37oy//vpLmP4lAgIC0LdvXxw6dChTWhw7dgycc+TPnx9Pnz5NkpfciqHqRnh4OM6fP4+3b9+Kdxi1bdOGDOwEQRAEkcPRaDRwdXUVncPEKzoTExISgg0bNqBcuXLgnKNQoULYuXMn4uLiknQUY2NjER0djdu3b+PKlSu4e/dukigQ1CD7gkajwa1bt0Rn/NixY6mmDwgIwMSJE1GiRAmxkECKRiJvdAcEBGDZsmUisru0qrdNmzZYs2aN1t8nEjrV0gB57dq14eTkBCBh29L69etn2bwOJJhXJAOqSqXCN998g5UrV4rjpMUXwsLCxPumVq1aQo/z58/rzLwuN1vRBFXKuLm5CXN5yZIlcfnyZfj7+8Pf3x9hYWEICwtDcHAwIiIiEB0djfDw8BQnTZIbWIyPj8e+fftE/VOpVKhduzaWLFki0pAWCehTi+vXr6Nz587CMCH9kBbJExkZialTp8LIyAiVK1fG9evXU00fHByMOnXqwMLCIkl0HnmZRkZGYuPGjcifP7+YLJF+6tati2XLliV7Xm4mMjISM2fOhKmpKSpWrIhLly6lmFYqMykiMuc82cFIiT///BPVqlWDjY2NVluqWbNm9P0mvnrk7dgBAwYII1Za25cnjlz98eNHXLx4UURKLF26dIYjAOZUkusryL+/L1++RFxcXJrvkJiYGEyePBmcczg6OmY4kiWROpImx44dE/2Mzp07J7sLVHKcPXtW7GxXvXr1JBOORNrI6wDVC8Pg5eWltbjbyMhI/Nvc3BwVK1bUaocCCVH1pGjt6UVen6R+PKFNVk3s9+7dE+YfY2Nj9OrVSxyTR+9LbNYdOnSozu4hp+Dr64sePXqgVKlSWpESOU/YfaZLly44evSoSC83Q0vtImNjY9jZ2WH37t1a15a3Efz9/VGvXj2oVCqt8VoiKZk13FC90A2JzZuppbl58yZMTU0zbGKPiIjA69evsWjRIjRo0EBoMXbs2GTzkdvx8vLC2LFjcffu3UydHxcXh82bNyNPnjywsLDArl27dJvBXEji51OqK4GBgejQoYP4jsjnY5N7pqXfqdVq/Pjjj2KxrJ+fH9UBPUP1Qrc4OTmJ5176LhgZGYn5VjMzM+TPnx958+aFtbU1bG1tUbhwYZQqVQoNGzZEu3btsG/fPq2F4sl9g86cOSPa0AULFhRBeXK7WTdxWUVGRiIuLg6xsbFJxqykd8uMGTPAOUfevHkztFsjkPAd37Ztm5jDsrGxIS3+n8T3/+rVK7x+/Rrh4eEieIKEpNuaNWtEnzyjWgAJgRratWsHzhN2/SAT+xeyu25ERkZi27Zt4Jyjfv362L17N96+fZtsXghtyMBOEARBELkAtVqNxo0bi4i38q2xpR8goYE7d+5clC5dWnT+Vq1alWRiNiwsDI8fP0b37t1Rt25drU6pubk5fv755zQHZnIrUVFRqFevHjhP2HJcahwnXoH59OlT/PzzzyKKd5EiRfD3338nKcuPHz9i3rx5Ip2JiYkYqJcmIseNGyfSkxYJuLq6okiRIsK0OXPmTNStW1cn5nUgQWdXV1dhEpIG4Snyd/K4ubkJPerUqYNJkyahcOHC4t3Srl27LJvX7e3tsWbNGqxevZpM7Kng7u6OggULikUDnp6eWmUjrw/yznZ6y+/z58949uwZfvrppxTrBpGAPrRwc3NDmzZtkDdvXhGRoUiRIjA2NqbJwlR4+fIlWrRoAc4TtoJ3c3MTx6R3kqSBk5OTKEv5FtjAl/IMCwvD1KlTtUzrxYoVQ/ny5WFlZUVapMLLly/RvHlzcM7RtGlTLS0St6mkyCOcc7Rp00arDOX/Xrt2rZYWNjY2KFasGExNTUVbirQgvnbk34wffvgBnHO0aNFCa8em9OLu7o4mTZqA84StttOzG0JuZvfu3WjcuLGI1JpW5L6HDx+K7/SmTZtSPYfIHG3bthX9g8DAQAApTyJJ3/m3b9+iWbNmIirc2bNnAZA2mYXqhWEJDAzEvHnz0Lp1azg4OKBKlSpo2LAhdu7cKXZflHj//j1WrVqFYcOGae1Mk17+/PNPdOrUCXv37oWvr6/4PemXgNzE3rZtW3h6embo/L179+L7778XQUtGjRoljsm//Wq1Gjt27BBjty9fvtTZPeQUQkND8e+//2LQoEFo3bo16tevj/bt2+Pw4cNaiwvk761u3bqJMq1UqRKcnZ1FupS+K126dAHnHN9++61e7yc3Q/Ui+5Ce85s3b4r5iD59+iAgICDV8xJ/Ax49eoQ5c+aIsZDJkyfrLc9fM/LAFdKzrFar8fr163Sd7+Pjg/r164NzjkGDBukljwQwb948Mb40b9488fu02j5y8+/o0aP1nc0cifROonphOEaOHCme406dOuHkyZO4efMmLl68iOvXr+Pp06d49OgRHj9+DH9/fzx//hxBQUFihxQ5ydWZM2fOiF1WpEXpZNZNHnlbNDXTrHy3xvQadSXzev78+UXwPdJCm5TKMTUt+vfvn2nTNJDwPmvfvj1pkQb6rBsA8Pr1a4wYMUK8Cx0cHNCnTx/RpyQ9UoYM7ARBEASRw9FoNIiJicG4cePAOUe9evXw9OnTJA2ku3fvomfPnqKjUbhwYaxbtw7BwcFa6e7du4cxY8aIqODGxsZi8leKoqxSqWBsbIypU6dq5YNIMDb/9ttv4JyjQYMGePr0aRKD9Pnz51GzZk1YWVkJU9uxY8eSja7r4eEhIq+XKlUKEydOxNmzZ7Fz504MHz5cDPyOHz8+u27xq0E+UWhlZSWiAlStWhWhoaEAMmdeT/ysr1q1ChUqVBAmOLlpmviCXA8LCwvRuevQoQPev38PIGvm9fXr1yMkJAQAaKvgNNDVduaJSVy+y5YtQ9myZcV3ZMyYMTr5OzkJXWkhlf2BAwdEhOmqVavCxcUF3t7eOHnyJP744w9RLyZNmqTL28gR+Pn5iQV+TZs2xenTp8W7SUJumG7YsKFYCJWY5cuXi3Q1atTAmDFjEBQUhNDQUFy7dg3z5s0TWsyePTsb7u7rwtfXF46OjkKLU6dOaWkRFhaGP//8U5SxtIBJrVYneQ/t2bNHK913332HJ0+ewN/fH//++y+mT58utJg5c2Y23ylB6BZ5u3bOnDlJIoRm5Drr168H5xzly5fXMiQS2nh5eYl3zJ49e9J1zsWLF8U569ev13MOcx8fPnxAtWrVwDnHTz/9hNjY2BT7GPJFap06dQLnCZF4f//99xS/8UTaUL1QBhqNBvHx8QgMDER4eLjYiUBCmsh9+/atGOv77rvvMhQB/9ixY2LhodS337Fjh1YeiIQ+n7Sgv3379mI8KjXkZRcYGIhNmzbB0tISnHMMHDhQHJNPyKvVahw+fBiPHz/W7Q3kQGJiYhAdHZ1kHFb+vZAMWkZGRihfvrzWLpupPdutW7cG5wk7gFAd0C1ULwyD3MQujecOGTIkXREmE+9St2nTJjGvtHfvXr3l+WtHKreYmBgsWbIE+/fv1/p9aki72piYmMDb21uv+cxtaDQaBAUFoUqVKuCco3Xr1uku44sXL4pgPlWrVhU7DtJ3IuNQvTAM8jbS6NGjRftf3vZPi7S0kpvXa9asidWrV6NNmzZk1s0kye3WmDdvXvz555+papHYvN6kSRMcOnSIon9nAXk5ZUSL5CATe9bJbN2QExAQgD///FPUE8l3JfU5KBJ78pCBnSAIgiByCQEBAcLM2ahRI6xatQr379/Hvn37MGfOHJibmwuDTrFixXDgwIEkxqyzZ8+iTp06yJcvn1g1+Pvvv+PSpUt4//494uPjceTIEYwYMUJca8KECeJ8GnBJwN/fX0wAfvPNN5g7dy4uXLiA5cuXC3O79FOyZEncuHEjxWvNmjULnCdsK3jw4EGtrZnfvXunFf8bZ8UAALrbSURBVG2atqdNioeHhzBzGhkZoUSJEiKqmBRVKbNInZzAwEBhtDM3N0ejRo3g5+eX5bznROR6mJqaonr16iIyaEYWEzx69AiVKlUSdWjz5s1aUTfi4uK0TOzyaEz0nkpAXyZ2OVeuXBELcPLnz4///e9/SRZNEbo1sffu3Rucc1SoUAGvXr3SOh4REYE1a9ZApVJBpVJh27Ztush+jsLT01M8sw4ODujSpQt27dqFBQsWYOjQoeLbbWtrixkzZiT7Hfn3339Furp162Lnzp1Jto6Mjo7G+vXroVKpUKxYMTFxRXzBy8sL9vb2og3UuHFjzJgxA0OGDEHHjh21BgZ//fXXJG1aALh9+7b45jg6OmLOnDmIiorSShMVFYUNGzZApVLB2toaJ0+ezKY7JAj9kFx7KjNtn2fPnok+4erVq3WRtRzJixcv0LdvX5iZmaFnz56pmv2lyYvDhw+LNuratWuzK6u5hoCAALHDzdatWwEkXwfkv5NH2G3btm2SCNVExqB6oQwy8u6/evUqzMzMwDlHr1690m1if/fuHfbs2YN+/fqJMUeVSoU//vgjU/nIybi7u8POzg6//vpruiOGystOrVbDyclJmHVnzZqV6rk0YZ486X0e9+7dK8b5ChQogCNHjqTrGufOnYOtrS2MjY2xcOHCLOeXSArVC8Mgld3ly5dRunTpTC9wDQkJQa9evcSig/j4ePpOpMKff/4JCwsLFCtWLM25BmlBzsKFC2FmZoY8efJkeNcPIm0eP34s3jny9k5q3LlzBy1bthTBlYYNG5ZsICsifVC9MBxyg+zvv/8uxmY3b96cqUBhchKb1w8ePIjIyEgEBgaScToLJGfU5Zzj+PHjyaZPbF5v3Lgxbt26BY1GAz8/PzJOZ4GUtDh69GiGr0Um9qyT0bqREl5eXmjVqpV4f3HO4eHhoevs5hjIwE4QBEEQuQgvLy84ODiIRpK0BbMUGbpAgQKoXbs23N3dk5zr4uKCEiVKiEnDqlWr4sGDB2LLeLlJKywsDBs3bhRpV6xYkW33+LXg5eWFsmXLCi2kASopErGjoyO6d+8uzLvy7e8kNBqNiA7QvHlzMcklH9gNCQnB0KFDYWRkhLZt26Z7Iiw34e7urhWR+MSJEzqLqOfh4YG6deuKqOLffvstbt26pZNr51TkelSrVg3Hjh1L1niYHBqNBi9evICdnZ14t/Xr108s7JC/p9RqNbZv3y7q3IgRI/RxO181+jKxx8bG4syZMyIijZWVFUaNGkUd91TIqBbSd0D+PYiOjkbPnj3BORc7pCQePA4KCkKPHj1gbGyMfv36ZXlwOSfi4+ODFi1aaEVPkLelihcvjp9//hnv3r3TOk/S4o8//oCpqSlMTU0xe/ZsYV5PPCkbEBCAhg0b0gK0VHj27BlatGiBAgUKgHMu2p3Se71cuXIYMWKE0CKxIWHjxo1iYvGXX34R5vXE6V69eoUOHTqAc44FCxZkz80RhMK5e/euMDNSXy91nJ2dxTd84cKF+Pz5sziW+Hvt6+uL6tWrg/OE3bWePHlikDznZF69eiX0WLJkSappw8PD0blzZxGNr3bt2jhx4kQ25TRnQ/Xi60EeWdfExCTdJvbEbdsTJ07gt99+E+21sWPHppg2txISEiICKgAZNxh8/PgREyZMgLGxMerXr5/s2C6RdeLj49GvXz/RD5QWQwFpL4iaOXOmOO/AgQPZkt+cBtUL5SJ9LyRDaGbHkxYvXizmSvQRTCMncfXqVZQvXx6mpqZYsWJFkgX5yTFo0CDRtqX6oHtOnjwpAls8fPgQQNIxJvl34f79+/j222/F4vCGDRuKXXFoUU3moHphWPRhYj9z5ozYrbx27dpwcnISvgSAzLpZRa6LtIhs165dSfQKDw/Htm3bxFh6s2bNcOPGDa05V9Iia8jLvE+fPuA8YXfe9LzHEuPj46O1uEMaRyEt0k9660ZiEu8wNHnyZLFLkY2NDfbt20ff+BQgAztBEARB5DL8/Pzw888/i22zpci33bt3x7p168RWtfIG2NmzZ1GqVCnRibe0tMTGjRtx6dIl0QEBtBu+nz9/xqJFi6BSqVC1alXcuXMn+27yKyEgIAAjR45EnTp1kDdvXhgZGaFMmTIYNGgQTpw4gY8fPwKAVsSFmJgYxMXFITIyEkDCJKCZmRnGjBmT4t/ZvHmz0Pry5ct6vaevFXd3dzGBXrNmTTg5OSEiIiJL1/T29kadOnXAOYelpSW6deumZV6nSdqUketRq1atDOuxatUq9O7dG+bm5uCcY+TIkeKY/N2mVquxdetWcM5RpEgR3L9/X6f3kROQG6fbtGmT5cmj2NhYnD17FpUrVxaDJyNHjiTzejrIjBYvX77Eq1ev8OLFC0RERGDLli3gnGPlypUpnvPHH38IEzAN2ifP69evsWrVKrRq1Uq8ZzjnaNmyJVasWCEW3SQeiIqNjUXjxo1FFHxpsD2l78HAgQPBOUe7du0A0ABjcgQHB2PTpk3o0KEDihQpAmNjYxQrVgzff/89nJ2dRRkn1iI+Pl6YEu3t7fHmzZtk00mMGTMGnHPUqVMHcXFxpAWRa5Ge/cOHD4tJKymCKLVttZGXx9KlS8W3Yv369VqLZaX3jp+fHwYNGiQmZlu2bKmzRbWENr/++iuMjY3x888/48OHD0IraeL106dPuHXrFlq2/D/2zjssquPr49/ZpSOCiiioKCpWith7j713jT3GXqOmaWJJNEbzs0djYjd2Y+8Vu4gVpYOIqNiVjsBy3j9477gLC6I0y/k8Dw+wd+7duXOmz3fONJECKldXV9q2bZt8Buf394PLxceJPhF7hw4dZP8pI7T7TI8fP5anDAkhaM6cOTkW548dJd2Sk5Ppv//+o5iYmEwtcu/bt0+Wq3Xr1uV0ND9LNm/eLNN48uTJ8vO32Wfv3r3yvk6dOuV0ND9JlDTmcvFh8759JGX9Y9WqVZQvXz4yNTWlmzdvZmfUPjkiIiJo9OjRJIQgFxeXt54SdOXKFblW4eDgQGFhYdynzWZ27twp11D12UM7vS9dukTt2rWTDjKcnJzoyZMnRMTzf1mBy0Xek50i9uPHj8v7bWxsdNY0tPsA2sJpc3NzHd0C83a07eLu7i51IgqvX7+mDRs2SFvY2trSli1b5PX0bGFiYkK3b9/O+Rf4hNC2xfbt2ykkJOS9nxUSEiJtYWlpKftV3MZknreVjYy4f/8+zZo1Szrsc3R0pHXr1mXaYd/nCAvYGYZhGOYzJC4ujp49e0anTp0iDw+PNIM57c7r5cuXqXr16qRWq+Uik/aPpaUl9evXT4qttQf3Pj4+VK9ePVKpVLR69Woe+OshISGBYmNj6datW+Tr65vGQ7p25/jIkSP01VdfUbVq1cjJyYm6dOlCw4cPJ3t7e2rYsKGc4FJQBo3Hjh2Ti4wrV67M+Zf6SPH19SUbGxsSQlDZsmXp6NGj770LlsXrWUfbHg4ODuTu7v7WdNO+HhISQkuWLJHiqv79+8tr2nVcUlIS7dmzR2fChdHF19eXihQpIr1cPHr06L2eo4jXFc/rLF5/dzJri5iYGFqxYgWVKVOGbG1tqVChQlSjRg1q06YNWVtbU58+feTJBEQpZUdpb+bPn09qtZoMDAzo/PnzufJeHzMeHh504cIFOnv2LCUkJMh2Q1/7ER0dLb2qt2nTJt1wioDu66+/ll4umbdz7949CgoKkqfXKOhrOzQaDbVr146EEFSzZk2Ki4vTG04pF9OnTychBDVo0CBnIs8weYB2ns/M3wr+/v5UrFgxEkKQvb09eXt752xEP2K063hlg5gQgkaOHElbt26lhIQECg0NJXd3d2rQoAEVKlRIeuRR+kc8bsh+1q5dK22xePFiunfvnrwWHBxM06ZNI1dXV7ng2rBhQ9qzZ48MwzbJGlwuPk60ReyKPd5nXBgfH0+zZs0ilUpFVapUYXHiWxg6dCgVKVKErly5kqnwL1++pBIlSpAQgkaMGEFEXF6yCyUdx44dS2q1mhwdHens2bM619Lj3LlzcjN6mTJlaP369Zm6j9EPl4tPD+2+gSI8FULQ5cuX8zBWHwdhYWFUq1YtEiLlhN7bt2/LeW9tp0j37t2TG/OFEPT999/nVZQ/acLDw8nJyYlMTEzon3/+0XuqMlGKR+k6derIdYtKlSpJRyUsLMw6XC7ynvRE7CtWrHgnEbufnx+1aNFCric5OzvL9l+j0ei050FBQdSsWTO5WVBxAsdkjrfVPcHBwdStWzd5OlrlypXlmndqWwQHB0uHAKNHj5Yn0DKZI6vtgLYtDh48SGXLlpVjeHbi9u68jz0ePHhAs2fPlicHly9fntasWaOzJsukhQXsDMMwDMNIUouoHj16REOHDiVzc3O5c9ne3p6+++47mjJlCn399dfSQ0CbNm3o+fPnRKQruv7999/J1dX1rccLM7qkHvBt3ryZVCoVGRgY6GwgUP63t7engwcP6nhpIiJ69uwZDRkyRIZnkW7G+Pr6krGxMTk4ONDZs2ffa0GDxevZh6+vL6nVaqpWrRoFBQVl6h7t9E1MTKRNmzbJyeApU6a89X4+uks/vr6+JISgpk2bUlxc3Dvfz+L17CM9Wyh5Pzo6mn788UedtsLU1JSEEGRsbExCCCpdujSdPHlSthlKvg8MDJTe8W1tbfm45gx437p8+PDhJISgWrVqyX6TPoKDg8nW1paEEDR27Nj3jeZnQXq2eFt9PmnSJLlQ+ODBg3TDPXz4kNzc3EgIQX369MlSXBkmr3mfuispKYni4+Pp7NmztHTpUlk3WVpa0ldffZXGG3Lq7/jc+77aCx0//PCDTvtcrlw5KlSoEKnVavlZgQIF5KlZ2bloRcT9XG20bVG7dm3q0aMHde3alSwtLWW/KV++fPT111/T6dOn5X1Zzc+KTT93YUpelgvm/VHqkBs3blBwcDARvV+ZOHv2rDxCe8OGDdkax0+Jhw8fUqtWrUgIQf369cvw9AHFDq9evZKbzHr06KFzjck68fHx5OTkREIIatWqVabu8fDwoCpVqpBKpSKVSkUDBw7M8omPnzNcLj4eUm+KVf5PTk7W8aavzZYtW6h48eKkUqnI2dk5w3E684agoCAqXrw4CSGoTp06tGHDBh1HRwcOHJBzUUr9FRgYSERcFrKbyMhI6tmzJwkhqF69enTz5k3ppIIoRdD2119/kYmJiXQW5uTkRHfu3CEitkd2wuUi70lPxL5o0aJMpbHSVkRHR9OhQ4dk+29sbJzuJsLg4GD6/vvvad++fdn4Joxii5iYGDpx4gS1adNG2uLcuXNEpN8W8+fPf+spCEz2ob0++OjRIxo1ahTVrVuXhEg5WVDbkQ+Tc7B4/f1hATvDMAzDMGlQBpZHjx6VAoWiRYvSd999R15eXjphL1++LI9z7tmzZ5pnEJGcTOYF8/dj//79cvHW2NiY6tatSxs2bKA1a9bQ1KlTqUyZMiSEoIoVK9KePXvkMc4PHjygZcuWyd21BQoUoLt37+bx23z43L17l44dO6bjjSGzsHg9+wkLCyM/Pz+Zdu9aj0RGRtL3339PBgYG5OrqykfWZYGHDx9SdHT0O9/H4vXsJyNbLF68WE4Iu7q60rhx48jPz4/c3d1p5cqVVK5cOdlmbNy4kUJDQ4mIyMvLi7p37y7b9Jo1a8rTVZjsY+nSpVL4qQjilI1/St/p4cOHNGHCBMqXLx9ZWFjQrl27iIj7UdnNmjVrSAhBFhYWdOzYMSKiNJs6Xr16RYsWLaKiRYuSEEIeVcu2YD5GlPx969YtWrNmDS1dupRWrFhBCxcupJ9//pl++eUX+vXXX2ns2LE0YsQIGj9+PPXu3ZsaNWpEtWvXJmNjYynsLViwILVq1SrDftWtW7fkJubPXXCq/f7Lly+nxo0bpznZrHDhwuTi4iK9Eaf2XvWu4wjt8MePH5eiCLbFm/efPn06WVlZpbGFmZkZFS9enLZs2aLjnZ0oZYz9vmO6hw8fUteuXenatWtp4vI5ktflgnk/tNMwK/0hZWzYt2/fNM9lUnj9+jUtWLCALCwsqHTp0rR37963ppMy1lCr1bLfymQfiYmJVLNmTR0HCam9iGrb6NKlS1S7dm0yMTGRG6aUY+d5PPF+cLn4MMlKHR4bG0tRUVE0Z84ccnFxkaLeyZMn6w2vXXa47XiDn58flS5dWs5x2NvbU9OmTalmzZpUsGBB2bdq2LAh7dixI0fqILZHCsHBweTg4EBCpJyeOWrUKFq9ejUNHz5ceodWnI00a9Ysw4047wvbIoUPoVx87miP+caOHUtCCPrxxx8zfb92Xr579y517dqVhBBUokQJunHjht579Dn8YbKOdlqGhoZKWzg4OKTRjShob+BhcobU9ZaHhwcNGTJEjreVH2dnZ+rdu7dcC2RyBhavZw0WsDMMwzAMo5fXr1/LSXkbGxuaPXu29HqhDFSUwefBgwel96RNmzbJZ7zt+HkmY5KTk+nRo0fUvHlzUqlUZGxsTEOHDk1z3FZoaKj0AGRvb0/169ensWPHUvXq1eURqQULFqS///6biHiR5F14l3zL4vWcRzvvXr16lcLDwzN13+HDh+VA/Z9//smp6DF6YPF67nL16lXZHru4uNDatWvTLKg/fPhQthk2NjZUoUIFatGiBRUqVEh6YrC2ttYrFGIyx9sEae3atZPpn3qC9+7du/TDDz+Qvb09CZFyxLyyMY15d95miw4dOkhbpBbiPnr0iFasWEEVKlSQIjo+UYj52HF3dydDQ8M0ItF3+Slfvjx9++23GbblXl5e1KNHDzIzM6Pr168TEYt1td8/NDSU9u7dSyNGjKCBAwfS+PHjac+ePfTo0SMi0u3zzpkzhwwNDWnDhg2ZbpO1wx09epTq1atH5ubmcoGXbfHm/Q8cOECzZ8+mmjVrUosWLWjgwIG0fv16un//fpr7Nm3aRAYGBrR+/fr3Ek5PmTJFbiy/detWmrh8juRmudBm9+7d9Ouvv5Kvr68UOHCfN+dRbBgZGSk31Xbq1ImIOP3T4/Hjx9S6dWsSQlDdunXT9Fe1y5Cnp6fs2woh6L///svt6H4WKGncrVs3nfnZ1Hn49OnT5OzsLMfYFStWlOO6z73uzypcLj4stNvnoKAgunr1Kl27do0uXLhAJ06coKNHj9KePXtoy5YttGXLFlq5ciXNnTuXZs+eTRMmTKAGDRpQ1apVSQghxetffvml3ucr81vagjhuP94QHBxM7du3l+tBSnoqv7t06UJ79+7VKSMajSbLoirt+Xm2Rwr+/v5UsWJFWfektkW9evVoypQpFBMTI+9JTk7O0gkdJ0+epHnz5uk8j8m7csG8QTttDx48qFOvv+ta9bVr16hGjRokhKBhw4ZRXFwc5/U8wsPDg1xdXUmtVtP48eMpMTGRbZGLpC47mzdvpvHjx5OBgYGOcwY7Ozv6+eef6caNG7IfxRqRnIHF61mHBewMwzAMw+jl8uXLVLRoUVKr1dSrVy/psS01ycnJdO/ePbn4NGPGjFyO6adNYGAgWVtby6PuYmNjiejNRK0y+L979670xF6iRAnpHVERry9dujTTYl9GF2Uwp9Fo0t0xzuL13GXFihUkhKATJ05kGE473Z2dnXU8vPEgPeso9U9SUpLeEwtYvJ77/Pfff1KYOGrUqDSevZXfvr6+VLJkSRJCULVq1aTovUCBAlSuXDm6evUqEXE5eR+0PXefPHmSiNJu/Hv48KH0ulSoUCGaNGkSLViwgBYtWkROTk7SG2z+/PnZ+3oWUNIsKioqzXGmii0ePXpETZs2lQL1X3/9lTZs2EBbt26ltm3byuOGzc3NaeHChTrPZZiPkW+++UYeHWtiYkL29vZUunRpKlu2LJUrV47c3NyoSpUqVLVqVWrSpAk1b96cmjZtSn369KGff/6Zli9fTo8ePUqzoVabmzdv0tdffy0XhAsWLMhi3f8nM2OC1GH69Okj24TNmze/9Rna1w8fPkzt27eXp3mxcPoNqetyfemhhFHStHfv3vIUlczYIjX+/v7y2HMrKyu2xf+TG+VCmytXrlD79u1lP/iPP/6ghw8fEhHbIifRTtuFCxfK+apZs2blYaw+Du7cuSM3VDZq1IjOnj2bZhH87Nmz9NVXX8l0HTBgQN5E9hNGqWcWLlxIhoaGVLlyZbp69Wqa+ic+Pp62bt2qMy/r7Ows52S5nskeuFx8ePzxxx9Ur149nbGGkvaZ3UBrZWVFI0aMSHMyGtEb8XpsbCyVKlVK5yRgnnd/w7Nnz+jQoUM0cOBAql+/Pjk4OFD37t1pwYIFFBMTo5NWSUlJ9OWXX1K/fv3ee7O+j48PFSlShPr06SM/Y3ukcO/ePfr555+pUaNGZG9vT9bW1tSiRQuaNWsWBQUFyTydnJxMGo2Gpk6dSqNHj05zAlRmePLkCdWuXZuEEDRy5Ej5OdsihdwuF76+vnT06NEMN7p9bujr/2h/5ufnRxqN5q1zrnFxcTR8+HASQlC5cuXo6dOnb/3u5OTk9z7d+XMjPj6e/P39iejtaRUXF0d9+/aVGzWzsgGHyRyp65EXL17Q9u3bqVevXqRSqeTcn4WFBTk4ONDKlSvp8uXLOveknufispE9sHg9e2ABO8MwDMMwelm2bJmcPDx+/HiGYaOioqRHgW7duuVSDD8PDhw4IHfKKh7UU3vTTUpKouTkZJo4cSKp1WoaOXIkHT58mL799lv6/fffydvbOy+i/kkRGxtLf//9N+3Zs0cOxJWBHYvXc5fnz59LLwu9evWSxy+nR3JyMoWHh0sRYvfu3eXnTNaJioqimTNn0rZt23QmqVi8njfMnz9figUVEXrqCWKNRkOxsbHUpUsXEkLQb7/9Rp6envTPP//QqVOn5MQvT1q9PzExMWRvb0+2trZSEJWaZ8+eUbdu3eTmgdQ/JiYmNHz4cHn6DfN+xMXFUcOGDalMmTLpLgI+fvyYOnXqlO4iuqGhIbVt21YKDRnmY2f8+PEyf3/77bd0//59ioiIoBcvXlBERATFxsZSbGwsJSQkUHJycpqxB1H6/aibN2/S0KFD5fOVDbYs1tWPdlubOk21/x84cKAcE2Yk1tUnXtf2nM+2SJ/UHvfSI7O2SI+goCBq2bIl2yIDsrtcpMbPz48mTpwoPZMVKVKEmjRpIudN2Bbpk1rco6C0F0Qp81XKNW2xiMJff/1FJUuWJJVKRYULF5abNZmM8ff3J1tbWykQ6dGjB23dupU2btxIEyZMkCdoCiGoVatWfOJGDnL//n1ycXEhIQQ1bNiQ/vvvPwoICKDnz5/T6tWr6euvv9bxeti4cWPpeV1fn+p94PmsFLhcfDi8evWK6tevT0II2b4WLFhQR5huYWFBpqamZGNjQ3Z2dlS0aFFydHSkGjVqUJs2bWjJkiV0+PBh+UztfK4tXldEuizUzRzR0dHpXgsJCZGOk7p06fLOYl1fX19yc3Nje2SAkg5Pnjyhp0+fpnGOpFx/+PChXF/t3LnzO9tCo9HQqlWrpC1Gjx6d5juYN+RkuQgKCqKiRYuSEIImTpxIp06dktfYFvqZMGEC1a5dW/6fXjop48RTp07JTVJbt27NMKxCaodwvO6RltevX9OXX35JzZo1e2tYJR137txJRkZGpFar3+psjHl/UpcJf39/2r17N7m4uFCRIkV01jFat25NixYtSrMmpW+eJSIigv766y/y8/MjIu4jp4eSdtptuHZ6sng9+2ABO8MwDMMwelm0aBGpVCpycXGhly9fkkajSdNJVjpoDx8+lJ5ce/TokRfR/WQ5dOiQPNLu33//zTCsMkmlzwY8IM8af/zxB6lUKqpcuTJt3LiRIiMjiShloMji9dwlISGBli5dSoULF6aSJUvSrl270s3fSvqfOnVKDuDHjh2bm9H95JkwYYL0KLZx40Z5SsSRI0eoUqVKLF7PZf766y8SQpBaraYzZ85kGHb69OmkVqtpypQpaa5xm5E1Ll68SMWKFaOCBQvSypUr0wgVtNuGW7du0c6dO2nOnDmUP39+UqlUZGBgQI0aNaLz58/ndtQ/OW7dukUuLi5kYmJCS5YsSfckFSKi06dP09atW+mPP/6g/Pnzk5GREQkhyMHBgfbu3ZuLsWaYnEF7IWLs2LGyb7R8+XL5uXb9pK8fm1HfNrV4fdSoUXT79m0W62YB7fajX79+0pOSPrFuRuL1qVOn0osXL9j7dxbQZ4t8+fKxiD0PeJdykR4RERF06NAhKlasmDwtwsrKim7evElEPI7XR0b5U/tafHy89GT56tUr8vPzo5s3b9LcuXPpyy+/lPNbQggaOnRopr6bxyYpBAYGUvXq1aUnYwMDA9lfVX7atWtH7u7u0tFFdqCd/myLFAICAsje3l6ebmJpaSlPJlV+XFxcaNy4cfT8+fMsf59iS+3TUbmeSiGvygWTFm9vb3maXJEiRWjnzp3k6elJV65coTt37lBwcDD5+PjQgwcP6Pnz5/J3YmJimlMdtdsVbfF6rVq1ZLlTvIyyUDct6Y0T9KXP+fPnZfnp2rVrpsW6vr6+5OrqSkIIsra2Znukw7vaQtkA8i62UEhKSqKVK1fKfhbbQpfcKBfJycm0ceNGuRlBrVZTtWrVaO7cuenG43Pn/Pnzsr3esmVLhmGVtNu8ebO8R5+AXbu/euzYMZo+fTrVrl2b2rVrR+PHj6fAwEAi4vF3ao4dOybTdefOnRmGVWzxv//9T96jnESrj7eNIbhcpI922jx8+JAWLVpE1apVo/z588u0V6lU1K9fP535XSL96a48Lyoqiv78808qUqQIGRgYyLkQLhe6aDsynDNnDt2+fVvnelbF61w2dGEBO8MwDMMwevnjjz9ICEHFihWj+/fvp7mu3alShApmZma0cePG3IzmJ09kZCRVr16dhBA0bNgwiomJSRNGEWMpnnerVKmiNxzz/gQFBZGlpaVM361bt9K1a9fSiNcvXbok7/ncBha5yePHj6ldu3YkhKA6deroeMVVvLwpdVRAQID0AmRtbS09vPHCa/bg7+8vvSq5ubnRunXraPfu3dLzeoECBWjMmDEsXs8lQkJCqFKlSqRSqWj27NnpinWjo6Opc+fOJISgTp06cXnIZiIjI6XnvZo1a8oJQKI3dY+yQBsZGUnnz5+nunXrygV3V1dXOnDgQJ7E/VMjOjqaRo8eTUIIql69uvS6R/SmvVBsodFo6NGjR9S0aVM5AVygQAHasGFDXkWfYbId7YWIb775Rub1v/76K0teQW/evKnjcXTEiBEUFxdHRCnCIhbrvj/adunfv79M43PnzsnPMxKv//jjj/Kan58f2yILpGcLba96mYVF7FkjM+UiI5R0vnv3LtWtW1eO9YUQFBoamiNx/lT4559/aMCAAdS5c2dq3bo1tWjRgurWrUs1a9akmjVrUoUKFahUqVJUrlw56RnZ3NxcR0xqYGBAAwcOlM/Ul+8DAwPpt99+k//z/EoKYWFhNGPGDDnHoaSnnZ0djR8/nsLCwtKM7ZYsWfLOIjiFxMREOnz4MM2cOVN+xrZIISgoiNq2bStPm1F+LC0tafDgwXTy5Em5wV9h48aN733CliLwGj58uPyMbZFCbpeLpKQk9qiYDj4+PlSoUCHp9T4gIEDnenon3qSXl7XF64pHfWtraxo7dizNmjWLhbpZRLHBhQsXpFi3W7du6Z5ep+Dj4yNPorC1taX//e9/NH/+fLZHFnhfW6SGRexZJ6u2iIuLI39/f3lalGIL7RMKmDeEhIRQt27dyNDQkPr06ZOpsdjcuXNle5/6NCfttuXPP/+kfPny6fTTlHpLEaHymsgbAgICqH379mRoaEgDBw7Uqwsh0q1LJk2aJNP19OnTGT7/1atXdOXKFZozZw7NmjWLfv75Zzp37hw9efKEiNgW6ZGYmEiPHj2isWPHUoMGDXTycunSpaljx4508uRJOQdLlH5aaovXlyxZQs7OzjprIDwvpZ+nT5/KkznGjBlDPj4+REQUHh5Os2bNyrLndS4bb2ABO8MwDMMwerl58yY5ODiQlZUVbd++XaeDpL1YuHDhQul9vUyZMnT58uW8iO4nS1xcHI0fP14Kp69du6ZzXdsWjRo1kiJSFrBnP76+vlS4cGESIuVoWgcHBx3xOntez10Uoa4Qgho3bkwXL16kqKgonTB+fn7Ur18/KbB2cXGRgz4m+9AuG2XLlqVixYrJSQ/2vJ67REZGShFPjRo10mzuULh16xY5OTmREIK6d+/Ok1I5QGhoqJwEbNSoEZ0+fVqe3qEQFBREv/76q6zLTExMqFatWrR79+48ivWnSWhoKFWpUkW2F+fPn0/TXty/f582bNggNw0qgofVq1fnUawZJufQrvOVk1SyImK/evWqjnh9/PjxacYi2mJd7UWRz2kSPito26VDhw5Up04dvQsie/fulZs8hRD0yy+/yGuK3dkWWUPbFp07d6by5cuTl5fXez0rKCiIWrRoIUXsynO4X5Y5MlsuUqOd1/ft2yfbfiEEtW/fPk1/jXnDkiVLpAjnXX9MTEzIwMCAvvzyS1q6dKl8pr78HhISIr3sjhgxQn7O8ywpJCYmUnx8PB0+fJj27dtHp0+fTuMJTkmrr7766r09uSYmJtKpU6fkmIZtkZYXL16Qr68vLVu2jJYvX0779u2jK1eu6IRR6pyffvqJhBDUpUuX9xJOb9myRZYnFiSmJTfLxZEjR8jFxYXmzp2rM9/FtkjB19dXinyaNm1K/v7+7/UcpZ2PiYnREa+PHz9eCuNZqJt1tMW6JiYmJISgXr160YsXL/SG9/HxkZ7XbW1tacGCBfT48WMiYntkFW1bGBsbkxApJy0/ffr0nZ7DIvas867lQiF1+s6dO5fKli0rPeuPGTMmx+L8MbNlyxa5ofj333+n+Ph4eU1xPqJw5swZsrOzk+vl6W0sWLx4sew3denShaZNm0bTp0+nevXqkRCCKlWq9M4bRD4H/v33X7n5eN68eTq20Gg0OmPp/fv3yzRu1qyZzmkq2jZ79eoVnTp1iqpWrUrFixfXGSPa2dlR06ZNyc/Pj4h4LiQ1x48fp/Hjx8u1I+WnYsWK9OWXX5Kvr6+slzI6VUL7c0W8rmxEU6vVVLt2bXau8BbGjBmjM+998uRJmjNnzjuL17lsZAwL2BmGYRiG0cuLFy+oQ4cOJISghg0bkpeXl85ghYh0RFdCCFq0aFEexfbTJjQ0VEeo6+npmUZ41bdvXxJCkLGxMU2aNImIeEIqJ/D19ZWeZFQqFZmYmFCbNm3o6tWrMgyne+7h7+9PRYsWlZNOQ4YMoWPHjtHOnTtpzZo1VK5cOXmUmo2NDXl7exMRC3RygtRlw9zcnIYNG0bBwcF5HbXPjpCQEHJ0dJRtxpkzZ+jly5dElDJBdePGDemtwcLC4q1HQjLvT0BAgJxUL1u2LHXt2pXWrl1Lf/zxB/38889ka2srJ+gtLCyoa9eudOzYsbyO9idJQECA9AJasWJFGjBgAO3bt4/+/fdf+uuvv6hq1arSVmZmZlSzZk29x9AyzKdCdonYX758SZMnT5b3lytXTm64TUpK0ulzaQunVSqVnIRnMoe2XVJ7dCUievLkCQ0ePFhnQUvx8vr69WudMYq2LYQQ7y0s+lzRtsW9e/fee/yXnJxMDx8+pObNm5MQKV57+djmd+Nt5SI12nXSli1bqE6dOrIc9OnTh8XrbyEgIEBuDjc1NaXq1atT7969adiwYTRo0CD6+uuv6dtvv6Uff/yRpk6dSn/88Qf9+eeftHbtWrp69WqGnngVQkJCdE4mEkLQqFGj5HWeb8k4DVLPdZw7d46MjIzeWayriNfd3NzYFu9JaltcvnxZpuP7CKdZkJgxuVEuiFJO7ujWrZssF506daL169dnKh6fE1kVsSvpmFq8PnHiROn1kiilruJykXWUMnLu3DmysLCg9u3b0927d9OE8/b21hGvL1myRMdDb2p7aIt12R6ZQ9sWZmZmVKlSpTSbcTIDtxlZJ7PlIiMuXLggnWCZm5tTz5493/sklk8R7bw4Z84cOS5bsmSJ3o0bFy5coPbt25OpqSkJIah///56xxO7d++Wz5o1axY9e/ZMXrt58yZVrlyZLCwsaP/+/TnzYh8h2rb47bffdDQfDx8+TBP+0KFD5OLiQiqVigwMDOjHH3/UK6C+fPkyTZo0SefEM0NDQ6pcuTKVLl1arifa2dnx2q0eJk6cKNPN0tKSbG1tadasWWk2zL6N9Dyvq9VqOnv2LEVFRek4V2AR+xu086PibFIIQfXq1ZP5unz58rR69ep3Eq9z2dAPC9gZhmEYhkmX4OBgsre3JyFSPLlOmDCBtm7dSosWLaKWLVvK3edCCJo6dWpeR/eTRluo6+LiQv3796d169bR7NmzqXHjxtIOtra2dODAgbyO7ieNj4+PXLQtVKgQzZgxQ177HAYQHxoBAQFUtWpVWQbUanUab282NjZ04cIFImIb5STaZaNo0aI0b948md48OZ67+Pv7S7Guo6MjNW/enH755Rdq37693BBlZmZG3bt3Z9FaDhMYGEiNGjWSm2n01VW2tra0dOlStkUOExgYSHXq1JH9V30eRK2srGjy5Mk6p6owzKdKdonYw8LCaPz48VSjRg0SQpCDgwOdOXOGiFL6XamF0/Xr1ychBK1Zs4b7Ze/I29Lr4cOHNHXqVOm5uESJEnTq1Cl5r7YtgoODqU6dOmRgYEAnTpzIyWh/krxv3k3dJ46IiKBJkybJ04wsLS3pxo0b2RHFz4bM2kI73NatW3XE63379mXxeibx9vaWi6lffPEFhYaGvtdz9I0PtcXrBQsWpO7du7PwKgtoew99F7FuavF64cKFaejQoWyLLKDY4vz58+8tnCZiQWJ28L7lQiE2Npa2bdtGnTt31nHgMH78eBmGbZFCVkXsCQkJVLZsWTl/0rJlS7pz5468pqCUC2WORXujDZN5lLIRFBQkN1Rq8/DhQ3kKs1qtpp49e0qvr/rsoW/jE5M5FFt4e3uTu7v7ez0jOTmZNBqNTpsxbNgwnevM23lbuUiPxMREOn78uOxLWVhY0IgRI3ROSmVS0B6jfffdd3J8NmjQIFq9ejU9ffqUvLy8aPXq1VSxYkXpHVz7FHIlP2s0GkpMTJQnrQwZMoSio6Pl85OTkykiIkKewDVz5szcfdkPHG1bfPvtt9IWvXr1oqVLl1JAQAAdPHiQfv/9dzIzM5P1fLNmzSguLo6IdOcZDx06RC1atJA2K1euHA0cOJAuX75ML168oGfPntH+/fupWbNmJIQgV1dX9oqvh2HDhpGNjQ0tX7483ZOeMiIj8bp2GxMYGCgdXbCIXRftNNAWsQshqFSpUrRu3bo0TidTo93uctlIHxawMwzDMAyTIf7+/lS+fHkdwZWhoaHcDSiE7tHkTM7h7+9PTk5OOrZQJtuNjIzIzs6O1qxZk9fR/Czw8fGRi7ZVq1alTZs28YJ3HhIWFkbfffedFE4pP46OjtS2bVvpBZwnZ3Me7bLh5ubGZSMPCQgIoBo1akivJNpiXQsLC+rRo4cUGDI5y6NHj2jdunXUs2dPcnZ2JktLS6pQoQJ16dKFZs2a9V5HyDPvx8OHD+nPP/+k9u3bk729PRkaGpKNjQ01btyYvv76a/Lx8dE58pRhPnW0J+G/+eYb2U78+++/73R/XFwcXbp0SZ7gZWJiIjcPpu5/hYaG0sGDB3W8YDFZR7FFfHw8Xbt2jTp16iRtoWzKSW2Le/fu0dWrV7neywX0eeJdsmQJlS1bloyNjXXmV3744Yc8iuWnS0ae1/v168fjlXfEx8dHihIbNWokRYlJSUmyntH+OzPj8NTi9d9++41CQ0Np7dq1LNbNAtpiXaWOadu2rY7HXG1Si9dtbGxo48aNFBkZSatWrWJbZAF9tmjfvj2L2POAdy0X+khOTqYpU6ZQ4cKFpS0GDRqUU1H+aNEWsTdv3vydRey//PILtW3blkxMTEitVtPEiRPlNe0Nt0lJSfTPP//Itv348ePZ9g6fE6nrkNT//+9//6OuXbtKpwDa9U969rC2tqbLly/nbMQ/Qd5mi8zeGxYWRsOGDZP11MCBA7Mtjp8L72oLpS9VpUoVEkJQ/vz5afjw4SxezwDteakpU6borGPY2tpSvnz5dNb83Nzc5Iam1M4XXrx4QaVKlSIhBK1bt07vdzRr1owMDQ1p8+bNOfxmHx/a6TR16lQyMDCQG8Ssra3TOA9r1KiRFK9rzyvt3LmTqlWrJuc66tatS4cPH6bnz58T0Ru7aTQaunLlClWuXJny5ctHq1atIiLu0xLp2kLZrKHwrukTGRlJv//+u3RsZWhoKB0naJch7dMaCxUqRF5eXu/1fZ8i2vYYM2aMLANffPEFXbp0SV7Tl1ban3HZyBgWsDMMwzAM81ZCQ0Ppu+++o3r16pGhoSHlz5+fbG1taeDAgbRly5a8jt5nRWhoKE2cOFEen6l4aevVqxft3r07r6P3WaE9CV+tWjVavXp1moEkk3skJCRQdHQ0bd++nTZt2kRr1qyhgIAAKUZgD5+5h3bZqFKlCm3YsIFiY2PzOlqfJffv36c5c+ZQkyZNyMLCgooWLUply5al5cuXv9cRtEzWiY2NpSdPnqRpL7iOyn0eP35MISEh8ihUxQZsC+ZzQ3sSfuzYsSSEoPPnz7/Xs+7evUsdO3YkIQQ5OTmRr6+v3nCf+oT7h8Ddu3flhoKqVatSYGBgXkeJIaKLFy/SL7/8QoULF5YL8YrnsvHjx9PWrVvzOoqfHCxezxmy6llXm5CQEGmXggUL0q+//koPHjwgohT7/fPPPyzWzQLaYl3tjWqp+7ypBVc2Nja0fv16OZZXBIlsi/dHny0WLlyo4704M7CIPetktlzoQ7vvPGrUKHkSoRCC9uzZk2Nx/ljx9fUlGxsbEiLlhN932ShAlOKcYf78+dJLZb9+/eQ1bVskJSXRxo0bad68edkWdyYF7Xrlzp07tHjxYtmP7d+/v7yW2h67d++mDRs25GpcP2eU9E9MTKSYmBiaP38+tWzZUjrAUn7e16s783ZYvP7+aNcf//zzD7Vp00Yn3yqejjt06EARERFEpL/P8/TpUypZsiSpVCrasWMHEemOBxcuXCgF8ry5Rj/atli7di117do1jS2qVatGI0eOpPj4eCLSFa/v37+fXF1dZd3zxRdf0KNHj9L9vqioKGrevDkJIah79+4592IfIdp5NyvrFffu3aMOHTrIsUO9evUoPDyciHQ3nhOliNhbt24tbf25eP7ODPrmz5W5vMystXLZeDssYGcYhmEYJlMkJCRQQkICeXp60u3bt+nhw4dycELEE+S5SXx8PEVHR9Phw4fp2LFjFBgYSC9fvszraH2W+Pr6kq2tLQkhqEmTJm89JorJG7h+yn18fX2pcOHCJISgPn368OaOPESj0VBycjLdunWLQkND2eNtHpGexx4WS+c+6bUJbAvmc0Z7Ev7u3btEpFtWkpKSMn007bFjx6h06dKUL18+mjt3LhFx+cpO4uPj03gZ00dycjLt37+fbG1tycrKipYvX05EbIvcILXX6efPn5Ofnx/16dOHKlasqLPwW758eRo7dmyaTSN8THP2wOL1nCU7ROxBQUHyJDVLS0v6/fffpfcxhdRi3ZEjR2bXK3w2KGXh4sWLNGXKlDS2SkpKoqNHj1LlypVJCEEFChSQDku0y1FqW4wYMSL3XuITQdsW/fv3f+9T0RITE9MtF9zWZ463lYuMePXqFW3btk2KFC0sLGjq1KnyBEhGF19fX1Kr1VShQoVMp5H2WCQhIYE2b94sRdOTJ09+6/3cl8petO2RmJhImzZtkvb48ccf33o/10s5Q+r5rcePH9PPP/8sBW9KG1GyZElq2LAhHTt2THpLZrIXFq9nHe16++nTp3TixAmaPn06TZo0iRYuXEjnz5+Xm/701fHJycn06tUratGiBQkhaMyYMTrjij///JMKFChAQgje7PQWtOvs6OhounjxIi1btowWLFhA//77L4WFhelsmlE4e/YsNWrUSHqXbtWqVYbzV0odNn78eDmmZEdYOcOTJ09oyZIlVK9ePTneO336NBGl2CG1iL1evXrUqFEjedoBk4J23aPkW2VDsZ+fX7r3cdnIHCxgZxiGYRgmU+g7+pcnnj4c2BZ5x61bt6hChQrk4+OT11FhmA8KHx8fat68OS/g5TH62m/e1MEwDMOkJvUCoHb74eXlJUU9bxt3xMTEUJMmTUgIQTVr1swwPI9h3o2YmBg6fPgwhYSEENHb0y82Nlae3NWwYcNciCGjbZO4uDg6ceIEdejQgUqXLq0jXK9fvz6NHDmSwsPD3yoiUa6zEOvdYPF67pBaxB4QEJDpe5OTk+nPP/8kIQSZmJiQhYUFTZo0SV7X9uSXlJREq1atkjacNWtWtr7H54BSJrTTVSEpKYmWLVtGZmZmZGJiQpaWljRlyhR5XdtDeGpbLFmyJOcj/4mh2CI6Ovq97tcezy9evJg3d2SBjMpFekRHR9PmzZvJxcWFhBBkbm5OP/30k9wEyugnLCyMbt++rXeOKjPExMTQzJkzydDQkMqVK0cXLlzIiWh+tryrPaKioujHH38kQ0NDcnZ2pps3b+ZQzBh9pB4XnD17lmbNmkX29vY6Y46CBQtSr1696MSJE2k2CDLZB4vXs4/M1EVvmwdZv369LANdunShAQMGUO/eveVnI0aMkHMqTPpkpr3Wvnb//n0aOnQomZqakhCCWrRoIa9nNJfx5MkTuaG5U6dO2RR7RhulzCQmJpK3t7f0qp8vXz7y8PAgIv0bopRTaxld9InYLSwsaPv27XrDc9nIPCowDMMwDMNkAiGEzm8AUKm4K/GhwLbIO5ycnODl5YWKFStCo9HkdXQY5oOhYsWKOHToEEqXLp3XUfms0dd+a//NMAzDMACgVqt1/lfaiitXrqBjx46YMmUKgIzHHUlJSTAzM0OTJk2gVqtx//593Lt3T29YIpLPevnyJfz8/BAZGYnIyEgAQHJycpbf6VMiOTkZBw8exJdffokZM2YAyNgWiYmJMDU1RfXq1aFWq/H48WO8fPnyrd9DRBn+z+hHya+KTf766y8MGzYMzZs3x759+xASEoL8+fOjSpUqmD9/PrZt24alS5eiaNGiMDY2Tve5Hh4e6NChA7y8vKBWq3m8mQHa+Vuj0UhbbN26FYsWLcKlS5cAAH379sWff/4JCwuLTD+by0X6VKhQAWfPnkWhQoVw6tQpjBgxAr6+vpm6VwiBkSNHwt3dHWPGjEFSUhL+97//oX///gAAIyMjJCUlAUhpowYMGIC///4bTk5OMDQ0zLF3+lRRyoSRkVGaa2q1GiNGjMDx48fxzTffIDExEbNnz0a/fv0AAIaGhrL+UWyxYsUKNG/eHIULF869l/hEUGxhbm4OIPN1imIDpY+2a9cuBAcHw8zMDAYGBli+fDlGjRqVAzH+dMmoXOgjJiYG+/btw5w5c3Dr1i2YmZlh4sSJ+Oqrr1CyZMmcjOpHT/HixVG5cmUIIZCcnCzzsa+vLx4+fPjW+83MzNC4cWMIIRAYGIiLFy++9R4eT2QexR5eXl549OjRW8Pny5cPjRs3RlJSEm7fvi37WUzuoIzdT548ialTp6JNmzaYNWsWwsLCYGJiAlNTU0ydOhX//vsvNm/ejKZNm6JgwYKyvdHX7nD/9v1ISkrCuXPnMGHCBNy8eRMWFhbo06cPRo0aBScnp7yO3kdH6jWL5OTkNPk2vXkQ5Xq/fv2wePFiCCGwb98+rF+/Hlu2bAEATJ8+Hd988w1KlSoFAOmOrxMSEjK8/jmQek1JXx2htOkAcOnSJWzZsgXx8fGoX78+tm7dCiEENBpNmvlG4E3aPn78WPYD7OzscuRdPneUMmNgYIBKlSph7ty5aN26NWJiYjB58mSEhoamKXs2NjawtbXNi+h+8GjPzS1YsADfffcd2rVrhw4dOuiE47Lx7hjkdQQYhmEYhmEY5mPHwCClW61vsMEwnzNK2WAYhmEY5uPk9u3buHv3LmJiYnD8+HE0b9483bBKu+/v7w+NRoP4+Ph0N00JIRAXF4cff/wRp0+fxo0bN1C+fHk4ODhg/vz5qFChQrqT+Z8rjx8/xosXL+Du7o7Tp0+jUaNG6YY1NDQEESEoKAgajQbR0dGZEiUIIUBEaRYrk5OTedN0KrTTRKVSITw8HDt37sTBgwdx6NAhmXY2NjYoUqQIfvnlF5QvXx7ly5eXz9BO69Rcu3YN33//PU6fPo169erhwoULcHZ25nKhhyVLlsDX1xejRo1C5cqVZfpkh3gd4HLxNipUqIBz586hYcOGOHnyJNavX4/Zs2e/ddOskn4NGzaEi4sLnJ2dMWrUKPz7778wMzPDX3/9BQMDA5n2arUagwcPRoMGDXTKEZN1FFvUqVMHTk5OqFy5MoYPH46NGzcif/78+PPPP6FWq3Vs8dVXX6FVq1YoUaJEXkf/oyejsqJd96jVasTHx2Pnzp04fvw41q5dCwMDAyQlJcHS0hJGRkZo0KBBbkX7s0NbvO7l5QUzMzN88803GDx4MIvX3xGl7dy7dy9GjhyJlStXZkqY06BBA1SvXh0XL17E/v37MXbsWFknpfc9RITo6GiYmprKsUpG/a/PmQ0bNmDAgAE4cuQIihYtmm44Jf2++OILuLq64ubNmzh16hSGDh2aqb4REelsZmYyRklv5ffjx48RGhqK33//HVeuXEFYWJgMW6FCBXTv3h0dOnRAtWrV5OfK+CF1X/b06dPw9fXF8OHD0/R3mTfpRkRITExMs9kpO8XrXC70o50eb8ubiphapVJh9OjRcHBwwO3bt+Hp6YlKlSqhUaNGaNasGQDo9GkV/Pz88PjxY+zduxcPHjzAd999Bzc3t5x5sY+Q9NJfpVLh8ePHmDRpEqKiolC5cmX8/vvvsLKyAhHpbaOTk5OhVqsRFxeHMWPG4OHDh7C1tcWQIUNy+jU+aV68eAFLS8u3zhfZ29ujV69eOHv2LPz9/eHl5YWSJUtyG/AOKCJ2tVqN3377Tf6tPV/HZePdYTUBwzAMwzAMw2QRHtQxDMMwDMMwnyJubm5o1KgRzpw5g927d8PV1VWvt1Xtyfrw8HAAKSLq9Dxa3rp1C1OmTMH+/fvlpP39+/fh7++Pq1evwt3dHRUrVuQFlP9HpVKhZs2aqF27Njw8PLB79244OzujYMGCacIqi7Z3797F06dPAQBWVlZpPBanFpi4u7vjxIkTOHfuHAwMDJA/f360atVKChRZOK2LknbXr1/HjRs3MHPmTLx48QJRUVFQqVRITk5Gz5490blzZzRv3lzHVkq+zki8PnbsWFy6dAlGRkaIiYlBw4YNcfbsWTg5ObEttDh37hzGjRsHIKXOGT16NBwdHbF9+/b3Eq9zuXg/ypcvj5MnT2LmzJlSUPg2tNPZysoKffr0wevXrzF27FisWrUKrq6uGDFiRJqTIBXxOm8gyD6009HCwgI9e/ZEVFQUJkyYgLVr16Jq1ar46quv0thCEa9zW539pG4ngoKCEBAQgF9//RUBAQF48eIFgBTxXP369dGrVy+0aNECZcuWzctof7KkJ15nz+vvT3R0NNauXYuHDx9i0aJFqFq1KmxsbNINn5SUBCEEYmNjAaR4x1U2OWmjlB1fX1+cOnUKu3fvxpMnT1CuXDk0aNAAY8aMYaGuHl69eoVly5YBAFauXAk3NzdYW1vrDauIRJ89eybrotevX8trqUndXuvrA7M99KOdLi9fvoSHhwfmzZuHO3fu6Jx01qJFC1StWhWTJ0+GlZVVmrRU+qraz7t06RIWLVqE3bt349q1a/j777+5bKRCrVbj9evXWLBgAcqWLYtWrVohX758ALIuXudykTMo43CVSoW2bduibdu2OteVNE1MTMTTp09x48YNnDp1Crdv38b58+cRHx8vvR/7+PjgzJkzsLS0ZDukg5LWx44dw5MnT2BiYoLOnTvD2dkZgP42QdmokZCQgGnTpuHy5ctQq9WoX7++zma29MZ6XC70c+/ePRw7dgxt27ZF0aJFMxwrGxgYoE2bNihcuDBCQkKwYcMGtG/fPt10ZVvoJ/UGb21Rek6WjU8ZFrAzDMMwDMMwDMMwDMMwDMMwaahSpQr69u2Ls2fPYtmyZShbtixGjBgBY2NjAG+ONlUm6adPn45Tp04BAAYMGKBz5Kwygf/8+XN8//33OHToEPLnz49//vkHhQsXRkREBBYtWgR3d3eMHj0a27ZtQ6FChXL5jT9catSogYEDB0qxgYODA4YNGyZtkZiYCENDQ7mw9Mcff+DGjRsAgEGDBukId7VFt/v378eRI0fw559/pvnOw4cPw9HREZs3b0bFihVZMKrF69ev8e2332LPnj149eoVIiMjIYSAkZERRo8ejZo1a6JHjx4yvHbaZbTIl1q83rJlS0RGRuLUqVNo0KABi9hTUb9+fYwYMQLLly/HkiVLoFKpULx4cezcufOdxetcLrJG5cqVsXnzZpkWiqhQOXHD1NQ0w/vVajW++OILNGzYEEePHsX58+cxYsSIdMNrp/nnvnieWYgIMTExUnyVHmq1Gs2bN0e1atVw/vx5XLp0CV999VW64Tntsxft/BwaGorjx49j/vz5ePLkCZ4/fy7D9e7dG9WrV8eECRPS3Ju6XuIy8v7oE69PnDiRPa9nEVNTU3To0AEXL17ErVu3cOrUKXTr1k1v34aIYGBgAB8fH/j7+wOAHGOkztdCCFy8eBFjxoyBj48P4uPjAQBeXl7YsWMH7ty5gwULFnB5SIW5uTn69++PO3fu4NKlSzh79iw6duyYrmBNpVIhODhYblwuUqQIgLT2UMISEXx9fXH+/HkEBATg5cuXaNiwIcqXL49atWqxcDoVqevwBQsW4OzZs9i9e7f8zNLSElWqVEHv3r3Ru3dv2c9NTk5OVxinfH7x4kUsWLBAPm/lypUwNjbGkiVL2Bap+PnnnzFv3jw4OzsjISEBnTt3hqmpKc6ePYtvvvnmvcTrXC5yFiFEmrHyy5cvkZSUhNOnT+P27dtwd3fHjRs3EBkZCSClTSpRooQ8Gap9+/YAUjbZMumj1FOnT59GXFwc8uXLh759+6Y71tDeQLBy5Urs378fcXFxMDIywtdffy3bEuXZz549g7e3N+7evYtKlSqhePHisLW15bmQVMTFxWHdunWYNm0aJkyYgP/9738Zzk9oNBoUKlQIZcuWRUhICCIiIpCUlJTuadpsi/TRrp9Tb/YGcqZspNcufBLzUsQwDMMwDMMwDMMwDMMwDMMwWiQnJ8u/f/nlFxJCkBCC/vjjDwoODk4TfsaMGTJMmTJlaNeuXXqfO2TIEBJCkI2NDV2/fl3n2tGjR6lw4cLk4OBAd+/ezc7X+ajRtsXMmTNlOv/+++/k6+urE/bVq1c0duxYGaZ+/fp06dIleT0pKUn+/euvv1KlSpVk2BIlSlD16tVp7Nix1KpVK6pYsSIJIcjOzk5+j3ZcPncGDBgg087Z2ZmGDh1Knp6eOmG00/ttXL16lerXr09qtZpMTU2pX79+9PLlS3ry5Am1aNGChBBkZWVFt27deudnf4pov//48eOlLYoVKyb/7t+/P7169eqdnsXlIntQ0uTo0aM0c+ZMIiLSaDRvvW/27NkkhCBDQ0O6du1alr6b0WXNmjW0cOFCIsqcLb7//nsSQpC5uTn5+/vndPQ+e5R8GxcXRy9evKCJEydSw4YNZV2k1G+dO3emXbt26dhQuw7Tzv83b97U+zmTwtvKQXR0NG3evJlcXV1lWfj555+5j5pNPH36lLp06UJCCKpVq5ZOflVQ8u2jR49oyJAhZGhoSAYGBjRnzhwiSmtDDw8PKlWqFAkhqGbNmjR+/Hj6+++/ady4caRSqeRYhknLkydPqH379iSEoNq1a8v+JtEbOyjpHRISQk2bNiUhBBUsWJC2bdumc10hMTGR7t+/T926daPy5cvr1GdCCHJwcKAZM2ak+R6G6OHDh/TNN99Q69atddKsZMmSVLt2bTpx4gSFhobq3JNe+ml/fuHCBerevbt8XpcuXWTZGD169Fuf9bnh7+9PBQsWJCEEubm50fr16+nAgQPk5uZGQgjKnz8/DR8+XKe8vA0uF9mLvrY8JiaGnj59SuvWraNffvmFatSoQfb29jrpXL16derfvz+tXr2abt68Sc+ePdP7XE7/t9OyZUtZnxARJSQkpAmjpGdiYiKtXbuWqlevLm2xevVqnbDPnz+nPXv2UJkyZcjU1JSEEFS4cGFyc3Mjb29vnecxKWOHKVOmkBCCqlWrRpcvX37rPWFhYeTo6EhCCGrRokW66cm2yBrZWTb0pfOzZ8/SzHd9zPZgATvDMAzDMAzDMAzDMAzDMAyTBu2J78mTJ8tJ9KZNm9KPP/5I//33H/3666/UtWtXec3ExISmT5+u93leXl5UuHBhMjQ0pGPHjsnvUBYFvby8yMLCgoQQ8jqTgrYtvv32W5neNWrUoDFjxtDSpUtp+PDh1KRJE52NBH/99Ze8LzExUf49atQonQXcL7/8kg4ePEgxMTFElLII5unpSc2aNSMhBDVp0oQeP36cey/8AZN6c8eIESPo6dOnFBsbm+Z6ZlHE6wYGBmRqakp9+/aVi+jJyckUFBQkF79YxP4G7fcfN26cTp5u3769zM8Z2UT7GVwusperV6+SEILy5ctH9+/fzzCsYqMVK1aQEIJMTU3p7NmzesMq9WF4eDhdvHiRfv/9d9q0aROdPHkyzfOYFI4cOSI3jz18+DDDsEra/frrr9J+GQmzMiOYY/STWmBw8+ZNGjt2rBTGKT+VK1emzp07k7e3dxqBlTbaab53716qUqUKDRkyRO/1zx3tuv/ChQsUFRVFRG/SSJ94/aeffsq0eJ3LRea4e/cuOTs7kxCCGjduTJ6enrLNVcrHgwcPaMaMGVSyZElZj925cyfNsx48eCD7Su3ataMrV67I9I6JiaGffvqJDAwMqGvXrrn3gh8ZISEhchNf48aN6dKlSxQdHa0T5s6dOzR48GCytrYmIQRVqFCBHjx4kOZZDx8+pJUrV5KTkxMJIaRIulKlSlS9enUqVqwYqdVqEkLQhAkTcusVPxru3r1LdnZ2JIQgY2Njyp8/Pw0cOJCOHz+eRqyWUb2SWrzeo0cP2bbMnDmTEhISaOXKlSxizwBfX18qXLgwCSHI0dFR1kXvI17ncpEzxMbG0qNHj2jTpk00c+ZMcnFxkeVHSePq1atTt27daOPGjeTp6UmvX7/WeUbqjTrM20lKSiKNRkO1a9cmIUS67avS53r9+jX99ddfVLNmTVkP/frrrzphnzx5QnPnzqVChQqREILKlStH9vb25ODgQEIIKlq0KG+s1cPp06dlf+qHH36giIgIveEUWyjOQ4QQ1KtXL731Pdvi/cnusqHM5SYkJFBERATNmjWLevToQdbW1uTg4ECNGzemadOmUUhIiM5zPzZYwM4wDMMwDMMwDMMwDMMwDMPoRXvie8aMGWRlZUUGBgZyMV1bYGVra0tTp06V4VMv/h09elR6jgsLCyOilIVC5TtOnjxJhQoVovLly1N4eHguvN3HhbYtZs6cSTY2NnKB29DQUMcW1apVo6VLl8rw2gu0gwYNkou5JiYmOjYjerM4kpycTIcOHaKiRYtS8eLFdTy5f+7oWxB6X5HH1atXycXFhQwMDMjQ0JA6d+4sr2l7aNIWsRcuXJhu3LjxXt/3qaFtizFjxsgyMGzYMPLz88v0vVwush93d3cqXbo0mZiY0OzZs6UoUR+KLRYuXCjbmP3796cJp7QrV65coYYNG8qFdyEEWVpa0uTJk2VYFl694ciRI1SyZEnKly8fzZ8/n+Li4tINq+T1SZMmkaGhIZmbm6fryU+7nU9OTiZfX18KCQmhoKAgio+P17nGvCF1/2jXrl303XffkYmJiRRamZiYUNGiRen777+nK1euyPTMjDB679691KpVK1k2Ro0apTccQ9S8eXOqXLkybdy4kSIjI4mIKCoqijZt2vTente5XLwbAQEBVLRoURJCkKurK02aNIkuX75Mly9fphMnTlDr1q3l6Sr58+enffv2EVFa77inT5+mggULUsmSJen48ePyuvJ79erVcrzy8uXL3H/RjwR/f39pj8qVK9Pw4cPp5MmTtH//ftq0aRM5OTmRpaWl3FSpnJai3acKDg6mb775hkqUKCHDtWzZkrZs2SLL2a1bt2jhwoWyzluwYEFevO4Hza1bt6hIkSI0depUme8V3lVke/HiRerWrZtsF6ZPny7LTmJiYroidhbzpuDr6ytFnCqVikxNTemrr756J/Eml4vs5dKlS7Rt2zaaNm0a1apVS+cULiEE1a1bl7p27UpbtmyhkydPpsnLSp3FbXHW+e2330iIlJNPQkNDZZpqz/XFxcXR9OnTycXFRdroxx9/lEJrJdzGjRvlqQdfffUVvXr1isLDw+nKlSvUqFEjEkLQoEGDKC4ujm2XiiVLlsi0XbJkiXSwQJSSvkp6PX36VG6iKVq0KJ0+fZqI0m7iYFtknewoG8rY/MWLFzRv3jxq3LgxCSHkXLD2T/ny5T9qz/gsYGcYhmEYhmEYhmEYhmEYhmHSRVuQsH37dho2bJgU2yoT5QMGDKB169bpvUfh0qVLZGpqSvb29nT79m2da4mJiVKc27p163Q9Bn3uaKfrnj17aMKECWRubk5mZmZkbGxM5ubm9N1339HRo0dlOG3x+vDhw+ViR/HixWnx4sXymr4Fjvv371Px4sWllz7mDdqLdFlZsPP19aVWrVqRra0tCSGodu3aUnitfUIBUYqIvW3btnIDSUREBC8Wkm65GDt2rKyXxo4dm6auUdDO71wucoaoqCiaMGECCSHI2dmZzp07pzeckofv379P5cuXlx7eHj16pDfcxYsXKV++fCSEoFKlSlH16tWpVq1achH3+++/z9kX+wiJiIiQJwy4urqmu/FCye937tyRmwOqVKmSoeA9OjqafvjhB+rYsSOZmJhQgQIFyMzMjLp06ULLli2T4biu0uXFixd06NAhGjBgABkbG8s+Vb58+ahEiRK0fPlyunDhgs496QkRUovXlf6UEEJuCGGvuml5+PChFOK6urrStm3bKDw8nLZv3y5FJO8qXlfgcvFuBAQESM+hQggyMjIiY2NjHXGOhYUFrV+/XmdzH9GbNPzuu+9ICEFffPGFvKZdZv755x8SIuX0Im1RF5OWgIAAnZMgFDto28PKyopOnTpFRLrCOH9/fxo8eDDZ2NhIcdz8+fOl0FdbvBUTE0NTpkwhAwMDatmyJW8s0EPqzX/vI0hzd3enTp06pfHqqn06V1JSUroidiYFHx8fKeYsUqQIzZkzJ81GmfTgcpH9zJs3T0e46eLiQn369KFNmzbR+fPniYjSeFknSul/Eb3J/x+rp+IPiYMHD1KBAgVICEGLFy/WOSUiISGBHjx4QB07dpSbQJQx9PPnz3Wec+/ePTnGHjlyZJo+0p9//klCCKpfvz73n7TQrn9+/vlnnTT29PSU1yIiIujq1auyv5UvXz768ssv9Z6UxrbIHrJaNpT6KTw8nDp06CA3GAohqGrVqjR06FBatGgRDR8+nKpWrUpCCCpevHiatuVjgQXsDMMwDMMwDMMwDMMwDMMwTIakXpQNCAig06dP04kTJ8jLyyvDsAq+vr5UunRpKTAMDg6mZ8+ekZeXF7Vu3Vp6llbEux/bZHtukTp9w8LC6Pbt23T79u00AittYcLUqVOl1zh7e3tasWKFvJZ64VZJ+4SEBHmMLQt1c46IiAjasWMHNWvWjIQQZGZmRmfOnCGitOUgICCAGjduTCtXrsyLqH6waOfh8ePHy4W90aNH071793TCaqcpl4ucJSwsjOrWrUtCCGrYsCH5+PjoeM1V/g4PD6evv/6azM3NSQhB3bp1o6ioqDTP8/LykuKfLl260Pnz5yk2NpYePHhAS5YsIZVKRTY2Nul6DP+cuXfvnjzGvFGjRnT79m2dNkKxxd27d6lFixayLpo8ebLOZhrl9+PHj+nff/+lOnXq6AiITE1Ndf5nr/hpSUpKohYtWqTxnNesWTOaP39+mjorI2FcRuL12bNn07Zt2/QKEtkWKfj6+pK1tbXcaDN69GjpldLc3Jx++umnTInXuVxkndDQUBo1ahRVqVJFJ62sra2pYsWK5O7unuH9M2fOJCEEtW/fnuLj43XKzaVLl8jR0ZGEEDRt2rQcfpNPg7CwMJo0aRJVr15dxx4ODg70xRdfkI+PDxHp5t87d+7Q0KFDZZkqVqwYHThwgKKjo2WY1Pn9v//+k8++cuVK7rzcR0RW64eEhATauHEjmZiYSMHib7/9pnNdISkpiVatWiXbplmzZmXpuz9FfHx8pNDQzc2NNm3aJL2npweXi5xj9uzZtGLFCrp8+bLORhrlt/apJxs3bqRx48ZRuXLlqH379jRp0qQ0IlHm/Zk+fbrMs0OGDKF58+bRmjVraPDgweTg4KDTjixbtkxnDKLYa9myZSSEoOrVq8vr2uHWrl0rBbqPHj36KD1M5xTaefjbb7/VabO7detGw4YNo2bNmsmTCszNzal+/fp08eJFvc9jW2Qf71s2lDS9f/++jnd2IQT9+eef0tM6UYr9vby8pHf2Tp06fZSbn1jAzjAMwzAMwzAMwzAMwzAMw2SajBbS37bIvmLFCjnp7urqShUrVpST9tbW1lK0q70Akvoo28x8z+dCZtNh06ZNZG9vLz0mLl26VF7LaLHpwIED0ivsX3/9leX4MmnR9twXHBxM3bp1IyEEFSpUiK5evar3nowED58z2gu3Y8aMISEEtW3bVnqgSg2Xi9whKCiISpYsSUIIqlevHm3ZskXH01tgYCD16tWL7OzspNDz2rVrOs9QPFJ+9dVXJETKSR3h4eE6Ye7evUvlypUjIQTt3r07V97tYyMoKIhKlChBQgiqU6cOrVmzRopzIyIi6Pr161S7dm25kaBUqVI6IkWlvgkODqbRo0fLTWlmZmZUrlw5mjp1Kv3777/0999/07Bhw6RweurUqXn2zh8qt27dkicJ9O7dm5YsWaJzPTNCkIzE63PmzJHX/v77bxaxZ4C2iD1//vwyT8+YMYNCQkLeej+Xi+wjNjaWHj16RMuXL6f58+fTzJkz6fjx4/T48WMi0p9nlc/WrVtHKpWKSpUqRWfOnJF9pdOnT8tNOV988QUFBgYS0ft5sv7ceP36NUVGRtLmzZtp/fr19Ndff5GPj48URWn3u54+fUpTpkyhIkWKSFHb2bNn0322Yrfbt2+ThYUFCSHo0KFDOfo+nzPHjh2jb7/9Vm6m6du3r7yW2hP7smXLyNnZmf755580Jx4wum1GlSpVaMOGDeme6sDlImdIT3Cu/Xl6J3RpbypzcnKip0+fEhG3Ce+Ldrr98MMPJMSb039Sb0Zr2LAh7du3L91nTZo0iYQQ1KZNmzTPjouLo2+++YaEEDRo0KCce6GPGO08P2fOHCpTpky6tujUqZM8qUAfbIusk5WyodgyLCyMSpUqRUIIMjQ0pNKlS9PJkyd1vkdpw5OTk2njxo1kbm5O5cuXT7Mh+mOABewMwzAMwzAMwzAMwzAMwzBMjqItOFm2bBnZ2tqSmZkZCSHIxsaGateuTbdv3yaiNxP9+hYmX716JUUsvMiYOV68eEG9e/eWCyTaHqPTS0PFM/IPP/xARkZGZGxsTEeOHMmtKH9SvKtA0NvbW3pO6tmzJz179iyHYvZpol1v/PPPP7R371694bhc5C5+fn5SxG5tbU2lS5em3r17U+vWrXWOzDY2NqYDBw4QUVo7REVFkYuLCxkaGtL69evTbG7SaDTSM/6ePXty9wU/Ivz8/ORCuKWlJdnZ2VGbNm2oWrVqUryrXFM82Ws0GpnOfn5+1LlzZ2k3Kysrmj17dhoPoVFRUbR48WLpFf/EiRO5/q4fOn5+fnTs2DEdD6Hv07fZs2cPffHFF9J2f/zxh87zkpKSaOXKlSxizwAfHx8qWLAgCSHIxMSEOnfuLPulROmnk/I5l4uc521lIyoqiurVq0dCCCpdujS1atWKhgwZQsbGxiSEoBo1atCOHTsyFMEzmUdJM6XftWPHDrkpuVixYm/1mK/ct3LlSjI0NCRzc3M+PSUH0C43L1++pHXr1klh9LBhw/SG02g0dOfOHYqJicnVuH5M+Pr6UuHChUkIQd27d09zahCXi9wldR2u/f/w4cNJCEFGRkb0888/08GDB+nu3bvUt29fudmZ83rW0B5/K56lCxUqRAULFqTKlStTs2bNaNeuXRQUFCTD6Wt3V65cSUZGRtSkSRN69OiRzvN37dolN35qn5jG6KJtixMnTtBvv/1GDg4OZGdnR46OjlSrVi3atGkT2yKXeJ+yoWwce/jwIVWqVEluiq1VqxZ5eHgQUfr91ps3b8oTVzZv3pyDb5YzsICdYRiGYRiGYRiGYRiGYRiGyXG0F8avXLlCR44coaVLl9KlS5ek5ysi3cn4hIQEunbtGq1atYpGjhxJlSpVIltbW/Ly8srVuH/M7Ny5U+fIWoX0hEDK5+fPn5deeJs3b54rcf3U0E5jPz8/0mg0bxVJxcfH07Rp06QAy9fXN6ej+cmhb/NL6nTncpH7BAcHU5s2baSnde0fExMTKliwIB0/fjzd+z09PaXIXfEYp12mjh49Kp/3NoHQ586dO3eoc+fOclNBai9wbm5uUniblJQk87+/vz+1bNlSCt2tra3p8OHDOp5HtT25hoSEkKurKwkhaOHChbn7kh8h7yOivXbtGjVo0EDar3PnzvJaXFyc/FsRsavVavaYmA7e3t5SxF6pUiXaunWrzoknqVHsxeUi71Ha/ZcvX1K9evXkZg3lp0ePHnTw4EEZLvVvBW07saj97ShpFBUVRW5ubnJj8n///Zfhfdp9rY4dO5IQggoUKKBzOguTMyQmJtLKlSvJ1NSUDAwM6M8//8zrKH20+Pj4UMOGDcnb21vncy4XHw7z5s2T4vVNmzbpbBgkInJ2dqYSJUrQnTt38iiGnw6p29MHDx7QnTt36OXLlxluMNDmxIkT0jv+xIkT6dSpU3TixAmaNWuW3HgzePDgHHuHT4XU8xkvX76kJ0+e0PPnz3X6ORnBtsg+3qVsKGGfPXtGzZs3l/VXnTp15Al1GW3EDAwMJBsbGxJC0JYtW3LidXIUFrAzDMMwDMMwDMMwDMMwDMMwuYKymKJv0l0RWnl4eNDGjRupX79+5OzsrHPMaoECBahixYo0bdo0PtL8LWg0GoqPj6d27dqREIJcXV3p5s2b8lp69xARBQQEUPHixUkIQQ4ODrRjxw4iojRpntqO7BVfP6tWraLhw4fL/98mivL29iZLS0sSQtCsWbP0hnnbQjDbQj85US44rTPPkydPaO/evdSnTx+qUqUKlSlThpo1a0YzZ84kHx8fIkq/fDx+/JicnZ3J3Nyc1q9fr5PuFy9epIoVK5IQgoYOHZor7/Kx8+zZMzp58iQNGTKEmjZtSnXq1KGuXbvSxo0bpZBHe4NASEgI9ejRQ9ZNhQsXphs3brz1e7p27UpCCOrVq5fezSVM1vnnn3+oTZs2ZGZmRmZmZjoe1rWFKklJSbRq1SrpITwwMDAvovtB4+PjQ9bW1iSEoCpVqtCGDRsyFLFzufhwUPJ6ZGQkrV+/niZNmkTTp0+nNWvWUExMTIZti7u7O02fPp26dOlCI0aMyM1ofxKMHTuWhBCUP39+mjZtGr148SLdsNp2+OOPP0gIQYaGhjR58uQ015nM8/r1a4qMjMxU2NDQUGrZsqWsg5j3Rxkb66vHuVzkLS9evKAvvviC1Go1zZgxQ6c/FBcXR0lJSVS3bl0SQvCJWtlERvk0s+PlpUuX6pwGZWBgIOcD+/fvL8Nplzl95Y/H5+nDtsh93qVsxMbG0o8//khWVlYkhKDKlSuTp6fnW59DRDRr1izZ7qQ+BepjwAAMwzAMwzAMwzAMwzAMwzAMk4MkJydDpVJBpVIBAIQQAICkpCRcuHABT58+xY4dOxAaGopLly7J+4oVK4Zq1arhiy++gJubG9zc3ODg4AAiks9g9KNSqZCUlAQ/Pz8AQOnSpVGxYkV5LTWKjUJCQvD111/jwYMHMDIyQp06ddCgQQMAgKGhIQDgyZMnuHLlCk6cOIG4uDi4urqiRYsWcHBwgEajgVqtzqW3/PAJDAzEihUr4OnpiUqVKmHMmDHp5l0lXxsYGMDExASRkZF4/fp1uuEAtsW7khPlQrmP0/vtFC5cGO3bt0f79u0RGRmJpKQkFCxYUObpjOp2KysrODk54fbt2/jtt98AAEWLFsXTp08xadIkPHr0CF988QXGjh0L4I3tGP0UKlQITZo0QZMmTZCQkIDk5GSYmJjI60Qk0+/ly5dYsWIF3N3dERkZCWtra5w5cwYVKlTIMJ2joqIQGBgon8flI2cYMmQImjdvjn379uHHH3/En3/+iVevXmHDhg0wMDCQdZNarcaAAQNQoEABFCxYEKVKlcrrqH9wVKxYEWfPnkWDBg1w8+ZNLFq0CMWKFUPjxo3T1E1cLj4slLxuYWGBfv366Q0TExMDIQTOnTsHLy8vnDp1ClevXsWTJ08AQLZDTZo0Qffu3XMz+h8tMTEx8Pb2BgDY29ujY8eOKFCggN6w2m38oUOHsGPHDgCAqakp6tWrByDFBhn1p3gMmJakpCScPXsW4eHh6Nu371vTyN7eHg0bNsTRo0exdetWfP/993B1ddUblm2RMQYGKXK71GmUE+WCeTfCwsJw5swZqNVq1KtXT9oqKSkJJiYmiIiIwMuXL2FnZ4fy5cvncWw/DTLKp28bkyn9plGjRsHMzAx///03QkJC8Pr1azRp0gSNGzfGt99+CwCIj4+HiYmJvEcpfy9evICXlxeKFSsGR0dHHgumA9si98lM2VDSKDQ0FMePH0dERAQMDQ2xfPlyVK9ePd02V7kvIiICly9fBgCYm5vD0tIyZ14mB2EBO8MwDMMwDMMwDMMwDMMwDJOtKJPoyiS7MimfmJiIK1eu4M6dO9i5cycePHggJ9kBwM7ODlWrVkWXLl1QunRpNGrUCFZWVjA1NU3zfBb8vJ2YmBhER0fD0NAQXbp0gaGhIZKSkuQCroK2SHf06NHSJqVLl8a0adNgY2Mjwx4+fBjr1q3D1q1b5WcqlQr29vbYt28fKleu/NkvUGlToEABODs7w9PTE0ePHkWLFi3SXSRXFqSuX78uxVSpF560F67YFu9HdpaL5ORkCCEghJB1kp+fH548eYLk5GQ4OTnBzMwMZmZmbIv/R8nDFhYWaT7LaHOHkZERli1bBn9/f1y/fh3Dhg1DfHy8DNOuXTtMnDgxzYaE9BZ7WXj1Jg0MDQ1lWmjbQhGuXb16Fbt27cLTp09RsGBBHDp0CBUqVEhX2KZ8/uDBA7kJp3Tp0jrPZ7IHJT1LlSqFESNGwNraGkOHDsXGjRtRqlQp/PLLLzo2UqvV6Ny5cx7G+MOnQoUKOHv2LJo2bYr4+Hg4ODjo5FkuFx8m+sYGcXFxSExMxIkTJ3D//n3s3bsXoaGhCAoKkmEqVqyIunXronHjxqhduzZKlSql0+9lMsbDwwMnT54EAHz99ddwc3PTG047j3t6emL9+vXw8PAAAIwaNQodO3aU4RQ7Hj9+HKGhociXLx+KFi2KRo0avXWz2+fI7du30a1bN8TFxaF+/foZbk5S6qEyZcrItHz16lW64dkWGZPeu2d3udBGezzxuad/Rih1iYmJiRxzEJEc7w0dOhR+fn6oWrUq8ufPn5dRZZAyblPy9qBBg9CyZUskJiYiKioK9vb2OjZSNtw+e/YMwcHBuHjxIk6fPg1fX18EBQXBwMAA3t7ecHR0zKvX+ahhW+QNSr2+fPlyeHp6AgBWrVqFBg0aZDifodz3559/Yu/evQCAESNGoGzZsjrhPoa2ggXsDMMwDMMwDMMwDMMwDMMwTLaQWrD+/PlzPHz4EFevXsXJkyfh7e2NGzduyPB2dnaoUqUKunTpglKlSqFdu3YwMjKCmZmZznNTCz9ZvJ45kpOTERsbi8TERISFhQFAuiLdoKAgDBs2DB4eHoiPj4e1tTW2bNmCcuXKybD79+/HzJkzcfXqVeTLlw8dO3ZEbGwsQkNDce3aNbRr1w4nT56Eg4NDrr7nh4y1tTU6deqEw4cP48CBA6hduza++eabNJsyFMLDw3HixAmo1WpoNBrY2dnpXFcWntgW7092lQuNRiOFvnfu3MHJkyexfv16+Pj44MWLFwBShJA1atTA1KlT4ejoyF7a8SYPay+ivk3Yr4iprayscPLkSYwZMwZ+fn64efMmypcvj3bt2mH8+PEoXLhwmsVZbSH2mTNnEBMTg9atW38Ui7g5jT5baP+t5NXffvsNAQEByJ8/P1asWIFq1aqlu5FM+/OFCxciICAAQgh88cUXaZ7PZB59m2wA3fQ0MDBAu3btMHbsWMydOxd79uxBp06dUK1atdyM6idBhQoV4OHhgdevX6NUqVI6wg8uFx8GqdtTZeNsdHQ0Tp48iZCQEGzfvh1Pnz7VEaxXrlwZbdq0QefOnVG2bFlUqVJFr5dK3nSWORISEmBoaAhTU1NUrVoVQNq00y4/N2/exIoVK+Tmyz59+mDGjBk6zwwMDMS4ceNw4sQJJCYmAkjZ0Dl06FD8/vvvLJxORXx8PKysrBATE4ONGzdiwoQJacbSqfH39weQUp9ltHkwKCiIbfEeZGe5SN3+K/VcUlISXr9+jSJFiuh95ueOhYUFHBwc4OPjg5MnT8LR0RH58uVDQkIChg4diu3bt6NgwYJYtmwZChQowGn3AaCclGZgYIAiRYqk6U8FBwcjOjoaBw4cgLe3N9zd3REeHg4gpR9VtGhRdOrUCWXLlsWjR49YNJ0F2Ba5DxHh6dOnOH36NACgffv2aNGiBQD94wTtOmvdunWYOnUqAKBevXpo27YtgDd9ZSVcQkICDAwM5BzWh9bXZQE7wzAMwzAMwzAMwzAMwzAMky0IIRATE4Nff/0VT548gYeHB4KDg6WnyUKFCqF+/fpo0qQJKlasiMaNG8PY2DjNkdpEpONN5kOaVP+YKFq0KLp164a1a9ciMDAQr169gqWlZRrh6PXr19GrVy8EBwcjOTkZVlZWOHz4MFxcXOSiR0BAAP7++29cvXoVLVq0wMiRI9G+fXskJSUhMDAQ/fv3x9WrV7Fv3z6MHTuWF4HxZlGpXbt2mDBhAiZPnoyffvoJVlZW6Nu3bxrB1LNnz7Bjxw5s3LgRGo0GjRo1Qs+ePdM8l22RNbKjXGiLEc+dO4cJEybg3r17ePr0qfREZmZmBj8/P/j5+eHkyZM4cuQIKlWq9MEtFH4sKJs6LC0tsWrVKmg0Gjx58gTm5uYoVKhQmvBRUVG4efMmQkJCsGvXLoSGhuL69esAgEGDBmHVqlW5/QofFUq9sXr1apw6dQrGxsb4+uuv0bRpUwD622Xtdnv58uVYs2YNhBDo1KkTnJ2d5TO5DLwb0dHRuHXrFqpVqwYjI6MMw1pYWKBJkyb43//+h9u3b+PKlSsZCtjZFulTokQJALoCkZwsF8y7obTB9+/fh4+PD27evIkjR47gzp07uHv3rgzn5OSE5s2bo2fPnihevDiaNWumV7SbuixwucgcERERSExMhKmpKQoWLAhAN+200/XSpUtYsWIF1q1bByDl5JTJkyfD0NBQjjcuXryICRMmwNPTEwULFoSDgwM0Gg1u3ryJefPmQQiBOXPmcJnRwsnJCV27dsX8+fOxdetWNGrUCPXr108TTnvTx5kzZ6SH6uLFi+uEU2zGtnh/srNcKOL15ORkbN++Hfv378f58+eRmJiIyMhIdO3aFfXr18fgwYN5Q4EWpUuXRs+ePTFt2jT8+OOPcHd3h0ajwYsXL3D9+nUUKFAACxcuRM2aNTnN8pDUYwMlv6vVaoSGhuLZs2fYvXs3wsLCcPjwYURGRiI+Ph4qlQqFChVCr169UKlSJTRu3BiOjo46GzqYd4NtkbcIIfDo0SN4eXkBAGrVqpXuiUDaddb27dvx008/AQDy58+Pdu3ayY1TarUaCQkJ8PX1xaZNm3Dr1i0kJSWhWrVqGDx48IfnYIEYhmEYhmEYhmEYhmEYhmEYJhsZMWIECSHI2NiYmjVrRhMnTqS9e/fSgwcPKDY2Nk34pKQkevLkCXl6etKzZ88oLi5Ofs5kjTVr1pAQgoQQtGjRIgoLC5PXPD09acmSJWRhYSHDlC5dmm7cuEFERBqNhpKTk4mIaN26daRSqahUqVJ0+PBh+YyEhAQiIurbty8JIWj48OG5+HYfPhqNRv79ww8/yHT+5ptvaN++faTRaEij0dDx48fp+++/J3NzcxJCUOXKlWnPnj1pnkHEtsgOslouiFLS+99//yWVSiXDFS5cmGbOnEn//fcf3bhxg5YtW0YNGzYkIQQ5OjpScHBwnrzvp0RiYiIRkaybFB4/fkwXL16kpUuXUteuXcnJyUnaRbFh8+bNaeHChfT333/nRdQ/SiZOnCjb8xMnTqQbTtse+/bto5o1a5IQggwMDOiff/7Re09CQgI9evRIp45LbdfPnbi4OFqxYgVVqFCBjhw5kql7YmNjqXr16iSEoIEDB2YqTdkW70ZOlgsmY+7du0dbtmyhGTNmUMuWLalYsWI6dX3FihWpU6dO9M8//9CRI0coLi5O79hDaUuYrBEaGkrly5cnAwMDWrFihRy7JScn64zjtm/fTp07d5Z2atWqFZ05c0anznn+/DnVqVOHhBDk7OxMPj4+FB0dTQ8ePKBFixaRWq0ma2trOnv2bK6/54dOWFgY1a1bl4QQ1LBhQ7p9+7ZM29Tj6eHDh5MQgoyMjGjEiBFE9KauUu5hW2SN7CwXRES7du2igQMH6tR1JiYmJISQ45Bvv/1Whv/c22/t9Pvuu+9IrVaTWq2WaWdnZ0eHDh2i169f52EsP09S1zXaPHnyhC5fvkzTp0+nPn36UP78+WU+NzExIQsLC/ryyy/pp59+omvXrtGDBw/SPEN5rr7nM7qwLT48rl+/TqamplSoUCHy9PQkorT9Ve303LFjB1WoUIEMDAxICEEDBgzQCRsTE0P/+9//qFq1ajrthxCCihUrRrdv3yaiD6fNYA/sDMMwDMMwDMMwDMMwDMMwTLZA/+8JZtmyZejevTvs7OxQvnx5nTAajUbn//DwcIwaNQq+vr7w9/dHuXLl4OTkhL/++gvW1tYflkeYjwjFFgMHDkRAQADmzJmD8ePH47///kPRokUhhMCFCxfw9OlTvH79Gra2tqhatSrmzZuHChUq6HiGi4+Px4YNG0BE6N69O1q2bAkgxZaGhoYA3niVS05OZo+uWqhUKpmHZ8+eDQCYM2cOFixYgAULFqBSpUoAIL18JyYmokKFChg6dCgaNWokn6HAtsga2VUuIiMjsW7dOowfPx5EBBsbG1SvXh1LliyBg4OD/D5nZ2c0btwYgwYNwuXLl7F48WLMnTsXBgYGbJdMQHo8Iire4B48eICIiAgcOnQIXl5eOHPmDO7duyfDWVtbo1mzZmjevDkqV66MJk2aQAgBMzOzDJ/PpKDRaJCQkICDBw8CADp37iy9TKdGOx1PnjyJv/76C56engCA4cOHY8iQITrPffz4MaZNmwZvb2/cunULjRo1QsOGDfHtt9+y99BUvH79GqdPn4a/vz9WrlyJ6tWrS2+u6REREYHw8HD5d3ppybZ4d3KiXGS2nWZbpGBoaIiRI0fi5cuXMDQ0ROHChdG9e3fUrVsX1atXR/Xq1aFSqWSfSCEqKgpCCAghYG5uDgMDA+4jZQMFChSAm5sbAgIC8O+//6JWrVooX748TExM5IlaU6dOxd69e+Ht7Q0A6NixI7799lvUrFlTJ/3Hjx+PS5cuoVSpUjh06BCKFSsGADA3N0eXLl2wdu1a3Lx5E0+fPs2Td/2QKV68ONavX4+mTZvi7NmzGDZsGMaOHYuGDRuiaNGiiI+PR0xMDCZPnoy1a9dCCAFbW1u0aNECAGTdotiDbZE1srNcTJ8+Hbt27cKtW7cAAI6OjqhQoQJat26NFy9ewM/PDxs3bsS8efOgUqnw22+/ffZthfb4e86cOahduzbCwsIQEhICV1dXNGvWLM3JA0zuoORNjUaDqKgoXLlyBVeuXIGnpycuXrwo+68GBgYoWLAg2rZti9KlS6NTp04oWLAgSpcurfM8pW+k/OYTHDMP2+LDw8jICK9fv0Z8fDz8/f1RvXp1OfehoKTnxo0bMXXqVDx48AAajQbt27fH2rVrZbjXr19jyZIlWLBgASIiIuDs7IyvvvoKoaGhuHz5Ms6fP4+uXbvi+PHjH0x9yAJ2hmEYhmEYhmEYhmEYhmEYJlsQQsjFwiZNmgBIexStIkZPTk6Gu7s7JkyYgFu3bsHa2hqOjo5ISkrCzp074efnh9OnT6NQoUIs2nkPtG0xe/ZsGBkZYeHChTh//jySk5N1wtauXRu9e/dG165dYWdnl0bQo1KpEBsbCwCwsrICACQmJkpxkLu7O9zd3aFSqdC2bVtepEqFWq3WsYWtrS02b94MDw8P+Pj46IStXbs2Ro0ahbZt28LS0jLNs9gWWSMr5UK57/Xr11i9ejUmTpwIIkK5cuXQtWtXTJgwQWfTDRFBpVLB0dERjRo1wuXLl+Hp6QlDQ0Ouz96CUgdpp1NoaCgiIiKwd+9e3L17F4cPH8aLFy8QHx8PAChUqBA6duwIFxcXNGjQAJUrV0aRIkV0ykDqDVRsh/RRqVQwNjaWi+aFChUCACQlJekspGu3F8ePH8fy5culuLdHjx5YuHChDBsXF4fDhw9j7ty58PDwgKGhIRITE3HkyBEcPHgQ4eHhWLBgAdtFCzMzM9StWxdHjhyBh4cHzpw5gw4dOuit2xVb3L59G0QEAChSpIjePhTb4v3I7nKRkJAAIyMjed/ly5dx584dnDt3DkZGRnBzc0O5cuVQq1Yt3lDw/xQtWhRnz57F/v370bhxYzg4OKBw4cI6YRISEuTfZ8+exZkzZ/Dff/9Bo9GgTJky6NKlC/r27QuVSsUi9ixiYWGB2bNn49KlSzh37hwGDx4MNzc31K5dGxcvXkRQUBDOnj0rww8ePBiTJ09GuXLldPJyZGQkbt++DTMzMyxbtgzFihXTKVempqZISkoCEeHFixe5/p4fA2XKlMHRo0fRokULXLhwAf7+/rC2tkaDBg0QGBiIly9fwsvLCyqVCubm5pg0aRI6deqU5jlsi6yTXeVi5MiR2Lx5MyIiIgCkbH7q2bOn3OQMAK9evULt2rUxZswYLF26FHXq1EGHDh1y72U/ULTH3/ryOdf9eceNGzfQt29fREdH62w+trOzQ+fOnVG1alW0aNEC1tbWcHBwSLfvo23Dz71v9L6wLT4ciAglS5ZE69atcfDgQVy7dg2dOnWCubm5ThghBObPn4/vvvsOycnJICK0adMGe/bsAZAiXDc2Nsa5c+ewYcMGREdHY8SIERg2bBjKly+PpKQk+Pj4oGfPnggJCcGVK1dYwM4wDMMwDMMwDMMwDMMwDMN8eqT2lp7ao5uykOjj44Nx48bB29sbbm5u2LRpE4oWLQpLS0sMGDAAGzZswNSpU7F48eI0XhSZzKG9cDt9+nTUqFED3t7e2L9/P4QQqFatGhwcHDBs2DApqlVEt9oYGhrC1dUVFy9ehL+/P16+fIkCBQoAAC5cuIAVK1YgLCxMejpm0qJtizFjxqB58+a4efMmduzYgVevXqFs2bIoUaIExo8fDzMzs3QX/tgWWed9yoVGo5E22bhxoxSvV65cGYMGDcKQIUOQP39+JCcnyzpQCW9gYCBPorh69SoCAwPh6OjIi7sZoNFoEB0djTt37uDAgQMICgrCvn37kJCQgOjoaKjVaqjVanTo0EF6grO1tUWJEiX0CtaVxV4+zSPzKJ6Ky5Qpg9u3byM8PDyNSFf7hJSdO3fin3/+wZEjRwAAHTp0wNy5c6FWq+V9Z8+exbRp03D79m1UqFABs2bNQlRUFEJDQzF9+nQsWrQI5cuXx/Dhw/PknT9EDA0N0aNHDxw5cgT79+/H77//jrJly8LJyUmGUby5Knl/1apV0mtimzZtdOoaRWDCtng/srNcJCYmSvH6yZMncezYMcydOxempqZyoxoAlCxZEgMHDsS0adNYxP7/VKpUSZ5gA7zJ18rGDSVdFe+U9+7dAxGhQIECuHXrFnbv3o1Hjx5h0qRJLGDMBhwcHHDkyBF06tQJ169fx/Xr17Fu3TrZBhsZGaFUqVIYMGAAfvjhhzT3ExHu3buHGzduAIAc9xkYGMjydefOHTx//hyFCxfWqf8YXcqXL49Tp05hzJgxuH79Ovz9/REQEKBTNsqXL4+RI0di2LBhAHSFh2yL7COr5WLw4MFYt26dtN3cuXMxadIkeV3ZAGVlZYXOnTtj586dcHd3x82bN1nA/v9k1O/nuj/vqFKlCurUqYNDhw6hefPmaNmyJdzc3ODs7JxmQxqQ0vfy8fFBWFgYQkNDUalSJbi6usLCwiJNH4x5N9gWHw7KCUGKgH3BggWws7NDmzZtUK5cOcTFxWHPnj04ceKE9LRuaGiIrl27YtOmTQBSNtQaGxsDADZv3gwfHx80bdoUI0eORNmyZeV40cXFBXZ2dvD390dISEhevXJaiGEYhmEYhmEYhmEYhmEYhmFykYSEBKpbty4JIahmzZr0/PlzIiKKj48nIqKnT59SgQIFqFGjRqTRaPIyqp8EqdMwMTGRkpKSMgyTmq1bt5IQgoQQNGDAAPrf//5HkydPJjc3NxJCUJkyZWj37t3ZHvdPjeTk5CyHYVtkD+9SLhSbHDt2TKZ9xYoVaeHChRQVFaUTRt/9ixcvJkNDQ7K0tKQ7d+5kKh98rsTGxtLo0aPJwMCADA0NSQhBhoaGZGVlRV26dKGJEyfShQsXKCAg4K3P4vbj/VHy6Pz588nQ0JAqVqxI169f1xt27ty5VLlyZVk2OnfuTL6+vjph4uPjqUmTJiSEoBYtWlBISIi8FhUVRWPHjpV1GpOWkJAQmcaNGjWiixcvUnR0tE6YxMREGjJkCAkhSKVSUadOnejevXtpnsW2eH+yq1xotzW//vorVatWTYazsLCg0qVLU926dal06dKkUqlICEETJ07M8ff7lNi8eTOZmpqSEIK6d+9O//77Lz158oR27NhBVlZWJITgvlI2c+/ePZo5cyY1adKE7O3tqWLFilSzZk36559/6MKFCzKcvrY5MjKS3NzcKF++fLR582adME+fPqWqVavKOisuLi5X3udjRsnrPXr0oCpVqlC5cuXI1dWVFi5cSGfPnpXh2BY5T2bLRUJCgvx7zJgxsg9sYmJCK1aseOv3DBo0iIQQVK9ePTmnwjAfGtr9n4cPH+qMiZW/ExMT5Wf379+nZcuWkbm5OanVahJCUL58+ahx48b05MmTNM9kMg/b4sNCO/2///57OS5wdHSkunXrUoUKFSh//vzy8ypVqtBPP/0k79G21aNHj8jBwYFUKhXt27dPPl9pz+Pi4sjJyYmEELR06dJcesO3wwJ2hmEYhmEYhmEYhmEYhmEYJlfZv38/GRgYULFixSgoKIiIdCfcr169Smq1mooUKUIPHjxgEeIHwpIlS+SCifJjbGxM9erVo//++0+G02g0cgFG3yIWL2y94X2FzGyL3Mfb25scHBxICEElSpSgmTNnUmRkJBFlbMdnz55RlSpVSAhBtWvXZvF6JvD29iZ7e3tq3749TZkyhc6dO0f+/v46YbTzrq+vLx09epS+//57+vfff98qzmIyz/3792X+bdCgAe3evZtCQ0Pp4cOHtHPnTurZs6dOPfTll1/S/fv35f1Kfp83bx4JIaho0aIUGBhIRLrt/vz580kIQS4uLhQdHc1204O/vz/Z2dmREIIqV65MQ4YMob1799LRo0dp3rx51KZNGyler1ixIm3evFnvc9gWWScr5UI7PYcMGUJGRkYyXO/evWn16tX0/PlzSkxMJG9vb5o/f74UsS9YsCCP3vjj4tq1a1KYM2LECDnWUPj7779JCEHTp0/Poxh+uigCqdDQUIqIiJD9JIX06pPXr19T79695QbBdevW0aFDh2jDhg3k4uIiP3/48GGGz2HS8uLFC3r58iVFRETofM62yD3eVi60+7Rz584lGxsbuYFz1apV8lpGad2jRw851mABO/Mhkzofp5evg4ODady4cbIP1K5dOxo8eDDVq1dPCnhfvnyZCzH+dGFbfFik3uBasmRJmeZCCDIzMyMhBI0bN44OHz6s9z6ilE1sRYoUISEEbdiwgYje2DY2Npb+/vtvMjMzo7Jly9Ldu3dz4c0yB/vvZxiGYRiGYRiGYRiGYRiGYXKVoKAgaDQa2NrawsbGBgDkcbMajQYeHh4gIjRu3Bh2dnZ5GVUGb46WHz16NIoUKYLjx4/Dx8cHBgYG6Nu3L9zc3FC1alUAQGJiojxuHgBev36NFy9e4PLly7h27Ro6d+6MatWq5dWrfHAIId4pPNsi90lOToZGo8HWrVvx/PlzAED9+vUxatQoWFhYgIjStWNSUhIOHDiAp0+fAgDc3Nyg0WigUqn46PoMqFSpEm7evAkrK6s015KTk0FEUKvVAIDt27fjl19+QVBQEOLj4wEAZmZmmDlzJr755huoVKoMbcRkTLFixbBt2zY0bdoU586dg5eXl8y/SUlJiIyMhBAC1tbWGDhwIH7//Xed+5V0f/jwIQCgR48eKFu2LDQaDQwMDEBE0Gg0CAsLAwA4OTnB3Nw8d1/yI6FcuXJwd3dH9+7d4eXlBR8fH6xatQpqtRoGBgZ4/fo1hBBwdnbG6NGj0atXLwBIk//ZFlnnfcuFRqORdVevXr2wbds2CCEghMC0adPw008/AXhTbipVqoRSpUrhyZMnmDt3Lg4ePIhBgwbB0tIyb178A0fJ6zdv3oS/vz9cXFwwdOhQlClTBgAQHx8PExMTma+vXbvG7UMOoFKpYG9vn+611BARjIyMsGzZMvj5+eHGjRsYPnw44uPjYWxsjNevX6NSpUrYvn07bG1tdcqR8rfSP9Z+5uduVyUNChQooPc62yJ3yUy5OH36NHbt2iXHDYsXL8bgwYMBIE26auPr6ws/Pz+oVCq4urrC2Ng4B96AYbKH1Pk49f9KnbF582YsWbIE+fLlw9SpUzF58mQZpmfPnti+fTtWrVqFiRMncj3znrAtPizUarVsS6dMmYKmTZsiKCgIHh4eSExMRIMGDVCqVCnUr19f3pOcnCzbYQVzc3PUqFEDBw4cwJUrV9CqVStYW1sjLi4OO3bswNKlSxEXF4eWLVuiYMGCuf2a6cICdoZhGIZhGIZhGIZhGIZhGCZXKVSoEICUBZLY2FhYWFgASFkguXDhAn777TcQEWrVqpWX0WT+H5VKJRfNu3fvjk6dOoGIkJiYmEbcFhcXh+joaBw8eBCBgYE4cOAA7t69K4W/ixYtwp07d1C4cOG8eJWPHrZF7qNSqfD69Wvs3bsXUVFRsLe3x7x581CwYMF0xSTK5/fu3cPatWvx8OFDGBkZYdCgQXKzDsCinoxQBJra4iggRdippPnatWulsKdJkyaoUKECrK2tsXjxYkyaNAn58uXD0KFDOY2ziKOjI9zd3TF+/Hj4+PggJCQEQMrGMxMTEwwZMgRNmjRB586dAegXWcXFxQEAwsPDpYgUSLGnj48Pjhw5AgCoXbt2us9gUmyxf/9+LF26FKdOnYKnpyc0Gg00Gg0AYOjQoWjbti3atWsHgG2Rk7xruUhISICRkREA4Msvv8S2bdugVqtha2uLqVOnYujQoXq/x8zMDNWrVwcR4fjx4wgJCUGVKlVy5R0/RpKTk7Fnzx4kJSWhWrVqMq2SkpJkXr9y5QqAlA0C3D5kL++TnkIIaDQaWFlZ4dSpUxg3bhx8fX1x5coV1KhRAxUqVMDvv/+OAgUKpBFJK/2DiIgI3L17F/7+/ujVqxfbFWyLD4m3pYFyfc+ePbh06RIA4JdffsHw4cMBpN8OK+OIc+fO4datWwCA8uXLZ2fUGSbXEULg9OnTclPftGnT8M033wAAYmJiYG5ujrFjx2L79u24c+eOvIfJftgWuY92u1qnTh3UqVMH/fr1Sze8vrbBzMwM3bp1w4EDB7B48WIEBQWhTJkyuHHjBvz8/PD06VO0bt0a33zzjZyL10duz1WxgJ1hGIZhGIZhGIZhGIZhGIbJVWxtbWFubg5PT0/8+++/aNOmDTQaDS5cuIDZs2fj/v37aN26NUaPHp3XUWX+H5VKJT16K169jYyM8OrVK8THx+PYsWO4d+8edu7ciUePHiE8PFzeW7t2bbRs2RKdOnVCwYIF5QYG5v1gW+Q+Bw8exM2bN2Fubo7Zs2ejWLFiaYTVCtqf//DDD3B3d4eBgQGmTZuGGjVqQKPRSBF2cnIyEhISEBgYiKJFi8LU1BQWFhYsGMWbxe/Uaax8vnv3bilenzhxIkaPHg17e3sIIdCgQQO0aNECf/31Fzp27AgbGxteTM8iZcqUwYYNG/D48WOcO3cOCQkJsLe3R9myZXXEUunlXWdnZwDA9evXcfHiRdSpUwdJSUm4evUqvv32W/j6+qJWrVro06cPAP2L8UwKxYsXx4wZMzB9+nQcOXIEUVFRsLCwQKlSpeDi4iLzOtsi58lsuUhMTJTi9VGjRmHz5s1QqVQoVaoUfv75ZylMSW0zpT0pV64cChcujIiICHnSBJMWxZu9IsZR+khEJDeP/f3331i4cCEAoFmzZnkSTyYtitdRS0tL/P3330hKSkJISAgcHR0BQJYfpU/w9OlTREZG4uDBg7h9+zZOnTqFe/fuISkpCZ6envjf//6XZ+/yscO2yBtOnDgh66a+ffti3LhxADLeRCaEwPnz5zFmzBgAKSdEKe0JEckwDPOxsWvXLgBA9+7dpWA6KSlJbtj38PAAADx79gzJyckAuL+aU7Atcp+spJ8iOh8wYACioqIwduxYHDx4UF63t7fHoEGD8MMPP6B06dKyjdE3t6W0H+nNe2U3LGBnGIZhGIZhGIZhGIZhGIZhcpVmzZphzJgxmDNnDiZPnowlS5YgOjoacXFxiIuLQ5MmTbBr1y4YGhqykDMPUdJeWQRRhEChoaE4d+4c/Pz8sG/fPrx48QL379+X99WvXx9NmjRBt27dYGtri2rVqul4nWbeHbZF3qJsAkhISEDZsmUBpBVWA7pHOA8YMADbt2+HSqVC27Zt0aZNGwBvPIgHBgZiw4YNOHToEHx9fVGsWDFUqFABc+bMQcWKFXNtofBjJDw8HH/++ScAYMSIEZg+fbpcRCciNG/eHK6urvD390d0dDSKFCmSl9H9ZLCysoKVlVUa757a3tnSa6/79euHDRs2wMPDA4MGDUKFChUQExODu3fv4sGDB3B0dMR///2HQoUK6W33tb+DTy5IERAKIdCxY0edzxXBGsC2yC3eVi6ISLbZixcvxubNmwEANjY2mDp1arrideBNO3Pq1Ck8ffo0p1/lo0fJ/2XKlAEAXL16FV5eXrC3t4eVlRUWLFiAX375BQDw008/oXnz5nkWVyYtSj9XrVbDyMgIlStXltfCwsIQGxuLffv24e7duzhw4ACePHmCuLg4qFQq5M+fH23atEGFChVQsWJFxMbGwszMLA/f5uOGbZF7KG2Fl5cXDA0NYWxsjFatWsk0y2ge5NatW5g8eTISEhJgaWmJL774ApaWlmna5oSEBCQlJenYgdtv5kOFiODn5wcAKFiwIIAUwbQyh+Hv749Tp04BANq0acNzhTkI2+LjQwghxxSjR49G2bJlcfXqVdy5cweWlpbo3bs3SpUqleYURmXM8eDBA9y4cQPXr1/H6dOn8euvv+bayag8S8kwDMMwDMMwDMMwDMMwDMPkGspk+uzZs2FoaIh169YhPDwciYmJcHNzQ7169fC///0PhoaGLODMY5RFbT8/PwQEBODs2bNSLB0ZGSnDVK1aFfXr10eXLl1QvHhx1K5dW6/teDPC+8O2yBsUcYfi8bZy5cqoWbOmzjVtlDQdNGgQNmzYAJVKBVdXV/Tv3x+urq4yzK1btzB48GBcu3YNRAQzMzOEhYUhMDAQly5dgru7OypWrMjiknSIiIjAjRs3YGlpiY4dO0pBjpLXnz17JgVTLJrKed6WRzUaDSwsLHDo0CF07NgRly5dwr179wCkiHjbtGmDlStXomjRovJ0idR1lBBC2lQRBX/OZSO9d2dbfDgoaaL89vb2xp49e/Dq1SsAwJQpUzBgwAAAGbfJz58/x/nz56FSqVC+fHmUKFEi5yP/kaKk9cCBA7FmzRpcvXoVvXv3hrGxMSwtLXH69GkAwLBhw9C3b9+8jCqDN/0oJf9rn7wSERGBsLAwHD58GEFBQdi/fz9iY2Nl+TEwMED79u3h4OCAzp07o0iRInKDIfPusC3yFiLCvn37kJiYCBcXF3kCSkb4+flh+vTp8Pb2BgC4uLhg5MiRcsMUkCJE3LdvH7Zu3Yrw8HDUqFED1atXx7hx47j9Zj5YhBBwdXXF8ePHERsbi5iYGLlR+c6dO/j7779x4MABVKxYUY6vmZyBbfFxopz0p1Kp0KpVK7Rq1SpNGOV6cHAwwsPDceTIEVy7dg2XL1/Gy5cvZbiIiAicOnVK2j0nYQE7wzAMwzAMwzAMwzAMwzAMk2toH086Y8YMdOnSBZGRkYiJiYGTkxPs7OzkhDuL13OfpKQk3LhxA8+fP8euXbsQGBgIDw8PxMbGAgBMTU1Rvnx5VKtWDY0aNULZsmWloFexm/J3algw/W6wLfIeRdTh6OgIAAgODoanpydq1KghhR9KOCLC06dPMX78eGzZsgUqlQqlS5fGuHHj0LlzZ/lMf39/9OvXD15eXqhVqxY6dOiAZs2aISgoCKtXr8bJkycxbNgw7NmzBwUKFMj9l/4IuHnzJp4/f45ixYqhUqVKEELoeINbvXo1AgMD4eLiAgMDAxbo5DFqtRpJSUmwsrLCwYMHceDAAdy9excAUKtWLbi5uSF//vwAIIVXKpUKsbGxCA8Px/nz5+Hj44Pdu3ejXr16WLVqFdvzPWFb5B3Hjh2TXiq/++47jBo1CkD64nXl87Nnz2LXrl1ITk5GrVq1UKxYsVyN98dIyZIlcfToUXTu3BmhoaGIjY2V7cOcOXPQvXt3ODg45HEsP19Si6SJCNHR0fDx8cGVK1fg6emJU6dO4eHDh0hKSoJarYapqSkaN26M0qVLo2vXrrCxsUlz6kHq5zNvh22R9yhpb2JiAgCoUKECAMhNZPrw9fXFr7/+Cnd3d0RFRaFEiRLYuHEjChUqJMMcO3YMK1euxPbt2+VnwcHB2LhxI+7evYsFCxZw+818sFSsWBHJycnYsGED7O3tUa1aNYSGhuLUqVPYu3cvDAwMMHnyZFSpUiWvo/rJw7b4+CAinXl3bW7duoVXr15h586duHv3Lk6dOiUdYpiYmKB48eLo3LkzqlWrhjp16qBIkSK5Il4HWMDOMAzDMAzDMAzDMAzDMAzD5DJqtVouaOvz1KNMuDO5z9atW9GvXz8pgLawsECRIkXQtm1buLi4oH79+nBwcIChoaGOjRISEmBkZCQ/4w0IWYdt8eFQvnx5VK5cGd7e3jhx4gScnJxgamoqhR8vX77E+fPnsXTpUhw9ehQqlQpOTk4YN24c+vfvDyDF8/Hr16+xYMECeHl5oX79+pg3bx5cXV1hYmKC6tWrw9bWFjdu3EBISAgiIyNZwJ4Ojo6OsLGxgUajgb+/P4oXLy7FicuWLcP3338PAJg8eXKa47GZvMHAwAAajQbm5ubo0aNHmuvKAvuNGzfg5+eHc+fO4dKlSwgJCZFe4AwNDZGUlAR3d3c0btw4l9/g04Ftkfvcu3cPixYtAgC0aNECkyZNApC+uFPpB1+/fh39+/dHUlISXFxcMHbsWADQ2bCjD960A5QrVw5Hjx7FlStXcOPGDZQpUwaOjo6oVatWXkftsycuLg7m5uY4ceIEQkJCcOTIEfj6+sLX11duDLS2tkbz5s1RpUoVfPHFFyhatCgqVqwon6GE095IqMBjyMzDtvhwKFiwIADg0aNHiI+Pl4J2BaVev3HjBqZPn44zZ87g1atXKFasGA4ePIjixYvL9vvcuXOYO3cuTpw4ARsbG4waNQpWVla4d+8e5s+fj0WLFsHe3h4TJkzIi1dlmLcycOBA+Pj44I8//sCsWbOgVqtl/i5SpAhmzJiBgQMH5nU0PwvYFh8+ynhC3ykqd+7cQVhYGHbt2oWQkBAcOnQIQggkJibC3Nwc+fLlQ58+feDo6Ig2bdqgSJEisLKy0nl+bo0rWMDOMAzDMAzDMAzDMAzDMAzD5DoZLWh/7qKbvOTLL7/EpUuXoFKpUKZMGbRp0waFCxeGpaWl3vD37t3D4cOHce3aNQCAk5MTvvzySxQoUOCtAismY9gWHw4VKlRAv3798P333+PHH39EdHQ06tWrBzs7O7x8+RLz589HYGAg/P39oVar0bRpU3z11VdSHKpsIlCOYDYyMsLAgQPh5uYGIyMjuQjs6OgIIQQePHiAx48fo2TJknn85h8m9vb2KFOmDC5evIgZM2bA398fBgYG8Pb2xpIlSwAAU6dOxZdffpnHMWWAN4vq2htpFM+inp6eCA8Px+7du+Hn5wcPDw8pgrOwsEDZsmXRr18/NGzYEM7OznB0dERCQkJevcpHD9sib4iOjpbeDatVqyaFiumJ14UQ8Pb2xtdff43o6Gjkz58fzZo1Q5kyZQBAtucajQYeHh4ICQmBgYEBSpYsidq1a8tTQT73/nSxYsVQrFgxdOzYMa+jwvw/CQkJGDZsGI4ePYpnz57Jz21tbVG7dm20bNkS1atXh4uLi44gNzVCCPbunUXYFh8GSl3drFkz7N69G3fv3sXNmzdRs2ZNnTpcCAF3d3eMHj0ad+/eRWxsLIoXL44dO3agcuXK0j7JycnYuHEjTpw4gVq1auHnn39G69atAQCxsbFQq9WYO3cuTp06heHDh8PU1DSvXp1h9KLk5blz56Jw4cI4dOgQAgMDYWhoiG7duqFJkyYyTzM5C9viw0ZpP5T2NzExEY8ePYK3tzdOnz6N27dv4/Tp0/IEx/z588POzg5t2rRBqVKl0KFDBxQoUABFihTRea7SpivPz63xhCBl5MkwDMMwDMMwDMMwDMMwDMMwzGdLRiJnZRFDW7ywbt06bNiwASdPntQJ6+bmhsOHD6Nw4cIsaHhP2BYfDtrp9v3332Pu3LkAUjwQW1hYIC4uDnFxcQBSxIgTJ05Ep06dUKdOnTT379q1C127dkWJEiXg4eGBokWLQqPRSE9Zp0+fRpMmTWBgYIAbN26gUqVKefDGHwcBAQFo0qQJwsPD01ybPn06Ro4cCWtr6zyIGZPaC5wCEcHDwwOPHz/Gjh078ODBA7i7u8vrtra2KFy4MNq0aYOKFSuiTp06cHBwkPWcsojOdVnmYVt8GOzduxedOnWClZUVTp8+DWdnZ70Cc+UzPz8/jBgxAhcvXkRCQgLq1q2LrVu3olixYjLs4cOHsX37dqxZs0Z+ZmVlha+//hq///67zvMY5kPi9u3b6NevH0xMTNCpUyc4ODigYcOGsLGxkfWJdt598eIFzp8/j9u3b6NMmTKws7ND/fr1AaR/igGTOdgWHw7h4eHo2LEjrly5goYNG+LHH39E5cqVUaxYMRw9ehQeHh6YNm2aDO/g4ICDBw+ifPnyOs85dOgQ2rZtCwDYsWMHunTpAuCNEHXLli3o06cPypUrh4sXL/JpT8wHifY8x8uXL/H69WsYGBjw2C4PYFt82AQHB8PT0xP+/v44fvw4/Pz88Pz5c3m9dOnSaNKkCSpXrozWrVvD1NQU9vb28joRfTAnoLK7DYZhGIZhGIZhGIZhGIZhGIZh9AqmU3v1URavVqxYgblz5+LevXtwcnLC0KFDYWdnhw0bNmDPnj3o3LkzDh06BAsLi1x9h08FtsWHg/ZmgTlz5qBo0aL477//4OHhgRcvXgAAHB0dUbx4cfzwww9o2LAhjIyMACDNYqCdnR2MjY0BpAhVbGxspB29vb0xY8YMACne91m8njHlypXDmTNnMH36dAQGBuLp06dwdnZG//79pViHyV0U8Zq2F7iAgAB4e3vj4MGDCA4OxsWLF6V36EKFCqFChQro1q0bHBwc5KJ66lMmlPKnCOg+hAX2Dx22xYdJVFQU4uPjAaQ9bUix2e3btzFy5Ehcu3YNCQkJKFWqFNatW6cjXt+2bRt+//13XL9+HQDQsGFDPH78GAEBAZg3bx6EEJgzZw6L15kPEicnJ5w+fRpAijdQbbTrmKSkJHh4eGDIkCHw9/cHkNI/NjY2xi+//ILx48freAhl3h22xYeDra0tNm7ciGbNmuHMmTPw9/eHSqWCnZ0d/Pz8EBMTAyBlLFG1alWsWLECtra2aTYO+Pr6AgC6du2aRrwOpIgdAcDc3FyOSRjmQ0OtVsv6xMrKStYrXMfkPmyLD5uNGzdi+vTp8n8nJyc0a9YMjRs3Rq1ateDg4AArK6s09oqOjoaxsTEMDAzSOMfIK1jAzjAMwzAMwzAMwzAMwzAMwzCMXrQXOZRFj3PnzmHVqlUICwtD3759MXr0aFSrVg0A0KVLFzRt2hTnzp3DtWvX0KhRo7yK+icH2yLvUKvVclFv/Pjx6NatG+7fv4/w8HAkJiaiQYMGMDMzg6WlJbQPPk69qGtpaYkSJUogKCgIO3bsgKWlJUqXLg0PDw/MnDkT7u7uqFatGr766isA7M3ybZQpUwarVq2CoaEh4uPjYWBgAENDw7yO1meLSqVCaGgoduzYgdDQUFy8eBFXr16V121sbODs7Iy2bduidOnSaNu2LUxMTNJ4/0xdhvJ6Mf1jhG3xYVGrVi1UqlQJwcHBuH37NqpXrw4hhI5YRKVSwdPTEwMGDEBQUBCSkpJgY2ODQ4cOoUyZMvJklgsXLmDx4sW4ceMG2rZti6+++gqdOnVCaGgoDh06hNGjR2PVqlXo2rUratSokcdvzjD6UcTSqQVVilAOAHbv3o1x48YhPDwcVatWRfXq1WFhYYGlS5fim2++gampKYYNG8YCuizCtvhwcHR0xMmTJzF8+HAEBATIsYZCu3bt0LFjR3Tt2hVWVlZ6BYeRkZEAgMePHyMyMhLm5ubSlv7+/jhz5gwMDQ3RrVs3mJmZsQiV+WBR8qV2/uS8mjewLT5cfv75Z5iYmKBo0aIoU6YMXFxcdBxXaDQaACn2evHiBfz8/LBs2TKEhobC3NwcVapUwbfffouCBQvmuYidBewMwzAMwzAMwzAMwzAMwzAMw7wVZZFq//79uHLlCmrUqIGxY8fCzc0NQIoXn3z58qFWrVpwd3fH3bt3WTSdQ7Atch9t72PFihVD8eLF9YbLaDG3QoUKmDhxIkaMGIHffvsN//33HwoWLIhLly4BAFxdXTFmzBjUrFkTgK53Yxaz68fQ0BBCCJiamiI5OTmvo/PZk5iYiO+++w7JyckwMjJCnTp1ULt2bVSrVg3169eHhYVFGpF0YmIiEhMTERERgQIFCsDExARASp5nccT7w7b4cDAzM0PlypXh4+ODVatWoVq1aqhUqZI8bcXf3x8XLlzAyJEj8fr1awBA2bJlsX//fpQrVw4ajUaGPXr0KC5cuIB69erhu+++Q/369QGkeOVt1aoVypYtK4WPLGBnPnTSO4ng5s2bmDBhAsLDw9GxY0ds2bJFeotu2rQp2rZti+XLl6NNmzYoXrw410/ZANviw6Bs2bLYsmULgoODcfz4cSQmJqJYsWKws7ND27ZtZbjk5GS9QkMnJycYGRkhLCwMXl5eqFWrFtRqNS5fvozly5fj2LFjKFOmDBo3bgyARagMwzAfK8rm1m+//TbNNUWMrswf3b9/H0uWLMG2bdsQGhoqTww8evQoDh06hBMnTsDa2jpP55xYwM4wDMMwDMMwDMMwDMMwDMMwTKZ4+vQptm3bBgAYNmyYFExrNBrky5cPRARPT08AkMI3JmdgW+Q++ryPZRZF/D5s2DAQEaZPn46AgAB5vWfPnhg4cCCaNGkCIyMjueiYevFR8ayYP3/+PPeS9SGgbQsW+Oc9ZcuWRVBQEK5duwYXFxfY29vLBXLgjRc4AHj9+jUCAgLw3Xff4d69ewgNDUXt2rXRu3dvDB48GCqVijduZAG2xYeDhYUFfvvtN1y+fBkXLlzAwIED/6+9O4+v6c7/OP6+2ZHIlYWEiCS1NBnbWCrRsRtrgyot1VKU1lQ9ammnnY7RUh2lo9PFo0xbVGemlqKC2moNYqdEVCyJSGQREVlIbpb7+8Pj3kol+E3JleT1fDzy6O39nvO9n+Mb5+TK+3yuHn/8cT366KM6c+aM9u7dq2PHjqmwsFDe3t5q1aqV5s2bp6CgoBLn+aSkJH388ceSpOHDh1vD64WFhXJ0dFRAQIDc3d0lSbm5ubY5WOA3sLOzU1ZWlsaMGaOkpCR169ZNK1eulJ2dnfLz8+Xs7KzevXurffv2+vnnn5Wfn08A9wFhLWzHy8tLXl5eateu3W1jlvcTZV2Pe/XqpbZt22rPnj0aMWKE2rRpo+LiYp04cUKxsbEyGo2aM2eOwsLCSt2faz0AVAyWm1tLY3nvYDAYlJaWptmzZ2vhwoWqVq2ahgwZoldffVVOTk768MMPtWzZMg0bNkzff/+9qlWrVl7l34YAOwAAAAAAAAAAuCdms1k5OTmSbnYUlX7p/JOfn6/PP/9cu3btUv369dW1a1dbllrpsRYVi8FgsIZCXn75ZYWFhSk5OVnXrl1TzZo11bt3b2soRfrll45ZWVnKycnRxo0bdeLECW3dulXp6elat24d3XXxUAoICFBAQIAkWbviW763Ld/XGRkZWrFihWbOnKnExER5e3vL1dVVW7du1datW5WRkaEpU6YQovqNWIuHR1BQkDZt2qQBAwbo2LFjOnbsmHXMcoNAu3btFB4erlGjRsnHx+e2Drs3btyQyWSSm5ubNdhoue6bzWatWLFChw4dkrOzs/WmNqCiSUlJUXJysnx9fTV37lzZ2dmpoKDA2vX71KlTio+PV3Z2tq5fv27jais31uLhc6ebBCw3Ma9du1Z9+vTRvn37FBcXJ0lydnZWaGio3n77bWsnd8vPBbfepPbra/2t700AABWH5by+YcMGrVixQm5ubpo4caJefPFFeXh4SJL++9//KjY2VocPH9bFixfVuHFjm9VLgB0AAAAAAAAAANwTV1dXtWrVSlu3blVMTIxycnLk6uqqgoICffnll1qwYIEcHBw0atQoGY1Gfun9ALEWFc+tAZEWLVqoRYsWJcYNBoNSU1OVn5+v9evXKz4+XmvWrFFKSoq187qrq6sCAgL03XffEWDHQ88ShLKce8xmsyQpIiJC77zzjlJTU9WvXz/NnTtXRqNRhw8f1rBhw/TGG2+oZcuW6t69u81qr2xYC9tr3LixNm3apC+++EJ79uxRbGyssrOz1b17dwUHB+u1116Tq6urnJ2dS+2C6+7uroCAAMXHx+vo0aMKDg6Wo6OjJCkqKkr/+c9/ZDab9cwzzyggIIDrPiqkn3/+WUlJSXJzc7PewGH5Pjebzdq1a5fS09PVqVMnBQYG2rLUSo+1qFjs7e1VWFgoo9GoTZs2admyZYqPj9fVq1fVp08fNWzYUE2aNJF0e6f15ORkpaSkaMuWLYqKipLRaNTXX3/NNQQAKijLOf6LL75QamqqRowYYQ2vFxcXq7CwUE5OTgoMDNTRo0d1+fJlAuwAAAAAAAAAAODhV716dXXr1k2bN2/We++9p3PnzqlBgwaKiorSoUOHZDKZ9NRTT2no0KHWgAMeDNai4iktkJibm6ukpCRt2bJF58+fV0REhLKzs5WWlmbdpnfv3mrQoIEGDhwoHx8fNW3atLxLB+4Lg8GguLg4TZ8+XampqRo1apQ++eQTVa9eXYWFhfrjH/+ot99+WxMnTtTx48cJTT9ArIVt1K9fX++++64MBoMyMjJUWFio2rVr37ZdaR3vjUajmjVrplOnTmn27NnKz89Xq1attG3bNm3YsEE7d+5USEiIhg8frho1apTH4QD3XZMmTeTn56fCwkKlp6dbn8/NzdWPP/6oN954QyaTSV27dpWbm5sNK638WIuKx8HBQUVFRXJzc9Po0aNlMBhKvZkpLi5O2dnZ+v7773X+/Hlt3rzZ+t7DyclJJpNJQ4cOVa9evWxxGACA++DkyZM6cuSIatasqTfffFMeHh7WT29ycnJSTEyMIiMjJUkuLi42rZUAOwAAAAAAAAAAuCvLL79ff/11Xb58WR9++KG+/fZb63i9evU0YMAAjRs3zqade6oC1qJiKCoqsnastDCZTDp9+rQOHz6sAwcOaOvWrUpKStL169dlMBhkb2+vjh07KigoSIMHD5avr6+aNm1aaviE7rqoiGbOnKn4+Hg99thj+uyzz+Ti4mL9Rbp0MzglSefOnZNU+o0fuD9YC9vy8PAo8f93OqebzWY5Ojpq/vz5Onv2rI4cOaIJEybI2dlZ2dnZcnZ2Vtu2bTV16lR17drVuo9082aF0taO9cTDyNPTU/Xr11dUVJTefvttDR06VE5OTjp27JiWLFminJwcDRs2TG+++aYkfhZ6kFiLisXy529Zg1v/m5iYqOTkZK1Zs0bx8fHasGGDTCaTcnNzZW9vLzc3Nz3//PNq1KiRwsPD5e3tLU9PT1seDgDgNzKbzcrLy1NRUZFSU1PVqFEj6/u8Cxcu6KOPPtLly5fVv39/tW7d2qa1EmAHAAAAAAAAAAB3ZTAYrIHc2bNnKyQkRMeOHVNCQoKMRqNefvllBQYGytvb29alVnqsRcVgCa/v2bNHCQkJ2rhxo2JiYnTixAmZTCZJkru7u9q2bavmzZurR48eqlevnlq2bFnqfL8OBhESQkWUnJwsSRo0aJBcXFxkMpmsQelLly5p27ZtkmT9pAECtg8Oa2EbZZ2773ROt1z3jUajtm7dqgkTJuinn35SYmKi6tevr5deekldu3ZVaGioJJVYS+nm2l25ckXp6ek6efKkBg4cyHrioeTl5aVFixapS5cu2rNnj/bu3Wu9GUOSRowYoUWLFkniJowHjbWoGCzvCS3XkKKiIl25ckWnT5/Wzp07deLECW3evFmZmZmSbn6KV7Vq1TRgwAAFBgZq4MCB8vLykp+fX4l5b11rAEDF4+HhoebNmys6OloHDx5USEiIvLy8dPLkSX3++edavny5/P39NWTIEFuXSoAdAAAAAAAAAADcG3t7e+svyV944QVJJTt8ovywFg+vq1evasmSJYqMjFRiYqIOHDhgHfPw8FBISIh69uypNm3aqEWLFnrkkUdkNptLBH+Ki4tlNputIXjWFJVFXl6eJCk9PV1ms9kass3KylJERIQ2b96sRx55RGFhYbYss0pgLSoWy3Xf3d1dX331lTIzM5WVlaWaNWvKy8urxLZOTk7Kz8/XsWPHdOTIER0+fFi7du1SSkqKcnJyNHLkSH311Vc2OhLgzho3bqxdu3bp3Xff1blz53T+/Hn16NFDYWFhevnllyURmC4vrMXD59c3tBYVFSk3N1eRkZGKiYnRzp07FR0drYSEBOs2fn5+6tWrl0JCQtSnTx8ZjUYFBQXdcX7eewBAxVa3bl099dRTOn78uF5//XVFRESobt262rBhg7KysuTj46MxY8aoX79+ti6VADsAAAAAAAAAALh3lkCtBb/cth3W4uFUq1YtnTt3TqtWrVL9+vXVrFkzDRgwQEFBQerWrZvq1KkjR0fHEvvk5+crOztbFy5ckI+Pj7y8vOTi4mK9SQGo6Cw32DRv3lzbt2/X7t27tW/fPrVq1UqxsbH64YcfNHv2bGVnZ2vcuHFlfhIBfjvWouKyt7dXYWGhHBwc5OXlZQ2u37hxQ9WqVdPu3bt17tw5bdiwQcePH9fPP/9s3bdWrVoKCwtTmzZt1Lx589tCkMDD5JFHHtGCBQvk7OystLQ0+fj4WMcITJcv1uLhYjAYVFxcrCVLligvL09Lly7VhQsXdOHCBes2AQEB6tu3rzp16qTHH39c/v7+qlevnnW8uLhYkqzXk1/PDwCo2CzX56lTpyo3N1ezZ89WZGSkdbxz584aNGiQXnjhBVWrVs2Gld5kMPO5HwAAAAAAAAAAAMBvdmsgcN26dXrsscfk6OioWrVqldiuoKDAGmLfvXu3VqxYoYiICCUlJcnf31+tW7fWvHnz5OXlRYgdlUpcXJw6deqkxMRENWjQQJ6enkpISFB2drby8/M1ZswYLViwwNZlVgmsRcVQVkA0Pz9fkZGRSklJ0cqVK5WUlKRDhw5ZxwMDA+Xn56cePXqoRYsWat68ufz9/cuzdOA3sfxMdevfAW68sA3W4uGSmJhY4nzerFkz+fj4qH///mrYsKHatm1723sPScrNzVVRUZFcXV2t68hNCABQOd3670jr1q1TbGystfP6008/rZo1a952E5OtEGAHAAAAAAAAAAAA7pO7Bc5vDfxERETo1Vdf1cWLF1W9enUFBgbqxo0bOn/+vEJCQrRz5055enoSEkKlEhsbq8GDB+vcuXO6fv26JCk0NFQ9e/bUtGnTbFxd1cJaPHws5/tfn/fz8vJ08OBBnTlzRqtWrVJSUpJ++ukn67i/v798fX01aNAgBQUFqWPHjnJ1dZWzs3OJ+bkpCgAqvtOnT2vPnj2qV6+eOnToIHt7+xLne8s1pLCwUHFxcVq4cKG2b9+u5ORkhYWFqU+fPho+fLgkQuwAUFlVlJ/7CbADAAAAAAAAAAAA5WzLli0aNmyY0tPTNXDgQA0fPlzdu3dXQUGBXn31Vf373//WyJEjtWDBgoemMxZwv6Smpuro0aNKTEyUl5eX2rRpIz8/P1uXVSWxFg+nK1euKC4uTgcPHtSOHTsUExOjkydPWscDAgJUp04dPfnkk/L391ffvn3l4OCgatWqlZiHYCIAVA2/7pRvMpm0cuVKzZ8/X5GRkZIkNzc3ZWdnS5Jmz56tKVOm2LJkAAAIsAMAAAAAAAAAAADlKSUlRaNGjdLGjRs1ZMgQTZs2TU2aNLGOZ2RkKDg4WIGBgdqzZ0+F6JoFAPjtiouLNWHCBH3zzTcqKChQXl6eJMnb21vNmzdXly5dFBwcrI4dO8rBwUHu7u53nIvwOgBUPcXFxVq1apWmT5+u6OhotWrVStOnT1ejRo0UExOjkSNHKjMzU2vWrFF4eLitywUAVGG0awAAAAAAAAAAAADKUUJCgnbv3i2j0ajnnntODRs2lPTLRzxnZWXJbDYrISFBOTk5dwwoAgAqDzs7O40ePVrfffedQkND1bp1a3Xs2FGtWrWS0WiUk5NTie3NZrPy8/O1YcMGpaWlyd3dXYGBgWrXrp3s7OwIsQNAFWLpwp6RkaGFCxcqOjpa4eHhmj59ulq0aCGz2axGjRrp73//u8aNG6f9+/cTYAcA2BQBdgAAAAAAAAAAAKAcWEIlO3fuVE5Ojtq0aaM+ffpIkgoKCuTo6ChJWr9+vdLT09W+fXs5OTlZ9wMAVH6///3vdf78eVWvXr3E80VFRZKkwsJCOTg4qLCwUN9++62WL1+u9evXW7erXr26ZsyYoYkTJ8rOzo5rCABUEZZz/aJFi7Rx40YZjUZNnTpVLVq0kHTz/YaTk5MCAwMl3bypFgAAWyLADgAAAAAAAAAAAJQDS6ikXr16km6GEC9evKj69etbw+vLly/XW2+9JUkaNWqUqlWrZptiAQA2c2t43dJF3d7eXpKs4fVPP/1Un3zyiRISEuTv768hQ4bIZDJpwYIFmjx5slxcXDRu3DjC6wBQxcTGxkqSxowZozZt2shsNstsNsvJyUm5ublavny5JMnDw8OWZQIAID4rCgAAAAAAAAAAAChHdevWlZubm44dO6bVq1fr5MmTunLlij777DO99NJLysnJ0dixYzVkyBBblwoAsDE7u19iHWazWZK0Zs0azZ8/X6mpqRo1apS+//57zZo1S3PnztXatWvl6Oiof/3rX0pLS7NV2QAAG8nMzJQkXbp0SSaTSWazWXZ2drpx44YiIiK0detW+fj4aOjQoZJ+ubYAAFDeCLADAAAAAAAAAAAA5ahz58565ZVXJEmvvfaaunTpotDQUE2YMEHXrl3T8OHD9ac//alEB14AACzd1FevXq0zZ86oT58+mjJlilq2bKni4mKZTCZ17dpVbdu21YkTJ6whRgBA1dG6dWtJNzuxx8TESJJu3LihxYsX64MPPtCFCxfUs2dPBQUFSRKf1AEAsBmDmduoAAAAAAAAAAAAgHJRXFxs7aY7bdo0LVq0SImJiXJ2dpa9vb3+9re/aejQoapfv76NKwUAPIwOHDig0NBQSdLWrVvVpUsXSb9cX65evarQ0FDFx8frxIkTaty4sS3LBQCUs/j4eHXp0kUXLlxQ48aN5ePjo9TUVMXFxclkMqlXr176+OOP1ahRI1uXCgCo4giwAwAAAAAAAAAAAOWoqKhI9vb2kqRTp04pJSVFNWrUkKurq0JCQmxcHQDgYbZ9+3Z169ZNfn5+OnLkiLy8vFRYWCgHBwfl5OTo/fff16xZs9SyZUsdPHjQer0BAFQdp0+fVv/+/RUXF6eCggJJUlBQkHr27KmJEyeqYcOGNq4QAADJwdYFAAAAAAAAAAAAAFWJvb29tVNucHCwgoODbV0SAKCC8Pb2lpeXl/Ly8nTixAl17NhRDg4Oys7O1uLFi7V06VLVqlVL48ePl729vcxmswwGg63LBgCUoyZNmmjbtm3avXu3EhIS5ODgoP79+8vT01M1a9a0dXkAAEiiAzsAAAAAAAAAAAAAAECFkJGRob59+2r//v3q0KGD+vXrp+DgYH3xxReKiopSZmamnn/+eU2bNk1+fn62LhcAAAAASkWAHQAAAAAAAAAAAAAAoIKIjY1Vly5dlJycLElydnZWfn6+fH191b9/f02aNEkNGza0cZUAAFvjUzgAAA8zAuwAAAAAAAAAAAAAAAAVyNmzZzVjxgwdP35cJpNJPj4+mjhxolq3bi1fX19blwcAAAAAd0SAHQAAAAAAAAAAAAAAoIIxmUwqKCiQyWRSrVq1bF0OAAAAANwzAuwAAAAAAAAAAAAAAAAVnNlslsFgsHUZAAAAAHBXdrYuAAAAAAAAAAAAAAAAAL8N4XUAAAAAFQUBdgAAAAAAAAAAAAAAAAAAAABAuSDADgAAAAAAAAAAAAAAAAAAAAAoFwTYAQAAAAAAAAAAAAAAAAAAAADlggA7AAAAAAAAAAAAAAAAAAAAAKBcEGAHAAAAAAAAAAAAAAAAAAAAAJQLAuwAAAAAAAAAAAAAAAAAAAAAgHJBgB0AAAAAAAAAAAAAAAAAAAAAUC4IsAMAAAAAAAAAAAAAAAAAAAAAygUBdgAAAAAAAAAAAAAAAAAAAABAuSDADgAAAAAAAAAAAAAAAAAAAAAoFwTYAQAAAAAAAAAAAAAAAAAAAADlwsHWBQAAAAAAAAAAyldhYaHWrFmjTZs2KSoqSqmpqbp69aqqV68ub29vNWvWTO3bt9egQYMUGBho63IBAAAAAAAAAEAlYjCbzWZbFwEAAAAAAAAAKB8RERGaPHmyzp49e0/b9+3bV7NmzVLTpk0fcGUAAAAAAAAAAKAqoAM7AAAAAAAAAFQR7733nv72t7/J0tekc+fOeuKJJ9S8eXN5enrq+vXrSk5O1q5du7Ru3TrFx8dr/fr18vPz0/z5821cPQAAAAAAAAAAqAzowA4AAAAAAAAAVcDChQs1evRoSVKdOnW0dOlSde7cuczti4qKtHTpUv3lL39R7969CbADAAAAAAAAAID7ggA7AAAAAAAAAFRyFy9eVOPGjZWXl6eaNWvq8OHDatiw4T3tm5mZqcjISIWHhz/gKgEAAAAAAAAAQFVgZ+sCAAAAAAAAAAAP1ty5c5WXlydJmjlz5j2H1yXJaDTeFl6Pj4+XwWCQwWDQ4sWLJUmrVq1Snz59VLduXTk4OJTa3X3t2rUaNGiQ/Pz85OzsLE9PT4WFhWnWrFnKyckps4Z33nnH+np3smPHDut2O3bsuG28c+fOMhgM1tpOnz6tsWPHKjAwUC4uLvL19dXTTz+tffv23fF1ioqKtHjxYvXs2VM+Pj5ycnKSu7u7GjVqpG7duun9999XTEzMHecAAAAAAAAAAKCqcrB1AQAAAAAAAACAB8dsNuubb76RJLm5uWnkyJH3ff7hw4dbX6M0eXl5evbZZ7V69eoSz2dkZGjfvn3at2+fPv30U61fv14tW7a8r/WVZcOGDRo8eLByc3Otz6WkpGjFihVauXKl/vGPf+i11167bb+cnBz16dNHkZGRJZ4vKChQVlaWzp49q23btunIkSP67rvvHvRhAAAAAAAAAABQ4RBgBwAAAAAAAIBKLDo6WleuXJEkdejQQTVq1Liv8//zn//U8ePH1aFDB40bN06NGzdWZmam4uPjrduMGDHCGl5v0aKFJk+erODgYGVkZGjp0qVavHixLl26pG7duun48eOqV6/efa3x1y5duqRnn31WDg4Oev/9960d2bdv364PPvhAWVlZmjhxogICAjRgwIAS+77zzjvW8PoTTzyhYcOGyd/fXy4uLkpLS9PRo0e1bt26u3aLBwAAAAAAAACgqiLADgAAAAAAAACV2PHjx62PW7Vq9UDmHz58uBYvXlxqaHv9+vVavny5JKlbt2764Ycf5OTkZB3v0aOHwsLCNHbsWGVkZGjSpElatmzZfa/zVmfOnJG7u7uioqIUHBxsfT4sLEz9+/dX+/btlZWVpfHjx6tv375ydHS0bmM5lkGDBmnFihW3zd2rVy+99dZbysjIeKDHAAAAAAAAAABARWVn6wIAAAAAAAAAAA9Oenq69bG3t3eZ2xUXFys6OrrMr4KCglL3MxqN+uyzz8rsOD5v3jxJkqOjoxYtWlQivG4xZswYde/eXZK0atUqJScn3/Px/a+mTp1aIrxu8bvf/U5vv/22JCkpKUlr1qwpMZ6SkiLpZjf7O/Hw8LhPlQIAAAAAAAAAULkQYAcAAAAAAACASiw7O9v6uEaNGmVul5WVpWbNmpX5lZSUVOp+4eHhcnNzK3WssLBQO3fulHSz03r9+vXLfP0xY8ZY99mxY8fdDus3MRgMGjFiRJnjI0eOtAbyf/zxxxJjvr6+kqRly5bp+vXrD65IAAAAAAAAAAAqKQLsAAAAAAAAAFCJ3Rouz83Nve/zN2/evMyx8+fPW0Pe7dq1u+M8t45HR0ffn+LKEBgYKC8vrzLHvb29FRAQIEk6ceJEiTFL8H3v3r0KDAzU+PHjtXr1al2+fPmB1QsAAAAAAAAAQGVCgB0AAAAAAAAAKjFPT0/r4zuFrI1Go8xmc4mvO3Upt6hVq1aZYxkZGdbHtWvXvuM8Pj4+pe73INytFkmqU6dOqbVMnTpVo0aNksFgUFpamubNm6eBAweqdu3aatq0qaZNm6bU1NQHUjcAAAAAAAAAAJUBAXYAAAAAAAAAqMRatGhhfXz06NH7Pr+9vf09bWcwGO77a/+vfkstjo6O+uqrrxQdHa2//vWvat++vZycnCRJJ0+e1PTp09WwYUOtWbPmfpULAAAAAAAAAEClQoAdAAAAAAAAACqxpk2bWruwR0ZG6vr16+X22h4eHtbHd+tKnpKSUup+kmRn98s/ZRcXF5c5R25u7j3VdS8d0i3b/LoWi5CQEM2YMUN79uzRtWvXtGXLFo0cOVL29vbKycnR0KFDlZycfE/1AAAAAAAAAABQlRBgBwAAAAAAAIBKzGAw6LnnnpMkZWVl6euvvy631w4KClL16tUlSfv377/jtgcOHLA+btq0aYkxNzc36+OrV6+WOUdsbOw91RUXF6crV66UOX758mXFx8eXWktpXFxc1L17dy1cuFBz5syRJN24cUPr1q27p3oAAAAAAAAAAKhKCLADAAAAAAAAQCU3adIkubi4SJLeeustxcXFlcvrOjg4qFOnTpKkLVu2KDExscxtv/zyS+s+nTt3LjEWGBhofXzo0KEy51i6dOk91WU2m7VkyZIyxxcvXiyz2SxJ6t69+z3NadGtWzfr4/T09P/XvgAAAAAAAAAAVAUE2AEAAAAAAACgkvP399cnn3wiSbp27Zr+8Ic/aPfu3Xfcx2w2KzMz8ze/9iuvvCJJMplMGj16tAoKCm7bZuHChdq8ebMkaeDAgfL19S0x3r59ezk4OEiSPvroI2u4/FZz5swp0cX9bmbMmKHTp0/f9vypU6c0c+ZMSZKvr6/69+9vHcvIyNDatWtLfX0Ly3FIJYP3AAAAAAAAAADgJgdbFwAAAAAAAAAAePDGjBmjpKQkvfvuu7p06ZI6dOigrl27Kjw8XM2aNZOHh4eKioqUkpKiI0eOaPny5Tp58qQkyd7eXk5OTv/T6/bt21eDBw/WihUrtHnzZoWGhmrSpEl69NFHdfXqVS1dulQLFy6UJHl4eGju3Lm3zVG7dm0NHjxY3377rTZt2qR+/frplVdeUZ06dZSQkKBvvvlGK1euVPv27bV379671tSwYUNdvnxZoaGh+vOf/2zt+L5jxw7NmjVL165dkyR9+umnJY47KytL/fr1U0BAgAYOHKh27dqpQYMGcnBwUHJystauXWvtJF+vXj098cQT/9OfGQAAAAAAAAAAlZnBfKdWMQAAAAAAAACASmX16tWaMmWKzp8/f9dtDQaDevbsqTlz5qhp06bW5+Pj463dxRctWqQXXnjhjvPk5eXp2Wef1erVq8vcpm7dulq/fr1atmxZ6nhqaqo6dOigM2fOlDo+ZMgQvfjii+revbskafv27dZgukXnzp21c+dOderUSa+//rqefvppXb9+/ba57OzsNHv2bE2ePLnE87ce9534+vpq7dq1at269V23BQAAAAAAAACgqqEDOwAAAAAAAABUIU8++aTCw8O1evVqbdq0SVFRUUpLS1NmZqaqV68uT09PNWvWTGFhYXrmmWfuKbB9Ny4uLlq1apXWrl2rxYsXa9++fUpPT1eNGjXUuHFjDRgwQOPHj5erq2uZc9SpU0f79+/XBx98oFWrVikhIUE1atRQ06ZNNXbsWA0bNkw7duy455r69u2rQ4cOac6cOdq2bZuSk5NlNBrVoUMHTZ48WWFhYbft06BBAx04cEA//PCD9u7dqwsXLig1NVU5OTkyGo0KCQlReHi4xo4dq5o1a/4vf1QAAAAAAAAAAFR6dGAHAAAAAAAAAFQJt3Zg//+E3QEAAAAAAAAAwP1jZ+sCAAAAAAAAAAAAAAAAAAAAAABVAwF2AAAAAAAAAAAAAAAAAAAAAEC5IMAOAAAAAAAAAAAAAAAAAAAAACgXBNgBAAAAAAAAAAAAAAAAAAAAAOWCADsAAAAAAAAAAAAAAAAAAAAAoFwYzGaz2dZFAAAAAAAAAAAAAAAAAAAAAAAqPzqwAwAAAAAAAAAAAAAAAAAAAADKBQF2AAAAAAAAAAAAAAAAAAAAAEC5IMAOAAAAAAAAAAAAAAAAAAAAACgXBNgBAAAAAAAAAAAAAAAAAAAAAOWCADsAAAAAAAAAAAAAAAAAAAAAoFwQYAcAAAAAAAAAAAAAAAAAAAAAlAsC7AAAAAAAAAAAAAAAAAAAAACAckGAHQAAAAAAAAAAAAAAAAAAAABQLv4PPti7l3ZdOSgAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -772,11 +802,15 @@ "id": "e2098fd1", "metadata": {}, "source": [ - "#### 1) As we expected, the coverage is now homogenous on the ethnicity groups. To achieve it, the prediction intervals are now even wider than before for previously under-covered samples, and smaller on previously over-covered samples. \n", - "##### $\\to$ The ``CCP`` method can guarantee a homogenous coverage on groups of interest (thus remove bias), by giving to the calibrator those groups, using ``CustomCCP`` calibrators.\n", - "#### 2) It turned out that, over all the dataset features, the 4 ethnicity features we identified were the ones with the biggest bias.\n", - "##### $\\to$ Fixing this bias, almost fixed the non-homogeneity of the coverage, on the target value.\n", - "#### 3) Next steps: the only issue to achieve an almost perfect adaptativity, is to fix the under-coverage for the biggest 10% target crime values. One idea may be to combine the two approachs we used, or add a new column to the calibrator, with the ``y_pred`` value (example: adding ``Polynomial(degree=1, variable=\"y_pred\")``)." + "1) As we expected, the coverage is now homogenous on the ethnicity groups. To achieve it, the prediction intervals are now even wider than before for previously under-covered samples, and smaller on previously over-covered samples. \n", + "\n", + "$\\to$ The ``CCP`` method can guarantee a homogenous coverage on groups of interest (thus remove bias), by giving to the calibrator those groups, using ``CustomCCP`` calibrators.\n", + "\n", + "2) It turned out that, over all the dataset features, the 4 ethnicity features we identified were the ones with the biggest bias.\n", + "\n", + "$\\to$ Fixing this bias, almost fixed the non-homogeneity of the coverage, on the target value.\n", + "\n", + "3) Next steps: the only issue to achieve an almost perfect adaptativity, is to fix the under-coverage for the biggest 10% target crime values. One idea may be to combine the two approachs we used, or add a new column to the calibrator, with the ``y_pred`` value (example: adding ``Polynomial([4], variable=\"y_pred\")``) to have a bigger interval for high predictions, without changing too much the smaller predictions." ] } ], From 71eaa1c1e01285199547f5c3f7334f98339ccb79 Mon Sep 17 00:00:00 2001 From: Damien Bouet Date: Thu, 25 Jul 2024 13:45:29 +0200 Subject: [PATCH 100/165] MOVE CCP doc into a new section --- doc/index.rst | 9 ++ doc/theoretical_description_calibrators.rst | 7 + doc/theoretical_description_ccp.rst | 158 ++++++++++++++++++++ doc/theoretical_description_regression.rst | 142 +----------------- 4 files changed, 175 insertions(+), 141 deletions(-) create mode 100644 doc/theoretical_description_calibrators.rst create mode 100644 doc/theoretical_description_ccp.rst diff --git a/doc/index.rst b/doc/index.rst index 9e597b491..27f707655 100644 --- a/doc/index.rst +++ b/doc/index.rst @@ -33,6 +33,15 @@ examples_classification/index notebooks_classification +.. toctree:: + :maxdepth: 2 + :hidden: + :caption: CONDITIONAL CP + + theoretical_description_ccp + theoretical_description_calibrators + examples_regression/4-tutorials/plot_ccp_tutorial + .. toctree:: :maxdepth: 2 :hidden: diff --git a/doc/theoretical_description_calibrators.rst b/doc/theoretical_description_calibrators.rst new file mode 100644 index 000000000..e415fc22c --- /dev/null +++ b/doc/theoretical_description_calibrators.rst @@ -0,0 +1,7 @@ +.. title:: Calibrators : contents + +.. _theoretical_description_calibrators: + +############### +Calibrators +############### diff --git a/doc/theoretical_description_ccp.rst b/doc/theoretical_description_ccp.rst new file mode 100644 index 000000000..2a2dbb3f0 --- /dev/null +++ b/doc/theoretical_description_ccp.rst @@ -0,0 +1,158 @@ +.. title:: Theoretical Description : contents + +.. _theoretical_description_ccp: + +######################## +Theoretical Description +######################## + +The Conditional Conformal Prediction (CCP) method :ref:`[1]` allows for better (adaptative) interval widths with +all type of data. The method has a lot of advantages: + +- It is model agnostic (it doesn't depend on the model but only on the predictions, unlike `CQR`) +- It uses the `split` approach (it require a calibration set, but is very fast at inference time, unlike the `CV` approach) +- It can create very adaptative intervals (with a varying width which truly reflects the model uncertainty) +- while providing coverage guantee on all sub-groups of interest (avoiding biases) +- with the possibility to inject prior knowledge about the data or the model + + +How does it works? +==================== + +Method's intuition +-------------------- + +We recall that the `naive` method estimates the absolute residuals by a constant :math:`\hat{q}_{n, \alpha}^+` +(which is the quantile of :math:`{|Y_i-\hat{\mu}(X_i)|}_{1 \leq i \leq n}`). Then, the prediction interval is: +:math:`\hat{C}_{n, \alpha}^{\textrm naive}(X_{n+1}) = \hat{\mu}(X_{n+1}) \pm \hat{q}_{n, \alpha}^+` + +The idea of the `CCP` method, is to learn, not a constant, but a function :math:`q(X)`, +to have a different interval width depending on the :math:`X` value. Then, we would have: + +.. math:: \hat{C}_{n, \alpha}^{\textrm CCP}(X_{n+1}) = \hat{\mu}(X_{n+1}) \pm \hat{q}(X_{n+1}) + +To be able to find the best function, while having some coverage guarantees, +we should select this function inside some defined class of functions :math:`\mathcal{F}`. + +This method is motivated by the following equivalence: + +.. math:: + \begin{array}{c} + \mathbb{P}(Y_{n+1} \in \hat{C} \; | \; X_{n+1}=x) = 1 - \alpha, \quad \text{for all x} \\ + \textstyle \Longleftrightarrow \\ + \mathbb{E} \left[ f(X_{n+1}) \mathbb{I} \left\{ Y_{n+1} \in \hat{C}(X_{n+1}) \right\} \right] = 0, \quad \text{for all measurable f} \\ + \end{array} + +This is the equation corresponding to the perfect conditional coverage, which is theoretically impossible to obtain. +Then, relaxing this objective by replacing "all measurable f" with "all f belonging to some class :math:`\mathcal{F}`" +seems a way to get close to the perfect conditional coverage. + +The method follow 3 steps: +---------------------------- + +1. Choose a class of functions. The simple approach is to choose a class a finite dimension :math:`d \in \mathbb{N}`, + using + + .. math:: + \mathcal{F} = \left\{ \Phi (\cdot)^T \beta : \beta \in \mathbb{R}^d \right\} + +2. Find the best function of this class by resolving the following optimization problem: + + Note: It is actually a quantile regression between the transformation :math:`\Phi (X)` and the conformity scores `S`. + + .. math:: + \hat{g}_S := arg\min_{g \in \mathcal{F}} \; \frac{1}{n+1} \sum_{i=1}^n{l_{\alpha} (g(X_i), S_i)} \; + \frac{1}{n+1}l_{\alpha} (g(X_{n+1}), S) + + We use the same adaptation as the ``naive`` approach, to go from the ``full conformal`` + approach to the ``split`` one, using: + + .. math:: + \hat{g} := arg\min_{g \in \mathcal{F}} \; \frac{1}{n} \sum_{i=1}^n{l_{\alpha^*} (g(X_i), S_i)} \quad \text{where} \quad \alpha^* = 1 - \frac{\lceil (n+1)(1-\alpha) \rceil}{n} + +3. We use this optimized function :math:`\hat{g}` to compute the prediction intervals: + + .. math:: + \hat{C}(X_{n+1}) = \{ y : S(X_{n+1}, \: y) \leq \hat{g}(X_{n+1}) \} + + Note: The formulas are generic and work with all conformity scores. But in the case of the absolute residuals, we get: + + .. math:: + \hat{C}(X_{n+1}) = \hat{\mu}(X_{n+1}) \pm \hat{g}(X_{n+1}) + +.. _ccp_control_coverage: + +Coverage guarantees: +----------------------- + +Following this steps, we have the coverage guarantee: + +.. math:: + \forall f \in \mathcal{F}, \quad + \left | \mathbb{E} \left[ f(X_{n+1}) \mathbb{I} \left\{ Y_{n+1} \in \hat{C}(X_{n+1}) \right\} \right] \right | + \leq \frac{d}{n+1} \mathbb{E} \left[ \max_{1 \leq i \leq n+1} |f(X_i)| \right] + +Exemple: coverage over groups +------------------------------- +If :math:`\mathcal{F} = \{ x \mapsto \sum _{G \in \mathcal{G}} \; \beta_G \mathbb{I} \{ x \in G \} : \beta_G \in \mathbb{R} \}`, then we have: + +.. math:: + \forall G \in \mathcal{G}, \quad + \left | \mathbb{P}(Y_{n+1} \in \hat{C}(X_{n+1}) \; | \; X_{n+1} \in G) - (1 - \alpha) \right | + \leq \frac{|\mathcal{G}|}{(n+1) \mathbb{P}(X_{n+1} \in G)} \\ + = \frac{\text{number of groups in } \mathcal{G}}{\text{number of samples of } \{X_i\} \text{ in G}} + +How to use it in practice? +============================ + +Creating a class a function adapted to our needs +-------------------------------------------------- + +The following will provide some tips on how to use the method (for more practical examples, see +:doc:`examples_regression/4-tutorials/plot_ccp_tutorial` or +`How to leverage the CCP method on real data +`_ +). + +1. If you want a generally adaptative interval and you don't have prior + knowledge about your data, you can use gaussian kernels, implemented in Mapie + in :class:`mapie.calibrators.ccp.GaussianCCP`. See the API doc for more information. + +2. If you want to avoid bias on sub-groups and ensure an homogenous coverage on those, + you can add indicator functions corresponding to those groups. + +3. You can inject prior knowledge in the method using :class:`mapie.calibrators.ccp.CustomCCP`, + if you have information about the conformity scores distribution + (domains with different biavior, expected model uncertainty depending on a given feature, etc). + +4. Empirically test obtained coverage on a test set, to make sure that the expected coverage is achieved. + + +Avoid miscoverage +-------------------- + +- | The control of the coverage error (:ref:`here`) can be very big, depending of the + values :math:`|f(X_i)|` can take, and the number of dimensions :math:`d`. + | + | For example, if you divide 1000 samples into 20 disjoints groups of 50 samples, + you could theoretically have a miscoverage of 40%! + | However, coverage is generally achieved in practice. + +- | Some miscoverage can also comes from the optimization process, which is + solved with numerical methods, and may fail to find the global minimum. + If the target coverage is not achieved, you can try adding regularization, + to help the optimisation process. You can also try reducing the number of dimensions :math:`d` + or using a smoother :math:`\Phi` function, such as with gaussian kernels + (indeed, using only indicator functions makes the optimization very difficult). + +- | Finally, you can reduce the value of :math:`\alpha` to enforce higher coverage. + Evaluating the best adjusted :math:`\alpha` using cross-validation will ensure + the same coverage on the test set (subject to variability due to the finite number of samples). + + +.. _references_ccp: + +References +========== + +[1] Isaac Gibbs, John J. Cherian, and Emmanuel J. Candès, +"Conformal Prediction With Conditional Guarantees", `arXiv `_, 2023. \ No newline at end of file diff --git a/doc/theoretical_description_regression.rst b/doc/theoretical_description_regression.rst index acc3db5a6..09c55e74c 100644 --- a/doc/theoretical_description_regression.rst +++ b/doc/theoretical_description_regression.rst @@ -284,147 +284,7 @@ Note: In the symmetric method, :math:`E_{\text{low}}` and :math:`E_{\text{high}} As justified by the literature, this method offers a theoretical guarantee of the target coverage level :math:`1-\alpha`. - -10. The Conditional Conformal Prediction (CCP) Method -===================================================== - -The Conditional Conformal Prediction (CCP) method allows for better (adaptative) interval widths with -all type of data. The method has a lot of advantages: - -- It is model agnostic (it doesn't depend on the model but only on the predictions, unlike `CQR`) -- It uses the `split` approach (it require a calibration set, but is very fast at inference time, unlike the `CV` approach) -- It can create very adaptative intervals (with a varying width which truly reflects the model uncertainty) -- while providing coverage guantee on all sub-groups of interest (avoiding biases) -- with the possibility to inject prior knowledge about the data or the model - - -How does it works? -------------------- - -Method's intuition -~~~~~~~~~~~~~~~~~~~~~~ - -We recall that the `naive` method estimates the absolute residuals by a constant :math:`\hat{q}_{n, \alpha}^+` -(which is the quantile of :math:`{|Y_i-\hat{\mu}(X_i)|}_{1 \leq i \leq n}`). Then, the prediction interval is: -:math:`\hat{C}_{n, \alpha}^{\textrm naive}(X_{n+1}) = \hat{\mu}(X_{n+1}) \pm \hat{q}_{n, \alpha}^+` - -The idea of the `CCP` method, is to learn, not a constant, but a function :math:`q(X)`, -to have a different interval width depending on the :math:`X` value. Then, we would have: - -.. math:: \hat{C}_{n, \alpha}^{\textrm CCP}(X_{n+1}) = \hat{\mu}(X_{n+1}) \pm \hat{q}(X_{n+1}) - -To be able to find the best function, while having some coverage guarantees, -we should select this function inside some defined class of functions :math:`\mathcal{F}`. - -This method is motivated by the following equivalence: - -.. math:: - \begin{array}{c} - \mathbb{P}(Y_{n+1} \in \hat{C} \; | \; X_{n+1}=x) = 1 - \alpha, \quad \text{for all x} \\ - \textstyle \Longleftrightarrow \\ - \mathbb{E} \left[ f(X_{n+1}) \mathbb{I} \left\{ Y_{n+1} \in \hat{C}(X_{n+1}) \right\} \right] = 0, \quad \text{for all measurable f} \\ - \end{array} - -This is the equation corresponding to the perfect conditional coverage, which is theoretically impossible to obtain. -Then, relaxing this objective by replacing "all measurable f" with "all f belonging to some class :math:`\mathcal{F}`" -seems a way to get close to the perfect conditional coverage. - -The method follow 3 steps: -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -1. Choose a class of functions. The simple approach is to choose a class a finite dimension :math:`d \in \mathbb{N}`, - using - - .. math:: - \mathcal{F} = \left\{ \Phi (\cdot)^T \beta : \beta \in \mathbb{R}^d \right\} - -2. Find the best function of this class by resolving the following optimization problem: - - Note: It is actually a quantile regression between the transformation :math:`\Phi (X)` and the conformity scores `S`. - - .. math:: - \hat{g}_S := arg\min_{g \in \mathcal{F}} \; \frac{1}{n+1} \sum_{i=1}^n{l_{\alpha} (g(X_i), S_i)} \; + \frac{1}{n+1}l_{\alpha} (g(X_{n+1}), S) - - We use the same adaptation as the ``naive`` approach, to go from the ``full conformal`` - approach to the ``split`` one, using: - - .. math:: - \hat{g} := arg\min_{g \in \mathcal{F}} \; \frac{1}{n} \sum_{i=1}^n{l_{\alpha^*} (g(X_i), S_i)} \quad \text{where} \quad \alpha^* = 1 - \frac{\lceil (n+1)(1-\alpha) \rceil}{n} - -3. We use this optimized function :math:`\hat{g}` to compute the prediction intervals: - - .. math:: - \hat{C}(X_{n+1}) = \{ y : S(X_{n+1}, \: y) \leq \hat{g}(X_{n+1}) \} - - Note: The formulas are generic and work with all conformity scores. But in the case of the absolute residuals, we get: - - .. math:: - \hat{C}(X_{n+1}) = \hat{\mu}(X_{n+1}) \pm \hat{g}(X_{n+1}) - -Coverage guarantees: -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -Following this steps, we have the coverage guarantee: - -.. math:: - \forall f \in \mathcal{F}, \quad - \left | \mathbb{E} \left[ f(X_{n+1}) \mathbb{I} \left\{ Y_{n+1} \in \hat{C}(X_{n+1}) \right\} \right] \right | - \leq \frac{d}{n+1} \mathbb{E} \left[ \max_{1 \leq i \leq n+1} |f(X_i)| \right] - -Exemple: coverage over groups -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -If :math:`\mathcal{F} = \{ x \mapsto \sum _{G \in \mathcal{G}} \; \beta_G \mathbb{I} \{ x \in G \} : \beta_G \in \mathbb{R} \}`, then we have: - -.. math:: - \forall G \in \mathcal{G}, \quad - \left | \mathbb{P}(Y_{n+1} \in \hat{C}(X_{n+1}) \; | \; X_{n+1} \in G) - (1 - \alpha) \right | - \leq \frac{|\mathcal{G}|}{(n+1) \mathbb{P}(X_{n+1} \in G)} \\ - = \frac{\text{number of groups in } \mathcal{G}}{\text{number of samples of } \{X_i\} \text{ in G}} - -How to use it in practice? ------------------------------ - -Creating a class a function adapted to our needs -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -The following will provide some tips on how to use the method, see -:doc:`examples_regression/4-tutorials/plot_ccp_tutorial` for more practical explanations. - -1. If you want a generally adaptative interval and you don't have prior - knowledge about your data, you can use gaussian kernels, implemented in Mapie - in :class:`mapie.calibrators.ccp.GaussianCCP`. See the API doc for more information. - -2. If you want to avoid bias on sub-groups and ensure an homogenous coverage on those, - you can add indicator functions corresponding to those groups. - -3. You can inject prior knowledge in the method using :class:`mapie.calibrators.ccp.CustomCCP`, - if you have information about the conformity scores distribution - (domains with different biavior, expected model uncertainty depending on a given feature, etc). - -4. Empirically test obtained coverage on a test set, to make sure that the expected coverage is achieved. - - -Avoid miscoverage -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -- | The control of the coverage error see above can be very big, depending of the - values :math:`|f(X_i)|` can take, and the number of dimensions :math:`d`. - | - | For example, if you divide 1000 samples into 20 disjoints groups of 50 samples, - you could theoretically have a miscoverage of 40%! - | However, coverage is generally achieved in practice. - -- | Some miscoverage can also comes from the optimization process, which is - solved with numerical methods, and may fail to find the global minimum. - If the target coverage is not achieved, you can try adding regularization, - to help the optimisation process. You can also try reducing the number of dimensions :math:`d` - or using a smoother :math:`\Phi` function, such as with gaussian kernels - (indeed, using only indicator functions makes the optimization very difficult). - -- | Finally, you can reduce the value of :math:`\alpha` to enforce higher coverage. - Evaluating the best adjusted :math:`\alpha` using cross-validation will ensure - the same coverage on the test set (subject to variability due to the finite number of samples). - - -11. The ensemble batch prediction intervals (EnbPI) method +10. The ensemble batch prediction intervals (EnbPI) method ========================================================== The coverage guarantee offered by the various resampling methods based on the From c67bb578e5ecc9599ccf19da76c554b33972a32e Mon Sep 17 00:00:00 2001 From: Damien Bouet Date: Thu, 25 Jul 2024 13:46:22 +0200 Subject: [PATCH 101/165] ADD tuto papier reference link --- examples/regression/4-tutorials/plot_ccp_tutorial.py | 11 ++++++----- 1 file changed, 6 insertions(+), 5 deletions(-) diff --git a/examples/regression/4-tutorials/plot_ccp_tutorial.py b/examples/regression/4-tutorials/plot_ccp_tutorial.py index b6f5dff5c..da45ae39e 100644 --- a/examples/regression/4-tutorials/plot_ccp_tutorial.py +++ b/examples/regression/4-tutorials/plot_ccp_tutorial.py @@ -1,7 +1,7 @@ """ -==================================================== -Tutorial for conditionnal conformal predictions (CCP) -==================================================== +============================================ +Tutorial: Conditional CP for regression +============================================ We will use a synthetic toy dataset for the tutorial of the CCP method, and its comparison with the other methods available in MAPIE. The CCP method @@ -23,8 +23,9 @@ Recall that the ``alpha`` is ``1 - target coverage``. -[1] Isaac Gibbs, John J. Cherian, Emmanuel J. Candès (2023). -Conformal Prediction With Conditional Guarantees +[1] Isaac Gibbs, John J. Cherian, and Emmanuel J. Candès, +"Conformal Prediction With Conditional Guarantees", +`arXiv `_, 2023. """ import warnings From 391f52955930de69742e1ccec864f742e33afade Mon Sep 17 00:00:00 2001 From: Damien Bouet Date: Thu, 25 Jul 2024 15:02:39 +0200 Subject: [PATCH 102/165] ADD: calibrator doc --- doc/api.rst | 7 +- doc/theoretical_description_calibrators.rst | 73 +++++++++++++++++++++ doc/theoretical_description_ccp.rst | 14 ++-- doc/theoretical_description_regression.rst | 2 + 4 files changed, 88 insertions(+), 8 deletions(-) diff --git a/doc/api.rst b/doc/api.rst index 3c7db4bbd..74007d9ec 100644 --- a/doc/api.rst +++ b/doc/api.rst @@ -102,6 +102,7 @@ CCP :template: class.rst futur.split.SplitCPRegressor - calibrators.ccp.CustomCCP - calibrators.ccp.PolynomialCCP - calibrators.ccp.GaussianCCP + calibrators.StandardCalibrator + calibrators.CustomCCP + calibrators.PolynomialCCP + calibrators.GaussianCCP diff --git a/doc/theoretical_description_calibrators.rst b/doc/theoretical_description_calibrators.rst index e415fc22c..7e73778a2 100644 --- a/doc/theoretical_description_calibrators.rst +++ b/doc/theoretical_description_calibrators.rst @@ -5,3 +5,76 @@ ############### Calibrators ############### + +In Mapie, the conformalisation step is done directly inside +:class:`mapie.regression.MapieRegressor` or :class:`mapie.classification.MapieClassifier`, +depending on the ``method`` argument. +However, when implementing the new CCP method, we decided to externalize the conformalisation +step into a new object named ``calibrator``, to have more freedom and possible customisation. + +The new classes (for regression and classification), based on :class:`mapie.futur.split.SplitCP` have 3 steps: + +1. ``fit_predictor``, which fit the sklearn estimator +2. ``fit_calibrator``, which do the conformalisation (calling ``calibrator.fit``) +3. ``predict``, which compute the predictions and call ``calibrator.predict`` to create the prediction intervals + +Thus, the calibrators, based on :class:`mapie.calibrators.base.BaseCalibrator`, +must have the two methods: ``fit`` and ``predict``. + +Mapie currently implements calibrators for the CCP method and the naive method, +but any method of comformal prediction can be implemented by the user as +a subclass of :class:`mapie.calibrators.base.BaseCalibrator`. + +Example of naive Split CP: +---------------------------- + +For instance, the :class:`mapie.calibrators.StandardCalibrator` implements +the :ref:`naive split method`: + +* ``.fit`` computes :math:`\hat{q}_{n, \alpha}^+`, the :math:`(1-\alpha)` quantile of the distribution +* ``.predict`` comptues the prediction intervals with: :math:`\hat{\mu}(X_{n+1}) \pm \hat{q}_{n, \alpha}^+` + + +The CCP calibrators: +--------------------- +For the CCP method (see :ref:`theoretical description`), +:class:`mapie.calibrators.CCPCalibrator` implements: + +* ``.fit`` solve the optimization problem (see :ref:`step 2`) to find the optimal :math:`\hat{g}` +* ``.predict`` comptues the prediction intervals using :math:`\hat{g}` (see :ref:`step 3`) + +We just need a way to define our :math:`\Phi` function (see :ref:`step 1`). + +Multiple subclasses are implemented to facilitate the definition of the :math:`\Phi` function, +but other could be implemented by the user as a subclass of :class:`mapie.calibrators.ccp.CCPCalibrator`. + +1. :class:`mapie.calibrators.CustomCCP`: + + This class allows to define by hand the :math:`\Phi` function, as a + concatenation of other functions which create features of ``X`` (or potentially ``y_pred`` or any exogenous variable ``z``) + + It can also be used to concatenate other :class:`mapie.calibrators.CCPCalibrator` instances. + +2. :class:`mapie.calibrators.PolynomialCCP`: + + It create some polynomial features of ``X`` (or potentially ``y_pred`` or any exogenous variable ``z``). + It could be created by hand using `CustomCCP`, it is just a way simplify the creation of :math:`\Phi`. + +2. :class:`mapie.calibrators.GaussianCCP`: + + It create gaussian kernels, as done in the method's paper :ref:`[1]`. + It samples random points from the :math:`\{ X_i \}_i`, then compute gaussian distances + between each point and :math:`X_{n+1}` with a given standard deviation :math:`\sigma` + (which can be optimized using cross-validation), following the formula: + + .. math:: + e^{-\frac{|X_{n+1} - point|^2}{2\sigma ^2}} + + +.. _theoretical_description_calibrators_references: + +References +========== + +[1] Isaac Gibbs, John J. Cherian, and Emmanuel J. Candès, +"Conformal Prediction With Conditional Guarantees", `arXiv `_, 2023. \ No newline at end of file diff --git a/doc/theoretical_description_ccp.rst b/doc/theoretical_description_ccp.rst index 2a2dbb3f0..110c6d028 100644 --- a/doc/theoretical_description_ccp.rst +++ b/doc/theoretical_description_ccp.rst @@ -6,7 +6,7 @@ Theoretical Description ######################## -The Conditional Conformal Prediction (CCP) method :ref:`[1]` allows for better (adaptative) interval widths with +The Conditional Conformal Prediction (CCP) method :ref:`[1]` allows for better (adaptative) interval widths with all type of data. The method has a lot of advantages: - It is model agnostic (it doesn't depend on the model but only on the predictions, unlike `CQR`) @@ -47,6 +47,9 @@ This is the equation corresponding to the perfect conditional coverage, which is Then, relaxing this objective by replacing "all measurable f" with "all f belonging to some class :math:`\mathcal{F}`" seems a way to get close to the perfect conditional coverage. + +.. _theoretical_description_ccp_control_steps: + The method follow 3 steps: ---------------------------- @@ -59,7 +62,7 @@ The method follow 3 steps: 2. Find the best function of this class by resolving the following optimization problem: Note: It is actually a quantile regression between the transformation :math:`\Phi (X)` and the conformity scores `S`. - + .. math:: \hat{g}_S := arg\min_{g \in \mathcal{F}} \; \frac{1}{n+1} \sum_{i=1}^n{l_{\alpha} (g(X_i), S_i)} \; + \frac{1}{n+1}l_{\alpha} (g(X_{n+1}), S) @@ -79,7 +82,7 @@ The method follow 3 steps: .. math:: \hat{C}(X_{n+1}) = \hat{\mu}(X_{n+1}) \pm \hat{g}(X_{n+1}) -.. _ccp_control_coverage: +.. _theoretical_description_ccp_control_coverage: Coverage guarantees: ----------------------- @@ -130,7 +133,8 @@ The following will provide some tips on how to use the method (for more practica Avoid miscoverage -------------------- -- | The control of the coverage error (:ref:`here`) can be very big, depending of the +- | The control of the coverage error (:ref:`here`) + can be very big, depending of the values :math:`|f(X_i)|` can take, and the number of dimensions :math:`d`. | | For example, if you divide 1000 samples into 20 disjoints groups of 50 samples, @@ -149,7 +153,7 @@ Avoid miscoverage the same coverage on the test set (subject to variability due to the finite number of samples). -.. _references_ccp: +.. _theoretical_description_ccp_references: References ========== diff --git a/doc/theoretical_description_regression.rst b/doc/theoretical_description_regression.rst index 09c55e74c..e6bcb33f8 100644 --- a/doc/theoretical_description_regression.rst +++ b/doc/theoretical_description_regression.rst @@ -29,6 +29,8 @@ feature vector :math:`X_{n+1}` such that All the methods below are described with the absolute residual conformity score for simplicity but other conformity scores are implemented in MAPIE (see :doc:`theoretical_description_conformity_scores`). +.. _theoretical_description_regression_naive: + 1. The "Naive" method ===================== From ddc9b52f49df57b8d61d598d824db19a847314c8 Mon Sep 17 00:00:00 2001 From: Damien Bouet Date: Fri, 26 Jul 2024 12:38:38 +0200 Subject: [PATCH 103/165] UPD: minor corrections in the doc --- doc/api.rst | 22 +++++++-- doc/index.rst | 1 - doc/theoretical_description_calibrators.rst | 28 +++++------ doc/theoretical_description_ccp.rst | 48 +++++++++++-------- ...oretical_description_conformity_scores.rst | 10 ++-- doc/theoretical_description_regression.rst | 4 +- 6 files changed, 67 insertions(+), 46 deletions(-) diff --git a/doc/api.rst b/doc/api.rst index 74007d9ec..cdb6495eb 100644 --- a/doc/api.rst +++ b/doc/api.rst @@ -94,15 +94,27 @@ Resampling subsample.BlockBootstrap subsample.Subsample -CCP -========== +New Split CP class +=================== .. autosummary:: :toctree: generated/ :template: class.rst + futur.split.base.SplitCP futur.split.SplitCPRegressor + futur.split.SplitCPClassifier + +Calibrators +=========== + +.. autosummary:: + :toctree: generated/ + :template: class.rst + + calibrators.base.BaseCalibrator calibrators.StandardCalibrator - calibrators.CustomCCP - calibrators.PolynomialCCP - calibrators.GaussianCCP + calibrators.ccp.CCPCalibrator + calibrators.ccp.CustomCCP + calibrators.ccp.PolynomialCCP + calibrators.ccp.GaussianCCP diff --git a/doc/index.rst b/doc/index.rst index 27f707655..e1489c843 100644 --- a/doc/index.rst +++ b/doc/index.rst @@ -18,7 +18,6 @@ examples_regression/4-tutorials/plot_main-tutorial-regression examples_regression/4-tutorials/plot_cqr_tutorial examples_regression/4-tutorials/plot_ts-tutorial - examples_regression/4-tutorials/plot_ccp_tutorial examples_regression/index notebooks_regression diff --git a/doc/theoretical_description_calibrators.rst b/doc/theoretical_description_calibrators.rst index 7e73778a2..4846e77ea 100644 --- a/doc/theoretical_description_calibrators.rst +++ b/doc/theoretical_description_calibrators.rst @@ -7,28 +7,28 @@ Calibrators ############### In Mapie, the conformalisation step is done directly inside -:class:`mapie.regression.MapieRegressor` or :class:`mapie.classification.MapieClassifier`, +:class:`~mapie.regression.MapieRegressor` or :class:`~mapie.classification.MapieClassifier`, depending on the ``method`` argument. However, when implementing the new CCP method, we decided to externalize the conformalisation step into a new object named ``calibrator``, to have more freedom and possible customisation. -The new classes (for regression and classification), based on :class:`mapie.futur.split.SplitCP` have 3 steps: +The new classes (:class:`~mapie.futur.split.SplitCPRegressor` and :class:`~mapie.futur.split.SplitCPClassifier`) have 3 steps: 1. ``fit_predictor``, which fit the sklearn estimator 2. ``fit_calibrator``, which do the conformalisation (calling ``calibrator.fit``) 3. ``predict``, which compute the predictions and call ``calibrator.predict`` to create the prediction intervals -Thus, the calibrators, based on :class:`mapie.calibrators.base.BaseCalibrator`, +Thus, the calibrators, based on :class:`~mapie.calibrators.base.BaseCalibrator`, must have the two methods: ``fit`` and ``predict``. -Mapie currently implements calibrators for the CCP method and the naive method, -but any method of comformal prediction can be implemented by the user as -a subclass of :class:`mapie.calibrators.base.BaseCalibrator`. +Mapie currently implements calibrators for the CCP method (and the naive method), +but any conformal prediction method can be implemented by the user as +a subclass of :class:`~mapie.calibrators.base.BaseCalibrator`. Example of naive Split CP: ---------------------------- -For instance, the :class:`mapie.calibrators.StandardCalibrator` implements +For instance, the :class:`~mapie.calibrators.StandardCalibrator` implements the :ref:`naive split method`: * ``.fit`` computes :math:`\hat{q}_{n, \alpha}^+`, the :math:`(1-\alpha)` quantile of the distribution @@ -38,7 +38,7 @@ the :ref:`naive split method`: The CCP calibrators: --------------------- For the CCP method (see :ref:`theoretical description`), -:class:`mapie.calibrators.CCPCalibrator` implements: +:class:`~mapie.calibrators.ccp.CCPCalibrator` implements: * ``.fit`` solve the optimization problem (see :ref:`step 2`) to find the optimal :math:`\hat{g}` * ``.predict`` comptues the prediction intervals using :math:`\hat{g}` (see :ref:`step 3`) @@ -46,21 +46,21 @@ For the CCP method (see :ref:`theoretical description`). Multiple subclasses are implemented to facilitate the definition of the :math:`\Phi` function, -but other could be implemented by the user as a subclass of :class:`mapie.calibrators.ccp.CCPCalibrator`. +but other could be implemented by the user as a subclass of :class:`~mapie.calibrators.ccp.CCPCalibrator`. -1. :class:`mapie.calibrators.CustomCCP`: +1. :class:`~mapie.calibrators.ccp.CustomCCP` This class allows to define by hand the :math:`\Phi` function, as a concatenation of other functions which create features of ``X`` (or potentially ``y_pred`` or any exogenous variable ``z``) - It can also be used to concatenate other :class:`mapie.calibrators.CCPCalibrator` instances. + It can also be used to concatenate other :class:`~mapie.calibrators.ccp.CCPCalibrator` instances. -2. :class:`mapie.calibrators.PolynomialCCP`: +2. :class:`~mapie.calibrators.ccp.PolynomialCCP` It create some polynomial features of ``X`` (or potentially ``y_pred`` or any exogenous variable ``z``). It could be created by hand using `CustomCCP`, it is just a way simplify the creation of :math:`\Phi`. -2. :class:`mapie.calibrators.GaussianCCP`: +3. :class:`~mapie.calibrators.ccp.GaussianCCP` It create gaussian kernels, as done in the method's paper :ref:`[1]`. It samples random points from the :math:`\{ X_i \}_i`, then compute gaussian distances @@ -68,7 +68,7 @@ but other could be implemented by the user as a subclass of :class:`mapie.calibr (which can be optimized using cross-validation), following the formula: .. math:: - e^{-\frac{|X_{n+1} - point|^2}{2\sigma ^2}} + \forall j \in \{ \text{sampled index} \}, \quad \Phi(X)_j = exp \left( -\frac{(X_{n+1} - X_j)^2}{2\sigma ^2} \right) .. _theoretical_description_calibrators_references: diff --git a/doc/theoretical_description_ccp.rst b/doc/theoretical_description_ccp.rst index 110c6d028..d74c49d2f 100644 --- a/doc/theoretical_description_ccp.rst +++ b/doc/theoretical_description_ccp.rst @@ -24,7 +24,8 @@ Method's intuition We recall that the `naive` method estimates the absolute residuals by a constant :math:`\hat{q}_{n, \alpha}^+` (which is the quantile of :math:`{|Y_i-\hat{\mu}(X_i)|}_{1 \leq i \leq n}`). Then, the prediction interval is: -:math:`\hat{C}_{n, \alpha}^{\textrm naive}(X_{n+1}) = \hat{\mu}(X_{n+1}) \pm \hat{q}_{n, \alpha}^+` + +.. math:: \hat{C}_{n, \alpha}^{\textrm naive}(X_{n+1}) = \hat{\mu}(X_{n+1}) \pm \hat{q}_{n, \alpha}^+ The idea of the `CCP` method, is to learn, not a constant, but a function :math:`q(X)`, to have a different interval width depending on the :math:`X` value. Then, we would have: @@ -61,26 +62,26 @@ The method follow 3 steps: 2. Find the best function of this class by resolving the following optimization problem: - Note: It is actually a quantile regression between the transformation :math:`\Phi (X)` and the conformity scores `S`. + .. note:: It is actually a quantile regression between the transformation :math:`\Phi (X)` and the conformity scores `S`. .. math:: - \hat{g}_S := arg\min_{g \in \mathcal{F}} \; \frac{1}{n+1} \sum_{i=1}^n{l_{\alpha} (g(X_i), S_i)} \; + \frac{1}{n+1}l_{\alpha} (g(X_{n+1}), S) + \hat{g}_S := \text{arg}\min_{g \in \mathcal{F}} \; \frac{1}{n+1} \sum_{i=1}^n{l_{\alpha} (g(X_i), S_i)} \; + \frac{1}{n+1}l_{\alpha} (g(X_{n+1}), S) We use the same adaptation as the ``naive`` approach, to go from the ``full conformal`` approach to the ``split`` one, using: .. math:: - \hat{g} := arg\min_{g \in \mathcal{F}} \; \frac{1}{n} \sum_{i=1}^n{l_{\alpha^*} (g(X_i), S_i)} \quad \text{where} \quad \alpha^* = 1 - \frac{\lceil (n+1)(1-\alpha) \rceil}{n} + \hat{g} := \text{arg}\min_{g \in \mathcal{F}} \; \frac{1}{n} \sum_{i=1}^n{l_{\alpha^*} (g(X_i), S_i)} \quad \text{where} \quad \alpha^* = 1 - \frac{\lceil (n+1)(1-\alpha) \rceil}{n} 3. We use this optimized function :math:`\hat{g}` to compute the prediction intervals: .. math:: \hat{C}(X_{n+1}) = \{ y : S(X_{n+1}, \: y) \leq \hat{g}(X_{n+1}) \} - Note: The formulas are generic and work with all conformity scores. But in the case of the absolute residuals, we get: - - .. math:: - \hat{C}(X_{n+1}) = \hat{\mu}(X_{n+1}) \pm \hat{g}(X_{n+1}) + .. note:: The formulas are generic and work with all conformity scores. But in the case of the absolute residuals, we get: + + .. math:: + \hat{C}(X_{n+1}) = \hat{\mu}(X_{n+1}) \pm \hat{g}(X_{n+1}) .. _theoretical_description_ccp_control_coverage: @@ -94,15 +95,15 @@ Following this steps, we have the coverage guarantee: \left | \mathbb{E} \left[ f(X_{n+1}) \mathbb{I} \left\{ Y_{n+1} \in \hat{C}(X_{n+1}) \right\} \right] \right | \leq \frac{d}{n+1} \mathbb{E} \left[ \max_{1 \leq i \leq n+1} |f(X_i)| \right] -Exemple: coverage over groups -------------------------------- -If :math:`\mathcal{F} = \{ x \mapsto \sum _{G \in \mathcal{G}} \; \beta_G \mathbb{I} \{ x \in G \} : \beta_G \in \mathbb{R} \}`, then we have: +.. note:: + If we want to have a homogenous coverage on some given groups in :math:`\mathcal{G}`, we can use + :math:`\mathcal{F} = \{ x \mapsto \sum _{G \in \mathcal{G}} \; \beta_G \mathbb{I} \{ x \in G \} : \beta_G \in \mathbb{R} \}`, then we have: -.. math:: - \forall G \in \mathcal{G}, \quad - \left | \mathbb{P}(Y_{n+1} \in \hat{C}(X_{n+1}) \; | \; X_{n+1} \in G) - (1 - \alpha) \right | - \leq \frac{|\mathcal{G}|}{(n+1) \mathbb{P}(X_{n+1} \in G)} \\ - = \frac{\text{number of groups in } \mathcal{G}}{\text{number of samples of } \{X_i\} \text{ in G}} + .. math:: + \forall G \in \mathcal{G}, \quad + \left | \mathbb{P} \left( Y_{n+1} \in \hat{C}(X_{n+1}) \; | \; X_{n+1} \in G \right) - (1 - \alpha) \right | + \leq \frac{|\mathcal{G}|}{(n+1) \mathbb{P}(X_{n+1} \in G)} \\ + = \frac{\text{number of groups in } \mathcal{G}}{\text{number of samples of } \{X_i\} \text{ in G}} How to use it in practice? ============================ @@ -118,12 +119,12 @@ The following will provide some tips on how to use the method (for more practica 1. If you want a generally adaptative interval and you don't have prior knowledge about your data, you can use gaussian kernels, implemented in Mapie - in :class:`mapie.calibrators.ccp.GaussianCCP`. See the API doc for more information. + in :class:`~mapie.calibrators.ccp.GaussianCCP`. See the API doc for more information. 2. If you want to avoid bias on sub-groups and ensure an homogenous coverage on those, you can add indicator functions corresponding to those groups. -3. You can inject prior knowledge in the method using :class:`mapie.calibrators.ccp.CustomCCP`, +3. You can inject prior knowledge in the method using :class:`~mapie.calibrators.ccp.CustomCCP`, if you have information about the conformity scores distribution (domains with different biavior, expected model uncertainty depending on a given feature, etc). @@ -144,10 +145,19 @@ Avoid miscoverage - | Some miscoverage can also comes from the optimization process, which is solved with numerical methods, and may fail to find the global minimum. If the target coverage is not achieved, you can try adding regularization, - to help the optimisation process. You can also try reducing the number of dimensions :math:`d` + to help the optimization process. You can also try reducing the number of dimensions :math:`d` or using a smoother :math:`\Phi` function, such as with gaussian kernels (indeed, using only indicator functions makes the optimization very difficult). + .. warning:: + Adding some regularization will theoretically induce a miscoverage, + as the objective function will slightly increase, to minimize the regularization term. + + In practice, it may increase the coverage (as it helps the optimization convergence), + but it can also decrease it. Always empirically check the resulting coverage + and avoid too big regularization terms (below :math:`10^{-4}` is usually recommanded). + + - | Finally, you can reduce the value of :math:`\alpha` to enforce higher coverage. Evaluating the best adjusted :math:`\alpha` using cross-validation will ensure the same coverage on the test set (subject to variability due to the finite number of samples). diff --git a/doc/theoretical_description_conformity_scores.rst b/doc/theoretical_description_conformity_scores.rst index 5ec0aee4d..8fc69a7c5 100644 --- a/doc/theoretical_description_conformity_scores.rst +++ b/doc/theoretical_description_conformity_scores.rst @@ -6,7 +6,7 @@ Theoretical Description for Conformity Scores ############################################# -The :class:`mapie.conformity_scores.ConformityScore` class implements various +The :class:`~mapie.conformity_scores.ConformityScore` class implements various methods to compute conformity scores for regression. We give here a brief theoretical description of the scores included in the module. Note that it is possible for the user to create any conformal scores that are not @@ -27,7 +27,7 @@ and the other on the left side. 1. The absolute residual score ------------------------------ -The absolute residual score (:class:`mapie.conformity_scores.AbsoluteConformityScore`) +The absolute residual score (:class:`~mapie.conformity_scores.AbsoluteConformityScore`) is the simplest and most commonly used conformal score, it translates the error of the model : in regression, it is called the residual. @@ -46,7 +46,7 @@ This score is by default symmetric (*see above for definition*). 2. The gamma score ------------------ -The gamma score [2] (:class:`mapie.conformity_scores.GammaConformityScore`) adds a +The gamma score [2] (:class:`~mapie.conformity_scores.GammaConformityScore`) adds a notion of adaptivity with the normalization of the residuals by the predictions. .. math:: \frac{|Y-\hat{\mu}(X)|}{\hat{\mu}(X)} @@ -71,7 +71,7 @@ in use cases where we want greater uncertainty when the prediction is high. 3. The residual normalized score -------------------------------- -The residual normalized score [1] (:class:`mapie.conformity_scores.ResidualNormalisedScore`) +The residual normalized score [1] (:class:`~mapie.conformity_scores.ResidualNormalisedScore`) is slightly more complex than the previous scores. The normalization of the residual is now done by the predictions of an additional model :math:`\hat\sigma` which learns to predict the base model residuals from :math:`X`. @@ -99,7 +99,7 @@ it is not proportional to the uncertainty. Key takeaways ------------- -- The absolute residual score is the basic conformity score and gives constant intervals. It is the one used by default by :class:`mapie.regression.MapieRegressor`. +- The absolute residual score is the basic conformity score and gives constant intervals. It is the one used by default by :class:`~mapie.regression.MapieRegressor`. - The gamma conformity score adds a notion of adaptivity by giving intervals of different sizes and is proportional to the uncertainty. - The residual normalized score is a conformity score that requires an additional model diff --git a/doc/theoretical_description_regression.rst b/doc/theoretical_description_regression.rst index e6bcb33f8..096e74760 100644 --- a/doc/theoretical_description_regression.rst +++ b/doc/theoretical_description_regression.rst @@ -6,7 +6,7 @@ Theoretical Description ####################### -The :class:`mapie.regression.MapieRegressor` class uses various +The :class:`~mapie.regression.MapieRegressor` class uses various resampling methods based on the jackknife strategy recently introduced by Foygel-Barber et al. (2020) [1]. They allow the user to estimate robust prediction intervals with any kind of @@ -295,7 +295,7 @@ hypothesis". It means that the probability law of data should not change up to reordering. This hypothesis is not relevant in many cases, notably for dynamical times series. That is why a specific class is needed, namely -:class:`mapie.time_series_regression.MapieTimeSeriesRegressor`. +:class:`~mapie.time_series_regression.MapieTimeSeriesRegressor`. Its implementation looks like the jackknife+-after-bootstrap method. The leave-one-out (LOO) estimators are approximated thanks to a few boostraps. From f3e0d32476e20fc78bd270d377912ab36cfe4a5b Mon Sep 17 00:00:00 2001 From: Damien Bouet Date: Fri, 26 Jul 2024 12:40:45 +0200 Subject: [PATCH 104/165] MOVE: BaseCalibrator import --- mapie/calibrators/__init__.py | 2 -- mapie/calibrators/ccp/base.py | 2 +- mapie/calibrators/standard.py | 2 +- mapie/futur/split/base.py | 2 +- mapie/futur/split/regression.py | 3 ++- 5 files changed, 5 insertions(+), 6 deletions(-) diff --git a/mapie/calibrators/__init__.py b/mapie/calibrators/__init__.py index ffe2ba325..f2183d87e 100644 --- a/mapie/calibrators/__init__.py +++ b/mapie/calibrators/__init__.py @@ -1,9 +1,7 @@ -from .base import BaseCalibrator from .ccp import CustomCCP, GaussianCCP, PolynomialCCP from .standard import StandardCalibrator __all__ = [ - "BaseCalibrator", "StandardCalibrator", "CustomCCP", "PolynomialCCP", diff --git a/mapie/calibrators/ccp/base.py b/mapie/calibrators/ccp/base.py index 343574988..c8c15e5de 100644 --- a/mapie/calibrators/ccp/base.py +++ b/mapie/calibrators/ccp/base.py @@ -11,7 +11,7 @@ from sklearn.utils.validation import _num_samples, check_is_fitted from mapie._typing import ArrayLike, NDArray -from mapie.calibrators import BaseCalibrator +from mapie.calibrators.base import BaseCalibrator from mapie.calibrators.ccp.utils import (calibrator_optim_objective, check_multiplier, check_custom_calibrator_functions, diff --git a/mapie/calibrators/standard.py b/mapie/calibrators/standard.py index 36d7c3543..181942fef 100644 --- a/mapie/calibrators/standard.py +++ b/mapie/calibrators/standard.py @@ -6,7 +6,7 @@ from sklearn.utils.validation import _num_samples from mapie._typing import ArrayLike, NDArray -from mapie.calibrators import BaseCalibrator +from mapie.calibrators.base import BaseCalibrator from .ccp.utils import check_required_arguments from mapie.conformity_scores import ConformityScore diff --git a/mapie/futur/split/base.py b/mapie/futur/split/base.py index bca6868f2..7142d5a23 100644 --- a/mapie/futur/split/base.py +++ b/mapie/futur/split/base.py @@ -12,7 +12,7 @@ from sklearn.utils.validation import _num_samples, check_is_fitted from mapie._typing import ArrayLike, NDArray -from mapie.calibrators import BaseCalibrator +from mapie.calibrators.base import BaseCalibrator from mapie.conformity_scores import ConformityScore from mapie.utils import _sample_non_null_weight, fit_estimator diff --git a/mapie/futur/split/regression.py b/mapie/futur/split/regression.py index e72f916cc..159d0fb16 100644 --- a/mapie/futur/split/regression.py +++ b/mapie/futur/split/regression.py @@ -7,9 +7,10 @@ from sklearn.model_selection import PredefinedSplit, ShuffleSplit from mapie._typing import ArrayLike, NDArray +from mapie.calibrators.base import BaseCalibrator from mapie.calibrators.utils import check_calibrator from mapie.conformity_scores import ConformityScore -from mapie.futur.split.base import BaseCalibrator, SplitCP +from mapie.futur.split.base import SplitCP from mapie.utils import (check_conformity_score, check_estimator_regression, check_lower_upper_bounds) From 00bfd27be23177fa930d80bd2ae05357847d1bb6 Mon Sep 17 00:00:00 2001 From: Damien Bouet Date: Fri, 26 Jul 2024 12:50:34 +0200 Subject: [PATCH 105/165] UPD docstrings and add ccp reference --- mapie/calibrators/base.py | 2 +- mapie/calibrators/ccp/base.py | 19 ++++++++--- mapie/calibrators/ccp/custom.py | 34 +++++++++++++++----- mapie/calibrators/ccp/gaussian.py | 50 ++++++++++++++++++++--------- mapie/calibrators/ccp/polynomial.py | 34 ++++++++++++++------ mapie/calibrators/ccp/utils.py | 7 ++-- mapie/futur/split/base.py | 10 +++--- mapie/futur/split/regression.py | 20 ++++++++---- 8 files changed, 124 insertions(+), 52 deletions(-) diff --git a/mapie/calibrators/base.py b/mapie/calibrators/base.py index 3e535e09f..9d609a112 100644 --- a/mapie/calibrators/base.py +++ b/mapie/calibrators/base.py @@ -16,7 +16,7 @@ class BaseCalibrator(BaseEstimator, metaclass=ABCMeta): The ``BaseCalibrator`` subclasses should have at least two methods: - ``fit`` : Fit the calibrator to estimate the conformity scores - quantiles. + quantiles. - ``predict`` : Predict the conformity score quantiles. diff --git a/mapie/calibrators/ccp/base.py b/mapie/calibrators/ccp/base.py index c8c15e5de..a42b3a465 100644 --- a/mapie/calibrators/ccp/base.py +++ b/mapie/calibrators/ccp/base.py @@ -41,10 +41,12 @@ class CCPCalibrator(BaseCalibrator, metaclass=ABCMeta): List of functions (or ``CCPCalibrator`` objects) or single function. Each function can take a combinaison of the following arguments: + - ``X``: Input dataset, of shape (n_samples, ``n_in``) - ``y_pred``: estimator prediction, of shape (n_samples,) - ``z``: exogenous variable, of shape (n_samples, n_features). - It should be given in the ``fit`` and ``predict`` methods. + It should be given in the ``fit`` and ``predict`` methods. + The results of each functions will be concatenated to build the final result of the transformation, of shape ``(n_samples, n_out)``, which will be used to estimate the conformity scores quantiles. @@ -88,9 +90,10 @@ class CCPCalibrator(BaseCalibrator, metaclass=ABCMeta): strength. ``reg_param`` must be a non-negative float i.e. in ``[0, inf)``. - Note: A too strong regularization may compromise the guaranteed - marginal coverage. If ``calibrator.normalize=True``, it is usually - recommanded to use ``reg_param < 1e-3``. + .. warning:: + A too strong regularization may compromise the guaranteed + marginal coverage. If ``calibrator.normalize=True``, it is usually + recommanded to use ``reg_param < 1e-3``. If ``None``, no regularization is used. @@ -122,6 +125,14 @@ class CCPCalibrator(BaseCalibrator, metaclass=ABCMeta): beta_low_: Tuple[NDArray, bool] Same as ``beta_up_``, but for the lower bound + Warnings + -------- + The CCP implementation (:class:`~mapie.calibrators.ccp.CCPCalibrator`) + has a stochastic behavior. To have reproductible results, + use an integer ``random_state`` value in the + :class:`~mapie.futur.split.SplitCPRegressor` or + :class:`~mapie.futur.split.SplitCPClassifier` initialisation. + References ---------- Isaac Gibbs and John J. Cherian and Emmanuel J. Candès. diff --git a/mapie/calibrators/ccp/custom.py b/mapie/calibrators/ccp/custom.py index 402430ff2..f04f37a1e 100644 --- a/mapie/calibrators/ccp/custom.py +++ b/mapie/calibrators/ccp/custom.py @@ -13,11 +13,12 @@ class CustomCCP(CCPCalibrator): """ - Calibrator used for the in ``SplitCPRegressor`` or ``SplitCPClassifier`` - to estimate the conformity scores. + Calibrator used in :class:`~SplitCPRegressor` or + :class:`~SplitCPClassifier` to estimate the conformity scores. It corresponds to the adaptative conformal prediction method proposed by - Gibbs et al. (2023) in "Conformal Prediction With Conditional Guarantees". + Gibbs et al. (2023) in + "Conformal Prediction With Conditional Guarantees" [1]. The goal is to learn the quantile of the conformity scores distribution, to built the prediction interval, not with a constant ``q`` (as it is the @@ -36,13 +37,15 @@ class CustomCCP(CCPCalibrator): Parameters ---------- functions: Optional[Union[Callable, Iterable[Callable]]] - List of functions (or CCPCalibrator objects) or single function. + List of functions (or ``CCPCalibrator`` objects) or single function. Each function can take a combinaison of the following arguments: + - ``X``: Input dataset, of shape (n_samples, ``n_in``) - ``y_pred``: estimator prediction, of shape (n_samples,) - ``z``: exogenous variable, of shape (n_samples, n_features). - It should be given in the ``fit`` and ``predict`` methods. + It should be given in the ``fit`` and ``predict`` methods. + The results of each functions will be concatenated to build the final result of the transformation, of shape ``(n_samples, n_out)``, which will be used to estimate the conformity scores quantiles. @@ -86,9 +89,10 @@ class CustomCCP(CCPCalibrator): strength. ``reg_param`` must be a non-negative float i.e. in ``[0, inf)``. - Note: A too strong regularization may compromise the guaranteed - marginal coverage. If ``calibrator.normalize=True``, it is usually - recommanded to use ``reg_param < 1e-3``. + .. warning:: + A too strong regularization may compromise the guaranteed + marginal coverage. If ``calibrator.normalize=True``, it is usually + recommanded to use ``reg_param < 1e-3``. If ``None``, no regularization is used. @@ -120,6 +124,20 @@ class CustomCCP(CCPCalibrator): beta_low_: Tuple[NDArray, bool] Same as ``beta_up_``, but for the lower bound + Warnings + -------- + The CCP implementation (:class:`~mapie.calibrators.ccp.CCPCalibrator`) + has a stochastic behavior. To have reproductible results, + use an integer ``random_state`` value in the + :class:`~mapie.futur.split.SplitCPRegressor` or + :class:`~mapie.futur.split.SplitCPClassifier` initialisation. + + References + ---------- + [1]: + Isaac Gibbs and John J. Cherian and Emmanuel J. Candès. + "Conformal Prediction With Conditional Guarantees", 2023 + Examples -------- >>> import numpy as np diff --git a/mapie/calibrators/ccp/gaussian.py b/mapie/calibrators/ccp/gaussian.py index 331f899fb..81a8a031b 100644 --- a/mapie/calibrators/ccp/gaussian.py +++ b/mapie/calibrators/ccp/gaussian.py @@ -88,11 +88,12 @@ class GaussianCCP(CCPCalibrator): - For 100 points, the sigma value will be, in general, multiplied by a value between 0.5 and 2 - Note: This is a default suggestion of randomization, - which allow to have in the same time wide and narrow gaussians. + .. note:: + This is a default suggestion of randomization, + which allow to have in the same time wide and narrow gaussians. - You can use fully custom sigma values, buy passing to the - ``points`` argument, a different sigma value for each point. + You can use fully custom sigma values, buy passing to the + ``points`` argument, a different sigma value for each point. By default, ``False`` @@ -108,10 +109,12 @@ class GaussianCCP(CCPCalibrator): If you are not sure, use ``bias=True`` to garantee the marginal coverage. - Note: In this case, with ``GaussianCCP``, if ``normalized`` is - ``True`` (it is, by default), the ``phi(X, y_pred, z)`` will never - be all zeros, so this ``bias`` is not required - to have a guaranteed coverage. + ..note:: + In this case, with ``GaussianCCP``, if ``normalized`` is + ``True`` (it is, by default), the result of + ``calibrator.predict(X, y_pred, z)`` will never + be all zeros, so this ``bias`` is not required, + to have a guaranteed coverage. By default ``False``. @@ -125,11 +128,12 @@ class GaussianCCP(CCPCalibrator): On the opposite, it is not recommended if the conformity scores can vary a lot. - Note: To make sure that for too small ``sigma`` values, - or for out-of-distribution samples, the interval width doesn't crash - to zero, we set by default ``normalized = True``. By doing so, even - the samples which were in any gaussian tild, will still be linked to - the closest one. + .. note:: + To make sure that for too small ``sigma`` values, + or for out-of-distribution samples, the interval width doesn't + crash to zero, we set by default ``normalized = True``. + By doing so, even the samples which were in any gaussian tild, + will still be linked to the closest one. By default ``True`` @@ -144,9 +148,10 @@ class GaussianCCP(CCPCalibrator): strength. ``reg_param`` must be a non-negative float i.e. in ``[0, inf)``. - Note: A too strong regularization may compromise the guaranteed - marginal coverage. If ``calibrator.normalize=True``, it is usually - recommanded to use ``reg_param < 1e-3``. + .. warning:: + A too strong regularization may compromise the guaranteed + marginal coverage. If ``calibrator.normalize=True``, it is usually + recommanded to use ``reg_param < 1e-3``. If ``None``, no regularization is used. @@ -185,6 +190,19 @@ class GaussianCCP(CCPCalibrator): beta_low_: Tuple[NDArray, bool] Same as beta_up, but for the lower bound + Warnings + -------- + The CCP implementation (:class:`~mapie.calibrators.ccp.CCPCalibrator`) + has a stochastic behavior. To have reproductible results, + use an integer ``random_state`` value in the + :class:`~mapie.futur.split.SplitCPRegressor` or + :class:`~mapie.futur.split.SplitCPClassifier` initialisation. + + References + ---------- + Isaac Gibbs and John J. Cherian and Emmanuel J. Candès. + "Conformal Prediction With Conditional Guarantees", 2023 + Examples -------- >>> import numpy as np diff --git a/mapie/calibrators/ccp/polynomial.py b/mapie/calibrators/ccp/polynomial.py index 63863808f..c9f4c61fc 100644 --- a/mapie/calibrators/ccp/polynomial.py +++ b/mapie/calibrators/ccp/polynomial.py @@ -10,7 +10,8 @@ class PolynomialCCP(CCPCalibrator): """ - Calibrator used for the in ``SplitCPRegressor`` or ``SplitCPClassifier`` + Calibrator based on :class:`~mapie.calibrators.ccp.CCPCalibrator`, + used for the in ``SplitCPRegressor`` or ``SplitCPClassifier`` to estimate the conformity scores. It corresponds to the adaptative conformal prediction method proposed by @@ -42,11 +43,12 @@ class PolynomialCCP(CCPCalibrator): If ``None``, it will default to ``degree=1``. - Note: if ``0`` is in the considered exponents (if ``degree`` is an - integer, or if ``0 in degree`` if it is a list), it is not - ``variable**0`` of shape ``(n_samples, n_in)`` which is added, but only - one feature of ones, of shape ``(n_samples, 1)``. It is actually - equivalent to ``bias=True``. + .. note:: + if ``0`` is in the considered exponents (if ``degree`` is an + integer, or if ``0 in degree`` if it is a list), it is not + ``variable**0`` of shape ``(n_samples, n_in)`` which is added, + but only one feature of ones, of shape ``(n_samples, 1)``. + It is actually equivalent to ``bias=True``. By default ``None``. @@ -93,9 +95,10 @@ class PolynomialCCP(CCPCalibrator): strength. ``reg_param`` must be a non-negative float i.e. in ``[0, inf)``. - Note: A too strong regularization may compromise the guaranteed - marginal coverage. If ``calibrator.normalize=True``, it is usually - recommanded to use ``reg_param < 1e-3``. + .. warning:: + A too strong regularization may compromise the guaranteed + marginal coverage. If ``calibrator.normalize=True``, it is usually + recommanded to use ``reg_param < 1e-3``. If ``None``, no regularization is used. @@ -130,6 +133,19 @@ class PolynomialCCP(CCPCalibrator): beta_low_: Tuple[NDArray, bool] Same as beta_up, but for the lower bound + Warnings + -------- + The CCP implementation (:class:`~mapie.calibrators.ccp.CCPCalibrator`) + has a stochastic behavior. To have reproductible results, + use an integer ``random_state`` value in the + :class:`~mapie.futur.split.SplitCPRegressor` or + :class:`~mapie.futur.split.SplitCPClassifier` initialisation. + + References + ---------- + Isaac Gibbs and John J. Cherian and Emmanuel J. Candès. + "Conformal Prediction With Conditional Guarantees", 2023 + Examples -------- >>> import numpy as np diff --git a/mapie/calibrators/ccp/utils.py b/mapie/calibrators/ccp/utils.py index 68de11e29..09fc8a4f4 100644 --- a/mapie/calibrators/ccp/utils.py +++ b/mapie/calibrators/ccp/utils.py @@ -511,9 +511,10 @@ def calibrator_optim_objective( strength. ``reg_param`` must be a non-negative float i.e. in ``[0, inf)``. - Note: A too strong regularization may compromise the guaranteed - marginal coverage. If ``calibrator.normalize=True``, it is usually - recommanded to use ``reg_param < 1e-3``. + .. warning:: + A too strong regularization may compromise the guaranteed + marginal coverage. If ``calibrator.normalize=True``, it is usually + recommanded to use ``reg_param < 1e-3``. If ``None``, no regularization is used. diff --git a/mapie/futur/split/base.py b/mapie/futur/split/base.py index 7142d5a23..08f07a4cf 100644 --- a/mapie/futur/split/base.py +++ b/mapie/futur/split/base.py @@ -359,8 +359,9 @@ def fit_calibrator( See the calibrator ``.fit`` method documentation to have more information about the required arguments. - Note: if the calibrator need exogenous variables (``z_train`` or - ``z_calib``), you should pass ``z`` in ``calib_kwargs`` + .. note:: + if the calibrator need exogenous variables (``z_train`` or + ``z_calib``), you should pass ``z`` in ``calib_kwargs`` Returns ------- @@ -478,8 +479,9 @@ def fit( See the calibrator ``.fit`` method documentation to have more information about the required arguments. - Note: if the calibrator need exogenous variables (``z_train`` or - ``z_calib``), you should pass ``z`` in ``calib_kwargs`` + .. note:: + if the calibrator need exogenous variables (``z_train`` or + ``z_calib``), you should pass ``z`` in ``calib_kwargs`` Returns ------- diff --git a/mapie/futur/split/regression.py b/mapie/futur/split/regression.py index 159d0fb16..3a873bfb4 100644 --- a/mapie/futur/split/regression.py +++ b/mapie/futur/split/regression.py @@ -17,9 +17,9 @@ class SplitCPRegressor(SplitCP): """ - Class to implement Conformal Prediction in ``"split"`` - approach for regression tasks. - It is based on a predictor (``RegressorMixin`` object), + Class to implement Conformal Prediction in ``"split"`` approach for + regression tasks, based on :class:`~futur.split.base.SplitCP`. + It uses a predictor (``RegressorMixin`` object), and a calibrator (``BaseCalibrator`` object). Parameters @@ -82,12 +82,18 @@ class SplitCPRegressor(SplitCP): random_state: Optional[int] Integer used to set the numpy seed, to get reproducible calibration results. - If ``None``, the prediction intervals will be stochastics, and will + If ``None``, the prediction intervals may be stochastics and change if you refit the calibration (even if no arguments have change). - WARNING: If ``random_state``is not ``None``, ``np.random.seed`` will - be changed, which will reset the seed for all the other random - number generators. It may have an impact on the rest of your code. + .. warning:: + Some methods, as the CCP method + (:class:`~mapie.calibrators.ccp.CCPCalibrator`), + have a stochastic behavior. To have reproductible results, + use an integer ``random_state`` value. + + However, if ``random_state`` is not ``None``, ``np.random.seed`` + will be changed, which will reset the seed for all the other random + number generators. It may have an impact on the rest of your code. By default ``None``. From c1a00dc64d3ccaeae705137b974d00da2ce6df40 Mon Sep 17 00:00:00 2001 From: Damien Bouet Date: Fri, 26 Jul 2024 12:50:57 +0200 Subject: [PATCH 106/165] RMV not reproductible warning --- mapie/calibrators/ccp/base.py | 8 +------- 1 file changed, 1 insertion(+), 7 deletions(-) diff --git a/mapie/calibrators/ccp/base.py b/mapie/calibrators/ccp/base.py index a42b3a465..fb27bd11e 100644 --- a/mapie/calibrators/ccp/base.py +++ b/mapie/calibrators/ccp/base.py @@ -325,13 +325,7 @@ def fit( q_cor = np.ceil((1 - self.alpha / 2)*(n_calib+1))/n_calib q_cor = np.clip(q_cor, a_min=0, a_max=1) - if self.random_state is None: - warnings.warn("WARNING: The method implemented in " - "SplitCP has a stochastic behavior. " - "To have reproductible results, use an integer " - "`random_state` value in the `SplitCP` " - "initialisation.") - else: + if self.random_state is not None: np.random.seed(self.random_state) self._transform_params(X_calib, y_pred_calib, z_calib) From 20037f71000257faa4b456f5375d87940abdfcc5 Mon Sep 17 00:00:00 2001 From: Damien Bouet Date: Mon, 29 Jul 2024 11:49:04 +0200 Subject: [PATCH 107/165] REFACTO: Adapte the PR to the new Classifier refacto --- mapie/calibrators/standard.py | 10 +-- mapie/conformity_scores/sets/utils.py | 14 +++- mapie/futur/split/base.py | 106 +++++++++++++++++++++++--- mapie/futur/split/regression.py | 82 ++++++++++++++++---- mapie/regression/regression.py | 2 +- mapie/tests/test_futur_regression.py | 7 +- 6 files changed, 183 insertions(+), 38 deletions(-) diff --git a/mapie/calibrators/standard.py b/mapie/calibrators/standard.py index 181942fef..4f65b1697 100644 --- a/mapie/calibrators/standard.py +++ b/mapie/calibrators/standard.py @@ -8,7 +8,7 @@ from mapie._typing import ArrayLike, NDArray from mapie.calibrators.base import BaseCalibrator from .ccp.utils import check_required_arguments -from mapie.conformity_scores import ConformityScore +from mapie.conformity_scores.interface import BaseConformityScore class StandardCalibrator(BaseCalibrator): @@ -62,10 +62,10 @@ def fit( check_required_arguments(self.alpha) self.alpha = cast(float, self.alpha) - # TODO: Partial copy paste of the ConformityScore.get_bounds method + # TODO: Partial copy paste of the BaseConformityScore.get_bounds method if self.sym: alpha_ref = 1-self.alpha - quantile_ref = ConformityScore.get_quantile( + quantile_ref = BaseConformityScore.get_quantile( conformity_scores_calib[..., np.newaxis], np.array([alpha_ref]), axis=0 )[0, 0] @@ -74,12 +74,12 @@ def fit( else: alpha_low, alpha_up = self.alpha/2, 1 - self.alpha/2 - self.q_low_ = ConformityScore.get_quantile( + self.q_low_ = BaseConformityScore.get_quantile( conformity_scores_calib[..., np.newaxis], np.array([alpha_low]), axis=0, reversed=True, unbounded=allow_infinite_bounds )[0, 0] - self.q_up_ = ConformityScore.get_quantile( + self.q_up_ = BaseConformityScore.get_quantile( conformity_scores_calib[..., np.newaxis], np.array([alpha_up]), axis=0, unbounded=allow_infinite_bounds diff --git a/mapie/conformity_scores/sets/utils.py b/mapie/conformity_scores/sets/utils.py index 5912607fb..d0729dcf6 100644 --- a/mapie/conformity_scores/sets/utils.py +++ b/mapie/conformity_scores/sets/utils.py @@ -124,12 +124,15 @@ def get_last_index_included( y_pred_proba_cumsum: NDArray of shape (n_samples, n_classes) Cumsumed probabilities in the original order. - threshold: NDArray of shape (n_alpha,) or shape (n_samples_train,) + threshold: NDArray of shape (n_alpha,), (n_samples, n_alpha) + or (n_samples_train,) Threshold to compare with y_proba_last_cumsum, can be either: - the quantiles associated with alpha values when ``cv`` == "prefit", ``cv`` == "split" or ``agg_scores`` is "mean" + (Or a quantile value for each sample, + with shape (n_samples, n_alpha)) - the conformity score from training samples otherwise (i.e., when ``cv`` is a CV splitter and @@ -144,17 +147,22 @@ def get_last_index_included( NDArray of shape (n_samples, n_alpha) Index of the last included sorted probability. """ + if len(threshold.shape) == 1: + formatted_threshold = threshold[np.newaxis, :] + else: + formatted_threshold = threshold + if include_last_label or include_last_label == 'randomized': y_pred_index_last = ( np.ma.masked_less( y_pred_proba_cumsum - - threshold[np.newaxis, :], + - formatted_threshold, -EPSILON ).argmin(axis=1) ) else: max_threshold = np.maximum( - threshold[np.newaxis, :], + formatted_threshold, np.min(y_pred_proba_cumsum, axis=1) ) y_pred_index_last = np.argmax( diff --git a/mapie/futur/split/base.py b/mapie/futur/split/base.py index 08f07a4cf..541089a09 100644 --- a/mapie/futur/split/base.py +++ b/mapie/futur/split/base.py @@ -13,7 +13,7 @@ from mapie._typing import ArrayLike, NDArray from mapie.calibrators.base import BaseCalibrator -from mapie.conformity_scores import ConformityScore +from mapie.conformity_scores.interface import BaseConformityScore from mapie.utils import _sample_non_null_weight, fit_estimator @@ -57,12 +57,12 @@ class SplitCP(BaseEstimator, metaclass=ABCMeta): By default ``None``. - conformity_score: Optional[ConformityScore] - ``ConformityScore`` instance. + conformity_score: Optional[BaseConformityScore] + ``BaseConformityScore`` instance. It defines the link between the observed values, the predicted ones and the conformity scores. - - Can be any ``ConformityScore`` class + - Can be any ``BaseConformityScore`` class - ``None`` is associated with a default value defined by the subclass By default ``None``. @@ -103,7 +103,7 @@ def __init__( calibrator: Optional[BaseCalibrator] = None, cv: Optional[Union[int, str, ShuffleSplit, PredefinedSplit]] = None, alpha: Optional[float] = None, - conformity_score: Optional[ConformityScore] = None, + conformity_score: Optional[BaseConformityScore] = None, random_state: Optional[int] = None, ) -> None: """ @@ -118,7 +118,7 @@ def _check_fit_parameters(self) -> BaseEstimator: @abstractmethod def _check_calibrate_parameters(self) -> Tuple[ - ConformityScore, BaseCalibrator + BaseConformityScore, BaseCalibrator ]: """ Check and replace default ``conformity_score``, ``alpha`` and @@ -254,6 +254,32 @@ def _get_method_arguments( return method_kwargs + def _check_conformity_scores(self, conformity_scores: NDArray) -> NDArray: + """ + Check the conformity scores shape + + Parameters + ---------- + conformity_scores : NDArray of shape (n_samples,) or (n_sampels, 1) + Conformity scores + + Returns + ------- + NDArray: + Conformity scores as 1D-array of shape (n_samples,) + """ + if len(conformity_scores.shape) == 1: + return conformity_scores + if conformity_scores.shape[1] == 1: + return conformity_scores[:, 0] + else: + raise ValueError( + "Conformity scores, computed with the `get_conformity_scores`" + "method of the calibrator, should return an array of shape" + "(n_samples,) or (n_samples, 1)." + f"Got {conformity_scores.shape}." + ) + def fit_predictor( self, X: ArrayLike, @@ -337,10 +363,10 @@ def fit_calibrator( Parameters ---------- X: ArrayLike of shape (n_samples, n_features) - Training data. + Data y: ArrayLike of shape (n_samples,) - Training labels. + Target sample_weight: Optional[ArrayLike] of shape (n_samples,) Sample weights of the data, used as weights in the @@ -396,9 +422,18 @@ def fit_calibrator( # Compute conformity scores y_pred_calib = self.predict_score(X_calib) - conformity_scores_calib = self.conformity_score_.get_conformity_scores( - X_calib, y_calib, y_pred_calib + y_calib = cast(NDArray, y_calib) + X_calib = cast(NDArray, X_calib) + + conformity_scores_calib = self.get_conformity_scores( + self.conformity_score_, X_calib, y_calib, + y_pred_calib, sample_weight_calib, groups + ) + + conformity_scores_calib = self._check_conformity_scores( + conformity_scores_calib ) + # Get the calibrator arguments dict_arguments = dict(zip([ "X", "y", "z", "sample_weight", "groups", @@ -450,10 +485,10 @@ def fit( Parameters ---------- X: ArrayLike of shape (n_samples, n_features) - Training data. + Data y: ArrayLike of shape (n_samples,) - Training labels. + Target sample_weight: Optional[ArrayLike] of shape (n_samples,) Sample weights used in the predictor fitting. @@ -538,6 +573,53 @@ def predict( return self.predict_best(y_pred), y_bounds + @abstractmethod + def get_conformity_scores( + self, + conformity_score: BaseConformityScore, + X: NDArray, + y: NDArray, + y_pred: NDArray, + sample_weight: Optional[ArrayLike] = None, + groups: Optional[ArrayLike] = None, + **kwargs, + ) -> NDArray: + """ + Return the conformity scores of the data + + Parameters + ---------- + conformity_score: BaseRegressionScore + Score function that handle all that is related + to conformity scores. + + X: NDArray of shape (n_samples, n_features) + Data + + y: NDArray of shape (n_samples,) + Target + + y_pred: NDArray of shape (n_samples,) + Predictions + + sample_weight: Optional[ArrayLike] of shape (n_samples,) + Sample weights of the data, used as weights in the + calibration process. + + By default ``None``. + + groups: Optional[ArrayLike] of shape (n_samples,) + Group labels for the samples used while splitting the dataset into + train/test set. + + By default ``None``. + + Returns + ------- + NDArray of shape (n_samples,) + Conformity scores. + """ + @abstractmethod def predict_score( self, X: ArrayLike diff --git a/mapie/futur/split/regression.py b/mapie/futur/split/regression.py index 3a873bfb4..00fc762f6 100644 --- a/mapie/futur/split/regression.py +++ b/mapie/futur/split/regression.py @@ -1,6 +1,6 @@ from __future__ import annotations -from typing import Optional, Tuple, Union +from typing import Optional, Tuple, Union, cast import numpy as np from sklearn.base import RegressorMixin @@ -9,10 +9,11 @@ from mapie._typing import ArrayLike, NDArray from mapie.calibrators.base import BaseCalibrator from mapie.calibrators.utils import check_calibrator -from mapie.conformity_scores import ConformityScore +from mapie.conformity_scores import BaseRegressionScore +from mapie.conformity_scores.interface import BaseConformityScore +from mapie.conformity_scores.utils import check_regression_conformity_score from mapie.futur.split.base import SplitCP -from mapie.utils import (check_conformity_score, check_estimator_regression, - check_lower_upper_bounds) +from mapie.utils import check_estimator_regression, check_lower_upper_bounds class SplitCPRegressor(SplitCP): @@ -57,16 +58,16 @@ class SplitCPRegressor(SplitCP): By default ``None``. - conformity_score: Optional[ConformityScore] - ConformityScore instance. + conformity_score: Optional[BaseRegressionScore] + BaseRegressionScore instance. It defines the link between the observed values, the predicted ones and the conformity scores. For instance, the default ``None`` value correspondonds to a conformity score which assumes y_obs = y_pred + conformity_score. - - ``None``, to use the default ``AbsoluteConformityScore`` symetrical - conformity score - - Any ``ConformityScore`` class + - ``None``, to use the default ``AbsoluteBaseRegressionScore`` + symetrical conformity score + - Any ``BaseRegressionScore`` class By default ``None``. @@ -114,7 +115,7 @@ def __init__( calibrator: Optional[BaseCalibrator] = None, cv: Optional[Union[int, str, ShuffleSplit, PredefinedSplit]] = None, alpha: Optional[float] = None, - conformity_score: Optional[ConformityScore] = None, + conformity_score: Optional[BaseRegressionScore] = None, random_state: Optional[int] = None, ) -> None: self.random_state = random_state @@ -134,13 +135,13 @@ def _check_fit_parameters(self) -> RegressorMixin: return predictor def _check_calibrate_parameters(self) -> Tuple[ - ConformityScore, BaseCalibrator + BaseRegressionScore, BaseCalibrator ]: """ Check and replace default ``conformity_score``, ``alpha`` and ``calibrator`` arguments. """ - conformity_score_ = check_conformity_score( + conformity_score_ = check_regression_conformity_score( self.conformity_score, self.default_sym_ ) calibrator = check_calibrator(self.calibrator) @@ -150,6 +151,56 @@ def _check_calibrate_parameters(self) -> Tuple[ calibrator.random_state = self.random_state return conformity_score_, calibrator + def get_conformity_scores( + self, + conformity_score: BaseConformityScore, + X: NDArray, + y: NDArray, + y_pred: NDArray, + sample_weight: Optional[ArrayLike] = None, + groups: Optional[ArrayLike] = None, + **kwargs, + ) -> NDArray: + """ + Return the conformity scores of the data + + Parameters + ---------- + conformity_score: BaseRegressionScore + Score function that handle all that is related + to conformity scores. + + X: NDArray of shape (n_samples, n_features) + Data + + y: NDArray of shape (n_samples,) + Target + + y_pred: NDArray of shape (n_samples,) + Predictions + + sample_weight: Optional[ArrayLike] of shape (n_samples,) + Sample weights of the data, used as weights in the + calibration process. + + By default ``None``. + + groups: Optional[ArrayLike] of shape (n_samples,) + Group labels for the samples used while splitting the dataset into + train/test set. + + By default ``None``. + + Returns + ------- + NDArray of shape (n_samples,) + Conformity scores. + """ + + return conformity_score.get_conformity_scores( + y, y_pred, X=X, + ) + def predict_score( self, X: ArrayLike ) -> NDArray: @@ -199,11 +250,14 @@ def predict_bounds( ) conformity_score_pred = self.calibrator_.predict(**predict_kwargs) + self.conformity_score_ = cast( + BaseRegressionScore, self.conformity_score_ + ) y_pred_low = self.conformity_score_.get_estimation_distribution( - X, y_pred[:, np.newaxis], conformity_score_pred[:, [0]] + y_pred[:, np.newaxis], conformity_score_pred[:, [0]], X=X, ) y_pred_up = self.conformity_score_.get_estimation_distribution( - X, y_pred[:, np.newaxis], conformity_score_pred[:, [1]] + y_pred[:, np.newaxis], conformity_score_pred[:, [1]], X=X, ) check_lower_upper_bounds(y_pred_low, y_pred_up, y_pred) diff --git a/mapie/regression/regression.py b/mapie/regression/regression.py index a79f15ee2..b3b1544ba 100644 --- a/mapie/regression/regression.py +++ b/mapie/regression/regression.py @@ -15,7 +15,7 @@ from mapie.conformity_scores.utils import check_regression_conformity_score from mapie.estimator.regressor import EnsembleRegressor from mapie.utils import (check_alpha, check_alpha_and_n_samples, - check_cv, check_estimator_fit_predict, + check_cv, check_estimator_regression, check_n_features_in, check_n_jobs, check_null_weight, check_verbose, get_effective_calibration_samples) diff --git a/mapie/tests/test_futur_regression.py b/mapie/tests/test_futur_regression.py index b5c49f833..9e15f48d9 100644 --- a/mapie/tests/test_futur_regression.py +++ b/mapie/tests/test_futur_regression.py @@ -21,9 +21,10 @@ from mapie._typing import NDArray from mapie.calibrators.ccp import (CCPCalibrator, CustomCCP, GaussianCCP, PolynomialCCP) -from mapie.conformity_scores import (AbsoluteConformityScore, ConformityScore, +from mapie.conformity_scores import (AbsoluteConformityScore, GammaConformityScore, ResidualNormalisedScore) +from mapie.conformity_scores.interface import BaseConformityScore from mapie.metrics import regression_coverage_score from mapie.regression import SplitCPRegressor @@ -211,7 +212,7 @@ def test_default_parameters() -> None: assert isinstance(mapie_reg.calibrator_, GaussianCCP) assert isinstance(mapie_reg.cv, ShuffleSplit) assert mapie_reg.alpha == 0.1 - assert isinstance(mapie_reg.conformity_score_, ConformityScore) + assert isinstance(mapie_reg.conformity_score_, BaseConformityScore) assert isinstance(mapie_reg.random_state, int) @@ -604,7 +605,7 @@ def test_conformity_score( cv: Any, calibrator: CCPCalibrator, predictor: RegressorMixin, - conformity_score: ConformityScore + conformity_score: BaseConformityScore ) -> None: """Test that any conformity score function with MAPIE raises no error.""" From 8ac6ae935504b4a90303c8f945220f76065a3864 Mon Sep 17 00:00:00 2001 From: Damien Bouet Date: Mon, 29 Jul 2024 11:52:28 +0200 Subject: [PATCH 108/165] FIX: tests --- mapie/tests/test_futur_regression.py | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) diff --git a/mapie/tests/test_futur_regression.py b/mapie/tests/test_futur_regression.py index 9e15f48d9..4cf8f6664 100644 --- a/mapie/tests/test_futur_regression.py +++ b/mapie/tests/test_futur_regression.py @@ -24,7 +24,7 @@ from mapie.conformity_scores import (AbsoluteConformityScore, GammaConformityScore, ResidualNormalisedScore) -from mapie.conformity_scores.interface import BaseConformityScore +from mapie.conformity_scores import BaseRegressionScore from mapie.metrics import regression_coverage_score from mapie.regression import SplitCPRegressor @@ -212,7 +212,7 @@ def test_default_parameters() -> None: assert isinstance(mapie_reg.calibrator_, GaussianCCP) assert isinstance(mapie_reg.cv, ShuffleSplit) assert mapie_reg.alpha == 0.1 - assert isinstance(mapie_reg.conformity_score_, BaseConformityScore) + assert isinstance(mapie_reg.conformity_score_, BaseRegressionScore) assert isinstance(mapie_reg.random_state, int) @@ -605,7 +605,7 @@ def test_conformity_score( cv: Any, calibrator: CCPCalibrator, predictor: RegressorMixin, - conformity_score: BaseConformityScore + conformity_score: BaseRegressionScore, ) -> None: """Test that any conformity score function with MAPIE raises no error.""" From add96e6eb2224461a56d8f8ff8b10b3c3a4daf0a Mon Sep 17 00:00:00 2001 From: Damien Bouet Date: Mon, 29 Jul 2024 12:21:22 +0200 Subject: [PATCH 109/165] UNDO changes in sets.utils --- mapie/conformity_scores/sets/utils.py | 16 ++++------------ 1 file changed, 4 insertions(+), 12 deletions(-) diff --git a/mapie/conformity_scores/sets/utils.py b/mapie/conformity_scores/sets/utils.py index d0729dcf6..845555760 100644 --- a/mapie/conformity_scores/sets/utils.py +++ b/mapie/conformity_scores/sets/utils.py @@ -124,15 +124,12 @@ def get_last_index_included( y_pred_proba_cumsum: NDArray of shape (n_samples, n_classes) Cumsumed probabilities in the original order. - threshold: NDArray of shape (n_alpha,), (n_samples, n_alpha) - or (n_samples_train,) + threshold: NDArray of shape (n_alpha,) or shape (n_samples_train,) Threshold to compare with y_proba_last_cumsum, can be either: - the quantiles associated with alpha values when ``cv`` == "prefit", ``cv`` == "split" or ``agg_scores`` is "mean" - (Or a quantile value for each sample, - with shape (n_samples, n_alpha)) - the conformity score from training samples otherwise (i.e., when ``cv`` is a CV splitter and @@ -147,22 +144,17 @@ def get_last_index_included( NDArray of shape (n_samples, n_alpha) Index of the last included sorted probability. """ - if len(threshold.shape) == 1: - formatted_threshold = threshold[np.newaxis, :] - else: - formatted_threshold = threshold - if include_last_label or include_last_label == 'randomized': y_pred_index_last = ( np.ma.masked_less( y_pred_proba_cumsum - - formatted_threshold, + - threshold[np.newaxis, :], -EPSILON ).argmin(axis=1) ) else: max_threshold = np.maximum( - formatted_threshold, + threshold[np.newaxis, :], np.min(y_pred_proba_cumsum, axis=1) ) y_pred_index_last = np.argmax( @@ -171,4 +163,4 @@ def get_last_index_included( EPSILON ), axis=1 ) - return y_pred_index_last[:, np.newaxis, :] + return y_pred_index_last[:, np.newaxis, :] \ No newline at end of file From 4cb0abaa3c3efe85496307f157f345a2cc2d5c5d Mon Sep 17 00:00:00 2001 From: Damien Bouet Date: Mon, 29 Jul 2024 12:27:24 +0200 Subject: [PATCH 110/165] Linting --- mapie/conformity_scores/sets/utils.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/mapie/conformity_scores/sets/utils.py b/mapie/conformity_scores/sets/utils.py index 845555760..5912607fb 100644 --- a/mapie/conformity_scores/sets/utils.py +++ b/mapie/conformity_scores/sets/utils.py @@ -163,4 +163,4 @@ def get_last_index_included( EPSILON ), axis=1 ) - return y_pred_index_last[:, np.newaxis, :] \ No newline at end of file + return y_pred_index_last[:, np.newaxis, :] From 1afcf27accf8fa4bcd3217b26e7659705c0c41f3 Mon Sep 17 00:00:00 2001 From: Damien Bouet Date: Mon, 29 Jul 2024 12:42:37 +0200 Subject: [PATCH 111/165] UPD: change naive by standard in doc --- doc/theoretical_description_calibrators.rst | 10 +++---- doc/theoretical_description_ccp.rst | 10 +++---- doc/theoretical_description_regression.rst | 6 ++--- mapie/futur/split/base.py | 2 +- mapie/tests/test_ccp_calibrator.py | 29 ++++++++++++++++----- mapie/tests/test_futur_regression.py | 15 +++++++++++ 6 files changed, 51 insertions(+), 21 deletions(-) diff --git a/doc/theoretical_description_calibrators.rst b/doc/theoretical_description_calibrators.rst index 4846e77ea..da9ac13d2 100644 --- a/doc/theoretical_description_calibrators.rst +++ b/doc/theoretical_description_calibrators.rst @@ -21,15 +21,15 @@ The new classes (:class:`~mapie.futur.split.SplitCPRegressor` and :class:`~mapie Thus, the calibrators, based on :class:`~mapie.calibrators.base.BaseCalibrator`, must have the two methods: ``fit`` and ``predict``. -Mapie currently implements calibrators for the CCP method (and the naive method), +Mapie currently implements calibrators for the CCP method (and the standard method), but any conformal prediction method can be implemented by the user as a subclass of :class:`~mapie.calibrators.base.BaseCalibrator`. -Example of naive Split CP: ----------------------------- +Example of standard split CP: +------------------------------ For instance, the :class:`~mapie.calibrators.StandardCalibrator` implements -the :ref:`naive split method`: +the :ref:`standard split method`: * ``.fit`` computes :math:`\hat{q}_{n, \alpha}^+`, the :math:`(1-\alpha)` quantile of the distribution * ``.predict`` comptues the prediction intervals with: :math:`\hat{\mu}(X_{n+1}) \pm \hat{q}_{n, \alpha}^+` @@ -77,4 +77,4 @@ References ========== [1] Isaac Gibbs, John J. Cherian, and Emmanuel J. Candès, -"Conformal Prediction With Conditional Guarantees", `arXiv `_, 2023. \ No newline at end of file +"Conformal Prediction With Conditional Guarantees", `arXiv `_, 2023. diff --git a/doc/theoretical_description_ccp.rst b/doc/theoretical_description_ccp.rst index d74c49d2f..514109fa4 100644 --- a/doc/theoretical_description_ccp.rst +++ b/doc/theoretical_description_ccp.rst @@ -22,10 +22,10 @@ How does it works? Method's intuition -------------------- -We recall that the `naive` method estimates the absolute residuals by a constant :math:`\hat{q}_{n, \alpha}^+` +We recall that the `standard split method` estimates the absolute residuals by a constant :math:`\hat{q}_{n, \alpha}^+` (which is the quantile of :math:`{|Y_i-\hat{\mu}(X_i)|}_{1 \leq i \leq n}`). Then, the prediction interval is: -.. math:: \hat{C}_{n, \alpha}^{\textrm naive}(X_{n+1}) = \hat{\mu}(X_{n+1}) \pm \hat{q}_{n, \alpha}^+ +.. math:: \hat{C}_{n, \alpha}^{\textrm split}(X_{n+1}) = \hat{\mu}(X_{n+1}) \pm \hat{q}_{n, \alpha}^+ The idea of the `CCP` method, is to learn, not a constant, but a function :math:`q(X)`, to have a different interval width depending on the :math:`X` value. Then, we would have: @@ -55,7 +55,7 @@ The method follow 3 steps: ---------------------------- 1. Choose a class of functions. The simple approach is to choose a class a finite dimension :math:`d \in \mathbb{N}`, - using + using, for any :math:`\Phi \; : \; \mathbb{R}^d \to \mathbb{R}` .. math:: \mathcal{F} = \left\{ \Phi (\cdot)^T \beta : \beta \in \mathbb{R}^d \right\} @@ -67,7 +67,7 @@ The method follow 3 steps: .. math:: \hat{g}_S := \text{arg}\min_{g \in \mathcal{F}} \; \frac{1}{n+1} \sum_{i=1}^n{l_{\alpha} (g(X_i), S_i)} \; + \frac{1}{n+1}l_{\alpha} (g(X_{n+1}), S) - We use the same adaptation as the ``naive`` approach, to go from the ``full conformal`` + We use the same adaptation as the ``standard`` approach, to go from the ``full conformal`` approach to the ``split`` one, using: .. math:: @@ -169,4 +169,4 @@ References ========== [1] Isaac Gibbs, John J. Cherian, and Emmanuel J. Candès, -"Conformal Prediction With Conditional Guarantees", `arXiv `_, 2023. \ No newline at end of file +"Conformal Prediction With Conditional Guarantees", `arXiv `_, 2023. diff --git a/doc/theoretical_description_regression.rst b/doc/theoretical_description_regression.rst index 096e74760..f83a6bd09 100644 --- a/doc/theoretical_description_regression.rst +++ b/doc/theoretical_description_regression.rst @@ -29,8 +29,6 @@ feature vector :math:`X_{n+1}` such that All the methods below are described with the absolute residual conformity score for simplicity but other conformity scores are implemented in MAPIE (see :doc:`theoretical_description_conformity_scores`). -.. _theoretical_description_regression_naive: - 1. The "Naive" method ===================== @@ -59,6 +57,8 @@ The figure below illustrates the naive method. :width: 200 :align: center +.. _theoretical_description_regression_standard: + 2. The split method =================== @@ -400,4 +400,4 @@ International Conference on Machine Learning (ICML, 2021). [5] Jing Lei, Max G’Sell, Alessandro Rinaldo, Ryan J Tibshirani, and Larry Wasserman. "Distribution-free predictive inference for regression". -Journal of the American Statistical Association, 113(523):1094–1111, 2018. \ No newline at end of file +Journal of the American Statistical Association, 113(523):1094–1111, 2018. diff --git a/mapie/futur/split/base.py b/mapie/futur/split/base.py index 541089a09..578ff7bc2 100644 --- a/mapie/futur/split/base.py +++ b/mapie/futur/split/base.py @@ -274,7 +274,7 @@ def _check_conformity_scores(self, conformity_scores: NDArray) -> NDArray: return conformity_scores[:, 0] else: raise ValueError( - "Conformity scores, computed with the `get_conformity_scores`" + "Invalid conformity scores. The `get_conformity_scores`" "method of the calibrator, should return an array of shape" "(n_samples,) or (n_samples, 1)." f"Got {conformity_scores.shape}." diff --git a/mapie/tests/test_ccp_calibrator.py b/mapie/tests/test_ccp_calibrator.py index 00c60fb35..86d227bd2 100644 --- a/mapie/tests/test_ccp_calibrator.py +++ b/mapie/tests/test_ccp_calibrator.py @@ -7,6 +7,7 @@ from sklearn.base import clone from sklearn.datasets import make_regression from sklearn.utils.validation import check_is_fitted +from sklearn.model_selection import ShuffleSplit from mapie.calibrators.ccp import (CCPCalibrator, CustomCCP, GaussianCCP, PolynomialCCP) @@ -321,15 +322,29 @@ def test_gaussian_sampling_with_multiplier(calibrator: CCPCalibrator): @pytest.mark.parametrize("calibrator", [ - GaussianCCP(20)*(lambda X: X[:, 0] > 0), - GaussianCCP(30), + GaussianCCP(15)*(lambda X: X[:, 0] > 0), ]) def test_gaussian_sampling_error_not_enough_points(calibrator: CCPCalibrator): """ - Test that the points sampled (for the gaussian centers), are sampled - within the points which have a not null multiplier value + Test that the calibration samples with a not null multiplier value + to sample the ``points`` points. """ - mapie = SplitCPRegressor(calibrator=calibrator, alpha=0.1) + mapie = SplitCPRegressor(calibrator=calibrator, alpha=0.1, + cv=ShuffleSplit(1, test_size=0.5)) - with pytest.raises(ValueError): - mapie.fit(np.linspace(-10, 10, 21).reshape(-1, 1), np.ones(21)) + with pytest.raises(ValueError, match="There are not enough samples with"): + mapie.fit(np.linspace(-10, 10, 40).reshape(-1, 1), np.ones(40)) + + +@pytest.mark.parametrize("calibrator", [ + GaussianCCP(30), +]) +def test_gaussian_sampling_error_not_enough_points2(calibrator: CCPCalibrator): + """ + Test that the calibration samples to sample the ``points`` points. + """ + mapie = SplitCPRegressor(calibrator=calibrator, alpha=0.1, + cv=ShuffleSplit(1, test_size=0.5)) + + with pytest.raises(ValueError, match="There is not enough valid samples"): + mapie.fit(np.linspace(-10, 10, 40).reshape(-1, 1), np.ones(40)) diff --git a/mapie/tests/test_futur_regression.py b/mapie/tests/test_futur_regression.py index 4cf8f6664..85eae86cd 100644 --- a/mapie/tests/test_futur_regression.py +++ b/mapie/tests/test_futur_regression.py @@ -664,3 +664,18 @@ def test_get_method_arguments(custom_method: Callable) -> None: arguments = mapie._get_method_arguments(custom_method, local_vars, kwarg_args) custom_method(**arguments) + + +@pytest.mark.parametrize("conformity_scores", [ + np.random.rand(200, 1), + np.random.rand(200), +]) +def test_check_conformity_scores(conformity_scores: NDArray) -> None: + mapie = SplitCPRegressor() + assert mapie._check_conformity_scores(conformity_scores).shape == (200,) + + +def test_check_conformity_scores_error() -> None: + mapie = SplitCPRegressor() + with pytest.raises(ValueError, match="Invalid conformity scores."): + mapie._check_conformity_scores(np.random.rand(200, 5)) From 09881aa7933ada2e93f8232d76678b9632c7b5d8 Mon Sep 17 00:00:00 2001 From: Damien Bouet Date: Tue, 30 Jul 2024 15:56:17 +0200 Subject: [PATCH 112/165] ADD: classification main class and tuto --- doc/index.rst | 1 + ...theoretical_description_classification.rst | 3 + .../4-tutorials/plot_ccp_class_tutorial.py | 381 ++++++++++++++++ mapie/conformity_scores/sets/utils.py | 14 +- mapie/futur/split/__init__.py | 2 + mapie/futur/split/classification.py | 409 ++++++++++++++++++ 6 files changed, 807 insertions(+), 3 deletions(-) create mode 100644 examples/classification/4-tutorials/plot_ccp_class_tutorial.py create mode 100644 mapie/futur/split/classification.py diff --git a/doc/index.rst b/doc/index.rst index e1489c843..43313638b 100644 --- a/doc/index.rst +++ b/doc/index.rst @@ -40,6 +40,7 @@ theoretical_description_ccp theoretical_description_calibrators examples_regression/4-tutorials/plot_ccp_tutorial + examples_classification/4-tutorials/plot_ccp_class_tutorial .. toctree:: :maxdepth: 2 diff --git a/doc/theoretical_description_classification.rst b/doc/theoretical_description_classification.rst index 445fcfe42..f26815694 100644 --- a/doc/theoretical_description_classification.rst +++ b/doc/theoretical_description_classification.rst @@ -31,6 +31,9 @@ for at least :math:`90 \%` of the new test data points. Note that the guarantee is possible only on the marginal coverage, and not on the conditional coverage :math:`P \{Y_{n+1} \in \hat{C}_{n, \alpha}(X_{n+1}) | X_{n+1} = x_{n+1} \}` which depends on the location of the new test point in the distribution. + +.. _theoretical_description_classification_lac: + 1. LAC ------ diff --git a/examples/classification/4-tutorials/plot_ccp_class_tutorial.py b/examples/classification/4-tutorials/plot_ccp_class_tutorial.py new file mode 100644 index 000000000..b48270ec5 --- /dev/null +++ b/examples/classification/4-tutorials/plot_ccp_class_tutorial.py @@ -0,0 +1,381 @@ +""" +============================================ +Tutorial: Conditional CP for classification +============================================ + +We will use a synthetic toy dataset for the tutorial of the CCP method, and +its comparison with the other methods available in MAPIE. The CCP method +implements the method described in the Gibbs et al. (2023) paper [1]. + +In this tutorial, the classifier will be +:class:`~sklearn.linear_model.LogisticRegression`. + +We will compare the CCP method (using +:class:`~mapie.futur.split.SplitCPRegressor`, +:class:`~mapie.calibrators.ccp.CustomCCP` and +:class:`~mapie.calibrators.ccp.GaussianCCP`), with the +standard method, using for both, the LAC conformity score +(:class:`~mapie.conformity_scores.LACConformityScore`). + +Recall that the ``LAC`` method consists on applying a threshold on the +predicted softmax, to keep all the classes above the threshold +(``alpha`` is ``1 - target coverage``). + +[1] Isaac Gibbs, John J. Cherian, and Emmanuel J. Candès, +"Conformal Prediction With Conditional Guarantees", +`arXiv `_, 2023. +""" + +import warnings + +import matplotlib.pyplot as plt +import numpy as np +from matplotlib.patches import Patch +from sklearn.model_selection import ShuffleSplit +from sklearn.linear_model import LogisticRegression + +from mapie.calibrators import CustomCCP, GaussianCCP +from mapie.classification import MapieClassifier +from mapie.conformity_scores import LACConformityScore +from mapie.futur.split.classification import SplitCPClassifier + +warnings.filterwarnings("ignore") + +random_state = 1 +np.random.seed(random_state) + +ALPHA = 0.2 +N_CLASSES = 5 + +############################################################################## +# 1. Data generation +# -------------------------------------------------------------------------- +# Let's start by creating some synthetic data with 5 gaussian distributions +# +# We are going to use 5000 samples for training, 3000 for calibration and +# 10000 for testing (to have a good conditional coverage evaluation). + + +def create_toy_dataset(n_samples=1000): + centers = [(0, 3.5), (-3, 0), (0, -2), (4, -1), (3, 1)] + covs = [ + np.diag([1, 1]), np.diag([2, 2]), np.diag([3, 2]), + np.diag([3, 3]), np.diag([2, 2]), + ] + n_per_class = ( + np.linspace(0, n_samples, N_CLASSES + 1)[1:] + - np.linspace(0, n_samples, N_CLASSES + 1)[: -1].astype(int) + ).astype(int) + X = np.vstack([ + np.random.multivariate_normal(center, cov, n) + for center, cov, n in zip(centers, covs, n_per_class) + + ]) + y = np.hstack([np.full(n_per_class[i], i) for i in range(N_CLASSES)]) + + return X, y + + +def generate_data(seed=1, n_train=2000, n_calib=2000, n_test=2000, ): + np.random.seed(seed) + x_train, y_train = create_toy_dataset(n_train) + x_calib, y_calib = create_toy_dataset(n_calib) + x_test, y_test = create_toy_dataset(n_test) + + return x_train, y_train, x_calib, y_calib, x_test, y_test + +############################################################################## +# Let's visualize the data and its distribution + + +x_train, y_train, *_ = generate_data(seed=None, n_train=2000) + +for c in range(N_CLASSES): + plt.scatter(x_train[y_train == c, 0], x_train[y_train == c, 1], + c=f"C{c}", s=1.5, label=f'Class {c}') +plt.legend() +plt.show() + + +############################################################################## +# 2. Plotting and adaptativity comparison functions +# -------------------------------------------------------------------------- + + +def run_exp( + mapies, names, alpha, n_train=2000, n_calib=2000, + n_test=2000, grid_step=100, plot=True, seed=1, max_display=2000 +): + ( + x_train, y_train, x_calib, y_calib, x_test, y_test + ) = generate_data( + seed=seed, n_train=n_train, n_calib=n_calib, n_test=n_test + ) + + if max_display: + display_ind = np.random.choice(np.arange(0, len(x_test)), max_display) + else: + display_ind = np.arange(0, len(x_test)) + + color_map = plt.cm.get_cmap("Purples", N_CLASSES + 1) + + if plot: + fig = plt.figure() + fig.set_size_inches(6 * (len(mapies) + 1), 7) + grid = plt.GridSpec(1, len(mapies) + 1) + + x_min = np.min(x_train) + x_max = np.max(x_train) + step = (x_max - x_min) / grid_step + + xx, yy = np.meshgrid( + np.arange(x_min, x_max, step), np.arange(x_min, x_max, step) + ) + X_test_mesh = np.stack([xx.ravel(), yy.ravel()], axis=1) + + scores = np.zeros((len(mapies), N_CLASSES+1)) + for i, (mapie, name) in enumerate(zip(mapies, names)): + if isinstance(mapie, MapieClassifier): + mapie.fit( + np.vstack([x_train, x_calib]), np.hstack([y_train, y_calib]) + ) + _, y_ps_test = mapie.predict(x_test, alpha=alpha) + if plot: + y_pred_mesh, y_ps_mesh = mapie.predict( + X_test_mesh, alpha=alpha + ) + elif isinstance(mapie, SplitCPClassifier): + mapie.fit( + np.vstack([x_train, x_calib]), np.hstack([y_train, y_calib]) + ) + _, y_ps_test = mapie.predict(x_test) + if plot: + y_pred_mesh, y_ps_mesh = mapie.predict(X_test_mesh) + else: + raise + + if plot: + if i == 0: + ax1 = fig.add_subplot(grid[0, 0]) + + ax1.scatter( + X_test_mesh[:, 0], X_test_mesh[:, 1], + c=[f"C{x}" for x in y_pred_mesh], alpha=1, marker="s", + edgecolor="none", s=220 * step + ) + ax1.fill_between( + x=[min(X_test_mesh[:, 0]) - step] + list(X_test_mesh[:, 0]) + + [max(X_test_mesh[:, 0]) + step], + y1=min(X_test_mesh[:, 1]) - step, + y2=max(X_test_mesh[:, 1]) + step, + color="white", alpha=0.6 + ) + ax1.scatter( + x_test[display_ind, 0], x_test[display_ind, 1], + c=[f"C{x}" for x in y_test[display_ind]], + alpha=1, marker=".", edgecolor="black", s=80 + ) + + ax1.set_title("Predictions", fontsize=22, pad=12) + ax1.set_xlim([-6, 8]) + ax1.set_ylim([-6, 8]) + legend_labels = [f"Class {i}" for i in range(N_CLASSES)] + handles = [ + plt.Line2D([0], [0], marker='.', color='w', + markerfacecolor=f"C{i}", markersize=10) + for i in range(N_CLASSES) + ] + ax1.legend(handles, legend_labels, title="Classes", + fontsize=18, title_fontsize=20) + + y_ps_sums = y_ps_mesh[:, :, 0].sum(axis=1) + + ax = fig.add_subplot(grid[0, i + 1]) + + scatter = ax.scatter( + X_test_mesh[:, 0], + X_test_mesh[:, 1], + c=y_ps_sums, + marker='s', + edgecolor="none", + s=220 * step, + alpha=1, + cmap=color_map, + vmin=0, + vmax=N_CLASSES, + ) + ax.scatter(x_test[display_ind, 0], x_test[display_ind, 1], + c=[f"C{x}" for x in y_test[display_ind]], + alpha=0.6, marker=".", edgecolor="gray", s=50) + + colorbar = plt.colorbar(scatter, ax=ax) + colorbar.ax.set_ylabel("Set size", fontsize=20) + colorbar.ax.tick_params(labelsize=18) + ax.set_title(name, fontsize=22, pad=12) + ax.set_xlim([-6, 8]) + ax.set_ylim([-6, 8]) + + if isinstance(mapie, SplitCPClassifier): + centers = [] + for f in mapie.calibrator_.functions_ + [mapie.calibrator_]: + if hasattr(f, "points_"): + centers += list(f.points_) + if len(centers) > 0: + centers = np.stack(centers) + else: + centers = None + + if centers is not None: + ax.scatter(centers[:, 0], centers[:, 1], c="gold", + alpha=1, edgecolors="black", s=50) + + scores[i, 1:] = [ + y_ps_test[(y_test == c), c, 0].astype(int).sum(axis=0) + / len(y_ps_test[(y_test == c), :, 0]) + for c in range(N_CLASSES) + ] + scores[i, 0] = np.mean(scores[i, 1:]) + + if plot: + fig.tight_layout() + plt.show() + else: + return scores + + +def plot_cond_coverage(scores, names): + labels = [f"Class {i}" for i in range(N_CLASSES)] + labels.insert(0, "marginal") + x = np.arange(len(labels)) + width = 0.2 + + fig, ax = plt.subplots(figsize=(10, 6)) + for i in range(len(mapies)): + ax.boxplot( + scores[:, i, :], positions=x + width * (i-1), widths=width, + patch_artist=True, boxprops=dict(facecolor=f"C{i}"), + medianprops=dict(color="black"), labels=labels + ) + ax.axhline(y=1-ALPHA, color='red', linestyle='--', label=f'alpha={ALPHA}') + ax.axvline(x=0.5, color='black', linestyle='--') + + ax.set_ylabel('Coverage') + ax.set_title('Coverage on each class') + ax.set_xticks(x) + ax.set_xticklabels(labels) + ax.set_ylim([0.6, 1]) + + custom_handles = [Patch(facecolor=f"C{i}", edgecolor='black', + label=names[i]) for i in range(len(mapies))] + handles, labels = ax.get_legend_handles_labels() + + # Update the legend with the combined handles and labels + ax.legend(handles + custom_handles, labels + names, loc="lower left") + + plt.show() + + +############################################################################## +# 3. Creation of Mapie instances +# -------------------------------------------------------------------------- +# We are going to compare the standard ``LAC`` method with: +# +# - The ``CCP`` method using the predicted classes as groups (to have a +# homogenous coverage on each class). +# - The ``CCP`` method with gaussian kernels, to have adaptative prediction +# sets, without prior knowledge or information +# (:class:`~mapie.calibrators.ccp.GaussianCCP`). + + +n_train = 5000 +n_calib = 3000 +n_test = 10000 + +cv = ShuffleSplit(n_splits=1, test_size=n_calib/(n_train + n_calib), + random_state=random_state) + +# =========================== Standard LAC =========================== +mapie_lac = MapieClassifier(LogisticRegression(), method="lac", cv=cv) + + +# ============= CCP indicator groups on predicted classes ============= +mapie_ccp_y_pred = SplitCPClassifier( + LogisticRegression(), + CustomCCP(lambda y_pred: y_pred), + alpha=ALPHA, cv=cv, conformity_score=LACConformityScore() +) + +# ======================== CCP Gaussian kernels ======================== +mapie_ccp_gauss = SplitCPClassifier( + LogisticRegression(), + calibrator=GaussianCCP(40, 1, bias=True, reg_param=1e-4), + alpha=ALPHA, cv=cv, conformity_score=LACConformityScore() +) + +mapies = [mapie_lac, mapie_ccp_y_pred, mapie_ccp_gauss] +names = ["Standard LAC", "CCP predicted class groups", "CCP Gaussian kernel"] + + +############################################################################## +# 4. Generate the prediction sets +# -------------------------------------------------------------------------- + +run_exp(mapies, names, ALPHA, n_train=n_train, n_calib=n_calib, n_test=n_test) + +############################################################################## +# We can see that the ``CCP`` method seems to create better +# prediction sets than the standard method. Indeed, where the +# classes distributions overlap (especially for class 3 and 4), +# the size of the sets should increase, to correctly represente the model +# uncertainty on those samples. +# +# The middle of all the classes distributions, where points could +# belong to any class, should have the biggest prediction sets (with almost +# all the clases in the sets, as we are very uncertain). The calibrator +# with gaussian kernels perfectly represented this uncertainty, with big sets +# for the middle points (the dark purple being sets with 4 classes). +# +# Thus, between the two ``CCP`` methods, the one using gaussian kernels +# (:class:`~mapie.calibrators.ccp.GaussianCCP`) seems the most adaptative. +# +# This modelisation of uncertainty is not visible at all in the standard +# method, where we have, in the opposite, empty sets where the distributions +# overlap. + + +############################################################################## +# 5. Evaluate the adaptativity +# -------------------------------------------------------------------------- +# If we can, at first, assess the adaptativity of the methods just looking at +# the prediction sets, the most accurate way is to look if the coverage is +# homogenous on sub parts of the data (on each class for instance). + + +N_TRIALS = 6 +scores = np.zeros((N_TRIALS, len(mapies), N_CLASSES+1)) +for i in range(N_TRIALS): + scores[i, :, :] = run_exp( + mapies, names, ALPHA, n_train=n_train, n_calib=n_calib, n_test=n_test, + plot=False, seed=i + ) + +plot_cond_coverage(scores, names) + +############################################################################## +# A pefectly adaptative method whould result in a homogenous coverage +# for all classes. We can see that the ``CCP`` method, with the predicted +# classes as groups, is more adaptative than the standard method. The +# over-coverage of the standard method on class 1 was corrected in the ``CCP`` +# method, and the under-coverage on class 4 was also slightly corrected. +# +# However, the ``CCP`` with a gaussian calibrator +# (:class:`~mapie.calibrators.ccp.GaussianCCP`), is clearly the +# most adaptative method, with no under-coverage neither for the class 2 and 4. +# +# To conclude, the ``CCP`` method offer adaptative perdiction sets. +# We can inject prior knowledge or groups on which we want to avois bias +# (We tried to do this with the classes, but it was not perfect because we only +# had access to the predictions, not the true classes). +# Using gaussian kernels, with a correct sigma parameter +# (which can be optimized using cross-validation if needed), can be the easiest +# and best solution to have very adaptative prdiction sets. diff --git a/mapie/conformity_scores/sets/utils.py b/mapie/conformity_scores/sets/utils.py index 5912607fb..d0729dcf6 100644 --- a/mapie/conformity_scores/sets/utils.py +++ b/mapie/conformity_scores/sets/utils.py @@ -124,12 +124,15 @@ def get_last_index_included( y_pred_proba_cumsum: NDArray of shape (n_samples, n_classes) Cumsumed probabilities in the original order. - threshold: NDArray of shape (n_alpha,) or shape (n_samples_train,) + threshold: NDArray of shape (n_alpha,), (n_samples, n_alpha) + or (n_samples_train,) Threshold to compare with y_proba_last_cumsum, can be either: - the quantiles associated with alpha values when ``cv`` == "prefit", ``cv`` == "split" or ``agg_scores`` is "mean" + (Or a quantile value for each sample, + with shape (n_samples, n_alpha)) - the conformity score from training samples otherwise (i.e., when ``cv`` is a CV splitter and @@ -144,17 +147,22 @@ def get_last_index_included( NDArray of shape (n_samples, n_alpha) Index of the last included sorted probability. """ + if len(threshold.shape) == 1: + formatted_threshold = threshold[np.newaxis, :] + else: + formatted_threshold = threshold + if include_last_label or include_last_label == 'randomized': y_pred_index_last = ( np.ma.masked_less( y_pred_proba_cumsum - - threshold[np.newaxis, :], + - formatted_threshold, -EPSILON ).argmin(axis=1) ) else: max_threshold = np.maximum( - threshold[np.newaxis, :], + formatted_threshold, np.min(y_pred_proba_cumsum, axis=1) ) y_pred_index_last = np.argmax( diff --git a/mapie/futur/split/__init__.py b/mapie/futur/split/__init__.py index e2032477e..c91f9b621 100644 --- a/mapie/futur/split/__init__.py +++ b/mapie/futur/split/__init__.py @@ -1,5 +1,7 @@ +from .classification import SplitCPClassifier from .regression import SplitCPRegressor __all__ = [ + "SplitCPClassifier", "SplitCPRegressor", ] diff --git a/mapie/futur/split/classification.py b/mapie/futur/split/classification.py new file mode 100644 index 000000000..ae2108e6e --- /dev/null +++ b/mapie/futur/split/classification.py @@ -0,0 +1,409 @@ +from __future__ import annotations + +from typing import List, Optional, Tuple, Union, cast + +import numpy as np +from sklearn.base import ClassifierMixin +from sklearn.linear_model import LogisticRegression +from sklearn.model_selection import PredefinedSplit, ShuffleSplit +from sklearn.pipeline import Pipeline +from sklearn.preprocessing import LabelEncoder +from sklearn.utils.validation import check_is_fitted + +from mapie._typing import ArrayLike, NDArray +from mapie.calibrators.utils import check_calibrator +from mapie.conformity_scores import BaseClassificationScore, LACConformityScore +from mapie.conformity_scores.interface import BaseConformityScore +from mapie.conformity_scores.utils import check_classification_conformity_score +from mapie.estimator.classifier import EnsembleClassifier +from mapie.futur.split.base import BaseCalibrator, SplitCP + + +class SplitCPClassifier(SplitCP): + """ + Class to compute Conformal Predictions in a ``"split"`` approach for + classification tasks. + It is based on a predictor (a sklearn estimator), and a calibrator + (``Calibrator`` object). + + Parameters + ---------- + predictor: Optional[ClassifierMixin] + Any classifier from scikit-learn API. + (i.e. with ``fit`` and ``predict`` methods). + If ``None``, ``predictor`` defaults to a ``LogisticRegression`` + instance. + + By default ``"None"``. + + calibrator: Optional[BaseCalibrator] + A ``BaseCalibrator`` instance used to estimate the conformity scores. + + If ``None``, use as default a ``StandardCalibrator`` instance. + + By default ``None``. + + cv: Optional[Union[int, str, ShuffleSplit, PredefinedSplit]] + The splitting strategy for computing conformity scores. + Choose among: + + - Any splitter (``ShuffleSplit`` or ``PredefinedSplit``) + with ``n_splits=1``. + - ``"prefit"``, assumes that ``predictor`` has been fitted already. + All data provided in the ``calibrate`` method is then used + for the calibration. + The user has to take care manually that data used for model fitting + and calibration (the data given in the ``calibrate`` method) + are disjoint. + - ``"split"`` or ``None``: divide the data into training and + calibration subsets (using the default ``calib_size``=0.3). + The splitter used is the following: + ``sklearn.model_selection.ShuffleSplit`` with ``n_splits=1``. + + By default ``None``. + + conformity_score: Optional[BaseClassificationScore] + BaseClassificationScore instance. + It defines the link between the observed values, the predicted ones + and the conformity scores. For instance, the default ``None`` value + correspondonds to a conformity score which assumes + y_obs = y_pred + conformity_score. + + - ``None``, to use the default ``AbsoluteBaseClassificationScore`` + symetrical conformity score + - Any ``BaseClassificationScore`` class + + By default ``None``. + + alpha: Optional[float] + Between ``0.0`` and ``1.0``, represents the risk level of the + confidence interval. + Lower ``alpha`` produce larger (more conservative) prediction + intervals. + ``alpha`` is the complement of the target coverage level. + + By default ``None`` + + random_state: Optional[int] + Integer used to set the numpy seed, to get reproducible calibration + results. + If ``None``, the prediction intervals will be stochastics, and will + change if you refit the calibration (even if no arguments have change). + + WARNING: If ``random_state``is not ``None``, ``np.random.seed`` will + be changed, which will reset the seed for all the other random + number generators. It may have an impact on the rest of your code. + + By default ``None``. + + Examples + -------- + >>> import numpy as np + >>> from mapie.futur import SplitCPClassifier + >>> np.random.seed(1) + >>> X_train = np.arange(0,400,2).reshape(-1, 1) + >>> y_train = np.array([0]*50 + [1]*50 + [2]*50 + [3]*50) + >>> mapie_reg = SplitCPClassifier(alpha=0.1, random_state=1) + >>> mapie_reg = mapie_reg.fit(X_train, y_train) + >>> y_pred, y_pis = mapie_reg.predict(X_train) + >>> print(np.round(y_pred[[0, 40, 80, 120]], 2)) + [0 0 1 2] + >>> print(np.round(y_pis[[0, 40, 80, 120], :, 0], 2)) + [[1. 1. 1. 1.] + [1. 0. 0. 0.] + [0. 1. 0. 0.] + [0. 0. 1. 0.]] + """ + def __init__( + self, + predictor: Optional[ + Union[ + ClassifierMixin, + Pipeline, + List[Union[ClassifierMixin, Pipeline]] + ] + ] = None, + calibrator: Optional[BaseCalibrator] = None, + cv: Optional[Union[str, PredefinedSplit, ShuffleSplit]] = None, + alpha: Optional[float] = None, + conformity_score: Optional[BaseClassificationScore] = None, + random_state: Optional[int] = None, + ) -> None: + self.random_state = random_state + self.cv = cv + self.predictor = predictor + self.conformity_score = conformity_score + self.calibrator = calibrator + self.alpha = alpha + + def _check_estimator_fit_predict_predict_proba( + self, estimator: ClassifierMixin + ) -> None: + """ + Check that the estimator has a fit and precict method. + + Parameters + ---------- + estimator: ClassifierMixin + Estimator to train. + + Raises + ------ + ValueError + If the estimator does not have a fit or predict or predict_proba + attribute. + """ + if not (hasattr(estimator, "fit") and hasattr(estimator, "predict") + and hasattr(estimator, "predict_proba")): + raise ValueError( + "Invalid estimator. " + "Please provide a classifier with fit," + "predict, and predict_proba methods." + ) + + def _check_estimator_classification( + self, + estimator: Optional[ClassifierMixin] = None, + cv: Optional[Union[str, PredefinedSplit, ShuffleSplit]] = None, + ) -> ClassifierMixin: + """ + Check if estimator is ``None``, + and returns a ``LogisticRegression`` instance if necessary. + If the ``cv`` attribute is ``"prefit"``, + check if estimator is indeed already fitted. + + Parameters + ---------- + estimator: Optional[ClassifierMixin] + Estimator to check, by default ``None``. + + Returns + ------- + ClassifierMixin + The estimator itself or a default ``LogisticRegression`` instance. + + Raises + ------ + ValueError + If the estimator is not ``None`` + and has no ``fit`` nor ``predict`` nor ``predict_proba`` methods. + + NotFittedError + If the estimator is not fitted + and ``cv`` attribute is ``"prefit"``. + """ + if estimator is None: + estimator = LogisticRegression(multi_class="multinomial") + + if isinstance(estimator, Pipeline): + est = estimator[-1] + else: + est = estimator + self._check_estimator_fit_predict_predict_proba(est) + + if cv == "prefit": + check_is_fitted(est) + if not hasattr(est, "classes_"): + raise AttributeError( + "Invalid classifier. " + "Fitted classifier does not contain " + "'classes_' attribute." + ) + return est + + def _check_fit_parameters(self) -> ClassifierMixin: + """ + Check and replace default value of ``predictor`` and ``cv`` arguments. + Copy the ``predictor`` in ``predictor_`` attribute if ``cv="prefit"``. + """ + self.cv = self._check_cv(self.cv) + predictor = self._check_estimator_classification(self.predictor, + self.cv) + return predictor + + def _check_calib_conformity_score( + self, conformity_score: Optional[BaseClassificationScore], sym: bool + ): + if not sym: + raise ValueError("`sym` argument should be set to `True`" + "in classification") + if conformity_score is None: + return LACConformityScore() + elif isinstance(conformity_score, BaseClassificationScore): + return conformity_score + else: + raise ValueError( + "Invalid conformity_score argument.\n" + "Must be None or a BaseClassificationScore instance." + ) + + def _check_calibrate_parameters(self) -> Tuple[ + BaseClassificationScore, BaseCalibrator + ]: + """ + Check and replace default ``conformity_score``, ``alpha`` and + ``calibrator`` arguments. + """ + conformity_score_ = check_classification_conformity_score( + self.conformity_score, None + ) + calibrator = check_calibrator(self.calibrator) + calibrator.sym = True + calibrator.alpha = self.alpha + calibrator.random_state = self.random_state + self._check_alpha(self.alpha) + return conformity_score_, calibrator + + def get_conformity_scores( + self, + conformity_score: BaseConformityScore, + X: NDArray, + y: NDArray, + y_pred: NDArray, + sample_weight: Optional[ArrayLike] = None, + groups: Optional[ArrayLike] = None, + **kwargs, + ) -> NDArray: + """ + Return the conformity scores of the data + + Parameters + ---------- + conformity_score: BaseRegressionScore + Score function that handle all that is related + to conformity scores. + + X: NDArray of shape (n_samples, n_features) + Data + + y: NDArray of shape (n_samples,) + Target + + y_pred: NDArray of shape (n_samples,) + Predictions + + sample_weight: Optional[ArrayLike] of shape (n_samples,) + Sample weights of the data, used as weights in the + calibration process. + + By default ``None``. + + groups: Optional[ArrayLike] of shape (n_samples,) + Group labels for the samples used while splitting the dataset into + train/test set. + + By default ``None``. + + Returns + ------- + NDArray of shape (n_samples,) + Conformity scores. + """ + y_enc = LabelEncoder().fit(self.predictor_.classes_).transform(y) + conformity_score = cast(BaseClassificationScore, conformity_score) + + conformity_score.set_external_attributes( + classes=self.predictor_.classes_, + random_state=self.random_state, + ) + + return conformity_score.get_conformity_scores( + y, y_pred, y_enc=y_enc, X=X, + sample_weight=sample_weight, groups=groups + ) + + def predict_score( + self, X: ArrayLike + ) -> NDArray: + """ + Compute the predicted probas, used to compute the + conformity scores. + + Parameters + ---------- + X: ArrayLike + Observed values. + + Returns + ------- + NDArray of shape (n_samples, n_classes) + Predicted probas + """ + return self.predictor_.predict_proba(X) + + def predict_bounds( + self, + X: ArrayLike, + y_pred: NDArray, + **kwargs, + ) -> NDArray: + """ + Compute the prediction sets, using the fitted ``calibrator_``. + + Parameters + ---------- + X: ArrayLike + Observed values. + + y_pred: 2D NDArray + Observed Target + + z: ArrayLike + Exogenous variables + + Returns + ------- + NDArray + Prediction sets, as a 3D array of shape (n_samples, n_classes, 1) + for compatibility reason with ``MapieClassifier``. + """ + # Classification conformity scores always have ``sym=True``, so + # the calibrator_.predict result is a 2D array with + # column 1 = -1 * column 2, So the true values are in res[:, 1] + predict_kwargs = self._get_method_arguments( + self.calibrator_.predict, + dict(zip(["X", "y_pred"], [X, y_pred])), + kwargs, + ) + conformity_score_pred = self.calibrator_.predict(**predict_kwargs) + + self.conformity_score_ = cast( + BaseClassificationScore, self.conformity_score_ + ) + + self.conformity_score_.quantiles_ = conformity_score_pred[:, [1]][ + :, :, np.newaxis + ] + + y_pred_set = self.conformity_score_.get_prediction_sets( + y_pred_proba=y_pred[:, :, np.newaxis], + conformity_scores=np.array([None]), # never used in split + alpha_np=np.array([self.alpha]), + estimator=EnsembleClassifier( # For compatibility. Only need cv + self.predictor_, + n_classes=len(np.unique(self.predictor_.classes_)), + cv="prefit", + n_jobs=-1, + random_state=self.random_state, + test_size=0.1, + verbose=0, + ) + ) + + return y_pred_set + + def predict_best(self, y_pred: NDArray) -> NDArray: + """ + Compute the prediction from the probas, using ``numpy.argmax``. + + Parameters + ---------- + y_pred: NDArray + Prediction scores (can be the prediction, the probas, ...) + + Returns + ------- + NDArray + best predictions + """ + return np.argmax(y_pred, axis=1) From b31f9da1e1cdded61270e6940636d5149246b445 Mon Sep 17 00:00:00 2001 From: Damien Bouet Date: Tue, 30 Jul 2024 16:58:13 +0200 Subject: [PATCH 113/165] ADD: SplitCPClassifier tests --- mapie/futur/split/base.py | 2 +- mapie/tests/test_futur_classification.py | 567 +++++++++++++++++++++++ 2 files changed, 568 insertions(+), 1 deletion(-) create mode 100644 mapie/tests/test_futur_classification.py diff --git a/mapie/futur/split/base.py b/mapie/futur/split/base.py index 578ff7bc2..35200bd80 100644 --- a/mapie/futur/split/base.py +++ b/mapie/futur/split/base.py @@ -560,7 +560,7 @@ def predict( y_pred = self.predict_score(X) if self.alpha is None: - return y_pred + return self.predict_best(y_pred) check_is_fitted(self, self.calib_attributes) diff --git a/mapie/tests/test_futur_classification.py b/mapie/tests/test_futur_classification.py new file mode 100644 index 000000000..4c29463d6 --- /dev/null +++ b/mapie/tests/test_futur_classification.py @@ -0,0 +1,567 @@ +from __future__ import annotations + +from inspect import signature +from typing import Any, Callable, cast + +import numpy as np +import pytest +from sklearn.base import ClassifierMixin, clone +from sklearn.datasets import make_classification +from sklearn.dummy import DummyClassifier +from sklearn.ensemble import GradientBoostingClassifier +from sklearn.exceptions import NotFittedError +from sklearn.linear_model import LogisticRegression +from sklearn.model_selection import (KFold, LeaveOneOut, LeavePOut, + PredefinedSplit, RepeatedKFold, + ShuffleSplit, TimeSeriesSplit, + train_test_split) +from sklearn.pipeline import make_pipeline + +from mapie._typing import NDArray +from mapie.calibrators.ccp import (CCPCalibrator, CustomCCP, GaussianCCP, + PolynomialCCP) +from mapie.conformity_scores import LACConformityScore, APSConformityScore +from mapie.conformity_scores import BaseClassificationScore +from mapie.metrics import classification_coverage_score +from mapie.futur.split import SplitCPClassifier + +random_state = 1 +np.random.seed(random_state) + +N_CLASSES = 4 +X, y = make_classification( + n_samples=200, n_features=10, + n_informative=N_CLASSES, n_classes=N_CLASSES, + random_state=random_state +) +z = X[:, -2:] + +CV = ["prefit", "split"] + +PHI = [ + CustomCCP([lambda X: np.ones((len(X), 1))]), + PolynomialCCP([0, 1]), + GaussianCCP(5), +] +WIDTHS = { + "split": 1.84, + "prefit": 1.84, +} + +COVERAGES = { + "split": 0.885, + "prefit": 0.885, +} + + +# ======== MapieCCPRegressor ========= +def test_initialized() -> None: + """Test that initialization does not crash.""" + SplitCPClassifier(alpha=0.1) + + +def test_fit_predictor() -> None: + """Test that fit_predictor raises no errors.""" + mapie = SplitCPClassifier(alpha=0.1) + mapie.fit_predictor(X, y) + + +@pytest.mark.parametrize("z", [None, z]) +def test_fit_calibrator(z: Any) -> None: + """Test that fit_calibrator raises no errors.""" + mapie = SplitCPClassifier(alpha=0.1) + mapie.fit_predictor(X, y) + mapie.fit_calibrator(X, y, z=z) + + +@pytest.mark.parametrize("z", [None, z]) +def test_fit(z: Any) -> None: + """Test that fit raises no errors.""" + mapie = SplitCPClassifier(alpha=0.1) + mapie.fit(X, y, calib_kwargs={"z": z}) + + +@pytest.mark.parametrize("z", [None, z]) +def test_fit_predictor_fit_calibrator_predict(z: Any) -> None: + """Test that fit-calibrate-predict raises no errors.""" + mapie = SplitCPClassifier(alpha=0.1) + mapie.fit_predictor(X, y) + mapie.fit_calibrator(X, y, z=z) + mapie.predict(X, z=z) + + +@pytest.mark.parametrize("z", [None, z]) +def test_fit_predict(z: Any) -> None: + """Test that fit-predict raises no errors.""" + mapie = SplitCPClassifier(alpha=0.1) + mapie.fit(X, y, calib_kwargs={"z": z}) + mapie.predict(X, z=z) + + +@pytest.mark.parametrize("z", [None, z]) +def test_fit_predict_reg(z: Any) -> None: + """Test that fit-predict raises no errors.""" + mapie = SplitCPClassifier(calibrator=GaussianCCP(reg_param=0.1), + alpha=0.1) + mapie.fit(X, y, calib_kwargs={"z": z}) + mapie.predict(X, z=z) + + +def test_not_fitted_predictor_fit_calibrator() -> None: + """Test that calibrate before fit raises errors.""" + mapie = SplitCPClassifier(alpha=0.1) + with pytest.raises(NotFittedError): + mapie.fit_calibrator(X, y) + + +def test_calib_not_complete_phi() -> None: + """Test that a not complete calibrator definition raises a warning""" + with pytest.warns(UserWarning, match="WARNING: At least one row of the"): + mapie = SplitCPClassifier( + alpha=0.1, + calibrator=CustomCCP([lambda X: (X[:, 0] > 0).astype(int)], + bias=False) + ) + mapie.fit(X, y) + + +def test_predict_not_complete_phi() -> None: + """Test that a not complete calibrator definition raises a warning""" + with pytest.warns(UserWarning, match="WARNING: At least one row of the"): + mapie = SplitCPClassifier( + alpha=0.1, + calibrator=CustomCCP([lambda X: (X[:, 0] > 0).astype(int)], + bias=False) + ) + mapie.fit(X[X[:, 0] < 0], y[X[:, 0] < 0]) + mapie.predict(X) + + +def test_no_fit_predict() -> None: + """Test that predict before fit raises errors.""" + mapie = SplitCPClassifier(alpha=0.1) + with pytest.raises(NotFittedError): + mapie.predict(X) + + +def test_no_calibrate_predict() -> None: + """Test that predict before fit raises errors.""" + mapie = SplitCPClassifier(alpha=0.1) + mapie.fit_predictor(X, y) + with pytest.raises(NotFittedError): + mapie.predict(X) + + +def test_default_sample_weight() -> None: + """Test default sample weights.""" + mapie = SplitCPClassifier(alpha=0.1) + assert ( + signature(mapie.fit_predictor).parameters["sample_weight"].default + is None + ) + + +@pytest.mark.parametrize("predictor", [0, "a", KFold(), ["a", "b"]]) +def test_invalid_predictor( + predictor: Any +) -> None: + """Test that invalid predictors raise errors.""" + with pytest.raises(ValueError, match=r".*Invalid estimator.*"): + mapie = SplitCPClassifier(predictor=predictor, alpha=0.1) + mapie.fit_predictor(X, y) + + +@pytest.mark.parametrize("predictor", [ + LogisticRegression(), + make_pipeline(LogisticRegression()), +]) +def test_invalid_prefit_predictor_calibrate( + predictor: ClassifierMixin, +) -> None: + """Test that non-fitted predictor with prefit cv raise errors when + calibrate is called""" + with pytest.raises(NotFittedError): + mapie = SplitCPClassifier(predictor=predictor, cv="prefit", + alpha=0.1) + mapie.fit_calibrator(X, y) + + +@pytest.mark.parametrize("predictor", [ + LogisticRegression(), + make_pipeline(LogisticRegression()), +]) +def test_invalid_prefit_predictor_fit( + predictor: ClassifierMixin, +) -> None: + """Test that non-fitted predictor with prefit cv raise errors when fit + is called.""" + with pytest.raises(NotFittedError): + mapie = SplitCPClassifier(predictor=predictor, cv="prefit", + alpha=0.1) + mapie.fit_predictor(X, y) + + +def test_default_parameters() -> None: + """Test default values of input parameters.""" + mapie = SplitCPClassifier(random_state=random_state, alpha=0.1) + mapie.fit(X, y) + assert isinstance(mapie.predictor_, ClassifierMixin) + assert isinstance(mapie.calibrator_, GaussianCCP) + assert isinstance(mapie.cv, ShuffleSplit) + assert mapie.alpha == 0.1 + assert isinstance(mapie.conformity_score_, BaseClassificationScore) + assert isinstance(mapie.random_state, int) + + +@pytest.mark.parametrize( + "alpha", ["a", 0, 2, 1.5, -0.3] +) +def test_invalid_alpha(alpha: Any) -> None: + with pytest.raises(ValueError): + mapie = SplitCPClassifier(alpha=alpha) + mapie.fit(X, y) + + +@pytest.mark.parametrize( + "calibrator", [1, "some_string"] +) +def test_invalid_phi(calibrator: Any) -> None: + with pytest.raises(ValueError): + mapie = SplitCPClassifier(calibrator=calibrator) + mapie.fit(X, y) + + +def test_valid_predictor() -> None: + """Test that valid predictors are not corrupted""" + mapie = SplitCPClassifier( + predictor=DummyClassifier(), + random_state=random_state, + alpha=0.1, + ) + mapie.fit_predictor(X, y) + assert isinstance(mapie.predictor, DummyClassifier) + + +@pytest.mark.parametrize( + "cv", [None, ShuffleSplit(n_splits=1), + PredefinedSplit( + test_fold=[1]*(len(X)//2) + [-1]*(len(X)-len(X)//2) + ), "prefit", "split"] +) +@pytest.mark.parametrize("predictor", [ + LogisticRegression(), + make_pipeline(LogisticRegression()), +]) +def test_valid_cv(cv: Any, predictor: ClassifierMixin) -> None: + """Test that valid cv raise no errors.""" + predictor.fit(X, y) + mapie = SplitCPClassifier(predictor, CustomCCP(bias=True), cv=cv, + alpha=0.1, random_state=random_state) + mapie.fit(X, y) + mapie.predict(X) + + +@pytest.mark.parametrize( + "cv", ["dummy", 0, 1, 1.5] + [ # Cross val splitters + 3, -1, KFold(n_splits=5), LeaveOneOut(), + RepeatedKFold(n_splits=5, n_repeats=2), ShuffleSplit(n_splits=5), + TimeSeriesSplit(), LeavePOut(p=2), + PredefinedSplit(test_fold=[0]*(len(X)//4) + [1]*(len(X)//4) + + [-1]*(len(X)-len(X)//2)), + ] +) +def test_invalid_cv(cv: Any) -> None: + """Test that invalid agg_functions raise errors.""" + with pytest.raises(ValueError, match="Invalid cv argument."): + mapie = SplitCPClassifier(cv=cv, alpha=0.1, + random_state=random_state) + mapie.fit_predictor(X, y) + + +@pytest.mark.parametrize("alpha", [0.2]) +@pytest.mark.parametrize("calibrator", PHI) +@pytest.mark.parametrize("cv", CV) +@pytest.mark.parametrize("predictor", [ + LogisticRegression(), + make_pipeline(LogisticRegression()), +]) +def test_fit_calibrate_combined_equivalence( + alpha: Any, cv: Any, calibrator: CCPCalibrator, predictor: ClassifierMixin +) -> None: + """Test predict output shape.""" + predictor_1 = clone(predictor) + predictor_2 = clone(predictor) + if cv == "prefit": + predictor_1.fit(X, y) + predictor_2.fit(X, y) + + np.random.seed(random_state) + mapie_1 = SplitCPClassifier( + predictor=predictor_1, calibrator=calibrator, + cv=cv, alpha=alpha, random_state=random_state + ) + np.random.seed(random_state) + mapie_2 = SplitCPClassifier( + predictor=predictor_2, calibrator=calibrator, + cv=cv, alpha=alpha, random_state=random_state + ) + mapie_1.fit(X, y, calib_kwargs={"z": z}) + mapie_2.fit_predictor(X, y) + mapie_2.fit_calibrator(X, y, z=z) + y_pred_1, y_pis_1 = mapie_1.predict(X, z=z) + y_pred_2, y_pis_2 = mapie_2.predict(X, z=z) + np.testing.assert_allclose(y_pred_1, y_pred_2) + np.testing.assert_allclose(y_pis_1[:, 0, 0], y_pis_2[:, 0, 0]) + np.testing.assert_allclose(y_pis_1[:, 1, 0], y_pis_2[:, 1, 0]) + + +@pytest.mark.parametrize("calibrator", PHI) +@pytest.mark.parametrize("cv", CV) +@pytest.mark.parametrize("predictor", [ + LogisticRegression(), + make_pipeline(LogisticRegression()), +]) +def test_predict_output_shape_alpha( + cv: Any, calibrator: CCPCalibrator, predictor: ClassifierMixin +) -> None: + """Test predict output shape.""" + if cv == "prefit": + predictor.fit(X, y) + + mapie = SplitCPClassifier( + predictor=predictor, calibrator=calibrator, + cv=cv, alpha=0.1, random_state=random_state + ) + mapie.fit(X, y, calib_kwargs={"z": z}) + y_pred, y_pis = mapie.predict(X, z=z) + assert y_pred.shape == (X.shape[0],) + assert y_pis.shape == (X.shape[0], N_CLASSES, 1) + + +@pytest.mark.parametrize("calibrator", PHI) +@pytest.mark.parametrize("cv", CV) +@pytest.mark.parametrize("predictor", [ + LogisticRegression(), + make_pipeline(LogisticRegression()), +]) +def test_predict_output_shape_no_alpha( + cv: Any, calibrator: CCPCalibrator, predictor: ClassifierMixin +) -> None: + """Test predict output shape.""" + if cv == "prefit": + predictor.fit(X, y) + + mapie = SplitCPClassifier( + predictor=predictor, calibrator=calibrator, cv=cv, + alpha=None, random_state=random_state + ) + mapie.fit(X, y, calib_kwargs={"z": z}) + y_pred = mapie.predict(X, z=z) + assert np.array(y_pred).shape == (X.shape[0],) + + +@pytest.mark.parametrize("template", PHI) +@pytest.mark.parametrize("predictor", [ + LogisticRegression(), + make_pipeline(LogisticRegression()), +]) +def test_same_results_prefit_split( + template: CCPCalibrator, + predictor: ClassifierMixin, +) -> None: + """ + Test checking that if split and prefit method have exactly + the same data split, then we have exactly the same results. + """ + cv = ShuffleSplit(n_splits=1, test_size=0.1, random_state=random_state) + train_index, _ = list(cv.split(X))[0] + test_fold = np.ones(len(X)) + test_fold[train_index] = -1 + + pred_cv = PredefinedSplit(test_fold) + train_index, val_index = list(pred_cv.split(X, y))[0] + X_train, X_calib = X[train_index], X[val_index] + y_train, y_calib = y[train_index], y[val_index] + z_calib = z[val_index] + + calibrator = cast(CCPCalibrator, clone(template)) + calibrator._transform_params(X, y, z) + calibrator.init_value = calibrator.init_value_ + if isinstance(calibrator, GaussianCCP): + calibrator.points = (calibrator.points_, calibrator.sigmas_) + + mapie_1 = SplitCPClassifier( + clone(predictor), clone(calibrator), pred_cv, alpha=0.1, + random_state=random_state, + ) + + fitted_predictor = clone(predictor).fit(X_train, y_train) + mapie_2 = SplitCPClassifier( + fitted_predictor, clone(calibrator), cv="prefit", alpha=0.1, + random_state=random_state, + ) + + mapie_1.fit(X, y, calib_kwargs={"z": z}) + mapie_2.fit(X_calib, y_calib, calib_kwargs={"z": z_calib}) + + y_pred_1, y_pis_1 = mapie_1.predict(X, z=z) + y_pred_2, y_pis_2 = mapie_2.predict(X, z=z) + + np.testing.assert_allclose(y_pred_1, y_pred_2) + np.testing.assert_allclose(y_pis_1[:, 0, 0], y_pis_2[:, 0, 0]) + np.testing.assert_allclose(y_pis_1[:, 1, 0], y_pis_2[:, 1, 0]) + + +@pytest.mark.parametrize("calibrator", PHI) +@pytest.mark.parametrize("cv", CV) +@pytest.mark.parametrize("predictor", [ + LogisticRegression(), + make_pipeline(LogisticRegression()), +]) +def test_results_for_ordered_alpha( + cv: Any, calibrator: CCPCalibrator, predictor: ClassifierMixin +) -> None: + """ + Test that prediction intervals lower (upper) bounds give + consistent results for ordered alphas. + """ + if cv == "prefit": + predictor.fit(X, y) + + calibrator._transform_params(X) + + mapie_reg_1 = SplitCPClassifier(predictor, clone(calibrator), cv=cv, + alpha=0.05, random_state=random_state) + mapie_reg_2 = SplitCPClassifier(predictor, clone(calibrator), cv=cv, + alpha=0.1, random_state=random_state) + + mapie_reg_1.fit(X, y, calib_kwargs={"z": z}) + _, y_pis_1 = mapie_reg_1.predict(X, z=z) + mapie_reg_2.fit(X, y, calib_kwargs={"z": z}) + _, y_pis_2 = mapie_reg_1.predict(X, z=z) + + assert (y_pis_1[:, 0, 0] <= y_pis_2[:, 0, 0]).all() + assert (y_pis_1[:, 1, 0] >= y_pis_2[:, 1, 0]).all() + + +def test_results_split() -> None: + """Test prefit results on a standard train/validation/test split.""" + cv = ShuffleSplit(1, test_size=0.5, random_state=random_state) + predictor = LogisticRegression() + mapie = SplitCPClassifier( + predictor=predictor, calibrator=clone(PHI[0]), cv=cv, alpha=0.2, + random_state=random_state + ) + mapie.fit(X, y) + _, y_ps = mapie.predict(X) + width_mean = y_ps.sum(axis=1).mean() + coverage = classification_coverage_score(y, y_ps[:, :, 0]) + np.testing.assert_allclose(width_mean, WIDTHS["split"], rtol=1e-5) + np.testing.assert_allclose(coverage, COVERAGES["split"], rtol=1e-5) + + +def test_results_prefit() -> None: + """Test prefit results on a standard train/validation/test split.""" + X_train, X_calib, y_train, y_calib = train_test_split( + X, y, test_size=0.5, random_state=1 + ) + predictor = LogisticRegression().fit(X_train, y_train) + mapie = SplitCPClassifier( + predictor=predictor, calibrator=clone(PHI[0]), cv="prefit", alpha=0.2, + random_state=random_state + ) + mapie.fit(X_calib, y_calib) + _, y_ps = mapie.predict(X) + width_mean = y_ps.sum(axis=1).mean() + coverage = classification_coverage_score(y, y_ps[:, :, 0]) + np.testing.assert_allclose(width_mean, WIDTHS["prefit"], rtol=1e-5) + np.testing.assert_allclose(coverage, COVERAGES["prefit"], rtol=1e-5) + + +@pytest.mark.parametrize("calibrator", PHI) +@pytest.mark.parametrize("cv", CV) +@pytest.mark.parametrize("predictor", [ + LogisticRegression(), + make_pipeline(LogisticRegression()), +]) +@pytest.mark.parametrize( + "conformity_score", [LACConformityScore(), APSConformityScore()] +) +def test_conformity_score( + cv: Any, + calibrator: CCPCalibrator, + predictor: ClassifierMixin, + conformity_score: BaseClassificationScore, +) -> None: + """Test that any conformity score function with MAPIE raises no error.""" + + if cv == "prefit": + predictor.fit(X, y) + + mapie = SplitCPClassifier( + predictor=predictor, + calibrator=calibrator, + cv=cv, + alpha=0.1, + conformity_score=conformity_score, + random_state=random_state, + ) + mapie.fit(X, y, calib_kwargs={"z": z}) + mapie.predict(X, z=z) + + +def test_fit_parameters_passing() -> None: + """ + Test passing fit parameters, here early stopping at iteration 3. + Checks that underlying GradientBoosting predictors have used 3 iterations + only during boosting, instead of default value for n_predictors (=100). + """ + gb = GradientBoostingClassifier(random_state=random_state) + + mapie = SplitCPClassifier(predictor=gb, alpha=0.1, + random_state=random_state) + + def early_stopping_monitor(i, est, locals): + """Returns True on the 3rd iteration.""" + if i == 2: + return True + else: + return False + + mapie.fit(X, y, fit_kwargs={"monitor": early_stopping_monitor}) + + assert cast(ClassifierMixin, mapie.predictor).estimators_.shape[0] == 3 + + +@pytest.mark.parametrize("custom_method", [ + lambda local_arg: local_arg, + lambda self_arg: self_arg, + lambda kwarg_arg: kwarg_arg, + lambda local_arg, *args, **kwargs: local_arg, + lambda self_arg, *args, **kwargs: self_arg, + lambda kwarg_arg, *args, **kwargs: kwarg_arg, +]) +def test_get_method_arguments(custom_method: Callable) -> None: + mapie = SplitCPClassifier(alpha=0.1) + mapie.self_arg = 1 + local_vars = {"local_arg": 1} + kwarg_args = {"kwarg_arg": 1} + + arguments = mapie._get_method_arguments(custom_method, local_vars, + kwarg_args) + custom_method(**arguments) + + +@pytest.mark.parametrize("conformity_scores", [ + np.random.rand(200, 1), + np.random.rand(200), +]) +def test_check_conformity_scores(conformity_scores: NDArray) -> None: + mapie = SplitCPClassifier() + assert mapie._check_conformity_scores(conformity_scores).shape == (200,) + + +def test_check_conformity_scores_error() -> None: + mapie = SplitCPClassifier() + with pytest.raises(ValueError, match="Invalid conformity scores."): + mapie._check_conformity_scores(np.random.rand(200, 5)) From 6d9465812c223b4c3e982b843980a46a06eefeb6 Mon Sep 17 00:00:00 2001 From: Damien Bouet Date: Tue, 30 Jul 2024 17:22:32 +0200 Subject: [PATCH 114/165] FIX: coverage --- mapie/futur/split/classification.py | 34 ++++++------------------ mapie/tests/test_futur_classification.py | 24 +++++++++++++++++ 2 files changed, 32 insertions(+), 26 deletions(-) diff --git a/mapie/futur/split/classification.py b/mapie/futur/split/classification.py index ae2108e6e..8bb2c188e 100644 --- a/mapie/futur/split/classification.py +++ b/mapie/futur/split/classification.py @@ -12,7 +12,7 @@ from mapie._typing import ArrayLike, NDArray from mapie.calibrators.utils import check_calibrator -from mapie.conformity_scores import BaseClassificationScore, LACConformityScore +from mapie.conformity_scores import BaseClassificationScore from mapie.conformity_scores.interface import BaseConformityScore from mapie.conformity_scores.utils import check_classification_conformity_score from mapie.estimator.classifier import EnsembleClassifier @@ -99,7 +99,7 @@ class SplitCPClassifier(SplitCP): Examples -------- >>> import numpy as np - >>> from mapie.futur import SplitCPClassifier + >>> from mapie.futur.split import SplitCPClassifier >>> np.random.seed(1) >>> X_train = np.arange(0,400,2).reshape(-1, 1) >>> y_train = np.array([0]*50 + [1]*50 + [2]*50 + [3]*50) @@ -108,11 +108,11 @@ class SplitCPClassifier(SplitCP): >>> y_pred, y_pis = mapie_reg.predict(X_train) >>> print(np.round(y_pred[[0, 40, 80, 120]], 2)) [0 0 1 2] - >>> print(np.round(y_pis[[0, 40, 80, 120], :, 0], 2)) - [[1. 1. 1. 1.] - [1. 0. 0. 0.] - [0. 1. 0. 0.] - [0. 0. 1. 0.]] + >>> print(y_pis[[0, 40, 80, 120], :, 0]) + [[ True True True True] + [ True False False False] + [False True False False] + [False False True False]] """ def __init__( self, @@ -205,9 +205,7 @@ def _check_estimator_classification( check_is_fitted(est) if not hasattr(est, "classes_"): raise AttributeError( - "Invalid classifier. " - "Fitted classifier does not contain " - "'classes_' attribute." + "Fitted classifier must contain 'classes_' attribute." ) return est @@ -221,22 +219,6 @@ def _check_fit_parameters(self) -> ClassifierMixin: self.cv) return predictor - def _check_calib_conformity_score( - self, conformity_score: Optional[BaseClassificationScore], sym: bool - ): - if not sym: - raise ValueError("`sym` argument should be set to `True`" - "in classification") - if conformity_score is None: - return LACConformityScore() - elif isinstance(conformity_score, BaseClassificationScore): - return conformity_score - else: - raise ValueError( - "Invalid conformity_score argument.\n" - "Must be None or a BaseClassificationScore instance." - ) - def _check_calibrate_parameters(self) -> Tuple[ BaseClassificationScore, BaseCalibrator ]: diff --git a/mapie/tests/test_futur_classification.py b/mapie/tests/test_futur_classification.py index 4c29463d6..01c28de0e 100644 --- a/mapie/tests/test_futur_classification.py +++ b/mapie/tests/test_futur_classification.py @@ -565,3 +565,27 @@ def test_check_conformity_scores_error() -> None: mapie = SplitCPClassifier() with pytest.raises(ValueError, match="Invalid conformity scores."): mapie._check_conformity_scores(np.random.rand(200, 5)) + + +def test_invalid_classifier(): + """ + Fitted classifier must contain the ``classes_`` attribute + """ + class Custom(ClassifierMixin): + def __init__(self) -> None: + self.fitted_ = True + + def fit(): + pass + + def predict(): + pass + + def predict_proba(): + pass + + invalid_cls = Custom() + mapie = SplitCPClassifier(invalid_cls, cv="prefit", alpha=0.1) + with pytest.raises(AttributeError, + match="Fitted classifier must contain 'classes_' attr"): + mapie.fit(X, y) From 24ab0fc253338d8440701d2eb62f4b6d4c3e45d2 Mon Sep 17 00:00:00 2001 From: Damien Bouet Date: Tue, 30 Jul 2024 17:30:35 +0200 Subject: [PATCH 115/165] FIX: coverage --- mapie/tests/test_futur_classification.py | 5 +++++ 1 file changed, 5 insertions(+) diff --git a/mapie/tests/test_futur_classification.py b/mapie/tests/test_futur_classification.py index 01c28de0e..172ebd936 100644 --- a/mapie/tests/test_futur_classification.py +++ b/mapie/tests/test_futur_classification.py @@ -585,6 +585,11 @@ def predict_proba(): pass invalid_cls = Custom() + # for coverage: + invalid_cls.fit() + invalid_cls.predict() + invalid_cls.predict_proba() + mapie = SplitCPClassifier(invalid_cls, cv="prefit", alpha=0.1) with pytest.raises(AttributeError, match="Fitted classifier must contain 'classes_' attr"): From 360cb39e5e766596583378d3930093d932aa9a65 Mon Sep 17 00:00:00 2001 From: Damien Bouet Date: Tue, 30 Jul 2024 17:39:33 +0200 Subject: [PATCH 116/165] FIX test --- mapie/tests/test_futur_classification.py | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) diff --git a/mapie/tests/test_futur_classification.py b/mapie/tests/test_futur_classification.py index 172ebd936..70bb38eae 100644 --- a/mapie/tests/test_futur_classification.py +++ b/mapie/tests/test_futur_classification.py @@ -575,13 +575,13 @@ class Custom(ClassifierMixin): def __init__(self) -> None: self.fitted_ = True - def fit(): + def fit(self): pass - def predict(): + def predict(self): pass - def predict_proba(): + def predict_proba(self): pass invalid_cls = Custom() From 269546d11a17da624e0c6ac17319bc1645125859 Mon Sep 17 00:00:00 2001 From: Damien Bouet Date: Tue, 30 Jul 2024 17:51:16 +0200 Subject: [PATCH 117/165] FIX docstring example --- mapie/futur/split/classification.py | 9 ++++----- 1 file changed, 4 insertions(+), 5 deletions(-) diff --git a/mapie/futur/split/classification.py b/mapie/futur/split/classification.py index 8bb2c188e..7fc48788b 100644 --- a/mapie/futur/split/classification.py +++ b/mapie/futur/split/classification.py @@ -106,11 +106,10 @@ class SplitCPClassifier(SplitCP): >>> mapie_reg = SplitCPClassifier(alpha=0.1, random_state=1) >>> mapie_reg = mapie_reg.fit(X_train, y_train) >>> y_pred, y_pis = mapie_reg.predict(X_train) - >>> print(np.round(y_pred[[0, 40, 80, 120]], 2)) - [0 0 1 2] - >>> print(y_pis[[0, 40, 80, 120], :, 0]) - [[ True True True True] - [ True False False False] + >>> print(np.round(y_pred[[40, 80, 120]], 2)) + [0 1 2] + >>> print(y_pis[[40, 80, 120], :, 0]) + [[ True False False False] [False True False False] [False False True False]] """ From 9c0b09ff0f0d1c852a999cec4f8c0677000968f9 Mon Sep 17 00:00:00 2001 From: Damien Bouet Date: Wed, 31 Jul 2024 11:17:14 +0200 Subject: [PATCH 118/165] UPD: change optimizer to SLSQP --- .../4-tutorials/plot_ccp_class_tutorial.py | 4 ++-- mapie/calibrators/ccp/base.py | 10 ++++++++++ mapie/calibrators/standard.py | 3 --- 3 files changed, 12 insertions(+), 5 deletions(-) diff --git a/examples/classification/4-tutorials/plot_ccp_class_tutorial.py b/examples/classification/4-tutorials/plot_ccp_class_tutorial.py index b48270ec5..2b7323c19 100644 --- a/examples/classification/4-tutorials/plot_ccp_class_tutorial.py +++ b/examples/classification/4-tutorials/plot_ccp_class_tutorial.py @@ -301,14 +301,14 @@ def plot_cond_coverage(scores, names): # ============= CCP indicator groups on predicted classes ============= mapie_ccp_y_pred = SplitCPClassifier( LogisticRegression(), - CustomCCP(lambda y_pred: y_pred), + calibrator=CustomCCP(lambda y_pred: y_pred), alpha=ALPHA, cv=cv, conformity_score=LACConformityScore() ) # ======================== CCP Gaussian kernels ======================== mapie_ccp_gauss = SplitCPClassifier( LogisticRegression(), - calibrator=GaussianCCP(40, 1, bias=True, reg_param=1e-4), + calibrator=GaussianCCP(40, 1, bias=True), alpha=ALPHA, cv=cv, conformity_score=LACConformityScore() ) diff --git a/mapie/calibrators/ccp/base.py b/mapie/calibrators/ccp/base.py index fb27bd11e..57019e1db 100644 --- a/mapie/calibrators/ccp/base.py +++ b/mapie/calibrators/ccp/base.py @@ -314,6 +314,9 @@ def fit( Other argument, used in sklear.optimize.minimize. Can be any of : ``method, jac, hess, hessp, bounds, constraints, tol, callback, options`` + + By default, we use ``method='SLSQP'`` and + ``options={'maxiter: 1000}``. """ check_required_arguments(self.alpha) self.alpha = cast(float, self.alpha) @@ -337,6 +340,13 @@ def fit( not_nan_index = np.where(~np.isnan(conformity_scores_calib))[0] # Some conf. score values may be nan (ex: with ResidualNormalisedScore) + if "method" not in optim_kwargs: + optim_kwargs["method"] = "SLSQP" + if "options" not in optim_kwargs: + optim_kwargs["options"] = {} + if "maxiter" not in optim_kwargs["options"]: + optim_kwargs["options"]["maxiter"] = 1000 + optimal_beta_up = cast(OptimizeResult, minimize( calibrator_optim_objective, self.init_value_, args=( diff --git a/mapie/calibrators/standard.py b/mapie/calibrators/standard.py index 4f65b1697..fe80a383a 100644 --- a/mapie/calibrators/standard.py +++ b/mapie/calibrators/standard.py @@ -55,9 +55,6 @@ def fit( allow_infinite_bounds: bool Allow infinite prediction intervals to be produced. - - optim_kwargs: Dict - Other argument, used in sklear.optimize.minimize """ check_required_arguments(self.alpha) self.alpha = cast(float, self.alpha) From 20e94b2a118d751c1dbb1affab8c4637a4120364 Mon Sep 17 00:00:00 2001 From: Damien Bouet Date: Wed, 31 Jul 2024 11:20:12 +0200 Subject: [PATCH 119/165] UPD: change optimize to SLSQP --- mapie/calibrators/ccp/base.py | 10 ++++++++++ mapie/calibrators/standard.py | 3 --- 2 files changed, 10 insertions(+), 3 deletions(-) diff --git a/mapie/calibrators/ccp/base.py b/mapie/calibrators/ccp/base.py index fb27bd11e..57019e1db 100644 --- a/mapie/calibrators/ccp/base.py +++ b/mapie/calibrators/ccp/base.py @@ -314,6 +314,9 @@ def fit( Other argument, used in sklear.optimize.minimize. Can be any of : ``method, jac, hess, hessp, bounds, constraints, tol, callback, options`` + + By default, we use ``method='SLSQP'`` and + ``options={'maxiter: 1000}``. """ check_required_arguments(self.alpha) self.alpha = cast(float, self.alpha) @@ -337,6 +340,13 @@ def fit( not_nan_index = np.where(~np.isnan(conformity_scores_calib))[0] # Some conf. score values may be nan (ex: with ResidualNormalisedScore) + if "method" not in optim_kwargs: + optim_kwargs["method"] = "SLSQP" + if "options" not in optim_kwargs: + optim_kwargs["options"] = {} + if "maxiter" not in optim_kwargs["options"]: + optim_kwargs["options"]["maxiter"] = 1000 + optimal_beta_up = cast(OptimizeResult, minimize( calibrator_optim_objective, self.init_value_, args=( diff --git a/mapie/calibrators/standard.py b/mapie/calibrators/standard.py index 4f65b1697..fe80a383a 100644 --- a/mapie/calibrators/standard.py +++ b/mapie/calibrators/standard.py @@ -55,9 +55,6 @@ def fit( allow_infinite_bounds: bool Allow infinite prediction intervals to be produced. - - optim_kwargs: Dict - Other argument, used in sklear.optimize.minimize """ check_required_arguments(self.alpha) self.alpha = cast(float, self.alpha) From 66fe957e20fa5a130d1aa72c1b3a1272ed4be03b Mon Sep 17 00:00:00 2001 From: Damien Bouet Date: Wed, 31 Jul 2024 12:10:36 +0200 Subject: [PATCH 120/165] UPD: update CandC notebook after changing optimizer --- notebooks/regression/tutorial_ccp_CandC.ipynb | 31 ++++++++++--------- 1 file changed, 16 insertions(+), 15 deletions(-) diff --git a/notebooks/regression/tutorial_ccp_CandC.ipynb b/notebooks/regression/tutorial_ccp_CandC.ipynb index 4ebfa0b31..c72fb1953 100644 --- a/notebooks/regression/tutorial_ccp_CandC.ipynb +++ b/notebooks/regression/tutorial_ccp_CandC.ipynb @@ -608,7 +608,7 @@ "metadata": {}, "outputs": [], "source": [ - "calibrator_1 = GaussianCCP(40, 7, normalized=True, reg_param=1e-4)\n", + "calibrator_1 = GaussianCCP(40, sigma=7)\n", "\n", "mapie_ccp = SplitCPRegressor(\n", " estimator, calibrator_1, cv=cv, alpha=ALPHA,\n", @@ -632,7 +632,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABxYAAAH5CAYAAACs6ttbAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3wUdf4/8NfuzPZsEtKBAKGDiiIWRP0qeJwCFrAfoICFs3fP+vME7yynh4IF8cQDRfT0DsSGgKKAAoKgFCEkJJAC6T272To7vz8ms+wmW2a2b3g/Hw8fkd3ZnU82bXZe836/FTzP8yCEEEIIIYQQQgghhBBCCCGEkACU8V4AIYQQQgghhBBCCCGEEEIIISTxUbBICCGEEEIIIYQQQgghhBBCCAmKgkVCCCGEEEIIIYQQQgghhBBCSFAULBJCCCGEEEIIIYQQQgghhBBCgmLjvQBCCCGEEEIIIYQQQgghhJCeiOM4OByOeC+DEMnUajWUSv91iRQsEkIIIYQQQgghhBBCCCGERBDP86ipqUFLS0u8l0KILEqlEgMHDoRarfZ5v4LneT7GayKEEEIIIYQQQgghhBBCCOmxqqur0dLSgpycHOj1eigUingviZCgXC4XqqqqoFKp0L9/f5/ft1SxSAghhBBCCCGEEEIIIYQQEiEcx7lDxczMzHgvhxBZsrOzUVVVBafTCZVK1e1+/01SCSGEEEIIIYQQQgghhBBCiCziTEW9Xh/nlRAin9gCleM4n/dTsEgISRjLly+HQqFAWVmZ+7bx48dj/PjxcVsTIYQQQgghhBBCCCGEhILan5JkFOz7loJFQkhY9u/fj+uuuw4DBgyAVqtF37598cc//hFvvPFGVPZXVVWFefPmYc+ePVF5fkIIIYQkp9LSUtxxxx0YNGgQtFotUlNTccEFF2DRokWwWCzu7RwOB15//XWcc845MBqNSElJwTnnnIM33ngDTqez2/MWFBRAoVC4/zMYDDj33HPxwQcfxPLTI4QQQkiSkHpMwnEcli1bhvHjxyMjIwMajQYFBQW45ZZbsGvXLvd24kXY4n9arRbDhg3Dvffei9ra2nh8ioQQQk5yNGOREBKybdu2YcKECejfvz/mzp2LvLw8VFZW4ueff8aiRYtw3333hb2PDRs2eP27qqoK8+fPR0FBAUaPHh328xNCCCEk+X399de4/vrrodFoMGvWLJx22mmw2+346aef8Je//AUHDhzAv/71L5jNZlx++eXYvHkzrrjiCsyZMwdKpRLr1q3D/fffjzVr1uDLL7/s1q5o9OjReOSRRwAA1dXVWLp0KWbPng2bzYa5c+fG41MmhBBCSAKSekxisVhwzTXXYN26dbjooovw1FNPISMjA2VlZfj000/x/vvvo6KiAvn5+e7nfu655zBw4EBYrVb89NNPePvtt7F27Vr8/vvv1GqREEJITFGwSAgJ2fPPP4+0tDT88ssvSE9P97qvrq4uIvsQ+zkTQgghhPhy9OhR/OlPf8KAAQPw/fffo3fv3u777rnnHpSUlODrr78GADz88MPYvHkz3njjDdx7773u7e666y689dZbuPfee/GXv/wFb731ltc++vbti5tuusn97zlz5mDQoEF47bXXKFgkhBBCCAB5xyR/+ctfsG7dOrz22mt48MEHvZ7n2WefxWuvvdbt+SdPnoyzzz4bAHD77bcjMzMTr776Kj7//HNMnz49ep8YIYREyZw5c9DS0oI1a9YAEEZijR49GgsXLgz5OSPxHCQ4aoVKCAlZaWkpTj311G6hIgDk5OS4/1+hUODee+/FypUrMXz4cGi1Wpx11lnYsmVL0H14zljctGkTzjnnHADALbfc4m4Dsnz58kh8OoQQQghJQi+//DJMJhPee+89rxN4oiFDhuCBBx7AsWPH8N577+GSSy7xChVF99xzDyZMmIB//etfOH78eMB9ZmdnY8SIESgtLY3Y50EIIYSQ5CbnmOSdd97BH//4x26hIgAwDINHH33Uq1rRl0suuQSAEGgSQkgkzZkzx33eVa1WY8iQIXjuued8jo6IpNWrV+Nvf/ubpG03bdoEhUKBlpaWkJ+DhI6CRUJIyAYMGIDdu3fj999/D7rt5s2b8eCDD+Kmm27Cc889h8bGRkyaNEnSY0UjR47Ec889BwD485//jBUrVmDFihW46KKLQv4cCCGEEJLcvvzySwwaNAjnn39+wO2++eYbcByHWbNm+d1m1qxZcDqdWLduXcDncjqdOHbsGHr16hXSmgkhhBDS88g5JnE6nbj55pvD2p94gVNmZmZYz0MIIb5MmjQJ1dXVOHz4MB555BHMmzcPr7zySrft7HZ7xPaZkZEBo9EY9+cgwVGwSAgJ2aOPPoqOjg6MHj0a559/Ph5//HFs2LABDoej27a///471q1bh2eeeQaPPfYYtmzZAp7n8de//lXy/nJzczF58mQAwLhx43DTTTfhpptuwqBBgyL2ORFCCCEkebS1teH48eMYNWpU0G0PHjwIADjjjDP8biPeJ24rcjgcaGhoQENDA37//XfceuutqKmpwXXXXRfG6gkhhBDSU8g5JiksLAQASdt6am1tRUNDA44dO4ZPPvkEzz33HHQ6Ha644oqQ1kwIIYFoNBrk5eVhwIABuOuuuzBx4kR88cUXmDNnDqZNm4bnn38effr0wfDhwwEAlZWVuOGGG5Ceno6MjAxMnToVZWVl7ufjOA4PP/ww0tPTkZmZicceeww8z3vtc/z48V6V3DabDY8//jj69esHjUaDIUOG4L333kNZWRkmTJgAAOjVqxcUCgXmzJnj8zmam5sxa9Ys9OrVC3q9HpMnT8bhw4fd9y9fvhzp6elYv349Ro4ciZSUFHeoSvyjGYuEkJD98Y9/xPbt2/Hiiy9i/fr12L59O15++WVkZ2dj6dKluOqqq9zbjhs3DmeddZb73/3798fUqVPx5ZdfguM4MAwTj0+BEEIIIUmsra0NACRdkdre3h50W/E+cVvRhg0bkJ2d7XXbLbfc4vOKXUIIIYScfOQck8jZ1tPEiRO9/j1gwACsXLkSffv2lfU8hJD46ejowKFDh2K+3xEjRkCv14f1HDqdDo2NjQCAjRs3IjU1Fd9++y0A4ULMyy67DOPGjcOPP/4IlmXx97//HZMmTcK+ffugVquxYMECLF++HP/+978xcuRILFiwAJ999pm7rbMvs2bNwvbt2/H666/jjDPOwNGjR9HQ0IB+/fph1apVuPbaa1FUVITU1FTodDqfzzFnzhwcPnwYX3zxBVJTU/H4449jypQpOHjwIFQqFQDh6/LPf/4TK1asgFKpxE033YRHH30UK1euDOs168koWCSEhOWcc87B6tWrYbfbsXfvXnz22Wd47bXXcN1112HPnj045ZRTAABDhw7t9thhw4aho6MD9fX1yMvLi/XSCSGEEJLkUlNTAXQPAn3xFxp6Eu/znBUNAGPHjsXf//53cByH33//HX//+9/R3NwMtVod6tIJIYQQ0oPIOSaRs62nt956C8OGDQPLssjNzcXw4cOhVFIzOkKSyaFDh7wKL2Jl9+7dGDNmTEiP5XkeGzduxPr163Hfffehvr4eBoMBS5cudb8f+vDDD+FyubB06VIoFAoAwLJly5Ceno5Nmzbh0ksvxcKFC/Hkk0/immuuAQAsWbIE69ev97vf4uJifPrpp/j222/dF1Z4dq3LyMgAILx3S09P9/kcYqC4detWd5vqlStXol+/flizZg2uv/56AEIwumTJEgwePBgAcO+997rHcRHfKFgkhESEWq3GOeecg3POOQfDhg3DLbfcgv/+97949tln4700QgghhPRQqamp6NOnj6SZzeLFTvv27cPo0aN9brNv3z4A6NZmPSsry/1m9rLLLsOIESNwxRVXYNGiRXj44YfD+AwIIYQQ0hPIOSYZMWIEAGD//v1+j0l8Offcc3H22WeHukRCSAIYMWIEdu/eHZf9yvXVV18hJSUFDocDLpcLM2bMwLx583DPPfdg1KhRXhdZ7t27FyUlJd0qsa1WK0pLS9Ha2orq6mqMHTvWfR/Lsjj77LO7tUMV7dmzBwzD4OKLL5a9dlFhYSFYlvXab2ZmJoYPH+5uSw0Aer3eHSoCQO/evVFXVxfyfk8GFCwSQiJOPND17EXt2btaVFxcDL1e3621WCDiVS+EEEIIIQBwxRVX4F//+he2b9+OcePG+d1u8uTJYBgGK1aswKxZs3xu88EHH0CtVmPq1KkB93n55Zfj4osvxgsvvIA77rgDBoMhrM+BEEIIIclP7jHJhx9+iJtvvjmGKySExJterw+5cjDWJkyYgLfffhtqtRp9+vQBy56Ikrq+/zGZTDjrrLN8tg6Vc97Xk7/WptEgtkQVKRQKv4EnEVC9PCEkZD/88IPPX7Jr164FAPfwXgDYvn07fv31V/e/Kysr8fnnn+PSSy+VNV9R/MPV0tIS4qoJIYQQ0pM89thjMBgMuP3221FbW9vt/tLSUixatAj5+fm47bbb8N133+Htt9/utt2SJUvw/fff44477kBmZmbQ/T7++ONobGzEu+++G5HPgxBCCCHJTeoxSb9+/TB37lxs2LABb7zxRrftXC4XFixYgGPHjsVi2YQQ4pPBYMCQIUPQv39/r1DRlzFjxuDw4cPIycnBkCFDvP5LS0tDWloaevfujR07drgf43Q6A1Zvjho1Ci6XC5s3b/Z5v1gxyXGc3+cYOXIknE6n134bGxtRVFTk7mhDQkMVi4SQkN13333o6OjA1VdfjREjRsBut2Pbtm345JNPUFBQgFtuucW97WmnnYbLLrsM999/PzQaDRYvXgwAmD9/vqx9Dh48GOnp6ViyZAmMRiMMBgPGjh2LgQMHRvRzI4QQQkhyGDx4MD766CPceOONGDlyJGbNmoXTTjvNfVzy3//+F3PmzAEAvPrqqzh06BDuvvturFu3DpMmTQIArF+/Hp9//jkuueQSvPLKK5L2O3nyZJx22ml49dVXcc8993S7ypUQQgghJxc5xyQLFixAaWkp7r//fqxevRpXXHEFevXqhYqKCvz3v//FoUOH8Kc//Sm+nxAhhEg0c+ZMvPLKK5g6dSqee+455Ofno7y8HKtXr8Zjjz2G/Px8PPDAA3jppZcwdOhQjBgxAq+++mrAwpGCggLMnj0bt956K15//XWcccYZKC8vR11dHW644QYMGDAACoUCX331FaZMmQKdToeUlBSv5xg6dCimTp2KuXPn4p133oHRaMQTTzyBvn37Bu1SQwKjikVCSMj++c9/YsKECVi7di0efvhhPPzww9i5cyfuvvtu7Nixw2tw7sUXX4yFCxdixYoV+Otf/4qMjAx88803OP3002XtU6VS4f333wfDMLjzzjsxffp0v1euEEIIIeTkcNVVV2Hfvn247rrr8Pnnn+Oee+7BE088gbKyMixYsACvv/46AOGq2++++w4LFy7E8ePH8eijj+Luu+/G559/jtmzZ+Pbb7+FRqORvN9HH30UlZWVPlv+EEIIIeTkI/WYRK/X45tvvsHSpUvBcRz+9re/4c4778Ty5csxduxY7N69G3379o3zZ0MIIdLo9Xps2bIF/fv3xzXXXIORI0fitttug9VqRWpqKgDgkUcewc0334zZs2dj3LhxMBqNuPrqqwM+79tvv43rrrsOd999N0aMGIG5c+fCbDYDAPr27Yv58+fjiSeeQG5uLu69916fz7Fs2TKcddZZuOKKKzBu3DjwPI+1a9fShaFhUvDULJYQEmUKhQL33HMP3nzzzXgvhRBCCCHES1tbGy6++GKUlpZiy5YtGD16dLyXRAghhBBCCElyVqsVR48excCBA6HVauO9HEJkCfb9SxWLhBBCCCGEkJNWamoqvvnmG2RlZWHKlCkoLy+P95IIIYQQQgghhJCERTMWCSGEEEIIISe1vLw8HDlyJN7LIIQQQgghhBBCEh5VLBJCCCGEEEIIIYQQQgghhBBCgqKKRUJI1NEoV0IIIYQQQgghhBBCCCEk+VHFIiGEEEIIIYQQQgghhBBCCCEkKAoWCSGEEEIIIYQQQgghhBBCCCFBnXStUF0uF6qqqmA0GqFQKOK9HEIIISQh8DyP9vZ29OnTB0olXXcUTXQsQgghhHRHxyKxQ8cihBBCSHd0LEKIdCddsFhVVYV+/frFexmEEEJIQqqsrER+fn68l9Gj0bEIIYQQ4h8di0QfHYsQQggh/tGxCCHBnXTBotFoBCD8gkhNTY3zagghhBB5rA4O5/z9O/AAnpt6Cq4ZE5mTQm1tbejXr5/77ySJHjoWIYQQQrqjY5HYoWMR0hPUmGow7YtpAIDFf1iMMblj4rugHqS8tRw3fn0jzsk9B2/84Y2IPe/Na2+GUqHE7aNux5HWI3h779sBv3bnfXQeWCWLn/70U8TWcDKa8fUMHGk9gvvPvB8zRs7AkZYjmLF2Bm4acRPOyDnDvV1Jcwne2f8OlkxcgtE5o+O23oW7F+Lzks/x3AXPBdzuyR+fhJN3AgB+nvFzRPYdq2MRq4ODnXNFdR+e1IwSWhUTs/3JMWfOHLS0tGDNmjUAgPHjx2P06NFYuHBhyM8ZiecIZtOmTZgwYQKam5uRnp4etf1Em0KhwGeffYZp06bJfuxJFyyKbT5SU1PpAJoQQkjSqTjeCoVGDwUAjc4Y8b9l1A4r+uhYhBBCCPGPjkWij45FSE9gVprB6IQT5Sq9ir6XI8jIG8HoGKgN6oi+rjaVDXn6PBiMBug4HRgdgxRjit99MDoGjJKhr224NMJrqUvRITU1FR2mDjA6BrmZuTAYDe7N0lxpwmuui+9rbmWtSElN8VqbL4yOAc/zAJBU50WsDg4bDtSg1eqI2j66StOqcOmpeZLDxTlz5uD9998HAKhUKvTv3x+zZs3CU089BZaNbpy0evVqqFQqSdv6C/fkPEeozj//fFRXVyMtLU3yY7qGqMnupAsWCSGEkGR2uK493ksghBBCCCGEkIRh5+zxXgKRwGQ3QZ+mj/cyTjp2l/fPR31HPQAgXZPudbuKEYKYeP88tdnboGN1cV1DNNk5F1qtDmhZBho2+nMcbU5hf3bOJatqcdKkSVi2bBlsNhvWrl2Le+65ByqVCk8++WS3be12O9RqdUTWm5GRkRDPEYxarUZeXl7U9+NLJF/vcNAUUkIIISSJFNea4r0EQgghhBBCCEkYXYMTkpjMTjMMqsBVaCTynC6n178bLA0AgDS1d6WVWikEFRanJTYL86PN3gYNo4nrGmJBwyqhV7NR/y/U8FKj0SAvLw8DBgzAXXfdhYkTJ+KLL74AIFTeTZs2Dc8//zz69OmD4cOHAxBarN9www1IT09HRkYGpk6dirKyMvdzchyHhx9+GOnp6cjMzMRjjz3mrjoVjR8/Hg8++KD73zabDY8//jj69esHjUaDIUOG4L333kNZWRkmTJgAAOjVqxcUCgXmzJnj8zmam5sxa9Ys9OrVC3q9HpMnT8bhw4fd9y9fvhzp6elYv349Ro4ciZSUFEyaNAnV1dV+X59NmzZBoVCgpaVF0nPMmzcP77//Pj7//HMoFAooFAps2rRJ0uvm6/V+6qmnMHbs2G7rOuOMM/Dcc0Ib4V9++QV//OMfkZWVhbS0NFx88cX49ddf/X5OclGwSAghhCSRQ9VtYJXUIowQQgghhBBCgPhXWJHgzHYznC4nBYtx4HB5t9xssDRAx+rAMt6NDFXKzorFOAf1bbY26FVU2ZpodDod7PYT3xsbN25EUVERvv32W3z11VdwOBy47LLLYDQa8eOPP2Lr1q3ucE183IIFC7B8+XL8+9//xk8//YSmpiZ89tlnAfc7a9YsfPzxx3j99ddRWFiId955BykpKejXrx9WrVoFACgqKkJ1dTUWLVrk8znmzJmDXbt24YsvvsD27dvB8zymTJkCh+PEz0ZHRwf++c9/YsWKFdiyZQsqKirw6KOPynqNAj3Ho48+ihtuuMEdNlZXV+P888+X9Lr5er1nzpyJnTt3orS01L3NgQMHsG/fPsyYMQMA0N7ejtmzZ+Onn37Czz//jKFDh2LKlClob49MJzRqhUoIIYQkkeJaE7KMGtS0WuO9FEIIIYQQQgiJOwoWE1+TrQkAkKJKifNKTj5dKxYbrY0wsN0DXrFi0eqM77mGdkc7snRZcV0DOYHneWzcuBHr16/Hfffd577dYDBg6dKl7pacH374IVwuF5YuXeqeUbls2TKkp6dj06ZNuPTSS7Fw4UI8+eSTuOaaawAAS5Yswfr16/3uu7i4GJ9++im+/fZbTJw4EQAwaNAg9/1iy9OcnByvGYueDh8+jC+++AJbt27F+eefDwBYuXIl+vXrhzVr1uD6668HADgcDixZsgSDBw8GANx7773uyj+pAj1HSkoKdDodbDabVwtVKa8b0P31BoTqxI8++gjPPPOM+/MaO3YshgwZAgC45JJLvNb3r3/9C+np6di8eTOuuOIKWZ+bL1SxSAghhCSJDrsTVS0WZKXEv5c6IYQQQgghhCQCChYTX2NHIwAKFuOha8Vis7XZZ0WgmhHOM9g4W0zW5Y/ZYZZUsejknUG3IaH76quvkJKSAq1Wi8mTJ+PGG2/EvHnz3PePGjXKK+Tau3cvSkpKYDQakZKSgpSUFGRkZMBqtaK0tBStra2orq72at/JsizOPvtsv2vYs2cPGIbBxRdfHPLnUVhYCJZlvfabmZmJ4cOHo7Cw0H2bXq93B4IA0Lt3b9TV1cnaVyjPEex1E3V9vQFg5syZ+OijjwAIAfDHH3+MmTNnuu+vra3F3LlzMXToUKSlpSE1NRUmkwkVFRWyPi9/qGKREEIISRIldSbwALJTev68AUIIIYQQQgiRIt6tG0lwzbZmAECKmoLFWOtasdhsbfbZkpZlWCigiGuwyLk4dDg6qGVuApgwYQLefvttqNVq9OnTByzrHSMZDN5fI5PJhLPOOgsrV67s9lzZ2dkhrUGn04X0uFCoVCqvfysUim7zH6PxHFJft66vNwBMnz4djz/+OH799VdYLBZUVlbixhtvdN8/e/ZsNDY2YtGiRRgwYAA0Gg3GjRvn1WI1HBQsEkIIIUmiuNYEAMgxauO8EkIIIYQQQghJDA7OEXwjEldNVmqFGg+ciwPHc163NduaUZBa4HN7VsnGNVhssbWAB0/fJwnAYDC4W2pKMWbMGHzyySfIyclBamqqz2169+6NHTt24KKLLgIAOJ1O7N69G2PGjPG5/ahRo+ByubB582Z3K1RPYgUfx3Hd7hONHDkSTqcTO3bscLdCbWxsRFFREU455RTJn18kqNXqbmuV8rr5k5+fj4svvhgrV66ExWLBH//4R+Tk5Ljv37p1KxYvXowpU6YAACorK9HQ0BD+J9KJWqESQgghSeJwbTsyDGqkaJl4L4UQQgghhBBCEoLNFd/WjSS4dkc7AFAlWoz5quZts7XBqDb63J5VsLA54/fz1GARQg8KFpPPzJkzkZWVhalTp+LHH3/E0aNHsWnTJtx///04duwYAOCBBx7ASy+9hDVr1uDQoUO4++670dLS4vc5CwoKMHv2bNx6661Ys2aN+zk//fRTAMCAAQOgUCjw1Vdfob6+HiaTqdtzDB06FFOnTsXcuXPx008/Ye/evbjpppvQt29fTJ06NSqvRaDPZ9++fSgqKkJDQwMcDoek1y2QmTNn4j//+Q/++9//erVBBYTPfcWKFSgsLMSOHTswc+bMiFaBUrBICCGEJIlDNe3IMWqgZujPNyGEEEIIIYQAsatYbLW1YtT7o/DZ4c9isr+exOwwg1EwUDGq4BuTiLE4Ld3+beWsSFX7roxilExcKxZPppa5NqcLHXZn1P+zOV0x+Xz0ej22bNmC/v3745prrsHIkSNx2223wWq1uivxHnnkEdx8882YPXs2xo0bB6PRiKuvvjrg87799tu47rrrcPfdd2PEiBGYO3cuzGYzAKBv376YP38+nnjiCeTm5uLee+/1+RzLli3DWWedhSuuuALjxo0Dz/NYu3Ztt9al0TZ37lwMHz4cZ599NrKzs7F161ZJr1sg1113HRobG9HR0YFp06Z53ffee++hubkZY8aMwc0334z777/fq6IxXNQKlRBCCEkSxbXtGJhlgJqhikVCCCGEEEIIAQCHKzbB4vH24wCAHyp/wNVDA58MJ946HB1QM+p4L+Ok07X6sNZcCwBI06T53J5VsrBz8ZtZ2mQRWub6Cz57AjWjRJpWhVarA1an/xaekZSmVcm6QH358uUh3Z+Xl4f333/f7+NYlsXChQuxcOFCv9ts2rTJ699arRavvvoqXn31VZ/bP/PMM3jmmWcCPkevXr3wwQcf+N3nnDlzMGfOHK/bpk2bFnA+4vjx473ul/Ic2dnZ2LBhQ7fnCva6Bfp6pKenw2q1+rzvzDPPxC+//OJ123XXXef1b7lzJD1RsEgIIYQkAbPNiepWK84e0Asso4j3cgghhBBCCCEkIcQzCCHSmB1mqJUULMaa1ekdONR2BA4WGQXjs31qrIizOP21au0JtCoGl56aBzsXm0pCQAgztSq6QJ1EFgWLhBBCSBI4XCf0is8yauK8EkIIIYQQQghJHLGqWCShMzvMVLEYB13bmtZ11AEA0tXpPrdnlWzcW6GyChZaVht023RNOlpsLdFfVBRoVQwFfSTp0ZAmQgghJAkU17ZDAaB3avADbEIIIYQQQgg5WVDFYuLrcFIr1HjoWrFY31EPIHFbobbZ2iSFigCgVFCsQUg80U8gIYQQkgSKatqRmaKGUUvD7gkhhJAe5T8zgfVPx3sVhBCStKhiMfFZnVaolPReNtZsLu/qw0ZrI3SMDirG99ci3q1QW2wt0LG6uO2fECIdBYuEEEJIEiiqaUe2UQOtiv50E0IIIT1KxXagei/gsAbfNlFYWoA1dwOW5nivhBBCEipYbLA0wGQzxXsZCafDQRWL8WBzdgkWLY3Qq/R+t2eVLBxc/H6e2uzSKxYJIfFFZycJIYSQJFBc245Mg5r68BNCCCE9id0MdDQCnAPgXfFejXQl3wF7VgofCSEkzuIZhHR1z8Z78I9d/4j3MhJOh7MDGkYT72WcdKyc90VLjdZGGFQGv9vHe8Zim62NKhYJSRIULBJCCCEJrs3qQF27DRkGNVQM/ekmhBBCeozmcuEjZ0uuYLF8u/DRxcV3HYQQAsDBJ06w2GxthtlujvcyEo7FaaFgMQ66hoTN1ubAwaIivjMW2+3t0LP+KyoJIYmDzk4SQgghCe5wrdBKJ9tIb8QIIYSQpHPwC/9tTpvLhI+cEwAfqxWFr3xrvFdACCFuiVSxGM9QJpFZnVYKFmOE53lsKNsAzsV1+35ssbUgRZXi97Gsko1ra+F2R3vAVq2EkMRBwSIhhBCS4A7XtkOhAPKMNGuAEEIISSrNZcCnNwOf3+3/fgBwOZOnYtHSAtQfivcqCCEEAKBUKBNqxmIirSWRWDkrtAy9n42F3bW78cjmR7Crdle3isU2exuMaqPfx7LK+FYsmh1mGFj/FZWEkMRBwSIhhBCS4Ipr25Fl0CBFq4r3UgghhBAih03oOoCOZt/3i8EizyVPsHjsFyRVdSUhpEdLtGBRbiizvmw9Rr0/ClwPby1t5+zQsFSxGAsHGg8AEF5zz2DRwTlgcVqQqk71+1iVUhW3nyeb0wYbZwvYqpUkv3nz5iE3NxcKhQJr1qyJ93KiYt68eRg9erT733PmzMG0adPCes5IPEekUbBICCGEJLhDNe3INmqgVdGfbUIIISSpiCeYlazv+5uOCB9dToBPkrCufFu8V0AIIW6MgkmoVqhyQ5n3D7wPAGi1t0ZjOQnB6rSC4zmqWIyRkpYS9/97BouN1kYAQJomze9j49kKtcnaBAABW7WS2JgzZw4UCgUUCgXUajWGDBmC5557Dk6nM6znLSwsxPz58/HOO++guroakydPDnutXUO8QNuJnxPLsigoKMBDDz0Ek8kU9hqCWbRoEZYvXy5p27KyMigUCuzZsyfk54gVP+9uCCGEEJIoimvbMTIvFVoVE++lEEIIIUQO8WS30s/FQe5WqFwSBYtbAX0m0NEY75UQQggYBQOnK7yT3ZHi4Bzg+J5deRiKNlsbAEDLUrAYC0dbj7r/387ZwSpYOHmnpGBRpVTFLagX15eipmAxEUyaNAnLli2DzWbD2rVrcc8990ClUuHJJ5+U/Vwcx0GhUKC0tBQAMHXqVCgUikgvOahTTz0V3333HZxOJ7Zu3Ypbb70VHR0deOedd7pta7fboVarI7LftDT/P3OxfI5Io9IHQpJUo8kWfCNCSNJr7XCgwWRHRooaKob+bBNCCCFJJVDFIs8DrZXC/7uSpBWq0wZU/Qak94/3SgghBEBnxWKCtELtcHbEewkJqc1BwWIsVbZXuv/fztnBKIULlJutQlv2dE2638fGtWLRIlQsBpoBSWJHo9EgLy8PAwYMwF133YWJEyfiiy++AADYbDY8+uij6Nu3LwwGA8aOHYtNmza5H7t8+XKkp6fjiy++wCmnnAKNRoNbb70VV155JQBAqVR6BYtLly7FyJEjodVqMWLECCxevNhrLceOHcP06dORkZEBg8GAs88+Gzt27MDy5csxf/587N27112NGKiqj2VZ5OXlIT8/HzfeeCNmzpzp/pzEyselS5di4MCB0GqF31ctLS24/fbbkZ2djdTUVFxyySXYu3ev1/O+9NJLyM3NhdFoxG233Qar1ep1f9c2pi6XCy+//DKGDBkCjUaD/v374/nnnwcADBw4EABw5plnQqFQYPz48T6fw2az4f7770dOTg60Wi0uvPBC/PLLL+77N23aBIVCgY0bN+Lss8+GXq/H+eefj6KiIr+vj1x0hpKQJHS0wYxznv8Ov1X6mdVCCOkxiuvaAQDZKZG5UooQQgghMSSenFP46DpgqgOcVkCTmjwzFqv2CGFper94r4QQQgAAjDJxKhYtTku8l5CQTJ3zhnWMLs4r6fnabG3ulqKA0AqVUXgHi4EqFtWMOm4/T022zlaoVLGYkHQ6Hex24YK5e++9F9u3b8d//vMf7Nu3D9dffz0mTZqEw4cPu7fv6OjAP/7xDyxduhQHDhzA66+/jmXLlgEAqqurUV1dDQBYuXIl/vrXv+L5559HYWEhXnjhBTzzzDN4/32hTbTJZMLFF1+M48eP44svvsDevXvx2GOPweVy4cYbb8QjjzyCU0891f2cN954Y0ifEwCUlJRg1apVWL16tbsV6fXXX4+6ujp888032L17N8aMGYM//OEPaGoSvl8//fRTzJs3Dy+88AJ27dqF3r17dwtGu3ryySfx0ksv4ZlnnsHBgwfx0UcfITc3FwCwc+dOAMB3332H6upqrF692udzPPbYY1i1ahXef/99/PrrrxgyZAguu+wy97pETz/9NBYsWIBdu3aBZVnceuutkl+fYKgVKiFJqM3igIsHimvacWa/XvFeDiEkiopr26FUALmpdHUnIYQQknTcrVB9vPUW26AasgCbCUAStEKt2A6wWiCNKhYJIYkhkVqhmh3meC8hIZmcncEiS8FitBU2FXr92+FyuCsWW2wt0DJaqBn/Fy2zSqFtKs/zMW9VKQafqarUmO43HjyDNVGvXr0wcOBAWK1WHDx4sNtjxowZAwAoKiqC2ez9u6agoAAZGRmor69HZWWl131GoxFDhw4Nea08z2Pjxo1Yv3497rvvPlRUVGDZsmWoqKhAnz59AACPPvoo1q1bh2XLluGFF14AADgcDixevBhnnHGG+7nS09MBAHl5ee7bnn32WSxYsADXXHMNAKFi7+DBg3jnnXcwe/ZsfPTRR6ivr8cvv/yCjIwMAMCQIUPcj09JSXFXIsqxe/dufPTRR7jkkkvct9ntdnzwwQfIzs4GAPz000/YuXMn6urqoNFoAAD//Oc/sWbNGvzvf//Dn//8ZyxcuBC33XYbbrvtNgDA3//+d3z33XfdqhZF7e3tWLRoEd58803Mnj0bADB48GBceOGFAODed2Zmpt/PyWw24+2338by5cvdcyrfffddfPvtt3jvvffwl7/8xb3t888/j4svvhgA8MQTT+Dyyy+H1Wp1V2SGg4JFQpKY3ZkEVzUnmcqmDvzfyz/gv3ech3MGZsZ7OYSguKYdWSkapGhU8V4KIYQQQuQK1Aq1pVz4aMgBLC3JUbFYvg1ILwComoAQkiAYBQMblxijYqxO3yeSA+GTZb5uGEx2IVikVqjRV9Tk3eZQnLEIAG32NuhV+oCPVyuF0NHKWWMeBLdYW6BhNGCZnh9XvPPOO5g/f77XbTNnzsSHH36IY8eO4ayzzur2GPF3xZw5c/Dzzz973bdixQrcdNNN+PTTT3Hvvfd63XfppZdi/fr1stf41VdfISUlBQ6HAy6XCzNmzMC8efOwadMmcByHYcOGeW1vs9mQmXniPKparcbpp58ecB9msxmlpaW47bbbMHfuXPftTqfTPVNwz549OPPMM92hYjj279+PlJQUcBwHu92Oyy+/HG+++ab7/gEDBriDPQDYu3cvTCaT1+cFABaLxT0vsrCwEHfeeafX/ePGjcMPP/zgcw2FhYWw2Wz4wx/+EPLnUVpaCofDgQsuuMB9m0qlwrnnnovCQu+LCzy/Br179wYA1NXVoX//8C8S7Pk/qYT0YFYHDQWPtF8rhCukPvutioJFkhAO1bQj26iBVkXdywkhnVwuoOQ7YNil8V4JISQYd7DooxVqcxmgMQr/8S5h5mIic7mAyp+B/HMAFVWdEEISA6NkwDkT49xIKK1QXRAuKnFwiTEnMhpMDiFY1LOBQy0SvsMth73+7Tlj0eK0IEubFfDxKqXKvW3Mg8XOisqTwR133IGrrrrK67ZevYSOdPn5+di9e7ffxy5fvtxnxSIA3HDDDRg3bpzXfUZjaDMrJ0yYgLfffhtqtRp9+vQBywoxkslkAsMw2L17NxjG+/g2JeXEhWc6nS5o1avJJPxuePfddzF27Fiv+8Tn1uki9304fPhwfPHFF2BZFn369IFa7V29azAYuq2vd+/eXvMjRWL1pVyR/HykUKlOFCmIXw+XKzIXM1KwSEgSo2CRkJ7vcJ0Jp/VJhVbl44QkIeTktOkFYMsrwE2rgSGhX+lICImBQK1Qm44A+kyA1QAuZ+JXLDYUAdZWIK0fwFAnBUJIYkikVqgdzg7ZjxErxDoc8h+bLMRgkVqhRt/R1qNIVaeizd4GALC7TlQsAoBBZfD3UABwVwtaHBYghhmfg3Pgp6qfkK3PDr5xD9C7d2939VhXWq3W3fbUl+HDh/u9Lzs726viLhwGg8Gr5ajozDPPBMdxqKurw//93/+FtY/c3Fz06dMHR44cwcyZM31uc/rpp2Pp0qVoamryWbWoVqvBcdLOj6vVap+fkz9jxoxBTU0NWJZ1h7ddjRw5Ejt27MCsWbPct3WtKPU0dOhQ6HQ6bNy4EbfffrvPNQII+DkNHjwYarUaW7duxYABAwAIrWd/+eUXPPjggxI+s8iIa/nDli1bcOWVV6JPnz5QKBRYs2ZN0Mds2rQJY8aMgUajwZAhQ7B8+fKor5OQRGV1JPhVzYSQsDSZ7Wgy25GRooGKoYrFaKBjEZKU2muEj42l8V0HISS4QBWLTUcAXQbAqjsrFhM8WKzYDiiUQitUUUdT3JbTU9CxCCHhYZQMnHxiBIuhVCyK8+5CCSWThdluBqtgT4oWl/FW2V6JLN2JqkTPikUASAnSylwMui2c/O/lcKw4uAJ1HXW4fNDlMd0vkW/YsGGYOXMmZs2ahdWrV+Po0aPYuXMnXnzxRXz99deyn2/+/Pl48cUX8frrr6O4uBj79+/HsmXL8OqrrwIApk+fjry8PEybNg1bt27FkSNHsGrVKmzfvh2AUK159OhR7NmzBw0NDbDZItcae+LEiRg3bhymTZuGDRs2oKysDNu2bcPTTz+NXbt2AQAeeOAB/Pvf/8ayZctQXFyMZ599FgcOHPD7nFqtFo8//jgee+wxfPDBBygtLcXPP/+M9957DwCQk5MDnU6HdevWoba2Fq2trd2ew2Aw4K677sJf/vIXrFu3DgcPHsTcuXPR0dHhnvUYC3E9S2k2m3HGGWfgrbfekrT90aNHcfnll2PChAnYs2cPHnzwQdx+++0h9QkmpCewJki7D0JIdBTXtgMAslP8D1cn4aFjEUIIIVEVqGKxpQLQpgGMFnBxiR8slm8H0voDhvBn3JAT6FiEkPAwCgaci0uIWYWhzFgUW0/26GDRaYaKKt2jrs3WhiZrE3L1ue7bHC4HGMWJYNGoDtwWU/x+tDljN7fUbDfj3wf+jRG9RmBIuvRqMhI/y5Ytw6xZs/DII49g+PDhmDZtGn755ZeQ5vbdfvvtWLp0KZYtW4ZRo0bh4osvxvLlyzFw4EAAQgXfhg0bkJOTgylTpmDUqFF46aWX3K1Sr732WkyaNAkTJkxAdnY2Pv7444h9ngqFAmvXrsVFF12EW265BcOGDcOf/vQnlJeXIzdX+Dm78cYb8cwzz+Cxxx7DWWedhfLyctx1110Bn/eZZ57BI488gr/+9a8YOXIkbrzxRtTV1QEAWJbF66+/jnfeeQd9+vTB1KlTfT7HSy+9hGuvvRY333wzxowZg5KSEqxfv97dUjcW4nqpyOTJkzF58mTJ2y9ZsgQDBw7EggULAAilpj/99BNee+01XHbZZdFaJiEJy07BIiE92uHadjAKBXJTT445A/FAxyKEEEIiqr0GWD0XuOY9wJjjP1h02oRt+43trFjkAMT/pHhAFduAXoMAdQpga4/3anoMOhYhsTDq/VG45dRb8PDZD8d7KRHHKlnw4OF0OaMSXjk4h+TnDadiMZTHJosOR4f78yTRU9hUCADobTjRYtPO2cF6HIMECxbj8f24dP9StNnacOfpd8ZsnySwYJ0QVCoV5s+fj/nz5/u8f86cOZgzZ06326dNm+bzIpAZM2ZgxowZfvc3YMAA/O9///N5n0aj8Xufp3nz5mHevHmy7zcajXj99dfx+uuv+33sU089haeeesrrtn/84x/u/+/6eiqVSjz99NN4+umnfT7f7bff3q1Natfn0Gq1Adc1fvz4bq/16NGjI3oRTlL1Vdu+fTsmTpzoddtll13mLn31xWazoa2tzes/QnoKmzPBr2omhISlqKYd2UYNUjTeJyO3fvUfWI7+FqdVndzoWIQQQkhApT8AR7cA5T8J//bXCrWlEgAP6DOE0NHFAQlQbeNX63Gg9RiQ2hdgtfhowy/4rNAR71WdlOhYhITqm6PfxHsJUSFWY0WjwmpL5RaM+XAMDjYclLS9lZNfsehuPdmDg0Wzw+z+PEn0FDUVAQD6pPRx32Z3eQeLaZq0gM/hrljkYlOx2GRtwkeHPsIZ2Wcg35gv67ENuxrQsq0lOgsjhASVVMFiTU2Nu8xUlJubi7a2Nlgsvv8Av/jii0hLS3P/169fv1gslZCYsFOwSEiPdqi2HdlGNbSs8GaZ4zgs+cez+GThX2Et3xvn1Z2c6FiEEEJIQNV7hI9iSCgGi4oub71byoSPugxAwQDgT1Q3JqIKIbTi0wfg2TdWYua897GhNDFmmp1s6FiEEG9iaGJ1yQ/1gtlRswMAcLjlsKTtQ2qF2lkN2ZODxQ4nVSzGwuGWw0hVp0LH6ty3OTjvVqhp6iDBYuf3Yyjfy6FYvGcx7JwdVw2+SvJjeJ7HJ+98goMLDqJ9X3tCtEEm5GSUVMFiKJ588km0tra6/6usrIz3kgiJGAoWCenZSmpNyDCooVUp0WE2Yd59c/DZh+/iunufQa/xc+K9PCIRHYsQQmThHMC8NKCpLN4rIaE4/qv3v/2Fhc1lQqCYkn2iTWpCB4s/w6LJwfSX1uC5xR/hxTuvwuLLqVV7sqBjEdKTicGiXbyQI4LE59QwGknbhzNjsScHixaHxf15kugpay1DpjbT67auFYvpmvSAzyFWlsaiYrHaVI3PDn+Gs/PORrY+W9JjHHYH/vn4P7Hk+SXoN7Uf8v+cD4VCEeWVEkJ8SapgMS8vD7W1tV631dbWIjU1FTqdzudjNBoNUlNTvf4jpKewcxQsEtJTNZhsaLE4kGlQg2WUeO3ZR7Bv13b8ffGHuGjazfFe3kmLjkUIIVF3bJfwccNTgbeTw2YCKn6O3PMR31wuoHa/923+TnQ3lQltUFndiTapUTgpHjHlW/HgOgu++HEP/rfoKTwx61I6kRcndCxCiLdotkKNRbAoVvLFqkIsHjqcHZJfw5PRioMrsL9+f/ANg6hor0COIcfrNqfL6RUs9tL2Cvgc4vdjLILFRb8ugkKhwJWDrpT8mPdeeQ8bVm3AE68+gYF/GgiFko5FCImXpAoWx40bh40bN3rd9u2332LcuHFxWhEh8eXgXHC5qOSfkJ6ouLYdAJBpEA7sb33wKSz66Cuc83+XxHNZJz06FiGEJKUDq4FlU4DG0nivpGdrKgUcXSpO/AaLRwB9JsCoT1QsuhKzYtHV0QzUFWLejPPx44cv49rLLoz3kk5qdCxCThbLDyzHqPdHBW1zKIYm0QhCHJ2/l6W28bS55K/hpKhYdFqoFWoAb+95G/8r/l9Yz2GymdBkbUIfQx+v2x2cAyrFiWrRYF+HWAXdpS2lWFe2DuP6jEOqJvjFLi6XUFgx/e7peO2T13DZdZdFdX2EkODiGiyaTCbs2bMHe/bsAQAcPXoUe/bsQUVFBQChXcesWbPc29955504cuQIHnvsMRw6dAiLFy/Gp59+ioceeigeyyck7hxOHhz1EiekRzpca4K16Ce8+8ifYGprRe/8ASgYMiLey+px6FiEEHJSsLYBPOeek0eipGpP99tcfuYQNpcB2nSA1Z4IFqNQbROur7/+GqPHnIU6M4feA0firNOGxXtJPQ4dixDi21elXwEQKq4CESsW7a4otEJ1Rb9iUdk5g7cnVyxanBZomcRpn83zPCraKrD2yFq8s/cdNFmb4roeC2eByWEK6zkONB0AAPRN6et1u8Pl8KpYDEYMIUMJyeV4bfdr0DAaTB4wOei2v237Dbf+8VbUVdUhrVcaTjv7tKiuLRrEYJSQZBL0wp4YrcOnXbt2YcKECe5/P/zwwwCA2bNnY/ny5aiurnYfTAPAwIED8fXXX+Ohhx7CokWLkJ+fj6VLl+Kyy+gqBXJysrtccFGwSEiPw/M83nvjFdSuWYwLJ02DWkNtY6KFjkUIIScFsQqi6jfgzJukPWZeGnDBQ8Af50VtWT1O9Z7utzl9nOjmeaClHBhwQWfFYuK1QuV5HosWLcIjjzyCK88bBr0hFUjLj/eyeiQ6FiEkPFGtWORkViyGcYGIlQs9WCxrLUOKOgVZuqyQnyOarE5rQlQsNlmbcPd3d+NI6xGvClGj2ogZI2fEZU02pw1OlxNmhzms5ylqKgIA9EvphwZrg/t2h8sBRjzOkIBlWCihjEprYdH++v3YcmwLJhVMgl6tD7jt1x9/jdeefg1njjsTekPgbRORWq2GUqlEVVUVsrOzoVarqZU8SQo8z6O+vh4KhQIqle8ZuXENFsePHx8w+Vy+fLnPx/z2229RXBUhyYPjeNBFL4T0LFarFbfffjt+/M9KDL/8Njz83DyoNTToPlroWIQQclKwd548qzskzAFUSmxcs+9jChblOP4roEkDbK0nbvMVFlqaAbsJ0PUSvhZiJUGCBIsOhwP33Xcf3nnnHTz22GN4cchvUHIWQJMS76X1SHQsQkh4xGDRHoXfoWLFolhVGEw44WY4FYtXrhFm1O2fHf6cvmiwctaEqFj8veF3HGg8gLF5YzE0fSj6p/bHiztfDLtaMBxt9jYACHsNpS2lSFWnCkGdx7eS0+V0t9uVilEyUZ2x+OruV2FUGzFxwES/23Ach3dfehefvPMJrrrpKtw3/z6wqrjGGCFRKpUYOHAgqqurUVVVFe/lECKLQqFAfn4+GMb3xQnJ9xNJCHFzcFSxSEhPs23bNnz22Wfod+2TOO/yadCppV9dSAghhPjk6BA+tpQD9nZAmxbf9fRELhdQsw9I6wfUewaLPk7MtZQLH3UZwkd3sJgYMxb37NmDDz74AEuXLsVts28CXuwHDJlIwSIhJCFFM1h0yPy9HE7VYTiPTWQ8z8PG2aBh49+Fp76jHgBw5eArkaYRjoVUSlVc51u22oVjhnArFo+0HkGmNrPb7U6X0/0zIjVgZJVs1ILFrce3YlftLlwz5JqAVayVpZX4fMXnuHfevbjmlmuSuspPrVajf//+cDqd4Dgu3sshRDKVSuU3VAQoWCQkqVGwSEjPUVlZifz8fFxyySXYua8Ql7+7H5kGNVipVSWEEEKIP2Kw2F4NdDRRsBgNLWVCFaIxD6gvPHG7rxPdzWXCR33nCcAEqVg8duwYevfujXPOOQdlZWXIyckBKncK4Wh6vxPrJISQBMIqOoPFKMxYdLjkBYvhhDHRbD0ZT1bOChfvSoiKxQZLAxRQIEV14kIZVsnC4ohfsNhuawcAdIjHaiGqbK/EkF5DvG7jwcPJn6hY1LPSWokyCiYqQT3P81i4eyEytZm4KP8in9s01jYiLSMNBcMK8NFPH6FXVq+IryMexHaS/lpKEpKM6GwlIUnM6aJWqIT0BOvXr8dpp52Gd955BwDQ7BIO+HOM8b+qkxBCSA/gMAMKBnA5gdoD8V5Nz1S1R/iY2tf7dl8zFpvLAJUe0KUL/xZnH7mcUVpccFu2bMHo0aPxz3/+EwCEUBEAKrYDrBZIHxC3tRFCSCDi/LhoVFiVtZUBODG/LphwwsFotp6MJzE407G6OK9ECBb1Kr3XzEEVE9+KxXZ7Z7DoDD1YNNlMaLQ2oo+hj9ftYjgofr56lbRgkVWyUQkWN5RvwKHmQ5hcMNnn3MeivUW44/I7sOzVZQDQY0JFQnoqChYJSWIOjqeKRUKS3JtvvokpU6bgoosuwsyZMwEAxbXtUDEK5KTG/6pOQgghPYDDCqTlC/9fRXPZoqJ6r9Da1NClDZmvapfmMqFaUWwLJ1YCOuJzUnn58uWYOHEiTj/9dMydO9f7zvJtQqhIVa6EkAQlVmNFIwhpswnz73bW7JS0fThVkz21FWqbQ3gNtWz839s225q7Ve2plKq4vvZiK9RwZmweaBIuGuub4n1xk/gzIVb1MgppY1ai0QqVc3F449c30NvQG+f2Prfb/Zu/3owHrn8Aufm5uPbWayO6b0JIdFCwSEgSc7qoFSohycrpdOLee+/FfffdhwceeABr1qyB0WgEIASL2UYN9Cqar0gIISQCHB2AxgjoegG1vwN0/Bh5x38FUvsI1X2efJ3objwifC3Ebd0Vi7FthepyufDkk0/illtuwezZs7F+/XpkZGR4bgBU/CzMjVTTfEVCTmYlLSV44PsH4r0Mn6I5Y9HJC5XkhY2FQbYUhBPGRGP9icBkMwFAQrRCbbY2w6AyeN2mUqrCCvXCZbILr4+Ns4FzhTZ/r7i5GACQn5Lvdbv4/Sh1tqIoGq1QVx9ejfL2clw5+EqveYk8z2Plmysx7655uODSC/Dqf15FRnZGgGcihCQKGpJASBJzcjw4OjFESFJSKBQ4fvw4lixZgjvuuMPrvkM1QrCopWCREEJIJDgsgFIlBERNR4SgUW0I/jgiDc8DNfuAvmdLCxZbyoD0AoBVC/+O04xFhUKByspK/POf/8TDDz/sdaIPANBQDFhbhGpXca2EkJPSE1ueQFGztHagkcJD2rmOaM5YFB1tOyppu3DCmHiGW9HU7kicVqjN1uZu7UBVShUsXPxaoZocQrDIg0ervRUZWvmhWklzCYxqIwxdju3EYJGVOSOZVbKwuSJXsejgHFiybwkKUgswKmtUt/vrquow56E5mPXgrO7HIoSQhEXBIiFJzOni6YJzQpLM0aNHUV1djfPPPx+rV6/uduDM8zwO17Xj3IEZ0KiosQAhhJAIcFgARgWk9gcOfwtY2yhYjKTWSiGAS807ERKKuC6tUF0c0FYF5J0hhL2AMP8S8D2PMQqqqqpQXFyM8ePHY8WKFf5P4lVsBxRKoFdBTNZFCElczjjMgHXxLgBCC0UV47/iSqlUQgEFHF1/30ZYjbkm6DbhBIs9dsZi5wzBRGiF2mprRUFagddtrJINazZmuMSKRUBovRtKsHi07SiytFndbndXLAb4+fGFVUR2xuKKgytQ11GHB8acqHpubWpF8e/FOOeic/Dg8w9SoEhIEqIzloQkMSdHrVAJSSbbtm3D2LFj8eCDD4LneZ8HzzVtVphtHDINarBK+jNNCCEkAhwWIfDqNUioVmwsifeKepaqPcJHY9/u93U9Mdd2HHA5AX0GIB4HMLGrWPztt99w7rnn4u677wbHcYFP5FVsF6pc9dSSjBASe0qF8F5IbEcaSDRaN3b1c/XPQbdx+JqrK1E0Ky7jyewwA0C32Ybx0GZvg1Ft9LpNrVTHtVrU7DS7/7/N3hbSc1S0VSDHkNPtdvFnQnYrVCUT1veyJ7PdjGUHlmFErxEYkj4EAFB+uBx3X3U3Fjy+AHabnUJFQpIUnbEkJIk5XTw4FwWLhCSDlStXYsKECRgxYgTWrl3r9+C5uFa4YjEnRRPL5RFCCOnJnFahOk6sPBODMBIZ1XsBbRpgzO1+n/tEd+ff/eYy4aPOI6yLUSvUNWvW4MILL0Tv3r2xceNGMEyQluvl24D0/oCG5isSQmJPVrAYwSDEn99qfwu6TTjhYE+dsSgGZ/FuhWp1WmHlrEhVp3rdrmJUsHJxDBYdZig7T8+32lplP95kM6HR2oje+t7d7gt1xiKrjFzF4tL9S9Fqa8XUIVMBALu27MI9V98DjU6DhZ8uhFpDrdYJSVYULBKSxJwctUJNRjzPo6KxI97LIDG0cOFC3HTTTZg+fTq+/fZbZGV1b1MiOlzbDjWjRHZq/FvFEEJIVHEOoZLOH6cN+PbZ2K2nJ3NYhKo4Qxag0gPVe+K9op6l6lcgta/w2nbFdZ4QV3gGiwrAkH1iG4UYLEbvpPi///1vXHPNNZgyZQo2b96M3r27n4D00lYltHhNzQcSYC4WIaTnOf+j8zHq/e7z1kRisMhxXNDnYhRM1Cv+9jfsD3g/z/NhtYztscGi3QxWwYJlIj+Nq7SlVFLgC5xoZds1WFQz6ri2oTU7zO7ZiKFULBY2FwIA8o353e5zVyzKbIWqUqoi8v3YZG3CR4c+whnZZyDfmI9NX23C47Mfx2lnnYY3Vr+BvH55Ye+DEBI/FCwSksScLhdVLCahjYV1uGTBJpQ3moNvTHqESy65BK+88gqWLVsGjSZwJWJRTTtyUjXQq4JUERBCSLL78VVg+RX+58pt/gewdSGw5+OYLqtHclqEikUlI7S2bCyJ2Ty/Ho/nhYpFYx6g9hUsdoaF7mCxHND18t42BhWLF110EebPn49PPvkEer2EdnQV24WPvQacWDshhERQu6M94P1M5/xZBx/8ogtGGd1WqH0MfXC09WjAfXQ4wrt4ONoVl/FidpplB1tSvfXbW5i3fZ6kbest9QCANE2a1+1qpTquMxbNDrM77GyzyQ8WDzUdAgDkpwQIFhXxqVhcvGcx7JwdVw2+CgBw6lmnYuY9M/H8e8/DYKRZ34QkOwoWCUliLl4IF0ly2XesBU4Xj5q2+LXbINFXU1ODO++8ExaLBaeffjoeffRRSbMDDtW0IytFDS0Fi4SQns5cL1RFdTT6vt/eeYKuoyF2a+qpnDYhWASAjAKhEi2Ek1fEh/Zq4Xs4JQ9gfLTzcnVphdp0RJhZyHp0JlAqhfsjfFK5sbERd9xxB9ra2jBkyBA888wzUEqd31y+HUjJ8d3elRBCYsDdClVCFSCjYOCIYtV3/9T+cPJO7GvY53ebDmeYwWIU1x9PZrsZal9/HyOA4znJ7UPrOuoAAOmadK/b412x2OHogEFlgAKKoGG7LyXNJTCqje6qR082l/B5yX39WSUbdgVwtakanx3+DKcbT8eKv61Aa3Mrsntn49ZHbwXD0rkOQnoCChYJSXI2BwWLyaawRv7BIkkue/fuxbnnnosvv/wSlZWVkh/H8zxK603INGgoWCSEnBw4O8DTsUxUuTjhdRZbkPUaLARhbVXxXVdPIc6rTO3r+353xWLnW++mI4C2F8B2OcmnZCLaCrWoqAjnnXceVq1ahSNHjsh/gvJtQHoBoDZGbE2EECKH7GAxihV/+cZ8sAoWe+r2+N3G4gzQ3l0CF1xw9cALxzucHVArozdHz+yQ1gmqwSJcqNa1YlHDaKLeRjeQDmcHtIwWGkaDdrv8c0VH244iS+t71IoYVrNKeW1oVUpV2D9Pi35dBHuDHZuf2Izvv/gelaXSz4sQQpIDBYuEJDmrM/i8AZJYiihY7NG++uorXHjhhcjKysLOnTsxbNgwyY+tarWiw84hM0UNRkltxwghJwGXg4LFaHN2dkhgPCoWAZqzGCnVewGN0X9lX9dWqK2VgC6te3WjgjkxjzFM33//Pc477zyoVCrs2LEDo0ePlvcE1lagvhBI6+u7vSshhMSA2Ao1EYJFVsEi15CLg00H/W4TbitUALBw4YWTiajD2RG1ikUAsHJWSdWeDZYGaBhNt7WolWrYOTt4Pj5jhjocJ4JFk8Mk+/EVbRXI0ef4vE+sxAylYjGcCtrSllKs+m4VSp8rhd1ix5ufvYnTzj4t5OcjhCQmChYJSXJWJ52MSyYWO4fKpvDfcJDEdPDgQUydOhUTJ07Ejz/+iL59/VQv+FHcGTpnp0TvjRchhCQUzgHwdJFUVDk6T1KKJ5VS+wghllhpR8JT9atQreijBRkA7ypEm0moFtWln5irKFIyHm1TQ1deXo5JkybhnHPOwbZt2zB48GD5T3LsFyHwTxtwotKSEEJiTFbFojK6wSIA9Df2x3HTcb/3h1uxCAAWR88LFi0OS1QrFgGg2docdJsmSxP0bPeLZdSMGjx4WLn4jKqxOC3QsELgabLLCxZNNhOarE3obejt837xZ0LujMVwKxZf2PgCjrx8BIOGDMLiLxajYFhByM9FCElc9C6BkCRns1OwmExK6kyIz3VwJJo4Tjgpfsopp+DLL7/EqlWrYDDIH0ZeXNsODatEtlEbfGNCCOkJqBVq9IkVFGKQpWSFcLH+kNAmlYSnei9g7A2o/FT2uU/MKYCWcuF/dRndt1OGV7HocrnA8zwGDBiAL774AmvXrkV6enpoT1bxM6BJBdLyQ14PIYSES24rVDsX3XaWg9IGBbxfnLHIKuS1nfRkdkpr65lMol2xCJxocxpIk60Jeh9/qzWsBoD0lqqRZuWs0LG6kCoWC5sLwYNHvtH332s7Z4cCCjBKeWNWVEqVpJ+7rniex97avfjF9Auuff5avPrxq0jPTJf9PISQ5EDBIiFJzkatUJNKUS21Qe1pmpubcemll+Kdd94BAEyZMgVKZWh/Xotq2pFj1ECvDv3NKCGEJBWXE+iB84QSiqNLK1QA6DUAaC4HbHRcEpb2WsBUC6TkAp0nJrvxPDHXXCZ81Gd2307JeoSQ8phMJkybNg2vvPIKAGDSpElg2TCOJcp+AnoVAJqU0J+DEELC5G6FyidGxeKwjMAjLqydrcflzrPz1CMrFp2WqAeLTbamoNu0WFtgUHW/+FfDCH+/5VYLRgLn4mDjbNCyWqgZtexw81DTIQBAforvYNHhcsgOFYHOVqgyf54sFgtmzJiBWQ/MglFtxO3X3g61hjoxEdKTUbBISJKjGYvJpaimLd5LIBFUUlKC8847D3v27MHw4cPDfr6i2nZkGTXQqujPMyHkJNIDT6IlFHfFosfJnV6DgfZqoCP4iTgSQPVe4WNqH2nbN5cLLWl1PoJFBSNUkMoM2isrK3HhhRdi06ZNOO20CMwvctqB478K1YoULBJC4khuxWIoFVZyZGgz3CGUL+6KxXCCxQi0U000FqcFWia6HXmarBKCRVvgYDESMzLlarcLF3jpWB20rFZ2sFjSXAKj2giDn3bsds4eUgWtSqkCx3PgJHa2qK2txSWXXILVn61Gc1YzJvafGPUwmRASf3TmkpAkZ6VWqEmlsLodSkW8V0EiYfPmzRg7diwA4Oeff8b48ePDej6Xi0dpvQmZBjW0rPyrCgkhPdiXDwDz0npudZkzPjNtImZeGrD88nivwj/3jEWPisW0vsJsy6bS+KwpVOZGwFQX71WcUL1XaIFqlBosHhWqFVU+TrAqmc7qRulN83fu3Ilzzz0XLS0t2Lp1K6ZMmSL5sX5V7wU4G5DWr/scSE+WznlW1pbw90kIIT7IboUagTm1wfibZQcANs4GILxgUQwne5JYVCxKmbHYam+FUW3sdrs7WIzDa99mFy4817E6aBn5weLRtqPI1Pq4WKlTqBWLqs5jRquEY/T9+/fj3HPPRVlZGS58/kIM+r9BuCj/Itn7JIQkHwoWCUly1Ao1uRTXtiPT4P8qR5IceJ7H/PnzccYZZ2D79u0YOnRo2M95vMUCq8OFzBQ1lJQ+E0I8Fa0TPh7/Nb7riJaecHV+2U9CpVciEl9fz1ad4kkmLrpt4yJuw9PApzcnzmtd1VnZp/YzX5HvEhI2HRHmK/o6wSq2QpUxc/TFF19EQUEBduzYgVGjRslYeAAV2wFGA6QPCLydGCxaWiKzX0II6UIMFjk++DkPRsnAEYO/aQNShd+NvI+LQMRqQ5VS1e0+qXpixaLY6jOaWmwtAe/nXBzMdjOMqu7BolhNGcuKRRtnA8/z3sEiq5X99a9sq0SuPtfv/eFULAKAhQu+ngULFqBXr154ZdUrqMuqw+SCySGFmYSQ5EPBIiFJzuKgisVk0drhQF27DVlGagmRrFwuFyorK6FQKLBq1SqsX78eGRkZEXnu4s75mzkpFDwTQvyQETiErb0G+PWD2OzLkeQVi6JYfn3kcFcs9oC/L7Z2oPU4YEuQ1vJVewBjnv9gsWuVTXM5oEv3PY9R2dkKtWsY2QXP86ioqAAAvP/++/j++++Rm+v/pKJs5duEGZy69Mg9JyGESFDSXII1JWvc/xZnLEqZ9cYq5M+EC8XgtMEAfK9JrO4SA9FQJHKwuKtml6SWo554nheCxSi3Qg0WLDZaGuGCC6ma1G73idWUJkdsZizaOBsu/uRibCjfgFZbKwBAz+qhY3Wyvv4muwmN1saAVbShViyqO9vn+6tY9DwWWbx4MTZv2Yz/1PwHvQ29cW7vc2XvjxCSnChYJCTJWR1UsZgsijqDo2xjDzixdxIym824/vrrceGFF8JqtaJXr15QqUK/GrWr4loTtColsihYJIQkgg+vBb64D2goif6+EvgkWsKo/AWwhXjCy+GjYjGZWVsBpy3eqxDasrZXASl5gL9KjK7VMy0VgDbduy2tSMkKQWSAgNpms2H27Nk4++yz0draitTUVOh0utA/h654XqhYTOsHqGm+IiEktq798lo8s/UZ979ltUJVRn7Goq8KyD4pQuvroendO9ZYOStUShUUCL37TCIHiw9tegjLfl8m6zFWzgoX7wo4mzIS2oJccFRnEdqop6nTut2nY4W/o7F67dvt7TA7zKjrqHOHmTpWBx2rg9VpBR/kAiPRoaZD4MGjb0pfv9s4XA53QC+HWLHoK1h0OBy45557MGrUKNTW1kKv12ND9QaUt5fjykFXQqGg7kuEnCxCb/xNCEkIdmqFmjSKatvBKBTIMUb3aj0SecePH8dVV12FoqIifPzxx9BqI/81PFTThhyjFjo1/WkmhCQAa+cJmtYKIGtIdPfVUyoWo+mDqcB5dwJ/+Kv8x/a0YNHWnhhhdPUe4WOg+YqcR8tWS7Mwu1CXDviqZlGIFYu+g8X6+npcffXV2LVrF5YvX460tO4nR8PWUCzMTEzLB1jqsEEIiS1Xl99/coLFaFQs2nxcxCKGJr4q8KxOa1jzFYHEDhadLmfQAK+r9s754GJ4Fy1iS1F/as21AIA0Tfe/nWKb1ljNWPRsudpuF14fsWKRh9Ae1dc6uypsKgQA9DP287uN0+UM6XvSPWOR8z5Gb2lpwQ033IAffvgBb7/9NnJzc+HgHFiybwkKUgswKjtCbdkJIUmBzl4SkuSszgRtu0W6KapuQ7ZRA52K+s0nk99++w1XXHEFlEoltm7dijPOOCMq+ymqaUd2ihpaFTUTIIScZChYDI6zA23VoT3WYRGq4XrMvBteqBbMjHLgHUz1XoDVAWn+W5B5VSyahGoJ6Py0UGc6KxZ9zO0qLCzE5ZdfDrPZjE2bNuG8884Lfd2BVGwXQs9eA6Pz/IQQIoNYaeXkJQSLSjbiFYtWl7zjk0gEi/5aTyYKs9Msa3sx8Iv2jMVgwWKDtQEAkK5J73afWGUqNdRde2QtjpuOY+7pc2WvE/ATLKr00LNCW/VWW6ukYLGkuQRGtREGtcHvNnbOHlKo66ti8ciRI7jiiitQXV2N9evX45JLLgEArDi4AnUddXhgzAOy90MISW509pKQJGejYDFpFNa0I9uogZqhX73JxGw2Y9CgQdi5c2fUQkXOxeNIgxkZBjW0bE858UsIIRIl8NX5CcUu72Sem9MCMGrfVXLJylQT7xUI8xXT+gJqo/9tPCsWTUK1BAw5vrdVMADvu2LRarUiNzcXO3fujF6oCADl24VqRX1k5kcTQkg4otEK9R87/4GnfnxK0v59VSwG3J6zuQOZUCgVyoQPFj1DMSlM9hOtPqNJDOj8aehoAKNgYFB1D+EUCgVUSpXkYHFD+QZ8fOjjkNYJeM9yNDlMUClVYJQM9KoTwaIUR9uOIlObGXCbUCsW3TMWPSoW7XY7UlJSsGPHDneoaLabsezAMozoNQJD0uN8wRchJOZ60LtLQk5OdpqxmBR4nsfh2nZkpqihYqnnfKLjeR6ffPIJnE4nLrzwQmzZsgW9eweoSAhTZVMH7E4XslI0UCrp+4MQcpJJ8JNoCcNpEVplyuXogcFie128VwBU/QYYewOdJwJ96hosalIBrZ/ZhUpVt1ao//vf/2Cz2XDmmWdi27ZtGDBgQIQW70fFNiB9AKCh+YqEkPhjOivtOQl/+1iFtIrFDws/xJdHvpS0/65tIKVsH8o8OxGrYGHhEvtiK7mtWtsdsWmFKgaY/jRaG6FX6f3O/1MxKlgc0j+3JmsTnFxoFbKer6HJboKaEUI8d8WiXVqwWNlWiVx9bsBtHC6H++dIDnFNVqcVa9asgclkwogRI7Bjxw4MGzbMvd3S/UvRamvF1CFTZe+DEJL8etC7S0JOTnZO2mBnEl917Ta0WZ3ISlGDoWHWCc1ut+O2227Dn/70J6xbtw4Aoj6AvLhWeMOVZewh868IIYmv7hDQWBrvVQhknMg5qTksna0yQ3gco+pZwaJY/RcvlmZh/mhKbuDZlV6tUGsAfSbA+NleyQhfX94Fp9OJBx54ANdffz1WrVoFIPrHImirBloqgNS+QotXQgiJM9kVixJapsph97w4RIJwKxZZJSu7SjLWzA553RPESsJoB4vB1tVsbXYHd76wClZWaMrxHKrMVZK39+Q5y9HsMLurA8VqSilzLE12Exqtjcgz5AXczulyglWEMGNRqQLv4rH05aW4+uqrsWLFCgDexyJN1iZ8fOhjnJF9BvKN+bL3QQhJfj3o3SUhJyebkyoWk0FRjXBAnZNCwVEia2xsxKWXXoqVK1figw8+wBVXXBGT/R6uM0GvZpCdoo7J/gghBIvHAm+MAZzyTppFhdSKxeZyYF4a8NvK6K4nUTmtoVUs2s09L1g0x7lisWa/8NHYBwgU+Lk8gkWHBdD18h9EKlnAxaGttRVXXXUV3nrrLSxevBgzZsyI3LoDqfxZ+NhrQODPiRBCYkQMFjk++N8+lVIV8RmLobRCDWfGokqpkl0lGWtyKxbFwE/LRHfGot1lD9hGNliwqGLkv/ZlbWWythd5voZmh7lbxWKweZEAcKjpEHjwyE8JHOg5XI6Qvid5O4/KxZX49O1P8fLLL+POO+/sts3iPYth42y4avBVsp+fENIz9KB3l4ScnBycCzyfGFWLLR12ODia+ehLUU071KwS2anRPaAmoWtsbMR5552HAwcO4Pvvv8fNN98cs30frG5DjlEDnTr0N6KEEBISS1O8VyA9WGwsET6WbozeWhKZ0xZixWKH0GYz2sFi6ffA+qeBWByXdjRGfx+BVO0RKg/T+gbermu1izY9QMUiC5PVjgv+MAXbtm3DN998g7vuuisSq5WmfLsw/9EYuPqBEEJiRWwrKrViUUrL1K7KWsvwXfl3Pu+zuWQGi87wgkVWySb8jEW5waI4TzDaFYsA0Gjxf2zQbGuGQd19vqJIpVTJfu0r2ipkbS/ynFNpdpqh6Twu0Kv0UEARdF4kIASLANDP2C/gdjx42e157TY7nrn5GbTva8eDix7EX/7yl25dE2rMNfjs8Gc4O+9sZOuzZT0/IaTnoGCRkCTncPJwJUauiKlvbcUb3x+O9zIS0qGaNuQaNTBIDI6azPaECYxPFhkZGbjpppuwY8cOXHDBBTHbL+fisa2kAfm99NCpQp/JQQghSSvBT6IlDKcVkFC10Y2jIzYVi0c2A9vfBCp+lrguK/Cfm4CGEI4drS1AKLONnDbg35OEYDAcVb8JoWKwWYSerVABQJsGMH6OBZUsUlTAzBuvxfbt2/HHP/4xvDXKVbkDSO8HqGm+IiEkOIvTghlfz4jqe1Y5FYuskoWTd8pez8rClfjbz3/zeZ+Nk1+xGHYrVIn7nPH1DKwpWRPyvkIlN3wzOUxgFSxYf3/7IqjR6j9YbLW1wqgy+r1fpVTJnm95rP2YrO1F/ioWFQoF1IxaUrBY0lICo9oYMCwVyQ271Ro1LrnqEgx6ehBGTRjlc5uFuxdCoVDgykFXynpuQkjPQsEiIUlMqRAqFrkESRbr2myoaOwIvuFJ6FBNO7KNGmhVwX/tOjgXxvztW9z70a8xWBl59913sWrVKigUCjz77LMYNGhQTPe/91gLmjscGJilh1ZisNjaJLxpstvoZDwhpAdwJPY8oYQRaivUWAWLor0fS9uuei9w6EvgwBr5+7C2ATJP+AIAzA1AxXahujIcVb8Bxt6Ayn9bNQDdKxb1vXxu9vFXm/D+tuOAy4knHr4PI0eODG99cjltQN0BaZ9Tp/YO4cRoh5V+fgk5Gb3525vY37AfG8o3RG0fCghVUlIqFlUKIdCzu+S1eHfxLr9hWTxmLEptx3mk5QgONR4KeV+hkhu2WpwWd3AWLWKb1aYAXTja7e0wqv0Hi6HMt6w2V8vaXuQ5Y7HD0eGuWAQADaNBuyN4sHik9QgytZmS9if1e3Lrhq1Y88EaAMANc2+AocDg8+td2lKKdWXrMK7POKRqUiU9d7TwCXIulJCTFQWLhCQxRqmAw8XDlSCVbTYnh8RYSWLhXDxK6kzIMKihZYMHR05OeBWP1MsbjE7k4TgOjzzyCP785z9j27ZtcVvHxsJaGDQMBmYFv9pQVHxwLwCgpSnOreAIISQSQgmITkZOW4gzFi1CK1RlhN/6bfoH8NXD3VufHv5WmOsYTG3nnEJb8FlC3djauod2Uognj11htO63tgHNR4GUXIAN0uK+6xp13icBeZ7HvDc+xIxHX8aPxU3C15ePw1iB2t+F6sq0voBS2kVOh8uqAAD1Ta3RXBkhJEGJYV+k5xp6EoNFKS1Omc7fXXLDIUCYQ+dLSBWLTOjBokqpkrx+HrzPVq3R7npk42yy9mG2m6MfLHb+LW62Nfu832Qzwe6yI1XtPwRTM2rZ1Zg15hpZ24s892NxWrzmT2oYDUx2U9DnqGyvRI4+R9L+mCB/13mexyfvfIJn5j6DPdv2uL++rMJ3Be1ru1+DhtFg8oDJkvYfTXZrAsyKJ+QkRsEiIUmMUSrg5FwxGWUTjINzwcVH/0A2GVU2dcDmdCE7RQOlUhH8ASTqTCYTrr76aixcuBCvv/46FixYELe1fHuwFkNzjEjXSX/DVXu8MoorIoSQGAslIDoZhTpj0WkRKhYj/daveg9QvlVoS+qpvQo4skXC4/cJHx3yWo8BAGwmwBlKsCieIAsjvKv9Xfho7AMoghzXebZCVTBASpb7nxarDTMeeRnz3/oIzz84G+/++Tyh1W08gsXjvwJKFkjrL/khVXV0cRMhJDacvISKxc6qLLlhICAEi77CS7kVi3bOHlbFokqpkrV+u4+/g6HMmZSDBy+pVaeow9kR1msihRjMNVt9B4s1FiEADFSxqFKqJFeLiuo66mRtL/JshWpxWqBhT1Qsqhk1zI7AF2eZ7CY0WhrR29Bb0v4Cvf4OuwMLHl+AJc8vwfS7p+Ovi//qnqfIKJluPwP76/djy7EtuDj/YujV0jocRJPTHr0LGwghwVGwSEgSY5VKODgeXAKEeRaHcAAb/5UknqJa4cA7J1UTZEsSaa0dDpz3wkbsO9bidfuf//xnbNq0CV999RXuu++++CwOwPEWC4prTSjIMiBFK332QW0VBYuEkB6Es4dXQRZr89KAz+6M/X5DDRYdFiE0ikYrVIfFe9ahrpdQxbfvk+CPrekMFkOZsWk3hVexGM6xc9UeoQI0rW/wbT2DRX0GwOrc/3z4pXfx+fc/478Ln8JTd94IBaPqrFiMw9H0sV1Aar4wA1Ki6nr/LecIISSS5FQsyg0DRRYfF7nIDSkdLkdsg0UfbV+lhLDhkhUsOjqiXrGoVCihYTRosbX4vL/WXAsASNP4/xunZtSyv95NtiY4Q5j33LViUcecODbQMJqgweKhpkPgwaNvioTjEASesbhswTKsX7Uejy94HHMfnwulR3cLXzM/X939KoxqIyYOmChp39HmsPuuNiaExAYFi4QkMaEVqishWqFaxWAx/ktJOEfqzdCpGGQaontATbqrarWgps2K3WXC1YscJ3yfvvDCC9i2bRsmT45v+47vC2vBKBQYkm2AMljVg4ea46ENiieEkITE2eNTpRWO8ji00OZsQkWbXE5r9IJFp9U77FSyQN7pwNFNQEeA4MnFAXWHTjxHKPuV0Cqs++Mi0Ha36jchVNT4r3xw8zzBresFsBr3sciz98zAlhX/wHWTLhTuV7Lxa4V67Bfhc5JRfVBVS8EiISSw+7+/H1uPb5X9uK5BopyKRblVZyLPuXeikCoWw2mFyqhk7dPXtqEEXXLJrVhUK6N/HkTLaNFq892au8HSAABI16T7fbxGqZHdRtfFu3DMJP99uWewaONs7laugPB5SAkWAaC/UVqXAV9ht3gsMv2u6Xjtk9cw6fpJ3bbp2gp16/Gt2FW7CxP7T4x6WCyV00YVi4TEEwWLhCQxVqmAk+PhSoCBxVa7cBIk/itJPLVtVqRqWWgkzFckkWXuPNB0gcenn36Kc845B83NzSgoKMBpp50W59UB3xbWYWC2Adkp0qtZzaZ2tDY1RHFVhBASY5wj+YLFeOBdgCOEE6aOzlao0apY7Bp2DjgfsDQDxev9P67piNCiVXyOULTXyn9MKCFmV1W/Acbe0kI4z4pFXTrWbv0do6fdi9qGZuRlZ+DsUcNO3K9kO1/LGB9NW1qAplLAmOdVURmIw+FETaPvlnOEECLaenwrdlbvlP24Vrt3QCSlYlEMTxxcaBVMvsIc2cGiyx5WiCa3YtHXtjGpWHT4DhY3lG3AJ0XeHQssTktMQigdq+v2fSNqtAitu9PU/isWVYy81178fitrLZO+yE5i+G1z2uDiXdB5/O3VssGDxZKWEhjVRhjUBkn761qxuGf7Htz2x9tQc6wGxnQjTjvb93kRVsm6fwZ4nsfC3QuRqc3ERfkXSdpvtPE8TxWLhMQZBYuEJDGWEWYsRiNXtDo4bC2RHl5YnZ0H+zJKFncebcKzX/yeEMFoNNW1W2HQsmAZ+pUba2Y7B57n8dX7b+LGG2/EyJEjodNJO2kWbR12J34ubcTALD1SddKvbC0vLY7iqgghRIZItS/lHKFV4p2MbNKrBNycFmG+n4zKeOnPbe3enjVzMKBNB/Z/6v+4sGa/8JHVyG+Fq+o8kWYOYbZRuBWLdrMQwhlyhJavwXickHt9Ux2uvO9FDOrXGwadj8eKwWKsQ/aq34SPqfmSv0dKKqrAcXQxACEkuFAqCFut3gGRlLCMVbAh7w/wXbFoc0n/m8HzPJycM6xgUa1Uw+GSHpT42jYWwaLJT8eADws/xEeFH3ndZnFaoGEiNxLmu/LvsKtmV7fbtazWbyVlg7UBOlYHlvHfElTDaHy2lvUnVZ0KAKg0yR9RIgaYJofwOnpVLLJarxmMvpS1liFTmyl5f54Vi8c2HsOjMx9FVl4WUowpAR/HKE7MWNxQvgGHmg9hcsFkd9vheGusbQTfw88lEpLo6Cw3IUmMVSrhdPFRaYW6sbAONy3dgbKGwFdLiSx2+TMWfylrwqe/HEN1WwSuHk9g9e02GNQMVEwUTuiRgFrazWj8+lWsWfoa5s+fjw8//BBarYQTgTHw0+EG2DkXBmWlQCUjdC4vKYriqgghRCJzA/BCb6BSfiVCN1SxKF1IwaINYNTRCRY5O+DsciJOoQT6jwMqfgbaq30/rvZ3IXzUpAnrk/P113SeCItHxWLtAWGtaX2kVYBydjg4HnevteGBD/fhkVuuxuo3nkaKwcdFTkpGCFhj/bNwfDeg0gmfk0QHDldEcUGEELnMdjNuW38b+AScSyJ3bh0ANNu8K6IlVSx2tiANZX+A72BRTvWjnbPDBVdMW6H6rFgMZRazTP4qFi0OC/guZ4QiHSz+7ee/4d3973a7Xcfq/LZCbbI0Qc8G7jKgZtSwc3bJP0MqpQp6Vo9j7fJboYrBoRgseq5Nx+iCBovl7eXI0edI3h+rZMFxHGo+qcHvb/+OKTdOwUvvv4SUtMDBolixyLk4vPHrG+ht6I1ze58reb/RVlZcFu8lEHLSo2CRkCQmtEKNzoxFk80BHkCbRdrBtDhjUS67k4PD2bNPJjaa7NCrWbBK+pUba7/t+gUdxdvw52cX4q9//SsUPk6q/lBUJzlAj6TvCmuRa9SgX4b0eUYABYuEkARhaRFCmuO7w38ul0OYLUeCkztXkOeF9qlhnOgMyleFwOAJgKMDOLDG92Oq9gCpfU5ULMqpWFV3nggzhRIshlmxWLVHqCxMzZe2PefA3nolPtjPY+nTc/DyX24Dw/i50t9dsRjjYODYL0Baf0AtYWZkpwMl5VFcECFErtd/ex07a3Zic+XmeC+lm1CCvq4BESfhb4RYsSin4s+TxUdbbjkVbGan8H4ynBBNpVTB4XJIDrd8BZ+xCBb9VSz6CmctTgs0bGSCxZKWEjRZm3xWJupZvd+KxSZbE/SqIMGiUg0evKyK1zRNGqrMVZK3F4k/E2LLU53KuxWq1Wn1+z1gtpvRaGlEniFP8v7USjWqyqrQ9H0TRtwyAg+98BBYlf/qTRGrZGF32bH68GqUt5fjykFX+jyfEi8ULBISf3SWm5AkxjIKoWIxCrmc1SHvSS0hBosc79FGtYdqNNuhUzNgqWIxZioqKsDzPAacdjb63vEezp14pc/tSuracfv7u/DSN4UxbcnrcvH4/lAdhuSkIFUb/KDe09GSQ9Do5IWRhBASNeEGNQBVLMohN1gU28wq5f2tkcXq40Reen9hDuGBz3yHxrW/n2gn6rTLC5aVjPA4c738tYZYyeJW/Rtg7ANoU4NueqymEZzdirP7aXH0i1dw2803BH6AkhF+DmIZsvO8cHFAah9A4qwmAPj9cDl0mujPzCKESCOGaXKCsFixhXCc0HVWnpSwTGxzGcr+AN+hmGf1YLDAUAwmw6lYVDNqcDwnOYz19fWORbDobwagr0o7G2eLWMXij8d+9Lt/vUrvd10t1hYY2MB/48TwM9h8Q09p6jTUmGokby+ydnZPcAeLHjMWdSodXHDBbPe9jsKmQvDgkZ8i7QInR4sD4IB+g/th2CvDUHB5geRwkFEysDgtWLJvCQpSCzAqe5Skx8XK0eKjUCjpHBsh8UTBIiFJjFUq4OCi0wpVbgWi3CDSk8XWc4NFB+dCq8UBg5qBMoGu7urJ1q9fj1GjRuHtt99Gh50DY0j3uR3P83j28wPgXDyaOhxwxjBY/L2qFQ0mOwoyDdCr5Z3sLS8pQl7fflFaGSGEyBSJYNFFwaJkvkK8QMSTfEwUQyBbm+/bCy4U5vc1HfG+3dwoVBum5AoBodyKRUCoWrQ0ya/uC/f79fivQGpvIEjlw4/lToy+4VG8vHIDoGSRk5ke/LnF8FdGG7ywtVUJAa2xt1A9KtGBknL0yZE+34kQcnKSWwEmCqViUZwjF3LFoo9QzME5kKZOw+js0Tgr9yxJj9coQw/RxMcGa4Up8tU2NZGCRZ7nYXPaoGUiM4rkl5pfAJxoIerJoDLA7DD7rPRrsbUgRR247acYfvqrxvSll7YX6izy5z13rVj0DD3FkLHF3uLzsYeaDgEA+hv7B92P5agFpfNK8d2/vgMAsKnyzjuwCha/N/yOuo46TB0yVdZjY6GsuAwqdRQ7chBCgqJgkZAkxjJKcC4XuCgEInKDQlsYVYcme/QPfuOlySwc7BtkhkckNIsXL8bll1+O//u//8PNN98Mk9X/G8t1v9dga2kjtKwSVgcXlZ8jf74rrINezWBgtvTqAAAwtbWisa4GuX0oWCSEJAiqWIwtP22+/BJbu8W6FSoADLxICI33/c/79tr9wkdjHsCqAZfMikVAmLNobRW+d+QIZ8aiwwo0HBYCUZWPGYmdPvhmJ/7wQQdOHzoAd1x+NqBgpM23jEewKLYyTpd+XGG3O3C4vAq9czKitChCiFxiBVQsQiW5QmmF2mb3vmBFyoxFtvN3aKgzFn2FeXaXHaySxW2jbgta5SU+Xh3GhTxitaPUqjlfIWq8gkWe57u9hlbOChdc0LLhB4s8z2Nf/T4oFUp0OLpXl6aoUuDknT7X1mZvkxws+npufzJ1mWixtsiaxQmcCITFKlnPNq1iyOhvXmRpaylSVCkwBOky8Mu3v+DIi0egylBh4s0TZa1PxCpZcDyHEb1GYEj6kJCeI1p4nkf54XKwdJ6NkLiiYJGQJMYqhVao0RjFYnXIOyC12EMPFjvCeGyiq28X3tjoNX7m6ZxE2q0OXP3WVhypl9nGTQKn04n7778f99xzD+6//358/vnnMBqNaLf6/j622DnM/+ogTu2Tin4ZeticLjij0VPYj+8O1mJoTgp66eW98SzrnK+Y21fibCdCCIm2cFtLAvGtWOxoAg5/K/9xcivsIsVPayy/xGAx1q1QAcCQDWQMBg594R0A1vwuVFCm9RE+Ou3yv/6aVMDaJv/7L5xgse6A8HVP7Q0our+NdrlcePq19zH7+ZWYdYYK65Y8jQw92/naJ3CwqMsQwlKJisuOw+nk0IeCRUIShhhUWD1+x/1a+2u8luMlpGCxSyW8lIpFtVJ4XxXJikU7ZwejlPY+XgyJwgkWxcdaJf6t8hVoSXmtwuUrvOtwdHTbd7tNOD6IRMViUVMRWu2tGGAcAIvT0q0yUQwOGywNXrc7OAc6HB0wBpkj7A4WfbTE9SdLlwUXXKhor5D8GODEz4TFYQGjYLy+Z8R5iy22Fp+PPdpyFFm6LL/PzfM8Vr65Em8+9CZSz0zFwCcGIjM7tA4DKqUKCigSslqxvroe5nYzBYuExBkFi4QkMVaphJPjwUUhWbTIrFiU2zrVa189uGKxwSQcNBq11KLheIsFv1W2YGtJCDORglAoFKiqqsLbb7+NV199FQwjvAFst/n+3lq8qQSNJhv+b2gWUnUq2BxcVGaV+lLTasXB6jYUZOph1Mhvg6pkGGTn9YnS6gghRKZIhCCcM7Zz5Twd+Az4eDrQXivvcc44zbGSO2PRHSzGoRUqIFQt1hUKYaKoZp8wp1BlEFqhhhIsa1MBW7v8r0M4FbZVe4RAMdV3dZ9CocCxmgb8856pePdKLdQqlRB8KhmfQWQ34snrWAaLlTuBtHxZ8xUPlJQDAAWLhCSwoqYizF43G4v3LI73Uny26wyma6tLKWGZWLEYyv4A34GSw+UAo5AWLIozFsOZJyg+dkP5Box6fxR21ewKuL2vGYuhBqty+Hqtus7FBE5UnnrOEAzVj8d/hAIKnJp5Kjie6xZupqiEYLHZ2ux1e72lHjx4pKnSAj6/GH7KqVjM0eUAACra5AWL4teow9nRLYgWKxbb/XSDqGivcO/Xn/qaeky7axry78yHUq10twmW6/w+52PakGnINybeRc1lxWUAAJWGzrMREk8ULBKSgDYcqMHsf+8Muh3LKMBDmOMXaXIrEOUGkZ56csVig0k42E+jYNH9PcVF8Mt99OhR/PTTT2AYBv/9739x5513et1v9hEsljWYsWRzKS4YkoWhOUboVExMKxa/P1QHpQIYkpMCpcxh42WlRejbfyBYNooniAkhJxdrgFBIiojMWHTGr2KRdwnBVkeTvMfF4MSdT6FWLLJRvKLbFiDsHHCBEKrt/c+J26r3Cm1QVXqhYpFzhNAKNU1owSr3BLJD2twqn6r3CoGoNtXr5qraRnz/8x4oFAosf+lhPDL9khMt8zi70ApVilhXLLo4oHqPMF9RJSdYrEBedi8YdJGZmUUIibx6i3Ah57H2Y3FeSWgVi11DFSmtUMXwJNRWqL6qBO2cHaxC2t9PcZZkqCEOcKJi8fcG4WKc4ubigNt7tj1Vdl7AEotWqL6CxRZrS7fbxK9jJFqh/lLzC3INucjUCdV3zTbvAFGsWGy0NnrdXmcWZiCmarz/dnclvva+5jf6k6PvDBZlVCxyLs4dLFqclu7BYuff467tgAHAbDejwdKAvJS8bve1NrVi56adUCgUeOBvD+Dqe652H4uoQmyHPzJzJC7pf0lIj422suIyaHVaMCx1BiMknihYJCQB3fnhbmwursehmsAn+5jOUMIWRrWgP1aZMxPDqVg0+akq6wkaTDboVAx06uQ/4KlptaKuPfQWYpYIf59u27YNY8eOxUMPPQSe533OvTDZuu9z/pcHkKpV4dyBvZCmU0GrUsLujM6sUl++PViDgkwDcozy32CVlxRhwODhUVgVIeSkJePKbJ/khCCHvwVKN3W/PZ6tUEVyAzunHd160cciELLL/HqJrd3CqKAIKtDcR00KkHsKcHidEOo57UBjidAmVaUFWI3wuslt3aZNE75mclubhtMKtepXILUPoD4xC+m3g6U494YHcff8xXA6ue7HIk67jIrFzpPXzhiF1g3Fws9/ah+AkR48HzhcjlOHDIjiwgghPUlIFYt2+RWLjJKBEsqQK/Z8BYsOl0NyK1SxlWo4FYtiO1cp4WiHs8Mr4FN2nt6NRStUX1V9YtCn8Gj93e4Qjg/CrljkhbB1UOogd/DWNchMVQnBYdcWorUWoSNFuiY94C7ENfpqieuPhtXAoDLICvAtHhc4WZ1W99e86zp8VSwWNhWCB4/8FO8KwvLD5bj7qrux4IkFsFvt3Y5Fuu6jJzhafBT9h/SX1GmeEBI9FCwSkoDE01T+5sOJ2M5g0eqM/Mk4uUEhzVj0rb7dhhQN4/5aJbOn1+zHg//ZE3KFrC2MqtauVq5ciQkTJmDEiBH45ptvfIaKQPeKxY2FtfihqB6XjMjGgF7CmxKtioGdc0WlpXBXFjuHbaWNGJRtQKpO/pWD5SVFKBhKwSIhJIH4mO/j17bXgU0vAI7Ok3eHvhI+upzxm1kokjFTB0BnGNbl71osPgenpXugGYi7YjGKwWKgikUAGHgx0FwGVPwMNBQJX29jrhC2MZoQKxaNwvNYmoNv68kRYrDotAP1h4CUHIAVgsU1323DhTMfRe/sDHy//EWwvq6a58RgUcqMxc7H+2htFxXHdwNQAOn9ZT3sQEkFThtKwSIhRBpf7TqDCaUVKgAolcqIViyGEiyGU52n6fxbLedzEGcNxrJi0Vf41moTWqF6vi8XA+Jwg0Un70S7ox3DM4afaHnapWJRr9JDAUW3VqiNFqGCMV2bHnAf4tdNzoxFAEhVp6LKXCV5e8/nt3LWbkE0oxRmLvoKFsUK1n7GEy3Zd23ZhXuuvgdqrRqL/rsIam33EDGcKtpEVVZchoHDB8Z7GYSc9ChYJCSJsUrhRzicUM8f2cFiGNVoHT14xmJduxUpWhVYJvl/3XbYOFQ2dcAUJPD2J1IVi4sWLcJNN92E6dOn49tvv0VWlv/h5WaP7y2rg8O8Lw5geJ4Ro/qmQaMS3iTqVAzsThecXPSDxe1HGmBzujAo2wCVzO+JtpYmNDXUoWAIBYuEkAQipxJBrPITqwnaqzufI46tUEVyKzddPsKwGFygAodVCNQkbx+LisUg1Z755wgtT/d9AtTsF25L7bzantV0VqyGECwCgKlO3uNCrVisLxQCUGNvQKnEslUbcM19z2PKRedg84p/oE9upu/HuVuhSgkWxYrFGAWLx3YJn49e+qxEq82Ow+VVVLFICJEsIjMWJV58wipYOLnQ3quKrUw9OTiH9FaoTv+tUCvaKlDcFLitKXCi2lFOsCgGt2KwGK+KRbF1p2fFojgHMRIzFpUKJUZmjoReJVzc07UykVEy0LLabrfXW+qhUqqCrkGlVEEBhayKRUCohKw1S5/TLVZxirq2QgWE7wNfweLhlsNIUaW4275u/nozHp/9OE4dcyre/OxN5PXr3iIV6HnBosvlQllxGQqGFcR7KYSc9JL/TDchJzGW6WyFKrNtqRRWmdVl4YSDFnucTyZGUX27DQZ1z6hYBIBGs112m1xRpALwP/zhD3jllVewbNkyaDSBT5R6VsO+u+UIqlutuHhIFvJST7yx0LDKzmAx+t+H3x2sRXaKBv3S9cE37qKspAgAMICCRUISm6UZmJcGNB2N90pig3NID9T8tSfjOSFcjCe5LUYBHxWLMQgWnVZ51X3uisUotsFyWIBAc4pZDdBnDFCyUaiSM+QAuvQT6wolWBZnJZmkn8wDcKI1rFxVewAo3IHoReeMwnP334RPXnsC+kCzBuVULIqzGGNQbQIAOPYLkJYva75i0dFjcLlcOHWIvCpHQsjJK5TWpF2DK8kViwplSBWSgJ9gUU7FImcBo2B8bv/Krlcwb/u8oM8htqwMFsZ6Bo9ioMl0/g2RGsKGw1d1p69gUQyIIxEs5unzoGN17opFsULSk5bRdru9ydIEPRv8vbdCoYBKqZIdLPbS9kJdh/SLnLo+v6/WuRqlxuesx6OtR5GlO3FR9SlnnYKZ98zEC/9+AQaj/7/lvsLLZFZ3vA7WDisFi4QkAAoWCUliJ2Ysxr8Vqtwg0lPPnrFoh17NukPgeHG5eByo6n7wLVeHnUOTKbQ3a+FULNbU1OCOO+5AR0cHTjvtNDz66KN+25966uj83mpot+HNH0owbnAmhuUZofQIerUqBjyi35KX53l8V1iHITkGpOlDa4PKsCz69h8UhdURQiKmZKPw8cdX47uOWJEzH9HlxImG711IqSQTt4nGldehBE7dTnTGIli0yavuc3QAUAgVg9HilFBFOWg8YK4DDnwGGPOAzooDMGrh85FbpeeuWJQZLDpCa5GH6j1oYrLx59fWoLXdjMH9e+P/3TUdSmWQt9NygkVxzqEzxDXK4bAIrV09vxYSHDhcDgA4hYJFQohEDjkt0zt1DV+kBouMkgmpQhIAbD5+9zpc0isWbU6b38owB+foNjfSFxUjPD5YxaJYCSjuFzhRsRjqjEmpWAXrM4Rts7V1u83kMIFVspLD2UAGpQnvgTWsBqyC9bk/HatDq71LsGhrclc5BqNiVF4zEKXI1GWixdYiucrU82sH+G6dq2F9B4sVbRVId6VjwRML0NLYguy8bNz66K1gfLVi98AqWbCdXRHG9RknaZ2J7GixcPEmBYuExB8Fi4QkMbEKzhaNGYsynzOc0MgWoRaZiajRZINOrYQq2ImnKNtcXI8rXv8JByMQLlY2hVDVAflhtWjfvn0499xz8eWXX6KiokLWY8WwcMXPFdCpGYwdmIF0vffJVQ0rfG3MUW7Je6CqDXXtNhRkGaBTyX9zVVZShPwBg6BS96wrDgkhSU5OtVmg8EnKiRxxnp5aeoWVZLYQ/rZ1a4Uagw4MnMxWqE4rwKhOzO+LBqcl+JryRgHqFKCjUahYVHVWL4iBp9xWtGoDAIX8Vqghzt4q/m0rznvzOFb/8CuOVNbI2J8dULCQ9LZbrFgM8aS4LDX7ha9Zal9AxjHqgZIK9M3NRHpqShQXRwjpSRwuh3sOoFRWzurV0lTq3EBGwYQ8Y9BvK1SlxGCRswXcVkolpQIKsAo2aDjqGX6JM/tiNWNRzah9vla+WndandaIteEckTHC/f8aVuOukPSkZbVot3mvo9naLDlYZBWs7IrFLG0WePCobKuUtH3Xalwt0z1YVCvV3bYz282oqqzC+sfW44cvf0DlEWn7YxUsFAoFGCWDNy55AxflXyTpcYmsrLgMOoMOuX1z470UQk56FCwSksTEGYuhBjaByA37wgkW7ZxL9puNZMC5eLRaHNCrWa8KuXg41mIBD6C4NviVksFUNocWLIbSCvXrr7/GBRdcgMzMTOzcuRMjRowI/qBONicHp0v4vjLZnJgwLAcFmd1PRms7Qz6TNboB9/eH6qBTMRiclSKp2rKr8pIiaoNKCEk8cioWOaf/oj4pFYvRDBYdQeYE+hKXVqg2ma1QO4TwThHFt31SKhaVDNBvrPD/xlwh7AROBItyW9EqlIAmBehokL9WmX747juc9+IuMKwKO/6zAGeeMlj6gzmHsFYpf/fFE9KxCBaP7RIqf9P6yXrYgZJymq9ICJGFBy9rZqDIs/JMcsWiggm5FWq4FYtWpzVwsCjxdzurDB4sela9iW1JYzVjUcWo4HQ5u1Widp0dCAhfe4WUGcMSeAWLfmYQ+qpYbLG2wMBKO25UMSqfoWkgOfocAEBZW5mk7bu1QmW7t0LVstpuFa7/++5/KHmuBC6rC2+sfgOjzhklaX+RqBZNNGXFZRgwdAAUCgW0igDt6AkhUUfBIiFJjOlsrxmNYFFuxWI4a7A5XOBcPS9YbDLb4eIBgyb+B3MN7cIbpZq2EGcLeQi1YlFu+Hzo0CFcddVVuOSSS/Djjz8iPz9f1uM7bN77O6NfmjtE9BSrisVvD9ZgSE4KehlCqzgsLy1CAQWLhJBE45JTsRigPZecYFHGTDjJ5FbMAT6CxRhULMoOFi1CiBfNYNFhk1ZFOfRSQNcLSPNooymeUAvl9dcYgY7mwPMdu5LZZrSyshKTLp+Cs3orsX3BTAwukHcsAs7RWS2agMFiWj6gTZX1sAMlFTRfkRAim1hVJ0ezrdn9/1LnBjJKJuRWoL7CT6fLKbli0cpFJlhUKVVBw1HParZYB4sapfB3u2vFoK/WnRHdr0cAp2W0PoNMPavvFsi12lthVBsl7UOlVPmcHxmIGCxWtkusWHQGr1jUslqYnSfC44aGBtx5/Z3Q5Giw6LNFGDh8oOT1ibM3e5Ky4jJ3G9QsVVbgjQkhUUXBIiFJTGyFmggVi2EFi5wLXA+sWGwwCW9OUtTS3oxEU327cIBc2xb+3J7qVvlX+wPSg0WOE7YbMWIEvvrqK6xevRopKfJbbnnO7jxrQC/0TvM9NP5ExWL05lHUtVux/3gbCjL1SNHI/35obqxHS1MjBgymYJEQkmDkViz6K1mU0wo1Gu3F5VbMAT4+7ygfyzDqzmBRxoUwdkuMKhYl/I3vNQCY8gqQPfTEbaG2QgUATSpga5PX3lRisOhyCd00+vXrhy9efQhrZ+iR3neI/DWKwWKiVSwe7wwWZVT/Wqw2lFZU49ShVLFICJFH7tw6QKg0E8mpWAxlpiPgO1h0uBySK75snC1gdaPUSkpWyQb9HDxDJ6urS7Ao5+KjEKg7/253rRiUMkMyVBpG0+3fvvZnUBm8Ak6e52Gym2QFixZO3veqmlEjRZWC46bjkrbvWrGoY7ufo9AyWlgcFvA8D5fLhaysLFz/4vU47enT0Ld3X1nr62kViy6XC+WHy2WFq4SQ6KFgkZAE5uACn6hzB4tRmLEod26j1RH6GuzO0CsW7165G1uK60PedzSJwaIhhCAp0mo7KxbFNYWj3mSHPYTvua4VhL60tLRg0qRJWLx4MQBg8uTJYJjQDoY9KxCVABg/7WjFisV2W/QqFjcdqocCwJBcg991BFJeUgQA1AqVEJJ4ZM1YDFSxKOHvk6VF2n5CIXOmDgAfMxZjECxydnnBosMc/YpFKa1QReoUwHPWkRgshvL6a9M6g0UZQZyESgSTyYSrr74aL730EgDgsoEuqNLyhGpLuTi7/FaozigHix1NQEs5kJIHsNJbiBWWVoLneWqFSgiRTe7cOgBosbW4/z8WrVB9VRQ6eRkVi0HmCUoNPFklCycv/E3193l7vp5Wh3ewKD42WvwFi+ZQWspLoGN1OC3rtG63+WqFalAZ0OHscI/ZabY1w8k7kaZOk7QvVsn6bIkbTJomDdWmaknbSgoWWS1MHSbMnDkTTz31FAAg6/QspBjkX2zd0yoWqyuqYbPa3BWLhJD4omCRkAQkBobBghiWEX6E5VYXSiE3OAqnYjGcYHHt/hrcsvyXkPcdTWKIl6aLzMDycNR3BovNZjtcYbadbe6whzRTM9hjSkpKMG7cOOzevRunnHJKqMtzM0sMCjVixWIUg8VvD9ZiQKYeuUbfVZPBlJUUQaVSo29/ujKPEJJgZLVCDfB3wCGlFWqTtP2EIoRqCnQ94RftVqisRgiq5LQ5c1iEWXrRDBblhp2e2M5g0RZqsNguL4gLUt147Ngx/N///R++//57nH766cKNplqhOtIzEJXKZQcUDCS97RarCkJs4yfZ8V+Fj2n50gLPTgdKygEAp1ArVEKITKEEi602jxmLMlqhOkP8e2Rz+W6FGigs9GTn7AFDSCfvlPR5eO6vtKXU5zae7TTFdYsBUrQrFsXqwa6tUKMVLLJKttucRi2r9dl6NUWVAhfvcn/v1JnrAEByxaKaUctuhQoAaeo0VJslBosOi1fY5ytYdLW5cPCFg/jss89w1llnuW8PZV5lTwsWy4rLAAADhwnnRaLd+pcQEhgFi4QkIDUj7UdTrHySW10YDOfi4ZQZPoWzBruTkzUepys+QduoNrTboWGV0CdAxaIYcrZanLAHqYQNptlsDynM7ggww3DLli0YO3YsOI7Djh07MH78+DBWKDBJqJAEAK04YzFKwaLVweGnkgYMzk5Bqja0kLm8tAj5AweDVcU/pCaEEC+ygsUArVClnHTsSLRgMQ6tUDmH8J9UMalYlNme1ZO7YjGEVqjadMBmktkK1X8IuWvXLpx77rloamrCtm3bcPnllwt3iF/WUF5DdytUCdvGqhXq8d1C5WiqvHZqB0oq0L9PNlJTQghYCSEntVBmLHoGVy6JxxmMIvQZi74qCuXMWLRxtqDbSmkJ6/kcjZZGn9v4mrGo6LxQJNRgVSoxWOwa7HWE0tI8RDpW53N/hs723o1W4XWrswjBYromXdLzqpQqWDn5wWIvbS/UW6R10bI4LV5f467B4tGio/jwrg9hr7Pjm+++wfXXXy97PZ56WivUsuIyGIwGZOUJsxWl/m4ghEQHBYuEJCAVK+1HUwEhXIx0sOir+nD/sVYUPPE1vj9U6/Mx4VRN2jm+R85YrDfZkKJloQqh9WWkNZmFk1RtVkfY3y/tVmdI1X3+KhZ5nsdzzz2HM844Az///DOGDh3qczu5OiSukWWUYBQKmO3Rudrt5yONsDg4DMwyQC3xZ7ur8pJimq9ICElMLqf0FqCBTvbJmbEYDSG0vureCjXKJzcYNQBe3jzIWMxYdMkMOz2Jc5PsIVQ66NKF2YxyQuEAIeRLL72E/v37Y+fOnRg1apT89fjcn6PztZfw+otfo2hXLB7bCaT3BzTS5ysCwIHD5dQGlRASErntJdVKtVewKLUqScp8Qn+6tlDleR4cz8kKFlVM4ItApQSsnhWLnu1gPXlWgIqzId0Vi1Gu4HIHi11mHIZSlRoqPav3+VqmqIRWoU1W4UK0+g4h7EvTSGuFqmbUPmdtBpOpy0SrrVXS97mV826Zq2e9L9b579L/Qp+ix6BnB2Ho6eGfF+lxFYuHy1AwrMAdpBNC4ouCRUISkNSKRUBomxrKvLtAfAaLx4V2EluKGnw/JqyKRRec4ZQsJqi6NhtSNKy7ZW28mG1OWB0upGhYtFudsDlDf7OhZpTgARxvkf/GoescTpfLhYqKCigUCvzvf//DunXrkJGREfLaupITfqpZpaQZkKHYWFiHDIMa/TNCa4PK8zzKSopQQPMVCSGJSNaMxQAhpJTWU9YWycuSzWmF7PYJ3VqhxqBiERDaf0rltAiVcNE+ASNnTZ7EzymUilFNKgAeMMmYtd3lpB/P8ygvF1p8Llu2DD/88ANyc3Plr8Ufl0P6jEWFQqhudEYxWOR5oRWqsTeglhksllRQsEgICYmFk/c7XsNqvGboxaJi0cW7vEIl8f9ZhYxgMUjbVLnBor/2ol6tUDvXKbbJjHorVFbTbW0WpwVO3hlSq85Q6FV62DhbtxBZbHkqBosNlgYooJDcClWj1IQ0YzFblw0ePMrbyoNua3FavL7GOlYHnudRc6wGAPDA3x7Aw8sehjpT7dUOOFQ9LlgsLkPB0IJ4L4MQ0inuweJbb72FgoICaLVajB07Fjt37gy4/cKFCzF8+HDodDr069cPDz30EKxW+aXqhCQysarJ39xBz9afbDQqFmU+n4MLfUai+PgemCui3mSFQc26Z2bGbR2d8xVzUzUw2ZxhBdFpeuEguKJRfqsTz8DabDbj+uuvxwUXXACLxYL09HSo1eqQ1+WLnNamGlYJS4BWraHieR7fFdZiaE4K0nShfX7NDfVob23GAAoWo4aORQgJHS+nFSoX4PeslGAx1PBKCs4hb3Yh0D2IjEnFIgB797lCfjks0W+FCgC2tuDb+OIOFkNphdpZgWD23U2jG5fLq2WrzWbD7NmzcdZZZ6GlpQVGoxE6XWgXAfnFOYQZi1KDXQUT3YrFlgphVmlqnxOvvQTmDiuOHqvBqTRfMaroeIT0VHKr2bSM1itYDFaF5+r8e8woQw8WAe+wTGwxGqwKUSQlWJTyOnjuz1+w6DkHsGsQ5uSj2wqVUTBgFIxXK9Rmq9BRQi3j70o49J0zj7tWdBpVRq/1NFmboGf1ktuBhlqxmK3PBgCUtZUF3bZry1wNNFj0zCLcdultaKprgkarQUaacLF1i71F9lq66kmtUDmOQ0VJBQqGFcR7KYSQTnENFj/55BM8/PDDePbZZ/Hrr7/ijDPOwGWXXYa6ujqf23/00Ud44okn8Oyzz6KwsBDvvfcePvnkEzz11FMxXjkh0SUGi/6q+EpLSwAADVWVYBllTCoWI7l9V3bO1SNboTa026FXM2CZ+AaL4nzF3FQt7E4XWi2hv9lK1wlvdCqb5Z8AFFuhNjfU4uKLL8b69evx1ltvRf4kXic5rU01KiWsjvACcl+KattR3WpFQaYeenVoB/VlpUUAQBWLUULHIoSE5njVcQCAxWKRHqgFOjEoJViMJs7WvbVpMKFU2YWDFYPFUCoWo/S2L5QqSk9KpVCl5wjh669NFT62+/593Y3HycKGVjMmTpyITz/9FG+88QbS09Pl71/SPjtnLEqlZAMH8OE6vkv4mJov62GFpRUAgFOHUsVitNDxCOnJrDL/xmsYjVerTZef8yItLS0AgKMHjwIQqgvlBoueYZ/nDER757xbqRWLDs4BtTJwsCYpWPQIJ/1VOPpqhSqKdsUiIARwnqFnS2dHCbFNarQZWKHiXgwQRXqVHkqFEs024fZGa6M7hJRCzai7tcSVIlsnBIvH2o8F3dazYpEzc3juz8/hq4++wl3/7y5k5AiBorjmdjnHe370pIrF6opq2G12ChYJSSBxDRZfffVVzJ07F7fccgtOOeUULFmyBHq9Hv/+9799br9t2zZccMEFmDFjBgoKCnDppZdi+vTpQa/kIyTZiK1QnZzvkMNuFw6WrdYOqBgFHC4XXBEMROQHi+EFmw7OBc7P55rMGs026NUMVMr4FoeLFYu907QAgLr20E/eqlkldCoGVS3yn8Pq4GCvLcXf/nw1amtr8dNPP+Gqq64KeS3ByKtYZGB1Rj5Y3FhYBw2rxODslJDnAJSXFEGl1qB3v4KIro0I6FiEkNDY7Z0nXlwOacGiy+V/O4UyeLAYzbAFAJx2+RWLXavsYtYKVWbFYjSDRVackRjGyS+lKrRgWZyZZJJYsdi5j8J6DmPvfgvFxcX44YcfMH36dPn7lsolM1iMdsXisd2APgsw5sh62IESIVgcOahfNFZFQMcjpGezcjKDRVaDdkfwikWHQ/h9abN2zhlUMnC65B0vfHnkS/f/e1UscvIqFu0ue0RmLHqGk/6296pY5GJbsQgIa/RcmxjkaRlt1PcNACnqFK/9ihQKBXSsDq1WoYVos7VZfrDI2b06hEl9XIoqBcdMwYNFsbLVXm/H0eeP4tCeQ3h5xcu4YsYV7m3E4LQt1G4QHqTOCE0GZcVlAICBwwfGdyGEELe4ne222+3YvXs3Jk6ceGIxSiUmTpyI7du3+3zM+eefj927d7sPlo8cOYK1a9diypQpfvdjs9nQ1tbm9R8hie5ExWLgAxqnww4VoxRaiUbwZJbcoDDcikUHxydMxWJ5uXDipKqiLKzncbl4NJsd0KkZKOPcCrXBZAOjVCDXKBzo14YQCnpK16tQ126VHcJZHS64HHZk9c7Hzp07MXr06LDWEUy7VV4rVJuDi3iw+O3BWgzJSUGGIfS2MGWHD6HfwCFgmJ5ztWGioGMRQsKn4AMEhp7cYYmP37NKBnAEaT1lDX/OTEAuu/yKxa6VBxFqhVrbWaFUdPS49x2hVAc6rFEOFjtPIlrC+L3GqEMLFlmNEEqaJVYsdraLs3FATnoKduzYgXHjxsnfrxycQ3j9pVJGO1j8BUjrB6jkzVf8/XA5CvrmIsUQnS4TJ7tYHI/QsQiJp1BaoXpVLAb5++p0CO/7WAUrO1j05BmWieGd1IpFO2cP2gpVSuWmZzgpVk12Fahi0V91p1wmk/D6l5d2nxvYtWJRnAUozl+MNkPn3zBfMwi1jBatduH2FluLO6STQsNowIOXHYQDQJomDdXm6qDbWZ1WqBgVeI4Hq2Px1udvYcwFY7y2iWTFotTv32RwtOgojGlGd2UnIST+4hYsNjQ0gOM45Obmet2em5uLmpoan4+ZMWMGnnvuOVx44YVQqVQYPHgwxo8fH7Ddx4svvoi0tDT3f/360VWWJPGdqFgMfFDIOexglQo4OB6RzENsPoLCQMFluMEi5+Ij3s41VMeOCVeZ1ddWhfU8LRYHOJ6HQRP/A7l6kx0pGtYdbtW1y2/v4amXXo1Gk13y153nefznP/+BxWqDNn8knnzzE/Tu3RuAMKsx2Pd5qNpt0k/MaVVK2Jyc3/bDoWg02bC3sgUDswwwaqVd6epLWUkRtUGNEjoWISR8Cp6TFqhxAX4nK1mvNpU+WZoD3x+uUCoW7V1PlEbmYKy2Vvj9U13f5H0HG8KMRacVYGJQsRjOVfVisCj3IjOFAtAYgY6m4NsC+N+q1bA6eYzOY7DtzbtQUFAgf62y8MJMRzltyJSM8JhoXHDHOYGafUBqHqCWXsEBAAdKymm+YhTF4niEjkVIPHWdAxiMjtV5BVfBZixyne9Lw52x6Bksii0xpVYsOlyOoDMGJVUsSphT6Bl8dW3dGamKxdbWznCuqaXbfWpGjQ6Prg1tduEYIGYViyqhYtFXsKhjde5KvxZbi7u6UQrxtfc32zKQdE06asy+f197Orr1KGAFNHkajPn7GPQf3P1vK6NkoFKqItMKtQfNWCwrLkPBsIKQO0ERQiIvvv35ZNq0aRNeeOEFLF68GL/++itWr16Nr7/+Gn/729/8PubJJ59Ea2ur+7/KysoYrpiQ0KgYiRWLTgdUjBLOSFcsOrsfuIvtNFN13YMyS5jBovAc0W/ZEUviXENDiHP1IqmuzYoUDQujjoVSAdSG0QoVADINarR0OCQFi3a7HbfffjumT5+OpiLhimrxQJBz8bh04WYs2XwkrPX4Y7Y5IfWQU8sysEW4FeoPRfXgAQzONoAJsWqV53mUlxahYOiIiK2LhIeORQjxppQaLIon+nz9mlUkQLDosgvtWuXoWnkQoYpFv0Jpheq0AkFmPoVFnKckJ+zs9hyq0GZcAkKwaG0JGFxzHIcHH3wQ199yD/53UNguJielxM9HTkt8ccZiNL6X6guF74fUPvKqKCEEi6fRTKOEIvd4hI5FSDzJnbGoY3VeIVzQikWncC5BpVSFNWPQc8aiuOZgVYgA4OSc4HguMhWLEvbnGdR2DW2lfv5bj2/FZf+7DE1WaRfneFIpVd2CRQUUkkLRSNCxQvW8z4pF9kTFYru9HUaVUfLzijMiTSEc0/TS9kJ9R73f+10uF/7f//t/2PnSTlT+IPz+DVThqWG82wGHqqe1QqX5ioQklrj9hsnKygLDMKit9Z6JUVtbi7y8PJ+PeeaZZ3DzzTfj9ttvBwCMGjUKZrMZf/7zn/H0009D6eNNm0ajgUYTm3J8QiLF3Qo1yNxBzu4Aa1DEpBVqZZNw4Jim636gG+6MRQAwWaM/ZDyWGjqDWKMm9Eq1SKlrtyFFw0LNKJGiYdFoknfFaFdZKRq0WBqDBsqNjY249tprsX37dvx7+XLML8zyur/D7oTV4cKvFU3geT7iJ/nMNg4aVgmrhGpYjSryweJ3hbXon6FHXmrobcMa62pgbm/DgMFUsRgNdCxCSPiUkNoKVfyb4acVKucQgj1/IUzUKxYlzor0ekzXVqhRbuuuYIT/pJ7w4vnOisUoHoswKgAKoT2rNi3E51ADnD20ME2bKrTJ5ew+P8+2tjZMnz4d69evx1svPImbbG+FtsZQiGF6SBWLLgARvjjt+G6hcjVVXuVhu6kDFVX1VLEYRbE4HqFjERJPNpf8ikXPYDFYxaLYCpVRRK5iUWwxKiXoEx8XLFiTEiyK4VbA5wlQsRjstRJVtFWgylyFlYUrcd+Z90l6jOcaPV+rNlsbNIwGCsmX9YaHUTLQMlp3paQnHatDu70dVqcVFqcFqZpUyc8rVlx2dJ2hLUGmNhOt9lZYnVZoWe/KzY6ODsyePRurVq3CoBmDcNrU07C7bnfAr7WG0YRUOdlVTwkWOSeHyiOVuHz65fFeCiHEQ9wqFtVqNc466yxs3LjRfZvL5cLGjRv9zrro6OjodoAszpySO1yXkER2YsZisFkC4oxFPqKBiM1HxWJ5Z7Do62Ax3FaokXqORFLfGd6l6eMfLNa326BXM1AxSqTqVGjucITVfjTDoIKD41Hb5v8NYlNTE8477zwcOHAAGzduxLU3zui2TYdd+JpXtVgjUvXalcnmdP8sBaNTKSMaLNqdLvxYXI/B2QakakM/mC8rKQIAaoUaJXQsQkgA4sUeQdqXMXBJq/TrWlHm+RglGzxYsrYE30c4uFBaoXY98RSD3wGsBnBInFUlnsBkonxSidUA9jBOfjHq0FrRAoA2XQg1fXyfms1mXHDBBfjpp5/w9ddf4+6bpoW+xlBwnd045JzUU7BCCB+NvyfHdgvVivpesh52sFSYP37qkAGRXxMBQMcjpOeT2wpVz+ph5+zukCxYxaLYCpVVsmG1AvWcXSjON5QSzIiBoTpIhwApsyaDPYfn/oDucxjlfv6fHf5MdpWnmlF7fS4mhylm8xVFGkbjM1jUq/Qw2U2o6xDmL6eqpQeLYjAspWVtV9m6bABAWWuZ1+12ux0TJkzA2rVrsWrVKvS+orf7tQoULKoZNUyOMLpBdOopMxaPlx2Hw+6gikVCEkxcW6E+/PDDePfdd/H++++jsLAQd911F8xmM2655RYAwKxZs/Dkk0+6t///7J13mCRXefVP5U6TZzavNmgVUEICrIAECBDJn4UNxhgQJoMBIZNBIIIBC5GTEGCSsbAFIkuADMp5tcpppc07Ozs59nSsXN8fVbe7urpid8/uaHV/z6NntN0VboWZunXPPec9//zz8f3vfx+//OUvsX//ftxwww349Kc/jfPPP7/WiaZQjgRIjUUtQvwhwqIdhdq5/fs5EEfmgztXRBRqZ35aWT3SolBViByLrHj4O3KzJQUZiQPPMehOCShUNahtCYt2h/tgyD3R19eHN73pTdi2bRvOOeccyGrzy0pZsa/5VEFGWem8sFhOICymBA6abkbGD8fl3v3zKKsGNg1mIQmtP58O7NkJKZXGqnXUJbBU0L4IhRJAzDgrhkF4/USC10Hg/jfH29sIGzhc8ihULXkUZ5Nj8RDUi04i4hEBcimjUIH2hUVesoXdVuLrUj22sGg014/OZrP4l3/5F2zduhUve9nLmqNrlxpyjyeKQnU7FjvM6H1A9zpAzCZabfueETAMg+M3r+t8myg1aH+EciTjdtjFIStkG9aLEhY13f57y7N8e1GobmGR1FjspGMxxnnw1nT0O54Gx6Ln+WcmjHWfqc7gL8N/SbROiks1nKuiWozltOwkEi/51iAkbtepiu0A75Hipym041hckVkBADhQPNDwuSiKeOMb34g77rgDr3rVq6Caak08jnIsttIOL0eKY3H/rv0AQIVFCmWZcVj/wvzzP/8zZmZm8JnPfAaTk5M49dRT8Ze//KVWtHxkZKRhFt6nPvUpMAyDT33qUxgbG8PQ0BDOP/98XHrppYfrEChPA67cOozv3boXd3/8RWBbrJOWFCKGaBFRqJqmIsUx0EyrozNT/dyDpMZi2PI81/r5qShHmLBYlNGV4ts6J53AsizMlVWcuKYbPMuiJy1gZL4CVTeRaXGcsc9ZcXShuaP74x//GN3d3Xjta1+LT3/607XP/RyJxLG4UNGQr6gY6ursy0hZNWoifRQpgYNqdM6xeNOTU+jLCNjQn2lrO8N7d+Kozcc0zUinE9E7B+2LUCgBkJnnsdyIMZwINfHR8vwbjmNRC3esLbWwGLV/P7zOwUPxx5mTbEEzLDaWQNq3lFGopE1atfXj50Rn/RYdi2qpQVj85S9/iUqlgre97W342Mc+Vl82oWOmbUynb5soCpV3zkOH7yWlBMzuBJ7xSkBIFtG+ffcBbF6/Cpl0KnphSsvQ/gjlSEaJ009wkRHsdyhS89CCFVo6w+1YNCyjpTIbLMM2iGW1KNQYz1AiAEWJa3HOg3cbeSWPgfRAw2duMdErLMaNQiX0p/px1ZNX4f9tjh8x6edYJKLcUkCEZjcpLoWiVkSaa3ymsWBhwarVO0ziWCQRpq04BQfTg2DA4GDBrp/4xz/+EcPDw7joootw0UX1qFnVUGsCdNg5EzmRCosuhncNo7uvG32DyVIXKBTK0nJYHYsA8L73vQ8HDhyAoijYtm0bzjjjjNp3t956K372s5/V/s3zPD772c9iz549qFarGBkZwRVXXIHe3t5D33DKU4KirGHjxX/GL+8daXkbn7lmOyYXZTwx0RyzsFTEdyxqEDkWhtnZKFSvYzFKtKwJi0lmZHsoLYFjrROYpoV3/fx+PDySbEBzuqggK/Hg2xCjO3FFS4oOVTeRlewOZW9GQEnRoMSoOxhEV8o+roML9ZcJwzDwkY98BO985ztxzz33NK3jJyyWXWLynun2Yz6a9qkaEBI4FlXdbCsilmBZFm54cgrHrMihp1X11uHAnp3YsOXYps+nZPu+Ki7T35unGrQvQqH4QAbSzBgTf+I4wch2yMPNPRDGCtFRqJU5e7mlwmjBsah6hMU2XBKx4SX7fMe5LjXH4hILi3zKcW+2+Axt17FoqEB1EZZl4XOf+xxe//rX46677mpe9lA7Fol4niSGjOWXxrE48Yi9ze61dp3FBGzfM0JjUA8RtD9COVLxil9RECGpoc5iyDOC1FgksY9J9wfYzkS/iFGB6ZxjMU4UqldYXJCbxyHcAmWrNRYJZ60+C4/OPoon556MvU6KTzW0oaSWltSx6FeOJ8WnUAqpOT1TtYXFXqk39n7IMcS5Tl4ETkBOzGG0NIpvfOMb+Pu//3vcfvvtDWNpiqHAsIzafRIWH+utY9kqR5KwuOm4TYknDFAolKXlsAuLFMpSMp63O4Z/enSi7W0dyhqAAm8/LKPiKg1Nc2osdjoKtfFYw9yK9vImeJZBO8/4yjKNQlUNE9dvn8IfHxlPtJ4tLHLgYzrm3HCOGNmJe262ZL9o5CR7tnxfRkRJMaC0sW2GYdCbETC5KMOyLJRKJbz61a/GN7/5TXznO9/B17/+9aZ1qj5RqBVXG3ZPNceYtEtF1SHFFBYlnoWFuouyHfbOlDC6UMXGgSyyYutRVJZl2cLi0c31FQuafY9EmJopFAqldcgAkTfC1I84TjBvXKrXsWjq4cJSZR4Q23OBh9JSFKpHqGqjrlNs+JR9vuMMHJKZ7kvtWOQlQJPbcyxGCctBpGwngjx/EBdccAH+/d//HZdeeil+/OMfNy97yB2LzjVKHIVqdF5YHHvA/p3uWZ941cd3D+PELTSSnUKhtE5SxyIRFt0CT1jtQE2z+xQktjQocjRMnORZ3rfGYhzHItlfVH3EOLUmveLkgtIsLIY5FvU4E49cPHfNc5Hm0/jZ9p/FXifNpaHoSk00K2mlmtvvUJHiwoXFueocJE5KVPuRHEOrgl4X24Wr/+NqfPjDH8bHP/5xXH311Q1CWFmzY+PJfZLmgxMEJE5qSeAkmM5kryOlxuL+nftpDCqFsgyhwiKFsgwRnboYUfXedF0FzzHQjc5GoXrdZWH1FcnycWvZeSFRoZ0QdJaShUqMgVUXsyUFGZGH0IJjkfQ9Sx2IhyWicM5xLHaneRimHY/aDv0ZEXMlBYpu4t3vfjduueUW/OlPf8JFF13kO4vMr25nxXHbcSyDPTOddSyqugnNsBJFoQJAqQMC941PTkPkWGweyrY1o25mYgyVcgkbtwQLixQKhbJk8M7AVpz6iXGcAbWBLqe/0lRjMUJYqs4DwhIKi0BdiIuC/G33DvgYh0JYlGyBLImTdMmFxZS9r1bFME5szTEK2I5FAB/+/Lfwhz/8Ab/+9a/xyU9+0v/5e8iFRVJjMWEUqql3PlZ39H6gdz2Q6kq0Wr5QwtjUHE48hjoWKRRK6yQWFvlmx6Ie8ow1nTQe4s4KEvC0kMlSXsdiLQo1To1FEoUaIWLFqbGY2LHYZhSqwAl41opn4aaRm5CX87HWSfEpmDBrx13WyqEi2VKQFtIo68H1nefleWT4ZP1GgRXAgGlZ0Dv424PYecNO/Nd//Rcuu+yypnImJNqX3CdhYqzESQ33Y1LI+GAcYXy5o6kaRvePUmGRQlmGUGGRQlmGEJEuKpbRcKJQddOCsYQ1FqOERVkzILTgzAPqsa9+UZnLiaKsJRJv50oqMmJrjkVCWTHajridLdkvHT0p0flpdyynCu0Nrg3kJMyXZMiagS9+8Yu466678IpXvCJweT/3ZdkR8QZzIkYXqh2JIa1t2xFl4wrexNlYkjsgLD4xhaNXZDGQay8OZnjvTgDABiosUiiUw0HNsRhHwIrxTPFuxxuFGhX/WM0nrg2XGK1ii4N3fTtiQedvsOYZ8DkUwqKQShCFShyLSxdPVm+T0rqwyKdadiwafA4A8NkLnofbb78dr3nNa4IXPtRRqOQaJRIWl8qxeD/QvQbwqVMVxhN77HIS1LFIoVDaIWk0aa3GottBaAVvgzgWibDojQclhImTPMs3CH+qoYIFCy7G3/CaYzEiCrWVGouLymLDvy3LahBIvcdqtvD8ePFRL4ZmavjfHf8ba3lSG7Co2alDFb1y6IVFPh1ag3Benq/dR3FhGAYCKyQWFg3DHus46w1n4cRPnYi3vOUtvssRx2KWz+LsNWfjlMFTAreZ4lKxhOgojgTH4uj+URi6QYVFCmUZQoVFCmUZIjouvsgai7oKkWehdzgK1RtbGelYVA0IXGtCB8sw4FjGNypzOVFSjEgHKcGyLCxUVKQFrhZr2gpVzYi8B6KYKSrgWQa5lP1C1J0mwmJ7ndT89tvx4HfejYnpWRx11FE4+eSTQ5f3E44rig6BY7CyK4XpooJyB+8BIlrGFhYFe7lymzULF8oqHhxZwKbBLLpS7XXiD+zZiVQ6g5VrGmPLTNNCWafCIoVCWWLI4FgcASuOE6EpCtW1XZa3vw8VFhdsAWopUSvAnd8AbvgM8NBV0ct7jztObGy78GnHsRijf0BqLCaIAWsJId2eY5EX7XOX0GVx3W334Zmv/xQmiiZWCBU85znPCV/hUDsWW6qxKNiRup0UFkvTQGEMyK1OfC9s3zMClmVx/ObkEaoUCoVCiBMB6oZjuaYoyLAYU8N51yTCYpAgEyZOCqzQVLswjqgIoOYsk9jwv7FxBNYoYZGIUwTN079K6lgEgKHMEI7pPQa/2/270PNMIE67glIAYAvAh1pYzPAZVPUqLPiP0eSVfGLHImA7/IizMA4P3/Mw3vaSt2Hy4CTWDq0FNgJl1d9JWXO2chJed/zrsDK7MnC7Ei+1VCuUQATmI8GxOLxrGACw6dhNh7chFAqlCSosUijLEJYlwmK4kKU5NRZ104LZQWXR6y47MFcBHyKQVTWjLWcezzLL3rFYUfXYIl+hqkMzLGSl9meHtSsszpYU5CQeghOv29OmsGhZFq7+0bfxl+98HFz/emhWvGP0E47LqgGJ57CyJ4WZooKy0rkBWSIQxo5C5TlnvfbacNuuGZgWcPRQFnySmko+DO/ZiQ1HH9sUoTJdUmD6FLCnUCiUjkKiUGPVWIwTheoVFl3rcIIjLIU88+TFpRcWtYq9HwAoT0Uv73XAJaxr1BJ82hY0YzkWnYGxpXYs8u0Ki6lEUaiWZeE7/3sdzn/P53D0UWvQlc0AldnoFQ+XYzHJoB7L2aJxJ6NQxx60f/auQ9KC6Nv3HMCWo1YjJYW7cCgUCiUIBkyggzAMiZMaBJ6w2oG6bn9HYks/dtvH/JeLcizqjY5FjoknLBIBNMqxGCfa0ruNRbVRWPS69LzxrnGEQT/OXns2pivTeGz2schliYhY0kqo6lXopt6SiNcOWSELwzICReQFeQE5MZd4u36OxYenHsbO+Z1Ny1539XX46AUfxeDKQWS7shhKDwEARoojvtsm0a1x6lGmuJR9fC32XYjgGifKd7kzvGsYfYN96OnvOdxNoVAoHqiwSKEsY/QIYVHXVAgcC8O0YC5hjcXhuTL6ssGdZNux2PqfE4FjoehGR8XRTlNWjUihlzDjxI92Rlj03+cjB/N4cqIQuf50QUEuxdccpSmBg8ixtdqLSTA0FY/8z6X4nyu+gr99879h8PyPYKoabxDRTzguKzpEjsWqLgmKbmJsoXMDfqWEUaikxmKhzSjUG5+cwvq+NFb3tD9j88Cenb4xqOP51ou4UygUSmyIGBUn3tMbCepHk2PRE4Vq6MHCkmXZgt9SR6EmraljqI3OwTj1KNtFSNlCbhxHwqF0LBpK62IYR6Jwo49J001c+KsRvP8rP8OH3vIq/O7yS5Dr7gEq89H71xUg5iBxRyD3A5vEsejUWAxwYLTE2AOA1A10rU686vY9B2h9RQqF0hY8y7fkvPI6FnUrRFjU9Nq+AGB3frfvcmECZ5Nj0UjmWGTBRrrDWnEsElcgocmx6BUWW3AsAqiJYn41Hb3UhEW1VKvLmDR2tF2IkFlSS77fF9QCckJyYdEbiQsAl9x1CS5/6PLavy3Twu7/2Y2vfvSreMVrX4EvX/lldPV2YShjn8MDhQO+2yb3s/ca++F1hSaF1Cntk/paWn85MbxrmMagUijLFCosUijLGC1CaNM1FTzH2DUWOyjKKXqjWDQ6X0VvOriTXNUMCCzTsoeKZxkomtnROpGdpqrqsWsAkrqGWbH9waugfX7lrztw8W8fhaKHvzhMF2VkRb7BPdeV4jFXVhLVjASAueEnMPXo7fjol76HN77nw2AYBgfn4w3C+tZYVAyIPIuVPXanefd0a51mP0iNxVTCGotkvVbQDBO37pzB5qFsrZZlq5imiQN7d2EjFRYpFMrhgjgW44hlcaJQvaKh23nARdRY1GVbdFpqYVENj35vwivwHYooVCGBY1Gv2g44bonr6/CScy5adCxyon08MUTsxw/mceW9c/jRZ/8VX/3Y28FxHCB1Acpio1jthy4ncw+2C7nnkwqLVodrLI7eB/QeBbTg3Ni+e4TWV6RQErJ9djtO/u+TUVL8BY+nGzzLN4lfcUhxqQYhMMxt6BUWg/DGhroRWKHRsWjGdyzKugw+xrM2Ts08r5hZVIsN/67oS+NYJMIgqZsYBhEWi1oReSXfsH4SRNbua5JtJCHr1Az2Cq2AnWxQUkvoFrsTb9d7Hyi6grHSWINgmx/LY/T6UVz4mQvxwS9+ELxgX/vB1CAYMIGORXLtopytgEtY1FobI1mdW41LzrgEx/Yf29L6y4nh3VRYpFCWK1RYpFCWMVFClqFrNaegrHVuAELWjJpIqOgGZkpKLULTDzsKtfVoRoFjoepmR8XRTlNR49dYJMJimBgbFzXgHtANC2P5KooRDruZooKsxDVcn64Uj3xFj+3AHBkZgWmaWHHMqTj3s7/C81/+9+jLCGAAjC7EG4T1i0ItKRpEnsVQTgIDYPeUfy2CVqg4NRYlId7LIBEWS20Ii/cPL6Ck6Ng0mIu93yCmJ0YhVyu+jsXRhSo66mSgUCgUP7gEwmKcmKawKFQ2IgqVzEZf6tnwSYVFb5sPSRRqgthQrQqwIsAs8Ssfn7LPRavHT2buh9Q0Gh0dha7rOG1TP/b/+8l4x6tfXP8y1QMohegailo1mcjXLmarjkWjc1GolgWMP2i7FcVkvz/z+SImZuZx4hbqWKRQkvCrnb8CANw/df9hbsnygGO41qJQPW77MHHSG4UaRNg2BFZoEP40Q4sUKgmyIYOPUU+3FeemV+jzCoveiNhWHYtRDkA37ijUBcV2OBKHXBLW5tYiw2dw59ididclbkQ/YVHWZZgwWxYWq0a9P/Lk3JO1czoxMQFFUdC3vg9nf/dsvOYdrwHjihjnOR5dYhfGimO+2yaOxRQXHYWa5pxz3MYEhVXZVS2vu1xQFRWj+0epsEihLFOosEihLGOihEVdUyE4tQ/VCOdaEmTNrAlRUwV7kKYvEyIsqm3WWOQYKLrZ0TjXTlNVjdj1DmeLCniWQVZq37Ho5/QjzJVV5MvhA76zJRVpsVFY7EkLKMhapNsRAK6//nqcfPLJuOKKKwAAUq4XAMBzLLpSPMbz8eJLfaNQVQMix0LkWfRlReyfLSd2UQZRcmospmMKfDzHgmMZVHwE0Ljc9OQUetICNgy0P/A9vHsHAGDj0c3C4li+igy3fH9XKBTKEQIRe+IMBkYJOkB4FCrHh0dhqs6gEb/EjkWfwalQdLVR4DsUUai8ZJ+rOPGzWtUWiJdaWBScATK1xQlCxB2r+Qu7d955J0499VR86UtfAgAMdXn6pKkeQC4uQ8ciqbGYQFis/S50aMLg/D47RrhrTX2yQEy277Gj3KhjkUKhtAPP8qFuwyC8dejCBDPDedeMEhbD6jQKnCcKNYlj0ZBjiZCtCKxex2LZ86zVTb3hHbpVYVHiJLBgUVCjHXLk2pTVci2qkzgIk8CxHDb1bMK2iW2J182K9v68NScBwIT9DO2WkguLPMtDcfVrH5uza07O7JrBc57zHHzqU58CAIjd/s/UHqkHE5UJ3+9IW+PUWHS7Qp/OHNx3EKZhYtOxmw53UygUig9UWKRQljGaaYXWHdQ1rSboddqxSKIzJxbtWVV9meDBCMWJQm0VnmWgGmZsR+DhQNZNKDHP8WxJRVeKh8C1LywulINfPiwL2DMT3NG0LAvzZRUZkWuIQu1JCyjKGlQ9/Hi+973v4W//9m9xzjnn4M1vfnPT930ZETMlJZbgWtUMcEzjPVJWdAg8A45lsLJLwmRB7th9XFZ08CzTcNxRiBzblrB4w5NTOGZFriNO1eE9O5HJ5jC0em3D54ZpYbqoIMcv398VCoVyhFCLQu2QsOgdzHMPMrK8/e8gMYXM1k7ouEpMgLAViKkeHsciUHdxhqFVbSHtUDgWgdaFRSJ4+ax/5ZVX4sUvfjFOPvlkvPe97/VfP9Vrn484wuKhdCzWaiwm6BewvF23s1PC4tgD9s/edYlX3b7nADiOxbGbkq9LoVAoBIEVYMJsEO3iQBxbhDBRMG4UapiwJ7Jig6NQM7TYwqKiK5GiJtCaY7GkNT7vvY5FC1bDdlsVFhmGgcRJsRyLHMtBYAWUtBIW1UUAaKmeIQCcMHACRkujGC2OJlqv5ljUg/sevVJv4vaInNgQhbpjbgcW71/ENR+6BuvXr8eHP/zh0PV7pV5Mlad8v6vqVXAMF6t2JxEfvcLy043hXcMAQB2LFMoyhQqLFMoyRjesUBefoakQHCeanyOsVRTdrG13YlEGzzKhwmLV5XBsBRKFGiaihnGoJJbFarwXgbmygozI185hO8yFCIsAsGcmuONfVHSohomc1PiS05sWUZL1wJhVwzDwb//2b7jwwgtx0UUX4dprr0V3d/Nsv/6siPmyGuqqJFQUAwLPeD7TIXIsWIbB6p4UpotKLcK0XUqKDpFnkUBXREpgW97/vpkSDsxVsHEwg6zU/qDlgb07cdTRxzZEqwB2zUzDtMA7Qn5B7mANJgqFQnFDHItxXAZxBsrCHIukrlzQvsggVws14uLh/K1VE9awNbRDX2MxkbBYPsTCYotxXURY1Ovn3zRNXHLJJXjzm9+MN77xjfjrX/+K/v5+//XTvfa+o1ychzwK1bmfYwwg1mB5wOqgY3H0fiC7AsgOJV51++4RHLNhLSTxELo8KRSKL4vKIoYXhw93M1qCiH3VkLhrP9KeusqhUahavCjUpthQV+qAr2Mx5t/v2I7FFoRFb9RnVW8+j1XP87NVRE4MFeqaltVsxyIDJpYLz49TBk8BANxw4IZE64mcCJ7hYYY8L3vEnsTtEVmxFolrWRb++OM/4uB3D2LDWRtwyy23YNWq8HjR/lQ/pivTvt/JuhxLgAbq0bReIfnpxvCuYQysGEBXb9fhbgqFQvGBCosUyjJGNy2EaW2aptZqLMaJtYyLotejTScWZfRnRYh88J8LWTdsoaNFHY3nbMdiqzUWD1WC6kJE7CjBMC0wDMAy7QuL8xHC4t7p4I7/TNF+McqKjS9EvRkBZdUIFNEYhsHk5CS+//3v45vf/Ca4AOflUJeEfEWNJWpXNaN2rxLKqv0ZyzBY05vGQkVFvtKZQdmKqkPi2UTXQORZyFpr9+HNO6YhcAw2D+Y6ct0P7NmFjT71Fcfy9ktjLlmaGYVCoSSHREbGie2K40LwOg3cA4RkMC6oVqNaAhgGEJPHbMWC5WzxLengjbfW4aGIQiWxo0qMGezqIYpCJYOJSR2fBCIsugadGYbB+Pg4vvrVr+LHP/4xRDHkwSd120JcZT58P7qSzD3YLqZWv7fiQhyLnZo2N3of0LOupd+d7XsO0BhUCmWZ8KJfvwjn/+H8w92MliBCip8gFkaaT+5YjBJtvI5F97+bHItmAseiocQSFsPE0SC8UZ9+QpO7NmSrjkXAFuviOBYB+3yVtTIKagESJ8UWYb30pnqxOrsad4/fnXhdbx1ONxzDIdfChDSvwDw9OY2hvx/CeZ84D+l0dCT/QGoAJa3kex6rejV23U53HcunM8O7hqlbkUJZxlBhkUJZxuhGeN1BXdNqYo2qd05dUzSz5ogay1fRlxFD3XeKZrZVY1HgWGi6CaMNhbBVt2MS8gGOxV/eO4K/bp9ckn1GCYsHFyqBtThnHWEx56n12O1EdU4XGgeCh4eHcfvtt4NlWVx99dV497vfHbrvwZyIxaqGaoz40IqqNwmLFdWAwDFgWWBVTwqWBeyd7UzHuSjrkHgOSTQ+ieeg6Ab0FmZ53vDEFI4eymEwF/xyExfTNDGybzc2bjm+6bvxvIyMyCEVIvRTKBRKRyCDNXqcKNQYy3gH09wiHBkIDHIzqGVAyC6t24zl49UtdGNojbObDkmNxSSOxYp9XJ0SFm//OvD473za5NwrLddYJOtXMD4+jhtvvBEMw+CnP/0pPvKRjzS595tIOY6EgOixGobi7x584GfA3L7EzY7E0AEm4fkn7t1OOBZ1FZh6HOhaDQjJY4S37xnBScdsaL8dFAqlbVpxui0XiJCS1HlFHFuEUMeiHi8K1e1QBBrFTpETG/axFFGomqk11EOMQuIkVPVqQ7urehWMZ0a3O7qzHWFR4qQmh2QQIieiolVQVIuQuPbegY/pOwaPzDwCLWE/KsUFuyTTfDq6/+CDxEoozhdx3XXXYbQ0isHXD2Llq1aCiVn6ZyhjJwQcKBxo+k424jsWeY4Hz/BNNTWfblBhkUJZ3tCRSQplGaObVqgbz9C0muAnd9SxWI82nViU0ZMRmkQhN7JTP8/bwY0LqbHYqmMRQKgA2ykWAtx0F//uMfzrzx+IFQmalChhcaogoxKw35mSLRz2pBtn+fcQYbFYFxbvvvtunH766fjgBz8I0zRjdcIHchJMCxjPR88+tR2LnihUR2y0o1DtGXm7p1oXFsuKjs9c8zhOv/RGjOWrdhRqgpcJiWehaCaS6oqLVQ33H1jApsEsulPtD3pPjo5AkavY4ONYHF2oYKhLAt++KZJCoVDCIYNpceoGxnI1emssutbhIhyLSskWRlqcDR8LVgjevx8MY4ulluE6V4dQWFRiCoudjEK9/yfAg1c2C6gdciw+9PhOnH766bjwwguh63r8AcGUE9deihAWNZ8ai5YFXPdR4OYvJGx0DEzdcSwmeGiznO2C7YSwOL3d/j3rXpv4d2d2YRHTc3mcSIVFCuWI5YLrLsAVD1+x5PshQoqc5BmLZmExTDAzdROmaUYKi17Xo+7qmxBhkYh4qqnGdpfFdSwCje7CKCROggWrVscQsIVFrzjVICya7TkWvQ7JwGVZERXdERZDnINxOGXwFFT1KrZObE20XpigmRVaS7kojZbwwKcewLve9S7cd/A+MAyDLjF+DOdQOlhYTOJYBGz3ZNxo2iMRVVYxfmA8VFgktVgzWOI67BQKxRcqLFIoyxjdjO9YlGO4xtwYpuXrdLMsC4puQHCK080UFfSk+NAaim4hshUEjoXWtrDY8qqxyVfCB05LSmfqAzbuM3yQcraooqL4X/vZogKeZZD1OBaJsDhVsF9ArrrqKrzoRS/Ccccdh7/+9a9gYxYm7M/aA4Gj89HCoqyZtXuKUCWORYZBd4qHxLPYM92asHjXnlm89Ju348qtBzBdVDAyV0kchZoWOMgtOBZv3zUDw7Rw9FC2LecuYXjPTgDwjUIdz8tY3ZMCF3PGJIVCobRNnNnjeoxlQh2LUVGoZUBcYmGR45MJiyxfj0Ilz7c49SjbpebuiyMsdjgKtTIHKIXmmpoknjVh/awanIhrdmg45z1fx6pVq3DLLbeA5xNM1JEcx2IxQljUlWZhUavaxzO/N7ljNQoShZpk4l3NsdiBju3YA7bo3Zs8znT77hEAwIlbqLBIoRypPDrzKH7wyA8Cv19UFrE3v7ft/bTqWMx6IpyjBDNN1SLjOL1RqG6RT3QmuRAXo2ZEb4+QRFiM6wgE6o68BXmh9llVaxan3MIiqTn4m12/wWXbLkvskIzbPoETUNErKGmlth2LW3q3IMWlcMvBWxKtF1bX0StMx+H+2+/Hb//tt2AEBnfccQf2lvdC4qREtRoH04NgwWKkONL0nazLtfssDiIrPq0diyN7R2CaJjYdtylwmRXCCgDAcXzz2AmFQll6qLBIeUqj6Aa27p073M1YMnTDihAW1VpkaTWhY/HoT16HLZf8H1S9UUTRDLuuo1so7MmIobPGZZ/6eUngWcbebxuTsw+FYzFf7YwTwdDjDzwW5OB9cgyDqmYEOgZnSyq6UjwET43ELsdVN1WQcfnll+OCCy7AP//zP+PGG2/E4OBg7LYNOMLigfnol0RZMxruKcuyUNWMWu1OhmGwoksKjXb1oyhr+MTvHsUFP96GtMDipSesBFB3SCbR3ySBhaonF7hvfHIKa3tTNddluxzYuxPZrm4MrGgsDK8bJqaLMtb1ZTpSx5FCoVBiEUMsM7UYNRa9AqWfsBgYhVqyXXExI8laghPs6Mi4/QlWcByLph13CRxax6Ico8ZiSBSqkbTTpZZt4VUpNV9L1nFFtigs/uxPd+FVV1fx8udswe233441a9Yk24CYsfdfng5fzvBxLFadwdrFsXhibRJM3Tn/SYVFE211igmj9wM9a4F0/AFRwvY9ByAIPI7ZkPBaUCiUI4aX/OYl+Idr/qHt7bRaYzHLNwqLUfUJVTk6PcHrWHRHzEqsLY4Rx55mauCZ+I7FuBGXSc4DEc7cwqJsyBA4j2PRbI5CvXnkZly14yp85LaPxHYxpvhUbIecxEmoaBWU1FJoJGkYlmVh641bwTIsNvVswr0T9yZaP2y/XmE6ituuuw0ff/PHsfaktdh8yWZs3LgRuxZ21RyIceFYDl1iF8ZKY03fJRGgAcdBmrT+9xHE/l37AQAbaHoChbJsocIi5SnNx37zKF7/o3uweyrG4MpTEN20Qp14uqbWBD2lxRjOEY8oRCJVeZci05cO7iTrhgndtCC04aCqORbbEAcPga6IQoeExe0P32dvbzEfuWxR1qEFCG3EMbh3xn8gbKogIyfxTRGkAsciLXCYKSp48YtfjK985Sv42c9+BklKNtMwI9ouw7F8dGe36hGfFd2EaQGiS/Rc2Z0KjXb1cuvOabzkG7fj9w+N4W9PXoU3nHEUjl9lx5TImgGR5xIJiymeg5JQWNQNE7funMHRQ7maE7RdhnfvwIajj2sS86eKCkwLOGZlLtEYJYVCobRFjJhTI47Tyzsg6P43GYzTAwRKtQQI6SWOQhXtGnyIKyw6jkXLqLfrUDgWiStAi+tY9BcW733EdsePT0aIcYTyrP1TLTXH4zKM7aRsUVh8wRnPxOfOlfDri1+JTKaFKCuGBcRcvY1B6D41FomwWJkDSjHPRVwMzRHDEwqLQLMrtBVG7wO619n1SRPy+O4DOHbjWgjCEtY1pVAoy5qkQmAQLQuLnr9dXlHQi6rU/27+7aa/9V3GK04qRr3fQZxkRMjRTC22CKQaamxhMW7UKGDXCQSAvJKvfeYbhar511gUWRHXH7geH771w7HExRSXin2dSP3HklYKdQ6G8di9j+GTb/sk9u/cjxMGTsBIcQTjpfHY65Pz40eXED++FABOevZJuOB9F+CCr1wANsNCNmTsX9yPldmVibYDAD1SDybLk02f+127MJJE0x6JDO8cxtDqIeS6c4e7KRQKJQAqLFKe0kwu2h2oVuMTlzuGaYVGV5imARa26CRr4TOb9ZhRo4qzHbcINJgLFpxkvXn5pPCc7VjUjNbrARwKx2JR1hNFiQQxOXYQAGDGcOaVFR264b/PgZz98rMrQFifLirISjx4TwTp/Mw05v5yOWYWCjj++Gfgox/9aEuFzQGgLyNiqqDAjLi3vI7FshMbSxyLALCmNxUa7UpYrGj4yK8fxlv+6z70pAW87exNeOkzVuGo/mzNyUdiVpMcV0pgEwuLD47ksVjVsHEwi5TQmQHv4T07A2JQ7Ze8k1Yndx5QKBRKy8QQy3RNiXZYuQe0LMu/xmKQQGmoAL/EwiIn2PuJW9uOE2yBzTzENRZZ1o43jRONpcuBjsW9B+0Br9h9LyLaaRX/eFwuhdiiLID5fBHv+vR3kC+UsOmodfj0uWmwZhuD2FI3UM033mde/KJQ5bzzPxYw/UTr+/ejVmMxQR+Z7ZD7VV4E5vYCXavqUbUJ2L77AE7ckjxClUKhULwQd13SGos5oVFMCKuxCNSFRZEVA6M5veJag2ORa3Qs6qYeOwpVNdUmF6EXIlJWE0zCIYLdolKvsagYSpOTUjGVWltNVz9mRWYFXr3l1bj54M34wC0faKgpGbS/uNdJ4iXIuoyyVq7VuUvK3h121K6u6Thl6BQAwI0Hboy9fpig6b1//KiUKvj6xV/HwuwCBlYO4G0ffhtSkr3NqfIUpivTWJtbG7s9hF6p11dYVPT4zlagXsfy6crwruHQ+ooUCuXwQ4VFCuUw8Nftk3h0NB+5nG6YkbUDLWdwR9HDB8K2XPJ/OPqT10UKY7LjFiM13ESORS4VPFOvtnxbwqK9blVtPfbpUAiLZcWA3oFijtPjo/H3qepQAwRInmXQkxawf9Z/cHGmqCAjcg2C3r6dT+Ci178CizvvweT4aOC249KfFTBfVmtO1yBkzWwQOCtOTVC3IL2mJx0a7QoANzwxhfO+eRuue2wS55+yGq8/fT1OXdfbdI/KmgkxYY3FlMBB1c1E1/imHVPoSvHYNNBacXgvhmHg4P492BAgLGZFDqt7W5sRSqFQKC1hapGioaHFEOTcYlR5JqDGYshgm5CqR44uBYmjUHlbOLJMl2PxEAiLgC0sxpnBrlWdmNLmZ+G+0eYBr1AqRFis+otefPzUg137R3HmP38Qv73+LuxzBE5wQns1DlNddv3HINcr4C8sVuvxcph8vPX9+2FoLUShOvdS2HHEYfxhABbQvT5xjU3LsrB9zwitr0ihUDoCEVLc9Qzj4BWN4gqLYTQ5Fs3OORZFNrx2HhEDK0b085vslzjy3MKirDdHobpdht7z9MKjXoh/PPYfcdvobfi3W/4tVFxM4lhMcSlUjSqqehVpoTVhcf+O/bX/70/1Y2VmJe4cuzP2+l5Xq5tuqTt03amxKVz06otwyx9vwei++vgMEZgfmHoAFixs7N4Yuz2E/lQ/ZqozTZ/LhpzYsdgp5/BTESosUijLHyosUiiHgX/9+QN45XfvCoy4JNhRqOEDXKamgAGgxqyxWKg2diR1z2ChQqJQHTGqPys2uMq8VB2BSPQRFv/77mH89oFoEY3EqFaU1iPEWtX77h+exzM/dz1mitEvOhU1OJY0CdMTzXn7fog8i4pqhO5zRZeE8UW5JvC6mSsryEh1YXHbbTfgA288H109fXjRx38Mq2dtqCD9nZt247ad4bFggzkJC2U10jHrdSxWfO6blT32y+NuHwfyfFnFRVc9iHdeeT+GciLedvZGvPgZK+16gz55p4ZlgWfZRGN5aZGDGtPZS7jxiSkcuyKH3kxnYlAnDg5DUxVfx+LBhSpWdEvISTSWjEKhHEKIeBa6SBxh0TXgZxoxayy6/h7zqWQCTVKIYzGuSEhq4emudSJi2joGnwLUSrQIGuJY3J9UWCzP1LfpJwDGdMXdcs8jOPN1HwLLstj2q2/iWSdusb/gRHvbrZLqsYXFsAhRI0RYFHPA7M7W9++HqTvn/jBEoY49YLt8e5PXSJyey2MuX6CORQqF0hFqwmLCv/Fet2CSKNQgvMKiqtfXIfX6iLCom3rsGotRUai6qdeEyziORbJfFixETmwUFl3iFOM8X9yRrqbPZLAXrHsBXnvsa3Hn2J248OYLoQX0cdJ8GoZlxLpWEidB0RVbWAyJJA1j/879Df8+pu8YPDzzcGD7vGR4Oz7d9OmDdovBwuITDz2B97zyPaiUK7j8d5fj5NNPrn1H7oMHph4AAwZHdSV/Fg6kB1DWyigohYbPFUOp3QdxeDoLi3JVxsTBCSosUijLHCosUiiHESKuBGHEEBY1TQPPMZGORYLlianKVxo7bbInCrU3I0AKERaJEOlnWPzstdvx4V8/glKEYEgci1HnI4xWI0q3jxewWNWwYzK6Tqct8rXnWCwXC1hcmIu1bFrgUFGNwChUwK5LOFNQms6dZVmYL6vICHYU6ujwXnzmfW/GqWecg29eeQ3WrF2HoqxDDblvfnzHPlx9/8HQczuYk5Cvar7CphtFNxvqcJZV+57g+fpnK7vsTrw32vW6xyZw3jduw807pvEPp67BPz9nPU5Z1xspsEk8U3vZioPEO47FmOLxyFwFe2fK2DCYRbZDYt/wHntQc+OW45u+G89Xsaon3bF9USgUSgMPXglc877mzw2tQ8KiZ5DI7ciqORY9A1lucaXFQavYcKK9v3S//W95MXz5Wl3IqisK9VAJi6J9/qLqJWmyr2NRVTWMTDTPpA+l7Fq+Fh/qblO0sDg6OYtXvOszePaJW7D1l1/Hlg0u0YsIi60mUKR6AKUYLsjpqo+wmLfrd3atBvIHWq4T6YuhOVGoCYRFpkPu19H7gd71gJisxhQAbN9zAABw0jEb22sDhUKhwBYIWbCJhUUvUcKipkb/3fRuQ3XVka4Jf46Qk8SxaMECG+IOlw255sCM49wk+7VgIcWlUNDqApWs14VFspzi6lOZ8O+PnbPuHLzuuNfhnol78J6b3gPdaj6fRCD0CmJ+pPgUVFOFZmo1gS8JlmVh/65GYfGUwVNQ1avYNrkt1jYygr1ft7BK6JH8y4cU8gV89IKPYs1Ra/C9a76HTcdtavie3AdPzD2B/lQ/pASJDISh9BAA4EDhQMPnqqEmEhaTOEiPNA7sPgDLsqiwSKEsc+joJIWyjNFNK3J8RVMUcGx8YbFpfY+IQgQiwYmt7EkLvm7E+vLRNRarqhEqAhHBiYhNrdCqY3GyYHfsi3L4vgWOQVUzYotOQezfvSP2smmBw2xJCXUsrupO4e69s1isqujP1juphaoOzbCQFhhYloV1G4/Gf3z/f/Gss54PjuPQlymgpATHrMqagYKsO3U+g8fEBnMSFN3ETEnBml7/QV/NcQG67xFSRzHtEq1FnkVvWsDIXBmWZYFhGHznpt34xg27cPLaHpx73BCOWZFDRoz36Apz2vqRcpYvxxS4b9oxBZ5lsGUomyhyNYwDe3aiq6cPfYNDDZ9rhonZkoJzjxtCRlzCGmMUCuXpy7UX2T+f/1GgzxWBaIYLi4ZpwYwhPjbFZ7oFoJpI5xlsczvjxEMkLGYG7H9X8xHLO88itVJ3BEbEtHUMPuWIcAZCX+f0qu3E9LBreAxG0v4MqbEIANX55u9DYtBM0wTDMFi3ahB//P5nce7pp0AQPO0m598y6+JaElJ9gFoKjhC1LNuxyPk4FoUM0L0WmHwUUEqhx5IIs5Uo1E45Fu8HVpwAiMkHe7fvHoEo8Dj6qNXttYFCoTztePcN78bXnv815KTG+nY8yyeOQvXSCceidxtuQYpEYBIhRzf12MJiFKqh1kS7OAKre78SJzUIfbIu16JHGcaeSOs+Dm8dSTfPXftcsAyLX+z8BXbMN49LkDbmlXxkG90uxVaExZmJGZQLjSVdjuk9BizD4tGZR3HO2nMit0GiUP3urV6xt+HflmXBsix093bjCz/6Ak569kkQU80iH3EsDheGcWzfsXEPp4EVmRW1bZw8VHdDKoYSGZnr5unsWBzeNQwA2EgnOVEoyxrqWKRQljFxHIuqIkNg2VDnWRia7hUW7X+TMZCuFF9zFPpR1YKjUAlR0ZJk+79/eAwbL/4zRub9awaG0WqNRVLPr1gNn+GYEjhU1fZrLA7v2QHLGShdrIa/HGVEDrppoSAHt21ltwTTAobnGms1zJQUmHIJf/zyRbjmqp8AAP7mnBeC4+zBup60CEU3A497pmi/nERdu4Gc3TEenQ+uFUHuEYFrdiymhMbBw6zEoeQ6z/fun8exK3J4zbPW4uS1PbFFRQCQEtb9lJy2xBW4b3hiCpuHshjMda7m4fCendi45TgwnkHIyYIM0wKOXdnV9B2FQqF0FO8s9YgoVMUALD2GsOit6eMWGrkAx6L73y0MWiWCCFuS4/DyE8/cuOtCkj/LUQ7CTkGExbBBVkO3v/cRFh/ffcBnhQhKU/Y5AoDKQvP3AY7SUrmKV1/0H7j0B78EALzk7Gc1i4qAU+MyhgsziFSP7TZUA/qQxAHoHSSuzNnCYu96+5qXwyPgE2HqjkiaoD9Si+JtQ1gsjNvXq2t1LCepl+17DuD4zevB83QiE4VCic/D0w/jrvG7cNm9lzV9x7O8r6ssCZ2oseh16bmjUYmjsKK5olA7JCwqhlIT30jUahgkCtWyLKT4FIpaPdHHLU4xYMCxXIOw5hcL6ubMNWfigmdcgJLaXH6EOAALagzHIld/vmRamMTijUEFAJ7j0SP1YKQwEmsbRFiMciyqsopL338pfnjZDwEAzzr7Wb6iIlC/DwzLwJpc8jhxwK6xyDIsRkuNZYFUM6FjkU+1/XvzVGV41zBWrluJTC7i3qJDIxTKYYUKixRKQv7y+CQ2XvxnlNuoBxgXW1gMX0ZVFfAcA1U3W4oD9UZoEsci+TwqdrHmcAwRcbx1HL0QwemBYXugauueeFGhbloVFicXiWMxXFhMCxyqWni9wzgM794BZWwHLF3FPQfCY9bSjtA1Xw5+SVrZbXd890w1vhg89PgOTPz8I5jcu903VrM7bV9X4tj0Mu0Ii1GnlbgkDy4Ez6STVXKP1AeoKo54J3mExZTAQVaNBkGT4xj0Z6XErkAhqWNRsJcvRbhXAft+uXf/PDYNZtGV6pz5/8DendiwpXlmJBHAT1rrH+lCoVAoS0aUsKgDlhFdh7FJKHE7yxjWFmDChMUWBq0SwYuN8ZPVuFGorjYeyhqLUSIcmeHuKywOJ99neQbIOm76qo+w6FNjcXRyFs9740dx09ZHcNozjg7fPuec/1Zdn6nuejv9INfJr8aikAZ61tv/ntre2v79qEWhJliHtM/r8E3C2IP2z551La2+fc8Ira9IoVASQwQQd7wogWf5tqNQw5x4QPuORW8tSMM0IDDBdROT4HYsKkHOehfeKFS3COit08czPFRXHytKgAWA01edjn854V9wbN+xDQ46IiwW1egyMW7HYpbPRi7vxU9YBIA+qa9JkAuCCItuMTUrZNEtdoN3Jq0tzC7gQ6//EO74vztw3CnHRW6TOFcBYH3X+ljt8MKxHLrFbowVx2qfWZYFzdASR6EqutJy2Z+nMsO7hmPFoJLrFVbjlEKhLB1UWKRQEvK/2+xZ3rfu7OCM5gB004QZoSyqigKBY6GZZktxoF6BVHZqJpK6iNkIh1jVEY3C6jBG6Io1x2Krrkug9ZI8RFgrRIhJKYGFops1R2erDO/eAYFjII88hofGSrUalX6kncjLhRBhsTcjQOAY7J6ud/7vuOMOvP0fXwpYJj5+xW9w6hnNMSI9abvjNR0gLM4UyefhJ7YnLYBjGByM4Vjk3Y5FxQDLNLsKiYDbrjMUSB6FKjkz8+NMGrhj9yx008LRQ9lQUT0Juqbh4L492HB08wvPeF5GTuJrQjKFQqEcMiJEQ8WwYEXEpQLwiUL1/JvjAc0z2Oaudyc2xqp1HFZ02ugch5xvdlk2LO9MjHG3MeocdIo4jkXSLp+Blsd3H4AoJhyAKc8C2UH7/32FxUbh9/7HduH0f/oA5heLuOsXX8P/O/f08O1zoh1V2uo5TDkTb0pT/t+TgdwmYXHeERYdEW7q8db270dLjsUORKGO3W9Hw3atSryqZVl4fPcBnHjMhuiFKRQKJSY8y8cS1IJgwPjWBHQTS1j0PNfdghzHcuAZHlW9Ct3QYcLsXBSqqUJgBfAsj6oRHW0pOJOCLFhI8+kGoc9bp49nG4XFKMci4dkrn42LTrsIHFuf6FursRjHsehyxBOBLwn7d+6HKDWLbIOpQUyUJmJtIyc09w1ftP5F+MTpn6jt471//16Mj4zjW7/+Fl54/gsjt+k+rk09m0KWDKdH6sFEuX4csiHDgpUoCjXFp2DCrLlon07s37U/UQwqQ62LFMphgQqLFEqLRIllncCIUWNRVWzHoq5Hx6b6UfIKi45wRhxjYYIhAMiOGBgm4kQ6Fp0ai63WiQRadywSZ14xQkwikZ2L1dYHeizLwv7dO7Dh6GNR3fcARhYUjM4Hv1ikYjgWWYbBYE7CwfkKTNOuG/Af//EfWLPpOKx/yzewacsW3/V6M3aHdizvv39yXqJgGQbdaR4Ti3LgTLqqj6u1ouqQeA4s29gBTAscFN2AYXRAWEwahercw1H1NgHgpiensLonhbW9nXPQjI3sh65r2LilWVgcXahgRZeErERjySgUyiEmQjRUDUS6GgE0C4le4YQVbGHJjdvdIC2xsEgci6TPoiw2t8cNcQK6hcUwIbKTCCm7bW73xr/32P+RZ7EW7Fh8bNcwNq5ZkWyf5Vkg3QeACRAWG6NQv/KT3+CoNUPYdvU3ccpxMQbmiGOx1ShUyXEsBgqLIY5FPgWIWSDdD8zsam3/fpg6wLKt1VjU2xAWD94H9K6zjykhE9PzyBdK1LFIoVCasCImnIbRao1F4kZiGbYhttSPlqJQPX0TgRVQ1au1tvLeurwtohoqeJaHwAjxaiwy9f2mhTTKWj3m21unj2O5BuelidbHVIjzMI6w6K6r6CfwRbF/535s8JnEMpgZxKw823Rt/Ej7xLDzHI+cMxnttz/5LTK5DL5/7ffxjFOfEatdAiuAAYMMn0F/qj/WOn70Sr2YKtf7JOQaSrwUtEoTJG7Wff2fDlTLVUyNTsVyLFIolMMLFRYplGVMnBqLmqbYNRZNsyVxzSuoyZrtJOPZeIMgJOYyTFiMW2OxHSmpFYNbUdZqjkuvwOqFiHz5cuvRVAuzMyjk57Fxy3Go7n8AhhXufM04jsXZEGERsONQJ/JV7Ny7HwzD4Oqrr8abPvef6OntgxhQHycrchA4BhOLAVGohfgzSvuzImZLCtSAmFhyjt23SFkxIPIsOM99lhI5yJoZKUbHIS0kE+HINY66FwzTws07prFlKIfuVOciNw7s2QkA2OAjLI7nq1jdk0IuIpqYQqFQOo5pREShWmBMIzo6oMmx6Hm2cT7CIhHHeMn+bympRXESYbHYGNfqhQhADY7FQ1ljUfHf3+JoY7s8wmK5ImPfwUlsWrcy/v4sy3H2ZW1RU/aJiRXSsCwLw/P2df7ppR/ELf/9Jawaijkox0v2PdFuFGqkY9Hz3JYX7fPJckD3WiB/oPGatgNxLCYSFtussWiawMRDQNca+3olZPseO5nlxC3UsUihUBqJ64Tzg2daq7FInHkMwyxNFKrZ2CaeswVQ0tZORaFqph2ByXPxzgNxAEqchAyfaRCWyLZqbWZacyz6IfESOIZDSWuuv+jFLeqlEtbzNQwDw7uHscln4tHKzEqYlol9i/sit+N2W7qZPDgJAPi3z/8bLv/t5Vi5Nn6fh2EYCKyAFZmEE7A89Kf6MVOtx7OTOFt31GoU5LzGEXqPJIadyP5Nx0ZPTOsT+gAAq8XVS9kkCoUSABUWKZRljGlFu/3sKFQGumG15KIsVBsH+mTNSBTtKOsGeJapiYN+RNUl5FgGMXXMQKIiY/2YdIlqlQgxiYhU+TYci8N7dgAANh37DOjzY+hJcbht10yg00/iWbAMkK+E73MoBTz4X5/Bi899HiqVCnp7ezEvW+hKCYECMcMw6EkLmCr4Z/ZPLMYfVBvISlgoq5BV/+tMXLBukbOs6BB5tqluYkbkoGhGpBgdh1RCYZE4FqOiUB8+mMdCRcPGwUwtrrYTHNi7Ez19/egbGGr4XNVNzJZUrOvLJBZLKRQKpW1MPVQ0VAwAVhzHoudvq1doZIVGxyBQrxMoZJ1IySWEFWxRiww6KsVwcYcIi6ornqpVUcyy6nXx4iCk7bb5RqE610r3j0J9Yu8IAGDzugQxmeRciFl730qh6Z5QLAFvuUbGs78zioVCGblsGulUAjGYc4TFVicW8SlbHC7N+n9PHCKc5z6qEmGRB3qPAooTgBI9oBoLQ3eEwkPoWJzbDahloHuNHS+ckO17RpCSRGxenzxGlUKhUILg2RaFRceZx4JdEmHRz7Eo63VhMa5jMaoGnmZodhQqE6/W5LouO557ZXYlMnwGsm6nAymGAsMyGsSpJsdim7HsIic21HQMggiLEicFCnxBjB8Yh6Zo2Hz85qbv1uTWAAD25vcm2iYAGLqBb3/623jrS96K2clZiCkRmVzyhCGJl2rtaJWB9AAqegWLij0Zq+r0y5LUWCTnOE7NyyOJ4V3DAICjjolOT1iRWoHt79qOM7rOWOJWUSgUP6iwSKEsA1TdhKz5d5RVvbmTWnQEHFbKOlGoLDSjNcei152l6CZ4jgETc3Z1VbWFyDBhsKJGD7S1W6eulSRUUl+RZew2hr0QpAS7fQuV1h2L+3c9CVFKYdU6exb4cUNpPDa2iMWQbaYFDvmQ7+emJ3Hdl/4Vpb334+IvfBWZjN1xni7IyIpcqODbmxGxUFF9I2inEjgWB7tE5CtarT6nF3Jvu12tJUWH6HPf2FGoJrTDISw61zgqFvfmHVPISTw2DSZ3AoQxvGenr1txclGGBeD41V2xfy8pFAqlY0TEnKoGwFrhrkZ7OzFqLBpq43Y0Z/BNzDRHWHYab7SpZYY7FsnyuktYjBBhAxm+E/jRC+0IyzjwRFgM6V8FOBYf2zUMhmFwVJIo1Ioj1olZW+RVSg2i5uxCAed96je4+nEN33nlIPq6W3g+kijadlyfUhdQnfO/Bn41Fk0DUIv1GNfeo+xo1CDXY1Jaciy2WWNx7AH7Z8/6llbfvucAjt+8DpxXgKVQKJQ28NYBjIvgTI5hGAZGxPNBU6Lf073CordNJLKV1IN0R5KG7tvUam31YllW3bHYgsCaETIwYWJRWaw5F5sci2ajYzFK6AxDZMVY0ZsiJ4IFm8iBR9i3w3Yj+jkWh9JD4BgO+xf3J9pmqVDCxW+5GNf+z7V4z6feg8FVg4nbRXjXye/C+ZvPb3l9AFiRtvtZ5DjIOSXxpnGoCYva009YXL1+NdKZ5qhbPyy1/bEjCoXSGlRYpFCWAcd+6v9w/Kf/AtVH4FF9xJq8bC/H5QagqrLjWGxRWPTUk1M0AwKbwLGomRA4psl55ibKAQaER6kSVN3E2V+6GTc+2Tzg08qxE8dib0Z04jfDhEV7gGUhwj0YxvAeu74iGaw5aVUGCxUND4/mA9fJSjyKsubryFwc3YUPv/H/obo4h1UXfAVHnfb82nczJQUZia/Vr/SjPyMiX1GhaM333XQxfg2MwZyEoqKjKPu/zJEai+56ncSx6I1CJcJiuzUWOZaBFBADGwTPsuBZJlIIv/6JKRyzIofedPzZhnE4sGcnNm45vunzMcc9euKa7o7uj0KhUGIRISwqugXGMpPXWPQ6sohjsUFYJI7FdHxhce/NwHyywSgAtisPADSXUFjNBy9fi0J1PS/jRML6QYSsud3xlhdS9vkLqz9EjsMz4Pf4rmFsXr8KaSnBM6zsCItCxhYXtXJt3zsmqzjjgkuwc3QeN785gwue1RV/u25IFGqrNRYBW1iUF/2dnDXHouu4SaSr4LgZemyHCKYeb70NbkiNxSSv3O1GoY7eD3StArIDLa2+ffcITvKpeUWhUCjtILBCS45FYvhmGbZJFPTSkmPRDHcsCj51ir0ouu0iDIoDVQwFFiyIrGhvP2GtSRKLuiAvoOI82xuERZdoyzgnLMrdGYbIibGiUBmGgciJLQmLwzuH0dPfg96B3qbvOJZDj9SDA8UDsbenzqh436vehx0P78BXrvwKXvnGVyZuk5uNPRtrdRpbhQiLI0U7KaLiTERLcr6IsBjHQXokMbxrmNZXpFCeIlBhkUJZRowuVJo+83OTERiOh6YoEDgWWotRqCVFbxCtqpoBgWNihzbJmg6BY0OXLynRHVsxhmNxrqxgLF/FQwcWmr4zWjj4qYKMnMQjK3KoOvGb5HQbVuMRSbx9jGHuwSiGd+/AxmPqwtGWwTQ4lsFNT4bXWSwpBjSf4zN1DavWbcA3//c6iCuPxq6peodztqQiE+FY7M8KyFc0KD7i9Uwx/ovfQNZ+sRld8I9PJTUWJVdbyqoBkWObHHgpkYNuWqhq0WJ0GBLPIoE+XkPkWVTU4H2PLlSwe6qEDYNZ5FKdc89oqorRA/uwMaC+YneKx4quZLUrKBRKAL9/N1DskCPp6UCUsGgALOI4FiOiUDkfxxoRg/hMXXCJ4o/vB27+QnKBz+tYBOxYzCBqkZVuYTGGwOpH1enXVObjLc+nAFiNIqgXInh6alM+vvsATk46WEOExVSPLSyqldr1VA0LKwd6cO8PP4jnrm/juchJdnRoOxFuUo8tFvo5Tcl1cjtKyHkXnOdrz1r759T21tvQgHXoHYuj99luxRbqK1qWhe17DtD6ihQKpeO0LCw6sGAjHYuxhEXL41g0G9ch7STiX5wai6T+XZCwSASlVh2LOcEWuBaUhZrrTWJdUagMVxcWneeN9ziTIHFSLMciYAuvSRx4hP0792Pz8ZsD03j6U/0YK47F3p5lWsjkMrjiD1fg2c97duL2LAW9qV5wDIeDxYMA6lGoLQmLMYTeI4nhXf71NykUyvKDCosUyjInTFgExzs1FlnoptViFGqjaFVVDVuMijEGcvfeWeQrmh2F6uOMEzj7s3KIUEOQYjgWF8r2IKThc5yKT2RsFBOLMrpTPNIiB1kzoJsWxqpOLUU0ZvEzsF2L3pqUcTFNE8N7dmKTS1iUeBabB7PYtn/OV9wDbMdiWdGhOQ4+y7Lwi1/8Aqaho2/jibjsJ7/F2rVrkJN47J8t15ZZKNvCotcR6IY4Dcse4Vc3zEQC6kDW7hwfnPcf4KxqBlgGDSJnWdEh8Aw4ptmxCDQ7aZMi8WzTtuOuVw1xLN68Yxocw2DLUDbUpZuUsZF9MHTdNwp1dKGKFV0SstISxwBSKE8H5EXgkV8AV19wuFvy1MEMFw1VA+AQQ1CLjEIVmqNQiRgkpOILi3LBXi+pQFVzILqExdBITMZeR3ctb+qo1ThMgpy3f1bm4i1PBi/DZrDX3J7NwmJiR1p5xv5JhEWtgl//+jeoqjpOWZvBXVd+ARvXr022TS+8ZN8j7UShpnqCa2MSsdHtWCTCIu/0+fgUkBkAZna25jz1g00qLBLHYgv9TU0Gpp8AcqvqLswEjE3NoVCqUGGRQqF0HIETWopCJbAMGymWxREWveKkt8Yiz/KJHYtEWCQikJeq8zwWOKGlSFjiWMzL+dq23CKme5usM8Qb5e4MQ+TEmjMycllWhMQndyzu37U/1JE2kBrAeHk8cjt3/vVOGFUD0koJV/zhChy1Jbom36GCYzl0i901gZScU+pYDKdcLGN6fJo6FimUpwhUWKRQljl+UagEhhOgqgpEjoVuthaFWlHrohVQdyxGUZQ1XPCjbfjzYxPgA6JQM6I9SBcnClWIISzmnRhSv1hQzUg+EDW+WEVXSnDiN43I+M2MyKGo6C3VLJgaOwi5WmmKujxlXQ/2zpQxnvd3++UcYVE3TKiqine84x14wxvegInH7gJQn5W4okvCeL4KVTexWNWgmxZyYrgQ1ZcVYVnAZKFx37MlNdGwaL/jWBwJEBZlza7D6b5FiGPR6yokwuJitT1hUeT9xe4oJJ6DrJkwAmJxb3hiCpuGshjKJX+BCmN49w4ACHQsru5NI0eFRQqlfUg0VBsDLk2UpoGfvrxz21tuxIhCZeMIi4bnnPsJi6beGIVJBt/4VLwoVMuyxbZWRCHiZHMLhcXJ8HU4odEdF6fWpB8VR+CqNicy+EIG8ZSQmjvkOFxC2txCARMz860Ji2IO4CUYfAYf+O1BvPZNb8ev77Fn4TMMU3f9tSrIEcdqO1Go6R77+vsKiyQK1e1YzNs/JVfcWfcaYHGkUWBuCwaxZusRao7FFoTFycfs36HutWgltuHx3cMAgBOPWT4DsxQK5chAYNoXFs2IhKJORaEqhlJra1DdRDdF1X4Wp7kAYdF5HteiUPVkUajEsZhX8yjrjmPRJU41RKESx2Ib/dwUl4rtWMyJOfSIPYm2r8oqRvePhjrShjJDmK/OB7o7TdPET776E3z6nZ9G/s48AAS6H5cCzdDAx+iX9kg9mCzbfUlyHwQ5W/3gWA48y9eu+9OB4V3DAECFRQrlKQIVFimUZY4WInYxnABNVZwai5avky8KIloRZM0Ez4ZHmwJ2hKoFWyASOBZ+Gk5GtEWiYgz3WRzHYj7ELdiKY3FyUUYuxSMj8k6NxfCXlbTIoaIYobUYg9jvCEebjn1Gw+fPXNcLw7Rw684Z3/W6UjwqqoGpmVm87GUvw89//nP893//N9ae+oKG5VZ2S5grqaioei3GNMrh1pexBxvHFhpfbpLUVwRsES8rcZjI+69HhEW3+FxR9abPgHoty5LSeuQsYAuErTgKJZ6FrBu+90JZ0XHPvjlsHsyiOx39kpmE4T070TcwhO7e/obPFd3AfFnF+r40UgJ9ZFMoy5Ib/x0Y2Qo8fNXhbsnSECMKlWOsFqJQPQOAfo5FAp+yIyWj0BWnvS2IW1xSxyJsMdItLLZaY7HqRKAS52IUcR2LnNAgyD6+265XdPKxCeOlyrOAlEOhouGV39iK724t4Ltf+QLe9HzXdgKcGrHhRNux2I6wmOoDlJJ/FCoZ0PZzLIquupA9RwGFifBzm4SkjkVyn3sdvnEYe8C+3r3rk68Lu75iJi1h49qVLa1PoVAoQfAc3xQ7moRYNRbVFoRFw19YrDkWYwiLJKYy0LFIhEVObCkSlgiLi8qib5wmz9bPLcs4jsU2olBTfCq2Y/FfT/5XvPbY1yba/sjeEZiGic3Hbw5cZlVmFUyY2J9vrpktV2V8/sLP438u/x+86+J3of+8fp8tLC2yIccSFnulXkxWGoXFpDUpRTa+g/RIYHjXMFiWXVbuUwqFEgwdpaRQljlBEZmAXWNRVRTwHAvdMFsay6qoBlSXsFjVDPAcEzm5msRFGqZl12RkGBi6DlWpi0tEWAyrWUeIFYVaCX5ZCDtPQUwXFGQlDlmJg6IHu9QIGZFzHJ7J3QjDe3Yg192DgRWrGj5f3ZNCb1rAbbtmfJ2QOYlHqZDHK178Ajz22GO46aab8KY3valpOYFjYVgWNMPCTCmusGi/KI3lGzuq0wV7/bAY1eZtiZguyg0iNaGiGhA5pkF8rqi2MzYoCrXQCcdiC5MWJYGFEuBYvHPPLDTDwqbBLIQYNUGTsG/nE74xqBOLMiwAx6/qOqSzMCkUSgKIENIxh9MyI0YUKs90IgpVDBYxOTGeOOM4+CrVZBNkAPhHoZb9J/3U29UpxyIRFguIVTC7JiyGzGDXKs55qz+vHt89DEHgccyGNcnaV5pCBRmc847/wJ07pvDnN2Rx4dte37iMkLzGUgPEhdnO4Fmq277P5MXm72qORVffSM7b193d9r4N9udRbtW4MAnTBhjGFhdbcfaM3gf0rLMjYVvgkZ378IzN68G2UqSaQqFQQhBZsUnESwLDMJ2psegVFq3GNomc2OBYjCMekZhKtxNNUzRUq3Z/wl1jsZVIWJ7jIbIiCkqhXmPRFT8qsELt3NaExTYdi1W9Wnv3tJjgMZIuqQsZMVn09v6dtlgY5khblbXHTHbndzd8rms6PvS6D2Hbzdvw+R9+Hq9/7+sPyzuyYiix7o3+VD9mq3ad6opeAc/yidubJJr2SGDvk3ux+qjVkFKdTYiiUChLA31roFCWOWE1FhlOgKooEHkWmmlFCmN+VDUDussVKWt2jcWo7k7FVYeOY23RqFwqYM8Tj9Y+TzvCoreGnx8SH+1ECKv7p4bVovRBM0zMl1XkJNuxqOjRTsSsaLsHw1ykQezf9SQ2bjm+qSPJMAxOWNONx0YXm8Q0XdPQlRKgsGm8+rVvwLZt2/C85z0vcl/EsdiTCe/s5iQePMs0xbBOFxUwTF0YjsNAVsR8WYXscx2qmgGBZxuOndTy9MaVEldeoU3HosgxiYTR2v55JxbX51646ckprOySsL4/ed2iMFRVwcPb7sSpZ5zT9N2Yc21OWNPaICGFQqG0jRUdhcoxaI469dIUher5N+tEYfrtS4zphlPsOkcPPLkv3vIN+ydRqI4AxadsR1vYcXFiowBkGmitxqLjnFNL8ZxqcaJQNblJWHxs1zCO37QOguDTPzB04C+fBAqNgpphmEB5BplsF950/rnY+s234GVHc4Ds2TcrOPtqIwoVaFNYdJ6Vfk5TXbGFYNf5QHXBrhnpFht7HLff1PbW2+Embm1Q7zotORbvB7rXAQkHeQE7Vu76ux7Ci858ZvL9UigUSgQCKzTFjiaBZdhIYVGL8f4YVWNRZB1h0YwfhUocixm+/rd3ZmwGTz72JIB6jUWJlSAwyR2LgC0kLqp1x2KK9dRYdNrLoP0oVImXUNErtdqORrqNJAEf9u3Yh5VrVyLblQ1cZjA9CJ7hMVwYhqZokCt234wXeLzk1S/Bt3/zbTzv5dHjIkuFoiux7o2B9ACqehXz8jxkXY61jheBFZ42UaiWZeHeW+/Fac897XA3hUKhxIQKixTKMidMWGQF0VVj0WqpxmJVMxrqOCqaAYFlap3SsPUIAmtHWlqWCdNV65C40TrlWJwvB8/uSyosThcVWAC6JB5pgYMaw7GYlThUNMPXlRfF8J4d2HTM8b7fnba+F3NlFY+M2gOLimK/bFz73U9j99a/AAyDC979fhx99NGx9jVbUiFyLLJ+A4cuGIZBT1qwz4Xr3pkuyuhK8YmiRAeyEhYqGmSt+cWjojRHoVadGoteOuZY9IlZjYMksL7uVdO0cNOT09iyMofuVGdrHT52/z2oVso48wUvafpuPF9FT5rHUBedsUehUA4TlhVa702znL+1UQNl3gFFvyhUM0BY5GMKJY5rwGih7nJTFKqYs51vYcdF4lsJVqtRqHn7p1qOV1uPOOyUsCjUiuPCrD8LH999ACcHOQTm9wL3XGH/5+IHt0/gR9c/AYgZfORtr8YJxzjry/ON6zNMXfBsBSIsqm04f6Vu+6evsCg74rE7PmEeENKNMbvda+xlph5vvR1uWhUW9YQD8JV5YGEY6FrVUizt/Y/vxtTsAv7u3NMTr0uhUChRCJzQXhQqWBghUdksz8ZyLHq30VRj0XEUJolCrdVYdP3tNQ2z1heRDVsUI47FVgTWFJdCUS3WnGtuxyLP8rVtdsKxmObTDeKnnu1gXXIA+3ftD62vCNi1BXukHowURlBcLOKar1+D3/zkNwCAV735VTj25GM72qakqKYa695YkV4BADiweAAVvdKSsPh0ciwe3HcQY8NjOOvFZx3uplAolJhQYZFCWeYoWrCIxYkpqIoMnmNgmFas9CwvlgXkXSKOrJvgYkShuh2LPMcAsAIH0+SQYyDEExaDB/fUhGLf5KLdwe9K2cKiZlihIi5gR4vKavIai5qq4uD+PdgYICyesLobPMvgukdtl4Cqqli45acYv/8GTO21Z8zPleK/gMwW7dqRQoxz2psRMFdWG459alFGlyQ03QJhRz3UJWKxqqHqIyJXtcY6nIZlQTVMiFzzTSbytlu2KLfnWBR4tiXHYlrwj8V9bGwRc2UVG/uzyIidFRbvufV6DK1ai83HndD03ehCFSu6U5GxthQKZZnzyNXhsZXLHT14sM4kwqJfXbuGBSMci7xof+Y3cBjXgUUcfK2Y5mqORZewqBTCj4sVGoXAiNjYQGrCYiWmY5EIiyGORcsCwNQcepZl4fHdB3DSMRv8lyfRn+MPA6YJy7Lw+dsUvO/PZWzdPQuLT9nHKzoOg8qCf7taNCyCd4RFfQkdi6zXsTgPCJmGOpTgJSAzAMzuak0k9tKKsMhwzb8vUYw/ZP/sWZespqPDH2/Zhr6eHJ57WnNfhEKhUNpFZEWYltlyHGqUY5Hn+XhRqJ7ag16RT2RFqIZaiysVuHiORZ7hwbvc76ZrYIYIixIntRSFCtSFxapRBc/w4FzPFrcblCQEtVNjMc2nYVhG7VpZUgeehS6Gdw5HCosA0Jfqw2hxFPO3zmPmthk8du9jvqVjDgeKEc+xuCLrCIvFA1D0ePGpXkRWrDlVj3S23rgVoiTiWec863A3hUKhxIQKixTKMoUMCYTVDuQECZqqQHBqLLbiWAQaBTtFN8Ez0VGobgGJZ1mYITOrZc2I7ARKQvTAy3y5c1GoUwW7g9+XkWrxm6UIMatL4lHVjMQ1FsdG9sHQ9UBhURI4nLCmG3fsmcH0fB7/8sYLULjvDxg88bn4lw98GkB4fUkvUwWlFnMaRX9WRL6iNQiLkwUZOYlvEpdlzQjc5kBOgm5amCw017WqqDp4lqm96CiOq1H0ET4ZhoEksCgr7c2M9Dok4yIJrK979aYnp5AROWweCo5saQXLsnDPbTfgzBec51tvYTxfxZqelH09KBTKUxO1Avz+XcD/vOZwt6R1jOCahQac53eksOjpz3gFtLAai6ne4O3O7q7vO0xoi4JhbIGJbCvVZdc8DBsE5T1RqJaJlpQ1pWALXlpMxyIRyLT4YvXY1BwWi2WcRByHXogYt7APcmEGb3zjG/HZWxV85GwJP/k7HoyYBVjWJSzON2+Dl9B6FCqpsdiOY7ELAAOUppu/02TbleoWFolj0TvQl+4DKnPR93QcHDfk7MJi/AFRlk8ehTr2ICBkHcdlcv506714xfOeAz5GaQIKhUJJChHoKi1OHmEYJlQs44WYwqK3xqI3CpUToZlaXViMIR5VtApE4rp3cP+9J1GoIivawmULzs0U7wiLWrVJnBJYoXZcrDPEq0fF04eQ5mznJYl47STlYhlTY1OxhMV+oR+3fes2zPxhBpljMvjs9z97WOop+qEYStM196NP6gPP8DhYPNhyFKrESR1zLC4uLDaI3suNrTdtxbPOfhZS6TbrdlMolEMGFRYplGUKcVuFiVisIEFTVQgcC9MKXzaMBVfEqKwZtmMxAq9jUVOCB1/kgJp1btwikxawbJi4pvpEcIYxuShD4Bh0pTikHFGzGCFmZSQeim42ODDdLw0C6/8ndf+uHQCAjVv8hUUAOGvTAMbyMt789n/FHbffjhX/+Gn0bjoJOcnufM6X4g9uzZQU5CQOvE/UqJeBrO00VFznzxYmuSZxuazogU7AgazdsT443zwgaDsWmdoEelKHUQhoX4rnUI4RnxsGcUgWF/MAgGJ+LtZ6JBbX60q94ckpHLMih95M9AtEEg7s3YnJ0RGc+cKXNn0nawYWKhrW92dq9yiFQnkKQgax1DZEr8NNiMBikNeJEPERQLNQ4hXQOLE5CpUVgHWnA73rA7ZpAj84B9j2A/uf8mJ4G6LghPqxSt12tGpoFKrYeFxBwmgYmmzHdKZ67PjSOMIiw9j7VuILi4/t2g8AwVGoxQn7Z2ECH/voR/G73/0Ov/6nND5xjgTGMmwHJ1AXFqt+jsXkEZw1OlFjkeVsd2t5tvk7vWoLdt4ai3y62VUodTmxtK3H9rnbVChVcNQL34Lb74sZr8o6jsUkEwZH77N/T6SuxE08ODGDh5/ch/NfeEbidSkUytKwP78f+/P7D3czOobI2n/jW3VesUx4FGpcYTEqClXkRBiWgYpeAcdwsYQsX2HR9S5ZcyzyEkRWhG7oiZ13KT6FklaCbMhNwqJfFGpUPcow0oL9LC9ohdpnrTpNvezfad/Tm46PFhZ3/GoHJm+dxKo3rkLXiV1gA8ZaDgeaocVyHzIMg26pGxOlCVSNautRqO2kOTjomo4LzrkAW2/c2va2loJivojH7nsMZ51HY1AplKcSy+cvM4VCaZjjzTviXlSNRUWxBbKoZcOYr9Q7irZjMarCYqOwyLEMNCX4JUHWTBhRjkWXsDhf8n8pyFeCO7RJj32yIKMnLUDkXcKiHC5mZZ0IzEWXwDldtAccRY6FwPuftfGR/ejp60d3b1/gtk9ck4PAMdj48rfjL9ffgPTRfwMANafaXALH4kxRQUbkIcRwLA5kJRRlreF6zpQUZHwcchWnLqKfE7C/Jiw2d3plzQTvikKVQxyLAJASOFTV6JqXYYg8C4ZhUFy0Bz41JWLA27Vv1Wjc9+SijCcnitg4mEVXh52D99x6A1LpNE49/eym78YX7d+p41d1d3SfFAqFkhg9+G+oRV4nQuJSATRHn3qjHmuORed5ZJq2aNe9xnaQ+aGW7LYVxgEAWtHHRZcETqwfq5izhaWqn1hpuZZvs8ainLd/Zvptt15cpxovJRLh9hyYgCjwOGrNkP8CxUkYJgDLwKff+ALccccdeM0JAvrJpHESR0uERdlPWGzHsegMtqltDp5JXXbEqXdGPqmx6O7CyHm7zd7BQanLEZU7MJDKcJjLF1CVFcwvxpxcwCQUFi0LGLvf/l0Rkicr/Pm2e8FxLF5Go8colGXDK695JV55zSsP6T4ny5OYKE0sybaJ8FZt0ZUeFYXK8VxHolAlxz1fUAoNcaNhlPVyk2DkFRZZhgXHchA4ASbMxHGoaT6NklZCVas2iZgCZzsWLcuqCYut1HEkZAT7ee8Wsw4UDsRal2XY0PqOY8NjAID1mwMmjKFeJ/uVb30lNl28CYPnDcba96FENdVYjkUA6Ba7MV4ebzkKVeKkjkShVsoVlItlFOP2RQ4x9952L0zDpPUVKZSnGFRYpFCWEXMuVxrvzMgKi/hkeRGqotSWlUNiU8NwC3mKZtiiZsTsvKpLiBI4BmqIY1HRYjgWXe61hap/R3uxGiIsJnRrjuer6EoJEDi2FoVaDNk+AGRE++ViwSVw7pi0O2YruyXfdQBgfnYafYMrAr+//a9/xAde9zIc023h4XkOm485rvadyLMQOCZUVPUyV1KREeM5FvuyIkwLmHRELNO0MF9WkRF5eOXlsqo31Ep0k5N4CByDgwvNnV6Z1Fh0tkccn2KQY1FgUdUM6G3EdEjOtpWYgmJt37zjWHTdTzftmALLAFuGsmBbqNsYxrbbbsSzznoBRKk57mM8b7f9GauTuw8oFAqlo4S49kziAIsaJHMPNFmWj2NRsMVH4vgjAh8XMgijOjFdzjq6X92/JHCuaFPJcegVxxuXsZya0rO7fByLrdRXdNqcHrDPUdw4V84RFmPuc3J2ASsH+wJn/P/fbffh5B8qGC9aGKrsxnOe85zGBQTnfLC8fdykLmTDMm04FnmnH9W2sNjtRNh67ket6txLrud4NW/XhfQOHqe6O+pYLJYTDgiyfOPvQhSLB+3o1q419VqVCfjTLffiec8+CX09tL9BoTydufiOi/Gx2z+2JNsmgt1NIzdh1/yuxOuziHYsakr0+7J3G14RjES2FtQCOCaesFjRKrXjA2xnmOWaZOMWlMhyZT1Z3e0Mn0FFq/g6FgXGbrNu6fUai0nr9LpIO+kDJaMehbp3cW/sdcOObX5mHtmuLKSU/9jJw/c8jLee91aMHxjH5lWbkTkmZo3tQ4xmaLHdh32pPkyVpyAbcmwx0o3ES1DC0jNiUil1Jk51qdh601Ycc9IxGFodMAEuAM3UsOoNq1A2nsK17CmUpzBUWKRQDiO6RwzbP1N/GBL9IjwK1RYWa47FhHGgZD/uiFFFNyFwDHQtfDClIQqVZaHIwYMmik+0JABs374d5aIdsSG5arrM+TgWTdNC0amBqLrOCce05tacWJSRS9liWLrmWAx/Gak5Fl3C585Ju/192eBO4sLcDPoGmjtIlmXhqh9+G1/40Dux4ejjcNaxazCxKOOhg43uiIzIxxYWTcvCfEVFWuR9I0u99DvRnuOL9gDufEWFYVrokppfpCqqAZFnfCNhGIZBb0bEVEGG6bnWVac2I+NxLEoBdXxSAgc5hhgdhui4R8PuSz8kUm/TdX/f+MQUNg5ksaKrs1n/hfw8nnj4Ppzxgpf4fj+er6I3I2AoR2sMUCiUw0yIG9EiA28hrkYAHmHRQJOzjRXsz4mz0dnetXfvCI4MIyIcERbLyYXFHTt2QNWcfXJC/VhJpCSpPUggDkOl4AiRruezZSSPQiUCXabf/ulXu9CPTL8tJsUUv6bmFrByoLfpc8uy8J3vfAd/9+WbsGVlDt0Dq4Cpx5sFy3RP/f+FjL8AyqdbNizWo1AjBoZMvTHO1Euqx7423vOiy54oVAuQF20x1Ls9qdsWONtwfNRgeZQSC4tcsntp7AH7Z8+6ZPsBUKnKuOmeR/B3556eeF0KhXJkUVbLiZ10cSGCyrcf+jb+8Y//2PR9mGgI2O+aYY7F2DUWoxyLrC14FdViTVhUFRW//MEva046L1W90UUoV+Wm74n4R4RLr3OTOPmC9pERMqjoFd86fWTfmqHVaiy2E4Wa5W3nu7vG4khhJNa6GSETWg9wYXYBfYP+KRT/96v/w0cv+CiGVg2hq6cLg+nBlhx+S41u6NAtPbZI2J/qx2x1tuUaiykuBTmqjx2DatK+yCHE0A3ce8u9OPPFZyZe90DlAAZfOoj98pETHU2hPJWgwiKFchhxi3MAsHe2PpjCMAw4lgl1LDKcCFWRa7Xqqlq8AQj3AF1K4GpOQMuyoOgmOJbFwpxdn0aV/TuGFVcNPIFjIoVFw2geaZqZmYGh2/t2x2L61VIsyjr8dCZSDzLsPPkxVZCRE3kIHAvJERYLEVGoGanZsfjEuC0shkl4+blZ9Ps4Fi//j0/iv759Gd504Ufwya9+H88+ehUEjsF1jzcOYmZEDkVFjyW0FaoaDNNC1kcY9KMva3duRx2n4XTBng2XSzV24nXDhKqbkLjg7Q5kRcyV1CaRV3ZcsCRCtSYsCsFRqLJm+IrRcSH3k5rQsUjEzrJzL1RVA3fvncPmoSy608lfBMK4946bYZomznjBeb7fH1yoYGVXKva1pFAolCUjZKZ0TViMdCy6+jx+M+lJFCYZPHF+fv/aezE+HVAnVyGORft5YVby4W3wYWp6CpZlwTRN2wVIBhlJTcHiZOMKpZn6PjmpUVg0W4hCJY7FjBP1VY0pLHavtesiqvFmaE/N5rHKM5inmxY+c/lVeP/7348PnjuI37//DORWHQ3M77PFOQLDNNbuI8Ki91iFNFqPQnXcC1ExebrSXCvRTarHbluTsOis547uNTV/l6XUZd/z7bonAQAtOhaT1OscfQDIDABdKxO37qatj0BWVCosUiiUtuIzoyA1Fr0QoWWsNBa6flQUaqs1Fr3/Jo7CklqqiVo7Ht6B//zif+Lg3oO+2yxr5QaRSZUb26EYdcdiUK3J+Rn72R8k/mSEDEzLxIKy0CROEbFSM7VaFGo7jkW/KNSRYkxh0XFWBk0IW5hdQP9Qf9Pnv/3pb/GVj3wFL/+nl+PLV34ZXb1dYBgGfVJwKRnCxadfjItOvShW+zoBEfniCouD6UHIhowFZaElx2KKS9mOxdaHRgAsb2Hx8QceR3Gx2FIM6qQyGb0QhUJZMqiwSKEcRubLjZ3OPVPFhk4Yx4QLiywvQFWVmrCoxRTX3I6/tMChKGswTasmCAkcCzNgthyhrLiFxSjHohFYY9GyLFiW1VBjcaGsNrne/MRGAODZ5MKiZVmYLirIShx4lqlHoSoRwmItCrXelicnoyPLFuZm0DvQXBvg3ttvwCe+8n38y3s/AoZhIPIsTlrTg6378w3LZSUeZUUPda8S5px7KhdTjMpJtrNxPO8Ii0W7o9yVanxhKSukLmKwhDqQFbFQUWvCIUHWTPAsW3csOteKOEW9ZATOdrn6iNFxIb8TshwtLP7uyh9i+0P3AUDtXiD39917Z6HoJjYPZWvb7BT33Ho9jj3xmRgY8h8IHM/LWN2bQrbDdR0pFAolMVpIBBOZTa6F/L21rHrtRKC53iLgcqxVG35WtZBngdr4DG5FWCRUFM2OkSSORSFji1dFj2Ox7AiLsOzl3QOxlpncsUgckDkn2aAcIKJ66V0PlGfr60cwNZfHysHehs+2T5v4ISTqnQABAABJREFU7fV344c//CG+9mIeXKoLGDzWFlNrxwlA7KpfH8Cut6iV0TTKlR0EhBZd9iwHgIl2vtZqJQb0R1K9tuCse+7ZmiDprEfuHT9hkYjKldm4rQ+GZWMJi//5y+tw09aHnXWcGotxRxFH7wN61rdUX/GPt2zDMRvW4LjNyd2OFArlyCKpsEgEljguxyBBZSA9AADYl98Xuj7LREehxhIWPeKk95hFJ066pJVqjsWo98mqXm2IQvU6Ft3CIlkuqGaeUvXvbxEX4bw83ywsss3CYjuORZETwTFcg7A47o2FDyAn5GDCREEt+H6/MOPvWLz9utvx3s+8Fx+67EPghfq7b18qWlhcm1uLY/uPjdW+TkDOC3G3RjGUtvt3c9W51hyLfAoWrLbjUONEof71N3/F1hu3trWfVth641b0DfXhuFOOi17Yw7Q6vQQtolAocaHCIoVyGPEKRftmyw0uRpYFtBDXFsMJ0FS1FoUat8aiuz5iWuBQVg2ohgnFcTwKLOyZ+yGU3VGoHBtay07VzVC3naFpDY7FxarWIH4CnRUWF6saVN1Ed0oAwzDgWRY8y6AUISymBA4MUIsl1Q0T+2ZKoesAjVGoU+MHa+f2e7++AS/6f69qWPbMzQOYLTe+4OQkDmVFbzonfpAY2ZwYr9PKMAx60gKminJNcAWAXo87r+Q4VN3XyctgTkK+ojXdh7JmgGdRi1AlwmPQttIicSy2UWOROBYjolAfvX8rvv/lz+DWv1zjrOc4Fp3jvfHJKQzlJKzv7Wx9B13TcN+dt+DMc/1jUCuqjsWqhg39GaQCBFgKhUI5ZISJPTXHYsiAh7eeYgLHYjXs0eyN41T8B7LiUJE1gHXVWGRYW2AqewYs3IKbNwrV9Il4jaK6YG+HDJ7FjULtXmuLtbN7Yi1uR6Ha+zg4MQPdMPHMVRzu/N8v4Z1ver1dr1HMAQNH29sdf6i+spitXx/AXk4tN4uox58PPPciW4hMCsPY+wiJUANgC4RciGMx3WuLnt571huFStyufIBjEbCF23ZhOBTL4cf04PY9eM/nrsDPr7nZ/iCJY9HQgYlHgK5VtuCbAMuy8Kdb76VuRQqFAqBZZGPDYqeBmtAhG9ETOYOExf6U7V6LcsRFOhZ5Hqqa3LHodfbVHItaCRxbj0L1W4e0xyssKnJjf8hdY5GcB7do17CsHCAsOhNHFuRmxyJxQTYIixHRslGInFivlagAE5WJWOsRt+OC7B9NvzC7gL4huy8yOzkLTbXvuUt/cin+6R3/1FRyZSA10ErzlxRy7QQu3njLyow9idiC1XIUqnu/rVKJ6Isc3HcQX/v413Dd1de1tZ9W2HrTVpz5ojMD64CHMa/H7DdTKJQlgQqLFEqHUXQDr/jW7bhvf/QDzuvsGstXMV+pdyajolDB8U6NRcedpcYTYtziZVq0RSvdtGqCEMexMCM6ow1RqCwDpRos4KgBNRZr3yuVJmFR8cS6BtUYJJ3PMAHWy2SBuPLqs+FSAodKhLDIMgxSAoeCEx27f7YMLcJVpyoyysUC+gaGcP9dt+Jdr3oRtt12AwCgu7d5Bt4p63pqQjEhJ/GoqEYsRypxwfZk4nda+zICFsq2mDtTVJCT+CYxizj4wlx7g10SqpqBBY8watftrK8nawZEjg3cVlq0HYvt1Fgk8bZyyH1p6Dq+e+kn7eUq9otTzb0q67AsCzc+OY0tK7KJzmccHntgGyqlIs4896W+3084NS+PX93C4CyF8nRGrQB3futwt6J9xh4EdrT5Yr/rr9GxknEJcyMQx6LXIebG64Lwc0WwHmHRcUCGOhYVz+QeNXqyTxBlWQN4qbFtUrct/Ln7RG5hkZeaa0cmjkLN204zImZV/Qfjmuhea/+ceSJyUcuyMDWbx8qBXtz5wHac9qqL8JP/s+vy9fd01etIprqA3g22+DZ6f30DYq5+nQFbaNQqzcfK8UD/0baTsxU4Mfw+Auz7g+GCHYtSty3Ied2GumI7AWuORedeEXzEOHIt4oq8YXA8SpXgQXfTNPG+L3wflmWhVHF+Xxkufqzu7E5ArwJdaxqvUQwe3L4HEzPzOP+FZyRaj0KhHJlonklArYggQbiFNzdEFDtY9I8ZJXAMFyoscjwH0zBhREy09m7DW3MxxdoiTlkr12sseqJNvduQdTlcWPSLQg3on8kBz4ucYDvpK3qlSaQl10k39Zqw2G6srcRJqBp2G5kSg+nKdHC9axdEAJ2X/Z+fpMbizkd34j3nvwe//9nvAQC5npzv8kOZoVaav6SQGpJB97SXHqmnybGahBRv35NBLte4hEWhWpaFyz97OXRNP+SRqWPDYxjZM4LnnvfcxOtW9SoKRuuTCikUSvtQYZFC6TAVxcCTk0X8dXt01ne+2tjh0wwLj40u1v7NMQx00wzsxDEcD02t11iM7Vh0CZoZkauJVkTo5Dkm0rHodj1yHOPrWCRiomr411gkqLIM0SUyFWQdiudYghyLtW3EPHYAmHREm25X3KfEs47gGt5hJvUOLcvCDicGdTAXPICWd2pV7nz8YVzyngtw4ml/g9POfH7g8gLH4sRVjR3rXMoWFuPUHJwvK5B4Flkx/uBSX4ZEmJqYWpTRleKbRD/i5pRCHIsDWfs8jMzXZ8Nphi0QNgqLJiSerdVc9JIRW49CPWZFDi95xgqs7LI77WE1Fq/95c8wvHsHhlatRdURFoljsajo2D5ewExRwcbBbGBsa6tsu+0GDKxYhS3PONn3+7F8FQyAZ6zq6eh+KZQjnr9+Erjxs8DuGw53S5JRnm0UlLb9ALj+EkBeDF4nDEMDrnot8PNXRS8bh5CYU4aznzdWmIjpdSx6/w3UHXFkO84ASqhj0SMkslq8eoN+VBS1WRBL9djXwC12NTgWBY+w2EIUanUeENO2SMlL8Wsspvvs5Wd2Ri5aKFWgqBp27h/Fi9/yCZx0zAb887mu5w+pIyl12+egazUw9Xj9ezFbF34BW2jUKsmPNQpOiBGFGqPGItAcYet1LJJ7R/KZwCM5/TCvW7UV2PAaiz+/5mZsffhJbFizoi5AcrwjLMY4v2MP2MfUe1Tipv3p1nvRncvgnGefmHhdCoVy5OEVo2oRm37P7IRE1ZYbL4dHbcaJQgWa3YVemoRFr2ORt98hK3qlJiwGuQgJsiHXXGV+yzcIixGOxaDY1axYj7pucixydccimXRttvl8FjmxJiyyJRaKoWCmMhOxFpBzosT9HIuGYWBxfhGzk7N4/2vej8FVg3jpa/wn2RJWZVe10PqlhVy7oLqhXhiGQY9o901aqrHYIWExzLF41/V34b7b7sPKdStRrRxaYXHrjVshiAKefc6zE6+7f3H/ErSIQqEkoSVh8ec//znOPvtsrFmzBgcOHAAAfOtb38I111zT0cZRjiwKsoaNF/8Z1zwcXpj7SIFESoax4KmxyDDAAwfqnTCOZaAbFgL1JNZ2LPJcY8RkFG5RMEPccKYJuRaFGl1j0e16FDgWqk8nuKToSAksNMMKjfFU5UqTYFXVvMKihuDqfoh0DrqZKshgYAtqhJTAQtbMyACztMihohjQDAs7J4voSQuhIt7cjD1Yd+0v/guvfP1b8YXvXolU2id2y8XfbGgUk7pTAqqqESvudbasIifxTa7HMPqzIhYrGhTdwERB9l2fOBbDYjmJsDg6Xx/YJddR4BgU8va9vVgqQ+RZsEHlkQQOqm7Gin71Igkc/vlvjsIaJ7o0qPbnwuwMfnb5l/H/XvsvOPbEU2rCorvG4k1PTiMtcDh6MNcUy9Iu99x2A854/nmB2x1fqKIvI6A/26Lr42kA7YtQfCHRmIV4tWCWDV89GvjyxrozrjRtu5Wi3FtBkO3ErL8XSUjMKREWDTVEEPJGn/pGoTp/78gxx3IsNkahcm3ERJVlDfDOJE/32PGq7uN3C1ac6ERWOm1sJQq1Mm/HcbKc7VyMG+fKMEBuFTC/379mpYvJGVus/N4v/owLzn8hrv/Jf6A356qFWHQiztJOkkL/ZmBhuP69mGl0w0k5RwBuPVnAF+JYDJvcZjjOw6DX2FS3/bPsGQDVFYDhUXaSQfKzREz1cUkIOQAMUIlZ7zIMVgiMQl0slvGxr/0Ur/9/L8C5p59SdyyyvON+jdEPGr3fFoIz/Ymb9qdb78XLn/dsCEIypyOlDu2LUI4kgoTFdiMYybaYkLf5iVJ41GZUFCon+MeWevGKk95tEkeZbuo1MTBMWLQsC6qh1sQfv+X9aiwG1ctTKv6f80z973STY9EVycmiQ45FVmoQFgFgd3535Hpdgj1ZJ6/km77Lz+Vhmib++L9/xJkvPhPf+vW30NvfG7q9NZk1yRp+CCACXxL3Ybdo903ItTN0A695zmvw0N0Pha0GAMjw9riGHDXxKoJqKaCup6zgu5/7Ls540Rl47nnPjVWLsZNsvWkrTj3rVKSz4WNkfgwvDne+QRQKJRGJhcXvf//7+NCHPoS//du/RT6fh+GID729vfjWt77V6fZRjiBG5uwH1O8ffHoIi/NlNTDKkbifCnJjh28gK+LxsUJtfKouLAYM3LAcNFWp1RmMLSy6lsuKHKqqLZQRl2Asx6JrGwLLQvYRcMqKji5JcP4/uHOrytWaU4wwXWzsOOUrKtJisKjlrVcZxuSiglyKhyTU/wRKPIeqZkSmTtkOTx26aWL7+CJWdktggxQyAAuOY/Gt7/8ELvzEf4DjowdvTliVg3zwcTAle0ArK/JQDbNJbPVjtmgfGx8SWeplMCeiIGuoqgamHWGR9+TblxV732HOvZ6MAAbAwYX6vSCr5J5isbgw52zLrqnJBZw3so+S3P7s2KDanz/51qXgOB5v/beLkcpkUS03OhZLio4bn5zElhU59HVY3Du4fw/GDuwLjEEFgNF8FSu6U8hKtL6iH7QvQjliITXdKrPouGjTCsTdpQcP1LHOgJamhAxEeIXEUMciqbFoP0vkBDUWOaP1Wdblqmo7AN2kegG52Hj8JY+wCNTjUy2zhSjUeTuOk+VsZ6BSBCImd9XoXmOLghFOzam5PADgw299FX5y6Qcgeuswl6ZsUdVxGmBgS11sBBzh0x2F6giLHXcsOjUuQwaPmyJNvUjEsehJDtEVgOMwX7DPlVEt2Ofdr0YSywJCGqjEjKUNg+MDHYv//t3/Rbkq46sfeztymVR9uSQ1FkfvA3rWJa6vOD41h/sf301jUNuA9kWeugTFNB5JEAFNDYsy99AkLDp/H5VWJzm5YBimJq75MV0Jd4hHCYuCYLc1iWPRMI0mZ5/ACTVxjsSKeqNQ3RTVIixYjcJitfF8qYYKgbHbF+U+k6vJ61W6nXOkRl3YuYqDyNcdi1zZfh89UDgQuR6JQl1UmhM38k5f5OX/9HJ85orPQEpFC3P96X4YVQPocHejHWrCorfPGEKfU0ebiJHVchVz03OYmYh2gdbumTb6uECwY/EX3/sF5qfn8b7Pvg+ZXOaQOhZLhRIe2fYIzjrvrJbWHy2NQmKTx8tSKJTOkVhYvPzyy/GjH/0Il1xyCTiuPuD5nOc8B4899lhHG0ehPJVZrKqBDrNup7aft27gqu4U9s+Wcettt2FuegIcw0AzzRBhkYdlWTB1p4B4zJp0brdhRrQFNUUzao5FkY1TY7H+vcQzgY7FXKou1AShKXJDjUUAGM83bm+upCLTIWFxPF9Fd0po2Gda5CDHEBZr9Q4dx+JgToLAMdBNq2FdeX4S2x/YisUF+8X1tW99b+z2CRyLqasuRrpiD15mJft+mS9HvxjOlhRkRb4mNsehLyPCtGwn53RRQUbkWnIs8iyL7rRQqw8IuB2LbE3k0wxA5NlAt15deA93YMTBz7H4xCMP4K+//yXe9oFPoLu3H5lMtuZY5FgGPMtgYlHGY2MFbBrMICd1dib/PbfdAFFK4bQzzwlcZjxfxZredO3aUxqhfRHKEU9lLrlA1WG23rO1/qwPcSwKPA/TsqCHCYs1IdH5u+/rWCQ1Fp2/28SxqIc5FhvdfYLZ+mzuiuLnWOwD1GLj8bvjMWsuS7ewmDQKNQ8IKVtMErN2RGfcbfSst0VBb61Jh4mCjuu3PobpOXuA75P/+jr/Z29x0nb6kWswsKWxDULWFtsIYta+hiERuS1BhMWwPqiu2LGsQcKi4Lg/vTGmhgIwHKqqfa0EU3YE3YDnrJi1Hb/t/h4y/jUWH981jMv/51p8+j2vx9qVg+jKpl2ORS78HBDUsh2F27XKv1ZkCNfdfh9YlsUrnvecROtR6tC+yFOTHXM78IKrX4Crd159uJvSwMn/fTJe+KsXdmx7xN2kmvGERcuymmJBkzoWiSOxHDDZJUxYLKgFX0dWddERtxiuJgLuWdjTvO0WolCDzg3vJDHEcSwWVXuCU5hjUTbkmkhLzmmQ+ywqdhXwcSyyzY7FsNjYODTUWNQYpPk0RgojketxLAeJkxqERa2oYeuNW7EwY0/WedP731QTQKNgGAYj3xnB4tYWSwMsAURYTBJr2p+yUwWICBxHQCZ0zLHoM8lp/MA4rvr+Vfind/4T1m1ah0w2c0hrLN5/+/0wdANnvbg1YXGyPInV0uoOt4pCoSQhsbC4f/9+nHbaaU2fS5KEcrn1uiYUypHGYlVrqhNIIM47b43F9f0ZTBcV3HH3NgAAyzIwPIJVA2QWnZpsFmFDFKpIRE615ngUneLnodtwuedEnoMsN75w6IYdrUoci8UQkUiVK01C1vhCY4cmXwkXFnXTghlTWJ1YrNp1BF0d2hTPQdENWJE1Fm1hMV9RMb4oYzAnojctoijrtZqAYzsfwaNXXIj/+vrnMD87je7efvCCz4z4CIijjwhbc6Xo6zxfVpGVuFo8bhyII290oWoLuBLX5HgsqzpYBpga3hW+rYyA2ZJSE9VrwiLLQnVelFQTEDkWXMCgIBEvw+6ZuHgFb8Mw8N1LP4FjTjgFr/jHCwAAaZewCNh1JB8YXgDDAEevyAY6K1vlnluvx2lnnoNU2n8QsKzoKMg6NvSnQ4XcpzO0L0I54qnM43A7Fm+44QbYXQEm1LEo8BwUHdBDatrWHH3EAeknLJKBMW+NxTDzutuxaJoQ0brTvSwHOBYNFai6BrSIqxSoC3HEEWK1EIUq5wE+BTBEWKz4nx8/etbZtQMXXC4CJ3Hi4b2TOP3yUVz4pZ9hfHoWgsCjr8cn9hOwo4Ol7rpQ2ru+sYahlG1cntR6Uhsdo23DRzsWTU3GyEzIfhkGELuaY0x1BeB4VJ1BZ9Gs2iIkE/CcJSJvu7XFOK4pCtWyLFz0Hz/A0etX4wNv/gcAQC6brguQrBCvxuLEo/a56l4bXHMygD/eci+ee9ozMNDXnWg9Sh3aF3lqMlK0xZHdC9Gxjoea2eps9EJLhGqoTe/BRLCKW9utS7RjMGeq/i6sIGGRZVhYsHxjDRembDGKsRgYpoGHph7Cq699NXbNN76Txo1CdTsUg46LHDeJH40jLKb5eoyjr2PR2SbHcuAYLtB9JvtMRPES6lh0ngW61d57dIpLQTHrx9Er9WK0NBp73UXV7jdND0/jic8+gW984huYHrcn/PQN9SVqS/nJMoxCe0JpJ5EN+xrte3Rf7HUG04MA6i7HOAIygYjWQfG5cfFzLH7vC99Db38v3njRGwEA6Wz6kDoW777xbmw+fjNWrUteS1M1VMxV57A6ZQuLxU73SSkUSiwSC4ubNm3Cww8/3PT5X/7yFzzjGc/oRJsolEPKO/77Plz65ycil/PGlkYvrwc6Fsls8YJntGxtr90hFVcdDcAWlrSQKFTLGQzRtYTColbvaBJ32HxZqwmLAs9EOhblBsciC9UzoEgcil2OO9PtcPSiKnLTDPqJQuP25itqqMiiGSHOTg+TPnUEbceiGcOxaDs8d03ZHZehLgk9aR4lWYdiGLjqqqtw9efeifTQOnz6iv9Ffn4WfQODsdoVvM/4jsX5soq0wDWIplGQWpO7popQjboY7Kak6LDUKn79g6+EbmsgJ2GurEJ2RHXiguU5QFXsTqpm2jUXg5pI7sli6GhyPLyOxb/89irs3v4o3nfJF2uzy1MeYVHkWcyUFGwYyGBlV/Ks/zCKi3k8/uC9OOMFLwlcZjxvt/n41XSwLwjaF6Ec0agVWyw6zI7FY3oNdEmME8sY3M8QBR6KARhhfRFSA5CIH75RqMT9R6JQFWgmEy7TyS7Hourv2otLRdaahcV0r/3TXfup4hYWSRSqah+b2YJjUV6098tygNRlx5rGjTDrXmv/nNlRb8uem3DttdfinA9fiRU5Drf+6BLM5otY0d8TXC+4OGnvmwilnGjHrBLEAGFR6fAgTpRj0bLAmip+ecuj4duRumwnqLv2pKEALI+qE2lnOxbTIY7FLieWNn6MoC+s0BSF+qv/ux233vsovnPJuyE5sbS5TKrRsWjFiEIde8A+Zz3rEzWpKiu4cetD+LtzT0+0HqUR2hehHEmU9WYxPKmwSJ4xc1X/+rRuZ50bUpdv32KwUMMyLEzLRFGzo0e9ywp88ijUoJhYIoByrP2uGCosaj7Comd51VQbjl1ghcB42bDYVYI3+tEtNBJhsV3HYopP1QQ0wBYWx0vx6pdLvISCWsBNN92E7739e2AFFt/57XdQKpSQzqaRSqeiN7KMIb8P3/vU92KvsyprC2c192ECxyLHchBYoSm2NyneGovbbtmGu66/C+/51HuQztj3bzqbhqZo0LX2J3hHYRgGtt2yDWe++MyW1j9QOAATJtan7T6Q13FNoVAODYmFxQ996EO48MILcfXVV8OyLNx777249NJL8YlPfAIf+9jHlqKNlKcIl9+0Gxsv/jPyMcSPpWK6IGPjxX/GQoI27JwsYudksRb1GEREycEmirIeWfOwIOsN8aUDOREix0JcfRwAgGMY6KaJICOeRRyLER1oL1W1fjDEBThfViE7QqjIsbCczi4bMAjVUGORYyFXGzsqxG2Wc4TFMJFI9YmrnPIIiwsVLbS+n2FYgefJy3RBcYRFVxSqwELRTVgRA7k5iYesGdg5VQTL2PG1vRkRJVXHD7//PVxwwQU47qyX4sR3fBU9fQPIz82gb2AoXsMCIHX2ooRFy7KdslmJC6376KUrxYNjGeyYtF+M/KI/y4oOGCpmJ8NrpA7mROQrdZGauGNFnquJz7rFQOTYwHsr5dS+TCrm+6G4HIuF/Dx+8q0v4qX/8M844dR69Fc6k0W1XB+QJnUWjx7MoTuV3Gkaxn133gLTMHBmmLC4KINhgONXUWExCNoXoRzR1JxWh1dYfP2xzjOH5epRnz4IAgfVsGCoMRyLbIhjsRaF6mxHq0I1I55lbmGrTZGrLGt1cY6QIvX6pmptguoafK0Ji4YtLFpGMkHYsmxxlE87TrucLSzHFRa7Vtr7nX4S2HwuAODK738V//AP/4CXPXszbn/PWqxd0Y+p2TxWDoQ4BIoT9r7dg759m+r/HygstifmNsFJtjs26PidQeDx+Qg3WKrbFmzdg8a66giLdv+WgxEehSp12de6w8JiqVzFh7/8Y/zDeWfhZc97du3zXCaNSlWx6/SxvONYjLiXRu+zRUWpK1GTbtn2KCpVhdZXbBPaFzly+Op9X8VYMfwd50jHT+gi8Z1xhUXCnOwvLHIBDvGcmAMDBgeLBwO36a2x6BW5WCF6XMSyrAZxJkhYrDkWnedDmNhXciY1RTkW3W5NnuXbqrEoeWLbeY6vxdDWhMU2ayy6HYsWLAykByLrYBLSXBqP3fIYXvayl2H9ievxjM8+A6uPWo35mXn0DSZzKy5HZF0GTGBqdCpy7IiwuWcz3nHSO3Bs37EAmu+RKNyu1FZxOxZVRcV3//27OO25p+Hcvzu39jkRGA9FHOqTDz2JwkIBzz3vuS2tv7+wHyxYbMxu7GzDKBRKIhIXb3rHO96BdDqNT33qU6hUKnjDG96ANWvW4Nvf/jZe97rXLUUbKU8RbttlR17cd2AeLzkhuZW9E/zuIfuF4Ie378PHX3F8rHWqmgELwQJaqximhbmyiqMGsoHLlGStwdXIMgzW96exd8aEKRfBOVGoQU480+lAqgkdixXV5Vh0hMWFsoI+xu6kijwL6cnrMCU8hqFzP9S8X9OC4rSbZQAh1LHoRKGG1lhs7LhwLIP5sgrNMGvi32JFQ+9AcP0YLeQ8uVF0A/mqhpxHfEuLThRqRPJkRuKh6CZ2ThaxoiuFnCSgJy1A1U2ceubz8JWvfAXTG1+Crfvs2ooLszPoG1zRsI1ZlcOad/wAJdlAT2SL63G1UcJiRdVhWkBWTPannWUYdKd47J22X4z8hMWirIPRbWHRsqxA18NQTkJB1lCSdazoQk1glHgWilK/T3meDYwYJfdkR2osKjLInMiffefLMAwd7/jgpxqWyWRzkKsVmKYJlmUhObU3Nw9mm2p/tsu2227A0cefhKFVawKXGVuooD8joj/b/gvEkQrti1COaIgj7nA6Fg9srf8/y4WKK5IThcqF9UWIkEgGFU0foZL1CIu6DMWI6Ju5XYptCosVxcexWBMWJ+2fZU+8G+cS4hjWPs4k100p2iIaqY8nddniZVynAcsDmUFgfm9NIHtBzzg+9/634pKXrgL7+K8AAFNzC1g52Bu8nfIMMHA0wLme/4PHAsN3OO3yrCuQKNQSgMY+Tlvwou3+DDqHzr0xsVCBpukQhID+TqoHKEw4tTEztnPRsgW7invQmThF/ZC6gLnd8WNpg2C5uhMRwKU/+CXm8kV84+J3NizWlbUH88pVBd1xo1DHHgD6NtqicAL+dOu92LRuFZ5xdDKnI6UR2hc5crjyiSuxbWIbfvPK3xyyfZ511Vn4wtlfwHkbzjtk+wzDr45iVD3AIIKcVUFRqAwYdIvdoVGbXmFxojzR8L0gRDsWvTUVg46LRKDGiUItqHZyQpNj0fUap5lag6uQZ/lAUTOOsOhX249neWimVo9CbfPZlebTtWhcZaOCofQQFtXFWAJXik+B28Lhk5/8JNKvSOMP+/4AAFiYXThihEXGYFApVVAulJELipl3wTAMnrnimfVtJHAsAvY193MVJ8EtFv7mx7/B+Mg4Pv/DzzeM66RzjrBYqaKrN9mkpaRsvXErevp7cPyp8cZtvYwWR7Equ6rJwUuhUA4tLY2YXnDBBdi9ezdKpRImJycxOjqKt7/97Z1uG+UpymFO7orkGzfswr6Z+kAUib/ssK4IAJgqhAt+RZ+41M2DdSGSYxnohhU4rkAci3pCx6LbSUkci3MVDYpmgGMZ8BwLrbyI/G3/jU0DzR2lhvqKHAsGzZGTxLHY5YhUZSUkCtWzbk7inRqV9QNfrGqQhOA/WboRHWMK2G5FAMh5nGhpgYeqm5H+ECLaPXJwEUNdEpTCPK773r/DVKvIrdyAj370ow2dswUfx+K4IkIYWIepYjxBmGMZpAQWixHRoGXHHZj1EQYVuYqb//z7wHX7MiLG83YHtzfjE4Uq62AMFXKljFIhuHj6QE6CZdXjPKu1up2N4rPAsYG/cym+czUWlYo90Fyan8KffnUl3vy+j6FvsPF6pDJZWJZVu4dTAofetID1/Z2NQTV0HffdcXOoWxEARvNVrOxO+V5HSh3aF6EsW0jcZ6uzxcv+M/0PKbd9uf7/DBdaZ64WhaqrwfEOcaJQWdbel8uxGCksdtSxqDY7FsUuAAxQChIWXcvXRNMEz66qXTsKgjMFRszZx5+krl/3asxPHMA7f3wfFtKbsGEoh08/p9gwecp2LPb6rs4aKqAUbCHNXaevf3P9/yVPX5A4FhO6+TRNx/9ce3PwDH9OtI89SFh1HDUVzcLYVMjvSarXvh9IbVBSl8gVhQrAdooGCYupbts92o5jkeUBlq05FncNj+HrP/s9Ln7nP2GTp55QznEJlMpVJwo1ol5neRZYPAh0rW4WxEOwLAt/uvVe/N25pwdH41JiQ/siRw7t1i9LSkkr4ev3f33Jtq9Z9nOkFDMm3E9kqwmLRjIRBIDv3/mgKFQA6JF6QqM2vcLiVGWq4Xued9yFIeMimufZqvlNckKzYzFMWCxrtthDIi6BZtFIM7SGY+dZvq0ai17HIlAXQYlzsd0oVLdQaokWVmZWAmgWZ91UShV87eNfA4qAkTXw+c9/Hhxff8YuzC6gf6i/rXZ1AtM0cf1vr7cTAlpA1mXAWXVybLKlbSR1LApc+ylKxLE4MzGDn3/n53j1W1+NTcdtaljmUDoWt960FWe88IxaeZqkTJQmsKVvS4dbRaFQkpJYWNy/fz9277YLXWcyGaxYYc9S3b17N4aHhzvaOMrTj3f89/34z9v2Luk+vnPTbrz2P+sz8WXNgAWrJnI8OLKArXs7M6g3tRjeMSwpOlSjcRDumJX2zCC+axAsy0CPcuJxfJNbMAp3vUOBY8GzDBYrGmTNhMDZ3VFVCe7suNfnnUhLd+QkAJQUu6Pe4wh4ZTXMsdi4blbksOgInYDtMqxqBjJBM9OBUGenm0knYpXUfiSkBNauZxkxOZwIsSPzFXD5EXz8zX+HJ+69FUZhtim+FQAW5mabhKx51d6GlSDmbkVXCo+PF6AZwQ0ksbp+jsNtt92Iyz72HkxP+Mf89GVFGJaFtMAi47N+yYlCBYCp8eDZpMRld3De7riSKFSJZ6Gq9XtKYBlwAQNaLGtHpZYi4omjsCwLhT0PoLzjTtz7vQ9iw5bj8Pevf2vTcumMPUAqV+w2P/foAZy5eQC9mc46Brc/fB+KhTzOPDdcWJzIy1jdm6pF4FKaoX0RyrKGuIcC6udE4q7hdziYehzYd0v93yxnu8gCHpAib0ehWrqKQCGEDN4xIVGogO2YI85HrQI5aszHHUuq2sKirLc2w63iF4XKsrbgRgTFUoiwyIaIpkHIefsnGZCUcgAs8Almpe+u9OCsrz6K3903hn0LBrD5+cDem4FC/Xk/NZfHygCXAKc6k4W8cZq9R9X/n/ecF04MFuRCuPXeR/EvH/satu8+4L8An7LPX5Ao7wx8y7qFA+MhkWypXttNSURB8rvICpDd/VshFR6Fqldb/z0GnHPE1ITFi7/+X1i7YgAfe8drmhbNZWxxuVSp2u7dKMfi2IP2z551iWZHPrpzPw5OzOD8F9L6iu1C+yKU5Qxx9A0XhmMt7xfN2apjEQBmq819mSDHImDX8JssB4s0HMM1OCG9sZycUzIlTFj0uviCxGTSzloUasg2S1oJDJgGsc+9vGVZtmPR5fTjmWDHYqwaiz6TSTjXM5llWOhWe+/RKb6xDiIRFoOYGpvCRa++CLf88Raok2pNcHWzXByLOx/dics+eBmeePCJltaXDduxCNhxqK0QJlb70YkoVFJj8adf+ynSuTTe/IE3Ny2TztYdi0vJ5MFJ7N+5v+UYVM3QMFOdwfH9rbkdKRRK50gsLL7lLW/B3Xff3fT5tm3b8Ja3vKUTbaI8jbnxySlc9n87oOjtzbCKQjMs56cJ3VOY7/N/fAJf+NMTDXGhrTJRCH8glxWjSVjc5HYsMgwM0wwVzBhOhKYlm03tFgYBWyzLV1XImgHBEQrDxMpqgzDJgGXsyEk3xG2WkTiIPBtaw1KVG6NXshKPgqzXHIv5ij1IRyIy/YgUYB0mHbG33yMakfqNUeORxLFY3XsfrvviO9HV04evXvknCIPrmxyquq6huLiAvoHBhs8XtOSDcS87cSX2TJdw/RPRndeedPOMtvlZe735Gf/1BxxBsCslQPCJKC0ptmMRQKA46d7OwQVHWNQMMAwgsCxU2etYDB4Ik/j2hUVVkWEaBmav+RJg6HjfJy8Fxze/0KYz9oButWK/AJ29ZRB/f+qaWgRtp9h26w3oGxjCsSedGrhMSdZRVHRs7M/Waj1SmqF9EcqyRnREIq3Fl/LyYRYW7/8Z0L0G48TkwHBOlGSAsCjwUHTA1LVgIcSIKSyyQt1dplURWWrXLSw6jsWi0pqw6OtYBGyBqTJvCz2hUajO3+wkDjfiWBQdZ4AjSvNaPPflrdsexRmfuRGMZWLbJ56FZx+VA455GQAL2P672nJTcwuBjkVOdtrgFRadY9u3yDSLbwxTj29NwMTMgvNz3n+BmI5FWQdGJsKExR5bhCT3BxkUb3IspprXJUhd9v1czQcvEwXDAQyDomuA7luffBfSqeZB4ZpjsSLbArsVJSzeb7exOzha3Y8/3Xovcpk0nv83Jydaj9IM7YscuXz0to/i2r3XHu5mtAXrDPUFufK8+LkSSeRm0hqLALBvcV/TZ2HC4kB6ADPVmeYv8vYPr7DoFS55IYZj0XMugtx3xB0Wp8ZiWS1D5MSG91q3aKQYCixYDfGlAisEirVxIjJTXPOzy31uWbBtOxbdDkzAvj7EFenliYeewHte+R5UyhV89/ffxeZnbfaN7VyYWR7C4ty0bSKYnw7oi0SgGEpNWJwOm+QUQitRqO3irrH4r5/4V+S6m5PJiGOxUmqORu4kW2/aCl7g8ZznP6el9Q+WDsKwDJw8QPsyFMrhJrGw+NBDD+Hss89u+vzMM8/Eww8/3Ik2UZ5GbLz4z7j0z80zhYjwt9QQgY3oUQVZw2Oji9AMsymiNIiHRhaw8eI/4559zS7HmZCoS4axRZeqRzzpcwleXM2xGLx/hhehqcmERa/Il5F4lBQdFc0AzzpCoRz8AlHR6usLHAuWZaBUm6NQGcZ2Akoc2yRmuvGKmFmJR1UzUHRGFBcq9vGlwqJQI84TYaogQ+TYJldfyhEWNSt81ndG4qAtjGP6t1/AMaeegW9eeQ02bDgKLAPMFBuPY3HefuFxR6EapoVFPblg9Tcb+zGYE/Gft+2tORP9kHh/x+HCrN2W+VmfFzbUnYa5FA+eaz7PZUWvRYpNTxwM3H9K4JAWOIwuOK4CzYDo3CNuF6wYci0BQBJYyKqeyNXppVKuR//0DQzhmac3P7uAumPRvbzgcw7aZettN+CMF5wHlg3e9vii/Xt0wuqlrWnwVIf2RSjLGhIT2cJAHIDD71g8eA+w4Zz6M5XlnNqBwY5FxbBgmSGCkNexGOTq4xqFxWrYbB/LAjQfYbHF5ErfGouALVLJi7aoVZ5urGfXEIUaIZr6QUQrIuo59w6vR0fXjU/N4eXv/DSedfxR2Pr2LLaIs/VtHXVWrS2lioxKVQkUFnnFaUOqebCvolmYKKFe/9JNC8Li1JwtLE7OLvgv4OdYdE8ai+1Y7LZ/lqYa1gMroNrgWAw5BtG5Jl4xOQksD1UzoLn6za980Zm+ixLHYrFctYXcKMfiwfuAnvWJ6yv+8ZZteNk5z4Ikth+r9nSH9kWOXP4y/Bdccuclh7sZbUFq7QU547z4CV21KNAWYmJHCiNNn4VFoQ6mB30FTPZ2Fjs/uhM8yzdEoS7ICw1xqyRyU1ODhdQmYVEPEBZJFGqMGotlvdx0XG7RiNSu9NZYDDqncSIy/aJQOaY+IZVhmIZz1QoZz/ORYRj0SD1NyxXzRXzsjR/DmqPW4HvXfA+bjtuErJCFrMsN4qZpmliYW0Df0OEXFhecSU7zQZOcIpB1GXAez1Njh8ix2GFh8SWv9k9QqjkWlzgKdetNW/HMM56JbFc2emEfhheHAQCnrji1c42iUCgtkXjklGEYFIvNs2gXFxdbyqi+4oorsHHjRqRSKZxxxhm49957Q5fP5/O48MILsXr1akiShGOPPRbXXXdd4v1Slg+/ezDY/bTUVD3C4rZ98zAsC0aCQpEPjuQBADc/2TzAMVdSA+vIEOfbTCm4U0GExcBaNAAYXmiImIyDu0ai3RYOJVlHRdVrQmGYY7HS5FhsXr6k6EjxHDiWhcizqGpG4HH41VgE6iLLQtl+CQhzkNk1FqOvm2ZY4DmmSTwjwmKYnmwYBtICC6FvDda+7vP4yJd/iHQ2C5ZhkJV4zJYaX06IsNjrEhZnigpMJK9pwzIMXnHSKjw6uog7dgcPcnWleF/H4cKcvc7CrP9AXE1YlHgIXPP6ZdUAo0c7FgGgLyNguijDMK0GF6zb1SqGiGuAfT2qWry6mUGQaFMAePk/viFwuXQ25yzfXkH0MMYO7MfBfbtxRkR9xbGFKlgGOJYKi6HQvghlWUNe/luIDgPQnpDRCXIrgTWn1f/NcrYwGCQsijxUA45YGBSF6vxesnEci5odu6pVUdVCHgJapbFNShFVnWlKoohLoGMx1WPXIDQUOwpVihAWEzsWmbo4FMOxaJp2f2fNygH86Qf/jv/7z8+jL8003jcn/IOz/XlMzdlRp4FRqErePu9EjPMwL/s4FoHWhMXZPIAQYZET7XvNLVD//FXAjZ+z/9/tWBwP+T1JOYOfNWGRRKFyjY5FIaSWMhF7K22UR2A5FCv1Pvob/u7cwLSGrqx9PkuVqu10tMzgwvWWBYw/aLsVxfjXYWp2Afc+ugt/dy6NQe0Ene6LALQ/Quk8cR2LfqIeqdfXSo3Fg8XmiahhwuKK9Arfz1mLhTajgWXYBseiaqqYl+vCEMuwEEQh1LHoFVnJcb3rlHfhzSfUYyGJiBOnxmJFqzSJPm6HY9VJr3DXyAsTFuM42XxrLLodi0znHYsA0OeagGRZFgzDQFdvF77woy/gG7/4Rs2NmOWzsGAhTyYuwRYgTcNcFo7Fhdn2hEW3Y7FlYTFhjUW/a54EQzegOaWKTv6bkwMnOmdyJMlp6YTFSqmCh7c+jDNf7D/RKg4HiwexIr0CvanezjWMQqG0RGJh8fnPfz4uu+yyhs6yYRi47LLLcM455yTa1tVXX40PfehD+OxnP4sHH3wQz3zmM/Gyl70M09P+A9+qquIlL3kJhoeH8Zvf/AY7d+7Ej370I6xduzbpYVAoAOp1/4gr6k5HsGlHzHCTr6pNUacEUj8tzNXIMQzMOI7FkHqIfnjdgzmJR0U1UFEM8E6NRW/NRDeyu8Yiy4JlANkjDpZkHSnBrt+YElgoWnPsLEFTGtcl52bccb0tVu3OeZePE49EexoxHYtBEDekHuBYVMpFfPLdb8Bfrv4vMAA2n3oWsul6B68rxWOhoja4CfNzzY7F0XzrsRJnbxlET1rA927ZE7hMTvJ3HBJBcT5IWHScslmR83XrlWPWWARskXK+bEfrVlQDohOX6xafRT788ZMWOFuMDl0qHLcDMcwlSByL1SUUFrfddgMEQcSzz3pB6HJj+Sr6syJ6052t73ikQfsilOWN8xzRnqLC4sbnAd2r6/+OiEIVOBaKDlghy9SjUJ0Z9aZWF+LccLz9rLFsYbGshcz2UUpN/y7rySfuECqy1lxLEADSfbYbUleB0mTdyQbYoqtzHDMk/t5I4FiU87ZARwYca8Kiv2OxLOv4x3+7FJ+/4ioAwHnPPQ1CthuQPKJgT/3v0dSMLYwFOxYXbFExYDb8XBX2dfEiJp9lTgTFyZkgx6InCjV/0K73OfGIff5rjkWEOxalIMeiNwo1TFh0xN52oolZHsVK/e8AF5KG0FBjkYtwLC7st++drjWB182P6267DwDwty/4m9jrUILpZF8EoP0RytIQV1gMcyUqLdSaHSs1T0QNFRaz/sIigUWjsAgABwuN4mWUsOitO0jOzerMajxnVT2SUWAcxyIXQ1jUK02ij1scJIKtu0aewAmB5ztOjUVv/UOgLizuemhXR2ospn2ej32SLQrqqo4vfuCL+MGlPwAAnPbc0yCm6seXFez+wVy1PjGHiHjLQVgkbTmcwmLSKNR2hUV3tCkb0heRUhIYhllSx+IDdz4ATdVw1ovPankbE+UJHN17dAdbRaFQWiVxHt+Xv/xlPP/5z8dxxx2H5z3veQCAO+64A4VCATfffHOibX3jG9/AO9/5Trz1rW8FAPzgBz/An//8Z/z0pz/FxRdf3LT8T3/6U8zPz+Puu++GINgP+40bNyY9BAqlhtexeMfuzsWPcQyDQtWuE+hXK812LCq+wqJlmWAYFiwbXTuQ4USoThSqEjYA58JbPzLnuO0qqg6BbXaXNa/vEhY5BgzDQJWrcL8qLFY1SAIHlmUg8RxkzYBhWhB8ysZ5HYvEzTlBHIsVDQzsWpBeiEsxbo3FIEiNRb9TqOUn8at/vxRacR6ve/tFSA9z6M+KtXUAoDsloFjVGyJ08/P24HCvq8bi2ELrnTSeZfGyE1fi1/ePYmV3CoO55sGkrMSDb8Gx2Oc4FtMi57t+RTVqwmKUY3EgJ+GJiQJkzUBVMyDwPlGoEVGjacG+Z9qpc1gtR0fJAYdGWLznthvwzNPPRjobPhA7mq9iZXeqKaqX0gjti1CeErQwEAfg8NdY7D3KjqRkGABWpGORYRhoJmO7EGNHoeq2C87r7iOORcsE9CrKSki/RvUKiwWUW4xBBYCyrAF+AzdEWDQUoDTdLKg5dSEn5ksYWskBSQbzKgt2fUXW6U/wEsCw4H1qE40uGnjl527A7mkZb3v1Sxu/7Fptuyp9mHJEiWDH4oLtzuP8B3znZfg7FhNGcAIxolA5EYBVj8Pd8Sf7JxGmXVGoIxNhjkVHWCx6HIucgIp7Mp4UcgxEQG4nmpjhUKrGuykzzmS1UkUGGKfGohlw/489aP/sWZeoOX+69V6cccpxWBEgMlOS0cm+CED7I5TDS1DNPyB5FCrLsJgsTzZ9HiYs9kl94FkeuifRgEScwoItLLpe9w+WDmIDu6H2b1ESw4VFz8Qf4mAUPM8/znkmE4ExtMaiVm4QDb3L14RFT43Fsub/3ilXogUnv/NIolDH941j/eb17TsWfVIJBtOD0As6/vDVP2Buzxw+/vWP+66bc/oHC0r9WU9cgv1D/W21qxPUolBbrLEoGzLgnN7psdZqLB5qx2JcByLDMEhn00vqWLz7xruxYcsGrN3Y2iQYwzQwXZnGSze8NHphCoWy5CR2LJ5wwgl49NFH8drXvhbT09MoFot405vehB07duCkk06KvR1VVfHAAw/gvPPOqzeGZXHeeedh69atvutce+21OOuss3DhhRdi5cqVOOmkk/DFL34xNGpEURQUCoWG/ygUglsgmyrI2Ddb9hVVWiErcSjIGlTdxMaL/4yLf/to0/dAvCjUUGGxlShUr2MxxaOi6qiotmPR1HWYIb9XFc3tWPSvyViQNUi8LVKmBA6KbgTWBvQKiyLPQuRYTBbs41qoqMgEOOkIRpvCokSiUD2OxbvuuhOTV34Ipq7j8l9ch9POPAevOGkVTlzTA8lVJ7AnLaCoaFD0+rlZnJtFrrsHoljvCI62ISwCwLnHrkBG4jBZ8H/pyIgceJ8oU1JbcX7OfyCuK8XjuJU5rOlJ+8Z0VVQdjDMwNx3hWBzKiVisaKhqtguWRKG671OBD/89SwkcZC1evG0QlUoyYTHu8kkpl4p49P6tOOMF50UuO5GvYk1PGlkqLIZC+yKUpwS6HCwMhNFO9GI7nPxaIDNYqzNIItAshous92aAAWMZCIxCNTzCoqnVxTQ3nFivsacrKKlhjkXP75G8iILa+jMjOAq11xZAq4u26OuNnnQGJGvzihJFoc7bjkUi3DEMIGQgGI0Djg888ADO+NEiZosK7vrF13D+i85o3E5P8ODM1HwBHMdioNc/YptXFmyHn89A5Y8eVHH7KOvvLm3FsTgTR1gEoDoz65+41vnCua5ao2MxsI/AibY4TkRBMmDOiZDdA8Si/zkBYLsnWQGotDbwCKApCjUMjuOQSUv1GotAcGTw6P1AdgjIhTt83Ciqhuvvegh/90Iag9opOtUXAQ5Nf4T2RShhhImHYaKjH11CF6YqzU4ur4DnhmEY9Iq9TZ+LkvNccG5rd+3AifJE07JhwmJTjUXTXpbUUnS3BagLeEGORcuyfKNQo2osiqzYFMtKXIhxnGx+7+ruKFQG7ddYFDkRrGe42Jwwsffze7E4vohv/uqbeNErX+S7LnEsuqNQibB4RDgW9bpjcW56LvSeC9xGwhqLnXQsRpHOpFEtLY2waJomtt28ra0Y1PHSODRTw0mDyZ6zFAplaWhp5HLNmjX44he/2NaOZ2dnYRgGVq5c2fD5ypUrsWPHDt919u3bh5tvvhkXXHABrrvuOuzZswfvfe97oWkaPvvZz/quc9lll+Fzn/tcW22lHLmUXc69rXvtgby1fSGxSAnISTzmKyoUZ6Tpz49N4Ev/eErte4GzY0LnQqbXkyjUMG2FT2WghbgL/fDWWOySeFRVA1XNBM+x0NTm7e145EEAaex8/CFkn1OPCuFJ/TxZhnved0nWkeJZcCwDiWdRkLXAKFRVae64dKd5zBQVWJaFhbIa6KQj6BHnKYqgKNSvfvlLEAaPwms/9W2s22jHLbzipNUwTQusq1Pfmxawa6rYEH2bn59piEEFbEdahtVRMVsTjkSexXnHr8Q1j4z7fp8ROQie2E/LspCPcCyyDIMPnncsNKP5JKq6Cc2wIDovQPOz01BVpUEwdTOYk6AaJqYLCqqaUROf1f/P3nuHS27W1+NHdfrtvWy1d917N7hgWgAnJKRA4lADgUAwLYApITj8IARCJyGYTpJvQgebaht377r3smtvvb1OH3Xp98crzUga1bn37hqj8zx+1ndG5R2NRvroc95zjs1el2c8GsquzyGpa7NCjapAZFgWfCq9YRmL995xEzRVxXmXBOcrVgQFdVnDlsFsqFVsgqQWSfA7AFUiBFlcrIXIWAtYHuBa9lrWLc4ADSpAsQgAqkET8tFXsWjWW3bFIuVFLHJNK1RDEVBzKRb3HpzBDgDX3/EAXrDJZaEkVVCRDAy2O4RFQkPysUJt5vXNE6KqZ7J9zACapZUWzXaO7HSV2HHaSVY+B0ohxytFkY1++tOfxkQXg59+6EUY2bm1fTvdk+2vmVgoVjHY1+1rCc5IZYA/1lOx+I5fSTh2c7/3hoPUfn5jWSkBCCAWTVIbSoPkWU7tdr5vUywKsoSVUgUDvd0+4ysQkt4wHIpFwVQsaqDBcCEnC58jlqNe52oU0IzDCjUMhVyWWKHSZu3oR1JP30PUijHyFW+5+xHUGgIuv/Tc8IUTRMZ61CLAkalHklqkc5z+3dPBUAzuveLeoz2UDUNQjmJcxWKBL2C+Pt+mmgtSLAJAV6oLy6JTJc7xZB3D7CO0EYu2+SF8ig9UF7YRiz6KRWtiVTNj0RU7U1klpPytv7gV+il6G+kjiRIYkPuGZSObolvLcDTnSyzGJZwsuDMW12qFChDFpmS0xvPAjx8AnabxZ//6Zzjh9BN81ytw5EtxEItLRaTSKWRy69NrWwvWmrEoa3KTWASApbml2Oq7uFaoXva3cdCoRycWs/nshikWn3zoSRSXi7jg+Rd0vI0DlQMAgNOHTg9ZMkGCBEcCkTrbDz/8ME466STQNI2HH344cNlTTjkl8P21QNd1DA0N4atf/SoYhsGZZ56JmZkZfOpTn/Jt5l111VV417ve1fy7UqlgctL/4TvB7xfsyr07nl7BRE8GhRSLury2GV4AUQHOlkXURP8GU5ZnUAwgFmkqXLHIpbNQVCWW/thNLOZSLERVR0NSwdIUFA8F5PLiPICtWF6cd1qh0sQqzW2dWhEV8CwNhiIZi0s1PbJiESAKwKJJzK7WZWR5FoyHEs+CpVi87uFZ3PA4mSFJ0+SxgKYogCL/PjnnPTuXpQnRq+oUDEOHVCEPNd/+7n/jnE/eikyhx7E87SI5uzMcapLqsKMtry47bFBlVcdyVcIor6Ehd65Ie8EJw/j1Y/OepFuWZ9vGVq9WoCgyxia3+GYsAoQk9nDtbRLwlCaj0NWDaqWEpblZjG/2aG4C6DMtWqeLDWKvy9DELtd2jqS5ECtUnoG0RsViVCtUAMhksxAanedfBuGum6/HlmOPw8j4psDlZk3r3xNHfZqkv+dIapEERw33fA2YfxR46WeAgLzWNmiSv+LIdx2FKPG8FGJhMIwWG7gOsGbEa6BBRyAWaWj+IdVtikXV216T4ZqWqoYiQFCc21tYKWEHgJnF1XYrVLGCstg5sVgXZU/VXpNYrMwCQhHgPKxQAShWjRPnOxeLAJch1pcW+BygyDAMA9Ua+YzXXHMNmE/+Bpken4ZcgCXmwmoVw/3+CgFalwlBFaAk8USQ2s8DqqphuVjB9k2j/hmLdsXinl+078ds0KYzWdTkBg7NLAYTi2KZnHtNYpFvZiwqVAqMV3akHXweECtApifCJ/QAFY9YzGfTxArVIpq9mvmaAsw/Ahzz/PZzMQDX3Xw3JkcHcfKOLZHXSdCOZ0otAsSvR5JapHOougoVaydq3HBnBh5NBOUoWiTYVJVkGhqG4amas1DgC5iuTbcrCkMyYfvSfdhf3u94jeXM67TZfrCsUtNMGot153Mtn+KhyP69FzexqJi1iZvwtKxQLbLOTVbWK2Qy6sriCtJqGl28M+dYFmVkQO7XguZhhcpwTbWkG1GsUL1gV13SFA29E8cMj21KhgR5lYz1nVe/E3M3zaFruCtwvSyXBQUKZancfK24XETvYG/geXOkUFwuYmzzGBZmFqDruu/EKz9ImgRKp1DoLqBarmJhZiE2sRiXQF4rsRhHgZjOpjcsY3H3jbtR6C7gxDNP7Hgbh6uH0Zfuw2B2MHzhBAkSbDgidbZPO+00zM/PY2hoCKeddhooivJs9lIUFWgFZsfAwAAYhsHCgtMiYWFhASMjI57rjI6OguM4MDaly/HHH4/5+XnIsgyeby9UUqkUUqm1ycYTPHtRl0hhagC4c98ydg4XHCrGtcDKSJsv+xcNWZ5FWfAvfmkQMs6PkAMANpUl2XUxJn+1WaGaY12pyxjI81BDFJANWQNDU9B0AwxDQdfarVNrkmqSXDCtUHWoPgWu4qFY7M3yWKpJTWIxwzFgzEK02HAeM0PXoOksdAP45h0HsWe+iv4cbxJvRMloAOa/Bo4bKcBL/JjmGMh1GcvXfh5zs4+j/uk3oru7G1SEZlt3loOiGY7vs7S67FAszpdFGACG0jpm15ADleYYvO7CrSg25DYVp2Wxa4dFJm7beSLuuf23oQ+Dbli/E2gyhsYmUK2UsDg340ss9ufINXdqtQFR0cExpmJRthOLURSL+ppUqI16dAViJpvbkIxFTdNw92034g/+9IrQZWdLIhiawo7heM3a3xcktUiCo4b9NwMLjwOlg0DftujrqZK/gs8PYon8a9lMRr0I1peBL58LvOLrwPZL4u3TB9ZdQgMFTlcDx6KBBh1khaqrZIuhVqgcoAhNxaIQVJJJ1ba/i4IG9HTWtGqIijcxa6naytOEXHUr9cxmYdMKVY+hWBRKpg2pXbGYh1acwet+KuIne6ax/xOr6OvrA7iAz9U1Rv71+I4IsdgTPI5UIT6Z3TxHozUvl1bLMAwDp+7cih9dfyckWUGKd9VXVuNVFYAnfgb0bQdk2/esitAMYGK4H8vlBg7PLeHMk471+UzdhKTXpBaxyHIQJItY5JH2Ircd28iT/aeDm6i+oBnUYuQo5bMZ1OxWqKpHsbj4OPlMXWPevyEPGIaBa2+6C5dfes4zoqn7u4yNqEWAI1OPJLVIgiAEqRKt9yy1YF2uIx+gWi+YE0IOlA84Xg9TLPZn2hXyTcWi6apjkYN5Po/FRjuxGJix6Jr4I+kSGIppuy5av2nrdxxEVoqqiDTjJH1EUWwRi2bGol3VyNFck9R0Y70Ui2u1QgUARmcw+91ZlG4rYemPlzA4MohTJ07Flq4tgetRFIU0m3YQi6vLq88IG1RRENGoNXDmc8/E7KFZVEtVdPfFm9Qr60SxODg2iGq5isXZ+DmLcTMW3edYXMRRIGZymQ0jFnfduAvnPu/cVnZqB5irzWF79/bm3zVlY+JsEiRIEA2RiMUDBw5gcHCw+f/rAZ7nceaZZ+LGG2/Ey1/+cgBk1t2NN96It73tbZ7rXHjhhfif//kfx6ySvXv3YnR01LORlyBBGCzl3lJVwnJNxmXHZ/D0wvrcmCyybqHqT9LlUgyqon/XjAJp1iiaf9OGSWWgynIsYlFUnNvLNYlFCSPd6dDMRkHWwDM0BF0DS9FQpfbla5KKngwHhqaQ4RjIquYbNeWlWOzL8di3VIOkaig2FGR4uqncfGSm7FjW0FRoOmfaxhrYNpjDFeduBmcqHK3nfftjf8Ejw44Wijj83x+GvDKFY172ZuRyOYhKtKK8K00eehZs2YfllSVsO2ZH8+/pElHEjWQNYI2xJmdu9i7M8x6fq2jaoG7beQJuv+HnaNRryOWjk1c1k1ikVBmDw6PY9+SjWJib8l2+kGbB0hSmSgKxQrUyFkWx2agOUyxauZwBnHoo4igW0xtELD758P0oF1dx3sXBNqgAMFNqoD/HoyuT5Ct6IalFEmwYPncKcMHbgHPe5P2+YKqr4s7+thSLcQgbywaVNW/qK08BhWH/5ZvrrRCbzps+Bmx9brxx+sFSLFo2pwEEkk4xoKEHW6HaSRBN8bFC5cmyhg6oYpti0QGpSo6tOS5DqqIk6ABc2/35ewClDvzRvwcqOuu+DhPmOhbpy7mJRbcVaoxmnlgiOXm2huCyxOPl35zBPdMKvvyyPPq6IliOZvoAJgWg/TtaKFaxbeuW4PVjqg/JOiaxqERTVyyskN/Rqcdtw4+uvxOLKyVMjrpmm1vEYmMZOHALcOyLgNkHWu+rEhSdxkBPAZl0CoeCmnmZbmBlyVQstjIWBbOZJ1N8uMUpnyeqx05VRTSDaj0OsehWLHqck9P3kvO+J9gFwY7Hnz6MgzMLeNklSb7iWrERtQiQ1CMJjj6iEIsWlsXlQGKxJ9UDoKVwtBCmWBxMtyuQrHPZIhYtwqyL78KK6Myk5nguOGPRdU2VNRm0R41mWbhydPD2AGIhm2KdhL1d4SgopmKRtmUsMnyberI5RlmJNSnBwnpnLNYqNTzxmSdQfLSIsZePYXCEfDd/e+rfRlo/zaRRkStNkrm4XHxGEItF0zFh+/Hbcdsvb8Pq0mp8YlGTQes0+BSP3sFeLEy354mGIa4VaoaN0ezzQKyMxVwmlnVqVCzOLuLpx57Gq97yqo63YRgGFhoLuGjiIsdrCRIkOHqI1OnYvHkzKIqCoij46Ec/Cl3XsXnzZs//4uBd73oXrrnmGnz729/GE088gbe85S2o1+t43eteBwB49atfjauuuqq5/Fve8hasrq7iyiuvxN69e/Hzn/8cH//4x/HWt7411n4TJLBgWXoeWK6DpSls6YtuKRSGXFOx6F805FNsk7Sxw2p78RS5ScpqELGYdSjBosBNllljFRWd2IGGbK8uq80MOJahIHkoDmuiCp5lTCtUBrJqBCgWyf4sUoyhKfRleVREFaKsodSQkWaZpsXnspm92ISmQNOdE/VzPINCmkMhzaErQ/7rtv3ntgt9+olHseerb4daK2Lkr/4VfTvOQhx0ZUhjcdFGLLoVizNFAd0ZFvkg1cEakec9iEVTsbj9uBMdf0eF9TuhNBlcKoW+gSEszk77Lk9TFLozHObLIgRFA2cRiyYBTcMIzVjMcAx0A5DVzh+K4hCFmWwuFhEZFbtv/g26e/tw3ClnhC47tSpguCvlSQ4nSGqRBBuI0iHgF+/1f18sAzCAMNtEN1Q5PiEhmMQiZzYQ/DLW/DB9L3B4V7x1fGBxcKpBtcg+H+hgwCCAfHQTiZrsrbaiebKsoYNSJQTMvSJWqDZrKEOqoiJ5NBdmHwAO7QIqMwEbIxmLgc0JoUT+bVMsuqxQ43xnYpl8BvNYPLl/Cud9/C7sXVJw02uy+JvT6BYpFgSKIgS0R50VZoUKgCgW46JJLEZrPlm5iqcet9XxtwNWxuX+m8l5MLDTScyrImSdAkVR2DQ6GEwspnsAqUbUiqpJ1lFMS7EI3tuO145UAZDrnROLsa1QM6jWG61xeTX6Z+4FusZbFr0RcO1NdyGbSeHSc0+NvE4Cb2xULQIk9UiCo4s4xGJR9LGzNsEzPDJspp1YpEOIxVw7sciaz7a62Q+xSL/uVDeKUhGGbepwqGLRlTuoaIrDQrS5nKlsjEIsSqrUlrFoJ42s7Eo7+cjTPDRD81ctxlSzWWO1QFN0mzozDuYOz+Ftf/w2VJ+uYsu7t6Dv/L7Y20izaVRtjgPFpWcGsWjlKm4/gSjeVhfj5ywqutK05h0eH8b8zHzsbcT9jtdMLMYgCjPZjVEs7r5xN2iGxjkXdz7JaaGxAEmTcNLASes4sgQJEqwFsTxvOI7DD3/4w3Xb+V/8xV/g05/+NP7xH/8Rp512Gh588EH86le/aoaWHz58GHNzLV/2yclJ/PrXv8Y999yDU045BW9/+9tx5ZVX4v3vf/+6jSnB7xcaNlJvc38W/fn1s4fJcgxoyqlgc6OQ9iYWLVBmQSgFEIssnw4teO1QNB2qSwaW41vNPcYnY9GOukQUi9byXorFuqyBZ0m2XppjIGvhGYs7R0hji6Up9OQ4aLqBpZqMsqAgZbNCrYiq45gYmgJV1wOzKMOgKjIyfaMYefW/gR/eHr6CC91NxSI5FoZhoFpadRCLU0UBw13pJim7EejOtlvMFFeWwfEpjG8mFn5BOYtesKxQKfPhZ2h0HItzwQ3avhyPlZoEQdbA0qYVqkkgs3R4TJlllbqWvNNGnIzFXH5DFIu7b7ke5zz3ModNlRcMw8BcWcRYT6ZJ9CfwRlKLJDjiEMtk5kqIhVc7jPgZi5ZikY+gUvPb5x1fgK8laQxQ5jQn1aBNYtH/eqxTDBhiOu6zgOK88PsqFjmyrKEDmgRBDVIs1gC7SsCPWFQaQG2hZYfpA8MwINrrKXdNYSkW3YSO2wo1KrGoKYS04lrNIlXVMNSTxV1/k8MFk5YdZsTm05aLgd4tbQrZhdVKuBVqOuR9L1jEohqt+bSwXAIAnLLTJBa9chat5uz+W4GezUCPK/9NlaDo5LzcNDqIw4GKxR5CPqsiOYY0B1A0GmbNqoALJxbTXUTt2ml9STOoxrAfK+QypmLRHJfX9WP6XqBrItY14rqb78YLLjgd6VSiYlsvrHctAiT1SIKjiyBiUXbd11bFcDKmm+/GbG3W8RoXEi8ykmm3/W1aoZr1gEUO9qR6oOoqVqXWWMKIRffnUHSlmadoh7UPlmbb8hXtMGgDqqE6SB9VUaHZJsaKmgiaoh37sY5DQ/UmezrJWVxPK1Rd15Er5HDB1Rcgf2Jn9WiKSaEitSyaistF9A3GJyjXG0VzUtMxxx8DoEU0xoGsyaA1UmsNjw1jcSa+FeqRViwKNQGpdLReZzafjWWdGhV33ngnTjnnFOS7O33GQTOD9fSh09drWAkSJFgjYne3X/7yl+MnP/nJug3gbW97Gw4dOgRJknDXXXfh3HPPbb53880341vf+pZj+fPPPx+7d++GKIrYt28fPvCBD4Q2bBMk8IOdtNjUl0U+xcJ02cBKfQ0heABAAYU0h+Waf5FeSLOt/Dr3ygAk089fCrJC5dOhRKAdXtaediKDpammgtAO3WxuUBSFhqw2bUY5hoIoOotiWdUhqzrSJoGW4mhoutG0nnVDUxWoigK7jq83S5ofs6UGKqKKDEdUbxYatu/O0FToBnwVkX4wDAO//fmPocgyjjvlDJz/9i+CLQzE2oaFbIoQyUvm961rKgzDQI+NWJwtCRjrzoBjNoZY5FkaGS/F4soS+gYG0T9IGhNxFYtNK1TzYWxobAILAYpFAOjP8SjWFQhmHqddschRRpMkvu/OWzwJwIxJLLrzQONAaMQgFjfACnV+5jAOPvUkzr0k3Aa1LCgQFA1bB3Ibdn48m5DUIgmOKMQKiGIxLrGI+MSisEqUVWyHE516twH7fgss7e1sfRuszKEWsRhArtAsGCrACtVNJLqtUS2wPKCpgCqDNjS4Y6g1qx6iAEhlh2KRUurexKJcJ+Rifdl//CYa9hnkbpWaUCLEV5tikXxXzRInasaiaNq6s2l8/1e3oSGIOGnHFtzxqVdia69TpRcJx78UOPVVDqISAKoNCcMDPb6rGRRNbEPjoqlYjEgsrhTR05XH5MggKIryVixaNnlyFRg8jpCDdqiiSSxS2Dw+FKxYTHWR80wsk2PIEGJRNJvEMrjmOXjzXQ9jtVT13obcWJNisdaQ2rMkfUCsUAV/xaJUBZafAgojrezPECwXy9j14JOJDeoGYL1rESCpRxIcPQQSi7qzL1KSSqHb6051Y64+53gtzAo1y2fbXmtaoVrEokbqqr40Ians+4irWJR1bytUu2LRK/NQN2sRgyVjsuffuZeXVMlB+gEt5abgMzEniHSifVq4dsUiBQp6B/et2399O2qVGsa3jONLP/4S+iY7JwIzbMahWCytlJ4xikWaoTE4NohsPhubWFQ1FZqhgdJIjTw8MYyFmfhWqF7n1aP3PuqroFyPjMVsvv335YWNUCwKDQH333E/zr/s/DVt53DlMLr4Lozlx9ZpZAkSJFgrYssijj32WFx99dW44447cOaZZyKXc1pHvv3tb1+3wSVIsNGwk3pj3RnwbCvHr+LuZnWAQppFseG/nRzPQdH8G3WGWdTKin9hSHNpyLJHM8QH7nxFAOAYGjxDQ9Z0sAwF2WOWXHFlGeg+Fj39g1iVNXCWFSpNQxady1tElKXMS5vhzN4kKoHkylnsMa1F9y/VoelGG2HWkFX05azMBXKM5SBlgwuKLOOLH7sKv/zhf4P//DfwnOe/BFnbPgwHzRkOmqKQT7FYqUnoynDQVPJZewcGm+MtCQo292fBrW4McZTlGXB0+7iLy4vo7R9ErtAFjk9hdXkp1nbrUssKFUhhaHQcTz/xaOA6A4UUHpktg6NpsDQFwHAoFimKgqaq+MDfvgpvft/V+OMr/saxvkUsNmQVvbkOmvkAhHodLMtBVcN/y5lsFpVi/BmLQdh98/VgWBZnXXhp6LKzJXJsThjtWtcxPFuR1CLPEqgS8LEh4IX/H8k4fCbCMEgzP90DxLwvAPAn2vzQWCV5d37Zb2Ek0+bzgYengF1fan/vn7qBM14N/OEXIw3Fmsuj6AjNWDRoFixl+C+ja04iUfexQrUyFk17Tbdicc5sAA32dgFitUXA6gooXUXFqy8qm5NMSoeATed6LNBCXRDR3/xQrs8ilgip6Fa5Na1Qzb99rM3aIJSg6Qbe86278bmfPYBvfvydeO2fvACUW4nWKLYr9/zg0ZQFEGiFqrF5sJ0Q2Zx53Y3YvJxfKmK4vwcsy2Cwrxvzyx73XNbWdB7Y4SCOAQCKANmgAArYPDaEn96423+HlrK0Om8qFlmAokwrVNpULJJz8A//7qP4hze8Ah/+u790biNVIERxRFVmG2ga1YaAQi7TnCwYhHw2E5yxOPsgAAPonoic3frLW++Frut46RqsxxJ4I6lFEjyb4Fbz2eEmHaMQi33pPuwp7nG8FmaF6gWWM61QTTLPIgf70+RuvSC2SB0+xaO4UgTr0+bUXDWZoiltpJ99HxzDQRTb667VxVWABbJ9WRRRRJr1JxZFVWyzW7UIVsFnYo4oiIDPofIar/v1uIpFXdfxrc9+C9/9/Hfx1o+8FX/6hj8FRVGeNrFRkWEzWGiQ78YwDCiy8owgFotLRfT09YBhGPQN9sUmFi2VKWW6JwyPD2NxbtGRdRsFXsTi1W+9Gpdefine8qG3tL23HhmLmVymqdgMQia3/sTiA3c8AEVScP7z10YsztZmsa172zqNKkGCBOuB2HeKr3/96+jp6cF9992H++67z/EeRVFJAZ3gdwp2omtzH2nGPDZb8bXsjIvuDIdyELGYCplRqikAGAiKhuliAxO97Q0jmk9BrUdXLPqpBrM8A1nQwdI0JA/F4sriPNAN5AsFTItqU1XFMhREFylYM0ORUiahmOZox+tecG/DsvR8arHm2IaFuZLYOh7mzMWoeXyVUhH//M6/waP33433fvwLeM7zXwIAyNgsYQW/aj4AhTSHkqCgkOGgWsRiP1FAzpTI5zthrAtPrS9/BQA4Y1MvGJrytFktriyhd2AIFEWhb2CwIytUlqZAgzzQDY9NYGluJrCAHsinUJc0cIwOjqGgqkqTtGcpAwxNQWjUoes6Du9vV9akebJdv/M1CoRGHZlsDtVKKXTZTGb9FYt33XIDTjnrfOTy4dlVs2UBDE3h2OEOcq5+D5HUIs8SWJl1j//kmUssynXTArTDuqATxSKfb7F6ccFlgc0XAE/81Pv9+78DvOzz4X7UaCkWFZ0KtUIFzYKlg4hFd8ainxUqT5Y1m23uOV5T88vAMIi1p1RtWWcqpG6p+ikWAWB1v//4TTQcjR63YrFIiCa3cpW1rFCtjMVoxGJ1aRqv+l8Bv9r3IL704bfgtX9iqtvdisjKNDB2SqRt+iFIsahyebCxbX4RWTFnYWGlhBGzqTgy0OutWKQ5ABSQGwT6tnoMVoSi0wAobBodwtJqGQ1BRDbjMZa0OVGntkjOJ9MKVRAlABnIFPlb0zRU6wKe2DfVvg0re1Iox/qsTVAMqvUG8tkMlouV0MXbFYuuc2nmPkKmd09EHsJ1N9+Ns046FqNDR9+C7tmGpBZJ8GxCELHofi8Ksdif7kdJLDVrCQBtWYRRwKXI/UlTNIBzZizSFI1FsfVcy6d4KLLiSywqLkcBRVc8FYvWPliK9SSAlmaWgM1Aro9MJrCTPu7sPEmXHGpCoHUcfK1QOyAW3RmLbhLVD5Io4V/e9S+4+bqb8ab3vwmveP0rmu91QgRbyLAZ1BVSfxlmfdQ7ePSJxdXlVfSZ98NOiEXRnOBnWaEOjQ9BkRSUlkvN7UaBV8ZivVrHoacPeS6fdk+0iolGnRCLUbARisU7b7gTE1snMLkt4kQ5DxiGgYXGAs4ZTSZKJUjwTEJsYvHAgQMbMY4ECTxx1Y8ewXJNwjWvPmtDtm+30+wyiSyLVKwGkGBR0ZPhcGDZn6zIh2Wp6SoABrv2reDK/30A17/zImwZcDacaC7dtJiMAi8rVICQaiVBAUOjTYEIAMvzc8CxAEBBkDXkUywu2TGIbQM5yAedy1dEUrSnWMr8lzQPg/IkxYazsGZpGrkUg4Mr5PhleWcD8uByHWdvJcVbU7EYoP60UKuUceVfvQyVUhH/+o3v4+Qzz2u+l7GRlw2DgxJgQeuFrgyLiqBC142WYtG0Qp0tiaAo4LiRLjwVLPbrCCeNd2PnSMHTRnN1eRHHHk+akr0DQyitxFMs1mTVzDwk3+fQ6CQURUZpZRl9g0Oe6/SbalJFM8AxNCShVZyylAGaQpPImz6wr219S+UapOgNQ6NeQyYXkVjM5WNlMkbZ90N334G/efeHIy0/UxQwkOfRlelMnfn7hqQWSXDEYOXqHSlisbFCVGcR1UhtkOvACX8MHLglYKF4n0XREKpYBMMFKxZVl0LRzwrVUiyaCjG3YnFqbhEYBliGAaRKS7FoLt9mhaprLZVnMfy6Ubfy7bysX8UykB9qz9pss0IN/84FQcBz/vgNOHhYxc8/8Vq86I8ub73pVixWgjONo2AkQCWgsbnObH5jnqPzy8UmwTky0NvMXHRukyKE5eDOdhtUwGaFShSLADA1t4yd2zyItpSpWKwvkHOAZqFpBiSZfD+K2bW17G/3HPA4ztZ3IZVbJHYcUAyqdaJYjIJCLotqXWj9NlRXo3/6XqB7U4vwDIEsK/jVbffh3a/7kzijThARSS2S4NkELyvUFXEFQDshZ8/O88NAdgA6dEfJEZax6AWHFSrXUhNSoFDgClgWWzbnfJpYoWbgfc1VXfdnRVPAeExysisWvTIWLWKRTpP7oINY9FIsuq1QmRAr1IYI+DiUu0nK5uuMi1g0NM/PZoeqqHjXK9+FfY/vw0f/86O46A8ucrzfCRFsIcflmsSpRSw+IzIWl4pN5WTvYC+KXnnPAbDIUkuxODJOckEXZhdiEYtuu1vDMCDUBUx5TXICwNCM73cfBY1aA9lcRCvUfGZdMxYNw8DuG3fjeX/0vDVtZ0VYQUNt4KSBk9ZpZAkSJFgPxCIWd+/ejWuvvRayLOOyyy7Di1/84o0aV4KjgC/c+BT+5IxxT1Xc0cL/u/swAGCxImKoK3yWTlmwCKZohJA9Y9FNXMlqh3kqNvRkeVRF/1nOOY88PDt0VQGQQllQoGgGdu9fbScWWT4WseiXWZcylW405a1YXF6ch2XS2JA19GQ5/MXZk2BoCnfuMWdupXJoGHKTQEy7FIuWpaYXRKEBwPkd92Q4zBRJUeM+VgdWWiSQYSoWpQiKxVyhCy98+V/g4hf9IcY2bXG8Z1csqhSHckNGPh29gOtOc5gpCdB0A5qmIJsrIJUmDxpTxQb6cnzTvnUj4JfNV1pZblqy9g0MdaRY5Fka1tEdGh0HACzMTfsSi/bPyTG0w+qWpYl1rEUsTh1sJxYzfIiaNwKEeg3ZXLRw8Ew2B3EdFYv377oViiLjvIvD8xUBYM9CFZN9GeRDrgkJklokwRGGpao0DKJ4yw8GLt4GqQ5EuwwRNFZIdl2nikUA6BoBhk8EFh4LzkUMgaUykJuKxeCMRZ4B4Jd1rCtOIkpTvIkpiibb8FEsHp5bAk4z/5BrrUw+xU4s2o6dbJswUp4h2w5Qa9YFkRBIutpOkmoyIZrcagFTsRjHCjWTyeA1L7sQL2os4MQLz3C+yTvtFFFeG7FI0xQGev1ttlU22xmxGBMLKyWcdOxmAIRY3Dc1573gc95NyFvO43lEaZDzERQ2jZHf4qHZRW9ikc8DoIDqopmxyEKQVZQlAzcdUKHvII3Fmmn/v/fgDAzDcKhrmgSeWCEqyrigGNQaYmRikSgWRf+MxZl7gYGdvpa3btx+/2Oo1BpJvuIGIKlFEjzb4EUsPrD4AIB2xWJFDicWh7PDba+l6PhEVdMKVdGBjNPOtMAXsCKtNP/meC4wY9FNkMq67E0smgQkT/PeisVZMklXAdmeF7FImbWIV8ZiqGLRI5bGgi+x6KFYDMtbZTkWL3zFC3Hc1cdh5yk7295PUWsjFmVNhqIpzbzHZ4IV6urSKia2kpqhb7APh58+HGt9iwy2MhaHxkkvZGF6AcefdnykbRiG0a5sFSUYhoH5qXnIkgw+1d4zCssoDYLYEGNlLCqyAkVWwEXMiA7C3kf2YmVxZc35ivsrxHnk1IFT1zymBAkSrB8iTzX9wQ9+gAsvvBCf//zn8bWvfQ0vfelL8elPf3ojx5bgCOMz1+/Fq74akFVyFBHVDvGpBdJAmi+HZBCZaMitWWtUJ9lJNhgeCoDeLIea7D9zPRtihcqbVI5Fcj464yQpKQAUy0OR165Y5E1Syk+xWK+29i0oGliGBk1RoCmqRRoxHBSKa1qeWrmIlmKxKvk329wZiwDQneGbGZWFlLOoObzSWr6VsehPBv/yh/+DG6/7ISiKwqve+PY2UhEAMpyz6N+7GE/B1p3lUBVV6AagqSq6TRtUAJguChjtSoerVAHohoHN77sOjaETY+3fC4ZhoLi81FRO9g4MoRgzY7EqqkixdLPPPTxGivHFuWnfdZzEotMu126FChCbXbdakKUpMGtprANo1OvIxCAW19MKdffNv8Gmbcd6nmduLFRELFYlnLmpF4V0QiwGIalFEhxx2CcHheUbesFGbEXi+BqrAJtpI92qtehZygCIahEAlp6Mt54NTWJRAwAjkDCjrGaHR2OSvO6yPtVVbyvUZrAjOdZtisX5ljIBkhexSCauOJYBCFFVX2xmN/qhIUqtnD8v9SWXARh3xqJlhWr+HXCc/u///g//+Z//CQB41589ByeOpMg27XArFquzgWMOw0B3PrC5qDGZdhVmXPgRyjaQjEXTCnXQxwoVAEZOAobaG5wAAMVULFLAxPAAKIrC4TmfyVI0TUjaxjJRtNIsGpICWQOe950G6l3HAACxHjX/nV1ccW7DsqWVYv7+bGOoNkQUIqoE8rkMBFGCZpjnsL2ZX50HqnNAYbQ9e9IH1950N8aG+nH6CdvjjjxBAJJaJMGzEUrAvcut9ItCLA5l2yefdmSFytusUNFSEwJAF9/VVFU2jAb4FB9ILLo/h6qrYDzcE54z9hwAhDD0IhYXZ8h9RwXZXpZtXeMtwoiiTWJRaycWQxWLgn+9ybprEBN2YpEC1STzvLDrhl343jXfAwD80V//kSepCKzNCjXHkklSVbkKQzfApTjkCrmQtTYedsVi31DnGYu0Tur0QncBmVwGi7PRJ24rsgLdVTdZ1qO6rmP2kHfdt5bvw8pYjAJruSCCOw5237gbua4cTj775DVt53DlMLJsFlu6t6zLuBIkSLA+iEwsfuITn8Ab3/hGlMtlFItFfOxjH8PHP/7xjRxbgqOA9VDpPRNgZSeurpJC0yvDDfBX78WBZfm4Wm8vYrsznGcj0Wp5FdIcMpx/s6dl8Um+l6eXatBt+Y80ZSoWZf8C2g0/ktbK5mNoqk2xqGnOdURFA0dTMOtlSDYikkKLQLSI00gZi0J7s68vRwpkjqHaFGxzFbFlVRpALGqahms+fTU+84/vwp5HHvTdv32cFu45sArd/OzzU+F2R71ZHjVJhWpaofb0EWLRMAzMlgSM9WSQi0AsWh9LGjwhdNkwVMslqKrSJBY7yVismYpFC/mubmSyOSzO+hOLHEM3STKWph1kNQMDFAWHQnDapVqkKAopLp7NmhuimbEYBZlsDqLQaCvyO4Gu67jr1hsiqxUfmi6BoSlcdvwwaHptZOqzHUktkuCIo2mF2iHkGiTzHv20T6OgbX9cO7FYrwcTYm3oPybe8h6wrkbN/GLVfxITbSne/MhXXXUqBTXF2wq1+b5JLLr6nOWqbQKIXG2RgOZ+q7LRbOaRZUxiMT8M1JebBKQf6g2xRVZ6Eou5dsWiZYVq1WdGe61jGAauvvpqvPKVr8Tu3bthGAbJbOSy7USlW41WWwJ0HbKi4LH9Piq/AAz3Bdtmqmw28LvQozDiIfaviqJipVRxWKH6EotBUCVTsQhwHIuxoT4cCmrmpbrIcVYlgGYh2Ce4medOzdY423PAVddwWQBUcL5oEGhihZrPRiMCreWaUQ12K9QZM8OvZzzStgzDwLU33YWXXXKOU4WZYM1IapEEv2uwqxGXF5Y9l5H16Eq/qhw+2YJneOQ550SZFBufWGTMCcq6aQtgVyx2p7pRVsgEsCqqkYhF2tYCVXRvK9Tzxs7DF5/3RTA045+xiBax6FAsStGJRdGnZgoiFv3IJbsVKkVR0DzuW4Zh4Ptf+z4++IYP4tF7Hw197vX6vt7x5+/Ab3/228D1ACDHO4nFvoG+Nd2LDL1zBw47VpdXm1mPfYN9KK+WoSrRYwssMtjKWKQoCkNjQ5ifno+8DS97XXum4dR+bzvUtSgWY2Usmss14j57+ODOG+7EORef01Qfd4qZ2gy2dm9NapoECZ5hiNy13bNnD97znvc0Z7y++93vRrVaxeJivAZ1ggRHApYV58oqmYFULnrPRGoEEItRSdbJPtIA2rvQXmB3++Sl2e+FXgq2ofIT5H/MIl4xxzJdFBwKSJYGKJaDHEOxWPXJObRUhQ4FoonlBWczVJA1cAzVvKlLooBUJtf8uyaqoCkgZaog01yEjEWhvdnXlyXFU5ZnwbgIl+Wa1CRJLStUtwWuUK/j6ne8AT/49lfwd1d9DG95/9W++wfQRvLef7gEWSGF3+pCeEO4K81B1Q3UJZUoFvsImVcRVTRkDVsHcg6Czg+M2WSMGroehKKZp9g3QGaN9g4MobiyFItAq0sqeIZuqnopisLw2AQWAohFgBCtACEZ7YpFhjLA2KxQAb+cxc6JRcMw0GjUIisW09mcaUuy9jyBvY8+iNLKMs69JCKxOFXGlv4sNvU/c2yon6lIapEERxyWFWqnkGvNJlMlygO6WCbk1RpdFNYDzXu8dSsKUGzSrEUs+jT0NNmlWFQCLUktEtOuWCxVXC4Cct3TCtVTsVgYJd9lSC5UQ5RaWXpehJrbphRojkHzUSyKoogrrrgCH/nIR/Cxj30M3/jGN8ixFYpmnqarqUmzUClb/SisAhqxyJpe9rfX98NwbzCxqLHBE3AcZK4fQojFpVUybivrcWSgF/WGiFo95j23mbHYylkMJBbTBfKbkhumYrH9/KzZcoTachYpOrLtqCcoOlbGYj5LlqtajLruIhbT3UB+NNK29h6Ywb7Dc4kN6gYgqUUS/C7Abl9q5cIBLeLLjSDFomZoULXWdT4KsQgQ4s+OTjLirFqkqVi03W96073QTIcnDVo0YpFyEYtBk5zQTgKpitpUcilQwFKsQ0UYRbFoWcL6KRbdNplAS6np3pYF+7FlKKaNWFQVFZ+56jP496v/Ha988yvxT//xT6CD6jB4W6EeeuoQnn7s6cD1ADRJ5apcha7ra7ZBjUP++UGoCxAbYjPr0fq3uBJ9opOlWLQyFgFgZGIECzMLkbfhRRzbMw39chbXkrEo1IToGYtmLSLErdE8sDy/jL2P7F2zDSoALDQWsLPXx9EiQYIERw2Ru7aNRgNdXa18Dp7nkU6nUavFswpMkOBIoOFjP2qRhZYyLchi1W8bblj9qwPLjTYFpB+xaIeX9eEmYR8OffJl6OUtGzIy7vmyiHKjVfQzFEAxHNQYikVR9iaUrM/B0BQU1wPH3NQhx9+Cojny/CRRAJ9tNa6qkooMx4BhyEZZU93ombFo7thLsdhrqkFTLA2WcTZZV2syRNkiFr0Vi1/6+AfwwO7bcPWXvo0/vuJvQmc3pW3EIqvLeHqxhpo5Zi+rVje6MuS7XK3L0FQFPaYV6nSRfLaTxvwzjrygq2svoIumOrHHlrGoaxoqpei2H03Fou3wDY6OY3EuOPfJUvNyDO0g7BiKNH6t7zyTzeHwgafa1k8HqHnDoMgSNFVFOldA/0veASkkUjibI43V9bBD3X3z9Sh09eDE084OXbYhq3hqsYpTJ3rQn+s8x+L3BUktkuCIY82KxZjXFEMHUkffKgpA85ovKibB5mdzCoDmzOuXn6rRyli07sN+VqgWzO3YjQ4OTLuaNnK9RQIqAnRQkHTXo43V/OwaJaqzkn+WDk1TJGMxyAo15TFZxVQJGICZEem8d7///e/Hj370I3zve9/DBz/4wVYt0lgB2Gy7AhKAShPlWkVlyTlokroNj1nuYQhXLAafbyulDm1AbbDUicP9PQBaBGNs1aImmcQiwabRIRyeDbB3T3UTG1PFtEIV2xvndbPBl89m8KSXSsBtTRsHFI1aQ4hshWoRkDWLWLQ3+qfuAbonvcltD1x7011Ip3hcdn6SRbTeSGqRBGGwSCDVQ8F+pGDP7xNC1PpAu2KxJjnPZ/v2akq0c91NLK5FaaSZz/12wqwv1dd63yQWlYDolTZiUSPEYBDcRKXd8lKlVIdSEGhlLFr7kTUZHOVcxrKEFbV2gimVSnlaUFoTjt3H1IJdyWhlLNrx3S98F7/6/q/w3k+/F2+66k2hpKJ9nG5Uy+F1gUUs1pQaDMN4xuQrAq2sR4tYXF2M3hexVKa0rd4cGhuKZYXqpYK1vvNMLoPD+7xr1bUoFoWGEDlj0VrOTnZ2irtuugs0TeOcS9c2yakkllCVqzhhYO2OXgkSJFhfxNIif+1rX0M+33q4UlUV3/rWtzAw0MoRe/vb375+o0uQoEN4ElgADq6QBt9wF2nYBFmh1mPapNYkFSt1CTm+9bPqikAs5j2IRY4nRQNlFviKRpp6qm7gqcVWIcdQFMCwkKUw2qQFQgpSeN7OIcxXxKZKzyIvaardCnVuulXcaAagGwDHOonFdMEqcilUBQUpjmlm5FEUBZ6lPclau+oRrt6NpXhTdaMtb68qqSia9rOWYlGyFIxmIf26K6/Cn77mzdi6I1qQtp3I4g0Jc2UBi1VyLGQxXGnSlSbf92pdhmpTLM6VRbA0hWOGg5t7bmiq/4NRVBRXiN2NXbEIAMXlpaZVaxjqkmYqFlsYHpvA4w/eF7hef558fywDSLbjx1AGaJqC0CCvbT/upDYrVGBtxKKV2ch0DyM/+nwsrdwduLxlmbouxOIt1+Ps5z4PDBv+q3xstgLdAC49biiSmtXCaJ4GoKM7vTa72N9FJLVIgiMKe8ZiR+uH5xC1gXtmqJeta35LsehPLDIWGReasWhZmEcjFgWlpRrcP9WyAaUMjRB4bEuxKBsssmlX08VqjHaZ9pEr+4Htl3ruMpfm0RBsikUvcP6KRTIwpkksapoGhmHwoQ99CFdccQXOOuss53pCEeDS/sSiVkVZ5dEllJrHYz2JxTrXjx89oeC0E9pzsOwwIoWDBmPBVAOMmE28kcEWsXjM5rHoG7KsUM2acPP4EHY/FJAjmukhZHIq70ss1uqkzjvjhO3tikUgMpHnBc2gIclKbMViTTC/Z0txpOvA3APA5PmRx3PdzXfjsvNORTYTzYY1QTwktUiCIFjXTbtq8EjDbrNpVyz6wW13erjqJDfs22uE5BVb6Ev3hS8UEV6Kxf5sf/P/dUoPVSwqutKuWAyqRdBOAs0dbtUiCpQ2a1JLjUbRFKATxWLWVdexDAuaoj0Vi6lsCqIgogvOCcmD2UH8yTF/gvPGzvMcp13NRlN0k4A1zD7Sn7/pz3H2xWfjpLNOCvy8dmRock+iDFcfJgqxyNuIRd1o2o8eTRTNyUxuxWKcnEXrO6O01jEZHh/GzdfdHHkbnopFUx147EnH+lqhpphUZFLfjVgZi+uoWLzzhjtx4pknorvXmxCPiv3l/QCAUweSyVIJEjzTEJlY3LRpE6655hrHayMjI/jud7/b/JuiqKSA/h3CN+84gL8+bzNY5tnXmG7Immcj5OlFciMeLKRgGAbEAMViPcC20w8PT5Vx/vZWgcsxNDIcE6iMtMgoO1jODCk3LU4VW8bhI9OtJidDAzrDQVFiKBYVQhJdsnMIA3m+SexZdqusR8bi3HRLsWjGG4C3nTeyKILPtB6uK6KKFEs77EtTLONrPcvyKU/FoqXm1A0DLENBNQvjFEtDUnUcXDXXsSkWZx64GU/8/Bt41ck/wdDwCAaGRsIPigl7xiKvS2gYBTxwuGx+xvDCylKolhoyNK2VsVisyyikWU/b2yCsR95fcXkRqXSmSZz1mcrF1eXFyIRrXVIxkE85LHyHRidwyy9/FrjeYJ40Z3mWQdV2/Fii64DQqCOdyWDz9h144uH729ZfC7Eo1MkDNJuJRuam14lYXJybwb4nH8VfvOFtkZZ/cKqEoUIKJ4/HK7aP6Sbnane682P0u4ikFvk9wKFdwOBOILt+zag1QeggB84OuYMGwFoUUhsA0bp1BygWGS4CsUjThCABWgpGP5gNTMFWiu235dewhln3WPk/qgBJZ5BJuYhF6/h3jQGggNX2SSwWsinOqVj0QsbjWm1fniaKxV/96ld45zvfieuvvx4TExMOsqEJoUjyND1s2FQmDShAReVaijvAmREYEX7EosLm8YrvCXj6dZOxtxkX80vkdzTUR45fU7G4FPP3pYrNOhQgVqjTC8tNErcN6R6iWlV7Ab6Ahsfxs6xQzzzxGPz4hl3t2+DjTQqzw3rOiJuxWHUrFlf3kfOga7SpkA1CsVzF7fc/hi9/+O/iDzpBKJJaJEEYLLtKN1l3JGFXw3kp49xwj3Wq5iQ37IpFWZd98wHtGEiTe5/dRrVT6Kbrkl2xaG3fep03awAD3hNivKxQeS5YBeYmFmcPt+JRVKjIM86aTRZlcHzrOi1rsqfKkKVZSB4TttLZtG/G4qWbvCdGAU41G03RUHQFsw/N4rbP3Ia//t+/xviW8VikIgBkGJNYFJ3EYq0cXtum2TQYikFdqa+LFep6wCIQLUKxp78HFEV1RCzaFYvDE8Oolqto1BqRVIFeVreWOnDHyTvw6+//GoZhtCl8e9O9vva5QdBUDZIoHfGMRUmUcP/t9+PV73j1mrYDAIcqh5BiUji299g1bytBggTri8hd7oMHD27gMBIcaTy9WMVHr30cDxwu4QuvOv1oD2fd0VBUqB4Bz08tkCIox7MQFd2n5CQIygP0w10HVhzEIkDsMYOIRS+7VMuaokUstgi1J+eq2Gr2JxgK0CmmzbrUDTvJKsgaOJYGTTntSKx9sDQNWTRn2vGkqJibOoRUOuNYjrNZk4qiAD7bBR1E4VAVVaQ5xpFzlGJpiIoGXSdqNQCQDAagWfDpjGe2nTW+DMeAoVvEYleaw1JNwoFlQgIZmgrDMPDT7/w77v7av2HsjMuQzsZXfNgzFjldBs/QuH+qRMYaIXsvy5Nx1mUNMIBu0wq1LCjIpVikuCNP4hdXltDbP9A8lr39LWIxKuqyijE27VQsjk6gWimhUa8h65NjONqdAU2R47JkO37WYRAadaSzOUxs2Y4brv0BdF132LK4My/jwCII2Uy0Br1FvIprJBbvuvUG0AyDsy68JHRZXTfwyEwZ52zpw0AhsUGNgqQW+T3AN18M5AaBfwjPbzkiaERvNnjCj1hc2gsURoC0h0V2unMiYyPQFHkFKBZpLgVogKFI3umQuqVYNGsrXSOE2jl/Cxze1a7C8rBC3Xd4DnlTfcXo5lhsVqiiziKbTgGwTbaSqmS/XJbk05Wc1u525NKcqVi0mnPuKpEi1prtH962CIMv/vxhvONbX8dLXvISdHcHTBoRS0B+2JtYNFUCZZUnFq41YgPbkWIxJGMRTLxJT51gYaWE3u48eLPZ2tOVB8+x8a1QVQmKTsPS024aHYSqaphbKmJixIO8TXeTfEW5AaR70Gi0n8O1hogUz+HEYzfjc9/5KQRRQiZtuyen1kIskkZ4VCvUlmJRJMS7RSzOmA4RPZsibedXt90HTdPx0iRfcUOQ1CIJwmCp4KIQehsFh8JQDSYIDMNwKAEBYKbqVHC7icRVMbw+Gsyaz53SGmspAKrpfGS3+OxOdYMGDR06dEp3EHpe0AytjVj0yyy04M5YnD00i3SO1CIKlDZ7SlEQkbLdQyRd8szG42jO+R2hAU3UkGJTvsRiEOyWrDRF48ANB/DQfzyEnuN60NUTL47FDQrxFYsAIRcbSoMoFp8BxGJxuQiaoVHoIfd1lmPR3deNYoxJTqImgqEY0IaNWBwbBgAszCxg686t4dsIUCzuOHkHfvC1H6C8WkaPaR9v4U+P/VPoXjb9IbC2HTljMbc+isUH7nwAoiCuS77iTG0GW7q2eGaidkK2JkiQYP3w7JOqJYgEKzcuao7g7xoEWWuSUHbsXWgVQWGfPS6xyNIUHp2tQHMpJb0UiXYE5TCqigyGahFqg/kUDq7WoZoz/hkaMGgGshJMLEq27EHBVCy6Z0BZVqgMQxSL6c2nYuLvvo2KKGN++hAGhkcBtBSLdqWrLIngs62mYEVUwLN0k0AELGJRdxC+K1oaFJ8Gn856KhYtWMSihWyKAUtTTWtbXRGx8ovP4mdf+zcc95LX4YzXfqRJhMZBykVkbe7P4sl5sg8pghUqRVEOVWKPaYVaFhQU0qxD5blW3Pab63D3bTeGLldcWWranwJAKp1BrtDVzF6MgoZsZWq2voOhUWIrtzg37bve8aMFvOcFOzHanYFsU8EyFDkHxEYdmWwOk1u3QxIFLM/POtbP8Gu3QmXT0YhFixxtNNaWj7P75t/g5DPORaG7J3TZfcs1NGQNFxzTH1vNmiDBsxpC6WiPoIWNylj88tnA573sfCggtbYG0HpDsG78qtxSHLrAmhmLsuBzDdVUouaz7iOaqVjcdjFw6QeAvMuOUzMtL23YPzWPyVGyHGNlQVnEoiajodLtikWpCrBpQt7lBoHqHPkcHsiledTtVqiuJitSBW+1mNlU1HQDb722ird/4y684x3vwE9+8hMUCgGklFAiiksvK1RTJVBRzf1VSIPXS3EXhrCMxSOBhZVSU6UIkHppZLAX88sxm82aBLv5xeYxcj4c9ss2SncDMIDGMkCznorPWkNAPpvBzq0TMAwDTx+adW2j89+jqFrEYrSa1FquWhdMW11zvNP3EhI62x+wdgvX3nQXTj9huzfZmiBBgg2HRVath1KvU9ib7WEZi14E6Fx9zvG3u3kfhVgcypoRHKI/cZNiUqHkHgCoZm/GrlikKApZhpAlVsYigPZ5QdY2DNVhfarqamjGopcV6tA4+Vwq1DYrVFmUHcSirMmen4+lWMdxX8ISpCkJmWzGM2MxDNY4DMPAQ996CA988QHsfOFOnPWhs5pE2nohimIRANJMGqqhwoA/sdhQG5h86+SaSPgH7nwA1//4+tDliktF9A30OSYy9w32xVIsiorY9n0OTxBiMWrOolfGotAQwLAMth+/HQAwta/dDpVjOKTY+JORLTVk1IzFVDoFmqbXTCzuunEXxjaNYfOxm9e0HQBYaCxgR++ONW8nQYIE64+EWEzgi3JDCbQKfSZDNwDFo/llzyf0s+W0EJdYHOlOY/9SrWVfZKInJGexyyNj0YKiyGBoCopJ+o10pzFbEiGbjQqGomBQDFQluNFkt3UVTJKIdkkKrH3wDAVZFMB0DYJOZVGsK5jzIBbtJJkkiuAsZRgF1EwrVNZOLHIMJFWD1qYkpcCn0hADiLsUR4O1FYAUgL4cj5kiKXbU0hwae+7EK9/7KRz/0jd0HAyfdikKjxnKY8rcRxQrVKBl3woA3aYVakVU0JXmYmXoheG6730HP/jWV0KXW11ebKoULfQNDEVWLBogvxX32IfGJgAAC7P+xCJFUdgxUkB3hoNot0K1KRYzmRwmthwDAJhy5Sxm+M6Pl2ASi3QqvJlXFhQwpjp3LVaoQqOOB3bfjnMveUGk5R+aKiPLM3jOMYPhCydIkODoYK0kpxwwKUVYBdy27XzOmdn3DEAz53D+UeBfJoFiu+qP48nsfVnwuYbqrkxFQzOtUH3u16oEWXfeA/ZPz2NylNxXWYtY5FoWkw2VRjbjarjINTPHkCHkZX0ZcGVNMYaGFEshm+bQEG1WqG3EYt6bWDSXX6gb+M4DDfzn35yNf/u3f/O25mx+fgOQKsQK1cMSVjEbpWXVHEuJ3GvXM2PxSGJ+qYjhfmdTcWSgtwPFogzFRjhvMonFQ77EokkKynWAYjyPHyEW09i5ldQ1bTmLayD6BXMiZ1Ri0Tp/aw2BnLOWYnH6HqB7MpJNsqpq+OVt9+FliVoxQYKjBkuhdjStUCWbNXmYYtErM3G+Me9cxrWNKMSiZVValltRLj2pHlw4dmHoum5oZu/GTiwCQJYl90sdeotY9IHbClXV1VBS08sK1SIWQRFi1L18ylaLKHq7qhEwrVBt39EyliFMCUhlUp5WmWGw9qFVNTz1i6dw3GuOw8XvuBj0OvYfLMRRLFqw7EfdWFAW0H12N1bUldDt+cXEXP/j6/Gdz30ndP3VpdW2rMe+wT6sLsYgFrV2YrF/qB80Q2NheiHSNjytUOsCMtkMxreMg6IoHN5/2GPNztCokd9uVCtUiqKQyXVGcFswDAO7b9yN8y47r+PenIWqVEVJKuH4/mgxPgkSJDiySIjFBL449erf4MSP/PpoD6NjuBWLmm7g4EqrIA4jFuNmLI50pVFsKI59AEBPNphYLAQoGhXZJBbNImq8J4OyoKAqWcQiYARlFJmwf1ZB0cAxlEMBCNiJRRqSJIIxm4RCo45ycRX9ZlahbNmyOohFAWy6NQOqKqlEsWgrItIsDVHVm2pLCxRFmYrFduLOWjbNtjfnBvI8Dh86CMPQweb7Mf7mr+OE574k9FgEgaVpUGiNb+dwofl5oygWAadCtcck9Kqiiq51ViwCwLSLiPNCaWXZoVgEgN6BQRSXlyLtQ9UMaLrRRiz2D42AZhgszs34rOmEJAjQaisQ9t+Hbpacj5YV6sj4JFiWw9QBp/VhlutcxWcpDylb09kLNUnFR372GH76+GpzTJ3iwbvugCJLOO/iiMTidAk7hgsY7kpsUBM8Q/GbDwNzDx3tURxdrFWx6NGsC0Qq76lgO5poKhZrc4SoO3h72zIsT65jiuinWDQVipTtb5oB/JoNqgRJAxjzvqmqGg7NLmLTKLmvMs2MxVaTpK7AW7HIpAipWRghyjWXcmOn9AAAU7HYkFrkoeZqCPN5p+2pianlOhTNwFiBxoH3TeBNl25tJ4zdUARAkx3jd3x8U7FY01gAFFAhKrqOFIu9a1fAqmpwzeyVa27HwkrRoVgEgJGBvs4yFo3WOdOVz6KnK4/Dcz41jZ0UpP2IRRH5XAYDvV3o7c5jz0HXhKk1WKFa9bdlcRoGmqaRy6ZRa4jk96GrxBZ48TFy/nLhaoM7H3gcpUotIRYTJDiKsOz6ZD3+ZJD1gp208spDdESlWLlxtr7CYsM5YcO9jSAVogXWtNq225cyFOPYz8PLD+Ng5WDothSZ3P/clq05hrgm6VSLWPS7J3kRi3RIL0USJdC2Z/i5w3NN60sAoVaoiqZ4WqGyNNs8ppImoUpXIR4WiWKxAyvU2koNuqyD7WLxJ1//E2y+fPOaCR3ffVVqviSfHXbS1U+xKBrRP2u94v+cPnt4tnmO+KG4XGwjOHsHe+MpFlWxTeXKsAwGRwexMBuNWPSzQs3kMkilUxieGPZULHYKKysxKrEIAJlspklIdoJ9T+zD4uziutigHqgcAACcNnjamreVIEGC9UdCLCYIhKYbv7N2qarmLHZmikJT6QeEW6E2ZJIHGBWj3YTAuPegszDpybbPUJNUvancKwQpFmUZLNOyQh3pIvuYq5GxMzSgd0QselihmseGpinIogg2TYr05XnSYBkccSoWUzayTxJFMKlWs6MmquAZGjaRIdIcA1nVPF3U2GyXJ3HXMGd6e2UTKocfwh2fegNqD/0Ghq6CyXZDUcML3DDY97RtsGXvGiVjEWhZ21I0jXQmC90wUJNU9GR5h31sVCiy/wPp0vxsKBFGFItOK6w4ikXLRtdNijIMg8HhUSwGKBYd2xEFGIqExe9/BJt6yG9CMK1QGZbF2KYtbUTpWqxQreNCscHE4k8fnEFNUlGXdaKcXQOxuPvm32B88zZMbj0mdNmlqoS5sogzN/ei1+MakSDBMwJ3fgH45h8c7VEcXYjl8GWCoAq+9qGe4J95xGLDuvFr5v1odX/bMlyKXGv77voX4AdvaN+IrjgVim4FoxuqBFGjmkTh9MIyVFXDpEUsWs1avtUkqclwZuMBgFghdqMUDRRGiXKt7pwVn9MqAIBsikNDlDwVhGRfubY8wtvvewxnvO6T+NitpIE7UODJZwsjFi3COoRY1AyKEFs1YkknSDI0LZ6byGBvNEvwIBQrwbZn8yvBv5P55SKGB3ocr8VWLOoaoKuQNWf9uml0MECxaMu4pM3v1wVLsUhRFHZumcCeA+tPLEZVLAKEhCSKRZb85uYfJSR39zgchbUPrr3pbgwP9OKsk47teNwJEiRYGyziQXFPUDmCkNRgxWJVbqnOLILLTpgsN5ad29Oc18+SVFqPYUbOR2taoerOe2CeJfc4HTr4dHzFohfpZ4fd2rRarqJWqWFoojVpN82k25e3FIuUqVikgxWLjy8/DoMyIE4RUjIusbj3kb248o+uxML3CbGV7cl2lMUXFYZhBJJ8FjK2GsetFLQg6dHVmZVSxfc9XdMxd3jO933AVCwOeCgWYxCLkiY58iwtDI8NY2EmomLRxwrVIv4mt01iav/6EYtxMxYBQkJaFqqdYPeNu5HJZXDqeV6xD/FwqHIIHM3huL7j1rytBAkSrD8SYjHB7wRKjfhFueIiBZ9eclo2RFEsetmp+iGfYtGVZnH/4ZLjdS/F4nRRwEPTpAkTlMGoKjJYmmrmEvbneTA0hfk6GTtDAXqEn3HdRqKKpmKx3QqV7IOmSMYiZ1pILs+RomZgiBCLFndnJ/skUQBrs5ysSyo4hgZjVyxyDCSlXbEIAHyuC6JH4WJ97hzvbOTN7vopbvzcO8GPHYfciZcAhgGaauVErgWMTbGY5VkM5cmDgCpLoZazANCdJWNlWfJvXVKhG8BAoTNVWqUc3HSbOdTe4LWg6zpKq8ttVqi9/UORMxYlU6WQ8lCNDo1NRFYsiqIAzlS0cCZJaWUsAsDktmPbFIsZbg3EYr0OPpWGCv9tHF5t4OY9S6BAzrVMNodGvTNi0TAM7L7l+shqxYenS6Ap4LLjBh1ZpFEhSuSBRFOPXsMiwe8J3HaQv2+Qotk9+UIRie1nVHDZNvLqaEOQbRmLAFA80LYMb881nn+kfSOa6iTsdI0osvygChDVlgJx/xSxZLOIRdZqRNmaVhXJQDbjmkwiVYlVqZWxCACrzkksKXO2fC7NoR7UzOOyDtL3u/dVcdlrr8IJ28bx9nPNpiHFECI5rKEnmPd2PphYBEDIsXqrwVuK0MxzDNvj/h0XKwHNPADYczC4mbewXMJwf4/jtdjEotmAlQ1n3bt5bMg/Y5FNt74zhkVDlJDinXV3rSE2FYXHbZvAk/vdxGLnxKzlfhKHWCzkMiRjkWbJ72TmXvL/3ZsirX/dzXfjpRef7ciQ2igoZo2ohChaEyT4fYNllfhMViwuCq3rpkXuWUpLwzCwKjnJFjsByNP8uhCLbrIyCF4ZiwDQxRFlukEZoVaomq45iUVDbX5m3zGKUpNYtIirphUq0JZ5J4otxaJBGTBgeBJRHM01P/8jy48ABiBOiUhn07EsKIv3FnHln16JwZFB9L+I5PDSNL2hxCIQzQ7VsqmlQKHQ7T1JR9Sjf9ZyMXgSU5h9aHGp2E4sDsXMWNTaFYsAMDw+jMWZiP0VQQKXcp4TlhUqAGzavmlDFItRMxYBk1hcQ8binTfcibMvOhscH0zcR8F0bRqThUnP3xEAaGYNIgdMyE+QIMHGIdITR6VSifxfggQbgbIQv3kuufIhn1qoIcXS4BjSxA8jFgVZa7NTDcPWgRz2LTlndXe7MhbtGYOqpiOb8i9mZTNj0VJfMjSF4UIKK4LR/FszwkkJS/kHtBSLtEuxeN62vuY27QrEpbkZZLI55LrIrG/Zi1iUhGZGHUCIzDTrVEWmOdqh1LSDTecgCu0zKU8Z78aLThjG6Zt6AACapmH1hq/iqR9/Hhe87FUYfMU/gusZgWEYYGm6aee6FjCUc3xb+m1qiGq4cqUnQx5oaLMxXBHJQ9BQvjNisRpCLE4d8LdDrVVK0FTV0wp1NaIValOx6JHPMDQ6EZix6NiOICCdyaH7uVc07WWFRgOZLDnPJrdsb/ss6TUQi416DdlcDpLPKWEYBv77rkPoz/M4abwbiqYjnc11bIX61OMPY3VpAedFzFd8cKqELf05bBnorGH5xOOPAwBWIhLEzwYktUiCIw5VAlQxWFkXBIomZEgsYjHjabd5NFG36iVLsViZI0ShDVbGoi90N7GohhCLIkTVcBCLFEVhfIg0zRhDJqSRjYStSHq7YlG2WaHmTeuyFeeEHAbk82XTPOpBzTwuA9AsDMPAh34r4tX/t4i/fNkluP4rH0B/1vxsNAMYKkhCcQCs7E4fa0sHsZjpaxGRCFcPbgRWS8ENxD2H5n3fk2UFq+VqmxXq8EAPFlZKkezUAJDfI+DIWARCFIsU1VIc0iwagtSWw1mrE8UiAOzcShSLDhs9vnPFYk1UwXMs+BjW7vlsmigWKYYofafvBbomnOpLHzx9aBZP7p/C5ZceGRvUWTOXai5GU/Z3HUktkiAKLGLxmZKx6KUKXBZaE1YsRaNFmCw1ltosR+3bS7NplKU1OjoAeGTJYyKSDyybSzexWGDJNVqH3iIxfG7BqtFZxmIgsejKWLQrHA3a8FwGcCoWn1h9AmktDUM2kM5EJxaXfr6E/Z/fj3MvPRef/d5nweRIXUWDbjtO641IxKJZ41AU5WvLKhvRyaBqSC0SRMYZhuFthTrQC6EuRCbRJE3yPGeGxociKxZFQUQ6ncboFaMog/yOHIrF7ZOYPTwLVVmfyZ1C7cgqFleXVvHkg0/i/Oev3QYVABbqC9jRu8P3/ZVF4kRy+On1y6VMkCBBdER6yunp6Ynszx3XnidBgo1CRXQW8k8t1jBYSGGxQgq4UCtURYtNVO0YLjSViBbcxOLUqpNAcxN8diiyDI6hIdhI0PHeDO4tm7MKKSCKW6tTsaijO8O17fcvz9mEF5wwjN4sD1kSkbEpFkcnNoMy7csUnagDecZmhSq0iEUDFBTNAO+yLyVWqDo0D3swNluAVG5XvtE0hT87a7L5N0VR0IQyjnn52/HGf3gnPvKzx8gbhgGGptZJsegc37FDOdx9iHyntUoZPX0DXqs10fy+zWy/ikmKj3R3qFgsBROL0wef9n3PsjttUywODKJaLkKWJfB88LgkxdsKFQCGRyfw8D13Bq7f3I4oID28BdkLXok9q3WcjVbGIgBMbNmOpfmZpj0qQMjoTiHUa0hnc03rXjd2H1jFvqU63nbpMdizUMX+pRrS2WzHVqh33XI9svkCTjrj3NBlRUXD3oUaXnbKKPrziQ1qVCS1yO8p7v8uyRY7Nhppv65okj8hpJkfGI4Qk3pMxeIzzAq1LrusUOuLbdmRqVQYsagAtG0ihaEBAYpyqCIExUAm3SIWJ0cHwJluAIxuEos20rck6B6KxRrA8MRCkusmpG3Re0JOLu1tldkEnyfkqGFgqW7gX/6gD+/9+DtBKbb7BsWQ7zuyYtF7colKm5/DAJDtA5b3NN87GsTiyhqIxcVVUkMNt2Us9kJVNayWqxjoDSfN/IjFzeNDOPTTRRiG4X2PSBXI8aaJYjGbTqFYbh3DWkPExAip7XZunUCl1sDCchEjVvOxqViMN9kQAGqiFjlf0UI+m0GtbmUsmorF7nGAD28IXnfz3eA5Fs8///TYY00QDUktkiAKmsTiUbRCtaslvZSBS42ltvct9d6h6qG25e2qxzSbRlWugul04pWJBxcfjLysKqugQbcRnt08uX84MhZ9rtduK1RN1zzVZ3bIkty0WJ09PItcVw65Qg4whfppV+yGKBDVYRVV6DSpBXwVi+Z97enS08gp5vNvNg1RjEYsqlUVI380gn/8/D+CpmkYiuVAtfGKxVo5vBbJ+Ni92xHFCjXXlUO9UkelGDxhI8g+VKgLEAWxzZLVIhpXl1YxnhsPH69KiEX3OTY8Pozl+WWoigo2ZDKRJEhId6fR//x+LFWWmuOzFIuT2yahqRpmD89i0/ZobgVBaNQboBm6TSUZhEy2c8XiXTfdBQA499LwvkgYBFXAqriK4/uOX/O2EiRIsDGI1Lm46aabmv9/8OBBvP/978drX/tanH8+mYGwa9cufPvb38YnPvGJjRllggQdwG2funehioE8byMWwxWLiuZUF4bh2KH2BpFFNFl82pPz4bO7RCqFzI7zoVqKRRt7uLkvh3sOkoYUsUKlyIzsADRcVqgDeb7NCpWiKAwVSGEsSxLyfBoGgOW5aYxObm4up2jEFtO+S1kSQXGEoLKsWVMuhVuGYyBruqcKlE3lUPVQLFpYmJ3C3NQhbDvlXAy87D0YH8hhwEXIsDQVW2HqBYYyHL2jYwZaOYvVivfMzE998EoMjozhtX//vpa1rdmIsgjuoa7OGtPhxKK/FWpxmcxE7XMpFq2/SyvLGBoNLqAtK1QvW9Kh0XGsLM5DVRSwXHChKkki+Cw5JpYSwE4iWrmEM4cO4JjjT/LdZxgMw0BpdRlCo45sNt9U2NohyBq+f+8UThjtwp+dNYEv3Pg0JFVHOtO5YnHXzb/B2c+5NPQ4AMBjsxVohoFLjxv0tJhN4I2kFvk9xc/eRv794ELnBF+naObgdbhfmif2oUF2sobhvIdzmWAl31FA0/XAapA2VgDF2WxIpUOaR03FItVScDJBxKKEhmJTLE7PY9vEaPNtVpcBPuVQQZYEHZl+12QNuQZkB8hyFAXkBoDyDLErdVlFZtO8txWq+f3MVQ08fNt9eNFzz8RXXpYGle8l7zG2fdK0SSxGzFj0sdmUuC7UZQNVjQWy/Y6sz6JPM+9dn/gqFFXDFz/8luB9xwDD0NA0PdQKde9hf2JxwbQ7dSsWrb/nl4oRiUXy3chuYnFsCNW6gHK1jp4uj+OZMrdNsxBEqU3VamUsAoRYBIA9B2ZaxKKlWAz7Tm0wDAMUgJqkxLJBBWyKRZohVr6r+4Gx033zOO249qa7cOm5pyIfc58JoiOpRRJEgUW4HU3Foqy1iEUvxeKKuNL2vkWITledjjQMxUDQWttIM2lU5Ap6U965eVHx6MqjkZdVFUIKupV4Q6nWc26YFapqqA4yVIceqliUJdmhWBzbNNaMiwbaiUVJlNDdZ5KdJrHolbHI0RxqSg2GYeBQ5RCGVeKqEKZYLBfLeOzex3DBCy7AyF+MIM2mm9bXdmLRnUW53vBTLH7n89/B1P4pfPDzH0SeI/dkivPvVUlGOLGYSqVQRz3UCnXabWVuQ9GsRdyKRQexuCUCsahJ4GgOMpxKy+GJYei6juWFZYxMjARvQ5SQyjlrEaEuNG1aJ7eTifVT+6bWTCwWl4sQ6gKyuWxTKBAFmVwGpZVSR/vcdeMuHH/68W22s53gYPkgDBg4ZfCUNW8rQYIEG4NIxOLFF1/c/P+rr74an/nMZ/CqV72q+dof/uEf4uSTT8ZXv/pVvOY1r1n/USZI0AFKDaV1glMU9i/VcfbW1s2tIWtIsXTT6lFUNWT4VqEpKJrDtnOlHm7TsKmvfTaxRY5YRN6eCMTifdmzMPTH56P24DWOjEUA2Nzf2oclIqN8/MYt2ElUSdHB0lRgrpssCaC5NDQAS3PTOOWUk5vvKTqxxWRs60tiO7GYdhEmlmLRTtAuauSzsJkcRNF7RtTjD92Hj/z9a9A3MIxPfvcXzVnCKZZBIc2ialqNsgy1IVaoQwUexVu/A/Hww6iVS57r/OYn/wcAeO3fv89DsaiCpak25WpUhBGLUwGKxaKPYtEiFovLixGIRXJM07yHFerYBCmgF+cwMh5c9EqCAD5TgP0bsmcsTmzZDoAoMC1iMa4V6tz0IXzmH9+Nx+6/G2deeAkyuXybsgEArn14FoKi4Q3P2YLJ3iwKaRayqiOVyXZELC4vzuOpxx7Gn/z1myIt/9B0CQN5HqdOrr3Y/n1CUov8nkOuHzli8WPDQN824PLPk7/ZzhTnYDhAE0PUay6yolMScwMhKrpp62rWQULJQXQBQDqdgqIZTbv5NmhKiwS0ml1UgCpdEdGQnYrFFz/3zObbjC4BbMGh7iwKepvNJeQa0DXWUjbmBoHaAqAKAJ9zLJpL82gIHg2u7AAe6noBLv/gdeBTaTx+3VfA28lgu3UtzZjEaQgJpUrk8zPeTVCVyaL7X6p4xxUDhFiU67DmaxUr3nXkZ7/9EwBYV2KR5zgImrQmxaKVozg80ON4fcRUDcwvF3HSji3hg/G1QiU1zaHZRW9i0bIQZVqKRTvsGYvbN42CpmnsOTCNi885ubkemBSiKhZnFpbx2U9/HZ8+A3hqttQBsZhBpdYg53bRnDzWNRE6ibBcrePWex/F566KVosk6AxJLXLk8efX/jlevOXFeP3Jrz/aQ4kM63nVra47krATi14Zi6tCy8K4qVg075WztVkwFNMk8Viahay2tmcpFtdKLO5Z3RO+kAlZksFTfJsSjzUt0R0Ziz6Xa3fGIkAIviBIotTMB5w7PIcTzjjB8X6acdZtditUnbGcf7yJRUmTcLh6GIIqoFsn96p0Jg3JqxYBcHjfYVz12qsgCRJOv/D0NvW0blr1MBRz1DIWv/lv3wQAfPDzH0SOI3UWnfGv9xQjOvleCZnkFKRYXDWtu70yFgFEzln0JRbHCDG8MLMQSiyKggg+6zwnhIaAsewYAGBgeACZXCbw84ShuFzE5z/8edzy81tw8UsujpWvCBBicW4qOD/bC7Ik495b78VfvvUvY6/rhYOVg2AoBicPnBy+cIIECY4KYvvM7dq1C2eddVbb62eddRbuvvvudRlUggTrgVKjdbNXmTRqkoo+2w28IangbPaO7onIossKdbESbknBMjSGCmYhaW7PKvjO2ESKmCfnwzM3VJMSbQgiWIZ2EJwTva0GhdW/CyUWbRmLoqqBZWgszBzGgb1PtC1rGAYkUQRtEoXllUWMTtgUizppHNqtVCVRAMWSY6ubr7sz+VIsDQO2rCYAFvXLpjIQG+2KxZt+8RO857V/gvFN2/DJr/1fczaehf5c6/tk6PUhFlnXkwhFUajs+h602qqvYtGOroxzvkZFVJBLsR0r0yql4CJ3+sA+ZxaQDcWVJaQzWWRyzuaplbkYJWfRskJNswyqx7wAS2MXNPdnkZKLc+02tm3bEQVwWWfDz65Y7OrpRXdvnyNn0SL6w0QCuq7jJ//9Nbzp5Zfg8QfvhaLIKC4vIpvLtSkWZ0sCbnhiAZfuHMIlO4dA0xRyKRaypiOdzUOox7eYu/vWG0HTNM557vNCl9UNAw9Pl3HCaFeb6jZBdCS1yO8I6svAD95wtEcRH6oILD4OlMwH+k7JPoYzFYsBs8bdFzgrh6c8BVTCr61HApKiEpKjqbwwgJLTJi2d4iEFTY63Zyxax4NmMLOwjPsefap9eVVEXdaRNpuEs4sr2DbZatQwhmxmJ7bqgpWGikzKTSzWCfFnqUDzw+S8VNonM2VTnKdi8dqb7saFH/45Bvv7cct3Pwmed9VcFAVBsYo+NpoVqm1dP2gGCKmdIfWjNaHr6FihBteuB2aXIMvezcEFc8b7UF+P4/Xh/haxGAlmY7zNCnWM1DSHZ31qmrS5XytjMUCxmOI5bJ0Yxp4DLtUDnwstRgzDwNd/8Guc8NI34+5H9gIAZlZqKMTINAKAQi6Dat3MWGysEnvk7rHQ9X5zx/1QVQ0vu+TI5CsCgARyLCWqw8kXv+NIapEjgydWn8Bn7//s0R5GR3imKBa9rFBXxdYzpkU8Wuq9ufocuviu5vssxULUWvfHLJtFRV5bjmhNrmG2Nht5eUVWPBWLFjRooVaomtFOLLI0i9JKCY/f/7jnOpIoNbe7vLCM0U2jjvezrPMaLwpiW8aiJ7HIcJA1GQ8tPgQA6NMJwZXOpiEKYtvz/X2334e3/tFbwfEcvvDDLzRtM+1wKBY3OGMxihWqRSwGwU3QBSHMCrW0UvLNYVxdJue7RSRaKHQXwHJsPGLRo/dm5W4uzvhkPtu34aNYtDIWKYrCxNaJjohFwzBw409vxGsvey123bALACE7MzEnOWVz2Y6sUB+66yEIdQHnX7Y++YpT1SmM58eR6nSSZ4IECTYcsYnFyclJXHPNNW2vf+1rX8Pk5KTHGgkSbBwUxb8QWbUpDGXTe3/Q1shvyKrDrtNNhCma4bAQnYtALALA9kFSQKl6q6mUYmkU0qRQf2LOf9a3W6GlKgpYl7KwkOaQMotU1mxIWaSeH+ouK1SeofDqF52LN/3xpW3LKopMLJxs23RboXIM7bBSlSSRNFDhr1i0jrU1lvly63gyfBaSS7F47f9+Cx//hzfjohddjn/9xvc9sw0tEhcAWJqGqvs9RkSHW7FoR61SCl3fbd9ZFhTkU0ybNWxUVH1UkgCQzmQgNOpYWfIOCi+uLKF3YLDt9Z7eflAU1VQ0BkFSNXAMBY6loaW6IGcHmwpYi1hcmPW3HbEgig2w6dbDha7rEIVGk1gEgMmtx2L6oI1YNI9l0Hc6fWg/3v2aP8aXP/4hvPDlr8T7PvFFAEDDzG+0NyANw8D/3H0Y3RkOb3zuVvTnyfmTTxHFYjqTheBBcIdh982/wQmnnY2unr7QZQ8s11GTVJy/rR+FdGcq1gRJLbIuWHgc+Kdu4PDujdvHL98HPPoD4Mlfbtw+NhJWDl6IBaGi+jQOGZ6orOLYUVn33uIB8q8abhHVEWLYOsqKRohFe1bUijOnMM1zCHSY17WWHalh1iQUg4mLX42z/vTK9uVVCTVJb1qhAsA22wxwVpcJ6WabcLRSV5sKx9bg607FaWEEEFaJktGFXJpvy1j8r5/9Fn/01qvxwgvPwK3/9a8YH/bOWRasMoumiWIxxvENRdZ5b/GzQt1IrPooEyxomo59PjPbF5aL6O/pAufKHMpl0yjkMphfikosku9GNpz11PBAD3iOxaFZn5om07JCbYhSm6rVrlgEgOO2TngTiwHVyKGZBbzoDR/C33zo83jFCy/EB656H678lYiHF7QmaRkV+WyGWKGaKhx0T7bsWANw7U134eQdW7B5fDjW/taCA9RmvOlaAYfpzeELPwuR1CIJwnAkMxbd1pf2jEU7KWihKLWuvRaxaCkWFxoLKNiuOyzNOsjJLJtFXe4sPsLCA4sPQEf0ScGWFaqfClSndFAMFZiB6s5YBAhp+ppLX4O3vvytnuvIYitjEQCxQrXBbYUqizLSZt6zZYWaottJEZZmoegKHl95HBk2gxzIM3HKvEdpauv7vP03t+N9r34fjjvtOHzpx1/C2GbvySa6rAMGIRbX3hUJhp9i0Q7LCjUIshGdWPQjDQE0j7kfGVdcLoLl2Kb61AJN0+gd6EUxYi1iKRbdyGQz6OrtwsKMd1/GsQ1BalMsig3RQf5tOmYTpvbFIxZXFlbw4Td+GB/7+4/hzOeciX/9r38FQDIW4xKLmVwm0JLXD7tu2IXh8WFsO25b7HW9MF+fx7G9x67LthIkSLAxiGSFasdnP/tZvOIVr8Avf/lLnHsuCWO9++678dRTT+GHP/zhug8wQYIgPPnkHiA/Dllub7yVBQUwJ5ApXB4MTWGo0Lqh1mUNnI3sYTyK0JLQehiYL7fPHPPCjuECdu1fbVp02iEqGqZWW8SFW8XGuEhEVZHBetiKdfPAotiyQkWIYrEutcZCrMr81XOyGRZO2RpxoxObcWCJNLJkHcgydFOxqCoKNFWFQXOA3iIWs7xzHxZpWjO7b9c/0Sq66FQGoitj8fTznou/edeH8Oevf6vvA4I9t7CZsbjGGjqIWIyiWLSP1QA5Dwtpro24jopK2b/IHdu0Dfv3PIbpA09jYKjdcmN1ebHNBhUAGJZFd18/ViMQi7JmIJ9im78PPVVoKkMz2Ry6evqiKRYFAdlUa0anJAowDANpG7E4sXU79j3RytrgWZokAXh8JZqm4Uff/Sq+9YVPYmBoBJ/+1o9w6tkX4J7bSfaN2Kgjm8tj1fa8et/hIp6cr+JNF23DyRM9zddzKQaSqoPvwApVEgU8sPtW/NWb3xVp+Yeny8hwNC7a2f69JIiOpBZZBxwms1jx2I+BTedtzD6a1pnRZgE/4yBVCKEWco+99977cH4WmFlYgcNcmuHIMYhDLHJHIBvtF/8APPnz1t8hs9qbikV7g7R4ABjc3vwzneJRUw3AL79F97BCDciSNDQZNVl35OERxSIZA2MopmKxtY2lqkLUaFY5oUpEKekmFnUVKE8DvVsArVUf5TI8VFWDpumwtnrx2Sfj6rdfgQ/87V+0uSbY0VIsMiS/cT0tyDJO266jo1gMbyDuOTCN4z2ygOaXi202qBZGBnpjKBa9rVBpmsbk6CAOz/nUNGkbsShIGOhtqXAMwyCKxVyrnty5dQI//a1rwkUqD8jtE490Xcd//t8v8d5PfQO93Xn88pqr8eLnnoXdDz6JL9wlY2LEwHEdZSyKRP0KAN3jbba9bmiahl/cci/e9OcvjrWv9cA19ys47y/Dic9nI5JaJEEY4tg8rhWP3/84MAjsfWIvsMP5nuQxSalkZf2CkCUUqCbptthYRFeqCzAv/W3EIpdFXV07schSLFQjml2sIiugQTfH0VDbr8mSZqoLfR7nVd2ZsQgQK9Ugi01JlJCyuSGMbnYqFjOuyWeiIDaJSIMhA/FSuFl5d3uLezGYGWwee4sgU5TWuXPiGSfiL9/6l3jNla8BE+CCNP+/89BqGujXbLxiMQqxmAu5dwGI/P0DwYrFsS1j2P/Efhzed7jNrhYgVqc9/T2efaW+wb6mVWoYFE0BT/NQOAVGwXmiDY8PRyIWRUEE189BQ+s7EuqCQ4U6uW0S9956b6QxGYaBX//g1/jyR78MLsXh6q9ejee++Lk49NSh5rYHfCbG+SGTzaBRizfh2jAM7LpxF8677LxAgj8qZE3GirCC4/qOW/O2EiRIsHGI3el+yUtegr179+Lyyy/H6uoqVldXcfnll2Pv3r14yUteshFjTJDAF82ZeR6EX1lwFvIDeR7ZVKsQq0kqeL8sIBN2O9WlqkRyhkKwpT/XXN6NfUs1aLaxBvSoABBikbMtZOXd9aXJuJtWqGxw07MmOQs23wwkmOpDALBtc3hsovn/im6AY1tWqM3lTesU3SySMy5iMcU5FYu/frSVx0NzKciSCKG8gpVffgGSUMfElu34ize8LbAoGS7YiEWGWhfFIrtGxaIdumGgIigopNmOicVqQMbi6ORm0AyDqYP7PN8vrSw1bU/d6OsfikQsAkRtanHeBpdDQ2mdT8NjE1iMoFiURAFMukUsWta3DsXilu2YPtiydqUpCjzbPuPy0NN78I4rLsc1n74al//Fa/CfP/4tTj37AscyjXqNZCwaJiFKMfi/e6awYziPV5496VAH53gWmm6AS+diE4sP3n0HREHA+Ze8MNryU0UcO1zAcFc8BUMCJ5Ja5FmGNc563zCIFWJDGJQFCEAzySlZcTVHLGIxTnNno4jF+krr/x//CTBgm/2rBM9IblmhtpSGKB12LMOyTAQrVAY1QYJoqQIp//mNhiJCUAwXsehs5oHhHOTkUk1xLN9UJTK21/LmPdFSXEqtJlU2ReqexbKAv/mZgNWqiMnRQXzoLa8KJBUBu2IxYsZiHPB5Z5bkM9AKtZBLY88B70lGCysljLgyjSyMDMYgFjXLCrX9u9g0OuivWGwSi1ybYlGSFWia7lAs7tw6gQPTC5Ds1q5d4+RaYMO+w3O47LUfwN999Mv4q8svwaPX/gde/FynLWa1LsS2Qm0qFq3vPD8SmvO6+6EnsVKq4PJLz421rwRrQ1KLJAjDkcxYtBRudkLKgpdisSyVHe+ztvvMirDiyE9kadZBTma5LARVWBN59djKYxjMRp9oKcsyKIpqZgd6ZQiKqgjObVdug59iMQiSKDWtTYF2xaKbWJQkqUkOWlao7hxGO/aX92Mk15ogbK0rlAXMfHMG1eUqegd68fp3vz6QVASAxlMNSHMSaIo+ahmLdhS48EkncaxQy0X/Sd6ZbAaDo4P+isWlIvoGvd2F+gb7oluh6sQKdXXbKugXuxwUIhKLkiCByzjPU6EhIG2b5DS5bRLl1XJoruTi7CLe/5r345Pv/iTOf/75+NaN38JzX/xcxzKNeiN2xmI6l4bQiGeFenDvQcxPzeOC518QvnAEHKocgg49yVdMkOAZjtiKRYDYfnz84x9f77EkSLCuqIoqYLNLGsynHPacDVkDH6DcA4BSvVWYL9dlhzWqHywVpKq1N5X2LoQXYHa4rVArJlnab9YclmIxLGOx7ur22bMl3bAUi5ZCI5MvgE+1ihxFN61QzU1IAik4dNoKTqfB0lSbGtM69lVRRVlQsGt/q8lJmXmON33qTZAlCZXleQBbAj8TAAzarFAZmoKq6bFnRxmGgcW5aQyPEcuiYCvUcMWiHapmoCKq2DHMgQ845kGoBBCLHMdhdGIzpg94E4ury0s4/tQzABALzs/dsBcfufxE9OV49A4MoRghYxEgysGmmpaisFJVMGb26YbGJqIpFiURNN86jywCL51pFbkTW44h1q6L8xgYJg3kNMc05w2oioLvffPf8V///m8YmdyMz/3XtTjhtPZsG2v72WweqqlsWMpvgyyqeN+Lj2uS/xZy5oQDLtcFMSaxeNfN12NkYhM2bd8RuuxKTcJMScQLThh25L0m6AxJLfI7iOoC8G87gLc/APRtaxE/i965NkcdYpkQfbFn3ZoXLZojKr84GUse9krrgj02heJF7wVy/cDB2yKt2rRCtRqkmR6gOu9QMFIUhcC5V5oK0Axue3AfJrspnDTEBM6uMlQRggoHUTjQ24XD9tsWyztI34oEp82lVG0tZyFnEour5n1TaN1jc6Y99UVX/xarFRVvXqgi3OCa4N92SXhkQce7aZYQtR1YoR6aWfC2saQoQo41SN10NKxQwxSLOzePttuHmphfKmJsyPtIxlIsmgS4bLT/HjePDeHJ/T6TnAaOBTadDxRGIIiSI4ezZjbNchmnYlHXdew7PIcTjjEVmGe8DqjPA1wWmqbhi/91LT7w2W9jZKAXN37r43jeead57rrWEFCIqVgs5DJEsWiR5j3hlprX3XQ3Bnq7cM4p4bVIgvVFUoskCMKRtEINgj1v0YI9I1FSpSbBphkaKnIFvWkXsai3iEXL4lJQ42ewWXiq+BQ2d23GXN3bRtsNVSZqwyDCTNRF8Ck+MGPRbWNpJ1Tbllc1aKrmsEIdGhvCoaVWznTWNelEEqTm8pYVKk97P/cJqgBJk3Bx/mKoIDVW2rTP/sn7f4LyQhkrUyvAab5D9ETYcQrC/PQ8RmzW836IkrHopdR0I46qN4xkm9w26Ussri6tonfQe5JT32Afnn786UhjUDQFHM3BoA1QBWc9Mjw+HEllKIkSui2bdhA1riIrDsXiJtMBYmrfFE4888S2bRiGgev+5zp85f/7CrL5LD7+zY/75hra8xujIpvLQlVUKLISSNbbsfvG3Uhn0jjNpyaKiwOVA6BA4dTBU9dlewkSJNgYdNTpvu2223DFFVfgggsuwMwMaSh/97vfxe23376ug0uQYC2oyypUvVVU9ub4pmoOABqSGqjcA5yKxdW67Mgq7ARPzlfRl4tOKPhZoQ5nyWs5jvxLc8Ezmd2EKBtAckmS+YBgFt2Do86GRpNYbCoWTWLRtBXRQSPNMWBoCv905evxlU9+BIDNClVScfOeRWi272b1wGMAAC6dw8irP4PByZa9WhDsxCLL0NB0I5JdrR1333YjXveSC9Gok+I4iGoOyjv0gqxqqEkqerJc4DH3A8OwqJSCZ89NbtmOqYPehXBxZQl9pmJxuthAXdaw37S07RsYDFUslovLACzFYus8XKq3Zr0OjYxjYS6CYlEQwPCtgtYiFjPZ1sPY5FbyvU/ZiNI0S8MAcGDPY3j7X74U3/7iJ/GK1/wtvvKD631JRQDQNQ2pbA6aqaAV+F5cdOwALjt+GLTLcjjLkwdKJpNvngdRYBgGdt9yA867+AWRCO2HZ8qgKeD5HmNIEB9JLfI7iKd+Q/7d/R9HdxxRIRZNBWHM6/fSHvKvUARggApRBDrAbNCkg8d+3Pr/7kmigosIyZ2xmOkF6ktt+Y9ui0oHdLVJAjZLMSrgjqvKENWWYrG/p6v9Osvwjm1UJcORyQiJXM//+bs34w0f/Bx5jU0BqQJQNJuCNiu4vdOEuKNg4K6/yeGsY6IrKb5yr4I7pszjZGixrVDvuP8xbHvBGzDvN2PeZocalne43ujtzocqFnduHvElFgMViwN9ocTi1PwKHj8w28pY9FQsDvkrFrkscP7bgN6tbYrFmlnP2HMQd24lhsaOz8MwQNc4njw4g4uueC/e9S/X4I1/9iI8/NMv+5KKAEw1ZNyMxTQEUSJ1daoLyIdnJl578914yUVngwmZMJlg/ZHUIs8ebIR1pBJnYlEArAzETmG3MQXIM0xVqTreZ8zJDCWpBAMG+tP9zfdZinWQkxax2FDiZ9MDxMZ0SVjClq4tkddRZAU0FWzxKaqmDalPO0DTtTbFoldengXJdFiwKxYdJIvhVCNqqgZVUZvLW1aoKTaFL3/0y/jHv/1H5/bN72VTV8tGfH6KuDpJdQnbPrQNW07f4js+P9B0Z4rF/U/ux6sueBWmfe7ndoSRfFEgqVLknM1CdyHQChUAJrdP+uYSFpcDFItD4YrFpekl7N+7H4qugDdrdSrjrEuHxoewMLMQ2o8SBRFsqkVoW1mGdmJx3KxFvIjSucNzePer3o3PXPUZXPqyS/HNG77pSyoCgK7pHWUsAoilWrzzhjtx5nPPdBDxa8F0dRqjuVHkYzyzJEiQ4Mgjdqf7hz/8IV70ohchk8ng/vvvhySRm2G5XE5m6yV4RqEha9BtdUpfjnco9dwZi14o2uxUNd3A9Grns/IA4PHZCoYKwSSgHaoie6oLsywpYnrSptIqFVwo1NoUiwFWqKZi0TAfLgZGJxzvKxpZv0ksiuSYaCYlZ1B00zrzjht+gR9+5z8BEHKKjEXFrx6dx2RvBpShQynO4aH/+zcAwHlv+yzYruiNvK40C10m4+VoykEkR8XMwf1QFBlVM8uQCShuqzGtUBuyBk030J+P/p3bwbBsKJk5sXU7Zg7ub3td13WUVpfRY2YsVszMz4pIzunegSGUVoIVi7L53fIs7SDCKrbfxfDYBJbmpgMLaMMwIIlCU5kKoJmpabdCHZ3YDIZlMW0jSlMsjflDT+NdV7wEiiLjC//vF3jDOz/oUNH6gc867Vfe+NxtDjLagqVYpFM5iEIDuh7tAWf/nsexND+D8yLboJawqS+LrYNJcbxWJLVIgiMCsQywGSDuRACLrLJILyVkwoL9+sm4Zs6vh41aYxU4cGvHq0uKSsZljSU7QNRzWkxi0VQoNm3oAzIWKV2GoLQUiyRf0QUm1VSTGhQLRXcpFk1F7P/c9Ci+8cPftF7PDgCVOUKUisSJYK6q431f/RUA4Lp3X4Bj+jpzGQBFx8vUNLH3wAx0Xcfiqo8zgo1YPNJWqP09XVgNUSbs3DyCvQf9rFCLGPYlFnuxEEIslusNLBWrgNlYVz3Os83jQ5hbWnXal9pBE4VsQ5RIDqeJumARi606enigF135rINYVFUNn7zm+zjt5W/D0moZt/7Xv+LzH3wz8hEadbGtUM1tigMnAxNnk3zHAByYnsdjTx1KbFCPApJaJEEY4uTHBaEklda0vptYrMpVh02r3Qq1KJFr8mCm9Uzuzli0svM6zVk8XCF26tt7ok0mBtqtUL3QzFj0gWqoTQLVAuuuu+zbcxGLbsUbA8Yx6cla3rIzBQ3QFA2GZvCDr/8At/2y3SmCoRhsKrSIxS999EsAgBd/5MVIT3QWncGYfZm45KJFKEbJG4yiWAxDnPOnq7cLQl2A4nefB1Eszhyagaa112HF5SJ6fWqR3sFeFJeLgf2MWrmGUqkEzdCaClSKoxyq3eHxYYiCGEq6SqIENmMjFs1axE7+ZbIZDI0NOYhSXdfxo2/+CK9/wesxe2gWn/qvT+E9//oe5LvCewvZmLWINZaoOYvl1TIev/9xnP98f4IzLuZqczim55h1216CBAk2BrGfmj/2sY/hK1/5Cq655hpwXGu2zoUXXoj7779/XQeX4HcLlrJO64DcCYPegaVUQ1ah2YqpgbyzyBRkrUmwDeT5NqczmnISKACaaq9OsXehiv589Bk8muq0QnUjy5OfMJsODsZ2KxaDiEVZsohFUuy4iUUDAEu3MvcsIlK3HUBLsWiHpRYtNWTcsncJ2wYyMAwDXO8oTns1mb1Hh2RFukFRFFZ/82XUn7wNLE1D1eLPzFteJPYrjZqpWPSxQs0VulArx7NCtbIthwqdzdqiGRaVUnCRO7nlGMzPHIYsOx8YK6VV6JqGXpNYtDJHrTH1DQRnLAqNevN3xzM0GMpOLLbOp6HRcYiCEKisVBQZuq47iMWWYrF17rIch+HRCcxPt7K7VqefxsLBvfiz1/89vvy9X2PnSaf57scNzkYsDkgzOG1Tj+dylmKR5knBbdn7hmH3Ldcjk83h5LPOC11WUjTsma/ipPFu9MdQLSfwRlKLJDgiEMsAmwYQk1iUzYdw0wKK8s2QNLdrV/65Lbk87MtiY88vOyK7LMiqRlwMmsRiP6A0QNvUfgCgelhUAiDEqaE1idZmBLMt18h9n6M0BYLaUiB6E4uta6lm/r/d5tKyQq1KrntofhioLwJKA3p9FbphYLRA49+v/EMAQI5fg6KcZolaMWYzb2aRqCUrfg2cLJlln0nxR9wKta87D0GUIIiS7zI7N49iuVjBqssyVZIVFMs1DPf3eK43MtiL5WIFijuf1ISu61DN3DBoEkCzMDweXzePme4M88uBn6UhuBSL5kx8u6qQoigcs2kMB6ZbOUkf/vx38IHPfht/f8Uf4sGffAnP8bAl80NcK1RrLMX+M4DT/5qoFgPw85vvAcexeOFzzoi1nwRrR1KLJAjDelmhllz328B96oojDxFoJxYXBeczoKzJTWLRUiYOZAea77uJRSs7r1PF4pKwhBSTwmhuNHxhE6qihmYHiqoYSCx6Khap1m9Xct3n3MSiO1+RMRjP5e2KrSCrVQDoT/eDpdnmxNZ3feJdZFyZeH0RO6zPGFeFu2zeQ+u1YMIv15WLlLEYhnqMjPVCDznnqgHW7JPbJ6FIChZnnOe3YRhYXVz1JRb7BvugKmrgZ1JltalAtVu82rNKR8ZJrbpgqx+8IAmSQ7Eo1EktYlcsAsD4lnHMTbWsgv/3P/4XX/zIF/GiP3sRvnH9N3DWRf7uTW7EzVi0xmKNLQx33XQXdF3HeZeG90WiQNEULAlLOK7/uHXZXoIECTYOsYnFPXv24KKLLmp7vbu7G6VSaT3GlGCD8PTixlon5c2bo6is3UbETSR65RWGQZB12CcrDRecM74asgqWpvHvf3kG3nrJMU2rTgsplmmqvCwcWOmseAYAQdGwUJEwEINUUGQ50ELTIh2ZEPVWQ3Z+J/b8Q7c6SzZn2+rm5cFthQo4FYsWEana8ixT9ky+5lhJ9uJ9h0uoVcq488vvQeWenwAA+neQomjfk8QSVahFP1e1Rhm6VAfLEMVi3DNlad4kFk0LzBRFjgcD5zErdHWjGjNjsW6SeCNdziKx0EWaRCvzwdmEDMtCVZUmCeeFia3boes65g4fdLxeNNWIlhWqZetr5W32DgxBFBoQ6t7bXl1qFeREsdh6ryIqzQkEQ2OEeF6Y9bdMsYg6ytYEbmYsZl15h11dqNvsSPnHf4HR2l685u//ATwfT/nJpFuz9zKG3CQQ3bCuXRaxGHS87dh9829w1oWXRBrX43MVqLqBS3cOtV1rEsRHUoskOCIQKwCXduT4RYLVKLGIRcV1TbHuu6kCUdzJNqLI3YBS/cmcyHj8x0B/dFWAG5JsKRbN+6JJcnFVpz2TvQ5wwCIkLStU6xJoUwnU7I0LQwMFHYICpEzLsW1eeT9s69qrmY3BjN1+yTyuVdlVGaS7AKWBemkFr7jy4/inm8kxvuwMcozue4yo5qeX4t3zAZhZlFrsjEWLEKvW/YhF0uDNprh1UywO9pF8n/22ppUX+nvMmiWgmbdzM/l+3HaoiyslAIRA9IJlkbq4WvJ8f6VUbR1KVSIEtwfvu2mUTKI6NOvfzNM0DZKsOBSLNdN+zK087OnKOUjegzOLuPjsk/Cp974B2Uw8BUl8YpEsX6uL5PoTgmtvugsXn30SumI2DROsHUktkiAM6nq4DgAoyaXIyyqagprLKcFNcC42nMSLpLUyFgFi75lhW9cujuYcVqgF3iQW1c57I8PZ4Tb1YBBURQWNYCtUWZNJxqLPPVgzNDAuG3Y7SeS22pQl8pktonB0k5MI9SMW0+nWtdt+XL0wwA/gE+/4BG74yQ0AgDMuIJNEDjxxAAAwe2A2cH0v0OaDe1zF4tIc6R+EkUmF7gLq1Xpklx8/2M+f5ZCJQd29pGYpF/1rs03bzFxCl31oo9aALMn+Vqjm635KTVmSoWt6y9qWbtURdmJxaJz0XRZmgolFURDBpFrnTpNYdNUL+a68QzE4Pz2PY086Fu/42DviE4UbbIW668ZdOO7U49A/3B++cARM1aagGRpO7j95XbaXIEGCjUNsYnFkZARPP92e53X77bdj27Zt6zKoBOuPH90/jed/5lb8+rH5DduH1bQXlbUVGABRE659G07FYiHtnPUlKESxyNIUJvvab8wplkZVbBXhhRSLwyt1PLSfFHe79y3FIlHny6R5EccKVfGxQrVgObnas+u84FYspmwWsA0XiddUIJqXh4GR8fb9Mi1rTNEkjezcL+/K5LO//tDje7H0P+/F7NOPgh8m1wwrn7FmEneyGP0hZfjPr8boa78AlqEI2RWTWVxZJL8J6zikzJB11mVdk+/qQS2mFWrNPO5DXc7G0I5jjwUAPHHfnYHrM2bTNUgNOLmF2ENMHdzneL24TB4MLMVixaZYNAwDfQPkdT/V4upyqyC2Z2oCQFVUoZjq0KFRcn4szvmTpJZdrsG2Gr6ih2IRAHK5guOcZJUqumgZLB37dgU6Fa3gzpryGdr8HTUa4U3b4vIS9jzyAM69+AWR9vHQdBl9OR6n+6gmE8RDUos8C9GBM4EnLBKwg2yZNkhVQl5FyFB1QHESi3DPyBZM68eUqaq2E4tu1sSHWNy/nzScyiGzygEA+24CBjuf8SspKlEXWg3SjEks1pzNLl9i0Wpo0pZi0bJCbTXbHLmB5ncnqEaTzPJULNqIRRXkWNtJI+u41tpEnxRmyiqe++I/wvV3PYazxxhzXXKPskiu1WoH9vcUTdSZMYuRmYUQxaJ5zLNpHpVaw9PmKy5OOGYTxof78avb7gtcrt9UCQTlLB67ieQAuolFKz9xuD+YWJxf8rZDnbNnHqmiSUa3/x4nTWLx8Ky/xbsgkhPBSSxaikVnHd2Vz6LiInmjZCl7wb3tMFhEpC/JbEO11sDNdz+Ml11yTkdjS7A2JLVIgjCslxWqnbyIAjfhJ+vOG+GKsOJ836ZYBFrEoQWOcRKLaTYNlmJRaZD7wvJSMCnkhYnCRPhCLlCgAsksSZOcGYgueBGLduLPbWEpm/cN1VTVhxKLQnsmo59iUTM0qBUVt3/4dtz8i5sxvoU8U6dN1bpFclVW42cZWp8xtmJxwVQsVoNry0J3AYZhoF7pzArXQt028e7x+x8PXLbLnOQUZDM6ND4EPsXj8L7Djtet/MRQYtEnZ9F6XWfIuWcno6tyq37t6e8Bn+IDiUXDMCAJEhjeRiw2vInFbD7b9l10WovEJRYt69QoikVFVnDPLffgvMvWR60IAAfLBwEApw2dtm7bTJAgwcYgdqf2jW98I6688krcddddoCgKs7Oz+O///m+85z3vwVve8paNGGOCdcAhU2n35Fz8wsStdvNDzlIsqmtvdtQlFbLaKhq9ctGCwDEUBEWHbRMOMg2wrFCd2XF2pDgaddtn78pwWKhKqGik8fTf90zjrI/dgA/9+NFIY5ori2AoCsPd4Td12sz50xQl0LbUUiyyfFzFYutYVErOZo4sCQAo34xFwNYUhE2x6DrWbsUiAMjTj2P+O+8CR+n41HeuRWbzqQBaxKLeoVUbk+0GR9MdKRabVqghZFK+qxtCow5ViW5pU5c0MDSF3qzzAYdhyOd9/N5gYtGyhnV/R3b09A8gV+jC9AEXsWgqFnv6icqhbKpvG7IGVTfQayoZV5a8JxtYhCtAiEW7FWpZUJq/z56+AfCpNBYDFIuiRSzaHqyERh0sy4HjnQrebL6ARn191NV0COFuwbp2WVatYgTF4l23kVml51x0WeiyumHgoekSThgtYCDmtSyBN5Ja5FmI9SACAcBUHq+L0k+qrNEK1cxgcROLDbMBx5uqaing/uPzOWZmyWQOSxEGy45M81heV4HBE8JG7QtZ1QhJahGLfB5geHB1J7Go+z1W6OZ9k7IyFs3XbUoFLzWcoADzy6SZ45uxaI3RINfxjJ1YlGoAw8Pt0H/fgSLO+cJhLK+s4o7PvBaX7yT32pw5AU1dSx27RivUql8Dx1SJZlNkjKU1NvMA0px68XPPxC9vuzdwuZZi0f8ZIptOYdPYYBuxaOUnjgRkLALArI9KYHbR1vy2FIsev8d0isfwQC8OzfpbvDdMJUnGS7GYddbRXbmsP8kbEx0rFs2xBeH6Ox+ArKh42SVJvuLRQFKLJLBQEku4dao9y1hbgw25HXGJRbvFJE3RDlIQAJYFJxEoaVIwsUhxbdtIs2mIBrlOzU9Hn7xukUlburZEXscCBSqQLGtmLPo0BDytUAMUi5YC0SKWolqhpmyW2xztTXTu37Mf+67eh8psBZ/7v8/hxDOIxTbLsmBYBtoaXMCaVqgxzz9LNRhGJlmZfmu1Q7XnEz5x/xOB8S9dvSaxWPSvRWiaxsTWiTbFYtGcvORLLA6R11cWVjzft143aFOxaKs/K3JrPBRFYXh8OJBYVGSFRMTYbPf9rFCz+WzkjMMwdJqxGEWx+Mg9j6BereOC51/Q0di8MFWdwlBmCD3pnnXbZoIECTYGwbp8D7z//e+Hruu47LLL0Gg0cNFFFyGVSuE973kP/v7v/34jxpjgdwQ5s1O0HlaoQEvh1wlSLIO6rEKzzWizMv4sEMWiP7eeYhk0pNZn6c5wWK62GnYvO74PKxKwa785m0wMnpG4Upcx0pVu2i4GgYYOHQxUJVipRVMAQ1PQTStG92e04P5O7Fao1XIRwJbm35IogrIpy1IZUoQ01FahxzGt9S2bSzuxyPsQi7O3/i+4gU14wz//O3bs2AHsuhsAoJm5TGuZgd9ULMaAYRhYXrAUi8HEYqGL2G/UqmX09A0ELmuhJqnI8Yyv9eWhpx5FpbSKrh7vIpdhyblSLZd890FRFCa3bMfUQeeM6eLyEjLZXFMRWDPVt3VJhaoZGBwhD0bW53eDWKGSZXiWchDwpYYCSdUAcKAoCkOj44GKRVm0cjs5mJw5hEa9Ta0IANl8Hgsz/iRlHFBcGkD4dSTFmpmhpvolihXqXTffgONOOaOpCA3C4ZUGqqKKc7f1oyvtP4s2QXQktcizELrmIJo6BmdeV7wItrhQGoRYlGI2TqyGHu1jhVq3iEVzrHJ8YrEN8486t21H33agp919ICp03YBOMaCtTh1FAdl+cIJTHab5EYuaywrVWsxPsWhCUA10m//vqfri7MSipTpMta76cs0khp347C/3YqKbxU9/+0uMPH4NYN4G06bzhqJq6GDuJUGHVqjhikVCwFmqymKlhv7e4Oy9KPiD556Fr//gNzg0s4DN48Oey1iKxdVScJ20c8sE9hx01gILKyVQFNW0XXVjeKAHDENjZtFb7TK3uIrmqFSRHF8fnn/z2CAOzwUpFslvyZGxWBdA0zTSrkyurvzRJBbJOVuL0My77ua7cfz2SWx3qWgSHBkktUgCCz966kf4wgNfwH1X3Oew91T09clYrEjtZMpVt12F6/Zfh0de80jbe3YrVJZmIWsyVK3Vq1gVV5Fm0hA1cse0iEXLurUn1ePYHsuwbarHNJtus1yNAmufx/QcE3tdyqCgI1ixyKd4CPC+fmqG1ma/GqRYdGcuuokf2uXUEEWxqMgKOJ7Doz97FHSaxuf+63PYvm07Zmz3z3Q2DSXGZGY3aKwxYzGCYhGISCzq8C2p6mprP+WVMg7sOYBtx3mrva19BikWAWBy2ySm9rmIRXOSk1/GYiabQb4r72vHumJOcrKsUHlbvItdsQgAw+PDbRmPdlgqWNrWt/NTLOYKudC8y6jo1DpVqIXXIrtu3IWB4QEcc2L837Qf5upz2N7TeYxDggQJjhxiPzVTFIUPfvCDWF1dxaOPPordu3djaWkJ//zP/7wR40vwOwRL9RPXxnSl3uZRBQCYLnX+QJ9iaRgGUBJahSdvIxF1w4CiGeBZfxVCiqUhKK0CvDvDOcbanWbxhudsw8tPI+SLZQ0ZhMFCCmk2vHFKmQ0pTZHBBigWAaLOZAIyWDTdcNjTMjQFzq5YdJFWsiSCTbcXHtO1VpPMPiapqVhsve+2Qp2fIXYUA5f/A4b/4p9xwlbnbD8trhrEA2xTsRi9mVctF6HI5AFAqIcpFnsAtOxao6AmqsilWPCs96XW0A3cd2f77FYLdNMK1V+xCADjW7Zjus0KdbFJeimaDkHRkeFo1GViY5rN5ZHNF7C84J3bsLLUmmln/+1AJ4rHYr31sDM0NhGYsWgpFnXKbvlRb8tXBIBsroB6jIzNQLDR1IEURSHDM9DNB78wYlGWJdx3580xbFBLSLE0Lj42nIRMEA1JLfIsxLopFs3ritL55CQHONtDvuZdr7ShzQrVdX+xFIuWFWqgYjHi56haOXke98DB44C0dzMlKnT3XMTcIDhp1bWMT31jKR3NZl7TicE2i9+TWFTQRvg4wLZqFUkn9ylHxqJUc9wHnj5EmnZffcOZuPktExgZHgKEUvN9mqaRzaRMYrFD0ExsK1RZVprKU1/FokksZsxae71yFi87/zQwDB1oh9qVz4Km6UDFIgDs2DLuaYXa31MA61P7MgyDsaH+ZsakG3N2i1RFaP2mPLBpdCiSYtGdsZjPptusxY4usRhNsajrOn5+yz2JDepRRFKLJLCg6Ao0Q0NRcj6zrVfGol0VZeHhpYd9l7crwSzFnN0etSgWHRmKbivU3pSzZuBori2nMc3Ey5t1YyATbaKuA0ZwbmAzYxEG0h4Ti8IyFqsu9wSLWORdtYhFLHHgPJe3Kxat42pZtB7cexAA0Pfnfdj2wW3Yvq2dPEmn02tSLFLmpO04GYuGYTSJtUaIFbdF8tXK4bWINRYvCErrPOVTPO666S7fZWmGRr4rH6hYBICJbe2KxdWlVXA8h3x33ne9wdFBLM17T05yE4v2c7/umjw4ND4UqFgUBXJvp3kbsWjWfvbzBjAVi9Wjo1jkUzxomg5VrxqGgV037MJ5l53XsU2rG5quYbGxiOP6Oo9xSJAgwZFDbGLx9a9/ParVKniexwknnIBzzjkH+Xwe9Xodr3/96zdijAl+R5AzA4iFdVIszpbWoFg0ZwAtC6SYp1XBcaOzbBz5AMViPsVCkFvFWHeGg6S2F2epCEShhf48jzQf/rOzrFB13ddYzLF/mvcnUNzfB8dQsIsJqy7SShJFpLJO+xM37MdNEhvg01knscg4FYtvf9VLIdTroFNZUAyHfMpZhCuaAYZdm5KL6yBj0a7WCyOzLMViNQaxWJVUFNKs73k2vuUY3HPbjb7r0zQDluUCMxYBEMWihxWqZXdq5StO9mVRE9XmdzU4PIqleW9i0Z6xyNvOccZskK/UWzM4iWLRn1i0VK12YlFsNJDJthe462mFajABDWn3fjkWhvlgGUYsPnzPLgiNOs6/5IWRtv3gVAnHDucx2hOvuZjAH0kt8ixEzFnVvrCsUJXwGbaRwKZbxFjUBqFFFNIkD45SXWOxVIWcOVY54JrnXtcPFe9rOQBg8HiAjX499ILmsg5Dfhic4rwfGpQfsei0Qm3C5n7gaYWqGsikAiaI2CZVCSqpORwZi00rW4IzX3ElVooVZFMsMtZMccFZA2XTqcD8plB0YIVqzxH0JbPYFD69S8G8Rpq9xQjNvCjo6crjgtOPD7RDpSkafd15z+/onQ9ux9tu7wPS3di5dQJPH5p1uE8sLJd8bVAtTAwPYGrOj1h0ZSzS3hmLALB5bAiHg4hFwYtYFDzVsOtLLMZr5mUzKVAUFapYvOeRvVhcKeHySxMb1KOFpBb5/cVcbQ4PLjzY9ro7u3C9iMWqEu/ZyE4iWoo8N7GY5VrXJlmTHZadfRmnmw5Hc23qSy/iLg46IiGMYBWeRSwCQJ5rJ5E03YNYtH1uN2llqcvsCkQ7eDhrK9F06fFSLKYz5Hi97Y/fhqW5JdAcDSbjXTels2kocueKRd3sWcVRLNYr9SbpFWa/aRF062mFuuOUHbj75rsDl+/q7QolFie3TWJ5ftlBiBWXi+gd6A085wZHB7HoU0NYeZcWsWgno92q3eHxYd/tAC3ymbIJHIS6gHQ2DdrlVJbLE8VikEVsVGTy8foQFEUhk8+EWqFO7Z/CzMGZdbVBnavPQdEVnDRw0rptM0GCBBuH2MTit7/9bQhC+8VFEAR85zvfWZdBJQD+6WeP4eDy+sjejxSypoVUJ8Si7mFhOVNsP8/e8l/3Ycv7f27aMPrDUgXWJO/GjkUQsgHEYiHNOj5Ld6Zz4sva30CeD7Q2tWARixTLgUbwZ+UZGnSAYrEhOR9o3GrCStlFLEoi+FwcYrGdiEyxtEPx9ub3fhSZXEudpruKI0XTkc6sjXRhGQpqzGagla+YzmQghGQsFrpJY6wWYEvqRl00iUUfxeJxZ16Ae+64yb+JSQFdPb2hisWJrdtRLRcdBOTq8lJTsWjZ9G4fzKMua01r3IHhMSwtzLVvEJYVKoF9/LTZAC82Wsqd4dGJYGJRJA8ndps8PyvUXK4QaksbFRrFhi9kIsMzMMzlw9Srd91yPQZHxrF1x/Gh2y02ZEwVBZw20YO+3Noa+wlaSGqRZyHWKYeoaYUaVekXur0O7k322cssD0p2NWgaZuPRuhe7MxjtiGqFWvW+lgMAeicjbaJSraEueO9Pc9l9oTACykWe6X7XXEvl4H6fClYsqmB8c7ABtIhZAIJGgaZpcJxtH1IVK2Jr3P985V+324eKTnI0l4neKPVq8+igY1uhWjao2UzKX7EI4IM3KZD7dgAAipV1UvaD2KHeuOshyAFNzP6eLk/F4pSQxT65H2BT2Ll1ArKiOlSD88urGA4hFidHBzC9sHZicdMosUL1q6kaXlaopmLRja58FpV6Y12aeflcvOY7TdPIZdKB5wJAbFB7u/M4/7TwWiTBxiCpRX5/8cIfvhB//au/bnt9RXQRi8Y6KRY9rFCD0FBsxKJJbNmVVSWphCzrJBZZmm2SbP3pfsf2eIZvIxbtiscjBcqgAlV4kh6csagbusMKlaEYB9nkZ4XKp72f4dyKRS8ikqVZ1Kt1SBLZ1ivf/EoMjga72KQyKWgR3RO87lOGZrpfxSAWLbVeOpMOJRZzhRwoilpXYvH4M49vZvX5oau3K9wKdTupeadtDgqri6u+NqgWBkcHseRjpx5LsTg2hOJysc1G14JF3lKcjVhsCG02qACQLWSha7rvtuLAbeMbdZ0wxeKuG3aBT/E4/cLTOx1aG/aX9wMATh9av20mSJBg4xCZWKxUKiiXyzAMA9VqFZVKpflfsVjEL37xCwwNDW3kWH+v8K07D+Kvv+5vBfBMhEU2dUIsyh42otPF9oLml48Shdnjs8EFRcokQmqyd+FpKRZTPoQPQIhScZ2IRQtDhYjWjFaBSLOgQpqtPEuDDlAi1F3WtDzjJBarLmJRFkXwGX+bCABgbTOsJFFoIyIrM/vw96/8g+bfp557oeN9d/0razpSHvarbkimpWbNQ8HHMTR0PY4RKlEsUhSFsU3bQsmsfHd8xWJdVtGV5nyJxRPPvBCllWU8/UR7NoaFrp7eNvLXjcktxM/erlokikXy0FI2FYvHDuUdfw+OjmHZT7FoI4ZTNiKZViWkWRplofWgPDw2gdLqSvP7ccN6XY9ALGbz+VBiLwo4PgUlBs+c5RmouoFUOg2h4f8wZRgGdt/8G5x3yQsizbR9eLoMCsALTxj2zB1NEA9JLfIsxrpZoZr3kvUiFvn261Qo7EQik2pXHdZdjYsgK9Soyku3YtF+uYlog/rd//c97Dnknburum1O8+15fAbtQyxaig33NdPW3FvxmoHutz2YE0dsM8brCrFBtV+X9xycxbmf2ds8FC+88Iz2DbmJRQ+SyQ2riVeqtZ9jqoHYisUZs2F13NZJVMLsx/IFMAy9blaoAPAHF52FWkPA7fc/5rtMf0/BU7Fox86tJMfTbocaVbHob4Vqq/csK1S/jMXxIUiygqVV7zotrmJRVTVIa1CMWIirWAQIGRmmWLz2prvxkovO9rWZTbBxSGqRBH4ois5nNm2dJk3FzTK0kx0WWWgnccpSGTmuVd/IulOx6LYp5WiujaSyE5NHDHo0K1Q/uK1Q3epFL2KRoijwvPc2WZdNvEUa2YlFeVHG2/74bU0F4rnPC1eZxyGBvCxTLWIxjgPDsjnBZ3L7ZCixSNEU8l35SFaoQRBVsUnSnXDmCdBUDfffcb/v8t293aGKxU3bNgGAww61uFxE32Cf3yoAgq1Q3YpFnm6dD4Krxh+ZGAEAX9WilcNJMU7Fotd3nsuT32jY9xEFcTMWAZKzGGaLu+vGXTjzOWc2FbnrgUPlQ+hN9WIwm8TIJEjwu4DIxGJPTw/6+vpAURR27NiB3t7e5n8DAwN4/etfj7e+9a0bOdbfO6geKr6jAS/7zyCIPmReELzyCac8FIsW/A6NpYRLcaRIrPswCxaRyQUoFjMc7fjsPEsjx6/t4X2oEO2Ga1cshtnDpVgadICNaEN2zpTkGNphherOWJQkAVwIsdimWMw5FQAMpWNkfFPzb7e1ZJtiUTXAp8MLaItg07T2Rg9Nxf/NLC/Mord/EF3dPWiEkFnpTBYMy7YRsUGoyxp6srzvebb1xFORzeVxz+03+W6j0NOLaohKcnzzVlAUhamDTzdfs2csVkRyvI4ZtohFMpsyyAp1xaFYtHfxDAx1pVERleb3ODRKmomLczPwgmjO5lZtX49vxmK+AEWRIctrm5mXzeViTXLI8QxkzUA6kwu0Qj20bw/mZ6Zw3iUR8xWnSpjoy2DbUPBvKkE0JLXIsxjrRSxy62yFynVCLNruJ2wKlJvkrLmaDYFWqB0qFi3b0a6xNdugAoDqVizm25vmvlao1j3bRiSCZgGbg8OqV3OK9q9tNIpzbK8uU04bVAC6VMdwVwqD/WRiUM1r1rWLWHRvwwtlcza95tGw03TKPJej1yPT88vIpFOYHB0IValRFNBTyGO1tH7E4qnHbcPIYG9gzmJ/T5enqtSOydFBZNIp7DnQqgXml4sY7u8JXG9iZABT88ueqgtHxqIqhVqhAvDNWbQUi5k2YtFDsWiSgWu1Q+U4Fik+/sTEfDYTmLE4NbeEh57cn+QrHiUktUgCP6yKzsmvcRRjQai5s5pDINrqDkux6CAWZSexqOhKk1ikQLUpFjmPfFu7leoRQ4gVqqIp4HjOV22uGzpomy27m1j0yljkU7zvhBbOaM9YZDkWjD1GhGaQK+Sw7bhtABCqAAMQiaSxbMfXTbFoqvWiEIsAyVkMUw+GQdTEpvK1f7gfk9snA+1Qu3rCFYv57jx6B3oxta9FLK4uraJ3MFyxWFwqQpba89QtxaJ1HqRs+d12dTBArFABYGHaO2fRIp8tkhIIViwCR5FYDFEsVktVPHLPIzjvsvPWMjQHDMPAnuIenDl85rptM0GCBBuLyD5xN910EwzDwPOe9zz88Ic/RF9fa8YHz/PYvHkzxsbGNmSQCY4uvGxKAWChImKmJOCMTc6btKXyMwwDP3toFn902njoPmQP8nK2FL8puFQlTYOeLCny/BSLlpVqILHoQSIO5FOor3Z+Y7fsYsPQJBYZLtQejmdpUAFZcg23YpGlHTP63RmLsiiCy+QCDVgtpefP/t83sbK0AD6bh24YaDxxK7I7LsCWnSfh1d/+MV525lbIkggxJLPOUiyGmcUEEWy0oUPrQLHYPzyCTC4fmutHURQKXd2oxVAsarqB/rz/d8MwLE4//yLcc9tv8Vd/+w7PZbq6e0MzFlPpDIZGxzFtKhY1TUO5uII+W8Zilmcw1k0KVssadWB4DMWVJSiyDM42E1OWJVTLRVg6VN41G360O42SoEDRdKRYBkNjEwCAhdlpTG49pm18siSCYVnYf+Zio97MgLQja6pfG7Uq+L5oCl8vZHL5eMRiikW9KiGdDSYWd990PdKZDE4750LfZSzIqo4n5it4wfHDGMh3/lkStJDUIs9irBexaJFN66JYpLwViz/5O+DB/waumgFSHpMG7E0GNtVODsZRLEb9HO5tWvAj+2JCNVxdtZyHGsej8QjAlk1pJxYZ2Dt1XjabvtuDSSyan+1JfQvunDWQMa3KfrFXwbYtOo7vN3D7VWfjuP/vCSyulNuJGsMAJOe9P4oV6kqpih6f9xQDyOha63zWFGD1ALC8B1h6Elh8Elh6AljZ11RkziysYHy4H135LA74NKLs6OvOr6tikaIovPg5Z+KXt96Lf/2HN/jss4CnDnlPHrJA0zSO3TzmVCyulDAS0sybGBmAIEoolmvo62k5YBiGYSoWzfOgSSx6qwg3jbaIxXNO2dn2viB6KRZF5D2aeV35FrE4FEKMBqHQgfUYAOSzwYrF626+GwxD48XPTRpvRwNJLZLADyWp5Pi7k4xFwzDaXFHiKhbteYpNxaI14Yoi2yvwreutorWIxTyfB8s4exZ2hZaFHNuqj+6U78Rt07ehJ9UTa5yxoQM67V0vUgYFWZeRTXkTKKqmwoDhVCzSLsWiR8aiX74i4LRCvf5H12Nq3xRSpt129bEqCl0F9G3tw7t+9C78w1/9AwCEZtYBxAo1rKkRpBY0FFOxGKO2Xp5fRk9/D7p7u3Fwz8HQ5Qs9hTVboUqahCyXRVEi/ahzLj4Ht/3qNs/fgLXPpx57KnS7k9smcXj/4ebfURWLALCysILRTaOO91YWV9BjVn4MxTjOG7dicWBkABRFYWHGu55r2praTr0wxWKQPWwU0AwNPsVDkeK5MGRywRmLd99yN3RNx/nPP39N47Pj6dLTKMtlvHjri9dtmwkSJNhYRCYWL774YgDAgQMHsGnTps7ClhM8q/DdXYfwX3cdwi3vuRTd2VZRJaoaNN3A9++dwvt/9AgasoZXnbMpYEuAojkrJ8MwMF9pNYCikkVzZXLjS7MMUiwNQfFe0yIyMwH2QWmu/b3BQgqH1kAsprloImHK/MQUwwJa8AMJz9KgOP/mW92VscjRFJiQjEU2nW0jFiXbC2mWQaVUxBc/dhWy+QLGT7kQc7/+EmoP/RoDL78KqUuOJYHP2SxkSQxVAwIA68pp9AIhFr3VI5ShQzcAQzeAiJaTy4tzGBgaRTZfCMwItJDv6kG1Uoq0bQth9rfnPOd5+PzV70W1XEKhu6ft/UJPLw7ufSJ0PxNbjsH0QUIsVkqr0HXdYYWaS7EY7kqBQuucGBwZg2EYWF1ewPBYK4OruOyc7Z9x/RbGutOYWm1AUQ2kWGBgaBQURfkrFkUBqXTGYU0qNOoYzebw4Z8+ij88ZQxnbyXFfi5PmvSNWg09fQNem4uETDbnsDIOQy7FQi4JyGRzgVasu2+5HmecfzH4VHjz+cn5ChTNwEU7Bz2vJwniI6lFnsVYr4xFC+tBLHIZb3Jrzy/JvwdvA3b+Qfv7ditUNg1KcxGLDddkkaDsJPe6XlhrDlyEHEnFrVjk0lCZLFit9VkpX2LRbGQwtusgxTisUb3UcL7bA6BSPEDR0DQNx//zw+jKZzE62Id3feKr+OwvGviH55fxBzt4UOmeptVlmxpQqbe5Qtjz9/ywUqpgu9+4NIOQio/9GHjof4HV/S1ilc8B+REgNwhsfx7QPQnwOUIsDvWjK5cNVSwCQG93fl0zFgFih/qtH9+AqbklTHpkP/X3FLD7ofB97tw63iQWRUlGuVrHcH9IxuII2d/0wrKDWCxX6xAlGS1iUSSENOVdF/d255HPZnB49v9n773jJTfr6+Gjrunlzu273uayLuuCu3EF01sgCTWQEEhIQksM4U2AhABJCCkkJL8kJIQSCAECcQglgMHYhoW1ve51vfb2cuvc6TPqev94JI3aSJp777osc/jw8d4ZjfSMpJG++p7nnBNOstuKRVHon1ftbg/lQrD+dBOLa8Gw+Yo2cplU5Lnw7VvvxFUXnoNifuSG8FRgVIuMMAgN2TsBdTWKxbbSRk7wXpf8OW5xcJMdttrQJhspjoJmaF5i0aVYzHHBayIfMok545p4tYxl/M7Nv+P83YpyYlgLDMCgwskyBgxUQx1ohaqapBZxE4tu9SIQboUalq9IW8ZvbmLxE+//BBiGAS/w+NzffA5H/+MopvQpcNs40hexJrH02gkUi2kRiDnkjVpwsvM5nz8Hekd38hl1Uwc1SG7pw/L8MipTFaSz6Vj7S4AoFtdqhSprMsqpPuF3yXWX4L8/+984uPcgtpyxJbB8vpSPtUIFCLG496G9AGD1OuIzFiesyUlLc0seYlHXdNSX6w6xyPps+hVDIRa81m+E4zmMTY5h4fgAYrE3gFgMUyxm10exmMqkVnWfSmfSkYrFXTfvwmnnnIbxqfWzLN09vxsZNoPnbHzOuq1zhBFGOLFIbIVq40c/+hG+/vWvB17/2te+hn//939fl0GN8MyAZhiod1UcrHoLCkk1oBkGqh1iI5BEeSj7CIB6T/WoGJdbyazAlttkmxRFMtO6WnizzbY45SOIPj+ZAgCT+dWrjkSWhpgwB4U23YrFaGJRYJmhFIscQ7vdx4KKRVkGGzLTr63096XAMpB6pMCRel0cf/QetB+8GWMv/j1kzni2Y0WbypCGR5QCzFlnJp5YjFILUtaD2zB2qNWFeVQmp5FOZ9DrxI8xO6RiEQCm8tFNpYuveg4Mw8A9u24LfZ8oFuPtV6dmN2JxnhB7tWXSVCuO9YnFnMAizbMopDi0HWKRFM1L814LPbcNKhAkxDeU0+Q3alsK8zzGJqaweDycnJV7PYipjMfCuNftQMjkMdeQcO+R/vdLZy3FYoyCNA6pdBaSaoClkp0PGYGFqhkQIhSLjVoVj95/Fy69JqEN6tE6iikOF54S/SAzwvAY1SInIdbJLszBehCLfNpr35kUbsUiI4QQi1Xv327Foq+ZCE0G4jJyoojJJBALsYuoRrBeUgXftW0QEWhPkHKrJ32Wlv78PsMEWC4iJ4kmVqgdq0HT6UmYW1rBJ7/4TfzJtSJefHYJUDoAwyNnNWsCCjApuN+SKRYH72/NtkJ9/IdArwac/iLgojcD1/whcP1HgKveA1z6m8D5vwJsuw4Q8ji2uIwNUxWLTIpvHpXyOdTW2Mzz43lXXACapgfaoY4V85Hf28bm2UkcsfISF5bJvT2JFSqAQM6iJ18RcCkWw0FRFE6ZGR9shdqTkRIF0K4iuN2RBmYsAmsnFleTrwhEW6F2uhJu3nXfyAb1aYBRLTKCH35icTWoStXAa24FYhJIev/64c9YpDLk3hsgFhkOz559dmhDP1Sx6LJSPU0+De+64F04Z+wcAMBSb4CLwloRYYXKUixUXSVEYMjjn2rZsrvVZn6SKKBYlMMVizk+h6P/ehSn0GTyvGmakHsyet0eet0evvDJL2D8BeMYe/6Ysw2b8BxE1MiQUbiU1GNJrFAHEWxMhoGprU6xOD41jnQmnYjIyhaya1csGrJH+Xr+pedDEIWBdqj5ErFCHWR1a2Nq45Rj7dppdqDKaiyxaCsW/TmLteWaZ3tciE2//3c/OTsZb4Xq6lH0ugMUizlLsdhem2IxvcpaJJUZbIWqazruvOXOdbdBfaT6CC6fuTzUfnmEEUZ4emJoYvFjH/sYKpWgimRiYgJ//ud/vi6DGuGZhb0L3uaGrBLF4jCo9byy/IXm2huCKZ6BNICTs0nLKAVhGLE4VVidpRFAGh50QiWdbYWKBMSiyNJE2TgAfsUiy9CgPYrFuud9RZbACsHv2XIdIp6jHGLR0HVI7QYmX/unyO54LgAgbROLVoZenBUqADCpJIrFCILNUruE5XUOwvIiIRZTmSy67fjCeFgrVACYiCGjx6dmsPm07QNzFvPFUkBVGgaapp2HqFqVFMRll2IxJ7LgWRpjWR4dWYdhmhifJDZN/pzF6uI8Wad1nvjVdjPFFLqKjrbLTmNienag6lOWehCy3hzOXrcLzlKp2raqQJ+M7iQ4HlFIZ7KQVB1cQmIxK7CQNQNiKj2QWLzzJz+CYRi49JrrY9dnmibuP9LAmdM5TMSQyyMMj1Et8jSB3Aqq71aL9bJCtaFKa1dBsqnVWYm679ucCOiuvBbTBHrufUZ57Th9s+ehyfGka3Mu+v11gCey2vp+quC1laLjFIuejEXG8139ikXVoD1ZeH7oIFaoHYt80XUDna6E7/zLn+BN51ufUzoAKzjrCRA1IYRsWhSwt0q+rEKFX7v9JKh33CYAkxyzzARw9i8Ap70AmDkPKMwC6TLJAXWRW7YVai6TTkRklfLra4UKAKVCDpefvx3f+8ldoe+PFXNYabRhxJDcDE07DbiFah0AYq1Qpyol0DSNI3PeZt7xRfI7cYhAXQaowRmLAMlZPDw3OGPRn6E5KGPRJqObCYjeKKzJCnVAM+/m2++DrKh42XUjYvGpxqgWGcGPhrIOxGIvSCz67Rbj0HPlTAeIRYZcQwt8f1KRburgaA4XTl6IS2cuDawvTLGY5fqKaQoUTiudhitmrhhqnEMjohxiwTqKxbBwFNWqRViq3zfxKxZbjZaHRJIleaAVav1ndXAU5yxnmiYM3YDck/Hhf/kwKtcSS0xn31m3rkHWkkeZo9j42xvRVbtrIhYBwLB6XcMoZpcXiGIxlU0lzlhcM7GoyR7lKy/yOP+K8wcSi4VSAZqqxeZU0q5aZGWZ1BLliWgr1HQ2jUwug0Xf5KTqQtVZJ+Alo02r5+n/3U/OTgbWY0OWZDAs41HeDlIs2q91W2urRVZNLEZkLD5090NoNVq44vr1+83bNqgv2hLiBjPCCCM8bTE0sXj48GFs2RKUpW/atAmHDx8O+cQIJzv2zPtCrjVjKNUYAFTb3tn8C81kCsUopHkWsh4+DkUzwNAUeGZwwzAsYzHO1nK94LZCNbRoL3SeoyNncHcVHayL0OQYyu0+FlAsypIEhg8WNm3LVpahAJamHWIRALY/95cgbjzH+dvOkhRTln1DAjUgl4q3c2o3I2bLO8RisnNPkSU06yuoTEwhnc2h241v0g1rhUpTwFhmsOLCxsVXXofdO28JnX2XL5bRbjaga8kzOlYsK9OSpVhs9jTkUhx4lkYlK6CraNB0E+lsDql0BssLXmJxZWkBLMuBohnQhhbIIp0pkvNjudVvlk9Mb8DCAGJRknrgM15iUep2nGNe76qObWnGyVhcW9M0lclA1nSwdHJiUdEMCKnMQCL8jtt+gNPPPg9j45Ox6ztS66HeU3HpljLyYmLX8RESYlSLPE3wsQ3AX24B1OEaXqFYbytUXV77OrlU5P01EfxWqHIzOGFIjmjMaAm+R+vEE4se8wNrZrYqehvqFGvf73zXXUsl4CFpfYTtir+ZZ1BIDbAzAwCNYgGaRqfXJwsvPvc0vPCqi8jqKZMoR1neaQYF1ICWYtFw5Udm0iI+fY+KU/++BSm3KXTbK1HEor2fnGMWPaHMNM2+FWp2GCvU9SUWAWKH+sNd90FVg/XGWDEPwzDQGCLnZz6hYpFlGcxMlHF0IVyxyNluH5rstdMNwSnTEYpFSQ5Y3ba7J1qxuFpicbBi8du33InTNs3g9C0b1jK0EdYBo1pkBD+aa3UQAJy8ORs9rTd0VmOYYlHyOTm4iUUgnDz0r8MNt+LxyYIZ0WPiwHmsUP1qPZtYdJOJjK8WURUVkuvaq0hKqBWqH+7PnLLtFFz9oqv74/Ltu0GknV0DSbqUjFiMcBFwiMUh6mDbCjWTzUBTNSiyErn8Wq1QdUOHYigeghoALr32Ujy4+8FQQitfJP2EJHaoNlasWiJOsQgQ1eKSb5JTdZEQi6zV3/KoXK0h+n/3EzMTAxWLck+GmBI9x6bXDScWeYEHx3NrViymsqurRaIUi7t+uAvl8TJO33H6Wobmwe753chwGVy38bp1W+cII4xw4jE0sTgxMYEHHngg8Pr999+PsbGxdRnUCE9P7F1o4eHjwVl4B5ba3maQZsAYklhc9hGLi00JAjv06elBhmc8uYBuyJoB3mcJ6gfP0oF20Hj2ySEWPVaoejSxKLJMLLHIu/YlS3sVi+1WA7re31GKLIEJyY9r2xFJFPDjb/8Xdv7gO857mTFiqWmaJijTAGdtj7bUCUmsUBkxPDvRjUhSz3pY0OIs4yxUF0mxV5mcRjqTTURkZfMFtBvJZ6JmeBYCG9+UvvjK52JlaQFPPPpg4D07d7HdSr7denUJ6WwOgmjlSskqiikWPENjIiego+hQdQMURWF8aiZghbqytIhSheQM0KbmOV8AkrEIACvd/u+WKBbDMxblXg+8jzjudTtgrddWOopDLKbtjMU1W6FmIKkGuIRxAlmRhaIbENMZ9LrBBz5VUbB75y247NrnJ1rf/Ufr4Bka126fGGXvnACMapGnGepH1r6O9VYsanKs4j8WbGp1VqiedfiIxc5ycBkl4v6jJ1AsPhnEohG8jqkpL7FIs1bzzD9e+zi43RV8ikVdNzwkjqwDqYhmnk6x+K/v347P3fgD57XxUtH5N09ZY2D6ddsgxaLsipy3FW37aibJQgxBpGLRntyU8NxbqbcgK6qlWExBVlQoSnTdV8pn190KFQBeeOWFaLa72Hn3w4H3ykXrfj3EdheW66BpGuPleKvdDZOVUCvUfDbdd/vQ5EA2px+bZiYGZyz25ABZPUixKPAcOI5dh4zF1TXzcplU0LoXgGEY+Patd+Jl1wUVRSM8+RjVIiP4sR7ZgiuS1wmiLtWHXkdP6zmkGQUKLMUGVI95wTvpM4w8tBFGOoZlMZ5wJFQsAnByBm04ikVX38RvhQp4CTtZHqxYtLHr5l34+r/1LZELYz7C1mcjO0ixaEMyJJKxGIMoYlG3nquTWqGqioracs3JWATic/3WaoXatWIDsry3R3DJtZdAVVTcvTNozZ6zcpijvrsftSVC1JfH+4pFSZPwhYe/EPhNjE+PY9lXi1QXq6BpGow1ycmteLWJRf/vfnLDJJbmlzw9NmfbPQm8yEMz+3VirxNuhQoQJeVaFYuD1h37uWxq4Pm66+ZduOy5l3ns5dcC2wb1iukrRjaoI4zwDMPQV4HXve51eNe73oVbbrkFuq5D13X86Ec/wrvf/W689rWvPRFjHCEEm//gO9j8B9+J9RdfTzz/b3+Ml/z9TvR8mX3H6hIkl0eWrOlDKxaXfBmK800ZxfRwNxR3JiNASB17GKaPIlR0AwJLBwgTN2iKClhA5p4k5ZFthUqxXKxiUeDoyMZnV9E8JC3HUp7vbZomOi1XAS31QHPhxaxpGqje8ln865+9Dwce3+O8zjoKR0IsMr792uvEN6LYRMRiBLmmD6dYXF4kjdixiSmkM1kosgRNDd/X2QteAtmgkcsXo8fgQ8ayH43DjgsvRa5Qwo9v+nbgvXyRzK5LkrNoo1ZdctSKqm5AUg2MZQRQFIWJvIi2pDm/0crUTMAKdWV5AWPjNrGog/FZ+I7nBNAUsVi1MTmzAUvzx0MLaEWWwKf7D5+6pkHTVCfLUzNMzFsqZV4QwbBsImvaKKQzWciaAS6hYjHDM5A1A0IqjW7I+frQPXei227hsmuT5Sved6SOUycyjrpzhPXFqBY5CbHeisUkFqJx4IThiUV/XcalvBOE/PmKQDSxqCnx+6Z5PPr9dYASMoSgFSppnpm6j1SzSbYIxSLgtUOVdQoiH14HmqaJT/xoHq9571/jnkeecF53q9EE2how238toAa0FIuy2d/OajMW7caKagxHLB6zZsLPTlYclVycavFEWKECwLPOPhWnzIzj6zftDLw3ZqkEkuQs2lio1lAp5cHEqAwBkrN4xE8sLq5g2tUIhC4DDBs5efGUmQmsNFqhNqI9OblikaIo5BNa00Zh9VaoqdDz4N5H9mFuaWWUr/g0wagWGcGPthq8NpumiaXuEnb8+w789NhPY9dRl+uRfyeBrMsBAs1NooiMGGjeRykWBSZIrqW51dkrrgVJFIucVTtoPvW9YtnSuxWLfitUAGi5Jg/JkuwQlWH42Q9+hg++5YN45L5HnNf8RKR/P8cRdj2tByEVP5k9SrVnqsNlLNqqvGGIxVwhh06rE2uRPgj2byXPeQnu2c2z2HLGFtz2f7cFPlMoEdJ2GMVibbkGTuCcvEIA2N/Yj90Lu7Gvvs+z7Pj0eMDCdGVxBcWxomNA4SHgNfJ3S/URizOT0FTNUUu6IUsyRFH0HJtBikUAyGQziaxpo2Af02ExyAr12MFjOPzEYVz+3MvXNC43Hq89jobSwAu3vHDd1jnCCCM8ORiaWPzoRz+KSy+9FM997nORSqWQSqXw/Oc/H895znNGWQJPAY43wm1yTNMMEG3rBb+6cKEloaP0CzdZM4bOWPSvc77RQyE1HLHoz2XMCP1GhumbjaZqRFUXRSwCQTvUJ0t55Fih0ixMLdqGQmQZmBGNz7asecgthqbhj3p0Z/gpsgSa8xazHVmDofSw9D9/jpU7voFf/b0/xvUv+yXnfZoXnXXSMAJEVCLFohBf8LSbg8k102rcagkzFm2Vnq1YBBBKKKm6gbHn/zYebrDIFgpoD2GFmhOSEYssx+HK61+MH3/vmzBN09mXBqhVEYsry0suG1SyX+ycv6m8gLasOftpfHI6YIVaXVpA2bL7pAytPx5dB80wYBka4zkBjV7/dz8xPQtd01BbDlqQSVLPY3WrKuScplyWu/MNK/eDopDO5NacsZjKZCFrOviEd7k0z0I3THBiuBXq7bfehLGJKZx65o7YdTV6Kg5Vuzh/YwnldLx9zgjDY1SLnIRYDztVN5JYiMaBEYe3QtV8Vu6sCMqdsWgrFt3NLCXiHqkr8STVCVIsKi7CLcxaXk7P4IEFHRJDru8MZxGL/glRNrFKD1YsAkDV1SiSNIRmLEqKijf+j4S/+cFRfPRdv4Lf+9VfcN5zq9GEUMWi7xyTmwArwHA9DvmJpzCEKRZ5jnw3RbOJxWTnnq3SsxWLQHyuX6mQRbPdDZ3IsxZQFIVffsFV+Pr3fxpY92qIxfmlWqwNqo2NU2GKxZqXWNQUgOLQ6UnIDFBzbJohk6IOzwVVi92eN2NR1w1IsjJwXfnsOhCLq7ZCFUMVi9+65Q4UchlceeHZaxrXCOuDUS0ygh8dNXg/V3QFDy8TJfhNB2+KXYefSPRboyZBT+t5CBCWZiG73BNSbPDaNKxi8cl2ZKEZGmbEBGKe4qEZmmNZqfliRGw7WTfh6rdCBYBGrT+JWJGUUMWiTVp+96vfxat/89V4y++/xXnPb2Pq33exisWkVqgR5Jo9vqTEom3/OT41PhSxaJomOs3V2XR2NPI5v3IWAK596bX46U0/hSx5a+p8ybJCHaIWWVlaQblS9pyvLSuCoKt5v+PE9ESoFerYZF+Bbp8/uqaDpmlkuWyoYhEAFo8F+yJyT4aQEjyKRak7WKWazqXXbIW66ozFTArdTjcgZtn1w13gBA4XXnnhmsblxl0Ld41sUEcY4RmKoYlFnufx1a9+FXv27MGXvvQl3Hjjjdi3bx8++9nPgudHDdQnG4MUix/4xkM4/YPfxWIrnHhcT9S7KmrtftNMWUXGYq3jJc/mmzLy4nDE4nyAWBzcDDQBYoUaUw+nQ3IWnwzYVqhIqFg0rZ+yHkKqtSVvRh5LU4EHgVaj7vxbliVQrLeAXmrLWPnhv0I6dD+2vOaP8LI3/AZkqV8U07zobIMyjcB+TUYs9h9wFCm84I6yITUtexM14blXXZxDKp1BJptDOpuzxjlYAaCAQa5QRK/b8Sgbo2bp5RIqFgHgmhe+HMePHMQTjz7oHB8dLPIF0lQbWrFYIcSirSqcsvJBJ/IiZM1A25oMMD41g6WFoBVq2VEsag5RrBs6GMvKbiovoiWpDkE5ObMRALBwPJizKPd64FL9WYKKYpGIFrFIAai6rgGZbDaU5B0GYjoLVTfBMwkVi9ZEBDadC5yvpmni9ltvwmXXPC/RQ/SDR8l5+twzJ8AyQ99mR0iAUS3yFOErbwB+8CcnZt3rTSzqCZR+cWCFUGVdJFRfI4ZLgTLcisVl53UHSgfIzQDn/BLgVwDoSrxNbCM833at+IZ2NW64iVybZS14LTW4DM77VAdKnmQRMtakJNNv4W5/f7dyjQ5aWrptNnuaGZqx+Fdf/B7++1EVn3z92fjg77weXVfTKVSx6FIKBIgaqRHY327F4sJy+H03jFwTLIWEMqQV6rGFKiiKwlSlNJRiEQDqq2zmReHVL7oKi9U6frz7Ic/rY5b9WJQNrB8L1TqmEmQaAUSxeHRh2fNcM7e0gulx8nkKpqNYbHV6Awk7m1g8dDyYbeTPWLTzOcOsUIGnmlgMz1j89q134oVXXQiOG2U3Px0wqkVG8EPWZci+CUbuvMMkaEje593V5DZKmuQh0Dia84wjTG3ot+x0I0yx+GSD5/lIYpG1bM1pa1bpIGLRTSYyIZOzA4rFEFv2r3+GWJ/+wq/+At72/rdBkfrPsf7l/cSi1Ik+H2RN9lhXNqrh/Y8oYlG3bCb0hM4dtv1nZXI4K1QAq7ZDta1Qw7I6r33Jteh1eth9227P66lMCizHesjfONSWayiNe2uRpkr2Xc/37FGZrqC2XIPqsqSvLlZRnuhPcrIVqDaxmOfzgQkFk7OEWFw4FqxFpB4hjh3S1yDE4gm1Ql1txmI6BV3TPfsDIDaoF1x+wUCV5bAY2aCOMMIzG6vueJ5++un45V/+Zbz0pS/Fpk2b1nNMI6wDHj5GbrZ2g/tEY89Cv6BQNAN6QjtKG/We6rE2WmrJkbajRgiherzuLQyiiEWAZCj6lXV+PFXEIoV+xqKhypHLiiwDwyqQ9RASsqNo4F3kBhfynZv1vk2DLEmg2H4BrOsallsyile/EVNv+EuMnXExaAqQev0Ch2IFsAxZLw0zqFgcQBKxrplalMt+tbkSnN0FeAlQP2zrtaTn3vLCPCqTJBsyZSsWI3IWNZNYoQLevMOF4yRbLFcINs/yIufZ91E4/5JnI18s47bvfdN5TQWDTMGy/KgHrTQGoba82FcsSmS/TFi5iHZOaL1LzpXxyRmsLC14yNKVpQWUK6Qgpg3NIdMMXQNjZUbOltJoShoUi1icmNkAAKE5i7LU81jdqjI5p20Ce6ogYqWjOL/rdCa3ZitUWyEpxM0esGBfL5hUNkAsHj24D8ePHMSl1yS0QT1ax2wxhdMnn4LskZ8zjGqRJxl7vg389G+jFXarhRb30Gxd2zUZUBI8YCfJJowDK4TnueXIvSPUwtS/b3wTddBZBrhMX61nmoSMnL0Q2PFLAOtrYCUhSJvHvUTlOqGNDD59PwWGoUOJRQcsub+wvPVdDb9i0bZCddVlFAP4bOrdhF1PNT2KRc1S0L3z1c/FT96cwQvOnwUAdHouBYYQQiy69kvQCrUBsCns0Tc5Y3ITT/uPzod82XByzSEWtWGJxWVMVorgOLavWIxp5tnEotsOtTqELVgULt5xOjbNTOC/vvcTz+spUUBKFIZTLC7XMFkpJlp2w1QFna6ERqv/+yHEImnm0RQIwU5HE4vT42UwDB2as0gUi/1a0yaaw6xQASCfTcWqR+Ow2ozFbFqEJCvQXBlhxxequPvhJ0Y2qE9DjGqREdyoSl7Lc0WPdh/yo6E0Iv9OAlmXPUQhS7OQNBexyIYQixFWqFFqxicLLMfCjKhFeMpyTeDJMn5iUbUmPbmJRU9eHogq0k3YyVI/Y5Gf4h01/yve+AoAwIVXEcWW5JoIIoo+xaKPsO3G3FdkXfZYodYGTHKKUu0ZVkxRUsXi8sIyBFFAtpB11G1xKrlcgTznuolFN8EaB5tYLAjBHOZTTj0FW8/cilu+fYvndYqikC/mh7JCXVkkikU3Olat7lcsjk+PwzRNxxrW/vzYxADFIkOjIBQCxGIml0EmnwklFmWJHF/dqu01TYNpmpFWqGtVLK46Y9Eak1tl2262cf8d9+Oy5162pjG5MbJBHWGEZzYSTXe84YYb8NGPfhSZTAY33HBD5LKf+MQn1mVgIzwzkOYZdBUdexda2Fjq56UpCe0obTQlDapL+dWWNeQiFIuNbpBAm/PZwmb46NObY4LKPT/SEes4EeYftvqNtq1QGRZ6HLHI0U6GZFhGYMdvhcoER+4m7BRZcmb4d/bsxN/+51fxyj/6N7DZMpAtg6ZI/qSXWOTB0X3FYtAKNbyAntXnsV8pg0vlPLmOrZXl0OVbrQbKoe8ApqoAED3nURSWF+ccYjETYYVqQ6cYZwZfq1FHsVwBABzY+ygAYMvp2wOfyac4cCH7OwwMy+Kq570Et33/m/iV3/l9AIBGMaAZDql0JpJU9aNWXUK5QmbtN3sqKPQJxXFLuWj/hipT0zBNEytLC5iY2QBd01BfWcbY+CSwSIhFxiEW+4rFjaUUfrZvGYpmIM0DmWwOmVzeIVrdkKQuCi6rW1W2fqusAJpSsbmSwVy9B0UzIHIM0tl1IBbTOaANCAkVi/ZvnRGykHpdGIbhZGbdfutN4AURF1x2Zex6VN3AI8ebuG77OCrZp35278mEUS3yNIImA3x8Lu5QUGNm9HdXgEwF+FNybcMHFoABecAArGzCZOTOQAyaNTtzPrD4MFA9EHwvQCz6xthZBoRsX9moy2ScfkJxw8XA0d2WYjGGWGwvAEJu3VSfkqLCPWqB59DTzNinBta2Uffvd5topAcrFjmOtTIWyT7vKoRY7Cjknv66Gz6Onf/51yjm0tg0w+BhyqpTXM08j2KRChKLAQWYVAe4FO41tuO6P98N+ZfPQCbVb+AdWwjJw0S4YtG2QpXtGIKEatlji1VsmCT1RF+x2EUuwraqZKkE3JmUD+49CADYsmEq0XYHgaIovPpFV+Hz//ND/MMHf9vzXrmQxUo9uZvAwnINl50XrI3CsHGKTIY6MreEokWcOsSiDHCUtV8ZDu1ub+D+YVkGGyYrOHQ8OEGtK8mYKBedv9udGMXiU5ixaH+/Tk9CwcqF+s5tu0HTNF501UVrGtMIa8OoFhkhDtXe2ohFv61iU26CAgUTySdu+4lFv2IxwwVruChikaEZMBSTWAG3HmjWm8gX+zaZnMBFKhY5qy6wyoggsWhaxKKrFvFboeYKOTQbQWKxztYx+2uz+IeP/ANO33G6Q6rZcBMvtmKRKpIaJ2CFGuNKIOkSSun+hOV2I/y+26g1kEb4vXA1isXx6XFQFOVkEfY6PRQQJP1sOMSia7LVoScOASAEbRxsUi9MsQgA1730OnzpH78UsEPNFXOebcahtlzDqWef6nmtrZF96s4dBYgVKgAsHV/ClFVPVReruPiai3EQBwH0iWJN05CiUygKxcBkAoCoFkOJxZ4MMSU6x0aRyfVhoGIxl0Z1QD2aFHYPyzRNzP76LPTjyc4Lm2TudXpOvuVdP74Luqava77iyAZ1hBGe2UhELN57771QLcLi3nvvHbjck+2zPsJTjxRHirF9i22HWASAthwkuGyyKcwmtS1pgUzIfGo4m5/jNW9hEKc25BJYoWZC1sHWD0MrngL6BDgczh/ej5niOf2MRVawCLPBEDgGhk0shigWu4rutUL1/U4FMeWx2ZQlCSbNorHrv1D/8Rdw3pXXo666C/AgsQiGB2eRlxSMQHblICtUGiZgGuBZGhTVbwi26kFiUdc0dFrNwcSiNQtxgDtwAMsL85g9ZTMAt2JxcJGqgUE6RwqqVrM/c9QmFsfGg828Qoob6rp49Qtfju987Yt4/NEHrVco6IaJfLHkycGMgq7raNZWHMViQ1KR4hknL9QmuzqyZYU6OQMAWFqYw8TMBtRWiBVZeXwCWDRIxiLdXzdtEYunjKXR7KmQ1P7vdnJ6AxYHWKGyrjxFxSIWTYYDz+rYWsngoWMNSKpuEYtrt0JlxCwhFtmkikWyfyiLAJV6XSd78/bbfoALLrsSYio+n+Cx+RYU3cBVp1UCGa0jrA2jWuQkQtiFelhSrHYQmIggLdbDCnWQ9dfYNvLf6t7ge/58pQCxuEhIWZtYlNvh27rqPcC9/wHsvyXye1CmQcjK8hagHa72Hxb3PTGHy1yiG4HniGIxjlgUrO8aIBZtxaLrmkh5icWxYs5SApK7fEc1kMoI+On9JNQeRwQAAQAASURBVJfqlOlxFHMZrFj9Pt0mFnv9RqknY9FRLLpq04AVapOQ0/Y4WMFjhTqYWOwToM72/FaoZlLFYhWzVnaPTSY12zHEoq1YdDUbbWLxtE0zzmv/uHAROofuwftePrgxGIZXv/Aq/NVn/hu37X7Q8/pYMT+UYnGhWk+csbhhipCrRxeWseOMLeh0JbQ6PUxPlIEjLmIxRrEIAKfMjIcTiz2vFWq8YjGN+QFKkaRYtRVqhpyHrU7PIRa/feuduOKCMzFWCuZRjfDkYVSLjBAHP7E4rBVqU2kG/hYYYaj1yLrsIQ/9GYthxGKcKpGl2XXP9o3Cnvv34JJr+gptnudhRExe52EpFllyH9Y171hVI4RY9Fmh5kteNZydsbj3vr04+M2DmN02i3wpD9PXz5JctYidj0hxA4jFJBmLbnX9AGKxWWsOJhZV8t0HxSb5sTy/jIp1HxbTIiiKQqc1vGJx/579AIAtZ2yJ3WZX64KjuYEWvNe85Bp85q8+gztuucPzeqFUGEqxWFuuoTwerlh0q3gBolgEgKV54npgGAbJaHRboVq/E13VwTAMikLRUV+6MTkziYWj4VaoqXTKIRZVq28apVg8/MTh+C8aAZsg1E0dpatLMH6WbCK+o1h0keG7bt6Frdu3OsTrWmGaJh6uPjyyQR1hhGcwEjE3t9xyS+i/R/j5RFv2NkvGswKO1noBxaEfhRS5UbSkIPnVljWovhloxdRw2RTHfFaoaSGeWGRiHvrC7FSphJYSw6B60z+DzZZxJPUsPOvcc5ymK8sL0LRoxaLA0i5iMbjfuwoha2wwDOUpMnOFIloWaWWaJlRFxhP/92+oP/QTFK54HV7/e+/EzYdUpBgTPZ0CQyNghWoyrGOxGq5YjCaJCLHYP95hisVWsx65jjjLWD+qi3M492Iy0ypjZSx2u20A4eedDgapLGnmtF1jOfA4IRbDGgilzHDF0XkXXY5ieQw/+f63gJmXASBEfL5YDmQsGqwAI+QBsLFShWEYKNrEYldFVuhnPRZSHFiacn6j41OkCbm8cBwAsUEFgLGJKeDh4yRjkaKgKgpM0wRjZWTNFFMwTKDakTFl2axOTM9icT7cCpXm+w9ItmLRpDnwjIItlQxakoZGT0UxzSOdyaE+QLWaFIxlvSom5PZshTPNWzPzuh2kM1m0GnU8dM+deOcHP5ZoPfcfraOQYnHplkEU+AirxagWOQlg24L6M/gAQFsftZ0DU1+7YnFQk80myKr7gt8l1gp1iVihYsm7vF+xCACpEll/xPdgtTb5rsL6kQ13PnoElz23/zfPceipBhAhEAX6ikXKP15dJQpF94wsmoE7kaFcyFkKPCtXuKfjuw/di5/d9xgA4C/f9xbksmks8Tn8+JAG7jwym99DLLqsUwVaJ4Sha/8PskJ1E55u4imMWFQU1SKkvOcGa90bZXuyzRAZi1deeBaAvnIuNmPRaua5rVBtYpFj+9/lkFrC/z6awfsy44nGYuPCc07Dlg1T+K/veu1Q++RvPHqSjGa7m9gKdapSAk3TODpP9vncErF/nxknxCJLW3WrTSxGKAE3zUzg4LFwxaKbfLYVrFEZi3sPBmuaYRBFEEfBJjtt8rMnyfjBz+7Fn7zj9Wsazwhrx6gWGSEONdn7zKaG1TwR8CsWW0praGJR1dWAFao7+zFMJRaXo8hSLGQM97y9Fuy5z0ssJrVCNRhyHx6UsegoGwFPDiUA5Iv5QMbiQ3c9hIfvfhilq0t4+S+9HPliHo0Vrz2t2wrVtk617a0E2rtf47ILFV2BmE5GLE4hnNzRFCsiZgjF4sQsUetRFIV0Nh2rrEzn0qAoykMsHniMOHmkE9z7eloPKXbwvXzj1o049exTceu3b/W8ni/lI21g3TBNk2Qs+vKebbWkX7GYyWWQzqaxNEdq9GatCV3TUZmsAFZZ4c9YLImlwHoAYHLDJB6444HA63JPRrFcRMsk+83OLxxELKaz6dhzJg6BjMWE8838xKKu67jjljvw0te/dE3jcePx2uNoKk28eOuL122dI4wwwpOLE6C5GuGZDDuPLQq1jldBN5kXMN+UPIrDVi+4HtYim5q9cLtO1TUDjaaAcmY4YvF4w1cYJLBCpWMki9mYnMb1Qvve76D+ky/i0J77Pa/TnAhViVEssgxsTlYLUTd2Fc3Z9wDA0LSjGAOAfKHkkFb269W9uzH20vegeNUbQNM0ltsystasOwYmaJqC5LY3pbm+YtHUA4TtIMVi/zvQnlzHMMVinBVoWL7kIBiGgeriAioTpBgX04SEispYVEEjlSVVWLvRf5jYbykWw1AekhxnWBZXPu8l+MkPvuO8phsmcsVSIGOxfdoLsTB1uSebFCA2qABQrpBGYr2nIieyTtYjTVMoZXi0rQeOTC4PMZXG4ryXWCyPT0LfexsynTnQNOWQw3bG4oYiKTSr7f45NzGzAQthikVZ8mRoqgp5KNXAgGdpbKmQ/T9XJ+dfZh2sUGlLIZlKrFgk38sep33O7t55Cwxdx6VXXx+7DtM0cd+ROrZP5TGei+nAjzDCk40DPwH+pAAo60zgDQPbllILaY65x+XP6IvDoBnZayUWw8g+N+qHiOrNDX/+Y5gVKu9quNgNxLCGHitYxOLgxhBrKxvWkVi841GvpbXAs+gp8ZOqeIEcX8qv1jO0YKYixXj+JKRVf18+vqLj7kf24zmXnQeA1C4AYDICrvl8F3KBzIb3WKG6iEWe0sm+dzUNA4pFuRXI0XQrFo8vBolFt/2oG/bkoqGtUBeqmJ0gKgGappFNp2LtN3OZFBiG9hCLD+wNseVdJWw71P++6acedcowisWF5ToAQhgmAcexmKqUcMRSCdjE4rSlErAVi5pBQ5KVaMXi9ESoYrEnDa9YXKsVqq08HPpzVlO5bTXzbrnjAfQkGS+99tI1jWeEEUY4caCsm1pN8hKLijGcFao/r62pNCH4JylFwIQJRVc86h+e5j3EZBixOEg5ZsNPwlkbO2F49F7vMzbHczC0wbWITRiaVgyGpoZnLNKuSU7+jEV/fp/UlfD4Q4/jrBedhZk3zzgTbP1wE4u2Fapd4/hVWHGKRVmXHdUj0Fe0eZaRZMdCMwyOYjHhAVqeX0ZlsoKu0sXnHvocUsVUrGKRpmlk81kP8bnv0X2B5cRO+H1QUqXQrE83rn3Jtdj1w12Q5T6hnS/l0aglyx1tN9pQFTWgWLSJwDCyfnxqHItWDWFnLYYqFq2MxbJYhqRLgQkEEzMT0RmLtmLRJhYH1CKZXGbtxKJ/3UmJxbSXWHz03kfRWGmsqw3q7oXdyHAZXLPhmnVb5wgjjPDkIhFr8qpXvSrxCm+88cZVD2aEwdj8B9/BObN5fPudVw31uaS2kDZ66vD2FlMFEXcfrqOr9D/bUQY385qSBsMwPaReV9Ehu7ZdSHGOzWpSzDckcAzlKB/jrFBZhg5YdvoRplg8kXjsQa+lDsMLxG4n4qsIrDtjMVyx6M7542mvjSlRLNYxf+wwBJEUd+e941NY4UijyzCBWlfB5hywJLmsUKV+UWzQLHiaBjQFotELELa9GFtLnqVhmv2iu70SbOb5FXt+GDGWsW40VqrQNNXJWGQYBmIqTcaZCVeaaWDACiIYlnXUk4os4dih/QO3U0gPb+dwzQtejm9/7UuwDWo03UC+UES96iVbTUaAKubQVXRkxf55urJMCuGSRSw2eyryKc6Ts1nJ8ujKOjTDAEvTGJ+awfL8HACgurgAmqZRLFdg7LkZGza9AjRFOdakdsbijEUs1nsuYnF6FotzIYrFXg80138gVmQJFEVBNSnwDI0t4+TbLrZJcb8eVqjgBAAyYoTLDuzrBcWTcUoWsXj7rTfh1DN3OMrOKByr91Drqrh4c9lRaI+wfhjVImvErn8k/93zLeDcV6/vum0l/96bgDs+BbxxwP63bSnDiEVtlQ/N938F2PkJ4Dd/HMxc9JN8w8JPCvrRrQJN32SKOCtUOyvShm2FGrYtRgBg9m1TQ8CpVgNMDO8SmE6FMBimrnmWuXOP9zsJHIeeGl9QcpZ1V2B7tmLRDZqG6rLSJorFNo4stTClmyiJFP7qvb+KfUeX8KPb70cAlrVY15W9kxL7TVGaAtmnVP/eF1ACyk2A2eJZxk1OHgshFuMUe5JqkJotAbHYk2RU603HChUgZFacYpGiKBRzWccK1TAMPPT4odjtDYNXv/AqfPzTX/O8Vi7ksP/IfKLP2xaikwmJRQDYOF3B0XlS69ik7vR4GXPoE4td65yJUgJumpnAsYUqNE0H61JwdiXZc3wdxeIAkjKfTaMZcyzisForVPv72WP81i13YOvGKZy5beOaxjPC2jGqRUYYBIqiwNM86nIdY6n+dX3YjMWu2vW4C7XVNkQm+SQFw/qfJ2OR4Tx2jXk+OBkpKmMRCNqGAgCt0TC4/r3cn1k4DKSe5CHU9ty/x7Mf4ohFwYpV0Vly/w0oFq1JT+4x+snSXDGH44eOo7pQRbaQhaqqeOM734j5sXkcogbfZyXJa4WqGzooeoAVarsXaVGqGF7FYhjirEC1EPewQTBNE0sLS6hMVbC/uR/3LN6D7OYsup34GjpXyHkVi3uCk5zOPXIubvz8jcDd3td7eg9pLoZYfOm1+Le//DfAdSvOFXKJrVBXrElKAcWi9VuQQ5zBxmfGHStUO9twbKL/e+ZpHrquk4gYmnZ+602l6fndT85OotPqoN1sI2tZ2AP981w3klmhprPpWJI3DnbGog2qkGzitf05mwzf9cNdKI4Vsf38ZPnZcTBNE49UH8EVMyMb1BFGeCYjkWKxUCg4/8/n87j55ptx1113Oe/ffffduPnmm1EoDJfhMcJweOhYE9IqiL8TjcmcCN0wcbjaLz7aEcrHlqRB8fnja4bpUUsWUpyHDIuDppuodVXkxf4NKR2nWKSp0IzFM6dzKKd5sDQVS06GQbYIt3aI6s4Pf07B/sce8agJGU5w1F2D4CaMBlmhujMWOZaG3OtXZ/liCUcP7sNv/eL1+MZ//BvZbqbgKD1asgHDBIqipXijzIAVqkEx4FgKpiaDM/rjt4vmJIpFuIqJVn0psEwcsagrye1hlhcJiWYrFgEgncmiE5WxaDIwTCCXL6BtZSwe3v84DF2HIA6YYbYKYnrHRZejWO43nVXDQK5QQjNEsamLBfR8ZHLdUizaGYtNSUVeZD3nyXhWQEfRoFkk/PjUDJZsK9TlBRTLFWdGpk0S9zrkGNqKxYzAIi+yaLjUyZMzG9Btt5z9A5BzQJZ6HuWPKksQU2nImgGBY1AQOYxleFQtNXQ6s3rFIsuS84ixFEFJo1oFlmSuUpZqqNtpQ9c07N75I1x6TbxaEQAeONoAx1B4zvbxUbbOCcCoFlknnAA7b9SsRsLXfhXYdzMw/2D4crw1ZSKMWPRnLBq+cQ4i15rHgaW9QCMkf0RZ4wSFJAqBI3d5/46zQu2tAO4Z2koEsWh/NoJYZNUmIe1Eb5PQsPbfSjOeGGkuH/f8/cSxKqqupg3Pc+gp8fWnwA9ohBmqpVB0PXZQDLqu2fZjxTwOHlvAhTd8BR++TUZPNTFeLsZu022F6iaNABBilmacWqTd9Z13ctubsQgg42rmaVrwO8cp9pxJcgnUsscXScPLTSzmMvGKRQAoF7KOYvHgsQV0upLHCnatuOCsbdh2yrTntbFibqBi04+FKqnZkioWAWDDZJ9YnFuqISUKyFtNLdsKtaPYxGJ0xqJhGDi24K3DuwMUi5lU+H7LZ1avWLQtaUv5oCooCdy2uKZp4tu33omXXnvJqLZ4GmBUizzz0FSa+PXv//qTsi2REdGQvWoqd7ZhEhgwUJfrzt9tpQ0xbqKTe3sm2Z6b0OJozkNw+olFGjRYJvqhKUyxSGt06DJ+IlTuxu+DerUOAFj8xiIM1UC9Wse8azJLUsWiTocTi/b3d6sUaYp26iWAqOGW55fxWy/7LXzqzz4FRVKQL+eddQ6CX7HotsYUaWtfWFyiYRiRakNZJ4q2KMQp9rSISf5+NGtNqLKKylTFsQgVckIilVyu2CcWGysNVBerfSvYGEiahCyXjVxmdvMsTjvnNM9rhVLBY1cbhZo1ycmtOAQIqQmE/zbHp8cdK1RHsehSPHIM5yj4aIZGJUX6Ng3Fe0wmZycBIKBatBWLhvU85hCLAxSL6WwaiqyECgjiwHLkXLfzMG1QOSqQLxkGe0z2ubDr5l249LpLByp3h4Vjg7plZIM6wgjPZCQiFj/3uc85/5+cnMSrX/1qHDhwADfeeCNuvPFG7N+/H6997WtRqVTiVzbC0x5aRCh2GCbypFjav9xv4LUiiEVFN/pWUS4st10WBz6F1WBYliOWvWrepRLy5/z5wTF06AP6e553Bt7/4u0YywqrIhZtIrDXiS947GxDG5qm4ok9Dzt/05yQwArVTSwGl+35iEWepdFzkYK16hIef+QBnHXehbjyeS8BABhgnIykhkQK6bEU2RcMRWZkeohF0I7VphuqlXvY60YXpjxDw6RomJbqsF0LIxZXAq+5YYR890FYXiAPKWOT/aZZOpuLzIJUQUMzDGTzRUexuP+xRwAAm7ad7lk23V0AdG1VxCLDMLjy+n5x1ZF05IulwLkCAKBZLLS8BXGtuoRMLg9esJpSkoZCivMcn/GcgI6sO8RiZXIaywuWYnFpEeXxycCmbAUh7SokpwoiWpLq2LFOTG8AAI9qUVUV8sDGcI6KRZFlpNIZSJoOnqXB0jQ2j6VR6yhQdQPpbG7VisVzL7oMH/vXr4BN50ABTvZnHCiKQopnYFoEd6/bwcP37Ua72cBl1zwv0TruO1LHtkoWs6XVZSqNEI1RLfIMgD0DWxrQ8LAbY2oCYtFPgPrf9y4MtIJ2Q2smFkNm5ztgRZLBePwe3zYHW6GKjElIVSGEWPSrLYE+segnK13glAYgFDyTcwA41+WOFH9vrO27O/Da7of2Ov8WOM7jSjEIfGrAtc/QvaQiANC0Z2zzyzU8+sRhnLmhhN+7jIekASkxvpHa6boVi75mFisAFAPZsplSVQ2K9W8YGqDLAULXT076VQXxikVrPyXINbKJr2EViwBQKmRRa5KxPGBlGu04fVPs55KCoii8+oVel5RhrVBpmsZYMTmxtmGqgqMLNrG4gunxklOn24rFthxPLG6aITlRh+e8tWS3JyPtOqfaFhk7qEGWz6bRk+RQgjkOzzr7VHz30x9ZtcLQnbH4wGMHcHR+GS+99pKYT43wZGBUizzz8Cc/+xPsnt+NnUd3nvBtpdhUgGAYVrEIAFWpr5jvqJ2hFIu2Ms9DLDIcZKN/vyzwXuI71ObUBy4kd9pPLA4cUwJSxE0sPvIb5Bn70fv6dqgcz8FQEygWKXLN1n3Xbtt60v1dOZqD7HI+qC3VMH90HpXJCl7zttfAMAwIogCDiu6PuYlFMSV6iEXbxta2vAQQmV+o6ApSKe89zv1ZIIFiUdVA++uuAbDVeeNT4864ExOLhZxjhbp/D3Fx2rJ9S6LtyrqMLB9NLALAdS+9zvN3vpRHu9kOTNAPQ5hiUdEVso/ZVDixODWO5TlSi1QXq8iX8uD4/rkvMEKfWKT7xGJL9taHNrG46Mt8lnvE6tZvhTpIpZrJWZE9CRSkfsxsmsHHv/BxnPWsswLvzXfiHSg4gQPN0Oh1e5g/Mo8Djx0Y2aCOMMIIAQydsfjZz34W733vez0PYQzD4IYbbsBnP/vZdR3cCE8NbCvRpMiLLASWxuGV/s2uE2K/sLjUf8BXYohFdyZc5FhTZPZQ01JN5cXkRA7PDV5/MU0K8TjVY+TY5PhZQI0V72xqjhew54F+kzIRseiyjNVUb9GpaAY0w/SQjwLDOKpKAHjonjuRzmbx0X/8IlhLjaaD8hCLFIBSqq9YBLyKRR20h7y00Wm1UCiVocgS9BA1pTMmloFBMVj54b+gufsbMDr1wPLNRs1DavmhKUog23EQlhfnQDOMo+oDgFQmE5mxaIJCT9GRdSkWDzz+KKY2nIJ0xlsUi2oDaC9h23h8sRyGq17wMuffbVlDvlgeqNic92WLriwvOt9L1nTImoGxLO8h0SfzItqyBs2aoTk+OYMlV8ZieXwisB2/FSoAzBRSaLoUyBMzhFh05yw66liGg30aqkoPYjoDWTUgsDQYhsLWiSxWOipkzUA6k4HU6yZ6YPCDYVlc9OxrIasGeDbe7tiNNMfCsB42pW4Ht996E0pj4zj9nPNjP9uSVBxY7uDcjQWMDZkPuxqsWGa5Xe3nU70wqkWeobB/j2Gz9/1kYwJixoPWXPC1EEJOsnJaHj90PPDeUKBoIDsBLPlydv1kpkuxWOCs78RlXMtbYwyzg7KbgiHfI02R2oBTm0StOKApqCRwupCOPeT5u5xP4Y77H3P+FngO3QQZi4PU+44Vql+x6LLS/r/bdoPjWPzgI6/EWJpGTzMhCvGz3t2KxZTgu/ayAkDTaLQ6qJSIOsMh7ezzzUfoujMWAQQUa9V6M1I11rObngmsUI9ZFluzk30CIpdJoZmgeVTK5xwr1Af3HkS5kMO0L0NorXj1i/zEYg6tTq9PzkZgfrmG8XJhqFntG6fGcWRuGaZpWsRi//uwVlO3ZRGLg+xLAZKxCMCTs6jrOmRFDSgWsxF2czZ52VpFM4+iKLzwqotWrTBMiaRua3clfOuWO5BNp3DNxTtWta4RThxGtcgzA5r1TGurlE4kRFZEU/aSPlEZizap40e15yUWU2xyW2XFJNtzW6HyNO9VLPpymZMQi/48QgDg21bPBNGTKg2/C0UIbGLRxvTG6SCxGKFYpECBpVmopjWZSPPeq+zzwG2FytAM5F6/Jr35mzcDFPCJr37Csa/kBT6gWJR1Ged8/hwcNcgzr5tYFEShbztr9i1k2802CmVC6EaRdqqhghO8JK5NkNmIIxYVRQGdsNW7bDkFVKYqkKzaiM/wiYjFbCHrKBb379kPTuCwYcuGRNuVdAkZdz08ANe8xEs65Ut5mKbpyXYchJWlFfAC77ECtX+fE+mJUGJxYmYC1cUqNFXDyuKKxwYVIL8le98wDIPxNOm7tBQvsVieKIPlWMwf8xJ4Uk8CJ3JO/qWiKOB4zkNeupG2rNG7rdXVIpcMcDtIQixSFIVUJoVep4ddN+8Cy7G46OqLhh5HGEY2qCOMcPJgaGJR0zTs2bMn8PqePXsSFQwjPP2hDnkcKYrCRE7AQrN/Y26FEIvz8/2blxqiilx2Ka+yAgs2AbFoWMVIrUsKx+IQmXY8Hb/+1SgWbcRZmAIk68+N087a4SUWWR5KzHqECCtU27qMd9nKCqxXbXjFc14IiqLBsKxDOOqmi1iUdeRTHFLWduyteYlFKlRh2u20MDZBVIFRdqg8S0M3aZhKF7UfETvWWtX7oNWs15DLBfMgAICiGaiqEqtStVFdmEe5MuFpBKTT8bl+bVn3WKEe2LsHW08PzgAzQAOGlng8fpxzQX9WOiEWS5ClnocQtrHS8T6s1qvLrnxFcgwnct7G2VSBEIu2crgyNY2VpQXommYRi0HFYi+EWNxYTqPZU53fc7kyAZblsDjnIhatMRs02ycWLcWirOkQWRoMReH0iRyqHRk9RUM6k/NsczWw1ZDDHIK0wMCwHpp73Q5uv+2HuPSa60EnuFY8eKwBE8D1Z00munatFYpJxqkNmaN7smBUizzDEZJpAs13fUtAzHjQDCMWg9eQnjXZwbaRXBNyU0DtkFdd6bctdSkGCnwIsSi3idow7KHaUXgGmwkXpokyXOzOAUKeWI2GQE6gtqJsK1sLl2zfiDse6BOLPMeiIyewQh1ILCrB8VE0Oi6VwCuvvwKKqjnXz57qzUwcBI8Vqt86jCGKxWa765B3tv2lc76x3maofx02+WejWm+hmB/cCJOHUixWkU2nHLtPgJBZiRSL+b4V6oN7D+LcM7asu03medu34t1vegWuuuhsAESxCCCRHepCtTaUDSoAbJgaQ7vbQ7PdDRCLnGWF2kygWMykRYwV8zh8vF9H9ix1rJt8bnclRxkYBvu4rNYOdS2gaRqZlIh2t4dv33onXnDls8APaDqO8NRhVIuM4EeaTaOp+IjFCMWim9Ryw22F2lW7QxGLNrHmViz6iUV/Iz8sP9GPsGUYzXI0QvTnjQSOWH5i8cwLzsSj97qIRY6DHuOewNO8Qxb5+yKqTvaLP2PRTQpe+YIrAZOMV7HuG2GKxWWJkHH7KaLSk1y1iJASHEtRuD7WbXdRmSK1iJ1ZFwbVUAP3c5v8s9GsNUFHPG9qqpa4JlieXwZFUSiPlx3FIpthEysWbWLxwJ4D2Hza5sQTimRNRo6LdzWY2TSD17/99bjgigsAEGIRiLeDBYgVanmi7NkX9u9zOjMd+tscnx6HaZqoLlZRXagGiEWO4Rz1IE3TKAklMBQT+N3TNI2J6QmPYtE0Tcg9GZzLZU2V1YE2qACQzpFapNNeW86iHwvdEKeXEKTSfWLxvEvPcxSUa8Xe2t6RDeoII5wkGLr7+eY3vxlvectb8IlPfAI7d+7Ezp078Td/8zd461vfije/+c0nYowjPMlQI2aCDcJ0oU9ccAyFboyvezeEeFxyEYuZBErBOZdSq9ZTkeEZiJy3kBGiXMwSZDgmGccgaEkUizVvw+qMcy7AYw/e6/xNiMXkVqjwWXZ1rOPAuZZpLs/h4Xt3O39fdu3z0Wk1oWsaZGvMukk5+UD1no5SmnP2V59Y7O9/3aRCFabddhtjE4SkiiLteJaGDl8BveBtErfqNWQLg5tUiiInJvKWF+dQcdmgApYVagyR1ZE15Aolxwr1wN5HsOW0M8HkK+ioQYZntT0+94NCV9GQKxQBhOdMVjsqDNdxdysWmxJ5gJrKexul41kBumGiZb0/PjUDwzCwsryIleVFjFVCrFAtm1ia7f+oNpZSqHdVp5FK0zTGp2ew6FYsWmH2BsWAtY6PIkuEWFQN8CwDhqZw6kQWqm5iqSUjnSUPGavNWQQIqS6wtJMRmQRpniEKXzGFfXsexpH9j+Oya5+f6LP3HaljpiBi+2Q4+T3C+mJUizzDEaZY9Gd9rIdiUV4H8jAK2Umgu+yoBwEEyUyKgmk1sXKcVV8JrkaK0rJsVUMKFjubVh7cTKBgkPWtQbGY6s15rGYv2b4Bdz6w17EBFXgu1InCD9pSZzbhU+uHKBbnmypuvv0B5+/Xv/RaAH1FaU8zE2UGehSLAStUnhCLnR5mrHwdh7SzyWCfFaq/IebP6avWmw7BFgYnizKJYnGxig1TXrtEYoWaQLHoylh84LGD2HH6ZqQEHp0BTerVgKIo/N3734bzz9wGACgXyXGNs4MFgPmlGibHikNtz94XR+eXMbdU8xKLVlO32SP7NYpYBIgdqlux2LPyrDyKxU60YvGpJBYB8h33HZ7DnQ/sxcuuu/QpGcMI0RjVIiP4keYIsei2wlyNFepKr69Q62m9oYhFDeR+LTD96x3HcFCNwWrzMJvT1SwzCEmIRTsPz8b287fj8Yced2xUOZ6DHlPTCIwARVdAgXIyDW3YFrHuLEmtqeFnP/yZ8/crfuUVAIBWveVYpAqi4NirDoKbKBQEoX/8XWPotruoWJOcwkg7+zwJU7gGiMV6E/mIWkSV1cRWqMvzyyiPE3WdrerlUlwi6023Feq+Pfuw5YwtEETBQ7QOgqIryPHJ7NJ/4//7DZxz0TkA4HzvONUmQBSLJd8kJ5sA3JDbAMVQoPvqtfFp0kdZmltCdbEayGfkmb5ikbailbJcFm01+MwxuWHSk7GoqRoMwwDrcllTFRWpqMlSWculaBWKxSgs95bjFwLJeKwuVnHfrvtw+fXrZ4N618JdyHLZkQ3qCCOcBBiaNfnrv/5rTE1N4W/+5m8wN0eaONPT0/j93/99vOc971n3AY6QDLv2VXH7/ip+73mnxy8cA80YXgIzW0oDB0kxyDF0bBbPUlvGqZP9QkJkaax0+sVuKoFS8Md7+zORa10V+RQXsMIUaGDQJHvBIkgatSp4XkQqE5x9k2Qcg6DISRSL3hv69nOfhf/5j09jo9QDBIBiOWjtaMspgR08RpvgtW1K5eOP4S8//TGPvVi+SIqtVrMOxSKBNBOgrCKrLmnYNpkBS1uz/KxZ45IrN1EzCTno3vuqokCRJVQSKhb9593yoteeoVlfQTZfwKCSSlVVh7iKw/LCvDMuG+lMFovzxwZ8gqCjasjmCzj4+B7UV5axsryILadvx87icwEAumGuWqU4CD3VwIai1RBt1DE+NeN5v9ZRPNbCteqSk/nYtLJH7RxUG+M5cvwblqJxfJKsc3HuGFaWF0OtUKVuBxRFex5SNpTTUHQDDUlFxVJFTk5v8OxHR7FI9RWLiiwjVUlD1gyIHA2WprB1nPz+5hoSpi1isZMgp9SPew/XcPfhGkyDZHcOQ+6meRaKZiCVzuC2730THMfjWZddHfs5TTfw8PEmrj6tgkruxNugjjCqRZ7x0OQg8eJXMQ6rWGwvBl9ba8biABWggyyZhLFJdDU3wshMhvcqMsWCd3lGwEqzBxZdj3oNdlPQ36zwTSICnxmYB6kkUCyWzBog9b/DpWduxEe+8CPsP0LuwwLP9ZV4UbAuuA9QZ+NK9+uG6iEV75/X8bJ/+Ck0pp/taGfxdXoy0rAUi35r0xB0XEoDfz4iGN6xQrVzDNtdX7NLyAIItxoHwhWLZKzh55aUZD8561725CsClhVqO6FisdFGT5Lx+KHjeM+bX4VH9x3GfVbG0YnAcIrFOrZtnI5dzo2NU6SZd2R+CXOLJGPRhkMsyjaxGG27d8rMOA7P9a8JXavJ6T5H2l0JMz4lghsOsbgKK9T1QDYt4us3/RQA8KJ1sh4bYX0xqkVG8CPNpQMEQxShFwaaolFX6s7fmqkhHWaXPgA2sehRLDJ85DhsFV+70YZpmsiF5OOuiVhchRXqmeefCUVWcMDKEeYEkrFIYfDDnU0shsGvWJTnZHzhg1+A3unft91qOMG6X/AiD4NOnrEopAS0NOs+6SrX2q22QyyGKRbt4xN2nPyWuY1awxlrGFR1OGLRVlLKVi3OpJihrFANw8DBxw7i2pdcC6krobY0uK4CiHJP0qXExKIbNrHYSjDJqbZcQ9lnE9+2ng02ZkkGclftIuea8GcTi4vHF7GyuIJzLznX83mBEbDSJcS/7WqU43OhxOLEzASOHnBHxFj7V+zX7KqsDsxXBODYuK63YnFFWolfCESx+LMf/gyqoq5bvqJtg3r5zOUjG9QRRjgJMLRikaZpvO9978OxY8dQr9dRr9dx7NgxvO997xsqR2OE9cXrPn07Pnnz4ziysvaH3zCb0jjMFvuzbHiGhqTqHhWVH251IgBkBBY1V9ZOEqXgLY/5iEWRC6iTolZjK/A+/LtvwX/889+ELrMWkkhTkmQsehtWZ577LAB9Uo1muVhL1TALUhu2dRnP0ug8+mPM/+cfYHzmFLz6zb/jLGOr4VqNuqNY1AwTtKVYbMoGxrMCOGt/2XvEbYWqGsFxdC1SqDI5RZaPIBYFlg5ke1YDxGINuXxx4DpURU6kQiXrnnPGZSOdyaLXiS7YJNVALl9Eq1nHgb3E+miLywo1iaJjWPQUDXlLqdmsBwvAakdxLE0BoF5dQtFRLGqgAFSyPsWiRSw2rd+crd7ct+ch6JqGsQnvvgGAbqcTuMbPWL/75Vb/tzs+PevJWJRse13Q4KzfkypbGYuaAZFjQNMUNpTS4BgK1Y6MjJVZGZV56UdLUvEvP96Hf7x1H27fv4JjjR4EjhnqN5zhGai6ATGdQa26hPMvfXbohAM/9i60IWsGrjxtfE25rCMkx6gWeYYjCbFoDlmLdKuAYTgqOwCh2YRDIS5zKF0GGB5jnFuxGNym6VINgBW9uX5yE2AF/NqffBq//5ef8X7QzmdUfLXdio88EvLe/EIXkigWc4wC1A46f19yJmm23PkgsUPlORZyglw9G6Z/v+kqIWkpGncc03Hl5zqo5Hj86e++yVmkbDUxbQIouWKxf94ErFMZHopqQJIVzE7YxKKvmcdHZyEfX/Ted+MUi90ElrE2ji1UnXHZyGcSKhbzWaw0WnjkicMwDAPnnrEZk5US5pejm3lrgf29q/V4lcBCtY7JSnGo9U+PE7uyfYfnsNJoeUg/YoVKodFVwHEshBhbUL9isWspT4bJWHyqFYvZTAoLyzVcdt52TAyp/hzhycGoFhnBjwyb6efrWRhWsZhiU6hLdc9rqyEW3YpFN8kYBjtj8e//+O/xtx/428hlVgNTN6HHTHTyKxZPO+c0MCzj5CwmsUIVWXFgpqVu6qBAgaEZtB9pY99H94FhGbzzw+90lnGTVm7Fot8K1Q+PFao4QLHYclmhRlieh42/6pvk1KzFKBaVIYjFhT6xKOnke7BicivUdrONYwePQepJ2HrmVpQqJawsr0SSyT21BxMm8vzwTj9DWaEu1QKKxZbaAkMxmM3NAgA6mrduz+QySGVSjmJxzDcBjGd49KwJYLbLVEEooKMG6//J2UksHO0rFu3zZCjFomU9muR4JEbHa7cchVQmhdpSDZtO24SZTTPxH0iAkQ3qCCOcXFhVEJSmafjhD3+IL3/5y45f9fHjx9Eeognsxj/+4z9i8+bNEEURl156Ke68885En/vKV74CiqLwC7/wC6va7smIamd4qw0/ejEFWxi8Vqg0JNVA1MS0RR+xmBVZtKQ+KRNFlgFEGbbz8WVQXVKA1roqciKLppXL123VAQBCBNFk5w7WlpfQWUOW2yCoihw7O69R8yoWpzacgkKp7NiAUsyQVqg+2MrRe7//NSx/8y+R2X4l3vd3XwLNsph83cew8Xe/ipxDWtWIYpGiYZikkQgAhgnMlERkLPUmbysWXcSippsBG1qbFLKVgd0I0o5naSg+QtuvWGw16sgVChgEVUmesbi0MBcgz1KZbKz1pqzqyOYLaDXqOPD4o+B4AbOnbHHeNyPI9NWip+qOqjRghWqaaPRUR5moaxoatRWUK0Rx2OypSAtMQHlrE41tiwjNFYoQxBQee+g+ABiYsUj7miT2hIKVbv8cnZzZ4CEWZcsyVzMpR7GoaxpS6QxRB1rnDWORi9WOCtEhFuNnIpqmid0HV/BH//swHjzWwKVbyKxEWTWIFWrErFY/MgJRLIop8vB+6TXPS/S5+4/WkRNZXL61HL/wCOuGUS3yDIauOHbb/ddkeAqHYYlFqQ7oMr729a/3X1utYnHiTGDmAi8BGAaKBgobvK+5iMX5Gtm+6W7o8VlvnqJCFIvz1WaQwLCbgn6y8tDPvH+Lg2d864aBdoLMPhzv27BXChls3TiFOx/YC8BSLA5BLAZgaABN40v/txMfuU3G9VtZ/OSD1yLlck+wSSvb2tRWLG6wZveXC+Hf0ZOxGFAscmh1Sb1pZyx68gspJvYYH1v01mkrjZajrgxDXBSAG0dDFYvpRERWqZBFq9PDvY/uAwCcfeomTFVKqDXaaztWUdvMD2eFOmzGIsexmKqUcNdDjwOAxwqVoUzreCrIRWQR2ThlehyHji86dVnXIqDTYv94y4qKbEQzL595iolFi/R86bWXxCw5wlOJUS3yzINh1Re2gm09keWz0E0dt//4due1YRWLIiMG8toybPJcM9vy05TJ9W9lcQUCHT1RxyYNV5ZWBhIYa1EsAkHi0A+/YlEQBWzdvhV77iOTeTk+nliMVCwahGz76U0/xcG/OYjUlhTe9q9vQzbfn2Bkk1bNetOTsWgrzPLlcCLMo1gUBYego0xyTdBUDbIkOyRVFLGo+etjEPLPjVa9hXwpj95jPWw7ui34XRU1UtnpxtLcUl+xaEUV0AKdmFgEgAd3PwgA2HrGVpQnyjB0I1JRaJN5eWF4YpHjOaQyKTQTTHJaWVoJKBZbSgtZLuuoJf2EIEVRGJ8ex8G9B6HISiBjUaAFdDtdUBTlkLdFoRiYUAAAE7MTqC5WoVp1mU1WM668Jl3TIzMWxbQIiqLQaa2fYpFqUmgqzUSTHuyxrZdaERjZoI4wwsmGoYnFQ4cOYceOHXjFK16Bt7/97VhaIkTOxz/+cbz3ve8degBf/epXccMNN+BDH/oQ7rnnHpx33nl4wQtegMXFEEsrFw4ePIj3vve9uOqqq4be5smEE8BjoNZNRk7a215uyx5FFMdQkFQdpt/Y3gW/YjEnsGi7iMU4gmj/UpuQIlazbaWrICuyOH6INFiWjh4EEE0sChah4SbI1hOmaYYqzNyo+6xQKYrCGTsu6P/NstDUGGKRiyIWyT49+6IrUbz21zD2khsgiCKkXhfiKTtACxkoLGmctBo1KIoEysp02nbaac56NpczGEuT/ZViAF3XHSUlxwnQDBOibxydNin2xixlYJQVqsDSnmzPdCaLqi9jsdmoIZuLJhZZOv6S1ut20Gk1QzMW7RzBQZBUA9lCAVKviyceeQCbtp0Ohu3POIvLaFwNJNVAKpMDTdNoNrwPZIzVNJ9vkIeXeq0K0zRRGiMPB/WeiqzABuxyMwKLFMc4ilaKojA+NePke45Vglao3U47MPt6LMODYyjPpICJ6Q1YWVqAYp0fskR+X7pJOYpFABDSWeimiYzQ339bKhnUOgo40ZqZF2OF2uip+Kdb9+FffrwfG0sp/PUvn4dfe/ZmAICiE5vVYaxQswJLPpcmD5iXXRtPLJqmifuO1LF9KofxXAwJMcK6YVSLPMOhycEMRV31vjasFapUBzQJx465LK39Sr8TgfJW798uMvOxI9Y9nnU19PiMVwkptwB2QDYewwGgAH+z4tBPvX8LxcghxqnYuhoFzN3vee3Sc8/or57noKhraMDqCkAxuOais/Ar53L471enkEnzHlKwXCDX3Y6lpCeKRR7v+fVX4ebP/zlOHTBLOjJjkRHQsNR/fStUVzOPT8eqUsOsUAeRnEByK1TDMHB8cSVALJKMxWRWqADwk7sextaNU8hmUo5CcNHXnF0vsCyDYj4bq1js9CS0uz1MDkksAsDG6QrufJAQ2m4rVAAAzaLVlWPzFQGiWOz2ZKxYjU1Hseg7R6IUixmrmZfEmvZEwLZ7fel1I2Lx6YpRLfLMREsh14UwhdFakeXItXl+uT9BdpCCbhBSbAoN2avGGlaxSIHCyjHSh5g/PB9rN8hS5F4YlY23VsvC6mI18n0/sQgQO1Rn+wkyFkVWHEjkaoYGmqJx9oVnY/yl49h8w2bk8jkPKZjKpMCwDCEW5T6xmBkjz6annXNa6Lr9VqiSnRtutcNsG8tCuQBO4CKJRdVQA7l/gzIWl/55CePSeHAdwygWQ6xQKYGCpmpQY2q/rFW73X/7/ciX8ihPlB2F4MrS4D6Y/dsrCIN7O1HIl/KxGYumYaJeraPkqyU6agdZPouSQF7vaiGE4PSEo5T1E4t2xiLj6q8UhaInV9XG1OwUTNPE0hy5N9i/LzexCCBSsUhRFNK59LoqFukmOTcWOgsxSwKp7PoSi7YN6hUzV4xsUEcY4STB0MTiu9/9blx00UWo1WpIpfoXwFe+8pW4+eabhx7AJz7xCfzGb/wG3vzmN+Oss87Cpz71KaTTaXz2s58d+Bld1/GGN7wBH/7wh7F169aBy/08YK4Rb7c5LFYSqh5t2rCr6B4ikGNoyJqBqKjGpba3gZYXOUc9RdYRzQY8dLyJrMDCtGaay5qJvMgFSASBDa7HJjpEqxiIIrzWipWl6AdBvxUqAGx3EYuguQSKxXCrncXFRfzF+38XhtzFxs1bULj0l0BRFCiqryIDgFTWnplXgyxJ4FOkQBS5frNt24TXKsxNxvJWHp7oG0fHUpuNjSexQmUguxSLYxNTIRmLNUddGQZVURJZodoWqxWfYjGdycZab/ZU3bFjffDu27Hl9DM97/uJ4vWApOkwQCGbL6JR8xbojGWTs9CSPNsvWVaojZ6CnMCF/p7GsjzaiubM5q9MTuPwfqISKIUQi2GKRZqmMJkXUe8pznomZ4h6Z3meEMN2xqJmen/XQoacd2415akTWVQ7Ciie3Fs6A46HaZrYta+KP/rfh/DYQgtvunwT/vENz8KLz5l2rEgVzYDAMigUyHbEVHwj0lEsZjLYcvqZmJzZGPuZuYaEakfBRZvKKKZHxfGThVEt8gyHrgSJQ13xqhT9xGMc5Bag9e+XJkV7cw1jscqZWmO+JpPahQrvtdJjhWoRi4v1Dh7Zf8wiFgW0w5p5FEXIRT+xeHCn9+9UNIEzF9HcAYA9KxSwvNfz2iUWsaio6tBWqG7UajW85f/diuWOiQ1TFbzuHA40RQGgHRUZAKRTIkSB9yoWRQEUReE5l50fum7TNJ11UBQVtMdkBUdtNl4ugGUZb8Yim4okFlOiEJGxGI6unGw/La00oGl6aMairKixRK5NLP74rodw7hnEOWFyjJwHCyfQDrVcyGI5ppm3tNKwxlMcev0bJit4dN8RAMD0hM8FgOHQ6kqJiMVTZkgdY9uh2ueJ3y43G6ESoGnayrxcezPP3o59jJIgl0nhlJlx7Dh985q3P8KJwagWeWbCJv+GJfyGWbfO9muYSGVkyKODyIYoFrkhFIvQAralblvUMNjLRxFea1UsrixG1yJhisYzL/ASi1qMK0CKTYXu73a7jf/8yH9Cq2kojhUx+cpJUAwFlmE9ZCpFUQ5pZavLeJEPqAh1q0a13al6rt6KIAaJxW6L3Ecy2QxS6VTkfgb6BJ+NALFYa0ZnLCYkFmVJRrPedLIfZcOqqTjyzB43Tlux+MCdD2DbmdtAUVSAWDyeO47x3x33ODvZxGIxZmLcIOSLeTRWoq1Q2602NFULWKF21A4KfMEhNcOUhpXpCg4/cRgAUPbVIgIjoNfpgXVNLi+JpXCCcpbUIgvHCIFnZyzSvgn5UcQiQM6b9chYtK1bczo5bsc7x2M/k86kkS/mcfaFZ695+0DfBvVFW160LusbYYQRnnoMTSz+5Cc/wQc/+EHwvPfBbPPmzd5Z4gmgKAruvvtuXH/99f0B0TSuv/567Nq1a+DnPvKRj2BiYgJvectbYrchyzKazabn/89k+BWKUTmGq0U9hljsxlhQcAwFWdNhRjCLtY7iKS5yKdaTT+e3QvXPAH/oeAPbxjMeg4ecGCTY+BBCxbSamQJLk+Bon2Lxtu9/Ezd946sDxz4MVpbjiMUgEbV9x7Ocf1MMC3UVVqgPPfQQLrnkEuz+8c3QmoseVSNNU57vzPECxFQarUYdiiyBz+QC653IeR9G3J8XM6Qo89tt2iRduTIBmqYj1YA8Q5NzmyEF2tjElCdjUep1ocgScvkIxaKmgE1ghWrbzAYUi5ksFFkKzBB0Q9Z0pC0idv7YkSCxWI0+3qtBT9GhGybO2HE+fvy9b3p+N7Quo5DiHAtkQydjt4nBRldDTmRDrYXHsjy6sg7N+p2OT07DNE3ki2Vwvus7AHS7wYxFAJgupNCWNGc9E9Mkr2BxjtihSrYVqgG4a2g2Tc6zrGvG3umTOTR6KtqybhG9QcXiSkfB3//oCXzmpwewbTyLT/zyefj9F5yBreNZT8YqUSwyON1S3p5xzgWBdfmRs4jFV/36u/CuP/p47PIA8MDRBliawnPPHHcssEY48RjVIs9w+ElEgJCCxhoUi3KL2KnaH6c4QO0NZ+1gNYh23bcHP7rrsWSfGfMrFjvQ4G3omW7FIpcGaA6SouHrP7yTOC8wQcXid269E//85e8ADO8lSLtVoHHEu00hOicwTrF475weWOelDrGordoK9YknnsBll12Gb+w+hAM1FXBXbRTtURsCxO7UzliUdMTm6PUk2bknpkQ+eA1meIcUKmTTyKZT3vxCLppYnJ0c82QsmqYZm7GoqNrAvEs3bMLStmi1Yef6xakWS5ZK4OCxBYd4sq1HT2TO4iU7zsB/3/RTaBFZWbo1UWxYK1QA2DBVgWma4Dg2uJ9pzlIsxit3NlnE4uE5i1gMyVgEohWLADke60EszkyO4euffD8+dsOvJf7M7//6L+Jzf/57o9riaYxRLfLMRNbK1jWGtVxPANteUWP7fY0ou0FKCP6+U2zKUVXayLLR93k3NGgBEjApsehW3vmxZmIxZpJTY6URiBXZft72/vZ5DpocTSyGKRaPHDmCK6+8Evf98D4oi95jwVJsQKWZL+QDGYv+ddrEGGNYDlgDrFBhnWI2KZTJk/y+bkyWslv9xjAMlheWPfumUWtEZixqqpaIWLQJy/EpMinZOVet0shNmIbBJhbnj8xjizXJyVYI2sdb5mTwszwWun11nP39VqtY3H7edvz0Bz917GrDYFi1iN8Ktaf1UBALKPAFz1jcGJ/uE6H+jEWBFQKKxbJYhqQF+0iTMyRexiYW7XON5n3EYozFezqbdsjptcAmQ9/4mjeCozksduN7V69686vwgb//gOf7rgW7F3aPbFBHGOEkw9DEomEY0PXgw+TRo0eRyw2ewRuG5eVl6LqOyUlvntfk5CTm5+dDP7Nz50585jOfwac//elE2/jYxz6GQqHg/H/jxngFytMZckzo9bLPYnQ1qHajm0ftAQUdJZGHE561FYuDm3mNngZV779fSHHouGag8Yz31HznV+7F9Z+4zfn7ULWLU8bSPmIxWOyGcI0OBI6GqirQNe/3+dKn/hY/+ObXBn9wCKwsRdsLNGpBxeIZHsUiCy2GMPMTi9/97ndxxRVXoFAo4P3/eiOyU1s9FqGKZjgqMoD0XPPFUl+xaBE+dmZiKc157CoBQOq6FIsZW+EYtELlp09Hy+QhpjORylCb+KItBWpl0qtYtLMF7YzFsAsXsUJNQCxa67UzFhdbEv7p1ifApchMUEUa/EAlawbSLjvWraef5Xm/UV1fxSLHUOipOjTDwGve8g7s3/sI7rjtB55lNpZSqHUUuB+Ni5YValNSkU9xoarWiayIjqJBs36H41OEECyP99WK1NQZkGhyTHqdNmg6uJ4NpRQakgbZsrIdnyJ2dXbOoiJLYFhiMepWLHIiOW+yQv93u3WcHIPjjR6xpnVZoZqmiZ88voQ//uZDOLDcwVuevQV//7oL8IJzpkJ/+7phIsXRfTV1gr5cRiTjPH3HhTjnWcmsx+47UsfW8Qw2lJLPJB5h7RjVIs9wGFqQODTUtSkWdQXoukggmgVUaTiC0rIxlRUVx5fryT6Tm/X+rXah+4hFMC7ygvPZbyptgOG8SjoAf/Hpr+EzX/8+sVFVXe8t7gmOgQlOBnFjLkYlcPthGWZ7EWnXsC44q5/ZQ6xQk2cHAsBtt92GSy+9lKz/w8/FxZtz8NhK0IxD9tgYK+YcgtWkmFhCxU3GuvMaHbACGlYjJp9NI5dJefczlwIiLNRnJ8Ywv1xzSLRWpwdN0yMVi7KikuzGGDjE4kRQsQjE5/qVXJlQ555Omnnj5QIoisLCCbJCBYD3vfWXsP/IPL763R/HLrsaK9QNlh3bVKUUPP40i1ZXiiUDAbIvRIF3FIu9gVao0c28fDaNZkwDOCl+8QVXgh2iMXfhOacNVOs+XTBuLsP8UB5jvQNP9VCeEoxqkWcmROueHEYorBV5npA9HsViVMZiyK0rzaU9xCIFCikuXqltI4xY5GPqBHv5XvfEKRbjrFBVRQ3kyJ1y6in97SexQmW8xOKdd96JSy65BPV6HW/7l7ehdJb3vsQxnKMis5Ev5dGoNSKJxaZK+l6syUJVVOhWncCwDFiOdbIKbdjfK51NI51JxyoBe3r//WwhC6krOeswDAPtRjtSsagoSqKMRTu70Z+xaJexUjvaHS3nsobfeiaZaJdKp5DKpAIK1Mdq/Ql7dsZiiR++TgCA17ztNWhUG/i///q/2GVDiUW+gDSXBkMx4cSiRbRmchmIKW/NwdM8up0gsWjCRFv1TqTnRR6l8VJfsWidUwFiMU6xmFsfxaINQRAwkZ7Aci++d7XljC24ZJ2ynk3TxKPVR0c2qCOMcJJhaGLx+c9/Pv7u7/7O+ZuiKLTbbXzoQx/Ci1/84vUcWwCtVgtvfOMb8elPfxqVSiX+AwD+8A//EI1Gw/n/kSNH4j/0c466L2PRzw8+vhCee0ZJxI6ApSnIaoQVqqGjJatQXNaXOYHzEI3+Qug5Z0wg41PEba14G/ljmWDBLAx4fjdVGSxNewgyAKgtL+HA3kcHDDwch/YR+7Dq8UOB9+IUi912C4rsmyVXdBVYNANVUSIzJymqn13Xqi7i5S9/Oa655hrs3LkTqeIkeJa2bMcsmF7FYVvWkCuU0GrUIMsS+LSXKCxneKQ47450E5N8mhS1tgWl+7tNv+kT+Oj3nkAqnYnMH7TJUYojT1eViWl02y30OqSAsonFiXIR3b27sAVBwlZVVDBM/CWttryIdCaLVJqcP3vmWrjncB0tkxSNdjZgGCTVcKxjAWDLaV7FYq26FLv9YZARWEexeO5Fl+PsCy7Bf/7rJz0zFrdUMljpKtCtH1wuXwTPk/3YkjUUUuFWqBN5AR2ZkJYAUJkiCs7yeL+hwV3+qzhEkWyAbqcNmgkqO04pp9DoqlCt37MgplAcq2BxjszUlqQeBDEFVTc9mae0QPZ/1kVab6uQc2+pJXusaTU+h0/8YC/+fdchbJ/K429fcx5ueP7p2FLJRDaeRY5JHFwPkP0tqf19Eoe2rGHfUhvnbihiLBv9wD7C+mJUizzF6K2DIspnK0VUjK6G0WqUBM1+Nq9JsUTBOAxB2Ysm4ELhJ6bUXtAKNaBYdL2vdGBQXkVgu9PD7fdbBCLDk0xKG0t7gOwUmiq5dqpMBmA47D9CvvvDB4N1R7xiUQMFE+dM9MclCv1r2rBWqNWWjBe96EU477zzsGvXLpw2kbLINrdikUKnO1ixaCZoYHZdKgO/Eg0AwAgOKZTPppFNi14lICvGKhYNw8BClew/O1swVrGYIO/ZPiZ2LqKN5IrFfjPPViyyLINKKX9CFYsXnLUNL77mYnzsX//LsYALA8PQkQTsIGy0mnmBfEUAYNjEVqgUReGU6XEcPk7qMpvEdp/XAJBJRZOU+cz6KBZPVoyBXDPL5iqunScBRrXIMxO2kstP/qwH0lwaNOg+sWhGE4tUyDNahs148h9FRhxKuayZwysWw4hFzTehKAkRYKvUjuwNnltxikUgmLNI0zTYEouxF46B4zioMXbjaTbt7G+lp+AFL3gBNm/ejDvuuANjW8cCKj6WYgMqzVwxh1a9BUVSQDM0WI4NWKE2VKvvZbAeYtImoZysQoMcN48VagLFoqN4BJAtkudjW13YbrZhGEYksZhUsWjb09o5grZi0WRIXyFKwQoA6VzaOTe3bu87eJTHywHr2/31/c6/u2oXNEUjw69uYu7s5llc+7Jr8ZVPfSVwnvrhJxa7WhdFoQiKoiCyYiixOGG5HvhtUKEDDM0QxaKrPzaeIrVLUw6qwCdnJrFoTXJyzhVf6SnGTJhaL8WiGzOZGaxIT+69e2SDOsIIJycGP00PwF//9V/jhS98Ic466yxIkoTXv/71ePzxx1GpVPDlL395qHVVKhUwDIOFBS9JsLCwgKmpqcDy+/btw8GDB/Gyl73Mec1+qGVZFo899hi2bdvm+YwgCBDCZjGPMBA1n2JR8qkkHzreDNhUAHAYSJ6hoegGjAF5RYwuoS1loGguYlGMPhXPnM7j3A0F/OYX7wZAVFJT+X5jIc3RAWKLjCW8CDc1CTRFBWxQ771jZ+jyUWjUlgFsRLsevDHHZSwCQD0kZ9GBRSxmGApRzh8MZUAxgdzYBL773e/iuuuuA8Mw6CpHIbA03LwkRfftKQGi7MoXS2g2auB4AbxICjxbsVjJCgGbU0/GYioDBUDaRz52221nFqYgpolicUCPiXeIRVJUjU0Qcmt5cQ4bt5yKZoM0yfLFMpb+589w+l/+c2Adqio7BGsUdF0Hw/YfjGo2kW4VtrIkheZd0DAgqTpEi1gslMooVbxh6Y2V9SUWswKLpZYMzTBBURRe95vvwgd/+1fwwO6fOctsm8jipkcWkLGIxaI1JlnVoWgGxrIh9nAApvIiWrLqEPrjljXsmGWjqhsmIOZhqkswQRSL2RAr1A2lNNqyho6soZQmDbvJ6Q2OFarc60FMZaAbpseSlRHSgOz97RfSHEppYu2azubQ6bQgl7aiefqL0a338Lart+INl27CxnIq0QN2JuSaEL08A8MEVC2ZdeJDxxowAVy/fQJcAlJ7hPXDqBY5CeAn/HTVqy7UVpHp1+6rOgyaAzTJIjAT7vu5B4DS5qE3W1U4jPHWeJUudHgbJSbrahjwaa9yT+lAMb3Xjx/f9VDfapLhPRavWHqUjLFOGkwamwHHcFis1rEVwFIj2HiIy1h8eMmACQo7Jmk8smQAaV+eDM9Bjsn8A8jvgDJNjOUEfPvb38ZVV10FjuPIsaVo7/emBikWye/QTKD68yoWQyZ3sAKa7TpYlkFKFJBNp9Du9uDc5FkxUl04YzXaji1UMTtZQbXmIhaDc8kAJFcs6oYOhqEDFuNJFYu5TAoMQ4NjWZy6qW/tPjlWxEJSte0q8f63vRpXvv738a1b7hi4zES5CDoBweqHrVic9jUCARAr1E4X0z5F1yBsmpnwZCymRCEwpqRWqGxI/TPCCKNa5JkNJwdvHWGTFTaxSIOOViyGIMNnPGSHwA53zDRoSDNpwNU7iFMssgwLwzA8JNmj93knW8etAwDadTIptNMMqqviMhaB8JzFicsmUH5NGfR+Groco1hkRSi6AtMwwad4/O///i8uvvhipFIp6E/oQWKRCbFCLeVx+InDkGUZvFVbBKxQLcUda7Ieu1DeyvG18ztpiWzPY4WaIGNR0iRHEZfJk5pyeX4Zm0/fjKZVixRKERExcrKMRfuawXAMFF3pZ0fS5PVutwsUB3+epmlk81m0m21sduUBlyqlwLE80uqTzT2tNzRh7sfrf+f1eOsL3oqb/3dwnq2YEj1qQNM00dN6KKdIjZFiU6HXgfFp0k8Z87lKwDr9ep2eR7FYSZHapaE0sBFeJfjk7CQWjvqsUP0ZiwmsUDvNDgrl1VnHhmE2N4u9tb3xC64jRjaoI4xwcmLoJ76NGzfi/vvvxwc+8AH83u/9Hi644AL8xV/8Be69915MTEzEr8AFnudx4YUXesLNDcPAzTffjMsvvzyw/Pbt2/Hggw/ivvvuc/7/8pe/HNdddx3uu+++n1s7jySw79lJooaavejid+9Ca6AdKgBwDA1FM2AMkCzSmoS2rA1FLALwqO62VjJeQiLFhjb2M1bwNOVXRqgKaAoBe857b4+3dhoGK8vRVqgAUA/JWbRh0gw0VfFYmQY+X6/j2Fc/hOadNwIArr/+eqdR1ZZ18CztUTxyDO0hBnXDRK5QRKtRhyxLYC1LUHt/jueEgN2qJ6MxRWbR+YndTrs/Y0vMZNDrDm6S2YRTasuF2PT/fRv5MfIAbecstizSNlcMmcFuQVUUsKsgdxwinScFnV9B6oyRIsQiJ6TAsCy2nH5WoBiOOpZusBbhrerRipyswELWDMcC+ZKrnott28/Bf/7rJ51lto1nIWsGFIo8dJYcG1RyzvvzMW1M5AV0Zd3JL61MEgtTW7HYklRQNO3oS3rdDuiQxtpsiey3arv/IDoxs8FRLMpSD4JFxnoUizxp5vltdssZAZLaz1jsTp4HulfHJ197Pt59/WnEAjnhQ0gmwXXFDfsc7sVYTtu4/0gdU3kBZ84MnjE6wonBqBY5CRBqheqqG9QhZubaRE7zuPOSSbNE6TeMFeqxu5Mv68K+jmVLSVGALkPzKRbhIRb7pCNFAVC7kHTv8j/82b2uzwpexWLjKFDY4PypMhmAjrFCXYpWsEka0GGLEFnr2mplRJ0yQxorAs9BUaJnhHe6En75dz+GP/oRGetznvMcQioChNylQxSL/ozFYl+xSLHxDcxOnGKRS6HR6iCfIfeNXCaFdse1TVbwqkd9mLVydY5b9m3VOnHsWA8r1EFIqlikKArFXBZnn3qKh5ycrJQcheWJwrOfdTauvugc/Nmnvho+0RBBJWZSbJiMIhZZtHtyIsUiQM7fw3N9xaLfBhUAsjHrWq+MxRFOToxqkacnvvjIF7Hj33fELheVfbgWiKzoZCxSoKDqwxGLWTYL0zVBO05t6EeYFapIR0+i4GgOsiu3GADu2XmPZxk+ptaIQ5wVKhBULAJAxoqboDgqVrHIGzye+KcnMP9fpIdw9dVXI5Ui13nVCJJtHMUFicViP2NREAWYphkgFrta/77gz1cE+ucW2yXPlp1WBzRDQxAFpLPpWCWgpElgrefSrGV9btuW2sRilGJRVdShXHsAODaeaTYNk7YUi5148j1XyGFm04yHHCuNB4nF5d4yOgrpvUmahDQXn5cchW1nbsMV11+B//yn/4Q5oO9Y8lmyd9UuDNNAWSQ1RppNR1qh+hWLlE72qZ9YHE9bikUlqFicmJ3oKxYlGQzLwKC8PaAn2woVADblNqGpNE/YddCPkQ3qCCOcvBiq66qqKrZv345vf/vbeMMb3oA3vOENax7ADTfcgF/91V/FRRddhEsuuQR/93d/h06ngze/+c0AgDe96U2YnZ3Fxz72MYiiiHPOOcfz+WKxCACB139eMIi882MsS4qchuQtisL6AW1Zc2wVwzDXkHBkZfBDNsdaxOKAVTCahI6sQXZ55IdlpEVhupByFHUAkBXZQC4jACdzj9a8s+JNTQZNexWLpmni7p/FE4tmhG2WGzTNYGUhXrHYiFAsmhTJgRyUHbg8fxxXXPHb6B07grGLXhV4vy1r4FnaQ8TQlNfKVFJ15IslHD98EGPjk+DEDDT0szQn80KAyPEQi5bC0a9q7LRbgDXJS0gls0LNX/qLAIBFkELZzkNs1mtgWBaZzOBmnqaqiTIW/VjpWMWUZcMqy+HNPJ420FV0GCZQKJYDNqgAUI+xvrVx7oYiAGDfUgfnzBYHLmeTbi2LJLRVi396w29iZuuLkUuL2DxGinKZI/umbCkOG9YEgal8+IPkeE6ACXJNmEEKE9NeYrFufd4+9L1OJ6CsAIDZokUsdvpF6cT0LG5/7BEAxArVzu0MIxazPmIxKzBQNAOpTM6yQjXBKC1ctLkcqkqOQk4YUrFoeSdLMfkdAKAZBh463sQV28ZQyY5mfz+ZGNUiJwnCFIvu15S4B2hXkcGliDrRrVikLGJxGCvU+QeSzcCyYc3ev6NewiWlGkxrvp7mK6/NAcSiwAAwNEiG9971w133ubYhAJrvob+4yfmnxqaAEJtqGzRNJbLGXDbLyMK7nN2U4jlbsRjeVFxaaeDqX3kfHjtwFG9+RQipNkix2PMrFvPoHLKIxQTKCLeVanjGYgrNdtch67LpFFpu+zFWiCQBK6U8OI518hCTW6GuvmGSy5CxJiGzKqW8Y4NqY6pSwpG59XVPCMMHfuu1eMFbP4jDc0u44MytgfenVpGvCAAzE2VQFBVOLDIsWp1eYmJx08wEvnXLnQAIsZgSg+dUEsXi0flllAuD68+TCvt+BHSWgXNf/VSP5GmPUS3y9MUXHv5CouVkY/2sUBtyw/l3ik2hyZL7xWoUi1k+6/l7NcQi6+tXxKkeOZoLkF1377wbOM+7zKpBxVuh0jQdqlh0+hAcYGiDJ+V2mh188Xe+iNpDNcy8aSbwvmYG7UE5JpxYbNQaUCQFgiiEEi/uDMQwYtFvs9ttdZHJkggPMS2GEqhuSLoEliPHkOEY5Et5h1hs1BrOOAdBVZMpFt2wCbaCUIBmaKAoKjRzUzxfRJfp1yj5ct4h4myUx8t46K6HPK+ZMPFY7TE8a/JZ6Gk9ZNjV2aC68YZ3vAFv/4W3o9VoYeaU4DH3E4N1pQ4AGBNJkyrDZUIVi9lCFmJaDCoWrTl23U4XZba/7rJYBg3ak41qY3J2EgvHFmCaJuQeIav91rpJFIvrbYW6pbAFJkwsdhexIbch/gNrhG2D+uItJ9YmfIQRRnjyMVTXleM4SNL6Wka85jWvwdLSEv74j/8Y8/PzOP/88/G9733PCS4/fPjwqqx0fl7QVZI1zGYK5MF5qUWKHDtH8dH54KyajqzFKql2Pj5YmcUxFLFOHNCcp3UJhgmsuLIckygW3fDnKeYEFhybnFQy1aAV6rHDB7A0fwzZfLTFgJ4mBUbcPuIEwWOF2uuEZ1NGKhYpBpqihGbkSUcfxt/+859jemIcO37rk6gJkzBR9yzTUTRwDAUmghiUNMOTscgIRQBAzSKKpvPBQsedTcmIpAkmBqxQ+99XTGUC6lA3bFLYJps4XkA2X8DyAsmMajbqyBWKiJp4pyqyowQcBvZvgbIav6oc/pApUAbaVv7eH3z8n7Bxy7bAMo2EisVKVsD2qRz2LbVhGCboAYSoTbq1pX7xeeX1L8HGLadC1lQAIjaU0qApQLUUJsUxa8acNYlgsjCAWMyS1xvW988VSnjNW96BS6++nrxuK5cpimQsdsMzFqcKIigA9V5/jJMzG7E4d8yy1CHEogJA4Prfk2SOGQFCOiuyWGkrSGWyqCVQ/EYhO+R1xSZykxCLTyy20VN1PPvUSkB1OcKJxagWOUmgyoBblaar3lzFkBnEHtQOAhOuCR58Fmj3CRWT5khu4zCKxZX9gDJ4EkwAWXJ+GNbNibaalH5iEe6mINdvpOQEa+az2j+35pdW8ODegyhaM9TBCoA7syVdBgqzzp8qHd2M4Fkm1gpVFDgcVXLYPIBjE3grA5ISQ7Mv3/ahf0BKFLDzS3+J8+//IH7iX8DQCLEYUCx677flQhbLkgzdpMHxwykWw0gj8Gk02h0UcmSf5zIpHJ1fhkNKs4KX7PSBpijMjJcdYnGl0YbAc+HqSAuyogIxypAo2ERXnGIRAP7tT9/tqCptTI4VcddDj696+0nxvGdfgAvPPhV3P/xE6PuTY6sjFnmew4fe/nq88vqgQgt08oxFADhlegKL1Tp6koxub4BiMaaZl8+mnZzOkx6NI8Duz5DJGJkKsO05T/WIntYY1SJPH/zk6E/wSPURvO28t0Uu584tBADFP2lnDXATSSk25bFC9ZMIcchyXmJRZIe7p+jQA+pChmbAUIxjdemHn1jstrt45N5HcCb6dVYSK9RBoBka1cXqQJU7ABTGCpGEG83TMPXwz0vHJHz6k5+GoRvY8gdbIM6KgO/w6kaIFeqAjMV2ow2pJ0EQhdAszjhi0U9Gtlttx9I0nU2j1+1BxODjKmkSWLZfS1amKk7GYstyT4gkFpXhicWu5RRSFIqY78wjlUmFKitLv1DCfKc/ke9dH3kXMjkvSViqlFBzuWXobR25Yg5P1J/AsyafBUmTkOHWTiye9ayzcMEVF+Den90bSiz6FYstmey7ikjcEbJcFku94GQsiqLwpne/Cedffr73dVux2PYqFhmaQZpLox3yDDE5OwlFVlBbrpFzKiUEJhvEKhaz669Y3FYkvaz5zvyTQiyObFBHGOHkxdCV6dvf/nZ8/OMfh6YNVyBF4R3veAcOHToEWZZxxx134NJLL3Xeu/XWW/H5z39+4Gc///nP4xvf+Ma6jeVE4Mt3HsbmP/hOomb1iYKt9LHtCiWVNIaO14PFQlfRI0mznMDi9gMrwIAMRdtCszvALpW2ZgUtNmXPZ3g2+enoJ2IyLDNUxpmpEStUyUV23bvrx2BYFudccEmydcS8z/EiVpb6xIihB/dHKpOLJhZBEyWe9d3clqbNO27E1MbNuP3225GfJuoFf7HekTXwDA3/M6jc8ykWCyW0GnUokgTGIvdsYriYDs5OdBOTrECIxXSYYtGCkE7HKBbJZynXbMqx8UmXFWoNuUJ0k0rTVHCreNi2lXmGZckgD2gScBRR4XYVHRdcdiUqk9OBZWrV5CqBa88Yx8FqN6AidsNW0HVcFnQMw+A1b3mH8zfP0pgppqDy5OHCViw2eyooCqhkwx8CJ/OWitlRJlJ46w0fxOymLeR1V9aqqsjQNS1UsSiwDMoZHs2eV7GoKjIaK1UosuRSLLqOD8ODZ+jA7zYncJB1A2I64yGnV4P8kEpoO5PRvj5G4YGjDWQEBlecOha77Ajrj1EtchLA//Bt+DIWYxWLPghZoLfiKA4NmiXZhD5i0XYdSDEhv/PGMaAbnwE0CLTVSPJboZpupYDYn7yUtS5Rbddt4Ee33w8AuPYSy8aNFQhBalcdpS3ku1pQY0gsgWOwtNLoZzaGYKKUx+PNwQ1DgeegafpAx4ZKqYA7vvq3OG97ULkGoE8sehSLNLq+++1YMY+d+3vYtZRBKoQE8sNjhepbXjUogOEsxSJp2GTTIiHsVKsGGtAkZV3NopmJMY9isVzIRdpxK6pNoq4ONE0jm04lIrOuvPBsbNngzV6bGi8lUqgmRuNoUDELUjN84LdeO/BjU+OrIxYB4EPveAN2nLEl+AZtKxaT2adtmiH10JG5JfRkOZQQjlMs5jKpnw8rVMMA7vgXIF0CJncA938F6J1YS92TAaNa5OmB37n5d/D/7vt/Q39uPRWLbqTYlGMlSYFy8vaSIsd7FdIiM/xklTCrQb+K0Q2e5j3qtPvvuB+6pkO8VUTv9p6zzGpBMzRUWUW7MbgfUBorRSv5eAy0vFy5ZQW8yOPjX/s40qeG3yN0UwfjcyngGM6TKwmQ7ELDMLCyRNYZRixKRr/+cGcsiikRpmkGiMVuu4u05Z6QSqfQjbmvyLrsWKECQGWyTyw2a02IKdHJcwzDahSLNrFYFsvQTI0QoAMmOel0v6Y88/wzccq2Uzzvl8fLqFfr0HVrOQM4o3wGDrcOAyCKTL8yNwrv/NE78ff3/H3oe7/yzl8Z+Lmyz/2gqZKJepU0IRYzfCb0+ALA6377dTjzfJ9DlfV1up0uGN+k+hyfc+xk3ZicJRNDFo8vQpZkiKII3fdsEkcsprPp2HNmWGzMbQRLsVjorm0idxK4bVDZCJeVEUYY4ZmJoX/Vu3fvxs0334ybbroJO3bsQCbjnWly4403rtvgThZ8YdchAMDugyu46rTxmKVPLKodJWBz6ldMEWJxMG02U0xhz3wTm8rhRZutPhukpmQsYnGp7W0oZXkGKxH2FlFICbQngzEWmgzGZ4V6z66f4MxzL4SYzkCSomaKJ7NJ4wQRvW4Hvc7g5mihNIZ6dTCxaFCUxwpV13XMHSXnU+Wl78FvX1bC2NhYqA0sAHRlHRwT3DdSrwv7cUPRDOQKRXQ7bXQ6LXCzpLCxycywBpp7vzFWNmHKF0LddSk0BTGN2twRDIJNKlOuQmNschrLC7YV6gryMcQiyVgkY31g1y343X9+Oxia2MBS9n8pGssL/QwuVTec81Q1ADGVisxYBAhZOwiNleXImZhuPO+sSXzqtv3YM9fE5dsqocvYSrie4v1dPPelv4ivPPZlUBaRuqWSwd1HCLFoZyw2eioyPAuRDb/Mj2UFMDTl2KwGvosra7VrkcJhGYsAMF0U0ZQ0aIYBlqYxOUNmvS0cPwJJ6oFLkUa6+xwxaA4cG7SvzYksFM3AWDqLTruNtUSU+21W42CT41HXPxv3Halj+1QOE7nVK1NGWD1GtchJAKVD1Hc2dM1rWxpiTRQJoQBIDcAk5IFJcYQQ8c/Otxprk2LIpA5DBeYfHG67LlCGTSz6rFDdTUE+qFh0OUnjh7vuw47TN2NyrEgsLVmfFWp+A8BloZnkeqoycYpFFqZpYrFaR3AuN8F4KY+HlgAMuM3ylh0XaBbQFZimiQNH5pz3/+GDv4XpiTJMY0ANZ6gAnYbXdoBGp+tXLOaw66iOD+4uIRVD+AA+K1Rfg002GHA0g2a7h3ymb4Xa7vb6pPWAJmlaFBwyaXZyDMdcGYtR+YqAN2Pxtnsfw3v+8X2gGRYUBdAUqUXi7GlzGZ9l6xCYHCuh0epAktdJifODDwGnPhc4//WBt17x3Mtw1qmngOeCDezJseL6bN8FHTQUVUtuhTpLiMVDxxdXr1jM/JxkLD5xE1B9Arj2D4GzXwn8y9VEvXjVeyJVvT/vGNUiTw1+90e/C4EV8PGrP76m9QwiFNYKd3ZcEsWiaZqe520/sZhik13z3AhTF3I0N/A7c4xXsXjPznswOTuJbcI27PzeTuD9g9cJAHxMLrKttI2yQy2UoxWLFEM5VpQ2jh86DrDA1Gun8ArmFdi8eTNwGKEuR0kzFnPWfX55fhmCKIRaZUp6/zX3frOJSAPeeqjT6iCTteJjMqlQi1EbAk1UkjYBQ5kUKlMV7HtkHwCgWW9G5isCgCqrzjl18JGDeNuH30aOAUWOBemLUI6tKtC3Qi2LZWi6FpkFaWeIDkJpvATDMJw8SADYUdmBr+z5CnRDh6zLAWVuHPY39oe+fsEVF+DMC850rGM94/ApFm1F4XiK9GSzXHaojEFbsdhtdz2KRQAo8IWAKhoAJjcQYnHh6AKxQk0JUE0VNGjnPElkhdruwhhUZ68CDM1gPD0eqthcb4xsUEcY4eTG0MRisVjEL/7iL56IsZz0iLPOfDJQ66iQfbPWu6ruacB3FQ1axFhnSyn8aE8Ly51BhandKBtshQp4FYsAIVFWuoPVW1Hwk1pxsK1QexZBZug67rtzJ171xt/A4f3htk42mG4VWiE9kMyzwfGkgbESkbuXL4+hFqtYJMSiocr4z4+/F0ceuQtv/fCnQAtpsFYzh7f2uX8SX1fVkRNYj9IRILl3DrGoG5gskuZudXEBM+eIYGkKUXGFvV4XvCBCkSXQggiKAnjfrK1Oy61YJFaog1bJMSTJyT38ysQUjhwgx6LZqCFfLDnF1IHHHwXwSs86yH4ix0TXNJx55g7QFAXDNADThGEYME0T0xtPwdYzzgYA1Fx2vIpmIJ3JQZalUCl3n1gcrPpQFRmdVtBeOAznbywhK7DYM98aTCxaMxV7qrd4ZzkOW7fvgGCd96eOZ3G79RBasqxQGz0VWYEZqARmaAqVLI/mAGKx7to3NjnO0OHE4kwhhccX21A1EyxPFIsAsDh3DHKvB26CtLMFl12xQTHgGTpwbuZEDrJKMhZ73TUSiyI7VFyaTeQqMRMc5psSFlsyfuH8GRRTo/DxpwKjWuQkQJhi0W2zqQzZzBfzQO0QYBIVsWmRYBjQ0JsQNUCVAM5HYB27e7jtutBXLPrKa7di0aUiyPHk+teySh8TJn646z780vOfja5k1UisaCkWLWTGAZrGo+08nl1ahhZnhWrdm+eWVgYSixPlPPYvdXB0KvzaJ/BkzCbNQtVN/Nbffhf/vev/4fv/9lHP+wOhayAmKa7rPU33v6MFm7Q7tlTHOadtQhw6PdmxaU2L3uMomwyyFINGq+PYheYyKbS7EmA3fgbMms6kRA+x+PATZEJXtd705Ct2fY4DLMtYGYtknyuqjgvP2gaTYmCYBkwTVi0CbN04hV975fWh289nV09m2dmGC+ulWtRlj8WwGzRN41v//KHQvPcTQSyqVkMvKbE4OzEGiqJweG4JXWl1isV8No1Wpwcz4aTCZyQ6y8D9XwZOuZwQyMVTgOs+APzgj4CDO4EtVz3VI3zaYlSLPDW4+cjNALBmYnEYQmEYuLPjKFCxxGJH6SDrciIQWREsxUIzyecGEYuGz5rcoPt/h6kLh1Es3r3zbjzrymd5CM9QK1TK/k/0BATa6ptUrYk6YShVSqEZi86mOMpRLJq6if/6y//Crv/ZhY9++aOgWRqCKHhIXT90Qwfte8pnGTaYsWiRdsvzy5iYmQhVtrpfs8k3XuAhpkR0teD9u9PqOHah6cxgJSBAMjVlTUbmUAYr+1cwVh8DP8njTiszuFFrOGNs1pu4e+fdeN3vvC6wHsokx0RTNWzfsR2mafb/b5D/Tp8yjateeBXElIjeMhlTJVWBaqjRikUm2onNVgq6ieSLJy/GFx75Ag42D0LW5XWxQgXIJPgPf+rDoYq+ks89oaW0IDKikzma5bLDTTDQAV3TociKx6oWAIpiEXPtucBHcoUcxLSIheMLkHoSxJQIzdDA0IzT20qiWAQQOFfXipnMDFZ6q3dqSYrd8yMb1BFGOJkxNLH4uc997kSMY4QnCfWeErD56yqah1jsqTrUATYTADBbJDe++w7XQ9+3rQ17SngRTesqGJrCUtt7E8+JHID4TJkwiGw44TEIpqaAclmhPvHog2g3G7jgsqtjiUUqYV4TJ5BmRW15EQCDzp1fB97mzSsplCqRVqgAAJqF1lrBwpf/EPMrR/CBv/onqKk04JoJZ+9zP4nSVTSU01xgsrHU68KeCylbikUAqC7OYyMnWkTf4AcEqdeFmEpDkSUwrAiOoQM5jt1OC/bjBydm0et2MKjUpygKIsd4cjkrE9O49/adAIBmvYZTtp7mqAnv3fVj4Hff71mHqvazKLOFEt7x9r+EwEWfF3WLyKas/ZDKZKHIUmjigU0sdtXoh8OkdqgMTeHybWN4+HgDsqqHjpWmiequF2LNKaRSjoXsaZNZqFwGYFiULCvURk9FVuQiLYYn8yLaEplIwPqI8lo3uWJxYzmNuw7VoOgGUmCQK5QgptJYmDsKWeohK5IHB9G1DRXE/thPLOZFFrKmQ1gHK9SswA5UZIbBtp5V9Ojf+ANH62BoCtefNTkwH3OEE4tRLXISQPU1AAzNa1vqfz8OFE2yCE3SRDAcYjHi96x2vcRiugLM3T/cdl2gbcUixXpmypjujEVXY89WLDZksvDjB4/jyNwSrr/iAnzzR7eThVgR0FUcadGYyhhAqki+X0wTzwZv3SeiFHIT5TweP7qM++Z1zOSC9wybOFzuAq/+Yhe7jj2Cz37sBpQL0eo9B4ZKyDafFWrH1yCx13dsoYqLzzktdrWdnoRMSoSsqCGKRRqgaDQ7XZyZ3QiAqNNanW6ftGaDRBMAZFxk0+yk2wrVq1hs+hSXPMdCkvuKxXwmhX95z9sAPpl1pw2iWFxdPTxZKQIAFqLs5IaFLpHfUcjkoq0bg7bwwNqsUAdBttwEkhKLPM9hZqLsUiwGq7skGYumaXrUsScVTBPY/W8kB/bK9wAF8lvB5e8AHr4RuO9LwPS5HgvnEfoY1SLrg08/8Gm8dcdbI22mn0nIuJwJaJOOJTDrSt1DLAKEXLRtFZMqFt0qsjASMIpY5GjOIRZXllZw4LEDeMM73oAnXDm6a7VCtdeNAWK74lgR+/eEq9LIIAmhqPd0HPnnI3j04Ufx7o+8G2NTY4AlvEuzg++3mqEFMkrtbElapMHkrHt3sU8sbti6AbLmvderundSkdSVQNM0OIEDL/KOpagb3XYX5QlCtg3KLrQhMESxmBJT2P+R/bjsdy5DZaqClaUV6JqOZq3pyVe8e+eACXFWHcqLPN7zF+8ZuD0bPa0HlmKR5/PQTI2MsyeBQfDeb2eIDkK5Qr6rO2fx4qmLwVAM9tb2QtbkgDJ3LRifDneF81uhdtSORymZ5YcjFimNcghMv2KxKBSxr74v+BmKwuTsJFEsSkSxqBvEllcFOZdsxeKKtIIMm3GITxs2Kd1tra+Dwmx2dqASdL1gmiYeWXkEz5599sgGdYQRTlIklnkZhoGPf/zjePazn42LL74Yf/AHf+DxEx/hmQFVNwNZj7WOt9iVVAOSS23Y8ykP8yKLvMjiSC38+Nsk1yDFImAiK7Cotr3bzYmruNFYM/VS/JDEoiqDoShIVgH9+CMPIJXOYPuOC4YfwwBwAikIqssLOPTxl0J/7LbAMvnSGOory5h64yew8fe+Hm6jSTO445O/Db21jN/4iy/g2c99UWCRQeRRTwlaoZqm6bEyVTQd+SJpAMlSDxQngGXoSOcjQiySAojiBLA0FSCI3KQQl86h143OyxJdqlOWFzA2MYmV5QVio1G3FIumibEXvQsLzeC5pynKUDmbQF+xOJbloeoG0pnswIxF3poFGpe/F6VQ9eN5Z03ieF3C8cbgh4tCikNP0SMtVreOZwGKBlec9igW8yIbSSxOF1JoyVqo9WfdZYXa65IH27CMRQDYWEqh0VOdawtFUZiYnsXi3DFIUtexy+WtY8ywLBQdEEKIxVyKg6wZENNZGIYBIyGR7weFYO5nHGwFpRyjWLzvSB1bxtLYOMAOeoQTh1EtchJB9ikWTcOrzPM3ZqR69Pr4DKB0QFuTbkyaI2Sl3Ab+YlO4AtKf41jeDNQOJBp+GGirORGwQvUoFl3EotWja0jkGnzPI0+AZRlcfdE5/eWtjMX/O0CT5YZsvPIsA4qiMBdhPzZRzmNxpYF/uVvFFx9Q4Q9mtq1Qn/3PC3hkycCP/uK1eMPLrks+CDtj0aNYZAJkja0G7Ely4oxFmwT021zKOgPQjJWxSK7VtmLRtI/7gNny27cQO+9yMYeZiTE02120O72AYtHv7iHwHFEkriFjESBkltTtwPxQHmPM4DyqMNhKwfXLWaQATR6o/B08jhNBLJL/xpGBbpwyPYHDx4li0U8+A0A2hqS0z52T1g710E+BufuAC94IbLq8f32haeCVnybX4btG5Jkfo1pk/fDTYz/F39/79/jUA596qoeybnATF0kUiw25EXjNTSZGqfDccBOLAhO8h9q2pWFwW6E+/tDjAIjFpBuhisWEoCgK6WwaK4uDa5FSJTpj0WRMGJqB/X+2H93Hu3jH/3sHXv7Gl3uWcfZ9SKmkm0HFIkVRkLoSys8tY/N7NgPoKxZlSYYgCAHiqSl73YmkngQxLYICRZR/lqWoOw/Sb4UaBYERIBsyZk4hPhOl8RIqkxWS+7i8QojFGCtUoK9YTIqe3oPIihBZq64qpNEdYMsep1i0lYJuxWKGz2BTfhMONA5A1mXk+fjvsFYErFDVNvJCf7s5LgfVUAOZh6FYAtg66+yTMGLRPvZ+TM5OkozFngxBFKAaqofot8+Jv7v77/DN/d8MfN5WLHbaQ+bPx2BTYRMacgOavn45wX48tvIYWkoLL9oc7GGOMMIIJwcSP/n+2Z/9Gd7//vcjm81idnYWn/zkJ/H2t7/9RI7tGYuVjoLHFwYrbUzTxI33HH0SR+RF1acUfGIxeINq9PrNPRPwkJEUReG0ycEzjGzVmJ+QdCMrsGj6LKTyqyAWKZXcvP3kRBwcK1QX2XXexVc41qLrAYbhwPECVpYI0RTWC8yXyqhXqxBmTgfNi1huB2c0UjSDVHkKU2/6BKZPPSt0W7YVqh9dRQfHUB5iUddUGC5FlqyZyOaL/e2xfCD3zg+p14WQSjvLcwztUW6ZpumxQqUsxWIU3OQww7CoTE5D1zTUq8uEWCyU0VEMZM99PpTMZODzmqo6GYtJUe+q4FkaY1kBiqNYDJ+1ZisW/cR8YJ0JFYsAcN0ZRF344LH6wGUKKQ6SqkOPJBbJgwpbnkWxTGxVW5KGvMhFWvbOFEW0JBVKiPVx000sOorF8N/ohlIaumF6rGUnZzZg8fhRyL0eGMHK4bSsUDkhBUnVwbNMMGNRYCFrBvgUeTDUtdURixxLD000UxSFFMdE2lZ3FQ1PLLZx7oYixjLxje8R1hejWuQkgp/UAwDV9UCuDNmk5TMATOQZch0yKOt6teebhJS86QPBz7TmvX+XTwUaRzHkrcSBnbGoU75aYoBiMWtZodZ6/WvO5edv95IdrGDZxK5yTBQwXi7EEIsFLFbr+PZeDX93uwL4ZpELVm00nmVwx1szePbZG4YbhKGRgfgUi34r1LJLDZgS4huYna7kEIoBxaJJA5YVasFq5mXTIpmkY597A5SEZ1jEYjadwuwEsVE9tlCNzVi0lZ1G8serUOQyKZyWJw3ey8VoFw0/xssF0DSNheX6msbggdaLVv6GYKqy/sSipA6nWASATTMTAzMWWZbp54cOgEMsrjLz8mkNuQnc/Xlg6lzg4rcAPsUUxk8Drn4fcOR24PCup2SIT1eMapH1Q12uk//GTR56BiHH9e8TNGioRnTUi70P3LDJHWAIYpFbvWKRZ3iP7eXWM7cG1F5+FdWwKI+XI61Qi2NFNFaCJKsNkzUBHWBEBtv+aBu2X7Y9sIxbLeqHbT/phyRJoAUabJ7sH0EUwAmc82+/4rSu1D1/97o9CJbVtiAKfXLJ9TG3FWocsSiyIhRdcVR4xbEiKlPk+X55fjlRxiKAoetGWZORYlMOqS3mxIHKSoONnoQriAIyuUzA2vbssbNxuHUYmqmtq2JxEPzncFfreghNm2QMU5n6wd3Oobi/2Fcs+tymyqkyulo3dDL45OwkFo4RK1QhJUA3dQ/Rb58TXa2Lw83Dgc87isV1nuS0Ob8ZBowTmrN418JdIxvUEUY4yZH4yfcLX/gC/umf/gnf//738Y1vfAPf+ta38KUvfWldA2RPFlz0pz/A8/72x56MMjc+s/MAbviv+58ycvGoT2m4bzFIgq50vAXwE4v9GdMcQ+HsaXITDiNZ7GZ+FAGTF1k0e96ZMYUnMavM1GTQNOVR7l1w+dXruxEKGBufiM5Y9Fmh2uSRaZroPHIrTE0FzYu4+Lf/GmwuPIcPIMovP0zTJIpF33uyb0atpGrI5PoWRzZRGKlY7BLFIsUJAMODYyiPFaqqyNA0FZRV0dJ8BroWPRNK9BVnYxNTAICl+WNoN+vIF0voRpDVumkG7FjjsNJRkBNYZHnWIRYHwVbARSkWOV7AynLywmw8J+D0ySz2LXVCM4oAoJi2iMUQVaGznqwAxlCRmT4VHE8eJJuSikKac4j+MGwoplDvqVB95J1hmh4L0V6X/E4GWaHOlkgx7CbGJ6Y3YHHuGLHLtRWLFrHICwJkzYDA0gEr0aw1wYC27FP1GFvSQQhTQyZBmmciMxYfOtaEYQLPOXMiUg06wonBqBY5iRBGLLpVhSEZNZHgyfW7yBKyyrQbaHLEpJaqj7QZ2wboCk4fW91vm9YVgKKhU37FosuC0W+FSnNou66311/uc05gBMDQMOQ8CQ+mx8vRVqilvFeR5buX6tbv64e/vRlbSqsYiK4Re1D3JCeTgiR762SB5xwFYmLFYip8eVmnAZr2KBZtwpay1QcJ1Bd2PuPxxWpAseiHTVIZa7Tzy2fT6PbCnyHiwDAMKqU85pfXMTNHlYZSLLIsg1JhcD21WvS04YnFU2bGcXhuET1ZCRCL2XQq1nrxpFYs3vNFQhhfeQNQ2hK+zFU3AJPnAPf+ByCtzZ7+ZMKoFhkhCh4rVNBrViy6Mxuj4LFCDbEtjVQs0pwnv+3CKy8MLLMWK1QAKE+UPQo2P4qV4kCHnubdTWd8Wz6wBcLMACvziNw+3dRBhzgK2OQZk2agGzooikKhSHojvMgHMhb9x0vqSkhZTk68wKNnT5Jzfazb7iYmFlNMKkBm2sRidaGKZq2JQslrTx2234ZWLGo9L7GYH0ws6oweq/IrVUqB433h5IXoWDnXbuXgiYI/Y7GrdlEUi87fNrnZ0ZIrAW3LYH/G4pg4BsM0nO/nxsTsBBaOEStUUbQyFql+X0Ww6hNVV7HYDfYObcXielmh2na+24rbAADHO8fXZb1+jGxQRxjh5wOJuwOHDx/Gi1/8Yufv66+/HhRF4fjxE3MReibD5gcOVcMv/CuW9egxi+BrdFVs/oPv4JY9C0/K+I7UvOM6EDLOuquhkeIYPHK8b/lAUxS2T1s34RCih6YI+RhJLKY4tHyKRZKxSCCvUqWUBCs3/xvU/bsBwEMsPuvyq9Z9W+XxSawsDT6uhdIYVMVbrGqqCmnfbix/66/RfeIOUAwXyE70I4xYlFQDJgDBRwbJkpdYlFUDoBmks9asMSaajLLXIWTy2PD2L2IReUux2H+/Y9mgspRFLArxMy3TPmKxMklyew7t2wvTNJErltBxkXr+h3eK4UCZw503ta6CfIpDLsVC0Q2I6f7DiP+4AEBe5Dw5kH4Ux8YTZyzauPaMCRxY7gQUvDZKaR49VYcWkXtKURTSRhupyS3QDWJ3rOomKlkhsmk2XUxB0000fNvuyJpHIWkrFsNmeQLAjJW72nDlMk7MbMDC8aOQpB4oK7fTJn55QYSsEmLRr1i0814pgRwLY5XWHDxDD61gBYhyVtNNGAN+dPcfrWMiJ+CcmVHe0FOBUS1yEiGMWHRbCKmrUSwCRcYiFm3VYNQs5KovC6VMmuuT2VUSi4ZiqRO9156BxCIPgBPRkfvXzusvP9+7UkshkGJXKVkEMD1ewtxSBLFYDjZ3dF3HSoPcy2+98wEAgEmtsingWKH2IQ2YwGHnLIbZVvrRlWRk0mT/BKxQDRqyakBRNRRylhWq30JzwD3NjRlLsXjo+CKa7W5Asdh1NWJtZacRkkc0DHKZlNMkVGJcEsIwVSmtr2JR7SYmFimKwuRYMZBjtR7oKTaxmNyGfNPMBI7ML6Pd7SGd8hOLYYnaXuQzJymxePw+4OBPgB2/CGy7LmB/7IBmgFd9GpCawD3//qQO8emMUS3yzIZmnjjbPwDIc/17KgUqVrHYUoOkvTsrMIosc8NjhRqiLoxSLAqM4CGRwojFQc+BSTE2MYbqwmDFYinEQts0TSw/sIzD/3AYj976KEzdjHy2dfZVyCKaoQWIRdM0Iff6z/y2ci1n3evDFItNxWuFKksyROt+IqZE9PQQxWK7r1hMx9zDRFaEaqjoUT2c8/lzIJsyCuUCWI7F0vwSUSz6JjnVwmq8Iec5yLqMDJdxiEUux0G16tOAgxAVr/Irj5cD47p85nLn3wX+xD1LUxSFVCblZBfakDQJRaHYH4NAxhBGBg5Cr205pvmsUMdEUi82lOBEgcnZSTRrTTSqjYBikRM4UBQFRVdgwEBX66La8/5ObBvdtVqh2ufyrUdvBQBsym0CQzGhZOZ6wLZBfcmWl5yQ9Y8wwghPDyR+6tM0DaIv9J7jOKhqdKE0Qjz2WorBL995JHbZYwNyDYeBX7F4tNYN5MSsuJRHFAU8MuctoMaz0TPJeYaOVHYVUhzasreod2csnkglUOfBH4Dukpu1255z07YzAAC3fvcbuO+OneuyrVJlwrFCDUO+POYdW7OBP3zb66AsHsDYi38Xme1XAgwLXYv+nYXtr65C9m9AsSh5i0CbtLJzFk2GI4rFsIrcgtTrQsyXQQtp9MAF7FZtYtGOTaT5+Nnloi8Pr1iugGYYHHj8UQBAvlBEV+mfU9VFr4UdxbCgzOEq6FpHRTHFIS/2c/1sBV1tMdgcyKdYyJoOfZC6sFwZmlh83lmT6Co6HpsPnwlezhBicdA2bZy3dQYTZzwLsqajYdmYjueif6fTBXJNr7a955c7XxEAup02BDEFaoACsJDikOEZNCSvFWqrUUOrUQdt5Xba5wgnCJA0HQLHeM4boK9YBEfOmTil6yCsVrGY4QnJHKYg1Q0TDx5r4OyZPCox+3aEE4NRLXISIewhXpPC/50EllVYkSMNIsNuoEU1Pvx5inwWSI+FL5sAlKE4RKD3DXJ/21NnPQQbQ1MAI6Dtcri4eMfpAIDP/PdNuPvhJ1zE4qqHhalKCXMRuUZ+YrHd6eGV7/hTtCxbtNe8iDg6qEPOfndgaAESryOF369t4k7kk1mhZlIiGIb25O6ZACSdRqNNziG/YtEBFd8kzaRFFHIZPPT4IQBeu1YAOHC0P3mMt61QV7ufLOQzaTDWxJi5leFVYpNjRSxE5FQNDSU5sfjmVz0Pn/qTd6zftl3oWDXgUIrF6XGoqoZDxxdDFYtxsM+dxpNBLMbNIlwvqBKw+9NAeRtw2duBVDF6+cmzgGe/m+QxHr3rSRni0x2jWuSZDTeJcCKyxdxKrCjFomm50bTk9SEWTbp/DVlNxqLbCvXcS84FANz6nVtx7OCxRNuPQ3m8HJmxWLQygm3Ikow/feefYuXBFUz+0iTO/YVzPWRZmEpPYASPEswN3dQD7/3/7L13uCxpXS28Klfn7p3D2fvkPDkww8zAkCSDKCqoICYMKF4V/fR6DXBNV7he9F5QuV5FMaMIKIIoIjlNjifHfc4+Z+fQqXJ9f7z1Vq7q6t77zMBQ63nOc3aHqq6uqq73V7/1rrV0VQ9MVqbKNWo1KkpihFhsasHj1e10IRdlsByLQqmArtEln+NwcZqqQVd1V3XWU7HIE8XilcIVAMAl9hJYlsXw2DCuXLwCpaO4xCfF/MWYSQ19EouKoaAklFzrXbEour+P1kY077mlp2dAN0YaESvUqfIURmSivqSk3rXAC771BfiF3/2FyPMdoxMgFusi+TuLFaq7DpqxGJoUP1ok1rXhDE4AGJ8iMT6Xzl+CXCCKRUr0U9tdxXffc24jeH/iZiw2t0YsrmnkeNDcUJ7jMVIYwVLn2lih3r9wPypCBc+Z3n4BR44cOb5+kLlNYds2vv/7vx+S5BUpiqLgx37sx1AqecXOP/7jP27vFuYI4Pve/zX8zZvv3NI6rmwEm3WLTTWiwloN2bg+fjk486aXdZAkcGhryTZOtYKAthr8TL9iMUxq9VLQDQq/YrHXdypJ/c/SGxoZwxMP3Zf4eq3h2Ztaagdvf/O3ob2xhtLR56N8/YvIdnEC1KtngcJuKM01ANGmpxTjkUZtQ8MZe2HFIiWtSmVSQNsMD76XFWq3g8mdh7AEkiUkcGzAhrTjEIsSz6JjAhB7zwovicHLEcdxGBoZw9mTDrFYH8LVjlchz8+dx+jElPt4EMXielfDrpEi6kUBmkMsUkJp9UrUqpgqFk3LjiWt6sOjWFteBEazb8PNM3WUJR7HF5q4Y0/02A6XRHS0dMUiAMxMjODcpg3dtF3142Q1fb9P1siNTdi2mSoPbcfipNtpoVBKv6kdr8nY6BqwbBssw2BschqAQwzyIgSWAd1lglgg+ztFsWgLZNuTLHF6QRK4vq1xAWKFqhoWTNuODJBnl1roaCaevXfY3c4cTy3yWuQZhLibeL9KUe+TWGQ5QCyhzjvXL9pAi1NGUmxeJjadftR3Ap3gTOGPf+kxDDNN3PFypII1VWKvaYTGZGfSSzuu58xLaPsmZQiOnaZBZ4c7dp3FLSkWh/CZrz2W+HqYWHzOG34eZy5eIdmLqxtuduDieht1CTg7v4Y9Cc6JsbCMCInXSVDi9VIscloT9q9VcX/rLNpdFeWijI+851dwz61H3ff85ldFHNg3hilHfUFVZxGFWsYxYnp8GI+eIE2esBXqmbkrOLp/JwBPsWimTMzKgkqp6NqfL63330SaGG3g3KUF7N4RzaMeCJaeTtD7sH/XNPbvmt6ez3VQFsi+aGsWJFFwfyNZsHOKZFkbhjmQYpGSmLp+bRVOAIDP/g5QHgdu+4Fr+zmP/R1RIL7w7cDowWzLPO+/Asf/magWxw67CvFvVuS1yDMHLb2FOlff1nX68w1ZsIkKSdu2wYCJEFVAMFcxK7HoRxyxGJe76L7GigErVEp+XZ27mrRI3xgeG8bq0ioqiM/Wa4Syed/23W/D6SdOY/I5kxh+5TBsznbJWAC4dOoSjowciaxH5EToTLTgMiwjsl8UJVhrUoKJKgLjFIstrQWJlVyLVKWjQC7I+OX/88vYd2QfPrP2GUicBAPkuNNcPNcKtceklgJfgG7pKCD4vpGJEZw7TmqRcMbi/IV5XHfbdYHn7B69gzA0S0ORL3qKxZLg7m8zpmZrak1MYjJxfUNjQ5g7O4cqgtt6ePgwPn/589eUWByfHsf4dLAG0k0dqqliSPZyF+k29EUs0oxFngN8P+3RQgqx6NRjpmFCKkjQLM0jFp0au+tzbbnYvIjbJm5zH3M8B7kgB36jgyAuy3ayNIkVJVlJPCioDepd03flNqg5cjzDkVkW9qY3vQljY2Oo1Wruvze84Q2YmpoKPJdj+xCnULIsG9/5R18aeJ1FkcNyS4Xhm5m13FQD2XUcy2DNZ2lo2zaOJ6ipkhBnzelHtSBAC6kk/YrFXkh6L1XKaUo2ZaefWLwWGBoZw+pyshVqteERSaxUxPNe9Tr8n7/5OPjamPs8wwkYW3sMF9/9ncDK+dj1xO3vtqNYjBCLoYzFrkNaSTIpIm2Wg8Cl6RXJfuMLXn4OsUKNIxZJI5EVequ7CkKUuB0Zm8C5E08CACqhjMUrly4E38zxJCsmIyzbxkZXx1BJRK3gKRYpNCUavl0rClBT1IO14VGs9ZGxCAA8x+KOPUM4u9yGGlO0NyixaGaZdkiOAc0vHaum7/fRigSWQcSGlSoeaZ5Op91G0bdv4jBVK6Cp6NAde7vxyR3ei44Klp4j/ozFMEHrEnZxqp8+QGxW+1c+lySiWIzjMx+5tIGiyOGefX0wxzm2FXkt8gyCETNO+1WKptq/gkeqoiaQ65enWEypB1qLUcJkZB8ABNTUl5fWM308a2oAJ6Ll2GpRxRwcG7TpUsx1nAsSixE4NqpbViym5BqNhhpUP/jtL8aX/uZ33dxC0SHM6HywJy70ad0fY4UanlxG0YtYFNtEOTGy/oibsfjK59+BetUboz4/L2BFnMZmm+z/mtPM68dC04/psWE8evI8AESsUM/6mq40Y9G0t+a6QVVyFJrWnwpqfLiBhZRMzYHwNObrjRbI76alGH2pFQFgp6+xWAwpzLIoFgWBz5T3uWUYGnD1MZL72u+kin6wfAo48a/AwZcDh16eyQ4YAKmxv+2Pge4q8NBfXLvt+wZBXos8c9CPBeIgYMD0zFiMs0L1k4n+vMWskDgJujN2dDZJnZOmWJQ4yc2Ou1ZojDbQ3EgeSwqlgqveAoCXfudL8ft///uozJJx12RMYkng4NLZ6CRggJCkcZ0M04oqFsMZgh0jSixSdRdFU28Gci+VjgK5KOP2596OxkgDiqlA9lngU5WZa4VaTq9F4jIWAWBkfARnjhML/3DG4pWLV6Ir6rOEVk0VJbHkqmW5QnBftTaDCsVBFIsAcMvYLWDAoCFHrW8B0nv8xLlPxGaPbgX0d+YnFmneYqePXPdOuwNe4COW7yMFIhjY1KPE4sj4CFinJycX5IAVqug4dNDzTGAFzLeiCtRe500WxO3THZUdWFfXt7zuMHIb1Bw5vnmQuU3x/ve//1puRw4faDbhYjOa8fb9d+3CX3/tIja6/c2ctZ3KoiLzWGtr0H0kRVszA59VFDls+qwQFzbViG1pL/QkFmOIwco2KICaGxtADWiuZiN3/FaoW4UdU70NjY5jYzV5BlClRgqq1mOfQvn6F+EVb/hRTIRUZgzHw9BU2FoXSxdOAnhRZD2iEEMsOk07ng8W1mHSlZJWshM6bjEcsUJNmcmvdDsQZK+gFkMEkWuFKnAATNgxsybDKIrR5sbw+CSOP/YQAKBab6DtyzS4Oncx8F6GEzJbdQFAUzFg2cBETXasUM1AxiIAXDp/BkPjniqyXhBwwrAcYj66vfWhETyysoR+b/++5fA4Pn1sEVc2FOwaCW5DvSjAtGx0+pgtv9nVwTLAcDndSo5jGYyUJWwqwXVvdHUUBA4dZ3922y0USunE4o5GAacXW9BMC5LAYXhsAizHwTJNx16X8VmhymgbFgoiFznPqBWqCRai1FtNkARJYF0ruX5QkjjohhVLHj88t46D4xWM9yBsc1w75LXIMwhxzXPNd2NvaK7SLzMKddQF0lxx8wATmoZXOxwm5OUosThEiMX9Q2zfn0+sUEWsNTvAEHB1zWm6ONfSWNUhL6LVidZ7FDYngEF2YjFO5T05NgRV04GE0UkSBRQkEV2VNLLe+sZXR14HADr35fiFRbwq2+YQcrgPYpGSagWp93W23VVQSlGdbTjNPNcKNYNCLQ7T48P49y+RWiSsWPQTi3Q/mX0288IIk2cPHTuDO248lHn58eE6rm43sRhj1fdUgZaXTcXomxyulouoVUrYaLYjZHXW86FaLqKrJP9GtwWrpwHbBLQWYGqAMHj9kwjTAL72PqA6BdzzX4DSSO9l/Ji6EbjzLcCX3wvM3AlM3bT92/gNgrwW+fqG1YcHZJxacDuRZoVKEUfQlAXvvquXqxIQtFEEAJmTCaFVBjZXyf1zGrEocmLACjUMTdEgZsg+dhEzDg6Pp1vNMwyDYqnokh+v/J5Xkhf+1lkltXq1ALDA/Ln4TNO4fEmAZGuGMxbDCjBKMFGrUVEW0bGCdWJbb6PMl7GqrbrrGBrzyCrFUAJkMCUWKTEk9xh7inwxNpdzZGLEzSyMKBbjrFBNxGZNJkEztUDGIh8qPI89fAy3P/d293EWYnF9ZT1gNQsAbzzyRuyu7Q4QfH6cXj+Nj5/7OGzbxsv39LAK6QNUSThc8M7DAl8Ax3ABtWAvdFvd2JxMgRNQ5ItoadH9wvEcRidGsXB5AaIswrAMFDhHGRqyQt1T2xObeViqlLCaMkkwC+LyH2ers/jEuU8Q4n2LOap+3LdwX26DmiPHNwmuXZBdjoHxyNx64mtliccvvtRrLtAcvV74/KllAGTW3HpHh2YEB/jTC15RXRQ5NH0KpjNL6UVDHOQY9ZkfVTla2Eo9lukH4RzBJKQpFrNaMJardQDAZky23vDoWOJ6bNvC3/zhOwEA2tVTietnOAG6Tpp9Z08+GfuesCoR8M6NQo+MRcOyoeiWq1i0GA4ix6YrFjsdcJKPWEywQqXFCcMn38hQxBKLo2SmuVwoQhQltH2Kxfm584H39kssUvvPqVoBJYmHqlsQC0FS74mHgza29aKIrpaSsTiAYhEAXnCYKFQfnos2AhtFchPXUvogFhUdJYmHzPfuRI9XZbRUI6BiXu9oAavPbruFYg9icXaoiPWuBt3pqHI8j5GxCQCAzfIBslqUCtBMC8UYOzNqiasaForl9M9Mg8xzEZvVLCg7ikUr9Ltdaqq4uqnglp0N95jkyJFjCzCUKHHnJ/lMtS8VOgBArrskhGuFmqBYvNLliR1gN3TdHSIen7dMsn2TKa4VqoOumkFpxktop5AWiknG8EIPK1Sa/be0Ea1rJkfjmzcAqXV+448/7JKKcaCEGeUCT80lZ0dHQI+hr1lhWDbaSvy+oTl4SYpFP2jGYhI2nRwcj1jsX/UBAFNjXhOKKiopzswRIvvYGzfw/ucQNaW51YzF0Kz0Lz10rK/lJ0YbaLa76HS3kQy7xs33NNA5QpuK2bdiEfDsUAfJWASA6gCf2TcWj5P/u+uAcY1IzGMfBTbngTt/HBi/frB1vPDXgMZu4IH3A9q1VTflyPFUoB+l0iBgbAZmj6iOOCKiLPZ3D7TUDd5/+m1PDdfFKHlcFVgh1WYxTWnoR7lOtjsuC254LJlYtG0b//D//gEbq8kqNZOGFjrl0PzZBGKRk2IJtSyKxa5TM/oVi2GSr6N3AopSpaOgUPDGCdVUAxmZYStUlmVTycWCQKxQbSZY9/mJ2Tgr1Aj6nJunmioqQgUFgXwXTg7uqyfufyLwuJfad2h0CLZtQ+sG60uJl/DCnS9MXO7+BZLle6kVVKTGTeLvB5vOBHWa8UhR4AvomtnHs067g0I5vi6oiJVEwpVas8qyDMu2XKKfWqEqJjkXrx+9HmvqGtqhKIftUCzGTaTYXd0N0zYj15CtwLZtHFs9hrun785tUHPk+CZATix+HeJr59JnovizCM+vZFPcPXaJFGlFkcOmokN1iEVK5vjJw5LIBwicM0utvtWEcoyCzo9etqdbLRyoKq8mkaqST7BSSCMWlU62G41SmTSZli+fj7zWGBmLPAcAlqZg6cO/hY/95fvQGB5F40U/Fnj9OS9+pfeAF6DrpKA9ezyeWJQcVaK/fqRqgDDJqyrRm4amqkNyLKJIZiKTOsNN6XbASV5BJXBMIKqo3WpCECUwTofXZnufP6WYc2xknPj2V+tE2dnWvG8YtkJlOB52OCsrBdTud2aoiLLMwwYC9q4A8ORD9wceN4pexmIc6kOjMAwdekq+aBzGKjJunKnj2NVmgOAjn0luApt9qIbXO4RYFHsohwFgsiajpRjQDe87rXX0wG+002lBLhahm1ZstiQATDcKUHQrYKs65tihWgxHVK3OopxMCuNSzHWAYxkUBJJzWCzFZ3BkQZzNahaUJB6aYSF8iB+5tA6WAV50aCxg+5sjR44BwLBEkRieDOKfMWxqRMHTDwqerZLNcACYRGLxaocDYAMrZ4IvSOS6Q64f/f3WWUsDOAG0vO5kIRY5Ee0UAmjdGauKPebnUNLk4sJ65LWJUG4RhWLYeOOHFfzKH/wDZiai6qX3veOtOLRnxrX41JyJI2cv99F8oA05n2WUbibvG0oouopFyyQWkTEgVqjJysZNp5lHrVB5noMs9T8xZNpp5lVKBfB8sKbyKxZ3V8j5bGyRWAyTZ19+uD9icXy4DgBYWFkPvrB4DPjUOwCjP2tVAJkzFrcdpu5OFtjoGgOpTmcniX15JGOxlF2xeM2x+CTJITVVQNlmtSkAbFwGnvgwsOf5wHWvBfgBJ0hxAvBt7wPaS8DDf7W925gjx9OAa2WFyujkwpVFsRi3DRWhv3ugpU5wXPYr5gy9N7HIsVyEZPMjK7FI7R43lqO9l6GESU62YWP+z+fx3v/+XkzORDP7bnnxLQAAi7GI/aRzqzx/bj52ArfMxV/bLduKKLLUUP1FiWZK/AmiAM3UAkrHjtEJHJ9upxsgClVTDWRkhq1QAS/DMg6UlDSZYA084qvTytVgzyLOCtXuwz7Btm1opoayWHZJU0YM1jJPPBgkFnvlEjZGSe2ZpoSN245jK6TmudoO5ntaKS4iDyw8gE+c+0TquimpNloMRpoU+EJE8ZuGTquTmJNZESuJ15SxadIXlAoSTMuzQnUViw6xePs4UYWe3zwfWP5aEYt7ansAAFfaMXa6A4LaoL589/YpTnPkyPH1i5xY/DrEV85lD889u5StGH5inhR3ZYmHZQMLm2TgkngWJYnDuWWvMChJHNo+EuP0Ygvjtf5u5GVf4+XUQnTWTkUWUtt1/cYqhaE5qjxKLDBOsUCtTylRpaRYoTY31/v6zDhicWh0PPpGAGv/8X+hnH8Yv/TuP8Xsnv0Ri5Pd+w97287y0DVS9F48eyqWtKLE77wqugV217mJCCtB1RgytaUaME1SvJpgIPDJikXbtqF0O2BFr6ASeS5ihVryqc0ssOB7qBb9BCg9/FTxJhdIIeUnvK+GiUVeIDZPGbHe0cAwwFhFQllysiB9KszayASeDCkWa0URim5GyD+KxggpVFW1/1ncr75pCueW25hfCy5bd7rJnQTbuDhsdHVUshKLdRmbih7IPF3v6qgWvOPVbbdRLJVJDqUQrwTc0SDnw5LPVnl8ihKLQcUiVbuWYlSqALkGqYblkvaDoCByARVtVpQlHmqMFeojc+vYNVzCzpBVbY4cOQYAKxDFYvhaqvlu7A2tf8ViMTQbnheDuY0+XO06ExtWz8S+Tpbvz/aYcTIWKZIUi3S8BQBwAlopzby1NllHVivUxfVoXZOkWPzlT6v4hyd1/M1v/yRuvW5/5PWXPOdWHPv4+zzFojMBZXm9hfXNjG4WJt0H3nikmUhULJrOWOQqFhefBP7zNwkpFkK7q/awQu1AFHh3+4HB7FApsRhWsgPAuUtXIzZfW1Us+onFsXoJX3zwWGYXDcAjkhdWQgTV/IPA0jFgNdklIxFpWaXXEr7G5UZHHygnc8uKxWtNLFomyT6cuI48bm2fagAAUYZ/7X2AXAPueRuxQt0KZm4HnvVm4Ox/Ysjc5m3NkeMpxrUiFlmdjHksWJg9apm4behXsbjcXQ489mf8UYhs+oSCNAIoK7FIYRpmZNyqNqrg+Oi939K/LGHt82v4uXf+HG6444bI68PTZAw2LIOou2xvexfnow4KMi/HzguLs0LtdoPfmVpi0jpNEAXolh7Ydx2jg5rgZRwqXSVCLPoVjS6xWPYRiynjD81vtNhgbTE64RFi4Xy/lcWViOLUTpgIHQfFVGDDRkWoQOIksGDBCN5OLFaKOPbQsUD92otYpERyGmEdxsXNi1hT13Dj6I1YUVZisybj8MDCA/j4uY/j0aVHE9/T1JpgwaIu1QPPF/liX8Rit91NJPnqUj3xmuIqFp2MRd6ZeE+JRc0g3/W28dvAMRwuNoOxP35ielDEqSl313aDZVgstvtwI+mB3AY1R45vLuTE4tcZDNPCQxfXM7///Eo7kJeYBKrOovllV9a9wXO0LGF+wyuqSiKPjl+xuNjGWKW/5prsIwz+9YmruLgaHGA5lkEhgVQAACEDIZKGOPIMIJl5ALBz7wEA6YrF1mZ/gdG6rkFTg0VJY2gkQBqaBiG+6s99Iybe8E48695vQX04PuPEJRZ5wSUTDUPH3LnTkfdKjkL0kipjuUXe21ZNsAwghWxSNbXr5ilStFXD3XbTZhwr1PjGmGlosG0bjOCdEyLPRKxQ/WozzbB6ZvT5rVA7OimEhx3FIrWC7eg+8mt1BZ22rzhiBdgxeQRJWO/oKEs8iiLv2m8ykreNQxM7cOHMSbQ2vRupWkGAZSPw+/DbEY+MkuZVnCq0F155wyRsAA9cDDYCKbFIs1ezYKOroypnIxZnGkVsdg3ohrf+za6Oup9Y7LRRKJWh6GaiEnCqTs6ptY53AzA6OQ3AyUvkWVfpR0lput/DoKrBQnHwArogcAMpC8uuYtG7GetqJk4utHD9jlrP3MqnCgcOkGvY1Myup3dDcjxzYNvAr48BVx8PPn8tbPk4Pl6RGFEs9unjJNdDnyMlbv+KygEsH1UsbgGspRHS1BkPOwlK8/OXfTfvPRSLqy3yWi8rVD/WQg3AUlEOkFWGc73/b8+R8PkfKOH1L302xobqievjeZKHa/hmvz964hxgW/iV54pgzZQxjyo1fCoBzbTdffOFv34X3v9bP+O+Ri1ZXWKRNmRXz0VW3e4qEbLIj81WJ0IKDUJMTTv2bSSnMghV0zG/GHQaMfo8bcPwb/PUcBXziyuYu5KdwBl3iMWrSyFice08+X/jcv8bpT1NikWfFdhGVx/ICnV2Kl6xmKZ29WOQc6YvrF8kSsV9ToZ6N/sE00w4/Slg+SRw+5uBHbdszzq/5deB2jSuY8k9yaHdO7ZnvTme8fji5S/i+j+/3s07ezrgz1O7ZsSiQe7BeJaHBSvRDtW27XjFoth7cqWfJFtRvOsGYzOxeYrh58K2o2lWqK2N/qNxwqQfy7IB1aLp1CLDLxnGnl/cg1e8/hWoO4r7OOiWTohF3xh75sloDedXa/oRZ4VKFYu3v4KoxCjBpCmkFhFlEbqpu2pPxVRgWAaqgmdFqnSCxKJmai45CADtVhu8wLsEEpCuPqOkpMEEa8iRGGcJP8KqxX4Ui9R2kxLaAicAvlvecr2MdrONC6e8id29bIQbw6QWUVNyxMO4f+F+SJyEH7ruh2DZVoRc64W/O/F36CTUKy29hZJQiqhWS0Kpf2IxoS6oS/XEvMaxKU+xaNiGS1YLQlCxOCQPYao8hUvNoBVsmso1K+KuNQInYFge3jYrVKo6fSptUHft3wUAOHLLkafk83LkyBFETixeQ7Qz5h/68eSVzQBpEYYZmvk1t9pFs0f2WsvX2KL2hlccItG2LExUZSxuegN+WebR9W3DUkvFSJ/N9EJIJfdr//RERIbYr71qP6BWqGFcPEtmac/s3gfLsqB0U2bm9alYBIBTTwbtujieR22INKQ0TcWbv+35WFteAldqQBwjtgP1Ia9I9O93l1jkBBi6R9acORG0oQC8jEUdHD57khTxHc0IkDkUarfrKgApFN1yyTBKLCZJFql60q/kCH9Op91EqeIV3LppQS6mN2b8RHPHUUVUa3UAcElOSiwWiqTovTLnFbcML/Rlhbra0VCVeUgC6xLuELybgqEJ0iQ5/viD7nM1h2zz/6Yur5NzaLQioTFMmlfaAIrFsYqMm2fqOHalCdN3I1CWeHAsg04fxOKmQhSHUiYrVJJ3uOGoR2zbxqaio17yKxZbKBaJYjFJCThWkcGxDDa6XuOVKhYN55yiR5gSi0mWyJTc60VGpyGJtOyFosRDNUyYPgXKk1c2Ydo2nn9wFFLMTNunA1NTRHFQKld7vDNHjozYuESa2//ytmv/WaxACD8/ccjyQWLR0vvKzQUAFOrBx7yUqFi0bQDFEWBjrr/PSAGxQhVdYtFImPh17IyvUcIKaHWSx4zVZhdgOBT7uKR95ZHjkeeoiu2Tpw0cedWP48LlBTQKDG6fJte0seFaZBkKhmEgCnxAmffoifMQlBX89+fLqK0+krwx9Bj6GqC6BbQVDaLA4+5bjuL7v/1b3Ne6Tt6ka4VK0QmSLaZlQ9eNnhmLtdAM70EUizS/MuwuQR+enQs28wxrq4pFP7FIPrsfO9ThegUsy0atUNed8649QPPI6PRP9G8HfIqI1fZgxKKnWAwe++yKxWucsbh0nNigHngZmQzRXd++dbeXgYf/Gpi5A7jpewBhm74LLwGv+SP34ehQ8vUjRw4/PnL6IwCAY6v9WTxvJ/wqKD850k3oHwwCqljkQQZvw46vZ2zFjiVo0mxL47Da9Sa4sGAj4xXgZA/64CeJgO1VLALAEw9EexaUWGyfaONNL3gTLp65CE7mUNxPxr1GgnU74FMs+oais8fPRt6XZIVq2skZi/WxOnnskDuqU4vQjEW67zY0QsY2pEZgHXIhRCyKXu3RaXZQqpRwbuOca/OZqlh0iEWTDd77V+rpZPNWiEVKhtUkci0XWRHw1Z2lWgksxwaOaS9iUZRFlKoldFNq3DCeXHkSt4zdgtvHbwcDBuc2opPKkjAkD6FrdPF3J/8u9vWW3opVApeEknvcsyAtY7Eu1xP3y8QO6sQlw7Q8xaLoWPSrpgqe5cFzPPbW92KhsxDczkoJ4rgIe3Jwa7ekiRSTpcnA5ISt4PjqcTT1p9YGlf42ZvfOPmWfmSNHDg85sXgN0Y91IcXXzq2SfLsEhO35VtqaSxIm4cRVb0agyLGQeBYXFsgs5vbmOiZqMlZaPmJR4tENkRhj1X6tUL1T68YdNfzn8SV89VJwIPNnRW43NCV+0Lxw5iQAoFiuQE0hFQGg3ex/JmXYOhMAGsOkodFptbDnwGEU/RahVpBYXPYdB0reMJynWGwMj+LcyWjOIiWQBBj4xONXyexH1YTkWJT6m4Gq0oUke8UQwwAd3VMsGpangIyDrlJi0bvhkUNkS7vZRNFHCmmmBbmQrj7zk9Eeb0f2QaVWh23b6DrEYqVB9tmVSxdgO9+NYXnYPgK2F1bbGmoO+VamJLfoneflWgO1xhCOP/yA+xwlFtu+3/Ylx7p0tCyhUCpDkgsw9AHyi0DsUM+vtDG/7p2bDMOgJgsB0jkNtm2jpRqoF0UIXO9L/IRjc7zq2O11dRO6aWO07N18dtptFEolqLqVqATkWAZjFQmbXd21vtl/5AZUqnVYDEfsdZ3NoWrXchqxaFoobCFjsSgNRgCWJQ6WjUDm5MNz6xgpi7hxJvlmN0eOZxz6mKjRNzgBMDWsLPusu1ie2J9SGFr/vuhhYjFFsQgAKI0CzavJr/cJxlSJGrMHjp2dc+fu2JyUnrG42QZ4EYU+SqYvPRRt2E6ODuG9X9Pw8r/u4MCuaQzVgtfXNMUiAEii4E64GK4W8cgJr5knGyn1ErVCDSgWiZqzGEMKRhSL7gsrAWKLquzTrVDbEcViVjLJD9qgDe8zkSfH2p+zCBDidCvwb3NRFrB3djL2mCaB4ziMDdfcjEkAgLoJKI46pbPa/29LV/q3Jt4O+BSLq63BiMWbDu1FtVzE1FjQEvjrxgp18RhQ2wFUJoDqJKCsbz0TAiDruP9PyESO57wNqG9zw23X3QBt0irr27vuHDmeIvjtHJf15ZR39geasWg7vp2qGT/O26qdqHDqB6uKRyzyiK9DwmTlhdNBYjHNsrKV1f7ch8fvfzzy3PDYMNa+sIbz7zyPsamxiEIxTbFo2iYEUXAJs0qjgtNPRp2ckqxQY4nFrgKGYVxrUXosXGJRkmBYhrvvqNK2LpLttG0bqqIGiELNCikWm22UyiV88vwn8dEzHwWQrj5zrVCZYDERRxYDJG9RlETMX5x3n2M5tj/FokM4USWmwAmwOMuLMeE47D28N0AsJp3TfgyNDsHIKLZY7CxisbuIF+18EcpSGePF8YhqLw0NqYEfvv6H8eDig3hkMTrhraN3UBOjk2DKYjnTd3HX0+okKhaH5CF0E6zjdx/cjVKlhLGpMVi2FclYVE3VJbAPNQ5hubsM3fR6SsVyEcMvHobwaqGnvXLitifY105XprG2TfnO9y/c/5TboPozTXPkyPHUIycWv87wlbOrmB3q78L4SA/r1CfnvYYPwzCoFwVsqKRQsWFjslaA4vNtKktBxSLPMpjsk1gs+NRCR6dqmKzJ+KvHgwNZNWtg0ADQEkhDqlgE0m1QAaC5sd7XZ0qFIp70kVAAoGsaNtdJoS/JBfzSu/4oQOppphWwQg0SSoSs4UQZmkMs7jl4FGdORIlFank5zHRx//k1bHR0tFUDIseAZRiovhmYqtIJKBZLIg9F8xSLhmVHiMLgd3JuOnx2KnJIodppN1H05eNlsbUs+s4ZJVQIV+sNqIYFyquLhRIKxRKuzJ131RAML8AyshOLax0N9aIIWeBcYpHx51EwDI7cdDuefNQ7ptQelOZXAh6xyLMMGIZBI8HaNgteecMUbAD3h+xQa0UBim7G5juFoRoWdNPGcCnbTNepOvnO1MJ03bFNnvDlqnY7LRRKZWimFThOYUzWZDQVA4ZzoA5edxP+8cvHYdrEkpelN0SO2rWUoFouy1tXLJalwSYu0O9HFaKWZeOxyxs4MlntW7mdI8c3NHyz37cdnACYKiw/ecmF8hCtGKvUXghbofIisVRNQmWCKHqS0KdikrVNoEeGEQA8efoi6OVPBx/J6PNjbbMJcGJmxWJJFvDlh4OKRcMwMb+0gp/8hIL/coeIj77nl1EJkSVpikXAIRYdBeaBmWFihepANFOs5FyLcs6ddKKbNtqKHmtF2XXsxyKKxe564FhqTs5PqmKx1UE11PwZhJiiGA6pBViG5C+eCSkW+zAYiEVYVXnXzYf7IhYBYHw4NBFmzVErlsbIb9vscwKU3u1fQbwd8DXBVlrqQMfv4J4d2Lj/H1yLWIqs6tXwObStsG2iWBzZDxSHgOo0oDT7Pz5xuPhlYP4h4OY3ADvv8iS224nrXkv+306VZY4cTyG2g9SLA1UsGiDXTT3hN20rNhRD6StHNw5rqnfvyCH+Pj5CLIYUi2lWqP0qFgVJwJMPBnsWlmVhYX4Bl//fZdTvruN3PvA7qNaDzitpikVqhUqzA2f3zsYqFpOsUC3bithguvmIzuVRdSajac4kJ6pYpCrIpkb2w5BMJqpQ0kzy1TOqqQYUi+1WG8VKETZs9zxIJRbFeMWi+/1CyzIMg8nZScxf8IhFQRBgG9nPKaqyq0ikzpE4QqhKRe97XXfbdQFiMctvJ+14hvHI0iPgGR4v2fUSAMDe+l5caV/psVQQP3rDj+JQ4xA+ePKDEUvUjtFxFZl+lIX+iMW0jMVheRiGbcTum9HJUXzsiY9haucUDNsgdrMgOZ5AkFg8OnwUpm1iruW5qpTKJTAsA7bM4tRatqxs0zLxa1/6NSiGgq7RTVRO76zsxIa6MTBh6f+8p9oGNUeOHE8/cmLx6wi2Ddx3fhXTjew3zTzL4OFL66nveWI+OJN8qCiibXg3l+PVUOaIxMNfhkzUZE/RlRF+C0aGAd707J3ohMax6jVULNqIL6T8xGK3k56p0G/G4sj0TqJY9H302RNPYH2VNC0LxWIkaLulGAHF4mo72ADlWQasILlWqHsOHsa5GGKR5iiOCio2ujq+eGYZbc2AyHNgGUDpeIWV2u1C9KkHqUJVVbsAS469JCQTi4ajbLT8xGLIcrPdbKJU8RpwxAq1h2JR9NbRNezADVa1PoS2z36UYYDJHTtxZe6Ca3/KcALsPojFja6ORlGAyLEuwWVxwXPyyI23BextqWJR8ckR5laDRWtjZCzzNoQxUpZwy2wDx68Eb97qBQGKbkUUy3Gg1shj1WjDNg6jZQks4y1HrUynKLFo2+i2WxCK5MYvSWUIANONAjYUPZL7qhkWsct17tps58Y26bpSkXmohgW5ODixmGSz2gvUQlV1OsPnVtpoqQaevWf4mqqsc+T4ukNneyxxYsEKjiLRdwPLCUF1oan3r5AKz1jl5XT7xupkOoE6CJHC9yYWj52dQ0Uk10PFTG/2r220AE5E1rlYs2N1fPWREwE755PnL+Pi/BL+8BUy/tdLZHBcdIwfG6rjybeUYP9aNfZ7+61QD0wP47GTF9zHst1NVrjS51nWzSjUTGKFGpePSK1Q5fDkkM5K4PxwFYspxOJGs70tVqgUYWIRAPbMTAQUiwzDbFmxyLJsYN88+6bDePj42URr3ThMhJt56xeJKnjnXc6+7DMLWu88PcSiT7G40tS2Ne/w60Kx2FogatLJmwCxRFSFynr6hIgsUJvAA+8Hxq8Dbv9hQBrcASIV14KszJHjKcS1ylhk7OBvQ0v4TduqDRs2NrWtZU6uK+uuRShrx7f4IlaoPsWioRvQY3KEKfrNWKyP1HH6ydMBsnLx8iLmzsxh4nUTmPqBKZdQCSyXpli0TPACDzil4Y49O3D53GVXXUhR4AuJikV/LiUQtTGlBBNdpyiL0C0vY7GltcCAQUMkYywlFmnGomEaMCwDZcG7h2032yg5tYhmOZOnUojFMk+Wtdj4Mb/aiMZgTM1OBaxQ/crOLKBEWF2qAyAktG7pASXmkVuO4NK5S7BtG6zFZsol9Gdq9sKZ9TO4YfQGl/w7PHQYS92lvsgujuXw28/5bSiGErFE7ejxxGJJKCX+PuPQaXcSj99wgUQgbajpfUTTMj3FovM70E3PcveGsRsAABc2vN9oseLVIg8vPZxpW++7eh9WlVX82/l/I9eIBOyq7YJhG1jubk21fXLt5FNug5ojR46nHzmx+HWEK5tdbHR1TNWyE4sjZQknF9ILvcfngwPbUEh1M1oJEYshRdJYRQrk32VBWMG2b6yCXc49reXMIqsVn9omvaHrmL/ozbDvqVjsM2NxdGo3VpcXsbx4FcbGAmzLwsHrb8arv/sHEpfRLStALC421QApI3AsOFGGrnuKxbWVJTQ3goo2kSfVc5nVUBA4fOLxq2irJkSeBccyge+qKV3IZa+oIiSOCU1RwPDkmMhpVqjOtpg+KxE5dH50Wk0UfTaWqmFB6kUsCt5519FtGJYNzclzrNQbgVxDAJic3YUrly56s7o5HlZGK1RVN6HoFkYrEliWgcSz4FnSDBRF7/dx5ObbvExJAFVXsUgKXNu2MR+yIqY5i4PiW2+awsUQWVkvClAMMyOx6CgOM6qMeY7FcEnCprMcJRYnnOuQZZqwLAtCkRzPtEkGM40iNrsGNCNELJoWZIHDzCzJXCzUSNFdSriuVGQBqmFC3oJicVBikVqoKk7T+pFL6ygILJ57cGvHNUeObzhcS2KRE4iSzU/6cWJQpWPq/SsWw01uvsd1sDy+LWRJhfNtN5de29i2jWNn5lAQyLZ2exGLmy2Ak5DB2RoAsHO8jlaniydOXcDchgXNtHFk3yx+4c3fiR+7LZn0HB2q4fCoc03enI+87rdCPbBjBF1FxcUrJKtPstrJRAhVLDIc2o7NGrFC1WNtTD0r1JiMRd/sc90ZZ+JUjxSb7U4kH28QYopOdBoOKSsY2Ng7MxkgFkWBh95HMy8JfmLxrpsPwzDMVGVrGOPh5uz6BXK+jx8hKt0EO6xYsLxDLD4dVqg+m8KmsiXFKcVIo4pfePN34t5nXZ/p/deUWFw6DoABdt9LHjd2Ad21rROLD/4FuYbe87PA0J6tbmWOHM9Y9JOtNghYp92mWwmKRZWMF72IiF7Y0DbA6WQMT7JCDROLF097ec9pNqhA/4rF2kgNpmHixKMnoK/rMFUTEzMT+MGf+0GMvGwk0dYzjVg0bAOiJLqE2Y49O2BZFi6dDdplFvn4a7ZlWeAYDobPeUjp9iAWJRGGZbiKxZbeQlEougQlJRYLBTI2UYKuInp9kE6zg1LZIRada3uSlSbgKRYTicV6DLG4M0osWkb2moFud1Uk65Y4CZqluYQpAFx363Xu37zJQzF7K237USxqloYXzr7QfXx05CgMy8B8K1qTpmFfYx9etfdVkRzXrtFFQ45uT0WsbJsV6rCcjVi0bAuyQPbt7AFiU66aqnueDclDGJFHAlaw9BwCgBNrJzJtq+XMNrBgYV1dT3zf3tpeAMDV9tbiIZ4OG9QcOXI8/ciJxacR7/3MaTz3nf+J7/yjLwMAHr+8CY5hsLMPK9SxihRRTPlhWjZOLrQCCkJ/dhoASDznKrEAoBTKJhspS6nWmHGII6buniLr0BzriFo/gUHbgMsXz8E0/IVkelMlq2LxsFOfHN09CQD47Mc/hPn3/xTmv/oxAERZlwTNMFEfGnYfz290A8o8jmXACZKbsbjnwBEAwKULwSBrenxtANdNV/HVc6vY6OoQOWLP6VdnqkrHJYkAQsAoOrFCZRyLykKqYpEUXqbv8lEME4vtJkoVr+jVDCtgvxoHP3nd0W3opoWmYyNbrcUQiztmMT933m1MM5wA0yA3bb3cZNYc8mzSIc8YhkFR5IiyTvIK6ANHbwTHezdnHMugJHKuYnG1rQXUi8DWFIsA8IrrJyO98UZJRFczYWRoVjad/TTeh33xWFVCSzFgWBY5b3jW/X1StSwvkWI2jbCbHSpis6ujowePlW7ahLx1iGuLIdmfScrYqixA3aIV6qDEIiVO6XF9ZG4d+8crfe3PHDmeEdgKsaj2aECxJGMxQFSwxB7VRZh4HAR8D+V2eWJr63dwZ8OneuTSFYtXFlcD2XcdPQOxmEEFSbFjtAqe5/DX//I53Pp/2/ifnyW1zN6ZydTlxvzNvJhB1G+Fun+a1C3Hz5GGh2SmEYvOeMCwaHVI40q3gLaipyoWC1LoO9tWIA9Ty5CxuNnqolbeumKREqKuYtE5LysiUSz6rVAlUdiyYhEAin77sf07+86GnBgNW6GeJzabo0cIYd/qo3kkloly8GlULFo2maS2HcQiy7L4H2/7AYwOpdv/Umwbsbh2IUrOLh4nhG99hjyu7wS0FqD118QP4MqjwPnPAUe/Hdj3AoDNb/dz5EhCUubYdoHakqYpFoFtIBbVDdd+Nc4K1bKsALHYbXexOL/oPU6IkaHol1gs18solAr47Mc+izPvOIPL/3gZADC9azp1uXpK3rNhGQEl3vSuabAsiwsng5auBSE6Tti2DQvECtVPoiodJWJjCgCaErRClZx6sq23XfINCCoWV5VVbOpEeeonFtstT7FICeY0xSLHcBBYIWKFSkm8WiM6dk3OTmJ+zmeFKgqw+nA56BpdiKzo2nNSK1T/do7vGMfwGKn/eJOHZVuJeYIUQ2PZFYssWLx8j6d0u2nsJgDA2U3P7jarstCvGAXIvlMMBQ0pnljULR1Gxmz5NCvUsSLpAzV7jOGGbbi/x4pTW2qWFrDx3VPbgysdr770f+Zyd7lvEjCNWNxd2w0GDBa6C32t04/cBjVHjm9e5HcaTwOOTJFiZLJWwFRd9iwHQawEhzJmowFEbbjSTh5gFzYVaIYVsDsdLkUbOX7VYjj3rF4UwLL9Wd1IMUQkz9IQc4JraYUaB78NKpDBCrWZzZKkwDO48DuvxG0HZlEfGsGn/u7/QZo6hNpNxB9+aDSZaOpqQcViWzUDOYsCR6xQqUpwcmYn5EIxoLwEvIxFCwyetWsIS00VT8xvgOdYcBFisQvRRyxWC4JjhaqAcZqXYcWpH7pGts/wXT78akOAWKEWS2U3E1E1LIhyr4xF7zNbGskJFCVSXO3cewBtNVhcT+7YiYV5z3eeEySYWrZZp+tOnuAOn+1wSeKd7fR+j3Kh6JK5FBWZ5B0CwGXnWI35fj9byVgEgOGyhFt3BoveoaKIjmbCyKBWaCoGOJbp6zoyWZPRUg3oho31joayxLukn+GQtaxMitlKimJxql6ADWC15c3KNS0bpmUHzinNtCByLPiEZlfVyVgcxAp1/1gZt8zWXdK4X9DzUDMtrLRUXF5XcMtsHUPFPF8xxzcZ0rIHTQ3oQz0VASdErU7pc+5nGFtXSPVULI4i1i+rTwTWECIWwyqzY2fnAo+bPXok65vt3gSpDyLPYWZiBO/+i3/GoREWP3onGe8ne9hRxdl8BtYreIrFoWoBE6MNnHCJxRaQlLVDjynLoeUqFm2iWIyxMaWKRUGIGWuaXoMlqxVqmBQqD0BMURv7Gw86yi/H/othgD0zk1ha9RrCosBHVPuDwE+6chyHO2482NfyAcWiZRIVamMnMOGo9Db6UABIZZKxuFUV3SDwEYvA1jIyB8W2EIudFeBffxE4+5ng80vHgOG9JF8R8AjG5iIGgqEA9/0xUSne9VagkF0tkiPHNyOy2DluBVTZRi0ww7AVh1jUtkYsNrUmOIPcw8QRi51WB6IvA9qvVgQIWZKG1mZ/VqgMw2ByZhIf/YuPQqgLGHsl6Yf0IppEOfl+i1qhUmJRlERM757GxVPB71Lki2AYJhCNQwkpjuHQ7XjfVe2qAVUefZ9fsahbOmSnnmwbbdREj9jzE4vvuu9d+NSFTwFAxAqV2ljqlg7TMgMWo3GQOCmiWKTZkgduOBB5/9TsFHTVq6F5gYfVxywnxVTc70g/Xzf1wL5hGAZHbiV9EcEifbymnk6g9aNYPDx8GCMFr48yUhjBkDyEuaZXNw86EaCrk3zBOMUiJYppzmQadE2HrumJxDAlFntZG5uW6ZK4FJqpBY7BgaEDWOwsuoQyJaftNRscw+GBhQd6bq8fm2ryNkm8hCF5CMudwa1QcxvUHDm+eZETi08DGk6D+jn7RvD9z96Fl13vzSLf0ShEiD0/wpPIxyrpzaa5NTJA+tU2cYSD3zYxbIU6iLIwTrFIB0WLJeuvDqgoygrTDDYkL545iUqtgaKjguqtWFzv6/M++P73Yn11GcXGBMa+41fByKRJNzwyHngfVR8CRF3mV/YBwNlljwTkWRasILrLsCyL3QcO4/KFYFC56HikmTaD66ZrEDgGyy0NIseCZYIkKslY9IrdekFAVzPxvT/5ixieJA2NNMWi7igWDctrpRb9x9sG2u0mSuUKVN2CwDHQMlmhep9p2qRpeNMdd+Pdf/FPeM6LXxlVLM7sgmkYbtOWFWVYGTMW1zpOjmDdKwqLIg/dDCoWAeDwjbcGHlcLxDrWtGxcWutC4tkAMb9VK1QA+NabgrM5h8uEWMxqhVoUuVRyOIzpegGbXQO6aWGto6Mi8d455ZDarDP7s1fGIgAst3w5WM5sSb8i1c1cTBiByjIPRTcDWaBZMVUv4K9++E4cmhwsT4he/zTDwqOXNsAywIsOj/c9uSJHjm94dFKyB9UWyQYbFJwA2BYYP1HBi0HiwhogYxHAhu67RvUiFjkRkLOpljIjRCz61YkAcOzMHEQfadbS00txaoWaBbZt43/92wWcu7SAsizi399YxHCRXHsnQwq2sH1VXO6iH5LIB3Ibbzy4B8fPkGYPAzuZiKYqN5ZzFYuaCbS7GooxNqa/9KOvQ7VcjLdJ8zU8tAzE4marEyGFBiGmju7fiS/+9f/ET77hVc6H02PKRJSgkihsixVq+HvddfPhvpYfd5p5rY5C1ImWDowdIRl+nNifIlksA7B7K5GvBTTSzKa7tF/l5naguh25jqtnAdju9wEAdNfJdXTiekBy7gVqDrE4qGL80b8nVqp3/RQwEm0+58jxVOMdX34Hrv/zbLbDTzU4hrvmVqiU5OtlhZrW9E/CikKuE4ZlEFIkpWRqbbRc1R0QzFcEeluh9puxePaTZ3H2+FmwHIvdv7gbQp30k6jibRAYtgFRFANKvL2H9+L8qfOB9xWdvG3Tt0Po/udYLkCidrvdgBWqZmkwLROvedNrwDAM+BKp16hFZUfvoC7XvW1yiEVJltDW264qzJ/l57dCBQiZnaR4o5A5OUIs1ofreO9H3osffNsPRt4/tXMq8LjfjEVFVwJqOYkjSs2w5Se1QxVNJ3NSTz8vhkYIkWxlcCB5/szzI8/tre3FlZY3qaxtDJaJSpWkNAPRD6ouzZK3Ss+dJGJR5mVInJSqWDQtEzbsANEPkHPUfwyODB+BaqpY6JD7LfecUUn+ZNjqtRc2tI3A+sOYLE1uKWPx/qv3oypWcxvUHDm+CZETi08zeI4NHISpeiGVELBCjaBGUYSQ0vCeW+2iURQCKqM4YnHSp5qUBUJGUcSpD3shbplVp141HCvUyjVWLLZDisOLZ09hds9+N4OpZ8biRn8zB7vtFp73sm+FIZbBsBxsMLBsO2KNeenCGVg62RldzQw0z0bKIubXu27Dj2MZsLwYICP3HDiCpauXA+v0FIssBI7FkUnSoBA4FiwbVCxqShe8j7CpOcTii7/jTfitP/4gAKRmauqaCkEQoflIrqLv/DINA5ZpolSuoqubqMoCbABCIV19Fv7Mpkr2zXW3PAsMw6CtGhA4b19NzgQtZjlRgqFpmRrR6x0Nss/uEwDKErVCDTY6j9x4S+BxVRag6BZMy8bcWgdjFclV4wKeFWqY2O4Hr7h+EjLPouyEeTeKIhTdhJbB0qSpGChLvHtOZMF0vYANRYdmmFjv6qgWeEgOWWxQ+2AnByCNWKT5sDSnEYCr3Cj4yGfdSFcsliUelg3w8mBWqAWRG+i6BXgZi7pp4eG5dcwOFbF7dHBL1hw5vmHRa9bq+oX019PAOtde/+xgVvDy+CgGmJm87icWY+ywIihtc35qiFhcC83yP3b2Ivb7rMB6KRaJFao3LqXl2TAMg42ugde//F4oigqJ98amiZBi8dJV//HtPXFCCtlq3XBwF877bNQSiRBXsci7ikWdZizGkILf+6rnY+P+f4iuRygSwsRRILgZiwnWprZNMhZrla1boQLAXbcc8eo1zaup9swE7XQlkYdqbEPGYoh07ZdYnHCIxYWVNWDdUXNM3UxsMeuz5HhltRoWnTFQeRqIRafRR/uj37CKxVXqNOL7rS2fJP/vusfLh61OAQwLKMEs9UxYOQOc+Dhw4GXAoVcCuRVZjq8DfGbuM0/3JiSCZ3k3W+5agXZ6Eq1QqWKxTyvUi5sXXSJkpUvGX1Mg956GHbV0bG40A1aoF05fwOikV//0m7Goa/FEqft6W8fzX/V8GLoBVmJhM+R7hhVsfiVkr7y+sBUqQIjFq76cY8DLWPQTi1QxyjN8gFhUu2qAWAQIefjsFz4bn77waXdfUiVZOKeP7gde5mHDdq1U/XapfitUgBCLaVao9PNs1na/N8WRW46A893jVm6qgKtxmAjVIqIkwtSz9yIUUwlkU8q8TLIlQzXT0VuPAvAUiy2tB7HYwy0DAA40DuDeHffitQdeG/vaYserNdvaYMQi/X3RDEQ/KAmcRbFIz500YrgiVFJJSkpyi6H7Bd3UA4pFagV7fuM8AATOoefseA7mmnN97Y+W3goQ3mHsqOxItUtNg2mZOLZ6DHdN3ZXboObI8U2InFj8OsPsUHqREXYeY1kGk/XkZeZWO5ioyeA571A3ilFCb6IWtDnwq8fi1Ie9kGWZaiF50BG5rZ+a4YxEl1h00O20E4PDyfLrgceaGi24F+cv4cRjDwEA3vTW/w/f8yM/7b5mgoVp2REr1HMnj8PqkG1TjWDBt2ekjCsbiqtMI1aooptzBwB7Dh6BFVKueTaz5P9n7SJFnMAzYBkGSsgKlfPZklYLAtqaAcO0XOIqXbGoQC4UA1ZfflLQ0ElBXSyXoegm6s75xslRBZllmbCt+M9cC1n8NlUDBV+TdHxyh2tPBgAcL0HXVcAy0Kult9rWUJGFQMZfSeIjGYsAcOiG2wDAVazVigJU3VMsTtYL4DnWJf2pYtGf59kvGiUR//Yz9+K1t5Lmc71IyNm22nudG10dFZnv6zc0WS9AMyw0VRMbXR21ougu7557TmO7IiVPCCiIHOoFIUgsOueU3+pWM3soFh2imhmQWNwKRI4FxzJoqQaOLzRx3XQNw33YyubI8YxBeyn99bUtEIuO/Q/rb+jxIhBWnQ9ELNJrlN1bsQgAlfHe70lCnIIr9JlroVn+x87M4fCeGffxupI+Yq1tBInFpfVoE+Hq0ir+4+HzAIC3v3oPfufnfiCS1Ru2On3s5Hkw79gE847NZNXm2c8Af/N6wDIDVqgAcOOhPcFapJtAhFCymPErFm20lXjFYiKqk0B3lVjkgigWWZaFJMaPSV1FhWGYUSvUGMXbYfsk1F8qBq140+A7L0eHaoF1ioKwLVaopdC+ufPGQ2AYBlzGsZ1aoZqmRYhFqUIIRQBo7HH2ZUZrU0os9rD2uiZw1KGU065sh3qwT2wPsXgm+tziMUCuA6M+0pgTyGSH7np/67cM4Kt/BFQmgHt+2rF5zpEjRxoEVogQiy21tzLPT4CZPSa0UmLRSMiotXUbDJielpJ+XGldwQ9+0lOtLXVJvcY4bkJxVqjNjWbAevHi6YvYuc+bpOu3B40DJRZNhXzfhctERSXq5B6piCI21zfxxBeeAAAc+LYD+Jnf/JnIesRQfvK5E168Sy+SyrRM8CIP2wgSi2HLeZdYZLxjQ/PzWIYN5EmGMxaBoCqOEoVUsWjDxpA0BMGZIEcVi4xE9j0lkAPEos8KFQC6ZjfWCtV/XvkJJjNFirrjR3egeGsRkixhZMKzEe3XClU1VZQErz8kcRIM24hs5/7rSC9Nssk+66VYbITznmNQlap4zwvfE7BBpTg6cjSgKh5UsUgVhNSq1A9qbZvFZrXTJu8JKzn9qErV1P2iO7WmFHIj0SwtQO7uKO9ASSjhYpNMDvOTmS/b9TJYtoWHlx7uuc0ULa2FulRPfH2mMoM1da0nwR8HaoP6it2v6HvZHDlyfOMjJxafBpxZIgNNnPpotNz/TOqdw8kD29xaB6NlKaD04mOaEuOV4OcWHTtAfeUS5AGUP1lsGNMURUkizF986UHcsXsIlQw2qk0/MWjbmDt3OkAsKp0OCin2nGFictmX5wcAl089jp98/cvw4b/8YwCEkJ3dewCWQo4vCxu6abmfIcmkMDt/+jjMLilulFDBd2iygisbChSnKcWzbKxisRdunKmDYxkILAOWCaozNaULXvLOmaoswLKBjkYy9oDeikWpUIDqa5z5jzfd1kKpAs2wXOtfLkax+MjXvuT+HSEWO8GGV0vRA4S1IIoYnfBsP1hBgpZRsbja1lAt8JB9qr6KzEMzLQhisMgbmySfsecQsf6oFwQohgVFN7CwqWCmUcBoWSJWpbaNIUexaG8lfwzA7HARO4fJuVN39mFL6U0sNhUDVVnoS7E4VSe//+WWis2ujnpBgMRTK1RS/FqcCAZBgjAOEzUZTcVwyXHaYC36rP80w4LEpysWAQDiU69MYBgGRZHDyYUWTMvG8w+O9WUrmyPHMwZpxKK6CaydH3zdjiU645/Ry0mebSaFFrrJz3Cz23YyhlhLz5ZNWJns/Z4kKOvR50KfGVYsPnlmDof3esRiS00fs4hi0avRTs8HLWqPX1rDs77rZ/Arf/45qIYNhmEwMzmK8ZF64H1s6Hr7uN86LGmS1eOOcnD5JCQxSCzecGBX8L1JRIjpWaG2Owos24ZqAh3VTLUxdUFVdbVZoL3iniO6YaIoS2SC2Kl/iygmN53mT9jGMk7xNtu8n/yxdLz39gCuYvHcJgOGYQKqRUngoW6DFao/YxEA6tUyPvZHb8d3viSbxdSEv5m3dp6c55QgHD1A9pee0QLQJRYHyzbaEpx9bbjEYgFoXgU2Lj1lm7C9ikUfaL5iOAexOg0om95vJwuO/TOweRm48y3AxA1b29YcOb5JwLN8JGORknRp8KuErrSvpLyT2K0CyRmLsNHTOjGMH/zkDwaIi6VOkFhkY1p8fsWhbdm4cOoCZvfNus/1UiwqHQWG7l2TLp8n7klTG1M49zvnwC6x+Ilv/Qn847v/EWaXuA5V6hXs3L/T+Zrx46KfWKTWrkkwbIMQZr4exJ7DeyLvK4nk/tmC974kK1Slq0TIMz/BRM8Pv4XkcGE4QiyaPKnlKBFJ7TUty4JpmAEr1K7RRaEcrUXOPkSibnRdT7WsdL+TqYMrcK4QfmrW64sIohDYT72gmqprIQsQIlU3dUilYC0iSiKKlSJuuv4mMGB62ofW/XnPA+DmsZsDj7v6YApj+vuKUyxSa9tMVqit3orFmlRLVyza5Fyk55D7vBVULDIMg5nyjKvY9J9Du+u7saO8A48uP9pzmylaegtDcrKCdFdtFwzLcBXQ/YDaoN4zfU/fy+bIkeMbHzmx+DTg7+4jBJUSY09QkvpvYO8d8QaZphKcbb2pGBitSGBDTSMmVNyNlIOzx6gdYPfcg5Fls4B3CK0ssFrZB699YxW8+Tl7MFbp3YzyE4Oq0oWqdDG7N6hYlAtFVJ/9XSgevDuyfDNELC5e9tQZ7WOfxwfe/uOYnNmFn/il33Kf5zgOu3aSIp1hEMjZefFrXgcAOHfymEt+hRWLBycqMCwbl51sTJ5jwPAiDMM7rrsP9iYWZYHDW5+/DzfPNsAwQStUVemAFb39R5WjLdVwye40IsXQYhSLQlSxKBQrsEHyAQGAlaIFsuUjAcMZds2QOq+lmiiGyLLJHd5MSzeLMgOxuNbRUSsEFYtliYdqWBDE+HNLlsnz9aKIrmbiyoYCywYOTVQxVpXQUg0Ypr0tGYthUHI2vE/i0FINVAv9EYsTjoXpUlOBalgYrUiumtdwFEQWQ+xVhR5qiel6AZuK7mYrusSizy6XKha5hIuEa7ea4abqWqAgcLi01sVQScTNs/WnZRty5HjakZaxaBnAWkyjPCvorHk/scGJUQVV2JbIn+PHxSuJbb/V4LUmFuMQsl/1KxYt28bC8hqO7PWaea2uhoKcvJ1dRYXBeM2HMz5i8V9O6vju3/03DNcr+NCvfLtrfcowDO644WDqZj528nymrwMAMHVihepTKB7aMwPRXysoG/HWmm7GIrFCfftnVfzG51S0VT1CnsXiqtM0YTmguwrGadpphklsUA0FuP9PgROfcBf59n06RixSW9YqweZPnGJRo83SBEVJBE7T8T/myHHxE4uiIAQmXg2KQgzp+vJ7b8dwoxrz7iiGaj6F6vpFolaUnWVHDpDfd1YLLcm5z8jQdNt2OPvacOrpSqkAPPpB4AvvjiqcrxEGJhaXT5H/O6tkMoYfukKOy+ghoFAPvlafAdSN7IrSzXng8Q8Bu+8Frv8Oov7OkeMZgl6KwK1AYAWXCKJYVnpnjC10vYzpcxvptRAl+fQURbzIiT2VX34sd5fx4zf8uPuYEnKsRT4rTrEYyEi0gMsXLrukH9BbsQgEycn5C/Pu3+1jbfzhr/8hWI7FW/73WwjZ5YBaZyY5rvuJxVUlpe50IMhBK9SxqbGARSQAlPgUYpGJEoupikXLUSz6CB+/sk7XdIiSCAOOm4KpQeIkcCzZB5SMDVihmlEyEwCunCUktWVamYjFMHk1OevVs4Ig9GWFqpoqyoI3CVzm5VjFIgBwAodKpYICX+hJxoUVqv1iujwd2K5BFYstvQWRFV3S2Q+q4stii0wVi2lWtnWpnrouei2Is0L1KxYBQnpScluQhIDb2l1Td+Hs+llXjdtz2/VOKrG4t7YXAHClkz5ZIozcBjVHjhw5sfgUw7ZtPDEfvLmkhEpZ4lMtKJOw00csfvr4YuT1iWq0cVMOOUdRFaPt5KeURG9QSLIrDIN1mpC2TWbMZyY2BpDbJ6+LDKy2rgasTJU22ecBxWK3A7lYQunwvZB33hSxrtI1NWB/emWOEIsbT34By//0Ozh0x/Pxrj/9e1Rq9cByB68nM6tUi4PhkCuVah1ygRQK5097M+IV3QzkZu4eKYFjGVxaJ8UIzzJguODBKpUrGB4L+ujH4brpGo5OEWuHILGogPU1PmnWZVM1XDIo1QpVUwmx6FPc+lVsVLHIOqrIYWemGysFC7m5c6dTtz9MkrdUI5DTBwCTM7vcv1lehK5rYOzeRfRGV0ejKLqqPIDshzgr1DAaRQFd3cS8c4xu2FHDWMUhFi0bhVKyCnZQUPvijpb+3WzYaKkGagWhJwHox1hFAgNgfoOc734Fs6HrkAtFqD3IQIodQwVsdg339xRnhaqbNmQheV2u3arQh03eNoJu65HJCkYqT8825MixZXzx94G31zJNtohFGrEIAKtnB1sv4Fmh+m2HODFqRRmemewnM7M03bNYoZajtkiZUZuJPhe2QvUpFqmS269YbKt6z9w/xfCu55RY/NSJJl79t13ceXACn//Ld2FyKOgKcOdNhwBEs7kpHj/Vn5WtJARrEUHgsdeZHW8wIiFO4hqn1AqVJVao989beGTBQkfREvMRA6BKxOIIYFvgnQaqbpjELjRGKfnzt6p4VoVkLlXLReDil4ELxCEhrFi8sti7kRlByC5r74zXzJNEHlof9mNJKGUhXcN47O+Bh/8agKdQrUkg+3Boj0d6D+8DYBOFWxawPMm4HFApsCU4n6k7v51ysUDOqebV5FzPbYYsieD7dW+Z+xrw778CnPl0/CSM5ZOEiJ+9m5DmftR3kfM6yzXOtoCvvQ+QqsA9P0syGnPkeAZhTR0gbzQjeJaPEItZ1DrLXY98vLCZPpZSkk8PZ0j7IHFSTxtQP37khh/BzppHCq4qq2AZtqcVKoUNG5ZpRYhFIcFanMKfh0iJxbkzZML89K5pvPfD78XwdFAR5hKLiM9Q9BOLaxmyZTmZCxCLDMMEvgcAV3kXsEJ1Jg7xDB8gUf0Zi1Rd6lcsqgY5P/xEn59YNDSSQ0jJH83SXNtUwCMWA1aoRjeieGs3g4SZXz2YhDAZPbUzqFjsl1j0W6HKHMlYjCMWKcpCOVMu4VbAMAz21DxValhhnBUtvYWyWI59TeZl8Ayf6bt0Wo4VasqEo4bUSLVVpbmdYStU3dJRCE1OrIpVdE1yvjIMA97nAPUtu74Fiqng+Fo2t4220Y5VbFLsqe8BAwYL7YXE98Qht0HNkSNHTiw+xXhobj3yXL1Airi9o6XUzL8kTNW8AejTJxaxuOkNuLLAxqr7qmL859iOzVHZp5zsRSRQWEUyA4Z+hzSr02sFhk6HY5iA4lBTupALBYxN7nCfU7odyIWiq96LK3b961ied/zNdxxE/Xk/gNe89R2xJNTBozcBAAywaIeIoE67hauXLnqPnaw+ConnsHe0hLZjjcZzLBg+WuRP79wdvwMS4CcWdU0F4yNsqK1sVzN9GYssfuoFhIRtlEI2DaoCqVCE7hBHDBAgkQ2NFOCsSAquUYeYYYTgvvrif3wCSWBAFIp+dURbNVAUw8SiT7HIZ1MsWpaNpqJjuCwGyLeKTBSLvJjezKsXRSi6icvrCqoyj/GqjLGqjI5mxqqQtwM1h1jstX5Vt2BaNkbL/c0OFDgWw2URVxxikVqjAoBlmiiWyuhqJkSOBc+lXw9mG0WsdzVojhqXEoxhFazEc242aBhUsWiyQuIM12sJagV9x55hVOX0m+wcOb5u8al3kP/nHx5s+W4K4WI7uW2DwrH/Yfw38bzokVAUEWLxvPd3hqZLJsVieQsZi3EIkQRrm75mnjPx6sCuafe5dlfraQna9uUJnb5Mmp43TRfw9nslvOdHnoNyzMzpO24gxGKrGyUnDMPEsTNzkefTIArRWcgHd5OaShVqjnVjDBFCyUaGKBY/86YiPvr6AtpdhSgWl44Dp/49+YMVpw6rkAlVgkMsaoZjpUqzHel+N1QMFwDVaeZVy0XgzH8Sq0hDiSgW/+nTX8Huep+3QyGlX1CxyLt29ltBJjVnGI9/CDj2T4Hsz+vHnf0yeaP3vuF95P9mH80juT5Q5umWYGruNcGwgILsI/hsMz638BqAYZhYC91UUHX15jy5bjGhe6LlE+QaNn1LdNnGTmKznGV/n/k0sHQCuO2HgJnb+9vGHDm+AbDYjk6a3ipMZxJqnGIxi2rOTz5eaqbbMruKxV7EYh+Kxf2N/YHHq93VAPHVi1ik8GcsKh3FJdiS4F8HtUIdnSJOPd//M9+Pci1K3By9xVMshtVttm3j3HGPWFzX1lM/HwBYiYVtBXs2s/tnA48pgZTJCtX3vakq0a82o+eHf/+OFjx3IkMj5Bt9n2EZwXxE597db2OpGVqEsPvqf3418DiLYpGS0dRmNqBYFAVYWvZaRDO1ILEoyMSaM2UCWFksZ8ol3CoODB1w/x6UyGzr7UDuZRgyL2ciLTWV1LlpGYsNuZFJsegnFg3TgGmbgWMAkLxG/3Zxvn7K7eO3oypWM+UsqqYKwzIwUozmWFIU+ALqUj2THbQfuQ1qjhw5cmLxGsKIyVj72CPzMe8kGIRUBILEX1s18edfOu8+nqwVAhaEFNUevEPJt8yggkKpDyvG7YLt3LgzvIjWRtDKdMeufWBZFmxlFBYY1wqVEl5hK04AaG2sAwDM9jqe+PKn0G5uQqiOonbHaxOP1879nv1YOCfw/OkTgccdzXRVghQ3zdTdv3mWAcNGj9/0bH/EotIJFmF+YpESJ13NhG5YYAAIPIvrd9Rw/NdfinsPBNUcuqZCLlVdM12eYwJZeYbufGdnv45X44nFL336XxO3tyqxaPsUlADJgCyF8v0md3g3EoxrhZpuB7Gp6LBsYLwa3B5CLJo9FYu1AsmkPL/SxnhNRlnmMVom33Gjm3zTuBVIPAdZYNHtoVhsOhmMYzEq5V4Yr8ousThRC97MFEplKLoJKYNicbpRhG7aWHP2RZxiEUCq+pFaQmuGBe5psNQoSWR/P+/A9tva5sjxlGOQ2b1aJ3050yCKoUHhKBYZP3HIib0zFv05ZWGVTxyyKBYTZjAPAhuIEosbwWbh7h3jAevTVlftqdxrq2TEXVds/Nv9Z7C0uoGRMo9fuVcCl2ArQTMQO2p0XDp1YR6q1t94JcUoGQ7tocRiA1DW4olFekw5Hq1OF/fu4vHqgwI6XZUQg596O3D/nyQrZCmxWBwGOBGCRohE3bCCxCKFQ+jQyS21cgmATbbNjKpDP/ypL6MgOGORErKrTEIKsSiJQiQ/exBkUnMmwffbvWGcJaTW+PXe6+UxQCgBnd6Wfy4KdUL0Z7WL3Q74fv+mZaMS3idbyXntE+Gszr6wcsYlxl0sPAk0dgHFGFuy+iyZvNHr+HRWgYf+CthxO3DLGyI2zE8J6PUzyySOHDkGgF8duN3gWR6aqQUmF/fK+Qu/Z76d3NsBPJLPSLl2ipzYl2IxjDV1LUBExWUstkK1SLVRDeTfdTvdVBLJvw5TMfHYfY9h6cqSp/ZLmFA+43No2NCCvZmVhRVsrnvj7oYafD0OnBRULALAzgNBxSK1zrSYeCtUf56k0lXc7y2wArFK9ZFCmlPX+BWEYyWvN6JrOqSC5KrKAATsLOOsULtmN2Kl+YVPfiHwOGyJGYewLWg4Y9E0+lMs+hV9Bb4Ay7Ygl9KJxTgC7c+e+DO88753Zv7sXjgy5MUADapY7EUsFvli4BimQZCEgHIwjCF5CJqluedOGFSxKPhcyRRTcbfDj7pYD3xnnvc+l2M53D5xO06unuy5zTRj0k+Kx2GyNNlXxqJpmXhy9UncPX13boOaI8c3MXJi8Rrg9l0NAMAXTwcLYdOy8bFH+/Os7hd7Rkr4+wcuwXBmco1VpFhby2oPEQ5VsQHxhFsWpOX0PRVo+qxQAWDnXjLbafj7/je+ZO6H0u2gUCwFSDYAYAtVcKWGs44NaEvnceUv3obm2jIWr/S2jfIP+BudYOPu/Knjrj0VQIhFMzTr7radpMmgGhbJWIwZpKd3RoPK0+BXLAIIZFMVRQ4cy6CjW9BNO0AUygIXIX90VYFY9AozgWMDOZy6pkKSC9AcOxaqmGUECXO//3q8YGgDTHcNxx55IHF7qxKHpmK4GZWmZaOrW6iGMkgDVqicAF3rbYW65hyTHfVgQV+WBKi6BV5MZ91rjsL48noX07UCyhLvqjI3YpQh24XRsoSFphKrrKWgJN5Etf/m0kRVhmZY4FnGtV6lKJRKhFgUuACJHIdpZ78uN2kOFs1YDB47WWDBJZDzEs9B4BiohgWO29p15JaddQDA3XuTZ+iFccOOOu7eNxIhWHPk+KZBL4vBzhKAAWcdAT7Fop9YlKJWmuEMuH7tV7M0uwec1BUHmxEAJniN9FuhAsDhPUH71Lai9bRC3VQtnF618OK/6GB5s41zl67iRJuMwwYX33wSUmqwfm1QgSRikXwXVayTY6VGFRGeYpFDy9fMs207SJ4pCQ1F+jzDALUZCE5jUtOdjMWwFaqjblGdiTiu0swkjgZ+5dlGq4tPf/URb9mNdOWJi9B5GbRCFaBug3vBQIrFGNwwzgHlUaDY8J5kGKKK66wAMZMg4zdomOQCPpXEok8JYdpRG1tsXs6+/VvEwDmLALFCrfsUNZYBrJ4GRg8ChUb0/dRiuZWiGrBtQsizHHDP24D6zuT3XktQ9et2Z9XmyOGgX/VMPxBYATbsADmyrqz3XM6varzaTp9kxTAMGDCJJAOATFl1aVhX1wOEBI9o7yCsWPSrFQGi3EvLjaPr0Fd1nPvNc2httjB3trfzgb/vsRnKmj13MmgTTcmP1PVJLBC67O/avyvwWOIk2LYdsEKl+59juIAVqp9YZMBA5uWgYtHJWPTv34bkXbcN1YBckAPH109CGkaUWFRNNWClqalaRLGYxQo1fM6ErVANLdt4bVomdEtHRfCymamdqz8vM4yqWI0lFh9YeABzzf5cMdJw46jnuJAlBzEOXaPrZinGoSAUMpOWaWpFABguELvRJKI8TrFIv1dYsViX69AszV2GC9X2z595PtbUtZ7KaaqIHi+mu7RMV6b7sp8+uXYSLb2Fl+96eeZlcuTI8cxDTixeAxycIIPyPz1yBcstz17j9EILi00VM43Bm9W9+l83z9Sx2FTdHMfhshirHKwkWKFSlKUezGMGbEWxWBSDBTHN6esHrc3gYD7jy1dUORlKtwOpWAIbUtINv/StGHrpWwEAD335c7j6lz8PViwAYAIZjZm2QQ0WdOdOHQuQgkSVF2zOUiKEkDwsEEMsHrzuJgDAxOR05LU4KN2g6sNmvePLMAyqMg9FJwpBPkQUhqFrKsSSN6NN4FhwPntMXdeIdabTWGuUBIg8C5sTYSkt7K3auP9z/w42hTCqSCyaig7daRh1nMK4KocVi95NEcML0DJYoa47KtLp0O+wJHGwATBi+u+TEouWDeweKUIWOIw4isWmcm2sUAHgdbfP4Mn5Js6v9L7xHKv2r3SYcgjBssRHJgUUiiV0dYsoFntchOh+pfvZtULlw8QilzppoSTx0AwTHL+12W9FkceJ33gpXnNztt8KAPzyKw7jN19zPUb6tJTNkeMZg17EYmuL1mQsB4AJEot8jGIxbLHktz6MI7HCyKJYdJCURdgPLFaIWB5GiMW9QcuuLFaonz92BXf8vzZs2LBtQuh9ZWMUzDs2YQ7ti1/I+T4yF/1ej506j4nRBk7+ZAmf/f6UBknbmyAXZ4V60yFSz9QnnbqmHdMApseU5dDuBJs2mcgzf6NnaA8ExyrNUyyGlI7ONqiGAVkSIVJC1FAB2wpYoX7iy09A133nXPMKUYr1QkhZsnPKUy+IAu/WP1tBscc5kRU3jLFAdRqQKsEXhvYStaeZcfZ/cchRLF67OicCh8C1bWKFGiHgN+efMnvWgYlFvUP284jv/mH1HCHcd9xOrnth1JzYhrAa14+5rwKXHwBu+l5g9z3bOkEiR46vJ2SxJh0UgnM/7FcLhpvqcRM619V19++FTm9LaY7hUhWLMidvKatuXV3vqVgME4uz+4K1SC8rVI7ncOqJUzj3P87B7JBxYMfuHYnvj0NTD27DuePnAp+ZhVhkRCaiWKTfZfce4uhEXaVs3wQ4qhILW6EauhHYhgIfJJgoYegngZjAhGpiF0qzGIEgOUStUP1EomqoECXv2v/Qlx5Cp9VBseq9J4sVatiG1K9A5QUeZg+no/B6KqJXJ9DP5wvJ9+FVseoq7dLAcltrOe9v7EeJJ/s0bF2cFV2ji5pUS3y9JJQyE4u9CHiawRlW6FLQa4H/nKLfi35PCkqG0t9OWCn5wtkXgmd5PLjwYOo20WvceCmdWJytzGJdWU+dyO7HfVfvy21Qc+TIkROL24Hf+/eT+LWPPh64ALMMsVx8z6dPuc/dd2EN9aKAncOluNVkQq98s4maHCAu6wUh1rJzyBnHhIQCruRTFwn9KhZpM0vIeHpxURIz3ODrIZKKRVixGCYFlU4HUinYaDEsC/Kum8A4Koe//KP/BXnmOkx87zthW2asYrGl29j5Cx9DS402o5ohYvH8qePYtc+zSm2rBjQzWPTtGfFIO55lgBgr1IJD7MlyNpI6rFi0QuusFgR0NQuqYUFgmdT9bWgqhKK33wSOgf8UsUwTpUrVbayVJR5FkXPJTKXTxpf+419xw23PBi/EEzdViUNTNdxMQUrQ1kNKukqtDsbZWIYTYBgahEsPQFw9nUharXV0sEzULtRV6fZoRFNiEQCOTJECddghoFoxlnPbhR+4ezcKIodPPrGQWuxxMYrDLNjhXDfKMg8p9NstFMtQDJOoDHtcgxpFARLPYsOxZdVMCwLHgA/dVIStUcMoiTxUwwa7DbYaEs+h0OPz/GAYBhM1eWB76hw5vuHRi1hsL0WUeZlAFYfKBsCJYPw38awQQyymZCz2gG3j2tnztRZiCQ2L5aOKxZD92JG9QcVii1qCJkDgOfz8+7+IG8dZfOWHydh/5qLP/SJMGFE4BFlFiI4Xj5+6gOv278T+YQ7P3cn3JmltK1axWJTJ2FcYdpqLcXamlk7IVoZBqxM8nr0I1QhG9oFxGoW6aaJUkBKtUE3TQs1PBpkqYBkoFrxz4iOfexS3HvURsxtz2YiqkGJR9O0bYoW6HcTi1ie2MHAyFuuzgBg6T0YPkt+xkbFJVxwG9PbTolg0bcC0gEookwqtxd7Xqm3CwMRiyyEdpm71nls6Qa53s3fFLyOVAblGchbjoLWA+/8UGDsCPOvNydeAHDmeAbiWxCLv3A/7lV9hlVFchtya4o0768q6qyaKg23ZYFnWJbbiIPPylrLqNtSNAJkVp1gMW6GGVX69rFDLlTI+/GcfhjgsYu+v7gUAzF9It4GNbENoUs65E+ew64C3HVlyJjkxaoUqOGNwYyhGAe6Akjk8wwcUiwACxGKRL0asUAVWAOvUdgIbrIVM3UShWAgQbH61oWVaECXR3UaAkEj+e8wvfPILmN41jfpY3X2O2rmmIUxG+9cpSmJmxSJdTxyxyMnpisUsZNxW76cZhsGfvuRPccvYLQNboXb1Lhpy8vlRFsqZScteikVKLIYVuhTUlldkvTrPVSyKwT4x3Wb62wkrFstiGdePXI9jq8dSt6mjd8AxXEBtG4ddtV3QLC2TatG0TBxbPfZ1YYNK7VvPb55/WrcjR45vVuTE4jbg4bl1/P0Dl3B10xvoRsoSjkxW8cH7L7n2iA9cWMPhyUp2wm0AMAyDl17n5XjQ/Lww6CZwYZsxByWfYjBMCIRRdvIYGYfIoRl7Wa1QGX7r6sg4hBWLEWKx24FYIlZiE46K8NxSGwwvwrZtiJKEV73+TRj99l8GK5ECYn7ufORzTq6T/78yF92X7QixeAy7DxwGAJidDVg20FKC7/ETYjzHRNQPgyBMLJqhddYLAlTDhGqY4Ln0HD3btsHLXtEjcFEVW9HJ5BM5FiLPoShw7mcuL1zFw1/9Au5+4UsTP6Mms7BtYN2xLaXE4lCIMGMYBsUKIfcYjoemaZAWHseodhVCwnmrGiQrUA4p4eg5b/doRFNikWWAw5MVdx9UCzza6rWbyV+SeLzhzlk8cmkdl9eTbUBKIjeQDfGko1isygKkkJq0WCpD1U3IPEfI7hQwDIOJqoyNrg7btonyNu4cEdML0LLEQzNNiJIE/hpdI3LkyJGAnorFBaAQkw3WC9Rq0lABPkQscmEihQmq1Qw1XhEXAh2/NN24dsTiV99H/g/bdzIxxGJPxaKKclHGTYf34NUvuDPyUUP1Kn7mNbfik28oYqhAvluAWOwBgbMjYdmPnTyP6/1NxV5kkanFEosuiiMAmHgixDSIQpVhA1aoAAIkXyYMH3D/tG0nhzBMZrY89UiADDJIBrPflu3jX34Sr3nRs4PLbmbYtykNYJHnoGRUCaShb9I1BrsbDMoiA4weirpfjBwA1M1kC9owiiMk8zB8rvzTTwF///1b3tZYOPcobZ3BxU0LFf/xlGsAbGD5VPyy24ydU2MYrg9A4LUWyIS1scPec4vHgPoMybpMQnWKHJs4q9cH/5JY+979M0R5miPHMxh+Ei8O/3nxPwdeNyUW/YRWmFgMq+zC77Fg4UIzai9Ox5qu1gXHcD2tUAe1eASI0s9PLLIxE78iisX9UcVioVTAbc+5DUdvPRpZvtqo4p4X34PZn5kFX+PBMAwuX+gdERPeTj/OHj+L3Yd2u487egeG2aMeERCxQs0C10oypFgEAMlXi5SEUoAkVE0Voq8+rYQm6di2HbFCDavO/DaodJ1+fPHfv4h7XnIPmQ3k245eSFO59qNYpFmNccQiIyXf91elbMTiduDIyBGMFccGUiyalomu2cWQnHzf0g+x2EuxOF4gqsAkBS6dZBCnWAwTynSb6brkohzJM713x7243LqcmlHaMTooC2VwPfLp99RIT/RKq3ct/PVkg0qtitMmeeTIkePaIScWtwE2SFbe508FMxVv3zUEzbAwv04G3I2ujn2jlUTCIwsY9J7xc/tOb9CkpGBWOTtFSfIaEEJIodQoBZt/lC+gA5XaJcVJ2PowCbZ6bWyMwsTi9OzuwGOl24FQIIP3gRvvAAA8dOYyFv/hHegc+xxKlRpqjREwzvdiOR7zF4NZAL3Q1gwYTlNgbWUJ66sr2LXfIxYBYKObXEDzLAu7RwGQBUpYsRj66deLZIa9qluOAjH9PPMTiyLHRtSBxXIFXc2EJLDgWQZFiYdpA5Is4zP/+lEYho67np9MLNIsxVXHTpMSdrUYOw6Okk4s75LavbYfiLpGlR3FIlcgZHOhHB/wXXWIxdGKhHrR+y0MlyS0NWNb7PSS8GP37gXHMvjkE8m2O2WJhziADfFkjTQx60UhqlgslaDoVmzmZuy66rKbkaklqGBLPRSEZYmDZtiY3XsIs/sPp743R44c24zOSgzR50NriVgj9gnbITFs2AAngfE32sKWgJwQVCy2s9mv0pzjlqIB3PbYSUZAs3xDai+L5SMWC1FiMZSx2FVRKsp46MPvwUf/4FfJcz4Crl4pYaxRcWuxWknG6YvZVQICC6Ia9OHM3FVc51MJ9IShxFqhumB5oDQST1JRxSLQv2Ix3CAYDpIopYIcJTN95HNQZWYDocZts6PgNS98duA5LDyZvk0AIdgSIAk8uoMSiz715dhQHQBQLw9+Dt8w7oyzfrUcBc3G28zYGC6NEMVi+Ji0F8kEgPZy/HJbgd4BwOBql8PZNRsVv0qgNAoIBWC9/7zQQfDu//oj+LPf/tn+F2wvE5LQVRXawPJxYHh/fL4iRW0GUDYJgejH1ceAc58Bjn4bsP9Fg1m65MjxDQS/7WgYqqHit772WwOvm2ccxaLh3SdvakGVUZzqKLxN5zfOR95DlUWaoiVaobI8C/GoiAJfGNjiESCKSz8pxMVMSs6SsSgXZLzrr96F93z4PWTbVR9ZVi1BLspgRXLNGZsaw/z5/hSL4UzA8yfPY/dBrz9jw+6plGKEqBVqFlCVGMdwUEKTnAo+NXxJKAVsTTVTCyjLamLUTlMuyoHjFyYFiyHFe/hYry2t4e4X3x14Lgux2A27evjQT8YiXY/fKpQSi4IzqVsuRWuRulSHYRtPGblYFrOTf35QUi6NWCwJpeyKxR4OBmWpDIEVYiclAHDJc8k3+ZHuw/BxH5ZJXiOd/LDnuj2Y3hmMd3nprpfCho2HFh9K3CbTNlMzJikosZjF4vnrygY1N5nKkeNpRX43so341LHgBbgs8bhn/4j7uFEUsHe0tKXrXpjki0OcBeTxR4nv9sLFM5HX4uC3Qg2TmVR59I5XHcGLDo+h4ZArrEsskoaLLAZPL4/IuXbEix9hK1ReCM6273ba4GVCLDIMcPXSRfzVL78J6vwJCEPTKFVqAXJyaHwa83Pn0WmRIuE//uYPcWUupaFhW+ioJgyn+D1/6gQAYPf+QwAAyyEWm0p0Zg3dV0SxmP1naprxU/jCikUj9NNvFEV0daJYFNj0jEUA4Hw5hEJM7l6pUkVHI8pAnmNQFDnopoVCsYzjjz6I/UdvwNhUci5DRSLbt9kl+4YqPxuFFMUEy0PXkmeD9gJV3tqONa9cjLcg4VgGJZHDdL3gLgMAI2URHc2EaV2787teFPFdt83gwYtrierIiixAHGDygkssFqLLF0plqIYF2SGKe2FHo4hNRYdmWFBNi6haQ8v5Jy/EoSwL0EwLDMu515YcOXI8ReisAGKKDVN7Mb0pnoAzT5Ba5IGT88QK1fLdxIeJTE4IKhYz5joKzqSmjqLHZhRfS1hxisWQ/VgtNHO91VECBNv8wgrufeP/5z5uVMtYbnr7ad/0EM7MXcHxs0T9+Qu/+34cPzuXuE0iiwg5Yds2ru+HWDT1dMUiQMiTONsnU3cUi0xUsdgrYzFMVIaIxaIsAd314Ht8BFct3PwJEYL7dozi6H5fc7U8DqydQ886NU2xKLDoDEIsPvER4CNvAVbPA/DUnFshFq8fY7HYtoChXdEXh51czGbGvNTCEFErJjUys2RT9gutDQiyK7it+FUCDAuMHiY5i70ULoPg6mOewhqALImD517Wd3nEYnuJfK+pmwExpTlZnyWkuf+3a6jA1/4v0NgFPPsnBprckSPHNxrSiKb3PvxeLLR7N8DDOP3EaQDAmftIX8Rv0Rm264yz5wwrkeaa0TGYEou6ohNiMcEKlWtwKPLFQB5gvzBtExWxAlYh9YdkRcfW1mYrMNF8bCqomO52uigUC/jQyQ/hgyc+iI3VDfzc9/yc+3qlVgmQk1M7p3D5wmUszZPJPH/w3/8AZ4+fTd3OMLGoqRr2HNwTeK6X9S0jMLAHuNd2rVDZqBVqWLHoJ5h0Sw8oFuNy+uSiHFBKhVVnYcViWL3aGG3gyC1HgsvwGYjFFJWrIAgwMzop0fX4vxtVgJmMkxFZiY5XlKgK/2auFapCdSBikU4WGC4MJ76nIla2zQoVIOdAkmJRtx0rVN955SoWxXjFIv3tsCwbcN4AgOnKNHZVd+Hx5cdTt6ku13tvt1hGTaxhsZNeG3492aDmyJHj6UdOLG4jHrqwjqaiB2i419zozSg5MlV1SbjtQiHB8nDXcHDA0zQyWOkqKRzGnHvz8vrp2OX9VqgCH08kTDeKeP3tsxhyFIw0mJkSi+Fta8hkPUI3W1aC0h1cyShKckSxGLd+qrxbPfs4fvp7XwFN1TDxhndBnNiHcrUWICeHJmdwZe4CDIMUA1/+l7/F9730Dnz0b94PIOI0Bs5Q0FIN6KaF6uv+By4qIkRJxuTMLgCA2SHrTmtA8SwDe1usUIP70rCjKlQ3Y5FPt0IFAFbyEYscE1UslsroOtaZhIjjoRk2OEdJcvcLXpa6/pJDYDUdm9iWakDkWUhpSjyOg6EPbn9ASUItgZz14zn7R3H7rqEQsSiho5HjfS3xky/YB8u2E+1QK/JgisXxqoyKzGP3SCl6PItlqIaJgshlykmYaRSx0dGhmRYhqzkmQj5XehKLPDTD3NKNdo4cOQZEewkQU5oarUXHirA/UMViV9UBPqRYDOXWgBODxGJzITaTOQzeIRZbyuATTfywwlaESnxmCgDYLB+xL19vtqPr8KHdVVB2co0efOI0nvVdP42FlXX39UatjKVN73q/d2oIZy5ewcnzRGn28c/eh8Mv/1H8t3d/gGxDqBgRWDuiMmMYBkdClqyp6GWFCgC1HYCyCc20Idi+z7NMh2yNyVhMyXMCECUqK1PBjywKQRWioQWWieTihez/X/PcG4Jj2thhooBLI6psO5lcA8n0VTKqBFxcuh949G8B2A6xuT0oiwzWujYgxDTBCg1ArgPdjErDojORICEz6JpAawO8V29GMhanbiaKy1CzesswNeAL/wt48APk/N0qRvZ7x2D9IgAG2P3c9GUau4mC1X8NfOwfyHN3/RQhVXPk+CZAmr3fXx77S9w+fnvf66SKNaNDrtV+S8m23g6Mo3HkgP+5slDGpealyHuoXaGmaODYeMUiRUFIt1bMgorgKRbjHK4s00Kn5X3P8P1ct9NFoVTA6fXTePzJx/GWV78Fl85536tSqwRyGqd2TmH+wjzmHQeFubNz+KEX/xDe/XPvBoBY8i/OutOvWAR6W9+Cx0CKRUrsxlmh+jMWw5aYuqUHLCvjyBm5IEP1TZQLk0MRYtEK1qd3vegucKEYkvA64uC3bA1DEAXoWra+CD0uVdFza6I5kf7vFQYlvbJkY24HKmIFmqnB7HNcpsTiiDyS+J5+1JCFcu/fa1WsRoh0Crr9Muudd/Szw4pFiZcgcVLiuijunrob5zbOpVouU/VjL0yVp7DUTY+eOLF2Ai29hVfufmWmdebIkeOZjZxY3CbwLIOlloqHL64H2uDUXhEAdg2Veqp0+kXYsjArOJbBhd95JSbE+MGnIHKwQ7OPD09UMFGVE1WTVFWkUcViiFikSzF2tmJg6Wp/9hp+iHIR7eZm6oy2bqcNzslOPPWpv8bw9G5MfN/vwtYdK4KQYnFkahaXfVaoP/dH/4xf+B/vgWWS77O5FhyAebOLlmMHyQ/tgPjsN2Ln3gNu4WipHXAsE8lh9EPgWFh9KBaTECZp9VCPc7gkoqMZxLaSY9BLlMaKXiEk8Wzk/a5iUWAhsCxKEgfNtLCyeBUAcFdKviJAFJsjZcnNVmyrBgoCl67YZTno2uA2MvS3qRq9icH3fM/N+PHn7Q3kj45VJbRUE/oANzv9YKwi41tvnEp8vVYQBiIWBY7Ff/zsvfjuO6LNZqlUhm7agQkHaZgZKqCtmWir9JyK2uX6r41xqEg81PCJmiNHjqcGrR7EotYaiFgULV8TJEwshq1QWSFoNdpedLL80sFzPsXiNmDRR/IBAJaOJ77XDikWGYYQk+1OcvPHr1j8P3/5T5gaG8bXPvh77uuNahkLa14TbN/UEE77Mhb/5X3vwN+9+xfBOzXXpeUg8SOwCJATbc3Gnh0TvUk9P0wDotCDWKzvBNQNPLpgYdha9AgZS3czFtvd4Bjdt2IxNEt7tBAabztBkiysDg0Tgq957g3B18eOAM0rKCKlgWMoSFM0SgKHTj95y2sXgC/9H2DIUW2o20ySAVHvd4qh3SSjslfGJuBlqj7VxKKv4V4J5xpN30pUfVlyMfvBpfvJuWKqUevXQTB9m3cM1s4D1UlCxKehPkMITtpkXz0HHP8YcOAlwOFXPeVq7Bw5ni4kqX4Aovj59v3fPvC6GZP8Ljs+FboFK6CaC1uj6qYeUIpVxSrm29GeBe/Yh1Mr1LTsL6oOS4PSTbebrErxER5+hO1QA+tvEytUwzJw8d8uQipI+IN/+gP39XKtHFh+etc05i943/vH/tuP4df/+NdRqjmTthejE8nDCrvaUA2NUc/9gmO4nlao4LCljEWe4SNWqH5iMaxc00wNMu9lKA5JUaV4oVgIEDr9KhbveUnUSjK8jjikWZAKkgAjpccUXg8DJvCZWTLr3Py/BMvP7UZVqsKG3bf1qkssFpLvISpiBYZlZMroy6JYrEm1RDJQt3QwYAJKP9VUwTFcgMR2P48v9iQWX7LrJdAsDU+sPJH4nqFC9NyNw3Uj12GuOZcapXX/1ftRFau4e/ruxPfkyJHjmwc5sbhNmBkqgmMY/NuTUTsO2k+vF3vPtO+F8OyyXqqfXkiyvGQZBpYSnH30thcfxM+/5GAgVy6wDBefsVjrQSBYCbOOFuajs/+yQpSLsG0b66uE7AtbBsAGTMNAt02+423f9yu456d+D0NDQzDWCflVrtbQanpNreHJWVy95Fmf8lIBL3rVd+CuF7yErNIMfg/e6KKlGlAN7/ldjg0qWcBGVebRTlEsciwDe4vEomkY0FSvABNEKUJ+1YsiOrpJFIsxJFAYLO8V4LE2lyWSsSgLHDiOQVniofkIu137DqEXCFFnwDAtNBUDRZELEHkRMBx0XYNZHMZmbS++dGYZXz67gq+cXcFXz63ga+dWcd/5VVxai1caSDxRSWoZiEWeYyO/g/GKjJZCtvda47+8aD9YJt5Ovl4UBs5xHavK2NGIFstSkcyC7UUGUkzXSfNvuaVC1S2IMXa5ZSn9eliReaiGFVEC58iR4ylAZyXQ0I9FxhtUP0TTd/3lRDD+WdthK1ReDNoAthYyfSa1Qm11t0exeGE+ZAe0mJzBZzEcwHAY5kgddPMkuc6Fcxb9aHW66Do5Rn/waz+Bz3zgf2ByzPuejWoZCxtBxeKlq8tQnZnosiTgu172XLz5O0gtErbjZhgAHdKoe+PHBRx8T6s/G1QAsAxIooD750m9YsUp4Oo7ge4a7ps3MWKveKSgqbtka9+KxZjMRsuXmzkih+onJ1+R8nrVcPMn1Iy682hQKYExogLbLaY0NlNsUAFA5Fl0XJVAjwFM2QQ+9y6iHnzpOwEwQEoTfdsxvI8Qi0aGSVnUdlO7BsRnEiix6JQPEWJx0iGGV+LdVwbGuc+S/3Ulkk86ECaOen+bGtnvvayka04Wa3OJEL9f/SNi1Xv3zwDlsfRlc+R4hsC27dSG+it3vxKltElQPcBYUWIRAJY63mTh8OevKqsBN5W6XMfV9tXIul3FoqqBZViYKROrs+TpLV5OtyaMy/4Lo7WRXIt0u13oug7d0nHo+w7hPR9+DyZ2TKB6axUT3zNBFIubQcViu9nGxhoZpzmewz0vuQevf8vrAUQVi7ZtR4jFPYf2BHpbVbGamqnJMuzWFYtMjGKxKGO+NY81dS2iXKOKxWVH3R+X0ycXZTfDEYiqDcOZfGHy6pa7boms05+ZmYQ0hZ0gZCcWu0YXEieB80WPUGIxiwKu7asL2tewRqCKyn4Vki2tBQZMasYiVfzGqWopzHET0g7JPZ5hm1w/6lI90arWsAzwbLCnohpq4rrKYjl1uwDgprGb0JAaeGTpkcT3pCk2/bhr6i50jS4ubMZHPlEb1Hum7wmcMzly5PjmRU4sbgM+e3IJ55bb2D1awlfOriDMK9AmexYLwV6QHYXia2+Zxt17hyOqwO2E1Y0O2rWUjDtK3rnE4ha3bfHK5eg2WVYmu0uxQAb8tRVSBHJ8cLtNjTSXPvnHvwVL7YCXizi5pGDfaNn1NC1VqgHF4vDkLJRusv1VGLzRhQ1go+tt7+4DQeuiakFAV++hWNxiGnFYrSjJcoQ8axRF2DaxHI2zrYyAF93J1yIXzWQslstQdBMFgQPPMihKfMBiNMtvgRJ1ummjqRJiUaAEZqgYYwDYDLFCVQ68FIvTz8GffvE8/uQL5/D/vnAOf/z5c/i/nz+L933uLL56bhVlOXoeMwzJgsxCLMZhrCqjq5tQ9G2wzeqBmaES3vzcPbhxphbZ98PlHgqQAcAXSLGdVbE45VzzVtoqNDOerC6J6deHakEgxOIA25sjR44torMSb5/oRwb1YBii7RuPeBmMv7kStjnl4ojFes/PoIrFtkPW9ZNTHIeLV0J2QAvJs4FJxiKDIks+e6JCrpnLa/EqL820oWo63vUnH8LiyjoKshTJcWvUyriy5pFNe6eGYNs2Nlt92MU7Sr4vzPO43LRx3YGdPRYIwdIhiTw+8IiO576/DWvoQPQ9tR1gLAMnlk3U0fRUZKYGMBws2w4oN1mWgSj0GFNiiEW94im9GmKoHmwvAQyLxQ4ZbyJWqCECjQtPwimNApUJ7C2kkHta+n6XBB7dLIpF0wC+8LvEyvWFvwrsuZec37SJTS1Atex1p4usM3JGDpBMyizEIiX1e3z/bYXWcq5D5HhGiMXKFNmujcEnIkbQXQOuPApIVUJsZlFzpkEoREnE8eu9zMUk1B33iM4KcPxfiIXqnT/mkak5cnwTYE1dSyXktqqWYcCAZ3m0jSAZsqKsuH+HicWwReCQPJSaR0YVi9QKNS7iIYticWE+PUsyjYhinHuwJMWibdrYXNvEh//sw2guNMHyrEueVG6uoHJDJZKxOL2TxP34VYupsIFuyDVgV2iSU0NuRBSifgisQIjFjBmL/n1NyTyO5SIZi3JBxkKH7N+KUIFu6a5dpW7qkDkZy4pDLMZMcJOLcoCA89vSAr2tUEU5SihtixVqRueOrtGFzAdrT2rPq6dMrmnIZGzzE31nN0nOpshub/wT4Klyw7/XXmjqTRSFYmoWIM2XDE8yoNBNHfaLbYy8bMRVLLa0VqIKsC7VE9dlWAa4UGyCaqmxakWA/LaT1kXBMAzumLwDp9ZOJSoNRzLetz178tngGR6Pr8RnNlIb1FfsfkWm9eXIkeOZj9xHZRvAMQxs2Dg6WcU/PzqPPaO9C4GsWGmp+OxJr4ClJMLLrpvcts9IwsZXPghj9TLYjMQWy3KADagKGfgGtWmlWJy/BNQPBp774Vc/F3PnTuPfn4jODPRDlEkx1Gk1I2e52VrD0ofeAQC44zt+FBekIlqqjqubCl5ydByfc95XqhIrVFrqj0z1kUcEgHNmKa13vOIxrNSrF4SeGYsAQxqj9mCEV7cTLL6kQjGSI0jVtE3FiFUghmFzIkSOhWo4arQwaVSukoxFgQPPsqiEFItZMFmX8fCldeimhZZqoCTxoPcR+mjwvOBYBrbFQtc02CyL4toZ/M0vfx8EjoFl27BsMlOS/E/OzdFKtHgrSXzq8UjDSJkU0BvdLTahMuK/vuwwNhUdhRBBN17dfmKRc7JIK4VsQ8ZETQbLkH2hGRYKIhc5R8o91lWReKL2zSWLOXI89eiuAo0U8omTvMw1IPPvNGKFmqZYjBCLS8Dkzb0/xLnUuFaovJSaidcLFy4vIqADWIi/0QbIBBe/7aTg2FJvtKJNkJWOhdd+kGzXD732xRi7/52EzHjeLwbeV6+UsbbRhmXzYBkG+6ayZaQE0F0nn7lOGnaDKBZFQcDzd3P49zeWsBinqnOsHa+2bLILLt9PlFomsUINW9OWClLvSUbOdvuhV3dCWj8NgQPqvEYmGlHyp70ESFUYNvmetQixmME+a+bZ2LP0yeTXe9hRiTyHtqqD+LWl4OKXgaUTwPN+CTjyaqLQLY4QMsu2PCvi9hL5ffUzOTFrvThygHyfzoqnSPTDUMi+5URChLFcT8XmtkLvACVPnRchFhkGmLoJWJ8j+ZphO+VBcP4L5HseeiXwxD9unViszZDftf9atvve3sezOEyuXWtngcsPkkzG67+LPJcjxzMc1//59Xj9wdfjtftfm/q+fidtx+U1CqwQURb5icWwOsqvZgSICmhT20wkYHRFR5ktu4o5/7opsqguFy4tABPxr8mcDCElg1pwXGJamy0gdJk0uybm/nAOpmHihd/6QmwOB4k9cYQsUK6W0d70xr+pnSSWI2wrmggL6JrdQD7enkN7Am8ZKYy4BF/s92AFWKwFZLlVtwGN9a67rmIRUWJRKnjXVUpedfQOKhIhGSVeconDAh9185ALQcVi2JY2TCxmsdvsZYVqWmaqmpATuMwErGIqEXKbYznwLB8hQf0QOAEyJwfI9/Mb5wF4pON2oiGRdfYi2cJoa+2e+5MS80mk5QMLD4ApMWAYxs1YbBvtRBVgQ24kKxbtqGJRM7REYrEqVnGl1dvy/YWzL8S/nv9XnNs8hz21PZHXxwrZ3A5KYgn7G/txZv1M7Ou5DWqOHDnCyBWL24AHf/Vb8I5vPYqbZmqwbOCBC1FP+UFx2298Cj/7QU/S3svisBKyKtyKSLL92KegXj7W0xbT+yzyPqpYpOpGYYC8NwBYvBKdgTx3LpvdkSST4qjTDt4MnD3xJK584GdhNElRP3vTc8nzy2Sb7z0w6r63XKmjubHuPh6a6JGHEgLvFBObiteUCCsWG0UR3RQii6o+mZSbhV6IEItyIULyUWKxq5sQOLbneWOxnt1mnM1lsVwhikWR2IuWZR6akeEuwGlOM2AwVSug2dWhmxbaqoGSyLvnohVSrfCOZaxhaO569o+XcWSqhuum67hhRx03zjRw82wDt+xs4OhULVZRWxT7J0ApRhyl4Po22e9lQTVGeTlR7SM3KyNY0Zm12sO+lELgWAyXJWx0dWiGBZELniMMPKvkJJRlAbppw8h4U5QjR47tgkUInbQZ9KVhwD+7uQfZQiFavptsXgbjb8T1IhYtPUhm9oBrhZpwo54VAcWibQOLxyLvoVc3O9QoEJ3r3EYzuH9OnruEO/+kgyeWyHjzsufeBqyeBa48TFRaPjRqZTTbXZe7nRwuQ5b6JFCcZmrTsf+6bv+u/pY3dUiiANHJOWZDjVUArnWjYQGGzZGcOoAcN4ZFq998RcDLl/NBr5BJXrvrLCqsGlR+tRYD6rBeisVY7H0epqQOakmb18PmSxLYbBmLhkImjR39Nu87lEYImWb6yKz2Isn66wcJEQMRUDIxKTdx8TgAG9hxO7mhkOtbVyzaNrARdSSJhdYBRO8YluOsc3fcDmxeivxuBt62s58hWZuT15NjNIhi1I/Gnmhe7ci+3ssxDFCZBOa+Ckhl4Dk/C9Smt7YtOXJ8A+G+q/e5KrHtghUz6UJkxQgB4M9YbIWuLf7XAGC0SHoHazHjFeApFmXHxnu+FVX4yZwMpsdE7sWwLbsPvRSPguhMIA4pFq9euoqzv3kWnVPkun7nC++MkFXCCFm2XIvaezZG+iCPnBrGn5m5+2DQjny0MIqW1oK0Q0Lj3ui6BVYAuIyKRRvQOO+7UELT0i1YvgnWoiQGInPCBJNu6Shw6dEAYStUatlJEbZCTSPrKHpZTPayA2VEJnMWpWqoKMa4lAis0JMELQrFgE3nXHOOfP42OLWF4aoKe9iChtE22u6yiesW0xWLX77yZffvQpGcDy29lZjbOCQPQTGV2P0XZ4WqWVpENUpRESvomr1rkefNPA8SJ+HhxYdjXx8vjvdcB8Wt47fiYvMiDDM4uSq3Qc2RI0cccmJxG0DHzeGyhPGqhOXW9hELr7hhEj/9wv3uY7kHSUe35VuOkIGDd4iYrEO7rWw920VzrDd3DZfw/73kIGZiMtuyYCGGWOwFmtcoF0nx22kFmyW2bYOvj2Pye36LPHYIO920MVaRsG/Ma1CVq7WAjaggyRgZz64U5cwuGABtn7/98GhwQG+URLRTGlBFiRKLg4uLI1aohVKErPHnBYZJoDhYLOc2GEU+anNZLJehGJZLBpYlkpfXC/UOKUYlnsFkXYZiWGhpBtqqgbLkZSzahTp0300Bz7GwwcLQtvbbK0lcIBOzH4w5Csim8tQoFpMwXrkWxCJZZxyRmYSpmoymohMrVJ6FP+ZU5NmekyTKTn5slvMmR44c2witC9hmoKEfQWEoqA6KsayMg2j7CBJeBuNXA4Un0PAiUSGFP5eih5VgQLG4BQQyFpUNYpUYAsuQMdVyVGrUhkh0JrBsbEbJqIkyg7/8LtI4K/la44w+AAEAAElEQVTtT0M38Y0qqWfoqM2yLPbMJMgWkqBsBlSl+x2lQWZYhFikYOIUoMUh2LyEHVUWK6iTLEpTdxWL7dCkm1Ihw3HpRs8rw1GwTVUYlOwOUYNRtBaJ0stBlFjMoKzY9RywDHDPbELd1YNYE3m2v3HL35gpjwFqO5rrp/aZWZRZZefUbkmK46uPkf07fRt5LNeJdeuADhoAiJXwx98GXE1W/rrQOwFSrlKMae7OPIsoktfjs4D6wupZYPMysPdFhBAEMl/bIpCd83L8SHCWp1Dsna9I4aiAcesPAjueNdh25MjxDQyaa3ctIbBCwKJT4iSs+cb5MNGwoqwESMCx4pj7fBw0hWQsUsXcQjuqyGMYJlGtRHH1UrJbUyEhE9s0yT0tyxJr03DGIsuy4Aoc9vwKud4JBSFgPaubOoQhMvZXak7N5RsupvqpJZzl/FanYSvU0eIoWnoL+39jP6Z/IDqRQuCIYjFLxqJt2dB4za3HdEsHy7BQusE6QA5NWKEEFFXhGZaRSPi46wgrFkPEYqkcnFxi2ulqwyzomTMoZM+iVEwlllgUWTHVChUgykr/byQub3S7QFWQ/SoWO3qnZwYpzV+MW/dSZwnnNs65j4vlIhRDgWZq7sSCMIYLpBaNs/Y1LTOasWiq7uSDMGpSDUqG+lXmZdw4eiOOrx6PfX28lJ1YvHv6bmimhjMbQdViboOaI0eOOOTE4jbjxh11928+o9IvCdbGVbzqhilcN+0NhFln/9yxexi/91034cA4KQKntEsw2+sY4pKLmIUP/iqU//zDzNt37uQx/MfHPhR5nioWdU3D3/72T6fmMqZhcf4S9NXLsNRO78w/B50WIUarw2NgGAadVouEhV96EpqqYO+hoxj/7t8GXyKFiekb1A+Ml9EoedsqlYJFIQBMze7KvP2MbaNWENDyEYvh4zdcEgOvh+ESgPxg+xCIKhbFUrQZ2yh66xd5pqcVqgneVaLGKf8KpSo0w0LJIYdKIg/dtHtmXbG+ZtWYQ5CttjV0NBMVWQhsF1UWcizZXothM+VvpqHss1vtF0MlEQyAjvb0EYsCx6BWHPxcSV4xORZlKfvMtKl6AU3FgGpYkEJktZjBbpeqr3NiMUeOpxiqM8EozZpLrgeVgDGWlXFg/B2pcKMmoliUogSLzxaRYnllBV0teu1vKaTesR1i0bIGu5YEiMWNudj3cA6xaDtldcuxBpNFAbVKCRtOHuJHjutotjo4sHsHzqt1vPcUacqVYpRYL97L4QduEjxi0bfr9s32SQyqzQDZJPTKNgzD1AN5iGxcro+jsJqtMVhmR4C1c4TQNJMUixlUlzG2df5bF9luAbKvWdRZJjmJDiJWqKbWmxQb2oMNU8a9uxLGO70NsHyimr7Ak8lqA6E0RpR3YWKwmTHDiqJHIzAzrj4KjBwEys4+LTYAXdmaPeiSo/i9+ljv9+odwJcbVinFTHaYuoX8v3J28G2iOPdZ8nlHv5WQvECymrMXyk4Dz1HyukrX4f3k+pkF130HcOQ1wC1vTJ/okSPHMxQr3XiybjshcEEr1AJfwKrqqRLD6qg1ZS1ghzkij4ABg4XmQqySTlVU8CzvKuaaevwkbqnHJKiFy8kWoXH2nACwuUquX1JRCmQkbj64ic31TYxNjWH3L+2GPEVqEFYO3qcvd5fdfEZKLGpLXi+pH2KR7hs/0UItQjfu20DzsSbGi+NQfQr9sFpUZEXYjJ1NiWcDNmu7CjpKLHbb0XxFP1zlmnPcqRVqGuSiHFCmRaxQq9F6Ws3ioJCCdg/3BEZgMluhaqaGkhDdRomTeioWK2LF/f20tTbW1Hjl7nagwBfAMVzfxGLX6KIu1VPf05AbKAtlPLDwQOS1z176LFHLOmYdxVLRnUiQpAKkSsYNLWaCnGWQ9fmgW3ri77gu1jMRiwBRLV5pX4m9dlLyNAtun7gdIivi2ErQpSW3Qc2RI0cccmJxm3HLrDcLdaqebpvQC9b6fM/mexrKMu+qggQYuPSeN2DfWLK/uHLuQUh29mbEp//lH/Ge3/ylSEAwJRY/8td/gs//+7/gwS9/Lm7xVJimiaWFK5j/4x/F3O99F4bL2RQH7SYpVgVJRrlSQ2tzE6uffC82H/w4vvTpfwVAyD26zZYvOPm66ZqrkgIAO2b239TMrr6+x0hFSlUkNkoiunry6/QHyrDbRyxKxeiMrYLAQXAViFxPAtsEC9E5twoxxKJQIOcZJYdc5aWQXU03USPvXWqqMCzbtWul8OdEUhLftO0tZfIFjn+fy/IcGyGSn2pUZCGW6N0qaGO+0sckgZmhgmeFyrNuPiyA2FzOMOixyGShmyNHju0DbfrEzF52IVeDRGBnAAv48HjA8sHJJ7wUtEKV68QSMITHH38crbYCwwxeKzoOsbjcJP9/5eH4Gbx+hOsZALh4xUcsrs8BnIh1Jfg+ejmznMlK1HJUFjk0qmVcWe/ibZ9U8OZ/VvE3//JZAADDsmib5HodsXi0LbznZTLecruIRsFR6vte3tuvYlFtEoJvUFgGJJ99NWMlNMSq05itsVjGCMntW7/oWKFyEWKxlMkKNZ3UkYw2QK3RLZOoy6qes0SsFapl4ef/XcEXLxpRchsAGAZnzAncu5OPt07VOvHLOSjyxA52IFQmAC3mWK2d7289W7UrBchkgY05kmFIibDiMFEsbolYPEH+37ycTvKaGvkc2WvQRjIWAWLnWttB7FC3ksls6sCFLwIzt5N82ZJjbzYosUhBiW96LslVBCwc0nDbDwCv/j/A0O7e782R4xmIVWU1sdm+XRBYIWAzWOALgSzGXsQiz/GoilWsdFdgmibaIetzXdUJGeJzEDJj7Kr9ikVNjU4ET7NCjSOFAGBthZA8clFGuVbG5vomFj68gEt/cAkf/9uPAwhOemYLwWuTP++QEou27l1np3f2Yc8cY4UaxkQpWNuESR6REzMrFin5+PgyUceblkmIxVC+YpJikZJXhmX0PAf9ikWe4SMKx7AVKtC/nWcYPRWLfHbFomqqKPPR+lrghJ62rX5ikarbZiozmT53EBT4QiZbUD+6Rhc1Odr/8kPgBLz15rfi+NpxfO3q19znTcvEQ4sP4e7pu8Ho5LdSKBewrqwDACZL8W5mlFhsqtHzPTZj0Uy2Qq3JNWiWlimb8yU7XwIGDB5cfDDyWj/2tBIn4dDwoYBiMbdBzZEjRxJyYnGbsWekhILAwbLtgEVqv7j47u+C/qUPbPPWbT9amxtYWw5m7fgVi+T/3jOywkqCteUFmEb/jQtV8WbzFCtlnLr/M2g99ilUb3oJnvey17iv2U51a9jeoHjPvhEwDANhZBbSxF4UK9ECZLJPYnG0LKHtKNiYmEZCmCwLg3eWYbagWFRCxKJQjBaODMO4NpdShkxM3SbkEBBPLDISKaDpOqlykRWz3xzSrMDFTXL+DJWC6oaNrldcuZa/nBDbGM4Kf0bpeqf/JuxQWUQnJTPzWmL/WAWHJyqZjl+/sDmRxCsJ2dc9M1RyiUVZ4AJ2uSLP9lR0l3PFYo4c/eHyA8CZ/9z6eqgleprVqFQJ2vvF2INGEL42hxWKACEX/a/7b6KLw0Fb08DNuo0z80Fys+VYoerOOK+bva/N7U5wRnBTA9b81mEbF4HKBMK9mqhikTQ9GIZBtVLERz/7EH7vqxrecpuAH3ndy7zPcyy5SqEZ87jyKPYPk+2ul8h39u++vbPZbdl1C4Rw24rtlqlB8isWk2ZO12YwU2WxZDuT7C7d51qhtkL7tmfGomUSlVfceeKAN5qePa7T5EF9p/t6hFg0NcA28D+/pOGe93eAarza4qw5jVsmWbDqevRFrZ1KLBY4k+zzQVAeI+sPE5qbGRSL/hNkO/IGF54g/+99kUeEFYcJaTkosWhZwMppMoGgOU8sTJNAyVHZm7DpEothQnLqZrKPMs7oj8X8Q2TfH34VsSqllroZ82OvGeSoe0qOHN8MMG0zQuJtFxSbXCsM2SCKRT2FWAypo9bV9cg21aQaTJbUGBfPXAy8pikaOJYLWIxSFZ0fEuuNiRurQZWTaZpYurIUXsRFErG4uUwmRnAih1K5hK98+itY+ugSxr59DK/70ddFF3CGW2r1utT1PrNcjfYP+rVCZcAkKjYBYLocJCofXX408FhgBViMlTljkbEY1xZSt3Rw4CKKRSlUi1DFIiXL0pRk/nVQYjGOHKJWqLZtu0q1LAo0xk6+V6bEZJg8pMfOFjIqO+EoFmNcSiROgtFjvK+KVSiOi8X5jfMQWKGvLL9+URSKkUzUXugYHTSk3hbk333ou3Hd8HX4yOmPoOPUII8sPYJNbROvO+j9XoqlItad+nCyHF+PU4vUOCI9SbGYlJVKtz3tt0MxVhrDvvo+PLnyZM/39sLt47fjUvOSa9t7fPU4sUHdk9ug5siRI4icWNxmsCyDo1NVsAwD1eks/Ohz9+ANd8xipkGKkm85Mg6BY1xF485hMpAfnfJuHm2tA5n3ionDExU87+Bo5kmuTyUunj0ZeKx2+5+B1dpcDzxeunIZACDvuQ3Fg/1L7Q1VwerSEpT2JsZf9+sozF4ffINNiUVvH087WZDi2G6wchlCMdpUne7DChUAxqpSIGMxjJ7EoqMilGeuw+QPvRdttX+yK6xYFArxzeKqo0aTemTfMQwD3WJQknhcN13F3tFoIcqKlFj0rFABgOmDWCyIHMoSj8VmPLFICUcArvpt68Sidzyubiqw+lzXSElC+2kiFn/wnt149+tuwsgAExl6wWQ4SFzvXEQ/dtQLsGyiLA2TnVIGxWLFIaMHtpTLkeObDV/5I+BffjZEuIHkJfYDaqOY1tAON7EoqZOGsHVRnLWUP2eRl4PEYmEoNS/x2IVg063jjJcGk31izuLqeuDxxYXgY2zMeRaHPrDOZCXbmcFLSTTVsHH24hUsrGzgY99dwLceCm4LfV+EWDz1SffPhmOh5b8S9mOFqlsMOT5bsd0ydYi+mjSRWKzPYrbGYNMukuN3+X5HsRi1Qo1kLIabV2oTgJ1oGynzAGt0PetTasc7tMd9Ty2Ua0QVi72wigp4loEQ18TRWkBCnhUAFDh7cMUitfoN/56aV9OJYdsGHvoL7/GguYB+XH2MnOtjB73niiPkdxyjtsmEzUuE/Jt9NvlOaUpnSugVY4hFrUMU1XTG/MydhFjsoXBNxdnPANVpYPe95LFYIteb7VB/5siRYyCsqWuJzfatYBPkWmFKJkRWDJA8RaGYqljcUDcieXR+m8ULp4J5r7qig2d4WD6WJy4DzW+3ubYcnKy1urgKM8XBpSLG39uvm+sAgG6pi/Mnz2P5yjJmfmIGIy8fiVUv2WLwnstvp1isFCPLTO/qT7FYFIoRe1M/psrB2ubcxrkA6StyIizGAjIOQZzB4fT6aQCOYpGNKhYLxULk+HMMh67RhW3bhFjk0vsXfqVnLLHo1HGqqbrnShZyjLOSVWFtvQ0GDCwlWHBQJZzN25mtUFVTRVmIEscSJ/XMWKxKVXf/zbXmsLO6E2yP6JutoMgXM9uCAoTANSwjkw0owzD49bt/HYqh4EOnSNzTl+a/hKnSFO6ausvbhjIhFnmGx7A8HLuuhtQAx3DxGYu2GUssJikWabZkL/tbinum78H5zfPB83qA6+g90/fAsA2cXCO93gcWHkBNrOHuqdwGNUeOHEF8HdJU3/j47ttn8cobJl3SSOBYPO/gmKtcrMgC3vs9t+DmmToAot75w++9BXftjR+YAOBtLz6I198+4yrYwqgPmGPoB1ce7pmBF4eLZ08FHlPFYj9YXw36gC86xOL4d74do6/5r9lz65z9w0sFjE1Oozy5B3KYVIQzY0yUoPpIi0aI5GPlaIHVr2JxvCqjpSRXv/VCesaQQL/P8A6IIztx7Gr/+7bb6UCUvEKFL8TPaiyKpHgVeijeeFGCZlgoCBz+6ofvxMuuj87UotaZtaIYWDcrZrdCBYiV7JJDLIYJs+W216TkHcKL4XjYA+ZoAUHF4lJTRbdPknC0IqHzNFqhjlXlgDJwO8ALomtn2o81s98KOqx0zGSFKvOpr+fIkSME2yT2k2FiMeONaABCKZXEgxxqYnXXe1tthpv+cTfQfnUaL4WIxVow1zGEYxeDxGK767gm9EEsLoVUAhcWSHNvpMhgqABg4xIhV8KbzVB7dXLdMh2rbolnsG92CtfvncTL9ke3gyoky36Lx/YyMP8wNhy71UqpAI5jt6ZYtAwgTn2XFaYGyedOwFgJBF19FpMVFqytAfVZYPG4l7HY6ZGxePpTwceUHCvGN4Mmy864Qq1Pu+sAmHTFoqEAdpYxmo5PMU05rZ1KLMoc2S8DkYsuSeo7D+u7gOYVou774u8DD/55kKS3beDRvwVOfBzY84LQ9g8I2wauPgKMHvKUe4BDLLYHVywunyT3GTd9D1EdrpxOfi8l9Are8Xctg7UmIf5oY27HbYTAXh0wZ1FXgCuPEMLTr2ItDA12/cyRI8e2II7E2w507SBZpfhyg0tCKaAy6oaU1RvaRkQhOOS7Tl08naBY9LFhp9aDvRMgaIW6HprkdPXS1bSvE0sKAUCrTUg8hmcwu38Ws/tmUbs9xRKSKhYdAnFV8SZ/sCwbUS32pVh0trOdogKvSbXAftAtPaBalDgJFmO5RF7bTL8+czqH85vnARD7yTgrVKkgBY43wzAo8AV0jI6r1EoifCj8hGycupEqFhVTcS0ylbis6vD228nEYkfvoMAXIhOqXWKRtTMTsJqpDUws+vP/FtoLONg4mPr+raIslPsiFukkgaz5gvsa+/DGw2/EfQv34YGFB3Bq/RReufeVAVK9WCpiU9tEVaom2osyDIOyUI61rDWtKLGomVritY5uexxJGYeX7nopDMsI/HaoxW8/uGn0JhT4Ao6tHoNpmXhy9cncBjVHjhyxyInFa4BaUcBde0dSs85YhgkMRALHBvJr4uAnFdvNTbQ2vcbDO197A976/L2Yqg1uF7LjJ/4cuPuHEl//zCc+gn/7yN9Fng8Ti1qn/9m9G2tBYnHp6mWUq94AmDW3zta6aD7yb2jbAvYeOgpNi5/hbds25EIRmq/zEyY6RLkIlgsek34zFieqMpopKsNaD8ViWXayCR0Vx9XN/hUHSreDQtErVAQ5nliklqZUJZkEQZRcFVpR5AIqPwDgecElbClRR/PymJRmXBzGKxKWWvGKxfWOd2zdY7eNVqgAsNLqzzpurCo9rRmL1wIcL6Crm459afYhY7rhHeuCGNyvEs/1JBYLAodt5khz5HjmQ9mMEouDwN+0j0PYnlLd6K2IC6uo4ohL/2dyoqeeBACp6imUfLjefBSjJTZCLLYcYtHA4MTixRUFPM/h2w4JxJrUUIldZYi4cYlFp6x++KqJ//1Vsj9uu34/dC2+Dmh1uuA4FqLPZhTnPgvwEj56gizDMAzqlXKA4to5NZb5O+mWs62t5czLRBAiFllTjSfoaiRXp2S1gOF9wPp5QogxHNqKCsH3PSOKxfNfAK4+7j2mqr0kYrHifK+qo5hQ1ojKNi2TL6NiMRVaO6rY9WFLxGLZIRZ9ahkM7yP7or0IXPoacOITwD+9lRCJlgU88Y/Akx8FDr8a+Jb/Tpbp0yYsgtZVYm+84/agcrk4RI7noOrXpZNAeYIQeLwErF9Ifi8l9JxcJIHjwNIaRGuT6wG9Dk3cADAcsDYgsbj4JJmYse+FQdK4OOQoNJ9ZdV2OHN8oWFfXE20+t4IOvF5FWLFY5ssBy8FwnltTa6LEB7eJkkUsz+LC6ZBiUYsqFs9tnItsk5+82lgJ1iJp+YpAsmJxc24TSx8jtdGRm494qseE8clyxi9qp+lXbgJeziJFbag/sqIqVlOJRSCo/pwoTeDhxYfdxyInwoJHLK5q6fnegiHgSusKdFOHYTnEYsgKVS7KkW0q8ETFqJqq+zgNjOAjnWKUYcUKeU4xFNciMws5lqZY7BrdWCKKdya4WXw2y1jN1GDYBspilFiUeTk2D9QPmv+3rqxjTV3D0ZGjkHkZ7DVqM5eEkntcsoCSccOFZAFHGG+5+S2YLk/jA09+AAwYvO5A0Da4UCpgU9sMnKtxqIiVWGLRsIkFsx9pVqiUWOyZq+ng8PBhjBZG8djSY+5zvbY1DjzH4+jwUZxdP4vjq8fR1tt4+Z6X972eHDlyPPORE4vfoHjNnQfwbc/2ZgSxLIMbZxqpZGYWsNXkZtVv/tyP4V3/7b9Eno8Qi0r/xGJEsTh/CWOTOzIvb1kW3vfOt6P54MegLZyBAQ6Vah1WUkHlEItp+W0Mw6BSDRbM5Wq0gOac6txAdN+PVaVUK8eRkpSaWyeLQWJxsaX1TZx1O20Uit4NECvFF8cF57PEHgS3IMnQDAuSwIKLmaUliBIUxwa4WiDFbVGiisX+iMWJGrnJYhmgFlLlrnd016rUy1jkYYWzd/pAWQp+xqnF/hr041X5GUcs8oKArmZB4rm+rJjLEu8StYXQOZ7FCpVhGBTFXLWYI0d/sLPlsfWCWArmHfaCstk7w08NzbSNy87jwsSi73oazn9hecCyMGyTxtKxi0HirKOS7TGZ7N8joli8uood4yGFYnkicXkbwG/84d/gzx4x8LXLFmzbRqNaxnozvpHW7qooFeTgjOcLXwRm7oA/5rdRKwcUi36CjmJZIATbqW4wR0ajxCK1Ch0EhgrRZ4XNmGq8HWaN1G0luwWMHCBk8uY8wBLFoqs4Q0zGYnUa+Nr/9QglV7EYVYgCgEgnQVWdWlFrkzw+hxgSeA58uJ4xuv1bA4ehd4C4WsYhxSWW1CCkDOpzohNVLPpVctTadcUhzQ6+HJi+DXjwA8BHfwJ47O+BAy8DXvR2YOI6QrClZRdmwdXHiLJw3wuDz1OSN/xbzorlE8DwHvI9x44Cm5eTSTuqynSsUAX/sdTahPDknN+BWARG9pNzbZAa8OqjhMCcujX4fHGE7MucWMyR42nBprrZF7GY9R65Y/uIRU4MEBUlsRSwqQwTQC29FSFhRguj7t9hxSKAgGKR0Rlc3Iy+R+a88TGsWFy4tBAh9fyoikHretu28aE//RDaj7XROdOBbdmo1CpobpD7Wn0tfrKTwQavdRtasCYq14LfO0mtlYSaVItkVobht5a8Z/oenNk4497bi6wIE6ZLmLWtdJJSMAXXytGwDLAgxCLru6GVZTmSXUftNul5kHYOMizj5msCiCX7/IrFieKE+3cvpCoWjU7sdgUUizZ6kov0eITPIYD8NnoqFh3C6vFlMjHs5rGbwYDp+9zIirLYn2KRqlHHCtkn5EmchLff9XbYto07Ju/AWMlbluVYcDyHltZKtEGlSDrf4xSLuplshUo/pxcpT8EwDO6cvJPYADuHvyE30hdKwO0Tt2O+PY8vX/lyboOaI0eOROTE4jMUSreDB7/y+afksyJWqJ1sg54fcYrFsclsvv2WpuDv3vlz+NAH3ofS9S/C0Lf8GEywsSQghW3bKBSLUFPyCkzLRrla7/n5ZZDipsVEi4GxSrp1BssCjWK0uXrrrNNI8Vl8AsBKWw+oLLOg22lD9hGLXAKxSO1Kw3l4YQiOFSohmqJFIy+I6Opkv1KizlUs9mmFSu00ZYGDGNquja63LwIZixnzBOJQkoIF/MW1/kjy0TIhVZm4hvk3KHhegKKbkPpULAJEsQt45xaFJGSzVQ0fjxw5cmTAxqWtr0Ms9kcsqs1YFVMgpzaiWOxhhcqJQZJACjU9hAJw9j/dh8cvLgWaiq2uk7GIpO8RHSuW1kKKxYVVzE56DUMIRU9VFoJq2PjpP78fv/L7f4GX7uXwF99GCMNGtfz/s3fe4ZKb5dm/1TW9nH7Onj3bq9e79q4rruBGM8aYGNN76L2HGpJACAGSmECAQAghAQKfQ7ONKbZx72Vdtvdyep2u9v3xSjPq0syc3T271u+6fHlnpNFoNDqjV8/93veDGQ9hsVypIhm3XZOlErDhlZancumkY2/PXcRA+1y63u+wRsdAfWEWU7Ehy3qyCiI22ZwHTaHUIJhm5NNKxV1Y1GMkE1S5IYhN7QMoBoVSxfJZHY7F898DlCeBh39AHldmyTlgF5TN0GxDjAOAREddWBRcxFfIHvvdDFLJ3bHIGH2q9R7erYxFuBjZtrkHVbofYGONCQPxDuD1vwSu/28i5K5+EXDFF4GO5QBFAUKqfWHx6JMkyjZrPZfqsaRuruhDDxPX6b57gCkXJ2J1FiiMAN3ryD4u2kI+k1eRuVYk4qZe7KzH9Cs18p+992b/Gf7b82N4K9C52vm33W70a0RERMto0FCQCkhx3oKananqlOvzdsHR7FgUGMEiLNrfzy4AyarT3dUTa/RePrL/CGpV60QrxjT5mC2yOFw47NhHs1tpemLasmzkyAi6B7yFEbMopMka7vmve3Dj52+EMChg8XsXg6IpJDPJurDo5lgU4yJqKtlvChSqchVFqQh5pvH75yduhiEjZAJ7C5qdZS9a8iKU5TJGSiMAyHelaEp9/+1uUjuiTMaZT088XXcsVkoVxExpBmJcdPSuS3AJVORKPQrVrz8dx3OWc8S+LsMyYFgGmqbVHYs0aFRDOP+DHItufxuGsKjqk5y83Knm7QDurleRESEHxMfnBTIueGbyGfA0jzW5Nf5v2CYpPtWUY9EQFs3ifxjO6TsHX7vka/j8eZ+3PE/rY5GiVAx0QWaFrLuwaOuxqEGDrMkOJ7SBwArgGT60sAgAlw9djoJUwP45Mh4LGwVr56JFF0HVVDw59mQUgxoREeFJJCyeovzdR9+Jj7/llcErzgMTo8MozjVmL1dbcCzO2ByLY0cPo6c/nGNx6k/fw+7H78Mb3/txxFeeC4qiIINxFRbrRU5VdkSh2qnKisOx6Aall/vmEINsi9jqSvn0qNLpSDhFqJ+/83z8/B3nYU0vGeTVHYtz1fD9JnUqpSLEWGOQS3nMhjJEzEBhURBRU9R6dKpzuYByjQhRhsNBZBlQaN6x2K87FmMcU98/g+mSVHecmh2L8xWFmomxODJdaUrINb5vJpFteR8WGgynC4shxUAzhjActxV4RZZxdbvaMQTpiIiIJpgPYZHzcCzySaBjpfP5WoGINjaeeOIJACCOvTBRqGbHImu7NrpFaT/0vfo/C+UaDg03XIvGtcAQFo10AWM/L+5zFqTGJq1OrP1HJzBkLual+4m46MJnb6/i5kcP4e8++AZctYKtz9bOZZzxUmYcAlvnKmDpRZansqkE7Je2t5xBjlVs4inrAlu8EnmTrtZdZgAgV609FuWKu9iijy9oaOQ9uTgAjfRYLFeQiDXGH47PnV8GXPRRYP/dRKCqTJPzjfIpYvBJgDNtJ9FFRDh4CYtVa7xuK0hld7FTLxLxhmOxVf0ynid/T8YXTlGk1+Hc0cY6FAWsfTHw9tuBq/+FuPUMxAzZx1bHQqoKjDxNHIVxW9Es7iMsPvafwH03Avf9C3DXV50C37g+CXHx+WT/B88lPWHnRtz3QyqR84nVjyurf59VXXS179vgucDcMFByFxacn1P/gkqTxDnZv8kpViY7icCpRMJiRMTxpipXoWiKq5PKi/GSe+T3jq07AAAjh8nvjd2xWDMlLtgFFlmVIdl6SNsFHXOPRVVVcXifVTiktMY9D1tiUZAKGC9b9zVmGuPYo1BHDo+gZ6AHXphjDsduGcO2u7bhLR97C2LLY6D0e7dUJtWIQnUhFo9ZBLLREolfrY03jo29x2KzZIVsoLBoFoA2925GVsjWo2N5hidClz6cK6n+NScGDBJsAtsnt0PRlHqPRdE0FnGLQk1wCVSUCqqqHoXq08qF5Vmr49U28YjRx04lqQQNGrJC1tHX03P/fRyLFbniGl9KU6ReYgiLQROuizL57J7CYsDEGsMJt3dmL4bSQ2CZY3vvnuSSzQmL0hw4mkNSaP7cvWzoMvQlrT3NWX0sUpAK9QhkL7JCFiXZw7FoGqsbn8evn2yCTTQlLJ4/cD5ibAx7pknaRX+yuX6oBus71iPFpaBBi2JQIyIiPImExVOUyTGPG/VjxIG9u+r/rpabdyxOt+BYVGQy0Mle+Fq89Uv/ga7exgVTBo2Ui9vQ6JknTR1BLJ5ATfETFtVQjkWDksajWLEOvrrDCItJd3fbliV55BPk9YawWJJUjM4119vGHoVKcSIYmsL6/jQElganx4kZIp3dGWiHFWJQVK0enepYzvF1h5shRNE0BZFjQNmExaDvuEd3vGkaHMLiVKmGco3cILGGs5PloLURhZowRW+u7knj8HS5qWjTzuSpJyyyLI+KrEBkmbqAG5ZFep9F+7kicsE9FgFEUag+GL8bkaszwsGscyZ807Axd2Ex3V/veWZBlUlPNhuVCimcVKo1p7DoGoXKey+3T0YojAI7brU89ezug5bH1ZqEuEbGJBdQjwCqSkQxAB2C81rh6LFodywmuh0Cp6wX6j55oYCff+hirFux2LI8F1CIS9r7AK66qtE30NhGxulYbIpUH1Bpo/emUoU50ZqWK8GRohQF5Jbq/6Z1x6I5CtXl+7/oY8DAZuCJ/yGik5By7atZR0xbna/J3rogzXu1Bqi14ebTNCJ4CS6uDX0/OZp8U1KrQ5FEF1ArWZ2VfaeTvof2k4DhgIStsBXLtufMnNpDImOXnA9wtoloRvG8ZiqUDWwmovDrfwW87U5g46vJ83bX5PgOIgR3ryOPF21uPO9GrUi+W12w5Yzv0xA17RG5i7YA0IAJa4qKK+Up4KevAfbcCYzowvzyy+HIe090k/2IHIsRES3T6oRPo5+YV/9AN8bKY67Pl0vk96hUIL9dZTR+n+yurIzgHOMYfdoM0rYEBXvs4/6dVte2JjWOAVsiY6ttk9ss61gci7Yo1NHDo67CorFdgRXqomHnFZ146cdeitM2n2ZZN8htGIvHLBGTo2UXYdFlolTfGX047T9OQ4UKFspyQi5QWOyOm2InKRrn959fj+PkGR6K2ohCrajB79kZ78SemT2QVRkMxaBcLFsdizHRIf4keNLHz3AVBjkWze7DJGc9Rqw+ycmIW82JOYis6CqOdS7qrO8T4O9YrCgV378NhSLnQ5CwWNav1Rneed4LrBAoLJr7/63JH1u3ItC8Y7FQK8xrn1aaoSEpEspyOdAFmRPdz3dFU8BRDWHRmNjgt59JPukqUnohMALO7D4TExVSY93UtSn0a81QFIXTu05HVshGMagRERGeRMLic5r2s8/znWTwd9AUh6pIEmSpuRnhdsdiqTDn61i8+w83423XXAK5NAMmkUXv0tUYHW70lZJBI5lxDpCOzpCLuzR+EEI8wLEoqUimvWdJ0ozz+B2etg4eEgLr6ewzMMQoN+ruQdPsr4NTzRXFnMKiAI6m8K+vORO//+DFWJzXG4rr0+sFJqDHYowMmO3xlgYsx6NUUyDYXIZxngFtK1Jdde0NSOW8YyS6dWFR0bS6AAoAUGWoGjBeJAPLukjFcNDU1oXFpMmxuKYvhZqsYt94eKG8M0UKmnSitRz7hQhxLKoQW3AsGudW3CZ+xXg6VO8Fs4M0wsobz1+C91y6AluWtBZtEnEKUxhp3a1kwMX8BR035ob9l9sdc2GiUP3YfgvACjBqJgLHYtseq7BYKJZRo0zX2D/9je8m7VGoh8emMdRvKubFOyxOy989uB1rX/yXODCtICtS2Lgkj4NHrS6EXNq98HPg7VV86QWCxcUHAFjzYss1n2wjiZJk/U5TCcOZF+J7Sve17VikTaoWrYTsO9exgvyfMnos+kShAkTY2fBKIh4Vx0n8LeVzqyJkrM7XbEPU5e2ORSN2yhwz2ixKlcTzuonrOhylC4s+/bV9SXQS8dIcPzawGSiMhesPKWaJsBgQX+bJ8FaAEYClFzuXxfSxjcWNSJG/1b7TgYFNQNIjrm9sG5Bb0nA9ZofIvs4cdF+/ViC/Q/rEunqPReP7S9qExa415Ddl2tm7zMEkcb9geCuJfU31AV0uTmxD5A3qH2tnbhh48qcAKP8o34iICE/qwqLbRA4PjCJ6EEa/Q4CIJ2bcHJJGnKKBmwhTf30ujQO7rb9DqqnewFfI2GbnlHUSRIxtXB8dUagejkV1gmz3yQeexOsvfT3KY2XQAo2eFT0YPTJqWdcsCgp9zuuvGBctzs3x0jho0JCn/KNQuy8iv/nldHB9Iifm6nGrXvQmrH2sr1xyZWMfWd1Bpx/OMMJiT6wH+2b3QdbkumPRLizanWBJLomaUqsLWH6CD8uz9f2gKRoJ228+o1+7jPfIClkSv+sShbrpBZsAAIKgT1Q2HIsuw4mqUvV186qUfpAChg1GVKeboG4+J70wu3XXdawLXL9dUnwKiqaEipIFyHFvZnJCEAzLYLo6DQDoSXi7iAEiupblMhTbRC9F83As+gjYKT5VF4HDcsngJYE9MsPw2fM+i29d9q0oBjUiIsKTSFh8jjJX0zD08V/jCNcXvLIPYiyO7r4BR5/FskufRUaPDlAV5wjH3mMRALr6vIXFL7z/zVi6aq0lWnPMJCxKGo140k1YJAM/ZW4cYjwJv0lckqq6xqmms6SwQru4OXaPOT+3lyPRwC8ulTM58QAS+TkyG75hNUD6bZqFRTA8OJYGTVFY3BGvCzxVfXo95yKYmmFFcmOS8HCTcbyAkiRDZK1CVJx3OhaDMPYlxtEWkZLVC6Sj+rFgTT0W28EcvbmiKwmGprBnIryw2JEQQFOnmGOR41CVVIhcK45FXVi0nSthnYhRFKo3FEXhI1euxsbB7InelYiFRmmi+UK4HT7mdAgGUXB3CtQph4lCdRcWHz6iOB2UO34HDGxGTSPPr1rUgWdtwuJcsYw5mlzHaxoD3P01CHt/D8DW/1HH7lhUVc3qWBSzdaHrXx+q4cWf+AFWLRlALtY4VgeHrcfBLwr1ExcIToHNcPmZn0qbxiv6cenvJsWchJvzz05mUXvCoqZazilKlQEpxFjEiOikaBTLIRyL+roAgNoccST6FTJiWSKCGXQsr/9TsF9njIlN7fQfNJx69shME6zuEmhZWEz2EPHMXAzq2wjXyqIbsVx7jsWjT5DjmHQpmDEscR02ewxVmYh5nSvJdwaQ35e+jaQvotvvVa2oT3Ag3yNvFxbtjkWGJW7I2cPBondR/xsVs8Dwk0D3WqfzE9Cf05xuay8UGXj6JuDmj5JI6vPeSyJWIyIiWsZPxLMzUQ4WFgu2ySUCY70GJ7gEKNvka7uw6CfoDK0Ywv5dNsdirfH7TSkUMnwGe2ZIRKGm/7abRYUZ21ikVCihu9990sbUPVP48Ks/jO7+bnCJxn3w6FGrsBjkWBTjVhfdRGUCOTEHzXQtc9tGrofURdzcjHaCetIBTmHxwkUX1v/NMzwUTam7YGta8Fi3P9mPifIECrUCERaLZcRMk5yEmOBwlRlxm2F7LBrH7XVrX4crhq6wLufId2KcdzlBdyyq4Xssurl+q7K/sCiDXAe1gLGIsR9u4qno0T7HTIyN1fsFntl9ZuD67WIIoEaEaxAluWSJCm4XhmUwWZkEAPTEg4VFo1esGUVVwJvucYzzzC3a1iDNpwPdvnauWHJFPRq3HfqT/Tit87TgFSMiIp6zRMLic5SCXq8osNm2t7V42SqnsFh0zghPJMlgVK45i1HTk84bAbtjUao1Bo+v+csP4q+++m+gTT2YxoYb8W+SRiOechEWdUehpmkQEv43KpJnFKp3sfXQdMkx+PNzJAYtZ2gKNNUQzPqzAkbnqlCacOWVS0XwcdONAMOBY5zus4oeoRIUhcqIZOAZ9xB9WJ4nPRZtQlScZ5vusVh/rcBahEWmOgeaAqZK5ERmTD0W28EsZAksjVU9SRxpwiHK0BQyMQ7UPAziFgIUAI7jUZWVlhyLL1jbjQ9dvhJLO603K2EFw8ixGBHRAuUp136HTdFKbJC5B5wblWnrY7eoVbOwqAuPZUnD06MuIkl1BujdWBdA1w51OaJQ54oNZ9UD5SVA50rE7vgCgEaEqRm7sAjA2mMxnoUsK/jkHyp4980VvPfa8/Grf/0sUkLjN//gUZuwGBSFGrddF10cTkF9Gt0hx0VWKSAzGF4c8cJe0Ajj/Msv03fFiEI1OxYDClbVAnEG+vVYjOWsztfcUP2fjh6Lxnr23n/NYLgaDOeeC6zuEmiiPbOVZA/57OZJeN1rwzuIYznyGVuJ75QrJEq0d0Mj9tSx/azuqGxCOJ0+QMTD/s3WHqCLziYCXNXlXKoVSY/OurBo9FicA0A1nI9mFm0hQmUt4Ds2hMXaHBHcF53jHm9riJdh/nbGtgG3fhzY+r/AkucBr/whcOkngFRv8GtPZoyeUG4TRSIiQmA4puzinUEzPRanKsE9Vo8Ujlgei4z1WsTQjENQMUehcjTncDkCAFcjv22LVyzGgV1Wx6JStY438mIe+2eJ+GhEVZqFHbtjEQB6FllFDFVVMfq7URz+7mFcfu3l+MqPvgI23rjujR2xjkXsouC+mX2Wx7F4zCIsTlYmLbGkQDjx0I8wwuJA0hoFb4hWQKPnnyGWhREWB1OD0KBh3+w+0BSNSqlidSzGnVGoRtymIbr59b5jeRY1pQaO5vCRsz6CTd2bLMuNHouGYzEfyyPOxi3uUC8Mx6Jmm1ikqAoqSsXVZWggazJohg6MQjWgXcrC9r8NLxJcAgIjYHV+daj12yHNkd+DYi2ksCiVmvoNCYJhGUzr9zNBfQuNqNRZ28Q+RVMs53UYZ2yKT6GsNCcs5sU8VueO/XcSERERcWpUv58D1KqVek/BY0kr77F42cpQjkVDbKlVnQVPu2OR5XjkOqy55Xt3Plv/9xvf93HQtl4o48ONoqYKGvGkcxBxeKbx3lzcf+ZeTVGRcnEsepFnazgyXan3KjToTrcuLAIAz9B1wWxpRxxjc1XU5PAFnUqpBCHR+KwqzYJjKKewaEShcv4/C7RABtdJnyjUsqQgxtFgTe7HhMCAsvfrCUmSZ61OSk1Bd1rEtC4szpdjMWETvDYvzjnibYPoCPg+Tyay+TwGV6xFVVYR59lQ8aVmRI7B+16wCkMd1oGyPRrVi5TY3vcZEfGcpDITzk3mh8fNrapprk4/UDRQDOjtbBcW3X5PWKdjMcZ5/O50rm444gCsXdzlcCwWSo3joIICLvoYNL1A5NaP1x6FCgCDvaaxCCti14Ej+MlTNXzrxSK+/p6rwdjiww+NjIM2XV+DhMVAgQ3ecaq+6NfDWw7FgcwAIFeQCmFu9MTem7DqXgS2EM8TgYpmiLCYCOFYBIhDslYkr/WbqJPoavTFE9KWiFJHj0WjUBwiPovRc9aY8qR1gSFYeYluAFg9d6zlHoupXnJszY5FVgDyK8K9Pt5BHIWtOBbHtpPXLbvEEcdbJ7MIKE82J1yO7yAC8eJzrc8vPpeIlNMucaiGsMhw6O/txYYVegGvWiDuU7eo5MFziWO7EPBbVNSdPFN7iXC5/FL39QwXY8XH7VstAA98B/jD58lv2uVfBK75FrD8kudGDOrpfwGsvAJYcmHwuhERLhj9DVWXa7LIiJbIwCCmqsHC4nDRGttudywCzghIs+PIKx6S1si1aGjlEA7uPmiZaKxIjd9jBQq64l04OEd+9wzhx+yKK8wWIEvW39iefquwOHpkFFP3T6H3+l589CsfBcdbj9PY0TEIYuOzJW1jkT8f+rPlsT0KdaY6g76ENdkqyPUYRKfo4gy30Zd0pmktTZMkB8OxaDhKq1rVETNpZ3GaRKSPl8frjkXRlJ4gxkRLb0mAiDiSKqGij6X9IkFZnkVVqbqeR0AjCrUgk3Moy2cRY2Oh+gTWHYs2YdEvvtRAUiXwPB8YhepHGMciQASxJeklxyUq03Afhu03WJbL8+ZY7Bvsw8DyAUzXpkGBQnfMI/pdxxDSZ2rWewu7sGjEA9v7c5rJCBnHeRoGs+M3IiIi4lgRCYsnCS8+cwmuu3D9cX3PoY//Bt2v/HzgeouXrcTRg/ssRbqSi7BoIFWdA6mZyQnLALyrt78uHMozI1BkGavWb/Tdj7HhI2DZxkU6ZhMWNU3DsElYZGP+xb6ap2PRnS62ipHZCuZssxJ7Uv6DsqCoVJah64LZiq4ExgtVFKrhCzrlUrHeFxEgwiLv5ljUq2AC6z8oNPokujkWE8kUFq9cj3JN0aMzzT0Wm3csGsbMpOAUtRblYpgp2x2L7QlRgi2+9ZxlecxWmhPbOxLtVG4XFvF4HLFUBrKqeTpUmyEtshBYGv2ZcDcq6cixGBHRPJWZ9uIeAUBwL4jf99iz+OFv73Mu4OKkJ17QfgXRTI/F/k2WOMS1i7swOjGNmqkYN1e0HQchidrmtwMA8qJTIC2WKihXGmOUzmwSCb0AdXBGRbUmY82yQTz6lym8Y4v7/h08Oo6EyZmXTfuLC669Bm0EbcOPOYkF0sQBMPvJNO5+k/fMe1/sBY2wzr/nfwZYfhkK5YpFRPX93KoMQAOSXd7rAKQ3nkG8A9CLf10dHdi0whanXxcWg/82ljKk8Hzm3G3AY//VcGcaM+Rj3sU8SpNBURSkVot5iU7SS9HuCO3dEO718TwRQFtxLA5vJc69gbO81+nbCMwebe43Zmw7kO53uvcG9Ni0iV3O10glgI8DNId0KomOjP43UJ3TBUeXvz9je+M7ncvMFHRhceYw6fuY8Wi9EO9o7IsdTQP23Q389kPAgXuADX8BXP9j4Jy/JJ/1uQJFAa/5X2DVFcHrRkQ0SZgeb2bCOBaPlqzpCm7v4RAWTb/HfrGYAIlCrVaqqBQb10zZdi/Zm+h1xLbae/OZ41A5nkOuizjlpWkJ5VIZvYt6seKjK9D5wk7XiZ+jR0ctDkOWYy1Ova3jWy196sS4aOl/OFNzCovtOhY7Y8HCoptAZ8RGGg46udA4nnbRxo7IisgJehsbo8eiaYzmJiwaDreZ2gw4mvMVzFieRU2uue53V18XBlcOAiBiYIyNgWVYxNgYJCW49123QoSrrJa1PG8I3X5OPEmVwHKsa4xqWML+/V0xdAWuWXFNy+/TDFk9it7eF9OLslxGTvROmWiGVDqFZCaJmeoMUnwKbEBSVt2xWLM5Fj2iUP0ci1k+i4rSvLD40mUvRYfYgUVJ7xZTEREREe0SCYsnEYXZNmOsWiC2bAskxX/a9eLlK6GqKmomwdDNsWgguTgWZVlCqdCY/d7VR4pg5X2P4+gP3off/Ne/+e5DrVLC3Ow0eLFRtDK79ABgtiKjbKr0GL0CPbcpq0ikwkcndHI1qBpwYMZ28xAgonQkAhyLLF13HizriEPV0JSLrlwqWkRUFQx4lgZDuTsWg6JQDXEw4eJYFAQBiXQGFUlBjGMsIl1SYJvusThbIYPupIvANJSPY7pcg6YR8RWA9wz7kFAUZflcm4e8XQledPv0zDwZMRy4Xg7VZuhICrjnE5fiolX+M/wM0rHIsRgR0TSq3Ij6axWhydggPk4iWP1wERZV2iYOWKJQA4TF9IDlN3/tYv0Gfq4hAhRKzmulpveO8/Jfm+NQh3rJNeDegzI2f6eIz/7HHwHA0lPRsm1Nw+HRCRyqEeHpqJRyOBrtmPsOmnneeechrwuKFtdjK/0zTULH8xazjVk7zeCIQg05Dkn3AV0rUSiVw/VYNJPw71+DzKBp3U7Skw9AMhFvCFEGrACACnX8aN2xOCMuJr08f/luq8DoE4VKqTIEnms9CjWhXx/L09bnBzaHe30sByhV8l+zHH2COIETPnF1/ZuJYzFoIoGZ8R0kFtfor2gQzxNRb/awM1pVKpF+jvbI5OoscVS7CYu5JcS1OnvIf3+M30dNAbrXNwREO2KGRNDaI9fmhoHb/xa470YSv3v1vwIv/Hsy2aHNCW4REREN/CIo3ZipBtdKRmzpCrzLb4ldPAzjWDRYvII45IrTjd8NexRqf6Lf4UKzC1PTk9P1f3f3d4OmaZT3l7H7C7vxrS9+CwDAxL3HF2NHxhxCoNlxWFEqeGD4gfrjWDxWFzhqag1luYxFqUU45/nnQNAnAoVxLBriH1N17ltGyIDxizcPwPiu1HLjAhtGTDYETYZiiLCYsAmLitOxCBBByO38MMMJHKqqu2MxmUoilSPbKkml+nkVZ+OoqTXMPu7f+5oFuf7ZY0qN89FPMJNUCZzABfZY9COssPihLR/Ca9e9tv44xacwWhrFHQfvgKZpoJpspeJHWr8/CdNvUNO0eRUWDeZqc6FckB2xDlCgHDHPimYVFg2R2Tjv3MiIGdSUGhStuVlrSzJLcMf1d2Bp1tm/PSIiImK+WBDC4je/+U0sWbIEoijinHPOwYMPPui57ne/+11ceOGFyOVyyOVyuOyyy3zXj2gfNSCbffEyEkVWrTQu8G49Fg00j8iKqclGkaKrdwC//dmPMPqzz4LvW4VLrnmt62uMQsTMOLlJEIRG0UqzlQ2PzlgHIKzof7NSlRXXOFUvMoyMOM9guGiLQnURmoT+1UhtugoA0BngWOQYqh6FuqQjBgrA0ZlwM5Y0TSPCoklEVUCDY2hLVBvQEBbpgLhLiiOfx8/BVpFVxHlrj8WEEOxYjMXIckEk/58qkRsct157y7qSmCpKADTQFCy9KNshzjfeqz8bQ1eT0aZdevRtvscZ5XIyUjOExXlyD3YmxcD4X4OwvRgjIuaDU2IsYsyqnnGJFvSiVgQm9wJHH288JzQ5K51L6MKhz3ihMgtJsxaUNPtvtrlvUZBj0SburBrsAE3TmCk0inkOx6IPxtVq1NTbaHFvHv/969vx/B+WsLqTxkevv8D1tcanni5UIEkychkydlD1YbZfj8SEh7C4YcN6LBsgYmlQnGogyXno82YX5EIUdcwUik32WASCnV9p03U20V0XFt2hSDSlFCy4JZPkeE8tfTHw9juA5S8Atv0G2H8vifTkfb4PRQLPsZBUDb5/D14kdJemXYjv3xTu9fpsflTncP0LL3QKrF5UZsjvRv8ZjW240aenh0zuDrfd8hSJJ+1Z737c+s8A5o64OGLLurBou1WtFsj36DbeoyjdUXnYW0DWNKtQuPRCEq3qBkUBYq6xviIDT98E3PwR0hvyvPeRXoqnXeve8zEiogVOibHIPBHkDrQTRlgcK1snXrm9h9k5xFCM1bEYIHZ293dDjIkozjR+Z+SyddLxopTTPWR3HU6PT1u2efdtd2PP3+4Bm2Hx+ve/3vW9DXeaVJMwOz2LhC3twCw0rs6txgNHG8KiGBch6RHcRk+4xenFWLZ6GTJdZLJUGGGxi+vC/n/ej66DzsQBiqJ8XVlBGEIXZYrIn65OB76uN0HGQDRFo1KsWB2Lcadj0YgYnavNgbdPgLNh9FgMig0ty+V61GWMjUFSJRz4xgE89canPF+T7cgCAFJ563E33HqGE9MNSZHAcRzQ6iQnNP/3Z/CRLR/BOb3n4Bc7f4F/eexfcO4150IMM+YLQYbPgAKFohzsWKwqVWjQ0CEG9/ZshtnaLPJi8DWfoRkkuITl9wNwj0KlQXvG6QKNCNhW4lAjIiIijjUnXFj86U9/ig996EP43Oc+h0cffRQbN27ElVdeidHRUdf177jjDtxwww24/fbbcd9992FwcBBXXHEFDh8+fJz3PMIgk+tAJpe3Cos+jkUvZiZJJIimqTi0dxe+8YWPInXGC9H9ys+j5tE82ohcnZskNwm8SViUbU7Lo9MV0BSg6UWlIJGrIquIp8L3WKSgYcNABmNlm7CYtu67OZJCUjTkAqIzOVMUqsgx6M/GMDoXblAhSTWoilLviwgAskY7Ij8BYGUPGbQGCot64Tfh0yevIimI8axFvEwIDCjef1B5+sbTAQBJvbflRau6sK4vjeetcA4IhzriKEtKPcKVY2gwAdsPg73P4sbB8OcA0Ii+zXQ4b6hORmr631FaOP6z8OdLzIyICOKUGYsY/VZmQuzHrL7OYz8C/nkT8FPTBJ5mJ2nwceIk8qM6ixqs29X8HItBwqJNRBJ5DksX9WC24O9YDMLos6hpGo6MzeA1H/0HXH8ahz+8Lo5OD5GmWiPFuEqNTNDpyFmLQNmUdyEtVI/FNuPHwPLerizAPabW3otQbkJYdOmVVSxbhcVQjkV7dKYd3X0KIQ3kl1qFaTf4BBAiSmrzZuIOXDLQA/SeBlz1JbKgOqv39/P5+1BqEDiWRKG2YhQw4l/tUag9pwGgnA4+O4bgXi1gqL8bnWHPnZGnyf9XXOYU88x0riTHeTbkb50RSzr0PPe+qoPnkt8rcx9DpUac16LL5L7aHIlq9voOBs4i26t63IeYf6e4ODB0vv/+x/OAXAIm9wG3fgzY+r+kn+Bf/BC49JNAx3L/4xUR0QSnzFhknmhWhLJHDroxVrIKi4LLdcMsHvIMbxExgvaJpmkMLh+0OBalsjX2MiNkLG4wt7hKs2OxVCjhs2/7LFIbUlj2yWXo7HWPFJ0dt37+hDFm0X+izMLgNSuuwYG5A/XHZsfinEQcVkszVpdTmChURVMw9L4h1AT3yR1+rqwgDDckZ0q08ROTjb6dA0mShOXmWOQF3tHvMMOTsXShVgh2LPIcJEWq75sXZbmMpD65Js7FLf0svTj3QtKXeMUGa4/lurDo48STVRkc355j0e1vIwwdsQ586/Jv4XPnfQ5HikewU9kJhW+j2aMJhmYgMALKIeLYDVdwGBGwGYpSsd4/MYgUn7I4nhVVgaqpFsFaUiTwDO8aaWxgfIYwTs2IiIiI480JvxP62te+hre97W1405vehHXr1uHb3/424vE4vv/977uu/+Mf/xjvete7sGnTJqxZswbf+973oKoq/vjHPx7nPY8ws3jZKtRqumBHM76ORS9mpoxeAxQYlsW7P/W3yF/+TlAeufaapkHT47xmJ4hjkRcaA6CypFh6Lh6ZKSOX4OuOyUBhUVIRbyIKFQDOWpLHaMk6gLM7FmdMNxeapoFj/P8MeZOwCACre5MYmwsXcVXRhVdGaHxWWYNrFOr333gW/v4VG7CyJ+CmQY+nEz16MSqqBknRHKJQSuRA+7oJyExCM2mRw/+9+3l48elO18LiPLnpk3VHLcfQoLn2Y0jtgunZS5sbjHbrjkWpjYH8QsKIQk3Fjr/IFzkWI44Xp8xYxCjEzwREAQKNPmOJLuDMNwKnvaKxLEi8sMMlgMqc/zrVOdQ063Y1e8HG/Jiim96PtcsGUSyT6yND04GORUVxFjrGJklhjqIo8ByLv/vgG/AfLxMhsN43/JLe13Fcdyh0ZK1jBz9h0SsK1Uwox6Km4d43x8HAo3jjJ9LZi5qlSeD3n7U+Zyq8aaCa6rEnSTKqNcnyWQN7S9Ksb+QogIbT7B13A1veHLwjfMIpmLrg+U1LFdLH0VdYJI7FlqNQxSz57Pb4TTENvOxGYM2L/V9vxI3ahckgjj5JXJ9dq/3XoxkSlzo3DHgkkFgY204iRbvWuC9fdBagSlYHZE2fHOBWNK0WAD7lPfFg8Tnks896uLbNMdFdqxvRs17EO8i5/uwviVh5xd8C1/wrsOwSMqEiImIeOWXGIvNEs8KiuYDvxUR5ApzW+A3nGd4RNWk4ywCAp3kUTb/H5mVeDK0cqvdYpBkatbJTRDKLHcU56+89x3OYNqUnCKKAG951AwbfPQha8K4bTBwmtZTiLNkelyWfUxHJb7VZWHz5ipdbxM1YPFZ3LAJEhOtPWO+/k6kkxEXkuuvVu+9I9QgAYHJw0nW5X1/AIAyhizXdk/o5Fg3xbnGKxNPSNI1ysQzRNBbRBM0RS2s4FotyMVAwZHkWNbWGWECNoyyX66JqgktY+lk2S1EuggLlG8cpazLpsRiQPOZHq45Fg+tWXYebrr6prW24EefiTQlsYXp7NkNRKobeZppPW/pBynr/a0uPRdW9R6eZSFiMiIhYyJxQYbFWq+GRRx7BZZddVn+OpmlcdtlluO+++0Jto1QqQZIk5PPuxf9qtYrZ2VnLfxHzjxGHCgB8LB7oWKy59Fk8sGcXynsfBUVRuOEvP4hrXvMW320c2tcoQkyPjSDb0QnaNGu4UJURTzYG/0emyxaRj/KKPtKpSApipijUMM2v3USoLpuw2Ex/RICIgJSpj9Rp/Zm62BNE/XswxXPIqgaeZRyOxUyMw/VnLQ6OqWQ48Azd6Gtow3C4pWyiUCs9FgHy+QUXEXMob73Z5BhqXhyLdjHr7KXNxWcYx69YlQPWPDkwolBT4vF3LLpF4EZEzDen1FjEiGksHA3/muxiYPVVwOA5jeeaFRb5OHESee2WpgJSyelYdAiLnP/jANYub/TcS4hcoGNxYtq6z8l4DLsPHMVvdpDi2vuvvxSf/MvrfWcRHxmZqP97bKYIUeAtzjwAyPoIg2Eci+lkcHFnUW0HzhtkcYl2v/sKKb9YUdv45t5/tjq7KMYSLamxMSKyhRgXAcStCFhjX52ORdsx5pPBDkRjbJMbIs6xIIRUaz0qDeQyccrSfsJiDQJvRKG2AEUBsby7MHjGa4GVl/u/3hBjw/bABMj3OPwk0L2G9KoMou90oDAcTlwe3056H9r7K9a3tZGItaPPNJ4zivhu8aK1Aolq9voO+s8k/5/wiGotmJxffZuCI0wTnUToVCTiJj39+uCI3oiIFjilxiLzRNIvdtqFqlINjAqcrE6C16zXH8421rAIiwyPktxIQgizT0MrhhrbFjhIJcmxjlmYMIuIAJDJZzB6ZBQzDxM33pWvvBJv+/jbfHvVFWYb14xZfYKUkNCvofpttNlxmOATuGTwkvpjPsZbhMUOsQOMbXI3wzJ1YTOMO9QNQ7RrBUPoYkSyXzRoR/86N/qT/WAoBjRoVMrWKFSFc06Qyepx4EWpGOjaY3k2lGOxolQswqLRV68VSlIJIis6vh8zkiqBF/gTEoVqpi/ZZ4n9nA/ibHPCYld8/lKkNGgoSSV0xcJtMytkUZIavx/G35ilx6IqBZ5nhrBo7wcaERERsRA4ocLi+Pg4FEVBT0+P5fmenh4MDw+H2sbHP/5x9Pf3WwbhZr70pS8hk8nU/xscHHRd72TnV//zA7z/NS89Ye9vFhaFWAKlAMfi9OSE5XE8mcZ//9vXMfXH70FTFXT3OXsP2Hno7tvr/54ZH0ZXr/VGv1iVEU82ZuYdnamgL9MYSFKsYOkBaERqNh4r4GONAXixFjwze9PirOO5fNx689KssMgxtKW4un4g/IDcEBYpk5OvpmgQGMohLIZFo1lwDGU5dmaq+nFM20ShhMCAtgl/24ZnUQpxXN3IxDmLCMizNBguRLRaAHZhcV1fGhsXZeoOySAMIbnVz7XQMITFBH/8Rb7kCYhfjXjuccqNRcQMUBwPXs8PD2HxeYtZ3LDB5e+SixPBxqOgR+nP19CEY9HtcQBrl5mExRgf6FgctRfzUnF8/Yc34T03V1CRNQz1BU8sue2eR+v/HpspYlFvJ1iQiSUCRf6fTTfhWDQEPcMNVhwDw3gXjwwSCnnd5uSwaxQpMj7jKruLL7MIuPqbjdewoiUKVeXi5LvWwl3nCiXy/Zs/a0ywfbd295eQDP7+mzw/wCdDORY9kSrEJeknvOtRqL/fo2DrJO8e/xlEotPpWAyL0R/RVAgPpDQBlCeJe1AIEVM3sAWYGwHK0/7rKRIwtQ/oWOndt5ETgWUXAWPbGt+N5CEsahoglXRXp8ctbLILSPUR17ab8F0cI+fzCz5PnNo+hVkAxNFdKzT+plr5PiMiQnDKjUXmgVZiM0dLo6iUvIvvM9UZCJq1iG8XPszvy9GcRRhIccH7tHjF4vq/eZFHreSc0NIT179nCpgam7IsS6QS+O3//BZH/vMIlLKCnoEex+vtPHbvY/V/z07Nkv58xs+k/rNl75H46tWvrv+bTViva91xfze3vVdlWNoRFg1XF6vfqyeYRChhkaEZ9Cf7kaDIWMwchSqxToEvxsbAUIzlPb3geA6SKgX2WKzIlbpbM8EloEEDxVuvJ4cKJG1EdRvDmSjL5UDRL2wU6mhJn2zjcmkL6id6okhwiaYEtvnssViSSlChoicR/DcJEJHaPDHBzbEoqVLgeWZ8hqjHYkRExELkhEehtsOXv/xl/OQnP8FNN90EUXS/mH/yk5/EzMxM/b+DBz2icU5y/uVvPolnHn/ohL3/oEVYjKNc9C+ITE00BqOlXQ+hXJxDLJFEzw1/B4pm0NkbPBv4obv+VP/39PgwunsHLMvLkoKELixSfByzFRmDOVM/A5a3xJBKtp6MZUkhcV86My6zDe2kRQ5ZkWzTGMYZfQalw2Q29qHJFhyLpkjXdX3hI0TKJX0gYx68KCoEjkaLuiIRFlna0j/RjOGmTMesN2kJniWRrib35bNHg28G/BgwfZ8sTYNusReAGbtLjmdp/Owd5+FlZwx4vMJKoOPzJMMQFk9Ev0PjPaMyXsRCZsGNRWJZEmXZDj7CiegWCcoH9BzSb6prmt2xaPu9NF+rJNnfGebC2uWNYl5c5AKFxRGTsPjbHTKOjk2CY1nc/eYERJbCUG9wMeKWux7G48Pkd3Lr0QoGezuRVInI18+R/2dTPo5Fu7BoFA2MwlITkaN1Rp5xPpexFZBVk6veLkS/4PPA6heifpvACYBSrU9I0jg9UlQNNxXecI6anZw0TVtfb48RE9LhHYthEVLtCYtyhYjojL+wyHMsvnF/Db8a7nV+rjAkuhpxoM3CieS4NXPeTO4m0cPLXxBu/b6NADRgao//elP7yHm26Gz/Y7buWiIETu0jjw1R1e5ylMrk7yIoIrf/DGD2iPt3XRglrz/9lcDAJv/tACQqtVZEW7aPiIjjwIIbi8wDrcRmjpfHMTU+5bpM0iRUlarTsWgba5jfl9EYizAQRuw0OxZ5gUe14Pwt6kv0AQAohsLURGN/C88WcGjvIaiqimWfXgYmxqB3UUC/YQAP3P5A/d9zE3Po6nM6quzC4qaeTQAAVVLBxIiQxurjP2P/vBgvtTaBLScE/H77YES30nqtJcWmQsXfAsAHz/wgruy+kmzHNBap0e4pBsZ7hY1CDRL6qkq13rvREOzMsbYVuYKdUzvr6/pRlsuBMcGy6h+Fqmka/m/n/+HOQ3fiqiVXuTpxF6qwmOSSoQW2GBtzOJLbwTjfgoR3g5yQs7gr645FU49FWZUtscRuCKwAnuGhhJzQFxEREXE8OaHCYmdnJxiGwcjIiOX5kZER9Pb6D6C++tWv4stf/jJuu+02nH766Z7rCYKAdDpt+S/CH7eY0iCGbI7FoCjU6UkyGJ17/FZM/eHbSOfyOP2s88EksgAAXvAfxFUrZTz58H0QY2TAMzvmdCyWJRXxBBkkMTmybHVvY0Ct0Sx4tvEnILDWP4eKpNZjPQGgUAsXWbGmi+y7ahrIKeU5yOP7AACHpr2LRSLn/JPkGRqUqffgolwMcT7YvQAAFV1Y1EwDKiIsMr7Rbm50dpLIFooVwDPOHo0GhrCYsQuLeu9Co89iRWp/YGR2EfIsDXo+HIsuAprAMkiHjALNxdvfh4VETVFBU0As5Dk3nxju0cggEHEsOeXGIrE8UJlubxtuwqKfOymg+ODtWLQLi43f2anZQvOORVMUalLkA6NQDcfiT56S8LKfltGVy+Cc01djUZpcczuz/pFnsqzg9/c+Bj5GCjzDEwUM9jaKeRmGFIfajUJtmmducroW7Y5Fs5h44F6ru4sXrY4wVgQUCSxLvj+VT+qOxXCR38W6Y9FWOCmZHA+2HssQ0q7ffyJBjrUGOlh4tCOkPV214dDIuR4Uhcrp53mzkcIGye7meySaEdLNCYvjO4nwnBsKXhcAuteReNzpAFFifAc5BoNn+6+3+iqyvYP6BEmvHovGMYkHCP6DZwOzh61xvgaFUfL6sAVTwz0aUkSPiGiVU24sMg+0Iiz6OemKGqlPBEWhpoXG+9IKbXEshnHcDSxpTEYVYgJqRad4tShFrskUR9WF0NnHZ7Hvq/uQyWWwbPUyCN3kGtfV6xQJAQD6z5imaXjozoeQypM6x+zULLr7ncKHOQrVQBlVMHn7JCiR3GwZQlp/0n+S93iFjCFKcXJsxjRy3I1+hfa+hQZZL/d6CAxXIKPXFFJsyvLd+MExHCp6LLvZsVjR3McEhlDo5USMJ8jybE820LGoqAoRFvVzx4jaNSJdAeCXu3/peJ3RP7LuKtQpS+XASF5ZlcHzPNzabiuqgh898yP88eAf8arVr8JXLvqK6zYSbHM9To8XCS5R758ZRCuuZz+Mfon2/qNe5MQcSnKp3lLJ6K1pdygGOV6Bhft9LARYioy3/eKBIyIijh0nVFjkeR6bN2+2NBg3Go6fd955nq/7yle+gi9+8Yu49dZbsWXLluOxq88p5mZnmn6N2WHIxWIol/wLIoZjUVyyCelzrsNpZ5yDwsx06Pd78qH7UKtWkMpkAQDTE6MOYbEiNaJQmSxZtqa3caOgUiTS04BnnX8O5j55hZA98zb0ksGq6lIQU1UNR2caA1h778AY57wYcjZ3CEVRWNEdrueEIfAqVKO4JSka4lzzxa6uTnJTQ6JQac8o1ZpMRrAOx6IhEulxqE8daf48s7OkwyQsMjRotn1RL6yA6EWrEbMLlZqsQmBpz+jbY0lCFzMjYTHiWHLKjUXieaDS5u+r243Z6LPe6wc6FonI4eixSNt+s03XzcmZOaDJ3/RMKoGOGPnBSAhsaMfixUMMPn8xj6su2kIETZ2gCTgPbT+EqZkC+ruJ0DE8VcBgX6NvUoapAJqKbKqJKNT5YORpUCNbrc+lbe4Dc6+5o08AY9u9t8fGAEUCp49ZNC5FhKvQjkVnFCoA4irzQsy6CodxXZykYtngGEs7Qro9xyIAcAnv3p+MAMg18C6TxJoi2dOesChmdeE3ZJ/HwjDQsy5YsDPgRCC/jLzOo3gMgJxTmUUkntSPWBZYfA4w9iyJT5WKRGi2F06NyLtEgFNg0VkkmtlwQJopjunCYkgnaaKTRP624hyOiGiCU24sEhJDGHITogyHVzNMlCc8l5VU8l5BUahprlEvoCTK4lgMI3aypvtsQRRQKTjFK6NHG8VQmB6fBgDEV8TR9ZIuXPKSSzA320j14R09iQl0jFxr9u/cj9Ejo+hcRMYfXsKi3bFo2ZbuAjRiOA3h04upChFDNYp8b0cp0tubp8i+SqL7hOy8ENDX1oe6Y5En+5phM3WhJwxlfUxodiwWpSIol2ycGOfvWBREcg51DnRCVvwdZ4bLrS4s6tc245gfmjuE+444+6gaMa+/3P1Li0OvolQCI3klVXJ1LNaUGv7tyX/DwyMP492b3o2/OvevPMe6fLNx88eJJJ8MHYXayuQEP4z3DXL0GnTEOqBqav08VfQ2B/ZjG2OCxyTm3q8RVoy/1+gYRUScGE54FOqHPvQhfPe738UPf/hDPPvss3jnO9+JYrGIN73pTQCA17/+9fjkJz9ZX//v//7v8ZnPfAbf//73sWTJEgwPD2N4eBiFQhs34BEW5mbc40P8oE0z24Mci2qtjF/99w9QmJ0Bl+1F6owXItvRiZkp7xsBOw/dfTu6+wYgxMhFRKqW0WWLQq1Ial1YpGgamRiHjqQpdgAMeMb/T6BYbUzzmi3JjrhUN9Z1k32qxpwFmrFCFZIp695NzLQjmPbRGBuGjUOtGMIirMU3N2dkWCRFJf0Mg6JQbQJdXO/RR+t9lB7dP93yPhgs7WwMHjiGmhfHoj0KtR0Uj/iRkwkNAM8yJ0QwZRkaIksjCkONONacUmORWI70IWs2LsfuGLMz6hKvacDF4Pd3StWFRWsxT7MLR2ZhcXqu+R56AFZ3ks+xOMvWBS03ZioafvCL2zA6MY2+FI1PXySgpyOLsanwouytD25HLpNEZ45ck8tV2eJYBAAoNV9hcb4di7vlHiA9AHbHb60L0rY474LJFSNmgad+7r1RVgSUGji916PKJ5s6x9yiUAH4C4uxrLuAZ5ynQXGYbojtOhZBRHQ3JyJF6UK4hpTQ5jgi2WONqm2WWEb/nE247Baf11xsa+8GYG640QvUjqYRx2J+ebjvat3Lgam95Jyolcg5x9q+/6r++5rodL7eTN8mcp5M2qJaNY30k0z2hI/Rjevv1WrPy4iIJjilxiIhMQQTzWUihNk5GAaWYjFR8a4nFFV3xyJvm+QUM/8W1mCJMgyKoDRg9Ik4giigXHBOTDCcNWpFxZ9+/SeMHhkFm2TR8/Ie5LpymLb1gPbjwTsfBC/wyPWS31qpKoWKQrWgHwJDRB1M+fffNNx0BgWGnHO0Xl5UUu7XhnysdWHREPkMYTHLZ1FTa6iGnDBU1sciZsdiUSq6ioLG9xzGSSapkm8UqiEsZoUsgEafTiMK9afbf4qskMXyzHLL68yC54+e+VH93xW5EujEUzQFLM9aeiwWa0X882P/jB1TO/DZ8z6Ld2x8h+82mk23Ol4k+WRgXKxBK5MTgoizcQghEzOM3ogzNXJvUY9CtQuLIcZf8+2+jIiIiJgvTriweP311+OrX/0qPvvZz2LTpk14/PHHceutt9Yblx84cABHjx6tr/+tb30LtVoN1113Hfr6+ur/ffWrXz1RH+GUY64J56AbQiyOUtH9hqY2fgCzD/4CB/bsxOjRw/Xns7kOTE963wgc2L4VstSY+fbQ3X/CWRc83zLg6uqxzhwqS0o9ChUAulJCXdwCABk0BBeHoBmzY3GqXKuLZn5k9FgLzSUq6/B08zOeeZOr8dAkGeyf1h9ukFQuFUFRFCRbwTdslKobkqoLiz5RqBTlfA8jCpXiRciKiicPT7e8DwZDHdYoVGoeHItJYf5y+GshzpeTAZ6lwdIn5nIRF9hIVow45pxSYxF7X7KwGMWTjhXuy/2ERYr2dS16OhZ9eixOzvgLi25FSABg9N+qmI9jcfekipf8Twnb9h7C3kPD9ee7chmMTXoLiw88exBVUyz6LQ9sxxXPO9NSfFnUaxM95BqyLvFjBvMtLKqggUs+AWZyp3VByu5YNAmLZ74eGHnKe6OcLiyyhrBoOBabExYd/SRnD7usrePlcsvqfTR7Tgv13hbajkIFESfdxj80Wz9fU0KbV61kuN49nsRygNSEY5HhgaWXNPceA5t1YdGjTUB5ikQy95wW6GgGAKy7msT3HnqIiHhczBk5W49CDShMC0niqJw5bI0ErsyQ/c0uDh+FkJgnYdHY59zS9rYTcUpzSo1FQjJbI5HFt+y7Bb/e/WvLtb1Zx1SMi2HaJwq+qBXBMzwY24RbexSq+ZquVTWLW8wetSdL7pNAElnyu8eJHCqz7tcdaVLCvn/Yh8N7D+PwPlNdJJ/F3PSc62sAYOtDW1GrNKIgH7z9QWw6bxNo04Rlu7CoaZqvsKjx1uvFsswyz3UBYKbqHCsdLTTOTS3mfv0xhJZWML4nQ1jMcURInaqGmxRvCIuiaSzi1a/QcD4FCYuapkHWZN9+hAX92pUXyXXAeD86RiO9OY19s/vwwc0f9DzfT+s8DU+OP4k7Dt4BgLjm/KJQDQcuG2Pr84smK5P4+qNfx3BxGP948T/iulXX+X4uA5aavwnX80WaS4cWFtuJ3vXcphB+m50x3UWsR7NLChkzOaJQA3p5As1PtIiIiIg4XiyIK8V73vMevOc973Fddscdd1ge79u379jv0HOcIGFxfOQoOnuc9n9ej7gUYglMjhxwLN/26H0Y/tEnQPMiNp/9PCxbvQ544GEAQCbfgZmpCXgNyb72nuvwTbExk+fQvt14ywf/Cr811cW6+vqBrY1Bbs3UYxEAetOipWebpAI8419YKMuNotlksYZqm30BD0+VEeMYlJvYjpurcfOSHGiqES/qRblUhBiLoypZBS6zwNossqJBYGkwHseuqkdn2vc7YTgWORHbR+ZQMe1T0Ocw4Hky4Gb1WezmHoscQ4NmOEBp7zsyBND5IIwQfTIg+DhUjzVJgY2iUCOOC6fMWMTel6xZKI/fQD/hCSCCi0d8IyWXAYaHqlq3rdmLKKbi3uRMAch5zwh+du9RrDvDOaOeZlgAMlICg4JLLPs9T+zEq75XREYEzj9jHc7ZuAbQNdOufAazhRIA95v3c9/zHQj8D3Do/QIAGg9vP4R3vf46APfU1xns6wLM86TkMnEsTrt/jmTiGEShbnoN1Du+DNos3PG2EdZcQ1DFljcDT98ETO933x4rAJUZcBwDQIbGJwGlCqjhetwYztFEzPZ9zhzyflGix2OBfkFgmhjH1IrElSkkAaUGlgZavjybCjsJwT3KNy20OREnERAdGoSYA+Sdzj6bXuSXAymv4+1B/yYi0s2NuDsIp/aS/y+5INz2Ur1A7+nA6NNAspdMdLA7VmtFIuCGKa71nwHsv5cIrMa5X9R7r+X9C+YWDMeiVATQxvcSzwPveaS9iNuI5wSnzFgkJGaB4FN3fwrff+r7LW8rxsaIyORx31BSS65ReXbHohmlpKCS9p6Qsv3J7Vi/eb3j+XhvHAoUKLyC0lwJHbAKatuf2I7df70bFE1h2ZplOOP8M4A/kWXZjqzn5CkAeN8r3geWY7HqxlWgQOHJB5/E2z/5duzF3vo63X3deKbYmBBWkkqkx+K0+zZVznq96E349/U0YjpVkzP+kdFHkEFj8rOmaXWRVtpBBBVDaGkFChRYmoXGkWOT54lQZ3dPeuEWhVqSSkhwCUdvTkP884s4BRo983yFRd2xmNPH54ZAxKZZdF/bjTO6z8DLVrwMP372x66vf+myl6JD7MCvdv8KyzPLUZWrlohP3jYW4RkekiqBERkShcoAX3/k61A0Bd++7NvY0hs+MpljOMhyGwkKx4AUn0JNqUFRlbrQX5ErYF3SJI6FY9EQiMPQHScTxerCouYuLPo5Xg0ix2JERMRC5YQ7FiMWHrMBUahPPuTMgAcAliMFAF6MORyLo0cO4ft/+yGIg+uROfc6VMrWRtuZXAdqVe9B+/v/6Sd40/s+UX/MsCzOOPfC+mOKotDRZR0AV2QVYqJxAV6Ui9UjQBmWR1VWLW5AN8xCYkVSMVP2mJkdkoNTJXSnw0UnGLgJi2v70vjdBy7CxsGs72vLpSJi8QQqslVsa0c8kxQVPOPtWCQ9+ZzRmY0ei3E8dmAamRirx1yGJ50mg+hlq9cBAPoyIhiaAktTumOxfbdhst0IMxNyyP5TC50T1WMR0M/VSFiMiAhPq45FPzQNGN3mv47gffNOy2WAjSEBPRKT0qPPHMJi+B6Ldz62w31X9SJDjFGJY7FenNMwNjmDaz5yI07voXHzqxMolq3jjq687TPIVuHswW/+Jb7ykTc33kvTcOUFmy3rDNodi4Ux3yjUuNjcmCAUNAP5go8BANZm3WZ1a1bHIisAl33Be3t6FCqrR7Orxuz+ajiRpFAqIyYKYBjb2GPuqPsLACDd772sGeQqMLUf6FxVF4lS7YQbiOQcoWkab3/ZudZleqEoJdB40yYOb1t2FCi30O+0XWExnieO0rDCYs9p4fsrGvRuIP8vjbsvn9gDxPJAx3L35W6suxqY2EX6f3Jxp2OxOkecjGHSKQbPJedXebLxnCEsNuMajOcBUO1F0xp0riCCbEREhIP+RD/etP5NdcGqFeJsHDPVGTAd5Fqj2Fz1RbXoLiz6OCOVkoKa4j2J5on7n3B9ntVba8i0jNKste5RKpTwsdd9DFyew9JPLa076Qwy9rGIjX/77b/hXZ99V/2xVJNwzqXnWNax91icqk75OxYZzZIEFRSDWZJLFicnADw7Ye3FPVoivZzVqgp1mFyPzMLicHEYzcLRHCiO7JshLLq5J90whEW7Y9FNsAnrWDSiLf2EIaO/niEsGqJlxxUdYNMsPnvuZwP3/csXfBkdsQ78+1P/jrJSrvdrjCViuOC6xgQemqLrQjkjMqA4ClQXBY7m8J9X/WdToiLgL7qfKAxh1ujPOl2Zxp6ZPbhgwDmRqRkRMCzNxPl26K2RZiUiLMr6WMIRhRogYAONHp0RERERC41IWIxwEORYfOKhez2WkOKdEEtaeixqmobu/kV4++f+BV3XfhpCIo2pCeussGzev6CxdN0ZeMUb/rL+eP0ZZyGRbAwCU/nOurBpUJUVxOKNm4cV3cn6IJllOV0A8/4ToACUbU6/YY8ok7AcmiqjP9OcO8FrH1f2pNCV8i9IVsoliPGEw7GYaMOxqGpkn/ySMQWX6EwjGpUWYnjs4DTW96dbzu43enqyDI0Xb+jDqp4UeIYG5daPqUnmU1g8VRA4xtOheqxJRlGoERHNwcXqAse8URghsYZ+xAKERS6GJKVHYtKGsNh6FOodj2x3fV7RyC9GNkajUCojr45D1TR0UrPoymdw0z+8B7e+No6OOI2RCetEKqewaL3mn7VmEd73+pfhD3tIsXLTin70dTcKDHGBQzZtK1rODTufM+EQ2+YJde3LAABDSRdBRFMbIovB+mu8N8bGALkRhaoZEVwh3VfFUhVJewxqrUSEIi9S/m6J0IzvIL0gF59fF90zYhtXlTgpDNIU5XQsskYUKnDNGhYvXTQN/Ob9wLO/ApqZaNR2FGqH3gMzIApVTJMY42WXuPez9H1tBkgv8l4+uZsIeM30wlx/LaBIwNg2IizaXam1OYBLOAVHNxZtIef5xO7Gc8Uxci43c3xppi4mR0REtI8hsthFKVDAmT1n4q/O+auWt20IiwYH5w5alpe0kmuEpN09ZEYqSNDg/Vv6+P2Puz5viHRsnIVUkUBpFDRNg6ZqiCfj+Jt//xss/cRScBkOU7axSLYj6/l+ALBqwyq8/A0vrz/uG+zDoqWN32OKotBpm+Q0XZ32FRYVWmk6ena83JhYkkYahwqHUFEb36v9+AOwHP8nRt1FWT94mq8Li2kuDYZiwguLpTI4ngPHN64hXv0K645Fxl/wMYRFN8HaoCgVQVN03WUoMAJYigXXwUGZVbAi59GCwERSSOJLF3yp3kPUEJk4joOQsJ6/xvdICzSEHgGURuHHL/pxqPex0+w5cTwwjmNRJr8ldx66EwDw6jWvdqybazfFxYVOMbzrVmAExNhYPQ7XOF/s0ad+jleDLJ8Nv5MRERERx5FIWHyOQFF6I20leMZtq8Iipc/s5xJplIuFugPxzlt/BQBYcfoWUDQDTohhesI6wzmT8xcWJcU6oD/rec+3PM52OqNZK5KClEmwXN/fiIxgOa4e2Xnz+y7AP12/ySG2xXgGFVtk6UQhXOyXGxTDYbxQxWA+eOBghmda/zM1HItVm2Mx3mbcp+DTYxEARI4GaxOiBJaGpsgQF5+OmbKE85Z3zkvE5Teu34Q3XbCUOBabiUbzIJ/Q41bbOO6nGuIJdCz+5UXLcPm6HnDR9xEREZ75di369Vc08OljQsllgBPrk0kMI5VmnwltFhan54iTzoM7HtnmGhUmq7qwKNIolauoVKt45f+W8fU7ybjjgk0rwTMUaJrC6MSMZRtduXACwg2/KIP6wiyuutjqEOjrSDonzJTH645FrkmXvhm62T63fhfYWsHZa9C8vr3wysUAuQJOF0FVo4BWs7owvCiUykjGbcU5s2PSDMOR86BZB50Xo88SkWpwSz1CM230QJSrwEP/3tz2jJnqmgps/61VcNfP3wRPtv/0tAAMXQA8/j/AzR8GRp4O9x7tfvZ4jnw3QY7Fvo3AW/8ErLy8tfcxXIt2lBrpn9m1ujlRrmM5iSnVFN2xaBvTVedIrGmYQmfPerKeOd63MEp+G7lgZ4CFZsTRiIiIUBhineEGZPQY9lYnnQJEDDKLTDumrMkGKlQSjai/haaSffATT2qzZP/Ke8uYfXTWsXzrQ1s9+ywCABPTJ+RIGg5/7zB2/XEXAGDDWRtIr0AKKM4WLT0Ts/msz6d0ctYlZ1mOWyKTAMtZfz9nqjOO5wxomkYNtVB93swYjkQAGKKGoGoq9tX21Z87XPDpowzg2clnfZe7wTFcvZkTBQppPh3a5VopViwxqADpV2iOFTUwxOYgwcdwoPmtV5JKiLNxy3cksAJosblx3ZLMkvq//fr8mYVFAIAC9CWdtbIwLERh0RBVi1IRiqrg4ZGHcV7feehOOCcNHRNhMd5cnG+KT9XjcI3zRbDd34SJQs1Ek5wiIiIWKFGl9jmC1rEUQx//DXYfGrU+71J0mAuIQj28fw/GR53RFZRxYyASx+Jvf/YjAMDgUmsMEscLmJmagGLqhZexORaDetOddaFVWMx0OHvDlCWV9NzT6Uk3BssMx6MqKxA4Bqt6UnjZGQOg7dGdPGvpA5gSWUyVavXotlKtuZhLJtsHVQNW9zaXj+7nqgyiUhcW56/HIgAInH/PPZFjHEIURVFQpQoS6y9FjGNw6eo2Z+Tr0DSFtMiR4+SSrd8sK3tSuPGGM7B5KNv+zp0iiBwD+gQ1OrxsXS/edckKiNyxcfVERJySzHchfPTZ4GK+z3uSKFQRMT32s1QlM3b9eyzO+TovR6eL2L7X2aPPcCwmdfHotf/+LH63S8aWQWsxiaYoVKo1Epeq43AsBvDCS6xRmL15lxnrpam6KzEdb91JqtYTXechYttL1DPgbdGtXNwWhap/TqmMMBRKFadjseARgXbadcBLvuHet68VRp4mYlW8kzj0AGQECht7aOB3nwT23N5Ylwox3rKf57/9MLDvbvJvQ1jU3RQFiQGu+3fgVT8mcbJ/+iJw19eAkv84GwznK9SH2kdNcYrHbgyc0Xx/RYP+M9yfr8yQ83TRWcTx1wxrXkL+z3tEofLJcO5KhgO61gIzhwEjDrEwQs6DZoXF+RK5IyIiHExVye+h4RBrhwSfwJzUEJl2z+x2rJMW0oinSRG/ovf/9XMsVqbJOnTM/fpQKVWw4yn3aHagIe7s/Ye9mHlgBplB6zjDcDZOT07Xn0tmkmAC2rWYOecS6ySndN4plM3WnKJofR9ZGjWlFhj7aYYCVXfPAUCKTmFxajEOyY1x2dGiT9w5gP1z+31jZt3gaA4Uq09S0zRkhWxdtAmiXC4jlnAKi26ORaNfX5CwZjjQ/M7fklxyLBcYAXQbNR4/YdE4nymegjwrA26J+CHx+9s4URh9E0tSCU+OP4np6jRuWHuD67pd8Taj5V0w+iaGJc2n607tehSqbWJlKMeiz3ceFmPywGvXvrbtbUVEREQYRMLic4RijBQNth2ZBtBwJU4OO4tydsei3S0IePRZ1B2LMxNEvJRlMtBavuY0y2qcIEJVVYuAmclas8qrsgLV5CKwx1MaPfbqr++yFkVoaKjUlEYhzrYNluNQU4hj0UsgiwuMxenXlRQwXZYg631/fr51HP9423YMa1nX19th8iSiZMNAc4VLtx6LYSmXShBjcRdhsT2RRuQY3xmlIufssQgAWq0EimawpjeFviYjYYPgWNoZm9UiL9nYjyWd3pEmzzVOpGMRaG/2ckTEc5L4PPcUGXkaSAXMdvaZSUvpwqKoR0cW9Zn5FcV2fTP9rU/OFKyORVtxh6Fp3PHgk473UvUi3eFJUgycKEi4+80JvGCltahjGABHJ6brzyXiDfHT7T0Nzuqn8b2rRZy3aa3l+d68y8Sh8jSJd2yTh47qx2bGOW5rmsJo8DpmuBggV8FzRhSqfizlsMJiGYmY7Zo/d9RdPBPTwBmvmR9hUa6RSM6uNeRvQiDfz/WncXjgrQkiOF3xt0CHHg8WRlg077OYAbrXAffdSI6pfr4mzKcNRQFrXgy8637g4o8Do08Dv/kAsP9u//dp52/YcCzXir6rtc3Amd7LGJ7EkTbLadeS//MJp4BYLbg/78WizcDcERILC5Ao1EQLwmIiEhYjIo4V07rrO4xjJ4gUl6r3XQOAfTP7HOvkhFzduVeZI+MEP/GoNEW25+UuE+MinrjPO9KzPEOuk9XhKpZ+YilyZ9kmp+iX9qmxRl2EoihkQiYoAMAZ51sneaRzTmHRLy6UYRlUlWpTjsU0n8ZkZdLy3Pn952MS5DmmymCsNOb20jqyKuOp8adCvydAhEXDsSjLMvJivh4zGUS5WIYYEyGZxmQVueLau66mknFqkLBmCEUJtjlhMUxPPT9CORZ5GrWRGqhC6/fRC1FYNPomFqUi7jp0F/oT/bhw4ELXdZuJLQ1LT6y5yVhZIesQFh2OxRDCYl5o/96OoihsfcNWvGzFy9reVkRERIRBJCweB777j1/E5evnqVdMixiz5QvTZGaZ0cy8WnYWHezComqLGlu8bCWefNgpLFIKmQ61+9G7AAAXXPZi133hBDJoNfdZ5HgeiVRjEKxqwGy5Meizi1R2oSFtcywKtIqSpEA1KYtxu7Aoq4j5CGRxnrEIcl0pAdOlxj69aF0HClUZeyny3VZVf7GOyS9CJsaiO9WcoMY3MWORscVFkijUOGrz7FiMeUSpNJYzrtGVTIoM7rYsySEXn99oDeJYjFxtxwKRY6Jo2IiIk4mYqRCu93bbs3cPAKBSbUHkGnkKSAbcSLsIixxFxhrEsSjUhRtDWFQob4FgcsYWhWqbSX/W6gHc+aB3QeoXj5Pi1r+/dik29TqvDbS+L0afRWO00GWe6c+5X69//eoE3nIGD84W89Xn5lgsTwFqC9PFn74JmDlY37MnxvSxyuTe4N55QRRGiQsxLJwIaApiHDlmGiMCFNOEY7GMZMJ2LGePAIn5n0luYXIXoMrA0PlEjNKFxVeuY3G0oAGv+Hdgy5vJZwkDRVtjYsUs8KbfAZd9gRyjJPk8cbchEicCl34KeOd9wIrLgDFvhwuA9o6NEf0lhYuqbZne072XZQZbE4f7NgHLLiUxrfbxuVQE+FS4KFQAGDyXiImFUeKgLE2Q37EmXDkAgGPgeIiIeK5yZP8RAMDMFBG6pqvTAJz39kzY32UTKT5l6Yfo1uPPLMhUikRY9BPUiuOkVuIlLG44awOeeMBbWBx5hCQErPzUSsRXxCElbWMwQ1hsss8iAFB6fcTuwkvlnJOc/Fx9hrDYjNjVFe/CVMW6z1cuubL+b77IY6IyUa85uZERMnh6PGREuI7ACIB+akiShHwsj5Ic7lpXLhLHotnVKqmSq7BY1idOBR2Teo9Fl96dBm59HJuNnbVjiGtu1B2LXPsTcxeisGh8X0eLR7FreheuWXmNZz2vMzb/wmJvorm6blbI1s8nWZVBgXI4Fv16dBrkY/M8afQUYnFqMQBgdX71Cd6TiIjnJlGl+Djw8D13nOhdqFOYmQxcJ6jH4ulnnYcnbX0WVVWFNE0Gzudc9y79OfeBJMeTgdT0BBE56Rgp4mXz1gv/RDF8NIa9xyJPa1BUDRWT2zJuilJkOB6SoiHm49yL86ylx2J3SsBUqbFPF67owO8/dDHWcaRvU1nz/3OiKBo9aRFJsTlRrz3HYhFCPGERFimQHojt4HfcACIsujkWjV6fz1/T5YiebReemZ8o1AgncSE6rhERJxXmgv4cKeKNjZFr1VyxBbFhbEdwHKCL+2yJSApZlFSyxJoWKx5RqCZIFKq38HjxxiW44yGrY1HTNOyfIrOBv/QScuOfEdyvd8Y1aHTCOou/O0Rvo7qDu2rt69PrUsxDeQKQmxBzjeNkxFjqs5vrWuL4DqBaAM+RYxMTQrq3zBRGwjniuvQbdF2ISepvpagqEemaikK191gcDXbBAkB2kPxfaC5GHgCJ8GVFYFCPiePiAMUgI1Ao1DSgcyXANjHJiRUB1na8GQa44APAB54Cnv9ZgGIQ9yvm5YZINOpr/hc4/33e7rl2hEXDsXishcVUD/ldcBMAOpa3FudKUcBrfg6c/TbnsloREFPhHYsDm8n/x3eSeFZVJudTsykIyfmJ7o+IiADGh8lYZGSE1A2MKFQ7HbHmncL2XnluPf7Mgky5QK5hfuJJYZyMYxjR/d534zkb8eSDTzp6PlfGyTV8ybVLAAB83uNaYwiL480Li/BIRk93OB2Lfn0IDWExjGvKoDvejdnqbH3yuiAI2Nyzub5cKAhQNAVHikc8t7GlZwt2Tu8MfK/z+s8DQCaE8QxvERY7xI66GyyIcokIi7NVayysm/uvKpMJYWF7LDYrLLbrWMwJ3u0H6ufzPMzhXojCosAK4GgODww/AJZmcf3q613XYyjGVTRul/5kf1PrZ8VsXfyWVRkM5TQ2hDkf/MTk5zprO9bizuvvxHWrrjvRuxIR8ZwkEhafYxSnwwiL/r1fNp51Pg7u3YWJMXJDUK2U8XcffQcO/ulHUKtF8KksAKBcdJ8ZxwlkgGI4FmmeXEgzOesNxEQhvLBoj0LlKTLSnqmSQT6jVCxCFsOTQWLCRzBJidYei90pEXOVRnN2UYxB5Bh0iuGdA/2ZmCPWNYh2hMVKuQQxkYZ5DzmGBku396cfFKUa4/2jM3sz7cfd2BFYJlyMWUTTNHvORkREnGDMotHErva3J5eDi+sujkXjvpnWJCLg6E8UdMeiSrtXPTRNs/RY7E06ryeXnLESw2NTUHVHZk2S8dZP/xOu/a9xjBRUZPVaiCTLjtca+8YwdN2xaNBsn0UzfR0u4letCKriHUEGoO4qBeCcIGOfpFWZBka2YstpKwEAi7qcBcRACiPhXFg3/AT4i/8iUaIAkvrXVZMk8n2H6eEHoGj0WJRM65cniastiHPfRXouGuJgM4w+A+SWNkQ6igL4BAS2xYlNXMzZ988g0UmESi6GGBswLqQoYOXlwOVfANIeBaogh7AfRh9IKdz30xZ9m9zF0d7TSZ/EVmBY5++JqpLzrRmxMr+MCNIzh4hzEQByy5rfn0hYjIgIzd7pvXjg6AOh1w8rCoXBLixOVabqTiGDvJiv9zXU9GQjeyyhmdnRhgjl1mdx03mbUC6WIelpEIqi4MbP34inv/40amM1UKL+Xi6tZQxSmRSmx6ctz4URFtVpd2XRiEKNU43f4JLPRBOGZSApUlNiV2+8F7O1WWR7yH4ODA2Aoigs48lvLF8kA4aDs07XqMGFAxdiqjoFvtNfAfvwlg9j6xu2gqEZi7BYq9XQFe+yuFT9qBQriMVjjn6TbiKdcd4ERfQaDjQ/B2JFrjjOzWZEXDdYn/YvRhQq1epYx8RCFBYBQGRFFKUiLlp0kavgdkb3Gbh08NJ5b6ciMALSQnPj7ryYR1lqOBZZl4nwbn0+3bYT4U10fCIiThxRFX6BwnUuPiaxjoWZicB1ZoMci1vOBwBsfeR+KIqMj7zxWtx/x+/Rc/rFoIUEaD06rFxyH8AyLAdBjGF6crz+nKZpyOZtwmLRGR2W3HgV+t74z45ZgdlOaySBQJPlZVlfzzbeNMRMs4vRTndKsDgWu1KtD6wYkcxiW9IZh+jznm7wTGNApGoeUxM9qJSK4OPWwQ/HUJ59JcOSCBAW4zzrO5A7Fu36eJaC1kJsTkQwCSE6rhERJxUxm7DYbnQmACQDon/EgBttU/ygUcxT9SLWH/fIdYHQYHq2CFW/+b5yBQeoVtff887aBIahIcsKJssarvz4f+JHv/oTPvOCNHqSNASaXL8l2T09gQIREe2OxS5zX6MmCyr2KNRpjfTUoUu2nob6Zy3KFBmf+PQ+MrsiizWNRHEeeQyMeYKQqmBN+SGyjhYiXqswGk4sYVhg3UuBDOkRbfQOrFZ1YTGkcFV3LJZNk9s0lQhxQVAUsOVNQPfa4HXNqDI597vXNoQ2oDXnowEXC3bLcTGIzHH4e/PDEOVCOkrb4mU3Apd83BoRCwBL3PsdtYxRFA9yTpuhaaB3AzB7GJg9Sp7rWN78e8fnP0otIuJU5Ttbv4PP3POZE/Le9oK/Bg07p6yOOMPtVF9H0yyiULVirT8oFaUuRCbXOl1pq09fDTEmolauQSkr+Ku3/BVu+uFNGHzJIPiuhgimqR7XBQrIdmYxOW6d/J0JM8nJY5NpPdJdoBtjGL+4UIZlUFNrTfW57Ev2Ya425xD11ifWAwAUTkGSS+Jw0ekaNXjB4heApmjEloYXNHmGh6bXeWq1Grrj4Sd+lEtliAnR4d7MiU5hsaKQ8U3QMZEUCQIj+NY9KopTWBSbjeT2oCSXoGjWcS5Hc6ApGhrX/ljET3Q/kRjfy2vWvsZ1+QuGXoCvX/r1eX/fDN/85MMOsQOyJqMslyFr7sJiGKFZZEVHhGpERETEQiASFhco/W/5V6jnvmnet6sqikOUKxasg6tSYQ6y5B3ble/qxuDSFRg+dADjI0cxOnwEX/vP/0Oqd4iswJEBSMnDsQgA2XyHpceirGpOx6JLFGrHVe8B37MMh6b16BJRj+eyvZanSdGu6hHrT+lxrH6CSVrkULZFobaMPthc19/8YMTsWPT7Xtwol4rg4tYiGsfSbceQJgJ6NKZE/8Kb4nVz1QY8y0CLHIvHBD9nb0RExALE7Fic3EsiBNuBT9T7x7kvTwZHUduKKNVa43o2U9VweMQ68UnTNCKk1V9gHaukEiI2r1+BnRMKzv1eEVv3juCPP/g7XLOO3JxzIE5Fh2NRd1cVtRh6OnL+jkXV3e1oJ6X3N1rUZb3Gz2ikCEmXxq0vKJPPOlrVxxXlae+NmyK7ZBUk3nFse2PfNBW475tgQMYrhpjpS2UGyAwEr2fAk20m9K9YkmXiHAvpWCyUyrqwaEvE6F4Xfh+aZfYwEaMXn2uNO/WJKwuEi3s7Fg1YEU0m3ruTasMlRzPkc4b8ftoi3Q+svKIhuGaHyPeaWzy/72MIi832bRzYAsweIucDF2+t72OY2OCIiAgAxJEzUZ6o1xsMQWW4OOxY116TaJckl6yLgAZ2YdHO7PSsxZV1eJ9TCON8+kGzHIvTtpyGylgFe/52D5566Cl86T++hO7zyG+4SqugGRqaPtnZvn8AkOvMtRaFaiOeIuOfzn7n71xRKnoeb5qlIakS4lwcW9+wFVvfsDXwvQaSA1ChOgTLoRipB8mijMHUoOv3bpAVs1iVXRX4XmYEWqgLi7IkNy0sxuIxFGrWGpWbsGhEoSY4/zGVpEp1h6AXFbniEL39BMtm+4s+MvIIfrPnN6iYrvk83RC126HdXpDHihSfwpL0EpzVe9ZxfV+3cyUII9Z5pjpTj0K1k+bCuSCDzseIiIiIE0FUhT8G7Hp2K3530088l1fKJXzm3a8PHExTyeZ7C4TBHnV6eP8exzqFucbseUXTHCLh6WcR1yLDsrjxJ7dg1fqN9VlzlF5cqJS8C5m5ji6LY1FRNWRsjsXxOadj0cDoGRhPEtGM1t2dxhHlKfKvqkfsCKWLn0FRqGZhMSWyiDXpNrSzprf5mfI803jPZm/AyqUiWNE6cOUYGkybsRCJgKpZKsDhdiyERYGlI2HxGJGOhMWIiJMLc0+RmUMkPtOGql9PQl1Xkr2kKO/5fiHEGs5anDg8Mk5EMQD5GIWd+53FvNmKdXaQbHMfXnL26aAooCdJ4YFv/iUu3HJafRkDCRRFOYVF/TpRAY9uN8eiWVjUPGYn2cilyecXbZNuqhoP8EnQ9h5Sc6TQNinrs/TLVqeCdSO2sdSis4DiKPleAWD7zcDB+3GQbSbiUSMRoWHRxTiRId+Xpmmkj58czhFXKFWQiAlWYZHhgdyS8PvQLDOHiON08bnW590ci2foM96DkkK4OHFxBqwjzIdjsZ0ei4DuWpz/sVYgZ72Z9EgME3PbDHXHYpPC4OJzyaSE8e3EudqKS6QVMTIi4jlMTa3Veyf2MCTW+f6j9zvWGys1JhmrSnOpPG4wNGNxggmMgD0zjToHC/L7bS7sjx4etUSAHtp7yLldm0JjHzdtPG8jKIoCE2dw40034uyLzwY33RAj44k49Lk/7sJiR84ZhRqi37OdWIp8DjHu/J1TNMUzdpZhGdSUWlNRqENpIiDaRTrz51uaWYqx8hj8OL+f1JRoLtw9PM/w9b6UKlT0J8L3uysXdWFRsu5zXnBOHjGcmEFCjqzKvnGhkipB1mRHH0c3YdFwsrUS3/n7fb/H5+79HKYq5O+OozloQbHsIViojsVPnP0JfPnCLx/X9xRYAT2J5mPqO8SGsKioisUxbRA2GjfJtTE5LiIiIuIYEVXhjwHvvO5yfPXTH/Bc/rPvfxP333Ebnn70weO3UyZGj1qLd4f2OYXFOVMcqqxo2Lvj2frjP/7mF1i3aQtAM2CEBLp6rQM6I7qsVPJxLHZ0YXrc5FhUNGRtrsNJF8diELJ+w5BkyOi95uVY1AdJKcF7BmJS5CzpcRRFYVGuzUbb8ebjCzimNRFQVVVUyiUwgnVAzDP0PEShBgiLsYAZ/ccAjqGhRj9px4R0LIrdiIg4qTDHZCpVYORpxyo7d5JZ/NsPjjuWOUj2uPdRawbG+voDR8bAyKTItTJPY4eLS2CmZHXpbzcV/H72h4dx9oaVWJaj8ec3xrG831oYopUqknEBNcnbddjTma07FmmKAjTNKizKzY9DzGgAkF0M2i7szpFYxiL0QoLdyWfGVrRD7+lEHJnaSx4Xx4Etb8Hhroua27nOJlwCurAo0KbCbywbOmrT1bGY6CKC9Nlvb13w8UNTgfwSIGFzM7j1xnne+4EPPAUMnutcZoaLBztz+Xg9jr8t7PvdLC49T48bmYHgyNhmqbXqWNxM/j++k8SotvI7Vhczj0GOf0TEKcrhOXJNv/NndwIAHht5zLJcURUcmDtQf7z3yb3z8r5mwSYv5rF/dn/9sQBy/2/uTzdyZMQinhza4yIsKlZhcXy4MW66+3d3Y8W6FWAzLJZ+cimWrFpC3qtCtilDRiwRg6J4T1TKdTkdi5mO4N/wsL0FDQzRyQxFUWA5FjW11pRosThFXOn2GE4zq3KrMF2ZBsV5/3a+YOgFAIDEmnBOLLOIV6wV0ZsIHxteKVUQS1iFRZZikeCd7/3F530RbzntLch69PVlKXIOyZq/sGj0aswI1u/T7T1bJc7G8Yurf4Hz+s+DpEpIcklLL8p2aEZsPp6c03cO1neuP67v+eULv4zPnfu5pl9nuGrnanOuPRYpUKGdiGF6MUZEREQcb6Iq/AlA0uMsjf+PjxzF5et7cfcfbj4u7z969Ijl8eH9ux3rzNn6LO7e9lT931/++LtRKZeQ3vIyZF/xhbp70EBWATEWh5QdwtDHf4PDBeegN9vRaXEsyqrqcCxOlpov6FUo3YnIKBBZGlWXyY9iLIZ0FxFD/aJQUy6uvMX59hptJ1twfpmjUJuhWiYDWVqw7jPPti8sxgMcidkTICzyhmNxnpt0RwBJMeqxGBFxUnPoEcdTRk9DVXeQF0skQmnXYZdezPEOoN1Zy7bXHxy2zmLfsdcpLE7bxgGPb9sDRdXwkdsquP6vvoMDR8k4gqIohzBFK1Wk4jFIknfRqzuftToWVcXaY3E+oiRzQ6DtPRR1x+KZa/S4SD9hsToLqDJWLtEncbE8sPTixvKVVwIXfaQeVxoKmgWyTURV6tsWGNOxjOUBJXicpmka6bGYEIGS6dxK9QJ8HHjRPwDvebg5oTMsnWudMZaiR1EmO0j2xw8+ESIKNQaead95Q6JqKX+nsB+x5uO6FjSt9FgEyHmW6CZCc7yzteNpiJnR+DIiIjSHC+SaLtfI5J4nx5+0LJdUCYcKDRHP7licGva5LvpgFkLyYh6H5hrvYQiLZsaOjFkdi/ucwiKlWP/2dz29C5qmYfT/RvGZt30Gu57eRdZz+Y2QISOeiEOTvEXAbEcWU7ZY9laiUD3R33q6Nu1Y1NnbiUVrFkFSpNCuKYDEmAaJTmvya6BBA+VTd9jQuSH0ewJwiHgiK4YWvwzHotm56fWZF6UW4QObP+C5LcN1JimSb79EI540J1ivye0Idm6vXZFbgW9c+g38/rrf4xNnfwI8w0Odh7GIEWUc5Dx9LjCYGkR3C5O+DGFxtjYLWZMdjkWe4UO7VCNhMSIiYiESCYsLgOFDZLbe048FOxh3PvNk4DpBjB61DpgP73fOELTHpW7f2phl+OEvfg1Xv+qNoMUUuK4hjBeskaWSrCKWSELNkhikw0XnoCbX0eXbY7EiKahIjdfNlMP1FqyAOKsokD5/bo5FhmGh6hEoMR/nXcpFBFza2frsMoGlkWyh8U6rwmKlTIowNG8dfPIM1XYUapz3F5rSJ8ixCABUkJsgomlaEcQjIiIWCEIaGH4icLXpOTKDe2zGJSor2V2PEAWAu7fud64ThE34OnDUWqTYud866QkAJgtW4eqhrTtw7c/K+Pr9Nfzzh1+FD7zhGs+3o6AhFeedUagmiGNxuvGEWrM6FueD/HJQduFwlnzWZEwvkJV8CqiVGUCp4dUvvgSZhF68Wv/yxvJFZxHxpBli2eaESFYAKAai2bEYsu9ctSZBVVXiWCyZIl9T/Y1+h4nOYyPaLD7bKYgLbXy/fCLYiccnwFPzICym+4HX/wpYcVlrr49l29+HhYQqk++yFcdh/yby/2RPaxMkWAHgEogcixER4TlSsF7T983ss/SAk1UZR4tHPV9fKQRP7Hnozw85njMLRV3xLst7uAmLI4dHSD86HbtjkWZowFaG2L51Ow792yGM/t8o3vKxt+A173mN5z7KkBFLxqBK3teFXGcOM7ZY9laiUL1ga+Q+bsY+yQkAL/JgRAYatKb7t+VF/3HA+o5gR1mzsZ9u/QztMaNelEtliAmx7iIE2u9ZJ6uyr0hYUXRh0dabL8Hq79tCmcdvn7viXUjyxLGozUN6QoYnY6bJyiRKRnJARFOIrAiBETwdi0E9Os0MJAcc/TojIiIiTjSRsHiS8ZE3XosnHrq3rW2MOaJQnY7FWZNjsVIq4o5bf1l/fNW1r67/m6JoHJ62RmFJqgYxHocie4uB2XwnpicbM9dLNQVZk2NxuhROSHRgGpymYyxqHmN4w2Xp5ko0cFu2tKv1wSfP0nXxq6nXmV4Ti4V//7Le49LoJ2neD7rNv/wgocnvuB4r6gJsUP+jiKZxE9kjIiJOElI9wMRuWPqtaRqWVJ8BAMhhhoIpa+T5FR//IW5xKej5YhcWj9gci7YoVJ5jMWHqtVytyfj+L27D7Xtl/PqGGN77F88PLEh1pQR/YbEjh+lZU9SoIs+/sNi5ErRsK8bojsU6ZReXqEFl2hnJuvqF7e1TvLM5YZGiAC6Gviwpni3q6wY84sHsFEpkjJiMi9ZektlF8x+XaYbhgcXPcz7fTkSokAoWQPk4uPkQFgFg2UVARzO9M03Ewgm/JxVcvLVzZtHZ5P/ZwdYF7HgucixGRDTBSGnE8ljWZDwy0khPkFQJw4Vh+8ua4lNv+hTu/O2dlufMoktvvBcluYRajFxDHcIiBYweGQWj99dVa6rDsZjOpqFVG+MnRVFw03/chNlHZjH47kG89j2vBUVRoL0mAlOAmBGhyt7XhUxnpp4iARCn/3w6FmmFBkuxrsIiQL4LAEjyzfVv64n795vLilmHU69dzO7A5SuXA3C6Ad2QJRlSTUIsHkPJNCZrt2edChUiE+xYtIuwxrGmheaLMmHEUIERoNLtj0Vipsk8vz/w+7a391wlxaVQlIpQNAWcbRzjd/7Y+eQ5n8R3LvvOfO9eRERERFtEwuICRlOdg4HVG87Ap/7y1S5rhyOZ7cDosLV4d/jAXksTcjEWw9x0Y/Y8L4hQfBqqD89aZxTWZAWxuP8gLdfRhWqlIUjOlmsWx+J0ub2+RgCQ9nAsAoCkqKBAXIReuIlnSzvmLw8/LGbHIseHn9FkCItgBUsthGeYtqJQGZoKFEgzJ6AnnyHAUseyUPkchKUpCFwUhRoRcbKh6BGnSPYAMwdBaeQ6TkEDbvkYYiq5RsyqIaKvEtaCyOWbl+Pqd/21YzVJ8ZkdbXLPJ2I8DhwdtSzec2gYsty4aHdk0xibaRR/eI6Bpmm4580JvGhl43fe72rWm+Yg+xTzuu09jFRp/oXF3BLbe6hAyRYp5ReFWp5yRrK260ZLdDfv/OLj6EyS457NpEPvQ6FI9j0RE62fMzPU3Ps3S8cKIOUSWdWWsBhiljifAEd5x+8eN05JYTFBBONmWXIB+X/XmtbfO96ByLEYEREes7CoyipYisXDIw97rtMKF7/4Yvz1u61jEbPo0pfoAwCUMmQsYQiLo1Uy/kivS2P0iGksogFTY1MozjWSG9K5NNRKYxzBMAxomsbSTy5F5qzG9YT2mbUr5ARfx6KYswoLJamEVHYeIw81EqE4V5tzXWwIi3UXnYlHRx/FTG0GP9v+M+yetk5GNyIe/RhKz++13uwu7esn36/dDehGRY/7j8VjFsfifERL+jkWqwqZIGcXFo3zlBbDl2ONel0YMVRgBKjzMMnJ+GwiI+LeI/eiKlcDXhHhRlpIoyAVIKvOKFS/Hp12RFZEUmhPDI+IiIiYbyJhcQFSnJsFACiKc5b933zrv3D2hS9oeptGw/BEJodRm2OxMDuDmanGbPlUJofZmSkUtv4Bc4/fiqMH9/q6DyfsUaiKBjHAWZfNd1oez1Zki2NxpiShzTaAyMT8hUUuwEHoFlu6uKO9Hout0GoUal1YZHiL65FnKdBtzLrmGMpXmGQoCiJ3/H9aeJbsExU5FucVgaXBtmtxjYiIOO7UJb5kLyBX0CuQokr6ye8BD30P46q/SFKrma77tqLJLz7/Krz6xZfUH6suE6Gs+0IBNAdjDlNc4BxRqLKsYN/hRpExn01hdKaMnz8j4ev3VTE8WUChVMGGnvATHbqTDCRdYFVdNM+eDlsxSqoglTB91vkooOSWWh+XxgHVNjgpT3u/XlOBok9vG7qFiR/JHsd3GgiXsPZU9HMsmmJz647FmEjclwaZfhwzll9KIkTdxLV2hMUwYiqXAIsFICw224vwZICPB/e4dGPoPOCNvyX/b5VYR+RYjIhogjHzBBoF6E304smxRksXWZUxXh4Ho/lfw/zGF5/6xqdw9euurj+uVWoW0aU/Sa4zGkMGALRe+pL1GgsrsBg57BQ3D+1tuBZTmRSUsoK5J+Yw+qtRlAolzEzOIL4sfE2AT/FQvIoSALis9XdttjbrK1S2QkbIBAqLbo7FyQpJGnho+CF849FvWJb1J4Kv48syLbruPRBc4qw7Y50ua1op62ORWCKGsjS/wqJfj0VFU8DRnGOdFEfe16//pB0jVjVM9Ou8ORb1seJfrP4LlOUybj94e9vbfC6SETJ1x6I9CtXv/ImIiIg4GYiqxQuQpx/3jhfjeQGf/sd/Q9c1n0LXdZ/D1Hi4RsqH9u8h/9A0h7AIWPssJlMZPHDnHzBx8zdQG92D/TtJXNrQx3+DoY//Bqpmrc5NFmuQTI7GmqxCjPsLi7lO6wCwWFXAC42L6nRJarpPn32/MnEOsod5QlI08AztL5DRtKOXYF+m9UbbrdJKfCrQEBZVmrWIkwLLgG1DteUCjpvAtRb52i48Q76ryLE4vwgcA4aJimkRESctSTKjfHGcFCT4qZ3AxhvwjLbc92UPP7Wz8cDmbmMZBj/40gfrj3cdtLoP7WiMANAMhsdIgaomKzhwZAy2yzZ27m+MT3LpBP7w4LN45f+W8chRFY/tdPZgBIBf79I34lL0706yeOgwGZ+MKE4htdseNVaZssWrttafRtDIsa6BAzKLrAvnbD2lVAWouhf76hRcju9GPb2iyegyACQSstmiJW8TFsM6FnWXQEZQrYJqs8JmM7z468BFHwE4l2KNQIp5QjN6bKoPWHE50LcxeF0+CQbe8bvHjVOtxyJAzvVWx3hLLiB9K1tl46vINqI+3hERoZioWCO+F6cWY9vktvpjRVMwXh6HoPq7dfbv9O7pTNM03vfX76s/3r1tt0UoElnR8rgGcg2bHSOTuGVJxsTIBGTJ+pttFxaP/vko9n9jP8p7y9j19C5L0lN9X1Le11Q2zUL1SX9iEtYL0mxt1nPdZqBNpb68mEdBKriuJylEWEzz3hPO7n7V3fjqxV+1PDeQGgjch5W5lQAASpife0k3d2AoYbFIxEQmxkDWGt+332duZ5/MxFmnCG3uBRqWRclFeN261+GLz/ti4Lrz5Vg09n1JegnO6z8Pdx2+C6o2T3HvzyGyQhZluQxFVSyuWyD4/ImIiIhY6ETC4gJk6yMP+C5nWBbx1ecjvvwsPP7Yo6G2OTVOilLxdA4To8NQ9Zl6gu4sNPosqlIVk2Mj2PXsVuQufQvyl78T+3c8g67exsBxsmiNKZ0o1lCVrMKiEDMNllwG33bHYqlmHdBPlWrINikszlWs28jGG68XY9YLdk1RA513gLNXYDsRoq3ChxDpGF1Uk2qNuLRKmcS+KDRrcyz6C4Nh9sfv9SLHgD0BwiLHGI7FSFicT4hjMRIWIyJOWviExV02s/QlwNKLAyMF73rk6cYDl3XNs+kf2UYKf/U5LE/8xNIXUGVEgGIwOUMEtITIoVAqY7bYiDoVeK7eZ7FY07Dv8Cge27YXX7hEwI9eLuKJPcNIJ52FmPfcpoH6wiyQd86Kz8foujSoaS7Coz32tDTtWKcVMioRUKe1FHEU6s651Ys6gcIIcfTFdLdkdRaBAqa5N6FBK05Fg46Vzb+GT1gdnD6OxappTFcs605Z1hZx30yPx2ahaW9noi4spv2KnJvfSP6f088pVgBu+B9g2SXB780nwGgLQVic375WCwIh2VoU6nyw8Xrgsi8AYvtF6IiI5wKG081geW45ZmuzkEQ9DUEDpqvTgcLi1ge3+i43TwbasXWHw4Fmj6AEgOmxaQAAy7PQNA3jw+P1ZdmObF1Y1GQNh/YdwpE7jqDzyk4sfu9i7Nm+ByznnGBAcT6TleMMND0qXnO53susDEEUoJTI5BsvZ6HBbftv811uYDijKIpCTsyhKBVd1wvTY1FgBVy55EosSS+pPzeQDBYW13WsAwDQ3fNTG3CLjXQVFilYBGNDWFQEq3P0eAiLbj0RW+ntSFEUPnbWx9AV7wpcV2RFqJg/xyIAvHPjOzFbm63Hu0aEJyfkUJJKrj0WI2ExIiLiZCcSFhcgWx++P/S6O595wvV5eXAzhj7+G9T03kKGsJjM5qFpGqYnySxCmmHQ1duPwweIY3H2gZ9jbm4GK9ZuQPrsl4OiKBzY+QyWr1lf37ZdJxwv1CzCYFVRIZp6LO59+jHH/qWzeUtRsmSLB5kqScjFmyse2AXPnKnPH2UrwGlaOIEtLZ54kcqvD6RBMkmO90HdXQoAFd2xKIO2OBZFlrY5MpqDZ2kwPq8XuRMjRNU/YxSFOq+IHN1WdG5ERMQCINvocSPxmVDF8T8//BQAvadLwG/AI9sOWJ949lfAt5+HGE3GBirNAzSDiWldWBTI9dlwMALAiqF+7NxHXImfv7OGo6OTWLG4H5+9WABFUXhi9zA2rfGJ1NKjhEpK43qfTzSufY/ucjoeeZ5DNm0q7lRmfD9nWNIK6SWoGsPsHDn+yRgPzB4lQqMRF+rXXxEgQpg5QnQ+6GghmoxP2qJQncKdMbbYuqfhyqxHoaJsXdnNTXg80M99X2GxcyXwqaPA6qsazzEcERiD4OOgNe/2AceNU9KxmGrdsTgv73/82yFERJyslOUyCtWGQ25VdhUAoJIhk01KGimy85r//f4TD7rXOtzYsXWHQyjqFJ2iU11Y1AXCkSONONSBJQN1YXH81nEc3nsYnVs60fuqXlA0hd3P7MbQyub6BjIJBoaRfWrYec0vykVkO7NQCuGExZv33IxnJ55tah86xA6U5JLrMkNYNOI5w2IWGb2oC4td81N2FBnn2KE30et4jqZpjOxtfK/lMhmDyLx14k86TO/kANwciWbc4lbn4339EBgByjzEsps/26buTTiz+0wAgGKP9I/wJSfmiGNRj8Y143ZOR0RERJxMRMLiAqNaKWPHU4+HXn/vtqdcn1cWnwUA2DFCBqaSpM9Ey5JZe+YI1YGhZTi4h0SepTZfjfMuubLugAOA/TufwfLVDWHR8V6qhuHZhlPO7ljc/cT9OHrQGmNC0zQyuUb/l1JNtsSKzJQl5JPtCYtmx6IbQc47wOlYPBE0Eyu6f/tTqFXJd1EuFcGypM+kJQqVa8PlgOAo1BgXPmp1PgVI4zhFjsX5RWwzOjciImIB0OEfe2pHURTc8+gzPmtYfxMMx2KdTa8GShOIM6TwoLFEWJyeIxNeEvqknaNjjQLbqiUD2KYX8z56Po9Xvegi0Kbfnsd3D2Ojn7Coc9dEw52QNYlHOw9N4Kkd+xzr93RkMVrUZ3UHFPPCIsA2m9vcZ3HuCJAwFToNYXH1C4Gz3kpcWWYS3UB5hvRanC9a6b/HJ6z7IKRhPw8Mntk3jBn9uzaiUOOau1PiuKM7FmM+7hIAREQKIyTa4eKgVdnjyBxHTkXHophpz6kbERFxXDlUaESKZsUscmIOKkeuI0WVXBP8HIuapuHJB570XG5nx9YdyPDWSS9u7q6pUXLdZXlynz96uBE3PrhsEAf3HAQAdFzegRde/0LwHY2axK5ndmH52ubGVFSMqjsWq6UqnrGNr0pSCbnOHFQ9AcorstRgaWYpfvjMD0EnwtcIOmIdKEn+wmKzLjo3Qc+O0T/Oz9HZDG49FnviPY7nGJbB5JFJTIyQyfSGY1FirRN/wvQrDCLG+TvO3ITFVhyLzSAy4rwIi3a35Ts3vRMAcO+Re9ve9nOJvJhHTa2hptQcwmLQ+RMRERGx0ImExQXGtq2PQZJqwSvq7NnmHw+iaBpmpxuOgERaFxYnGsIiw7J44M4/QJ6bABNLYWBoKeZmpuvLpyfGLI5FM6oevXl0pjETvSqr4GPWQciNf/cpRz+CXEdjoF+WFCim5YWqjJ6U9+wde+wpQOJTzWSChMUA5x0AZGInKHLJBB/CsWgg16p47P67ABBhUYzHUZVVi+uxme157U9gFGrI3k0/ess5eP6abnQ0KSK7YXxGKnIszisiH/VYjIg46WlSWNy6Y19dGArDo9sOQFVNolOqD7jqyzBS0lU2jkpNwcFZ8oTCJcFxLHaPkuLZ02MqWIbGnQ9uxZ4pFRmRwroVQ/XoVADYcWgCm9YGC4uqHnmqUSwytvrTO7/wTaiqdSzS3ZGBZNReav7FvFC4xL+jY0Xj33PDQNJUBCtPEffipZ8BXvyPzojQVA9xUmrzODu8lSKGXfCk6bpIZ0dRVPz2jgcBAIViGRRFgZPmjm38aViOsUsAfAIUtGDh8ljjE1V70nIqujAjIk5BjMK5WVgESI84gzmVXN/9HIvDB4ctMaVB7N2+F6JmrR/0Jfosj1VVrYtMNE0jnU1j9EhDWGQ4Bjue3IHK4QpogcaK9StQmmoIcnu37cWK9SvQDJTQEBYB4Guf+hoUuXFNL8kl5Doak0GChMUbn38jGIrx7etopzveDcVjHCGrMjiaA9vkPTTjMtHDEBLdls0HMcY5flmaWYrB1CCWZRpjRIZlQDEU7r7tbgANYbFG2yaiz4Ow2Ipj0S0edT4RWdHz+26GvJjHZYsvw5aeLQCAc/vOBQAcLh72e1mEjY4YmdA3V5uLolAjIiJOOSJhcYHx1CMPIJEKX/SYHD1qEQnd2L2tMSuOEwSkMjlMjY9C0zTM7XwQj9xzBxRFBi2SAU4qk7UIiwCwfM1prttWilMQORrjBesgjYs1ClBbLr8WD/75j3jyoXss62Q7TcJiTYWsWItxA9nmYgHsjsVMQI9GnqUtbgg33FyPa3rJ4DCseNYuzQiBmc5u3P2HmwEQYTEWT6AqKRZhUeTa228h4LjFuPBC1MbBLL7/xrOwqqe56BU3+EhYPCaITThQIyIiFigu/Qf9uOvhp8G79BCqY4sEnC2WsfvAUes6Qgp7i+RmWaUFPL3nMPZPk+t8ETEs6unE4REy8ennz0j4xW33QFYUdMYpiCyFfDaJyZlGcU3TNGsUakAMk8rGkOQb44prnrcWdz/yNH56y58t6/WYinmozrXvDHSLUzWOf60IFMeAtKkvUWWaxIx6xSymB8g68xk7xbUQ6WgujKn65C6PSN2l/Xn8v9+T2eyFUgXJuAiqPHnsRb0wHOt90I9twNy2Y4/hWDyVosxbcdpGREQcdww31tGidVywNNNw7xeUAhiKAad5/1g++WB4tyIAKLKCQ7usYmZ/st/y+KhtrNI90F0XFqfvm8atP7sVmqaBzZAxUDqbhlRouNyqlSpWrAsvLDJgoPEaNH1S06JVi7Dn2T246Yc31dcpySXkuhpjEa9eiAYDqQH8/UV/H3ofAKA71u27fL7jGKlj5Nt3cywm+SRuvvZmrO9sTISnKApdi7pw1y3GhGsiLFZQsTjGsiEn4fzFqr8AAFw+dLljWZBI6BYxe6yEVwOBESDPQ79nlmHx9Uu/jqXZpcErR3hi9AGtKBXwtHUyRZAwHREREbHQiYTFBcaTj9yP0848u6nX7HzGf9C92xaX2t03gInxEUzc8k+Ye+YuXHzV1VBVFbTe7yadyaEw1yiMifEEehctrj9WLLPxNQzm4pgo1izNyNlYYwC1eM3pOPfiy/E///oVAICkn3a5fCMKrFSTIdtcBEMdzc3kmmhSWAwT8egmLHalWojGCuDsJXlkYpxr7Gkzos7SdZtw759+B0WWUSmVIMYTqMgqBLYxeDX/uxV4xt/pGedPjBDVTGRsRHjEEL1IIyIiFjhNxiL++eGncPbpq71XoJzXkUee3uW5usbweHy7tQ/j4r4uHBwex/tvqeC7j0q49vLzATR63+XTKYsLkqFprFvRGIug5O9iUNkYklxjXLFqUSde89JL8bl/+S/Let0dpti0WglQ2uyPN3PQ+VxeL8iUxolwaRZ6S7rgxnoU9dIDxNXY7n6ZaUVYNLsTC7q7w6XPIgBsXjWIW+56GOVKFYVSGcl4DChNWF10cWffq+OCh8ty3tDdoIkT7VjkE6debGjCGWkYERGx8GBpFjEmhuHisOV5o88iABTUgquTy8yTDz6JZSEi0A1ohsaOrTssz3XFrL8bu2xjle7+bgwfHsbIL0Zw5D+O4NznE0cWmyTCYiqbglq2Tjhavi44BcKIoeTBk/hXXeNJZBK4+nVX4wf/+IP6umWpjGxHtv7YK7LUzAUDFwSuY6Y7HiAseo1BFhjNuLv6Vvbhsfsew+z0LMrFMsSYiKJctAiBeSHvswXTtpJ92PqGrcgIznFP0D4d636KboisOC/C4nxw9fKrT/QunHAMYRFA5FiMiIg45Ygq8QsIRVbwzGMP4bQzzwn9mkQqjZ1PBwiL253C4uzEKErb70H2zBfiDe/5WH0ZRTNIZbKW2NLFK9aCNrnzpmwC3lBH3OEWpMWGY5EChXd96m/qsamSRgod2Q6zsKhAVqyD9kX55i6yk4XmHYtBgknuOEWh/uwd5+Hm91+Iwbyz2Ec1Mdt82dpNmJ2exFOPPoBKuYRYLI6qpFpcj/PhWPTtsXiChMV2I14jnKzuSWFJZ+K4uXMjIiLa4MD9wOTutjejAbjrkadx4Wbv3sp2FvfmfYVFlebw+La91tf0d2HvkTH88Ika3nYmh3/59Dsty/Np6/Vw7VAnRMF5TaYA9Kcoh6NPZWOIM9YJS1/92FsgSdZCi8WxWCsAarvC4iHnc0lb/58uk2hbniQCnVc/v1QfcQhWptvbLzOt9CJ2E+Q8ZvqfuXoQpXIVt93zKIpl4lhEecoaZXmi+iG30jexGfS41wR/goVFigKEDLz6YJ6URMJiRMRJQ5JPYrQ0anluUaoRhVpQC65OLjNbH9yKDWdvCP2eS1YucQiLdmfYrmesY5WegR4c3X8Uk3+aRPe13fjUP33KsjydTUOtNGoU3f3dSGfDC0UCJUBl1bpjEQDe+tG3QhAb16KyXEauszEWKclWYfG+I/fhl7t+Gfo97zlyD27aeRO2SdvqzwX1Q2zVsXisnIleNLOf/cv7oaka7v39vaiUK4glYihKRYugnRfDCYt+BPVLdBMjjzUiQ6JQqQUwOfjz538eW9/g377pVKcn1rgPcDgWW5nsFxEREbGAiKrFJxhZkjCj90DctW0rKuUSTt9ynmO93td9DelzrnM8v2T1ab6ORU0Ddm97uv64ODWGzp4+0JyIgXd8H/HBdegdWFwXDtlsL1KZrGUbQyvX+n6G5V1JjM9VYTYcUrxVFOxbNIQrrnkVANJPUdM0ZE2OxWJNhmLaQJxnmu5vOFWqgTJFmKUDhMUggQwI7tMIACxDblgYpr2Z4QPZ9mcrdQ0sRldvP+7+w82NKFRZgWgS3eJ8e1GhPOd93FZ0JzGUj58Qh1vkWJx/vvv6LXjnJcsjx2JExMnArN7vpBY8092OLCuYmiXRW4VyDSPjU7joLPcIdDc2rxnCI0/v9Fyu0Rwe37an/nhktor+rjxmZwvY8/4UrlrBoqczR5xtOvmU9Zq4cZl7UeyNp1M4/KEU8LPXAb98Nz64ggiYKhODSFvFxt6uPD79jhsAALPFKgCbY7E6ByhtzvB2cyyaRTmKsToWDcHNLngZIkpa7w8V4NBkWTJeOWbxWm79ET163vV2pLF+5RD+3233kijUREz/nO0X8NpmPqNB3RweCyUKFWhE1br1/TwZiaJQIyJOGlJ8yiEsmq9PBbXgcHIpioLZ6Vnyb1nBwT0HcfrZp9eX/+nAn/DO31snIZlZtWGVQ1i0s+vpXfW6hzQjIdeZw+TYJFb+/Up0XtmJeCKOzt5GjSKVSUGpNMYSy9eG61ktpckkJY7ioDCKpcdiMpPEO02TqSpKxSIsluWyZVv/ve2/cdfhuwLf0xDM9s/ux/1H78c4yLiBr/HICBmwtHcNINZK72UAOdGaiMHqMfr0MZqU2oyzMpVOYd2Z63DXrXehXCwjFo+hJJcsfRXt+98KQcJQhj/+wqLhgqOFqD6yEEgKyXoEr/F/hmIQY2OW3rMRERERJyPRleYEQFPksH/sLdfhhZsG8fn3vQkAsPXh+yGIMaxcd7rjNUL/KuQueSNk1erqW7ZmA3b4OBblWg0H9uxELB5Hed/juP3bn8GRg/sAAIweV8rxPHoHGvFiqYx1gDW00t+1sKyLxG1qpsIZLTgHWBe/kMQg1DQGsqoh19GYeVyRVFSkxqA9E+MQ48IXxzQAsxUJgtZwLQZGoXL+kZ5UiG0AwLnnESF49WlnhNrXYwkFCs+77EW4+w83o1SYQyyeQE1WIZiOZbvCosh6H7cfv/VcvPWiZU25LOcLIXIszjssQ6M7dXJE40REROi49fgDMFHVf/v1GFPjd/p7tzwK7rSX4kVv/ywAYLpQAU3TOP+Mdd7vYesHuHlZHo8+4+2WVCgWT2zbg97OHO47KONtP3ymvn4+RtX3Z9WSRu/BfNIqtG1a0ee67YwAzFU14Mw3AANbGgsoQKCc7sMbXnIxAGCuTMYLhmNxuqIRYbEZx6JSdT43fQCq3wz+eN4qNJanSVStvVj20V3Am38HDF3QWM+HzZvPBACcf4b/ZLCW4V1m5Pv0Jrr28vPxq9sfwNRMAZmEQI7tQnOctSO4nfde4IIPOp/XC4wnPAoVIN8PRQFKLXDVBQ9F+55vERERC4s0n8Z42XtCjAIFGSEDWi9H7XxoJy5behledvrLAACyni5gFhbff/v78dTEU86N6azasAp7t+/1XA4Qx2K2K4vy/jK2fW0bHrv3MRTnivXoUwAYXDbY+Bw2x+KK9f79FZ+ZeAZfffirKCwlPaIlTYJMydBk6/XmspdfVv93Va76Cou3veI2PPSah3zfF2gIi/906T/hgdc8gPf0vAcAEC/HQVEU0ry307LVOMaeeI/l9cuXE+F14+aNLW0viGb2M8bGcNELL8JDf34Ik2OTEBMiSlLJchzssZStEORYnA/xslkMoZgRT7FI9JMY4zwxzjmO4fCH6/6AFy594YncrYiIiIi2iSrxJ4C1G0nx55rXvhUf+Ztv4LKrG07ENRvOAMd7O/VsuiKWrtmAseHDnuuPHNgFRZaB6cMY/d/PITewDJdc5cw5HxhqNGROpK2zqoZW+RQXASzReyGqicbsPpp3ihGGoKoyAmRFs0ShAsBsueESyMX5piI7SzUFqgbEqEbxJKiXoMAxoF2cWHu/9CL899vOwWA+HkpYNJyKJ0JMc+OCy16E8ZGjePrxhyHG46gpKuK8WVhsb4DpddwAEkd6ooSoheRYXNdPblj8hOuIiIiIeeWje4AX/oOneLOrQH6bNf13aaCbuH+et34xvv+3H8BH3/KK+rob1yxFOukzA9vmMti8cgAzc0XP1UdnqpgrljFc4XDpD0tYnBfx5uuucKy3ckl//d9527Vk03J3YREAKrJGRJ5X/xT3zJD1VCYGDk5BxRiLGBiOxeGCSoTC6pzn+4Ri5jBmqKz38kRnw/2nqSR+NdHl3g9v8blAooMIkeUp37c14siYYxVd7epY9HYgXnv5+ZieLeC2ex7FQJoDoAEp/yi2447ahjv1yr8BNt3gfF4X3RPHJ0nfH8NR2s7nXCjwCYBdCAc1IiIiDBkhg8nKpON5qty4N8oJOWS7sgCAniU9+Og/fBSf//bn68v7F/db3INvP/3t+Ovz/9rzPVdtWFUXJC3oc5dr5RrGh8ehzWjY+3d7wSZZvOLNr3CsPmCa5JRIJ6BVG6KgZ39FvUbzrSe+BUmRIJTI5Cie4iFDri83MOoGmqpZHItKRUFFrkAxxbv3Jfvmpc5gdurZaVVYXJYhCQxdcevY03AuzjfN7ucFV14AqSrh3tvuRSweQ1ku+x6HVki4jY9MZE/ApJi6Y5FfOPWR5zqGoM0zjbFMWkgvmBpiRERERKtEV5oTAC+SC/21r3sbrnz5q3DW855fX7Zhy7lNbWvZGv++A4d3kxjU4YduQXLjlTjvNR/G4NKVjvUGljQGyYlU1rJscNlq+NGfE8ExFLSkSSjk/MUlWVUtjkUAmKk0XAL5BAcxhGNxpkxeU6ySm4i4izvBCy+BjaIonL+8EwxNBcapLkROO/McZPMdmJuZghBPQlI0y2dtxgnqhhgg2LbDOy8h52FHqvniEUNTWCiJnTe/70L87gMXYVmX/wzGiIiIiHmDEwGGB5hwxRxGn4xx5Vkr8KZXXIHLz2+47i/aEj4GFQA2r+r3Xb79yDQA4Ad3H8ZfrOfwtetXY8PKJY71zI7FFN/YRwDYuDyEKEVR9ahLlY2BUYOdWoZj8eicXjgs+Qt4ANDhVdeqFQC5jFnGJ7Ix2VN3taFaABHcvEVTAEC6H5Caj7idV9wKZ3FvYXHjmmVYuqgXkzNzGMzo44bMoOf6J4RjIbjp3+2J6DXtIJYDQAFKm31DFwJ88sT15YyIiGianJBDQSoAtiEJpTV+G/OxfL2ovmTjErzo+hfh4hddXF9++jnWFKcNnRt8i/DL1y13jeBkyuQaVBgmLsJd/7cLydOSWPW+VVi1YZVjfbNjkaZppNKNlIEV69wdi7UdZLzxufM+h5uvvRnpaV1EoHjUtJolCtWCBlSVhmNRKSjQoJFjN8/kBG/nXILzF8cWCgLTSLMII8j0D/VjxfoVmJ2ePXbCYsCx8zvux4oYE0WhLjSMXpsCfYx7fUdEREQcZ6IrzQJjw+bmhMWeRUNIpLxjLY7s3o5EMoVll1yH/OXvBM0w6O4bcKy3aKjR74fhRXBcQ9jhRX+RkKVpLMrFgaRJKGT8hSFZtfZYBBriIAB0JIVQ0ZYjsySGrKC/NtGEsBgLMZMujGNxocEwDM679CoAgBAn50ZCaHzWWJuOxbhw7ITF0wYy2PbFq3DJqu6WXs8vINfi6t5U1JswIiLixBPQ+8WNCzf7R6Db6comMNjnHXP57OEZxEUBb3vBKvzwGhE8S7uubxYWqcoU8plGMa8r21zRS2VjoJVKYEu97o4sAGC4oBf9KtMBG1a8lxVJ7NsM7yOCpgcAo5eR4Y5MO8dlFjKL/ZcfD9yiUD16LAKk4Hft5ecDAPpS+peQXWB9ZI6FsBjgXDiuxPKnThQqnwy8t4iIiFg4GPGPbNr7frtD9O+buuFs/wnUdsSYiKGVQ9BUm4inuwVnhmfAsAxWXrkSg+8eBCMwyHfnQev3j8brFi21XqtS2cZYpG+xdSJQRa4AAOSDMlRZxXWrrrP0khQgoKb6CIsqERbjaTJWU+bIGGOuhfQEo3ebV0+/vOg9GahVx+LxhqXZekKDIdQEceFVFwIAhLiAslxGfp77PQcJi37H/VhhRKHSTSSARRxbDEF7PuJ3IyIiIhYS0ZVmgbF24+am1qcoCivXOgfdcmES5T2P4Ojebdj8vEswsOni+qyufFePY/0Bk7CoakAqk21qP5Z3JeoziXmGhsb4z8SpyaojCrVYaxR4upJ84Cy0cq1R3CtUZHAMBYG2FvxSovfNTJhI0HTs2MR4HGsuuPxFAAAuTm6EzH0VY21GYrTreAxC5BiwLQqErb4uIiIiIqLBhU06FgFgs0vfofGigl9tl/D4/glcsHk9Xnfxivq13S1qdeWQyflYtgqLzaKyMVCaioTH/TtNkSJfKkGKL8NFvfJYnfXf8M7feS8rjQM0hyLv00swv6zuqqy/V5Dgll0IwqJL4Swg3ssQFnvjGuntmXSOP08ox0JYZDj3WNsTwTnvAM58/cKLoG0FIXIsRkScTHTGyH0+lfa+nzfW8WLjOf59+jSXPrmrNqxyCItyUcbMQzOYGp7Cqg2rsO4V60Dpkz8ZhkGXPtGpNkYmYfgJi3ZH5E+2/8R3H3mKhwYNrOBRUzDmNKm6QFkg16WZmnu/bC+mK9N4apz0n1Q09wlQfoJanG1+Etqxwujb6AZFUWDp5uozdWExK0CDNq9CH0MxFhelGyfEsagLxRQfTXJeKBhCOB9NkoqIiDjFiKrwJ4BnHiPNtwuzzgFjLN78TOeV608HLSbBdpBB8LYnH8XRm76MqT99D4d3b8MKm/Bo9AQ0s2hJQ1hUNK1pYXFVT2PALXA01ICiymxZAs83BmECS1uEwp4Qffq2DTeKf3NVGWmRA2MbO6VF7yJEIoTzrhXHYlcXuTnp7AmINjuGbDrnAqSzeSTzZF+SppsZts3+Swl+4YqtfAiXa0REREQEcGhkAgAwOVd2LDNcfM2wef0KVEw6zdbte/GK/57Ce2+p4N5t4zjDpS9RZ96auLByyOTcK8+0LSwCQFfSes3S9KjYFEeqeYbQOVMBcUTVfOLHKrPAkz/1Xl4cB5Jd0PyKBl1rG/+uzgEUHSy45Zf5L3eB48j4pSPnnWrRFEJzjkUAOHfTGizu78JAmiav5xaYI+JY9R5cKM6PrlXApZ86RYTFNEBHwmJExMmC4UakUt7CRppPY3ac3M8Xp5x9mvuH/GPWJ8oTjufM0aaapuHQ3kPY9fVdOPKfRzA7NouV61dC1awND3v69WuwXoqwuxLTWe/r6CMjj+Dx0cc9l/MUGQ9wcY/fL31X5iTiUKw7FmvhHYtfeegr+Oy9n8Wu6V0AgENzh1zX8xNyj3UUaiwe/rr4u1f8Dg+/5mHP5VyT14Ilq5ZgyaolSPaQcUyQU7YZgkQikRHBhmxRMJ/UhUUuEhYXCoaLO0iIjoiIiDjZiKrwJ4DbfkmKUoXZgFnxIVm5biMG3vUfGHjrt/GzH34PH37jtWCTHei54e9QLRWwfI0z0oxlrQOyrt5GMU9WVKQyzc2sWt3bKP6JLANFo8H4DKJmK9ZiTi7Oo2gSFrtCCItbDzeE2UJVRibGgbG5HP2EwYTXzEETQgv9BBMJMjDvHThxDgOeF/C9X96J8y57KQAgaRJR2xYWQxy3EwVnV5YjIiIiIlx54IltAIBCqRr6NZu+XcDSf5pzjVfdvH6FMfEe3/z1Izj/ho8gJdC4+00JyKqGTWuc4tiibmtxJ29yBaA2h3ym9T61KkP20S4sQo/Q6hAVwO52iHcCFVMx74mfAL/+QOPx7j8CtE8RqTQBpPr9IxvzSxr/lkqAkALYgDFPC45FI4ptsNffERIatyjUAMciTdN4+Of/jHNWdRFhKOhzhkHQC7zzUQQ9VsJiC/HDET6c925g5ZXzc/5EREQcFxJ8AjzDg85433dSFIVdjxIxrFp2jkWC0osOFw47njMLizf94Ca86+p3AQCWfXoZKJbCcpdJTt0D1hYcHG+tH5gdi3bW5tfiZzt+Bkp031ceAcKiPgwp1oiwqhR1YVEKLyzmhBzed8b7cPEi0p8y4RHJ3RXzTlOIH+PrVrqJSU4MzUBgvcWXZh2LFEXhG//7DVzy6ksAAB2x+RMWg0Sido6rIUS1sr+GA/VYCYt54fjHu57sGII273cfEREREXESEgmLxxlZknD04H7Lc0KMzChasmJ1S9tcuf500JyIuSduw3e/8mk87wUvRM9LPwQmQQYjy9c4I81yndaBpdnFKKlq047FFd2NgpPA0agpimNQbma2Yu33kktwKEsNYTHITahpGrYenqn3YSxUZWTjHDIZMmhNpknUgJ+wmFzAzrv5INfZBYUixzFpioRtVVc0+gX6xcueaLgoCjUiIiIiEE3TsGOftSDHhphI88SIin3TmmvU4+b1KwEAP3tawnu/8X94/rkb8a1ruzCoFxU3rXUKiwM9PsWS6pxVaAximoytli8nRcNsJykUdibcP1enqDqFpWQ3IJlcE4kuoHtN4/HELmDTDd77IFeAzCCyOTLGyqRcintCyvn4GAiL845boTK/FMgv93XEdeUzYCvTQCwH+BQKQzN4FrDlLcCaF7e/rWMFFwlg88qZrwPOfSdwAlwfERERrZPkkqBT7vdmLMjf845HdgBAvW9eMwwXhx3PrdBj2eeemMONX7gRK09biRUfWgGhR6gvFzXyG82WyT5093c7tmPGz7H49xf+PWpKDfHnWwWkxSvIdXtRP0mUYvX2Khrc+z8WJJKWoCkaYmysLjT6sShJtv3jF/8Ybz39reiOk89hHMu0XheJJ8i+GcvdONaOxfmkFWEmk8ugBlJ/chNYW3UxBgmLSa71CXKvXvtqfGTLR3Dlkiubfm1d0DwGl83vXfE9/PSlPukdEa4YUcRRFGpERMSpRlSFP8489sDdjucyWXKR2XLBpS1ts39wCQAgtmQTGJbDe/7q70DrjsRktgP5Tucg0u05g2JFaUpYnCpKWN7VGDTFOAaSooHlvC+axao1+z+f4C1RqEyA82yqJGGqJGF9PxkwFyoycgkemzeTHpWDS8lNRdZrdiCsYtupSlUmdyvmHouGQNgsa/tS+MLV63Hm4ux87NoxIRIWIyIiIgj3HFQ9lz3wxHbHc0KCTMipCq053Iz41IuGGFA0hRs//U7ETT19V7pEmg34uelqBeTTTRRk9CJcbw+JNOPiZHyQj/lcFxTJ+jjZXd8OAODijwE3/BQ/eUpfr3M1sOWt/vvRuRLrTiNJEW4uTYfTTswGC26GsEjhxMWJuomfsRzwjruAZRf7v7Y8RWJT58tx9pKvAauvmp9tHQsix+L802baRkRExPEnxafqvQztiBCxf+d+yBKZ4GN3J/Kx4OL7SGnEud0Yuc7EV8ShaRre+9fvBRtv3AcvW7MMHEh9gJHIxKN6FKrX5/CJZV+aXYp3b3o3AIA2teTIdZIJ3tlkliwTyDJ7X0jjcUkuNd6PS6Eg+8Syh2Rw8SAA4LRNZJK5n7CY4luPnj/etBotarhA3XpN/vblv8Ut197S9DZFxn9ck3RLe2iCN6x/Q0uvqzsWj0Ga0zl958xrn8rnCkYUcSQsRkREnGpEd2nHkHLROdPszlt/Oa/vcWh4GF/99AegVApgM92gaAo3/+9/1Zf3L1vjGiOS7fAu5hWqMtLZ8FGoR6bLELmGI0BgaUiyCs5HWCzVrMJiR0KwCItigHPiwGQJLE3hnKVkUFOWFHQlBYdo5icsxvnmY05PNqq6C9TsMrTHxYaFoii84fwlWN69cG88+EhYjIiIiAAAXP1zDdQXZjFBOW/+f3rLn7FvmgiPBX3mvsbGQH1hFr8+2rywOF0o402f/BqGCyp6kzSSMQH/+j+/qS8f6Ey59nfu7/IpTNSK6Mj4CDRBMZY8eW0u5nPNU6zpCUj2AlVzMY8COBGvOk0fS5z9dqBzhf/79p4ear/qiNlgwS2W08UqCsgO+a97rPAaO/AJQLS5OeyCbWUaiOWB50pfmUhYjIiIiECab1wbxo6OWZaJlIg7fnNH/bE93jKMg3G8PG55XC6V8Q8f+wfUJmpgEgxynTnc9B83Wd835rzedvV7R4QCwTGeb1z/Rs9lRq87RnSvOyh7FVCgUDSlJaT4lOXxfNGb8E4XMISok4FmeywaFGoFxNiYq8swwSewKLWo6W2KAeM389/A8YRjODDUqV/rOpnY0LkB5/Wfh/UdzjZVERERESczURX+GHDhFS8BAPy/H33H8rxUq+GePzY/E8qL2vgBfOkdr8BDd/8JyuwoAODcy6/BTT/+Xn32W9+yNa6vzXd4D6CLVdm3x6Kiap7LAEDkGNQU1dexWKhaC4KdSR7FWuM5gfMfCO2fKGKoI46OZGNg2J9xDuzSbfZYPNmp6I7FBG+OQj11+xDybPSTFhEREQEAr3/ZCwAAX/7BbyzPaxrwv7fehT/uBzZ8q4BhdtD6QlvkpW0ekIPdkyrOe+938Ms/3Y8DM2R88LaXnINv//QWyAq5Bq0bcp8lP9DjI2JWC8infApdk3v9d4zmAIZH2k/LsguL6T6g6tPXKDPgGgNroXOly5Om6669CBUmIpSigLTT8bngoChg8XnA4UcBWe+XJddIL8lk93PHdWYXjyMiIiKeg2SETP3fP/zGDy3LRIi4/de3gy+TekGi3HwU52Rlsv5vaVLC+697P27/9e2QRsnklmvecA1u/dmtUPWxiFevxJ4Bf8eiXxQqQCbfqqPuKREszYKhGNB6ggNtKr+psgrtCIk+LUkNx2JGyFgezxd+IlerzjojcvN4CpNB8aNeFORCW9GkbvgJixkhg4HkwLy+XzO0KsBGHBsyQgbfufw789rjMyIiImIh8By5wz+2qKoKWW7Mzu7uIwOIn/3gXzE73RjwPnr/n1GYncG5F1/e8ntJ+sC4vOcRDP/oIxDEBG78yS3gu0nc1gUvfyMmx0ZQLZcBAAPL3YXFXKf3ALok+UehViT3KqPRz1DkGNRkFSznPZgp1xTIamMA3pUSLPGodjfhzx85hP9+oNGb8shMBev705ZejIN554DWt8fiSSQssi2KgVVJAUNTFsGtVcfiyQBnxH2cuh8xIiIiwhVVVSHJjQk6XXlS0Lvxx7/G4ZFxPDhBiin3bR/B4ZEJXP/Ci/DUqEr6CPogeSeq4q79Ms75XhGKouH+n3wNZw+Qa/L7r7sQhVIZI+NTAID1S9yFxUW+PRZnkU/5zASf2AWoPjsHAEIKab/EIbuImOoFqrP+2/Qj3uHsoQgAjD4W6VrtdP4lu4LFSgDIND+T/oRw0ceAuSPAPj36v6yPg1MngTA6X+iF1lN4uBURERHhiTHBOSc0Jirf8rNbcHDPwfpjeVLG/l37ceF5F+KpNz6FrqL/WMSNmdoMqnIV5b1l7P7r3ZidmsW//L9/QXItGe+87HUvA0VRKM0QkS7f656S4NdjsSJXPAXJMFCgEGNj9ShUXnMOSuJcHGW5XH+cETKWx/OFkWLVG3c6F1t11hnild1xeixpVTArSsV5dxAajlQ3vnvFd/HJcz45r+/XDBwTCYsREREREceeSFicB9737nfiO3/9YctzqUwOqqLgp9+7sf7cnbf8EoPLVmLJSnexLwwagNGjhzH6iy9CHFyPD/3zT9DT33AbdCxahnMuvqz+uH/ZWtft9OiNxJNZZ1GvLClI+wiLI7NV1+eHOkghhWdpVGV/x2JJUqAoDedjR0JA2SRY0rZqTG9GwKMHp+uPFVXDhSu7wJpmvw/mwguLLE2dVP34WnXiVWUVPENbjlOrPRYXArk4OacuW+sujBvHaWBJQFRdRERExCnGRz/xV3jZh//Z8lwiLiIRE/HX3/wf/H44B+oLs/if+w9hoKcD15zRBe1zaeSrB1p6v/GpGbzwxyWc3kPj/hvfjlVLG8LXYE8Wf3HVhfXHXsJinx6Fmk26CIjVOeSTPrPSx7cDhWH/nRTSSHI+4mNpwvo42Qsy0mqR/9/efce3Ud//A39pnbbkvVfs7L0TZxACgYQQIECBBgqBUigQWgirQICwSvixd/ky2kJbCNCyCiEFUmYIM4OkQCCLTNtxEsfbkqX7/XHWOG0pJ8u2Xs/HIw/7pNPp4yNEb9/73u+3tRDQR7gb3n+uiqdFVawJt4xy9Iq7ZqpmAnlDgS3vS+1q26TkMuylkV/Xl3QlFgeUhr9YTUTUF21ctxF1u6ROSv5z2LLzsvGX+//i3d737T5YbBaMnz4+5HFUptg+77bv344d9++ALkuHJ954AlVDqrzP2bPsmH3GbO92uMSipWuec6h5kHua90StWIzGpDMBEcIZs84sm7GYrMRiJEpX8iVToonFVmerrIpWCZEqFsO1Xe0uerX03oWlhSlbAxER9X29J7PSg9Xvr8M3H73rrRIEpBmGvzj/Erz+wp9xoG4fAGD1f1fi6DknJ3wLs+h2QRRF5BUWI/+s25F72k0wmIKDwDPOv9T7fU5JRchjeWYd6YTgYKjd4ZK1QvVUSXrUNLaHPKZnvp1Bp5ZaoQqhE4saVztaOzrh9GupmmWOPMT48pkD8N+rj/Zu2406jC7N8L23Vo1MS/AxwiUWBa082dbTJZoE7eh0Q9CqZd3HenNiUaNWYfOdc7BwakXI5z3nyWzL6L5FERH1AHX79+M/n2/CwcO+GYE2swk3/vZMPPuv/+DHHXsAAK+t+hJnzJmOPJWU8Mnq2B33e7lcLuRk2vHOOSas/JUJWbaAG3ucbbj6gtO8m1VFoS/meVpzm/QhPqtFF/IiddZyOYGdX0ReqMEGkyZCYtFTTacCjq8eAVgCb1qJM8loLwFibSfm+WC2x9gmq2BEUJvalDFFqDRVqYCjrgEObQd2f+1LLGb0kopLJXT9d8q09pD/XkRE3aS9rR0dbR2o3VMrSywuXLwQH/z7Azj2Si3It3+yHdPmTINWF7rSLVpiURRFiC4RB90HUX5FOfpd3w9ZecGxxhm/OcP7vS07coJQKwSvZU/zniOqWAQAs9YMRLjUYdVZ0dbZBo1Gg8GjByNLn9VtiUVPa1arcGQ/Y7yOZP6foIl83Sicts425ROLmigzslPIU7FotXXvf1siIkovvSez0sM5HR3Y+PVnssd+cf6lMBhNOHxIunDV2tyEGbNPTuj47o5W1P3rdrz81IMAAEPZSKjCtM4aOWGK93uNRh4gx3KJrC2gFWrga/YdboOj0w1BH/oOLINWI1UsasNUC7ra0dLh8s5eAoCsEEnBQP7Jx4H5FuRafe9vM2hhCDGXMdss7RNY8Sdo1HGP+knlTEYhwcRiu9MVVLHYmyo1Q9FrNbAZQv/d0nPGIhGlMbdbxMrV62WPXXb2PBTmZmHzdimB6HB2yqoJE3HtPc8CAKaXayFoQl/8GzvMVzmuTfBzJ0dwhH8yewBQswGZtgiJPL0dOnWEyKddantanG3DlFEDpTmAiXB1dXLIKIutrak/W4yJxXEXAOe8ApgjzKU8UguWA6MWRE4cAoA7yuDNoadK5+Kn/0hVoRoBMIZOLvdJPSUBTESUIp//93PZLLE5v5iD0qpSHN5xGIA0X3DmvJkJHdvtdGPPM3tQ+3wtalprYBpg8s4wDFTi103Bc2N1PPa17IupYjFcghSQ5he6ha5xNurghKFFsKC9sx35FfkYMWEEMg2Z6HCF7hCVLInOWEzEml+uwRdnR7kxLIKelFjsztmS8UpltSQREaUPXoVX0Fcfvy/bNlus+OVFv/NuVwwYjPL+g+I+bs2enaj5+zXo2PMDBo0K3S7EnypERaRWlOYudYpdg8O7AutQLT/aO90RK752H2pDQ6sDJ555HrLzgy+I+WYsyoM+vVHqQa9HJ5o7OtHp9m+FGl+AOKokQ1aNmGEUYAiRVPIkIwcXyO/USqRiURfm4ml3SLQVapvTBUGrkiVRU/lzJFtvT5oSER2ptz5eK9s26AUsXXS2dzs7w4bJo+Nvyb6v7iAG56ghaICjJgyP6TV6QfqcNoaoAgD8YpEwnRwydM6QjwMAyqcA9T/h0lMmITOwYtLDEHwxUKf1u7DYHjBPMdHE4q4vu14fZ7splSZElWQYGi1QPDb0DEelDDoBOPVJwBamPasnYebuDP28h1oNTL0SqPse2LsO0NsAXc+9q19x3XiBloioJ1qzag1sgg0qt/T5rtFq8Ourfy3bZ+zUsXEf9/DBw9hx7w4c/uIwysaUoa61Lupr9AYpwWIyRk4ChYpF6lrrvK1SI8kvDv9ZbtaZIWqk6x71mnrZc4JegFVnRbvL1xEqq5tvxNGqtAknoWZXSK1mx+WPi/k1Fr0Fem3iSa8jSSxm6ZU9t5FmLKYaE4tERNQdeBVeQV998r53WLnHyb883/t9ItWK363/Gr/75QkQOx0o/NV9GD35KNnz/nMJ/RlM8sBZL0p3vTlE6YJaXmklAMBSNizotR1OF8zW8HdzdbpFbK5tgk7QQ6MNvlio16rhcotQ6eTBTFFpBQBgQP8qOFxutHb41h6tFWqgUaV2WfCfYdKFrFj0CJzZqNfGX7GYSokmAzucLghaTa9q+3okWLFIROnunU83wOmUJ37OP/U47/dnzJkWNpEXzvrvt2LimVeiqUPE5xeaMX9GbBcDczKlxJ4mzGdQTlcVwMjK0BfkzKrQrdcBAGWTAYgQ6r4N/xlnyAh6yGr2i48cTYDbr1WqVg8YjuBudmOcrzXYe1fCTdeVWBSjVCwCwJhfSdWVdd9JCd4Ic4j6HFYsElGaW7t6Ldrb2qFz+m4EPmqu7zrG4LGDI1b5hbJzy05cdspl6NjXgX5/6IfJ8ybjYPvBqK8zdUif+7mm3Ij7ZYVo217fVg+NNnqlY6S4Ktz8Qo1Gg3nnzINVsKKj01ehmG2I0jVAYUeS5BubPxYbF25EgblAwRVFlkhi0elyosPVgUxjZvSd42DUMbFIRETpjVfhFWI0W3Ggdh+2/vA/2eN6gxFCfhXyFyzDjDnxJxZf/dtTKO03AAXn3g9dTmnC69OJ0l3/HV2JRU9Csq45uBqg3emCYAx/UcSo02B7fUvY5z0JPlWYi2V2kxTkNLT5WpxZ9Nq4kmfGgF9EssxCXEklQauGJsFZl6mg7/qFRhtngrG90w19L/tZj0SilZ1ERH2BzWxEQ1MLPlv3vexxrd9FsZOPmRT3cZ944W0U5GTiy4vMGFOoATojJPwSYBRCtLfW26B2ho81YMwEisdLrTYj7RNJRzPgDmi3aoqz1WhbQ3z7+zPYe1fCTYgjsajVA5O6Zn4bMqXtdMHEIhGlMbVaDWeHE2s/XQuNUyN7XNc1U3ng8IFxH3fFSysg6AVU3VIF0wATKmwVssSi0xWhywEAV5Q23roQ854b2hvgcEVoyx6DwDajuxp3AZA6R5nMJtj0NlnFYrcnFntZAkqvjn+9jQ6pQ4X/3E8lsBUqERGlO16FV0j/4WNgsljxxUfvBT2XO+8qGMpGoCPGO7lEUYTz0F4AwNV3PIi7n3kJGpMy/eDbRY2sqtLlFoOqLNucbrgijCQamG/BroOtcImhd/Im+MJcRLIapKRgY5uvokKlUiHDmFhbC0BqpRrPDCd9Aq1QU8mTMHOHOefhdHgSi324/ak/JhaJKJ2NHFCCgpwMvPXhl0HPVY8eAgAYO7R/0HOhiKKILQelar5Hb74UH/3t/6HI2vVvrCNCwi8CLaTPfQFRWmkCgDlXqij0aNkfvM+oX0pfna2hjxEpsagRgI5GwBWwlnjboe75Or79/RkzpXX0Fvqui6PRZix6TPqt1LrVkt+7EqhHqgdXMBARJVNGfQY6v+pEaWUp1qxaA22n/GbgUkg3Sk8aHftNTh21UjXfRX+4CI+99hiEXOlzs9JeiQ5XB9r3Skm5dfvXRT5OAnML3XBjX/O+uF/nzybI27J/VfuVbNsu2NHh6vBek4lWWam0ntzOM5REKhYPO6TZnkonbc26nnsj0ZFUohIREcWKV+EV8M7bb2PjFx9jTPUMfB4isajVSXe/tTqiX0jraG/DXddegprnr4a7oxVGkxmCoFxQ0O7WwBmQNXS43LLtNqcLLnf4BNagAit2N7ShzRGmDWtXxaIYJuizGaTz0eyQ31WYGWc7VH+51vjOkV6rSbgV6vlTKgAAJn38A+AT5anmdLuj7Bigw+mCXquBNsQszb5IH0OrGiKivujvLyzHp+t/wryjxoZMLHraksbSBtXhcOKimx/G6CebUdPshl7QwWT0Sww5mhNao12ULuwUahui72zJBxyt2Fjf9e/6vm+BwJtrhp0a+RiRWpMaM7oSiwGVCLHOPPTY+UV8+/szZaU24XbpZ8BJjwCmGC+0CXEmFvVW4NfvAlN/37sSqEeqB19oJCJKpveeeg/b39iO6lnV+HzV59A65InF3M5cbDp/U0wJGZfLhcdvexxblmxBR10HNFoNzFbf6wZmSlWPecXSDUFf7guOfWTHC6i2d5qcQTdYh7K7eXfUfcJRq9SwCvLZyN8d+E62bddLsYon8Zmhz4C6Gy/TKZlY1Kl1sq/JkEglXlOHdKNajjHOrhTh1qDVQ61SI9vYvdWl8WDFIhERdQcmFhUwfcbRGDKuGuOnz8LmjevQcKA++otCaG9txTUXnI41H7yLrDmXQ6034duv1+Dp++9QbK2tLnVQItHRGZBYdEROLA7Mt8LpErHzYOgKAb2uq7ouTEBp1mugVgEtHfLgPsuceADaPy/6UHV/ep0amgSTbccOycf6W47DtAHxBabDixKvOvVU4olIoGJRpw6aMdlXCXFUrRIR9SVnnH4qhlcVY95RY/HDtl3YsnNv3MfYeKkZFrRi9m9uxvNv/BdPnGhAgUWNz9Z+h5sees6344d3A58+kPBaszUxJCatBUBHE8oLutpW1W4Cmmrk+5iitLQKMWPR91wm0N4IONuC3zdWznag7n/R9wul/3FA0bjUJhbzhwHjFgKaGOMvIb5YS3qPoUB5NZAmcQgAQOi5rdGIiJJp/lnzYc+xo/rYahyoOwDnVic6doevFOwUO1Hy2xK0a+Qt1l3tLtx04U149a+vouCXBdDn6fHDhh/w1wf+6t1nQOYAqKBCC6QuClsatngTSJHoRSnh0p7djmVfLsOGug1h9zXrzNjXIq9YbImja4NZMAdVLNa21qK2pda7HZhY1Kg1MOm673NEycTi2PyxGJEzAtdMuEaxYwbyVCy6xdjvuG52SnGnUtWgdr0dr8x7BceXH6/I8ZLBoEmjThFERJQy8U3MppDeWvku3li/B2iVerd/9ekHsGfFf/fSqrdfhdFkxv3PvYZ713bCUb8TVy88FRnZObD/5gRF1uoQ1XAGJBZbHS5YDTq/7U50+u0TuH9ZpgkmQYNdh9qQaQq+GGXQ+s1YdIrQm+R3JKpUKtiNOrQEVHBmm+O/q0rQqqFWAaVZ8QXfBq0m4cQiAGSY4rvzftNts7HzQJhWbTEQus5p3BWLXa1Q06dikYlFIkpPL7/wN+DbV9DcqYJe0GHFR19D0MUe5mnaD0GvAd5bswFtKjNW/eUuTP/pTjQ7REw9+xpkZ9hw5xVdO/c/FtgbueVYJGZVR3ClYCBbIbD9Y9hMBkAYBBzYAmx5P3g/wRK+gtLgu6HHZgw4F8YMACLQfijgfYujrt/r4FZAdAOFo4F962N/HSBVCjqakXD7hFTwzA50x9DKNp2xFSoRpaml9y7FcVcehxJTCcw2M7575Ts43U7gotD7N4qNyKjOQO0eX6LNccCBnx/4GdpGLZb9dRn+5vobAODSky6FxWZBxSMVAACD1oBsQzbq2+th0prQ1tmGz2s+R7T7cFtV0u/k9gY79DY9ntn0DACgPcT86BJLiSwJCADbG7fHciq8PIlDAMjQZKDJ3YSva31t1DMNUtt2/4pKq2D1JsOUlmWU35QVKbH44NEP4tM9n8Z1/BdOfCGhdcXKU4kXT2KxydEENdTI1EeZvR2HgVnxzwntTqxYJCKi7tCLrmb0fPasbAwZNQ6NDQej7xyC2WLFY8vfwaDho72PPbb8Hbz04bdxHyuvsES2rfNrp9rSIb8gVNcov4vQLUKW9HOLItx+FYxqtQpjy8IHZQadfMai3hR8h3umWUBrQMVijiX+NlnHDy3Avb8YheLM2C/iqFVdFYvdePe8Ra/F0CJb9B3D8IxIDDfXMpyOThcMOg3UaZJY1DGxSERpzmIyYOakkTjQ0BjnK0Vo1Cpkm9T44uUHMX38cO8zn714P2pX/8O368SLgUXRW4AO618OAMjPlOIArcavXbUjys021iKpVSlEwGADSicCu0K8pypCC2y/xGJW0/dSEtDDM3+xNSBmk7VCjfLZWf8jYC8D7CWR9wtFrZZ+rkQVjJC+6q2R91OSp2IxgTlVaYWtUIkozWl1WkycMREZ52Sg6qGqsPsdcks39+wv3O9tS6pSq6AxafDoq49i4oyJ3n0feuUhvL7+ddnri6xFAACb3oZh2cOwtnYtXI3yawxlQ8sAAIWVhQCA7YKUGLQ4LXhz/pu4fcrtABAykVduK0d9u7wb1Y7GHRF/9kD+FYtWkxXDsofhf/W+bgehkl2BVY5KefzYx/Hscc96t1UqVcTqyFnls3DrlFuTspZEGbo6PcRbsWjWmWMaB9BXGNJptjUREaUMr8IrbPLRxyP/V/dCfcaDQZV+Hgd1uSj/w1vY0+TAqrf+BUeHdIFmxpyTkVtQ5N1PqxMwaMQYqBO4m91okgeIRx1/kvf7Ay3yKoGaxoA2YACaA5OPzfKLSFP7SxWZoVqmemYsBrZc9Zdj1qPNGZBYjHNOIgAYBQ1OH1eCPGt8gZNBm3gr1FRINAh2dLphFtJn7iArFomIgJNmTopr/5ff+RiNLW2ozFTjiVMyUVVWKHu+eswQaDQBnyUxJLRsFummH89n2IAKX4yDlv2+70MlqqwFUlWjp7Jx4GygNc5W836JRbQfBn7+zLftSSy2NchfY8mL/fiHdgDFYwFdCi7eTPotcME7QPkUabv/LOlr1dHJe09t1w1gLmfk/dIdW6ESEaF6VjUMpZE/H79Vd91ArQb+9dq/0HCgAbpMHcouLkO/Qf1k+46aNAoarTwWKbeWe7+fWzkXu5t3Q2OX76M3dlW4wY11deu8FYvDxg6DSqXCqQPCz2uuzKjEoYDOBrub4pu5mKHPkG0fU3YMdjfvhlt0I8eY461Y9Odf5aiko0qOgkXvu+lbr9EHra+n06tjq1isb6uHq2smdLOzOWjWZV/HVqhERNQdeBVeYZNnHAdD8RAAwJ6G4IQdADRr7RBdnfj3P57F3X9YhG+/XoOS37+ATrU8saY3KnfHs38QfjAgSXioNbgdmX9iUadWY7ffPEWToMHU/tJ8wcb24HZYGrUKOo0qaHajv2yLEFQ5mWPx/fwdna7AlyjmqIG5GFJoizlZ14vyjzKdLjfcImAU0qfjscDEIhERTpwxIeix4woaIC61SQm2Li63iCc+2ImzFt+N1z5YCyD4RhZtqNm1zsRae6v8KwAPbPUlFBt2AoEV+Z5Zh55ZRjmDgOz+8b2hf2JRpQI2/Qvo7HpPwQKotV1VkX5kFYtRuDuBQScAqhR9zpZPATK7LqoKJuDmA8Cw05L4hr00IOpunuoPni4iSmMTj54Y9O+gG25kHi0l0jbVb0KruhWiKKLujTo8fuXjePvFtwEAKmds/4BW2CsAAC63C6dUnQJBLUCllV7rDLgJRoSIf2/9t3dbHSq+CTAoc5CsRSkA1LTUhNk7tIyAec8nVp7oW4NKjQx9hjw+AmAXkpNYDPTwzIexeNzipL/PKVWnKHYsz4xFMULP21nls7C2bi3u+eoebG3YilZna9KqQFOtyFIU8nFDKm56IyKitMOr8AqrGDDY+73nGpnBKL9zWXQ6UPfKrdj+zYe46vYHUDT2GGiMNmwT5HflWTLk/e8BwOWKrxVmKIHJwAMtTrgDLui1OXwBtFqtws5D8ouIQwsjB2ZGnSZixWKeVY9WhzxIzzL7WqEms5rw0QVjcM7k8ug7dnlj0VScNqYYuQlUVKZSe1di16xPn4pFXQy/IBIR9XXlxfkYMbBC9tgJldJXa/NWAIDTBZz+chte+nIfHr7xtzj/pGlde8o/fw1xzGmMS9MeeTLx59Xy5z0JPk8SU6UCJl0S33v4JxbHLASa9gHf/9t3PHMu0H4EiUVLAVASnMQN4mlHlTc09mMnQqMFNMGzr2UyYo9/KEHetnLMLBJR+rJn2qENuMHVNdGF4vOL4bQ78ebWN+F2uLH7/3aj7rU6lJ1ZhgWXLZB2jPGfzyq71Gb1QPsB2PQ2TCr0dWxYuWOlbN8tDVuwv20/5vabG/PPMCRriGy7vbMdB9tjH3sjqAVkCvKKxAJzAQZkDvBua9SaoLaVgcnIZKmwVyDLEHzNSUkbF27EleOuVOx4scwOvHv63Xjo6IfghhsPr30Y2w5vS1oVaCqtPG0llp+4PORzrFgkIqLuwKvwCgtVBZeb72sp1tbagu9ffwyO2i04bcmfcMLpZ3uTkWWDRkY9/uMfbkG788iq+Q63ye/ea2h1BFUXBrYp/fmAPLEYsoLBj0nQRqxYzLXqg9qtZvslFrUB7V8T6AYbllajhtUQ5cKbnxElGXjgrNEoz07dzByzXvqlLJ65kB1d/w3N6VSxyMQiEREAYNHcEbiu2ndjSf9y6Y5mo6CFw+HEdS9uwKrtnXjj6mn4/XmnoChPanE+qqqgexbYVCNV/HlsWA50tPi2QyX4Rp8d33toDYC66/M+uz8weB7wk9+FRksB4AiYqWQMbknmZcqWbxePiS0RqRWAa7cCU6+MadlJc8Me4NT/A9Tpc8NRSrAVKhERAF8bUo/sftLn6Ma2jdjbtBcNjzWg8ZtGTLxmImxzbfjh0A/SfsXZQccKZXCWdB3F0xZzfv/53uc+2PUB9rf62q5/d+A7TCyYiH52+c3ckRRZimDUGr3bOw7viFgpF0jQCDALwdcQji49GgDQ4pTiHpNW/rkRqj0qSWx66Qb3wHMW6NjyY/HW/Ldw/rDz4RbdKLYUd8fyulWxtRh6behEq//fWyIiomRJn4xDD2E0mTHs2NOx3TgQJUPHA/DdkKcVot99tetQK+75zw8Jv79J0KCpvRNuv9mIB1sc6PBLAqpVQJtDnhTcfSh0W9dI7xNJntUQsWIxUGCiMcMUe2KwL7jr1OEQNCr0y409uen5b2rRp8//5jq2QiUiAgBcnPU5VPYOqUrPKp+ZKAg6XDx7BKa4P8eIMfILLSZ94p+v0hzGyDNvvJpqgM5233bbIWDDC75tvVVKDPrvE+LiXEQqlXSctq7qghPuATav8D1vKwTqf5K/JtKdTIJFvl0+HdBbQu8byJwj/UklvQUor0789equeIKJyci8rVBZsUhE6c1gNsDpDJ7L+9m+zzAqbxT0Z+rxkeMjzDhmBj7b9xm+2PcFAKDB3YAbPrkBTnfkmb6BbSCPKT3G995aA17a/JK3dSYAXDv+Wny4+8OY169SqVBsKcaWhi0AgB2NO6BWqaPO9ws8RqB5/ebhqW+fwhc10s9r1plxoP2A9/lMPROL4cwsnYn7Z9yPwdmDo+6r1+px1fircOGIC2OqdOxLAqtgiYiIkoFX4btJ88b38dlbUpuCkbMXQJcV/o4pT9LvUGtwIH3zvKHY3xQ8EzFW2WYBTe1OuPwSiw2tTtm8Q6tBhzanb7ulozOoyjEaU5T2mznW4CRitjn2YC/W+Yh9hdWgw/1njsbw4thbeLR3zak0p1FikRWLREQSlediXFuD97F/fufEff+ULmL99oSRGJEf4rNaTLwrgj7WtqkaAWjZLyUTPSb8Btj+oW/b06r0SBn8Wrfbi4HJl0rfN9cBtuLgGYv+oiUys2Kveuh2nuSfMbaqj5jMvBEoGAVkD4i+bzrT6LqSsOkVqxIRBQn4Z7Dd1Y6mb5tQ93odrh1/LcbNHQdTpQkqlQozimfgh4PSDdRGrRHzKufhnMHnRD580FxoLXRdnQouH305Nh/ajN1NuwEAo3JHxZSMClRu87UQ39W0S5HKt34ZUvzQ2BWDWAJuXEp2e9JEaVSpv7FIpVLh+Irj43qNXW9Pu0QbKxaJiKg78Cp8krndbuxY+QwOrHgIe7fFVmm4pyF8deDYskw89+uJ3m3/BGEkuw5KxxS0ahxu74TT73UigJpGX0WAzahDu9N3F57/c7GK1n4zVBLRZkyfBFh36Oj6b2g1pM951bNikYhIztkKURRx14odOOOVNqzbWgtRDBE71H0nfT24PXlrOSjd8Y8saSYSDu3wPXfcbYA5T76/xW9bE76rQUT6gJnQU67wvbetOHjGoj9DmHnSxq4LfroefJFKowNOexqYfJlyxzRmAJd8DFTNVO6YfZXOCCYWiYh8RFHEj2/+iJ8f/BnqPWoMzx4ue37+gPlo7ZTGr8zvPx9LJi/B4vGL434fTxvRBYMXYHDWYBzqkG5imlMxJ6F1V9orvd/XtNZgQEbwzTVqVWy/g6rCfC5YdFJi0ayTbmjKVvKmIEpLTCwSEVF34FX4JOpoa8Udiy/C7o+WI3Pmr3H675bG9Lqf6pojPj+xn+8OtvrmjpiO+WNdEwDAqNPgcKsTLpfbuw0AdY2+49iNWnR0+ioWag63Q6eJ7+JItCq5HGtwYjEZVYh5Xe8zID/GVmW9nP+lYk8r1HSqWNSxYpGISKbD0YmF19+PJa9vx60z9Pj7dScFf96KbmDd37u+T6BisfVA5OdFN7D+ReDAVmm7vFpKFB7e49tHZwROfED+OovfvMfANqSxMgRU+mu6Wr2qVFIFY2cb4ArTlSFcMnNqV3LSc9HGk2gzZiS2xmQZeSYw5MRUryI96YzMKxIRdXF1uvDwzQ9j/dPrkX18Nh557hFotfLfUcfnj0eeMS/MEeKnUqlwa/Wt3m1P0i6ShvYGvPbTa7LH+mf0935f31YfU9Wjp/2qp/2mp9IvXALSKlilNXd9cOQYU9w6nXq9aDMoiYiIlJA+GYcU+NeT/w9fr/4AQ869Ha2FY2JOnG2uaYr5PQ62xNYWdddB6e6/LLMAh8uNxq7Wp55qtoOtvuNkGAVZwrLmcDvyrIaIlZSB/Of6NbUHX7DLjjBPEYi9EjOaTLOAL288Fo3tndF37kZv/W4aNtc0wapQ0s8saGDVa2XVpZ7kcDrNWBRYsUhEJHPb8x/g5XfW4IXfDMWC4t2h5779vCZyS9BofnwX6Hd0+Of/9yrQUg9Y8oHmWqlNZHZ/af6jv8Fz5ds2v9mQ2gRn4wQmFv15Zk+6wtykZcgI/fi0K4FRCwBT141eo34JlEyI/F7Uc0y7WprnqUviRTctKxaJiDxefuplvPXCW5h+xXQcGnMIGSFuxFGpVDim7Bgs37w86mzFWA3LGYYSSwl2N+9Guyt6F6Zb19waVFU4NHuo93u36MbInJFRj2PQSB0NtCrp93CT1oQmZ/hrPJ7EokeuUYFW8JTWWLFIRETdgVfhk0B0SUmsky64Ag/9/d/IHjol9teKore6MBYHWjrgDtXSLEB9s5Q4zOpK6B3s2lapgLIskyxBmWHSod3pq1jYe7gNxZnxBSb+yazVWw/IjgcABp0GZiF8j369Trm/mnk2A/rn9ayKxeHFdpw+rgRqtTIXnbQaNWYMysVPtc1oc0jn2tMK1RjhPPc18VbWEhH1VU6XFBtcv2A6PvnHvVgwMT/0ju5OYMOLgDFT/ngMsYVX425g0z+DH28/LH1t2Q9MvRKY8jvfc4UjgxOLHl3zkWAtin0NHp65iJ7KxHDJQcCXWAxHHeHGHGu+7z0AILsKMHdVGHgqHTXpc2NPrzLrFuCyz4Gcgcl7j2QmLYmIegl3Vwed0359Gh56+SG0jGsBAG970kCn9j8VALyzFpUwIFNqXdreGT2xeO7Qc/Gf0/8je8x/xqIKKozKGRX0OiFKu3ZTlM8EmyBvvR6YaCSKFysWiYioO/SIxOLjjz+OiooKGAwGTJo0CV9++WXE/V955RUMHjwYBoMBI0aMwIoVK7pppdGtXvUO9j57KTqb6mG2Z6Jq8LC4Xl/X1IGmCNV1gdf56ho7gpJ2gTpdvnmJnsRiQ5svkViRY0KDX8VipklAm98xD7Y4UJ4VX2Bi8Zvr53KLeGPD3qB9MiNULTI9FL+TRxVhf3MHtuyXWum2d7qg06jSqj0oKxaJKFF9KRZ5b/VaDH6sCVsPumEzGzBhRIgESv3mrq8/Am0HgbELfc+JbuCbv0jfm2NoxzXgeODHlYAroIvC/q73OOpaYPpieZKveHzw/oFsURJ/ocy+Cxh+ui9pFJgwPdLjx2LwPKBwFFB1THKOT0fOmBG6elcpgim5xyeiPqkvxSIbv9yI9desR/vudugNemQMyoDDHflzf2iOVB3Y7Ig8GiYR0Sq4SiwluHr81cgLmPfs33WqwFwAiz74huWHZz6MswefHfbY0RKLdr2844ESI2IGZQ4CABxTxlgkHRl1rFgkIqLkS/lV+JdeeglXXXUVli5dirVr12LUqFGYPXs26urqQu7/2WefYcGCBbjwwguxbt06zJ8/H/Pnz8emTZu6eeVyoiji1ef+hNuu+DWE3H5QGywRE4Th/FQbOYj2n30IALWNHWhqi9wqZJ9fe0ybQQedRiVrDdo/14IDfhWLWWbBW/UGAG4RGFIov4suGv+KxWGFNny0eX9QK9Vo7VApPkcNzIVBp8aGXQ0ApBmLgkYNrUJVkb2B0JVETZ+fmIiU0FdiEQD408vv4oSLb8HAbDVyzWH+NXR3Ajs+lb5v+BkomQhUHu17/rNHgZ/ek77Pj+EGqVELorccDXy+cHT041rimLXkaZWqtwC/+DNQMl7ajpRYFMyJz26MRK0GfvsxMOQk5Y9NvYPOBEYjRBSPvhCLbKjbgE31m/Duv97F1WdfDSFLgDZDui7wzvZ3vPuJ8XRFUIhBa4j4fCzJPP95i/4q7BW4YdIN3u0Lhl8AAKgurgYQfr5jqa0UQHBiUQm5plxsXLgRs8pnKX5s6vlYsUhERN0h5YnFBx54ABdddBEuuOACDB06FE8++SRMJhP+/Oc/h9z/4Ycfxpw5c3DttddiyJAhuOOOOzB27Fg89thj3bxyH4fDgWfvuh7PPfRH/PKi3yNn/vVQ6yIHruH8WNeEfFvsc4RcoogdXfMTw9l90JfQU6mAPKsBjX7JyKo8eRI006RDq0OewBxVGl+w659YnD+mGEZBg1e+2S3bJ9uS4LwkCsmg02BqVQ5+rG1Ch9OFdqcLglatWLvV3sBbsZg+PzIRKaAvxCIulwtX3v8CLvvjn7Ho7Hn49wIzbPow/xj+/Jl8e9IlgNlvns+uL4GJFwH6GG8q0hmBeQ/6tresAloPRn5NLAlLS0Fs7w+Eb1tqjBK/WMK0iKXkmPEHYNz5yUno9iTDTpUS9pHa6RIR+ekLscgXe7/APx/5J5YtXoZj5x+LoTcOhdaixf7W/dh0wJfw7Ag327iHGpI1BAAwOGtwTPtX2CuwceFG6DXS9Q6zNjixuOoXq/DEMU8AADL0GcoslHqNWWXJTfgysUhERN0hpYlFh8OBb775BrNm+T5U1Wo1Zs2ahTVr1oR8zZo1a2T7A8Ds2bPD7t/R0YHGxkbZH6X98P13+OqDd3DF7Q/h11fcAJUq8dO6uaYJlbmxX2xRq4Ddh9oi7rPzYItsu9BukFUs9suRB7oZJgGdbt9dhFlmAbmW+BKlZr1vrp9R0OCGEwYHrTPXysSi0k4aVYS9h9vx88EWdDjdELRpVrGoZcUiEcWnr8Qi27Ztx3Nvr8bjN/4aDy+5BNqwM2dF4Ls3fJsFI4F+0+VtG6ddBRx1XXwL8K/O2/898O/fR95fMEWucgQAqyexqA5uKxnttd79MmJ8D+oWM28ETnoYMMTXCaPXmXAhcOzNvpmfREQR9JVYpLm+GXvf34uLb7gY1917HdRdv5u9s/0d6DV6TCyYmPCxV25fGdOcxGiiVS6GUtcqVY2OyBkBALhj6h2YVzkv5tdbQtxMk2fOg7ZrFjMTi+nnwZkPYuPCjUk7vlajhUalib4jERHREUhpYrG+vh4ulwv5+fK7xfPz81FTUxPyNTU1NXHtv2zZMtjtdu+f0tJSZRbvZ+So0Xjg1U9wzEm/OKLjtHR04kCLA0MLYx/WXWg3ouZw5AD754CKxqIMI1x+icPAxKLdpJPvbzfIZibGwqyX73/WhFKUZkl93p1dMx9zWbGouGOH5EGrVmHtzga0d7ogaNTQpFFiMZ3mSRKRMvpKLDJgQH9se/0eXHbW8ZF3PLgdaNwDlEntuVA6WZqjqO+KPSz5wJRFgCU3/DHCUXfFDyc/Dow+x/d4uBuu8odHPp4xC1BppNcbs4Kfi0XU5GWS5iwShZjDRUQUSl+JRax5Vkx6aBIWXLoAKpUKqq7bPdftX4dTqk7xVvAlYsX2Fbjls1sSfr3LLXVk0ql1UfYMdqD9AABgVN4oAMD8/vOxbPqymF9vFSJf30nnxOLGhRuTmmBLZ4n8XSciIopHn78Kf8MNN+Dw4cPeP7t27UrK+5ht8ffFX7uzAc9/vgNPfbINALB1vzRfcWpVTszHKM82obYxfGJRFEXsPtQmq+DyJPg8MkwCbH6JwwyjPAApyTLBGm9iUZDvr1KpsHSeNIx9a530c8bT8rUnm1KVDSA4QZsKVoMOE/tl4cfaZrQ5pFaoGgWGv/cWrFgkop6ou2KRTFuYzyFHM7DnG+n7XV8AGWVAvxnSttoTCnb9y5nZL/Jcwkg8bR8FE3DyI0DFdGlbE2amctGYKMdTA8YMqVpRneBd19ESi/aSxI5LRETUi3RXLKKzBCcz1FDj4pEXe7ezjdlxH/fVk1/FjJIZCa/Lk+Q0aoxR9gwvyxDjTU0BoiUWEznudROui3pcSm9CuPibiIhIISkd/JGTkwONRoPa2lrZ47W1tSgoCN2aqqCgIK799Xo99PqelcDyzBbcebAVjk4XDrVK8w7dotR2NJ5WqOVZJnyxPfwco+aOTrQ6XCjLMmFnV+ViaWZwv/WyLBM27ZXaoWSY5AFIRbYp7kqwwIpFACiwS0G8Z1Z7Th+pWBxSaMNXS2ahpxQGzhtZiCWvbYKj04Assw6asO3w+h5BE3CBnIgoij4fi6x/AWja59tuOyRVE5riv6gXli7MHJdoCcrC0dGPbSsGNDpfS9PcIVKr1VgTjbmDgOLxgDXMLMVQicVBJwIaLZDgvGwiIqJ49KVYxC268e3+b7GhbgMaHdL1hRP6nYBck68TQouzJdzLw+qf2R/3zrgXK3esTGhdanXq7qmPlgDM1Md/Q9fMspn4rOyz6DtS2hLUTCwSEVFypbRiURAEjBs3DqtWrfI+5na7sWrVKlRXV4d8TXV1tWx/AHjvvffC7t8T5XXNFlx26gi8cfk03Dnf1wqsX7YJGabwLQv8OpgCAMqzzbK2poHqmx0AgAF5vmRlUUbwXXr9cn1VDoEVi1UJVOKZhOgX/LL7SGIRkOZF9pSfZ87wQqhUQE1jO/RaTVpVLHoT4OnzIxPREeqzsYi56wKewQ6MWuB7XGeSthOtAAwl0XaihSOlr9oIn59z7wXG/MpX9bjoc+DSNUBWlbRtK4r8HgY7cMEKYMjJoZ8PtfYFLwCnPuVrD0tERJREfSkWOdB+AE9vfBo/HPrBWyV4yahLQu6bLhVVRWYpVsk1hm4zr9VoYdD0/JuZEqk07YlOqToFR5UcleplJF26/P9FRESpk9KKRQC46qqrsHDhQowfPx4TJ07EQw89hJaWFlxwwQUAgPPOOw/FxcVYtkzqYX/FFVdgxowZuP/++3HiiSdi+fLl+Prrr/HUU0+l8sdIWL7NIGszOqjABpshfGJRFOVJxNIsI9Sq4ISjR31zB4w6tSyZWJQRHLRW+VVJ2ow6qAB4DhlYwRgLS4iKxUA5FgY6yZBlFjC6NANrdzZAr0uvGYsatQpqFfOKRBSfPhGLvPMHYOfnwIxrpe1+RwGb3wGOvQXoPwtY/w/p8QGzgaxKqSVqPNoafN97Ziae9Aiw45Po7UbD8VQLDjkl/D5lk6U//vKH+r6/8D/A2r8B2f3DH8M/celp1+qZ82QLkxRltSIREXWjvhCLnDnoTGQbsjGzbCbG549HW2cbNh/ajBKrvDtAh6uj29cWbb6j2m8e9C8H/RKTCydH2Ds+dkGKk0qt4edamsJ1f4jR7IrZeOXHVzA6d/QRHSeSx459DN/UfpO043eXO6fdmeoldAsmFomIKNlSnlg866yzsH//ftxyyy2oqanB6NGjsXLlSu8g8p07d8raVkyZMgUvvPACbrrpJtx4440YMGAAXn/9dQwfPjzcW/QqUyqzoI6QCHK65BlEvVaD8mwztteHbidS39yBfJsBeq3vHBbagysW+/tVNGrUKlgMWjS1dwIADDFUHwYy6Y+sYjHe1qskd+LIQqzd2QCDVpNWiUXAvx0qEVFs+kQssu5v0tctHwDDPIm6rn//NTogZxBQvxnof6w0AzFWzjZg/YvAj+/4HvNU+Y1bKP0Jx9MKNdyFDcEM/H4D0H5I/vjw02Jfn8EOTLk8jv1twIgzpAQrAFg9FY/p9VlJREQ9S1+IRSYUTMCEggnebYtgwbj8cUH7RUvyJYNWHfnSl8ovDlgyeUmylxNkftV8DM0ZGn3HMCYVTsLGhRsVXFEwo9aIacXTkvoe6eqiERfh9x/8PqG2uOGk4v8zIiJKLylPLALA5ZdfjssvD31R6MMPPwx67IwzzsAZZ5yR5FUlT3OHlLBzi8FlhoOLbHEfb1iRLUJi0YERxXYIfonFUPMPK7Ll7U5tBp03sWiNUEEZTiwVizZD+H38E6H+rp8zGI9/uAUGXc9NHhl0mq6vqVvj3BGFuOOt76HXqaHtSixmmnSoyDFD28cTbzqtmteHiShufSYW+fZFwNXuq8zzyKqUEouaOD7TOxqBn1cDap1UAbm1q+VaqLmEAFA0BtjpN+/nhHsArUGacxhOVgWACt/2zQeAtvCzoxVx+jO+7825UgVmpNlLV3wLbF4B2IuTuy4iIkprfSYWiULT1Y7dpD2yKr2+ZPH4xaleAqXQzLKZiieG9Rp9SqqDiYgoffSIxGK6+XRLPQDgYIsj6LnMBNqOjinLxFvf7gOAoHmLh9ucqMg2QaeJnGnpFzBH0W7UYU9DG6ZWZXsTU/Ew6jSydqqhqLpm/5njqIi85OgqLJhUBmsMictUKcow4uyJpZjWP/QMhe5QaDdi0cwqFNoN3vO89ubjUNPYHlPStzfTadTMKxJR+hpyCvC/1wBDRuT9CkdJXzPKpa/2EkClAkacHrzv6c8CFVOBe6siH/OCFVIiMr+rWkJnAObeE9fyodEClrz4XnMkNFppXqMxK/w+meXA5Eu7b01ERER9mKc1qFYj/V6qRt++8TURya4+pL7PoDUwsUhEREnVtzMMPdT/9jaGfFzQqmE3xl8dOKrEN9vop7omjCuXt08YXmzHvsPtssdyLALqm32JzcAqRrvJtw61KrY0TWGGEfhZamemUqlgFDRodbiivs5T4RerRM5Rd7vrtJGpXgKunT0YnS63d1ulUoVsg9vXREuiExH1SZd/I1UUjj5HqhD8+F5AsACmbOl5T7Wdpy1pyXjg9+ulZCIgfb35ICAGfG5nlPlaq445V6qE1IaZP6hSARW9sEXWRauAlvpUr4KIiCgteNqSWnTSOBabPv6uTeHkm/JR11qn2PGU4EmgRmvHGolNsKHREfo6ElEoOcYciCG6pBERESmFicVuVtfUHvRYvk26QDeuLDOhNpVD/dqnfrv7ME4d7bsoqFGpMKzYFpRYLLIbZYlF71qsUh/2DL/kXawtPe87YyRGl9oxuEBajynGxKKSThtbjLvf+QHDEmgp2xf19banoUgVi0wuElGayekv/QGAY5ZIicStH/jals75f4C9FLD5tfPM6ic/hloN+FcN/GYVcHivb/uUx5Ky9JQz2KU/RERElHIaVXw3Hvv7y5y/YF/zPgVXc+SmFk3F0OyhWDw28XanH535ETrFTgVXRX3dbVNug8vdvdfjiIgovTCx2M2+3nEo6DFNV6tRa4SZg5GYBN/r6po68Pl232yiHKsQsr1qcaYR3+45HPaYmWbfa5yu2O5y0ms1uHBaZcC6gpOXyZRnNWDznXNirrKkvkfQcMYiERHGnQ+M/CWglW4YgkYLTLsyvmOUjAfCjFNMyJB5wJuXA6UTFTwoERERkUSv0aPCXpHqZcioVCq8NO+lIzqGVqOFlpfvKA6GcB1GiIiIFMLIJAmyzQIOtDiw+1ArRpdmyJ770i/plwzl2SZ8umW/d7ZhcYYRVkNw69DijMgtMbP8kpGJtpY0xTE7UUl6bWrel6J7+rxx+OSnemSZ458lGivOWCQi6qLrYRcUjJnATftTvQoiIiIimQJzQaqXQERERNSrMLGYBMOLbfjox3p8sf0gZg/N9z5+oMWB3Q1tyLPqUdeUnCHKxw/Nx9OfbEdXESTKskyw6IP/MxdGSSxmKpD4MSeQWBxXnomqXHPQzMcci/6I10Opd9zQAhw3NLm/tAna9Gv/SkTUa2iTd2MJERERUSie9qo6jXTTtU7tu/n6lXmvoF9Gv5CvIyIiIqLQmFhUwKrva7Fpz2FMrcoBAO98t32H2/HRT/Xe/bbUNUPQqDG5Mgtvbkis778+yrzDceWZeH39XuzvSlz2yzF7W63665djAoCQSUdAPmNRq04sUROYHIzFvy6dAkenOyg5ZNazCpFiM7LEjo5OF+csEhERERER9WK3TL4Fw3OGe7enF0+HQRN7RwaLzgJAapHq/9WkM3n3GZw9OOIxHpn5yBHNfSQiIiLqi5hYVMCra/dg057DGFOS4Z13mG0RkGfV4/3va6WZb5ASi4MKLEfUBjJaqkSrVmNhdTnue/dHAEBFjinkfllmKaDul2MO+XyGyZdYjFYBFq7laayJxXyb/BcDVpzRkbhz/nDsb+qAMUWteImIiIiIiOjInTHoDNn2E7OekG0XW4qxp3lPUtcws2xmUo9PRERE1Bsxg6MAtwgcanVi6/4W2eOnjSlBfbMDew+3A5BaoU6uzIZRl9x87sIpFd7vzULwfMVY+CcWAxM0gW1SDWESOOGqIf29uWgqrp09MIEVEoWmUqmQZ+thc8WIiIiIiIhIUStPX4mNCzfGvP/o3NEAgFnls5K0IiIiIqL0wMSigr6vaZRt98sx46gBud5tQavGnGEFUB1Bh8ZYqvmshsSSif7sxq7kYYi1ehKGy04bgYH5lrAJxFgqFkeWZmDm4Pyo+xERERERERFR33B0ydEAgHOHnttt75lnzsPGhRsxuXByt70nERERUV/ExKKCdh5shaPTLXvsphOHeL8fUmBFWXbo1qOxUgdkJS2G0Mm7QfnWiMcpz5JapA4rsod83lOxqIIKRl3oisQFE8vw799Nw8Aw72UNWFtlrvSzV1dlR1wbEREREREREfVdZsGMjQs3osRakrT3EDTSDdOe2YpEREREpAzOWFTQroNt2He4TfbYwAJf0m1SvyxkH8F8xVC06tDljwZd5JxxplnANzfNQntAItTDbpQSi2oVIlZY6rXh59gFJhZNghbf3T4bzk4x4tqIiIiIiIiIiI7ENeOvQW1rLcYXjE/1UoiIiIj6FCYWFVKRbcKOA634dk9D2H3GlGVAHSYRmKj8I5gll20Jf9eeTqOGSdBA5ZdV3L5sLr7YfhDFGcaYjm8SpL9euX7vYxK0gLK5VSIiIiIiIiLqA5RsU2oRLPjTrD8pdjwiIiIikjCxqIDdh1rR0elGZY4ZP9Y2I88qT/YNKbTh+32N0GnCV/fFyiRIxxhZYkdDqxP6GGYuJspm0MmqFVUqFSZXxt7GNNzsRSIiIiIiIiIifxsXbkz1EoiIiIgoBsz8KODnA60AgPOqy/Hy17tgM+gUPf7BFof3e51GSiS+efk01BxuR94RVCxGU12VDXuYGY6x8CRBiYiIiIiIiIiIiIiIqPdjYlEBa244Bmu2HEC/XDOeX/MzdhxoUezYS9/8H/Y0+OY2ehKLAFBgD04qWgISgZHmI0Zz/xmjcLDVIXvPeHjWciRrICIiIiIiIqK+QadW9kZsIiIiIup+yeujmUYK7UacNq4Eo0szkG0WUNvYodixcywCFlaXe7fN+shVgAad9Pz4iiwA8Sf1/GcqqtUq5ESYwxjNhIosLD5uACpzzQkfg4iIiIiIiIh6txsm3QCj1qjoDEUiIiIiSg0mFhWkUqkwY2CuYsfLt+nx7PkTsPSkYd7HYq0evHneULz1u2kYXZoJADhuaD4AoCzLFPY1Eyoy8Zvp/Y5gxXI6jRpXHDsQ/fOsih2TiIiIiIiIiHqXUmspvjznS2jUHJlCRERE1NuxFarC5gwvwKvr9gAABuRbjuhYJkF7RBWDw4vtsu/X3nwctJrwJYyvXDIl4fdKlk23zsaHm+tQlGFM9VKIiIiIiIiIiIiIiIjSGhOLCps2IAc6jQoq+NqSChGSeeGcPbEMY8syFF1blllQ9HjdwWLQYt6oolQvg4iIiIiIiIiIiIiIKO2xFarCTIIW48szoVap0OF0AwAeWTAGRw/MRb7NAMDXlrQkU6rCK+9qTzqowNcy9K7TRuAX40tlxx5TmhH3zEQiIiIiIiIiIiIiIiIiJbBiMQmuOn4QVm7cB4NOytuWZ5vx119P9D4/piwTX980yzsvMc9mwJdLjkW7wx32mFvvmoudB1uh13IeAREREREREREREREREXU/JhaTYEJFFsaVZUKtDl9eGDg7Mc9qiHhMjVqFfjnmsM+/e+VR+Nfa3Si0Rz4OERERERERERERERERUSKYWEySSEnFZBhYYMUNc4d063sSERERERERERERERFR+uCMRSIiIiIiIiIiIiIiIiKKiolFIiIiIiIiIiIiIiIiIoqKiUUiIiIiIiIiIiIiIiIiiirtZiyKoggAaGxsTPFKiIiIeg7P56Lnc5KSh7EIERFRMMYi3YexCBERUTDGIkSxS7vEYlNTEwCgtLQ0xSshIiLqeZqammC321O9jD6NsQgREVF4jEWSj7EIERFReIxFiKJTiWmWgne73di7dy+sVitUKpUix2xsbERpaSl27doFm82myDHTFc+lcngulcNzqRyeS2Uk4zyKooimpiYUFRVBrWan9GRiLNKz8Vwqh+dSOTyXyuG5VAZjkd6NsUjPxnOpHJ5L5fBcKofnUjlKn0vGIkSxS7uKRbVajZKSkqQc22az8QNBITyXyuG5VA7PpXJ4LpWh9HnkHXndg7FI78BzqRyeS+XwXCqH51IZjEV6J8YivQPPpXJ4LpXDc6kcnkvlKHkuGYsQxYapdyIiIiIiIiIiIiIiIiKKiolFIiIiIiIiIiIiIiIiIoqKiUUF6PV6LF26FHq9PtVL6fV4LpXDc6kcnkvl8Fwqg+eRAvHvhHJ4LpXDc6kcnkvl8Fwqg+eRAvHvhHJ4LpXDc6kcnkvl8Fwqh+eSKHVUoiiKqV4EEREREREREREREREREfVsrFgkIiIiIiIiIiIiIiIioqiYWCQiIiIiIiIiIiIiIiKiqJhYJCIiIiIiIiIiIiIiIqKomFgkIiIiIiIiIiIiIiIioqiYWIzR448/joqKChgMBkyaNAlffvllxP1feeUV57ADKQAADvNJREFUDB48GAaDASNGjMCKFSu6aaU9Xzzn8umnn8b06dORmZmJzMxMzJo1K+q5Tyfx/r30WL58OVQqFebPn5/cBfYi8Z7LhoYGLFq0CIWFhdDr9Rg4cCD/P0f85/Ghhx7CoEGDYDQaUVpaisWLF6O9vb2bVttzffzxxzjppJNQVFQElUqF119/PeprPvzwQ4wdOxZ6vR79+/fHX//616Svk7oXYxHlMBZRDmMR5TAWUQZjEWUwFqFQGIsoh7GIchiLKIexiHIYjxw5xiJEPZxIUS1fvlwUBEH885//LP7vf/8TL7roIjEjI0Osra0Nuf/q1atFjUYj3nPPPeJ3330n3nTTTaJOpxM3btzYzSvveeI9l2effbb4+OOPi+vWrRO///578fzzzxftdru4e/fubl55zxPvufTYvn27WFxcLE6fPl085ZRTumexPVy857Kjo0McP368OHfuXPHTTz8Vt2/fLn744Yfi+vXru3nlPUu85/Ef//iHqNfrxX/84x/i9u3bxf/85z9iYWGhuHjx4m5eec+zYsUKccmSJeKrr74qAhBfe+21iPtv27ZNNJlM4lVXXSV+99134qOPPipqNBpx5cqV3bNgSjrGIsphLKIcxiLKYSyiDMYiymEsQoEYiyiHsYhyGIsoh7GIchiPKIOxCFHPxsRiDCZOnCguWrTIu+1yucSioiJx2bJlIfc/88wzxRNPPFH22KRJk8Tf/va3SV1nbxDvuQzU2dkpWq1W8bnnnkvWEnuNRM5lZ2enOGXKFPGZZ54RFy5cyAC6S7zn8k9/+pNYWVkpOhyO7lpirxDveVy0aJF4zDHHyB676qqrxKlTpyZ1nb1NLAH0ddddJw4bNkz22FlnnSXOnj07iSuj7sRYRDmMRZTDWEQ5jEWUwVgkORiLkCgyFlESYxHlMBZRDmMR5TAeUR5jEaKeh61Qo3A4HPjmm28wa9Ys72NqtRqzZs3CmjVrQr5mzZo1sv0BYPbs2WH3TxeJnMtAra2tcDqdyMrKStYye4VEz+Xtt9+OvLw8XHjhhd2xzF4hkXP55ptvorq6GosWLUJ+fj6GDx+Ou+66Cy6Xq7uW3eMkch6nTJmCb775xtsSZNu2bVixYgXmzp3bLWvuS/i507cxFlEOYxHlMBZRDmMRZTAWSS1+7vRtjEWUw1hEOYxFlMNYRDmMR1KHnztE3Uub6gX0dPX19XC5XMjPz5c9np+fjx9++CHka2pqakLuX1NTk7R19gaJnMtAf/jDH1BUVBT0QZFuEjmXn376KZ599lmsX7++G1bYeyRyLrdt24b//ve/OOecc7BixQps2bIFl112GZxOJ5YuXdody+5xEjmPZ599Nurr6zFt2jSIoojOzk5ccskluPHGG7tjyX1KuM+dxsZGtLW1wWg0pmhlpATGIsphLKIcxiLKYSyiDMYiqcVYpG9jLKIcxiLKYSyiHMYiymE8kjqMRYi6FysWqde4++67sXz5crz22mswGAypXk6v0tTUhHPPPRdPP/00cnJyUr2cXs/tdiMvLw9PPfUUxo0bh7POOgtLlizBk08+meql9Soffvgh7rrrLjzxxBNYu3YtXn31Vbz99tu44447Ur00IqKQGIskjrGIshiLKIOxCBH1NoxFEsdYRFmMRZTDeISIeiNWLEaRk5MDjUaD2tpa2eO1tbUoKCgI+ZqCgoK49k8XiZxLj/vuuw9333033n//fYwcOTKZy+wV4j2XW7duxY4dO3DSSSd5H3O73QAArVaLzZs3o6qqKrmL7qES+XtZWFgInU4HjUbjfWzIkCGoqamBw+GAIAhJXXNPlMh5vPnmm3HuuefiN7/5DQBgxIgRaGlpwcUXX4wlS5ZArea9L7EK97ljs9l4V14fwFhEOYxFlMNYRDmMRZTBWCS1GIv0bYxFlMNYRDmMRZTDWEQ5jEdSh7EIUffiv0xRCIKAcePGYdWqVd7H3G43Vq1aherq6pCvqa6ulu0PAO+9917Y/dNFIucSAO655x7ccccdWLlyJcaPH98dS+3x4j2XgwcPxsaNG7F+/Xrvn5NPPhkzZ87E+vXrUVpa2p3L71ES+Xs5depUbNmyxftLCAD8+OOPKCwsTNvgOZHz2NraGhQge34pEUUxeYvtg/i507cxFlEOYxHlMBZRDmMRZTAWSS1+7vRtjEWUw1hEOYxFlMNYRDmMR1KHnztE3UykqJYvXy7q9Xrxr3/9q/jdd9+JF198sZiRkSHW1NSIoiiK5557rnj99dd791+9erWo1WrF++67T/z+++/FpUuXijqdTty4cWOqfoQeI95zeffdd4uCIIj//Oc/xX379nn/NDU1pepH6DHiPZeBFi5cKJ5yyindtNqeLd5zuXPnTtFqtYqXX365uHnzZvGtt94S8/LyxDvvvDNVP0KPEO95XLp0qWi1WsUXX3xR3LZtm/juu++KVVVV4plnnpmqH6HHaGpqEtetWyeuW7dOBCA+8MAD4rp168Sff/5ZFEVRvP7668Vzzz3Xu/+2bdtEk8kkXnvtteL3338vPv7446JGoxFXrlyZqh+BFMZYRDmMRZTDWEQ5jEWUwVhEOYxFKBBjEeUwFlEOYxHlMBZRDuMRZTAWIerZmFiM0aOPPiqWlZWJgiCIEydOFD///HPvczNmzBAXLlwo2//ll18WBw4cKAqCIA4bNkx8++23u3nFPVc857K8vFwEEPRn6dKl3b/wHijev5f+GEDLxXsuP/vsM3HSpEmiXq8XKysrxT/+8Y9iZ2dnN6+654nnPDqdTvHWW28Vq6qqRIPBIJaWloqXXXaZeOjQoe5feA/zwQcfhPy3z3P+Fi5cKM6YMSPoNaNHjxYFQRArKyvFv/zlL92+bkouxiLKYSyiHMYiymEsogzGIspgLEKhMBZRDmMR5TAWUQ5jEeUwHjlyjEWIejaVKLKmmoiIiIiIiIiIiIiIiIgi44xFIiIiIiIiIiIiIiIiIoqKiUUiIiIiIiIiIiIiIiIiioqJRSIiIiIiIiIiIiIiIiKKiolFIiIiIiIiIiIiIiIiIoqKiUUiIiIiIiIiIiIiIiIiioqJRSIiIiIiIiIiIiIiIiKKiolFIiIiIiIiIiIiIiIiIoqKiUUiIiIiIiIiIiIiIiIiioqJRSLqtVQqFV5//fVUL4OIiIjSFGMRIiIiSiXGIkRElApMLBKlKZVKFfHPrbfe2m1rOfroo73vazAYMHToUDzxxBNRX7dv3z6ccMIJ3bBCIiIiUhpjESIiIkolxiJERESJ0aZ6AUSUGvv27fN+/9JLL+GWW27B5s2bvY9ZLBbv96IowuVyQatN3j8ZF110EW6//Xa0trbi+eefx6JFi5CZmYkFCxYE7etwOCAIAgoKCpK2HiIiIkouxiJERESUSoxFiIiIEsOKRaI0VVBQ4P1jt9uhUqm82z/88AOsViveeecdjBs3Dnq9Hp9++inOP/98zJ8/X3acK6+8EkcffbR32+12Y9myZejXrx+MRiNGjRqFf/7zn1HXYzKZUFBQgMrKStx6660YMGAA3nzzTQDSnXuXX345rrzySuTk5GD27NkAglt+7N69GwsWLEBWVhbMZjPGjx+PL774wvv8G2+8gbFjx8JgMKCyshK33XYbOjs7Ez+JRERElDDGIoxFiIiIUomxCGMRIiJKDCsWiSis66+/Hvfddx8qKyuRmZkZ02uWLVuGv//973jyyScxYMAAfPzxx/jVr36F3NxczJgxI+b3NhqNcDgc3u3nnnsOl156KVavXh1y/+bmZsyYMQPFxcV48803UVBQgLVr18LtdgMAPvnkE5x33nl45JFHMH36dGzduhUXX3wxAGDp0qUxr4uIiIi6D2MRIiIiSiXGIkRERMGYWCSisG6//XYcd9xxMe/f0dGBu+66C++//z6qq6sBAJWVlfj000/xf//3fzEF0C6XCy+++CK+/fZbb4ALAAMGDMA999wT9nUvvPAC9u/fj6+++gpZWVkAgP79+3ufv+2223D99ddj4cKF3nXdcccduO666xhAExER9VCMRYiIiCiVGIsQEREFY2KRiMIaP358XPtv2bIFra2tQUG3w+HAmDFjIr72iSeewDPPPAOHwwGNRoPFixfj0ksv9T4/bty4iK9fv349xowZ4w2eA23YsAGrV6/GH//4R+9jLpcL7e3taG1thclkivbjERERUTdjLEJERESpxFiEiIgoGBOLRBSW2WyWbavVaoiiKHvM6XR6v29ubgYAvP322yguLpbtp9frI77XOeecgyVLlsBoNKKwsBBqtXwEbOBaAhmNxojPNzc347bbbsNpp50W9JzBYIj4WiIiIkoNxiJERESUSoxFiIiIgjGxSEQxy83NxaZNm2SPrV+/HjqdDgAwdOhQ6PV67Ny5M665AQBgt9tlLTriNXLkSDzzzDM4ePBgyLvzxo4di82bNx/RexAREVFqMRYhIiKiVGIsQkRExMQiEcXhmGOOwb333ovnn38e1dXV+Pvf/45NmzZ523lYrVZcc801WLx4MdxuN6ZNm4bDhw9j9erVsNls3j7+ybBgwQLcddddmD9/PpYtW4bCwkKsW7cORUVFqK6uxi233IJ58+ahrKwMv/jFL6BWq7FhwwZs2rQJd955Z9LWRURERMphLEJERESpxFiEiIgIUEffhYhIMnv2bNx888247rrrMGHCBDQ1NeG8886T7XPHHXfg5ptvxrJlyzBkyBDMmTMHb7/9Nvr165fUtQmCgHfffRd5eXmYO3cuRowYgbvvvhsajca79rfeegvvvvsuJkyYgMmTJ+PBBx9EeXl5UtdFREREymEsQkRERKnEWISIiAhQiYGNwYmIiIiIiIiIiIiIiIiIArBikYiIiIiIiIiIiIiIiIiiYmKRiIiIiIiIiIiIiIiIiKJiYpGIiIiIiIiIiIiIiIiIomJikYiIiIiIiIiIiIiIiIiiYmKRiIiIiIiIiIiIiIiIiKJiYpGIiIiIiIiIiIiIiIiIomJikYiIiIiIiIiIiIiIiIiiYmKRiIiIiIiIiIiIiIiIiKJiYpGIiIiIiIiIiIiIiIiIomJikYiIiIiIiIiIiIiIiIiiYmKRiIiIiIiIiIiIiIiIiKL6/3g5xzfBujAjAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABxYAAAH5CAYAAACs6ttbAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3hb5fn/8be2ZMsjdvYOSSCh7B2gQCgbvqxCKYQRVtmUvfqjBNoCLRvKaqEJUGiBAmETZhhJSFgJkOXEiUfivWVb8+j8/jiW4iHZOpK1nPt1XbkcS2c8GraOz+fc92NQVVVFCCGEEEIIIYQQQgghhBBCCCH6YUz3AIQQQgghhBBCCCGEEEIIIYQQmU+CRSGEEEIIIYQQQgghhBBCCCHEgCRYFEIIIYQQQgghhBBCCCGEEEIMSIJFIYQQQgghhBBCCCGEEEIIIcSAzOkegBBCCCGEEEIIIYQQQgghxFCkKAp+vz/dwxAiZlarFaMxel2iBItCCCGEEEIIIYQQQgghhBCDSFVVampqaGlpSfdQhNDFaDQyZcoUrFZrxPsNqqqqKR6TEEIIIYQQQgghhBBCCCHEkFVdXU1LSwsjR44kJycHg8GQ7iEJMaBgMEhVVRUWi4WJEydGfN9KxaIQQgghhBBCCCGEEEIIIcQgURQlHCoWFxenezhC6DJixAiqqqoIBAJYLJY+90dvkiqEEEIIIYQQQgghhBBCCCF0Cc2pmJOTk+aRCKFfqAWqoigR75dgUQiRMRYsWIDBYKCsrCx822GHHcZhhx2WtjEJIYQQQgghhBBCCCFEPKT9qchGA71vJVgUQiTkp59+4rTTTmPSpEnY7XbGjRvHkUceyWOPPZaU/VVVVTFv3jxWrlyZlO0LIYQQIjuVlpZyySWXsMMOO2C328nPz+eggw7ikUcewe12h5fz+/08+uij7LvvvuTl5eF0Otl333157LHHCAQCfbY7efJkDAZD+F9ubi777bcfzz//fCofnhBCCCGyRKzHJIqiMH/+fA477DCKioqw2WxMnjyZ888/n2+//Ta8XOgi7NA/u93OjjvuyJVXXkltbW06HqIQQojtnMyxKISI29KlS5k9ezYTJ07k4osvZvTo0VRWVvL111/zyCOPcNVVVyW8jw8//LDH91VVVdx5551MnjyZPfbYI+HtCyGEECL7vfvuu5x++unYbDbOPfdcdtllF3w+H1999RU33ngjq1ev5h//+AcdHR0cf/zxfP7555xwwgnMnTsXo9HIBx98wNVXX83ChQt5++23+7Qr2mOPPbj++usBqK6u5plnnuG8887D6/Vy8cUXp+MhCyGEECIDxXpM4na7OfXUU/nggw845JBDuO222ygqKqKsrIxXXnmF5557joqKCsaPHx/e9l133cWUKVPweDx89dVXPPnkk7z33nv8/PPP0mpRCCFESkmwKISI21/+8hcKCgr45ptvKCws7HFfXV3doOwj1M9ZCCGEECKSzZs389vf/pZJkybx6aefMmbMmPB9V1xxBRs3buTdd98F4LrrruPzzz/nscce48orrwwvd9lll/H4449z5ZVXcuONN/L444/32Me4ceM4++yzw9/PnTuXHXbYgYceekiCRSGEEEIA+o5JbrzxRj744AMeeughrrnmmh7bueOOO3jooYf6bP/YY49ln332AeCiiy6iuLiYBx98kDfffJMzzzwzeQ9MCCGSZO7cubS0tLBw4UJAmxJrjz324OGHH457m4OxDTEwaYUqhIhbaWkpv/jFL/qEigAjR44M/99gMHDllVfy4osvstNOO2G329l777354osvBtxH9zkWFy9ezL777gvA+eefH24DsmDBgsF4OEIIIYTIQn/7299ob2/n2Wef7XECL2TatGn8/ve/Z8uWLTz77LMcfvjhPULFkCuuuILZs2fzj3/8g61bt/a7zxEjRjBjxgxKS0sH7XEIIYQQIrvpOSZ5+umnOfLII/uEigAmk4kbbrihR7ViJIcffjigBZpCCDGY5s6dGz7varVamTZtGnfddVfEqSMG0+uvv86f/vSnmJZdvHgxBoOBlpaWuLch4ifBohAibpMmTeK7777j559/HnDZzz//nGuuuYazzz6bu+66i8bGRo455piY1g2ZOXMmd911FwC/+93veOGFF3jhhRc45JBD4n4MQgghhMhub7/9NjvssAMHHnhgv8u9//77KIrCueeeG3WZc889l0AgwAcffNDvtgKBAFu2bGHYsGFxjVkIIYQQQ4+eY5JAIMA555yT0P5CFzgVFxcntB0hhIjkmGOOobq6mg0bNnD99dczb9487rvvvj7L+Xy+QdtnUVEReXl5ad+GGJgEi0KIuN1www10dnayxx57cOCBB3LzzTfz4Ycf4vf7+yz7888/88EHH3D77bdz00038cUXX6CqKn/84x9j3t+oUaM49thjAZg1axZnn302Z599NjvssMOgPSYhhBBCZI+2tja2bt3KrrvuOuCya9asAWD33XePukzovtCyIX6/n4aGBhoaGvj555+54IILqKmp4bTTTktg9EIIIYQYKvQck6xduxYgpmW7a21tpaGhgS1btvDyyy9z11134XA4OOGEE+IasxBC9MdmszF69GgmTZrEZZddxhFHHMFbb73F3LlzOfnkk/nLX/7C2LFj2WmnnQCorKzkN7/5DYWFhRQVFXHSSSdRVlYW3p6iKFx33XUUFhZSXFzMTTfdhKqqPfZ52GGH9ajk9nq93HzzzUyYMAGbzca0adN49tlnKSsrY/bs2QAMGzYMg8HA3LlzI26jubmZc889l2HDhpGTk8Oxxx7Lhg0bwvcvWLCAwsJCFi1axMyZM3E6neFQVUQncywKIeJ25JFHsmzZMu655x4WLVrEsmXL+Nvf/saIESN45plnOPHEE8PLzpo1i7333jv8/cSJEznppJN4++23URQFk8mUjocghBBCiCzW1tYGENMVqS6Xa8BlQ/eFlg358MMPGTFiRI/bzj///IhX7AohhBBi+6PnmETPst0dccQRPb6fNGkSL774IuPGjdO1HSFE+nR2drJu3bqU73fGjBnk5OQktA2Hw0FjYyMAn3zyCfn5+Xz00UeAdiHm0UcfzaxZs/jyyy8xm838+c9/5phjjuHHH3/EarXywAMPsGDBAv71r38xc+ZMHnjgAd54441wW+dIzj33XJYtW8ajjz7K7rvvzubNm2loaGDChAm89tpr/PrXv2b9+vXk5+fjcDgibmPu3Lls2LCBt956i/z8fG6++WaOO+441qxZg8ViAbTX5f777+eFF17AaDRy9tlnc8MNN/Diiy8m9JwNZRIsCiESsu+++/L666/j8/lYtWoVb7zxBg899BCnnXYaK1euZOeddwZg+vTpfdbdcccd6ezspL6+ntGjR6d66EIIIYTIcvn5+UDfIDCSaKFhd6H7us8VDbD//vvz5z//GUVR+Pnnn/nzn/9Mc3MzVqs13qELIYQQYgjRc0yiZ9nuHn/8cXbccUfMZjOjRo1ip512wmiUZnRCZJN169b1KLxIle+++4699torrnVVVeWTTz5h0aJFXHXVVdTX15Obm8szzzwT/nvo3//+N8FgkGeeeQaDwQDA/PnzKSwsZPHixRx11FE8/PDD3HrrrZx66qkAPPXUUyxatCjqfktKSnjllVf46KOPwhdWdO9aV1RUBGh/uxUWFkbcRihQXLJkSbhN9YsvvsiECRNYuHAhp59+OqAFo0899RRTp04F4MorrwxPxyUik2BRCDEorFYr++67L/vuuy877rgj559/Pq+++ip33HFHuocmhBBCiCEqPz+fsWPHxjRnc+hipx9//JE99tgj4jI//vgjQJ8268OHDw//MXv00UczY8YMTjjhBB555BGuu+66BB6BEEIIIYYCPcckM2bMAOCnn36KekwSyX777cc+++wT7xCFEBlgxowZfPfdd2nZr17vvPMOTqcTv99PMBjkrLPOYt68eVxxxRXsuuuuPS6yXLVqFRs3buxTie3xeCgtLaW1tZXq6mr233//8H1ms5l99tmnTzvUkJUrV2IymTj00EN1jz1k7dq1mM3mHvstLi5mp512CrelBsjJyQmHigBjxoyhrq4u7v1uDyRYFEIMutCBbvde1N17V4eUlJSQk5PTp7VYf0JXvQghhBBCAJxwwgn84x//YNmyZcyaNSvqcsceeywmk4kXXniBc889N+Iyzz//PFarlZNOOqnffR5//PEceuih3H333VxyySXk5uYm9BiEEEIIkf30HpP8+9//5pxzzknhCIUQ6ZaTkxN35WCqzZ49myeffBKr1crYsWMxm7dFSb3//mlvb2fvvfeO2DpUz3nf7qK1Nk2GUEvUEIPBEDXwFBqplxdCxO2zzz6L+Ev2vffeAwhP3guwbNkyvv/++/D3lZWVvPnmmxx11FG65lcMfXC1tLTEOWohhBBCDCU33XQTubm5XHTRRdTW1va5v7S0lEceeYTx48dz4YUX8vHHH/Pkk0/2We6pp57i008/5ZJLLqG4uHjA/d588800Njbyz3/+c1AehxBCCCGyW6zHJBMmTODiiy/mww8/5LHHHuuzXDAY5IEHHmDLli2pGLYQQkSUm5vLtGnTmDhxYo9QMZK99tqLDRs2MHLkSKZNm9bjX0FBAQUFBYwZM4bly5eH1wkEAv1Wb+66664Eg0E+//zziPeHKiYVRYm6jZkzZxIIBHrst7GxkfXr14c72oj4SMWiECJuV111FZ2dnZxyyinMmDEDn8/H0qVLefnll5k8eTLnn39+eNlddtmFo48+mquvvhqbzcYTTzwBwJ133qlrn1OnTqWwsJCnnnqKvLw8cnNz2X///ZkyZcqgPjYhhBBCZIepU6fy0ksvccYZZzBz5kzOPfdcdtlll/BxyauvvsrcuXMBePDBB1m3bh2XX345H3zwAccccwwAixYt4s033+Twww/nvvvui2m/xx57LLvssgsPPvggV1xxRZ+rXIUQQgixfdFzTPLAAw9QWlrK1Vdfzeuvv84JJ5zAsGHDqKio4NVXX2XdunX89re/Te8DEkKIGM2ZM4f77ruPk046ibvuuovx48dTXl7O66+/zk033cT48eP5/e9/z7333sv06dOZMWMGDz74YL+FI5MnT+a8887jggsu4NFHH2X33XenvLycuro6fvOb3zBp0iQMBgPvvPMOxx13HA6HA6fT2WMb06dP56STTuLiiy/m6aefJi8vj1tuuYVx48YN2KVG9E8qFoUQcbv//vuZPXs27733Htdddx3XXXcdK1as4PLLL2f58uU9Js499NBDefjhh3nhhRf44x//SFFREe+//z677babrn1aLBaee+45TCYTl156KWeeeWbUK1eEEEIIsX048cQT+fHHHznttNN48803ueKKK7jlllsoKyvjgQce4NFHHwW0q24//vhjHn74YbZu3coNN9zA5Zdfzptvvsl5553HRx99hM1mi3m/N9xwA5WVlRFb/gghhBBi+xPrMUlOTg7vv/8+zzzzDIqi8Kc//YlLL72UBQsWsP/++/Pdd98xbty4ND8aIYSITU5ODl988QUTJ07k1FNPZebMmVx44YV4PB7y8/MBuP766znnnHM477zzmDVrFnl5eZxyyin9bvfJJ5/ktNNO4/LLL2fGjBlcfPHFdHR0ADBu3DjuvPNObrnlFkaNGsWVV14ZcRvz589n77335oQTTmDWrFmoqsp7770nF4YmyKBKs1ghRJIZDAauuOIK/v73v6d7KEIIIYQQPbS1tXHooYdSWlrKF198wR577JHuIQkhhBBCCCGynMfjYfPmzUyZMgW73Z7u4Qihy0DvX6lYFEIIIYQQQmy38vPzef/99xk+fDjHHXcc5eXl6R6SEEIIIYQQQgiRsWSORSGEEEIIIcR2bfTo0WzatCndwxBCCCGEEEIIITKeVCwKIYQQQgghhBBCCCGEEEIIIQYkFYtCiKSTqVyFEEIIIYQQQgghhBBCiOwnFYtCCCGEEEIIIYQQQgghhBBCiAFJsCiEEEIIIYQQQgghhBBCCCGEGNB21wo1GAxSVVVFXl4eBoMh3cMRQgghMoKqqrhcLsaOHYvRKNcdJZMciwghhBB9ybFI6sixiBBCCNGXHIsIEbvtLlisqqpiwoQJ6R6GEEIIkZEqKysZP358uocxpMmxiBBCCBGdHIsknxyLCCGEENHJsYgQA9vugsW8vDxA+wWRn5+f5tEIIYQQ+nj8Cvv++WNU4K6TdubUvQbnpFBbWxsTJkwIf06K5JFjESGEEKIvORZJHTkWESI+6xrXMXfRXA4Zdwh/O/Rv6R5O0pS3lnPGu2ew76h9eexXjw3qtt8pfYc/L/8zc2bM4cV1L/LEr55gr1F7RVz2gJcOwGw089VvvxrUMWxvfvnfX+IP+rl6z6s5a+ZZAFzz6TVUuiq5Zu9rwstVtlXy6MpHefDQBzlw3IFpGq3m25pvufLTK7l898uZUjAl4jK3fnkrATUAwNdnfT0o+03VsYjHr+BTgkndR3dWkxG7xZSy/ekxd+5cWlpaWLhwIQCHHXYYe+yxBw8//HDc2xyMbQxk8eLFzJ49m+bmZgoLC5O2n2QzGAy88cYbnHzyybrX3e6CxVCbj/z8fDmAFkIIkXUqtrZisOVgAGyOvEH/LJN2WMknxyJCCCFEdHIsknxyLCJEfJw+JyaHCWuudUj/7OSpeUl7nH6rH5PDxPBhwzE5TDjznFH3YXKYMBlNQ/q5TjZVVVFtKiZMOJyO8HPZYe6goKCA3Lzc8LIFhgJMDhNGhzHtz7m/adv7JDc3N+IyJocJVVUBsuq8iMev8OHqGlo9/qTto7cCu4WjfjE65nBx7ty5PPfccwBYLBYmTpzIueeey2233YbZnNw46fXXX8discS0bLRwT8824nXggQdSXV1NQUFBzOv0DlGz3XYXLAohhBDZbEOdK91DEEIIIYQQQgghdGv1tmIxWjAZM7N6aqjxBX2oqH1ub/W2MjpndI/brCYrAB7Fk5Kx9afF2wJAnmXodTHwKUFaPX7sZhM2c/LncfQGtP35lKCuqsVjjjmG+fPn4/V6ee+997jiiiuwWCzceuutfZb1+XxYrdZBGW9RUVFGbGMgVquV0aNHD7xgEgzm850ImYVUCCGEyCIlte3pHoIQQgghhBBCCKFbm68Nm8mW7mFsN7wBb8TbW72tOK3OHreFXhdPIP3BYqu3FQMGciw56R5K0tjMRnKs5qT/ize8tNlsjB49mkmTJnHZZZdxxBFH8NZbbwFa5d3JJ5/MX/7yF8aOHctOO+0EaC3Wf/Ob31BYWEhRUREnnXQSZWVl4W0qisJ1111HYWEhxcXF3HTTTeGq05DDDjuMa665Jvy91+vl5ptvZsKECdhsNqZNm8azzz5LWVkZs2fPBmDYsGEYDAbmzp0bcRvNzc2ce+65DBs2jJycHI499lg2bNgQvn/BggUUFhayaNEiZs6cidPp5JhjjqG6ujrq87N48WIMBgMtLS0xbWPevHk899xzvPnmmxgMBgwGA4sXL47peYv0fN92223sv//+fca1++67c9dddwHwzTffcOSRRzJ8+HAKCgo49NBD+f7776M+Jr0kWBRCCCGyyLrqNsxGaREmhBBCCCGE2H61e9s54KUD+Lbm23QPRejQ5mvDbranexjbDa/SN1gMKAE6/B3kW3u2Dw1XLGZIsGg326U9egZxOBz4fL7w95988gnr16/no48+4p133sHv93P00UeTl5fHl19+yZIlS8LhWmi9Bx54gAULFvCvf/2Lr776iqamJt54441+93vuuefyn//8h0cffZS1a9fy9NNP43Q6mTBhAq+99hoA69evp7q6mkceeSTiNubOncu3337LW2+9xbJly1BVleOOOw6/f1s72s7OTu6//35eeOEFvvjiCyoqKrjhhht0PUf9beOGG27gN7/5TThsrK6u5sADD4zpeYv0fM+ZM4cVK1ZQWloaXmb16tX8+OOPnHWWNpeqy+XivPPO46uvvuLrr79m+vTpHHfccbhcg9MJTVqhCiGEEFmkpLad4Xk2alrTf7AvhBBCCCGEEOng8rvo8HdQ3lbOPqP3SfdwRIxcPhd2kwSLqRKprWm9ux4VtU+waDFaMGDIiFaobb42eZ9kCFVV+eSTT1i0aBFXXXVV+Pbc3FyeeeaZcEvOf//73wSDQZ555plwIDx//nwKCwtZvHgxRx11FA8//DC33norp556KgBPPfUUixYtirrvkpISXnnlFT766COOOOIIAHbYYYfw/aGWpyNHjuwxx2J3GzZs4K233mLJkiUceOCBALz44otMmDCBhQsXcvrppwPg9/t56qmnmDp1KgBXXnlluPIvVv1tw+l04nA48Hq9PVqoxvK8Qd/nG7TqxJdeeonbb789/Lj2339/pk2bBsDhhx/eY3z/+Mc/KCws5PPPP+eEE07Q9dgikYpFIYQQIkt0+gJUtbgZ7kx/L3UhhBBCCCGESLdIFVkic7l8LqlYTKFIrVBrO2sBKLAV9LjdYDBgNpozomLR5XNJy9w0e+edd3A6ndjtdo499ljOOOMM5s2bF75/11137RFyrVq1io0bN5KXl4fT6cTpdFJUVITH46G0tJTW1laqq6t7tO80m83ss0/0C0NWrlyJyWTi0EMPjftxrF27FrPZ3GO/xcXF7LTTTqxduzZ8W05OTjgQBBgzZgx1dXW69hXPNgZ63kJ6P98Ac+bM4aWXXgK0APg///kPc+bMCd9fW1vLxRdfzPTp0ykoKCA/P5/29nYqKip0Pa5opGJRCCGEyBIb69pRgRFOOcAWQgghhBBCCAkWs4vL5xrS8+Zlmkg/H3WdWtBRaCvsc5/ZaM6InykJoNNv9uzZPPnkk1itVsaOHYvZ3DNGys3N7fF9e3s7e++9Ny+++GKfbY0YMSKuMTgcjrjWi4fFYunxvcFg6DP/YzK2Eevz1vv5BjjzzDO5+eab+f7773G73VRWVnLGGWeE7z/vvPNobGzkkUceYdKkSdhsNmbNmtWjxWoiJFgUQgghskRJbTsAI/PkAFsIIYQQQgghMiEEEbHr8Hcw3DE83cPYbrgD7j63NbgbACi0F/a5L1MqFtu8bTjMqQuVRF+5ubnhlpqx2GuvvXj55ZcZOXIk+fn5EZcZM2YMy5cv55BDDgEgEAjw3Xffsddee0VcftdddyUYDPL555+HW6F2F6rgUxQl6rhmzpxJIBBg+fLl4VaojY2NrF+/np133jnmxzcYrFZrn7HG8rxFM378eA499FBefPFF3G43Rx55JCNHjgzfv2TJEp544gmOO+44ACorK2loaEj8gXSRVqhCCCFElthQ66Io14rTbkr3UIQQQgghhBAi7SRYzC4d/g5yzFKxmCqRfj7q3fVYjJaIwZ3FaMmIYLHd3z5gsBhQAykajYjFnDlzGD58OCeddBJffvklmzdvZvHixVx99dVs2bIFgN///vfce++9LFy4kHXr1nH55ZfT0tISdZuTJ0/mvPPO44ILLmDhwoXhbb7yyisATJo0CYPBwDvvvEN9fT3t7e19tjF9+nROOukkLr74Yr766itWrVrF2Wefzbhx4zjppJOS8lz093h+/PFH1q9fT0NDA36/P6bnrT9z5szhv//9L6+++mqPNqigPfYXXniBtWvXsnz5cubMmTOoVaASLAohhBBZYl2Ni5F5Nqwm+fgWQgghhBBCCJ8yOC3dRPKpqoo74JZWqCkU6eejyd0UNdw1GUx4g+kP6zv8HUO+YtEbCNLpCyT9nzcQTMnjycnJ4YsvvmDixImceuqpzJw5kwsvvBCPxxOuxLv++us555xzOO+885g1axZ5eXmccsop/W73ySef5LTTTuPyyy9nxowZXHzxxXR0dAAwbtw47rzzTm655RZGjRrFlVdeGXEb8+fPZ++99+aEE05g1qxZqKrKe++916d1abJdfPHF7LTTTuyzzz6MGDGCJUuWxPS89ee0006jsbGRzs5OTj755B73PfvsszQ3N7PXXntxzjnncPXVV/eoaEyUtEIVQgghskRJrYspw3OxmqRiUQghhBBCCCEkWMweHb4OFFWRYDHJWjwtXP/59dz7y3sjViw2eZuivgaZMsdiZ6BzwMrWInsRTZ6mFI1o8FhNRgrsFlo9fjyB6C08B1OB3aLrAvUFCxbEdf/o0aN57rnnoq5nNpt5+OGHefjhh6Mus3jx4h7f2+12HnzwQR588MGIy99+++3cfvvt/W5j2LBhPP/881H3OXfuXObOndvjtpNPPrnf+REPO+ywHvfHso0RI0bw4Ycf9tnWQM9bf69HYWEhHk/kKuM999yTb775psdtp512Wo/v9c4j2Z0Ei0IIIUQW6PAGqG71sM+kYZhNhnQPRwghhBBCCCHSToLF7NHk1UKgXHNumkcytC2vWc6KmhWsa1oXOVj0NJFrifwaWIyWtAeLXsWLV/FGHWO2s1tMHPWL0fiU1FQSghZm2i1ygboYXBIsCiGEEFlgQ53WK354ni3NIxFCCCGEEEKIzJDuEETELlRdNlQDo0yxrmld+P+RgvcWTwtF9qKI65qN5rSH9a2eVmBov0/sFpMEfSLrySRNQgghRBYoqXVhAMbk29M9FCGEEEIIIYTICOkOQUTsmj3NADgtzjSPZGgrbSkN/9+j9G2R2OZrw2mN/BqYjWa8gfSG9RJAC5EdJFgUQgghssD6GhfFTit59tROLi2EEEKIJPvvHFj0h3SPQgghspIvKMFitmj1dVWiWTMjMPIqXk544wS+rv463UMZVJtbN4f/71f8Pe5TVRWXz0WeJS/iupnQCjXcMleCRSEymgSLQgghRBZYX+NiRJ4Nu0U+uoUQQoghpWIZVK8Cf9+qgozlboGFl4O7Od0jEUJs5yRYzB4t3haAqKFWqm1xbaG8rbxH69BspwQVtrZvDX/vVbwYMIS/b/I0oagKBbaCiOtbjJa0VwG3eFoAyLNmxvtECBGZnJ0UQgghskBJrYviXKv04RdCCCGGEl8HdDaC4gc1mO7RxG7jx7DyRe2rEEKkUe+KLJG5Wr2tWIwWLKbM6MJT3VENgCeQRRf2DGBz62b8wW0/Ez7Fh8mw7RxCbUctAPm2/IjrW4yWtIf1oQA6WrtWIURmkGBRCCGEyHBtHj91Li9FuVYsJvnoFkIIIYaM5nLtq+LNrmCxfJn2NaikdxxCiO1euts2iti1eduwm+3pHkZYTUcNQNrnFBxMqxtX9/jeF/RhNprD39d11gFQaC2MuL7FlP6KxVZfK0aDEbspc94rQoi+5OykEEIIkeE21LYDMCLPluaRCCGEEEK3NW9Fb3PaXKZ9VQKAmqoRJa58SbpHIIQQgFQsAhz40oFctOiidA9jQG2+towKi0LVex5l6FQsljSX9Pi+d8VivbsegEJbYcT1M6EVaptXe58YDIaBFxZCpI0Ei0IIIUSG21DrwmCA0XmZ80eYEEIIIWLQXAavnANvXh79foBgIHsqFt0tUD905qMSQmS3dLdt7G3hxoV8Xf11Svfp8rtYXrM8pfuMh8vnwmbKnItlQ9V7QylYLG0p7RHe+hQfJmPPYNFkMEVtM2oxWnq0Uk2HVm9rRlW2CiEik2BRCCGEyHAltS6G59pw2jNjLgohhBBCxMirdR2gszny/aFgUVWyJ1jc8g1ZVV0phBjSMq1i8Z8//pNX1r2S7mFkJJfflVGBUah6byi1Qi1rK2O4Y3j4e1+wZ7DY6G7EYXZErQa0mqxpDxZd/swKoMXgmjdvHqNGjcJgMLBw4cJ0Dycp5s2bxx577BH+fu7cuZx88skJbXMwtjHYJFgUQgghMty6Ghcj8mzYLfKxLYQQQmSVUDuxbvMb9dC0SfsaDICaJWFd+dJ0j0AIkWJfbPmCWS/NSvcwIsq0ikWZ8zG6dl87DrMj3cMIa3Q3AkPnNfMqXmo6ahiVMyp8m0/xYTZsOwZp9jSTY8mJug2L0YKiKgSUQFLH2h+Xz5VRLXO3R3PnzsVgMGAwGLBarUybNo277rqLQCCx98XatWu58847efrpp6murubYY49NeKy9Q7z+lgs9JrPZzOTJk7n22mtpb29PeAwDeeSRR1iwYEFMy5aVlWEwGFi5cmXc20iVKH/dCCGEECJTlNS6mDk6H7vFNPDCQgghhMgcoUoaY5SLg8KtUJUsChaXQE4xdDameyRCiBR58NsHafcn/+RrPNJdXdVbpo0nk7T723tU06Vbo2doBYsbmjegqApjnGNA6/KKL+jDaNh2DNLkbSLXnBt1G1aTFYDOQCf5pvykjjeaTAugt1fHHHMM8+fPx+v18t5773HFFVdgsVi49dZbdW9LURQMBgOlpaUAnHTSSWmZQ/MXv/gFH3/8MYFAgCVLlnDBBRfQ2dnJ008/3WdZn8+H1WodlP0WFBRkxDYGm5Q+CJGlGtuHxoGPEKJ/rZ1+Gtp9FDmtWEzysS2EEEJklf4qFlUVWiu1/wezpBVqwAtVP0DhxHSPRAghAAgE01dZFYlPyawKykzS6e8kxxy9Wi7VWrwtQOZVvcZrTeMaAMY7x4dv8yt+zMaeFYu51n6CRaMWpHgC6Zt30uVzSbCYAWw2G6NHj2bSpElcdtllHHHEEbz11lsAeL1ebrjhBsaNG0dubi77778/ixcvDq+7YMECCgsLeeutt9h5552x2WxccMEF/N///R8ARqOxR7D4zDPPMHPmTOx2OzNmzOCJJ57oMZYtW7Zw5plnUlRURG5uLvvssw/Lly9nwYIF3HnnnaxatSpcjdhfVZ/ZbGb06NGMHz+eM844gzlz5oQfU6jy8ZlnnmHKlCnY7VrVbEtLCxdddBEjRowgPz+fww8/nFWrVvXY7r333suoUaPIy8vjwgsvxOPp+fPTu41pMBjkb3/7G9OmTcNmszFx4kT+8pe/ADBlyhQA9txzTwwGA4cddljEbXi9Xq6++mpGjhyJ3W7n4IMP5ptvvgnfv3jxYgwGA5988gn77LMPOTk5HHjggaxfvz7q86OXnKEUIgttbuhg3798zA+VUeZqEUIMGSV1LgBGOAfnSikhhBBCpFCocsUQoetAex0EPGDLz545FqtWamFp4YR0j0QIIYDMqxCUYDEyVVXpDHT224YzlVq9reFKxaHympU0l5BrySXPmhe+zaf4MHU7BmnztpFnyYu0OgAWkwXQKhbTpcPfkTHvE7GNw+HA59N+Vq688kqWLVvGf//7X3788UdOP/10jjnmGDZs2BBevrOzk7/+9a8888wzrF69mkcffZT58+cDUF1dTXV1NQAvvvgif/zjH/nLX/7C2rVrufvuu7n99tt57rnnAGhvb+fQQw9l69atvPXWW6xatYqbbrqJYDDIGWecwfXXX88vfvGL8DbPOOOMuB4TwMaNG3nttdd4/fXXw61ITz/9dOrq6nj//ff57rvv2GuvvfjVr35FU1MTAK+88grz5s3j7rvv5ttvv2XMmDF9gtHebr31Vu69915uv/121qxZw0svvcSoUVoL4xUrVgDw8ccfU11dzeuvvx5xGzfddBOvvfYazz33HN9//z3Tpk3j6KOPDo8r5A9/+AMPPPAA3377LWazmQsuuCDm52cg0gpViCzU5vYTVKGkxsWeE4alezhCiCQqqXVhNMCofJljQAghhMg64VaoEf70DrVBzR0O3nYgC1qhViwDsx0KpGJRCJEZMqliUVXVjAs6M4XL5yKoBsm1RK+WS6Xqdi3UcJgdeANDoyPYppZNfVrN+oK+HhWLbb62HsFjb6FWqO6AOzmDjEEmBdDJ0j1YCxk2bBhTpkzB4/GwZs2aPuvstddeAKxfv56Ojo4e902ePJmioiLq6+uprKzscV9eXh7Tp0+Pe6yqqvLJJ5+waNEirrrqKioqKpg/fz4VFRWMHTsWgBtuuIEPPviA+fPnc/fddwPg9/t54okn2H333cPbKiwsBGD06NHh2+644w4eeOABTj31VECr2FuzZg1PP/005513Hi+99BL19fV88803FBUVATBt2rTw+k6nM1yJqMd3333HSy+9xOGHHx6+zefz8fzzzzNixAgAvvrqK1asWEFdXR02mw2A+++/n4ULF/K///2P3/3udzz88MNceOGFXHjhhQD8+c9/5uOPP+5TtRjicrl45JFH+Pvf/855550HwNSpUzn44IMBwvsuLi6O+pg6Ojp48sknWbBgQXieyn/+85989NFHPPvss9x4443hZf/yl79w6KGHAnDLLbdw/PHH4/F4whWZiZBgUYgs5gtkwVXNWaayqZNf/u0zXr3kAPadUpzu4QhBSY2L4U4bTpsl3UMRQgghhF79tUJtKde+5o4Ed0t2VCyWL4XCyWB1pnskQggBaMGiqqppma+rN5/iQ82Gi0TSoMmjVdFkTLDYoYU6hbbCITPHYnlbOZPzJ/e4zR/c1gq1M9CJL+gj3xp97kSbUQtP0hUsegIe/EF/RrXMTYann36aO++8s8dtc+bM4d///jdbtmxh77337rOO2jUX99y5c/n666973PfCCy9w9tln88orr3DllVf2uO+oo45i0aJFusf4zjvv4HQ68fv9BINBzjrrLObNm8fixYtRFIUdd9yxx/Jer5fi4m3nUa1WK7vttlu/++jo6KC0tJQLL7yQiy++OHx7IBAIzym4cuVK9txzz3ComIiffvoJp9OJoij4fD6OP/54/v73v4fvnzRpUjjYA1i1ahXt7e09HheA2+0Ozxe5du1aLr300h73z5o1i88++yziGNauXYvX6+VXv/pV3I+jtLQUv9/PQQcdFL7NYrGw3377sXbt2h7Ldn8NxowZA0BdXR0TJyZ+kaAEi0JkMY9fSfcQhpzvK7T2sm/8UCXBosgI62pcjMizYbdI93IhRJdgEDZ+DDsele6RCCEGEg4WI7RCbS4DW572Tw1qcy5msmAQKr+G8fuCReY+EkJkBhUVX9CHzWRL91DoCHQMvNB2qsXTAkCuObOCxWH2YXT4sv916/B1UO+uZ9bYWT1u9yk+LEbtIuVGdyMA+bbowWK6KxbDAXSGvE+S5ZJLLuHEE0/scduwYVpHuvHjx/Pdd99FXXfBggURKxYBfvOb3zBrVs/3QF5e9ArV/syePZsnn3wSq9XK2LFjMZu1GKm9vR2TycR3332HydTz+Nbp3HbhmcPhGPCCj/b2dkCrttt///173BfatsMxeMecO+20E2+99RZms5mxY8ditfaccig3t+f7rr29nTFjxvSYPzIkVH2p12A+nlhYLNuKFEKvRzA4OBczSrAoRBaTYFGIoW9DXTu7jM3HbolwQlIIsX1afDd8cR+c/TpMi/9KRyFECvTXCrVpE+QUg9kGwUDmVyw2rAdPKxRMAJN0UhBCZA5PwJMRwaInELn1nYBmr3YRtzNDKt5rO2qxmqzkmnNp9jSnezgJW9u0FhWVCXk950D2B/04zFqQEQrtCmwFUbcT+jlKV7AYei0y5X2SLGPGjAlXj/Vmt9vDbU8j2WmnnaLeN2LEiB4Vd4nIzc3t0XI0ZM8990RRFOrq6vjlL3+Z0D5GjRrF2LFj2bRpE3PmzIm4zG677cYzzzxDU1NTxKpFq9WKosR2ftxqtUZ8TNHstdde1NTUYDabw+FtbzNnzmT58uWce+654dt6V5R2N336dBwOB5988gkXXXRRxDEC/T6mqVOnYrVaWbJkCZMmTQK01rPffPMN11xzTQyPbHCktfzhiy++4P/+7/8YO3YsBoOBhQsXDrjO4sWL2WuvvbDZbEybNo0FCxYkfZxCZCqPP8OvahZCJKSpw0dTh48ipw2LSSoWk0GORURWctVoXxtL0zsOIcTA+qtYbNoEjiIwW7sqFjM8WKxYBgaj1go1pLMpbcMZKuRYRKTCS2tfoq6jLt3DSJpMmSOvM9CZ7iFkrBZvCwBOS2YERvXuepwWJxajBV/oszqLrW3S2h9OcPYMFgPBQLgVaii0K7QVRt2O1ZjeisVQAJ0pLXNFXzvuuCNz5szh3HPP5fXXX2fz5s2sWLGCe+65h3fffVf39u68807uueceHn30UUpKSvjpp5+YP38+Dz74IABnnnkmo0eP5uSTT2bJkiVs2rSJ1157jWXLlgFatebmzZtZuXIlDQ0NeL2D93lwxBFHMGvWLE4++WQ+/PBDysrKWLp0KX/4wx/49ttvAfj973/Pv/71L+bPn09JSQl33HEHq1evjrpNu93OzTffzE033cTzzz9PaWkpX3/9Nc8++ywAI0eOxOFw8MEHH1BbW0tra2ufbeTm5nLZZZdx44038sEHH7BmzRouvvhiOjs7w3M9pkJaz1J2dHSw++678/jjj8e0/ObNmzn++OOZPXs2K1eu5JprruGiiy6Kq0+wEEOBJyAVi0IMZSW1LgBGOK0DLCniJcciQgghkqq/isWWCrAXgMkOQSXzg8XyZVAwEXITn+NGbCPHIiIV7llxD5d8fEm6h5E0mRLoScVidKFquYwLFk0WfMHsDxZLmksosBaQY+05N6Ff8WM2aMcgLd4WDBgosEavWAy1Qk3XezlcsZgh7xMR2fz58zn33HO5/vrr2WmnnTj55JP55ptv4pq376KLLuKZZ55h/vz57Lrrrhx66KEsWLCAKVOmAFoF34cffsjIkSM57rjj2HXXXbn33nvDrVJ//etfc8wxxzB79mxGjBjBf/7zn0F7nAaDgffee49DDjmE888/nx133JHf/va3lJeXM2rUKADOOOMMbr/9dm666Sb23ntvysvLueyyy/rd7u23387111/PH//4R2bOnMkZZ5xBXZ128Y/ZbObRRx/l6aefZuzYsZx00kkRt3Hvvffy61//mnPOOYe99tqLjRs3smjRonBL3VRIayvUY489lmOPPTbm5Z966immTJnCAw88AGilpl999RUPPfQQRx99dLKGKUTG8kmwKMSQtqHWhclgYFS+Pd1DGbLkWEQIIcSgctXA6xfDqc9C3sjowWLAqy07Yf+uikUFyPBuJBVLYdgOYHWC15Xu0QwZciwiUqXd157uISRNpgR6Hf7sn6svWRo9jTjMDsymzJiVq8HdQJ41D4vRgj/0WZ3FNrVuYrhjeJ/b/UF/eI7FVm8rDrMDU6QuCl1sZq0VqkdJz89UuLJ1iLdCzXQDdUKwWCzceeed3HnnnRHvnzt3LnPnzu1z+8knn4waYU7xs846i7POOivq/iZNmsT//ve/iPfZbLao93U3b9485s2bp/v+vLw8Hn30UR599NGo6952223cdtttPW7761//Gv5/7+fTaDTyhz/8gT/84Q8Rt3fRRRf1aZPaext2u73fcR122GF9nus99tgj4vMfr6zqq7Zs2TKOOOKIHrcdffTR4dLXSLxeL21tbT3+CTFUeAMZflWzECIh62tcjMiz4bT1/ONryTv/xb35hzSNavsmxyJCCCH6VfoZbP4Cyr/Svo/WCrWlElAhp0gLHYMKDOIf+oOudSu0boH8cWC289KH3/DG2uw/EZuN5FhEiL4ypeIsU1qyZqJGdyM55pyBF0yRZk8z+dZ8LVgMZv/nWUVbBaNyR/W5PRAMhIPENl8bOZb+X4NQCJmusL7N24bJYMJuHvji6oZvG2hZ2pL8QQkhIsqqYLGmpiZcZhoyatQo2tracLsj936+5557KCgoCP+bMGFCxOWEyEY+CRaFGNLW1boYkWfFbtb+EFAUhaf+egcvP/xHPOWr0jy67ZMciwghhOhX9UrtaygkDAWLhl5/ereUaV8dRWAwAeq26sZMVKGFVmrhJO547EXmzHuOD0sDaR7U9kmORYToK13zwfXmVjJjHJmo2ds8YKiVKqqq0uptpcBWgMVkQVEVAkpqPtP8ip/DXzmcxRWLB22bTZ4mWrwtjHWO7bu/oD88x6JX8Q4Y7hoMBsxGc9oqFtt8bQOGiqqq8vLTL7PmgTW4fnQNagWWECJ2WRUsxuPWW2+ltbU1/K+ysjLdQxJi0EiwKMTQtrG2naJcK3aLkc6OduZdNZc3/v1PTrvydoYdNjfdwxMxkmMRIYQuih/mFUBTWbpHIuKx9fue30cLC5vLtEDROWJbm9SMDha/xm0byZn3LuSuJ17inktP5InjpVV7tpBjETHUeZXMqBSMJ+D8ofYHznnvnJQFW+nS4mkh15Kb7mEAWlvWgBqg0FaY8jkFXX4X9e56KtsH7/fwmsY1AExw9r1oJKAGwlWIQEyvgcVgSV/Foq8Nuyn68YXf5+f+m+/nqb88xYSTJjD+d+MxGAwpHKEQIiQzGlvHaPTo0dTW1va4rba2lvz8fBwOR8R1bDYbNpstFcMTIuV8igSLQgxVDe1eWtx+inOtmE1G/nrH9fz47TL+/MS/cU7bh28+Kkn3ELdLciwihEi6Ld9qXz+8DX770uBs09sOtT/DxAMGZ3sismAQan/qeZsSpT1fU5nWBtXs2NYmNdqymaB8Cdd84OatFSv53yO38et9x8Kixeke1XZJjkWE6CtT5liMZxyrG1ezsn4lbf42ikxFSRhVZmjxtjDOOS7dwwBgi2sLAEX2ovCcfp2BTpy25M/rl4z36rrGdRgwMD5vfI/bVVSUoBKuWATIs+QNuD2zyZy2sL7N23/F4rP3PcuHr33ILQ/ewtKxS2nyNKVwdEKI7rKqYnHWrFl88sknPW776KOPmDVrVppGJER6+ZUgwaCU/AsxFJXUugAoztWuoLzgmtt45KV32PeXh6dzWNs9ORYRQmSl1a/D/OOgsTTdIxnamkrB36taJWqwuAlyisFk3VaxmKFzPAU7m6FuLfPOOpAv//03fn30weke0nZNjkWE6CtTKhYTaR/Z4e8YxJFknjZfG05r8oO7WNR01AAwzD4sXLHYGehMyb6T0bZ3Q8uGHo8lxK/4UVF7BovWGIJFQ/qCRZffhc3U90KYYFArrDjz8jN56OWHOPq0o1M9NCFEL2kNFtvb21m5ciUrV64EYPPmzaxcuZKKigpAa9dx7rnnhpe/9NJL2bRpEzfddBPr1q3jiSee4JVXXuHaa69Nx/CFSDt/QEWRXuJCDEkbatvxrP+Kf17/W9rbWhkzfhKTp81I97CGHDkWEUJsFzxtoCrhefJEklSt7HtbMEpru+YysBeC2b4tWAxkxonx7t5991322Gtv6joUxkyZyd677JjuIQ05ciwiROJ8GVLxnUg1Wodv6AaLfsVPp7+TfGt+uocCQE2nFiwW2YuwGlPbCjUZ+9ncupkRjhF9bg+Fg6HHCDEGi0Zz2qqAXT4XDnPP6vsflv7ABUdeQF1VHQXDCthln13SMrZEhIJRIbLJQPOXprUV6rfffsvs2bPD31933XUAnHfeeSxYsIDq6urwwTTAlClTePfdd7n22mt55JFHGD9+PM888wxHHy1XKYjtky8YJCjBohBDjqqqPPvYfdQufIKDjzkZq7SuSho5FhFCbBdCV8dX/QB7nh3bOvMK4KBr4ch5SRvWkFO9su9tgQgnu1UVWsph0kFdFYuZ1wpVVVUeeeQRrr/+ev7vgB3Jyc2HgvEDryh0k2MRIRKXKRWL3gQuEGn3tw/iSDJLvbseFZV8S2YEi3WddTjMDqwma8rnWExGxWKlq5K9R+3d53ZfUDuu6F6xWGArGHB7ZmP6KhY7/B0Msw0Lf//uf97loT88xJ6z9iQnNyctY0qE1WrFaDRSVVXFiBEjsFqtMiekyAqqqlJfX4/BYMBisURcJq3B4mGHHdZv8rlgwYKI6/zwww9JHJUQ2UNRVOSiFyGGFo/Hw0UXXcSX/32RnY6/kOvumofVFvlDXCROjkWEENsFX9dJrLp12jyAxhgb1/z4HwkW9dj6PdgKwNu67bZIYaG7GXzt4BimvRahE34ZEiz6/X6uuuoqnn76aW666SbumfYDRsUNKZh7anskxyJCJC5T5liMJzQKzRE3lIPFuo46ILZQKxXqOutwWrTPNItJ+1u7U0lNK9RE2uVGUtNRQ7u/nbHOsX3uC4WD2RQstvvbcVgcKIrCP+/9Jy8//TInnn0iV915FWZLWmOMuBiNRqZMmUJ1dTVVVVXpHo4QuhgMBsaPH4/JZIp4f/b9RAohwvyKVCwKMdQsXbqUN954gwm/vpUDjj8ZhzXyB7gQQggRM3/XybKWcvC5wJ4ZJ/aGlGAQan6EgglQ3z1YjHBirqVc++oo0r6Gg8XMmGNx5cqVPP/88zzzzDNceN7ZcM8EmHaEBItCiIzlDWZIxWIc4wgFOC6fa7CHkzHq3JkVLDa4G8LBYmg+v0SqTfUY7BD854afAZiYN7HPfaEWwRbjtguVY2lHazaY09Ze2O13k2POobK0kjdfeJMr513JqeefmtVVflarlYkTJxIIBFAUJd3DESJmFoslaqgIEiwKkdUkWBRi6KisrGT8+PEcfvjhrPhxLcf/8yeKc62YY60qEUIIIaIJBYuuauhskmAxGVrKtCrEvNFQv3bb7ZFOzDWXaV9zirWvGVKxuGXLFsaMGcO+++5LWVkZI0eOhMoVWjhaOGHbOIUQIgXuXHYn/yv5HyvPWYnJ2P/Flpkyx2Ii4VQyWmRmigZ3AwCF9sL0DqRLo7sxHLCF5h9M1fM/2PtZ37Qek8HEmNwxfe4LhdahqkyAYfZhfZbrzWKypKViscPXgbvZjW2Sjck7Tualr15i2PCBx5sNQu0ko7WUFCIbydlKIbJYICitUIUYChYtWsQuu+zC008/DUBzUJs7YGSezK0ohBBiEPg7wGCCYABqV6d7NENT1Urta/64nrdHmmOxuQwsOeAo1L4PnTAPBpI0uIF98cUX7LHHHtx///0AWqgIULEMzHYonJS2sQkhspNX8fbb5ncgP9X/BEBQHfikR6YEi4m0uez0p6YVZzo0uBuwGC04zI50DwWAZk8z+TYtWAxVLKYqWIwU2C2vXh5uF6vXxpaNFDuKI4bv4WDRsC3MCs0p2Z90tUJdvGwxpfNKWbpgKcCQCRWFGKokWBQii/kVVSoWhchyf//73znuuOM45JBDmDNnDgAltS4sJgMj8+1pHp0QQoghwe+BgvHa/6tkXrakqF6ltTbNLe55ezBCe9PmMq1a0dx1AVGoEtCfnlZ+CxYs4IgjjmC33Xbj4osv7nln+VItVJQqVyGETse+diwvr385JftK13xwvSUyjs7A0A0WmzxN5Jhz0j0MAAJKAJfPRaG1ENgWtKXqPRSpFeqNn9/IP3/6Z1zb29y6mRGOERHv83e1WO9esRgLizH1FYv/+9//OO3Y07AUWzjq7KNSum8hRHwkWBQiiwWC0gpViGwVCAS48sorueqqq/j973/PwoULycvLA7RgcUSejRyLzK8ohBBiEPg7wZYHjmFQ+zPI8ePg2/o95I/Vqvu6i1RF07hJey1Cy4YrFlNbcRMMBrn11ls5//zzOe+881i0aBFFRUXdF4CKr7V5I60yv6IQQp9WbyvV7dUp2VemBIuJVE4O+WDRkhnBYm1nLUGC4basoYrFwZ77MJpI79V2f3tcc2yqqsqW9i2Mzh0d8X5f13FFqN1rrCxGS8qqgFVV5Z577uH000/nwCMPZMrNUxg7emxK9i2ESIwEi0JksYCiosiJISGyksFgYOvWrTz11FM8+OCDPSZEXlejBYt2CRaFEEIMBr8bjBYtIGratG3ORTE4VBVqfgTn6NiCxZYysBeCuetEX5rmWDQYDFRWVnL//ffzj3/8o++8Pw0l4GnRql3N+k5KCiEEgF+NULWdBJnSCjWRgNPjjz3Yem/Te1S1V8W9r1Rr9jRnTLBY1aE9b0V27UIag8GAyWDCraSmFWrvANMb8OIP+uNqxVreVo5X8TLeOT7i/aE5P80650i2Gq3hasdUqKioYN68eVx1/1UYrUZyLbkp27cQIn4SLAqRxQJBVS44FyLLbN68maVLl2IymXj99de55JJLetyvqiob6lwU5VqxWeRjWgghxCDwu8FkhqIp0LoFPG3pHtHQ0lqpBXD5o7eFhCG9T8wFFWir0lqLGruCPEPXhUSR5mNMgqqqKhYvXozBYOCFF17g+uuvx2Aw9F2wYhkYjDBsckrGJYTILvWd9QMuk6rAL5UhSH9CQU489ARbf/r6T/xn3X/i3leqtXhbyDVnRlhU3aFV0RbZtlXom43mmF+772u/54PNH8S9/97hc6u3FYivYnV1ozZv9oS8CRHv712xGGvAaDFZwusmS0NDAx9++CEGg4EnnniCO+64gzafdnyaZ81L6r6FEINDzlgKkcUCirRCFSKbLF26lP33359rrrkGVVUjnsSrafPQ4VUozrViNsrHtBBCiEHgd2uB17AdtGrFxo3pHtHQUrVS+5o3ru99vU+qt22FYAByiiB0HGBKXcXiDz/8wH777cfll1+OoiiRA8WQimValWtOUfRlhBDbpf+V/I/DXz2cn+p/6ne5VAV+3mBmtEJNpGJRT8Waqqopa905GFq9rRkTFtV01GDAEG6FCl3BYoyv3QtrXuDB7x6Me/+999PkaQL0vf4h65vWYzVaGZkzMuL9vedYjHWey2S3Ql27di37778/F198MV6vN3ws0uJtwWw0h+e9FEJkNjljKUQWCwRVlKAEi0JkgxdffJHZs2czY8YM3nvvvagn8kpq2wEY6bSlcnhCCCGGsoBHq44LVZ6FgjAxOKpXaRWIeaP63hc+Mdf1ud9cpn11dAvrUtQKdeHChRx88MGMGTOGTz75pEcb9ojKl0LhRLDJ/IpCiJ42NG8AoMJV0e9y/mD0YPGLyi9YVLZoUMaTKa1QExmHrmARtd/nNpOoqorL78qYYLGus45cSy4m47bPQLPBHHNQq6KGw8B49KlY9GkVi/EEi6UtpRQ7iqOeWwi9H80G7ThDT7CYrPfXRx99xKxZs8jJyeHzzz/HZtt23qPN14bdZO9nbSFEJpFgUYgsFlCkFWo2UlWVikaZ22h78vDDD3P22Wdz5pln8tFHHzF8+PCoy26odWE1GRmRLwfUQoghTvFrlXTRBLzw0R2pG89QFmqFmjscLDlQvTLdIxpaqr6H/HHac9ubEtC+GroHiwbIHbFtGUMoWEzeSeJ//etfnHrqqRx33HF8/vnnjBkzpv8V2qq0Fq/548HsSNq4hBBDW3/hxBWfXsENn9+Q9P2kUiLtI/VWIGZK+9eBtHpbCQQDGRMsNrgbcFp6XjCjp2IRtHCwxdMS1/5776fFq20nnmBxc9vmqNWKsO39aOzqhKSnFaqiKgRCxzCD5NVXX+XYY4/lwAMPZMmSJUyePDl8X0lTCV9s+aLPayOEyFwSLAqRxQLBoFQsZqFP1tZx+AOLKW/sSPdQRIocfvjh3HfffcyfP7/HFXmRrK9xMTLfRo5lgCoCIYTIdl8+CAtOiD6v3Od/hSUPw8rsmUMoYwXcWsWi0aS1tmzcmLL5/IY8VdUqFvNGgzVSsNh14jccLJaDY1jPZVNQsXjIIYdw55138vLLL5OTE0PFQsUy7euwSdvGLoQQOqUi8DMZTEOiYlFvsJjsOfAGS21nLQAF1oI0j0RT767HaU0sWASodFXGtf/e+2nzavMK6n39A0qA6vZqxuRGv1DIF/RhMpgwoO9zPNSKdLDb7c6aNYtbb72Vt956i/z8/PDtb258kznvzaEz0MmZM84c1H0KIZJHgkUhslhQ1cJFkV1+3NJCIKhS05Y9cyII/Wpqarj00ktxu93stttu3HDDDf3PY9RlXY2L4U4rdgkWhRBDXUe9VhXV2Rj5fl9XdX9nQ+rGNFQFvFqwCFA0WatE6zqRJRLkqtbew87REGlOoGCvVqhNm7Q5C83dOhMYjdr9g3wCvrGxkUsuuYS2tjamTZvG7bffHq5aGFD5MnCOjNzeVQghYqCipqSqLpnB4sq6lez63K5sbtkc0/KJBKkeRWfFYoZUaQ6k3l0PQIEtM4LFRndjn+rJtAaLvviCxY0tGwmoAcY7x0ddxq/4Y65S7M5q1I5nOgOJd9pqa2vj0ksvpbGxkfHjx/OnP/0Js9kcHt+dy+7k/y35f4zPG8/N+9zMDoU7JLxPIURqSLAoRJbz+iVYzDZra1zpHoJIslWrVrHffvvx9ttvU1kZ+x8cqqpSWt9Oca5NgkUhxPZB8YEqxzJJFVS059nUdWJp2FQtCGurSu+4horQfJX54yLfH65Y7PrTu2kT2IeBuVcIaTQNaivU9evXc8ABB/Daa6+xadMm/RsoXwqFkyFDWtcJIbKTX01BsGg0JS1k+7jiYwB+bPgxpuUTqSLUG2xlSyvU+k4tWCy0FaZ3IF1avC19Qk6L0aL7+a/uqI5r/71D8FDFot79r25cDcCE/AlRl/EH/ZgM+s8rhCoWEw0Wy8rKOOigg/jPf/7D+vXre9xX01HD2e+dzWslr/GrCb/iyj2uJM8mxxxCZBMJFoXIcp6Aku4hCJ3WS7A4pL3zzjscfPDBDB8+nBUrVrDjjjvGvG5Vq4dOn0Kx04rJKG3HhBDbgaBfgsVkC10Bb+pWsQgyz+JgqV4FtrzolX29W6G2VoKjoG91o8G0bT7GBH366acccMABWCwWli9fzh577KFvA55WqF8LBeMit3cVQogYpSL8MhvMSatYDG3XGqkivRdVTaxCU/cciykIbQdDg7sBA4aMmGPRE/DQ4e+g0FrY43azUf97aNCCRb8WLPqCPoI6jolLmktwmB0U2Yv63ZfJGEewaEy8FeqyZcvYf//96ejoYNmyZRx44IHh+77a+hWnvX0aZW1lXLjLhZw8/eS4ximESC8JFoXIcp6AnIzLJm6fQmVT4u0kRGZas2YNJ510EkcccQRffvkl48ZFqV6IoqQrdB7hHPgPVyGEGBIUP6hykVRS+d3a19BJ0fyxWogVqrQTian6XqtWtOZGvr/7SWZvu1Yt6ijcNq9iiNHUrW1q/MrLyznmmGPYd999Wbp0KVOnTtW/kS3faIF/waRtlZZCCBGHlMyxmMSKxXCwaBz47zOf4kNFjXtfQ7VisdHdiMPsyIjgqLpdCwML7YU9bo8nWAzNHalX79e53dce8f8D2dS6ieGO4f0uEwgGMBviaIXadczoDrh1rwtQX1/PkUceyY477sjy5cvZeeedAS18f/yHx7nikyvINedy4z43svvI3ePahxAi/fT/dhFCZBSvT4LFbLKxrj2BPzVEplIUBZPJxM4778zbb7/NMcccE/scRt2U1LqwmY2MyLMPvLAQQgwF0go1+fxdFzSFgiyjWQsX69dpbVIz4ERfVqteBSN3BkuUyr7wyW4DtJRr/3VEqC4wJlaxGAwGMRgMTJo0ibfeeosjjjgiPIeRbhVfgy0fCqLP2ySEELFIRbBoNpiTHizazQP/fdYR6BiUfcUqW+ZYbPQ0kmuJcvFNim1q1VqDj3SM7HG7xWih06/vAvC6zrq4xtD7dW73bwsTXT4X+bb8mLZT1lrGuLz+L2SOtxWqzWQD9LdCVVUVVVUZMWIEb7zxBocccgg2m7atNm8bN3x+A8uql7HfqP347YzfYgl10xBCZCW5/FCILOeVVqhZZX2ttEEdapqbmznqqKN4+umnATjuuOPiChVBa5M7Ms9GjlWu+xFCbCeCAQhKsJhU/l6tUAGGTYLmcvDKcUlCXLXQXgvOUWC2RV4m2C0sbC7TvuYU913OaO4WQurT3t7OySefzH333QfAMcccE3+oCFD2FQybDDZn/NsQQgi0iqlkS6Ri8bYvb2PX53aNen+ouiyWVqiJtI0E/fMzZkvFYou3hRxzZrTVXte8DpPBxJjcMT1utxgtuoPdBndDXGPoEyz62sPvL5cvtuMyT8BDXWcdY3PH9rucP+iPq1I0FPjpeU+73W7OOussbr/9dgCOPPLIcKi4umE1v37713xb+y2/3em3nPOLcyRUFGIIkGBRiCwncyxml/U1bekeghhEGzdu5IADDmDlypXstNNOCW9vfa2L4Xk27Bb5eBZCbEf88bVZEjEKVyx2Oyk6bCq4qqGzKT1jGiqqV2lf8/s/sRfWXK61pHVECBYNJq2CVGfQXllZycEHH8zixYvZZZdddK0bUcAHW7/XqhUlWBRCJCgVwaLZaI57P29vervf+0MhUCztJPVWd/UWVIN4A7G3Q82WisVmTzM50ar6U6y0pZQiexFmU8/X02K06A52mz3NqKr+flS999PubyfPos0/2eGPrep1XeM6ggQZn9d/ZwF/0I+5d+v1GNiM+ioWa2trOfzww1m4cCF77rlnj/teWf8K575/Ln7Fz7V7XctB4w7SPR4hRGaSM5dCZDmPtELNKmurXRgN6R6FGAyff/45+++/PwBff/01hx12WELbCwZVSuvbKc61YjdLWzohRDdv/x7mFQzd6rIEr/BPu3kFsOD4dI8iuvAci92uDC8Yp81t2VSanjHFq6MR2uNrPZYU1au0Fqh5sQaLm7VqRUuElnpGU1d1Y+wnKVesWMF+++1HS0sLS5Ys4bjjjot53aiqV4HihYIJfeeB7M7drH31tCS+TyHEkJWKqjqzMXmtUEMVi7F0pEm0YhHA5Y/9WE/vnIzp0uJtCQdn6ba5dXPEeQnjmWPRH/THVbXY+2eiw99BnlV7frq3Re3PmqY1AEzMmzjgGBNphRrLe+ynn35iv/32o6ysjC+++ILTTjtNWzfg5dYvb+VPX/+JqYVTuWmfm5iQP0H3WIQQmUuCRSGynLRCzS4ltS6Kc6O0yhJZQ1VV7rzzTnbffXeWLVvG9OnTE97m1hY3Hn+QYqcVo6TPQoju1n+gfd36fXrHkSyBIVCxWPaVVumViULPb/dWnaG2WFnSRi3swz/AK+dkznNd1VXZZ41SidG7kqFpkza/YqSWeqFWqDrmHL3nnnuYPHkyy5cvZ9ddo7fy06ViGZhsUDip/+VCwaK7ZXD2K4QYkgJqClqhGkwoQSWu6rGBhIPFGE6furs+b2NZNpp2X2zBEmRPxaLL58JpTX8FvKqqbG3fyujc0X3us5qsup5PA9rf61tcW3SPo3fFYqe/kwJbARB7sFjSXEKeNW/A5zWgBOIKFkOtWd0xHKM/8MADDBs2jBUrVrDvvvsCUOmq5Lfv/pb3Nr/HsZOP5bLdLyMn2rGSECJrSbAoRJZz+6ViMVu0dvqpc3kZnjfw/AwiMwWDQSorKzEYDLz22mssWrSIoqKiQdl2Sdf8myOdEjwLIaLQETgkzFUD3z+fmn35s7xiMSSVr48e4YrFIfD54nVB61bwZkhr+aqVkDc6erDYuzVfczk4CiPPx2jsaoU6wIlxVVWpqKgA4LnnnuPTTz9l1KhR+sceTflSbQ5OR+HgbVMIsd3SE9a8Xfo2V396te59WIwWVFTdFWexCI3fYBj4wk931+dtPHPahXT6Y2+nmoo2s4nyKl46A53hirx02tK+BXfAHXFeQr2tUHMtueFt6tX7Z8IdcFNg1YLFWFuhbmrdxHB738rLSPuKpxVqKFiM1pq3+7HIE088wVdffcWECVo14sflH/Obt39DTUcNl+52KcftcFxMPz9CiOwjwaIQWc7jl4rFbLG+KzgakTcETuxthzo6Ojj99NM5+OCD8Xg8DBs2DItl8CYcL6ltx24xMlyCRSFEJvj3r+Gtq6BhY/L3NRQqFpOt8hvwxl7F0IM/QsViNvO0go45qJKmoxFcVeAcDeYIrU2hb0VoSwXYC3u2pQ0xmrUgsp+A2uv1ct5557HPPvvQ2tpKfn4+Docj/sfQm6pqFYsFEyADqkuEENlPT/h121e38VnlZ7r3EQpOYqmu0ktPWOlW3D3GE4+OQGzBEmRHsFjfWQ9Avi0/KdsPKIGY56Vc3bAaIGI7TovRQkCJ/fnMteRixEhVe1XM64R0Dxa9ihdf0EehvRCIPVgsbytnVO7AFxUF1EBcQbfBYMBsMIff0935/X6uuOIKdt11V2pra8nJycHpdKIEFe7/5n6uW3wdRfYibt73ZmYWz9S9byFE9oj/004IkRF80go1a6yvdWEyGBiZF+Xkk8hYW7du5cQTT2T9+vX85z//wW4f/NdwXU0bI/PsOKzy0SyEyACeroqw1goYPi25+xoqFYvJ9PxJcMCl8Ks/6l93qAWLXldmhNHVK7Wv/c2v2P2EtLtZm7vQUQiGCNf3GkIVi5GDxfr6ek455RS+/fZbFixYQEFBQdxDj6qhRJszsWA8mKXDhhAicakIv0JBnkcZ/OOJ0PhjCS1DyyQULPpiDxYVNfPPBdV1avMihyryBtufl/+Zza2bee7Y5wZcdn3zeswGM6NzIrdCDRLEq3jD8wv2x4CBXGsuNZ01usarqmqPn4lWTysATosTs9EcU7DY6m2lydMUsfKyt0AwgNkQ3/vRbDT3CW1bWlr4zW9+w2effcaTTz4Z7pjQ5Gni2s+u5fu67zlo7EGcvuPpCVXuCiGyg5y9FCLLeQIZ2nZL9LG+uo0ReTYcFjnAyiY//PADJ5xwAkajkSVLlrD77rsnZT/ra1yMcFqxW6SZgBBiOyPB4sAUH7RVx7eu361Vww2ZEzyqVi1YnOTAeyDVq8DsgIIx0ZfpXrHYrp1cxRGlhbqpq2KRvq1Q165dy/HHH09HRweLFy/mgAMOiH/c/alYpoWew6YkZ/tCiO1OKsKvcLAYGPzjiXF54yhtLeWT8k/Yd/S+/S4b2r/FEH9Xm6FWsRgKFgtthUnZfrOnma3tW2NatrSllGJHccTAy2rsmlPQ744pWATIt+ZT21Eb+2DpG343e7X5inPMOViN1piCxdWNWuXl+LzxMe0z3qDbbDSH5xgF2LRpEyeccALV1dUsWrSIww8/HIDva7/nhs9voM3Xxjk7n8N+o/eLa39CiOwjZy+FyHJeCRazxtoaFyPybFhN8qs3m3R0dLDDDjuwYsWKpIWKSlBlU0MHRblW7OahcuJXCCFilAnVZ9lARxVDDwE3mKyRq+SyVbu+CoGkqFoJBeOgv3mjulcstnedfMwdGXlZgwnUyBWLHo+HUaNGsWLFiuSFigDly7RqxZzBmT9aCCFSWrGYhGDRgDY3XCwtWkOhUSIVi7rmWFQzP1isd2utUAtsyalYhNjbh5a1ljHcEXleQotRC4P1tNPNs+aFg9NY9X5923xah5Bcay5Wk5XOwMCv/7rGdQBMyOvb0jWSeN+PFqOlRxDq8/lwOp0sX748HCo+t/o5LvzwQgwYuH7v6yVUFGI7M4T+uhRi++STORazgqqqbKh1Uey0YjHLxNWZTlVVXn75ZQKBAAcffDBffPEFY8b0U5GQoMqmTnyBIMOdNoxGeX8IIbYzSTgROCQF3FqrTL38QzBYdOk7kZcUVT9A3hiw5ERfpnewaMsHe5S5C42WPq1Q//e//+H1etlzzz1ZunQpkyZNGqTBR1GxFAongU3mVxRCDA4lns8tnUKtHpPRCjW0zaqOKn6q/6n/ZQMejAYjxgQ+b2MJlkJS8dzq8cC3D3Dj5zf2uK3J3YTVaMUebS7iQdDp70RV+1b7d6cEFba2b2VMbuS/6S1dcx/ref4LbYU0uhtjHyh9w+9Wr9YKNdeci8Vowe0fONjc2LKRYbZhMT+nodBUr1DF4sKFC2lvb2fGjBksX76cHXfcEXfAzTWfXcP9397PzkU7c+O+NzLGmbzzJUKIzDSE/roUYvvkU/o/gBKZoc7lpc0TYLjTiskgwVEm8/l8XHjhhfz2t7/lgw8+ALTJy5OppNYFwPC8ITL/lRAi89Wtg8bSdI9CE8NJFIH2PMVT+eF3g8kytILFdn2txwadu1mbf9Q5qv+5K3u0Qq2BnGKI1mLNaNJeXzVIIBDg97//PaeffjqvvfYakPxjEdqqoaUC8sdpLV6FEGIQBAkSUJJbWRcKhbq3bdQr2hj9ip8p+VOwmWy8VfpWv9vwBrwJVSuCzmBRVQYM1FJpbeNaSlt6Hls2eBrI6e8CnEEQJBhuKRpNWVsZvqCPcc5xEe8PtT/VU/VaaCuk2dusK+DtXREZChadFmfMFYubWjdFrbyMJN65Dk2YWPyPxZxyyim88MILgHYssrFlI6e9dRqLKxdz4tQTuXi3i5MaHAshMtcQ+utSiO2TN5BZV6mJyNbXaMHRSKcER5mssbGRo446ihdffJHnn3+eE044ISX73VDXTo7VxAinNSX7E0IIntgfHtsLAr6Bl022WE/iNJfDvAL44cXkjidTBTzxVSz6OoZesNiR5orFmq6qlbyx0F/gF+wWLPrd4BgWPYg0miGo0Nbayoknnsjjjz/OE088wVlnnTV44+5P5dfa12GT+n9MQgihUyKBXyxCcxp6A/HvJ1qg5FN8WM1WphdO57PKz1AjzIMb4g64w9WT8TAbzDFVrHWX7OdWj0htRJs9zeSYkxssAjR5mvq9f03jGiB6+1CrqWuORR2tUIvtxSiqoqsdau+q2lCwmGPJ0SoWY9h/hauCUbmjYt5nPGG3x+3h54d+5puXvuFvf/sbl156KQDvbnqXs949ixZvC1fueSVHTjpS97aFEEPHEPrrUojtk18JZsxVai2dPvyKzPkYyfoaF1azkRH5ciVXpmpsbOSAAw5g9erVfPrpp5xzzjkp2/ea6jZG5tlwWBO7wlUIIXRz938iJiViDRYbN2pfSz9J3lgyWcAbZ8Vip9ZmM9nBYumnsOgPkIrj0k59rccGXdVKrfKwIHLlQ5jSK7i3F/ZTsWim3ePjoF8dx9KlS3n//fe57LLLBmO0sSlfps3/mDc6dfsUQmwXvMHkhl/hORYTaIXqViIHOl7Fi8VgYe9Re1PbWcvqxtVRt+ENJlaxaDaZdVUsQnLmlYxXxGDR25z0ikVgwJakJc0lWI1WRuZEnufYatSCRT3voWJHMQBb2rfEvE7v58jlc2E1WTEZTVhN1gGDxbqOOlw+V9TKy0hCwXusfF4f155xLfU/1DP7/83mxhtvRAkq/PnrP3PLl7cwNncst+x7C9MKp+narhBi6JFgUYgs5w+oBDMjV+Skx5fw2Kcb0j2MjLSupo1ReTZyYwyOmjp8GRMYby+Kioo4++yzWb58OQcddFDK9qsEVZZubGD8sBwclvjalAghRFbLoJNiGS3gATWeORY7U1OxuOlzWPZ3qPg6xnF54L9nQ0Mcx46eFointV7AC/86RgsGE1H1gxYqDjQXYfdWqAD2AjBFORY0mnFaYM4Zv2bZsmUceWSKqwAql0PhBLDK/IpCiMHl632RxSAbjFao0QIlX9CH2WhmtxG7YTPZWFS2KOo2Em2FGuscez3Gl+TnVo9IIWeLpwWnJfmfKy3eln7vL20ppdhRHLWteKhiUU9QGwoWt7ZvjXmd3ttv87WF27DG0go1FGxPcEauvIxE73vSarPyqxN/xSH3HMLo/UdT11HHOe+fwyvrX2H2hNlctedV5NnydG1TCDE0SbAoRBYzGrSKRSVDksW6Ni8VjfqusNterKtxMSLPht0y8K9dvxJkrz99xJUvfZ+CkYl//vOfvPbaaxgMBu644w522GGHlO5/1ZYWmjv9TBmegz3GYLG1Sbsi0+eVk/FCiCHAnzltvDJavK1QUxUshqz6T2zLVa+CdW/D6oX69+Fpg3hOIHc0QMUyrboyEVU/QN4YGKgKo/cJ35xhERf7zzuLeW7pVggGuOW6q5g5c2Zi49Mr4IW61bE9pi6uTu3kd6dHfn6FEP3TG37pmbMOtEAOEgsWO/2Rz2P4FT9moxmrycpOw3ZiRc2KqNvwKJ7Eg8UolZPRJLsaVI9I4Wybrw1nCi5YafYMPMfiCMeIqPfH0wq1wFqAyWDSFSz2qVj0u7CbtK5WNpNtwGBzXfM6jAYjY51jY96nOdoFTb0s+XAJC59fCMBpF53GiGkjqOqo4rS3T6O0tZQLdrmAU6efGvecjckQDErHNCHSSYJFIbKYyWjAH1QJZkhlmzeg9DPjwPZLCapsrGunKNeK3TzwQVhA0Z7FTfUdyR7adk1RFK6//np+97vfsXTp0rSN45O1teTaTEwZnhvzOiVrVgHQ0pTmVnBCCDEYMmh+oIwW8MY5x6Jba4VqHOQ//Rb/Fd65rm/r0w0fafM6DqS2a55Cb5v+fXvb+oZ2sQidsEvkRJSnDZo3g3MUmAdocd97jF3VDSGqqjLvsX9z1g1/48uSJu31VdNwkqz2Z626smAcxHjCcENZFQD1Ta3JHJkQYgjQGyw2e/sPiXoLBYuJtAWNFkr6gr7w9vcetfeA2wgtGw+L0aL7MSQyr+Rg6x0sqqqKy+ci35qf9H33954JKAGqO6oZ4xwTdZlQ1aCe599kNOG0OKnpqIl5nd7PUbuvPbzvWILFjc0bKbIXhat0YzFQK1RVVXn56Ze5/eLbWbl0ZbhzltloptHdiN1s58Z9bmSPkXvEvM9U8Xv8Ay8khEgamcxJiCxmMhoIKMGUTGUzEL8SJKgi7TsjqGzqxBsIMsJpw2iM3HpDpFZ7eztnnXUW7777Lo8++ihXXXVV2sby0Zpapo/Mo9BhjXmd2q2VUDQ+iaMSQogUyqA2Xhkt3jkWA26tYnGwrymtXglNm7S2pI5ulXiuKtj0Bcw4doD1f9S+6mz7BoC3HQLxBIuhE7AJhHe1P2tf88ZClJZqYd1boRpM4Bwe/tbt8XLBbQ/z3/c+5y/XnMet+/mg8uv0BItbvwejGQomxrxKVV0je8V+TZQQYjumt5KwvrOe4Y7hAy/YJVQlmEhb0GiVaj7FF97+bsN363cboWX1VlyGxBUsZtDFWb3H0uxtRlGVlASLrZ7oF7lsbNlIIBjod17CcCtUnfN05lnzqOusi3n53kFwu78dm7lbsDjA/je3bu638jKS/kJIv8/PI//vEd7977ucdcVZXHjjheF2sQeMPYBiRzEn7HBC+PnJNH6fHwa4xksIkTxSsShEFjMbjfgVFSUDwjy3Xzt4Tv9IMs/6WhcAI/NtaR7J9qe1088Bd3/Cj1taetz+u9/9jsWLF/POO++kNVTc2uKmpLadycNzcdpjv9antqoyiaMSQogUU3yJVZCl2rwCeOPS1O833mDR79ZCo2S0QvW7e8516BimVfH9+PLA69Z0BYvxVJj42hOrWEzk2LlqpVYBWhD9BGVY92AxpwjMjvC31937T9789Gteffg2brv0DAwmS1fFYhqOprd8C/njtTkgY1Rd35TEAQkhhhK9gV+9u17X8gaDAZPBlFBb0GgBnT/oD1chmk1mxju1izvVCGc+vMogzLGooxVnaJ+ZQAkq+HvNK1zXoQVuqQgW23zRux+sbVoLwERn9ItnLEYLBgy6g918W76uYDFSxWL3Vqj9vZ6qqrKlfQujc0frGqPZEP09Of+B+Sx6bRE3P3AzF998McZu3S12Hb4rp04/NWNDRYCAL47jYiHEoJFgUYgsprVCDWZEK1RPKFhM/1Ayzqb6DhwWE8W5mXtANlRVtbqpafPwXZnWGkVRtPfp3XffzdKlSzn22AGqKZLs07W1mAwGpo3IxThQ1UM3NVu3JHFUQgiRYoovPVVaiShPQwttxQtqHFUQAU/ygsWAp2fYaTTD6N1g82Lo7Cd4CipQt27bNuLZr689jvUG4QRs1Q9aqGjLG3jZ7ifTHcPAbAsfi9xxxVl88cJfOe2Yg7X7jeb0tULd8o32mKyxza8IUFUrwaIQIjZ6A79Gt/7pHkxGE754Ktm7RAv0AsFAj7BwtxFa1eLG5o19lvUGvAO2neyP1WTVXTHnC2ZG14cOf0efsDUUuBXaCpO+/1Zv9IrFkuYS7CY7RY6iqMsYDAbMRrPu57/QVqjr/dq7YrEz0Im9q6263WQnEAz0CWhDtrRvwR1wMy43hgubuolUsRg6FjnzsjN56OWHOOb0Y3RtM1MEvBIsCpFOEiwKkcXMRgMBRSUYTH+a5/FpJ0HSP5LMU9vmId9uxhbD/IpicHV0HWgGUXnllVfYd999aW5uZvLkyeyyyy5pHh18tLaOKSNyGeGMvZq1o91Fa1NDEkclhBAppvizL1hMBzUI/jhCOH9XK9RkVSz2DjsnHQjuZihZFH29pk1ai9bQNuLhqtW/TgLzb4VV/QB5Y2IL4bqfHHQU8t6Sn9nj5CupbWhm9Igi9tl1x233G81dz2WKj6bdLdBUCnmje1RU9sfvD1DTqG8ONCHE9ktvxWI8waLZYB70ikVVVfEH/T0qtibkTQAiz+nnVbyYTfFXLFpNVt0Vc4mEqYOp3d/3Yp9Q5WmBLfZq+Hj1V7FY2lpKsaM43OIzGrPRrPv5H2YbRqu3lYASW8DlVtwY2DaODn8Hjq7P3lBL1EjPJcDqhtUATMyPvW050Gfez5XLVnLhkRdSs6WGvMI8dtkn/edF4qGqqtYKVQiRNhIsCpHFzCZtjsVk5Ioev8KSjbGHF55A10klHSWLKzY3ccdbP2dEMJpMdS4PuXYzZpP8yk21Dp+Cqqq889zfOeOMM5g5cyYOR2wnzZKt0xfg69JGpgzPId8R+5Wt5aUlSRyVEELoMFjtSxV/fJV42yOvS/86Abc2v5+OyvjYt+3p2561eCrYC+GnV6IfF9b8pH012/S3wrV0TezXEXvrsbBEKxZ9HVoIlztSa/k6kK6T6aqq8ujiOv7vqnvYYcIYch0R1g0Fi6kO2at+0L7mj4/5PbKxogpFkYsBhBCx0RssNnn1V0SbjKY+1WB6RFo3VA3YPZjpHgr1WV7x9Qlx9LAYLbpbm+qtsEsWl6/v8UmDuwEjRnItyZ+QN9L+Q8pbyxmZM3LAbZiNZt3Pf5GjiCBBqjurY1q++5ydoFXK5pi1C5VClYvtUToyrG9aj9lojumxdNf9Pbnlky3cMOcGho8ejjPPqWs7maaxthF1iJ9LFCLTyVluIbKY2WgkEFST0gr1k7V1nP3McsoaOmJa3u3TP8fiN2VNvPLNFqrbMuNgOFnqXV5yrSYspiSc0BP9anF10Pjugyx85iHuvPNO/v3vf2O3Z8bs3l9taMCnBNlhuBOLjtC5fOP6JI5KCCFi1NEAd4+ByhWJb0sqFmMXV7DoBZM1OcGi4oPe1RIGI0ycBRVfgyvKibban7Xw0VagjU/P62/rOhGWjorF2tXaWAvGxlYBqvjwKyqXv+fl9//+kevPP4XXH/sDztwIFzkZTVrAmuqfha3fgcWhPaYYrd5QkcQBCSEGw0PfPhS1pWKq6Q0Wmz1aNWCkeQyjMRvMCbUFjRTQhUKmWMNCXzCxYHGgOfYiyZQ5Fjv8fc8btfnasJltmIzJ79zk8kc+PvIqXmo7axmTO2bAbZgN+oPFYnsxAJWuypiW9wQ84WBRURW8ijdcsWg3aucpolVfbmzdyHD7cN3Pp8VkQVEUal6u4ecnf+a4M47j3ufuxVmQ3cFiWUlZuocgxHZPgkUhspjWCjU5cyy2e/2oQJs7tj9GQnMs6uULKPgDQ/tkYmO7jxyrGbNRfuWm2g/ffkNnyVJ+d8fD/PGPf4zY/uSz9XUxB+iD6eO1tYzKszGhKPb5jECCRSFEhnC3aCHN1u8S31bQr80tJwamd15BVdXap0aYX2fQRKoSmDob/J2wemHkdapWQv7YbRWLeipWrV0nwtrjCRYTPAFbtVKrLMwfH9vyip9V9Uae/0nlmT/M5W83XojJFOWEYLhiMcVX32/5BgomgjWGOSO7rN5YnsQBCSEStbJuJf9a/S/u//b+dA8F0D8PYChYDHZdaBGM4YILk9GkO8DsLlLFoqer/XjMwWKCFYtWk1V3sJXIYx5Mkdp3qqj9VngOpkjBJsCG5g0oqsJ458Cf2/G0Qh3uGA5AVXtVTMv7FB8mg3YcEKqyzLH0rFiM9ljKWssYkTNC1/gALAYLVWVVNH3axIzzZ3Dt3dditsTfsjdTSLAoRPrJWW4hspjZZNAqFpOQy3n8+jbqjjNYVNRubVSHqMYOHw6rCbNULKZMRUUFqqoyaZd9GHfJs+x3xP9FXG5jnYuLnvuWe99fm9KWvMGgyqfr6pg20km+Xd9B/eaN67A59IWRQgiRNIkGNSAVi3roDRZDbWaNSTyB5IkQLBZO1OYhXP1G5NC49udt7UQDPn3BstGkrddRr3+siVZ2VP8AeWPBnj/goltqGlF8HvaZYGfzW/dx4Tm/6X8Fo0n7OUhlyK6q2sUB+WPBGnurup83lOOwWQdeUAiRFqGQp7/2kKmkN/wKVWwZuyrDYwkmzQZzYsFihM8Hd9dcwJYYL87pPR+jXlajFZ/iQ9VxgYk/mBlVqdHad6ZKp78TJcLn55rGNcC2uTH7Yzbqfw/lW/MxG8wxB4texRuuWAw9Z7lm7fM3VLkYKVhUggpb27fGVHnZnb/FDwpMmDqBHe/bkcnHTx5wrslssblkMwbj0HgsQmQrCRaFyGJmowG/kpxWqHorEPUGkd25vUM3WPQrQVrdfnKtJoxD5AAu0y1atIhdd92VJ598kk6fgim3MOJyqqpyx5urUYIqTZ1+AikMFn+uaqWh3cfk4lxyrPpO9pZvXM/ocQP/YSSEECkxGMFiUILFmEUK8frTdVKUBE50DsgbuWUXkw/W5u9r2tTz9o5GrdrQOUoLCPVWLIJWtehu0l/dl+j7dev3kD8GLP1f4PNleYA9fnMDf3vxQzCaGVlcOPC2Q+FvKqtP2qq0gDZvjFY9GqPVG8sZO7I4iQMTQgwlesOaFm8LsC1YDPSeyzeChCsWIwSLofaoVmNsn6GD0QpVRdU1b2IqKxbXNa6jLcpnfmegM2XjiERFpdXX2uf2Dc0byDHnUGgvHHAb8bRCNRgM5FnzqOmoiWl5r+INv0d6VyyGgsVIFwSUtpTiD/oZ5xwX89jcm92UzivljcffAMCcn/1Vit2VlZRh1nkuRQgxuCRYFCKLmU1GlGAQJQmBiN6g0JtA1WG7b+A/FLJVU4d2oJ8rBzwp8cQTT3D88cfzy1/+knPOOYd2T/QrOD/4uYYlpY3YzUY8fiUpP0fRfLy2jhyriSkj9E1k397WSmNdDaPGSrAohMgQUrGYWnqrT/yhYDHFrVABphyihcY//q/n7bU/aV/zRoPZCkGdFYugzbPoadXeO3okMsei3wMNG7RA1BJhjsQuz7+/gl8938lu0ydxyfH7gMEU2/yW6QgWQ62MC2M/rvD5/Gwor2LMyKIkDUoIMdToDb9CwUqoZWQsVXlmY2JzLCZasaiqKgElEHMIGUmo2lFP9V8qg8VLP76U+T/Pj3hftPadqdTkbupz26aWTeF2pQMxG/UHiwB51jzqOutiWrZHK9SueSGdFq3Fe6gVaqSQdk2TVnk5MW9iTPv55qNv2HTPJixFFk4+/+SY1skmqqpSvqEcizWJx7dCiAFJsChEFjMbtVaoyZiKxePXF/a5ffEHi50JrJvp6l3agWmOLfkTlmc6l8fPKY8vYVP94LdJCQQCXH311VxxxRVcffXVvPnmm+Tl5eHyRH4fu30Kd76zhl+MzWdCUQ7eQJBAMnoKR/Hxmlqmj3QyLEffH55lXfMrjhoX49xOQgiRbIm2loT0Vix2NsGGj/Svp7fCbrD4dJ64CwWLqW6FCpA7Aoqmwrq3egaANT9rFZQFY7WvAZ/+19+WD542/e+/RILFutXa654/Bgx9/4wOBoP84aHnOO8vL3Lu7hY+eOoPFOWYu577DA4WHUVaWBqjkrKtBAIKYyVYFELESG+7znZfO6qq6goWTQZTQm1BI1YsBmKvWPQpPoIEY26bGslAc+xF4g32HHekdqCDxat4afA0RLwvVcHi2sa1VLRV9Lgt9D5p9DT2Wb7cVc7InJExbTueVqgA+bZ86t2xtWeP2ArVol1sbDNpnQMiPZclzSXYTXaKHf13C1BVlRf//iJ/v/bv5O+Zz5RbpjByZGyPP5vUV9fT4eqQikUh0kyCRSGymNloJKCoKElIFt06Kxb1tk7tsa8hXLHY0K4d6OfZ5UqqrS1ufqhsYcnGOOZEGoDBYKCqqoonn3ySBx98EJOp6ypAb+T31hOLN9LY7uWX04eT77Dg9StJmas0kppWD2uq25hcnEOeTX8bVKPJxIjRY5M0OiGE0GkwQhAlkNp55bpb/Qb850xw1epbL5DC8Kc7vXMYhYPFNLRCBa1qsW6tFiaG1PyozVNoydVaocYTLNvzwevS/zokUmFbtVILFPMjV/cZDAa21DRw/xUn8c//s2O1WLTg02iKGET2Yey6CC2VwWLlCigYr2t+xdUbywEkWBRCxExvJWFADdDma8Nk1FmxmMDvz0jrhoPFGNqJdwQ6Yl42mlCwFJojMxYBpeffuwE1uedWOqJc4JSqYPHaxdfy1xV/7XFbKJBt9jT3uN0dcFPXWRfzvIQWoyWuisVCWyGN7r6hZiS+oC/8vg49ZzlmrRWqyWjCarRGfP1rOmrIt+XHND9ifU09J192MuMvHY/Rakwo7M5UZSVlAFhsQ++xCZFNJFgUIgN9uLqG8/61YsDlzCYDKto8foNNbwWi3iCyu6FcsdjQrv2BUiDBYvg9pQziy71582a++uorTCYTr776KpdeemmP+zsiBItlDR089XkpB00bzvSReTgsppRWLH66rg6jAaaNdGLUOdl4Wel6xk2cgtmcxBPEQojti6efUCgWgzLHYiB9FYtqUAu2Ovu2z+pXAlURCYm3YtGcxCu6vf2cAJ10kBaqrfrvttuqV2ltUC05WsWi4o+jFWqB1oJV70nk0PMRj+pVWiBqz+9xc1VtI59+vRKDwcCCe6/j+jMP33biT/FprVBjkeqKxaAC1Su1+RUteoLFCkaPGEauw568sQkhhhS/3rbVQH1n/bY5FpWBw7JEg8WIrVCVrlaoMcybGAohE51jEfSFdL1D21ieq0S0ByJ/5qdijsW6jjq2tm+ltrPnxWChuQl7B4vrGtehojI+L7ZuP/G+h4bZh9Hma4splOw+x2KHvwOL0YLZtO0YzWqy0umP/Fwa+ul+0NrUyorFKzAYDPz+T7/nlCtOCR+LmJPZtSJNykrKsDvsmMzSGUyIdJJgUYgMdOm/v+PzknrW1fR/ss/UFUp4E6gWjMajc87ERCoW26NUlQ0FDe1eHBYTDmv2H/DUtHqoc8XfQsw9yO/TpUuXsv/++3PttdeiqmrEq/favX33eefbq8m3W9hvyjAKHBbsFiO+QHLmKo3kozU1TC7OZWSe/hNy5RvXM2nqTkkYlRBiuxXl5EXM9JyA2fARlC7ue3s6W6GG6A3sAj769KJPRSDk0/l6BUJzLNoGfywh/c37aHPCqJ1hwwdaqBfwQeNGrU2qxQ5mm/a86W0tay/QXjO9rU0TaYVa9T3kjwVrTvimH9aUst9vruHyO58gEFD6HosEfDoqFrtO/AVSFFo3lGg///ljwRT7ScfVG8r5xbRJSRyYEGKoiadFaZ27Tt8ci4YEKxYjVFV6uy6eiqUKMRSsJVKxGJ5jT8exWe/HnPSKxSihpzuRC3ditKRqCQDN3p4BosVowWgw0uJr6XH72qa1AExwxjaPsMVkiWuezmJ7MSoqVa6qAZf1Kb5w0NcZ6AyHyeExGC26Q9ryDeVcfuLlPHDLA/g8vh7HImaDGYPBEL7NFOvFThluc8lmJk6bGFOneSFE8kiwKEQGCp2mijY/XIi5K1j0BAb/ZJzeoFDmWIys3uXFaTOFX6ts9oeFP3HNf1fGXSHrTaCqtbcXX3yR2bNnM2PGDN5///2oLUF6Vyx+sraWz9bXc/iMEUwapl2db7eY8CnBpLQU7s3tU1ha2sgOI3LJd+i/mrV843omT5dgUQiRQfRUISx9FBbfDf6ucGfdO9rXYCB9cxaG6L3SXokwL2AqHkPA3TfQ7E+4YjGJwWJ/FYsAUw6F5jKo+Boa1muvd94oLWwz2eKsWMzTtuNuHnjZ7vxxBosBH9SvA+dI6GpZtvDjpRw85wbGjCji0wX3YI501bwSChZjmWOxa/04TmrGZet3gAEKJ+pabfXGCnaZLsGiECJ28QR+je7GcAgSCA4cllmMlsGfY1HRPjN6hz+RhCoWY1k2mnhaofYJFmN4rhIRLfR0B5IfLK6o0bp6tXpbe9xuwIDdZKfF09Lj9g0tG3BanOTZ8mLavtVojeu9WmzX5j3c0r5lwGV9ii9csdjp7wyHyeEx9FOxGMm3X3zLFadcgdVu5ZFXH8Fq7xlsh9quWk1WdinehXN2PifmbWeyspIypuw0hRxjzsALCyGSRoJFIbKY2aj9CCcS6kWjO1hMoBqtcwjPsVjn8uC0WzCbsv/XbadXobKpk/YBAu9oBqti8ZFHHuHss8/mzDPP5KOPPmL48OFRl+3o9t7y+BXmvbWanUbnseu4AmwW7SDbYTHhCwQJKMkPFpdtasAbCLLDiFwsOt8TbS1NNDXUMXmaBItCiAyi5wRMqMovdOLPVd21jTS2Qg3RW7kZjBCGpeACFfweLVCLeflUVCwOUO05fl+t5emPL0PNT9pt+V1tycy2rorVOIJFgPY6fevFW7FYv1YLQPPGgNHI/Nc+5NSr/sJxh+zL5y/8lbGjiiOvF26FGkuwGKpYTFGwuOVb7fHkxD5XosfrY0N5lVQsCiF0iSfsavQ0hluhxjrHYiLBYqR2raGwMZb2pqFgbTAqFvWEdL0fs5LkOaujVSymohXqqvpVWI1WvIq3T7joMDto8/Xs+FXaUspwR/RzBb3F2wo1tI+t7VsHXLZ7sOgOuCNWLMb6+n/+7ufcfN7N/GKvX/D3N/7O6Amj+yzTvULxkt0vYVTuqJi2ncmCwSBlJWVM3nEyecbYQmMhRHJk/5luIbZjZlNXK1SdbUtj4dFZXZZIOOj2pflkYhLVu7zkWodGxSJAY4dPd5vckMEKwH/1q19x3333MX/+fGy2/k+Udq+G/ecXm6hu9XDotOGMzneEb7eZjV3BYvLfhx+vqWWE08aEQv1X1pVtXA/AJAkWhchs7maYVwBNm9M9ktRQ/LEHatFO+KmKFi6mk94WoxChYjEFwWLAo6+6L1yxmMS5ef1u6G+eYrMNxu4FGz/RquRyR4KjcNu44gmWbV3zHLbX9r9cb/FWVFStBAzhQPSQfXflrqvP5uWHbiGnv7kG9VQshk7+JbnaJGzLN1AwXtf8ius3byEYDPKLafqqHIUQ2ze97SVtJhtN7qZwtdVgBovrGtexsm5ln9sjViwGPJgMpvA4+hMKg2zG+C/ksZu0z5MOfwevrn81pnV6P+ZEwtVYRAu9kl2x2ORpYotrCzsO2xGA6vbqHvfbzXbavD2Dxcq2SkblxB6kWY3WuJ4/p9WJ1WjtM6ZI/EF/uBWqitonWLSarDE/lzvvvTNzrpjD3f+6m9y8yJ/lsbx3s03d1jo8nR4m7zg53UMRYrsnwaIQWWzbHIvpb4WqN4jsbmjPsegjx2oOh8DpEgyqrK5qHXjBAXT6FJra47uSPpGKxZqaGi655BI6OzvZZZdduOGGG6K2P+2us+u91eDy8vfPNjJrajE7js7D2C3otVtMqCS/Ja+qqny8to5pI3MpyImvDarJbGbcxB2SMDohxKDZ+In29csH0zuOVNEzP2IwwLaG773EUkkWWiaGygHd4jkh1qfKLhXBoldfdZ+/EzBoFYPJEoihinKHw6CjDla/AXmjwdJ1gY3Jqj0evVV64YpFncGiv++J45hUr6TJNILfPbSQVlcHUyeO4f9ddiZG4wB/TusJFkPzHAbiHKMefrfW2rX7axGD1RvKAdhZgkUhhA56wxqH2UGzt1l/K9QY2rM//P3D3PfNfX1uj1SpFpoPzxBD1XkoDLKY4j9GMRqMmAwm3t70Nnd9fRcfln044DqDFSxubtnM7FdmU9Xe/zyBnijHa9FuHyxLti5BRWWf0fsAUN3RM8RzmB20+rad72j3ttPgaWBM7piY92Exxd9ON8+aR01nzYDL+YK+HhWwvVuhDjTHYoergwdueYCWxhZGjB7BBTdcgClSK/YuQ2VOxe42l2gXb0qwKET6SbAoRBYLVcF5kzHHos5tJhIaeQepRWYmamz34rAasQx04inJPi+p54RHv2LNIISLlU3xtTnRG1aH/Pjjj+y33368/fbbVFRU6Fo3FBa+8HUFDquJ/acUUZjT8+Sqzay9Nh1Jbsm7uqqNOpeXycNzcVj0H+CXbVzP+Ek7YLEm8eSwEELopafarL8Tg/4Ygr3QfHrW2CusYuaN47OtTyvUFHRgUHS2Qg14wGTZNn9fMgTcA49p9K5gdUJno1axaOnqHBAKPPW2orXmAgb9rVAjVKTEouSHJRzw9628/tn3bKoc+MThtv35wGAmpj+7Qyf/4mjDplvNT9prlj8OdByjrt5YwbhRxRTmO5M4OCGEXqqq8q+f/pXuYUQVS+DXncPsoMXbkpRWqC6fKzx3YneRgkW34taCxRguDhmMVqigBUt1HdpnW4O7YcDl+8yxqMb3N+0XW7+gwd3A5tb+O254FW/EdqvJrlhcUbMCp8XJzGEzAajp6PlZ7DA7cPlc4e9XN60GYHze+Jj3EQoW1Tg6UORZ86jrHPiYxK/4ewSLDpOjx/02ky16VWi9m6tOvYrP3v6Myk2VMY1rKAaLZSVlOHIdjBqX/W1dhch2EiwKkcVCcyzGG9j0R2/Yl0iw6FOCcR28ZTolqNLq9pNjNfeokEuHLS1uVKCkNvaJ4KOpbI4vWIynFeq7777LQQcdRHFxMStWrGDGjBkxr+sNKASC2vuq3Rtg9o4jmVzc92S0vSvka/ckN+D+dF0dDouJqcOdMf1x2lv5xvXSBlUIkXn0VCwqgehFfbFc6Z7MYDHKnEH9SksrVK/OVqidWnhnSOKffbFULBpNMGF/7f95o7SwE7YFi3pb0RqMYHNC58AnXfuMVafPPv6YA+75FpPZwvL/PsCeO0+NfWXFr401ls/90ByLqQgWt3yrVf4WTNC12uqN5TK/ohAZ6LEfHuOh7x/im5pv0j2UiPRWgeVYcmjxtOiqWDQbzTGFakqUqv9I7Vp9ii/mYCZUsZdIK1TQwq1IbVmj6f3cBuJsLf9zw8/AwJWHKmqPysCQZFcsrqpbxYS8CeRYc7AarX1CvBxzDu2+bec61jWtA2CCM/bPOatROyaJFDwPJN+aT31n/YDLBYKBfisWbSZbxOeyek0139z2De5ON4+9/hi77rtrTOMaqsHipOmT4jqnIoQYXBIsCpHFTF3tNZMRLOqtWExkDF5/ECU49ILFpg4fQRVybek/mGtwaX+c1LQlfiVhvBWLesPndevWceKJJ3L44Yfz5ZdfMn587FcbAnR6e+5v9wkF4RCxu1RVLH60poZpI50My43vKtby0vVMlmBRCJFpgnoqFvs5sagnWNQxJ1zM9FbMQYRgMQUVi7qDRbcW4iUzWPR7Y6uinH4UOIZBQbc2muauE7DxPP+2POhs7n9+x950thmtrKzkmOOPY+8xRpY9MIepk/Udi6D4u6pFMzBYLBgP9nxdq63eWCHzKwqRgVq8LQA0e5rTO5Ao9AaLueZcWr2t+lqhmiwEgoEBL1iOFixGGqNX8YbnwxtIKIzqPWceaPMDxhI6gVaxqGdOyt7PTbTHN5CS5hKAfttwhvSeyxDiC+NiFQgGKG8rZ2qhdmGP0+rsGyxacmj3bwsWN7ZspMBaQI419nbfoWCxM45jkmH2YTR6GvtdRgkqBNRAj3a5Oeae47OarH2CxYaGBl674TVyRufw5FtPMmWnKTGPa8CW7VmorKRM2qAKkSGG3m8YIbYjoVaomVCxmFCwqARRhmDFYkO7dvLKaY3tj5FkqndpB6e1bYnP21PdGt8fDbEGi4qiLTdjxgzeeecdXn/9dZxO/S23us/dufekYYwpcERcblvFYvImuq9zefhpaxuTi3Nw2vS/H5ob62lpamTSVAkWhRAZRm/FYrSSRT2tUJNxkkRvxRxEeNxJPpYxWbuCRR0XwvjcKapYjOEzftgkOO4+GDF9223xtkIFsOWDt01fe9MYg8VgUOumMWHCBN568FreOyuHwnHT9I8xFCxmWsXi1q5gUUf1r9vjpbSiml9Ml4pFIYQ+sQSD3TktTtp8bbpaoVoMWlgzULVfMMrFKJHateoKFgMejAYjZlPf5Y957RgOf/XwmLZjMVoI6rhQqXcr1HjmCPQrfipdWmvNWKol23x9g0U9VZbxCBJk56KdAS147h3i5VpycQfc4Tatm1o2MdwxXNc+Qm1s42nrOsw2jHZ/e7+Vm6H7erRCtfQ8R2E328MhraqqBINBhg8fzv/96f/Y8/Y9KSwu1DWuoVaxGAwGKd9QritcFUIkjwSLQmQwv9L/AWU4WEzCHIt65230+OMfgy8Qf8Xi5S9+xxclsV39l2qhYDE3jiBpsNV2VSyGxpSI+nYfvjjec70rCCNpaWnhmGOO4YknngDg2GOPxWSK72C4ewWiETBFaUcbqlh0eZNXsbh4XT0GYNqo3Kjj6E/5xvUA0gpVCJF5dM2x2F/FYgyfT+6W2PYTj3jmBuozx2IKgkXFpy9Y9Hckv2IxllaoIVYnWLpdnR8KFuN5/u0FXcGijiAuhsrY9vZ2TjnlFO69914Ajp4SxFIwWqu21Evx6W+FGkhysNjZBC3l4BwNvVqw9WdtaSWqqkorVCGEbnrDLqfVicvvwmSMvWIxFAoNVHGnp2LRp/gwG2L7W94biB5C6gmquodOsQiNOxTC6g1xAVY3rg5vJ5axtnp7tkJVVTXiHJWDKcecE54v0Wl19pl/0mlxoqKGq3crXBWMytE3B1/ouY+nYrHIUaTtt60i6jJupe88nL0rFm0mGz7Fh8fjYc6cOdx2220ATNp7Eiar/vMisb5/s0V1RTVej1cqFoXIEBIsCpGBQoHhQEGM2aT9COutLoyF3uAokYrFRILF936q4fwFmTmXRCjEK3Do++MgGeq7gsXmDh/BBNvONnf64ppTc6B1Nm7cyKxZs/juu+/Yeeed4x1eWEeMQaEtVLGYxGDxozW1TCrOYVRe5KrJgZRtXI/FYmXcRLkyTwiRYXS1Qu3nc8AfSyvUptj2E49YKiZ7631yMtmtUM02LajS0+bM79bm0ktmsKg37OzO3HVyzRtvsOjSF8QNUFGxZcsWfvnLX/Lpp5+y2267aTe212rVkZbY26mFBX1gMBHTn91dJ9D7DeAHw9bvta8F42MLPLus3lgOwM7SClUIoVOkasD+OC1OfIovXLkX6xyL0LeCr7dktkIdjBAn3mAxVJkWTyvUVfWrwv+PJVjsXbHY4e9ARcWYxFPM4/PGh+fUy7fm0+zt2fbXadE6HDW6G2nyNNHibWGsc6yufYQCv3jaug63a9WRW9u3Rl0mUsVijqVvsOht8TJ79mzeeOMN9t57b91j6S4Uzg8VZSVlAEzZUc6LCJEJhtalC0IMEVaTEb8y8AFhqPJJb3XhQJSgSkBn+JTIGHwBRdf0OL0NNI9CujS4fNjMRnIyoGIxFHK2ugP4lCD2BA4wmzt8WpitMzDt7GcOwy+++IJTTjmF4uJili9fzvTp06MuG6v2GCokAeyhORaTFCx6/ApfbWzgwKnF5NvjC5nLS9czfspUzJb0h9RCCNGDrmCxn1aosVzN35lpwWIaWqEqfu1frFJSsaizPWt34YrFOFqh2gvB266zFWr0E87ffvstJ554IhaLhaVLl7Lrrrtqd4Re1niew3Ar1BiWTVUr1K3faZWj+eN0rbZ6YwUTx44g3xlHwCqE2K7prVjMt2nzv4ZCrphaoXaFNf21ogSithmNFF76FF/MwYxH8cQcQvanezVbLJVzg1WxOMw+jHZf/608Q3rPsRia27D73IGDbWrB1PD/C2wFfaomnVYtWGz2NlPv1jpahSocY5VIK9ThOQMHi6HXs/trnGvu2ZK8tbyV0rtKGWYaxueff85+++2neyzdDcVgMTcvl+Gj9bW5FUIkh1QsCpGBLObYfjQNaOHiYAeLkaoPf9rSyuRb3uXTdbUR10mkatKnqENyjsX6di9OuxlLHK0vB1tTh3aSqs3jT/j94vIE4qrui1axqKoqd911F7vvvjtff/31oISKAJ0xjtFsMmIyGOjwDX7lL8DXmxpx+xWmDM/FGuPPdm/lG0tkfkUhRGYKBmJvAdrfiUE9cywmQ4xz7/XQpxVqkisWTVZA1TcfZCrmWAzqDDu7M9m0r74O/es6CrW5GfWEwv2EkPfeey8TJ05kxYoV20LFRCn+ruc+huc/9Bolu2JxywoonAi22OdXBFi9oVzaoAoh4qI7WLT2DBZjCctCodZAwVhAjbwtRVUIKD3vG6xWqHp0D+diedyhZULBohLLnMe9lDSXMDpnNGajOaZqvVCQGP7e1xUs6qy21GNG8Yzw/wtsBXgVb49wsXvF4rqmdRgwMN6pM1g0aoGfN45jQofZgd1kp7qjOuoyoee2+/OU22uu469f/hpTjok3Pnkj4VARhl4r1LINZUzecXK4elUIkV4SLAqRgaym2H80zUZDXPPd9SdisLhVO2j7Yn1Dn/sgsXkefYEggURKFjNUXZsXp80cblmbLh3eAB5/EKfNjMsTwBuIP0CzmoyowNYW/Vfx9Z6HMxgMUlFRgcFg4H//+x8ffPABRUVFcY+tNz3hp9VsjGkOyHh8sraOolwrE4via4OqqiplG9czWeZXFEJkIl1zLPYTQsZwhTyelpiHpVvAg+72CX1aoaagYhG09p+xCri1Srhkn4DRM6buQo8pnopRWz6gQruOubZ7nSxUVZXycq3F5/z58/nss88YNUrfnEz9Cvpjn2PRYNCqGwNJDBZVVWuFmjcGrDqDxY0VEiwKIeKit4ounmAxFArFW7EYaV2f4tPXCnWAZWPptGQz2mLaX0jvikW9Ia5f8VPRVsGEvAlYjJaYKhZdvp6f+eFgMYkVi5Pytn3+DLNpcx5Xt28L8UJVri3eFja2bKTQVojNrO+5DFcsKnEckwB51jxqOyNfiA/b3s+h9ypoFYuqqlKzpQaA397yW6bcNoW8UXlxjaG3wQi7M0lZSRmTp09O9zCEEF3SHiw+/vjjTJ48Gbvdzv7778+KFSv6Xf7hhx9mp512wuFwMGHCBK699lo8Hv39r4XIZKGqpmjzDnY/IDUno2JR5/b8SvxzJIbWH4K5IvXtHnKt5vCcmWkbR9f8iqPybbR7AwkF0QU52h8LFY36W5Z1D6w7Ojo4/fTTOeigg3C73RQWFmK1WvtZWz89rU1tZiPuflq1xktVVT5eW8v0kU4KHPE9vuaGelytzUySYDFp5FhEiPipelqhKv38no0lWIw3vIqF4tc3dyH0DSJTUrEI+Nr7X647vzv5rVABerVFi1k4WIynFWqB9rUj+km8HoLBHi1bvV4v5513HnvvvTctLS3k5eXhcMR3EVBUil+bYzHWYNdgSm7FYkuFNldp/thtz30MOjo9bN5Swy9kfsWkkuMRMRQZMOgOFgts2u/3Dr9WzR6tyjAkGAxua4Ua7P9noL+Kvt6Bkp45Fr2Kd8CKvViqAa06fjd3f25D8xvqnWNxbdNa/EE/k/MnaxWLsQSLflfE77sHZoOte0vPYfauYLFbdaDdZMdkMNHibWFT6yaGO/S3yrR1dVGIpxUqaMFiXWdd1PtDlZDdA1i7wc4jtz/ChUddSFNdEwXOAkwOU/i9n6ih1ApVURQqNlYwecfJ6R6KEKJLWoPFl19+meuuu4477riD77//nt13352jjz6aurrIv4hfeuklbrnlFu644w7Wrl3Ls88+y8svv8xtt92W4pELkVyhYDFaFV9p6UYAGqoqMZuMKalYHMzle/MpwSHZCrXB5SPHasJsSm+wGJpfcVS+HV8gSKs7/hNWhV3zKlY26z8BGGqF2txQy6GHHsqiRYt4/PHHB/8kXhc9rU1tFiMef2IBeSTra11Ut3qYXJxDjjW+g/qy0vUAUrGYJHIsIkR8tlZpc8i43e7YA7X+TnbFEiwmk+Lt29p0IPFU2SXCHAoW46lYTNKfffFUUXZnNGpVev44Xn+7Vp2AK/pJvB66tUFtaO3giCOO4JVXXuGxxx6jsLBQ//5j2mfXHIuxMpr7D+ATtfVb7Wu+vvZwa0srAPjFdKlYTBY5HhFDlclg0h0s2s12zEZzuOVmtPVbWloA2LxmcziQ8/Uzly4MULHYK/jzBWOvWOyvujEUuLli+KzUEyx2f27jnWPxh7ofANihYAfMRjPeGOYtbu91gVMoBNMzdj2K7D27GhXZtO+7B4sGgwG7yU6rt5VKVyWjcvV3H4i16jWaAlsB9Z3RuyiEgutQgGlwG7j9wtt556V3uOz/XUbRyCIcZu3cSO92s/EaSq1Qqyuq8Xl9EiwKkUHSGiw++OCDXHzxxZx//vnsvPPOPPXUU+Tk5PCvf/0r4vJLly7loIMO4qyzzmLy5MkcddRRnHnmmQNeySdEtgm1Qg0okUMOn08LhjyeTiwmA/5gkOAgBiL6g8XEgk2/EkSJ8lizWWOHlxyrCYsxvcXhoYrFMQV2AOpc8Z+8tZqNOCwmqlr0b8PjV/DVlvKn351CbW0tX331FSeeeGLcYxmIvopFE57A4AeLn6ytw2Y2MnWEM+55AMo3rsditTFmwuRBHZvQyLGIEPHx+bpO3AX9sQWLwWD05QzGgYPFZIYtAAGf/orF3lV2KWuFqrNiMZnBYqjNmJ6wszejJb5guauihfYYKxa79rG2XmH/yx+npKSEzz77jDPPPFP/vmMV1BksJrticct3kDMc8kbqWm31Ri1YnLnDhGSMSiDHI2LoMhqMA1YcRpJjzgkHWNHCMr9f+33p9WyrLByojWV/FX3uXhcM+RV/zPMG9lfdGGrJ2eYfuLo/FDrFwmTsGyzqrVhc3biaYbZh5FpztVaoMVRV9q6mC32fjDkW86x57FCwQ4/bcqw5WI3WPiGe3WynwlWBy+dinHOc7n2FXqdYnoNICm2FNHmaot4fCiwtRgu+eh8b/7SRdSvX8bcX/sYJZ53QYwy9w9t4DaVWqGUlZQBM2WlKegcihAhL29lun8/Hd999xxFHHLFtMEYjRxxxBMuWLYu4zoEHHsh3330XPljetGkT7733Hscdd1zU/Xi9Xtra2nr8EyLTbatY7P8EVcDvw2Iyaq1EB/Fklt6gMNGKRb+iZkzFYnm5duKkqqIsoe0EgyrNHX4cVhPGNLdCbWj3YjIaGJWnBYu1cYSC3RXmWKhzeXSHcB5/kKDfx/Ax41mxYgV77LFHQuMYiMujrxWq168MerD40Zpapo10UpQb/9WbZRvWMWHKNEymodPGJFPIsYgQiTOo/QSG3YXDkgi/Z40m8A9whbynVffYdAn69Fcs9m6VNUitUGu7KpTWb97a8454qgP9niQHi9qxBe4Efq+ZrPEFi2abFkp2xFix2NWCzKvAyEIny5cvZ9asWfr3q4fi157/WBmTHSx+AwUTwKJvfsWfN5QzedwonLnJ6TKxvUvF8Ygci4h06R5+6eEwOwasWAwJ+APharmBKu76C94SqVj0Kl4shsjBmt2kfVbGEhbpqfozGozh58Zk0P5W1BssljSXMDp3NKCFUKF2ne3t2ljLS8v7rNPZ68KqULCoJxRNlNPq7NN21GF2sKZxDQDjnfoq80F7rxoNxrgrFofZhtEZ6Iz6OofemzaTDVVRMTvMPP7m4+x10F7hZXLN2udzR2BwWqEOpWBx8/rN5BXkUTSyaOCFhRApkbZgsaGhAUVRGDWqZ3n6qFGjqKmpibjOWWedxV133cXBBx+MxWJh6tSpHHbYYf22+7jnnnsoKCgI/5swQa6yFJlvW8Vi/yeoFL8Ps9GAX1EZzDzEGyEo7C+4TDRYVILqoLdzjdeWLVsAqK+tSmg7LW4/iqqSa0v/gVx9uw+nzRwOt+pc/beHGciwHCuN7b6YX3dVVfnvf/+L2+PFPn4mt/79ZcaMGQNoczUO9D6Pl8sb+4k5u8WIN6BEbT8cj8Z2L6sqW5gyPJc8e/xXb5ZtXC9tUJNEjkWESJxBVWIL1JR+ficbzT3aVEbkbtY3ML3iqVj09a6KGJyDsdpa7fdPdX2vq97NccyxGPCAKQUVi/HOsQjbgkW9F5kZDGDLg87o1QHd/e+11/EEVPYYbWLp3y9j8uTJ+seqi6rN6WjQ0wrVpK2TjAvulADU/Aj5o8Gao2vV1RvLZX7FJErF8Ygci4h0iacVKmgVi6G2pQOtr/iVcBvLUDAWTX+tUHvPraerYjHgxWyKUrHYFbjFMm9eKISMhclgCleDxtMK1a/4qWirYEKe9vvAYrSEw6/WVu2Crpamlj7r9W7T2RHowGQwhcPNVMg159Loaexxm91sp8nThBEjY51j49pu93BVr2JHMQCVrsqI93sCHtq+ayPQGcA22sase2cxcWrPz1az0YzRYBy0ORaHUivUspIyJu84Oe5OUEKIwZfe/nw6LV68mLvvvpsnnniC77//ntdff513332XP/3pT1HXufXWW2ltbQ3/q6yM/AteiExiMcVYsRjwYzEZCQx2xWKg74m1UDvNfEffAxN3gsGito0ktzhLsdC8hrlxzqs3mOraPDhtZvIcZowGqE2gFSpAca6Vlk5/TMGiz+fjoosu4swzz6RpvXZFdehAUAmqHPXw5zz1+aaExhNNhzdArIecdrMJ7yC3Qv1sfT0qMHVELqY4q1ZVVaW8dD2Tp88YtHGJxMixiBA9GWMNFkNVWJF+zRoyIFgM+rR2rXr0vqJ9kCoWo4qnFWrAA8bkzHkEQKg6IZGWXSZLfHNcghYselr6Da4VReGaa67h9POv4H9rtOVSclIq9Hj0tMQPzbGYjPdS/Vrt/ZA/Vl8VJVqwuIvMaZRR9B6PyLGISJe4W6Fatl0AMdD6gcDgVCz2XtcfjD1Y9Cm+qMs6LLHPm6erFarBRFANogSVuILFtU1r8Qf9TM6fDBDzHIu9KxY7/Z2D0ga1w9fB7Fdm89XWrwZc1ml10uBu6HFbaH5Cm9kW93yPZoM57laooWBxa/vWPvcFg0H++8h/qXisgs8WfqaNM8JrbTKasBgtgxcsDqGKxVCwKITIHGn7DTN8+HBMJhO1tT3nxKitrWX06NER17n99ts555xzuOiiiwDYdddd6ejo4He/+x1/+MMfMEb4o81ms2Gzpa4cX4jBEG6FOsC8g4rPjznXkJJWqJVN2sFjgaPvAWOicywCtHsSDyczSUNXEJtnG/x5BvSqc3lx2sxYTUacNjON7fFdgRcy3Gmjxd04YKDc2NjIr3/9a5YtW8a/FizgzrXDe9zf6Qvg8Qf5vqIJVVUH/SRfh1fBZjbiiaEa1mYZ/GDx47W1TCzKYXR+/G3DGutq6HC1MWmqVCwmgxyLCJE4I7G2Qg19ZkRphar4tWAvWgiT9IrFGOeK7LFO71aoSW7rbjBp/2IN8VS1q2IxicciJgtg0Nqz2gvi3IYVFF98YZo9X2uTq/giPs62tjbOPPNMFi1axON338rZ3sfjG2M8QmF6XBWLQWCQL07b+p1WuZqvr/LQ1d5JRdX/Z++8w+S4yqx/KneaPMqyJVlywAFsMA5gwGTYD1hgWViwl8wuYLxkMHkJJgeDAbOkBXuXsGSDDThnWbacLStLI2ly7JlOlev749btru6u2N0jjeX7ex49o+mucKu6puvWPfecd4o5FheRw9EfYX0RxpFC4AVYLUwcyUm56v+j1jcNsyps6VZ4Ok+YY7ExAjORsGgHC4uLFoXq/p3rtt6SsPjg5IMAUK1hGFfQKps+wmIH+hrbZ7djujKNHTM7cN6a80KX7Va6sT+/v66WoleMbhWRb11YHEyR8Y5GYbFcLuNNb3oT/va7v2H161bjFW98BW677TakRH93qszLTeJtUhy3v320CIuWaeHQvkP4f6//f0e6KQwGw8MRcyzKsoynPe1puPHGG6uv2baNG2+8MbDWRblcbuog05pTzhKpz8ZgdIJajcXwAZZajUWno4KI5uNYPOAKi5yPB6zdKNRObWMpMeWKdz2ZIy8sThU0ZGQBksCjOy1hrmy0FT/an5VgWA4mFoIFytnZWZxzzjnYtm0bbrzxRvzT697QtExZJ5/5aF7tiOu1kaJmVv+WokhLfEeFRd20cfuuKWxclkV3qvXO/NCenQDAolAXCdYXYTBCoJM9IuKgBNjxnH6NjjLvOrwYLSyp+eh9tIPVShRq46DPYfgOEBXAaIxgDYAOkAZEs3UMUQH0NmbWC3JrUbQAkOoloqbPdVoqlfDMZz4Td9xxB6655hq8+8JXtt7GVrDcwd0kg3qcSET4xbifDN9H3IqZvkSrPbaX1B8/ZdO6zreJAYD1RxhHNwInwIEDIywS3QevsBgnCpXjOAicECkK2SF9Fu+6lm3BcqzYglmoY9F10jUKcn4EiU1+0OjRilmpCotJaixum9mGPqUPWZnU9ZN5OdKxKPFSU2RsxaxUo2jbYdfcLgDAvB5dV7tH7mlaLiN2RlhsNQpVERWkxTTGimPV13Rdx3Of+1xce+21+Ncv/yvWvGxNdUI1vS4akQSp7RqLR5uwODI0AkM3mGORwVhiHNEo1A984AP40Y9+hJ///OfYvn073vWud6FUKuEtb3kLAOCNb3wjPvaxj1WXf/nLX44rrrgCv/rVr7B//35cf/31+NSnPoWXv/zl1U40g3E0QGssGhHiDxUWSRRq5/bv50A8OBvcCaaiUDt+s5J+tEWh6pAFHln5yHfkposaMooAUeDQnZKwUDGgtyUskoeGQyHXRF9fH974xjdiy5YtOO+886DqzQ84JY185hMLKkpa54XFUgJhMSUJMEw7Mn44Lvfsn0VJt7BhMAtFav3+dGDPTiipNFauZS6BxYL1RRiMAGLOmOc4hNdPpNiNwqLnd0Ek2wgTFhc9CtVIHsXZ5Fg8DPWik4h4VIBczChUoH1hUVSIsNtKFGqqhwiLPg6VbDaLf/3Xf8XmzZvx4he/uDm6drGh13iiKFSvY7HDDN8LdK8F3AHkuGzbcxAcx+Gk49Z2vk2MKqw/wjhaoeJXnIhNLzm5JiwajX2IBgyTvC/yYqRjMTQK1SMo6TbZTlzHomEbgW5Duo3FiEIFiKhZFRYT3Et3ze3CymzNFS0JUuT5UwQFqqXWTWAom52JQt2T3wMAWIhRt7lH6YFmaXViLRWj25lcETcONoguuQsT5Zr7XJZlXHjhhbj99ttxwrNPgMDXvp/DHIuVuJPIAqDnoBOfy1Jg/679AMCERQZjiXFER7xf97rXYWpqCp/+9KcxPj6O008/HX/729+qRcsPHjxYNwvvk5/8JDiOwyc/+UmMjIxg2bJlePnLX45LL730SB0C4wnAlZuH8P1b9uKujz4PfIt10pJCxRAjIgrVMHSkBA6G7XR0Zqqfe5DWWAxbXhRaPz9l7SgTFgsqulJiW+ekEziOg5mSjlNWd0PkefSkJRycLUM3bWRaHGfsc1ccnmsWFn/84x+ju7sbr33ta/GpT32q+rqfI5E6FufKBvJlHcu6OhvPVNKtqkgfRUoSoFudcyzeuH0CfRkJ6/rbmzU5tHcnjj3u+KYZ6WwieudgfREGIwDR/U6O5UaMMQBTFR+dht/hOhaNcMfaYguLUfv3o3HQ53B8OQsKETTDYmMptH2LGYVK22RUWj9+QXbXb9GxqBfrhMVf/epXKJfLeOtb34qPfOQjtWVbdCC0DHXYJIpCFd3z0OFrSSsC0zuBJ70CkJJFtG/bfQDHHbMSmXR8Fw0jOaw/wjhaqYpfdrhg1UiX3FX9f5QLz3KfNQVOCBWFLNuqOrn88DoWqcjYiShUSpx4yySORSom6pZeTZaKW8/SsAwcWDiA89eeX31N4qOFRVmQUTSKKBmlqvhbNsst1zT0cmD+AACgoBcil+1TiPt+Vp2tvpaVyMSZdoRBiZfaWr9b7sZkeRJ//vOfMTQ0hIsvvhgXX3wxAOAPd/6h7hoJcljKgtzkCk0KHR88WhyLQ7uG0N3Xjb7BZKkLDAZjcTmijkUAeM973oMDBw5A0zRs2bIFZ599dvW9W265BT/72c+qv4uiiM985jPYs2cPKpUKDh48iO9973vo7e09/A1nPC4oqAbWX3INfnXPwZa38ek/bcP4vIrHxqJnTXWK+I5FA7LAw7I7G4Xa6FiMEi2rwmKSGdkNFBfBsdYJbNvBv121FQ8eTDagOVnQkFVEiG2I0Z34RIuaCd20kVVIh7I3I6GoGdBi1B0MoitFjuvQXK2za1kWPvShD+Ed73gH7r777qZ1/ITFkkdM3jMZs15UAiq6BSmBY1E37bYiYimO4+D67RM4fnkOPa2qty4H9uzEuk0nNL0+oZLrqrBE/24eb7C+CIPhAxWj4tTqieMEo9uhNzfvwBUvRUehlmfIcouF1YJjUW8Y9GnFcZcUUSHnO87nUnUsLrKwKKZc92aL99B2HYuWDlTm4TgOPvvZz+L1r3897rzzzuZlD7djkYrnXIJBPV5cHMfi2ENkm91rSJ3FBGzbc5DFoB4mWH+EcTRChY2k8ZLdcnf1/3FqLNJ9hQljUZGq3nWpEy5OFKrjODAtMzIONJawKCSPQvXWhoxbY3H77HYYtoH1Peurr8m8HCkAU0flvFaLIa0Ylc4IiwVXWDRiCIspIjDNqbVxmqpjsY2RFJFrz7HYLXVj6/9txT/+4z/itttuqxtL0y29zrGYDpjoIwlSrNjcMKpRqEn6IEuYoV1D2HDihmqMLIPBWBoccWGRwVhMRvOkg/WXh8cilozmcNYAlERys4yKq7QMw62x2Oko1PpjDXMrkuVtiDyHdu7x5SUahapbNq7bNoE/PzSaaD0iLAoQYzrmvAiuGNmJa266SB4McgrpwPZlZBQ1C1ob2+Y4Dr0ZCePzJAKlWCzi1a9+Nb71rW/hO9/5Dr7xjW80rVPxiUIte9qweyL64SEpZd2EElNYVEQeDmouynbYO1XE8FwF6weyyMqtR1E5jkOExY3N9RUXDHKNRJiaGQwGo3VoFFdE/BiAeE6wxrjURseibYYLS+VZQG6/dk4gLUWhNghVMV0CbSGmyPmO4+6jA5iL7VgUFcBQ23MsRgnLQaTIwLM6ewgXXHAB/vM//xOXXnopfvzjHzcve9gdi+5nlDgK1eq8sDhyH/mb7jkm8aqP7h7CKZtYJDuDwQhHNVWc9vPT8PDUw3WvtxqF2q3UhMUoF55hGNV9hQljYZGqIi/WCXT0/zIXLZjplg4bdqQIGceFlkhY5JvdoHFrLO6c3QkAWNddmzgiCVJk7CwVFhf02sT7TtRY1CwNU5UpAEBRj5503K/0AwDyWr76mjc+t1UEXoh0bQZhGibu//792HXlLnz0ox/Fr3/96zohTLM0iJwIiZfwtOVPwykDp/huR+Y751iMWyN0qbN/534Wg8pgLEGYsMhgLEFkty5GVL0309QhChxMq7NRqI3usrD6inT5uLXsGqFRoZ0QdBaTuXKyYvPTRQ0ZWYTUgmOR9j2LHYiHpaJwznUsdqdFWDaJR22H/oyMmaIGzbTxzne+EzfffDP+8pe/4OKLL/adReZXt7Psuu0EnsOeqc46FnXThmE5iaJQAaDYAYH7hu2TkAUexy3LtjWjbmpsBOVSEes3BQuLDAaDsWiI7gBRnPqJcQZgqjPo3f5KU43FCGGpMgtIiygsAjUhLgr63d446GMdDmFRIQJZEifpoguLKbKvVsUwQW7NMQoQxyKAD37uMvzxj3/Eb37zG3z84x/3v/8edmGR1lhMGIVqm52P1R3eCvQeA6S6opf1kF8oYmRiBqcczxyLDMZShkZHtitGtMNDUw8BAK567Kq616n4lVRY7JF7qv+PcuHZbhpPVH28MNGx0alGz2UcYeZn234GAJGuvTgutCRRqH6Oxbg1Fuk59bZZFmSYthm6DSp8zus1x6Jqqm07FvfM7YHt2OhRemI5FjNyBjIv1wmh1LHYDnHiYIP472/+N7b/fTvWvG0NPvqZjzaVM9EsDSIvguM4vPnUN2NNbo3vdjoRhXps97E4e+XZOKXfX7x8PGHoBob3DzNhkcFYgjBhkcFYglCRLiqW0XKjUE3bgbWINRajhEXVsCC14MwDarGvflGZS4mCaiQSb2eKOjJya45FSkmz2o64nS6Sh6OelOz+JA9GEwvtDa4N5BTMFlWohoUvfvGLuPPOO/HSl740cHk/92XJFfEGczKG5yodiSGtbtsVZeMK3tTZWFQ7ICw+NoGNy7MYyLVXM3JorzuLlAmLDAbjSFB1LMYRsGLcUxq30xiFGhX/WMknrg2XGKNMxME7vx2xoPsdbDQ4Fg+HsCilEkShUsdiZ2sY+7dJa11YFFMtOxYtkQwifuaCZ+G2227Da17zmuCFD3cUKv2MEgmLi+VY3Ap0rwbc+lNxeWwPKSfBHIsMxtKGPqfGFZUOJ1T8inLCNZL1fF9FufDqHIsholDY+RH4+vqMVcdiDMHsuw9+F0B0PcY4wqI3KtOOiBinNRa97Y4bheoHPdZKYw1pD1T49EahqpZadTK2yo7ZHQCAY7qOQckoxVqn0aHYo/QELBmfKHHaD8si19Xr3/l6vPdH70Xfs/pwqHCoaTnd0mPVPFQEpU4sbgVZkHHhyRcis5hpH4eJ4f3DsEyLCYsMxhKECYsMxhJEdl18kTUWTR2yyMPscBRqY2xlpGNRtyAJrQkdPMdB4DnfqMylRFGzIh2kFMdxMFfWkZaEaqxpK1QMK/IaiGKqoEHkOeRS5AGlO02FxfY6qvltt+H+77wTY5PTOPbYY3HaaaeFLu8nHJc1E5LAYUVXCpMFDaUOXgNUtIwtLEpkuVKbNQvnSjruPziHDYNZdKXaq2dwYM9OpNIZrFhdH1tm2w5KJhMWGQzGIkMH0uIMUMUZgGmKQvVslxfJ+6HC4hwRoBYTvQzc8U3g+k8DD/wievnG4044aNoSYtp1LMboH9CBQXGxhcV0e45FUSbnLmZ8G+XaW+/FU17/SYwVbCyXyjjzzDPDVzjcjsWWaixKJFK3k8JicRJYGAFyqxJfC9v2HATP8zjpuOQRqgwGgwHUhLKkQonXeR4lllnus6bIizBCkhZCo1A5sc7RqFqkvVFioVesjBLXwgQ7P6IEtqpo6znmuFGofig8aX+YAKq49xHqkgU641jcO78XKSGF5enlsWpRAkBWrJ8s0664CSR3LD5494N46wvfivFD48j15PD0c54OAL7CInUsRtEJYfFoYmjXEABgwwkbjmxDGAxGE0xYZDCWIDxPhcVwIctwayyatgO7g8pio7vswEwZYohAVjGstpx5Is8tecdiWTdji3wLFROG5SCrtF8ou11hcbqoIaeIkNx43Z42hUXHcfDrH30bf/vORyH0HwPDiXeMfsJxSbegiAJW9KQwVdBQ0jo3IEsFwthRqKLgrtdeG27dNQXbATYuy0JMUlPJh6E9O7Fu4wlNESqTRQ02mLDIYDAWGRqFGqvGYpwo1EZh0bOOILnCUsg9T51ffGHRKJP9AEBpInr5xkGfNlwCsRHTRNCM5Vh0BzAX27EotissphJFoTqOg+/877V4+bs+i43HrkZXNgOUp6NXPFKOxSRRtLxARONORqGO3E9+9q5F0oLo2/YcwKZjVyGltDdgzGA8kZhVZ/HS3720o6VKHs+I7uSKsBjSKKKcmKZJvm9FXsRtI7fh6r1X+y4XJhiJvAjNbI5CjRLMvGJh5LIJ4y29rkA/qjGzdmccizT2NUxYpFGoXmFRs7S2Rb19+X3oT/UjI2VQMSux3LeNjsV2ypBQJF6Kfa1e++tr8eELPozBFYPIdhGRcyA1AAAYL403LZ/EsZjUNXk0M7RrCH2Dfejpb9+RymAwOgsTFhmMJYwZISyahg5J4GHZDuxFrLE4NFNCXza4k0wci61/nUgCD820OiqOdpqSbkUKvZQpN360M8Ki/z4fOpTH9rEF3/e8TC5oyKXEqqM0JQmQBb5aezEJlqHjof+5FP/zva/iH970Hxh8+YcwUYk3iOgnHJc0E7LAY2WXAs20MTLXuQG/YsIoVFpjcaHNKNQbtk/gmL40VvW0H9d3YM9O3xjU0fyRq53CYDCeQNABojjxno2RoH40ORYbolAtM1hYchwi+C12FGrSejaWXu8cjFOPsl2kFBFy4zgSDqdj0dJaF8MEGoUbfUyGaeOi/zuI9371Z/jAm1+F31/+CeS6e4DybPT+TQ3gEsSStgu9HmIMIlahNRbRSWHxPkDpBrpWJV51254DrL4ig5GQyx+4HMPFYdwxckfHtvmnPX/CR2/7aMe2dzih4pfZRlx4lAvPNMi2aTTo17d+3X85J7gNjVGoVGSMEguLZrH6/04Liwt6+PM+PV6vYNqWY9Ht+4W1k+d4SLxUFRYdx4Fu6VXBsVUOFg5iMD2IrJSFA6euhmMQ3Up3W/v0QxKiHYuO7WD3/+zG1z78Nbz0tS/FV678Crp6u6rrZ6UsxkpjTevplh7pgAWIK1SzNDY5wWVo1xCLQWUwlihMWGQwljBGhNBmGjpEgSM1FjsoymlmvVg0PFtBbzq4A1QxLEg817KHSuQ5aIbd0TqRnaaim7FrANK6hlm5/cGroH1+9e87cMnvHoZmhj84TBZUZGWxzj3XlRIxU0reUZ0ZegwTD9+GD3/5+7jwXR8Ex3E4NBvv4ci3xqJmQRZ5rOghDyG7J6OF0rjQGouphDUW6XqtYFg2btk5heOWZau1LFvFtm0c2LsL65mwyGAwjhTUsRhHLIszq7pRNPTOqBciaiyaKhGdFltY1ONFb1VpFPgORxSqlMCxaFaIA05of6JTKKLinosWHYuCTI4nxqDzo4fyuPKeGfzoM/+Or33kbRAEAVC6AG2+Xqz2w1STuQfbhV7zSYVFp8M1FofvBXqPBRqcHXHYtvsgq6/IYCTEdiecdLLe4Sfv/CSu3X9tx7Z3OKGORRot2gpRLjwqLEaJNmHiZlAUqsxHCItGTVikUaJBJD0HXlegHzQKtU5YbOO6o8JiVASrIijVtpWNMmzY1YjUVrAcC+OlcazMrkRGJDUB59S5yPV65M472OI4FvMjeQxfN4yLPn0R3v/F90OU6u/zXVIXJsrNyRdxHYspPgUHTmIh+mhlaDcTFhmMpQoTFhmMJUyUkGWZRtUpqBqdG4BQDasqEmqmhamiVo3Q9INEobYeOyEJPHTT7qg42mnKevwai1RYDBNj46IHXAOm5WAkX0EhwmE3VdCQVYS6z6crJSJfNmM7MA8ePAjbtrH8+NNx/mf+D89+yT+iLyOBAzA8F28Q1i8KtagZkEUey3IKOAC7J+IVaY9D2a2xqEjxxF0qLBbbEBa3Ds2hqJnYMJiLvd8gJseGoVbKvo7F4bkKOupkYDAYDD+EBMJinIjJsChUPiIKVXcH7aRM9H7aIamw2NjmwxKFmiA21KgAvAxwi/zIJ6bIuWj1+Kk7NqT21PDwMEzTxBkb+rH/P0/D21/9/NqbqR5AW4iuoWhUkol87WK36li0OheF6jjA6P3ErSgn+/uZzRcwNjWLUzYxxyKDcTRy2s9Pwyv++IpF3w8VUsLqGwZBhcJIYdEThRq6XIhjUeTFOoGOuhejXIjeeoBSxOQVLWatXyrGxq2x2CnHIhVRowQtWZCrbaM/23EsDheGYdgGVmVXISeRSTCxhEWFCIudjA2VeCmwTufY2Bg0TUPfMX145nefide8/TW+8avdSjcmy5NNr+t2fMciAJT0zo2PPF7RNR3D+4eZsMhgLFGYsMhgLGGihEXT0CG5tQ/1COdaElTDrgpREwukk9aXCREW9TZrLAocNNPuaJxrp6noVux6h9MFDSLPIau071j0c/pRZko68qXwB7Tpoo60XC8s9qQlLKhGpNsRAK677jqcdtpp+N73vgcAUHK9AABR4NGVEjGajzfr0jcKVbcgCzxkkUdfVsb+6VLH4j6Kbo3FdEyBTxR4CDyHso8AGpcbt0+gJy1h3UD7A99Du3cAANZvbBYWR/IVZISl+7fCYDCOEqjYE6fOTJyBsrAoVEEMj8KkAyviIjsWIwbwmjD1eoHvcEShigo5V3HiZ40KEYgXW1iU3MHEVgfAqDvW8Bd277jjDpx++un48pe/DABY1tXQJ031AGphCToWaY3FBMJi9W+hQxMGZ/eRGOGu1bXJAjHZtucAADDHIoNxFLN/fv+i78MvrjMuKbe2cpRYZrnPmlHCYqNg5H32bBQWqbgWJQR5HYtRImRcxyI9jihhsXpu7Q5FoYrRUagAcSzSti0YJHUo1UYd7D35PQCAtV1rkZVJrcK8lo9cry/VByD6PCVBFmRfEfy+++7DmWeeiU9+8pNkue7gz7pH7sF0pbn2s2Eb8RyL7rmk5/aJzKF9h2BbNjacsOFIN4XBYPjAhEUGYwlj2E5o3UHTMKqCXqcdizQ6c2yedCr7MsEdJ82NQm0VkeegW3ZsR+CRQDVtaDHP8XRRR1dKhCS0LyzOlYIfwBwH2DMVHI/iOA5mSzoyslAXhdqTllBQDehm+PF8//vfxz/8wz/gvPPOw5ve9Kam9/syMqaKWizBtWJYEBpm85U0E5LIQeA5rOhSML6gduw6LmkmRJ6rO+4oZIFvS1i8fvsEjl+e64hTdWjPTmSyOSxbtabudct2MFnQkBOX7t8Kg8E4SqhGoXZIWGx0G3jjyHiR/B4kpmjuoF1Cx1ViAoStQGz9yDgWgZqLMwyjQoS0w+FYBFoXFulArM/6V155JZ7//OfjtNNOw7vf/W7/9VO95HzEERYPp2OxWmMxQb+AF0ndzk4JiyP3kZ+9axOvum3PAQgCjxM2JF+XwWA8/rjxwI34+9DfO75dKsxFxUv6QV1wcaNQqdMviMY2eH8XebHO+UZjK/mIe6jXsRgUheq4aTO6pceaSEvPWRxhkQNXJ4hGnaswqDAaR1ikgmrR7Y+041jcP78fIi9iWXoZuiRSq3Bei66x2KcQYbGdmN1GJF6C5Vh1sbm//M0v8axnPQvHHHMMPvjBD0a3K9WHWXW26bM2LCMyWheoncuoKNwnAkO7hgCAORYZjCUKExYZjCWMaTmhLj7L0CG5TjQ/R1iraKZd3e7YvAqR50KFxYrH4dgKNAo1TEQN43BJLPOVeA9DMyUNGVmsnsN2mAkRFgFgz1TwwGJBM6FbNnJK/YBWb1pGUTUDY1Yty8J//Md/4KKLLsLFF1+Mq6++Gt3dzYXR+7MyZkt6qKuSUtYsSCLX8JoJWeDBcxxW9aQwWdCqEabtUtRMyCKPBLoiUhLf8v73TRVxYKaM9YMZZJX2By0P7N2JYzee0BStMllQYdkORFfIX1A7WIOJwWAwvFDHYoy6d7HExzDHIq0rF7QvKqK1UCMuHu53rZ6wlo1lHP4ai4mExdJhFhZjtMkPKix6BjJt28YnPvEJvOlNb8KFF16Iv//97+jv7/dfP91L9h3l4jzsUaju9cwnmGjGi4DTQcfi8FYguxzILku86rbdB3H8ujVQ5MPo8mQwGEeMq7Zfhaseu6rj2xX45rjOpOvGFhYjHOKN2zHM2n1b5JqjUEVO9I269FI2PcKi4C8s0v06cGK566irzeuGDELgBOiWXj1XbTkWXWE0SqjzOharUahtOBYPFQ6hP9UPgReQlYhjMY6w2K809wvOWnFWy+0AauKqaqpwHAdf+tKX8IbXvgHrzl2Hm2++GStXroxuV6ofhm1gRp2pez2pY7GTTszHK0O7hjCwfABdvV1HuikMBsMHJiwyGEsY03YQprUZhl6tsRgn1jIumlmLNh2bV9GflSGLwV8XqmkRoaNFHU0UiGOx1RqLhytBdS4idpRi2Q44DuAjHkLiMBshLO6dDO5sThXIjMusXD+g1ZuRUNKtQBGN4ziMj4/jiiuuwLe+9S0IAc7LZV0K8mU9lqhdMazqtUop6eQ1nuOwujeNubKOfLkzg7Jl3YQi8ok+A1nkoRqtXYc37ZiEJHA4bjDXkc/9wJ5dWO9TX3EkTwZdc8nSzBgMBiM5NDIyjsMgTm2bxkFBrwhHB1mCajXqRYDjADceq+PwAhHfzISOxcZah4cjCpXGjmoxZrHrhykKlQ4mJnV8Uqiw6KmxyHEcRkdH8bWvfQ0//vGPIcshNz6lmwhx5dnw/ZhaMvdgu9hG7dqKC3Usdmra3PC9QM/alv52tu05wGJQGYwnEK0If3Go1lhs4x4ZJZbFdSxaDfWJNbvWfxF5sS4CU7XUWCKQ17EYJGx6nZBxxEK63zi1AwVeqGu33cbEFCqMJolCpcfTjrA4VhrDYGoQADkeRVBiCYsZnySLC0++EN957ndabgt1FJbNMjiOw+4Du7H8H5fjOR99DtLpeJH8/SkieB5aOFT3umEbkXG5AJARyHHFuVaOdoZ2DTG3IoOxhGHCIoOxhDGt8LqDpmFUxRrd7Jy6phl21RE1kq+gLyOHuu80w26rxqIk8DBMG1YbCmGrbsck5AMci7+65yD+vm18UfYZJSwemisH1uKcdoXFXEOtx243qnNyof5BZWhoCLfddht4nsevf/1rvPOd7wzd92BOxnzFQCVGfGhZN5uExbJuQRI48DywsicFxwH2Tnem81xQTSiigCQanyIK0EwLpp38Yez6xyawcVkOgzn/WapJsG0bB/ftxvpNJzW9N5pXkZEFpEKEfgaDwegIbp0dmHGiUGMs0+jm8w4wUrHHCBjI0kuAlF1ctxkvxqtb6MUy6mc3HZYai0kci2VyXJ0SFm/7BvDo733a5F4rLddYpOuXMTo6ihtuuAEcx+GnP/0pPvShD0W6RZDqIT9LE+HLWZq/e/C+nwEz+xI3OxLLBLiE55+6dzvhWDR1YOJRoGsVICWPEd625yBOPX5d++1gMBiPC9oR/qLgOb6lKFSK6UQ4Fk3yvhRRR7exdp5XTJV4qU7I0yyt6gIMoxxjUo1u6Ui7daIXtOi6eVF1Hb0InFB3btuJQhUFEv0aJSymxXR1GXr86TbqYBu2geXZ5dXfFUFpub4gx3HR/YYQJEGCWTBxzbXXAADOeudZWP6q5eASlP4ZTBORdLg4XH3NtExYjhXrs025k8iKrSZBHEUwYZHBWNqwkUkGYwlj2k6oG88yjKrgp3bUsViLNh2bV9GTkZpEIS+qWz+Pa9GySGsstupYBBAqwHaKuQA33SW/fwT/ftV9sSJBkxIlLE4sqCgH7HeqSB6MetL1s+J6qLBYqD043XXXXTjrrLPw/ve/H7Ztx+qMD+QU2A4wmo+OjiOOxYYoVFdsJFGo5EFk90TrneeSZuLTf3oUZ116A0byFRKFmuChQhF5aIaNpLrifMXA1gNz2DCYRXeq/UHv8eGD0NQK1vk4FofnyljWpUBs3xTJYDAY4XDuYFqcAapYrsbGGouedYQIx6JWJMJIkkjJpPBS8P794DgiljqW51wdRmFRiyksdjIKdetPgPuvbBZQO+RYfODRnTjrrLNw0UUXwTTN+AODKTeuvRghLBo+NRYdB7j2w8BNn0/Y6BjYputYTHDT5gXigu2EsDi5jfydda9J/LczPTePyZk8TmHCIoPxhKFRdOskNK6zVRqdho3Ypg3btiFx4aJNo0DpFRJFod6xSKNQo4gS4ei2MiKZ4JEkChUIPvayWYbt2BD4+nPbThQq4AqsEbWzU2KqGgFLXXXtCIsAsCq7qvp/RVBiCbCLweyBWez93F587L0fQ6VSwS3DtyTeRn+qHxw4jJXGqq+pbh8zSvwGgLRAzmXJfGJHoeqqjtEDo0xYZDCWMExYZDCWMKYd37GoxnCNebFsx9fp5jgONNOC5Banmypo6EmJoTUUvUJkK0gCD6NtYbHlVWOTL4c/DBW1ztQHrN9n+APedEFHWfP/7KcLGkSeQ7bBsUiFxYkF0rn9xS9+gec973k48cQT8fe//x18zMKE/VkyEDg8G/0wpRp29ZqiVKhjkePQnRKhiDz2TLYmLN65Zxov+tZtuHLzAUwWNBycKSeOQk1LAtQWHIu37ZqCZTvYuCzblnOXMrRnJwD4RqGO5lWs6klBSDBjksFgMNoijoPBjLFMqGMxKgq1BMiLLCwKYjJhkRdrUaj0/hanHmW7VN19cYTFDkehlmcAbaG5piaNZw1ynEYhyPjTDgPnvesbWLlyJW6++WaIYoKJOorrWCxECIum1iwsGhVyPLN7kztWo6BRqEkm3lUdix3o2I7cR0Tv3uRxptt2HwQAnLKJCYsMxhOFdpxuUQic0JZwGSfe09Cj69c1HmOdsMiJda5N3dLjRaHGiFE3LKMqvMWJt/S62ua0ucDlds7uJOfW0+52hUWRE2M5FqlQVjJK4MEncln6cUzumOr/U2LqiMSAbr1tK7715m+Bl3j8+I8/RgklbJ/Znng7Ai8gJ+fqhMWKRc4pjVoNQxRECJwQyw17NHNw70HYto0NJ2440k1hMBgBMGGR8bhGMy1s3jsTveDjFNNyIoRFvRpZWknoWNz48Wux6RN/hW7Wd9INi9R19AqFPRk5dNa46lM/Lwkiz5H9tjE5+3A4FvOVzszitMz4D20LavA+BY5DxbACHYPTRR1dKRFSQ43ELtdVN7Gg4vLLL8cFF1yA173udbjhhhswODgYu20DrrB4YDa6w6saVt015TgOKoZVrd3JcRyWdymh0a5+FFQDH/v9w7jgx1uQlni86OQVAGoOyST6myLx0M3kAvcN2yewpjdVdV22y4G9O5Ht6sbA8vrC8KZlY7KgYm1fpiN1HBkMBiMWMcQy24hRY7FRoPQTFgOjUIvEFcctprAokejIuP0JXnIdizaJuwQOr2NRjVFjMSQK1Ura6dJLRHjVis2fJe+6IlsUFn/2lzvxql9X8JIzN+G2227D6tWrk21AzpD9lybDl7N8HIsVd8B2fiSeWJsE23TPf1Jh0UZbnWLK8FagZw2Q7km86rY9ByBJIo5fl/CzYDAYj1uWtGMxhlimq3rNDRZwK288Ru/vkiA1ORaFGP2OOI5F3daRlUit24Ieff/2CprT5emm9x23r6LbelMUapS7M3LfghhZ2zEtpmHYBjRLQ9koQxbCx4uCoMfBg8fKbO3ZNyWkYp2nTnLrtbfio2/6KDY9ZROO++Rx6F/bj2v3XQsbNnqV3sTb65K6MOnpl9DrJI4Ay3M8ZEGO5W49mtm/az8AYB1LT2AwlixMWGQ8rvnIbx/G6390N3ZPHN5Ox+HCtJ1QJ55p6FVBT2sxhvNggyhEI1VFjyLTlw7u/JiWDdN2ILXhoKo6FtsQBw+DroiFDgmL2x68l2xvPh+5bEE1YQQIbdQxuHfKfyBsYkFFThGbIkglgUdaEjBV0PD85z8fX/3qV/Gzn/0MipKsPmBGJi7DkXy0sFhpEJ8104btALJH9FzRnQqNdm3klp2TeOE3b8MfHhjBP5y2Em84+1ictLILABEyZVFIJCymRAFaQmHRtGzcsnMKG5flqk7QdhnavQPrNp7Y9HA2UdBgO8DxK3KJxigZDAajLWLEnFpxnF6NA5be3+kgS1D0ll4EpPQiR6HKpAZf0Ghk0/KuY9Gxau06HI5Fwb1Xx5nJb1SIE9NHWLznIeKOHx2PEOMoJXdgUy82x+NyHHFStigsPufsp+Cz5yv4zSWvQCaTvBYgOB6Qc7U2BmH61FikwmJ5BijGPBdxsQxXDE8oLALNrtBWGL4X6F5L6pMm5NHdB3DC+jWQpEWsa8pgMJYUi+pY5NtzLMYRy3RNr4o2QcfS+LrqSSqQebmujbqlxxKB1BhpB7pVExbjOBy9+51RmyfSe0W3xnMbx90Zte+oY6Luy3l1HmWzHCve04+92/YCAHJ8rm4baTF92OsLnvq0U3HBey7Ah674EISMAM3UcOPBG7E6uxo5KVe3rGmbkfU3u+VuTJabhUVZiHYsAuRzeKILi0M7h7Bs1TLkunPRCzMYjCMCExYZj2vG50mHp9X4xKWOZTvVWVx+2LYFHqTjqBrhHUgzZtSo5m7HKwIN5oIFJ9VsXj4pokAci4bV+uy6w+FYLKhm6OcRl/GRQwAAO4Yzr6SZMC3/fQ7kSKd0V4CwPlnQkFVEiA0RpLNTk5j52+WYmlvASSc9CR/+8IdbLnDel5ExsaDBjri2Gh2LJTc2ljoWAWB1byo02pUyXzbwod88iDf/973oSUt46zM34EVPWolj+7NVJx+NWU1yXCmJTyws3n8wj/mKgfWDWaSkzgx4D+3ZGRCDSh5GTl2V3HnAYDAYLRNDLDMNLdph5R0UdBz/GotBAqWlA+IiC4uCRPYTd0BOkIjAZh/mGos8T+JN9RiDTaYa6Fjce2gcAOL3vahoZ5T943GFFGKLsgBm8wX826e+g/xCERuOXYtPnZ8Gb7cYpQoASjdQyddfZ434RaGqefc/DjD5WOv796NaYzFBH5nvkPtVnQdm9gJdK2tRtQnYtvsATtmUPEKVwWA8fmmsP9hJ2o1CjeVY9AiLQftqFBa9Tj+RF+ve1y09UjwC4jkWDduoCotxxCKvsDirzja9v6DX6g8uRhSqaoULi7Re5IK+gLJRbjkGdXRoFADQxXXVvZ6W0odFVCsXy/jGJd/A3PQcBlYM4K0ffCvSMhFNpyvTeHjqYZw6eGrTetQpGkZPqgfTam3CUxLHIkAEyDgi9NHM0K4hVl+RwVjiMGGRwTgC/H3bOB4ezkcuZ1p2ZO1Ax+1Eamb4QNimT/wVGz9+baQwprpuMVrDTRZ45FLBs5Wry7clLJJ1K3rrs+sOh7BY0iyYHSjmODk6HH+fugk9QIAUeQ49aQn7p/073VMFDRlZqBP09u18DBe//qWY33k3xkeHA7cdl/6shNmSXnW6BqEadp3AWXZrgnoF6dU96dBoVwC4/rEJvOBbt+LaR8bx8ievwuvPOganr+1tukZVw4acsMZiShKgm3aiz/jGHRPoSonYMJDcDeCHZVk4tH8P1gUIi1lZwKre5AOEDAaD0TK2ESkaWkYMQc4rRpWmAmoshgzOSala5OhikDgKVSTCkWN7HIuHQVgEiLAYp+6OUXFjSpvvhfuGx5Ptk0axGRV/0UuMn3qwa/8wznnd+/G76+7EPlfghCC1V+Mw1UXqPwa5XgF/YZE6FgFg/NHW9++HZbQQhepeS2HHEYfRBwE4QPcxiWtsOo6DbXsOsvqKDMYTjEWNQuXrxa+kxHHh6VqtJmKQY7HxGE3P5CmJl2A5VvU13dIhxuh3xBUWU0IKAifEEsy8rra8lm96f16br/6/41GofHQUakbKVNtWMSux6gb6QYXFXr63fvtiBiVzcYXFiZEJXPzqi3Hzn2/G8L7a+IziJkNcf/B6mI6JM1ec2bSuYUXX8+xT+pBX89XxN3pO4zoWZV5GpdXa1UcJTFhkMJY+TFhkMI4A/37VfXjFd+8MjLikkCjU8AEu29DAAdBj1lhcqNR3ss2GwUKNRqG6YlR/Vq5zlTVScQUi2UdY/PldQ/jdfdEiGo1RLWutz5JsVe/bOjSLp3z2OkwVogezynpwLGkSJsdGYi0nizzKuhW6z+VdCkbn1arA62WmpCGj1ITFLbdej/dd+HJ09fTheR/9MZyeNaGC9Hdu3I1bd4bHgg3mFMyV9EjHbKNjsexz3azoIYLZbh8H8mxJx8W/uB/vuHIrluVkvPWZ6/H8J60g9QZ98k4tx4HI84nG8tKyAD2ms5dyw2MTOGF5Dr2ZzsSgjh0agqFrvo7FQ3MVLO9WkFNYLBmDwTiMUPEsdJE4wqLHoWhbMWsser6PxVQygSYp1LEYVySktfBMzzqLGCNXh5gC9HK0CBriWNyfVFgsTdW26ScAxnTF3Xz3QzjnXz4Anuex5f++haeesom8Ichk262S6iHCYliEqBUiLMo5YHpn6/v3wzbdc38EolBH7iMu397kNRInZ/KYyS8wxyKD8QRjMaNQeY4/rI7FIPdl43Y0uyag0ShO6tbTLA2iEP3cFSXCAURYlAQJMh+vbl6UY9ErNjaKtm07FnkRWsTkFhqFWtALqJiVlqNQxw6MAQAGpIG61zNiBhWj0pG0KD8ee+AxvOsV70K5VMblv78cp511WvU9KvxtHd+K5enlWJVb1bS+ZmmRwmJ/qh+mY2KiPAEAVZGQCpdRSIL0hHYsqhUVY4fGmLDIYCxxmLDIYBxBqLgShBVDWDQMA6LARToWKU5DTFW+XN/BVxuiUHszEpQQYZEKkX6Gxc9cvQ0f/M1DKEYIhtSxGHU+wmi107ltdAHzFQM7xqPrdBKRr73ObamwgPm55joJfqQlAWXdCoxCBUhdwqkFrencOY6D2ZKOjESiUIeH9uLT73kTTj/7PHzryj9h9Zq1KKgm9JDr5se378Ovtx4KPbeDOQX5iuErbHrRTLuuDmdJJ9eEKNZeW9FFBiUbo12vfWQML/jmrbhpxyReefpqvO7MY/Dktb2RApsicuASDOYpoutYjCkeH5wpY+9UCesGs8h2SOwb2kMGNddvOqnpvdF8BSt70h3bF4PBYNRx/5XAn97T/LpldEhYbBhQ9A5aVR2LDcKSV1xxB7EWDUEm+0v3k9/V+fDlq3UhK54o1MMlLMrk/EW5EgzV17Go6wYOjk0l22fJs3w1PtTbpmhhcXh8Gi/9t0/jaadswuZffQOb1nlELyostjqImOoBtEK4IGfqPsJintTv7FoF5A+0XCfSF8two1ATCItch9yvw1uB3mMAuSt62Qa27TkAADj1+PXttYHBYDyuaNfpFobIiYsuLBq6EekGMxvi3XXPPYO67qgDUbf0SPHIu3xguywDtmND5uXYYpG3nIefY7GuxiIn1Amp7X6OEi/FdizO6/NEWGwhCtVxHAw/Ngxbt7Farp8Ek5EysGHXRb52ioX8Aj58wYex+tjV+P6fvo8NJ26oe58Kf4Zt4OSBk323EcfNOpAiYumhAimDQwXr2FGovBzLDXu0cmD3ATiOw4RFBmOJw0YnGYwljGk7keMrhqZB4OMLi03rN4goVCCS3NjKnrTk60asLR9dY7GiW6EiEBWcqNjUCq06FscXSAevoIbvWxI4VAwrtugUxP7dO2Ivm5YETBe1UMfiyu4U7to7jfmKjv5s7UFqoWLCsBykJQ6O42Dt+o34whX/i6ee+2wIgoC+zAKKWnDMqmpYWFBNt85n8JjYYE6BZtqYKmpY3es/6Gu4LkDvNULrKKY9orUs8uhNSzg4U4LjOOA4Dt+5cTe+ef0unLamB+efuAzHL88hI8e7dYU5bf1IucuXYgrcN+6YgMhz2LQsmyhyNYwDe3aiq6cPfYPL6l43LBvTRQ3nn7gMGXkRa4wxGIwnLldfTH4++8NAnycC0Q4XFi3bgR1DfGyKz/QKQFWRrkFY9Drj5MMkLGbcWfOVfMTy7r1IL9ccgW26BGIjplwRzkLo45xZIU7MBnYNjcBK2p8p1eoEodLsnoAU/PnYtg2O47B25SD+fMVncP5ZT4YkNbSbnn/HrolrSUj1AXoxOELUcYhjsdF9UpkDpAzQvQYYfxjQiqHHkgi7lSjUTjkWtwLLTwbkTOJVt+0+CFkSsfHYZpcGg8E4elnMGovtOhbjRqGm+fDvb8Opb4O3TVTwoQKQbuuQuGgRSI1w21dr6wkSZCF5vKU39pTiFRZFXqwTSNt1LEpCtLCYk3LVdlTMSmwXnpepsSksHFrAY+96DMuurn/2pfUo59Q5v1VbwnEcOI6D7t5ufP5Hn8epTzsVcqpZiOY4DiInBsagAuS6UaTwYx5Ik/7kSHEET8fTq9dVEsfiE1lYHNo1BABYzyY5MRhLGuZYZDCWMHEci7qmQuL5UOdZGIbZKCyS3+kYSFdKrDoK/agYwVGolKhoSbr9Pzw4gvWXXIODs8nz9FutsUjr+RUq4Q86KUlARW+/xuLQnh1w3IHS+Ur4w1tGFmDaDhbU4Lat6FZgO8DQTP3Mx6miBlst4s9fuRh/+sVPAABPP++5EAQyWNeTlqGZduBxTxXIw0TUZzeQI53x4dngmZf0GpGEZsdiSqofPMwqAoqe83zP/lmcsDyH1zx1DU5b0xNbVAQAJWHdT8VtS1yB+/rHJnDcsiwGc52reTi0ZyfWbzqxbpYqQARw2wFOWNHV9B6DwWB0FK1hdnhEFKpmAY4ZQ1hscAnUCY1CgGPR+7uYXCBJBBW2FNfh5SeeefHWhaRfy4vo9qiDCothDknLJO/7CIuP7j6QfJ/FCXKOAKDsM9AX4Cgtlip49cVfwKU/+BUA4IXPfGqzqAi4NS5juDCDSPUQt6Ee0IekDsBG90l5hgiLvceQz7wUHgGfCNt0RdIE/ZFqFG8bwuLCKPm8ulbFcpI2sm3PAZx03DEQRTaRicF4omDZVizxrlXarbEIRCcU6ZoeGcnZGPfqFeSosEiFPxpf2gg9T7Q9VDAKggqPMi9D4uOJRV6n5EJjvwzNjsVORqFKvBR5TLIgQ+CEqrAYt26gl/0795P/+DSXCpedEhZ1Vcel770UP/zSDwEAT33mU31FRYrIi+hT+nBst38keJwo1F6lFzzHY7RI6kjS6yCuY1ERlCe8sLhi7Qpkcovc/2cwGG3BhEUGIyF/e3Qc6y+5BqU26gHGhQiL4cvougZR4KCbdktxoI0RmtSxSF+Pil2sOhxDRJzGOo6NUMHpviHScdy8J15UqJdWhcXxeepYDH/QSUsCKkZ4vcM4DO3eAW1kBxxTx90HwmPW0q7QNVsKHlxa0U0GjPZM1NclfODRHRi76kMY37vNN1azO00+V+rYbGTSFRajTit1SR6aC+70qjq9RmoDVGVXvFMahMWUJEDVrTpBUxA49GeVxK5AKaljUSLLFyPcqwC5Xu7ZP4sNg1l0pTpn/j+wdyfWbTqh6XUqgJ+6pqdj+2IwGIxYRAmLJuBY0XUYm4QSr7OM44kAEyYstuC8SoQo18dPVuJGoXraeDhrLEaJcHQwyldYHEq+z9IUkHUdBRWfgT6fGovD49N41oUfxo2bH8IZT9oYvn3BPf+tDoimumvt9IN+Tn41FqU00HMM+X1iW2v796MahZpgHdq+Npw9GLmf/OxZ29Lq2/YcZPUVGYwnGLrdpks6gsa4zlaIaqOu6dU40yAaY0K9zjwqjtHXgqJQG48jyt1Ho09pjcU4UaheV1uUY1HghTrnJRUW7x67Gz9++MeJxSmZl+sE18DlBBlFo9iyY7EqLPpAHYt+MbBJmZuewwde/wHc/tfbceKTT4y1TlbK4snLnhw4odewjUiBUOAFdEldmCiRGov0Ool7rhRBiXTDHs0M7RpiMagMxuMAJiwyGAn53y1klvctOzs4ozkA07ZhRyiLuqZBEngYtt1SHGijQKq6NRNpXcRshEOs4opGYXUYI3TFqmOxVdcl0HpJHiqsLUSISSmJh2baVUdnqwzt3gFJ4KAefAQPjBSrNSr9SLuRl3MhwmJvRoIkcNg9WXu4uP322/G2f3oR4Nj46Pd+i9PPPq9pvZ406QhPBgiLUwX6eviJ7UlLEDgOh2I4FkWvY1GzwHPNrkIq4LbrDAWSR6Eq7sz8OJMGbt89DdN2sHFZNlRUT4JpGDi0bw/WbWx+4BnNq8gpYlVIZjAYjMNGhGioWQ6ciLhUAD5RqA2/CyJgNAzOeePC5FyMxrYBL7ttdI9DzTe7LOuWdyfGeNu4iG6POuI4Fmm7fAa+Ht19ALKcsB5SaRrIDpL/+wqL9cLv1kd24ax/fh9m5wu485dfx/87/6zw7QsyiSpt9Rym3Ik3xQn/96mQ3SQszrrCoivCTTza2v79aMmx2IEo1JGtJBq2a2XiVR3HwaO7D+CU49dFL8xgMI4a/MSnV/7xlTjt56d1ZPsCJ8QSq8JorI/YiK7pkWJPo2OROv36U/1VYZEKf4ZtxIpCpYKREBDj7XUsykKyunmKoKBgFJpe974mcmLdcdnu4MtV267Ctx/4Nl74mxfiBw/9ILZIJfFSrM9KERQU9AI0S2tZWJQVfyGYOhbbFRb379yPd//juzF6cBSX/eYyPPflz4213ofP/DBeufGVge8blhGr/maX3IWJMumXqKYKHjzExkj2ABRBiXSOHs3s37WfxaAyGI8DmLDIYLRIlFjWCawYNRZ1jTgWTTM6NtWPYqOw6Apn1DEWJhgCgOqKgWEiTqRj0a2x2GqdSKB1xyJ15hUixCQa2Tlfaf2ByHEc7N+9A+s2noDKvvtwcE7D8Gzwg0UqhmOR5zgM5hQcmi3DtkndgC984QtYveFEHPPmb2LDpk2+6/VmSCd+JO+/f3peouA5Dt1pEWPzaqBjtuLjai3rJhRRAM/XzwJMSwI004JldUBYTBqF6l7DUfU2AeDG7RNY1ZPCmt7OOWhGDu6HaRpYv6lZWByeK2N5l4KswmLJGAzGYSZCNNQtRLoaATQLiY2DVrxEhCUv3kEwZZGFRepYpH0Wbb65PV6oE9ArLEYMenYMKUXa5nVe/GcP+UfvxUawY/GRXUNYv3p5sn2WpoF0HwAuQFisj0L96k9+i2NXL8OWX38LTz5xQ/T2qWOx1ShUxXUsBgqLIY5FMQXIWSDdD0ztam3/ftgmwPOt1Vg02xiAP3Qv0LuWHFNCxiZnkV8oMscig/EEw09I2ju/t2PbF3mxSdRLSlSNxlaiUA3bAM/x+OwzPlt1O1Kh0LTNyO0BtXMXJDRRIVEWkguLKSGFol5set37msiLvo5FBw76U/1Y27UW33/w+3jRb1+Enzzyk0iHpSRIsRysiqCgZJTaEhbXBUxi6ZRj8Xc/+R0yuQyuuPoKPOn0J8VeLytnQwXAoJjcRrrlbkyWiSFBszQIfPxneUVQoAXVjT7KqZQqmBieYI5FBuNxABMWGYwlTJwai4ahkRqLtt2SuNYoqKkGcZKJfLxBEBpzGSYsxq2x2I6U1IrBraAaVcdlo8DaCBX58qXWo6nmpqewkJ/F+k0norL/PlhOuPM14zoWp0OERYDEoY7lK9i5dz84jsOvf/1rvPGz/4We3j7IAfVxsrIASeAwNh8QhboQvxPbn5UxXdSgB8TE0nPsvURKmgVZ5CE0XGcpWYBq2JFidBzSUjIRjn7GUdeCZTu4acckNi3LoTuV0PERwoE9OwEA63yExdF8Bat6UshFRBMzGAxGx7GtiChUB5xtRUcHNDkWG+5tgo+wSMUxUSH/FpNqFCcVFgv1ca2N0AHEOsfi4ayxqPnvb364vl0NA1+lsop9h8axYe2K+PtzHNfZlyWipuoTEyul4TgOhmbJ5/zTS9+Pm3/+Zaxc1h9vH6JCrol2o1AjHYsN9211npxPXgC61wD5A/WfaTtQx2IiYbHNGou2DYw9AHStJp9XQrbtIcksp2xijkUG44lEu27CKAROiBQGo4gjLCp8eF+hsf6gbutVpyEViqizz7Ci4y4dx6meu1dverXvMnVRqAmFxbSURskoNU3gLZm1esKNoq33GDNiBu98yjvxoTM/hJXZlbjs/svw4t++GD/b9rPAaFqZl2PVw5QFuWVh0bIsDO0ewoaAiUeSIEHiJd/6knEYPzQOAPiPz/0HLv/d5VixJkGfJwambcZys/YqvZhRSZmfOHUZvSiCAt3Wm+J7nwgMuZH9G06InpjG80zWYDCOJOwvkMFYwthOtNuPRKFyMC2nJRflQqW+06gaVqJoR9W0IPJcVRz0I6ouocBziKljBhIVGevHuEdUK0eISVSkyrfhWBzaswMAsOGEJ8GcHUFPSsCtu6YCnX6KyIPngHw5fJ/LUsD9//1pPP/8Z6FcLqO3txezqoOulBQoEHMch560hIkFzXf/Y/PxH3gGsgrmSjpU3f9zpi5Yr8hZ0kzIIt9UNzEjC9AMK1KMjkMqobBIHYtRUagPHspjrmxg/WCmGlfbCQ7s3Ymevn70DSyre103bUwXdaztyyQWSxkMBqNtbDNUNNQsAE4cx2LDd2vjACEv1TsGgVqdQCnrRkouIrxERC06OKcVwsUdOjike6LAWxXFHKdWFy8OUpq0zdf94X5Wpn8U6mN7DwIAjlubICaTngs5S/atLTRdE5oj4c1/UvG07wxjbqGEXDaNdCrBQKPgCoutTiwSU0QcLk77v08di0LDdVShwqII9B4LFMYArdkd0hKW6QqFh9GxOLMb0EtA92oSL5yQbXsOIqXIOO6Y5DGqDAbj8cti13JrdNW1QpTjMZZj0WmOQq0Ki+79UrM0mLYJG3akEFQ2ynDg4J+O/yc8Y80z/Nvl9iVkXk5cNy8jZmA6Zl1NRQAo6TVhsVG0tX36Y8d2H4t3n/5ufPBpH8RAegDf2PoNXHbfZb77TOJYzGt52I6dWFgcPTAKQzNw3EnHBS6TElOY1yPqXTdgmRa+/alv4y0vfAumx6chp2Rkcp2v0R3Xsdib6kVey8O0TKimmkhYTImkBErSGplHA0O7hgAAxx4fnZ4ggI2PMBhHEiYsMhhLAN20oRr+g1G62TyYV3AFHF7JulGoPAyrNcdioztLM22IAhdYqLqRik6EyDBhsKxHD7S1W6eulSRUWl+R50gbgwQ+gNRYBIC5cusPRPt3bYespLByLZkFfuKyNB4Zmcd8yDbTkoB8yPszk+O49sv/juLerbjk819DJkM6zpMLKrKyECr49mZkzJV13wjaiQSOxcEuGfmyUa3P2Qi9tr2u1qJmQva5bkgUqg3jSAiL7mccFYt7044J5BQRGwaTOwHCGNqz09etOD6vwgFw0qqu2H+XDAaD0TEiYk51C+CdcFcj2U6MGouWXr8dwx18kzPNEZadpjHa1LHDHYt0edMjLEaIsIEM3QH86LkkwjIOIhUWQ/pXAY7FR3YNgeM4HJskCrXsinVyloi8WrFO1JyeW8ALPvlb/PpRA995xSD6ulu4P9Io2nZcn0oXUJnx/wz8aizaFqAXajGuvceSaNQg12NSWnIstlljceQ+8rPnmJZW37bnAE46bi2ERgGWwWAc1cQRktpB4IRFj0I1tGiHoV8UKo2npOKYaqrVCEpadzGIklGqW9cPKgwpgpK4bl5aJPenmcqM734B17Ho+DsWG1nfsx4Xn3Ex3vfU9+HY7mPRLXdD5Or7V4qgwHbsyM8rJaSq7aIiWFz27dgHAIGORbr9RkE1jOJCEZe8+RJc/T9X412ffBcGVw4malNcLNuC5VixRML+VD9sx8Z4eRy6rTed6zBSAjmnC3prrs3HM0O7hrDqmFVIZ9LRCzMYjCMKExYZjCXACZ/8K0761N+g+wg8uo9Yk1fJckJuALquuo7FFoXFhnpymmFBShAnoBo2JIFrcp55iXKAAeFRqhTdtPHML9+EG7Y3D/i0cuzUsdibkd34zTBhkTxwzEW4B8MY2kPqK9LBmlNXZjBXNvDgcD5wnawioqAavo7M+eFd+OCF/w+V+RmsvOCrOPaMZ1ffmypqyChitX6lH/0ZGfmyDs1ovu4mC/EfeAZzCgqaiYLq/7BHayx663VSx2JjFCoVFtutsSjwHJSAGNggRJ6HyHORQvh1j03g+OU59KbDHzSTcmDPTqzfdFLT6yOue/SU1d0d3R+DwWDEIkJY1EwHnGMnr7HY6MiijsU6YZE6FtPxhcW9NwGz++Mt60VzB68Mj1BYyQcvX41C9dwv40TC+kGFrJnd8ZaXUuT8hUWV0eNoGOx8dNcQjjtmJdJKgntYyRUWpQwRF41Sdd87xis4+4JPYOfwLG56UwYXPLUr/na90CjUdiK/lC4Sbeo3GFp1LHqOm0a6Sq6boWct+TnxaOtt8EJrLCZ55G43CnV4K9C1EsgOtLT6tt0HcWpAzSsGg3H0EicK1UbrpSoEvn1hMUr81DU9chJmY6ykbuvgOfIdTUVE1VKrUaNRQmUSYVEWiGMxqsahl6xIJurQOM3G/QLNUah+jsVGNvZuxHuf+l5cet6lTc67aq1JO7ydKTFVrYGY1LE4tHMIPf096B3oDVxGEZTYwqI+peM9r3oPdjy4A1+98qt4xYWvSNSeJFDHKT1PYQymibh5sHAwsWNRcUsAFI0OpSg8jhjaNcTqKzIYjxOYsMhgLCGG58pNr/m5ySicIMLQNEgCD6PFKNSiZtaJVhXDgiRwsUObVMOEJPChyxe16EEiOYZjcaakYSRfwQMH5pres1o4+IkFFTlFRFYWUHHjN+nptpz6I1JEcoxh7sEohnbvwPrja8LRpsE0BJ7DjdvD6ywWNQuGz/HZpoGVa9fhW/97LeQVG7FrotbpnC7qyEQ4FvuzEvJlA5qPeD1ViP/AM5AlnerhOf+YDlpjUfG0paRbkAW+6eEvJQswbQcVo70HT0Xk0UrcvizyKOvB+x6eK2P3RBHrBrPIpTrnnjF0HcMH9mF9QH3F7pSI5V3JZoIyGIwA/vBOoNAhR9ITgShh0QJ4xHEsRkShCj6ONSoGiZma4BLFn98L3PT55AJfo2MRILGYQVQjK73CYgyB1Y+K268pz8ZbXkwBcOpF0Eao4NlQm/LR3QdwWtLBGiospnqIsKiXq5+nbjlYMdCDe374fjzjmDbui4JCokNbOX8UpYeIhX5OU/o5eQeJ6XmX3Ptrzxryc2Jb622owzn8jsXhe4lbsYX6io7jYNueA6y+IoPxBCSOiy4s3SeKRvGrFczGSPUGdK32vXnWyrN8l2l0PZqW2RSFqlt6zbEYIR5RATJMWKNCoiIoUEQFuhW/bl5GJhNfGoVFbzxmWI3FVqjWmoy4JrwiKXVWxmX/zv047qTjQoXglJhCwYgnLDq2g0wug+/98Xt42rOelqgtSaHnJUp0BoCBFJnkM1ochWEbiYRFek6L+hNTWAxzszIYjKUDExYZjCVOmLAIQXRrLPIwbafFKNR60aqiW0SMijEGctfeaeTLBolC9XHGSQJ5rRQi1FCUGI7FuRJ5ELB8jlPziYyNYmxeRXdKRFoWoBoWTNvBSMWtpYj6LH4OxLXYWJMyLrZtY2jPTmzwCIuKyOO4wSy27J/xFfcA4lgsaSYM18HnOA5++ctfwrZM9K0/BV/6ye+wZs1q5BQR+6dL1WXmSkRYbHQEeqFOw1KD8GtadiIBdSBLHqQOzfoPcFYMCzyHOpGzpJmQRA4C1+xYBJqdtElRRL5p23HXq4Q4Fm/aMQmB47BpWTbUpZuUkYP7YJmmbxTq8FwFy7sUZJVFjgFkMJ4IqPPAQ78Efn3BkW7J4wc7XDTULUBADEEtMgpVao5CpWKQlIovLKoLZL2kAlXVgegRFkMjMTmyjrf2jW2iWuMwCWqe/CzPhC5WhUaOhQ02Vd2ezcJiYkdaaYr8pMKiUcZvfvNbVHQTT16TwZ1Xfh7rj1mTbJuNiAq5RtoZEE31BNfGpGKj17FIhUXR7fOJKSAzAEztbM156gefVFikjsUW+puGCkw+BuRW1lyYCRiZmMFCscyERQbjCYjeal3XmHQiCrWxPmIjVFiUeRlrcv73pEbRzbBrNRY5joPIiVAttSrcRdXRo87BsChQ6nCTeKkab+l1HIaRk3IAgDm1fmJ12RPDLnJinVAZx7EYhjcSNgyvmJhYWNy1P9KRlhbTkaLaHX+/A1bFgrJCwff++D0cuym6Jl+70PMixqhj3KP0QOREjJXGiGOxhSjUuOLq0UKpUMLk6GRsx+KpXacCAM5Pnb94jWIwGIEwYZHBWOL4RaFSOEGCrmuQBR6m3VoUalmviVZAzbEYRUE1cMGPtuCaR8YgBkShZmTScYoThSrFEBbzbgypXyyoYSUfiBqdr6ArJbnxm1Zk/GZGFlDQzJZma06MHIJaKTdFXT55bQ/2TpUwmvd3++VcYdG0bOi6jre//e14wxvegLFH7gSA6iy/5V0KRvMV6KaN+YoB03aQk8M7rn1ZGY4DjC/U73u6qCcaFu13HYsHA4RF1SB1OL2XCHUsNroKqbA4X2nvwVMW/cXuKBRRgGrYsAJica9/bAIblmWxLJcs7iWKod07ACDQsbiqN40cExYZjPahAy9tDm7VUZwEfvqSzm1vqREjCpWPIyw2Og38hEXbrI/CpAKRmIoXheo4RGxrRRSiM8+9QmFhPHwdQap3x8WpNelH2R0wrMyFL0ehLkQtZLCJHodHSJuZW8DY1GxrwqKcA0QFlpjB+353CK9949vwm7sPAXD7ItT116ogRx2r7UShpnvI5+8rLNIoVK9jMU9+Krnaa92rgfmD9QJzW3CINVuPUnUstiAsjj9C/oa616CV2IZHdw8BAE45fvEHZhkMxtJisWssNtYBbAUj4nvR61gMotEp6K2xCJB2aqZWdaVF1Vgsu8kBYY5F1VIhcAIEXqgKkHHjLVNCCjzHY1atTzTwin4iL8KGXRUU2xUWq5GwdoSwKNXExCQ1FnVVx/D+4UhHWlpMBwqwtm3jJ1/7CT71jk8hf0ceACJjcDtFxXKjbWNEoXIchy65C+PF8aZrLQoq1pb0eCL00cLQriEAiC0srs2sxY737sCL+168eI1iMBiBMGGRwVjiGCFiFydIMHTNrbHo+Dr5oqCiFUU1bIh8eLQpQCJUHRCBSBJ4+Gk4GZl0nAox3GdxHIv5ELdgK47F8XkVuZSIjCy6NRbDO+FpWUBZs0JrMQax3xWONpzwpLrXn7K2F5bt4JadU77rdaVElHULE1PTePGLX4yrrroKP//5z7Hm9OfULbeiW8FMUUdZN6sxplEOt74M6QyPzNU/NCSprwgQES+rCBjL+69HhUWv+FzWzabXgFoty6LWeuQsQATCVhyFishDNS3fa6Gkmbh73wyOG8yiOx0dfZKEoT070TewDN29/XWva6aF2ZKOY/rSSEnsls1gLElu+E/g4GbgwV8c6ZYsDjGiUAXOaSEKtWEA0M+xSBFTJFIyClNz29uCuCUkdSyCiJFeYbHVGosVd8CQOhejiOtYFKQ6QfbR3QcAAKedkDBeqjQNKDkslA284pub8d3NC/juVz+PNz7bs52EboUmBJk4FtsRFlN9gFb0j0KlYqOfY1H21IXsORZYGAs/t0lI6lik13mjwzcOI/eRz7v3mOTrgtRXzKQVrF+zoqX1GQzG45ckdf9aodFV1wqGEyEs6tHCYqNr0utYBEgtSM3Sao7FiLhLKhBSd5lvuyy9GoFZdaHFrB0IDkgLacxr89WXVFOtE2lpG+mxtRuFWnUsRgiLGbHmjA87/kYO7j0I27Jx3EnHRW6fCovUuQkAakXF5y76HP7n8v/Bv13yb+h/QX/QJhYFGpMbJwoVALrkLkxWJqFZWux1gNo5faLVWBzaNQSe5xO5T835Dk4YZTAYiWCjlAzGEicoIhMgNRZ1TYMo8DAtu6WxrLJuQfcIixXDgihwkZOraVykZTukJiPHwTJN6FqtA0qFxbCadZRYUajl4IeFsPMUxOSChqwiIKsI0MxglxolIwuuwzP5LMChPTuQ6+7BwPKVda+v6kmhNy3h1l1Tvk7InCKiuJDHS5//HDzyyCO48cYb8cY3vrFpOUngYTkODMvBVDGusEg6tiP5eqfh5AJZPyxGtXlbMiYLap1ITSnrFmSBqxOfyzpxxgZFoS50wrHYwqRFReKhBTgW79gzDcNysGEwCylGTdAk7Nv5mG8M6ti8CgfASSu7DtssTAaDkRA6UNYxh9MSI0YUqsh1IgpVDhYxBTmeOOM6+MqVZBNkAPhHoZb8J/3U2tUpxyIVFhcQq2B2VVgMmcVulN3zVrtfPbp7CJIk4vh1q5O1rziBMjI47+1fwB07JnDNG7K46K2vr19Gij+o6At1YYbVjYwi1U2uM3W++b2qY9HTN1Lz5HP3tr1vHXk9yq0alwSxZ2R5joiLrdRYHL4X6FlLImFb4KGd+/Ck444B30qRagaD8bhGb7Wua0wEvv0o1I44FhujUK16YVHkROi2XosvjYhCpQJko2PP0AxUKuQ91VSr+0gsLLrbzmv56u8L2kLd+1S0pPUj23Ysuk68qBqLrUah7t+5H0C0Iy0jZcj59TyWm4aJD/zLB7Dlpi343A8/h9e/+/WH/RmZfuZRblZKt9yNyfIkNFNLVGORXlNxY3OPFvZu34tVx66CkupsQhSDwVgc2FMDg7HECauxyAkSdE2DLPIwbCdSGPOjYlgwPa5I1SA1FqO6Z2VPHTqBJ6JRqbiAPY89XH097QqLjTX8/FDEaCdCWN0/PawWpQ+GZWO2pCOnEMeiZkY7EbMycQ+GuUiD2L9rO9ZvOqmp48txHE5e3Y1HhuebxDTTMNCVkqDxabz6tW/Ali1b8KxnPStyX9Sx2JMJ77jmFBEizzXFsE4WNHBcTRiOw0BWxmxJh+rzOVQMC5LI1x07reXZGFdKXXkLbToWZYFLJIxW9y+6sbg+18KN2yewokvBMf3J6xaFoesaHtxyB04/+7ym90bcz+bk1a0NEjIYDEbbONFRqAKH5qjTRpqiUBt+590oTL99yTEHrNzBtvu274u3fN3+aRSqO5AmpoijLey4BLleALIttFZj0XXO6cV4TrU4UaiG2iQsPrJrCCdtWAtJ8ukfWCbwt48DC/WCmmXZQGkKmWwX3vjy87H5W2/GizcKgNqwb15y99VGFCrQprDo3iv9nKamRoRgz/lAZY7UjPSKjT2u229iW+vt8JIg9qxunZYci1uB7rWAnLyfYts2rrvzATzvnKck3y+DwXjcY7TynZMAiZdgOVZLJUUoUY5HI8bzY5Nj0fFxLJpa1cGp8OHiBq112OjYmxqZwvZHtgMANLsmKFEBrpzgXpcW6x2Lc1p9bDrdNj22TkWhRonN1LHIgYstsgHAvh37sGLNCmS7suHblzKwHAsVvQK17NY1lES88NUvxLd/+2086yXR4yKLAb024roPe5QezFRmoNt6ImFR5EVIvPSEEhYdx8E9t9yDM55xxpFuCoPBiAkTFhmMJU6YsMhLsqfGotNSjcWKYdXVcdQMCxLPgYuQFitGbR2JJ5GWjmPD9tQ6pG60TjkWZ0vBndukwuJkQYMDoEsRkZYE6DEci1lFQNmwfF15UQzt2YENx5/k+94Zx/RipqTjoWHykKBppLN69Xc/hd2b/wZwHC5453uxcePGWPuaLuqQBR5Zv4FDDxzHoSctkXPhuXYmCyq6UmKiKNGBrIK5sgHVaH7gK2vNUagVt8ZiIx1zLPrErMZBkXhf96ptO7hx+yQ2rcihO9XZWoePbL0blXIJ5zznhU3vjeYr6EmLWNbFZuwxGIwjhOOE1nszHPe7NipGrXHQ0i8K1Q4QFsWYQokbX2m1UHe5KQpVzhHnW9hx0fhWitNqFGqe/NRL8WrrUYedFhaFWnZdmLV74aO7D+C0IIfA7F7g7u+Rfx5+cNsYfnTdY4CcwYfe+mqcfLy7fkO9J3BcTfBsBTooqbfh/FW6yU9fYVF1xWNvfMIsIKXrY3a7V5NlJh5tvR1eWhUWzYSD/OVZYG4I6FrZUizt1kd3Y2J6Di87/6zE6zIYjMc/i+1YFHkRDpy2ajmGrcuLfEuORdMywXsmnIi8WBeFGlVHr2yUIXACRKH++dC27GpfxOtUS1pjESDC4oJecyl6/0/bDNQLi+0IuLSNUY5FKizKgpzINbh/1/7I+ooAkBWJ8GhyJv70jT/htz/5LQDgVW96FU447YTqcs8/5vk4eeDk2Ptvl7huVkp/qh8L+gJUU00UhcpxHCReqorXTwQO7TuEkaERnPv8c490UxgMRkyYsMhgLHE0I1jEEuQUdE2FKHCwbCdWelYjjgPkPSKOatoQYkSheh2LosABcAIH09SQY6DEExaDB/f0hGLf+DzpEHaliLBoWE6oiAuQaFFVT15j0dB1HNq/B+sDhMWTV3VD5Dlc+zBxCei6jrmbf4rRrddjYi+ZMT9TjD/ANF0gtSOlGOe0NyNhpqTXHfvEvIouRWq6BMKOelmXjPmKgYqPiFwx6utwWo4D3bIhC80XmSwSt2xBbW/WrCTyLTkW05J/LO4jI/OYKelY359FRu6ssHj3Lddh2co1OO7E5gei4bkKlnenImNtGQzGEuehX4fHVi51zODBOpsKi3517eoWjHAsijJ5zc+RENeBRR18rYynVR2LHmFRWwg/Ll6qFwIjYmMDqQqL5ZiORSoshjgWHQcAV3XoOY6DR3cfwKnHr/NfnkZ/jj4I2GRQ8nO3anjPNSVs3j0NR0yR45Vdh0F5rnkbYqplwyJEd/C2nQG0KMci3+hYnAWkTF0dSogKkBkApne1JhI30oqwyAnNfy9RjD5AfvasTVbT0eXPN29BX08Ozzjj8A3OMhiMpcPhEBYBwEg6acJDWO1AURRjCYuNjkXd1iHwzVGo1JUW5cSrmBVfscj2DMxoVrNjMYmwmJEydfGnXvci4Kmx6JjVyeHt1LOkNRajROCMlKnbP0DEsKgaj0M7h+IJi1IWjuNg+u/TmLp1Co/c84ivYPrK41+Jdz3lXZHb6xTVayNCdKb0p/rhwMF0ZTqRsAiQ6y+Ju/XxzuYbNkNWZDz1vKce6aYwGIyYMGGRwVii0CGBsNqBgqTA0DVIbo3FVhyLQL1gp5k2RC46CtUrIIk8DzvkIUE1omNPFCl64GW21Lko1IkFIiz2ZZRq/GYxQszqUkRUDCtxjcWRg/tgmWagsKhIAk5e3Y3b90xhcjaPf73wAizc+0cMnvIM/Ov7PgUgvL5kIxMLWjXmNIr+rIx82agTFscXVOQUsUlcVg0rcJsDOQWm7WB8oXlmY1k3IfJcdSaj5roaZR/hk+M4KBKPktaeY7HRIRkXReJ93as3bp9ARhZw3LLwyJakOI6Du2+9Huc85wW+Mz1H8xWs7kmRz4PBYDw+0cvAH/4N+J/XHOmWtE7IrHUL7v07Ulhs6M80CmhhNRZTvcHbnd5d23eY0BYFxxGBiW4r1UVqHoY5CMWGKFTHRkvKmrZABC8jpmORCmQJ4rFGJmYwXyjhVOo4bISKcXP7oC5M4cILL8RnbtHwoWcq+MnLRHByFuB5j7A427wNUUHrUai0xmI7jsUuABxQnGx+z1CJK9UrLFLHYmM0WboPKM9EX9NxcN2Q03Pz8R0kvJg8CnXkfkDKuo7L5Pzllnvw0medCTFGaQIGg3H00Y6TMA6iW29WtVuogewSJn6KUjxhscmxaJvVtgFEANUtHZoZX1j0i7f0ft9rllbdB41MTRJvmRWzKBi1/k1jfcaqsGib1edJ02n9WZpuT7PD74FexyKlS+7CnOoz8cilVChhYmQilrCYQgqjPx/F+C/HkTk+g89c8ZnDXk/Rj7iiM2UwPQgAiaNQAfJZdFJYnJ+brxO9lxqbb9yMpz7zqUil26zbzWAwDhtMWGQwlijUbRUmYvGSAkPXIQk8bCd82TDmPBGjqmERx2IEjY5FQwvueKoBNeu8eEUmI2DZMHFN94ngDGN8XoUkcOhKCUi5omYhQszKKCI0065zYHofGiTe/yt1/64dAID1m/yFRQA4d8MARvIq3vS2f8ftt92G5f/0KfRuOBU5hXTsZ4vxB7emihpyigDRJ2q0kYEscRpqnvNHhEmhSVwuaWagE3AgSzrWh2abBwSJY5GrTqCndRilgPalRAGlGPG5YVCHZGE+DwAo5GdirUdjcRtdqddvn8Dxy3PozcSvHxGHA3t3Ynz4IM557oua3lMNC3NlA8f0Z6rXKIPBeBxCZ8frbYheR5oQgcWijxMRkVlNQkmjgCbIzVGovASsPQvoPSZgmzbwg/OALT8gv6rz/svFRZBqx6p0k2jV0ChUuf64goTRMAyVxHSmekh8aRxhkePIvrX4A5OP7NoPAMFRqIUx8nNhDB/58Ifx+9//Hr/55zQ+dp4CzrGIgxOoCYsVP8di8gjOKp2oscgLxN1amm5+z6wQwa6xxqKYbnYVKl1uLG0HBtp5AQvFMo597ptx270x41V517GYZMLg8L3k70TpStzEQ2NTeHD7Prz8uWcnXpfBYBwdGHHuPW1Ao0KTOiO99Q9DHYtxhUW7WVj0OhYFToBu6VAtFRy4SCGoYlR8BSbH8yzpFZREQYTIiYnEoqyUrRMiG4VFbxQq7/bJzKi61yEIvACRE6sCWhAZKQMOXJ0Lr0/pw7w+H+iY3L+T9EU2nBQtLF77o2uRvz2PNW9bg65TusAHjLUcbqoxuTGFxYHUQPX/ceNTKbIgdywK1TRMXHDeBdh8w+aObK/TFPIFPHLvIzj3BSwGlcF4PLE0vpkZDAaA+jneoivuRdVY1DQikEUtG8ZsufYgQRyLURUW64VFgedgaMEzzFXDhhXlWPQIi7NF/4eCfDn4gSfpsY8vqOhJS5BFj7CohnfAs24E5rxH4Jws0BlrPCTR/6yNHtyPnr5+dPf2BW77lNU5SAKH9S95G/523fVIb3w6AFSdajMJHItTBQ0ZWYQUw7E4kFVQUI26z3OqqCHj45Aru3UR/ZyA/VVhsbnjqxo2RE8UqhriWASAlCSgokfXvAxDFnlwHIfCPBn4NLR4s2NTkgDdqt/3+LyK7WMFrB/MoqvDzsG7b7keqXQap5/1zKb3RufJ39RJK7s7uk8Gg8FIjBn8HerQx4mQuFQAzdGnjVGPVceiez+ybSLada8mDjI/9CJp28IoAMAo+LjokiDItWOVc0RYqviJlY5n+TZrLKp58jPTT9x6cZ1qopJIhNtzYAyyJOLY1cv8FyiMw7IBOBY+deFzcPvtt+M1J0vop5PGaRwtFRb9HAltORbdwTa9zQE0pYtEnDbOyKc1Fr1dGDVP2tw4cKx0uaJyBwbaOQEz+QVUVA2z8zEnF3AJhUXHAUa2kr8VKXmywjW33gNB4PFiFj3GYDxhOVyOxXYiVxtjTL0IohAvCrXByWfYRp14KQkSNEurxpdGOeQqVoBj0SssWvVONUlIVjcvJ+dIm9yJTwW9UOeypMKe5VjVepG6097nKfJi5DXBcRxkQa6LBO1L9cF2bEyUfSLJAYwMjQAAjjkuYMIYanWy3/Dvb8CGSzag71nBYyhHgqRRqDk5V/2M4q5D6WSNxXKpjFKhhELcvshh5p5b74Ft2ay+IoPxOIMJiwzGEmLG40oT3RlZYRGfvChD17TqsmpIbGoYXiFPMywiakZ1oj1ClCRw0EMci5oRw7Hoca/NVfw7sfOVEGExoVtzNF9BV0qCJPDVKNRCyPYBICOTh445j8C5Y5x0zFZ0K4HrzU5Pom9weeD7t/39z3jfv7wYx3c7eHBWwHHHn1h9TxZ5SAIXKqo2MlPUkZHjORb7sjJsBxh3RSzbdjBb0pGRRTTKyyXdrKuV6CWniJAEDofmmgVmldZYdLdHHZ9ykGNR4lExLJhtxHQo7ra1mIJidd+i61j0XE837pgAzwGblmXBt1C3MYwtt96Ap577HMhKc9zHaJ60/UmrkrsPGAwGo6OEzFq3qQMsarDQOyDoOD6ORYmIj9TxRwU+IWRCh+7WKHLXMf3q/iVB8ESbKq5DrzBav4zj1pSe3uXjWGylvqLb5vQAOUdx41wFV1iMuc/x6TmsGOwLnPH/11vvxWk/1DBacLCsvBtnnnlm/QKSez54kRw3rQtZt0wbjkXR7Ue1LSx2uxG2DdejUXGvJc99vJIndSEbHYup7o46FgulhPGuvFj/txDF/CES3dq1ularMgF/ufkePOtpp6Kvh/U3GIwnKq0Ifrb7HeXEmFBChTU1ZKJSFGGuSlESYWjRz8uNTjrDNpprLLpRqHFiK1VTbaqbZxpm3Tlp3JbMy8miUN0JI9MV4sYv6IU6t5x321QIbafGIt1mVBQqQOoxel14A2nizjtUOOS7/OzULLJdWSgp/7GTB+9+EG95wVswemAUfX196D5x6U2w1SwNPMfXXTdhcByHLpncX5NGocqC3NbfjJdycWnXatx842Ycf+rxWLYqYAIcg8FYkjBhkcE4gpgNYtj+qVoHk+oX4VGoRFisOhYTxoHS/XgjRjXThiRwMI3wh4u6KFSeh6YGD5poPtGSALBt2zaUCqQQueKp6TLj41i0bQcFtwai7jknAteaW3NsXkUuRcSwdNWxGP4wUnUseoTPneOk/X3Z4IGcuZkp9A00d5Acx8EvfvhtfP4D78C6jSfi3BNWY2xexQOH6t0RGVmMLSzajoPZso60LPpGljbS70Z7js6TDutsWYdlO+hSmjvKZd2CLHK+Mzc5jkNvRsbEggq74bOuuLUZuQbHohJQxyclCVBjiNFhyK57NOy69EOh9TY91/cNj01g/UAWy7s6m/W/kJ/FYw/ei7Of80Lf90fzFfRmJCzLsRoDDAbjCBPiRnToTP+ogY86YdFCk7ONl8jr1Nnobu/qu3YE16ajIhwVFkvJhcUdO3ZAN9x9ClLtWGmkZLFh1j11GGoLrhDpuT87VvIoVCrQZfrJT7/ahX5k+omYFHMweGJmDisGeptedxwH3/nOd/Cyr9yITSty6B5YCUw82ixYpntq/5cy/gKomG7ZsFiLQo0YbLXN+jjTRlI95LNpPC+m2hCF6gDqPBFDG7endBOBM2mdQz94EcXEwqKQ7FoauY/87FmbbD8AyhUVN979EF52/lmJ12UwGEcPRgvfdzSSszGa0w8qvrWyH0pY3cC4UaiN2/CrsWjYBjS7VhdR13T86ge/qjrpvPgJi2qlvj+kWVrdMn6ORerk89sHFaVmVFLao2gUoQg1Yc67bepYDHN3xkHipViflSzIdSJnf4r0ZcZKY77Lz03PoW/Q34H41//7Kz58wYexbOUydLkTXWhNyqWEt2ZmXLplIpAmdSzKvNyxGouVpH2Rw4hlWrjn5ntwzvPPOdJNYTAYCWHCIoNxBPGKcwCwd7o2mMJxHASeC3UscoIMXVOrteoqRrwBCO8AXUoSqk5Ax3GgmTYEnsfcDJkRp6v+HZmypwaeJHCRwqJlNY80TU1NwTLJvr2xmH61FAuqCT+didaDDDtPfkwsqMjJIiSBh+IKiwsRUagZpdmx+NgoERbDJLz8zDT6fRyLl3/h4/jvb38Jb7zoQ/j4167A0zauhCRwuPbR+kHMjCygoJmxhLaFigHLdpD1EQb96MuSB5Fh12k4uUBmJuZS9Z1l07KhmzYUIXi7A1kZM0W9SeRVXRcsjVCtCotScBSqali+YnRc6PWkJ3QsUrGz5F4LFd3CXXtncNyyLLrTyWoiRHHP7TfBtm2c/ZwX+L5/aK6MFV2p2J8lg8FgLBohjsWqsBjpWPT0efwGvOiMdypQuj+vuPoejE4G1MnVqGOR3C/scj68DT5MTE7AcRzYtk1cgHQgjdYULIzXr1Ccqu1TUOqFRbuFKFTqWMwMur/HFBa715C6iHo818PEdB4rGwbzTNvBpy//Bd773vfi/ecP4g/vPRu5lRuB2X1EnKNwXH3tPiosNh6rlEbrUajuIKkRMfBlas21Er2kekjbmoRFdz1vdK9t+LsslS5yzbfrngQAtOhYTFKvc/g+IDMAdK1I3LobNz8EVdOZsMhgPMFpJ6I0DtSpFVW3L4wwsSyusGg3TJqxbKs+ppSXiGPR0qqOtB0P7sB/ffG/cGhvswtPtdSmWnu6Wt8Ob41FgIhFtE4fZXaK3Pv9xJ8uyRUWK6QvVDJK9cKi4CMshoiwcRD56BqLALC+ez3Wda+r/t4j90DgBIwWR32Xn5ueQ/+y/qbXf/fT3+GrH/oqXvLPL8FXrvwKunqXrrCoW3pstyKFCotJaywqggI1qoZ5TJaysPjofY+iMF9gMagMxuMQJiwyGEeQ2VJ9p3PPRKFO9BO4cGGRFyXoulYVFo2Y4prX8ZeWBBRUA7btVAUhSeBh+8yW81LSvMJilGPRCqyx6DgOHMepq7E4V9KbXG9+YiMAiHxyYdFxHEwWNGQVASLP1aJQtQhhsRqFWmvL9vHoGZpzM1PoHRhsev2e267Hx756Bf713R8iNQpEHqeu7sHm/fm65bKKiJJmhrpXKTPuNZWLKUblFOJsHM27wmKBdFy7UvWd3pJG6yIGS6gDWRlzA8GIBAABAABJREFUZb0qHFJUw4bI8zXHovtZUadoIxlJIC5XHzE6LvRvQlWjO+K/v/KH2PbAvQBQvRbo9X3X3mlopo3jlmWr2+wUd99yHU445SkYWOY/EDiaV7GqN4Vsh+s6MhgMRmKMkMElOlhmhHzfOk6tdiLQXG8R8DjWKnU/K0bIvaDBJdGKsEgpawaJkaSORSlDxKtCg2Ox5AqLcMjy3hn9jp3csUgdkDk32aAUIKI20nsMUJqurR/BxEweKwZ7617bNmnjd9fdhR/+8If4+vNFCKkuYPAEIqZWjxOA3FX7fABSb9EooUlEzA4CUouDgLwAgIt2vlZrJQb0R1K9RHA2G67ZqiDprkevHT9hkYrK5em4rQ+G52MJi//1q2tx4+YH3XXcGotxRdrhe4GeY1qqr/jnm7fg+HWrceJxyd2ODAbj6KEdJ2EcqKvuSAuLfjUWec9EFVEgtQW9dRHDnicrZiXSsahbet0yshDsQtMqzeenWyGi1KxKxMcmxyJX2zYtZWL69bMSEKfGIgC86ZQ34WXHvaz6u8ALyEk5TJYnfZefm/J3LN527W1496ffjQ986QMQpdqzryL6R6YeSWj9zST0pnoBJHcsKoJyWKNQ//7bv2PzDZs7sr8kbL5hM/qW9eHEJ58YvTCDwVhSMGGRwTiCNApF+6ZLdS5GngeMENcWJ0gwdL0ahRq3xqK3PmJaElDSLeiWDc11PEp882y+RkreKFSBD61lp5t2qNvOMow6x+J8xagTP4HOCovzFQO6aaM7JYHjOIg8D5HnUIwQFlOSAA6oxpKalo19U8XI/XmjUCdGD1XP7fd/cz2e9/9eVbfsOccNYLpU/2CXUwSUNLPpnPhBY2RzcrzZcBzHoSctYaKgVgVXAOhtcOcVXYeq93NqZDCnIF82mq5D1bAg8rWaD1R4DNpWWqaOxTZqLFLHYkQU6sNbN+OKr3wat/ztT+56rmPRPd4btk9gWU7BMb2Zltvih2kYuPeOm3HO+f4xqGXdxHzFwLr+DFIBAiyDwWAcNsIGNaqOxZDBwsa6SAkci5WwW3NjHKfXZZeQsmoAvKfGIscTganUMDjmFdwao1Btn4jXKCpzZDspd6AtbhRq9xoi1k7vibU4iUIl+zg0NgXTsvGUlQLu+N8v4x1vfD2p1yjngIGNZLujD9RWlrO1zwcgy+mlZhH1pJcDz7iYCJFJ4Tiyj6jIL1MjtRKDHIvpXiJ6Nl6zjVGo1O0qBjgWASLctgsnoFAKP6b7t+3Buz77PVz1p5vIC0kci5YJjD0EdK0kgm8CHMfBX265h7kVGQzGoguLVIhp1RnJgYNhG5gsTeItf3sL5rX60iGiKELXo7dtOfXPqaZj1ol+IifCsAyolloXhRqEZmpNjkVNre8PGZZRH4XKS02OxaB1ASDn1jieU0nCQcko1e3Tz7HYeJxJkXgJhtPaNZGTQ4TF6Tn0LSN9kenxaRg62celP7kU//z2f24quZISl55jsZUo1D6FHHNLjsVOCYsRfZFD+w7h6x/9Oq799bUd2V8SNt+4Gec875zAOuAMBmPpwv5qGYwOo5kWXnrZbbh3f/TAUKOzayRfwWy51pmMikKFILo1Fl13lh5PiPGKl2mZiFam7VQFIUHgYUcU/K6LQuU5aJVgAUcPqLFYfV8rNwmLWkOsa1CNQdr5DBNgGxlfoK68WocwJQkoRwiLPMchJQlYcKNj90+XYES46nRNRamwgL6BZdh65y34t1c9D1tuvR4A0N3bPFvvyWt7qkIxJaeIKOtWLEcqdcH2ZOJ3WvsyEuZKRMydKmjIKWKTmEUdfGGuvcEuBRXDwlyDMErqdtbWUw0LssAHbistE8diOzUWabytGnJdWqaJ7176cbJcmUTJVd2rqgnHcXDD9klsWp5NdD7j8Mh9W1AuFnDO+S/yfX/MrXl50qoWBmcZjCcyehm447Ij3Yr2Gbkf2NHmg/2uv0fHSsYlbCCQztpudIh5aRyw9BvA5BuERdcBGepY1Bom9+jRk32CKKkGICr1bVO6ifDn7RN5hUVRaa4dmTgKNU+cZlTMotGoUXSvIT+nHotc1HEcTEznsWKgF3fctw1nvOpi/OSvpC5ff09XrY5kqgvoXUfEt+GttQ3IudrnDBCh0Sg3H6sgAv0biZOzFQQ5/DoCyPXBCcGORaWbCHKNbkNTI07AqmPRvVYkHzGOfhZxRd4wBBHFcvCgoG3beM/nr4DjOCiW3b9XTogfqzu9EzArQNfq+s8oBvdv24OxqVm8/LlnJ1qPwWAsPkW9iGIb97SkGI0TgDpMVViM4YLzQ+AEWI6FHXM7sHViKx6aeqj+fVGAbdmwIiZa+0WhemMtJYHUFvQ6FhujTb1oVgxh0TbqBCVFUAKFRdXnfiHwAlJCCnNaTVj0Cm6LUWMxrmPRj265G1PlKd/3aI3FnQ/vxLte/i784Wd/AADkenK+y6cFn8k/R5hWolBp7cnEjkVRacvl6yUsCtVxHFz+mcthGuZhj0wdGRrBwT0H8YwXPOOw7pfBYHQGJiwyGB2mrFnYPl7A37eNRy6br9R34A3LwSPDtdl3AsfBtO26eFQvnCDC0Gs1FmM7Fj2CZkYWqqIVFTpFgYt0LHpdj4LA+ToWqZioW/41Fim6qkL2iEwLqgmt4ViCHIvVbcQ8dgAYd0Wbbk/cpyLyruAaPohD6x06joMdbgzqYC64g5h3a1XufPRBfOJdF+CUM56OM855duDyksDjlJX1HetcigiLcWoOzpY0KCKPrBx/cKkvQyNMbUzMq+hKiU2iH3VzKiGOxYEsOQ8HZ2uz4QyLCIT1wqINReSrNRcbycitR6EevzyHFz5pOVZ0kdiUsBqLV//qZxjavQPLVq5BxRUWqWOxoJnYNrqAqYKG9YPZwNjWVtly6/UYWL4Sm550mu/7I/kKOABPWtnT0f0yGEc9f/84cMNngN3XH+mWJKM0XS8obfkBcN0nAHU+eJ0wLAP4xWuBq14VvWwcQmJOOYHcb5wwEbNxwNJvAJMOutHtuINuoY7FhkFX3ohXb9CPsqY3C2KpHvIZeMWuOsei1CAsthCFWpkF5DQRKUUlfo3FdB9Zfmpn5KILxTI03cDO/cN4/ps/hlOPX4fXne+5/9A6kko3OQddq4CJR2vvy9ma8AsQodEoJz/WKAQpRhRqjBqLQHOEbaNjkV47is8EHsXthzW6VVuBD6+xeNWfbsLmB7dj3erlNQFSEF1hMcb5HbmPHFPvsYmb9pdb7kF3LoPznnZK4nUZDMbicu4vz8W5vzx89cZadafFhcZ1tuxY5Li6eM+DCwfr3qfxmVFxqI1RqKZtNtU/NG2zTjzycxFSNEtrEosal9dtvS6uVBbkQBdaUOxqWkxXXZoVs1JXe1DghWoEaqdqLEq81LKLtVvpxozaHOtuWRbmZ+cxPT6N977mvRhcOYgXvcZ/ki0l7ZcqcITRLT2xY3Fd9zp0y91YnlmeaD1FUGA6ZkccxWGOxTuvuxP33novVqxdgUr58AqLm2/YDEmW8LTznnZY98tgMDpDS8LiVVddhWc+85lYvXo1Dhw4AAC47LLL8Kc//amjjWMcXSyoBtZfcg3+9ODIkW7KYYFGSoYx11BjkeOA+w7UBhYFnoNpOQjUk3jiWBSF+ojJKLyiYIa64WwbajUKNbrGotf1KAk8dJ9OcFEzkZJ4GJYTGuOpq+UmwapiNAqLBoKr+yHSOehlYkEFByKoUVISD9WwIwPM0rKAsmbBsBzsHC+gJy2FingzU2Sw7upf/jde8fq34PPfvRKpdHgH+enr6sWk7pSEim7FinudLunIKWKT6zGM/qyM+bIBzbQwtqD6rk8di2GxnFRYHJ6tDezSz1ESOCzkybU9XyxBFnnwQeWRJAG6aceKfm1EkQS87unHYrUbXRpU+3Nuego/u/wr+H+v/VeccMqTq8Kit8bijdsnkZYEbBzMNcWytMvdt16Ps5/9gsDtjs5V0JeR0J9t0fXxBID1RRi+0GjMhdEj246kfG0j8JX1NWdccZK4laLcW0HQ7cSsvxdJyGxpKixaeogg1Dhz3jcK1f2+o8ccy7FYH4UqmNH1Y4IoqQYgNNTySfeQeFXv8XsFK0F2IyvdNrYShVqeJXGcvECci3HjXDkOyK0EZvf716z0MD5FxMrv//IaXPDy5+K6n3wBvTlPvFhhjPxMu0kK/ccBc0O19+VMvRtOybkCcOvJAr5Qx2LY5DbLdR4GPcamSC2qOgEYINvlRJTcZJD8NBVTfVwSUg4AB5Rj1rsMg5cCo1DnCyV85Os/xev/33Nw/llPrjkWedF1v8boBw1vJUJwpj9x0/5yyz14ybOeBklKNkDKqMH6IoyjhUV3LArtRaHyHF8nlo2W6vt5gvuMGiUs2g3fq5ZjQeBqz7ciL9Yci654FCUsKg19hziOxSBhUSv77yslpjCvE2GxbJSbIkLpMfDuvbHdGosSL7XsWOxVejGnzTVNjs/P5GHbNv78v3/GOc8/B5f95jL09veGbivtVwf5CON1s8ZlID2AS8+7FCuyKwAAlmnhNWe+Bg/c9UDoelRALumtT5yjVIrB8bvf/ex3cfbzzsYzXvCMWLUYO8nmGzfj9HNPRzq79D5rBoMRTWJh8YorrsAHPvAB/MM//APy+TwsV3zo7e3FZZdd1un2MY4iDs6QG9Qf7n9iCIuzJT0wypG6nxbU+g78QFbGoyML1fGpmrAYMHDDCzB0rVpnMLaw6FkuKwuo6EQooy7BWI5FzzYknofqI+CUNBNdiuT+P/hhRVcrVacYZbJQ39nOl3Wk5WBRq7FeZRjj8xpyKRGKVPsKVEQBFcOKTJ0iDk8Tpm1j2+g8VnQr4IMUMgBzrmPxLe/9GC762BcgiNGd0JNX5qAeehRckQxoZWURumU3ia1+TBfIsYkhkaWNDOZkLKgGKrqFSVdYFBvy7Usa2XeYc68nI4EDcGiudi2oOr2meMzPzbjbIjU1hYDzRvdRVNt/wA2q/fmTyy6FIIh4y39cglQmi0qp3rFY1EzcsH0cm5bn0Ndhce/Q/j0YObAvMAYVAIbzFSzvTiGrsPqKfrC+COOohdZ0K0+j46JNK1B3lxk8uMS7g2WGFjIQ0SgkhjoWaY1Fci9RE9RYFKzWZ1mXKjpxAHpJ9QJqof74iw3CIlCLT3XsFqJQZ0kcJy8QZ6BWACImd1XpXk1EwQin5sRMHgDwwbe8Cj+59H2QG+swFyeIqCq7ItvApprYCLjCpzcK1RUWO+5YdGtchtWGaow0bUShjsWG5BBTAwQBswvkXFmVBXLe/eod8TwgpYFyzFjaMAQx0LH4n9/9X5QqKr72kbchl0nVlktSY3H4XqBnbeL6iqMTM9j66G4Wg9oGrC/COJpY7BqL1LHX6n4ETqiL9xwt1guLkuQ6IiOERW/tQcdxYDlWnUgk8RIsx0LFrMSKQtVtvVlYrNTEQcdxYNpms7Bo1T+j0jhVveK/rzrHolVpcvJRdyWdtNq2Y1FovcZiv9IP0zabXIt5ty/ykn9+CT79vU9DSSk+a9eTEZPd2w4Hup08CrWRSqmCmckZTI35R8ZSqIBc0Auhy8UhyLH4y+//ErOTs3jPZ96DTC5zWB2LxYUiHtryEM59weFzZzMYjM6SWFi8/PLL8aMf/Qif+MQnIAi1L9MzzzwTjzzySEcbx2A8npmv6IEOs263tl9j3cCV3Snsny7hlltvxczkGASOg2HbIcKiCMdxYJuk4xi3Jp3XbZiRiaCmGVbVsSjzcWos1t5XRC7QsZhL1YSaIAxNrauxCACj+frtzRR1ZDokLI7mK+hOSXX7TMsC1BjCYrXeoetYHMwpkAQOpu3UravOjmPbfZsxP0dcAq99y7tjt08SeEz84hKky2TwMquQ62W2FD1rcLqoISuLVbE5Dn0ZGbZDnJyTBQ0ZWWjJsSjyPLrTUrU+IOB1LPJVkc+wAFnkA916NeG9vQciwN+x+NhD9+Hvf/gV3vq+j6G7tx+ZTLbqWBR4DiLPYWxexSMjC9gwmEFO6exM/rtvvR6yksIZ55wXuMxovoLVvenqZ8+oh/VFGEc95ZnkAlWH2Xz35tq9PsSxKIkibMeBGSYsVoVE93vf17FIayy639vUsWiGORbr3X2SHRGjGUJZ83Ms9gF6of74vfGYVZelV1hMGoWaB6QUEZPkLInojLuNnmOIKNhYa9JlbMHEdZsfweQMGYz8+L//i/+9tzBOnH70MxjYVN8GKUvENoqcJZ9hSERuS1BhMawPamokljVIWJRc92djjKmlAZyAik4+K8lWXUE34D4rZ4njt92/Q86/xuKju4Zw+f9cjU+96/VYs2IQXdm0x7EohJ8Dil4iUbhdK/1rRYZw7W33gud5vPRZZyZaj1GD9UUYRxOLLSy26lgs5sn9jeO4OmFxvFQ/eSRuFKrXsUjb4o21pAJg2ShXaxcGORYtx4Lt2KGORSogeqNQ/ermZaRM07p174sZLGgLMC0S0xroWOxgFGqrdRppPcHhhWEAgFEwsPmGzZibIpN13vjeN4Ln4w1FL0lh0dLrXK6toFbi9Z+qwqLRvrDoVztx9MAofnHFL/DP7/hnrN2wFpls5rDWWNx621ZYpoVzn9+6sJjX8zj1Z6fikRK77zIYR4LEwuL+/ftxxhlnNL2uKApKpfbt2QzG0cJ8xWiqE0ihzrvGGovH9GcwWdBw+11bAAA8z8FqEKzqcDuOup4sKq0uClWmIqdedTzKbvHz0G143HOyKEBV6wcUTYtEq1LHYiFEJNLVcpOQNTpX36HJl8OFRdN2YMcUVsfmK6SOoKdDmxIFaKYFJ7LGIhEW82Udo/MqBnMyetMyCqpZrQk4svMhPPy9i/Df3/gsZqcn0d3bD1HymREfAXX0UWFrphj9Oc+WdGQVoRqPGwfqyBueqxABVxGaHI8l3QTPARNDu8K3lZEwXdSqonpVWOR56O6Dkm4DssBDCBgUpOJl2DUTl0bB27IsfPfSj+H4k5+Ml/7TBQCAtEdYBEgdyfuG5sBxwMbl2UBnZavcfct1OOOc85BK+z8olTQTC6qJdf3pUCH3iQzrizCOesqzONKOxeuvvx6kK8CFOhYlUYBmAmZITduqo486IP0Gq2gNv8Yai2FjnV7Hom1DRusDoyU1wLFo6UDFU+uSukqBmhBHB0qdFqJQ1TwgpgCOCotl//PjR89aUjtw7kDtNTdx4sG94zjr8mFc9OWfYXRyGpIkoq/HJ/YTINHBSndNKO09pr6GoZKtX152f+/ADPo6xGjHom2oODgVsl+OA+Su5hhTUwMEERV30Fm2K0SEDBocpCJvu/GAgtAUheo4Di7+wg+w8ZhVeN+bXgkAyGXTNQGSl+LVWBx7mJyr7jXBNScD+PPN9+AZZzwJA33didZj1GB9EUYneWz6MUyVw91Li8liR6FSkS6pgDk3QcQoHnyd0NV4ruJGoVqeSRtV0c9TQ5jWSyyaxapjMUjso+JgmGOxbJDvf+pIpMsbtuEbVxokOGWkDApGoRqH2ii4UQddVVhsURSkSHzrjsWB9AAAYKQ0gsmhSTz2mcfwzY99E5OjZMJP37K+2NvKytnohQ4zuqXDrJh4dOuj0QsHEBav64VGoS6WY/H7n/8+evt7ceHFFwIA0tn0YXUs3nXDXTjupOOwcu3KlrcxoZHJ+HvVvZ1qFoPBSEBiYXHDhg148MEHm17/29/+hic96UmdaBODcVh5+8/vxaXXPBa5XGNsafTyZqBjkc4WX2gYLVvTSyIt5JUbARBhyQiJQnXcwRDTSCgsGrWOJnWHzZaMqrAoiVykY1Gtcyzy0BsGFKlDsct1Z3odjo3omto0g35soX57s2U9VGQxrBBnZwPjPnUEiWPRjuFYJA7PXROkc7esS0FPWkRRNaFZFn7xi1/g1599B9LL1uJT3/tf5Gen0TcwGKtdwfuM71icLelIS0KdaBoFrTW5a6IA3aqJwV6KmglHr+A3P/hq6LYGcgpmSjpUV1SnLlhRAHSNdFINm9RcDGoivSYLoaPJ8Wh0LP7td7/A7m0P4z2f+GJ1dnmqQViURR5TRQ3rBjJY0dXZrP/CfB6P3n8Pzn7OCwOXGc2TNp+0ig32BcH6IoyjGr1MxKIj7Fg8vtdCl8K5sYzB/QxZEqFZgBXWF6GDZ1T88I1Cpe4/GoWqwbC5cJlO9TgWdX/XXlzKqtEsLKZ7yc+iJxa07BUWaRSqTo7NbsGxqM6T/fICoHSRWNOwKFAv3WvIz6kdtbbsuRFXX301zvvglVieE3DLjz6B6XwBy/t7gusFF8bJvqlQKsgkZpXSOLBHf9c6LCxGORYdB7yt41c3Pxy+HaWLOEG9g7aWBvAiKm6kHXEspkMci11uLG1rNaaq8FJTFOr//fU23HLPw/jOJ94JxY2lzWVS9Y5FJ0YU6sh95Jz1HJOoSRVVww2bH8DLzj8r0XqMelhfhNFJXnfN6/D83zz/iO1/sR2LHMdB4IQmp15cGqNQZ9SZOpFQEpNHoVYdiw1RqAARBKOERYoihjgW3T6NNwo1LZDny6LR3G8J2ldWyqKoF7HgJjU0RqFS12VVWGyzxqJXCE1Kn9IHDhxuuvEmfP9t3wcv8fjO776D4kIR6WwaqXQqeiMuWXEJCou2jol9E/jmx77Z8jbiOhbp51yKiLyPQ2ONxS03b8Gd192Jd33yXUhnyH7S2TQMzYBptD/BOwrLsrDl5i045/nndGR7UQYBBoOxOCTOWPvABz6Aiy66CKqqwnEc3HPPPfjlL3+JL33pS/jxj3+8GG1kPE64/Mbd+Mb1u/Dgp16I3g7XJIvL5IKKs754Ix741Atj10XbOV6AbtooaWZo7GBEycEmCqoZWfNwQTXr4ksHcjJkgYe96kTYagECx8G0bQQZ8RzqWIzoQDdS0WsHQ12AsyUdKff/ssDDMUmnlg8YhKqrsSjwUCsVwNPvo26znCssholEuk9c5USDsDhXNkLr+1mWE3ieGplc0LC6Jw3J48pLSzw004YjhG8kp4hQDQs7JwrgORJfu1AxUdRN/PCK7+NTH/0gTn72y9DzoovQ0zeA/MwU+gaWxWtYALTOXpSw6DjEKZtVhNC6j410pUQIPIcd42SA0C/6s6SZgKVjejy8RupgTsaeySJUw0J3Sqq6Y2VRqIrPpsNBFvjAayvl1r5MKub7oakqDd7DQn4WP7nsi3jRK1+Hk0+vRX+lM1lUSrUHO1Jn0cDGwRy6U8mdpmHce8fNsC0L54QJi/MqOA44aSUTFoNgfRHGUU3VaXVkH5Bff4J7z+GFWtSnD5IkQLccOHoMxyIf4lisRqG62zEq0O2Ie5lX2GpT5CqpRk2co6Rovb6JapugewZ3qsKiRQQqx0omCDsOEUfFtOu0yxFhOa6w2LWCCJqT24Hjzgd2X4crr/ga3vzzXXjVM07AlS81kF3ej4npPFYMhDgECmNA16qaaxQA+jYA8yTGLFhYLCaO4AxFUMKP3x0EHp2NGGBLdRPB1tIBN34Ppu4Ki6R/K8AKj0JVush56bCwWCxV8MGv/BivfMG5ePGznlZ9PZdJo1zRYFkWBF50HYsR19LwvURUVLoSNenmLQ+jXNFYfcU2YX2Ro5efPPITPGXZU3DmysMbFXwkB8apaBfmXGysmZcUgRNwxUNX4K7Ru/A///A/de+V9FKoO43n+DpR0HIsjJVqk354Kd64iG8Uqo+wWDEr1f+H1VgEAhyLbveg4qYvUCckAMii64o0iuhN9datq/pEZwNATsqhYlYwpxEHZ6NjkQqKnYpCbUdYFAUR2oMaLrv8Mmx6+ibk3prDqmNXYXZqFn2D8d2KADnupYZu6YAFTIxMwHGc4ElbIXhdrWHQKNROCItex6Ku6fjuf34XZzzjDJz/svOrr1OBsVKqoKs3Wd8iKdsf2I6FuQU84wXPaGs7dLLCYk+OYDAY/iQWFt/+9rcjnU7jk5/8JMrlMt7whjdg9erV+Pa3v41/+Zd/WYw2Mh4n3LqLxFHce2AWLzy5dSt7O/z+ASJ6/PC2ffjoS0+KtU7FsOAgWEBrFct2MFPScexAcAe5qBp1rkae43BMfxp7p2wiLLpRqEFOPNuVTPSEjsWy7nEsumLiXElDH0c6xbLIQ9l+LSakR7Ds/A8079d2oLnt5jlACnUsulGooTUW64VFgecwW9JhWHZV/JsvG+gdCB68MkLOkxfNtJCvGMg1iG9p2Y1CjUiezCgiNNPGzvEClnelkFMk9KQl6KaN0895Fr761a9icv0LsXkfqa04Nz2FvsHldduY1gWsfvsPUFQt9ES2uBZXGyUslnUTtgNk5WRf7TzHoTslYu8kEdf8hMWCaoIzibAY1oFellOwoBooqiaWd6EqrisiD02rXaeiyAdGjNJrsiM1FjUVdE7kz77zFViWibe//5N1y2SyOaiVMmzbBs/zUNzam8cNZptqf7bLlluvx8aTTsWylasDlxmZK6M/I6P/CE3QeDzA+iKMoxrqiDuSjsUDm2v/54VQcUVxo1CFsL4IFRJp7KTfwz/fICyaKjQrom/mdSm2KSyWNR/HYlVYdGs5lRpi6jwOBOJYNJN9blqBiGhUnFO6iHgZp74eQESxzCAwu7cqkD2nZxSffe9b8IkXrQT/6P8BACZm5rBisDd4O6UpYGBjTYQDgMETgKHb3XY1rCvRKNQigPo+TluIMnF/Bp1D99oYmyvDMExIUkB/J9UDLIy5tTEzxLnoEPG37B10pk5RP5QuYGZ3/FjaIHih5kQEcOkPfoWZfAHfvOQddYt1ZV1XQkVDd9wo1JH7gL71RJBOwF9uuQcb1q7EkzYmczoy6mF9kaOXy+6/DADwyJueODW74gzK0zhGzdSaXHpxoHXpHpp6qPra8sxyTJYnccfoHXjx+hcHrstzfJNYNrQwhG6QiZiSFO1YtOz6sic0ClXw3Ae8glpUjUWKb43FRmHRs13qQiv6JC0ECU45KQcHDg4WDgIgDkYv1ShUN5TOijtBKQBvPGwrrDx5JXpf34tXvvuV+OO+PwIA5qbnjgph0bANcDaHcrGM0kIJuaCY+RDiOhapgOx3rSTFWzvxtz/+LUYPjuJzP/xc3bhOOucKi+XFFxY337AZPf09OOn0eOO2gTCjIoNxRGlpxPSCCy7A7t27USwWMT4+juHhYbztbW/rdNsYj1OOcHJXJN+8fhf2TdVuzDT+ssO6IgBgYiG8E1rwiUs9brDWSRR4DqblBI4rUMeimdCx6HVSUsfiTNmAZlgQeA6iwMMozSN/68+xYaC5o1RXX1HgwaE5cpI6FrtckaqkhUShNqybU0S3RmXtwOcrBhQp+CvLtKJjTAHiVgSAXIMTLS2J0E07sl9CRbuHDs1jWZcCbWEW137/P2HrFeRWrMOHP/zhus7ZnI9jcVSTIQ2sxUQhniAs8BxSEo/5iGjQkusO9HPeamoFN13zh8B1+zIyRvOkg9ub8YlCVU1wlg61XEJxYb7pfcpAToHj1OI8K9W6nfXisyTwgX9zKbFzNRa1MnkALs5O4C//dyXe9J6PoG+w/vNIZbJwHKd6DackAb1pCcf0dzYG1TJN3Hv7TaFuRQAYzlewojsV6qBmsL4IYwlD4z5bHdQptecI6Ai3fqX2f04IrTNXjUI19eB4hzhRqDxP9uVxLEYKix11LOrNjkW5CwAHFIOERc/yVdE0wb2rQpwHkNwpMHKOHH+SWlfdqzA7dgDv+PG9mEtvwLplOXzqzELd5CniWOz1XZ23dEBbIEKat05f/3G1/ysNfUHqKkno5jMME/9z9U1wgjpsgkyOPUhYddM0yoaDkYmQv5NUL7keaG1QGr3niUIFQJyiQcJiqpu4J9txLPIiwPNVx+KuoRF842d/wCXv+GdsaKgnlHNdAsVSxY1CjajXWZoG5g8Rp2mCAX7HcfCXW+7By84/qyWXBaMe1hdhLFVm3PSDx2aiS74AyWryFYzW7re8Tx2M1Vky2fKOkTt81+Hu5KBP6xB4oamNhxYOVf8viuS5KUxYbFyfujO9jkWvABg3CpXWwaN4RSMqXnq3W62b53MegwSnnDuB5OACERabaixyna2x6HVYxqVcLOPrH/06ZqdmMbhiEBv/ZSMEsXaPnZueQ/+y/kTbzCWcOBMH27Zx3e+ug2W11k/XLR2cm6gxPjLe0jbiOhZlQQYHDiWzc47FqbEpXPWdq/Dqt7waG07cULeM17G42Gy+cTPOfu7Z1fI0DAbj8UliYXH//v3YvXs3ACCTyWD5cjJLdffu3RgaGupo4xhPPN7+8634r1sXt+jud27cjdf+V20mvmqQmWv02fr+g3PYvLczg3oT8+EzkYqaCd2qH4Q7fgWZGSR2DYLnOZhRTjxBbHILRuGtdygJPESew3zZgGrYkAQOHABdC+7seNcX3UhLTW10LJKOeo8r4JX0MMdi/bpZWcC8K3QCxGVYMSxkgmamA6HOTi/jbsQqrf1ISUk8qWcZMTmcCrEHZ8sQ8gfx0Te9DI/dcwushemm+FYAmJuZbhKyZnWyjSRxN8u7Unh0dAGGFdxAGqvr5zjccusN+NJH3oXJMf8o076sDMtxkJZ4ZHzWL7pRqAAwMToc2Abqsjs0SzquNApVEXnoeu2akngOQsCAFs+TqNRiiMs1Do7jYGHPfSjtuAP3fP/9WLfpRPzj69/StFw6QwZI1TJp8zM2DuCc4wbQm+msY3Dbg/eisJDHOeeHC4tjeRWrelPVCFxGM6wvwljS0EEQs7U6QnU1/I4EE48C+26u/c4LxEUWcIOURTcK1dQRKIRQJwQXEoUKEMccdT4aZahRYz7eWFLXSaGarc1wK/tFofI8EdyooFgMERb5ENE0CDVPftIBQiUHwIGYYABpd7kH537tYfz+3hHsm7OA454N7L0JWKjd7ydm8lgR4BIQdHeyUGOcZu+xtf+LDedFkIMFuRBuuedh/OtHvo5tuw/4LyCmyPkLEuVd0Vk1HRwYnQzeUaqXuCmpKEj/FnkJqrd/K6XCo1DNSut/x4B7jriqsHjJN/4ba5YP4CNvf03TorkMGWgulivEvRvlWBy5n/zsWZtoduTDO/fj0NgUXv5cVl+xXVhfhLGUoUIEjc6MIpGw2OJEHip++bF1fKv/OtMCdn1oFwROaHLhDRdrz6SCWzIlTFhsjHmlEYoSV5tUWxdZ6t7jo+JVaVwlxbu8XxRqqGMxQMSkAhs95sbYWFpjkU4YaVdY9LowjWx0v2ZiZAIXv/pi3PznmzG8bxg9cg+mK/X92VYci4qowNYT1iSKYOfDO/Gl938Jj90fT3RvxLANcO7Et4nhiZa2ESVWUwRegCRIHa2x+NOv/xTpXBpvet+bmpZJZ2uOxcVk/NA49u/c33YMKoPBOPIkFhbf/OY346677mp6fcuWLXjzm9/ciTYxnsDcsH0CX/rrDmhme9ENURiW4/60YTYU5vvcnx/D5//yWF1caKuMLYTfkEua1SQsbvA6FjkOlm2HCmacIMMwks2m9gqDABHL8hUdqmFBcoXCMLGyUidMcuA5EjnphbrNMooAWeRJjb4AdLVc93tWEbGgmlXHYr5MOrM0ItOPSAHWZdwVe/sbRCNavzFqPJI6Fit778W1X3wHunr68LUr/wJp8Jgmh6ppGijMz6FvYLDu9Tkj+WDci09ZgT2TRVz3WHTntSfd7DicnSbrzU75rz/gCoJdKQmST0RpUSOORQCB4qR3O4fmXGHRsMBxgMTz0NVGx2LwQJgiti8s6poK27Iw/acvA5aJ93z8Ughi8wBiOkMGdCtl0mF/5qZB/OPpq6sRtJ1iyy3Xo29gGU449fTAZYqqiYJmYn1/1q31yPCD9UUYSxrZFYmMFh/KS0dYWNz6M6B7NUbpeBcnuFGSAcKiJEIzAds0goUQK6awyEs1d5lRQWSpXa+w6A50FrTWhEVfxyJABKbyLBF6QqNQ3e/sJA436liUXYe8O3AoxnSD3LLlYZz96RvAOTa2fOypeNqxOeD4FwNwgG2/ry43MTMX6FgUVLcNjcKie2z75rlm8Y3jWqqtODY15/6c9V8gpmNRNYGDY2HCYg8RIen1QV2wTY7FVPO6FKWLXM+VfPAyUXACwHEoeAboLvv4vyGdanYYVh2LZZUI7E6UsLiVtLE7OFrdj7/ccg9ymTSe/fTTEq3HaIb1RRhLGepci1t3LElNvqLRWixjmLA4XBzGaHE08H0OXJ1YJvIixoq1GouiFO1Y1B29ui2gdm5ETwy45LmvU8diVI3FRseiVzTyi0Kly/udx6Aai90SiXwdK46BA9cUv0qjUOk5btux6Gmv2Re+rcceeAzvesW7UC6V8d0/fBdPPvvJ6FF6MKfWi9pzU8mFRQBQD6gwZ9sfm6PMTBITwexkQF8kAhqFCgCTYZOcQogbhQoQUbrTNRb//WP/jlx3sxuUOhbLxXLTe51k842bIUoiznz24a1jy2AwOk9iYfGBBx7AM5/5zKbXzznnHDz44IOdaBPjCcT6S67Bpdc0zxSiwt9iQwU2qkctqAYeGZ6HYdlNEaVBPHBwDusvuQZ372t2OU6FRF1yHBFdKg3iSZ9H8BKqjsXg/XOiDENPJiw2inwZRURRM1E2LIi8KxSqwQOiZaO2viTw4HkOWqU5CpXjiBNQEfgmMdNLo4iZVURUDAsFd0RxrkyOLxUWhRpxnigTCypkgW9y9aVcYdFwwmd9ZxQBxtwoJn/3eRx/+tn41pV/wrp1x4LngKlC/XHMz5LBYW8UqmU7mDeTC1ZPX9+PwZyM/7p1b9WZ6Ici+jsO56ZJW2anp5reA2pOw1xKhCg0n+eSZlYjxSbHDjW9T0lJAtKSgOE511VgWJDda8TrgpVDPksAUCQeqm4mcnU2Ui7VHtb6BpbhKWc137uAmmPRu7zkcw7aZfOt1+Ps57zANwaIMjpP/o5OXrW4NQ0e77C+CGNJQ2eRmy0Ki0fasXjobmDdebV7Ki+4tQODHYua5cCxQwShRsdikKtPqBcWK2GzfRwHMHyExRaTK31rLAJEpFLniahVmqyvZ1cXhRohmvpBRSsq6rnXjmhGD9qOTszgJe/4FJ560rHY/LYsNsnTtW0de261LcWyinJFCxQWRc1tQ6p5sK9sOBgrolb/0ksLwuLEDBlkHJ8OcND4ORa9k8ZiOxbJACyKE3XrgZdQqXMshhyD7H4mjWJyEngRumHB8PSbX/G8c3wXpY7FQqlChNwox+Khe4GeYxLXV/zzzVvw4vOeCkVur34Wg/VFGO1x2s9Pwxfu/sKibZ+6+xpdekEkEaIW9IWW2iQEON0HUgMAgJsO3hS8Llcfhdold2G8XIuhpJGbhh58vKYby05FV+pYpG4/oL62IHUZRtZYbOg71EWhms1RqNSxWDabxZugiEy6/rw+D0VQmibo0mOiP9utsSg3TLTyirheCvkCPnLhR7D62NX4/p++X43W7Ev1QbVUlNwJPrZtY25mDn3LkguL+y7dh4UtrV1zfsy5k5xmgyY5ReAVFidGFtexCBCxu9LqM4UHr7D4wlf7JyhVHYuLHIW6+cbNeMrZT0G2Kxu9MIPBWNIkHjnlOA6FQvMs2vn5+ZYyqr/3ve9h/fr1SKVSOPvss3HPPfeELp/P53HRRRdh1apVUBQFJ5xwAq699trE+2UsHX5/f7D7abGpNAiLW/bNwnIcWAkKRd5/MA8AuGl78wDHTFEPrCNDnW9TxeBOBRUWA2vRAOBEqS5iMg7eGomkLQKKqomyblaFwjDHYrnJsdi8fFEzkRIFCDwPWeRRMazA4/CrsQjURJa5EnlACHOQkRqL0Z+bYTkQBa5JPKPCYpiebFkW0hIPqW811vzL5/Chr/wQ6WwWPMchq4iYLtaPZlJhsdcjLE4VNNhIXtOG5zi89NSVeHh4HrfvDh7k6kqJvo7DuRmyzty0/0BcVVhUREhC8/ol3QJnRjsWAaAvI2GyoMKynToXrNfVKoeIawD5PCpGvLqZQdBoUwB4yT+9IXC5dDbnLt/+TMAgRg7sx6F9u3F2RH3FkbkKeA44gQmLobC+CGNJQwdjzPizketoR8joBLkVwOozar/zAhEGg4RFWYRuwRULg6JQ3b9LPo5j0SCxq0YFFSPkJmCU69ukFVAxuaYkirgEOhZTPaQGoaWRKFQlQlhM7FjkauJQDMeibZP+zuoVA/jLD/4Tf/2vz6EvzdVfNye/0t3+LCZmSNRpYBSqlifnnYpxDcyqPo5FoDVhcToPIERYFGRyrXkF6qteBdzwWfJ/r2NxNOTvJNVDflaFRRqFKtQ7FqWQWspU7C23UR6BF1Ao1/rob3jZ+YFpDV1Zcj6L5QpxOjp2cOF6xwFG7yduRTn+5zAxPYd7Ht6Fl53PYlA7Qaf7IgDrjzzRuHPkzkXbtu7ei3Q73j3J8pkYJPlNKgFadk8FORbTYhrL0stw12izA5jCczxszz2/V+7FZHmy7n1JlsKjUN1JTvR7mJ4jr0vR6wSk4lqYCMSDbxLhvA5HKl4qfG27NDq1pDefR1UN7zuWjXKTWxGouSsXq8biX/f/te53x3FgWRa6ervw+R99Ht/85Tfr3Ij9KVJLcapC7tWFfAG2ZbfkWOw0c9PtCYumbdaiUFsVFmPWWATIZ1E22nMQWqYFwy1VdNrTTwuc6JzJ0SSnxRMWy8UyHtz8IM55vv9EKwaD8fgisbD47Gc/G1/60pfqOsuWZeFLX/oSzjvvvETb+vWvf40PfOAD+MxnPoP7778fT3nKU/DiF78Yk5P+A9+6ruOFL3whhoaG8Nvf/hY7d+7Ej370I6xZsybpYTAYAGp1/6gr6g5XsGlHzPCSr+hNUacUWj8tzNUocBzsOI7FkHqIfjS6B3OKiLJuoaxZEN0ai401E72o3hqLPA+eA9QGcbComkhJpH5jSuKhGc2xsxRDq1+XnptR1/U2XyGd8y4fJx6N9rRiOhaDoG5IM8CxqJUK+Pg734C//fq/wQE47vRzkU3XOvVdKRFzZb3OTZifaXYsDudb7xQ+c9MgetISvn/znsBlcoq/45AKirNBwqLrlM3Kgq9brxSzxiJARMrZEonWLesWZDcu1ys+y2L47SctCUSMDl0qHK8DMcwlSB2LlUUUFrfcej0kScbTzn1O6HIj+Qr6szJ6052t73i0wfoijKWNex8xHqfC4vpnAd2rar9HRKFKAg/NBJyQZWpRqO6gom3UhDgvgkjuNQ4RFktGyGwfrdj0e8lMPnGHUlaN5lqCAJDuI25IUweK4zUnG0BEV/c4pmj8vZVgME/NE4GODmpWhUV/x2JJNfFP/3EpPve9XwAAXvCMMyBluwGlQRTsqX0fTUwRYSzYsThHREU/URXATAXkc2lETj7LnAqK41NBjsWGKNT8IVLvc+whcv6rjkWEOxaVIMdiYxRqmLDoir3tRBPzIgqeWDshJA2hrsaiEOFYnNtPrp2u1YGfmx/X3novAOAfnvP02OswgulkXwRg/RHG4mCHOZ9dHMfxjUKlgpnZcF/rtLAIABt7N+KhqYcC3+e4+ijU3lQvZtSZunSbuMIiFd+o6Op1LHpFQirWhQmLXlGS4udY9C4n8AJEXqzWwfQSJThVzEqTkAnUjmH/I/sBdMCx2NAfumX4lur/Td3EF9/3Rfzg0h8AAM54xhmQU/XLUxcqrbNIRbylICzStrQiLBqWAdux23YsJolClXjJ192aBG+0KR/SF1FSxA27mI7F++64D4Zu4Nznn7to+2AwGIePxHl8X/nKV/DsZz8bJ554Ip71rGcBAG6//XYsLCzgppuCowv8+OY3v4l3vOMdeMtb3gIA+MEPfoBrrrkGP/3pT3HJJZc0Lf/Tn/4Us7OzuOuuuyBJ5Ma8fv36pIfAYFRpdCzevrtz8WMCx2GhQuoE+tVKI45FzVdYdBwbHMeD56NrB3KCDN2NQtXCBuA8NNaPzLluu7JuQuKb3WXN63uERYEDx3HQ1Qq83er5igFFEsDzHBRRgGpYsGwHks/zRKNjkbo5x6hjsWyAA6kF2Qh1KcatsRgErbHodwqN/Dj+7z8vhVGYxb+87WKkhwT0Z+XqOgDQnZJQqJh1Ebr5WTI43OupsTgy13onTeR5vPiUFfjN1mGs6E5hMNf8UJFVRIgtOBb7XMdiWhZ81y/rVlVYjHIsDuQUPDa2ANWwUDEsSKJPFGpE1GhaItdMO3UOK6XoKDng8AiLd996PZ5y1jORzoYPxA7nK1jRnWqK6mXUw/oijMcFZrJJP1WOdI3F3mNJJCXHAXAiHYscx8GwOeJCjB2FahIXXKO7jzoWHRswKyhpIf0avVFYXECpxRhUACipBuDjAqgKi5YGFCebBTW3LuTYbBHLVghAgjpVKM+R+oo0Hk5UAI6H6DPYODxv4RWfvR67J1W89dUvqn+zaxVxVfow4YoSwY7FOeLO8xkcBYBZFf6OxYQRnECMKFRBBuDU4nB3/IX8pMK0Jwr14FiYY9EVFgsNjkVBQtk7GU8JOQYqILcTTcwJKFbiXZQZd7JasawCnFtj0Q64/kfuJz971iZqzl9uuQdnP/lELA8QmRnJ6GRfBGD9EcaRQw9w2su8jBJKKJtldAu1CSyLUWPx5IGTcffY3c3ruOMovMPXCYv9qX6YtlkVrgBAVuRQYZGuz7v+CnrcIu8fhUr/H1Zj0c/V6V1etVRw4JqWC3KhBdVYpFTMCrrl5oQBGjM7tncMfWv62nYs1rkiNeCR6UdQ1Iow5g388Yt/xMyeGXz0Gx8NXH8gTYTFGZVMbqIuwf5l/W21qxNUo1BbqLGouf2Jao3FkdZqLCZyLAoyKmalGqHbCnEdiBzHIZ1NL6pj8a4b7sK6TeuwZj2bBMNgHA0kdiyefPLJePjhh/Ha174Wk5OTKBQKeOMb34gdO3bg1FNPjb0dXddx33334QUveEGtMTyPF7zgBdi8ebPvOldffTXOPfdcXHTRRVixYgVOPfVUfPGLXwyNGtE0DQsLC3X/GAyKVyCbWFCxb7rkK6q0QlYRsKAa0E0b6y+5Bpf87uGm94F4UaihwmIrUaiNjsWUiLJuoqwTx6JtmrBD/q7Khtex6F+TcUE1oIhEpExJAjTTCqwN2CgsyiIPWeAxvkCOa66sIxPgpKNYbQqLCo1CbXAs3nnnHRi/8gOwTROX//JanHHOeXjpqStxyuoeKJ46gT1pCQXNgGbWzs38zDRy3T2Q5VrHfLgNYREAzj9hOTKKgPEF/4eOjCxA9IkypbUVZ2f8B+K6UiJOXJHD6p60b0xXWTfBuR3pyQjH4rKcjPmygYpBXLA0CtV7nUpi+N9ZShKgGvHibYMol5MJi3GXT0qpWMDDWzfj7Oe8IHLZsXwFq3vSyDJhMRTWF2E8LjDVYGEgjHaiF9vhtNcCmcFqnUHOdV46nBBZ780CB86xEBiFajUIi7ZRE9O8CHKtxp6poaiHORYb/o7UeSzord8zgqNQe4kAWpknom9j9KQryFXnFSWKQp0ljkU6qMlxgJSBZNULi/fddx/O/tE8pgsa7vzl1/Hy551dv52e4MGZidkFCAKPgV7/iG1RmyMOP5/B0R/dr+O2Yd7fXdqKY3EqjrAIQHcHWx+72n3D/VyNesdiYB9BkIk4TkVB6lgUZKjeAWLZ/5wAIO5JXgLKrUWlAWiKQg1DEARk0kqtxiIQHBk8vBXILgNyy2M3RdMNXHfnA3jZc1kMaqfoVF8EODz9EdYXYQRB4zoboc64Rodiy47FgBqLAHBy/8l1zsFqGxTSBs7h6lx4gykycXekPFK3bCxhkasXFr2xn97nYCquhToWfe6dXjeaZmkQebHp+VoWAoTFCCebYRv+jkX3vkHvi37RtknwRreiTM7dT2/6KR79zKOYH53Ht/7vW3jeK54XuL4syEiLacyp5H5PhcXHu2OxYpGxHN4m19DM5EzoNRdEkhqLVFhsB69jMYp0Jo1KcXGERdu2seWmLSwGlcE4imhp5HL16tX44he/2NaOp6enYVkWVqxYUff6ihUrsGPHDt919u3bh5tuugkXXHABrr32WuzZswfvfve7YRgGPvOZz/iu86UvfQmf/exn22or4+il5HHubd5LBvLW9LU+E8hLThExW9ahuSNN1zwyhi//05Or70sCiQmdCZleT6NQw7QVMZWBEeIu9KOxxmKXIuL/s/fe8ZKb9fXwUZ1+ey9b7V03bONecMOACeAAISGQEDoEAsF0MCUEQyCEFgjwEkyoCb+EDqa6YBuXLe59d+2tt9eZO01dev94JI2kUZu59+7aRscff+7OjKR5RqORvvqe55wjyBoERQfL0FDk5u3teeBeABnsffg+5M46q/H+Vn6eKMI577sqqkizNBiaQoqlURaVQCtUWWouXDoyLBYqEgzDQLEmByrpLKgR+ykKQVaon/3Mv4Lr24CXf+RLGNu0FQDwZ6cMQ9cN0I4bhK4Mh31zFZf1bWl5wWWDChBFWpZWUdfbI454lsZzThjELx6Y9n09yzPgPLafhmGgFKFYpCkK73rONiha806UVR2KZoA3b76WF+chy5KLMHWiL5+CrOmYL0sQFM0mn2WHvS7PBN9YWp9DUldnhRpXgciwLPhUet0yFu++42ZoqorzLg3PVywLCmqyhk392Uir2ARJLZLgKQBVIgRZq1gNkbEasDzApe2H1iXOAA0qRLEIAKpBE/IxULFo1ltOxaKfcoHhbCtUQxFQ9SgW9x2awjYAN9xxH567wWOhJJVRlgz0p9EW6lKAFaqd1zdLiKqu8eYxA7BLK4tEjfWmy8SO09ls5XOgFLK/UhTZ6Oc+9zmMdTD4xUeuwND2zc3b6Rxvfs7EXLGC/p7OQEtwRloB+ON9FYvv/J2E4zf2+m84TO0XNJalEoAQYtEktaHUSZ7lhEe94lAsCrKEpVIZfd2dAeMrEJLeMFyKRcFULGqgwXARBwufI5ajISqbUNCMywo1CoVcllih0mbtGERST95F1Iot5CveuvshVOsCrrzs3OiFE8TGWtQiwNGpR5JaJEEQgojFikwyRL2Wne3mvdF+k1RMpNgUxgpjOFQ+5Hqe481rk+HODezLEGJxRpixn+NTfKi60GuFaj1m/ey+0SANJU/sTHWlMRmV9VH0S6IEBuS6IaqiL2EaZG8Zh3CyMhqdcL4HTdG+1ratwKVYVIlC9Btf+waYNIO/+sxf4aRnnhS5jQJfwHx9HhzNobhQRCqdQia3Nr221WA1GYuiRq7plmIRABZmFlpW37VihcrTvP1bbBf1WvzfbDafXTfF4p4H9qC4WMQFz7lgXbafIEGCo49Yne0HH3wQp5xyCmiaxoMPPhi67Kmnnhr6+mqg6zoGBgbwjW98AwzD4Mwzz8TU1BQ++9nPBjbzrr76arz73e+2H5fLZYyPB998J/jTglO5d8cTSxjryqCQYlGTVzfDCyAqwOkVEVUxuMGU5RkUQ4hFmopWLHLpLBRVaUl/7CUWcykWoqqjLqlgaQqKjwJycX4WwGYszs+6rVBpYpXmtU4tiwp4lgZDkYzFhaoeW7EIEAVg0SRml2sysjwLxkeJZ8FSLP7qwWnc+CixvqJporegKQqgyN89M/6zc1maEL2qTsEwdEhlMsv9u9//H5zzmT8iU+hyLU97SM7ODIeqpLrsaFeWF102qLKqY7EiYZjXUJfbV6Q996RB/P6RWV/SLcuzTWOrVcpQFBkj45sCMxYBQhL7uPbaBDylySh0dKFSLmFhZhqjG32amwB6TIvWyWKd2OsyNLHLdRwjaS7CCpVnIK1SsRjXChUAMtkshPrqsguCsOuWG7Dp+BMwNLohdLlp0/r35OGAJumfOJJaJMExw13fBGYfBl74BSAkr7UJmhSsOApcRyFKvJDmWyAMo8EGrgGs2fUaaNAxiEUaWnBIdZNiUfW312Q421LVUAQIint7c0slbAMwNb/cbIUqlrEitk8s1kTZV7VnE4vlaUAoApyPFSoAxapxWvnOxSLAZYj1pQU+BygyDMNApUo+47XXXgvmM9cj0xXQkAuxxJxbrmCwN1ghQOsyIagCrFADEab284GqalgslrF1w3BwxqJTsbj3N83vYxKE6UwWVbmOw1Pz4cSiuEKOPZtY5O2MRYVKgQloJtvg84BYBjJdMT6hD6jWiMV8Nk2sUC2i2a/ZrynA7EPAcc9pPhZD8KtbdmN8uB/P2LYp9joJmvFkqUWA1uuRpBZJEASLWPQSfxbxJSiC7/Otwo+Ec2Jb97YmYpHlyDpexWKOyyHFpDBbn7Wf41M8FDm492IRiVZ9YxOLPsQf0MhF9JKVTjWXn3pQFmVkQK7Xkib5KjV5hvfdj1FWqACQZnyIRce+pUGvXrHINohFeVnGCaeegPtedh9OfPGJ6BhstmL1Q57LYx6k91BcLKK7v9vXGeloo7hYxMjGEcxNzUHX9cCJV36wfguURqHQWUBlpYK5qbmWicVWFIspJoV5rT3LVQutKBDT2fS6ZSzuvGknCp0FnHzmyeuy/QQJEhx9xOpsn3766ZidncXAwABOP/10UBTl2+ylKCrUCsyJvr4+MAyDuTl32O3c3ByGhoZ81xkeHgbHcWAcSpcTTzwRs7OzkGUZPN98UU+lUkil/FU1CRLUJNL8MQDcuX8R2wcLLhXjamBlpM2uBBcNWZ7FihBc/NIgZFwQIQcAbCpLsutamPzVZIVqjnWpJqMvz0ONUEDWZQ0MTUHTDTAMBV1rtk6tSqpJcsG0QtWhBljCKT6Kxe4sj4WqZBOLGY4BYxaixbp7nxm6Bk1noRvAt+84hL2zFfTmeJN4I0pGAzD/GjhhqAA/8WOaYyDXZCxe9yXMTD+K2ufehM7OTlAxmm2dWQ6KZri+z9LyokuxOLsiwgAwkNYxvYocqDTH4HUXbkaxLjepOC2LXScsMnHL9pNx1+1/gGEYLRX11u8EmoyBkTFUyiXMz0wFEou9OXLOnViuQ1R0cIypWJSdxGIcxaK+KhVqvRZfgZjJ5tYlY1HTNOy+7Sb82V++KnLZ6ZIIhqawbbC1Zu2fCpJaJMExw4FbgLlHgdIhoGdL/PVUKVjBFwSxRP5aNpNxT4K1ReCr5wIv+y9g66WtvWcArKuEBgqcroaORQMNOswKVVfJFiOtUDlAEWzFohBWkkmVpsdFQQO62mta1UXFn5i1VG0rk4Rc9Sr1zKaibYWqt6BYFEqmDalTsZiHVpzC634h4ud7J3Hg08vo6ekBuJDP1TFC/vp8R4RY7AofR6rQOpltH6Px7H4XlldgGAZO274ZP73hTkiyghTvqa+sBq0qAI/9EujZCjhn6asiNAMYG+zF4kodR2YWcOYpxwd8pk5C0mtSg1hkOQiSRSzySEc0uZHKk/dPx2uiNoFmUG0hRymfzaDqtEJVfYrF+UfJZ+oY8f8N+cAwDFx38y5cedk5T4qm7lMZ61GLAEenHklqkQRBsIjFoAzEtVIshmUsAsDJfSfj+sPXu56zFYt6s71nB9+BBakR8xFlhepVLPplLDrBMzw0TQslK32tUEXRRSz6LcPRHES1uefSrmLRSV6uhWKRozkYmoGZH8ygdFsJr730tbiTuhNoYQ5SZ6ox8Wd5cflJYYMqCiLq1TrOvOhMTB+eRqVUQWdP/Em91m+F0in0j/SjslLB/HTrpF8rGYspNmVnO7aLVhSImVxm3YjFHTftwLnPPtfOTk2QIMFTH7GIxYMHD6K/v9/+91qA53mceeaZuOmmm/CSl7wEAJl1d9NNN+Htb3+77zoXXnghfvCDH7hmlezbtw/Dw8O+jbwECaJgKfcWKhIWqzIuPzGDJ+bWJmfNIuvmKsEkXS7FoCIGF30USLNG0YKbNkwqA1WWWyIWRcW9vZxNLEoY6kxHZjYKsgaeoSHoGliKhio1L1+VVHRlODA0hQzHQFa1wKgpP8ViT47H/oUqJFVDsa4gw9O2cvOhqRXXsoamQtM50zbWwJb+HF517kZwpsLRut933vYXfDLsaKGII//zUchLEzjuRW9BLpeDqMRrCnSkSZU958g+XFlawJbjttmPJ0vkJmwoawCrjDU5c6N/YZ73+VxF0wZ1y/aTcPuNv0a9VkUuH5+8qprEIqXK6B8cxv49D2NuZiJw+UKaBUtTmCgJxArVylgURbtRHaVYtHI5Qzj1SLSiWEyvE7G458F7sVJcxnmXhNugAsBUqY7eHI+OTJKv6IekFkmwbvj3U4EL3g6c82b/1wVTXdVqXqKlWGyFsLFsUFnzor70OFAYDF7eXm+J2HTe/Elg80WtjTMIlmLRsjkNIZB0igENPdwK1UmCaEqAFSpPljV0QBWbFIsuSBWyb81xGVIFJUEH4Nnur98LKDXgxV8LVXTWAh0mzHUs0pfzEoteK9QWyGSxRHLyHE3NRYnHS749hbsmFXz1RXn0dMSwHM30AEwKQPN3NFesYMvmTeHrt6g+JOuYxKIST5E3t0R+R6edsAU/veFOzC+VMD7stou3icX6InDwVuD4K4Dp+xqvqxIUnUZfVwGZdAqHw5p5mU5gacFULDYyFgWzmSdTfLTFKZ8nqseY5GkTaAaVWivEolex6HNMTt5NjvuucBcEJx594ggOTc3hRZcm+YqrxXrUIkBSjyQ4trAItiDib60Ui2EZiwCwuaN50qp1LFMG1USWdaQ6sCgu2o85nouXsWhaPcm6DIZiAidc8HQ4UQn4E4tOhWOoYtGHoFVkJXJSQoZpbvx4rVBXq1isVWo48sUjqDxawchLRnDO9nPwi4VfNJHMYehKddn/Li4WnxTEYtF0TNh64lbc9tvbsLyw3BKxaFuhGhT4FI/u/m7MTc5FrOWznRasUFNMyn7fdtFSxmIu05J1alzMT8/jiUeewCvf+so133aCBAmOHWJ1OjZu3AiKoqAoCj7+8Y9D13Vs3LjR9/9W8O53vxvXXnstvvvd7+Kxxx7DW9/6VtRqNbzuda8DALz61a/G1VdfbS//1re+FcvLy7jqqquwb98+/PrXv8anPvUpvO1tb2vpfRMksGBZeh5crIGlKWzqiW8pFIWcrVgMLgLyKdYmbZywSlueIg01WQ0jFrMuJVgceMkya6yiohM70Ijt1WTVzoBjGQqSj+KwKqrgWca0QmUgq0aIYpG8n0WKMTSFniyPsqhClDWU6jLSLGNbfC6a2Ys2NAWa7p6on+MZFNIcCmkOHRnyf6fjf69d6BOPPYy933gH1GoRQ3/7b+jZdhZaQUeG3FTMO4hFr2JxqiigM8MiH6Y6WCXyvA+xaCoWt55wsutxXFi/E0qTwaVS6OkbwPz0ZODyNEWhM8NhdkWEoGjgLGLRJKBpGJEZixmOgW4Astr+TVErRGEmm2uJiIyLnbdcj87uHpxw6hmRy04sCxjsSPmSwwmSWiTBOqJ0GPjN+4NfF1cAGECUbaIXqtw6ISGYxCJnNo2CMtaCMHk3cGRHa+sEwOqzqQbVIPsCoIMBgxDy0UskarK/2ormybKGDkqVEDL3ilihOmbtG1IFZcmHiJy+Dzi8AyhPhWyMZCyG2m8LJfK3SbHosUJt5TsTV8hnMPfFngMTOO9Tu7BvQcHNr8nijafTDVIsDBRFCGifOivKChUAUSy2CptYjNd8snIVTzths+uxC1bG5YFbyHHQt91NzKsiZJ0CRVHYMNwfTiymuwCpStSKqknWUUxDsQje347XiVQBkGvtE4stW6FmUKnVG+Pys0KduhvoGG1Y9MbAdTfvQjaTwmXnnhZ7nQT+WK9aBEjqkQTHDkFWqBaaFIvtWqEGWI5a8CP4WOve1kex2J3qxrLcyMmLUixa69sZi5oSqqLkmRjEoo+zkZM0kjXZ93PzDA9B9VeFRanZMqwPsei4nlGU2za2VcwcmcHbX/p21A/Usek9m9Bzfg8YmsFx3ce1tB2LWNQMDcWFJwexaOUqbj1pK3k831rOoqUypTVyDA2ODmJ2ajZsFV+0pFhkUuQ3uionpxaIxez6KBZ33rQTNEPjnEuSSU4JEjyd0JLnDcdx+MlPfrJmb/7Xf/3X+NznPod/+qd/wumnn477778fv/vd7+zQ8iNHjmBmphHGPD4+jt///ve46667cOqpp+Id73gHrrrqKnzwgx9cszEl+NNC3UHqbezNoje/dvYwWY4BTbkVbF4U0v7EogXKnFUnhRCLLJ+OLHidUDQdqkcGluMbBTUTkLHoRE0iikVreT/FYk3WwLMkWy/NMZC16IzF7UOkscXSFLpyHDTdwEJVxoqgIOWwQi2LqmufGJoCVddDsyijoCoyMj3DGHr158EPbm15/U5bsUj2hWEYqJSWXcTiRFHAYEfaJmXXA53Z5pub4tIiOD6F0Y3Ewi8sZ9EPlhUqZc6cHxgexfxMeIO2J8djqSpBkDWwtGmFahLILB0dU2ZZpa4m77TeSsZiLr8uisWdt96Acy663GVT5QfDMDCzImKkK2MT/Qn8kdQiCY46xBUyc8Uvfy8URusZi5ZikY+hUgt6zzu+jFV1H0xQ5jQn1aBNYjH4fKxTDBhiOh6wgOI+8QcqFjmyrKEDmgRBDVMsVgFHBhCCiEWlDlTnGnaYATAMA6KznvLWFJZi0UvoeK1Q4xKLmkJIK67RIFRVDQNdWex6Yw4XjFt2mDGbT5suAbo3NSlk55bL0Vao6YjX/WARiwGNUS/mFksAgFO3m8SiX84iY36fB/4IdG0Eujz5b6oERSfH5YbhfhwJVSx2EfJZFck+pDmAolE3a1YFXDSxmO4gatd260uaQaUF+7FCLmMqFq1Gus/5Y/JuoGOspXPEr27Zjede8EykU4mKba2w1rUIkNQjCY4dbCvUAEWhV7HofRwXUYpFP1hWqIZmNJFlPekeCJoj7zCCWJR18prTCjWMWEwxqaZ8RS942n1eVRUVmmNirKRJvlarKdqtQjtkHAIAUDQVmbOY4cKJRZqibXVmO9B1HblCDid+9ETkT25ca07tby03tifdA4Dsg+JiET39PW2Paa1QNCc1HXciIUktojEunFaoADA4Moj5qdatUFtRLKaZNHRDt61824FQFZBKx+t1ZvPZlqxT4+LOm+7Eqeecinxnu/c4CRIkeDKi5e72S17yEvz85z9fswG8/e1vx+HDhyFJEnbt2oVzzz3Xfu2WW27Bd77zHdfy559/Pnbu3AlRFLF//3586EMfimzYJkgQBCdpsaEni3yKhWb2DpZqqwjBAwAKKKQ5LFaDG0KFNNvIr/OuDEAy/fylMCtUPh1JBDrhZ+3pJDJYmrIVhE7oZnFKURTqsmrbjHIMBVF0z4CSVR2yqiNtEmgpjoamG7b1rBeaqkBVFDjnKHZnSZE+XaqjLKrIcET1ZqHu+O4MTYVuIFARGQTDMPCHX/8MiizjhFPPwPnv+A+whb6WtmEhmyJE8oL5feuaCsMw0OUgFqdLAkY6M+CY9SEWeZZGxk+xuLSAnr5+9PaTxkSrikXbCtVslg6MjGEuRLEIAL05HsWaAsHM43QqFjnKsEnie+681ZcAzJjEojcPtBUI9RaIxXWwQp2dOoJDj+/BuZdG26CuCAoERcPmvty6HR9PJyS1SIKjCrEMolhslVhE68SisEyUVWybE526twD7/wAs7GtvfQcs5UCDWAwhV2gWDBViheolEr3WqBZYHtBUQJVBGxq8MdSaVQ9RAKQVl2KRUmr+xKJcI+RibbH5NQ/qzhnkXpWaUCLEV5NikXxXdokTt/EjmrbubBo/+t1tqAsiTtm2CXd89hXY3O1W6cXCiS8ETnuli6gEgEpdwmBfV+BqBkUT29BWYSsWYxKLS0V0deQxPtQPiqL8FYuWFapcAfpPIOSgE6poEosUNo4OhCsWUx3kOBNXyD5kCLEomk1iGZx9DN6y60Eslyr+25Drq1IsVutSc5ZkAIgVqhCsWJQqwOLjQGGokf0ZgcXiCnbcvyexQV0HrHUtAiT1SIJjg0grVM8EkiClXRScyr2SNVknAratr44mYrE30+teNoJYtK1QLcWiroSSnTRF+2Ye6o6eA8+4iUXv8rIm+xOLbMq1HxdoMyuSiSad/DIWvcRiO4rF239/O6rlKkY3jeIrP/sK8qPueue0vtPA03zTZw5Cb7rx/ZSWSk8axSLN0Ogf6Uc2n22ZWLS+M1o3FYtjg5ibat0K1e+4evjuh30VlNb33e7vDiAZi9l8Ntay66FYFOoC7r3jXpx/+flrut0ECRIce7Qsizj++ONxzTXX4I477sCZZ56JXM5tHfmOd7xjzQaXIMF6w0nqjXRmwLONHL+yt5vVBgppFsV68HZyPAdFC27UGWbxKyvBDQ2aS0OWfZohAfDmKwIAx9DgGRqypoNlKMg+s+SKS4tA5/Ho6u3HsqyBs6xQaRqy6F7eIqIsZV7aDGf2J1EJJE/OYpdpLXpgoQZNN5oIs7qsoidHilrDVNLJYcoGDxRZxn988mr89if/A/5L38KznvMCZB3vYaDZiiUMNEUhn2KxVJXQkeGgqeSzdvf12+MtCQo29mbBLa8PcZTlGXB087iLi/Po7u1HrtABjk9heXHBZ+1g1KSGFSqQwsDwKJ547OHQdfoKKTw0vQKOpsHSFADDpVikKAqaquJDf/9KvOUD1+Clr3qja32LWKzLKrpzbTTzAQi1GliWg6pG/5Yz2SzKxdZuLKKw85YbwLAszrrwsshlp0tk35w03LGmY3i6IqlFniZQJeCTA8Dz/oVkHD4ZYRikmZ/uAlq8LgAIJtqCUF8meXdBM+ijSKaN5wMPTgA7vtL82j93Ame8Gvjz/4g1FGsuj6IjMmPRoFmwlBG8jK65iUQ9wArVylg07TW9isUZswHU390BiJUGAasroHQVZb95VrI5yaR0GNhwrs8CDdQEEXYbzPtZxBIhFb0NQtsK1Xzsl4vnB6EETTfw3u/sxr//8j58+1Pvwmv/4rmgvEq0erFZuRcE3r9pFGaFqrF5sO0Q2Zx53o1Jus0uFDHY2wWWZdDf04nZRZ9rLutoVvZtcxHHAABFgGxQAAVsHBnAL27aGfyGlrK0MmsqFlmAokwrVNpULJJj8M//4eN43xteho/+w9+4t5EqEKK43WYeTaNSF1DIZezJgmHIZzPhGYvT9wMwgM6x2Nmtv/3j3dB1HS9MrMfWHEkt8tTEvuV9eNl1L8MnLvwEXnLcS471cJ4UsIjFICtUr/VpuwSHk8SbrE6iK4ZanuWCrVD7M+6cXj7Fo7hUBBvQ5rQUX05iMegzA8S5wY8AKi+V7U5qFLEYpFhkKAa64/pZpRoTYkVBBEK4uxzbHN/jylhEa8Siruv4zhe/g+9/6ft428fehr98w1+CoqgmojnFpvDus95tKxGj4CQWFVl5UhCLxYUiunq6wDAMevp7WiYWrd+KrVgcHcT8zLwr6zYO/I6ra952DS678jK89SNvdT2/FsRivVpHJpexFZthyOTWnli87477oEgKzn9OQiwmSPB0Q8vE4n/913+hq6sL99xzD+655x7XaxRFJQV0gqcUnETXxh7SjHlkuhxo2dkqOjMcVsKIxVTEjFJNAcBAUDRMFusY625uGNF8CmotvmIxSDWY5RnIgg6WpiH5KBaX5meBTiBfKGBSVG1VFctQED2kYNUMRUqZhGKao13P+8G7DcvS8/H5qmsbFmZKYmN/aCYBGzOPr1wq4hPveiMevnc33v+pL+NZz3kBACDjsIQVwqr5ABTSHEqCgkKGg2oRi71EATlVIp/vpJEOPL62/BUA4IwN3WBoytdmtbi0gO6+AVAUhZ6+/rasUFmaAg1y8zM4MoaFmanQArovn0JN0sAxOjiGgqoqNmnPUgYYmoJQr0HXdRw50KysSfNku0HHaxwI9Roy2Rwq5VLkspnM2isWd916I04963zk8tHZVdMrAhiawvGDbeRc/QkiqUWeJrAy6x79+ZOXWJRrpgVom3VBO4pFPt9g9VoFlwU2XgA89gv/1+/9HvCiL0X7UaOhWFR0KtIKFTQLlg4jFr0Zi0FWqDxZ1lTBeed4TcwuAoMg1p5SpWGdqZC6pRKkWASA5QPB4zdRdzV6vIrFIiGavMpV1rJCtTIW4xGLlYVJvPJ/Bfxu//34ykffitf+halu9yoiy5PASGv2Y16EKRZVLg+2ZZtfxFbMWZhbKmHIbCoO9XX7KxZpDgAF5PqBns0+gxWh6DQAChuGB7CwvIK6ICKb8RlL2pyoU50nx5NphSqIEoAMZIo81jQNlZqAx/ZPNG/Dyp4UVlr6rDYoBpVaHflsBovFcuTizYpFz7E0dQ8h0zvHYg/hV7fsxlmnHI/hgWNvQfd0Q1KLPDVxqHwIAPDw4sMJsWjCtkJ1XJcVx/lH9Exq8j72wksAWnASbFPVKZzSd0rk2LiUeX1SmxWLg9lB12M+xUORlUBi0Vq/Ud+EZywC/gTQ8vwyMEL+naLdE3O82XmyJoOLc411lH1RxKKvFSrjVizGtUKVRAn/+u5/xS2/ugVv/uCb8bLXv8x+zW/fjOZHY20XALKeyU7d/ceeWFxeXEaPeT1sh1j0WqEOjA5AkRSUFkv2dmNtxydjsVap4fATh5ueTzNrQCzWCLEYB+uhWLzzxjsxtnkM41tiTpRLkCDBUwYtE4sHDx5cj3EkSOCLq3/6EBarEq599Vnrsn2nnWaHSWRZpGIlhASLi64Mh4OLwWRFPipLTVcBMNixfwlX/e99uOFdF2NTn7vhRHNp22IyDvysUAFCqpUEBQyNJgUiACzOzgDHAwAFQdaQT7G4dFs/tvTlIB9yL18WyY1IiqXMv6QoDcuTFOvumZAsTSOXYnBoiey/LO8ubA8t1nD2ZlK82YrFEPWnhWp5BVf97YtQLhXxb9/6EZ5x5nn2axkHeVk3OCghFrR+6MiwKAsqdN1oKBZNK9TpkgiKAk4Y6sDj4WK/tnDKaCe2DxV8bTSXF+dx/ImkKdndN4DSUmuKxaqsmpmHZgE9PA5FkVFaWkRP/4DvOr2mmlTRDHAMDUloFKcsZYCmYBN5kwf3N61vqVzDFL1RqNeqyORiEou5fEuZjHHe+4Hdd+CN7/lorOWnigL68jw6Mu2pM//UkNQiCY4abKuuo0Qs1peI6iymGqkJcg046aXAwVtDFmrtsygaIhWLYLhwxaLqUSgGWaFaikWzeeJVLE7MzAODAMswgFRuKBbN5ZusUHWtofIsRp83ala+nZ/1q7gC5AeaszabrFCjv3NBEPCsl74Bh46o+PWnX4srXnxl40WvYrEcnmkcB0MhKgGNzbVn89viMTq7WLQJzqG+bjtz0b1NihCW/dubbVABhxUqUSwCwMTMIrZv8SHaUqZisTZHjgGahaYZkGTy/Shm19ayv9170Gc/W9+FtNIgsVsBxaBSI4rFOCjksqjUhMZvQ/VY+k3eDXRuaBCeEZBlBb+77R6853V/0cqoE8REUoskWC2MNchDXgtY2YNOIqkoNiZ/eAkNZzagE4sCsRy/efJm39edqrrp6nSssVlWqIZuuBR+AFDgC+AoDopBegF8mlihZuB/zrWtUM1EKEULt0IF4JuxWJwv2sRiHMVijmtWGIZBrItAiEO5n2KRoxrXcYqiAsldJ1RFxbtf8W7sf3Q/Pv6fH8fFf3ax63Xn97UWeFJkLC4UbeVkd383in55zyGwSHXLCnVodAgAMDc91xKx6LW7NQwDQk3AhM8kJ0uxGEXoh6FerSObi2mFms+sacaiYRjYedNOPPvFz16zbSZIkODJg5auFDt37sR1110HWZZx+eWX4/nPf/56jSvBMcCXb3ocf3HGqK8q7ljh/+0+AgCYL4sY6IieGb0iWARTPELImbHoJa5ktc08FQe6sjwqYvAs55xPHp4TuqoASGFFUKBoBnYeWG4mFlm+JWIxKLMuZSrdaMpfsbg4PwvLpLEua+jKcvjrs8fB0BTu3GsWWKkc6oZsE4hpj2LRstT0gyjUAbi/464Mh6kiKWq8++rgUoMEMkzFohRDsZgrdOB5L/lrXHLFn2NkwybXa07FokpxWKnLyKfjN9s60xymSgI03YCmKcjmCkilyY3NRLGOnhxv27euB4Ky+UpLi7Yla0/fQFuKRZ6lYe3dgWEyU3FuZjKQWHR+To6hXVa3LE2sYy1iceJQM7GY4SPUvDEg1KrI5uKFg2eyOYhrqFi8d8cfoSgyzrskOl8RAPbOVTDek0E+4pyQIKlFEhxlWKpKwyCKt3x/6OJNkGpAvNMQQX2JZNe1q1gEgI4hYPBkYO6R8FzECFgz+mVbsRiescgzAIKyjnXFTURpij8xRdFkGwGKxSMzC8Dp5gO52sjkU5zEomPfyY4JIytTZNshas2aIBICSVebSVJNJkST19LMVCy2YoWayWTwmhddiCvqczj5wjPcL/KehuHK6ohFmqbQ1x1ss62y2faIxRYxt1TCKcdvBECIxf0TM/4LPus9hLzlfO5HlDo5HkFhwwj5LR6envcnFvk8AAqozJsZiywEWcWKZODmgyr0baSxWDXt//cdmoJhGPZxD6BB4IlloqJsFRSDal2MTSwSxaIYnLE4dTfQtz3Q8taL2+99BOVqPclXXAcktUiCtYCximv0WsJSJzqdaIpSg3DxEhqS99xkwiLugtRyTsXibG021tgsK1RDNZoUixRFIc/mUVTIWDmeC81YtD+nM2PRR5VHU7RNYgYqFk2kPJNOrOUpsxaRNRldqa7gDwigKrknt4o+sTROZNnma4BXseglYf3Aciye97Ln4YRrTsD2U7c3vR5mE9sOngxWqMsLyxjbTGqGnv4eHHniSEvri5oIhmLs73dglPRC5ibncOLpJ8bahmEYTYpFSZRgGAZmJ2YhSzL4VKOXYhOLmtj2dyLWxZYyFhVZgSIr4GJmRIdh30P7sDS/lOQrJkjwNEXss9KPf/xjXHjhhfjSl76Eb37zm3jhC1+Iz33uc+s5tgRHGV+4YR9e+Y2QrJJjiLh2iI/PkaJsdiXebJ663Ch6qXaykxzwm3HYneVQlYNnrmcjrFB5k8qxSM6Hp9wkJQWAYnko8uoVi7xJSgUpFmuVxnsLigaWoUFTFGiKapBGDAeF4mzLUysX0VIsVqTgZps3YxEAOjO8nVFZSLmLmiNLjeUbGYvBBfRvf/ID3PSrn4CiKLzyTe9oIhUBIMO5m4X75ltTsHVmOVREFboBaKqKTtMGFQAmiwKGO9LRKlUAumFg4wd+hfrAyS29vx8Mw0BxccFWTnb3DaDYYsZiRVSRYmm7zz04Qorx+ZnJwHXcxKLbLtdphQoQm12vWpClKTCraawDqNdqyLRALK6lFerOW67Hhi3H+x5nXsyVRcxXJJy5oRuFdEIshiGpRRIcdTgnB7UzU9hBbMXqH9aXATbTRLpVqvGzlAEQ1SIALOxpbT0HbGJRAwAjlDCjLIIvoNnYZH2qq/5WqHawI9nXTYrF2cXGA8mPWCQTV1zLAISoqs3b2Y1BqItSI+fPrynHZQDGc55mLCtU83HIfvq///s//Od//icA4N1/9SycPJQi23TCq1isxFN1BKGvMw+GCa43NSbTrMJsFUGEsgMkY9G0Qu0PsEIFgKFTgIHmBicAQDEVixQwNtgHiqJwZCZgshRNE5K2vkgUrTSLuqRA1oBnf6+OWsdxAECsR82/0/NL7m1YtrRSi78/xxgqdRGFmCqBfC4DQZSgGeYxrDka5JVZoDIDFIabsycDcN3NuzEy0ItnnrS11ZEnCEFSiyR4qiFKveZnhVqSSva/Bc19ny5rciQp6iXLADexOF+PN9HVIjYMzfD9HAW2oeDmU3wosagapmIxglh0PhdJLHoyii3CiKKtyVnRVqhPrDzheuxVs3mR9Zl448pYpMIzFnfcuAM/vPaHAIAX/92LfUlF7zZXCy7FIVdoTbm5HnAqFnsG2stYdB7Hhc4CMrkM5qfjT9xWZAW6p26yrEd1Xcf0YXfdl2FJnbhaxWJsK1RzuSiCOy523rQTuY4cnnH2M9ZkewkSJHhyITax+OlPfxpvetObsLKygmKxiE9+8pP41Kc+tZ5jS3AMsBYqvScDrOzE5WXSIPDLcAOC1XutwLJ8XK41F7GdGc63kWi1vAppDhkuuNnTsPgk38sTC1XojvxHmjIVi3JwAe1FEElrZfMxNNWkWNQ09zqiooGjKZj1MiQHEUmhQSBaxGmsjEWhudnXkyNFOMdQTQq2mbLYsCoNIRY1TcO1n7sGX/ind2PvQ/cHvr9znBbuOrgM3fzssxPRdkfdWR5VSYVqWqF29RBi0TAMTJcEjHRlkItBLFofS+o/KXLZKFRWSlBVxSYW28lYrJqKRQv5jk5ksjnMTwcTixxD2yQZS9MuspqBAYqCSyE46VEtUhSFFLe6WZKimbEYB5lsDqJQbyry24Gu69j1xxtjqxUfmCyBoSlcfuIgaHp1ZOrTHUktkuCow7ZCbRNyFZJ5jX7icAyCSCwRoslDLNZq4YRYE3qPa215H1hnIzu/WA2exERbiregpoeuupWCmuJvhWq/bhKLHo5upeKYACJXGiSg+b4V2bCbeWQZs7GZHwRqizYBGYRaXWyQlb7EYq5ZsWhZoVr1mdFc6xiGgWuuuQaveMUrsHPnTtKQFYpEleclKr1qtOoCoOuQFQWPHAhQ+YVgsCfcNlNls6HfhR6HEY+wf1UUFUulsssKNZBYDIMqmYpFgONYjAz04HBYMy/VQfazKgE0C8E5wc08dqqOxtneg566hssCoMLzRcNAEyvUfDYeEWgtZ0c1OK1Qp8wMv654+VaGYeC6m3fhRZee41ZhJlg1klokwVMNTivTxbnFptdlcxKDUw3lJBa9hIYBAzU5fELmjRM3Nj3ntB2dF+LdjzLmBGVDbbZCBYBOruEZGkks6s3Eop8CzEkc+RGLxfnG9avJClVyE4uKpri25wcr99NCGLHI07yvfauTvKRB+5KwhmHgR9/8ET78hg/j4bsfjrzv9SNd3/nyd+IPv/xD6HpOWJP3e/p6VnUtMvS1UfcuLy7bWY89/T1YWV6BqsSPLZA0ybVfKIrCwMgAZifjKXABf3tdZ6bhxAG3HaqlUA2yII6DljIWzeXqrd57BODOG+/EOZecY6uP1xq6mYmuYfW93QQJErSO2F3bvXv34r3vfa894/U973kPKpUK5udba1AnSHA0YFlxLi2TGUgrRf+ZSPUQYjEuyTreQy70++aaZzN3BuSlOWsqPwXbwMpj5B86aYAo5lgmi4JLAcnSAMVykFtQLFYCcg4tVaFLgWhicc7dDBVkDRxD2cWhJApIZXL246qogqaAlKmCTHMxMhaF5mZfT5YU6lmeBeMhXBarkk2SWlaoXgtcoVbDNe98A3783a/jH67+JN76wWsC3x9AE8l775ESZIUUfstz0Q3hjjQHVTdQk1SiWOwhZF5ZVFGXNWzuy7kIuiAwZpMxTjZCFIpmnmJPH7Hp6O4bQHFpoSUCrSap4BnavjGgKAqDI2OYCyEWAUK0AoRkdCoWGcoA47BCBYJyFtsnFg3DQL1eja1YTGdzpi3J6vME9j18P0pLizj30pjE4sQKNvVmsaH3yWND/WRFUoskOOqwrFDbhVy1m0zlODfo4gohr1bporAWsK/x1qUoZKY0zVrEYkBDT5M9ikUl1JLUIjGdisVS2aN+kGu+Vqi+isXCMPkupXLwe8JULFq2Zn6EmtemFLDHoAUoFkVRxKte9Sp87GMfwyc/+Ul861vfIvtWKJp5mp7GHc1CdWQlQVgGNGKRNbkYbK8fhMHucGJR88lqcsJF5gYhglhcWCbjtrIeh/q6UauLqNZavObaGYuNnMVQYjFdIL8puW4qFpuPz6ojR6gpZ5GiY9uO+oKiW8pYzGfJchWLUdc9xGK6E8gPx9rWvoNT2H9kJrFBXQcktcjTDy+/7uW4b+6+Yz2MdYOTWJR8IlQUXQEN2uXgtCI1rjd+hEZZCb+e3nTkpqbnnAq4JWGp6XU/WLWInxUq0B6x6HzsR/o5iSMvCaQqqsvGMs24J454FYuKroCLsBs/vHLYdxt+8BKZFpyfw0+xqCoqvnD1F/C1a76GV7zlFfjn/++fXda3fnDmNtpjffwwnnjkCZ+l/WHty9XaoLZC/gVBqAkQ66Kd9Wj9LS7Fn+gkaVLTMTM0NoS5qbnY2/Ajjp2Zht6cRZ7hQVM0FD3aaj8IQlWIn7Fo1iJCqzWaDxZnF7HvoX3raoN6WCS/nwW9NVeuBAkSrA1id23r9To6Ohr5HDzPI51Oo1ptzSowQYKjgXqA/ahFFlrKtDCL1aBteGH1rw4u1psUkEHEohN+1ocbhP04/JkXoZu3bMjIuGdXRKzUGwUFQwEUw0FtQbEoyv6EkvU5GJqC4rnhmJlwF7uCorny/CRRAJ9tNK4qkooMx4BhyEZZU93om7FovrGfYrHbVIOmWBos426yLldliLJFLPorFr/yqQ/hvp234ZqvfBcvfdUbI2fJpR3EIqvLeGK+iqo5Zj+rVi86MuS7XK7J0FQFXaYV6mSRfLZTRoIzjvygq6svoIumOrHLkbGoaxrKpfi2H7Zi0bH7+odHMT8TnvtkqXk5hnYRdgxFGr/Wd57J5nDk4ONN66dD1LxRUGQJmqoinSug9wXvhBQRKZzNkcbqWtih7rzlBhQ6unDy6WdHLluXVTw+X8FpY13ozaUil/9TR1KLJDjqWLViscVziqEDqWNvFQXAPueLikmwBdmcAqA58/wVpGq0Mhat63CQFaoFcztOo4ODk56mjVxrkICKAB0UJN1zayObk746honqrBScpUPTFMlYDLNCTflMVjEbhgZgZkS6r90f/OAH8dOf/hQ//OEP8eEPf7hRi9SXADbbrIAEoNKkUVlWWXIMmqRu3WeWexSiFYvhx9tSqU0bUAcsdeJgbxeABsHYsmpRk0xikWDD8ACOTIc0klKdxMZUMa1QxeamXM1s8OWzGezxqAQANFvTtgKKRrUuxLZCtQjIqkUsOknqibuAznF/ctsH1928C+kUj8vPP62lISeIRlKLPP3w2PJj+NiOjx3rYawbakp4LSLrcpMKzkksSj7X9oocfm24a/YuqJr7eugkZJbF1iwodU2HAaNpcmx3qkFY8SkeSkj0imqoLtJQ1dVIxaKXqPRaXjYRi6bC0dqurMvgaX8y0MJEtXHtSaVSoRaU3kxHC07ykqZo2/bVwve//H387ke/w/s/9368+eo3R5KKgL9iEQAqK63XBU+WfEWgMRaLWHRa20bBa4UKAAMjAy1ZofqpYK3vPJPL4Mj+5lo16hiKglAXYmcsWss5yc52sevmXaBpGudctn6TnCZlMtndL5oqQYIE64+WtMjf/OY3kc83bq5UVcV3vvMd9PU1csTe8Y53rN3oEiRoE74EFoBDS6SoHuwgBWCYFWqtRZvUqqRiqSYhxzd+Vh0xiMW8D7HI8aRwoMyZyopGLpKqbuDx+UYhx1AUwLCQpSjapAFCClJ49vYBzJZFW6VnkZc01WyFOjPZKG40A9ANgGPdxGK6YM0WpFARFKQ4xs7IoygKPEv7krVO1SM8vRtL8abqRlPeXkVSUTTtZy3FomQpGE2l3+uuuhp/+Zq3YPO2eEHaTiKLNyTMrAiYr5B9IYvRSpOONPm+l2syVIdicWZFBEtTOG4wvLnnhaa2PyvNQnGJ2N04FYsAUFxcsK1ao1CTNFOx2MDgyBgevf+e0PV68+T7YxlAcuw/hjJA0xSEOnlu6wmnNFmhAqsjFq3MRqZzEPnh52BhaXfo8pZl6poQi7fegLMvejYYNvpX+ch0GboBXHbCQCw1q4XhPA1AR2d6dXaxT0UktUiCowpnxmJb64fP6PeFT3bOsYB1zm8oFoOJRcYi4yIzFi0L83jEoqA0mgQHJho2oJShEQKPbSgWZYNFNu1pvFiKxQ7TPnLpALD1Mt+3zKV51AWHYtEPXLBikQyMsYlFTdPAMAw+8pGP4FWvehXOOuss93pCEeDSwcSiVsGKyqNDKNn7Yy2JxRrXi58+puD0kwZC14/K0YqDOVMNMGQ28Yb6G8TicRtH4m/IskI1a8KNowPY+UBIjmimi5DJqXwgsVitkTrvjJO2NisWgdhEnh80g4YkKy0rFquC+T1bGYu6DszcB4yfH3s8v7plNy4/7zRkM/FsWBO0hqQWefphLc51T1Y4FYsWnPamsiY3kUguxaKPY0EUsVhTarhz+k7Xc05CRlAF3xzGIBimg4GXMOvhyXVFhx5LseicaOz3uQG3stJLAs0ccVuSpz2Zt5YajaIpQCfvGZWxOF1tOCOlMimIgogO+E9IDlQsOsZMURQ0XQNN0TDMPtLL3/xynH3J2TjlrFNCxxK0TSfaIhb7jz2xWDQnM3kVi63kLHqtUAFgcHQQt/zqltjb8FUsmurA4085vskKFSDE8aqsUFvJWFxDxeKdN96Jk888GZ3dndELtwFJlSAZ8d3bEiRIsPaITSxu2LAB1157reu5oaEhfP/737cfUxSVFNBPIXz7joP4u/M2gmWefo3puqz53hw8MU+K1/5CCoZhQAxRLNZCbDuD8ODECs7f2ms/5hgaGY4JVUZaZJQTLEee00yLU8WRcfjQZKPIZ2hAZzgoSguKRYWQRJduH0BfnreLa8tulfXJWJyZbCgWFbMnyDuOG1kUwWcaN9dlUUWKpV32pSmWCbSeZfmUr2LRUnPqhgGWoaCahXGKpSGpOg4tm+s4FItT992Cx379LbzyGT/HwOAQ+gaGoneKCWfGIq9LqBsF3HdkxfyM0YWVpVAt1WVoWiNjsViTUUizvra3YViLvL/i4jxS6YxNnPWYysXlxfnYhGtNUtGXT7ksfAeGx3Drb38Zul5/njRneZZBxbH/WHM2mVCvIZ3JYOPWbXjswXub1l8NsSjUCEHIZuKRuek1IhbnZ6awf8/D+Os3vD3W8vdPlDBQSOEZo60V28d1kmO1M93+PnoqIqlF/gRweAfQvx3I9hzrkRAIbeTAOSG3oWBZjUJqHSBal+4QxSLDxSAWaZoQJEBDwRgEs4kpOEqxA478GtYw6x7WUkoKkHQGmZSn4Wbt/44RABSw3DyJxUI2xbkVi37I+JyrncvTRLH4u9/9Du9617twww03YGxszEU22BCKJE/TJytJZdKAApRVrqG4A9wZgTERRCwqbB4v+6GAJ1433vI2W8XsAvkdDfSQ/WcrFhda/H2pol2HAsQKdXJu0SZxm5DuIqpVtRvgC6j77D/LCvXMk4/Dz27c0bwNvrVJYU5Y9xmtZixWvIrF5f3kOOgYthWyYSiuVHD7vY/gqx/9h9YHnSASSS2S4KkGP2Jxvt5QWCma0kSWOIlDP0KjrjTfu1tZjXkuD8MwcP3h612ve5Vek9VJpJhUZAYhAGjm+dRrZ1pgyTm6alQxlCL3/UHKJU3XmhSLfnmFYRmL00fc8SheBaEsyuB48zxNAbqhRxKLM7UGWZnOpEMzFmMpFkGsUGcfnMVtX7gNf/e/f4fRTaMtkYpAsGKxutJ6bftkUixahGJXbxcoimqJWFT05szMwbFBVFYqqFfrsVSBfla3ljpw2zO24fc/+j0Mw3CR4KtRLGqqBkmUjnrGoiRKuPf2e/Hqd756VdsJw33zT18L6wQJniqI3eU+dOjQOg4jwdHGE/MVfPy6R3HfkRK+/MpnHuvhrDnqigrVJ+D58TlSBOV4FqKih4rlw/IAg7Dr4JKLWASIPWYYsehnl2pZUzSIxQahtmemgs1mf4KhAJ1imqxLvXCSrIKsgWNp0BRcxYr1HixNQxbNmXY8KSpmJg4jlc64luMc1qSiKIDPdkAHUThURBVpjnHlHKVYGqKiQdeJWg0AJIMBaBZ8OuObbWeNL8MxYOgGsdiR5rBQlXBwkZBAhqbCMAz84ntfw+5vfh4jZ1yOdLZ1xYczY5HTZfAMjXsnSmSsMbL3sjwZZ03WAAPoNK1QVwQFuRSLFHf0Sfzi0gK6e/vsfdnd2yAW46Imqxhh027F4vAYKuUS6rUqsgE5hsOdGdAU2S8Ljv1n7QahXkM6m8PYpq248bofQ9d1ly2LN/OyFVgEIZuJ16C3iFdxlcTirj/eCJphcNaFl0Yuq+sGHppawTmbetBXSGxQ4yCpRf4E8O3nA7l+4H3x81vWFfXWrLqaEEQsLuwDCkNA2mdGerp9ImM9YIu8QhSLNJcCNMBQJP90SN1SLJq1la4RQu2cvweO7GhWYflYoe4/MoO8qb5idHMsDitUUWeRTacAOCZbSRXyvlyW5NOV3NbuTuTSnKlYtJo33iqRItaazR/esQiD//j1g3jnd/4LL3jBC9DZGTJpRCwB+UF/YpEmNdeKyhML1yqxgW1LsRiRsQimtUlP7WBuqYTuzjx4s9na1ZEHz7GtW6GqEhSdhqWn3TDcD1XVMLNQxNiQD3mb7iT5inIdSHehXm8+hqt1ESmew8nHb8S/f+8XEEQJmbTjmpxaDbFIWNC4VqgNxaJIiHeLWJwyHSK6NsTazu9uuweapuOFSb7iuiCpRRI81VBXmwkCJ7HoZ4XqJBYln0lDVaW5vrFy/SiKwtaurc2KRaqZWIwL3TyfenPmLEItTaUbhF4AFF1xWZ8quuJL1GVYci42YDRlLE4fnkYq01jHT7GYMq8hOq27xug7Jk1x2cLyaT6UWPRar1rwKhb3/H4P7vzyneg6oQsdXa3FsVgIIkSfqlaoxcUiaIZGoYtc11mORWdPJ4otTHLyVSyODAIA5qbmsHn75shthCkWtz1jG378zR9jZXkFXaZ9PBB+DEXB2nbsjMXc2igW77vzPoiCuK75ivfON09OT5AgwdHF00+qliAWrNy4uDmCTzUIsmaTUE7sm2sUQVGfvVVikaUpPDxdhuZRSvopEp0Iy2FUFRkM1SDU+vMpHFquQTVn/DM0YNAMZCWcWJQc2YOCqVj05g1aVqgMQxSL6Y2nYewfvouyKGN28jD6BocBNBSLTqWrLIngs42mYFlUwLO0TSACFrGouwjfJS0Nik+DT2d9FYsWLGLRQjbFgKUp29pWV0Qs/eaL+OU3P48TXvA6nPHaj9lEaCtIeYisjb1Z7Jkl7yHFsEKlKMqlSuwyrVBXBAWFNOtSea4Wt13/K+y+7abI5YpLC7b9KQCk0hnkCh129mIc1GUrU7PxHQwME1u5+ZngG8IThwt473O3Y7gzA9mhgmUocgyI9Roy2RzGN2+FJApYnHXPAM3wq7dCZdPxiEWLHK3XV5ePs/OW6/GMM85FobMrctn9i1XUZQ0XHNfbspo1QYKnNYTSsR5BA+uVsfjVs4Ev+WWfUUCqvQbQekGwLvyq3FAcesCaGYuyEHAO1VSi5rOuI5qpWNxyCXDZh4C8x45TMy0vHTgwMYvxYbIcY1rF28SiJqOu0s2KRakCsGlC3uX6gcoM+Rw+yKV51JxWqB5VBFIFf7WYSURquoG3XVfBO761C+985zvx85//HIVCCCkllIji0s8KlSE1TFk1369MLDr9FHdRiMpYPBqYWyrZKkWA1EtD/d2YXWyRuNckOM0vNo6Q4+FIULZRuhOAAdQXAZr1VXxW6wLy2Qy2bx6DYRh44vC0Zxvt/x5F1SIW49Wk1nKVmmDa6prjnbybkNDZ3pC1G7ju5l145klb/cnWBAkS/MnBT13oUizqPopFpXVi0YlT+0/FgrDgIgK95IhTqRcFi1i0yEsvVKjgrRogYPa4N1MxSLH4+lNejxdtfhF4hve1Qu0eaFzPvESfLMpNxGKY2uxw+TB0Q7fHnM6mwzMW2XDFomEY2PP9Pbj9C7dj+/O246yPnGUTaa0iyAq1FcWipR5dT2Lxvjvvww0/uyFyueJCET19Pa6JzD39PS0pFv0yFgfHCLEYN2fRL2NRqAtgWAZbT9wKAJjY77ZDXY1i0VJDxs1YTKVToGl61cTijpt2YGTDCDYev3FV2wmCqIp4ovQECsyxr3MTJPhTRkIsJgjESl0JtQp9MkM3AMWn+eXMJwyy5bTQKrE41JnGgYVqw77IRFdEzmKHT8aiBUWRwdAUFJP0G+pMY7okQjYbFQxFwaAYqEp4o8lp6yqYJBHtkRRY78EzFGRRANPRDzqVRbGmYMaHWHSSZJIogrOUYRRQNa1QWSexyDGQVA1ak5KUAp9KQwwh7lIcDdZRAFIAenI8poqk2FFLM6jvvROveP9nceIL39BEmsZF2qMoPG4gjwnzPeJYoQIN+1YA6DStUMuigo4011KGXhR+9cPv4cff+XrkcsuL87ZK0UJP30BsxaIB8lvxjn1gZAwAMDcdTCxSFIVtQwV0ZjiITitUh2Ixk8lhbNNxAIAJT85ihm9/fwkmsUinopt5K4ICxlTnrsYKVajXcN/O23Hupc+NtfwDEyvI8gyedVx/9MIJEiQ4NlgtySmHTEoRlgGvbTufc2f2PQlg5xzOPgz86zhQbFb9cTxprMlCwDlU92QqGppphRpwvVYlyLr7GnBgchbjw+S6ylrEItdo6NVVGtmMp+EmV80cQ4aQl7VFQHGPkTE0pFgK2TSHuuiwQm0iFvP+xKK5/FzNwPfuq+M/33g2Pv/5z/tbc9qf3wCkMrFC9bGEVRjS/FlRzbGUyLV2LTMWjyZmF4oY7HU3FYf6uttQLMpQHITzBpNYPBxILJqkoFwDKMZ3/xFiMY3tm0ld05SzuAqiXzAncsYlFq3jt1oXyDFrKRYn7wI6x2PZJKuqht/edg9elKgVEyRIYMLPCnVJXLL/7WeFWnU4LlgWp07UlPB7plP7Tm0iYJxEVYbNYLY2610tELZiUfPve7iIxQBohtakWPSz++xKd+GKzVcA8LdC7Rlo2PV7Mw8lUbIVjQZtOT0F94P2r5D735RG1kmlUr5WmRa8Ckl7HCbxpFU0HPr9IZzxxjNwyTsvAb2K/gNHrYFi0SwhLfvR1SAoJuaGn92A7/379yLXX15Ybsp67OnvwfL86ojF3oFe0AyNucm5WNvwtUKtCchkMxjdNAqKonDkwBHX66tRLNar5F4krhUqRVHI5DKhBHcUDMPAzpt24rzLz2u7NxeFe+bugaIrODEfL94nQYIE64OEWEwQiNOuuR4nf+z3x3oYbcOrWNR0A4eWGg2+KGKx1YzFoY40inXF9R4A0JUNLwIKIYpGRTaJRbOIGu3KYEVQUJEsYhEwwjKKTDg/q6Bo4BjKpQAEnMQiDUkSwZhNQqFew0pxGb1mVqFs2bK6iEUBbLoxA6oiqUSx6Cgi0iwNUdVttaUFiqJMxWLzDY+1bJptLvj78jyOHD4Ew9DB5nsx+pb/wkkXvSByX4SBpWlQaIxv+2DB/rxxFIuAW6HaZRJ6FVFFxxorFgFg0kPE+aG0tOhSLAJAd18/iosLsd5D1QxoutFELPYODIFmGMzPTAWs6YYkCNCqSxAO3INOlhyPlhXq0Og4WJbDxEG39WGWa1/FZykPKS4816gqqfjYLx/BLx5dtsfULu7fdQcUWcJ5l8QkFidL2DZYwGBHYoOa4EmK6z8KzDxwrEdxbLFaxaKPSiAUqbyvgu1YwlYsVmcIUXfo9qZlWJ6cxxQxSLFoKhQpx2OaAYKaDaoESQMY87qpqhoOT89jwzC5rjJ2xmKjSVJT4K9YZFKE1CwMEeWa4q43tksknyWX5lGrSw3y0Nu85PNu21MTE4s1KJqBkQKNgx8Yw5sv29xMGHuhCIAmu8bv+vimYrGqsQAooExUdG0pFrtXr4BV1fCa2S/X3Im5paJLsQgAQ3097WUsGo1jpiOfRVdHHkdmAmoaJylIBxGLIvK5DPq6O9DdmcfeQ54JU6uwQrXqb8viNAo0TSOXTaNaF8nvQ1eJLfD8I+T45aLVBnfe9yhK5WpCLCZIcAyhm/eTQVl/Rxt+GYlLQoNY9LVCdSgWvcQiS7GRisU0m8bmDrctpJOQyXN5zNXjETEAoJnnU68VqgUnsRh0TVJ1FTTcisWofEdJlEA77uFnjsy4iEUvaeKyQmWs/kq4YpECZROL6Wx4xmKG8b+elBfL0GUdbAeLK/7zCmx/yfZVEzp+ak4AqJargSSfF9Z3sRaKxVo5+D59+sg0FDm8RiouFpsIzu7+7tYUi7rcpORkWAb9w/2Ym453PIuCCFDA1o9vxTxFJkYJNQGZXAapdAqDY4NNisUU3X6/wMpKjEssAkAmm7EJyXaw/7H9mJ+eX3cb1A2FDRhIDUQvnCBBgnVDQiwmCIWmG09Zu1RVcxc7U0XBVvoB0VaodZnkAcbFcCchMO4+5C5MurLNhaSk6rZyrxCmWJRlsEzDCnWog7zHTJWMnaEBvS1i0ccK1dw3NE1BFkWwaWJtujhLGiz9Q27FYspB9kmiCCbVaHZURRU8Q8MhMkSaYyCrmq+LGpvt8CXu6uZMb79sQuXIA7jjs29A9YHrYegqmGwnFDVegRsG5ztt6W/Yu8bJWAQa1rYUTSOdyUI3DFQlFV1Z3mUfGxeKHKxOWJidjiTCiGLRbYXVimLRstH1kqIMw6B/cBjzIYpF13ZEAYYiYf5HH8OGLvKbEEwrVIZlMbJhUxNRuhorVGu/UAGzOi384v4pVCUVNVknytlVEIs7b7keoxu3YHzzcZHLLlQkzKyIOHNjN7p9zhEJEjwpcOeXgW//2bEexbGFuLK69VUh0D7UF/yTj1isWxd+q7G4fKBpGS5FzrU9u/4V+PEbmjeiK26FolfB6IUqQdQomyicnFuEqmoYt4hFS7HIN5okVRnubDwAEMvEbpSigcIwUa7VllyL5LQyACCb4lAXJV8FIXmvXFMe4e33PIIzXvcZfPKPZPZ5X4Enny2KWLQI6whiUTMoQmxViV2cIMnQtNbcRPq741mCh6FYDm8gzy6F/05mF4sY7OtyPdeyYlHXAF2FrLnr1w3D/SGKRUfGJW1+vx5YikWKorB90xj2Hlx7YjGuYhEgJCRRLLLkNzf7MCG5O0fhKqwDcN3NuzHY142zTjm+7XEnSJDAjd8d/B1+fyj+hGtLVednIXosEKlY9FHuOe1TZd19P8ozvO82vTil7xQAQEUiJKUzs6/AF7BQjzfRFWgQi6rXTcCEChV8ujXFomqogXafFpzWppWVCqrlqssK1Xd5j2IxzMZyojKBDr4DlDlpJjJj0efedt9D+/COF78Dcz8ixFamMwNNX73zWBDpahhGKMnnB69SsB2US+XA13RNx8yRcGvd5YXlJoJzLaxQAZKzODcVU7EoSqBTNDIbMyjT5DMJdcEm/sa3jGPigMcKdRVuJq1mLAKEhLQsVNvBzpt2IpPL4LTz/GIfVo+aXMOB0gFcvuHyddl+ggQJ4iMhFhM8JVCqtz5DW/GQgk8suC0b4igW/exUg5BPsehIs7j3SMn1vJ9icbIo4IFJ0oQJy2BUFRksTdm5hL15HgxNYbZGxs5QgB7jZ1xzkKiiqVhstkIl70FTJGORMy0kF2dIUdM3QIhFi7tzkn2SKIB1WE7WJBUcQ4NxKhY5BpLSrFgEAD7XAdGncLE+d453F2/TO36Bm/79XeBHTkDu5EsBwwBNNXIiVwPGoVjM8iwG8qSIU2Up0nIWADqzZKwsS/7WJBW6AfQV2ptlVl4Jb7pNHW5u8FrQdR2l5cUmK9Tu3oHYGYuSqVJI+ahGB0bGYisWRVEAZypaOJOktDIWAWB8y/FNisUMtwpisVYDn0pDRfA2jizXccveBVAgx1omm0O91h6xaBgGdt56Q2y14oOTJdAUcPkJ/a4s0rgQJdKo0NTWz40JErSEgAbOnwykFuye/KCIxPYzLrhsE3l1rCHIjoxFACgebFqGd+Yazz7UvBFNdRN2ukYUWUFQBYhqQ4F4YILYpVnEIqubzVoHMVeWDGQznoabVCFWpVbGIgAsuyexpAzSwMulOdRCmnngsi7S9/v3VHD5a6/GSVtG8Y5zzYYPxRAi2YioRwTz2s6HE4sACDlWW7Qfllps5nE+1+9WsRTSzAOAvYfCm3lziyUM9na5nmuZWDQb9LLhrns3jgwEZyyy6cZ3xrCoixJSvLvurtZFW1F4wpYx7DngJRbbJ2Yt95NWiMVCLkMyFmmW/E6m7ib/7twQa/1f3bIbL7zkbFeG1HpBMWtEJULRmiDBUx3v++P78N5b3xt7eYt4eDITi0Wxcf71s0J1Wp3qhu76LBzNoRaUIe3AGQNnAAD2lfYBcBNVnalOLAjxiUXdbEKEEosRVqhxMxadkETJJhYt4sqpWPRCFMWmjMUUE9wHmKpMoSvdZT9Op8MzFjOeCUnFu4u46i+vQv9QP3qvIDm8NEUHZlG2gjBCNK4dqqVYLHSu3pZ9pRg+iclrH+pFcaHYTCwOtEYsKpriTyyODmJ+KmZ/RZDAeyYWW1aoALBh64ZmxWLIMRQFS7EYN2MRMInFVWQs3nnjnTj74rPB8cG9ztXg7vm7oRoqXnzci+0Jd3FVtAkSJFhbxLrjKJfLsf9PkGA9sCK03jyXPPmQj89VkWJpcAxp4kcRi4KsNdmpRmFzXw77F9yzujs9GYvOjEFV05FNBRezspmxaKkvGZrCYCGFJcGwH2tGNClhKf+AhmKR9igWz9vSY2/TqUBcmJlCJptDroPM+pb9iEVJsDPqAEJkplm3KjLN0S6lphNsOgdRaFYsnjraiStOGsQzN3QBADRNw/KN38DjP/sSLnjRK9H/sn8C1zUEwzDA0rRt57oaMJR7fJt6HWqISrRypStDikTabAyXRXLzM5BvrxisRBCLEweD7VCr5RI0VfW1Ql2OaYVqKxZ98hkGhsdCMxZd2xEEpDM5dF70KtteVqjXkcmS42x809amz5JeBbFYr1WRzeUgBRwShmHgf3YdRm+exymjnVA0Helsrm0r1McffRDLC3M4L2a+4v0TJWzqzWFTX3sNy8cefRQAsBSTIH46IKlFEhx1qBKgiuHKujBQNCFDWiIWM752m8cSNateshSL5RlCFDpgZSwGQvcSi2oEsShCVA0XsUhRFEYHSNOMMWRCGjlI2LKkNysWZYcVan6QPLfknpDDgHy+bJpHLSxPhssANAvDMPCRP4h49f/N429edClu+PqH0Js1PxvNAIYKRNnfWdmdAdaWLmIx09MgIhGtHlwPLJfCG4h7DwfnZMmyguWVSpMV6mBfF+aWSvEbQSppajszFoEIxSJFNRSHNIu6IDXlcFZrRLEIANs3E8Wiy0aPb78ZWhVV8BwLvgVr93w2TRSLFEOUvpN3Ax1jbvVlAJ44PI09ByZw5WVHxwZ12sylmmmhKftUR1KLJIgDS5nnl014tJBmGtdlUWm+thUlB7GoKy6CzTAMiKp7HSfRyDM86mq0TaJFmFn7walY7Ex1usjNKKjmRGnV8CcWNWgNEiPgErxWxGL3YIRiMR0/Y3G6No2etCOzMcP7EotpNo0OvgPjhXH7uYVfL+DAlw7g3MvOxRd/+EUwefJZ1opY5BA87tg5i+Z3sRY5e5WIWsRLxrmGYRj+Vqh93RBqQmwSTdZl13FsYWB0ILZiURREpPPuutmlWNw6jukj01CVxrG+GmJRqB5dxeLywjL23L8H5z9n/WxQ75+/H1s6t2Br11b7WFyNdWuCBAnaRyxisaurC93d3bH+T5DgyYKy6CYjH5+vor+QAgWLWIywQlW0lomqbYMFzFfcMxO9xOLEsvuC5yX4nFBkGRxDu8i40e4MyuY9CkMBcdxa3YpFHawPsfg352zAp156Cjb35SBLIhiHYnF4bKO93xSdqAN5xmGFKjSIRQMUFM0A77EvJVaoOjQfezA2W4AkNhcuNE3hr84axwlDJCOHoihowgqOe8k78KYPfAIUzYCiGcAwwNDUGikW3eM7fqBhh1otRxOL9vdtZvuVTVJ8qLNNxWIp/IZr8tATga9ZdqdNisW+flRWipDl6Fm0kuJvhQoAg8NjmJ+Jb4WaHtyErgtegb3L5Hi0MhYBYGzTVizMTrmIvbSPBW5cCLUq0tmcbd3rxc6Dy9i/UMMrzt6Aoc60SSxm27ZC3XXrDcjmCzjljHMjlxUVDfvmqnjGaCd684kNalwktcifKO79PvD4DcfmvW3yJ4I0CwLDEWKyFTsqjyruyYCa7LFCrc03ZUemUlHEouImEg0NCFGUQxUhKAYy6QaxOD7cB850A2B0k1h0kL4lQfdRLFYBhicWkulOQtoW/Sfk5NL+Vpk2+LxNji7UDPzrn/XgW596l1utSTHk+46tWPSfXKLS5ucwAGR7XFmfx4JYXFoFsTi/TGqnwaaMxW6oqobluM3JAGJx4+gADk/PB+c8OolFUULWQz47FYvbN4+hXK1jzqmktBWLrWelVUUtdr6ihXw2g2rNylg0FYudowAf3RD81S27wXMsnnP+M1sea4J4SGqRBHFgKZqOJbHoVC37ZSyuOKzevcRiWS7bOZEWnNaocYlFL5xKr+5UN6pKtclmNQiaFJ6xqFFaI2Mx4Hyt6W4rVM3Qoq1QJdm2WJ0+Mo1cRy40q04UxNhWqIZhYKG+gN50r/1cJpOBKDZ/XzzD41+e9S84vrthc61WVAy9eAj/9LV/QjqThqGaDlSg19UKFQCqK0evFsl1kH5BuRg+YcNrH+qEUBMgCmKTJatFNMZVLSq64kssDo4OYnF20UUGBkESJKQ8blZOxeL4lnFoqobpI9P26yl2dYpFmqHBpeJPXMxk21cs7rp5FwDg3Mui+yLtoCJVcHDloG2DGqRiTpAgwdFBrM7FzTffbP/70KFD+OAHP4jXvva1OP98MgNhx44d+O53v4tPf/rT6zPKBAnagNc+dd9cBX15HvNl0piIo1hUNLe6MArHDzQ3iCyiyep37JmNbqCIVAqZbedDtRSLDvZwY08Odx0iDQ9ihUqRGdkhqHusUPvyfJMVKkVRGCiQRpYsScjzaRgAFmcmMTy+0V5O0YgtpvMtZUkExZmWH+Z8hZRH4ZbhGMia7qsCZVM5VHwUixbmpicwM3EYW049F30vei9G+3Lo8xAyLE21rDD1A0MZrt7RcX0NYrESQCx+9sNXoX9oBK/9xw80rG3NRpRFcA90tNeYjiYWg61Qi4vEOq3Ho1i0HpeWFjEwPBq6fcsK1c+WdGB4FEvzs1AVBSwXXqhKkgg+S/aJ1fwTnFaoZi7h1OGDOO7EUwLfMwqGYaC0vAihXkM2m7cVtk4IsoYf3T2Bk4Y78FdnjeHLNz0BSdWRzrSvWNxxy/U4+1mXRe4HAHhkugzNMHDZCf2+FrMJ/JHUIn+i+OXbyd8Pz7VP8LULOwevzfeleWIfGnbDaxjuaziXCVfyHQPYrgdmZhTqS4Dibjak0hHkia1YpBoKTiaMWJRQVxyKxclZbBkbtl9mdRngUy4VZEnQken1NO/kKpDtI8tRFJDrA1amiF2pxyoym+b9rVDN72emYuDB2+7BFRedia+/KA0q301ec+be0LRJLMbMWAyw2ZS4DtRkAxWNBbK9rqzPYkAz792f/gYUVcN/fPSt4e/dAhiGhqbpkVao+44EE4sWSedVLFqPZxeK6OuOVuPBVM/IXmJxZACVmoCVSg1dHT77M2Vum2YhiFKTqtXKWAQIsQgAew9OYchSNViKxajv1AHDMEABqEpKSzaogEOxSDPEynf5ADDyzMA8Tieuu3kXLjv3NORbfM8E8ZHUIgniwFYsxiTN1hte9SEArMiN64qqq2AoBpqp4PdTEjoVixzNQVRFFLjWFN1Ogq07Ta4By+KyPYE5DJZiMYgwi2WFajQrFsPIM4AQi07F4siGkdDlJVFCZw+57uhMuBVqValCMzQMZBv36qlMKtQKdaW4gkfufgQXPPcCDP31ENJs2iaRLWKRoZm1USyGOGgEKRa/96XvYeLABD78pQ+v+v0tpFIp1FCLtEKd9FqZO1A0axGvYtFJLI5uCu+LAKYVqk9kweDYIHRdx+LcIobGhkK3IYkS+EyzFapl0zq+lahSJ/ZPYMNWYoPermKxuFiEUBOQzWVj/c4sZHIZlJZKbb3njpt24MRnnthkO7tWuGvuLmiGhpcc9xIAwRMJEiRIcHQQi1i85JJL7H9fc801+MIXvoBXvvKV9nN//ud/jmc84xn4xje+gde85jVrP8oECdpAqa40DnCKwoGFGs7e3Li41WUNKZa2rR5FVUOGbzS5BEVzKQWXatE3Bht6mmcTW+SIReTtjUEs3pM9CwMvPR/V+691ZSwCwMbexntYIjIqxF4DcJOokqKDpanQXDdZEkBzaWgAFmYmceqpz7BfU3Rii8k41pfEZmIx7SFMLMWik6Cd18hnYTM5iD6KRQB49IF78LF/fA16+gbxme//xrbRSLEMCmkWFdNqlGWodbFCHSjwKP7xexCPPIjqSsl3net//n8AgNf+4wd8FIsqWJpqUq7GRRSxOBGiWCwGKBYtYrG4OB+DWCT7NM37WKGOjJECen4GQ6Ph2T+SIIDPFFxzX50Zi2ObtgIgCkyLWGzVCnVm8jC+8E/vwSP37saZF16KTC7fpGwAgOsenIagaHjDszZhvDuLQpqFrOpIZbJtEYuL87N4/JEH8Rd/9+ZYyz8wWUJfnsdp48ls9laQ1CJ/4pBrR49Y/OQg0LMFuPJL5HG7s4QZDtDECPWa52a4XRJzHSEqumnratZBQslFdAFAOp2Cohm23XwTNKVBAlpNQSpEla6IqMtuxeLzLzrTfpnRJYAtuNSdRUFvsrmEXAU6RhrKxlw/UJ0DVAHgc65Fc2kedcFHsZjtwwMdz8WVH/4V+FQaj/7q6+CdZLCz8UYzJnEa0eRQJfL5Gf8mqMpk0fmvFbzzVX2EWJRrsOZrFcv+deQXv/tzAFhTYpHnOAiatCrFopWjONjX5Xp+yFQNzC4Wccq2TdGDCbRCJTXN4el5f2LRshBlohWLWzcMg6Zp7D04iUvOeYa9HpgU4ioWp+YW8cXP/Rc+dwbw+HSpDWIxg3K1To7tojl5rGMschLhSqWGP979MP796ni1SIL2kNQiCeLgyZax6FUsGoaBqtyYpCJrMliKhQxynfcjFr2KRb/cxig4CZm+dB8AQiw6FXtB0CQNNOhAdZKGhmIx6HSt6ZorS1LToxWLkijZ+YAzR2Zw0hknhS7vZ4XKB1zrLfJvMDtoP5dKpyD51SIAjuw/gqtfezUkQcIzL3xmk72oS7G4BsRi2L4JIha//flvA8CaEosWyhGTnMIUi8umdbdfxiLQomKR8lEsjpDvcG5qLpJYFAURfM5DLNYFjGQJad032IdMLuP6PE5r4zgoLhbxpY9+Cbf++lZc8oJLWspXBAixODMRnp/tB1mScfcf78bfvO1vWl43Lu6fvx/Hdx2PDR3xsqcTJEiwvmjZZ27Hjh0466yzmp4/66yzsHv37jUZVIIEa4FSvUEEqkwaVUlFjyMkuS6p4Bz2jt6JyKLHCnW+HJK7Y4JlaAyYtgYWF2gVfGdsIEXMntnozA3VpETrggjWY4U61t1oUFj9u0hi0ZGxKKoaWIbG3NQRHNz3WNOyhmFAEkXQJlG4sjSP4TGHYlEnjUOnlaokCqBYsm9183lvJl+KpWHAkdUEwKJ+2VQGYr1ZsXjzb36O9772LzC6YQs+883/c1m6AECvoyBj6LUhFlnPnQhFUSjv+CG06nKgYtGJjoy7AC+LCnIptm1lWrkUXuROHtwfaP9VXFpAOpNFJudunlqZi3FyFi0r1DTLoHLcc7EwcoH9fhYpOT8zFb0dUQCXdTf8nIrFjq5udHb3uHIWLaI/SiSg6zp+/j/fxJtfcikevf9uKIqM4uI8srlck2JxuiTgxsfmcNn2AVy6fQA0TSGXYiFrOtLZPIRa67Yuu/94E2iaxjkXPTtyWd0w8ODkCk4a7mhS3SaIj6QWeYqgtgj8+A3HehStQxWB+UeBknlD3y7Zx3CmYjGkueM9wVkzklcmgHL0ufVoQFJUQnLY9mMGUDrsWiad4iGF9bCcGYvW/qAZTM0t4p6HH29eXhVRk3WkzSbh9PwStow3GjWMIZvZiY26YKmuIpPyEos1QvxZKtD8IDkuleaGaDbF+SoWr7t5Ny786K/R39uLW7//GfC8p+aiKAiKVfSx8axQHesGQTNASO0MqR+tCV3Hxgo1vHY9OL0AWfa3p5szZ7wP9HS5nh/sbRCLsWAqbpqsUEdITXNkOqCmMTO+7IzFEMViiueweWwQew96VA98LrIYMQwD//Xj3+OkF74Fux/aBwCYWqqi0EKmEQAUchlUambGYn2Z2CN3hitkAOD6O+6Fqmp40aVHJ18RACSQfSlR7Vu0PZWR1CJPL6wFEWPBIhYVzf+8eLThJThXpBVXVqHXCrUklZq24bQ+TTEpF9EYF06iyiITK3I8O2xVCs9Y1Ck90gpVNVS7N2MYBnToYGkWpaUSHr33Ud91JFGyt7s4t4jhDcO+y1kQBbFBLDJmxmJEdvZQdgjDCtluLp2DKIhN9/f33H4P3vbit4HjOXz5J1+2bTOdMMxahKZo6HHrkBBkGXL9opTmWuVoWqFaiLJCLS2VAnMYlxdJT8UiEi0UOgtgObYlYtFPsTgwSmqR+amAzGcHJFECl3MfE0KtkbFIURTGNo+5icWY9yKGYeCmX9yE117+Wuy4cQcAQnaG2ff6IZvLtmWF+sCuByDUBJx/+frkK65IKzhcOYznbHzOumw/QYIEraNlYnF8fBzXXntt0/Pf/OY3MT4+7rNGggTrB0UJVhEuOxSGMk9mK/c7Gvl1WXXZdXqJMEUzXBaiMzGIRQDY2k+IElVvFHMplkYhTQqQx2aCi2evQktVFLAeZWEhzSFlzn5jzcLYIvWCUPNYofIMhVdfcS7e/NLLmpZVFJlYODm26bVC5RjaZaUqSSJpoCJYsWjta2sssyuN/cnw2aaMxev+9zv41PvegouvuBL/9q0foaunr2msAw5vepamoeqrN0LwKhadqJZLket77TtXBAX5FNNkDRsXlQCVJACkMxkI9RqWFvyDwotLC+ju6296vqu7FxRF2YrGMEiqBo6hwLE0tFQH5Gy/rYC1iMW56eicRVGsg003CE5d1yEKdZtYBIDxzcdj8pCDWDT3Zdh3Onn4AN7zmpfiq5/6CJ73klfgA5/+DwBA3cxvdDYgDcPAD3YfQWeGw5su2ozePDl+8imiWExnshB8CO4o7Lzlepx0+tno6OqJXPbgYg1VScX5W3pRSLenYk2Q1CJrgrlHgX/uBI7sXL/3+O0HgId/DOz57fq9x3rCysGLsCBU1IDGIcMTlVUrOTfWtbd4kPxV10nt0IKto6xohFh0NkiX3DmFaZ5DqMO8rjXsSK2mIMVg7JJX46y/vKp5eVVCVdJtK1QA2OKYAc7qMiHdHBOOlmqqrXBsDL7mVpwWhgBhmSgZPcil+aaMxf/+5R/w4rddg+ddeAb++N//htHB5loEAASrzKJpolhsYf9GIuu+tgRZoa4nonIQNU3H/oCZ7XOLRfR2dYDj3I24XDaNQi6D2YW4xCL5bmTDXU8N9nWB51gcng6oaTINK9S6KDWpWp2KRQA4YfOYP7EYUo0cnprDFW/4CN74kS/hZc+7EB+6+gO46nciHpzTbNIyLvLZDLFCtRqXneMNO9YQXHfzLjxj2yZsHB2MXHatcJDaiDdfJ+AIvTF64achklokQRCOhRVqWKae1wp1ru6+d/RagjptUi04iUWe4X1zG6PgfI8sn23J3tEiFoM+pwYNLMc2qfhcyzgUixaRzNIsXnPZa/C2l7zNdx1ZbGQsAoi0QpVFGWkr75kCGIpxkbZeZNkssnwW27RtePi1DyObJWSepjY+5+3X344PvPoDOOH0E/CVn30FIxv9x2ArFum1VSzSanMfI0ixuJ4IIg0B2Ps8SLVYXCyC5VhbfWqBpml093WjGKMWMQwDqq76EsWZbAYd3R2Ym/LvyzghCRI4j5uVWBdd5N+G4zZgYn9risWluSV89E0fxSf/8ZM481ln4t/++98AkIzFVonFTC4TaskbhB037sDg6CC2nLCl5XXjYPfsbhiGYdugJkiQ4NgjlhWqE1/84hfxspe9DL/97W9x7rkkjHX37t14/PHH8ZOf/GTNB5ggQRj27NkL5Echy82NtxVBAcxJwgqXB0NTGCg0Lqg1WQPnIHsYnyK0JDSaaLMrzTPH/LBtsIAdB5Zti04nREXDxLJjtp+HfGM8JKKqyGB9bMU6eWBebFihIkKxWJMcMxI1A1xIrpFshoVTjkbc8NhGHFwgjSxZB7IMbSsWVUWBpqowaA7QG8Rilne/h0WaVs3u2w2PNYouOpWB6MlYfOZ5F+GN7/4IXv76twXeIDhzC+2MxVX28sKIxTiKRedYDZDjsJDmmojruCivBBe5Ixu24MDeRzB58An0DTRbbiwvzjfZoAIAw7Lo7OnFcgxiUdYM5FOs/fvQUwVbGZrJ5tDR1RNPsSgIyKYas/YlUYBhGEg7iMWxzVux/7GH7cc8S5MkAJ+vRNM0/PT738B3vvwZ9A0M4XPf+SlOO/sC3HU7yb4R6zVkc3ksOyZr3nOkiD2zFbz54i14xliX/XwuxUBSdfBtWKFKooD7dv4Rf/uWd8da/sHJFWQ4Ghdvb/5eEsRHUousAY6QWax45GfAhvPW5z1s68x4s4CfdJDKhFCLuMbeffc9OD8LTM0twWUuzXBkH7RCLHJHIRvtN+8D9vy68Tii+WQrFp3EYvEg0L/VfphO8aiqBhCU36L7WKGGNNoMTUZV1l15eESxSMbAGIqpWGxsY6GiEDWaVU6oElFKeolFXQVWJoHuTYDWqI9yGR6qqkHTdFhbveTsZ+Cad7wKH/r7v25yTXCioVhkSH7jGigFbGTctl3HRrEY3UDce3ASJ25ttqWaXSw22aBaGOrrbkGx6G+FStM0xof7cWQmoKZJO4hFQUJfd4f9kmEYRLGYa9ST2zeP4Rd/8Ey4SOUBuXnika7r+M//+y3e/9lvobszj99eew2ef9FZ2Hn/Hnx5l4yxIQMntJWxKBL1KwB0jjbZ9nqhaRp+c+vdePPLn9/Se60Frr1XwXl/01rO2tMFSS2SIAgWgSZrR49YfPTeR4F+YN9j+4Bt7te8isUFwa3wVnTFpSZckXyIRcWtWGzHCtV7T1/gCrHtYhVRscfqB43SQFEUURcGWaEamp2xaFmqsjQbarEpiRJSDjeE4Y3DkBA8ZlEQXURkVIZjV6rL9dgiyBSl8TlPPuNk/M3b/gavueo1YEJckHTTaYgBA11fwzrEB8eCWAxTLI5sGsGBxw7gyP4jvna1ywvL6Ort8u0r9fT32FapYdAMDQaMQAXq4OhgLGJRFERwfZxtPQyYikXHJKfxLeO4+49324/DFIuGYeD3P/49vvrxr4JLcbjmG9fgoudfhMOPH7a33RcwMS4ImWwG9WprE64Nw8COm3bgvMvPCyX4V4MHFh7ACT0nYCQf7eSQIEGCo4OWO90veMELsG/fPlx55ZVYXl7G8vIyrrzySuzbtw8veMEL1mOMCRIEwp6x5kP4rQjuorMvzyObahRiVUkFH5QFZMJpp7pQkUjOUAQ29ebs5b3Yv1CF5hhrSI8KACEWOcdCVt5dT5qM27ZCZcObnlXJTXIGZiDBVB8CgGObgyNj9r8V3QDHNqxQ7eXNolk3m4oZD7GY4tyKxd8/3MjjobkUZEmEsLKEpd9+GZJQw9imrfjrN7w9tCgZLDiIRYZaE8Uiu0rFohO6YaAsKCik2baJxUpIxuLw+EbQDIOJQ/t9Xy8tLdi2p1709A7EIhYBoja1OG+Dy6GuNI6nwZExzMdQLEqiACbdIBYt61uXYnHTVkweali70hQFnqWb7GwOP7EX73zVlbj2c9fgyr9+Df7zZ3/AaWdf4FqmXquSjEXDJEQpBv931wS2DebxirPHXergHM9C0w1w6VzLxOL9u++AKAg4/9LnxVt+oojjBwsY7GhNwZDAjaQWeZpBbj3b9KhALBMbwrAsQACaSU7JimdCkUUstjJrfL2IxdpS49+P/hzoO77xWAmfkdywQm0oDVE64lqGZZkYVqgMqoIE0VIFhmT3GIoIQTE8xKLHfozhXOTkQlVxLW+rEp2KiLx5TbQUl1KjSZVNkbpnfkXAG38pYLkiYny4Hx956ytDSUXAqViMmbHYCvi8O0vySWiFWsilsfeg/ySjuaUShjyZRhaG+lsgFjXLCrX5u9gw3B+sWLSJRa5JsSjJCjRNdykWt28ew8HJOUhOa9eOUXIucGD/kRlc/toP4R8+/lX87ZWX4uHr/j88/yK3LWalJrRshWorFq3vPD8UmfO684E9WCqVceVl57b0XglWh6QWSRAE2wo1gARbD1gKNychZcFL3i0Ki67HTYpFaaWJPHESiSkmtSb5kXneJxc3ABaxGKZYBADOa1fu3IaugKZoSHUJgumWFCdjMeWoLaIUi5IkNRSLMbbfnXZfH611hRUBU9+eQmWxgu6+brz+Pa8PJRUBYOGXCyjeWgRFUWtq7euHY0EsrhSDJ3lnshn0D/cHKxYXiujp93cX6unviWWFav2eedrfLSwusSgJEti0+7gQ6gLSjklO41vGsbK8YpPemQD3lPnpeXzwNR/EZ97zGZz/nPPxnZu+g4uef5FrmXqt3nLGYjqXhlBvbfLAoX2HMDsxiwuec0H0wm2gJJZwpHwEz9343HXZfoIECdpDy4pFgNh+fOpTn1rrsSRIsKaoiCrgsEvqz6dc9px1WQMfotwDgFKtUZgv1mSXNWoQLBWkqjU3lfbNtVaAea1QyyZZ2mvWHJZiMSpjsebp9jmzJb2wFIuWQiOTL4BPNYocRTetUM1NSAIpOHTzZsSgaLA01aTGtPZ9RVSxIijYcaDR5KTMPMebP/tmyJKE8uIsgE2hnwkA+h1WqAxNQdX0lmdHGYaB+ZlJDI4Qy6JwK9RoxaITqmagLKrYNsiBD9nnYSiHEIscx2F4bCMmD/oTi8uLCzjxtDMAEAvOf79xHz525cnoyfHo7htAMUbGIkCUg7aalqKwVFEwYvbpBkbG4ikWJRE03ziOLAIvnWkUuWObjiPWrvOz6BskDeQ0x9jzBlRFwQ+//TX899c+j6Hxjfj3/74OJ53enG1jbT+bzUM1lQ0L+S2QRRUfeP4JNvlvIWdOOOByHRBbJBZ33XIDhsY2YMPWbZHLLlUlTJVEPPekQVfea4L2kNQiT0FU5oDPbwPecR/Qs6VB/Mz759occ4grhOhredatedKiOaLya6WxGJHD0zb2OhSKF78fyPUCh26LtapthWoRi5kuoDLrUjBSFIXQuVeaCtAMbrt/P8Y7KZwywITOrjJUEYIKF1HY192BI87LFsu7SN+yBLfNpVRpLGchZxKLy+Z1U2hcY3OmPfXF1/wBy2UVb5mrINrgmuDzOyQ8NKfjPTRLiNo2rFAPT83521hSFCHH6qRuOhZWqFGKxe0bh5vtQ03MLhQxMuC/J1tSLJoEuGw0/x43jgxgz4GASU59xwMbzgcKQxBEyZXDWTWbZrmMW7Go6zr2H5nBSceZCswzXgfUZgEuC03T8B//fR0+9MXvYqivGzd951N49nmn+751tS6g0KJisZDLEMWiRZp3RVtq/urm3ejr7sA5p0bXIgnWFkkt8qeJRxYfweOlxwPt+CxV3NFULIahiVisL4ICZU/eVHXVHjMAlOUyUkzKRYx6FYvSGli1d/BEQT4/MQ/439LZsKxQKwq5Hnk/k0aRfgef4gMzFnVDB03ReOT2R5AeSyM9mvbNy7O3qWrQVM2lQBwYGcDBIwcD15EEqSXFYm+m1/U4bdpn//yDP8fK3AqWJpaA00M3YaNyP9k3DM20nbE4OzmLIYf1fBCOScZixCSn8S3jgcTi8sIyuvv9Jzn19PfgiUefiHx/6/fM0iyq3VUYJ7qPs8HRQZfKMAiSKCGXavQjFFmBIisuxeIG0wFiYv8ETj7z5CbFomEY+NUPfoWv/8vXkc1n8alvfyow19CZ3xgX2VwWqqJCkZVQst6JnTftRDqTxukBNdFqsWtmFyhQePHWF6/L9hMkSNAe2up033bbbXjVq16FCy64AFNTpKH8/e9/H7fffvuaDi5BgtWgJqtQ9cbFvjvH26o5AKhLaqhyD3ArFpdrsiursB3sma2gJxefUAiyQh3MkudyHPlLc+Ezmb2EKBtCckmSOTPJbG72D7sbGjaxaCsWTWLRtCPTQSPNMWBoCv981evx9c98DIDDClVSccveeWiO72b54CMAAC6dw9Crv4D+8Ya9WhicxCLL0NB0I5ZdrRO7b7sJr3vBhajXSHEcRjWH5R36QVY1VCUVXVkudJ8HgWFYlEvhs+fGN23FxCH/Qri4tIAeU7E4WayjJms4YFra9vT1RyoWV4pkNitRLDaOw4VaQ90yMDSKuZkYikVBAMM3ClqLWMxkG8Ti+GbyvU84iNI0S8MAcHDvI3jH37wQ3/2Pz+Blr/l7fP3HNwSSigCgaxpS2Rw0U0Er8N24+Pg+XH7iIGiP5XCWJzd8TCZvHwdxYBgGdt56I8675LmxCO0Hp1ZAU8BzfMaQoHUktchTEI9fT/7u/P+O7TjiQiyaCsIWz98Le8lfoQjAABWhCHSBWadJB4/8rPHvznGigosJyZuxmOkGagtN+Y9ei0oXdNUmAe1SjAq54qoyRLWhWOzt6mg+zzK8axsVyXBlMkIi5/NPfP8WvOHD/06eY1NAqgAUiT0UxJK9+L5JQtxRMLDrjTmcdVx8y+qv363gjglzPxlay1aod9z7CLY89w2YDZox77BDjco7XGt0d+YjFYvbNw4FEouhisW+nkhicWJ2CY8enG5kLPoqFgeCFYtcFjj/7UD35ibFYtWsZ5w5iNs3E0Nj1+dhGKBjFHsOTeHiV70f7/7Xa/Gmv7oCD/7iq4GkIgBTDdlqxmIagiiRujrVAeSjMxOvu2U3XnDx2WAiJkwmWHsktcifJl7x61fgo3d8NHK5o6lYDIOXBFyWll0KKG9uXEWuuIgMhmIgaA31UobNQDVUqMbqeiNd6S4AwNyRaJWXLJK+jEXuePetBg2GYRBSL6Ad4CRQKZbUFGGKQsl0WHAqFsNIFk3VoCqqa3krX/GrH/8q/unv/6mxbfM76c+4a43ZCeLqJNUkbPnIFmx65qbA9wsCTbWXsXhgzwG88oJXYjLgeu5EFMm31ih0FkKtUAFgfOu4K5fQieJiiGJxIFqxuDC5gMlJsl84hkN1qArmTPc1d2B0AHNTc5H9KFEQwWQa61pZhk5icdSsRSyiNMM0Xps5MoP3vPI9+MLVX8BlL7oM377x24GkIgDomt5WxiKAllSLd954J8686EwXsb6WeGDhAZzUexIGcv6OXAkSJDg2aLnT/ZOf/ARXXHEFMpkM7r33XkgSuSCurKwks/USPKlQlzU4reV7crxLqefNWPRD0WGnqukGJpdbzxJw4tHpMgYK4SSgE6oi+6oLs2Yh3JU2lVap8EKh2qRYDLFCNRWLhlkE9w2PuV5XNLK+TSyaNiKaSckZFG1bZ95x42/wk+/9JwBCTpGxqPjdw7MY786AMnQoxRk88H+fBwCc9/Yvgu2I38jrSLPQZTJejqZcRHJcTB06AEWRUTGzDBkENwMrLVqh1mUNmm6gNx//O3eCYdlIMnNs81ZMHTrQ9Lyu6ygtL6LLzFgsm5mfZdNGprtvAKWlcMWibH63PEu7iLCy43cxODKGhZnJ0ALaMAxIomArUwHYmZpOK9ThsY1gWBaTDqI0xdKYPfwE3v2qF0BRZHz5//0Gb3jXh10q2iDwWXfmz5su2uIioy1YikU6lYMo1GNnUhzY+ygWZqdwXmwb1BI29GSxuT9+Qz+BP5JaJMFRgbgCsBmg1YkAFlllkV5KxIQF5/nTO3NeX13TDgBQXwYO/rHt1SVFJeOyxpLtI+o5rUVi0VQo2jb0IRmLlC5DUBqKRZKv6AGTstWkBsVC0T2KRVMR+4ObH8a3fnJ94/lsH1CeIUSpSJwIZio6PvCN3wEAfvWeC3BcT3suA6Do1jI1Tew7OAVd1zG/HOCM4CAWj7YVam9XB5YjlAnbNw5h36EgK9QiBgOJxW7MRRCLK7U6FooVQCX1nupznG0cHcDMwrLbvtQJmihk66JEcjhN1ASLWGzU0YN93ejIZ13Eoqpq+My1P8LpL3k7FpZX8Mf//jd86cNvQT5Go65lK1Rzm2LfM4Cxs0m+YwgOTs7ikccPJzaoxwBJLZIgClHEYruqslbhVfctC8vIOuydVcNthVqRK0gzjXstjuYgqo1JUinTYny1ikwrX5CKmOwNOKxQgwgzinxOPhVMamiGBsaszWizNxGmKPQSi0GKN+/yLitUc/s//q8f47bfNpwiliVCZA1m3ZNHvvLxrwAAnv+x5yM91l50BoP2FIsWoRgnb/BoKxY7ujsg1AQoQdd5EMXi1OEpaFrzMVJcLKI7oBbp7u9GcbEY2s+orlRRE8jEaMsKlcq5j9vB0UGIghhJukqiBJZvHHeiWYs4yb9MNoOBkQGbKLWI/vJyGa9/7usxfXgan/3vz+K9//Ze5DuiewvZFmsRayxxcxZXllfw6L2P4vznBBOcq8FSfQkT1Qk8b1O8vkuCBAmOHlq+a/7kJz+Jr3/967j22mvBcY3ZOhdeeCHuvffeNR1cgqcWLGWd1ga5EwW9DUupuqxCcxRUfXl3kSnImk2w9eX5JqczmnITKABstVe72DdXQW8+/gweTXVboXqR5c2COJ0LXAZoViyGEYuyZBGLpNjxEosGAJZuZO5ZRKTu2IGWYtEJSy1aqsu4dd8CtvRlYBgGuO5hnP5qMnuPjsiK9IKiKCxf/1XU9twGlqahaq0X0IvzMwCAetVULAZYoeYKHaiutGaFamVbDhTam7VFMyzKpfAid3zTcZidOgJZdt8wlkvL0DUN3SaxaGWOWmPq6QvPWBTqNft3xzM0GMpJLDaOp4HhUYiCEKqsVBQZuq67iMWGYrFx7LIch8HhMcxONrK7liefwNyhffir1/8jvvrD32P7KacHvo8XnINY7JOmcPqGLt/lLMUizZOC27L3jcLOW29AJpvDM846L3JZSdGwd7aCU0Y70duCajmBP5JaJMFRgbgCsGkALRKLsnkTblqKU4EZkuZ2nUoCb4NrLWzU9v62LbLLgqxqxMXAJhZ7AaUO2qH2AwDVx6ISACFODc0mWu0IZodKwHudozQFgtpQIPoTi41zqWb+22lzaVmhViTPNTQ/CNTmAaUOvbYM3TAwXKDxtav+HACQ41ehKKdZolZssaE3NU/UkuWgBk6WzLLPpPijboXa05mHIEoQRClwme0bh7FYLGPZY5kqyQqKK1UM9nb5rjfU343FYhmKN5/UhK7rUM3cMGgSQLMwfG5fN46Y7gyzi02vOVEXPIpFcya+U1VIURSO2zCCg5MNBc1Hv/Q9fOiL38U/vurPcf/Pv4JnnXly6Ps40aoVqjWWYu8ZwDP/jqgWQ/DrW+4Cx7F43rPOaOl9EqweSS2SIApRxKKsx7vGt+rIA7izCL3vU5SKyLIOYlFXbWUdQIjFlCPblaVZV8aiRXI4ycZ20JMm1za2KzqhKSpj0RpPGLHoq1h01F2S5zrnJRa9+Yq0Qfsu71RsebMqLRRFMqlmMDcIwzDsia3v/vS7yXqZ9q3xaYpui1hcNK+htWp4NEiuI3fUMxYLXeS+vhJizT6+dRyKpGB+yt3jMAwDy/PLgcRiT38PVEUN/UyqrMKgye/Q+k6pDOUi14dGSa0656gf/CAJEuhU49gRauS35VQsAsDoplHMTJBeFcdwoHQKyzPLuOKvrsC3bvgWzro4wj/YgVYzFq2xWGOLwq6bd0HXdZx3WXRfpB3snN0JhmLw51v/fF22nyBBgvbRMrG4d+9eXHzxxU3Pd3Z2olQqrcWYEqwTnphf34t/PkWKMlFZfVC0l0j0yyuMgiDrcE5WGiy4Z3zVZRUsTeNrf3MG3nbpcbZVp4UUy9gqLwsHl+LN2PEdj6JhriyhrwVSQZHlUAtNi3RkItRbddn9nTjzD73qLNmcbaubpwevFSrgVixaRKTqKKxTzkw+e6wke/GeIyVUyyu486vvRfmunwMAereRomj/HmKJKlTjH6tafQW6VAPLEMViq0fKwqxJLJoWmCmK7A8G7n1W6OhEpcWMxZpJ4g11uIvEQgdpEi3NhmcTMiwLVVVsEs4PY5u3Qtd1zBw55Hq+aKoRLStUy9bXytvs7huAKNQh1Py3vbzQKMiJYrHxWllU7AkEAyOEeJ6bDrZMsYg6ytEEtjMWs568w44O1Bx2pPyjv8FwdR9e84/vA8+3pvxk0o3ZexlDtglEL6xzl0Ushu1vJ3becj3OuvDSWON6dKYMVTdw2faBpnNNgtaR1CIJjgrEMsClXTl+sWARiRaxqHjOKdZ1N1UgijvZQRR5icU1yDDCoz8DeuNZjPtBki3FonldNEkuruK2m1KNgP1kEZKWFap1CnSoM6vOxoWhgYIOQQFSpuXYFr+8H0fTU6PMXGin/ZK5XyuypzJIdwBKHbXSEl521afwz7eQfXz5GWQf3fMIUc1PLrR2zQdgZlFqLWcsWoRYpRZELPaRPyluzRSL/T0kLPmA2bQKQm+XWbOENPO2byTfj9cOdX6pBIAQiH6wLFLnl0u+ry+VKo1dqUqE4PbhfTcMk0lUh6eDm3mapkGSFZdisWraj3mVh10dORfJe2hqHpecfQo++/43IJtpTUHSOrFIlq/WRHL+icB1N+/CJWefgo4Wm4YJVo+kFkkQBUWLIBZjTh6qyK33cZzreN+nJJZcikVN18BRDSKrqlRd1os8w7tIREvN6FVCtoreNMkX5LqjSTQrYzHM4lPUCLEYRMRqekOx6Ecseq02ZYnsN4soHN4wDKBhS5nR3Od3W7GYdigWA6xWVyRSY+SQw6ff+Wnc+PMbAQBnXEAmiRx8jOQ4Th+cDvi0waDp9qxQF2ZI/yCKTCp0FlCr1GK7/IShy5x4NHMkvBbp7CY1y0oxuDbbsMXMJfTkLNardciSHGyFaj4fpNSUJRm6psNgTGKRaRyvFkEMECtUAJibCicWRUEEzfsQi556Id+RdysGFYDP8HjnJ9/ZOlG4zlaoO27agRNOOwG9g73RC7eBBxcexDP6ntGUSZogQYJjj5aJxaGhITzxRHOe1+23344tW7asyaASrD1+eu8knvOFP+L3j8yu23tYTXtRWX2BIcirJycFj2KxkHYXrIJCFIssTWG8p/nCnGJpVMTGzUAhxeLIUg0PHCDF3c79Cy2RqLMrpBhvxQpVCbBCtWA5uTqz6/zgVSymHBawdQ+JZysQzdND39Bo8/syDWtM0SSNnNwv78nkcz7/wKP7sPCD92P6iYfBD5JzhpXPWDWJO1mMT+AOvvwaDL/2y2AZipBdLTKLS/PkN2HthxRNjhnWkxmR7+hCtUUr1Kq53wc63I2hbccfDwB47J47Q9dnzKZrmBpwfNNxAICJQ/tdzxcXyY2BpVgsOxSLhmGgp488H6RaXF5sFMTOTE0AqIgqFFMdOjBMjo/5mWCS1LLLNdhGw1f0USwCQC5XcB2TrFJBBy2DpVu+XIFOxSu4s6Z8hjZ/R/V6dNO2uLiAvQ/dh3MveW6s93hgcgU9OR7PDFBNJmgNSS3yNEQbs/F9YZGAa2EvJlUIeRUjQ9UFxU0swqtYFMwmRMpUVTuJRS9rEkAsHjhAGk4rEbPKAQD7bwb6T4heLgCSohJ1oUUQZkxisepudgUSi1ZjlbYUi5YVaqPZ5soNNL87QTVsMstXseggFlWQfe0kjaz9Wm3q21KYWlFx0fNfjBt2PYKzRxhzXXKNskiu5Uob9vcUTdSZLRYjU3MRikVzn2fTPMrVuq/NV6s46bgNGB3sxe9uuyd0uV5TJRCWs3j8BmLl5iUWrfzEwd5wYnF2wd8OdcaZeaSKJhnd/HscN4nFI9PBFu+Cmc/lJhYtxaK7ju7IZ1H2kLxxspT94N12FCwiMpBkdqBSreOW3Q/iRZee09bYEqwOSS2SIAqRisWYxGJZbj3PruqwYfcqFktSCXmuMQFTh+4i2GpKzZXByNIsRM1BLJqKxQXzfnNxIVwtHoS+DJk048ybCwONcCWepErhGYiG1qRYdCoKvRaWVq6jaqrqLWLRIguzmvteUxKaMxmZANt31VChllW855XvwS2/uQWjm8g9ddpUrVskV3m59e+eodqzQl2cMxWLlfDastBZgGEYqJXjTcYNA9fNYfvHt+OOO+4IXa7DnOQUZjM6MDoAPsXjyP4jruet/MRIYjEgZ9F63lIsWlaoAPktWejq7QKf4kOJRcMwiGKRcxCLdX9iMZvPur4LSmvfUaNVYtGyTo2jWFRkBXfdehfOu3x91IpztTlM16YTG9QECZ6kaLlT+6Y3vQlXXXUVdu3aBYqiMD09jf/5n//Be9/7Xrz1rW9djzEmWAMcNpV2e2ZaL0y8arcg5CzForr6ZkdNUiGrjWLILxctDBxDQVB0ODbhItMAywrVnR3nRIqjUXN89o4Mh7mKhLJGCon/uWsSZ33yRnzkZw/HGtPMigiGojDYGX1Rp82cP01RQm1LLcUiy7eqWGzsi3LJ3cyRJQEAFZixCDiagnAoFj372qtYBAB58lHMfu/d4Cgdn/3edchsPA1Ag1jU27RqY7Kd4Gi6LcWibYUaQSblOzoh1GtQlfAbRCdqkgaGptCddd/gMAz5vI/eHU4sWtaw3u/Iia7ePuQKHZg86CEWTcViVy+5YVsx1bd1WYOqG+g2lYxLC/6TDSzCFSDEotMKdUVQ7N9nV08f+FQa8yGKRdEiFh03rEK9BpblwPFuBW82X0C9tjbqajqCcLdgnbssq1YxhmJx121kVuk5F18euaxuGHhgsoSThgvoa/FclsAfSS3yNMRa5QyZyuM1UfpJ5VVaoZoZLF5isW424HizqSeFXH8CPsfUNJnMYSnCoJjv6ace0FWg/6SoUQdCVjVCklrEIp8HGB5czU0s6kG3FVZjlbIyFs3nHc02PzWcoACzi6SZE5ixaI3RIOfxjJNYlKoAw8Pr0H/PwSLO+fIRLC4t444vvBZXbifX2pw5AU1dTR27SivUSlADx1SJZlNkjKU1aOZRFIXnX3Qmfnvb3aHLNRSLwfcQ2XQKG0b6m4hFKz9xKCRjEQCmA1QC0+Z+AdBQLPr8HtMpHoN93Tg8HWzxXjeVJBk/xWLWXUd35LLBJG+LaFuxWI+2GLzhzvsgKypedGmSr3gskNQiRwef3vVp/HGi/ZzgY4m1skItS83nX0mTsGdpT+A6TmJR0RSXiq8sl5Hn867lm4hFrnHu4mjOZYVq2agWy+QcPzvZ3uT1HBce5+IFTYUr8SzFYlBDwJmx6EssehSLlgLRIpa8Vqhe2NapDsvtICtUcUrE/mv2Y/rwNP79//4dJ59BLLZZlgXDMtBW4QK2WivUKDLJyvRbCzvU/Sv7wW3k8OCjD4Za/nZ0m8RiMbgWoWkaY5vHmhSLRXPyUiCxOECeX5pb8n3det62QnUoFp3EIkVRGBwdDCUWFVkhETFso5YJskLN5rMuxSKltk8stpuxGEex+NBdD6FWqeGC51zQ1tiisHt2N1iKxZVbrlyX7SdIkGB1iDYz9+CDH/wgdF3H5Zdfjnq9josvvhipVArvfe978Y//+I/rMcYETxHkzE7RWlihAg2FXztIsQxqsgrNYc+Q4jzEoqKFqgFTLIO61PgsnRkOi5VGw+5FJ/ZgSQJ2HDBnk3lsU71YqskY6kjbtothoKFDBwNVCVdq0RTA0BR004rR+xkteL8TpxVqZaUIYJP9WBJFUA5lWSpDipC62ij0OKaxvmVz6SQW+QBicfqP/wuubwPe8ImvYdu2bcCO3QAAzcxlWs0MfFux2AIMw8DinKVYDCcWCx3EfqNaWUFXT1+s7VclFTmeCbS+PPz4wyiXltHR5V/kMiw5ViorpcD3oCgK45u2YuKQe8Z0cXEBmWzOVgRWTfVtTVKhagb6h8iNkfX5vSBWqGQZnqVcBHyprkBSNQAcKIrCwPBoqGJRFq3cTg4mZw6hXmtSKwJANp/H3FQwSdkKKC4NIPo8kmLNzFBT/RLHCnXXLTfihFPPsBWhYTiyVEdFVHHull50pINn0SaIj6QWeRpC11xEU9uwmlSrtOcCQMg6Nm1n9cWGRSRaGSxeK9SaRSyaY5VbJxabMPuwe9tO9GwFuprdB+JC1w3oFAPa6tRRFJDtBSe41WFaELGoeaxQrcWCFIsmBNVAp/lvX9UX5yQWLdVhqnHWl6smMezGF3+7D2OdLH7xh99i6NFrAfMymDadNxRVQxtzLwnatEKNViwSAs5SVRbLVfR2h2fvxcGfXXQW/uvH1+Pw1Bw2jg76LmMpFpdL4XXS9k1j2HvIXQvMLZVAUZRtu+rFYF8XGIbG1Ly/2mVmfhn2qFSR7N+AvtrGkX4cmQlTLJLfkitjsSaApmmkPZlcHfljSSySY7Yao5n3q1t248St49hqqmgSHF0ktcjRwQ/2/AA/2PMDPPSah471UFpGlBVqXJTkUtNzb7vxbdg1uytwv1TN2oKlWKiG2rAtpQhxWOAKruWdxKKgCq4MRo7mIDnqESt/UadXNymsVSU4BSqUWJQ0CXyKhwD/86dmaKDN3grF+FihlvyJRQsW8RM0bj/FIuuxuFdkBRzPYfmmZdBpGl/74dcwNDaEKcf1M51NQ2lhMrMXNGgY5n+twM5YjKFYBNaGWFwWSS9tZWkFB/cexJYT/NXe1nuGKRYBYHzLOCb2e4hFc5JTUMZiJptBviNvf34vlsxJTpYVKu+Id1mR3dasg6ODTRmPTlgqWIpzEIsBisVcIefKu1wVsdimdapQja5Fdty0A32DfTju5OPaGlsUHlx4EKcPnI6udNe6bD9BggSrQ8t3zRRF4cMf/jCWl5fx8MMPY+fOnVhYWMAnPvGJ9RhfgqcQLNVPqzamSzX/mXqTpfZv6FMsDcMASkKj2OUdJKJuGFA0AzwbfHFOsTQEpUEWdmY411g70yze8KwteMnphHyxrCHD0F9IIc1GN04psyGlKTLYEMUiQNSZTEgGi6YbLntahqbAORWLHtJKlkSw6ebCY7LaKEydY5JsxWLjda8V6uwUsaPou/J9GPzrT+Ckze7ZflqrahAfsLZiMX4BXVkpQpHJDYBQi1IsdgFo2LXGQVVUkUux4Fn/U62hG7jnzuAZuLRthRqsWASA0U1bMdlkhTpvk16KpkNQdGQ4GjWZ2Jhmc3lk8wUszvnnNiwtNGbaOX870InisVhr3OwMjIyFZixaikVLmQoQ8s6brwgA2VwBtRYyNkPBxlMHUhSFDM9AN2/8oohFWZZwz523tGCDWkKKpXHJ8dEkZIJ4SGqRpyHWTLFonleU9icnueCYsY+YlmXNVqie64ulWLSsUEMVizE/R8XKpvG5BvafAKT9mylxoXvnIub6wUnLnmUC6htL6WgSx7YTg2MWvy+xqKCJ8HHB0fSUdHKdcmUsSlXXdeCJw6Rp9403nIlb3jqGocEBQCjZr9M0jWwmZRKLbYJmWrZClWXFVp4GKhZNYjFj1tprlbN4+fmng2HoUDvUjnwWNE2HKhYBYNumUV8r1N6uAtiA2pdhGIwM9NoZk17MOC1SFaHxm/LBhuGBWIpFb8ZiPptuahIfW2IxnmJR13X8+ta7EhvUY4ikFkkQhSjFYlxYeYnOvL6ZWngmXd10MrBsS+sqeUxlKBgw0MG7J6dYBJiqq1B0xUUseq1Qrdc0Zm0mlMcFTdGhuX52xmLANVjTNTCeWsVpVVrxuCdYxCLvqUWsfeUlDcMUi5ZF66F9hwAAQ68cwpYPb8GQT4Z0Op1elWKRMidtt6JaNAzDJtbqEVbcFslXXVl9LWJlFPIpHrtu3hW4HM3QyHfkQxWLADC2pVmxuLywDI7nkO/MB6wF9A/3Y2HWf3KSTSz6WKF61cQDowOhikVRIL8jP8Wi87gBTMVixaFYXIUVaquKRT7Fg6bpSPWqYRjYceMOnHf5eW1bxodhpjqD2fosrth0xZpvO0GCBGuDlonF17/+9ahUKuB5HieddBLOOecc5PN51Go1vP71r1+PMSZ4iiCXIkWZsEaKxenSKhSL5nT4RYE0s2hVcF3oLBtHPkSxmE+xEORGMdaZ4SCpzcVZKgZRaKE3zyPNR//sLCtUXQ80FnO9P80HEyje74NjKDjFhBUPaSWJIlJZ9wxGL5z7TRLr4NNZN7HIuBWL73jlCyHUaqBTWVAMh3zK3RhSNAMMuzolF9dGxqJTrRdFZlmKxUoLxGJFUlFIs4HH2eim43DXbTcFrk/TDFiWC81YBEAUiz5WqJbdqZWvON6TRVVU7e+qf3AYC7P+xKIzY5F3HOOM2SBfqjVmcBLFYjCxaKlancSiWK8jk20ucNfSCtVgQhrS3vflWBhmwzKKWHzwrh0Q6jWcf2k8n//7J0o4fjCP4a7WmosJgpHUIk9DhMxAbwmWFarSRj6eH9h0gxjTw50JbFhEIU3y4CjVMxZLVciZY5VDznnedYNQ9j+XAwD6TwTY+OdDP2iU5zqWHwSnuK+HBhVELLqtUG043A98rVBVA5lUyAQRx6QqwZzF7cpYtK1sCc582VVYKpaRTbHIWLJJwV0DZdOp0KZlJNqwQnXmCAaSWWwKn9uhYFYjBGNxDZp5ANDVkccFzzwx1A6Vpmj0dOZ9v6N33b8Vb7+9B0h3YvvmMTxxeNrlPjG3WAq0QbUwNtiHiZkgYtGTsUj7ZywCwMaRARwJIxYFP2JR8FXDri2x2FozL5tJgaKoSMXiXQ/tw/xSCVdeltigHisktUiCKKhx64YIWOrDVMxJkwBQU8n9jEV+WUQjnSXXv46UP7FoEZBZzq1YFB0TnVJMChSoVSsWW0WUYlHRlEgrVNrjBsVRwVaolrrMqUAMg2i69DiXt4jFdIbUI29/6duxMLMAmqMDsyXT2TQUuX1S2tDMSeotxMzUyjWb9KpHXP8sgm4tFIuWlei2U7dh9y27Q5ft6O6IJBbHt4xjcXbRRYgVF4vo7usOJb76h/sxH1BDWHmXFiftVCxWPDX84Ohg4HYAhwrWwUkLNQHpbLrp2MzliWLRsohdjWIxk2+tD0FRFDL5TKQV6sSBCUwdmlo3G9RdM7vA0RxesPkF67L9BAkSrB4tE4vf/e53IQjNJxdBEPC9731vTQaVAPjnXz6CQ4urz085msiaFlLtEIu6j4XlVLH5OHvrf9+DTR/8tWnDGAxLFViV/ItdiyBkQ4jFQpp1fZbOTPvEl/V+fXk+1NrUgkUsUiwHGuGflWdo0CGKxbrkvqHxqgnLKx5iURLB51ohFpuJyBRLuxRvb3n/x5HJNdRpusciTNF0pDOrI11YhoLaYjPQyldMZzIQIjIWC52kMVYNsSX1oiaaxGKAYvGEMy/AXXfcHNzEpICOru5IxeLY5q2orBRdBOTy4oKtWLRserf251GTNdsat29wBAtz/rNdiRUqgXP8tFk8F+sN5c7g8Fg4sSiSmxOnTV6QFWouV4i0pY0LjWKjFzKR4RkY5vJR6tVdt96A/qFRbN52YuR2i3UZE0UBp491oSe3usZ+ggaSWuRpiDYzdptgWaHGVfpFbq+Na5PT+pTlQcmeBk3dzHCxrsXeDEYn4lqhVkKUC93jsTZRrlRRE/zfTzM817HCECgPeaYHnXMtKzjv61S4YlEFE5iDDaBBzAIQNAo0TYPjHO8hVbAkNsb9iav+rtk+VHSTo7lMeGa1E359Sx10y1aolg1qNpMKViwC+PDNCuSebQCAYnmNlP0gdqg37XgAckgTs7erw1exOCFksV/uBdgUtm8eg6yoLtXg7OIyBiOIxfHhPkzOrZ5Y3DBMrFCDaqq6nxWqqVj0oiOfRblWD817iot8Lv4xBRDlbC6TDj0WAGKD2t2Zx/mnR9ciCdYHSS2SIAprplhUyDk/zcQ/n1hEokVs1Ty27J0pt0W1tZyVpZjnGuounuEbVqogpAPP8NDoo6xYRHjGomWFGgRnxqIFZ15ekBUqn453D+dHRHI0h1qlBkki23rFW16B/uFwF5tUJgUtpnuC73XKvAyG7SsvLLVeOpOOJBZzhRwoiloTYtEi5k4880Q7qy8IHd0d0VaoW0nNO+lwUFieXw60QbXQP9yPhQA79SVn3jPcuZnOLFMAGBgZQHGx2GSja8Eib53CWaEuNNmgAkC2kIWu6fa2VqNY9OY3xl0nSrG448Yd4FM8nnnhM9sdWigeWnwIZw6e2TQRIkGCBE8exCYWy+UyVlZWYBgGKpUKyuWy/X+xWMRvfvMbDAwMrOdY/6TwnTsP4e/+K9gK4MkIi2xqh1iUfWxEJ4vNBc1vHyYKs0enwwuKlEmEVGX/5oKlWEwFED4AIUrFNSIWLQwUYlozWgUizYKKaLbyLA06RIlQ81jT8oybWKx4iEVZFMFngm0iAIB1WDdIotBERJan9uMfX/Fn9uPTzr3Q9bq3/pU1HSkf+1UvJNNSs+qj4OMYGrreWpLA4twsKIrCyIYtkWRWvrN1xWJNVtGR5gKJxZPPvBClpUU88VhwZkhHV3cT+evF+CbiZ+9ULRLFIrlpWTEVi8cP5F2P+4dHsBikWHQQwykHkUyrEtIsjRWhQVgPjoyhtLxkfz9eWM/rMYjFbD4fSezFAcenoLTAM2d5BqpuIJVOQ6gH30wZhoGdt1yP8y59biy7jwcnV0ABeN5Jg765owlaQ1KLPI2xZlao5rVkrYhFvvk8FQknkcikmlWHNU/jIswKNa7y0qtYdJ5uYtqgfv///RB7D/vn7qpem9N8cx6fQQcQi5Ziw3vOdNiPLfnNQA/aHsyJI45mYE0hNqjO8/LeQ9M49wv77F3xvAvPaN6Ql1j0IZm8sJp4pWrzMaYaaFmxOGU2rE7YPI5ylP1YvgCGodfMChUA/uzis1CtC7j93kcCl+ntKvgqFp3YvpnkeDrtUOMqFoOtUB31nmWFGpSxODoASVawsOxfp7WqWFRVDdIqFCMWWlUsAoSMjFIsXnfzbrzg4rMDbWYTrB+SWiRBXKyVYtEiX2iv8j8ElvLQJgw99UQX3+V6bC1nrZfjGvUPT7uJRWv5o65YNKhQe89IYlHXmvahkyTyIxYpigLPxyMWLdLISSzWF+p4+0vfbisQz312tMq8FRLIzzJVN3tdrRCLi+YEn/Gt45HEIkVTyHfk18QKtSyTfX7SmSdBUzXce8e9gct2dndGKhY3bNkAAC471OJiET39PaHrhVmh2opFEDtiZ63pJewta9sg1aKVw2nlNQJEsej3nefy5DdofR+5+Ry0Pe2R+a1mLAIkZzHKFnfHTTtw5rPOtBW5a4nJyiTmhXk8f9Pz13zbCRIkWDvErky6urrQ09MDiqKwbds2dHd32//39fXh9a9/Pd72tret51j/5KD6qPiOBfzsP8MgBpB5YfDLJ5zwUSxaCNo1lhIuxZGb7FoAs2ARmVyIYjHD0a7PzrM0cvzqbt4HCvEuuE7FYpQ9XIqlQYfYiNZl9w0Nx9AuK1RvxqIkCeAiiMUmxWLOPYOIoXQMjW6wH3utJZsUi6oBPh1dQFsEm6Y1N3poqvXfzOLcNLp7+9HR2YV6BJmVzmTBsGwTERuGmqyhK8sHHmebTz4N2Vwed91+c+A2Cl3dqESoJEc3bgZFUZg49IT9nDNjsSyS/XXcoEUsktmUYVaoSy7ForOLZ2CgI42yqNjf48AwaSbOz0zBD6I5m1t1fD2BGYv5AhRFhizHVOkEIJvLtTTJIcczkDUD6Uwu1Ar18P69mJ2awHmXxsxXnChhrCeDLQPhv6kE8ZDUIk9jrBWxyK2xFSrXDrHouJ6wKVBekrPqaTaEWqG2qVi0GmcdI6u2QQUA1atYzDc3zQOtUK1rtoNIBM0CDgeHZb/mFB1c22gU59peTabcNqgAdKmGwY4U+nvJxKCq36xrD7Ho3YYfVszZ9JqPMk7TKfNYjl+PTM4uIpNOYXy4L1KlRlFAVyGP5dLaEYunnbAFQ/3doTmLvV0dvqpSJ8aH+5FJp7D3YKMWmF0sYrC3K3S9saE+TMwu+qouXBmLqhRphQogMGfRUixmmohFH8WiSQau1g6V41ik+NYnJuazmdCMxYmZBTyw50CSr3iMkNQiCeJirRSLVW9WcwxYikXb4lRrnM8YinFZnTqXsyxPncQix3BNxCLP8IETPdYLFKhQe09Jk8DxXKDaXDd0l2KRAhWZscinmj+nlTGZN/JNy7McC8Yx4YOlWOQKOWw5YQsABCrANEMD30/qtTgkjWU7vmaKRVOtF4dYBEjOYpR6MAqGYdikee9gL8a3jofaoXZ0RSsW8515dPd1Y2J/g1hcXlhGd3+0YrG4UIQsNeepOxWL3lxNL7E4OEom3s1N+ucs2opFR1kdplgEGsRi51InEFyqhaItYjFCsVgpVfDQXQ/hvMvPa29QEdg1swspJpUQiwkSPMkR2yfu5ptvhmEYePazn42f/OQn6OlpzPjgeR4bN27EyMjIugwywbGFn00pAMyVRUyVBJyxwX2RtlR+hmHglw9M48Wnj0a+h+xDXk6XWm8KLlRIwduVJTfxQYpFy0o1lFj0IRH78inUlttvMlh2sVGwiUWGi7SH41kaVEiWXN2rWGRp1ywrb8aiLIrgMrlQA1ZL6fnL//dtLC3Mgc/moRsG6o/9EdltF2DT9lPw6u/+DC86czNkSYQYkVlnKRaj5nSGEWy0oUNrQ7HYOziETC4fmetHURQKHZ2otqBY1HQDvfng74ZhWDzz/Itx121/wN/+/Tt9l+no7I7MWEylMxgYHsWkqVjUNA0rxSX0ODIWszyDkU5SsFrWqH2DIyguLUCRZXCOmZiyLKGyUoSlQ+U9s+GHO9MoCQoUTUeKZTAwMgYAmJuexPjm45rGJ0siGJaF82cu1mt2BqQTWVP9Wq9WwPfEzxHxIpPLt0YspljUKhLS2XBicefNNyCdyeD0cy4MXMaCrOp4bLaM5544iL58+58lQQNJLfI0xloRi1aDaE0Ui5S/YvHn/wDc/z/A1VNAymfSgOKoE9hUMznYimIx7ufwbtNCENnXIlTD01XL+ahxmAACxVZsOIlFBs5OnZ/NZuD2YBKL5mfbo2/CndMGMqZV2W/2KdiySceJvQZuv/psnPAvj2F+aaWZqDEMQHJf++NYoS6VKugKeE0xgIyuNY5nTQGWDwKLe4GFPcD8HmDhMWBpv63InJpbwuhgLzryWRwMaEQ50dOZX1PFIkVReP6zzsRv/3g3/u19bwh4zwIeP+w/ecgCTdM4fuOIW7G4VMJQRDNvbKgPgiihuFJFT1fDAcMwDFOxaB4HNrHo36jfMNwgFs85dXvT64Lop1gUkfdp5nXkG8TiQAQxGoZCG9ZjAJDPhisWf3XLbjAMjedfdGa7Q0uwCiS1SIK4WCvFope8iAOLILSsPp2KxSyXbXJesZR71t10gW+cj3mGh6zJvssfTVBGeMairMnRVqgOItH5b8A/Y9EvX7E71Y3Hr34cL//Ey+3nbvjpDZjYP4GUabddeaSCQkcBfSf34T9++h9439++DwACM+smmUkc9y/HQdZkso2IpkaYWlA3J9G3khm9OLuIrt4udHZ34tDeQ5HLF7oKq7ZCrSk1F/l+ziXn4Lbf3QbDMHydgQpdBTz+yOOR2x3fMo4jB47Yj+MqFgFgaW4JwxuGXa8tzS+hy6z8vMeM97fZN9QHiqIwN+Vfz1m2pgYVX7EYZg8bBzRDg0/xUKTWJjpkcuEZi7tv3Q1d03H+c85f1fiC8NDiQzhr8Czk2nGPSZAgwVFDbGLxkksuAQAcPHgQGzZsiGUBl+Dpje/vOIz/3nUYt773MnRmG4WlqGrQdAM/unsCH/zpQ6jLGl55zoaQLQGK5q6cDMPAbLnRAIpLFs2skAtfmmWQYmkIiv+aFpGZCbEPSnPNr/UXUji8CmIxzcUTCVPmJ6YYFtDCb0h4lgbFBRf2NU/GIkdTYCIyFtl0tolYlBxPpFkG5VIR//HJq5HNFzB66oWY+f1XUH3g9+h7ydVIXXo8CXzOZiFLYqQaEABYT06jHwix6F9YUIYO3QAM3QBiWk4uzs+gb2AY2XwhNCPQQr6jC5VyKda2LUTZ357zrGfjS9e8H5WVEgqdXU2vF7q6cWjfY5HvM7bpOEweIsRiubQMXdddVqi5FIvBjhQoNI6J/qERGIaB5cU5DI40MriKi+7Z/hnPb2GkM42J5ToU1UCKBfoGhkFRVLBiURSQSmdc1qRCvYbhbA4f/cXD+PNTR3D2ZlLs5/KkSV+vVtHV0xf5uYOQyeZcVsZRyKVYyCUBmWwu1Ip156034IzzLwGfim4+75ktQ9EMXLy93/d8kqB1JLXI0xhrlbFoYS2IRS7jT27t/S35e+g2YPufNb/utEJl06A8s/xR90wWkUJmX3vX9cNqc+Bi5EgqXsUil4bKZME6FBBUILFoNjIYx3mQYlzWqH5quMDtAVApHqBoaJqGEz/xIDryWQz39+Ddn/4GvvibOt73nBX82TYeVLrLtrpsUgMqtSZXCGf+XhCWSmVsDRqXZhBS8ZGfAQ/8L7B8oEGs8jkgPwTk+oGtzwY6xwE+R4jFgV505LKRikUA6O7Mr2nGIkDsUL/zsxsxMbOAcZ/sp96uAnY+EP2e2zeP2sSiKMlYqdQw2BuRsThE3m9ybtFFLK5UahAlGQ1iUSSENOVfF3d35pHPZnBk2p9ktxSL6ZQjG6kuoKezuf50EourQav5ihYKuUzosfCrW3bjojNPQVdH4oZwLJDUIgni4lgSi4JGziFei1OgobhzwqnEoikaKaZxPeTpZmKRp49BdryBUCvUKGLRq1j05i36WaEG5StKMxIoxwSpL3zoC2AYBnyKx7c//21M/vckhrQhcKdypC9iTmIRqv7ndgUKaJ6GoApIZ9NAxFe+Ugye7GyYNkEtWaHOLqJvqA/ZfDbS/hIgisXVWqEuCm4b9HMuOwc/+dZPcGjfIWzevrlp+Y7ujkgrVIAQi/se3gcAZq8jOmNxwJyctDCz4CIWNVVDabFkE4usJy9c0RXU5TqyZhQDx3PoHezF3HQAsWhaoTpthIVagGIx71YstotMLtPWdSqby4YqFnfctAPHn3I8+ofCM0PbweGVw1gSl/Bnm33usxIkSPCkQnyTdhN/+MMf8OMf/7jp+R/96Ef47ne/uyaDSvDUgKrrKNUVHFpyFxSiokPVdSzVSPEZR3koeQiAkqC4VIyLlXhWYItV8p4URTLT6qp/s82yOOVDiD4vmQIAgx3tq47SLI10zBwU2nAqFsNvSFIs05JikWNop/tYs2JRksCmmm82qnJjX6ZYBqJAChxRqGP6sXtRfegm9L7gXchtv9C2os3kSMMjTAFmb/P/Z++94yU366vxo67p5fa7fddl1/a644YrNphiIJCEGkh4SQJ5aYkhJAESQkmAhJCQ90dCQn3JSyghDgETmo0LhnX32l7b67J97946d/qMun5/PJJGbSTNvXfXhTmfjz/eO6ORnpE00lff85xzMvHEYpRakLIK50HsUCvzcxidmEI6nUG3HT/G7ICKRQCYzEc3lZ532QtgGAbu33Vb6PtEsRhvvzq5bgMW5gixV10iTbXiSI9YzAks0jyLQopDyyEWSdG8OOe10HPboAJBQnx9OU1+o7alMM9jZHwSC8fCyVm524WYyngsjLudNoRMHrN1CQ8c6X2/dNZSLMYoSOOQSmchqQZYKtn5kBFYqJoBIUKxWK9W8NiD9+LCKxLaoB6toZjicN7G6AeZIQbHsBZ5DmKA5kcirAWxyKe99p1J4VYsMkIIsVjx/u1WLAq+e6EmA3EzzqOIySQQC7GLqEawXlIF37WtHxFoT5ByN/B8lpb+/D7DBFguQnVAEyvUttWgaXclzC4u47P/9j385ZUiXnp6CVDaAMMjZzVrAgowKbjfkikW++9vzbZCffImoFsFTnkJcP5bgCv+DLjmo8Bl7wUu/H3g7N8Ctl0FCHnMLCxh/eSoRSbFN49K+Ryqa5Br5MYLLzkHNE33tUMdKeYjv7eNzesmcMTKS5xfIvf2JFaoAAI5i558RcClWAwHRVHYOD3W3wq1KyMlCqBdRXCrLfXNWARWTyyuJF8RiLZCbXck3Lxr99AG9RmAYS0yRBw0c42IRS05sWiTmfb/bWLRbWUaRyyKjOghIgRGCNi6chGTf44XYhWLhkKIwL6xOV5i0Z+3GFAsyuGKRT9M04TcldHtdNHtdPG1z34NY9eOYeRFIw4BaxOeUUQNAMiGnMgKNYxgYzlyDFeUsTi3hLHJMaQz6UREVraQXbVi0U8snn3h2RBEoa8dar5ErFD7Wd3amNww6Vi7thttqLIaSyzaikV/zmJ1qerZnl+xCABVxdurmVg3EWuF6lEsdvooFnOWYrG1OsVieoW1SCrT3wpV13Tcfcvdx88Gde4uiIyIazdfe1zWP8QQQ6wdBiYWP/GJT2B0NKgiGR8fx1//9V+vyaCGeHbhiXlvc0NWiWJxEFS73kJ1vrH6hmCKZyD1qeVt0jJKQRhGLE4WVmZpBJCGB51QSWdboSIBsSiyNFE29oFfscgyNGiPYrHmeV+RJbBC8Hs2XYeI5yiHWDR0HVKrjonXfRzZnVcDANI2sWhl6MVZoQIAk0qiWIwg2Cy1S1heZz8sLRBiMZXJotOKL4wHtUIFgPEYMnpschqbT97eN2cxXywFVKVhoGnaeYiqVkhBXHYpFnMiC56lMZLl0ZZ1GKaJsQli0+TPWawszJF1WueJX203XUyho+houew0xqfW9VV9ylIXQtabw9ntdMBZKlXbVhXokdHtBMcjCulMFpKqg0tILGYFFrJmQEyl+xKLd//8ZzAMAxdecU3s+kzTxINH6tgxlcN4DLk8xOAY1iLPEMjNoPpupVgrK1QbqrR6FSSbWpmVqPu+zYmAe5a/aQJd9z6jvHacviYXNDmedG3MRr+/BvBEVlvfTxW8tlJ0nGLRk7HIeL6rX7GoGrQnC88PHcQKtW2RL7puoN2R8IN/+Uu8+Wzrc0obYAVnPQGiJoSQTYsCnqiQL6tQ4dduPwnqHbcJwCTHLDMOnP5rwMnXAtNnAYV1QLpMckBd5JZthZrLpBMRWaX82lqhAkCpkMPFZ2/Hj35+b+j7I8UcluutWFs1hqadBtx8pQYAsVaok6Ml0DSNI7PeZt6xBfI7cYhAXQao/hmLAMlZPDzbP2PRn6HZL2PRJqMbCYjeKKzKCrVPM+/mO3dDVlS8/Kohsfh0Y1iLDBEHt2Lxm3u/GUqIqHq8PeEgisV+lqVdrXdNyYTkR7utTd1qRYBYofoDR9zLdI01yrWOgxFNltmKxbBwFE3XYML0kIl+xWKz3vQcI1mSExGLsiTDNE0YugG5K+Mj//IRjF5JLDEdZad164qylgQIAbxSYpGzM32t0y4qj9KPpXmiWExlU4kzFldLLC7L3mcIXuRx9iVn9yUWC6UCNFWLJWdpVy2yvES2UR6PtkJNZ9PI5DJY8E1OqsxXnHUCXgLelMk2alLN85mJdROB9diQJRkMy0B3+YP1Uyzar3Waq6tFVkwsRmQs7rlvD5r1Ji655pLVDC0Upmliz9IeXDh1IUR22EcZYohnOgYmFg8fPowtW4Ky9E2bNuHw4cMhnxjiuY69c76Qa80YSDUGAJWWdzb/fCOZQjEKaZ6FrIePQ9EMMDQFnunfMAzLWIyztVwruK1QDS36YYPn6MgZ3B1FB+siNDmGcruPBRSLsiSB4YOFTcuylWUogKVph1gEgO1X/wbEDWc4f9tZkmLKsm9IoAbkUvF2Tq1GxGx5h1hMdu4psoRGbRmj45NIZ3PodOKbdINaodIUMJKJt4l53qVX4Z47bgl92MwXy2g16tC15DNely0r05KlWGx0NeRSHHiWxmhWQEfRoOkm0tkcUukMlua9xOLy4jxYlgNFM6ANLZBFOl0k58dSs/fgOj61HvN9iEVJ6oLPeIlFqdN2jnmtozq2pRknY3F1TdNUJgNZ08HSyYlFRTMgpDJ9ifC7bvspTjn9LIyMTcSu70i1i1pXxYVbysiLiV3Hh0iIYS3yDMEn1gN/swVQ16ChtNZWqLq8+nVyqcj7ayL4rVDlRnDCkBzRmNESfI/m8ScWPeYHMplgo4rehjrF2vc733XXbpq6G3i+Zt6yv5lnUEhF2JlpFAvQNNrdHln4vDNPxosvO5+snjKJcpTlnWZQQA1oKRYNV35kJi3iC/erOOkfm5Bym0K3vRxFLNr7yTlm0RPKTNPsWaFmB7FCXVtiESB2qDft2g1VDdYbI8U8DMNAfYCcn7mEikWWZTA9XsbR+XDFIme7fWiy1043BBunIhSLkhywum11jrdicaXEYn/F4o233I2TN03jlC3rVzO0IdYAw1pkiDjYxM7uhd34q7v+Cv/4wD8Glmmq8eRMR135tYihGFCgPMRilg8+d7uJRX8z3080+l87qB1c8fgGghmdG+i2QvU/V9vqUY8Vqk99pioqJNe1V5GUvlaobrg/s3HbRlz+kstBFcj9n/VNAI8j7SRNSkYshrgI2MSirpHzLso21g/bCjWTzUBTNSiyErn8WlihVqXg5OkLr7wQD9/zcCihlS+SfkISO1Qby1YtEadYBIhqcdE3yamyQIhF1upveaxQrUNZk2uez4xPj/dVLMpdQhy7z+NuJ5xY5AUeHM+tWrGYyq6sFolSLO66aRfKY2WcsvOU1QwtFPvr+1GVq3jplpeu+bqHGGKItcfAxOL4+DgeeuihwOsPPvggRkZG1mRQQzwz8cR8E48cC6q1Diy2vM0gzYAxILG45CMWFxoSBHbg09ODDM94cgHdkDUDvM8S1A+epQPtoLHsiSEWPVaoMbMYRZaJJRZ5175kaa9isdWsQ9d7O0qRJTAh+XEtOyKJAm6/8du446c/cN7LjBBLTdM0QZkGOGt7tFWsJ7FCZcT4UOZIUs9SRGgJQ8orC6TYG52YQjqTTURkZfMFtOrJFYsZnoXAxjeln3fp1VhenMdTjz0ceM/OXWw1k2+3VllEOpuDIFq5UrKKYooFz9AYzwloKzpU3QBFURibnA5YoS4vLqA0SnIGaFPznC8AyVgEgOVO73dLFIvhGYtytwveRxx3O22w1mvLbcUhFtN2xuKqrVAzkFQDXMI4gazIQtENiOkMup3gA5+qKLjnjltw0ZUvSrS+B4/WwDM0rtw+PszeOQ4Y1iLPMNSOrH4da61Y1ORYxX8s2NTKrFA96/ARi+2l4DJKxP1HT6BYPBHEohG8jqkpL7FIs1ZT0j9e+zi4m2s+xaKuGx4SR9aBVEQzT6dYfPvHd+IrN/zUeW2sVHT+zVPWGFyNz36KRdkVOW8r2vZVTZKFGIJIxaI9uSnhubdca0JWVEuxmIKsqFCU6LqvlM+uuRUqALz40vPQaHVwx32PBN4rF6379QDbnV+qgaZpjJXjrXbXT4yGWqHms+me24cmB7I5/dg0Pd4/Y7ErB8jqfopFgefAcewaZCyurJmXy6SC1r0gDfUbb70bL7/qwlWNa4i1wbAWGSIOhuVCZCualrtBl4ckpOFqiEUKFDia8xKLXAixyEQrFv1wvzaHuRWPbyBEKBZpk4ZqqA6xaJNrNmwlp5tM9CsWAS9hJ8vxisVdN+/Cd77Ys0QujJB7HmU9hAq09/NxikXFUEjGYgxCiUWOHMNBMxZVRUV1qepkLALxBOhaWKHW5Fogs/CCKy+Aqqi4746gNXvOymEO++79UF0k5GV5LFqxCBBicclXi1QWKqBpGow1yclDRsvkHKrL3j7NxPoJLM4tenpsNqSuBF7kPTbJ3Xa4FSpAlJSrVSz2W3fs57Kpvufrrpt34aKrL/LYy68V7p67Gyk2has3Xb3m6x5iiCHWHgNfBV7/+tfj3e9+N2655Rboug5d1/Gzn/0M73nPe/C6173ueIxxiBBs/tMfYPOf/iDWX3wt8aK/vx0v+8c70PVl9s3UJEgujyxZ0wdWLC76MhTnGjKK6cF8+92ZjAAhdexhmD6KUNENCCwdIEzcoCkqYAGZO0HKI9sKlWK5WMWiwNGRjc+OonlIWo6lPN/bNE20m64CWuqC5sKLWdM0ULnly/jXv3o/Djy513mddRSOhFhkfPu1245vRLGJiMUIck0fTLG4tEAasSPjk0hnslBkCZoavq+z57wMskEjly9Gj8GHjGU/Goed512IXKGE239yY+C9fJHMrkuSs2ijWll01IqqbkBSDYxkBFAUhfG8iJakOb/R0cnpgBXq8tI8RsZsYlEH47PwHcsJoClisWpjYno9FueOhRbQiiyBT/esbnVNg6apTpanZpiYs1TKvCCCYdlE1rRRSGeykDUDXELFYoZnIGsGhFQanZDzdc/9d6PTauKiK5PlK+4+UsNJ4xlH3TnE2mJYizwHsdaKxSQWonHghMGJRX9dxqW8E4T8+YpANLGoKfH7pnEs+v01gBIyhKAVqqUS0H2kmk2yRSgWAa8dqqxTEPnwOtA0TXzmZ3N47fs+jfsffcp53a1GE2hrwGzvtYAa0FIsymZvOyvNWLQbK6oxGLE4Y82EXzcx6qjk4lSLx8MKFQDOPf0kbJwew3d+ckfgvRFLJZAkZ9HGfKWK0VIeTIzKECA5i0f8xOLCMqbcjUBdBhg2cvLixulxLNeboTaiXTm5YpGiKOQTWtNGYeVWqKnQ8+CBR/dhdnF5mK/4DMGwFnl24InlJ7Dz/+6ErK3eEel4oOWrAcJIRDcpmASSL2eapVlPxmKez/s/Ao5auWKxCXL/pmJU+qtGBLHIUixUQw2o9myEKhZDapGma/KQLMkOURmGX/70l/jQWz+ER3c/6rzmEJHWrvCTsnGEnazLEFLxk9lDrVAF8t0HzVi0VXmDEIu5Qg7tZjvWIj0KTbmJkuhVEq7bvA5bTt2C2/7ntsDyhRIhbQdRLFaXquAEzskrjMLY1FjAwnR5YRnFkaJzPP1EaJ7Po6F4xzMxPQFN1Ry1pBuyJEMURc+x6adYBIBMNpPImjYK9jEdFP2sUGcOzuDwU4dx8dUXr2pcYTBNE49VHsNFUxeFXneGGGKIZx4GJhY/9rGP4cILL8TVV1+NVCqFVCqFF73oRXjBC14wzBJ4GnCsHm6TY5pmgGhbK/jVhfNNCW2l10CRNWPgjEX/OufqXRRSgxGL/lzGjNArFE2fok/ViKouilgEgnaoJ0p55Fih0ixMLdqGQmQZmBGNz5asecgthqbhj3p0Z/gpsgSa897E27IGQ+li8b/+Gst3fRe//Ud/gWte/hvO+zQvOuukYQSIqESKRSG+4Gk1+pNrptW41RJmLNoqPVuxCCCUUFJ1AyMv+gM8UmeRLRTQGsAKNSckIxZZjsOl17wUt//oezBN09mXBqgVEYvLS4suG1SyX+ycv8m8gJasOftpbGIqYIVaWZxH2bL7pAytNx5dB80wYBkaYzkB9W7vdz8+tQ66pqG6FLQgk6Sux+pWVcg5Tbksd+fqpGilKArpTG7VGYupTBaypoNPeJdL8yx0wwQnhluh3nnrTzAyPomTduyMXVe9q+JQpYOzN5RQTsfb5wwxOIa1yHMQa2Gn6kYSC9E4MOLgVqj+xiUrgnLnHdmKRXeWohJxj9SVeJLqOCkWFRfhFmYtL6en8dC8Dokh13eGs4hF/4Qom1il+ysWAaDiahRJGkIzFiVFxZv+S8Lf/fQoPvbu38If/favOe+51WhCqGLRd47JDYAVYLgeh/zEUxjCFIs8R76botnEYrJzz1bp2YpFID7Xr1TIotHqhE7kWQ0oisJvXnsZvvPjXwTWvRJicW6xGmuDamPDZJhiseolFjUFoDi0uxIyfdQcm6bJpKjDs0HVYqfrzVjUdQOSrPRdVz67BsTiiq1QxVDF4vdvuQuFXAaXnnf6qsY1xNpgWIs8M/Ent/8Jdv7fXr3+1Ue+CgC4dz48Q/bpRkfzXmcWOiHPUnp4z6cfGr4MYZZmPeRkXggSi24lVor1XrviiEUAWJaWj2seGs3QgNHf3pMF61Es5lnvd9T0ZMRivdqbRKxISqhiUbMsw3/4rR/iNb//Grz1j9/qvOfYmFqlhZ9YPK4Zi5Zi0bAm/Se1QrXtP8cmxwYiFk3TRLuxcpvOptrESCqo7r7yuivxi5/8ArLkranzJcsKdYBaZHlxGeXRcqI+3vjUeKgV6shEb4x2xqKu6aBpGkWhiKbirQsn1pM+ysJM8Lcsdwlx7M6/lDpSX5VqOpdetRXqijMWMyl02p2AmGXXTbvACRzOu/S8VY0rDIcah1CVq3jhpmSTuYcYYoinHwMTizzP41vf+hb27t2Lr3/967jhhhuwb98+fPnLXwbPDxuoJxr9FIsf/O4enPKhH2KhOVgRuhLUOiqqrV7TTFlBxmK17SXP5hoy8uJgxOJcgFjs3ww0AWKFGlNfpENyFk8EbCtUJFQsmtZPWQ8h1VqSNyOPpalAYdWs15x/y7IEivUW0IstGcs3/SukQw9iy2v/HC9/4+9BlnpFMc2LzjYo0wjs12TEYu8BRpHCC+4oG1LTskJVE557lYVZpNIZZLI5pLM5a5z9FQAKGOQKRXQ7bY+yMWqWXi6hYhEArnjxK3DsyEE89djDzvHRwSJfIE21gRWLo4RYtFWFk1Y+6HhehKwZaFmTAcYmp7E4H7RCLTuKRc0hinVDB2NZ2U3mRTQl1SEoJ6Y3AADmjwVzFuVuF1yqN0tQUSwS0SIWKQAV1zUgk82GkryDQExnoeomeCahYtGaiMCmc4Hz1TRN3HnrT3DRFS9M9FDy8FFynl69YxwsM/BtdogEGNYiTxO++Ubgp395fNa91sSinkDpFwdWCFXWRcKvNOBSoAy3YnHJed2B0gZy08AZvwFwvod/XYm3ia2H59uuFt/VLsf1PyHXZlkLXksNLoOzPt+GkidZhIw1Kcn0W7jb39+tXKODlpZum82uZoZmLP7tv/0I//mYis++4XR86H+/AR1X0ylUseiydgsQNVI9sL/disX5pfD7bhi5JlgKCWVAK9SZ+QooisLkaGkgxSIA1FbRzOuH17zkMixUarj9nj2e10cs+7EoG1g/5is1TCbINAKIYvHo/JLnuWZ2cRlTY+TzFExHsdhsd/sSdjaxeOhYMNvIn7Fo53OGWaECTzexGJ6xeOOtd+PFl50HjhtmNz8TMKxFnpm4f/7+p3sIA6Gteq/li10vsWGaJiRN8mQgxsGf+cbRnEex6VcsshTrecbxE4siE7xO+knEX8z8wvn38VAu8jwfqVjkwEHVe8Sipnnvw6pVi7itG/0Zi0CIYjHElv07XyLWp7/227+Gt33gbVCk3nOss7ytWKS9n5fa0f05xVA81pX1Snj/I5RYtNWaVsRIUsWibf85OjGYFSqAFduhmqaJhtLAWCpoO3/ly65Et93FPbfd43k9lUmB5VgP+RuH6lIVpbFktcjo1CiqS1WoLkv6ykIF5fHeJCc/sVgWy2ip3r7FxDpCLM7PBGsRqUsyNJ1jYxBi8bhaoa40YzGdgq7pnv0BEBvUcy4+p6/KcjW4d/5eiIw4JBaHGOJZhBV3PE855RT85m/+Jq677jps2rRpLcc0xBrgkRlys7Ub3Mcbe+d7BYWiGdAT2lHaqHVVj7XRYlOOtB01QgjVYzVvIyaKWARIhqJfWefH00UsUrYVKsPBUKNtW0SWgWE1PvUQErKtaOBd5AYX8p0btZ5NgyxJoNheAazrGpaaMoqXvwmTb/wbjJz6PNAUIHV7BQ7FCmAZsl4aZlCx2IckYl3e8pTLfrWxHJzdBXgJUD9s67Wk597S/BxGJ0g2ZMpWLEbkLGomsUIFvHmH88dItliuECxY8yLn2fdROPuC5yNfLOO2H33PeU0Fg0zBsvyoBa00+qG6tNBTLEpkv4xbuYh2TmitQ86VsYlpLC/Oe8jS5cV5lEdJQUwbmvOgaegaGCszcl0pjYakQbGIxfHp9QAQmrMoS12P1a0qk3PaJrAnCyKW24rzu05ncqu2QrUVkkLc7AEL9vWCSWUDxOLRg/tw7MhBXHhFQhvUozWsK6ZwykQufuEhVoVhLXKCsfdG4Bd/H62wWym0uIdm69quyYCS4AE7STZhHFghPM8tR+4doRam/n3jm6iD9hLAZXpqPdMkZOS684CdvwGwvgZWEoK0ccxLVK4RWsjgCw9SYBg6lFh0YDUXWd76roZfsWhbobrqMooBfI1HN2HXVU2PYlGzFHTves3V+PlbMrj27HUAgHa3VyOlhBBi0bVfglaodYBNYa++yRmTm3jafzQ8MyqMXHOIRW1QYnEJE6NFcBzbUyzGNPNsYtFth1oZwBYsCs/beQo2TY/j2z/6uef1lCggJQqDKRaXqpgYLSZadv3kKNodCfVm7/dDiEXSzKMpEIKdjiYWp8bKYBg6NGeRKBZ7taZNNIdZoQJAPpuKVY/GYaUZi9m0CElWoLms/I7NV3DfI08NbVCfgRjWIkNEIS66xq9YXOp61dtNpQkT5kDEot+akaVZjz1qUSh63vcTbGnWO+kmLGPRTzbePXd34vGtBCzHwtRNj9LL875PsdiPWHRbWdI+5wSaoT2EnSx5MxZtNf8r3/RKAMB5lxHFluSaCCKKIhRdcZ6f3dmVANCJua/4rVCrfSY5hWYsWrWIqVoZiwkn2C3NL0EQBWQLWUfdFqeSyxXIc66bWHQTrDYYLbyf1lJa0AwNE5mJwHsbT9qIrTu24pYbb/G8TlEU8sX8QFaoywtEsehGTarhY3d+DJWuN55gbGoMpmk61rD250fG+ygWGUIs+icHZHIZZPKZUGJRlsjxta15NU2DaZqRVqirVSyuOGPRGpNbZdtqtPDgXQ/ioqsvWtWY+uHRyqM4b+K846p+HmKIIdYWiaY7Xn/99fjYxz6GTCaD66+/PnLZz3zmM2sysCGeHUjzDDqKjifmm9hQ6uWlKQntKG00JA2qS/nVkjXkIhSL9U6QQJv12cJm+OjTm2OCyj0/0hHrOB6mqLb6jbatUBkWehyxyNFOhmRYRmDbb4XKBEfuJuwUWXJm+Lf33oG///dv4VV//kWw2TKQLYOmSP6kl1jkwdE9xWLQCjW8gF6nz2G/UgaXynlyHZvLS6HLN5t19IvdNlUFgOg5j6KwtDDrEIuZCCtUGzrFODP4mvUaiuVRAMCBJx4DAGw5ZXvgM/kUBy5kf4eBYVlc9sKX4bYffw+/9b//GACgUQxohkMqnYkkVf2oVhZRHiWz9htdFRR6hOKYpVy0f0Ojk1MwTRPLi/MYn14PXdNQW17CyNgEsECIRcYhFnuKxQ2lFH65bwmKZiDNA5lsDplc3iFa3ZCkDgouq1tVtn6rrACaUrF5NIPZWheKZkDkGKSza0AspnNACxASKhbt3zojZCF1OzAMw5nReuetPwEviDjnoktj16PqBh491sBV28cwmh3mAqwlhrXIMwiaDPDxWSUDQY1xWOgsA5lR4OPk2oYPzgN98oABWNmEycidvmD61CHTZwMLjwCVA8H3AsSib4ztJUDI9pSNukzG6ScU1z8POHqPpViMaQy15gEht2aqT0lR4R61wHPoambsUwNr26j797tNNNL9FYscx1oZi2SfdxRCLLYVck9//fWfwh3//mkUc2lsmmbwiJUF1XY18zyKRSpILAYUYFIN4FJ4wNiOq/76Hsi/eSoyqV4Db2Y+JA8T4YpF2wpVtmMIEjbzZhYqWD9B6omeYrGDXIRtVclSCbgzKR9+4iAAYMv6yUTb7QeKovCal1yGr/7XTfg/H/oDz3vlQhbLteRuAvNLVVx0VrA2CsOGSTIZ6sjsIooWceoQizLAUdZ+ZTi0Ot2++4dlGayfGMWhY8EJah1Jxni56PzdascoFp/GjEX7+7W7EgpWLtQPbrsHNE3jJZedv6oxDbE6DGuRIQaFO9swDP5MRT+xaJOEYeReP/itGTma84yjIBQ87/sJtrRPzR/W5PdboT60+BDOn1i761Oj1kC+2FNWcgIH6NGKxZbR6kssKpYtfZQVaq6QQ6Pen1j83Ec/h1N2nuKQajbcxAsv8h51aMAKNcaVQNEVjy1mqx5+361X60jDe5xoa0KzbdWa1Ap1aW4JY1NjoCjKySLstrsooND3Mw6x6JpsdeipQ55xAMDp+0/HTbfeBLzA+3lbmTuZDq9brrruKnz9c18P2KHmijnPNuNQXaripNNP8rx2oHEAC50FHGsd81ixjk+RZ4zFY4uYtOqpykIFz7vieTiIgwB6xKKmaUjRKZRTQWIRIKrFUGLRskLtmOR3r8jkvOyrWMylUelTjybFSjMWbZK52+46+Zb33n4vdE0/LvmKM60ZLHYX8Y6z37Hm6x5iiCGOHxIRiw888ABUi7B44IEH+i53ovLnhnjmIMWRYmzfQsshFgGgJQcJLptsCrNJbUlaIBMynxrM5udY1VukxakNuQRWqJmQdbC1w9CKG0GvWO/bH3OH92O6eEYvY5EVLMKsPwSOgWETiyGKxY6ie61Qfb9TQUx5bDZlSYJJs6jv+jZqt38NZ116DWqquwAPEotgeHAWeUnBCGRX9rNCpWECpgGepUFRrgD4WpBY1DUN7WajP7FoWa/FTAp1sDQ/h3UbNwNwKxb7F6kaGKRzpKBqNnqKRZtYHBkLFsWFFDfQdfHyF78CP/iPf8OTjz1svUJBN0zkiyVPDmYUdF1Ho7rsKBbrkooUzzh5oTbZ1ZYtK9SJaQDA4vwsxqfXo7pMrMjKY+PAgkEyFuneummLWNw4kkajq0JSe7/bian1WOhjhcq68hQVi1g0GQ48q2PraAZ7ZuqQVN0iFldvhcqIWUIsskkVi2T/UBYBKnU7Tvbmnbf9FOdcdCnEVHxR/vhcE4pu4LKTRwMZrUOsDsNa5DmEsAv1oKRY9SAwHkFarIUVakimEABgZBv5f+WJ4Hv+5kKAWFwgpKzdSJRb4du67L3AA/8P2H9L5PegTIOQleUtQCtc7T8odj81i4tcohuB54hiMY5YFKzvGiAWbcWi65pIeYnFkWLOUgKSu3xbNZDKCPjFg48AADZOjaGYy2DZ6vfpNrHY7ZGFnoxFR7Hoqk0DVqgNQk7b42AFjxVqf2KxR4A62/NboZpJFYsVrLOye2wyqdGKIRZtxaKr2WgTiydvmnZe+9z8+Wgfuh/vf0X/xmAYXvPiy/C3X/pP3HbPw57XR4r5gRSL85Va4ozF9ZOEXD06v4Sdp25BuyOh2e5iarwMHHERizGKRQDYOD0WTix2vVao8YrFNOb6KEWSYsVWqBlyHjbbXYdYvPHWu3HJOTswUgpmow1x4jCsRYYIw82HbsZH7vwIbn/t7YH33ErBMLizDwGSVeiGnZfIM3ys+tH5TJhi0ZXT6Ce7/ASbX7EYlrHotktN6SkcrB8MJVhWir0P7sUFV/QU2jzPw9TNvmQZR3EexaKueWsnm5B0qzP9Ss18yauGszMW9+7eS94v5pEv5WH6+lmSqxYRU6JHhSrQ3n0Xl7GoGipEMZ5YbFQbAWLRhp2xOIgV6qh1HxbTIiiKQrs5uGJx/979AIAtp25xXhMNEcr+YD9rSSL9nqnsVOj6r3jZFfjS334Jd91yl+f1QqkwkGKxulRFeczbQQI4bn8AAQAASURBVKpK5N7e1b3HYmyK9E8W5wjpaRgGyWh0WaHaymFd1cEwDEZTo+hoHRIZ4zqfJqYnMH803ApVyArogJwjqtU3jVIsHn7qcOLvG4bVZCwCXjJ81827sHX7Vod4XUvcM3sPOJrDtZuvXfN1DzHEEMcPiZibW265JfTfQ/xqoiV7myVjWQFHq92A4tCPQorchJtSkPxqyRpUn4VlMTVYNsWMzwo1LcQTi0zMQ1+YnSqVcObXIKj85J/BZss4kjoX5555htN0ZXkBmhY9y1FgaRexGNzvHYWQNTYYhvI8lOQKRTQt0so0TaiKjKf+54uo7fk5Cpe8Hm/4o3fh5kMqUoyJrk6BoRGwQjUZ1rFYDVcsRpNEhFjsHe8wxWKzUYtcR5xlrB+VhVmc+Twy0ypjZSx2Oi0A4eedDgapLGnmtFxjOfAkIRbDGgilzGA5oWedfzGK5RH8/MffB6ZfDoAQ8fliOZCxaLACjBBLnPpyBYZhoGgTix0VWaGX9VhIcWBpyvmNjk2SJuTS/DEAxAYVAEbGJ4FHjpGMRYqCqigwTROMlZE1XUzBMIFKW8akZbM6PrUOC3PhVqg033tAshWLJs2BZxRsGc2gKWmod1UU0zzSmRxqfVSrScFY1qtiQm7PVjjTvDUzr9NGOpNFs17Dnvvvxrs+9IlE63nwaA2FFIsLt/SjwIdYKYa1yHMAti2oP4MPALS1Uds5MPXVKxb72Y7ZDbjKvuB3ibVCXSRWqFj0Lu9XLAJAqkTWH/E9WK1FvquwdmTD3Y8dwUVX9/7mOQ5d1QAiBKJAT7FI+cerq0Sh6J6RRTNwJzKUCzlLgWflCnd1/HDPA/jl7scBAH/z/rcil01jkc/h9kMauLOI/biHWHSpCgRaJ4Sha//3s0J1E55u4imMWFQU1SKkvOcGa90bZXuyzQAZi5eedxqAnnIuNmPRaua5rVBtYpFje9/lkFrCfz+WwfszwfyiKJx3xsnYsn4S3/6h1w61R/7GoyvJaLQ6ia1QJ0dLoGkaR+fIPp9dJI316TFCLLK0VbfaxGKEEnDT9DgOzoQrFt3ks61gjcpYfOJgsKYZBFEEcRRsstMmP7uSjJ/+8gH85TvfsKrxDLF6DGuRIcLw6Xs/7ZAVfthKOT9oioZhGgHFon89DZWQKBzN9V2XH35ikaM5D7Hoh63CspHhvK4UYcSiW8VY1IuYZWaxe3F3ovElwd7dXmLRtkI1EU6ucuBgmAYoLrwvYluhRikW88V8IGNxz7178Mh9ZJLTm979JuSLedSXvXFDbitUQRQ86lA/iRuXXagYyRSLjWoDkwgndzRlcMXi+Dqi1qMoCulsOlZZmc6lQVGUh1g88Dhx8khCZFWlKmjQmEgHrVABYMPWDTjp9JNw6423el7Pl/KhNrBhME2TZCz68p4dYtH37JHJZZDOprE4S2r0RrUBXdMxOjEKWGWFP2NxLDUGwzTQUlseJfDE+gk8dNdDgTHJXRm58Z7i1c4v7EcsprPp2HMmDivOWPQRi7qu465b7sJ1b7huVePphz2VPThn/Bxk+exxWf8QQwxxfHAcNFdDPJth57FFodr2FrQTeQFzDcmjOGx2g+thLbKp0Q2361Rd9qk0BZQzgxGLx+q+wiCBFSodI1nMxuQ0rhVaD/wAtZ//Gw7tfdDzOs2JUJUYxSLLwOZktRB1Y0fRnH0PAAxNO4oxAMgXSg5pZb9eeeIejFz3XhQveyNomsZSS0bWKtIZmKBpCpLb3pTmeopFUw8Qtv0Ui73vQHtyHcMUi3FWoGH5kv1gGAYqC/MYHSfFuJgmD09RGYsqaKSypFhs1XsPE/stxWIYygOS4wzL4tIXvgw//+kPnNd0w0SuWApkLLZOfjHmJy/2ZJMCxAYVAMqjpJFY66rIiayT9UjTFEoZHi3rgSOTy0NMpbEw5yUWy2MT0J+4DZn2LGiacshhO2NxfZEUmpVW75wbn16P+TDFoix5MjRVhTxsaWDAszS2jJL9P1sj519mDaxQaUshmUqsWCTfyx6nfc7ec8ctMHQdF15+Tew6TNPE7iM1bJ/MYyw3zAUY4hmGAz8H/rIAKGtM4A0C25YybPa+e1z+jL449JvBv1piMYzsc6N2iKje3PDnP4ZZofKuhottVxamjmQFi1jsP+OctZuHa0gs3vWY19Ja4Fl0lfjmFC+Q40v51XqGFsxUpBjPn4S06u3LJ5d13PfofrzgorMAkNoFAExGwBVf7UAukNnwHitUF7HIUzrZ965maUCxKDcDOZpuxeKxhSCx6LYfdcOeXDSwFep8BevGiUqApmlk06lY+81cJgWGoT3E4kNPhNjyrhC2Hep//uQXTp4UMJhicX6pBoAQhknAcSwmR0s4YqkEbGJxylIJ2IpFzaAhyUq0YnFqPFSx2JUGVyyu1grVVh4O/Dmrqdyymnm33PUQupKM6668cFXjGWKIIU48+hF6lHUT9Gcs1uSa5++6TJ47B7FCbaneZ1qO5qBo/XsKfitUP7FIUVQg49GtWMyZOaTYFB5e9CrdV4PHHvA+Y3M8B1Pvr9jk7Ak/1m3ftgO1oVk1YRyx6FbDSR0JT+55EhdfQyYj2xNs/XATi7zI9wgrM5ixGKdYVHQFYso9ITdYE8uS7FhohsHQVqBYtGzZAUIoxSkWaZpGNp/1EJ/7HtuXaHsAIffyQj5wDNy48mVXYtdNuyDLPaI2X8qjXq33/YwbrXoLqqIGFIv2b0wKiWEYmxzDglVD2FmLoYpFK2PRzoj0TwgYnx7vm7HIpXvnhEMs9qlFMrnM6onFlWYspr3E4mMPPIb6cv242KDOt+cx35nHNRvjey5DDDHEMwuJWJNXv/rViVd4ww03rHgwQ/TH5j/9Ac5Yl8eN77psoM8ltYW00VUHtw2bLIi473ANHaX32bbSv5nXkDQYhukh9TqKDtm17UKKc2xWk2KuLoFjKEf5GGeFyjJ0wLLTjzDF4vHE4w97LXUYXiB2OxFfRWDdGYvhikV3zh9Pe21MiWKxhrmZwxBE0uw8652fxzJHikvDBKodBZtzwKLkskKVekWxQbPgaRrQFIhGN0DYdmNsLXmWhmn2CqzWcrCZ51fs+WHEWMa6UV+uQNNUJ2ORYRiIqTQZZyZcaaaBASuIYFjWUU8qsoSZQ/v7bqeQHkyxCABXXPsK3PgfX4f9OKfpBvKFImoVL9lqMgJUMYeOoiMr9s7T5SVSCJcsYrHRVZFPcZ6czdEsj46sQzMMsDSNsclpLM3NAgAqC/OgaRrF8iiMvTdj/aZXgqYox5rUzlictojFWtdFLE6tw8JsiGKx2wXN9Zp5iiyBoiioJgWeobFljHzbhRYp7tfCChWcAEBGjHDZgX29oHgyTskiFu+89Sc4acdOR9kZhZlaF9WOiudtLjsK7SHWDsNaZJXY9Tny/73fB858zdqu254R/cRPgLs+D7ypz/63bSnDiEVthQ/ND34TuOMzwO/fHsxc9JN8gyIkU8iDTgVo+CZTxFmh2lmRNmwr1LBtMQIAs2ebGgLOUjJADLe7NJ0KoT9MXfMsc/de73cSOA5dNb6g5CzrrsD2bMWiGzQN1WWlTRSLLRxZbGJSN1ESKfzt+34b+44u4md3PogArAZrx5W9kxJ7TVeaAtmnrmZpQAkoNwBmi2cZNzk5E0Isxin2JNUgNVsCYrEryajUGo4VKkDIrDjFIkVRKOayjhWqYRjY8+Sh2O0Ngte8+DJ86gv/4XmtXMhh/5G5RJ+3LUQnEhKLALBhahRH50itY5O6U2NlzKJHLHascyZKCbhpehwz8xVomg7WpeDsSLLn+DqKxT4kZT6bRiPmWMRhpVao9vezx/j9W+7C1g2T2LFtw6rGM8TqMaxFhhgUg1qh1qSa5++WQq71fmIvCvZnbLA0G8hddMMmd2yCMcsFFUMszTqqPyCoYtyQ24AnqiEW8QkhdSUPobb3wb0elyWO52BqEcQixQEmYLDWRJR+ikVXPeJXauaKORw7dAyV+QqyhSxUVcWb3vUm8Ckeu27a1X/sktcK1TnmIcPttrqRlraqoXoUi2GIswLV5OSKRdM0sTi/6FihAsR+s9OOr6FzhZxXsbg3+SSnmlzDiDgSucyV112JL/7NFwHXTyRXyCW2Ql22Jin5FYs2WR9G+o9NjzlWqHa24ch4b5wczUHXdRIRQ9NORqR/QsDEugm0m220Gi1k873fk9SVvMRijBVqOpuOJXnjYGcsmqaJ6bdMQ59N1vO1P2eT4btu2oXiSBHbz06Wnz0I7pm/BwzF4CVbXrLm6x5iiCGOLxIpFguFgvNfPp/HzTffjHvvvdd5/7777sPNN9+MQmGwDI8hBsOemQakFRB/xxsTORG6YeJwpVd8tCKUj01Jg6J7ixzNMD1qyUKK85BhcdB0E9WOirzYu0mn4xSLNBWasbhjKodymgdLU7HkZBhki3Brhaju/HDPBAeA/Y8/6lETMpzgqLv6wU0Y9bNCdWcsciwNudurzvLFEo4e3Ie3//o1+O7/+yLZbqbgKD2asgHDBIqipXijzIAVqkEx4FgKpiaDM3rjt4vmJIpFuGbzNWuLgWXiiEVdiX5oc2NpgZBotmIRANKZLNpRGYsmA8MEcvkCWlbG4uH9T8LQdQhinxlmKyCmd55/MYrlXmGvGgZyhRIaIYpNXSyg6yOTa5Zi0c5YbEgq8iLrOU/GsgLaigbNIuHHJqexaFuhLs2jWB51ZmTaJHG3TY6hrVjMCCzyIou6S508Mb0enVbT2T8AOQdkqetR/qiyBDGVhqwZEDgGBZHDSIZHxVJDpzMrVyyyLDmPGEsRlDSqVWBJ5iplPSR32i3omoZ77vgZLrwi2cy5h47WwTEUXrB9bJitcxwwrEXWCMfBzhtVq5HwH78N7LsZmOszY523pkyENdn8GYuGb5z9yLXGMWDxCaAekj+irHKCgt/GNAxH7vX+HWeF2l0G3NlFSgSxaH82glhk1QYh7USvYtGw9t9yI54YaSwd8/z91EwFFVfThuc5dJX4+lPg+zTCDNVSKLoeOygGHdds+5FiHgdn5nHe9d/ER26T0VVNjJWLsdt0W6G6SSMAhJilGacWaXV8553c8mYsAsi4mnmaFvzOcYo9Z5JcArXssQXS8HITi7lMvGIRAMqFrKNYPDgzj3ZH8ljBrhbnnLYN2zZ6c49Girm+ik0/5iukZkuqWASA9RM9YnF2sYqUKCBvNbVsK9S2YhOL0RmLhmFgZt5bh3f6KBYzqfD9ls+sXLFoW9KW8rmYJcPhtsU1TRM33no3rrvygmFt8QzAsBZ59sFW77ntKU8kFCN68muAWPQRFE2VXHd5egDFoq/+4Rk+8vvbBJtNMIYRi35i05/DuLWwte/65U78vq9VaoG/51yTWTiec5R4YeCs7OVYYtGnWDRc9Wa+lMfS3BLe/vK34/N/9XkokoJ8Od4Rwq9YdAgrN39o/dswjEi1oWIoEPrcl2z0VexR5D9dJrVIEmKxUW1AlVUPsZjKphKp5HLFHrFYX66jslCBkLAWaSpNjKWjrdrXbV6Hk8842fNaoVTw2NVGoWpNcnIrDoHeNcH/2wNIzqJtheooFl2KR5ZmHQUfzfSIRZustDGxjigZ/apFWZLBiSHEYh9VYTqbhiIroQKCOLAc+V3beZi6qaN8RRnGlmTPgvaY7HNh1827cOFVF/ZV7q4Ge5b2YOfoThTF4pqve4ghhji+SEQsfuUrX3H+m5iYwGte8xocOHAAN9xwA2644Qbs378fr3vd6zA6Ohq/siGe8dD0wZqO43ny8Lt/qVfANiOIRUU3elZRLiy1XBYHPoVVf5AH7Kplr5p3qYT8OX9+cAwd+oD+3heeig+8dDtGssKKiEWbCOy24wseO9vQhqapeGrvI87fNCcksEJ1E4vBZbs+YpFnaXRdpGC1sognH30Ip511Hi594csAAAYYJyOpLpHCdCRF9gVDkdnyHmIRtGO16YZq5R52O9GFKc/QMCkapqU6bFXDiMXlwGtuGBH2Ln4szZOHlJGJXtMsnc1FZkGqoKEZBrL5oqNY3P/4owCATdtO8Syb7swDurYiYpFhGFx6zUudv9uSjnyxFDhXAAA0i/mm90GtWllEJpcHL1hNKUlDIcV5js9YTkBb1h1icXRiCkvzlmJxcQHlsWDWga0gpF2F5GRBRFNSHTvW8an1AOBRLaqqQh7YGM5RsSiyjFQ6A0nTwbM0WJrG5pE0qm0Fqm4gnc2tWLF45vkX4RP/+k2w6RwowMn+jANFUUjxDEyL4O522nhk9z1oNeq46IoXJlrH7iM1bBvNYl1pZZlKQ0RjWIs8C2DPwJb6NDxs8izEeihALPqbIf73vQsDzaDd0KqJRb/Kzg1WJBmMx+73bbO/FarImIRUFUKIRb/aEugRi36y0gVOqQNCwTM5B4BzXW5L8ffG6r77Aq/ds6enOhA4zuNK0Q98qs+1z9C9pCIA0LRnbHNLVTz21GHsWF/CH13EQ9KAlBhvI9nuuBWLvmYWKwAUA9mymVJVDYr1bxgaoMsBQtdPTvpVBfGKRWs/JbAfs4mvQRWLAFAqZFFtkLE8ZGUa7TxlU+znkoKiKLzmxV6XlEGtUGmaxkgxObG2fnIUR+dtYnEZU2Mlp063FYstOZ5Y3DRNcqIOz3pryU5XRtp1TrUsMrZfgyyfTaMryaEEcxzOPf0k/PALH12xwtCdsfjQ4wdwdG4J1115QcynhjgRGNYiz174cwdPFOIITT+54R9nU2mCpdmAXWkU2pq3buBpPjKf0b/uNBe8n/uJRdF3/9xe7q9iSkKK+IlFAHhsd88ONVaxaFmh6jS5Zuu+a7emkzG4VYoMzUB2OR9UF6uYOzqH0YlRvPZtr4VhGBBEAV26i81/shmyGX4s3cSimBJDiUXb8hJAZH6haqhIpbz3OPdngf6KRebdDM74yhlOxmISK1RbnTc22SP5Mtlk9pu5Qs6xQt2/l7g4bdm+JfZzADmv++UrunHVdVd5/s6X8mg1WoEJ+mHop1i01bthv4mxyTEszZJapLJQQb6UB8f3zn2O4XrEIk0jK2QhMEJfYnHBl/ksd2WwrpnP9rHtp1LN5KzIngQKUj+mN03jU1/7FE479zTvG9FCUQecwIFmaHQ7XcwdmcOBxw8cFxvUSreCmdYMrt50dfzCQwwxxDMOA2csfvnLX8b73vc+z0MYwzC4/vrr8eUvf3lNBzfE0wM1wrs+DHmRhcDSOLzcu9m15WDxuLDYe8BXYohFdyZc5FhTZPZQw1JN5cXkRA7P9V9/MU1mBMapHiPHJscr6OrL3tnUHC9g70O9JmUiYtFlGaup3qJT0QxohukhHwWGcVSVALDn/ruRzmbxsc/9G1hLjaaD8hCLFIBSqqdYBLyKRR20h7y00W42USiVocgS9BA1pTMmloFBMVi+6V/QuOe7MNq1wPKNetVDavmhKUog27EflhZmQTOMo+oDgFQmE5mxaIJCV9GRdSkWDzz5GCbXb0Q6453VKap1oLWIbWMrC56+7NqXO/9uyRryxXJfxeacL1t0eWnB+V6ypkPWDIxkeQ+JPpEX0ZI1aNYMzbGJaSy6MhbLY+OB7fitUAFgupBCw6VAHp8mxKI7Z9FRxzIc7NNQVboQ0xnIqgGBpcEwFLaOZ7HcViFrBtKZDKRuJ9EDgx8My+L8518JWTXAs/F2x26kORaG9bApddq489afoDQyhlPOODv2s01JxYGlNs7cUMDIgPmwK8GyZZbb0X411QvDWuRZCvv3GNZk85ONCXNhHDRng6+FEHKSldPy5KFjgfcGAkUD2XFg0Zez6yczXYrFAmd9J3d2kT3GkCaebfcZ9j3SFKkNOLVB1Ip0eL2iJHC6kGb2eP4u51O468HHnb8FnkMnQcZiP/W+Y4XqVyy6rLT/57Z7wHEsfvrRV2EkTaOrmRCF+FnvbsViSvBde1kBoGnUm22MlojiwCHt7PPNR+i6MxYBBBRrlVojUjXWte1dE1ihzlgWW+tcuUa5TAqNBM2jUj7nWKE+/MRBlAs5TPkyhFaL17zETyzm0Gx3e+RsBOaWqhgrFwaa1b5hcgxHZpdgmqZFLLoUAhax2LSIxX72pQDJWATgyVnUdR2yogYUi9kIuzmbvGyuoJlHURRefNn5K1YYpkRSt7U6Er5/y13IplO44nk7V7SuIY4fhrXIEEnQj1hUred2v1Wq37K0rbQDtqNxaCktD1nIMVykcpKlejWEwAgeu1BnGV+d4c8O3Jzf3Hf9ht+FIgR+YnFqw1SAWDQiJsALFNlHqmlNJtK89yrNDGYssjQLuds7Pjd/72aAAj7zrc849pW8wKPFtJDdkUXLDO8VuIlFQRQga9Y6XW21VqOFQpkomaNIO83QwAnefWsTZDZirVCV5FaoS5ZTgFuxmM6mExGL2ULWUSzu37sfnMBh/Zb1sZ8zTZMQi5l4YvGKl13h+TtfysM0TU+2Yz8sLy6DF3jH0hMgvzeb+A2zQh2fHkdloQJN1bC8sOyxQQWIMtbeN/a1v8AX0FC9x6Q8XgbLsZib8VrIS10JjNg7BxVFAcdzHvLSjbRljd5prqwWuSDE7YAaHWDidSaFbruLXTfvAsuxOP/y8wceRxzunbsXNGi8bMvL1nzdQwwxxPHHwMSipmnYu3dv4PW9e/cmKhiGeOZDHfA4UhSF8ZyA+UavKGuGEItzc72bqhpSFC65lFdZgQWbgFg0rOZctUMKx+IAmXY8Hb/+lSgWbcRZmAIk68+Nk0/b6SUWWR5KzHqECCtU27qMd9nKCqxXbXjJC14MiqLBsKxDOOqmi1iUdeRTHFLWduyteYlFKlRh2mk3MTJOVIFRdqg8S0M3aZhKB9WfETvWasU707xRqyKXC7cioWgGqqrEqlRtVObnUB4d9zQC0un4XL+WrHusUA88sRdbTzktsJwBGjC0xOPx44xzerPSCbFYgix1PYSwjeW29yGxVlly5SuSYzie8zbOJguEWLSVw6OTU1henIeuaRaxGCzyuyHE4oZyGo2u6vyey6PjYFkOC7MuYtEas0GzPWLRUizKmg6RpcFQFE4Zz6HSltFVNKQzOc82VwJbDTnIIUgLDAzrwbrbaePO227ChVdcAzrBteLhmTpMANecNpHo2rVaKCYZZ8TE3ec0hrXIsxxayH3Nb0eUgJjxoBFGLAavIV1rsoNtI7kq5CaB6iGvutJvW8r0yK4CH0Isyi2iNmRC6hdH4RlsJpyXJspwsTMLCHliNRoCOYHairKtbC1csH0D7nqoRyzyHIu2nMAKtS+xqATHR9Fou1QCr7rmEiiq5lw/u6o3M7EfPFaofuswhigWG62OQ97Z9pfO+eazcvOvwyb/bFRqTRTzGfSDPJBisYJsOuXYfQKEzEqkWMz3rFAffuIgzjx1y5rbZJ61fSve8+ZX4rLzTwdAFIsAEtmhzleqA9mgAsD6yRG0Ol00Wp0AschZVqiNBIrFTFrESDGPw8d6dWTXUse6yedWR3KUgWGwj8tK7VBXA5qmkUmJaHW6uPHWu3HtpeeC79N0HOLpw7AWGcKGGRamZ0GJcdXp6t5rvqRLPWIKxLYxzAY1ijTqaB3PZziai1QsuonEfiRmXMYjQzMBe1RnrAkcsfzE4o5zduCxB1zEIsfBUPuvh6fI97WJXH9fRLN6G27ClaEYDyl46bWXkpxG3YBi3TcEUYBBe7erGzpO//LpqOlkzJKrFhFSQo9Mdn2s0+o45J2dWRcG1VAD93Ob/LPRqDZARzxv6glcJtzrpigK5bEy5tvzeP/t7wdbYhMrFm1i8cDeA9h88uZEE4oaSgOaqWE6Mx277PSmabzhHW/AOZecA4AQi0CEHawL1aUqyuNlz/5c6pJ9ydJsKOk/NjUG0zRRWaigMl8JEIs8wzvqQbtHUBSLgQkBNE1jfGrco1g0TRNyVwYj9PaRKqt9bVABIJ0jv6l2a3U5ix4UgE7CHPpUukcsnnXhWY6Cci3x8NLD2DGyI9Yad4ghhnhmYuDu51ve8ha89a1vxWc+8xnccccduOOOO/B3f/d3+N3f/V285S1vOR5jHOIEQ43wru+HqUKPuOAYCh0l2u6iE0I8LrqIxUwCpeCsS6lV7arI8AxEzlvICBF1DZsgwzHJOPpBS6JYrHobVqeecQ4ef/gB529CLCa3QoXPsqttHQfOtUxjaRaPPHCP8/dFV74I7WYDuqZBtsasm5STD1Tr6iilOWd/9YjF3v7XTSpUYdpptTAyTkiqKNKOZ2no8BXQ894mcbNWRbbQv0mlKHJiIm9pYRajLhtUwLJCjSGy2rKGXKHkWKEeeOJRbDl5B5j8KNpq8IFypT0+94NCR9GQKxQBhOdMVtoqDNdxdysWGxIh3Cfz3gfEsawA3TDRtN4fm5yGYRhYXlrA8tICRkZDrFAtm1ia7f2oNpRSqHVUp5FK0zTGpqax4FYsWmH2BsWAtY6PIkuEWFQN8CwDhqZw0ngWqm5isSkjnSXE4kpzFgFCqgss7WREJkGaZ4jCV0xh395HcGT/k7joyhcl+uzuIzVMF0Rsn4jP4Rhi9RjWIs9yhM3e9+curoViUV4D8jAK2Qmgs+SoBwEEyUyKgmmRajnOqq8Elz2k0rRsVUMKFjubVu7fTKBgkPWtQrGY6s56rGYv2L4edz/0hGMDKvBcqBOFH7SlzmzAp9YPUSzONVTcfOdDzt9vuO5KAD1FaVczE2UGehSLAStUnhCL7S6mrXwdh7SzG7I+Kzd/Q8yf01epNRyCLQxOFmUSxeJCBetdCgHAtkJNoFh0ZSw+9PhB7DxlM1ICj3Y3flJbUlAUhX/4wNtw9o5tAIBykRzXODtYAJhbrGJipDjQ9ux9cXRuCbOLVS+xaCkWG12yX6OIRYDYoboVi10rz8qjWGxHKxafTmIRIN9x3+FZ3P3QE3j5VRc+LWMYIhrDWmRwqLqKf9r9T0/3MNYcNunWDnEYkI3o67JfsQgAi93exIi22gbPxE+0caOjdjyf4RneyRgMg1vFJzLh18U4YhEANuY2hr6ehFi08/BsbD97O57c86Rjo8rxHMyQ520bbmKRAgU/12t/f7fyUmtq+OVNv3T+fuVvvRIA0Kw1HYtUQRQce1Ubc905UDSFh2hSx7iJQkHoEYuUq7/RaXUwak1yilMs+hEgFmsN5CNqETu3LwmW5pZQHiPqumPtY+hqXTBlJpH1ptsKdd/efdhy6hYIouAhWkO3aZF763LrEo3x9/7k93DG+WcAgPO941SbAFEs+m1QK13Sf5vKTIVboU6RPsri7CIqC5VAPiNL90hXu2dTFsuhv/2J9ROejEVN1WAYBlhXXI6qqEhFTZbKWi5FK1As9gNFUTjcDMmmD0E6m0ZloYLdu3bj4mvW3ga1LtdxuHkYL9j4gjVf9xBDDHFiMDBr8ulPfxqTk5P4u7/7O8zOkibO1NQU/viP/xjvfe9713yAQyTDrn0V3Lm/gj964SnxC8dAMwaXwKwrpYGDpBjkGDo2i2exJeOkiV5jTWRpLLd7BVAqgVLw9id6BXe1oyKf4gJWmAIN9JtkL1gESb1aAc+LSGWCs2+SjKMfFDmJYtFbJG4/81z81//7AjZIXUAAKJaD1oouDAW2/xhtgte2KZWPPY6/+cInPPZi+SIptpqNGhSLBNJMgLKaYjVJw7aJDFjaCjy3Zo1LrtxEzSTkoHvvq4oCRZYwmlCx6D/vlha8thGN2jKy+QL6lVSqqjrEVRyW5ueccdlIZ7JYmJvp8wmCtqohmy/g4JN7UVtewvLSAracsh13FIkfvG6YK1Yp9kNXNbC+aDVE6zWMTXpn9lXbisdauFpZdDIfG1b2qJ2DamMsR45/3VI0jk2QdS7MzmB5aSHUClXqtEFRtGeW5/pyGopuoC6pGLVUkRNT6z370VEsUj3FoiLLSI2mIWsGRI4GS1PYOkZ+f7N1CVMWsdhOkFPqxwOHq7jvcBWmQbI7ByF30zwLRTOQSmdw24++B47jce5Fl8d+TtMNPHKsgctPHsVo7vjboA4xrEWe9dDkIPHiVzEOqlhsLQRfW23GYh8VoIMsmYSxSXQ1N8LITIb3KjLFgnd5RsByowsWHY96DbZqQPWt0zeJCHymbx6kkkCxWDKrgNT7Dhfu2ICPfu1n2H+E3IcFnusp8aJgXXAfok7Hpe7XDdVDKj44p+Pl/+cX0JhetqOdxdfuykjDUiz6rU1D0HYpDfz5iGB4xwrVzjFsdXzNLiELINxqHAhXLJKx9rFDS7KfnHUvefIVAcsKtZVQsVhvoSvJePLQMbz3La/GY/sOY7eVcXQ8MJhisYZtG6Zil3Njg5XvdGRuEbMLJGPRhkMsyjaxGJ1lvHF6DIdne9eEjtXkdJ8jrY6EaZ8SwQ2HWFyBFepaIJsW8Z2f/AIA8JLjYD02xOoxrEUGxyfv/iS+/cS3cdWGq7BjZMfTPZw1Q0ks4WDjII40j2D7iDdrUNEVCHT/iTJyiIvDYsdFLGqDW6H6yUiBESLz9mzFoqZpYPu0CP3Wp2HYWtyKvdWginclVqg7zt4BRVZwwMoR5gQOuqaD7qONsBWa/axn7e9vk6jyrIz//OB/wuz0aiq3Gk6w7he8yEOnou/tHivUPorFVrPlEItxikU/7BxEG/Vq3RlrGDRVAwUqUklrY2luyVFSdiyHDD7DD2SFahgGDj5+EFe+7EpIHQnVxf51FdAjFtdn12OuPRe5rB82sdhMMMmpulRF2WcTvywRW9n1ufU4WD8Y+IxNLC4cW8DywjLOvOBMz/sczaHT8SoWy2IZT1WfCqxrfHocRw+4I2LIeUHzvXNYldW++YoAHBvXNVUsAjjcPBy4VoUhlU7hlzf9EqqiHpd8xXvn7gUAXLf1ujVf9xBDDHFiMLBikaZpvP/978fMzAxqtRpqtRpmZmbw/ve/f6AcjSHWFq//wp347M1P4sjy6h9+w2xK47Cu2JtlwzM0JFX3qKj8cKsTASAjsKi6snaSKAVvedxHLIpcQJ0UtRpbgfeRP3wr/t8//13oMqshiTQlScait2G148xzAfRINZrlYi1VwyxIbdjWZTxLo/3Y7Zj79z/F2PRGvOYt/9tZxlbDNes1R7GoGSZoa7ZcQzYwlhXAWfvL3iNuK1TVCI6jY5FCoxOTZPkIYlFg6UC2ZyVALFaRyxf7rkNV5EQqVLLuWWdcNtKZLLrt6IJNUg3k8kU0GzUceII8NG1xWaEmUXQMiq6iIW8pNRu15cD7lbbiWJoCQK2yiKKjWNRAARjN+hSLFrHYsH5ztnpz39490DUNI+PefQMAnXY7cI2ftn73S83eb3dsap0nY1Gy7XVBg7N+T6psZSxqBkSOAU1TWF9Kg2MoVNoyMlZmZVTmpR9NScW/3L4Pn7t1H+7cv4yZehcCxwz0G87wDFTdgJjOoFpZxNkXPj90woEfT8y3IGsGLj15bFW5rEMkx7AWeZYjCbGYIBfGg04FMAxHZQcgNJtwIPRRATpIlwGGxwjnViwGt2m6G4Ks6M31kxsAK+B3/vIL+OO/+ZL3g3Y+o9+uaNlHHgl5b36hC0kUizlGAaoHnb8v2LEBAHD3w8QOledYyAly9WyY/v2mq4SkpWjcNaPj0q+0MZrj8fE/fLOzSNkiFm0CKLlisXfeBKxTGR6KakCSFawbt4lFXzOPj85CPrbgve/GKRY7CSxjbczMV5xx2chnEioW81ks15t49KnDMAwDZ566GROjJcwtRTfzVgP7e1dq8SqB+UoNE6PFgdY/NUbsyvYdnsVyvekh/YgVKoV6RwHHsRBibEH9isWOpTwZJGPx6VYsZjMpzC9VcdFZ2zE+oPpziBODYS0yOBpKw/P/pwM22ZIkfy4pSgJ5VjvaOhp4L8qCFAjPefMrFgclFrta1/OZMCtVN+yMxaWfLqF2cy10mSSKxa2FrQCAjXmvctHUTegxE538isWTzzgZDMs4OYscx8GIyHvmwIEC1T/TUu8pFqWjEvZ9bB8YlsG7PvIuZxk3aeVRLMYRi24rVNFFLLpK0k7TZYUaYXluZ0S6UfFNcmpUYxSLiuqZDByFpfkesdhWSQ3LZpJbobYaLcwcnIHUlbB1x1aURktYXlqOJJOrUhU0RWMyHew5xGEgK9TFakCxWJWrSLNplIVy6G8zk8sglUk5isUR3wQwnuHRtSaA2YrF0dQo2lqIYnHdBOaP9hSL9nniIRbjFIuW9WiS4zEIZlrRE+ptpDIpVBer2HTyJkxvireuHRQPLT2Ek4onYTq79useYoghTgxWFASlaRpuuukmfOMb33D8qo8dO4bWAE1gNz73uc9h8+bNEEURF154Ie6+++5En/vmN78JiqLwa7/2ayva7nMRlXZ04ZoE3QE82W14rVBpSKqBqIlpCz5iMSuyaEo9UiaKLAOIMuyOJ5dAdUgBWu2oyIksGlYuX6dZAwAIEUSTnTtYXVpEexVZbv2gKnLs7Lx61atYnFy/EYVS2bEBpZgBrVB9sJWjD/z4P7D0vb9BZvuleP8/fB00y2Li9Z/Ahj/8FnIOaVUlikWKhmGSRiIAGCYwXRKRsdSbvK1YdBGLmm4GbGhtUshWBnYiSDuepaH4CG2/YrFZryFXKKAfVCV5xuLi/GyAPEtlsrHWm7KqI5svoFmv4cCTj4HjBazbuMV534wg01eKrqo7qtKAFappot5VHWWirmmoV5dRHiWKw0ZXRVpgAspbm2hsWURorlCEIKbw+J7dANA3Y5H2NUnsCQXLnd45OjG93kMsypZlrmZSjmJR1zSk0hmiDrTOG8YiFyttFaJDLMbPRDRNE/ccXMaf//cjeHimjgu3kFmJsmoQK1QMQCwKRLEopkgz8cIrXpjocw8erSEnsrh4azl+4SHWDMNa5FkMXXHstnuvyfAUDoM2/KQaoMv4j+98p/faShWL4zuA6XO8BGAYKBoorPe+5iIW56pk+6bbwozPevMUFaJYnKs0ggSG3RT0k5WHfun9W8yhH3TDQCtBZh+O9WzYRwsZbN0wibsfegKApVgcgFgMwNAAmsbX/+cOfPQ2GddsZfHzD12JlMs9wSatbGtTW7G43prdXy6Ef0dPxmJAscih2SH1pp2x6MkvpJjYYzyz4K3TlutNR10ZhrgoADeOhioW04mIrFIhi2a7iwce2wcAOP2kTZgcLaFab63uWEVtMz+YFeqgGYscx2JytIR79zwJAB4rVIYyreOpIBeRRWRj49QYDh1bcOqyjkVAp8Xe8ZYVFdmIZl4+8zQTixbped2VF8QsOcTTiWEt8uyDfV2wSZS1QFEsAug16++89U7nvX5EF0AItzArVFvRBRAV2UqIRdbKY19eWI5VG9qKReURBdST4c9OSexYbevPMCLTTxz64VcsCqKArdu3Yu9uMpmX4znoMZOleIbvS+TaSsB7fnYPln6whNSWFN74/70R2XxvgpFNWjVqDU/GomDFiuTL4WSeR7EoCr0xWK0BTdUgS7JDUkURi6FWqD5b9matGalYHIRYXJxdDCgWmRSTmFgEgIfveRgAsPXUrSiPl2HohqMoNEwDlOA9p6pyFUWhCJYZfEIux3NIZVJoJJjktLy4HFAs1uQaymIZaS4NxQieKxRFYWxqDAefOAhFVgIZixzNodPugKIoZx+PpkbR1boOeW1jfN04KgsVqFZdZpPVbmJR1/TIjEUxLYKiKLSba6hYNIH5znz8coAztuOhVmwrbRxqHMJVG69a83UPMcQQJw4DE4uHDh3Czp078cpXvhLveMc7sLhIiJxPfepTeN/73jfwAL71rW/h+uuvx4c//GHcf//9OOuss3DttddiYSHE0sqFgwcP4n3vex8uu+yygbf5XMJx4DFQ7SQjJ+1tL7VkjyKKYyhIqh5pveBXLOYEFi0XsRhHEO1fbBFSxGq2LXcUZEUWxw6RBsvi0YMAoolFwSI03ATZWsI0zVCFmRs1nxUqRVE4dec5vb9ZFpoaQyxyUcQi2aenn38pilf+DkZedj0EUYTU7UDcuBO0kIFihaw361UoigTKynTadvLJzno2lzMYSZP9lWIAXdcdJSXHCdAME6JvHO0WKfZGLGVglBWqwNKebM90JouKL2OxUa8im4smFlk6/pLW7bTRbjZCMxbtHMF+kFQD2UIBUreDpx59CJu2nQKG7RXEcRmNK4GkGkhlcqBpGo2694GMsZrmc3XyMFOrVmCaJkoj5OGg1lWRFdiAXW5GYJHiGEfRSlEUxiannXzPkdGgFWqn3QrMvh7J8OAYyjMpYHxqPZYX56FY54cskd+XblKOYhEAhHQWumki48oY2DKaQbWtgBOtmXkxVqj1rop/unUf/uX2/dhQSuHTv3kWfuf5mwEAik5sVgexQs0KLPlcmjxgXnRlPLFomiZ2H6lh+2QOY7kYEmKINcOwFnmWQ5ODGYq66n1tUCtUqQZoEmZmXDNw/Uq/44HyVu/fLjLz8SPWPZ51NQT5jFcJKTcBtk82HsMBoADV9z0O/cL7t1CMHGKciq2jUcDsg57XLjzz1N7qeQ6KugqySlcAisEV55+G3zqTw3++JoVMmveQguUCue62LSU9USzyeO//ejVu/upf46Q+s6QjMxYZAXVL/dezQnU18/h0rCo1zAq1H8kJJLdCNQwDxxaWA8QiyVhMZoUKAD+/9xFs3TCJbCblKAQXfM3ZtQLLMijms7GKxXZXQqvTxcSAxCIAbJgaxd0PE0LbbYUKAKBZNDtybL4iQBSLna6MZaux6SgWfedIlGIxYzXzkljTHg/Ydq/XXTUkFp+pGNYiz0wYiJ6YJFrZulGE36CwFX/HWscAALMzvefYMPLChqmYgXGwFOvYNQIWscgmJxZNmJB0CUaH7Ie5w3OxxKQ9/qhsvDjVYxwqC5XI9/3EIkDsUG1wPAdDiz62PM3HWqGefu7pyJ+Tx+brNyNbyHpIwVQmBYZlCLEo94jFqZNJ3+DkM04OrhhBK1Q/sWjbWBbKBXACF61YNNTAZOWBMxYHUSy6rVA1i1gUGWiqBjWm9statduDdz6IfCmP8njZUQguL5Jz+GjxKCb+bAJLnd53sMm9lSJfysdmLJqGiVqlhpKvlmjIDYylx5Dlsn1J6PGpcUcpGyAWGQ6dVgeMq78ymiL7ry57VZST6yZhmiYWZ8m9wf59Uay3QRGlWKQoCulcem0Vi3Wiik4yKT6VPX7E4r0L90I3dbx868vXfN1DDDHEicPAxOJ73vMenH/++ahWq0ilehfAV73qVbj55psHHsBnPvMZ/N7v/R7e8pa34LTTTsPnP/95pNNpfPnLX+77GV3X8cY3vhEf+chHsHXr1r7L/Spgth5vtzkolhOqHu3bUEfRPUQgx9CQNQNRUY2LLW/Blxc5Rz1F1hHNBuw51kBWYGFaM81lzURe5AIkgsAG12MTHaJVDEQRXqvF8mL0g6DfChUAtruIRdBcAsViuNXOwsICPvmBP4Qhd7Bh8xYULvwNUBQFiuqpyAAglbVn5lUhSxL4FCkQRa7XbNs27rUKc5OxvJWHJ/rG0bbUZiNjSaxQGcguxeLI+GRIxmLVUVeGQVWURFaotsXqqE+xmM5kY603u6ru2LE+fN+d2HKKNxvETxSvBSRNhwEK2XwR9aqXqGakGgBgvil5tl+yrFDrXQU5gQv9PY1kebQUzSkoRyemcHg/UQmUQojFMMUiTVOYyIuodRVnPRPTRL2zNEceqO2MRc30/q6FDDnv3GrKk8azqLQVUDy5t7T7HA/TNLFrXwV//t978Ph8E2++eBM+98Zz8dIzphwrUkUzILAMCgWyHTEV34h0FIuZDLacsgMT0xtiPzNbl1BpKzh/UxnFdLxF0BBrg2Et8iyHrgSJQ13xqhQjsoBCITcBrXe/NCnam2sYixXO1BrxNZnUDlR4r5UeK1SLWFyotfHo/hmLWBTQCmvmURQhF/3E4sE7vH+nogmc2cXoSU57lylg6QnPaxdYxKKiqgNbobpRrVbx1v/vViy1TayfHMXrz+BAUxQA2lGRAUA6JUIUeK9iURRAURRecNHZoes2TdNZB0VRQXtMVnDUZmPlAliW8WYssqlIYjElChEZi+HoyMn20+JyHZqmh2YsyooaS+TaxOLt9+7BmacS54SJEXIezB9HO9RyIYulmGbe4nLdGk9x4PWvnxjFY/uOAACmxn1NR4ZDsyMlIhY3TpM6xrZDtc8Tv11uNkIlQNO0lXm5+maevR37GCVBLpPCxukx7Dxl86q3P8TxwbAWeXZCZEj/IEwpuFrYKiC3a1GkFaoaJDhTXMpDLHa1rjPmJNChwzANcFTvnhinNmSte2EU4ZUkYzEKywvRtUiYonHHOV5iUYtxBRAYIXR/t1otfOHPvwC1qmJkdASFiwqgGIrYorrqL4qiHNLKVpfxIh+ae+hG19VbEUTBIZMpkzz7dprkPpLJZpBKpyL3MxA8JwLEYrURr1hM0OqVJRmNWqOX/WjVzbRAPhs3Tlux+NDdD2Hbjm2gKCpALOqMDibD4Ot7v+70C5pyE+PpYL8hKfLFPOrL0VaorWYLmqoFrFCbahNjqTFkuAwUXQkl10anRnH4qcMAgLKvFuFpHt12F6xrcvlkhvSVqrL3HB5fR77j/Ay5LtgZi/4Y0yhiESDnzVpkLNrWralWCoquJFItpjNp5It5nH7e6avevh8PLT6EzfnN2FzYvObrHmKIIU4cBiYWf/7zn+NDH/oQeN5bnGzevNk7SzwBFEXBfffdh2uuuaY3IJrGNddcg127dvX93Ec/+lGMj4/jrW99a+w2ZFlGo9Hw/Pdshv++F5VjuFLUYojFToxVKsdQkDUdZgSzWG17b+K5FOvJp/NbofpngO85Vse2sYzH5DAnBgk2PoRQMa1mpsDSME0zoFi87cffw0+++62+Yx8Ey0txxGKQiNq+81zn3xTDQl2BFeqePXtwwQUX4J7bb4bWWPCoGmma8nxnjhcgptJo1mtQZAl8JhdY73jOO8vR/XkxQ1SEfrtNm6Qrj46DpulINSDP0OTctuwwRsYnPRmLUrcDRZaQy0coFjUFbAIrVNtmNqBYzGShyBL0CJWMrOlIW0Ts3MyRILFYiT7eK0FX0aEbJk7deTZu/9H3PL8bWpdRSHGOBbKhk7HbxGC9oyEnsqHWwiNZHh1Zh2b9TscmpmCaJvLFMjg++PDZ6QQzFgFgqpBCS9Kc9YxPrQMALMwSO1TJtkI1ALeolU2T8ywr9NZ5ykQO9a6KlqxbRG9QsbjcVvCPP3sKX/rFAWwby+Izv3kW/vjaU7F1LOvJWCWKRQanWMrbU884J7AuP3IWsfjq//VuvPvPPxW7PAA8dLQOlqZw9Y4xxwJriOOPYS3yLIefRAQIKWisQrEoN4mdqv1xigPU7mDWDlYjcNfuvfjZvY8n+8yIX7HYhubrGJhupQGXBmgOkqLhOzfdTZwXmKBi8Qe33o1//sYPAIb3EqSdClA/4t2mEJ0TGKdYfGBWD6zzQodY1FZshfrUU0/hoosuwnfvOYQDVRVwV20U7VEbAsTu1M5YlHTE5uh1Jdm5J6ZEPngNZniHFCpk08imU978Qi6aWFw3MeLJWDRNMzZjUVG1vnmXbtiEpW3RasPO9YtTLZYslcDBmXmHeLKtR49nzuIFO0/Ff/7kF9AisrJ0a6LYoFaoALB+chSmaYLj2OB+pjlLsZiOXc8mi1g8PGsRiyEZi0C0YhEgx2MtiMXpiRF857MfwCeu/53En/nj//Xr+Mpf/9GwtngGY1iLPDvhkGgDTT5KhoVO8Fkw0gpVNQNEWIpNoWZNHgVIBmOKjZ9QYaNrkO/Fo3dexikWbStUt/LOD4EezI7Vj+WYSU715XqA5Nl+1nbn3xzPwZCjFYsCGyQWjxw5gksvvRT3/PgeKPMKGJpxFGN+YhEA8oV8IGMxNifTZ4VqW2IyLbJfbVIokyf5fZ2YLGX3OcMwDJbmlzz7pl6tRyoWNVVLdO+wCcuxSTIp2f5N2NalbsI0DDaxOHdkDlusSU62QtB9vE3DxFO1p/DzmZ8DIOTeaojF7Wdtxy9++gvHrjYMhlWL+K1Qm0oTE5kJ5PgcTAQVwwAwNjXm7G9/xiJHBxWLNrHoVyxOTJN4GZtYdM41rmcbDCDSChUA0tm0Q06vBjYZ+sorXwkAOFQ/FPuZV7/l1fjgP37Q833XApImYX99P67ccOWarneIIYY48RiYWDQMA7oefJg8evQocrn+M3jDsLS0BF3XMTHhzfOamJjA3Nxc6GfuuOMOfOlLX8IXvvCFRNv4xCc+gUKh4Py3YUO8AuWZDDkm9Hqp2b9wTYpKJ7p55FYWukFJ5OGEZ23FYv9mXr2rQdV77xdSHNquGWg84z013/XNB3DNZ25z/j5U6WDjSNpHLAYbUCFcowOBo6GqCnTN+32+/vm/x0+/9x/9PzgAlhejZwHVq0HF4qkexSILLYYw8xOLP/zhD3HJJZegUCjgA/96A7KTWz0WoYpmOCoygPRc88VST7FoET52ZmIpzXnsKgFA6rgUixlb4Ri0QuWnTkHT5CGmM5HKUJv4oi0F6uiEV7FoZwvaGYthFy5ihZqggLbWa2csLjQl/NOtT4FLEftNRer/QCVrBtIuO9atp5zmeb9eWVvFIsdQ6Ko6NMPAa9/6Tux/4lHcddtPPctsKKVQbSse05+iZYXakFTkU1yoqnU8K6KtaNCs3+HYJCEEy2O9Ip+aPBUSTY5Jt90CTQfXs76UQl3SIFvWNGOTxK7OzllUZAkMSyxG3YpFTiTnTVbo/W63jpFjcKzeJda0LitU0zTx8ycX8Rff24MDS2289flb8I+vPwfXnjEZ+tvXDRMpju6pqRP05TIiGecpO8/DGecmsx7bfaSGrWMZrC9lEi0/xNpgWIs8y2FoQeLQUFenWNQVoONqYtAsoEqDEZSWjamsqDi2VEv2mdw6799qB7p/KrJbacD57DeVFsBwXiUdgE9+4T/wpe/8mNioqq73FvYGxxCjRJiNUQnceViG2VpA2jWsc07b5vybWKEmzw4EgNtuuw0XXnghWf9HrsbzNufgsZWgGYfssTFSzDkEq0kxsU0xNxnrzmt0wAqoW42YfDaNXCbl3c9cCoiwUF83PoK5papDojXbXWiaHqlYlBWVZDfGwCEWx4OKRSA+16/kyoQ68xTSzBsrF0BRFOaPkxUqALz/d38D+4/M4Vs/vD122ZVYoa637NgmR0vB40+zaHakWDIQIPtCFHhHsdjta4Ua3czLZ9NoxDSAk+LXr70U7ACNufPOOLmvWveZgjFzCeaH8xjpHni6h/K0YFiLPDthN/TX0grVRhix6M9dc8NUzYD1ZZpNoybXnL8lTXLsW5NAMQnZ4lYsxlqh2mRrpz+RtFrFYpwVqqqogRy5jSdt7G0/QcaiwAge69m7774bF1xwAWq1Gq7/yvXI7yBknEMsUmxPRWYhX8qjXq17icUIO1tVUaFbdQLDMmA51lmeUSxi0fpe6Wwa6Uw6VgnoVtPadq32OgzDQKveilQsKoqSyArVzm60rVAdYtHaP1IrWtWbc1nDb91BJtql0imkMimPAtVoGbhw6kJ8f9/3sSwto6k0MZmeDKwvKV77tteiXqnjf779P7HLuolFWZPR1bqYTE8iw1nRK1rwHm8TrZlcBmLK+9sTGAGdtpdYtElS9+8WIGrX0lipp1i0616m95sDeorFb+z9BnYv7A6MJ5NbG8WijXXFdUizaRxtHY1ddsupW3DBcch6vn/hfmiGhuu2Xrfm6x5iiCFOLAYmFl/0ohfhH/7hH5y/KYpCq9XChz/8Ybz0pS9dy7EF0Gw28aY3vQlf+MIXMDo6Gv8BAH/2Z3+Ger3u/HfkyJH4D/2Ko+bLWPTzg0/Oh+eeURKZocPSFGQ1wgrV0NGUVSgu68ucwHmIRsrHArzg1HFkfIq4raPeRv5IJthYE/o8v5uqDJamPQQZAFSXFnHgicf6DDwch/YR+7DKseCMnzjFYqfVhCL7ZskVXY0YmoGqKJGZkxTVy65rVhbwile8AldccQXuuOMOpIoT4Fnash2zYHoVhy1ZQ65QQrNehSxL4NNeorCc4ZHivDvSTUzyaVLU2haU7u829ebP4GM/egqpdCYyf9AmRymOPPSMjk+h02qi2yYFlE0sjpeL6DyxC1sQJGxVRQXDxF/SqksLSGeySKXJ+bN3ton7D9fQNEnRaGcDhkFSDcc6FgC2nOxVLFYri7HbHwQZgXUUi2eefzFOP+cC/Pu/ftbz8LllNIPljgLd+sHl8kXwPNmPTVlDIRVuhTqeF9CWCWkJAKOTRMFZHus1NLiLfxuHKJIN0Gm3QIcErG8sp1DvqFCt37MgplAcGcXCLJmpLUldCGIKqm56Mk9pgez/rIu03jZKzr3FpuyxptX4HD7z0yfwf3cdwvbJPP7+tWfh+hedgi2jmcjGs8gxgWtJFDICC0nt7ZM4tGQN+xZbOHN9ESPZ1eWODDEYhrXI04zuGiiiDB9RpSteMtGvaEyCRi/TyKRYomAchKDsRhNwofATU2o3aIUaUCy63lfaMCivIrDV7uLOBy0CkeFJJqWNxb1AdhINlVw7VSYDMBz2HyHf/ZGDwbojXrGogYKJM8Z74xKF3jVtUCvUSlPGS17yEpx11lnYtWsXTh5PWWSbW7FIoe0jU92KRZOOb2B2XCoDvxINAMAIDimUz6aRTYteJSArxioWDcPAfIXsPztbMFaxmCDv2T4mdi6ijeSKxV4zz1YssiyD0VL+uCoWzzltG156xfPwiX/9tsfqzw+GoSMJ2H7YYDXzAvmKAMCwia1QKYrCxqkxHD5G6jKbxHaf1wCQSUU36/OZtVEsPlcxAnLNLJsruHY+BzCsRZ7dOB7EYlWqBlR3UWo3UzVhwkRb7ZEGac5LLJowB1IsyqZl4UklVyzaGYtuYlHzTSgKtVP13QZsldqRJ4LnVpxiEQjmLNKu+ynHcdD6THC3IbKis7+VroJrr70Wmzdvxl133YWJbRMO2WYTZwzNBFSauWIOzVoTiqSAZmiwHBtJDruJSZuE8i/vsUIdULGYLZLnY1td2Gq0YBhGJLGoqVoiYtG2p7VzBCXdqsE4cg5HKVgBIJ1LO8/iW7f3HDzKY+WA9e3Hn/9xMBSDLz38JeimjulseHZ2EqzbvA5XvvxKfPPz3wycp364icUliezD6ew08jzZfx1/3ACAccv1wG+DChAr1E6rA8bVHxMYARkug4YSVIFPTE9gwZrk5JwrTO83BwCiNWHqgYUHcN/8fYF1rJVi0QYFChtzG3GsfWzN1jkodi/sxvrsepxaPjV+4SGGGOIZjYGJxU9/+tP4xS9+gdNOOw2SJOENb3iDY/fxqU8ls46zMTo6CoZhMD/vJQnm5+cxORmcwbJv3z4cPHgQL3/5y8GyLFiWxde+9jV873vfA8uy2LdvX+AzgiAgn897/hsiGlWfYlHyqST3HGuEB/1ar/EMDUU3YPTJK2J0CS1Jg+IK386J/Rs7ALBjKo93XHWS8/f6UgqT+V6BneboALFFxhJOKpiaBJqiAjaoD9x1R+jyUahXrSKvFiyW4zIWAaAWkrPowCIW47IDGcqAaZrIjYzjhz/8Ib773e8il8uho2gQWBpuXpKie/aUAFF25YslNOpVKJIEXiSEj61YHM0KAZtTT8aipfRL+8hHd16hIKYTKRYpS7E4Mk7IraUF0iht1EmTLF8sY/G//gqnjAQfjlRVdgjWKOi6DobtNSyrNpHOk+8h91Es0jAgqTpEi1gslMoojY55lqkvry2xmBVYdBRiV0pRFF7/++/GYw/eh4fu+aWzzLbxLCotxbEiLVpjklUdimZgJBtiDwdgMi+iKasOoT9mWcOOWDaqumECYh4mKJggisUwK9T1pTRasuaxMp6YWu9YocrdLsRUBrpheixZGYE0T92//UKaQylNrF3T2Rza7Sbk0lbMn/ZazNS6eNvlW/GPrzsH1+yYCKhow5AJuSZEL8/AMAFVS2aduGemDhPANdvHwSUgtYdYOwxrkecA/ISfrnrVhdoKMv1aPVWHQXOAJgUJzCjMPjT4NgFUFBcJpgQVi6ZbacCnvco9pQ3F9F4/br93T89qkuE9Fq9YfAwobXY4Oo0lxOKC1YxbrAcbD3EZi48sGjBBYeeENY60t5Ei8BzkmMw/gMyiN0wTIzkBN954I3784x+jXC6TY0vR3u9NxSsW4+BVLIY0PK2MRZZlkBIFZNMptDo+YjFiO9NWo81WF1aq8cRiUsWibuhgGDpwX02qWMxlUmAYGqLA46RNPWv3iZEi5pOqbVeID7ztNXjkyUP4/i139V1mvFz0NISTwlYsTo0Fm3mgOTTbUiIrVIDYobozFlOiEBjTibJCHeK5iWEt8uxGnL3litZpKKhIlcBr/T9A/ucmN7JsNkBQDKJYVEHu125iMUnGomEYHpLssd3eydZh5CSte6+prRp5/m83gs/9cRmLQHjOok0McXw8sZhiSXacaZjgUzz++7//Gz/72c8wMTEB3dADxCJHc0Er1FIejVoDsiyDt2qLqIxFt10ob+X4+o+5xwo1YcairYjL5EmPwiYWG1YtUihFRMTIaiJi0Z4gZJNksjWRzWTJs3CnE33/o2ka2XwWFEVhsysPuDRaChzLycwk3nPue3C4SbILV0MsAsAb/vcbMH90Hjf/d/88WzElevILl60JhOuy65DlCWEbZok8NkX6KSM+VwmA/Ja67W7AGrTAF8KJxXUTmD/qtUI1adOrWLTcEzRDC+Q0AhaxuMa1yLbiNix21rZ3lRSKrmBffR8uX3/507L9IYYYYm0x8BPfhg0b8OCDD+KDH/wg/uiP/gjnnHMOPvnJT+KBBx7A+PhgPtk8z+O8887zhJsbhoGbb74ZF198cWD57du34+GHH8bu3bud/17xilfgqquuwu7du39l7TySwO7lJIkaanSjm0dPzDf72qECAMfQUDQDRh/JIq1JaMmDEYsAPKq7raMZLyGRYkMb+xmOfIbyNxZVBTSFANn1wJ3x1k6DYHkpPhC5FpKzaMOkGWiq4rEyDXy+VsPMtz6Mxt03AACuueYap1HVknXwLO1RPHIM7SEGdcNErlBEs16DLEtgLaLQ3p9jOSFgt+rJaEyRosxP7LZbvcJKzGTQjShMbcIpteU8bPqTG5EfIQ/Qds5i0yJtc8WQGewWCAE7eBPLIdJ5UtD5FaTOGClCLHJCCgzLYssppwUIu6hj6YZNFKt6tCInK7CQNcOxQL7gsquxbfsZ+Pd//ayzzLaxLGTNgEKRh72SY4NKznl/PqaN8byAjqw7+aWjE6S4txWLTUkFRdOOvqTbaYMOIRbXlch+q7R6D6Lj0+sdxaIsdSFYZKxHsciTB2Q/QVjOCJDUXsZiZ+Is0N0aPvu6s/Gea04mFsgJ84YyCa4rbtjncDfGctrGg0dqmMwL2DH9q92YeTowrEWeAwi1QnXVDSEziPvCJnIavZm3Js0Spd8gVqgzwVnCSbCvbdlSUhSgy9B8ikV4iMWe2wJFAVA7kHTv8jf98gHXZwWvYrF+FCisd/5UmQxAx1ihLkYr2CQNaLNFiFajDTxRmm2cJo0VgeegKNHNvHZHwm/+4Sfw5z8jY33BC14AjrMIV0OzVJo+xaI/Y7HYUyxSbLwKvB2nWORSqDfbyGfIfSOXSaHVdm2TFbzqUR/WWbk6xyz7tkqNOHashRVqPyRVLFIUhWIui9NP2ughJydGS47C8njh+eeejsvPPwN/9flvhU80RFCJmRTrJ6KIRRatrpxIsQiQ8/fwbE+x6LdBBYBszLqGxOIQURjWIs9uHA/FIgAcbhx2/k2ZVCQpZarkGtpUe45QGT6DpuJ1iEqzySZUAOHEYhIrVNmVWwwA999xv2eZsIxFykjuDBNnhQoEFYsAUacBhPzSYmoRTudw3z/ch7lvkx7C5ZdfjlTKIm3MnoqPYiIyFou9jEXBum9EHUN/vmLY8u1mGzRDQxAFpLPpWCWgpEtgrefSrGV9btuW2sRilGJRVZIRi2HbBQjxBQBSO3qcALFDnd407ckJLI0FiUUAeN321+Hc8XMBABtzGwPvD4JtO7bhkmsuwb//07/D7NN3LPks2Zcl0lPakN2AHEdquVBi0XJPCCgWDYBl2FBisSSW0FKCDl3j68Z7ikWJEMYGZYBzOXOkMimYpgnN0Dz5qjbW2goVAE4tn4qqXPXY7p4o7F7cDUVX8LKtLzvh2x5iiCHWHgN1XVVVxfbt23HjjTfijW98I974xjeuegDXX389fvu3fxvnn38+LrjgAvzDP/wD2u023vKWtwAA3vzmN2PdunX4xCc+AVEUccYZZ3g+XywWASDw+q8K+pF3foxkSZFTl7xFTlg/oCVrjq1iGGbrEo4s93/I5liLWOyzCkaT0JY1yC6P/LCMtChMFVKOog4AsiIbyGUE4GTu0Zr3wcHUZNC0V7Fomibu+2U8sWhG2Ga5QdMMlufjFYv1CMWiSZEcyH7ZgUtzx3DJJX+A7swRjJz/6sD7LVkDz9IeIoamvFamkqojXyzh2OGDGBmbACdmoKGXpTmRFwJEjodYtBSOflVju9UErEleQiqZFWr+wl8HACyAFMp2HmKjVgXDsshk+jfzNFVNlLHox3LbmlFo2bDKcngzj6cNdBQdhgkUiuWADSoA1GKsb22cub4IANi32MYZ64p9l7NJt6ZFEtqqxY9f//uY3vpS5NIiNo+QB03ZKo7LluKwbk0QmMyHz3AdywkwQa4J00hhfMpLLNasz9uHvttuhyoW1xUtYrHdm5k5PrUOdz7+KABihWrndoYRi1kfsZgVGCiagVQmZ6leTTBKE+dvLoeqkqOQS6BqdCNjeSdLMfkdAKAZBvYca+CSbSMYzUY/rA+xthjWIs8RhCkW3a8pcQ/QriKDSxF1oluxSFnE4iBWqHMPJZuBZcNSANxVK+GCUhWmNV9Pi1Qs9ohFgQFgaJB8jbmbdu12bUMANJ/aobjJ+afGpoAQm2obNE0lssZcMsvIwrucbSXNc7ZiMZzsW1yu4/Lfej8eP3AUb3llCKnWT7HoyzUaKebRPmQRizHqCgAeK9XwjMUUGq2OQ9Zl0yk03fZjrBBJAo6W8uA4tqdYTGyFuvIcKluNl4TMGi3lHRtUG5OjJRyZPf4z0D/49tfh2t/9EA7PLuKcHVsD70+uIF8RAKbHy6AoKpxYZFg0293ExOKm6XF8/5a7ARBiMSUGz6kkisWjc0soF/rXn88p7PsZ0F4CznzN0z2SZzyGtcizH8dDsQjAk1tGg47NWAS85EaOzwVy3wYhFu2MRZHqXd+SEIt+suu+O+4Dzur9zYdM+KH0hM/eVLwVKk3ThIzyCdnsPgTHcTDU/pNy2402fvDxH2D+8XlMvWkq8L5m9IhF2op86Ucs1qt1KJLiEIVahPuFn1jUdC2wfKfZQSZLIjzEtBhKoLrtcGVNBsuR2o7hGORLeYdYrFfrzjjRx8lSVdWB4kAA4qRgk+06pYOiqMjMTRv5ct4h4myUx8rYc++ewLIUReFvL/9b3Lj/Rkxlg8doULzxnW/EO37tHWjWm5jeGFRA+onBqlRFik0hK2SRV0ktF0YsZgtZiGkxqFi0Tr9Ou4My6113WSxjf31/YF0T6yYwPzMP0zQhdwlZrRlaQLGoGipMmGgoDai66sk0XWsrVAA4beQ0AMChxqETbke6e2E3xtPj2Dm684Rud4ghhjg+GKjrynEcpD42gSvFa1/7WiwuLuIv/uIvMDc3h7PPPhs/+tGPnODyw4cPr8hK51cFHSVZw2y6QArLxSYpFuwcxcfmgnL9tqzFKqnueLK/MotjLOvEPs15WpdgmMCyK8sxiWLRDX+eYk5gwbHJiydTDVqhzhw+gMW5GWTz/W0lAEBPkwIjbh9xguCxQu22w7MpIxWLFANNUUIz8qSjj+Dv//mvMTU+hp1v/yyqwgRM1DzLtBUNHEOBiSAGJc3wZCwyQhEAULWIoql8sIHjzqZkRPKgIwasUHvfV0xloq1QLVLYJps4XkA2X8DSvG2FWkOuUERUfawqcqxlbBjs3wJlNX5VOXz2qkAZaFn5e3/6qX/Chi3bAsvUEyoWR7MCtk/msG+xBcMwQfchRG3SrSX1Hk4uveZl2LDlJMiaCkDE+lIaNAWolsKkOEIK+4Y1iWCi0IdYzJLX69b3zxVKeO1b34kLL7+GvG4rlymKZCx2wjMWJwsiKAC1rssKdXoDFmZnLEsdQiwqAASu9z1J5pgRIKSzIovlloJUJotqAsVvFLIDXldsIjcJsfjUQgtdVcfzTxpNZMs6xNphWIs8R6DKgLtJpaveXMWQB30PqgeBcdcEDz4LtHqEiklzJLdxEMXi8n4gZLZxX2TJ+WFYNyfaIPcPP7EId0OP6xGLOYF8rqv2zq25xWU8/MRBFK0Z6mAFQHbVaukyUFjn/KnS0SQLzzKxVqiiwOGoksPmPhybwFsZkJQYmn35tg//H6REAXd8/W9w9oMfws/9CxgaIRYDikXv/bZcyGJJkqGbNDh+MMViGGkEPo16q41CjuzzXCaFo3NLcEhpVvCSnT7QFIXpsbJDLC7XWxB4LlwdaUFWVIBOblnnh010xSkWAeCLH3+Po6q0MTFSxL17nlzx9pPihc8/B+edfhLue+Sp0PcnRlZGLPI8hw+/4w141TVBhRbo5BmLALBxahwLlRq6koxOt49iMZ1AsRiThfWcQf0IcM+XyGSMzCiw7QVP94ie0RjWIk8fzv23c5FiU/jF63+xqvWstWKRAgWKojDTmnFeo0FHWqGaCrkfuUklW0nlRpobTLHIUixolzkZRVFgabYvQcZSXmKx0+rg0QcexQ706iyRCd7b/Fao/UAzNCoLlb4qdwAojBQI4dbHIZPjOZh6+OelGQlf+OwXoKgKzvqLsyCPyo7NrA03seixQg3JWGzVW5C60ooUi7bqz41Ws+VYmqazaXQ7XYjoXysougKW7dWSo5OjjhVq03JPyEdMclqJYtFtx6saKlKZVKyyEgDe/dF3I5PLeF4rjZZQ7eOWMZ4Zx//a+b8GGls/nHbuaTjnknPwwC8fCCUW/YrFmlxDWSSEoJ2xGKbYoygKb37Pm3H2xWd7X7eI9G4rqFgcSY1gz1KQTJ1YNwFFVlBdqpJzKiVANdSAYtGxoYWJpe6Sh3jNZNdesXjGyBmgQOFw8/AJJRZVXcWT1Sdx3bbrErtQDTHEEM9sDFyZvuMd78CnPvUpaNoAmTUxeOc734lDhw5BlmXcdddduPDCC533br31Vnz1q1/t+9mvfvWr+O53v7tmYzke+Mbdh7H5T3+QqFl9vGArfWy7Qsma7XWsFryRdhQ9kjTLCSzuPLAM9MlQtC00O33sUmnr5r3QkD2f4dnkp6OfiMmwzEAZZ6ZGrFAlF9n1wK7bwbAszjjngmTriHmf40UsL/aIEUMP7o9UJhdNLIImSjzru7ktTRt33YDJDZtx5513Ij9F1Av+Yr0ta+AZGv5nULnrUywWSmjWa1AkCYxF7tnEcDEdnHnvJiZZKysvHaZYtCCk0zGKRfJZiu01fUbGJlxWqFXkCtFNKk1Twa3gYdtW5hnWrLB+GYscRVS4HUXHORdditGJ4Cy7aiW5SuDKU8dwsNIJqIjdsBV0bZftC8MweO1b3+n8zbM0pospqFZxbCsWG10VFAWMZsObsxN5S8XsKBMp/O71H8K6TVvI666sVVWRoWtaqGJRYBmUMzwaXa9iUVVk1JcrUGTJpVh0HR+GB8/Qgd9tTuAg6wbEdMZDTq8E+QGV0HYmoxQxG9bGQ0fryAgMLjkpmL0wxPHHsBZ5DsBP4Bm+jMVYxaIPQhboLjuKQ4NmSTahj1i0XQdSTMjvvD4DdOIzgPqBttQPfitU03Vvg9ibvJS1LlEt123gZ3c+CAC48gJrFi8rEILUrjpKW8h3taDGkFgCx2Bxud7LbAzBeCmPJxv9iTyB56Bpel/HhtFSAXd96+9x1vagcg1Aj1j0KBZpdHz325FiHnfs72LXYgapEBLID48Vqm951aAAhrMUi4Q8yqZFQtipVg3URxXJuppF0+MjHsViuZCLbIQoqk2irgw0TSObTiUisy4973RsWe/NXpscKyVSqCZG/WhQMQtSM3zw7a/r+7HJsZURiwDw4Xe+ETtP3RJ8g7YVi8kzFgHgyOwiurIcSgjHKRZzmdSvhhWqYQB3/QuQLgETO4EHvwl0j6+l7nMBw1rk6YFqqKFZZoNizYlFikKOz2HO5Z5Ag05kheomdfJCkDAaSLEIJTRTkaP6PxdxNOdRpz1414PQfXVD6Dq7ZJ1udWQYaIaGKqto1fv3A0ojJdQqNSzfEl6HRRGLy7csgxd5/P4Xfx+pbeETRnRTD1ihMjTjyZUESHahYRhYXlx2MhOTZiyKKTFUAddpdZC23BNS6VRsXp6sy44VKgCMTox6MhbFlOiMrbwQVPirqjowadNSybHJ83lohkYI0ASTnHacvQMbt3ltTctjZdQqNej62vQ/3/Wzd+FfH/rX0Pd+612/1fdzZZ/7QV2pYyRFnt0zXAY06L5WoK//g9djx9k+hyrr63TaHSeX0saoOOqZIGBjYh2ZGLJwbAGyJEMUReimHiAW3YT0bHvWs47jkbGY4TMYT49jpjkTv/Aa4pHKI5B0CS/d8tITut0hhhji+GFgmcU999yDm2++GT/5yU+wc+dOZDLe2Sk33HDDmg3uuYKv7ToEALjn4DIuO3ksZunji0pbCdic+hVThFjsT5tNF1PYO9fApnJ4gWurz/qpKRnr5r3Y8t7EszyDZS2+oR+GlEB7MhhjoclgfFao9+/6OXaceR7EdAaSFFVEJbNJ4wQR3U4b3Xb/5mihNIJapT+xaFCUxwpV13XMHiXn0+h178UfXFTCyMhIqA0sAHRkHRwT3DdStwO7lFE0A7lCEZ12C+12E9w6UozbZGZYUereb4yVTZjivGPouBSagphGdfZI3+9pk8qUSxE3MjGFpXnbCnUZ+RhikWQskrE+tOsW/OE/vwMMTWxgKfv/FI2l+Z5niKobznmqGoCYSkVmLAKErO2H+vJS5ExMN1542gQ+f9t+7J1t4OJto6HL2Eq4ruL9XVx93a/jm49/A5RFpG4ZzeC+I+Qh1M5YrHdVZHgWIht+mR/JCmBoyrFZDXwXV9ZqxyKFwzIWAWCqKKIhadAMAyxNY2Ka5H/NHzsCSeqCS5FGuvscMWgOHBu0r82JLBTNwEg6i3arhWj9cDT8NqtxsMnxqOufjd1Hatg+mcN4buXKlCFWjmEt8hyA0ibqOxu65rUtHTTzQygAUh0wCXlgUhwhRPxWqBY5NiGGNIkMFZh7eLDtukAZNrHos0J1z/Lng4pFl5M0btq1GztP2YyJkSKxtGR9Vqj59QCXhWaS66nKxCkWWZimiYVKrZ8IAGOlPPYsAuhzm+UtOy7QLKArME0TB470mh7/50Nvx9R4GabRp4YzVIBOw2s7QKPd8SsWc9h1VMeH7ikhFUP4AD4rVJ9iUTYYcDSDRquLfKZnhdrqdHukdZ9syrQoOGTSuokRzLgyFqPyFQFvxuJtDzyO937u/aAZFhQF0BSpReLsaXMZn2XrAJgYKaHebEOS18ji76cfBk66Gjj7DYG3Xnn1RTjtpI3guWCzemKkuDbbd0EHDUXVkluhriPE4qFjCytXLGZ+RTIWn/oJUHkKuPLPgNNfBfzL5US9eNl7I1W9v+oY1iLPbuiDWKUnRJ7LY77Tm1gcZ4VqxSE6pA7QU1K5kWKTXfcAQDXVUOtTlmEdYiTwns8K9f477ncIERsiG7wvszKpDzgzejKnrbSNskMtlIli8dj3j+HY/z0GHPa+z/FcYPzHDh0DWGDydZN4JfNKlDaUoD4Rvr81QwNj3Z8py0WHo7iAFWrOus8vzS31FIsRx9C933iRDyWq2s02MlkrPiaTirUYlXU5oFjc9+g+AECj1nDyFQ//4WFc8vZLAp9XZdVRrB589CDe9pG3kWNAkWNB+iKUY6sK9M7BkliCrMmJsiD7oTRWgmEYTh7kWuDRyqOhr59zyTnYcc4OxzrWMw6fYrGpNLE5vxkA6XEJrICuHk+eOrCtUFudgGJxLD0GxVDQ1bqe3+vEevI7mj86T6xQU+FWqO6JDosd72R1m1g0+tXZK8SWwhYcbR6NX3ANcf/C/RgRR3D+xPkndLtDDDHE8cPAxGKxWMSv//qvH4+xPOcRZ515IlBtq5B9s886qu5pwHcUDVrEWNeVUvjZ3iaW2uGz/GzbznYfYpHWg4pFgJAoy52IwjsCflIrDrYVatciyAxdx+6778Cr3/R7OLw/3NbJBtOpQCuk+5J5NjieFKLLEbl7+fIIqrGKRUIsGqqMf//U+3Dk0Xvxux/5PGghDdZq5vDWPvfnWnZUHTmB9SgdAZJ75xCLuoGJImnuVhbmMX2GCJamEBVX2O12wAsiFFkCLYigKID3zdpqN92KRWKF2m+VHENSANzDHx2fxJED5Fg06lXkiyWnmDrw5GMAXuVZB9lP5JjomoYdO3aCpigYpgGYJgzDgGmamNqwEVtPPR0AUHXZ8SqagXQmB1mWQqXcPWKx/0OoqshoN5MV0GdvKCErsNg71+xPLFozFbuql/xjOQ5bt++EYJ33J41lcadlhVqyrFDrXRVZgemrBGZoCqNZHo0+xGLNtW9scpyhw4nF6UIKTy60oGomWJ4oFgFgYXYGcrcLbpy0swWXXbFBMeAZOnBu5kQOskoyFrudVRKLIjtQXJpN5CoxExzmGhIWmjJ+7expFFMrz9IaYuUY1iLPAYQpFt02m8qAzXwxD1QPASaZiWxaJBj62H6NixqgSgDna5TN3DfYdl3oKRZ95bVbsejKTMnx5PrXtEofEyZu2rUbv/Gi56MjWTUSK1qKRQuZMYCm8Vgrj+eXlqDFWaFa9+bZxeW+xOJ4OY/9i20cnQy/9gk8GbNJs1B1E2//+x/iP3f9f/jxFz/meb8vdA3EJMV1vafp3ne0YJN2M4s1nHHyJsSh3ZUdm9a06D2OsskgSzGoN9uOXWguk0KrIwH2jPI+2ZSZlOghFh95ikzoqtQannzFjs9xgGUZK2OR7HNF1XHeadtgUgwM04BpwqpFgK0bJvE7r7omdPv57MrJLDvbcH6tVIu67LEYdoOmaXz/nz8cmvd+PIhF1bIgS0osrhsfAUVRODy7iI60MsViPptGs92FmXBS4bMS7SXgwW8AGy8mBHJxI3DVB4Gf/jlw8A5gy2VP9wifsRjWImuDj+76KD5wwQcI8XUCcDx/z3nBSyxSoBIpFt0qtwLvffphadaTtxYHFSrSTDpAwnER+b8szXrIrvvuuA/nXnoujqA3MVigV54pT1t9k4o1UScMpdESyVjsA7di0dRNfPtvvo1d/7ULH/vGx0CzNARRgMiKffe3ZmhO7qCtWAzNWLRIu6W5JYxbyvckGYu8wENMiY7yzHTdG9vNtmMXms5EKwEZiiFWqDzrnKujE6O428oMrlfrzhgbtQbuu+M+vP5/vz6wHvu7aqqG7Tu3wzTN3n8G+f/Uxilc9uLLIKZEtFqkLh8RR3CocSixYjEMtlIwLldzLUBRFD7y+Y+EKvpKY0FicTw97vwtMmJfxWLotnQKuqZDkb1WtQCc9dakGlLZXp2SK+QgpkXMH5uH1JUgpkRopub5PaUyPmJRChKLAALn6mpxSukUPLDwAEzTPCG2pLqh44nlJ3D1xquHNqhDDPEcwsDV21e+8pXjMY4hThBqXSVg89dRNA+x2FV1qCFNAhvriuRGuftwLfR929qwq/SxQtVVMDSFxZa3oZQTOQArK15ENpzw6AdTU0C5rFCfeuxhtBp1nHPR5bHEIpUwr4kTSLOiurQAgEH77u8Ab/PmlRRKo5FWqAAAmoXWXMb8N/4Mc8tH8MG//SeoqTScKVPo7XM/idJRNJTTXGCysdTtwJ5zL1uKRQCoLMxhAydaRF//m73U7UBMpaHIEhhWBMfQgRzHTrsJWwvAiVl0O230M3GhKAoix3hyOUfHp/DAnXcAABq1KjZuPdlREz6w63bgDz/gWYeq9rIos4US3vmOv4HARZ8XNYvIpqz9kMpkochSaOKBTSx21Gi7o6R2qAxN4eJtI3jkWB2yqoeOlaaJ6q4bYs0ppFKOhezJE1moXAZgWJQsK9R6V0VW5CIthifyIloSmUjA+ojyaie5YnFDOY17D1Wh6AZSYJArlCCm0pifPQpZ6iIrkgcp0bUNFcT+2E8s5kUWsqZDWAMr1KzA9lVkhsG2nlVibFseOloDQ1O45rSJvvmYQxxfDGuR5wBUXwPA0Ly2pf7340DRJIvQJE0EwyEWI37PasdLLKZHgdkHB9uuC7StWKRYz0wZ060ccM1QthWLdZks/OTBYzgyu4hrLjkH3/vZnWQhVgR0FUeaNCYzBpAqku8XFTrsAm/dJ6IUcuPlPJ48uoTdczqmc8F7hk0cLnWA1/xbB7tmHsWXP3E9yoVo9Z4DQyVkm88Kte1rkNjrm5mv4HlnnBy72nZXQiYlQlbUEMUiDVA0Gu0OdmQ3ACDqtGa70yOt2fAmacZFNq2bcFuhehWLDZ/ikudYSHJPsZjPpPAv730bwCe3sANsxeLK6uGJ0SIAYL5SW9HnQ6FL5HcUMrlo64agLTywOivUfpCthnJSYpHnOUyPl12KxWB1lyRj0TRNjzr2OQXTBO75IsmBvfS9QIH8VnDxO4FHbgB2fx2YOtNj4TxED8NaZPW49fCt+I8n/gNFoYh3n/vuE7LNtbBR7YeiUMQjlUdQsiwAaNBQ9P4KcjtjsaP1ap4snwVN0WRyLBCqPoyCAgUlphQgFlmqf+uPpVm0OuR5b3lxGQceP4A3vvONXmIxTAVp1TRhNqlu2MTi8uIy0CcasDhSxP69+wOvGykDpStKDrGod3Uc+ecjeOyRx/Cej74HI5MjgCW8S7PpviSgxwo1ImPRzi5cmlvC+q3rYZpmbMYiTdPgBM6rWHQd9k6rg/I4Idvisgs5moNiKOA4Doq1ktHJUSwvLkPXdDSqDU++4n13hE+Is3s5vMjjvZ98b9/tOWO06u6x9Bj21fYRArTbBYPB+mwAUB4l37VfzuJaY2wq3BXObYWq6Ao6WgeTmZ6FvMiKg1ki63AITL9i0SYWq3LVk49IURQm1k0QxaJEFIu6oRMFroVUOoWaXgNAriHLXS8ha5PSnebaOihsL2+HrMtY6CxgIjMR/4FVYu/yXrS1Nl6y9SXHfVtDDDHEiUNimZdhGPjUpz6F5z//+Xje856HP/3TP/X4iQ/x7ICqm4Gsx2rbW+xKqgHJpTbs+pSHeZFFXmRxpBp+/G2Sq59iETCRFVhUWt7t5sQVzFK0Cu4UPyCxqMpgKAqSNTPvyUcfQiqdwfad5ww+hj7gBFJ8V5bmcehT10F//LbAMvnSCGrLS5h802ew4Y++E26jSTO467N/AL25hN/75Nfw/KuDN+J+5FFXCVqhmqbpsTJVNB35Inn4kaUuKE4Ay9CRzkeEWCTNGIoTwNJUgCByk0JcOodup78lLACILtUpywsYGZ/A8tI8sdGoWYpF08TIS96N+Ubw3NMUZaCcTaCnWBzJ8lB1A+lMtm/GIk+Tcy0ufy9KoerHC0+bwLGahGP1/g8XhRSHrqJHWqxuHcsCFA2uOOVRLOZFNpJYnCqk0JS1UOvPmssKtWs9aIZlLALAhlIK9a7qXFsoisL41DoszM5AkjqOXS5vHWOGZaHogBBCLOZSHGTNgJjOwjAMGAmJfD8oBHM/42ArKOUYxeLuIzVsGUljQx876CGOH4a1yHMIsk+xaBpeZZ6fWJRq0evjM4DSBm1NujFpjpCVcgv45KZwBaQ/x7G8GageSDT8MNBWcyJghepRLLqIRasPV5fINfj+R58CyzK4/PwzestbGYv/c4Amyw04w5dnGVAUhdmIWePj5TwWluv4l/tU/NtDKvzBzLYV6vP/eR6PLhr42Sdfhze+/Krkg7AzFj2KRSZA1thqwK4kJ85YtElAv82lrDMAzVgZi+RabSsWTfu4c17bQhvbtxA773Ixh+nxETRaHbTa3YBi0e/uIfAcUSSuImMRIGSW1GnD/HAeI0z/PKow2ErBtctZpABN7qv87T+O40Eskv/HkYFubJwax+FjRLHoJ58BIBtDUtrnznPWDvXQL4DZ3cA5bwI2Xdy7vtA08KovkOvwvUPyzI9hLbJ2aGvkehyWTXa80Bl04tIAKItlNOQGTIrc12kzOmMRBlGoucdEUZQnU5HvY9vdDyrUUKKP7ZOTDHgJtif3PAmAWEy6EWaFaquO4tRHFEUhnU1jeaF/LVIaJRmLfmgbNKx7yzqABQzFwP6/2o/Okx288/97J17xpld4lo2yjNUMLUAs+i1ggZ5iUZZkCIIA1VAjVa5SV4KYFkGBIhmLtrWm67D7rVCjwDM8FF1BrkQmMqVzaYxOjJLcx6VlQiyW+rCzbgwozG2rbVCgMCKOQDVUZHIZdFZoy24rBU+EYjFyHC4r1GWJjGU62/PvSLPpgYhFyqCcfeInFifThLCsy/XA5ybWTZCMxa4MQSTEovt37VYsbshtQE2ueT5vKxbbrbW9Tu4cJXnuh5qH1nS9/XDf/H3I83lcPHXxCdneEEMMcWKQ+Mn3r/7qr/CBD3wA2WwW69atw2c/+1m84x3vOJ5je9Ziua3gyfn+ShvTNHHD/SfWy9qNik8p+NRC8AZV7/aaeybgISMpisLJE/1nqduqMT8h6UZWYNHwWUjlV0AsUiop3PzkRBwcK1QX2XXW8y5xrEXXAgzDgeMFLC8Soims3s6XyqhVKhCmTwHNi1hqBWc0UjSDVHkSk2/+DKZOOi10W7YVqh8dRQfHUB5iUddUGC5FlqyZyOaLve2xfCD3zg+p24GQSjvLcwztUW6ZpumxQqUsxWIU3OQww7AYnZiCrmmoVZYIsVgoo60YyJ75IighM6o0VXUyFpOi1lHBszRGsgIUR7EYXlzaikU/MR9YZ0LFIgBcdSqZ2fbwTK3vMoUUB0nVoUcSi+RBhS2vQ7FMbFWbkoa8yEVa9k4XRTQlFUqI9XHDTSw6isXw3+j6Uhq6YXqsZSem12Ph2FHI3S4YwcrhtGeHCilIqg6eZYIZiwILWTPAp7IAAF1bGbHIsfTARDNFUUhxTKRtdUfR8NRCC2euL2Iks3JLoCFWhmEt8hyCn9QDANXVmFUGbNLyGQAm8gy5Dhn2zPy93yOk5E8+GPxMc877d/kkoH4UA95KHNgZizrlqyX6KBazlhVqtdu75lx89nYv2cEKlk3sCsdEAWPlQgyxWMBCpYYbn9DwD3cqAO+t8QSrNhrLMrjrdzN4/unrBxuEoZGB+BSLfivUsksNmBLiG6ntjuQQigHFokkDlhVqwWrmZdMimaRjn3t9lISnWsRiNp3CunFiozozX4nNWLSVnUbyx6tQ5DIpnJwnjc6LxWgXDT/GygXQNI35pdqqxuCB1o1W/oZgcnTtiUVJHUyxCACbpsf7ZiyyLNPLD+0Dh1hcYXP1GQ25Adz3VWDyTOB5bwWErPf9sZOBy98PHLkTOLzraRniMxXDWuTZjUiib5Uoi2UYMKByZBs0YohFEFLPbYUKeAmyODWgHwaMUHVhrBWqSym/dcdWj9oLwEB2rGEoj5UjrVCLI0XUl4OkjF3/0BwNUzfBiAy2/fk2bL9oe2DRNNd/0qdu6r2MRbdi0TepWBAFcALn/FvWoomnbqcLwbLaFkQBip2L7WrruK1Q44hFgRag6ArSOfJd0pk0RifJ8/3S3JInYzEKlDlYMdtROxBZEWkuDdVQY5WVURBEAZlcJtLa9kTAfQ5XuuTcW5/t1bBpbjBi0aNY9LlNjaRGQFN0X2JxfoZYoQopAZrpy1jMpJzzZltxG2pyzTOp3FEsrvEkp035TUixKRxpHolfeJUwTRN7q3txyfQlfeN1hhhiiGcnEj/5fu1rX8M//dM/4cc//jG++93v4vvf/z6+/vWvr3mA7HMB53/8p3jh39/uyShz40t3HMD1337waSMXj/qUhvsWgiTocttbAD+10JsxzTEUTp8ixUwYyWI386MImLzIotH1zn4unMCsMlOTQdOUR7l3zsWXr+1GKGBkbDw6Y9FnhWqTR6Zpov3orTA1FTQv4nl/8GmwufAcPoAov/wwTZMoFn3vyb4ZtZKqIZPrWRzZRGGkYrFDFIsUJwAMD46hPFaoqiJD01RQ1pMAzWega9Gz3UV/cTZOZn0tzs2g1aghXyyhE0FW66YZsGONw3JbQU5gkeVZh1jsB1sBF6VY5HgBy0vJicWxnIBTJrLYt9gOzSgCgGLaIhZDVIXOerICGENFZuokcDx5+GxIKgppziH6w7C+mEKtq0L1kXeGaXosRLsd8jvpZ4W6rkQekNzE+PjUeizMzhC7XFuxaD3E8YIAWTMgsHTASjRrTTCgLftUPcaWtB/C1JBJkOaZyIzFPTMNGCbwgh3jkWrQIY4PhrXIcwhhxKJbVagN+PDMk+t3kSUNAtN+YJcjJrVUfKTNyDZAV3DKyMp+27SuABQNnfIrFl2z/P1WqDSHlut6e83FPucERgAMDQPOk/BgaqwcbYVaynsVWb57qW79vm76g83YUlrBQHSN2IO6JzmZFCTZWycLPOcoEBMrFlPhy8s6DdC0R7FoE7aU3URK0Ky18xmPLVQCikU/bJLKWGVuTD6bRqcb/gwRB4ZhMFrKY25pDVUCqjSQYpFlGZQK/euplaKrDU4sbpwew+HZBXRlJUAsZtOpWJXNc1qxeP+/EcL40uuB0pbwZS67Hpg4A3jg/wHS6uzpn0sY1iJD9MNoijyvq4Idt0FB1aOJRZZmA8SiW7E4qBUqEK4ujMqw9GcNnnfpeQNvMw7l8XKkgq04Wgx36KGAxn0NtCWiqNvywS0QpsP3ibPfQi7tHsWi9YzIMUErVIqiUCiS3ggv8k5mYj9IHQkpy8mJF/ieYtF12+y0OomJRZ7hoRgKmjy55lbpqkMsVuYraFQbKJS89tSh+23ACWkdrYMMm0GKTUEzNKRz6RUTiwBRCz7tikWXLXtFsojFnItYZNORVsUB6HCySP0ZiwzNIMflQq2Wx9eNY36GWKGKogjd1D2/a0EUIBukNj2ldApUQ/UQlLZica2tUCmKwsbcRsy2Ztd0vWF4ovoEmkoT126+9rhva4ghhjixSNwdOHz4MF760pc6f19zzTWgKArHjh07LgN7NsPmBw5Vwi/8y5b16IxF8NU7Kjb/6Q9wy9750OXXGkeq3nEdCBlnzdXQSHEMHj3Wu0HSFIXtU2TGdpjdKU0R8jGSWExxaPoUiyRjkUBeoUopCZZv/iLU/fcAgIdYPPfiy9Z8W+WxCSwv9j+uhdIIVMU7S0pTVUj77sHS9z+NzlN3gWK4QHaiH2HEoqQaMAEIPjJIlrwPLrJqADSDdNaahc9Ek1H2OoRMHuvf8W9YQN5SLPbeb1s2qKxtAyPEW0amfcTi6ATxpj+07wmYpolcsYS2i9TzP7xTDAfKHOy8qXYU5FMccikWim5ATPds0fzHBQDyIufJgfSjODKWOGPRxpWnjuPAUjug4LVRSvPoqjq0iNxTiqKQNlpITWyBbhC7Y1U3MZoVIptmU8UUNN1E3bfttqx5FJK2YrHf7LJpK3e17splHJ9ej/ljRyFJXVBWbqdN/PKCCFklxKJfsWjnvVICORaGPpj9mg2eoQdWsAJEOavpJow+P7oHj9YwnhNwxvQwb+jpwLAWeQ4hjFh0N9bUlSgWgSJjEYu2ajDK8qyyz/t3mTTXJ7IrJBYNxVIneq89fYlFHgAnoi33rp3XXHy2d6WWjWqKXaFkEcDUWAmzETk34+UgWabrOpbr5F5+690PAQDMiHymSDhWqD1IfSZw2DmLYbaVfnQkGZk02T8BK1SDhqwaUFQNBWvWf85voZlgxvS0pVg8dGwBjVYnoFjsuBqxtrLTWEEekRu5TMppEioxLglhmBwtra1iUe0kJhYpisLESBE0vfYTb7qKTSwmtyHfND2OI3NLaHW6SKf8xGJYorYX+cxzlFg8ths4+HNg568D264K2B87oBng1V8ApAZw//89oUN8JmNYizy7oZtu554B1EoJMJYikRQqn1yxyDM8ur6ax628WxGxyASvb1GKRZ7mPSTS8SAWR8ZHUJnvr1gshVhom6aJxQcXcfj/HMbdN98N0zAjn20zfSzOAUAze8SiDRo05G7wHMhZ93pBFEIVbXaOo2ZohCyy7idiimT2cTTnIfbarZ5iMR1zDxMYAaquQqfJeapRGgrlAliOxeLcIlEs+iY5hWUZDqpY7GpdZDhCLJowIWQFqFZ9uhIHofJY+YRlLPpBURRSmRRSrrqvKlUhMiIKQu8ZflDFImVQ6LYsxzQ2WOsVhSKaSnASzsS6CTSqDdQrdSdj0VYscgIHiqIcgnNHeQcAYLbdI/tsG921tkIFiEJyoZs8ymeluG/+PmTYDK5Yf8Vx39YQQwxxYpH4qU/TNIi+0HuO46Cqx89K4lcFT1iKwW/cHS9Bn+mTazgI/IrFo9VOICdm2aU8oijg0VnvzJuxbHSByzN0pLKrkOLQkr1NCnfG4vFUArUf/inoDilq3facm7adCgC49Yffxe677liTbZVGxx0r1DDkyyPesTXq+LO3vR7KwgGMvPQPkdl+KcCw0LWYB5KQ/dVRyP4NKBYlb3PEJq3snEWT4YhiMWyqnwWp24GYL4MW0uiCC9it2sSiHZtI8/Gzy0VfHl6xPAqaYXDgyccAAPlCER2ld05VFrwWdhTDgjIHmylcbasopjjkxV6un62gqy4EmwP5FAtZ06H3UxeWRwcmFl942gQ6io7H58JngpczhFjst00bZ22dxvip50LWdNQtG9OxXPTvdKpArumVlvf8cucrAkCn3YIgppzZnX4UUhwyPIO65LVCbdaraNZroK3cTvsc4QQBkqZD4BjPeQP0FIvgyDkTp3Tth5UqFjM8IZnDFKS6YeLhmTpOn85jNGbfDnF8MKxFnkMIy1PSpPB/J4HVhCtypEFg2AReFLHoz1Pks0B6JHzZBKAMxSECvW+Q+9veGush2BiaAhgBLZfDxfN2ngIA+NJ//gT3PfKUi1hc8bAwOVrCbESukZ9YbLW7eNU7P46mZYv22pcQRwd1wCaVA0MLkHhtKfx+bRN3Ip/MCjWTEsEwtCd3zwQg6TTqLXIO+RWLDqh4AjCTFlHIZbDnSZI/U/YRiweO9iaP8bYV6kr3k4V8Jg3Gmhgzuzy4SmxipIj5kJyqFUNJTiy+5dUvxOf/8p1rt20X2lYNOJBicWoMqqrh0LGFUMViHOxzp34iiMW4WYRrBVUC7vkCUN4GXPQOIFWMXn7iNOD57yF5jEfvPSFDfKZjWIs8d9BU11aJm+EzhBgSkhOLLM0GVHFugmytFIuDWKGeecGZA28zDuWxcmTGYtHKCLYhSzI+/q6Po/JwBRO/MYHLfvMymC4HnzCVXobtTyzqhh4gFg3VCFUa21ajvMCHEk/ubXc7XYhpETRDO1l57mOmyApUWXVUZ3GKRZERoRheFR1N0xgZH8Hs4VlIHckhPm0cOxwyqWFAAXVX6yLLZx3Vp5gVoVkTfFv1wfKeAaJYfLqsUF/wyhfgT/7uTzyv1eQaSqKXvM5wmeSKRQmgJbqXscgFa8iSWAq9pkxMkxifowePQkyJ0AzN+T3atruKroClWJxcOhkAsNDp9RCdjMXm2hOLp5ZORU2qQRr0uWsAmKaJx5Yfw0XTF63aUnmIIYZ45iFxm8I0TfzO7/wOBKF3k5QkCW9/+9uRyfRu4DfccMPajnAID978lbvxjd+7aFXrmK17bxoLTTmgwlr22bjumfF6hcdZBwkcg7bS/yZdSHFoy95tuhWLflIrTkG3UrgVi3HfKSMMPgO9PDr+/7P33nGynOWV8KlcXZ0nhztzc76KSEgICSEQAmGBwQGwjReH9drG2dhrrz8HWIdd22vjXYONI87gSDBgYzA5SEI53ZzvnTt5eqZTdcXvj7dy7p65EhJ1+PHTne6q6uqq6nrfes5zzsHTj34t9v1q3bU3NXodvPMH3oj2+hqKh+9C6Zq7yX4xHHrzZ4DCTsjNNQDhoqcQ4ZFm24YGM/aCikWbtCqWyATapFiwaVao3Q4mtx/AEkiWEMfQPhvSjkUsCiyNjg6AT+8KL/IBOwmGwdDIGM6csIjF2hDmO+4Mee7iOYxOuOHbgygWG10FO0Yk1CQOikUs2oTS6pWwVbGtWNQNM5K0qg2PYm15ERjNvg83zNRQElgcW2jill3hcztc5NFRkhWLADAzMYKzGyZU3XTUj5OV5OM+WSUPNkHbZlt5aFqZSt1OC4Vi/IMaAIxXRax3NRimCZqiMDY5DcAiBlkeHE3BPmQcXyDHO0GxaHJk3yOtXTJA4Ji+rXEBYoXa0wzophkaIM8stdBRdLxk97CznzmeXeRzkRcQogg/b8e+2ucDLs0AfBE11rp/2QW0KGWkjY3LxKbTi9p2oOPvqP/EV57EMNXELa9FImi9R+w1tcCYbDW9tKNqi6yAtqcpg7PsNDW7O9yy65Q2pVgcwucefDL2/SCxeMdbfxanL1wh2Yur60524GKjjZoAnJlbw64Y58RIGFqIxOvEKPHSFIuM0oT5KxU81DqDdreHkiTiw+/5Jdz+osPOMr/+AI99e8YwZakvbNVZSKGWcYyYHh/GE8cJCR20Qj198QoO790OwFUs6gmNWVlQLkqO/flSo/8i0sRoHWcvLWDntnAe9UAw1GSC3oO9O6axd8f01nyuhRJHjkVbMSDwnPMbyYLtUyTLWtP0gRSLNompqoM1OfWFz/8mUBoHbvreq/s5T/49USC+8p3A6P5s67z8fwDH/pWoFscOOgrxb1Tkc5EXDlpKy7Ev3SqU+bJjY0mDdtRtceBpPlTUL3GunbRgNRg9/aWn0almuxcX2AJ0+MfZNGLRa4WaRn4NguGxYawuraKM6KzieiCb9x3f8Q6cevoUpl42haH7hgAWPmLx0slLODRyyLeOo/SMGIZ1M0wsBvMVbdiKQEEUUgkXuSNDLIj4xd//Rew5tAf/vvTvEBkRTZBrwM7Fc6xQU5paBEZAUwuTUyMTIzh7jMxFghmLc+fncOSmI/4V+pw2ypqMydKkk+/JlTjneOsDuCcMjQ3h4pmLqCA9D3KrMT49jvFp/xxovbce+q1LrBQicePAfpZFbayGzpBFLLKMz+4WIDmL8+350Lrj1nxM13SiWDR1CDT5XXPWHFsxFHAMh6pQRYkrYanrNqszLAOxIPp+o1uFwyOHYcLEhY0L2De0b8u3DwBnN86i0Wvgnu33XJXt58iR47lFZlnY2972NoyNjaFarTr/f+tb34qpqSnfazm2DlEKJcMw8e3v+8rA25R4BsutHjRPZ9Zys+fLrmNoCmseS0PTNHEsRk0VhyhrTi8qBQ5KQCXpVSymIW5ZWymnyNmUnV5i8WpgaGQMq8vxVqiVuksk0YKEl7/uzfj9D3wCbHXMeZ1iOIytPYkL7/52YOVc5HaijnfbUiyGiMVAxmLXIq0EkUwiTZoBxyTpFclxYwvuAw+xQo0iFkkhkebSOy0LEV1fI2MTOHv8GQBAOZCxeOXSef/CDEuyYjLCME2sd1UMFXlUC65i0YYid0KkVlXi0EtQD1aHR7HWR8YiALAMjVt2DeHMchu9iEl73SYW9Sxth+Qc2PmlY5Xk4z5aFkBTCNmw2opHO0+n025DkpLzkqaqBTRlFaplbzc+6eYXwFLB2teIN2MxSNA6hF2U6qcPEJvV/pXPRYEoFqP4zMcvrUPiGdy+pw/mOMeWIp+LvICgRYzT3uKN3utfwSNUUOXI/ctVLCbMB1qLYcJkZA8A+NTUl5camT6e1hWA4dGybLVsxRwstcJ0MeI+zviJxRAs1cGmFYsJOTejgQLV933LPfjKB37HyS3kLcLM7gd7+nyf1v0RVqjB5jIbacQi374MABhpPO5kLN531y2oVdwx6otzHFb4aWy0yfGvWsW8fiw0vZgeG8YTJ84BQMgK9cxFt4BkZyzq5uZcN2yVnA1F6U8FNT5cx8JWqwSew3y90QL53bRkrS+1IgBs9xQWpYDCLItikePYTHmfm4amAPNPktzXfpsq+sHySeD4vwP7XwsceG0mO2AAZI79xj8BuqvAo3999fbveYJ8LvLCQSdj00Q/qPAVKDwZ1ylQqcRilGKxxLtjmm1runA2+9hbYAtQrbGjs0G+I5+QK8zRnJMdd7VQH62juR4/lhSKBUe9BQCv+fbX4P/+4/9FaYYcC5Mx/cTimXATsPe4BeHNWLQRlyHoJRbTrDLljgxREnHzy25GfaROFIue51hbZeZYoZaS5yICI0ReMyPjIzh9jFj4BzMWr1yIyMjrU7Eo6zLKXNlRLLJF/8SztdGfavHZVCw+svAIPnX+U4nLNJUmxqQx32slrpRZsUhpFGiTKBZZjo20fB8Sh9DWwg1hI+MjoK2anFggGYu2co+3HDoUXQFPk3+PSWNY6fqbHNOum0FxePgwKFA43zyfvvCAeGj+IYiMiFfOvvKqfUaOHDmeO2QuU7z//e+/mvuRwwM7m3CxGZ7EfM9tO/B3D17Aere/zlnTalkqiyzW2gpUD0nRVnTfZ0k8gw2PFeLCRi9kW5qGVGIxghgsb4ECqLm+DlSB5mo2csdrhbpZmBFtYUOj41hfjc8SKFdJZ17ryU+jdM3d+Ka3/iAmAiozimGhKT2YShdL508AuDu0HZ6LIBatoh3L+ombIOlqk1aiFTpuUAyxQk3o5Je7HXCi25HLBwgixwqVYwDoMDNYuEh8uLgxPD6JY08+CgCo1Opoe8Kw5y9e8C1LMVxmqy4AaMoaDBOYqIqWFaruy1gEgEvnTmNo3FVF1gocjmuGRcxH+OoPjeDxlSX02+P5qoPj+MzRRVxZl7FjxL8PNYmDbpjo9NEtv9FVQVPAcCnZSo6hKYyUBGzI/m2vd1UUOAYd63h22y0UisnE4rZ6AacWW1B0AwLHYHhsAjTDwNB1y16X8lihimhrBgo8E7rObCtUHTR4IV1NEAeBox0ruX5QFBiomhFJHj92sYH942WMpxC2Oa4e8rnICwhRxXPFU+DTFEfplxmFGmocKa44eYBRlqsA5jsMJsTlMLE4RIjFvUN0359PrFB5rDU7wBAwv2YVYax7aaTqkOXR6sQXrUyGA4XsxGKUyntybAg9RQViRieB51AQeHR7pLjyY9/9+tD7AGD3vhw7v4jXZdsdQg73QSzapFpBSL/Ptrsyigmqs3WrmOdYoWZQqEVhenwYn/oKmYsEFYteYtE+TnqffHgQQfLs0aOncct1BzKvPz5cw/xWF/N6zx2xaE8vm7LWNzlcKUmolotYb7ZDZHXW66FSktCVtzaHLYTVU4CpA0oL0BWAG3z+EwtdAx78I6AyBdz+E0CxT5XW1HXArW8HvvpeYOZWYOr6rd/H5wnyucjXF37/0d/HV+a+gg980wf6XnerrVABoCpUYTJkIKDNdCtUjubQDTRblXm3iSXK1jQNEivhUvMSUAI2Vjecz0nch3Y8sajICvgM2ccOIsbB4fFkq3mKoiAVJaz3iFPWfd95H3njg+Q/Oq3DK8KcOxu2/3QsZKMUi4YOJuCeEKcAs61GeZFPJZ7kroyhsSHn757Rc1R/gEss2sSQmDL2iKwIVQ9fMyMTI05mYUixGGeF2sejsKzJKPNlFKw4ElbyTzyPPnYUN7/s5szbq4/U0VhpRFrNDgIjYU7+0MJDOLZ6DHdM3xH7e2mpLScD1UaRJ1aoppmc3elFt9WNzckcKYygo3ZC22NYBqMTo1i4vABe5KEZmkMi2mS6aqiOhe5kcRLnNs7597VcxGpCk+CgKPEljEqjmGtdvYzgZ1aewc0TN/sI9xw5crxwcPWC7HIMjMcvNmLfKwksfv41bnHBztFLwxdPLgMgXXONjgpF8w/MpxbcSbXEM2h6FEynl/r3VBcj1GdeVMTwxFZIWacfBHME45CkWMxqwViq1AAAGxHZesOjY7HbMU0DH/jD3wIAKPMnY7dPMRxUlUxoz5x4JnKZoCoRcK+NQkrGomaYkFXDUSwaFAOeoZMVi50OGMFDLMZYoTJWJzTFpnupRxKLo6TTXCxI4HkBbY9ice7iOd+y/RKLtv3nVLWAosCipxrgC35S7+nH/Da2NYlHV0nIWBxAsQgArzhIuuceuxguBNYlMulsyX0Qi7KKosBCZNMr0eMVEa2e5lMxNzqKz+qz225BSiEWZ4ckNLoKVKuiyrAsRsYmAAAmzfrIal4oQNENSBF2ZrYlbk8zIJWSPzMJIsuEbFazoGQpFo3A73ap2cP8howbt9edc5IjR45NQJPDxJ2X5NN7fanQAQBizSEhHCvUGMXilS5L7AC7gfvuEPH4vHGS7ptMcaxQLXR7GZRmrIB2Amkh62QML6RYodrZf0vr4XnN5OhQ6DUbpmni1/7kQw6pGAWbMLO5wJMX47OjQ7DPoUcZpRkm2nL0sbFz8OIUi17YGYtx2LBycFxicTBrt6kxtxhqKyptnL5IiOyj372O999B1JT6ZjMWA13pX3n0aF/rT4zW0Wx30eluIRmmPHfEot0jtCHrfSsWAdcOdZCMRQCoXAVLwBAWj5H/dhuAdpVIzKMfATbmgFt/GBi/ZrBtvPJXgPpO4OH3A8rVVTflyJEVf/zEH+Op5acGWvdqKBZrQs35Nw0aekpUB8+ErVArvEsceUmqrPCuo9kuRnSCYpHhEm0Wk5SGXpRq5NktKgtueCyeWDRNE//0p/+E9dX12GUM2vApFufORBCLSRmLUVaoWRSLRvievKKQxnHGZCB3ZBQK7vFWdMV3/G0r1GVmGU8uPwmaphPJRZERI8loLzEbZYUaQp98Xk/voSJUHBteNtDR9vRDT/e1vaHRIZimCaWbMcMwBVFN/F6ohoqHFx6Ofk9X0VJbmCxO+l4vcSWYMFNVqV502h0UStG/yTFpDLqpo6WE66e2NasoEsWirSB2rFB1xSEWt5W3odFr+Na/WopFANhV3RVp4boVuNS8hBV5Ba/a/qqrsv0cOXI898iJxa9DPHg2uRPFm0V4biWb4u7JS2SSJvEMNmQVPYtYtMkcL3lY5FkfgXN6qdW3mlCMUNB5kWZ7mjZxSIOtyqsKpBrB9qInqUnEotzJ9qBRLJEi0/Llc6H36iNjodcAwFBkLH3oN/Cxv/kj1IdHUb/7h3zv33HPfe4fLAdVJZPLM8eiiUXBUiV654+2GiBI8vYisgSaPRWCZRFFMhOpxA43udsBI7gTKo6hfFFF7VYTHC+Asiq8Jp1+/RQjrrGRcTL5q9SIsrOtuN8waIVKMSzMYFZWAmy735khCSWRhQn47F0B4JlHH/L9XZfcjMUo1IZGoWkq1IR80SiMlUVcN1PD0fmmj+Ajn0kmnc0+VMONDiEW+RTlMABMVkW0ZA2q5n6ntY7q+412Oi2IkgRVNyKzJQFgul6ArBo+W9Uxyw7VoBiiarVWZUQyMS5G3AcYmkKBIzmHUjE6gyMLomxWs6AosFA0A8FT/PilBmgKuPvAmM/2N0eOHAOAookiMdgM4u3Y1xWi4OkHBTefx6QYAFQssTjfYQCYwMpp/xsCue+Q+0d/v3XaUACGgz297mQhFhke7QQCqGGNVVJKf45NmlxYaITemwjkFtmQNRPf/SEZv/QH/4SZibB66Y/e9WM4sGvGsfhUrILemct9NNDYxTGPZZSqxx8bm1B0FIuGTiwiI0CsUOO7nzesYp5thcqyDESh/8aQaauYVy4WwLL+OZVXsbizTK5nbZPEYpA8++pj/RGL48M1AMDCSsP/xuJR4NPvArT+rFUBZM5Y3HLoqtMssN7VBlKdzk4ShUIoY7GYXbF41bH4DMkh1XuAfBWs49YvA09/CNh1F3DkWwF2wAYphgPe+EdAewl47G+3dh9z5IhAUMnnxanGqU1vv6Nt/b1tSHSbeTJlLDJ8yAq1yrtWl5smFi3XG9t6MQoczcWSbEB2YtG2e1xfDtdehmKanEzNxNxfzuG9//O9mJyZDL1/4z03kuUYE5RnfJ07Oxdq4GYZFmxM3SHKCrUXM/+yiT+O5yIVi0+sPQEAKKtldDtdH1EYJBZtkvWDCx/EHz/xxwCSMyzjiMURzzytVPHXLKKsUM2YekUUdEOHrMuo8lXHCpUW/cfq6Uf6Ixbro2TumaSE3Wo8svhI5OurMqmvThQnfK/b1rntGHeTKHRandicTNtqda0XHsfHpsl7fIGHYRousSi4GYu2om+2PIu22vY1HAxKLH7w2AehpzRq7qntwXJ3ObOwoh88OP8gOJrLicUcOV7AyInFr0PcfzbeOjOIM0vZBsGn58jkriSwMExgYYMMUgJLoygwOLvsTqqLAoO2h8Q4tdjCeLW/B3nRU3g5uRDu2CmLXGK5brNjmmKp8mxigbIGZdv61Caq5AQr1OZGo6/PjCIWh0bHwwsCWPvPP4Z87jH8wrv/HLO79oasF3buPejuO81CVcik98KZk5GklU38zvV4Z0LQtR4igkrQXgSZ2upp0HUy4dBBgWPjFYumaULudkDz7oSKZ5mQFWrRozYzQINNUS16CVD79NuKN7FAJlJewns+SCyyHLF5yohGRwFFAWNlASXByoL0qDCrIxN4JqBYrEo8ZFUPkX826iOkeNXr9T+Bfv31Uzi73Mbcmn/dmlVN7sTYxkVhvauinJVYrInYkFVf5mmjq6JScM9Xt92GVCyRHEouWgm4rU6uhyWPrfL4lE0s+hWLttq1GKFSBcg9qKcZDmk/CAo841PRZkVJYNGLsEJ9/GIDO4aL2D4S3wmbI0eOjKA5olgM3ksVT1FLU/pXLEqBbniW9+c2ejDftQpPq6cj3yfr92fZQ1kZizbiFIv2eAsAYDi0Eop5a22yjaxWqIuN8LwmTrH4i5/p4Z+eUfGB//WjeNGRvaH3X33Hi3D0E3/kKhatBpTlRguNrFk7jp2XOx4pOmIVi7o1FjmKxcVngM/+OiHFAmh3eylWqB3wHOvsPzCYHapNLAaV7ABw9tJ8yOZrs4pFL7E4Viviy48c7avYYxPJCyuBwtbcI8DSUWA13iUjFklZpVcTHkJzvaMOlJO5acXi1SYWDZ1kH04cIX+3+ne+SIRpEAtUsQrc/g5ihboZzNwMvPgHgDOfxZC+xfuaI0cASUrEL1764qa3fzUUi8MFdy5iKxaTmqZ5mg8ppiqCq0gbyAqVC9+3kjIWKYpKJICyEos2dE0PjVuVegUMG372W/r4Eta+uIaf+a2fwbW3XBt6f3iaHE9FV8Bx3ufTLhbnwg4KPM1HW6FGKBa73ejvbM/TOJ4LnRtVV3G6TeaOFCjIXdlHLKqG6jtnUerNOGIKsPIxI4jF0QnXxjOY77eyuBJWnPYxhbZ/B1Wh6tjJ0rz7GVJZwtFHj/rnrymwieQkwnqrcaZxBm0lfLxXZFJf3Vbe5nu9zJFaQ1IDQxDddjeW5BuXSO1vLaJByFYsslZjdcgKVXetUHdUdgCAT0VoZ3T2g0cWHsGX576MT5//dOJyB4cPQtZlLHeX+/6MNDyz8gxuHLsxMf80R44cz2/kxOLXGTTdwKMXGpmXP7fS9uUlxsFWZ9n5ZVca7gA/WhIwt+4OpkWeRcerWFxsY6zcX3FN9BAG//70PC6s+gd4hqZQiCEVAIDLQIgkIYo8A0hmHgBs370PQLJisbURb8URBVVVoPT8E6f60IiPNNQ1QnzVXvbdmHjrb+HFd74KteHojBOHWGQ5h0zUNBUXz4a7MwVLIXqpJ2K5RZZt93TQFCAEbFKVXtfJU7TR7mnOvusmZVmhRhfGdM3yoefca4JnqZAVqldtpmhGakaf1wq1o5IHkWFLsWhbwXZUD/m1uoJO21PYpDmYKRkWXjQ6KkoCC4lnHftNSnD3cWhiG86fPoHWhvsgVS1wMEz4fh9eO+KRUVK8ilKFpuG+aydhAnj4gn8iahOLdvZqFqx3VVTEbMTiTF3CRleDqrnb3+iqqHmJxU4bhWIJsqrHKgGnauSaWuu4xPfo5DQAKy+RpR2ln01K28c9CFs1WJAGJ/EKHDOQsrDkKBbdh+GuouPEQgvXbKum5lY+W9i3j9zDpmZ2PLc7kuOFA9MEfnUMmA8U8a6GLR/DRisSQ4rFPn2cxFrgc4TY/V/pMQDNhhWLmwBtKIQ0tcbDTozS/NxlTyEsRbG42iLvpVmherEWKAAWJdFHVmnW/f7/u0PAF7+3iLe85iUYG6rFbo9lSR6u5rEge+L4WcA08Esv40HrCWOerdTwWKEquukcmy/93W/j/b/xU857tiWrQyza5PLq2dCm2105RBZ5sdHqhEihQYipacu+jeRU+tFTVMwt+p1GtE3GCXn3eWq4grnFFVy8kp3AGbeIxfmlQGFr7Rz57/rl/ndKeY4Ui54C4XpXHcgKdXYqWrGYpHb1YpBrpi80LhCl4h4rQ72bvcE0E059Glg+Adz8A8C2G7dmm6/6VaA6jSM0eSY5sHNbygo5cgyGJGLxa/Nfi30vK9padqVSVnhz3Gir3KYY8W42PMOjF5ir2HaUABwFWT+IsgQNEotB29EkK9TWev/ROEHSj6Zpn2pRt+Yiw68exq6f34Vvess3oWYp7qOgGIpjG2nj9DPhOZzACJF1jKiMRVux+O5/eDd+4td+wv0smZyvqIzFoN2m3JFDikXvOWu32mAD8R9J6rMsisUoBFWL/SgWWyo5v1Wh6pDSlOAew1KthHazjfMnz0euH4X6MJmL9BJyxLcSNaEGzdTw4PyDofdsxWKIWOQHJBZj5gW21eq6Eq4jjllNTrbFrE0i2mS5l5DeVdsFAFhoLzjrJ6lc42Arobt68ve7ZpjYo5/dCM+1N4P59jwWOgu4e/vdW7rdIMYmybGtBHLQc+TI8ewgJxavItoZ8w+9eObKho+0CEIPdH5dXO2imZK91vIUtmx7wysWkWgaBiYqIhY33AG/JLLoevZhqdXDSJ/F9EJAJfcrH306JEPs1161H9hWqEFcOEO6tGd27oFhGJBjutSA/hWLAHDyGb9dF8OyqA5ZXXZKDz/wxruwtrwEplgHP0YmDLUhd5LoPe4Oschw0FR3Qnv6eNiGws5YVMHg8yfIJL6jaD4yx0av23UUgDZk1XDIMJtYjJMs2upJr5Ij+DmddhPFsjuwq7oBUUp+KPISzR1LFVGp1gDAeTiwicWCRB62rlx0J7cUy/VlhbraUVARWQgc7RDu4NyHgqEJMvE89pRrqVG1yDbvb+pyg1xDo2UB9WHyIKkMoFgcK4u4YaaGo1ea0D3F25LAgqEpdPogFjdkojgUMlmhkrzDdUs9YpomNmQVtaK3I7QFSSKKxTgl4FhZBENTWO+6D0K2YlGzrin7DNvEYpwlsk3upZHRSYgjLdMgCSx6mg7do0B55soGdNPEXftHIUR02j4XmJoiioNiKZ9A59girF8ixe2Pv+PqfxbNEcLPSxzSrJ9YNNS+cnMBAIWa/29WiFUsmiYAaQRYv9jfZySAWKHyDrGoxTR+HT19wbMSh1YnfsxYbXYBioHUxy3t/sePhV6zVWyfPKXh0Ot+GOcvL6BeoHDzNLmnjQ1XQ+vYoCgKPMf6lHlPHD8HTl7B/7xLRHX18fidsc+hRyWgGkBbVsBzLF5642F8z7e49khdK2/SsUK10fGTLbphQlW11IzFaqDDexDFop1fGXSXsP88c9FfzNOMzSoWvcQi+ex+7FCHa2XQNB22Qm1Y1117AJWZ1umf6N8KeNREq+3BiEVXseg/99kVi1c5Y3HpGLFB3XcvaYboNrZu2+1l4LG/A2ZuAa7/ToDbou/CCsAb3uf8OToUf//IkWMzOL56PPa9J5ae2LR1n1exqCRkDfeDYdGvWAQQaadpg2f4EPHIeJpxBiEWoxSLAu0fV4Mk0VYqFgHg6YfDNQubWGwfb+Ntr3gbLpy+AEZkIO0l+1uPsW4HiKIrSCyeOXYmtJzACJF1DM0MW6Haarov8V/Cf277T+f1njUXEUQhdO7uv3I/alzNtw2x4Fcses9Zp9kJqc2SFIs2uWRSgdpZLdnJJ0Qs6v0Ti3Wx7ti4mp6GtmK1CJqhI89pHHiRR7FSRDdhjruVGBaHsae2B48uPRp6b01eg8AIqAv+62sQYjEpY7EiVMDRHNYjYpgmthEnLsZyyrKJft6y6NcMzSEbp0vT4GgOi12XnB9EsZgVO6o7IDIiLjUvbel2vzb/NbAUi3t33rul2w3CJl2vZg5ljhw54pETi1cR/VgX2njw7CrJt4tB0J5vpa04JGEcjs9vOP/mGRoCS+P8Aulibm80MFEVsdLyEIsCi26AxBir9GuF6l5a122r4rPHlvDAJX9HoDcrcquhyNHdh+dPnwAASKUyegmkIgC0mxuJ70chaJ0JAPVhUtDotFrYte8gJK9FqOEnFpc958EmbyjGVSzWh0dx9kQ4Z9EmkDho+Len5mGaJto9HYJlUeotBvbkLgTRnQxRFNBRXcWiZrgKyCioPZtYdMlmMUC2tJtNSB5SSNENiIXkyZCXjHZ5O3IMytUaTNNE1yIWy3VyzK5cOg/T+m4UzcJUsz8QrrYVVC3yrWST3Lx7nZeqdVTrQzj2mNuVaBOLbc9v+5JlXTpaElAoliCIBWjqAPlFIHao51bamGu41yZFUaiKnI90ToJpmmj1NNQkHhyTfoufsGyOVy27va6qQ9VNjJbch89Ou41CsYieasQqARmawlhZwEZXdR7y9x66FuVKDQbFEHtda3dstWspiVjUDRQ2kbEoCYMRgCWBgWHClzn52MUGRko8rpuJf9jNkeMFhz4aNfoGwwG6gpVlj+UOzRL7Uxua0r8vepBYTFAsAgCKo0BzPv79PkHpPaLGTMHRMxedmpfJCMkZixttgOVR6GPK9JVHwyTU5OgQ3vuggtf+XQf7dkxjqOq/vyYpFgFA4Dmn4WK4IuHx424xT9QS5ku2FapPsUjUnFIEKRhSLDpvrPiILVtln2yF2g4pFrOSSV7YhGLwmPEsOdfenEWAEKebgXefJZHD7tnJyHMaB4ZhMDZcdTImAQC9DUC2Cl2d1f5/W6rcvzXxVsCjWFxtDUYsXn9gNyolCVNjfkvgrxsr1MWjQHUbUJ4AKpOA3Nh8JgRAtvHQn5FGjjveAdRmN79NL3a8FLCtzeTG1m47Rw4LSTmK68p6IvGYBV5CYf7i1swHvFmGjNVWmUQsCkyYvPIiiiRMg5eYtBFULJ4/5ScWkywrW1ntzz146qGw2nR4bBhrX1rDud86h7GpsZBCMUmxqBp+YrFcL+PUMxFOTjE29oZphBSLclcGRVE43vBfRw6xKAhQdfe5vtFr4Mz6Gdw6eisA8tzdk3s+ojAqY7FYChCLCWOZva4B/2Qi2Nxko1QpgRd4zF2Yc16jGbovK1SHWBTqYGgGHM3BYA03xoRhsPvg7r6IRYAQydoAYos4pDUSvGr7q3B+43yI2GvIDdSEWugYVnjSoNvtw+690+rEKhYBko/aVMJE/M79O1EsF1EdI404wYxF1VAhMmROS1EURgojWPE4GFxN0oyiKMxWZnGlFc7q3AyeWn4K14xeg6qQNx/lyPFCRk4sfp3h/jOrmB3qb9B4PMU69Zk5t+BDURRqEof1HpmomDAxWS1A9vg2lQS/YpGlKUz2SSwWPGqhw1NVTFZF/O1TfhulStbAoAGgxJCGtmIRSLZBBYDmeqOvzxQKEp55zG+NoSoKNhrEekEQC/iF336fj9RTdMNnheonlAhZw/AiFItY3LX/ME4fDxOLtuXlMNXFQ+fWsN5R0e5p4BkKNEWh51Fw9uSOT7FY5FnIiqtY1AwzRBT6v5P10EG7E3sxoFDttJuQPPl4WWwtJc81Iwc67Cq1OnqaAZtX5wtFFKQirlw856ghKJaDoWUnFtc6CmoSD5FjHGKR8mZYUBQOXX8znnnCPae2PaidXwm4xCJLU6AoCvUYa9ssuO/aKZgAHgrYoVYlDrKqR+Y7BdHTDKi6ieFiNpXxVI18Z9vCtGHZJk94clW7nRYKxRIU3fCdpyAmqyKasgbNOlH7j1yPf/nqMegmseSl7cm89cBXjFEtl8TNKxZLwmCNC/b3sxWihmHiycvrODRZ6Vu5nSPH8xrd1fRlBgXDAXoPhpe8ZAJ5iEaEVWoaglaoLE8sVeNQniCKnjj0qZikTR2g0+8Tz5y6APv2p4INZfR5sbbRBBg+s2KxKHL46mN+xaKm6ZhbWsGP/puMn7iFx0fe84soBwoUSYpFwCIWLQXmvplhYoVqgdcTrOQcOy/GKQipuom2rEZaUXYt+7GQYrHb8J1Lxcr5SVQstjqoBIo/gxBTNoYDagGaIvmLpwOKxT4MBiIRVFXedsPBvohFABgfDjTCrFlqxeIY+W3rfTZAqd3+FcRbAY+aaKXVG+j87d+1DesP/ZNjEWsjq3o1eA1tKUyTKBZH9gLSEFCZBuRm/+cnChe+Csw9CtzwVmD7ba7Editx5FvJf7dSZZkjhwXTNHGheSH2fZqi8YXLX9jUZ3gVi5tVP0bBVsgFc/q84GkeesJ8J06xeKnVn7rIVkPZCCoWk6xQ+1UscgKHZx7x1ywMw8DC3AIu/+ll1F5aw2/+1W+GrAsTFYsBYnF653SkYtEmZ4LQDT1EuAbzEW3Y6lVBFHxq0gfmHwBDMbh7mlg72qSZ4JnPqIaKIu/WPdqtNqSyew41XctELAYVi877gXUpisLk7CTmzrvEIsdxMDLEJdmwfwd1kRx/nuGhGioEyf1eR2460jexmHQ+B0FaJuob97wRpmnigfkHfK83lAZGCuEajU0sykmW/gEkZSwCQE2sRRKLo5Oj+NjTH8PQJGlycqxQrWtaMzQfKT5ZnHQsXAGEyOmtxq7qLp9CcrNY6axgrj2Hu2evrg1qjhw5nnvkxOLXEUwT+Nq5VUzXsz80szSFxy41Epd5es7fST4k8Whr7sPleCWQOSKwvnjxiaroKroywmvBSFHA216yHZ1APaJyFRWLcQHpXmKx20nOVOg3Y3FkejtRLHo++szxp9FYJUXLgiSFgrZbsuZTLK62/QVQlqZAc4Jjhbpr/0GcjSAW7RzFUa6H9a6KL59eRlvRwLMMaAqQO+4krNftgveoB22Faq/XBWhy7gUunljULGWj4SUWA5ab7WYTxbJbgCNWqCmKRU9AeFczfQ93ldoQ2h77UYoCJrdtx5WL5x37U4rhYPZBLK53VdQlDjxDOwSXwfivyUPX3eSzt7UVi7JHjnBx1T/BrY+MZd6HIEZKAm6crePYFf9ktFbgIKtGSLEcBdsaeawS3a0ZxGhJAE2569lWplM2sWia6LZb4CQy8Y5TGQLAdL2AdVkN5b4qmkHsci2Njml16MXdV8oii55mQJQGJxbjbFbTYFuo9qzK8NmVNlo9DS/ZNXxVVdY5cnzdIWA9uaWgOUuR6CmkMZxfXair/Sukgl39rJhs31iZTCZQByFS2HRi8eiZiyjz5H4o68nF/rX1FsDwyNqLNTtWwwOPH/fZOZ84dxkX5pbwh98k4ndfLYJhwmP82FANz7y9CPNXKpHf22uFum96GE+eOO/8LZrdeIWr/TpNOxmFik6sUKPyEW0rVDHYHNJZ8V0fjmIxgVhcb7a3xArVRpBYBIBdMxM+xSJFUZtWLNI07Ts2L7n+IB47dibWWjcKE8FiXuMCUQVvv806ln1mQaud54ZY9CgWV5rKluYdfl0oFlsLRE06eT3AF4mqUG4kN0RkQa8JPPx+YPwIcPN/BYTBHSAScTXIyhw5LJzfOJ9oUTgujfeVs6hFjFP9WCD2A0q1lF62YjEhYzFOYWfDq36zEcxk9H22Gf27TFIsaqoGNSJH2Ea/GYu1kRpOPXPKR1YuXl7ExdMXMfHmCUx971TI1hRIUSzqqi+rcHLnJC6fveyoC22IrNiXFaoYMY+wt8mLxKbWXu/J5Sdx88TNKHPknmoTizY5qRs6IRY9GZftZhvFctGxxe1q3URi0SGSre8QbD6r1MMxGFOzUz4rVI7n+lIsttU2KFCoCTUAhOxWdMWnxDx04yFcOnsJ7Wb2XFJvpmZWmKaJ5c5yJNHfUBqJ606WJnFo+BAeX/Rb9DeVJkal0dDyEieBBt2/FWrC+RsShxwFaBRsdbJtTWz/DlRDRYFxtztdmkaj13D3tSwBDICrpM04MHQAa/Ia5H7nhzF4cOFB0BSN1+567ZZsLwlRmao5cuR49pATi19HuLLRxXpXxVQ1O7E4UhJwYiF5ovfUnJ8gGwqobkbLAWIxoEgaKwu+/LssCCrY9oyVscN6pjWsyXFVenaL9JqqYu6C22GfqljsM2NxdGonVpcXsbw4D219AaZhYP81N+D13/G9seuohuEjFhebPR8pwzE0GF6EqrqKxbWVJTTX/Yo2niWDaYlWUOAY/NtT82j3dPAsDYamfN9VkbsQS64ygZA4OhRZBsWScyImWaFa+6J7rETEwPXRaTUheWwse5oBIY1Y9DwodFQTmmFCsfIcy7W6L9cQACZnd+DKpQtuVzfDwshohdpTdciqgdGyAJqmILA0WJoUA3ne/X0cuuEmN1MSQMVRLJKZummamAtYEds5i4Pim6+fwoUAWVmTOMianpFYtBSHGVXGLENjuChgw1rPJhYnrPuQoeswDAOcRM5nUpPBTF3CRleDogWIRd2AyDGYmSWZi4UqyR4pxtxXyiKHnqZD3IRicVBi0bZQla2i9eOXGihwNF62f3PnNUeO5x2uJrHIcETJ5iX9GN6v0tHV/hWLwSI3m3IfLI1vCVlSZjz7zSTPbUzTxNHTF1HgyL5204jFjRbACMjgbA0A2D5eQ6vTxdMnz+PiugFFN3Fozyx+7ge+HT90UzzpOTpUxcFR6568MRd632uFum/bCLpyDxeukKw+wWjHEyG2YpFi0LZs1ogVqhppY+paoUZkLCru2Kha40yU6tHGRrsTyscbhJiyi1vDAWUFBRO7ZyZ9xCLPsVD7yDWKg5dYvO2Gg9A0PVHZGsR4sDjbOE+u9/FDRKWb0vXvA81axOJzYYXq7udyU96U4tTGSL2Cn/uBb8edL74m0/JXlVhcOgaAAnbeSf6u7wC6a5snFh/5a3IPvf2ngaFdm93LHDmeEzyx/ETi+7uqu/DUcthuMw5RqsGtKqIHwfTIeGoXvNMyFpPARcwr/vbo38Yuz8YwD0HF4oVTrho0yQYVcBWLWXP7qiNV6JqO408ch9pQYfQMTMxM4Pt+5vswcu9IrK1nmhWqnUcHANO7pmEYBi6d8Ss3o4hYwLVC1TzOQ3I3hVgUeKi66jt237L3WxwCyCYWCwXyt034eu1rO80OiqWicx47WrKVZlCxGGyYD6o8AWBqe5hYNLT+FIsiKzqKTp4h39ur5jzyoiMAkEhAB9GPYvHM+hn87dG/xS9/5ZfxrvvfhQeuPBBaptlLV87es/0eXGhewIrnOaapNDFWCDd/UxQFgRX6UiymWaEOiUNoq/Hkq2rNi0sFUueY3UdsyjVDc/I1AWBbeRvWlXXo1tyrWCpi/A3jYL59sLiXNBwcPggTJi42tyZ7/qnlp3Bo6FCkUnSrkXYPzZEjx9VFTiw+h3jv507hZb/1WXz7+74KAHjq8gYYisL2PqxQx8pCSDHlhW6YOLHQ8ikIvdlpACCwjKPEAoBiIJtspCQkWmNGIYqYeumU1bEnks6laj+BQVuAyxfOQte8E8nkokpWxeJBa750eOckAODzn/hnzL3/xzH3wMcAEGVdHBRNR23IDXifW+/6lHkMTYHhBCdjcde+QwCAS+fP+rZjn18TwJHpCh44u4r1rgqeIfacXnVmT+44JBFACBhZJVaolNUxWUhULJIJs+65fUhBYrHdRLHsTnoVzfDZr0bBS153VBOqbqBp2chWqhHE4rZZzF085xSmKYaDrpGJWpqTzZpFnk1a5BlFUZB4hijrBHdCt+/wdWBY9+GMoSkUecZRLK62FZ96EdicYhEAvumayVBtvF7k0VV0aBke5prWcRrvw754rCKgJWvQDINcNyzt/D5ttSwrEGI4ibCbHZKw0VXRUf3nStVNQt5axLVBkezPOGVsReTQ26QV6qDEok2c2uf18YsN7B0v93U8c+R4QWAzxGLagz9NMhZ9RAVN7FEdBInHQZCiAkBpYnPbt3Br3aN6THm4vbK46su+66gZiMUMKkgb20YrYFkGf/fxL+BFf9zG//k8mcvsnplMXG/MW8yLGES9Vqh7p8m85dhZUswT9CRi0RoPKBqtDmnEUQ2gLauJisWCEPjOpuHLw1QyZCxutLqoljavWLQJUUexaF2XZZ4oFr1WqALPbVqxCACS135s7/a+syEnRoNWqOeIzeboIULYt/rIEuNLRDn4HCoWDZM0qW0FsUjTNP73O74Xo0PZMn+2jFhcOx8mZxePEcK3NkP+rm0HlBYQYaOWGVeeAM59ATj8LcCeVwB0/rif4/mJoytHQ2SYFweGDiQqg7Kgq18dxSIjk2cc02oKTbJCjbPujIOqq/jro38d/9lm+PnKMAxf8b3b7mJxzrU97MbEyNhwrFAz9peUaiUUigV8/mOfx+l3ncblf74MAJjeMZ24Xi0h7zlohToxOwGapnH+hN/SVYxpKtMNHTRF+0hUuSP7bExtKLJrhaoaKniPzf3ds3c7xKhuNRvbBJx9PRU5vxVqsVwEZ7k9yZqcSbEYtEK1m5yq9fDYNTk7ibmLHitUnstMAgMW2emx3BUZEYqh+PZzfNs4hseGo1aPxdBYumLRzr382JmP4anlp3DT+E0o82WcXj8dWnZDTcj0tvD6Pa8HQzG4f/5+AESp3FbbmChGz/lFRuyrwSDNCnVYHE4kFjVrLmX/7svW3NKbsQgA2yvbYZgGlrvE/UwqSWBKDJgpZsuzEAHg2uFrQYHChY14++msaMgNXGxexCtmX7EFe5YjR46vd+RPGs8BDk0RwmWyWsBUTXQtB0GsBIcyZqMBRG240o7vgFvYkKFohs/udLgYnjx5VYvB3LOaxIGm+5OXCxFEJGttw57iXE0r1Ch4bVCBDFaozfSJCwAUWArnf/M+3LRvFrWhEXz67/8UwtQBVK9/NQBgaDSeaOoqfsViu6f7chY5hlih2irByZntEAuST3kJuBmLBii8eMcQlpo9PD23DpahwYSIxS54D7FYKXCWFaoMyipeBhWnXqgK2T/Nc/vwqg0BYoUqFUtOJmJPM8CLaRmL7me2FJITyAtkMrt99z60e/4nmclt27Ew53ZUMZwAXck2KWxYeYLbPLbDRYG19tP9PYoFySFzbZRFkncIAJetczXm+f1sJmMRAIZLAl603V8QHJJ4dBQdWga1QlPWwNBUX/eRyaqIVk+DqplodBSUBNYh/TSLrKVFMoEuJygWp2oFmABWW24no26Y0A3Td00pugGeocHGFLsqVsbiIFaoe8dKuHG25pDG/cK+DhXdwEqrh8sNGTfO1jAk5Z1wOb7BkJQ9qCtAH+qpEBgubHVqv+Z8hrZ5hVSqYnEUkX5ZfcK3hQCxGFSZHT3j7wRupgiTGhvtdILUA55lMDMxgnf/9b/iwAiNH7yVjPeTKXZUUTafvu1yrmJxqFLAxGgdxx1isQXE2UjZ55Rm0HIUiyZRLEaoBGzFIsdFjDVNt5CS1Qo1SAqVBiCmbBv76/Zbyi+rAEVRwK6ZSSytuo1oPMeGVPuDwEu6MgyDW67b39f6PsWioRMVan07MGGp9NbDqtRYCCWSsbhZFd0g8BCLwOYyMgfFlhCLnRXg338eOPM5/+tLR4Hh3SRfEXAJxuaAOUeaDHztT4hK8bYfAwpbm2+VI8eziZNrJzFaiHcMOTB0wCElBgFLsVddsaiBkAhqQm5qEnkahQ8e/6BDNvg+0zoWUYrFTqvjIy28akWAkCVJaG30R+BSFIXJmUl85K8/Aq7GYeK1hNRJI5p4Mf55SzM0nxUqL/CY3jmNCyf930Vkoq1QdVMHQzHodtzv2uv2IjMWbcWiIArQDM0hEm8evxks4+6Drd6zt2Er30qc+wzbbpKMRZvY7Wpdn8VoELbakTLIZxZ0S8FoDYT7rt0XWmdqdgpqz73GWI7tS7HY1bo+MlRgSbak99hQFIVDLzoUtXossigWrxm5Bj983Q/jva98L7745i/i3Xe9G/vq+3Cl7c757Gu3paRfhyOFEVw7ei0eXyJ2qGu9NZgwY4nFAlvIrFhUFRWqoiYSw6PSKLpa11EaBmHbIgd/95qhocC5291VJXPO+TZpBCt6rP0fXnw40/72g5JQwmhhFJdblze9ra8tEIvq+3bdt+lt5ciR4+sfObH4HKBuFajv2DOC73nJDtx7jdtFvq1eCBF7XgSbyMfKyRPRi2ukK96rtokiHLy2iUEr1EGUhVGKRbvLyqDJ9isDKoqyQtf9g/mF0ydQrtYhWSqodMVio6/P+4f3vxeN1WVI9QmMfdsvgxJJkW54ZNy3nK0+BIi6zKvsA4Azyy4JyNI0aI531qFpGjv3HcTl8/6gct7ySNNNCkemq+AYCsstBTxDg6b8JCrJWHQnu7UCh66i47t+9OcxPEkKGkmKRdVSLGqGO2OXvOfbBNrtJoqlMnqqAY6hoGSyQnU/UzdJ0fD6W16Kd//1R3HHPfeFFYszO6BrmlO0pXkRRsaMxbWOlSNYcydvEs9C1f2KRQA4eN2LfH9XCsQ6VjdMXFrrQmBpHzG/WStUAPjm6/3dnMMlQixmtUKVeCaRHA5iulbARleDqhtY66goC6x7TVmkNm1NdNMyFgFgueXJwbIULl5FqpO5GDMClUQWsqr7skCzYqpWwN/+11txYHKwPCH7/qdoBp64tA6aAu4+ON53c0WOHM97dBKyB3stkg02KBgOMA1QXqKC5f3EhTFAxiKAddVzj0ojFhkeELOpljIjQCx61YkAcPT0RfCewlhLTZ6K21aoWWCaJn73P87j7KUFlEQen/puCcMSufdOBhRsweyaqNxFLwSe9eU2Xrd/F46dJiQpBTOeiLZVbjTjKBYVHWh3FUgRKoFf+ME3o1KSom3SOu5nKBmIxY1WJ0QKDUJMHd67HV/+u/+DH33r66wPt88pFVKCCjy3JVaowe912w0H+1p/3CrmtToyUScaKjB2iGT4MXx/imS+BMBMVyJfDVhFRPuQ9qvc3ApUtiLXcfUMANP5PgCAboPcRyeuAQTrWaBqEYuDKsaf+EdipXrbjwMj4eJzjhzPJ5zdOBtLBgBEmTZZTFbjJ4Gl2auXsRiwOU+yQu1LsUgBf/H0X2BPbU/oLdvGkkO4dtNab/lUd958RSDdCrXfjMUznzyDM8fOgGZo7Pz5neBqZJ/6Vbx5oRqqL7IEAHYf3I1zJ8/5XotTLNpWqF4StdvtRlqhvuFtbyCORmUJqqE6WXd3zd7lW06z6hP2NmyiOsoK1SEW9WTFW4kldRrbRlcE2XZtuIb3fvi9+L53fF9onantU76/OZ6DqWWfi3S1Lsq8++wsMAJUXQ1Zfh550REwRQZ6xqiCoRFCJBsJDiQsw+Lt178dL9v2Moe03Vvbi8XOojNXta/tZkY1/zUj1zjnbKVLxtOZ0kzksgW2kKgo9sK+dtKIRROmLx/RC9sK1ZutqukadFP32fjurO4EBQqLXdJo5L1mnl5+OtP+9osd1R2Y7/ThaBGDJ5eexL76PkyWBr8/58iR4/mDnFh8jsEytO8kTNUKiYSAESgE1SUeXELB++JqF3WJ86mMoojFSY9qUuQIGWUjSn2Yhqh1Vq35qmZZoZavsmKxHVAcXjhzErO79joZTKkZi+vZrFBtdNstvPzeb4bGl0DRDExQMEwzZI156fxpGCo5GF1F9xXPRko85hpdzySKAs3yPjJy175DWJr3dxK5ikUaHEPj0CQpUHAMDZr2KxYVuQvWQ9hULWLxnm97G37jT/4BABIzNVWlB47joXhILslzfemaBkPXUSxV0FV1VEQOJgCukKw+C35ms0eOzZEbXwyKotDuaeAY91hNzvgtZhlegKYomQrRjY4C0WP3CQAlwbZC9Rc6D113o+/vishBVg3ohomLax2MlQVHjQu4VqhBYrsffNM1kxBZGiXL7qUu8ZBVHYqeTbFYEljnmsiC6VoB67IKRdPR6KqoFFgIFlms2fbBHLlHJBGLdj6sndMIwFFuFDzks6olKxZLAgvDBFhxMCvUAs8MdN8C3IxFVTfw2MUGZock7Bwd3JI1R47nLToJikWAZLYNCssOClrH/5oR6OjvJwfO3i0vschlICGKW5yfGiAW1wJd/kfPXMBejxVYmmKRWKG641KQEPSCoiisdzW85bV3QpZ7EFh3bJoIKBYvzXvPb3rjhMBzMDxj0LX7d+Ccx0YtlghxFIuso1hU7YzFiGLed73uLqw/9E/h7XASIUws3wsnYzHG2tQ0ScZitbx5K1QAuO3GQ+58TXHnVLtm/EVvgWfR66OYF4cg6dovsThhEYsLK2tAw1JzTN1AbDFrs+R8ZbUa5q0xUH4OiEXLTkx/visWV22nEc9vbfkE+e+O29182MoUQNGA7M9Sz4SV08DxTwD77gUO3AcwV7eBM0eOq4lWr4WlzhKmS8nWmbtruwf+DI7mrppi0YaTsWjED/ZCH64EwoSAxc4i7t1xb+wyUcRic73p+5zzp85jdNKd/2TNWLQbetNy9tS2irtedxc0VQMtuM97QQVbP0pIzdB8VqgAIRbnL/qJEImVYhWLNE37iMVetxdJLL7klS/BZ85/BgzDOEQQEM5vdDIWraYX+3oqcy5JZ1uhCrTgLJNETNmqNZMOzyUO3XgITMQz7kRgLsILPHQtey1C1mQfsVhgC8SaMzBnOvyiw9j1S7twuZZN1TaU4pYRh8Mjh9HVuiFlbpLFqBeU5wJYkcn8dFtlW+SyEic52ZhpsK+dJGJ4XCKigjhiMWiFCrhWyd7rS2RF1ISacwy8isXLrctY7/VXq8yCvbW9WOosJT5rpKHZa+J88zzumrkrfeEcOXK8IJATi19nmB1KfmAOOo/RNIXJWvw6F1c7mKiKYBnPhE4KTzYnPMQiRVE+9ViU+jANWdapFOIfeHlm85dmMCPRIRYtdDvt2OBwsn7D97fSC0+4F+cu4fiTjwIA3vZj/x3f+d9+0nlPBw3dMENWqGdPHIPRIfvWC0z4do2UcGVddpRpxAqVd3LuAGDX/kMwAso112aW/PfFO8gkjmMp0BQFOWCFynhsSSsFDm1Fg6YbDnGVrFiUIRYkn9WXlxTUVCu0vFSCrOqoWdcbI4YVZIahwzSiP3MtYPHb7GkoeIqk45PbHHsyAGBYAaraAwwNaVOh1baCssj5Mv6KAhvKWASAA9feBACOYq0qceiprmJxslYAy9AO6W8rFr15nv2iXuTxHz91J771ReRhuiYRcrbdS9/meldFWWT7+g1N1gpQNAPNno71roqqxDvrO9ee9TBaFuIbAgo8g1qB8xOL1jXltbpV9BTFokVUUwMSi5sBz9BgaAqtnoZjC00cma5iuA9b2Rw5XjBoLyW/v7YJYpEh9xHaqxRgeSCoOh+IWLTvUWa6YhEAyuPpy8QhSsEV+My1QJf/0dMXcXCX2zXdkJNHrLV1P7G41AgXVeaXVvGfj50DALzz9bvwmz/zvaGs3qDV6ZMnzoF61waod23EqzbPfA74wFsAQ/dZoQLAdQd2+eci3RgixC7IUV7Foom2HK1YjEVlEuiuEotcEMUiTdMQ+OgxqSv3oGl62Ao1QvF20DyB3i9IfiveJHiuy9Ghqm+bPMdtiRVqMXBsbr3uACiKApNxbLetUHXdIMSiUCaEIgDUd1nHMqO1qU0sKtkiArYUljrU5rTLW6Ee7BNbQyyGs6KweBQQa8CohzRmONLs0G30t31DAx54H1CeAG7/ScvmOUeO5x7/dOKfcMNf3dD3ek+sPAETJrZXticud3Cov6YLL1iazWyBOCjsFnI12DjlQWbFojWu76zsxL6hsCJ5vUDqC0WEHV+a601H9QUQK9Tte9xj67UHjYKTsWhh4XLYtWKjsYGnv0SUVPveuA8/9es/FVqGD+Qnnz1+NrRMHDRDAxtw1tp9cHfIcj5I/tlwFIuePMlgxmKUfWUwY9H3XpwVKh9vhSprcqQVqk3m8AwPGjQMKvtcQhAFjEy4cSwsx8LoI/BZ1mUfGSowxAI2uJ97j+wFIzHoitmUvvVg3nNGXDdyHQCiWvZikEzVtd4aOJrDsBitlpVYKZH496LTJnOSoJLTizRiMUqxaF83wWt3TBrDqkwcZGwy02yS6+ThhcHtULWYzOwDwwcg63Kk1XJWPLL4CAzTwOt2v27gbeTIkeP5hZxYfA5weokMiFHqo9FS/53U24fjB7aLax2MlgSf0ouNKEqMl/2fK1mTNnXlEsQBlD9ZbBiTFEVxIsyff81+3LJzCOUMNqpNLzFomrh49pSPWJQ7HRQS7DmDxOSyJ88PAC6ffAo/+pZ78aG/+RMAhJCd3b0PhkzOLw0Tqm44nyGIZKJw7tQx6F0yOZcDE74Dk2VcWZchW0UplqYjFYtpuG6mBoamwNEUaMqvzlTkLljBvWYqIgfDBDoKydgD0hWLQqGAnqdw5j3f9r4WimUomuFY/zIRisXHH/yK8+8QsdjxT/BasuojrDmex+iEa/tBcwKUjIrF1baCSoGF6FH1lUUWim6A4/3FvLFJ8hm7DhwBQKxjZc2ArGpY2JAxUy9gtCQQq1LTxJClWDQ3kz8GYHZYwvZhcu3UrGPYktOJxaasoSJyfSkWp2rk97/c6mGjq6JW4CCwthUqmfwaDA8KfoIwChNVEU1Zc8hxu8Aqeaz/FM2AwCYrFgEA/LOvTKAoChLP4MRCC7ph4q79Y33ZyubI8YJBErHY2wDWzg2+bcsSnfJ2HjOCa5tpQwkQixk6aNsa+b3Shpotm7C8CZseuRF+LfCZQcXiM6cv4uBul1hs9ZLHLKJYdOdop+b8FrXHLq3hxW/6KfzSX34BPc0ERVGYmRzF+EjNtxwduN8+5bUOi2uyespSDi6fgMD7icVr9+3wLxtHhOiuFWq7I8MwTfR0oNPTE21MHdiquuos0F5xrhFV0yGJAmkQO/kfIcXkhlX8CdpYRineZpsPkX8sHUvfH8BRLJ7doEBRlE+1KHAseltgherNWASAWqWEj73vnfj2V9+Raf0JbzFv7Ry5zu1C5+g+crzUjAV1h1jsn+jfNKxjrTnEYgFozgPrl561XdhaxaIHdr5iMAexMg3IG+5vJwuO/iuwcRm49e3AxLWb29ccObYQ733svdDM/pot3//U+3H/3P2gQGG2PJu47N763sT3k8AxXGal0qBwiMWExpU4684gKjcSR6J7d4bVij29h40yaf6QEL5neYlBUzNx/uR5zO5xj22aYlHuyNBU9zxePudXrDXmG/iRb/4R/Mu7/wV6l7gOlWtlbN+bTAx7icW4TDobUYrFXQd3hZazyRnT02psmqabsehRLMpdP8kXRVxpuuaQgqH3LMWiTU7aikWbWDQMA7qmo1gqgrXmvrIuo1AKz0XOPEqibjSVfJ5Bp9cSJt86CX4X2bepWbcuwvFcXxmLQcWiyIpQDRVC0T8X4QUeUlmCNJ1tXKx58577wI7qDhTYAi42/fW3rIpFLxpyA3WhHisoKHLFRKtiL7qtdMWibd8cpyjUrLFdpN3fvf35QWKxLtbRsZrZiiWrbtkGdtV24anlpzLtsxc2gfm5i5+LfP/ICKl3nd8YvHn08aXHsau6C7OV5Ht3jhw5XjjIicXnAH//NTJAymp48lQU+i9g7x5xybGm7J+0bsgaRssC6MBASgU0XSMl/2TJtgPsnn0ktG4WsBahlQVGK3uOyJ6xMn7gjl0YK6dPwL3EYE/uoid3Mbvbr1gUCxIqL3kTpP0vDa3fDBCLi5fdAbZ99Iv4q3f+MCZnduBHfuE3nNcZhsGO7WQQpSj4cnbuecObAQBnTxx1yK+gYnH/RBmaYeKylY3JMhQoloemued15/50YlHkGPzYXXtwwyyZRPkyFuUOaN49frZytNXTHLI7iUjRlAjFIhdWLHJSGSZIPiAA0EJ4Am14HiCCGXbNgDqv1dMhBciyyW3uw4qTRZmBWFzrqKgW/IrFksCipxng+OhrSxStfAOJR1fRcWVdhmECByYqGKsIaPU0aLq5JRmLQdjkbPCYRKHV01Ap9EcsTlgWpktNGT3NwGhZcCbfmqUgMihir8qlqCWmawVsyKqTregQix67XFuxyMTcJBy71ZiO06uNAsfg0loXQ0UeN8zWnpN9yJHjOUdSxqKhAWvZu8xDsBSLPmKD4cMKKi1AZHhz/GKKPKbX/+pqE4tRCNivehWLhmliYXkNh3a7D9utroKCGL+fXbkHjXILaac9xOLHT6j4jt/5DwzXyvjnX/oWx/qUoijccu3+xN188sS5TF8HAKCrxArVo1A8sGsGvHeuIK9HW2s6GYvECvWdn+/h177QQ7unhsizSMw/Ya3PAN1VUJZdlKLpxAZVk4GH/hw4/m/OKt+yR8WIQeaW1XK6YlGxi6UxHdwhWEWe/7xIzouXWOQ5ztd4NSgKEaTra++8GcP1SsTSYQxVPQrVxgWiVhStdUf2kd+3krFAJ1jPGQMU9DYN61hr1ny6XCwAT/wD8KV3hxXOVwkDE4vLJ8l/O6ukGcMLVSbnZfQAUKj536vNAL317IrSjTngqX8Gdt4JXPNtRP2dI8fzGL/78O/i/U+/H0PiUKpNaBzhkwUszWbOVhsUnDV+J1qhZsxR5sfIdz04HFZpfvTUR51/98zwdwpmJF4+f9lH+qUpFgE/OTl3fs7d9tEWPvLrHwHN0Hj7/3s7mII7Nzj8osOJ2/QSi2lqNM3UwPM8TM9cZGxqzGcRCRBrS4qifMSiTVpGEYtexeJG8F4NojCLO0eqooIXeDAMg89f/DwutwjhWuTIPtlkrHcfe1ovUrF45cwVAIChG+AYLtIK1QvTNFG/sw5hJ9m3yVl3Pstx/RGLPb2HiuDOL0SGEItR+8lwDNpGtvlAUKGaFRRFYXt5O+Zac77XB7EuXu+tY7gQn+0pcVJmYtFWLCZZ2YqsCImV4olFQwMN2smTBKKtUAGgJtScHFhO4Jz6zB3Td+Dsxtm+j4d9POOU2ruruyEwQojQzYqu1sXZjbO4c9udA62fI0eO5ydyYvFZhmmaeHrOP2GxCZWSwCZaUMZhu4dY/MyxxdD7E5XwRKgUcI6yVYymlZ9S9NhMxNkVBkFbRUjTJB3zmYmNTXh4h7dFJm+m2vNZmcptcsx9isVuB6JURPHgnRC3Xx+yrlKVns/+9MpFQiyuP/MlLH/0N3Hglrvw23/+jyhXa7719l9D7F56BgPNIlfKlRrEAilMnDvldsTLqu7Lzdw5UgRDU7jUIBMIlqZAMf6TVSyVMTwWH2Rv48h0FYeniL2Zn1iUQXsKn3bWZbOnOWRQohWq0iPEokdx61Wx2YpF2lJFDludbrTgn/RfPHsqcf+DJHmrp/ly+gBgcmaH82+a5aGqCqgMYeLrXRV1iXdUeQA5DlFWqEHUJQ5dVcecdY6u3VbFWNkiFg0ThWK8CnZQ2PbFHSX5u5kw0eppqBa4VALQi7GyAArA3Dq53r0KZk1VIRYk9FLIQBvbhgrY6GrO7ynKClXVTYhc/LYcu1WuD5u8LYS9r4cmyxgpPzf7kCPHpvHl/wu8s5qp2SISScQiAKyeGWy7gGuF6rU6ZfiwFaUaKHR5ycwsRYAsKoDSWPoycajOhF8LWqF6FIu2kturWGz31NTcP1lz7+c2sfjp4028/oNd3Lp/Al/8m9/G5JDfFeDW6w8ACGdz23jqZH/dyALnn4twHIvdVne8RvGEOIlSZNj2bzSxQn1ozsDjCwY6shKbj+iDrUSURgDTAGtl5aiaTuxCI5SSP/uiHl5cJplLlZIEXPgqcJ44JAQVi1cWU67zKAQsenfPuMU8gWeh9GE/FodiFtI1iCf/EXjs7wC4CtWqAHIMh3a5pPfwHgAmUbhlAc2SjMvg7/HZgPWZqvXbKUkFck015+NzPbcYosCD7de95eKDwKd+CTj9megmjOUThIiffSkhzb2o7SDXdZZ7nGkAD/4RIFSA23+aZDTmyPECwZi0ifE5A1iKRc+4ysSilSmdZIVKUZSz3KD44PEPOv82I0JBfIpFmDB0I0QsBtWAQXjzEG1icfnoMs79n3MY2TGC937ovRie9hM4NrGoxzyfe4nFRpQLhAe2YtH0NG5TFBVSRUosqUHocD9TNcnxZ2jGR6IGMxYbin8fdEMnhGaCYtG2Qf3w6Q/jscXHwFKsQ0TaxKLkaXKSdTmkeGs3/USdwAipisWe3gPtqY1MbQ8oFpVscxHd0CHrMqq8a4tvKxajiEUAaCrNVIXpZrG3vheLHX9tsxNsOMyAptrEaCG+8bvIFTM3GHRalhVqSsNRha+gqUTnUqum6rMlBlxiscj660heYpGiKLCWA9Rrd74WmqHh8aXHM+23jfnOfOL7FEVhpjyDK+0rfW3XxiMLj0AzNNy3676B1s+RI8fzEzmx+Czj0YuN0Gu1ApnE7R4tJmb+xWGq6g74nzm+iMUNlwwTOTpS3Vfhoz/HtGyOSh7lZBqRYMOQSK6f/R2SrE6vFpygZoryKQ4VuQuxUMDYpBvaLHc7EAuSo96LCin2bmN57gIAQNq2H7WXfy/e8GPviiSh9h++HgCggUY7QAR12i3MX7rg/m1l9dkQWAa7R4toW9ZoLEODYsOT/OntO6MPQAy8xKKq9EB5CBvbVrar6J6MRRo//gpCwtaL/s9XezKEggTVIo4owEciawqZGNE8mXCNWsQMxfmP1Zf/898QBwpEoehVR7R7GiQ+SCx6FItsNsWiYZhoyiqGS7yPfCuLRLHI8snFvJrEQ1Z1XG7IqIgsxisixioiOooeqULeClQtYjFt+z3VgG6YGC311x3IMTSGSzyuWMSibY0KAIauQyqW0FV08AwNlkm+H8zWJTS6ChRLjWsTjEEVrMAyTjZoELZiUac5oP9b4qZhW0HfsmsYFXFzD/o5cjxn+PS7yH/nHhts/W4C4WJauW2DwiqgUd4CAcu7JJSNELF4zv03l0FFlEWxWNpExmIUAsWCtQ1PMc9qvNq3Y9p5rd1VUi1B25o7Fp66TMiU66cLeOedAt7z3+5AKaJz+pZrCbHY6obJCU3TcfR0f93IPBe2oN+/k8ypelzVsm6MIEJsspEiisXPvU3CR95SQLsrE8Xi0jHg5KfiP1i25mFl0lDFWcSiollWqna2o33ctR6GC0DPKuZVShJw+rPEKlKTQ4rFj37mfuys9fk4FFD6+RWLrGNnvxlkUnMG8dQ/A0c/6sv+vGbcOi6T17nLDe8h/22GM7JiIdYGyjzdFHTFuSdoBlAQPQSfqUfnFl4FUBQVaaGbCFtdvTFH7ltU4Jlo+Ti5h03fGF63vp3YLGc53qc/AywdB276fmDm5v72MUeOr3NMFrfYUSAAjuGg6mpkDSAJ/SxPWf9LskIFsCli8dGFR3Fi7QTYJhmnOYS3FcxIBODLWJQ7so9gi4J3G7YVamW2gtH7RnHvT9yLUjUce3L4xnhi0TRNnD3mIRZjMulsaIYGlmNhav7jP7vXb7loq74MuGOxffxpivYrFgPfO6hYtJWmcYpFTSE5hLqhQzM0KIbiIyF169ndsbEEIZGChN0Dn33A97fACKmKxSBx5VMs8hx0LVtdwrbarAousVhgC9AMlzQNwoCxqRy+LDg4fBCNXgNta84lMqJDsvWDptLEWDG+SaHIFhOJfy+UHrkekjIWAWJhGkcsaroW+r07isWA60ldrKOrdZ17DmPVUw4OH8S4NN43sbjQSZ/3TRWnYtWWaXhs6TFsK22LzIDNkSPHCxc5sXgVoUVkrH3s8bmIJQkGIRUBP/HX7un4y6+cc/6erBZ8FoQ2Kim8Q9GzzqCCQqEPK8atgmk9uFMsj9a6f0DctmMPaJoGXR6FAcqxQrUJr6AVJwC01hsAAL3dwNNf/TTazQ1wlVFUb/nW2PO1fa9rPxbMCTx36rjv746iOypBG9fP1Jx/szQFig6fv+nZ/ohFueMvTniJRZs46So6VM0ABYBjaVyzrYpjv/oa3LnPPxFTlR7EYsXphWQZypeVp6nWd7aO63glmlj8ymf+PXZ/KwKNtkdBCZAMyGIg329ym/sgQTlWqMlWZhuyCsMExiv+/SHEop6qWKwWSCbluZU2xqsiSiKL0RL5juvdbJPSfiGwDESORjdFsdi0MhjHIlTKaRiviA6xOFH1T2oLxRJkVYeQQbE4XZeg6ibWrGMRpVgEkKh+tC2hFc0Aw4Sv/6uNokCO98v3bb2tbY4czzoGsA2C0kleT9eIYmhQWIpFykscMnx6xqI3pyyo8olCFsUiHy6EDQoTCBOLAfuxndvGfdanrW4vVbnX7pERtyGb+I+HTmNpdR0jJRa/dKcAJsZWws5A7PTC49LJ83PoKf2NV0KEkuHALptYrAPyWjSxaJ9ThkWr08WdO1i8fj+HTrdHiMFPvxN46M/iFbI2sSgNAwwPTiFEoqoZfmLRhkXo2M0t1VIRgEn2TQ+rQz/06a+iwFljkRy2QItEArEo8FwoP3sQZFJzxsHz2712nCak1vg17vulMYArAp0+ioKFGiH6s9rFbgU8v3/dMFEOHpPN5Lz2iWBWZ19YOe0Q4w4WngHqOwCrKdOH2ixp3kg7P51V4NG/BbbdDNz41pAN87MC+/6ZpYkjR44+MVOOcAXYQnA0BxOmm9uWsRSzoWQcKywwNJNKXGyGWPzLp/8SJa4EXiYFHpYKPzsFrVAr9Yov/67b6caSSMFt6LKOJ7/2JJauLIEv8hh/4zjomLrPjOXQEKWiXFlYwUbDPZbrSjKZoRkasdYMDLHb9/kViyWO3Jd0yqNYtI4/S7G+PEm5K/u+d/Dc2hmcSVaoQkFwCEjVUH2ZmZFWqHovZKX5pU9+yfd3FnvcYN5gMGNRz9jwbFvQeolFkRWh6moigRZUE241rhkm85azG2TuX+bL6Om9VJLeC93Q0VJamJDi3b5KfAmKrmRuGOAEzlEOxmFIHIrNg9RMzcnbtGFbsdoWut7t6KbukL8s66730qmX4lTjVF/K0eUM876J4kTf9ziA/FZON07nNqg5cnwDIicWrwJu3lEHAHz5lP/GrRsmPvbEYLLyrNg1UsQ/PnwJmqX0GisLkbaWlZS5q61iA6IJtyxIyul7NtD0WKECwPbdpHNm+L/8P3xF3wu520FBKvpINgCgCxUwxbq1jXUoS+dw5a/fgebaMhavpNtGeQf89Y5/4nPu5DHHngogxKJXsQgAN20nRYaeZpCMxQhiZXp7OKg8CV7FIgBfNpXEM2BoCh3VgKqbPqJQ5JgQ+aP2ZPCS68HPMbQvh1NVehDEAhSDvGYrZilOwMX/+xa8YmgdVHcNRx9/OHZ/KwKDpqw5GZW6YaKrGqgEMkh9VqgMB1VJt0Jds87Jtpp/Ql8SOPRUAyyfzLpXLYXx5UYX09UCSgLrqDLXI5QhW4XRkoCFppw46bVJvIlK/8WliYoIRTPA0pRjvWqjUCwSYpFjfCRyFKat47rctHOw7IxF/7kTORpMDDkvsAw4hkJPM8Awm7uP3Li9BgB46e6RzOtcu62Gl+4ZCRGsOXJ8wyDNYrCzBEQUiTLDUSx6iUUhbKUZzIDr1341S7F7wKauKJgUB1D+e6TXChUADu7yF0rbspJqhbrRM3Bq1cA9f93B8kYbZy/N43ibjMMaE1304RLmYP3aoAJxxCL5Lj2+Rs5VL6I721EsMmh5inmmafrJMzmmoGi/TlFAdQacVXhUVCtjMWiF2iaFrp7ViOMozXTiaOBVnq23uvjMA55u7/VL0fsQROC69FuhcuhtgXvBQIrFCFw7zgClUUCquy9SFFHFdVaAiCbI6B0aJrmAzyax6FHs6WbYxhYbl7Pv/yYxcM4iQKxQax5FjaEBq6eA0f1AoR5e3rZYbi3Fb9M0CSFPM8Dt7wBq2+OXvZqw1a9bnVWbIweAHZUdV3X7dnHfLtpTMY5OQazJa+kLeT+HYtMVi8zgxOIXLn8BN03c5EzLOCpdsehVKwJEuZeUG2dvQ11VcfbXz6K10cLFM+nOB07dI2JKcvaE3yY6TSWlmWErVADYsXeH72+Ji7BCNTyKRY8VapBYDKrM7Cy6uKxPradBLLhKOsM0fKSgpkUTi14rTaWnhBSLYobGuKbq39egFWq/xGJddMcjiZWgmRoEKX4ustRNGKO2AAdHDoKhGJzfIHPWMk+yo/shvRpyAwYMTJbix6giV4QJMzZ3MIg0tSJgEYtaNLGoGmqIWLQVi1LAjWVIJHVB+zsznrn9PTvuQVfr4tjqMWTFipxuIT9dmkZLbfVF4AJEragaKu7bndug5sjxjYacWLwK2D9BBr2PPn4Fyy3Xr/vUQguLzR5m6oMXq9PqXzfM1LDY7Dk5jsMlPlI5WE6ZOJeEwSe3NjajWJR4/2Br5/T1g9aGf3I648lX7DEi5G4HglQEHVDSDb/mxzD0mh8DADz61S9g/m9+FjRfAED5Mhoz7UPPX4A5e/KojxQkqjz/5NgmQgjJQwMRxOL+I9cDACYmp0PvRUHu+lUfpqcrkqIoVEQWskoUgmyAKAxCVXrgi67Cg2NoMB57TFVViHWmNZmtFznwLA2T4WHILeyumHjoC58CnUAYlQUaTVmFahWMOoplaSYGFYvuQxHFclAyWKE2LBXpdOB3WBQYmAAoPvn3aROLhgnsHJEgcgxGLMViU756WQNvvnkGz8w1cW4lPSx9rNK/0mHKIgRLAhtqCihIRXRVgygWU25C9nG1j7NjhcoGiUUmsWmhKLBQNB0MuznFosSzOP5rr8Ebbsj2WwGAX/ymg/j1N1yDkT4tZXPkeMEgjVhsbbJLmWYAUH5ikY1QLAatAL3Wh1EkVhBZFIsW4rII+4FBcyHLwxCxuNtv2ZXFCvWLR6/glj9tw4QJ0ySE3v3ro6DetQF9aE/0Stb3EZnw93ry5DlMjNZx4keL+Pz3JBRI2m6DXJQV6vUHyHymNmnNa9oRRSb7nNIM2h1/0SYTeeZVzg7tAmflH7mKxYDS0dqHnqZBFHjwNiGq9QDT8Fmh/ttXn4aqeq655hWiFEuD4j+n26dcZweeY535z2YgpVwTWXHtGA1UpgGh7H9jaDdRe2YspEEashSLVzdTyQeLwDVNYoUaIuA35p41e9aBiUW1Q47ziOf5YfUsIdy33Uzue0FUrdiGoBrXi4sPAJcfBq7/LmDn7VvaIJEjx9cLhgvD6QttAnZx3yFoMhoYeIlFW9GWBJqir6pi0TAN3DVzFziNbKNIFUPLBInF2T3+uUiaFSrDMjj59Emc/d9noXfIOLBt57bY5YOgIp75zh476/vMOOtIG5qhgeGYELFof5edu4ijk636MijDty5AzrnXClVTNd8+2CSbDfv8ikz0sVEVFaIk+q4D24oVcK1QfUSirhDlpYVHv/IoOq0OpIq7TIFJrxe2A01OXgUqy7HQU5yOnO1Yyrq64BKL9nfgCvHXZZwV6rsffjd+7gs/5/xNM4PVBAVGwHRpGpdbpLHfzoBMU7b69lEm+zhVjM8ftgnLTtAlJQZpBDwAjBRG4hWLRtgKNU6xaGdD2sSiVyl56+StKHNlPLr4aKb9BtLthgFgukxqJv1a3T62+BgmpAkcGTnS13o5cuR4/iMnFrcAv/epE/iVjzzlUxLRFLFcfM9nTjqvfe38GmoSh+3D4cleVqTlm01URR9xWStwkZadQ1Yth4uZwBU96iKuX8WiXcziMl5eER16wQJfikgqEkHFYpAUlDsdCEV/oUUzDIg7rgdldaX9zft+F+LMEUx812/BNPRIxWJLNbH95z6GVi9cjGoGiMVzJ49hxx7XKrXd06Do/knfrhH3qYalKSDCCrVgEXuimI2kDioWjcA2KwUOXcVATzPA0VTi8daUHjjJPW4cQ8F7iRi6jmK54hTWSgILiWccMlPutPGV//x3XHvTS8By0cRNRWDQ7GlOpqBN0NYCSrpytQbK2lmK4aBpCrhLD4NfPRVLWq11VNBU2C7UUemmFKKrngn2oSkywR22CKhWhOXcVuF7X7oTBZ7BJ59eSFQtMhGKwyzYZt03SiILIfDbLUglyJpOVIYp96C6xEFgaaxbtqyKboBjKLCBh4qgNWoQRZ5FTzNBb4EVqsAyKKR8nhcURWGiKg5sT50jx/MeacRieymkzMsEW3EorwMMD8pLGtFcBLGYkLGYAtPE1bPnay1EEhoGzYYViwH7sUO7/YrFlm0JGgOOZfCz7/8yrhuncf9/JWP/6Qse94sgYWTDIsjKXHi8eOrkeRzZux17hxm8bDubTtKaRqRiURLJ2FcYtoqLUXamhkrIVopCq+M/n2mEaggje0BZkgxV11EsCLFWqLpuoOolg/QeYGiQCu418eEvPIEXHfYQs+sXsxFVgWIe7zk2xAp1K4jFzTe2ULAyFmuzAB+4Tkb3k99xhqI42aFhQG0/J4pF3QR0AygHMqnQWky/V20RBiYWW1ae0dSL3NeWjpP73ext0esIJUCskpzFKCgt4KE/B8YOAS/+gfh7QI4cz3Nc7Xm4Xdy3CQCKy/Z53uL80ZWjyQubV98K9cDQAQyJQ6ANMv9gIuSBQSvUoMovzQq1VC7hQ3/xIfDDPHb/8m4AwNz5+IifEOhwNuXZ42exY98ObDxMSJOgAi8KjOASi4xlPc9ZY3B9iBBjDrEYl7EYmIt4icUgGWQryeKIRV3VUZAK6OruNr3EoqEb4AXe2UeAkEjea/tLn/wSpndMozZWc16LU0h60dH88xXvNnmB759Y9CoWLeUcXYif66/K0Rb2Z9bP+PZtM7/jPbU9WGiTcbQiEKeOZpbGwsA+zpZnY5exrXO95zAJWRSLo9IoenovsvEgiljs6T3QFB2ywB2RiOOSTbp7FYsMzeCWyVtwbO1YJhvXZq/pXM9JsI9VP8Siqqs42TiJO7bdkXmdrURes8mR47lFTixuAR672MA/PnwJ8xtugWykJODQZAX/8NAlxx7x4fNrODhZzk64DQCKovCaI66HuJ2fF4S9C0zQZsxC0aMYDBICQZSsPEa7E83O2MtqhUqxm1dHRiGoWAwRi90O+CKZoExYKsKzS21QLA/TNMELAl73lrdh9Ft+EbRAJhBzF8+FPudEg/z3/ovhY9kOEYtHsXPfQQCA3lmHYQIt2b+MlxBjGSqkfhgEQWJRD2yzVuDQ03T0NB0sk5yjZ5omWNElxzkmrGKTrEw+nqHBswwkjnE+c3lhHo898CW89JWvif2MqkjDNIGGZVtqE4tDAcKMoihIZULuUQwLRVEgLDyFUWUeXMx129NIVqAYUMLZ17yZMpG3iUWaAg5Olp1jUCmwaPeuXid/UWDx1ltn8filBi434ie+RZ4ZyIZ40lIsVkQOQkBNKhVL6Kk6RJYhZHcCKIrCREXEeleFaZpEeRt1jfDJhGFJYKHoOnhBAHuV7hE5cuSIQapicQEoRGSDpcG2mtR6ABsgFpkgkUL51WpaL1oRF4A9fimqdvWIxQf+iPw3aN9JRRCLqYrFHkqSiOsP7sLrX3Fr6KOGahX81BtehE++VcJQgXw3H7GYAo4xQ2HZT544h2u8RcU0skhXIolFB9IIACqaCNE1olClaJ8VKgAfyZcJw/ucf5qmlUMYJDNtIgcBMkgjGcxeO/pPfPUZvOHul/jX3chwbBPIR55lIGcs5iWhb9I1AjvrFEo8BYweCLtfjOwDehvxFrRBSCMk8zB4rXz0x4F//J5N72skrGeUtkrhwoaBsvd8ilUAJrB8MnrdLcb2qTEM1wYg8FoLpGFt7KD72uJRoDZDsi7jUJki5ybK6vWRvyHWvi/9KaI8zZHjBYjNEG39fkZQpZYGL7H41MpTkcvYY42macQKNYVYDFoj9oO7Zu5KXSakWNwbViwWigXcdMdNOPyiw87rpmnCNExU6hXcfs/tmP2pWbBVFhRF4fL59IgYGxRFoRVQ+585dgY7D+yEacXC2O8XdhUw8k3RERYM7xKLcTmEkcSidfwZivEpFgFA8MxFOoHx3SEWYxqPTdOEWIhXLAJ+G1Tvvtj48qe+jNtffbsv4zO4jSjYhGBUfiXLsdCUbI1AbbUNChRqQi30+bQQXwfMon7bLPYP7ceKvALd0B3iMwsBbWNVXgVLsRiVRmOXcRSLGR0QsigWxyQyvq/1ws4DcYpFng43lAUVi6IkgvG4QN29/W6s99Ydu9gkzLWzNQLY2bb9EItPLj+Jnt7Da3e+NvM6W4mJIql/28c9R44czy5yYnELYIJk5X3xpP/me/OOISiagbkGKaSsd1XsGS3HEh5ZQGVIFb95u1vss0nBrGHENoqCO7nlAgqletE/6Nl8gd011uuSSU7Q+jAOZu/q2BgFicXp2Z2+v+VuB1yBdCjtu+4WAMCjpy9j8Z/ehc7RL6BYrqJaHwFlfS+aYTF3wZ8FkIa2okGzigJrK0torK5gx16XWASA9W78pI+laZj05olFOahYDPz0axLpsO+phqVATL7OvMQiz9AhdaBUKqOr6BA4GixNQRJY6CYgiCI+9+8fgaapuO2ueGLRzlJctew0bcKuWgg/dDE26USzDqmdtv9A2DWqZCkWmQIhmwulSnAVsm8WsThaFlCT3N/CcFFAW9G2xE4vDj90524wNIVPPr0Qu0xJYMEPYEM8WSUPTDWJCysWi0XIqhGZuRm5rZroZGQqMSrYYoqCsCQwUDQTs7sPYHbvwcRlc+TIscXorEQQfR60log1Yp8wLRLDhAkwAijdk0sbtARkOL9isZ3NftXOOW7JChDTYb5p2Fm+gU5kg2ZDFgthYjGQsdjtoSiJePRD78FH/uCXyWseAq5WLmKsXnbmYtWiiFMXsqsEOBpENejB6YvzOLJvR+ZtQJMjrVAd0CxQHIkmqWzFItC/YjGY7zLsJ1GKBTFMZnrIZ7/KzAQ0/+c3OzLe8MqX+F7DwjPJ+wQQgi0GAseiOyix6FFfjg3VAAC10uDX8LXj1jjrVcvZsLPxNjIWhosjRLEYPCftRdIA0O7PMisT1A4ACvNdBmfWTJS9KoHiKMAVgEb/eaGD4N3/47/hL/7XT/e/YnuZkISOqtAElo8Bw3uj8xVtVGcAeYMQiF7MPwmc/Rxw+I3A3rsHs3TJkeN5gG3l7Dabg8JW9mUlFGx4CZXja8ejt201eSqykkmxGEUqpMEmf/YP7U9ZMlvGolgQ8SN/8CP4qff/FACS/Xf5Ty7jyl9fQbFShCiJoHlyzxmbGsPcuT4UiwAWu/553LkT57Bzv1ufsVVuu395Nya+fQKR4BCyQg3CVqDplDsWe61Q5UCTU8Gjhg+qANMUiwAhe7xKsCApKAUU70rgvr62tIaX3vNS/zYzzF/jrDYBK2Mx41yko3YgsqJTywNIxiIAsBKZ+4lF//7QFN1X1uGgODJyBLqpQ9ZlFNkiGIpJtcz1Yr23jppYS1S02cRiV8uoWMzgYDBeGAdAMh6D0EwNfOAZSzGUyJxVkRUhMIJDuu86sgvT2914l1fMvgI8zeORxUdS9+lKO1tTYokvocSVYhWpUXh08VEMi8N40XjEfPNZgP2bs+1yc+TI8ewifxrZQnz6qL/YXxJY3L7X7baqSxx2jxYzUIPxCJJ8UYiygDz2BBlsFi6cDr0XBa8VapDMtJVH73rdIdx9cAx1i1yhHWKRTMhE3n95ueP51SNevAhaobKcf7DudtpgRTLxpChg/tIF/O0vvg29uePghqZRLFd95OTQ+DTmLp5Dp0UmM//5gT/ElYsJBQ3TQKenQ7Mmv+dOkgePnXsPAAAMi1hsyuEHDftYEcVi9p+prkdnAwUVi1rgp1+XeHRVoljk6OSMRQBgPDmEXETuXrFcQUchykCWoSDxDFTdQEEq4dgTj2Dv4WsxNhX/wFi2uuM2uuTY2MrPeoLPP2gWqqLEv58CW3lrWpM6UYoO2mBoCkWewXSt4KwDACMlHh1Fh25cveu7JvF4000zeOTCWqw6sixy4AdoXnCIxUJ4/UKxhJ5mQLSI4jRsq0vYkFUomoGebhBVa2A9b/NCFEoiB0U3QNGMc2/JkSPHs4TOCsAnhA21F5OL4jE4/TSZizx8Yo5YoRoeYi5IZDKcX7GYMdeRs5qaOrIamVF8NWFEKRYD9mPVQOd6qyP7CLa5hRXc+d3/3fm7Xilhuekepz3TQzh98QqOnSHqz5/7nffj2JmLsfvE0wiRE6Zp4pp+iEVdTVYsAoQ86UUUmXTVUixSYcViWsZikKgMEIuSKADdhn8ZD8FVDRZ/AoTgnm2jOLzXU1wtjQNrZ5E6T01SLHI0OoMQi09/GPjw24HVcwBcNedmiMVrxmgstg1gaEf4zWErF7OZMS+1METUikF7YhtZsin7hdIGONER3Ja9KgGKBkYPkpxF/SrYs84/6SqsAYgCP3juZW2HSyy2l8j3mroB4BOKk7VZQpp7f7taD3jwj4H6DuAlPzJQc0eOHM8XzJRm0hcaEKeePgUAOPHVEwD8BE2WZuwNz1h3au1U5DI2sajKKhiKcYitOESRCmmwCTQbutX0ZP/Xi9ZGy/fdxqb8yp5up4uCVMDvPPw7+L1Hfg/rq+v4me/8Gaw/uA5pv4RytewjJ6e2T+Hy+cvoNsmY8MkPfhJnjp1J3N8V2e+GofQU7Nq/y/k7iSizQQs0kDLECqwA0zR9GYuKYTcfh61QN6NYBJCYsQiEFYv2vtioj9Zx6MZD/m1myAhPIsIYjsmsWOxoHYdItGF/B40m25DK/veHxCE0lWaIJM2SOdoPrh251vk3RVEocsW+FMaNXgPDYnJWa1UgZFRmYjGDFepEacL5/CB0Qw8pFlVdhUBHz4lLXMn5bdA07XPeKLAF3DB2A55ZSW+KW+wsZlLCAsCwOJyZWNQNHSfWTuD26dtzS9IcOb5BkROLW4hHzzfQlFUfDfeG69yOkkNTFYeE2yoUYiwPdwwHOqMUMsirPTJgjlljSqkRPRn2WqFybPQAMV2X8JabZzFkKRjtYGabWAzuW10k2+G62QYpuTu4kpEXxJBiMWr7tvJu9cxT+Mnv+iYoPQUTb/1t8BN7UKpUfeTk0OQMrlw8D00jZNdXP/5B/JfX3IKPfOD9AEJOY2A0Ga2eBlU3UHnz/8YFmQcviJic2QEA0Dtk20kFKJamYG6JFar/WGpmWIXqZCyyyVaoAEALHmKRocKKxWIJXcs6kxBxLBTNBGMpSV76insTt1+0CKymZRPb6mngWRpCkhKPYaCpg2cc2iShEkPOenHH3lHcvGMoQCwK6CjkfF9N/Ogr9sAwzVg71LI4mGJxvCKiLLLYOVIMn0+phJ6mo8AzmSaMM3UJ6x0Vim4QspqhQuRzOZVYZKFoeqS9S44cOa4y2ksAn5AH3Vq0rAj7g61Y7PZUgA0oFoO2ZwzvJxabC5GZzEGwFrHYkgdvNPHCCFoRyvEd2ibNhuzLG812eBsetLsySlau0SNPn8KL3/STWFhpOO/XqyUsbbj3+91TQzh94QpOnCNKs098/ms4+NofxP/37r8i+xCYjHC0GVKZURSFQ7vj82ZCSLNCBYDqNkDegKKb4EzP5xm6RbZGZCwm5DkBCBOV5Sn/R0qcX4WoKb51Qrl4Afv/N7zsWv+YNnaQKOCSiCrTjCfXQDJ95YzFPAeXHgKe+CAA0yI2twYlnsJa1wS4iCJYoQ6INSCr1ZVkNRJEkcdXC0ob8BTBQhmLUzcQxWWGYnRf0BXgS78LPPJX5PrdLEb2uuegcQEABex8WfI69Z1Eweq9Bz75T+S1236ckKo5cuQYCLZiTW2TscpLJi110i3X1xW3xnC+Gd1kbNsVKrIChsqgWExyicgIw2rw0CPuW4ZuoNOKz73rdrqOxaM8J+Ptr387Lp29hJ0/vxO1W2soV8u+nMap7VOYOz+H9ga5/64srOD77/l+vPtn3g0Ajr2pF6sRNSCfYlHtRO67FxRPpSoWbXifIb2KxaAVqjdjUdZlJ48RcNWFSYSMWBDR8zTKSYExN0QsBsi42+6+DUwghiQLAZRILArZicWu1nXsY23Yfwf31YZtObnU9f9eLjQvAADoLSoz18QaRgquUKPMl9GOiXKKwoaykWiDCgBljjT+yLqcuJyNQin93IyII6BB++4VNlRDDTUSKIYSew8o8+VEMvXlMy/HQmch9d611F3ChBSjBA5gXBrPrEh9ZvUZdLQO7t2ZXN/LkSPHCxc5sbhFYGkKS60eHrvQ8JXBbXtFANgxVExV6fSLoGVhVjA0hfO/eR8m+OjJQoFnYAa6jw9OlDFREWNVk7aqSLEViwFi0V6Liuiii8LSfH/2Gl7wooR2cyNyUmuj22mDsbITT3767zA8vRMT/+V3YKpkUhFULI5MzeKyxwr1Z973r/i5//0eGDr5Phtr/sGc1btoWXaQ7NA28C/5bmzfvc+ZOBq9DhiaCuUwesExNIw+FItxCJK0aqDGOVzk0VE0YlvJUEgTpdG8OwEXWDq0vKNY5GhwNI2iwEDRDawszgMAbkvIVwSIYnOkJDjZiu2ehgLHJCt2aQaqMniXnP3b7GnpxOB7vvMG/PDLd/vyR8cqAlo9HWrGh51BMVYW8c3XTcW+Xy1wAxGLHEPjP3/6TnzHLeFis1AsQdVNX8NBEmaGCmgrOto9+5oK2+V6741RKAssesELNUeOHM8OWinEotIaiFjkDc9De5BYDFqh0pzfarS9aGX5JYNlPIrFLcCih+QDACwdi13WDCgWKYoQk+1OfLHCq1j8/b/5KKbGhvHgP/ye8369UsLCmls82jM1hFOejMWP/9G78Pfv/nmw1pzr0rK/EMDR8JETbcXErm0T6aSeF7oGnkshFmvbgd46nlgwMGwsuoSMoToZi+2uf4zuW7EYsH0cLQTG246fJAuqQ4OE4Btedq3//bFDQPMKJCQUrTQZSYpGgWPQ6Sdvee088JXfB4Ys1UZvi0kyIOz9bmNoJ8moTMvYBNxM1WebWOQ8xGIw12j6RUTVlyUXsx9ceohcK3ovbP06CKZvcs/B2jmgMkmI+CTUZgjBKVv2uKtngWMfA/a9Gjj4umddjZ0jxwsBQXKPMsjv0kvQzLXS6w9eK8am0sR8ez60DGvZh9tWqGmKxTi1kg25m430SELQDtW3/bbsEGxrn12DUBDwBx/9A9AiGXdL1ZJv/ekd05g7PwdYfMd933IffvVPfhXFqtW0vRgmEdfs+5mF6lAV9VHX/cKEmW5zyaZboUZBM8nxpyk6ZIUqBtToXkWqoiugQSdmfhakgo+UCqr/gsSibuo+8vL2V98e3uYmiUVaoKEl1JiC2ykFXEpsYtFr8erFZHESAFHBeXFhgxCLQ4PksMdgd9V1q6jwlUzKVhstpYWxQnLunsRJRMmaolg0eAO0SGdSLLIMixJfiiTnDNMIWR8ruhKbGVoVqiGLXi/u3XkvaNB4eOHhxH1ak9cyW0yPF7MTi48sPIIqX8Wtk+Gc+Bw5cnxjICcWtwgzQxIYisJ/PBPOPrPr6TVp8yHkwe6yNNVPGuIsL2mKgiH7O2Pecc9+/Oyr9/ty5XzrMNEZi9UUAsGI6UxbmLsU+XoW8KIE0zTRWCVkHx3MIDEBXdPQbZPveNN/+SXc/uO/h6GhIWgN8nBQqlTRarpFreHJWcxfcrsSWaGAu1/3bbjtFa8mm9T934PVumj1NPQ09/Udlg0qWcFERWTRTlAsMjQFc5PEoq5pUHruZJfjhRD5VZN4dFSdKBYjSKAgaI89R6TNZZFkLIocA4ahUBJYKB7CbseeA0gDIeo0aLqBpqxB4hkfkRcCxUBVFejSMDaqu/GV08v46pkV3H9mBQ+cXcGDZ1fxtXOruLQWPWkUWKKSVDIQiyxDh34H42URLZns79XGT9y9FzSFSFvlmsQNnOM6VhGxrR6eLAsS6eRLIwNtTNfIw9Byq4eeaoCPsMstCcn3w7LIoqcZISVwjhw5ngV0VnwF/UgMUDTgdc/9l+FBee2ggp26LO+3AWwtZPpM2wq11d0axeL5uYBV5GK83ZBBMQDFYJgh86AbJsl9Lpiz6EWr00W3R/b1D37lR/C5v/rfmBxzv2e9UsLCul+xeGl+GT2FFKVEgcOb7n0ZfuDbyFwkaMdNUQA6pJj33Z/gsP89rf5sUAHA0CDwHB6aI/MVI0oBV9sOdNfwtTkdI+aKSwrqqkO29q1YjMhsNDy5QyNiYP5k5SvavF4lWPzR/MXEWw/7s7cxRlRgO3l/8dOHlCwunqXRUeyCYcoAJm8AX/htoh58zW8BoIA+soM2jeE9hFjMYl1m2272oRTYNGxi0Zo+hIjFSYsYXol2XxkYZz9P/qvKoXzSgTBx2P23rpDjnmYlXbVsIJtLhPh94H3EqvelPwWUkoukOXLkiEbQBYUCBZZm0dbc+9pcuz9iEQCeWn4qtIyjWOz5FYtxTixpisXFyxltqxPQWo+fi3S7XaiW88/Emyfwng+9BxPbJnDqF0/hqe95iigWN/yKxXazjc6DHZz+tdMYNodx+6tvx1ve/hYA0YrFoC3krgO7nNqW3tUjlwmCYqnExvE4OIpFKkKxGJiLNBR3H3p6j5ybhNKIKIk+ZV+QWIzK5POSWDfedmPo/SzEYhzpBwA0R0PtZRu/ZE12VHs2bNVlnGJxXBoHBSqkWLzUIvU7lt665pd9Q/ucf6eRbF6YpomW2sJ4cTxxOYqiIDBCoo2raZow7jMw/qbxTBmL9r5GEeWaoYUUi6qhJhKLSaTncGEY+4f24+mVp+N3xiTE4kw5m8X0ZGkSG72NVGto3dBxbPUYbpu+zZfRmSNHjm8s5MTiFuDzJ5ZwdrmNnaNF3H9mBUFewS6yb4XntGgpFL/1xmm8dPdwSBW4lTC64clnNSHjzibvHGJxk/u2eOVyeJ8MI5PdJV8gA/7aCuleZ1j/fusKKS598k9+A0avA1aUcGJJxp7RkuNpWixXfIrF4clZyN1s3usAIRZNAOtdd3937vNbF1UKHLpqimJxU6mcYbWiIIoh8qwu8TBNYjkaZVsZAss7zdc8E85klEolyKqOAseApSlIAuuzGM3yW7CJOlU30ewRYpGzCczAZJUCYFLEClXe9xosTt+BP//yOfzZl87iT790Fn/yxbP44y+ewR994QweOLuKkhi+jimKZEFmIRajMFYR0VV1yOoW2GalYGaoiB942S5cN1MNHfvhUooCZACwBfKwkVWxOGXd81baPSh6NFld5JPvD5UCR4jFAfY3R44cm0RnJdo+0YsM6sEgeNMzHrEiKK8aKGhzykQRi7XUz7AVi22LrOsnpzgKF64ErIUW4h/cScYiBYkmnz1RJvfM5bXorl9FN9FTVPz2n/0zFlcaKIhCKMetXi3hyppbmNg9NQTTNLHR6sMu3lLyfWmOxeWmiSP7tqesEIChQuBZ/NXjKl72/jYMT5HHQXUbKEPD8WUdNTRdFZmuABQDwzR9yk2apsBzKWNKBLGoerqt63xgPtheAigaix0y3oSsUANFIybYhFMcBcoT2F1IIPeU5OMucCy6WRSLugZ86XeIlesrfxnYdSe5vu1OfLuoqGSfdzrI2pEzso9kUmYhFm1SP+X7bymUlnUfIuczRCyWp8h+rQ/eiBhCdw248gQgVAixmUXNmQSuECYRx69xMxfjULPcIzorwLGPEwvVW3/IJVNz5MixJeBp3le0j1IfBuElC1iKTcw3U2QFLM06xJaPaKAAWI9DacTiwly4eT0rKOsZzFEcBh51Td3ExtoGPvQXH4KypIBiqRB5EsxYnN5O4n6WekvY/Yu70aPSx5GgAmqHp8lJWyfHZ62X0NgDwGTN1IzFKNgKQYZmQhmLQcXies+deyiGkpp/KUqij+SLs0I1PG5gXnKMF8PnPguxKGvxKlaKp6DJ2cYvWZdR5v1jkp3fGcyDtMHSLGpCDStdf25mlt9Pvzg45NbPakItcxZiT+9BN3VMleKdnmwU2AK6evx2T66dBDVGgRGZTIpFAKiL9UhiUTf1kGJRNVQIbHQNpy7UQ9mfQdw5cycuNC+gpUQ3DzTVJhRDwc7qzsj3g5gqTkEzNd9vIQon106ipbZw747cBjVHjm9k5D4qWwCGomDCxOHJCv71iTnsGi2lr5QRK60ePn/CLWrZJMK9Rya37DPisH7/P0BbvQw6I7FF0wxgAj2ZDHyD2rTaWJy7BNT2+177r69/GS6ePYVPPZ08aeFFMhnrtJqhq1xvrWHpn98FALjl234Q5wUJrZ6K+Q0Zrz48ji9YyxUrxArVnjqMTPWRRwSAsSY9jY47IQsq9WoFLjVjEaBIYdQcjPDqdvzd5UJBCuUI2mrapqxFKhCDMBkePEOjp1lqtCBpVKqQjEWOAUvTKAcUi1kwWRPx2KUGVN1Aq6ehKLCwGxTVUf91wdAUTIOGqigwaRrS2ml84Bf/CziGgmGaMEyr08wk9TaBozFaDk/eigKbeD6SMFIiE8T17iaLUBnxP+49iA1ZRSFA0I1Xtp5YZKws0nIh25AxURVBU+RYKJqBAs+ErpFSyrbKAkvUvrlkMUeOZx/dVaCeQD4xgpu5BmT+nYasUJMUiyFicQmYvCH9Q6xbjWOFygqJmXhpOH95ET7T14WwMsGGSTE+20nOsqVeb4VVXisdA9/6D2S/vv9b78HYQ79FyIyX/7xvuVq5hLX1NgyTBU1R2DM13P+X6DbIZzZIUW8QxSLPcbhrJ4NPfXcRi1GqOsvacb5lkkNw+SGi1NKJFWrQmrZYENKbjKz99kKtbIfQOAWOAWqsQhqNbPKnvQQIFWgm+Z7VELGYwUpu5iXYtfTJ+PdTLLh4lkG7p8KpFsfhwleBpePAy38BOPR6otCVRgiZZRquFXF7ify++mlOzDpfHNlHvk9nxVUkeqHJ5NgyPCHCaCZVsbmlUDtA0VXnhYhFigKmrgcaF0m+ZtBOeRCc+xL5ngfuA57+l80Ti9UZ8rv23st23pl+PqVhcu9aOwNcfoRkMl7zJvJajhw5tgwczaGrdWEaJiiawkInncDz5p2NFEZwsnEy1m5RlVUwVLQVKs3QEG4kv+k4tZKNhUsLQCAebfXKKlBL3V1wlktMa6MF8IC65o7HelfHxT+8CF3T8cpvfiUWRqO/f6lScvIUAaJYBADxiGWfmqT0B3kODxKLuw7scv6tbWgQJgSfDWkkWMDU+n821K0oHhp0iFgUCv5j7yWDFF1JtakVCyJWddf6NZRXWHZtRWtCDY1eI5EUjNpGFBIzATmECOTY7WgyKnzF95rACKBAxSoWAZKz6LW3NU0zpGDcCtww5s79+yEWbXWwbduaBJERExWgX7z8ReffWTIWAWBIHIrMPdQMLdRIoBkaRCbaxSPLd37tjtfifY+/D48tPobbt4WtdZetPO3dtd2h96IwWyF1z6XuEmpiLXa5RxYfQYkr4Y7pOzJtN0eOHC9M5IrFLcAjv/wqvOubD+P6mSoME3j4fNhTflDc9Gufxk//w+PO32kWh+WAVeFmRJLtJz+N3uWjqbaY7meR5WzFoq1u5AbIewOAxSvhDuSLZ7PZHQkiKSZ12v6unTPHn8GVv/ppaE3SXTV7/cvI68tkn+/c54Y7l8o1NNcbzt9DE9k8yW2w1gRgw9MtFlQs1iUe3QQiy1Z9UimdckkIEYtiIUTy2cRiV9XBMXTqdWPQrt1mlM2lVCoTxSJP7EVLIgtFy0DYWcVpChSmqgU0uypU3UC7p6HIs861aARUK6xlGatpirOdveMlHJqq4sh0Ddduq+G6mTpumK3jxu11HJ6qRipqJb5/AtTGiKUUbGyR/V4WVCKUlxOVPnKzMoLmye+pnGJfaoNjaAyXBKx3VSiaAZ7xXyMUXKvkOJREDqpuQhvA7iZHjhybgUEIHTahI7c4DHgssdPIFhu84XkwZkVQXpvBNGLRUP1kZgocK9SUYl0afIpF0wQWj4aWse9uZkBNz1v3ufWm//icOHsJt/5ZB08vkfHm3pfdBKyeAa48RlRaHtSrJTTbXYe7nRwuQRT6JFCsjuOmZf91ZO+O/tbXVQg8B97KOaYjCiW2daNmAJrJkJw6gJw3ikar33xFwM2X80Atk2LHzhqNMt3zK79aiz51WJpiMRK7X44poYNq3O6lWIEKHJ0tY1GTSdPY4Te636E4Qsg03VOAbi+SrL9+EBMxEIJNJsYVchePATCBbTeTBwqxtnnFomkC62FHkkgoHYB3z2Epyjp3283AxqXQ72bgfTvzOZK1OXkNOUeDKEa9qO8K59WO7Elfj6KA8iRw8QFAKAF3/DRQnd7cvuTIkSMEjubQ9TQfZSFGvMTimDSGM40zscvaikWb2AqCFsjzdBqxuBi0Zbe2nQUcbzUQBxSL85fmcebXz6BzktzXb31lOCNt6JVDmP3JWZSq/sZ5qSShPpJ9TgaDHDfdMz7t3O+qp4yeAYERUnPdTNYcyArVIcg0wPA0WPMC74vM4WgOTdVDLBpKrJLMRsgKNaBYtNWfsiZjWCTNYWlEUZpi0TTNSHLSsSDlsmdR9vReSLFIURR4hvdlQQYxUZzwWdcudhbR03shK9jNYro0jZHCCKpCFXWxThoB+mg8ni2niwMkToq1Qu1qXZ8quSCRc6ObOugEV5RhcTgyD1I39VBmp2qoENnoGs6QOARZl6Hp8Y1OO2s7MVuexePLj0e+vyqvggKVmVjcXibNpUn3Q9M08czqM7hl8hawee5zjhzf0MiJxS2AXS8fLgkYrwhYbm0dsfBN107iJ1+51/lbTCHp7H151SHiJc5aRExWftGUN5/toljWmzuGi/jvr96PmYjMtixYiCAW02DnNYoSmfx2Wv7JqWmaYGvjmPzO3yB/W4SdqpsYKwvYM+ZOqkqVqs9GlBNEjIxnV4oyehcUgLYnOHt41O/xXi/yaCcUoCTBJhYHH6xDVqiFYois8eYFBkmgKBg04xQYeTZscymVSpA1wyEDSwLJy0tDrXOR7CNLYbImQtYMtBQN7Z6GkuBmLJqFGlTPQwHL0DBBQ1M299srCowvE7MfjFkKyGZG25GrhfHy1SAWyTajiMw4TFVFNGWVWKGyNLwxpzxLpzZJlKz82CzXTY4cObYQShcwdV9BP4TCkF8dFGFZGQXe9Dy0syIobwd/sIGG5YkKKfi5NlKsBH2KxU3Al7EorxOrxABoioyphqVSswsevNXAsr4RLixMlCj8zZtIUa7oteEKFA7qFTKfsUdtmqaxayYgW0iDvOFTle7dnm4L5YNBiEUbVJQCVBqCyQrYVqGxghrJotRVR7HYDjTdFAsZzks3fF1ploJtqkyhaHaIGsxGa5EovSyEicUMisUdd4CmgNtnY+ZdKcQaz9L9jVveTJrSGNBrh3P9en3mGma1gtoxAAEAAElEQVRW2Vlzt7gC3fyT5PhO30T+FmvEunVABw0AxEr4E+8A5uOVvw7Ujo+UK0sRhdaZFxNFcuN8+L1+sXoG2LgM7L6bEIJA5ntbCKJ1XY4f8nd5clJ6vqINSwWMF30fsO3Fg+1Hjhw5EsExnE/5FbR2jILXlnCqNIW51pzP5tILRSYZi2lIIxbnL/VvManrlkqPpiGVpFDGIk3TYAoMdv0Sud8FswYBoHRNCcKEgHI1POea6mcuYRAr0IbccF7aEXBPqPCVSGLRS8qajJmZMPNCM8m4GCRjg9+5zJd9ikVVj8++c7ZR8KvdbBtRG8WSq1gclUgTexqxGCQng+ionci8Tpay5i5sdM5lELqhQ9ZlVIVq6D2e5mOtUAFC+HmtMs9tnAMAbCv314yfBoqi8KHXfwjff+T7MVwYhm7qqdagNhiKwZiUnktcYAuxisWvzn2VZKRal6ZNFK/Kq4k2q8OFYXKeAnMs3dBDisVEYtF69tlQk0n326dvx5n1M5Eq00avgbpYz2SxCwCj0ig4msOqHC+YObN+Buu9ddyz/Z5M28yRI8cLFzmxuMW4blvN+TebUekXB2N9Hq+7dgpHpt2BPmtO4y07h/F7b7oe+8bJJHBKuQS93cAQEz85WPiHX4b82T/MvH9nTxzFf37sn0Ov24pFVVHwwf/1k4m5jElYnLsEdfUyjF4nPfPPQqdFJoKV4TFQFIVOqwXTNNG99AyUnozdBw5j/Dv+F9gieajXPeqCfeMl1IvuvgpFvyUEAEzN7si8/5Rpolrg0PIQi8HzN1zkfe8H4RCA7NYpFvli+MGgLrnb51kq1QpVB+soUaOUf4ViBYpmoGiRQ0WehaqbqVlXtOehbMwiyFbbCjqKjrLI+fbLVhYyNNlfg6Iz5W8moeSxW+0XQ0UeFICO8twRixxDoSoNfq3Eb5ici5KQPTd1qlZAU9bQ0wwIAbKaz2C3a6uvc2IxR45nGT2roBJU2Xgh1vxKwAjLyihQ3iJI8AE6pFgUwgRLMVwcWF5ZQVcJ3/tbVvHItIhFwxjsXuIjFtcvRi7DWMSiaU2rW1aWoMhzqJaLWLfyED98TEWz1cG+ndtwrlfDe0+SgkQxoph3z24G33s95xKLnkO3Z7ZPYrDX9JFNXFq2YRC66stDpKPstyyF1WyVwjI9AqydJYSmHqdYzKC6jMx2cecRotkCRE8xrLNMchIthKxQdSWdFBvahXVdxJ07YsY7tQ3QbKyavsCSZrWBUBwjyrsgMdic6287wd/NoJh/AhjZD5SsYyrVAVXenD3okqX4nX8yfVm1A3hUFOWoXKOpG8l/V+IVQ5lx9vPk8w5/MyF5gXg1ZxpKViOhpeR1lK7De8n9MwuOfBtw6A3Ajd+d3OiRI0eOgcHRnC/vzrYMjINpmr7lZ8oz0EwN55fORxI5Pbnnqsjgkn1BpGYsXu4/Y3Fjldy/BEnwZSS2nm5ho7GBsakx7PyFnRCnyBykUAiTDoVZ8tpmiUX72HgVULZFqI2qUPWRerqh4zMXPoMvXf6S85pBGwMRi7ZSUu36x8dgvmKVr/py6hRDibWodLYhiT5lXyhjsUK+p6zLjmVuoo0pkKr686oqvWDsZiUOmbIobYIuklhk+EQr1OnSNDpax1FOXmpeQoEtoC70oWTNiJpYA8dwjuIzTdlqoypU3WOSgCJXjP2uD1x5AIeHD4NqkdqFVJRgmiZW5JXEzMIxaQyaqYVIUN3UQ2R1khWq/Z2bvWQByGt2vAaKruCp5ejGrali9t8rRVEYEoew2o0nFh9aeAgiI+KVs6/MvN0cOXK8MJETi1uMG2fdgXSqlq0jJA5GYy61+J6Eksg6qiAOGi69563YMxaf/yiffQSCmb0Y8ZmP/wve8+u/EOrCsYnFD//dn+GLn/o4HvnqF6JWT4Su61hauIK5P/lBXPy9N2G4lE1x0G6SSQYniCiVq2htbGD1k+/FxiOfwFc+8+8AyEBp77Ph6SA8Ml11VFIAYHLh8zc1s6Ov7zFSFhIVifUij64a/779A6XorSMWBSk8cSxwDDhHgcikEtg6aPDWtVWIIBa5ArnObHLIUV5y2dV0E1Wy7FKzB80wHbtWG96cSJvE101zU5l8vvPf57osQ4eI5GcbZZGLJHo3C7swX+6jSWBmqOBaobK0kw8LIDKXMwj7XGSy0M2RI8fWwX5YT+qWFit+IrAzgAV8cDygWX/zCSv4rVDFGrEEDOCpp55Cqy1DCxTrOhaxuNwk/73/sWOpuxRlrXThiodYbFwEGB4N2b+cfTszrOKhbTkq8gzqlRKuNLp4xydl/MC/9vCBj38eAEDRNNo6uV+HLB5NA++5V8Tbb+ZRL1hKfc/bu/tVLPaahOAbFIYGwWNfTRkx1pyVacxWaSxjhOT2NS5YVqhMiFgsZrJCTS4cCVobsK3RDZ2oyyqus0SkFaph4Gc/JePLF7QwuQ0AFIXT+gTu3M5GW6cqnej1LEgssYMdCOUJQIk4V2vn+tvOZu1KAdIssH6RZBjaRJg0TBSLmyIWj5P/blxOJnl1hXyO6Db5hTIWAWLnWt1G7FA3k8msq8D5LwMzN5N82eIIeX1QYtGGTXzb15JYgc/CIQk3fS/w+t8HhuILlzly5OgfHZPcI1VJJYpFixgxmgbWeslZgU2l6VMn7qjsAACcXDgJXdfRDlifqz3VVZEBePLx6KYKL9Gg9MIER5QVahrWVsh3ESURpWoJG40NLHxoAVf+5go+8cFPAPA3PRcC99iG3AA3RJ79oojF6e192DNbh2xFXsHyJ5dx4Q8uhBYZEod81pG/ev+v4kOnPuT8zdIsTDq7YtHwhAyqVsON0k1WLNbEms/qVjXUdCvUguhT9pU5/7GSSoSI6mk9TJTI/G2zGYtRFptA/4pF+7vGEYtqQqOSbTG62CHX5lx7DtvL2yGyYiaV7iAYEcnYvB7ZeBaGTcqlQWKlSHXmhY0LmGvP4Y173+i8VigVsNxdhqIr2FffF7tNm0QO3lM0Q+vLCnWkQL5zmmLx+rHrMSQO4fGlaDvUfpWkY9KYz+o2iKMrR3HzxM2pv48cOXK88JETi1uMXSNFFDgGhmn6LFL7xYV3vwnqV/5qi/du69HaWMfast9726tYJP9Nz4YJKgnWlhega/0XLnqyO0mTyiWcfOhzaD35aVSufzVefu8bnPds6wjNdCc9t+8ZAUVR4EZmIUzshlQOT7Am+yQWR0sC2paCjYooJATJsiBYax1qE4pFOUAsclK4MEtRlGNzKWTIxFRNQg4B0cQiJZBinr1NW7lI89nJdjsrcHGDXD9DRX8n57qn49Cx/GW4vjz3g/BmlDY6/Rdhh0o8OgmZmVcTe8fKODhRznT++oXJ8CReicu+7ZmhokMsihzjs8vlWTpV0V3KFYs5cvSHyw8Dpz+7+e3YluhJVqNC2W/vF2EPGkLw3hzVne/NKGR4P8EiDfttTX2duyZOz/nJzZZlhapa47waoxLwot3xF3qaCrDmtQ5bvwCUJxCsaYUVi4RYpCgKlbKEj3z+UfzeAwrefhOH//bme93P65LPKwY65nHlCewdJvtdK5Lv7D18u2ez27KrBgjhltB1ngpdgeBVLMYVxKozmKnQWDKtJrtLX3OsUFuBY5uasWjoROWVoOJgtaZrj2vbq9W2O++HiEVdAUwN/+crCm5/fweoRHdvn9GnceMkDTqqoKK0E4nFAqOTYz4ISmNk+0FCcyODYtF7gWxF3uDC0+S/u+92iTBpmJCWgxKLhgGsnCINBM05YmEaB5scFd2GTYdYDBKSUzeQY5TF6jYOc4+SY3/wdcSq1LbUzZgfe9Ught1TcuTIsTm0QO6RBmeAp3kfsdhSWrGWiABC1oAVoYISV0KLI9u8cNpPmNkZi5RlPd3lou97XlJhfdVPmui6jqUrS8FVUrGxTIgIlmdRLBVx/2fux9JHljD86mG8+QffHFpeCFiUn9046/y7VAnXD/q1QrWtFUdePYLZt4dz74LE4kRxAn96z59id5XkwnE0B4M2MinxYAKKx6lLs8atILEoBOYidaHusynNYoVakAo+Ai6YV1gsFdFVuzBgYEQcAUMxmyYWWzHjvK2ONZhsyk6bWKwJtdB7IiMmEos7qjsAuMTiUmcJe+oZMoQ3gREpG8lmw7aeTUORK0b+7r9w6QsoskW8fvfrndekooSLTeJgcnDoYOw2J4qERA4Si7oZtkLV9HjFov0d0hSLFEXhtqnbcGLtRGQ9bLaSnjXpxZg0FqsMvbhxESvyCu7Zkdug5siRIycWtxw0TeHwVAU0RaFnVRZ+8GW78NZbZjFTJw/Erzo0Do6hHEXj9mEycTg85T48mkoHIusW7Q5OlPHy/aOZm1yfTVw4c8L3d6/bf6d0a6Ph+3vpymUAgLjrJkj7X9r39rSejNWlJcjtDYy/+VdRmL3Gv4BpE4vuMZ62siD5sZ2gxRI4KaIzrw8rVAAYqwi+jMUgUolFS0UozhzB5Pe/F+1e/2RXULHIFaKLxRVLjSakZN9RFAXVoFAUWByZrmD3aHjiS/M2sehaoQIA1QexWOAZlAQWi81oYtEmHAE46rfNE4vu+ZjfkGH0ua2RooD2c0Qsft/tO/HuN1+PkQEaGdKgUwwEJj0X0YtttQIMkyhLg2SnkEGxWLbI6IEt5XLk+EbD/e8DPv7TAcINJC+xH9hFhKSCdrDg4cnMiUUwDyWqw9Wbs8iKfmKxMJSYl3j0vL/o1rHGS43K3pizuNrw/X1hwf831i+6Foce0FazkmnZLdkkWk8zcebCFSysrONj31HANx/w74u9XIhYPPlJ5591y0LLeyfsxwpVNShyfqLUd1mhq+A9c9JYYrE2i9kqhQ1TIufv8kOWYjFshRrKWAySVb0mADPWNlJkAVrrutanth3v0C5nmWopcJ1aisU0rKIMlqbARVmNKS0gwtHCRoExB1cs2la/wd9Tcz6ZGDZN4NG/dv8eNBfQi/knybU+tt99TRohv2NjwHnOxiVC/s2+hHynJKWzXVyWIohFpUMU1ba92cythFhMUbgm4szngMo0sPNO8jdfJPebrVB/5siR4+sKXdMljniGd4gks2XChImFdrztaCNivjMqjUKjyRh2/qQ/71WVVTA04zQ19wrRY7GXvFpb9hMRq4ur0AdwcGmskH01DRPnTpzD8pVlzPzIDIZePhTpTmQK/meuCxsuSSqVpdA60zv6UCyCEIdRx8/7vpdY/OB9H8Qtk7c4f9vEok2YRWUMOjAAlXHnkDaxqAYahwuB7N66WPdZV2qGlppLF7RCLfGBjMVK0bEurQpVCIyQaoWaVbEYVCU6tp8MgAxzEXs7Uco+gRF83yuIbaVtYCgGS90ldJQO1npr2D+0P3b5rcBogcz54ojVILLkKwLRVqiKruCJ5SfwitlX+Ih/qSThcusyWJrFruqu4KYcjBfJ80JQXakbYStU1VBjr7O6UAcFKtb+1ou7Z+9GS23h5NrJ0HtJ+xqFyeJkLLH44MKD4Gker5p9VV/bzJEjxwsTX4c01fMf33HzLO67dtIhjTiGxsv3jznKxbLI4b3feSNumKkBIOqdP/yuG3Hb7nip/jvu2Y+33DzjKNiCqA2YY+gFUxpOzcCLwoUz/oHLViz2g8aqPyh90SIWx7/9nRh9w//InltnHR9WKGBschqlyV0Qg6QiiN0ZxwvoeUiLeoDko8VwZ16/isXxioiWHP8gUCsk5ylw9vcZ3gZ+ZDuOzvd/bLudDnjBnQyxheiJqsSTiSiXonhjeQGKZqDAMfjb/3or7r0mrJywrTOrEu/bNs1nt0IFiJXskkUsBgmz5bb7YMZahBfFsDAHzNEC/IrFpWYP3T5JwtGygM5zaIU6VhF9ysCtAMvxjp1pP9bMXivooNIxkxWq51zkyJEjA0yd2E8GiUVlAMUNV0wk8SAGGlS6jXSrzWDRP0r15e3gZYUAsVj15zoGcPSCn1hsW13pah/E4lJAJXB+gRT3RiQKQwUA65cIuRLcbcq2Vyf3Ld2y6hZYCntmp3DN7kncuze8H7ZCsuS1H2svA3OPYd2yWy0XC2AYenOKRUMDEuyMUqErEDzuBJQRQ9DVZjFZpkGbClCbBRaPuRmLnZSMxVOf9v9tk2PSUOQuTZasccW2Pu02AFDJikVNBswsY7Q9PkUULZV2IrEoMuS4DEQuOiSp5zqs7QCaV4i678v/F3jkL/0kvWkCT3wQOP4JYNcrAvs/IEwTmH8cGD3gKvcAi1hsD65YXD5BnjOu/06iOlw5Fb+sTegV3PPvWAYrTUL82VZi224iBPbqgDmLqgxceZwQnl4Va2FosPtnjhw5vq7RhYdYpHlHqWS0yI17rh2vEo+ySp2U3DH5wqloxaINjY++f3rVSo1Ak9P8pfnY/UmCTSxSNIXZvbOY3TOL6s1hRyYHgWF5ruUeB5qmQ6rFvhSLIJaODaUR+/5oYdSnFgztHs3DoFxi0UhgzkzThMIoTsOxTSz2ZP9cJKjSrIt1X4amaqQrFkXJr+wLWqEWS0W0NTKWVIUqRFZMVMUCfmIx6nu2tTYoUDC6/vdsZWzWLEqbWKxFNHEJrJCoWGQZFnWxjhV5BeebhFA/Mnwk9TM3A4EVIDKiL4szCRNStuiAIlcMWaF+bf5r6GpdfMeB7/C9LhUlzLfnMVmcBMvE1yvqQh0szfqIRd3QYcDwKRZNmNDMeAKboRkUuaLPojcOL9v2MhTYAh5ZfCT03p5af2rSqdIUulo3Ul37zPIzuHH8RhT5ZAI8R44c3xjIicWrgKrE4bbdI4lZZzRF+bq+OIb25ddEwUsqtpsbaG24g9Rvfeu1+LG7dmOqOniu47Yf+Uvgpd8f+/7n/u3D+I8P/33o9SCxqHT67+5dX/MTi0vzl1GquBPfrLl1ptJF8/H/QNvksPvAYShKdIe3aZoQCxIUT+UnSHTwogSa8Z+TfjMWJyoimgkqw2qKYrEkWtmElopjfqN/xYHc7aAgucU1ToyeANiWprZKMg4cLzgqNIlnfCo/AGBZziFsbaLOzsujEopxURgvC1hqRSsWGx333DrnbgutUAFgpdWfddxYRXhOMxavBhiWQ1fVLfvS7EPGdN091wXef1wFlkklFgscgy3mSHPkeOFD3ggTi4PAW7SPQtCesreerogLqqiiiEvvZzK8q54EAKHiKpQ8uEZ/AqNFOkQstixiUcPgxOKFFRksy+CNBzhiTar1iF1lgLhxiEVrWv3YvI7/9wA5HjddsxeqEj0PaHW6YBgavMdmFGc/D7ACPnKcrENRFGrlko/i2j6VrQMbsBSLANBazrxOCAFikdZ70QRddQYAUDRawPAeoHGOEGIUg7bcA+f5niHF4rkvAfNPuX/bqoY4YrFsfa+KpZiQ14jKNimTL6NiMRFKO6zY9WBTxGLJIha93e3De8ixaC8Clx4Ejv8b8NEfI0SiYQBP/wvwzEeAg68HXvU/yToJhdlMaM0Te+NtN/uVy9IQOZ+Dql+XTgClCULgsQLQOB+/rE3oWRmFHMOAtucgSpvcD+z70MS1AMUAawMSi4vPkMaMPa/0k8bSkKXQfGHN63Lk+EZHULFokzxmi4y0V1pXYtddV8KK8OkyGYdolsb5UwHFoqKG8tSi4LNCXfF/xiD5igCwfmUdSx8jc6NDNxxKVT3qHHmfp8m9daHjV24GcxarQwkkZQTGpXFsJOTWjkgjiSpEjuFgwCXM9CRHDhMwaRPzbULKaqYGChTktp8kCWYsDovDUA3VIVNUQ4XEJmSOg2Qs2gQcQzGhzDmpLDkEXl2oo8AW0EsZR71kZoNvhN5vq22IrBhb9zBpM1PGon0MRTrc7FdgCw4hG4cxaQxr8houbFwADRqHRw6nfuZmUeJKsRmTQdh2pFm2qeiK73jef+V+7K7txjWjfpFCoVjAUncJ2yvbg5vxgaIoVPiKT/VnXyfe82u/FpexCBB73XaGRieO4XDT+E04thrOle9XsbitRDIZlzr+56srrStY7C7iVdtztWKOHDkIcmLxeYo33LoPb3yJazVA0xSum6knkplZQFfii1W//jM/hN/+/34i9HqIWJT7JxZDisW5SxibzB4wbBgG/ui33onmIx+DsnAaGhiUKzUYcRMqi1hMym+jKArlin/CXKqEJ9CM1UWmIXzsxypCopXjSFFIzK0TeT+xuNhS+ibOup02CpJbBKOFaHKvYH0Wn0Jwc4IIRTMgcDSYCBsVjhcgWzbAlQIpIkqCrVjsj1icqJIJFk0B1YAqt9FRHatSN2ORhRHM3ukDJcH/GScX+yvQj1fEFxyxyHIcuooBgWX6smIuCaxD1BYC13gWK1SKoiDxuWoxR47+YGbLY0sDX/TnHaZB3kjP8AsWk6Ky85ggsei5nwa7YmkWMAwMm8RO8egFP3HW6ZH90ans3yOkWJxfxbbxgEKxFF+kMAH82h9+AH/xuIYHLxswTRP1SgmNZnQxoN3toVgQ/fZi578MzNwCr1tXvVryKRa9BJ2NZY4UNk92677XFZtYtK1CB4HWA++xwqb0XrQdZpXM24pmCxjZR8jkjTmAJorFkqeAF8pYrEwDD/6xSyg5isWwQhQAeLsJqmLNFZU2yeOziCGOZcAG5zNat39r4CDUDhA1l7EKxwJN5iBkGtRno5OtWPQWj2xr1xWLNNv/WmD6JuCRvwI+8iPAk/8I7LsXuPudwMQRQrAlZRdmwfyTRFm455X+122SN6EwnIjl48DwLvI9xw4DG5fjSTtblWlZoXLec6m0CeFpKwV4CRjZS661QeaA808QAnPqRf7XpRFyLHNiMUeOFxRkuOSSj1jsmKApGvOdeIVgI0L9P1t2s8uCikUAPsUiEC7UA8mKxYVLCyFSLwmmaeKf//yfoVxR0DndgWmYKFfLaK4nP9eqtEt6yJqMVXkVetsdM0tVv2Ixyk41CWPSWKKdY5ptJc/w0KBlJhYBOASLaqigKRrddtdtUgEgin5yzs6zs8+zZmiJhA9FU+B4ziGHgtl5AFEsdiwVfl20iMUUxaL32Da58DHrql0U2fgmJ53Ss2VRJkBgkhWLALHLXO+t43L7MiaKE6m2sVuBilDJpN4DXNI/DbZCtGvNn+6fux/nNs7hOw98p285mqFBMzRW5JVMRF1NqPnUlba1rJdYtC1YJS6ewK7wlcxk6itnX4kVeQWXW5d9r3NM9kZLAJipkGbBpa7/fvW1+a+BpVi8eser+9pejhw5XrjIicUXKORuB4/c/8Vn5bNCVqidbIOeF1GKxbHJbBMBQ5Hx97/1M/jnv/ojFK+5G0Ov+iHooCNJQBumaaIgSegldO7pholSpZb6+SXr4aRFhSedY+Vk60+aBupSeAL6olmrkOKx+ASAlbbqU1lmQbfThughFpkYYtG2Kw3m4QXBWVaohGgKP1CwHI+uSo6rTdQ5isU+rVBtO02RY8AH9mu96x4LX8Zihu68OBQFfxHywlp/JPloiZCqVFTB/HkKluUgqzqEPhWLAFHsAu61ZUPgstmqBs9Hjhw5MmD90ua3wUv9EYu9ZqSKyZdTG1IsplihMryfJBACmY9cATjzWefPYxeWfMWhVtfKWETc9wiPFUtrAcXiwipmJ0c9nym5qrIAepqJn/zLh/BL/z975x0nx12f/2f6bC/X73S606lLVrNky71gG9uYGDDVFNNJ6CWUmB8QCAmk0JKYkkAoIYWWOKHZOGAbbGPciyxbvZ+u9+075ffHd2Z3+szunqrn/Xrppbvd2dnZ2bmZ73ye7/N8/v77uG45g++/jAiGmWQccy7CYrFURtzS3wfVArDhlaaHMsm4bWsvWMJA/fNkrd9hhY6A+sw8ZiLmGdSSAiI2le0ui8DIFQicoceiXHIWFrUYyRhVrAtiM4cAikGuUDJ9Vptj8aL3AMVp4NHvkN9L8+QY8IpZotm6GAcAsbaasCg4iK+QXLa7EaoFZ8cio/ep1mPXmhiLcBGybmPvoGQvwEbqEwaibcAt/wu8+j+IkLv6RcALPwu0LQcoChASrQuLI0+TKNu0ZTa+Hkvq5Io+9ihxnR56AJhxcCKW54HcGNC5jmzjkm3kM1l7r+pU8kTc5MnffS2mX66Qf9bYtt4t3uvzYnQH0L7a/rfdavRrSEjIaYF1Uq7RsSgwQl1YhIo4F8d4wd0hOFeeszkQdWcPABw/fByVsnmiFUOZ72d2z+y2rdcYqahHmOqMHR9DZ1+wpAJVUvHAvz2A2z59G9g0i6XvXQqKphBPxT2FRTEq1vr+8QyPI/NHoEJF8Uh9XzUibjrRE+vxFEe6ovYe1kYERiCCmfZ1yl7Xc5X82zu7t7YsTdEoFUqIGNIMxKho6qmo9/DT4yurStUk+lrheA4URTkKRgDAsAwYlqlFoQYVFo1UWPvEvYJU8OzDqNBKSzURIJhjsS/eh7nyHEbzoxhKN+aIa5ZGRDbj36YXel/MolTEfHket++7Hed2notXrjKPx2mWxmRxEhW5gpWZlb7rzYpZUz9IXUQ0CtB6BKuXKJsSUqaIXi+uGbgGLMXi8bF6HGozgm9/oh8UKEyWzBM3n5l6Bhs7NiIlNOZYDgkJOXsJhcWzlM995J342Ftf6b/gIjA1Por8Qn32crkJx+KcxbE4MTKMrt5gA4GZu7+F/U8+iDe992OIrrwAFEVBAuMoLNaKnIpki0K1UpZkm2PRCUob3S4gAskSsdWR8M7kB4C2mF2E+sk7L8JP/uRCrOkmA/iaY3GhHLzfpEapkIcYqc+Aolxm3ekipq+wKIioyEotOtX+vIBihQhRusNBZBlQaNyx2Ks5FiMcU9s+ndlCteY4NToWFysKNRVhcXy21JCQq3/fTCzd9DacbjCcJiwGFAON6MJw1FLgFVnG0e1qRRekQ0JCGmAxhEXOxbHIx4E2hxvpSo6INhaeeuopACCOvSBRqMbZtKzl2ugUpf3It2o/5ooVHBut3/zW+upowqKeLqBv5+U9dvFlYtrsxDo8MoUBYzEv2UvERQc+dU8Zv3z8GD73wTfiuhVsbbZ5xjLD34pNYGtfBSy7zPRQOhGD9dL21i1kX0WmnjE/4TQjOdbRvMsMAKSyuceiVHIWW7TxBQ2VvCcXBaCSHovFEmKR+vjD9rmzQ8BlHwEO308EqtIsOd4ojwkmfBzgDOuJdRARDm7CYtkcr9sM1aKz2KkVmnndsdisfhnNkr8n/QunKNLrcMEQzUdRwNobgHfcA9z4j8StpyOmyDY2OxZSFGBsJ3EUGvsr6tsGOAuLT/wr8OBtwIP/CNz3BbvAN6lNQlx6Edn+/gtIT9iFMfu6APJ6VgRYbb+y2vdZ1gp01m3rvwBYGAUK9v5nzp9T+4IK08Q52bvZLlbG24nAKYfCYkjImcyeHXsAAGPD5Hxj7LEoMAIkRQKl3ePEuJijo1Bnvjxvc7AZRUFFUTB8yOwUomTzPc/+2f2e22uNQh0bHkNXn7fopjNxxwR23bcLb/3oW8G1c7XPlUglPKNQI9FITbgQWRGHFw6DAoXycF0As/ZYbBQ/95hfPzz9u2ISZFwwXvGIiFUBRmJwcO4gAOI8ZCgGxUIRomEsIkZFU1Sl7prUI2+rShURj1YuLM9CVmRIWjy8VYRktLFTQSqAozmIrIgIG/F1AlqxiqhFqVgTw5xQKIXEwbYgLoqs6LudffE+lOQSxgvjWJVe1fR7NUJaTHv24tShKTpwj0W9L2ZBKuA/dv0HVKj43CWfs7lyWZbF0YWjAIC12bW+682K2ZqoDABV1cOx6BG524iwmBSS2NCxATundtYe64kF782uIzACknwS08Xp2mMThQmM5Edw9cDVDa8vJCTk7CUUFs9SpidcbtRPEEcO7qv9XC427licbcKxKEtkAJe+9PV42+e/i47uegNxCTQSDm5DvWdedeY4ItEYKrKXsKgEcizqFFQe+ZK5+NAZRFiMO7vbtg1mkY2R1+vCYqGqYHyhsd421ihUihPB0BTW9yYhsDQ4LU5MF+mszkArrBCBrKi16FTb8xxfc7jpQhRNUxA5BpRFWPT7jrs0x5uqwiYszhQqKFbIIJvVnZ0sB7WFKNSYIXpzdVcSw7PFhqJN2+Nnn7DIsjxKkgyRZWoCblCWaH0WrceKyPn3WAQQRqF6oJ83QldniI35Yf9l/GAjzsJisrfW88yEIpGebBZKJSLilcoVu7DoGIXKuz9vnYyQGwf23Gl66Ln9R02/lytVRFUyJrmEegxQFCKKAWgT7NcKW49Fq2Mx1mkTOCWtUHfrpQJ+8qHLsW7FUtPzGZ9CXNzaB3DVdfW+gfo6UnbHYkMkeoBSC7035TKMida0VPKPFKUoILNM+5nWHIvGKFSH7/+yjwJ9W4Gn/pOITkLCsa9mDTFpdr7Gu2uCNO/WGqDSgptPVYngJTi4NrTt5GjyTVWbHYrEOoBKweys7NlI+h5aDwKGA2KWqNhIujVn5swBEhk7eBHAWSai6Y7FiqG41beViMK3/BR4+2+BTVpsmNU1ObmHCMGd68jvS7bWH3eikiffrSbYcvr3qYua1ojcJdsAqMCUOUXFkeIM8MPXAQd+C4xpwvzya2DLe491ku0IHYshIWc0xQI5HxVy5NxljEK1CkEJPoGporkuYWS+Mu/pYAOAw3vNrm3FckHQxS43rFGo48PjvsKiLhq2v7Adf/TRP8I5W8+pPadC9XUbRqKRWgwkR3M4tnAMXdEuKOX6tlujUAHSPzAo/fF+z+djfMxz3/IMTxx02iblZe+aEyMxODxPvgtZlUFRFIr5otmxGDELi7pjcaG8gKpchaIqnm4vjudq/RgBe588VpvkVKgWasJRlIs6Ohbbl7TXtsmKLmbplKQSErz7dypT2highbbSIiN6x80CtT6DsipjXfu65t+sAdKCv7C4tWsrrl56tUn09yKppaL8fuT32Dm1E+/d8l5HIZxmaBzPHwdLs1ieWu673qyYNbkrdWer8TjXH/M6zoJ8ZiNXLLkCx3PHazGsvfFen1c40xHtMMU/PzL6CGiKxouWvaip9YWEhJydhMLi85rGRAInsu1kVtdRQxyqXK1CqjY2C8vqWCzkFjwdi/f/+pd4+0uvgFSYAxNLo3vZaoyP1vtKSaART9mLnyNz5IJcnTwKIerjWKwqiCeTrs/TjH3/Dc+aL/gxgXV19unoYpQTNfegYVB0dKaxophdWBTA0RS+9rpz8X8fvBxLs2SQW9Km1wuMT4/FCLmpsMZb6rAcj0JFhmBxGUZ5BrSlSHXdTTcjkWmzrqJGpyYsyqpaE0ABAIoERQUm82RQXhOpGA6q0vwIOm5wLK7pSaAiKTg0GVwob0+QgiYdy/gseeZAHIsKxCYci/qxFbWIXxGeDtSXw+ggDTHzposG8Z4rV2DbYPZUb0rI6UZurHm3kg4X8RZ0nFhw70kEwO6YCxKF6sXuOwBWgD4ZW+BY7DpgLrzk8kVUKMM19u6/9FylNQp1eGIWA72GYl60zeS0/NXDu7H2hj/GkVkZaZHCpsEsjo6YI4MySefCz5F3lPH5qwSTiw8AsOYG0zWfrCOOQtX8nSZiujMvwPeU7GnZsUgbVC1aDth3rm0F+Z/Seyx6RKECRNjZ8EoiHuUnSfwt5XGrIqTMztd0XdTlrY5FPbrOGDPaKHKZxPM6iesaHKUJix79tT2JtRPxUjXs376tQG4iWH9IMU2ERbVJMWx0B8AIwLLL7c9FtLGNyY1Ikb/Vno1A32Yg7hLXN7ELyAzWXY/pAbKtc0edl6/kyHlIm1hX67Gof39xi7DYsYacU2bt/c1sTGtF/dEdJPY10QN0ODixdZHXr3+slYVR4OkfAqC8o3xDQkIwkiNu7MfHH/dZcnGwJtvwlnSEJJ/EVMldWFyoLNjiLgGAq5BzVTKTxJH95vOQWjG8pwocnXc572nYolB9HItPP/Q0brnyFhQniqAFGl0rujB+fBxCL9nOUrLkKAoaEaNiTbigQGE0P4rlabNw4iROptvTAABB65scZci9H1uy38MZe1G6keTday96zz+9x2JR9q6JMBJT6zNndCxahUXdnQgAAisgwkawUFmoiX9eTjKWZ2sRsoBdHGK0a1dRKtZ66EXZaE1MMrL5qs1kGwT78aVHuuqUZB9hUWuwqDY7FkGw+MzB5GDt543tG5t+r0bICBlfke3KpVfii1d8MfA64xz5+3hg+AFs6dyC1699veNyDMtgJDeCnlhPINGyI9qBQrVQc5zqsafG847+mFe0bUb0/8xGrl92PQBgzwyZvLUstSzwa410RjtrscAA8MzkM1jfth5tEff6XUhIyPOPUFh8nrJQUTHwsZ/hONe4Ld6IGImis6fP1mex6NBnkdFijBTZXhix9lgEgI4ed2HxM+9/C5atWmuK1pwwCItVlUY07iQskoGfvDAJMRqHVzpEVVEc41STaVJYoR3cHPsn7J/bzZGo4xWXyhmceACJ/Bybt8fNeVEqFkzCIhgeHEuDpigsbYvWBJ6yNpuScxBMjbAiGXjFXNxkHC+gUJUgsmYhKsrbHYt+6NsS4WiTSMlqBdJxbV+whh6LrWCM3lzREQdDUzgwFVxYbIsJoKmzzLHIcShXFYhcM45F7QbKcqwEdSKGUajuUBSFD1+7Gpv606d6U0JONwpTjRfCrfARu0PQj5x7dBgAoBgkCtVZWHz0uGx3UO75FdC3FRWVPL5qSRueswiLC/kiFmhyHa+oDHD/lyAc/D8Alv6PGlbHoqKoZseimK4JXV97pIIb/uw7WDXYh0ykvq+Ojpr3g1cU6p9dItgFtoz95j+TNIxXtP3S20kEmpiT889KaklrwqKqmI4pSpGAaoCxiB7RSdHIFwM4FrVlAQCVBeJI9BK4I2kigum01YuggvU6o09saqX/oO7Us0ZmGmA1l0DTwmK8i4hnxvixnk1w6gnqSCTTmmNx5CmyH+MORWyGJa7DRvehIhExr30l+c4Acn7p2UT6Ijqdryp5bYID+R55q7BodSwyLHFDzg/7i9557W9UTAOjTwOda+3OT0B7TLW7rd2QJWDn7cAvP0IiqS98L4lYDQkJcUUXh/bN7vNZcnEwutMAu2MxxadMDh0ruWrO5koDAFol166BFQM4vM/sWJTL9fMxU2RwNFcfq6gO5/Y5y1ikkCugs9d50sbMAzP409f+KTp7O8HF6vfB4yPj9Uof5d8f0SgsqlAxUZzAqow52tJpHZkuUhfRhcs2rg37/3I/Oobt/ajjQtxXrEp7XF95micCjTaHuKh4X4tYmcV0aRq5Sg5VpVp3LBomOQkRwdQDDyDi5kJ1AWWtd7jT963D8ZynsMhx5DspSsWacBTlojUxKSiH5g6Zfi9JJU8RtiYsthiF6kdvvBcszSLBJdATb62uGJSMmEFZLjuKs82SFtIAyGd2ikDVYVgGk8XJmlPTj85oJ1SoNfFa71kp0o05FtvENkiKFDhCtyfeg+Xp5bV+sRf0XBDodVa6o921c+ZsaRbHcsdw1dKrmlpXSEjI2UsoLD5PyWnXpBybbnldS4dW2YXFvH1GeCxOBqNSxV6Mmp22C4tWx2K1Uh+Ave6PP4j/94V/Am2Y7TMxWo9/q6o0ogkHYVFzFKqqCiHm3T+x6hqF6l5sPTZbsM2E9HIk+j3P0BRoqi6Y9aYFjC+UITfgyisW8uCjhhsBhgPH2N1nJS1CxS8KlRG1QbGL6MPyPOmxaBGiojzbcI/F2msF1iQsMuUF0BQwUyAHMmPosdgKRiFLYGms6orjeAMOUYamkIpwoLwcFmcQFACO41GW5KYci1et7cSHrlmJZe3mGXhBBcPQsRgS0gTFGcd+hw3hMWvWFWMPOCdKs+bfnaJWjcKiJjwWqyp2jjuIJOU5oHtTTQBdO9Bhi0JdyNedVQ8VB4H2lYjc+xkA9QhTI1ZhEYC5x2I0DUmSceuvS3j3L0t4700X4adf+xQSQv2cf3TEIiz6RaFGLddFB4eTX59GZ8h+kRQKSPUHF0fcsM6UDuL8yw5pm6JHoRodiz4Fq3KOOAO9eixGMmbna6Ze6LH1WNSXs/b+awQ9zkp37jnAUmR81kB7ZjPxLvLZjZPwOtcGdxBHMuQzNhPfKZVIlGj3hnrsqW39ac1R2UCxcvYIEQ97t5p7gC45nwhwZYdjqZInPTprwqLeY3EBAFV3PhpZso0IlRWf71gXFisLRHBfst053lYXL4P87UzsAu78GLDjx8DgxcArvwdc+WdAIlh/pzMWvees00SRkJAA6EV16SRFDusOSR2r+9Dav61kGU8tVBY8BYClK5biyD6zY1EytEphCywmChOQtN6tTsKP1bEIAF1LzJM9FEXB+K/GMfzNYVxz0zX42+//Ldho/bo3cdw8FgkUhaqJvLPlWVSVKta3rzct4+d61CnuK4JyqZe0id5Op4zgfn0VGAGSKtVqLSXVe6zLy2RMuWdmD2RFBkMxKBVKZsdiVKzFReqkhBRy1RxKClm/n2NRFyABB8ciV3cs6g7DGBur9dULiu681CnJJaR491qWpEqgGfqEOxYpikKb2IbB1GDT79MoulvOOkmgFVJiClkxiw+c+wEsSbibGxiOwVRpCkOpoUDr1aN19ckKujAoGK6Z+mNejsWsSMY8hQbGsJf1XVZ7X7e/Rz964j3IVXKQFRkPjz0MALhh6Iam1hUSEnL2cnZUv58HVMqlWk/BE0kz77F0aGUgx6IutlTK9kGg1bHIcjwybeaZbgf3Plf7+U3v+xhoSy+UydH6jYICGtG4fRbX8Fz9vbmo9wC7IitIODgW3ciyFRyfLdV6Fep0JpsXFgGAZ+iaYLasLYqJhTIqUvBBYqlQgBCrf1aFZsExlF1Y1KNQOe/TAi2QwXXcIwq1WJUR4WiwBvdjTGBAWfv1BCTOs2YnpSqjMyliVhMWF8uxGLMIXluXZmzxtn60+XyfZxLpbBb9K9aiLCmI8myg+FIjIsfgfVetwkCbeaBsjUZ1IyG29n2GhDwvKc0Fc5N54XJzq6iqo9MPFA3kfXo7W4VFp/MJa3csRjiX80776rojDsDapR02x2KuUN8PCijgso9C1QrhTv14rVGoANDfbRiLsCL2HTmOHzxTwddvEPHl99wIxhIffmxsErTh+uonLPoKbHCPU/VEux7ecSwKpPoAqYREAHOjK9behOUF5+WMRLNEoKIZIizGAjgWAeKQrOTJa70m6sQ66n3xhKQpotTWY1EXFg0FQDcYzQ7BFKfNT+iClZvoBoDVXAJN91hMdJN9a5yVzgpAdkWw10fbiKOwGcfixG7yuqErbHG8NVJLgOJ0Y8Ll5B4iEC+1zJhfegERKWcdYgF1YZHh0NvdjQ0rtP5A5RxxnzpFJfdfQBzbOZ9zUZ7M4MfMQSJcLr/SeTndxVjyKF6Wc8BD/wz8+tPknHbNZ4GXfh1YfsXzIwZ146uAlS8EBi891VsScoYS1IGzWIwXx02/Wx2LVmHL6hTLV/OegsvAygEc3X8UimGMYXIsFhhIqoTDC8TV6CQs5uZzkKrmc2xXr1lYHD8+jpk/zKD71d34yN9+BBxvvmeaGJmoxZMCQNxnLCJGxZqIqosR1mhLP3EyCB1Ru5PRSNbj+iowgkmA9nP96RG0e2b2QFIk0BSNYr4I0ZCeIEZEUw88gLjXCtVCTTCMeZzLg0ahVuRKLW4zxscaciwKioCp0hTyFbKdsiKjLJeREjyERUUCz/Mt9VjUo1v9eOP6N+KWdbc0/0YNoovTVkG4FQRGwL2vuhevXfta12V6+nuQXZZFWS5jZcYhPt2B7hiZXDSr3QPpgjJvGMPox4KXgN0eIeORghRcWNTjUFuhL94HBQqmS9PYMbEDqzKrap8pJCQkRCcUFs8Qbjh3EK+4dL3/govIwMd+js5Xftp3uaVDKzFy9JCpSFdwEBZ1qmV7UWduesrk9Ovo7q0Jh9LcGGRJwqr1mzy3Y2L0OFi2PqiOWIRFVVUxahAW2Yj3ALvi6lh0poMtY2y+hIWyuZjTlfAuGvpFpbIMXRPMVnTEMJkrI1cOXtApFvK1vogAERZ5J8eiVgUTWG/RR++T6ORYjMUTWLpyPYoVWYvONPZYbNyxqBsz44Jd1FqSiWCuaHUstiZECZb41u1DWcyXGhPb22KtVG5PL6LRKCKJFCRFdXWoNkJSZCGwNHpTwQTmZOhYDAlpnNJca3GPACA4F1EefOI5fO8XD9qf4KKkJ57fdvnRSI/F3s2mOMS1SzswPjWLiqEYt5C37AchjsrWdwAAsqK9mJcvlFAs1cco7ek4YloB6uicgnJFwpqhfjz+xwn8yTbn7Ts6MomYwZmXTnqLC469Bi34rcOLhSoLJPsAAPO3JnH/m4MVimxYXbBBZ02/4JPA8quRK5ZMIqrn51YkACoQ9y5AImGI3Yq2AVpBr6OtDZtXWGac14RF/7+NZQzpF3ruwl3AE/9Wd2dWdMeiezGPUiVQFIVqk0mkiLWTXopWR2j3hmCvj2aJANqM+2d0B3Hu9Z3nvkzPJmB+pLFzzMRuINlrd+/1nUv+n3KIQKwWAD4K0BySiTjaUtrfQHlBExwd/v709U3utT9nJKcJC3PDpO9jysWdEG2rb4sVVQUO3Q/84kPAkQeADa8CXv3vwPY/Jp/1+QJFAa/7MbDqhad6S0JOU6xJPrqQaH0cAMbz47bHFhs9GlDHGveoO4N0jiyY3Yf5at5TABhYMYByqYxciZzDmTiDarEunrJFcm+zd8b7PGWMQ+V4DpkOInhWZ6soForoXtKNgW0DiK6OOk78HB8ZNzkMWY41OfWsiFGx1lMQIHGg1mhLL8eiU6SrE51Rlz68Gl6ORoE1C4tVeIvStEojxsawf3Y/ZFUmwmLBHIUqRkTkqubrbVpIoyAVgvdYlJyFxY6eDvSv7AdAnK+6YzHOxU3Csx8dKhkL6XHBuhDqJyyyHHvCHYsA8IZ1b8B1y65r+n0aRT9GjL3/FgO/CdSJZAI5mhwrazJrAq2zO0rGPfq2Slr/a+O+1Y9pLyG3GWFxTdua2vs3S3+CHL+H5w/jyMIRXLnUZSJWSEjI85pQWDyDyM0v7sUzCJGhbajK3gOfpctXQlEUVAyCoZNjUafq4FiUpCoKufqso44eUgQrHnoSI995H37+b//kuQ2VUgEL87PgxfrNgdGlBwDzJQlFQ6VH7xXouk5JQSzhnl1vpZ2rQFGBI3PmYk63j4jSFvNxLLJ0zXkw1BaFoqIhF12xkDeJqAoY8CwNhnJ2LPpFoeriYMzBsSgIAmLJFEpVGRGOMYl0cYFtuMfifIncMMQdBKaBbBSzxQpUlYivANxn2AeEoijT59o64D5r0o1Oj56ZZyK6A9fNodoIbXEBD/zZlbhslfdNpU4yEjoWQ0IaRpHqUX/NIgS/9gEgAkBxxnsZB2FRoS3igCkK1UdYTPaZzvlrl5LCy/xC/aY7V7BfK1Wtd5xb+cAYhzrQTa4Bvz8qYes/5/Gp7/4GAEw9FU3rVlUMj0/hWIUUe0aqCZuj0Yqx76CRiy+8EFlNUDS5Hpvpn2kQOi5eytZn7TSCLQo14Dgk2QN0rESuUAzWY9FIzKHPn5FUv2HZdtKTD0A8Fq0LUTqsAIAKtP9obYr/nLiU9PL833ebBUaPKFRKkSDwXPNRqDHt+licNT/etzXY6yMZQC6Tf40y8hRxAsc8oup6txLHot9EAiOTe0gsrt5fUSeaJaLe/LA9WrVaIP0crZHJ5XniqHYSFjODxLU6f8x7e/TzoyoDnevrAqIVMUUiaCuWe5qFUeCevwIevI3E7974NeD6vyGTHVqc4BYScrajO3aMLi+dx8cfb2nderyoFxNF8/jIT1g8tmA+nxSloqcAsHTFUrKcNrGJiTCmKFSmxIChGOyf2++5nbPTs7WfO3s7QdM0ioeL2P+Z/fj6Z78OAGBnWBz4iwOOr584PmETAr0ch5FoxCQs6tGW21+wHYI2Ecjp9YUoGXONqD5x+Bp+QoceHemE1bGoizReZMUsDs0fItGgurAYMwuLVsdiVswSx6IuLHp835zAmWJNjcvGE3EkMmSfleS6sOgmVJZdrtsZZCAyYu2YWaiSmpneF9AJSZXACVxLPRa9BNVGoBpspeJHpzZOsgrCJ4OiVARLs1iRDpYiEeNjEBmxFtuqn6OMEcxVuQqO5jyFTV1YtEYz+3Fx38UNLW9lMDkIAPjdsd9BURXcuPzGltYXEhJydnJaCItf/epXMTg4CFEUsX37djz88MOuy37zm9/EpZdeikwmg0wmg6uvvtpz+ZDWUXwGJEuHSBRAuVQvMjn1WNRRXeKZZqbrRYqO7j784kffx/iPPgW+ZxWueOnrXVZGtm1uksQeCUL95kC1lA1H5sxFMFb0HiyVJdkxTtWNFCMhyjMYzVuiUB2EJqF3NRKbycyudh/HIsdQtSjUwbYIKAAjc8EGFaqqEmHRIKLKoMExtCmqDagLi7TPbC2KI5/Hy8FWkhREeXOPxZjg71iMRMjzgkj+nymQgbpTr72hjjhm8lUAKmgKpl6UrRDl6+/Vm46go8Fo0w4t+jbbdXIamJ9oKrqwuEjuwfa46Bv/qxO0F2NIyGJwVoxF9D5scw7Rgm5U8sD0QWDkyfpjQoM9/biYJhx6jBdK86iqZpFNtZ6zjX26/ByLFnFnVX8baJrGXK5eILI5Fj3Qr1bjht5GS7uz+I+f3YMXfK+A1e00PvLqSxxfq3/q2VwJ1aqETIqMHRRtmO3VIzHmIixu2LAeQ32kwOYXp+pLfBFii6yCXADnn5FcvsEei4C/8ytpuM7GOmvCojMUiaas+gtu8TjZ3zPLbgDecS+w/Cpg18+Bw78nkZ68x/chV8FzLKqKCs+/BzdiWlHVKsT3bg72ejFN/i8v4NXXX2oXWN0ozZHzRu+W+jqc6NHSQ6a9i+I1ijMknrRrvfN+690CLBx3cMQWNWHRcqtazpHv0Wm8R1Gao3LYXUBWVbNQuOxSEq3qBEUBYqa+vCwBO28Hfvlh0hvywveRXorn3OTc8zEkpAnOirFIAxijUJ+efLqldY0VfGKQAUwWzJMirFGoMT4Gjq6fX47nj5uel1XZU2jq7O2EGBFRypNzGiVQqBbMzrq0kLZFrFqZnZw1rfP+u+7Hgb86ADbF4pb3O8dO6i7QaqWK+dl5RDLkmqjw2r2cx1jE6lhclVkFABhaPYRUB5ks5SQsqhR5z8PMYc/Po9Mb976utxuSKGzbyIrmKFS14uh8ta7v6MJREoUKGqV8yexYjIqmnpoAiWMtSIYoVNY7ClXfbxE2gozoPPGoLJeR5MnYMG65Fj439Rz+6al/wu+P/762LAAw2pg5FotheXo5jswT96weier2XgBxwXEc11IUalDHoh9X3nQlxCBjvoBkhAxoil7UHouN0BPrAdvAZPaUkKpta63HolFYVKumaFQn4nwcHM01HB2tx6HqMbwiI4KmaLx3y3sDvT4tphFhIzg4fxBDqaGagzEkJCTEyCkXFn/4wx/iQx/6EP78z/8cjz/+ODZt2oRrr70W4+POURj33nsvbr75Ztxzzz148MEH0d/fjxe+8IUYHh52XD7kxJPKtCGVyZqFRQ/Hohtz06TPoqoqOHZwH77ymY8gseV6dL7y06gwzoMRPXJ1YZrMPuQNwqJkcVqOzJZAU4CqFZX8RK6SpCCaCN5jkYKKDX0pTBStPRbN224cAFdlFRmf6EzOEIUqcgx60xGMLwQTFqvVChRZrvVFBABJpW2RnwCwsovcLPgKi1rhN+bRJ69UlRHhWZN4GRMYULz3oHLjJtLLIa71trxsVQfW9SRx8Qr7bPKBtiiKVbkW4coxNBif9QfB2mdxU3/wYwCoR9+m2txnXJ5JVLS/o6Rw8mfhL5aYGRLix1kzFtFjkeYCbMe8tswT3wf+YTPwQ8MEnkYnafBR4iTyojyPCszrVb0ci37CokVEEnkOy5Z0YT7n7Vj0Q++zqKoqjk/M4XUf+Tu8+hwOv35DFO0uIk25Qm70SxUyQactYy6+pRPuRalAPRY9ioGBYHl3VxbgHFNr7UUoNSAsOkR85YtmYTGQY9EanWlFc59CSALZZWZh2gk+Bji4ZKxs3UrcgYN9XUD3OcB1nydPlOe1/n4efx9yBQLHkijUZowCevyrNQq16xwAlN3BZ0UX3Ms5DPR2oj3osTO2k/y/4mq7mGekfSXZz/MBz3V6LOnAxc59VfsvIOcrYx9DuUKc16LD5L7KAolqdvsO+s4j6yu73IcYz1NcFBi4yHv7o1lAKgDTh4A7Pwrs+DHpJ/iq7wFX3gq0LffeXyEhDXDWjEUawCgU7Zra1dK6juV83MoApkvm3rk8w4OyTEbWnWUAMJKzO/G8hCaaptG/vL8mLNI8jUrBfP3MilmTE9JJHDM6Fgu5Aj719k8hsSGBoVuH0N7tLL7NT5rHYZEUueaqHFl/I47Ftdm1tmU8o1ApFaP5UdfndXpj3sJiV9SeVMBq1z2REYnzUEsqUqCg4BPL3hXtwlhhDFW56uhYFCKCTVhsF9uhqEqt12TMpe84QGJqS3IJFCh899rv4o1r32hbpipXUVWqSGppILrIo/O1p76GkXz9ONNjUiNaraqvvw/r29ZjJD8CVVVrTj1rP1AjkiKB47mWolC9jnMvEnwCs6XZmjCb7c4iGlsc9yOgJUxxMZvT9GSxNLG0oeXTQrrWD1IXBo0TGiRZAm+9H3LAetwEYXvPdvzkj36CzZ2bAZB999QtT+GyJZcFXofu4r6yP4xBDQkJceaU3wl96Utfwtvf/na8+c1vxrp16/CNb3wD0WgU3/72tx2X//d//3e8613vwubNm7FmzRp861vfgqIo+M1vfnOStzzEyNKhVahUNMGOZjwdi27MzUxpP1FgWBbv/vhfIXvNO0HRzgKWqqpQtTiv+SkyQ5EX6kWlYlU29Vw8PldEJsbXHJO+wmJVQbSBKFQAOG8wi/GCeQBndSzOGfosqKoKjvH+M+QNwiIArO6OY2IhWMRVSRNeGcGQ467CMQr12286D3/z8g1Y2eUzaNHi6USXXoyyoqIqqzZRKCFyoD3dBABNmfdFUuTwP+++GDdstN+ELM2SAaqkOWo5hgbNtR5DahVMz1/W2Cz0Ts2xWG1hIH86oUehJiInX+QLHYshJ4uzZiyiF+Ln/ItrtT5jsQ7g3DcB57y8/pyfeGGFiwGlBe9lyguoqOb1qlbx0Pg7RTe8HWuH+pEvajO9adrXsSjL9gSFiWlSmKMoCjzH4nMffCO++xIRAus+6aaq9XWcnCPX3La0eezgJSy6RaEaCeRYVFX8/i1RMHBp7ucl0lmLmoVp4P8+ZX7MUHBUQTXUY69alVCuVE2f1be3JM16Ro4CqDvN/uR+YNtb/DeEj9kFUwdcv+lqifRx9BQWiWOx6ShUMU0+uzV+U0wCL7kNWHOD9+v1uFGrMOnHyNPE9dmx2ns5miFxqQujgEsCiYmJ3SRStMOlH9GS8wClanZAVrRCsZMbo5wD+IT7xIOl28lnn3dxbRtjojtW16Nn3Yi2kWP9uf8lYuUL/wp46deAoSvIhIqQkEXkrBmLNIneQ65ZjOKMG9OlaVBq/SxPURQ4yzndKCQ5uSC9hCYAGFg5gEqRiIlMhEE5b77udEQ6MJyri7/5BfP5nuM5zBrSEwRRwM3vuhn97+4HLbjXDaaGSS0lP0/WF0lo993arW0jwuLG9o22ZeIJ77HI3Ufu9nweAJYkXXraajgJizp6bC1taNtiFYqt9MR6ICkSRvIjRFjMFyEaxiKRaMQuLGqxk1Mlsj/9eixW5Ao4hsO69nWIOyR+6AKYHl2qOxd1/u6yv8NvXvkbm5hrdLFt7tyMglTAaH60JqZmI+41ilqPxRaiUCM+dRs33rjujShKRfzfkf9r+r39SHCJU+ZYXJ5e3tDy2Ui2dgxIConkNToeJVUyORjdME54aITV2dW+/SO90P8mX7z8xU2vIyQk5OzmlAqLlUoFjz32GK6++uraYzRN4+qrr8aDDz4YaB2FQgHVahXZrPOFtVwuY35+3vQvZPHR41ABgI9EfR2LFYc+i0cO7EPx4OOgKAo3//EH8dLXvdVzHccO1YsQsxNjSLe1gzbMGs6VJUTj9cHd8dmiSeSj3KKPNEpVGRFDFKpf1AbgLEJ1WITFRvojAkQEpAyDj3N6UzWxx4/a92DoHyEpKniWsTkWUxEOrz5vqX9MJcOBZ+h6X0MLusMtYRGFmumxCJDPLziImANZ800dx1CL4li0ilnnL/NweTig77982b/vw5mAHoWaEE++Y9EpAjckZLE5q8Yiekyjwwx7V9JLgdXXAf3b6481KizyUeIkctssVQGqBbtj0SYsct6/+7B2eT2iJyZyvo7FqVnzNsejEew/MoKf7yETgN7/6itx6x+/2vOG/PjYVO3nibk8RIE3OfMAIO0hDAZxLCbj/gLGksoeXNjP4gr1D84LJLxcApbxze//wezsohhTtKTKRojIFmBcBBC3ImCOfbU7Fi37mI/7OxD1sU1mgDjH/BASzfWo1JGKxClLewmLFQi8HoXaBBQFRLLOwuCW1wMrr/F+vS7GBu2BCZDvcfRpoHMN6VXpR89GIDcaTFye3E16H1r7K9bWtYmItePP1h/TRVWneNFKjkQ1u30HveeS/6dcolpzBudXz2b/CNNYOxE65Spxk258tX9Eb0hIE5xVY5EmmSnPYDzv7M4MQhDH3ExpBrxqvv5wlvNJgqsX8K09GQF/59DAioH6uqMcKnnzdacr1oWZcr0vtVFEBIBUNoXx4+OYe5SkCVz7ymvx9o+93bNXXW6+fs2Y1yZIGZ15gLfjkI/wpl6BTj3kGIf7cUXL2qRA4YnxJ1BWy+h+bTeqrHNkY3/cO0qxy6O3si6+qLn69dW4H53oi/cBAI4uHAVFUSgVzVGotEDbeht2RsmEk5nSDFiK9Yy91KNQBdp9vKI7DFO8FilrEYiuW3YdGIeJ9EZhcXs3GaPvnd2LfDUPGrRNoDQiKRJ4gYfbXDMAkBUZU8Up1+ebccgBwJq2Nbi8/3Lcd+w+m2i7WKxrW4cnxp/Avz33bzVn5MliZWal/0IG2sS2mrBYVapgKfPxVJWrgYTFlNBYitZisSqzCqsyqwL3lTwV6OK/V0x1SEjIieOUCouTk5OQZRldXeYBRFdXF0ZH/QeGAPCxj30Mvb29pkG4kc9//vNIpVK1f/39Z2cu9E//8zt4/+v+6JS9v1FYFCIxFHwci7PT5kFMNJ7Ef/zTlzHzm29BVWR09njPZgOAR+6/p/bz3OQoOrrNN/r5soRo3BBlMldCT6o+kKRYwdQDUI/UrP8ug4/UB1T5iv/M7M1L07bHslHzzUujwiLH0Kbi6vq+4IMKXVikDE6+iqxCYCibsBgUlWbBMZRp3xkpa/sxaRGFYgID2iL87RqdRyHAfnUiFeVMIiDP0mC4ANFqPliFxXU9SWxakqo5JP3QheRmP9fphi4sxviTL/LFT0H8asjzj7NuLCKmgPyk/3JeuAiLFy9lcfMGh79LLkoEG2ufNA1Ke7yCBhyLTr/7sHbIICxGeF/H4ri1mJeI4svfux3v+WUJJUnFQI//xJK7Hni89vPEXB5LutvBgkwsESjyfzrZgGNRF/R0N1h+AgzjHj2uE5PJ67bGRx2jSJHyGFdZizKpJcCNX62/hhVNUagKFyXftRrsOpcrkO/f+FkjguW7tbq/hLj/99/g8QE+Hsix6Eq1RFySXsK7FoX6fwdk7JjmneM//Yi12x2LQdH7I0re8XAmClNAcZq4B4UAM+L7tgELY0Bx1ns5uQrMHALaVrr3beREYOgyYGJX/bupugiLqgpUC5qr0+UWNt4BJHqIa9tJ+M5PkOP5qk8Tp7ZLKkqNWAcRM/W/qRZm/YeEeHHWjUUComoTW3QR49GxR5tel+4uLBXcI6/nKnPg4S0sGgv4s6VZVGWzSBbjvR2LS1fUoxLZGIuSpYVJd8ycIDAzYRbHYokYfvGfv8Dxfz0OuSijq89dbNN54vdP1H6en5lHui1dcyrqeDkW2Zj5utZIDzkAWEOtQUku4eGFh9H+wnYsZJwnmwk+E4a8+vrpjkV1sn5u1+NK3WiPtIOlWRJXqpDzt1FwrTJ2AVQXFmfLs7697zieQ0WueApDVsdiUOeZHo+pqio6Y51oj7Tj4NxB5KU8IlzEc9KbpGpRqJZJTmWpjIdHH8Y3n/4mbr3/Vtx99G50Rjsdv5dmHYsA8P5z34+yXMavDv2q6XV48XeX/R3esv4teHT0UXz+4c97CqSLzZqMSwKDC0ZhUVKkWrSvjqRKvn8XwKkTFj++/eP44Q0/PCXvHRRdmLeey0NCQk4OpzwKtRX++q//Gj/4wQ9w++23QxSdZ3zfeuutmJubq/07etQlGucM5x//8lY8++Qjp+z9+03CYhTFvHdBZGaqPvuvsO8RFPMLiMTi6Lr5c6BoBu3d/rOBH7mvHrcxOzmKzu4+0/PFqoyYJixSfBTzJQn9mfoASWV5Uwxp1dKTsViVSdyXxlzBeeadkaTIIS2SderDOL3PYHWYzMY+Nt2EY9EQ6bquJ3g8a7GgFZYMg+KqrEDgaDSpKxJhkaVN/RON6G7KZMQSK8OzJNLVcKPy3IhPdJ4PfYbvk6Vp0AEGZX5YXXI8S+NHf3IhXrKlz+UVZnwdn2cYurB4Kvod6u8ZlvFCTmdOu7FIJE2iLFvBQzgRnSJBfYpstCZyVFSrY9FyvjReq6qStzPMgbXL68W8qMj5CotjBmHxF3skjExMg2NZ3P+WGESWwkC3v7B4x32P4slRcp7cMVJCf3c74goR+Xo58n/aIz4sZhUWdXFWFzIaiBytMfas/bGUpYBs6GtlE6Kv+jSw+nrUbhM4AZDLtQlJKqdFiirB0hN056jRyUnTtPn11gKWkAzuWAyKkGhNWJRKRET3KrjKFfAci6/8oYKfjnbbP1cQYh31ONBG4USy3xo5bqb3k+jh5VcFW75nEwAVmDngvdzMIXKcLTnfe5+tu4kIgTOHyO+6qGp1OVaL5O/CLyK3dwswf9z5u86Nk9dvfCXQt9l7PQCJSq3kATSbbRsScnI47cYiASlq56q2SBsERsAzU880va7JIrmWzUy6u9jmy/OujkV2iJyn9F54AHHkGfshAmZHoxNGxyIbsQuLuotOZ2aqvr2553I4dvAYFEXB0CeGwEQYdC/x6TcM4KF7Hqr9vDC1gI6ejlqvvtp2ewiLVKS1u60MncHG9o3YVSV9MivRFtIBXNBFR0asK6ZzZYce0QYYmkFWIJNUdJHN6Fgs0XYROitmQYMmIrSPsKhHoXoJQ7WeiFq8t5fT0EjNoalVldZk1+DYwjEUpIJnHK8uXDEiQ3osUsDvjv0Otz1xG269/1Z8/9nvY7QwiusHr8c3rv4G7nr5XbY4YMA/8teL5enluHrgajww/MAJcRSyDIsPbvsg/vX6f0WMi+F4/viiv4fj+1Jsw869jmgHSnIJFbmCqlJ1FL+COBZ1YfpkQ1FUwxMNQkJCnl+cUmGxvb0dDMNgbMycXT82Nobubu8B1Be+8AX89V//Ne666y5s3GjPgNcRBAHJZNL0L8Qbp5hSPwYsjkW/KNTZaTLwX3jyTsz8+htIZrLYeN5FYGJpAAAveBeLyqUinn70QYgRMsN9fsLuWCxWFURjpJjHZMhzq7vrA2qVZsEbMvoF1vznUKoqtVhPAMhV/IVFAFjTQbZdMcwQk4sLkCYPAQCOzboXi0TO/ifJMzQoQ+/BJZkIory/ewEASpqwqBoGi0RYZBrOWm9vJ/FYFCuAZ+w9GnV0YTFlFRa13oV6n8VStXVHn9FFyLM06MVwLDoIaALLIBkwCjQTbX0bTicqsgKaAiIBj7nFRHePhgaBkBPJWTcWiWSB0mxr63ASFr3cST7RM+6ORauwWD/PzsznGncsGqJQ4yLvG4WqOxZ/8EwVL/lhER2ZFLZvXI0lSXLNbU97x0BJkoz/+/0T4COk+DI6lUN/d0ft+RRDiimtRqE2zLO3212LVseiUUw88nuzu4sXzY4wVgTkKliWfH8KH9cci8Eiv/M1x6JFZCsYIuYsPZYhJB2//1iM7GsVtL/waEVIurpqg6GSY90vCpXTjvNGI4V14p2N90g0IiQbExYn9xLhOTPgvywAdK4j8bizPqLE5B6yD/rP915u9XVkfUe1CZJuPRb1fRL1Efz7zwfmh81xvjq5cfL6oHFZuns0oIgeEtIsZ91YJCB6lGWCS6Ar2oXnpp5rel2TBe+0hopagaRKNmFRF4+YLnKvkxHM557D84drP3M05yjCGOkbrAuHbIRFKV8y9XVMCSmITP3arwuh80/O49AXDiGVSWFo9RCETnKN6zCMK5xQVRWP/PYRJLKkzjE/M4/OXnv/WK8oVEps/WbrNWtegzLIuKcaDVY3aYQIYxcWFzxi+HXaIto1QzuNGx2LBcVel2FoBjE+hqJUdBV8ojFyDUl3pVFWyqbv04rVscgxnM215oT+3rpAvKF9AyaKE1ioLHjGlOrCFRfhwCZYUD0UfrznxyjLZdy85mb85w3/iV+/4tf4zMWfwcV9FzvGsBrfv1nef+77ISkSHh59uKX1eLGxYyP++8b/xi3rbsGLhl50wt5HpzvW3bDI1hEhf78zpRnIiuz43XsdPzoZp77TISEhIacBp1RY5HkeW7duNTUY1xuOX3jhha6v+9u//Vt89rOfxZ133olt27adjE19XrEw7z3zywmjw5CLRFAseBdEdMeiOLgZye2vwDlbtiM3Nxv4/Z5+5EFUyiUkUmkAwOzUuE1YLFXrUahMmjy3ptswA5EikZ46PGv/czD2ycsF7Jm3oZsMVhWHgpiiqBiZqxe1rL0DI5x9YMdZ3CEURWFFZ7DMe13glQ1Z7lVZRZRrvNjV0U4GRSQKlXaNUq1IRDC0ORZ1kUiLQ33meOPHmZXBNoOwyNCg2dZFvaACohvNRsyerlQkBQJLu0bfnkhimpgZCoshJ5KzbiwSzQKlFs+vTkWGcY9in69jkYgcth6LtHv06fTcAtDgOT2ViKFNm3UfE9jAjsXLBxh8+nIe1122jQiaGn4TcB7ZfQwzczn0dpKi1ehMDv099R51KaYEqArSiQaiUBeDsZ2gxnaYH0v2mH839pobeQqY2O2+PjYCyFVw2phF5RJEuArsWLRHoQIgrjI3xLSjcBjVxEkqkvaPsbQiJFtzLAIAF3Pv/ckIgFQB7zBJrCHiXa0Ji2JaE34D9nnMjQJd6/wFOx1OBLJD5HXW/pxGJnYTQTvuXRRHJA0s3Q5MPEfiU6t5IjTzlrGuXkCO2QvmJpacR6KZdQekkfyEJiwGdJLG2knkbzPO4ZCQBjjrxiI+SJprfrpEEhYEVkBfvA/7Zvc1vc6pknccYkElIhJnSU+wOoisBfyjufokiiBiC2u4z6YFGsV8EbSl7GZ8j9nJWQBAdEUUHS/uwBUvvgIL83XBjLf1JDZzeO9hjB8fR/sSMv5wExa9HItYhKHI9YPXg9HyV6WYf91EDXqN0tBdgbqwGKEjmK/49wnVo01V2e5YdHu97ip0cywKItmW9r52VOVqLabViWKVfP/GKMsgQpLVBbm1aytkVcahuUOBhEVGZEDzNCiJws9e+jP87GU/w0fO+wjOaT+n4QnmzdCf6Mf1y66HrMooNBLP3iACK+Aj530E79j4jhP2HgA5Jta2rW34dcZoXUmRnB2LASbKWSc8hISEhJwunPIo1A996EP45je/ie9973t47rnn8M53vhP5fB5vfvObAQC33HILbr311tryf/M3f4NPfvKT+Pa3v43BwUGMjo5idHQUuVwLN+AhJhbmvJtgO0EbZrb7ORaVShE//Y/vIDc/By7djcSW65Fua8fcTPBs9EfuvwedPX0QImRgWC0X0WGJQi1VlZqwSNE0UhEObfH64FACA57x/hPIl+uuuvmCZItLdWJdJ9mmcsReoJnIlVGV64NoJzHTimDYRt0EGTQOtaQLi5YmC07OyKBUZYX0M/SLQrUIdFGtRx+t9VF6/PBs09ugs6y9PqjmGGpRHIvWKNRWkJXGbphOR1QAPMucEsGUZWiILI0wDDXkRHNWjUUiGdKHLGD/uxpWx5iVcYd4TR0uAq+/U6omLJpvnFXrjbRRWJxdaLyHHoDV7eRzLE2zNUHLibmSiu/8110Yn5pFT4LGJy4T0NWWxsRMcFH2zod3I5OKoz1DrsnFsmRyLAIA5IqnsLjYjsX9UheQ7AO75xfmJ5KWOO+cwRUjpoFnfuK+UlYE5Ao4rdejwscbOsacolABeAuLkbSzgKcfp35xmE6IrToWQUR0J6cBRWlCuIqE0OI4It5ljqptlEhK+5wNuOyWXthYbGv3BmBhtN4L1IqqEsdidnmw72rdy4CZg+SYqBTIMcdavv+ydn6Ntdtfb6RnMzlOpi1RrapK+knGu4LH6Ea192q252VISAOcVWMRH8oymeQxU6rXHZYml/r2zPPCuC4nigq5FrlFoepkxXp/V07lcDxXv1Z5CUhGaO3+nREYk7CoC29tIqkTKGUFd//sbowfHwcbZ9H1si5kOjKYtfSA9uLh3z4MXuCR6Sbn2mq5io4e81ikIldswqLRHarwrbuyWYbF9vh2AICckCG7XR80Go2vjLKkhsBoE08TbKIWM+pFT0ybWKVtjtGxmKvkwFD2SUq6CBhESK7IFc/ekHkpD5EVTWJekPVuaN8AAFiVWQUAGEoNAQAKUsGzT6Pem5GJMCRGVQEGU4O+7+e1rmZ575b3AgDkRu9JTkO+evVX8blLPtfw6/Tjb64yh6rqHIUaRGg2npdCQkJCTidOubD46le/Gl/4whfwqU99Cps3b8aTTz6JO++8s9a4/MiRIxgZGakt//Wvfx2VSgWveMUr0NPTU/v3hS984VR9hLOOhQacg04IkSgKeedBXmXyCOYf/i8cObAX4yPDtcfTmTbMTrsLi0d274BUrUdqPHL/3TjvkheAMhQyO7rMs/GLVbkWhQoAHQmhJm4BgAQagoND0IjRsThTrNREMy9S2iw61WHQMDzb+Ixn3uBqPDZNZnud0xuseXOxkAdFUahaCr5Bo1SdqCqasOgRhUpR9vfQo1ApXoQkK3h6eLbpbdAZaDNHoVKL4FiMC4vX9LkS4Hg5E+BZGix9ai4XUYENZcWQE85ZNRax9iULil4sa3PpHeIlLFK0p2vR1bHo0WNxes5bWHSb6c5o56qIh2Nx/7SCF/9nAbsOHsPBY6O1xzsyKUxMuwuLDz13FGVDLPodD+3GCy8+11QsWtJtET2kCtIe8WOLLSwqoIEr/gzM9F7zEwmrY9EgLJ57CzDm0deK04RFVhcWdcdiY8KirZ/k/LDD0hpuLre01kez65xA722i5ShUEHHSafxDs7XjNSG0eNWK+zjy/IhkgGoDjkWGB5Zd0dh79G3VhEWXuLviDIlk7jrH19EMAFh3I4nvPfYIEfG4iD1ythaF6lNcE+LEUTk3bI4ELs2R7U0vDR6FEFskYVHf5syy1tYTclZzVo1FAqJHoQLA8tTyltZVkkvIld2FpqLqLCxaXWnGAj5f5TGSr+9zqwAgVZ0ngYhxshzFUyjkCzbHYke0A9XpKo7cdgTDB4cxfMhQF8mmsTDrHvG545EdqJTqPQwfvudhbL5wM2jDhGWrsDhdmjYJi0+MP4Fv7vgmAGDm/hko7OLcs25Pb6/9PFGc8FgSDcfe6uIdLZDPmWATyAc4N/fEyfhH0e7LhUh97Jmr5hzdf7o7zEsw1KkqVU+hsCSVELXEbwcRqPVjTY/ONI41vYRFPaqX4RnPUIEg+PWY9EPf92cDETYSeGKBkc5oJyhQmCvPEceiw6S5IOvVJyOEhISEnG6cFl1Y3/Oe9+A973mP43P33nuv6fdDhw6d+A16nuMnLE6OjaC9yz5I4LWISyESw/TYEdvzux5/EKPf/zPQvIit51+ModXrgIceBQCksm2Ym5mCW8eTL73nFfiqWB/YHTu0H2/94P/DLwx1sY6eXmBHvSBYMfRYBIDupGjq2VZVAJ7xLiwUpXrRbDpfQbnFvoDDM0VEOAbFBtbj5GrcOpgBTdXjRd0oFvIQI1GUq+abBaPA2iiSrEJgaTAu+66sRWdatzumOxY5EbvHFlAybJPf59DheTK4ZbVZ7MYeixxDg2Y4QG7tO9IF0MUgiBB9JiB4OFRPNHGBDaNQQ04KZ81YpNUeHA4ztwF4C08AEVxc4hspqQgwPBTFvG7VWrAw3GxPz+WAjHuh5rmDI1i3pd/2OM2wACQkBAY5h1j2B57ai9d8K4+UCFy0ZR22b1oDaJppRzaF+VwBgHMqwAXv+WcI/Hdw7P0CABqP7j6Gd93yCgAP1Jbp7+kAjPOkpCJxLM46f4547AREoW5+HZR7/xq0UbjjLSOshbqgim1vAXbeDswehiOsAJTmwHEMAAkqHwfkMqBUnJe3oDtHYxHL9zl3zP1FsS6XJ7QLQiM9bip54soU4oBcAUsDTV+ehfqxEROco3yTQosTcWI+0aF+iBlA2mvvs+lGdjmQcNvfLvRuJiLdwpizg3DmIPl/8JJg60t0A90bgfGdQLybTHSwFt8qeSLgCgFSO3q3AId/TwRW/djPa0Xu7FCwbQLqjsVqHkAL30s0C7znsdYibkOeF5w1Y5GASAZ3dnesGyIjoiQ3PwHkWM79ulJQCmAopuYa1LGKJ8bf2TKL0Xz9emkVAHY/vRvrt663vZcYE6FAAVigmC+aJkMDgHRYwv6/2A9QwNCaIWy5aAtwN3ku3Zb2jAl938vfB5Zja6Lm0w8/jXfc+g4cxMHaMp09nXg2X58QNluaJT0WZwGhR8D3dn4P69vW48m9T0IuyJBZGTRF1/r5ueEboWnY7OHcMLpj7v1B98/tx9W42nt9BmrCIk+usSk2Fcj12BcjiQ2qRDbO6M7MVXNI8AnMVcyTyvSo2iDOwqpS9RQgC1IBMc48wSaIYOmFHtUKALxhLEJTdO0YZcRFEhZbbJfJ0RyqbpOQngdwDIcYF8N8eR6yIjs7FgMIi+1Rh7FWSEhIyGnAKXcshpx+zPtEoT79yIOOj7McuUjyYsTmWBw/fgzf/qsPQexfj9QFr0CpaM5ZT2XaUCm730S8/+9/gDe/789qvzMsiy0XXFr7naIotHWYB64lSYEYq8/mWpKJ1CJAGZZHWVJMbkAnjEJiqapgrtjaoOjoTAGdycYaYTsJi2t7kvjVBy7Dpv6052uLhTwi0RhKkllsa0U8q8oKeMbdsUh68tmjM+s9FqN44sgsUhFWi7kMTjJJBtFDq9cBAHpSIhiaAktTmmOxdbdhvNUIMwNSwP5TpzunqscioB2robAYEhKcZh2LXqgqML7LexnB3UlPS0WAjSAGLRKTItd7u7AYvMfib5/Y47ypWt+9CKMQx2KtOKdiYnoOL/3wbdjYReOXr40hXzSPOzqyls8gmYWzh7/6x/jbD7+l/l6qimsv2Wpapt/qWMxNeEahRsXGxgSBoBlIl3wUALA27dRTUDU7FlkBuPoz7uvTolBZLdpN0QtkHs4QI7lCERFRAMNYxh4LI84vAIBkr/tzjSCVgZnDQPuqmkiUaGUCvkiOEZqm8Y6XXGB+TitAJgQab97M4e1DI0CxiX6nrQqL0SxxlAYVFrvOCd5fUaebRLShMOn8/NQBIJIF2hpwIK27EZjaR/p/clG7Y7G8QJyMQdIp+i8gx1dxuv6YLiw24hqMZgFQrUXT6rSvIIJsSMhZzK6pXbj3yL1NvZaiqFo/smYZzrk74QtqAVEuahP5vOIe6TyNiULdeWcVAJ76w1OOr+O0BByVVm2OxUKugH/94L+Cy3JY9rFlKBbM6Qop61jEwj/94p/wrk+9q/Z7tVLF9iu3m5ax9licLc+aHIvnd5+Pb1/7bahVMkaSaClQHKPuFixUnHvmSWr9XGkUZJ04On/U83kr+r7XhcU0l0ZRLqIqe9dnBFZAkk/WhMUKWx/bFaoFU+9DHd21GkTw8RMWS1LJ5orUY12bRd/mSCyCS15hnsCjH8+0SDfcx9JKEGE1xJ+UkMJ8ZR6SKjm6QIP87XVGWkyzCAkJCTlBhMJiiA0/x+JTj/ze5RkycBEicVOPRVVV0dm7BO/4839Ex02fgBBLYmbKHI2RznoXNJat24KXv/GPa7+v33IeYvH64DiRba8JmzplSUYkWh/EreiM12bZsSynCWDufwIUgKLF6Tc631qE1rGZInpTjbkT3LZxZVcCHQnvwV6pWIAYjdkci7EWHIuKSrbJKxlTcIjO1KNRaSGCJ47OYn1vsunG4XpPT5ahccOGHqzqSoBnaFBO/ZgaZDGFxbMFgWNcHaonmngYhRoS0hhcpCZwLBq5MRJr6EXER1jkIohTWiQmrQuLzUeh3vvYbsfHZZWcMdIRGrlCEVllEoqqop2aR0c2hdv/7j248/VRtEVpjE2ZJ1LZhUXzNf+8NUvwvltegl8fIJN1Nq/oRU9nPTItKnBIJy2RWguj9scM2MS2RUJZ+xIAwEDcQRBRlbrIorP+pe4rYyOAVI9CVXnt8wR0X+ULZcStMaiVAhGK3Ei4uxwaYnIP6QW59KKa6J4SW7iqRImLgaYou2OR1aNQgZeuYfFHS2aBn78feO6nQCMTjVqOQm3TemD6FBTFJIkxHrrCuZ+l52tTQHKJ+/PT+4mA10gvzPU3AXIVmNhFhEWrK7WyAHAxu+DoxJJt5Dif2l9/LD9BjuVG9i/N1MTkkJAQf76z8zv47EOfDbSsU4xlX7zPYcngGGNLrRSUAmJsjDgJASgM+d8r7lGdUzFdqk9QiDJmQejJPzzp+DpdvKQ4CtVyFZRKQVVVKIqCaDyKv/jmX2DZny0Dl+UwYxmLpNvSrtsDAKs2rMLL3viy2u89/T1Ysqx+PqYoCu2WSU5zlTmTsPi1q74GwdDnWqKkhsQuL2eoznhh3PP5ucqcSbT1Q48TpXiyb1M8OTfPlf0n8Lxq1auwZHYJOJ5DSa2P7fyExSA9BoMIi9boUv2zVKeam7SubzPHcRBi5rG0fjzTPN2yYzEUFheHrJhFrpojUagOY5ggDtaMmLFNigghrM6sBgBc1HvRKd6SkJDnJ6Gw+DyBoshXLcv+M26bFRYpbWY/F0uimM/VHIi/vfOnAIAVG7eBohlwQgSzU+YZzqmMt7BYlc2jovMufoHp93S7PZq1VJWRMAiW63vrkREsx9UiO3/5vkvw96/ebBPbIjyDkiWydCoXLPbLCYrhMJkroz/b2Aw1nmn+z1R3LJYtjsVoi3GfgkePRQAQORqsRYgSWBqqLEFcuhFzxSouXN6+KBGXX3n1Zrz5kmXEsdhINJoL2ZgWt9rCfj/bEE+hY/GPLxvCNeu6wIXfR0hIcBbbtejVX1FHdH9PSioCnFibTKIbqVRrwcYoLM4uECedC/c+tstxJrakaMKiSKNQLKNULuOVPy7iy78l445LNq8Ez1CgaQrjU3OmdXRkggkIN/9XEdRn5nHd5WaHQE9b3D5hpjhZcyxyDbr0jdCN9rn1usBWcvZeg8bleYsQykUAqQROE0EVfea9i2PBSq5QRDxqKZoYHZNGGI4cB4066NwYf46IVP3bahGaSb0HolQGHvmXxtYX0YRkVQF2/8IsuGvHb0wreu6cFYCBS4An/xP45Z8CYzuDvUernz2aId+Nn2OxZxPwtruBldc09z66a9GKXCH9MztWNybKtS0nMaWqrDkWLWO68gKJNQ3S86lrPVnOGO+bGyfnRq7BCLpGxNGQkOc5iqpgujgdyCl1dMHuWBtIDgAAirJzj2QvBEbAWMHl2gLSYzHKRZGniaBZiVZqr3NDnpFNLryI5fyx45Edrn0WAdQaDyllBcPfGsbe35D+x+decC5ongZFU8jP5009E9PZtPv6DIj9IgY/MojzrjjPNPaIpWJgOfP5c74yb3qMNdwz0zSNslq2fTYvggiLU8Up32Wemw7eZ5GlWNAUDYojnzXLkevxbGXW97WbOjeBX+ARiUawUKlPaipIBaSFtG15XZwL0mOwKvsIi/KJcyw6oR/PFE+FwuJpQkbMIF/NQ1Zlx2MqiLDIMVzLEbpnK4OpQex44w5cufTKU70pISHPS8JK7fMEtW0ZBj72c+w/Zp45pjoUHRZ8olCHDx/A5Lg92oKSyYCYEYlj8Rc/+j4AoH+ZOQaJ4wXMzUxBNvTCS1kci3696c671CwsptrsvWGKVYX03NPoStZnyzMcj7IkQ+AYrOpK4CVb+kBbozt51tQHMCGymClUatFthUpjMZdMugeKCqzudm+27YSXq9KPUk1YXLweiwAgcN4990SOsQlRFEVBqZYQW38lIhyDK1cvTpwDTVNIihzZT9YiVBOs7Ergtpu3YOtAuvWNO0sQOQb0KWp0ePW6brzrihUQuRPj6gkJOStZ7EL4+HP+xXyP9yRRqCIiWuxnoUxmaHv3WFzwdF6Oz+ax+6C9sKU7FuOaePT6f3kOv9onYVu/+WacpiiUyhUSl6phcyz6cP0V5ijM7qyDM7EwU3MlJqPNF2iUWqLrIkRsu4l6OrwlupWLWqJQtc9ZDVb4zRVKdsdiziUi7ZxXAC/+inPfvmYY20nEqmg7cegBSAkUNnXRwK9uBQ7cU1+WCjDesh7nv/hT4ND95GddWNSKnrkqA7ziX4DX/DuJk737s8B9XwIK3uNsMJynUB9oG1XZLh470bel8f6KOr1bnB8vzZHjdMl5xPHXCGteTP7nXaJQ+XgwdyXDAR1rgblhQNHuN3Jj5DhoVFhcLJE7JOR5gqRKngKfjpM4NZQiPVAbcbLpxLk4xgvjoBPO5/KSSgQeUbse6YJgrdDvIMJUxsyTiq2F/VKhhD3POEezA4DKkJXu+uIuzD00h7SljYnuQJqdnq1/jlQcjE+7FgDoe0sf4uvj2H6FeZJTMmvvQ2sU06zQLO0ofnnh5QzVmS5Pez7fGe3Evtl9gd8TIP36KJbsszaenJtny7OBXlssFhGJRZCr1tMWilIRGcF9/Bo4CtXjulKWy6aeiEDdsdgsWSHr+pwuBtJc647FIJ8/xJ92sR35at7VsRh0P1udryEhISGnA6Gw+DwhHyFFg13HZwHUXYnTo/YBvdWxaHULAi59FjXH4twUES8liRQOl685x7QYJ4hQFMUkYKbS5sFRWZKhGGY6WuMp9R57tdd3mIsiNFSUKnK9EGdZB8txqMjEsegmkEUFxuT064gLmC1WIWl9f36yYxJfvGs3RtW04+utMFkSUbKhr7HCpVOPxaAUCwWIkaiDsNiaSCNyjGeMqcjZeywCgFopgKIZrOlOoKfBSFg/OJa2x2Y1yYs39WKwPfjN1dnOqXQsAmg6Mjck5HlL1L3g0BRjO4GEPRnAhIczidKERVGLjsxrM/NLsuX6Zvhbn57LmR2LFhGSoWnc+/DTtvdStCLd8DQRVaZyVdz/lhiuWmkWy3QD4PjUbO2xWLQufjq9p855vTS+daOICzevNT3enXW44S/OknjHFnlkRNs3c/4uAV9y3vFkNrgIIJXBc3oUqrYvpaDCYhGxiOWavzDiLJ6JSWDL6xZHWJQqJJKzYw35mxDI9/Pqczg89LYYEZxe+FdA2wqyfBBh0bjNYgroXAc8eBvZp9rxGjMeNhQFrLkBeNcfgMs/BozvBH7+AeDw/d7v08rfsO5YdogZXFT6znV/juFJHGmjnHMT+Z+P2QXEcs75cTeWbAUWjpNYWIBEocaaEBZjobAYEtIoh+cP+y7jJCx2x0gMdkEK5og3EufjmCxOgtImFjk5IhN8oibayRVyn68LMcZJzzqF4+btiHHmsYQYFfHUg859FgGgNErGIsWxIpb92TKkt6TNC2iX9pmJel2EoiikgiQoaK/dcpF5kkcy05iwyLAMylLZ9tm8GMt7C8eURGGhsoCSxwSXDe0bcGT+SOD3BDRhUZu8k6AToEBhvjwf6LXFfBFiRLQLi6KHsKj1vluTXQMAWJ4yT5hXVAWyKns6EB2jUFt0LKY9Jh/pQjnFUVBKCtBCi+DQsbg4tEXaiGNRcXYsBj0eQmExJCTkdCQUFk8C3/ziZ3HN+kXqFdMk+mz53CyJpJC12bvlor3oYBUWFUuUydKhlXj6UbuwSMllAMD+x+8DAFxy9Q2O28IJZIBm7LPI8TxiifogWFGB+WK9EGcVqaxCQ9LiWBRoBYWqDMWgLEatwqKkIOIhkEV5xiTIdSQEzBbq2/SidW3IlSUcpMh3W1a8xTomuwSpCIvORGOCGh9gxmLtPSxxkSQKNYrKIjsWI5z36yMc4xhdySRIoXDbYAaZaIAoqwYgjsXQ1XYiEDkmjIYNCTmTiBgK4VpvtwMHDwAASuUmRK6xZ4C4j6vJQVjkKDLWII5FoSbc6MKiTLkLBNNzlihUy2ze81b34bcPP+P6+v96ksyU/5fXL8Pmbvu1gda2Re+zqI8WOowz/Tnn6/XPXhvDW7fw4HLDpsd7nByLxRlAKbtupys7bwfmjta27KkJbawyfdC/d54fuXHiQgwKJwKqjAhH9pnKiADFNOBYLCIes+zL+eNArCP4NjTD9D5AkYCBi4gYpQmLr1zHYiSnAi//F2DbW8hnCQJFm2NixTTw5l8BV3+G7KM4+TxRpyESJwJXfhx454PAiquBCXeHC4DW9o1eJK02XphviO6N7s+l+psTh3s2A0NXkphW6/i8mgf4RLAoVADov4CIiblx4qAsTJHzWKMOjOgJPk5DQs5Cji04T4I5fvg4AGB+dh4jObvrrZXJhAk+gclivd3Krw7+yraM0TmmOxZ18cjpvXMTOZMQYHWabThvA556yF1YnPntDEADqz+yGtEVUVTSlrYqurDYYJ9FAOBEMoaKxMyTJRIZu/iQr7pPNGFYBmW5MWFxquQdc8oXyT47njvuuszWrq2YKk2BiQW/f+cZvhYvK1dlxPk45ivBhcVILGLaFypUtEXcJ4/ogs+1g9fi0dc/ii1dZhG3qpAxtdu+U6ESx6KwuI5FNzFUVVXQFA2WYgEOKB0tgZpr/m8qdCwuDh2RDlSVKopysekei4B3BG5ISEjIqSKsFJ8EHn3g3lO9CTVyc96RFIB/j8WN512Ipy19FhVFQXWWzFzb/op3aY/ZZ/0BAMeTAcrsFBmQ0hEy0EpnzQWIqXzwfobWHos8rUJWVJQMbsuoIUqR4XhUZRURD+delGdNPRY7EwJmCvVtunRFG/7vQ5djHUduYIqq958TRdHoSoqIi42Jeq05FvMQojGTsEiB9EBsBa/9BhBh0cmxqPf6fMGaDlv0bKvwzOJEoYbYiQrhfg0JOaMwFvQXSFFnYoJcqxbyTYgNE3v84wAdZk8PimRWOFUtmGJN8yWXKFQDJArVXXi8fNMg7n3E7FhUVRWHZ0ih8PMvJpN+UoLz9U6/Bo1PzZke7wzQ26jm4C6bHQDdDsU8FKcAqQExV99P+ix/hXyempY4uQco58BzWkFRCOjeMpIbC+aI61hN/tcKS3HtrWRFISJdQ1Go1h6L4/4uWABI95P/hSZmaY8/R7a9X4uJ46IAxSAlUMhVVKB9JcA2MMmJFQHWsr8ZBrjkA8AHngFe8CmAYhDlPMY3mQESjfq6HwMXvc/dPdeKsKg7Fk+0sJjoIucFJ2G2bXlzca4UBbzuJ8D5b7c/V8kDYiK4Y7FvK/l/ci+JZ1Ukcjw1KlzEFye6PyTk+cTxvLOgNDlKxiITYxOB4lIbIcWnMF2q1zp+N/w7+zKGwny1Qq7Ngj6JyWG4MD87bxIjrXGhm7ZvwtMPP23rKVmaJNfw7ld2g02zEFLezq+ZycaFRT1G1Uqyze5YDCIsNhKFOl+ZR6FSqE1eFwTz5+MK5DztFZl6Ue9FAIDoyuAiG0dzgHbJqVarSAtp5Co57xdpFAtEWCxYro1ton18q3+fomGCmZN7TxcW3YShslyGCtUmCNWEyCbLIU5RqBW5gsnSJPoT/eAYribAtoIuuoe0RmeUjCMWKgvgrf3lEVxY7Ix21s9XISEhIacJobD4PCM/G0RY9O79sum8i3D04D5MTZCbgXKpiM995E9w9O7vQynnwSfSAIBi3nmQx2kDT92xSPPkQprKmAd1U7ngwqI1CpWniJA2VyaDQkYumYQshicD2JiHYJIQzT0WOxMiFkr1LAlRjEDkGLSLwZ0DvamILdbVj1aExVKxADGWNMXrcwwNlm7tT98vSjXCe0dndqdam6XnhMAywWLMQhqm0WM2JCTkFGMUjaYa61/jiFT0L647OBb1+j2tVomAoz2Q0xyLisPNNUAKOsYei91x+/Xkii0rMToxA0VzZFaqEt72ib/HTf82ibGcgrR2312VnDOgKIq4/McsLoFG+ywa6WlzEL8qeVClOfvjRhRDqoB1gox1klZpFhjbgW3nrAQALOmwFxB9yY0Fc2Hd/APgVf9GokQBxLWvq1Ktku87SA8/AHm9x2LVsHxxmrja/LjgXaTnoi4ONsL4s0BmWV2koyiAj0Fgm6zkcRF73z+dWDsRKrkIIqzPuJCigJXXANd8BtDi9W34OYS90PtAVoN9Py3Rs9lZHO3eSPokNgPD2s8nikKOt0bEyuwQEaTnjhHnIgBkhhrfnlBYDAlpmFG3ProaJamEsfwYmKCO8QCkhbQpFvOZyWeQt0RCmwQe7VRdE4wcLg0LswuewuLmCzejmC+iqqVByLKM2z59G3Z+eScqExVQLAU2xkKxpAfVoIBEKoHZyVnzZwkgLLrhFIWar+Zt4qdOTVjkG2sDcjR3FOmuNACgb6DPvM4qgygbxWjB/TgYSg0hLaRJL8CA8Axf61tZLJMY04Wqe8yrkVK+hEjULiy2R+zu+rKWxOUn+OjCopsoW9Qi41O8s7BINTkeiVl7YQPYM7MHkiLhsiWXmSJjWyEUFheHrhgZ0ymqAt5hQltQB+tHz/sovnj5Fxd120JCQkJaJazCn6Zw7UtPSKxjbs47tgIA5v0ci9vI7LIdj/0Bsizhw2+6CX+49//QtfFy0EIMtDazq1hwninNsBwEMYLZ6XpUiaqqSGctwmLeHh0W33Qdet70D7aBcbrdHDUr0NqAU9KWs4yjdTHT6GK00pkQTI7FjkTzs4MYkQw2B9ujED3e0wmeqQ8KFdXlpsSFUiEPPmq+ueAYyrWvZFBiPsJilGc9o2xORLs+nqWgLuLNaUidmBDu15CQM4qIRVhsNToTAOI+ke6ij8BliFNStZhyRSvY/OaAVBMIdWbn81A0ke3aFRygmF1/F5+3GQxDQ5JkTBdVXPuxf8X3f3o3PnlVEl1xGgJNrt9VyTk9gQIREa2OxQ5jX6MGe8tYo1BnVVL4oQuWnobaZ81LFBmflD2ER4MrMl9RSRTn8SfAGCcIKTLWFB8hy6gBikC58WBiCcMC6/4ISJEe0XrvwHJZExYDClc1x2LRMLlNVYgQ5wdFAdveDHSu9V/WiCKRY79zbV1oA5pzPupwEX+3HBeByJyEvzcvdFEuoKO0JV5yG3DFx8wRsQAweOnivo9eCPZzThuhaaB7AzA/DMxrrpm25d6vcSK6CP0+Q0KeZ/i5EVWomChONCxmeZERMlBQH0tUlSruPnq3aZm0kDZvh6rWhEWKolAumesPiqIgQdevG9bIy9UbV0OMiKgUK5CLMv7fW/8fbv/e7eh/cT/4DnLRpEUaqux+XUi3pzE9aZ78nWphklMyax+Pyars6uzThcUEF/z6SIHCcG7Y03HXE+/BRGHC9XmKorC+bX3g9wRA3F7abel8YR5tYpunG9NIsVCEGBNrYp9Oh8NEK30Zv953kpYq4SYMlSVyPFl7Iuq98ujI4pVjn516FlE2ii0dW0wCbCtEGu1JHOKI3jsWgKNjMWiPxfZIOwZTg4u1WSEhISGLQigsnqb0vvVrUC5486KvV5FlmyiXz5lneRVyC5Cq7rFd2Y5O9C9bgdFjRzA5NoLx0eP40r/+DxLdA2QBjgzOCy6ORQBIZ9tMPRYlRbU7Fh2iUNuuew/4riEcmyWDPUHU4rksr+VpclNRdq4ngtLiWL0Ek6TIoWiJQm0aTWRb19v4TYLRsej1vThRLOTBRc03CRxLtxxDGvPp0ZgQvQtvsrIIRTcLPMtADR2LJwQvZ29ISMhpiNGxOH2QRAi2Ah+r9Y9zfj7uH0Vt6dNSrtSvZ3NlFcNj5olPqqoSIa32AvNYJRETsXX9CuydknHBt/LYcXAMv/nO5/DSdeTmnAMp9tgci1qRJK9G0NWW8XYsKs5uRysJrb/Rkg7zNX5OJQVTujBpfkGRfNbxsjauKM66r9zgvpAUkHjHid31bVMV4MGvggEZr+hipielOSDV57+cjjYzPqZ9xVVJIs6xgI7FXKGoCYuWRIzOdcG3oVHmh4kYvfQCc9xpK0VsLuruWNRhRTSYeO9MogWXHM2Qzxnw+2mJZC+w8oV1wTU9QL7XzNLFfR9dWGy0b2PfNmD+GDkeuGhzfR+DxAaHhISYGLdOqLGgQsV0abqh+E0/shHz32paSOOeo/dAoetiY0Yw96abn52vu9JoYPiQuXcyAESUuriiC0I6LMfinG3noDRRwoG/OoBnHnkGn//u59GzpR71zcZYqFVVewvLvSoFZNozTUWhWokmyPinvdf5PDdbnnV8nOZoVJWq7bN5kRWznjGnALAkvgRTRe9J7Vu7SGQ1Lbrfw+vfKwUKAiPUBLNqtYq2SJvNgehGsVBEJBpBUa4LixQoxyjUkkyun76ORdnbsaivJ82nTY/ryzfi1vRj/+x+nNN+DliGBU/zUP3SEwIQOhYXhzaxrebO5h3aQIQCbkhIyJlMWIU/Aex7bgd+dfsPXJ8vFQv45LtvcY2j0KHiDczKbQBr1Onw4QO2ZXIL9dnzsqraRMKN5xHXIsOyuO0Hd2DV+k01VyClFRdKBfdCZqatw+RYlBUVKYtjcXLB7ljU0XsGRuPabC/N3anvUZ4iP5VdZgdSmvjpF4VqFBYTIotIg25DK2u6G58pzzP19/Q7ZqwUC3mwonkGFMfQYBrtL2Mh5lM1S/g43E6EsCiwdCgsniCSobAYEnJmYYz6mjtG4jMtKNr1JNB1Jd5NivKu7xegMMiZixPDY5NEFAOQjVDYe9hezJsvmWcHSRb34RXnbwRFAV1xCg999Y9x6bZzas8xqIKiKLuwqF0nSuDR6eRYNAqLqsvsJAuZJPn8omXSTVnlAT4OumwR1BZINNi0pBUSih4x9WXLWGrJeUB+nHyvALD7l8DRP+Ao20jEo0oiQoOiiXEiQ74vVVVJHz8pmCMuVyghFhHMwiLDA5nB4NvQKHPHiON06QXmx50ci1teR/73SwrhosTF6bOMsBiOxVZ6LAKaa3Hxx1q+nPcW0iMxSMxtI9Qciw0Kg0svIJMSJncT5yrbRJG0GTEyJOR5zmSJ3OfLsvN1NC/nUVWqNQegIjeWyuNEVjQLiyvTK/Hw6MMoxeuTLKzOsvHhcZNj8djBY7b1itX6eYNneNu4adOFm0BRFJgog9tuvw3nX34+IrN1oUBMiVCq7p8v05axR6EG6PdsJZIg7ylGLec5bXNnrGMRDUYk176kYHc6JvmkYwpRf6IfY3lvV+pAcqD2ntVDzpOjL+y9EAAQXe4+xvz7K/8eX77iy0QwY3iodH382hHpgBxwrFbMa8KiYewSYSOkH6F1WR/Hou4609/b6mTV0SNVrcfmYjp1ASBfyWMkP4LtPSQ23rifWiFo778QbyiKqgn3TsJijA0wKTAkJCTkNCWswp8A3vmKa/CFT3zA9fkfffur+MO9d2Hn4w+fvI0yMD5iLt4dO2QXFhcMcaiSrOLgnudqv//m5/+FdZu3ATQDRoiho9vcH0aPLisUPByLbR2YnTQ4FmUVaYvrcNrBseiHpHWpjjNkkFdxcyxqTY8TgvvM87jImdLjKIrCkkxrg6tM1LmflBcc05wIqCgKSsUCGME8UOEZehGiUH2ExYjPjP4TAMfQUMJT2gkhGWn8uA0JCTmFGGMy5TIwttO2yN69ewEAu49O2p6zEe9y7qPWCIz59UeOT4CRiGi2Mktjj4NLYK5gLkTtNhT8fvTrR3H+hpUYytD43ZuiWN5rLtrQchnxqIBK1d112NWerjkWaYoCVNUsLEqNj0OMqACQXgraKuwukFn+eWgFK6uTz4g1uqx7IxFHZg6S3/OTwLa3YrjjssY2rn1V8GW1AphgcH0gkg4ctenoWIx1EEH6/Hc0L/h4oSpAdhCIWZx/DoVTXPx+4APPAP0X2J8zwkX9nbl8tBbH3xLW7W4Uh56nJ41Un39kbKNUmnUsEjcMJveSGNVmzmM1MfME5PiHhJylLFQWUJJKmB53njgzK80CAMrjRHg5+PTBlt8zLaRNjsCNHRsxV56DzNULAlaRbOz4WN2VRQPHDtiFRa5gPp9NjtbHTff/6n6sWLcCbIrFsluXYXDVoO31fJKH7FaUAJDpsDsWU22Ldw6nZPKZnRyLFEWBipDnG3EsDqWGMFXydiMOpYZqwppyxFlY1aNQKY/aRISN4OqBqwGQfphGwawzGvxaWSqUEIlFUDK4+d0+s76Mm5PM2hvUT1hMWa7JXrGzzfQd3Tm9EypUXNZHxoJGZ2crhMLi4qHHMAsObRbcjp+QkJCQM4GwCn8KqGpxlvr/k2MjuGZ9N+7/9S9PyvuPjxw3/T58eL9tmQVLn8X9u56p/fzXH3s3SsUCkttegvTLP1NzD+pICiBGoqimBzDwsZ9jOGcf1KTb2k2ORUlRbI7F6ULjBb0SpTkRGRkiS6PsMIYVIxEkO4gY6hWFmnBw5S3NBss/dyPehPPLGIXaCOUiKfjRgnmbebZ1YTHq40hMnwJhkdcdiy26MUPsxMWwx2JIyBnNscdsD+k9DRXNQZ4vkCLKvmGHQlG0DWBbiAMHbK8/Omruu7PnoF1YnLWMA57cdQCyouLDd5Xw6v/3zzgyQsYRFEXZhClaLiMRjaBadS/mdWbTZseiIpt7LC5GlGRmALS1h6LmWDx3jRYX6SUslucBRcLKQW0SF8sDyy6vP7/yWuCyD9fiSgNBs0C6gahKbd0CY9iXkSwg+4/TVFUlPRZjIlAwHFuJboCPAi/6O+A9jzYmdAalfa09xlJ0Keal+8n2eMHHAkShRsAzrTtvSFQt5e0U9iKS8V/mTKKZHosAOc5inURojrY3tz91MTMcX4aENMSR+SOuqQg5hUya4SRyTrU6FmdGPa6LLjA0g5jhWriubR14hockuk8wmjg+AVEfP1DAsUN2YZHOme/F9+3cB1VVMf4/4/jk2z+JfTv3kZe7nCP4hLewmG5LY8YSy95MFKoblEqBoznMV+Ztz7V3tyPdR94rJQQXM1dkVmC+Ml+LAnViZca/j7LbPnPDKix2RbsCv7aYL4KLcagaena7CYu6Y9Evqldfl5sDUVEV8DRvE5Oc3pfVJi757RMnYWrX1C5khAxWZ1cDWDzHYkYkY4k5r17gIYHQXatOjsWgPRZDQkJCTkdCYfE0YPTYEQDAzif8HYx7n3265fcbHzEPmIcP22cIWuNSd+94ovbzn372S7jxNW8CLSbAdQxgMmeOLK1KCiKxOJQ0iUEaztsLLJm2Ds8ei6WqjJIhMmSuGKy3YAnkQk2B9PlzGsMzDAtFmwkW8XDeJRxEwGXtzc8mElga8SYa7zQrLJaKpAhD8+aZZjxDtRyFGuW9habkKXIsAgDl5yYIaZhmBPGQkJDTBCEJjD7lu9jsAinyTcw5xJjHO2sRogBw/47DjW+HRfg6MmIWFvceNk96AoDpnFm4emTHHtz0oyK+/IcK/uFPX4MPvPGlrm9HQUUiytujUA0Qx+Js/QGlYnYsLgbZ5aCswuE8+azxiFYcKngUUEtzgFzBa2+4AqmYVvxc/7L680vOI+JJI0TSjQmRrABQDESjYzFg37lypQpFUYhjsWBwriR66/0OY+0nRrRZer5dEG+gcGqDj/k78fgYeGoRhMVkL3DLT4EVVzf3+ki69W04nVAk8l024zjs3Uz+j3c1N0GCFQAuhtCxGBISDF0gObpw1HWZBXkBDMWAU53PqaWc/8SeR373iO0xoxDEMzyWJeux3yzs9zNjw2O1KEyKomyORZqhIc2ZxxG7d+zGsX86hvH/GcdbP/pWvO49r/PcTi7BQfaY5JRpz2DOEsseJApVbSDuOiWkMF+2C4u8yEPRJsOk+ODXxzXZNQDc+zYCRFikFvm8aRXVGhIWC0UwMXMNQ3eRWdEdi36CT0WugALl2YvQGr8LtBaF6rS+A3MHsLlzc02UtAqwzaLvn9HCaMvrer6jC4sCbT6GWYoF6xezHxISEnIaEwqLZxgfftNNeOqR37e0jglbFKrdsThvcCyWCnnce+f/1n6/7qbX1n6mKBrDs+YorKqiQoxGIUvuYmA6247Z6frM9UJFRtrgWJwtBBMSbRgKU8kIi4pLbUd3WTq5EnWcnlvW0bywyLN0Tfxq6HWG10Qiwd+/qPW41PtJGreDbvEv309o8tqvJ4qaABsOzBYdJ5E9JCTkDCHRBUzth6nfmqpisPwsAEAKMhRMmCPPX/ix7+EOh4KeJ1Zh8bjFsWiJQuU5FlOGXsvlioRv/9dduOeghJ/dHMF7X/UC31ndHQnBW1hsy2B23hA1KkuLLyy2rwQtFcyPLVgKNEWPOLHSrD2SdfX1rW1TtL0xYZGiAC6CnjQRdZb0dAJiOtBLcwVt1n9UNPeSTC9Z/LhMIwwPLL3Y/ngrEaFCwl8A5aPgFkNYBIChy4C2RnpnGogEE37PKLhoc8fMkvPJ/+n+5gXsaCZ0LIaEBESPeTyet08Y0skpuYaiN534+Js/jt/+4rfm97asU4/aBAAO9vPH+PFx0+9Wx2IynURutj5OkGUZt3/3dsw/No/+d/fj9e95PSiKAu0yEZgBAzbCQi65C4vZjmwtRUJnMR2LABGInByLABHHACI+3vOqe3D3K+/2Xd/azFoAMLn/rETYSM3xtlgIhskhy1cuR2+812PpOlJVQrVSBSyanJuwqEeYOol4RipyBQIjeI5HncRJryhUP6wuyoJUwFRpChf01OPcBUaAQrc+FjF+/pHcSMvrez7TFiG1Tqtj0anHZ0hISMiZRCgsnsaoin0wsHrDFnz8j1/rsHQw4uk2jI+ai3fDRw6aYkrESAQLs/XZ87wgQvZoqD46b55RWJFkRKLes7AybR0ol+qC5HyxYnIszhZb62sEAEkXxyIAVGUFFIiL0A0n8WxZ28nPPzc6Fjk+eK87XVgEK5hqITzDtBSFytCUr0CaOgU9+XQBlgoHZ4sKS1MQuDAKNSTkTEPWIk4R7wLmjoJSyXWcggrc8VFEFHKNmFcCxO/EzCLFNVuX48Z3/YVtsarsMTva4J6PRXgcGTEX8w4cG4Uk1S/abekkJubqghzPMVBVFQ+8JYYXrayf572uZt1JDpLkPn7ptPYwUqqLLyxmBi3voQAFs6jqGYVanLFHsrbqRot1Nu784qNoj5P9nk4lA29DLk+2PRYRzZ8zNdDY+zdK2wog4dB7qSVh0aE/oxU+Bo5yLyCfNM5KYTFGBONGGbyE/N+xpvn3jrYhdCyGhASDpVlE2AiO59yFxQVlAUk+wDnVg8tvuBx/8W7zWMS6zi2dW2o/W4VFlmdtwuLMxAzyC/XkhmQmibmZupuQYRjQNI1lty5D6rz69YR2mbXLgQMTYyBV3Cc5OYmIiXRroquVrJhFvuqQSAGgopC6S0bMoD3Sjo5oh+Nyo/n6pKi4EEeb6B9N3Rfva2Jr3TE6Fnt6exDn455uQZ2SFveviuZxatplkpTeWzBIFKpTtKURJ3diK2KSdZv0v7Mr+6+sPSYwApRFmORkFEX/MPKHltf3fKY9QmLVrccLT5/8ullISEjIYhIKi6ch+QUym0yW7QPQv/z6v+H8S69qeJ2yTIocsVQG4xbHYm5+DnMz9dnyiVQG83MzyO34NRaevBMjRw96ug+nrFGosgrRx1mXzrabfp8vSSbH4lyhihbbACIV8RYWOR8HoVNs6dK2k59/3mwUak1YZHiT65FnKdAtzLrmGMpTmGQoCiJ38k8tPEu2iQodi4uKwNJgW7W4hoSEnHRqpZN4NyCV0C2Qokry6W8Bj3wLk4p3Qa9SMVz3WbMI9V+ffg1ee8MVtd+tM+3t20IBNAd9DlNU4GxRqJIk49DwWO33bDqB8bkifvJsFV9+sIzR6RxyhRI2dAWf6NAZZ1DVBFbFQfPsarPMpK+WkIgZPqtkHt80RWaZ+ffCJKBYBifFWffXqwqQn3B/nm5i4ke8y/ad+sLFzD0VvRyLhtjcmmMxIhL3pU4qmMugKZZfSSJEncS1VoTFIGIqFwOL00BYbLQX4ZkAH/XvcenEwIXAm35B/m+WSFvoWAwJaYAknzQJUVZySg7JAJM1vMYXH//Kx3HjG26s/V4pVWx9Ao3CkS4s6hOqGZbBmGHcoXPsYN21mEglsDC7gIWnFjD+03EUcgXMTc8hOhSsJsBRHGiBhlRyFxaTbfb94CZUNounsChXwFBMTUxzYt/sPnz5sS+bHlua9O/V3J/ob2xDfXDqLxjkOCpqYxFVMA8GM4Kzo/IvL/lLfOqCT/muu6pUHbfJSCvuRCNufR+nS9PojfWiJ95Te4xn+EURFiPaJDQKFHZM7mh5fc9nOiJEsLf+nfkdPyEhISGnO2G1+DRk55Pu8WI8L+ATX/wndLz04+h4xZ9jZtKj2GTg2OED5AdVtQmLgLnPYjyRwkO//TWmfvkVVMYP4PBeEpc28LGfY+BjP4diacI+na+ganA0ViQFYtRbWMy0m4XFfFkGL9Rnm80Wqg336bNuVyrKQXIxT1RlFTxDewtkNG3rJdiTaqK3S4s0E58K1IVFhWZN4qTAMmBbUG05n/0mcM1FvrYKz5DvKnQsLi4Cx4BhwmJaSMgZS5y4tpZGibDIz+wFNt2MZ9Xlni979Jm99V8s7jaWYfCdz3+w9vu+o+YZ/1ZURgBoBqMTJAqzIsk4cnwClss29h6uj08yyRh+/fBzeOWPi3hsRMETe52dDz/bp63EoejfGWfxyDAZn4zJ9uJQp9UlUJqxxFk1159GUMm+roADUkvMTy5YoqQUGSgveK8w57B/N2npFc306Un3o+FMdN4iLAZ1LGougZSgmAXVRoXNRrjhy8BlHwY4BxeDQAp8QiN6bKIHWHEN0LPJf1k+DgbuBeSTxtnWYxEgx3qzY7zBS0jfymbZ9BqyjrCPd0hIIJJ8EmMFu2ino0BxFXWMHN7r3tOZpmm87y/eV/t9/679jtGWVIVc13VhcXZ8FgCJx5wam4JUNZ+zjcJiLBPDnqf34PBXDqN4sIh9O/eZkp5q25JwvqbyFA9apKG6FSUACKkTLyy0R9pdhUUVqqeoOFuexdee/Bo6o521PnEATP0r3RhMDZIfFqk04CTCBDmOinkiysmcbOr7aPw8RrJiFq9c/Urf9QYRFmONRM970B3txraubfjoeR+tPab32dzatdW0rMiKUNC6sKiLmBf1XoSJ4gSOzB9peZ3PV7pipB+ozbHYTBJDSEhIyGlEKCyehux47CHP5xmWRXT1RYguPw9PPvF4oHXOTJKiVDSZwdT4KBTNDSlozkK9z6JSLWN6Ygz7ntuBzJVvRfaad+LwnmfR0V2PsZjOm2NKp/IVlKtmYVGIGGbxOQy+rY7FgiUeZKZQQbpBYXHBMhMwHa2/XoyYB8sVWfF13gH2XoGtRIg2Cx9ApGM0Ua1aqcellYokQk6mWYtj0VsYDLI9Xq8XOQbsKRAWOUZ3LIbC4mJCHIuhsBgScsbCx0zusrllLwaWXe4bKXjfYzvrvzgsa5xN/9guUvirzWF56gemvoAKIwIUg+k5IqDFRA65QhHz+XrUqcBztT6L+YqKQ8PjeGLXQXzmCgHff5mIpw6MIhm3OwTec5cK6jPzQNbeiy4boWvSoKo6CI/W2NPCrG2ZZkgpRECdVRPEUag551YvaQdyY8TRF9EKYeV5+AqYxt6EOs04FXXaVjb+Gj5mdnB6OBbLhjFdvqg5ZVlLxP0iFdocoWl3Z6ImLCYFj+va1jeR/zPaMcUKwM3/CQxd4f/efAyMejoIi4vb1+q0QIg3F4W6GGx6NXD1ZwCxtejGkJDnC2khjQlr7LeFIP33djzs7ZIyTgbas2OPo8hEF8ngJKo12JubINGmLM9CVVVMjk7Wt7stXRMWVUnFscPHcHDPQbRf246l712KA7sPgOXsEwwozvmawoEDeEDVouJVh+u9zMkQxBMrLnZEOlCw9ns24CYsPjr2KABgXds6/PuL/t0UNbsis8L3fYdS5DpKpxenNmDssaiTdUonoGASjHVhUeIk02d1ExaDUpWrEFnvKNZWI391OIbDd677Dta01WO9dRfjhb1mR77IiJAXIT2hXWzHZUsuw3u3vBciI4ZxqC2wuX0zruy/Eue0n2N6PHQshoSEnOmEwuJpyI5Hg1+w9z77lOPjUv9WDHzs56hovYV0YTGezkJVVcxOk+hTmmHQ0d2L4SPEsTj/0E+wsDCHFWs3IHn+y0BRFI7sfRbL19Qbn1t1wslcxSQMlmUFoqHH4sGdT9i2L5nOmoqSBUtm6Uyhiky0seKBVfDMGPr8UZYCnKoGE9iS4qkXqbz6QOrE42R/H9XcpQBQ0hyLEmiTY1Fkac8G437wLA3G4/Uid2qEqNpnDKNQFxWRo1uKzg0JCTkNSNf72VX5VKDi+O8efQaAFhnmcw54bJdlBvNzPwW+cTEiNBkbKDQP0AymZjVhUSDXZ93BCAArBnqx9xBxJX76txWMjE9jxdJefOpyARRF4an9o9i8xi4e1tAKOwW5fr3PxurXvsf32R2PPM8hnTQ4/kpztmWaISmTXoKKPszOkP0fj/DA/AgRGvW4UK/+igARwowRootBm8d+dIOPW6JQ7cKdPrbYcaDuyqxFoaJoXtjJTXgy0I59T2GxfSXw8RFg9XX1xxiOCIx+8FHQqnv7gJPGWelYTDTvWFyU9z/57RBCQs5UMmIG06XpWmtS2RoBDgTq0ffUw861Dif27NiDtoj7OnXHYm4iBwA1gXDseN1Z2TfYVxMWJ++cxMj+EWQ7suh+TTcomsL+Z/djYGXwHsE8xRNhUXMszozar/lFuYh0ezrwOoOSZMj1jpEZ176JOsZeekaOLJDx3Xeu/Y4tFnRN1r9v7erMagAA3bY4ZccIYxdA28V222M0TWPsYP17LRbJGKTKVE09D/32ix+SInm6PQH/Po2LwWVLLjP9LjACZLV1YZFlWHz1qq9ifft6nN99PnZO7fR/UYgjcSGOf3jBP9jEbCexPCQkJORMIhQWTzPKpSL2PPNk4OUP7nrG8XF56XkAgD1jpIhXrZIiRzxNLmTGCNW+gSEcPUAizxJbb8SFV1xbc8ABwOG9z2L56rqwaHsvRcXofN0pZ3Us7n/qDxg5ao4xoWkaqUx94F+oSKZYkbliFdl4a8Ki0bHohJ/zDrA7Fk8FjcSKHt79DCpl8l0UC3mwLOkzaYpC5VpwOcA/CjXCBY9aXUwBUt9PoWNxcRFbjM4NCQk5DWjzjj21IssyHnj8WY8lzOcE3bFYY/NrgcIUogwpaqgsERZnF8iEl5g2aWdkol5gWzXYh11aMe8jF/F4zYsuA2049zy5fxSbvIRFjfum6jfsaYN4tPfYFJ7Zc8i2fFdbGuN5LXWh4hNJGhABlt6Mxj6LC8eBmKEIpguLq68HznsbcWUZiXUCxTnSa3GxaKb/Hh8zb4OQhPU40Hn20CjmtO9aj0KNqs4RbCcdzbEYcXGX1OCjwYREK1wUtCK57JmTyNnoWBRTrTl1Q0JCThpZMYuKUoE8TcYBPz/wc9syes8xN1RVxdMPPR34PV2FRe2EzILc189OzpLfefL7+HA9brx/qB9HDxwFALRd04aLbrnI5DLc9+w+LF8bfEzFUzxUVq05FsuFMp61jK8K1QIy7cHP2c9NPYfHxh4D2+1dp4jQRPCiFRqd0U7PZf3iOjmH++u12bU+W1rvsbhYjkUnd2B7xC4sMiyD6ePTmBojk+l1x2KVqpp6HjqJko2gQIHI+DgWA/SAbBVrb1GBFSAtciz7DUM3YLo0XXNJhiwOfsdPSEhIyOlOKCyeZuza8QSq1Yr/ghoHdnnHg8iqivnZuiMgltSExam6sMiwLB767a8hLUyBiSTQN7AMC3OztednpyZMjkUjiha9OTJXH2CUJQV8xDw4ve1zH7f1I8i01W8milUZsuH5XFlCV8L9ImuNPQVIfKqRlJ+w6OO8A4BU5NRnnvMBHIs6UqWMJ/5wHwAiLIrRKMqSYnI9NrI+t+3xjUIN2Lvp+2/djhes6URbgyKyE/pnpELH4qIi8mGPxZCQM54GhcUdew7VhKEgPL7rCBTFIDoleoDr/hp6SrrCRlGqyDg6Tx6QuTg4jsX+ceIa2DmhgGVo/PbhHTgwoyAlUli3YqAWnQoAe45NYfNaf2FR0SJPVYqFtW3ROz/zVSiKeSzS2ZZCVZ/UXckF/syuOMS/o80QF7YwCsS76r8XZ4h78cpPAjd80R4RmugiTspFmHleg2uiv6FV8KTpmkhnRZYV/OLehwEAuXwRFEWBqy6c2PjToJzoAh8fAwXVX7g80XhE1Z6xnI0uzJCQsxRd7FFmyXX/Wzu+ZasFtEe9RZ3Ro6OmmNLjueMYz7v3dD64+yAYyXvygaIoNZGJpmkk00mMH6+vk+EY7Hl6D0rDJdACjY51HViYrY9FDu46iBXr/SNAdQRKgMrUhUUA+NLHvwRZql/TC9UCMm3BhcWvPfU1fHfnd22PH10gguh8eR4AMC2TGhBX5dAb9+4x24yrzuj8c3PtMfpkkBPYY9HJdciwDCiGwv133Q+gLiyWqbJJ6GvVsQg4i51GnPp+BkFP92J8JtRQDlOZIkxkURyLRq4auMrV2RrSPH7HT0hISMjpTigsnmY889hDiCWCFz2mx0dMIqET+3fVZ8VxgoBEKoOZyXGoqoqFvQ/jsQfuhSxLoEVS8Emk0iZhEQCWrzFngevI+RmIHI3JnFnU4yL1gea2a27Cw7/7DZ5+5AHTMul2g7BYUSDJ5puNvnRjF1mrYzHl06ORZ2mTG8IJJ9fjmm5SSAsqnrVKI0Jgqr0T9//6lwCIsBiJxlCuyiZhUeRa227BZ79FuOBC1Kb+NL79pvOwqsu5ONkIfCgsnhDEBhyoISEhpykO/Qe9uO/RneAdegjVsEQCzueL2H9kxLyMkMDBPCk0KbSAnQeGcXiWXOfziGBJVzuGx0jR6yfPVvFfdz0ASZbRHqUgshSy6Tim5+pCn6qq5ihUh1g1IwobQZyvjyteevFa3P/YTvzwjt+ZlusyFvPKC607A53iVPX9X8kD+Qkg2WdYfpbEjLrFLCb7yDI+n7chuCYKQ7zhOq1ok7tcInWX9Wbx3//3ewDEsRiPiqCK0yde1AvCid4Gbd/6zG078eiOxbMpyrwZp21ISMgpQXeC6U61Q/OHcNfhu0zL+EVIPv2w2a147X9di6t+cpXr8rIk48DuA57rHLGMVTr7OmvC4uyDs7jzR3dCVVWwKTIGomKUqVdfuVTGinV2YVFVHCYVgQiLMi1Db3e3ZNUSHHjuAG7/3u21ZQpSAZkOb2FxqjhV+/n7138fP3vpz2zLTBaJCFtRSE3kiEJiTGOFmL9jkWtt4k8rbVYawemYcfpsFEWhY0kH7rtDn3BNhMWKWjH1PDSKo81yonosvmn9m9AX78NNK27yXM5pn+jxmm69P5tBYARc3Hvxoq0vhBA6FkNCQs50QmHxNOPpx/6Ac849v6HX7H3WOyJkvyUutbOnD1OTY5i64++x8Ox9uPy6G6EoCmit300ylUFuoV4YE6MxdC9ZWvtdNs02VNGfiWIqXzHFhLCRegFq6ZqNuODya/CfX/tbAEBVO+wy2fosxUJFgmQZkA+0NTbAnWpQWAwS8egkLHYkFj8H/fzBLFIRzjH2tBFRZ9m6zfj93b+CLEkoFQoQozGUJAUCW5/pZvy5GXjG2+kZ5U+NENVIZGxIcMQAvUhDQkJOcxqMRfzdo8/g/I2r3Reg7NeRx3buc11cZXg8udvch3FpTweOjk7i/XeU8M3Hq7jpmosA1HvfZZMJkwuSoWmsW1Efi6AwCS8UNoI4Vx9XrFrSjtf90ZX483/8N9NynW2G+KhKAZBb7I83d9T+WFaLQi1MEuHSKPQWNMHNrTCV7COuxla3y0gzwqLRnZjT3B0OfRYBYOuqftxx36MolsrIFYqIRyNAYcrsovNxqpwwXFyWi4bmBo2dasciHzv7YkNjrTtLQkJCTg5pMQ2aosGkGChlBV3RLvzz0/9ce16A//300w8/jSHDhKI3rHsDXrfmda7L0wyNPTv2eK5zn2Ws0tnbidHhUYz91xiOf/c4LnjBBQAANk6ERUW0TzZavs6eAqHMOU9KEmgBKqXW6iSxVAw3vuFGfOeL36ktU5SKSLelPbf70bFHaz9v7tyMwdSg6XmrG1SSJeRQn5wlMIKneHgy+gAuBk4iWle0y2FJoGdlD5548AnMz86jmC9CjIgoSSWkeOexS7P4ufgyQnPR5BE2gjtffqdjDG2Q1wKLKywCJA4VAMpy2WfJkKCEPRZDQkLOdMJK/GmELMl49olHcM652wO/JpZIYu9OH2Fxt11YnJ8aR2H3A0ifez3e+J6P1p6jaAaJVNo0OF26Ym0tigEAZiwC3kBb1OYWpMX64JQChXd9/C9rsalVlRQ60m1GYVGGJJsH5EuyjUV1Tecadyz6CSaZkxSF+qM/uRC/fP+l6M/aB6aNzAAcWrsZ87PTeObxh1AqFhCJRFGuKibX42I4Fj17LJ4iYbHViNcQO6u7Ehhsj500d25ISEgLHPkDML2/5dWoAO57bCcu3ereW9nK0u6sp7Co0Bye3HXQ/JreDhw8PoHvPVXB28/l8I+feKfp+WzSfD1cO9AOUbBfkykAvQnK5uhT2AiijLnQ9oWPvhXVqjlK3eRYrOQApVVh8Zj9sbil6NVhEG2L00SgcyssJHqIQ7A029p2GWmmF7GTIOcSt3nu6n4UimXc9cDjyBeJYxHFGXOU5anqh3yiCzha3GuMP8XCIkUBQgpufTDPSEJhMSTkjIGhGSS4BOgUuYe4Zuk12DOzB8U0cY6J8Hfp7Hh4Bzacv6H2+/nd5+OC3gtclx9cOegvLD5rHqt09XVh5PAIpu+eRudNnfj433/c9LzCm+sTnb2dSKbrDrSKrNUftOGGqqo4MHcAcwNkkjZLac5HQ5rP2z7yNghi/VpUlIu+PRafmXzG8/nD8+Ze1zum7O1yvAS1Zh2Lfk7IZvjedd/DOze90/E5JxFmKDWE9kh7rZ+jTu/yXqiKit//3+9RKpYQiUVQkkpIO4xdXjz04qa31895ezJ6LFrRI2MZYXEnGF2+5HJ0RjvRF+/zXzgkEBGmifYEISEhIacRYbX4FCNVq5jTeiDu27UDpWIBG7ddaFuu+w1fQnL7K2yPD64+x9OxqKrA/l07a7/nZybQ3tUDmhPR9yffRrR/Hbr7ltaEQzbdjUQqbVrHwErvxtzLO+KYXCjDaDikePMFsmfJAF740tcAIP0UVVVF2uBYzFckyIYVRHmm4f6GM4UKKEOEWdJHWPQTyAD/Po0AwDJkwMYwrQ3c+tKtDyo6+paio7sX9//6l/UoVEmGaBDdonxrUaE8577fVnTGMZCNnhKHW+hYXHy+ecs2vPOK5aFjMSTkTGB+mPxfKTT8UkmSMTNPeirmihWMTc7gsvOcI9Cd2LpmAI/t3Ov6vEpzeHJXPZ5sbL6M3o4s5udzOPD+BK5bwaKrPUOcbRrZhPmauGmo23Hdb9pIYfhDCeBHbwD+99344AoiYCpMBCJtFhu7O7L4xJ/cDACYz5PZ1ibHYnkBkO09nBvCybFoFOUoxuxY1AU3a7FMF1GSPeR/H4cmy5Lxil8vnqZx6o/o0vOuuy2J9SsH8N93/Z5EocYi2ufMnphta4TFjGtzcpmeLlGoQD2q1qnv55lIGIUaEnJGkeSTNcfUtu5taI+0oxInQpxI2c+fsixjfpb0B5QlGUcPHMXG8zcGfr9VG1Z5CosUKOzbua9W96jOVZFpz2B6Yhor/2Yl2q9tRzQWRXt3vUZRZcyTjZavNbsVHx592PT7Jx/4JL782JdRTZPX6bGkRudYPBXHOw2TqYqSt7CYq+RwZOGI6/MA8OT4k7WfFVXB42OP25bJiO7vkeCbc/Nv6tgEAOiJkbEKq8XoUy3cO57bdS7etfldjs85iTBJIYl7XnUPNnduNj0uxkWsO3cd7rvzPuJYjIkoySXHnoefv/Tz2PFGuxgbBD9hMSue/LGPvk00v7j1EZZhcdfL78Kbz3nzoq73+UzYYzEkJORMJ6zEnwJoiuz2j771Fbh+cz8+/T5yYd7x6B8giBGsXGcfQAu9q5C54k2QFPOsuaE1G7DHw7EoVSo4cmAvItEoioeexD3f+CSOHz0EAGC0uFKO59HdV48XS6TMg86Bld6uhaEOErepGgpntGB33l1+/Y0AgIrKQFJUZNrqM49LVQWlar0AmIpwiHDBi2MqgPlSFYJady36RqFy3pGeVIB1AMAFFxIhePU5WwJt64mEAoWLr34R7v/1L1HILSASjaEiKRAM+7JVYVFk3ffbv7/tArztsqGT1mfBiBA6FhcdlqHRmQgHuyEhZxROPf4ATJW1c78WY6qfp791x+PgzvkjvOgdnwIAzOZKoGkaF21Z5/4eln6AW4eyePxZd7ekTLF4atcBdLdn8OBRCW//3rO15bMRqrY9qwbrM6CzcbPQtnlFj+O6UwKwUFaBc98I9G2rP0EBAmV3H9784ssBAAtFMl7QHYuzJZUIi404Fp2ioGaPQPFyiUWzZqGxOEuiaq2FhY/sA97yK2DgkvpyHmzdei4A4KIt3pPBmsapD5GLYxEAbrrmIvz0nocwM5dDKiaQfXu6Oc5aEdwufC9wyQftj2vC4imPQgXI90NRgFzxXfS0h6I9j7eQkJDTD6NTi6EZXLW03h8xAi2qUbte7n1kL65edjVesvElAFDra9iosHhw90HX5zmaw75n9yHdkUbxcBG7vrQLT/z+CeQX8rXoUwDoH6o736q0eUywYr25v+JDIw8BAORJUsfY3rMdf3Pp36BthEyEEGgylqEt96lXv+zq2s8lqeQpLD4+/jgUn/7Pu2d2135WoWL3zG70sr2mZbwErmZddR0Rcl3Xhayh5WTi1DqvMWQL+Il4Vi67/jI88rtHMD0xjUgmAhWqp8Da1DZx3tvkJGSeaGrCorD49ZETNoHteUrYYzEkJORMJ6zEnwLWbiLFn5e+/m348F9+BVffWHcirtmwBRzv7tSz6IpYtmYDJkaHXZcfO7IPsiQBs8MY//GfI9M3hCuuu9G2XN/AstrPsaQ5JmNglffAcFDrhajE6rP7aN5+gdQFVYURIMmqKQoVAOaLdZdAJso3FNlZqMhQVCBC1Ysnfr0EBY4B7TCb7uDnX4T/ePt29GejgYRF3al4KsQ0Jy65+kWYHBvBzicfhRiNoiIriPJGYbG1waDbfgNIHOmpEqJOJ8fiul5yc+YlXIeEhIQsKh85AFz/d67izb4cOTer2nmpr5MUvS5evxTf/qsP4CNvfXlt2U1rliEZ9+gZYylAbV3Zh7mFvOvi43NlLOSLGC1xuPJ7BSzNinjLK15oW27lYL0IlrVcSzYvdxYWAaAkqUTkee0P8cAcWU5hIuBgF1T0sYiO7lgczSlEKCwvuL5PIOaGMUel3Z+Ptdfdf6pC4ldjHc798JZeAMTaiBBZnPF8W704y5yo6GpHx6J7kfKmay7C7HwOdz3wOPqSHAAVSDi7Tk8ZSgvu1Gv/Eth8s/1xTXSPnZwkfW90R2krn/N0gY8B7OmwU0NCQoJiFVQu7KmnMsVock3JdBCRp2uwCx/5u4/g09/4dG2Z3qW9JvegH6s2rIJUlaBIziJcqVDC5Ogk1DkVBz93EGycxcvf8nLbcn2GSU4lpWS6x7f2Vzw0fwhj+TFIh8n7fvGKL+JFQy8CrZJrsdWZyYOcx4zr9BMWn554GgPJAdfnF8oLGM7V60FHF46iKBWxMWYWZdsi7q7vBLe4/YcZnzpMszTq7rrk2ktQLVfx+7t+DyFDRN42cXHd7149FmmKbtoN2gr6Ni22Y7EZ3rnpnaF45oHIhfsmJCTkzObUX2meh/AimUF00xvejmtf9hqcd/ELas9t2ObeN8CJoTUbPJ8f3k9iUEcfuQPxTdfiwtf9KfqXrbQt1zdYHyTHEmnTc/1Dq+FFb0YEx1BQ44aBv88FUlIUk2MRAOZK9RmB2RgHMYBjca5IXpMvk6JJ1MGd4IabwEZRFC5a3g6GpnzjVE9Hzjl3O9LZNizMzUCIxlGVVdNnbcQJ6oR4gm4UAOCdV5DjsC3RePGIoSmcLomdv3zfpfjVBy7DUIeDwyMkJCTkRMCJAMMDTDBXOqNNxrj2vBV488tfiGsuqrvuL9sWPAYVALau6vV8fvfxWQDAd+4fxqvWc/jSq1djw8pB23JGx2KCr28jAGxaHkCUoqha1KXCRsAo/k4t3bE4sqC51wreAh4AtLlNTq/kAKmIecajaBXvqrnaUM6BCG7uoikAINkLVBuPuF1UnITFqLuwuGnNEJYt6cb03AL6U9q4IdXvuvwp4UQIbtp3eyp6TduIZABQgNxi39DTAT5+6vpyhoSENEXWMvmEoRlA0/xYaJGZ2jV7cNMgXvTqF+HyF11eW37j9uBuRYCIfrTD5BpKIu8xP0xiVvf9zz7Ez4lj1ftWYdWGVbXlVJmMA4yOxaJcRCJVF4ZWrDM7Fnmax33D97luk+5YpFiyDQJl7xFYlsuewuKBuQO4fMnlrs8/NfkUVKg1IXfvzF5kxSxWiOZtbRfdRdqU4N5/8XTCS8RzonegFyvWr8D87Dz4DKkvLLZj0as/ZZSNnpLJ57pjkTrV/Z4BvH3j2/HI6x851Ztx2tKoCzckJCTkdCMUFk8zNmxtTFjsWjKAWMI9uuL4/t2IxRMYuuIVyF7zTtAMg84ee7PlJQP1fj8ML4Lj6sIOL3qLhCxNY0kmCsQNQiHjLQxJirnHIlAXBwGgLS4EirYcmycxZDnttbEGhMUI5198DeJYPN1gGAYXXnkdAECIkmMjJtQ/a6RFx2J0kZuAGzmnL4Vdn70OV6xqrhE8fxq5Fld3J8LehCEhIacerrEiDABcutU7At1KRzqG/h73mMvnhucQFQW8/apV+N5LRfAs7bi8UVikSjPIGop5HWn3wo0TChsBLZd8W+p1tqUBAKM5TVgszfqsWHZ/Lk/6IM7xHiJosg/QY7N0d2TSPi4zkVrq/fzJwCkK1aXHIkCKxTddcxEAoCehfQnpJSdgw1rgRAiLTgLsqSKSPXuiUPm4771FSEjI6YWTM4xZIPeRcdp/8uWG870nUFsRIyIGVtqdfewCuQ+e3j8NhmWw/Nrl6H93PxiBQbYzC1q7f6xMkHPlkmX1a1VFriDRVh+L9Cw1TwS6qO8iPDH+BNwS0CO0Fkkput+jluUyEml3V1tVqeL6Zde7Pr9zcif64n1oj5DaigoVl/ZdaluuI+o+TjsVrrpmaERY1Je99DqyL7gkqevo++lkbFOjQuhioTs76QYSwEJOLiIr4n1b3ocXDb7oVG9KSEhISEuEV5rTjLWbtja0PEVRWLnWPuiWctMoHngMIwd3YevFV6Bv8+W12VLZji7b8n0GYVFRgUQq3dB2LO+I1WYS8wwNlbHPxjNSkRRbFGq+Ui/wdMR539ldxUq9uJcrSeAYCgJtLvglRHfxMEgkaDLSWj/CU8Ul15ABChclNwnGvoqRFiMxWnU8+iFyDNgmBcJmXxcSEhISUufSBh2LALDV0ncIACbzMn66u4onD0/hkq3r8YbLV9Su7U5RqysHDM7HollYbBSFjYBSFcRc5gfRFBESEzFS9BvNazaK8rz3ivf+yv25wiRAc8jzHr0Es0M1V2XtvfwEt/TpICw6CGY+Pe90YbE7qpLennH7+POUciKERYZzjrU9FWz/E+DcW06/CNpmEELHYkjImYaTQ46dJfekIu0f/7dp+6aG39PoQNSRChLmHpnDyOERrNqwCutuWgdKm/zJMAw69IlO2jDAKCwCQLy7LoJaHZGvWvUqzFfmwQ06n594ikyI4OLOz6uKirJcrrVWAYiYaaQz2on1be4Tvg7MHcD27u2mx140ZBcrOqPuE3dT/OI4FnX31YlyYfn1MzTC0uRY04VFJkH28ckUFr3cjCcSfZuo06Hfc4grb9/4dnTGmptQHxISEnK6EFbhTwHPPkGiAHLzc7bnItHGBx8r128ELcbBtpFB8K6nH8fI7X+Nmbu/heH9u7DCIjwaB646SwbrwqKsqg0Li6u66sU/gaOh+BRV5otV8HxdfBRY2iQUdgXo07drtF78WyhLSIocGMvYKSm6FyFiAZx3zTgWOzrIzUl7l0+02Qlk8/ZLkExnEc+SbYkbHItsi/2XYvzpK7byAVyuISEhISHAsbEpAMD0QtH2nO7ia4St61egZNBpduw+iJf/xwzee0cJv981iS2WvkQA0J41Jy6sHDA494pzLQuLANARN1+zVC0qNsERYVEXOudKII6oSs59paV54Okfuj+fnwTiHVC9nFUda+s/lxcAivYX3LJD3s87wHFk/NKWcU+1aAihMcciAFyweQ2W9nagL0mT1zdQEDwpnKjeg6dLrFXHKuDKj58lwmISoENhMSTkTMJRwFHNv85Pkvv5/Iy9T3PvgHfMuhOmaFNVxbGDx/Dct57D8X89jsnhSaxcb28J09VrvgZbXYnRTnfh6JK+S9AV7QK/1vm6T1M0BEYAG7PfPyuSAhTtQuJEccL8Hr2XeE64LkgFXNl/pekxYz9Lne6Y+7Ug7TNRqFGs/awj0cW5LjI0A4ZqbPLO4KpBDK4ahJARwNN8w30a/Yh5JBXEndIeTgI1sfP0LduEhISEhJwlhFX4U8Bd/0uKUrl5n1nxAVm5bhP63vVd9L3tG/jR976FP33TTWDjbei6+XMoF3JYvsY+w41lzTfnHd31Yp4kK0ikGsueX91dL/6JLANZpcF49HmaL5mLOZkoj7xBWOwIICzuGK4Ls7myhFSEA2MZdHsJg8Z4UDeEJvoJxmJkcNndd+ocBjwv4Fv/+1tcePUfAQDiBhG1ZWExwH47VXBWZTkkJCQkxJGHntoFAMgVyoFfs/kbOSz7+wXHeNWt61fU6oVf/dljuOjmDyMh0Lj/zTFIiorNa+zi2JJOc0xa1hgFVllANtV8QUZhyDZahUU9r6xNlAHVUuGMtgOlhfrvT/0A+NkH6r/v/w1Ae4iGhSkg0esd2ZgdrP9cLQBCAvArcjXhWGS0CV793Ys0M9+pOOZTiKRpGo/+5B+wfVUHEYYWo5gnaELpYrgATpSw2ET8cIgHF74bWHnt4hw/ISEhJ40YH4NSUDyX2fPYHgBAuWgZi1BoqjedUVi8/Tu34103vgsURWHoE0OgGArLHSY5dfaZHUMcb64fiG3u5x6KonDDshsAALTDBNeKXIHIiGCjzvfPapk4FgFAKZN9NZofNS3zwsEXur4/AIiMiAv76kLikvgSx33nKSxq/RlPFMnFmuQEgGtwkglFUfjKj7+ClResPCEOwhjrvE4K1CkTFnVnJxW2ZQkJCQkJOcGEwuJJRqpWMXL0sOkxIUIu/IMrVje1zpXrN4LmRCw8dRe++befwMVXXY+uP/oQmBgRB5evsUeaZdrNMV1GF2NVURp2LK7orA+aBI5GRZZtg3Ij8yXzzLxMjEOxWhcW/dyEqqpix/BcrQ9jriwhHeWQSpFBazxJ4jy8hMX4aey8Wwwy7R2QtRl9cUMkbLO6ot4v0Cte9lTDhVGoISEhIb6oqoo9h4ZNj7EBJtI8Nabg0KzqGPW4VXMB/GhnFe/9yv/gBRdswtdv6kB/ipyXN6+1C4t9Xfb+SzXKC2ah0Y9ZMrZavpwUDdPtpFDYHnP+XO2iYheW4p1A1eCaiHUAnWvqv0/tAzbf7L4NUglI9SOdIWOsVMKh2CQk7L+fAGFx0XGakZ9dBmSXezriOrIpsKVZIJIBWO+Y/ED0nwdseyuw5obW13Wi4EIBbFE59w3ABe8EPCYshoSEnB5s6dyCje0ba7/Lcx59iQHse3yf4+NCV3PXixVaLPvCUwu47TO3YeU5K7HmbWtq61vhENve2esdRcilvYWs16x5je2xpSvIdbtvWR9EVgQTcR6LqGUVVaWKqlxFdboKAJgomB2LF/Rc4Pn+mzs3Q2CEmuB2Rf8VAICkVheJxshkF6eelwCJDF1sF9+JRI84bYRUJoWyWj4hQp/bOjuiHViWXLbo7xeEZpydISEhISEhzRBW4U8yTzx0v+2xVDoLANh2yZW254LQ2z8IAIgMbgbDcnjP//scaM2RGE+3IdtuHyw7PaaTL8kNCYsz+SqWd9QHVBGOQVVWwXLuM/bzZfNNRjbGm6JQGR/n2UyhiplCFet7yYA5V5KQifHYupX0qOxfRm4a0lEPYfE0FsgWi7JEZj4aeywyTc5cW9uTwGduXI9zl6YXY9NOCKGwGBISEkJ44Ki7S+Chp3bbHhNiZEJOWWjO4abHp142wICiKdz2iXciaujpu9Ih0qzPy01XySGbbKAAVCGCYHcXiTTjomR8kI14XBfkqvn3eGdtPQCAyz8K3PxD/OAZbbn21cC2t3lvR/tKrDuHJEU4uTRtTjsx7S+46cIihVMXJ+pUdIxkgD+5Dxi63Pu1xRkSm7pYhcsXfwlYfd3irOtEEDoWF58W0zZCQkJODtu6t2Fz5+ba7/Ksu7B4eO9hSFVn5zjNNfc3L0bIdSa6IgpVVfHev3gv2Ej9PnjI4bpsjUI1wtEc2KR3zaAnbm9/kmknE7wj0QgibASU6HL/XSL/FaQCVIWkKEyWJk2LMD4tZi7tIz0E17eTsceWzi0AgP6l/QCAczaTSea6i7EjYp5gLjJnjqgINO5Y1ClIBST5xXNO6ri5IP/l2n/BrdtvXfT3C0qz+ykkJCQkJKQRwru0E0gxb+8V8Ns7/3dR3+PY6Ci+8IkPQC7lwKY6QdEUfvnjf6s93zu0xjEKI93mXszLlSUk08GjUI/PFiFy9QGvwNKoSgo4D2GxUDHfZLTFBJOwKPo4J45MF8DSFLYvI6JssSqjIy7YRDMvYTHKn/2zuMqaC9ToMrTGxQaFoii88aJBLO9svufViYYPhcWQkJAQAMCNP1FBfWYeU1TW9twP7/gdDs0S4TGnkoKSykZAfWYePxtpXFiczRXx5lu/hNGcgu44jXhEwNf+8+e15/vaE479nXs77NtWo5JHW8pDoPGLseTJazMRj2uepa8R4t1A2dhjkQI4Ea85RxtLnP8OoN3udjDRvdH7ed7ymcS0v+AWyWhiFQWkB7yXPVG4jR34GCBaCnVWwbY0C0SyALMIjsUzgVBYDAkJCSFol9SJEbMLj6d53Pvzexf1rYqFIv7uo3+HylQFTIxBpj2D2797u2kZXXg00tHbYXtMJ8EnQMf87y+VCefJXLlyDlE2Cpp3XodaJmJioVqoPTZdnPZ9PyPXDFwDgERvBsHqZIuc5L7ANEXjkr5Lmn49xzQnmBWlIpLC4guLce7UxJ360ex+CgkJCQkJaYSwCn8CuPSFLwYA/Pf3/9n0eLVSwQO/uWPR3qcyeQSf/5OX45H774Y8Pw4AuOCal+L2f/8WVK1vUM/QGsfXZtvcB9D5suTZY1FWVNfnAEDkGFRkxdOxmCubC4LtcR75Sv0xgfMW/Q5P5THQFkVbvF6k6k3ZbxSSLfZYPNMpaY7FGG+MQj17s/Z5h94WISEhIc9HbnnJVQCAv/7Oz02Pqyrw4zvvw28OAxu+nsMo229+oSXysuKdYob90woufO8/43/v/gOOzJHxwdtfvB3f+OEdkGRyDVo34JyS0NflIWKWc8gmPASa6YPeG0ZzAMMj6aVlWYXFZA9QXnBeFgBSfY4xsCbaVzo8aLjuWkXEIBGhFAUk7Y7P0w6KApZeCAw/DkhavyypQnpJxjufP64zq3gcEhIS8jylr6sPSlXB977yPdPjFCjc87N7EIkTUYv36l8cgOp0Fe9/xftxz8/uQXWcTG556Rtfijt/dCeqZfJ7psO5vtHV5+5YTPJJqBHv2gcAwGURFSqiXBRw+3japTIv1Sekz5Zn/d8PQLtIxlBOjsmg0KBPSN9BL5665Sl8/eqvN/16/ViJC40JeiWphBSfavp9naApGsJixLyfAAT69NyukJCQkJCzi+fJHf6JRVEUSFJ9dnZnTx8A4Eff+RrmZ+szzh7/w++Qm5/DBZdf0/R7VbUiXfHAYxj9/ochiDHc9oM7wHeSWI9LXvYmTE+MoVwsAgD6ljsLi5l29wF0oeodhVqqOlcZ9X6GIsegIilgOXdRr1iRISn1mX0dCcEUj2p1E/7ksWP4j4fqvSmPz5Wwvjdp6sXYn7UXcjx7LJ5BwiLbpBhYrspgaMokuDXrWDwT4PQI3bP3I4aEhIQ4oigKqlJ9gk5HlhRPbvv3n2F4bBIPT5ECzIO7xzA8NoVXX38ZnhlXSB9BD6ruiaq477CE7d/KQ5ZV/OEHX8L5feSa/P5XXIpcoYixyRkAwPpBZ2FxiWePxXlkEx5Ovql9gOKxcQAgJJD0qlVaRcREN1Ce916nF9E2ew9FANBnjXestjv/4h3+YiUApJY0v10nk8s+CiwcBw5p0f+68yJxBgiji4XmWDyLh1shISEhjqiqaoo3XSOvwaEvHMIdP7oDRw8crcV6Th6bxOF9h3HOeSSms5l7t7wWXV48WMT+v9iP+Zl5/ON//yPia8l45yVveAkoisLYgTEAQPcA6QccUYmYyRZJLcCrx2JKSEHhfcYaPkTZKOBSknByLM6V52qTxL1YrL6Ip6vjzg094pOlGqvlFKUiUsLiCovCaZzEEDoWQ0JCQkJOBqGwuAi8793vxD//xZ+aHkukMlBkGT/81m21x357x/+if2glBlc6i31BUAGMjwxj/L8+C7F/PT70Dz9AV2/dbdC2ZAjbL7+69nvv0FrH9XT1kgJVPG0v6hWrMpIewuLYfNnx8YE2UkjhWRplyduxWKjKkOX6gLktJqBoECxpSzWmOyXg8f/f3n3HR1GnfwD/bJvtm2TTE9LpvUMoYkFBBMWCHniKlRPxTvFOT0XEduDPdp6K56l3p55nPesJIsqJHsUKCJyA0qSGFkhPdrM7vz8m2/tmkt0kn/frxSvZ3ZnZbwZln8wzz/PsP+V+7HCKGN8jE2qvu98L0qJPLKqVig41jy/eSrymZicEldLnPMU7YzEZpBmk/6Ym9gmeGHedp/ziCK3qiIg6mdvuWIALfvukz3NGgw5GvQ73L30Nn1SkQXFfNV778gDys9MxfUgmxEUWWJv2xfV+x09W4dx/1mNgthJfPj0HPUs8ia+C7FRcOnm8+3GoxGJuSyvUVFOQi2NNNbCawlywOb4DqK0Iv0itBSZNmAuC9Sd8H5tyELLsIBrmXCDcHfQqr7jI1Yos2oRbahE6xF0zZWcAWX2BnZ9K7WobpOQyUgrC79eZtCQWexSEvlhNRNQZLX1kKf7vmv9zP1ZDDds+G9Kz0vH3x/7ufn7jmo0wWUwY30+KFXJPxl51d6juEBrqGrD3sb3QWDV45v1nUNanzP16ijUFk2ZMcj/OKsxyrwkAVHbpc9jUMs9ZEeR35FRtKhyaCK0bIjB4tce2+XVK8E8s2o7bYHPaUNVU1ar3jEV7Vyy2lqCKr7q1sblR9sRiaytt25LrPOUWxF/RSkREFEnHyawksePHjuK7z1e6qwQBaYbhJVfdgPde/RtOHD0MAFj7nxU4ffL5cd/CLDodEEURWbn5yL7sfmRedDd0hsALWDOumuv+PqNbcdBjuWYdaYTAi3mNNodPK1RXlaRLRXVj0GO65tvpNEqpFaoQPNBSORpR39QMu1dLVasxfFB20xk98J/fnu5+nKLXYHBBque91UqkmQKPESqxKKh9k23JLt4kaFOzE4Ja6dN9rCMnFlVKBXY8OBmzxxYHfd11noyW1PZbFBFREjh67Bg+/nIrKqs8MwItRgPu+tWl+OvbH+PHvQcBAO+u+hozJo9HlkJK+FibDsT8Xg6HAxlpKfjocgNW/NIAq8Xvxh57A3579UXuh2V5wWcpulpzG7RBPqtFB7LCdZR02IF9X4VfqM4CgypMYtFVTacAzikfAJj8b1qJMcmY0g0Qorzz3/XBnJIf3fY5AwLa1CaMIUylqUIBnPY74OQe4MC3nsRiagepuJRDy99TmjlJ/r6IiNpJ5fFK7Ny0E0cOHnE/J2gFzJ4/G5/9+zPUVEqdArZt3IZxk8dBL+ix9aqt0Dpiq/wSRRGHqg9Bb9Sj6OYilNxRAmtWYKwx47oZ7u+tuWHmOgNQC4EVcGm6NNgUtiBbR887ceeEX0zScr92Q3MDVCoV0gTpGsyR+iNoDwqFAqZo45YgXD+bWROkW0MbiSex2NjciGaxGWna0ON+4pGsbVABTzWl2dJ+fzdERNT1dJzMSpKz25qw5dt1Ps9dctVc6PQGVJ2ULlzV19ZgwqTz4zq+s6keR9++H28+90cAgK5wIBQhWmcNHDHG/b1K5RsgR3OJrMGvFar/PoerGmBrdkLQBg+kdGqVVLGoDlEt6GhEXZPDPXsJAKxBkoL+vJOPPbNNyDR73t+iU0MXZC5julHaxr/iT1ApYx71k8iZjEKcicVGuyOgYrEjVWoGo1WrYNEF/29LyxmLRNSFOZ0iVqzd5PPcjbOmIjfTih17pASizd7sU00Yj9se/isAYHyRGoIq+M0qQ/t5KsfVcX7uZAhhLual9wAqvkeaJcwFMW0KNMowkU+j1PY0P92CMYN6SnMA4+FouTKYWhhdW1NvligTi8OuBi5/CzCGmUvZWjNfBwbNDJ84BABnhOqNvhdK5+Knj6WqUJUA6MNf0O1UkiUBTESUIF/+50ufx5MvmYyCsgLs+1jqkmA7YsMZU8+I69hOuxMHXziIN/7wBgDA0MMApRA8zujm1U3BdWN1LKxaK5oQvFuTN7Um9HUC78TiQfVB3xcdUkvP+uZ6ZBdnY0CvAQDaL7E4NGsoRuaMjHv/GwfdiBk9Z+C0gtNkXFV48SQWXRWgVp28sUgyt0JN5rUREVHnwavwMvrmi099HhtNZvzi+l+7Hxf36I2i7r1iPm7FwX2oeOV3aDq4Hb0GDY+4vSJIRaRalGYdNIvSX7myJbAO1vKjsdkZtuLrwMkGnKq34bxLr0R6duAFMc+MRd+gT6uX5hlo0YzapmY0O71bocYWIA7qlupTjZiqF6ALklRyJSN75/jeqRVPxaImxMXT9hBvK9QGuwOCWuGTRE3kz9HWOnrSlIiotT78YoPPY51WwKJ5s9yP01MtGD049pbsh49WoneGEoIKOM01EykCrSB9TuuDVAEAXrFIiE4OqRp70OcBAEVjgOM/Ye4Fo5DmXzHporMEPKVRe11YbPSbpxhvYnH/1y37x9huSqEKUiUZgkoN5A8NPsNRLr3OBS58FrCEaM/qSpg5m4O/7qJUAmNvAY5uAw5tBLQWQCPPLKgOoRXVH0REncH6Vet9HqvUKlzz22tQt60OW6/aCmeDE0PHDo35uFWVVdj7yF5UfVWFlH7RtbVMzU4FAOhN+rDbBYtFrHor7M4wsUiL7Pzgn+UKhcInsSgqRPdsSECq5tSpdWhsljpC6dV6GNQGHGs4FvE95bB4/GLM6jMr5Oujckb5PFYpfJOzapUa95Tf0yZrCyWe9qO1dqmbR7o+wo1TMdKpkje2YWKRiIjaA6/Cy+ib/34aMGj7/F9c5f4+nmrFHzZ9i1//4lyIzTbk/vJRDB7tezeY91xCbzqD70U2rSjdaWcTpWAwq6AUAGAq7Bewb5PdAaM5dKDe7BSx40gNNIIWKnXgxUKtWgmHU4RC4xvM5BUUAwB6dC+DzeFEfZNn7ZFaofobVJDiE/ynGjRBKxZd/Gc2atWxVywmUrzJwCa7A4Ja1aHavrYGKxaJqKv7aM33sNt9Ez9XXXi2+/sZk8eFTOSFsmnbLoy89BbUNIn48lojpk+I7mJgRpqU2FOF+AzKSJVeH1ga/IKcURG89ToAoHA0ABHC0c2hP+N0qQFPmY1e8ZGtBnB6tSVTawFdK+bv6GPcV5fSsRJuroujYhTzpob8UqquPPqDlOBVd6Cfs7VYsUhEXdyGtRvQUN/g89xpUzzXMUadOSpslV8w+3buw40X3Iimw00o+X0JUsqj+8w1WaWbPTRC8I43lY1SdyltTmAiJl0XXSIqXFxlFnxvCFqxdwUAqYJy6uVTYVAb0ODwnKssQxZONPjNgE6QFya9gC2ztyR6GT7iSZjV2KQWvNH+fUZLrw6frE6keGdREhERxYJX4WWiN5px4shh7Nr+P5/ntTo9hOwyZM9cggmTY08svvOP51BQ0gM5VzwGTUZB3OvTiNKddk0tiUVXQvJobeAdeI12BwR96Isieo0Ke47XhXzdleBThLhYlmKQgsFTDZ4WZyatOqbkmd7vFxGrUYgpqSSolVDFOesyEbQtFRbqGBOMjc1OaDvYz9oa8VZ2EhF1BhajHqdq6rBu4zaf59VeVXrnnznKf7eInnl1GXIy0vD19UYMyVUBzWESfnHQB7vYp7VAaQ8da0CfBuQPl1pthtsmnKZawOnXbtUQY6vRhlOxbe9Nl9KxEm5CDIlFtRYY1TLzW5cmPe4qmFgkoi5Mb9bD3mTHhjW+HRSUSiUsLTccDRo1KPxBgnQxX/7GcghaAWX3lMHQw4CTjSdjWlezGFhtv+X4Fjz8zcPS6wh8PdOQGdN7BGPS+Faxrz+8HjVNNVAoFTAYDdBr9GiwexKLuaZcnGo81er37aziSZjV2qSKRavMbdl1SRzDsWKRiIjaA6/Cy6R7/yEwmMz46vNPAl7LnHordIUD0GTMiepYoijCfvIQAOC3D/wRD73wBlSGVtxB76VRVPlUVTqcYkCVZYPdCUeYkUQ9s03YX1kPhxh8I3eCL8RFJLNOSgpWN3iCd4VCgVR9/HdVpRuFmGY4aeNohZpIroSZM8Q5D6XJlVjsxO1PvTGxSERd2cAe3ZCTkYoPV38d8Fr54D4AgKF9uwe8FowoithZKVXzPbVwLj7/x/8hz9zyb6wtTMIvDHXLRTshyMW7AMZMqaLQpS5IW7BBv5C+2uuDHyNcYlElAE3VgMNvLbG2Qz34bWzbe9OnSevoKLQtF0cjzVh0GfUrqXWrKbtjJVBbS5O8FQxERG0tIy8DBaUFAe1QAWDUGdLNTYNGh08sOk96ugk0HZE6L13/++vx9LtPQ8iUPjfrm+t92oo6Inw2OfxuiqnNqcXzm59HN1O3EHsAGfrAm41iTfp5VywaYIBTdGLZnmXu50waE5ocnjmO+aZ8nLLF9h5dSTQJMwUU7ipFAKix10CpUCJNG+GGsxgxsUhERF0dr8LL4KNly7Dlqy8wpHwCvgySWFRrpDvx622RL6Q1NTZg8W03oOLl38LZVA+9wQhBkC8oaHSqYPfLGtocTp/HDXYHHM7QCaxeOWYcONWABluINqwtFYtiiItlFp10PmptvtWSaTG2Q/WWaY7tHGnVqrhboV41phgAYNDGPgA+Xq5qTqczwoZ+muwOaNUqqIPM0uyMtOr2+zshIkomr7z6OtZs+glTTxsaNLHoaksaTRtUm82O6xf+CYOfrUVFrRNaQQOD3uviScud37FKEasAALnqU5E3NmUDtnpsOd7y7/rhzYD/zTX9Lgx/jHCtSfWpLYlFv4rFaGceuuz7KrbtvRmsiU24zV0HTHsSMETZGkyIMbGoNQPXrATG/qZjJVBbS8OKRSLqmt59/V3s37Ef5RPL8eWqLwMqD41m6d9HlTLC72xOwOFwYOl9S7FzwU40HW2CSq1y7+9SUV/h/v7zA5+HPaR/YlHUiLi458V47bzXQu6TrQ+MCX489WP4tfsxec3d1Sv0OL/sfHxd8TWcovSLvVFjRKPD0wmiwFTgkxRLJpNLJid6CVFVLE4umYwvD3+JTUc3AQDq7HUwqA0xjwKIJJlboSZz0pOIiDoPJhZlMH7C6egzrBzDx0/Eji0bcerE8biO01hfj99dfTHWf7YS1sk3Qak1YPO36/H8Yw/IttZ6hzIgkWhr9kss2sInFntmm2F3iNhXGbxCQKtpqa5TBp9jYNSqoFQAdU2+wb3VGHz7aHTPMkXeyItWo4QqzmTbWX2ysemeszGuR2zt0vrnxV916qrEE4P1hQmjqdkJrUYZMGOysxJiqFolIupMZlx8IfqX5WPqaUOxffd+7Nx3KOZjbJlrhAn1mHTdQrz8/n/wzHk65JiUWLfhB9z9xEueDVc/BKx5PO61pquiSEyac4CmGhTltLStOrIVqKnw3cYQoaVVkBmLntfSgMZqwO47Awrm6LpLAADsjcDR/0XeLpjuZwN5wxKbWMzuBwybDaiijL+E2GIt6T36AkXlQBeJQwAAgiHyNkREndD0y6YjJSMF5WeV48TRE/hxa2xJOBdHkwN3X3s33nnxHeT8IgfaLC22f78dLz7+os92FXWeuOCTnz9BYxSt2gVRSkxlHcnCovJF0IT5DDRpTdD4XdPYU7Unhp8EsGgsPo9vGnITVApPYtWkMcHmdZNToaUwpuO3pxsG3RDXzMWppVNlW4NOFTluumf0Peif0R+vbHsFB2sPot5eH9CSVg7JkFgckTMi6POsWCQiovYQ28RsCurDFSvx/qaDQH01AOCbNZ8hxRr7YOhVy96B3mDEYy+9i0c2NMN2fB9+O/tCpKZnIOW6c2VZq01Uwu6XWKy3OWDWabweN6PZaxv/7QvTDDAIKuw/2YA0Q2AgrlN7zVi0i9AafO8sVCgUSNFrUOdXwZlujD34EdRKKBVAgTW2izg6tSruxCIApBpiu/N+632TsO9EiFZtURBazmnMFYstrVC7TsUiE4tE1DW9+eo/gM1vobZZAa2gwfLPv4WgiT7MUzWehFYFfLL+ezQojFj198UY/9ODqLWJGDvrd0hPteDBm1s27n4WcGhj3Gs1KpoCKwX9WXKBPV/AYtABQi/gxE5g56eB2wmm0BWUOs8NPRa937nQpwIQAf8ZTZb8iOt3q9wFiE4gdzBweFP0+wFSpaCtFnG3T0gE1+xAZxStbLsytkIloi5q0SOLcPYtZ6OboRuMFiO++uIrqDNju+RkO2HDz3/5GQfrDmLJi0vwD8c/AABzp82FyWJC8ZPFAKSkzpH6I+79GpobsGz3smCH9KFsubfeUm2JsKXELJhR2Vjpfnyg5kC0P4q0v9bTClWtViNDn4GLelyEV7e/iqqmKhg1Rp9WqCUpJTEdP9nFk4gMRxvFzGaNSoOnz3oaM/49A89tfg5pujSflrRyMagTeyNRuHPLxCIREbWHDnQ1I/mlWNPRZ9AwVJ+qjLxxEEaTGU+//hF69R/sfu7p1z/CG6s3x3ysrFzfWQEar3aqdU2+F4SOVjf5PHaK8En6OUURTq8KRqVSgaGFofvT6zS+Mxa1hsC7w9KMAur9KhYzTLG3yTqnbw4euWQQ8tOiv4ijVLRULLbj3fMmrRp986L75SUY14jEUHMtQ2lqdkCnUUHZRRKLGiYWiaiLMxl0OGPUQJw4VR3jniJUSgXSDUp89eYfMX54f/cr6157DEfW/tOz6cg5wLzILUD7dS8CAGSnSXGAWuXV+swW4WYbc57UqhQioLMABSOB/UHeUxGmnZpXYtFas01KArq45i/W+8VsPq1QI3x2Hv8RSCkEUkLPZwpJqZR+rnjlDJC+auW/UBaSq2LR0RR+u66OrVCJqItTa9QYOWEkrFdZUXx/sc9rKmP4NqgKpQJKnRJPvfMUBo8b7H7+ibeewHub3nM/zjZk43iDp1PUeSXnYe2htQFXuAr7ShWAuSW5OFh7ELu1uwEAojG636stguez2uF04HDd4aj2C7a/oJOud8wdNBcA8L8T/4NZMPskFovMRVAq+DttKK6EWaROTladFU+f+TTq7fXYdWoXLNpWxFwhJEPFYihshUpERO2BEYvMRp9+DrJ/+QiUM/4YUOnnUqnJRNHvP8TBGhtWffg2bE1SIDlh8vnIzMlzb6fWCOg1YAiUcdzNrjf43j112jnT3N+fqPOtEqio9msDBqDWP/lY63sRaWx3qSIzWMtU14xF/5ar3jKMWjTY/RKLMc5JBAC9oMLFw7ohyxxb4KRTx98KNRHinQdga3bCKHSduYOsWCQiAqadMSqm7d/86AtU1zWgNE2JZy5IQ1lhrs/r5UP6QKXy+yyJIqFlMUkXXFyfYT2KPTEO6o55vg+WqDLnSFWNrsrGnpOA+hhbzXslFtFYBfy8zvPYlVhsOOW7jykr+uOf3AvkDwU0Cbh4M+pXwNUfAUVjpMfdJ0pfy05vu/dUt9wA5rCH366rYytUIiKUTyyHkOV743BVWhV6/akX6h3SzUX1Yj36v9gfNUIN1ny8BqdOnIImTYOi64tQ0qsE6w+vd+87aNQgqNSeWCTflI+TXl0H5g+fD7VSDYXf7/havXSNYfXB1Xjo64dwXCHFEmWjyqL6OVK0nljiUO0hnyRgJCbBFLQFZ2pLq3an6IRJMPkcU61SI10Xe/eraEWcb5nkXIlFpxi5lVOf9D54YOwDUECBVG2q7GtJ6sRiFC1jiYiIWotX4WU2esLZ0OX3AQAcPBWYsAOAWnUKREcz/v3Pv+Kh38/D5m/Xo9tvXkWz0jexptXLd8ezdxBe6ZckPFkf2I7MO7GoUSpxwGueokFQYWx3ab5gdWNgOyyVUgGNShEwu9FbukkIqJzMMHl+/qZmh/8usjmtZyb65FqiTtZ1oPyjj2aHE04R0Atdp+OxwMQiERHOmxA4b+XsnFMQF1mkBFsLh1PEM5/tw2XzH8K7n20AEHgjizrY7Fp7fK29Fd4VgCd2eRKKp/YB/hX5rlmHtjrpa0YvIL17bG/onVhUKICtbwPNLe8pmACluqUq0otPxWIEzmag17mAIkGfs0VjgDSpKhSCAVh4Auh3URu+YQcNiNqbpiWxyNNFRF3YyNNHBvw7WJNTA6VaCbso3aCy2b4Zoijim6++wcLrF2LZa1IrU1cssvbg2pDHLzAX4GSTJ7GYoc/AFX2vCNjONSPR7rRj/tD5mDNwDgBAGSy+CcI7IbXz1M6o9vEWKZFnFsxodjbDIXquf+QYY5j3HIOzCs/CYxMea5Njtxd3xWKUnZwml0zGkvFLcG3/a2Vfi0GTvDcSsWKRiIjaA6/Cy6y4R2/3965YR6f3DThEuw1H37oXe75bjVvvfxx5Q8+ESm/BbsG3n74p1RpwfIcjtlaYwfgnA0/U2eH0C8wabJ7AVqlUYN9J34uIfXPDt5LQa1RhKxazzFrU23yTh1aj547GtqwmfGrmEFw+uijq7d+fNxYXDclHZhwVlYnU2JLYNWo79l2JsdBE+QsiEVFnVpSfjQE9i32eO7dU+mqu3QUAsDuAi99swBtfH8af7voVrpo2rmVL389fXQxzGmNSc9A3mfiz38VDV4LPlcRUKIBRN8T2Ht6JxSGzgZrDwLZ/e45nzAQaW5FYNOUA3QKTuAFcF3ey+kZ/7Hio1IAqcPa1j9To4x+Kk/tCIzOLRNR1paSlQO11g2u9rR62bOmG5rSsNPxn33/wE37Cgb8cwL7P9uHa267FrHmzpI0VwPYT28O2HS20FKLOXufz3JwBcwK2yzZKn+t3jrwT1wy4xp1oDGZ/9f6A59J0nhEwe6v3ItsQQ5wQBbNG6gBh9+oGkGvMDbV5qzxxxhPol9GvTY7dXlwJM+9EbCTnlZ6HAZkDZFuDq6NYsGrUaA3LHibXcoJixSIREbUHXoWXWbAquMxsT2DYUF+Hbe89DduRnbhowZ9x7sWz3MnIwl4DIx5/6eqdaLS3rpqvqsG3hdWpeltAdaF/m9KfT/gmFoNWMHgxCOqwFYuZZm1Au9V0r8Si2q/9axzdYENSq5Qw6yJcePMyoFsqHr9sMIrSEzczx6iVfimLZS5kU8vfobErVSwysUhEBACYN2UAbi/33FjSvUhqQ6oX1LDZ7Lj9te+xak8z3v/tOPzmyguQlyW13RpU1jZ3yQeoqZAq/ly+fx1o8rpAGCzBN3hWbO+h1gGuC4jp3YHeU4GfVni9Rw5gq/XdR5+GkAx+rcnyh0SXiFQLwG27gLG3RLXsNnPnQeDCvwAdvA1a0mMrVCIiAJ42pADw7dFv4VRI1wc+PfEp3vnxHRz+42FUf1eNghsLYD3PispGae5xen46Ptv/GTL0GSGPXZpSGvh+as/72eNo2/3yDy+j2eF7jSJN64kLDtYeRG9rb//dQnJV14XjarXq3Q61mymO2c1JIEWQfharLvAGebm4/j4SmTjL0Gdg4eiFmFwyOe5jvDj5RWyZvUXGVflixSIREbWHrpNxSBJ6gxH9zroYe/Q90a3vcACe+5nVQuTAc//Jejz88fa4398gqFDT2Ayn12zEyjobmrySgEoF0GDzTQoeOBm8rWu49wkny6wLW7Hozz/RmGqIPjHYGSy+sD8ElQIlmdEnN11/pyZt1/nfXMNWqEREAIA51i+hSGmSqvTMvne+C4IGcyYNwBjnlxgwJN/nNYM2/s9XaQ5j5Jk3AKTEYnOj53HDSeD7Vz2PtWYpMei9jRDjDT4KhXScBulCJc59GNix3PO6JRc4/pPvPuHuZBL87kwvGg9oo7xb3Zgh/UkkrQkoKo9/f2VLPMHEZHjuVqisWCSirk1n1MFulxJ8G49udD//Q+UPmN1/NjbP3Ix1zetgKDXg458/xoq90s0/dpUd209ux3UDrsNzm58LeuweqT3Cvve6Q+swoWBCTOs9Un8E7+963+e5dL3npqJj9ccwo+cMfH7g86iOF646EgCUCiXMglSx6F2BV2gpjHhspSL5fu/tnd4bd428C5f2urTN3uPMwjPx5BlPond69AnettCWP6Mcknn+IxERdR7JF410UrVbPsW6D18HAAycNBMaa37IbV1Jv5P1gXfZLZzaF8dqAmciRivdKKCm0Q6HV2LxVL3dZ96hWadBg93zuK6pOaDKMRJDhPabGebAJGK6MfpWo9HOR+wszDoNHrt0MPrnp0TeuEVjy5xKYxdKLLJikYhIonC2fG43nHI/968f7Hj0X18BAH517kAMyA7yWR1Dayl/2mjbpqoEoO6YlEx0GXEdsGe157GrVWlr6bxat6fkA6PnSt/XHgUs+YEzFr1FSmRaS8K/nkiu5J8+Pfx2sTjjLiBnEJAe/mJul6fStCRhu1asSkQUoOWfwVpbLfZU7YECCtRsrkHaF2m4bcRtGD11NAylBkwpmYJVM1bhlqG3AADq7HXQKDW4vM/lIQ+dacgMWrWmUkiff6sPrI56Dh8gzWy8pOcl+OLgFz7Pe1ffOeHE0OyhgT9mhGsTrjW5vnpzVfl5K0lJ4vgigpl9ZkacK9kaCoUCZxSe0WbHT5RMvRTzCsrQN9vHghWLRETUHngVvo05nU7sXfECTix/Aod2R1dpePBU6OrAoYVpeOmake7H3gnCcPZXSscU1EpUNTbD7rWfCKCi2lMRYNFr0Gj3VBx4vxatSO03gyURLfqukwBrD00tf4dmXdc5r1pWLBIR+bLXQxRFLF6+FzPeasDGXUeCX2g7+oP0tXJP262lcqf01VomfT251/Pa2fcBxizf7U1ej1VxXmjR+s2EHnOz570t+YEzFr3pQsyT1rdcZNQk8UUblQa46Hlg9I3yHVOfCtzwBVDW+S7oyU6jBxOLRESSbyq+QbOzGZp1Gvz8x5/RuLcRzc2+LUcz9Bm4ZsA17sdnFp4ZtqWmQqEIOu/Qlbw73nAcG45u8Gwfxb/Jvx/xe+SbfG8AzzR4bnJSK9UYmBk4vibSscMlebxnOLoUpxRHWCl1Ng+f9jCePONJmPy7Y8TJoGZbdiIianu8Ct+Gmhrq8cD863Hg89eRdsY1uPjXi6La76ejtWFfH1niCbCP1zaF2dLjx6M1AAC9RoWqejscDqf7MQAcrfYcJ0WvRlOzp2KhoqoRGlVsF0ciVcllmAMTi21RhZjV8j49suUJ0JKd96ViVyvUrlSxqGHFIhGRjyZbM2bf8RgWvLcH907Q4pXbpwV+3opOYOMrLd/HUbFYfyL866IT2PQacGKX9LioXEoUVh30bKPRA+c97rufyWveY7wXWnR+lQCqlrZkCoVUwdjcAISawxQqmTm2JTnpajPlSrTpU+NbY1sZeCnQ57xEr6Jr0uiZVyQiavFdxXeof7MeG57bgPRz0nH3s3dDrQ7/O+o1/a4J+zoA5JsDu0C5ZhYWW4qxat+qmNapVWvx0PiHfJ7znvNYbCmOam6iv3DzAFO1qQHPteWMQkpOWrVW1kpMtkIlIqL20HUyDgnw9rP/h2/XfoY+V9yP+twhUSfOdlTURP0elXXRtUXdX1kPQJpjaHM4Ud3S+tRVzVZZ7zlOql7wSVhWVDUiy6wLW0npz3uuX01j4AW79DDzFIHoKzEjSTMK+Pqus1Dd2Bx543b04a/HYUdFDcwyJf2MggpmrdqnutSVHO5KMxYFViwSEfm47+XP8OZH6/HqdX0xM/9A8LlvP68P3xI0kh9XAiWnh379f+8AdccBUzZQe0RqE5neXZr/6K33FN/HFq/ZkOrYL+QBCEwsenPNnnSEuElLlxr8+XG3AINmAoaWC3+DfgF0GxH+vSh5jPutNM9T04Z386tZsUhE5PLdm9/h6CdHMWH+BJwYdAI2MfI1jGhm6HUzdQt4znXNZXa/2bhv/X1BqxrD8a9IzNF7bnLqY+0T07FcwiV5tGot1Eo1mp3Jdb2COjYmFomIqD3wKnwbEB1SUDjt6pvxxCv/RnrfMdHvK4ru6sJonKhrgjOK2QHHa6Xg3dqS0KtseaxQAIVWg0+CMtWgQaPdU7FwqKoB+WmxBSbeyay1u074HA8AdBoVjELo3vtajXz/aWZZdOielVwVi/3zU3DxsG5QKuW56KRWKTGhVyZ+OlKLBpt0rl2tUPVhznNnE2tlLRFRZ2V3SLHBHTPH47//fAQzR4a4sOZsBr5/DdD7teKKYS4Rqg8AW/8V+HxjlfS17hgw9hZgzK89r+UODEwsuihbqgrNedGvwcU1F9FVmRgqOQh4EouhKMPcmGPO9rwHAKSXAcaWqgZXpaOq69zY06FMvAe48Usgo2fbvUdbJi2JiDoIZ0sHnfSJ6Xjno3fQd0pf6XnRGW43FJgLojp+kaUo5GvTy6YjU5+J7499H+VqgzNpPdcRBmUNimofV3JTrZDiAL0m+LUUV/JHr2ISiOTFVqhERNQekiKxuHTpUhQXF0On02HUqFH4+uuvw27/1ltvoXfv3tDpdBgwYACWL1/eTiuNbO2qj3Dor3PRXHMcxpQ0lPXuF9P+R2uaUBOmus7/Ot/R6qaApJ2/ZocncHclFk81eBKJxRkGnPKqWEwzCGjwOmZlnQ1F1tgCE5PXXD+HU8T73x8K2CYtTNUi00OxO39QHo7VNmHnMamVbmOzAxqVoku1B2XFIhHFqzPFIp+s3YDeT9dgV6UTFqMOIwYESaAc39Hy9UegoRIYOtvzmugEvvu79L0xI3Bffz3OAX5cATj8KhCOtbzHabcB4+f7Jvnyhwdu788SIfEXzKTFQP+LPUkj/4Rpa48fjd5TgdxBQNmZbXN8aj19avDqXbkIhrY9PhF1Sp0pFtny9RZs+t0mNB5oRN+cvrhg4gXu1xqbG8Ps6ZmTGElJSknI19QqNWb2ngm7M0S78zgMzx4e1XZmjRkA3G1Tg1WPzRk4B0vPWiq9HiLx2BojskcAgM/cSuo6ws31JCIikkvCr8K/8cYbuPXWW7Fo0SJs2LABgwYNwqRJk3D06NGg269btw4zZ87Etddei40bN2L69OmYPn06tm7d2s4r9yWKIt556c+47+ZrIGSWQKkzhU0QhvLTkfDzFb1nHwLAkeom1DSED5YPe7XHtOg00KgUPq1Bu2eacMKrYtFqFNxVbwDgFIE+uZao1u/iXbHYL9eCz3ccC2ilGqkdKsXmtJ6Z0GmU+H7/KQDSjEVBpYRapqrIjkBoSaJ2nZ+YiOTQWWIRAPjzmytx7px70DNdiUxjiH8Nnc3A3jXS96d+BrqNBEpP97y+7ingp0+k77OjuEFq0MzILUf9X88dHPm4pqzI27i4WqVqTcAlfwO6tVz8C5dYFIzxz24MR6kEfvUF0Gea/MemjkFjAKMRIopFZ4pFVr69Er+d9VsIVgHqVDXOKTqnTd6nR1qPsK/P6j3L/b0Qam5yDEpTSuPaL1j12K+H/Bq5ptyQr7eWVq3Fltlb0D21u+zHpuTHikUiImoPCU8sPv7447j++utx9dVXo2/fvnj22WdhMBjwt7/9Lej2f/rTnzB58mTcdttt6NOnDx544AEMHToUTz/9dDuv3MNms+Gvi+/AS0/8Ab+4/jfImH4HlJr47hD68WgNsi3RzxFyiCL2tsxPDOVApSehp1AAWWYdqr2SkWVZvknQNIMG9TbfBOaggtjmBnknFqcPyYdeUOGt7w74bJNuinNeEgWl06gwtiwDPx6pQZPdgUa7A4JaKVu71Y7AXbHYdX5kIpJBZ4hFHA4HbnnsVdz4h79h3qyp+PdMIyzaEP8Y/rzO9/GoGwBjpufx/q+BkdcD2ihvKtLogal/9DzeuQqorwy/TzQJS1NO5G1cQrUt1UeIX0yxzV6iVprwe2DYVW2T0E0m/S6UEvbh2ukSEXnpDLGI0+nE20++jSXzl+Cs6Weh/139oTapcX7Z+a0+9sHagwHPRZqfaBSM7sSaHJWLihCV6Kd1Oy38OjTGVr3emV3W6zJMLZ3aru9ZbCmGWTC363u2N7VKHXXlLxERUbwSmli02Wz47rvvMHHiRPdzSqUSEydOxPr164Pus379ep/tAWDSpEkht29qakJ1dbXPH7lt3/YDvvnsI9x8/xO45uY7oVDEf1p3VNSgNDP6iy1KBXDgZEPYbfZV1vk8zk3R+VQslmT4BrKpBgHNTk/PVatRQKYptkSpUesJYvSCCnee2ztgnZlmJhblNm1QHg5VNeLnyjo02Z0Q1F2sYlHNikUiik1niUV2796Dl5atxdK7rsGfFtwAdciZsyLww/uehzkDgZLxvm0bx90KnHZ7bAvwrs47tg3492/Cby8Ywlc5AoDZlVhUBraVjLSve7vUKN+D2sUZdwHT/gToYuuE0eGMuBY4a6Fn5icRURidJRY5evgoVr+1GnPunIPbH7kdPTOltuRZxhg6EITw961/h82vhXqoRJ8317zGWlv4zlCtceeoO7Fl9paQr0eqHuvKicW7R9+NJeOXtOt7/vvCf2PdzHWRN+zgNEpN5I2IiIhaIaGJxePHj8PhcCA72/dOs+zsbFRUVATdp6KiIqbtlyxZgpSUFPefgoLoBoHHYuCgwXj8nf/izGmXtOo4dU3NOFFnQ9/c6O+eyk3Ro6Iq/IyCn/0qGvNS9XB4JQ79E4spBt8AJC9F5zMzMRpGre/2l40oQIFVmh1gb5n5mMmKRdmd1ScLaqUCG/adQmOzA4JKCVUXSix2pXmSRCSPzhKL9OjRHbvfexg3Xhah3VjlHqD6IFBYLj0uGC3NUdS2xB6mbGDMPMCUGfoYobguYJy/FBh8uef5UDdcZfcPfzy9FVCopP311sDXohExedlGcxaJtJ28KpOIZNNZYhGb2YbfvP4bzJw7EwqFAqIoRt4pSscbjuON7W/Evb86xgpyOVtJRkocmjT8vCD5MbFIRERtrdNfhb/zzjtRVVXl/rN///42eR+jJbZWoQCwYd8pvPzlXjz3390AgF3HpLvoxpZlRH2MonQDjlSHTiyKoogDJxt8KrhcCT6XVIMAi1fiMFXvG4B0sxpgjjWxKPhur1AosGhqXwDArqPSzxlLy9dkNqYsHUBggjYRzDoNRpZY8eORWjTYpFaoqiju5OwsWLFIRMmovWKRNEuIzyFbLXDwO+n7/V8BqYVAyQTpsdIVCrb8y5lWEn4uYTiui3aCATj/SaB4vPQ41FyjvCERjqcE9KlStaIyznZOkRKLKd3iOy4REVEH0h6xyMd7P8b6Kk/F5IajG4Jup1XFfh3g2gHX4usjX8e9Nq06+vf85JJPsGrGqrjfy1+kxGFXrliktiPHXFEiIqJwEjr4IyMjAyqVCkeOHPF5/siRI8jJCd6aKicnJ6bttVottNrkSmC5Zgvuq6yHrdmBk/VSv3+nKLUdjaUVapHVgK/2hJ5jVNvUjHqbA4VWA/a1VC4WpAXefVdoNWDrIakdSqrBNwApTjfEXAnmX7EIADkpUkLTdeNiRiepWOyTa8E3CyYiWQoDpw7MxYJ3t8LWrIPVqIEqZDu8zkdQ+V0gJyKKoNPHIpteBWoOex43nJSqCQ3p8r2HJsRd/ZESlLmDIx/bkg+oNJ6Wppl9pFar0SYaM3sB+cMBc4g5TMESi73OA1RqIM552URERLHojLHI7lO7Q74WTQtTfzcNvgnfVHyDjUc3tmZZUckxytsmPVLiMJp5f29Pexs7T+2Ua0nUBTCxSEREbS2hFYuCIGDYsGFYtcpzN5jT6cSqVatQXl4edJ/y8nKf7QHgk08+Cbl9MspqmS245MIBeP+mcXhwuqcVWEm6AamG0C0LnH7dRIrSjT5tTf0dr5XmEPTI8iQr81L1AduVZHqCXf+KxbI4KvEMQuQLfumdJLEISPMik+Xnmdw/FwoFUFHdCK1a1aUqFt0J8K7zIxNRK3XaWMTY0spUlwIMmul5XmOQHsdbARhMvO1EcwdKX8NVEUx5BBjyS0/V47wvgbnrAWuZ9NiSF/49dCnA1cuBPucHfz3Y2me+Clz4nKc9LBERURvqjLHIB7s+kPV4CoUCj014TNZjxmtUzqiYti+wSG1nS1NKg75uEiLfWN7T2hNTSqfE9L7UtQlKJhaJiKhtJbwV6q233ornn38eL730ErZt24a5c+eirq4OV199NQDgyiuvxJ133une/uabb8aKFSvw2GOPYfv27bj33nvx7bff4qabbkrUj9Aq2RadT5vRXjkWWHShE4v+cwoKrPqwlXLHa5ug1yh9kol5qYF34Jd5VUla9BqfvIx/BWM0TEEqFv1lmBjotAWrUcDgglQAgFbTtWYsqpQKKBXMKxJRbDpFLPLR74H1T3sel5wGCCbgrHuAaX/yPN9jEmANfmErrIZTnu9dMxOnPQkMmBG53WgormrBPheE3qZwNDDwUqmC0CW7r6eF67UfA+f8AUjvHvoYaq2n+tDVrtXVhs0SIinKakUiImpHnSIWafHDiR+wq2qX7MfNNMQx/zlKylDzoIN4YdIL2DJ7S8jXzyo8CwDQN10aBaNVSjFHqjY16PYWwQIA0KsDbwAnihcrFomIqK0ltBUqAFx22WU4duwY7rnnHlRUVGDw4MFYsWKFexD5vn37oFR6grwxY8bg1Vdfxd1334277roLPXr0wHvvvYf+/fuHeosOZUypFcowiSC7wzexqFWrUJRuxJ7jdUG3P17bhGyLDlq15xzmpgQGrN29KhpVSgVMOjVqGpsBALooqg/9GbStq1iMtfUq+TpvYC427DsFnVrVpRKLgHc7VCKi6HSKWGTjP6SvOz8D+rkSdS3//qs0QEYv4PgOoPtZ0gzEaNkbgE2vAT9+5HnOVeU3bLb0JxRXK9RQFzYEI/Cb74HGk77P978o+vXpUoAxMVxE1VmkZGiPSdJjs6visWt9VhIRUXLpFLFIi3/v+je6mbqhvrkelY2BY1t06uS7eUchYxxwWsFpYROP/lyJRZUi/m4Sl/a8FG/9+BZG546O+xjUuWhVWtid9kQvg4iIOrGEJxYB4Kabbgp5Z93q1asDnpsxYwZmzJjRxqtqO7VNUsLOKQa2MO2dZ4n5eP3yLGESizYMyE+B4JVYDDb/sDjdt92pRadxJxbNYSooQ4mmYtGiC72NdyLU2x2Te2Pp6p3QaZI3eaTTqFq+Jm6NUwbk4oEPt0GrUULdklhMM2hQnGGEupMn3jRqJa8PE1HMOk0ssvk1wNHoqcxzsZZKiUVVDJ/pTdXAz2sBpUaqgNzV0nIt2FxCAMgbAuxb53l87sOAWifNOQzFWgyg2PN44QmgIfTsaFlc/ILne2OmVIGpDPPZePNmYMdyICW/bddFRERdWmeIRU40noBTdGLxuMVYvX81Vv68MmAbVyItTRdhFnMbSNfLOGNaJtHMWPQ3Jm8M9u3Y537cO713TMlM6vy0ai3sNiYWiYio7SRFYrGrWbPzOACgss4W8FpaHG1HhxSm4cPNhwEgYN5iVYMdxekGaFThMy0lfnMUU/QaHDzVgLFl6e7EVCz0GhUUAEJPf/QMbTfGUBF5w+llmDmqEOYoEpeJkpeqx6yRBRjXve1atUSSm6LHvDPKkJuic5/nDQvPRkV1Y1RJ345Mo1Iyr0hEXVefC4D/vQvoUsNvlztI+ppaJH1N6QYoFMCAiwO3vfivQPFY4JGy8Me8ermUiMxuqZbQ6IApD8e0fKjUgCkrtn1aQ6WW5jXqraG3SSsCRs9tvzURERF1UE7Rie6p3TG1dCqmlU0Lu61RLV2DaM8WoCrIOGM6SinaFJ+voV6PxYLRC7Bg9IJWrYs6N61Ki1rUJnoZRETUiXXuDEOS+t+h6qDPC2olUvSxVwcO6uYJRH86WoNhRb53/vXPT8Hhqkaf5zJMAo7XehKb/lWMKQbPOpSK6NI0ual64GepnZlCoYBeUKHe5oi4n6vCL1rxnKP2tviigYleAm6b1BvNDqf7sUKhCNoGt7OJlEQnIuqUbvpOqigcfLlUIfjFI9KMRUPLnfmuajtXW9Juw4HfbJKSiYD0dWElIPp9bqcWelqrDrlCqoQM1cJMoQCKx8n6Y7WL61cBdccTvQoiIqIOzeaQri/MHzrffXNrOOqW+claVegRKXKRs9VprIZkD8G8wfNw/YDrg77uquAkktOVfa9Eja0m0csgIqJOjInFdna0pjHguWyLdIFuWGFaXG0q+3q1T918oAoXDvZcFFQpFOiXbwlILOal6H0Si+61mFsGi3sl76Jt6fnojIEYXJCC3jnSegxRJhbldNHQfDz00Xb0i6OlbGfU2dueBiNVLDK5SERdTEZ36Q8AnLlASiTu+szTtnTy/wEpBYDFq52ntcT3GEolAK/PjetWAVWHPI8veLpNlp5wuhTpDxEREcVtTP4YaFVanFZwWru95+eXfY6T/rOagzBows+XvrzP5XItKagbBt0Q8rU0bfu3hKXOb2z+2EQvgYiIOjkmFtvZt3sDg15VS6tRc5iZg+EYBM9+R2ua8OUez2yiDLMQtL1qfpoemw9WhTxmmtGzj90RrqGph1atwrXjSv3WFZi8bEtZZh12PDg56ipL6nwEFWcsEhFh2FXAwF8A6pYqAJUaGHdLbMfoNhwIMU4xLn2mAh/cBBSMlPGgRERElAwu63UZLut1WdTbu2YsxjL3MNeY61PhaNVZYdWFaWcehUizCdt6dmGwVqjLLlwGp+gMsjURERFRcmBisQ2kGwWcqLPhwMl6DC5I9Xnta6+kX1soSjdgzc5j7tmG+al6mHWBrUPzU8O3xLR6JSPjbS1piGF2opy06sS8L0X2/JXD8N+fjsNqjH2WaLQ4Y5GIqIUmRMvSRNGnAXcfS/QqiIiIKAmMyRuDO0feiZm9Z0a9z8pLVoZ9XYmO17FHq9ZCrfS9NFdoKUzQaoiIiIii0/Girg6gf77UhvOrPZWwN3tagZ6os+HAqQZkmdtuhsA5fbOx53g99lfWAwAKrQaYtIH549wIicU0GRI/xjgSi8OK0nDp8G4BMx8zTG0/d4Ha3tl9c3D/Bf2R3oZ/n4Ka/6wRESUttSD9ISIioi5vVp9ZUc1j7Oz06vDXZ4iIiIiSDa/Ay2DVtiPY6tVW1DXf7XBVIz7/6bj7+Z1HayGolBhdGn+rDm2EeYfDitKQadbC2VKyWJJhdLda9VaSIc0YCJZ0BHxnLKqV8f1n4p8cjMbbc8fgwekDAvY1almFSNEZ2C0FBVY95ywSERERERFR0kvVpkKnTrJOE0RERERhsBWqDN7ZcBBbD1ZhSLdU97zDdJOALLMWn247Is18g5RY7JVjalUbyEipErVSidnlRXh05Y8AgOKM4EPKrUapYqwkwxj09VSDJ7EYqQIsVMvTaBOL2RbfAJoVZ9QaD07vj2M1TdAnqBUvERERERERxUepkP96gArS74au+YyCKrm6Jzx15lPumZNEREREHQEzODJwisDJejt2Havzef6iId1wvNaGQ1WNAKRWqKNL06HXtG0+d/aYYvf3RiFwvmI0vBOL/gka/zapuhAJnFDVkN4+mDcWt03qGccKiYJTKBTIsvBuTyIiIiIioo6mNZ1nzik+x+exSWMCIM0xBACNSrrOkWytR8tSy2DVxd/ZioiIiKi9MbEoo20V1T6PSzKMOK1HpvuxoFZicr8ctGaEQDTVfGZdfMlEbyn6luRhkLW6EoZLLhqAntmmkAnEaCoWBxak4oze2XGvk4iIiIiIiIg6h0GZg+Le97YRt2HL7C0yroaIiIiIgmErVBntq6yHrdnp89zd5/XBOU8cAwD0yTGjMD1469FoKf2ykiZd8L/CXtlm7DhSE/I4RVapRWq/vJSgr7sqFhVQQK8JXpE4c2QhLhqaD606+Otmv7WVZko/e3lZesh1EREREREREVHXw6QgERERUcfAxKKM9lc24HBVg89zPXPM7u9HlViR3or5isGolcHLH3Wa8JWNaUYB3909EY1+iVCXFL2UWFQqELbCMlRSEQhMLBoENX64fxLszWLYtRERERERERER9U/vH/e+3VO7AwByjDlyLYeIiIiIwMSibIrTDdh7oh6bD54Kuc2QwlQoQyQC45Xdilly6SZtyNc0KiUMggoKr6ziniVT8NWeSuSnRjePwCBI/3ller2PQVADyTUnnYiIiIiIiIjakFYlXReIZb5haysYrxlwDSaXTEaeKa9VxyEiIiIiX5yxKIMDJ+vR2OxEaYYRPx6phX89Xp9cCwBAowpd3RctgyAdY2C3FBRaDdBGMXMxXhadxqdaUaFQYHRpetTJ0VCzF4mIiIiIiIio61ArE3N9wDupOKFgApQKJeYMmJOQtRARERF1Fsz8yODnE/UAgCvLi/Dmt/th0WlkPX5lnc39vUYlJRI/uGkcKqoakdWKisVIysvSkRJihmM0XElQIiIiIiIiIqJE0qq0+P7K7xO9DCIiIqIOj4lFGay/80ys33kCJZlGvLz+Z+w9USfbsRd98D8cPOWZ2+hKLAJATkpgUtHklwgMNx8xksdmDEJlvc3nPWPhWktr1kBERERERERERERERETJga1QZZCbosdFw7phcEEq0o0CjlQ3yXbsDJOA2eVF7sdGbfgqQJ1Gen14sRVA7Ek975mKSqUCGWHmMEYyotiK+Wf3QGmmMe5jEBEREREREVHHNm/wPKgUKgzPHp7opRARERFRKzGxKCOFQoEJPTNlO162RYu/XjUCi6b1cz8XbfXgwql98eGvx2FwQRoA4Oy+2QCAQqsh5D4jitNw3fiSVqzYl0alxM1n9UT3LLNsxyQiIiIiIiKijqU4pRibrtwElZIjU4iIiIg6OrZCldnk/jl4Z+NBAECPbFOrjmUQ1K2qGOyfn+Lz/YaFZ0OtCl3C+NYNY+J+r7ay9d5JWL3jKPJS9YleChERERERERERERERUZfGxKLMxvXIgEalgAKetqRCmGReKLNGFmJoYaqsa7MaBVmP1x5MOjWmDspL9DKIiIiIiIiIiIiIiIi6PLZClZlBUGN4URqUCgWa7E4AwJMzh+D0npnItugAeNqSdkuTqvCKWtqT9srxtAxdfNEAXDK8wOfYQwpSY56ZSERERERERERERERERCQHViy2gVvP6YUVWw5Dp5HytkXpRrx4zUj360MK0/Dt3RPd8xKzLDp8veAsNNqcIY+5a/EU7Kush1bNeQRERERERERERERERETU/phYbAMjiq0YVpgGpTJ0eaH/7MQssy7sMVVKBUoyjCFfX3nLaXh7wwHkpoQ/DhEREREREREREREREVE8mFhsI+GSim2hZ44Zd07p067vSURERERERERERERERF0HZywSERERERERERERERERUURMLBIRERERERERERERERFRREwsEhEREREREREREREREVFEXW7GoiiKAIDq6uoEr4SIiCh5uD4XXZ+T1HYYixAREQViLNJ+GIsQEREFYixCFL0ul1isqakBABQUFCR4JURERMmnpqYGKSkpiV5Gp8ZYhIiIKDTGIm2PsQgREVFojEWIIlOIXSwF73Q6cejQIZjNZigUClmOWV1djYKCAuzfvx8Wi0WWY3ZVPJfy4bmUD8+lfHgu5dEW51EURdTU1CAvLw9KJTultyXGIsmN51I+PJfy4bmUD8+lPBiLdGyMRZIbz6V8eC7lw3MpH55L+ch9LhmLEEWvy1UsKpVKdOvWrU2ObbFY+IEgE55L+fBcyofnUj48l/KQ+zzyjrz2wVikY+C5lA/PpXx4LuXDcykPxiIdE2ORjoHnUj48l/LhuZQPz6V85DyXjEWIosPUOxERERERERERERERERFFxMQiEREREREREREREREREUXExKIMtFotFi1aBK1Wm+ildHg8l/LhuZQPz6V8eC7lwfNI/vjfhHx4LuXDcykfnkv58FzKg+eR/PG/CfnwXMqH51I+PJfy4bmUD88lUeIoRFEUE70IIiIiIiIiIiIiIiIiIkpurFgkIiIiIiIiIiIiIiIiooiYWCQiIiIiIiIiIiIiIiKiiJhYJCIiIiIiIiIiIiIiIqKImFgkIiIiIiIiIiIiIiIiooiYWIzS0qVLUVxcDJ1Oh1GjRuHrr78Ou/1bb72F3r17Q6fTYcCAAVi+fHk7rTT5xXIun3/+eYwfPx5paWlIS0vDxIkTI577riTW/y5dXn/9dSgUCkyfPr1tF9iBxHouT506hXnz5iE3NxdarRY9e/bk/+eI/Tw+8cQT6NWrF/R6PQoKCjB//nw0Nja202qT1xdffIFp06YhLy8PCoUC7733XsR9Vq9ejaFDh0Kr1aJ79+548cUX23yd1L4Yi8iHsYh8GIvIh7GIPBiLyIOxCAXDWEQ+jEXkw1hEPoxF5MN4pPUYixAlOZEiev3110VBEMS//e1v4v/+9z/x+uuvF1NTU8UjR44E3X7t2rWiSqUSH374YfGHH34Q7777blGj0Yhbtmxp55Unn1jP5axZs8SlS5eKGzduFLdt2yZeddVVYkpKinjgwIF2XnnyifVcuuzZs0fMz88Xx48fL15wwQXts9gkF+u5bGpqEocPHy5OmTJFXLNmjbhnzx5x9erV4qZNm9p55ckl1vP4z3/+U9RqteI///lPP+T8UAAADW5JREFUcc+ePeLHH38s5ubmivPnz2/nlSef5cuXiwsWLBDfeecdEYD47rvvht1+9+7dosFgEG+99Vbxhx9+EJ966ilRpVKJK1asaJ8FU5tjLCIfxiLyYSwiH8Yi8mAsIh/GIuSPsYh8GIvIh7GIfBiLyIfxiDwYixAlNyYWozBy5Ehx3rx57scOh0PMy8sTlyxZEnT7Sy+9VDzvvPN8nhs1apT4q1/9qk3X2RHEei79NTc3i2azWXzppZfaaokdRjznsrm5WRwzZoz4wgsviLNnz2YA3SLWc/nnP/9ZLC0tFW02W3stsUOI9TzOmzdPPPPMM32eu/XWW8WxY8e26To7mmgC6Ntvv13s16+fz3OXXXaZOGnSpDZcGbUnxiLyYSwiH8Yi8mEsIg/GIm2DsQiJImMROTEWkQ9jEfkwFpEP4xH5MRYhSj5shRqBzWbDd999h4kTJ7qfUyqVmDhxItavXx90n/Xr1/tsDwCTJk0KuX1XEc+59FdfXw+73Q6r1dpWy+wQ4j2X999/P7KysnDttde2xzI7hHjO5QcffIDy8nLMmzcP2dnZ6N+/PxYvXgyHw9Fey0468ZzHMWPG4LvvvnO3BNm9ezeWL1+OKVOmtMuaOxN+7nRujEXkw1hEPoxF5MNYRB6MRRKLnzudG2MR+TAWkQ9jEfkwFpEP45HE4ecOUftSJ3oBye748eNwOBzIzs72eT47Oxvbt28Puk9FRUXQ7SsqKtpsnR1BPOfS3+9//3vk5eUFfFB0NfGcyzVr1uCvf/0rNm3a1A4r7DjiOZe7d+/Gf/7zH1x++eVYvnw5du7ciRtvvBF2ux2LFi1qj2UnnXjO46xZs3D8+HGMGzcOoiiiubkZN9xwA+666672WHKnEupzp7q6Gg0NDdDr9QlaGcmBsYh8GIvIh7GIfBiLyIOxSGIxFuncGIvIh7GIfBiLyIexiHwYjyQOYxGi9sWKReowHnroIbz++ut49913odPpEr2cDqWmpgZXXHEFnn/+eWRkZCR6OR2e0+lEVlYWnnvuOQwbNgyXXXYZFixYgGeffTbRS+tQVq9ejcWLF+OZZ57Bhg0b8M4772DZsmV44IEHEr00IqKgGIvEj7GIvBiLyIOxCBF1NIxF4sdYRF6MReTDeISIOiJWLEaQkZEBlUqFI0eO+Dx/5MgR5OTkBN0nJycnpu27injOpcujjz6Khx56CJ9++ikGDhzYlsvsEGI9l7t27cLevXsxbdo093NOpxMAoFarsWPHDpSVlbXtopNUPP9d5ubmQqPRQKVSuZ/r06cPKioqYLPZIAhCm645GcVzHhcuXIgrrrgC1113HQBgwIABqKurw5w5c7BgwQIolbz3JVqhPncsFgvvyusEGIvIh7GIfBiLyIexiDwYiyQWY5HOjbGIfBiLyIexiHwYi8iH8UjiMBYhal/8lykCQRAwbNgwrFq1yv2c0+nEqlWrUF5eHnSf8vJyn+0B4JNPPgm5fVcRz7kEgIcffhgPPPAAVqxYgeHDh7fHUpNerOeyd+/e2LJlCzZt2uT+c/755+OMM87Apk2bUFBQ0J7LTyrx/Hc5duxY7Ny50/1LCAD8+OOPyM3N7bLBczznsb6+PiBAdv1SIopi2y22E+LnTufGWEQ+jEXkw1hEPoxF5MFYJLH4udO5MRaRD2MR+TAWkQ9jEfkwHkkcfu4QtTORInr99ddFrVYrvvjii+IPP/wgzpkzR0xNTRUrKipEURTFK664Qrzjjjvc269du1ZUq9Xio48+Km7btk1ctGiRqNFoxC1btiTqR0gasZ7Lhx56SBQEQfzXv/4lHj582P2npqYmUT9C0oj1XPqbPXu2eMEFF7TTapNbrOdy3759otlsFm+66SZxx44d4ocffihmZWWJDz74YKJ+hKQQ63lctGiRaDabxddee03cvXu3uHLlSrGsrEy89NJLE/UjJI2amhpx48aN4saNG0UA4uOPPy5u3LhR/Pnnn0VRFMU77rhDvOKKK9zb7969WzQYDOJtt90mbtu2TVy6dKmoUqnEFStWJOpHIJkxFpEPYxH5MBaRD2MReTAWkQ9jEfLHWEQ+jEXkw1hEPoxF5MN4RB6MRYiSGxOLUXrqqafEwsJCURAEceTIkeKXX37pfm3ChAni7NmzfbZ/8803xZ49e4qCIIj9+vUTly1b1s4rTl6xnMuioiIRQMCfRYsWtf/Ck1Cs/116YwDtK9ZzuW7dOnHUqFGiVqsVS0tLxT/84Q9ic3NzO686+cRyHu12u3jvvfeKZWVlok6nEwsKCsQbb7xRPHnyZPsvPMl89tlnQf/tc52/2bNnixMmTAjYZ/DgwaIgCGJpaan497//vd3XTW2LsYh8GIvIh7GIfBiLyIOxiDwYi1AwjEXkw1hEPoxF5MNYRD6MR1qPsQhRclOIImuqiYiIiIiIiIiIiIiIiCg8zlgkIiIiIiIiIiIiIiIiooiYWCQiIiIiIiIiIiIiIiKiiJhYJCIiIiIiIiIiIiIiIqKImFgkIiIiIiIiIiIiIiIiooiYWCQiIiIiIiIiIiIiIiKiiJhYJCIiIiIiIiIiIiIiIqKImFgkIiIiIiIiIiIiIiIiooiYWCQiIiIiIiIiIiIiIiKiiJhYJKIOS6FQ4L333kv0MoiIiKiLYixCREREicRYhIiIEoGJRaIuSqFQhP1z7733tttaTj/9dPf76nQ69O3bF88880zE/Q4fPoxzzz23HVZIREREcmMsQkRERInEWISIiCg+6kQvgIgS4/Dhw+7v33jjDdxzzz3YsWOH+zmTyeT+XhRFOBwOqNVt90/G9ddfj/vvvx/19fV4+eWXMW/ePKSlpWHmzJkB29psNgiCgJycnDZbDxEREbUtxiJERESUSIxFiIiI4sOKRaIuKicnx/0nJSUFCoXC/Xj79u0wm8346KOPMGzYMGi1WqxZswZXXXUVpk+f7nOcW265Baeffrr7sdPpxJIlS1BSUgK9Xo9BgwbhX//6V8T1GAwG5OTkoLS0FPfeey969OiBDz74AIB0595NN92EW265BRkZGZg0aRKAwJYfBw4cwMyZM2G1WmE0GjF8+HB89dVX7tfff/99DB06FDqdDqWlpbjvvvvQ3Nwc/0kkIiKiuDEWYSxCRESUSIxFGIsQEVF8WLFIRCHdcccdePTRR1FaWoq0tLSo9lmyZAleeeUVPPvss+jRowe++OIL/PKXv0RmZiYmTJgQ9Xvr9XrYbDb345deeglz587F2rVrg25fW1uLCRMmID8/Hx988AFycnKwYcMGOJ1OAMB///tfXHnllXjyyScxfvx47Nq1C3PmzAEALFq0KOp1ERERUfthLEJERESJxFiEiIgoEBOLRBTS/fffj7PPPjvq7ZuamrB48WJ8+umnKC8vBwCUlpZizZo1+Mtf/hJVAO1wOPDaa69h8+bN7gAXAHr06IGHH3445H6vvvoqjh07hm+++QZWqxUA0L17d/fr9913H+644w7Mnj3bva4HHngAt99+OwNoIiKiJMVYhIiIiBKJsQgREVEgJhaJKKThw4fHtP3OnTtRX18fEHTbbDYMGTIk7L7PPPMMXnjhBdhsNqhUKsyfPx9z5851vz5s2LCw+2/atAlDhgxxB8/+vv/+e6xduxZ/+MMf3M85HA40Njaivr4eBoMh0o9HRERE7YyxCBERESUSYxEiIqJATCwSUUhGo9HnsVKphCiKPs/Z7Xb397W1tQCAZcuWIT8/32c7rVYb9r0uv/xyLFiwAHq9Hrm5uVAqfUfA+q/Fn16vD/t6bW0t7rvvPlx00UUBr+l0urD7EhERUWIwFiEiIqJEYixCREQUiIlFIopaZmYmtm7d6vPcpk2boNFoAAB9+/aFVqvFvn37YpobAAApKSk+LTpiNXDgQLzwwguorKwMenfe0KFDsWPHjla9BxERESUWYxEiIiJKJMYiRERETCwSUQzOPPNMPPLII3j55ZdRXl6OV155BVu3bnW38zCbzfjd736H+fPnw+l0Yty4caiqqsLatWthsVjcffzbwsyZM7F48WJMnz4dS5YsQW5uLjZu3Ii8vDyUl5fjnnvuwdSpU1FYWIhLLrkESqUS33//PbZu3YoHH3ywzdZFRERE8mEsQkRERInEWISIiAhQRt6EiEgyadIkLFy4ELfffjtGjBiBmpoaXHnllT7bPPDAA1i4cCGWLFmCPn36YPLkyVi2bBlKSkradG2CIGDlypXIysrClClTMGDAADz00ENQqVTutX/44YdYuXIlRowYgdGjR+OPf/wjioqK2nRdREREJB/GIkRERJRIjEWIiIgAhejfGJyIiIiIiIiIiIiIiIiIyA8rFomIiIiIiIiIiIiIiIgoIiYWiYiIiIiIiIiIiIiIiCgiJhaJiIiIiIiIiIiIiIiIKCImFomIiIiIiIiIiIiIiIgoIiYWiYiIiIiIiIiIiIiIiCgiJhaJiIiIiIiIiIiIiIiIKCImFomIiIiIiIiIiIiIiIgoIiYWiYiIiIiIiIiIiIiIiCgiJhaJiIiIiIiIiIiIiIiIKCImFomIiIiIiIiIiIiIiIgoIiYWiYiIiIiIiIiIiIiIiCii/wfIAU9lau3IewAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -644,12 +644,12 @@ "name": "stderr", "output_type": "stream", "text": [ - "100%|██████████| 10/10 [00:40<00:00, 4.08s/it]\n" + "100%|██████████| 10/10 [01:34<00:00, 9.43s/it]\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAC7AAAAPgCAYAAACx8HFwAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzde1zb5f3//ycJp6T0SLSlthhmbUmHU1u7MZDZOvXjJq5I6dQNtZ6m29zhMzon89Rtruwg7qPz55yuHiqKm0iZYj1MrYq1zhV1HS7UdhqhFqvB0hPhmPz+4JusFBICBJKQx/12663h/X69r/eVBHK43q/rdcV5PB6PAAAAAAAAAAAAAAAAAAAAAAAYY4ZwdwAAAAAAAAAAAAAAAAAAAAAAEBtIYAcAAAAAAAAAAAAAAAAAAAAAjAsS2AEAAAAAAAAAAAAAAAAAAAAA44IEdgAAAAAAAAAAAAAAAAAAAADAuCCBHQAAAAAAAAAAAAAAAAAAAAAwLkhgBwAAAAAAAAAAAAAAAAAAAACMCxLYAQAAAAAAAAAAAAAAAAAAAADjggR2AAAAAAAAAAAAAAAAAAAAAMC4IIEdAAAAAAAAAAAAAAAAAAAAADAuSGAHAAAAAAAAAAAAAAAAAAAAAIyL+HB3AAAAAAAAAAAAAAAAAAAAAED4eTwedXd3y+12h7sriGAGg0EJCQmKi4sb0fEksAMAAAAAAAAAAAAAAAAAAAAxrLe3V06nUwcOHFB3d3e4u4MokJCQoMmTJ8tischoNA7r2DiPx+MZo34BAAAAAAAAAAAAAAAAAAAAiGC9vb1qbm5WZ2enpk6dqpSUFBmNxhFX18bE5vF41Nvbq4MHD2rfvn1KSkrS3Llzh5XETgI7AAAAAAAAAESoQ4cOacOGDXrhhRf0j3/8Q5988on27t0rk8kki8Wik046SaeeeqrOP/98zZ49O9zdBQAAAAAAAABEoT179qitrU3p6ekymUzh7g6iiMvlUlNTk6ZNm6aZM2cGfRwJ7AAAAAAAAAAQYXp7e/W73/1Ov/71r+V0OoeMNxgMWrlypX75y1/quOOOG4ceAgAAAAAAAAAmAo/Ho//85z9KSUnRrFmzwt0dRKGWlhYdOnRIxx13XNBV++PHuE8AAAAAAAAAgGFoa2vTBRdcoGeffda3bd68eTr77LNls9lksVh06NAh7d69Wy+99JJeeeUVdXV16c9//rM6OjpUU1MTvs4DAAAAAAAAAKJKd3e3uru7lZKSEu6uIEpNnjxZbW1t6u7uVmJiYlDHkMAOAAAAAAAAABGip6dHX/va11RXVydJmjlzpu68806tWLFi0Kol119/vZxOp2699Vb9/ve/H+/uAgAAAAAAAACinNvtliQZjcYw9wTRyvu74/1dCoZhrDoDAAAAAAAAABien/70p77k9fT0dL3++usqKioKuOSmxWLRr371K73xxhv67Gc/O15dBQAAAAAAAABMIIHGoYFARvK7QwI7AAAAAAAAAESA3bt364477pDUN9j78MMPy2q1Bn38Zz/7Wf3yl78cdJ/L5dKdd96pM888U2lpaUpMTFRqaqqWLFmiG264Qbt37x70uLa2NiUnJysuLk7HHXdcUP3Ys2ePEhISFBcXp6ysLL9x+/btU3l5uc444wzNnj1bSUlJmjFjhhYvXqzS0lJ9+OGHAc+zatUqxcXFKS4uTg6HQ5JUU1OjwsJCHXvssUpKSuq3T5I8Ho82b96sm266SWeeeabmzJmj5ORkmUwmzZkzR1/72td03333qaurK6j7KklPPvmkvva1ryktLU3JyclKT09XUVGRXnjhBUnSSy+95OvnmjVrgmrv4osv1rx58zR58mSZzWZlZGSouLhYzz//fND9AgAAAAAAAAAgUsWHuwMAAAAAAAAAAOmuu+5SZ2enJOnss8/WqaeeGpJ2//GPf2jFihVqbm7ut/3TTz/Vp59+qq1bt+p3v/udfv/73+uyyy7rFzNt2jSde+65qqqq0nvvvadXX311yH5VVlaqp6dHknTxxRcPGvPYY4/p6quv1qefftpve1dXl/bu3as333xT//d//6e7775bl1xyyZD3saurS0VFRXr88ccDxl1++eW6//77B9334Ycf6sMPP9STTz6p3/72t3riiSd0/PHH+22rp6dHq1at0sMPP9xve3Nzs5qbm/X444+rpKRE+fn5Q/bfe9z555+vLVu2DNjncDjkcDj08MMPa8WKFVq/fr3MZnNQ7QIAAAAAAAAAEGlIYAcAAAAAAACACPDMM8/4bgeTtB2Mbdu2admyZTp06JAkaeHChbrooouUkZGhTz/9VDU1NXruuefU3t6uyy+/XB6PR5dffnm/Ni655BJVVVVJkh566KEhE9jXr18vSTIYDCouLh6w/95779VVV10lj8ejxMRELV++XF/60pc0c+ZMHTx4UK+++qoeeeQRdXR0aNWqVUpMTNSFF14Y8Jw//OEP9fTTT+vYY4/VxRdfrMzMTHV0dOiNN95QUlKSL669vV2JiYk69dRT9YUvfEHz5s3TlClT1NnZqZ07d6q6ulrbtm1TY2OjvvKVr+jNN9/UlClTBj3n1Vdf7Utej4+PV3FxsU477TQlJSVp27ZtWrduncrLywdMHBhMc3OzvvCFL6ilpUWSdPLJJ6ugoEDz5s2TwWDQ9u3btX79er333nt6/PHHdejQIW3cuJElfQEAAAAAAAAAUSnO4/F4wt0JAAAAAAAAAIhlhw4d0pQpU+R2uyX1JTTPmTNnVG263W6deOKJamhokCRdccUV+sMf/qD4+P51TdatW6crr7xSHo9HZrNZ77zzjqxWq29/T0+PjjnmGH388ceaNm2aPvroo35J4Yd75513lJWVJUk688wz9dxzz/Xbv23bNi1ZskRdXV06/vjj9cQTTygzM3NAO3a7XWeccYZ2796tyZMny+FwaMaMGf1iVq1apQcffND3c0FBgSorK5WcnOz3MXnllVd0wgknaPr06YPu93g8+vWvf63S0lJJ0i9+8QvdcMMNA+I2bdqk008/XZI0ZcoUPffcc/rCF77QL8bpdOqMM87QP//5T9+2m2++WWvWrBlwztzcXG3ZskVGo1F/+MMfdOWVVw44Z2dnp1atWqVHH31UUt9EgCuuuMLvfQUAAAAAAACAYHR0dOj9999XRkZGwPFVSfqwzaW9h7rGqWdjZ/qkRB0zzRTuboSU1WrVBx98oPvvv1+rVq0Kel8oDOd3yIsK7AAAAAAAAAAQZh999JEveT0pKWnUyeuS9NRTT/mS1z/3uc/p7rvvltFoHBB3+eWXa+vWrbr77rvV3t6u22+/Xb/73e98++Pj43XhhRfq9ttvV1tbm5544gmtXLly0HM+9NBDvtsXX3zxgP1r1qxRV1eXkpOTtXHjRs2bN2/Qdmw2mx544AGdddZZOnDggO6991795Cc/8XtfjznmGD300ENDDox/6UtfCrg/Li5O1113nZ566im9+uqrevDBBwdNYD/88fntb387IHldkiwWix599FGdcMIJ6unp8XvOJ598Ulu2bJHU9/gMlrwu9f1ePPjgg3r99dflcDhUXl5OAjsAAAAAAACAcfNhm0un3/qSOnvc4e7KqCXFG/Ti6qVjksTu8XhUVVWlRx55RG+++aY+/vhjGY1GzZw5U2lpafr85z+vvLw8ffnLX/a7Auh48hZdWbVqVb/iNmPNMG5nAgAAAAAAAAAMqrW11Xd72rRpIWmzurrad7ukpGTQ5HWv6667TnFxcQOO87rkkkt8tw9PUj+c2+3Www8/LElKSUlRYWFhv/1tbW3661//Kkk677zz/Cave5155plKS0uTJD377LMBYy+77DKlpKQEjBmOU089VZK0c+fOfs+N1FdJ5plnnpHU91wFqlaTmZmpr3zlKwHP5a0in5SUpO9///sBYxMTE3XhhRdKkhobG9XU1BQwHgAAAAAAAABCZe+hrgmRvC5JnT3uMakk39bWpmXLlunrX/+6ampq1NTUpJ6eHiUlJampqUmbN2/W7373OxUWFg46Fj9WjjvuOC1YsEBTp04dsO9nP/uZfvazn8nhcIxbfyQqsAMAAAAAAABA2Hk8npC3+fe//913+6yzzgoYe+yxxyozM1N2u11NTU1qaWnxJY9L0sknn6ysrCw1NDTomWee0SeffKKjjjqqXxubNm3Srl27JEkrVqyQ2Wzut3/z5s39qszX1NQMeR8mT56slpYW/fvf/w4Yl5eXN2RbXj09PaqurlZNTY3efvtt7d69WwcOHPD17Ui7du1Samqq7+d//vOf6u7uliTl5uYqMTEx4PmWLVumJ5980u/+V155RZI0c+ZMvfjii0P2f+/evb7b//73v5Wenj7kMQAAAAAAAACAsXfxxRfr5ZdfltFo1A9/+ENdddVVOu6442QwGNTT06N///vfeuaZZ/TII4+Ma79eeOGFcT1fMEhgBwAAAAAAAIAwOzxBuq2tLSRttrS0SOpLAp81a9aQ8fPnz5fdbvcde3gCu9Q38H7ttdequ7tblZWVA6qFH16Z/eKLLx7Q/uHVWx544AE98MADwd4VffrppwH3z5kzJ6h2tm/frsLCwiET4g+3f//+fj/v3r3bd/u4444b8vjPfOYzfvcdOnRITqdTktTU1KTzzjsv6H5JQz8uAAAAAAAAAIDxsWPHDl8xk1tuuUXXXXddv/3x8fH63Oc+p8997nO69tpr5XK5wtHNiGEIdwcAAAAAAAAAINbNmjVLBkPfcG1nZ6evkvloHDhwQJI0adKkoOJTUlIGHHu44uJiGY1GSf2T1SWpvb1djz/+uCQpPT1dy5YtG3D8aBLzvRXP/TGZTEO2sW/fPp1++um+5PXZs2fryiuv1G233aaHH35Yjz/+uDZs2KANGzbo/PPP9x3X29vbr51Dhw75bh9ZZX4wgR7/0U5W6OoK/RK3AAAAAAAAAIDhe/vtt323ly9fPmT8kePaVqtVcXFxeuCBB3TgwAGVlpZqwYIFMplMslgsKigo6Lfy6nAc3rbXqlWrFBcX5/t52bJliouL8/2zWq0jOlewqMAOAAAAAAAAAGGWkpKik08+WfX19ZKkzZs390uiHonJkyerra2tX8J1IAcPHux37JHS0tJ0xhln6Nlnn9XWrVtlt9tls9kkSRs2bPAdX1xc3G/Q2+vwBPk77rhD3/ve94Z1f0brzjvv9FVP/+Y3v6n77rtPiYmJg8Zu3rzZbzuHJ6S3t7cPed5Aj//hj8miRYt8zz8AAAAAAAAAIHrt2rXLN34+XHv37tWSJUu0fft2JSYmKjk5Wa2trfrrX/+qJ598Uvfee68uu+yyUfdx6tSpmjlzpvbs2SNJmj59er8x86OOOmrU5wiECuwAAAAAAAAAEAH+53/+x3f7wQcfHHV7aWlpkvqqqXsHoAN59913fbdnz549aMzFF1/su71+/fpBbx8ec7g5c+b4bjc3Nw/Zn1B77rnnJPUt0/r73//eb/K6JL3//vt+9x3+2PznP/8Z8rzvvfee331Tp071JbGHouo+AAAAAAAAACA8lixZ4ivuUlJS0m/MfTh+9rOf6eOPP9Zf/vIXHTp0SPv27dO///1vnXbaaXK73brqqqv05ptvjrq/t99+uz766CPfz9XV1froo498//7xj3+M+hyBkMAOAAAAAAAAABHgO9/5jpKSkiRJzzzzTMAq4MH4whe+4LvtTd72p6mpSY2NjZKk9PR0zZo1a9C48847T1OmTJEkPfzww/J4PGppadELL7wgSfr85z+vBQsWDHpsXl6eb/D+mWeeGd6dCQHvQHxqaqqmT5/uN66jo0MvvfSS3/0nnniiEhISJEmvvfaaurq6Ap5306ZNAfefdtppkqSPP/6YCuwAAAAAAAAAEKWsVquuuOIKSdK//vUvZWZmatGiRfrud7+r++67Tw0NDfJ4PEO2s2/fPj322GNauXKl4uPjJUk2m01PP/20jj/+ePX09OjGG28c0/syHkhgBwAAAAAAAIAIcMwxx+iaa66RJHk8Hn3jG9/QBx98EPTxdrtd119/ve/nFStW+G6Xl5ert7fX77G//vWvfQPnhx93JJPJpKKiIkl9VdQ3bdqkRx55xNe2v+rrknT00UfrK1/5iqS+wfvKysog7lXoTJo0SVJfovj+/fv9xt1+++1qbW31uz85OdlXLX/v3r164IEH/MY2Njbq6aefDtivSy65xHf7hhtuCOoCBgAAAAAAAAAg8tx111268cYbNWnSJHk8Hr311lu66667dPnll+uEE07QrFmz9KMf/Sjgqqm5ubn68pe/PGC7yWTSj3/8Y0l9RWL27ds3ZvdjPJDADgAAAAAAAAARoqysTLm5uZL6qqJnZ2fr8ccfD5jU/Omnn+qGG27QkiVL9M477/i2f/WrX9UJJ5wgSfrnP/+pb3/72+rp6Rlw/AMPPKC7775bkmQ2m/WDH/wgYB8PT1Jfv3691q9fL0lKTEzUBRdcEPDYX/7yl0pMTJQkXXHFFUMmsX/66ae67bbb9PzzzweMC8aSJUsk9U0OODzR/3CVlZVBVa753//9X9/tH//4x/r73/8+IMbpdOqCCy4Y9DE/XFFRka9a/jPPPKOLL75YBw8e9Bvf29urZ555RrfccsuQ/QQAAAAAAAAAjJ/4+Hj9/Oc/14cffqiHHnpIV1xxhU488UTfuPjHH3+s3/3ud8rKytIbb7wxaBunn3663/a9+9xut958883Q34FxFB/uDgAAAAAAAAAA+iQkJOiJJ57Q+eefr+eff14fffSRioqKdPzxx+vss8/WwoULlZqaqkOHDmn37t2qq6vTSy+9pI6OjgFtGQwGVVRUKCcnR4cOHdK9996rLVu26KKLLpLVatWnn36qv/71r3rmmWd8x9xxxx069thjA/bxS1/6kqxWqxwOhyorK9XV1SWpL2E+NTU14LEnnXSS/vjHP+ryyy9Xe3u7vvGNb+g3v/mNzj33XB1//PEymUzat2+fdu7cqTfeeEOvvPKKenp69NBDD43g0ezvmmuu0X333aeenh7deeedevPNN1VUVKRjjjlGe/bs0V//+le98MILSklJ0de+9jU9/vjjfts6/fTTdfnll2vdunXav3+/8vLyVFxcrC996UtKSkrStm3btG7dOn3yySf6+te/rr/85S+S+p6TI8XFxenxxx/XF7/4RTU3N6uiokJPPfWUVq5cqcWLF2vGjBnq6OjQ7t279c9//lN/+9vf9Mknn+jLX/6ybrjhhlE/LgAAAAAAAACA0Jo6daqKi4tVXFwsSero6NCrr76qO+64Q08++aScTqdWrFihHTt2KDk5ud+xxxxzjN92D9/38ccfj03nxwkJ7AAAAAAAAAAQQWbMmKFnnnlGt956q37729+qtbVVO3bs0I4dO/weYzQadeGFF+oXv/hFv+2f+9zntGnTJhUWFmrXrl1qaGjQT37ykwHHm81m3XHHHbr88suH7F9cXJwuuugi/eIXv/Alr0v9K7MHsmrVKqWlpemyyy7T7t279fbbb+vtt9/2G5+UlCSLxRJU24GccMIJ+uMf/6irrrpKPT09eu211/Taa6/1i0lNTdUjjzyi1157LWACuyTdfffdcrlceuSRR9Td3a37779f999/f7+YkpISnX322b4E9smTJw/a1jHHHKOtW7dq1apVevrpp7V3717dc889Ac8/Z86coe4yAAAAAAAAACACJCcn64wzztAZZ5yhVatW6cEHH9SuXbv0zDPPqKCgINzdC4uB5V4AAAAAAAAAAGFlNBr1k5/8RA6HQw8++KAuvvhiLVy4UBaLRfHx8ZoyZYqOO+44FRYW6v/+7/+0a9cuPfTQQ7JarQPaWrJkid59913dcccd+vKXv6yZM2cqISFB06dP1+LFi/XTn/5UO3bsCCp53evIZPXU1FSdc845QR//P//zP3rvvfd03333qaioSBkZGUpJSVF8fLymT5+uk08+WatWrdL69ev10Ucf6eyzzw667UAuu+wy/f3vf9c3v/lNzZkzRwkJCZoxY4ZOOukk3Xjjjdq2bZvOOuusoNqKj4/Xww8/rCeeeEL5+fk6+uijlZiYqDlz5mjFihV6/vnndeutt6q1tdV3zIwZM/y2d/TRR2vjxo3asmWLrrnmGp100klKTU2V0WjUpEmTdNxxxyk/P1+/+tWv1NDQoAceeGC0DwcAAAAAAAAAYJx961vf8t3evn37gP0ffvih32MP33f00UeHtmPjjArsAAAAAAAAABChUlJSdPHFFwdd3dwfk8mk733ve/re974Xkn7NmzdPHo9nVG0kJSXp0ksv1aWXXjqi4x944IERJXEvWrRIFRUVAWPWrFmjNWvWBNXeueeeq3PPPdfv/jfeeMN3+8QTTxyyvezsbGVnZwd1bgAAAAAAAABAdElJSfHdTkpKGrB/06ZNfo/17jMYDDr55JND0p+4uDh5PJ5Rj/kPFxXYAQAAAAAAAAAYA/v27dNDDz0kSTrqqKOUlZUV5h4BAAAAAAAAAMbC+++/r3fffXfIuAcffNB3e9GiRQP2v/rqq3rppZcGbO/o6FB5ebmkvlVOp02bNuK+Hm7KlCmSpLa2tpC0FywS2AEAAAAAAAAAGKb3339fH3zwgd/9bW1tWrlypT755BNJ0hVXXKH4eBZFBQAAAAAAAICJ6J133pHNZtM555yj9evXy+Fw+PZ1d3frrbfe0qWXXqrbbrtNkvT5z39ep5566oB2pk6dqhUrVqiqqko9PT2SpMbGRp1zzjlqbGyU0WjUz3/+85D121t45eGHH1Z7e3vI2h0Ko+UAAAAAAAAAAAxTfX29LrjgAuXm5uq0007TvHnzNGnSJO3du1f19fV69NFHfRVr5s2bp+uvvz68HQYAAAAAAAAAjJmEhAS53W5t3LhRGzdulCQlJiYqJSVFe/fulcfj8cUuWrRIGzZskMEwsA75zTffrD/+8Y9auXKlkpKSlJycrH379kmS4uLi9Ic//EGnnHJKyPp99dVXa/PmzXr88cf1xBNP6Oijj1Z8fLzmzJmjV199NWTnORIJ7AAAAAAAAAAAjEBvb69eeeUVvfLKK35jTj75ZP31r3/VpEmTxrFnAAAAAAAAAIDx9D//8z/asWOHNm7cqFdffVUNDQ3atWuX2traZDabNXv2bJ188skqLCzUypUrB01el6Tp06frjTfeUFlZmR5//HE1NzdrxowZys3NVWlpqb74xS+GtN/FxcWSpD/+8Y/617/+pZaWFrnd7pCeYzBxnsNT+gEAAAAAAAAAwJAOHDigxx57TH/729/0zjvvyOl06tNPP5XRaNTRRx+tJUuWaMWKFQEvRAAAAAAAAABAuHV0dOj9999XRkaGkpOT/cZ92ObS6be+pM6esU9uHmtJ8Qa9uHqpjplmCndXfKxWqz744APdf//9WrVqVbi7MyzB/g4djgrsEcDtdmv37t2aPHmy4uLiwt0dAAAAAAAAAEAQioqKVFRUFDDm4MGD49QbAAAAAAAAALHC4/HowIEDmj179rgV0Dhmmkkvrl6qvYe6xuV8Y2n6pMSISl6PRSSwR4Ddu3dr7ty54e4GAAAAAAAAAAAAAAAAAAAAokRzc7PmzJkzbuc7ZpqJxG+EBAnsEWDy5MmS+l5IpkyZEubeIJQyMzPV0tKitLQ0NTY2hrs7AAAAAABMSHz/BgAEi/cMAEAweL8AAASL9wwAQLjs379fc+fO9eWfAtGGBPYIEBcXJ0maMmUKCewTjHdpDoPBwHMLAAAAAMAY4fs3ACBYvGcAAILB+wUAIFi8ZwAAws2bfwpEGxLYAQAAAAAAAAAAAAAAAAAAACBMHA5HuLswrgzh7gAAAAAAAAAAAAAAAAAAAAAAIDaQwA4AAAAAAAAAAAAAAAAAAAAAGBcksAMAAAAAAAAAAAAAAAAAAAAAxgUJ7AAAAAAAAAAAAAAAAAAAAACAcUECOwAAAAAAAAAAAAAAAAAAAABgXJDADgAAAAAAAAAAAAAAAAAAAAAYFySwAwAAAAAAAAAAAAAAAAAAAADGBQnsAAAAAAAAAAAAAAAAAAAAAIBxQQI7AAAAAAAAAAAAAAAAAAAAAGBcRHUC+8cff6za2lrddNNN+spXviKLxaK4uDjFxcVp1apVY3LOyspKnXXWWZo1a5aSk5N17LHHqri4WFu2bBmT8wEAAAAAAAAAAAAAAAAAAADARBEf7g6MxsyZM8ftXC6XS0VFRdq4cWO/7U1NTXr44YdVWVmpm266STfffPO49QkAAAAAAAAAAAAAAAAAAAAAoklUV2A/XHp6us4666wxa/+yyy7zJa8vW7ZMNTU1euONN7Ru3Todd9xxcrvdWrNmje65554x6wMAAAAAAAAAAAAAAAAAAAAARLOorsB+0003acmSJVqyZIlmzpwph8OhjIyMkJ/nxRdf1KOPPipJOvfcc7VhwwYZjUZJ0pIlS/S1r31NixcvVlNTk37yk59o5cqVmj59esj7AQAAAAAAAAAAAAAAAAAAAIRFW7PU3hruXoyeOVWaNjfcvYhpUZ3A/rOf/WxcznPrrbdKkuLj43XXXXf5kte9LBaLfv3rX+vCCy9UW1ub/vSnP+nHP/7xuPQNAAAAAAAAAAAAAAAAAAAAGFNtzdKdi6WeznD3ZPTik6Rr6sc0ib23t1ePP/64amtr9frrr+vjjz9We3u7pk2bpvnz5ysvL0/f/OY3lZWV5beNl19+WY888oheeeUVtbS0qKOjQ0cddZROPPFEnXvuubrkkkuUnJzs9/g1a9YMmmudmJio1NRUnXDCCVq5cqUuueQSJSQkhOR+B8swrmeLQgcOHNALL7wgSTrjjDM0Z86cQeMKCws1ZcoUSdKGDRvGrX8AAAAAAAAAAAAAAAAAAADAmGpvnRjJ61Lf/RjDSvKvv/66Fi5cqPPPP18PPfSQduzYofb2dk2ePFmtra3avHmzfvWrX+mEE07QihUr1NXV1e/41tZWnXPOOVq6dKnuueceNTY2qqOjQ8nJydq1a5eeeuopXX311Zo/f75efPHFoPo0c+ZM37/4+Hi1tLToueee05VXXqmcnBzt3bt3LB4Kv0hgH8I//vEP3y/Gaaed5jcuMTFR2dnZvmO6u7vHpX8AAAAAAAAAAAAAAAAAAAAAwu/JJ5/U0qVL9e677yo1NVVlZWV699131dXVpdbWVnV1dekf//iHrrvuOk2ZMkXV1dVqb2/3Hb9nzx5lZ2dr48aNMhqN+t73vqd33nlHHR0damtr0969e3X//fdr7ty5am5u1tlnn62ampoh+/XRRx/5/h06dEgffPCBrrzySknS1q1b9f3vf3+sHpJBkcA+hH//+9++25mZmQFjvft7enq0Y8eOMe0XAAAAAAAAAAAAAAAAAAAAgMiwY8cOFRcXq7OzUwsXLtTbb7+t6667Tscff7wvxmg06pRTTlFZWZnef/99LV++3LfP4/HoG9/4hnbu3KmEhARt2LBBd9xxhxYuXOiLmTZtmlatWqW33npLJ554orq7u3XJJZfoP//5z7D6mp6ernvuuUenn366JOkvf/mLDh48OMpHIHgksA9h165dvttz5swJGDt37lzf7ebm5jHrEwAAAAAAAAAAAAAAAAAAAIDIccMNN2j//v1KTk7Whg0bhsw7njFjhmpqajR16lRJUm1trV588UVJ0vXXX69zzz3X77Gpqal67LHHlJycrP379+vmm28eUZ/PPvtsSVJXV9e4Fu8mgX0IBw4c8N1OSUkJGDtp0iTf7UCzEDo7O7V///5+/wAAAAAAAAAAAAAAAAAAAABEnz179qiqqkqS9M1vflPz588P+ti4uDhJ0l133SVJmjx5skpKSoY87vjjj9eFF14oSfrzn/8sp9M53G7L4/H4bvf29g77+JEigX0IHR0dvtuJiYkBY5OSkny3XS6X37iysjJNnTrV9+/wyu0AAAAAAAAAAAAAAAAAAAAAosemTZvkdrslSeedd96wj+/p6VFdXZ0k6ayzzhqy6LZXYWGh7/hXXnll2Od99tlnJfUl0WdkZAz7+JEigX0IycnJvttdXV0BYzs7O323TSaT37jS0lLt27fP96+5uXn0HQUAAAAAAAAAAAAAAAAAAAAw7t555x3f7ZNPPnnYxzscDh06dGjYx5900km+29u2bQv6uKamJn3rW9/Siy++KEk699xzlZqaGvTxoxU/bmeKUpMnT/bdPnjwYMBY7y+OpIAzH5KSkvpVawcAAAAAAAAAAAAAAAAAAAAQnVpbW323Z8yYMarjh5NIbrFYBm3jSLNmzfLdPnDggNrb230/Z2Zm6q677gr6nKFABfYhzJkzx3d7165dAWMPr6Q+d+7cMesTAAAAAAAAAAAAAAAAAAAAAHh1dnb63bdnzx7fv8OT1y+++GK99dZbOuaYY8ajiz4ksA9h4cKFvtuNjY0BY7374+Pjdfzxx49pvwAAAAAAAAAAAABgNHp7e/XSSy+psrJSL730knp7e8PdJQAAAAAAotLhVdM//fTTUR0fqJL6kZxOp+/29OnT/cZ5PB55PB653W7t3r1bd999t6ZNm6b169frzjvvHHZ/Ryt+3M8YZZYsWaLExER1dXXp5Zdf1nXXXTdoXFdXl15//XXfMQkJCePZTQARoL29fcBEF5fLJYfDIavVKpPJ1G9fZmamzGbzeHYRAAAAAAAAAABAklRdXa2SkhI5HA7fNqvVqvLychUWFoavYwAAAAAARKHPfvazvttvvfWWZs+ePazjjz32WE2aNEmHDh3Sm2++GfRxb731lu/2ggULhoyPi4tTWlqarrrqKi1YsECnn366rr32Wi1atEinn376sPo8GlRgH8LkyZP15S9/WZL0/PPPa9euXYPGVVdXa//+/ZKk8847b9z6ByByNDY2avHixf3+nXrqqSouLtapp546YN9QqzoAAAAAAAAAAACMherqahUVFemEE07Qli1bdODAAW3ZskUnnHCCioqKVF1dHe4uAgAAAAAQVZYtWyaDoS8te8OGDcM+PiEhQXl5eZKk5557TgcOHAjquMO/wy9dunRY51y6dKkuuugieTwefe973xvXldliPoH9gQceUFxcnOLi4rRmzZpBY1avXi1J6unp0Xe/+90BT5DT6dRPfvITSdK0adN0xRVXjGmfAUSmzMxM1dfX9/tXUVEhSaqoqBiwLzMzM8w9BgAAAAAAAAAAsaa3t1clJSXKz89XTU2NsrOzlZKSouzsbNXU1Cg/P1+rV68e14vWAAAAAABEu5kzZ2rFihWSpEceeUTvvvtu0Md6PB5J0ne+8x1J0sGDB3XbbbcNedyOHTv06KOPSpJOPfVUfeYznxlut3XTTTfJaDTq3//+tx588MFhHz9S8eN2pjHw6quvaufOnb6fnU6n7/bOnTv1wAMP9ItftWrViM5z+umn64ILLtCjjz6qJ554QmeeeaZ++MMfavbs2frXv/6lX/7yl2pqapIk/frXv9b06dNHdB4A0c1sNmvRokWD7rPZbH73AQAAAAAAAAAAjJe6ujo5HA5VVlb6KsN5GQwGlZaWKicnR3V1dcOu3AYAAAAAQCy75ZZb9PTTT+vgwYMqLCzUs88+q2OOOcZv/N69e3XFFVdo3bp1mjZtmvLz87V06VK99NJL+uUvf6nFixcrPz9/0GNbW1u1cuVKdXR0KC4uTrfccsuI+nzcccfp/PPP1yOPPKJf/OIXuuiii5SQkDCitoYjqhPY//SnP/nN9t+8ebM2b97cb9tIE9gl6b777tP+/fu1ceNGbdq0SZs2beq332Aw6MYbb9S3vvWtEZ8DAAAAAAAAAAAAAMZSS0uLJCkrK2vQ/d7t3jgAAAAAABCc+fPn66GHHtL555+vd955RyeddJJWr16tFStWaN68eZL6Vkbbtm2bNmzYoN///vdqa2vTunXrJElxcXGqrKxUbm6u3nvvPZ133nn6zne+o6uvvlo2m02StG/fPtXU1Oimm27yFd++6aabdNppp42436WlpaqsrJTD4dC6det09dVXj/KRGJph6BBIkslk0lNPPaWHH35YZ555po4++mglJiZq7ty5+sY3vqFXX31Va9asCXc3AQAAAAAAAAAAAMCvtLQ0SVJDQ8Og+73bvXEAAAAAACB4BQUFevHFFzVv3jw5nU5dd911Ov7445WUlKTU1FQlJiZq0aJF+sUvfqF9+/bpwgsv1KRJk3zHz5o1S6+//rrOOuss9fT06I477tDChQtlMpk0ffp0TZs2TatWrVJTU5MSEhL0m9/8ZtT5y1lZWfra174mSfrlL3+pzs7OUbUXjKiuwP7AAw/ogQceGFUbq1atGlZl9m984xv6xje+MapzAgDGVnt7uxobG/ttc7lccjgcslqtMplM/fZlZmbKbDaPZxcBAAAAAAAAAAiLvLw8Wa1WrV27VjU1NTIY/lvzzO12q6ysTBkZGcrLywtjLwEAAAAAEcecKsUnST1jn9w85uKT+u7PGMnNzVVjY6Mee+wx1dbW6u9//7s+/vhjHThwQDNmzFBmZqZOO+00XXTRRVqwYMGA44866ig9++yzevHFF1VZWam6ujq1tLSora3NFzN79mxt2rRJ8+fPD0mfr7/+ev31r3/Vrl279Mc//lHf//73Q9KuP1GdwA4AwGAaGxu1ePHioOPr6+u1aNGiMewRAAAAAAAAAACRwWg0qry8XEVFRSooKFBpaamysrLU0NCgsrIy1dbWqqqqSkajMdxdBQAAAABEkmlzpWvqpfbWcPdk9MypffdnDBmNRl1wwQW64IILRtzG6aefrtNPP73ftj//+c+68MILtXv3bj300EP6xS9+4ff4NWvWBF2dfcmSJfJ4PCPu63CRwA4AmHAyMzNVX1/fb5vdbldxcbEqKipks9kGxAMAAAAAAAAAECsKCwtVVVWlkpIS5eTk+LZnZGSoqqpKhYWFYewdAAAAACBiTZs75onfCOz8889XS0uL/vd//1e33HKLJk+erGuvvTbc3Ro2EtgBABOO2Wz2W1HdZrNRbR0AAAAAAAAAEPMKCwu1fPly3zLkaWlpysvLo/I6AAAAAAAR7oc//KE+/PBD3XrrrfrJT36ilJQUfec73wl3t4aFBHYAAAAAAAAAAAAAiEFGo1FLly4NdzcAAAAAAMAw/fa3v9Vvf/vbcHdjxAzh7gAAAAAAAAAAAAAAAAAAAAAAIDaQwA4AAAAAAAAAAAAAAAAAAAAAGBcksAMAAAAAAAAAAAAAAAAAAAAAxgUJ7AAAAAAAAAAAAAAAAAAAAACAcREf7g4AGLn29nY1Njb22+ZyueRwOGS1WmUymfrty8zMlNlsHs8uTmhNTU1yOp0BY+x2e7//A7FYLEpPTw9J3xBa/K0BAAAAAAAAAAAAAAAAABAaJLADUayxsVGLFy8OOr6+vl6LFi0awx7FjqamJi3ItKnD1R5UfHFx8ZAxySaztjfaSWKPQPytAQAAAAAAAAAAAAAAAAAQGiSwA1EsMzNT9fX1/bbZ7XYVFxeroqJCNpttQDxCw+l0qsPVrtT8EiWkzvUb5+npUs++PYqfOlNx8Yl+47pbm9VaWy6n00kC+wiMdTV8/tYAAAAADGdlJlZlAgAAAAAAAAAAAPwjgR2IYmaz2W+VZ5vNRgXocZCQOldJs+YFDpqzcHw6E6PGoxo+f2sAAAAAhrMyE6syAQAAAAAAAAAAAP6RwA4AiGpUw48tw6l6KVH5EgAAAKEznJWZWJUJAAAAAAAAAAAA8I8EdgDAhEA1/NgwnKqXEpUvAQAAEDqszAQAAAAAAAAAAACEBgnsAAAgagyn6qU3HgAAAAAAAAAAAAAAAAAQOUhgBwAAUYOqlwAAAAAAAAAAAAAAAAAQ3UhgBwAAAAAAAAAAAIAY0N7ersbGxn7bXC6XHA6HrFarTCZTv32ZmZkym83j2UUAAAAAABADSGAH4MOgJfBfdrs9qP1DxUmSxWJRenp6SPoFAAAAAAAAAMBINTY2avHixUHH19fXs/IlAAAAAMCn5WCL9nbuDXc3Rm160nSlpaSFuxsxjQR2AD4MWgJS78G9MsRJxcXFQcUHE2c2JcveuJ0kdgAAAAAAAABAWGVmZqq+vr7fNrvdruLiYlVUVMhmsw2IBwAAAABA6ktez6/JV1dvV7i7MmqJxkTVFtSOaRJ7b2+vHn/8cdXW1ur111/Xxx9/rPb2dk2bNk3z589XXl6evvnNbyorK8tvG9u2bdPDDz+sTZs26YMPPtDevXtlMpl0zDHHaMmSJSosLNRXv/pVJSQk9Dtu6dKlevnllwe0ZzabdcwxxygnJ0dXX321srOzQ36/g0UCOwAfBi0jy3Aq4sdyNXyXyyVJ6m5tDkl7XR//R26PtO7cZJ2UZvR/3h6PHG1uWacZZIqP8xtn/8St4g0uOZ1OEtgBAAAAAAAAAGFlNpv9Fiey2WwULgIAAAAA+LW3c++ESF6XpK7eLu3t3DtmCeyvv/66LrnkEr377ru+bQkJCZo8ebJaW1u1efNmbd68Wb/61a9UWFioyspKJSYm+mIPHDigq6++WpWVlfJ4PJKkuLg4TZ06VS6XS3a7XXa7XevXr9dxxx2nhx9+WF/4whcG9CMhIUEzZszw/ex0OrVjxw7t2LFD69ev180336ybb755TB6DoZDADsCHQcvIMpyK+LFcDd/hcEiSWmvLQ9puUoK0KEACuyTlzg3pKSek4UzEkGJ7MgYAAAAAAAAAAAAAAACA6Pbkk09q5cqV6uzsVGpqqlavXq0VK1bo+OOPl9RXmf2tt97S448/rrvuukvV1dVqb2/3JbDv3btXeXl5eueddxQXF6cLLrhA3/72t5Wdne2L2b17t55++mndcccd2rZtm7Zs2TJoAntOTo5eeukl389dXV16+eWX9Z3vfEc7d+7UmjVrdMopp+icc84Z+wfmCCSwA0CEGk5F/Fiuhm+1WiVJqfklSkgdfUa5672t2ldXIes0w6jbwvAmYkixPRkDAAAAAAAAAAAAAAAAQPTasWOHiouL1dnZqYULF+rZZ5/VnDlz+sUYjUadcsopOuWUU/TjH/9Yl112Wb/93/zmN/XOO+8oPj5ejzzyiFauXDngPLNnz9bll1+uyy67THfffbfi4uKC6l9iYqLOPPNM/fWvf9XJJ5+srq4u3XnnnSSwAwD+i4r4wfFW8E5InaukWfNG3V53a3Nfu/HBvamPRCxVJR/ORAxvPAAAAAAAAAAAAAAAAABEmxtuuEH79+9XcnKyNmzYMCB5/UgzZsxQTU2NPB6PJOnpp5/W008/LUm66aabBk1eP1xcXJy+/e1vy+12D6ufCxcu1OLFi7Vlyxb94x//GNaxoUICOwAA4yyWqpIzEQMAAAAAAAAAAAAAAADARLdnzx5VVVVJ6quiPn/+/KCP9VZQv/POOyVJU6dO1Y9+9KOgjzcYDMPoaR9vcv3+/fuHfWwokMAOAMA4oyo5AAAAEPmamprkdDoDxtjt9n7/+2OxWJSenh6yvgEAAAAAAAAAACCybNq0yVcJ/bzzzhv28T09PXrllVckSWeeeaYmTZoU0v4dyeFwSOqrAh8OJLADwAi4XC5JUndrc0ja87bjbRcTG1XJAQAAgMjW1NSkBZk2dbjag4ovLi4OuD/ZZNb2RjtJ7AAAABh3oZyYKTE5EwAAAAAAf9555x3f7ZNPPnnYx3/wwQc6ePDgiI8fjjfeeMNXgDU7O3tMz+UPCexAlBlqoJFBxvHhnX3UWlse8nZzc3ND2iYAAAAAYHicTqc6XO1KzS9RQupcv3Geni717Nuj+KkzFRefOGhMd2uzWmvL5XQ6+Q4OAACAcRXqiZkSkzMBAAAAAPCntbXVd3skVc1He3wwdu/erRdeeEHXXnut3G634uLi9MMf/nBMzjUUEtiBKDKcgUYGGceW1WqVpCGTGYLlTWjo7OzUm2++6TeO5ekBAAAAYPwkpM5V0qx5gYPmLByfzgAAAADDFMqJmRKTMwEAAAAAiDYvv/yy4uLiBt2XkJCg2267TUuXLh3fTv0/JLADUSSYgUYGGceHyWSSFGQyQxB6D+6VIU66/PLLg4ofaoKC2ZQse+N2nlsAAAAAAAAAAGIcEzMBAAAAABh7qampvtuffvqpZs+eParjQyEhIcFXzT0uLk4mk0mzZ89WTk6OrrjiCs2fPz8k5xkJEtiBKDTkQCODjFHH3XlQbo9UcZ5JtqMMfuNcPR452tyyTjPIFD/4zCj7J24Vb3AxOQEAAAAAAAAAgBjmcrkk9RU1CgVvO952AQAAAADAf332s5/13X7rrbeGncB+7LHHKiUlRQcPHtRbb70Vkj7l5OTopZdeCklboUYCOwBEENtRBi1KMwaMyfW/yicAAAAAAAAAAIAkyeFwSJJaa8tD3m5ubm5I2wQAAAAAINotW7ZMBoNBbrdbGzZs0DnnnDOs4+Pj4/WlL31JGzdu1N/+9jcdOnRIkyZNGqPehh8J7EAUCWWlDKpkAAAAAAAAAACA8dDe3q7GxsZ+21wulxwOh6xWq0wmU799mZmZMpvN49nFCclqtUqSUvNLlJA6+uo43a3Naq0t97ULAAAAAAD+a+bMmVqxYoUee+wxPfLII7r22ms1f/78oI71eDyKi4vTd7/7XW3cuFH79u3TbbfdphtvvDGo491utwwGw2i6P+5IYAeiyFhUyqBKBtCfp7dbkmR39oakPW87TBYBAAAAAAAAEKsaGxu1ePHioOPr6+u1aNGiMexRbDhyYoA/np4u9ezbo/ipMxUXnxiydgEAAAAAiDW33HKLnn76aR08eFCFhYV69tlndcwxx/iN37t3r6644gqtW7dO06ZN01e/+lWdddZZeu655/Tzn/9cNptNRUVFAc95zz33yOPx6Kqrrgr13RlTJLADUSSUlTKokgEMrvfgp5Kk4uqOkLbLZBEAAAAAAAAAsSozM1P19fX9ttntdhUXF6uiokI2m21APEbPYrEo2WQOaWGkZJNZFovF9zPV9QEAAAAA+K/58+froYce0vnnn6933nlHJ510klavXq0VK1Zo3rx5kqTe3l5t27ZNGzZs0O9//3u1tbVp3bp1vjYeeeQR5eXlyW636+tf/7ouvPBCXX311crOzlZCQoIkqaWlRc8995zuuOMOvfnmm/rd734Xlvs7GiSwA1HEO8iXkDpXSbPmhbRNhFcoq37HasXv7tbmgPuDrSDj6e2RJFUUJstmMY66X3Znr4qrO5gsgojT29ururo6tbS0KC0tTXl5eTIaR/87DwAAMBF4v08N9T0jGN42Yu07GgAAwOHMZrPfiuo2m41q62MkPT1d2xvtcjqdvm3eiQPBOnKCgcViUXp6uu9nqusDAAAAANBfQUGBXnzxRa1atUo7d+7Uddddp+uuu06JiYlKSUlRW1ub3G63JCkuLk4XXnihJk2a5Ds+NTVVr7/+uq688ko99thjeuSRR/TII48oLi5O06ZNk8vlUkfHf4uz2mw25eXljfv9HC0S2AFgFEKVNN310Q5Joa36HSsVv8eigowk2SxGLUoLXTIvk0UQSaqrq1VSUiKHw+HbZrVaVV5ersLCwvB1DAAAIEJ4PyeF8ntGrHxHAwAAQGRJT0/vl3A+WDX80VRMp7o+AAAAAAAD5ebmqrGxUY899phqa2v197//XR9//LEOHDigGTNmKDMzU6eddpouuugiLViwYMDxU6ZM0Z///Gf99Kc/VUVFhV566SV98MEH2rt3r0wmkzIyMvT5z39eK1eu1Nlnnx2VRStJYAeAERirpOlQVP2OtYrfg1WQGUygAfPB4oCJqrq6WkVFRcrPz1dlZaWysrLU0NCgtWvXqqioSFVVVSSxAwCAmOf9PpWaX6KE1Lmjaqu7tVmtteUx8x0NAAAAkc1fNfyRTrakuj4AAAAAxI7pSdOVaExUV29XuLsyaonGRE1Pmj6m5zAajbrgggt0wQUXjLiNE088USeeeOKwj3vppZdGfM7xQgI7AIzAWCVNh7LqdyxV/D6ygkwgDJhHl6ampqD+zg7/P5Ajl7eNNb29vSopKVF+fr5qampkMBgkSdnZ2aqpqVFBQYFWr16t5cuXR+XMTAAAgFDxfp9KSJ2rpFnzQtomAAAAAAAAAABANEpLSVNtQa32du4Nd1dGbXrSdKWlpIW7GzGNBHYAGCGSpoGBQplw3tLSopVFK+Tq6Azq3MFUzjebkmVv3B6zSex1dXVyOByqrKz0Ja97GQwGlZaWKicnR3V1dVq6dGl4OgkAAAAMob29XY2Njf22uVwuORwOWa3WAZMFMjMzZTabx7OLAAAAAAAAAABMSGkpaSR+IyRIYAcAACHR1NSkBZk2dbjag4oPJuFckirOM8l2lMHvflePR442t6zTDDLFx/mNs3/iVvEGl5xOZ8wmsLe0tEiSsrKyBt3v3e6NAwAAACJRY2OjFi9eHHR8fX09k8oBAAAAAAAAAAAiCAnsAAAgJJxOpzpc7UrNL1FC6ly/cZ6eLvXs26P4qTMVF5/oN8713lbtq6uQ7SiDFqUZA5471//pcJi0tL4ZsA0NDcrOzh6wv6GhoV8cAABArOtubQ64P5jPtkO1geHLzMxUfX19v212u13FxcWqqKiQzWYbEA8AAAAAAAAAAIDIQQI7AITIYEuY2+32fv8fjiXMMVElpM5V0qx5gYPmLByyHRJ9Qi8vL09Wq1Vr165VTU2NDIb/VrZ3u90qKytTRkaG8vLywthLAACA8LNYLEo2mdVaWx6S9pJNZlkslpC0BclsNvutqG6z2ai2DgAAAAAAAAAAEOFIYAeAEAm0hHlxcfGAbSxhDmC8GY1GlZeXq6ioSAUFBSotLVVWVpYaGhpUVlam2tpaVVVVyWgMXPEeAABgoktPT9f2RrucTmfAuEBVvw9nsViUnp4e6m4CAAAAAAAAAAAAUYkEdgAIkcGWMHe5XHI4HLJarTKZTAPiEbnsn7gD7nf1eORoc8s6zSBTfNyI2wHGW2FhoaqqqlRSUqKcnBzf9oyMDFVVVamwsDCMvQMAAIgc6enpQSedD7fq92AreA31/ZEVvAAAADAWent7VVdXp5aWFqWlpSkvL48CFwAAAAAAYMyRwA4AIeJvCfPc3Nww9AYjZbFYZDYlq3iDK2Rtmk3JslgsIWsPGK3CwkItX76cC1MAAABhEmgFr8GwghcAAADGQnV1tUpKSuRwOHzbrFarysvLKXQBAAAAAADGFAnsQBTqbm32u8/T06WefXsUP3Wm4uITR9QGEMvS09Nlb9wup9MZMM5ut6u4uFgVFRWy2WwBYy0WS9CVG4HxYjQatXTp0nB3AwAAICYNtoJXoO8YrOAFAACiTVNTU1BjrIf/HwhjrKFXXV2toqIi5efnq7KyUllZWWpoaNDatWtVVFTEao0AAAAAAGBMkcAORBGLxaJkk1mtteUhaS/ZZKYqNDCI9PT0oC+G2Gw2KiECAAAAGBZ/K3hJfMcAAADRr6mpSQsybepwtQcVX1xcPGRMssms7Y12kthDpLe3VyUlJcrPz1dNTY0MBoMkKTs7WzU1NSooKNDq1au1fPlyVm0EAAAAgBji8XjC3QVEqZH87pDADkSR9PR0bW+0B6xaQlVoAAAAAAAAAAAQLk6nUx2udqXmlyghda7fuOGsKNtaWy6n08k1jRCpq6uTw+FQZWWlL3ndy2AwqLS0VDk5Oaqrq2MVRwAAAACIAd7vhr29vWHuCaKV93fnyHGGQEhgB6JMsJWhqdiGWNbe3q7GxsZ+2wItR5uZmSmz2TwufQMAAAAAAACAWJCQOldJs+YFDpqzcHw6g35aWlokSVlZWYPu9273xgEAAAAAJraEhAQlJCTo4MGDSklJCXd3EIUOHDjg+z0KFgnsQAxramoKWM1dCpz0eyQquiNSNDY2avHixYPuG2w52vr6eiZ8AAAAAAAAAABiQlpamiSpoaFB2dnZA/Y3NDT0iwMAAAAATGxxcXGaPHmy2traNHXqVJlMpnB3CVHE5XJp//79mjZtmuLi4oI+jgR2IEY1NTXJlrlA7a6OoOIHS/o9ktmULHvjdpLYEXaZmZmqr6/vt83lcsnhcMhqtQ74kJWZmTme3UOQPL3dkiS7MzTLE3nbcblcvm2DVesf6neFav0AAAAAAAAAolleXp6sVqvWrl2rmpqafst7u91ulZWVKSMjQ3l5eWHsJQAAAABgPFksFrlcLjU1NWnKlCmaPHmyjEbjsBKSETs8Ho96e3t14MAB7d+/X0lJSbJYLMNqgwR2IEY5nU61uzpUcZ5JtqMMfuNcPR452tyyTjPIFO//zcj+iVvFG1xyOp0ksI+C/RN3wP3BPB9DtRELzGbzoBXVc3Nzw9AbjFTvwU8lScXVwU20CZbD4fD9LgSq1j8YqvWPHSYTAAAAAAAAAOPDaDSqvLxcRUVFKigoUGlpqbKystTQ0KCysjLV1taqqqpKRqMx3F0FAAAAAIwTo9GouXPnyul06sCBA2prawt3lxAFEhISNG3aNFkslmGPI5DADsQ421EGLUoL/MKRO3ecOhPDLBaLzKZkFW9wDR0cBLMpedgzmoBIY0yZIUmqKEyWzTL6CyV2Z6+KqztktVp92war1m+321VcXKyKigrZbLZ++6jWP3aYTAAAAAAAAACMn8LCQlVVVamkpEQ5OTm+7RkZGaqqqlJhYWEYewcAAAAACAej0aiZM2fq6KOPVnd3t9xuCqnCP4PBoISEhBFX6SeBHQAiQHp6uuyN2+V0OgPGBUqsPZzFYqESPqJenDFBkmSzGIecaDMch1fy9letX5JsNhsJ0uOIyQQAAAAAAADA+CosLNTy5ctVV1enlpYWpaWlKS8vj8rrAAAAABDj4uLilJiYGO5uYIKbEAnsH3zwge644w499dRTam5uVlJSko477jh9/etf13e/+12ZzeZRn+P999/XHXfcob/97W/64IMP5Ha7NXv2bJ155pn67ne/q89+9rMhuCcAYll6enrQSeck1iISuVx9Kwh0tzaHpL2efXv62u3xhKQ9RDYmEwAAAAAAAADjz2g0aunSpeHuBgAAAAAAiDFRn8D+5JNPqri4WPv37/dta29v19atW7V161b96U9/0lNPPaV58+aN+Bz33HOPvve976mrq6vf9p07d2rnzp1at26dysvLdc0114z4HAAARDuHwyFJaq0tD227bW7lzg1pkwAAAAAAAADGSKgLXXjb8bYLAAAAAACA6BfVCexvvfWWzj//fLlcLqWkpKi0tFTLli2Ty+XSo48+qnvvvVfvvvuuzjnnHG3dulWTJ08e9jkeffRRXXXVVZKkqVOnqqSkRKeffrqSkpL01ltv6Te/+Y127typ73//+zr66KP19a9/PdR3EwCAqGC1WiVJqfklSkgdfca5672t2ldXIes0w6jbwkC9vb0sDQwAADAM7e3tamxs7LfNbrf3+98rMzMzJCsCAgAARKMxK3ThcCg3NzekbQIAAAAAACA8ojqB/Qc/+IFcLpfi4+P13HPP6Ytf/KJv3+mnn67jjz9e1157rd59912Vl5drzZo1w2q/vb1dP/jBDyRJKSkpevXVV5WVleXbf8opp+j888/Xqaeeqn/961/6/ve/r69+9atKSUkJyf0DACCamEwmSVJC6lwlzRr5yide3spKpvi4UbeF/qqrq1VSUuK7mCj1TUAoLy9XYWFh+DoWo5hMAABAdGhsbNTixYsH3VdcXNzv5/r6ei1atGg8ugUAABBxQl3ooru1Wa215b52EVqMTQEAACAaDVZwxOVyyeFwyGq1+vIXvCg6AgCRJ2oT2N944w3V1dVJki6//PJ+yeteJSUluv/++2W323X77bfr+uuvV0JCQtDn2Lhxoz7++GNJfcnyhyeve02ZMkW33XabzjzzTO3Zs0cPPPCArrnmmhHeKwAAot9QSwN7errUs2+P4qfOVFx8ot+4nn17Qt01qC95vaioSPn5+aqsrFRWVpYaGhq0du1aFRUVqaqqiiT2ccRkAgAAokdmZqbq6+v7bfN3QSQzM3O8uzehNTU1yel0BozxVw1/MBaLRenp6SHpGwAAGOjIRBF/gh0nHG67CB5jUwAAAIhWgQqODIaiIwAQeaI2gb2mpsZ3+9JLLx00xmAw6OKLL1Zpaana2tq0adMmnXXWWUGfY+vWrb7bX/nKV/zGLV26VMnJyero6FBVVRUJ7ACAmGSxWJRsMod8aWCETm9vr0pKSpSfn6+amhoZDAZJUnZ2tmpqalRQUKDVq1dr+fLlVFkaB0wmAAAgupjN5kEvcOTm5g55LAnYI9fU1KQFmTZ1uNqDij+yGv5gkk1mbW+0x8xjCADAeBuLccJkk1kWiyVk7YGxKQAAAES3wQqO2O12FRcXq6KiQjabbUA8ACCyRG0C+6uvvipJmjRpUsDZVKeddprv9ubNm4eVwN7a2uq7PXPmTL9x8fHxmjFjhnbv3q0tW7aop6dH8fFR+9ACiBCDLXfkL6GBpY4QCdLT07W90R5UYo6/L42Dxdk/cQdsz9XjkaPNLes0g0zxcf7bG6KdWFBXVyeHw6HKykpf8rqXwWBQaWmpcnJyVFdXp6VLl4ankzGCyQQAAMSOpqYm2TIXqN3VEVR8MAnYZlOy7I3bYyIB2+l0qsPVrtT8EiWkzvUbF2wF1+7WZrXWlsvpdMbE4wcAQDiEepxQiq0JfONhNGNTTM4EAABAJPBXcESSbDYb1dYBIApEbZa1d8Bj3rx5AZPFD589FcwgyeFSUlJ8t/ft2+c3zuPxaP/+/ZKkrq4u7dy5k1lbAEYt0HJHRyY0sNQRIkV6enrQFxuG+tJosVhkNiWreIMrVN2T2ZQc05WaWlpaJElZWVmD7vdu98Zh7DCZAACA2OF0OtXu6lDFeSbZjjL4jRvOxMziDa6YS8BOSJ2rpFnzAgfNWTg+nQEAAEMK5TghQm+kY1NMzgQAAAAAAKESlQnsHR0dvpn9c+bMCRg7ffp0TZo0SYcOHVJzc/OwznN4tYeXX37ZbyLpW2+9pYMHD/p+bmpqIoEdwKgNttyRy+WSw+GQ1WqVyWTqFwtMNOnp6bI3bqdSUwilpaVJkhoaGpSdnT1gf0NDQ784jB0mE2Akent7VVdXp5aWFqWlpSkvL48K/QAQRWxHGbQoLfDrdq7/AuMAAABAyIx0bIrJmQAAAAAAIFSiMoH9wIEDvtuHV0n3x5vAfniSeTC+8pWvKD4+Xj09Pbrtttt08cUXD6ja6na7df311/vt32A6OzvV2dnp+9lbvR0ADudvuaPc3Nww9AYIDyo1hVZeXp6sVqvWrl3bb2lgqe8zTVlZmTIyMpSXlxfGXsYGJhNguKqrq1VSUiKHw+HbZrVaVV5ersLCwvB1DAAAAAAARJ3Rjk0xORMAAAAAAIxWVCawd3T8d1m6xMTEIeOTkpIk9VUuHo65c+fq6quv1p133qkPP/xQubm5+s1vfqNly5YpMTFRb7/9ttasWaNnn31WiYmJ6urqCuo8ZWVl+tnPfjasvgDAaLS3t6uxsbHfNn/V3KW+iu5ms3k8uwiMi6ampqAquh/+fyDRVtHdaDSqvLxcRUVFKigoUGlpqbKystTQ0KCysjLV1taqqqpqRBWdqQw9PEwmwHBUV1erqKhI+fn5qqys9P3drl27VkVFRaqqqiKJfRB8/gEAAAAAYHCMTQEAAAAAgHCLygT25ORk321v0ngg3mrnRyYoBOPWW2/Ve++9p40bN+rdd99VQUHBgJhTTjlFS5Ys0R/+8AdJ0uTJkwO2WVpaqh/96Ee+n/fv36+5cylDAGDsNDY2avHixUHH19fXU8kaE05TU5MWZC5Qh6tj6GBJxcXFQ8Ykm5K1vXF7VCWxFxYWqqqqSiUlJcrJyfFtz8jIGHESLJWhh28sJxNgYunt7VVJSYny8/P7XVDOzs5WTU2NCgoKtHr1ai1fvpzflyPw+QcAAAAAgMExNgUAAAAAAMItKhPYD08QP3jw4JDxhw4dkiSlpKQM+1xJSUl68skndd999+n/+//+P/3zn/+Ux+ORJB199NG68sordcMNN+h///d/fcdMnz59yDa9VeEBYDxkZmaqvr6+3za73a7i4mJVVFTIZrMNiEfohLLqd7RV/I4kTqdTHa4OzfnWHCXN9v8+7O5yq9vZrQRLggyJBr9xnbs7teueXXI6nVH3nBQWFmr58uUhqZhOZeiR804m+NGPftRvMoHVauVxg09dXZ0cDocqKyv7VUOTJIPBoNLSUuXk5Kiurk5Lly4NTycjFJ9/AAAAAADwbywKXQAAAAAAAAQrKhPYk5OTlZqaqtbWVu3atStg7N69e30J7COtcm4wGHTFFVfoiiuu0IEDB7Rnzx6ZzWbNmjXLl0SyY8cOX/zChQtHdB4AGCtms9lvRVGbzUa10TEU6qrf0Vbxu729XY2Njf22BUrWz8zMlNlsHtM+Jc1Oksk6xKos88e0CxHBaDSOOtmVytChERcXF+4uIIK1tLRIkrKysgbd793ujcN/8fkHAAAAADASvb29ISn8EA1CWegCAAAAAABgOKIygV3qSxKvq6vTzp071dPTo/j4we/K4UlzR1bYG4nJkyf3qwAv9Q1kvf3225Kkz3zmM7JYLKM+DzDWXC6XJMnu7A1Je952vO0C6BPKqt/RWPG7sbFRixcvHnTfYMn69fX1JBRGESpDjw7V6xGMtLQ0SVJDQ4Oys7MH7G9oaOgXBwAAAABAJIrEQheDqa6uVklJiRwOh2+b1WpVeXn5hB2nCUWhCwAAAAAAgOGK2gT2U089VXV1dTp06JDq6+v1hS98YdC4l19+2Xc7Nzd3TPqyadMmtba2SpLOP//8MTkHEGrewdfi6uCqQg+n3bH6WwOiWaxW/c7MzFR9fX2/bS6XSw6HQ1arVSaTaUA8ogeVoUeO6vUIVl5enqxWq9auXdvvd0WS3G63ysrKlJGRoby8vDD2EgAAAACAwKKh0AXFBgAAAAAAAMZP1CawFxQUqKysTJJ0//33D5rA7na7tX79eknStGnTtGzZspD3w+PxaM2aNZKkhIQEXXnllSE/B+DPaCqWWK1WSVJFYbJsltEnxtmdvSqu7vC1CwCSZDabB73QxESXiYHK0CNH9XoEy2g0qry8XEVFRSooKFBpaanvAnpZWZlqa2tVVVXFRAcAAAAAQESL9EIXFBsIDqv7AgAAAACAUInaBPbPf/7zysvLU11dndatW6dLLrlEX/ziF/vFlJeX+5J4f/CDHyghIaHf/pdeesmX1H7JJZfogQceGHCe1tZWpaSkKCkpacC+3t5eff/739fmzZslSaWlpcrIyAjF3QOCMpqKJd7BYJvFqEVpoRtsPXKQGYgEvb29qqurU0tLi9LS0pSXlxfTFxmAUKEy9MhRvR7DUVhYqKqqKpWUlCgnJ8e3PSMjg+pvAAAAAICoEOmFLig2EBxW9wUAAAAAAKEStQnsknT77bcrNzdXLpdLZ511ln76059q2bJlcrlcevTRR3XPPfdIkubPn6+SkpIRnWPTpk265pprdMEFF+i0005Tenq6Ojo6tG3bNt1zzz16++23JUlf+cpXdP3114fqrgFBifSKJUAkqK6uVklJiW9gXepbgaC8vJyEP2CUqAw9clSvx3AVFhZq+fLlTMgCgChElUoAAIDQG2yF2qGuj3hXqB0MxQaCw+q+AAAAAAAgVKI6gf3kk0/Wn//8ZxUXF2v//v366U9/OiBm/vz5euqppzR58uQRn2fPnj26/fbbdfvttw/YFxcXp0svvVR33XWXEhMTR3wOYCQivWIJEG7V1dUqKipSfn6+KisrfYm1a9euVVFREVVrgRCgMvTIUL0eI2E0GmO6yhsARCuqVAIAAIReoBVqB3P4CrWDodhAcFjdFwAAAAAAhEpUJ7BL0rnnnqtt27bp9ttv11NPPaVdu3YpMTFR8+bN08qVK3XNNdcErKgwlLy8PP32t7/Viy++qMbGRu3Zs0cGg0GzZ8/WsmXLdOmll+oLX/hCCO8RACAUent7VVJSovz8/H7JodnZ2aqpqVFBQYFWr16t5cuXU70WGCUqQw8f1esBAIgdVKkcHW+l+e7W5pC0522HCvYAAES3wVaotdvtKi4uVkVFhWw224D4QCg2AAAAAAAAML6iPoFdko499ljddtttuu2224Z13NKlS+XxeALGzJw5U6tXr9bq1atH00UAwDirq6uTw+FQZWVlv4sNkmQwGFRaWqqcnBzV1dVRzRYIASpDDx/V6wEAiA1UqRwdbwX71trykLfrr4J9b28vkzMBAIhw/laolSSbzRaw2vpgKDYAAAAAAAAwviZEAjuAPlxgBf6rpaVFkpSVlTXofu92bxwAhAPV6wEAAALzVppPzS9RQurcUbfX3dqs1tpyvxXsq6urVVJS4kuc9/ahvLycCYYAAExwFBsAAAAAAAAYPySwAxMEF1iB/tLS0iRJDQ0Nys7OHrC/oaGhXxwAhAvV68Orvb1djY2N/ba5XC45HA5ZrdYB1W0zMzNlNpvHs4s+TFYEAMQi73txQupcJc2aF/J2D1ddXa2ioiLl5+ersrLSV3V17dq1KioqInENAIAYQLEBAAAAAACA8UECOzABcIEVGCgvL09Wq1Vr165VTU2NDAaDb5/b7VZZWZkyMjKUl5cXxl4CAMKtsbFRixcvDjq+vr5+2MuQhwKTFQEAGFu9vb0qKSlRfn5+v++Q2dnZqqmpUUFBgVavXq3ly5eTwAYAwARHsQEAAAAAAICxRwI7EOW4wAoMzmg0qry8XEVFRSooKFBpaalvckdZWZlqa2tVVVUV1N/FYNV57XZ7v/8PF87qvACA4cnMzFR9fX2/bXa7XcXFxaqoqJDNZhsQP96YrAgAwNirq6uTw+FQZWVlvwnQkmQwGFRaWqqcnBzV1dWR0AYAAAAAAAAAADBKJLADUY4LrIB/hYWFqqqqUklJiXJycnzbMzIyhpXsF6g6b3Fx8YBt4arOCwAYPrPZ7Pc122azhf31nMmKkWOwCW0ul0sOh0NWq1Umk6nfPia0ATiS/RN3wP2uHo8cbW5Zpxlkio8bcTsYvvb2dr322muSpJ6eHr355psDXuN7enokSa+99po+//nP8xoPAAAAAJjwGBMFAADAWCKBHYhyLS0tkqSsrKxB93u3e+MQG5qamuR0OgPGBKogfiSLxaL09PSQ9G28FRYWavny5aqrq1NLS4vS0tKUl5c3rCS/warzDjU4AwBAKDBZMXIEmtA2GCa0AfCyWCwym5JVvMEVsjbNpmRZLJaQtRcNulubA+739HSpZ98exU+dqbj4xGG109jYqOuvv16SlJeXF/A8119/vc4++2xe4wEAQExjciYAxAbGRAEAADCWSGAHolxaWpokqaGhQdnZ2QP2NzQ09IvDxNfU1KQFmQvU4eoIKn6wCuJHSjYla3vj9qhNYjcajaNK6vNXnTc3N3cUvcJIDFbpIdBkDCo9AIh2TFaMHINNaLPb7SouLlZFRYVsNtuAeACQpPT0dNkbtwc1ydjfa8qRjpxkPJErolksFiWbzGqtLQ9Zm8kmc78JAJmZmXrjjTdUUFCgefPmqby8XNu3b/c9HwsWLFBJSYn+85//aMOGDbzGAwCAmMXkTACILYyJAgAAYCyRwA5Euby8PFmtVq1du1Y1NTX9KnO63W6VlZUpIyNjyApimDicTqc6XB2a8605Spqd5DfO3eVWt7NbCZYEGRINfuM6d3dq1z275HQ6ozaBPZxcrr6B/M7dnaNuy9uGt81YFKjSw2CTMaj0ACDaMVkxcvib0CZJNpuN9xsAAaWnpwf9fWokrykTuSJaenq6tjfax3QCgNls1pIlS/T73/9eRUVF+vnPf67CwkJJUnd3t37+85+rrq5OVVVVWrJkyejvFAAAQJQaj8mZAIDIwZgoAAAAxhIJ7ECUMxqNKi8vV1FRkQoKClRaWqqsrCw1NDSorKxMtbW1qqqqktFoDHdXMc6SZifJZDUFDpo/Pn2JZQ6HQ5K0655dIW0zVqu/D1bpYajKkrGqqamp34Uk7+MUrCMfTy4kAeHBZEUAQDAmekW0sZ4A4FVYWKiqqiqVlJToySeflCRdeumlysjIUFVVlS+pHQAAjL8jx7oGE2ilxsMxzjU64/XZDAAAAAAATGwksAMTwOEXWHNycnzbucAKhJ/VapWkISviB8NbDd/bZizyV+khVhP6/WlqatKCTJs6XO0hazPZZNb2RjsX96JAb2+v6urq1NLSorS0NOXl5TGRLYoxWREAEAwqooVOYWGhli9frnXr1umqq67SH//4R11++eW81wIAEEZNTU2yZS5Qu6sjqPjBVmo8nNmULHvjdsa5AAAAAAAAwogEdmCC8F5gHW7Cmv0Td8D9rh6PHG1uWacZZIqPG3E7QKzyVrAOqiL+MNsE/HE6nepwtSs1v0QJqXMlSZ6eLvXs2xN0G/FTZyouPlGS1N3arNbacjmdTi7sRbjq6mqVlJT0q7ZvtVpVXl7OhLYoxmRFAADGl9Fo1CmnnCJJOuWUU0heBwAgzJxOp9pdHao4zyTbUQa/ccFcz7B/4lbxBhfjXACiGkVMAESa9vZ2NTY29ts21CraZrN5PLsIAAAiEAnswARiNBq1dOnSoGItFovMpmQVb3CF7PxmU7IsFkvI2gMAjE5C6lwlzZr33w1zFoavMxhz1dXVKioqUn5+viorK31VuteuXauioiISnaPcSCcrAgAAAAAwUdiOMmhRWuDvwblzx6kzABAmFDEBEIkaGxu1ePHioOPr6+tZMRAAAJDADsSq9PR02Ru3y+l0Boyz2+0qLi5WRUWFbDZbwFiLxULFEgAAwqC3t1clJSXKz89XTU2NDIa+amTZ2dmqqalRQUGBVq9ereXLlw+Z8EyVjMg1nMmKAAAAAAAAACYWipgAiFSZmZmqr6/vty1QrklmZuZ4di+icV0OABDLSGAHYlh6enrQCec2m40ZsAAQJVyuvtU1ulubQ9Ketx1vu4g8dXV1cjgcqqys9CWvexkMBpWWlionJ0d1dXVDJkBTJQMAAAAAAEQS75iU3dk76ra8bTDOBSDahLKICQCEmtls9nutiFyTwLguBwCIZSSwAwAATDDepUNba8tD3m5ubm5I20RotLS0SJKysrIG3e/d7o0LhCoZAAAAAAAgknjHuoqrO0LaJuNcAKJJKIuYAAAiB9flAACxjAR2AACACeaUU05RYlKyujpDd1EvMSlZp5xySsjaQ2ilpaVJkhoaGpSdnT1gf0NDQ7+4QKiSAQAAAAAAIonVapUkVRQmy2YZXVVhu7NXxdUdvjYBIFqEsogJACBycF0OABDLSGAHAACYYBYsWKAd726X0+n0bXO5XL5qVcGwWq0ymUy+ny0Wi9LT00PZTYRQXl6erFar1q5d22/5WElyu90qKytTRkaG8vLywthLAAAAAACA4fOOUdksRi1KG10C+5FtIvK0t7ersbGx3zbv2OaRY5ZSXxVSs9k8nl0EwiKURUwAAAAAIBKQwA4AADABpaenD0g4Z1nkictoNKq8vFxFRUUqKChQaWmpsrKy1NDQoLKyMtXW1qqqqkpGY2gu8gIAACA4vb29qqurU0tLi9LS0pSXl8dnMgAAgAAaGxu1ePHioOPr6+upTIqYQBETAAAAABMNCewAfAaramG32/v9fziqWgAAEDkKCwtVVVWlkpIS5eTk+LZnZGSoqqpKhYWFYewdAABA7KmurlZJSUm/lZCsVqvKy8v5bAYAAOBHZmam6uvr+22z2+0qLi5WRUWFbDbbgHggFlDEBAAAAMBEQwI7AJ9AVS2Ki4sHbKOqBQAAkaWwsFDLly+nyicAAECYVVdXq6ioSPn5+aqsrPQllqxdu1ZFRUVMMAQAABNGqIsjmc1mv9eebDYb16UQ0yhiAiBUBnv/drlccjgcslqtMplM/fZR3BAAAIwFEtgB+AxW1WKoLykAACCyGI1GLV26NNzdAAAAiFm9vb0qKSlRfn6+ampqZDAYJEnZ2dmqqalRQUGBVq9ereXLlzPREACACEAC1+hQHAkYXxQxARAKgd6/B8P7N2IB3wsAYPyRwA7Ax19Vi9zc3DD0BphYOnd3Btzv7nKr29mtBEuCDImGEbUBAAi/4QxuMbAFjAyDyAAiXV1dnRwOhyorK33J614Gg0GlpaXKyclRXV0dEw8BABgG+yfugPtdPR452tyyTjPIFB8XdBskcI0OxZGA8UcREwCjNdj7t91uV3FxsSoqKmSz2QbEA+HW1NQkp9MZMCbQSkBHslgsSk9P9/3M9wIAGH8ksAMAMIYsFouSTcnadc+ukLSXbEqWxWIJSVsAwufI5EsSLyeO4QxuMbAFjAyDyMDYX6zB6LS0tEiSsrKyBt3v3e6NAwAAgVksFplNySre4ApJe+YjxlhJ4BodiiMBCDWKFwBjz9/7tyTZbDbGUxFxmpqatCDTpg5Xe1Dxg60EdKRkk1nbG+2+cVG+FwDA+COBHQCAMZSenq7tjduDSi7x98XncCSW9Nfb28symYgKRyaZef/mg3Hk6wKvA5FtOINbDGwBI8MgMmJd38WaBepwdQQVH9zFmmRtb9zOZ4wQSUtLkyQ1NDQoOzt7wP6GhoZ+cQAAILD09HTZx3CMlQQuAIgskVy8gOR6AAgPp9OpDle7UvNLlJA612+cp6dLPfv2KH7qTMXFJ/qN625tVmttuZxOp++7Ad8LAGD8kcAOAMAYS09PDzoRhC8+wauurlZJSYkcDodvm9VqVXl5uQoLC8PXMeAIw60IcKQjk86OrAaA8AqmAq4/R17oYHICEBwGkRHr+i7WdGjOt+YoaXaS3zh3l1vdzm4lWBJkSDT4jevc3ald9+zqd7EGo5OXlyer1aq1a9eqpqZGBsN/H3+3262ysjJlZGQoLy8vjL0EACC6MMYKALEjkosXRHJyPQDEgoTUuUqaNS9w0JyF49MZAMCokcAOABOMy9W3jGrn7s6QtOdtx9suEAmqq6tVVFSk/Px8VVZWKisrSw0NDVq7dq2KiopUVVVFEjsiRjAVAUZTDQDh09TUJFvmArWHqAKu2ZQsO9VvAQBBSpqdJJPVFDho/vj0Bf0ZjUaVl5erqKhIBQUFKi0t9X1nKSsrU21traqqqlg9CgAAAAAGEcnFCyI5uR4AAACINiSwA8AE461GveueXSFvNzc3N6RtAiPR29urkpIS5efn96tmmJ2drZqaGhUUFGj16tVavnw5CSGIKENWBKAaQNRxOp1qd3Wo4jyTbEf5r2zr6vHI0eaWdZpBpvi4QWPsn7hVvMHF5AQAAIIw2JLtdru93/+HC8eS7YWFhaqqqlJJSYlycnJ82zMyMphwCwAAgKgw2Odul8slh8Mhq9Uqk6n/hNpwfO4GxlskJ9eHQjArjgb6/n0kVh2NHDy3AAAgEpHADgATjNVqlaQhl5MPlnc5eW+7QLjV1dXJ4XCosrLSl7zuZTAYVFpaqpycHNXV1Wnp0qXh6SSAmGI7yqBFaYEnzOQOXnwfAACMQKAl2wdb8SRcS7YXFhZq+fLlqqurU0tLi9LS0pSXl8dEWwAAAESFQJ+7BxOuz91AIEzECF5TU5MWZNrU4WoPKn6oFUclKdlk1vZGO4nOYRbq1WQlVpQFgsF7EAAMjQR2AJhgvB9yg1pOfgTtAuHW0tIiScrKyhp0v3e7Nw4AAADAxDLYku1DXfwJF6PRyMRaAAAARKXBPnfb7XYVFxeroqJCNpttQDwQaZiIETyn06kOV7tS80uUkOq/Iounp0s9+/YofupMxcUn+o3rbm1Wa205q45GgFCuJiuxouxoUQ0/dvAeBABDI4EdAABElbS0NElSQ0ODsrOzB+xvaGjoF4exwYzxiYOBMgAAEG38Ldmem5sb1PGh/PzDZx8AAABMVP4+d0uSzWYjwQpRgYkYw5eQOldJs+YFDpqzcHw6g5BiNdnwoxp+bOE9CACGRgI7AACIKnl5ebJarVq7dq1qampkMPy3UoDb7VZZWZkyMjKUl5cXxl5OPEcm+Xi/XAfryC/hJPqEzmgmE/QtCbpAHSEcKEs2JWs7A2UAACBChfpCIRcJAQAAACByMREDQCShGn5s4T0IAIZGAjsAAIgqRqNR5eXlKioqUkFBgUpLS5WVlaWGhgaVlZWptrZWVVVVMhoDVxBA8Iab5DOYIxN/YinRx+VySepbLnO0vG1425RGt/xc35KgHZrzrTlKmp3k9xh3l1vdzm4lWBJkSPQ/oNa5u1O77tnFQBkAAIhYobxQyEVCAACA0WN1QACIHazuC/ShGj4AAH1IYAcAAFGnsLBQVVVVKikpUU5Ojm97RkaGqqqqVFhYGMbeTTxjVQ2grq5uwNJo/eImyIUph8MhSWqtLQ9pm7m5uZJCs/xc0uwkmaymAdv7mT+6PgMAAEQSLhQCAACEH6sDAkBsGU1BHgAAAEw8JLADADDOBqsuEChRl+oCgyssLNTy5ctVV1enlpYWpaWlKS8vj8rrYyhUST4tB91SXHAXnKTovzBltVolSan5JUpIHV0WVHdrs1pry31tSiw/BwAAAAAAYg9jrBMDqwMCQGwJRUEeAAAATBwksAMAMM4CVRcYLFGX6gL+GY1GLV26NNzdwDC1dXgkj2LmwpR3ycuE1LlKmjUvpG0C+C+WHAcAAACA2MEY68TC6oAAEBsoyAMAAIDDkcAOAMA4G6y6gMvlksPhkNVqHZCYSnUBTFRcmAIQKk1NTbJlLlB7CJccN5uSZY/QlR0ARD8qhk5cgz23Q33f47kFAGD4GGMFAABAODD2AwBA6JDADgDAOPNXXSA3NzcMvYkdLpdLUl+17lDwtuNtFxhKd2uz332eni717Nuj+KkzFRefOKI2EJxQVukOpoo3xofT6VS7q0MV55lkO8r/ig2uHo8cbW5Zpxlkio/zG2f/xK3iDa6IXdkBQPSjYujEFei5HQzPLQAAI8MYKwAAAMKBsR8AAEKHBHYAABATHA6HJGnXPbtC3i4XxhCIxWJRssms1trykLSXbDLLYrGEpK1Y09TUpAWZNnW42oOKD6ZKNyKL7SiDFqUZA8bkzh2nzgBAAFQMDR/vBFS7s3fUbXnbOHxS62DPrd1uV3FxsSoqKmSz2frti/bnlqpjAAAAAAAglsTa2M9EF2wxq2CKWlksFooiAcAwkcAOAABigtVqlSTN+dYcJc1OGnV7nbs7teueXb52AX/S09O1vdEesOp3oIGtIzH4MXJOp1Mdrnal5pcoIdV/FnOwFfFd723VvrqKsegqAGCCo2Jo+HgnthZXd4S0Te9z5++5lSSbzTbhKm5RdQwAAAATARMzAQDBirWxn4mq9+BeGeKCL2YVTJzZlCx743au4wLAMJDADgAAYoJ3gDlpdpJMVtMQ0cNvFwgkPT2932DFYBdE/OFiSOglpM5V0qx5gYPmLByyne7W5hD1aHBcOAMADMZb7btzd2dI2vO2c3gV8YnMOwG1ojBZNkvgVTuGYnf2qri6I6YntVJ1DAAAIHIwljRyTMwEACC2uDsPyu2RKs4zyXaUwW+cq8cjR5tb1mkGmeLj/MbZP3GreINLTqeTBHYAGAYS2AEAABCQN5nJ7uwNSXvv73VLktxd7pC0F438XRAZbPY+F0Niy+FLEHqTv4J1ZJIY1foBYGLyVhDfdc+ukLcbCxXgvUk7NotRi9JGl8B+ZJuxiKpjAAAAkYMk7JFjYiYAYDyE+pqrt51YKUwxFmxHGYYcI8z1v6gzAGCUSGAHAABAQN4kqeLqjpC22+3sluaHtMmoceQFkaEqIWHiaznoloaxVOFgjjw22ZSs7SxVCAATjrfa95xvzVHS7KRRt9e5u1O77tkV01XEAQAAgImAJOyRY2ImAGA8jNU111gpTAEAmHhIYAcAAIhBvb29qqurU0tLi9LS0pSXlyejcfDZ5d5kporCZNkso69SuXFHt27c1KUES8Ko24pWg10QYWAptrV1eCTP0MmI7i63up3dSrAkyJDof0lDbzIiSxUCwMTjneyWNDtJJmvoKn/HchVxAAAAYCIgCRvRqqmpSU6nM2CMd+XKw1ewHAyrUgIItVC+RnV2dkoK3TVXu7NXxdUdFKYAAEQtEtgBAABiTHV1tUpKSnyz/KW+JPXy8nIVFhYOiPcmM9ksxiGXUAuGdzm7QMm3QKwKKhkxRlcuAAAAAAAAADCxNDU1aUGmTR2u9qDih1rBMtlk1vZGO0nsAEIi1K9RXqG65upFYQoAQLQigR0AACCGVFdXq6ioSPn5+aqsrFRWVpYaGhq0du1aFRUVqaqqatAkdgAAAAAAAAAAgFByOp3qcLUrNb9ECalz/cZ5errUs2+P4qfOVFx84qAx3a3Naq0tZ1VKACETytcoSXK9t1X76irGoqsAAEQlEtgRdu3t7WpsbOy3zeVyyeFwyGq1DpgpmJmZKbPZPJ5dBABgQujt7VVJSYny8/NVU1Mjg6GvAnp2drZqampUUFCg1atXa/ny5TIaQzfrH5ioPL3dkv67qsBovL/XLUlyd7lH3RYAAAAAAPCvqalJTqczYIzdbu/3fyAWi4VESQAYpYTUuUqaNS9w0JyF49MZADhCqF6julubQ9QjAAAmBhLYEXaNjY1avHhx0PH19fVatGjRGPYIAICJqa6uTg6HQ5WVlb7kdS+DwaDS0lLl5OSorq5OS5cuDU8ngSjSe/BTSVJxdUfI2ux2dkvzQ9YcAADww/5J4Eljrh6PHG1uWacZZIqPG1EbAAAg8jQ1NWlB5gJ1uIL7Ll9cXDxkTLIpWdsbt5PEDgAAAAAAMAwksCPsMjMzVV9f32+b3W5XcXGxKioqZLPZBsQDAIDha2lpkSRlZWUNut+73RsHIDBjygxJUkVhsmyW0a1asHFHt27c1KUES0IougYAAPywWCwym5JVvMEVkvbMpmRZLJaQtAVWagQAjD2n06kOV4fmfGuOkmYn+Y1zd7nV7exWgiVBhkSD37jO3Z3adc8uOZ1OEtgBAAAQdhN1bMXl6hvLC1UV+559e/ra7fGEpD0AwMiQwI6wM5vNfiuq22y2YVdbn6gfxgAAGK20tDRJUkNDg7Kzswfsb2ho6Bd3pFBUqZSk9/cyEIDwCPXglrcCu3WaQYvSRpfAbnf2SlLAi+IAAGD00tPTZW/cLqfTGTAuUHGFw1ksFpLVQoiVGgEA4yVpdpJMVlPgIFZIAwAAE4D32oj3OsRoedvxtjuRRWPS9EQdW3E4HJKk1trykLa76f2egNe1gxVLfxcAEEoksGPCmagfxoDh6tzdGXD/cCrIABNJLP9t5OXlyWq1au3ataqpqZHB8N/753a7VVZWpoyMDOXl5fU7LtRVKjE6TU1NQSVcHf7/UHGxYqwGtxxtbuXODWmTAABgDKWnpweddD6S4goYOVZqBAAAAIDwCHWirrcdkjnDz3ttpLi6I+Tt5ubmhrTNSBON15Um6tiK1WqVJKXmlyghdfQP3sFtz+rgW0/rxk1dunFT16jb84qFvwsACCUS2DHhTNQPY0CwLBaLkk3J2nXPrpC1mcyS6JgA+NuQjEajysvLVVRUpIKCApWWliorK0sNDQ0qKytTbW2tqqqqZDT2ryQd6iqV3jgMX1NTk2yZC9TuCm6Qkce5v1APbrne26p9dRWyTqNqOgAAQCiEeqVGAAAAALEn2MIuwRR4iaVVt8YsUZdkzrDzXhupKEyWzTK61WSlvkrTxdUd6uzs1Jtvvuk/bgL8rUXjdaWJOrZiMvWtnpSQOldJs+aNur2uj9+T9HTI/y68vzMAgOCQwI5ha29vV2NjY79tLpdLDodDVqvV96HBKzMzU2azedz6N1E/jAHBSk9P1/YQJppKkfuFERgO/jb6FBYWqqqqSiUlJcrJyfFtz8jIUFVVlQoLCwc9jiqVkcHpdKrd1aGK80yyHeV/cMvV45GjzS3rNEPAZe827ujRjZuibzWBkQr14Ja3gkwolhYEAABA6EX6OCYAAACA0Ok9uFeGuOALuwQTZzYly964PequBY1EqBN1u1ub1VpbTjJnBPB+97VZjFqUNvpE3ZaDbilOuvzyy4OKD+ZvLdmUrO0R+LfGdaWJK86YICl0fxdeR441AQACI4Edw9bY2KjFixcHHV9fX08SGzDOSDQFBsffRp/CwkItX75cdXV1amlpUVpamvLy8gZUXkfksh1lGHIwJZilB+3O3hD1CAAAAIg8jGMCAAAAscPdeVBuj0JWAMb+iVvFG1xyOp0Rl1Q7FkKdqHtku6HGhOXwaevwSB5pzrfmKGl2kt84d5db3c5uJVgSZEj0/zfZubtTu+7ZFTN/a2OBlSeAwHjPACIXCewYtszMTNXX1/fbFqhabWZm5nh2DxGEDwAAELmMRqOWLl0a7m4AAAAAwJhhHBMAACB4TU1NQa1gevj/gURyAly03VeuuQ5PqArAILIxYTn8kmYnyWQdYoLC/PHpS7Sxf+IOuD/YiTZ1H/RIIV55IlKr4QOjwXsGELlIYMewmc1mvy/SE7laLYaPDwAAAADB6ezx9P2/uzM07f2/dlwuV0jaAwAAiEaMYwIAAASnqalJCzIXqMPVEVR8NCfA9d1Xmzpc7UHFB3dfzdreaB+z+zqRr7l6xy+7W5tH3VbPvj19bf6/sdZQobJxZGLCMsbTUK9Rnp4u9ezbo/ipMxUXn+g3rte1X4Y4qXhDaK/dUA0fCIz3DCByTZgE9g8++EB33HGHnnrqKTU3NyspKUnHHXecvv71r+u73/1uSGYYOxwO/eEPf9Dzzz+v//znPzp06JAmT56szMxMnX322br66qt19NFHh+DeABMDHwAAAACCs/tA30WVXffsCmm7DodDubm5IW0TAAAAAAAgFLyJq0zoH5lQVhG32+3qcHXERAKc0+lUh6tdqfklSkj1X4Y72GTE7tZmtdaWj+l9ncjXXB0OhySptbY8dG22uUNSYb3loJvKxhGMCcsYDxaLRckmc0hfo5KSkvX441VKS0vzGxPoNX6wOKrhA4HxngFErgmRwP7kk0+quLhY+/fv921rb2/X1q1btXXrVv3pT3/SU089pXnz5o34HA899JCuuuqqAQMee/fu1ZYtW7RlyxbdfvvtevTRR3XmmWeO+DzARMIHAAAAEAtCsdRjV2/f/0NdJAyW9yKh1WoddVvjhaWQAQAAAACILd7EVSb0D19TU5NsmQvUHsKK6ZJiKgEuIXWukmYNkT8wZ+GI2g71ONdEvubqHb8cakJBMFzvbdW+ugpZp/mfXDEcbR0eyUNlYyCWpaena3ujPagJY8EknEvDW4kh2l/jAQAYStQnsL/11ls6//zz5XK5lJKSotLSUi1btkwul0uPPvqo7r33Xr377rs655xztHXrVk2ePHnY59i8ebNWrVolt9stg8GgSy65RMuXL9fs2bPV1NSkBx98UE8++aQ+/fRTLV++XA0NDfrMZz4zBvcWAAAgNHp7e1VXV6eWlhalpaUpLy9PRqMx3N0CooohKSXkSz0GdZFwGI68GBbJJvJSyAAAAADCYzgJhEySBcafN3E1lif0j5TT6VS7q0MV55lkO8p/wmwwhRUkaeOOHt24KTSV8ME413B434uDmlAwhO7W5r42A/yuj0QsTewAMFB6ejoJ5wAAjJGoT2D/wQ9+IJfLpfj4eD333HP64he/6Nt3+umn6/jjj9e1116rd999V+Xl5VqzZs2wz1FWVia3u6+q4u9//3t95zvf8e1bsmSJVqxYoZKSEt12221yuVy67bbbdOedd476vgEAAIyF6upqlZSU+CocSX0Xi8rLy1VYWBi+jgFRxpgyXW6Pgl7CMVCcNyaWTeSlkAEAAACEx3ASCGM5eRAIF2/iaixP6B8t21EGLUoLXJgkN4ii1nZnb4h6BIlxLgAAokUoVlkOph0AwOCiOoH9jTfeUF1dnSTp8ssv75e87lVSUqL7779fdrtdt99+u66//nolJCQM6zyvvfaaJCk1NbVf8vrhbrrpJt12222SpC1btgyr/VjT1NQU1PI6h/8fyHCW1wEAINZVV1erqKhI+fn5qqysVFZWlhoaGrR27VoVFRWpqqqKJPYI5nL1VfoO1QWl9/f2Daa4uxhUGY1gK2pQeSOwibwUMgAgsg1WnTfQ2BQVegEgegwngZDkQQBAqDDOBfzXUDkf5IYACIexWGXZbEqWxWIJWXsAEAuiOoG9pqbGd/vSSy8dNMZgMOjiiy9WaWmp2tratGnTJp111lnDOk9XV5ckKSMjw2/M1KlTZbFY5HQ6ffETRSgTzltaWrSyaIVcHcEtQRdMFUqzKVn2xu18UQEAYAi9vb0qKSlRfn6+ampqZDD0LS2bnZ2tmpoaFRQUaPXq1Vq+fLmMxsBVexAe3qr5xdUdIW2329kdU0ucepeS9cfT06WefXsUP3Wm4uITR9wOAACIDoGq8w42NkWFXgCIHiQQAgAAhEfvwb19yaFBrjxKbsjYC1Wl6ff3ekLdNWDchXKVZS8m2QDA8EV1Avurr74qSZo0aVLAJSBPO+003+3NmzcPO4F9wYIFevPNN/X+++/7jdm/f78vyXvBggXDat/H6ZQ6g0vsHi+7du1Sbk6uOjqGnnFmkfTDIL5UTJK0/qvJmp9q8Bvj6vGoeb9bc6cE/mD8bqtb397YobYdO5QeYDnA+L17Zfl//+uTT4bsY6jM6O1V5//7fzzPG8nC9VxgIJ4LYHAT+W/j9c2bddDh0E133SVDa2u/fQZJN159tb56zjl6/cknlZubO+z2g33svHEzDvUqeX/PsM9zJNOhXu0L4rwTwbxp0zRN0t1fTdbxqf4/IwXr+fd7VPZqt442GzQpBp6Lo+PiNCfZpI7acg11b+MkDVXnPk7SnGSTjo6LC+p3PtDj4o2Z9J92JR3qO7O7y63uT7uH6MV/JcxIkCGx7zO24aPOCfFaNtzXlXiXRzo0+hUF4l2e4Z03yh/n8dbb26vXX39de/bs0cyZM5WdnT3qiVM8F4il7998lgq9zNRU/fP55/ttc7lcam5u1ty5c2U6YsxpXmrqsB6rWHuNCvX9jfT2EH1i6T0Dg+N1ILbxWSqyRPLzEenvF6EeC0nq9ETscxFq3scuteOgEtv3jbq9ro6D6tH4jyNNlPezUD4fCe371Ctpx65eyTX6v4sPP+7VNElT27o1aX/CqNuL5L8L6b/PxZTd25XQcdBvnKenSz37P1H8lKMCFoAx7npHHo/0h3HMDZnIeSHt7e3auXNnv20Bxy7mzfOtHnd0XJzSk5P0wxBWmo6V94xghes1PpI/S4XaWL1/nzBrlj43d+6Q5x0qzmeIx22ivH9PBBPmuThwINw9AEYlzuPxRO3UuKOOOkpOp1Mnnnii3n77bb9xe/fu1YwZMyRJK1eu1F/+8pdhnefee+/Vt771LUnSH/7wB1199dUDYn784x/r1ltvlST97W9/0xlnnBF0+/v379fUqVO1T9KUYfUMAAAAAAAAAAAAQDDaJTWOQbuZksxj0C4AIHhvSvJf9nDk6iWxZgsAAIhE+yVNlbRv3z5NmULmKaJP1FZg7+jo8FU8nzNnTsDY6dOna9KkSTp06JCam5uHfa7LLrtMr776qtavX6/vfve7qq+v19e+9jWlpaWpqalJDz30kGpqaiRJ119//ZDJ652dneo8rNL6/v37h90nAAAAAAAAAAAAAMFrFMmNADBRZarv9Xgs2sXwMWkMAAAAQ4naBPYDhy1/kJKSMmS8N4H94EH/Sx35YzQa9eCDD+rcc8/V2rVr9ac//Ul/+tOf+sUsW7ZMP/3pT4OqvF5WVqaf/exnw+7HRMCXFAAAAAAAAAAAAIQDyY0AMHGZxWSiSMKkMQAAAAwlahPYOzo6fLcTExOHjE9KSpIkuVyuEZ3Pbrdr/fr1+te//jXo/i1btmjdunWy2Ww65phjArZVWlqqH/3oR76f9+/fr7lz546oX9GGLykAAAAAAAAAAAAIB5IbAQAYH0waAwAAwFCiNoE9OTnZd7urq2vI+M7OTkmSyWQa9rnq6up07rnnat++fTr22GN1yy236Mwzz9SMGTO0Z88ePfHEE7rxxhv16KOP6pVXXtFzzz2nz372s37bS0pK8iXU9/Of/0iTJw+7f2Np27Zt+vIZZ2jm+bco8eiMUbd34J1Nmvbin3T3V5N1fGrcqNvb0erR1Rs71F1bK33+837jvPfjheef1+c+97lRnzdYn/vc59Ty0UdKmzVL27ZtG7fzRrJwPRcYiOcCGFws/G3U1tbq5ptvVlNzs2/bsenpWrNmjfLz80fcbrCPnTcu48dWJc9N9hsXrI7mDr3/W8eEfs68fI/xRWZ9bqZh1O1V2bv17ac6eS6OEOrXgVh4XRkrw31dCdXfxrY9bn35ofbgz8tzO6Tq6mpddfXVev+99wZdRe3gwYPK+Mxn9Me771ZhYeGw2+e5QCx9/+azVOTYtWuXvpjzRXV0dIaszeTkJG15bYvmzJkTsjZDJdTjhF0fv689f74hZO+3sfZ8YORi6T0Dg4uUz47t7e3auXNnv23vvvuuvv2d7+gPd92l+fPn99s3b948mc2sRTtafJaKLJH8fET6+wXjhCM3Vp9rB3vtPlyg1/gjzZgxY8jPoP8/e/cen3dd343/lUObAy2nBqS1DWFWSKAeaFGBWmndxG2Ug7Xob5KJzFu8fx5+TMu9rXize87fTXWzKDvc3kMQh53gVmudrTpvHGDwp2Izp3RLCk5D2sGAlEOhuXpMfn+wxMYmadpcOT+fjweP6+r3+77e308amnyv7/X6fj7j5ffZcBXz+7G79YE8/X8+49/FCBvq/3s//clP8uZRvmY71XIhY/VZxnj+/T1WhvO96HntUB16jKn2vdixY0eefvrp3j8XCoVsP+Tz7iRpb2/Pmo9/PKv/4A9SW1vbZ9+8efP65AaL+ft2qn0vJoPJci6V559PXvaysR4FHLMJG2CfeUjQ+4UXXjhi/e7du5Ok3w/KB7N379781m/9Vp577rmcdtpp+f73v5/TTjutd//cuXPzvve9LxdddFHOO++8PPbYY7n66quzZcuWozpOkqSmJjn++KN/3Qg6cNJJ6UhSXjkjFdUnDLvfC9Un5NkkL59bloWzy4bdL1UH82ySabNnJ6ecMmBZz9dx4KSTBq0rtqfLytKRpKKsbFSPO56N1feCw/leQP+mwr+N5ddck9945zvT1NSUxx9/PLNnz86SJUtSVja8381D/bvrqTvhuLJUHT/809HCcWWT/nvWo/fvuKokOW74F3z3VpT4XvSj2D8HpsLPlZFytD9XivVv40BV99Ed1/f2iE4+66x0JNn6xBM5/4zDP4x86Kc/Tcd/1h3L36XvBVPp/bdzqfHjye3bs2PP3sy9dm4q5vQzWcV/6trXlf0d+zOtZlpKpw/8e2rvY3uz49YdebK7O3PH4fei2NcJ91bOSEeSh/7jP178/28ALf/xH0Ora2mZUt8Pjt1U+p1B/8bLuWN1kleefnqfbT1j+5XXvS6vXGie8JHgXGp8Gc/fj/H++8J1wmP3fGVlOpJ0734m03YdXXagP3ueas9zSa583/uGVD+UuuqqyrS0bjsseHeo8fL7bLiK+T7jhYrq7Ix/FyNtPF+znWq5kLH6LGM8//4eDZ2dnWltbe2zbbBrF/X19YPeiDr/ggvyD8191ysoFAppa2tLXV3dYRO1zq+vT/6zX8/vtMrnDqTiuP3H/kX9p73PHUjHf/Ydj9+LuaeckkPj5v/0T/+UKy+9tN/aVR//+GHbmpubj/p9ln8Xk9dkOZdKf5MowwQyYQPslZWVmTVrVnbu3JkdO3YMWvvMM8/0BtjnzZt3VMf55je/mX//939Pknzwgx/sE14/1DnnnJPGxsbcdtttaW5uzo9//OO86lWvOqpjAQCMlrKysixdunSsh8Exanmqa9D9hQPdaXu2K3UnlqaqfOBVb37+THexhwbQryVLlqSuri433XRTNm7cmNLSX3xo1dXVlTVr1uSMM87IkiVLxnCUAMemYk5FquqOsOrj4BMsTkkHX3gmpSVJY2PjkOqHWuf7AYPrL2wxWDjiSGELAJho2trakiQ7N60tat+PLavIb7584PjFUK/ZtjzVlcavFNLR0TFogB2AsdHa2ppFixb1u6+/axfNzc1ZOEhourq6ut/9ixcvPuJYen6n7bh18Nzc0WpraxvS8cdafX19mo8i/F9fXz+awwNgCCZsgD1Jzj777DQ1NeWnP/1pDhw4kPLy/r+cQy/GNjQ0HNUxWlpaep8PdkKRJIsWLcptt93We0wBdgAAiqmmpibVVZVp/EphrIcCcFTKysqydu3arFy5MldccUVWr16dBQsWZOvWrVmzZk02bdqU9evXD3s1EAAmjq69L6SrO1n3lqo0nDLwbHxDDfp8/ZEDufHevSMxVJhUBgtb9OdIYQsAmGjq6uqSJLOWr8q0WUc3+V1/Cj/bkuea1mXZGUdegXzx8A8Ho6rfmab/M0NzaJamh5sfmQrGU2i653fakVajG6qe1eh6+o53wwn/AzA+TOgA++tf//o0NTVl9+7daW5uzute97p+6+6///7e50f7S+rQUPyBAwcGrd2//xfLsQwUpgcAmAxctBwbtbW1aWndlo6OjkHrWlpa0tjYmHXr1g16A2dPHcBoWLFiRdavX59Vq1blwgsv7N1+xhlnZP369VmxYsUYjg6AsdJwSmlRgj4tHQeLNCKY3PoLWwz2HtIMdQBMNj3Bwmmz5qXitPnD7rd/5/YX+w5ysyVMVMWeaZqha29vH9JnQYc+DqampqbPqg4+5zt24yk03fM7bUir0R1DXwAYaRM6ZX3FFVdkzZo1SZI77rij3wB7V1dX7rzzziTJiSeemGXLlh3VMc4444ze501NTVm+fPmAtYcG5Q99HSPvSCfkwzlxBwAO56Ll2KmtrR3yuUpDQ4O/d2BcWbFiRS6//PI0NTXl8ccfz+zZs7NkyRIzrwPAJNdfOOJIM9QJR4yMgcIWifeQwNjZ+9jgq6h07evK/o79mVYzLaXTB1655Uh9ADg642mm6amkvb09Z9U3ZE+hc0j1Q5moqLKqOttaW3o/X/I5HwAwHkzoAPtrX/vaLFmyJE1NTbn99ttz9dVX54ILLuhTs3bt2t7Q8nXXXZdp06b12X/ffff1htqvvvrqfP7zn++z/1d/9VdTXV2dzs7OfOYzn0ljY2Ne8YpXHDaWb3zjG/nKV76SJHnpS1+aV7/61UX6KhnM4y90JSVDOyFPhnriXpltrduE2AFgEC5aAnCsysrKsnTp0rEeBgAwigYLR/RHOAJgaqipqUllVWV23LqjaD0rqypTU1NTtH4AU9l4mml6Kuno6MieQmdmLV+VabMGXpKs+8C+HHjuiZSf8JKUlE8fsG7/zu3ZuWltOjo6enMwPucDAMaDCR1gT5JbbrklixcvTqFQyMUXX5wbbrghy5YtS6FQyN13351bb701SXLmmWdm1apVR93/xBNPzB/8wR/kD//wD/P888/nwgsvzAc/+MG86U1vykknnZQnnngiX/3qV/PZz342XV1dSZKPf/zjKS0d+O5/iufZPd1JdzL32rmpmFMxYN3RzMyw49YdfU7cAYDDuWgJADC2zFIJTCT9hSNaWlrS2NiYdevWpaGh4bB6ACa/2trabGvdlo6OjkHrBvud8custAwT0/6d2wfdP5Sg7oHnnhiJocGYmTZrXipOmz940dyzj6m3z/kAgPFgwgfYzz333HzpS19KY2Njdu3alRtuuOGwmjPPPDObN2/OzJkzj+kY//2///c8/fTTueWWW/LCCy9kzZo1WbNmzWF106ZNy0033TTk2cApnoo5Famqqxq86MzRGQsAE0d/S5j3rNzS83goS5gDADDWzFIJTEQDhSOSpKGhwWzrAFNYbW3tkAPnfmfA5PPie9zq7Ny0dqyHAgAAjLIJH2BPkksvvTQ/+clPcsstt2Tz5s3ZsWNHpk+fnvnz5+fKK6/MBz7wgWGFzUpKSvKpT30qjY2Nue222/LAAw/k0UcfTWdnZ2bMmJH58+fnoosuynvf+96ceaaU9FC0PNU16P7Cge60PduVuhNLU1VeMmDdz5/pLvbQAJhCBlvCvL8b0ixhDhzJ0dwY46aY8a+/m5n623+kOrO/AcVklkrGSqFQSHLkmRGHqmd2xMIB1/eAiaG/93uFQiFtbW2pq6tLVVXfSXa85wOYGroP7k+StHQcLEq/nj4959+T3YvvcVuK8h63pwZgqrFSIwAT1aQIsCfJ6aefnptvvjk333zzUb1u6dKl6e4e2ockixYtGjDkxtCUVsxIaUnS+JWp8YYbgPGtvyXMj/TBI0wmPR+CFOuCVE+fqfLhSn+O5sYYN8UUT8//c8X6oLCp/UCS/m9m6s+R6iqrKrOtdZtwKFA0ZqlkLLS1tSVJ0WdGbHu2K4vnFbUlwIgY7P1ef375PV97e/uQwnmHPg7GDWjDI+QDFMvBF55OkjRu2FPUvvfee+9hn1EcajL9zvAeFyYWny2NH1ZqBGCimzQBdkZGsWdW6tr7Qrq6k9tvvz2vfvWrB6wb6ixh7qIGYDgGWsJ88eLFYzAaGH09IaRiXtjq6TtV/x0dzY0xboopnp7/l4v9QeGpK07NzFfOHHD/UAINex/bmx237khHR8e4/qAQAI6krq4uSTJr+apMmzX8xHnhZ1vyXNO61J04cCgQYDzp7/3eYJ9lHPqer729PWfVn5U9haG9ZxnK5x5ulD02Qj5AsZXNODlJsm5FZRpqyobdr6n9QH73m3tz44035sYbbzxivd8ZwGjz2dL4YaVGACY6AXYGNVIzK1VUVAzpzmh3UAMAjJzzzjsv0yumZ9/efUXrOb1ies4777yi9Zto3BgzNnoCdcX6oPDrj+zPjffuy3H1x6WqbuCZrpIkZw77cABMUFNtxrGeG/GmzZqXitPmD7tfz4QZVeUlw+4FMBoGer+XHPmzjI6Ojuwp7Mnca+emYk7FgHVHM+u3G2WPjZAPk0WxV6Pb9p99Cu3FORcd7+e2xVRSNi1J0lBTloWzh39dqud76ncGk0XLU12D7i8c6E7bs12pO7F00PeHR+rD6Om5Hn+kn1ND1fNzqqcvR8cqFsXT2dmZ1tbWPtsGW/Gkvr4+1dXVozI2gMlKgJ1BFXtmpf07t2fnprVOPAFgCptqQZ/x7KyzzsojDz/iQ1smvJ5AXbE/KBzswz8AMOMYAEerYk6Fm2THASEfJoORWo3usc89VtR+zm2Pnd8ZTHQ1NTWprqpM41eK99lNtVVPxoWe6/FD+jl1DH1hrLS2tmbRokX97utvxZPm5ube9wo+/wY4NgLsDKrYMyv9cl8AYOoR9BlffGgLjHft7e1DutHm0MfBuNEGKBYzjg1P98H9SYo3a+jPn3lxNr6ufWblAwAmv2KvRrexdV8+9p39mfM7c1JVO/zPcafauS3jS7Fm/P75M93FHtqUUltbmxarnhyTnsBqz8plw9XTRxAWBldfX5/m5uY+2wqFQtra2lJXV3dY1q2+vr73uc+/AY6NADsAAKNK0AeAoWpvb89Z9WdlT2FoM8r1NwvKL6usqsy21m1T4sMuYGSZcWx4Dr7wdJLizxq6v2O/mSgBgEmv+KvRlSXZn6raqilzbnukYGj3gX058NwTKT/hJSkpnz5g3YHnnij20DhGIzHjN8NjAp1j0xOE3blpbdH7CsLCwKqrq/v9OTSUfzc+/wY4NgLsAACMKkEfAIaqo6Mjewp7jnjRt2tfV/Z37M+0mmkpnV46YF3PRd+Ojg4BdoAxVjbj5CTFmzX064/sz4337su0mmnD7gUAwORVU1OTyqrqogdDGXvFnvG7p47x40grNU6WVRp7Aquzlq/KtFnzht1v/87t2blprSAsjCCffwMcGwF2oGiO9IYxmTxvGgEAGH8sDzx5Demir9l2ASaUkrIXg+bFmzX0YJIMeiMTAADU1tZmW2uLkPMkZcbvyetoVmqc6Ks09gRWp82al4rT5he9LwDAeCHADhTF0bxhTCb+m0YAGC86OzvT2traZ9tgN4zV19enurp6VMY2Efj7mxwsDwwAE5cb0AAAGG1CzgxFofDitca9j+0tSr+ePj19OTpDWanRKo0AABOLADtQFEN5w5h40wgAxdba2ppFixb1u6+/G8aam5t94HIIf3+Tg+WBAWDiKa2YkdKSuAENAAAYl9ra2pIkO27dUfS+ixcvLmrPqeSIKzVapREAYMIQYGdI9u/cPuj+7gP7cuC5J1J+wktSUj79mPsw8R3xDWPiTSMAFFF9fX2am5v7bCsUCmlra0tdXd1hS0LW19eP5vDGPX9/k4eZswBgYimbcVK6ujPkG8vcgAYAAIymurq6JDniBG5D1TOBW09fOBI5HQBgshNgZ1A1NTWprKrOzk1ri9azsqo6NTU1ResHADCVVVdX9xvENYPL0Pj7AwA4OsX+AH2oN5a5AY2pqrOzM62trX22Hemm2+rq6tEcIgCQpOWprkH3Fw50p+3ZrtSdWJqq8pIB67Z1vNhn72N7izKunj6FgpWPjlbPedaQJnA7hr4wEDkdAGCqEGBnULW1tdnW2pKOjo5B64Y6E1Ly4sn2UGdGBAAmryNdgO/a15X9HfszrWZaSqeXHnMfjk5/4YiWlpY+j4cSjgAAprqpcl7rA3QYG62trVm0aNGQ65ubm6f0zR7t7e1D+jzj0MeB+CwDgKGoqalJdVVlGr9S3ID4jlt3FLVfW1ubSTtggpDTAaY6N/PD1CHAzhHV1tYO+UTWTEgAwJG8GHypLOoF+MqqSsGXIhksHNHY2HjYtqkejgAApq6pdl7rA3QYG/X19Wlubu6zbbB/Z/X19aM5vHGlvb09Z9U3ZE+hc0j1/b3HPVRFRWW+/OX1mT179oA1Qw3DH2k/wLEq1qzfP3+mu9hDmzJqa2vT0rqtaOfJ//zP/5x3v/vdmXvt3FTMqRj2+PY+tjc7bt2Rurq6YfcCRo+cDjCVDfdm/mLe3J64hgkjSYCdMTecWT57ljqzhBoATBwvBl+Kd0E/8aaxmPoLRxzpjnYAgKloKp7XjvQH6FYDgsNVV1cP+G9JUKWvjo6O7Cl0ZtbyVZk2a96Add0H9uXAc0+k/ISXpKR8er81e3b8S3b942ezfPnyIR37SGF4gGIbqVm/OTYjcZ5cMaciVXVVR6wbql++rgsAMF4N52b+F29uPyt7CnuGdKyhvJ+vrKrMttZt4/q6LUxUAuyMueHM8tnW1pbEEmoAMNGYOWL8Gigc4dxo7B08eDBNTU15/PHHM3v27CxZsiRlZWVjPaxjZvYDACYD57XFZTUgoBimzZqXitPmD1409+xBd+/fuT1d3cm6t1Sl4ZTSAeuGOrPx1x85kBvvLc5EPABJ8Wf97qkDAICxNpyb+V+8uX3PEVez6drXlf0d+zOtZlpKpw/8vr9nNZuOjg6fQ8IIEGBnzA1nls+epc4soQYAwGS2YcOGrFq1qvcGzuTFc+G1a9dmxYoVYzewY/Ti7AcN2VPoHFL90GY/qM621hYXjwBgFBV7xnSrAQHjTcMppVk4e/AbhxcPPNl7r5aOg0UaETCZ9HcudaRzn0PPpdxMyWRlZSYAYLiGtJrNmaMzFmBgAuyMueHM8tlz4cYSagAATFYbNmzIypUrs3z58tx1111ZsGBBtm7dmptuuikrV67M+vXrJ1yI/cXZDzoza/mqTJs1cNqj+8C+HHjuiZSf8JKUlE8fsG7/zu3ZuWmt2Q8AYJQVe8b04VwnLBQKSV6coKIYevr09AUYjr0Hul989DMKOMRg51L9sfoMU4WVmehPMd/zOZcCABgfBNgBAADGqYMHD2bVqlVZvnx5Nm7cmNLSF5ewO//887Nx48ZcccUVuf7663P55ZenrGzwWQHHo2mz5qXitPmDF809e3QGAzCBmZ2OsTKeZkzvWalmx607it53KAH6yWa4M8ICfT32/IsBdj+jgEP1dy7V0tKSxsbGrFu3Lg0NDYfVw1Qwnt5nMH6MxHs+51IAAGNLgB1gChBmAICJqampKW1tbbnrrrt6w+s9SktLs3r16lx44YVpamrK0qVLx2aQAIw5s9MxVoYzY3qx1dXVJUnmXjs3FXMqht1v72N7s+PWHb19pxozwkJxzZlZksTPKKCvgc6lkqShocHvVqas8fQ+g/GjmO/5nEsBAIwPAuwAU4AwAwBMTI8//niSZMGCBf3u79neUwfA1GR2Okjv/+cVcypSVVd1hOqj7zvVmBEWiqui/MUAu59RADC6TPI1eYzEez7nUgAAY0uAHWAKEGYAgIlp9uzZSZKtW7fm/PPPP2z/1q1b+9QBMDWZnQ4oNjPCAgAwGZjkC0bO3sf2Drq/a19X9nfsz7SaaSmdXjpg3ZH6AACTlwA7R81dyjDxCDMAwMS0ZMmS1NXV5aabbsrGjRtTWvqLi7xdXV1Zs2ZNzjjjjCxZsmQMRwkA9HDdDBhv2tvb09HRMWjNYD+nfllNTU1qa2uLMjYAgJFmki8ovpqamlRWVWbHrTuK1rOyqjI1NTVF6wcATAwC7Bw1dykDAMDoKCsry9q1a7Ny5cpcccUVWb16dRYsWJCtW7dmzZo12bRpU9avX5+ysrKxHioAENfNgPGlvb09Z9WflT2FPUOq7+/n1C+rrKrMttZtQuwAwIRgki8ovtra2mxr3TakG2UbGxuzbt26NDQ0DFrrRlkAmJoE2Dlq7lIGAIDRs2LFiqxfvz6rVq3KhRde2Lv9jDPOyPr167NixYoxHB0AcCjXzcaeJczhFzo6OrKnsCdzr52bijkVA9Ydzb+LHbfuSEdHh3AJAABHzaplk0dtbe2Q3xM0NDS4eR8A6JcAO0fNXcoAADC6VqxYkcsvvzxNTU15/PHHM3v27CxZssTM6wAwzrhuNnYsYQ4Dq5hTkaq6qsGLzhydsQAciXDj2HIzIDCSrFoGAMChBNgBAAAmgLKysixdunSshwEAMC5ZwhwAJgfhxrHhZkBgNFi1DGDy6u9G1CP9jHcjKiDADgAAAADAhGcJ8/Gjvb19SDcTHPo4GDcTACPJjN/ji3Dj2HAzIDAarFp27JyvAOPdYDei9seNqEAiwM4kYTk7AACA8cmsGwAwtbS3t+es+rOyp7BnSPX9zab7yyqrKrOtdZsQHDAizPg9vgg3jh03A0L/ZBEYD5yvAONdfzeiDnbzoxtRgUSAnQnOcnYAAADjm1k3AGBq6ejoyJ7Cnsy9dm4q5lQMWHc0QZ8dt+5IR0eHADswIsz4DUB/ZBEYT5yvAOPdQDeiJm5+BAYmwM6EZjk7AACA8c2sGwAwNVXMqUhVXdXgRWeOzlgABmPGbyaL/lZAa2lp6fN4KCugweBkERhPnK8AAJORADsTnuXsAAAoloMHD6apqSmPP/54Zs+enSVLlqSsrGysh8UoKxQKSYqzrG9Pj56eE0F/H3gfaTafwT7wNusGAAATTffB/UmSlo6DRen382e6kry48gDASBlsBbTGxsbDtlkBDY5MFgGAo3Gkz5WOZjU6gKlAgB0AACDJhg0bsmrVqrS1tfVuq6ury9q1a7NixYqxGxijruf/gWIuD9zW1jZhZsMZ7APv/vjAGwCAyebgC08nSRo37Clq3/0d+608AFNYe3v7kGZyPvRxML88k3N/K6Ad6YZ0AACGr6amJpVVlUX9XKmyqjI1NTVF6wcwHgmwAwAAU96GDRuycuXKLF++PHfddVcWLFiQrVu35qabbsrKlSuzfv16IfYppK6uLkky99q5qZhTMaxeex/bmx237ujtORH094H3YEsh+8AbAIDJpmzGyUmSdSsq01Az/FW5vv7I/tx4775Mq5k27F7AxNTe3p6z6huyp9A5pPr+Zkz/ZZVV1dnW2tIbYh9oBbSJckM9AMBEVVtbm22t24Z0s+JAn7X8sl++WXEyK+aNnv/8z/+cpHiz2E/ElZZhIhFgZ9Lpb7n7wX6JHWm5ewAAJreDBw9m1apVWb58eTZu3JjS0heX7Dv//POzcePGXHHFFbn++utz+eWXp6xs+MEFxr+eGckq5lSkqq7qCNVH13MiGOgD78RSyAAATA0lZS8GzRtqyrJw9vDfB7Z0HEySQZeIBya3jo6O7Cl0ZtbyVZk2a96Add0H9uXAc0+k/ISXpKR8+oB1+3duz85Na9PR0TFlgk0AwJHJTI2d2traIZ+X+azlF9rb29NQf1Y6C0NbAW0oN3omxV1lOZlYKy3DRCLAzqQz2HL3/f0Ss9w9AMDU1tTUlLa2ttx111294fUepaWlWb16dS688MI0NTVl6dKlYzNIAAAAACa8abPmpeK0+YMXzT17dAbDuHakWUO79nVlf8f+TKuZNugNUsWafRSAiUFmiommo6MjnYU9WfeWqjScMvA5TeFAd9qe7UrdiaWpKi8ZsG5j6/587Dv7irLKcjIxV1qGiUSAnUmnv+XuC4VC2traUldXd9jMh5a7BwCY2h5//PEkyYIFC/rd37O9pw4AAIDxp2c57/07tw+714Hnnnix54HuYfcCgKNRU1OTyqrKos4aWllVmZqamqL1A2D8kpliomo4pfSIK6AtHngho149K6AVc5XlZGKttAwTiQA7k85Ay91bxgMAgP7Mnj07SbJ169acf/75h+3funVrnzqGr5jBkkP79PQFAACmnra2tiTJzk1ri9fz2a4hfUAOAMVSW1ubba3b0tHRMWhdS0tLGhsbs27dujQ0NAxaW1NTk9ra2mIOE6CPzs7OtLa29tnW0tLS5/FQ9fX1qa6uHpWxTTUyUwBMJALsAADAlLZkyZLU1dXlpptuysaNG1Na+ovl6bq6urJmzZqcccYZWbJkyRiOcnIZiWBJT18XYQEAYGrqWc571vJVmTZreKnzws+25Lmmdak7ceDlywFgpNTW1g45cN7Q0NBvUBFgNLW2tmbRokX97mtsbDxsW3Nzs59dAIAAOwAAMLWVlZVl7dq1WblyZa644oqsXr06CxYsyNatW7NmzZps2rQp69evT1nZ4MvWMXTFDJYkL87AvnPT2t6+AADA1NOznPe0WfNScdr8YfXqWeWpqrxk2OMCAIDJrr6+Ps3NzX22FQqFtLW1pa6urvdc/dB6AAABdgAAYMpbsWJF1q9fn1WrVuXCCy/s3X7GGWdk/fr1WbFixRiObvIpZrCkv74AAAAAAMDoqK6u7ndGdSumAgCDEWAHAADIiyH2yy+/PE1NTXn88ccze/bsLFmyxMzrAAAAAAxLoVBI8osVHoarp09PX4ans7Mzra2tfba1tLT0eTxUfX19qqurR60fAADAZCTADgAA8J/KysqydOnSsR4GAAAAAJNIW1tbkmTnprVF7ztSs9tOpRB2a2trFi1a1O++xsbGw7Y1Nzf3O9PwSPUDAACYjATYAQAAgHGpZya5vY/tLUq/nj5mqAMAYChanuoadH/hQHfanu1K3YmlqSovGbDu5890JznyeW3Xvq7s79ifaTXTUjq9dMC6Yp0fA6Onrq4uSTJr+apMmzVv2P3279yenZvW9vYdCVMphF1fX5/m5uY+2wqFQtra2lJXV5eqqqrD6kezH/ALg50HOZcCAJhYBNgBAACAcalnhrodt+4oet+RmqEOAICJr7RiRkpLksavFPHGx5LintdWVlWmpqamaP2AkdUTWJ42a14qTptf9L4jYSqFsKurq/sN3x/rtYNi9wOSmpqaVFZVFu18yrkUAMDYE2AHAAAAxqWemeTmXjs3FXMqht1v72N7s+PWHSM6Qx0AABNf2YyT0tWdrFu3Lg0NDQPWtbS0pLGx8Yh1SbJ3795UVAx+Tns0/WpqalJbWztoDcBwCGED40ltbW22tW5LR0fHgDXOpQAAJhYBdgAAAGBc6pnNrWJORarqijer3EjOUAcAwOTR0NDQb3jzWOuKfVwAgKmktrZ2SKFz51IAABND6VgPAAAAAAAAAAAAAACAqcEM7AAAANCPvY/tHXR/176u7O/Yn2k101I6vf/7w4/UAwAAAAAAAACmGgF2AAAAOERNTU0qqyqz49YdRelXWVWZmpqaovSaCNrb29PR0TFoTUtLS5/HI9UBAHD0CoVCkuLdVNnTp6cvAAAAAMCxEmAHAACAQ9TW1mZb67YhhbAbGxuzbt26NDQ0DFhXU1OT2traYg9zXGpvb09D/VnpLOwZUn1jY+MIjwgAYOpqa2tLkqLdmHlo38WLFxe1ZzHt37l90P3dB/blwHNPpPyEl6SkfPox9QAAAADGr2KssjyUPsDwCLADAAAw6XR2dqa1tbXPtsFm/a6vr091dXXvn2tra4ccOm9oaMjChQuHMdrJo6OjI52FPVn3lqo0nDLwBb/Cge60PduVuhNLU1VeMmDd1x85kBvvdXEQAOBY1NXVJUnmXjs3FXMqht1v72N7s+PWHb19x5sXV1Kqzs5Na4vSr7KqekqtpAQAAAAT3YmVJUlJcW/mn2orLcNoEmAHAABg0mltbc2iRYv63dffrN/Nzc1C6EXUcEppFs4uG7Rm8bwj92npOFikEQEAo6VQKCQp3gxVPX16+k527e3tQ1oJ6NDHgfTMwF4xpyJVdVVFGV+SVFUVr1cxvbiSUouVlACYdIY7UQMAwHjVc72nWJ8HPbunO+lObr/99rz61a8esG6o1wYS1wdgJAmwAwAAMOnU19enubm5z7ZCoZC2trbU1dUdFrqpr68fzeEBAExaPaHpYs501dN38eLFRe053rS3t6eh/qx0FvYMqb6/GzOnOispATAZmagBAJiseq4jNW4Y2rWQoaqoqBjS+ZBrAzC2BNgBAACYdKqrq/u94DTZQ08AAGOtrq4uSTL32rmpmFMx7H57H9ubHbfu6O07mXV0dKSzsCfr3lKVhlNKB6wrHOhO27NdqTuxNFXlJQPWff2RA7nx3uLMhA8AjB0TNQAAk1XP9Z51KyrTUDP4yr5D0dJxMI0b9kyJ60gwGUyaAPujjz6aP/uzP8vmzZuzffv2VFRU5GUve1ne9ra35f3vf/8xL5HV1taWM84446hec/rpp/feHQQAAAAAAFNFT4CqYk5FquqqjlB99H2ngoZTSrNw9uAf2i6ed+Q+xVp+GwAYWyZqAAAmq57rPQ01ZUe8FnIsfYHxbVIE2L/2ta+lsbExu3bt6t3W2dmZLVu2ZMuWLbntttuyefPmzJ8/f1TGc9ZZZ43KcQAAAAAAAAAAAIDxo7OzM62trX22tbS09Hk8VH19/TFP0AswUU34APuPfvSjvP3tb0+hUMiMGTOyevXqLFu2LIVCIXfffXc++9nP5uGHH84ll1ySLVu2ZObMmUfV/6UvfWkeeuihI9atWbMmX/ziF5MkV1999TF9LQAAU5U38AAAAGOnvb09HR0dg9YM9h6tvzoAAACAqaq1tTWLFi3qd19jY+Nh25qbm/tdcWW8Kta1JNeRYGqb8AH26667LoVCIeXl5fnWt76VCy64oHffG9/4xrz85S/P7/3e7+Xhhx/O2rVr80d/9EdH1X/atGlZsGDBoDUHDx7MfffdlySZOXNm3vKWtxztlwEAMKVN9jfwAAAA41V7e3sa6s9KZ2HPkOr7e48GAAAAwC/U19enubm5z7ZCoZC2trbU1dWlqqrqsPqJor29PWfVN2RPoXNI9a4lAQOZ0AH2Bx98ME1NTUmSd7/73X3C6z1WrVqVO+64Iy0tLbnlllvykY98JNOmTSvqOO6555489thjSZKVK1ce9gsGAIDBTeY38FAsBw8eTFNTUx5//PHMnj07S5YsSVlZ2VgPCwCACa6joyOdhT1Z95aqNJxSOmBd4UB32p7tSt2JpakqLxmw7uuPHMiN9+4diaECAAAATAjV1dX9Tsi2ePHiMRhNcXV0dGRPoTOzlq/KtFnzBqzrPrAvB557IuUnvCQl5dP7rSn8bEuea1o3UkMFxrkJHWDfuHFj7/Nrrrmm35rS0tK8853vzOrVq/Pss8/m3nvvzcUXX1zUcdx55529z6+++uqi9gYAmAom8xt4KIYNGzZk1apVaWtr691WV1eXtWvXZsWKFWM3MAAAJo2GU0qzcPbgN0guHvgzyV4tHQeLNCIAmHz279w+6P6hhHyG0gcYGZ2dnWltbe2zraWlpc/joerr61NdXT0qYwOA0TZt1rxUnDZ/8KK5Zw+623ktTG0TOsD+wAMPJEmOO+64LFq0aMC6iy66qPf5d7/73aIG2J9//vneIH1dXV3e8IY3FK03AADAhg0bsnLlyixfvjx33XVXFixYkK1bt+amm27KypUrs379eiF2AAAAgHGspqYmlVXV2blpbdF6VlZVp6ampmj9gCNrbW0dMJvS2Nh42Lbm5uZ+J+8BAAAmeIC95w7W+fPnp7x84C+lvr7+sNcUy/r169PZ2Zkk+e3f/u2UlAy8dCoAAMDROHjwYFatWpXly5dn48aNKS0tTZKcf/752bhxY6644opcf/31ufzyy1NWNvhsmQAAMJr2PrZ30P1d+7qyv2N/ptVMS+n00mPuAwATQW1tbba1tqSjo2PQupaWljQ2NmbdunVpaGgYtLampia1tbXFHCZwBPX19Wlubu6zrVAopK2tLXV1damqqjqsHgAA6N+EDbDv2bOn9w3+3LlzB6096aSTctxxx2X37t3Zvr24y07ceeedvc/f+c53Duk1e/fuzd69v7jovmvXrqKOCQAAmByamprS1taWu+66qze83qO0tDSrV6/OhRdemKampixdunRsBgkAME51dnamtbW1z7aeCU76m+ikvr4+1dXVozK28aRQKCRJWjoOFqVfR2d3kmTHrTuK0i9JKqsqzTALwIRXW1s75MB5Q0ODWZthHKquru733+bixYvHYDQAADCxTdgA+/PPP9/7fMaMGUes7wmwv/DCC0UbQ3t7e+6///4kyYUXXpj58+cP6XVr1qzJRz/60aKNAwAAmJwef/zxJMmCBQv63d+zvacOAIBfaG1tzaJFi/rd19jYeNi25ubmKRkUa2trS5I0bthT1L4f+9jH8pu/+ZsD7jfDLAAAAADA1DVhA+x79vziYvr06dOPWF9RUZHkF7PJFMO6devS3f3ibDJDnX09SVavXp0Pf/jDvX/etWtX5s2bV7RxAQAAk8Ps2bOTJFu3bs35559/2P6tW7f2qQMA4Bfq6+vT3NzcZ1uhUEhbW1vq6upSVVV1WP1UVFdXlyRZt6IyDTVlw+7X0nEwjRv2ZNmyZUO6IcAMswAAAAAAU8+EDbBXVlb2Pt+3b98R6/fu3Zskh30oMRxf+MIXkrwYjn/7298+5NdVVFT0BuoBAAAGsmTJktTV1eWmm27Kxo0bU1pa2ruvq6sra9asyRlnnJElS5aM4SgBAMan6urqfoPRixcvHoPRjF8918wbasqycPbwA+y/3BcAAAAAAH7ZhA2wz5w5s/f5Cy+8cMT63bt3J0lmzJhRlOM/+OCDaW1tTZJcdtllOfHEE4vSFwAAoEdZWVnWrl2blStX5oorrsjq1auzYMGCbN26NWvWrMmmTZuyfv36lJUVL2gEAAAAAAAAMFpanuoadH/hQHfanu1K3YmlqSovOeY+wPgyYQPslZWVmTVrVnbu3JkdO3YMWvvMM8/0BtjnzZtXlOPfeeedvc/f+c53FqUnAADAL1uxYkXWr1+fVatW5cILL+zdfsYZZ2T9+vVZsWLFGI4O+ioUCkmSlo6DRen382devNDYtc8FRwAAAAAAgMmktGJGSkuSxq8UitazuqoyNTU1ResHjJwJG2BPkrPPPjtNTU356U9/mgMHDqS8vP8vp2em9CRpaGgY9nH379+fu+++O0ly6qmn5td//deH3RMAAGAgK1asyOWXX56mpqY8/vjjmT17dpYsWWLmdcadtra2JEnjhj1F7bu7dXdKp5cOuL9rX1f2d+zPtJppg9btfWxvUccFcCQHDx70+xtgDHV2dvb5jChJWlpa+jz2qK+vT3V19bgcWzL64wMAGM+cSwFMDmUzTkpXd7Ju3bpBc50tLS1pbGw8Yl2S1NTUpLa2tthDBUbAiAXYd+zYkf/4j/9IZ2dnXvOa16Sqqqrox3j961+fpqam7N69O83NzXnd617Xb93999/f+3zx4sXDPu7mzZuzc+fOJMk73vGOAYPzAAAAxVJWVpalS5eO9TBgUHV1dUmSdSsq01Az/IBmU/uB/O439+bJDU/myQ1PDrtfklSaeQMYJRs2bMiqVat6b+5JXvw5uXbtWiuoAIyS1tbWLFq0qN99jY2Nff7c3NychQsXjsawkhzd2JLRHx8AwHjmXApgcmloaBjSz+mh1gETQ1GT188//3z+5E/+JJ///Ofz2GOP9W5/6KGHcvbZZ/f++e67786GDRtywgkn5LOf/ewxH++KK67ImjVrkiR33HFHvwH2rq6u3HnnnUmSE088McuWLTvm4/Xo6ZckV1999bD7AQAAwGTQc/N6Q01ZFs4u1gzDe828AUw4GzZsyMqVK7N8+fLcddddWbBgQbZu3ZqbbropK1euzPr164XYAUZBfX19mpub+2wrFAppa2tLXV1dn8mX6uvrx+3YeuoBAHiRcykAgImvaAH2Rx55JL/5m7+Zn/3sZ+nu7u7dXlJScljt+eefn8bGxnR3d+fqq6/O61//+mM65mtf+9osWbIkTU1Nuf3223P11Vfnggsu6FOzdu3a3uWBrrvuukybNq3P/vvuu6831H711Vfn85///KDHfPrpp7N58+YkySte8Yq8+tWvPqaxAwAAAENj5g1gIjl48GBWrVqV5cuXZ+PGjSktLU3y4jXRjRs35oorrsj111+fyy+/PGVlxbrZB4D+VFdX93t+WIzVeodrPI8NAGC8cy4FMHYKhUKSZP/O7cPu1dOjpycwtRQlwL5nz55ccskl+bd/+7ccd9xxef/73583vOENWb58eb/1dXV1WbZsWf7xH/8xf//3f3/MAfYkueWWW7J48eIUCoVcfPHFueGGG7Js2bIUCoXcfffdufXWW5MkZ555ZlatWnXMx+lx9913Z9++fUnMvg4AAAAA9NXU1JS2trbcddddveH1HqWlpVm9enUuvPDCNDU1ZenSpWMzSAAAAACAY9DW1pYk2blpbVF7ugkJpp6iBNg/85nP5Kc//WmOO+64NDU1DWlW8t/4jd/It7/97Xzve98b1rHPPffcfOlLX0pjY2N27dqVG2644bCaM888M5s3b87MmTOHdawkufPOO5MkZWVlueqqq4bdDwAAAACYPB5//PEkyYIFC/rd37O9pw5gpO19bO+g+7v2dWV/x/5Mq5mW0umlA9YdqQ8AR6ezszOtra19tvWsLN7zeKj6+vpUV1ePytgAAGAgdXV1SZJZy1dl2qx5w+q1f+f27Ny0trcnMLUUJcC+YcOGlJSU5LrrrhtSeD1JXvWqVyVJHnnkkWEf/9JLL81PfvKT3HLLLdm8eXN27NiR6dOnZ/78+bnyyivzgQ98oChv5h955JH84Ac/SJK86U1vymmnnTbsngAAAADA5DF79uwkydatW3P++ecftn/r1q196gBGyomVJUlJsuPWHUXrWVlVmZqamqL1A5jKWltbs2jRon73NTY2Hratubk5CxcuHOlhAQDAoKqqqpIk02bNS8Vp84vaE5haihJg77kD/OKLLx7ya2bNmpUkefbZZ4sxhJx++um5+eabc/PNNx/V65YuXZru7u4h1b785S8fci0AAAAAMPUsWbIkdXV1uemmm7Jx48aUlv5iNuOurq6sWbMmZ5xxRpYsWTKGowSmgtkzSpPuZN26dWloaBiwrqWlJY2NjUesS5KamprU1tYWe6gTgpmSgWKrr69Pc3Nzn22FQiFtbW2pq6s7LMRTX18/msMDAACAEVWUAPsLL7yQJJkxY8aQX7N374tLTU6bNq0YQwAAAAAAGHNlZWVZu3ZtVq5cmSuuuCKrV6/OggULsnXr1qxZsyabNm3K+vXrU1ZWNtZDBcaZQqGQJGnpOFiUfj196urqhjRjb0NDg5l9B2GmZKDYqqur+/05sXjx4jEYDQAAAIyuogTYZ82alf/4j/9IW1vbkC/G/cu//EuS5LTTTivGEAAAAAAAxoUVK1Zk/fr1WbVqVS688MLe7WeccUbWr1+fFStWjOHogPGqra0tSdK4YU/R+wpDDp+ZkgEAAACgeIoSYF+4cGG+/vWv5zvf+c6QP3y58847U1JSkgsuuKAYQwAAAAAAGDdWrFiRyy+/PE1NTXn88ccze/bsLFmyxMzrwIDq6uqSJOtWVKahZvg/K1o6DqZxw57evgyPmZIBAAAAoHiKEmBfuXJlNm/enFtvvTUf/vCHU1tbO2j9pz/96XznO99JSUlJfuu3fqsYQwAAAAAAGFfKysqydOnSsR4GMEH0zODdUFOWhbOLd7PLL88MDgAAAAAw1kqL0eS3f/u388pXvjJ79uzJ0qVL841vfCPd3d29+0tKStLd3Z0f/vCHueqqq7Jq1aqUlJRkyZIl+Y3f+I1iDAEAAAAAAAAAAAAAgHGuKDOwl5aW5u///u/z+te/Pm1tbVm+fHmqq6tTUlKSJFm6dGmef/757N27N0nS3d2dl73sZfnbv/3bYhweAAAAAAAAAAAAgFGwf+f2Qfd3H9iXA889kfITXpKS8unH1AOY3IoSYE+S2tra/PM//3M++MEP5m//9m+ze/fu3n1PPfVU7/OSkpK87W1vy2c+85mcdNJJxTo8AAAAAAAAAAAAACOkpqYmlVXV2blpbVH6VVZVp6ampii9gImlaAH2JDn55JPzN3/zN7npppuyefPmbNmyJU8++WQOHjyYWbNm5dxzz82ll16aM888s5iHBQAAAAAAAAAAAGAE1dbWZltrSzo6Ogata2lpSWNjY9atW5eGhoYB62pqalJbW1vsYQITQFED7D1OP/30vO997xuJ1gAAADDqOjs709ra2mdbS0tLn8dD1dfXp7q6elTGBgAAAAAAAKOltrZ2yKHzhoaGLFy4cIRHBExEIxJgBwAAgCPZv3P7oPu7D+zLgeeeSPkJL0lJ+fRj7lMMra2tWbRoUb/7GhsbD9vW3NzsYhwAAAAAAAAA9EOAHQAAgFFVU1OTyqrq7Ny0tmg9K6uqU1NTU7R+v6y+vj7Nzc19thUKhbS1taWuri5VVVWH1QMAwHhjZSEAAABgKnEtBMavogTYv/Od7xz1a0pKSlJZWZkTTjghdXV1mT594Nn0AAAAmDxqa2uzrbUlHR0dg9a1tLSksbEx69atS0NDw6C1NTU1Q16q8FhUV1f3O6P64sWLR+yYE1nLU12D7i8c6E7bs12pO7E0VeUlx9wHAICjY2UhAAAAYCpxLQTGr6IE2JcuXZqSkoE/cD7iIMrL8+pXvzrvete78l/+y3/JtGnTijEsAAAAxqna2tohB84bGhpcKJogampqUl1VmcavFIrWs7qqckRn1+fY9TdryZFWJjBrCQCMLSsLAQAAAFOJayEwfhUlwJ4k3d3dx/za/fv354c//GG2bNmSz3zmM9m0adOIzpwHAAAAFF9tbW1aWrdNqNn1OXaDzVrSH7OWAMDYs7IQAAAAMJW4FgLjV1EC7Pfee2/279+fG2+8MT/4wQ8yZ86cXHnllTnvvPNyyimnJEmeeuqpbNmyJX/3d3+Xxx57LK973evy0Y9+NIVCIVu3bs2XvvSlbN26NVu3bs1v/uZv5p//+Z9TXl60fD0wwgqFF2dY3PvY3qL06+nT0xcAAJgYzK4/dfQ3a8lgNyeYtQQAAAAAAABIihRgv+iii3LZZZflwQcfzAc/+MF84hOfSGVl5WF1V111VT7+8Y/n+uuvz1/+5V/m05/+dL7+9a/n8ssvz0c+8pHceOON+Z//83+mpaUld9xxR97znvcUY3jAKGhra0uS7Lh1R9H7uuMNAABg/Blo1pLEzQkAAAAAAADAwIoSYL/jjjuyadOmXHLJJbnlllsGra2oqMif//mf5+c//3m+8Y1v5NZbb821116bJPnYxz6WBx54IPfff382bNggwA4TSF1dXZJk7rVzUzGnYtj99j62Nztu3dHbFwAAAAAYOS1PdQ26v3CgO23PdqXuxNJUlZcccx8AAAAAAChKgP1zn/tcSkpKeoPoQ/He9743X//61/PXf/3XfV73rne9K/fff39+/OMfF2NowCipqqpKklTMqUhVXVXR+wIAAAAAxVdTU5Pqqso0fqVQtJ7VVZWpqakpWj8AAAAAACaXogTYW1pakiRz584d8mt6altbW/tsb2hoSJI8/fTTxRgaAAAAMIj29vZ0dHQMWtPzvr/ncTA1NTWpra3t/XNnZ+dh7/0H61dfX5/q6uojHgcAKI7a2tq0tG4b0vlAY2Nj1q1b13sdfyC/fD4AAAAAAACHKkqAfc+ePUmSHTt25Nxzzx3Sa3bs2JEk2bt3b5/t06ZNSxIfVgMAAMAIa29vz1n1DdlT6BxSfWNj4xFrKquqs621pTe01tramkWLFg25X3NzcxYuXDik8QAAxVFbWzvkwHlDQ4Pf1QAAAAAADEtRAuwve9nLsnXr1tx222259NJLh/Saz372s72vPdRjjz2WJDnllFOKMTQAAABgAB0dHdlT6Mys5asybda8Aeu6D+zLgeeeSPkJL0lJ+fQB6/bv3J6dm9amo6OjNwRXX1+f5ubmPnWFQiFtbW2pq6tLVVVVn3319fXD+IoAAAAAAAAAGO+KEmBfuXJlHnrooWzatCnXX3991qxZ0zuT+i/bv39//uAP/iCbNm1KSUlJrrzyyj77v/vd7yZJ5s+fX4yhAQAAAEcwbda8VJx2hPfhc88+pt7V1dX9ztK6ePHiY+rX2dmZ1tbWPttaWlr6PB6qvr7eKm8AAAAAAAAA40hRAuzXX399vvCFL+SnP/1pPvWpT+Xv/u7vcuWVV2bRokW9M6k/9dRTaW5uzt/93d9lx44dSV6cfX3VqlW9fQ4ePJgvfvGLKSkpycUXX1yMoQEAAACTSGtraxYtWtTvvsbGxsO2NTc39xugBwAAAAAAAGBsFCXAXlVVlX/8x3/MJZdckoceeijbt2/Ppz71qX5ru7u7kyQLFizI5s2b+ywVvmPHjlxzzTVJXpzVHQAAAOBQ9fX1aW5u7rOtUCikra0tdXV1fa4z9NQDAAAAAAAAMH4UJcCeJHPnzk1zc3P+8i//Mn/1V3912HLePc4888y8973vzQc+8IFMmzatz77TTz89/+N//I9iDQkAAACYZKqrq/udUX3x4sVjMBoAAAAAAAAAjlbRAuxJUl5enuuuuy7XXXddHnvssWzdujXPPPNMkuSkk07KOeeck5e+9KXFPCQAAAAAAMCk0fJU16D7Cwe60/ZsV+pOLE1Veckx9wEAAAAAGCtFDbAfas6cOZkzZ85ItQcAAAAAAJg0ampqUl1VmcavFIrWs7qqMjU1NUXrBwAAAABQDCMWYAcAAAAAAGBoamtr09K6LR0dHYPWtbS0pLGxMevWrUtDQ8OgtTU1NamtrS3mMAEAAAAAhk2AHQAAAAAAGDGdnZ1pbW3ts62lpaXP46Hq6+tTXV09KmMbb2pra4ccOG9oaMjChQtHeEQAAAAAg3PtBzgWRQ+wP//887nnnnvy4x//OB0dHSkUCunu7h6wvqSkJLfffnuxhwEAAAAAAIwDra2tWbRoUb/7GhsbD9vW3NwsmA0AAAAwQbj2AxyLogXYu7q68rGPfSxr167N7t27h/Sa7u5uAXYAAAAAAJjE6uvr09zc3GdboVBIW1tb6urqUlVVdVg9AAAAABODaz/AsShagP1d73pX/uZv/ibd3d0pKyvLrFmz8uSTT6akpCRz587NM888kxdeeCHJi7Ou19TUWAYCAAAAAAAmuerq6n5n1Vq8ePEYjAYAAACAYnLtBzgWpcVo8g//8A9Zt25dkheD7E8++WTuueee3v2PPvpodu3alZaWlvw//8//k9LS0px00kn5xje+kZ///OfFGAIAAAAAAAAAAAAAAONcUQLsd9xxR5LknHPOyec+97mcdNJJKSkpOazurLPOyqc//els2LAh//Zv/5bf/M3fzHPPPVeMIQAAAAAAAAAAAAAAMM6VF6PJ97///ZSUlOT973//kOovvfTSXH311bnjjjvyZ3/2Z7nxxhuLMQxgHNj72N5B93ft68r+jv2ZVjMtpdMHvofmSH0AAAAAAAAAAAAAmHiKEmB/8sknkyRnnnlm77aysrLe53v37k1FRUWf16xcuTKf+9zn8pWvfEWAHSaBmpqaVFZVZsetO4rWs7KqMjU1NUXrBwAAAAAAAAAAAMDYKkqAvcfJJ5/c+3zmzJm9z5988snMmzevT+2pp56aJGlrayvmEIAxUltbm22t29LR0TFoXUtLSxobG7Nu3bo0NDQMWltTU5Pa2tpiDhMAAAAAAAAAAACAMVSUAPtLXvKStLe35+mnn+6zbfr06dm/f39+8pOfHBZgf/TRR5Mke/bsKcYQgHGgtrZ2yIHzhoaGLFy4cIRHBAAAAAAAAAAAwETQ2dmZ1tbWPttaWlr6PB6qvr4+1dXVozI2oLiKEmB/xStekfb29vzrv/5rli1b9mLj8vKce+65efDBB3PHHXfkkksu6fOaz3zmM0mS008/vRhDAAAAAAAAAAAAAGCCam1tzaJFi/rd19jYeNi25uZmk6jCBFWUAPvSpUuzadOm3HPPPXn/+9/fu72xsTE/+MEP8pWvfCVXX3113va2t2X37t3567/+69xzzz0pKSnJ5ZdfXowhAAAAAAAAAAAAADBB1dfXp7m5uc+2QqGQtra21NXVpaqq6rB6YGIqSoD9LW95S66//vp885vfzBNPPJGXvOQlSZL3vve9ueOOO/JP//RPWbduXdatW9fndbW1tfn93//9YgwBAAAAAAAAAAAAgAmqurq63xnVFy9ePAajAUZSaTGanHHGGfnZz36WrVu35vjjj+/dXl5env/zf/5PrrrqqpSXl6e7uzvd3d1JkksuuSRNTU056aSTijEEAAAAAAAAAAAAAADGuaLMwJ4kdXV1/W4/6aST8oUvfCH/63/9rzzyyCM5cOBA5s+fn5NPPrlYhwYAAAAAAAAAAAAAYAIoWoD9SGbOnNnv0g4AAAAAAAAAAAAAAEwNpUVpUlqa8vLy/Mmf/Ekx2gEAAAAAAAAAAAAAMAkVJcA+ffr0dHd3Z8mSJcVoBwAAAAAAAAAAAADAJFSUAPucOXOSJOXl5cVoBwAAAAAAAAAAAADAJFSUxPkb3vCGfOELX0hzc3Ne85rXFKMlAAAAAONIe3t7Ojo6Bq1paWnp8ziYmpqa1NbWFmVsAAAAAAAAwMRRlAD7Bz/4wXzxi1/MJz/5ybzjHe/I8ccfX4y2AAAAAIwD7e3tOav+rOwp7BlSfWNj4xFrKqsqs611mxA7AAyis7Mzra2tfbYNdsNYfX19qqurR2VsAAAAAADHqigB9kWLFuXP//zP84EPfCAXXXRR/vIv/zIXXnhhMVoDAAAAMMY6Ojqyp7Anc6+dm4o5FQPWde3ryv6O/ZlWMy2l00sHrNv72N7suHVHOjo6BNgBYBCtra1ZtGhRv/v6u2Gsubk5CxcuHOlhAQAAAAAMS1EC7L/zO7+TJDnrrLPy4x//OEuWLMm8efPyyle+MieddFLKysoGfG1JSUluv/32YgwDAAAAgBFUMaciVXVVgxedOTpjAYCpoL6+Ps3NzX22FQqFtLW1pa6uLlVVVYfVAwAAAACMd0UJsH/+859PSUlJkhcD6d3d3Wlvb8/27dsHfV13d7cAOwAAAAAAQD+qq6v7nVF98eLFYzAaAAAAAIDiKEqAvba2tjfADgAAAAAAAAAAAAAA/SlKgL2tra0YbQAAAAAAAAAAAAAAmMRKx3oAxfLoo49m1apVqa+vz3HHHZeTTz45r3nNa/Knf/qn6ezsLOqx7rnnnrzrXe/K/Pnzc9xxx+WEE07ImWeemZUrV+Yzn/lMXnjhhaIeDwAAAAAAAAAAAABgMijKDOxj7Wtf+1oaGxuza9eu3m2dnZ3ZsmVLtmzZkttuuy2bN2/O/Pnzh3WcZ555Jtdcc02++tWvHrZv165deeSRR/LlL385F1xwQV796lcP61gAAAAAAAAAAAAAAJPNiAXYu7q68vTTT6ezszMvfelLU1ZWNiLH+dGPfpS3v/3tKRQKmTFjRlavXp1ly5alUCjk7rvvzmc/+9k8/PDDueSSS7Jly5bMnDnzmI7z3HPP5U1velOam5uTJG95y1uycuXKvOxlL0tZWVm2b9+e+++/P1/+8peL+eUBAAAAAAAAAAAAAEwaRQ2wHzx4MJ///Ofz+c9/Pj/84Q+zf//+lJSU5Cc/+UnOPvvs3rpNmzblO9/5Tk444YR85CMfGdYxr7vuuhQKhZSXl+db3/pWLrjggt59b3zjG/Pyl788v/d7v5eHH344a9euzR/90R8d03E++MEPprm5ORUVFfnbv/3bXHbZZX32n3feeXnLW96ST33qUzl48OBwviQAAAAAABgznZ2daW1t7bOtpaWlz+Oh6uvrU11dPSpjAwAAAABg4itagP3JJ5/MFVdckR/84Afp7u4etLauri6XXXZZSkpKcskll+TVr371MR3zwQcfTFNTU5Lk3e9+d5/weo9Vq1bljjvuSEtLS2655ZZ85CMfybRp047qOA888EC+8IUvJEn+3//3/z0svH6okpKSlJeP2MT2AAAAAAAwolpbW7No0aJ+9zU2Nh62rbm5OQsXLhzpYQEAAAAAMEkUJWl98ODBXHrppfnhD3+Y0tLSXHnllXnDG96QD3zgA/3WL1iwIK973evy4IMP5itf+coxB9g3btzY+/yaa67pt6a0tDTvfOc7s3r16jz77LO59957c/HFFx/Vcf7iL/4iSXLCCScM+DUBAAAAAMBkUF9fn+bm5j7bCoVC2traUldXl6qqqsPqAQAAAABgqIoSYP/rv/7r/PCHP8y0adPy93//93nzm9+cJIOGvS+77LL84Ac/yAMPPHDMx+157XHHHTfgbDBJctFFF/U+/+53v3tUAfZ9+/blq1/9apLkTW96UyorK5O8GNp/7LHHcvDgwZx22mm92wEAAAAAYCKrrq7ud0b1xYsXj8FoAAAAAACYbEqL0eSuu+5KSUlJ3vve9/aG14/k3HPPTZJs27btmI/b0tKSJJk/f37KywfO4h86+0vPa4bqxz/+cfbs2ZMkecUrXpFdu3bld3/3d1NTU5Pa2tqcccYZOeGEE/KmN70p991339F/EQAAAAAAAAAAAAAAU0RRAuw/+clPkrw4q/pQnXrqqUmSnTt3HtMx9+zZk46OjiTJ3LlzB6096aSTctxxxyVJtm/fflTH+dd//dfe511dXTnvvPNyyy235Nlnn+3dvm/fvtxzzz154xvfmE984hNH7Ll3797s2rWrz38AAAAAAAAAAAAAAJPdwNOWH4WeMPesWbOG/JqDBw8mScrKyo7pmM8//3zv8xkzZhyx/rjjjsvu3bvzwgsvHNVxnn766d7nn/jEJ7Jnz578+q//ev74j/84r3zlK7Nr1658+ctfzh/8wR/kueeeyx/8wR+kvr4+l19++YA916xZk49+9KNHNQ4AAAAAAGB86+zsTGtra59thUIhbW1tqaurS1VVVZ999fX1qa6uHs0hAgAAAACMuaIE2E8++eQ8+eST2b59e84999whveaRRx5JkpxyyinHdMw9e/b0Pp8+ffoR6ysqKpK8eKH4aOzevbvPMd/0pjdl06ZNvcH7U045Jf/1v/7XLFiwIBdddFG6urqyevXqXHbZZSkpKem35+rVq/PhD3+498+7du3KvHnzjmpcAAAAAADA+NLa2ppFixYNub65uTkLFy4cwREBAAAAAIw/RQmwn3POOXnyySfzwx/+MJdddtmQXvOlL30pJSUlec1rXnNMx6ysrOx9vm/fviPW7927N0kOm93kaI6TvDgLe3+zxr/+9a/PihUrsn79+rS0tOShhx7KK1/5yn57VlRU9AbqAQAAAABgOMz6PX7U19enubm5z7aWlpY0NjZm3bp1aWhoOKweAAAAAGCqKUqA/Yorrsg//uM/5i/+4i/y4Q9/OCeddNKg9evXr8/Xvva1lJSU5K1vfesxHXPmzJm9z1944YUj1vfMpD5jxoxjPs4pp5wy6Azzb37zm7N+/fokyQ9/+MMBA+wAAAAAAFAsZv0eP6qrqwf8u21oaPD3DgAAAACQIgXY3/Oe9+STn/xktm/fnosvvjh//dd/nbPPPvuwuieffDK33HJL/vRP/zQlJSVZsGBB3va2tx3TMSsrKzNr1qzs3LkzO3bsGLT2mWee6Q2wz5s376iOc2j93Llzh1z71FNPHdVxAAAAAADgWJj1GwAAAACAiaQoAfaKiop89atfzdKlS9Pc3JxXvOIVOeuss3r3NzY25oUXXsjPfvazdHd3p7u7O7NmzcqXv/zllJSUHPNxzz777DQ1NeWnP/1pDhw4kPLy/r+cQ5dO/eUL9Udyzjnn9D4/ePDgoLWH7h9oLAAAADBeFAqFJMn+nduL0q+nT09fAGB0mPUbAAAAAICJpGgp61e96lX54Q9/mKuvvjrf+973+oTGf/zjH6e7u7v3z6997WvzxS9+Mb/yK78yrGO+/vWvT1NTU3bv3p3m5ua87nWv67fu/vvv732+ePHiozrG6aefntra2rS3t6etrS3d3d0Dhu7/7d/+rff5S1/60qM6DgAAAIy2tra2JMnOTWuL3vdo338DAAAAAAAAMDUUdZrw+fPn57vf/W4eeOCB/P3f/322bNmSJ598MgcPHsysWbNy7rnn5rLLLsub3vSmohzviiuuyJo1a5Ikd9xxR78B9q6urtx5551JkhNPPDHLli076uO89a1vzac+9ans2rUr3/72t/Nrv/Zr/dZt2LCh9/nrX//6oz4OAAAAjKa6urokyazlqzJt1rxh99u/c3t2blrb2xcAAAAAAAAAfllRA+w9Xv/6149KgPu1r31tlixZkqamptx+++25+uqrc8EFF/SpWbt2bVpaWpIk1113XaZNm9Zn/3333dcbar/66qvz+c9//rDj/O7v/m4+85nPZM+ePfnwhz+cBx54IMcff3yfmnXr1uW+++5LklxyySWZN2/4H/wDAADASKqqqkqSTJs1LxWnzS96XwBgcjh48GCampry+OOPZ/bs2VmyZEnKysrGelgAAAAAAExQpWM9gOG65ZZbUlVVlQMHDuTiiy/OmjVr8v3vfz/33ntv3vve9+b3fu/3kiRnnnlmVq1adUzHqK2tzR//8R8nSR566KG89rWvzR133JHm5ubce++9+eAHP5h3vetdSZLjjz8+n/rUp4rytQEAAAAAwFjasGFD5s+fn2XLluUd73hHli1blvnz5/dZkRQAAAAAAI5GUWZg/7/+r/8rjY2N+fVf//WUl4/IpO4DOvfcc/OlL30pjY2N2bVrV2644YbDas4888xs3rw5M2fOPObj/Lf/9t/y9NNP5xOf+ES2bduW3/md3zms5tRTT83GjRvz8pe//JiPAwAAAAAA48GGDRuycuXKLF++PHfddVcWLFiQrVu35qabbsrKlSuzfv36rFixYqyHCQAAAADABFOUGdj/9m//NpdffnlOO+20vO9978sDDzxQjLZDdumll+YnP/lJPvShD+XMM89MdXV1TjzxxJx33nn5xCc+kR/96EeZP3/4S6GvWbMm3/3ud/Pbv/3bqaurS0VFRU444YS85jWvycc+9rE8/PDDueCCC4rwFQEAAAAAwNg5ePBgVq1aleXLl2fjxo05//zzM2PGjJx//vnZuHFjli9fnuuvvz4HDx4c66ECAAAAADDBFGW69JkzZ+b555/P008/nb/6q7/KX/3VX6W2tjbveMc78o53vCPnnHNOMQ4zqNNPPz0333xzbr755qN63dKlS9Pd3T3k+gsuuEBIHQAAAACASa2pqSltbW256667Ulrady6c0tLSrF69OhdeeGGampqydOnSsRkkAAAAAAATUlFmYH/yySfzd3/3d3nLW96S6dOnp7u7O48++mg+/vGP55WvfGVe/epX55Of/GR27NhRjMMBAAAAAAAj6PHHH0+SLFiwoN/9Pdt76gAAAAAAYKiKEmCvqKjIW9/61nz5y1/OE088kdtuuy1vfOMbU1JSku7u7vzkJz/J7//+76euri7Lli3L7bffnueee64YhwYAAAAAAIps9uzZSZKtW7f2u79ne08dAAAAAAAMVVEC7Ic6/vjj8zu/8zu55557sn379qxduzaLFi1Kd3d3urq68p3vfCfXXnttTjvttKxYsSIbNmwo9hAAAAAAAIBhWLJkSerq6nLTTTelq6urz76urq6sWbMmZ5xxRpYsWTJGIwQAAAAAYKIqeoD9ULNnz86HPvSh/PCHP8y2bdty4403Zv78+enu7s7evXuzcePGvO1tbxvJIQAAAAAAAEeprKwsa9euzaZNm3LFFVfke9/7Xp5//vl873vfyxVXXJFNmzblk5/8ZMrKysZ6qAAAAAAATDAjGmA/1Mtf/vJ89KMfzbZt2/LFL34xJ554YpKku7t7tIYAAAAAAAAM0YoVK7J+/fo89NBDufDCC3P88cfnwgsvzNatW7N+/fqsWLFirIcIAAAAAMAEVD5aB3rqqafypS99KX/zN3+TBx98cLQOCwAAAAAAHKMVK1bk8ssvT1NTUx5//PHMnj07S5YsMfM6AAAAAADHbEQD7Lt3786GDRvyxS9+Md/+9rdz8ODB3hnXS0pKsnjx4lx11VUjOQQAAAAAAGAYysrKsnTp0rEeBgAAAAAAk0TRA+wHDhzIN77xjXzxi1/M1772tRQKhSTpDa6fffbZueqqq/KOd7wjp59+erEPDwAAAAAAAAAAAADAOFW0AHtTU1P+5m/+JuvXr88zzzyT5Beh9Ze+9KX5rd/6rVx11VV51ateVaxDAgAAAAAAAAAAAAAwgRQlwH766adnx44dSX4RWj/hhBOycuXKXHXVVbnoootSUlJSjEMBAAAAAAAAAAAAADBBFSXAvn379iRJRUVFLrnkklx11VW55JJLMn369GK0BwAAAAAAAAAAAABgEihKgH3ZsmW56qqr8ta3vjUnnHBCMVoCAAAAAACMa+3t7eno6Bi0pqWlpc/jYGpqalJbW1uUsQEAAAAAjFdFCbB/+9vfLkYbAAAAAACACaG9vT1n1TdkT6FzSPWNjY1HrKmsqs621hYhdgAAAABgUitKgB0AAACAyatQKCRJ9j62tyj9evr09AWAiaijoyN7Cp2ZtXxVps2aN2Bd94F9OfDcEyk/4SUpKZ8+YN3+nduzc9PadHR0CLADAAAAAJPaiATYm5ubc88992Tr1q15+umnkyQnn3xyFixYkF/7tV/LokWLRuKwAAAAAIyAtra2JMmOW3cUve/ixYuL2hMARtu0WfNScdr8wYvmnj06gwEAAAAAmACKGmB/6KGHcu211+bBBx8csOaGG27I6173uvzVX/1VXvGKVxTz8AAAAACMgLq6uiTJ3GvnpmJOxbD77X1sb3bcuqO3LwAAAAAAADB1FC3Afs899+TSSy/Nvn370t3dnSSZNm1aZs2alSTZuXNn9u/fnyT5/ve/n9e+9rXZtGlTfvVXf7VYQwAAAABgAJ2dnWltbe2zrVAopK2tLXV1damqquqzr76+PtXV1UnSu69iTkWq6vrWDccvHxMAAAAAAACY/IoSYO/o6MiVV16ZvXv3prS0NO9+97vznve8J+eee27Ky188xMGDB/OjH/0on/3sZ/O5z30ue/fuzZVXXplHHnmkN+QOAAAAwMhobW3NokWLhlzf3NychQsXjuCIAAAAAAAAgKmoKAH2W265Jc8991ymT5+er371q3nzm998WE1ZWVnOO++8nHfeeXnrW9+aSy+9NM8991xuueWW/PEf/3ExhgGMM/3N7tfS0tLn8VCHzu4HAABAcdXX16e5ubnPtpaWljQ2NmbdunVpaGg4rB4AAAAAAACg2IoSYN+8eXNKSkrygQ98oN/w+i+7+OKL88EPfjA333xzNm/eLMAOk9Rgs/s1NjYets3sfgAAACOnurp6wPdcDQ0N3o8BAAAAAAAAo6IoAfaf//znSZLLLrtsyK+57LLLcvPNN+dnP/tZMYYAjEP9ze5XKBTS1taWurq6VFVVHVYPAAAAAAAAAAAAwORVlAD7nj17kiTHHXfckF/TU7t3795iDAEYhwaa3W/x4sVjMBoAAAAAAAAAAAAAxlppMZqcdtppSZIf/ehHQ35NT+1LXvKSYgwBAAAAAAAAAAAAAIBxrigzsC9ZsiTr1q3Lxz/+8bztbW/L8ccfP2j9888/n0984hMpKSnJkiVLijEEAAAAJrDOzs60trb22dbS0tLn8VD19fWprq4elbFNBft3bh90f/eBfTnw3BMpP+ElKSmffsx9AIDiaG9vT0dHx6A1g51L/bKamprU1tYWZWwAAAAAAHAkRQmwv/e97826devy85//PG94wxty22235bzzzuu3dsuWLbn22mvzb//2bykpKcl73/veYgwBAACACay1tTWLFi3qd19jY+Nh25qbm7Nw4cKRHtakV1NTk8qq6uzctLZoPSurqlNTU1O0fgBAX+3t7TmrviF7Cp1Dqu/vXOqXVVZVZ1trixA7AAAAAACjoigB9sWLF+d973tf/tf/+l956KGH8rrXvS7nnHNOXve61+XUU09NSUlJnnjiifzgBz/Iv/zLv/S+7n3ve18WL15cjCEAAAAwgdXX16e5ubnPtkKhkLa2ttTV1aWqquqweoavtrY221pbhjSDa2NjY9atW5eGhoZBa83gCgAjq6OjI3sKnZm1fFWmzZo3YN3RrKCyc9PadHR0+B0OAAAAAMCoKEqAPUn+/M//PNXV1bn55pvT1dWVrVu39gmrJ0l3d3eSpLS0NNdff30+/vGPF+vwAAAATGDV1dX9zqjupueRV1tbO+SwWkNDg5nvAWCcmDZrXipOmz940dyzR2cwU1ShUEjy4k0AxdDTp6cvAAAAAMBkVbQAe0lJSf7kT/4k73znO/OZz3wm99xzTx555JE+NS9/+cvza7/2a/m//+//OwsWLCjWoQEAAAAAAEZVW1tbkmTnprVF7+tGTgAAAABgMitagL3HggUL8pd/+ZdJkn379uWZZ55Jkpx00kmZPn3gZUoBAAAAAAAmirq6uiTJrOWrMm3WvGH3279ze3ZuWtvbFwAAAABgsip6gP1Q06dPz0te8pKRPAQAAAAAAMCoq6qqSpJMmzUvFafNL3pfAAAAAIDJqvRYXvSNb3wjCxcuzMKFC/PFL37xqF77xS9+sfe199xzz7EcHgAAAAAAAAAAAACACeioZ2Dv7u7Ohz70oTzyyCP5tV/7tbzjHe84qtf/1m/9Vj7/+c/nnnvuyapVq/LjH//4aIcAAAAAAABTUqFQSJLs37m9KP16+vT0BQAAAACAkXbUAfZ//Md/zMMPP5yysrJ86lOfOuoDlpSU5NOf/nRe9apXZevWrbn//vtz0UUXHXUfAAAAAACYatra2pIkOzetLXrfxYsXF7UnAAAAAAD056gD7F/+8peTJG9605ty9tlnH9NBzz777Lz5zW/ON77xjaxfv16AHQAAAAAAhqCuri5JMmv5qkybNW/Y/fbv3J6dm9b29gUAAAAAgJF21AH2Bx98MCUlJbn00kuHdeDly5fn61//er7//e8Pqw8AAAAAAEwVVVVVSZJps+al4rT5Re8LAAAAAAAjrfRoX/Doo48mSc4666xhHfjMM89M8ovlTgEAAAAAAAAAAAAAmNyOOsD+3HPPJUlOPvnkYR245/W7du0aVh8AAAAAAAAAAAAAACaGow6wH3/88UmSZ599dlgH7nn9zJkzh9UHAAAAAAAAAAAAAICJ4agD7KecckqS5F//9V+HdeCWlpYkyamnnjqsPgAAAAAAAAAAAAAATAxHHWB/7Wtfm+7u7nzta18b1oG/+tWvpqSkJK95zWuG1QcAAAAAAAAAAAAAgInhqAPsv/Ebv5Ek+da3vpUHHnjgmA76ne98J9/61rf69AMAAAAAAAAAAAAAYHI76gD7W9/61tTV1aW7uztXXnllHnnkkaN6/cMPP5y3ve1tKSkpSV1dXVauXHm0QwAAAAAAAAAAAAAAYAI66gD7tGnT8slPfjJJ8uSTT2bRokW55ZZbsnv37kFf98ILL+TTn/50zjvvvDz55JNJkrVr16a8vPwYhg0AAAAAAAAAAAAAwERzTOnxFStW5KMf/Wj+x//4H9m9e3c+/OEP58Ybb8ySJUuyaNGinHrqqTnuuOOye/fuPPHEE/mnf/qnNDU1Zffu3enu7k6SfPSjH80VV1xRzK8FAAAAAAAAAAAAAIBx7JinP7/xxhszd+7cfPCDH0xnZ2deeOGFfPOb38w3v/nNfut7guvV1dX5i7/4i7zrXe861kMDAAAAAAAAAAAAADABHXOAPUmuueaavPnNb87NN9+cO++8Mx0dHQPW1tTU5Oqrr86HPvShzJkzZziHBQAAAGAM7H1s76D7u/Z1ZX/H/kyrmZbS6aXH3AcAAAAAAACYvIYVYE+SOXPm5JOf/GQ++clP5l/+5V/y4x//ODt37szzzz+fmTNnZtasWXnVq16Vc845pxjjBQAAAGCU1dTUpLKqMjtu3VG0npVVlampqSlaPwAAAAAAAGBiGHaA/VDnnHOOoDoAAADAJFNbW5ttrdsGXX0vSVpaWtLY2Jh169aloaFh0NqamprU1tYWc5gAAAAAAADABFDUADsAAAAAk1Ntbe2QA+cNDQ1ZuHDhCI8IAAAAAAAAmIhKx3oAAAAAAAAAAAAAAABMDQLsAAAAAAAAAAAAAACMCgF2AAAAAAAAAAAAAABGhQA7AAAAAAAAAAAAAACjonysBwAAAACMH52dnWltbe2zraWlpc/joerr61NdXT0qYwMAfmH/zu2D7u8+sC8Hnnsi5Se8JCXl04+5DwAAAAAAFNukCbA/+uij+bM/+7Ns3rw527dvT0VFRV72spflbW97W97//vcP68P0z3/+87nmmmuGVHvHHXfkXe961zEfCwAAAMZSa2trFi1a1O++xsbGw7Y1Nzdn4cKFIz0sAOA/1dTUpLKqOjs3rS1az8qq6tTU1BStHwAAAAAADGZSBNi/9rWvpbGxMbt27erd1tnZmS1btmTLli257bbbsnnz5syfP38MRwkAAADjX319fZqbm/tsKxQKaWtrS11dXaqqqg6rBwBGT21tbba1tqSjo2PQupaWljQ2NmbdunVpaGgYtLampia1tbXFHCYAAAAAAAxowgfYf/SjH+Xtb397CoVCZsyYkdWrV2fZsmUpFAq5++6789nPfjYPP/xwLrnkkmzZsiUzZ84c1vH+4R/+IXPmzBlw/9y5c4fVHwAAAMZSdXV1vzOqL168eAxGAwD0p7a2dsiB84aGBqulAAAAAAAwrkz4APt1112XQqGQ8vLyfOtb38oFF1zQu++Nb3xjXv7yl+f3fu/38vDDD2ft2rX5oz/6o2Ed78wzz0xdXd3wBg0AAAAAAAAAAAAAMAWVjvUAhuPBBx9MU1NTkuTd7353n/B6j1WrVvUuj3rLLbdk//79ozpGAAAAAAAAAAAAAABeNKED7Bs3bux9fs011/RbU1pamne+851JkmeffTb33nvvaAwNAAAAAAAAAAAAAIBfMqED7A888ECS5LjjjsuiRYsGrLvooot6n3/3u98d8XEBAAAAAAAAAAAAAHC4CR1gb2lpSZLMnz8/5eXlA9bV19cf9ppjdc0112TOnDmZPn16ampqcv755+e///f/nn//938fVl8AAAAAAAAAAAAAgMlu4NT3OLdnz550dHQkSebOnTto7UknnZTjjjsuu3fvzvbt24d13Pvuu6/3+c6dO7Nz58784Ac/yNq1a/PpT386733ve4fVHwAAAAAAmDj27xz8c4fuA/ty4LknUn7CS1JSPv2Y+wAAAAAATBYTNsD+/PPP9z6fMWPGEet7AuwvvPDCMR3vV37lV7JixYpccMEFmTdvXpLkZz/7Wb785S9n/fr12bNnT/7rf/2vKSkpybXXXjtor71792bv3r29f961a9cxjQkAAAAAABgbNTU1qayqzs5Na4vWs7KqOjU1NUXrBwAAAAAwHk3YAPuePXt6n0+fPvCMJT0qKiqSJIVC4aiP9Za3vCVXX311SkpK+mx/zWtek7e//e3ZtGlTVqxYkf379+dDH/pQLrvsspx22mkD9luzZk0++tGPHvU4AAAAAACA8aG2tjbbWlt6V4sdSEtLSxobG7Nu3bo0NDQMWltTU5Pa2tpiDhMAAAAAYNyZsAH2ysrK3uf79u07Yn3PjOdVVVVHfawTTjhh0P3Lly/PH/7hH+bGG29MZ2dnbr/99nzkIx8ZsH716tX58Ic/3PvnXbt29c7qDgAAAAAATAy1tbVDDpw3NDRk4cKFIzwiAAAAAIDxr3SsB3CsZs6c2fv8hRdeOGL97t27kyQzZswYkfFce+21vTO033///YPWVlRU5Pjjj+/zHwAAAAAAAAAAAADAZDdhA+yVlZWZNWtWkmTHjh2D1j7zzDO9AfaRmun81FNP7R3Pv//7v4/IMQAAAAAAAAAAAAAAJrIJG2BPkrPPPjtJ8tOf/jQHDhwYsK61tbX3eUNDw4iNp2cGdgAAAAAAAAAAAAAADjehA+yvf/3rkyS7d+9Oc3PzgHX3339/7/PFixePyFieeuqpdHR0JEnmzJkzIscAAAAAAAAAAAAAAJjIJnSA/Yorruh9fscdd/Rb09XVlTvvvDNJcuKJJ2bZsmUjMpZbb7013d3dSZKLLrpoRI4BAAAAAAAAAAAAADCRTegA+2tf+9osWbIkSXL77bfne9/73mE1a9euTUtLS5Lkuuuuy7Rp0/rsv++++1JSUpKSkpK8613vOuz1bW1t+dGPfjToODZt2pQ//uM/TpJUVVXlmmuuOZYvBwAAAAAAAAAAAABgUisf6wEM1y233JLFixenUCjk4osvzg033JBly5alUCjk7rvvzq233pokOfPMM7Nq1aqj7t/W1pZly5blggsuyKWXXppXvepVOfXUU5MkP/vZz7J+/fqsX7++d/b1T37yk3npS19avC8QAAAAAAAAAAAAAGCSmPAB9nPPPTdf+tKX0tjYmF27duWGG244rObMM8/M5s2bM3PmzGM+zve+971+Z3jvUV1dnU996lO59tprj/kYAAAAAAAAAAAAAACT2YQPsCfJpZdemp/85Ce55ZZbsnnz5uzYsSPTp0/P/Pnzc+WVV+YDH/hAqqurj6n3okWLsm7dunzve9/Lli1b8vjjj6ejoyMHDhzISSedlHPOOSe/+qu/mv/yX/5L78zsAAAAAAAAAAAAAAAcblIE2JPk9NNPz80335ybb775qF63dOnSdHd3D7h/5syZueqqq3LVVVcNd4gAAAAAAAAAAAAAAFNa6VgPAAAAAAAAAAAAAACAqUGAHQAAAAAAAAAAAACAUSHADgAAAAAAAAAAAADAqBBgBwAAAAAAAAAAAABgVAiwAwAAAAAAAAAAAAAwKgTYAQAAAAAAAAAAAAAYFQLsAAAAAAAAAAAAAACMCgF2AAAAAAAAAAAAAABGhQA7AAAAAAAAAAAAAACjonysBwAAAAAAADAZdHZ2prW1tc+2lpaWPo+Hqq+vT3V19aiMDQAAAABgvBBgBwAAAAAAKILW1tYsWrSo332NjY2HbWtubs7ChQtHelgAAAAAAOOKADsAAAAAAEAR1NfXp7m5uc+2QqGQtra21NXVpaqq6rB6AAAAAICpRoAdAAAAAACgCKqrq/udUX3x4sVjMBoAAAAAgPGpdKwHAAAAAAAAAAAAAADA1CDADgAAAAAAAAAAAADAqCgf6wEAAAAAAADHrrOzM62trX22tbS09Hk8VH19faqrq0dlbAAAAAAA8MsE2AEAAAAAYAJrbW3NokWL+t3X2Nh42Lbm5uYsXLhwpIcFAAAAAAD9EmAHAAAAAIAJrL6+Ps3NzX22FQqFtLW1pa6uLlVVVYfVAwAAAADAWBFgBwAAAACACay6urrfGdUXL148BqMBAAAAAIDBlY71AAAAAAAAAAAAAAAAmBoE2AEAAAAAAAAAAAAAGBUC7AAAAAAAAAAAAAAAjAoBdgAAAAAAAAAAAAAARoUAOwAAAAAAAAAAAAAAo0KAHQAAAAAAAAAAAACAUSHADgAAAAAAAAAAAADAqBBgBwAAAAAAAAAAAABgVAiwAwAAAAAAAAAAAAAwKgTYAQAAAAAAAAAAAAAYFQLsAAAAAAAAAAAAAACMCgF2AAAAAAAAAAAAAABGhQA7AAAAAAAAAAAAAACjQoAdAAAAAAAAAAAAAIBRIcAOAAAAAAAAAAAAAMCoEGAHAAAAAAAAAAAAAGBUlI/1AAAAAACYeDo7O9Pa2tpnW0tLS5/HQ9XX16e6unpUxgYAAAAAAACMXwLsAAAAABy11tbWLFq0qN99jY2Nh21rbm7OwoULR3pYAAAAAAAAwDgnwA4AAADAUauvr09zc3OfbYVCIW1tbamrq0tVVdVh9QAAAAAAAAAC7AAAAAActerq6n5nVF+8ePEYjAYAAAAAAACYKErHegAAAAAAAAAAAAAAAEwNAuwAAAAAAAAAAAAAAIwKAXYAAAAAAAAAAAAAAEaFADsAAAAAAAAAAAAAAKNCgB0AAAAAAAAAAAAAgFFRPtYDAAAAAKD42tvb09HRMWhNS0tLn8fB1NTUpLa2tihjAwAAAAAAAKYuAXYAAACASaa9vT0N9Wels7BnSPWNjY1HrKmuqkxL6zYhdgAAAAAAAGBYBNgBAAAAJpmOjo50FvZk3Vuq0nBK6YB1hQPdaXu2K3UnlqaqvGTAupanutL4lUI6OjoE2AEAAAAAAIBhEWAHAAAAmKQaTinNwtllg9YsnjdKgwEAAAAAAABIMvAUXAAAAAAAAAAAAAAAUEQC7AAAAAAAAAAAAAAAjAoBdgAAAAAAAAAAAAAARoUAOwAAAAAAAAAAAAAAo0KAHQAAAAAAAAAAAACAUSHADgAAAAAAAAAAAADAqJg0AfZHH300q1atSn19fY477ricfPLJec1rXpM//dM/TWdn54gcs7OzM7/yK7+SkpKSlJSUpK6ubkSOAwAAAAAAAAAAAAAwGZSP9QCK4Wtf+1oaGxuza9eu3m2dnZ3ZsmVLtmzZkttuuy2bN2/O/Pnzi3rcP/zDP8zPf/7zovYEAAAAAAAAAAAAAJisJvwM7D/60Y/y9re/Pbt27cqMGTPyP//n/8z/9//9f/n2t7+d97znPUmShx9+OJdcckmef/75oh7305/+dCorKzNz5syi9QUAAAAAAAAAAAAAmKwmfID9uuuuS6FQSHl5eb71rW/lhhtuyAUXXJA3vvGNufXWW/Mnf/InSV4Msa9du7Yoxzx48GDe85735ODBg7nhhhty8sknF6UvAAAAAAAAAAAAAMBkNqED7A8++GCampqSJO9+97tzwQUXHFazatWqNDQ0JEluueWW7N+/f9jHveWWW9Lc3Jyzzjorv//7vz/sfgAAAAAAAAAAAAAAU8GEDrBv3Lix9/k111zTb01paWne+c53JkmeffbZ3HvvvcM65qOPPpo//MM/TJL87//9vzN9+vRh9QMAAAAYioMHD+a+++7LXXfdlfvuuy8HDx4c6yEBAAAAAAAAHLUJHWB/4IEHkiTHHXdcFi1aNGDdRRdd1Pv8u9/97rCO+b73vS+7d+/Ob//2b2fp0qXD6gUAAAAwFBs2bMj8+fOzbNmyvOMd78iyZcsyf/78bNiwYayHBgAAAAAAAHBUJnSAvaWlJUkyf/78lJeXD1hXX19/2GuOxd13352vf/3rOemkk7J27dpj7gMAAAAwVBs2bMjKlSvzile8It/73vfy/PPP53vf+15e8YpXZOXKlULsAAAAAAAAwIQyYQPse/bsSUdHR5Jk7ty5g9aedNJJOe6445Ik27dvP6bjPfPMM/nd3/3dJMnHP/7xnHLKKcfUBwAAAGCoDh48mFWrVmX58uXZuHFjzj///MyYMSPnn39+Nm7cmOXLl+f666/PwYMHx3qoAAAAAAAAAEMyYQPszz//fO/zGTNmHLG+J8D+wgsvHNPx/tt/+2954okncsEFF+Q973nPMfXosXfv3uzatavPfwAAAAC/rKmpKW1tbbnhhhtSWtr3Mk5paWlWr16dn//852lqahqjEQIAAAAAAAAcnQkbYN+zZ0/v8+nTpx+xvqKiIklSKBSO+ljf+c538rnPfS7l5eX53//7f///7N17mI31/v/xz2fNYDDO41TOSRQhUZLt0GmXdFBttVPRrrSVb0mU2u10EOmog7aic+mgotKuRIRSsYvI5BxyKGczhjEzr98ffutujTkzs+Y94/m4Lldj1r3Wutf9/H737V73e93Lee8L/BiRRo4c6apUqRL8qV+//mE9HgAAAAAAKJ02btzonHOuZcuW2d4e/n14OQAAAAAAAAAAAACwrsQOsMfFxQU/p6am5rn8vn37nHPOlS9fvkDPs2/fPnfDDTc4Se6WW25xJ554YsFWNBvDhg1zO3fuDP6sW7fusB8TAAAAAACUPnXr1nXOObd48eJsbw//PrwcAAAAAAAAAAAAAFhXYgfYK1WqFPyclJSU5/LJycnOOefi4+ML9DwjRoxwv/zyi6tfv7677777CraSOShXrpyrXLlypj8AAAAAAAAH69y5s2vUqJF76KGHXEZGRqbbMjIy3MiRI13jxo1d586di2kNAQAAAAAAAAAAAKBgYot7BQ5VXFycq1Gjhtu6datbv359rstu3749GGCvX79+gZ7n4Ycfds45d+aZZ7qPPvoo22XCj52cnOzeeust55xztWrVct27dy/QcwEAAAAAAESKiYlxjz32mLv00kvdRRdd5IYNG+ZatmzpFi9e7EaOHOk+/vhjN2nSJBcTE1PcqwoAAAAAAAAAAAAA+VJiB9idc+744493s2fPditWrHBpaWkuNjb7l5OYmBj83KJFiwI9R2pqqnPOuZdeesm99NJLuS67ZcsWd8UVVzjnnOvSpQsD7AAAAAAA4LD16tXLTZo0yQ0ePNiddtppwe8bN27sJk2a5Hr16lWMawcAAAAAAAAAAAAABVOiB9hPP/10N3v2bJecnOwWLFjgTjnllGyXmzVrVvBzp06dorV6AAAAAAAAhaJXr17uwgsvdLNnz3YbN250devWdZ07d+bK6wAAAAAAAAAAAABKnFBxr8DhuOiii4Kfc7o6ekZGhnv11Vedc85VrVrVdevWrUDPISnPPw0bNnTOOdewYcPgdzNnzjyk1wQAAAAAAJCdmJgY17VrV3fFFVe4rl27MrwOAAAAAAAAAAAAoEQq0QPsHTp0cJ07d3bOOTdhwgT3zTffZFnmsccec0uXLnXOOXfLLbe4MmXKZLp95syZznvvvPeub9++Rb7OAAAAAAAAAAAAAAAAAAAAAHCkii3uFThcY8aMcZ06dXIpKSnu7LPPdnfddZfr1q2bS0lJcW+99ZZ7/vnnnXPONWvWzA0ePLiY1xYAAAAAAAAAAAAAAAAAAAAAjlwlfoC9bdu27u2333Z9+vRxu3btcnfddVeWZZo1a+amTp3qKlWqVAxrCAAAAAAAAAAAAAAAAAAAAABwzrlQca9AYejZs6dbtGiRGzRokGvWrJmrUKGCq1q1qjv55JPdww8/7H744QfXtGnT4l5NAAAAAAAAAAAAAAAAAAAAADiilfgrsIc1bNjQPf744+7xxx8v0P26du3qJB3Wc69Zs+aw7g8AAAAAAAAAAAAAAAAAAAAAR4JScQV2AAAAAAAAAAAAAAAAAAAAAIB9DLADAAAAAAAAAAAAAAAAAAAAAKKCAXYAAAAAAAAAAAAAAAAAAAAAQFQwwA4AAAAAAAAAAAAAAAAAAAAAiIrY4l4BAAAAAAAAFK6UlBTnnHNLt6QXyuOFHyf8uAAAAAAAAAAAAABwqBhgBwAAAAAAKGXWrFnjnHOuz/t7C/1xO3XqVKiPCQAAAAAAAAAAAODIwgA7AAAAAABAKdOoUSPnnHOv94pzLRJiDvvxlm5Jd33e3xs8LgAAAAAAAAAAAAAcKgbYAQAAAAAASpny5cs755xrkRDjTqp7+APsBz8uAAAAAAAAAAAAAByqUHGvAAAAAAAAAAAAAAAAAAAAAADgyMAAOwAAAAAAAAAAAAAAAAAAAAAgKhhgBwAAAAAAAAAAAAAAAAAAAABEBQPsAAAAAAAAAAAAAAAAAAAAAICoYIAdAAAAAAAAAAAAAAAAAAAAABAVDLADAAAAAAAAAAAAAAAAAAAAAKKCAXYAAAAAAAAAAAAAAAAAAAAAQFQwwA4AAAAAAAAAAAAAAAAAAAAAiAoG2AEAAAAAAAAAAAAAAAAAAAAAUcEAOwAAAAAAAAAAAAAAAAAAAAAgKhhgBwAAAAAAAAAAAAAAAAAAAABEBQPsAAAAAAAAAAAAAAAAAAAAAICoYIAdAAAAAAAAAAAAAAAAAAAAABAVDLADAAAAAAAAAAAAAAAAAAAAAKIitrhXAAAAAAAAAFnt2bPHJSYmZvpdSkqKW7NmjWvUqJErX758ptuaN2/uKlSoEM1VBAAAAAAAAAAAAIACY4AdAAAAAADAoMTERNeuXbt8L79gwQJ30kknFeEaAQAAAAAAAAAAAMDhY4AdAAAAAADAoObNm7sFCxZk+t3SpUtdnz593Ouvv+5atGiRZXkAAAAAAAAAAAAAsI4BdgAAAAAAAIMqVKiQ4xXVW7RowdXWAQAAAAAAAAAAAJRIoeJeAQAAAAAAAAAAAAAAAAAAAADAkYEBdgAAAAAAAAAAAAAAAAAAAABAVDDADgAAAAAAAAAAAAAAAAAAAACICgbYAQAAAAAAAAAAAAAAAAAAAABRwQA7AAAAAAAAAAAAAAAAAAAAACAqGGAHAAAAAAAAAAAAAAAAAAAAAEQFA+wAAAAAAAAAAAAAAAAAAAAAgKhggB0AAAAAAAAAAAAAAAAAAAAAEBUMsAMAAAAAAAAAAAAAAAAAAAAAooIBdgAAAAAAAAAAAAAAAAAAAABAVDDADgAAAAAAAAAAAAAAAAAAAACICgbYAQAAAAAAAAAAAAAAAAAAAABRwQA7AAAAAAAAAAAAAAAAAAAAACAqGGAHAAAAAAAAAAAAAAAAAAAAAEQFA+wAAAAAAAAAAAAAAAAAAAAAgKhggB0AAAAAAAAAAAAAAAAAAAAAEBUMsAMAAAAAAAAAAAAAAAAAAAAAooIBdgAAAAAAAAAAAAAAAAAAAABAVDDADgAAAAAAAAAAAAAAAAAAAACICgbYAQAAAAAAAAAAAAAAAAAAAABRwQA7AAAAAAAAAAAAAAAAAAAAACAqGGAHAAAAAAAAAAAAAAAAAAAAAERFbHGvAAAAAAAAAJxbu3at27JlS67LLF26NNN/81oOAAAAAAAAAAAAAKxhgB0AAAAAAKCYrV271h3XvIXbm7InX8v36dMnX8st/SMj19tT0uTW7MhwjaqGXPlYf8iPAwAAAAAAAAAAAAD5xQA7AAAAAABAMduyZYvbm7LH1Th/sCtTo36Oyykt1aXt3Oxiq9R2PrZsjsvtXb/E7ZrxguvzQUqhrWOF8nEuISGh0B4PAAAAAAAAAAAAwJGJAXYAAAAAAAAjytSo78rVaZr7QvWOz9dj7ZBzr7/+umvRokWOyyxdutT16dMnz+Wccy4hIcE1aNAgX88NAAAAAAAAAAAAADlhgB0AAAAAAKCUatGihTvppJMKbTkAAAAAAAAAAAAAOFyh4l4BAAAAAAAAAAAAAAAAAAAAAMCRoVQMsP/6669u8ODBrnnz5q5ixYquevXqrn379u6RRx5xe/bsOazHXrp0qXvmmWfcNddc40466SRXr149FxcX5ypWrOiaNGnievfu7aZMmeIkFdKrAQAAAAAAAAAAAAAAAAAAAIDSKba4V+BwffTRR65Pnz5u165dwe/27Nnj5s+f7+bPn+/Gjx/vpk6d6po2bXpIjz9ixAj3xhtvZHvb6tWr3erVq90777zjunTp4t577z1Xo0aNQ3oeAAAAAAAAAAAAAAAAAAAAACjtSvQA+w8//OB69+7tUlJSXHx8vBs2bJjr1q2bS0lJcW+99ZZ74YUX3LJly1yPHj3c/PnzXaVKlQr8HLGxse6UU05xnTp1cq1atXJ16tRxNWvWdNu3b3eJiYlu3LhxbvHixW7WrFmuZ8+ebs6cOS4UKhUXtgcAAAAAAAAAAAAAAAAAAACAQlWiB9hvueUWl5KS4mJjY93nn3/uOnbsGNzWvXt3d+yxx7qhQ4e6ZcuWuccee8wNHz68wM8xfvx4Fxub/WY688wz3T//+U/3t7/9zb3//vvum2++cR9//LG74IILDvUlAQAAAAAAAAAAAAAAAAAAAECpVWIvFf7dd9+52bNnO+ec+8c//pFpeD1s8ODBrkWLFs4558aMGeP2799f4OfJaXg9LCYmxg0ZMiT4e3idAAAAAAAAAAAAAAAAAAAAAACZldgB9smTJwc/9+vXL9tlQqGQu/rqq51zzu3YscN9+eWXRbIulSpVCn7eu3dvkTwHAAAAAAAAAAAAAAAAAAAAAJR0JXaAfc6cOc455ypWrOjatWuX43JdunQJfp47d26RrMtbb70V/Ny8efMieQ4AAAAAAAAAAAAAAAAAAAAAKOlii3sFDtXSpUudc841bdrUxcbm/DIiB8rD9ykMW7ZsccuXL3fjx493L730knPOuYSEBHfllVcW2nMAAAAAAAAAAAAAAAAAAAAAQGlSIgfY9+7d67Zs2eKcc65evXq5LlutWjVXsWJFl5yc7NatW3dYz9u1a1c3a9asbG9LSEhwH3zwgatatephPQcAAAAAAAAAAAAAAAAAAAAAlFah4l6BQ7F79+7g5/j4+DyXr1ixonPOuaSkpCJZn//7v/9zS5cudaeffnq+lt+3b5/btWtXpj8AAAAAAAAAAAAAAAAAAAAAUNqV2Cuwh5UtWzbP5cuVK+eccy4lJeWwnvell15yycnJTpLbsWOHmz9/vnvuuefcM88841atWuXGjx/vateunefjjBw50t13332HtS4AAAAAAAAAAAAAAAAAAAAAUNKUyCuwx8XFBT+npqbmufy+ffucc86VL1/+sJ63cePGrmXLlq5Vq1auc+fObtCgQW7RokXuvPPOcx9//LFr3769W79+fZ6PM2zYMLdz587gz7p16w5rvQAAAAAAAAAAAAAAAAAAAACgJCiRV2CvVKlS8HNSUlKeyycnJzvnnIuPjy/0dYmLi3MvvfSSa9iwoVu3bp0bOnSoe/PNN3O9T7ly5YKrwgMAAAAAAIS/NW7/1sL5kHv4cQ732+gAAAAAAAAAAAAAoLCVyAH2uLg4V6NGDbd169Y8r3i+ffv2YIC9fv36RbI+CQkJrlOnTm7atGluypQpbv/+/a5MmTJF8lwAAAAAAKD0WbNmjXPOua0fP1boj9upU6dCfUwAAAAAAAAAAAAAOBwlcoDdOeeOP/54N3v2bLdixQqXlpbmYmOzfymJiYnBzy1atCiy9alZs6Zzzrk9e/a4LVu2uLp16xbZcwEAAAAAgNKlUaNGzjnnapw/2JWpcfgfwN+/dZ3b+vFjweMCAAAAAAAAAAAAgBUldoD99NNPd7Nnz3bJycluwYIF7pRTTsl2uVmzZgU/F+UVx3777bfg5/j4+CJ7HgAAAAAAUPqUL1/eOedcmRr1Xbk6TQv9cQEAAAAAAAAAAADAilBxr8Chuuiii4KfX3rppWyXycjIcK+++qpzzrmqVau6bt26Fcm6rF+/3n3zzTfOOecaNmzoKlWqVCTPAwAAAAAAAAAAAAAAAAAAAAAlWYkdYO/QoYPr3Lmzc865CRMmBAPkkR577DG3dOlS55xzt9xyiytTpkym22fOnOm898577/r27Zvl/suWLXMzZszIdT127tzp/v73v7vU1FTnnHNXX331obwcAAAAAAAAAAAAAAAAAAAAACj1Yot7BQ7HmDFjXKdOnVxKSoo7++yz3V133eW6devmUlJS3FtvveWef/5555xzzZo1c4MHDy7w42/YsMGdccYZrnXr1u6iiy5y7dq1c3Xq1HGxsbFu06ZNbu7cuW7ChAlu06ZNzjnnWrZs6e68885CfY0AAAAAAAAAAAAAAAAAAAAAUFqU6AH2tm3burffftv16dPH7dq1y911111ZlmnWrJmbOnWqq1Sp0iE/z8KFC93ChQtzXaZHjx7upZdechUqVDjk5wEAAAAAAAAAAAAAAAAAAACA0qxED7A751zPnj3dokWL3JgxY9zUqVPd+vXrXdmyZV3Tpk3dZZdd5m6++eZDHirv1KmT++yzz9wXX3zh5s+f79avX+82b97s9uzZ4ypXruwaN27sTj31VHfFFVe4Tp06FfIrAwAAAAAAAAAAAAAAAAAAAIDSpcQPsDvnXMOGDd3jjz/uHn/88QLdr2vXrk5SjreXKVPGnX322e7ss88+3FUEAAAAAAAAAAAAAAAAAAAAgCNeqLhXAAAAAAAAAAAAAAAAAAAAAABwZCgVV2AHAAAAAAAoDfZvXZfr7UpLdWk7N7vYKrWdjy17yI8DAAAAAAAAAAAAAMWFAXYAAAAAAIBilpCQ4OLKV3BbP36s0B4zrnwFl5CQUGiPBwAAAAAAAAAAAACFgQF2AAAAAACAYtagQQP3S+JSt2XLllyXW7p0qevTp497/fXXXYsWLXJdNiEhwTVo0KAwVxMAAAAAAAAAAAAADhsD7AAAAAAAAAY0aNAg3wPnLVq0cCeddFIRrxEAAAAAAAAAAAAAFL5Qca8AAAAAAAAAAAAAAAAAAAAAAODIwAA7AAAAAAAAAAAAAAAAAAAAACAqGGAHAAAAAAAAAAAAAAAAAAAAAEQFA+wAAAAAAAAAAAAAAAAAAAAAgKhggB0AAAAAAAAAAAAAAAAAAAAAEBUMsAMAAAAAAAAAAAAAAAAAAAAAooIBdgAAAAAAAAAAAAAAAAAAAABAVMQW9woAAAAAAACg6O3Zs8clJiZm+t3SpUsz/TdS8+bNXYUKFaKybgAAAAAAAAAAAACOHAywAwAAAAAAHAESExNdu3btsr2tT58+WX63YMECd9JJJxX1agEAAAAAAAAAAAA4wjDADgAAAAAAcARo3ry5W7BgQabfpaSkuDVr1rhGjRq58uXLZ1keAAAAAAAAAAAAAAobA+wAAAAAAABHgAoVKmR7RfVOnToVw9oAAAAAAAAAAAAAOFKFinsFAAAAAAAAAAAAAAAAAAAAAABHBgbYAQAAAAAAAAAAAAAAAAAAAABRwQA7AAAAAAAAAAAAAAAAAAAAACAqGGAHAAAAAAAAAAAAAAAAAAAAAEQFA+wAAAAAAAAAAAAAAAAAAAAAgKhggB0AAAAAAAAAAAAAAAAAAAAAEBUMsAMAAAAAAAAAAAAAAAAAAAAAooIBdgAAAAAAAAAAAAAAAAAAAABAVDDADgAAAAAAAAAAAAAAAAAAAACICgbYAQAAAAAAAAAAAAAAAAAAAABRwQA7AAAAAAAAAAAAAAAAAAAAACAqGGAHAAAAAAAAAAAAAAAAAAAAAEQFA+wAAAAAAAAAAAAAAAAAAAAAgKhgnYCVFwABAABJREFUgB0AAAAAAAAAAAAAAAAAAAAAEBUMsAMAAAAAAAAAAAAAAAAAAAAAooIBdgAAAAAAAAAAAAAAAAAAAABAVDDADgAAAAAAAAAAAAAAAAAAAACICgbYAQAAAAAAAAAAAAAAAAAAAABRwQA7AAAAAAAAAAAAAAAAAAAAACAqGGAHAAAAAAAAAAAAAAAAAAAAAEQFA+wAAAAAAAAAAAAAAAAAAAAAgKhggB0AAAAAAAAAAAAAAAAAAAAAEBUMsAMAAAAAAAAAAAAAAAAAAAAAooIBdgAAAAAAAAAAAAAAAAAAAABAVMQW9woAAAAAAAAgqz179rjExMRMv1u6dGmm/0Zq3ry5q1ChQlTWDQAAAAAAAAAAAAAOFQPsAAAAAAAABiUmJrp27dple1ufPn2y/G7BggXupJNOKurVAgAAAAAAAAAAAIDDwgA7AAAAAACAQc2bN3cLFizI9LuUlBS3Zs0a16hRI1e+fPksywMAAAAAAAAAAACAdQywAwAAAAAAGFShQoVsr6jeqVOnYlgbAAAAAAAAAAAAACgcoeJeAQAAAAAAAAAAAAAAAAAAAADAkYEBdgAAAAAAAAAAAAAAAAAAAABAVDDADgAAAAAAAAAAAAAAAAAAAACICgbYAQAAAAAAAAAAAAAAAAAAAABRwQA7AAAAAAAAAAAAAAAAAAAAACAqGGAHAAAAAAAAAAAAAAAAAAAAAEQFA+wAAAAAAAAAAAAAAAAAAAAAgKhggB0AAAAAAAAAAAAAAAAAAAAAEBUMsAMAAAAAAAAAAAAAAAAAAAAAooIBdgAAAAAAAAAAAAAAAAAAAABAVDDADgAAAAAAAAAAAAAAAAAAAACIilIzwP7rr7+6wYMHu+bNm7uKFSu66tWru/bt27tHHnnE7dmz57Aee8+ePe799993//znP1379u1dtWrVXJkyZVyNGjVcx44d3fDhw92mTZsK6ZUAAAAAAAAAAAAAAAAAAAAAQOkUW9wrUBg++ugj16dPH7dr167gd3v27HHz58938+fPd+PHj3dTp051TZs2LfBjL1q0yHXq1MklJSVluW3btm1u3rx5bt68ee6JJ55wzz//vOvdu/dhvRYAAAAAAAAAAAAAAAAAAAAAKK1K/BXYf/jhB9e7d2+3a9cuFx8f70aMGOG+/vprN336dHf99dc755xbtmyZ69Gjh9u9e3eBH3/Xrl3B8HqnTp3cyJEj3bRp09z//vc/99lnn7n+/fu7UCjkdu3a5a688kr33//+t1BfHwAAAAAAAAAAAAAAAAAAAACUFiX+Cuy33HKLS0lJcbGxse7zzz93HTt2DG7r3r27O/bYY93QoUPdsmXL3GOPPeaGDx9eoMcPhULub3/7m7v33nvd8ccfn+X2s88+25177rnu4osvdunp6W7gwIFu+fLlznt/uC8NAAAAAAAAAAAAAAAAAAAAAEqVEn0F9u+++87Nnj3bOefcP/7xj0zD62GDBw92LVq0cM45N2bMGLd///4CPcdpp53m3n777WyH18MuvPBC16tXL+eccytXrnQ//PBDgZ4DAAAAAAAAAAAAAAAAAAAAAI4EJXqAffLkycHP/fr1y3aZUCjkrr76auecczt27HBffvllkaxLt27dgp9XrlxZJM8BAAAAAAAAAAAAAAAAAAAAACVZiR5gnzNnjnPOuYoVK7p27drluFyXLl2Cn+fOnVsk67Jv377g55iYmCJ5DgAAAAAAAAAAAAAAAAAAAAAoyUr0APvSpUudc841bdrUxcbG5rhc8+bNs9ynsM2aNSv4uUWLFkXyHAAAAAAAAAAAAAAAAAAAAABQkuU89W3c3r173ZYtW5xzztWrVy/XZatVq+YqVqzokpOT3bp16wp9XRYuXOimTp3qnHOuVatWeQ6w79u3L9MV23ft2lXo6wQAAAAAAAAAAAAAAAAAAAAA1pTYK7Dv3r07+Dk+Pj7P5StWrOiccy4pKalQ12Pfvn3uuuuuc+np6c4550aMGJHnfUaOHOmqVKkS/Klfv36hrhMAAAAAAAAAAAAAAAAAAAAAWFRiB9j37t0b/Fy2bNk8ly9XrpxzzrmUlJRCXY+bb77ZzZ8/3znn3DXXXON69uyZ532GDRvmdu7cGfwpiqvCAwAAAAAAAAAAAAAAAAAAAIA1scW9AocqLi4u+Dk1NTXP5fft2+ecc658+fKFtg4jR45048ePd8451759e/fss8/m637lypULBuoBAAAAAAAAAAAAAAAAAAAA4EhRYq/AXqlSpeDnpKSkPJdPTk52zjkXHx9fKM8/btw4d9dddznnnGvevLn75JNPXMWKFQvlsQEAAAAAAAAAAAAAAAAAAACgNCqxA+xxcXGuRo0azjnn1q9fn+uy27dvDwbY69evf9jPPXHiRDdgwADnnHMNGzZ006ZNcwkJCYf9uAAAAAAAAAAAAAAAAAAAAABQmsUW9wocjuOPP97Nnj3brVixwqWlpbnY2OxfTmJiYvBzixYtDus5P/zwQ3f11Ve7jIwMV7duXTd9+nRXr169w3pMSc4553bt2nVYjwN7MjIygv/SFwAAAACAosHxNwAgv9hnAADyg/0FACC/2GcAAIpLeL8Tnj8FSpoSPcB++umnu9mzZ7vk5GS3YMECd8opp2S73KxZs4KfO3XqdMjPN336dPe3v/3NpaWluRo1arhp06a5Y4455pAfL2z37t3OucK5Ojxs2rhxo6tSpUpxrwYAAAAAAKUax98AgPxinwEAyA/2FwCA/GKfAQAoLrt372YfhBLJqwR//OK7774Lhtb79+/v/vOf/2RZJiMjw7Vs2dItXbrUVa1a1f3++++uTJkyBX6ur7/+2p199tkuOTnZValSxU2fPt21a9fusF9DeB03bNjgKlWq5Lz3hfKYJd2uXbtc/fr13bp161zlypWLe3WOaLSwhR520MIOWthBCztoYQs97KCFHbSwgxZ20MIWethBCztoYQct7KCFLfSwgxZ20MIOWthBC1voYQct7KCFHbSwgxbZk+R2797tjjrqKBcKhYp7dYACK9FXYO/QoYPr3Lmzmz17tpswYYK75pprXMeOHTMt89hjj7mlS5c655y75ZZbsgyvz5w503Xr1s0559w111zjXn755SzP8+OPP7oePXq45ORkV7FiRTd16tRCG153zrlQKOTq1atXaI9XmlSuXJmdjhG0sIUedtDCDlrYQQs7aGELPeyghR20sIMWdtDCFnrYQQs7aGEHLeyghS30sIMWdtDCDlrYQQtb6GEHLeyghR20sIMWWXHldZRkJXqA3TnnxowZ4zp16uRSUlLc2Wef7e666y7XrVs3l5KS4t566y33/PPPO+eca9asmRs8eHCBH3/lypXunHPOcTt27HDOOffggw+6KlWquMWLF+d4n1q1arlatWod0usBAAAAAAAAAAAAAAAAAAAAgNKqxA+wt23b1r399tuuT58+bteuXe6uu+7KskyzZs3c1KlTXaVKlQr8+LNnz3a///578PdBgwbleZ97773XDR8+vMDPBQAAAAAAAAAAAAAAAAAAAAClWai4V6Aw9OzZ0y1atMgNGjTINWvWzFWoUMFVrVrVnXzyye7hhx92P/zwg2vatGlxryYKoFy5cu7ee+915cqVK+5VOeLRwhZ62EELO2hhBy3soIUt9LCDFnbQwg5a2EELW+hhBy3soIUdtLCDFrbQww5a2EELO2hhBy1soYcdtLCDFnbQwg5aAKWTl6TiXgkAAAAAAAAAAAAAAAAAAAAAQOlXKq7ADgAAAAAAAAAAAAAAAAAAAACwjwF2AAAAAAAAAAAAAAAAAAAAAEBUMMAOAAAAAAAAAAAAAAAAAAAAAIgKBtgBAAAAAAAAAAAAAAAAAAAAAFHBADvMS09PL+5VAAAAAAAAAAAAAAAAAAAAAFAIGGCHaampqe7pp592t956a3GvCgAAAAAAAAAAAAAAAAAAAIDDFFvcKwDkJDU11b366qvunnvuccnJyS49Pd09/fTTxb1aAAAAAAAAAAAAAAAAAAAAAA4RV2CHSampqe6VV15xgwYNcsnJya5cuXLu2Wefdddee21xr9oRSVK2PyP6aGEHLeyghS30sIMWdtDCDlrYQQtb6AEAAAAAAAAAAAAgmhhghznhK68PHjzYJScnu+rVq7u0tDTnnAv+i6J18MCC9z7Lzww1RAct7KCFHbSwhR520MIOWthBCztoYQs97Dh4O2dkZBTTmoAWdtDCDlrYQg87aGEHLeyghR20sIUedtDCDlrYQQs7aGEHLWyhB1D6xRb3CgCRwsPrt912m0tKSnKdOnVyzZo1c2+//barWbOm69evn3PuwA4q8gQ7Cld4265Zs8YtWrTILVmyxG3cuNHFxMS45s2bu5NPPtm1atXKlS1b1jlHj6JECztoYQctbKGHHbSwgxZ20MIOWthCDxsit+vs2bPdcccd52rVquXS0tJcbCxv2UUTLeyghR20sCWyx4oVK1zTpk1dKBRy6enpLiYmppjX7shCCztoYQct7KCFLfSwgxZ20MIOjvnsoIUdtLCFHsCRgf9vhhkHD6+ffPLJbsCAAe7ZZ591e/bscccee6zr0KGDc85x4rwISXJJSUnu7rvvdl999ZVbtGhRptu99y4UCrmrrrrKnXfeee7SSy913nsGGooALeyghR20sIUedtDCDlrYQQs7aGELPWyI3J4zZsxwDz74oFuyZImbM2eOO/bYY4t57Y4stLCDFnbQwpbIHl988YV78MEHXfv27d0jjzzCkE+U0cIOWthBCztoYQs97KCFHbSwg2M+O2hhBy1soQdwBBFgwL59+/TCCy+oUqVK8t6rVatWmjhxot58803VrFlT1atX17x58yRJ6enpxby2pVdSUpImT56s7t27y3sf/Kldu7aOOuoo1a9fX82aNZP3XqFQSJUqVdK9994b3D8jI6P4Vr6UoYUdtLCDFrbQww5a2EELO2hhBy1soYcNkdtx2rRp6tmzp2JiYuS913333SeJ9z6ihRZ20MIOWthycI+LLroo2H9/9NFH7JujiBZ20MIOWthBC1voYQct7KCFHRzz2UELO2hhCz2AIwsD7Ch2Bw+vn3jiiXrrrbckSUOHDpX3XmeddZY2btxYzGtauu3cuVPPPfec2rZtK++9YmNjVatWLQ0aNEhff/21tm/frl27dmnnzp0aN26cLr74YoVCIXnvdcsttwSPw8Hl4aOFHbSwgxa20MMOWthBCztoYQctbKGHDdm9+R4+YXv99dcHt4XfgOeN+KJDCztoYQctbMmtxx133JFleXoUHVrYQQs7aGEHLWyhhx20sIMWdnDMZwct7KCFLfQAjjwMsKNYHTy83rp1a02cOFH79+/XzJkzg53Qm2++WdyrWqolJyfrxRdf1PHHHy/vvcqUKaMrrrhCkydPzrRc5D8UVq1apUceeSQYaLjnnnuivdqlEi3soIUdtLCFHnbQwg5a2EELO2hhCz1sOPjN9wsvvDDTlfBPOOEEVatWTZ06ddK//vWv4IP8aWlpxbXKpRYt7KCFHbSwJbcesbGx6tu3r84++2w9+OCD+vzzz4Nl6VH4aGEHLeyghR20sIUedtDCDlrYwTGfHbSwgxa20AM4MjHAjmKT3fD6m2++qR07dkiS7rjjDoVCIV1yySXau3evpKxXeuOTVIcnvD1nzJihdu3aBYMMt956q3788cdgucidfWSDvXv3asyYMQqFQipXrpxeffXV6K18KUMLO2hhBy1soYcdtLCDFnbQwg5a2EIPO3L7quzmzZvr9NNP16BBg3TKKaeodu3a8t6rXbt2WrVqVZb74/DQwg5a2EELW3LrkZCQoPr16+vkk09WbGysvPeKj4/X6NGjs70/Dg8t7KCFHbSwgxa20MMOWthBCzs45rODFnbQwhZ6AEcuBthRLHK68vquXbskSStXrlStWrXkvdfDDz+c5+MtXbpUzz77rAYOHFjUq15qRO68e/ToEQwy3HTTTfrll1+yXS47GzduVP/+/RUKhfS3v/1N27dv5x8GBUQLO2hhBy1soYcdtLCDFnbQwg5a2EIPO3J78/3aa6/Vd999p5SUFEnS9u3b9cUXX+i0006T915NmzbV9u3bi2nNSx9a2EELO2hhS249rrjiCn3wwQf6448/lJaWpq+//lrDhg0Lbr/33nuLb8VLIVrYQQs7aGEHLWyhhx20sIMWdnDMZwct7KCFLfQAjmwMsCPqchpeT0pKkiSlpKRo4MCB8t6rY8eOwZXgwldbD/93z5492rJliwYPHqwOHToEOy+G2AvmwQcflPdeMTEx6tGjh77//vsCP8aUKVNUpkwZhUIhTZs2rQjW8shACztoYQctbKGHHbSwgxZ20MIOWthCj+KV25vvt99+e6ZlI6+EP2PGDLVv316DBg3Shg0bora+pRkt7KCFHbSwJbcet912W7YfIEtJSdFdd92lsmXL6rbbbtPOnTujucqlFi3soIUdtLCDFrbQww5a2EELOzjms4MWdtDCFnoAYIAdUZXX8LokbdmyRaeddprKli2rp556StKBry2PtHjxYvXv319t27YNTsR771W+fPngE1jIW0ZGhnr16qVQKCTvvV555ZVDfqxLLrlE3nv1799f+/btK8S1PDLQwg5a2EELW+hhBy3soIUdtLCDFrbQo3jl9ub7kCFDsl0ubPfu3Zo+fbpWr14djVUt9WhhBy3soIUtufUYOnRotsuF/fzzz3rjjTeCr83G4aGFHbSwgxZ20MIWethBCztoYQfHfHbQwg5a2EIPABID7IiivXv3asKECbkOr0vS8OHD5b1XjRo19NNPP2W6bcqUKRo6dGjwGOXLl1fdunV15ZVXql69esGOrF+/ftqxY0c0X16JtHDhwmCb9enTJ/h9Qb4OPvwJt7vvvlveew0aNCi4Sj7yjxZ20MIOWthCDztoYQct7KCFHbSwhR7FJ78nbCOvGnOwyA8KfPrpp9q+fbtSU1MliQYFQAs7aGEHLWzJ7wnb3HpEfl32wVceo0f+0cIOWthBCztoYQs97KCFHbSwg2M+O2hhBy1soQeAMAbYERUZGRl65ZVXgp3NwcPr4R3TsmXL1K5dO3nv9cwzz0g68KmpyZMn64YbbpD3XrGxsfLe69xzz9Uzzzyj119/Xddee23w2IMGDdJvv/1WbK+1JJkxY0awPcPbO7edf24mT56s3r17a9u2bYW5ikcMWthBCztoYQs97KCFHbSwgxZ20MIWehS/adOmqVevXgV+8z1S+IP+HTt21KhRo/THH38U6P44gBZ20MIOWtgyffr0QzphG+mWW25Rw4YNddddd+mrr74q8P1xAC3soIUdtLCDFrbQww5a2EELOzjms4MWdtDCFnoAYIAdUZOYmCjvvRo0aKC3334705XXwwPsb775pkKhkNq2bas33nhD06ZNU8eOHVW1atVgZ9W7d2+NHTtWaWlp+uqrr3T55ZczvF5A4e09ceJEee9VsWJFLV68+LAec+3atUpOTpbEPwIKghZ20MIOWthCDztoYQct7KCFHbSwhR42JCYmqkuXLof15ntqaqomT56sk046SRUqVJD3Xt27d9fatWsL9DhHOlrYQQs7aGHLzJkz1b17d8XExBToCpWRNm/erOuuu06hUEjeex1zzDHBB9gK8jhHOlrYQQs7aGEHLWyhhx20sIMWdnDMZwct7KCFLfQAIDHAjihbuXKl3nvvPe3evTvLbb/++quaNm0q773q1aunbt26qXbt2vLeq379+jr//PP14YcfBst///33Ov/884Md2W233cbwegF9+umnwfb78ssvC+UxC/JV9PgTLeyghR20sIUedtDCDlrYQQs7aGELPYrfTTfdVKATtjlt33Xr1umFF15Qq1at5L1Xo0aNtGbNGkl8HWp+0cIOWthBCzvWrVunypUry3uvO++8M/j9oZxonTRpkq666qrg3wD//ve/g9vokTda2EELO2hhBy1soYcdtLCDFrZwzGcHLeyghS30AMAAO6Iup53J//73P8XHxwcHIOFB9osuukiLFi3Spk2bJB3YsXz11Ve64IILGF4/TD/88ENwADllyhRJhTuMwCfZ8o8WdtDCDlrYQg87aGEHLeyghR20sIUexSfyTfHJkycHP+e0zQ7usn///izL7Nu3T99++61OPfVUee/VunVrbdiwoZDWuPSihR20sIMWNi1cuFD33ntv8Pf89sjO+vXr9dBDDwXvn48cObKwVvOIQAs7aGEHLeyghS30sIMWdtCi+HHMZwct7KCFLfQAEMYAO0x57LHH5L1XfHy8hg4dqjlz5mTa6WRkZGjWrFm66KKLGF4vJD179pT3Xueff762bt1aKI85Y8aM4Gc+yZZ/tLCDFnbQwhZ62EELO2hhBy3soIUt9Cg+B7+JntOb7+FtuG7dOr366qvq16+fevXqpTFjxmR75fy5c+fqhBNOkPdet9xyi/bu3Vvo617a0MIOWthBC9vy6vH7779r7ty5euKJJ/T000/rhx9+0LZt2yT9eVJ39+7deuCBB+S9V5UqVTKdEEb+0cIOWthBCztoYQs97KCFHbQoPhzz2UELO2hhCz0ASAyww4jIE96zZs3SV199lWWZjIwMffXVV4c0vB7eyWVkZGj37t2Ft+IlWPiAb8KECapRo4YaNGigKVOmHPbwwYMPPijvvQYOHFgYq3lEoIUdtLCDFrbQww5a2EELO2hhBy1soUfJEO70yy+/6C9/+Ytq1KiR6ZvpqlatquHDh2e6T1JSkoYMGSLvvTp27KiUlJTiWPVShxZ20MIOWtgS3ocvW7ZM5557ro466qigRf369XXGGWdo2bJlme7zyy+/qFu3boqJidHgwYMlFe63sRypaGEHLeyghR20sIUedtDCDlrYwTGfHbSwgxa20AMo/RhghxnZnUQPf9rqUIbXDz5gSUpK0qhRo9S1a1f17du3cFe+BPv999919tlny3uv0047TYsXLz7kxwp/8tl7r3POOUfr1q0LOnAAmTda2EELO2hhCz3soIUdtLCDFnbQwhZ62LdmzZrga00rVqyoRo0a6eKLLw6uEuO91z//+c/gCmSS9NVXXwW3zZ07txjXvnShhR20sIMWtqxYsULt2rULtm/16tVVp04dVa1aVd571apVS9OnT890nzvuuEPee9WtW1c7duxgn11IaGEHLeyghR20sIUedtDCDlrYwTGfHbSwgxa20AMo3Rhgh1mRJ8ELMrx+8FeKLFiwQI8//riOP/74TJ/Cuvrqq4v8NZQUK1eu1DHHHCPvvTp37qwvvvhCu3btkvTnBwvyukrf/fffH2zbrl276p133tGGDRsy3e/gx+CgMita2EELO2hhCz3soIUdtLCDFnbQwhZ62BTeXo8//riqVKmicuXK6brrrtO6deskSUuXLtWjjz4abPd//OMf2rhxoyTp559/VuXKlRUTE6Pvv/++2F5DaUELO2hhBy3s2bt3rwYOHKiyZcuqcuXKuvbaa7V69Wr99ttvevfdd9W5c2d575WQkKAPP/xQ+/btkyRNmTJFZcuWVfPmzbVnz55ifhWlAy3soIUdtLCDFrbQww5a2EELGzjms4MWdtDCFnoARwYG2GHSoQ6vR5o9e7ZGjx6tatWqqUKFCvLeB5/Y9d6rXr162rx5c1G/lBIjMTFR9erVk/dexx13nG699VYtWrQouAp+bsJfIR/+U6VKFVWtWlUNGzbU5ZdfrjfeeCNYNvwBg8hBho8++ij4RwRoYQkt7KCFLfSwgxZ20MIOWthBC1voYdeFF14o772OPvporVq1Ksvt77zzTrDtb7jhBq1bt0533nmnvPdq0aKFdu/eXQxrXTrRwg5a2EELO5KSknTSSSfJe682bdro119/zXT7H3/8ofPOO0/ee9WoUUOffvqp9u7dq6uvvlree5166qnFtOalDy3soIUdtLCDFrbQww5a2EELWzjms4MWdtDCFnoApRsD7DCnIMPr4U9bhe+zdetWLVq0SH379lXDhg2D+9WvX1+XXHKJ3n//fTVu3Fjeew0cOFB79+6N/gs0bMWKFerevXsw8F+uXDl17dpVN954o7744ots7zNixIhgO8fHx6tdu3a67rrr1KdPn0xXvb/vvvuyvf/EiRPVvn17xcfHa8WKFUX58koUWthBCztoYQs97KCFHbSwgxZ20MIWetiSkZGhPXv2qH379vLeq0ePHsFtB1/NfvLkycG27ty5s5o3b65QKKRBgwZp3759eV5BH7mjhR20sIMW9ixatEiVKlVSTEyMHn74YUnZf3CsZ8+e8t6revXqGjBggJo2baoKFSroySeflJT3t64gb7SwgxZ20MIOWthCDztoYQctbOCYzw5a2EELW+gBHBkYYIdJGRkZmjNnTq7D6+GDGEnasWOHZs+erb/+9a867rjj5L1X2bJlFR8fr1tuuUVz5syRJD3wwAPy3qt8+fL68ccfo/66SoJNmzZp7Nix+utf/yrvvWJiYtS9e/fg6+UjRQ4ynHnmmXr22Wcz3b5y5UqNGjUqWObpp5/OdPvvv/+ubt26Bbe//PLLRfraShpa2EELO2hhCz3soIUdtLCDFnbQwhZ62PN///d/8t7r+OOPV2JiYqbbMjIygqvkT5o0KdiW3h/4sP6CBQuKY5VLLVrYQQs7aGHH7t271bZtW3nv1bt3byUlJWW6PfL98h49egTvg3vvdcIJJ2jJkiXRXuVSixZ20MIOWthBC1voYQct7KCFLRzz2UELO2hhCz2A0o0Bdpj09ddfq3v37sFO5bbbbtP69esl/fmp2/Cno8aNG6fLL79ccXFxwfLVqlXTAw88oGnTpgWPuXTpUjVv3lwxMTG6/fbbMz0Gsjd58mRNnDhRO3bskJT5YDFykKFXr16aMWNG0CbyyvZJSUkaOnSoTjzxRE2dOjXLc3z++efy3uupp54q4ldTstHCDlrYQQtb6GEHLeyghR20sIMWttDDhjfeeCPY1qNHj1ZycnJwW/jN9927d+vNN99Us2bNgmU//fTTTI+T03scvPeRf7SwgxZ20MKOlJQUXXvttfLeq3Xr1vr2228z3R65H3/hhReUkJAg773KlCmT5ZtWIq9siYKjhR20sIMWdtDCFnrYQQs7aGELx3x20MIOWthCD6B0Y4AdJq1bt06hUEjee91+++1au3Ztptu3bNmiRx99NPjEbUxMjLz3OvXUU3X77bdr+fLlWR7z+eefl/deoVBIH3zwQZReScmU3YFeeKcvZR5kuOSSS4Ir3Od033nz5mn+/PnB7QsXLsx0e+SV9fmHQWa0sIMWdtDCFnrYQQs7aGEHLeyghS30sOeOO+4Itvl9992nefPmSZKSk5O1du1a/eMf/wi+cc57rw8//FDSge0deWJXkv744w+tWbNGmzZtyvR7tn3+0MIOWthBCztWrlyp+vXry/sDX4n91Vdfafv27cHtW7Zs0eDBg9WmTZt89ZAO/Bsg8t8BEj3ygxZ20MIOWthBC1voYQct7KCFLRzz2UELO2hhCz2A0osBdpj1008/adiwYdq8eXPwu++++07PP/+8jj32WMXGxgY7ntjYWPXq1UuStGfPHkmZdyxLly4NDoD69u0b3RdSyjz44IPBdr/00ks1d+7c4La8PuGckZGhiRMnqnXr1vq///u/LPfjHwMFQws7aGEHLWyhhx20sIMWdtDCDlrYQo/oinzz/J577lGZMmWCq4qddNJJOv7441WtWrWgifdeH3/8saQD2zU1NVWStHnzZr344ovq2bOn6tWrp5iYGNWuXVs9e/bUU089pT/++CPL8yEzWthBCztoYdMvv/wSXFGsXr166ty5s2699Vb17dtXTZo0yfRNpeFvR4nssXXrVn355Zfq37+/evTooVNOOUXdu3fXhAkT9M033wTPQ4+80cIOWthBCztoYQs97KCFHbQofhzz2UELO2hhCz2A0o8BdpgWPsn95ZdfatSoUapZs6YqVaok772qV6+uhg0bZvrU7VdffSXpwA4l8lNUL7zwgqpUqaJatWoFV1/nxHnBjRw5ssCDDJHb+e2339YZZ5wRPEbkgSMKhhZ20MIOWthCDztoYQct7KCFHbSwhR7FI/JN8cmTJ2vIkCHq1q2bTjzxRNWtWzf41jnvvT766CNJmd98X758ubp37666devKe6+yZctmesO+QoUK6tKli3799dcsz4fMaGEHLeyghU1r1qzRrbfeqhNPPFFVq1ZVuXLlVK5cuTxP2K5cuVKXXHKJjjnmGHnvM/UrW7asmjdvrqeeeip4HnrkjRZ20MIOWthBC1voYQct7KBF8eOYzw5a2EELW+gBlG4MsMO8LVu2qFOnTpl2Hm3bttV//vMfLVq0SAsWLNBZZ50V3DZt2jRJf+5QUlNT1b59e3nvdeqpp2rXrl15Pmd6enqwY8IBjz76aIEHGSJ//84776hbt27BY4wdO7bI17m0ooUdtLCDFrbQww5a2EELO2hhBy1soUfxOvhD9n/88YeeeuopnXTSScE2jfza0/Cb77/88ovq1asXLBMfH68hQ4Zo9OjRmjBhgnr16qUmTZrIe69GjRppzZo12T4f/kQLO2hhBy1sSk1NVXp6uhYsWKC7775bxx57bK4nbBMTE9WoUaNgmXLlyun888/XNddco4svvlhNmzYNbvv3v/8dPA898kYLO2hhBy3soIUt9LCDFnbQovhxzGcHLeyghS30AEovBthRIixZskSxsbHq1KmT7rrrLu3duze4LTU1VV988UW2Q+zp6el64okn5L1XtWrV9Omnnwa/z0l6erq+//57HX/88brqqquK9oWVID/99JNCoZDOPvtsff3118Hv8xpkyMjIyDLI8NxzzwXLpaen5/k19MiMFnbQwg5a2EIPO2hhBy3soIUdtLCFHrZ8/fXXaty4cbZvvoc/sL9y5crghG2NGjV0wQUX6Keffsr0ODt27NCMGTPUsWNHee910kknaePGjVF/PSUZLeyghR20sCG8f33llVfUokWLbId89u/fL0latmyZjj766OB98q5du+r7778Pbpek7777Tvfcc0/wOKNHj47+iyqhaGEHLeyghR20sIUedtDCDlrYwzGfHbSwgxa20AMoPRhgR4mxadMmrV27Nhg+T0tLCw5m9u/fr+nTp2c7xH7ZZZfJe6927dpp5cqVuT5HeHi9e/fuwePcdNNNRfvCSpB169bp22+/Df5+KFfhO3iQIbsPE/B1LHmjhR20sIMWttDDDlrYQQs7aGEHLWyhhy19+/aV95m/Kju87bdu3aqLL75Y3ntVr15dffv21erVqyX9uX0jt/2CBQvUpk0bee91++23a9++fdF9MSUcLeyghR20sGPlypXBfviTTz6RlLnHpk2b1LVrV3nvlZCQoL59+wbvk0e+xy5JycnJGj16dNAu3Bf5Qws7aGEHLeyghS30sIMWdtDCFo757KCFHbSwhR5A6cAAO0qk7E6iZzfEfvvttwc/jxs3LtfHDA+vhw964uLiFBMTI++9Bg4cWFQvpcQq7EGGkSNH6s477yy6FS7FaGEHLeyghS30sIMWdtDCDlrYQQtb6FF8IrfbkiVLJP355nt4+8+YMUPHHHOMvPfq1q1bcMI2p2779u3Tc889p6pVq+q4447Tb7/9VsSvonSghR20sIMWNi1ZskSfffaZpD97hFuNHz9ederUkfdeF154YXDCNqceGzZsUJ8+fVSmTBndfPPNma5mibzRwg5a2EELO2hhCz3soIUdtCh+HPPZQQs7aGELPYDShQF2lCoHD7GHQiF573XmmWdq06ZNkrLfGR08vF62bFn9/e9/19133x08xs033xztl1PiHOogw1NPPRUs9/jjj0d1nUsrWthBCztoYQs97KCFHbSwgxZ20MIWekTPwVepP/i9jOuvv17ee5UrV07ff/99tsscbO3atYqPj1etWrW0d+/ewl3hUowWdtDCDlrYFXmyNuz888+X917x8fFavHhxsFxu3n77bXnvdeqpp/LNKYeIFnbQwg5a2EELW+hhBy3soEXx4pjPDlrYQQtb6AGUHgywo9TZu3evvvvuO5122mnB8PnQoUNzXD674fU+ffpo3rx5kqQJEyYEjzN48OBovYwS51AHGZ544gmVKVNG3nu1b98+07Lh5VEwtLCDFnbQwhZ62EELO2hhBy3soIUt9LAjIyND55xzjmJiYnThhRcqPT09z5Ow4X6ffPKJdu/eLYltXxhoYQct7KCFLZs2bVLdunVVtmxZDRs2TFLWk7yRwi327t2rW265RTt37sz0exw6WthBCztoYQctbKGHHbSwgxZ2cMxnBy3soIUt9ABKlpADShFJrly5cq5JkybB31u0aOHuvvvu4O+RMjIy3P/+9z83ZMgQN2vWLFemTBn3t7/9zd18883ulFNOcc45d/XVV7uxY8c67717/PHH3ejRo6P7okoASc5775xz7t1333XPPfecmzlzpnPOubFjx7obb7zROXdgezvnXCh04H96xowZ44YNG+bS0tJc3bp1XZ06dVy1atXcnDlz3PLly4Nl09PTo/yKSi5a2EELO2hhCz3soIUdtLCDFnbQwhZ62JKamuo2b97sMjIyXEJCgguFQsE2z0m437nnnuvi4+NdWlpanvdB3mhhBy3soIUtSUlJbtOmTW7//v2uZs2azjnnYmJiclzeex+8x/7kk0+6ypUru7S0tKARDh0t7KCFHbSwgxa20MMOWthBCzs45rODFnbQwhZ6ACVMVMflgSIW/sTUf//7XzVu3FgxMTEaOnSoUlNTs3wyKq8rr0t/fsJq69atGjJkiEKhkFq3bh18vQj+lJGRoUmTJuX7KnxjxoxR2bJlg2XLly8fXOnee6+mTZvqySefzHR/5A8t7KCFHbSwhR520MIOWthBCztoYQs97Ni3b59OO+00ee91xRVXFPj+4fc6Iq86xhXIDg0t7KCFHbSwZd26dapevbpCoZDefPNNSQXb54a3feR9MjIyaHIIaGEHLeyghR20sIUedtDCDlrYwTGfHbSwgxa20AMoWRhgR6kRubPo06dPMJSe3bB5eHi9c+fOwXJXXXWV5s6dm+3jSdKHH34YnGgfP3580b2QEmry5Mlq27ZtvgcZYmNj5b1XjRo11K9fP82ePVvLly/Xu+++q4EDBwaPc9999xXHyynRaGEHLeyghS30sIMWdtDCDlrYQQtb6GFLeBu3aNFCP/74Y77uc/D7HImJiVq4cKG+/PJLzZw5U/v27dO+ffsk8YGCgqCFHbSwgxa2dO/ePThpG/4a7Lwc3GPPnj3atm2bkpOTtWPHjky30SP/aGEHLeyghR20sIUedtDCDlrYwTGfHbSwgxa20AMoORhgR6nz6quvBifC//3vf0vK/OnZ8PB6ly5d5L1XKBRSu3bttGzZsuAxIndK4Z3O9u3bVbNmTXnvdemll2ZZ7ki3Zs2aYEBh3Lhxwe9zG2Ro3bq1nnnmmSyPtXv3bj366KPBhwsmTZoUlddQWtDCDlrYQQtb6GEHLeyghR20sIMWttDDlhkzZqhBgwby3mvEiBFKSUkJbsvuvYpwo/T0dM2dO1dDhgxRjRo1VL58+eA9lM6dO+uOO+7Qxo0bJf35LXfIHS3soIUdtLAhvK1HjhypMmXK6LjjjtOcOXPyvF+4R0ZGhlatWqWHH35YHTt2VPXq1VW/fn0dffTRGjZsmD755JPgPvTIHS3soIUdtLCDFrbQww5a2EELezjms4MWdtDCFnoAJQcD7ChVdu7cqauuukpxcXGqXLmypkyZIinzV0J9//336tq1q7z3wUl1770ef/zx4HEO/qRUWlqa3nzzzeDrzy+//PJMj4sDFi1apBdffDH4e26DDG3atMm0bOSOPT09XStXrlSbNm0UExOje++9NyrrX5rQwg5a2EELW+hhBy3soIUdtLCDFrbQw5aHHnooeE9jzJgx+v3334Pbsvtg/v79+zVixAidfPLJwf2aNGmik08+WeXLl1dMTEzQbs2aNZJ4Ez6/aGEHLeyghR3r169Xu3bt5L1X165dtWjRIu3fv19S1ve3I3s88cQTwVUuw39q1aoVXBSmatWqGjVqVJb7Ime0sIMWdtDCDlrYQg87aGEHLWzhmM8OWthBC1voAZQMDLCjVIm8Snq/fv0y3Xbw8HrZsmV1xRVX6MYbbwx2PA8//HCwfOTO6rffftOll14aLPfCCy9E7TWVVAUZZMjpILBTp07y3qt79+5KS0tjx3+IaGEHLeyghS30sIMWdtDCDlrYQQtb6FF8Irfn4MGDg/cqrrvuOk2ZMiXTdgy/t7F//34NGTJEtWvXDpZ/6623tG3bNknSsmXL9Pjjj6tVq1by3qtp06Zat25dpsdAVrSwgxZ20MKmZcuWBdu3Q4cOevnll4MrhoVFnrAdOnSojjrqqKDHhAkTNG3aNG3evFljx47VZZddFtw2fPjw4DHokTda2EELO2hhBy1soYcdtLCDFsWPYz47aGEHLWyhB1CyMMCOUuenn35SmzZt9O677wa/y254vU+fPpo3b54yMjIyferqX//6l7Zv3x7cd+nSpbr66quD27t166affvqpGF5ZyXKogwwZGRlKT0/XkiVLdNxxxyk2NlZDhgzJ8zmQM1rYQQs7aGELPeyghR20sIMWdtDCFnoUr8g32e+//35VrVo1+Na4O+64I9Oy6enpGjVqVKYTtt77TFcXk6SUlBR9++23OvXUU+W918UXX6wdO3ZE5fWUZLSwgxZ20MKmX375JTjRWr16dSUkJGj69OmZlklLS9Pw4cMznbCtVq1alm29Zs0ajRw5MtMgEPKPFnbQwg5a2EELW+hhBy3soEXx45jPDlrYQQtb6AGUHAywo1TauHFj8CmonIbXv/nmm2D5pKQk3XvvvcFOqHPnzurdu7d69Oihk046Kfj9Mccco+eee664XlaJNGrUKJUvXz5fgwyRf3/ggQeC7d6/f3999tlnmjBhgqZPn65Vq1YFy3GFvvyjhR20sIMWttDDDlrYQQs7aGEHLWyhR/GJ3DZTpkzRTTfdpJNPPlm7du2S9OeVXxYvXqzTTz9d3nvFxMTommuuCbb9sGHDgscIL//JJ5+obt26atiwob7//vsovqKSixZ20MIOWti0du1a3XbbbWratKkSEhKUlJQk6c/tO23aNLVt21bee5UrV04nnHCCvPeqXbu2li5dmmnZpKQkDR06VN57/fWvf9XWrVu56lgB0MIOWthBCztoYQs97KCFHbQofhzz2UELO2hhCz2AkoEBdpRq+/fv19dff60zzzwz0/D6vHnzgmXCO5gVK1borLPOyvRpqsg/J598sp555pks90POtm3bpoSEBHnv1b59+3wPMrzwwguZtn3t2rVVrly54O/HHXecnnrqqRwfC1nRwg5a2EELW+hhBy3soIUdtLCDFrbQo/hFbpv09PTgTfn9+/cHvx8+fHiwbcePHy9JevLJJ4Pf3X333Zkec9OmTWrZsqW89xoxYkQUXkXpQAs7aGEHLWzau3evNm7cqL1790rK3OPmm28Otv1rr72mP/74I7gwTO3atbVs2TJJf54E/vzzzxUbG6ty5coV6FtLeW/9AFrYQQs7aGEHLWyhhx20sIMWxc/CMV+4/5F+EQxa2EELW+gB2McAO0q1lJQU9ezZU957VaxYMcfh9bABAwYEJ8svvvhinXXWWWrdurUeeughzZ49O1guu69Az+3vR7IlS5boL3/5i8aOHRv8LrdBhgkTJgT/CGjWrJmuuuoqzZ8/X0uXLtUHH3ygm266Kbj93nvvjdbLKBVoYQct7KCFLfSwgxZ20MIOWthBC1voYU/4PYn09HTt3r07+Ga5Xr16BW/Mp6Sk5PomfN++feW914MPPhj19S9NaGEHLeyghS2R++jFixerSpUq8t5r4MCBwe+XLFmS7bCPdOCEb8uWLRUTE6MZM2bk+lyLFi3Sm2++Gfyd99Azo4UdtLCDFnbQwhZ62EELO2hhRzSP+X766SfddtttwYcOGA7NjBZ20MIWegC2MMCOUm/hwoWqVauWLrzwQn377bfB7yMPJFJTUyX9+QmqM844I/hd+KtDwrjyW8Ht2LEj+Dm/gwydO3fW+PHjM33qTTrQ45FHHgmWe+utt4p25UsZWthBCztoYQs97KCFHbSwgxZ20MIWeti1bds21ahRQ9573XnnnZluS01NzfZN+I0bN6pZs2by3uvhhx8ujtUulWhhBy3soIUtP/zwg8qXL6/Y2Fi99NJLkv58Dz0xMTHbYZ/58+crLi5O3nt98sknOT72zz//HFw8pl+/fsHvGfbJHi3soIUdtLCDFrbQww5a2EELO4rymO/nn3/WwIED5b1XmTJltHDhQkkMh+aEFnbQwhZ6AMWPAXYcEX777TfNnz8/+HtOV0zv1auXvPdq0aJFsMPIbscRXn7r1q1atmyZ/vWvf+mmm25S79691bt3b40YMUKzZs1SUlJSUb2kEim/gwx/+ctfNHHixOD2g7/SZfny5TrhhBPkvdewYcOis/KlDC3soIUdtLCFHnbQwg5a2EELO2hhCz3s2bNnjxo1aqSyZcvqxRdflCTt27cvuP3gN+GHDh2qDz/8UHXq1FGNGjX05ZdfBsse/F4KH/AvGFrYQQs7aGHLjBkz5L1XtWrV9MMPP0jKvB0PHvZZuHCh3njjDVWsWFGtWrXSxo0bs33cn3/+WTfddJOqVasWtLzpppuC2xn2yYoWdtDCDlrYQQtb6GEHLeyghR2FecwXKdwifKV9772qVq3KFY5zQQs7aGELPYDixwA7jjg5HTjs379fp512mrz3Ouuss5Senp7riY6vv/5al156qRo3bhzsbCL/hEIh9e3bl6vF5SC/gwyRvSJ/7ty5s7z36tKlS56tkDta2EELO2hhCz3soIUdtLCDFnbQwhZ6FL/09HTt2LEjeN9iyJAh2S6XmpqqMWPGBI3q1Kkj7w9cJT8lJUVS5jbTp0/XunXrJPFGe37Rwg5a2EELWzIyMjRnzhx5f+CqYDmdgI0c9qlevbqaNGki770uvvhi7d27N8vy4RO2VatWlfdeDRs2VCgUkvdeN998c6bnxwG0sIMWdtDCDlrYQg87aGEHLewoqmO+g1s0a9ZMHTp0YDg0F7Swgxa20AOwgQF24P977bXXgp3N2LFjc1wuLS1Nr7zyisqVKxcclMTHxyshIUFnn3222rVrp/bt28t7r5iYGFWsWFH33XdfFF+JfZE77vwOMkT69ttvVa9ePXnvddddd0VlnUsrWthBCztoYQs97KCFHbSwgxZ20MIWetgQ3r4PPvigvPfq2LFj8NXYB0tNTdUTTzwRtDr22GO1dOnS4LawTz/9VHXr1lXdunW1evXqIn8NpQUt7KCFHbSwJy0tLRjiGThwYI7fLpqYmKi//OUvQY9mzZpl+6GBg0/YtmzZUp9++qn+85//MOyTB1rYQQs7aGEHLWyhhx20sIMWNhTWMd/+/fuD5bJrMX36dC1dulTnnHNOMBy6ePFiSXwzVxgt7KCFLfQAbGCAHUe88A7pzjvvVJkyZVSxYkXNmDEj22V37NihRx99NNghee/VqFEjvf7668HXTyUnJ2vv3r2aMGGCLr300uCgZdCgQdF6SSXGs88+W+BBhtTU1OAfD957vfzyy9Fc5VKLFnbQwg5a2EIPO2hhBy3soIUdtLCFHjZMnz5dRx11lLz3Gj16dKYriUV2SE1N1YgRI1SnTh19+OGHkjKfsJ06dapatmypMmXKyHsffFifE7P5Rws7aGEHLWzIyMjQ/v379cADDygUCunEE0/Ut99+m+PyiYmJatWqlSpUqKBp06ZJyvuE7RdffBEsM378+OB98zvuuKNoX1wJQws7aGEHLeyghS30sIMWdtDCnsM55osc7MyuxbRp04IWK1as0Nlnny3vvRo3bqzly5dneY4jHS3soIUt9ACKFwPsgKTVq1erVq1a8t7r7LPPznG5yK8EqV27tq644gpt3rw5x+XXrFmjRx99NDhoGTZsWFGsfomTkZGhHTt2BNule/fu+RpkkKQXX3wxaHD11VdHa5VLLVrYQQs7aGELPeyghR20sIMWdtDCFnrYM2LEiGC7jhkzRn/88UdwW+QA6P79+7V8+fIsX5c9depUtWrVSqFQSLVq1VLfvn3122+/Zbo/X3maP7SwgxZ20MKO9evXq23btvLeq2vXrlq0aFGw7Q7ef69YsUKzZs3Svn37Mv0+fMK2SpUqmU7YRl4tf//+/Ro7dmzwb4Vx48YV/YsrYWhhBy3soIUdtLCFHnbQwg5a2HK4x3z5aRFermPHjvLe65JLLtG2bduK9oWVQLSwgxa20AMoPgyw44gWPnn+wQcfqFq1aoqJiQmuznPwifV33nkn2FnVr19ft912m7Zu3Sop6wmQyIOePXv26Omnnw4OWsaPH1/kr6uk+Omnn9SjRw+9/PLL+RpkePnll4MG55xzjn766SdJfKVKYaCFHbSwgxa20MMOWthBCztoYQctbKFH8YvcdkOGDAm274ABA/TZZ5/l6zGmTp2qE088MbiqsfdeNWrU0NFHH62TTz5Zt99+uzZs2CCJAdHc0MIOWthBC5uWLVumunXrynuvU089VW+++aZ+//13SXlfFezgq42dcMIJma42Fmnz5s3q3bu3YmNj1atXL+3atatIXk9JRgs7aGEHLeyghS30sIMWdtCi+BXGMd/PP/+sAQMGBEOhubVIS0vT448/Lu+9mjRpoh9//FESVzeWaGEJLWyhB1D8GGAHJF166aXy3is+Pj44QR7pf//7n6pXry7vvRISEnTzzTdrx44dkvJ3In3btm267bbbFAqF1LlzZy1durTQX0NJtXPnzgIPMnTr1k2fffZZjp+SjhS+jZ193mhhBy3soIUt9LCDFnbQwg5a2EELW+hR/CIHNv/973+rTJkyCoVCqlGjhq699lp988032rNnT7BM5Lb85JNP1KpVq2AwtHHjxurYsaP++c9/6pRTTtHRRx8t771atGihNWvWSOIDB7mhhR20sIMWNv3yyy867rjj5L1XnTp1dNZZZ+mzzz7L9dtIwyds4+Pj5b1XmzZtNGPGDKWkpOR4nwceeEDee8XExOi7774ripdS4tHCDlrYQQs7aGELPeyghR20KH4FPeaLdHCLFi1aaP78+dkuHz5WnD9/vsqWLSvvvR544IGieVElFC3soIUt9ACKFwPsOOJt375dbdq0kfdel112mVJSUoITGenp6UpNTdXQoUNVvnx5ee913nnnacuWLcHt+TVz5kw1aNBA3nu99NJLRfFSSrTchg1eeumlTIMMn3zySZavWZGkb775RpMnT9bw4cP11FNPac6cOVq3bl1wOyeo8ocWdtDCDlrYQg87aGEHLeyghR20sIUexSvyTfjXXntNF1xwQbDNR40aFWzvgwdDW7ZsGXyjXI8ePbRy5crga023bdumWbNm6dRTT5X3Xq1bt9bGjRuj+8JKIFrYQQs7aGHTmjVrdPXVV6thw4by3qtu3bp68cUXs93fLlmyRAMGDFDlypWDdtdff31w+8FXvw8/xrhx44Llp0yZUrQvqASjhR20sIMWdtDCFnrYQQs7aFH88nvMFyl8FfzwFY2992rQoIF+++03Scr2ysaS9PnnnwfLDx8+vGheUAlGCztoYQs9gOLDADugAwci3nvdddddWW5LTk5Wy5Yt5b3XUUcdpbVr10o6tBPjt99+u7z3OuaYYzhhkk/5GWT4/PPPNXjwYHnvFRcXFywfFxenM844Q+PHjw+W5auCDx0t7KCFHbSwhR520MIOWthBCztoYQs9oifyfYzffvtN//3vfzVixAglJydLyrztpk6dqlatWikUCqlSpUoaOHBgptsjh0hnzpypJk2aqGzZsnriiSey3I6saGEHLeyghU3bt2/Xl19+qZtvvlm33nprcAWxyG24ZMmSTCds69atG+yrH3nkkWC5g99PX79+vf76178G+/QvvvgiOi+qhKKFHbSwgxZ20MIWethBCztoUfzyOuaLvD08FFq1alV579W0aVMdc8wx8t6refPm+v333yX9eZwY7rh582bdcMMNwZWNR48enel2HEALO2hhCz2A4sEAO/D/rVu3LvgUVOSOYerUqcHBRviTT9mdEM9tZxLeic2ePVtVq1bV0UcfrZ9++qkwV79Uys8gw2OPPaa2bdtmWu6CCy7Q+eefr1q1amX7qTWuyldwtLCDFnbQwhZ62EELO2hhBy3soIUt9Ii+nN67iNzuU6dO1Yknnhi8iT5gwIDgfZDs3g/ZsmWLOnToIO+9evXqVTQrXgrRwg5a2EEL28JXDou8gtjBQz6tWrXS1KlTdf/99wf76IcffjjLY23ZskXPPPNMMBTUsGHD4FtPkTda2EELO2hhBy1soYcdtLCDFsUnp2O+yBYHD4W2bNlSX3zxhebNm6c2bdoEw6Hr16/P9BibN2/Wc889pwYNGsh7r5o1a2rNmjVF+npKMlrYQQtb6AFEHwPsQB4mTJgQHJR8/PHH2S4TPjm+devW4JNX2dm+fbsaN26siy++uEjWtTR57rnnFBMTk+sgw0MPPaR69eoFfYYNGybpz384zJo1S7feemuuB5XIGy3soIUdtLCFHnbQwg5a2EELO2hhCz3siBz4/+STT9SqVSuVKVNG3nt17do118HQ8Bv6AwYMkPdep512mnbt2hWdFS+FaGEHLeygRfGLPHkb2WPJkiUaMGBApiGfL774Qvv379e+ffv04IMPBvvou+66S4sWLVJ6eroWLlyoe+65R40aNQpO2L788stZHh9Z0cIOWthBCztoYQs97KCFHbSwKbJLdkOh06ZNC94LnD9/fjAc2rRpU7388suaPXu2Zs6cqf79+wdDodWrV9djjz0miRYFQQs7aGELPYCixQA7kIdx48YFn5bdsGGDpOw/cbV8+XIdf/zxuvXWW7Vjx44st6enp2v37t167bXXMv0up8c7ku3YsSM4QDzrrLOyHWR49dVX1axZs+Bg0fsDX+O1cuXKLI81evTo4B8An376aTRfSolHCztoYQctbKGHHbSwgxZ20MIOWthCDzsO/ga6E044IdjeNWvW1Ndffy0p+8HQsC1btujkk0+W917nnntuka9zaUULO2hhBy3sCp+wPXjIJ3J/vmfPHo0aNSpodvTRR6t58+YqX7684uPjg333kCFDtHbt2mJ8NSUbLeyghR20sIMWttDDDlrYQQs7lixZooEDB+baQpIWLlyodu3ayXuv8uXLy3uvUCik2NhYee9Vo0YN3X777Vq1alUxvZKSjxZ20MIWegBFgwF2IA9vvfWWvPeqVKmSFi9enONyn3/+eXDQktMQe6TwiZXwiZi1a9dq4sSJhbfiJdzChQt1wQUXaPLkycHOPjzwv3v3bvXu3TvY3v/617905plnynuvWrVqadmyZZmW37Bhgy666CLFxMRoxIgRxfOCSjBa2EELO2hhCz3soIUdtLCDFnbQwhZ6FL+cBkNr166tSpUqqU6dOvr1119zvH/4fY1ffvkluNpY3759uWLMIaCFHbSwgxZ2JSYm6uqrr1ZCQkKmE7aRX6cdacKECapUqZLKlSuX6YNpCQkJuu+++7RixYoov4LSgxZ20MIOWthBC1voYQct7KCFHZs2bVKfPn1UuXLlfLXYtm2bLrjgAh111FGZWtSuXVuPP/44Q6GHgRZ20MIWegBFhwF2IA8zZ85UbGysYmNjNW3atFyXfe2114Kdzi233JLnEHv4RMyGDRs0YMAAhUIhXXnllYW27iVdUlJStjv7d955J9jO99xzjyRp2bJl6tKlS7DDP3ig4Z577gn+EbFv3z5OVhUQLeyghR20sIUedtDCDlrYQQs7aGELPYpPdoOhoVBIVapU0cCBA/WXv/xF7du3z/H+4cHQ/fv365xzzgk+XPDtt98W+bqXNrSwgxZ20MK2jRs3qmHDhvLeq23btrmesA2bM2eORo4cqdNPP109evTQFVdcof/9739KSkqK0lqXTrSwgxZ20MIOWthCDztoYQctbBkyZIi892rZsqWmT5+eY4vI470vvvhCo0eP1h133KFRo0ZlGQiNPLZE/tHCDlrYQg+gaDDADuRD+ETHRRddpC1btmS5PXKHEr5iu/deN998s7Zv357tY4bv89tvv2nAgAGqV69ecL9FixYVyeso6cLb7Lbbbgv+UfDLL78EtyUmJqpr165ZBhok6fXXX5f3Xh06dCiWdS9taGEHLeyghS30sIMWdtDCDlrYQQtb6BEdOV3VuEqVKhoyZIj27Nmjc889V2XLltWCBQuy3D/8BnxqaqoGDBgg773i4uJ0zTXXaNOmTfl+btDCElrYQYuSYeHCherUqZP++9//5jrkk9M2Df8+/IGzg5ejRf7Rwg5a2EELO2hhCz3soIUdtCh+kdvooYce0tSpU/P8IEFuF67I66IWNMkZLeyghS30AIoWA+xALsI7hfHjx6tatWpq1KiRPv7442x3FuHfpaWl6fLLLw+G0e+9994sO66Dh9fr1q0bnIj56KOPivhVlVzh7XbGGWfIe68uXbpkWebggYaVK1dKkq666ip579WrV69ornKpRQs7aGEHLWyhhx20sIMWdtDCDlrYQo/o+u9//5tpMPT2228PBj8HDx6sUCikESNGaO/evVnum5qaqhtuuCH4ytRjjjlGM2bMyLJcWlqa0tLScnxfBAfQwg5a2EEL+5KTk/M8YRspPT092Lb79u3LdNuqVav0888/a9myZdqwYUOW+yF3tLCDFnbQwg5a2EIPO2hhBy2KX+T2L8h2ijx2S01NDX7et2+fZs6cqUmTJumVV17RpEmTtHPnTqWkpBT4OY40tLCDFrbQAyg6DLAD+bBp0yadeeaZ8t6rU6dOma6QHrmzWbt2rUaMGKHq1avLe69GjRpp3LhxwQ4mcvmDh9fj4+MZXs+na665Rt57XXnllZIy7+SlzAMNtWrV0ksvvaTWrVvLe68RI0ZIYmdfWGhhBy3soIUt9LCDFnbQwg5a2EELW+hR9D7//HMdddRRKleuXDAYGrnNJk2aFHwwf+TIkfr+++8lSStXrtTMmTPVuXPn4PZatWrpvffey/T4Cxcu1LvvvquLLrpIZ511lnr27KmbbrpJ06dP17Zt2yT9eZXkIx0t7KCFHbQo3SK37Wuvvabrr79e5cqVU0xMjOLj41WxYkUNHDhQH3zwQbb3QeGhhR20sIMWdtDCFnrYQQs7aGFH5GDpk08+qQsvvDA4Jgz/6dChgwYOHBh8sIAWRYMWdtDCFnoAOWOAHcinlStXqkmTJsFV4ObPn5/pCj/r1q3TiBEjVK1aNXnvddxxx+mVV17Rjh07gmUKMrzOlX5ydvvtt8t7r2bNmun333/PdpnExER16dJF3ntVrFhR3ns1aNAgyyedD/VTcjiAFnbQwg5a2EIPO2hhBy3soIUdtLCFHkVv5cqVwYfv77jjjmDbRG6vu+++O3jzPCEhQaeeeqpq1Kih2rVrB9u9ZcuWmU7EStIbb7yhFi1aqGrVqlnehK9fv74uvPBCrVu3ThJvwku0sIQWdtCi9IpseO2116pOnTqZGsTHx8t7r5iYGFWuXFmjRo0KlqdH4aKFHbSwgxZ20MIWethBCztoYUdkiyuuuELly5fPdKxYt25dhUKh4Hdt2rTRmjVrJNGisNHCDlrYQg8gdwywAwWQmJio+vXry3uvtm3b6tlnn9XGjRu1a9euLMPrL730knbu3BncN3yipaDD67Nnz9bzzz8fnRdoXHi7fPfdd2rSpImqVq2qN998M8cddmJiov7yl78EO/0vvvhC0p87+PA/Evbs2aOff/5ZEgMN+UULO2hhBy1soYcdtLCDFnbQwg5a2EKP6EpMTNS///3vYJuEt1vkNrrnnntUs2bNLEOederU0aBBgzR37txMj/nEE09kWq558+Y699xz1b9/fx133HGqVauWvPc69thjtXr16kzPeySjhR20sIMWpU/ktrzggguCgR7vvW6++WaNHTtWX331lR544AGdf/75Qad///vfwf3YjxcOWthBCztoYQctbKGHHbSwgxZ2RLbo2bOnvPcqU6aMqlSpovvuu09z587Vhg0b9N133+mBBx7QiSeeKO+9GjdurLVr10qiRWGhhR20sIUeQN4YYAcKaPny5erYsaO89ypfvryaNm2qK6+8skiG17/99ltddtll8t6rf//+0XmBJcCOHTuC7XLaaadp8eLFOS67ZMkSnX322Xr++eczfaotcpDh2GOPlfde8+fPL/J1L21oYQct7KCFLfSwgxZ20MIOWthBC1voEX0HD2hG/n3mzJn6z3/+oxtvvFG33XabHn30Ua1evVrJycmZ7vPUU08FJ2Vbt26t2267TTt37gxarF+/XpMmTVKHDh2CwdHffvtNEt9CF4kWdtDCDlqUfJHb8IorrpD3XnFxcTrttNP0zjvvZFn+119/1cMPPxw0e/bZZ6O5uqUaLeyghR20sIMWttDDDlrYQQub+vXrF7To0qWLpkyZkmWZlJQUzZ8/P5j1Oeuss7Rly5ZiWNvSjRZ20MIWegA5Y4AdOAS//fab7rzzTrVt2zbTJ2qPP/74QhtenzdvXnDCPvznjjvuiM4LLAFWrVqlJk2ayHuvLl26aO7cucGJqYNPKu3cuVMpKSlZHiMpKSlo6L3X0Ucfre3bt3NSqoBoYQct7KCFLfSwgxZ20MIOWthBC1voUfzyurJL5O3vvfdesJ07duyoF198UampqZIODJqGt3lGRoZ+/PFHtW/fXt57XX311dq1a1eWx45sRC9aWEILO2hRMj3xxBOKi4tTmTJl1LVr1+DbU6QDzSI/nLBnzx4NHz5c3nu1atVKP/zwQ5bHY/sfOlrYQQs7aGEHLWyhhx20sIMWdrz22muqXbu2YmJi1KlTpywtDjZr1iw1a9ZM8fHxGj9+fJbbD27Bt3LlHy3soIUt9AByxwA7cIj27NmjX3/9Vbfffru6d++upk2basKECYU2vN67d+/gxEp8fLy89/rrX/+a6fGPdL/88ouOOuooee/VsmVL3XfffVq+fHm+7z927NhMgwwTJ04swrUt3WhhBy3soIUt9LCDFnbQwg5a2EELW+hhS+SAZ6S1a9eqS5cu8t7r2GOP1fPPPx+8aZ7dG/AZGRl67733VKdOHTVu3DjLlfGze8M98ur6oIUltLCDFvalpKToggsukPde1apV04cffhjcltPAzpIlS3TmmWfKe6/nn38+023hFuvWrVNiYqIkvlY7v2hhBy3soIUdtLCFHnbQwg5a2HL99dcH7/+9++67we9zarFr1y7ddddd8t7roosu0t69e4Pbwi3WrFmjF154IcvvkTta2EELW+gB5I4BdqAQJCcna+PGjUpKSgp+dzjD65dffnmw8wrfz3uvN954IzovqARZvny5OnXqpNjYWHnvVb16dT311FPBwV1e/vWvf8l7r0mTJgW/4xPOh4YWdtDCDlrYQg87aGEHLeyghR20sIUe9s2fP1/Vq1eX917XXHNNMMiZ23b+/fffdfbZZ8t7n+1XbEvS0KFDdd111xXJOpdWtLCDFnbQwo7p06cH73M/8MADwe/z2i8PHTpU3nvNmjVLUuYPDKxevVpXXXWVatasqc8//7xoVrwUooUdtLCDFnbQwhZ62EELO2hhx4oVK1SmTBl57zVw4MDg93m1mDt3ruLi4vTJJ59IOvChhPCFJFevXq0bb7xR3ntdeOGFRbbupQ0t7KCFLfQA8sYAO3AYctqhFNbw+pAhQ/TPf/5ToVBIderU0Y8//lh0L6YE27Bhgx544AF16NBB3nsNGDBA27dvz/U+kZ8+W7JkSfAzgwyHhxZ20MIOWthCDztoYQct7KCFHbSwhR623X///fLeq169elq1apWk/F0pbPLkybr77ruDv3/22WdB1/vvv181a9aU91633HJLUax2qUQLO2hhBy3smDhxorz3qlWrlubNmycp9xbh27Zu3apFixZJknbv3q1HH31U48aNU3Jysv75z38G7723adNGKSkp7OvzgRZ20MIOWthBC1voYQct7KCFHT/99JNCoZC89xo3bpyk/F+9ftOmTZIOXKxy1KhROuusszRnzhwNGjRItWvXlvdeRx11VLAcckcLO2hhCz2AvDHADhSy8IHE4Q6vDxgwQN9++62OPfZYPjWVD6mpqdq6dasmTZqk33//XVLegwkH/6OAg8DCQQs7aGEHLWyhhx20sIMWdtDCDlrYQg+7wlcQq1evnjZt2nRI23nGjBmqW7eu6tevr0GDBqlWrVqKjY3VscceqxdffLEI1rp0ooUdtLCDFnaMGzdO3nsdffTR2rx5c4Hvn56erh9//FHHHXecvPdq27atatWqJe+9Tj75ZP3yyy9FsNalEy3soIUdtLCDFrbQww5a2EELO3766SfFxcWpUqVK+uabbyRlvqhFfvzxxx/q16+fvPeqWLFi8A1ebdu21fLlyyXxnmJ+0MIOWthCDyBvIQeg0Ehy3nu3ceNGN2LECPfBBx+4TZs2uYoVK7qJEye6888/P8uyzjn37bffuieffNK9/fbbzjnnrrvuOnfvvfe6cuXKuZSUFBcKhdwZZ5zhnHMuPT09+i+sBChTpoyrXr26u+SSS1zNmjVdRkaG8967tLS0TMtFbr9QKPP/BIZ74PDQwg5a2EELW+hhBy3soIUdtLCDFrbQwx5Jzjnn4uLinHPO1a1b19WuXdt574Pb8iM9Pd21aNHCNW3a1K1fv94988wz7o8//nDHHHOMGz58uOvXr1+m50NWtLCDFnbQwp4KFSo455zbsmWL27RpU4Hv7713rVu3dpdddplzzrkff/zR/fHHH65du3Zu0qRJrlmzZrx3nk+0sIMWdtDCDlrYQg87aGEHLeyIj493aWlpLikpyc2ePds551xMTEy+7y/JJSQkuCuuuMLVrl3b7dmzx23fvt21aNHCffnll65p06YuPT2d9xTzgRZ20MIWegB5Y4AdKETee7dp0yZ35513uo8//viQhtf79+/v/vWvf7latWq5V1991f3222+ufPny7pxzznHOZd6RcWIkZ6FQyKWlpbnY2FiXnJzsHn/8cefcge3HAV900cIOWthBC1voYQct7KCFHbSwgxa20KP4hd/XOPXUU51zB064fvrpp5luy0t6erqLiYlxderUca1bt3Zly5Z16enpLjY21g0YMMD9/e9/d8654AMLyB4t7KCFHbSw55xzznGtWrVyaWlp7rPPPnOpqan5vm/4/fT169e7zZs3u/j4+GCbt2/f3jVs2DBYLrfHwAG0sIMWdtDCjuJugczoYQct7KCFDZJco0aN3NVXX+1CoZD79ttv3YYNGwp0/3CL999/P1PHbdu2BRfGoEXeaGEHLWyhB5BPhXtBdwAbN25U8+bN5b1XtWrV9NFHH2W6PfJrO+bNm6fLL79c3nt573XjjTdqzZo1wXLnnnuuQqGQLrroIqWmpmb6+vPIx3n33Xd1//33F/ErK1n2798vSdqzZ4/atWsn770GDRpUzGt1ZKKFHbSwgxa20MMOWthBCztoYQctbKGHHStXrtQpp5wi772GDBmi3bt35+t+ke9xPPDAA0pISJD3XuXLl5f3XvXr19evv/4qKfuvVY28Pw6ghR20sIMWduzevVt9+/aV917t27fXwoUL83W/8Pvga9euVf/+/VWzZk1571WvXr3gffVhw4YFy4d7ZGRkaOfOnfrss8+yPNaRjhZ20MIOWtgR7RbIHT3soIUdtLDl9ddfV5kyZeS915NPPqmUlJTgtpz2rTm1aN68efA+49FHH61Vq1ZJ+vN9SCnrsR7Hfn+ihR20sIUeQO4YYAeKwKJFi1SvXj299957mX6f1/B6+KSHJE2fPj24bfTo0Tk+zscff6yWLVvKe6/rrruuiF5RybRnzx4dc8wxwXb03uf7ADI32f0DIi0tLctBJG82/okWdtDCDlrYQg87aGEHLeyghR20sIUedjz55JNBg2eeeUa7du0KbsvuDfKcBkObNm2q0aNHq0uXLsFJ3NWrV0vKfOI2fP8vv/xS9957b9G8qBKKFnbQwg5a2LF69Wode+yx8t6ra9eumjdvnpKTkyVlv18N/27dunWZTti2adNGP//8syZMmBC0/fe//x3cL9xj/vz58t7r8ssvj8KrK1loYQct7KCFHdFqgfyhhx20sIMWxS9yO99zzz3B9hs1apSWLVuW5/2ya7Fy5Upt2LBBp512mrz3atSokVasWJHtc3744YfBbUf6hw1oYQctbKEHkD8MsANF5OCr+RRkeF2SHnvsMcXFxalx48ZasmRJ8BiRj/PRRx+pZcuWKleunLz3Ou+884rwFZU8q1atCrbx0UcfrUmTJh32Y0bu1JOTk/XWW2/p7rvv1nnnnacLL7xQjz/+uD7//PNgGQYaDqCFHbSwgxa20MMOWthBCztoYQctbKFH8Ysc8hw6dGjQ44477tDs2bPzvE/kYOgxxxyjiRMnSpKWLl2qTp06BW3DA6KR9//6668VCoXkvdfTTz9dBK+uZKGFHbSwgxY2JSYmqm7duvLeq2XLlrr//vs1f/78LMvldsJ2+fLlkg58mC3yAwr33HNPcP8tW7aoQ4cO8t4rLi5OX331VXReYAlCCztoYQct7CjKFgyHFhw97KCFHbQofpHHb0OGDAm233nnnad7770304eXpfy1yMjI0OLFi4MPLjdq1Ej79u3LdHXjyZMnq1WrVqpSpUq2zY9EtLCDFrbQA8gbA+xAFBR0eD0lJUXt27eX916nnHJK8PUh2Q2vx8bGynuvq666Krj9SD+BHunnn39WkyZN9Oabbwa/O9TtEx5kSE9P19ixY9WrVy9574MG4T8JCQm6++67D/v5Shta2EELO2hhCz3soIUdtLCDFnbQwhZ6FL/Iof+777472E716tVT//79gyuQSblf1Tg8GBq2ZMmSYED0qaeeyvRcc+fODb52tUWLFho5cqT27dtXlC+zRKCFHbSwgxY2LV++XF27dlXFihXlvVflypX1+++/B7fn54RtuFdqaqoefvhhee81Y8YMSdLevXv1wAMPqHLlyoqJidEll1yi9evXR/lVlgy0sIMWdtDCjqJugYKhhx20sIMWxS/ymO+JJ57QCSecEBz3LV68OLgtPy0iH2vhwoXq0qWLvvjii0zP9/777+v0009XXFxcMKeT3Td7HYloYQctbKEHkDsG2IEo+vbbb3MdXg/vMH788UfVr19f5cuX1zPPPCPpwAFL2MHD61deeWWwI+NrP7KK/MTaoQ4WRB44Xn755cE/FMInsTp37qxLL71U7du3D66uNGTIkEJZ/9KEFnbQwg5a2EIPO2hhBy3soIUdtLCFHsUv8r2IV155RRdddJHKlCmjm266Kfh9fgdDI5dbsmSJXnnllUzPFTkY2rJlSz399NPauXNnUbysEokWdtDCDlrYtGnTJo0fP17nn3++/vvf/wa/L8iQT1hqaqo2btwY/D3yKvnlypXTvHnzovCKSi5a2EELO2hhR1G1yOl8anbDPUf6h5Yj0cMOWthBi+IXua1++OEHjRs3Lvh2k4yMjGD7rF+/XjfeeGO+WkgHrowfKTwUGhMTI++9Lr/8cm3durWoXlaJRAs7aGELPYCcMcAORMn8+fPVo0ePHIfXI40aNSpYbubMmZluY3i94ArryvSbN2/WaaedFrTx/sDXd3377bfBPxTWrFmjp59+Ohho+M9//nPY61+a0MIOWthBC1voYQct7KCFHbSwgxa20MOGyDfQd+zYoZ9//jn4e+TXlz700EPBYOgxxxyT42Bodg4eDB0zZkwwGHqkn6yNRAs7aGEHLewKb//09PRgO23atEn/93//l+8Ttge74YYbgn35s88+K4kG+UELO2hhBy3sKIoWkQ5e/vXXX9fYsWODv9MoM3rYQQs7aFG8stuekS3++OMPDR48WLVq1cp3i8jfHzwUetlll2n79u2F/0JKAVrYQQtb6AFkjwF2IErWr18fnMC4+eabsx1eT09PV0pKis4991yFQiFddNFFmQ40PvzwQ51wwgnB8HqfPn0YXi9i4Z39qlWr1L59e3nvVb58eZ1wwgl66623sr3Prl271L9/f3nv1bt370z/4MCho4UdtLCDFrbQww5a2EELO2hhBy1soUfhym47RL5f8fzzz6tBgwYFGgwN/37OnDnB+yonnHCCxowZE1x9n+2fFS3soIUdtLAvIyND+/fv1zPPPKOGDRvKe6+2bdtqxYoVkvI35PPCCy8Eg6EXXXRRcF8UDC3soIUdtLCjMFqEHyfSrl279MILL6h3795Bp+uuu67Q17+0oYcdtLCDFnaEt/Vbb72lpk2bynuv1q1b5zkUGrntGQotHLSwgxa20ANHOgbYgSj66aefNHjwYK1evTrHZX7++WdVqFBB3nvddtttwe8ZXo++8Kekt23bpg4dOsh7r4oVK+rMM8/U9OnTg+WyOwn1zDPPyHuvuLi4XHsjf2hhBy3soIUt9LCDFnbQwg5a2EELW+gRXevWrdNf//pXee9Vp04dvfHGG8FteQ2Gzp49OxgMPemkkzRmzBglJSVJ4j2RQ0ELO2hhBy3s2L17d7BfbtCggZYtWyYpf0M+S5cuVY8ePRQKhVS2bFmNHz8+2+Wy27fzQYOsaGEHLeyghR2H0+LgZZYsWaK3335brVu3VtmyZYOh0Li4OHnvNWrUqCJ5DaUJPeyghR20sOWMM86Q9141a9bM84MEuQ2FXnrppQyFHiZa2EELW+iBIxUD7ECURX4lbaTwyYxHHnlE3nsdddRRSkxMlCRNnjz5sIbXC/r1U/hzm+3fv19/+ctf5L1XhQoV1KNHD82ZMydY7uA3DVNTUyVJb7/9tuLj41WjRg2tW7cueiteCtHCDlrYQQtb6GEHLeyghR20sIMWttAj+t5///3gBOszzzwT/L4gg6ENGzbU0KFDNW/ePGVkZGjv3r2SGBAtKFrYQQs7aGHHhx9+GAzjfPDBB5Ly3obhHs8880xwwvYf//hHcHvk/jz8WGlpafrqq6/00ksvZXkcHEALO2hhBy3sOJQWB0tMTNTTTz+tJk2aqFq1avLeq27dujr11FN1wgknyPsD39D1zTffFMErKF3oYQct7KCFHRs2bFBCQoK897rnnnsk5X8o9LTTTlMoFOKKxoWEFnbQwhZ64EjGADtgTM+ePeW91/HHH6/9+/fro48+OqTh9YNPsm/evFmffPJJka57aZOenq7rr79e3nuVK1dOXbt21ezZs4Pbc7vixY033ijvvSpXrqy1a9dGY3VLNVrYQQs7aGELPeyghR20sIMWdtDCFnpE15QpU+S919FHH60FCxZIynswdM6cOcFgaPikbIUKFZSQkKDWrVvrpptu0m+//SaJAdGCoIUdtLCDFnb88ssvatiwoSpUqKAXX3wx3/dbsGCBypcvL++9OnXqpF9//VVS9tt+7969GjJkiNq2bSvvvW644YZCW//ShBZ20MIOWthR0Bbh47vdu3dr/fr1+uc//6n27dsH+/GqVauqU6dO+uyzzzR79mxdccUVCoVC6tevn1JSUvgAQR7oYQct7KCFHXv27NF5550XfIgsfIGKgx08FNqpU6dgKLRly5bB8V1+ZPcBNdDCElrYQg8cyRhgBwz57rvvVL16dcXExOjll1/WrFmz1KJFiwINrx98YPLjjz/qlVde0THHHJPlqg7I3fvvv6+mTZsGX+v16aefBrflNsiwYMECtWnTRt579ezZU/v27ePrHQ8TLeyghR20sIUedtDCDlrYQQs7aGELPaLru+++U6NGjeS912OPPZbjcpFXNQ6/HxIKhVSzZk1ddtllGjBggLp166Z69erJe68WLVpozZo1me6L3NHCDlrYQQs7tm3bpvPPP1/ee3Xr1i0Y8szNb7/9FlwYJiEhQaNHj9a+ffskZd6nb9myRV9++WUwCBQTExOc6H366aeL7DWVVLSwgxZ20MKO/LQ4eN/73Xff6dprr1XLli3lvQ/25TfccIPefPNNpaSkSJLeeuutYGD01VdfjcrrKenoYQct7KCFLWPHjg22WXYfKIjcJ7/33ns6/fTTg/1w+M/999+vpKSkPJ8r/FizZs3SwoULJTEcGokWdtDCFnrgSMUAO2DIK6+8Enx69rrrrtOJJ54YfJ1gfq+8Lh3Y0SxbtkwjR45UkyZNgqs6xMXFyXuvW2+9NRovp8S74YYbgp38K6+8Evw+u8GEyN/df//9wf1Gjx4dlXUt7WhhBy3soIUt9LCDFnbQwg5a2EELW+gRfQ899FCub8JnNxh6zDHHqG/fvlq9enWw3M6dOzV37lydeuqp8t6rTZs22rRpU7ReRqlACztoYQct7FixYkXwIYBzzz030/aNFG7y5ptvqkGDBvLeq0OHDtq8eXOWZb///nv1798/eNw6deqoYcOG8t6rbdu22rp1a1G+pBKLFnbQwg5a2HFwi1WrVknKeh71jTfe0I033hicc/Xeq1q1arr55pv1wQcfZFp2+fLlat26tbz36t27d7ReSqlADztoYQctil/ke3p33HFH8MGA5557LttlDh4KveqqqzIdKw4fPlzJyck5Pl94///ll18G9/npp5+K4JWVPLSwgxa20ANHOgbYAQPS09O1e/dunXnmmcGg+XHHHRcMnOd3eH337t1atWqV+vXrp5NOOinY0dSrV08NGzYMvtJ2wIAB0XppJdY333wTnIi66aabgt/nNcjwzjvvBNu9R48e2r17d473Q/7Qwg5a2EELW+hhBy3soIUdtLCDFrbQI7oiryh2++23B9vwpZdeyrJM5GDoCSecoNGjRwcDOwe/JzJt2jTVr19fcXFxGjt2rCRa5IUWdtDCDlrYlJiYqLp168p7r/POOy+4WnFYuElKSopOO+00eX/gwjD/+9//Mi23ZcsWvfbaa6pataq896pcubIuu+wyTZ48WW3atFG1atX03HPPKS0tjavk54AWdtDCDlrYcXCL/fv3S5K2b9+uN954Q5dddpm898GAT+PGjXXrrbfqp59+Cq5kLClo+Nlnn6lOnTqKi4vTuHHjJPEtKgVBDztoYQctil/ksdqQIUOC4dDff/8907Y7eCj0sssu086dOyVJTzzxRJ7DoeHjvenTpwfLeu91zTXXcGXj/48WdtDCFnrgSMYAO2DEli1bVKtWLcXGxioUCgUnQnIaXj94x/Hll1+qX79+atKkSbAj895r0KBBmjhxou68805VqlRJrVq10rJlyyRxwiQ3kydPVkxMjOLi4jRx4kRJeQ8y/Pe//w0+JHDsscfqxRdf5GCxENDCDlrYQQtb6GEHLeyghR20sIMWttAj+iLfxxg0aJC89xoxYoSkP0+0fvXVV8H7GQ0aNNDIkSODN+Cz67N169bgA/yXX355nuuQnp6udevWFcbLKdFoYQct7KCFTUuWLNFRRx2lGTNm5LhM+BtVypcvr+HDhys1NTW47d1331WfPn2CE7LnnntusN+/9dZb5b1Xly5dtGbNmiJ/LSUdLeyghR20sGPx4sU6+uij9b///U9bt27VO++8oxNPPFHVq1cPtm+NGjWCn99//31JCnqE9+Opqanq0qVL8EG1HTt2FNtrKsnoYQct7KBF8Tt4OPTLL7/MdPvBQ6F/+9vftH379kzLPPnkkzkOh4aPGyOHQqtWraq///3v2rhxY5G9rpKIFnbQwhZ64EjFADtgxK+//hp8JVT4yutXXnllcDAS/iTuwSdDXn75Zd14442ZPhlVv359DRo0SJ999pmkAydLOnToEJwsSUpKiu6LK4HCO/UmTZrkeCIq8u+ff/65EhIS5L1XfHy8BgwYkOtXsiD/aGEHLeyghS30sIMWdtDCDlrYQQtb6FE8It+E/+KLLzLdFjkY6r3XBRdcoC1btkjKfjA0/D7J3//+92DgJzfp6en65ptvdMIJJ2jgwIGH+1JKPFrYQQs7aGFT+KqT2V0J7P3331fTpk3lvdeJJ56ohQsXSpJ27dqlAQMGBFc0rlixov71r38F35wybtw4ee8VExOjb775JnovpoSjhR20sIMWdqSmpmrKlCmqVq1aMBAaGxurChUqaMSIEXr22WeDb8L23gfnUDMyMoJ+b7zxhipXrqwqVarojTfekMRVjQ8VPeyghR20KH45XV34/fffz3UoNPJ+Bw+HJiUl5TgU2rt3b23evFnSn53Cx4pHOlrYQQtb6IEjEQPsgCE///xzcEL86quvDk5+7N27N9Ny69ev16uvvqpzzz030+B6x44ddcMNN2jdunWZruIQvmpQQkKCfv75Z0lcfT0vzz77rLz3qlatmlatWpXrsp988omqVasWdLj44ouDTztzwHj4aGEHLeyghS30sIMWdtDCDlrYQQtb6FF8snsTfvbs2cGH+WNiYlShQgUtWbJEUu7vX2zfvl0tWrSQ915//etfc1wuPT1d8+bNU9euXYOO8+fPP/wXU8LRwg5a2EELe3L6gFlKSor69esXbLNJkyZp7969eumll4KrUsbFxalPnz6aMmVKcP/vv/9eJ598skKhkEaNGpXtc0hZ/2+B99NpYQkt7KCFLYsWLVKlSpXk/YErE99yyy1asGCBpAPbbObMmTrrrLOCLp9//nmm+/fv31/eezVq1EiLFi0qjpdQqtDDDlrYQQt73njjDXXq1Elly5bNdig0LPI9wMjh0HvvvVdSwYZCk5KSgg8g4E+0sIMWttADpR0D7IAxS5Ys0fXXXx+82RS5g1m8eLEmTpyoZs2aBVdmKFeunE499VTdc889WrVqlfbt2yfpz6+TWr9+vbp27apQKKR//OMfmT5ZhZwtWbJETZo0UfXq1TO9eRj5wYDU1FS9+uqrwQ4+NjZW55xzjrZt2yYp50/GoWBoYQct7KCFLfSwgxZ20MIOWthBC1voYcfKlSuDbdyyZUvVqVNHxx9/vHbv3p2pR6TweyaTJ09W3bp1FQqFdP/992e6LSw8GNq5c+fgzfn//Oc/wZX38Sda2EELO2hh14QJE4I2//d//6eVK1fqvPPOC943r1Wrlt577z1t2LAh0/0eeOABhUIhdezYUT/88EOuz5GSkqJ33303+DsDotmjhR20sIMWxefnn3/Wdf+PvfMOi+L4//jMUUVQwI6iiL1g7wVrLLFETWxJNDGJxt57773G3mKMookae9RvLLG3xE6vYgVRLBQpx71/f/DbyR1dueOG4/N6Hh7xdnaZndft7szsZ2Z++AGhoaFi1Syl7ZaQkICzZ8/qBIeePn0aAPDHH3+Iz1atWmWs7Jsc5EMeyIU8kAu5WLVqlSjXPn36pBkUqqAdZ6O93zfffJNpUKhCdHQ0unTpAs455s2bZ5Bzyq2QC3kgF3JBPghThwLYCUJyEhMTERISgrlz56Jq1aqwsrIC5xw2Njbi4bJ69WqdfbQfLhs3bhTpDhw4kNPZz7VERkaKGe7d3d1x69YtnZdSJ06cwNixY0XZOjg4oGfPnqKiQIEM+oNcyAO5kAdyIRfkQx7IhTyQC3kgF/JALuTCGD4ooCR9+vfvDycnJyxbtgxVq1ZF/fr1002r/VK3e/fu4Dx5RuRr166lSpsyMNTW1habN29GVFSUwc4lt0Mu5IFcyAO5kI+rV6+idOnS4hndqVMnFCxYEJxzlC1bFt999x38/PxS7XfhwgXxbF+3bp3ONu3n9Nu3b3Hr1i00atRIvOgl0oZcyAO5kAdyITeJiYmpgkMPHjyI2bNnw9zcHHXq1IGPjw8AasPlBORDHsiFPJCLnKd///745JNPMgwKVdCOxdmxYwc451CpVOCco2DBghkGhQLAokWLRLxP27ZtUw1my+uQC3kgF3JBPghThgLYCUJinj9/jm7dusHd3V00TjjnaNasGcaMGYNmzZqJz86cOQMguZGiNFR8fX1RvXp1cM4xYMAAY55KriQwMBDOzs7gnKNKlSro3r07hg8fjk8//RSFChUSZe/m5oaJEyeKmZEosET/kAt5IBfyQC7kIid9UIdkxpALeTDGfUpZjYjQhVzIQ0660O54pOd/2hirPqXd4ZvXnyXaZXn+/Hk8efIELVq0QMGCBfHgwYMM9x04cKAIDJ09ezYA3fKkwNAPg1zIA7mQB3IhJ4mJiZgyZQo458iXL58oZ8452rdvj5MnT4rVUrTrQ8HBwWjYsCE45/j222/F5ymf67du3cLkyZPh4uICzjksLCzAOceFCxfy/HM7JeRCHsiFPJCL3EFawaHK7PiDBg36oGNRuWcf8iEP5EIeyEXOoP2cjY2NzfJ+yiQYd+7cEX5sbGzSDApNqx+xb9++aN26NW7dupWd7JsU5EIeyIVckA8iL0AB7AQhMYGBgTA3NxcPk5YtW2L69OlITExEXFwcLl++nObyUcqD6PDhw3B0dIS5uTk2b94MIPMGipeXF3bs2GHQ88pN+Pv7o3bt2rC0tNQZRKB0OPbp0wdHjhzB+/fvAaQ9Oo3QDzntQtmfGvWpIRfyQC7kIqd9eHt74969e/TsSQNyIQ855SIpKQleXl744osvsGfPHjx8+FBso3tWMuRCHnL6HrVr1y5s2rRJZ/l5cvEfOe3Dy8sLffv21XnZmNd9pCzToUOHgnOOpUuXinJXUKvVePPmDb777jtwnjxzTOfOnXHz5s1Ux6TA0A+HXMgDuZAHciEnvr6+sLOzE8/sqlWrYuLEiemmj4+Px4oVK2BjY4OaNWuKF7Dagy4TEhKwd+9euLi4oECBAuCco1ixYujVqxf+97//6RyP2n7/QS7kgVzIA7nIHSQmJuLcuXNo3bq1aAdWrlxZ9GOk7At/+/YtAgICcOTIEdy+fRsvX74Ux6Iyzz7kQx7IhTyQi5zhQ8tGSX/69Gnhxc7OLsOg0NjYWISFhekcJzg4OLtZNznIhTyQC7kgH4SpQwHsBCE53t7eKF++PNauXYuAgACdbQkJCalG3iodVa9evUKNGjXAOUfjxo2zNAOin58f+vXrB845+vbta5DzyY08efIEa9asQY8ePdCwYUNUr14d06dPh4eHh066vB50kBMY0kXKUYXv3r2DWq1OtQQPeU6GXMgDuZCLnHpm+Pv746uvvgLnHFOnTsXVq1f1dmxTgVzIQ0648Pb2RufOnUWgUNeuXbFz5069HNuUIBfykFP3qGvXrsHV1RWcczRv3hzbt2/X27FNiZzy4eXlhREjRoj2+7Bhw/R2bFNi7969oozmzZuHy5cvIyoqCiEhIVi3bh06duwo7jGtWrXC0aNHdfanwFD9QS7kgVzIA7mQB09PT9ja2uKHH37QCd5MaxWaR48eoWbNmuCcY8qUKYiJidE51okTJ8TgBOWnQoUK+P333xEaGqqT9vHjx1i/fn2qz/My5EIeyIU8kIvcw2+//YaiRYuC8+TZ79+9eye2Ke204OBgfPfddyhbtiw45zA3N0fHjh2xdetWkZZWPtMP5EMeyIU8kAt5UJ7jZ8+eFc9ke3v7TINCW7RoATs7O4SEhBgl36YIuZAHciEX5IPIjVAAO0HkAlIuA6LdwZXW8lGnTp3CmTNnUKBAARQqVAi///47gIwbJUrwutL4MTc3R1BQkGFOKJcTFxen838asWw8DOHizJkzWL16NZo0aYK6deuiatWqGDduHPbt2yfSUHBJasiFPJALuTCEj6SkJJw7dw4NGjQA58lLBTdr1gxr164VachHasiFPBjCRWRkJObPn4++ffvCwsICKpUKlpaWmDJlikhDLlJDLuTBkG2Mn376CXXq1IGZmRnMzc0xe/ZssY1cpI0hfHh5eWH48OGi3W5hYQHOOYYPHy7SkI//mDZtmiirQoUKwc3NDYULF0b+/PnFTJaff/45jh8/rrMfBYbqH3IhD+RCHsiFPERGRorVSAHdZ7b2c/Xzzz8H5xxVq1bVmVFMrVZjzJgxqFq1qnBapUoVDBgwAK9evUr19549e4bly5eLtM+ePTPQmeU+yIU8kAt5IBe5A2VwgJmZGa5du5Zqe1hYGHr06CFW7XJ0dBSD1TjnOm1sel+YfciHPJALeSAXcvAxQaExMTHo2rWrSP/dd99laeJJImPIhTyQC7kgH0RuhQLYCSIXoHRkpfcyO60gduVFSJkyZeDn55fh8ZXg9UKFCoFzjtKlS+PKlSt6P4/cjHbZU1CBcTGEC41Gg8jISAwdOlQM4kj5Y21tjcmTJ+v9b+dmyIU8kAu5yIlnxvv373Ht2jUx87fSETl06FCD/+3cBLmQB0O6SHm8AwcOYMCAAcLFqFGjDPa3cyPkQh4MfY/SfiF18+ZNjBkzhlxkgCF9pAxe//bbb7F+/Xrhg4LY/0P7eztr1iw4OTnp1D/t7OxgZ2eH1atXw9PTM9W+mQWG5vXy/RDIhTyQC3kgF7mTjRs3gnMOBwcHnDt3DgDw/PlzHD58GK1bt9Zx+OWXX+LIkSNiMFtiYqI4zrNnz7BkyRIULlwYnCfPfvzw4UOjnFNuhVzIA7mQB3JhXM6cOYMSJUpApVJh8ODBAFI/j0+fPo1ixYrBwsIC/fr1g7e3N37//XedWfHnz58v0lNw6MdDPuSBXMgDuZADpcw/Nig0f/786NmzJ27cuGGcEzAhyIU8kAu5IB9EboYC2AnCREgriJ1zrrMsVFqkDF4vWbIkBa8TJkNGqw4oFbjY2FicPHkS7dq10wk8bN++Pb755huMHz8eHTp0EJ9PmjQpp7JvUpALeSAXcvExSzam7JxctmwZSpcuDXNzc3DO8fXXX+sre3kKciEPH7uUqXbHe1hYGNatWyfuU4sWLdJX9vIU5EIe9OHi+fPnWLVqlXAxbdo0fWUvz5GZD+3nQ8rg9QEDBiA6OhoAsHXrVgpiTwPt8r1y5Qp27dqFKVOmYOLEiTh8+HCqoFAga4Gh6b2gzevlnRHkQh7IhTyQi9yBUm5BQUH45JNPYG5uLgbwPXjwAH379kX58uXBOYeVlRUqVaqE5cuX6xxD23XKwNCGDRvS6qVZhFzIA7mQB3JhfBQHs2bNEm21Xbt2pZlWmdW+WLFiCAkJEZ+/ePECS5cuFftv3LgxJ7JukpAPeSAX8kAu5EFpq507d+6jg0J79OiBW7duGecETAhyIQ/kQi7IB5HboQB2gjAh4uLicPr0aVSsWBEqlQq1a9eGl5cXgLRfdlDwOmGKxMbG4u7du+L/aQWXKNfDu3fvsH37dtSrVw+cc5ibm6NVq1ZYv369TvoXL16IwCtLS0vs2bPHsCdhIpALeSAXcpEVH5mh/Vz/999/0bx5c7E8ZM2aNfHo0SO95NXUIRfyoA8XgK6PuLg4LFy4ECqVCpUrV8b169eznc+8ALmQB325SHnMxYsXQ6VSwdbWFvv27cv2MfMKH+PD09MTw4YNE53GP/zwA16/fq1zjG3btlEQexpkNhuYdvlkJTBUm7Nnz2Lt2rW4e/cuYmJisvT38jLkQh7IhTyQC7nRLv/58+eDcw4XFxf88ssv2L9/P+zt7cWzOX/+/Jg4cSIuXLigs7/2MdIKDA0MDMzRc8qtkAt5IBfyQC7k4Z9//oG1tTU45/jiiy/E5ynbYuvWrQPnHI6Ojqn6+WJjYzFz5kxwzlG1atVMZ6wMCQnBixcv9HcSJgT5kAdyIQ/kQh5Onjypt6DQpKSkHFk92FQhF/JALuSCfBC5GQpgJwgTQXngXLx4EVZWVuBcd1n4lFDwes6iLOWoj6ATIn3i4uKwb98+mJub4/vvv88wbVRUFNatWwc3NzcRpDt69Ghcu3ZNpNFegvPly5eiEjdy5EiDnYOpQC7kgVzIxYf4SA/tRuLFixfx5Zdfihm/P/nkE9y+fZsaklmAXMiDPlykx82bN1G8eHFwzrFt2za9HtsUIRfy8LEu0rrnpPwsMDBQLEWvBEzTvSpjPsbH48ePMWDAANFp3Lx5c8TFxQEAEhISRLqUQew//PCDQc7BVPnQwNDg4GB0794dnHNUqFABI0eOxPPnzwFQez27kAt5IBfyQC6My/Hjx8VzuGHDhhg6dCjy5csnXuZWr14dFy9exPv378U+KQcLUGCofiAX8kAu5IFcGJfExESxUlbx4sWxc+fOVGmUdnJ4eDiqVq0KzjmmTp2K2NhYnXTe3t5iJdPFixen+8z29/dHjx49YG5uTjPkp4B8yAO5kAdyIRcjRowA5xwFCxZE3759PzooVLtPMCU0cDlrkAt5IBdyQT6I3AwFsBOECREeHo62bduCc47atWvj6dOnAFI/RCh43Tjcv38f33zzDR4+fGjsrJgkcXFx2L17N1xdXUXH76+//ppm2vfv3+PXX39FzZo1RZDuwoUL8fjxY5EmrSCeadOmiZeIL1++NNi55HbIhTyQC7n4EB/poe3gypUr6Nu3LwVMfwTkQh704SIzmjVrBs45evfurTMIh9CFXMiDPlwcOXIEp0+fFv9PeT+aMWMGOOdwcHBAaGioXvJtqmTHx5o1a9CgQQPY2NjAzs4OY8eOFdu0rwG1Wo3t27eL42vPsEikz4cGhiqcP38e3bt3R8mSJcE5R506dUQ7nQJEPw5yIQ/kQh7IhXEJDg5G+/btYWVlBUtLSxQqVAgWFhbgnKN+/fqYO3eu6O9Ir9327NkzLF68WPShN27cGH5+fmI7tfeyBrmQB3IhD+RCDvz9/cE5R4kSJfDq1SsAwKNHj1IFbUZHR2PUqFHCj7LytXabbtmyZeCc45dffknzb71//x79+vUTbb5FixZRAFAKyIc8kAt5IBdyMWHCBLRr1y5bMxoDyZNejBw5En379sXAgQPx22+/ifer1ObLGuRCHsiFXJAPIrdCAewEYQIoD4gzZ86gXLly4Jzju+++Q3R0dKq0FLye82g0Grx//x7FihUD5xy9evXSCQgl9MO7d+9QpUoV0ZDv27cv7t27p5NG6bS9fPkyGjVqJIJ0ly9fLhr+aaE08IcOHQrOOapXr64z8wmhC7mQB3IhF1nxkREUMK0/yIU8ZNdFZrx58wYVKlQA5xydO3cmLxlALuQhuy4ePHgg2nt//PGHzjZl9oyFCxfCysoKhQsXxpMnT/Saf1Mjuz78/PywbNky5M+fH5xzfPXVV2KbdmevWq3Gnj17sG7dOoSFhen1HEyRrASGpuxM12g04t7z8uVLHDhwAHXr1gXnHGXLlhWDOegF7YdBLuSBXMgDuTA+ERERKFOmDDjnYpUTzjm+/PJL+Pn5iVkp0ytPJTDUwcEBnHNUrFgRfn5+YjUVBfKROeRCHsiFPJALefD19cWxY8cAADdu3EC1atXg4eEBQLf/z8fHR6wq980334jPled5fHw8/vrrL/F5Wn0ep06dAucc48ePFyusELqQD3kgF/JALoyPdttNadN9aFCo8k7133//RenSpcWzX5lgpE2bNnj06FGqv0foQi7kgVzIBfkgcjsUwE4QJsRnn30mHjb3798HoNtBRcHrxuXChQuwsbEB5xyff/45BbEbgPv376Ns2bLo3LkzfHx8dLYp10JSUhK6dOkignTnzZuHiIiIdI+p3YDv0aMHOOeoW7cuIiMjKfAqA8iFPJALucjIR0ZQwLT+IRfy8LEu0kO5tyUkJOCXX35BkSJFwDnHsGHDsn1sU4dcyEN2XLx58wZDhgwRnYs///yzzoxLsbGx6N27NzjnsLKy0pmlj0ibj/Gh/SyIi4vDnj17YGtrC845JkyYkO5+KYNOiNRoNBpcvHhRrOqQ2azGb968SbNum5SUhLt376Jhw4bgnKNp06Zidhoia5ALeSAX8kAu5MHT01MMIPv000+xYcOGLO337NkzLFmyRPShc87h6OiI8uXLw8XFBd9//z1+++03kZ5e3GYOuZAHciEP5EIelLbb8OHDwXnyCtfaA72Vvo3Dhw+LPsCtW7em2l9Bu8xTrlgaFBREA5YzgXzIA7mQB3JhfLRjbpTyzGpQqJI+PDwcLi4uYvBZly5d0KxZM5QqVQqcc7i4uNDqW1mAXMgDuZAL8kHkZiiAnSBMhN27d4NzDhsbGwwfPhxA8gNDedBQ8LpxUSoLV69eFUtBUhC7YXjy5Al8fX3T3T516lRwzmFmZoaBAwemWmYtPXbu3Ck6hOfPn6+v7Jo05EIeyIVcZOYjJRQwbTjIhTykdJHVctROp/17QkICDh06hHbt2on71MGDB/WXYROGXMhDei6y4uTVq1f48ccfRZn/+OOPWLduHXbv3o1vvvlGfD5o0CCD5d/UyI4PIHngwIIFC2BpaQkXFxecPn3aIPnMK6xatUp0uG/dujVVYGhERAQOHz6MZs2awcXFBQUKFMDAgQOxa9cunXRJSUk4duwYXF1dYWNjg3Xr1gHIuleCXMgEuZAHciEPXl5eWLt2Lfz9/cVnGb1kVQJDCxcuDM45SpUqhUaNGmHChAno27cvatWqJepRc+fOFfvRLMeZQy7kgVzIA7mQi9OnT6NcuXKwt7fH5s2bER8fD+C/VVIiIiLQo0cPmJmZYcCAAZkeLyAgAF26dMHQoUMNnXWThHzIA7mQB3IhD0qbLCYmBt27d083KFSbrVu3gnOOokWLYt++fYiLi8O7d+9w/PhxNGjQAJxz1KpVC0+fPgVAz++sQi7kgVzIBfkgchMUwE4QJsLDhw9hZ2cHzjkOHTqks42C1+VAO4jd0tISnHO0a9eORjHnICEhIahbty5UKhWqV6+Os2fPZmm/27dvo3379jAzM0PhwoXx559/Gjinpg+5kAdyITcUMC0P+nSRMh051CW9Do+UQdFqtRpxcXGIjo5GbGwsnj59ilu3buHUqVPo2bMnqlatKl7cjh07VmcGaiJrkAt50A6W9vPzy9IMrMHBwWKVLuWnYMGC4vcmTZrg6NGjhs66SaLtIygoKN1ZdVNy7do1EWyyaNEiQ2YxTzBu3DisWrUqVfmHh4dj3rx5cHV1Becc+fLlE4M1lRnwtQODIiIi0LFjR3DO8dlnn+XwWZgG5EIeyIU8kAs5yajtlTIwtG7dujhx4oTODPmBgYFYuHChqE8tWbIkJ7JtkpALeSAX8kAujMvr168xYMAAcM5Rp04d3L59W2xT+kdmzJghJhPTHniQkoCAAJ3B46dOnTJ4/k0N8iEP5EIeyIVcJCQkiJW3ChYsmGFQKACsX79ezGCccgb9W7duoX79+uCco3v37oiMjMyJUzAZyIU8kAu5IB9EboEC2AnChLh37x6GDRum8xkFr8uFdhC7MsLt/v37Rs5V3uHw4cOiIT5v3jzxeUYdw8+fP8fkyZPFC8Wvv/46VRrFa1hYmM5SaxSQmD6GckF8OIZ08aEzk+ZVlNkxgLSX9wL0FzAdExOjx5ybHjnp4s6dO1i5cmWaf4NInqn4woUL+OGHHzB06FD07dsXXbt2Ra9evdC1a1e4u7ujZcuWcHd3R40aNVCtWjWUKVMGlpaWsLGx0QnYHTZsGLy8vFL9DbouskZOuADomZFVbty4gTZt2mDbtm0AMi6vhIQELFu2DJxzdO3aFVZWVsJFr169sG/fPpE2rRn0yUXm3Lx5E61bt8Zvv/0GIGtl9umnn4JzDnd3d0RHR2eYVvu5RD7+Q3sQjDLbGPDfbJUeHh4oW7YsOOdwdnbGypUrMXXqVPTq1UtnVQLtYJ8tW7bAzMwMbm5uePXqVc6dTC6HXMgDuZAHcpE7SRkY2rBhw3RnRI6JicHkyZPBOUeFChVw586dDI9Nz/APg1zIA7mQB3KRczx69Aj16tUD5xwtW7bErVu3dJ7ns2fPBucc1tbWuHfvXprHCAgIQL9+/cRzfcqUKXj27FlOnYJJQT7kgVzIA7mQi0GDBolgTu0BBWlx+vRpUeZ79+5Ntf3EiRMoV64c7Ozs4OHhQc/oD4RcyAO5kAvyQeQGKICdIEwM7Zckfn5++Prrr0XweqlSpSh4XQKUgLg7d+7g3LlzSEhIyPYxNRoNLc+SAUrZjB49GpxzVK1aVQSaZ1Rub968wapVq5A/f35wztGsWTMx22XKpTz//vtvODs74/vvv8fJkyfF51Rp08XQLlIeg8o/fQzhQnkGpQwKfffunc4xyIsuSnlcunQJu3fvTjVD3+XLl9GnTx8xI1+7du1w586dDy7HO3fuoHXr1ti6dSsePnyY6u8ThnehpPP09ESrVq3AOcegQYNSbSeAP//8U8xK+TE/hQsXRrVq1bB169YMZwGg6yJzDOUi5bPm9evXSEhISBWURS50UQIRGjdunKVZ2IOCgmBhYYE5c+YgNDQUly5dwvXr13VebKVsj7x9+xZqtRpv3rzR+Zxc6JKQkIAxY8aAc442bdroBBqmR2xsLOrWrQvOORo0aKDjQSHltfHixQtER0enOj75SJukpCTUqVNHDOAPCQkR2yIiIrB582Zxf/r+++8RHh4OtVqNsWPHgnOORo0a6aWNTpALmSAX8kAu5CRlYGijRo0QFBSU4T4HDhyAmZkZLC0tdfoBU6I812NjY/H69Wt9ZtskIRfyQC7kgVzkPAEBAShRogQ4T57heN68efj777+xZs0a8Zx2d3fHixcvAOi2zQICAvD111+LdNOmTctS251IH/IhD+RCHsiF8dHuv9u6dSuuX7+usz02NjZVLEF0dDR69+4NlUqFPn364PHjxzrbX79+LWbFnz17NrX9sgi5kAdyIRfkg8hNUAA7QZgo/v7++Oyzz0SnlpOTE/755x9jZ4v4f7IbbJCVYHUKaEjN999/D8456tWrByDjMoqMjMTGjRtFkK6bmxuOHDmS7j5z5syBSqWCmZkZXFxcsHz5crGNXKRGXy4ympFSrVZTQHsWMNR18ddff6Fr165o3rw56tWrh3nz5uksQUgudFFGNJcvXx579uxBbGwsgORAan0Er7948QLffvut6JT88ssv0515N69jKBcpg9etra2Fj+HDh6dKl9cJDg6GhYUFOOewsLBA48aN0alTJ3z99dcYMGAA+vTpgx9++AETJ07EiBEjMGbMGCxZsgSrVq3Crl274O/vn2nHO10XWcMQLrTL9sWLF9izZw9q164NNzc3lCtXDpMmTcLhw4fTTJ/XOXr0KFxcXFCkSBHs3LlTZwCzNkodyNPTEwULFkS3bt3STKfdwXju3DksXrwYtWvXRt26dVGjRg3MmTMHx48fF2nIxX+o1Wrs2LEDTk5OKFGiBPbs2ZOpj+fPn6N27drgnKNVq1apVoDQ7jDeu3cvRo4ciVKlSqFcuXIoU6YMxo8fjz/++EOkIR+pCQ4Ohr29PWxsbDBz5kwAwPv373XSHDx4UNz7Bw4ciPv376NNmzbgnGPIkCFQq9VUtnqAXMgDuZAHciEfHxoYqpT95cuXRZtu8+bNGf6N6OhoTJo0CfXr18806DQvQy7kgVzIA7kwHn5+fqhatap4Jmv345UoUQILFixItU9mQaE0CdXHQz7kgVzIA7kwPikDPxViY2Nx8uRJ3Lp1K1W6bdu2wczMDNbW1mJFR+1yv337Nnr27IkTJ04YMOemB7mQB3IhF+SDyC1QADtBmChPnz5F6dKlwTmHra0tjX4yIbRfUvn5+eHXX3/FlClTMGTIEOzevVtnoAK90NJl3Lhx4JyjWrVqqWbV1a50PXr0CMuXLxdBupUqVcLGjRtTzSKdkkOHDqFXr15QqVTgnGPy5MliG7nQxRAufHx8sG3bNvTs2RPt27dHgwYN0L59e2zZsgXXrl0T6ciFLvpyoQwoUKvVOrM8aP8UL14cs2bNEsckF//h7e0NS0tLcM5Rq1Yt7Nu3D3/99Re+/PLLbAevA8kN0f3796NDhw7gnEOlUqFo0aJ0n0oDQ7hIGbxubm4OKysrNGzYUDwzKIg9Nd7e3uIlbYsWLeDl5fVRx0mvPOm6yDqGcvH06VNMnDgxzWeGo6Mjpk+fnu6+eZXIyEj0799fDD5La8lH7bJavXq1GJQTFxens037Ob906VJUqVIlTRcODg7kIh1evnyJnj17gvPkGdXv3LmTKo125+/MmTNFuS5dujTddOPHj4ednV2aPvLnz0/3qQwICAgQZTVx4sR00x09elSkU1aZsLKyEp32RPYhF/JALuSBXMjF48ePsWzZsg+a1RhIbkdMnz4dFhYWcHR0xMWLF9NNm5SUhFmzZqFo0aLgnKNGjRqpBi0Q5EImyIU8kAvjExoaihEjRohByJwnr0Y6d+7cVO2wzIJCtdOnDCSiNl3WIB/yQC7kgVzIyW+//QbOkyfMUdDuh1Um1SlUqBB8fX0B/PeOFUjuM1dIGd+TXjAqkTbkQh7IhVyQD0I2KICdIEwYT09P0blVq1YteHh4pApOJHIfarUaL168wNdff60zslr5KV++PObOnSvSU6PyvzL4888/UbhwYZQsWVKn41a7jC5fvozhw4fDxsYGnHNUqVIFK1asQGRkZLrH167M+fn5YdasWSIgccyYMWn+nbyKIVx4e3tj9erVsLe3FzMMKEGm2tfF4sWL0/w7eRVDXRfaL9odHR3h4uKCDh06wNXVVVwXo0aNSvPv5HV8fX3Fc7tixYpo3LixTsD07du3s1VeGo0G7969w8iRI+Hg4CB8/Pjjj3o8C9NAny7SC17v1asXnjx5gj179lAQewZoB063bt1adJQAumWU3u+ZQddF1tGnC+XzTZs2iWdGmTJlUKtWLfTq1QvVq1enZ0YGPHr0CPXr1wfnHC1btsS9e/dEJ6F25+Dx48dRvXp1cM7Ru3dvnWNol+WCBQtgbW0tyrx58+bo0aMHfvzxRzRu3Fh8Pm7cuJw5wVzGw4cPUaNGDeHj1q1baQZ9rFixQnzf3dzc0q13jR49Wqce++mnn2L48OGYMGEC2rZtK3yMHz8+R84vtxEdHY127drB3Nwcn3/+OZ4/fy62aTQanbbbrl27RHlaW1tj06ZNAGjGMX1BLuSBXMgDuZAHtVotBvp9SGAoANy8eVMM/KtTp06m/e1Xr14F5xwFChTAyZMn9ZF9k4JcyAO5kAdyIQ/x8fGIjo7GpUuXcPnyZbx48SJVmsyCQrW5e/cuxo0bh23btsHb21t8Ts/3rEE+5IFcyAO5kI+ff/4ZnCfPhH/69GnxubJy45MnT1CvXj3R9x0fH59m+WoHhS5evBgPHz4EQMGhHwK5kAdyIRfkg5ANCmAnCBPHx8dHBJrUrFmTgthzOS9evMDOnTtRt25dcM7Fi6xKlSqhVq1aKF68uAiw0w6cJpIJDw+Hu7s7OE+ePfTy5cuIjo4GALx9+xZr1qxB7dq1YWVlJQZ+bN26Fa9fv8702NpBJ2/fvsWGDRuEn2XLlhnqlHIt+nKxb98+dOvWTXS6lCxZEg0bNsSaNWuwceNGTJw4EU2bNhUuRo8eLfalILhk9HldREZGipkeKleujLlz5yIsLAwAcO/ePSxYsEC4mDFjRk6eZq7Bx8cHhQoVEjPsKYGinp6e2e4g1P7Oz5s3D3Z2duKZMWfOnOxm3eTQh4v0gtd79uwpro34+Hhs27aNgtgzQLs+27p1a/j5+ent2HRdfBj6dPH8+XM4OTmB8+SZq3/99Ve8efMGQPIgkiVLlojrYvbs2fo6BZMhICBAp/y2bt2KZ8+eie2//PILmjRpIlaU0J5BXZt9+/ahVKlSOnWlhIQEcW08evQI69atE9tXrlyZI+eX2/D390eJEiXAOUft2rUxdepUXLt2Df7+/jh16hRGjBgh6qvW1tY6K9Jos3btWpGuVKlSWLhwoc7258+fY/369cLH2rVrc+Dsch8rV64U5bhmzZpUqzdFR0fD09NTzJ5vaWmJ6dOn6wSS0otZ/UAu5IFcyAO5kAc/Pz/Rr5rVwFA/Pz/R71GqVCmx4p/iRPk35Qxkly9fxpkzZ/SYe9OCXMgDuZAHcpE7+JCg0Ldv32L9+vUibZMmTbBjxw6xnQJ9sg/5kAdyIQ/kIufx9vZGq1atxPueiIgIsU2tViMxMRE//vijGGymBIxqo93mU1Z0LF68OB49epQj52AqkAt5IBdyQT4I2aAAdoLIA1AQu2kQGhqKyZMni6WD7ezs0KZNG+zYsUMEkt67dw+rVq2iAJMM0A72KV26NGrWrIlmzZqhZs2aokGuBGWdO3dOBPKmhxLckzLI8PXr15gwYQJUKhVq1aoFT09Pg51TbiW7LrZs2QI3NzfxfW/Xrh12796dalZwPz8/LFu2TKRLL2AoL/OxLlJ+79+8eYNKlSqBc45hw4aJQESFqKgoLF++HCqVCkWKFMHRo0dz7BxzE97e3nB0dATnybPYL1iwAG/fvgWQvYBmpSHp5+eHatWqCa/Vq1fHgwcP9JJ3U0MfLm7duoUWLVrAwsIC1tbW6N27tziG4kStVusEsWvPOE0kY6ggdrouPpzsutAOjC5WrBgsLS2xdOlSxMTE6KSLiorC4sWLoVKpUKpUKZ1ZIIhkfH19UaFCBXDOkT9/fhQvXhzu7u5o3LgxOOcwNzcH5xydOnUS+2jXXTUaDX744Qdx75k4caJIp/1C6v3795gzZw5UKhVatGiR5kxORPJ9RHuFLDMzMzg4OMDBwUF8VrBgQYwdO1bso9yDNBoNXr9+jY4dOwofy5cvF+m0A0xiYmIwZcoUqFQqdOzYEW/fvqUBT/+PdjmMHz9elPvgwYOxb98+eHl54fr165g4cSIaNWokBqlNmjQp3aCgGzduYN++fThw4AD++OMPvHnzBvHx8QAogDQjyIU8kAt5IBdyEhISgpCQkCyl9fPzQ506dcRL2U2bNumsuqKUeUxMDMaNG4dFixaleRx6bqcNuZAHciEP5EI+tMvnQ4JCtVm2bBk6duwo9tOeQIGe3x8G+ZAHciEP5EIOtm/fDgsLC3DOsXr1asTGxups116p8fbt2zrbtPtlp06dKlYgL1asGE6dOiW20TM7a5ALeSAXckE+CJmgAHaCyCNQEHvuJjg4GD/++KOY1c/R0RGLFy9OFRSt0WgQGxuLGTNmwNzcHG3btsXLly+NlGt5CQgIQNOmTcXMuto/NWvWxMiRI3U6d9NCGWWovBgEUlfAzp49i3z58oFzjt27d+v/REyAj3Wxbds2lC1bVgT4dOjQAbdu3dJJo+0mLi5OzB5qa2uLffv2Gfzcchv6uC7Cw8NFILyPjw+A1J1Znp6eKF26tOgsI9LGy8tLuKhZsyZ+++23VDPzfQiKBy8vL53guurVq8PX1xcAzZ6RHtl1sX79ehQrVgwqlQoWFhaYMmWK2KYdkKgEsSuzJf/www96PQ9TIGXgtL+/f7aOR9fFx/MhLtJ7qREaGoqCBQvCyspKrEiQMu3t27fF30k5EzWRTEhICHr16iUGuab86datmxhQlvL77O/vD2tra3DO0blzZ/F5Wt/7v//+WwTEX7161bAnlYsJDQ3F4MGDUw0C5JyjTZs2OkHpKcv533//FWm/+uor8Xla19Dx48fBefKKXPfu3TPcCeVCtMt10aJFKFWqlCjXIkWKiFVVlMDQyZMnIzAwUOcYL1++xOnTp9GmTRsxkE1pdzRq1AgTJ04UKx7QcyJ9yIU8kAt5IBe5F+3A0GLFimHFihU6wT/agaFz5swR/R5z585NdSzykj3IhTyQC3kgFzlPYGBghkGhaZWj9syVPj4+YqbKlC4o0OfDIR/yQC7kgVwYh5Qrvirlt2TJEvHOISQkBAMHDkwzMDRlUGiRIkWgUqng6uqKGTNmICgoCK9fvxaBpvTcTh9yIQ/kQi7IByEjFMBOEHmItILYM5tdmjA+jx8/xrBhw1C0aFHxQuvgwYM6wXMpG4pHjhwRlYkbN27kdJZzBWFhYThy5AhGjhyJr776CkOHDoWHh4dOAFZmo8ifP3+OkiVLwsPDQ+dz7f2aNWsGzjn69+8PjUZDI9PTICsutCu2+/fvR40aNaBSqWBmZgbOOcqUKYNSpUrhiy++SHeG9YiICPz4448wMzNDnz59aHBHGmTFhXbAbVhYGP7++2/8+uuvOH78OO7cuYPRo0eDc47Lly+n+3c6dOgAzjlcXFwQFRVF10U6aD+33dzcsHv37lSjn7NCRkG66Q00IHTJrou//voLo0ePFoOa+vXrJ7Zpdwqr1Wps2rQJnHOsWbNGr+dgKmi7aNGixUfPxE7XRfbJigvt5/fdu3exf/9+LFiwAB4eHjh37hwGDhwIKysr3L9/X2c/7bqtUpeqVasW4uLiqLMrDSIjI3Hx4kUMGjQILVq0QJkyZTBgwACsWLFCpEnrxdL9+/eRP39+WFpaYvr06QCQailI7aXmq1evDs45jh07ZsCzyf1ER0cjLCwM69evx/z587FgwQIcOnQIz58/F2nSGyRgZmYGOzs7bN++HYBuvUt7vxcvXqBs2bKwtrbG9evXDXg2uRPt8r1x4wZ27dqFUaNGYcSIEbC1tQXnHJaWlpg0aVKqwNCHDx9i0qRJYnUDZRaa4sWLiwEfyj3p4cOHqf4eoQu5kAdyIQ/kIveRVmCoMgAT+K+MY2JiMGvWLLi4uIBzjqJFi+LPP//UOZZ2XSs4OBgAtTs+BHIhD+RCHshFzhMUFITPPvss3aBQbby8vHD37l3Ex8cjLi5OZ1tMTAyWLFkijqO0A4kPg3zIA7mQB3JhXLSfnRMmTBDlV6dOHXTr1g3t27cXn/Xq1UukTRkUWqxYMZGOcy7eL5UtWxb9+vXDkydPUu1H6EIu5IFcyAX5IGSDAtgJIo+hHWhSp04d7Ny5EzExMcbOFpEOkZGRmD17NkqWLCmC10+fPp1ueiUwJSAgAPb29uCc4+jRozmVXZMiKx2z2iPP9+/fD0A3OOj27dti1vwhQ4YYLK+mjraL27dvo3PnzmJ2Mc457O3tUb58eRQuXFhnFtHHjx8D0O14P3z4MDjn6NmzZ46fhymgHUT1888/6zReOOcoUaIESpcuDRsbG6xYsSLVjO1JSUl49uwZ3NzcoFKpUK1aNXoJkgk+Pj5wcHAQ39v0lo5PDwrS1R8f40L7mRAZGYmdO3fCzs4OnHN8//33Ypu2A7Vane2ZxU0dX19fUc+ZOHHiB9dl6brQHxm50C7DxYsXw83NTeeZYW9vj0KFCsHa2hqbNm3SWTlF4cGDB6IDrFWrVjlyTqZAykHK6XUOXrt2TfjYsGFDhse8ePGiqH8dOXJEb3nNi6Q3S9Xp06eFj8xWbzp06JBIe+HCBUNkM9eT8j4eGRmJPn36iMDQiRMnpgoMVWbQV9pwhQsXxoQJE3DkyBF4eXnhxo0bmDJlCmrUqCE64kNDQ9P8e8R/kAt5IBfyQC5yDx8bGFq8eHGcPXs23eOOGzcOnHOcO3fO4OdgKpALeSAX8kAujMPTp09Fe2zmzJmpgkJjYmJw/PhxdOvWTaxkVrduXXz//fcICQnRSfv48WN89913UKlU6NKlC62c/RGQD3kgF/JALoyPdn/sggUL4OzsrPNum3OOjh074uLFiwB0379OmzZNxPMo77yHDh2KLVu24KuvvkKlSpXAOUf58uXFwGVq86UPuZAHciEX5IOQCQpgJ4g8iI+PjwgEad26NV6/fm3sLBEpUCoLR48eRcWKFcWLqf/9739Z2m/nzp2wtLSEtbU1rly5YvD85la0g0e0K0xZXfosIiICw4YNExWzVatWISAgAEByQNecOXOQP39+cM4xdepU/WbexEjPRcrtCxcuFLOuOzs7o0ePHnjw4AHCw8MRGBiIgwcPikC6Ll26iP21K+Dbtm1L8+8SyWTmAgB27NiBChUqCBcVK1ZE9erVUbZsWRQsWBCcc1SoUAHnzp1LFZB48OBBEcD7ySefGPRcTAUfHx+4u7tj1apVH7QfBenqn491oaBWq7F9+3bY2NiAc45169ZlmJ78pI+Pjw969uyJffv2fdB+dF3on8xcLFmyBNbW1uKZUa9ePbi7u6N27dqig6tSpUo4c+aMzsCnV69eYc2aNaIu1adPn5w6pVyJ9vM7q7NZvHr1Cg0bNoRKpcLo0aMBpP39V6vVWL58OfLly4ciRYrg3r17+sl0HiGr9c3Hjx/Dzc0NFhYWmD17NoD/XGofIzw8HMOHD4elpSWqVauGZ8+e6T/TJsjGjRtFYOiUKVNSBYa+e/cOc+bMgZOTkwjquXr1aqq6bExMDK5fv47GjRuLwTUREREZ/u1Xr17p/XxyM+RCHsiFPJALOfH39//owNAzZ87oHOuXX37BTz/9BCB5QgzlpXCTJk0ydUSQC5kgF/JALoyLp6cn5s+fr7PSFgDExcVh69atqFevHjjnoi9E+XFyckr1zm7nzp1ie8oV6oisQT7kgVzIA7kwPtp9tOfOncPy5ctRt25dtG7dGuPHj4e/v3+qftxp06bB0dERnHMUKlQIa9euhUajEX2DMTExuHHjBho1agTOORo1aoQXL17k6HnlRsiFPJALuSAfhCxQADtB5FG8vLxQpUoVWm5cQpQHe1xcnHjh5ODggD179mRpPwBi1qb8+fOLpR6JrKFdjlmpSEVERODbb78VDfeqVauiffv2qF69ulj6uU6dOlQp0wPXr18Xy2NXqFABCxcuxMuXL1Ol++eff1CgQAFwzjFhwgTxecqALO2Z2Ymsc/fuXbRo0UK8yBgwYAD8/Pyg0Wjw/PlznD9/XgSFVqlSBatXr8b9+/dx8+ZNbNiwQTRonJ2d4eHhAYCCRbPCmzdvxO9ZCYSjIF3Doe1Ce7R5WvejtHjy5Ak6deoEzjk+//zzVMtyElkn5SzTmUHXheFIz8XJkydRvnx58cwYN26cCFJ/9eoVrl+/LlxUqlQJixYtwrVr13Dy5ElMmTJFDEqrVKkSrl27BoAc6ZsRI0aIwbLKC6iUZXzy5Enx/G7btq0xsplnGDRokPDh6emZantkZCS2bNkiBgx+/vnnRshl7mX06NEYNmyYTmCo0gF///59cT8qXrw4fH19AfxX70p5XVy+fBlVqlSBlZUV1q5dm+69KSAgAEOHDhWDEohkyIU8kAt5IBdyERAQgLJly+olMNTPz09sb9KkCTjnUKlUaN68OX7//fccPa/cCLmQB3IhD+RCDrSDeZRnraenpyhHzjnWr1+P33//HfPmzUP9+vVFe+/YsWNin3fv3sHZ2Rmcc/z1119GORdTgHzIA7mQB3JhfFK2xbTfKQG67/umTp2KIkWKgPPkWYtTThijfayjR4+iWLFiKFSoEA4dOpTqWERqyIU8kAu5IB+EDFAAO0HkYZSAqazO0EfkLBMnThRB6FOmTMkwME77Qb9u3ToxYnrUqFGpthNZ49KlS/j5558BZF5+V65cgZubGzjnIsBa+alZsyYOHDiAxMRE8vCRJCUlISkpCWPHjgXnHPb29pgyZYoIItUuVyUofdSoUTA3N0erVq10ZnMlss/mzZvF9/vbb7/V2aa4CA8PFy/XzczMxIACZRZdZ2dnjBgxItXMD0TmZCVwk4J0cwbtMjxw4AB++eUXAFl75q5YsUJ4uXHjhsHymFegQR3ykNLFnDlzRFmPHTtWJ11azwzOOaysrHT+rVixIpYvX463b9/m6LmYCko5v3v3Tqfcle97YmIiPvnkExH4cOHCBbGssKenJ7Zt2yaC10uVKiU6JOl6+TiU8ldWQUvpIy4uDm3btgXnHEWLFsX//vc/scTmxYsXMWPGDBG8XrFiRfzzzz86+xNpoz1wNb12da9evcA5h6OjowjqyaivJDo6GjNmzBADOtNyEBAQgMmTJ4tBPHv37s3mmeR+yIU8kAt5IBdyEhwcDM45zM3NsWrVqo8KDNVoNCLtpk2bxPFUKhVatGiBo0eP6qQl0oZcyAO5kAdyIS+jR48W/RtHjhwRn6vVagQHB6NDhw5itsojR44gKSkJp0+fho2NDaytrWnFMz1DPuSBXMgDuTAu2m0z7RW1pk6dimLFioFzDhsbG/z2229p7qPw6NEjFC9ePFW/O5F1yIU8kAu5IB+EMaAAdoLIw1Cnk7y8f/9eNBArV66c5ZnyT58+jaZNm4JzDltb21Qj3ois4ePjA3d3d9jY2ODWrVuZpo+Pj0fHjh3h4uKCX375BfXq1cMnn3yC/v37w8vLi2bX1RPKd7tq1apiRvv07mPaAXNKYCKRPdRqNdRqNVq2bAnOOcqWLStmfdN+ca78fuHCBRQpUgROTk4YPnw47Ozs4OjoiAYNGmDt2rV48uSJUc7DlIiOjkZISAhiYmIA6L54oiDdnOPSpUsoW7YsChUqJK6J9FCCU/bu3QtbW1uYm5vj7NmzOZHNPANdF3KQlJSE9+/fo1KlSuCcw83NTThJ65nxv//9D/b29ihfvjymTZuGYsWKoUKFCmjfvj2OHz+OyMhIo5yHqRAYGIjRo0eLYGcFpfyDg4NF0HT+/Pnh6uqKNm3awMnJCTY2NuKa6dChAx4/fmyMUzAp7t27hx49eqTyodyHgoKChA9ra2sULlwYdevWRf78+cXADltbWwwePBivXr0yxinkSjLq/4iMjETNmjXBOUePHj2yXK63bt1C3bp1sWHDBsTHx+v8jYCAAEycOBGWlpbgnKNbt26IiIjI9nmYAuRCHsiFPJALOfHz88O6devw7Nkz8dnHBIYCwOTJk8WsxpzrrqKi/UKYSBtyIQ/kQh7IhXxoNBr06NFDDAJ49+4d1Gq1Tp+TWq1Gly5dRHDoH3/8gZEjR4Lz5NXnqM9cf5APeSAX8kAu5EG7zKdOnYrChQuLPtglS5aIbRm1FZs1awbOOb777rtM0xLpQy7kgVzIBfkgchIKYCcIgpCQS5cuiYf/4sWL002n/YC/ffs2+vXrJ/ZTZl8nPpzw8HBRmRo1apSY6TstFAfKrFX//vsvdeoagOfPn6NEiRIwNzfH0qVLAaQ925iypNH8+fNhZWUFGxsb+Pn55WheTZ327duDc45q1aqlWkJKm+fPn6NatWooUKAAzp07h6dPn+Lhw4fUMNETUVFRWLduHbp06YJffvkFUVFRYpunpycF6eYgd+7cQa1atcA5x5w5cxAdHZ3pPqtXr05zlhMie9B1IR/KsrPNmjUDkH5Zh4aGwsXFBcWLF8fdu3cRERGRYf2LyDqJiYlYs2YNzMzM0Llz53QHA8THx2P8+PFo3rw5KleuLGb5VgLb7O3tszSwk8iYuLg4TJo0CZxzfP311+l+z9VqNWbOnIlPP/0UzZo1Q9GiRXV81KxZkwZp6pE7d+6I58Pq1auztI9Sp/X29sa7d+90tqUMDP2QgNO8DrmQB3IhD+TCuKQ1+PJDA0OnTZsmAkNdXV2FzxkzZqT5d4i0IRfyQC7kgVzIR/fu3cUkPClXVtEux65du4JzDjs7O1Hm27Zt00mfVj86ufgwyIc8kAt5IBfGJ+Vz2N7eHmZmZuCco27dumJllYzeW9y/fx8lS5YE5xwzZ840eJ5NFXIhD+RCLsgHkdOoGEEQBCEdCQkJzMrKitna2rL69eszxhjTaDQ6aQAwzjljjDEvLy+2detWtnv3bsYYYz169GCLFy9mjDGWlJSUgzk3Dezt7VmXLl2YjY0NO3HiBPv333/TTat4efbsGWOMscePHzNLS8tU24mPR6PRsMTERBYfH8+SkpKYnZ0dY4wxMzMznXQAmIWFBXv16hXbtWsXS0hIYM7OzszJyckY2TZZSpUqxRhj7M2bN+zNmzdppklKSmLFixdnxYoVY7Gxsezt27fMycmJlSlThnHO6brQAxqNhu3cuZMdP36crVmzhh05coQxxlhAQADr1asX8/HxYYwxVq1aNbZ//35WuXJlptFomEpF1X99U6FCBdauXTvGOWf79u1jt2/fzjB9aGgo++uvvxjnnDk4ODBnZ+ccyqnpQ9eFfLi6ujLGGAsPD2dv3rxJs6yTkpKYg4MDs7W1ZS9fvmQvX75khQsXZgULFmSMUV0qu6hUKubo6Mjy5cvHvL292T///JMqjVqtZpaWlmzp0qXs4sWLbMuWLax69eosf/78LDExkalUKnbgwAFWp04dBsAIZ2E6mJubM1dXV5YvXz528+ZNdufOnVRpEhMTmZmZGZszZw77888/2YoVK5itrS2zsrJiiYmJzNHRkW3ZsoVVrlyZfOgJBwcH5uDgwPLly8eKFi3KGEv2kBFKW7xSpUqifcIYY4GBgWzr1q1s9erVLDExkXXv3p1t3bqVOTo6Gu4ETAhyIQ/kQh7IhXFR+p6SkpKYmZkZi42NZUuXLmU7d+5koaGhrFixYmz37t2sTZs2jLHkvimNRiP2mz59Olu4cCHjnLNGjRqxxYsXs/Xr1zPGGJs/fz6bNm2a+Dv0XM8YciEP5EIeyIV8tGjRgllZWbF3796x69ev65Sbdr/4wYMHWcWKFVl0dDRjjLERI0awfv36McaSPWm//9u/fz/buHEjY4xcfCjkQx7IhTyQC+OiPLMZS34Ob9iwgb17946VL1+eMcZYoUKFRLsvrb50pWxv374tYhOU97bEh0Eu5IFcyAX5IIyC4WPkCYIgiA/lwIEDYlTz3bt3U23XHsn2zz//YNCgQWL0c7t27fDvv//mZHZNkufPn4uZpps1awYvLy+xTRlRnpiYCADw9/dHsWLFPmg2LOLDadu2LTjnGDx4MOLi4nS2KU7evn2L6dOno0CBAuCco1evXoiNjaVZv/WAUobHjx+Hk5MT7O3tsW/fvlRlq/z/0aNHcHJyAucc8+fP19lG6AcvLy8UKVJEjHZesmQJKleuTDNMG4EnT56IlTvc3d3h5eWV6lkBAG/evMH69evFPapt27bGyrLJQteFHCjf/z179qBo0aIoUqQIjh07liqd4sDb2xuOjo7gnGPLli06xyCyz4sXL9ChQwdwztG8eXN4enqKsk85K5Kvry/q1asHW1tbcM5hbm6OAwcOACAn+iIsLAxt2rQRz4wHDx6IZ4X2fSkmJgZ///23mKWEcw5ra2tcvnw5VVoiezx69AgODg7gnGPu3LkffRya1Tj7kAt5IBfyQC7kISYmBhMmTED58uU/eFbjJk2a4ODBgyLdqlWrxPN90aJFOX4uuR1yIQ/kQh7IhRw8evRI9EO5u7vj7t27eP/+vU4aLy8vTJgwQZTx119/rfP+Sbutd/ToUTRp0gScc4wbNy7HzsNUIB/yQC7kgVwYj5TPYaWdV7lyZWzevBlVqlRB7969091f6Zu9fv26WD2zZcuWqVbdIjKHXMgDuZAL8kEYCwpgJwiCkJCnT5+iSpUqUKlUWL9+vQhoSNnJePToUfTq1Us0IFu1aoUzZ87Q8lx6IiQkBBUrVhSN+PPnz6eqXAUHB6NGjRrgnKNUqVK4efOmkXJrumg0GiQlJWHOnDngnKN27dq4f/++qAAnJCQAAF69eoVly5aJjhdLS0vyYQAiIiJ0Bnd4e3uLzirFRVhYGL799ltwzmFra4tDhw4ZMcemjY+PDwoXLpxqKccaNWrA29sbAAW45RRBQUFieeZmzZrh8OHDOgEh9+/fx/Lly2Fvby+W6Lxw4QIAcqRv6LqQh/DwcLRq1UoETnt5eYl6qvLMePz4MVq3bg3OOYoWLYpr164ZM8smS3BwMMqWLQvOORo3bozdu3fj+fPnYvuVK1fw008/oVChQuKaMTMzw/Hjx42Ya9MlKCgIZcqUAeccDRs2xNatWxEaGiq2Hzt2DOPGjRPPDAsLCzg7O4vrg+5h+kNpUwwdOhQqlQodO3bEo0ePPvg4FBiafciFPJALeSAXchERESH6AJ2dnT8qMFRJm5CQgNWrV8PR0RHTp0/P0fMwBciFPJALeSAX8uDr64vSpUuDcw43NzeMHj0ahw4dwvHjxzFy5EjRT8I5R//+/XUmpNL2dOTIETRt2lQ8v4cPHw7gv/YgDTLPGuRDHsiFPJCLnCejoNDDhw9DrVajaNGiqFixIoKCgkTalGV5+/ZtNGjQAJxzFClSBEuWLBH97ETWIBfyQC7kgnwQxoQC2AmCICQkKioKX331lQiCu3fvnhj9rFQc5s+fj5o1a4oGZIcOHXDhwgV6+OsZPz8/Meth5cqVMXDgQJw7dw7Hjh3D9u3bUaJECdHZ26FDB51AIEK/PHr0CG5ubuCco0WLFjh69CgiIyMRFRWFwMBA9OvXD+XKlROzhW7fvh0ABfgYgsDAQNG51bx5c+zfvx8RERFISkrC48eP8c0338DZ2Vk0TPz9/Y2dZZPGx8dHzFxsaWkJZ2dn0aGoPfs3YXh8fX1FQGLRokVRrVo19O/fH3369IGLiwvy588PzjnKlSuHlStX4s2bN8bOsslC14U8BAQEoFSpUqJeu2vXLoSFheH169fw9vZGq1atxECDunXr4smTJ8bOssni5+eHChUqgHOOAgUKwMnJCe7u7mjVqhWsrKxgY2MDzjkcHR1Ru3ZtESxNL5sMg5+fHypVqiRmVndwcECNGjVQu3ZtcM5hZWUlBsl2795drMxFdVvDsG/fPlhbW4NzjpUrV+qs+JTZNUCBofqFXMgDuZAHciEPnp6eqFSpEk6cOCE+UyZeUMgoMFQ7XUJCAm7dupUzGTdByIU8kAt5IBfyEBQUhK5du6Jo0aLifYWy0pny069fvwyDQps3bw4zMzPky5cP7dq1Q3BwMJ48eYLXr1+nuQ+RPuRDHsiFPJAL4zBz5kydoFDtCcB69eoFlUqFFStWIDY2NtW+V65cQe3atWFhYQHOObp27Uptu2xALuSBXMgF+SCMAQWwEwRBSIr2LIn16tXDkCFD8Ouvv2LIkCH45JNPdBqQffv2haenJwUzGIiAgAA0bNgQ5ubmonOXc458+fKJgJNq1arhzp07xs6qyaM9oMDR0RHlypVDjRo1xBJEip9169YhJibG2Nk1aXx9fUVAooODA1xdXeHu7o4iRYoIF+bm5mLmVgp+Myze3t4iWLdKlSo4fvw4BUcbicDAQLRt21Z0/CrPDOVfNzc3rFu3DhEREcbOqslD14U8aM/qkz9/fjg5OaFy5co6L0VsbGxo9vUcIDg4GH369EGVKlV02hPKT8OGDbFkyRIx+IzaF4YlJCQE3377rc7AZOWnQIECaNOmDQ4cOCAGdlB9yrDMmDFDlP/SpUsRHBwstqVX9ikDQ7t3746XL19muA+ROeRCHsiFPJALedDub9JoNDplOXv27AxnNU4PGmT7cZALeSAX8kAu5OH169e4d+8eNm/ejF9++UWsHMs5x1dffZVhUKi7u7t4H6UMcFb6Ft3d3bFp06Y09yXSh3zIA7mQB3KRs8yfP1+UVcqgUADYvn27KM/p06fj+PHjePfuHY4fP45ly5aJgFDOOVq3bo2wsDAA1H/7MZALeSAXckE+CGNBAewEQRAS4+fnp9NY1H7gm5ubo1y5crSEYw7x9OlTTJ8+HQ0bNtQJLCldujT69OmD+/fvA6AXgDlBYGAgOnToIALZlR97e3s4Ozvj6NGj5CGHCAwMRLt27VC8eHFwzmFmZgbOk2c7LlCgAP78809jZzFP4e3tjUKFCoFzjlq1amHPnj149+6dsbOVJwkPD4eHhwd69OiBsmXLwtraGo0bN0b//v0RFBSU5qh0wjDQdSEPgYGB+PTTT8XgJ+WFhoODA6pWrSqC16kjy/C8ffsWgYGBWL58OaZMmYKRI0dizZo1OHjwINRqtahHUX0qZ4iOjkZYWBi2bduG5cuXY/ny5fDw8MCNGzeMnbU8g/Z9Z8KECaJ90aVLFyxcuDDd/QICAjB+/HjRTu/Tp0+mA6VSBhERupALeSAX8kAu5CO9MtqyZQsKFiyYpcDQrNZ5yUfGkAt5IBfyQC7kZMqUKeIZ/uWXX2ZpRmPOOdq3b4+5c+fi9OnTWLJkCT7//HNxnNmzZ4v9yMWHQT7kgVzIA7kwPL6+vnB0dETRokVx+PBh8bl2+U6aNEnn3beLi4tOX7qzszN69+4tgkJpcMDHQS7kgVzIBfkgjAUHAEYQBEFIy6NHj9j27dvZ+fPnWWBgIMuXLx+ztbVl33//PatRowZr0aIFY4wxjUbDVCrVBx8fAOOci/9rNBrGOdf5LGWavEpiYiJLTExkx48fZ/Hx8SwqKoq1adOGFStWjNnb21M55SCvXr1i3t7e7MSJEyw+Pp7Fx8ez9u3bMzc3N1a2bFljZy9P8eLFC3bp0iV26NAhFhYWxjQaDXN3d2c9evRgNWrUoOsih/H19WXu7u7s5cuXrEyZMmzjxo2sXbt2H/V8IPTDu3fvWHR0NCtatCgzNzc3dnbyJHRdyMOrV6/YrVu32B9//MFev37N1Go169y5M2vevDmrUKHCR9dnCf1CHuQiKSmJmZmZGTsbJo92Oa9cuZJt3ryZBQQEMAcHB3bgwAHWvHlzned4YGAg27JlC1u9ejVTq9WsYsWKbPny5axixYqMc85UKhUrWLAgs7S0ZGq1mtna2jJLS0v2/v17li9fPvKaAeRCHsiFPJAL+YmOjmZ9+/ZlJ06cYOXKlWMLFixgPXv2ZIyl3feq1LVCQkLYo0eP2NmzZ9m7d+9Yvnz5WIsWLZirqyurWLEiY4zqAh8KuZAHciEP5MK4hIeHsxIlSjDGGPvmm2/Y8OHDWd26dRljuuV39OhRtnz5cnb16lWm0WjY8OHD2U8//aRzrIiICLZz5042ceJExhhjP/30Exs+fHgOnk3uh3zIA7mQB3KRcwQFBTFfX1/WqVMnxth/z2Htcp4/fz7z8PBgfn5+Ovt++umn7LPPPmM9e/Zk9vb29AzOJuRCHsiFXJAPwhhQADtBEEQuQKPRMI1Gwx49esTs7e2ZSqVi9vb2Ots/NMgk5T47d+5kISEh7Pr160ylUrG2bduyatWqsfbt2zPGKIidyD3Qd9V4qNVqZmZmJsqfXBgHX19fVq1aNVa4cGF26tQpVrt2bWNnKU+S3vefAkONA10X8kPPDONB9yW5oGvBeGh3qN+4cYPdv3+f2djYsM6dO7OCBQuKdIGBgWzr1q1s9erVLDExkRUuXJhFRkYyS0tLplKpmFqtZhqNhjk6OjJzc3MWGxvLChUqxAoWLMgSEhLY0aNHmYuLC117GUAu5IFcyAO5kJt79+6JNsaMGTPYnDlzGGMZ17O2bdvGduzYwW7dusUSEhLE55xzVrNmTTZw4EA2ZMgQxhgFiH4I5EIeyIU8kAvj4+XlxdatW8e++eYb1qhRI8ZYxkGhEyZMYEuWLBHplAFojDH29u1bNnr0aLZr1y7WsmVLtnfvXlakSBHjnFguhXzIA7mQB3KR86R8DmuXt6+vLwsMDGQPHz5khQoVYkWKFGFt27YV/YbUXtMv5EIeyIVckA8ip6AAdoIgiFyAvoMYlIrF27dv2cGDB9kff/zBTpw4wVQqFdNoNIyx5I5IBwcHNnjwYDZ//nyD5CO3Q+VhXLTLX6nOkA/jkPJaoGvD+Dx8+JCFhYWxevXq0azfBPH/0HUhB/TMIAhCZjLrWE8ZGPr111+zOnXqsIkTJzK1Ws1KlCjBoqKiWFxcHLOxsRGrRTHGmJmZGUtKSmLW1tbM29ububi45NBZ5U7IhTyQC3kgF/ISHh7Omjdvzp49e8bWrl3LBgwYkCqgU9vflClTRMBPsWLFWKNGjVj58uVZWFgYu3btGgsODmaMMTZz5kw2e/bsVPsT6UMu5IFcyAO5kIP4+HhmZWXFGPuwoNC0BgfMmTOHzZkzhxUsWJD9+++/rFy5cjl3IiYC+ZAHciEP5ML4ZPY8/djnbVp98DQALWPIhTyQC7kgH4QhoLf2BEEQuYCMgnoyWuIxLZSHfFhYGBs3bhy7evUqCw0NZYwxVqRIEVarVi1mZWXFwsLC2D///MMWLlzI4uPj2bJlyyi4KAVUHsZFu/zJhXFJWf7kw/i4uLhQwAFBpICuCzmgZwZBEDKTsi2t3d4OCgrSCQzt2rUr27BhA9u/fz9Tq9WsbNmy7PLlyyw+Pp5FR0cza2trFhsby169esXMzc0ZAPb69WsWHBzMgoOD6ZmUCeRCHsiFPJALebGxsWHVq1dngYGBbMeOHaxNmzasdOnSYrt2f+3EiRPZ8uXLGWOM5cuXj02cOJGNGTNGpL1z5w77/fff2dKlS9ncuXOZnZ0dGzduHAWGZhFyIQ/kQh7IhRzoKyiUMcYsLCwYY8nBpjExMTmQe9ODfMgDuZAHcmF8MmrzpbU9K2gf49y5cywoKIgNHDiQmZmZ0QC0DCAX8kAu5IJ8EAYBBEEQRK5Fo9GI34OCgsTvarU6zfTK548fP0adOnXAORc/8+fPx99//y3SPnz4EGvXroVKpQLnHBs3bjTMSeQhkpKSjJ0F4v9J7xohch5yIReJiYnGzgLx/5ALeSAX8kAu5IHqtXJB9SnD4+vri4kTJyJfvnzgnKNHjx54+fIlAGDbtm3gnMPJyQlv3rxBUlKSTltd+/eMPiOyBrmQB3IhD+RCDoKCglCmTBlwztG2bVuEhoamSrNkyRLRF1ukSBFwzlGsWDGEhITopHv79i2WLl0KzjmcnZ1x/fr1HDoL04BcyAO5kAdyIR/79+9Hq1atYGZmBs45Jk6cKLZl1Ma7e/cuateuDc45OnTogNjY2JzIrslDPuSBXMgDuTAtrly5gt69e4Nzjq+++srY2cnTkAt5IBdyQT7yLjREgSAIIhejjEK7cOECa9u2LZswYQJjjKU52lkZBf348WPWokULdufOHcY5Z8WKFWOnTp1i06ZNYy1bthTpy5Qpw7755hs2ePBgxjlnFy5cyJFzMmVUKhXTaDTs2LFjLDw83NjZydMoS2P/8ssv7NmzZ8bOTp6GXMiFubk5U6vVbMWKFezJkyfGzk6ehlzIA7mQB3IhD1SvlQuqTxkeX19ftmzZMhYXF8e++OILtnXrVlaoUCGdNBYWFkyj0TDGMl8tilaf+HjIhTyQC3kgF3Lg6urK/ve//zFHR0d29uxZNnHiRBYVFSW2X7hwgf3000+MMcaaNWvGZs6cyVq0aMFevHjBGjVqxAICAhhjyTMhFyhQgH3xxResYcOG7MmTJ+zBgwdGOafcCrmQB3IhD+RCLqKjo9nPP//Mzp8//0EzGj958oTt27ePBQYGMsYYq1+/PsuXL1+O5dtUIR/yQC7kgVyYFjdv3mTz5s1jx48fZ4wxduPGDXbv3j0j5ypvQi7kgVzIBfnI4xg7gp4gCILIHqdPn0bTpk1haWkJzjkWLVqUKo0yQ+Ljx49RoUIFcM6RL18+1K9fHzdv3gSQ/uxK69atA+cclpaWePjwoeFOJI+watUqWFhY4LPPPsPjx4+NnZ08zbhx48A5R/fu3cmFkSEXcqGMbP7888/Jh5EhF/JALuSBXMgD1WvlgupThufLL79Eq1at8OrVKwD/rQqhtJkrV66M+Ph4Y2Yxz0Au5IFcyAO5kAcfHx9Uq1YNU6ZM0fl8/fr1sLa2BuccK1asAAAEBgaiRYsWYpZjf39/AP/10w4aNEjMqp+UlESrrnwg5EIeyIU8kAt58Pb2hp2dHYYPHy4+y6gMnzx5gkWLFsHR0RGcc7Rr105so9VTsg/5kAdyIQ/kwnQIDw+Hk5MTOOdo0aIFjhw5gvfv3xs7W3kSciEP5EIuyEfehgLYCYIgcjGxsbFo1aqVWNaxUqVKuH37tk4apUEYFhaGxo0bg3MOa2trNGvWDHfu3NFJo43youvYsWPInz8/HBwcKIBdD9y+fVv4+uKLLyi4xIjcuHFDLHtHQXDGhVzIxeXLl8WgKPJhXMiFPJALeSAX8kD1Wrmg+pTh0H45GxMTI35X2tEbNmwA5xzly5dHVFRUjucvL0Eu5IFcyAO5kJPIyEjxe1JSEuLj49G8eXNwztGyZUudtL6+vmjZsmWqAFEAmDBhAjjn+Pbbb3Ms76YGuZAHciEP5EIewsPDxe8fEhTatGlTREREZLof8WGQD3kgF/JALnI/ykSH/v7+6NSpE/bt24e4uDgj5ypvQi7kgVzIBfkgVMaeAZ4gCIL4ePLly8c2bNjAGGOsaNGi7I8//mC1a9fWScM5Z1FRUWzOnDnszp07jDHGqlSpwn766SdWq1YtBiDNpYHNzc0ZY4wdOXKExcbGMgsLC1riK5sAYLVr12aXL19mlpaW7I8//mCjR49mT548MXbW8hwajYY1aNCAXbx4kVlYWLCDBw+SCyNBLuRCo9Gwpk2bsvPnz5MPI0Mu5IFcyAO5kAeq18oF1acMi5mZGdNoNIwxxmxsbMTnSjtaWTZbo9GwxMREplarcz6TeQRyIQ/kQh7IhZw4ODgwxpLLXaVSMQAsLi6OMcaYq6srY4wJF5UqVWKbNm1iLVq0YC9evGDNmzdnT58+ZYwx9vfffzPG/nMLIEfPwxQgF/JALuSBXMhD0aJFGWOMJSUliWd2Sp49e8Z27drFli1bxl6/fs0aN27Mdu/ezQoXLswApLsf8eGQD3kgF/JALnI/KpWKqdVqVqFCBbZv3z722WefMSsrK2NnK09CLuSBXMgF+SAogJ0gCCKXU7lyZRYQEMDOnTvHqlWrprNNeYF1/fp1duHCBRYfH8/s7OzYhg0bWO3atdMNXlf2CwwMZN7e3owxxqpWrcpsbGzENuLD4ZwzjUbDmjRpwv7++29mbm7ODh48yIYPH07BJTmMSqUSLs6fPy9cDB06VHTAEzkDuZALxUfjxo11fAwePJh85DDkQh7IhTyQC3mgeq1cUH3K8KhUqbtQlbaxEuxjZWXFbGxsxGBwwjCQC3kgF/JALuRFcWNmZsbs7e0Z55yVKlVKZxtjqQNE69Spw4YNG8YePHjAihYtyr755huj5N+UIBfyQC7kgVzIQ0ZBob/++qtOUKiHhwdzcXFhjLE03+8R2Yd8yAO5kAdyIT8ZDSRT2oE2NjbM0tIyp7KUZyEX8kAu5IJ8EOlBAewEQRAmQLly5VjVqlVTfa50Mv7yyy/Mx8eHMcbYrl27WKNGjTIMXlf227FjB7t27RpjjLE+ffowW1vbNF+KEVlHO/DqwoULjDHGjh49yn7++WeWkJBg5NzlLdJycfz4cXbkyBGakSyHIRdykZaPEydOsKtXr9IgphyGXMgDuZAHciEPVK+VC6pPGY/ExETGWLIDai8bF3IhD+RCHsiFHJibmzNnZ2cGgJ04cYK9ePEilQ8lQNTd3Z1FRESwbdu2sYSEBNa4cWNWunRpxhgFAOkDciEP5EIeyIWcZBYUSuQs5EMeyIU8kAt50I77UAYxJyUlGTNLeZacdkEr4KSPMa4L8pE+OelD8UD3wdwD9VgSBEGYONeuXWNHjx5ljDE2ZMgQ1rFjR8ZY2p2JAETH5JYtW9iiRYsYY4x16tSJffbZZyKNNlFRUSw2NlbnGETGaAeXXL16lbVv357VrVuXRhIagZQuBg4cyOrVq0czkhkBciEX2j6uXbvG5s6dy+rVq0cBD0aAXMgDuZAHciEPVK+VC6pP5SzKPSdfvnyMseS28Pv377PdMa7dpqb2ddYgF/JALuSBXMiDUk49e/ZkJUqUYM+ePWPXr19Ps/wqVarENm/ezJo2bcoSExNZ+fLl2YQJE1jx4sVzOtsmCbmQB3IhD+RCTh4/fsx2795NQaGSQD7kgVzIA7mQB+2g0L///psNHz6c+fv7MzMzM5rwJYfJSRfR0dGMMRpAmB45fV1ERkayiIgIxjmnoOk0yEkfr1+/Zps3b2ZeXl7MzMyMfOQWQBAEQZg0+/fvB+ccnHPs2rUr3XQajUb8vnfvXhQvXhycc5QoUQIbN25Mc5/79+9j7NixGDt2LC5cuJDmsYj0SUpKAgC8ffs2W8eh8s4+iouYmJhsHYdcZB9yIReKj4SEhI/aX/FAPrIPuZAHciEP5EIeqF4rF/qqTwHAmzdv8NNPP2H37t2IiIgQn5Or/9i6dSs456hatSri4+OzVTZqtTpLnxFpQy7kgVzIA7mQh4iICHTq1AmcczRr1gyenp7ppvXx8UGnTp1w/PjxHMxh3oFcyAO5kAdyIQ9qtRqrVq0S7/WaNGmCkJAQY2crz0I+5IFcyAO5kJOLFy/i66+/Fl5CQ0P1enylv1Gj0YjflX8JXQztIjg4GFOmTEG/fv1w69Yt0SdPPlJjaBcA8PLlS8ycORPVqlXD7du3AVBfSXoY2odGo8GhQ4fAOYe5uTkePHgAgHzkBjhA02QQBEGYMmvXrmWjRo1iVapUYdeuXWMFChTQGeHGGGMajUbMzHTgwAE2depUFhwczDQaDRs8eDDbsGEDY4yl2u/w4cOsR48ejDHGqlWrxgYOHMhGjhyZZloicz6kzLSdMZY8qvPNmzfs1atXzNbWlpUtW5ZZW1t/8HGJDyeli8ePH7Nnz56xV69esaJFizJXV1fm6OjIGCMXhoZcyIW2D7Vazfz8/Ji/vz978+YNK1u2LCtXrhxzdnZmjJEPQ0Mu5IFcyAO5MCxUrzUN4uLi2IEDB1j//v0ZY4wNHDiQdenShXXu3JkxRj60+eGHH9jRo0fZ8+fPmZmZ2UcdIykpSew7bNgwZmNjw5YtW8YYo7L+EMiFPJALeSAX8hAcHMxatWrFHj9+zJo1a8Zmz57N6tevz+zs7FLViWJjY5mNjQ1jjMrYEJALeSAX8kAu5MHPz49VqVKFValShf355596m9FYrVYzc3PzVD6JjCEf8kAu5IFcyEVwcDAbPHgwO3v2LAPAKleuzFauXMk6dOiQ7WOnfM5HRkayhIQEVrx4ceGJfP2HIV0wxtjLly/Z2rVr2bJly1hcXByrWrUqc3d3ZxMnTmQuLi46bfe8jqFdMMbYq1ev2NatW9mOHTtYQEAAK1CgALt06RJzc3MjFynICR/K3/n222/Z5cuXWcGCBdmlS5dY9erVyYfs5EiYPEEQBGE01qxZA845HB0dERgYmGq79sxLHh4ecHV1hYWFBTjn+Pzzz8W29EZsbtu2DZ999hlUKhU455g2bVqaxyb0h7aLK1euYMWKFShTpgwKFy4MCwsLqFQqdO/eHevWrRPpyIXhOXToEMaNG4eCBQvCxsZGjBxt164dVq1aJdKRC8NDLuRi8+bN6NOnDywtLWFmZqYzK8eyZctEOvJheMiFPJALeSAXxoXqtXKTkJCAX375BY0bNwbnHCqVCuXKlcPMmTNFmrw+s4/27C2bNm3CkydPsv0dnT59OooVKwbOOfr165fdLOYZyIU8kAt5IBdy4uvrC2dnZ3DOUblyZUyYMAEBAQHGzlaehFzIA7mQB3IhDyEhIXqdlfLp06dYtWoV7t69C4Dach8K+ZAHciEP5EIuRo4cCc45GjdujOPHj+P9+/d6O7avry9Wr16NTz/9FOXLl0exYsXQpk0bzJo1C8HBwQBohmNtDOkCAE6ePInFixejfPnysLKyAucc1apVg5eXFwByoY0hXbx8+RKLFi1ChQoVwDlH/vz5wTmHvb09zfydDoa+NhSCgoLQvn178pGLoAB2giAIE+fBgwdwdXWFo6MjDh06JF5UJSYm6qT76aefUKBAARG406lTJ7EtsyWCPT09MXnyZBHEPmrUKLGNAkwMx5IlS1CtWjUx4IBzDmtra7EkDuccY8eOFenJhWGIi4vDxIkTUaBAAeHCwsICBQoU0HExZswYsQ+5MAzkwvgo5alWq+Hn54eBAwfqlH3BggVRpEgRqFQq8dno0aNT7U9kH3IhD+RCHsiFvFC9Vl4SEhIQHh6OwYMHiyB2zjkGDx5s7KxJgz47vufPnw+VSiXa5SNGjKDv+wdALuSBXMgDuZCTwMBAtGnTBvny5RN1n2XLliEsLMzYWctzkAt5IBfyQC5Mj+fPn2P16tWifa0EhxLGgXzIA7mQB3Lx8WgH+q9YsQK///474uLiPvp42m28Z8+ewcPDA4UKFRL1AqVvUPmpUqWKCJzO64MO9O0iM0JDQ7Fs2TLUrVsXnHMULlyYXPw/hnaRMnjdwcEBJ06cQJcuXShoOg1y+toAkts0FMSee6AAdoIgCBPn1atX6NixIzjncHd3x7///isqAxqNBn///TdGjBih09Do3bu32D9loLs22g2Y169fY926daLRMm/ePMOdVB7n5cuXGDJkiI6z1q1bY+bMmbhy5Qp27tyJ8ePHCxezZs0ydpZNkqSkJNy+fRt9+vTRcdG9e3ds374d3t7eOHjwIKZPny5czJ0719jZNknIhRwoz4T4+HgcPnwYHTp0EC6KFCmC7777DufOncOTJ0/w119/Yd68ecLHggULjJx704JcyAO5kAdyISdUr81dzJ8/H2XKlBGBi+RD/zx8+BCOjo6ifPP6yyZjQi7kgVzIA7nQL2FhYVi9ejWaNGkCS0tL7Nu3D1FRUXo7Pg0uyDrkQh7IhTyQC9MhKioKc+bMEc9wa2trzJo1CwkJCcbOWp6EfMgDuZAHcpF9tOM5shOcqf18vnr1KoYPHy5m+La1tUXJkiUxfvx4LFq0CN99950InHZycoKfn1+2zsFU0JeLzFBcvX//Hrdu3ULbtm3BOUeNGjX0ujJCbkbfLpQyTyt43dPTE0DyagXt2rWjoOk0yKlrQxsKYs89UAA7QRBEHiAwMBClS5cG5xxVq1ZFt27dMGnSJLRu3Rqurq4iWKRChQoYN26c2C+j4PW0ePv2rQj2cXV1xfnz5/V9KnmeoKAgfPXVV8JZmTJlMGnSpFTpoqOjsXbtWqhUKpQoUQLnzp0zQm5Nl8TERPz999/49NNPhYvGjRtj5cqVqdLGxMRg9erVMDMzQ7ly5XDjxg0j5Nh0IRdyoDTa4+Li8Msvv6BJkybCR48ePbBnz55U+8TGxmLZsmUwMzND9erVxawARPYgF/JALuSBXMgJ1WtzF8+ePcP8+fPFbEtVqlTBtm3bDD5TSl5C6TgPCAjAwoULqSPdiJALeSAX8kAuDINGo0FCQgLu37+vt6WzQ0JC8PjxYwD0UvZDIBfyQC7kgVyYDgsXLgTnHEWLFsWsWbPw8OFDY2cpT0M+5IFcyAO5MD7aweunTp1C165dxWqZtWvXxsyZM3UCoxMSEuDp6YmWLVuCc47PP/8cb9++NUbWCQC3b99G9erVYW5ujtmzZyMpKYkGnRuA8PBwLF26FGXLlgXnHI6Ojrh//z6A/+q2FDQtF4GBgTqDClL6IuSAAtgJgiDyCP7+/qhVq5YYJav8KLPn9e/fH3v37hXpM3pgx8TEiN9TzpTx77//okyZMlCpVGkGkBIfT2hoKHr16iXctWzZEjt27BDbtRsiGo0G/v7+qFKlCjjnWL9+vZFybXokJSXh4sWL+OSTT4SLvn374uTJkyKNWq0W14ZGo8GDBw/g5OQEzjl27txprKybHORCLuLj47F7927Uq1dP+Bg7dqzOUo8pny03btyAnZ0dOOf4448/cjrLJgu5kAdyIQ/kQi6oXpu7CA0NxcyZM2FrawvOOapVq4Y9e/bodQZGIpkPHUROGA5yIQ/kQh7Ihf7R9wzEISEhGDp0KEqXLo1r167p9dimDrmQB3IhD+TCtFiyZAlGjhyJR48eGTsrBMiHTJALeSAXxkP7mX/ixAm0bt0a5ubm4Jyjbdu2OHPmDKKjowHo9qEnJSVh9+7dsLS0RLly5RAcHJzjeSeSiY+PR//+/cE5R7NmzYydHZMkPj4eq1evRvHixcE5h5WVFY4dOya2aQ8Y0A5iz58/v857KCLnCQoKEpMhFixYEPfu3QNAQewyQQHsBEEQeYgnT55g7dq16NatG5o0aYLatWtj/PjxOHjwoE66jEZj+vv7Y8SIETh69Gi6abp27QrOOerXr4/4+HhaDjIbKC5iYmLQr18/EeTTqVMnUSHWTpeSVq1agXOObt26ZZiOyBzle+zt7Y0uXboIFz/88AP++ecfkS69MlaWURs0aFCG6YjMIRfyodFocOrUKTRr1kz4mDFjBp48eaKTJi2UgMSZM2cCIB/ZhVzIA7mQB3IhB1SvzZ2EhoZi9uzZInjdzc0NHh4eFLyeDbS/u9RWNi7kQh7IhTwY2gX5NRwBAQEYN26cWIXT1dUV4eHhxs5WnoRcyAO5kAdyYTy0A3NoZlzjQz7kgVzIA7mQhwsXLqBTp04ieL1z586ZBqU/fPgQjo6O4Jzjt99+y6GcEtoo19CaNWvAOYeNjQ38/PyMnCvT5OHDh+jduzeqV68OzjkaNWqECxcuAEjuT9Hu8wgKCkKbNm3AOceYMWNoUoAcJmVw+o4dO8Qkh7a2tiKInZADc0YQBEHkGUqWLMmGDx/Ohg8fzpKSkphGo2EWFhap0qlUqjT3B8Du37/P1q1bx9atW8f279/PPv/8cwaAcc5ZUlISMzMzY1ZWVowxxhISEhjnnHHODXpepgoA4WLq1Kls9+7djDHGOnTowEaOHMnatWuXKp32vpxzplarGWOM2djYMMYYufhINBqNKOMlS5aw48ePM8YYGzBgABsxYgSrUaMGYyy1CwCMMcaioqJYbGwsY4wxe3t7xhi5+FjIhVwoPl68eME2bNjArly5whhLvmcNHz6cFS1aVKTVLmdlP19fX/b69WvGGGNFihRhjKX/DCIyhlzIA7mQB3IhD1SvzZ08evSI7dixgy1fvpzFxMSw6tWrs8mTJ7OuXbsyW1tbY2cvV6Jdl3358iUrXLiwaEcTOYuhXWgfP63/E/+RE9eF8ixJ628S/5ETLhQPUVFRzM7Oju6BeiQoKIitXLmSMcZY2bJl2Y8//kjfcyNBLuSBXMgDuchZtOs+ZmZm4v8FChQwcs7yJuRDHsiFPJAL+QgODmY7d+5kf/31F0tKSmKdO3dm27Zt0+lDT4tnz56xN2/eMMYYMzenEERjoLSpX758yRhj7P379ywuLs6YWTJJNBoNK1OmDNu+fTv7559/2NKlS9mpU6fYJ598ws6dO8eaNm0q4hEYY8zV1ZVt3LiRnTp1inXu3JmujxxGebYcO3aMnT9/nq1fv148d2JiYtiECRPYkSNHmLW1tZFzSjDGGLUMCYIg8hhKpcnMzIxZWFjoVKIyg3POWrduzQYMGMAYY6xnz55sy5Yt7NWrV+KYHh4e7MCBA4wxxurUqZNmgDyRNZQK1KZNm9hPP/3EGGOscePG7Mcff9QJ8kkreIdzzk6ePMkuX77MGGOsZs2aOsckPgylM33evHns119/ZYwx1r17dzZo0CARMM1Y6vJVBnAcP36c+fr6MsYYq1ixYpppiaxBLuRCezDBsWPHGGOMDR06lA0cODDDTi1lvzNnzrDw8HDGGGPOzs4Gzq1pQy7kgVzIA7mQB6rX5j4oeF3/JCUlifvLiBEjWPPmzZmvr6/oTCdyDkO70A4CvnPnDmPsv2cLudYlJ64L7efLpUuXWEBAAFOpVCwpKUkvxzcVcvIetXfvXvb111+zBw8eMDMzM3KhJ9q3b89GjRrFzM3N2ciRI9l3333HChcubOxs5UnIhTyQC3kgFzlDVFQUY4yJCacUqP1sHMiHPBjSRcq6MrX5MiYnrwuNRqP3Y5oiSjmdPHmSeXh4MLVazdq1a8fWr1+fYR+64i84OJjZ2NgwlUolJg4jcgbt+82dO3fYkSNHGOecVapUiTk5ORkxZ6aJSqViAFj+/PlZy5Yt2aZNm1j37t1ZYmIi69evH/P09Ex1L6tQoQIbOnQoK1u2rJFynTdI+ex98uQJu3TpEvv000/Z4MGD2erVq1liYiJLSEhgNWvWZAsWLGBLly6l4HWZMOT07gRBEETuIeUSKhnx8uVLfP/99+Ccg3OOdu3aYcCAARg+fLj4zNHREevXrzdgjvMG/v7+aNOmDczMzODg4IANGzaIbRktuxwWFoZBgwbB0tISDg4O+OuvvzLdh8iYy5cvo2LFiuCco0aNGjh48KDYllG5+vj4oF27dlCpVKhSpQp8fX1zIrsmDbmQi4MHD8LKygqcc7Rv3x5Xr17N0n5Xr15F+fLlwTmHu7s7LQ2pB8iFPJALeSAX8kD12txDaGgoZs+eDVtbW3DO4ebmBg8PD0RFRRk7aybBpEmTUKZMGXDOYWFhgYiICL0cV7km6NrIOoZyobB161ZUqlQJHTt2xMGDB8Xxk5KS9Pp3TAFDXxcAcP78ebi6usLe3h53794F8GF9YXkFQ18XMTExmDRpkliy+cGDBwDIRXbRvq9cu3YNYWFhRsxN3oZcyAO5kAdykTM8f/4cs2fPxvTp08Vn1DYwHjnhg/qqskZOuFCr1Trvm+jaS5uccHHt2jXMnj3bYMc3Ve7cuQMbGxtwztGgQQNcu3Ytw/RKub58+RKVKlUC5xzVqlVDXFxcTmQ3z6Fdl0qr7XzlyhUMGjQIdnZ24JyjW7duOZk9kySrfXc3b95EjRo1YG5ujtGjRyMhIYH6/XIY7fv88+fPceDAATRo0AAlS5YUsWucc3Tp0gWzZs1CTEyMEXNLpAetT0AQBEEwjUYjlhb6/fffWePGjZmzs3O6o50LFSrERo4cyTw9PdnNmzfZhQsXWEJCgthuY2PDunfvzoYMGZIj+TdlHjx4wC5dusQ0Gg3r3bu3KNP0lrvG/88sduHCBXbw4EGWmJjI6tSpwz755BPGGM3skB0ePHjAHj58yBhjrFu3bqx79+6MsfRnC2Usefmh48ePsxs3bjAAzM3NjVWqVCmnsmyykAs5UMr73r17YoaGzz77jDVu3DjTfZ88ecL27t3Lnj9/zhhjrHbt2rQ0ZDYgF/JALuSBXMgH1WtzBzTzumE5evQoW7p0qfj/0KFDmaOjY7aOqVwryjURERHB4uLiWFBQEFOr1ax+/frM3Nyc2drapnu95UUM4UKb27dvs+PHj7PAwEDm7+/PPD09WaNGjdjChQtZ+fLlWVJSkuiHyesYyoV2+/D8+fNs3Lhx7Pnz5ywuLo61bNmSXbp0iVWvXp1caGHo64Kx5D7DH374gd26dYudPXuWNW/enFzoAZVKJe7xjRo1MnZ28jTkQh7IhTyQC8Pz7Nkztm/fPrZu3Tr26tUrplKp2Jw5c/TWblbqVRn1vxP/YWgfcXFx7OzZs2zy5Mls5MiRrGnTpqxq1aqMsYzfkeRFDO2CseR+rQsXLrAJEyawGjVqsB07dtD1kgY54SIyMpL169ePBQUFscjISLZmzRpykQkAmFqtZps2bWLv379nxYoVY1999RWrVatWhvtwzll0dDSbN28eCw4OZvny5WOdO3dmFhYW1Pf0AWT03VSr1eK9RmJiok65x8XFMbVaza5du8b8/PzYzp072atXr9j79+9ZrVq12Nq1axljuv3uKdvb1P5On9DQUBYXF8cqVaqU6fe5Vq1azM3NjT148ID99ddfbPHixczCwiIHc5t3Udwo18ry5cvZlStX2KlTp0QaR0dHVqdOHfbll1+yPn36iBnXtb//dG1IQo6GyxMEQRBSo8yqfv369Synt7e3x9SpU+Hi4oLixYujU6dOmDt3rhjpRiMMPw6NRoP4+Hh07twZnHPUqVNHzHqV3qxUyuf379+Hk5MTOOeoUKECbty4keF+ROa8ffsWdevWBeccLVu2FJ9n9v0+duwYihYtKmYKf/r0aZb2I9KHXMhFWFiYmJ2va9eu4vOMZrV4+/Yt1q9fD0dHR3DO0bBhQ7x//z7T/YiMIRfyQC7kgVzIAdVr5UGp97x580bMNKL9vaaZ13OGIUOGgHOOqVOnZrsuqr1/eHg4tm3bhnr16qF48eJidhk3Nzd8+eWX8Pf3B0DXjzb6dJEWXl5eOH78OJo3by7aIi4uLvD09ARAbRFt9O1C+972999/o06dOlCpVLCxsYGrqys457C3t6fZv9PA0NeFQmBgINq3b08usgmVlzyQC3kgF/JgaBfURk9GrVZj7dq1UKlU4JyjePHiGDFiBF6/fq2XY2vz6NEjPH/+HI8fP9apJ5CL/zCkD4Xz58/Dzc0NnHOYm5ujdevW2LJli9hOPpLJCRdJSUk4e/YsPv30U9EGHzZsmNhOLpLJCRdAso9169bB0tISnHMMHz5cbCMX6RMTEyPeu9apUwfPnj3LdJ+4uDhs374dlStXBuccjo6OuH37dg7k1jS5evUq5syZg88++wwdO3ZE165d0aZNGzRq1AhNmzZF/fr1UbVqVVSpUgUuLi5wdHQU7y+0f+rWrYvLly8D0P3Oaz/PJ0+eTKvSZUBgYCAGDhyI3r17i8/Su38o5bdr1y5x38nqCsDEx5Gynyo4OBjTp09H8+bNda6FcuXKoVWrVrh69aqICVGga0NOKICdIAiCAAC8e/cO9erVA+ccX3/9NV6+fJlu2oSEBADA9u3bwTnHiRMn8PbtWzx9+lTnYU4vY7NHXFycaDB26tQpw+VslHIPCQlB6dKlwTlH0aJFMWvWLLx58yansmyyvH79WiyBNnDgQCQmJmZacb1w4YIIuCpTpgx27NgBtVpNnSTZhFzIxZMnT8QSXPPmzQOQcaMuJiYGv/76qwjgqVy5Ms6fP5/pfkTmkAt5IBfyQC7kgeq18vDPP//gs88+w65du/Du3Tvx+cOHDyl43cBo30eOHTuW7fuK9v4eHh7o1auXTkd9wYIFoVKpYG5uLgKnvby8AFBbXd8uUpKynREWFgYPDw80bdoUnHMUK1YMPj4+aabNaxjCRXrB67a2thg2bBg8PT1FgAkFTv+Hoa+LtKAg9o/D398fR44cEf+n8jIehnah3M/y+rMiKxjSRVrlT07Sx9DXRXx8vKhHAeRCwc/PD5xzWFlZYdasWXj06JHejh0TE4Off/4ZAwYMQNmyZeHk5ITixYtjwIAB+Pnnn0U6cvEfhvQBAC9fvsSOHTswePBg2Nvbi6DgiRMnijTkIxlDukgreF1pf1PgdGoMfV0oqNVqbNu2TVwX5CJzLly4AAsLC1haWsLDwwNAxvWfhIQEHDp0CI0bNxbf/T/++CNH82xKPHz4EO3atRP3jw/5sbKyAucc7u7uGDhwYJqDQrTrYuPHjxd9hvfu3Uu1nUjuR7K2tgbnHAcPHszSPmvWrBFOzp49m266zPpj6R6VPim/p2fOnMHChQtRqFAhce2Ym5vD3t4eP/74I86fP6/z7gNIXb50bcgFBbATBEEQAJIf2Bs3bkShQoXg4uKCI0eOZFqJWrp0KTjnWL16dZrHI7LHq1evUKNGDZiZmWH58uUAMq7YBgYGillGCxYsiJ49eyIwMDCnsmvShISEoFSpUjA3Nxedshl9x8+ePSsC5ooXL44JEyYgLCwsp7Jr0pALubh37x5sbW1hYWGBAwcOZJj29evX2LFjB4oVKyaCqNavX0+BcXqCXMgDuZAHciEPVK81PspM+A0bNgTnHLVq1cKePXsQHx+P58+fY9asWRS8ngPoq+Nb+zgzZswQAzw552jUqBF++OEHXLx4EX///TfWrVsnZqFxdXVFUFCQXvKQ28mplxBKWyUxMRGenp5o06YNOOdo3rx5lmY1ywsYykXK4PWhQ4ciLi4OQHLwBAVOp8YY509B7B9GSEiIeLH6/fff6/342gHTeX2wU2YY2sXbt29x+PBhXLlyRed6oD731BjShfYqszt27MCSJUtSbSP+IyfuUf/73/9gaWmJAQMG6HxOJA8emDdvHh4+fKiX48XHx+POnTto1KgR7OzsUgXNKcGhEyZMEPuQi//Qtw+FlM/nEydOYNiwYcLHmDFjxDbykYwhXKQVvL5mzRps376dAqczwFDXRUooiP3DuHTpEszNzZEvXz6cPn0aQOpyUv4fFxeHo0ePokWLFuK7P3/+fGo7ZJNRo0aBcw4zMzPY29vjhx9+wKBBg/DNN99g1KhRmDZtGsaMGYNp06Zh5cqVWL58OVavXo1Tp07h6tWroq8D0H1OaLcjxo0bB865CM6m9nfa+Pv7o1OnTrCwsED//v3x5MmTdNOq1WokJCRg6NChsLKygpWVFf79999U6VJeT6dPn8a2bduwYMECzJ8/Hzdv3sSLFy8A0KQjGZGUlIS///4bo0ePRoECBcR3OV++fHBwcMCiRYvEPUwhs9nzAbo2ZIEC2AmCIAhBeHg4unXrBs45GjduLJa1VtCuMPn6+sLd3R2cc0ybNi2ns5pn6NChAzjn6N27t85MlSmXZ7xx4wacnZ3BOYetrS3atm0rKlZE9lGr1aIxPnDgQLx//15s03bx6tUr7N+/HyVKlADnHEWKFMEPP/yA4OBgY2TbJCEXcvH+/Xsxy8K4cePS7SQJDAzEihUrUKRIEXDO4ezsjPnz54sGOZF9yIU8kAt5IBdyQfVaOfD29hbf9Vq1amHNmjWYMmWKCEig4HX50e44HzFihE4wyYgRI3Dv3j2d6yopKQleXl5o1KgROOcYO3YsrUZkRM6dO4eSJUuicOHC2Lt3LwB6OWUITp06hfr160OlUsHOzg5jxowRzx6lvFMGTit9YPRyKucJDAzEJ598IlzQbFdp8/DhQwwZMkSsUGNmZoaLFy/q5dhZuQ/Rc+M/DOkCSO7T2rhxIxwdHcE5x5AhQ3RmtCYX/2FIF9rB67///juaNGki+iNTpiEMf10o7N+/X9R9KSAxNYmJiXo5zrNnz7Bp0yYxsNzCwgLW1tYYOXIkFi9ejBUrVqB///4iOJTeEaaNvnykRcp3IRs2bBA+VqxYYbC/m1vRhwvt50LK4PW1a9cCoMDprGDI60IbcpF1Hjx4ABsbG3DORT+FNsr9JiYmBrt37xary3HOMX78eDx+/Dins2wyaN/LR44cKcp1+/btH3U87e92WgG65ubmaNCgAerVq0eBuhng4eGB/Pnzg3OOZcuW6bxXUspJcXfv3j0UL14cnHPUrFkzVTkq6V6+fInDhw/j008/FTPnKz/Ozs5o3bq1WGWIXOgSFxeHEydO4JNPPkG5cuV0yq5BgwaYNWsWvL29dfbJqAzp2pATCmAnCIIgdHj48CGqV68OzjlatmyJ69evIzo6WidNSEgI5s+fD3t7e3DOsXTpUiPl1nRRGhgrVqyAhYUFatasidu3b6eqIAUGBmLr1q0iSNfe3h4dO3bEnTt3jJBr00Sj0UCj0WD27NngnKNu3bq4d+9eKhf//vsvZsyYIQKCSpQogSFDhsDf399IOTc9yIV8JCQkiMZdgwYNcO/evVQdkGfOnME333wDBwcHcM5RtmxZLFmyhGac1DPkQh7IhTyQCzmgeq18+Pj4oHDhwuCco2TJkmJ2kRo1amD37t0UvC4x2i+2hg4dqtNhv3jx4nTTqtVqTJ06VdwPc+qFMZGamJgY1KpVSwzoIfTPmzdv0LFjR/FCsFy5cvjnn38AJM8kqv1CVzuInXOO+/fvGyvbeZ5Hjx6hS5cuqYLYaYDHf4SHh6NChQpiRY01a9boZYU55ZpQq9V48OABNmzYgLFjx+Lbb7/Fjh07cO3atVRp8zqGcqEQHR2NKVOmwM3NTcxyXKJECcybN0+kIRfJGPq6SEpKwm+//SYm8qHA6fQx9HWhoFaraYZjAxMcHIxZs2aJYKzixYvjq6++SjUg4c2bN1i3bh1UKhXs7e1x/PhxI+WYAIDY2FhMnz4dKpUK9evXh6+vr7GzZJKo1WqcOXNGTNLAOcfGjRtTtb+1A6dHjBghttF9KmdJ6WLYsGFiG7lIRqPR4NWrV+jYsSNUKhXGjRuX5sQjr169wrRp00T9VFnxge412Ue7j3z06NE695b4+HixLSkpSed7m9F3OL0AXXd3d/z55594+vSpuI9RoO5/aJfpokWLhIvVq1en+b7Iz89PDN4sUqQIVq5cCeC/clT+DQoKQr9+/VC+fHkxMNDc3Bx169ZFiRIlULRoUXDO4eTkBC8vLwDUF5KSmTNn6rTHOnfujHnz5iE+Pl6UVVbu63RtyAsFsBMEQRCp8PPz0xkpOGnSJNy9excPHz7En3/+iW+//VbMAFOzZk1EREQYO8smy+PHj0Vj0N3dHbt370ZgYCD8/f2xc+dOtG/fXgRcOTk5oV+/fqlmzif0Q2hoKKpUqQLOk5d737RpEzw9PXHhwgWsWrUKVatWFbMfurq6YsaMGQZfBi+vQi7k4uHDh6hUqRI452jSpAmWLVuGmzdvwsPDA9OmTUPBggVFYFy1atWwffv2bD03qGMxfXLSBXWeZAy5kAe6R8mDDPVa8vMfPj4+KFSokJgd0dnZGdu2bdN5MULIhfb3d9KkSciXLx8457CyshKzvaVMB/zXwX7w4EGYmZnB0dGR6sZGIiEhAQDQqVMnMZiAMAyPHz/GrFmz0KBBAzFA7fz58wBSv/QNCgoSM8gpaYicQanHxsbG4uHDhxgwYIAYeGBhYUHBEGlw//59VKlSBYsXL9Zbf2xiYiJCQ0PRrVs3VKxYUeelMOccLi4umDNnjkhP9alkDOFCG2WWv/Xr16N9+/Yi8GrUqFEiDblIRt8uUgavKytBcs4xYMAACpzOAENfFwo0q67hePjwISZMmCAmhnFxccHq1at12g/a/VBPnjwRKz1pPysI43DmzBlRlzp48KCxs2OSeHl56TwX+vbtK7Yp7T3gv/uUmZkZOOf4/vvvjZFdAslefv31V/HMGDx4sNhGz4z/WL9+vfheL1++XARtBgcH4/Lly2jQoIHot+WcY+bMmdS3pEe0g2PHjBkjynnTpk0fPAmF9nN67NixIkC3efPmOHr0qNjm7++vsyodBeomo11+EydOFC569eqFdevW4e7duzh27BgWLVoEJycncM5hZ2eHrl27IjAwUOyrlKO3tzfc3NzE89nKygoTJ07E4cOHERcXh8ePH+PPP/9E69atxQQzjx49yvHzzg1MmjQJjRo1wt69e/H69WvxeVbfkdK1ITcUwE4QBEGkib+/P2rWrCkqZfnz54eLiwvMzMxgYWEBzjkqV66M3377LdXLP0K/+Pn5iaUa8+fPj0KFCsHZ2VnnZVLVqlWxcuVKhIaGGju7Jo2fnx9cXFxEoE/BggVRoEABHRd169bFoUOH8PLlS2Nn16QxhguajTR9/Pz84OrqqvPMSPnSu2XLlrh7967OUmvZ4dWrV3o5jqmREy60n/l//PEHbt68me72vAy5kAdj3KPu3buns3wquUjGGPVaLy8v/Pbbb+L/5OI/vL29xcDksmXLYvv27TovXAk52bx5s7iOOOdYv3692JZRh/2sWbPAOYelpSVCQkJyIKeENtpumjRpAs45ypQpg+joaBqMpmeU8oyLi8OtW7fQrVs3cM6RL18+XL16FUDqZ0FgYKBY8YOeE4ZFu3zj4+Ph5+eH/v37o06dOuCci8CSsmXLYtOmTeQjDSIjI/XWz/H06VNs3rxZTBKglH/16tXRoEEDlCpVSnw2ZswYvfxNU0KfLlKi/d339fXFkiVLhItp06YZ5G/mZvTlIqPg9W3btgEABU5ngiGvC20oiF3/hIeHY968eWIW0HLlymHfvn14+/ZthvsNGDAAnHM0bdoU79+/p7qtEVC+81FRUWKF7SlTphg5V6bL+vXr0blzZ9jY2MDKygpDhgwR27QDTZX7lDJRgxIARxielPchHx8fdOnSRQwoGDRokJFyJh8pJ0tQ6j1OTk5o0aIFihcvLgLXVSoVzM3N8euvv+Ldu3fZ+rspHdGzW79B7AAwcOBA8Q69UaNGOgP2lfLWXpVOO1A3r/vQdjF9+nSYmZmJOqcyCagysYijoyM6duwoVpHTaDRi/wcPHoj0nCevGH/+/Pk0v////PMPqlatinz58mHjxo3ic0L32RoeHq6z7WPKiK4NOaEAdoIgCCJdHj16hBEjRojlrbV/6tSpgz///DPbDRQiawQFBaFbt24oV66cqFApozB79+6N4ODgbAVcKZUtqnRlTnBwMPr27YvKlSuLABDOOT755BOMHj0a0dHR2Tp+VhyQp2QM7UKbK1euoFu3bti6davOrALk4j9CQkLw3Xffidl1bWxsYG1tjS+//BLLli3Ta1kdP34ctWvXxvr16xEQECA+Jx/J5JSLNWvWiCXvRo8ejT///FNsIxfJkAt5yMl71LJly8A5R8+ePXVmvCIXyRi6XquNn58fRo4cKWZLVCAX/+Ht7S1mYq9duzZ2795Ng/YkRPnOenl56SxVvmLFCpEmvUARjUaDyMhIdO/eHebm5mjUqJHOctCEYdFoNDr3HOUZwbnuUvKE4QgNDUWXLl3AOUetWrV02g8pSemL0B8pZ6o6dOgQfvzxRzGQSvmpXLkyRo0aBV9fX7pXGRh/f3+MHj0apUqVEi/eP/30Uxw4cEDUBTw9PbFmzRrxsn716tVGznXeQvt+FBcXh3Xr1kGlUsHe3p5m1jUgSUlJ+P3339G8eXNxb9q8ebPYHh8fn27gNAXu5iwUxK4flO+th4eHmEnU1dUVR48ezbBtnpCQgMTERHzyySfgnKNjx445lWUiHe7cuSMC6mjgmWEJCQnBmjVrYGtrC845+vXrJ7Zp13vVajWOHj2Ko0eP4v3798bIap4i5b3/6tWrWLNmDYoUKYKCBQvq9ENeunTJSLmUD+3v7IIFC3QmglF+XF1d8eWXX+LatWs6+4aEhOD+/fsf9NzVXonr/PnzOvvm9ee3voLYQ0ND4ebmJvp8a9WqBW9vbwDJwcDa5awdqGtjY0OTJf4/2i527tyJHj16pLouKleujGnTpsHHxwdA8vdX8eTl5YXChQuLYPemTZvCy8tLpNP+FwDev38vVmzs3r17Tp1mrkFfg17o2pAXCmAnCIIgMiQmJgaPHj3C8uXLMWPGDEyZMgXr16/Xa2AokTXevHkDPz8/bN68GR4eHjh48KDelxB6+/YtgoKCsGfPHuzcuRPnz5+nYN00iIqKwuPHj/H777/jr7/+wvnz5xEbGyu2f8wSQinL9uHDh7h16xZWrFiBlStX4s8//xQV6LTS51UM4SIlT548wbBhw0SD9KuvvsK+ffvEdnLxH7GxsXj58iVOnz6NW7du4e7duzrb9eEjKChIp6OgZ8+e2LNnj9hOPpIxtIuoqChMnToVDRo0AOfJy6w5OztjwYIFIg25SIZcyENO3KMAYNSoUShYsCAsLS1RtGhRLF68WGwjF8nkRL3W19cXI0eOFB3FFNCQPj4+PmKJ+Bo1amD//v2Ij483draINFiyZIn4Pk+YMEF8nlHwOgAcOXJEBPZQ0PTHkZ2BxomJiUhMTMTs2bPh5OQElUoFa2tr7Ny5U9/ZzBNof9+z8gJXo9HgxIkTKFGiBOzt7bFhw4ZUxyEMQ8prIikpCTt27MB3330HzrlY4dHBwQFOTk7YsGEDbt26leExCP3g7e2Nb775Rjz/S5YsiTVr1ogBHsr1odFoEBMTg6lTp8Lc3BwdOnTAmzdvjJn1PE1oaCjc3d2hUqkwfvx4Y2fHJNFoNPj555/RqFEjUef65ZdfACQ/c5RrI6PAaSJnSUxMxJYtW4QL7ZmQ6RmSOcp3Ojg4GGXLlhWrBO3du1enjz29/aKjo8WM31988UWqwB/C8CjlHRkZiVmzZsHOzi7VYGdCf2h/vxMSEuDh4SGC2DNaIYUmETMcKcs2KioKDx48wLBhw1IFYhcuXBijR4/G0aNHjZllKdHuF//333/x66+/YsSIEZg2bRpWrVqFp0+finaAMvA7IiICAwcOhIODA3bt2vVB3++oqCjMnTsXhQoVQuvWrbFr1y4xs3Jeb6unF8T+008/fdD7i5cvX2Lr1q1wd3cXA5aVmaZTDt4PDAxE69atUb9+feoT1kL7u/jmzRtcv34dP//8M3766Sf8+uuvePnypRicpD3zekBAACpUqCACn9u1awc/P79Ux1RQ+rYU361btzb0qeVp6NqQEwpgJwiCID4aamjLw8c05lL627t3Lzp37ixeXikj0Rs3boylS5emux+hy8eUj7a/169fY8OGDahatarOTGQqlQo1atTAwoULs/W38hL6Kp/Y2Fj88ccfYjYZlUqFokWLYtKkSSJNXu9QyUliYmJw5MgRMRJdmX1M++UtXRs5w/v37xEbG4tVq1ahTZs24mXh6NGjRRpykTOQC/k4ffo0vvnmG+GC7lFZRx/PVCV4XZlJo2LFijQrXyb4+PiIuufKlSuNnR0iDby8vMSyzZ9++qmY9SWz4PXbt2/rDFC4c+dOhvsRqdF+Qfjs2TM8e/YMz58/R0hICHx8fBAYGAgvLy9cu3YNN2/exM2bN3Hs2DF4eHhg8+bN6NGjBxo3bizqrimf0WmhzHapr8FVpsi+ffvEIO/Mvs9xcXGoW7cuOOdo2bJlTmQvT5PSR0BAAA4cOIBmzZqJAB/tPqeff/4Z/v7+GR4DoOtCXwQGBuL7778Xz/0yZcrgf//7n86M9ynrSPv37xfebt++ndNZJrQYMmSICMB68eKFsbNjciQmJmLbtm0oWrQozMzMYGtri59++klnu4Jarcb27dvFTK6rVq0yQo7zLimfE0uXLhX1rEGDBhkpV7mT2NhYdOzYEZxzFClSBAsWLEBkZGS66bWfEePGjRPBWRQQajxCQ0OxZs0aVKpUSXgMCgoydrZyNVmd6fjdu3eYMmUKzM3NUb169VSDMYmc4927d7hz5w66d++OatWq6bS/GzRogEGDBiEoKEjn+UH9IrpkVh5p9aMOGDAAnHPY2dlh7969We5rvXjxIrp27SraGMWKFUPXrl1FuzCvt/m0z1951pYpUwa+vr5Z2l9xmZiYCF9fX3z++efgnKNgwYK4efNmmvuEhYWJe19eL39tMhuAlHJ7WFgYPvvsM9Hn0aJFC/G9zugai4uLE4NomzVrRvcnA0HXhrxQADtBEARB5EG0K703b97E6NGjdUah29vbo1ChQrC0tBSd8NpLDlKwT9bJrKy0XRw6dAhffvmljovixYujTJkysLe3JxfZJDtllZSUhLdv32LUqFGwt7dPc1Yf4sP4GB/a+8TGxmLcuHEoXry48PHjjz/qM4t5Bn3cR7y9vbFw4ULhYsqUKXrIWd6DXMjDx7rQfq4HBwdj/vz5wsW4ceP0lT0iA5TgdSUoq3HjxoiOjsbevXspiD0T/P39MWvWLCoTSTl37hzs7e3BOce8efMyfKGuOPTz80P79u1hZmYGS0tLDBkyhFZTywYzZsxAw4YNUapUKTg5OaFEiRJwcHCAg4MDChYsCCsrK1hbWyN//vyiPWdubq4zKLlYsWI6s+en9eLj3r17qF+/Pv7999900+R1Nm/ejMKFC2Po0KGZplVmSPrqq69gbm6OcuXK6QTqZhW6N344vr6++Pnnn1G+fHkxkEbp1+jXrx/WrVuncy/LqIzputAP4eHhmDx5MooWLQrOOVxcXHDt2rV00ytO7t69K+5tf/31V05ll9AiISEBADB9+nSoVCoULlwYz58/N3KuTJdLly5hxowZyJcvHzjn6Nu3r9imff9Rq9VYv3493N3dcenSJWNkNc/z5MkTnDp1Ck2aNNGZDGbq1KnGzpr0KPf4GzduiNnX27Ztm2pQWXocPXoUtWvXBucc5cuXx7179wyZ3TyBMlgPSO77jo+Px/v37/H69WtERkbixYsXCA0NRVBQEG7duoU9e/Zg1apVqFWrFooXLy5mEd2yZQsA3T6qtOpZVL9Nm/j4eNy5cyfDVQi0OX36tFhZaNOmTQbOHQGkbgvs3bsXffv2RYECBXTer9avXx/Tpk3Ds2fPxCzJdF1knYwCaLXL6ZtvvhGDmT4kiD0kJATnz59Hx44dUbJkSXDO4ezsDE9Pz0z/fl5A+3s+b948rFy5Eq9fv/6oYwUGBqJ9+/bgnKNNmzZ4+vRpumnzerl/LElJSdBoNNiwYYP4PpcrV05MvJBZAPypU6dQpkwZqFQqUY+l+5HhoWtDHiiAnSAIgiBMCOVlBpD+yzztytXevXvF7BrK7JS9e/fG9evX4e/vj9OnT2Pu3Lki2GfBggUGP4fcjtKY0O7cyoqL5cuXixnhOOdo2rQpRo4cieDgYDx//hxXr17FokWLhIvFixcb9kRMgA9xkRnariZNmgRHR0dYWlqCc45Zs2ZlK595BcXHu3fvxGcf60N7v7Fjx8LGxkYEQqxevTp7Gc0D6NOFdgfK+/fvsX79eqhUKuTPnx/79u3LXkbzAORCHgzlIjo6WrjgnGPt2rXZy2geIiv12pT4+fnpzLzeqFEj8QL4/fv32LZtGwWxE7mWmTNngnOOUqVKZRiwpnyfAwMD0bdvXzFru5ubm+iEp+/8h3Py5EmdQHTtl+LKZ5aWllCpVLC2toaNjQ2sra1RqFAhuLi4oHr16li4cCGOHz8ujpnWvc3Lywu1atUSwSf3799PN21eRQkWVK6HCxcuZGk/ZQas/PnzIywsLMt/Twl0UKAXVroo9xOlXGJiYvDy5UuMHz9erDygPUC/X79+OHTokM4xMvt+03WRfZSy+v3331G6dGlwzlG6dGlcvnw5S/tt3rwZFhYWsLOzE4MIiJxDuc5evHiBOnXqgHOOChUq6LRdCP2gfY+PioqCh4cH7OzsUk1ioV2XSkpKQkREBD0fcgDlnpSYmIjY2FisXLkSbdq0EX20ynO+ffv22L59u5Fzm3uYPXu2KL8TJ05kaR8vLy/06tVL7Ke9UgHx4Tx9+hQ7d+5E06ZN8cknn6B58+aoVq0aateujbp168LV1RUuLi6oUKECSpQoAUdHR9HO0/5xdHTE6tWrU9V1te9ZO3fuxMyZM9PcRiTfX/bs2QNnZ2f8+eefGaZVyi4xMRENGjQA5xz9+/eHWq2mcs0BEhMTsXbtWvTt21dn8HixYsVQtWpVeHh4ZDggh66L7KM9GLlfv35ZDmJPOWP1ixcvcODAATRv3hycc5QoUULMNJ7XXWi3ebX7JpR6Z1RUlE4fenokJiZi69atMDc3R4kSJXDmzBkAVL76Rq1Ww93dHZxz5MuXDzdu3ACQfj+S9ufffvuteJ7ToPGPh66N3AsFsBMEQRCEiRAbG4tdu3Zh+fLl4rOUlSvt/2/evBkNGzYUleHPP/8cBw4cSDWTX2xsLJYtWwaVSgU3Nzf4+PgY9kRyMUr5RkZGYvbs2ToB/yldaDdKZs6cKWY5UWaRvn79eioX79+/F7PqNmjQAKGhoQY8m9zNh7jI6rEA4Pr162jUqJGYgalKlSqIiIjQT6ZNGKUMnz9/jv79++t0Bn7ssYDk2U2KFSsmrp127dp99AwEeQV9ukiLp0+fok2bNjrBodTQTxtyIQ/6dpGynCMiIjBkyBCoVCq0atUKz549y9bx8wJZqdem5MGDBxg+fLiYobpJkyZim/YSj9pB7CNHjjTMCRCEAZg7dy4456hcuXK69R3tmde//vprFC5cWLzADQgIAEDBt9lh+PDhIli9QYMG2LlzJ/bt24fdu3fj0KFDOHPmDE6ePIlz587h33//xa1bt+Dl5YW3b9+mmvk+LQ9eXl5wc3MTq6Ip/z548AAABetq888//6BRo0ZQqVQYNWoUXr16lWH6q1evwtnZGWZmZmjVqlWqstR+xrx48QJ3797F8OHD8fnnn6Nt27bo1asXduzYgUePHgEgF+nh5eWFH374QQTYKj+1atXCF198AR8fH7x58+aDj0nXRfZQvt9v3rwRZVmiRAkcPnw4w/2071OffvopOOc067ce0Wg0Ovce7WC3xMRE8d1WPISFhWH+/PmiD6RVq/GgalYAAOIxSURBVFZZnhmW+HgSExOxadMm5MuXD7a2tvj555+NnaU8R8p24IsXLzB58mS0bdtWZ2Chi4sLmjRpgjNnzlCbO4so95fPP/9c3FcSExMzbXuHhoZi8ODBOu8ylGNRW+PDSUpKwsaNG3VWbkrvR3sgrUqlgpmZGaysrFC7dm107twZN27cEKsPKWj7PHDgACpVqgTOOQYNGpRmmrzOu3fv0KNHD3DO0bNnT7x8+TLTfUJDQ8XzuVevXummy8r1QS5Sk7LcvLy8sHXrVtStW1dMasQ5h62tLVq1aoU//vgDDx8+zPAYdF3oj7SC2C0sLHD9+vUs7a89INrLywutW7cWK4KEh4cbJM+5He2JK8aOHSvKKbPvbGRkJEqUKAHOOQYMGJClfYgPQ5lswdLSUky2lpXg9Tlz5oh72eDBg3Mkr6YMXRu5EwpgJwiCIAgTICYmBgcPHhQvCceNG5cqjXZFa9u2bWL2Ks45RowYgcDAwFQzZyncuHEDtra24Jzj4MGDhj2ZXM6rV6+wevVqVKhQAZxzjB8/PlUabRdz5syBk5OTcDFnzhydpSJTVpD//vtv0VF5+vRpw52ICZAVFx/C5cuX0aBBAxG8XrVqVURGRgJAqsEGRGqePn2KMWPGiOVMP8aH9vVw8uRJsey5Erz+9u1bAOQjM/ThIiMmTpwIzjkcHBzw+PFjvR7b1CAX8qAPF9ovyVM+v/fv308zaGSRrNRrU5KUlIQ//vhDvDBUqVRYsmSJ2K79XFCC2JVZ+kaMGGGQ8yAIfXP48GGYmZmhRIkSOrPfKm035b5z9+5ddOnSBY6OjiJ4/Z9//gFAgZ4fi3a5jRw5UtzPf/311ywfI7MXH9pBuk5OTpgxYwZatWpFwboZsGXLFuFizZo1Ou1o7cCd8PBwTJ06VbSjM3rGnz9/Hn379kWpUqVSBQzZ2dmhVq1a8PLyAkABWtr4+/vjq6++Qv78+UU5W1paoly5cpg8eTJ8fHzEbHEf8hKQrgv9odFoMHToUHDOUbBgQcydOzfDwd/anhYvXgzOOaysrDBlypRU2wnD8vTpU1y5cgXdunVDmTJlxMyWV65cSZU2o+AsQpc3b95kKSgRSA6AUCaB+e677wycM0Ih5ff50qVLWLBggc4kMEpdt2/fvrhy5UoqpxqNhq6LDFDKR3m29u7dO910CsHBwTr14c6dO4u2BvHx+Pn5iT4KS0tL9O3bF6NGjcLUqVOxePFizJkzBwsWLMCWLVuwefNmrF+/Hvv27cP//vc/XLx4EVFRUaL+q+1L+/f9+/ejYsWKsLCwEP5oZbrUJCQkYP369ShSpAhKly6NgwcPplvvV+qg//77L0qWLCmeE5ndd65cuYJ9+/Zh6NChGD58OHbt2oWrV6+mm55I5tatW1i3bh2cnJzECgTKdTN48GB4eHhk6Th0Xegf7X7XL7/8Em3btv3oY/35558oVKgQSpQoIVZBoLZ3aqKiotC1a1dwzjF37txM08fHxyM6Olq8L+/Zs2cO5DLvMX78eHDOUbJkyQwHcWh/pzds2KAzaV5mA82JjKFrI/dCAewEQRAEYQIcOXIErq6uYpm0zp07pzs798GDB9GkSRPRGJ84cSKioqIy/Rs1atQA51zMZE0NxtQkJSVh7dq1KFKkiOg8GTp0aLovRNauXYvy5csLF0uXLk332EpHSVxcnNjnl19+0dlG/MeHusiMy5cvo2HDhhS8/pGo1WpMnDgRVlZW4sX3kiVLdIJMMiOj4PX27duLmfwoeCFj9OEiPZQXJdOmTYOlpSUKFSqEp0+fZvu4pgq5kAd9uNizZw845/jtt990Ptee+btixYrgnItZxen5nTYfUq9NycGDBzF8+HBYW1uDc46vv/5abEsZxK7McDZt2jSdJVgJQlbu3r2LKlWqgHOORYsWpTnr6tmzZ+Hq6iqugWLFiuHatWsA6J6TXbTrmGPGjBH10E2bNqWa5fBD8fT01AnSXb16NSIiIvDo0SO0b9+egnVToP1dVlYm4Jxj8eLFYplxhQcPHmD27NkiqLpFixYICwsDkLocf/31V1hbW4vZL4sXL446depgxIgRaNOmDapWrSoc0XLmqVGuC3t7ezg7O2P79u2pAto+pLzoutAvUVFRaNmyJTjnqFGjBu7evZtuWm1Px44dQ4MGDUR5Hz9+PCeya5KEh4fj0qVLOHz4MPbs2YPffvsNO3bswE8//YRVq1Zh4cKFmDp1KiZMmICBAweia9eu+D/2zjqsqqwL42vfSwkiiBgYKHYndrdjd41jj61jO6OOOfZYY4+tgzE6dgd2J4iUpCgqKErXhff7g+9szw26FPbvee4j3rPPuefsddbOd6/drl07lCxZkouzpOiiu3fvBpC4SFHaql7ze0ECHz9+xLZt23jfLSV5JIlR9PT04Onpmdm3KJBx8eJFzJ49G0ZGRjA2NuaLOAwNDbFgwQKcO3dOLb3wi9QzePBgMMbQtGlThIeHqx2T169Pnz7FqFGjeHnUsmVLnD17VuRnBuHs7IwCBQqAMYbWrVvD3d091ddITrzOGIOFhQW6devG28dCrKtNQEAAOnfuDMYYGjRoAEdHR35MvluKRIcOHXgdfeHCBbVrSfOoKpUKDx48wJQpU2BgYMD77FIQhlKlSmHhwoVavyNICBgyYMAA1KpVS20BU9GiRTFp0iStPE+qXyD8IvPQNU+alj5acHAwF5KOGDEiI24tRxIaGooZM2aAsYRdSJ89e5ZoWvmOXFLwnvbt26sdE6QflUrF+9y9e/dONJ1cX7Nz504UL16clz3yekCQNoRvfL8IAbtAIBAIBDkALy8v3mkfNmyY1qpOqZHl4uLCt7+TIo/FxMQkee34+Hg8evQI+fLlA2MMW7ZsybTnyAl4eHjw/J07d26ikxpXrlxBkyZN1CbbJZJqFJ8+fZqfc/To0Qy//5xESm2RHJri9SpVqgjxehpwd3dXE/pI0dJTghCvZyzpsUViyPNeqmcMDQ3h5eWV7mvnZIQtvh3SY4vY2FhMmDCBny8JIeSDkfv37+fHN23alOH3n5NIrl2rC3leBwYGYteuXTA1NdWKkihPp1Kp8OLFiySjjwoE3xpSFFypfXv69Gn4+/tj9+7dmDRpktqW8mXLloWLi0t233KOIikRe1r7BS9fvkSVKlV4hKa1a9dygTUAvHr1Soh1dSAvz6WJKcYYbG1tMWnSJCxZsgSTJk1CvXr1uF/UqlUL+/fv1xoDCQ4OVvMtY2NjNGnSBM+ePeO2CAkJwePHj9G6dWsu2BLbmScgt8Xq1auxZcsWeHt7J5omJQi/yHguXrzI3/HNmzcnmk7e97537x769OnDz5s/f34W3GnOxM/PD6NHj+a7BaXlY2lpidKlS+PixYta5ZjcbnZ2dmCM4eeff9Z5XACcOXMGSqUSlpaWyS6Uler3VatW8QAZTk5OiaaX8lrkeerQzK/379/j4cOH6N69O6ytrdV8oUqVKli0aBEePnyodk5SEY+FX+hGyoM9e/bA1NQU5cqVU1t8ppmHUjRLxhjatGmDI0eOiHc+g3F2doalpSUYY2jVqpXa4szU5HFSIt358+cjPj4e+/btE2LdJPD29uYLWFu0aIH79+9rLfCIj4/HgAEDwBiDvr4+WrVqpbbwQGqbRkVFYfny5WjcuLFWeWZra4vSpUtzW0ydOjVLn/N7wMfHRy3fGjRogBEjRsDLyytVi8mFX2Q+8ro4LUHwpDautPNN586dM+zeciJXrlzh7/GcOXN0BiuUB8dbsmQJFAoFlEolFi9erHZckH5UKhXf1SYxAbvcL7Zu3YqSJUtCqVSCMYbRo0frTCdIPcI3vk+EgF0gEAgEghyCs7MzRo8ejdu3b/PvNBtX8+fP5538MWPGcNFnYsgHMaXzjhw5kvE3n8NwcXHBwoULtaJkyO0xduxYNfGJRGKdEunc5cuX8wGUmzdvZsLd5ywSs0VKEZHXMxYXFxds37492bJHjqZ4XT7hK8TraSclttAccJRPSknHNOuZlStXQqFQQKFQoEuXLoiMjBQd/WQQtvh20GWLlA4WBgYGYvz48bx8Wrp0KY96fOzYMfTo0YMf+++//zLl/nMSutq1qRm4ValU2LNnD4/Qt2bNmsy4TYEgy5C//7NmzVKbvC1evDgYY3zCo2zZsujfvz/evHmTob8rSCAjRewuLi7cfqamppg7dy6/vrzO9vDw4GJdU1NTtQiAuRm5LRYvXgxLS0veV5YiGkr/b9y4MXbv3q0lOgkKCsLvv//O7VixYkVMmzZN5+RWXFwczp07B0tLSxQpUkT0x2XI3/3E2qYpRfhF5nDmzBno6+vD3Nwcd+/eVetHSMjz9+nTpxgyZAj3jSFDhnA7iLoh9QQEBPBIklL7tHjx4ihRogTy5cuHokWLolKlSihVqhRKly6NevXqoX79+mjQoAF+/vlnzJ49Gzdu3NC5q5bcbgcOHIC5uTm327hx43Smy+3Y29vD2toaxsbGWL16dZK7McXHx0OlUmHo0KFgjMHMzAweHh4608kJDg7G27dv4eHhAU9PTzW/EbZInKCgIJw9exbNmzdHyZIl1dq8P/zwA2bPno2QkJBk81D4Rerw9/fnu200b94cFy5cQFBQED5//gw3NzcMGTJEzR49evTAhQsXhHg9k3BxcVETsbu5uaX5WkePHuUCrgIFCqjNQ0VFRWHHjh06xbqirk/Azc0NVlZWXGw+ZswYnDt3DhcuXMDff/+tJkgvVKiQ2typ1D6OjIzE8OHDeWRXxhh+/PFHbNmyBREREYiOjoaTkxPWrFnDbbF27dpseuJvF2dnZzRp0gTz5s3D+/fvuXA9Le+q8ItvE6mvERkZiTJlyvDFCvK5EIE269ev52XLxo0b1cY8pN1lY2JicObMGTRq1IinvXXrVnbdco5m1apVUCqVaNq0KV6/fq1z1w4AWLZsGSwsLHhZI99FVsx1ZwzCN74/hIBdIBAIBIIchHzAXbNDd/78ed746tixIxwcHFJ0zefPn/PBlSZNmqR7e/TcQlKR7Q8ePMhtMXjwYHz69AlA8oO9d+7cgb6+vlh5nkqS22UgMYR4PXNIa7SYjIy8Lga8EpDnQ3oGRT59+gRXV1dMmDBBbVJww4YNGXGbuQJhi2+HxGyRXGQ+ICFK3I8//sjzvUCBAqhevTry5s3Lv5MPRgqSRt6uldsipYug3r9/j759+3Kxgy4xokDwPSH3g3Xr1vFtaaVPwYIFMWDAAJw5c0ZrZ4G9e/eqiUxSgpTWwcEBy5cvx8ePH3m7Ore3pRITsW/bti1V/QR3d3fUq1ePixpr1aqFJ0+e8N/QFOu2adOGC4tSsyA0JyO3xalTpzB16lSYmZnxXThKliyJESNG4OXLl3yCSjonNjYWS5Ys4farXbs2/vrrL17/6GqTBQUFoWzZsloL0QUZh/CLzEGKPmxubq5zdw65IOf27dv46aef1ISKUpR7QdpxcnLigsTKlSvj9u3biIiIQGBgIG+nRkdH87IK0C2UkvuApkhX6nfIt6EX0UO1CQ4O5jto1ahRI9Edn6R64N27d6hduzYYYyhcuDA+fvyoMx0AvHnzBuvWrUPjxo2RP39+mJmZQU9PD3369FHb/UDY4itxcXEIDg7G+vXr0a1bN7X2bb58+dCyZUts27YNoaGh3CeSGjcRfpE23N3dUaxYMT6WUapUKVhbW6No0aJqNpkyZQpcXFx4vqVF0CnyPHkyQsS+Z88e3p4yNzfHwoUL+TG5L8nFur/88ktGPUKOwd3dHTVr1lTzA8YYL1sMDQ1hbW2Nffv28XOkfnNERAR69eoFAwMDft6aNWsQGBio9Tvh4eGYPXs2lEol2rVrJ9q1OtAc10tLWSL84ttEXqdIwd+MjIywbNkyteOCr8jrX/mi/Hnz5qkFhImKisKWLVvQvHlznmbJkiXZccu5gnPnzvF5ufXr16uV5SqVCo6OjmoBDhljGDlypFoaQfoQvvH9IgTsAoFAIBDkQOSdOamh9uuvv8LQ0BAWFhbYtm1bijp8fn5+GDZsGExMTKBQKDB9+vQ0i4EFCbaIiIhA7969wRhD+fLlce7cuRSd6+rqykUqlpaW2Lhxo86IWYKMIb3idSFwTz+ZEXldHolUDHp9RZ6HN2/exPnz53HmzBkcPHgQ+/fvx969e7F+/XqsWrUKa9aswYIFCzBx4kRMmDABffv2Rfny5WFjY6MW5XL69On8miKvU46wxbfJ5s2bsWnTJgBJ52F8fDzOnz/PIylKi86kT79+/eDp6QlARO1JDfI8f/ToEY4fP671fWJs3bqV5//169cz6xYFgixDXk8EBATg/v37OH/+POzt7eHs7KyWVipnbty4AVNTUxgZGeHAgQOpqguePn3Kt01v2LAhli9fzttTub0cS0zEvnbt2hTljWSHkJAQnDx5Em3btuWTtFJkb01beXh4YPz48WoCOIH2u/j69Wu4ubnhyZMnWgvQ5Gm3bdvG7WZra4udO3cmGckvNjYWX758QbVq1cAYUxM7CDIG4ReZh4+PD8qXLw99fX1s375dLaq9vDw7fPgwunbtyn2jU6dOuH37tuhHZBDOzs4oUKAAFyS+evUKgLpoRxpPio+PVxtb0rSB/P8HDx7kQrqKFSti9erV+Pvvv4VYNwlev36N+vXr8wUwL1684PmtOabXvXv3RIVUcl9av349OnTooFPgKPrniRMeHo6ePXvyPGaMwcbGBk2bNsWNGzfg5+enlj65PrmE8IvU4+HhgbZt22qJ1o2NjdGmTRvs2bNHLX1ERASePHmCd+/epfg35Hn94MEDODk5JXo8t6MpYk/tDrOrV6+GjY0NlEolDA0NsWjRIn5MXs5JYl1DQ0MwxjBjxowMe4acgp+fH6ZPn466deuq+YaJiQkGDx6MM2fO8LTS/GlkZCT69evH0xoZGeHgwYNJ/s5///3H00sLOAXapKecEH6ReaTHLsHBwXj37h1+/PFH5M+fH4wxWFhY4OrVqxl4hzkPeT9u5syZakF12rdvj3bt2qFChQpqgY4mTpwILy8vAKLOzSzmz5/P83v48OFYsWIFDhw4gD59+qBWrVr8mLW1NX777Td+XlrF65rnCRG88I3vFSFgFwgEAoEgFxASEoJKlSqBMYamTZuqTYYkxsePH7Fq1SoeeaNMmTL48OFDVt1yjiUwMBDW1tZgjKF79+4pagT7+vpi/PjxfJKradOmWlHbRWM6dURHR+P169d8yyjNaGPpEa9LHaMvX77A3t5ebBOcAj5+/AgXFxeEhYUBULdHRkVef/78OczMzDBw4ED+nbCHOmPGjOHi57R8lEolatSoobZKXZeNHBwccP78+SR3DcntZJUtdCFsoc6FCxdgZmYGMzOzFEW8ioiIQM2aNdGkSRNcunQJ/fv3x7Rp0/DXX3+ppUuNuFGQgLu7O1q3bg0DAwM4OjommVaqr+/evcvbT4cPH9aZVuSz4HsjsXc2qSiI0u4QefPmxcGDB1P83tvZ2aFPnz7Ily8fGGPIkycPmjRpwqP35vZJEV0i9r59+6Z40be8L+fl5cUXOltZWeHp06c6z5Hay/LzBV9JTOCp6RcXLlzg7aaqVati8+bNXLyeVL4+e/aMixgWL16cwXcvAIRfZBYhISFcRNW0aVM8f/4cERERABLaTSqVCrNmzeKLlhhj6NWrF+7fv5/rFyxlNBkRVVduE3mE6QoVKmDt2rXcD4RYN2k8PDxQokQJvlBv9+7dePv2LQDg8+fPePDgATp37gzGGPT19dG0aVPcu3ePny8fXx82bJja2FWzZs0wbtw4XLhwAVu2bMH48eO5LcQOHto4OjrCwsICenp6GDp0KK5evaq1o1By763wi4zh48ePuHPnDv744w/Mnz8fK1aswPPnz9UiRsfHxyM+Ph7nzp0DYwzt2rXTWmiQHMePH0erVq3AGMNvv/2GK1euqF1fkIC8zmjSpAlf+JRSbt26hTlz5sDY2BiMMbVxcXlfRqVSYePGjbCwsMCzZ88y6vZzFFFRUYiIiMCxY8ewb98+2NnZwdXVlc8vAV/rhejoaIwbN47PL5mbm+O///7j6TTfcckWHh4eKFSoEPT09HDjxo0seKrcifCLjEfKt4iICLi5ueHly5dwcnLC06dPcfPmTdy+fRs3btzAiRMncOzYMZw8eRI7duzAH3/8gblz56Jx48YoXbq02vzGtm3bkvxNKSK/GJf6+vyrVq1CxYoVE50zmjt3rtYCWnkZlhbCwsK4XiG320LeFv3tt9/UFrFK40jSp2/fvti/f7/a+fL50rSwbds2vjAwt9sCyH7fEKQeIWAXCAQCgSAX8Pr1axQpUgT6+vpYvXo1gKSFuJ8/f8a2bdt4h7FIkSJ8O1V5ZJnEEIOMiePg4ABjY2OYmJjg33//BZB0R+LNmzf47bffYGVlBcYYihUrBm9vb63zYmNj8fr1a2zfvh3bt2+Hvb29iDadCFFRUdi9ezdat26N3bt3IyQkhB9Lr3hdIiQkBEWKFAFjDLNmzeLR4gBhC00CAgIwd+5cNG/eHHv37kVwcDA/llHidQcHB7WJ+HHjxvFjwh4JBAQEoEyZMmCMwcDAAAqFAkWLFkXevHmRL18+FC9eHMWKFUOxYsVQvnx5VK5cGdWrV0ezZs3QsWNHjB8/HsePH1cTleqykYuLC4+iMXXqVNjb2/NjwhYJZIUtPD09ceXKFUyYMAHTp0/H4cOH1dILW3xFvlXwwoUL1QRSidGlSxfkz58fb968SXRSSuLJkyc4duwYpk2bhgULFuDkyZNcGAoIW8hxcXHhUW9nzZqlVn8nxq5du3jZf+DAgSTTenh44M6dO1i2bBk2bNiAy5cvq0XuFbYQfI/Iy5zBgwfzCIqHDh1K1Tv98uVLjBkzhg/2Fy5cmE+K5HZhozyP9+3bpyW2Sg0vXrxAo0aNwBjDjz/+mGQ5J8qktOPl5YWWLVvy6Eu///47oqKiACSdr0FBQRgxYgTvlz969CirbjlXI/wi4/D09ESpUqXAGEPt2rUxbNgwbN26FUOHDuV5LH1Gjx4NNze3dJXxwh6JkxEidgD4559/eNS4ihUrYsOGDWo7SUjRQ4VYN3Hc3Ny4X5iamsLa2hpdu3ZFlSpV+PcGBgaoXr06H8cFvkbYjYuLQ6dOndT8Z9GiRTx6n0RISAg2bNgAhUIBS0tLXLx4MUuf83vAz88PFy5cUPsuLe+p8IvMQVcQnSdPnqgtekqpiD0iIgKLFi3iY7V6enooW7YsVq5cqfV7goSdeaUFGatXr+bvc1LI6++QkBD8888/MDU15XW8hOZOztK4u9hdVpvkFpLLF85u3ryZ1yF6eno4evRostcBgLVr13Kfevz4cQbevQAQfpHZBAUFYciQIShbtizMzc1hYmLCdwM0NDTku6xICwN1iUjz5s2LsmXLYufOnfy6uvojJ0+eRNGiRflOBbldrCt//rt372L9+vWoUaMGKlWqhKpVq2LAgAE6d4N3c3NDo0aNYGdnl6Z6NzQ0FOvXr0eRIkX4YnNhi6/Pv2vXLgwdOhR58+ZFoUKFYGNjg06dOuHw4cNc9C/h4+OD/v37499//02TLU6ePAnGGPLly4cXL15o3UtuJbt8IyQkBFeuXEFAQAAvw0TbNnmEgF0gEAgEghxOfHw8nJyceOdQc0WnJoGBgdi0aRPKlSsHxhgsLS2xa9cuxMbGanUUY2JiEBUVhfv37+PGjRt4+PChVhQI0SD7Snx8PO7du8c74ydPnkwyvY+PD2bMmIHixYvzhQRSNBJ5o9vHxwerVq3ikd2lVb1t2rTB+vXr1X5fkNCplgbIa9euDTs7OwAJ25bWq1cv3eJ1IEG8IglQFQoF6tevjzVr1vDjwhZfCQoK4uVNrVq1uD2uXLmSYeJ1udhKTFAlzsuXL7m43NraGtevX4e3tze8vb0RFBSEoKAgvH//HqGhoYiKikJISEiikya6Bhbj4uKwf/9+7n8KhQK1a9fGihUreBphiwQy0xa3b99Gp06duGBC+ghb6CY8PByzZ8+GUqlE5cqVcfv27STTv3//HnXq1IGxsbFWdB55noaHh2Pz5s3Ily8fnyyRPra2tli1apXO83Iz4eHhmDdvHgwMDFCxYkVcu3Yt0bRSnkkRkRljOgcjJQ4dOoRq1arBwsJCrS3VrFkzUX8Lvnvk7diffvqJC7GS275cM3J1cHAw7O3teaREGxubVEcAzKno6ivI69+3b98iNjY22TIkOjoas2bNAmMMpUuXTnUkS0HSSDY5efIk72d06tRJ5y5Qurh06RLf2a569epaE46C5JH7gPCL7MHNzU1tcbdSqeR/GxkZoWLFimrtUCAhqp4UrT2lyP1J6scL1EmviP3Ro0dc/KOnp4devXrxY/LofZpi3TFjxmTYM+QUPD090aNHD5QsWVItUiJjCbvPdO7cGcePH+fp5WJoqV2kp6eHokWLYs+ePWrXlrcRvL29UbduXSgUCrXxWoE2aRXcCL/IGDTFm0mluXv3LgwMDFItYg8NDcW7d++wbNkyNGjQgNti8uTJOu8jt+Pm5obJkyfj4cOHaTo/NjYWW7duRZ48eWBsbIzdu3dn7A3mQjTfT8lXXr9+jQ4dOvB6RD4fq+udlr5TqVQYMmQIXyzr5eUlfCCTEX6RsdjZ2fH3XqoXlEoln281NDREvnz5YGJiAnNzcxQqVAgFCxZEyZIl0bBhQ7Rr1w779+9XWyiuqw66cOECb0MXKFCAB+XJ7WJdzbwKDw9HbGwsYmJitMaspLLl999/B2MMJiYmqdqtEUiox7dv387nsCwsLIQt/o/m8/v7++Pdu3cICQnhwRMkJLutX7+e98lTawsgIVBDu3btwFjCrh9CxP6VrPaN8PBwbN++HYwx1KtXD3v27EFAQIDOexGoIwTsAoFAIBDkAlQqFRo3bswj3sq3xpY+QEIDd9GiRbCxseGdv7Vr12pNzAYFBcHBwQHdu3eHra2tWqfUyMgIw4cPT3ZgJrcSERGBunXrgrGELcelxrHmCswXL15g+PDhPIp34cKF8d9//2nlZXBwMBYvXszT6evr84F6aSJy6tSpPL2wRQJOTk4oXLgwF23OmzcPtra2GSJeBxLs7OTkxEVC0iC8iPytm5cvX3J71KlTBzNnzkTBggV52dKuXbt0i9dLlCiB9evXY926dULEngTOzs4oUKAAXzTg6uqqljdyf5B3tlOaf5GRkXj16hWGDh2aqG8IEsgMW7x8+RJt2rSBiYkJj8hQuHBh6OnpicnCJHj79i1atGgBxhK2gn/58iU/JpVJkg3s7Ox4Xsq3wAa+5mdQUBBmz56tJlq3srJC+fLlYWZmJmyRBG/fvkXz5s3BGEPTpk3VbKHZppIijzDG0KZNG7U8lP/9119/qdnCwsICVlZWMDAw4G0pYQvB9468zhg4cCAYY2jRooXajk0pxdnZGU2aNAFjCVttp2Q3hNzMnj170LhxYx6pNbnIfc+ePeP19JYtW5I8R5A22rZty/sHr1+/BpD4JJJUzwcEBKBZs2Y8KtylS5cACNukFeEX2cvr16+xePFitG7dGqVKlUKVKlXQsGFD7Nq1i+++KPH582esXbsWY8eOVduZJqUcOnQIHTt2xL59++Dp6cm/F/ZLQC5ib9u2LVxdXVN1/r59+9CvXz8etGTixIn8mLzuV6lU2LlzJx+7ffv2bYY9Q07h48ePuHjxIoYNG4bWrVujXr16aN++PY4cOaK2uEBebnXt2pXnaaVKlXDs2DGeLrF6pXPnzmCMoVu3bpn6PLkZ4RdZh/Se3717l89H9O3bFz4+Pkmep1kHPH/+HAsXLuRjIbNmzcq0e/6ekQeukN5llUqFd+/epeh8Dw8P1KtXD4wxDBs2LFPuUQAsXryYjy8tXryYf59c20cu/p00aVJm32aORCqThF9kHxMmTODvcceOHXH27FncvXsX9vb2uH37Nl68eIHnz5/DwcEB3t7e8PX1hZ+fH98hRY4un7lw4QLfZUValC7EurqRt0WTEs3Kd2tMqVBXEq/ny5ePB98TtlAnsXxMyhY//vhjmkXTQEJ51r59e2GLZMhM3wCAd+/eYfz48bwsLFWqFPr27cv7lMIeiSME7AKBQCAQ5HDi4+MRHR2NqVOngjGGunXr4sWLF1oNpIcPH6Jnz568o1GwYEFs2LAB79+/V0v36NEj/PLLLzwquJ6eHp/8laIoKxQK6OnpYfbs2Wr3IUgQNo8ePRqMMTRo0AAvXrzQEkhfuXIFNWvWhJmZGRe1nTx5Umd0XRcXFx55vWTJkpgxYwYuXbqEXbt2Ydy4cXzgd9q0aVn1iN8N8olCMzMzHhWgatWq+PjxI4C0idc13/W1a9eiQoUKXAQnF00LviK3h7GxMe/cdejQAZ8/fwaQPvH6xo0bERgYCABiq+BkyKjtzDXRzN9Vq1ahbNmyvB755ZdfMuR3chIZZQsp7w8cOMAjTFetWhVnzpyBu7s7zp49i19//ZX7xcyZMzPyMXIEXl5efIFf06ZNcf78eV42ScgF0w0bNuQLoTT5888/eboaNWrgl19+gZ+fHz5+/Ihbt25h8eLF3BYLFizIgqf7vvD09ETp0qW5Lc6dO6dmi6CgIBw6dIjnsbSASaVSaZVDe/fuVUvXu3dvODo6wtvbGxcvXsTcuXO5LebNm5fFTyoQZCzydu3ChQu1IoSm5jobN24EYwzly5dXEyQK1HFzc+NlzN69e1N0jr29PT9n48aNmXyHuY8vX76gWrVqYIxh6NChiImJSbSPIV+k1rFjRzCWEIl3ypQpidbxguQRfvFtEB8fj7i4OLx+/RohISF8JwIJaSI3ICCAj/X17t07VRHwT548yRceSn37nTt3qt2DIKHPJy3ob9++PR+PSgp53r1+/RpbtmxB3rx5wRjD4MGD+TH5hLxKpcKRI0fg4OCQsQ+QA4mOjkZUVJTWOKy8vpAEWkqlEuXLl1fbZTOpd7t169ZgLGEHEOEDGYvwi+xBLmKXxnNHjRqVogiTmrvUbdmyhc8r7du3L9Pu+XtHyrfo6GisWLEC//zzj9r3SSHtaqOvrw93d/dMvc/cRnx8PPz8/FClShUwxtC6desU57G9vT0P5lO1alW+46CoJ1KP8IvsQd5GmjRpEm//y9v+yZGcreTi9Zo1a2LdunVo06aNEOumEV27NZqYmODQoUNJ2kJTvN6kSRP8+++/Ivp3OpDnU2psoQshYk8/afUNOT4+Pjh06BD3E0l3JfU5RCR23QgBu0AgEAgEuQQfHx8u5mzUqBHWrl2LJ0+eYP/+/Vi4cCGMjIy4QMfKygoHDhzQEmZdunQJderUgampKV81OGXKFFy7dg2fP39GXFwcjh49ivHjx/NrTZ8+nZ8vBlwS8Pb25hOA9evXx6JFi3D16lX8+eefXNwufaytrXHnzp1ErzV//nwwlrCt4MGDB9W2Zv706ZNatGmxPa02Li4uXMypVCpRvHhxHlVMiqqUVqROzuvXr7nQzsjICI0aNYKXl1e67z0nIreHgYEBqlevziODpmYxwfPnz1GpUiXuQ1u3blWLuhEbG6smYpdHYxLlVAKZJWKXc+PGDb4AJ1++fBg0aJDWoilBxorY+/TpA8YYKlSoAH9/f7XjoaGhWL9+PRQKBRQKBbZv354Rt5+jcHV15e9sqVKl0LlzZ+zevRtLlizBmDFjeN1dqFAh/P777zrrkYsXL/J0tra22LVrl9bWkVFRUdi4cSMUCgWsrKz4xJXgK25ubihRogRvAzVu3Bi///47Ro0ahR9++EFtYHDkyJFabVoAuH//Pq9zSpcujYULFyIiIkItTUREBDZt2gSFQgFzc3OcPXs2i55QIMgcdLWn0tL2efXqFe8Trlu3LiNuLUfy5s0b9O/fH4aGhujZs2eSYn9p8uLIkSO8jfrXX39l1a3mGnx8fPgON3///TcA3T4g/04eYbdt27ZaEaoFqUP4xbdBasr+mzdvwtDQEIwx9OrVK8Ui9k+fPmHv3r0YMGAAH3NUKBT49ddf03QfORlnZ2cULVoUI0eOTHHEUHneqVQq2NnZcbHu/PnzkzxXTJjrJqXv4759+/g4X/78+XH06NEUXePy5csoVKgQ9PT0sHTp0nTfr0Ab4RfZg5R3169fh42NTZoXuAYGBqJXr1580UFcXJyoJ5Lg0KFDMDY2hpWVVbJzDdKCnKVLl8LQ0BB58uRJ9a4fguRxcHDgZY68vZMUDx48QMuWLXlwpbFjx+oMZCVIGcIvsg+5QHbKlCl8bHbr1q1pChQmR1O8fvDgQYSHh+P169dCOJ0OdAl1GWM4deqUzvSa4vXGjRvj3r17iI+Ph5eXlxBOp4PEbHH8+PFUX0uI2NNPan0jMdzc3NCqVStefjHG4OLiktG3m2MQAnaBQCAQCHIRbm5uKFWqFG8kSVswS5Gh8+fPj9q1a8PZ2Vnr3DNnzqB48eJ80rBq1ap4+vQp3zJeLtIKCgrC5s2bedrVq1dn2TN+L7i5uaFs2bLcFtIAlRSJuHTp0ujevTsX78q3v5OIj4/n0QGaN2/OJ7nkA7uBgYEYM2YMlEol2rZtm+KJsNyEs7OzWkTi06dPZ1hEPRcXF9ja2vKo4t26dcO9e/cy5No5Fbk9qlWrhpMnT+oUHuoiPj4eb968QdGiRXnZNmDAAL6wQ15OqVQq7Nixg/vc+PHjM+NxvmsyS8QeExODCxcu8Ig0ZmZmmDhxoui4J0FqbSHVA/L6ICoqCj179gRjjO+Qojl47Ofnhx49ekBPTw8DBgxI9+ByTsTDwwMtWrRQi54gb0sVK1YMw4cPx6dPn9TOk2zx66+/wsDAAAYGBliwYAEXr2tOyvr4+KBhw4ZiAVoSvHr1Ci1atED+/PnBGOPtTqlcL1euHMaPH89toSlI2Lx5M59YHDFiBBeva6bz9/dHhw4dwBjDkiVLsubhBIJvnIcPH3Ixo+jrJc2xY8d4Hb506VJERkbyY5r1taenJ6pXrw7GEnbXcnR0zJZ7zsn4+/tze6xYsSLJtCEhIejUqROPxle7dm2cPn06i+40ZyP84vtBHllXX18/xSJ2zbbt6dOnMXr0aN5emzx5cqJpcyuBgYE8oAKQeoFBcHAwpk+fDj09PdSrV0/n2K4g/cTFxWHAgAG8HygthgKSXxA1b948ft6BAwey5H5zGsIvvl2k+kIShKZ1PGn58uV8riQzgmnkJG7evIny5cvDwMAAq1ev1lqQr4thw4bxtq3wh4zn7NmzPLDFs2fPAGiPMcnrhSdPnqBbt258cXjDhg35rjhiUU3aEH6RvWSGiP3ChQt8t/LatWvDzs6O6xIAIdZNL3K7SIvIdu/erWWvkJAQbN++nY+lN2vWDHfu3FGbcxW2SB/yPO/bty8YS9idNyXlmCYeHh5qizukcRRhi5STUt/QRHOHoVmzZvFdiiwsLLB//35RxyeCELALBAKBQJDL8PLywvDhw/m22VLk2+7du2PDhg18q1p5A+zSpUsoWbIk78TnzZsXmzdvxrVr13gHBFBv+EZGRmLZsmVQKBSoWrUqHjx4kHUP+Z3g4+ODCRMmoE6dOjAxMYFSqUSZMmUwbNgwnD59GsHBwQCgFnEhOjoasbGxCA8PB5AwCWhoaIhffvkl0d/ZunUrt/X169cz9Zm+V5ydnfkEes2aNWFnZ4fQ0NB0XdPd3R116tQBYwx58+ZF165d1cTrYpI2ceT2qFWrVqrtsXbtWvTp0wdGRkZgjGHChAn8mLxsU6lU+Pvvv8EYQ+HChfHkyZMMfY6cgFw43aZNm3RPHsXExODSpUuoXLkyHzyZMGGCEK+ngLTY4u3bt/D398ebN28QGhqKbdu2gTGGNWvWJHrOr7/+ykXAYtBeN+/evcPatWvRqlUrXs4wxtCyZUusXr2aL7rRHIiKiYlB48aNeRR8abA9sfpg8ODBYIyhXbt2AMQAoy7ev3+PLVu2oEOHDihcuDD09PRgZWWFfv364dixYzyPNW0RFxfHRYklSpTAhw8fdKaT+OWXX8AYQ506dRAbGytsIci1SO/+kSNH+KSVFEFUtG3VkefHypUreV2xceNGtcWyUrnj5eWFYcOG8YnZli1bZtiiWoE6I0eOhJ6eHoYPH44vX75wW0kTr2FhYbh37x5atmzJBVQ1atTAv//+y68h3ve0Ifzi+0SXiL1r1668/ZQU8jbThw8f+C5DjDEsX7480+75e0fKt/j4ePz3338IDw9P0ST36dOnuV/t3bs3s28zV3Lw4EGexzNmzODfJ2efU6dO8fO6d++e2beZI5HyWPjFt01a20jS/MfOnTuRN29e5MmTBw4ODhl5azmO4OBgTJgwAYwxVK9ePdldgh4/fsznKmxsbODn5yfatBnMsWPH+ByqLnvI8/v+/fvo3LkzD5BRtWpVBAQEABDjf+lB+EX2k5Ei9itXrvDzCxUqpDanIW8DyIXTJiYmaroFQfLI7XL9+nWuE5GIjo7G/v37uS2srKxw6NAhfjwxWxgZGcHJySnzHyAHIbfFkSNH4O3tneZreXt7c1uYmZnxdpWoY1JOcr6RFG/evMGSJUt4wL5y5cph7969KQ7YlxsRAnaBQCAQCHIhkZGR+PjxI65du4YHDx5odebkjdeHDx/C1tYWSqWSTzLJP2ZmZvjpp5+42FreuXd2dkbjxo2hUCiwa9cu0fHXQUxMDCIiIvDixQu4uLhoRUiXN44vXryIESNGoE6dOqhatSp69uyJMWPGwNraGs2aNeMDXBJSp/Hy5ct8knHHjh2Z/1DfKS4uLihUqBAYYyhbtiwuXbqU5lWwQryefuT2sLGxwfXr15PNN/lxb29vbNiwgYurBg8ezI/JyziVSoWTJ0+qDbgI1HFxcUHhwoV5lIv379+n6TqSeF2KvC7E66knpbYIDw/Htm3bUKZMGVhZWaFAgQKoW7cuOnbsCEtLSwwcOJDvTAAk+I5U36xZswZKpRJ6enq4c+dOljzX98yDBw9w9+5d3Lp1CzExMbze0FV/hIWF8ajqHTt2TDSdJKD7+eefeZRLQfK8fv0aHh4efPcaCV11R1xcHDp37gzGGOrVq4fIyEid6SS/WLBgARhjaNq0aebcvECQDcjf+ZT8LeHm5oZixYqBMQZra2u8fPkyc2/0O0ZexksLxBhjGDduHA4fPoyYmBj4+vri+vXraNq0KQoUKMAj8kjtI9FvyHj27NnDbfHXX3/h9evX/Jinpyfmz5+PGjVq8AnXZs2a4eTJkzyNsEn6EH7xfSIXsUv2SEu/MCoqCkuWLIFCoUDNmjWFODEZRo0ahcKFC+Px48cpSv/582eUKFECjDGMHTsWgPCXjELKx0mTJkGpVKJcuXK4deuW2rHEuH37Nl+MXqZMGezbty9F5wl0I/wi5yFvG0jCU8YYHj58mI139X3g5+eH+vXrg7GEHXqdnJz4uLc8KNLr16/5wnzGGH799dfsuuUczbt371C1alUYGRlh+/btOndVBhIiSjds2JDPW1SuXJkHKhHCwvQj/CL7SUzEvm3btlSJ2F1dXdGuXTs+n1StWjVe/8fFxanV5x4eHmjdujVfLCgFgROkjOTKHk9PT/Tu3ZvvjlalShU+561pC09PTx4QYMKECXwHWkHKSG89ILfFuXPnULZsWd6HF0HcUk9a7PH27VssXbqU7xxcoUIF7N69W21OVqCNELALBAKBQCDgaIqo3r9/j1GjRsHExISvXLa2tsasWbMwZ84c/PzzzzxCQMeOHfHp0ycA6qLrFStWoEaNGsluLyxQR7PDd/DgQSgUCujp6aktIJD+b21tjXPnzqlFaQKAjx8/YuTIkTy9EOkmjYuLCwwNDWFjY4Nbt26laUJDiNczDhcXFyiVStSpUwceHh4pOkeev7GxsThw4AAfDJ4zZ06y54utu3Tj4uICxhhatWqFyMjIVJ8vxOsZR2K2kN79sLAwzJ49W62uyJMnDxhjMDQ0BGMMpUuXhr29Pa8zpPf+1atXPDq+lZWV2K45CdJalo8ZMwaMMdSvX5+3m3Th6ekJKysrMMYwadKktN5mriAxWyRXnk+fPp1PFL59+zbRdP7+/qhVqxYYYxg4cGC67lUgyG7SUnapVCpERUXh1q1b2LhxIy+bzMzMMGLECK1oyJq/kdvbvvKJjt9++02tfi5fvjwKFCgApVLJv8ufPz/fNSsjJ60A0c6VI7dFgwYN0LdvX/Tq1QtmZma83ZQ3b178/PPPuHHjBj8vve+zZNPcLkzJTr8QpB2pDHn+/Dk8PT0BpM0nbt26xbfQ3r9/f4beY07C398fHTp0AGMMP/30U5K7D0h2+PLlC19k1rdvX7VjgvQTFRWFqlWrgjGGDh06pOicBw8eoGbNmlAoFFAoFBg6dGi6d3zMzQi/+H7QXBQr/T8+Pl4tmr6cQ4cOoXjx4lAoFKhWrVqS/XTBVzw8PFC8eHEwxtCwYUPs379fLdDR2bNn+ViUVH69evUKgPCFjCYkJAT9+vUDYwyNGzeGg4MDD1IBJAjatm7dCiMjIx4srGrVqvDy8gIg7JGRCL/IfhITsa9fvz5FeSzVFWFhYTh//jyv/w0NDRNdROjp6Ylff/0Vp0+fzsAnEUi2CA8Px9WrV9GxY0dui9u3bwPQbYs1a9YkuwuCIOOQzw++f/8e48ePR6NGjcBYws6C8kA+gsxDiNfTjhCwCwQCgUAg0ELqWF66dIkLFIoUKYJZs2bB0dFRLe3Dhw/5ds79+vXTugYAPpgsJszTxpkzZ/jkraGhIRo1aoT9+/dj9+7dmDt3LsqUKQPGGCpVqoSTJ0/ybZzfvn2LzZs389W1+fPnh4+PTzY/zbePj48PLl++rBaNIaUI8XrG4+fnB1dXV553qS1HQkJC8Ouvv0JPTw81atQQW9alA39/f4SFhaX6PCFez3iSssVff/3FB4Rr1KiBX375Ba6urrh+/Tp27NiB8uXL8zrDzs4Ovr6+AABHR0f06dOH1+n16tXju6sIMo6NGzdy4ackiJMW/kltJ39/f0yZMgV58+aFqakpjh8/DkC0ozKa3bt3gzEGU1NTXL58GQC0FnV8+fIF69evR5EiRcAY41vVClsIvkek9/vFixfYvXs3Nm7ciG3btmHdunWYN28eFi9ejD/++AOTJk3C2LFjMXnyZAwYMADNmzdHgwYNYGhoyIW9FhYW6NChQ5LtqhcvXvBFzLldcCp//i1btqBFixZaO5sVLFgQ1atX59GINaNXpbYfIU9/5coVLooQtvj6/AsWLIC5ubmWLYyNjVG8eHEcOnRILTo7kNDHTmufzt/fH7169cLTp0+17iU3kt1+IUgb8jxMT3tI6hsOGjRI67qCBKKjo7F27VqYmpqidOnSOHXqVLL5JPU1lEolb7cKMo7Y2FjUq1dPLUCCZhRRuY3u37+PBg0awMjIiC+YkradF/2JtCH84tskPWV4REQEQkNDsXz5clSvXp2LemfMmKEzvdx3RN3xFVdXV5QuXZqPcVhbW6NVq1aoV68eLCwseNuqWbNmOHr0aKaUQcIeCXh6esLGxgaMJeyeOX78eOzatQtjxozh0aGlYCOtW7dOciFOWhG2SOBb8IvcjrzPN2nSJDDGMHv27BSfL3+XfXx80KtXLzDGUKJECTx//lznOboC/gjSjzwvfX19uS1sbGy0dCMS8gU8gsxBs9x68OABRo4cyfvb0qdatWoYMGAAnwsUZA5CvJ4+hIBdIBAIBAKBTqKjo/mgfKFChbB06VIe9ULqqEidz3PnzvHoSQcOHODXSG77eUHSxMfH4/3792jTpg0UCgUMDQ0xatQore22fH19eQQga2trNGnSBJMmTYKtrS3fItXCwgJ///03ADFJkhpS894K8XrmI393nzx5gnfv3qXovAsXLvCO+vbt2zPr9gQ6EOL1rOXJkye8Pq5evTr27NmjNaHu7+/P64xChQqhYsWKaNeuHQoUKMAjMVhaWuoUCglSRnKCtM6dO/P81xzg9fHxwW+//QZra2swlrDFvLQwTZB6krNF165duS00hbjv37/Htm3bULFiRS6iEzsKCb53rl+/Dn19fS2RaGo+FSpUwMyZM5Osyx0dHdG3b18YGxvj2bNnAIRYV/78vr6+OHXqFMaOHYuhQ4di8uTJOHnyJN6/fw9Avc27fPly6OvrY//+/Smuk+XpLl26hMaNG8PExIRP8ApbfH3+s2fPYunSpahXrx7atWuHoUOHYt++fXjz5o3WeQcOHICenh727duXJuH0nDlz+MLyFy9eaN1LbiQr/ULOiRMn8Mcff8DFxYULHESbN/ORbBgSEsIX1Xbv3h2AyP/E+PDhA3744QcwxtCoUSOt9qrchx49esTbtowx/Pfff1l9u7kCKY979+6tNj6r+Q7fuHED1apV433sSpUq8X5dbi/704vwi28Lef3s4eGBJ0+e4OnTp7h79y6uXr2KS5cu4eTJkzh06BAOHTqEHTt2YOXKlVi6dCmmTJmCpk2bonbt2mCMcfH6jz/+qPP60viWXBAn6o+veHp6okuXLnw+SMpP6d+ePXvi1KlTaj4SFxeXblGVfHxe2CMBNzc3VKpUiZc9mrZo3Lgx5syZg/DwcH5OfHx8unbosLe3x6pVq9SuJ8g+vxB8RZ63586dUyvXUztX/fTpU9StWxeMMYwePRqRkZHiXc8mHjx4gBo1akCpVGLy5MmIjY0VtshCNH3n4MGDmDx5MvT09NSCMxQtWhTz5s3D8+fPeTtKaEQyByFeTz9CwC4QCAQCgUAnDx8+RJEiRaBUKtG/f38esU2T+Ph4vH79mk8+LVy4MIvvNGfz6tUrWFpa8q3uIiIiAHwdqJU6/z4+PjwSe4kSJXh0REm8vnHjxhSLfQXqSJ25uLi4RFeMC/F61rJt2zYwxnD16tUk08nzvVq1amoR3kQnPf1I5Y9KpdK5Y4EQr2c9//33Hxcmjh8/Xiuyt/Svi4sLSpYsCcYY6tSpw0Xv+fPnR/ny5fHkyRMAwk/Sgjxyt729PQDthX/+/v486lKBAgUwffp0rF27FuvXr0fVqlV5NNh8+fKJ6OvpQMqz0NBQre1MJVu8f/8erVq14gL1P/74A/v378fhw4fRqVMnvt2wiYkJ1q1bp3ZdgeB7ZOrUqXzrWCMjI1hbW6N06dIoW7Ysypcvj1q1aqFmzZqoXbs2WrZsiTZt2qBVq1YYOHAg5s2bhy1btuD9+/daC2rlODg44Oeff+YTwhYWFkKs+39S0ifQTDNw4EBeJxw8eDDZa8iPX7hwAV26dOG7eQnh9Fc0y3Jd+SGlkfJ0wIABfBeVlNhCEzc3N77tubm5ubDF/8kKv5Dz+PFjdOnShbeD//zzT/j7+wMQtshM5Hm7bt06Pl61ZMmSbLyr7wMvLy++oLJ58+a4deuW1iT4rVu3MGLECJ6vQ4YMyZ6bzcFI5cy6deugr6+PKlWq4MmTJ1rlT1RUFA4fPqw2LlutWjU+JivKmYxB+MW3x59//onGjRur9TWkvE/pAlpzc3OMHTtWa2c04Kt4PSIiAqVKlVLbCViMu3/l48ePOH/+PIYOHYomTZrAxsYGffr0wdq1axEeHq6WVyqVCj/++CN++umnNC/Wd3Z2RuHChTFw4ED+nbBHAq9fv8a8efPQvHlzWFtbw9LSEu3atcOSJUvg4eHB3+n4+HjExcVh7ty5mDBhgtYOUCkhICAADRo0AGMM48aN498LWySQ1X7h4uKCS5cuJbnQLbehq/0j/87V1RVxcXHJjrlGRkZizJgxYIyhfPnyCAwMTPa34+Pj07y7c24jKioKbm5uAJLPq8jISAwaNIgv1EzPAhxBytAsR4KCgnDkyBH0798fCoWCj/2ZmprCxsYGO3bswMOHD9XO0RznEr6RMQjxesYgBOwCgUAgEAh0snnzZj54eOXKlSTThoaG8ogCvXv3zqI7zB2cPXuWr5SVIqhrRtNVqVSIj4/HtGnToFQqMW7cOFy4cAEzZ87EihUr8PLly+y49RxFREQE/v77b5w8eZJ3xKWOnRCvZy2fPn3iURb69+/Pt19OjPj4eLx7946LEPv06cO/F6Sf0NBQLFq0CP/++6/aIJUQr2cPa9as4WJBSYSuOUAcFxeHiIgI9OzZE4wxLFu2DI8ePcL27dtx7do1PvArBq3STnh4OKytrWFlZcUFUZp8/PgRvXv35osHND9GRkYYM2YM3/1GkDYiIyPRrFkzlClTJtFJwA8fPqB79+6JTqLr6+ujU6dOXGgoEHzvTJ48mb/fM2fOxJs3bxAcHIygoCAEBwcjIiICERERiImJQXx8vFbfA0i8HeXg4IBRo0bx60sLbIVYVzfyulYzT+X/Hzp0KO8TJiXW1SVel0fOF7ZIHM2Ie4mRUlskhoeHB9q3by9skQQZ7ReauLq6Ytq0aTwyWeHChdGyZUs+biJskTia4h4Jqb4AEsarpGNysYjE1q1bUbJkSSgUChQsWJAv1hQkjZubG6ysrLhApG/fvjh8+DDs7OwwZcoUvoMmYwwdOnQQO25kIm/evEH16tXBGEOzZs3w33//wd3dHZ8+fcKuXbvw888/q0U9bNGiBY+8rqtNlRbEeFYCwi++Hb58+YImTZqAMcbrVwsLCzVhuqmpKfLkyYNChQqhaNGiKFKkCMqVK4e6deuiY8eO2LBhAy5cuMCvKX/P5eJ1SaQrhLopIywsLNFj3t7ePHBSz549Uy3WdXFxQa1atYQ9kkDKh4CAAAQGBmoFR5KO+/v78/nVHj16pNoWcXFx2LlzJ7fFhAkTtH5D8JXM9AsPDw8UKVIEjDFMmzYN165d48eELXQzZcoUNGjQgP8/sXyS+onXrl3ji6QOHz6cZFoJzYBwYt5Dm+joaPz4449o3bp1smmlfDx27BgMDAygVCqTDTYmSDuaPuHm5oYTJ06gevXqKFy4sNo8xg8//ID169drzUnpGmcJDg7G1q1b4erqCkC0kRNDyjt5HS7PTyFezziEgF0gEAgEAoFO1q9fD4VCgerVq+Pz58+Ii4vTaiRLDTR/f38eybVv377Zcbs5lvPnz/Mt7f75558k00qDVLpsIDrk6ePPP/+EQqFAlSpVYGdnh5CQEAAJHUUhXs9aYmJisHHjRhQsWBAlS5bE8ePHE32/pfy/du0a78BPmjQpK283xzNlyhQeUczOzo7vEnHx4kVUrlxZiNezmK1bt4IxBqVSiZs3byaZdsGCBVAqlZgzZ47WMVFnpI979+6hWLFisLCwwI4dO7SECvK64cWLFzh27BiWL1+OfPnyQaFQQE9PD82bN8edO3ey+tZzHC9evED16tVhZGSEDRs2JLqTCgDcuHEDhw8fxp9//ol8+fLBwMAAjDHY2Njg1KlTWXjXAkHmIJ+ImDRpEm8bbdmyhX8vL590tWOTattqitfHjx8PJycnIdZNB/L646effuKRlHSJdZMSr8+dOxdBQUEi+nc60GWLvHnzChF7NpAav0iM4OBgnD9/HsWKFeO7RZibm8PBwQGA6MfrIqn3U34sKiqKR7L88uULXF1d4eDggJUrV+LHH3/k41uMMYwaNSpFvy36Jgm8evUKtra2PJKxnp4eb69Kn86dO+P69es80EVGIM9/YYsE3N3dYW1tzXc3MTMz4zuTSp/q1avjl19+wadPn9L9e5It5bujinIqgezyC4E2L1++5LvJFS5cGMeOHcOjR4/w+PFjeHl5wdPTE87Oznj79i0+ffrE/42NjdXa1VFer8jF6/Xr1+d+J0UZFUJdbRLrJ+jKnzt37nD/6dWrV4rFui4uLqhRowYYY7C0tBT2SITU2kJaAJIaW0ioVCrs2LGDt7OELdTJCr+Ij4+HnZ0dX4ygVCpRp04drFy5MtH7yO3cuXOH19eHDh1KMq2UdwcPHuTn6BKwy9urly9fxoIFC9CgQQN07twZkydPxqtXrwCI/rcmly9f5vl67NixJNNKtli9ejU/R9qJVhfJ9SGEXySOPG/8/f2xfv161KlTB/ny5eN5r1Ao8NNPP6mN7wK68126XmhoKDZt2oTChQtDT0+Pj4UIv1BHHshw+fLlcHJyUjueXvG68A11hIBdIBAIBAKBTv78808wxlCsWDG8efNG67i8USUJFYyNjWFnZ5eVt5njCQkJga2tLRhjGD16NMLDw7XSSGIsKfJuzZo1daYTpB0PDw+YmZnx/D18+DCePn2qJV6/f/8+Pye3dSyykg8fPqBz585gjKFhw4ZqUXGlKG9SGeXu7s6jAFlaWvIIb2LiNWNwc3PjUZVq1aqFvXv34sSJEzzyev78+TFx4kQhXs8ivL29UblyZSgUCixdujRRsW5YWBh69OgBxhi6d+8u/CGDCQkJ4ZH36tWrxwcAga9ljzRBGxISgjt37qBRo0Z8wr1GjRo4e/Zsttx7TiMsLAwTJkwAYwy2trY86h7wtb6QbBEXF4f379+jVatWfAA4f/782L9/f3bdvkCQ4cgnIqZOncrf9a1bt6YrKqiDg4NaxNGxY8ciMjISQIKwSIh1047cLoMHD+Z5fPv2bf59UuL12bNn82Ourq7CFukgMVvIo+qlFCFiTx8p8YukkPLZx8cHjRo14n19xhh8fX0z5Z5zCtu3b8eQIUPQo0cP/PDDD2jXrh0aNWqEevXqoV69eqhYsSJKlSqF8uXL88jIJiYmamJSPT09DB06lF9T13v/6tUrLFu2jP9fjK8k4Ofnh4ULF/IxDik/ixYtismTJ8PPz0+rb7dhw4ZUi+AkYmNjceHCBSxatIh/J2yRgIeHBzp16sR3m5E+ZmZmGD58OOzt7fkCfwk7O7s077AlCbzGjBnDvxO2SCCr/UKlUomIiong7OyMAgUK8Kj37u7uascT2/EmsXdZLl6XIupbWlpi0qRJWLJkiRDqphPJBnfv3uVi3d69eye6e52Es7Mz34nCysoKq1evxpo1a4Q90kFabaGJELGnn/TaIjIyEm5ubny3KMkW8h0KBF/x9vZG7969oa+vj4EDB6aoL7Zy5Upe32vu5iSvWzZt2oS8efOqtdOkcksSoYo5ka+4u7ujS5cu0NfXx9ChQ3XqQgD1smT69Ok8X2/cuJHk9b98+YLHjx9j+fLlWLJkCebNm4fbt28jICAAgLBFYsTGxuL9+/eYNGkSmjZtqvYuly5dGt26dYO9vT0fgwUSz0u5eH3Dhg2oVq2a2hyIGJfSTWBgIN+ZY+LEiXB2dgYAvHv3DkuWLEl35HXhG18RAnaBQCAQCAQ6cXBwgI2NDczNzXHkyBG1BpJ8snDdunU8+nqZMmXw8OHD7LjdHEtkZCQmT57MhdNPnz5VOy63RfPmzbmIVAjYMx4XFxcULFgQjCVsTWtjY6MmXheR17MWSajLGEOLFi1w7949hIaGqqVxdXXFTz/9xAXW1atX550+QcYh942yZcuiWLFifNBDRF7PWkJCQriIp27dulqLOyRevHiBqlWrgjGGPn36iEGpTMDX15cPAjZv3hw3btzgu3dIeHh44I8//uBlmZGREerXr48TJ05k013nTHx9fVGzZk1eX9y5c0ervnjz5g3279/PFw1Kgoddu3Zl010LBJmHvMyXdlJJj4j9yZMnauL1yZMna/VF5GJd+aRIbhqETw9yu3Tt2hUNGzbUOSFy6tQpvsiTMYbFixfzY5LdhS3Sh9wWPXr0QIUKFeDo6Jima3l4eKBdu3ZcxC5dR7TLUkZK/UIT+bt++vRpXvczxtClSxet9prgKxs2bOAinNR+jIyMoKenhx9//BEbN27k19T1vnt7e/Mou2PHjuXfi3GWBGJjYxEVFYULFy7g9OnTuHHjhlYkOCmvRowYkeZIrrGxsbh27Rrv0whbaBMUFAQXFxds3rwZW7ZswenTp/H48WO1NFKZ8/vvv4Mxhp49e6ZJOH3o0CHuT0KQqE1W+sXFixdRvXp1rFy5Um28S9giARcXFy7yadWqFdzc3NJ0HameDw8PVxOvT548mQvjhVA3/cjFukZGRmCMoX///ggKCtKZ3tnZmUdet7Kywtq1a/HhwwcAwh7pRW4LQ0NDMJaw03JgYGCqriNE7OkntX4hoZm/K1euRNmyZXlk/YkTJ2baPX/PHDp0iC8oXrFiBaKiovgxKfiIxM2bN1G0aFE+X57YwoK//vqLt5t69uyJ+fPnY8GCBWjcuDEYY6hcuXKqF4jkBv755x+++HjVqlVqtoiLi1PrS585c4bncevWrdV2U5Hb7MuXL7h27Rpq166N4sWLq/URixYtilatWsHV1RWAGAvR5MqVK5g8eTKfO5I+lSpVwo8//ggXFxdeLiW1q4T8e0m8Li1EUyqVaNCggQiukAwTJ05UG/e2t7fH8uXLUy1eF76RNELALhAIBAKBQCdBQUHo2rUrGGNo1qwZHB0d1TorANREV4wxrF+/PpvuNmfj6+urJtR99OiRlvBq0KBBYIzB0NAQ06dPByAGpDIDFxcXHklGoVDAyMgIHTt2xJMnT3gake9Zh5ubG4oUKcIHnUaOHInLly/j2LFj2L17N8qXL8+3UitUqBBevnwJQAh0MgNN3zAxMcHo0aPh6emZ3beW6/D29ka5cuV4nXHz5k18/vwZQMIA1fPnz3m0BlNT02S3hBSkHXd3dz6oXrZsWfTq1Qt79uzBn3/+iXnz5sHKyooP0JuamqJXr164fPlydt92jsTd3Z1HAa1UqRKGDBmC06dP459//sHWrVtRu3ZtbitjY2PUq1dP5za0AkFOIaNE7J8/f8aMGTP4+eXLl+cLblUqlVqbSy6cVigUfBBekDLkdtGM6AoAAQEBGD58uNqElhTlNTo6Wq2PIrcFYyzNwqLcitwWr1+/TnP/Lz4+Hv7+/mjTpg0YS4jaK7ZtTh3J+YUm8jLp0KFDaNiwIfeDgQMHCvF6Mri7u/PF4Xny5IGtrS0GDBiA0aNHY9iwYfj5558xc+ZMzJ49G3PnzsWff/6JTZs2Yc+ePXjy5EmSkXglvL291XYmYoxh/Pjx/LgYb0k6DzTHOm7fvg0DA4NUi3Ul8XqtWrWELdKIpi0ePnzI8zEtwmkhSEyarPALIGHnjt69e3O/6N69O/bt25ei+8hNpFfELuWjpnh92rRpPOolkFBWCb9IP5KP3L59G6ampujSpQt8fHy00r18+VJNvL5hwwa1CL2a9pCLdYU9UobcFsbGxqhcubLWYpyUIOqM9JNSv0iKu3fv8iBYJiYm6NevX5p3YsmJyN/F5cuX837Zhg0bdC7cuHv3Lrp06YI8efKAMYbBgwfr7E+cOHGCX2vJkiX4+PEjP+bg4IAqVarA1NQUZ86cyZwH+w6R22LZsmVqmg9/f3+t9OfPn0f16tWhUCigp6eH2bNn6xRQP3z4ENOnT1fb8UxfXx9VqlRB6dKl+Xxi0aJFxdytDqZNm8bzzczMDFZWVliyZInWgtnkSCzyulKpxK1btxAaGqoWXEGI2L8ifx+lYJOMMTRu3Ji/1xUqVMCuXbtSJV4XvqEbIWAXCAQCgUCQKJ6enrC2tgZjCZFcp0yZgsOHD2P9+vVo3749X33OGMPcuXOz+3ZzNHKhbvXq1TF48GDs3bsXS5cuRYsWLbgdrKyscPbs2ey+3RyNs7Mzn7QtUKAAFi5cyI/lhg7Et4a7uztq167NfUCpVGpFeytUqBDu3r0LQNgoM5H7RpEiRbBq1Sqe32JwPGtxc3PjYt1y5cqhTZs2WLx4Mbp06cIXRBkbG6NPnz5CtJbJvHr1Cs2bN+eLaXSVVVZWVti4caOwRSbz6tUrNGzYkLdfdUUQNTc3x4wZM9R2VREIcioZJWL38/PD5MmTUbduXTDGYGNjg5s3bwJIaHdpCqebNGkCxhh2794t2mWpJLn88vf3x9y5c3nk4hIlSuDatWv8XLktPD090bBhQ+jp6eHq1auZeds5krS+u5pt4uDgYEyfPp3vZmRmZobnz59nxC3mGlJqC3m6w4cPq4nXBw0aJMTrKeTly5d8MrVt27bw9fVN03V09Q/l4nULCwv06dNHCK/SgTx6aGrEupri9YIFC2LUqFHCFulAssWdO3fSLJwGhCAxI0irX0hERETg33//RY8ePdQCOEyePJmnEbZIIL0i9piYGJQtW5aPn7Rv3x5eXl78mITkF9IYi3yhjSDlSL7h4eHBF1TK8ff357swK5VK9OvXj0d91WUPXQufBClDssXLly9x/fr1NF0jPj4ecXFxanXG6NGj1Y4Lkic5v0iM2NhYXLlyhbelTE1NMXbsWLWdUgUJyPtos2bN4v2zYcOGYdeuXQgMDISjoyN27dqFSpUq8ejg8l3Ipfc5Li4OsbGxfKeVkSNHIiwsjF8/Pj4ewcHBfAeuRYsWZe3DfuPIbTFz5kxui/79+2Pjxo1wd3fHuXPnsGLFChgbG/NyvnXr1oiMjASgPs54/vx5tGvXjtusfPnyGDp0KB4+fIigoCB8/PgRZ86cQevWrcEYQ40aNURUfB2MHj0ahQoVwpYtWxLd6SkpkhKvy+uYV69e8UAXQsSujjwP5CJ2xhhKlSqFvXv3agWd1ERe7wrfSBwhYBcIBAKBQJAkbm5uqFChgprgSl9fn68GZEx9a3JB5uHm5oaqVauq2UIabDcwMEDRokWxe/fu7L7NXIGzszOftK1duzYOHDggJryzET8/P8yaNYsLp6RPuXLl0KlTJx4FXAzOZj5y36hVq5bwjWzE3d0ddevW5VFJ5GJdU1NT9O3blwsMBZnL+/fvsXfvXvTr1w/VqlWDmZkZKlasiJ49e2LJkiVp2kJekDb8/f2xadMmdOnSBdbW1tDX10ehQoXQokUL/Pzzz3B2dlbb8lQgyOnIB+GnTp3K64l//vknVedHRkbi/v37fAcvIyMjvnhQs/3l6+uLc+fOqUXBEqQfyRZRUVF4+vQpunfvzm0hLcrRtMXr16/x5MkTUe5lAboi8W7YsAFly5aFoaGh2vjKb7/9lk13mXNJKvL6Tz/9JPorqcTZ2ZmLEps3b85FiSqVipcz8r9T0g/XFK8vW7YMvr6+2LNnjxDrpgO5WFcqYzp16qQWMVeOpni9UKFCsLOzQ0hICHbu3ClskQ502aJLly5CxJ4NpNYvdBEfH485c+agYMGC3BbDhg3LrFv+bpGL2Nu0aZNqEfvixYvRqVMnGBkZQalUYtq0afyYfMGtSqXC9u3bed1+5cqVDHuG3IRmGaL5/9WrV6NXr148KIC8/EnMHpaWlnj48GHm3ngOJDlbpPRcPz8/jB49mpdTQ4cOzbB7zC2k1hZSW6pmzZpgjCFfvnwYM2aMEK8ngXxcas6cOWrzGFZWVsibN6/anF+tWrX4gibN4AtBQUEoVaoUGGPYu3evzt9o3bo19PX1cfDgwUx+su8PeT7NnTsXenp6fIGYpaWlVvCw5s2bc/G6fFzp2LFjqFOnDh/raNSoES5cuIBPnz4B+Gq3uLg4PH78GFWqVEHevHmxc+dOAKJNC6jbQlqsIZHa/AkJCcGKFSt4YCt9fX0eOEHuQ/LdGgsUKABHR8c0/V5ORG6PiRMnch9o27Yt7t+/z4/pyiv5d8I3kkYI2AUCgUAgECSLr68vZs2ahcaNG0NfXx/58uWDlZUVhg4dikOHDmX37eUqfH19MW3aNL59phSlrX///jhx4kR2316uQj4IX6dOHezatUurIynIOmJiYhAWFoYjR47gwIED2L17N9zd3bkYQUT4zDrkvlGzZk3s378fERER2X1buZI3b95g+fLlaNmyJUxNTVGkSBGULVsWW7ZsSdMWtIL0ExERgYCAAK36QpRRWc+HDx/g7e3Nt0KVbCBsIchtyAfhJ02aBMYY7ty5k6Zr+fj4oFu3bmCMoWrVqnBxcdGZLqcPuH8L+Pj48AUFtWvXxqtXr7L7lgQA7t27h8WLF6NgwYJ8Il6KXDZ58mQcPnw4u28xxyHE65lDeiPryvH29uZ2sbCwwB9//IG3b98CSLDf9u3bhVg3HcjFuvKFapptXk3BVaFChbBv3z7el5cEicIWaUeXLdatW6cWvTglCBF7+kmpX+hC3nYeP34834mQMYaTJ09m2j1/r7i4uKBQoUJgLGGH39QsFAASgjOsWbOGR6n86aef+DG5LVQqFezs7LBq1aoMu3dBAvJyxcvLC3/99Rdvxw4ePJgf07THiRMnsH///iy919yMlP+xsbEIDw/HmjVr0L59ex4AS/qkNaq7IHmEeD3tyMuP7du3o2PHjmrvrRTpuGvXrggODgagu80TGBiIkiVLQqFQ4OjRowDU+4Pr1q3jAnmxuEY3clvs2bMHvXr10rJFnTp1MG7cOERFRQFQF6+fOXMGNWrU4GVP27Zt8f79+0R/LzQ0FG3atAFjDH369Mm8B/sOkb+76ZmveP36Nbp27cr7Do0bN8a7d+8AqC88BxJE7D/88AO3dW6J/J0SdI2fS2N5KZlrFb6RPELALhAIBAKBIEXExMQgJiYGjx49gpOTE/z9/XnnBBAD5FlJVFQUwsLCcOHCBVy+fBmvXr3C58+fs/u2ciUuLi6wsrICYwwtW7ZMdpsoQfYgyqesx8XFBQULFgRjDAMHDhSLO7KRuLg4xMfH48WLF/D19RURb7OJxCL2CLF01pNYnSBsIcjNyAfhfXx8AKj7ikqlSvHWtJcvX0bp0qWRN29erFy5EoDwr4wkKipKK8qYLuLj43HmzBlYWVnB3NwcW7ZsASBskRVoRp3+9OkTXF1dMXDgQFSqVElt4rdChQqYNGmS1qIRsU1zxiDE65lLRojYPTw8+E5qZmZmWLFiBY8+JqEp1h03blxGPUKuQfKFe/fuYc6cOVq2UqlUuHTpEqpUqQLGGPLnz88Dlsj9SNMWY8eOzbqHyCHIbTF48OA074oWGxubqF+Iuj5lJOcXSfHlyxf8+++/XKRoamqKuXPn8h0gBeq4uLhAqVSiYsWKKc4jeV8kJiYGBw8e5KLpGTNmJHu+aEtlLHJ7xMbG4sCBA9wes2fPTvZ8US5lDprjWx8+fMC8efO44E2qI0qWLIlmzZrh8uXLPFqyIGMR4vX0Iy+3AwMDcfXqVSxYsADTp0/HunXrcOfOHb7oT1cZHx8fjy9fvqBdu3ZgjGHixIlq/YpNmzYhf/78YIyJxU7JIC+zw8LCcO/ePWzevBlr167FP//8Az8/P7VFMxK3bt1C8+bNeXTpDh06JDl+JZVhkydP5n1KEQgrcwgICMCGDRvQuHFj3t+7ceMGgAQ7aIrYGzdujObNm/PdDgQJyMse6b2VFhS7uromep7wjZQhBOwCgUAgEAhShK6tf8XA07eDsEX28eLFC1SsWBHOzs7ZfSsCwTeFs7Mz2rRpIybwshld9bdY1CEQCAQCTTQnAOX1h6OjIxf1JNfvCA8PR8uWLcEYQ7169ZJML/owqSM8PBwXLlyAt7c3gOTzLyIigu/c1axZsyy4Q4HcJpGRkbh69Sq6du2K0qVLqwnXmzRpgnHjxuHdu3fJikik40KIlTqEeD1r0BSxu7u7p/jc+Ph4bNq0CYwxGBkZwdTUFNOnT+fH5ZH8VCoVdu7cyW24ZMmSDH2O3IDkE/J8lVCpVNi8eTOMjY1hZGQEMzMzzJkzhx+XRwjXtMWGDRsy/+ZzGJItwsLC0nS+vD//119/icUd6SApv0iMsLAwHDx4ENWrVwdjDCYmJvj999/5IlCBbvz8/ODk5KRzjColhIeHY9GiRdDX10f58uVx9+7dzLjNXEtq7REaGorZs2dDX18f1apVg4ODQybdmUAXmv2CW7duYcmSJbC2tlbrc1hYWKB///64evWq1gJBQcYhxOsZR0rKouTGQfbt28d9oGfPnhgyZAgGDBjAvxs7diwfUxEkTkrqa/mxN2/eYNSoUciTJw8YY2jXrh0/ntRYRkBAAF/Q3L179wy6e4EcyWdiY2Px8uVLHlU/b968ePDgAQDdC6KkXWsF6ugSsZuamuLIkSM60wvfSDkKEggEAoFAIEgBjDG1f4mIFArRlPhWELbIPqpWrUqOjo5UqVIliouLy+7bEQi+GSpVqkTnz5+n0qVLZ/et5Gp01d/yvwUCgUAgICJSKpVq/5fqisePH1O3bt1ozpw5RJR0v0OlUpGxsTG1bNmSlEolvXnzhl6/fq0zLQB+rc+fP5OrqyuFhIRQSEgIERHFx8en+5lyEvHx8XTu3Dn68ccfaeHChUSUtC1iY2MpT548ZGtrS0qlkj58+ECfP39O9ncAJPl/gW6k91WyydatW2n06NHUpk0bOn36NHl7e1O+fPmoZs2atGbNGvr3339p48aNVKRIETI0NEz0ug8ePKCuXbuSo6MjKZVK0d9MAvn7HRcXx21x+PBhWr9+Pd2/f5+IiAYNGkSbNm0iU1PTFF9b+EXiVKxYkW7dukUFChSga9eu0dixY8nFxSVF5zLGaNy4cXT9+nWaOHEiqVQqWr16NQ0ePJiIiAwMDEilUhFRQh01ZMgQ+vvvv6lq1aqkr6+fac+UU5F8wsDAQOuYUqmksWPH0pUrV2jq1KkUGxtLS5cupZ9++omIiPT19Xn5I9li27Zt1KZNGypYsGDWPUQOQbKFiYkJEaW8TJFsILXRjh8/Tp6enmRsbEx6enq0ZcsWGj9+fCbccc4lKb/QRXh4OJ0+fZqWL19OL168IGNjY5o2bRqNGDGCSpYsmZm3+t1TvHhxqlKlCjHGKD4+nr/HLi4u5O/vn+z5xsbG1KJFC2KM0atXr+jevXvJniP6EylHsoejoyO9f/8+2fR58+alFi1akEqlIicnJ97OEmQNUt/d3t6e5s6dSx07dqQlS5aQn58fGRkZUZ48eWju3Ln0zz//0MGDB6lVq1ZkYWHB6xtd9Y5o36YNlUpFt2/fpilTppCDgwOZmprSwIEDafz48VS1atXsvr3vDs05i/j4eK33NrFxEOn4Tz/9RH/99Rcxxuj06dO0b98+OnToEBERLViwgKZOnUqlSpUiIkq0fx0TE5Pk8dyA5pySrjJCqtOJiO7fv0+HDh2iqKgoatKkCR0+fJgYYxQXF6c13kj0NW8/fPjA2wFFixbNlGfJ7Ug+o6enR5UrV6aVK1fSDz/8QOHh4TRjxgzy9fXV8r1ChQqRlZVVdtzuN498bG7t2rU0a9Ys6ty5M3Xt2lUtnfCN1KOX3TcgEAgEAoFAIBB87+jpJTSrdXU2BILcjOQbAoFAIBAIvk+cnJzIx8eHwsPD6cqVK9SmTZtE00r1vpubG8XFxVFUVFSii6YYYxQZGUmzZ8+mGzdu0PPnz6lChQpkY2NDa9asoYoVKyY6mJ9b+fDhAwUFBdH169fpxo0b1Lx580TT6uvrEwDy8PCguLg4CgsLS5EogTFGALQmK+Pj48WiaQ3keaJQKOjdu3d07NgxOnfuHJ0/f57nXaFChahw4cK0ePFiqlChAlWoUIFfQ57Xmjx9+pR+/fVXunHjBjVu3Jju3r1L1apVE36hgw0bNpCLiwuNHz+eqlSpwvMnI8TrRMIvkqNixYp0+/ZtatasGdnb29O+ffto6dKlyS6alfKvWbNmVL16dapWrRqNHz+e/vnnHzI2NqatW7eSnp4ez3ulUknDhw+npk2bqvmRIP1ItmjYsCFVrVqVqlSpQmPGjCE7OzvKly8fbdq0iZRKpZotRowYQR06dKASJUpk9+1/9yTlK/KyR6lUUlRUFB07doyuXLlCe/bsIT09PVKpVGRmZkYGBgbUtGnTrLrtXIdcvO7o6EjGxsY0depUGj58uBCvpxKp7jx16hSNGzeOduzYkSJhTtOmTcnW1pbu3btHZ86coUmTJvEyKbHfAUBhYWGUJ08e3ldJqv2Vm9m/fz8NGTKELl68SEWKFEk0nZR/bdu2pRo1apCDgwNdu3aNRo0alaK2EQC1xcyCpJHyW/r3w4cP5OvrSytWrKDHjx+Tn58fT1uxYkXq06cPde3alerUqcO/l/oPmm3ZGzdukIuLC40ZM0arvSv4mm8AKDY2VmuxU0aK14Vf6EaeH8m9m5KYWqFQ0IQJE8jGxoacnJzo0aNHVLlyZWrevDm1bt2aiEitTSvh6upKHz58oFOnTtHbt29p1qxZVKtWrcx5sO+QxPJfoVDQhw8faPr06RQaGkpVqlShFStWkLm5OQHQWUfHx8eTUqmkyMhImjhxIvn7+5OVlRWNHDkysx8jRxMUFERmZmbJjhdZW1tT//796datW+Tm5kaOjo5UsmRJUQekAknErlQqadmyZfxv+Xid8I3UI9QEAoFAIBAIBAJBOhGdOoFAIBAIBAJBTqRWrVrUvHlzunnzJp04cYJq1KihM9qqfLD+3bt3RJQgok4souWLFy9ozpw5dObMGT5o/+bNG3Jzc6MnT57Q9evXqVKlSmIC5f8oFAqqV68eNWjQgB48eEAnTpygatWqkYWFhVZaadLWx8eHAgMDiYjI3NxcK2KxpsDk+vXrdPXqVbp9+zbp6elRvnz5qEOHDlygKITT6kh59+zZM3r+/DktWrSIgoKCKDQ0lBQKBcXHx1O/fv2oR48e1KZNGzVbSe91UuL1SZMm0f3798nAwIDCw8OpWbNmdOvWLapataqwhYzbt2/TL7/8QkQJZc6ECROoXLlydOTIkTSJ14VfpI0KFSqQvb09LVq0iAsKk0Oez+bm5jRw4ECKjo6mSZMm0c6dO6lGjRo0duxYrZ0gJfG6WECQccjz0dTUlPr160ehoaE0ZcoU2rNnD9WuXZtGjBihZQtJvC7q6oxHs57w8PAgd3d3+uOPP8jd3Z2CgoKIKEE816RJE+rfvz+1a9eOypYtm523nWNJTLwuIq+nnbCwMNqzZw/5+/vT+vXrqXbt2lSoUKFE06tUKmKMUUREBBElRMeVFjnJkXzHxcWFrl27RidOnKCAgAAqX748NW3alCZOnCiEujr48uULbd68mYiIduzYQbVq1SJLS0udaSWR6MePH3lZFB0dzY9pollf62oDC3voRp4vnz9/pgcPHtCqVavIy8tLbaezdu3aUe3atWnGjBlkbm6ulZdSW1V+vfv379P69evpxIkT9PTpU/r777+Fb2igVCopOjqa1q5dS2XLlqUOHTpQ3rx5iSj94nXhF5mD1A9XKBTUqVMn6tSpk9pxKU9jY2MpMDCQnj9/TteuXSMnJye6c+cORUVF8ejHzs7OdPPmTTIzMxN2SAQpry9fvkwBAQFkZGREPXr0oGrVqhGR7jpBWqgRExND8+fPp4cPH5JSqaQmTZqoLWZLrK8n/EI3r1+/psuXL1OnTp2oSJEiSfaV9fT0qGPHjlSwYEHy9vam/fv3U5cuXRLNV2EL3Wgu8JaL0jPTN3IyQsAuEAgEAoFAIBAIBAKBQCAQCAQCLWrWrEmDBg2iW7du0ebNm6ls2bI0duxYMjQ0JKKvW5tKg/QLFiyga9euERHRkCFD1LaclQbwP336RL/++iudP3+e8uXLR9u3b6eCBQtScHAwrV+/nq5fv04TJkygf//9lwoUKJDFT/ztUrduXRo6dCgXG9jY2NDo0aO5LWJjY0lfX59PLP3555/0/PlzIiIaNmyYmnBXLro9c+YMXbx4kTZt2qT1mxcuXKBy5crRwYMHqVKlSkIwKiM6OppmzpxJJ0+epC9fvlBISAgxxsjAwIAmTJhA9erVo759+/L08rxLapJPU7zevn17CgkJoWvXrlHTpk2FiF2DJk2a0NixY2nLli20YcMGUigUVLx4cTp27FiqxevCL9JHlSpV6ODBgzwvJFGhtONGnjx5kjxfqVRS27ZtqVmzZnTp0iW6c+cOjR07NtH08jzP7ZPnKQUAhYeHc/FVYiiVSmrTpg3VqVOH7ty5Q/fv36cRI0Ykml7kfcYif599fX3pypUrtGbNGgoICKBPnz7xdAMGDCBbW1uaMmWK1rma5ZLwkbSjS7w+bdo0EXk9neTJk4e6du1K9+7doxcvXtC1a9eod+/eOts2AEhPT4+cnZ3Jzc2NiIj3MTTfa8YY3bt3jyZOnEjOzs4UFRVFRESOjo509OhR8vLyorVr1wp/0MDExIQGDx5MXl5edP/+fbp16xZ169YtUcGaQqEgT09PvnC5cOHCRKRtDyktAHJxcaE7d+6Qu7s7ff78mZo1a0YVKlSg+vXrC+G0Bppl+Nq1a+nWrVt04sQJ/p2ZmRnVrFmTBgwYQAMGDODt3Pj4+ESFcdL39+7do7Vr1/Lr7dixgwwNDWnDhg3CFhrMmzePVq1aRdWqVaOYmBjq0aMH5cmTh27dukVTp05Nk3hd+EXmwhjT6it//vyZVCoV3bhxg5ycnOj69ev0/PlzCgkJIaKEOqlEiRJ8Z6guXboQUcIiW0HiSOXUjRs3KDIykvLmzUuDBg1KtK8hX0CwY8cOOnPmDEVGRpKBgQH9/PPPvC6Rrv3x40d6+fIl+fj4UOXKlal48eJkZWUlxkI0iIyMpL1799L8+fNpypQptHr16iTHJ+Li4qhAgQJUtmxZ8vb2puDgYFKpVInupi1skTjy8llzsTdR5vhGYvVCjhiXgkAgEAgEAoFAIBAIBAKBQCAQCAQy4uPj+d+LFy8GYwyMMfz555/w9PTUSr9w4UKepkyZMjh+/LjO644cORKMMRQqVAjPnj1TO3bp0iUULFgQNjY28PHxycjH+a6R22LRokU8n1esWAEXFxe1tF++fMGkSZN4miZNmuD+/fv8uEql4n//8ccfqFy5Mk9bokQJ2NraYtKkSejQoQMqVaoExhiKFi3Kf0d+L7mdIUOG8LyrVq0aRo0ahUePHqmlked3cjx58gRNmjSBUqlEnjx58NNPP+Hz588ICAhAu3btwBiDubk5Xrx4kepr50Tkzz958mRui2LFivG/Bw8ejC9fvqTqWsIvMgYpTy5duoRFixYBAOLi4pI9b+nSpWCMQV9fH0+fPk3XbwvU2b17N9atWwcgZbb49ddfwRiDiYkJ3NzcMvv2cj3SexsZGYmgoCBMmzYNzZo142WRVL716NEDx48fV7OhvAyTv/8ODg46vxckkJwfhIWF4eDBg6hRowb3hXnz5ok2agYRGBiInj17gjGG+vXrq72vEtJ7+/79e4wcORL6+vrQ09PD8uXLAWjb8MGDByhVqhQYY6hXrx4mT56Mv//+G7/88gsUCgXvywi0CQgIQJcuXcAYQ4MGDXh7E/hqBym/vb290apVKzDGYGFhgX///VftuERsbCzevHmD3r17o0KFCmrlGWMMNjY2WLhwodbvCAB/f39MnToVP/zwg1qelSxZEg0aNMDVq1fh6+urdk5i+Sf//u7du+jTpw+/Xs+ePblvTJgwIdlr5Tbc3NxgYWEBxhhq1aqFffv24ezZs6hVqxYYY8iXLx/GjBmj5i/JIfwiY9FVl4eHhyMwMBB79+7F4sWLUbduXVhbW6vls62tLQYPHoxdu3bBwcEBHz9+1Hldkf/J0759e16eAEBMTIxWGik/Y2NjsWfPHtja2nJb7Nq1Sy3tp0+fcPLkSZQpUwZ58uQBYwwFCxZErVq18PLlS7XrCRL6DnPmzAFjDHXq1MHDhw+TPcfPzw/lypUDYwzt2rVLND+FLdJHRvqGrnz++PGj1njX92wPIWAXCAQCgUAgEAgEAoFAIBAIBAKBFvKB7xkzZvBB9FatWmH27Nn477//8Mcff6BXr178mJGRERYsWKDzeo6OjihYsCD09fVx+fJl/hvSpKCjoyNMTU3BGOPHBQnIbTFz5kye33Xr1sXEiROxceNGjBkzBi1btlRbSLB161Z+XmxsLP97/PjxahO4P/74I86dO4fw8HAACZNgjx49QuvWrcEYQ8uWLfHhw4ese+BvGM3FHWPHjkVgYCAiIiK0jqcUSbyup6eHPHnyYNCgQXwSPT4+Hh4eHnzyS4jYvyJ//l9++UXtne7SpQt/n5Oyifwawi8ylidPnoAxhrx58+LNmzdJppVstG3bNjDGkCdPHty6dUtnWqk8fPfuHe7du4cVK1bgwIEDsLe317qeIIGLFy/yxWP+/v5JppXy7o8//uD2S0qYlRLBnEA3mgIDBwcHTJo0iQvjpE+VKlXQo0cPvHz5UktgJUee56dOnULNmjUxcuRIncdzO/Ky/+7duwgNDQXwNY90idd///33FIvXhV+kDB8fH1SrVg2MMbRo0QKPHj3ida7kH2/fvsXChQtRsmRJXo55eXlpXevt27e8rdS5c2c8fvyY53d4eDh+//136OnpoVevXln3gN8Z3t7efBFfixYtcP/+fYSFhaml8fLywvDhw2FpaQnGGCpWrIi3b99qXcvf3x87duxA1apVwRjjIunKlSvD1tYWxYoVg1KpBGMMU6ZMyapH/G7w8fFB0aJFwRiDoaEh8uXLh6FDh+LKlStaYrWkyhVN8Xrfvn153bJo0SLExMRgx44dQsSeBC4uLihYsCAYYyhXrhwvi9IiXhd+kTlERETg/fv3OHDgABYtWoTq1atz/5Hy2NbWFr1794adnR0ePXqE6OhotWtoLtQRJI9KpUJcXBwaNGgAxlii9avU5oqOjsbWrVtRr149Xg798ccfamkDAgKwcuVKFChQAIwxlC9fHtbW1rCxsQFjDEWKFBELa3Vw48YN3p767bffEBwcrDOdZAspeAhjDP3799dZ3gtbpJ2M9g1pLDcmJgbBwcFYsmQJ+vbtC0tLS9jY2KBFixaYP38+vL291a77vSEE7AKBQCAQCAQCgUAgEAgEAoFAINCJfOB74cKFMDc3h56eHp9MlwusrKysMHfuXJ5ec/Lv0qVLPHKcn58fgISJQuk37O3tUaBAAVSoUAHv3r3Lgqf7vpDbYtGiRShUqBCf4NbX11ezRZ06dbBx40aeXj5BO2zYMD6Za2RkpGYz4OvkSHx8PM6fP48iRYqgePHiapHcczu6JoTSKvJ48uQJqlevDj09Pejr66NHjx78mDxCk1zEXrBgQTx//jxNv5fTkNti4sSJ3AdGjx4NV1fXFJ8r/CLjuX79OkqXLg0jIyMsXbqUixJ1Idli3bp1vI45c+aMVjqpXnn8+DGaNWvGJ94ZYzAzM8OMGTN4WiG8+srFixdRsmRJ5M2bF2vWrEFkZGSiaaV3ffr06dDX14eJiUmikfzk9Xx8fDxcXFzg7e0NDw8PREVFqR0TfEWzfXT8+HHMmjULRkZGXGhlZGSEIkWK4Ndff8Xjx495fqZEGH3q1Cl06NCB+8b48eN1phMAbdq0QZUqVWBnZ4eQkBAAQGhoKA4cOJDmyOvCL1KHu7s7ihQpAsYYatSogenTp+Phw4d4+PAhrl69ih9++IHvrpIvXz6cPn0agHZ03Bs3bsDCwgIlS5bElStX+HHp3127dvH+yufPn7P+Qb8T3NzcuD2qVKmCMWPGwN7eHmfOnMGBAwdQtWpVmJmZ8UWV0m4p8jaVp6cnpk6dihIlSvB07du3x6FDh7ifvXjxAuvWreNl3tq1a7Pjcb9pXrx4gcKFC2Pu3Ln8vZdIrcj23r176N27N68XFixYwH0nNjY2URG7EPMm4OLiwkWcCoUCefLkwYgRI1Il3hR+kbHcv38f//77L+bPn4/69eur7cLFGEOjRo3Qq1cvHDp0CPb29lrvslRmibo4/SxbtgyMJex84uvry/NUPtYXGRmJBQsWoHr16txGs2fP5kJrKZ2dnR3f9WDEiBH48uUL3r17h8ePH6N58+ZgjGHYsGGIjIwUttNgw4YNPG83bNjAAywACfkr5VdgYCBfRFOkSBHcuHEDgPYiDmGL9JMRviH1zYOCgrBq1Sq0aNECjDE+Fiz/VKhQ4buOjC8E7AKBQCAQCAQCgUAgEAgEAoFAIEgUuSDhyJEjGD16NBfbSgPlQ4YMwd69e3WeI3H//n3kyZMH1tbWcHJyUjsWGxvLxbk//PBDohGDcjvyfD158iSmTJkCExMTGBsbw9DQECYmJpg1axYuXbrE08nF62PGjOGTHcWLF8dff/3Fj+ma4Hjz5g2KFy/Oo/QJviKfpEvPhJ2Liws6dOgAKysrMMbQoEEDLryW71AAJIjYO3XqxBeQBAcHi8lCqPvFpEmTeLk0adIkrbJGQv6+C7/IHEJDQzFlyhQwxlCtWjXcvn1bZzrpHX7z5g0qVKjAI7y9f/9eZ7p79+4hb968YIyhVKlSsLW1Rf369fkk7q+//pq5D/YdEhwczHcYqFGjRqILL6T33cvLiy8OqFmzZpKC97CwMPz222/o1q0bjIyMkD9/fhgbG6Nnz57YvHkzTyfKKnWCgoJw/vx5DBkyBIaGhrxNlTdvXpQoUQJbtmzB3bt31c5JTIigKV6X2lOMMb4gRETV1cbf358LcWvUqIF///0X7969w5EjR7iIJLXidQnhF6nD3d2dRw5ljMHAwACGhoZq4hxTU1Ps27dPbXEf8DUPZ82aBcYY2rZty4/JfWb79u1gLGH3IrmoS6CNu7u72k4Qkh3k9jA3N8e1a9cAqAvj3NzcMHz4cBQqVIiL49asWcOFvnLxVnh4OObMmQM9PT20b99eLCzQgebiv7QI0q5fv47u3btrRXWV786lUqkSFbELEnB2duZizsKFC2P58uVaC2USQ/hFxrNq1So14Wb16tUxcOBAHDhwAHfu3AEArSjrQEL7C/j6/n+vkYq/Jc6dO4f8+fODMYa//vpLbZeImJgYvH37Ft26deOLQKQ+9KdPn9Su8/r1a97HHjdunFYbadOmTWCMoUmTJqL9JENe/sybN08tjx89esSPBQcH48mTJ7y9lTdvXvz44486d0oTtsgY0usbUvn07t07dO3alS8wZIyhdu3aGDVqFNavX48xY8agdu3aYIyhePHiWnXL94IQsAsEAoFAIBAIBAKBQCAQCAQCgSBJNCdl3d3dcePGDVy9ehWOjo5JppVwcXFB6dKlucDQ09MTHz9+hKOjI3744QceWVoS735vg+1ZhWb++vn5wcnJCU5OTloCK7kwYe7cuTxqnLW1NbZt28aPaU7cSnkfExPDt7EVQt3MIzg4GEePHkXr1q3BGIOxsTFu3rwJQNsP3N3d0aJFC+zYsSM7bvWbRf4OT548mU/sTZgwAa9fv1ZLK89T4ReZi5+fHxo1agTGGJo1awZnZ2e1qLnS3+/evcPPP/8MExMTMMbQu3dvhIaGal3P0dGRi3969uyJO3fuICIiAm/fvsWGDRugUChQqFChRCOG52Zev37NtzFv3rw5nJyc1OoIyRY+Pj5o164dL4tmzJihtphG+vfDhw/4559/0LBhQzUBUZ48edT+L6Lia6NSqdCuXTutyHmtW7fGmjVrtMqspIRxSYnXly5din///VenIFHYIgEXFxdYWlryhTYTJkzgUSlNTEzw+++/p0i8Lvwi/fj6+mL8+PGoWbOmWl5ZWlqiUqVKuH79epLnL1q0CIwxdOnSBVFRUWp+c//+fZQrVw6MMcyfPz+TnyRn4Ofnh+nTp8PW1lbNHjY2Nmjbti2cnZ0BqL+/Xl5eGDVqFPepYsWK4ezZswgLC+NpNN/3//77j1/78ePHWfNw3xHpLR9iYmJgZ2cHIyMjLlhctmyZ2nEJlUqFnTt38rppyZIl6frtnIizszMXGtaqVQsHDhzg0dMTQ/hF5rF06VJs27YNDx8+VFtII/0r3/XEzs4Ov/zyC8qXL48uXbpg+vTpWiJRQdpZsGABf2dHjhyJVatWYffu3Rg+fDhsbGzU6pHNmzer9UEke23evBmMMdja2vLj8nR79uzhAt33799/lxGmMwv5Ozxz5ky1Ort3794YPXo0WrduzXcqMDExQZMmTXDv3j2d1xO2yDjS6htSnr5580YtOjtjDJs2beKR1oEE+zs6OvLo7N27d/8uFz8JAbtAIBAIBAKBQCAQCAQCgUAgEAhSTFIT6clNsm/bto0PuteoUQOVKlXig/aWlpZctCufANHcyjYlv5NbSGk+HDhwANbW1jxi4saNG/mxpCabzp49y6PCbt26Nd33K9BGHrnP09MTvXv3BmMMBQoUwJMnT3Sek5TgITcjn7idOHEiGGPo1KkTj0ClifCLrMHDwwMlS5YEYwyNGzfGoUOH1CK9vXr1Cv3790fRokW50PPp06dq15AiUo4YMQKMJezU8e7dO7U0Pj4+KF++PBhjOHHiRJY82/eGh4cHSpQoAcYYGjZsiN27d3NxbnBwMJ49e4YGDRrwhQSlSpVSEylK5Y2npycmTJjAF6UZGxujfPnymDt3Lv755x/8/fffGD16NBdOz507N9ue+VvlxYsXfCeBAQMGYMOGDWrHUyIESUq8vnz5cn7s77//FiL2JJCL2PPly8ff6YULF8Lb2zvZ84VfZBwRERF4//49tmzZgjVr1mDRokW4cuUKPnz4AED3Oyt9t3fvXigUCpQqVQo3b97kbaUbN27wRTlt27bFq1evAKQtknVuIzo6GiEhITh48CD27duHrVu3wtnZmYui5O2uwMBAzJkzB4ULF+aitlu3biV6bcluTk5OMDU1BWMM58+fz9Tnyc1cvnwZM2fO5ItpBg0axI9pRmLfvHkzqlWrhu3bt2vteCBQrzNq1qyJ/fv3J7qrg/CLzCExwbn8+8R26JIvKqtatSoCAwMBiDohrcjz7bfffgNjX3f/0VyM1qxZM5w+fTrRa02fPh2MMXTs2FHr2pGRkZg6dSoYYxg2bFjmPdB3jPydX758OcqUKZOoLbp37853KtCFsEX6SY9vSLb08/NDqVKlwBiDvr4+SpcuDXt7e7Xfkerw+Ph42NnZwcTEBBUqVNBaEP09IATsAoFAIBAIBAKBQCAQCAQCgUAgyFTkgpPNmzfDysoKxsbGYIyhUKFCaNCgAZycnAB8HejXNTH55csXLmIRk4wpIygoCAMGDOATJPKI0YnloRQZ+bfffoOBgQEMDQ1x8eLFrLrlHEVqBYIvX77kkZP69euHjx8/ZtKd5Uzk5cb27dtx6tQpnemEX2Qtrq6uXMRuaWmJ0qVLY8CAAfjhhx/Utsw2NDTE2bNnAWjbITQ0FNWrV4e+vj727duntbgpLi6OR8Y/efJk1j7gd4SrqyufCDczM0PRokXRsWNH1KlTh4t3pWNSJPu4uDiez66urujRowe3m7m5OZYuXaoVITQ0NBR//fUXj4p/9erVLH/Wbx1XV1dcvnxZLUJoWto2J0+eRNu2bbnt/vzzT7XrqVQq7NixQ4jYk8DZ2RkWFhZgjMHIyAg9evTg7VIg8XySvhd+kfkk5xuhoaFo3LgxGGMoXbo0OnTogJEjR8LQ0BCMMdStWxdHjx5NUgQvSDlSnkntrqNHj/JFycWKFUs2Yr503o4dO6Cvrw8TExOxe0omIPebz58/Y+/evVwYPXr0aJ3p4uLi4OXlhfDw8Cy91+8JFxcXFCxYEIwx9OnTR2vXIOEXWYtmGS7//5gxY8AYg4GBAebNm4dz587Bx8cHgwYN4oudxbuePuT9bymydIECBWBhYYEqVaqgdevWOH78ODw8PHg6XfXujh07YGBggJYtW+L9+/dq1z9+/Dhf+CnfMU2gjtwWV69exbJly2BjY4OiRYuiXLlyqF+/Pg4cOCBskUWkxTekhWP+/v6oXLkyXxRbv359PHjwAEDi7VYHBwe+48rBgwcz8ckyByFgFwgEAoFAIBAIBAKBQCAQCAQCQaYjnxh//PgxLl68iI0bN+L+/fs88hWgPhgfExODp0+fYufOnRg3bhwqV64MKysrODo6Zum9f88cO3ZMbctaicSEQNL3d+7c4VF427RpkyX3mtOQ57Grqyvi4uKSFUlFRUVh/vz5XIDl4uKS2beZ49C1+EUz34VfZD2enp7o2LEjj7Qu/xgZGcHCwgJXrlxJ9PxHjx5xkbsUMU7uU5cuXeLXS04glNvx8vJCjx49+KICzShwtWrV4sJblUrF3383Nze0b9+eC90tLS1x4cIFtcij8kiu3t7eqFGjBhhjWLduXdY+5HdIWkS0T58+RdOmTbn9evTowY9FRkbyvyURu1KpFBETE+Hly5dcxF65cmUcPnxYbccTTSR7Cb/IfqR6//Pnz2jcuDFfrCF9+vbti3PnzvF0mv9KyO0kRO3JI+VRaGgoatWqxRcm//fff0meJ29rdevWDYwx5M+fX213FkHmEBsbix07diBPnjzQ09PDpk2bsvuWvlucnZ3RrFkzvHz5Uu174RffDqtWreLi9QMHDqgtGASAatWqoUSJEvDy8sqmO8w5aNanb9++hZeXFz5//pzkAgM5V69e5dHxp02bhmvXruHq1atYsmQJX3gzfPjwTHuGnILmeMbnz58REBCAT58+qbVzkkLYIuNIjW9IaT9+/Ig2bdrw8qthw4Z8h7qkFmK+evUKhQoVAmMMhw4dyozHyVSEgF0gEAgEAoFAIBAIBAKBQCAQCARZgjSZomvQXRJaPXjwAHZ2dvjpp59QrVo1tW1W8+fPj0qVKmH+/PliS/NkiIuLQ1RUFDp37gzGGGrUqAEHBwd+LLFzAMDd3R3FixcHYww2NjY4evQoAGjluaYdRVR83ezcuRNjxozh/09OFPXy5UuYmZmBMYYlS5boTJPcRLCwhW4ywy9EXqecgIAAnDp1CgMHDkTNmjVRpkwZtG7dGosWLYKzszOAxP3jw4cPqFatGkxMTLBv3z61fL937x4qVaoExhhGjRqVJc/yvfPx40fY29tj5MiRaNWqFRo2bIhevXrBzs6OC3nkCwS8vb3Rt29fXjYVLFgQz58/T/Z3evXqBcYY+vfvr3NxiSD9bN++HR07doSxsTGMjY3VIqzLhSoqlQo7d+7kEcJfvXqVHbf7TePs7AxLS0swxlCzZk3s378/SRG78ItvB+ldDwkJwb59+zB9+nQsWLAAu3fvRnh4eJJ1y/Xr17FgwQL07NkTY8eOzcrbzhFMmjQJjDHky5cP8+fPR1BQUKJp5Xb4888/wRiDvr4+ZsyYoXVckHKio6MREhKSorS+vr5o3749L4MEaUfqG+sqx4VfZC9BQUFo27YtlEolFi5cqNYeioyMhEqlQqNGjcAYEztqZRBJvacp7S9v3LhRbTcoPT09Ph44ePBgnk7uc7r8T/TPE0fYIutJjW9ERERg9uzZMDc3B2MMVapUwaNHj5K9DgAsWbKE1zuau0B9D+iRQCAQCAQCgUAgEAgEAoFAIBAIBJlIfHw8KRQKUigURETEGCMiIpVKRXfv3qXAwEA6evQo+fr60v379/l5xYoVozp16lDbtm2pVq1aVKtWLbKxsSEA/BoC3SgUClKpVOTq6kpERKVLl6ZKlSrxY5pINvL29qaff/6Z3r59SwYGBtSwYUNq2rQpERHp6+sTEVFAQAA9fvyYrl69SpGRkVSjRg1q164d2djYUFxcHCmVyix6ym+fV69e0bZt2+jRo0dUuXJlmjhxYqLvrvRe6+npkZGREYWEhFB0dHSi6YiELVJLZviFdJ7I7+QpWLAgdenShbp06UIhISGkUqnIwsKCv9NJle3m5uZUtWpVcnJyomXLlhERUZEiRSgwMJCmT59O79+/p7Zt29KkSZOI6KvtBLopUKAAtWzZklq2bEkxMTEUHx9PRkZG/DgAnn+fP3+mbdu20fXr1ykkJIQsLS3p5s2bVLFixSTzOTQ0lF69esWvJ/wjcxg5ciS1adOGTp8+TbNnz6ZNmzbRly9faP/+/aSnp8fLJqVSSUOGDKH8+fOThYUFlSpVKrtv/ZujUqVKdOvWLWratCk5ODjQ+vXrqVixYtSiRQutskn4xbeF9K6bmprSTz/9pDNNeHg4Mcbo9u3b5OjoSNeuXaMnT55QQEAAERGvh1q2bEl9+vTJytv/bgkPD6eXL18SEZG1tTV169aN8ufPrzOtvI4/f/48HT16lIiI8uTJQ40bNyaiBBsk1Z4SfUBtVCoV3bp1i969e0eDBg1KNo+sra2pWbNmdOnSJTp8+DD9+uuvVKNGDZ1phS2SRk8vQW6nmUeZ4ReC1OHn50c3b94kpVJJjRs35rZSqVRkZGREwcHB9PnzZypatChVqFAhm+82Z5DUe5pcn0xqN40fP56MjY3p77//Jm9vb4qOjqaWLVtSixYtaObMmUREFBUVRUZGRvwcyf+CgoLI0dGRihUrRuXKlRN9wUQQtsh6UuIbUh75+vrSlStXKDg4mPT19WnLli1ka2ubaJ0rnRccHEwPHz4kIiITExMyMzPLnIfJRISAXSAQCAQCgUAgEAgEAoFAIBAIBBmKNIguDbJLg/KxsbH0+PFj8vLyomPHjtHbt2/5IDsRUdGiRal27drUs2dPKl26NDVv3pzMzc0pT548WtcXgp/kCQ8Pp7CwMNLX16eePXuSvr4+qVQqPoErIRfpTpgwgdukdOnSNH/+fCpUqBBPe+HCBdq7dy8dPnyYf6dQKMja2ppOnz5NVapUyfUTVHLy589P1apVo0ePHtGlS5eoXbt2iU6SSxNSz54942IqzYkn+cSVsEXayEi/iI+PJ8YYMcZ4meTq6koBAQEUHx9PVatWJWNjYzI2Nha2+D/SO2xqaqr1XVKLOwwMDGjz5s3k5uZGz549o9GjR1NUVBRP07lzZ5o2bZrWgoTEJnuF8OprHujr6/O8kNtCEq49efKEjh8/ToGBgWRhYUHnz5+nihUrJipsk75/+/YtX4RTunRptesLMgYpP0uVKkVjx44lS0tLGjVqFNnZ2VGpUqVo8eLFajZSKpXUo0ePbLzjb5+KFSvSrVu3qFWrVhQVFUU2NjZq76zwi28TXX2DyMhIio2NpatXr9KbN2/o1KlT5OvrSx4eHjxNpUqVqFGjRtSiRQtq0KABlSpVSq3dK0iaBw8ekL29PRER/fzzz1SrVi2d6eTv+KNHj2jfvn304MEDIiIaP348devWjaeT7HjlyhXy9fWlvHnzUpEiRah58+bJLnbLjTg5OVHv3r0pMjKSmjRpkuTiJKkcKlOmDM/LL1++JJpe2CJpEnv2jPYLOfL+RG7P/6SQyhIjIyPe5wDA+3ujRo0iV1dXql27NuXLly87b1VACf026d0eNmwYtW/fnmJjYyk0NJSsra3VbCQtuP348SN5enrSvXv36MaNG+Ti4kIeHh6kp6dHL1++pHLlymXX43zXCFtkD1K5vmXLFnr06BEREe3cuZOaNm2a5HiGdN6mTZvo1KlTREQ0duxYKlu2rFq676GuEAJ2gUAgEAgEAoFAIBAIBAKBQCAQZAiagvVPnz6Rv78/PXnyhOzt7enly5f0/Plznr5o0aJUs2ZN6tmzJ5UqVYo6d+5MBgYGZGxsrHZdTeGnEK+njPj4eIqIiKDY2Fjy8/MjIkpUpOvh4UGjR4+mBw8eUFRUFFlaWtKhQ4eofPnyPO2ZM2do0aJF9OTJE8qbNy9169aNIiIiyNfXl54+fUqdO3cme3t7srGxydLn/JaxtLSk7t2704ULF+js2bPUoEEDmjp1qtaiDIl3797R1atXSalUUlxcHBUtWlTtuDTxJGyRdjLKL+Li4rjQ18vLi+zt7Wnfvn3k7OxMQUFBRJQghKxbty7NnTuXypUrJ6K009d3WD6JmpywXxJTm5ubk729PU2cOJFcXV3JwcGBKlSoQJ07d6bJkydTwYIFtSZn5ULsmzdvUnh4OP3www/fxSRuZqPLFvK/pXd12bJl5O7uTvny5aNt27ZRnTp1El1IJv9+3bp15O7uTowxatu2rdb1BSlH1yIbIvX81NPTo86dO9OkSZNo5cqVdPLkSerevTvVqVMnK281R1CxYkV68OABRUdHU6lSpdSEH8Ivvg0061Np4WxYWBjZ29uTt7c3HTlyhAIDA9UE61WqVKGOHTtSjx49qGzZslSzZk2dUSrForOUERMTQ/r6+pQnTx6qXbs2EWnnndx/HBwcaNu2bXzx5cCBA2nhwoVq13z16hX98ssvdPXqVYqNjSWihAWdo0aNohUrVgjhtAZRUVFkbm5O4eHhZGdnR1OmTNHqS2vi5uZGRAnlWVKLBz08PIQt0kBG+oVm/S+VcyqViqKjo6lw4cI6r5nbMTU1JRsbG3J2diZ7e3sqV64c5c2bl2JiYmjUqFF05MgRsrCwoM2bN1P+/PlF3n0DSDul6enpUeHChbXaU56enhQWFkZnz56lly9f0vXr1+ndu3dElNCOKlKkCHXv3p3Kli1L79+/F6LpdCBskfUAoMDAQLpx4wYREXXp0oXatWtHRLr7CfIya+/evTR37lwiImrcuDF16tSJiL62laV0MTExpKenx8ewvrW2rhCwCwQCgUAgEAgEAoFAIBAIBAKBIENgjFF4eDj98ccfFBAQQA8ePCBPT08eabJAgQLUpEkTatmyJVWqVIlatGhBhoaGWltqA1CLJvMtDap/TxQpUoR69+5Ne/bsoVevXtGXL1/IzMxMSzj67Nkz6t+/P3l6elJ8fDyZm5vThQsXqHr16nzSw93dnf7++2968uQJtWvXjsaNG0ddunQhlUpFr169osGDB9OTJ0/o9OnTNGnSJDEJTF8nlTp37kxTpkyhGTNm0O+//07m5uY0aNAgLcHUx48f6ejRo2RnZ0dxcXHUvHlz6tevn9Z1hS3SR0b4hVyMePv2bZoyZQq9fv2aAgMDeSQyY2NjcnV1JVdXV7K3t6eLFy9S5cqVv7mJwu8FaVGHmZkZ7dy5k+Li4iggIIBMTEyoQIECWulDQ0PJwcGBvL296fjx4+Tr60vPnj0jIqJhw4bRzp07s/oRviukcmPXrl107do1MjQ0pJ9//platWpFRLrrZXm9vWXLFtq9ezcxxqh79+5UrVo1fk3hA6kjLCyMXrx4QXXq1CEDA4Mk05qamlLLli1p9erV5OTkRI8fP05SwC5skTglSpQgInWBSGb6hSB1SHXwmzdvyNnZmRwcHOjixYvk5eVFPj4+PF3VqlWpTZs21K9fPypevDi1bt1ap2hX0xeEX6SM4OBgio2NpTx58pCFhQURqeedPF/v379P27Zto7179xJRws4pM2bMIH19fd7fuHfvHk2ZMoUePXpEFhYWZGNjQ3FxceTg4ECrVq0ixhgtX75c+IyMqlWrUq9evWjNmjV0+PBhat68OTVp0kQrnXzRx82bN3mE6uLFi6ulk2wmbJF2MtIvJPF6fHw8HTlyhM6cOUN37tyh2NhYCgkJoV69elGTJk1o+PDhYkGBjNKlS1O/fv1o/vz5NHv2bLp+/TrFxcVRUFAQPXv2jPLnz0/r1q2jevXqiTzLRjT7BtL7rlQqydfXlz5+/EgnTpwgPz8/unDhAoWEhFBUVBQpFAoqUKAA9e/fnypXrkwtWrSgcuXKqS3oEKQOYYvshTFG79+/J0dHRyIiql+/fqI7AsnLrCNHjtDvv/9ORET58uWjzp0784VTSqWSYmJiyMXFhQ4cOEAvXrwglUpFderUoeHDh397ARYgEAgEAoFAIBAIBAKBQCAQCAQCQQYyduxYMMZgaGiI1q1bY9q0aTh16hTevn2LiIgIrfQqlQoBAQF49OgRPn78iMjISP69IH3s3r0bjDEwxrB+/Xr4+fnxY48ePcKGDRtgamrK05QuXRrPnz8HAMTFxSE+Ph4AsHfvXigUCpQqVQoXLlzg14iJiQEADBo0CIwxjBkzJguf7tsnLi6O//3bb7/xfJ46dSpOnz6NuLg4xMXF4cqVK/j1119hYmICxhiqVKmCkydPal0DELbICNLrF0BCfv/zzz9QKBQ8XcGCBbFo0SL8999/eP78OTZv3oxmzZqBMYZy5crB09MzW543JxEbGwsAvGyS+PDhA+7du4eNGzeiV69eqFq1KreLZMM2bdpg3bp1+Pvvv7Pj1r9Lpk2bxuvzq1evJppObo/Tp0+jXr16YIxBT08P27dv13lOTEwM3r9/r1bGado1txMZGYlt27ahYsWKuHjxYorOiYiIgK2tLRhjGDp0aIryVNgidWSmXwiS5vXr1zh06BAWLlyI9u3bo1ixYmplfaVKldC9e3ds374dFy9eRGRkpM6+h1SXCNKHr68vKlSoAD09PWzbto333eLj49X6cUeOHEGPHj24nTp06ICbN2+qlTmfPn1Cw4YNwRhDtWrV4OzsjLCwMLx9+xbr16+HUqmEpaUlbt26leXP+a3j5+eHRo0agTGGZs2awcnJieetZn96zJgxYIzBwMAAY8eOBfC1rJLOEbZIHxnpFwBw/PhxDB06VK2sMzIyAmOM90NmzpzJ0+f2+luef7NmzYJSqYRSqeR5V7RoUZw/fx7R0dHZeJe5E82yRk5AQAAePnyIBQsWYODAgciXLx9/z42MjGBqaooff/wRv//+O54+fYq3b99qXUO6rq7rC9QRtvj2ePbsGfLkyYMCBQrg0aNHALTbq/L8PHr0KCpWrAg9PT0wxjBkyBC1tOHh4Vi9ejXq1KmjVn8wxlCsWDE4OTkB+HbqDBGBXSAQCAQCgUAgEAgEAoFAIBAIBBkC/h8JZvPmzdSnTx8qWrQoVahQQS1NXFyc2v/fvXtH48ePJxcXF3Jzc6Py5ctT1apVaevWrWRpafltRYT5jpBsMXToUHJ3d6fly5fT5MmT6b///qMiRYoQY4zu3r1LgYGBFB0dTVZWVlS7dm1atWoVVaxYUS0yXFRUFO3fv58AUJ8+fah9+/ZElGBLfX19IvoaVS4+Pl5EdJWhUCj4O7x06VIiIlq+fDmtXbuW1q5dS5UrVyYi4lG+Y2NjqWLFijRq1Chq3rw5v4aEsEX6yCi/CAkJob1799LkyZMJABUqVIhsbW1pw4YNZGNjw3+vWrVq1KJFCxo2bBg9fPiQ/vrrL1q5ciXp6ekJu6QA6IiIKEWDe/v2LQUHB9P58+fJ0dGRbt68Sa9fv+bpLC0tqXXr1tSmTRuqUqUKtWzZkhhjZGxsnOT1BQnExcVRTEwMnTt3joiIevTowaNMayLPR3t7e9q6dSs9evSIiIjGjBlDI0eOVLvuhw8faP78+fTy5Ut68eIFNW/enJo1a0YzZ84U0UM1iI6Ophs3bpCbmxvt2LGDbG1teTTXxAgODqZ3797xvxPLS2GL1JMZfpHSelrYIgF9fX0aN24cff78mfT19algwYLUp08fatSoEdna2pKtrS0pFAreJpIIDQ0lxhgxxsjExIT09PREGykDyJ8/P9WqVYvc3d3pn3/+ofr161OFChXIyMiI76g1d+5cOnXqFL18+ZKIiLp160YzZ86kevXqqeX/5MmT6f79+1SqVCk6f/48FStWjIiITExMqGfPnrRnzx5ycHCgwMDAbHnWb5nixYvTvn37qFWrVnTr1i0aPXo0TZo0iZo1a0ZFihShqKgoCg8PpxkzZtCePXuIMUZWVlbUrl07IiJetkj2ELZIHxnpFwsWLKDjx4/TixcviIioXLlyVLFiRfrhhx8oKCiIXF1dyc7OjlatWkUKhYKWLVuW6+sKef97+fLl1KBBA/Lz8yNvb2+qUaMGtW7dWmvnAUHWIL2bcXFxFBoaSo8fP6bHjx/To0eP6N69e7z9qqenRxYWFtSpUycqXbo0de/enSwsLKh06dJq15PaRtK/YgfHlCNs8e1hYGBA0dHRFBUVRW5ubmRra8vHPiSk/LSzs6O5c+fS27dvKS4ujrp06UJ79uzh6aKjo2nDhg20du1aCg4OpmrVqtGIESPI19eXHj58SHfu3KFevXrRlStXvpnyUAjYBQKBQCAQCAQCgUAgEAgEAoFAkCEwxvhkYcuWLYlIeytaSYweHx9P169fpylTptCLFy/I0tKSypUrRyqVio4dO0aurq5048YNKlCggBDtpAG5LZYuXUoGBga0bt06unPnDsXHx6ulbdCgAQ0YMIB69epFRYsW1RL0KBQKioiIICIic3NzIiKKjY3l4qDr16/T9evXSaFQUKdOncQklQZKpVLNFlZWVnTw4EF68OABOTs7q6Vt0KABjR8/njp16kRmZmZa1xK2SB/p8QvpvOjoaNq1axdNmzaNAFD58uWpV69eNGXKFLVFNwBIoVBQuXLlqHnz5vTw4UN69OgR6evri/IsGaQySJ5Pvr6+FBwcTKdOnSIfHx+6cOECBQUFUVRUFBERFShQgLp160bVq1enpk2bUpUqVahw4cJqPqC5gErYIXEUCgUZGhrySfMCBQoQEZFKpVKbSJfXF1euXKEtW7ZwcW/fvn1p3bp1PG1kZCRduHCBVq5cSQ8ePCB9fX2KjY2lixcv0rlz5+jdu3e0du1aYRcZxsbG1KhRI7p48SI9ePCAbt68SV27dtVZtku2cHJyIgBERFS4cGGdbShhi7SR0X4RExNDBgYG/LyHDx+Sl5cX3b59mwwMDKhWrVpUvnx5ql+/vlhQ8H+KFClCt27dojNnzlCLFi3IxsaGChYsqJYmJiaG/33r1i26efMm/ffffxQXF0dlypShnj170qBBg0ihUAgRezoxNTWlpUuX0v379+n27ds0fPhwqlWrFjVo0IDu3btHHh4edOvWLZ5++PDhNGPGDCpfvrzauxwSEkJOTk5kbGxMmzdvpmLFiqn5VZ48eUilUhEACgoKyvLn/B4oU6YMXbp0idq1a0d3794lNzc3srS0pKZNm9KrV6/o8+fP5OjoSAqFgkxMTGj69OnUvXt3resIW6SfjPKLcePG0cGDByk4OJiIEhY/9evXjy9yJiL68uULNWjQgCZOnEgbN26khg0bUteuXbPuYb9R5P1vXe+5KPuzj+fPn9OgQYMoLCxMbfFx0aJFqUePHlS7dm1q164dWVpako2NTaJtH7kNc3vbKK0IW3w7AKCSJUvSDz/8QOfOnaOnT59S9+7dycTERC0NY4zWrFlDs2bNovj4eAJAHTt2pJMnTxJRgnDd0NCQbt++Tfv376ewsDAaO3YsjR49mipUqEAqlYqcnZ2pX79+5O3tTY8fPxYCdoFAIBAIBAKBQCAQCAQCgUAgEOQ8NKOla0Z0kyYSnZ2d6ZdffqGXL19SrVq16MCBA1SkSBEyMzOjIUOG0P79+2nu3Ln0119/aUVRFKQM+cTtggULqG7duvTy5Us6c+YMMcaoTp06ZGNjQ6NHj+aiWkl0K0dfX59q1KhB9+7dIzc3N/r8+TPlz5+fiIju3r1L27ZtIz8/Px7pWKCN3BYTJ06kNm3akIODAx09epS+fPlCZcuWpRIlStDkyZPJ2Ng40Yk/YYv0kxa/iIuL4zaxs7Pj4vUqVarQsGHDaOTIkZQvXz6Kj4/nZaCUXk9Pj+9E8eTJE3r16hWVK1dOTO4mQVxcHIWFhZGXlxedPXuWPDw86PTp0xQTE0NhYWGkVCpJqVRS165deSQ4KysrKlGihE7BujTZK3bzSDlSpOIyZcqQk5MTvXv3TkukK98h5dixY7R9+3a6ePEiERF17dqVVq5cSUqlkp9369Ytmj9/Pjk5OVHFihVpyZIlFBoaSr6+vrRgwQJav349VahQgcaMGZMtz/wtoq+vT3379qWLFy/SmTNnaMWKFVS2bFmqWrUqTyNFc5Xe/Z07d/KoiR07dlQraySBibBF2shIv4iNjeXidXt7e7p8+TKtXLmS8uTJwxeqERGVLFmShg4dSvPnzxci9v9TuXJlvoMN0df3Wlq4IeWrFJ3y9evXBIDy589PL168oBMnTtD79+9p+vTpQsCYAdjY2NDFixepe/fu9OzZM3r27Bnt3buX18EGBgZUqlQpGjJkCP32229a5wOg169f0/Pnz4mIeL9PT0+P+5eXlxd9+vSJChYsqFb+CdSpUKECXbt2jSZOnEjPnj0jNzc3cnd3V/ONChUq0Lhx42j06NFEpC48FLbIONLrF8OHD6e9e/dy261cuZKmT5/Oj0sLoMzNzalHjx507Ngxun79Ojk4OAgB+/9Jqt0vyv7so2bNmtSwYUM6f/48tWnThtq3b0+1atWiatWqaS1II0poezk7O5Ofnx/5+vpS5cqVqUaNGmRqaqrVBhOkDmGLbwdphyBJwL527VoqWrQodezYkcqXL0+RkZF08uRJunr1Ko+0rq+vT7169aIDBw4QUcKCWkNDQyIiOnjwIDk7O1OrVq1o3LhxVLZsWd5frF69OhUtWpTc3NzI29s7ux5ZGwgEAoFAIBAIBAKBQCAQCAQCgUCQhcTExKBRo0ZgjKFevXr49OkTACAqKgoAEBgYiPz586N58+aIi4vLzlvNEWjmYWxsLFQqVZJpNDl8+DAYY2Dsf+3dd3QVdf7/8de9qSSEBAiQkBASSIBACCUghCZtBYNIERREqoKiiAWxrAXEsgi7uKLuqrsgLusPpPcq0nuLQIDQUiihBkhCejK/P/jekUAoq5CbwPNxDsfrnZLPzHvuzJ07r/mMxejfv7/xt7/9zRg5cqTRoEEDw2KxGNWrVzfmzZt319t+v8nPz//D41CLu+N/+VzYarJy5Upz3YeGhhp///vfjdTU1ALjFDb9xIkTDScnJ8PT09M4duzYHW0HD6r09HRj2LBhhqOjo+Hk5GRYLBbDycnJ8PLyMrp3726MGDHC2LRpk3Ho0KHbzovjx+9n20YnTJhgODk5GaGhocbu3bsLHXfcuHFGnTp1zM9Gt27djAMHDhQYJzMz02jTpo1hsViMRx55xIiLizOHpaamGsOHDzf3abhRXFycuY4ffvhhY/PmzUZaWlqBcXJycoznnnvOsFgshtVqNbp27WokJibeMC9q8fvdrc/Ftceajz/+2IiIiDDH8/DwMKpVq2Y0a9bMqFatmmG1Wg2LxWKMGDHini/f/WTatGlGqVKlDIvFYvTs2dP473//a5w9e9aYNWuW4eXlZVgsFr4r3WWJiYnGmDFjjDZt2hgBAQFGaGio8dBDDxn/+te/jE2bNpnjFXZsTklJMRo0aGCULl3amDZtWoFxzp07ZzRs2NDcZ2VkZBTJ8pRktm39ySefNOrXr2/UqFHDqFevnvH3v//dWL9+vTketbj37vRzkZ2dbb5++eWXze/Arq6uxrfffnvbvzNw4EDDYrEYzZs3N39TAYqba7//nDp1qsA5se11Tk6O+d6JEyeMf/zjH4a7u7vh4OBgWCwWo3Tp0kbr1q2Ns2fP3jBP3DlqUbxcu/7ffvtt87wgJCTEaNasmVGrVi2jTJky5vv169c33n//fXOaa2t1+vRpIygoyLBarcbChQvN+duO5xkZGUZYWJhhsViMr776qoiW8PYIsAMAAAAAAAAAitSiRYsMR0dHw8/Pzzhy5IhhGAV/cN+5c6fh4OBgVKpUyTh58iQhxGLiyy+/NC+Y2P65uLgYzZs3N2bPnm2Ol5eXZ16AKewiFhe2fvN7g8zUoujFxMQYQUFBhsViMapUqWKMGTPGSElJMQzj1nU8f/68Ub9+fcNisRhNmzYlvH4HYmJijICAAKNz587Gu+++a2zYsMGIjY0tMM612+6BAweMFStWGG+//bbx3//+97bhLNy5EydOmNtvy5YtjXnz5hkJCQnGqVOnjDlz5hhPPfVUgf1Qnz59jBMnTpjT27b38ePHGxaLxfDx8TEOHz5sGEbB4/6ECRMMi8VihIeHG2lpadStELGxsUblypUNi8Vi1KlTx3juueeMBQsWGCtWrDDGjx9vREVFmeH10NBQY9q0aYXOh1r8cX/kc3Ht+nzuuecMZ2dnc7zevXsbkydPNi5cuGDk5OQYMTExxoQJE8wQ++eff26nJS5Zdu3aZQZzhg4dap5r2Hz33XeGxWIxRo8ebacW3r9sAamEhATj8uXL5vckm5vtT7KysozevXubNwj+8MMPxtKlS42pU6ca4eHh5vunTp265Xxwo+TkZOPixYvG5cuXC7xPLYrO7T4X136nHTdunFGxYkXzBs5JkyaZw261rp988knzXIMAO4qz67fjm23XR48eNV555RXzO9Bjjz1mDBo0yGjevLkZ4L148WIRtPj+RS2Kl+tvcK1ataq5zi0Wi+Hm5mZYLBbjlVdeMZYtW1bodIZx9Sa2SpUqGRaLxZg6daphGL/VNj093fjuu+8MNzc3Izg42IiPjy+CJbsz9N8PAAAAAAAAAChSR44cUV5ennx9fVWxYkVJMh83m5eXp61bt8owDLVu3VqVK1e2Z1Oh3x4tP2zYMFWqVEk///yz9u/fL0dHRz3zzDNq0KCBGjZsKEnKyckxHzcvSVlZWUpOTta2bdu0a9cudevWTREREfZalGLHYrH8T+NTi6KXn5+vvLw8/fTTT7pw4YIkqUWLFnrppZfk4eEhwzBuWsfc3FwtXrxY586dkyQ1aNBAeXl5slqtPLr+FmrXrq1ff/1VXl5eNwzLz8+XYRhycHCQJM2cOVMfffSRjhw5oszMTEmSm5ubxowZo9dff11Wq/WWNcKt+fn5acaMGWrbtq02bNigPXv2mNtvbm6uUlJSZLFY5O3trQEDBuizzz4rML1tvZ86dUqS9OSTTyo4OFh5eXlydHSUYRjKy8vT8ePHJUlhYWFyd3cv2oUsIWrUqKE1a9aoZ8+e2rNnj/bv369JkybJwcFBjo6OysrKksViUd26dTVs2DD16tVLkm7Y/qnFH/d7Pxd5eXnmvqtXr16aMWOGLBaLLBaLRo0apffff1/Sb5+b2rVrKzAwUGfPntW4ceO0ZMkSDRw4UJ6envZZ8GLOtq3/+uuvio2NVXh4uIYMGaLq1atLkjIzM+Xq6mpu17t27eL4cA9YrVYFBATcdNj1DMOQs7Oz/vGPf+jgwYOKjo7WCy+8oMzMTLm4uCgrK0u1a9fWzJkz5evrW+BzZHtt+3587Twf9Lra1kHZsmULHU4titadfC7Wrl2ruXPnmucNEydO1KBBgyTphvV6rQMHDujgwYOyWq2qV6+eXFxc7sESAHfH9dvx9f9v22dMmzZNX375pUqXLq333ntPI0eONMd56qmnNHPmTE2aNEkjRoxgP/M7UYvixcHBwTyWvvvuu2rbtq2OHDmirVu3KicnRy1btlRgYKBatGhhTpOfn28eh23c3d3VuHFjLV68WDt27FDHjh3l7e2tjIwMzZo1S1999ZUyMjLUoUMHlStXrqgX86YIsAMAAAAAAAAAilT58uUlXb1Akp6eLg8PD0lXL5Bs2rRJf/nLX2QYhpo0aWLPZuL/WK1W86J5z5491bVrVxmGoZycnBvCbRkZGUpLS9OSJUt0+PBhLV68WPHx8Wbw94svvtCxY8dUoUIFeyxKiUctip7ValVWVpYWLFig1NRUBQQEaPz48SpXrtxNwyS29xMTEzVlyhSdOnVKzs7OGjhwoHmzjkSo51ZsAc1rw1HS1WCnbZ1PmTLFDPa0adNGtWrVkre3tyZOnKg33nhDpUuX1pAhQ1jHf1BISIjWrFmjV199Vfv371dcXJykqzeeubq66rnnnlObNm3UrVs3SYWHrDIyMiRJSUlJZohUulrP/fv3a/ny5ZKkpk2b3nQeuFqLRYsW6auvvtLq1au1fft25eXlKS8vT5I0ZMgQderUSY899pgkanEv/a+fi+zsbDk7O0uS+vTpoxkzZsjBwUG+vr567733NGTIkEL/jpubmxo1aiTDMPTzzz8rLi5O9evXL5JlLIny8/M1f/585ebmKiIiwlxXubm55ra+Y8cOSVdvEOD4cHf9nvVpsViUl5cnLy8vrV69Wq+88ooOHDigHTt2qHHjxqpVq5Y+++wzlS1b9oaQtO37weXLlxUfH6/Y2Fj16tWLuopaFCe3Wwe24fPnz9eWLVskSR999JFeeOEFSTc/DtvOIzZs2KC9e/dKkmrWrHk3mw4UOYvForVr15o39Y0aNUqvv/66JOnKlStyd3fX8OHDNXPmTB07dsycBncftSh61x5XIyMjFRkZqb59+950/MKODW5uburRo4cWL16siRMn6siRI6pevbqio6N18OBBnTt3To8++qhef/1187f4whT1b1UE2AEAAAAAAAAARcrX11fu7u7avn27/vvf/yoqKkp5eXnatGmTPv30U504cUKPPvqohg0bZu+m4v9YrVazR29br97Ozs66dOmSMjMztXLlSiUmJmrOnDk6ffq0kpKSzGmbNm2qDh06qGvXripXrpx5AwN+H2pR9JYsWaJff/1V7u7u+vTTT+Xn53dDsNrm2vffeecdrVmzRo6Ojho1apQaN26svLw8M4Sdn5+v7OxsHT58WD4+PipVqpQ8PDwIjOq3i9/Xr2Pb+/PmzTPD6yNGjNCwYcMUEBAgi8Wili1b6pFHHtE333yjLl26qGLFilxM/4OqV6+uqVOn6syZM9qwYYOys7MVEBCg4ODgAmGpm227devWlSTt3r1bmzdvVmRkpHJzc7Vz5069+eabOnDggJo0aaKnn35aUuEX43GVv7+/PvzwQ40ePVrLly9XamqqPDw8FBgYqPDwcHNbpxb33p1+LnJycszw+ksvvaRp06bJarUqMDBQH3zwgRlMub5mtuNJjRo1VKFCBV2+fNl80gRuZOvN3hbGsX1HMgzDvHnsu+++09///ndJUrt27ezSTtzI1uuop6envvvuO+Xm5iouLk4hISGSZH5+bN8Jzp07p5SUFC1ZskT79u3T6tWrlZiYqNzcXG3fvl1/+9vf7LYsJR21sI9Vq1aZ+6ZnnnlGr7zyiqRb30RmsVi0ceNGvfzyy5KuPiHKdjwxDMMcByhp5s6dK0nq2bOnGZjOzc01b9jfunWrJOn8+fPKz8+XxPfVe4VaFL0/sv5sofP+/fsrNTVVw4cP15IlS8zhAQEBGjhwoN555x1Vq1bNPMYU9tuW7fhxs9+97jYC7AAAAAAAAACAItWuXTu9/PLLGjt2rEaOHKkvv/xSaWlpysjIUEZGhtq0aaO5c+fKycmJIKcd2da97SKILQiUkJCgDRs26ODBg1q4cKGSk5N14sQJc7oWLVqoTZs26tGjh3x9fRUREVGg12n876iFfdluAsjOzlZwcLCkG4PVUsFHOPfv318zZ86U1WpVp06dFBUVJem3HsQPHz6sqVOnaunSpTpw4ID8/PxUq1YtjR07VqGhoUV2obAkSkpK0tdffy1JGjp0qEaPHm1eRDcMQ+3bt1e9evUUGxurtLQ0VapUyZ7NvW94eXnJy8vrht49r+2d7WbH6759+2rq1KnaunWrBg4cqFq1aunKlSuKj4/XyZMnFRISotmzZ6t8+fKFHvev/Rs8ueBqgNBisahLly4F3rcF1iRqUVRu97kwDMM8Zk+cOFHTpk2TJFWsWFHvvffeTcPr0m/HmdWrV+vcuXP3elFKPNv2X716dUnSzp07tWfPHgUEBMjLy0uff/65PvroI0nS+++/r/bt29utrbiR7Xuug4ODnJ2dVadOHXPY8ePHlZ6eroULFyo+Pl6LFy/W2bNnlZGRIavVqjJlyigqKkq1atVSaGio0tPT5ebmZselKdmoRdGxHSv27NkjJycnubi4qGPHjuY6u9XvIHv37tXIkSOVnZ0tT09P/elPf5Knp+cNx+bs7Gzl5uYWqAPHbxRXhmHo4MGDkqRy5cpJuhqYtv2GERsbq9WrV0uSoqKi+K3wHqIWJY/FYjHPKYYNG6bg4GDt3LlTx44dk6enp3r37q3AwMAbnsJoO+c4efKkoqOjtXv3bq1du1Yff/xxkT0ZlV8pAQAAAAAAAABFxvZj+qeffionJyf98MMPSkpKUk5Ojho0aKDmzZvrb3/7m5ycnAhw2pntovbBgwd16NAhrV+/3gxLp6SkmOM0bNhQLVq0UPfu3eXv76+mTZsWWjtuRvj9qIV92MIdth5v69Spo4ceeqjAsGvZ1unAgQM1depUWa1W1atXT/369VO9evXMcfbu3atBgwZp165dMgxDbm5uOn78uA4fPqwtW7ZozZo1Cg0NJVxyE5cvX1Z0dLQ8PT3VpUsXM5Bj29bPnz9vBqYITd17t9tG8/Ly5OHhoaVLl6pLly7asmWLEhMTJV0N8UZFRenf//63fHx8zKdLXL+PslgsZk1toeAH+bNxs2WnFsWHbZ3Y/hsTE6P58+fr0qVLkqR3331X/fv3l3TrY/KFCxe0ceNGWa1W1axZU1WqVLn3jS+hbOt6wIAB+v7777Vz50717t1bLi4u8vT01Nq1ayVJzz//vJ555hl7NhX67XuUbfu/9skrly9f1vHjx7Vs2TIdOXJEixYtUnp6uvn5cXR0VOfOnRUUFKRu3bqpUqVK5g2G+N9RC/syDEMLFy5UTk6OwsPDzSeg3MrBgwc1evRoxcTESJLCw8P14osvmjdMSVeDiAsXLtRPP/2kpKQkNW7cWI0aNdIrr7zC8RvFlsViUb169fTzzz8rPT1dV65cMW9UPnbsmL777jstXrxYoaGh5vk17g1qUTLZnvRntVrVsWNHdezY8YZxbMOPHj2qpKQkLV++XLt27dK2bdt08eJFc7zLly9r9erVZt3vJQLsAAAAAAAAAIAic+3jST/88EN1795dKSkpunLlisLCwlS5cmXzB3fC60UvNzdX0dHRunDhgubOnavDhw9r69atSk9PlySVKlVKNWvWVEREhB5++GEFBwebgV5b3Wyvr0dg+n9DLezPFuoICQmRJB09elTbt29X48aNzeCHbTzDMHTu3Dm9+uqrmj59uqxWq6pVq6ZXXnlF3bp1M+cZGxurvn37as+ePWrSpIkef/xxtWvXTkeOHNHkyZP1yy+/6Pnnn9f8+fNVtmzZol/oEuDXX3/VhQsX5Ofnp9q1a8tisRToDW7y5Mk6fPiwwsPD5ejoSEDHzhwcHJSbmysvLy8tWbJEixcvVnx8vCSpSZMmatCggcqUKSNJZvDKarUqPT1dSUlJ2rhxo/bv36958+apefPmmjRpEvX8naiF/axcudLspfKtt97SSy+9JOnm4XXb++vXr9fcuXOVn5+vJk2ayM/Pr0jbXRJVrVpVK1asULdu3ZSQkKD09HTz+DB27Fj17NlTQUFBdm7lg+v6kLRhGEpLS9P+/fu1Y8cObd++XatXr9apU6eUm5srBwcHlSpVSq1bt1a1atX0xBNPqGLFijc89eD6+eP2qIX92da9q6urJKlWrVqSZN5EVpgDBw7o448/1po1a5SamqoqVaroxx9/VPny5c1xVq5cqX//+9+aOXOm+d7Ro0f1448/Kj4+Xp9//jnHbxRboaGhys/P19SpUxUQEKCIiAglJCRo9erVWrBggRwdHTVy5EjVr1/f3k2971GLkscwjAK/u19r7969unTpkubMmaP4+HitXr3a7BDD1dVV/v7+6tatmyIiIhQZGalKlSoVSXhdIsAOAAAAAAAAAChiDg4O5gXtwnrqsf3gjqL3008/qW/fvmYA2sPDQ5UqVVKnTp0UHh6uFi1aKCgoSE5OTgVqlJ2dLWdnZ/M9bkD446hF8VGzZk3VqVNHMTExWrVqlcLCwlSqVCkz+HHx4kVt3LhRX331lVasWCGr1aqwsDC98sor6tevn6SrPR9nZWXp888/1549e9SiRQuNHz9e9erVk6urqxo1aiRfX19FR0crLi5OKSkpBNhvIiQkRBUrVlReXp5iY2Pl7+9vhhP/8Y9/6O2335YkjRw58obHY8M+HB0dlZeXJ3d3dz355JM3DLddYI+OjtbBgwe1YcMGbdmyRXFxcWYvcE5OTsrNzdWaNWvUunXrIl6C+we1KHqJiYn64osvJEmPPPKI3njjDUk3D3favgfv3r1b/fr1U25ursLDwzV8+HBJKnDDTmG4aUeqUaOGVqxYoR07dig6OlrVq1dXSEiImjRpYu+mPfAyMjLk7u6uVatWKS4uTsuXL9eBAwd04MAB88ZAb29vtW/fXvXr19ef/vQn+fj4KDQ01JyHbbxrbyS04RzyzlGL4qNcuXKSpNOnTyszM9MMtNvY9uvR0dEaPXq01q1bp0uXLsnPz09LliyRv7+/efzesGGDxo0bp1WrVqlixYp66aWX5OXlpcTERE2YMEFffPGFAgIC9Nprr9ljUYHbGjBggPbv36+//vWv+uSTT+Tg4GBu35UqVdKHH36oAQMG2LuZDwRqUfzZzicKe4rKsWPHdPz4cc2dO1dxcXFaunSpLBaLcnJy5O7urtKlS+vpp59WSEiIoqKiVKlSJXl5eRWYf1GdVxBgBwAAAAAAAAAUuVtd0H7QQzf21KdPH23ZskVWq1XVq1dXVFSUKlSoIE9Pz0LHT0xM1LJly7Rr1y5JUlhYmPr06aOyZcveNmCFW6MWxUetWrXUt29fvf322/rzn/+stLQ0NW/eXJUrV9bFixc1YcIEHT58WLGxsXJwcFDbtm317LPPmuFQ200EtkcwOzs7a8CAAWrQoIGcnZ3Ni8AhISGyWCw6efKkzpw5o6pVq9p5yYungIAAVa9eXZs3b9aHH36o2NhYOTo6KiYmRl9++aUk6b333lOfPn3s3FJIv11Uv/ZGGlvPotu3b1dSUpLmzZungwcPauvWrWYIzsPDQ8HBwerbt69atWqlunXrKiQkRNnZ2fZalBKPWthHWlqa2bthRESEGVS8WXjdYrEoJiZGgwcPVlpamsqUKaN27dqpevXqkmQez/Py8rR161bFxcXJ0dFRVatWVdOmTc2ngjzo36f9/Pzk5+enLl262Lsp+D/Z2dl6/vnntWLFCp0/f95839fXV02bNlWHDh3UqFEjhYeHFwjkXs9isdC79x9ELYoH2766Xbt2mjdvnuLj4/Xrr7/qoYceKrAPt1gsWrNmjYYNG6b4+Hilp6fL399fs2bNUp06dcz65Ofn68cff9SqVavUpEkTffDBB3r00UclSenp6XJwcNC4ceO0evVqvfDCCypVqpS9Fh0olG1bHjdunCpUqKClS5fq8OHDcnJyUo8ePdSmTRtzm8a9RS2KN9vxw3b8zcnJ0enTpxUTE6O1a9dq3759Wrt2rfkExzJlyqhy5cqKiopSYGCgHn/8cZUtW1aVKlUqMF/bMd02/6I6n7AYtjNPAAAAAAAAAADwwLpVyNl2EePa8MIPP/ygqVOn6pdffikwboMGDbRs2TJVqFCBQMPvRC2Kj2vX29tvv61x48ZJutoDsYeHhzIyMpSRkSHpahhxxIgR6tq1qyIjI2+Yfu7cuXriiSdUpUoVbd26VT4+PsrLyzN7ylq7dq3atGkjR0dHRUdHq3bt2nZY4pLh0KFDatOmjZKSkm4YNnr0aL344ovy9va2Q8twfS9wNoZhaOvWrTpz5oxmzZqlkydPas2aNeZwX19fVahQQVFRUQoNDVVkZKSCgoLM/ZztIjr7sjtHLYqHBQsWqGvXrvLy8tLatWtVt27dQgPmtvcOHjyooUOHavPmzcrOzlazZs30008/yc/Pzxx32bJlmjlzpr7//nvzPS8vLw0ePFifffZZgfkBxcm+ffvUt29fubq6qmvXrgoKClKrVq1UsWJFc39y7babnJysjRs3at++fapevboqV66sFi1aSLr5UwxwZ6hF8ZGUlKQuXbpox44datWqlf785z+rTp068vPz04oVK7R161aNGjXKHD8oKEhLlixRzZo1C8xn6dKl6tSpkyRp1qxZ6t69u6TfgqjTp0/X008/rRo1amjz5s087QnF0rW/c1y8eFFZWVlydHTk3M4OqEXxdvToUW3fvl2xsbH6+eefdfDgQV24cMEcXq1aNbVp00Z16tTRo48+qlKlSikgIMAcbhhGsXkCKt1tAAAAAAAAAACAQgPT1/fqY7t49e2332rcuHFKTExUWFiYhgwZosqVK2vq1KmaP3++unXrpqVLl8rDw6NIl+F+QS2Kj2tvFhg7dqx8fHw0e/Zsbd26VcnJyZKkkJAQ+fv765133lGrVq3k7OwsSTdcDKxcubJcXFwkXQ2qVKxY0axjTEyMPvzwQ0lXe98nvH5rNWrU0Lp16zR69GgdPnxY586dU926ddWvXz8zrIOiZQuvXdsL3KFDhxQTE6MlS5bo6NGj2rx5s9k7dPny5VWrVi316NFDQUFB5kX1658yYfv82QJ0xeECe3FHLYqn1NRUZWZmSrrxaUO2mu3bt08vvviidu3apezsbAUGBuqHH34oEF6fMWOGPvvsM+3evVuS1KpVK505c0aHDh3S+PHjZbFYNHbsWMLrKJbCwsK0du1aSVd7A73WtfuY3Nxcbd26Vc8995xiY2MlXf1+7OLioo8++kivvvpqgR5C8b+jFsWHr6+vfvzxR7Vr107r1q1TbGysrFarKleurIMHD+rKlSuSrp5LNGzYUN9++618fX1vuHHgwIEDkqQnnnjihvC6dDXsKEnu7u7mOQlQ3Dg4OJj7Ey8vL3O/wj6m6FGL4u3HH3/U6NGjzf8PCwtTu3bt1Lp1azVp0kRBQUHy8vK6oV5paWlycXGRo6PjDZ1j2AsBdgAAAAAAAAAAUKhrL3LYLnps2LBBkyZN0vHjx/XMM89o2LBhioiIkCR1795dbdu21YYNG7Rr1y49/PDD9mr6fYda2I+Dg4N5Ue/VV19Vjx49dOLECSUlJSknJ0ctW7aUm5ubPD09de2Dj6+/qOvp6akqVaroyJEjmjVrljw9PVWtWjVt3bpVY8aM0Zo1axQREaFnn31WEr1Z3k716tU1adIkOTk5KTMzU46OjnJycrJ3sx5YVqtVCQkJmjVrlhISErR582bt3LnTHF6xYkXVrVtXnTp1UrVq1dSpUye5urre0Pvn9Z8he19ML4moRfHSpEkT1a5dW0ePHtW+ffvUqFEjWSyWAmERq9Wq7du3q3///jpy5Ihyc3NVsWJFLV26VNWrVzefzLJp0yZNnDhR0dHR6tSpk5599ll17dpVCQkJWrp0qYYNG6ZJkybpiSeeUOPGje285EDhbGHp6wNVtqCcJM2bN0+vvPKKkpKS1LBhQzVq1EgeHh766quv9Prrr6tUqVJ6/vnnCdD9QdSi+AgJCdEvv/yiF154QYcOHTLPNWwee+wxdenSRU888YS8vLwKDRympKRIks6cOaOUlBS5u7ubtYyNjdW6devk5OSkHj16yM3NjRAqii3bdnnt9sm2ah/Uovj64IMP5OrqKh8fH1WvXl3h4eEFOq7Iy8uTdLVeycnJOnjwoP7xj38oISFB7u7uql+/vt58802VK1fO7iF2AuwAAAAAAAAAAOC2bBepFi1apB07dqhx48YaPny4GjRoIOlqLz6lS5dWkyZNtGbNGsXHxxOavkeoRdG7tvcxPz8/+fv7FzrerS7m1qpVSyNGjNDQoUP1l7/8RbNnz1a5cuW0ZcsWSVK9evX08ssv66GHHpJUsHdjwuyFc3JyksViUalSpZSfn2/v5jzwcnJy9NZbbyk/P1/Ozs6KjIxU06ZNFRERoRYtWsjDw+OGkHROTo5ycnJ0+fJllS1bVq6urpKubvOEI34/alF8uLm5qU6dOtq/f78mTZqkiIgI1a5d23zaSmxsrDZt2qQXX3xRWVlZkqTg4GAtWrRINWrUUF5enjnuihUrtGnTJjVv3lxvvfWWWrRoIelqr7wdO3ZUcHCwGXwkwI7i7mZPIvj111/12muvKSkpSV26dNH06dPN3qLbtm2rTp066Z///KeioqLk7+/P/ukuoBbFQ3BwsKZPn66jR4/q559/Vk5Ojvz8/FS5cmV16tTJHC8/P7/QoGFYWJicnZ11/Phx7dmzR02aNJGDg4O2bdumf/7zn1q5cqWqV6+u1q1bSyKECgAlle3m1jfffPOGYbYwuu33oxMnTujLL7/UjBkzlJCQYD4xcMWKFVq6dKlWrVolb29vu/7mRIAdAAAAAAAAAADckXPnzmnGjBmSpOeff94MTOfl5al06dIyDEPbt2+XJDP4hnuDWhS9wnofu1O28Pvzzz8vwzA0evRoHTp0yBz+1FNPacCAAWrTpo2cnZ3Ni47XX3y09axYpkwZu/eSVRxcWwsC/vYXHBysI0eOaNeuXQoPD1dAQIB5gVz6rRc4ScrKytKhQ4f01ltvKTExUQkJCWratKl69+6tQYMGyWq1cuPGH0Atig8PDw/95S9/0bZt27Rp0yYNGDBAzZs3V61atXT48GFt2rRJ0dHRys3NVYUKFdSwYUN9/fXXqlatWoH9/MmTJ/XFF19Ikvr162eG13Nzc+Xk5KTAwEB5enpKkq5cuWKfhQX+AKvVqpSUFA0ePFgnT55Uu3btNHv2bFmtVmVlZcnFxUWPPvqomjVrpoMHDyorK4sA7j1CLezH29tb3t7eatKkyQ3DbOcTNzsed+zYUY0bN9bGjRvVv39/NWrUSPn5+dq7d68OHTokLy8vjR8/XpGRkYVOz7EeAEoG282thbGdO1gsFp09e1bjxo3T5MmTVapUKfXq1Usvv/yynJ2d9de//lU//fST+vTpo3nz5qlUqVJF1fwbEGAHAAAAAAAAAAB3xDAMpaWlSbrao6j0W88/WVlZ+uc//6l169apSpUqatu2rT2bet+jFiWLxWIxQyEvvPCCIiMjlZSUpMuXL6tMmTJ69NFHzVCK9NtFx5SUFKWlpWnZsmXau3evVq1apfPnz2vRokX0rotiKTAwUIGBgZJk9opv27Zt23VycrJmzpypTz75RCdOnFCFChVUunRprVq1SqtWrVJycrLeeOMNQlR/ELUoPqpVq6bly5era9euio6OVnR0tDnMdoNAkyZN1LlzZw0aNEg+Pj439LCbkZGh7OxseXh4mMFG23HfMAzNnDlTO3bskIuLi3lTG1DSnD59WklJSfL19dWECRNktVqVk5Nj9vp94MABxcfHKzU1Venp6XZu7f2NWhQ/t7pJwHYT88KFCxUVFaUtW7YoLi5OkuTi4qKmTZvq3XffNXtyt30vuPYmteuP9deemwAASg7bfn3p0qWaOXOmPDw89Nprr+m5555TuXLlJEn/7//9Px06dEg7d+7U8ePHVaNGDbu1lwA7AAAAAAAAAAC4I6VLl1bDhg21atUq7d+/X2lpaSpdurRycnL073//W99++60cHR01aNAgeXl5cdH7HqIWJc+1AZF69eqpXr16BYZbLBadOXNGWVlZWrx4seLj4zV//nydPn3a7Hm9dOnSCgwM1KxZswiwo9izBaFs+x7DMCRJCxYs0OjRo3XmzBk9/vjjmjBhgry8vLRz50716dNHb775purXr6/27dvbre33G2phfzVq1NDy5cv1r3/9Sxs3btShQ4eUmpqq9u3bKzQ0VK+++qpKly4tFxeXQnvB9fT0VGBgoOLj47V7926FhobKyclJkrR582b9+OOPMgxDTz31lAIDAznuo0Q6ePCgTp48KQ8PD/MGDtt2bhiG1q1bp/Pnz+vhhx9WUFCQPZt636MWJYuDg4Nyc3Pl5eWl5cuX66efflJ8fLwuXryoqKgoBQcHq2bNmpJu7Gk9KSlJp0+f1sqVK7V582Z5eXnphx9+4BgCACWUbR//r3/9S2fOnFH//v3N8Hp+fr5yc3Pl7OysoKAg7d69W+fOnSPADgAAAAAAAAAAij83Nze1a9dOK1as0Mcff6yjR4+qatWq2rx5s3bs2KHs7Gw98cQT6t27txlwwL1BLUqewgKJV65c0cmTJ7Vy5UodO3ZMCxYsUGpqqs6ePWuO8+ijj6pq1arq3r27fHx8FBYWVtRNB+4Ki8WiuLg4jRkzRmfOnNGgQYM0ceJEubm5KTc3V3/605/07rvv6rXXXtOePXsITd9D1MI+qlSpog8//FAWi0XJycnKzc1VxYoVbxivsB7vvby8VLduXR04cEDjxo1TVlaWGjZsqF9++UVLly7V2rVrVbt2bfXr10/u7u5FsTjAXVezZk35+/srNzdX58+fN9+/cuWKfv75Z7355pvKzs5W27Zt5eHhYceW3v+oRcnj6OiovLw8eXh46Nlnn5XFYin0Zqa4uDilpqZq3rx5OnbsmFasWGGeezg7Oys7O1u9e/dWx44d7bEYAIC7ICYmRrt27VKZMmX09ttvq1y5cubTm5ydnbV//36tX79ekuTq6mrXthJgBwAAAAAAAAAAt2W7+D1y5EidO3dOf/3rXzVt2jRzuJ+fn7p27aqhQ4fateeeBwG1KBny8vLMHittsrOzFRsbq507d2rbtm1atWqVTp48qfT0dFksFjk4OKhVq1aqVq2aevbsKV9fX4WFhRUaPqF3XZREn3zyieLj4/XQQw/pq6++kqurq3khXboanJKko0ePSir8xg/cHdTCvsqVK1fg/2+1TzcMQ05OTvrmm2905MgR7dq1S8OHD5eLi4tSU1Pl4uKixo0b6/3331fbtm3NaaSrNysUVjvqieKofPnyqlKlijZv3qx3331XvXv3lrOzs6Kjo/Wf//xHaWlp6tOnj95++21JfBe6l6hFyWJb/7YaXPvfEydOKCkpSfPnz1d8fLyWLl2q7OxsXblyRQ4ODvLw8FDfvn0VEhKizp07q0KFCipfvrw9FwcA8AcZhqHMzEzl5eXpzJkzCgkJMc/zEhIS9Pnnn+vcuXPq0qWLIiIi7NpWAuwAAAAAAAAAAOC2LBaLGcgdN26cateurejoaCUmJsrLy0svvPCCgoKCVKFCBXs39b5HLUoGW3h948aNSkxM1LJly7R//37t3btX2dnZkiRPT081btxY4eHheuSRR+Tn56f69esXOr/rg0GEhFASJSUlSZJ69OghV1dXZWdnm0HpU6dO6ZdffpEk80kDBGzvHWphHzfbd99qn2477nt5eWnVqlUaPny4fv31V504cUJVqlTR888/r7Zt26pp06aSVKCW0tXaXbhwQefPn1dMTIy6d+9OPVEseXt76/vvv1ebNm20ceNGbdq0ybwZQ5L69++v77//XhI3Ydxr1KJksJ0T2o4heXl5unDhgmJjY7V27Vrt3btXK1as0KVLlyRdfYpXqVKl1LVrVwUFBal79+7y9vaWv79/gfleW2sAQMlTrlw5hYeHa9++fdq+fbtq164tb29vxcTE6J///KdmzJihgIAA9erVy95NJcAOAAAAAAAAAADujIODg3mRfMCAAZIK9vCJokMtiq+LFy/qP//5j9avX68TJ05o27Zt5rBy5cqpdu3a6tChgxo1aqR69eqpevXqMgyjQPAnPz9fhmGYIXhqivtFZmamJOn8+fMyDMMM2aakpGjBggVasWKFqlevrsjISHs284FALUoW23Hf09NTkyZN0qVLl5SSkqIyZcrI29u7wLjOzs7KyspSdHS0du3apZ07d2rdunU6ffq00tLSNHDgQE2aNMlOSwLcWo0aNbRu3Tp9+OGHOnr0qI4dO6ZHHnlEkZGReuGFFyQRmC4q1KL4uf6G1ry8PF25ckXr16/X/v37tXbtWu3bt0+JiYnmOP7+/urYsaNq166tqKgoeXl5qVq1arecP+ceAFCyVa5cWU888YT27NmjkSNHasGCBapcubKWLl2qlJQU+fj4aPDgwXr88cft3VQC7AAAAAAAAAAA4M7ZArU2XNy2H2pRPJUtW1ZHjx7VnDlzVKVKFdWtW1ddu3ZVtWrV1K5dO1WqVElOTk4FpsnKylJqaqoSEhLk4+Mjb29vubq6mjcpACWd7Qab8PBwrV69Whs2bNCWLVvUsGFDHTp0SEuWLNG4ceOUmpqqoUOH3vRJBPjjqEXJ5eDgoNzcXDk6Osrb29sMrmdkZKhUqVLasGGDjh49qqVLl2rPnj06ePCgOW3ZsmUVGRmpRo0aKTw8/IYQJFCcVK9eXd9++61cXFx09uxZ+fj4mMMITBctalG8WCwW5efn6z//+Y8yMzM1ffp0JSQkKCEhwRwnMDBQnTp10sMPP6zmzZsrICBAfn5+5vD8/HxJMo8n188fAFCy2Y7P77//vq5cuaJx48Zp/fr15vDWrVurR48eGjBggEqVKmXHll5lMXjuBwAAAAAAAAAAAPCHXRsIXLRokR566CE5OTmpbNmyBcbLyckxQ+wbNmzQzJkztWDBAp08eVIBAQGKiIjQ119/LW9vb0LsuK/ExcXp4Ycf1okTJ1S1alWVL19eiYmJSk1NVVZWlgYPHqxvv/3W3s18IFCLkuFmAdGsrCytX79ep0+f1uzZs3Xy5Ent2LHDHB4UFCR/f3898sgjqlevnsLDwxUQEFCUTQf+ENt3qms/A9x4YR/Uong5ceJEgf153bp15ePjoy5duig4OFiNGze+4dxDkq5cuaK8vDyVLl3arCM3IQDA/ena35EWLVqkQ4cOmT2vP/nkkypTpswNNzHZCwF2AAAAAAAAAAAA4C65XeD82sDPggUL9PLLL+v48eNyc3NTUFCQMjIydOzYMdWuXVtr165V+fLlCQnhvnLo0CH17NlTR48eVXp6uiSpadOm6tChg0aNGmXn1j1YqEXxY9vfX7/fz8zM1Pbt23X48GHNmTNHJ0+e1K+//moODwgIkK+vr3r06KFq1aqpVatWKl26tFxcXArMn5uiAKDki42N1caNG+Xn56eWLVvKwcGhwP7edgzJzc1VXFycJk+erNWrVyspKUmRkZGKiopSv379JBFiB4D7VUn53k+AHQAAAAAAAAAAAChiK1euVJ8+fXT+/Hl1795d/fr1U/v27ZWTk6OXX35Z//3vfzVw4EB9++23xaZnLOBuOXPmjHbv3q0TJ07I29tbjRo1kr+/v72b9UCiFsXThQsXFBcXp+3bt2vNmjXav3+/YmJizOGBgYGqVKmSunXrpoCAAHXq1EmOjo4qVapUgfkQTASAB8P1PeVnZ2dr9uzZ+uabb7R+/XpJkoeHh1JTUyVJ48aN0xtvvGHPJgMAQIAdAAAAAAAAAAAAKEqnT5/WoEGDtGzZMvXq1UujRo1SzZo1zeHJyckKDQ1VUFCQNm7cWCJ6zQIA/HH5+fkaPny4pk6dqpycHGVmZkqSKlSooPDwcLVp00ahoaFq1aqVHB0d5enpect5EV4HgAdPfn6+5syZozFjxmjfvn1q2LChxowZo5CQEO3fv18DBw7UpUuXNH/+fHXu3NnezQUAPMDorgEAAAAAAAAAAAAoQomJidqwYYO8vLz0zDPPKDg4WNJvj3hOSUmRYRhKTExUWlraLQOKAID7h9Vq1bPPPqtZs2apadOmioiIUKtWrdSwYUN5eXnJ2dm5wPiGYSgrK0tLly7V2bNn5enpqaCgIDVp0kRWq5UQOwA8QGy9sCcnJ2vy5Mnat2+fOnfurDFjxqhevXoyDEMhISH6y1/+oqFDh2rr1q0E2AEAdkWAHQAAAAAAAAAAACgCtlDJ2rVrlZaWpkaNGikqKkqSlJOTIycnJ0nS4sWLdf78eTVr1kzOzs7mdACA+1+DBg107Ngxubm5FXg/Ly9PkpSbmytHR0fl5uZq2rRpmjFjhhYvXmyO5+bmpo8++kivvfaarFYrxxAAeEDY9vXff/+9li1bJi8vL73//vuqV6+epKvnG87OzgoKCpJ09aZaAADsiQA7AAAAAAAAAAAAUARsoRI/Pz9JV0OIx48fV5UqVczw+owZM/TOO+9IkgYNGqRSpUrZp7EAALu5Nrxu60XdwcFBkszw+pdffqmJEycqMTFRAQEB6tWrl7Kzs/Xtt99qxIgRcnV11dChQwmvA8AD5tChQ5KkwYMHq1GjRjIMQ4ZhyNnZWVeuXNGMGTMkSeXKlbNnMwEAEM+KAgAAAAAAAAAAAIpQ5cqV5eHhoejoaM2dO1cxMTG6cOGCvvrqKz3//PNKS0vTkCFD1KtXL3s3FQBgZ1brb7EOwzAkSfPnz9c333yjM2fOaNCgQZo3b57Gjh2rCRMmaOHChXJyctJ3332ns2fP2qvZAAA7uXTpkiTp1KlTys7OlmEYslqtysjI0IIFC7Rq1Sr5+Piod+/ekn47tgAAUNQIsAMAAAAAAAAAAABFqHXr1nrppZckSa+++qratGmjpk2bavjw4bp8+bL69eunF198sUAPvAAA2HpTnzt3rg4fPqyoqCi98cYbql+/vvLz85Wdna22bduqcePG2rt3rxliBAA8OCIiIiRd7Yl9//79kqSMjAxNmTJFn332mRISEtShQwdVq1ZNknhSBwDAbiwGt1EBAAAAAAAAAAAARSI/P9/sTXfUqFH6/vvvdeLECbm4uMjBwUEffPCBevfurSpVqti5pQCA4mjbtm1q2rSpJGnVqlVq06aNpN+OLxcvXlTTpk0VHx+vvXv3qkaNGvZsLgCgiMXHx6tNmzZKSEhQjRo15OPjozNnziguLk7Z2dnq2LGjvvjiC4WEhNi7qQCABxwBdgAAAAAAAAAAAKAI5eXlycHBQZJ04MABnT59Wu7u7ipdurRq165t59YBAIqz1atXq127dvL399euXbvk7e2t3NxcOTo6Ki0tTZ9++qnGjh2r+vXra/v27ebxBgDw4IiNjVWXLl0UFxennJwcSVK1atXUoUMHvfbaawoODrZzCwEAkBzt3QAAAAAAAAAAAADgQeLg4GD2lBsaGqrQ0FB7NwkAUEJUqFBB3t7eyszM1N69e9WqVSs5OjoqNTVVU6ZM0fTp01W2bFkNGzZMDg4OMgxDFovF3s0GABShmjVr6pdfftGGDRuUmJgoR0dHdenSReXLl1eZMmXs3TwAACTRAzsAAAAAAAAAAAAAAECJkJycrE6dOmnr1q1q2bKlHn/8cYWGhupf//qXNm/erEuXLqlv374aNWqU/P397d1cAAAAACgUAXYAAAAAAAAAAAAAAIAS4tChQ2rTpo2SkpIkSS4uLsrKypKvr6+6dOmi119/XcHBwXZuJQDA3ngKBwCgOCPADgAAAAAAAAAAAAAAUIIcOXJEH330kfbs2aPs7Gz5+PjotddeU0REhHx9fe3dPAAAAAC4JQLsAAAAAAAAAAAAAAAAJUx2drZycnKUnZ2tsmXL2rs5AAAAAHDHCLADAAAAAAAAAAAAAACUcIZhyGKx2LsZAAAAAHBbVns3AAAAAAAAAAAAAAAAAH8M4XUAAAAAJQUBdgAAAAAAAAAAAAAAAAAAAABAkSDADgAAAAAAAAAAAAAAAAAAAAAoEgTYAQAAAAAAAAAAAAAAAAAAAABFggA7AAAAAAAAAAAAAAAAAAAAAKBIEGAHAAAAAAAAAAAAAAAAAAAAABQJAuwAAAAAAAAAAAAAAAAAAAAAgCJBgB0AAAAAAAAAAAAAAAAAAAAAUCQIsAMAAAAAAAAAAAAAAAAAAAAAigQBdgAAAAAAAAAAAAAAAAAAAABAkSDADgAAAAAAAAAAAAAAAAAAAAAoEgTYAQAAAAAAAAAAAAAAAAAAAABFwtHeDQAAAAAAAAAAFK3c3FzNnz9fy5cv1+bNm3XmzBldvHhRbm5uqlChgurWratmzZqpR48eCgoKsndzAQAAAAAAAADAfcRiGIZh70YAAAAAAAAAAIrGggULNGLECB05cuSOxu/UqZPGjh2rsLCwe9wyAAAAAAAAAADwIKAHdgAAAAAAAAB4QHz88cf64IMPZOvXpHXr1nrssccUHh6u8uXLKz09XUlJSVq3bp0WLVqk+Ph4LV68WP7+/vrmm2/s3HoAAAAAAAAAAHA/oAd2AAAAAAAAAHgATJ48Wc8++6wkqVKlSpo+fbpat2590/Hz8vI0ffp0/fnPf9ajjz5KgB0AAAAAAAAAANwVBNgBAAAAAAAA4D53/Phx1ahRQ5mZmSpTpox27typ4ODgO5r20qVLWr9+vTp37nyPWwkAAAAAAAAAAB4EVns3AAAAAAAAAABwb02YMEGZmZmSpE8++eSOw+uS5OXldUN4PT4+XhaLRRaLRVOmTJEkzZkzR1FRUapcubIcHR0L7d194cKF6tGjh/z9/eXi4qLy5csrMjJSY8eOVVpa2k3bMHr0aPPv3cqaNWvM8dasWXPD8NatW8tisZhti42N1ZAhQxQUFCRXV1f5+vrqySef1JYtW275d/Ly8jRlyhR16NBBPj4+cnZ2lqenp0JCQtSuXTt9+umn2r9//y3nAQAAAAAAAADAg8rR3g0AAAAAAAAAANw7hmFo6tSpkiQPDw8NHDjwrs+/X79+5t8oTGZmpp5++mnNnTu3wPvJycnasmWLtmzZoi+//FKLFy9W/fr172r7bmbp0qXq2bOnrly5Yr53+vRpzZw5U7Nnz9bf/vY3vfrqqzdMl5aWpqioKK1fv77A+zk5OUpJSdGRI0f0yy+/aNeuXZo1a9a9XgwAAAAAAAAAAEocAuwAAAAAAAAAcB/bt2+fLly4IElq2bKl3N3d7+r8//73v2vPnj1q2bKlhg4dqho1aujSpUuKj483x+nfv78ZXq9Xr55GjBih0NBQJScna/r06ZoyZYpOnTqldu3aac+ePfLz87urbbzeqVOn9PTTT8vR0VGffvqp2SP76tWr9dlnnyklJUWvvfaaAgMD1bVr1wLTjh492gyvP/bYY+rTp48CAgLk6uqqs2fPavfu3Vq0aNFte4sHAAAAAAAAAOBBRYAdAAAAAAAAAO5je/bsMV83bNjwnsy/X79+mjJlSqGh7cWLF2vGjBmSpHbt2mnJkiVydnY2hz/yyCOKjIzUkCFDlJycrNdff10//fTTXW/ntQ4fPixPT09t3rxZoaGh5vuRkZHq0qWLmjVrppSUFA0bNkydOnWSk5OTOY5tWXr06KGZM2feMO+OHTvqnXfeUXJy8j1dBgAAAAAAAAAASiqrvRsAAAAAAAAAALh3zp8/b76uUKHCTcfLz8/Xvn37bvovJyen0Om8vLz01Vdf3bTH8a+//lqS5OTkpO+//75AeN1m8ODBat++vSRpzpw5SkpKuuPl+73ef//9AuF1mzp16ujdd9+VJJ08eVLz588vMPz06dOSrvZmfyvlypW7Sy0FAAAAAAAAAOD+QoAdAAAAAAAAAO5jqamp5mt3d/ebjpeSkqK6deve9N/JkycLna5z587y8PAodFhubq7Wrl0r6WpP61WqVLnp3x88eLA5zZo1a263WH+IxWJR//79bzp84MCBZiD/559/LjDM19dXkvTTTz8pPT393jUSAAAAAAAAAID7FAF2AAAAAAAAALiPXRsuv3Llyl2ff3h4+E2HHTt2zAx5N2nS5JbzuXb4vn377k7jbiIoKEje3t43HV6hQgUFBgZKkvbu3VtgmC34vmnTJgUFBWnYsGGaO3euzp07d8/aCwAAAAAAAADA/YQAOwAAAAAAAADcx8qXL2++vlXI2svLS4ZhFPh3q17KbcqWLXvTYcnJyebrihUr3nI+Pj4+hU53L9yuLZJUqVKlQtvy/vvva9CgQbJYLDp79qy+/vprde/eXRUrVlRYWJhGjRqlM2fO3JN2AwAAAAAAAABwPyDADgAAAAAAAAD3sXr16pmvd+/efdfn7+DgcEfjWSyWu/63f68/0hYnJydNmjRJ+/bt03vvvadmzZrJ2dlZkhQTE6MxY8YoODhY8+fPv1vNBQAAAAAAAADgvkKAHQAAAAAAAADuY2FhYWYv7OvXr1d6enqR/e1y5cqZr2/XK/np06cLnU6SrNbffsrOz8+/6TyuXLlyR+26kx7SbeNc3xab2rVr66OPPtLGjRt1+fJlrVy5UgMHDpSDg4PS0tLUu3dvJSUl3VF7AAAAAAAAAAB4kBBgBwAAAAAAAID7mMVi0TPPPCNJSklJ0Q8//FBkf7tatWpyc3OTJG3duvWW427bts18HRYWVmCYh4eH+frixYs3ncehQ4fuqF1xcXG6cOHCTYefO3dO8fHxhbalMK6urmrfvr0mT56s8ePHS5IyMjK0aNGiO2oPAAAAAAAAAAAPEgLsAAAAAAAAAHCfe/311+Xq6ipJeueddxQXF1ckf9fR0VEPP/ywJGnlypU6ceLETcf997//bU7TunXrAsOCgoLM1zt27LjpPKZPn35H7TIMQ//5z39uOnzKlCkyDEOS1L59+zuap027du3M1+fPn/+fpgUAAAAAAAAA4EFAgB0AAAAAAAAA7nMBAQGaOHGiJOny5ctq0aKFNmzYcMtpDMPQpUuX/vDffumllyRJ2dnZevbZZ5WTk3PDOJMnT9aKFSskSd27d5evr2+B4c2aNZOjo6Mk6fPPPzfD5dcaP358gV7cb+ejjz5SbGzsDe8fOHBAn3zyiSTJ19dXXbp0MYclJydr4cKFhf59G9tySAWD9wAAAAAAAAAA4CpHezcAAAAAAAAAAHDvDR48WCdPntSHH36oU6dOqWXLlmrbtq06d+6sunXrqly5csrLy9Pp06e1a9cuzZgxQzExMZIkBwcHOTs7/66/26lTJ/Xs2VMzZ87UihUr1LRpU73++uuqVauWLl68qOnTp2vy5MmSpHLlymnChAk3zKNixYrq2bOnpk2bpuXLl+vxxx/XSy+9pEqVKikxMVFTp07V7Nmz1axZM23atOm2bQoODta5c+fUtGlTvfXWW2aP72vWrNHYsWN1+fJlSdKXX35ZYLlTUlL0+OOPKzAwUN27d1eTJk1UtWpVOTo6KikpSQsXLjR7kvfz89Njjz32u9YZAAAAAAAAAAD3M4txq65iAAAAAAAAAAD3lblz5+qNN97QsWPHbjuuxWJRhw4dNH78eIWFhZnvx8fHm72Lf//99xowYMAt55OZmamnn35ac+fOvek4lStX1uLFi1W/fv1Ch585c0YtW7bU4cOHCx3eq1cvPffcc2rfvr0kafXq1WYw3aZ169Zau3atHn74YY0cOVJPPvmk0tPTb5iX1WrVuHHjNGLEiALvX7vct+Lr66uFCxcqIiLituMCAAAAAAAAAPCgoQd2AAAAAAAAAHiAdOvWTZ07d9bcuXO1fPlybd68WWfPntWlS5fk5uam8uXLq27duoqMjNRTTz11R4Ht23F1ddWcOXO0cOFCTZkyRVu2bNH58+fl7u6uGjVqqGvXrho2bJhKly5903lUqlRJW7du1WeffaY5c+YoMTFR7u7uCgsL05AhQ9SnTx+tWbPmjtvUqVMn7dixQ+PHj9cvv/yipKQkeXl5qWXLlhoxYoQiIyNvmKZq1aratm2blixZok2bNikhIUFnzpxRWlqavLy8VLt2bXXu3FlDhgxRmTJlfs+qAgAAAAAAAADgvkcP7AAAAAAAAACAB8K1PbD/L2F3AAAAAAAAAABw91jt3QAAAAAAAAAAAAAAAAAAAAAAwIOBADsAAAAAAAAAAAAAAAAAAAAAoEgQYAcAAAAAAAAAAAAAAAAAAAAAFAkC7AAAAAAAAAAAAAAAAAAAAACAIkGAHQAAAAAAAAAAAAAAAAAAAABQJCyGYRj2bgQAAAAAAAAAAAAAAAAAAAAA4P5HD+wAAAAAAAAAAAAAAAAAAAAAgCJBgB0AAAAAAAAAAAAAAAAAAAAAUCQIsAMAAAAAAAAAAAAAAAAAAAAAigQBdgAAAAAAAAAAAAAAAAAAAABAkSDADgAAAAAAAAAAAAAAAAAAAAAoEgTYAQAAAAAAAAAAAAAAAAAAAABFggA7AAAAAAAAAAAAAAAAAAAAAKBIEGAHAAAAAAAAAAAAAAAAAAAAABSJ/w+4kXcg8yeckAAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAC7AAAAPgCAYAAACx8HFwAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeVxc5fn//zczbEPIymhCTHCoMWFSrJqYSkFqYtWPVjRISNV2jHG31S6fklpxa7qFLmK/Lj/r0miMGGwlBE2MS9WoJMbaoNZihyzVkcRg4pCQjWGf3x98ZgyBGQYYGIZ5PR8PHhzOuc597plhm/tc93VHud1utwAAAAAAAAAAAAAAAAAAAAAAGGSGUHcAAAAAAAAAAAAAAAAAAAAAABAZSGAHAAAAAAAAAAAAAAAAAAAAAAwJEtgBAAAAAAAAAAAAAAAAAAAAAEOCBHYAAAAAAAAAAAAAAAAAAAAAwJAggR0AAAAAAAAAAAAAAAAAAAAAMCRIYAcAAAAAAAAAAAAAAAAAAAAADAkS2AEAAAAAAAAAAAAAAAAAAAAAQ4IEdgAAAAAAAAAAAAAAAAAAAADAkCCBHQAAAAAAAAAAAAAAAAAAAAAwJEhgBwAAAAAAAAAAAAAAAAAAAAAMiehQdwAAAAAAAAAAAAAAAAAAAABA6LndbrW2tqqjoyPUXcEwZjAYFBMTo6ioqH6dTwI7AAAAAAAAAAAAAAAAAAAAEMHa29vldDp16NAhtba2hro7CAMxMTEaPXq0zGazjEZjn86Ncrvd7kHqFwAAAAAAAAAAAAAAAAAAAIBhrL29XTt37lRzc7PGjh2rxMREGY3GflfXxsjmdrvV3t6uw4cP68CBA4qLi9PUqVP7lMROAjsAAAAAAAAADFNHjhzRmjVr9Nprr+mf//ynvvjiC+3fv18mk0lms1mnnXaazjrrLF122WWaPHlyqLsLAAAAAAAAAAhDe/bsUUNDg1JSUmQymULdHYQRl8ul2tpajRs3ThMnTgz4PBLYAQAAAAAAAGCYaW9v15/+9Cf9/ve/l9Pp7DXeYDBo4cKF+u1vf6uTTjppCHoIAAAAAAAAABgJ3G63/vvf/yoxMVGTJk0KdXcQhurq6nTkyBGddNJJAVftjx7kPgEAAAAAAAAA+qChoUGXX365Xn75Ze++adOm6YILLpDVapXZbNaRI0e0e/duvfHGG3rrrbfU0tKiv/71r2pqalJFRUXoOg8AAAAAAAAACCutra1qbW1VYmJiqLuCMDV69Gg1NDSotbVVsbGxAZ1DAjsAAAAAAAAADBNtbW265JJLVFlZKUmaOHGiHnzwQS1YsKDHqiV33HGHnE6n7rnnHj3wwAND3V0AAAAAAAAAQJjr6OiQJBmNxhD3BOHK873j+V4KhGGwOgMAAAAAAAAA6Jvbb7/dm7yekpKid955R/n5+X6X3DSbzfrd736nd999V1/96leHqqsAAAAAAAAAgBHE3zg04E9/vndIYAcAAAAAAACAYWD37t26//77JXUO9j799NOyWCwBn//Vr35Vv/3tb3s85nK59OCDD+q8885TcnKyYmNjlZSUpDlz5ujOO+/U7t27ezyvoaFB8fHxioqK0kknnRRQP/bs2aOYmBhFRUUpPT3dZ9yBAwdUXFysc889V5MnT1ZcXJwmTJig2bNnq7CwUJ999pnf6yxevFhRUVGKioqSw+GQJFVUVCgvL08nnnii4uLiuhyTJLfbrU2bNunuu+/WeeedpylTpig+Pl4mk0lTpkzRJZdcoscff1wtLS0BPVZJWrt2rS655BIlJycrPj5eKSkpys/P12uvvSZJeuONN7z9XLp0aUDtLVq0SNOmTdPo0aOVkJCg1NRU2Ww2vfrqqwH3CwAAAAAAAACA4So61B0AAAAAAAAAAEgPPfSQmpubJUkXXHCBzjrrrKC0+89//lMLFizQzp07u+zft2+f9u3bpy1btuhPf/qTHnjgAV1zzTVdYsaNG6eLL75YZWVl+vjjj7Vx48Ze+1VaWqq2tjZJ0qJFi3qMefbZZ3XTTTdp3759Xfa3tLRo//79eu+99/T//t//08MPP6yrrrqq18fY0tKi/Px8rV692m/ctddeqyeeeKLHY5999pk+++wzrV27Vn/84x/1/PPP6+STT/bZVltbmxYvXqynn366y/6dO3dq586dWr16tQoKCpSTk9Nr/z3nXXbZZdq8eXO3Yw6HQw6HQ08//bQWLFiglStXKiEhIaB2AQAAAAAAAAAYbkhgBwAAAAAAAIBh4KWXXvJuB5K0HYgPP/xQ8+bN05EjRyRJM2fO1JVXXqnU1FTt27dPFRUVeuWVV9TY2Khrr71Wbrdb1157bZc2rrrqKpWVlUmSnnrqqV4T2FeuXClJMhgMstls3Y4/9thjuvHGG+V2uxUbG6v58+frm9/8piZOnKjDhw9r48aNWrVqlZqamrR48WLFxsbqiiuu8HvNn/zkJ3rxxRd14oknatGiRUpLS1NTU5PeffddxcXFeeMaGxsVGxurs846S2eeeaamTZumMWPGqLm5WTt27FB5ebk+/PBD1dTU6MILL9R7772nMWPG9HjNm266yZu8Hh0dLZvNprPPPltxcXH68MMPtXz5chUXF3ebONCTnTt36swzz1RdXZ0k6fTTT1dubq6mTZsmg8GgrVu3auXKlfr444+1evVqHTlyROvXr2dJXwAAAAAAAABAWIpyu93uUHcCAAAAAAAAACLZkSNHNGbMGHV0dEjqTGieMmXKgNrs6OjQqaeequrqaknSddddpz//+c+Kju5a12T58uW6/vrr5Xa7lZCQoI8++kgWi8V7vK2tTSeccIL27t2rcePG6fPPP++SFH60jz76SOnp6ZKk8847T6+88kqX4x9++KHmzJmjlpYWnXzyyXr++eeVlpbWrR273a5zzz1Xu3fv1ujRo+VwODRhwoQuMYsXL9aTTz7p/To3N1elpaWKj4/3+Zy89dZbOuWUUzR+/Pgej7vdbv3+979XYWGhJOnXv/617rzzzm5xGzZs0DnnnCNJGjNmjF555RWdeeaZXWKcTqfOPfdc/etf//Lu+8UvfqGlS5d2u2ZWVpY2b94so9GoP//5z7r++uu7XbO5uVmLFy/WM888I6lzIsB1113n87ECAAAAAAAAQCCampr0ySefKDU11e/4qiR91uDS/iMtQ9SzwTN+VKxOGGcKdTeCymKx6NNPP9UTTzyhxYsXB3wsGPryPeRBBXYAAAAAAAAACLHPP//cm7weFxc34OR1SXrhhRe8yetf+9rX9PDDD8toNHaLu/baa7VlyxY9/PDDamxs1H333ac//elP3uPR0dG64oordN9996mhoUHPP/+8Fi5c2OM1n3rqKe/2okWLuh1funSpWlpaFB8fr/Xr12vatGk9tmO1WrVixQqdf/75OnTokB577DH9/Oc/9/lYTzjhBD311FO9Dox/85vf9Hs8KipKt912m1544QVt3LhRTz75ZI8J7Ec/P3/84x+7Ja9Lktls1jPPPKNTTjlFbW1tPq+5du1abd68WVLn89NT8rrU+X3x5JNP6p133pHD4VBxcTEJ7AAAAAAAAACGzGcNLp1zzxtqbusIdVcGLC7aoNeXzB2UJHa3262ysjKtWrVK7733nvbu3Suj0aiJEycqOTlZX//615Wdna1vfetbPlcAHUqeoiuLFy/uUtxmsBmG7EoAAAAAAAAAgB7V19d7t8eNGxeUNsvLy73bBQUFPSave9x2222Kiorqdp7HVVdd5d0+Okn9aB0dHXr66aclSYmJicrLy+tyvKGhQc8995wk6dJLL/WZvO5x3nnnKTk5WZL08ssv+4295pprlJiY6DemL8466yxJ0o4dO7q8NlJnJZmXXnpJUudr5a9aTVpami688EK/1/JUkY+Li9OPfvQjv7GxsbG64oorJEk1NTWqra31Gw8AAAAAAAAAwbL/SMuISF6XpOa2jkGpJN/Q0KB58+bpO9/5jioqKlRbW6u2tjbFxcWptrZWmzZt0p/+9Cfl5eX1OBY/WE466STNmDFDY8eO7Xbsl7/8pX75y1/K4XAMWX8kKrADAAAAAAAAQMi53e6gt/mPf/zDu33++ef7jT3xxBOVlpYmu92u2tpa1dXVeZPHJen0009Xenq6qqur9dJLL+mLL77Qcccd16WNDRs2aNeuXZKkBQsWKCEhocvxTZs2dakyX1FR0etjGD16tOrq6vSf//zHb1x2dnavbXm0tbWpvLxcFRUV+uCDD7R7924dOnTI27dj7dq1S0lJSd6v//Wvf6m1tVWSlJWVpdjYWL/XmzdvntauXevz+FtvvSVJmjhxol5//fVe+79//37v9n/+8x+lpKT0eg4AAAAAAAAAYPAtWrRIb775poxGo37yk5/oxhtv1EknnSSDwaC2tjb95z//0UsvvaRVq1YNab9ee+21Ib1eIEhgBwAAAAAAAIAQOzpBuqGhISht1tXVSepMAp80aVKv8dOnT5fdbveee3QCu9Q58H7rrbeqtbVVpaWl3aqFH12ZfdGiRd3aP7p6y4oVK7RixYpAH4r27dvn9/iUKVMCamfr1q3Ky8vrNSH+aAcPHuzy9e7du73bJ510Uq/nf+UrX/F57MiRI3I6nZKk2tpaXXrppQH3S+r9eQEAAAAAAAAADI3t27d7i5n85je/0W233dbleHR0tL72ta/pa1/7mm699Va5XK5QdHPYMIS6AwAAAAAAAAAQ6SZNmiSDoXO4trm52VvJfCAOHTokSRo1alRA8YmJid3OPZrNZpPRaJTUNVldkhobG7V69WpJUkpKiubNm9ft/IEk5nsqnvtiMpl6bePAgQM655xzvMnrkydP1vXXX697771XTz/9tFavXq01a9ZozZo1uuyyy7zntbe3d2nnyJEj3u1jq8z3xN/zP9DJCi0twV/iFgAAAAAAAADQdx988IF3e/78+b3GHzuubbFYFBUVpRUrVujQoUMqLCzUjBkzZDKZZDablZub22Xl1b44um2PxYsXKyoqyvv1vHnzFBUV5f2wWCz9ulagqMAOAAAAAAAAACGWmJio008/XVVVVZKkTZs2dUmi7o/Ro0eroaGhS8K1P4cPH+5y7rGSk5N17rnn6uWXX9aWLVtkt9tltVolSWvWrPGeb7PZugx6exydIH///ffrhz/8YZ8ez0A9+OCD3urp3/ve9/T4448rNja2x9hNmzb5bOfohPTGxsZer+vv+T/6OZk1a5b39QcAAAAAAAAAhK9du3Z5x8/7av/+/ZozZ462bt2q2NhYxcfHq76+Xs8995zWrl2rxx57TNdcc82A+zh27FhNnDhRe/bskSSNHz++y5j5cccdN+Br+EMFdgAAAAAAAAAYBv7nf/7Hu/3kk08OuL3k5GRJndXUPQPQ/mzbts27PXny5B5jFi1a5N1euXJlj9tHxxxtypQp3u2dO3f22p9ge+WVVyR1LtP6wAMP+Exel6RPPvnE57Gjn5v//ve/vV73448/9nls7Nix3iT2YFTdBwAAAAAAAACExpw5c7zFXQoKCrqMuffFL3/5S+3du1d/+9vfdOTIER04cED/+c9/dPbZZ6ujo0M33nij3nvvvQH397777tPnn3/u/bq8vFyff/659+Of//zngK/hDwnsAAAAAAAAADAM/OAHP1BcXJwk6aWXXvJbBTwQZ555pnfbk7ztS21trWpqaiRJKSkpmjRpUo9xl156qcaMGSNJevrpp+V2u1VXV6fXXntNkvT1r39dM2bM6PHc7Oxs7+D9Sy+91LcHEwSegfikpCSNHz/eZ1xTU5PeeOMNn8dPPfVUxcTESJLefvtttbS0+L3uhg0b/B4/++yzJUl79+6lAjsAAAAAAAAAhCmLxaLrrrtOkvTvf/9baWlpmjVrlm6++WY9/vjjqq6ultvt7rWdAwcO6Nlnn9XChQsVHR0tSbJarXrxxRd18sknq62tTXfdddegPpahQAI7AAAAAAAAAAwDJ5xwgm655RZJktvt1ne/+119+umnAZ9vt9t1xx13eL9esGCBd7u4uFjt7e0+z/3973/vHTg/+rxjmUwm5efnS+qsor5hwwatWrXK27av6uuSdPzxx+vCCy+U1Dl4X1paGsCjCp5Ro0ZJ6kwUP3jwoM+4++67T/X19T6Px8fHe6vl79+/XytWrPAZW1NToxdffNFvv6666irv9p133hnQDQwAAAAAAAAAwPDz0EMP6a677tKoUaPkdrv1/vvv66GHHtK1116rU045RZMmTdJPf/pTv6umZmVl6Vvf+la3/SaTST/72c8kdRaJOXDgwKA9jqFAAjsAAAAAAAAADBNFRUXKysqS1FkVPSMjQ6tXr/ab1Lxv3z7deeedmjNnjj766CPv/m9/+9s65ZRTJEn/+te/9P3vf19tbW3dzl+xYoUefvhhSVJCQoJ+/OMf++3j0UnqK1eu1MqVKyVJsbGxuvzyy/2e+9vf/laxsbGSpOuuu67XJPZ9+/bp3nvv1auvvuo3LhBz5syR1Dk54OhE/6OVlpYGVLnmf//3f73bP/vZz/SPf/yjW4zT6dTll1/e43N+tPz8fG+1/JdeekmLFi3S4cOHfca3t7frpZde0m9+85te+wkAAAAAAAAAGDrR0dH61a9+pc8++0xPPfWUrrvuOp166qnecfG9e/fqT3/6k9LT0/Xuu+/22MY555zjs33PsY6ODr333nvBfwBDKDrUHQAAAAAAAAAAdIqJidHzzz+vyy67TK+++qo+//xz5efn6+STT9YFF1ygmTNnKikpSUeOHNHu3btVWVmpN954Q01NTd3aMhgMKikpUWZmpo4cOaLHHntMmzdv1pVXXimLxaJ9+/bpueee00svveQ95/7779eJJ57ot4/f/OY3ZbFY5HA4VFpaqpaWFkmdCfNJSUl+zz3ttNP0yCOP6Nprr1VjY6O++93v6g9/+IMuvvhinXzyyTKZTDpw4IB27Nihd999V2+99Zba2tr01FNP9ePZ7OqWW27R448/rra2Nj344IN67733lJ+frxNOOEF79uzRc889p9dee02JiYm65JJLtHr1ap9tnXPOObr22mu1fPlyHTx4UNnZ2bLZbPrmN7+puLg4ffjhh1q+fLm++OILfec739Hf/vY3SZ2vybGioqK0evVqfeMb39DOnTtVUlKiF154QQsXLtTs2bM1YcIENTU1affu3frXv/6lv//97/riiy/0rW99S3feeeeAnxcAAAAAAAAAQHCNHTtWNptNNptNktTU1KSNGzfq/vvv19q1a+V0OrVgwQJt375d8fHxXc494YQTfLZ79LG9e/cOTueHCAnsAAAAAAAAADCMTJgwQS+99JLuuece/fGPf1R9fb22b9+u7du3+zzHaDTqiiuu0K9//esu+7/2ta9pw4YNysvL065du1RdXa2f//zn3c5PSEjQ/fffr2uvvbbX/kVFRenKK6/Ur3/9a2/yutS1Mrs/ixcvVnJysq655hrt3r1bH3zwgT744AOf8XFxcTKbzQG17c8pp5yiRx55RDfeeKPa2tr09ttv6+233+4Sk5SUpFWrVuntt9/2m8AuSQ8//LBcLpdWrVql1tZWPfHEE3riiSe6xBQUFOiCCy7wJrCPHj26x7ZOOOEEbdmyRYsXL9aLL76o/fv369FHH/V7/SlTpvT2kAEAAAAAAAAAw0B8fLzOPfdcnXvuuVq8eLGefPJJ7dq1Sy+99JJyc3ND3b2Q6F7uBQAAAAAAAAAQUkajUT//+c/lcDj05JNPatGiRZo5c6bMZrOio6M1ZswYnXTSScrLy9P/+3//T7t27dJTTz0li8XSra05c+Zo27Ztuv/++/Wtb31LEydOVExMjMaPH6/Zs2fr9ttv1/bt2wNKXvc4Nlk9KSlJF110UcDn/8///I8+/vhjPf7448rPz1dqaqoSExMVHR2t8ePH6/TTT9fixYu1cuVKff7557rgggsCbtufa665Rv/4xz/0ve99T1OmTFFMTIwmTJig0047TXfddZc+/PBDnX/++QG1FR0draefflrPP/+8cnJydPzxxys2NlZTpkzRggUL9Oqrr+qee+5RfX2995wJEyb4bO/444/X+vXrtXnzZt1yyy067bTTlJSUJKPRqFGjRumkk05STk6Ofve736m6ulorVqwY6NMBAAAAAAAAABhiN9xwg3d769at3Y5/9tlnPs89+tjxxx8f3I4NMSqwAwAAAAAAAMAwlZiYqEWLFgVc3dwXk8mkH/7wh/rhD38YlH5NmzZNbrd7QG3ExcXp6quv1tVXX92v81esWNGvJO5Zs2appKTEb8zSpUu1dOnSgNq7+OKLdfHFF/s8/u6773q3Tz311F7by8jIUEZGRkDXBgAAAAAAAACEl8TERO92XFxct+MbNmzwea7nmMFg0Omnnx6U/kRFRcntdg94zL+vqMAOAAAAAAAAAMAgOHDggJ566ilJ0nHHHaf09PQQ9wgAAAAAAAAAMBg++eQTbdu2rde4J5980rs9a9asbsc3btyoN954o9v+pqYmFRcXS+pc5XTcuHH97uvRxowZI0lqaGgISnuBIoEdAAAAAAAAAIA++uSTT/Tpp5/6PN7Q0KCFCxfqiy++kCRdd911io5mUVQAAAAAAAAAGIk++ugjWa1WXXTRRVq5cqUcDof3WGtrq95//31dffXVuvfeeyVJX//613XWWWd1a2fs2LFasGCBysrK1NbWJkmqqanRRRddpJqaGhmNRv3qV78KWr89hVeefvppNTY2Bq3d3jBaDgAAAAAAAABAH1VVVenyyy9XVlaWzj77bE2bNk2jRo3S/v37VVVVpWeeecZbsWbatGm64447QtthAAAAAAAAAMCgiYmJUUdHh9avX6/169dLkmJjY5WYmKj9+/fL7XZ7Y2fNmqU1a9bIYOheh/wXv/iFHnnkES1cuFBxcXGKj4/XgQMHJElRUVH685//rDPOOCNo/b7pppu0adMmrV69Ws8//7yOP/54RUdHa8qUKdq4cWPQrnMsEtgBAAAAAAAAAOiH9vZ2vfXWW3rrrbd8xpx++ul67rnnNGrUqCHsGQAAAAAAAABgKP3P//yPtm/frvXr12vjxo2qrq7Wrl271NDQoISEBE2ePFmnn3668vLytHDhwh6T1yVp/Pjxevfdd1VUVKTVq1dr586dmjBhgrKyslRYWKhvfOMbQe23zWaTJD3yyCP697//rbq6OnV0dAT1Gj2Jch+d0g8AAAAAAAAAAHp16NAhPfvss/r73/+ujz76SE6nU/v27ZPRaNTxxx+vOXPmaMGCBX5vRAAAAAAAAABAqDU1NemTTz5Ramqq4uPjfcZ91uDSOfe8oea2wU9uHmxx0Qa9vmSuThhnCnVXvCwWiz799FM98cQTWrx4cai70yeBfg8djQrsw0BHR4d2796t0aNHKyoqKtTdAQAAAAAAAAAEID8/X/n5+X5jDh8+PES9AQAAAAAAABAp3G63Dh06pMmTJw9ZAY0Txpn0+pK52n+kZUiuN5jGj4odVsnrkYgE9mFg9+7dmjp1aqi7AQAAAAAAAAAAAAAAAAAAgDCxc+dOTZkyZciud8I4E4nfCAoS2IeB0aNHS+r8RTJmzJgQ9wbBlJaWprq6OiUnJ6umpibU3QEAAAAAYETi/TcAIFD8zQAABIK/FwCAQPE3AwAQKgcPHtTUqVO9+adAuCGBfRiIioqSJI0ZM4YE9hHGszSHwWDgtQUAAAAAYJDw/hsAECj+ZgAAAsHfCwBAoPibAQAINU/+KRBuSGAHAAAAAAAAAAAAAAAAAAAAgBBxOByh7sKQMoS6AwAAAAAAAAAAAAAAAAAAAACAyEACOwAAAAAAAAAAAAAAAAAAAABgSJDADgAAAAAAAAAAAAAAAAAAAAAYEiSwAwAAAAAAAAAAAAAAAAAAAACGBAnsAAAAAAAAAAAAAAAAAAAAAIAhQQI7AAAAAAAAAAAAAAAAAAAAAGBIkMAOAAAAAAAAAAAAAAAAAAAAABgSJLADAAAAAAAAAAAAAAAAAAAAAIYECewAAAAAAAAAAAAAAAAAAAAAgCER1gnse/fu1bp163T33XfrwgsvlNlsVlRUlKKiorR48eJBuWZpaanOP/98TZo0SfHx8TrxxBNls9m0efPmQbkeAAAAAAAAAAAAAAAAAAAAAIwU0aHuwEBMnDhxyK7lcrmUn5+v9evXd9lfW1urp59+WqWlpbr77rv1i1/8Ysj6BAAAAAAAAAAAAAAAAAAAAADhJKwrsB8tJSVF559//qC1f80113iT1+fNm6eKigq9++67Wr58uU466SR1dHRo6dKlevTRRwetDwAAAAAAAAAAAAAAAAAAAAAQzsK6Avvdd9+tOXPmaM6cOZo4caIcDodSU1ODfp3XX39dzzzzjCTp4osv1po1a2Q0GiVJc+bM0SWXXKLZs2ertrZWP//5z7Vw4UKNHz8+6P0AAAAAAAAAAAAAAAAAAAAAQqJhp9RYH+peDFxCkjRuaqh7EdHCOoH9l7/85ZBc55577pEkRUdH66GHHvImr3uYzWb9/ve/1xVXXKGGhgb95S9/0c9+9rMh6RsAAAAAAAAAAAAAAAAAAAAwqBp2Sg/OltqaQ92TgYuOk26pGtQk9vb2dq1evVrr1q3TO++8o71796qxsVHjxo3T9OnTlZ2dre9973tKT0/32cabb76pVatW6a233lJdXZ2ampp03HHH6dRTT9XFF1+sq666SvHx8T7PX7p0aY+51rGxsUpKStIpp5yihQsX6qqrrlJMTExQHnegDEN6tTB06NAhvfbaa5Kkc889V1OmTOkxLi8vT2PGjJEkrVmzZsj6BwAAAAAAAAAAAAAAAAAAAAyqxvqRkbwudT6OQawk/84772jmzJm67LLL9NRTT2n79u1qbGzU6NGjVV9fr02bNul3v/udTjnlFC1YsEAtLS1dzq+vr9dFF12kuXPn6tFHH1VNTY2ampoUHx+vXbt26YUXXtBNN92k6dOn6/XXXw+oTxMnTvR+REdHq66uTq+88oquv/56ZWZmav/+/YPxVPhEAnsv/vnPf3q/Mc4++2yfcbGxscrIyPCe09raOiT9AwAAAAAAAAAAAAAAAAAAABB6a9eu1dy5c7Vt2zYlJSWpqKhI27ZtU0tLi+rr69XS0qJ//vOfuu222zRmzBiVl5ersbHRe/6ePXuUkZGh9evXy2g06oc//KE++ugjNTU1qaGhQfv379cTTzyhqVOnaufOnbrgggtUUVHRa78+//xz78eRI0f06aef6vrrr5ckbdmyRT/60Y8G6ynpEQnsvfjPf/7j3U5LS/Mb6zne1tam7du3D2q/AAAAAAAAAAAAAAAAAAAAAAwP27dvl81mU3Nzs2bOnKkPPvhAt912m04++WRvjNFo1BlnnKGioiJ98sknmj9/vveY2+3Wd7/7Xe3YsUMxMTFas2aN7r//fs2cOdMbM27cOC1evFjvv/++Tj31VLW2tuqqq67Sf//73z71NSUlRY8++qjOOeccSdLf/vY3HT58eIDPQOBIYO/Frl27vNtTpkzxGzt16lTv9s6dOwetTwAAAAAAAAAAAAAAAAAAAACGjzvvvFMHDx5UfHy81qxZ02ve8YQJE1RRUaGxY8dKktatW6fXX39dknTHHXfo4osv9nluUlKSnn32WcXHx+vgwYP6xS9+0a8+X3DBBZKklpaWIS3eTQJ7Lw4dOuTdTkxM9Bs7atQo77a/WQjNzc06ePBglw8AAAAAAAAAAAAAAAAAAAAA4WfPnj0qKyuTJH3ve9/T9OnTAz43KipKkvTQQw9JkkaPHq2CgoJezzv55JN1xRVXSJL++te/yul09rXbcrvd3u329vY+n99fJLD3oqmpybsdGxvrNzYuLs677XK5fMYVFRVp7Nix3o+jK7cDAAAAAAAAAAAAAAAAAAAACB8bNmxQR0eHJOnSSy/t8/ltbW2qrKyUJJ1//vm9Ft32yMvL857/1ltv9fm6L7/8sqTOJPrU1NQ+n99fJLD3Ij4+3rvd0tLiN7a5udm7bTKZfMYVFhbqwIED3o+dO3cOvKMAAAAAAAAAAAAAAAAAAAAAhtxHH33k3T799NP7fL7D4dCRI0f6fP5pp53m3f7www8DPq+2tlY33HCDXn/9dUnSxRdfrKSkpIDPH6joIbtSmBo9erR3+/Dhw35jPd84kvzOfIiLi+tSrR0AAAAAAAAAAAAAAAAAAABAeKqvr/duT5gwYUDn9yWR3Gw299jGsSZNmuTdPnTokBobG71fp6Wl6aGHHgr4msFABfZeTJkyxbu9a9cuv7FHV1KfOnXqoPUJAAAAAAAAAAAAAAAAAAAAADyam5t9HtuzZ4/34+jk9UWLFun999/XCSecMBRd9CKBvRczZ870btfU1PiN9RyPjo7WySefPKj9AgAAAAAAAAAAAICBaG9v1xtvvKHS0lK98cYbam9vD3WXAAAAAAAIS0dXTd+3b9+AzvdXSf1YTqfTuz1+/HifcW63W263Wx0dHdq9e7cefvhhjRs3TitXrtSDDz7Y5/4OVPSQXzHMzJkzR7GxsWppadGbb76p2267rce4lpYWvfPOO95zYmJihrKbAIaBxsbGbhNdXC6XHA6HLBaLTCZTl2NpaWlKSEgYyi4CAAAAAAAAAABIksrLy1VQUCCHw+HdZ7FYVFxcrLy8vNB1DAAAAACAMPTVr37Vu/3+++9r8uTJfTr/xBNP1KhRo3TkyBG99957AZ/3/vvve7dnzJjRa3xUVJSSk5N14403asaMGTrnnHN06623atasWTrnnHP61OeBoAJ7L0aPHq1vfetbkqRXX31Vu3bt6jGuvLxcBw8elCRdeumlQ9Y/AMNHTU2NZs+e3eXjrLPOks1m01lnndXtWG+rOgAAAAAAAAAAAAyG8vJy5efn65RTTtHmzZt16NAhbd68Waeccory8/NVXl4e6i4CAAAAABBW5s2bJ4OhMy17zZo1fT4/JiZG2dnZkqRXXnlFhw4dCui8o9/Dz507t0/XnDt3rq688kq53W798Ic/HNKV2SI+gX3FihWKiopSVFSUli5d2mPMkiVLJEltbW26+eabu71ATqdTP//5zyVJ48aN03XXXTeofQYwPKWlpamqqqrLR0lJiSSppKSk27G0tLQQ9xgAAAAAAAAAAESa9vZ2FRQUKCcnRxUVFcrIyFBiYqIyMjJUUVGhnJwcLVmyZEhvWgMAAAAAEO4mTpyoBQsWSJJWrVqlbdu2BXyu2+2WJP3gBz+QJB0+fFj33ntvr+dt375dzzzzjCTprLPO0le+8pW+dlt33323jEaj/vOf/+jJJ5/s8/n9FT1kVxoEGzdu1I4dO7xfO51O7/aOHTu0YsWKLvGLFy/u13XOOeccXX755XrmmWf0/PPP67zzztNPfvITTZ48Wf/+97/129/+VrW1tZKk3//+9xo/fny/rgMgvCUkJGjWrFk9HrNarT6PAQAAAAAAAAAADJXKyko5HA6VlpZ6K8N5GAwGFRYWKjMzU5WVlX2u3AYAAAAAQCT7zW9+oxdffFGHDx9WXl6eXn75ZZ1wwgk+4/fv36/rrrtOy5cv17hx45STk6O5c+fqjTfe0G9/+1vNnj1bOTk5PZ5bX1+vhQsXqqmpSVFRUfrNb37Trz6fdNJJuuyyy7Rq1Sr9+te/1pVXXqmYmJh+tdUXYZ3A/pe//MVntv+mTZu0adOmLvv6m8AuSY8//rgOHjyo9evXa8OGDdqwYUOX4waDQXfddZduuOGGfl8DAAAAAAAAAAAAAAZTXV2dJCk9Pb3H4579njgAAAAAABCY6dOn66mnntJll12mjz76SKeddpqWLFmiBQsWaNq0aZI6V0b78MMPtWbNGj3wwANqaGjQ8uXLJUlRUVEqLS1VVlaWPv74Y1166aX6wQ9+oJtuuklWq1WSdODAAVVUVOjuu+/2Ft++++67dfbZZ/e734WFhSotLZXD4dDy5ct10003DfCZ6J2h9xBIkslk0gsvvKCnn35a5513no4//njFxsZq6tSp+u53v6uNGzdq6dKloe4mAAAAAAAAAAAAAPiUnJwsSaquru7xuGe/Jw4AAAAAAAQuNzdXr7/+uqZNmyan06nbbrtNJ598suLi4pSUlKTY2FjNmjVLv/71r3XgwAFdccUVGjVqlPf8SZMm6Z133tH555+vtrY23X///Zo5c6ZMJpPGjx+vcePGafHixaqtrVVMTIz+8Ic/DDh/OT09XZdccokk6be//a2am5sH1F4gwroC+4oVK7RixYoBtbF48eI+VWb/7ne/q+9+97sDuiYAYHA1Njaqpqamyz6XyyWHwyGLxSKTydTlWFpamhISEoayiwAAAAAAAAAAhER2drYsFouWLVumiooKGQxf1jzr6OhQUVGRUlNTlZ2dHcJeAgAAAACGnYQkKTpOahv85OZBFx3X+XgGSVZWlmpqavTss89q3bp1+sc//qG9e/fq0KFDmjBhgtLS0nT22Wfryiuv1IwZM7qdf9xxx+nll1/W66+/rtLSUlVWVqqurk4NDQ3emMmTJ2vDhg2aPn16UPp8xx136LnnntOuXbv0yCOP6Ec/+lFQ2vUlrBPYAQDoSU1NjWbPnh1wfFVVlWbNmjWIPQIAAAAAAAAAYHgwGo0qLi5Wfn6+cnNzVVhYqPT0dFVXV6uoqEjr1q1TWVmZjEZjqLsKAAAAABhOxk2VbqmSGutD3ZOBS0jqfDyDyGg06vLLL9fll1/e7zbOOeccnXPOOV32/fWvf9UVV1yh3bt366mnntKvf/1rn+cvXbo04Orsc+bMkdvt7ndf+4oEdgDAiJOWlqaqqqou++x2u2w2m0pKSmS1WrvFAwAAAAAAAAAQKfLy8lRWVqaCggJlZmZ696empqqsrEx5eXkh7B0AAAAAYNgaN3XQE7/h32WXXaa6ujr97//+r37zm99o9OjRuvXWW0PdrT4jgR0AMOIkJCT4rKhutVqptg4AAAAAAAAAiHh5eXmaP3++dxny5ORkZWdnU3kdAAAAAIBh7ic/+Yk+++wz3XPPPfr5z3+uxMRE/eAHPwh1t/qEBHYAAAAAAAAAAAAAiEBGo1Fz584NdTcAAAAAAEAf/fGPf9Qf//jHUHej3wyh7gAAAAAAAAAAAAAAAAAAAAAAIDKQwA4AAAAAAAAAAAAAAAAAAAAAGBIksAMAAAAAAAAAAAAAAAAAAAAAhgQJ7AAAAAAAAAAAAAAAAAAAAACAIREd6g4A6L/GxkbV1NR02edyueRwOGSxWGQymbocS0tLU0JCwlB2cUSrra2V0+n0G2O327t89sdsNislJSUofUNw8bMGAAAAAAAAAAAAAAAAAEBwkMAOhLGamhrNnj074PiqqirNmjVrEHsUOWprazUjzaomV2NA8TabrdeYeFOCttbYSWIfhvhZAwAAAAAAAAAAAAAAAAAgOEhgB8JYWlqaqqqquuyz2+2y2WwqKSmR1WrtFo/gcDqdanI1KimnQDFJU33Gudta1HZgj6LHTlRUdKzPuNb6napfVyyn00kCez8MdjV8ftYAAAAA9GVlJlZlAgAAAAAAAAAAAHwjgR0IYwkJCT6rPFutVipAD4GYpKmKmzTNf9CUmUPTmQg1FNXw+VkDAAAA0JeVmViVCQAAAAAAAAAAAPCNBHYAQFijGn5k6UvVS4nKlwAAAAievqzMxKpMAAAAAAAAAAAAgG8ksAMARgSq4UeGvlS9lKh8CQAAgOBhZSYAAAAAAAAAAAAgOEhgBwAAYaMvVS898QAAAAAAAAAAAAAAAACA4YMEdgAAEDaoegkAAAAAAAAAAAAAAAAA4Y0EdgAAAAAAAAAAAACIAI2Njaqpqemyz+VyyeFwyGKxyGQydTmWlpamhISEoewiAAAAAACIACSwA/Bi0BL4kt1uD+h4b3GSZDablZKSEpR+AQAAAAAAAADQXzU1NZo9e3bA8VVVVax8CQAAAADwqjtcp/3N+0PdjQEbHzdeyYnJoe5GRCOBHYAXg5aA1H54vwxRks1mCyg+kLgEU7zsNVt9JrG3t7ersrJSdXV1Sk5OVnZ2toxGY5/6DQAAAAAAAABAb9LS0lRVVdVln91ul81mU0lJiaxWa7d4AAAAAACkzuT1nIoctbS3hLorAxZrjNW63HWDmsTe3t6u1atXa926dXrnnXe0d+9eNTY2aty4cZo+fbqys7P1ve99T+np6T7b+PDDD/X0009rw4YN+vTTT7V//36ZTCadcMIJmjNnjvLy8vTtb39bMTExXc6bO3eu3nzzzW7tJSQk6IQTTlBmZqZuuukmZWRkBP1xB4oEdgBeDFoOL32piB/J1fBdLpckqbV+Z1Daa9n7X3W4peUXx+u0ZN9J5K42txwNHbKMM8gUHeUzzv5Fh2xrXHI6nT0msJeXl6ugoEAOh8O7z2KxqLi4WHl5eQN6LAAAAAAAAAAAHC0hIcFncSKr1UrhIgAAAACAT/ub94+I5HVJamlv0f7m/YOWwP7OO+/oqquu0rZt27z7YmJiNHr0aNXX12vTpk3atGmTfve73ykvL0+lpaWKjY31xh46dEg33XSTSktL5Xa7JUlRUVEaO3asXC6X7Ha77Ha7Vq5cqZNOOklPP/20zjzzzG79iImJ0YQJE7xfO51Obd++Xdu3b9fKlSv1i1/8Qr/4xS8G5TnoDQnsALwYtBxe+lIRP5Kr4XsSv+vXFQe13bgYaZafBHZJypo6sGuUl5crPz9fOTk5Ki0tVXp6uqqrq7Vs2TLl5+errKws7JPY+zIRQ4rsyRgAAAAAAAAAAAAAAAAAwtvatWu1cOFCNTc3KykpSUuWLNGCBQt08sknS+qszP7+++9r9erVeuihh1ReXq7GxkZvAvv+/fuVnZ2tjz76SFFRUbr88sv1/e9/XxkZGd6Y3bt368UXX9T999+vDz/8UJs3b+4xgT0zM1NvvPGG9+uWlha9+eab+sEPfqAdO3Zo6dKlOuOMM3TRRRcN/hNzDBLYAWCY6ktF/Eiuhm+xWCRJSTkFikkaYEa5JNfHW3SgskSWcYYBt+VPe3u7CgoKlJOTo4qKChkMndfLyMhQRUWFcnNztWTJEs2fP19Go/9E+uGsLxMxpMiejAEAAAAAAAAAAAAAAAAgfG3fvl02m03Nzc2aOXOmXn75ZU2ZMqVLjNFo1BlnnKEzzjhDP/vZz3TNNdd0Of69731PH330kaKjo7Vq1SotXLiw23UmT56sa6+9Vtdcc40efvhhRUVFBdS/2NhYnXfeeXruued0+umnq6WlRQ8++CAJ7ACAL1ERPzCeCt4xSVMVN2nagNtrrd/Z2W50YH/U+6uyslIOh0OlpaXe5HUPg8GgwsJCZWZmqrKyUnPnzh3UvgymvkzE8MQDAAAAAAAAAAAAAAAAQLi58847dfDgQcXHx2vNmjXdktePNWHCBFVUVMjtdkuSXnzxRb344ouSpLvvvrvH5PWjRUVF6fvf/746Ojr61M+ZM2dq9uzZ2rx5s/75z3/26dxgIYEdAIAQqKurkySlp6f3eNyz3xMXrpiIAQAAAAAAAAAAAAAAAGCk27Nnj8rKyiR1VlGfPn16wOd6Kqg/+OCDkqSxY8fqpz/9acDnH1tANRCe5PqDBw/2+dxgIIEdAIAQSE5OliRVV1crIyOj2/Hq6uoucQAAAACGVm1trZxOp98Yu93e5bMvZrNZKSkpQesbAAAAAAAAAAAAhpcNGzZ4K6FfeumlfT6/ra1Nb731liTpvPPO06hRo4Lav2M5HA5JnVXgQ4EEdgDoB5fLJUlqrd8ZlPY87XjaxciXnZ0ti8WiZcuWqaKiosssuI6ODhUVFSk1NVXZ2dkh7CUAAAAQmWprazUjzaomV2NA8Tabze/xeFOCttbYSWIHAADAkAvmxEyJyZkAAAAAAPjy0UcfebdPP/30Pp//6aef6vDhw/0+vy/effddVVVVSVKPxVeHAgnsQJjpbaCRQcah4Zl9VL+uOOjtZmVlBbVNDE9Go1HFxcXKz89Xbm6uCgsLlZ6erurqahUVFWndunUqKyuT0WgMdVcBAACAiON0OtXkalRSToFikqb6jHO3tajtwB5Fj52oqOjYHmNa63eqfl2xnE4n78EBAAAwpII9MVNiciYAAAAAAL7U19d7t/tT1Xyg5wdi9+7deu2113Trrbeqo6NDUVFR+slPfjIo1+oNCexAGOnLQCODjIPLYrFIUq/JDIHyJDQ0Nzfrvffe8xnH8vQjS15ensrKylRQUKDMzEzv/tTUVJWVlSkvLy+EvQMAAAAQkzRVcZOm+Q+aMnNoOgMAAAD0UTAnZkpMzgQAAAAAINy8+eabioqK6vFYTEyM7r33Xs2dO3doO/V/SGAHwkggA40MMg4Nk8kkKcBkhgC0H94vQ5R07bXXBhTf2wSFBFO87DVbeW3DQF5enubPn6/KykrV1dUpOTlZ2dnZVF4HAAAAAAAAAAQFEzMBAAAAABh8SUlJ3u19+/Zp8uTJAzo/GGJiYrzV3KOiomQymTR58mRlZmbquuuu0/Tp04Nynf4ggR0IQ70ONDLIGHY6mg+rwy2VXGqS9TiDzzhXm1uOhg5Zxhlkiu55ZpT9iw7Z1riYnBBGjEZjyGayAQAAAAAAAABGJpfLJamzqFEweNrxtAsAAAAAAL701a9+1bv9/vvv9zmB/cQTT1RiYqIOHz6s999/Pyh9yszM1BtvvBGUtoKNBHYAGEasxxk0K9l/5e0s36t8AgAAAAAAAAAASJIcDockqX5dcdDbzcrKCmqbAAAAAACEu3nz5slgMKijo0Nr1qzRRRdd1Kfzo6Oj9c1vflPr16/X3//+dx05ckSjRo0apN6GHgnsQBgJZqUMqmQAAAAAAAAAAICh0NjYqJqami77XC6XHA6HLBaLTCZTl2NpaWlKSEgYyi6OSBaLRZKUlFOgmKSBV8dprd+p+nXF3nYBAAAAAMCXJk6cqAULFujZZ5/VqlWrdOutt2r69OkBnet2uxUVFaWbb75Z69ev14EDB3TvvffqrrvuCuj8jo4OGQyGgXR/yJHADoSRwaiUQZUMoCt3e6skye5sD0p7nnaYLAIAAAAAAAAgUtXU1Gj27NkBx1dVVWnWrFmD2KPIcOzEAF/cbS1qO7BH0WMnKio6NmjtAgAAAAAQaX7zm9/oxRdf1OHDh5WXl6eXX35ZJ5xwgs/4/fv367rrrtPy5cs1btw4ffvb39b555+vV155Rb/61a9ktVqVn5/v95qPPvqo3G63brzxxmA/nEFFAjsQRoJZKYMqGUDP2g/vkyTZypuC2i6TRQAAAAAAAABEqrS0NFVVVXXZZ7fbZbPZVFJSIqvV2i0eA2c2mxVvSghqYaR4U4LMZrP3a6rrAwAAAADwpenTp+upp57SZZddpo8++kinnXaalixZogULFmjatGmSpPb2dn344Ydas2aNHnjgATU0NGj58uXeNlatWqXs7GzZ7XZ95zvf0RVXXKGbbrpJGRkZiomJkSTV1dXplVde0f3336/33ntPf/rTn0LyeAeCBHYgjHgG+WKSpipu0rSgtonQCmbV70it+N1av9Pv8UAryLjb2yRJJXnxspqNA+6X3dkuW3kTk0Uw7LS3t6uyslJ1dXVKTk5Wdna2jMaBf88DAACMBJ73U729zwiEp41Ie48GAABwtISEBJ8V1a1WK9XWB0lKSoq21tjldDq9+zwTBwJ17AQDs9mslJQU79dU1wcAAAAAoKvc3Fy9/vrrWrx4sXbs2KHbbrtNt912m2JjY5WYmKiGhgZ1dHRIkqKionTFFVdo1KhR3vOTkpL0zjvv6Prrr9ezzz6rVatWadWqVYqKitK4cePkcrnU1PRlcVar1ars7Owhf5wDRQI7AAxAsJKmWz7fLim4Vb8jpeL3YFSQkSSr2ahZycFL5mWyCIaT8vJyFRQUyOFwePdZLBYVFxcrLy8vdB0DAAAYJjz/JwXzfUakvEcDAADA8JKSktIl4bynavgDqZhOdX0AAAAAALrLyspSTU2Nnn32Wa1bt07/+Mc/tHfvXh06dEgTJkxQWlqazj77bF155ZWaMWNGt/PHjBmjv/71r7r99ttVUlKiN954Q59++qn2798vk8mk1NRUff3rX9fChQt1wQUXhGXRShLYAaAfBitpOhhVvyOt4ndPFWR64m/AvKc4YKQqLy9Xfn6+cnJyVFpaqvT0dFVXV2vZsmXKz89XWVkZSewAACDied5PJeUUKCZp6oDaaq3fqfp1xRHzHg0AAADDm69q+P2dbEl1fQAAAACIHOPjxivWGKuW9pZQd2XAYo2xGh83flCvYTQadfnll+vyyy/vdxunnnqqTj311D6f98Ybb/T7mkOFBHYA6IfBSpoOZtXvSKr4fWwFGX8YMA8vtbW1Af2cHf3Zn2OXt4007e3tKigoUE5OjioqKmQwGCRJGRkZqqioUG5urpYsWaL58+eH5cxMAACAYPG8n4pJmqq4SdOC2iYAAAAAAAAAAEA4Sk5M1rrcddrfvD/UXRmw8XHjlZyYHOpuRDQS2AGgn0iaBroLZsJ5XV2dFuYvkKupOaBrB1I5P8EUL3vN1ohNYq+srJTD4VBpaak3ed3DYDCosLBQmZmZqqys1Ny5c0PTSQAAAKAXjY2Nqqmp6bLP5XLJ4XDIYrF0myyQlpamhISEoewiAAAAAAAAAAAjUnJiMonfCAoS2AEAQFDU1tZqRppVTa7GgOIDSTiXpJJLTbIeZ/B53NXmlqOhQ5ZxBpmio3zG2b/okG2NS06nM2IT2Ovq6iRJ6enpPR737PfEAQAAAMNRTU2NZs+eHXB8VVUVk8oBAAAAAAAAAACGERLYAQBAUDidTjW5GpWUU6CYpKk+49xtLWo7sEfRYycqKjrWZ5zr4y06UFki63EGzUo2+r12lu/L4SjJyZ0zYKurq5WRkdHteHV1dZc4AACASNdav9Pv8UD+t+2tDfRdWlqaqqqquuyz2+2y2WwqKSmR1WrtFg8AAAAAAAAAAIDhgwR2AAiSnpYwt9vtXT4fjSXMMVLFJE1V3KRp/oOmzOy1HRJ9gi87O1sWi0XLli1TRUWFDIYvK9t3dHSoqKhIqampys7ODmEvAQAAQs9sNivelKD6dcVBaS/elCCz2RyUtiAlJCT4rKhutVqptg4AAAAAAAAAADDMkcAOAEHibwlzm83WbR9LmAMYakajUcXFxcrPz1dubq4KCwuVnp6u6upqFRUVad26dSorK5PR6L/iPQAAwEiXkpKirTV2OZ1Ov3H+qn4fzWw2KyUlJdjdBAAAAAAAAAAAAMISCewAECQ9LWHucrnkcDhksVhkMpm6xWP4sn/R4fe4q80tR0OHLOMMMkVH9bsdYKjl5eWprKxMBQUFyszM9O5PTU1VWVmZ8vLyQtg7AACA4SMlJSXgpPO+Vv3uaQWv3t4/soIXAAAABkN7e7sqKytVV1en5ORkZWdnU+ACAAAAAAAMOhLYASBIfC1hnpWVFYLeoL/MZrMSTPGyrXEFrc0EU7zMZnPQ2gMGKi8vT/Pnz+fGFAAAQIj4W8GrJ6zgBQAAgMFQXl6ugoICORwO7z6LxaLi4mIKXQAAAAAAgEFFAjsQhlrrd/o85m5rUduBPYoeO1FR0bH9agOIZCkpKbLXbJXT6fQbZ7fbZbPZVFJSIqvV6jfWbDYHXLkRGCpGo1Fz584NdTcAAAAiUk8rePl7j8EKXgAAINzU1tYGNMZ69Gd/GGMNvvLycuXn5ysnJ0elpaVKT09XdXW1li1bpvz8fFZrBAAAAAAAg4oEdiCMmM1mxZsSVL+uOCjtxZsSqAoN9CAlJSXgmyFWq5VKiAAAAAD6xNcKXhLvMQAAQPirra3VjDSrmlyNAcXbbLZeY+JNCdpaYyeJPUja29tVUFCgnJwcVVRUyGAwSJIyMjJUUVGh3NxcLVmyRPPnz2fVRgAAAACIIG63O9RdQJjqz/cOCexAGElJSdHWGrvfqiVUhQaAwDU2NqqmpqbLPpfLJYfDIYvFIpPJ1OVYWlqaEhIShrKLAAAAAAAAQFhxOp1qcjUqKadAMUlTfcb1ZUXZ+nXFcjqd3NMIksrKSjkcDpWWlnqT1z0MBoMKCwuVmZmpyspKVnEEAAAAgAjgeW/Y3t4e4p4gXHm+d44dZ/CHBHYgzARaGZqKbYhkPSUl+1uOlqTkyFVTU6PZs2cHHF9VVcXvVgAAAAAAACAAMUlTFTdpmv+gKTOHpjPooq6uTpKUnp7e43HPfk8cAAAAAGBki4mJUUxMjA4fPqzExMRQdwdh6NChQ97vo0CRwA5EsNraWr/V3CX/Sb/HoqI7hgt/Sck9LUdLUnLkSktLU1VVVZd9/laySEtLG8ruAQAAAAAAAEDQJScnS5Kqq6uVkZHR7Xh1dXWXOAAAAADAyBYVFaXRo0eroaFBY8eOlclkCnWXEEZcLpcOHjyocePGKSoqKuDzSGAHIlRtba2saTPU6GoKKL6npN9jJZjiZa/ZShI7Qq6npGSXyyWHwyGLxdLtnyySkocnd3urJMnuDM7yRJ52XC6Xd19CQoLPyQusZAEAAAAAAABgJMrOzpbFYtGyZctUUVHRZXnvjo4OFRUVKTU1VdnZ2SHsJQAAAABgKJnNZrlcLtXW1mrMmDEaPXq0jEZjnxKSETncbrfa29t16NAhHTx4UHFxcTKbzX1qgwR2IEI5nU41uppUcqlJ1uMMPuNcbW45GjpkGWeQKdr3HyP7Fx2yrXHJ6XSSwD4A9i86/B4P5PXorY1I4CspOSsrKwS9QX+1H94nSbKVBzbRJlAOh4PvBQAAAAAAAAARy2g0qri4WPn5+crNzVVhYaHS09NVXV2toqIirVu3TmVlZTIajaHuKgAAAABgiBiNRk2dOlVOp1OHDh1SQ0NDqLuEMBATE6Nx48bJbDb3eRyBBHYgwlmPM2hWsv9fHFlTh6gzEcxsNivBFC/bGlfvwQFIMMX3eUYTMNwYEydIkkry4mU1D/xGid3ZLlt5kywWy4DbAgAAAAAAAIBwlpeXp7KyMhUUFCgzM9O7PzU1VWVlZcrLywth7wAAAAAAoWA0GjVx4kQdf/zxam1tVUcHhVThm8FgUExMTL+r9JPADgDDQEpKiuw1W+V0Ov3G2e122Ww2lZSUyGq1+owzm81UwkfYizLGSJKsZmOvE236wmQyBa0tAAAAAAAAAAhXeXl5mj9/viorK1VXV6fk5GRlZ2dTeR0AAAAAIlxUVJRiY2ND3Q2McCMigf3TTz/V/fffrxdeeEE7d+5UXFycTjrpJH3nO9/RzTffrISEhAFf45NPPtH999+vv//97/r000/V0dGhyZMn67zzztPNN9+sr371q0F4JAAiWUpKSsBJ51arVbNmzQq47cbGRtXU1HTZ53K55HA4ZLFYuiX0pqWlBeV3JyKLy9W5gkBr/c6gtNd2YE9nu23uoLQHAAAAAAAAAOjKaDRq7ty5oe4GAAAAAACIMGGfwL527VrZbDYdPHjQu6+xsVFbtmzRli1b9Je//EUvvPCCpk2b1u9rPProo/rhD3+olpaWLvt37NihHTt2aPny5SouLtYtt9zS72sAwGCqqanR7NmzA46vqqrqU4I8IEkOh0OSVL+uOLjtNnQoa2pQmwQAAAAAAAAwSIJd6MLTjqddAAAAAAAAhL+wTmB///33ddlll8nlcikxMVGFhYWaN2+eXC6XnnnmGT322GPatm2bLrroIm3ZskWjR4/u8zWeeeYZ3XjjjZKksWPHqqCgQOecc47i4uL0/vvv6w9/+IN27NihH/3oRzr++OP1ne98J9gPEwAGLC0tTVVVVV322e122Ww2lZSUyGq1dosH+spisUiSknIKFJM08Ixz18dbdKCyRJZxhgG3he7a29tZGhgAAKAPelrZym63d/nswapWAAAgkg1aoQuHQ1lZWUFtEwAAAAAAAKER1gnsP/7xj+VyuRQdHa1XXnlF3/jGN7zHzjnnHJ188sm69dZbtW3bNhUXF2vp0qV9ar+xsVE//vGPJUmJiYnauHGj0tPTvcfPOOMMXXbZZTrrrLP073//Wz/60Y/07W9/W4mJiUF5fAAQLAkJCT4rqlutVqqtIyhMJpMkKSZpquIm9X/lEw9PZSVTdNSA20JX5eXlKigo8N5MlDonIBQXFysvLy90HYtQTCYAACA8+FvZymazdfmaVa0AAEAkC3ahi9b6napfV+xtF8HF2BQAAADCUU8FR1wulxwOhywWizd/wYOiIwAw/IRtAvu7776ryspKSdK1117bJXndo6CgQE888YTsdrvuu+8+3XHHHYqJiQn4GuvXr9fevXsldSbLH5287jFmzBjde++9Ou+887Rnzx6tWLFCt9xySz8fFQAgEoz0N1K9LQ3sbmtR24E9ih47UVHRsT7j2g7sCXbXoM7k9fz8fOXk5Ki0tFTp6emqrq7WsmXLlJ+fr7KyMpLYhxCTCdAX3FAGgNDqaWUrX//Hs6pVcNXW1srpdPqN8VUNvydms1kpKSlB6RsAAOju2PFNXwIdJ+xruwgcY1MAAAAIV/4KjvSEoiMAMPyEbQJ7RUWFd/vqq6/uMcZgMGjRokUqLCxUQ0ODNmzYoPPPPz/ga2zZssW7feGFF/qMmzt3ruLj49XU1KSysjIS2AEAfo3UN1Jms1nxpoSgLw2M4Glvb1dBQYFycnJUUVEhg8EgScrIyFBFRYVyc3O1ZMkSzZ8/n6TYIcBkAvQFN5QBIPR8rWyVlZXV67kkYPdfbW2tZqRZ1eRqDCj+2Gr4PYk3JWhrjT1inkMAAIbaYIwTxpsSZDabg9YeGJsCAABAeOup4IjdbpfNZlNJSYmsVmu3eADA8BK2CewbN26UJI0aNcpvEuDZZ5/t3d60aVOfEtjr6+u92xMnTvQZFx0drQkTJmj37t3avHmz2traFB0dtk8tgGGipyrdvhIawq1Cd6QbqW+kUlJStLXGHlBijq/H2lOc/YsOv+252txyNHTIMs4gU3SU7/Z6aScSVFZWyuFwqLS01Ju87mEwGFRYWKjMzExVVlZq7ty5Q9q3kb4ywbGYTIC+4IYyAIS32tpaWdNmqNHVFFB8IAnYCaZ42Wu2RkQCttPpVJOrUUk5BYpJmuozLtAKrq31O1W/rlhOpzMinj8AAEIh2OOEUmRN4BsKAxmbYnImAAAAhgNfBUckyWq1hkWRQACIdGGbZe0Z8Jg2bZrfZPGjk/4CGSQ5WmJionf7wIEDPuPcbrcOHjwoSWppadGOHTvCJtkQwPDlr0r3sQkN4VKhG51G8huplJSUgG829PZYzWazEkzxsq1xBat7SjDFR3Slprq6OklSenp6j8c9+z1xQ2mkrkzgy3CeTIDhhckOABD+nE6nGl1NKrnUJOtxBp9xfZmYaVvjirgE7JikqYqbNM1/0JSZQ9MZAADQq2COEyL4+js2xeRMAAAAAAAQLGGZwN7U1OSd2T9lyhS/sePHj9eoUaN05MgR7dy5s0/XObraw5tvvukzqer999/X4cOHvV/X1taSwA5gwHqq0u2rGjG/czASpaSkyF6zlUpNQZScnCxJqq6uVkZGRrfj1dXVXeKG0khdmcCX4TyZAMMLkx0AYOSwHmfQrGT/k42yfBcYBwAAAIKmv2NTTM4EAAAAAADBEpYJ7IcOHfJuH10l3RdPAvvRSeaBuPDCCxUdHa22tjbde++9WrRoUbeqrR0dHbrjjjt89q8nzc3Nam5u9n7tqd4OAEfzVaU7KysrBL0BQoNKTcGVnZ0ti8WiZcuWdankLHX+T1NUVKTU1FRlZ2cPed9G8soEPRnOkwkwvDDZAQAAAAAABNtAx6aYnAkAAAAAAAYqLBPYm5q+XJYuNja21/i4uDhJnZWL+2Lq1Km66aab9OCDD+qzzz5TVlaW/vCHP2jevHmKjY3VBx98oKVLl+rll19WbGysWlpaArpOUVGRfvnLX/apLwAAAANlNBpVXFys/Px85ebmqrCwUOnp6aqurlZRUZHWrVunsrIyGY3+bz71pL29XZWVlaqrq1NycrKys7P71U6kGM6TCTC8MNmh/xobG1VTU9Nln6/VbKTOlR0SEhKGsovoJ15bAAAAABgYxqYAAAAAAECohWUCe3x8vHfbkzTuj6fa+bE3sQNxzz336OOPP9b69eu1bds25ebmdos544wzNGfOHP35z3+WJI0ePdpvm4WFhfrpT3/q/frgwYOaOpUyBAAAYPDl5eWprKxMBQUFyszM9O5PTU1VWVmZ8vLy+txmeXm5CgoK5HA4vPssFouKi4v71V4kGMzJBBhZuKHcfzU1NZo9e3bA8VVVVSNutYeRitcWAAAAAAaGsSkAAAAAABBqYZnAfnSC+OHDh3uNP3LkiCQpMTGxz9eKi4vT2rVr9fjjj+v/+//+P/3rX/+S2+2WJB1//PG6/vrrdeedd+p///d/veeMHz++1zY9VeEBAACGWl5enubPnx+Uiunl5eXKz89XTk6OSktLvTe6li1bpvz8/H4nxUcCz2SCn/70p10mE1gsFp43eHFDuf/S0tJUVVXVZZ/dbpfNZlNJSYmsVmu3eIQHXlsAAAAAGLjBKHQBAAAAAAAQqLBMYI+Pj1dSUpLq6+u1a9cuv7H79+/3JrD3t8q5wWDQddddp+uuu06HDh3Snj17lJCQoEmTJnkrIG7fvt0bP3PmzH5dBwCAkaaxsVE1NTVd9tnt9i6fj5aWlqaEhIQh6VukMxqNmjt37oDaaG9vV0FBgXJycrpUhs7IyFBFRYVyc3O1ZMkSzZ8/n+RaP6KiokLdBQxz3FDun4SEBJ9Vt61WKxW5wxivLQAAAAAERzALXQAAAAAAAPRFWCawS51J4pWVldqxY4fa2toUHd3zQzk6ae7YKmz9MXr06C4V4KXO5K0PPvhAkvSVr3xFZrN5wNcBBpvL5ZIk2Z3tQWnP046nXQCQOv8Oz549u8djNput276qqiqSzsJIZWWlHA6HSktLvcnrHgaDQYWFhcrMzFRlZeWAk+VHIqrXoy+4oQwAAAAACGcUuhi+glHoAgAAAAAAoK/CNoH9rLPOUmVlpY4cOaKqqiqdeeaZPca9+eab3u2srKxB6cuGDRtUX18vSbrssssG5RpAsDkcDkmSrbwp6O0O1s8agPCTlpamqqqqLvtcLpccDocsFotMJlO3eISPuro6SVJ6enqPxz37PXH4EtXr0R/cUAYAAAAAhCsKXQAAAAAAAOBoYZvAnpubq6KiIknSE0880WMCe0dHh1auXClJGjdunObNmxf0frjdbi1dulSSFBMTo+uvvz7o1wB8GUjFEovFIkkqyYuX1TzwxDi7s1228iZvuwAgSQkJCT3eaGKiy8iQnJwsSaqurlZGRka349XV1V3i8CWq1wMAAAAAgEhCoYuRgdV9AQAAAABAsIRtAvvXv/51ZWdnq7KyUsuXL9dVV12lb3zjG11iiouLvUm8P/7xjxUTE9Pl+BtvvOFNar/qqqu0YsWKbtepr69XYmKi4uLiuh1rb2/Xj370I23atEmSVFhYqNTU1GA8PCAgA6lY4hkMtpqNmpUcvMquxw4yA8NBe3u7KisrVVdXp+TkZGVnZ1PRGAiC7OxsWSwWLVu2rEsVcalzImFRUZFSU1OVnZ0dwl4OT1SvBwAAAAAAkYRCFyMDq/sCAAAAAIBgCdsEdkm67777lJWVJZfLpfPPP1+333675s2bJ5fLpWeeeUaPPvqoJGn69OkqKCjo1zU2bNigW265RZdffrnOPvtspaSkqKmpSR9++KEeffRRffDBB5KkCy+8UHfccUewHhoQECqWAL0rLy9XQUGBd2Bd6lyBoLi4WHl5eaHrGDACGI1GFRcXKz8/X7m5uSosLFR6erqqq6tVVFSkdevWqaysjAkjPaB6PQAAkYMqlQAAAMHX0wq1vd0f8axQi/5jdV8AAAAAABAsYZ3Afvrpp+uvf/2rbDabDh48qNtvv71bzPTp0/XCCy9o9OjR/b7Onj17dN999+m+++7rdiwqKkpXX321HnroIcXGxvb7GkB/ULEE8K+8vFz5+fnKyclRaWmpN7F22bJlys/PV1lZGUnswADl5eWprKxMBQUFyszM9O5PTU3lZ8wPqtcDABA5qFIJAAAQfP5WqO3J0SvUov9Y3RcAAAAAAARLWCewS9LFF1+sDz/8UPfdd59eeOEF7dq1S7GxsZo2bZoWLlyoW265ZUAVFbKzs/XHP/5Rr7/+umpqarRnzx4ZDAZNnjxZ8+bN09VXX60zzzwziI8IABAM7e3tKigoUE5OTpfk0IyMDFVUVCg3N1dLlizR/PnzqQ4NDFBeXp7mz5+vyspK1dXVKTk5WdnZ2fxs+UH1egAAIgdVKgfGU2m+tX5nUNrztEMFewAAwltPK9Ta7XbZbDaVlJTIarV2iwcAAAAAAMDwEfYJ7JJ04okn6t5779W9997bp/Pmzp0rt9vtN2bixIlasmSJlixZMpAuAgCGWGVlpRwOh0pLS7tUNpYkg8GgwsJCZWZmqrKyUnPnzh3UvtTW1srpdPqNsdvtXT77YjablZKSErS+AcFiNBoH/WdppKF6PQAAkYEqlQPjqWBfv6446O36qmDf3t7O5EwAAIY5XyvUSpLVaqXaOgAAAAAAwDA3IhLYAXTiBivwpbq6OklSenp6j8c9+z1xg6W2tlYz0maoydUUULzNZvN7PN4Ur601W0liB0YIqtcDAAD456k0n5RToJikqQNur7V+p+rXFfusYF9eXq6CggJv4rynD8XFxUwwBAAAAAAAAAAACBIS2IERghusQFfJycmSpOrqamVkZHQ7Xl1d3SVusDidTjW5mjTlhimKmxznM66jpUOtzlbFmGNkiDX0GNO8u1m7Ht0lp9NJAjswglC9PrQaGxtVU1PTZZ/L5ZLD4ZDFYulW3TYtLU0JCQlD2UUAACKa529xTNJUxU2aFvR2j1ZeXq78/Hzl5OSotLRU6enpqq6u1rJly5Sfn88qOQAAAAAAAAAAAEFCAjswAnCDFeguOztbFotFy5YtU0VFhQyGL5PCOzo6VFRUpNTUVGVnZw9Jf+Imx8lk6Z4g0cX0IekKAOAoNTU1mj17dsDxVVVVLEMOAMAI1N7eroKCAuXk5HR5D5mRkaGKigrl5uZqyZIlmj9/PqvlAAAAAAAAAAAADBAJ7ECY4wYr0DOj0aji4mLl5+crNzdXhYWF3skdRUVFWrduncrKygL6ueipOq/dbu/y+WhU5wWA8JGWlqaqqqou++x2u2w2m0pKSmS1WrvFAwCAkaeyslIOh0OlpaVdJkBLksFgUGFhoTIzM1VZWcnqOQAAAAAAAAAAAANEAjsQ5rjBCviWl5ensrIyFRQUKDMz07s/NTW1TysT+KvOa7PZuu2jOi8AhI+EhASfv7OtViu/zwEAQWP/osPvcVebW46GDlnGGWSKjup3O+i7xsZGvf3225KktrY2vffee3K5XHI4HLJYLDKZTGpra5Mkvf322/r617/OpGUAAAAAwIjXU5GvY98vH40iXwAAAOgLEtiBMFdXVydJSk9P7/G4Z78nDpGhtrZWTqfTb4y/CuLHMpvNSklJCUrfhlpeXp7mz5+vyspK1dXVKTk5WdnZ2X1akaCn6ry9Dc4AQLhiQBoAgOAym81KMMXLtsYVtDYTTPEym81Bay8ctNbv9Hvc3daitgN7FD12oqKiY/vUTk1Nje644w5JUnZ2tt/r3HHHHbrggguY5AYAACIakzMBIDL4K/LVE4p8AYBv7e3tA8pbAYCRiAR2IMwlJydLkqqrq5WRkdHteHV1dZc4jHy1tbWakTZDTa6mgOJ7qiB+rHhTvLbWbA3bJHaj0TigFQh8VefNysoaQK/QHz0l1vqbjEFiLdB3DEgDABBcKSkpstdsDWiSsc1mU0lJiaxWq9/YcJ5k3Fdms1nxpgTVrysOWpvxpoQuEwDS0tL07rvvKjc3V9OmTVNxcbG2bt3qfT1mzJihgoIC/fe//9WaNWv8TlpmMiAAABjJhmJyJv9PAcDw0VORL3/jFxT5AoCelZeXq6CgQA6Hw7vPYrGouLhYeXl5oesYAIQYCexAmMvOzpbFYtGyZctUUVEhg8HgPdbR0aGioiKlpqb2WkEMI4fT6VSTq0lTbpiiuMlxPuM6WjrU6mxVjDlGhliDz7jm3c3a9eguOZ3OiEmQwPDlL7G2p8kYJNYCfceANAAAwZeSkhLw+ymr1cr/sEdJSUnR1hr7oE4ASEhI0Jw5c/TAAw8oPz9fv/rVr7w3jlpbW/WrX/1KlZWVKisr05w5c/y2zWRAAADCDwnTgRuKyZn8PwUAw4evIl8S4xcAEKjy8nLl5+crJydHpaWlSk9PV3V1tZYtW6b8/HyVlZWRxA4gYpHADoQ5o9Go4uJi5efnKzc3V4WFhd5/doqKirRu3TqVlZWx7EwEipscJ5PF5D9o+tD0BQiWnhJre7uZFKlqa2u73EjyPE+BOvb5jKQqn5GOAWkAADDcDNUEgLy8PJWVlamgoEBr166VJF199dVKTU0N+EYSkwEBABgcx4519cTfSo1HI2F6YAb7fzP+nwIAAMBI0d7eroKCAuXk5Gj16tXatGmT1q5dq+TkZK1evVoLFizQkiVLNH/+fPK6AEQkEtiBEeDoG6yZmZne/X25wQoA4cBXYm1WVlYIejN81dbWakaaVU2uxqC1GW9K0NYaO0nsYaC9vV2VlZWqq6tTcnKysrOzGfAAAAAIUF5enubPn6/ly5frxhtv1COPPKJrr7024P+nmAwIAEDw1dbWypo2Q42upoDie1qp8WgJpnjZa7Z6x7lImB5e+H8KAAAAI0VlZaUcDoduvPFGTZ8+vUvBOYvFohtuuEFr165VZWWl5s6dG7J+AkCokMAOjBCeG6x9TVizf9Hh97irzS1HQ4cs4wwyRUf1ux0AGA6CWalJGr5VyZ1Op5pcjUrKKVBM0lRJkrutRW0H9gTcRvTYiYqKjpUktdbvVP26YjmdzmH5ePGl8vJyFRQUdBv8KC4uZkIbAABAgIxGo8444wxJ0hlnnMFkQAAAQszpdKrR1aSSS02yHmfwGRfI/Qz7Fx2yrXF1GeciYRpAuKGICQAA4aGurk6SdPvttysnJ0elpaVKT09XdXW1li1bpjvuuKNLHABEGhLYgRHEaDQGPCPPbDYrwRQv2xpX0K6fYIqX2WwOWnvASOBydf6MNe9uHnBbnjY8baJvOquSz1BTkCo1SVK8KV5bj6rWNNzEJE1V3KRpX+6YMjN0ncGgKy8vV35+fo+DH/n5+azKAgAAAAAAwpr1OINmJftP0MyaOkSdAYAQoYgJAADh4/jjj5fUuaJ8RUWFDIbOCbkZGRmqqKjQ2WefrY0bN3rjACDSkMAORKiUlBTZa7YGVInY1zKZxzq2EnFjY6Nqamq6xLhcLjkcDlksFplMpi7H0tLSlJCQ0MdHAgxvngHEXY/uCmqbWVlZQWsvUnRWJW/SlBumKG5ynM+4jpYOtTpbFWOOkSHWd0Wn5t3N2vXoLqqSY1hob29XQUGBcnJyehz8yM3N1ZIlSzR//nwq8QAAAAAAAABAGKKICfAlchEwUvC9HNncbneouwAAIUUCOxDBUlJSAk667M8ymTU1NZo9e3bA8VVVVSzFiRHHYrFIUq9J04HwJEx72kT/xE2Ok8li8h80fWj6Mlg8Vfpb63cGpT1PO1T/H74qKyvlcDhUWlrqTV73MBgMKiwsVGZmpiorKwNerQUAAAAAAGA48IxJ2Z3tA27L0wbjXADCDUVMgK7IRcBIwffyyLZ3715J0saNG5Wbm6vCwkLvBLSioiJt2rSpSxwARBoS2AEMmrS0NFVVVXXZ56+ie1pa2lB2DxgSnhnRASVN97FNwBdP5f/6dcVBb5fq/8NTXV2dJCk9Pb3H4579njgAAAAAAIBw4RnrspU3BbVNxrkAhBOKmABdkYuAkYLv5ZEtOTlZklRUVKRHHnlEmZmZ3mOpqalatmyZbr/9dm8cAEQaEtgBDJqEhASfMz/7U9EdABCYM844Q7Fx8WppDt5Nvdi4eJ1xxhlBaw/B5RnUqK6uVkZGRrfj1dXVXeIAAAAAAADChWdFypK8eFnNA6sqbHe2y1bexCqXAMIORUyArshFGF4aGxtVU1PTZZ/L5ZLD4ZDFYulWoC0tLU0JCQlD2cVhi+/lkS07O1sWi0Vvv/22tm3bpk2bNqmurk7JycnKysrSggULlJqaquzs7FB3FQBCggR2AACAEWbGjBnavm2rnE6nd59nkChQxw4mmc1mpaSkBLObCCLP4MeyZcu6LB8rSR0dHSoqKmLwAwAAAAAAhCXPGJXVbNSs5IElsB/bJgCEC4qYABjOampqNHv27IDjq6qqSMxGRDAajSouLlZ+fr4WLFigwsJC5eTkqLq6WgsWLNC6detUVlYmozE473MAINyQwA4AADACpaSkdEs4Z1nkkevowY/c3FwVFhYqPT1d1dXVKioqYvADAIARjipXAAAAADCyUcQEwHCWlpamqqqqLvvsdrtsNptKSkpktVq7xQORIi8vT2VlZSooKFBmZqZ3f2pqqsrKypSXlxfC3gFAaJHADsCrpxvedru9y+ejccMbAIDhg8EPAAAiF1WuAAAAAGBko4gJgOEsISHB51iT1WplHAoRLy8vT/Pnz1dlZaXq6uqUnJys7Oxs/m4DiHgksAPw8nfD22azddvHDW8AAIYXBj8AAIhMVLkCAABAqFAcCRg6FDEBECys5gcMPaPRqLlz54a6GwAwrJDADsCrpxvevb1JAQAAwwuDHwAARB6qXAEAACBUKI4EDC2KmAAIBlbzA7pjYgcADD0S2AF4+brhnZWVFYLeAAAAhJ++DG4xsAUAAAAAQODsX3T4Pe5qc8vR0CHLOINM0VH9agN9R3EkYOhRxATAQLGaH8JRbW2tnE6n3xh/KwEdy2w2KyUlxfs1EzsAYOiRwA4AAAAMsWOTnJm9P3L0ZXCLga3wQuUNAAAAAAgNs9msBFO8bGtcQWkvwRQvs9kclLZAcSQAwcc4HDD4WM0P4aa2tlYz0qxqcjUGFN/TSkDHijclaGuN3ZvEzsQOABh6JLADAICw1d7ezjKZCAvHVgTwDHYE4tgBkWOrAWB46cvgFgNb4YXKGwAAAAAQGikpKbLXbA2o2qKv5JKjMbYCAMPbcB6HI7keAELD6XSqydWopJwCxSRN9RnnbmtR24E9ih47UVHRsT7jWut3qn5dsZxOp/e9ARM7AGDokcAOAADCUnl5uQoKCuRwOLz7LBaLiouLlZeXF7qOAcfoa0WAYx2b6H5sNQCEViDLFfpy7I0ObqAPb1TeAAAAAIDQSUlJCfg9M8klABDehvM43HBOrgeASBCTNFVxk6b5D5oyc2g6AwAYMBLYAQBA2CkvL1d+fr5ycnJUWlqq9PR0VVdXa9myZcrPz1dZWRlJ7Bg2AqkIMJBqAAid2tpaWdNmqNHVFFB8b1X3E0zxstds5bUdpqi8AQAAAAAAAAy+4TwON5yT6wEAAIBwQwI7AAAIK+3t7SooKFBOTo4qKipkMBgkSRkZGaqoqFBubq6WLFmi+fPny2g0hri3wJd6rQhANYCw43Q61ehqUsmlJlmPM/iMc7W55WjokGWcQaboqB5j7F90yLbG1WVyAsvRAgB8CWQFELvd3uWzP+G2CkhPfyP9PV7+RgIAAAAAgmE4J9cHQ6SPN4xkvLYAAGA4IoEdAACElcrKSjkcDpWWlnqT1z0MBoMKCwuVmZmpyspKzZ07NzSdBBBRrMcZNCvZ/4SZrJ6L7/vFcrQAgJ7U1tZqRtoMNQVpBRBJijfFa2sYrQLi729kT4+Xv5EAAAAAEJkoEhK4zvEGq5pcjQHFBzbekKCtNfawGW8YqYK9mqzEirIAACA4SGAHAGAINO9u9nu8o6VDrc5WxZhjZIjtuYpvb21Eirq6OklSenp6j8c9+z1xGJ6o9AD0juVoAQA9cTqdanI1acoNUxQ3Oc5nXCDvMaTO9xm7Ht3VZRWQ4a6nv5G9JSAAAAAAACIPRUIC1zne0KiknALFJPmuyOJua1HbgT2KHjtRUdGxPuNa63eqfl1xWI03jFTBXE1W6nlFWQSOe6QAAHyJBHYAAAaR2WxWvCleux7dFZT24k3xMpvNQWkrXCUnJ0uSqqurlZGR0e14dXV1lzgMjoFULaFqKBCYkb4cLQBgYOImx8lkMfkPmj40fRlqvv5GZmVlBXR+MG8UcpMQAAAAIxWVqzESUCSk72KSpipu0jT/QVNmDk1nEFSDtZosAkc1fAAAuiKBHQCAQZSSkqKtNVsDSo7wNVh2NJIjpOzsbFksFi1btkwVFRUyGL6sFNDR0aGioiKlpqYqOzs7hL0ceY5N8vF8zwbq6O9tu90e8VVDg4kbSQAARBaXyyUpeCs0edrxtDvSBftGITcJAQAAMFJRuRojAUVCAAwnVMMHAKArEtgBABhkKSkpAb9hZLCsd0ajUcXFxcrPz1dubq4KCwuVnp6u6upqFRUVad26dSorK5PR6L+CAALX1ySfnvSU+BMpVUM9yWCt9TsH3JanjaMTzLiRBABAZHE4HJIUtFWejm430Arm4SyYNwq5SQgAAICRjMrVAIKNgjxAJ6rhAwDQiQR2AAAQdvLy8lRWVqaCggJlZmZ696empqqsrEx5eXkh7N3IE+xqAOu3t+muDcGpGBoOPElm9euKg9qmJ8GMG0kAAEQWi8UiSb2uZhMoz2o2nnYjBTcKAQAAAP+oXA0g2CjIAwAIBSZQAcMXCewAACAs5eXlaf78+aqsrFRdXZ2Sk5OVnZ1N5fVBFKwkH7uzPUg9Cg+eZLCknALFJA0sC6q1fqfq1xV3STDjRhIAAJHFM5ge0Go2/WgXAAAgHPSUgGC327t8PhoJCAAAhB4FeQAAocAEKmD4IoEdAACELaPRqLlz54a6G4BfnmSwmKSpips0LahtAvhSbW2tnE6n3xh/yQzHMpvNSklJCUrfAAAAAADB5S8BwWazddtHAgIAAKFHQR4AQCgwgQoYvkhgBwAAAACEtdraWlnTZqjR1RRQfE/JDMdKMMXLXrOVJHYAg4KKoQAAAAPTUwJCb0vAY3hiQjoAAAgnPY3r9fZ/KON6QGgxgQoYvkhgBwAAAIZAa/1On8fcbS1qO7BH0WMnKio6tl9tIDDBvCkayE1TDA2n06lGV5NKLjXJepzBZ5yrzS1HQ4cs4wwyRUf5jLN/0SHbGpecTic3vQEMCiqGAgAADIyvBISsrKxezyVheviora3VjLQZagrihPR4U7y2MiEdAAAMEn/jej1hXA8AAN9IYAeAEcblckmSmnc3B6U9TzuedgEAfWM2mxVvSlD9uuKgtBdvSpDZbA5KW5Gm86aoVU2uxoDiA7kpiuHFepxBs5KNfmOypg5RZwDADyqGho7nva3d2T7gtjxtRPL7ZaqOAQDCDQnTw4vT6VSTq0lTbpiiuMlxPuM6WjrU6mxVjDlGhljfE9ebdzdr16O7mJAOAAAGTU/jena7XTabTSUlJbJard3iMXwFWsyKia0AMDhIYAeAEcbhcEiSdj26K+jtBlK9BgDQVUpKirbW2P1W9vI3sHUsBj/6r/OmaKOScgoUk+Q7iznQiviuj7foQGVJUPvIQBkARIaBVAzFwHjeM9vKA0taC7TNSH3tqDoGAAg3JEwPT3GT42SymPwHTR+aviAyMTETABAoX+N6kmS1Whn3CBPth/fLEBV4MatA4hJM8bIzsRUA+oQEdgAYYSwWiyT1OgAfKM8AvKddAEDfpaSkdBms6OmGiC/cDAm+mKSpips0zX/QlJm9ttNavzNIPZLqDndIQR4oowIcAADded7bluTFy2r2v2pHb+zOdtnKmyL6/TJVxwAA4YqEaYxEJGH3HxMzAQCILB3Nh9XhlkouNcl6nO8Jq642txwNHbKMM8gUHeUzzv5Fh2xrXExsBYA+IoEdAEaYYwcgfQm0gkxf2wUw8rhcLkmdCTrB8Mn+Dkmdv4cila8bIj0lJXMzJDI0NLkld+8T0KgABwDAwHje21rNRs1KHlgC+7FtRiKqjgEAAAwfJGH3HxMzAQBDIdj3XD3teNpF31mPM/Q6Rpjle1FnAMAAkcAOACOM2WxWvCleux7dFbQ2403xMpvNQWsPQHhxOBySJFt5U1DbbXW2Rmwlq2NviPRWCQmRgwpwAAAAAAAA6A+SsPuPiZkAgKEwWPdcHQ6HsrKygtomAABDgQR2jDgsj4dIl5KSoq01W+V0Ov3G+Ru0PJbZbKZ6K8KeZ+Z58+7moLTnaSdcZ7S3t7ersrJSdXV1Sk5OVnZ2tozGnmeXWywWSVJJXrys5oFXqVy/vVV3bWhRjDlmwG2Fq55uiDCwBAAAAAAAAKC/SMJGuKqtrQ3ovubRn33hniaAYAvm76jm5s77y8G652p3tstW3uS9lwsAQLghgR0jDsvjAZ1J7IEOzjBoiUjhmdEezNUJPO2GW+JxeXm5CgoKvM+J1JmkXlxcrLy8vG7xnslfVrOx1yXUAuFZzs4QaxhwWwAAAADgC4UuAAAAgOGttrZWM9KsanI1BhRvs9n8Ho83JWhrjZ0kdgBBEezfUR7Buufqcez4BgAA4YIEdow4LI8HAOiJZ+b5lBumKG5y3IDba97drF2P7gq7Ge3l5eXKz89XTk6OSktLlZ6erurqai1btkz5+fkqKyvrMYkdAAAAAMINhS4AAACA4c3pdKrJ1aiknALFJE31Gedua1HbgT2KHjtRUdGxPca01u9U/bpiOZ1OEtgBBEUwf0dJkuvjLTpQWTIYXQUAICyRwI6QC3YlJJbHAwD0xPP3JG5ynEyW4M1CD6cZ7e3t7SooKFBOTo4qKipkMHRWQM/IyFBFRYVyc3O1ZMkSzZ8/X0Zj8Gb9AyOVu71V0perCgzEJ/s7JEkdLR0DbgsAAACdKHQBYDhjlQgAAL4UkzRVcZOm+Q+aMnNoOgMAxwjW76jW+p1B6hEAACMDCewIOSohAQAwNCorK+VwOFRaWupNXvcwGAwqLCxUZmamKisrNXfu3NB0EkOutrZWTqfTb4zdbu/y2R+z2Rwx1W3aD++TJNnKm4LWZquzVZoetOYAAIAP9i/8TxpztbnlaOiQZZxBpuiofrWB0KPQBYDhjHsjAAAAAAAAiGQksCPkqIQEAMDQqKurkySlp6f3eNyz3xOHka+2tlYz0maoyRVYArbNZus1Jt4Ur601WyMiid2YOEGSVJIXL6t5YKsWrN/eqrs2tCjGHBOMrgEAAB/MZrMSTPGyrXEFpb34uDjV1dXpvffe8xnDZMDAUY0YQCTh3ggAAAAABMbl6hzLC1YV+7YDezrbbXMHpT0AQP+QwI6QoxISAABDIzk5WZJUXV2tjIyMbserq6u7xB0rGFUqJemT/QwEDBdOp1NNriZNuWGK4ibH+YzraOlQq7NVMeYYGWINPuOadzdr16O75HQ6h2XiVbAHtzwV2C3jDJqVPLAEdruzXZL8Pr8AAGDgUlJSZK/ZGtAKNL4SCD3q6uq0IH+BcnJyAro2kwF7RzViAJGEeyMAhhtWagSAkclzb8RzH2KgPO142h3JSJoePhwOhySpfl1xUNvd8Emb3/vagYqknwsACCYS2AEAACJEdna2LBaLli1bpoqKChkMXybKdnR0qKioSKmpqcrOzu5yXrCrVGJggnkjyXM8bnKcTBaT31hND7yPw9VgDW45GjqUNTWoTQIAgEGUkpIScCKNvwTC9957T81NzREzGXAoUI0YGHysdAAA6AkrNQIIdqKupx2SOUPPc2/EVh7Y7/i+tJuVlRXUNocb7isNHxaLRZKUlFOgmKSBP3mHP3xZh99/UXdtaNFdG1oG3J5HJPxcAEAwkcAOAAAQIYxGo4qLi5Wfn6/c3FwVFhYqPT1d1dXVKioq0rp161RWViajsWsl6WBWqTw6Dn1XW1sra9oMNQbxRlIkCfbgluvjLTpQWSLLuIFXTW/+v2obzbubB9zW0e1wcwAAgMEXKZMBhwLViIHBx0oHAICeRNpKjRjZAi3swkoCXQ1aoi7JnCHnuTdSkhcvq3lgq8lKnZWmbeVN3nZHsuF8XynSeCZbxyRNVdykaQNur2Xvx5Je5OcCAEKMBHb0GRVaAAAIX3l5eSorK1NBQYEyMzO9+1NTU1VWVqa8vLwezwtWlUoMjNPpVKOrSSWXmmQ9zvfglqvNLUdDhyzjDH6XvVu/vU13bQhOwnQ4CPbglqeCTDCWFtx9qDOBfdejuwbc1tG4OQAAAADgaKx0AADwh8mZCGfth/fLEBV4YZdA4hJM8bJHyEoCwU7Uba3fqfp1xSRzDgOeeyNWs1GzkgeeqHtsuyPZcL6vhIGJMsZI4ucCAEKNBHb0GRVaAAAIb3l5eZo/f74qKytVV1en5ORkZWdnd6u8juHLepyh18GUQJYetDvbg9QjDNTk0Z2Dlb1VuQqUp8oVNwcAAAAAHI2VDgAAwEjV0XxYHW4FrQCM/YsO2da4VFlZ2euqs0d/9mc4V3QPdqLuse0CAAAAxyKBHX1GhRYAAMKf0WjU3LlzQ90NAP8n7v9ulARU5aoPuDkAAAAAAAAAdFVbWyun0+k3ZqQkJUeiYBWAqTvcIQW5onu8KV5bI6SiOwDf7F90+D3el4k2x2psbFRNTU3X9lwuORwOWSyWbveN0tLSlJCQ0IfeAwAQPCSwo8+o0AIAAAAAAAAAAIBw43K5JHWuXBYMnnY87aJveD0QCrW1tZqRZlWTqzGg+MCSkhO0tcZOUnI/eH5eW+t3DrittgN7Ottscw+4LUlqaHJL7t5Xzexo6VCrs1Ux5hgZYn1Xfvesmul0OvlewYjQ2wSfkTQRqLffUe62FrUd2KPosRMVFR3rM67ddVCGKMm2Jnj/qySY4mU2m71f19TUaPbs2QGfX1VVRZ4XACBkRkwC+6effqr7779fL7zwgnbu3Km4uDiddNJJ+s53vqObb745KLPFHA6H/vznP+vVV1/Vf//7Xx05ckSjR49WWlqaLrjgAt100006/vjjg/BoAAAAAAAAAAAAAASTw+GQJO16dFfQ283Kygpqm5GA12NggllFPJDkwpHC6XSqydWopJwCxST5LsMdaDJia/1O1a8rJim5nzy/B+rXFQevzYaOgCqsByqgVTOnB+96wHAXSasTmM1mxZsSgvo7Ki4uXqtXlyk5OdlnjN1ul81mU0lJiaxWa699PPp5S0tLU1VVVcDtpaWl9eNRAAAQHCMigX3t2rWy2Ww6ePCgd19jY6O2bNmiLVu26C9/+YteeOEFTZs2rd/XeOqpp3TjjTd2m7G/f/9+bd68WZs3b9Z9992nZ555Ruedd16/rwOEM5bbAwAAkSgYSz1+sj84VYHCGctaAgAAAAAGm8VikdR7Nd1AearpetpF3/B69F9tba2saTPU6GoKKD7QJMNIEpM0VXGTeskfmDKzX20zzhU4z89rbxMKAuH6eIsOVJbIMs53FXQAAxdJqxOkpKRoa409oDyY/iac+2O1WvtcHT0hIcHnOf1pDwCAwRT2Cezvv/++LrvsMrlcLiUmJqqwsFDz5s2Ty+XSM888o8cee0zbtm3TRRddpC1btmj06NF9vsamTZu0ePFidXR0yGAw6KqrrtL8+fM1efJk1dbW6sknn9TatWu1b98+zZ8/X9XV1frKV74yCI8WGL46l9uboaYgDpQN11m2wED1NHDpb3JHJA9cYvC0t7ersrJSdXV1Sk5OVnZ2toxGY6i7BYQVQ1xi0Jd6jGQsawkAAAAg2PqSQMgYXGTwvOYBVdPtR7voG16P/nM6nWp0NankUpOsx/lOCgyksIIkrd/eprs2NA9GVyMS41yB8/y8BjShoBet9Ts72/TzvQ4geCJldYKUlJRBTTgHACCShX0C+49//GO5XC5FR0frlVde0Te+8Q3vsXPOOUcnn3yybr31Vm3btk3FxcVaunRpn69RVFSkjo7OqooPPPCAfvCDH3iPzZkzRwsWLFBBQYHuvfdeuVwu3XvvvXrwwQcH/NiAcNK53F5TRMyyBQbK38BlT5M7InngEoOjvLxcBQUF3qU5pc4qJ8XFxcrLywtdx4AwY0wcrw63eq2oEUjlDU9MJGNZSwAAAADB1pcEQsbgAIQj63EGzUr2X5gkK4Ci1nZne5B6BIlxLgAAwkUwVlkOpB0AQM/COoH93XffVWVlpSTp2muv7ZK87lFQUKAnnnhCdrtd9913n+644w7FxMT06Tpvv/22JCkpKalL8vrR7r77bt17772SpM2bN/ep/UhTW1sb0PI6R3/2py/L62DwRcosW2Agehq47G3pSARP827/VWT6MtEmHJWXlys/P185OTkqLS1Venq6qqurtWzZMuXn56usrIwk9mHM5eqs9B2sG0qf7O8cTOloYVBlIAKtqEHlDf9Y1hIAECqskgUAI1dfEggZgwMABAvjXMCXesv56EtuSHNzs+LifBfTI88EQKAGY5XlBFO8zGZz0NoDgEgQ1gnsFRUV3u2rr766xxiDwaBFixapsLBQDQ0N2rBhg84///w+XaelpUWSlJqa6jNm7NixMpvNcjqd3viRIpgJ53V1dVqYv0CupsCS/gKpQplgipe9ZitvLgCEDV8Dl1lZWSHoTeQwm82KN8Vr16O7gtZmfJi9CW1vb1dBQYFycnJUUVEhg6EzQT8jI0MVFRXKzc3VkiVLNH/+fBmN/qv2IDQ8VfNt5U1BbbfV2RpRE8w8S8n64m5rUduBPYoeO1FR0bH9bgcAAIQHVskCgJGLBEIAAIDQaD+8vzM5NMCVRwOKi5LkDk5b8aZ4bY2wPJNgVZr+ZH8ALwIwzAVzlWUPJsYAQN+FdQL7xo0bJUmjRo3yuwTk2Wef7d3etGlTnxPYZ8yYoffee0+ffPKJz5iDBw96k7xnzJjRp/a9nE6peXhVc921a5eyMrPU1NT7jDOzpJ8E8EZglKSV347X9CTfVW1dbW7tPNihqWP8/2O8rb5D31/fpIbt25Vi8l31O3r/fpn/77O++KLXPgbLhPZ2Nf/f56G8bih4nuMJR9oVf7BtwO2ZjrTrgIb+NYskofq5AEIlxWTS9k1va9++fX7jtm3bpu//4Af680MPafp0/xm9EyZM0BSTKWx+ht7ZtEmHHQ7d/dBDMtTXdzlmkHTXTTfp2xddpHfWru3XhIpAf6/wN6P/po0bp3GSHv52vE5O8v0/UqBe/aRNRRtbdXyCQaMi4LU4PipKU+JNalpXrN4ebZSk3urcR0maEm/S8VFRAX3P+3te+LnoWV9/r0S73NKRga8oEO1y9+26Yf48D7X29na988472rNnjyZOnKiMjIwBT5zitQDvv/tvpPzNGIi0pCT969VXu+xzuVzauXOnpk6d2m2VrGlJSdIXX/Ba+BDs38nDvT0EprGxUTt27Oiyz+/P2bRpg7bSQST9zQhUpP1cDOfHO5z7NlLw93t4Gc6vx3D/exHssZC4ZvewfS2CzfPcJTUdVmzjgQG319J0WG1iHKm/gvl6xDQeULuk7bvaJdfAfy4+29uucZLGNrRq1MGYAbc3nH8upC9fizG7tyqm6bDPOHdbi9oOfqHoMcf5LQBj3PWR3G7pz0HKDXn14zYVbWrR5CuTFTep5yrsHS0dat3XqpgJvayy/Hmzdj9V12ueSaCG4m/GQN5THR8VpZT4OP0kiJWmI+VvRqCG+9jFSPgbNFh/v0+ZNElfmzq11+v2FucVps/vSLNr165e80I+3rZNZkkf/+MfnT8bfkyYMEFTpkwJYg+D6NChUPcAGJAot9sdtlPjjjvuODmdTp166qn64IMPfMbt379fEyZMkCQtXLhQf/vb3/p0nccee0w33HCDJOnPf/6zbrrppm4xP/vZz3TPPfdIkv7+97/r3HPPDbj9gwcPauzYsTogaUyfegYAABB+GiXVDEK7aZIGJ70BAAAAAAAAAAAMZ+9J8l32sP+qJLFmCwAAGI4OShor6cCBAxozhsxThJ+wrcDe1NTkrXje2wyX8ePHa9SoUTpy5Ih27tzZ52tdc8012rhxo1auXKmbb75ZVVVVuuSSS5ScnKza2lo99dRTqqiokCTdcccdvSavNzc3q/moSusHDx7sc58AAADCVY0YRB4umEwAAAAAAAAAABgJ0tR5n2Aw2kXfcf8BAAAAvQnbBPZDRy1/kJiY2Gu8J4H98GHfSx35YjQa9eSTT+riiy/WsmXL9Je//EV/+ctfusTMmzdPt99+e0CV14uKivTLX/6yz/0YCXiTAgAAGEQePphMAAAAAAAAAAAYCRLEuPRwwv0HAAAA9CZsE9ibmpq827Gxsb3Gx8XFSZJcLle/rme327Vy5Ur9+9//7vH45s2btXz5clmtVp1wwgl+2yosLNRPf/pT79cHDx7U1KlT+9WvcMObFAAAwCDy8MFkAgAAAAAAAAAAEGzcfwAAAEBvwjaBPT4+3rvd0tLSa3xzc7MkyWQy9flalZWVuvjii3XgwAGdeOKJ+s1v/n/27j0+77q+G/8rSdMcoJx6IRTbEGaFBOqB1gNQK62b7ECBWov+JpnIvMXdHh5slt+24s02t/umulmUbY57CMNpJ7jVWrXV3d44wOBPxWZO6JYATkPb0QEph0Jz9Zj8/ugSG5qkaXM1x+fz8eCRq9/v+3p/P2lIr+v6fl/fz+d/5q1vfWtOOeWUPPnkk/na176WG2+8MXfffXe+853v5Fvf+lbOO++8AftVVVX1Bur7+Pd/T6ZNO+LxHUsPPfRQfvGXfimnvfN/ZurLzhp2vxf+9d6c9E+353//WnVeOb1s2P0e296d3/rGrrR++tOZMmfOgHWPPvpo/vsHPpBb/+qvcvbZZw/a85RTTsnMmTOHPbYkefWrX51t//mfmXH66XnooYdK0nOs6vl/5az/tz7Vs6oP/4TD2LVlV372Z+359j335NWvfnUJRshL9fzM/B1DX5Phd2P9+vX5wz/8w2zesqV325l1dfmjP/qjLF68+Kj7DvXvzmvG0ev9O/6N2rz6tPJh9/tG69789w27/SxeotT/DgylX0/NGb8xI1Wn9/NZ4b907enK3mf2pvKUypRPHfj/gd3/uTtPfGHbpPlZlPp346Enu/KLX+gc+nHH+d/zSFi7dm3e/1u/lZ/99Kf9rqL24osv5qxf+IX89f/+31m6dOkR9/ezwOfvozdRXr9Hw2T7WZT6POGep36WJ7/0P0b89dZrxtgxWj+LyfSaMVST7fdiLH+/Y3lsE8Vke/0e68byz2Osv16U+lzImkl0nvBYva893HXo4Vyv7uzszE9+8pM+NcViMVu2bMmsWbMOyUDMnj07tbXjY/3yUv48drY9kGf+761+L46xob5f+clDD+WXx+i/U6X+WYzWa8ZofV4ey6/fo2U4P4ue5w7VwceYbD+LrVu35plnnun9c89r4cE2b96clR//eFb8/u+nrq6uz76XvmYOJR/mM9r4M9l+L/LCC8krXjHao4CjNm4D7NMOCnq/+OKLh63fuXNnkvR7oXwwu3fvzq//+q/n+eefz+mnn57vf//7Of3003v3z5w5Mx/4wAdy8cUX53Wve12eeOKJXH311dm4ceMRHSdJUigkJ5xw5M87hvadfHI6kkypPj5VtScOu9+LtSfmuSSvnFmRuTMqht1v2/69ea4safrt3x5S/ZUf+MBha6prqvNI2yOHvJE5Gs9UVKQjSVVFRXLqqcPuN5b1/L9y4nEVqTlh+P+0FI878He37+STJ/zf3Wjp+Zn5O4a+JsPvxuJrrsmvvvvdaW5uzrZt2zJjxowsWLAgFRXDe20e6t+d14yj1/t3XFOWHDf8E767q8r8LPpR6n8HhtLvpFe+Mi/WVOehL2wb9vF6VNdU56RXvnJS/CxK/buxr6b7yI47zv+fHwmnnHNOOpJsevLJXHDWoRcjH/7JT9LxX3VH83fpZ4HP30dvorx+j4bJ9rMo9XnC3dXHpyPJw//5nwe+5wG0/ud/DqkuOXAut9+JQ46yX6FQKMk5Qvo3Wq/fk+k1Y6gm23upsfz9juWxTRST7fV7rBvLP4+x/nrhPOHRe6G6Oh1Junc+m8odR5Yd6M+upzfn+QztOnSGWFdbU53Wg65Xt/3zP2feEYQbW1paMvfMM4dcP5pK+TnjxarabI/fi2NttM7ZlvLnUeqfxWi9ZozGtYyD6ybr70ZnZ2fa2tr6bBvsXENDQ8OgNxXNvvDC/J+WvusVFIvFtLe3p76+/tCblBoakv/qN9l+FjNPPTUHx83/+Z//OVdedlm/tcs//vFDtrW0tOTVc49snfDh/J719//KYD/bw/2/wtBMtt+LHOZcKIx14zbAXl1dnenTp2f79u3ZunXroLXPPvtsb4B91qxZR3Scf/zHf8x//Md/JEk+/OEP9wmvH+y8885LU1NTbr/99rS0tOTHP/5xXvOa1xzRsThyz+3qTrqTmdfOTNUZh5mpsmNvKguHmanyid3ZetvWdHR0uDgFwIRWUVGRhQsXjvYwOEqtT3cNur+4rzvtz3Wl/qTy1EwZeNWbnz3bXeqhcZTq6urySNsj6ejo6N3W2tqapqamIfdYvXp1Ghsbe/8scMVYsmDBgtTX1+emm27KunXrUl7+889lXV1dWblyZc4666wsWLDgkOdu3ry5z+9Gf1pbW/t8HYzfDYCxYf+Lz6a8LEN+vzOkurIkQ3yLO5R+pZzoAgCAsaG9vT1Jsn39qpL2/ZNFVfm1Vw4cvxjqOdvWp7vS9JVin+vVDQ0NaXlJuLHn3OFLzwn21ANwbLS1tWXevHn97uvvXENLS0vmDhKarq2t7Xf//PnzDzuWYrGY5EDWqRR6+vT0Hev6e308XED8WHrptQzX+QAOb9wG2JPk3HPPTXNzc37yk59k3759mTKl/2/n4LuZXvrh7XAOvvg92BuKJJk3b15uv/323mMKsI+cqjOqUlNfM3jR4CuxwYTW713Ag4R83Nk5svbv31/ymbCBialQKKS2pjpNXxkfJ444MnV1dX1ORB3NiTev36V1uDD0UEPTTjIeuHFq1apVWbZsWZYsWZIVK1Zkzpw52bRpU1auXJn169dnzZo1h7wH2rx5c85pOCe7iruGdBxhRIDxo2v3i+nqTla/rSaNpw484cRQgz7feGxfbrx3t4kuAAAYVH19fZJk+uLlqZx+ZJPf9af40415vnl1Fp11+BXI5x/l4QYKNyYH8g+HyzHA0XKNGQ41lkLTPTdlbb1t8Ilfj6bvUAL0o2044f9SO9JrGf156fUN1zKAyWBcB9jf9KY3pbm5OTt37kxLS0ve+MY39lt3//339z4+0hepg0Px+/btG7R27969/T4PYLSV+i5gSmft2rVZvnx574fL5MDJ01WrVmXp0qWjNzA4DCctR0ddXV1aXzJLd38Gm32nvzrGprF04m2y2fZiV1LCGWGdZDxg6dKlWbNmTZYvX56LLrqod/tZZ52VNWvW9Pvep6OjI7uKu4QRASawxlPLSxL0ae3Yn8REFwAADK4nWFg5fVaqTp897H57t2850HeQmy1hvHKNefQc61UpXec7emPp2k3PTVmHO38+VD3nz3v6MnSuZQAcnXGdsl6yZElWrlyZJLnzzjv7DbB3dXXl85//fJLkpJNOyqJFi47oGGeddVbv4+bm5ixevHjA2oOD8gc/D2C0jaW7gPm5tWvXZtmyZVm8eHHuuuuu3llIb7rppixbtmzAIBeMBU5ajp6XztI9GLPvwNF5bld30n34k75DOdHoJGNfS5cuzRVXXHHEq88IIwIAAADAyHKNeXQcmMm5MbuKnUOqH9qqlLV5pK219xy163wTQ8/v4JDOnx9FX46caxkAR2ZcB9jf8IY3ZMGCBWlubs4dd9yRq6++OhdeeGGfmlWrVvXeHXjdddelsrKyz/777ruvN9R+9dVX53Of+1yf/b/4i7+Y2tradHZ25tZbb01TU1Ne9apXHTKWb37zm/nKV76SJHn5y1+e1772tSX6LgGGbyzdBcwB+/fvz/Lly7N48eKsW7cu5eUHQm8XXHBB1q1blyVLluT666/PFVdccdhAF4wGJy2BycCJxmOjoqIiCxcuHO1hAAAAAACDcI15dByYybkz0xcvT+X0gZck6963J/uefzJTTjwtZVOmDli3d/uWbF+/qs8kK8O5zlcsFpMcmLylFHr69PQFACaPcR1gT5Jbbrkl8+fPT7FYzCWXXJIbbrghixYtSrFYzN13353bbrstSXL22Wdn+fLlR9z/pJNOyu///u/nD/7gD/LCCy/koosuyoc//OG89a1vzcknn5wnn3wyX/3qV/PZz342XV1dSZKPf/zjvUFEAOhPc3Nz2tvbc9dddx3ymlFeXp4VK1bkoosuSnNzs4AXY5KTlgAAAAAAQCns3b5l0P1DCerue/7JYzE0GDWV02el6vTZgxfNPPeoeg/nOl97e3uSZOttW4/q2IP1dZ0RACaXcR9gP//88/OlL30pTU1N2bFjR2644YZDas4+++xs2LAh06ZNO6pj/I//8T/yzDPP5JZbbsmLL76YlStXZuXKlYfUVVZW5qabbhrS8jwATG7btm1LksyZM6ff/T3be+oAAAAOdrhZrrr2dGVvx95UFipTPnXgiRZKNVsWAAAAHKlCoZDqmtpsX79qtIcCDFF9fX2SZOa1M1N1RtWw++1+Yne23ra1ty8AMHmM+wB7klx22WV56KGHcsstt2TDhg3ZunVrpk6dmtmzZ+fKK6/Mhz70odTW1h51/7KysnzqU59KU1NTbr/99jzwwAN5/PHH09nZmeOPPz6zZ8/OxRdfnPe///05+2zrxw9F69Ndg+4v7utO+3NdqT+pPDVTygas+9mz3aUeGsCImDFjRpJk06ZNueCCCw7Zv2nTpj51AIwPnZ2daWtr67OttbW1z9ceDQ0Nw/qcAsDkdODifnVJZ7mqrqlOoVAoWT8mpp6lvA83M+JQ9cyOWNzn/B4wPvT3ea9YLKa9vT319fWpqanps89nPoDJoXv/3iRJa8f+kvTr6dPz/nuiq6uryyNtreno6Bi0rrW1NU1NTVm9enUaGxsHrQGOrZ73vVVnVKWmvuYw1UfeF8ajntftUk0W0tNnsrwfACavCRFgT5IzzzwzN998c26++eYjet7ChQvT3T20iyTz5s3LvHnzjmZ4/JfyquNTXpY0fcULLDC5LViwIPX19bnpppuybt26lJf/fEbErq6urFy5MmeddVYWLFgwiqME4Ei1tbUN+JnhpRdPWlpa+l2ikyPXcwKvVBcKf/bsgRtuu/YMfuMtwGg4cHH/kZJc3O9RKBRSV1dXymEyAfUsEV7qmRHbn+vK/FklbQlwTAz2ea8/L/3Mt3nz5iG9fh/8dTBev4fHajZAqex/8ZkkSdPaXSXt297envnz55e051hVV1c35Ne0xsZG51QBGHN6zpuVctKRnr6T5f0AMDlNmAA7x0apZ1bq2v1iurqTO+64I6997WsHrBvqRVZ3UQPjVUVFRVatWpVly5ZlyZIlWbFiRebMmZNNmzZl5cqVWb9+fdasWZOKiorRHiowCbhoWzoNDQ1paWnps22gGfkaGhpGengTVs+JwVJfKNzbsTexyBYwBrm4PzZMtpmVepbynr54eSqnDz9xXvzpxjzfvDr1Jw38/hJgLOnv895g1zIO/sy3efPmnNNwTnYVh/aZZSjXPaprqvNI2yNC7EfIajZAqVUcf0qSZPXS6jQWhn9Np7Vjf5rW7up9/w0AjH09r9szr52ZqjOqht1v9xO7s/W2rd4PABOeADuDOlYzK1VVVQ3p4qmLrMBEtnTp0qxZsybLly/PRRdd1Lv9rLPOypo1a7J06dJRHB0wGbhoW3q1tbX9vn81O8Kx1XMCr1QXCr/x2N7ceO+eVBYqh90LgIlrss2s1HMjXuX0Wak6ffaw+/VMmFEzpWzYvQBGwkCf95LDX8vo6OjIruKuw4YZjuQG8q23bU1HR4cA+xGymg0ThdXoxo6yigPnjxoLFZk7o3STEh08EQaMZ61PD/7vSnFfd9qf60r9SeWDfj782bPdpR4aQB+dnZ1pa2vrs22wVbIaGhpSW1ub5Oev21VnVKWmvnSv4d4PABOdADuDKvXMSnu3b8n29avcIQbwX5YuXZorrrgizc3N2bZtW2bMmJEFCxaYeR0YES7aMlH0nMAr1YXCnou/gwVGAMDMSgAcqSGFGawCdcxZzYaJwGp0cOzt3ncgMD1ZVt0qtUKhkNqa6jR9ZXJ8v8D419bWlnnz5vW7r79VslpaWnxWABgmAXYGVeqZlV7aF4CkoqIiCxcuHO1hAJOUi7YAAEfHzErD071/bxKzhgIAHA2r0cHASjXj98YnDvSZLKtulVpdXV1aSziBTk/dZNBzk0PPymXD1dNnstw8AUeroaEhLS0tfbYVi8W0t7envr7+kHN2DQ0NIzk8gAlJgB0AAAAAgBG1/8VnkpR+1tCdbTtLsorKZJsdkYlr8+bNQwoNHfx1MFbdAhgbrEY3fIcLhnbv25N9zz+ZKSeelrIpUwes2/f8k6UeGkfpWM34bdWto2cCnaPTs8rG9vWrSt53Mtw8AUertra233+H/N4AHDsC7AAAAAAAjKiK409JUrpZQ2//5925deO+PLX2qTy19qlh9+vhAj/j2ebNm3NOwznZVRzajSJDmdGyuqY6j7Q9IsQOwLhVKBRSXVNb8mAoo+9Yzfht1S1GWs9NDtMXL0/l9FnD7rd3+5ZsX79qUt08AQCMDwLsAMCk1dnZmba2tj7bBpt1rKGhIbW1tSMyNgCOXKmWB/7Zs92lHhoA8BJlFZVJSjdr6OvOqEiyz+yIY4RZv8eGjo6O7CruOuzvRdeeruzt2JvKQuWgM+/2/F50dHT4eQAwbtXV1eWRttaSh5wZG8z4zUTQc5ND5fRZqTp9dsn7AgCMFQLsjGs9S/j2LOk7XJYGBphc2traMm/evH739XfCuaWlxclMxhw3YgyPv7+J4VgtDwwAHHulugHtiRcOfDU74ugz6/fYM6Tfi7NHZiwA/Tncdb4judEGhmI8hJwPd5OfmwEB6OG9FADjlQA741p7e3uSZOttW0ve19LAABNfQ0NDWlpa+mwrFotpb29PfX39IUGFhoaGkRweDIkbMYbH39/EcKyWBwYAjp3yquNTXhY3oE1AZv0GYKgKhUKqa6pLep2vuqY6hUKhZP0mi937DqxGZ9Kw0bftxa6kbGg3+SVuBgSYzLyXAmC8E2BnSPZu3zLo/u59e7Lv+Scz5cTTUjZl6lH3OVI9S/haGhiAo1FbW9tvENVNTCPDbACl4UaM4fH3N3GMh5mzAICfqzj+5HR1Z8g3lrkBbfwx6zcAh1NXV5dHSnhDemKm6aP1xAsHAuwmDRt9z+3qTroPf/3bzYAw8Y3VnA5jh/dSAIx3AuwM6sDderXZvn5VyXpW19SW7G69nkCRpYEBYPwwG0BpuRFjePz9AQAcmVJfQB/qjWVuQGOy6uzsTFtbW59th7vptra2diSHCDAsbkgfG86YVpbEpGHD0fp016D7i/u60/5cV+pPKk/NlLIB63727IGbCdwMCJPXWM/pMLZ4LwXAeCbAzqAO3K3X6m49AKBkzAYAAADjjwvoMDra2toyb968Ide3tLRM6kDC5s2bh3S+4eCvA3GuAZhMqv4rUG3SsCNXKBRSW1Odpq8UR3sowAQhpwNMdm7mh8lDgJ3DcrceAFBq3l8AY1mxeOCC4+4ndg+7V0+Pnp4AMF65gA6jo6GhIS0tLX22DfZ71tDQMJLDG1M2b96ccxoas6vYOaT6pqamQfdXVVXny19ekxkzZgxYM9Qw/OH2AxytUs/6zZGrq6tLawknbOmpA/qabOdsXUcDJjM388PkIcDOqOvvrqnBTvq6awoAADiW2tvbkyRbb9ta0p7z588vWT8AGA3H+gK684RwqNra2gF/lwRV+uro6MiuYmemL16eyumzBqzr3rcn+55/MlNOPC1lU6b2W7Nr679mxz99NosXLx7SsQUNgZFm1u+xRdAUjj3nbAEmDzfzw+QhwM6oG+yuqf5O+rprCgAAxr/NmzcPaWaqg78OppQzuNbX1ydJZl47M1VnVA2r1+4ndmfrbVt7ewIAA3OeECiFyumzUnX67MGLZp476O6927ekqztZ/baaNJ5aPmDdUGc2/sZj+3LjvcOfLRSgh1m/gcnGOVtgPDjcKhFde7qyt2NvKguVKZ868GfNUqw2MZ65mR8mDwF2Rl1/d00Vi8W0t7envr4+NTU1h9QDAADj1+bNm3NOQ2N2FTuHVD+UC6jVNbV5pK21JCH2ns8gVWdUpaa+5jDVR9YTACaSUs+Y7jwhMNY0nlqeuTMqBq2ZP/Bk771aO/aXaETARNLfe6nDvfc5+L2UWb+ZqKzMRH+cswXGskKhkOqa6pKuElFdU51CoVCyfgBjkQA7o26gu6Ys1QQAABNTR0dHdhU7M33x8lROHzjt0b1vT/Y9/2SmnHhayqZMHbBu7/Yt2b5+VTo6Oko2CzsAcHilnjG9FOcJzXQFAIwXg72X6o/VZ5gsrMwEwHhTV1eXR0q4Ok5S2pWHAcYqAXYAAABGReX0Wak6ffbgRTPPHZnBAABHbCzNmG6mq9Ia7oywAMDh9fdearBQk9VnmCzG0ucMABgqq+MAHDkBdgAAAAAAjthYWlnRTFelZUZYKK3d+7oPfC3R6g49fYrFYkn6wVjS301Ura2tfb4ebDzfRDXQe6lk9EJNVrNhLBhLnzMAAIBjR4AdAAAAAOAoCfmMHWa6Kh0zwkJpPfHCgQB7KVeJSJL29nZhPiacwW6iampqOmSbm6hKw2o2TFST6aYYGGnOh4xN/t0DYDwRYAcAAAAAOEJCPkxkY3FGWBjPzphWliSZee3MVJ1RNex+u5/Yna23bU19ff2we8FY099NVMViMe3t7amvr09NTc0h9Qyf1WyYqEpxU4yQLvTlfMjY5mZAAMYTAXaOmLv1AAAAAJjshHwAGKqqKQcC7FVnVKWmvuYw1UP30iAvTAQD3URltYFjz2o2Y0OxWExSurBzT5+evpPNcG6KEdKF/jkfMra5GRCA8USAnSPmbj0AAAAAEPIBAABKq729PUlKGpru6TsZbwQZzk0xQrowMOdDxi43AwIwngiwc8TcrQcAAAAAAAAApVVfX58kmXntzFSdUTXsfruf2J2tt23t7cuREdItrc7OzrS1tfXZ1tra2ufrwRoaGlJbWzsiYwMAYOQJsHPE3K0HAAAAAAAAAKXVM1lc1RlVqamvOUz1kfeF0dTW1pZ58+b1u6+pqemQbS0tLW4KAACYwATYAQAAAAAAAACAY6ahoSEtLS19thWLxbS3t6e+vv6QGy0aGhpGcngADEN/q2wc7t94q2wAAuxMCLuf2D3o/q49XdnbsTeVhcqUTy0/6j4AAAAAAAAAAByZ2trafmdUnz9//iiMZnzpLxja2tra5+vBBEOBkTbYKhv9scoGkAiwM84VCoVU11Rn621bS9azuqY6hUKhZP0AAAAmM7NuAAAAAAAcvcGCoU1NTYdsEwwFRlp/q2y0tramqakpq1evTmNj4yH1AALsjGt1dXV5pO2RdHR0DFo32AviSxUKhdTV1ZVymAAAAJOWWTcAAAAAAI5ef8HQw00SAoyuybZywkCrbCRJY2Oj6z5AvwTYGffq6uqGHDj3gggAAAzV7id2D7q/a09X9nbsTWWhMuVTy4+qx2Rg1g0AADigFJ8xhtIHmJwmW0gKYDIZKBg6f/78URgNMBRWThgdxWIxSek+N/f06ekLlJYAOwAAwH/Zv39/mpubs23btsyYMSMLFixIRUXFaA+LEVYoFFJdU52tt20tSb/qmuoUCoWS9BoJ/V3wPtxsPoNd8DbrBgAA4033/r1JktaO/SXp19HZnSQl+4yRjL/PGcCxJyQFADB2WDlhdLS3tycp7efvnr5uGoLSE2AHAABIsnbt2ixfvrz3xEaS1NfXZ9WqVVm6dOnoDYwRV1dXl0faHklHR8egdYPNIn6wQqEw5FWjxoLBLnj3xwVvGH1mWgSA0tr/4jNJkqa1u0ra90/+5E/ya7/2awPuH+pnjGT8fc4Aks2bNw/pXMPBXwfz0n8HhKQAAMYOKyeMjvr6+iTJzGtnpuqMqmH32/3E7my9bWtvX6C0BNgBAIBekzUAt3bt2ixbtiyLFy/OXXfdlTlz5mTTpk256aabsmzZsqxZs0aIfZKpq6sbchhkos0i3t8F78GCNC54w+gz0yIAlFbF8ackSVYvrU5jYfircrV27E/T2l1ZtGjRkF6DJ9pnDOBAeP2chsbsKnYOqb6/9/EvVV1Tm0faWnvPXwhJAQAwHpXyRs+eicqqzqhKTX3NoLVH4qU3gwKlIcAOAAD0mowBuP3792f58uVZvHhx1q1bl/Ly8iTJBRdckHXr1mXJkiW5/vrrc8UVV6SiYvjBBRjrBrrgnQjSwFhlpkUAKK2yisokSWOhInNnlO5zoAveMHl1dHRkV7Ez0xcvT+X0WQPWde/bk33PP5kpJ56WsilTB6zbu31Ltq9flY6ODqsxAAAwbm3evDmNDeekszi0FdCGcqMnMH4IsAMAAL0mYwCuubk57e3tueuuu3rD6z3Ky8uzYsWKXHTRRWlubs7ChQtHZ5AAMAgzLQIAwPhQOX1Wqk6fPXjRzHNHZjAAADDKOjo60lncldVvq0njqeUD1hX3daf9ua7Un1SemillA9Z947F9ufHe3cdiqMAxIMAOAAD0mowBuG3btiVJ5syZ0+/+nu09dQAAAIw9xWIxyYFZiYdr3/NPHui5r3vYvQAAAIDBNZ5aftgV0OYPvJBRr9aO/SUaETASBNiZcDo7O9PW1tZnW2tra5+vB2toaEhtbe2IjA0AgLFnxowZSZJNmzblggsuOGT/pk2b+tQxfKUMlhzcp6cvAAAw+bS3tydJtq9fVbqez3UN6QI5AAAAAHBkBNiZcNra2jJv3rx+9zU1NR2yraWlpd9ZRgEAmBwWLFiQ+vr63HTTTVm3bl3Ky3++PF1XV1dWrlyZs846KwsWLBjFUU4sxyJY0tN3Iq8WAAAADKy+vj5JMn3x8lROH17qvPjTjXm+eXXqTxp4+XIAAAAA4OgJsDPhNDQ0pKWlpc+2YrGY9vb21NfXp6am5pB6AAAmr4qKiqxatSrLli3LkiVLsmLFisyZMyebNm3KypUrs379+qxZsyYVFYMvW8fQlTJYkhyYgX37+lW9fQEAgMmn59x/5fRZqTp99rB69azyVDOlbNjjYuyzsi8AAADAyBNgZ8Kpra3td0Z1MzECADCQpUuXZs2aNVm+fHkuuuii3u1nnXVW1qxZk6VLl47i6CaeUgZL+usLAAAAQ2VlXwAAAICRJ8AOAACQAyH2K664Is3Nzdm2bVtmzJiRBQsWmHkdAAAAJjAr+zISisVikp+v8DBcPX16+jI8pV6JwcoOE5efLQAAlI4AOwAAwH+pqKjIwoULR3sYAAAAwAixsi8job29PUmyff2qkvf1/+rwlXolBis7TFx+ttA/N3cAAEdDgB0AAAAAACiJnplgdz+xuyT9evqYYZbR0Pp016D7i/u60/5cV+pPKk/NlLKj7gNMfPX19UmS6YuXp3L6rGH327t9S7avX9Xbl+Ep9UoMpeh3uPdSXXu6srdjbyoLlSmfWj5gXanek3GAVTugf27uAACOhgA7AAAAAEAJmHEMfj7D7Nbbtpa8rxlmGSnlVcenvCxp+krpbpyoralOoVAoWT9gfOkJtVZOn5Wq02eXvC/DU+qVGIbTr1AopLqmuqTvpaq9BpWMVTugf27uAACOhgA7AAAAAEAJmHEMfj7D7MxrZ6bqjKph99v9xO5svW2rGWYZURXHn5yu7mT16tVpbGwcsK61tTVNTU2HrUsOBBLr6upKPVQAJpi6uro80vZIOjo6Bq3zGgSMJW7uAACOhgA7AAAAAEAJmHEMfj4TbNUZVampL92ssGaYZTQ0NjYO6UajodYBwFDU1dUNOXDuNQgAABivBNgBAAAAAErAjGMAAAAAAACHVz7aAwAAAAAAAAAAAAAAYHIwAzsAAKOus7MzbW1tfba1trb2+XqwhoaG1NbWjsjYADgymzdvTkdHx6A1g/0bf7B/+Zd/SZLsfmJ3ScbW06dYLJakHwDAWNbznsd7KQAAJorB3tt27enK3o69qSxUpnzqwPN5lur9MQAAwyPADgDAqGtra8u8efP63dfU1HTItpaWlsydO/dYDwvGlP3796e5uTnbtm3LjBkzsmDBglRUVIz2sKCPzZs3p7HhnHQWdw2pvr9/4/uz9batwxnWIdrb2zN//vyS9gQAGGva29uTTL73Unu3bxl0f/e+Pdn3/JOZcuJpKZsy9ah6AAAwsgqFQqprqkv23ra6pjqFQqEkvQAAODoC7AAAjLqGhoa0tLT02VYsFtPe3p76+vrU1NQcUg+Tydq1a7N8+fLeAEqS1NfXZ9WqVVm6dOnoDWwMs7LD6Ojo6EhncVdWv60mjacOPMtRcV932p/rSv1J5amZUjZg3bq2vfmT7+zJzGtnpuqMqmGPb/cTu7P1tq2pr68fdi8AgLGu5z3PZHkvdSDUVJvt61eVpF91Ta1QEwDAGFFXV5dH2h4ZdOXH1tbWNDU1ZfXq1WlsbBy0X6FQSF1dXamHCQDAERBgBwBg1NXW1vY7o/pYntENRsratWuzbNmyLF68OHfddVfmzJmTTZs25aabbsqyZcuyZs0aIfZ+WNlhdDWeWp65MwZfIWD+rMP3ae3YnySpOqMqNfU1h6keupfeGAUAMFZs3rx50FBOMviNmQfruQF2sryXOhBqah3S399Qgk1CTcBkZ3IAYKypq6sb0vuzxsZG53oBxolisZjk59eDhutnz3YlSbr2dJWkH3BsCbADAACMUfv378/y5cuzePHirFu3LuXlB2a0vuCCC7Ju3bosWbIk119/fa644opUVAweFp5srOwAAMB4s3nz5jQ2nJPO4q4h1fd3Y+ZkN9RQUyLYBHA4JgcYO9xMAABMVD033zetHdq5kKHa27E3ObukLYFjQIAdAABgjGpubk57e3vuuuuu3vB6j/Ly8qxYsSIXXXRRmpubs3DhwtEZ5BhlZQcAAMabjo6OdBZ3ZfXbatJ4avmAdcV93Wl/riv1J5WnZkrZgHXfeGxfbrx397EYKiUgjAiMdSYHGDvcTAAATFT19fVJktVLq9NYGP5kXd94bG9uvHdPKguVw+4FHHsTJsD++OOP58///M+zYcOGbNmyJVVVVXnFK16Rd7zjHfngBz941Cf12tvbc9ZZZx3Rc84888zeu4MAAACO1rZt25Ikc+bM6Xd/z/aeOgAAfk44lPGq8dTyzJ0x+EXb+bMO36dUy29zbAgjAmOdyQHGDjcTAAATVc/7mMZCxWHPhQxFz7mQ8qkDTwwAjB0TIsD+9a9/PU1NTdmxY0fvts7OzmzcuDEbN27M7bffng0bNmT27NkjMp5zzjlnRI4DAABMbDNmzEiSbNq0KRdccMEh+zdt2tSnDgCAnxMOBcYyYUQAhsrNBAAw/u3fvz/Nzc3Ztm1bZsyYkQULFqSiYviBbYDxbNwH2H/0ox/lne98Z4rFYo4//visWLEiixYtSrFYzN13353PfvazefTRR3PppZdm48aNmTZt2hH1f/nLX56HH374sHUrV67MF7/4xSTJ1VdffVTfCwAAwMEWLFiQ+vr63HTTTVm3bl3Ky38+W0BXV1dWrlyZs846KwsWLBjFUQIAjE3CoUO3efPmdHR0DFoz2Oz1/dUBgxNGBAAAmBzWrl2b5cuXp729vXdbfX19Vq1alaVLl47ewIahVOeSnEeCyW3cB9ivu+66FIvFTJkyJd/61rdy4YUX9u57y1vekle+8pX53d/93Tz66KNZtWpV/uiP/uiI+ldWVmbOnDmD1uzfvz/33XdfkmTatGl529vedqTfBgAAwCEqKiqyatWqLFu2LEuWLMmKFSsyZ86cbNq0KStXrsz69euzZs0aMzQAAPRDOHRoNm/enMaGc9JZ3DWk+v5mrwcAAADgUGvXrs2yZcuyePHi3HXXXb3X+W666aYsW7Ysa9asGXch9s2bN+echsbsKnYOqX40ziXtfmL3oPu79nRlb8feVBYqUz61fMC6w/UBhmdcB9gffPDBNDc3J0ne+9739gmv91i+fHnuvPPOtLa25pZbbslHP/rRVFZWlnQc99xzT5544okkybJlyw6ZuQcAAOBoLV26NGvWrMny5ctz0UUX9W4/66yzxuVJLQAAxpaOjo50Fndl9dtq0njqwBfsivu60/5cV+pPKk/NlLIB677x2L7ceK+LewAAAMDktn///ixfvjyLFy/us9LyBRdckHXr1mXJkiW5/vrrc8UVV4yryao6Ojqyq9iZ6YuXp3L6rAHruvftyb7nn8yUE09L2ZSp/dYUf7oxzzevLtnYTqouS8qSrbdtLVnP6prqFAqFkvUDfm5cB9jXrVvX+/iaa67pt6a8vDzvfve7s2LFijz33HO59957c8kll5R0HJ///Od7H1999dUl7Q0AALB06dJcccUVaW5uzrZt2zJjxowsWLBgXJ3MAgBgbGs8tTxzZwz+/nL+wNcke7V27C/RiABg4tm7fcug+4cS8hlKHwAARl9zc3Pa29tz11139YbXe5SXl2fFihW56KKL0tzcnIULF47OIIehcvqsVJ0+e/CimecOurvU72tnHF+edCerV69OY2PjgHWtra1pamo6bF2SFAqF1NXVlXScwAHjOsD+wAMPJEmOO+64zJs3b8C6iy++uPfxd7/73ZIG2F944YXeIH19fX3e/OY3l6w3jCfFYjFJ6ZZO6enT0xcAYLKrqKgYlyevAAAAACa7QqGQ6prabF+/qmQ9q2tqzQQJADCGbdu2LUkyZ86cfvf3bO+po3QaGxszd+7cktUBx8a4DrC3trYmSWbPnp0pUwb+VhoaGg55TqmsWbMmnZ2dSZLf+I3fSFnZwEunwkTW3t6epLRLsPT0nT9/fkl7AgAAAAAAwEipq6vLI22t6ejoGLTOTJAAABPHjBkzkiSbNm3KBRdccMj+TZs29akDmGzGbYB9165dvR/wZ86cOWjtySefnOOOOy47d+7Mli2lXXbi85//fO/jd7/73UN6zu7du7N7989nqd6xY0dJxwSjob6+Pkky89qZqTqjatj9dj+xO1tv29rbFwAAAAAovZ4VEFs79pek38+e7TrQd/PgKyt27enK3o69qSxUpnxq+YB1pVrxEQBGW11d3ZAD52aCBAAY/xYsWJD6+vrcdNNNWbduXcrLf37+o6urKytXrsxZZ52VBQsWjOIoAUbPuA2wv/DCC72Pjz/++MPW9wTYX3zxxZKNYfPmzbn//vuTJBdddFFmz549pOetXLkyH/vYx0o2DhgLampqkiRVZ1Slpr6m5H0BACa7/fv3p7m5Odu2bcuMGTOyYMGCVFRUjPawAAAY53pWVmxau6ukfZ/4mydK1qu6pjqFQqFk/QAAAACOtYqKiqxatSrLli3LkiVLsmLFisyZMyebNm3KypUrs379+qxZs8b1PmDSGrcB9l27fn4yferUqYetr6o6MCN0z2wypbB69ep0d3cnGfrs60myYsWKfOQjH+n9844dOzJr1qySjQsAAJhY1q5dm+XLl/eGi5IDK+CsWrUqS5cuHb2BAQAw7vWsgLh6aXUaC8O/YNrasT9Na3fljjvuyGtf+9qB61pb09TUlNWrV6exsXHQnoVCYcgz1gIAAACMFUuXLs2aNWuyfPnyXHTRRb3bzzrrrKxZs8Z1PmBSG7cB9urq6t7He/bsOWz97t0Hlhkt5WzOX/jCF5IcCMe/853vHPLzqqqqegP1AAAAg1m7dm2WLVuWxYsX56677uqdmeGmm27KsmXLnNwCAGBYes6ZNxYqMndG6Wb8eu1rX5u5c+cetq6xsXFIdQAAAADj0dKlS3PFFVdYaRngJcZtgH3atGm9j1988cXD1u/cuTNJcvzxx5fk+A8++GDa2tqSJJdffnlOOumkkvQFAADosX///ixfvjyLFy/OunXrUl5eniS54IILsm7duixZsiTXX399rrjiCie5AAAAAAAAYAyqqKjIwoULR3sYY1br012D7i/u6077c12pP6k8NVPKjroPMLaM2wB7dXV1pk+fnu3bt2fr1q2D1j777LO9AfZZs2aV5Pif//znex+/+93vLklPAACAgzU3N6e9vT133XVXb3i9R3l5eVasWJGLLroozc3NTnoxJhSLxSRJa8f+kvT72bMHTjR27XHCEQAAAAAAYCIprzo+5WVJ01eKJetZW1OdQqFQsn7AsTNuA+xJcu6556a5uTk/+clPsm/fvkyZ0v+30zNTenJgOdLh2rt3b+6+++4kycte9rL8yq/8yrB7AgAAvNS2bduSJHPmzOl3f8/2njoYbe3t7UmSprW7Stp3b8fe5OyStgQAYBLo7Ozsc40oSVpbW/t87dHQ0JDa2toRGxsAAABMdhXHn5yu7mT16tWD5jpbW1vT1NR02LokKRQKqaurK/VQgWPgmAXYt27dmv/8z/9MZ2dnXv/616empqbkx3jTm96U5ubm7Ny5My0tLXnjG9/Yb93999/f+3j+/PnDPu6GDRuyffv2JMm73vWuAYPzAAAAwzFjxowkyaZNm3LBBRccsn/Tpk196mC01dfXJ0lWL61OY6Fi2P2+8dje3HjvnlQWKofdCwCAyaetrS3z5s3rd19TU1OfP7e0tGTu3LkjMSwAAADgII2NjUP6TD7UOmB8KGny+oUXXsif/umf5nOf+1yeeOKJ3u0PP/xwzj333N4/33333Vm7dm1OPPHEfPaznz3q4y1ZsiQrV65Mktx55539Bti7urry+c9/Pkly0kknZdGiRUd9vB49/ZLk6quvHnY/AACA/ixYsCD19fW56aabsm7dupSXl/fu6+rqysqVK3PWWWdlwYIFozhK+Lmem9cbCxWZO2P4AfbWjv1JkvKp5YepBACAQzU0NKSlpaXPtmKxmPb29tTX1/eZfKmhoWGkhwcAAAAAk1bJAuyPPfZYfu3Xfi0//elP093d3bu9rKzskNoLLrggTU1N6e7uztVXX503velNR3XMN7zhDVmwYEGam5tzxx135Oqrr86FF17Yp2bVqlW9y0Bed911qazsO2vbfffd1xtqv/rqq/O5z31u0GM+88wz2bBhQ5LkVa96VV772tce1dgBAAAOp6KiIqtWrcqyZcuyZMmSrFixInPmzMmmTZuycuXKrF+/PmvWrElFxfCDwgAAwMS0+4ndg+7v2tOVvR17U1moHPTGwcP1GYtqa2v7nZmtFKv1AgAAwGRULBaTJHu3bxl2r54ePT2ByaUkAfZdu3bl0ksvzb//+7/nuOOOywc/+MG8+c1vzuLFi/utr6+vz6JFi/JP//RP+drXvnbUAfYkueWWWzJ//vwUi8VccsklueGGG7Jo0aIUi8Xcfffdue2225IkZ599dpYvX37Ux+lx9913Z8+ePUnMvg4AABx7S5cuzZo1a7J8+fJcdNFFvdvPOuusrFmzJkuXLh3F0U0enZ2daWtr67Ot52bpnq8Ha2hoSG1t7YiMDQAA+nNSdVlSlmy9bWvJelbXVKdQKJSsHwAAADC+tLe3J0m2r19V0p5uNofJpyQB9ltvvTU/+clPctxxx6W5uXlIs5L/6q/+ar797W/ne9/73rCOff755+dLX/pSmpqasmPHjtxwww2H1Jx99tnZsGFDpk2bNqxjJcnnP//5JAdmQrzqqquG3Q8AAOBwli5dmiuuuCLNzc3Ztm1bZsyYkQULFph5fQS1tbVl3rx5/e5ramo6ZFtLS0u/Mz0CAMBImXF8edKdrF69Oo2NjQPWtba2pqmp6bB1SVIoFFJXV1fqoQJMSm6WBwBgPKqvr0+STF+8PJXTZw2r197tW7J9/arensDkUpIA+9q1a1NWVpbrrrtuSOH1JHnNa16TJHnssceGffzLLrssDz30UG655ZZs2LAhW7duzdSpUzN79uxceeWV+dCHPlSSD/OPPfZYfvCDHyRJ3vrWt+b0008fdk8AAIChqKioyMKFC0d7GJNWQ0NDWlpa+mwrFotpb29PfX19ampqDqmndHY/sXvQ/V17urK3Y28qC5Upn1p+1H0AACaixsbGId1cOdQ6AErDzfIAAIxHPdfEKqfPStXps0vaE5hcShJg77kD/JJLLhnyc6ZPn54kee6550oxhJx55pm5+eabc/PNNx/R8xYuXJju7u4h1b7yla8cci0AAAATR21tbb8XiS1neGydVF2WlCVbb9tasp7VNdUpFAol6wcAwORgpmSg1NwsDwAAwGRWkgD7iy++mCQ5/vjjh/yc3bsPzHpWWVlZiiEAAAAAE8yM48uT7mT16tVpbGwcsK61tTVNTU2HrUuSQqGQurq6Ug8VAGDYisVikqS1Y39J+vX06enL8JgpGSg1N8sDAAAwmZUkwD59+vT853/+Z9rb24d8Mu5f//VfkySnn356KYYAAAAATFCNjY1DOt8w1DoAgLGovb09SdK0dlfJ+wpDDp+ZkgEAAACgdEoSYJ87d26+8Y1v5Dvf+U6WLl06pOd8/vOfT1lZWS688MJSDAEAAACAEdTZ2Zm2trY+2w4X4qqtrR3JIQLAuFJfX58kWb20Oo2FimH3a+3Yn6a1u3r7MjxmSgYAAACA0ilJgH3ZsmXZsGFDbrvttnzkIx857FLcn/70p/Od73wnZWVl+fVf//VSDAEAAACAEdTW1pZ58+YNub6lpcUM+QAwiJ6bvxoLFZk7Y/gB9pf2BQAAAAAYK0oSYP+N3/iNfOpTn8pDDz2UhQsX5jOf+Ux+5Vd+pXd/WVlZuru7s3Hjxnz605/O3XffnbKysixYsCC/+qu/WoohAAAAADCCGhoa0tLS0mdba2trmpqasnr16jQ2Nh5SDwAAAAAAAFCSAHt5eXm+9rWv5U1velPa29uzePHi1NbWpqysLEmycOHCvPDCC9m9e3eSpLu7O694xSvy93//96U4PAAAAAAjrLa2dsAZ1RsbG822DgAAAAAAE9Te7VsG3d+9b0/2Pf9kppx4WsqmTD2qHsDEVpIAe5LU1dXlX/7lX/LhD384f//3f5+dO3f27nv66ad7H5eVleUd73hHbr311px88smlOjwAAAAAAAAAAAAAx0ihUEh1TW22r19Vkn7VNbUpFAol6QWMLyULsCfJKaeckr/7u7/LTTfdlA0bNmTjxo156qmnsn///kyfPj3nn39+Lrvsspx99tmlPCwAAAAAAAAAAAAAx1BdXV0eaWtNR0fHoHWtra1pamrK6tWr09jYOGBdoVBIXV1dqYcJjAMlDbD3OPPMM/OBD3zgWLQGAAAAAAAAAAAAYBTU1dUNOXTe2NiYuXPnHuMRDayzszNtbW19trW2tvb5erCGhobU1taOyNhgsjsmAXYAAAA4nL3btwy6v3vfnux7/slMOfG0lE2ZetR9AAAAAACYOIQRARiqtra2zJs3r999TU1Nh2xraWkZ1cA9TCYC7AAAAIyoQqGQ6prabF+/qmQ9q2tqUygUStYPAAAAAICxSRgRgKFqaGhIS0tLn23FYjHt7e2pr69PTU3NIfXAyChJgP073/nOET+nrKws1dXVOfHEE1NfX5+pUweeTQ8AAICJo66uLo+0taajo2PQutbW1jQ1NWX16tVpbGwctLZQKAx5qUKOvdanuwbdX9zXnfbnulJ/UnlqppQddR8AAAAAYPIRRgRgqGpra/u9iWn+/PmjMBrgYCUJsC9cuDBlZQNfcD7sIKZMyWtf+9q85z3vyX/7b/8tlZWVpRgWMAp2P7F70P1de7qyt2NvKguVKZ9aftR9AAAY3+rq6oYcOG9sbDQ7zjhRKBRSW1Odpq8US9aztqba7PoAAAAAQC9hRACA8a8kAfYk6e7uPurn7t27Nz/84Q+zcePG3HrrrVm/fr2Z82CcKRQKqa6pztbbtpasZ7WgCgAAjCt1dXVpbXvE7PoAAAAAAAAADKgkAfZ77703e/fuzY033pgf/OAHOeOMM3LllVfmda97XU499dQkydNPP52NGzfmH/7hH/LEE0/kjW98Yz72sY+lWCxm06ZN+dKXvpRNmzZl06ZN+bVf+7X8y7/8S6ZMKVm+HjjG6urq8oigCgAATHpm1wcAAAAAAABgMCVJiF988cW5/PLL8+CDD+bDH/5wPvGJT6S6uvqQuquuuiof//jHc/311+czn/lMPv3pT+cb3/hGrrjiinz0ox/NjTfemP/1v/5XWltbc+edd+Z973tfKYYHjBBBFQAAgIlr8+bNQ7pp+eCvg3HTMsDk0dnZmba2tj7bBnvNaGhoSG1t7YiMDQAAAACAkVeSAPudd96Z9evX59JLL80tt9wyaG1VVVX+4i/+Ij/72c/yzW9+M7fddluuvfbaJMmf/Mmf5IEHHsj999+ftWvXCrADAAAAjAGbN2/OOQ3nZFdx15Dqm5qaDltTXVOdR9oeEWIHGCNan+4adH9xX3fan+tK/UnlqZlSdkR92traMm/evH7r+3vNaGlpMfkFAAAAAMAEVpIA+9/8zd+krKysN4g+FO9///vzjW98I3/7t3/b53nvec97cv/99+fHP/5xKYYGAAAAwDB1dHRkV3FXZl47M1VnVA1Y17WnK3s79qayUJnyqeUD1u1+Yne23rY1HR0dAuwAo6xQKKS2pjpNXymWrGdtTXUKhULvnxsaGtLS0tKnplgspr29PfX19ampqemzr6GhoWRjAQAAAABg7ClJgL1nic+ZM2cO+Tk9tS9dNrSxsTFJ8swzz5RiaAAAAMAgNm/enI6OjkFrej7393wdTKFQ6BNI7uzsPOSz/2D9GhoaUltbe9jjMDqqzqhKTX3N4EVnj8xYACiNurq6tLY9MqT3A01NTVm9enXvefyBvPT9QG1tbb8zqs+fP//oBg0AAAAAwLhWkgD7rl0Hlo/eunVrzj///CE9Z+vWrUmS3bt399leWVmZJC5WAwAAwDG2efPmnNPQmF3FziHVNzU1HbamuqY2j7S19obW2traMm/evCH3a2lp6TfgBgAcO3V1dUNeEaOxsdFrNQAAAAAAw1KSAPsrXvGKbNq0Kbfffnsuu+yyIT3ns5/9bO9zD/bEE08kSU499dRSDA0AAAAYQEdHR3YVOzN98fJUTp81YF33vj3Z9/yTmXLiaSmbMnXAur3bt2T7+lXp6OjoDcE1NDSkpaWlT12xWEx7e3vq6+tTU9N3Nu+GhoZhfEcAAAAAAAAAjHUlCbAvW7YsDz/8cNavX5/rr78+K1eu7J1J/aX27t2b3//938/69etTVlaWK6+8ss/+7373u0mS2bNnl2JoAAAAwGFUTp+VqtMP8zl85rlH1bu2trbfWVrnz59/VP0AAAAAAAAAGN9KEmC//vrr84UvfCE/+clP8qlPfSr/8A//kCuvvDLz5s3rnUn96aefTktLS/7hH/4hW7duTXJg9vXly5f39tm/f3+++MUvpqysLJdcckkphgYAAAAAAAAAAAAAwBhRkgB7TU1N/umf/imXXnppHn744WzZsiWf+tSn+q3t7u5OksyZMycbNmzos1T41q1bc8011yQ5MKs7AAAAAAAAAAAAAAATR0kC7Ekyc+bMtLS05DOf+Uz++q//Om1tbf3WnX322Xn/+9+fD33oQ6msrOyz78wzz8wf/uEflmpIAAAAAAAAAAAAAACMISULsCfJlClTct111+W6667LE088kU2bNuXZZ59Nkpx88sk577zz8vKXv7yUhwQAAAAAAJgwWp/uGnR/cV932p/rSv1J5amZUnZEfTo7Ow+ZgKi1tbXP14M1NDSktrZ2KMMGAAAAABiykgbYD3bGGWfkjDPOOFbtAQAAAAAAJoxCoZDamuo0faVYsp61NdUpFAq9f25ra8u8efP6rW1qajpkW0tLS+bOnVuy8QAAAAAAJMcwwA4AAAAAAMDQ1NXVpbXtkXR0dAxa19ramqampqxevTqNjY2D1hYKhdTV1fX+uaGhIS0tLX1qisVi2tvbU19fn5qamj77GhoajvC7AAAAAAA4PAF2AAAAAACAMaCurq5P4HwwjY2NRzw7em1tbb/PmT9//hH1AQAAAOjR2dmZtra2PttaW1v7fD1YQ0NDamtrR2RswNhV8gD7Cy+8kHvuuSc//vGP09HRkWKxmO7u7gHry8rKcscdd5R6GAAAAMAE5CQoAAAAAADA2NHW1pZ58+b1u6+pqemQbS0tLUd8Uz4w8ZQswN7V1ZU/+ZM/yapVq7Jz584hPae7u1uAHQAAABgyJ0EBAAAAAADGjoaGhrS0tPTZViwW097envr6+tTU1BxSD1CyAPt73vOe/N3f/V26u7tTUVGR6dOn56mnnkpZWVlmzpyZZ599Ni+++GKSA7OuFwoFM6ABAAAAR8RJUAAAAAAAgLGjtra238mE5s+fPwqjAcaLkgTY/8//+T9ZvXp1ysrK8p73vCerVq3Kf/zHf+TVr351kuTxxx9PkjzyyCO59dZb85nPfCYnn3xy1q1b50IyAAAAMGROggIAAAAAAACMb+WlaHLnnXcmSc4777z8zd/8TU4++eSUlZUdUnfOOefk05/+dNauXZt///d/z6/92q/l+eefL8UQAAAAAAAAAAAAAAAY40oSYP/+97+fsrKyfPCDHxxS/WWXXZarr746jz/+eP78z/+8FEMAAAAAAAAAAAAAAGCMK0mA/amnnkqSnH322b3bKioqeh/v3r37kOcsW7Ys3d3d+cpXvlKKIQAAAAAAAAAAAAAAMMaVJMDe45RTTul9PG3atN7HPQH3g73sZS9LkrS3t5dyCAAAAAAAAAAAAAAAjFFTStHktNNOy+bNm/PMM8/02TZ16tTs3bs3Dz30UGbNmtXnOY8//niSZNeuXaUYAgAAAAAAAAAAAADjVGdnZ9ra2vpsa21t7fP1YA0NDamtrR2RsQGlVZIA+6te9aps3rw5//Zv/5ZFixYdaDxlSs4///w8+OCDufPOO3PppZf2ec6tt96aJDnzzDNLMQQAAAAAAAAAAAAAxqm2trbMmzev331NTU2HbGtpacncuXOP9bCAY6AkAfaFCxdm/fr1ueeee/LBD36wd3tTU1N+8IMf5Ctf+UquvvrqvOMd78jOnTvzt3/7t7nnnntSVlaWK664ohRDAAAAAAAAAAAAAGCcamhoSEtLS59txWIx7e3tqa+vT01NzSH1wPhUkgD72972tlx//fX5x3/8xzz55JM57bTTkiTvf//7c+edd+af//mfs3r16qxevbrP8+rq6vJ7v/d7pRgCAAAAAAAAAAAAAONUbW1tvzOqz58/fxRGAxxL5aVoctZZZ+WnP/1pNm3alBNOOKF3+5QpU/J//+//zVVXXZUpU6aku7s73d3dSZJLL700zc3NOfnkk0sxBAAAAAAAAAAAAAAAxriSzMCeJPX19f1uP/nkk/OFL3whf/VXf5XHHnss+/bty+zZs3PKKaeU6tAAAAAAAAAAAAAAAIwDJQuwH860adP6XdoBAAAAAAAAAAAAAIDJobwkTcrLM2XKlPzpn/5pKdoBAAAAAAAAAAAAADABlSTAPnXq1HR3d2fBggWlaAcAAAAAAAAAAAAAwAQ0pRRNzjjjjDz++OOZMqUk7YAJorOzM21tbX22tba29vl6sIaGhtTW1o7I2AAAAAAAAAAAAAAYeSVJnL/5zW/OF77whbS0tOT1r399KVoCE0BbW1vmzZvX776mpqZDtrW0tGTu3LnHelgAAAAAAAAAAAAAjJKSBNg//OEP54tf/GI++clP5l3veldOOOGEUrQFxrmGhoa0tLT02VYsFtPe3p76+vrU1NQcUg8AAAAAwAFWuQQAAAAAJqKSBNjnzZuXv/iLv8iHPvShXHzxxfnMZz6Tiy66qBStgXGstra23xnV58+fPwqjAQAAAAAYX6xyCQAAAABMRCUJsP/mb/5mkuScc87Jj3/84yxYsCCzZs3Kq1/96px88smpqKgY8LllZWW54447SjEMAAAAAACACcMqlwAAAADARFSSAPvnPve5lJWVJTkQSO/u7s7mzZuzZcuWQZ/X3d0twA4AAAAAANAPq1wCAAAAABNRSQLsdXV1vQF2AAAAAAAAAAAAAADoT0kC7O3t7aVoAwAAAAAAAAAAAADABFY+2gMolccffzzLly9PQ0NDjjvuuJxyyil5/etfnz/7sz9LZ2dnSY91zz335D3veU9mz56d4447LieeeGLOPvvsLFu2LLfeemtefPHFkh4PAAAAAAAAAAAAAGAiKMkM7KPt61//epqamrJjx47ebZ2dndm4cWM2btyY22+/PRs2bMjs2bOHdZxnn30211xzTb761a8esm/Hjh157LHH8uUvfzkXXnhhXvva1w7rWAAAAAAAAAAAAAAAE80xC7B3dXXlmWeeSWdnZ17+8penoqLimBznRz/6Ud75znemWCzm+OOPz4oVK7Jo0aIUi8Xcfffd+exnP5tHH300l156aTZu3Jhp06Yd1XGef/75vPWtb01LS0uS5G1ve1uWLVuWV7ziFamoqMiWLVty//3358tf/nIpvz0AAAAAAAAAAAAAgAmjpAH2/fv353Of+1w+97nP5Yc//GH27t2bsrKyPPTQQzn33HN769avX5/vfOc7OfHEE/PRj350WMe87rrrUiwWM2XKlHzrW9/KhRde2LvvLW95S175ylfmd3/3d/Poo49m1apV+aM/+qOjOs6HP/zhtLS0pKqqKn//93+fyy+/vM/+173udXnb296WT33qU9m/f/9wviUAAAAAABg1nZ2daWtr67OttbW1z9eDNTQ0pLa2dkTGBgAAAADA+FeyAPtTTz2VJUuW5Ac/+EG6u7sHra2vr8/ll1+esrKyXHrppXnta197VMd88MEH09zcnCR573vf2ye83mP58uW5884709ramltuuSUf/ehHU1lZeUTHeeCBB/KFL3whSfI//+f/PCS8frCysrJMmXLMJrYHAAAAAIBjqq2tLfPmzet3X1NT0yHbWlpaMnfu3GM9LAAAAAAAJoiSJK3379+fyy67LD/84Q9TXl6eK6+8Mm9+85vzoQ99qN/6OXPm5I1vfGMefPDBfOUrXznqAPu6det6H19zzTX91pSXl+fd7353VqxYkeeeey733ntvLrnkkiM6zl/+5V8mSU488cQBvycAAAAAAJgIGhoa0tLS0mdbsVhMe3t76uvrU1NTc0g9AAAAAAAMVUkC7H/7t3+bH/7wh6msrMzXvva1/PIv/3KSDBr2vvzyy/ODH/wgDzzwwFEft+e5xx133ICzwSTJxRdf3Pv4u9/97hEF2Pfs2ZOvfvWrSZK3vvWtqa6uTnIgtP/EE09k//79Of3003u3AwAAAADAeFZbW9vvjOrz588fhdEAAAAAADDRlJeiyV133ZWysrK8//3v7w2vH87555+fJHnkkUeO+ritra1JktmzZ2fKlIGz+AfP/tLznKH68Y9/nF27diVJXvWqV2XHjh357d/+7RQKhdTV1eWss87KiSeemLe+9a257777jvybAAAAAAAAAAAAAACYJEoSYH/ooYeSHJhVfahe9rKXJUm2b99+VMfctWtXOjo6kiQzZ84ctPbkk0/OcccdlyTZsmXLER3n3/7t33ofd3V15XWve11uueWWPPfcc73b9+zZk3vuuSdvectb8olPfOKwPXfv3p0dO3b0+Q8AAAAAAAAAAAAAYKIbeNryI9AT5p4+ffqQn7N///4kSUVFxVEd84UXXuh9fPzxxx+2/rjjjsvOnTvz4osvHtFxnnnmmd7Hn/jEJ7Jr1678yq/8Sv74j/84r371q7Njx458+ctfzu///u/n+eefz+///u+noaEhV1xxxYA9V65cmY997GNHNA4AAAAAAGBs6+zsTFtbW59txWIx7e3tqa+vT01NTZ99DQ0Nqa2tHckhAgAAAACMupIE2E855ZQ89dRT2bJlS84///whPeexxx5Lkpx66qlHdcxdu3b1Pp46deph66uqqpIcOFF8JHbu3NnnmG9961uzfv363uD9qaeemt/6rd/KnDlzcvHFF6erqysrVqzI5ZdfnrKysn57rlixIh/5yEd6/7xjx47MmjXriMYFAAAAAACMLW1tbZk3b96Q61taWjJ37txjOCIAAAAAgLGnJAH28847L0899VR++MMf5vLLLx/Sc770pS+lrKwsr3/964/qmNXV1b2P9+zZc9j63bt3J8khs5scyXGSA7Ow9zdr/Jve9KYsXbo0a9asSWtrax5++OG8+tWv7rdnVVVVb6AeAAAAAACGw6zfY0dDQ0NaWlr6bGttbU1TU1NWr16dxsbGQ+oBAAAAACabkgTYlyxZkn/6p3/KX/7lX+YjH/lITj755EHr16xZk69//espKyvL29/+9qM65rRp03ofv/jii4et75lJ/fjjjz/q45x66qmDzjD/y7/8y1mzZk2S5Ic//OGAAXYAAAAAACgVs36PHbW1tQP+3TY2Nvp7BwAAAABIiQLs73vf+/LJT34yW7ZsySWXXJK//du/zbnnnntI3VNPPZVbbrklf/Znf5aysrLMmTMn73jHO47qmNXV1Zk+fXq2b9+erVu3Dlr77LPP9gbYZ82adUTHObh+5syZQ659+umnj+g4AAAAAABwNMz6DQAAAADAeFKSAHtVVVW++tWvZuHChWlpacmrXvWqnHPOOb37m5qa8uKLL+anP/1puru7093dnenTp+fLX/5yysrKjvq45557bpqbm/OTn/wk+/bty5Qp/X87By+d+tIT9Ydz3nnn9T7ev3//oLUH7x9oLAAAADBWFIvFJMne7VtK0q+nT09fAGBkmPUbAAAAAIDxpGQp69e85jX54Q9/mKuvvjrf+973+oTGf/zjH6e7u7v3z294wxvyxS9+Mb/wC78wrGO+6U1vSnNzc3bu3JmWlpa88Y1v7Lfu/vvv7308f/78IzrGmWeembq6umzevDnt7e3p7u4eMHT/7//+772PX/7ylx/RcQAAAGCktbe3J0m2r19V8r5H+vkbAAAAAAAAgMmhpNOEz549O9/97nfzwAMP5Gtf+1o2btyYp556Kvv378/06dNz/vnn5/LLL89b3/rWkhxvyZIlWblyZZLkzjvv7DfA3tXVlc9//vNJkpNOOimLFi064uO8/e1vz6c+9ans2LEj3/72t/NLv/RL/datXbu29/Gb3vSmIz4OAAAAjKT6+vokyfTFy1M5fdaw++3dviXb16/q7QsAAAAAAAAAL1XSAHuPN73pTSMS4H7DG96QBQsWpLm5OXfccUeuvvrqXHjhhX1qVq1aldbW1iTJddddl8rKyj7777vvvt5Q+9VXX53Pfe5zhxznt3/7t3Prrbdm165d+chHPpIHHnggJ5xwQp+a1atX57777kuSXHrppZk1a/gX/gEAAOBYqqmpSZJUTp+VqtNnl7wvADAx7N+/P83Nzdm2bVtmzJiRBQsWpKKiYrSHBQAAAADAOFU+2gMYrltuuSU1NTXZt29fLrnkkqxcuTLf//73c++99+b9739/fvd3fzdJcvbZZ2f58uVHdYy6urr88R//cZLk4Ycfzhve8IbceeedaWlpyb333psPf/jDec973pMkOeGEE/KpT32qJN8bAAAAAACMprVr12b27NlZtGhR3vWud2XRokWZPXt2nxVJAQAAAADgSJRkBvb/5//5f9LU1JRf+ZVfyZQpx2RS9wGdf/75+dKXvpSmpqbs2LEjN9xwwyE1Z599djZs2JBp06Yd9XH+3//3/80zzzyTT3ziE3nkkUfym7/5m4fUvOxlL8u6devyyle+8qiPAwAAAAAAY8HatWuzbNmyLF68OHfddVfmzJmTTZs25aabbsqyZcuyZs2aLF26dLSHCQAAAADAOFOSGdj//u//PldccUVOP/30fOADH8gDDzxQirZDdtlll+Whhx7K7/zO7+Tss89ObW1tTjrppLzuda/LJz7xifzoRz/K7NnDXwp95cqV+e53v5vf+I3fSH19faqqqnLiiSfm9a9/ff7kT/4kjz76aC688MISfEcAAAAAADB69u/fn+XLl2fx4sVZt25dLrjgghx//PG54IILsm7duixevDjXX3999u/fP9pDBQAAAABgnCnJdOnTpk3LCy+8kGeeeSZ//dd/nb/+679OXV1d3vWud+Vd73pXzjvvvFIcZlBnnnlmbr755tx8881H9LyFCxemu7t7yPUXXnihkDoAAAAAABNac3Nz2tvbc9ddd6W8vO9cOOXl5VmxYkUuuuiiNDc3Z+HChaMzSAAAAAAAxqWSzMD+1FNP5R/+4R/ytre9LVOnTk13d3cef/zxfPzjH8+rX/3qvPa1r80nP/nJbN26tRSHAwAAAAAAjqFt27YlSebMmdPv/p7tPXUAAAAAADBUJQmwV1VV5e1vf3u+/OUv58knn8ztt9+et7zlLSkrK0t3d3ceeuih/N7v/V7q6+uzaNGi3HHHHXn++edLcWgAAAAAAKDEZsyYkSTZtGlTv/t7tvfUAQAAAADAUJUkwH6wE044Ib/5m7+Ze+65J1u2bMmqVasyb968dHd3p6urK9/5zndy7bXX5vTTT8/SpUuzdu3aUg8BAAAAAAAYhgULFqS+vj433XRTurq6+uzr6urKypUrc9ZZZ2XBggWjNEIAAAAAAMarkgfYDzZjxoz8zu/8Tn74wx/mkUceyY033pjZs2enu7s7u3fvzrp16/KOd7zjWA4BAAAAAAA4QhUVFVm1alXWr1+fJUuW5Hvf+15eeOGFfO9738uSJUuyfv36fPKTn0xFRcVoDxUAAAAAgHHmmAbYD/bKV74yH/vYx/LII4/ki1/8Yk466aQkSXd390gNAQAAAAAAGKKlS5dmzZo1efjhh3PRRRflhBNOyEUXXZRNmzZlzZo1Wbp06WgPEQAAAACAcWjKSB3o6aefzpe+9KX83d/9XR588MGROiwAAAAAw1QsFpMku5/YXZJ+PX16+gIwdi1dujRXXHFFmpubs23btsyYMSMLFiww8zoAAAAAAEftmAbYd+7cmbVr1+aLX/xivv3tb2f//v29M66XlZVl/vz5ueqqq47lEAAAAAAYpvb29iTJ1tu2lrzv/PnzS9oTgNKrqKjIwoULR3sYAAAAAABMECUPsO/bty/f/OY388UvfjFf//rXe2fS6gmun3vuubnqqqvyrne9K2eeeWapDw8AAABAidXX1ydJZl47M1VnVA273+4ndmfrbVt7+wIAAAAAAACTR8kC7M3Nzfm7v/u7rFmzJs8++2ySn4fWX/7yl+fXf/3Xc9VVV+U1r3lNqQ4JAAAAwAioqalJklSdUZWa+pqS9wUAAAAAAAAmj5IE2M8888xs3XpgCeme0PqJJ56YZcuW5aqrrsrFF1+csrKyUhwKAAAAAAAAAAAAAIBxqiQB9i1btiRJqqqqcumll+aqq67KpZdemqlTp5aiPQAAAAAAAAAAAAAAE0BJAuyLFi3KVVddlbe//e058cQTS9ESAAAAAABgTNu8eXM6OjoGrWltbe3zdTCFQiF1dXUlGRsAAAAAwFhVkgD7t7/97VK0AQAAAAAAGBc2b96ccxoas6vYOaT6pqamw9ZU19TmkbZWIXYAAAAAYEIrSYAdAAAAAABgMuno6MiuYmemL16eyumzBqzr3rcn+55/MlNOPC1lU6YOWLd3+5ZsX78qHR0dAuwAAAAAwIR2TALsLS0tueeee7Jp06Y888wzSZJTTjklc+bMyS/90i9l3rx5x+KwAAAAAAAAI6py+qxUnT578KKZ547MYAAAAAAAxoGSBtgffvjhXHvttXnwwQcHrLnhhhvyxje+MX/913+dV73qVaU8PAAAAAAAAAAAAAAAY1jJAuz33HNPLrvssuzZsyfd3d1JksrKykyfPj1Jsn379uzduzdJ8v3vfz9veMMbsn79+vziL/5iqYYAAAAAwAA6OzvT1tbWZ1uxWEx7e3vq6+tTU1PTZ19DQ0Nqa2tHcogAAAAAAADAJFCSAHtHR0euvPLK7N69O+Xl5Xnve9+b973vfTn//PMzZcqBQ+zfvz8/+tGP8tnPfjZ/8zd/k927d+fKK6/MY4891htyBwAAAODYaGtry7x584Zc39LSkrlz5x7DEQEAAAAAAACTUUkC7Lfcckuef/75TJ06NV/96lfzy7/8y4fUVFRU5HWve11e97rX5e1vf3suu+yyPP/887nlllvyx3/8x6UYBgAAAAADaGhoSEtLS59tra2taWpqyurVq9PY2HhIPQAAAAAAAECplSTAvmHDhpSVleVDH/pQv+H1l7rkkkvy4Q9/ODfffHM2bNggwA4AAABwjNXW1g44o3pjY6PZ1gEAAAAAAIARUV6KJj/72c+SJJdffvmQn9NT+9Of/rQUQwAAAAAAAAAAAAAAYIwrSYB9165dSZLjjjtuyM/pqd29e3cphgAAAAAAAAAAAAAAwBhXkgD76aefniT50Y9+NOTn9NSedtpppRgCAAAAAAAAAAAAAABj3JRSNFmwYEFWr16dj3/843nHO96RE044YdD6F154IZ/4xCdSVlaWBQsWlGIIAAAAjGOdnZ1pa2vrs621tbXP14M1NDSktrZ2RMY2GezdvmXQ/d379mTf809myomnpWzK1KPuAwCUxubNm9PR0TFozWDvpV6qUCikrq6uJGMDAAAAAIDDKUmA/f3vf39Wr16dn/3sZ3nzm9+c22+/Pa973ev6rd24cWOuvfba/Pu//3vKysry/ve/vxRDAAAAYBxra2vLvHnz+t3X1NR0yLaWlpbMnTv3WA9rwisUCqmuqc329atK1rO6pjaFQqFk/QCAvjZv3pxzGhqzq9g5pPr+3ku9VHVNbR5paxViBwAAAABgRJQkwD5//vx84AMfyF/91V/l4Ycfzhvf+Macd955eeMb35iXvexlKSsry5NPPpkf/OAH+dd//dfe533gAx/I/PnzSzEEAAAAxrGGhoa0tLT02VYsFtPe3p76+vrU1NQcUs/w1dXV5ZG21iHN4NrU1JTVq1ensbFx0FozuALAsdXR0ZFdxc5MX7w8ldNnDVh3JCuobF+/Kh0dHV7DAQAAAAAYESUJsCfJX/zFX6S2tjY333xzurq6smnTpj5h9STp7u5OkpSXl+f666/Pxz/+8VIdHgAAgHGstra23xnV3fR87NXV1Q05rNbY2GjmewAYIyqnz0rV6bMHL5p57sgMZpIqFotJDtwEUAo9fXr6AgAAAABMVCULsJeVleVP//RP8+53vzu33npr7rnnnjz22GN9al75ylfml37pl/Lf//t/z5w5c0p1aAAAAAAAgBHV3t6eJNm+flXJ+7qREwAAAACYyEoWYO8xZ86cfOYzn0mS7NmzJ88++2yS5OSTT87UqQMvUwoAAAAAADBe1NfXJ0mmL16eyumzht1v7/Yt2b5+VW9fAAAAAICJquQB9oNNnTo1p5122rE8BAAAAAAAwIirqalJklROn5Wq02eXvC8AAAAAwERVfjRP+uY3v5m5c+dm7ty5+eIXv3hEz/3iF7/Y+9x77rnnaA4PAAAAAAAAAAAAAMA4dMQzsHd3d+d3fud38thjj+WXfumX8q53veuInv/rv/7r+dznPpd77rkny5cvz49//OMjHQIAAAAAAExKxWIxSbJ3+5aS9Ovp09MXAAAAAACOtSMOsP/TP/1THn300VRUVORTn/rUER+wrKwsn/70p/Oa17wmmzZtyv3335+LL774iPsAAAAAAMBk097eniTZvn5VyfvOnz+/pD0BAAAAAKA/Rxxg//KXv5wkeetb35pzzz33qA567rnn5pd/+ZfzzW9+M2vWrBFgBwAAAACAIaivr0+STF+8PJXTZw27397tW7J9/arevgAAAAAAcKwdcYD9wQcfTFlZWS677LJhHXjx4sX5xje+ke9///vD6gMAAAAAAJNFTU1NkqRy+qxUnT675H0BAAAAAOBYKz/SJzz++ONJknPOOWdYBz777LOT/Hy5UwAAAAAAAAAAAAAAJrYjDrA///zzSZJTTjllWAfuef6OHTuG1QcAAAAAAAAAAAAAgPHhiAPsJ5xwQpLkueeeG9aBe54/bdq0YfUBAAAAAAAAAAAAAGB8OOIA+6mnnpok+bd/+7dhHbi1tTVJ8rKXvWxYfQAAAAAAAAAAAAAAGB+OOMD+hje8Id3d3fn6178+rAN/9atfTVlZWV7/+tcPqw8AAAAAAAAAAAAAAOPDEQfYf/VXfzVJ8q1vfSsPPPDAUR30O9/5Tr71rW/16QcAAAAAAAAAAAAAwMR2xAH2t7/97amvr093d3euvPLKPPbYY0f0/EcffTTveMc7UlZWlvr6+ixbtuxIhwAAAAAAAAAAAAAAwDh0xAH2ysrKfPKTn0ySPPXUU5k3b15uueWW7Ny5c9Dnvfjii/n0pz+d173udXnqqaeSJKtWrcqUKVOOYtgAAAAAAAAAAAAAAIw3R5UeX7p0aT72sY/lD//wD7Nz58585CMfyY033pgFCxZk3rx5ednLXpbjjjsuO3fuzJNPPpl//ud/TnNzc3bu3Jnu7u4kycc+9rEsWbKklN8LAAAAAAAAAAAAAABj2FFPf37jjTdm5syZ+fCHP5zOzs68+OKL+cd//Mf84z/+Y7/1PcH12tra/OVf/mXe8573HO2hAQAAAAAAAAAAAAAYh8qH8+Rrrrkmjz76aD7ykY+kUCiku7t7wP8KhUKWL1+eRx99VHgdAAAAAAAAAAAAAGASOuoZ2HucccYZ+eQnP5lPfvKT+dd//df8+Mc/zvbt2/PCCy9k2rRpmT59el7zmtfkvPPOK8V4AQAAAAAAAAAAAAAYp4YdYD/YeeedJ6gOAAAAAAAAAAAAAEC/ykd7AAAAAAAAAAAAAAAATA4C7AAAAAAAAAAAAAAAjAgBdgAAAAAAAAAAAAAARoQAOwAAAAAAAAAAAAAAI0KAHQAAAAAAAAAAAACAETFltAcAAAAAjB2dnZ1pa2vrs621tbXP14M1NDSktrZ2RMYGAPzc3u1bBt3fvW9P9j3/ZKaceFrKpkw96j4AAAAAAFBqEybA/vjjj+fP//zPs2HDhmzZsiVVVVV5xStekXe84x354Ac/OKyL6Z/73OdyzTXXDKn2zjvvzHve856jPhYAAACMpra2tsybN6/ffU1NTYdsa2lpydy5c4/1sACA/1IoFFJdU5vt61eVrGd1TW0KhULJ+gEAAAAAwGAmRID961//epqamrJjx47ebZ2dndm4cWM2btyY22+/PRs2bMjs2bNHcZQAAAAw9jU0NKSlpaXPtmKxmPb29tTX16empuaQegBg5NTV1eWRttZ0dHQMWtfa2pqmpqasXr06jY2Ng9YWCoXU1dWVcpgAAAAAADCgcR9g/9GPfpR3vvOdKRaLOf7447NixYosWrQoxWIxd999dz772c/m0UcfzaWXXpqNGzdm2rRpwzre//k//ydnnHHGgPtnzpw5rP4AAAAwmmpra/udUX3+/PmjMBoAoD91dXVDDpw3NjZaLQUAAAAAgDFl3AfYr7vuuhSLxUyZMiXf+ta3cuGFF/bue8tb3pJXvvKV+d3f/d08+uijWbVqVf7oj/5oWMc7++yzU19fP7xBAwAAAAAAAAAAAABMQuWjPYDhePDBB9Pc3Jwkee9739snvN5j+fLlvcuj3nLLLdm7d++IjhEAAAAAAAAAAAAAgAPGdYB93bp1vY+vueaafmvKy8vz7ne/O0ny3HPP5d577x2JoQEAAAAAAAAAAAAA8BLjOsD+wAMPJEmOO+64zJs3b8C6iy++uPfxd7/73WM+LgAAAAAAAAAAAAAADjWuA+ytra1JktmzZ2fKlCkD1jU0NBzynKN1zTXX5IwzzsjUqVNTKBRywQUX5H/8j/+R//iP/xhWXwAAAAAAAAAAAACAiW7g1PcYt2vXrnR0dCRJZs6cOWjtySefnOOOOy47d+7Mli1bhnXc++67r/fx9u3bs3379vzgBz/IqlWr8ulPfzrvf//7h9UfAAAAAAAYP/ZuH/y6Q/e+Pdn3/JOZcuJpKZsy9aj7AAAAAABMFOM2wP7CCy/0Pj7++OMPW98TYH/xxReP6ni/8Au/kKVLl+bCCy/MrFmzkiQ//elP8+Uvfzlr1qzJrl278lu/9VspKyvLtddeO2iv3bt3Z/fu3b1/3rFjx1GNCQAAAAAAGB2FQiHVNbXZvn5VyXpW19SmUCiUrB8AAAAAwFg0bgPsu3bt6n08derAM5b0qKqqSpIUi8UjPtbb3va2XH311SkrK+uz/fWvf33e+c53Zv369Vm6dGn27t2b3/md38nll1+e008/fcB+K1euzMc+9rEjHgcAAAAAADA21NXV5ZG21t7VYgfS2tqapqamrF69Oo2NjYPWFgqF1NXVlXKYAAAAAABjzrgNsFdXV/c+3rNnz2Hre2Y8r6mpOeJjnXjiiYPuX7x4cf7gD/4gN954Yzo7O3PHHXfkox/96ID1K1asyEc+8pHeP+/YsaN3VncAAAAAAGB8qKurG3LgvLGxMXPnzj3GIwIAAAAAGPvKR3sAR2vatGm9j1988cXD1u/cuTNJcvzxxx+T8Vx77bW9M7Tff//9g9ZWVVXlhBNO6PMfAAAAAAAAAAAAAMBEN24D7NXV1Zk+fXqSZOvWrYPWPvvss70B9mM10/nLXvay3vH8x3/8xzE5BgAAAAAAAAAAAADAeDZuA+xJcu655yZJfvKTn2Tfvn0D1rW1tfU+bmxsPGbj6ZmBHQAAAAAAAAAAAACAQ43rAPub3vSmJMnOnTvT0tIyYN3999/f+3j+/PnHZCxPP/10Ojo6kiRnnHHGMTkGAAAAAAAAAAAAAMB4Nq4D7EuWLOl9fOedd/Zb09XVlc9//vNJkpNOOimLFi06JmO57bbb0t3dnSS5+OKLj8kxAAAAAAAAAAAAAADGs3EdYH/DG96QBQsWJEnuuOOOfO973zukZtWqVWltbU2SXHfddamsrOyz/7777ktZWVnKysrynve855Dnt7e350c/+tGg41i/fn3++I//OElSU1OTa6655mi+HQAAAAAAAAAAAACACW3KaA9guG655ZbMnz8/xWIxl1xySW644YYsWrQoxWIxd999d2677bYkydlnn53ly5cfcf/29vYsWrQoF154YS677LK85jWvycte9rIkyU9/+tOsWbMma9as6Z19/ZOf/GRe/vKXl+4bBAAAAAAAAAAAAACYIMZ9gP3888/Pl770pTQ1NWXHjh254YYbDqk5++yzs2HDhkybNu2oj/O9732v3xnee9TW1uZTn/pUrr322qM+BgAAAAAAAAAAAADARDbuA+xJctlll+Whhx7KLbfckg0bNmTr1q2ZOnVqZs+enSuvvDIf+tCHUltbe1S9582bl9WrV+d73/teNm7cmG3btqWjoyP79u3LySefnPPOOy+/+Iu/mP/23/5b78zsAAAAABPR7id2D7q/a09X9nbsTWWhMuVTy4+6DwAAAAAAADBxTYgAe5KceeaZufnmm3PzzTcf0fMWLlyY7u7uAfdPmzYtV111Va666qrhDhEAAABgXCoUCqmuqc7W27aWrGd1TXUKhULJ+gEAAAAAAADjw4QJsAMAAABwbNTV1eWRtkfS0dExaF1ra2uampqyevXqNDY2DlpbKBRSV1dXymECAAAAAAAA44AAOwAAAACHVVdXN+TAeWNjY+bOnXuMRwQAAAAAAACMR+WjPQAAAAAAAAAAAAAAACYHAXYAAAAAAAAAAAAAAEaEADsAAAAAAAAAAAAAACNCgB0AAAAAAAAAAAAAgBEhwA4AAAAAAAAAAAAAwIgQYAcAAAAAAAAAAAAAYEQIsAMAAAAAAAAAAAAAMCKmjPYAAAAAAAAAJoLOzs60tbX12dba2trn68EaGhpSW1s7ImMDAAAAABgrBNgBAAAAAABKoK2tLfPmzet3X1NT0yHbWlpaMnfu3GM9LAAAAACAMUWAHQAAAAAAoAQaGhrS0tLSZ1uxWEx7e3vq6+tTU1NzSD0AAAAAwGQjwA4AAAAAAFACtbW1/c6oPn/+/FEYDQAAAADA2FQ+2gMAAAAAAAAAAAAAAGByEGAHAAAAAAAAAAAAAGBETBntAQAAAAAAAEevs7MzbW1tfba1trb2+XqwhoaG1NbWjsjYAAAAAADgpQTYAQAAAABgHGtra8u8efP63dfU1HTItpaWlsydO/dYDwsAAAAAAPolwA4AAAAAAONYQ0NDWlpa+mwrFotpb29PfX19ampqDqkHAAAAAIDRIsAOAAAAAADjWG1tbb8zqs+fP38URgMAAAAAAIMrH+0BAAAAAAAAAAAAAAAwOQiwAwAAAAAAAAAAAAAwIgTYAQAAAAAAAAAAAAAYEQLsAAAAAAAAAAAAAACMCAF2AAAAAAAAAAAAAABGhAA7AAAAAAAAAAAAAAAjQoAdAAAAAAAAAAAAAIARIcAOAAAAAAAAAAAAAMCIEGAHAAAAAAAAAAAAAGBECLADAAAAAAAAAAAAADAiBNgBAAAAAAAAAAAAABgRAuwAAAAAAAAAAAAAAIwIAXYAAAAAAAAAAAAAAEaEADsAAAAAAAAAAAAAACNCgB0AAAAAAAAAAAAAgBEhwA4AAAAAAAAAAAAAwIiYMtoDAAAAAGD86ezsTFtbW59tra2tfb4erKGhIbW1tSMyNgAAAAAAAGDsEmAHAAAA4Ii1tbVl3rx5/e5ramo6ZFtLS0vmzp17rIcFAAAAAAAAjHEC7AAAAAAcsYaGhrS0tPTZViwW097envr6+tTU1BxSDwAAAAAAACDADgAAAMARq62t7XdG9fnz54/CaAAAAAAAAIDxony0BwAAAAAAAAAAAAAAwOQgwA4AAAAAAAAAAAAAwIgQYAcAAAAAAAAAAAAAYEQIsAMAAAAAAAAAAAAAMCIE2AEAAAAAAAAAAAAAGBFTRnsAAAAAAJTe5s2b09HRMWhNa2trn6+DKRQKqaurK8nYAAAAAAAAgMlLgB0AAABggtm8eXMaG85JZ3HXkOqbmpoOW1NbU53WtkeE2AEAAAAAAIBhEWAHAAAAmGA6OjrSWdyV1W+rSeOp5QPWFfd1p/25rtSfVJ6aKWUD1rU+3ZWmrxTT0dEhwA4AAAAAAAAMiwA7AAAAwATVeGp55s6oGLRm/qwRGgwAAAAAAABAkoGn4AIAAAAAAAAAAAAAgBISYAcAAAAAAAAAAAAAYEQIsAMAAAAAAAAAAAAAMCIE2AEAAAAAAAAAAAAAGBEC7AAAAAAAAAAAAAAAjAgBdgAAAAAAAAAAAAAARsSECbA//vjjWb58eRoaGnLcccfllFNOyetf//r82Z/9WTo7O4/JMTs7O/MLv/ALKSsrS1lZWerr64/JcQAAAAAAAAAAAAAAJoIpoz2AUvj617+epqam7Nixo3dbZ2dnNm7cmI0bN+b222/Phg0bMnv27JIe9w/+4A/ys5/9rKQ9AQAAAAAAAAAAAAAmqnE/A/uPfvSjvPOd78yOHTty/PHH53/9r/+V/+//+//y7W9/O+973/uSJI8++mguvfTSvPDCCyU97qc//elUV1dn2rRpJesLAAAAAAAAAAAAADBRjfsA+3XXXZdisZgpU6bkW9/6Vm644YZceOGFectb3pLbbrstf/qnf5rkQIh91apVJTnm/v378773vS/79+/PDTfckFNOOaUkfQEAAAAAAAAAAAAAJrJxHWB/8MEH09zcnCR573vfmwsvvPCQmuXLl6exsTFJcsstt2Tv3r3DPu4tt9ySlpaWnHPOOfm93/u9YfcDAAAAAAAAAAAAAJgMxnWAfd26db2Pr7nmmn5rysvL8+53vztJ8txzz+Xee+8d1jEff/zx/MEf/EGS5H//7/+dqVOnDqsfAAAAwFDs378/9913X+66667cd9992b9//2gPCQAAAAAAAOCIjesA+wMPPJAkOe644zJv3rwB6y6++OLex9/97neHdcwPfOAD2blzZ37jN34jCxcuHFYvAAAAgKFYu3ZtZs+enUWLFuVd73pXFi1alNmzZ2ft2rWjPTQAAAAAAACAIzKuA+ytra1JktmzZ2fKlCkD1jU0NBzynKNx99135xvf+EZOPvnkrFq16qj7AAAAAAzV2rVrs2zZsrzqVa/K9773vbzwwgv53ve+l1e96lVZtmyZEDsAAAAAAAAwrozbAPuuXbvS0dGRJJk5c+agtSeffHKOO+64JMmWLVuO6njPPvtsfvu3fzv/P3t3Gh5FmfZt/L47AQKEPWzKLiIoiIiggAyLiqOIIuqgIyo6Kg7Ko4ig4DjigiDjhuugIO64MIoLjoogCCoqjLJJZBeQRdlJCIQk//cDb5cdskPSuRLO33FwGNLV3dV1Ps8U1XV1tXPOjRkzxtWsWfOwHgcAAAAAACC/0tPT3ZAhQ9wFF1zgpk6d6s444wwXHx/vzjjjDDd16lR3wQUXuDvuuMOlp6cX96oCAAAAAAAAAAAAQL6U2AH2PXv2BD/Hx8fnuXx4gD0pKemwnm/o0KFuy5YtrkOHDu6GG244rMcI279/v9u9e3emPwAAAAAAAIeaM2eOW7t2rRsxYoQLhTK/jRMKhdzw4cPdmjVr3Jw5c4ppDQEAAAAAAAAAAACgYErsAPu+ffuCn8uWLZvn8uXKlXPOOZeSklLg5/ryyy/diy++6GJjY92///1v570v8GNEGj16tKtSpUrwp379+kf0eAAAAAAAoHTatGmTc865li1bZnt7+Pfh5QAAAAAAAAAAAADAuhI7wB4XFxf8nJqamufy+/fvd845V758+QI9z/79+92NN97oJLlbb73VnXzyyQVb0WwMHz7c7dq1K/izfv36I35MAAAAAABQ+tStW9c559ySJUuyvT38+/ByAAAAAAAAAAAAAGBdiR1gr1SpUvBzUlJSnssnJyc755yLj48v0POMGjXK/fzzz65+/fruvvvuK9hK5qBcuXKucuXKmf4AAAAAAAAcqnPnzq5Ro0buoYcechkZGZluy8jIcKNHj3aNGzd2nTt3LqY1BAAAAAAAAAAAAICCiS3uFThccXFxrkaNGm7btm1uw4YNuS67Y8eOYIC9fv36BXqehx9+2Dnn3Nlnn+0+/PDDbJcJP3ZycrJ78803nXPO1apVy3Xv3r1AzwUAAAAAABApJibGPfroo+7SSy91vXv3dsOHD3ctW7Z0S5YscaNHj3YfffSRmzJliouJiSnuVQUAAAAAAAAAAACAfCmxA+zOOXfiiSe6OXPmuJUrV7q0tDQXG5v9y0lMTAx+btGiRYGeIzU11Tnn3KRJk9ykSZNyXXbr1q3uiiuucM4516VLFwbYAQAAAADAEevTp4+bMmWKGzJkiOvYsWPw+8aNG7spU6a4Pn36FOPaAQAAAAAAAAAAAEDBlOgB9jPPPNPNmTPHJScnuwULFrjTTz892+Vmz54d/NypU6dorR4AAAAAAECh6NOnj7vooovcnDlz3KZNm1zdunVd586dufI6AAAAAAAAAAAAgBInVNwrcCR69+4d/JzT1dEzMjLcK6+84pxzrmrVqq5bt24Feg5Jef5p2LChc865hg0bBr+bNWvWYb0mAAAAAACA7MTExLiuXbu6K664wnXt2pXhdQAAAAAAAAAAAAAlUokeYG/fvr3r3Lmzc865iRMnum+++SbLMo8++qhbtmyZc865W2+91ZUpUybT7bNmzXLee+e9d/379y/ydQYAAAAAAAAAAAAAAAAAAACAo1Vsca/AkRo3bpzr1KmTS0lJcT169HAjRoxw3bp1cykpKe7NN990zz//vHPOuWbNmrkhQ4YU89oCAAAAAAAAAAAAAAAAAAAAwNGrxA+wt2nTxr311luuX79+bvfu3W7EiBFZlmnWrJmbNm2aq1SpUjGsIQAAAAAAAAAAAAAAAAAAAADAOedCxb0ChaFXr15u0aJFbvDgwa5Zs2auQoUKrmrVqu60005zDz/8sPvhhx9c06ZNi3s1AQAAAAAAAAAAAAAAAAAAAOCoVuKvwB7WsGFD99hjj7nHHnusQPfr2rWrk3REz7127dojuj8AAAAAAAAAAAAAAAAAAAAAHA1KxRXYAQAAAAAAAAAAAAAAAAAAAAD2McAOAAAAAAAAAAAAAAAAAAAAAIgKBtgBAAAAAAAAAAAAAAAAAAAAAFHBADsAAAAAAAAAAAAAAAAAAAAAICpii3sFAAAAAAAAULhSUlKcc84t25peKI8Xfpzw4wIAAAAAAAAAAADA4WKAHQAAAAAAoJRZu3atc865fu/uK/TH7dSpU6E+JgAAAAAAAAAAAICjCwPsAAAAAAAApUyjRo2cc8691ifOtUiIOeLHW7Y13fV7d1/wuAAAAAAAAAAAAABwuBhgBwAAAAAAKGXKly/vnHOuRUKMO7XukQ+wH/q4AAAAAAAAAAAAAHC4QsW9AgAAAAAAAAAAAAAAAAAAAACAowMD7AAAAAAAAAAAAAAAAAAAAACAqGCAHQAAAAAAAAAAAAAAAAAAAAAQFQywAwAAAAAAAAAAAAAAAAAAAACiggF2AAAAAAAAAAAAAAAAAAAAAEBUMMAOAAAAAAAAAAAAAAAAAAAAAIgKBtgBAAAAAAAAAAAAAAAAAAAAAFHBADsAAAAAAAAAAAAAAAAAAAAAICoYYAcAAAAAAAAAAAAAAAAAAAAARAUD7AAAAAAAAAAAAAAAAAAAAACAqGCAHQAAAAAAAAAAAAAAAAAAAAAQFQywAwAAAAAAAAAAAAAAAAAAAACiggF2AAAAAAAAAAAAAAAAAAAAAEBUMMAOAAAAAAAAAAAAAAAAAAAAAIiK2OJeAQAAAAAAAGS1d+9el5iYmOl3KSkpbu3ata5Ro0aufPnymW5r3ry5q1ChQjRXEQAAAAAAAAAAAAAKjAF2AAAAAAAAgxITE13btm3zvfyCBQvcqaeeWoRrBAAAAAAAAAAAAABHjgF2AAAAAAAAg5o3b+4WLFiQ6XfLli1z/fr1c6+99ppr0aJFluUBAAAAAAAAAAAAwDoG2AEAAAAAAAyqUKFCjldUb9GiBVdbBwAAAAAAAAAAAFAihYp7BQAAAAAAAAAAAAAAAAAAAAAARwcG2AEAAAAAAAAAAAAAAAAAAAAAUcEAOwAAAAAAAAAAAAAAAAAAAAAgKhhgBwAAAAAAAAAAAAAAAAAAAABEBQPsAAAAAAAAAAAAAAAAAAAAAICoYIAdAAAAAAAAAAAAAAAAAAAAABAVDLADAAAAAAAAAAAAAAAAAAAAAKKCAXYAAAAAAAAAAAAAAAAAAAAAQFQwwA4AAAAAAAAAAAAAAAAAAAAAiAoG2AEAAAAAAAAAAAAAAAAAAAAAUcEAOwAAAAAAAAAAAAAAAAAAAAAgKhhgBwAAAAAAAAAAAAAAAAAAAABEBQPsAAAAAAAAAAAAAAAAAAAAAICoYIAdAAAAAAAAAAAAAAAAAAAAABAVDLADAAAAAAAAAAAAAAAAAAAAAKKCAXYAAAAAAAAAAAAAAAAAAAAAQFQwwA4AAAAAAAAAAAAAAAAAAAAAiAoG2AEAAAAAAAAAAAAAAAAAAAAAUcEAOwAAAAAAAAAAAAAAAAAAAAAgKhhgBwAAAAAAAAAAAAAAAAAAAABEBQPsAAAAAAAAAAAAAAAAAAAAAICoYIAdAAAAAAAAAAAAAAAAAAAAABAVscW9AgAAAAAAAHBu3bp1buvWrbkus2zZskz/zWs5AAAAAAAAAAAAALCGAXYAAAAAAIBitm7dOndC8xZuX8refC3fr1+/fC237PeMXG9PSZNbuzPDNaoacuVj/WE/DgAAAAAAAAAAAADkFwPsAAAAAAAAxWzr1q1uX8peV+OCIa5Mjfo5Lqe0VJe2a4uLrVLb+diyOS63b8NSt3vmC67feymFto4Vyse5hISEQns8AAAAAAAAAAAAAEcnBtgBAAAAAACMKFOjvitXp2nuC9U7MV+PtVPOvfbaa65FixY5LrNs2TLXr1+/PJdzzrmEhATXoEGDfD03AAAAAAAAAAAAAOSEAXYAAAAAAIBSqkWLFu7UU08ttOUAAAAAAAAAAAAA4EiFinsFAAAAAAAAAAAAAAAAAAAAAABHh1IxwP7LL7+4IUOGuObNm7uKFSu66tWru3bt2rl//etfbu/evUf02MuWLXNPP/20u+aaa9ypp57q6tWr5+Li4lzFihVdkyZNXN++fd3777/vJBXSqwEAAAAAAAAAAAAAAAAAAACA0im2uFfgSH344YeuX79+bvfu3cHv9u7d6+bPn+/mz5/vJkyY4KZNm+aaNm16WI8/atQo9/rrr2d725o1a9yaNWvc22+/7bp06eL+85//uBo1ahzW8wAAAAAAAAAAAAAAAAAAAABAaVeiB9h/+OEH17dvX5eSkuLi4+Pd8OHDXbdu3VxKSop788033QsvvOCWL1/uevbs6ebPn+8qVapU4OeIjY11p59+uuvUqZNr1aqVq1OnjqtZs6bbsWOHS0xMdOPHj3dLlixxs2fPdr169XJz5851oVCpuLA9AAAAAAAAAAAAAAAAAAAAABSqEj3Afuutt7qUlBQXGxvrPvvsM9ehQ4fgtu7du7vjjz/eDRs2zC1fvtw9+uijbuTIkQV+jgkTJrjY2Ow309lnn+3+/ve/u7/85S/u3Xffdd9884376KOP3IUXXni4LwkAAAAAAAAAAAAAAAAAAAAASq0Se6nw7777zs2ZM8c559zf/va3TMPrYUOGDHEtWrRwzjk3btw4d+DAgQI/T07D62ExMTFu6NChwd/D6wQAAAAAAAAAAAAAAAAAAAAAyKzEDrBPnTo1+Pnaa6/NdplQKOSuvvpq55xzO3fudF988UWRrEulSpWCn/ft21ckzwEAAAAAAAAAAAAAAAAAAAAAJV2JHWCfO3euc865ihUrurZt2+a4XJcuXYKfv/rqqyJZlzfffDP4uXnz5kXyHAAAAAAAAAAAAAAAAAAAAABQ0sUW9wocrmXLljnnnGvatKmLjc35ZUQOlIfvUxi2bt3qVqxY4SZMmOAmTZrknHMuISHBXXnllYX2HAAAAAAAAAAAAAAAAAAAAABQmpTIAfZ9+/a5rVu3Ouecq1evXq7LVqtWzVWsWNElJye79evXH9Hzdu3a1c2ePTvb2xISEtx7773nqlatekTPAQAAAAAAAAAAAAAAAAAAAAClVai4V+Bw7NmzJ/g5Pj4+z+UrVqzonHMuKSmpSNbn//7v/9yyZcvcmWeema/l9+/f73bv3p3pDwAAAAAAAAAAAAAAAAAAAACUdiX2CuxhZcuWzXP5cuXKOeecS0lJOaLnnTRpkktOTnaS3M6dO938+fPdc889555++mm3evVqN2HCBFe7du08H2f06NHuvvvuO6J1AQAAAAAAAAAAAAAAAAAAAICSpkRegT0uLi74OTU1Nc/l9+/f75xzrnz58kf0vI0bN3YtW7Z0rVq1cp07d3aDBw92ixYtcueff7776KOPXLt27dyGDRvyfJzhw4e7Xbt2BX/Wr19/ROsFAAAAAAAAAAAAAAAAAAAAACVBibwCe6VKlYKfk5KS8lw+OTnZOedcfHx8oa9LXFycmzRpkmvYsKFbv369GzZsmHvjjTdyvU+5cuWCq8IDAAAAAACEvzXuwLbC+ZB7+HGO9NvoAAAAAAAAAAAAAKCwlcgB9ri4OFejRg23bdu2PK94vmPHjmCAvX79+kWyPgkJCa5Tp05u+vTp7v3333cHDhxwZcqUKZLnAgAAAAAApc/atWudc85t++jRQn/cTp06FepjAgAAAAAAAAAAAMCRKJED7M45d+KJJ7o5c+a4lStXurS0NBcbm/1LSUxMDH5u0aJFka1PzZo1nXPO7d27123dutXVrVu3yJ4LAAAAAACULo0aNXLOOVfjgiGuTI0j/wD+gW3r3baPHg0eFwAAAAAAAAAAAACsKLED7GeeeaabM2eOS05OdgsWLHCnn356tsvNnj07+Lkorzj266+/Bj/Hx8cX2fMAAAAAAIDSp3z58s4558rUqO/K1Wla6I8LAAAAAAAAAAAAAFaEinsFDlfv3r2DnydNmpTtMhkZGe6VV15xzjlXtWpV161btyJZlw0bNrhvvvnGOedcw4YNXaVKlYrkeQAAAAAAAAAAAAAAAAAAAACgJCuxA+zt27d3nTt3ds45N3HixGCAPNKjjz7qli1b5pxz7tZbb3VlypTJdPusWbOc9955713//v2z3H/58uVu5syZua7Hrl273F//+leXmprqnHPu6quvPpyXAwAAAAAAAAAAAAAAAAAAAAClXmxxr8CRGDdunOvUqZNLSUlxPXr0cCNGjHDdunVzKSkp7s0333TPP/+8c865Zs2auSFDhhT48Tdu3OjOOuss17p1a9e7d2/Xtm1bV6dOHRcbG+s2b97svvrqKzdx4kS3efNm55xzLVu2dHfddVehvkYAAAAAAAAAAAAAAAAAAAAAKC1K9AB7mzZt3FtvveX69evndu/e7UaMGJFlmWbNmrlp06a5SpUqHfbzLFy40C1cuDDXZXr27OkmTZrkKlSocNjPAwAAAAAAAAAAAAAAAAAAAAClWYkeYHfOuV69erlFixa5cePGuWnTprkNGza4smXLuqZNm7rLLrvM3XLLLYc9VN6pUyf36aefus8//9zNnz/fbdiwwW3ZssXt3bvXVa5c2TVu3NidccYZ7oorrnCdOnUq5FcGAAAAAAAAAAAAAAAAAAAAAKVLiR9gd865hg0buscee8w99thjBbpf165dnaQcby9Tpozr0aOH69Gjx5GuIgAAAAAAAAAAAAAAAAAAAAAc9ULFvQIAAAAAAAAAAAAAAAAAAAAAgKNDqbgCOwAAAAAAQGlwYNv6XG9XWqpL27XFxVap7Xxs2cN+HAAAAAAAAAAAAAAoLgywAwAAAAAAFLOEhAQXV76C2/bRo4X2mHHlK7iEhIRCezwAAAAAAAAAAAAAKAwMsAMAAAAAABSzBg0auJ8Tl7mtW7fmutyyZctcv3793GuvveZatGiR67IJCQmuQYMGhbmaAAAAAAAAAAAAAHDEGGAHAAAAAAAwoEGDBvkeOG/RooU79dRTi3iNAAAAAAAAAAAAAKDwhYp7BQAAAAAAAAAAAAAAAAAAAAAARwcG2AEAAAAAAAAAAAAAAAAAAAAAUcEAOwAAAAAAAAAAAAAAAAAAAAAgKhhgBwAAAAAAAAAAAAAAAAAAAABEBQPsAAAAAAAAAAAAAAAAAAAAAICoYIAdAAAAAAAAAAAAAAAAAAAAABAVDLADAAAAAAAAAAAAAAAAAAAAAKIitrhXAAAAAAAAAEVv7969LjExMdPvli1blum/kZo3b+4qVKgQlXUDAAAAAAAAAAAAcPRggB0AAAAAAOAokJiY6Nq2bZvtbf369cvyuwULFrhTTz21qFcLAAAAAAAAAAAAwFGGAXYAAAAAAICjQPPmzd2CBQsy/S4lJcWtXbvWNWrUyJUvXz7L8gAAAAAAAAAAAABQ2BhgBwAAAAAAOApUqFAh2yuqd+rUqRjWBgAAAAAAAAAAAMDRKlTcKwAAAAAAAAAAAAAAAAAAAAAAODowwA4AAAAAAAAADrWkBQABAABJREFUAAAAAAAAAAAAiAoG2AEAAAAAAAAAAAAAAAAAAAAAUcEAOwAAAAAAAAAAAAAAAAAAAAAgKhhgBwAAAAAAAAAAAAAAAAAAAABEBQPsAAAAAAAAAAAAAAAAAAAAAICoYIAdAAAAAAAAAAAAAAAAAAAAABAVDLADAAAAAAAAAAAAAAAAAAAAAKKCAXYAAAAAAAAAAAAAAAAAAAAAQFQwwA4AAAAAAAAAAAAAAAAAAAAAiAoG2AEAAAAAAAAAAAAAAAAAAAAAUcEAOwAAAAAAAAAAAAAAAAAAAAAgKhhgBwAAAAAAAAAAAAAAAAAAAABEBQPsAAAAAAAAAAAAAAAAAAAAAICoYIAdAAAAAAAAAAAAAAAAAAAAABAVDLADAAAAAAAAAAAAAAAAAAAAAKKCAXYAAAAAAAAAAAAAAAAAAAAAQFQwwA4AAAAAAAAAAAAAAAAAAAAAiAoG2AEAAAAAAAAAAAAAAAAAAAAAUcEAOwAAAAAAAAAAAAAAAAAAAAAgKhhgBwAAAAAAAAAAAAAAAAAAAABEBQPsAAAAAAAAAAAAAAAAAAAAAICoYIAdAAAAAAAAAAAAAAAAAAAAABAVDLADAAAAAAAAAAAAAAAAAAAAAKIitrhXAAAAAAAAAFnt3bvXJSYmZvrdsmXLMv03UvPmzV2FChWism4AAAAAAAAAAAAAcLgYYAcAAAAAADAoMTHRtW3bNtvb+vXrl+V3CxYscKeeempRrxYAAAAAAAAAAAAAHBEG2AEAAAAAAAxq3ry5W7BgQabfpaSkuLVr17pGjRq58uXLZ1keAAAAAAAAAAAAAKxjgB0AAAAAAMCgChUqZHtF9U6dOhXD2gAAAAAAAAAAAABA4QgV9woAAAAAAAAAAAAAAAAAAAAAAI4ODLADAAAAAAAAAAAAAAAAAAAAAKKCAXYAAAAAAAAAAAAAAAAAAAAAQFQwwA4AAAAAAAAAAAAAAAAAAAAAiAoG2AEAAAAAAAAAAAAAAAAAAAAAUcEAOwAAAAAAAAAAAAAAAAAAAAAgKhhgBwAAAAAAAAAAAAAAAAAAAABEBQPsAAAAAAAAAAAAAAAAAAAAAICoYIAdAAAAAAAAAAAAAAAAAAAAABAVDLADAAAAAAAAAAAAAAAAAAAAAKKCAXYAAAAAAAAAAAAAAAAAAAAAQFSUmgH2X375xQ0ZMsQ1b97cVaxY0VWvXt21a9fO/etf/3J79+49osfeu3eve/fdd93f//53165dO1etWjVXpkwZV6NGDdehQwc3cuRIt3nz5kJ6JQAAAAAAAAAAAAAAAAAAAABQOsUW9woUhg8//ND169fP7d69O/jd3r173fz58938+fPdhAkT3LRp01zTpk0L/NiLFi1ynTp1cklJSVlu2759u5s3b56bN2+ee/zxx93zzz/v+vbte0SvBQAAAAAAAAAAAAAAAAAAAABKqxJ/BfYffvjB9e3b1+3evdvFx8e7UaNGua+//trNmDHD3XDDDc4555YvX+569uzp9uzZU+DH3717dzC83qlTJzd69Gg3ffp097///c99+umnbsCAAS4UCrndu3e7K6+80v33v/8t1NcHAAAAAAAAAAAAAAAAAAAAAKVFib8C+6233upSUlJcbGys++yzz1yHDh2C27p37+6OP/54N2zYMLd8+XL36KOPupEjRxbo8UOhkPvLX/7i7r33XnfiiSdmub1Hjx7uvPPOcxdffLFLT093gwYNcitWrHDe+yN9aQAAAAAAAAAAAAAAAAAAAABQqpToK7B/9913bs6cOc455/72t79lGl4PGzJkiGvRooVzzrlx48a5AwcOFOg5Onbs6N56661sh9fDLrroItenTx/nnHOrVq1yP/zwQ4GeAwAAAAAAAAAAAAAAAAAAAACOBiV6gH3q1KnBz9dee222y4RCIXf11Vc755zbuXOn++KLL4pkXbp16xb8vGrVqiJ5DgAAAAAAAAAAAAAAAAAAAAAoyUr0APvcuXOdc85VrFjRtW3bNsflunTpEvz81VdfFcm67N+/P/g5JiamSJ4DAAAAAAAAAAAAAAAAAAAAAEqyEj3AvmzZMuecc02bNnWxsbE5Lte8efMs9ylss2fPDn5u0aJFkTwHAAAAAAAAAAAAAAAAAAAAAJRkOU99G7dv3z63detW55xz9erVy3XZatWquYoVK7rk5GS3fv36Ql+XhQsXumnTpjnnnGvVqlWeA+z79+/PdMX23bt3F/o6AQAAAAAAAAAAAAAAAAAAAIA1JfYK7Hv27Al+jo+Pz3P5ihUrOuecS0pKKtT12L9/v7v++utdenq6c865UaNG5Xmf0aNHuypVqgR/6tevX6jrBAAAAAAAAAAAAAAAAAAAAAAWldgB9n379gU/ly1bNs/ly5Ur55xzLiUlpVDX45ZbbnHz5893zjl3zTXXuF69euV5n+HDh7tdu3YFf4riqvAAAAAAAAAAAAAAAAAAAAAAYE1sca/A4YqLiwt+Tk1NzXP5/fv3O+ecK1++fKGtw+jRo92ECROcc861a9fOPfPMM/m6X7ly5YKBegAAAAAAAAAAAAAAAAAAAAA4WpTYK7BXqlQp+DkpKSnP5ZOTk51zzsXHxxfK848fP96NGDHCOedc8+bN3ccff+wqVqxYKI8NAAAAAAAAAAAAAAAAAAAAAKVRiR1gj4uLczVq1HDOObdhw4Zcl92xY0cwwF6/fv0jfu7Jkye7gQMHOueca9iwoZs+fbpLSEg44scFAAAAAAAAAAAAAAAAAAAAgNIstrhX4EiceOKJbs6cOW7lypUuLS3NxcZm/3ISExODn1u0aHFEz/nBBx+4q6++2mVkZLi6deu6GTNmuHr16h3RY0pyzjm3e/fuI3oc2JORkRH8l74AAAAAABQNjr8BAPnFPgMAkB/sLwAA+cU+AwBQXML7nfD8KVDSlOgB9jPPPNPNmTPHJScnuwULFrjTTz892+Vmz54d/NypU6fDfr4ZM2a4v/zlLy4tLc3VqFHDTZ8+3R133HGH/Xhhe/bscc4VztXhYdOmTZtclSpVins1AAAAAAAo1Tj+BgDkF/sMAEB+sL8AAOQX+wwAQHHZs2cP+yCUSF4l+OMX3333XTC0PmDAAPfvf/87yzIZGRmuZcuWbtmyZa5q1arut99+c2XKlCnwc3399deuR48eLjk52VWpUsXNmDHDtW3b9ohfQ3gdN27c6CpVquS894XymCXd7t27Xf369d369etd5cqVi3t1jmq0sIUedtDCDlrYQQs7aGELPeyghR20sIMWdtDCFnrYQQs7aGEHLeyghS30sIMWdtDCDlrYQQtb6GEHLeyghR20sIMW2ZPk9uzZ44455hgXCoWKe3WAAivRV2Bv376969y5s5szZ46bOHGiu+aaa1yHDh0yLfPoo4+6ZcuWOeecu/XWW7MMr8+aNct169bNOefcNddc41566aUsz/Pjjz+6nj17uuTkZFexYkU3bdq0Qhted865UCjk6tWrV2iPV5pUrlyZnY4RtLCFHnbQwg5a2EELO2hhCz3soIUdtLCDFnbQwhZ62EELO2hhBy3soIUt9LCDFnbQwg5a2EELW+hhBy3soIUdtLCDFllx5XWUZCV6gN0558aNG+c6derkUlJSXI8ePdyIESNct27dXEpKinvzzTfd888/75xzrlmzZm7IkCEFfvxVq1a5c8891+3cudM559yDDz7oqlSp4pYsWZLjfWrVquVq1ap1WK8HAAAAAAAAAAAAAAAAAAAAAEqrEj/A3qZNG/fWW2+5fv36ud27d7sRI0ZkWaZZs2Zu2rRprlKlSgV+/Dlz5rjffvst+PvgwYPzvM+9997rRo4cWeDnAgAAAAAAAAAAAAAAAAAAAIDSLFTcK1AYevXq5RYtWuQGDx7smjVr5ipUqOCqVq3qTjvtNPfwww+7H374wTVt2rS4VxMFUK5cOXfvvfe6cuXKFfeqHPVoYQs97KCFHbSwgxZ20MIWethBCztoYQct7KCFLfSwgxZ20MIOWthBC1voYQct7KCFHbSwgxa20MMOWthBCztoYQctgNLJS1JxrwQAAAAAAAAAAAAAAAAAAAAAoPQrFVdgBwAAAAAAAAAAAAAAAAAAAADYxwA7AAAAAAAAAAAAAAAAAAAAACAqGGAHAAAAAAAAAAAAAAAAAAAAAEQFA+wAAAAAAAAAAAAAAAAAAAAAgKhggB3mpaenF/cqAAAAAAAAAAAAAAAAAAAAACgEDLDDtNTUVPfUU0+52267rbhXBQAAAAAAAAAAAAAAAAAAAMARii3uFQBykpqa6l555RV3zz33uOTkZJeenu6eeuqp4l4tAAAAAAAAAAAAAAAAAAAAAIeJK7DDpNTUVPfyyy+7wYMHu+TkZFeuXDn3zDPPuOuuu664V+2oJCnbnxF9tLCDFnbQwhZ62EELO2hhBy3soIUt9AAAAAAAAAAAAAAQTQyww5zwldeHDBnikpOTXfXq1V1aWppzzgX/RdE6dGDBe5/lZ4YaooMWdtDCDlrYQg87aGEHLeyghR20sIUedhy6nTMyMoppTUALO2hhBy1soYcdtLCDFnbQwg5a2EIPO2hhBy3soIUdtLCDFrbQAyj9Yot7BYBI4eH122+/3SUlJblOnTq5Zs2aubfeesvVrFnTXXvttc65gzuoyBPsKFzhbbt27Vq3aNEit3TpUrdp0yYXExPjmjdv7k477TTXqlUrV7ZsWeccPYoSLeyghR20sIUedtDCDlrYQQs7aGELPWyI3K5z5sxxJ5xwgqtVq5ZLS0tzsbG8ZRdNtLCDFnbQwpbIHitXrnRNmzZ1oVDIpaenu5iYmGJeu6MLLeyghR20sIMWttDDDlrYQQs7OOazgxZ20MIWegBHB/6/GWYcOrx+2mmnuYEDB7pnnnnG7d271x1//PGuffv2zjnHifMiJMklJSW5u+++23355Zdu0aJFmW733rtQKOSuuuoqd/7557tLL73Uee8ZaCgCtLCDFnbQwhZ62EELO2hhBy3soIUt9LAhcnvOnDnTPfjgg27p0qVu7ty57vjjjy/mtTu60MIOWthBC1sie3z++efuwQcfdO3atXP/+te/GPKJMlrYQQs7aGEHLWyhhx20sIMWdnDMZwct7KCFLfQAjiICDNi/f79eeOEFVapUSd57tWrVSpMnT9Ybb7yhmjVrqnr16po3b54kKT09vZjXtvRKSkrS1KlT1b17d3nvgz+1a9fWMccco/r166tZs2by3isUCqlSpUq69957g/tnZGQU38qXMrSwgxZ20MIWethBCztoYQct7KCFLfSwIXI7Tp8+Xb169VJMTIy897rvvvsk8d5HtNDCDlrYQQtbDu3Ru3fvYP/94Ycfsm+OIlrYQQs7aGEHLWyhhx20sIMWdnDMZwct7KCFLfQAji4MsKPYHTq8fvLJJ+vNN9+UJA0bNkzee51zzjnatGlTMa9p6bZr1y4999xzatOmjbz3io2NVa1atTR48GB9/fXX2rFjh3bv3q1du3Zp/PjxuvjiixUKheS916233ho8DgeXR44WdtDCDlrYQg87aGEHLeyghR20sIUeNmT35nv4hO0NN9wQ3BZ+A5434osOLeyghR20sCW3HnfeeWeW5elRdGhhBy3soIUdtLCFHnbQwg5a2MExnx20sIMWttADOPowwI5idejweuvWrTV58mQdOHBAs2bNCnZCb7zxRnGvaqmWnJysF198USeeeKK89ypTpoyuuOIKTZ06NdNykf9QWL16tf71r38FAw333HNPtFe7VKKFHbSwgxa20MMOWthBCztoYQctbKGHDYe++X7RRRdluhL+SSedpGrVqqlTp076xz/+EXyQPy0trbhWudSihR20sIMWtuTWIzY2Vv3791ePHj304IMP6rPPPguWpUfho4UdtLCDFnbQwhZ62EELO2hhB8d8dtDCDlrYQg/g6MQAO4pNdsPrb7zxhnbu3ClJuvPOOxUKhXTJJZdo3759krJe6Y1PUh2Z8PacOXOm2rZtGwwy3Hbbbfrxxx+D5SJ39pEN9u3bp3HjxikUCqlcuXJ65ZVXorfypQwt7KCFHbSwhR520MIOWthBCztoYQs97Mjtq7KbN2+uM888U4MHD9bpp5+u2rVry3uvtm3bavXq1VnujyNDCztoYQctbMmtR0JCgurXr6/TTjtNsbGx8t4rPj5eY8eOzfb+ODK0sIMWdtDCDlrYQg87aGEHLezgmM8OWthBC1voARy9GGBHscjpyuu7d++WJK1atUq1atWS914PP/xwno+3bNkyPfPMMxo0aFBRr3qpEbnz7tmzZzDIcPPNN+vnn3/OdrnsbNq0SQMGDFAoFNJf/vIX7dixg38YFBAt7KCFHbSwhR520MIOWthBCztoYQs97MjtzffrrrtO3333nVJSUiRJO3bs0Oeff66OHTvKe6+mTZtqx44dxbTmpQ8t7KCFHbSwJbceV1xxhd577z39/vvvSktL09dff63hw4cHt997773Ft+KlEC3soIUdtLCDFrbQww5a2EELOzjms4MWdtDCFnoARzcG2BF1OQ2vJyUlSZJSUlI0aNAgee/VoUOH4Epw4auth/+7d+9ebd26VUOGDFH79u2DnRdD7AXz4IMPynuvmJgY9ezZU99//32BH+P9999XmTJlFAqFNH369CJYy6MDLeyghR20sIUedtDCDlrYQQs7aGELPYpXbm++33HHHZmWjbwS/syZM9WuXTsNHjxYGzdujNr6lma0sIMWdtDCltx63H777dl+gCwlJUUjRoxQ2bJldfvtt2vXrl3RXOVSixZ20MIOWthBC1voYQct7KCFHRzz2UELO2hhCz0AMMCOqMpreF2Stm7dqo4dO6ps2bJ68sknJR382vJIS5Ys0YABA9SmTZvgRLz3XuXLlw8+gYW8ZWRkqE+fPgqFQvLe6+WXXz7sx7rkkkvkvdeAAQO0f//+QlzLowMt7KCFHbSwhR520MIOWthBCztoYQs9ildub74PHTo02+XC9uzZoxkzZmjNmjXRWNVSjxZ20MIOWtiSW49hw4Zlu1zYTz/9pNdffz342mwcGVrYQQs7aGEHLWyhhx20sIMWdnDMZwct7KCFLfQAIDHAjijat2+fJk6cmOvwuiSNHDlS3nvVqFFDixcvznTb+++/r2HDhgWPUb58edWtW1dXXnml6tWrF+zIrr32Wu3cuTOaL69EWrhwYbDN+vXrF/y+IF8HH/6E29133y3vvQYPHhxcJR/5Rws7aGEHLWyhhx20sIMWdtDCDlrYQo/ik98TtpFXjTlU5AcFPvnkE+3YsUOpqamSRIMCoIUdtLCDFrbk94Rtbj0ivy770CuP0SP/aGEHLeyghR20sIUedtDCDlrYwTGfHbSwgxa20ANAGAPsiIqMjAy9/PLLwc7m0OH18I5p+fLlatu2rbz3evrppyUd/NTU1KlTdeONN8p7r9jYWHnvdd555+npp5/Wa6+9puuuuy547MGDB+vXX38tttdaksycOTPYnuHtndvOPzdTp05V3759tX379sJcxaMGLeyghR20sIUedtDCDlrYQQs7aGELPYrf9OnT1adPnwK/+R4p/EH/Dh06aMyYMfr9998LdH8cRAs7aGEHLWyZMWPGYZ2wjXTrrbeqYcOGGjFihL788ssC3x8H0cIOWthBCztoYQs97KCFHbSwg2M+O2hhBy1soQcABtgRNYmJifLeq0GDBnrrrbcyXXk9PMD+xhtvKBQKqU2bNnr99dc1ffp0dejQQVWrVg12Vn379tWzzz6rtLQ0ffnll7r88ssZXi+g8PaePHmyvPeqWLGilixZckSPuW7dOiUnJ0viHwEFQQs7aGEHLWyhhx20sIMWdtDCDlrYQg8bEhMT1aVLlyN68z01NVVTp07VqaeeqgoVKsh7r+7du2vdunUFepyjHS3soIUdtLBl1qxZ6t69u2JiYgp0hcpIW7Zs0fXXX69QKCTvvY477rjgA2wFeZyjHS3soIUdtLCDFrbQww5a2EELOzjms4MWdtDCFnoAkBhgR5StWrVK//nPf7Rnz54st/3yyy9q2rSpvPeqV6+eunXrptq1a8t7r/r16+uCCy7QBx98ECz//fff64ILLgh2ZLfffjvD6wX0ySefBNvviy++KJTHLMhX0eMPtLCDFnbQwhZ62EELO2hhBy3soIUt9Ch+N998c4FO2Oa0fdevX68XXnhBrVq1kvdejRo10tq1ayXxdaj5RQs7aGEHLexYv369KleuLO+97rrrruD3h3OidcqUKbrqqquCfwP885//DG6jR95oYQct7KCFHbSwhR520MIOWtjCMZ8dtLCDFrbQAwAD7Ii6nHYm//vf/xQfHx8cgIQH2Xv37q1FixZp8+bNkg7uWL788ktdeOGFDK8foR9++CE4gHz//fclFe4wAp9kyz9a2EELO2hhCz3soIUdtLCDFnbQwhZ6FJ/IN8WnTp0a/JzTNju0y4EDB7Iss3//fn377bc644wz5L1X69attXHjxkJa49KLFnbQwg5a2LRw4ULde++9wd/z2yM7GzZs0EMPPRS8fz569OjCWs2jAi3soIUdtLCDFrbQww5a2EGL4scxnx20sIMWttADQBgD7DDl0Ucflfde8fHxGjZsmObOnZtpp5ORkaHZs2erd+/eDK8Xkl69esl7rwsuuEDbtm0rlMecOXNm8DOfZMs/WthBCztoYQs97KCFHbSwgxZ20MIWehSfQ99Ez+nN9/A2XL9+vV555RVde+216tOnj8aNG5ftlfO/+uornXTSSfLe69Zbb9W+ffsKfd1LG1rYQQs7aGFbXj1+++03ffXVV3r88cf11FNP6YcfftD27dsl/XFSd8+ePXrggQfkvVeVKlUynRBG/tHCDlrYQQs7aGELPeyghR20KD4c89lBCztoYQs9AEgMsMOIyBPes2fP1pdffpllmYyMDH355ZeHNbwe3sllZGRoz549hbfiJVj4gG/ixImqUaOGGjRooPfff/+Ihw8efPBBee81aNCgwljNowIt7KCFHbSwhR520MIOWthBCztoYQs9SoZwp59//ll/+tOfVKNGjUzfTFe1alWNHDky032SkpI0dOhQee/VoUMHpaSkFMeqlzq0sIMWdtDClvA+fPny5TrvvPN0zDHHBC3q16+vs846S8uXL890n59//lndunVTTEyMhgwZIqlwv43laEULO2hhBy3soIUt9LCDFnbQwg6O+eyghR20sIUeQOnHADvMyO4kevjTVoczvH7oAUtSUpLGjBmjrl27qn///oW78iXYb7/9ph49esh7r44dO2rJkiWH/VjhTz5773Xuuedq/fr1QQcOIPNGCztoYQctbKGHHbSwgxZ20MIOWthCD/vWrl0bfK1pxYoV1ahRI1188cXBVWK89/r73/8eXIFMkr788svgtq+++qoY1750oYUdtLCDFrasXLlSbdu2DbZv9erVVadOHVWtWlXee9WqVUszZszIdJ8777xT3nvVrVtXO3fuZJ9dSGhhBy3soIUdtLCFHnbQwg5a2MExnx20sIMWttADKN0YYIdZkSfBCzK8fuhXiixYsECPPfaYTjzxxEyfwrr66quL/DWUFKtWrdJxxx0n7706d+6szz//XLt375b0xwcL8rpK3/333x9s265du+rtt9/Wxo0bM93v0MfgoDIrWthBCztoYQs97KCFHbSwgxZ20MIWetgU3l6PPfaYqlSponLlyun666/X+vXrJUnLli3TI488Emz3v/3tb9q0aZMk6aefflLlypUVExOj77//vtheQ2lBCztoYQct7Nm3b58GDRqksmXLqnLlyrruuuu0Zs0a/frrr3rnnXfUuXNnee+VkJCgDz74QPv375ckvf/++ypbtqyaN2+uvXv3FvOrKB1oYQct7KCFHbSwhR520MIOWtjAMZ8dtLCDFrbQAzg6MMAOkw53eD3SnDlzNHbsWFWrVk0VKlSQ9z74xK73XvXq1dOWLVuK+qWUGImJiapXr5689zrhhBN02223adGiRcFV8HMT/gr58J8qVaqoatWqatiwoS6//HK9/vrrwbLhDxhEDjJ8+OGHwT8iQAtLaGEHLWyhhx20sIMWdtDCDlrYQg+7LrroInnvdeyxx2r16tVZbn/77beDbX/jjTdq/fr1uuuuu+S9V4sWLbRnz55iWOvSiRZ20MIOWtiRlJSkU089Vd57nXLKKfrll18y3f7777/r/PPPl/deNWrU0CeffKJ9+/bp6quvlvdeZ5xxRjGteelDCztoYQct7KCFLfSwgxZ20MIWjvnsoIUdtLCFHkDpxgA7zCnI8Hr401bh+2zbtk2LFi1S//791bBhw+B+9evX1yWXXKJ3331XjRs3lvdegwYN0r59+6L/Ag1buXKlunfvHgz8lytXTl27dtVNN92kzz//PNv7jBo1KtjO8fHxatu2ra6//nr169cv01Xv77vvvmzvP3nyZLVr107x8fFauXJlUb68EoUWdtDCDlrYQg87aGEHLeyghR20sIUetmRkZGjv3r1q166dvPfq2bNncNuhV7OfOnVqsK07d+6s5s2bKxQKafDgwdq/f3+eV9BH7mhhBy3soIU9ixYtUqVKlRQTE6OHH35YUvYfHOvVq5e896pevboGDhyopk2bqkKFCnriiSck5f2tK8gbLeyghR20sIMWttDDDlrYQQsbOOazgxZ20MIWegBHBwbYYVJGRobmzp2b6/B6+CBGknbu3Kk5c+boz3/+s0444QR571W2bFnFx8fr1ltv1dy5cyVJDzzwgLz3Kl++vH788ceov66SYPPmzXr22Wf15z//Wd57xcTEqHv37sHXy0eKHGQ4++yz9cwzz2S6fdWqVRozZkywzFNPPZXp9t9++03dunULbn/ppZeK9LWVNLSwgxZ20MIWethBCztoYQct7KCFLfSw5//+7//kvdeJJ56oxMTETLdlZGQEV8mfMmVKsC29P/hh/QULFhTHKpdatLCDFnbQwo49e/aoTZs28t6rb9++SkpKynR75PvlPXv2DN4H997rpJNO0tKlS6O9yqUWLeyghR20sIMWttDDDlrYQQtbOOazgxZ20MIWegClGwPsMOnrr79W9+7dg53K7bffrg0bNkj641O34U9HjR8/Xpdffrni4uKC5atVq6YHHnhA06dPDx5z2bJlat68uWJiYnTHHXdkegxkb+rUqZo8ebJ27twpKfPBYuQgQ58+fTRz5sygTeSV7ZOSkjRs2DCdfPLJmjZtWpbn+Oyzz+S915NPPlnEr6Zko4UdtLCDFrbQww5a2EELO2hhBy1soYcNr7/+erCtx44dq+Tk5OC28Jvve/bs0RtvvKFmzZoFy37yySeZHien9zh47yP/aGEHLeyghR0pKSm67rrr5L1X69at9e2332a6PXI//sILLyghIUHee5UpUybLN61EXtkSBUcLO2hhBy3soIUt9LCDFnbQwhaO+eyghR20sIUeQOnGADtMWr9+vUKhkLz3uuOOO7Ru3bpMt2/dulWPPPJI8InbmJgYee91xhln6I477tCKFSuyPObzzz8v771CoZDee++9KL2Skim7A73wTl/KPMhwySWXBFe4z+m+8+bN0/z584PbFy5cmOn2yCvr8w+DzGhhBy3soIUt9LCDFnbQwg5a2EELW+hhz5133hls8/vuu0/z5s2TJCUnJ2vdunX629/+FnzjnPdeH3zwgaSD2zvyxK4k/f7771q7dq02b96c6fds+/yhhR20sIMWdqxatUr169eX9we/EvvLL7/Ujh07gtu3bt2qIUOG6JRTTslXD+ngvwEi/x0g0SM/aGEHLeyghR20sIUedtDCDlrYwjGfHbSwgxa20AMovRhgh1mLFy/W8OHDtWXLluB33333nZ5//nkdf/zxio2NDXY8sbGx6tOnjyRp7969kjLvWJYtWxYcAPXv3z+6L6SUefDBB4Ptfumll+qrr74KbsvrE84ZGRmaPHmyWrdurf/7v//Lcj/+MVAwtLCDFnbQwhZ62EELO2hhBy3soIUt9IiuyDfP77nnHpUpUya4qtipp56qE088UdWqVQuaeO/10UcfSTq4XVNTUyVJW7Zs0YsvvqhevXqpXr16iomJUe3atdWrVy89+eST+v3337M8HzKjhR20sIMWNv3888/BFcXq1aunzp0767bbblP//v3VpEmTTN9UGv52lMge27Zt0xdffKEBAwaoZ8+eOv3009W9e3dNnDhR33zzTfA89MgbLeyghR20sIMWttDDDlrYQYvixzGfHbSwgxa20AMo/Rhgh2nhk9xffPGFxowZo5o1a6pSpUry3qt69epq2LBhpk/dfvnll5IO7lAiP0X1wgsvqEqVKqpVq1Zw9XVOnBfc6NGjCzzIELmd33rrLZ111lnBY0QeOKJgaGEHLeyghS30sIMWdtDCDlrYQQtb6FE8It8Unzp1qoYOHapu3brp5JNPVt26dYNvnfPe68MPP5SU+c33FStWqHv37qpbt6689ypbtmymN+wrVKigLl266JdffsnyfMiMFnbQwg5a2LR27VrddtttOvnkk1W1alWVK1dO5cqVy/OE7apVq3TJJZfouOOOk/c+U7+yZcuqefPmevLJJ4PnoUfeaGEHLeyghR20sIUedtDCDloUP4757KCFHbSwhR5A6cYAO8zbunWrOnXqlGnn0aZNG/373//WokWLtGDBAp1zzjnBbdOnT5f0xw4lNTVV7dq1k/deZ5xxhnbv3p3nc6anpwc7Jhz0yCOPFHiQIfL3b7/9trp16xY8xrPPPlvk61xa0cIOWthBC1voYQct7KCFHbSwgxa20KN4Hfoh+99//11PPvmkTj311GCbRn7tafjN959//ln16tULlomPj9fQoUM1duxYTZw4UX369FGTJk3kvVejRo20du3abJ8Pf6CFHbSwgxY2paamKj09XQsWLNDdd9+t448/PtcTtomJiWrUqFGwTLly5XTBBRfommuu0cUXX6ymTZsGt/3zn/8MnoceeaOFHbSwgxZ20MIWethBCztoUfw45rODFnbQwhZ6AKUXA+woEZYuXarY2Fh16tRJI0aM0L59+4LbUlNT9fnnn2c7xJ6enq7HH39c3ntVq1ZNn3zySfD7nKSnp+v777/XiSeeqKuuuqpoX1gJsnjxYoVCIfXo0UNff/118Pu8BhkyMjKyDDI899xzwXLp6el5fg09MqOFHbSwgxa20MMOWthBCztoYQctbKGHLV9//bUaN26c7Zvv4Q/sr1q1KjhhW6NGDV144YVavHhxpsfZuXOnZs6cqQ4dOsh7r1NPPVWbNm2K+uspyWhhBy3soIUN4f3ryy+/rBYtWmQ75HPgwAFJ0vLly3XssccG75N37dpV33//fXC7JH333Xe65557gscZO3Zs9F9UCUULO2hhBy3soIUt9LCDFnbQwh6O+eyghR20sIUeQOnBADtKjM2bN2vdunXB8HlaWlpwMHPgwAHNmDEj2yH2yy67TN57tW3bVqtWrcr1OcLD6927dw8e5+abby7aF1aCrF+/Xt9++23w98O5Ct+hgwzZfZiAr2PJGy3soIUdtLCFHnbQwg5a2EELO2hhCz1s6d+/v7zP/FXZ4W2/bds2XXzxxfLeq3r16urfv7/WrFkj6Y/tG7ntFyxYoFNOOUXee91xxx3av39/dF9MCUcLO2hhBy3sWLVqVbAf/vjjjyVl7rF582Z17dpV3nslJCSof//+wfvkke+xS1JycrLGjh0btAv3Rf7Qwg5a2EELO2hhCz3soIUdtLCFYz47aGEHLWyhB1A6MMCOEim7k+jZDbHfcccdwc/jx4/P9THDw+vhg564uDjFxMTIe69BgwYV1UspsQp7kGH06NG66667im6FSzFa2EELO2hhCz3soIUdtLCDFnbQwhZ6FJ/I7bZ06VJJf7z5Ht7+M2fO1HHHHSfvvbp16xacsM2p2/79+/Xcc8+patWqOuGEE/Trr78W8asoHWhhBy3soIVNS5cu1aeffirpjx7hVhMmTFCdOnXkvddFF10UnLDNqcfGjRvVr18/lSlTRrfcckumq1kib7SwgxZ20MIOWthCDztoYQctih/HfHbQwg5a2EIPoHRhgB2lyqFD7KFQSN57nX322dq8ebOk7HdGhw6vly1bVn/961919913B49xyy23RPvllDiHO8jw5JNPBss99thjUV3n0ooWdtDCDlrYQg87aGEHLeyghR20sIUe0XPoVeoPfS/jhhtukPde5cqV0/fff5/tModat26d4uPjVatWLe3bt69wV7gUo4UdtLCDFnZFnqwNu+CCC+S9V3x8vJYsWRIsl5u33npL3nudccYZfHPKYaKFHbSwgxZ20MIWethBCztoUbw45rODFnbQwhZ6AKUHA+wodfbt26fvvvtOHTt2DIbPhw0bluPy2Q2v9+vXT/PmzZMkTZw4MXicIUOGROtllDiHO8jw+OOPq0yZMvLeq127dpmWDS+PgqGFHbSwgxa20MMOWthBCztoYQctbKGHHRkZGTr33HMVExOjiy66SOnp6XmehA33+/jjj7Vnzx5JbPvCQAs7aGEHLWzZvHmz6tatq7Jly2r48OGSsp7kjRRusW/fPt16663atWtXpt/j8NHCDlrYQQs7aGELPeyghR20sINjPjtoYQctbKEHULKEHFCKSHLlypVzTZo0Cf7eokULd/fddwd/j5SRkeH+97//uaFDh7rZs2e7MmXKuL/85S/ulltucaeffrpzzrmrr77aPfvss8577x577DE3duzY6L6oEkCS894755x755133HPPPedmzZrlnHPu2WefdTfddJNz7uD2ds65UOjg//SMGzfODR8+3KWlpbm6deu6OnXquGrVqrm5c+e6FStWBMump6dH+RWVXLSwgxZ20MIWethBCztoYQct7KCFLfSwJTU11W3ZssVlZGS4hIQEFwqFgm2ek3C/8847z8XHx7u0tLQ874O80cIOWthBC1uSkpLc5s2b3YEDB1zNmjWdc87FxMTkuLz3PniP/YknnnCVK1d2aWlpQSMcPlrYQQs7aGEHLWyhhx20sIMWdnDMZwct7KCFLfQASpiojssDRSz8ian//ve/aty4sWJiYjRs2DClpqZm+WRUXldel/74hNW2bds0dOhQhUIhtW7dOvh6EfwhIyNDU6ZMyfdV+MaNG6eyZcsGy5YvXz640r33Xk2bNtUTTzyR6f7IH1rYQQs7aGELPeyghR20sIMWdtDCFnrYsX//fnXs2FHee11xxRUFvn/4vY7Iq45xBbLDQws7aGEHLWxZv369qlevrlAopDfeeENSwfa54W0feZ+MjAyaHAZa2EELO2hhBy1soYcdtLCDFnZwzGcHLeyghS30AEoWBthRakTuLPr16xcMpWc3bB4eXu/cuXOw3FVXXaWvvvoq28eTpA8++CA40T5hwoSieyEl1NSpU9WmTZt8DzLExsbKe68aNWro2muv1Zw5c7RixQq98847GjRoUPA49913X3G8nBKNFnbQwg5a2EIPO2hhBy3soIUdtLCFHraEt3GLFi30448/5us+h77PkZiYqIULF+qLL77QrFmztH//fu3fv18SHygoCFrYQQs7aGFL9+7dg5O24a/BzsuhPfbu3avt27crOTlZO3fuzHQbPfKPFnbQwg5a2EELW+hhBy3soIUdHPPZQQs7aGELPYCSgwF2lDqvvPJKcCL8n//8p6TMn54ND6936dJF3nuFQiG1bdtWy5cvDx4jcqcU3uns2LFDNWvWlPdel156aZbljnZr164NBhTGjx8f/D63QYbWrVvr6aefzvJYe/bs0SOPPBJ8uGDKlClReQ2lBS3soIUdtLCFHnbQwg5a2EELO2hhCz1smTlzpho0aCDvvUaNGqWUlJTgtuzeqwg3Sk9P11dffaWhQ4eqRo0aKl++fPAeSufOnXXnnXdq06ZNkv74ljvkjhZ20MIOWtgQ3tajR49WmTJldMIJJ2ju3Ll53i/cIyMjQ6tXr9bDDz+sDh06qHr16qpfv76OPfZYDR8+XB9//HFwH3rkjhZ20MIOWthBC1voYQct7KCFPRzz2UELO2hhCz2AkoMBdpQqu3bt0lVXXaW4uDhVrlxZ77//vqTMXwn1/fffq2vXrvLeByfVvfd67LHHgsc59JNSaWlpeuONN4KvP7/88sszPS4OWrRokV588cXg77kNMpxyyimZlo3csaenp2vVqlU65ZRTFBMTo3vvvTcq61+a0MIOWthBC1voYQct7KCFHbSwgxa20MOWhx56KHhPY9y4cfrtt9+C27L7YP6BAwc0atQonXbaacH9mjRpotNOO03ly5dXTExM0G7t2rWSeBM+v2hhBy3soIUdGzZsUNu2beW9V9euXbVo0SIdOHBAUtb3tyN7PP7448FVLsN/atWqFVwUpmrVqhozZkyW+yJntLCDFnbQwg5a2EIPO2hhBy1s4ZjPDlrYQQtb6AGUDAywo1SJvEr6tddem+m2Q4fXy5YtqyuuuEI33XRTsON5+OGHg+Ujd1a//vqrLr300mC5F154IWqvqaQqyCBDTgeBnTp1kvde3bt3V1paGjv+w0QLO2hhBy1soYcdtLCDFnbQwg5a2EKP4hO5PYcMGRK8V3H99dfr/fffz7Qdw+9tHDhwQEOHDlXt2rWD5d98801t375dkrR8+XI99thjatWqlbz3atq0qdavX5/pMZAVLeyghR20sGn58uXB9m3fvr1eeuml4IphYZEnbIcNG6Zjjjkm6DFx4kRNnz5dW7Zs0bPPPqvLLrssuG3kyJHBY9Ajb7SwgxZ20MIOWthCDztoYQctih/HfHbQwg5a2EIPoGRhgB2lzuLFi3XKKafonXfeCX6X3fB6v379NG/ePGVkZGT61NU//vEP7dixI7jvsmXLdPXVVwe3d+vWTYsXLy6GV1ayHO4gQ0ZGhtLT07V06VKdcMIJio2N1dChQ/N8DuSMFnbQwg5a2EIPO2hhBy3soIUdtLCFHsUr8k32+++/X1WrVg2+Ne7OO+/MtGx6errGjBmT6YSt9z7T1cUkKSUlRd9++63OOOMMee918cUXa+fOnVF5PSUZLeyghR20sOnnn38OTrRWr15dCQkJmjFjRqZl0tLSNHLkyEwnbKtVq5ZlW69du1ajR4/ONAiE/KOFHbSwgxZ20MIWethBCztoUfw45rODFnbQwhZ6ACUHA+wolTZt2hR8Ciqn4fVvvvkmWD4pKUn33ntvsBPq3Lmz+vbtq549e+rUU08Nfn/cccfpueeeK66XVSKNGTNG5cuXz9cgQ+TfH3jggWC7DxgwQJ9++qkmTpyoGTNmaPXq1cFyXKEv/2hhBy3soIUt9LCDFnbQwg5a2EELW+hRfCK3zfvvv6+bb75Zp512mnbv3i3pjyu/LFmyRGeeeaa894qJidE111wTbPvhw4cHjxFe/uOPP1bdunXVsGFDff/991F8RSUXLeyghR20sGndunW6/fbb1bRpUyUkJCgpKUnSH9t3+vTpatOmjbz3KleunE466SR571W7dm0tW7Ys07JJSUkaNmyYvPf685//rG3btnHVsQKghR20sIMWdtDCFnrYQQs7aFH8OOazgxZ20MIWegAlAwPsKNUOHDigr7/+WmeffXam4fV58+YFy4R3MCtXrtQ555yT6dNUkX9OO+00Pf3001nuh5xt375dCQkJ8t6rXbt2+R5keOGFFzJt+9q1a6tcuXLB30844QQ9+eSTOT4WsqKFHbSwgxa20MMOWthBCztoYQctbKFH8YvcNunp6cGb8gcOHAh+P3LkyGDbTpgwQZL0xBNPBL+7++67Mz3m5s2b1bJlS3nvNWrUqCi8itKBFnbQwg5a2LRv3z5t2rRJ+/btk5S5xy233BJs+1dffVW///57cGGY2rVra/ny5ZL+OAn82WefKTY2VuXKlSvQt5by3vpBtLCDFnbQwg5a2EIPO2hhBy2Kn4VjvnD/o/0iGLSwgxa20AOwjwF2lGopKSnq1auXvPeqWLFijsPrYQMHDgxOll988cU655xz1Lp1az300EOaM2dOsFx2X4Ge29+PZkuXLtWf/vQnPfvss8HvchtkmDhxYvCPgGbNmumqq67S/PnztWzZMr333nu6+eabg9vvvffeaL2MUoEWdtDCDlrYQg87aGEHLeyghR20sIUe9oTfk0hPT9eePXuCb5br06dP8MZ8SkpKrm/C9+/fX957Pfjgg1Ff/9KEFnbQwg5a2BK5j16yZImqVKki770GDRoU/H7p0qXZDvtIB0/4tmzZUjExMZo5c2auz7Vo0SK98cYbwd95Dz0zWthBCztoYQctbKGHHbSwgxZ2RPOYb/Hixbr99tuDDx0wHJoZLeyghS30AGxhgB2l3sKFC1WrVi1ddNFF+vbbb4PfRx5IpKamSvrjE1RnnXVW8LvwV4eEceW3gtu5c2fwc34HGTp37qwJEyZk+tSbdLDHv/71r2C5N998s2hXvpShhR20sIMWttDDDlrYQQs7aGEHLWyhh13bt29XjRo15L3XXXfdlem21NTUbN+E37Rpk5o1aybvvR5++OHiWO1SiRZ20MIOWtjyww8/qHz58oqNjdWkSZMk/fEeemJiYrbDPvPnz1dcXJy89/r4449zfOyffvopuHjMtddeG/yeYZ/s0cIOWthBCztoYQs97KCFHbSwoyiP+X766ScNGjRI3nuVKVNGCxculMRwaE5oYQctbKEHUPwYYMdR4ddff9X8+fODv+d0xfQ+ffrIe68WLVoEO4zsdhzh5bdt26bly5frH//4h26++Wb17dtXffv21ahRozR79mwlJSUV1UsqkfI7yPCnP/1JkydPDm4/9CtdVqxYoZNOOkneew0fPjw6K1/K0MIOWthBC1voYQct7KCFHbSwgxa20MOevXv3qlGjRipbtqxefPFFSdL+/fuD2w99E37YsGH64IMPVKdOHdWoUUNffPFFsOyh76XwAf+CoYUdtLCDFrbMnDlT3ntVq1ZNP/zwg6TM2/HQYZ+FCxfq9ddfV8WKFdWqVStt2rQp28f96aefdPPNN6tatWpBy5tvvjm4nWGfrGhhBy3soIUdtLCFHnbQwg5a2FGYx3yRwi3CV9r33qtq1apc4TgXtLCDFrbQAyh+DLDjqJPTgcOBAwfUsWNHee91zjnnKD09PdcTHV9//bUuvfRSNW7cONjZRP4JhULq378/V4vLQX4HGSJ7Rf7cuXNnee/VpUuXPFshd7SwgxZ20MIWethBCztoYQct7KCFLfQofunp6dq5c2fwvsXQoUOzXS41NVXjxo0LGtWpU0feH7xKfkpKiqTMbWbMmKH169dL4o32/KKFHbSwgxa2ZGRkaO7cufL+4FXBcjoBGznsU716dTVp0kTee1188cXat29fluXDJ2yrVq0q770aNmyoUCgk771uueWWTM+Pg2hhBy3soIUdtLCFHnbQwg5a2FFUx3yHtmjWrJnat2/PcGguaGEHLWyhB2ADA+zA//fqq68GO5tnn302x+XS0tL08ssvq1y5csFBSXx8vBISEtSjRw+1bdtW7dq1k/deMTExqlixou67774ovhL7Infc+R1kiPTtt9+qXr168t5rxIgRUVnn0ooWdtDCDlrYQg87aGEHLeyghR20sIUeNoS374MPPijvvTp06BB8NfahUlNT9fjjjwetjj/+eC1btiy4LeyTTz5R3bp1VbduXa1Zs6bIX0NpQQs7aGEHLexJS0sLhngGDRqU47eLJiYm6k9/+lPQo1mzZtl+aODQE7YtW7bUJ598on//+98M++SBFnbQwg5a2EELW+hhBy3soIUNhXXMd+DAgWC57FrMmDFDy5Yt07nnnhsMhy5ZskQS38wVRgs7aGELPQAbGGDHUS+8Q7rrrrtUpkwZVaxYUTNnzsx22Z07d+qRRx4JdkjeezVq1EivvfZa8PVTycnJ2rdvnyZOnKhLL700OGgZPHhwtF5SifHMM88UeJAhNTU1+MeD914vvfRSNFe51KKFHbSwgxa20MMOWthBCztoYQctbKGHDTNmzNAxxxwj773Gjh2b6UpikR1SU1M1atQo1alTRx988IGkzCdsp02bppYtW6pMmTLy3gcf1ufEbP7Rwg5a2EELGzIyMnTgwAE98MADCoVCOvnkk/Xtt9/muHxiYqJatWqlChUqaPr06ZLyPmH7+eefB8tMmDAheN/8zjvvLNoXV8LQwg5a2EELO2hhCz3soIUdtLDnSI75Igc7s2sxffr0oMXKlSvVo0cPee/VuHFjrVixIstzHO1oYQctbKEHULwYYAckrVmzRrVq1ZL3Xj169MhxucivBKldu7auuOIKbdmyJcfl165dq0ceeSQ4aBk+fHhRrH6Jk5GRoZ07dwbbpXv37vkaZJCkF198MWhw9dVXR2uVSy1a2EELO2hhCz3soIUdtLCDFnbQwhZ62DNq1Khgu44bN06///57cFvkAOiBAwe0YsWKLF+XPW3aNLVq1UqhUEi1atVS//799euvv2a6P195mj+0sIMWdtDCjg0bNqhNmzby3qtr165atGhRsO0O3X+vXLlSs2fP1v79+zP9PnzCtkqVKplO2EZeLf/AgQN69tlng38rjB8/vuhfXAlDCztoYQct7KCFLfSwgxZ20MKWIz3my0+L8HIdOnSQ916XXHKJtm/fXrQvrASihR20sIUeQPFhgB1HtfDJ8/fee0/VqlVTTExMcHWeQ0+sv/3228HOqn79+rr99tu1bds2SVlPgEQe9Ozdu1dPPfVUcNAyYcKEIn9dJcXixYvVs2dPvfTSS/kaZHjppZeCBueee64WL14sia9UKQy0sIMWdtDCFnrYQQs7aGEHLeyghS30KH6R227o0KHB9h04cKA+/fTTfD3GtGnTdPLJJwdXNfbeq0aNGjr22GN12mmn6Y477tDGjRslMSCaG1rYQQs7aGHT8uXLVbduXXnvdcYZZ+iNN97Qb7/9Jinvq4IderWxk046KdPVxiJt2bJFffv2VWxsrPr06aPdu3cXyespyWhhBy3soIUdtLCFHnbQwg5aFL/COOb76aefNHDgwGAoNLcWaWlpeuyxx+S9V5MmTfTjjz9K4urGEi0soYUt9ACKHwPsgKRLL71U3nvFx8cHJ8gj/e9//1P16tXlvVdCQoJuueUW7dy5U1L+TqRv375dt99+u0KhkDp37qxly5YV+msoqXbt2lXgQYZu3brp008/zfFT0pHCt7Gzzxst7KCFHbSwhR520MIOWthBCztoYQs9il/kwOY///lPlSlTRqFQSDVq1NB1112nb775Rnv37g2WidyWH3/8sVq1ahUMhjZu3FgdOnTQ3//+d51++uk69thj5b1XixYttHbtWkl84CA3tLCDFnbQwqaff/5ZJ5xwgrz3qlOnjs455xx9+umnuX4bafiEbXx8vLz3OuWUUzRz5kylpKTkeJ8HHnhA3nvFxMTou+++K4qXUuLRwg5a2EELO2hhCz3soIUdtCh+BT3mi3RoixYtWmj+/PnZLh8+Vpw/f77Kli0r770eeOCBonlRJRQt7KCFLfQAihcD7Djq7dixQ6eccoq897rsssuUkpISnMhIT09Xamqqhg0bpvLly8t7r/PPP19bt24Nbs+vWbNmqUGDBvLea9KkSUXxUkq03IYNJk2alGmQ4eOPP87yNSuS9M0332jq1KkaOXKknnzySc2dO1fr168PbucEVf7Qwg5a2EELW+hhBy3soIUdtLCDFrbQo3hFvgn/6quv6sILLwy2+ZgxY4LtfehgaMuWLYNvlOvZs6dWrVoVfK3p9u3bNXv2bJ1xxhny3qt169batGlTdF9YCUQLO2hhBy1sWrt2ra6++mo1bNhQ3nvVrVtXL774Yrb726VLl2rgwIGqXLly0O6GG24Ibj/06vfhxxg/fnyw/Pvvv1+0L6gEo4UdtLCDFnbQwhZ62EELO2hR/PJ7zBcpfBX88BWNvfdq0KCBfv31V0nK9srGkvTZZ58Fy48cObJoXlAJRgs7aGELPYDiwwA7oIMHIt57jRgxIsttycnJatmypbz3OuaYY7Ru3TpJh3di/I477pD3XscddxwnTPIpP4MMn332mYYMGSLvveLi4oLl4+LidNZZZ2nChAnBsnxV8OGjhR20sIMWttDDDlrYQQs7aGEHLWyhR/REvo/x66+/6r///a9GjRql5ORkSZm33bRp09SqVSuFQiFVqlRJgwYNynR75BDprFmz1KRJE5UtW1aPP/54ltuRFS3soIUdtLBpx44d+uKLL3TLLbfotttuC64gFrkNly5dmumEbd26dYN99b/+9a9guUPfT9+wYYP+/Oc/B/v0zz//PDovqoSihR20sIMWdtDCFnrYQQs7aFH88jrmi7w9PBRatWpVee/VtGlTHXfccfLeq3nz5vrtt98k/XGcGO64ZcsW3XjjjcGVjceOHZvpdhxECztoYQs9gOLBADvw/61fvz74FFTkjmHatGnBwUb4k0/ZnRDPbWcS3onNmTNHVatW1bHHHqvFixcX5uqXSvkZZHj00UfVpk2bTMtdeOGFuuCCC1SrVq1sP7XGVfkKjhZ20MIOWthCDztoYQct7KCFHbSwhR7Rl9N7F5Hbfdq0aTr55JODN9EHDhwYvA+S3fshW7duVfv27eW9V58+fYpmxUshWthBCztoYVv4ymGRVxA7dMinVatWmjZtmu6///5gH/3www9neaytW7fq6aefDoaCGjZsGHzrKfJGCztoYQct7KCFLfSwgxZ20KL45HTMF9ni0KHQli1b6vPPP9e8efN0yimnBMOhGzZsyPQYW7Zs0XPPPacGDRrIe6+aNWtq7dq1Rfp6SjJa2EELW+gBRB8D7EAeJk6cGByUfPTRR9kuEz45vm3btuCTV9nZsWOHGjdurIsvvrhI1rU0ee655xQTE5PrIMNDDz2kevXqBX2GDx8u6Y9/OMyePVu33XZbrgeVyBst7KCFHbSwhR520MIOWthBCztoYQs97Igc+P/444/VqlUrlSlTRt57de3aNdfB0PAb+gMHDpT3Xh07dtTu3bujs+KlEC3soIUdtCh+kSdvI3ssXbpUAwcOzDTk8/nnn+vAgQPav3+/HnzwwWAfPWLECC1atEjp6elauHCh7rnnHjVq1Cg4YfvSSy9leXxkRQs7aGEHLeyghS30sIMWdtDCpsgu2Q2FTp8+PXgvcP78+cFwaNOmTfXSSy9pzpw5mjVrlgYMGBAMhVavXl2PPvqoJFoUBC3soIUt9ACKFgPsQB7Gjx8ffFp248aNkrL/xNWKFSt04okn6rbbbtPOnTuz3J6enq49e/bo1VdfzfS7nB7vaLZz587gAPGcc87JdpDhlVdeUbNmzYKDRe8Pfo3XqlWrsjzW2LFjg38AfPLJJ9F8KSUeLeyghR20sIUedtDCDlrYQQs7aGELPew49BvoTjrppGB716xZU19//bWk7AdDw7Zu3arTTjtN3nudd955Rb7OpRUt7KCFHbSwK3zC9tAhn8j9+d69ezVmzJig2bHHHqvmzZurfPnyio+PD/bdQ4cO1bp164rx1ZRstLCDFnbQwg5a2EIPO2hhBy3sWLp0qQYNGpRrC0lauHCh2rZtK++9ypcvL++9QqGQYmNj5b1XjRo1dMcdd2j16tXF9EpKPlrYQQtb6AEUDQbYgTy8+eab8t6rUqVKWrJkSY7LffbZZ8FBS05D7JHCJ1bCJ2LWrVunyZMnF96Kl3ALFy7UhRdeqKlTpwY7+/DA/549e9S3b99ge//jH//Q2WefLe+9atWqpeXLl2dafuPGjerdu7diYmI0atSo4nlBJRgt7KCFHbSwhR520MIOWthBCztoYQs9il9Og6G1a9dWpUqVVKdOHf3yyy853j/8vsbPP/8cXG2sf//+XDHmMNDCDlrYQQu7EhMTdfXVVyshISHTCdvIr9OONHHiRFWqVEnlypXL9MG0hIQE3XfffVq5cmWUX0HpQQs7aGEHLeyghS30sIMWdtDCjs2bN6tfv36qXLlyvlps375dF154oY455phMLWrXrq3HHnuModAjQAs7aGELPYCiwwA7kIdZs2YpNjZWsbGxmj59eq7Lvvrqq8FO59Zbb81ziD18Imbjxo0aOHCgQqGQrrzyykJb95IuKSkp253922+/HWzne+65R5K0fPlydenSJdjhHzrQcM899wT/iNi/fz8nqwqIFnbQwg5a2EIPO2hhBy3soIUdtLCFHsUnu8HQUCikKlWqaNCgQfrTn/6kdu3a5Xj/8GDogQMHdO655wYfLvj222+LfN1LG1rYQQs7aGHbpk2b1LBhQ3nv1aZNm1xP2IbNnTtXo0eP1plnnqmePXvqiiuu0P/+9z8lJSVFaa1LJ1rYQQs7aGEHLWyhhx20sIMWtgwdOlTee7Vs2VIzZszIsUXk8d7nn3+usWPH6s4779SYMWOyDIRGHlsi/2hhBy1soQdQNBhgB/IhfKKjd+/e2rp1a5bbI3co4Su2e+91yy23aMeOHdk+Zvg+v/76qwYOHKh69eoF91u0aFGRvI6SLrzNbr/99uAfBT///HNwW2Jiorp27ZploEGSXnvtNXnv1b59+2JZ99KGFnbQwg5a2EIPO2hhBy3soIUdtLCFHtGR01WNq1SpoqFDh2rv3r0677zzVLZsWS1YsCDL/cNvwKempmrgwIHy3isuLk7XXHONNm/enO/nBi0soYUdtCgZFi5cqE6dOum///1vrkM+OW3T8O/DHzg7dDla5B8t7KCFHbSwgxa20MMOWthBi+IXuY0eeughTZs2Lc8PEuR24Yq8LmpBk5zRwg5a2EIPoGgxwA7kIrxTmDBhgqpVq6ZGjRrpo48+ynZnEf5dWlqaLr/88mAY/d57782y4zp0eL1u3brBiZgPP/ywiF9VyRXebmeddZa89+rSpUuWZQ4daFi1apUk6aqrrpL3Xn369InmKpdatLCDFnbQwhZ62EELO2hhBy3soIUt9Iiu//73v5kGQ++4445g8HPIkCEKhUIaNWqU9u3bl+W+qampuvHGG4OvTD3uuOM0c+bMLMulpaUpLS0tx/dFcBAt7KCFHbSwLzk5Oc8TtpHS09ODbbt///5Mt61evVo//fSTli9fro0bN2a5H3JHCztoYQct7KCFLfSwgxZ20KL4RW7/gmynyGO31NTU4Of9+/dr1qxZmjJlil5++WVNmTJFu3btUkpKSoGf42hDCztoYQs9gKLDADuQD5s3b9bZZ58t7706deqU6QrpkTubdevWadSoUapevbq892rUqJHGjx8f7GAilz90eD0+Pp7h9Xy65ppr5L3XlVdeKSnzTl7KPNBQq1YtTZo0Sa1bt5b3XqNGjZLEzr6w0MIOWthBC1voYQct7KCFHbSwgxa20KPoffbZZzrmmGNUrly5YDA0cptNmTIl+GD+6NGj9f3330uSVq1apVmzZqlz587B7bVq1dJ//vOfTI+/cOFCvfPOO+rdu7fOOecc9erVSzfffLNmzJih7du3S/rjKslHO1rYQQs7aFG6RW7bV199VTfccIPKlSunmJgYxcfHq2LFiho0aJDee++9bO+DwkMLO2hhBy3soIUt9LCDFnbQwo7IwdInnnhCF110UXBMGP7Tvn17DRo0KPhgAS2KBi3soIUt9AByxgA7kE+rVq1SkyZNgqvAzZ8/P9MVftavX69Ro0apWrVq8t7rhBNO0Msvv6ydO3cGyxRkeJ0r/eTsjjvukPdezZo102+//ZbtMomJierSpYu896pYsaK892rQoEGWTzof7qfkcBAt7KCFHbSwhR520MIOWthBCztoYQs9it6qVauCD9/feeedwbaJ3F5333138OZ5QkKCzjjjDNWoUUO1a9cOtnvLli0znYiVpNdff10tWrRQ1apVs7wJX79+fV100UVav369JN6El2hhCS3soEXpFdnwuuuuU506dTI1iI+Pl/deMTExqly5ssaMGRMsT4/CRQs7aGEHLeyghS30sIMWdtDCjsgWV1xxhcqXL5/pWLFu3boKhULB70455RStXbtWEi0KGy3soIUt9AByxwA7UACJiYmqX7++vPdq06aNnnnmGW3atEm7d+/OMrw+adIk7dq1K7hv+ERLQYfX58yZo+effz46L9C48Hb57rvv1KRJE1WtWlVvvPFGjjvsxMRE/elPfwp2+p9//rmkP3bw4X8k7N27Vz/99JMkBhryixZ20MIOWthCDztoYQct7KCFHbSwhR7RlZiYqH/+85/BNglvt8htdM8996hmzZpZhjzr1KmjwYMH66uvvsr0mI8//nim5Zo3b67zzjtPAwYM0AknnKBatWrJe6/jjz9ea9asyfS8RzNa2EELO2hR+kRuywsvvDAY6PHe65ZbbtGzzz6rL7/8Ug888IAuuOCCoNM///nP4H7sxwsHLeyghR20sIMWttDDDlrYQQs7Ilv06tVL3nuVKVNGVapU0X333aevvvpKGzdu1HfffacHHnhAJ598srz3aty4sdatWyeJFoWFFnbQwhZ6AHljgB0ooBUrVqhDhw7y3qt8+fJq2rSprrzyyiIZXv/222912WWXyXuvAQMGROcFlgA7d+4MtkvHjh21ZMmSHJddunSpevTooeeffz7Tp9oiBxmOP/54ee81f/78Il/30oYWdtDCDlrYQg87aGEHLeyghR20sIUe0XfogGbk32fNmqV///vfuummm3T77bfrkUce0Zo1a5ScnJzpPk8++WRwUrZ169a6/fbbtWvXrqDFhg0bNGXKFLVv3z4YHP31118l8S10kWhhBy3soEXJF7kNr7jiCnnvFRcXp44dO+rtt9/Osvwvv/yihx9+OGj2zDPPRHN1SzVa2EELO2hhBy1soYcdtLCDFjZde+21QYsuXbro/fffz7JMSkqK5s+fH8z6nHPOOdq6dWsxrG3pRgs7aGELPYCcMcAOHIZff/1Vd911l9q0aZPpE7UnnnhioQ2vz5s3LzhhH/5z5513RucFlgCrV69WkyZN5L1Xly5d9NVXXwUnpg49qbRr1y6lpKRkeYykpKSgofdexx57rHbs2MFJqQKihR20sIMWttDDDlrYQQs7aGEHLWyhR/HL68oukbf/5z//CbZzhw4d9OKLLyo1NVXSwUHT8DbPyMjQjz/+qHbt2sl7r6uvvlq7d+/O8tiRjehFC0toYQctSqbHH39ccXFxKlOmjLp27Rp8e4p0sFnkhxP27t2rkSNHynuvVq1a6YcffsjyeGz/w0cLO2hhBy3soIUt9LCDFnbQwo5XX31VtWvXVkxMjDp16pSlxaFmz56tZs2aKT4+XhMmTMhy+6Et+Fau/KOFHbSwhR5A7hhgBw7T3r179csvv+iOO+5Q9+7d1bRpU02cOLHQhtf79u0bnFiJj4+X915//vOfMz3+0e7nn3/WMcccI++9WrZsqfvuu08rVqzI9/2fffbZTIMMkydPLsK1Ld1oYQct7KCFLfSwgxZ20MIOWthBC1voYUvkgGekdevWqUuXLvLe6/jjj9fzzz8fvGme3RvwGRkZ+s9//qM6deqocePGWa6Mn90b7pFX1wctLKGFHbSwLyUlRRdeeKG896pWrZo++OCD4LacBnaWLl2qs88+W957Pf/885luC7dYv369EhMTJfG12vlFCztoYQct7KCFLfSwgxZ20MKWG264IXj/75133gl+n1OL3bt3a8SIEfLeq3fv3tq3b19wW7jF2rVr9cILL2T5PXJHCztoYQs9gNwxwA4UguTkZG3atElJSUnB745keP3yyy8Pdl7h+3nv9frrr0fnBZUgK1asUKdOnRQbGyvvvapXr64nn3wyOLjLyz/+8Q957zVlypTgd3zC+fDQwg5a2EELW+hhBy3soIUdtLCDFrbQw7758+erevXq8t7rmmuuCQY5c9vOv/32m3r06CHvfbZfsS1Jw4YN0/XXX18k61xa0cIOWthBCztmzJgRvM/9wAMPBL/Pa788bNgwee81e/ZsSZk/MLBmzRpdddVVqlmzpj777LOiWfFSiBZ20MIOWthBC1voYQct7KCFHStXrlSZMmXkvdegQYOC3+fV4quvvlJcXJw+/vhjSQc/lBC+kOSaNWt00003yXuviy66qMjWvbShhR20sIUeQN4YYAeOQE47lMIaXh86dKj+/ve/KxQKqU6dOvrxxx+L7sWUYBs3btQDDzyg9u3by3uvgQMHaseOHbneJ/LTZ0uXLg1+ZpDhyNDCDlrYQQtb6GEHLeyghR20sIMWttDDtvvvv1/ee9WrV0+rV6+WlL8rhU2dOlV333138PdPP/006Hr//ferZs2a8t7r1ltvLYrVLpVoYQct7KCFHZMnT5b3XrVq1dK8efMk5d4ifNu2bdu0aNEiSdKePXv0yCOPaPz48UpOTtbf//734L33U045RSkpKezr84EWdtDCDlrYQQtb6GEHLeyghR2LFy9WKBSS917jx4+XlP+r12/evFnSwYtVjhkzRuecc47mzp2rwYMHq3bt2vLe65hjjgmWQ+5oYQctbKEHkDcG2IFCFj6QONLh9YEDB+rbb7/V8ccfz6em8iE1NVXbtm3TlClT9Ntvv0nKezDh0H8UcBBYOGhhBy3soIUt9LCDFnbQwg5a2EELW+hhV/gKYvXq1dPmzZsPazvPnDlTdevWVf369TV48GDVqlVLsbGxOv744/Xiiy8WwVqXTrSwgxZ20MKO8ePHy3uvY489Vlu2bCnw/dPT0/Xjjz/qhBNOkPdebdq0Ua1ateS912mnnaaff/65CNa6dKKFHbSwgxZ20MIWethBCztoYcfixYsVFxenSpUq6ZtvvpGU+aIW+fH777/r2muvlfdeFStWDL7Bq02bNlqxYoUk3lPMD1rYQQtb6AHkLeQAFBpJznvvNm3a5EaNGuXee+89t3nzZlexYkU3efJkd8EFF2RZ1jnnvv32W/fEE0+4t956yznn3PXXX+/uvfdeV65cOZeSkuJCoZA766yznHPOpaenR/+FlQBlypRx1atXd5dccomrWbOmy8jIcN57l5aWlmm5yO0XCmX+n8BwDxwZWthBCztoYQs97KCFHbSwgxZ20MIWetgjyTnnXFxcnHPOubp167ratWs7731wW36kp6e7Fi1auKZNm7oNGza4p59+2v3+++/uuOOOcyNHjnTXXnttpudDVrSwgxZ20MKeChUqOOec27p1q9u8eXOB7++9d61bt3aXXXaZc865H3/80f3++++ubdu2bsqUKa5Zs2a8d55PtLCDFnbQwg5a2EIPO2hhBy3siI+Pd2lpaS4pKcnNmTPHOedcTExMvu8vySUkJLgrrrjC1a5d2+3du9ft2LHDtWjRwn3xxReuadOmLj09nfcU84EWdtDCFnoAeWOAHShE3nu3efNmd9ddd7mPPvrosIbXBwwY4P7xj3+4WrVquVdeecX9+uuvrnz58u7cc891zmXekXFiJGehUMilpaW52NhYl5yc7B577DHn3MHtxwFfdNHCDlrYQQtb6GEHLeyghR20sIMWttCj+IXf1zjjjDOccwdPuH7yySeZbstLenq6i4mJcXXq1HGtW7d2ZcuWdenp6S42NtYNHDjQ/fWvf3XOueADC8geLeyghR20sOfcc891rVq1cmlpae7TTz91qamp+b5v+P30DRs2uC1btrj4+Phgm7dr1841bNgwWC63x8BBtLCDFnbQwo7iboHM6GEHLeyghQ2SXKNGjdzVV1/tQqGQ+/bbb93GjRsLdP9wi3fffTdTx+3btwcXxqBF3mhhBy1soQeQT4V7QXcAmzZtUvPmzeW9V7Vq1fThhx9muj3yazvmzZunyy+/XN57ee910003ae3atcFy5513nkKhkHr37q3U1NRMX38e+TjvvPOO7r///iJ+ZSXLgQMHJEl79+5V27Zt5b3X4MGDi3mtjk60sIMWdtDCFnrYQQs7aGEHLeyghS30sGPVqlU6/fTT5b3X0KFDtWfPnnzdL/I9jgceeEAJCQny3qt8+fLy3qt+/fr65ZdfJGX/taqR98dBtLCDFnbQwo49e/aof//+8t6rXbt2WrhwYb7uF34ffN26dRowYIBq1qwp773q1asXvK8+fPjwYPlwj4yMDO3atUuffvpplsc62tHCDlrYQQs7ot0CuaOHHbSwgxa2vPbaaypTpoy893riiSeUkpIS3JbTvjWnFs2bNw/eZzz22GO1evVqSX+8DyllPdbj2O8PtLCDFrbQA8gdA+xAEVi0aJHq1aun//znP5l+n9fwevikhyTNmDEjuG3s2LE5Ps5HH32kli1bynuv66+/voheUcm0d+9eHXfcccF29N7n+wAyN9n9AyItLS3LQSRvNv6BFnbQwg5a2EIPO2hhBy3soIUdtLCFHnY88cQTQYOnn35au3fvDm7L7g3ynAZDmzZtqrFjx6pLly7BSdw1a9ZIynziNnz/L774Qvfee2/RvKgSihZ20MIOWtixZs0aHX/88fLeq2vXrpo3b56Sk5MlZb9fDf9u/fr1mU7YnnLKKfrpp580ceLEoO0///nP4H7hHvPnz5f3XpdffnkUXl3JQgs7aGEHLeyIVgvkDz3soIUdtCh+kdv5nnvuCbbfmDFjtHz58jzvl12LVatWaePGjerYsaO892rUqJFWrlyZ7XN+8MEHwW1H+4cNaGEHLWyhB5A/DLADReTQq/kUZHhdkh599FHFxcWpcePGWrp0afAYkY/z4YcfqmXLlipXrpy89zr//POL8BWVPKtXrw628bHHHqspU6Yc8WNG7tSTk5P15ptv6u6779b555+viy66SI899pg+++yzYBkGGg6ihR20sIMWttDDDlrYQQs7aGEHLWyhR/GLHPIcNmxY0OPOO+/UnDlz8rxP5GDocccdp8mTJ0uSli1bpk6dOgVtwwOikff/+uuvFQqF5L3XU089VQSvrmShhR20sIMWNiUmJqpu3bry3qtly5a6//77NX/+/CzL5XbCdsWKFZIOfpgt8gMK99xzT3D/rVu3qn379vLeKy4uTl9++WV0XmAJQgs7aGEHLewoyhYMhxYcPeyghR20KH6Rx29Dhw4Ntt/555+ve++9N9OHl6X8tcjIyNCSJUuCDy43atRI+/fvz3R146lTp6pVq1aqUqVKts2PRrSwgxa20APIGwPsQBQUdHg9JSVF7dq1k/dep59+evD1IdkNr8fGxsp7r6uuuiq4/Wg/gR7pp59+UpMmTfTGG28Evzvc7RMeZEhPT9ezzz6rPn36yHsfNAj/SUhI0N13333Ez1fa0MIOWthBC1voYQct7KCFHbSwgxa20KP4RQ7933333cF2qlevngYMGBBcgUzK/arG4cHQsKVLlwYDok8++WSm5/rqq6+Cr11t0aKFRo8erf379xflyywRaGEHLeyghU0rVqxQ165dVbFiRXnvVblyZf3222/B7fk5YRvulZqaqocffljee82cOVOStG/fPj3wwAOqXLmyYmJidMkll2jDhg1RfpUlAy3soIUdtLCjqFugYOhhBy3soEXxizzme/zxx3XSSScFx31LliwJbstPi8jHWrhwobp06aLPP/880/O9++67OvPMMxUXFxfM6WT3zV5HI1rYQQtb6AHkjgF2IIq+/fbbXIfXwzuMH3/8UfXr11f58uX19NNPSzp4wBJ26PD6lVdeGezI+NqPrCI/sXa4gwWRB46XX3558A+F8Emszp0769JLL1W7du2CqysNHTq0UNa/NKGFHbSwgxa20MMOWthBCztoYQctbKFH8Yt8L+Lll19W7969VaZMGd18883B7/M7GBq53NKlS/Xyyy9neq7IwdCWLVvqqaee0q5du4riZZVItLCDFnbQwqbNmzdrwoQJuuCCC/Tf//43+H1BhnzCUlNTtWnTpuDvkVfJL1eunObNmxeFV1Ry0cIOWthBCzuKqkVO51OzG+452j+0HIkedtDCDloUv8ht9cMPP2j8+PHBt5tkZGQE22fDhg266aab8tVCOnhl/EjhodCYmBh573X55Zdr27ZtRfWySiRa2EELW+gB5IwBdiBK5s+fr549e+Y4vB5pzJgxwXKzZs3KdBvD6wVXWFem37Jlizp27Bi08f7g13d9++23wT8U1q5dq6eeeioYaPj3v/99xOtfmtDCDlrYQQtb6GEHLeyghR20sIMWttDDhsg30Hfu3Kmffvop+Hvk15c+9NBDwWDocccdl+NgaHYOHQwdN25cMBh6tJ+sjUQLO2hhBy3sCm//9PT0YDtt3rxZ//d//5fvE7aHuvHGG4N9+TPPPCOJBvlBCztoYQct7CiKFpEOXf61117Ts88+G/ydRpnRww5a2EGL4pXd9oxs8fvvv2vIkCGqVatWvltE/v7QodDLLrtMO3bsKPwXUgrQwg5a2EIPIHsMsANRsmHDhuAExi233JLt8Hp6erpSUlJ03nnnKRQKqXfv3pkOND744AOddNJJwfB6v379GF4vYuGd/erVq9WuXTt571W+fHmddNJJevPNN7O9z+7duzVgwAB579W3b99M/+DA4aOFHbSwgxa20MMOWthBCztoYQctbKFH4cpuO0S+X/H888+rQYMGBRoMDf9+7ty5wfsqJ510ksaNGxdcfZ/tnxUt7KCFHbSwLyMjQwcOHNDTTz+thg0bynuvNm3aaOXKlZLyN+TzwgsvBIOhvXv3Du6LgqGFHbSwgxZ2FEaL8ONE2r17t1544QX17ds36HT99dcX+vqXNvSwgxZ20MKO8LZ+88031bRpU3nv1bp16zyHQiO3PUOhhYMWdtDCFnrgaMcAOxBFixcv1pAhQ7RmzZocl/npp59UoUIFee91++23B79neD36wp+S3r59u9q3by/vvSpWrKizzz5bM2bMCJbL7iTU008/Le+94uLicu2N/KGFHbSwgxa20MMOWthBCztoYQctbKFHdK1fv15//vOf5b1XnTp19Prrrwe35TUYOmfOnGAw9NRTT9W4ceOUlJQkifdEDgct7KCFHbSwY8+ePcF+uUGDBlq+fLmk/A35LFu2TD179lQoFFLZsmU1YcKEbJfLbt/OBw2yooUdtLCDFnYcSYtDl1m6dKneeusttW7dWmXLlg2GQuPi4uS915gxY4rkNZQm9LCDFnbQwpazzjpL3nvVrFkzzw8S5DYUeumllzIUeoRoYQctbKEHjlYMsANRFvmVtJHCJzP+9a9/yXuvY445RomJiZKkqVOnHtHwekG/fgp/bLMDBw7oT3/6k7z3qlChgnr27Km5c+cGyx36pmFqaqok6a233lJ8fLxq1Kih9evXR2/FSyFa2EELO2hhCz3soIUdtLCDFnbQwhZ6RN+7774bnGB9+umng98XZDC0YcOGGjZsmObNm6eMjAzt27dPEgOiBUULO2hhBy3s+OCDD4JhnPfee09S3tsw3OPpp58OTtj+7W9/C26P3J+HHystLU1ffvmlJk2alOVxcBAt7KCFHbSw43BaHCoxMVFPPfWUmjRpomrVqsl7r7p16+qMM87QSSedJO8PfkPXN998UwSvoHShhx20sIMWdmzcuFEJCQny3uuee+6RlP+h0I4dOyoUCnFF40JCCztoYQs9cDRjgB0wplevXvLe68QTT9SBAwf04YcfHtbw+qEn2bds2aKPP/64SNe9tElPT9cNN9wg773KlSunrl27as6cOcHtuV3x4qabbpL3XpUrV9a6deuisbqlGi3soIUdtLCFHnbQwg5a2EELO2hhCz2i6/3335f3Xscee6wWLFggKe/B0Llz5waDoeGTshUqVFBCQoJat26tm2++Wb/++qskBkQLghZ20MIOWtjx888/q2HDhqpQoYJefPHFfN9vwYIFKl++vLz36tSpk3755RdJ2W/7ffv2aejQoWrTpo2897rxxhsLbf1LE1rYQQs7aGFHQVuEj+/27NmjDRs26O9//7vatWsX7MerVq2qTp066dNPP9WcOXN0xRVXKBQK6dprr1VKSgofIMgDPeyghR20sGPv3r06//zzgw+RhS9QcahDh0I7deoUDIW2bNkyOL7Lj+w+oAZaWEILW+iBoxkD7IAh3333napXr66YmBi99NJLmj17tlq0aFGg4fVDD0x+/PFHvfzyyzruuOOyXNUBuXv33XfVtGnT4Gu9Pvnkk+C23AYZFixYoFNOOUXee/Xq1Uv79+/n6x2PEC3soIUdtLCFHnbQwg5a2EELO2hhCz2i67vvvlOjRo3kvdejjz6a43KRVzUOvx8SCoVUs2ZNXXbZZRo4cKC6deumevXqyXuvFi1aaO3atZnui9zRwg5a2EELO7Zv364LLrhA3nt169YtGPLMza+//hpcGCYhIUFjx47V/v37JWXep2/dulVffPFFMAgUExMTnOh96qmniuw1lVS0sIMWdtDCjvy0OHTf+9133+m6665Ty5Yt5b0P9uU33nij3njjDaWkpEiS3nzzzWBg9JVXXonK6ynp6GEHLeyghS3PPvtssM2y+0BB5D75P//5j84888xgPxz+c//99yspKSnP5wo/1uzZs7Vw4UJJDIdGooUdtLCFHjhaMcAOGPLyyy8Hn569/vrrdfLJJwdfJ5jfK69LB3c0y5cv1+jRo9WkSZPgqg5xcXHy3uu2226Lxssp8W688cZgJ//yyy8Hv89uMCHyd/fff39wv7Fjx0ZlXUs7WthBCztoYQs97KCFHbSwgxZ20MIWekTfQw89lOub8NkNhh533HHq37+/1qxZEyy3a9cuffXVVzrjjDPkvdcpp5yizZs3R+tllAq0sIMWdtDCjpUrVwYfAjjvvPMybd9I4SZvvPGGGjRoIO+92rdvry1btmRZ9vvvv9eAAQOCx61Tp44aNmwo773atGmjbdu2FeVLKrFoYQct7KCFHYe2WL16taSs51Fff/113XTTTcE5V++9qlWrpltuuUXvvfdepmVXrFih1q1by3uvvn37RuullAr0sIMWdtCi+EW+p3fnnXcGHwx47rnnsl3m0KHQq666KtOx4siRI5WcnJzj84X3/1988UVwn8WLFxfBKyt5aGEHLWyhB452DLADBqSnp2vPnj06++yzg0HzE044IRg4z+/w+p49e7R69Wpde+21OvXUU4MdTb169dSwYcPgK20HDhwYrZdWYn3zzTfBiaibb745+H1egwxvv/12sN179uypPXv25Hg/5A8t7KCFHbSwhR520MIOWthBCztoYQs9oivyimJ33HFHsA0nTZqUZZnIwdCTTjpJY8eODQZ2Dn1PZPr06apfv77i4uL07LPPSqJFXmhhBy3soIVNiYmJqlu3rrz3Ov/884OrFYeFm6SkpKhjx47y/uCFYf73v/9lWm7r1q169dVXVbVqVXnvVblyZV122WWaOnWqTjnlFFWrVk3PPfec0tLSuEp+DmhhBy3soIUdh7Y4cOCAJGnHjh16/fXXddlll8l7Hwz4NG7cWLfddpsWL14cXMlYUtDw008/VZ06dRQXF6fx48dL4ltUCoIedtDCDloUv8hjtaFDhwbDob/99lumbXfoUOhll12mXbt2SZIef/zxPIdDw8d7M2bMCJb13uuaa67hysb/Hy3soIUt9MDRjAF2wIitW7eqVq1aio2NVSgUCk6E5DS8fuiO44svvtC1116rJk2aBDsy770GDx6syZMn66677lKlSpXUqlUrLV++XBInTHIzdepUxcTEKC4uTpMnT5aU9yDDf//73+BDAscff7xefPFFDhYLAS3soIUdtLCFHnbQwg5a2EELO2hhCz2iL/J9jMGDB8t7r1GjRkn640Trl19+Gbyf0aBBA40ePTp4Az67Ptu2bQs+wH/55ZfnuQ7p6elav359YbycEo0WdtDCDlrYtHTpUh1zzDGaOXNmjsuEv1GlfPnyGjlypFJTU4Pb3nnnHfXr1y84IXveeecF+/3bbrtN3nt16dJFa9euLfLXUtLRwg5a2EELO5YsWaJjjz1W//vf/7Rt2za9/fbbOvnkk1W9evVg+9aoUSP4+d1335WkoEd4P56amqouXboEH1TbuXNnsb2mkowedtDCDloUv0OHQ7/44otMtx86FPqXv/xFO3bsyLTME088keNwaPi4MXIotGrVqvrrX/+qTZs2FdnrKoloYQctbKEHjlYMsANG/PLLL8FXQoWvvH7llVcGByPhT+IeejLkpZde0k033ZTpk1H169fX4MGD9emnn0o6eLKkffv2wcmSpKSk6L64Eii8U2/SpEmOJ6Ii//7ZZ58pISFB3nvFx8dr4MCBuX4lC/KPFnbQwg5a2EIPO2hhBy3soIUdtLCFHsUj8k34zz//PNNtkYOh3ntdeOGF2rp1q6TsB0PD75P89a9/DQZ+cpOenq5vvvlGJ510kgYNGnSkL6XEo4UdtLCDFjaFrzqZ3ZXA3n33XTVt2lTee5188slauHChJGn37t0aOHBgcEXjihUr6h//+EfwzSnjx4+X914xMTH65ptvovdiSjha2EELO2hhR2pqqt5//31Vq1YtGAiNjY1VhQoVNGrUKD3zzDPBN2F774NzqBkZGUG/119/XZUrV1aVKlX0+uuvS+KqxoeLHnbQwg5aFL+cri787rvv5joUGnm/Q4dDk5KSchwK7du3r7Zs2SLpj07hY8WjHS3soIUt9MDRiAF2wJCffvopOCF+9dVXByc/9u3bl2m5DRs26JVXXtF5552XaXC9Q4cOuvHGG7V+/fpMV3EIXzUoISFBP/30kySuvp6XZ555Rt57VatWTatXr8512Y8//ljVqlULOlx88cXBp505YDxytLCDFnbQwhZ62EELO2hhBy3soIUt9Cg+2b0JP2fOnODD/DExMapQoYKWLl0qKff3L3bs2KEWLVrIe68///nPOS6Xnp6uefPmqWvXrkHH+fPnH/mLKeFoYQct7KCFPTl9wCwlJUXXXnttsM2mTJmiffv2adKkScFVKePi4tSvXz+9//77wf2///57nXbaaQqFQhozZky2zyFl/b8F3k+nhSW0sIMWtixatEiVKlWS9wevTHzrrbdqwYIFkg5us1mzZumcc84Junz22WeZ7j9gwAB579WoUSMtWrSoOF5CqUIPO2hhBy3sef3119WpUyeVLVs226HQsMj3ACOHQ++9915JBRsKTUr6f+ydd1gUx//HZ44qggJ2FEXsBXsv2HuJmtiSaGISjV1j7713Y28xRtHE3qJ+ozH2ltjpVazYsNDhuPfvD3473tGVO244Pq/n4RFvZ5fZed3u7Mx+ZiZSDEAgPkAu5IFcyAX5IEwdCmAnCMnw8vLCwIEDRWeTdgXj6emJPXv2oHz58mJmBisrKzRo0ADTp09HcHAw4uLiAHxYTurx48do3rw5VCoVvv/+e52RVUTaeHl5wdXVFY6Ojjqdh9oDA+Lj4/Hbb7+JCt7c3Bzt2rVDeHg4gLRHxhEfB7mQB3IhD+RCLsiHPJALeSAX8kAu5IFcyAX5kIegoCBRxlWrVkXRokVRuXJlRERE6PjQRukzOXz4MIoVKwaVSoU5c+bobFNQAkObNm0qOuc3btwoZt4nPkAu5IFcyAO5kJdt27YJNyNHjkRQUBA6duwo+s0LFy6MAwcO4OnTpzr7zZ07FyqVCg0bNsTt27fT/RsxMTHYt2+f+D8FiKYOuZAHciEP5MJ4eHt744cffkBoaKhYNUtpu8XHx+Pvv//WCQ49ffo0AODAgQPis5UrVxor+yYH+ZAHciEP5EIuVq5cKcq1T58+qQaFKmjH2Wjv980332QYFKoQGRmJLl26gHOOuXPnGuSccirkQh7IhVyQD8LUoQB2gpCchIQEhISEYM6cOahcuTKsrKzAOYeNjY2oXFatWqWzj3blsmHDBpFu//792Z39HEt4eLiY4d7d3R03b97UeSl14sQJjBkzRpStg4MDevbsKR4UKJBBf5ALeSAX8kAu5IJ8yAO5kAdyIQ/kQh7IhVwYwwcFlKRN//794eTkhKVLl6Jy5cqoW7dummm1X+p2794dnCfNiHz16tUUaZMHhtra2mLTpk2IiIgw2LnkdMiFPJALeSAX8nHlyhWULFlS1NGdOnVC/vz5wTlH6dKl8d1338HPzy/FfufPnxd1+9q1a3W2adfT7969w82bN9GgQQPxopdIHXIhD+RCHsiF3CQkJKQIDj148CBmzZoFc3Nz1KpVCz4+PgCoDZcdkA95IBfyQC6yn/79+6NNmzbpBoUqaMfibN++HZxzqFQqcM6RP3/+dINCAWDhwoUi3qd169YpBrPldsiFPJALuSAfhClDAewEITHPnj1Dt27d4O7uLhonnHM0adIEP/30E5o0aSI+O3PmDICkRorSUPH19UXVqlXBOceAAQOMeSo5ksDAQDg7O4NzjkqVKqF79+4YPnw4OnbsiAIFCoiyd3Nzw4QJE8TMSBRYon/IhTyQC3kgF3KRnT6oQzJ9yIU8GOM+paxGROhCLuQhO11odzxS/Z86xnqe0u7wze11iXZZnjt3Do8fP0azZs2QP39+3L9/P919Bw4cKAJDZ82aBUC3PCkw9OMgF/JALuSBXMhJQkICJk+eDM458uTJI8qZc4527drh5MmTYrUU7eeh4OBg1K9fH5xzfPvtt+Lz5PX6zZs3MWnSJLi4uIBzDgsLC3DOcf78+VxfbyeHXMgDuZAHcpEzSC04VJkdf9CgQR91LCr3rEM+5IFcyAO5yB6069no6OhM76dMgnH79m3hx8bGJtWg0NT6Efv27YuWLVvi5s2bWcm+SUEu5IFcyAX5IHIDFMBOEBITGBgIc3NzUZk0b94c06ZNQ0JCAmJjY3Hp0qVUl49SKqLDhw/D0dER5ubm2LRpE4CMGyheXl7Yvn27Qc8rJ+Hv74+aNWvC0tJSZxCB0uHYp08fHDlyBDExMQBSH51G6IfsdqHsT436lJALeSAXcpHdPry9vXH37l2qe1KBXMhDdrlITEyEl5cXvvjiC+zevRsPHjwQ2+ielQS5kIfsvkft3LkTGzdu1Fl+nlx8ILt9eHl5oW/fvjovG3O7j+RlOnToUHDOsWTJElHuCmq1Gm/fvsV3330HzpNmjuncuTNu3LiR4pgUGPrxkAt5IBfyQC7kxNfXF3Z2dqLOrly5MiZMmJBm+ri4OCxfvhw2NjaoXr26eAGrPegyPj4ee/bsgYuLC/LlywfOOYoUKYJevXrhf//7n87xqO33AXIhD+RCHshFziAhIQFnz55Fy5YtRTuwYsWKoh8jeV/4u3fvEBAQgCNHjuDWrVt49eqVOBaVedYhH/JALuSBXGQPH1s2SvrTp08LL3Z2dukGhUZHRyMsLEznOMHBwVnNuslBLuSBXMgF+SBMHQpgJwjJ8fb2RtmyZbFmzRoEBATobIuPj08x8lbpqHr9+jWqVasGzjkaNmyYqRkQ/fz80K9fP3DO0bdvX4OcT07k8ePHWL16NXr06IH69eujatWqmDZtGjw8PHTS5fagg+zAkC6Sjyp8//491Gp1iiV4yHMS5EIeyIVcZFed4e/vj6+++gqcc0yZMgVXrlzR27FNBXIhD9nhwtvbG507dxaBQl27dsWOHTv0cmxTglzIQ3bdo65evQpXV1dwztG0aVNs27ZNb8c2JbLLh5eXF0aMGCHa78OGDdPbsU2JPXv2iDKaO3cuLl26hIiICISEhGDt2rXo0KGDuMe0aNECR48e1dmfAkP1B7mQB3IhD+RCHjw9PWFra4sffvhBJ3gztVVoHj58iOrVq4NzjsmTJyMqKkrnWCdOnBCDE5SfcuXK4Y8//kBoaKhO2kePHmHdunUpPs/NkAt5IBfyQC5yDr///jsKFy4MzpNmv3///r3YprTTgoOD8d1336F06dLgnMPc3BwdOnTAli1bRFpa+Uw/kA95IBfyQC7kQanH//77b1En29vbZxgU2qxZM9jZ2SEkJMQo+TZFyIU8kAu5IB9EToQC2AkiB5B8GRDtDq7Ulo86deoUzpw5g3z58qFAgQL4448/AKTfKFGC15XGj7m5OYKCggxzQjmc2NhYnf/TiGXjYQgXZ86cwapVq9CoUSPUrl0blStXxtixY7F3716RhoJLUkIu5IFcyIUhfCQmJuLs2bOoV68eOE9aKrhJkyZYs2aNSEM+UkIu5MEQLsLDwzFv3jz07dsXFhYWUKlUsLS0xOTJk0UacpESciEPhmxj/Pzzz6hVqxbMzMxgbm6OWbNmiW3kInUM4cPLywvDhw8X7XYLCwtwzjF8+HCRhnx8YOrUqaKsChQoADc3NxQsWBB58+YVM1l+/vnnOH78uM5+FBiqf8iFPJALeSAX8hAeHi5WIwV062ztevXzzz8H5xyVK1fWmVFMrVbjp59+QuXKlYXTSpUqYcCAAXj9+nWKv/f06VMsW7ZMpH369KmBziznQS7kgVzIA7nIGSiDA8zMzHD16tUU28PCwtCjRw+xapejo6MYrMY512lj0/vCrEM+5IFcyAO5kINPCQqNiopC165dRfrvvvsuUxNPEulDLuSBXMgF+SByKhTAThA5AKUjK62X2akFsSsvQkqVKgU/P790j68ErxcoUACcc5QsWRKXL1/W+3nkZLTLnoIKjIshXGg0GoSHh2Po0KFiEEfyH2tra0yaNEnvfzsnQy7kgVzIRXbUGTExMbh69aqY+VvpiBw6dKjB/3ZOglzIgyFdJD/e/v37MWDAAOFi1KhRBvvbORFyIQ+Gvkdpv5C6ceMGfvrpJ3KRDob0kTx4/dtvv8W6deuEDwpi/4D293bmzJlwcnLSef60s7ODnZ0dVq1aBU9PzxT7ZhQYmtvL92MgF/JALuSBXORMNmzYAM45HBwccPbsWQDAs2fPcPjwYbRs2VLH4ZdffokjR46IwWwJCQniOE+fPsXixYtRsGBBcJ40+/GDBw+Mck45FXIhD+RCHsiFcTlz5gyKFSsGlUqFwYMHA0hZH58+fRpFihSBhYUF+vXrB29vb/zxxx86s+LPmzdPpKfg0E+HfMgDuZAHciEHSpl/alBo3rx50bNnT1y/ft04J2BCkAt5IBdyQT6InAwFsBOEiZBaEDvnXGdZqNRIHrxevHhxCl4nTIb0Vh1QHuCio6Nx8uRJtG3bVifwsF27dvjmm28wbtw4tG/fXnw+ceLE7Mq+SUEu5IFcyMWnLNmYvHNy6dKlKFmyJMzNzcE5x9dff62v7OUqyIU8fOpSptod72FhYVi7dq24Ty1cuFBf2ctVkAt50IeLZ8+eYeXKlcLF1KlT9ZW9XEdGPrTrh+TB6wMGDEBkZCQAYMuWLRTEngra5Xv58mXs3LkTkydPxoQJE3D48OEUQaFA5gJD03pBm9vLOz3IhTyQC3kgFzkDpdyCgoLQpk0bmJubiwF89+/fR9++fVG2bFlwzmFlZYUKFSpg2bJlOsfQdp08MLR+/fq0emkmIRfyQC7kgVwYH8XBzJkzRVtt586dqaZVZrUvUqQIQkJCxOcvXrzAkiVLxP4bNmzIjqybJORDHsiFPJALeVDaamfPnv3koNAePXrg5s2bxjkBE4JcyAO5kAvyQeR0KICdIEyI2NhYnD59GuXLl4dKpULNmjXh5eUFIPWXHRS8Tpgi0dHRuHPnjvh/asElyvXw/v17bNu2DXXq1AHnHObm5mjRogXWrVunk/7Fixci8MrS0hK7d+827EmYCORCHsiFXGTGR0Zo1+v//fcfmjZtKpaHrF69Oh4+fKiXvJo65EIe9OEC0PURGxuLBQsWQKVSoWLFirh27VqW85kbIBfyoC8XyY+5aNEiqFQq2NraYu/evVk+Zm7hU3x4enpi2LBhotP4hx9+wJs3b3SOsXXrVgpiT4WMZgPTLp/MBIZq8/fff2PNmjW4c+cOoqKiMvX3cjPkQh7IhTyQC7nRLv958+aBcw4XFxf8+uuv2LdvH+zt7UXdnDdvXkyYMAHnz5/X2V/7GKkFhgYGBmbrOeVUyIU8kAt5IBfy8O+//8La2hqcc3zxxRfi8+RtsbVr14JzDkdHxxT9fNHR0ZgxYwY456hcuXKGM1aGhITgxYsX+jsJE4J8yAO5kAdyIQ8nT57UW1BoYmJitqwebKqQC3kgF3JBPoicDAWwE4SJoFQ4Fy5cgJWVFTjXXRY+ORS8nr0oSznqI+iESJvY2Fjs3bsX5ubm+P7779NNGxERgbVr18LNzU0E6Y4ePRpXr14VabSX4Hz16pV4iBs5cqTBzsFUIBfyQC7k4mN8pIV2I/HChQv48ssvxYzfbdq0wa1bt6ghmQnIhTzow0Va3LhxA0WLFgXnHFu3btXrsU0RciEPn+oitXtO8s8CAwPFUvRKwDTdq9LnU3w8evQIAwYMEJ3GTZs2RWxsLAAgPj5epEsexP7DDz8Y5BxMlY8NDA0ODkb37t3BOUe5cuUwcuRIPHv2DAC117MKuZAHciEP5MK4HD9+XNTD9evXx9ChQ5EnTx7xMrdq1aq4cOECYmJixD7JBwtQYKh+IBfyQC7kgVwYl4SEBLFSVtGiRbFjx44UaZR28vPnz1G5cmVwzjFlyhRER0frpPP29hYrmS5atCjNOtvf3x89evSAubk5zZCfDPIhD+RCHsiFXIwYMQKcc+TPnx99+/b95KBQ7T7B5NDA5cxBLuSBXMgF+SByMhTAThAmxPPnz9G6dWtwzlGzZk08efIEQMpKhILXjcO9e/fwzTff4MGDB8bOikkSGxuLXbt2wdXVVXT8/vbbb6mmjYmJwW+//Ybq1auLIN0FCxbg0aNHIk1qQTxTp04VLxFfvXplsHPJ6ZALeSAXcvExPtJC28Hly5fRt29fCpj+BMiFPOjDRUY0adIEnHP07t1bZxAOoQu5kAd9uDhy5AhOnz4t/p/8fjR9+nRwzuHg4IDQ0FC95NtUyYqP1atXo169erCxsYGdnR3GjBkjtmlfA2q1Gtu2bRPH155hkUibjw0MVTh37hy6d++O4sWLg3OOWrVqiXY6BYh+GuRCHsiFPJAL4xIcHIx27drBysoKlpaWKFCgACwsLMA5R926dTFnzhzR35FWu+3p06dYtGiR6ENv2LAh/Pz8xHZq72UOciEP5EIeyIUc+Pv7g3OOYsWK4fXr1wCAhw8fpgjajIyMxKhRo4QfZeVr7Tbd0qVLwTnHr7/+murfiomJQb9+/USbb+HChRQAlAzyIQ/kQh7IhVyMHz8ebdu2zdKMxkDSpBcjR45E3759MXDgQPz+++/i/Sq1+TIHuZAHciEX5IPIqVAAO0GYAEoFcebMGZQpUwacc3z33XeIjIxMkZaC17MfjUaDmJgYFClSBJxz9OrVSycglNAP79+/R6VKlURDvm/fvrh7965OGqXT9tKlS2jQoIEI0l22bJlo+KeG0sAfOnQoOOeoWrWqzswnhC7kQh7IhVxkxkd6UMC0/iAX8pBVFxnx9u1blCtXDpxzdO7cmbykA7mQh6y6uH//vmjvHThwQGebMnvGggULYGVlhYIFC+Lx48d6zb+pkVUffn5+WLp0KfLmzQvOOb766iuxTbuzV61WY/fu3Vi7di3CwsL0eg6mSGYCQ5N3pms0GnHvefXqFfbv34/atWuDc47SpUuLwRz0gvbjIBfyQC7kgVwYn5cvX6JUqVLgnItVTjjn+PLLL+Hn5ydmpUyrPJXAUAcHB3DOUb58efj5+YnVVBTIR8aQC3kgF/JALuTB19cXx44dAwBcv34dVapUgYeHBwDd/j8fHx+xqtw333wjPlfq87i4OPz111/i89T6PE6dOgXOOcaNGydWWCF0IR/yQC7kgVwYH+22m9Km+9igUOWd6n///YeSJUuKul+ZYKRVq1Z4+PBhir9H6EIu5IFcyAX5IHI6FMBOECbEZ599Jiqbe/fuAdDtoKLgdeNy/vx52NjYgHOOzz//nILYDcC9e/dQunRpdO7cGT4+PjrblGshMTERXbp0EUG6c+fOxcuXL9M8pnYDvkePHuCco3bt2ggPD6fAq3QgF/JALuQiPR/pQQHT+odcyMOnukgL5d4WHx+PX3/9FYUKFQLnHMOGDcvysU0dciEPWXHx9u1bDBkyRHQu/vLLLzozLkVHR6N3797gnMPKykpnlj4idT7Fh3ZdEBsbi927d8PW1hacc4wfPz7N/ZIHnRAp0Wg0uHDhgljVIaNZjd++fZvqs21iYiLu3LmD+vXrg3OOxo0bi9lpiMxBLuSBXMgDuZAHT09PMYCsY8eOWL9+fab2e/r0KRYvXiz60DnncHR0RNmyZeHi4oLvv/8ev//+u0hPL24zhlzIA7mQB3IhD0rbbfjw4eA8aYVr7YHeSt/G4cOHRR/gli1bUuyvoF3myVcsDQoKogHLGUA+5IFcyAO5MD7aMTdKeWY2KFRJ//z5c7i4uIjBZ126dEGTJk1QokQJcM7h4uJCq29lAnIhD+RCLsgHkZOhAHaCMBF27doFzjlsbGwwfPhwAEkVhlLRUPC6cVEeFq5cuSKWgqQgdsPw+PFj+Pr6prl9ypQp4JzDzMwMAwcOTLHMWlrs2LFDdAjPmzdPX9k1aciFPJALucjIR3IoYNpwkAt5SO4is+WonU779/j4eBw6dAht27YV96mDBw/qL8MmDLmQh7RcZMbJ69ev8eOPP4oy//HHH7F27Vrs2rUL33zzjfh80KBBBsu/qZEVH0DSwIH58+fD0tISLi4uOH36tEHymVtYuXKl6HDfsmVLisDQly9f4vDhw2jSpAlcXFyQL18+DBw4EDt37tRJl5iYiGPHjsHV1RU2NjZYu3YtgMx7JciFTJALeSAX8uDl5YU1a9bA399ffJbeS1YlMLRgwYLgnKNEiRJo0KABxo8fj759+6JGjRriOWrOnDliP5rlOGPIhTyQC3kgF3Jx+vRplClTBvb29ti0aRPi4uIAfFgl5eXLl+jRowfMzMwwYMCADI8XEBCALl26YOjQoYbOuklCPuSBXMgDuZAHpU0WFRWF7t27pxkUqs2WLVvAOUfhwoWxd+9exMbG4v379zh+/Djq1asHzjlq1KiBJ0+eAKD6O7OQC3kgF3JBPoicBAWwE4SJ8ODBA9jZ2YFzjkOHDulso+B1OdAOYre0tATnHG3btqVRzNlISEgIateuDZVKhapVq+Lvv//O1H63bt1Cu3btYGZmhoIFC+LPP/80cE5NH3IhD+RCbihgWh706SJ5OnKoS1odHsmDotVqNWJjYxEZGYno6Gg8efIEN2/exKlTp9CzZ09UrlxZvLgdM2aMzgzUROYgF/KgHSzt5+eXqRlYg4ODxSpdyk/+/PnF740aNcLRo0cNnXWTRNtHUFBQmrPqJufq1asi2GThwoWGzGKuYOzYsVi5cmWK8n/+/Dnmzp0LV1dXcM6RJ08eMVhTmQFfOzDo5cuX6NChAzjn+Oyzz7L5LEwDciEP5EIeyIWcpNf2Sh4YWrt2bZw4cUJnhvzAwEAsWLBAPE8tXrw4O7JtkpALeSAX8kAujMubN28wYMAAcM5Rq1Yt3Lp1S2xT+kemT58uJhPTHniQnICAAJ3B46dOnTJ4/k0N8iEP5EIeyIVcxMfHi5W38ufPn25QKACsW7dOzGCcfAb9mzdvom7duuCco3v37ggPD8+OUzAZyIU8kAu5IB9EToEC2AnChLh79y6GDRum8xkFr8uFdhC7MsLt3r17Rs5V7uHw4cOiIT537lzxeXodw8+ePcOkSZPEC8Wvv/46RRrFa1hYmM5SaxSQmDaGckF8PIZ08bEzk+ZWlNkxgNSX9wL0FzAdFRWlx5ybHtnp4vbt21ixYkWqf4NImqn4/Pnz+OGHHzB06FD07dsXXbt2Ra9evdC1a1e4u7ujefPmcHd3R7Vq1VClShWUKlUKlpaWsLGx0QnYHTZsGLy8vFL8DbouMkd2uACozsgs169fR6tWrbB161YA6ZdXfHw8li5dCs45unbtCisrK+GiV69e2Lt3r0ib2gz65CJjbty4gZYtW+L3338HkLky69ixIzjncHd3R2RkZLpptesl8vEB7UEwymxjwIfZKj08PFC6dGlwzuHs7IwVK1ZgypQp6NWrl86qBNrBPps3b4aZmRnc3Nzw+vXr7DuZHA65kAdyIQ/kImeSPDC0fv36ac6IHBUVhUmTJoFzjnLlyuH27dvpHpvq8I+DXMgDuZAHcpF9PHz4EHXq1AHnHM2bN8fNmzd16vNZs2aBcw5ra2vcvXs31WMEBASgX79+ol6fPHkynj59ml2nYFKQD3kgF/JALuRi0KBBIphTe0BBapw+fVqU+Z49e1JsP3HiBMqUKQM7Ozt4eHhQHf2RkAt5IBdyQT6InAAFsBOEiaH9ksTPzw9ff/21CF4vUaIEBa9LgBIQd/v2bZw9exbx8fFZPqZGo6HlWdJBKZvRo0eDc47KlSuLQPP0yu3t27dYuXIl8ubNC845mjRpIma7TL6U5z///ANnZ2d8//33OHnypPicHtp0MbSL5Meg8k8bQ7hQ6qDkQaHv37/XOQZ50UUpj4sXL2LXrl0pZui7dOkS+vTpI2bka9u2LW7fvv3R5Xj79m20bNkSW7ZswYMHD1L8fcLwLpR0np6eaNGiBTjnGDRoUIrtBPDnn3+KWSk/5adgwYKoUqUKtmzZku4sAHRdZIyhXCSva968eYP4+PgUQVnkQhclEKFhw4aZmoU9KCgIFhYWmD17NkJDQ3Hx4kVcu3ZN58VW8vbIu3fvoFar8fbtW53PyYUu8fHx+Omnn8A5R6tWrXQCDdMiOjoatWvXBucc9erV0/GgkPzaePHiBSIjI1Mcn3ykTmJiImrVqiUG8IeEhIhtL1++xKZNm8T96fvvv8fz58+hVqsxZswYcM7RoEEDvbTRCXIhE+RCHsiFnCQPDG3QoAGCgoLS3Wf//v0wMzODpaWlTj9gcpR6PTo6Gm/evNFntk0SciEP5EIeyEX2ExAQgGLFioHzpBmO586di3/++QerV68W9bS7uztevHgBQLdtFhAQgK+//lqkmzp1aqba7kTakA95IBfyQC6Mj3b/3ZYtW3Dt2jWd7dHR0SliCSIjI9G7d2+oVCr06dMHjx490tn+5s0bMSv+rFmzqO2XSciFPJALuSAfRE6CAtgJwkTx9/fHZ599Jjq1nJyc8O+//xo7W8T/k9Vgg8wEq1NAQ0q+//57cM5Rp04dAOmXUXh4ODZs2CCCdN3c3HDkyJE095k9ezZUKhXMzMzg4uKCZcuWiW3kIiX6cpHejJRqtZoC2jOBoa6Lv/76C127dkXTpk1Rp04dzJ07V2cJQnKhizKiuWzZsti9ezeio6MBJAVS6yN4/cWLF/j2229Fp+SXX36Z5sy7uR1DuUgevG5tbS18DB8+PEW63E5wcDAsLCzAOYeFhQUaNmyITp064euvv8aAAQPQp08f/PDDD5gwYQJGjBiBn376CYsXL8bKlSuxc+dO+Pv7Z9jxTtdF5jCEC+2yffHiBXbv3o2aNWvCzc0NZcqUwcSJE3H48OFU0+d2jh49ChcXFxQqVAg7duzQGcCsjfIM5Onpifz586Nbt26pptPuYDx79iwWLVqEmjVronbt2qhWrRpmz56N48ePizTk4gNqtRrbt2+Hk5MTihUrht27d2fo49mzZ6hZsyY452jRokWKFSC0O4z37NmDkSNHokSJEihTpgxKlSqFcePG4cCBAyIN+UhJcHAw7O3tYWNjgxkzZgAAYmJidNIcPHhQ3PsHDhyIe/fuoVWrVuCcY8iQIVCr1VS2eoBcyAO5kAdyIR8fGxiqlP2lS5dEm27Tpk3p/o3IyEhMnDgRdevWzTDoNDdDLuSBXMgDuTAefn5+qFy5sqiTtfvxihUrhvnz56fYJ6OgUJqE6tMhH/JALuSBXBif5IGfCtHR0Th58iRu3ryZIt3WrVthZmYGa2trsaKjdrnfunULPXv2xIkTJwyYc9ODXMgDuZAL8kHkFCiAnSBMlCdPnqBkyZLgnMPW1pZGP5kQ2i+p/Pz88Ntvv2Hy5MkYMmQIdu3apTNQgV5o6TJ27FhwzlGlSpUUs+pqP3Q9fPgQy5YtE0G6FSpUwIYNG1LMIp2cQ4cOoVevXlCpVOCcY9KkSWIbudDFEC58fHywdetW9OzZE+3atUO9evXQrl07bN68GVevXhXpyIUu+nKhDChQq9U6szxo/xQtWhQzZ84UxyQXH/D29oalpSU456hRowb27t2Lv/76C19++WWWg9eBpIbovn370L59e3DOoVKpULhwYbpPpYIhXCQPXjc3N4eVlRXq168v6gwKYk+Jt7e3eEnbrFkzeHl5fdJx0ipPui4yj6FcPHnyBBMmTEi1znB0dMS0adPS3De3Eh4ejv79+4vBZ6kt+ahdVqtWrRKDcmJjY3W2adfzS5YsQaVKlVJ14eDgQC7S4NWrV+jZsyc4T5pR/fbt2ynSaHf+zpgxQ5TrkiVL0kw3btw42NnZpeojb968dJ9Kh4CAAFFWEyZMSDPd0aNHRTpllQkrKyvRaU9kHXIhD+RCHsiFXDx69AhLly79qFmNgaR2xLRp02BhYQFHR0dcuHAhzbSJiYmYOXMmChcuDM45qlWrlmLQAkEuZIJcyAO5MD6hoaEYMWKEGITMedJqpHPmzEnRDssoKFQ7ffJAImrTZQ7yIQ/kQh7IhZz8/vvv4DxpwhwF7X5YZVKdAgUKwNfXF8CHd6xAUp+5QvL4nrSCUYnUIRfyQC7kgnwQskEB7ARhwnh6eorOrRo1asDDwyNFcCKR81Cr1Xjx4gW+/vprnZHVyk/ZsmUxZ84ckZ4alR/K4M8//0TBggVRvHhxnY5b7TK6dOkShg8fDhsbG3DOUalSJSxfvhzh4eFpHl/7Yc7Pzw8zZ84UAYk//fRTqn8nt2IIF97e3li1ahXs7e3FDANKkKn2dbFo0aJU/05uxVDXhfaLdkdHR7i4uKB9+/ZwdXUV18WoUaNS/Tu5HV9fX1Fvly9fHg0bNtQJmL5161aWykuj0eD9+/cYOXIkHBwchI8ff/xRj2dhGujTRVrB67169cLjx4+xe/duCmJPB+3A6ZYtW4qOEkC3jNL6PSPousg8+nShfL5x40ZRZ5QqVQo1atRAr169ULVqVaoz0uHhw4eoW7cuOOdo3rw57t69KzoJtTsHjx8/jqpVq4Jzjt69e+scQ7ss58+fD2tra1HmTZs2RY8ePfDjjz+iYcOG4vOxY8dmzwnmMB48eIBq1aoJHzdv3kw16GP58uXi++7m5pbmc9fo0aN1nmM7duyI4cOHY/z48WjdurXwMW7cuGw5v5xGZGQk2rZtC3Nzc3z++ed49uyZ2KbRaHTabjt37hTlaW1tjY0bNwKgGcf0BbmQB3IhD+RCHtRqtRjo9zGBoQBw48YNMfCvVq1aGfa3X7lyBZxz5MuXDydPntRH9k0KciEP5EIeyIU8xMXFITIyEhcvXsSlS5fw4sWLFGkyCgrV5s6dOxg7diy2bt0Kb29v8TnV75mDfMgDuZAHciEfv/zyCzhPmgn/9OnT4nNl5cbHjx+jTp06ou87Li4u1fLVDgpdtGgRHjx4AICCQz8GciEP5EIuyAchGxTAThAmjo+Pjwg0qV69OgWx53BevHiBHTt2oHbt2uCcixdZFSpUQI0aNVC0aFERYKcdOE0k8fz5c7i7u4PzpNlDL126hMjISADAu3fvsHr1atSsWRNWVlZi4MeWLVvw5s2bDI+tHXTy7t07rF+/XvhZunSpoU4px6IvF3v37kW3bt1Ep0vx4sVRv359rF69Ghs2bMCECRPQuHFj4WL06NFiXwqCS0Kf10V4eLiY6aFixYqYM2cOwsLCAAB3797F/PnzhYvp06dn52nmGHx8fFCgQAExw54SKOrp6ZnlDkLt7/zcuXNhZ2cn6ozZs2dnNesmhz5cpBW83rNnT3FtxMXFYevWrRTEng7az7MtW7aEn5+f3o5N18XHoU8Xz549g5OTEzhPmrn6t99+w9u3bwEkDSJZvHixuC5mzZqlr1MwGQICAnTKb8uWLXj69KnY/uuvv6JRo0ZiRQntGdS12bt3L0qUKKHzrBQfHy+ujYcPH2Lt2rVi+4oVK7Ll/HIa/v7+KFasGDjnqFmzJqZMmYKrV6/C398fp06dwogRI8TzqrW1tc6KNNqsWbNGpCtRogQWLFigs/3Zs2dYt26d8LFmzZpsOLucx4oVK0Q5rl69OsXqTZGRkfD09BSz51taWmLatGk6gaT0YlY/kAt5IBfyQC7kwc/PT/SrZjYw1M/PT/R7lChRQqz4pzhR/k0+A9mlS5dw5swZPebetCAX8kAu5IFc5Aw+Jij03bt3WLdunUjbqFEjbN++XWynQJ+sQz7kgVzIA7nIfry9vdGiRQvxvufly5dim1qtRkJCAn788Ucx2EwJGNVGu82nrOhYtGhRPHz4MFvOwVQgF/JALuSCfBCyQQHsBJELoCB20yA0NBSTJk0SSwfb2dmhVatW2L59uwgkvXv3LlauXEkBJumgHexTsmRJVK9eHU2aNEH16tVFg1wJyjp79qwI5E0LJbgneZDhmzdvMH78eKhUKtSoUQOenp4GO6ecSlZdbN68GW5ubuL73rZtW+zatSvFrOB+fn5YunSpSJdWwFBu5lNdJP/ev337FhUqVADnHMOGDROBiAoRERFYtmwZVCoVChUqhKNHj2bbOeYkvL294ejoCM6TZrGfP38+3r17ByBrAc1KQ9LPzw9VqlQRXqtWrYr79+/rJe+mhj5c3Lx5E82aNYOFhQWsra3Ru3dvcQzFiVqt1gli155xmkjCUEHsdF18PFl1oR0YXaRIEVhaWmLJkiWIiorSSRcREYFFixZBpVKhRIkSOrNAEEn4+vqiXLly4Jwjb968KFq0KNzd3dGwYUNwzmFubg7OOTp16iT20X521Wg0+OGHH8S9Z8KECSKd9gupmJgYzJ49GyqVCs2aNUt1Jici6T6ivUKWmZkZHBwc4ODgID7Lnz8/xowZI/ZR7kEajQZv3rxBhw4dhI9ly5aJdNoBJlFRUZg8eTJUKhU6dOiAd+/e0YCn/0e7HMaNGyfKffDgwdi7dy+8vLxw7do1TJgwAQ0aNBCD1CZOnJhmUND169exd+9e7N+/HwcOHMDbt28RFxcHgAJI04NcyAO5kAdyISchISEICQnJVFo/Pz/UqlVLvJTduHGjzqorSplHRUVh7NixWLhwYarHoXo7dciFPJALeSAX8qFdPh8TFKrN0qVL0aFDB7Gf9gQKVH9/HORDHsiFPJALOdi2bRssLCzAOceqVasQHR2ts117pcZbt27pbNPul50yZYpYgbxIkSI4deqU2EZ1duYgF/JALuSCfBAyQQHsBJFLoCD2nE1wcDB+/PFHMaufo6MjFi1alCIoWqPRIDo6GtOnT4e5uTlat26NV69eGSnX8hIQEIDGjRuLmXW1f6pXr46RI0fqdO6mhjLKUHkxCKR8APv777+RJ08ecM6xa9cu/Z+ICfCpLrZu3YrSpUuLAJ/27dvj5s2bOmm03cTGxorZQ21tbbF3716Dn1tOQx/XxfPnz0UgvI+PD4CUnVmenp4oWbKk6CwjUsfLy0u4qF69On7//fcUM/N9DIoHLy8vneC6qlWrwtfXFwDNnpEWWXWxbt06FClSBCqVChYWFpg8ebLYph2QqASxK7Ml//DDD3o9D1MgeeC0v79/lo5H18Wn8zEu0nqpERoaivz588PKykqsSJA87a1bt8TfST4TNZFESEgIevXqJQa5Jv/p1q2bGFCW/Pvs7+8Pa2trcM7RuXNn8Xlq3/t//vlHBMRfuXLFsCeVgwkNDcXgwYNTDALknKNVq1Y6QenJy/m///4Tab/66ivxeWrX0PHjx8F50opcd+/eNdwJ5UC0y3XhwoUoUaKEKNdChQqJVVWUwNBJkyYhMDBQ5xivXr3C6dOn0apVKzGQTWl3NGjQABMmTBArHlA9kTbkQh7IhTyQi5yLdmBokSJFsHz5cp3gH+3A0NmzZ4t+jzlz5qQ4FnnJGuRCHsiFPJCL7CcwMDDdoNDUylF75kofHx8xU2VyFxTo8/GQD3kgF/JALoxD8hVflfJbvHixeOcQEhKCgQMHphoYmjwotFChQlCpVHB1dcX06dMRFBSEN2/eiEBTqrfThlzIA7mQC/JByAgFsBNELiK1IPaMZpcmjM+jR48wbNgwFC5cWLzQOnjwoE7wXPKG4pEjR8TDxPXr17M7yzmCsLAwHDlyBCNHjsRXX32FoUOHwsPDQycAK6NR5M+ePUPx4sXh4eGh87n2fk2aNAHnHP3794dGo6GR6amQGRfaD7b79u1DtWrVoFKpYGZmBs45SpUqhRIlSuCLL75Ic4b1ly9f4scff4SZmRn69OlDgztSITMutANuw8LC8M8//+C3337D8ePHcfv2bYwePRqcc1y6dCnNv9O+fXtwzuHi4oKIiAi6LtJAu952c3PDrl27Uox+zgzpBemmNdCA0CWrLv766y+MHj1aDGrq16+f2KbdKaxWq7Fx40ZwzrF69Wq9noOpoO2iWbNmnzwTO10XWSczLrTr7zt37mDfvn2YP38+PDw8cPbsWQwcOBBWVla4d++ezn7az7bKs1SNGjUQGxtLnV2pEB4ejgsXLmDQoEFo1qwZSpUqhQEDBmD58uUiTWovlu7du4e8efPC0tIS06ZNA4AUS0FqLzVftWpVcM5x7NgxA55NzicyMhJhYWFYt24d5s2bh/nz5+PQoUN49uyZSJPWIAEzMzPY2dlh27ZtAHSfu7T3e/HiBUqXLg1ra2tcu3bNgGeTM9Eu3+vXr2Pnzp0YNWoURowYAVtbW3DOYWlpiYkTJ6YIDH3w4AEmTpwoVjdQZqEpWrSoGPCh3JMePHiQ4u8RupALeSAX8kAuch6pBYYqAzCBD2UcFRWFmTNnwsXFBZxzFC5cGH/++afOsbSftYKDgwFQu+NjIBfyQC7kgVxkP0FBQfjss8/SDArVxsvLC3fu3EFcXBxiY2N1tkVFRWHx4sXiOEo7kPg4yIc8kAt5IBfGRbvuHD9+vCi/WrVqoVu3bmjXrp34rFevXiJt8qDQIkWKiHScc/F+qXTp0ujXrx8eP36cYj9CF3IhD+RCLsgHIRsUwE4QuQztQJNatWphx44diIqKMna2iDQIDw/HrFmzULx4cRG8fvr06TTTK4EpAQEBsLe3B+ccR48eza7smhSZ6ZjVHnm+b98+ALrBQbdu3RKz5g8ZMsRgeTV1tF3cunULnTt3FrOLcc5hb2+PsmXLomDBgjqziD569AiAbsf74cOHwTlHz549s/08TAHtIKpffvlFp/HCOUexYsVQsmRJ2NjYYPny5SlmbE9MTMTTp0/h5uYGlUqFKlWq0EuQDPDx8YGDg4P43qa1dHxaUJCu/vgUF9p1Qnh4OHbs2AE7OztwzvH999+LbdoO1Gp1lmcWN3V8fX3Fc86ECRM++lmWrgv9kZ4L7TJctGgR3NzcdOoMe3t7FChQANbW1ti4caPOyikK9+/fFx1gLVq0yJZzMgWSD1JOq3Pw6tWrwsf69evTPeaFCxfE89eRI0f0ltfcSFqzVJ0+fVr4yGj1pkOHDom058+fN0Q2czzJ7+Ph4eHo06ePCAydMGFCisBQZQZ9pQ1XsGBBjB8/HkeOHIGXlxeuX7+OyZMno1q1aqIjPjQ0NNW/R3yAXMgDuZAHcpFz+NTA0KJFi+Lvv/9O87hjx44F5xxnz541+DmYCuRCHsiFPJAL4/DkyRPRHpsxY0aKoNCoqCgcP34c3bp1EyuZ1a5dG99//z1CQkJ00j569AjfffcdVCoVunTpQitnfwLkQx7IhTyQC+Oj3R87f/58ODs767zb5pyjQ4cOuHDhAgDd969Tp04V8TzKO++hQ4di8+bN+Oqrr1ChQgVwzlG2bFkxcJnafGlDLuSBXMgF+SBkggLYCSIX4uPjIwJBWrZsiTdv3hg7S0QylIeFo0ePonz58uLF1P/+979M7bdjxw5YWlrC2toaly9fNnh+cyrawSPaD0yZXfrs5cuXGDZsmHgwW7lyJQICAgAkBXTNnj0befPmBeccU6ZM0W/mTYy0XCTfvmDBAjHrurOzM3r06IH79+/j+fPnCAwMxMGDB0UgXZcuXcT+2g/gW7duTfXvEklk5AIAtm/fjnLlygkX5cuXR9WqVVG6dGnkz58fnHOUK1cOZ8+eTRGQePDgQRHA26ZNG4Oei6ng4+MDd3d3rFy58qP2oyBd/fOpLhTUajW2bdsGGxsbcM6xdu3adNOTn7Tx8fFBz549sXfv3o/aj64L/ZORi8WLF8Pa2lrUGXXq1IG7uztq1qwpOrgqVKiAM2fO6Ax8ev36NVavXi2epfr06ZNdp5Qj0a6/MzubxevXr1G/fn2oVCqMHj0aQOrff7VajWXLliFPnjwoVKgQ7t69q59M5xIy+7z56NEjuLm5wcLCArNmzQLwwaX2MZ4/f47hw4fD0tISVapUwdOnT/WfaRNkw4YNIjB08uTJKQJD379/j9mzZ8PJyUkE9Vy5ciXFs2xUVBSuXbuGhg0bisE1L1++TPdvv379Wu/nk5MhF/JALuSBXMiJv7//JweGnjlzRudYv/76K37++WcASRNiKC+FGzVqlKEjglzIBLmQB3JhXDw9PTFv3jydlbYAIDY2Flu2bEGdOnXAORd9IcqPk5NTind2O3bsENuTr1BHZA7yIQ/kQh7IhfHR7qM9e/Ysli1bhtq1a6Nly5YYN24c/P39U/TjTp06FY6OjuCco0CBAlizZg00Go3oG4yKisL169fRoEEDcM7RoEEDvHjxIlvPKydCLuSBXMgF+SBkgQLYCSKX4uXlhUqVKtFy4xKiVOyxsbHihZODgwN2796dqf0AiFmb8ubNK5Z6JDKHdjlm5kHq5cuX+Pbbb0XDvXLlymjXrh2qVq0qln6uVasWPZTpgWvXronlscuVK4cFCxbg1atXKdL9+++/yJcvHzjnGD9+vPg8eUCW9szsROa5c+cOmjVrJl5kDBgwAH5+ftBoNHj27BnOnTsngkIrVaqEVatW4d69e7hx4wbWr18vGjTOzs7w8PAAQMGimeHt27fi98wEwlGQruHQdqE92jy1+1FqPH78GJ06dQLnHJ9//nmKZTmJzJN8lumMoOvCcKTl4uTJkyhbtqyoM8aOHSuC1F+/fo1r164JFxUqVMDChQtx9epVnDx5EpMnTxaD0ipUqICrV68CIEf6ZsSIEWKwrPICKnkZnzx5UtTfrVu3NkY2cw2DBg0SPjw9PVNsDw8Px+bNm8WAwc8//9wIucy5jB49GsOGDdMJDFU64O/duyfuR0WLFoWvry+AD89dya+LS5cuoVKlSrCyssKaNWvSvDcFBARg6NChYlACkQS5kAdyIQ/kQi4CAgJQunRpvQSG+vn5ie2NGjUC5xwqlQpNmzbFH3/8ka3nlRMhF/JALuSBXMiBdjCPUtd6enqKcuScY926dfjjjz8wd+5c1K1bV7T3jh07JvZ5//49nJ2dwTnHX3/9ZZRzMQXIhzyQC3kgF8YneVtM+50SoPu+b8qUKShUqBA4T5q1OPmEMdrHOnr0KIoUKYICBQrg0KFDKY5FpIRcyAO5kAvyQcgABbATRC5GCZjK7Ax9RPYyYcIEEYQ+efLkdAPjtCv6tWvXihHTo0aNSrGdyBwXL17EL7/8AiDj8rt8+TLc3NzAORcB1spP9erVsX//fiQkJJCHTyQxMRGJiYkYM2YMOOewt7fH5MmTRRCpdrkqQemjRo2Cubk5WrRooTObK5F1Nm3aJL7f3377rc42xcXz58/Fy3UzMzMxoECZRdfZ2RkjRoxIMfMDkTGZCdykIN3sQbsM9+/fj19//RVA5urc5cuXCy/Xr183WB5zCzSoQx6Su5g9e7Yo6zFjxuikS63O4JzDyspK59/y5ctj2bJlePfuXbaei6mglPP79+91yl35vickJKBNmzYi8OH8+fNiWWFPT09s3bpVBK+XKFFCdEjS9fJpKOWvrIKW3EdsbCxat24NzjkKFy6M//3vf2KJzQsXLmD69OkieL18+fL4999/dfYnUkd74Gpa7epevXqBcw5HR0cR1JNeX0lkZCSmT58uBnSm5iAgIACTJk0Sg3j27NmTxTPJ+ZALeSAX8kAu5CQ4OBicc5ibm2PlypWfFBiq0WhE2o0bN4rjqVQqNGvWDEePHtVJS6QOuZAHciEP5EJeRo8eLfo3jhw5Ij5Xq9UIDg5G+/btxWyVR44cQWJiIk6fPg0bGxtYW1vTimd6hnzIA7mQB3JhXLTbZtorak2ZMgVFihQB5xw2Njb4/fffU91H4eHDhyhatGiKfnci85ALeSAXckE+CGNAAewEkYuhTid5iYmJEQ3EihUrZnqm/NOnT6Nx48bgnMPW1jbFiDcic/j4+MDd3R02Nja4efNmhunj4uLQoUMHuLi44Ndff0WdOnXQpk0b9O/fH15eXjS7rp5QvtuVK1cWM9qndR/TDphTAhOJrKFWq6FWq9G8eXNwzlG6dGkx65v2i3Pl9/Pnz6NQoUJwcnLC8OHDYWdnB0dHR9SrVw9r1qzB48ePjXIepkRkZCRCQkIQFRUFQPfFEwXpZh8XL15E6dKlUaBAAXFNpIUSnLJnzx7Y2trC3Nwcf//9d3ZkM9dA14UcJCYmIiYmBhUqVADnHG5ubsJJanXG//73P9jb26Ns2bKYOnUqihQpgnLlyqFdu3Y4fvw4wsPDjXIepkJgYCBGjx4tgp0VlPIPDg4WQdN58+aFq6srWrVqBScnJ9jY2Ihrpn379nj06JExTsGkuHv3Lnr06JHCh3IfCgoKEj6sra1RsGBB1K5dG3nz5hUDO2xtbTF48GC8fv3aGKeQI0mv/yM8PBzVq1cH5xw9evTIdLnevHkTtWvXxvr16xEXF6fzNwICAjBhwgRYWlqCc45u3brh5cuXWT4PU4BcyAO5kAdyISd+fn5Yu3Ytnj59Kj77lMBQAJg0aZKY1Zhz3VVUtF8IE6lDLuSBXMgDuZAPjUaDHj16iEEA79+/h1qt1ulzUqvV6NKliwgOPXDgAEaOHAnOk1afoz5z/UE+5IFcyAO5kAftMp8yZQoKFiwo+mAXL14stqXXVmzSpAk45/juu+8yTEukDbmQB3IhF+SDyE4ogJ0gCEJCLl68KCr/RYsWpZlOu4K/desW+vXrJ/ZTZl8nPp7nz5+Lh6lRo0aJmb5TQ3GgzFr133//UaeuAXj27BmKFSsGc3NzLFmyBEDqs40pSxrNmzcPVlZWsLGxgZ+fX7bm1dRp164dOOeoUqVKiiWktHn27BmqVKmCfPny4ezZs3jy5AkePHhADRM9ERERgbVr16JLly749ddfERERIbZ5enpSkG42cvv2bdSoUQOcc8yePRuRkZEZ7rNq1apUZzkhsgZdF/KhLDvbpEkTAGmXdWhoKFxcXFC0aFHcuXMHL1++TPf5i8g8CQkJWL16NczMzNC5c+c0BwPExcVh3LhxaNq0KSpWrChm+VYC2+zt7TM1sJNIn9jYWEycOBGcc3z99ddpfs/VajVmzJiBjh07okmTJihcuLCOj+rVq9MgTT1y+/ZtUT+sWrUqU/soz7Te3t54//69zrbkgaEfE3Ca2yEX8kAu5IFcGJfUBl9+bGDo1KlTRWCoq6ur8Dl9+vRU/w6ROuRCHsiFPJAL+ejevbuYhCf5yira5di1a1dwzmFnZyfKfOvWrTrpU+tHJxcfB/mQB3IhD+TC+CSvh+3t7WFmZgbOOWrXri1WVknvvcW9e/dQvHhxcM4xY8YMg+fZVCEX8kAu5IJ8ENmNihEEQRDSER8fz6ysrJitrS2rW7cuY4wxjUajkwYA45wzxhjz8vJiW7ZsYbt27WKMMdajRw+2aNEixhhjiYmJ2Zhz08De3p516dKF2djYsBMnTrD//vsvzbSKl6dPnzLGGHv06BGztLRMsZ34dDQaDUtISGBxcXEsMTGR2dnZMcYYMzMz00kHgFlYWLDXr1+znTt3svj4eObs7MycnJyMkW2TpUSJEowxxt6+fcvevn2baprExERWtGhRVqRIERYdHc3evXvHnJycWKlSpRjnnK4LPaDRaNiOHTvY8ePH2erVq9mRI0cYY4wFBASwXr16MR8fH8YYY1WqVGH79u1jFStWZBqNhqlU9Pivb8qVK8fatm3LOOds79697NatW+mmDw0NZX/99RfjnDMHBwfm7OycTTk1fei6kA9XV1fGGGPPnz9nb9++TbWsExMTmYODA7O1tWWvXr1ir169YgULFmT58+dnjNGzVFZRqVTM0dGR5cmTh3l7e7N///03RRq1Ws0sLS3ZkiVL2IULF9jmzZtZ1apVWd68eVlCQgJTqVRs//79rFatWgyAEc7CdDA3N2eurq4sT5487MaNG+z27dsp0iQkJDAzMzM2e/Zs9ueff7Lly5czW1tbZmVlxRISEpijoyPbvHkzq1ixIvnQEw4ODszBwYHlyZOHFS5cmDGW5CE9lLZ4hQoVRPuEMcYCAwPZli1b2KpVq1hCQgLr3r0727JlC3N0dDTcCZgQ5EIeyIU8kAvjovQ9JSYmMjMzMxYdHc2WLFnCduzYwUJDQ1mRIkXYrl27WKtWrRhjSX1TGo1G7Ddt2jS2YMECxjlnDRo0YIsWLWLr1q1jjDE2b948NnXqVPF3qF5PH3IhD+RCHsiFfDRr1oxZWVmx9+/fs2vXrumUm3a/+MGDB1n58uVZZGQkY4yxESNGsH79+jHGkjxpv//bt28f27BhA2OMXHws5EMeyIU8kAvjotTZjCXVw+vXr2fv379nZcuWZYwxVqBAAdHuS60vXSnbW7duidgE5b0t8XGQC3kgF3JBPgijYPgYeYIgCOJj2b9/vxjVfOfOnRTbtUey/fvvvxg0aJAY/dy2bVv8999/2Zldk+TZs2dipukmTZrAy8tLbFNGlCckJAAA/P39UaRIkY+aDYv4eFq3bg3OOQYPHozY2FidbYqTd+/eYdq0aciXLx845+jVqxeio6Np1m89oJTh8ePH4eTkBHt7e+zduzdF2Sr/f/jwIZycnMA5x7x583S2EfrBy8sLhQoVEqOdFy9ejIoVK9IM00bg8ePHYuUOd3d3eHl5pagrAODt27dYt26duEe1bt3aWFk2Wei6kAPl+797924ULlwYhQoVwrFjx1KkUxx4e3vD0dERnHNs3rxZ5xhE1nnx4gXat28PzjmaNm0KT09PUfbJZ0Xy9fVFnTp1YGtrC845zM3NsX//fgDkRF+EhYWhVatWos64f/++qCu070tRUVH4559/xCwlnHNYW1vj0qVLKdISWePhw4dwcHAA5xxz5sz55OPQrMZZh1zIA7mQB3IhD1FRURg/fjzKli370bMaN2rUCAcPHhTpVq5cKer3hQsXZvu55HTIhTyQC3kgF3Lw8OFD0Q/l7u6OO3fuICYmRieNl5cXxo8fL8r466+/1nn/pN3WO3r0KBo1agTOOcaOHZtt52EqkA95IBfyQC6MR/J6WGnnVaxYEZs2bUKlSpXQu3fvNPdX+mavXbsmVs9s3rx5ilW3iIwhF/JALuSCfBDGggLYCYIgJOTJkyeoVKkSVCoV1q1bJwIakncyHj16FL169RINyBYtWuDMmTO0PJeeCAkJQfny5UUj/ty5cykeroKDg1GtWjVwzlGiRAncuHHDSLk1XTQaDRITEzF79mxwzlGzZk3cu3dPPADHx8cDAF6/fo2lS5eKjhdLS0vyYQBevnypM7jD29tbdFYpLsLCwvDtt9+Ccw5bW1scOnTIiDk2bXx8fFCwYMEUSzlWq1YN3t7eACjALbsICgoSyzM3adIEhw8f1gkIuXfvHpYtWwZ7e3uxROf58+cBkCN9Q9eFPDx//hwtWrQQgdNeXl7iOVWpMx49eoSWLVuCc47ChQvj6tWrxsyyyRIcHIzSpUuDc46GDRti165dePbsmdh++fJl/PzzzyhQoIC4ZszMzHD8+HEj5tp0CQoKQqlSpcA5R/369bFlyxaEhoaK7ceOHcPYsWNFnWFhYQFnZ2dxfdA9TH8obYqhQ4dCpVKhQ4cOePjw4UcfhwJDsw65kAdyIQ/kQi5evnwp+gCdnZ0/KTBUSRsfH49Vq1bB0dER06ZNy9bzMAXIhTyQC3kgF/Lg6+uLkiVLgnMONzc3jB49GocOHcLx48cxcuRI0U/COUf//v11JqTS9nTkyBE0btxY1N/Dhw8H8KE9SIPMMwf5kAdyIQ/kIvtJLyj08OHDUKvVKFy4MMqXL4+goCCRNnlZ3rp1C/Xq1QPnHIUKFcLixYtFPzuROciFPJALuSAfhDGhAHaCIAgJiYiIwFdffSWC4O7evStGPysPDvPmzUP16tVFA7J9+/Y4f/48Vf56xs/PT8x6WLFiRQwcOBBnz57FsWPHsG3bNhQrVkx09rZv314nEIjQLw8fPoSbmxs452jWrBmOHj2K8PBwREREIDAwEP369UOZMmXEbKHbtm0DQAE+hiAwMFB0bjVt2hT79u3Dy5cvkZiYiEePHuGbb76Bs7OzaJj4+/sbO8smjY+Pj5i52NLSEs7OzqJDUXv2b8Lw+Pr6ioDEwoULo0qVKujfvz/69OkDFxcX5M2bF5xzlClTBitWrMDbt2+NnWWTha4LeQgICECJEiXEc+3OnTsRFhaGN2/ewNvbGy1atBADDWrXro3Hjx8bO8smi5+fH8qVKwfOOfLlywcnJye4u7ujRYsWsLKygo2NDTjncHR0RM2aNUWwNL1sMgx+fn6oUKGCmFndwcEB1apVQ82aNcE5h5WVlRgk2717d7EyFz3bGoa9e/fC2toanHOsWLFCZ8WnjK4BCgzVL+RCHsiFPJALefD09ESFChVw4sQJ8Zky8YJCeoGh2uni4+Nx8+bN7Mm4CUIu5IFcyAO5kIegoCB07doVhQsXFu8rlJXOlJ9+/fqlGxTatGlTmJmZIU+ePGjbti2Cg4Px+PFjvHnzJtV9iLQhH/JALuSBXBiHGTNm6ASFak8A1qtXL6hUKixfvhzR0dEp9r18+TJq1qwJCwsLcM7RtWtXattlAXIhD+RCLsgHYQwogJ0gCEJStGdJrFOnDoYMGYLffvsNQ4YMQZs2bXQakH379oWnpycFMxiIgIAA1K9fH+bm5qJzl3OOPHnyiICTKlWq4Pbt28bOqsmjPaDA0dERZcqUQbVq1cQSRIqftWvXIioqytjZNWl8fX1FQKKDgwNcXV3h7u6OQoUKCRfm5uZi5lYKfjMs3t7eIli3UqVKOH78OAVHG4nAwEC0bt1adPwqdYbyr5ubG9auXYuXL18aO6smD10X8qA9q0/evHnh5OSEihUr6rwUsbGxodnXs4Hg4GD06dMHlSpV0mlPKD/169fH4sWLxeAzal8YlpCQEHz77bc6A5OVn3z58qFVq1bYv3+/GNhBz1OGZfr06aL8lyxZguDgYLEtrbJPHhjavXt3vHr1Kt19iIwhF/JALuSBXMiDdn+TRqPRKctZs2alO6txWtAg20+DXMgDuZAHciEPb968wd27d7Fp0yb8+uuvYuVYzjm++uqrdINC3d3dxfsoZYCz0rfo7u6OjRs3provkTbkQx7IhTyQi+xl3rx5oqySB4UCwLZt20R5Tps2DcePH8f79+9x/PhxLF26VASEcs7RsmVLhIWFAaD+20+BXMgDuZAL8kEYCwpgJwiCkBg/Pz+dxqJ2hW9ubo4yZcrQEo7ZxJMnTzBt2jTUr19fJ7CkZMmS6NOnD+7duweAXgBmB4GBgWjfvr0IZFd+7O3t4ezsjKNHj5KHbCIwMBBt27ZF0aJFwTmHmZkZOE+a7Thfvnz4888/jZ3FXIW3tzcKFCgAzjlq1KiB3bt34/3798bOVq7k+fPn8PDwQI8ePVC6dGlYW1ujYcOG6N+/P4KCglIdlU4YBrou5CEwMBAdO3YUg5+UFxoODg6oXLmyCF6njizD8+7dOwQGBmLZsmWYPHkyRo4cidWrV+PgwYNQq9XiOYqep7KHyMhIhIWFYevWrVi2bBmWLVsGDw8PXL9+3dhZyzVo33fGjx8v2hddunTBggUL0twvICAA48aNE+30Pn36ZDhQKnkQEaELuZAHciEP5EI+0iqjzZs3I3/+/JkKDM3sMy/5SB9yIQ/kQh7IhZxMnjxZ1OFffvllpmY05pyjXbt2mDNnDk6fPo3Fixfj888/F8eZNWuW2I9cfBzkQx7IhTyQC8Pj6+sLR0dHFC5cGIcPHxafa5fvxIkTdd59u7i46PSlOzs7o3fv3iIolAYHfBrkQh7IhVyQD8JYcABgBEEQhLQ8fPiQbdu2jZ07d44FBgayPHnyMFtbW/b999+zatWqsWbNmjHGGNNoNEylUn308QEwzrn4v0ajYZxznc+Sp8mtJCQksISEBHb8+HEWFxfHIiIiWKtWrViRIkWYvb09lVM28vr1a+bt7c1OnDjB4uLiWFxcHGvXrh1zc3NjpUuXNnb2chUvXrxgFy9eZIcOHWJhYWFMo9Ewd3d31qNHD1atWjW6LrIZX19f5u7uzl69esVKlSrFNmzYwNq2bftJ9QOhH96/f88iIyNZ4cKFmbm5ubGzkyuh60IeXr9+zW7evMkOHDjA3rx5w9RqNevcuTNr2rQpK1eu3Cc/zxL6hTzIRWJiIjMzMzN2Nkwe7XJesWIF27RpEwsICGAODg5s//79rGnTpjr1eGBgINu8eTNbtWoVU6vVrHz58mzZsmWsfPnyjHPOVCoVy58/P7O0tGRqtZrZ2toyS0tLFhMTw/LkyUNe04FcyAO5kAdyIT+RkZGsb9++7MSJE6xMmTJs/vz5rGfPnoyx1PtelWetkJAQ9vDhQ/b333+z9+/fszx58rBmzZoxV1dXVr58ecYYPQt8LORCHsiFPJAL4/L8+XNWrFgxxhhj33zzDRs+fDirXbs2Y0y3/I4ePcqWLVvGrly5wjQaDRs+fDj7+eefdY718uVLtmPHDjZhwgTGGGM///wzGz58eDaeTc6HfMgDuZAHcpF9BAUFMV9fX9apUyfG2Id6WLuc582bxzw8PJifn5/Ovh07dmSfffYZ69mzJ7O3t6c6OIuQC3kgF3JBPghjQAHsBEEQOQCNRsM0Gg17+PAhs7e3ZyqVitnb2+ts/9ggk+T77Nixg4WEhLBr164xlUrFWrduzapUqcLatWvHGKMgdiLnQN9V46FWq5mZmZkof3JhHHx9fVmVKlVYwYIF2alTp1jNmjWNnaVcSVrffwoMNQ50XcgP1RnGg+5LckHXgvHQ7lC/fv06u3fvHrOxsWGdO3dm+fPnF+kCAwPZli1b2KpVq1hCQgIrWLAgCw8PZ5aWlkylUjG1Ws00Gg1zdHRk5ubmLDo6mhUoUIDlz5+fxcfHs6NHjzIXFxe69tKBXMgDuZAHciE3d+/eFW2M6dOns9mzZzPG0n/O2rp1K9u+fTu7efMmi4+PF59zzln16tXZwIED2ZAhQxhjFCD6MZALeSAX8kAujI+Xlxdbu3Yt++abb1iDBg0YY+kHhY4fP54tXrxYpFMGoDHG2Lt379jo0aPZzp07WfPmzdmePXtYoUKFjHNiORTyIQ/kQh7IRfaTvB7WLm9fX18WGBjIHjx4wAoUKMAKFSrEWrduLfoNqb2mX8iFPJALuSAfRHZBAewEQRA5AH0HMSgPFu/evWMHDx5kBw4cYCdOnGAqlYppNBrGWFJHpIODAxs8eDCbN2+eQfKR06HyMC7a5a88zpAP45D8WqBrw/g8ePCAhYWFsTp16tCs3wTx/9B1IQdUZxAEITMZdawnDwz9+uuvWa1atdiECROYWq1mxYoVYxERESw2NpbZ2NiI1aIYY8zMzIwlJiYya2tr5u3tzVxcXLLprHIm5EIeyIU8kAt5ef78OWvatCl7+vQpW7NmDRswYECKgE5tf5MnTxYBP0WKFGENGjRgZcuWZWFhYezq1assODiYMcbYjBkz2KxZs1LsT6QNuZAHciEP5EIO4uLimJWVFWPs44JCUxscMHv2bDZ79myWP39+9t9//7EyZcpk34mYCORDHsiFPJAL45NRffqp9W1qffA0AC19yIU8kAu5IB+EIaC39gRBEDmA9IJ60lviMTWUSj4sLIyNHTuWXblyhYWGhjLGGCtUqBCrUaMGs7KyYmFhYezff/9lCxYsYHFxcWzp0qUUXJQMKg/jol3+5MK4JC9/8mF8XFxcKOCAIJJB14UcUJ1BEITMJG9La7e3g4KCdAJDu3btytavX8/27dvH1Go1K126NLt06RKLi4tjkZGRzNramkVHR7PXr18zc3NzBoC9efOGBQcHs+DgYKqTMoBcyAO5kAdyIS82NjasatWqLDAwkG3fvp21atWKlSxZUmzX7q+dMGECW7ZsGWOMsTx58rAJEyawn376SaS9ffs2++OPP9iSJUvYnDlzmJ2dHRs7diwFhmYSciEP5EIeyIUc6CsolDHGLCwsGGNJwaZRUVHZkHvTg3zIA7mQB3JhfNJr86W2PTNoH+Ps2bMsKCiIDRw4kJmZmdEAtHQgF/JALuSCfBAGAQRBEESORaPRiN+DgoLE72q1OtX0yuePHj1CrVq1wDkXP/PmzcM///wj0j548ABr1qyBSqUC5xwbNmwwzEnkIhITE42dBeL/SesaIbIfciEXCQkJxs4C8f+QC3kgF/JALuSBnmvlgp6nDI+vry8mTJiAPHnygHOOHj164NWrVwCArVu3gnMOJycnvH37FomJiTptde3f0/uMyBzkQh7IhTyQCzkICgpCqVKlwDlH69atERoamiLN4sWLRV9soUKFwDlHkSJFEBISopPu3bt3WLJkCTjncHZ2xrVr17LpLEwDciEP5EIeyIV87Nu3Dy1atICZmRk455gwYYLYll4b786dO6hZsyY452jfvj2io6OzI7smD/mQB3IhD+TCtLh8+TJ69+4Nzjm++uorY2cnV0Mu5IFcyAX5yL3QEAWCIIgcjDIK7fz586x169Zs/PjxjDGW6mhnZRT0o0ePWLNmzdjt27cZ55wVKVKEnTp1ik2dOpU1b95cpC9VqhT75ptv2ODBgxnnnJ0/fz5bzsmUUalUTKPRsGPHjrHnz58bOzu5GmVp7F9//ZU9ffrU2NnJ1ZALuTA3N2dqtZotX76cPX782NjZydWQC3kgF/JALuSBnmvlgp6nDI+vry9bunQpi42NZV988QXbsmULK1CggE4aCwsLptFoGGMZrxZFq098OuRCHsiFPJALOXB1dWX/+9//mKOjI/v777/ZhAkTWEREhNh+/vx59vPPPzPGGGvSpAmbMWMGa9asGXvx4gVr0KABCwgIYIwlzYScL18+9sUXX7D69euzx48fs/v37xvlnHIq5EIeyIU8kAu5iIyMZL/88gs7d+7cR81o/PjxY7Z3714WGBjIGGOsbt26LE+ePNmWb1OFfMgDuZAHcmFa3Lhxg82dO5cdP36cMcbY9evX2d27d42cq9wJuZAHciEX5COXY+wIeoIgCCJrnD59Go0bN4alpSU451i4cGGKNMoMiY8ePUK5cuXAOUeePHlQt25d3LhxA0DasyutXbsWnHNYWlriwYMHhjuRXMLKlSthYWGBzz77DI8ePTJ2dnI1Y8eOBecc3bt3JxdGhlzIhTKy+fPPPycfRoZcyAO5kAdyIQ/0XCsX9DxleL788ku0aNECr1+/BvBhVQilzVyxYkXExcUZM4u5BnIhD+RCHsiFPPj4+KBKlSqYPHmyzufr1q2DtbU1OOdYvnw5ACAwMBDNmjUTsxz7+/sD+NBPO2jQIDGrfmJiIq268pGQC3kgF/JALuTB29sbdnZ2GD58uPgsvTJ8/PgxFi5cCEdHR3DO0bZtW7GNVk/JOuRDHsiFPJAL0+H58+dwcnIC5xzNmjXDkSNHEBMTY+xs5UrIhTyQC7kgH7kbCmAnCILIwURHR6NFixZiWccKFSrg1q1bOmmUBmFYWBgaNmwIzjmsra3RpEkT3L59WyeNNsqLrmPHjiFv3rxwcHCgAHY9cOvWLeHriy++oOASI3L9+nWx7B0FwRkXciEXly5dEoOiyIdxIRfyQC7kgVzIAz3XygU9TxkO7ZezUVFR4nelHb1+/XpwzlG2bFlERERke/5yE+RCHsiFPJALOQkPDxe/JyYmIi4uDk2bNgXnHM2bN9dJ6+vri+bNm6cIEAWA8ePHg3OOb7/9NtvybmqQC3kgF/JALuTh+fPn4vePCQpt3LgxXr58meF+xMdBPuSBXMgDucj5KBMd+vv7o1OnTti7dy9iY2ONnKvcCbmQB3IhF+SDUBl7BniCIAji08mTJw9bv349Y4yxwoULswMHDrCaNWvqpOGcs4iICDZ79mx2+/ZtxhhjlSpVYj///DOrUaMGA5Dq0sDm5uaMMcaOHDnCoqOjmYWFBS3xlUUAsJo1a7JLly4xS0tLduDAATZ69Gj2+PFjY2ct16HRaFi9evXYhQsXmIWFBTt48CC5MBLkQi40Gg1r3LgxO3fuHPkwMuRCHsiFPJALeaDnWrmg5ynDYmZmxjQaDWOMMRsbG/G50o5Wls3WaDQsISGBqdXq7M9kLoFcyAO5kAdyIScODg6MsaRyV6lUDACLjY1ljDHm6urKGGPCRYUKFdjGjRtZs2bN2IsXL1jTpk3ZkydPGGOM/fPPP4yxD24BZOt5mALkQh7IhTyQC3koXLgwY4yxxMREUWcn5+nTp2znzp1s6dKl7M2bN6xhw4Zs165drGDBggxAmvsRHw/5kAdyIQ/kIuejUqmYWq1m5cqVY3v37mWfffYZs7KyMna2ciXkQh7IhVyQD4IC2AmCIHI4FStWZAEBAezs2bOsSpUqOtuUF1jXrl1j58+fZ3FxcczOzo6tX7+e1axZM83gdWW/wMBA5u3tzRhjrHLlyszGxkZsIz4ezjnTaDSsUaNG7J9//mHm5ubs4MGDbPjw4RRcks2oVCrh4ty5c8LF0KFDRQc8kT2QC7lQfDRs2FDHx+DBg8lHNkMu5IFcyAO5kAd6rpULep4yPCpVyi5UpW2sBPtYWVkxGxsbMRicMAzkQh7IhTyQC3lR3JiZmTF7e3vGOWclSpTQ2cZYygDRWrVqsWHDhrH79++zwoULs2+++cYo+TclyIU8kAt5IBfykF5Q6G+//aYTFOrh4cFcXFwYYyzV93tE1iEf8kAu5IFcyE96A8mUdqCNjQ2ztLTMrizlWsiFPJALuSAfRFpQADtBEIQJUKZMGVa5cuUUnyudjL/++ivz8fFhjDG2c+dO1qBBg3SD15X9tm/fzq5evcoYY6xPnz7M1tY21ZdiRObRDrw6f/48Y4yxo0ePsl9++YXFx8cbOXe5i9RcHD9+nB05coRmJMtmyIVcpObjxIkT7MqVKzSIKZshF/JALuSBXMgDPdfKBT1PGY+EhATGWJIDai8bF3IhD+RCHsiFHJibmzNnZ2cGgJ04cYK9ePEihQ8lQNTd3Z29fPmSbd26lcXHx7OGDRuykiVLMsYoAEgfkAt5IBfyQC7kJKOgUCJ7IR/yQC7kgVzIg3bchzKIOTEx0ZhZyrVktwtaASdtjHFdkI+0yU4fige6D+YcqMeSIAjCxLl69So7evQoY4yxIUOGsA4dOjDGUu9MBCA6Jjdv3swWLlzIGGOsU6dO7LPPPhNptImIiGDR0dE6xyDSRzu45MqVK6xdu3asdu3aNJLQCCR3MXDgQFanTh2akcwIkAu50PZx9epVNmfOHFanTh0KeDAC5EIeyIU8kAt5oOdauaDnqexFuefkyZOHMZbUFo6Jiclyx7h2m5ra15mDXMgDuZAHciEPSjn17NmTFStWjD19+pRdu3Yt1fKrUKEC27RpE2vcuDFLSEhgZcuWZePHj2dFixbN7mybJORCHsiFPJALOXn06BHbtWsXBYVKAvmQB3IhD+RCHrSDQv/55x82fPhw5u/vz8zMzGjCl2wmO11ERkYyxmgAYVpk93URHh7OXr58yTjnFDSdCtnp482bN2zTpk3My8uLmZmZkY+cAgiCIAiTZt++feCcg3OOnTt3pplOo9GI3/fs2YOiRYuCc45ixYphw4YNqe5z7949jBkzBmPGjMH58+dTPRaRNomJiQCAd+/eZek4VN5ZR3ERFRWVpeOQi6xDLuRC8REfH/9J+yseyEfWIRfyQC7kgVzIAz3XyoW+nqcA4O3bt/j555+xa9cuvHz5UnxOrj6wZcsWcM5RuXJlxMXFZals1Gp1pj4jUodcyAO5kAdyIQ8vX75Ep06dwDlHkyZN4OnpmWZaHx8fdOrUCcePH8/GHOYeyIU8kAt5IBfyoFarsXLlSvFer1GjRggJCTF2tnIt5EMeyIU8kAs5uXDhAr7++mvhJTQ0VK/HV/obNRqN+F35l9DF0C6Cg4MxefJk9OvXDzdv3hR98uQjJYZ2AQCvXr3CjBkzUKVKFdy6dQsA9ZWkhaF9aDQaHDp0CJxzmJub4/79+wDIR06AAzRNBkEQhCmzZs0aNmrUKFapUiV29epVli9fPp0RbowxptFoxMxM+/fvZ1OmTGHBwcFMo9GwwYMHs/Xr1zPGWIr9Dh8+zHr06MEYY6xKlSps4MCBbOTIkammJTLmY8pM2xljSaM63759y16/fs1sbW1Z6dKlmbW19Ucfl/h4krt49OgRe/r0KXv9+jUrXLgwc3V1ZY6OjowxcmFoyIVcaPtQq9XMz8+P+fv7s7dv37LSpUuzMmXKMGdnZ8YY+TA05EIeyIU8kAvDQs+1pkFsbCzbv38/69+/P2OMsYEDB7IuXbqwzp07M8bIhzY//PADO3r0KHv27BkzMzP7pGMkJiaKfYcNG8ZsbGzY0qVLGWNU1h8DuZAHciEP5EIegoODWYsWLdijR49YkyZN2KxZs1jdunWZnZ1dimei6OhoZmNjwxijMjYE5EIeyIU8kAt58PPzY5UqVWKVKlVif/75p95mNFar1czc3DyFTyJ9yIc8kAt5IBdyERwczAYPHsz+/vtvBoBVrFiRrVixgrVv3z7Lx05ez4eHh7P4+HhWtGhR4Yl8fcCQLhhj7NWrV2zNmjVs6dKlLDY2llWuXJm5u7uzCRMmMBcXF522e27H0C4YY+z169dsy5YtbPv27SwgIIDly5ePXbx4kbm5uZGLZGSHD+XvfPvtt+zSpUssf/787OLFi6xq1arkQ3ayJUyeIAiCMBqrV68G5xyOjo4IDAxMsV175iUPDw+4urrCwsICnHN8/vnnYltaIza3bt2Kzz77DCqVCpxzTJ06NdVjE/pD28Xly5exfPlylCpVCgULFoSFhQVUKhW6d++OtWvXinTkwvAcOnQIY8eORf78+WFjYyNGjrZt2xYrV64U6ciF4SEXcrFp0yb06dMHlpaWMDMz05mVY+nSpSId+TA85EIeyIU8kAvjQs+1chMfH49ff/0VDRs2BOccKpUKZcqUwYwZM0Sa3D6zj/bsLRs3bsTjx4+z/B2dNm0aihQpAs45+vXrl9Us5hrIhTyQC3kgF3Li6+sLZ2dncM5RsWJFjB8/HgEBAcbOVq6EXMgDuZAHciEPISEhep2V8smTJ1i5ciXu3LkDgNpyHwv5kAdyIQ/kQi5GjhwJzjkaNmyI48ePIyYmRm/H9vX1xapVq9CxY0eULVsWRYoUQatWrTBz5kwEBwcDoBmOtTGkCwA4efIkFi1ahLJly8LKygqcc1SpUgVeXl4AyIU2hnTx6tUrLFy4EOXKlQPnHHnz5gXnHPb29jTzdxoY+tpQCAoKQrt27chHDoIC2AmCIEyc+/fvw9XVFY6Ojjh06JB4UZWQkKCT7ueff0a+fPlE4E6nTp3EtoyWCPb09MSkSZNEEPuoUaPENgowMRyLFy9GlSpVxIADzjmsra3Fkjicc4wZM0akJxeGITY2FhMmTEC+fPmECwsLC+TLl0/HxU8//ST2IReGgVwYH6U81Wo1/Pz8MHDgQJ2yz58/PwoVKgSVSiU+Gz16dIr9iaxDLuSBXMgDuZAXeq6Vl/j4eDx//hyDBw8WQeyccwwePNjYWZMGfXZ8z5s3DyqVSrTLR4wYQd/3j4BcyAO5kAdyISeBgYFo1aoV8uTJI559li5dirCwMGNnLddBLuSBXMgDuTA9nj17hlWrVon2tRIcShgH8iEP5EIeyMWnox3ov3z5cvzxxx+IjY395ONpt/GePn0KDw8PFChQQDwXKH2Dyk+lSpVE4HRuH3SgbxcZERoaiqVLl6J27drgnKNgwYLk4v8xtIvkwesODg44ceIEunTpQkHTqZDd1waQ1KahIPacAwWwEwRBmDivX79Ghw4dwDmHu7s7/vvvP/EwoNFo8M8//2DEiBE6DY3evXuL/ZMHumuj3YB58+YN1q5dKxotc+fONdxJ5XJevXqFIUOG6Dhr2bIlZsyYgcuXL2PHjh0YN26ccDFz5kxjZ9kkSUxMxK1bt9CnTx8dF927d8e2bdvg7e2NgwcPYtq0acLFnDlzjJ1tk4RcyIFSJ8TFxeHw4cNo3769cFGoUCF89913OHv2LB4/foy//voLc+fOFT7mz59v5NybFuRCHsiFPJALOaHn2pzFvHnzUKpUKRG4SD70z4MHD+Do6CjKN7e/bDIm5EIeyIU8kAv9EhYWhlWrVqFRo0awtLTE3r17ERERobfj0+CCzEMu5IFcyAO5MB0iIiIwe/ZsUYdbW1tj5syZiI+PN3bWciXkQx7IhTyQi6yjHc+RleBM7fr5ypUrGD58uJjh29bWFsWLF8e4ceOwcOFCfPfddyJw2snJCX5+flk6B1NBXy4yQnEVExODmzdvonXr1uCco1q1anpdGSEno28XSpmnFrzu6ekJIGm1grZt21LQdCpk17WhDQWx5xwogJ0gCCIXEBgYiJIlS4JzjsqVK6Nbt26YOHEiWrZsCVdXVxEsUq5cOYwdO1bsl17wemq8e/dOBPu4urri3Llz+j6VXE9QUBC++uor4axUqVKYOHFiinSRkZFYs2YNVCoVihUrhrNnzxoht6ZLQkIC/vnnH3Ts2FG4aNiwIVasWJEibVRUFFatWgUzMzOUKVMG169fN0KOTRdyIQdKoz02Nha//vorGjVqJHz06NEDu3fvTrFPdHQ0li5dCjMzM1StWlXMCkBkDXIhD+RCHsiFnNBzbc7i6dOnmDdvnphtqVKlSti6davBZ0rJTSgd5wEBAViwYAF1pBsRciEP5EIeyIVh0Gg0iI+Px7179/S2dHZISAgePXoEgF7KfgzkQh7IhTyQC9NhwYIF4JyjcOHCmDlzJh48eGDsLOVqyIc8kAt5IBfGRzt4/dSpU+jatatYLbNmzZqYMWOGTmB0fHw8PD090bx5c3DO8fnnn+Pdu3fGyDoB4NatW6hatSrMzc0xa9YsJCYm0qBzA/D8+XMsWbIEpUuXBuccjo6OuHfvHoAPz7YUNC0XgYGBOoMKkvsi5IAC2AmCIHIJ/v7+qFGjhhglq/wos+f1798fe/bsEenTq7CjoqLE78lnyvjvv/9QqlQpqFSqVANIiU8nNDQUvXr1Eu6aN2+O7du3i+3aDRGNRgN/f39UqlQJnHOsW7fOSLk2PRITE3HhwgW0adNGuOjbty9Onjwp0qjVanFtaDQa3L9/H05OTuCcY8eOHcbKuslBLuQiLi4Ou3btQp06dYSPMWPG6Cz1mLxuuX79Ouzs7MA5x4EDB7I7yyYLuZAHciEP5EIu6Lk2ZxEaGooZM2bA1tYWnHNUqVIFu3fv1usMjEQSHzuInDAc5EIeyIU8kAv9o+8ZiENCQjB06FCULFkSV69e1euxTR1yIQ/kQh7IhWmxePFijBw5Eg8fPjR2VgiQD5kgF/JALoyHdp1/4sQJtGzZEubm5uCco3Xr1jhz5gwiIyMB6PahJyYmYteuXbC0tESZMmUQHByc7XknkoiLi0P//v3BOUeTJk2MnR2TJC4uDqtWrULRokXBOYeVlRWOHTsmtmkPGNAOYs+bN6/Oeygi+wkKChKTIebPnx93794FQEHsMkEB7ARBELmIx48fY82aNejWrRsaNWqEmjVrYty4cTh48KBOuvRGY/r7+2PEiBE4evRommm6du0Kzjnq1q2LuLg4Wg4yCyguoqKi0K9fPxHk06lTJ/FArJ0uOS1atADnHN26dUs3HZExyvfY29sbXbp0ES5++OEH/PvvvyJdWmWsLKM2aNCgdNMRGUMu5EOj0eDUqVNo0qSJ8DF9+nQ8fvxYJ01qKAGJM2bMAEA+sgq5kAdyIQ/kQg7ouTZnEhoailmzZongdTc3N3h4eFDwehbQ/u5SW9m4kAt5IBfyYGgX5NdwBAQEYOzYsWIVTldXVzx//tzY2cqVkAt5IBfyQC6Mh3ZgDs2Ma3zIhzyQC3kgF/Jw/vx5dOrUSQSvd+7cOcOg9AcPHsDR0RGcc/z+++/ZlFNCG+UaWr16NTjnsLGxgZ+fn5FzZZo8ePAAvXv3RtWqVcE5R4MGDXD+/HkASf0p2n0eQUFBaNWqFTjn+Omnn2hSgGwmeXD69u3bxSSHtra2IoidkANzRhAEQeQaihcvzoYPH86GDx/OEhMTmUajYRYWFinSqVSqVPcHwO7du8fWrl3L1q5dy/bt28c+//xzBoBxzlliYiIzMzNjVlZWjDHG4uPjGeeccc4Nel6mCgDhYsqUKWzXrl2MMcbat2/PRo4cydq2bZsinfa+nHOmVqsZY4zZ2Ngwxhi5+EQ0Go0o48WLF7Pjx48zxhgbMGAAGzFiBKtWrRpjLKULAIwxxiIiIlh0dDRjjDF7e3vGGLn4VMiFXCg+Xrx4wdavX88uX77MGEu6Zw0fPpwVLlxYpNUuZ2U/X19f9ubNG8YYY4UKFWKMpV0HEelDLuSBXMgDuZAHeq7NmTx8+JBt376dLVu2jEVFRbGqVauySZMmsa5duzJbW1tjZy9Hov0s++rVK1awYEHRjiayF0O70D5+av8nPpAd14VSl6T2N4kPZIcLxUNERASzs7Oje6AeCQoKYitWrGCMMVa6dGn2448/0vfcSJALeSAX8kAushftZx8zMzPx/3z58hk5Z7kT8iEP5EIeyIV8BAcHsx07drC//vqLJSYmss6dO7OtW7fq9KGnxtOnT9nbt28ZY4yZm1MIojFQ2tSvXr1ijDEWExPDYmNjjZklk0Sj0bBSpUqxbdu2sX///ZctWbKEnTp1irVp04adPXuWNW7cWMQjMMaYq6sr27BhAzt16hTr3LkzXR/ZjFK3HDt2jJ07d46tW7dO1DtRUVFs/Pjx7MiRI8za2trIOSUYY4xahgRBELkM5aHJzMyMWVhY6DxEZQTnnLVs2ZINGDCAMcZYz5492ebNm9nr16/FMT08PNj+/fsZY4zVqlUr1QB5InMoD1AbN25kP//8M2OMsYYNG7Iff/xRJ8gnteAdzjk7efIku3TpEmOMserVq+sck/g4lM70uXPnst9++40xxlj37t3ZoEGDRMA0YynLVxnAcfz4cebr68sYY6x8+fKppiUyB7mQC+3BBMeOHWOMMTZ06FA2cODAdDu1lP3OnDnDnj9/zhhjzNnZ2cC5NW3IhTyQC3kgF/JAz7U5Dwpe1z+JiYni/jJixAjWtGlT5uvrKzrTiezD0C60g4Bv377NGPtQt5BrXbLjutCuXy5evMgCAgKYSqViiYmJejm+qZCd96g9e/awr7/+mt2/f5+ZmZmRCz3Rrl07NmrUKGZubs5GjhzJvvvuO1awYEFjZytXQi7kgVzIA7nIHiIiIhhjTEw4pUDtZ+NAPuTBkC6SPytTmy99svO60Gg0ej+mKaKU08mTJ5mHhwdTq9Wsbdu2bN26den2oSv+goODmY2NDVOpVGLiMCJ70L7f3L59mx05coRxzlmFChWYk5OTEXNmmqhUKgaA5c2blzVv3pxt3LiRde/enSUkJLB+/foxT0/PFPeycuXKsaFDh7LSpUsbKde5g+R17+PHj9nFixdZx44d2eDBg9mqVatYQkICi4+PZ9WrV2fz589nS5YsoeB1mTDk9O4EQRBEziH5Eirp8erVK3z//ffgnINzjrZt22LAgAEYPny4+MzR0RHr1q0zYI5zB/7+/mjVqhXMzMzg4OCA9evXi23pLbscFhaGQYMGwdLSEg4ODvjrr78y3IdIn0uXLqF8+fLgnKNatWo4ePCg2JZeufr4+KBt27ZQqVSoVKkSfH19syO7Jg25kIuDBw/CysoKnHO0a9cOV65cydR+V65cQdmyZcE5h7u7Oy0NqQfIhTyQC3kgF/JAz7U5h9DQUMyaNQu2trbgnMPNzQ0eHh6IiIgwdtZMgokTJ6JUqVLgnMPCwgIvX77Uy3GVa4KujcxjKBcKW7ZsQYUKFdChQwccPHhQHD8xMVGvf8cUMPR1AQDnzp2Dq6sr7O3tcefOHQAf1xeWWzD0dREVFYWJEyeKJZvv378PgFxkFe37ytWrVxEWFmbE3ORuyIU8kAt5IBfZw7NnzzBr1ixMmzZNfEZtA+ORHT6orypzZIcLtVqt876Jrr3UyQ4XV69exaxZswx2fFPl9u3bsLGxAecc9erVw9WrV9NNr5Trq1evUKFCBXDOUaVKFcTGxmZHdnMd2s9SqbWdL1++jEGDBsHOzg6cc3Tr1i07s2eSZLbv7saNG6hWrRrMzc0xevRoxMfHU79fNqN9n3/27Bn279+PevXqoXjx4iJ2jXOOLl26YObMmYiKijJibom0oPUJCIIgCKbRaMTSQn/88Qdr2LAhc3Z2TnO0c4ECBdjIkSOZp6cnu3HjBjt//jyLj48X221sbFj37t3ZkCFDsiX/psz9+/fZxYsXmUajYb179xZlmtZy1/j/mcXOnz/PDh48yBISElitWrVYmzZtGGM0s0NWuH//Pnvw4AFjjLFu3bqx7t27M8bSni2UsaTlh44fP86uX7/OADA3NzdWoUKF7MqyyUIu5EAp77t374oZGj777DPWsGHDDPd9/Pgx27NnD3v27BljjLGaNWvS0pBZgFzIA7mQB3IhH/RcmzOgmdcNy9GjR9mSJUvE/4cOHcocHR2zdEzlWlGuiZcvX7LY2FgWFBTE1Go1q1u3LjM3N2e2trZpXm+5EUO40ObWrVvs+PHjLDAwkPn7+zNPT0/WoEEDtmDBAla2bFmWmJgo+mFyO4Zyod0+PHfuHBs7dix79uwZi42NZc2bN2cXL15kVatWJRdaGPq6YCypz/CHH35gN2/eZH///Tdr2rQpudADKpVK3OMbNGhg7OzkasiFPJALeSAXhufp06ds7969bO3atez169dMpVKx2bNn663drDxXpdf/TnzA0D5iY2PZ33//zSZNmsRGjhzJGjduzCpXrswYS/8dSW7E0C4YS+rXOn/+PBs/fjyrVq0a2759O10vqZAdLsLDw1m/fv1YUFAQCw8PZ6tXryYXGQCAqdVqtnHjRhYTE8OKFCnCvvrqK1ajRo109+Gcs8jISDZ37lwWHBzM8uTJwzp37swsLCyo7+kjSO+7qVarxXuNhIQEnXKPjY1larWaXb16lfn5+bEdO3aw169fs5iYGFajRg22Zs0axphuv3vy9ja1v9MmNDSUxcbGsgoVKmT4fa5RowZzc3Nj9+/fZ3/99RdbtGgRs7CwyMbc5l4UN8q1smzZMnb58mV26tQpkcbR0ZHVqlWLffnll6xPnz5ixnXt7z9dG5KQreHyBEEQhNQos6pfu3Yt0+nt7e0xZcoUuLi4oGjRoujUqRPmzJkjRrrRCMNPQ6PRIC4uDp07dwbnHLVq1RKzXqU1K5Xy+b179+Dk5ATOOcqVK4fr16+nux+RMe/evUPt2rXBOUfz5s3F5xl9v48dO4bChQuLmcKfPHmSqf2ItCEXchEWFiZm5+vatav4PL1ZLd69e4d169bB0dERnHPUr18fMTExGe5HpA+5kAdyIQ/kQg7ouVYelOeet2/fiplGtL/XNPN69jBkyBBwzjFlypQsP4tq7//8+XNs3boVderUQdGiRcXsMm5ubvjyyy/h7+8PgK4fbfTpIjW8vLxw/PhxNG3aVLRFXFxc4OnpCYDaItro24X2ve2ff/5BrVq1oFKpYGNjA1dXV3DOYW9vT7N/p4KhrwuFwMBAtGvXjlxkESoveSAX8kAu5MHQLqiNnoRarcaaNWugUqnAOUfRokUxYsQIvHnzRi/H1ubhw4d49uwZHj16pPOcQC4+YEgfCufOnYObmxs45zA3N0fLli2xefNmsZ18JJEdLhITE/H333+jY8eOog0+bNgwsZ1cJJEdLoAkH2vXroWlpSU45xg+fLjYRi7SJioqSrx3rVWrFp4+fZrhPrGxsdi2bRsqVqwIzjkcHR1x69atbMitaXLlyhXMnj0bn332GTp06ICuXbuiVatWaNCgARo3boy6deuicuXKqFSpElxcXODo6CjeX2j/1K5dG5cuXQKg+53Xrs8nTZpEq9KlQ2BgIAYOHIjevXuLz9K6fyjlt3PnTnHfyewKwMSnkbyfKjg4GNOmTUPTpk11roUyZcqgRYsWuHLliogJUaBrQ04ogJ0gCIIAALx//x516tQB5xxff/01Xr16lWba+Ph4AMC2bdvAOceJEyfw7t07PHnyRKcyp5exWSM2NlY0GDt16pTucjZKuYeEhKBkyZLgnKNw4cKYOXMm3r59m11ZNlnevHkjlkAbOHAgEhISMnxwPX/+vAi4KlWqFLZv3w61Wk2dJFmEXMjF48ePxRJcc+fOBZB+oy4qKgq//fabCOCpWLEizp07l+F+RMaQC3kgF/JALuSBnmvl4d9//8Vnn32GnTt34v379+LzBw8eUPC6gdG+jxw7dizL9xXt/T08PNCrVy+djvr8+fNDpVLB3NxcBE57eXkBoLa6vl0kJ3k7IywsDB4eHmjcuDE45yhSpAh8fHxSTZvbMISLtILXbW1tMWzYMHh6eooAEwqc/oChr4vUoCD2T8Pf3x9HjhwR/6fyMh6GdqHcz3J7XZEZDOkitfInJ2lj6OsiLi5OPEcB5ELBz88PnHNYWVlh5syZePjwod6OHRUVhV9++QUDBgxA6dKl4eTkhKJFi2LAgAH45ZdfRDpy8QFD+gCAV69eYfv27Rg8eDDs7e1FUPCECRNEGvKRhCFdpBa8rrS/KXA6JYa+LhTUajW2bt0qrgtykTHnz5+HhYUFLC0t4eHhASD955/4+HgcOnQIDRs2FN/9AwcOZGueTYkHDx6gbdu24v7xMT9WVlbgnMPd3R0DBw5MdVCI9rPYuHHjRJ/h3bt3U2wnkvqRrK2twTnHwYMHM7XP6tWrhZO///47zXQZ9cfSPSptkn9Pz5w5gwULFqBAgQLi2jE3N4e9vT1+/PFHnDt3TufdB5CyfOnakAsKYCcIgiAAJFXYGzZsQIECBeDi4oIjR45k+BC1ZMkScM6xatWqVI9HZI3Xr1+jWrVqMDMzw7JlywCk/2AbGBgoZhnNnz8/evbsicDAwOzKrkkTEhKCEiVKwNzcXHTKpvcd//vvv0XAXNGiRTF+/HiEhYVlV3ZNGnIhF3fv3oWtrS0sLCywf//+dNO+efMG27dvR5EiRUQQ1bp16ygwTk+QC3kgF/JALuSBnmuNjzITfv369cE5R40aNbB7927ExcXh2bNnmDlzJgWvZwP66vjWPs706dPFAE/OORo0aIAffvgBFy5cwD///IO1a9eKWWhcXV0RFBSklzzkdLLrJYTSVklISICnpydatWoFzjmaNm2aqVnNcgOGcpE8eH3o0KGIjY0FkBQ8QYHTKTHG+VMQ+8cREhIiXqx+//33ej++dsB0bh/slBGGdvHu3TscPnwYly9f1rkeqM89JYZ0ob3K7Pbt27F48eIU24gPZMc96n//+x8sLS0xYMAAnc+JpMEDc+fOxYMHD/RyvLi4ONy+fRsNGjSAnZ1diqA5JTh0/PjxYh9y8QF9+1BIXj+fOHECw4YNEz5++uknsY18JGEIF6kFr69evRrbtm2jwOl0MNR1kRwKYv84Ll68CHNzc+TJkwenT58GkLKclP/Hxsbi6NGjaNasmfjuz5s3j9oOWWTUqFHgnMPMzAz29vb44YcfMGjQIHzzzTcYNWoUpk6dip9++glTp07FihUrsGzZMqxatQqnTp3ClStXRF8HoFtPaLcjxo4dC865CM6m9nfq+Pv7o1OnTrCwsED//v3x+PHjNNOq1WrEx8dj6NChsLKygpWVFf77778U6ZJfT6dPn8bWrVsxf/58zJs3Dzdu3MCLFy8A0KQj6ZGYmIh//vkHo0ePRr58+cR3OU+ePHBwcMDChQvFPUwho9nzAbo2ZIEC2AmCIAjB8+fP0a1bN3DO0bBhQ7GstYL2A5Ovry/c3d3BOcfUqVOzO6u5hvbt24Nzjt69e+vMVJl8ecbr16/D2dkZnHPY2tqidevW4sGKyDpqtVo0xgcOHIiYmBixTdvF69evsW/fPhQrVgyccxQqVAg//PADgoODjZFtk4RcyEVMTIyYZWHs2LFpdpIEBgZi+fLlKFSoEDjncHZ2xrx580SDnMg65EIeyIU8kAu5oOdaOfD29hbf9Ro1amD16tWYPHmyCEig4HX50e44HzFihE4wyYgRI3D37l2d6yoxMRFeXl5o0KABOOcYM2YMrUZkRM6ePYvixYujYMGC2LNnDwB6OWUITp06hbp160KlUsHOzg4//fSTqHuU8k4eOK30gdHLqewnMDAQbdq0ES5otqvUefDgAYYMGSJWqDEzM8OFCxf0cuzM3Ieo3viAIV0ASX1aGzZsgKOjIzjnGDJkiM6M1uTiA4Z0oR28/scff6BRo0aiPzJ5GsLw14XCvn37xLMvBSSmJCEhQS/Hefr0KTZu3CgGlltYWMDa2hojR47EokWLsHz5cvTv318Eh9I7wtTRl4/USP4uZP369cLH8uXLDfZ3cyr6cKFdLyQPXl+zZg0ACpzODIa8LrQhF5nn/v37sLGxAedc9FNoo9xvoqKisGvXLrG6HOcc48aNw6NHj7I7yyaD9r185MiRoly3bdv2ScfT/m6nFqBrbm6OevXqoU6dOhSomw4eHh7ImzcvOOdYunSpznslpZwUd3fv3kXRokXBOUf16tVTlKOS7tWrVzh8+DA6duwoZs5XfpydndGyZUuxyhC50CU2NhYnTpxAmzZtUKZMGZ2yq1evHmbOnAlvb2+dfdIrQ7o25IQC2AmCIAgdHjx4gKpVq4JzjubNm+PatWuIjIzUSRMSEoJ58+bB3t4enHMsWbLESLk1XZQGxvLly2FhYYHq1avj1q1bKR6QAgMDsWXLFhGka29vjw4dOuD27dtGyLVpotFooNFoMGvWLHDOUbt2bdy9ezeFi//++w/Tp08XAUHFihXDkCFD4O/vb6Scmx7kQj7i4+NF465evXq4e/duig7IM2fO4JtvvoGDgwM45yhdujQWL15MM07qGXIhD+RCHsiFHNBzrXz4+PigYMGC4JyjePHiYnaRatWqYdeuXRS8LjHaL7aGDh2q02G/aNGiNNOq1WpMmTJF3A+z64UxkZKoqCjUqFFDDOgh9M/bt2/RoUMH8UKwTJky+PfffwEkzSSq/UJXO4idc4579+4ZK9u5nocPH6JLly4pgthpgMcHnj9/jnLlyokVNVavXq2XFeaUa0KtVuP+/ftYv349xowZg2+//Rbbt2/H1atXU6TN7RjKhUJkZCQmT54MNzc3MctxsWLFMHfuXJGGXCRh6OsiMTERv//+u5jIhwKn08bQ14WCWq2mGY4NTHBwMGbOnCmCsYoWLYqvvvoqxYCEt2/fYu3atVCpVLC3t8fx48eNlGMCAKKjozFt2jSoVCrUrVsXvr6+xs6SSaJWq3HmzBkxSQPnHBs2bEjR/tYOnB4xYoTYRvep7CW5i2HDholt5CIJjUaD169fo0OHDlCpVBg7dmyqE4+8fv0aU6dOFc+nyooPdK/JOtp95KNHj9a5t8TFxYltiYmJOt/b9L7DaQXouru7488//8STJ0/EfYwCdT+gXaYLFy4ULlatWpXq+yI/Pz8xeLNQoUJYsWIFgA/lqPwbFBSEfv36oWzZsmJgoLm5OWrXro1ixYqhcOHC4JzDyckJXl5eAKgvJDkzZszQaY917twZc+fORVxcnCirzNzX6dqQFwpgJwiCIFLg5+enM1Jw4sSJuHPnDh48eIA///wT3377rZgBpnr16nj58qWxs2yyPHr0SDQG3d3dsWvXLgQGBsLf3x87duxAu3btRMCVk5MT+vXrl2LmfEI/hIaGolKlSuA8abn3jRs3wtPTE+fPn8fKlStRuXJlMfuhq6srpk+fbvBl8HIr5EIuHjx4gAoVKoBzjkaNGmHp0qW4ceMGPDw8MHXqVOTPn18ExlWpUgXbtm3LUr1BHYtpk50uqPMkfciFPNA9Sh5keK4lPx/w8fFBgQIFxOyIzs7O2Lp1q86LEUIutL+/EydORJ48ecA5h5WVlZjtLXk64EMH+8GDB2FmZgZHR0d6NjYS8fHxAIBOnTqJwQSEYXj06BFmzpyJevXqiQFq586dA5DypW9QUJCYQU5JQ2QPynNsdHQ0Hjx4gAEDBoiBBxYWFhQMkQr37t1DpUqVsGjRIr31xyYkJCA0NBTdunVD+fLldV4Kc87h4uKC2bNni/T0PJWEIVxoo8zyt27dOrRr104EXo0aNUqkIRdJ6NtF8uB1ZSVIzjkGDBhAgdPpYOjrQoFm1TUcDx48wPjx48XEMC4uLli1apVO+0G7H+rx48dipSftuoIwDmfOnBHPUgcPHjR2dkwSLy8vnXqhb9++YpvS3gM+3KfMzMzAOcf3339vjOwSSPLy22+/iTpj8ODBYhvVGR9Yt26d+F4vW7ZMBG0GBwfj0qVLqFevnui35ZxjxowZ1LekR7SDY3/66SdRzhs3bvzoSSi06+kxY8aIAN2mTZvi6NGjYpu/v7/OqnQUqJuEdvlNmDBBuOjVqxfWrl2LO3fu4NixY1i4cCGcnJzAOYednR26du2KwMBAsa9Sjt7e3nBzcxP1s5WVFSZMmIDDhw8jNjYWjx49wp9//omWLVuKCWYePnyY7eedE5g4cSIaNGiAPXv24M2bN+LzzL4jpWtDbiiAnSAIgkgVf39/VK9eXTyU5c2bFy4uLjAzM4OFhQU456hYsSJ+//33FC//CP3i5+cnlmrMmzcvChQoAGdnZ52XSZUrV8aKFSsQGhpq7OyaNH5+fnBxcRGBPvnz50e+fPl0XNSuXRuHDh3Cq1evjJ1dk8YYLmg20rTx8/ODq6urTp2R/KV38+bNcefOHZ2l1rLC69ev9XIcUyM7XGjX+QcOHMCNGzfS3J6bIRfyYIx71N27d3WWTyUXSRjjudbLywu///67+D+5+IC3t7cYmFy6dGls27ZN54UrISebNm0S1xHnHOvWrRPb0uuwnzlzJjjnsLS0REhISDbklNBG202jRo3AOUepUqUQGRlJg9H0jFKesbGxuHnzJrp16wbOOfLkyYMrV64ASFkXBAYGihU/qJ4wLNrlGxcXBz8/P/Tv3x+1atUC51wElpQuXRobN24kH6kQHh6ut36OJ0+eYNOmTWKSAKX8q1atinr16qFEiRLis59++kkvf9OU0KeL5Gh/9319fbF48WLhYurUqQb5mzkZfblIL3h969atAECB0xlgyOtCGwpi1z/Pnz/H3LlzxSygZcqUwd69e/Hu3bt09xswYAA452jcuDFiYmLo2dYIKN/5iIgIscL25MmTjZwr02XdunXo3LkzbGxsYGVlhSFDhoht2oGmyn1KmahBCYAjDE/y+5CPjw+6dOkiBhQMGjTISDmTj+STJSjPPU5OTmjWrBmKFi0qAtdVKhXMzc3x22+/4f3791n6u8kdUd2t3yB2ABg4cKB4h96gQQOdAftKeWuvSqcdqJvbfWi7mDZtGszMzMQzpzIJqDKxiKOjIzp06CBWkdNoNGL/+/fvi/ScJ60Yf+7cuVS////++y8qV66MPHnyYMOGDeJzQrduff78uc62TykjujbkhALYCYIgiDR5+PAhRowYIZa31v6pVasW/vzzzyw3UIjMERQUhG7duqFMmTLigUoZhdm7d28EBwdnKeBKediih66MCQ4ORt++fVGxYkURAMI5R5s2bTB69GhERkZm6fiZcUCekjC0C20uX76Mbt26YcuWLTqzCpCLD4SEhOC7774Ts+va2NjA2toaX375JZYuXarXsjp+/Dhq1qyJdevWISAgQHxOPpLILherV68WS96NHj0af/75p9hGLpIgF/KQnfeopUuXgnOOnj176sx4RS6SMPRzrTZ+fn4YOXKkmC1RgVx8wNvbW8zEXrNmTezatYsG7UmI8p318vLSWap8+fLlIk1agSIajQbh4eHo3r07zM3N0aBBA53loAnDotFodO45Sh3Bue5S8oThCA0NRZcuXcA5R40aNXTaD8lJ7ovQH8lnqjp06BB+/PFHMZBK+alYsSJGjRoFX19fulcZGH9/f4wePRolSpQQL947duyI/fv3i2cBT09PrF69WrysX7VqlZFznbvQvh/FxsZi7dq1UKlUsLe3p5l1DUhiYiL++OMPNG3aVNybNm3aJLbHxcWlGThNgbvZCwWx6wfle+vh4SFmEnV1dcXRo0fTbZvHx8cjISEBbdq0AeccHTp0yK4sE2lw+/ZtEVBHA88MS0hICFavXg1bW1twztGvXz+xTfu5V61W4+jRozh69ChiYmKMkdVcRfJ7/5UrV7B69WoUKlQI+fPn1+mHvHjxopFyKR/a39n58+frTASj/Li6uuLLL7/E1atXdfYNCQnBvXv3Pqre1V6J69y5czr75vb6W19B7KGhoXBzcxN9vjVq1IC3tzeApGBg7XLWDtS1sbGhyRL/H20XO3bsQI8ePVJcFxUrVsTUqVPh4+MDIOn7q3jy8vJCwYIFRbB748aN4eXlJdJp/wsAMTExYsXG7t27Z9dp5hj0NeiFrg15oQB2giAIIl2ioqLw8OFDLFu2DNOnT8fkyZOxbt06vQaGEpnj7du38PPzw6ZNm+Dh4YGDBw/qfQmhd+/eISgoCLt378aOHTtw7tw5CtZNhYiICDx69Ah//PEH/vrrL5w7dw7R0dFi+6csIZS8bB88eICbN29i+fLlWLFiBf7880/xAJ1a+tyKIVwk5/Hjxxg2bJhokH711VfYu3ev2E4uPhAdHY1Xr17h9OnTuHnzJu7cuaOzXR8+goKCdDoKevbsid27d4vt5CMJQ7uIiIjAlClTUK9ePXCetMyas7Mz5s+fL9KQiyTIhTxkxz0KAEaNGoX8+fPD0tIShQsXxqJFi8Q2cpFEdjzX+vr6YuTIkaKjmAIa0sbHx0csEV+tWjXs27cPcXFxxs4WkQqLFy8W3+fx48eLz9MLXgeAI0eOiMAeCpr+NLIy0DghIQEJCQmYNWsWnJycoFKpYG1tjR07dug7m7kC7e97Zl7gajQanDhxAsWKFYO9vT3Wr1+f4jiEYUh+TSQmJmL79u347rvvwDkXKzw6ODjAyckJ69evx82bN9M9BqEfvL298c0334j6v3jx4li9erUY4KFcHxqNBlFRUZgyZQrMzc3Rvn17vH371phZz9WEhobC3d0dKpUK48aNM3Z2TBKNRoNffvkFDRo0EM9cv/76K4CkOke5NtILnCayl4SEBGzevFm40J4JmeqQjFG+08HBwShdurRYJWjPnj06fexp7RcZGSlm/P7iiy9SBP4Qhkcp7/DwcMycORN2dnYpBjsT+kP7+x0fHw8PDw8RxJ7eCik0iZjhSF62ERERuH//PoYNG5YiELtgwYIYPXo0jh49aswsS4l2v/h///2H3377DSNGjMDUqVOxcuVKPHnyRLQDlIHfL1++xMCBA+Hg4ICdO3d+1Pc7IiICc+bMQYECBdCyZUvs3LlTzKyc29vqaQWx//zzzx/1/uLVq1fYsmUL3N3dxYBlZabp5IP3AwMD0bJlS9StW5f6hLXQ/i6+ffsW165dwy+//IKff/4Zv/32G169eiUGJ2nPvB4QEIBy5cqJwOe2bdvCz88vxTEVlL4txXfLli0NfWq5Gro25IQC2AmCIIhPhhra8vApjbnk/vbs2YPOnTuLl1fKSPSGDRtiyZIlae5H6PIp5aPt782bN1i/fj0qV66sMxOZSqVCtWrVsGDBgiz9rdyEvsonOjoaBw4cELPJqFQqFC5cGBMnThRpcnuHSnYSFRWFI0eOiJHoyuxj2i9v6drIHmJiYhAdHY2VK1eiVatW4mXh6NGjRRpykT2QC/k4ffo0vvnmG+GC7lGZRx91qhK8rsykUb58eZqVLwN8fHzEs+eKFSuMnR0iFby8vMSyzR07dhSzvmQUvH7r1i2dAQq3b99Odz8iJdovCJ8+fYqnT5/i2bNnCAkJgY+PDwIDA+Hl5YWrV6/ixo0buHHjBo4dOwYPDw9s2rQJPXr0QMOGDcWza/I6OjWU2S71NbjKFNm7d68Y5J3R9zk2Nha1a9cG5xzNmzfPjuzlapL7CAgIwP79+9GkSRMR4KPd5/TLL7/A398/3WMAdF3oi8DAQHz//fei3i9VqhT+97//6cx4n/wZad++fcLbrVu3sjvLhBZDhgwRAVgvXrwwdnZMjoSEBGzduhWFCxeGmZkZbG1t8fPPP+tsV1Cr1di2bZuYyXXlypVGyHHuJXk9sWTJEvGcNWjQICPlKmcSHR2NDh06gHOOQoUKYf78+QgPD08zvXYdMXbsWBGcRQGhxiM0NBSrV69GhQoVhMegoCBjZytHk9mZjt+/f4/JkyfD3NwcVatWTTEYk8g+3r9/j9u3b6N79+6oUqWKTvu7Xr16GDRoEIKCgnTqD+oX0SWj8kitH3XAgAHgnMPOzg579uzJdF/rhQsX0LVrV9HGKFKkCLp27Srahbm9zad9/kpdW6pUKfj6+mZqf8VlQkICfH198fnnn4Nzjvz58+PGjRup7hMWFibufbm9/LXJaABS8u1hYWH47LPPRJ9Hs2bNxPc6vWssNjZWDKJt0qQJ3Z8MBF0b8kIB7ARBEASRC9F+6L1x4wZGjx6tMwrd3t4eBQoUgKWlpeiE115ykIJ9Mk9GZaXt4tChQ/jyyy91XBQtWhSlSpWCvb09ucgiWSmrxMREvHv3DqNGjYK9vX2qs/oQH8en+NDeJzo6GmPHjkXRokWFjx9//FGfWcw16OM+4u3tjQULFggXkydP1kPOch/kQh4+1YV2vR4cHIx58+YJF2PHjtVX9oh0UILXlaCshg0bIjIyEnv27KEg9gzw9/fHzJkzqUwk5ezZs7C3twfnHHPnzk33hbri0M/PD+3atYOZmRksLS0xZMgQWk0tC0yfPh3169dHiRIl4OTkhGLFisHBwQEODg7Inz8/rKysYG1tjbx584r2nLm5uc6g5CJFiujMnp/ai4+7d++ibt26+O+//9JMk9vZtGkTChYsiKFDh2aYVpkh6auvvoK5uTnKlCmjE6ibWeje+PH4+vril19+QdmyZcVAGqVfo1+/fli7dq3OvSy9MqbrQj88f/4ckyZNQuHChcE5h4uLC65evZpmesXJnTt3xL3tr7/+yq7sElrEx8cDAKZNmwaVSoWCBQvi2bNnRs6V6XLx4kVMnz4defLkAeccffv2Fdu07z9qtRrr1q2Du7s7Ll68aIys5noeP36MU6dOoVGjRjqTwUyZMsXYWZMe5R5//fp1Mft669atUwwqS4ujR4+iZs2a4JyjbNmyuHv3riGzmytQBusBSX3fcXFxiImJwZs3bxAeHo4XL14gNDQUQUFBuHnzJnbv3o2VK1eiRo0aKFq0qJhFdPPmzQB0+6hSe86i59vUiYuLw+3bt9NdhUCb06dPi5WFNm7caODcEUDKtsCePXvQt29f5MuXT+f9at26dTF16lQ8ffpUzJJM10XmSS+AVrucvvnmGzGY6WOC2ENCQnDu3Dl06NABxYsXB+cczs7O8PT0zPDv5wa0v+dz587FihUr8ObNm086VmBgINq1awfOOVq1aoUnT56kmTa3l/unkpiYCI1Gg/Xr14vvc5kyZcTECxkFwJ86dQqlSpWCSqUSz7F0PzI8dG3IAwWwEwRBEIQJobzMANJ+maf9cLVnzx4xu4YyO2Xv3r1x7do1+Pv74/Tp05gzZ44I9pk/f77BzyGnozQmtDu3MuNi2bJlYkY4zjkaN26MkSNHIjg4GM+ePcOVK1ewcOFC4WLRokWGPRET4GNcZIS2q4kTJ8LR0RGWlpbgnGPmzJlZymduQfHx/v178dmn+tDeb8yYMbCxsRGBEKtWrcpaRnMB+nSh3YESExODdevWQaVSIW/evNi7d2/WMpoLIBfyYCgXkZGRwgXnHGvWrMlaRnMRmXmuTY6fn5/OzOsNGjQQL4BjYmKwdetWCmInciwzZswA5xwlSpRIN2BN+T4HBgaib9++YtZ2Nzc30QlP3/mP5+TJkzqB6NovxZXPLC0toVKpYG1tDRsbG1hbW6NAgQJwcXFB1apVsWDBAhw/flwcM7V7m5eXF2rUqCGCT+7du5dm2tyKEiyoXA/nz5/P1H7KDFh58+ZFWFhYpv+eEuigQC+sdFHuJ0q5REVF4dWrVxg3bpxYeUB7gH6/fv1w6NAhnWNk9P2m6yLrKGX1xx9/oGTJkuCco2TJkrh06VKm9tu0aRMsLCxgZ2cnBhEQ2Ydynb148QK1atUC5xzlypXTabsQ+kH7Hh8REQEPDw/Y2dmlmMRC+1kqMTERL1++pPohG1DuSQkJCYiOjsaKFSvQqlUr0Uer1PPt2rXDtm3bjJzbnMOsWbNE+Z04cSJT+3h5eaFXr15iP+2VCoiP58mTJ9ixYwcaN26MNm3aoGnTpqhSpQpq1qyJ2rVrw9XVFS4uLihXrhyKFSsGR0dH0c7T/nF0dMSqVatSPOtq37N27NiBGTNmpLqNSLq/7N69G87Ozvjzzz/TTauUXUJCAurVqwfOOfr37w+1Wk3lmg0kJCRgzZo16Nu3r87g8SJFiqBy5crw8PBId0AOXRdZR3swcr9+/TIdxJ58xuoXL15g//79aNq0KTjnKFasmJhpPLe70G7zavdNKM+dEREROn3oaZGQkIAtW7bA3NwcxYoVw5kzZwBQ+eobtVoNd3d3cM6RJ08eXL9+HUDa/Ujan3/77beiPqdB458OXRs5FwpgJwiCIAgTITo6Gjt37sSyZcvEZ8kfrrT/v2nTJtSvX188DH/++efYv39/ipn8oqOjsXTpUqhUKri5ucHHx8ewJ5KDUco3PDwcs2bN0gn4T+5Cu1EyY8YMMcuJMov0tWvXUriIiYkRs+rWq1cPoaGhBjybnM3HuMjssQDg2rVraNCggZiBqVKlSnj58qV+Mm3CKGX47Nkz9O/fX6cz8FOPBSTNblKkSBFx7bRt2/aTZyDILejTRWo8efIErVq10gkOpYZ+6pALedC3i+Tl/PLlSwwZMgQqlQotWrTA06dPs3T83EBmnmuTc//+fQwfPlzMUN2oUSOxTXuJR+0g9pEjRxrmBAjCAMyZMwecc1SsWDHN5x3tmde//vprFCxYULzADQgIAEDBt1lh+PDhImit5oEAAOMcSURBVFi9Xr162LFjB/bu3Ytdu3bh0KFDOHPmDE6ePImzZ8/iv//+w82bN+Hl5YV3796lmPk+NQ9eXl5wc3MTq6Ip/96/fx8ABetq8++//6JBgwZQqVQYNWoUXr9+nW76K1euwNnZGWZmZmjRokWKstSuY168eIE7d+5g+PDh+Pzzz9G6dWv06tUL27dvx8OHDwGQi7Tw8vLCDz/8IAJslZ8aNWrgiy++gI+PD96+ffvRx6TrImso3++3b9+KsixWrBgOHz6c7n7a96mOHTuCc06zfusRjUajc+/RDnZLSEgQ323FQ1hYGObNmyf6QFq0aJHpmWGJTychIQEbN25Enjx5YGtri19++cXYWcp1JG8HvnjxApMmTULr1q11Bha6uLigUaNGOHPmDLW5M4lyf/n888/FfSUhISHDtndoaCgGDx6s8y5DORa1NT6exMREbNiwQWflprR+tAfSqlQqmJmZwcrKCjVr1kTnzp1x/fp1sfqQgrbP/fv3o0KFCuCcY9CgQammye28f/8ePXr0AOccPXv2xKtXrzLcJzQ0VNTPvXr1SjNdZq4PcpGS5OXm5eWFLVu2oHbt2mJSI845bG1t0aJFCxw4cAAPHjxI9xh0XeiP1ILYLSwscO3atUztrz0g2svLCy1bthQrgjx//twgec7paE9cMWbMGFFOGX1nw8PDUaxYMXDOMWDAgEztQ3wcymQLlpaWYrK1zASvz549W9zLBg8enC15NWXo2siZUAA7QRAEQZgAUVFROHjwoHhJOHbs2BRptB+0tm7dKmav4pxjxIgRCAwMTDFzlsL169dha2sLzjkOHjxo2JPJ4bx+/RqrVq1CuXLlwDnHuHHjUqTRdjF79mw4OTkJF7Nnz9ZZKjL5A/I///wjOipPnz5tuBMxATLj4mO4dOkS6tWrJ4LXK1eujPDwcABIMdiASMmTJ0/w008/ieVMP8WH9vVw8uRJsey5Erz+7t07AOQjI/ThIj0mTJgAzjkcHBzw6NEjvR7b1CAX8qAPF9ovyZPX3/v27aMZNDJJZp5rk5OYmIgDBw6IF4YqlQqLFy8W27XrBSWIXZmlb8SIEQY5D4LQN4cPH4aZmRmKFSumM/ut0nZT7jt37txBly5d4OjoKILX//33XwAU6PmpaJfbyJEjxf38t99+y/QxMnrxoR2k6+TkhOnTp6NFixYUrJsOmzdvFi5Wr16t047WDtx5/vw5pkyZItrR6dXx586dQ9++fVGiRIkUAUN2dnaoUaMGvLy8AFCAljb+/v746quvkDdvXlHOlpaWKFOmDCZNmgQfHx8xW9zHvASk60J/aDQaDB06FJxz5M+fH3PmzEl38Le2p0WLFoFzDisrK0yePDnFdsKwPHnyBJcvX0a3bt1QqlQpMbPl5cuXU6RNLziL0OXt27eZCkoEkgIglElgvvvuOwPnjFBI/n2+ePEi5s+frzMJjPKs27dvX1y+fDmFU41GQ9dFOijlo9StvXv3TjOdQnBwsM7zcOfOnUVbg/h0/Pz8RB+FpaUl+vbti1GjRmHKlClYtGgRZs+ejfnz52Pz5s3YtGkT1q1bh7179+J///sfLly4gIiICPH8q+1L+/d9+/ahfPnysLCwEP5oZbqUxMfHY926dShUqBBKliyJgwcPpvncrzyD/vfffyhevLioJzK671y+fBl79+7F0KFDMXz4cOzcuRNXrlxJMz2RxM2bN7F27Vo4OTmJFQiU62bw4MHw8PDI1HHoutA/2v2uX375JVq3bv3Jx/rzzz9RoEABFCtWTKyCQG3vlERERKBr167gnGPOnDkZpo+Li0NkZKR4X96zZ89syGXuY9y4ceCco3jx4ukO4tD+Tq9fv15n0ryMBpoT6UPXRs6FAtgJgiAIwgQ4cuQIXF1dxTJpnTt3TnN27oMHD6JRo0aiMT5hwgRERERk+DeqVasGzrmYyZoajClJTEzEmjVrUKhQIdF5MnTo0DRfiKxZswZly5YVLpYsWZLmsZWOktjYWLHPr7/+qrON+MDHusiIS5cuoX79+hS8/omo1WpMmDABVlZW4sX34sWLdYJMMiK94PV27dqJmfwoeCF99OEiLZQXJVOnToWlpSUKFCiAJ0+eZPm4pgq5kAd9uNi9ezc45/j99991Ptee+bt8+fLgnItZxan+Tp2Pea5NzsGDB/F/7J11WFTZG8ffM0MJIogYGCh2J3a3a3eta6+ta6676pprr91r62Ksrt2Bgd0gUtIoIihK18D39we/e7zDDB0qnM/zzCPOPffOvee978nvec+kSZNgYGAAxhiGDBnCjyUVsUsRzubOnau2BatA8K3y4sULVKlSBYwxLF++XGvU1evXr6Ns2bLcB4oWLYr79+8DEGVOZpG3MadNm8bbodu3b9eIcpheHB0d1US669evR1BQEHx9fdGxY0ch1k2C/F2WdiZgjGHFihV8m3GJly9fYuHChVxU3bJlSwQEBADQzMcDBw7AwMCAR78sVqwY6tati8mTJ6Nt27aoWrUqt5HYzlwTyS9MTU1RqlQp7N69W0PQlp78En6RtYSFhaFVq1ZgjKFmzZp48eJFsmnldjp79iwaNGjA8/vcuXM5cbu5kvfv38POzg6nTp3CoUOHcOTIEezduxcbN27EunXrsGzZMsyZMwezZs3Czz//jO7du6NDhw4oXbo0F2dJ0UX37t0LIHmRorRVfdLvBYl8+PABO3bs4H23tOSRJEbR0dGBh4dHdt+iQMbly5cxZ84cGBgYwNDQkC/i0NfXx8KFC3HhwgW19MIv0s/QoUPBGEPz5s0RERGhdkxevz579gxjxozh5VHr1q1x/vx5kZ9ZhJOTEwoVKgTGGNq2bQs3N7d0XyM18TpjDGZmZujRowdvHwuxriaBgYHo2rUrGGNo1KgRHBwc+DH5bikSnTp14nX0pUuX1K4lzaOqVCo8fPgQ06ZNg56eHu+zS0EYypQpg0WLFmn8jiAxYMigQYNQp04dtQVMxYsXx5QpUzTyPKV+gfCL7EPbPGlG+mghISFcSDpq1KisuLVcSVhYGGbNmgXGEnchff78ebJp5TtyScF7OnbsqHZMkHlUKhXvc/ft2zfZdHJ9ze7du1GyZEle9sjrAUHGEL7x/SIE7AKBQCAQ5AI8PT15p33EiBEaqzqlRpazszPf/k6KPBYbG5vitRMSEvD48WMUKFAAjDFs27Yt254jN+Du7s7zd968eclOaly7dg3NmjVTm2yXSKlRfPbsWX7O8ePHs/z+cxNptUVqJBWvV6tWTYjXM4Cbm5ua0EeKlp4WhHg9a8mMLZJDnvdSPaOvrw9PT89MXzs3I2zx7ZAZW8TFxWHSpEn8fEkIIR+MPHjwID++ZcuWLL//3ERq7VptyPM6KCgIe/bsgbGxsUaURHk6lUqFly9fphh9VCD41pCi4Ert27Nnz8Lf3x979+7FlClT1LaUL1++PJydnb/2LecqUhKxZ7Rf8OrVK1SrVo1HaFq3bh0XWAPA69evhVhXC/LyXJqYYozB2toaU6ZMwdKlSzFlyhQ0aNCA+0WdOnVw8OBBjTGQkJAQNd8yNDREs2bN8Pz5c26L0NBQPHnyBG3btuWCLbGdeSJyW6xZswbbtm2Dl5dXsmnSgvCLrOfy5cv8Hd+6dWuy6eR97/v376Nfv378vAULFuTAneZO/Pz8MHbsWL5bUEY+5ubmKFu2LC5fvqxRjsntZmNjA8YYfv75Z63HBcC5c+egVCphbm6e6kJZqX5fvXo1D5Dh6OiYbHopr0Wep4+k+RUQEIBHjx6hZ8+esLS0VPOFatWqYfHixXj06JHaOSlFPBZ+oR0pD/bt2wdjY2NUqFBBbfFZ0jyUolkyxtCuXTscO3ZMvPNZjJOTE8zNzcEYQ5s2bdQWZ6Ynj1MS6S5YsAAJCQk4cOCAEOumgJeXF1/A2qpVKzx48EBjgUdCQgIGDRoExhh0dXXRpk0btYUHUts0OjoaK1asQNOmTTXKM2tra5QtW5bbYvr06Tn6nN8D3t7eavnWqFEjjBo1Cp6enulaTC78IvuR18UZCYIntXGlnW+6du2aZfeWG7l27Rp/j+fOnas1WKE8ON7SpUuhUCigVCqxZMkSteOCzKNSqfiuNskJ2OV+sX37dpQuXRpKpRKMMYwdO1ZrOkH6Eb7xfSIE7AKBQCAQ5BKcnJwwduxY3Llzh3+XtHG1YMEC3skfN24cF30mh3wQUzrv2LFjWX/zuQxnZ2csWrRII0qG3B7jx49XE59IJNcpkc5dsWIFH0C5fft2Ntx97iI5W6QVEXk9a3F2dsbOnTtTLXvkJBWvyyd8hXg946TFFkkHHOWTUtKxpPXMqlWroFAooFAo0K1bN0RFRYmOfioIW3w7aLNFWgcLg4KCMHHiRF4+LVu2jEc9PnHiBHr16sWP/ffff9ly/7kJbe3a9AzcqlQq7Nu3j0foW7t2bXbcpkCQY8jf/9mzZ6tN3pYsWRKMMT7hUb58eQwcOBBv3rzJ0t8VJJKVInZnZ2duP2NjY8ybN49fX15nu7u7c7GusbGxWgTAvIzcFkuWLIG5uTnvK0sRDaX/N23aFHv37tUQnQQHB+OPP/7gdqxcuTJmzJihdXIrPj4eFy5cgLm5OYoVKyb64zLk735ybdO0Ivwiezh37hx0dXVhamqKe/fuqfUjJOT5++zZMwwbNoz7xrBhw7gdRN2QfgIDA3kkSal9WrJkSZQqVQoFChRA8eLFUaVKFZQpUwZly5ZFgwYN0LBhQzRq1Ag///wz5syZg1u3bmndVUtut0OHDsHU1JTbbcKECVrT5XVsbW1haWkJQ0NDrFmzJsXdmBISEqBSqTB8+HAwxmBiYgJ3d3et6eSEhITg7du3cHd3h4eHh5rfCFskT3BwMM6fP4+WLVuidOnSam3eH374AXPmzEFoaGiqeSj8In34+/vz3TZatmyJS5cuITg4GJ8+fYKrqyuGDRumZo9evXrh0qVLQryeTTg7O6uJ2F1dXTN8rePHj3MBV6FChdTmoaKjo7Fr1y6tYl1R1yfi6uoKCwsLLjYfN24cLly4gEuXLuHvv/9WE6QXKVJEbe5Uah9HRUVh5MiRPLIrYww//vgjtm3bhsjISMTExMDR0RFr167ltli3bt1XeuJvFycnJzRr1gzz589HQEAAF65n5F0VfvFtIvU1oqKiUK5cOb5YQT4XItBkw4YNvGzZvHmz2piHtLtsbGwszp07hyZNmvC0dnZ2X+uWczWrV6+GUqlE8+bN4evrq3XXDgBYvnw5zMzMeFkj30VWzHVnDcI3vj+EgF0gEAgEglyEfMA9aYfu4sWLvPHVuXNn2Nvbp+maL1684IMrzZo1y/T26HmFlCLbHz58mNti6NCh+PjxI4DUB3vv3r0LXV1dsfI8naS2y0ByCPF69pDRaDFZGXldDHglIs+HzAyKfPz4ES4uLpg0aZLapOCmTZuy4jbzBMIW3w7J2SK1yHxAYpS4H3/8ked7oUKFULNmTeTPn59/Jx+MFKSMvF0rt0VaF0EFBASgf//+XOygTYwoEHxPyP1g/fr1fFta6VO4cGEMGjQI586d09hZYP/+/Woik7QgpbW3t8eKFSvw4cMH3q7O622p5ETsO3bsSFc/wc3NDQ0aNOCixjp16uDp06f8N5KKddu1a8eFRelZEJqbkdvizJkzmD59OkxMTPguHKVLl8aoUaPw6tUrPkElnRMXF4elS5dy+9WtWxcbN27k9Y+2NllwcDDKly+vsRBdkHUIv8gepOjDpqamWnfnkAty7ty5g59++klNqChFuRdkHEdHRy5IrFq1Ku7cuYPIyEgEBQXxdmpMTAwvqwDtQim5DyQV6Ur9Dvk29CJ6qCYhISF8B61atWolu+OTVA+8e/cOdevWBWMMRYsWxYcPH7SmA4A3b95g/fr1aNq0KQoWLAgTExPo6OigX79+arsfCFt8IT4+HiEhIdiwYQN69Oih1r4tUKAAWrdujR07diAsLIz7RErjJsIvMoabmxtKlCjBxzLKlCkDS0tLFC9eXM0m06ZNg7OzM8+3jAg6RZ6nTlaI2Pft28fbU6ampli0aBE/JvcluVj3l19+yapHyDW4ubmhdu3aan7AGONli76+PiwtLXHgwAF+jtRvjoyMRJ8+faCnp8fPW7t2LYKCgjR+JyIiAnPmzIFSqUSHDh1Eu1YLScf1MlKWCL/4NpHXKVLwNwMDAyxfvlztuOAL8vpXvih//vz5agFhoqOjsW3bNrRs2ZKnWbp06de45TzBhQsX+Lzchg0b1MpylUoFBwcHtQCHjDGMHj1aLY0gcwjf+H4RAnaBQCAQCHIh8s6c1FD77bffoK+vDzMzM+zYsSNNHT4/Pz+MGDECRkZGUCgUmDlzZobFwIJEW0RGRqJv375gjKFixYq4cOFCms51cXHhIhVzc3Ns3rxZa8QsQdaQWfG6ELhnnuyIvC6PRCoGvb4gz8Pbt2/j4sWLOHfuHA4fPoyDBw9i//792LBhA1avXo21a9di4cKFmDx5MiZNmoT+/fujYsWKsLKyUotyOXPmTH5NkddpR9ji22Tr1q3YsmULgJTzMCEhARcvXuSRFKVFZ9JnwIAB8PDwACCi9qQHeZ4/fvwYJ0+e1Pg+ObZv387z/+bNm9l1iwJBjiGvJwIDA/HgwQNcvHgRtra2cHJyUksrlTO3bt2CsbExDAwMcOjQoXTVBc+ePePbpjdu3BgrVqzg7am8Xo4lJ2Jft25dmvJGskNoaChOnz6N9u3b80laKbJ3Ulu5u7tj4sSJagI4gea76OvrC1dXVzx9+lRjAZo87Y4dO7jdrK2tsXv37hQj+cXFxeHz58+oUaMGGGNqYgdB1iD8Ivvw9vZGxYoVoauri507d6pFtZeXZ0ePHkX37t25b3Tp0gV37twR/YgswsnJCYUKFeKCxNevXwNQF+1I40kJCQlqY0tJbSD//+HDh7mQrnLlylizZg3+/vtvIdZNAV9fXzRs2JAvgHn58iXP76Rjej179kxWSCX3pQ0bNqBTp05aBY6if548ERER6N27N89jxhisrKzQvHlz3Lp1C35+fmrpU+uTSwi/SD/u7u5o3769hmjd0NAQ7dq1w759+9TSR0ZG4unTp3j37l2af0Oe1w8fPoSjo2Oyx/M6SUXs6d1hds2aNbCysoJSqYS+vj4WL17Mj8nLOUmsq6+vD8YYZs2alWXPkFvw8/PDzJkzUb9+fTXfMDIywtChQ3Hu3DmeVpo/jYqKwoABA3haAwMDHD58OMXf+e+//3h6aQGnQJPMlBPCL7KPzNglJCQE7969w48//oiCBQuCMQYzMzNcv349C+8w9yHvx/36669qQXU6duyIDh06oFKlSmqBjiZPngxPT08Aos7NLhYsWMDze+TIkVi5ciUOHTqEfv36oU6dOvyYpaUlfv/9d35eRsXrSc8TInjhG98rQsAuEAgEAkEeIDQ0FFWqVAFjDM2bN1ebDEmODx8+YPXq1TzyRrly5fD+/fucuuVcS1BQECwtLcEYQ8+ePdPUCPbx8cHEiRP5JFfz5s01oraLxnT6iImJga+vL98yKmm0scyI16WO0efPn2Frayu2CU4DHz58gLOzM8LDwwGo2yOrIq+/ePECJiYmGDx4MP9O2EOdcePGcfFzRj5KpRK1atVSW6WuzUb29va4ePFiiruG5HVyyhbaELZQ59KlSzAxMYGJiUmaIl5FRkaidu3aaNasGa5cuYKBAwdixowZ2Lhxo1q69IgbBYm4ubmhbdu20NPTg4ODQ4pppfr63r17vP109OhRrWlFPgu+N5J7Z1OKgijtDpE/f34cPnw4ze+9jY0N+vXrhwIFCoAxhnz58qFZs2Y8em9enxTRJmLv379/mhd9y/tynp6efKGzhYUFnj17pvUcqb0sP1/wheQEnkn94tKlS7zdVL16dWzdupWL11PK1+fPn3MRw5IlS7L47gWA8IvsIjQ0lIuomjdvjhcvXiAyMhJAYrtJpVJh9uzZfNESYwx9+vTBgwcP8vyCpawmK6Lqym0ijzBdqVIlrFu3jvuBEOumjLu7O0qVKsUX6u3duxdv374FAHz69AkPHz5E165dwRiDrq4umjdvjvv37/Pz5ePrI0aMUBu7atGiBSZMmIBLly5h27ZtmDhxIreF2MFDEwcHB5iZmUFHRwfDhw/H9evXNXYUSu29FX6RNXz48AF3797Fn3/+iQULFmDlypV48eKFWsTohIQEJCQk4MKFC2CMoUOHDhoLDVLj5MmTaNOmDRhj+P3333Ht2jW16wsSkdcZzZo14wuf0oqdnR3mzp0LQ0NDMMbUxsXlfRmVSoXNmzfDzMwMz58/z6rbz1VER0cjMjISJ06cwIEDB2BjYwMXFxc+vwR8qRdiYmIwYcIEPr9kamqK//77j6dL+o5LtnB3d0eRIkWgo6ODW7du5cBT5U2EX2Q9Ur5FRkbC1dUVr169gqOjI549e4bbt2/jzp07uHXrFk6dOoUTJ07g9OnT2LVrF/7880/MmzcPTZs2RdmyZdXmN3bs2JHib0oR+cW41JfnX716NSpXrpzsnNG8efM0FtDKy7CMEB4ezvUKed0W8rbo77//rraIVRpHkj79+/fHwYMH1c6Xz5dmhB07dvCFgXndFsDX9w1B+hECdoFAIBAI8gC+vr4oVqwYdHV1sWbNGgApC3E/ffqEHTt28A5jsWLF+Haq8sgyySEGGZPH3t4ehoaGMDIywr///gsg5Y7Emzdv8Pvvv8PCwgKMMZQoUQJeXl4a58XFxcHX1xc7d+7Ezp07YWtrK6JNJ0N0dDT27t2Ltm3bYu/evQgNDeXHMitelwgNDUWxYsXAGMPs2bN5tDhA2CIpgYGBmDdvHlq2bIn9+/cjJCSEH8sq8bq9vb3aRPyECRP4MWGPRAIDA1GuXDkwxqCnpweFQoHixYsjf/78KFCgAEqWLIkSJUqgRIkSqFixIqpWrYqaNWuiRYsW6Ny5MyZOnIiTJ0+qiUq12cjZ2ZlH0Zg+fTpsbW35MWGLRHLCFh4eHrh27RomTZqEmTNn4ujRo2rphS2+IN8qeNGiRWoCqeTo1q0bChYsiDdv3iQ7KSXx9OlTnDhxAjNmzMDChQtx+vRpLgwFhC3kODs786i3s2fPVqu/k2PPnj287D906FCKad3d3XH37l0sX74cmzZtwtWrV9Ui9wpbCL5H5GXO0KFDeQTFI0eOpOudfvXqFcaNG8cH+4sWLconRfK6sFGexwcOHNAQW6WHly9fokmTJmCM4ccff0yxnBNlUsbx9PRE69atefSlP/74A9HR0QBSztfg4GCMGjWK98sfP36cU7ecpxF+kXV4eHigTJkyYIyhbt26GDFiBLZv347hw4fzPJY+Y8eOhaura6bKeGGP5MkKETsA/PPPPzxqXOXKlbFp0ya1nSSk6KFCrJs8rq6u3C+MjY1haWmJ7t27o1q1avx7PT091KxZk4/jAl8i7MbHx6NLly5q/rN48WIevU8iNDQUmzZtgkKhgLm5OS5fvpyjz/k94Ofnh0uXLql9l5H3VPhF9qAtiM7Tp0/VFj2lVcQeGRmJxYsX87FaHR0dlC9fHqtWrdL4PUHizrzSgow1a9bw9zkl5PV3aGgo/vnnHxgbG/M6XiLpTs7SuLvYXVaT1BaSyxfObt26ldchOjo6OH78eKrXAYB169Zxn3ry5EkW3r0AEH6R3QQHB2PYsGEoX748TE1NYWRkxHcD1NfX57usSAsDtYlI8+fPj/Lly2P37t38utr6I6dPn0bx4sX5TgV5Xawrf/579+5hw4YNqFWrFqpUqYLq1atj0KBBWneDd3V1RZMmTWBjY5OhejcsLAwbNmxAsWLF+GJzYYsvz79nzx4MHz4c+fPnR5EiRWBlZYUuXbrg6NGjXPQv4e3tjYEDB+Lff//NkC1Onz4NxhgKFCiAly9fatxLXuVr+UZoaCiuXbuGwMBAXoaJtm3qCAG7QCAQCAS5nISEBDg6OvLOYdIVnUkJCgrCli1bUKFCBTDGYG5ujj179iAuLk6joxgbG4vo6Gg8ePAAt27dwqNHjzSiQIgG2RcSEhJw//593hk/ffp0ium9vb0xa9YslCxZki8kkKKRyBvd3t7eWL16NY/sLq3qbdeuHTZs2KD2+4LETrU0QF63bl3Y2NgASNy2tEGDBpkWrwOJ4hVJgKpQKNCwYUOsXbuWHxe2+EJwcDAvb+rUqcPtce3atSwTr8vFVmKCKnlevXrFxeWWlpa4efMmvLy84OXlheDgYAQHByMgIABhYWGIjo5GaGhospMm2gYW4+PjcfDgQe5/CoUCdevWxcqVK3kaYYtEstMWd+7cQZcuXbhgQvoIW2gnIiICc+bMgVKpRNWqVXHnzp0U0wcEBKBevXowNDTUiM4jz9OIiAhs3boVBQoU4JMl0sfa2hqrV6/Wel5eJiIiAvPnz4eenh4qV66MGzduJJtWyjMpIjJjTOtgpMSRI0dQo0YNmJmZqbWlWrRoIepvwXePvB37008/cSFWatuXJ41cHRISAltbWx4p0crKKt0RAHMr2voK8vr37du3iIuLS7UMiYmJwezZs8EYQ9myZdMdyVKQMpJNTp8+zfsZXbp00boLlDauXLnCd7arWbOmxoSjIHXkPiD84uvg6uqqtrhbqVTyvw0MDFC5cmW1diiQGFVPitaeVuT+JPXjBepkVsT++PFjLv7R0dFBnz59+DF59L6kYt1x48Zl2TPkFjw8PNCrVy+ULl1aLVIiY4m7z3Tt2hUnT57k6eViaKldpKOjg+LFi2Pfvn1q15a3Eby8vFC/fn0oFAq18VqBJhkV3Ai/yBqSijdTSnPv3j3o6emlW8QeFhaGd+/eYfny5WjUqBG3xdSpU7XeR17H1dUVU6dOxaNHjzJ0flxcHLZv3458+fLB0NAQe/fuzdobzIMkfT8lX/H19UWnTp14PSKfj9X2TkvfqVQqDBs2jC+W9fT0FD6QzQi/yFpsbGz4ey/VC0qlks+36uvro0CBAjAyMoKpqSmKFCmCwoULo3Tp0mjcuDE6dOiAgwcPqi0U11YHXbp0ibehCxUqxIPy5HWxbtK8ioiIQFxcHGJjYzXGrKSy5Y8//gBjDEZGRunarRFIrMd37tzJ57DMzMyELf5P0uf39/fHu3fvEBoayoMnSEh227BhA++Tp9cWQGKghg4dOoCxxF0/hIj9CzntGxEREdi5cycYY2jQoAH27duHwMBArfciUEcI2AUCgUAgyAOoVCo0bdqUR7yVb40tfYDEBu7ixYthZWXFO3/r1q3TmJgNDg6Gvb09evbsCWtra7VOqYGBAUaOHJnqwExeJTIyEvXr1wdjiVuOS43jpCswX758iZEjR/Io3kWLFsV///2nkZchISFYsmQJT6erq8sH6qWJyOnTp/P0whaJODo6omjRoly0OX/+fFhbW2eJeB1ItLOjoyMXCUmD8CLyt3ZevXrF7VGvXj38+uuvKFy4MC9bOnTokGnxeqlSpbBhwwasX79eiNhTwMnJCYUKFeKLBlxcXNTyRu4P8s52WvMvKioKr1+/xvDhw5P1DUEi2WGLV69eoV27djAyMuIRGYoWLQodHR0xWZgCb9++RatWrcBY4lbwr1694sekMkmygY2NDc9L+RbYwJf8DA4Oxpw5c9RE6xYWFqhYsSJMTEyELVLg7du3aNmyJRhjaN68uZotkrappMgjjDG0a9dOLQ/lf2/cuFHNFmZmZrCwsICenh5vSwlbCL535HXG4MGDwRhDq1at1HZsSitOTk5o1qwZGEvcajstuyHkZfbt24emTZvySK2pRe57/vw5r6e3bduW4jmCjNG+fXveP/D19QWQ/CSSVM8HBgaiRYsWPCrclStXAAjbZBThF18XX19fLFmyBG3btkWZMmVQrVo1NG7cGHv27OG7L0p8+vQJ69atw/jx49V2pkkrR44cQefOnXHgwAF4eHjw74X9EpGL2Nu3bw8XF5d0nX/gwAEMGDCABy2ZPHkyPyav+1UqFXbv3s3Hbt++fZtlz5Bb+PDhAy5fvowRI0agbdu2aNCgATp27Ihjx46pLS6Ql1vdu3fneVqlShWcOHGCp0uuXunatSsYY+jRo0e2Pk9eRvhFziG95/fu3ePzEf3794e3t3eK5yWtA168eIFFixbxsZDZs2dn2z1/z8gDV0jvskqlwrt379J0vru7Oxo0aADGGEaMGJEt9ygAlixZwseXlixZwr9Pre0jF/9OmTIlu28zVyKVScIvvh6TJk3i73Hnzp1x/vx53Lt3D7a2trhz5w5evnyJFy9ewN7eHl5eXvDx8YGfnx/fIUWONp+5dOkS32VFWpQuxLrakbdFUxLNyndrTKtQVxKvFyhQgAffE7ZQJ7l8TMkWP/74Y4ZF00BiedaxY0dhi1TITt8AgHfv3mHixIm8LCxTpgz69+/P+5TCHskjBOwCgUAgEORyEhISEBMTg+nTp4Mxhvr16+Ply5caDaRHjx6hd+/evKNRuHBhbNq0CQEBAWrpHj9+jF9++YVHBdfR0eGTv1IUZYVCAR0dHcyZM0ftPgSJwuaxY8eCMYZGjRrh5cuXGgLpa9euoXbt2jAxMeGittOnT2uNruvs7Mwjr5cuXRqzZs3ClStXsGfPHkyYMIEP/M6YMSOnHvG7QT5RaGJiwqMCVK9eHR8+fACQMfF60nd93bp1qFSpEhfByUXTgi/I7WFoaMg7d506dcKnT58AZE68vnnzZgQFBQGA2Co4FbJqO/OkJM3f1atXo3z58rwe+eWXX7Lkd3ITWWULKe8PHTrEI0xXr14d586dg5ubG86fP4/ffvuN+8Wvv/6alY+RK/D09OQL/Jo3b46LFy/ysklCLphu3LgxXwiVlL/++ounq1WrFn755Rf4+fnhw4cPsLOzw5IlS7gtFi5cmANP933h4eGBsmXLcltcuHBBzRbBwcE4cuQIz2NpAZNKpdIoh/bv36+Wrm/fvnBwcICXlxcuX76MefPmcVvMnz8/h59UIMha5O3aRYsWaUQITc91Nm/eDMYYKlasqCZIFKjj6urKy5j9+/en6RxbW1t+zubNm7P5DvMenz9/Ro0aNcAYw/DhwxEbG5tsH0O+SK1z585gLDES77Rp05Kt4wWpI/zi2yAhIQHx8fHw9fVFaGgo34lAQprIDQwM5GN9ffv2TVcE/NOnT/OFh1Lffvfu3Wr3IEjs80kL+jt27MjHo1JCnne+vr7Ytm0b8ufPD8YYhg4dyo/JJ+RVKhWOHTsGe3v7rH2AXEhMTAyio6M1xmHl9YUk0FIqlahYsaLaLpspvdtt27YFY4k7gAgfyFqEX3wd5CJ2aTx3zJgxaYowmXSXum3btvF5pQMHDmTbPX/vSPkWExODlStX4p9//lH7PiWkXW10dXXh5uaWrfeZ10hISICfnx+qVasGxhjatm2b5jy2tbXlwXyqV6/OdxwU9UT6EX7xdZC3kaZMmcLb//K2f2qkZiu5eL127dpYv3492rVrJ8S6GUTbbo1GRkY4cuRIirZIKl5v1qwZ/v33XxH9OxPI8yk9ttCGELFnnoz6hhxvb28cOXKE+4mku5L6HCISu3aEgF0gEAgEgjyCt7c3F3M2adIE69atw9OnT3Hw4EEsWrQIBgYGXKBjYWGBQ4cOaQizrly5gnr16sHY2JivGpw2bRpu3LiBT58+IT4+HsePH8fEiRP5tWbOnMnPFwMuiXh5efEJwIYNG2Lx4sW4fv06/vrrLy5ulz6Wlpa4e/dustdasGABGEvcVvDw4cNqWzN//PhRLdq02J5WE2dnZy7mVCqVKFmyJI8qJkVVyihSJ8fX15cL7QwMDNCkSRN4enpm+t5zI3J76OnpoWbNmjwyaHoWE7x48QJVqlThPrR9+3a1qBtxcXFqInZ5NCZRTiWSXSJ2Obdu3eILcAoUKIAhQ4ZoLJoSZK2IvV+/fmCMoVKlSvD391c7HhYWhg0bNkChUEChUGDnzp1Zcfu5ChcXF/7OlilTBl27dsXevXuxdOlSjBs3jtfdRYoUwR9//KG1Hrl8+TJPZ21tjT179mhsHRkdHY3NmzdDoVDAwsKCT1wJvuDq6opSpUrxNlDTpk3xxx9/YMyYMfjhhx/UBgZHjx6t0aYFgAcPHvA6p2zZsli0aBEiIyPV0kRGRmLLli1QKBQwNTXF+fPnc+gJBYLsQVt7KiNtn9evX/M+4fr167Pi1nIlb968wcCBA6Gvr4/evXunKPaXJi+OHTvG26gbN27MqVvNM3h7e/Mdbv7++28A2n1A/p08wm779u01IlQL0ofwi2+D9JT9t2/fhr6+Phhj6NOnT5pF7B8/fsT+/fsxaNAgPuaoUCjw22+/Zeg+cjNOTk4oXrw4Ro8eneaIofK8U6lUsLGx4WLdBQsWpHiumDDXTlrfxwMHDvBxvoIFC+L48eNpusbVq1dRpEgR6OjoYNmyZZm+X4Emwi++DlLe3bx5E1ZWVhle4BoUFIQ+ffrwRQfx8fGinkiBI0eOwNDQEBYWFqnONUgLcpYtWwZ9fX3ky5cv3bt+CFLH3t6elzny9k5KPHz4EK1bt+bBlcaPH681kJUgbQi/+HrIBbLTpk3jY7Pbt2/PUKAwOUnF64cPH0ZERAR8fX2FcDoTaBPqMsZw5swZremTitebNm2K+/fvIyEhAZ6enkI4nQmSs8XJkyfTfS0hYs886fWN5HB1dUWbNm14+cUYg7Ozc1bfbq5BCNgFAoFAIMhDuLq6okyZMryRJG3BLEWGLliwIOrWrQsnJyeNc8+dO4eSJUvyScPq1avj2bNnfMt4uUgrODgYW7du5WnXrFmTY8/4veDq6ory5ctzW0gDVFIk4rJly6Jnz55cvCvf/k4iISGBRwdo2bIln+SSD+wGBQVh3LhxUCqVaN++fZonwvISTk5OahGJz549m2UR9ZydnWFtbc2jivfo0QP379/PkmvnVuT2qFGjBk6fPq1VeKiNhIQEvHnzBsWLF+dl26BBg/jCDnk5pVKpsGvXLu5zEydOzI7H+a7JLhF7bGwsLl26xCPSmJiYYPLkyaLjngLptYVUD8jrg+joaPTu3RuMMb5DStLBYz8/P/Tq1Qs6OjoYNGhQpgeXcyPu7u5o1aqVWvQEeVuqRIkSGDlyJD5+/Kh2nmSL3377DXp6etDT08PChQu5eD3ppKy3tzcaN24sFqClwOvXr9GqVSsULFgQjDHe7pTK9QoVKmDixIncFkkFCVu3buUTi6NGjeLi9aTp/P390alTJzDGsHTp0px5OIHgG+fRo0dczCj6eilz4sQJXocvW7YMUVFR/FjS+trDwwM1a9YEY4m7azk4OHyVe87N+Pv7c3usXLkyxbShoaHo0qULj8ZXt25dnD17NofuNHcj/OL7QR5ZV1dXN80i9qRt27Nnz2Ls2LG8vTZ16tRk0+ZVgoKCeEAFIP0Cg5CQEMycORM6Ojpo0KCB1rFdQeaJj4/HoEGDeD9QWgwFpL4gav78+fy8Q4cO5cj95jaEX3y7SPWFJAjN6HjSihUr+FxJdgTTyE3cvn0bFStWhJ6eHtasWaOxIF8bI0aM4G1b4Q9Zz/nz53lgi+fPnwPQHGOS1wtPnz5Fjx49+OLwxo0b811xxKKajCH84uuSHSL2S5cu8d3K69atCxsbG65LAIRYN7PI7SItItu7d6+GvUJDQ7Fz504+lt6iRQvcvXtXbc5V2CJzyPO8f//+YCxxd960lGNJcXd3V1vcIY2jCFuknbT6RlKS7jA0e/ZsvkuRmZkZDh48KOr4ZBACdoFAIBAI8hienp4YOXIk3zZbinzbs2dPbNq0iW9VK2+AXblyBaVLl+ad+Pz582Pr1q24ceMG74AA6g3fqKgoLF++HAqFAtWrV8fDhw9z7iG/E7y9vTFp0iTUq1cPRkZGUCqVKFeuHEaMGIGzZ88iJCQEANQiLsTExCAuLg4REREAEicB9fX18csvvyT7O9u3b+e2vnnzZrY+0/eKk5MTn0CvXbs2bGxsEBYWlqlrurm5oV69emCMIX/+/OjevbuaeF1M0iaP3B516tRJtz3WrVuHfv36wcDAAIwxTJo0iR+Tl20qlQp///03GGMoWrQonj59mqXPkRuQC6fbtWuX6cmj2NhYXLlyBVWrVuWDJ5MmTRLi9TSQEVu8ffsW/v7+ePPmDcLCwrBjxw4wxrB27dpkz/ntt9+4CFgM2mvn3bt3WLduHdq0acPLGcYYWrdujTVr1vBFN0kHomJjY9G0aVMeBV8abE+uPhg6dCgYY+jQoQMAMcCojYCAAGzbtg2dOnVC0aJFoaOjAwsLCwwYMAAnTpzgeZzUFvHx8VyUWKpUKbx//15rOolffvkFjDHUq1cPcXFxwhaCPIv07h87doxPWkkRREXbVh15fqxatYrXFZs3b1ZbLCuVO56enhgxYgSfmG3dunWWLaoVqDN69Gjo6Ohg5MiR+Pz5M7eVNPEaHh6O+/fvo3Xr1lxAVatWLfz777/8GuJ9zxjCL75PtInYu3fvzttPKSFvM71//57vMsQYw4oVK7Ltnr93pHxLSEjAf//9h4iIiDRNcp89e5b71f79+7P7NvMkhw8f5nk8a9Ys/n1q9jlz5gw/r2fPntl9m7kSKY+FX3zbZLSNJM1/7N69G/nz50e+fPlgb2+flbeW6wgJCcGkSZPAGEPNmjVT3SXoyZMnfK7CysoKfn5+ok2bxZw4cYLPoWqzhzy/Hzx4gK5du/IAGdWrV0dgYCAAMf6XGYRffH2yUsR+7do1fn6RIkXU5jTkbQC5cNrIyEhNtyBIHbldbt68yXUiEjExMTh48CC3hYWFBY4cOcKPJ2cLAwMDODo6Zv8D5CLktjh27Bi8vLwyfC0vLy9uCxMTE96uEnVM2knNN1LizZs3WLp0KQ/YV6FCBezfvz/NAfvyIkLALhAIBAJBHiQqKgofPnzAjRs38PDhQ43OnLzx+ujRI1hbW0OpVPJJJvnHxMQEP/30Exdbyzv3Tk5OaNq0KRQKBfbs2SM6/lqIjY1FZGQkXr58CWdnZ40I6fLG8eXLlzFq1CjUq1cP1atXR+/evTFu3DhYWlqiRYsWfIBLQuo0Xr16lU8y7tq1K/sf6jvF2dkZRYoUAWMM5cuXx5UrVzK8ClaI1zOP3B5WVla4efNmqvkmP+7l5YVNmzZxcdXQoUP5MXkZp1KpcPr0abUBF4E6zs7OKFq0KI9yERAQkKHrSOJ1KfK6EK+nn7TaIiIiAjt27EC5cuVgYWGBQoUKoX79+ujcuTPMzc0xePBgvjMBkOg7Un2zdu1aKJVK6Ojo4O7duznyXN8zDx8+xL1792BnZ4fY2Fheb2irP8LDw3lU9c6dOyebThLQ/fzzzzzKpSB1fH194e7uznevkdBWd8THx6Nr165gjKFBgwaIiorSmk7yi4ULF4IxhubNm2fPzQsEXwH5O5+WvyVcXV1RokQJMMZgaWmJV69eZe+NfsfIy3hpgRhjDBMmTMDRo0cRGxsLHx8f3Lx5E82bN0ehQoV4RB6pfST6DVnPvn37uC02btwIX19ffszDwwMLFixArVq1+IRrixYtcPr0aZ5G2CRzCL/4PpGL2CV7ZKRfGB0djaVLl0KhUKB27dpCnJgKY8aMQdGiRfHkyZM0pf/06RNKlSoFxhjGjx8PQPhLViHl45QpU6BUKlGhQgXY2dmpHUuOO3fu8MXo5cqVw4EDB9J0nkA7wi9yH/K2gSQ8ZYzh0aNHX/Guvg/8/PzQsGFDMJa4Q6+joyMf95YHRfL19eUL8xlj+O23377WLedq3r17h+rVq8PAwAA7d+7UuqsykBhRunHjxnzeomrVqjxQiRAWZh7hF1+f5ETsO3bsSJeI3cXFBR06dODzSTVq1OD1f3x8vFp97u7ujrZt2/LFglIQOEHaSK3s8fDwQN++ffnuaNWqVeNz3klt4eHhwQMCTJo0ie9AK0gbma0H5La4cOECypcvz/vwIohb+smIPd6+fYtly5bxnYMrVaqEvXv3qs3JCjQRAnaBQCAQCAScpCKqgIAAjBkzBkZGRnzlsqWlJWbPno25c+fi559/5hECOnfujI8fPwJQF12vXLkStWrVSnV7YYE6STt8hw8fhkKhgI6OjtoCAun/lpaWuHDhglqUJgD48OEDRo8ezdMLkW7KODs7Q19fH1ZWVrCzs8vQhIYQr2cdzs7OUCqVqFevHtzd3dN0jjx/4+LicOjQIT4YPHfu3FTPF1t3acfZ2RmMMbRp0wZRUVHpPl+I17OO5Gwhvfvh4eGYM2eOWl2RL18+MMagr68PxhjKli0LW1tbXmdI7/3r1695dHwLCwuxXXMKZLQsHzduHBhjaNiwIW83acPDwwMWFhZgjGHKlCkZvc08QXK2SK08nzlzJp8ofPv2bbLp/P39UadOHTDGMHjw4Ezdq0DwtclI2aVSqRAdHQ07Ozts3ryZl00mJiYYNWqURjTkpL+R19u+8omO33//Xa1+rlixIgoVKgSlUsm/K1iwIN81KysnrQDRzpUjt0WjRo3Qv39/9OnTByYmJrzdlD9/fvz888+4desWPy+z77Nk07wuTPmafiHIOFIZ8uLFC3h4eADImE/Y2dnxLbQPHjyYpfeYm/D390enTp3AGMNPP/2U4u4Dkh0+f/7MF5n1799f7Zgg80RHR6N69epgjKFTp05pOufhw4eoXbs2FAoFFAoFhg8fnukdH/Mywi++H5IuipX+n5CQoBZNX86RI0dQsmRJKBQK1KhRI8V+uuAL7u7uKFmyJBhjaNy4MQ4ePKgW6Oj8+fN8LEoqv16/fg1A+EJWExoaigEDBoAxhqZNm8Le3p4HqQASBW3bt2+HgYEBDxZWvXp1eHp6AhD2yEqEX3x9khOxb9iwIU15LNUV4eHhuHjxIq//9fX1k11E6OHhgd9++w1nz57NwicRSLaIiIjA9evX0blzZ26LO3fuANBui7Vr16a6C4Ig65DPDwYEBGDixIlo0qQJGEvcWVAeyEeQfQjxesYRAnaBQCAQCAQaSB3LK1eucIFCsWLFMHv2bDg4OKilffToEd/OecCAARrXAMAHk8WEecY4d+4cn7zV19dHkyZNcPDgQezduxfz5s1DuXLlwBhDlSpVcPr0ab6N89u3b7F161a+urZgwYLw9vb+yk/z7ePt7Y2rV6+qRWNIK0K8nvX4+fnBxcWF5116y5HQ0FD89ttv0NHRQa1atcSWdZnA398f4eHh6T5PiNeznpRssXHjRj4gXKtWLfzyyy9wcXHBzZs3sWvXLlSsWJHXGTY2NvDx8QEAODg4oF+/frxOb9CgAd9dRZB1bN68mQs/JUGctPBPajv5+/tj2rRpyJ8/P4yNjXHy5EkAoh2V1ezduxeMMRgbG+Pq1asAoLGo4/Pnz9iwYQOKFSsGxhjfqlbYQvA9Ir3fL1++xN69e7F582bs2LED69evx/z587FkyRL8+eefmDJlCsaPH4+pU6di0KBBaNmyJRo1agR9fX0u7DUzM0OnTp1SbFe9fPmSL2LO64JT+fNv27YNrVq10tjZrHDhwqhZsyaPRpw0elV6+xHy9NeuXeOiCGGLL8+/cOFCmJqaatjC0NAQJUuWxJEjR9SiswOJfeyM9un8/f3Rp08fPHv2TONe8iJf2y8EGUOeh5lpD0l9wyFDhmhcV5BITEwM1q1bB2NjY5QtWxZnzpxJNZ+kvoZSqeTtVkHWERcXhwYNGqgFSEgaRVRuowcPHqBRo0YwMDDgC6akbedFfyJjCL/4NslMGR4ZGYmwsDCsWLECNWvW5KLeWbNmaU0v9x1Rd3zBxcUFZcuW5WMclpaWaNOmDRo0aAAzMzPetmrRogWOHz+eLWWQsEciHh4esLKyAmOJu2dOnDgRe/bswbhx43h0aCnYSNu2bVNciJNRhC0S+Rb8Iq8j7/NNmTIFjDHMmTMnzefL32Vvb2/06dMHjDGUKlUKL1680HqOtoA/gswjz0sfHx9uCysrKw3diIR8AY8ge0habj18+BCjR4/m/W3pU6NGDQwaNIjPBQqyByFezxxCwC4QCAQCgUArMTExfFC+SJEiWLZsGY96IXVUpM7nhQsXePSkQ4cO8Wuktv28IGUSEhIQEBCAdu3aQaFQQF9fH2PGjNHYbsvHx4dHALK0tESzZs0wZcoUWFtb8y1SzczM8PfffwMQkyTpIT3vrRCvZz/yd/fp06d49+5dms67dOkS76jv3Lkzu25PoAUhXs9Znj59yuvjmjVrYt++fRoT6v7+/rzOKFKkCCpXrowOHTqgUKFCPBKDubm5VqGQIG2kJkjr2rUrz/+kA7ze3t74/fffYWlpCcYSt5iXFqYJ0k9qtujevTu3RVIhbkBAAHbs2IHKlStzEZ3YUUjwvXPz5k3o6upqiETT86lUqRJ+/fXXFOtyBwcH9O/fH4aGhnj+/DkAIdaVP7+Pjw/OnDmD8ePHY/jw4Zg6dSpOnz6NgIAAAOpt3hUrVkBXVxcHDx5Mc50sT3flyhU0bdoURkZGfIJX2OLL858/fx7Lli1DgwYN0KFDBwwfPhwHDhzAmzdvNM47dOgQdHR0cODAgQwJp+fOncsXlr98+VLjXvIiOekXck6dOoU///wTzs7OXOAg2rzZj2TD0NBQvqi2Z8+eAET+J8f79+/xww8/gDGGJk2aaLRX5T70+PFj3rZljOG///7L6dvNE0h53LdvX7Xx2aTv8K1bt1CjRg3ex65SpQrv1+X1sj+zCL/4tpDXz+7u7nj69CmePXuGe/fu4fr167hy5QpOnz6NI0eO4MiRI9i1axdWrVqFZcuWYdq0aWjevDnq1q0LxhgXr//4449ary+Nb8kFcaL++IKHhwe6devG54Ok/JT+7d27N86cOaPmI/Hx8ZkWVcnH54U9EnF1dUWVKlV42ZPUFk2bNsXcuXMRERHBz0lISMjUDh22trZYvXq12vUEX88vBF+Q5+2FCxfUyvX0zlU/e/YM9evXB2MMY8eORVRUlHjXvxIPHz5ErVq1oFQqMXXqVMTFxQlb5CBJfefw4cOYOnUqdHR01IIzFC9eHPPnz8eLFy94O0poRLIHIV7PPELALhAIBAKBQCuPHj1CsWLFoFQqMXDgQB6xLSkJCQnw9fXlk0+LFi3K4TvN3bx+/Rrm5uZ8q7vIyEgAXwZqpc6/t7c3j8ReqlQpHh1REq9v3rw5zWJfgTpSZy4+Pj7ZFeNCvJ6z7NixA4wxXL9+PcV08nyvUaOGWoQ30UnPPFL5o1KptO5YIMTrOc9///3HhYkTJ07UiOwt/evs7IzSpUuDMYZ69epx0XvBggVRsWJFPH36FIDwk4wgj9xta2sLQHPhn7+/P4+6VKhQIcycORPr1q3Dhg0bUL16dR4NtkCBAiL6eiaQ8iwsLExjO1PJFgEBAWjTpg0XqP/55584ePAgjh49ii5duvDtho2MjLB+/Xq16woE3yPTp0/nW8caGBjA0tISZcuWRfny5VGxYkXUqVMHtWvXRt26ddG6dWu0a9cObdq0weDBgzF//nxs27YNAQEBGgtq5djb2+Pnn3/mE8JmZmZCrPt/0tInSJpm8ODBvE44fPhwqteQH7906RK6devGd/MSwukvJC3LteWHlEbK00GDBvFdVNJii6S4urrybc9NTU2FLf5PTviFnCdPnqBbt268HfzXX3/B398fgLBFdiLP2/Xr1/PxqqVLl37Fu/o+8PT05AsqW7ZsCTs7O41JcDs7O4waNYrn67Bhw77OzeZipHJm/fr10NXVRbVq1fD06VON8ic6OhpHjx5VG5etUaMGH5MV5UzWIPzi2+Ovv/5C06ZN1foaUt6ndQGtqakpxo8fr7EzGvBFvB4ZGYkyZcqo7QQsxt2/8OHDB1y8eBHDhw9Hs2bNYGVlhX79+mHdunWIiIhQyyuVSoUff/wRP/30U4YX6zs5OaFo0aIYPHgw/07YIxFfX1/Mnz8fLVu2hKWlJczNzdGhQwcsXboU7u7u/J1OSEhAfHw85s2bh0mTJmnsAJUWAgMD0ahRIzDGMGHCBP69sEUiOe0Xzs7OuHLlSooL3fIa2to/8u9cXFwQHx+f6phrVFQUxo0bB8YYKlasiKCgoFR/OyEhIcO7O+c1oqOj4erqCiD1vIqKisKQIUP4Qs3MLMARpI2k5UhwcDCOHTuGgQMHQqFQ8LE/Y2NjWFlZYdeuXXj06JHaOUnHuYRvZA1CvJ41CAG7QCAQCAQCrWzdupUPHl67di3FtGFhYTyiQN++fXPoDvMG58+f5ytlpQjqSaPpqlQqJCQkYMaMGVAqlZgwYQIuXbqEX3/9FStXrsSrV6++xq3nKiIjI/H333/j9OnTvCMudeyEeD1n+fjxI4+yMHDgQL79cnIkJCTg3bt3XITYr18//r0g84SFhWHx4sX4999/1QaphHj967B27VouFpRE6EkHiOPj4xEZGYnevXuDMYbly5fj8ePH2LlzJ27cuMEHfsWgVcaJiIiApaUlLCwsuCAqKR8+fEDfvn354oGkHwMDA4wbN47vfiPIGFFRUWjRogXKlSuX7CTg+/fv0bNnz2Qn0XV1ddGlSxcuNBQIvnemTp3K3+9ff/0Vb968QUhICIKDgxESEoLIyEhERkYiNjYWCQkJGn0PIPl2lL29PcaMGcOvLy2wFWJd7cjr2qR5Kv//8OHDeZ8wJbGuNvG6PHK+sEXyJI24lxxptUVyuLu7o2PHjsIWKZDVfpEUFxcXzJgxg0cmK1q0KFq3bs3HTYQtkiepuEdCqi+AxPEq6ZhcLCKxfft2lC5dGgqFAoULF+aLNQUp4+rqCgsLCy4Q6d+/P44ePQobGxtMmzaN76DJGEOnTp3EjhvZyJs3b1CzZk0wxtCiRQv8999/cHNzw8ePH7Fnzx78/PPPalEPW7VqxSOva2tTZQQxnpWI8Itvh8+fP6NZs2ZgjPH61czMTE2YbmxsjHz58qFIkSIoXrw4ihUrhgoVKqB+/fro3LkzNm3ahEuXLvFryt9zuXhdEukKoW7aCA8PT/aYl5cXD5zUu3fvdIt1nZ2dUadOHWGPFJDyITAwEEFBQRrBkaTj/v7+fH61V69e6bZFfHw8du/ezW0xadIkjd8QfCE7/cLd3R3FihUDYwwzZszAjRs3+DFhC+1MmzYNjRo14v9PLp+kfuKNGzf4IqmjR4+mmFYiaUA4Me+hSUxMDH788Ue0bds21bRSPp44cQJ6enpQKpWpBhsTZJykPuHq6opTp06hZs2aKFq0qNo8xg8//IANGzZozElpG2cJCQnB9u3b4eLiAkC0kZNDyjt5HS7PTyFezzqEgF0gEAgEAoFWNmzYAIVCgZo1a+LTp0+Ij4/XaCRLDTR/f38eybV///5f43ZzLRcvXuRb2v3zzz8pppUGqbTZQHTIM8dff/0FhUKBatWqwcbGBqGhoQASO4pCvJ6zxMbGYvPmzShcuDBKly6NkydPJvt+S/l/48YN3oGfMmVKTt5urmfatGk8opiNjQ3fJeLy5cuoWrWqEK/nMNu3bwdjDEqlErdv304x7cKFC6FUKjF37lyNY6LOyBz3799HiRIlYGZmhl27dmkIFeR1w8uXL3HixAmsWLECBQoUgEKhgI6ODlq2bIm7d+/m9K3nOl6+fImaNWvCwMAAmzZtSnYnFQC4desWjh49ir/++gsFChSAnp4eGGOwsrLCmTNncvCuBYLsQT4RMWXKFN422rZtG/9eXj5pa8em1LZNKl6fOHEiHB0dhVg3E8jrj59++olHUtIm1k1JvD5v3jwEBweL6N+ZQJst8ufPL0TsX4H0+EVyhISE4OLFiyhRogTfLcLU1BT29vYARD9eGym9n/Jj0dHRPJLl58+f4eLiAnt7e6xatQo//vgjH99ijGHMmDFp+m3RN0nk9evXsLa25pGMdXR0eHtV+nTt2hU3b97kgS6yAnn+C1sk4ubmBktLS767iYmJCd+ZVPrUrFkTv/zyCz5+/Jjp35NsKd8dVZRTiXwtvxBo8urVK76bXNGiRXHixAk8fvwYT548gaenJzw8PODk5IS3b9/i48eP/N+4uDiNXR3l9YpcvN6wYUPud1KUUSHU1SS5foK2/Ll79y73nz59+qRZrOvs7IxatWqBMQZzc3Nhj2RIry2kBSDpsYWESqXCrl27eDtL2EKdnPCLhIQE2NjY8MUISqUS9erVw6pVq5K9j7zO3bt3eX195MiRFNNKeXf48GF+jjYBu7y9evXqVSxcuBCNGjVC165dMXXqVLx+/RqA6H8n5erVqzxfT5w4kWJayRZr1qzh50g70WojtT6E8IvkkeeNv78/NmzYgHr16qFAgQI87xUKBX766Se18V1Ae75L1wsLC8OWLVtQtGhR6Ojo8LEQ4RfqyAMZrlixAo6OjmrHMyteF76hjhCwCwQCgUAg0Mpff/0FxhhKlCiBN2/eaByXN6okoYKhoSFsbGxy8jZzPaGhobC2tgZjDGPHjkVERIRGGkmMJUXerV27ttZ0gozj7u4OExMTnr9Hjx7Fs2fPNMTrDx484OfktY5FTvL+/Xt07doVjDE0btxYLSquFOVNKqPc3Nx4FCBzc3Me4U1MvGYNrq6uPKpSnTp1sH//fpw6dYpHXi9YsCAmT54sxOs5hJeXF6pWrQqFQoFly5YlK9YNDw9Hr169wBhDz549hT9kMaGhoTzyXoMGDfgAIPCl7JEmaENDQ3H37l00adKET7jXqlUL58+f/yr3ntsIDw/HpEmTwBiDtbU1j7oHfKkvJFvEx8cjICAAbdq04QPABQsWxMGDB7/W7QsEWY58ImL69On8Xd++fXumooLa29urRRwdP348oqKiACQKi4RYN+PI7TJ06FCex3fu3OHfpyRenzNnDj/m4uIibJEJkrOFPKpeWhEi9syRFr9ICSmfvb290aRJE97XZ4zBx8cnW+45t7Bz504MGzYMvXr1wg8//IAOHTqgSZMmaNCgARo0aIDKlSujTJkyqFixIo+MbGRkpCYm1dHRwfDhw/k1tb33r1+/xvLly/n/xfhKIn5+fli0aBEf45Dys3jx4pg6dSr8/Pw0+nabNm1KtwhOIi4uDpcuXcLixYv5d8IWibi7u6NLly58txnpY2JigpEjR8LW1pYv8JewsbHJ8A5bksBr3Lhx/Dthi0Ry2i9UKpWIqJgMTk5OKFSoEI967+bmpnY8uR1vknuX5eJ1KaK+ubk5pkyZgqVLlwqhbiaRbHDv3j0u1u3bt2+yu9dJODk58Z0oLCwssGbNGqxdu1bYIxNk1BZJESL2zJNZW0RFRcHV1ZXvFiXZQr5DgeALXl5e6Nu3L3R1dTF48OA09cVWrVrF6/ukuznJ65YtW7Ygf/78au00qdySRKhiTuQLbm5u6NatG3R1dTF8+HCtuhBAvSyZOXMmz9dbt26leP3Pnz/jyZMnWLFiBZYuXYr58+fjzp07CAwMBCBskRxxcXEICAjAlClT0Lx5c7V3uWzZsujRowdsbW35GCyQfF7KxeubNm1CjRo11OZAxLiUdoKCgvjOHJMnT4aTkxMA4N27d1i6dGmmI68L3/iCELALBAKBQCDQir29PaysrGBqaopjx46pNZDkk4Xr16/n0dfLlSuHR48efY3bzbVERUVh6tSpXDj97NkzteNyW7Rs2ZKLSIWAPetxdnZG4cKFwVji1rRWVlZq4nUReT1nkYS6jDG0atUK9+/fR1hYmFoaFxcX/PTTT1xgXbNmTd7pE2Qdct8oX748SpQowQc9ROT1nCU0NJSLeOrXr6+xuEPi5cuXqF69Ohhj6NevnxiUygZ8fHz4IGDLli1x69YtvnuHhLu7O/78809elhkYGKBhw4Y4derUV7rr3ImPjw9q167N64u7d+9q1Bdv3rzBwYMH+aJBSfCwZ8+er3TXAkH2IS/zpZ1UMiNif/r0qZp4ferUqRp9EblYVz4pkpcG4TOD3C7du3dH48aNtU6InDlzhi/yZIxhyZIl/Jhkd2GLzCG3Ra9evVCpUiU4ODhk6Fru7u7o0KEDF7FL1xHtsrSRVr9IivxdP3v2LK/7GWPo1q2bRntN8IVNmzZxEU56PwYGBtDR0cGPP/6IzZs382tqe9+9vLx4lN3x48fz78U4SyJxcXGIjo7GpUuXcPbsWdy6dUsjEpyUV6NGjcpwJNe4uDjcuHGD92mELTQJDg6Gs7Mztm7dim3btuHs2bN48uSJWhqpzPnjjz/AGEPv3r0zJJw+cuQI9ychSNQkJ/3i8uXLqFmzJlatWqU23iVskYizszMX+bRp0waurq4Zuo5Uz0dERKiJ16dOncqF8UKom3nkYl0DAwMwxjBw4EAEBwdrTe/k5MQjr1tYWGDdunV4//49AGGPzCK3hb6+PhhL3Gk5KCgoXdcRIvbMk16/kEiav6tWrUL58uV5ZP3Jkydn2z1/zxw5coQvKF65ciWio6P5MSn4iMTt27dRvHhxPl+e3MKCjRs38nZT7969sWDBAixcuBBNmzYFYwxVq1ZN9wKRvMA///zDFx+vXr1azRbx8fFqfelz587xPG7btq3abipym33+/Bk3btxA3bp1UbJkSbU+YvHixdGmTRu4uLgAEGMhSbl27RqmTp3K546kT5UqVfDjjz/C2dmZl0sp7Soh/14Sr0sL0ZRKJRo1aiSCK6TC5MmT1ca9bW1tsWLFinSL14VvpIwQsAsEAoFAINBKcHAwunfvDsYYWrRoAQcHB7XOCgA10RVjDBs2bPhKd5u78fHxURPqPn78WEN4NWTIEDDGoK+vj5kzZwIQA1LZgbOzM48ko1AoYGBggM6dO+Pp06c8jcj3nMPV1RXFihXjg06jR4/G1atXceLECezduxcVK1bkW6kVKVIEr169AiAEOtlBUt8wMjLC2LFj4eHh8bVvLc/h5eWFChUq8Drj9u3b+PTpE4DEAaoXL17waA3GxsapbgkpyDhubm58UL18+fLo06cP9u3bh7/++gvz58+HhYUFH6A3NjZGnz59cPXq1a9927kSNzc3HgW0SpUqGDZsGM6ePYt//vkH27dvR926dbmtDA0N0aBBA63b0AoEuYWsErF/+vQJs2bN4udXrFiRL7hVqVRqbS65cFqhUPBBeEHakNslaURXAAgMDMTIkSPVJrSkKK8xMTFqfRS5LRhjGRYW5VXktvD19c1w/y8hIQH+/v5o164dGEuM2iu2bU4fqflFUuRl0pEjR9C4cWPuB4MHDxbi9VRwc3Pji8Pz5csHa2trDBo0CGPHjsWIESPw888/49dff8WcOXMwb948/PXXX9iyZQv27duHp0+fphiJV8LLy0ttZyLGGCZOnMiPi/GWlPMg6VjHnTt3oKenl26xriRer1OnjrBFBklqi0ePHvF8zIhwWggSUyYn/AJI3Lmjb9++3C969uyJAwcOpOk+8hKZFbFL+ZhUvD5jxgwe9RJILKuEX2QeyUfu3LkDY2NjdOvWDd7e3hrpXr16pSZe37Rpk1qE3qT2kIt1hT3ShtwWhoaGqFq1qsZinLQg6ozMk1a/SIl79+7xIFhGRkYYMGBAhndiyY3I38UVK1bwftmmTZu0Lty4d+8eunXrhnz58oExhqFDh2rtT5w6dYpfa+nSpfjw4QM/Zm9vj2rVqsHY2Bjnzp3Lngf7DpHbYvny5WqaD39/f430Fy9eRM2aNaFQKKCjo4M5c+ZoFVA/evQIM2fOVNvxTFdXF9WqVUPZsmX5fGLx4sXF3K0WZsyYwfPNxMQEFhYWWLp0qcaC2dRILvK6UqmEnZ0dwsLC1IIrCBH7F+TvoxRskjGGpk2b8ve6UqVK2LNnT7rE68I3tCME7AKBQCAQCJLFw8MDlpaWYCwxkuu0adNw9OhRbNiwAR07duSrzxljmDdv3te+3VyNXKhbs2ZNDB06FPv378eyZcvQqlUrbgcLCwucP3/+a99ursbJyYlP2hYqVAiLFi3ix/JCB+Jbw83NDXXr1uU+oFQqNaK9FSlSBPfu3QMgbJSdyH2jWLFiWL16Nc9vMTies7i6unKxboUKFdCuXTssWbIE3bp14wuiDA0N0a9fPyFay2Zev36Nli1b8sU02soqCwsLbN68Wdgim3n9+jUaN27M26/aIoiamppi1qxZaruqCAS5lawSsfv5+WHq1KmoX78+GGOwsrLC7du3ASS2u5IKp5s1awbGGPbu3SvaZekktfzy9/fHvHnzeOTiUqVK4caNG/xcuS08PDzQuHFj6Ojo4Pr169l527mSjL67SdvEISEhmDlzJt/NyMTEBC9evMiKW8wzpNUW8nRHjx5VE68PGTJEiNfTyKtXr/hkavv27eHj45Oh62jrH8rF62ZmZujXr58QXmUCefTQ9Ih1k4rXCxcujDFjxghbZALJFnfv3s2wcBoQgsSsIKN+IREZGYl///0XvXr1UgvgMHXqVJ5G2CKRzIrYY2NjUb58eT5+0rFjR3h6evJjEpJfSGMs8oU2grQj+Ya7uztfUCnH39+f78KsVCoxYMAAHvVVmz20LXwSpA3JFq9evcLNmzczdI2EhATEx8er1Rljx45VOy5IndT8Ijni4uJw7do13pYyNjbG+PHj1XZKFSQi76PNnj2b989GjBiBPXv2ICgoCA4ODtizZw+qVKnCo4PLdyGX3uf4+HjExcXxnVZGjx6N8PBwfv2EhASEhITwHbgWL16csw/7jSO3xa+//sptMXDgQGzevBlubm64cOECVq5cCUNDQ17Ot23bFlFRUQDUxxkvXryIDh06cJtVrFgRw4cPx6NHjxAcHIwPHz7g3LlzaNu2LRhjqFWrloiKr4WxY8eiSJEi2LZtW7I7PaVESuJ1eR3z+vVrHuhCiNjVkeeBXMTOGEOZMmWwf/9+jaCTSZHXu8I3kkcI2AUCgUAgEKSIq6srKlWqpCa40tXV5asBGVPfmlyQfbi6uqJ69epqtpAG2/X09FC8eHHs3bv3a99mnsDJyYlP2tatWxeHDh0SE95fET8/P8yePZsLp6RPhQoV0KVLFx4FXAzOZj9y36hTp47wja+Im5sb6tevz6OSyMW6xsbG6N+/PxcYCrKXgIAA7N+/HwMGDECNGjVgYmKCypUro3fv3li6dGmGtpAXZAx/f39s2bIF3bp1g6WlJXR1dVGkSBG0atUKP//8M5ycnNS2PBUIcjvyQfjp06fzeuKff/5J1/lRUVF48OAB38HLwMCALx5M2v7y8fHBhQsX1KJgCTKPZIvo6Gg8e/YMPXv25LaQFuUktYWvry+ePn0qyr0cQFsk3k2bNqF8+fLQ19dXG1/5/fffv9Jd5l5Sirz+008/if5KOnFycuKixJYtW3JRokql4uWM/O+09MOTiteXL18OHx8f7Nu3T4h1M4FcrCuVMV26dFGLmCsnqXi9SJEisLGxQWhoKHbv3i1skQm02aJbt25CxP4VSK9faCMhIQFz585F4cKFuS1GjBiRXbf83SIXsbdr1y7dIvYlS5agS5cuMDAwgFKpxIwZM/gx+YJblUqFnTt38rr92rVrWfYMeYmkZUjS/69ZswZ9+vThQQHk5U9y9jA3N8ejR4+y98ZzIanZIq3n+vn5YezYsbycGj58eJbdY14hvbaQ2lK1a9cGYwwFChTAuHHjhHg9BeTjUnPnzlWbx7CwsED+/PnV5vzq1KnDFzQlDb4QHByMMmXKgDGG/fv3a/2Ntm3bQldXF4cPH87mJ/v+kOfTvHnzoKOjwxeImZubawQPa9myJRevy8eVTpw4gXr16vGxjiZNmuDSpUv4+PEjgC92i4+Px5MnT1CtWjXkz58fu3fvBiDatIC6LaTFGhLpzZ/Q0FCsXLmSB7bS1dXlgRPkPiTfrbFQoUJwcHDI0O/lRuT2mDx5MveB9u3b48GDB/yYtrySfyd8I2WEgF0gEAgEAkGq+Pj4YPbs2WjatCl0dXVRoEABWFhYYPjw4Thy5MjXvr08hY+PD2bMmMG3z5SitA0cOBCnTp362reXp5APwterVw979uzR6EgKco7Y2FiEh4fj2LFjOHToEPbu3Qs3NzcuRhARPnMOuW/Url0bBw8eRGRk5Ne+rTzJmzdvsGLFCrRu3RrGxsYoVqwYypcvj23btmVoC1pB5omMjERgYKBGfSHKqJzn/fv38PLy4luhSjYQthDkNeSD8FOmTAFjDHfv3s3Qtby9vdGjRw8wxlC9enU4OztrTZfbB9y/Bby9vfmCgrp16+L169df+5YEAO7fv48lS5agcOHCfCJeilw2depUHD169GvfYq5DiNezh8xG1pXj5eXF7WJmZoY///wTb9++BZBov507dwqxbiaQi3XlC9WStnmTCq6KFCmCAwcO8L68JEgUtsg42myxfv16tejFaUGI2DNPWv1CG/K288SJE/lOhIwxnD59Otvu+XvF2dkZRYoUAWOJO/ymZ6EAkBicYe3atTxK5U8//cSPyW2hUqlgY2OD1atXZ9m9CxKRlyuenp7YuHEjb8cOHTqUH0tqj1OnTuHgwYM5eq95GSn/4+LiEBERgbVr16Jjx448AJb0yWhUd0HqCPF6xpGXHzt37kTnzp3V3lsp0nH37t0REhICQHubJygoCKVLl4ZCocDx48cBqPcH169fzwXyYnGNduS22LdvH/r06aNhi3r16mHChAmIjo4GoC5eP3fuHGrVqsXLnvbt2yMgICDZ3wsLC0O7du3AGEO/fv2y78G+Q+TvbmbmK3x9fdG9e3fed2jatCnevXsHQH3hOZAoYv/hhx+4rfNK5O+0oG38XBrLS8tcq/CN1BECdoFAIBAIBGkiNjYWsbGxePz4MRwdHeHv7887J4AYIM9JoqOjER4ejkuXLuHq1at4/fo1Pn369LVvK0/i7OwMCwsLMMbQunXrVLeJEnwdRPmU8zg7O6Nw4cJgjGHw4MFiccdXJD4+HgkJCXj58iV8fHxExNuvRHIRe4RYOudJrk4QthDkZeSD8N7e3gDUfUWlUqV5a9qrV6+ibNmyyJ8/P1atWgVA+FdWEh0drRFlTBsJCQk4d+4cLCwsYGpqim3btgEQtsgJkkad/vjxI1xcXDB48GBUqVJFbeK3UqVKmDJlisaiEbFNc9YgxOvZS1aI2N3d3flOaiYmJli5ciWPPiaRVKw7YcKErHqEPIPkC/fv38fcuXM1bKVSqXDlyhVUq1YNjDEULFiQByyR+1FSW4wfPz7nHiKXILfF0KFDM7wrWlxcXLJ+Ier6tJGaX6TE58+f8e+//3KRorGxMebNm8d3gBSo4+zsDKVSicqVK6c5j+R9kdjYWBw+fJiLpmfNmpXq+aItlbXI7REXF4dDhw5xe8yZMyfV80W5lD0kHd96//495s+fzwVvUh1RunRptGjRAlevXuXRkgVZixCvZx55uR0UFITr169j4cKFmDlzJtavX4+7d+/yRX/ayviEhAR8/vwZHTp0AGMMkydPVutXbNmyBQULFgRjTCx2SgV5mR0eHo779+9j69atWLduHf755x/4+fmpLZqRsLOzQ8uWLXl06U6dOqU4fiWVYVOnTuV9ShEIK3sIDAzEpk2b0LRpU97fu3XrFoBEOyQVsTdt2hQtW7bkux0IEpGXPdJ7Ky0odnFxSfY84RtpQwjYBQKBQCAQpAltW/+KgadvB2GLr8fLly9RuXJlODk5fe1bEQi+KZycnNCuXTsxgfeV0VZ/i0UdAoFAIEhK0glAef3h4ODART2p9TsiIiLQunVrMMbQoEGDFNOLPkz6iIiIwKVLl+Dl5QUg9fyLjIzkO3e1aNEiB+5QILdJVFQUrl+/ju7du6Ns2bJqwvVmzZphwoQJePfuXaoiEum4EGKlDyFezxmSitjd3NzSfG5CQgK2bNkCxhgMDAxgbGyMmTNn8uPySH4qlQq7d+/mNly6dGmWPkdeQPIJeb5KqFQqbN26FYaGhjAwMICJiQnmzp3Lj8sjhCe1xaZNm7L/5nMZki3Cw8MzdL68P79x40axuCMTpOQXyREeHo7Dhw+jZs2aYIzByMgIf/zxB18EKtCOn58fHB0dtY5RpYWIiAgsXrwYurq6qFixIu7du5cdt5lnSa89wsLCMGfOHOjq6qJGjRqwt7fPpjsTaCNpv8DOzg5Lly6FpaWlWp/DzMwMAwcOxPXr1zUWCAqyDiFezzrSUhalNg5y4MAB7gO9e/fGsGHDMGjQIP7d+PHj+ZiKIHnSUl/Lj7158wZjxoxBvnz5wBhDhw4d+PGUxjICAwP5guaePXtm0d0L5Eg+ExcXh1evXvGo+vnz58fDhw8BaF8QJe1aK1BHm4jd2NgYx44d05pe+EbaUZBAIBAIBAJBGmCMqf1LRKRQiKbEt4KwxdejevXq5ODgQFWqVKH4+PivfTsCwTdDlSpV6OLFi1S2bNmvfSt5Gm31t/xvgUAgEAiIiJRKpdr/pbriyZMn1KNHD5o7dy4RpdzvUKlUZGhoSK1btyalUklv3rwhX19frWkB8Gt9+vSJXFxcKDQ0lEJDQ4mIKCEhIdPPlJtISEigCxcu0I8//kiLFi0iopRtERcXR/ny5SNra2tSKpX0/v17+vTpU6q/AyDF/wu0I72vkk22b99OY8eOpXbt2tHZs2fJy8uLChQoQLVr16a1a9fSv//+S5s3b6ZixYqRvr5+std9+PAhde/enRwcHEipVIr+ZgrI3+/4+Hhui6NHj9KGDRvowYMHREQ0ZMgQ2rJlCxkbG6f52sIvkqdy5cpkZ2dHhQoVohs3btD48ePJ2dk5TecyxmjChAl08+ZNmjx5MqlUKlqzZg0NHTqUiIj09PRIpVIRUWIdNWzYMPr777+pevXqpKurm23PlFuRfEJPT0/jmFKppPHjx9O1a9do+vTpFBcXR8uWLaOffvqJiIh0dXV5+SPZYseOHdSuXTsqXLhwzj1ELkGyhZGRERGlvUyRbCC10U6ePEkeHh5kaGhIOjo6tG3bNpo4cWI23HHuJSW/0EZERASdPXuWVqxYQS9fviRDQ0OaMWMGjRo1ikqXLp2dt/rdU7JkSapWrRoxxighIYG/x87OzuTv75/q+YaGhtSqVStijNHr16/p/v37qZ4j+hNpR7KHg4MDBQQEpJo+f/781KpVK1KpVOTo6MjbWYKcQeq729ra0rx586hz5860dOlS8vPzIwMDA8qXLx/NmzeP/vnnHzp8+DC1adOGzMzMeH2jrd4R7duMoVKp6M6dOzRt2jSyt7cnY2NjGjx4ME2cOJGqV6/+tW/vuyPpnEVCQoLGe5vcOIh0/KeffqKNGzcSY4zOnj1LBw4coCNHjhAR0cKFC2n69OlUpkwZIqJk+9exsbEpHs8LJJ1T0lZGSHU6EdGDBw/oyJEjFB0dTc2aNaOjR48SY4zi4+M1xhuJvuTt+/fveTugePHi2fIseR3JZ3R0dKhq1aq0atUq+uGHHygiIoJmzZpFPj4+Gr5XpEgRsrCw+Bq3+80jH5tbt24dzZ49m7p27Urdu3dXSyd8I/3ofO0bEAgEAoFAIBAIvnd0dBKb1do6GwJBXkbyDYFAIBAIBN8njo6O5O3tTREREXTt2jVq165dsmmlet/V1ZXi4+MpOjo62UVTjDGKioqiOXPm0K1bt+jFixdUqVIlsrKyorVr11LlypWTHczPq7x//56Cg4Pp5s2bdOvWLWrZsmWyaXV1dQkAubu7U3x8PIWHh6dJlMAYIwAak5UJCQli0XQS5HmiUCjo3bt3dOLECbpw4QJdvHiR512RIkWoaNGitGTJEqpUqRJVqlSJX0Oe10l59uwZ/fbbb3Tr1i1q2rQp3bt3j2rUqCH8QgubNm0iZ2dnmjhxIlWrVo3nT1aI14mEX6RG5cqV6c6dO9SiRQuytbWlAwcO0LJly1JdNCvlX4sWLahmzZpUo0YNmjhxIv3zzz9kaGhI27dvJx0dHZ73SqWSRo4cSc2bN1fzI0HmkWzRuHFjql69OlWrVo3GjRtHNjY2VKBAAdqyZQsplUo1W4waNYo6depEpUqV+tq3/92Tkq/Iyx6lUknR0dF04sQJunbtGu3bt490dHRIpVKRiYkJ6enpUfPmzXPqtvMccvG6g4MDGRoa0vTp02nkyJFCvJ5OpLrzzJkzNGHCBNq1a1eahDnNmzcna2trun//Pp07d46mTJnCy6TkfgcAhYeHU758+XhfJaX2V17m4MGDNGzYMLp8+TIVK1Ys2XRS/rVv355q1apF9vb2dOPGDRozZkya2kYA1BYzC1JGym/p3/fv35OPjw+tXLmSnjx5Qn5+fjxt5cqVqV+/ftS9e3eqV68e/17qPyRty966dYucnZ1p3LhxGu1dwZd8A0BxcXEai52yUrwu/EI78vxI7d2UxNQKhYImTZpEVlZW5OjoSI8fP6aqVatSy5YtqW3btkREam1aCRcXF3r//j2dOXOG3r59S7Nnz6Y6depkz4N9hySX/wqFgt6/f08zZ86ksLAwqlatGq1cuZJMTU0JgNY6OiEhgZRKJUVFRdHkyZPJ39+fLCwsaPTo0dn9GLma4OBgMjExSXW8yNLSkgYOHEh2dnbk6upKDg4OVLp0aVEHpANJxK5UKmn58uX8b/l4nfCN9CPUBAKBQCAQCAQCQSYRnTqBQCAQCAQCQW6kTp061LJlS7p9+zadOnWKatWqpTXaqnyw/t27d0SUKKJOLqLly5cvae7cuXTu3Dk+aP/mzRtydXWlp0+f0s2bN6lKlSpiAuX/KBQKatCgATVq1IgePnxIp06doho1apCZmZlGWmnS1tvbm4KCgoiIyNTUVCNicVKByc2bN+n69et0584d0tHRoQIFClCnTp24QFEIp9WR8u758+f04sULWrx4MQUHB1NYWBgpFApKSEigAQMGUK9evahdu3ZqtpLe65TE61OmTKEHDx6Qnp4eRUREUIsWLcjOzo6qV68ubCHjzp079MsvvxBRYpkzadIkqlChAh07dixD4nXhFxmjUqVKZGtrS4sXL+aCwtSQ57OpqSkNHjyYYmJiaMqUKbR7926qVasWjR8/XmMnSEm8LhYQZB3yfDQ2NqYBAwZQWFgYTZs2jfbt20d169alUaNGadhCEq+LujrrSVpPuLu7k5ubG/3555/k5uZGwcHBRJQonmvWrBkNHDiQOnToQOXLl/+at51rSU68LiKvZ5zw8HDat28f+fv704YNG6hu3bpUpEiRZNOrVCpijFFkZCQRJUbHlRY5yZF8x9nZmW7cuEGnTp2iwMBAqlixIjVv3pwmT54shLpa+Pz5M23dupWIiHbt2kV16tQhc3NzrWklkeiHDx94WRQTE8OPJSVpfa2tDSzsoR15vnz69IkePnxIq1evJk9PT7Wdzjp06EB169alWbNmkampqUZeSm1V+fUePHhAGzZsoFOnTtGzZ8/o77//Fr6RBKVSSTExMbRu3ToqX748derUifLnz09EmRevC7/IHqR+uEKhoC5dulCXLl3Ujkt5GhcXR0FBQfTixQu6ceMGOTo60t27dyk6OppHP3ZycqLbt2+TiYmJsEMySHl99epVCgwMJAMDA+rVqxfVqFGDiLTXCdJCjdjYWFqwYAE9evSIlEolNWvWTG0xW3J9PeEX2vH19aWrV69Sly5dqFixYin2lXV0dKhz585UuHBh8vLyooMHD1K3bt2SzVdhC+0kXeAtF6Vnp2/kZoSAXSAQCAQCgUAgEAgEAoFAIBAIBBrUrl2bhgwZQnZ2drR161YqX748jR8/nvT19Ynoy9am0iD9woUL6caNG0RENGzYMLUtZ6UB/I8fP9Jvv/1GFy9epAIFCtDOnTupcOHCFBISQhs2bKCbN2/SpEmT6N9//6VChQrl8BN/u9SvX5+GDx/OxQZWVlY0duxYbou4uDjS1dXlE0t//fUXvXjxgoiIRowYoSbclYtuz507R5cvX6YtW7Zo/OalS5eoQoUKdPjwYapSpYoQjMqIiYmhX3/9lU6fPk2fP3+m0NBQYoyRnp4eTZo0iRo0aED9+/fn6eV5l9IkX1LxeseOHSk0NJRu3LhBzZs3FyL2JDRr1ozGjx9P27Zto02bNpFCoaCSJUvSiRMn0i1eF36ROapVq0aHDx/meSGJCqUdN/Lly5fi+Uqlktq3b08tWrSgK1eu0N27d2n8+PHJppfneV6fPE8rACgiIoKLr5JDqVRSu3btqF69enT37l168OABjRo1Ktn0Iu+zFvn77OPjQ9euXaO1a9dSYGAgffz4kacbNGgQWVtb07Rp0zTOTVouCR/JONrE6zNmzBCR1zNJvnz5qHv37nT//n16+fIl3bhxg/r27au1bQOAdHR0yMnJiVxdXYmIeB8j6XvNGKP79+/T5MmTycnJiaKjo4mIyMHBgY4fP06enp60bt064Q9JMDIyoqFDh5Knpyc9ePCA7OzsqEePHskK1hQKBXl4ePCFy0WLFiUiTXtIaQGQs7Mz3b17l9zc3OjTp0/UokULqlSpEjVs2FAIp5OQtAxft24d2dnZ0alTp/h3JiYmVLt2bRo0aBANGjSIt3MTEhKSFcZJ39+/f5/WrVvHr7dr1y7S19enTZs2CVskYf78+bR69WqqUaMGxcbGUq9evShfvnxkZ2dH06dPz5B4XfhF9sIY0+grf/r0iVQqFd26dYscHR3p5s2b9OLFCwoNDSWixDqpVKlSfGeobt26EVHiIltB8kjl1K1btygqKory589PQ4YMSbavIV9AsGvXLjp37hxFRUWRnp4e/fzzz7wuka794cMHevXqFXl7e1PVqlWpZMmSZGFhIcZCkhAVFUX79++nBQsW0LRp02jNmjUpjk/Ex8dToUKFqHz58uTl5UUhISGkUqmS3U1b2CJ55OVz0sXeRNnjG8nVC7liXAoCgUAgEAgEAoFAIBAIBAKBQCAQyEhISOB/L1myBIwxMMbw119/wcPDQyP9okWLeJpy5crh5MmTWq87evRoMMZQpEgRPH/+XO3YlStXULhwYVhZWcHb2zsrH+e7Rm6LxYsX83xeuXIlnJ2d1dJ+/vwZU6ZM4WmaNWuGBw8e8OMqlYr//eeff6Jq1ao8balSpWBtbY0pU6agU6dOqFKlChhjKF68OP8d+b3kdYYNG8bzrkaNGhgzZgweP36slkae36nx9OlTNGvWDEqlEvny5cNPP/2ET58+ITAwEB06dABjDKampnj58mW6r50bkT//1KlTuS1KlCjB/x46dCg+f/6crmsJv8gapDy5cuUKFi9eDACIj49P9bxly5aBMQZdXV08e/YsU78tUGfv3r1Yv349gLTZ4rfffgNjDEZGRnB1dc3u28vzSO9tVFQUgoODMWPGDLRo0YKXRVL51qtXL5w8eVLNhvIyTP7+29vba/1ekEhqfhAeHo7Dhw+jVq1a3Bfmz58v2qhZRFBQEHr37g3GGBo2bKj2vkpI721AQABGjx4NXV1d6OjoYMWKFQA0bfjw4UOUKVMGjDE0aNAAU6dOxd9//41ffvkFCoWC92UEmgQGBqJbt25gjKFRo0a8vQl8sYOU315eXmjTpg0YYzAzM8O///6rdlwiLi4Ob968Qd++fVGpUiW18owxBisrKyxatEjjdwSAv78/pk+fjh9++EEtz0qXLo1GjRrh+vXr8PHxUTsnufyTf3/v3j3069ePX693797cNyZNmpTqtfIarq6uMDMzA2MMderUwYEDB3D+/HnUqVMHjDEUKFAA48aNU/OX1BB+kbVoq8sjIiIQFBSE/fv3Y8mSJahfvz4sLS3V8tna2hpDhw7Fnj17YG9vjw8fPmi9rsj/1OnYsSMvTwAgNjZWI42Un3Fxcdi3bx+sra25Lfbs2aOW9uPHjzh9+jTKlSuHfPnygTGGwoULo06dOnj16pXa9QSJfYe5c+eCMYZ69erh0aNHqZ7j5+eHChUqgDGGDh06JJufwhaZIyt9Q1s+f/jwQWO863u2hxCwCwQCgUAgEAgEAoFAIBAIBAKBQAP5wPesWbP4IHqbNm0wZ84c/Pfff/jzzz/Rp08ffszAwAALFy7Uej0HBwcULlwYurq6uHr1Kv8NaVLQwcEBxsbGYIzx44JE5Lb49ddfeX7Xr18fkydPxubNmzFu3Di0bt1abSHB9u3b+XlxcXH874kTJ6pN4P7444+4cOECIiIiACROgj1+/Bht27YFYwytW7fG+/fvc+6Bv2GSLu4YP348goKCEBkZqXE8rUjidR0dHeTLlw9Dhgzhk+gJCQlwd3fnk19CxP4F+fP/8ssvau90t27d+Puckk3k1xB+kbU8ffoUjDHkz58fb968STGtZKMdO3aAMYZ8+fLBzs5Oa1qpPHz37h3u37+PlStX4tChQ7C1tdW4niCRy5cv88Vj/v7+KaaV8u7PP//k9ktJmJUWwZxAO0kFBvb29pgyZQoXxkmfatWqoVevXnj16pWGwEqOPM/PnDmD2rVrY/To0VqP53XkZf+9e/cQFhYG4EseaROv//HHH2kWrwu/SBve3t6oUaMGGGNo1aoVHj9+zOtcyT/evn2LRYsWoXTp0rwc8/T01LjW27dveVupa9euePLkCc/viIgI/PHHH9DR0UGfPn1y7gG/M7y8vPgivlatWuHBgwcIDw9XS+Pp6YmRI0fC3NwcjDFUrlwZb9++1biWv78/du3aherVq4MxxkXSVatWhbW1NUqUKAGlUgnGGKZNm5ZTj/jd4O3tjeLFi4MxBn19fRQoUADDhw/HtWvXNMRqKZUrScXr/fv353XL4sWLERsbi127dgkRewo4OzujcOHCYIyhQoUKvCzKiHhd+EX2EBkZiYCAABw6dAiLFy9GzZo1uf9IeWxtbY2+ffvCxsYGjx8/RkxMjNo1ki7UEaSOSqVCfHw8GjVqBMZYsvWr1OaKiYnB9u3b0aBBA14O/fnnn2ppAwMDsWrVKhQqVAiMMVSsWBGWlpawsrICYwzFihUTC2u1cOvWLd6e+v333xESEqI1nWQLKXgIYwwDBw7UWt4LW2ScrPYNaSw3NjYWISEhWLp0Kfr37w9zc3NYWVmhVatWWLBgAby8vNSu+70hBOwCgUAgEAgEAoFAIBAIBAKBQCDQinzge9GiRTA1NYWOjg6fTJcLrCwsLDBv3jyePunk35UrV3jkOD8/PwCJE4XSb9ja2qJQoUKoVKkS3r17lwNP930ht8XixYtRpEgRPsGtq6urZot69eph8+bNPL18gnbEiBF8MtfAwEDNZsCXyZGEhARcvHgRxYoVQ8mSJdUiued1tE0IZVTk8fTpU9SsWRM6OjrQ1dVFr169+DF5hCa5iL1w4cJ48eJFhn4vtyG3xeTJk7kPjB07Fi4uLmk+V/hF1nPz5k2ULVsWBgYGWLZsGRclakOyxfr163kdc+7cOY10Ur3y5MkTtGjRgk+8M8ZgYmKCWbNm8bRCePWFy5cvo3Tp0sifPz/Wrl2LqKioZNNK7/rMmTOhq6sLIyOjZCP5yev5hIQEODs7w8vLC+7u7oiOjlY7JvhC0vbRyZMnMXv2bBgYGHChlYGBAYoVK4bffvsNT5484fmZFmH0mTNn0KlTJ+4bEydO1JpOALRr1w7VqlWDjY0NQkNDAQBhYWE4dOhQhiOvC79IH25ubihWrBgYY6hVqxZmzpyJR48e4dGjR7h+/Tp++OEHvrtKgQIFcPbsWQCa0XFv3boFMzMzlC5dGteuXePHpX/37NnD+yufPn3K+Qf9TnB1deX2qFatGsaNGwdbW1ucO3cOhw4dQvXq1WFiYsIXVUq7pcjbVB4eHpg+fTpKlSrF03Xs2BFHjhzhfvby5UusX7+el3nr1q37Go/7TfPy5UsULVoU8+bN4++9RHpFtvfv30ffvn15vbBw4ULuO3FxccmK2IWYNxFnZ2cu4lQoFMiXLx9GjRqVLvGm8Ius5cGDB/j333+xYMECNGzYUG0XLsYYmjRpgj59+uDIkSOwtbXVeJelMkvUxZln+fLlYCxx5xMfHx+ep/KxvqioKCxcuBA1a9bkNpozZw4XWkvpbGxs+K4Ho0aNwufPn/Hu3Ts8efIELVu2BGMMI0aMQFRUlLBdEjZt2sTzdtOmTTzAApCYv1J+BQUF8UU0xYoVw61btwBoLuIQtsg8WeEbUt88ODgYq1evRqtWrcAY42PB8k+lSpW+68j4QsAuEAgEAoFAIBAIBAKBQCAQCASCZJELEo4dO4axY8dysa00UD5s2DDs379f6zkSDx48QL58+WBpaQlHR0e1Y3FxcVyc+8MPPyQbMSivI8/X06dPY9q0aTAyMoKhoSH09fVhZGSE2bNn48qVKzydXLw+btw4PtlRsmRJbNy4kR/TNsHx5s0blCxZkkfpE3xBPkmXmQk7Z2dndOrUCRYWFmCMoVGjRlx4Ld+hAEgUsXfp0oUvIAkJCRGThVD3iylTpvByacqUKRpljYT8fRd+kT2EhYVh2rRpYIyhRo0auHPnjtZ00jv85s0bVKpUiUd4CwgI0Jru/v37yJ8/PxhjKFOmDKytrdGwYUM+ifvbb79l74N9h4SEhPAdBmrVqpXswgvpfff09OSLA2rXrp2i4D08PBy///47evToAQMDAxQsWBCGhobo3bs3tm7dytOJskqd4OBgXLx4EcOGDYO+vj5vU+XPnx+lSpXCtm3bcO/ePbVzkhMiJBWvS+0pxhhfECKi6mri7+/Phbi1atXCv//+i3fv3uHYsWNcRJJe8bqE8Iv04ebmxiOHMsagp6cHfX19NXGOsbExDhw4oLa4D/iSh7NnzwZjDO3bt+fH5D6zc+dOMJa4e5Fc1CXQxM3NTW0nCMkOcnuYmprixo0bANSFca6urhg5ciSKFCnCxXFr167lQl+5eCsiIgJz586Fjo4OOnbsKBYWaCHp4r+MCNJu3ryJnj17akR1le/OpVKpkhWxCxJxcnLiYs6iRYtixYoVGgtlkkP4RdazevVqNeFmzZo1MXjwYBw6dAh3794FAI0o60Bi+wv48v5/r5GKvyUuXLiAggULgjGGjRs3qu0SERsbi7dv36JHjx58EYjUh/748aPadXx9fXkfe8KECRptpC1btoAxhmbNmon2kwx5+TN//ny1PH78+DE/FhISgqdPn/L2Vv78+fHjjz9q3SlN2CJryKxvSOXTu3fv0L17d77AkDGGunXrYsyYMdiwYQPGjRuHunXrgjGGkiVLatQt3wtCwC4QCAQCgUAgEAgEAoFAIBAIBIIUSTop6+bmhlu3buH69etwcHBIMa2Es7MzypYtywWGHh4e+PDhAxwcHPDDDz/wyNKSePd7G2zPKZLmr5+fHxwdHeHo6KghsJILE+bNm8ejxllaWmLHjh38WNKJWynvY2Nj+Ta2QqibfYSEhOD48eNo27YtGGMwNDTE7du3AWj6gZubG1q1aoVdu3Z9jVv9ZpG/w1OnTuUTe5MmTYKvr69aWnmeCr/IXvz8/NCkSRMwxtCiRQs4OTmpRc2V/n737h1+/vlnGBkZgTGGvn37IiwsTON6Dg4OXPzTu3dv3L17F5GRkXj79i02bdoEhUKBIkWKJBsxPC/j6+vLtzFv2bIlHB0d1eoIyRbe3t7o0KEDL4tmzZqltphG+vf9+/f4559/0LhxYzUBUb58+dT+L6Lia6JSqdChQweNyHlt27bF2rVrNcqslIRxKYnXly1bhn///VerIFHYIhFnZ2eYm5vzhTaTJk3iUSmNjIzwxx9/pEm8Lvwi8/j4+GDixImoXbu2Wl6Zm5ujSpUquHnzZornL168GIwxdOvWDdHR0Wp+8+DBA1SoUAGMMSxYsCCbnyR34Ofnh5kzZ8La2lrNHlZWVmjfvj2cnJwAqL+/np6eGDNmDPepEiVK4Pz58wgPD+dpkr7v//33H7/2kydPcubhviMyWz7ExsbCxsYGBgYGXLC4fPlyteMSKpUKu3fv5nXT0qVLM/XbuREnJycuNKxTpw4OHTrEo6cnh/CL7GPZsmXYsWMHHj16pLaQRvpXvuuJjY0NfvnlF1SsWBHdunXDzJkzNUSigoyzcOFC/s6OHj0aq1evxt69ezFy5EhYWVmp1SNbt25V64NI9tq6dSsYY7C2tubH5en27dvHBboBAQHfZYTp7EL+Dv/6669qdXbfvn0xduxYtG3blu9UYGRkhGbNmuH+/ftarydskXVk1DekPH3z5o1adHbGGLZs2cIjrQOJ9ndwcODR2Xv27PldLn4SAnaBQCAQCAQCgUAgEAgEAoFAIBCkmZQm0lObZN+xYwcfdK9VqxaqVKnCB+3Nzc25aFc+AZJ0K9u0/E5eIa35cOjQIVhaWvKIiZs3b+bHUppsOn/+PI8Ku3379kzfr0ATeeQ+Dw8P9O3bF4wxFCpUCE+fPtV6TkqCh7yMfOJ28uTJYIyhS5cuPAJVUoRf5Azu7u4oXbo0GGNo2rQpjhw5ohbp7fXr1xg4cCCKFy/OhZ7Pnj1Tu4YUkXLUqFFgLHGnjnfv3qml8fb2RsWKFcEYw6lTp3Lk2b433N3dUapUKTDG0LhxY+zdu5eLc0NCQvD8+XM0atSILyQoU6aMmkhRKm88PDwwadIkvijN0NAQFStWxLx58/DPP//g77//xtixY7lwet68eV/tmb9VXr58yXcSGDRoEDZt2qR2PC1CkJTE6ytWrODH/v77byFiTwG5iL1AgQL8nV60aBG8vLxSPV/4RdYRGRmJgIAAbNu2DWvXrsXixYtx7do1vH//HoD2d1b6bv/+/VAoFChTpgxu377N20q3bt3ii3Lat2+P169fA8hYJOu8RkxMDEJDQ3H48GEcOHAA27dvh5OTExdFydtdQUFBmDt3LooWLcpFbXZ2dsleW7Kbo6MjjI2NwRjDxYsXs/V58jJXr17Fr7/+yhfTDBkyhB9LGol969atqFGjBnbu3Kmx44FAvc6oXbs2Dh48mOyuDsIvsofkBOfy75PboUu+qKx69eoICgoCIOqEjCLPt99//x2Mfdn9J+litBYtWuDs2bPJXmvmzJlgjKFz584a146KisL06dPBGMOIESOy74G+Y+Tv/IoVK1CuXLlkbdGzZ0++U4E2hC0yT2Z8Q7Kln58fypQpA8YYdHV1UbZsWdja2qr9jlSHJyQkwMbGBkZGRqhUqZLGgujvASFgFwgEAoFAIBAIBAKBQCAQCAQCQbYiF5xs3boVFhYWMDQ0BGMMRYoUQaNGjeDo6Ajgy0C/tonJz58/cxGLmGRMG8HBwRg0aBCfIJFHjE4uD6XIyL///jv09PSgr6+Py5cv59Qt5yrSKxB89eoVj5w0YMAAfPjwIZvuLHciLzd27tyJM2fOaE0n/CJncXFx4SJ2c3NzlC1bFoMGDcIPP/ygtmW2vr4+zp8/D0DTDmFhYahZsyZ0dXVx4MABjcVN8fHxPDL+6dOnc/YBvyNcXFz4RLiJiQmKFy+Ozp07o169ely8Kx2TItnHx8fzfHZxcUGvXr243UxNTbFs2TKNCKFhYWHYuHEjj4p//fr1HH/Wbx0XFxdcvXpVLUJoRto2p0+fRvv27bnt/vrrL7XrqVQq7Nq1S4jYU8DJyQlmZmZgjMHAwAC9evXi7VIg+XySvhd+kf2k5hthYWFo2rQpGGMoW7YsOnXqhNGjR0NfXx+MMdSvXx/Hjx9PUQQvSDtSnkntruPHj/NFySVKlEg1Yr503q5du6CrqwsjIyOxe0o2IPebT58+Yf/+/VwYPXbsWK3p4uPj4enpiYiIiBy91+8JZ2dnFC5cGIwx9OvXT2PXIOEXOUvSMlz+/3HjxoExBj09PcyfPx8XLlyAt7c3hgwZwhc7i3c9c8j731Jk6UKFCsHMzAzVqlVD27ZtcfLkSbi7u/N02urdXbt2QU9PD61bt0ZAQIDa9U+ePMkXfsp3TBOoI7fF9evXsXz5clhZWaF48eKoUKECGjZsiEOHDglb5BAZ8Q1p4Zi/vz+qVq3KF8U2bNgQDx8+BJB8u9Xe3p7vuHL48OFsfLLsQQjYBQKBQCAQCAQCgUAgEAgEAoFAkO3IJ8afPHmCy5cvY/PmzXjw4AGPfAWoD8bHxsbi2bNn2L17NyZMmICqVavCwsICDg4OOXrv3zMnTpxQ27JWIjkhkPT93bt3eRTedu3a5ci95jbkeezi4oL4+PhURVLR0dFYsGABF2A5Oztn923mOrQtfkma78Ivch4PDw907tyZR1qXfwwMDGBmZoZr164le/7jx4+5yF2KGCf3qStXrvDrpSYQyut4enqiV69efFFB0ihwderU4cJblUrF339XV1d07NiRC93Nzc1x6dIltcij8kiuXl5eqFWrFhhjWL9+fc4+5HdIRkS0z549Q/Pmzbn9evXqxY9FRUXxvyURu1KpFBETk+HVq1dcxF61alUcPXpUbceTpEj2En7x9ZHq/U+fPqFp06Z8sYb06d+/Py5cuMDTJf1XQm4nIWpPHSmPwsLCUKdOHb4w+b///kvxPHlbq0ePHmCMoWDBgmq7swiyh7i4OOzatQv58uWDjo4OtmzZ8rVv6bvFyckJLVq0wKtXr9S+F37x7bB69WouXj906JDagkEAqFGjBkqVKgVPT8+vdIe5h6T16du3b+Hp6YlPnz6luMBAzvXr13l0/BkzZuDGjRu4fv06li5dyhfejBw5MtueIbeQdDzj06dPCAwMxMePH9XaOSkhbJF1pMc3pLQfPnxAu3btePnVuHFjvkNdSgsxX79+jSJFioAxhiNHjmTH42QrQsAuEAgEAoFAIBAIBAKBQCAQCASCHEGaTNE26C4JrR4+fAgbGxv89NNPqFGjhto2qwULFkSVKlWwYMECsaV5KsTHxyM6Ohpdu3YFYwy1atWCvb09P5bcOQDg5uaGkiVLgjEGKysrHD9+HAA08jypHUVUfO3s3r0b48aN4/9PTRT16tUrmJiYgDGGpUuXak2T2kSwsIV2ssMvRF6nncDAQJw5cwaDBw9G7dq1Ua5cObRt2xaLFy+Gk5MTgOT94/3796hRowaMjIxw4MABtXy/f/8+qlSpAsYYxowZkyPP8r3z4cMH2NraYvTo0WjTpg0aN26MPn36wMbGhgt55AsEvLy80L9/f142FS5cGC9evEj1d/r06QPGGAYOHKh1cYkg8+zcuROdO3eGoaEhDA0N1SKsy4UqKpUKu3fv5hHCX79+/TVu95vGyckJ5ubmYIyhdu3aOHjwYIoiduEX3w7Sux4aGooDBw5g5syZWLhwIfbu3YuIiIgU65abN29i4cKF6N27N8aPH5+Tt50rmDJlChhjKFCgABYsWIDg4OBk08rt8Ndff4ExBl1dXcyaNUvjuCDtxMTEIDQ0NE1pfXx80LFjR14GCTKO1DfWVo4Lv/i6BAcHo3379lAqlVi0aJFaeygqKgoqlQpNmjQBY0zsqJVFpPSeprW/vHnzZrXdoHR0dPh44NChQ3k6uc9p8z/RP08eYYucJz2+ERkZiTlz5sDU1BSMMVSrVg2PHz9O9ToAsHTpUl7vJN0F6ntAhwQCgUAgEAgEAoFAIBAIBAKBQCDIRhISEkihUJBCoSAiIsYYERGpVCq6d+8eBQUF0fHjx8nHx4cePHjAzytRogTVq1eP2rdvT3Xq1KE6deqQlZUVAeDXEGhHoVCQSqUiFxcXIiIqW7YsValShR9LimQjLy8v+vnnn+nt27ekp6dHjRs3pubNmxMRka6uLhERBQYG0pMnT+j69esUFRVFtWrVog4dOpCVlRXFx8eTUqnMoaf89nn9+jXt2LGDHj9+TFWrVqXJkycn++5K77WOjg4ZGBhQaGgoxcTEJJuOSNgivWSHX0jnifxOncKFC1O3bt2oW7duFBoaSiqViszMzPg7nVLZbmpqStWrVydHR0davnw5EREVK1aMgoKCaObMmRQQEEDt27enKVOmENEX2wm0U6hQIWrdujW1bt2aYmNjKSEhgQwMDPhxADz/Pn36RDt27KCbN29SaGgomZub0+3bt6ly5cop5nNYWBi9fv2aX0/4R/YwevRoateuHZ09e5bmzJlDW7Zsoc+fP9PBgwdJR0eHl01KpZKGDRtGBQsWJDMzMypTpszXvvVvjipVqpCdnR01b96c7O3tacOGDVSiRAlq1aqVRtkk/OLbQnrXjY2N6aefftKaJiIighhjdOfOHXJwcKAbN27Q06dPKTAwkIiI10OtW7emfv365eTtf7dERETQq1eviIjI0tKSevToQQULFtSaVl7HX7x4kY4fP05ERPny5aOmTZsSUaINUmpPiT6gJiqViuzs7Ojdu3c0ZMiQVPPI0tKSWrRoQVeuXKGjR4/Sb7/9RrVq1dKaVtgiZXR0EuV2SfMoO/xCkD78/Pzo9u3bpFQqqWnTptxWKpWKDAwMKCQkhD59+kTFixenSpUqfeW7zR2k9J6m1ieT2k0TJ04kQ0ND+vvvv8nLy4tiYmKodevW1KpVK/r111+JiCg6OpoMDAz4OZL/BQcHk4ODA5UoUYIqVKgg+oLJIGyR86TFN6Q88vHxoWvXrlFISAjp6urStm3byNraOtk6VzovJCSEHj16RERERkZGZGJikj0Pk40IAbtAIBAIBAKBQCAQCAQCgUAgEAiyFGkQXRpklwbl4+Li6MmTJ+Tp6UknTpygt2/f8kF2IqLixYtT3bp1qXfv3lS2bFlq2bIlmZqaUr58+TSuLwQ/qRMREUHh4eGkq6tLvXv3Jl1dXVKpVHwCV0Iu0p00aRK3SdmyZWnBggVUpEgRnvbSpUu0f/9+Onr0KP9OoVCQpaUlnT17lqpVq5bnJ6jkFCxYkGrUqEGPHz+mK1euUIcOHZKdJJcmpJ4/f87FVEknnuQTV8IWGSMr/SIhIYEYY8QY42WSi4sLBQYGUkJCAlWvXp0MDQ3J0NBQ2OL/SO+wsbGxxncpLe7Q09OjrVu3kqurKz1//pzGjh1L0dHRPE3Xrl1pxowZGgsSkpvsFcKrL3mgq6vL80JuC0m49vTpUzp58iQFBQWRmZkZXbx4kSpXrpyssE36/u3bt3wRTtmyZdWuL8gapPwsU6YMjR8/nszNzWnMmDFkY2NDZcqUoSVLlqjZSKlUUq9evb7iHX/7VK5cmezs7KhNmzYUHR1NVlZWau+s8ItvE219g6ioKIqLi6Pr16/Tmzdv6MyZM+Tj40Pu7u48TZUqVahJkybUqlUratSoEZUpU0at3StImYcPH5KtrS0REf38889Up04drenk7/jjx4/pwIED9PDhQyIimjhxIvXo0YOnk+x47do18vHxofz581OxYsWoZcuWqS52y4s4OjpS3759KSoqipo1a5bi4iSpHCpXrhzPy8+fPyebXtgiZZJ79qz2Czny/kRez/+UkMoSAwMD3ucAwPt7Y8aMIRcXF6pbty4VKFDga96qgBL7bdK7PWLECOrYsSPFxcVRWFgYWVpaqtlIWnD74cMH8vDwoPv379OtW7fI2dmZ3N3dSUdHh169ekUVKlT4Wo/zXSNs8XWQyvVt27bR48ePiYho9+7d1Lx58xTHM6TztmzZQmfOnCEiovHjx1P58uXV0n0PdYUQsAsEAoFAIBAIBAKBQCAQCAQCgSBLSCpY//jxI/n7+9PTp0/J1taWXr16RS9evODpixcvTrVr16bevXtTmTJlqGvXrqSnp0eGhoZq100q/BTi9bSRkJBAkZGRFBcXR35+fkREyYp03d3daezYsfTw4UOKjo4mc3NzOnLkCFWsWJGnPXfuHC1evJiePn1K+fPnpx49elBkZCT5+PjQs2fPqGvXrmRra0tWVlY5+pzfMubm5tSzZ0+6dOkSnT9/nho1akTTp0/XWJQh8e7dO7p+/ToplUqKj4+n4sWLqx2XJp6ELTJOVvlFfHw8F/p6enqSra0tHThwgJycnCg4OJiIEoWQ9evXp3nz5lGFChVElHb68g7LJ1FTE/ZLYmpTU1OytbWlyZMnk4uLC9nb21OlSpWoa9euNHXqVCpcuLDG5KxciH379m2KiIigH3744buYxM1utNlC/rf0ri5fvpzc3NyoQIECtGPHDqpXr16yC8nk369fv57c3NyIMUbt27fXuL4g7WhbZEOknp86OjrUtWtXmjJlCq1atYpOnz5NPXv2pHr16uXkreYKKleuTA8fPqSYmBgqU6aMmvBD+MW3QdL6VFo4Gx4eTra2tuTl5UXHjh2joKAgNcF6tWrVqHPnztSrVy8qX7481a5dW2uUSrHoLG3ExsaSrq4u5cuXj+rWrUtEmnkn9x97e3vasWMHX3w5ePBgWrRokdo1X79+Tb/88gtdv36d4uLiiChxQeeYMWNo5cqVQjidhOjoaDI1NaWIiAiysbGhadOmafSlk+Lq6kpEieVZSosH3d3dhS0yQFb6RdL6XyrnVCoVxcTEUNGiRbVeM69jbGxMVlZW5OTkRLa2tlShQgXKnz8/xcbG0pgxY+jYsWNkZmZGW7dupYIFC4q8+waQdkrT0dGhokWLarSnPDw8KDw8nM6fP0+vXr2imzdv0rt374gosR1VrFgx6tmzJ5UvX54CAgKEaDoTCFvkPAAoKCiIbt26RURE3bp1ow4dOhCR9n6CvMzav38/zZs3j4iImjZtSl26dCGiL21lKV1sbCzp6OjwMaxvra0rBOwCgUAgEAgEAoFAIBAIBAKBQCDIEhhjFBERQX/++ScFBgbSw4cPycPDg0eaLFSoEDVr1oxat25NVapUoVatWpG+vr7GltoA1KLJfEuD6t8TxYoVo759+9K+ffvo9evX9PnzZzIxMdEQjj5//pwGDhxIHh4elJCQQKampnTp0iWqWbMmn/Rwc3Ojv//+m54+fUodOnSgCRMmULdu3UilUtHr169p6NCh9PTpUzp79ixNmTJFTALTl0mlrl270rRp02jWrFn0xx9/kKmpKQ0ZMkRDMPXhwwc6fvw42djYUHx8PLVs2ZIGDBigcV1hi8yRFX4hFyPeuXOHpk2bRr6+vhQUFMQjkRkaGpKLiwu5uLiQra0tXb58mapWrfrNTRR+L0iLOkxMTGj37t0UHx9PgYGBZGRkRIUKFdJIHxYWRvb29uTl5UUnT54kHx8fev78ORERjRgxgnbv3p3Tj/BdIZUbe/bsoRs3bpC+vj79/PPP1KZNGyLSXi/L6+1t27bR3r17iTFGPXv2pBo1avBrCh9IH+Hh4fTy5UuqV68e6enppZjW2NiYWrduTWvWrCFHR0d68uRJigJ2YYvkKVWqFBGpC0Sy0y8E6UOqg9+8eUNOTk5kb29Ply9fJk9PT/L29ubpqlevTu3ataMBAwZQyZIlqW3btlpFu0l9QfhF2ggJCaG4uDjKly8fmZmZEZF63snz9cGDB7Rjxw7av38/ESXunDJr1izS1dXl/Y379+/TtGnT6PHjx2RmZkZWVlYUHx9P9vb2tHr1amKM0YoVK4TPyKhevTr16dOH1q5dS0ePHqWWLVtSs2bNNNLJF33cvn2bR6guWbKkWjrJZsIWGScr/UISryckJNCxY8fo3LlzdPfuXYqLi6PQ0FDq06cPNWvWjEaOHCkWFMgoW7YsDRgwgBYsWEBz5syhmzdvUnx8PAUHB9Pz58+pYMGCtH79emrQoIHIs69I0r6B9L4rlUry8fGhDx8+0KlTp8jPz48uXbpEoaGhFB0dTQqFggoVKkQDBw6kqlWrUqtWrahChQpqCzoE6UPY4uvCGKOAgABycHAgIqKGDRsmuyOQvMw6duwY/fHHH0REVKBAAeratStfOKVUKik2NpacnZ3p0KFD9PLlS1KpVFSvXj0aOXLktxdgAQKBQCAQCAQCgUAgEAgEAoFAIBBkIePHjwdjDPr6+mjbti1mzJiBM2fO4O3bt4iMjNRIr1KpEBgYiMePH+PDhw+Iiori3wsyx969e8EYA2MMGzZsgJ+fHz/2+PFjbNq0CcbGxjxN2bJl8eLFCwBAfHw8EhISAAD79++HQqFAmTJlcOnSJX6N2NhYAMCQIUPAGMO4ceNy8Om+feLj4/nfv//+O8/n6dOn4+zZs4iPj0d8fDyuXbuG3377DUZGRmCMoVq1ajh9+rTGNQBhi6wgs34BJOb3P//8A4VCwdMVLlwYixcvxn///YcXL15g69ataNGiBRhjqFChAjw8PL7K8+Ym4uLiAICXTRLv37/H/fv3sXnzZvTp0wfVq1fndpFs2K5dO6xfvx5///3317j175IZM2bw+vz69evJppPb4+zZs2jQoAEYY9DR0cHOnTu1nhMbG4uAgAC1Mi6pXfM6UVFR2LFjBypXrozLly+n6ZzIyEhYW1uDMYbhw4enKU+FLdJHdvqFIGV8fX1x5MgRLFq0CB07dkSJEiXUyvoqVaqgZ8+e2LlzJy5fvoyoqCitfQ+pLhFkDh8fH1SqVAk6OjrYsWMH77slJCSo9eOOHTuGXr16cTt16tQJt2/fVitzPn78iMaNG4Mxhho1asDJyQnh4eF4+/YtNmzYAKVSCXNzc9jZ2eX4c37r+Pn5oUmTJmCMoUWLFnB0dOR5m7Q/PW7cODDGoKenh/HjxwP4UlZJ5whbZI6s9AsAOHnyJIYPH65W1hkYGIAxxvshv/76K0+f1+tvef7Nnj0bSqUSSqWS513x4sVx8eJFxMTEfMW7zJskLWvkBAYG4tGjR1i4cCEGDx6MAgUK8PfcwMAAxsbG+PHHH/HHH3/g2bNnePv2rcY1pOtqu75AHWGLb4/nz58jX758KFSoEB4/fgxAs70qz8/jx4+jcuXK0NHRAWMMw4YNU0sbERGBNWvWoF69emr1B2MMJUqUgKOjI4Bvp84QEdgFAoFAIBAIBAKBQCAQCAQCgUCQJeD/kWC2bt1K/fr1o+LFi1OlSpXU0sTHx6v9/927dzRx4kRydnYmV1dXqlixIlWvXp22b99O5ubm31ZEmO8IyRbDhw8nNzc3WrFiBU2dOpX+++8/KlasGDHG6N69exQUFEQxMTFkYWFBdevWpdWrV1PlypXVIsNFR0fTwYMHCQD169ePOnbsSESJttTV1SWiL1HlEhISRERXGQqFgr/Dy5YtIyKiFStW0Lp162jdunVUtWpVIiIe5TsuLo4qV65MY8aMoZYtW/JrSAhbZI6s8ovQ0FDav38/TZ06lQBQkSJFyNramjZt2kRWVlb892rUqEGtWrWiESNG0KNHj2jjxo20atUq0tHREXZJA9ASEVGKBvf27VsKCQmhixcvkoODA92+fZt8fX15OnNzc2rbti21a9eOqlWrRq1btybGGBkaGqZ4fUEi8fHxFBsbSxcuXCAiol69evEo00mR56OtrS1t376dHj9+TERE48aNo9GjR6td9/3797RgwQJ69eoVvXz5klq2bEktWrSgX3/9VUQPTUJMTAzdunWLXF1dadeuXWRtbc2juSZHSEgIvXv3jv+dXF4KW6Sf7PCLtNbTwhaJ6Orq0oQJE+jTp0+kq6tLhQsXpn79+lGTJk3I2tqarK2tSaFQ8DaRRFhYGDHGiDFGRkZGpKOjI9pIWUDBggWpTp065ObmRv/88w81bNiQKlWqRAYGBnxHrXnz5tGZM2fo1atXRETUo0cP+vXXX6lBgwZq+T916lR68OABlSlThi5evEglSpQgIiIjIyPq3bs37du3j+zt7SkoKOirPOu3TMmSJenAgQPUpk0bsrOzo7Fjx9KUKVOoRYsWVKxYMYqOjqaIiAiaNWsW7du3jxhjZGFhQR06dCAi4mWLZA9hi8yRlX6xcOFCOnnyJL18+ZKIiCpUqECVK1emH374gYKDg8nFxYVsbGxo9erVpFAoaPny5Xm+rpD3v1esWEGNGjUiPz8/8vLyolq1alHbtm01dh4Q5AzSuxkfH09hYWH05MkTevLkCT1+/Jju37/P2686OjpkZmZGXbp0obJly1LPnj3JzMyMypYtq3Y9qW0k/St2cEw7whbfHnp6ehQTE0PR0dHk6upK1tbWfOxDQspPGxsbmjdvHr19+5bi4+OpW7dutG/fPp4uJiaGNm3aROvWraOQkBCqUaMGjRo1inx8fOjRo0d09+5d6tOnD127du2bKQ+FgF0gEAgEAoFAIBAIBAKBQCAQCARZAmOMTxa2bt2aiDS3opXE6AkJCXTz5k2aNm0avXz5kszNzalChQqkUqnoxIkT5OLiQrdu3aJChQoJ0U4GkNti2bJlpKenR+vXr6e7d+9SQkKCWtpGjRrRoEGDqE+fPlS8eHENQY9CoaDIyEgiIjI1NSUiori4OC4OunnzJt28eZMUCgV16dJFTFIlQalUqtnCwsKCDh8+TA8fPiQnJye1tI0aNaKJEydSly5dyMTERONawhaZIzN+IZ0XExNDe/bsoRkzZhAAqlixIvXp04emTZumtugGACkUCqpQoQK1bNmSHj16RI8fPyZdXV1RnqWCVAbJ88nHx4dCQkLozJkz5O3tTZcuXaLg4GCKjo4mIqJChQpRjx49qGbNmtS8eXOqVq0aFS1aVM0Hki6gEnZIHoVCQfr6+nzSvFChQkREpFKp1CbS5fXFtWvXaNu2bVzc279/f1q/fj1PGxUVRZcuXaJVq1bRw4cPSVdXl+Li4ujy5ct04cIFevfuHa1bt07YRYahoSE1adKELl++TA8fPqTbt29T9+7dtZbtki0cHR0JABERFS1aVGsbStgiY2S1X8TGxpKenh4/79GjR+Tp6Ul37twhPT09qlOnDlWsWJEaNmwoFhT8n2LFipGdnR2dO3eOWrVqRVZWVlS4cGG1NLGxsfxvOzs7un37Nv33338UHx9P5cqVo969e9OQIUNIoVAIEXsmMTY2pmXLltGDBw/ozp07NHLkSKpTpw41atSI7t+/T+7u7mRnZ8fTjxw5kmbNmkUVK1ZUe5dDQ0PJ0dGRDA0NaevWrVSiRAk1v8qXLx+pVCoCQMHBwTn+nN8D5cqVoytXrlCHDh3o3r175OrqSubm5tS8eXN6/fo1ffr0iRwcHEihUJCRkRHNnDmTevbsqXEdYYvMk1V+MWHCBDp8+DCFhIQQUeLipwEDBvBFzkREnz9/pkaNGtHkyZNp8+bN1LhxY+revXvOPew3irz/re09F2X/1+PFixc0ZMgQCg8PV1t8XLx4cerVqxfVrVuXOnToQObm5mRlZZVs20duw7zeNsoowhbfDgCodOnS9MMPP9CFCxfo2bNn1LNnTzIyMlJLwxijtWvX0uzZsykhIYEAUOfOnen06dNElChc19fXpzt37tDBgwcpPDycxo8fT2PHjqVKlSqRSqUiJycnGjBgAHl5edGTJ0+EgF0gEAgEAoFAIBAIBAKBQCAQCAS5j6TR0pNGdJMmEp2cnOiXX36hV69eUZ06dejQoUNUrFgxMjExoWHDhtHBgwdp3rx5tHHjRo0oioK0IZ+4XbhwIdWvX59evXpF586dI8YY1atXj6ysrGjs2LFcVCuJbuXo6upSrVq16P79++Tq6kqfPn2iggULEhHRvXv3aMeOHeTn58cjHQs0kdti8uTJ1K5dO7K3t6fjx4/T58+fqXz58lSqVCmaOnUqGRoaJjvxJ2yReTLiF/Hx8dwmNjY2XLxerVo1GjFiBI0ePZoKFChACQkJvAyU0uvo6PCdKJ4+fUqvX7+mChUqiMndFIiPj6fw8HDy9PSk8+fPk7u7O509e5ZiY2MpPDyclEolKZVK6t69O48EZ2FhQaVKldIqWJcme8VuHmlHilRcrlw5cnR0pHfv3mmIdOU7pJw4cYJ27txJly9fJiKi7t2706pVq0ipVPLz7OzsaMGCBeTo6EiVK1empUuXUlhYGPn4+NDChQtpw4YNVKlSJRo3btxXeeZvEV1dXerfvz9dvnyZzp07RytXrqTy5ctT9erVeRopmqv07u/evZtHTezcubNaWSMJTIQtMkZW+kVcXBwXr9va2tLVq1dp1apVlC9fPr5QjYiodOnSNHz4cFqwYIEQsf+fqlWr8h1siL6819LCDSlfpeiUvr6+BIAKFixIL1++pFOnTlFAQADNnDlTCBizACsrK7p8+TL17NmTnj9/Ts+fP6f9+/fzOlhPT4/KlClDw4YNo99//13jfADk6+tLL168ICLi/T4dHR3uX56envTx40cqXLiwWvknUKdSpUp048YNmjx5Mj1//pxcXV3Jzc1NzTcqVapEEyZMoLFjxxKRuvBQ2CLryKxfjBw5kvbv389tt2rVKpo5cyY/Li2AMjU1pV69etGJEyfof+3dd3gVZf7+8fukkxASIEBCQkggAQIhlIAQelvBIFIEBZGqoChiQSxrAbEswi6uqLvqLojL+qX3EopI7y2UBEJLoYQaIIT0ZH5/8DsjgYCsQk4C79d1cXk8U/LMfObMnDlzzzNr167V3r17CbD/f3f63s++33bq16+viIgIRUVFqUOHDurYsaMaNGigunXr3nJDmnT9u1dsbKxOnDihxMRE1a5dW/Xq1ZO7u/st38Hwv6EWxYf1CUHWAPsXX3yhypUrKzIyUjVq1FBGRoYWLlyo1atXmz2tOzo66sknn9T//d//Sbp+Q62zs7Mkafr06YqNjVW7du300ksvKSgoyDxfDAsLU+XKlRUXF6f4+HhbLfKtDAAAAAAAAAAAilB2drbRrFkzw2KxGI888ohx8eJFwzAMIzMz0zAMwzh//rxRtmxZo3Xr1kZeXp4tm/pAuHkd5uTkGLm5uXcc52YzZ840LBaLYbFYjAEDBhh/+9vfjFGjRhkNGjQwLBaLUb16dWPBggX3vO0Pmvz8/D88DrW4N/6Xz4W1JqtWrTLXfUhIiPH3v//duHr1aoFxCpt+0qRJhqOjo+Hh4WEcP378rraDh1V6eroxfPhww8HBwXB0dDQsFovh6OhoeHp6Gj169DBGjhxpbN682Th8+PBvzovjx+9n3UYnTpxoODo6GiEhIcaePXsKHXf8+PFGnTp1zM9G9+7djYMHDxYYJzMz02jbtq1hsViMRx991IiPjzeHXb161RgxYoS5T8Ot4uPjzXXcunVrY8uWLUZaWlqBcXJycoznn3/esFgshp2dndGtWzcjKSnplnlRi9/vXn0ubjzWfPLJJ0Z4eLg5nru7u1GtWjWjWbNmRrVq1Qw7OzvDYrEYI0eOvO/L9yCZPn26UapUKcNisRi9evUy/vvf/xrnzp0z5syZY3h6ehoWi4XvSvdYUlKSMXbsWKNt27aGv7+/ERISYjzyyCPGv/71L2Pz5s3meIUdm1NTU40GDRoYpUuXNqZPn15gnPPnzxsNGzY091kZGRlFsjwlmXVbf+qpp4z69esbNWrUMOrVq2f8/e9/NzZs2GCORy3uv7v9XGRnZ5uvX3nlFfM7sIuLi/Hdd9/95t8ZNGiQYbFYjObNm5u/qQDFzY3ff06fPl3gnNj6Oicnx3zv5MmTxj/+8Q/Dzc3NsLe3NywWi1G6dGmjTZs2xrlz526ZJ+4etSheblz/77zzjnleEBwcbDRr1syoVauWUaZMGfP9+vXrGx988IE5zY21OnPmjBEYGGjY2dkZixcvNudvPZ5nZGQYoaGhhsViMb7++usiWsLfRoAdAAAAAAAAAFCklixZYjg4OBi+vr7G0aNHDcMo+IP7rl27DHt7e6NSpUrGqVOnCCEWE1999ZV5wcT6z9nZ2WjevLkxd+5cc7y8vDzzAkxhF7G4sPWr3xtkphZFLyYmxggMDDQsFotRpUoVY+zYsUZqaqphGHeu44ULF4z69esbFovFaNq0KeH1uxATE2P4+/sbXbp0Md577z1j48aNRlxcXIFxbtx2Dx48aKxcudJ45513jP/+97+/Gc7C3Tt58qS5/bZs2dJYsGCBkZiYaJw+fdqYN2+e8fTTTxfYD/Xt29c4efKkOb11e58wYYJhsVgMb29v48iRI4ZhFDzuT5w40bBYLEZYWJiRlpZG3QoRFxdnVK5c2bBYLEadOnWM559/3li0aJGxcuVKY8KECUZkZKQZXg8JCTGmT59e6HyoxR/3Rz4XN67P559/3nBycjLH69OnjzFlyhTj4sWLRk5OjhETE2NMnDjRDLF/8cUXNlrikmX37t1mMGfYsGHmuYbV999/b1gsFmPMmDE2auGDyxqQSkxMNK5cuWJ+T7K63f4kKyvL6NOnj3mD4I8//mhERUUZ06ZNM8LCwsz3T58+fcf54FYpKSnGpUuXjCtXrhR4n1oUnd/6XNz4nXb8+PFGxYoVzRs4J0+ebA6707p+6qmnzHMNAuwozm7ejm+3XR87dsx49dVXze9Ajz/+uDF48GCjefPmZoD30qVLRdDiBxe1KF5uvsG1atWq5jq3WCyGq6urYbFYjFdffdVYvnx5odMZxvWb2CpVqmRYLBZj2rRphmH8Wtv09HTj+++/N1xdXY2goCAjISGhCJbs7tB/PwAAAAAAAACgSB09elR5eXny8fFRxYoVJcl83GxeXp62bdsmwzDUpk0bVa5c2ZZNhX59tPzw4cNVqVIl/fzzz4qNjZWDg4OeffZZNWjQQA0bNpQk5eTkmI+bl6SsrCylpKRo+/bt2r17t7p3767w8HBbLUqxY7FY/qfxqUXRy8/PV15enmbOnKmLFy9Kklq0aKGXX35Z7u7uMgzjtnXMzc3V0qVLdf78eUlSgwYNlJeXJzs7Ox5dfwe1a9fW3r175enpecuw/Px8GYYhe3t7SdLs2bP18ccf6+jRo8rMzJQkubq6auzYsXrjjTdkZ2d3xxrhznx9fTVr1iy1a9dOGzdu1L59+8ztNzc3V6mpqbJYLPLy8tLAgQP1+eefF5jeut5Pnz4tSXrqqacUFBSkvLw8OTg4yDAM5eXl6cSJE5Kk0NBQubm5Fe1ClhA1atTQ2rVr1atXL+3bt0+xsbGaPHmy7O3t5eDgoKysLFksFtWtW1fDhw9X7969JemW7Z9a/HG/93ORl5dn7rt69+6tWbNmyWKxyGKxaPTo0frggw8k/fq5qV27tgICAnTu3DmNHz9ey5Yt06BBg+Th4WGbBS/mrNv63r17FRcXp7CwMA0dOlTVq1eXJGVmZsrFxcXcrnfv3s3x4T6ws7OTv7//bYfdzDAMOTk56R//+IcOHTqk6Ohovfjii8rMzJSzs7OysrJUu3ZtzZ49Wz4+PgU+R9bX1u/HN87zYa+rdR2ULVu20OHUomjdzedi3bp1mj9/vnneMGnSJA0ePFiSblmvNzp48KAOHTokOzs71atXT87OzvdhCYB74+bt+Ob/t+4zpk+frq+++kqlS5fW+++/r1GjRpnjPP3005o9e7YmT56skSNHsp/5nahF8WJvb28eS9977z21a9dOR48e1bZt25STk6OWLVsqICBALVq0MKfJz883j8NWbm5uaty4sZYuXaqdO3eqU6dO8vLyUkZGhubMmaOvv/5aGRkZ6tixo8qVK1fUi3lbBNgBAAAAAAAAAEWqfPnykq5fIElPT5e7u7uk6xdINm/erL/85S8yDENNmjSxZTPx/9nZ2ZkXzXv16qVu3brJMAzl5OTcEm7LyMhQWlqali1bpiNHjmjp0qVKSEgwg79ffvmljh8/rgoVKthiUUo8alH07OzslJWVpUWLFunq1avy9/fXhAkTVK5cuduGSazvJyUlaerUqTp9+rScnJw0aNAg82YdiVDPnVgDmjeGo6TrwU7rOp86daoZ7Gnbtq1q1aolLy8vTZo0SW+++aZKly6toUOHso7/oODgYK1du1avvfaaYmNjFR8fL+n6jWcuLi56/vnn1bZtW3Xv3l1S4SGrjIwMSVJycrIZIpWu1zM2NlYrVqyQJDVt2vS288D1WixZskRff/211qxZox07digvL095eXmSpKFDh6pz5856/PHHJVGL++l//VxkZ2fLyclJktS3b1/NmjVL9vb28vHx0fvvv6+hQ4cW+ndcXV3VqFEjGYahn3/+WfHx8apfv36RLGNJlJ+fr4ULFyo3N1fh4eHmusrNzTW39Z07d0q6foMAx4d76/esT4vFory8PHl6emrNmjV69dVXdfDgQe3cuVONGzdWrVq19Pnnn6ts2bK3hKSt3w+uXLmihIQExcXFqXfv3tRV1KI4+a11YB2+cOFCbd26VZL08ccf68UXX5R0++Ow9Txi48aN2r9/vySpZs2a97LpQJGzWCxat26deVPf6NGj9cYbb0iSrl27Jjc3N40YMUKzZ8/W8ePHzWlw71GLonfjcTUiIkIRERHq16/fbccv7Njg6uqqnj17aunSpZo0aZKOHj2q6tWrKzo6WocOHdL58+f12GOP6Y033jB/iy9MUf9WRYAdAAAAAAAAAFCkfHx85Obmph07dui///2vIiMjlZeXp82bN+uzzz7TyZMn9dhjj2n48OG2bir+Pzs7O7NHb2uv3k5OTrp8+bIyMzO1atUqJSUlad68eTpz5oySk5PNaZs2baqOHTuqW7duKleunHkDA34falH0li1bpr1798rNzU2fffaZfH19bwlWW934/rvvvqu1a9fKwcFBo0ePVuPGjZWXl2eGsPPz85Wdna0jR47I29tbpUqVkru7O4FR/Xrx++Z1bH1/wYIFZnh95MiRGj58uPz9/WWxWNSyZUs9+uij+vbbb9W1a1dVrFiRi+l/UPXq1TVt2jSdPXtWGzduVHZ2tvz9/RUUFFQgLHW7bbdu3bqSpD179mjLli2KiIhQbm6udu3apbfeeksHDx5UkyZN9Mwzz0gq/GI8rvPz89NHH32kMWPGaMWKFbp69arc3d0VEBCgsLAwc1unFvff3X4ucnJyzPD6yy+/rOnTp8vOzk4BAQH68MMPzWDKzTWzHk9q1KihChUq6MqVK+aTJnAra2/21jCO9TuSYRjmzWPff/+9/v73v0uS2rdvb5N24lbWXkc9PDz0/fffKzc3V/Hx8QoODpYk8/Nj/U5w/vx5paamatmyZTpw4IDWrFmjpKQk5ebmaseOHfrb3/5ms2Up6aiFbaxevdrcNz377LN69dVXJd35JjKLxaJNmzbplVdekXT9CVHW44lhGOY4QEkzf/58SVKvXr3MwHRubq55w/62bdskSRcuXFB+fr4kvq/eL9Si6P2R9WcNnQ8YMEBXr17ViBEjtGzZMnO4v7+/Bg0apHfffVfVqlUzjzGF/bZlPX7c7neve40AOwAAAAAAAACgSLVv316vvPKKxo0bp1GjRumrr75SWlqaMjIylJGRobZt22r+/PlydHQkyGlD1nVvvQhiDQIlJiZq48aNOnTokBYvXqyUlBSdPHnSnK5FixZq27atevbsKR8fH4WHhxfodRr/O2phW9abALKzsxUUFCTp1mC1VPARzgMGDNDs2bNlZ2enzp07KzIyUtKvPYgfOXJE06ZNU1RUlA4ePChfX1/VqlVL48aNU0hISJFdKCyJkpOT9c0330iShg0bpjFjxpgX0Q3DUIcOHVSvXj3FxcUpLS1NlSpVsmVzHxienp7y9PS8pXfPG3tnu93xul+/fpo2bZq2bdumQYMGqVatWrp27ZoSEhJ06tQpBQcHa+7cuSpfvnyhx/0b/wZPLrgeILRYLOratWuB962BNYlaFJXf+lwYhmEesydNmqTp06dLkipWrKj333//tuF16dfjzJo1a3T+/Pn7vSglnnX7r169uiRp165d2rdvn/z9/eXp6akvvvhCH3/8sSTpgw8+UIcOHWzWVtzK+j3X3t5eTk5OqlOnjjnsxIkTSk9P1+LFi5WQkKClS5fq3LlzysjIkJ2dncqUKaPIyEjVqlVLISEhSk9Pl6urqw2XpmSjFkXHeqzYt2+fHB0d5ezsrE6dOpnr7E6/g+zfv1+jRo1Sdna2PDw89Kc//UkeHh63HJuzs7OVm5tboA4cv1FcGYahQ4cOSZLKlSsn6Xpg2vobRlxcnNasWSNJioyM5LfC+4halDwWi8U8pxg+fLiCgoK0a9cuHT9+XB4eHurTp48CAgJueQqj9Zzj1KlTio6O1p49e7Ru3Tp98sknRfZkVH6lBAAAAAAAAAAUGeuP6Z999pkcHR31448/Kjk5WTk5OWrQoIGaN2+uv/3tb3J0dCTAaWPWi9qHDh3S4cOHtWHDBjMsnZqaao7TsGFDtWjRQj169JCfn5+aNm1aaO24GeH3oxa2YQ13WHu8rVOnjh555JECw25kXaeDBg3StGnTZGdnp3r16ql///6qV6+eOc7+/fs1ePBg7d69W4ZhyNXVVSdOnNCRI0e0detWrV27ViEhIYRLbuPKlSuKjo6Wh4eHunbtagZyrNv6hQsXzMAUoan777e20by8PLm7uysqKkpdu3bV1q1blZSUJOl6iDcyMlL//ve/5e3tbT5d4uZ9lMViMWtqDQU/zJ+N2y07tSg+rOvE+t+YmBgtXLhQly9fliS99957GjBggKQ7H5MvXryoTZs2yc7OTjVr1lSVKlXuf+NLKOu6HjhwoH744Qft2rVLffr0kbOzszw8PLRu3TpJ0gsvvKBnn33Wlk2Ffv0eZd3+b3zyypUrV3TixAktX75cR48e1ZIlS5Senm5+fhwcHNSlSxcFBgaqe/fuqlSpknmDIf531MK2DMPQ4sWLlZOTo7CwMPMJKHdy6NAhjRkzRjExMZKksLAwvfTSS+YNU9L1IOLixYs1c+ZMJScnq3HjxmrUqJFeffVVjt8otiwWi+rVq6eff/5Z6enpunbtmnmj8vHjx/X9999r6dKlCgkJMc+vcX9Qi5LJ+qQ/Ozs7derUSZ06dbplHOvwY8eOKTk5WStWrNDu3bu1fft2Xbp0yRzvypUrWrNmjVn3+4kAOwAAAAAAAACgyNz4eNKPPvpIPXr0UGpqqq5du6bQ0FBVrlzZ/MGd8HrRy83NVXR0tC5evKj58+fryJEj2rZtm9LT0yVJpUqVUs2aNRUeHq7WrVsrKCjIDPRa62Z9fTMC0/8bamF71lBHcHCwJOnYsWPasWOHGjdubAY/rOMZhqHz58/rtdde04wZM2RnZ6dq1arp1VdfVffu3c15xsXFqV+/ftq3b5+aNGmiJ554Qu3bt9fRo0c1ZcoU/fLLL3rhhRe0cOFClS1btugXugTYu3evLl68KF9fX9WuXVsWi6VAb3BTpkzRkSNHFBYWJgcHBwI6NmZvb6/c3Fx5enpq2bJlWrp0qRISEiRJTZo0UYMGDVSmTBlJMoNXdnZ2Sk9PV3JysjZt2qTY2FgtWLBAzZs31+TJk6nn70QtbGfVqlVmL5Vvv/22Xn75ZUm3D69b39+wYYPmz5+v/Px8NWnSRL6+vkXa7pKoatWqWrlypbp3767ExESlp6ebx4dx48apV69eCgwMtHErH143h6QNw1BaWppiY2O1c+dO7dixQ2vWrNHp06eVm5sre3t7lSpVSm3atFG1atX05JNPqmLFirc89eDm+eO3UQvbs657FxcXSVKtWrUkybyJrDAHDx7UJ598orVr1+rq1auqUqWKfvrpJ5UvX94cZ9WqVfr3v/+t2bNnm+8dO3ZMP/30kxISEvTFF19w/EaxFRISovz8fE2bNk3+/v4KDw9XYmKi1qxZo0WLFsnBwUGjRo1S/fr1bd3UBx61KHkMwyjwu/uN9u/fr8uXL2vevHlKSEjQmjVrzA4xXFxc5Ofnp+7duys8PFwRERGqVKlSkYTXJQLsAAAAAAAAAIAiZm9vb17QLqynHusP7ih6M2fOVL9+/cwAtLu7uypVqqTOnTsrLCxMLVq0UGBgoBwdHQvUKDs7W05OTuZ73IDwx1GL4qNmzZqqU6eOYmJitHr1aoWGhqpUqVJm8OPSpUvatGmTvv76a61cuVJ2dnYKDQ3Vq6++qv79+0u63vNxVlaWvvjiC+3bt08tWrTQhAkTVK9ePbm4uKhRo0by8fFRdHS04uPjlZqaSoD9NoKDg1WxYkXl5eUpLi5Ofn5+ZjjxH//4h9555x1J0qhRo255PDZsw8HBQXl5eXJzc9NTTz11y3DrBfbo6GgdOnRIGzdu1NatWxUfH2/2Aufo6Kjc3FytXbtWbdq0KeIleHBQi6KXlJSkL7/8UpL06KOP6s0335R0+3Cn9Xvwnj171L9/f+Xm5iosLEwjRoyQpAI37BSGm3akGjVqaOXKldq5c6eio6NVvXp1BQcHq0mTJrZu2kMvIyNDbm5uWr16teLj47VixQodPHhQBw8eNG8M9PLyUocOHVS/fn396U9/kre3t0JCQsx5WMe78UZCK84h7x61KD7KlSsnSTpz5owyMzPNQLuVdb8eHR2tMWPGaP369bp8+bJ8fX21bNky+fn5mcfvjRs3avz48Vq9erUqVqyol19+WZ6enkpKStLEiRP15Zdfyt/fX6+//rotFhX4TQMHDlRsbKz++te/6tNPP5W9vb25fVeqVEkfffSRBg4caOtmPhSoRfFnPZ8o7Ckqx48f14kTJzR//nzFx8crKipKFotFOTk5cnNzU+nSpfXMM88oODhYkZGRqlSpkjw9PQvMv6jOKwiwAwAAAAAAAACK3J0uaD/soRtb6tu3r7Zu3So7OztVr15dkZGRqlChgjw8PAodPykpScuXL9fu3bslSaGhoerbt6/Kli37mwEr3Bm1KD5q1aqlfv366Z133tGf//xnpaWlqXnz5qpcubIuXbqkiRMn6siRI4qLi5O9vb3atWun5557zgyHWm8isD6C2cnJSQMHDlSDBg3k5ORkXgQODg6WxWLRqVOndPbsWVWtWtXGS148+fv7q3r16tqyZYs++ugjxcXFycHBQTExMfrqq68kSe+//7769u1r45ZC+vWi+o030lh7Ft2xY4eSk5O1YMECHTp0SNu2bTNDcO7u7goKClK/fv3UqlUr1a1bV8HBwcrOzrbVopR41MI20tLSzN4Nw8PDzaDi7cLrFotFMTExGjJkiNLS0lSmTBm1b99e1atXlyTzeJ6Xl6dt27YpPj5eDg4Oqlq1qpo2bWo+FeRh/z7t6+srX19fde3a1dZNwf+XnZ2tF154QStXrtSFCxfM9318fNS0aVN17NhRjRo1UlhYWIFA7s0sFgu9e/9B1KJ4sO6r27dvrwULFighIUF79+7VI488UmAfbrFYtHbtWg0fPlwJCQlKT0+Xn5+f5syZozp16pj1yc/P108//aTVq1erSZMm+vDDD/XYY49JktLT02Vvb6/x48drzZo1evHFF1WqVClbLTpQKOu2PH78eFWoUEFRUVE6cuSIHB0d1bNnT7Vt29bcpnF/UYvizXr8sB5/c3JydObMGcXExGjdunU6cOCA1q1bZz7BsUyZMqpcubIiIyMVEBCgJ554QmXLllWlSpUKzNd6TLfOv6jOJyyG9cwTAAAAAAAAAAA8tO4UcrZexLgxvPDjjz9q2rRp+uWXXwqM26BBAy1fvlwVKlQg0PA7UYvi48b19s4772j8+PGSrvdA7O7uroyMDGVkZEi6HkYcOXKkunXrpoiIiFumnz9/vp588klVqVJF27Ztk7e3t/Ly8syestatW6e2bdvKwcFB0dHRql27tg2WuGQ4fPiw2rZtq+Tk5FuGjRkzRi+99JK8vLxs0DLc3AuclWEY2rZtm86ePas5c+bo1KlTWrt2rTncx8dHFSpUUGRkpEJCQhQREaHAwEBzP2e9iM6+7O5Ri+Jh0aJF6tatmzw9PbVu3TrVrVu30IC59b1Dhw5p2LBh2rJli7Kzs9WsWTPNnDlTvr6+5rjLly/X7Nmz9cMPP5jveXp6asiQIfr8888LzA8oTg4cOKB+/frJxcVF3bp1U2BgoFq1aqWKFSua+5Mbt92UlBRt2rRJBw4cUPXq1VW5cmW1aNFC0u2fYoC7Qy2Kj+TkZHXt2lU7d+5Uq1at9Oc//1l16tSRr6+vVq5cqW3btmn06NHm+IGBgVq2bJlq1qxZYD5RUVHq3LmzJGnOnDnq0aOHpF+DqDNmzNAzzzyjGjVqaMuWLTztCcXSjb9zXLp0SVlZWXJwcODczgaoRfF27Ngx7dixQ3Fxcfr555916NAhXbx40RxerVo1tW3bVnXq1NFjjz2mUqVKyd/f3xxuGEaxeQIq3W0AAAAAAAAAAIBCA9M39+pjvXj13Xffafz48UpKSlJoaKiGDh2qypUra9q0aVq4cKG6d++uqKgoubu7F+kyPCioRfFx480C48aNk7e3t+bOnatt27YpJSVFkhQcHCw/Pz+9++67atWqlZycnCTplouBlStXlrOzs6TrQZWKFSuadYyJidFHH30k6Xrv+4TX76xGjRpav369xowZoyNHjuj8+fOqW7eu+vfvb4Z1ULSs4bUbe4E7fPiwYmJitGzZMh07dkxbtmwxe4cuX768atWqpZ49eyowMNC8qH7zUyasnz9rgK44XGAv7qhF8XT16lVlZmZKuvVpQ9aaHThwQC+99JJ2796t7OxsBQQE6McffywQXp81a5Y+//xz7dmzR5LUqlUrnT17VocPH9aECRNksVg0btw4wusolkJDQ7Vu3TpJ13sDvdGN+5jc3Fxt27ZNzz//vOLi4iRd/37s7Oysjz/+WK+99lqBHkLxv6MWxYePj49++ukntW/fXuvXr1dcXJzs7OxUuXJlHTp0SNeuXZN0/VyiYcOG+u677+Tj43PLjQMHDx6UJD355JO3hNel62FHSXJzczPPSYDixt7e3tyfeHp6mvsV9jFFj1oUbz/99JPGjBlj/n9oaKjat2+vNm3aqEmTJgoMDJSnp+ct9UpLS5Ozs7McHBxu6RzDVgiwAwAAAAAAAACAQt14kcN60WPjxo2aPHmyTpw4oWeffVbDhw9XeHi4JKlHjx5q166dNm7cqN27d6t169a2avoDh1rYjr29vXlR77XXXlPPnj118uRJJScnKycnRy1btpSrq6s8PDx044OPb76o6+HhoSpVqujo0aOaM2eOPDw8VK1aNW3btk1jx47V2rVrFR4erueee04SvVn+lurVq2vy5MlydHRUZmamHBwc5OjoaOtmPbTs7OyUmJioOXPmKDExUVu2bNGuXbvM4RUrVlTdunXVuXNnVatWTZ07d5aLi8stvX/e/Bmy9cX0kohaFC9NmjRR7dq1dezYMR04cECNGjWSxWIpEBaxs7PTjh07NGDAAB09elS5ubmqWLGioqKiVL16dfPJLJs3b9akSZMUHR2tzp0767nnnlO3bt2UmJioqKgoDR8+XJMnT9aTTz6pxo0b23jJgcJZw9I3B6qsQTlJWrBggV599VUlJyerYcOGatSokdzd3fX111/rjTfeUKlSpfTCCy8QoPuDqEXxERwcrF9++UUvvviiDh8+bJ5rWD3++OPq2rWrnnzySXl6ehYaOExNTZUknT17VqmpqXJzczNrGRcXp/Xr18vR0VE9e/aUq6srIVQUW9bt8sbtk23VNqhF8fXhhx/KxcVF3t7eql69usLCwgp0XJGXlyfper1SUlJ06NAh/eMf/1BiYqLc3NxUv359vfXWWypXrpzNQ+wE2AEAAAAAAAAAwG+yXqRasmSJdu7cqcaNG2vEiBFq0KCBpOu9+JQuXVpNmjTR2rVrlZCQQGj6PqEWRe/G3sd8fX3l5+dX6Hh3uphbq1YtjRw5UsOGDdNf/vIXzZ07V+XKldPWrVslSfXq1dMrr7yiRx55RFLB3o0JsxfO0dFRFotFpUqVUn5+vq2b89DLycnR22+/rfz8fDk5OSkiIkJNmzZVeHi4WrRoIXd391tC0jk5OcrJydGVK1dUtmxZubi4SLq+zROO+P2oRfHh6uqqOnXqKDY2VpMnT1Z4eLhq165tPm0lLi5Omzdv1ksvvaSsrCxJUlBQkJYsWaIaNWooLy/PHHflypXavHmzmjdvrrffflstWrSQdL1X3k6dOikoKMgMPhJgR3F3uycR7N27V6+//rqSk5PVtWtXzZgxw+wtul27durcubP++c9/KjIyUn5+fuyf7gFqUTwEBQVpxowZOnbsmH7++Wfl5OTI19dXlStXVufOnc3x8vPzCw0ahoaGysnJSSdOnNC+ffvUpEkT2dvba/v27frnP/+pVatWqXr16mrTpo0kQqgAUFJZb2596623bhlmDaNbfz86efKkvvrqK82aNUuJiYnmEwNXrlypqKgorV69Wl5eXjb9zYkAOwAAAAAAAAAAuCvnz5/XrFmzJEkvvPCCGZjOy8tT6dKlZRiGduzYIUlm8A33B7UoeoX1Pna3rOH3F154QYZhaMyYMTp8+LA5/Omnn9bAgQPVtm1bOTk5mRcdb774aO1ZsUyZMjbvJas4uLEWBPxtLygoSEePHtXu3bsVFhYmf39/8wK59GsvcJKUlZWlw4cP6+2331ZSUpISExPVtGlT9enTR4MHD5adnR03bvwB1KL4cHd311/+8hdt375dmzdv1sCBA9W8eXPVqlVLR44c0ebNmxUdHa3c3FxVqFBBDRs21DfffKNq1aoV2M+fOnVKX375pSSpf//+Zng9NzdXjo6OCggIkIeHhyTp2rVrtllY4A+ws7NTamqqhgwZolOnTql9+/aaO3eu7OzslJWVJWdnZz322GNq1qyZDh06pKysLAK49wm1sB0vLy95eXmpSZMmtwyznk/c7njcqVMnNW7cWJs2bdKAAQPUqFEj5efna//+/Tp8+LA8PT01YcIERUREFDo9x3oAKBmsN7cWxnruYLFYdO7cOY0fP15TpkxRqVKl1Lt3b73yyitycnLSX//6V82cOVN9+/bVggULVKpUqaJq/i0IsAMAAAAAAAAAgLtiGIbS0tIkXe9RVPq155+srCz985//1Pr161WlShW1a9fOlk194FGLksVisZihkBdffFERERFKTk7WlStXVKZMGT322GNmKEX69aJjamqq0tLStHz5cu3fv1+rV6/WhQsXtGTJEnrXRbEUEBCggIAASTJ7xbdu29btOiUlRbNnz9ann36qkydPqkKFCipdurRWr16t1atXKyUlRW+++SYhqj+IWhQf1apV04oVK9StWzdFR0crOjraHGa9QaBJkybq0qWLBg8eLG9v71t62M3IyFB2drbc3d3NYKP1uG8YhmbPnq2dO3fK2dnZvKkNKGnOnDmj5ORk+fj4aOLEibKzs1NOTo7Z6/fBgweVkJCgq1evKj093catfbBRi+LnTjcJWG9iXrx4sSIjI7V161bFx8dLkpydndW0aVO99957Zk/u1u8FN96kdvOx/sZzEwBAyWHdr0dFRWn27Nlyd3fX66+/rueff17lypWTJP3f//2fDh8+rF27dunEiROqUaOGzdpLgB0AAAAAAAAAANyV0qVLq2HDhlq9erViY2OVlpam0qVLKycnR//+97/13XffycHBQYMHD5anpycXve8jalHy3BgQqVevnurVq1dguMVi0dmzZ5WVlaWlS5cqISFBCxcu1JkzZ8ye10uXLq2AgADNmTOHADuKPWsQyrrvMQxDkrRo0SKNGTNGZ8+e1RNPPKGJEyfK09NTu3btUt++ffXWW2+pfv366tChg83a/qChFrZXo0YNrVixQv/617+0adMmHT58WFevXlWHDh0UEhKi1157TaVLl5azs3OhveB6eHgoICBACQkJ2rNnj0JCQuTo6ChJ2rJli3766ScZhqGnn35aAQEBHPdRIh06dEinTp2Su7u7eQOHdTs3DEPr16/XhQsX1Lp1awUGBtqyqQ88alGy2NvbKzc3V56enlqxYoVmzpyphIQEXbp0SZGRkQoKClLNmjUl3drTenJyss6cOaNVq1Zpy5Yt8vT01I8//sgxBABKKOs+/l//+pfOnj2rAQMGmOH1/Px85ebmysnJSYGBgdqzZ4/Onz9PgB0AAAAAAAAAABR/rq6uat++vVauXKlPPvlEx44dU9WqVbVlyxbt3LlT2dnZevLJJ9WnTx8z4ID7g1qUPIUFEq9du6ZTp05p1apVOn78uBYtWqSrV6/q3Llz5jiPPfaYqlatqh49esjb21uhoaFF3XTgnrBYLIqPj9fYsWN19uxZDR48WJMmTZKrq6tyc3P1pz/9Se+9955ef/117du3j9D0fUQtbKNKlSr66KOPZLFYlJKSotzcXFWsWPGW8Qrr8d7T01N169bVwYMHNX78eGVlZalhw4b65ZdfFBUVpXXr1ql27drq37+/3NzcimJxgHuuZs2a8vPzU25uri5cuGC+f+3aNf3888966623lJ2drXbt2snd3d2GLX3wUYuSx8HBQXl5eXJ3d9dzzz0ni8VS6M1M8fHxunr1qhYsWKDjx49r5cqV5rmHk5OTsrOz1adPH3Xq1MkWiwEAuAdiYmK0e/dulSlTRu+8847KlStnPr3JyclJsbGx2rBhgyTJxcXFpm0lwA4AAAAAAAAAAH6T9eL3qFGjdP78ef31r3/V9OnTzeG+vr7q1q2bhg0bZtOeex4G1KJkyMvLM3ustMrOzlZcXJx27dql7du3a/Xq1Tp16pTS09NlsVhkb2+vVq1aqVq1aurVq5d8fHwUGhpaaPiE3nVREn366adKSEjQI488oq+//louLi7mhXTpenBKko4dOyap8Bs/cG9QC9sqV65cgf+/0z7dMAw5Ojrq22+/1dGjR7V7926NGDFCzs7Ounr1qpydndW4cWN98MEHateunTmNdP1mhcJqRz1RHJUvX15VqlTRli1b9N5776lPnz5ycnJSdHS0/vOf/ygtLU19+/bVO++8I4nvQvcTtShZrOvfWoMb/3vy5EklJydr4cKFSkhIUFRUlLKzs3Xt2jXZ29vL3d1d/fr1U3BwsLp06aIKFSqofPnytlwcAMAfZBiGMjMzlZeXp7Nnzyo4ONg8z0tMTNQXX3yh8+fPq2vXrgoPD7dpWwmwAwAAAAAAAACA32SxWMxA7vjx41W7dm1FR0crKSlJnp6eevHFFxUYGKgKFSrYuqkPPGpRMljD65s2bVJSUpKWL1+u2NhY7d+/X9nZ2ZIkDw8PNW7cWGFhYXr00Ufl6+ur+vXrFzq/m4NBhIRQEiUnJ0uSevbsKRcXF2VnZ5tB6dOnT+uXX36RJPNJAwRs7x9qYRu323ffaZ9uPe57enpq9erVGjFihPbu3auTJ0+qSpUqeuGFF9SuXTs1bdpUkgrUUrpeu4sXL+rChQuKiYlRjx49qCeKJS8vL/3www9q27atNm3apM2bN5s3Y0jSgAED9MMPP0jiJoz7jVqUDNZzQusxJC8vTxcvXlRcXJzWrVun/fv3a+XKlbp8+bKk60/xKlWqlLp166bAwED16NFDXl5e8vPzKzDfG2sNACh5ypUrp7CwMB04cEA7duxQ7dq15eXlpZiYGP3zn//UrFmz5O/vr969e9u6qQTYAQAAAAAAAADA3bG3tzcvkg8cOFBSwR4+UXSoRfF16dIl/ec//9GGDRt08uRJbd++3RxWrlw51a5dWx07dlSjRo1Ur149Va9eXYZhFAj+5OfnyzAMMwRPTfGgyMzMlCRduHBBhmGYIdvU1FQtWrRIK1euVPXq1RUREWHLZj4UqEXJYj3ue3h4aPLkybp8+bJSU1NVpkwZeXl5FRjXyclJWVlZio6O1u7du7Vr1y6tX79eZ86cUVpamgYNGqTJkyfbaEmAO6tRo4bWr1+vjz76SMeOHdPx48f16KOPKiIiQi+++KIkAtNFhVoUPzff0JqXl6dr165pw4YNio2N1bp163TgwAElJSWZ4/j5+alTp06qXbu2IiMj5enpqWrVqt1x/px7AEDJVrlyZT355JPat2+fRo0apUWLFqly5cqKiopSamqqvL29NWTIED3xxBO2bioBdgAAAAAAAAAAcPesgVorLm7bDrUonsqWLatjx45p3rx5qlKliurWratu3bqpWrVqat++vSpVqiRHR8cC02RlZenq1atKTEyUt7e3vLy85OLiYt6kAJR01htswsLCtGbNGm3cuFFbt25Vw4YNdfjwYS1btkzjx4/X1atXNWzYsNs+iQB/HLUouezt7ZWbmysHBwd5eXmZwfWMjAyVKlVKGzdu1LFjxxQVFaV9+/bp0KFD5rRly5ZVRESEGjVqpLCwsFtCkEBxUr16dX333XdydnbWuXPn5O3tbQ4jMF20qEXxYrFYlJ+fr//85z/KzMzUjBkzlJiYqMTERHOcgIAAde7cWa1bt1bz5s3l7+8vX19fc3h+fr4kmceTm+cPACjZrMfnDz74QNeuXdP48eO1YcMGc3ibNm3Us2dPDRw4UKVKlbJhS6+zGDz3AwAAAAAAAAAAAPjDbgwELlmyRI888ogcHR1VtmzZAuPl5OSYIfaNGzdq9uzZWrRokU6dOiV/f3+Fh4frm2++kZeXFyF2PFDi4+PVunVrnTx5UlWrVlX58uWVlJSkq1evKisrS0OGDNF3331n62Y+FKhFyXC7gGhWVpY2bNigM2fOaO7cuTp16pR27txpDg8MDJSfn58effRR1atXT2FhYfL39y/KpgN/iPU71Y2fAW68sA1qUbycPHmywP68bt268vb2VteuXRUUFKTGjRvfcu4hSdeuXVNeXp5Kly5t1pGbEADgwXTj70hLlizR4cOHzZ7Xn3rqKZUpU+aWm5hshQA7AAAAAAAAAAAAcI/8VuD8xsDPokWL9Morr+jEiRNydXVVYGCgMjIydPz4cdWuXVvr1q1T+fLlCQnhgXL48GH16tVLx44dU3p6uiSpadOm6tixo0aPHm3j1j1cqEXxY93f37zfz8zM1I4dO3TkyBHNmzdPp06d0t69e83h/v7+8vHxUc+ePVWtWjW1atVKpUuXlrOzc4H5c1MUAJR8cXFx2rRpk3x9fdWyZUvZ29sX2N9bjyG5ubmKj4/XlClTtGbNGiUnJysiIkKRkZHq37+/JELsAPCgKinf+wmwAwAAAAAAAAAAAEVs1apV6tu3ry5cuKAePXqof//+6tChg3JycvTKK6/ov//9rwYNGqTvvvuu2PSMBdwrZ8+e1Z49e3Ty5El5eXmpUaNG8vPzs3WzHkrUoni6ePGi4uPjtWPHDq1du1axsbGKiYkxhwcEBKhSpUrq3r27/P391blzZzk4OKhUqVIF5kMwEQAeDjf3lJ+dna25c+fq22+/1YYNGyRJ7u7uunr1qiRp/PjxevPNN23ZZAAACLADAAAAAAAAAAAARenMmTMaPHiwli9frt69e2v06NGqWbOmOTwlJUUhISEKDAzUpk2bSkSvWQCAPy4/P18jRozQtGnTlJOTo8zMTElShQoVFBYWprZt2yokJEStWrWSg4ODPDw87jgvwusA8PDJz8/XvHnzNHbsWB04cEANGzbU2LFjFRwcrNjYWA0aNEiXL1/WwoUL1aVLF1s3FwDwEKO7BgAAAAAAAAAAAKAIJSUlaePGjfL09NSzzz6roKAgSb8+4jk1NVWGYSgpKUlpaWl3DCgCAB4cdnZ2eu655zRnzhw1bdpU4eHhatWqlRo2bChPT085OTkVGN8wDGVlZSkqKkrnzp2Th4eHAgMD1aRJE9nZ2RFiB4CHiLUX9pSUFE2ZMkUHDhxQly5dNHbsWNWrV0+GYSg4OFh/+ctfNGzYMG3bto0AOwDApgiwAwAAAAAAAAAAAEXAGipZt26d0tLS1KhRI0VGRkqScnJy5OjoKElaunSpLly4oGbNmsnJycmcDgDw4GvQoIGOHz8uV1fXAu/n5eVJknJzc+Xg4KDc3FxNnz5ds2bN0tKlS83xXF1d9fHHH+v111+XnZ0dxxAAeEhY9/U//PCDli9fLk9PT33wwQeqV6+epOvnG05OTgoMDJR0/aZaAABsiQA7AAAAAAAAAAAAUASsoRJfX19J10OIJ06cUJUqVczw+qxZs/Tuu+9KkgYPHqxSpUrZprEAAJu5Mbxu7UXd3t5ekszw+ldffaVJkyYpKSlJ/v7+6t27t7Kzs/Xdd99p5MiRcnFx0bBhwwivA8BD5vDhw5KkIUOGqFGjRjIMQ4ZhyMnJSdeuXdOsWbMkSeXKlbNlMwEAEM+KAgAAAAAAAAAAAIpQ5cqV5e7urujoaM2fP18xMTG6ePGivv76a73wwgtKS0vT0KFD1bt3b1s3FQBgY3Z2v8Y6DMOQJC1cuFDffvutzp49q8GDB2vBggUaN26cJk6cqMWLF8vR0VHff/+9zp07Z6tmAwBs5PLly5Kk06dPKzs7W4ZhyM7OThkZGVq0aJFWr14tb29v9enTR9KvxxYAAIoaAXYAAAAAAAAAAACgCLVp00Yvv/yyJOm1115T27Zt1bRpU40YMUJXrlxR//799dJLLxXogRcAAGtv6vPnz9eRI0cUGRmpN998U/Xr11d+fr6ys7PVrl07NW7cWPv37zdDjACAh0d4eLik6z2xx8bGSpIyMjI0depUff7550pMTFTHjh1VrVo1SeJJHQAAm7EY3EYFAAAAAAAAAAAAFIn8/HyzN93Ro0frhx9+0MmTJ+Xs7Cx7e3t9+OGH6tOnj6pUqWLjlgIAiqPt27eradOmkqTVq1erbdu2kn49vly6dElNmzZVQkKC9u/frxo1atiyuQCAIpaQkKC2bdsqMTFRNWrUkLe3t86ePav4+HhlZ2erU6dO+vLLLxUcHGzrpgIAHnIE2AEAAAAAAAAAAIAilJeXJ3t7e0nSwYMHdebMGbm5ual06dKqXbu2jVsHACjO1qxZo/bt28vPz0+7d++Wl5eXcnNz5eDgoLS0NH322WcaN26c6tevrx07dpjHGwDAwyMuLk5du3ZVfHy8cnJyJEnVqlVTx44d9frrrysoKMjGLQQAQHKwdQMAAAAAAAAAAACAh4m9vb3ZU25ISIhCQkJs3SQAQAlRoUIFeXl5KTMzU/v371erVq3k4OCgq1evaurUqZoxY4bKli2r4cOHy97eXoZhyGKx2LrZAIAiVLNmTf3yyy/auHGjkpKS5ODgoK5du6p8+fIqU6aMrZsHAIAkemAHAAAAAAAAAAAAAAAoEVJSUtS5c2dt27ZNLVu21BNPPKGQkBD961//0pYtW3T58mX169dPo0ePlp+fn62bCwAAAACFIsAOAAAAAAAAAAAAAABQQhw+fFht27ZVcnKyJMnZ2VlZWVny8fFR165d9cYbbygoKMjGrQQA2BpP4QAAFGcE2AEAAAAAAAAAAAAAAEqQo0eP6uOPP9a+ffuUnZ0tb29vvf766woPD5ePj4+tmwcAAAAAd0SAHQAAAAAAAAAAAAAAoITJzs5WTk6OsrOzVbZsWVs3BwAAAADuGgF2AAAAAAAAAAAAAACAEs4wDFksFls3AwAAAAB+k52tGwAAAAAAAAAAAAAAAIA/hvA6AAAAgJKCADsAAAAAAAAAAAAAAAAAAAAAoEgQYAcAAAAAAAAAAAAAAAAAAAAAFAkC7AAAAAAAAAAAAAAAAAAAAACAIkGAHQAAAAAAAAAAAAAAAAAAAABQJAiwAwAAAAAAAAAAAAAAAAAAAACKBAF2AAAAAAAAAAAAAAAAAAAAAECRIMAOAAAAAAAAAAAAAAAAAAAAACgSBNgBAAAAAAAAAAAAAAAAAAAAAEWCADsAAAAAAAAAAAAAAAAAAAAAoEgQYAcAAAAAAAAAAAAAAAAAAAAAFAkC7AAAAAAAAAAAAAAAAAAAAACAIuFg6wYAAAAAAAAAAIpWbm6uFi5cqBUrVmjLli06e/asLl26JFdXV1WoUEF169ZVs2bN1LNnTwUGBtq6uQAAAAAAAAAA4AFiMQzDsHUjAAAAAAAAAABFY9GiRRo5cqSOHj16V+N37txZ48aNU2ho6H1uGQAAAAAAAAAAeBjQAzsAAAAAAAAAPCQ++eQTffjhh7L2a9KmTRs9/vjjCgsLU/ny5ZWenq7k5GStX79eS5YsUUJCgpYuXSo/Pz99++23Nm49AAAAAAAAAAB4ENADOwAAAAAAAAA8BKZMmaLnnntOklSpUiXNmDFDbdq0ue34eXl5mjFjhv785z/rscceI8AOAAAAAAAAAADuCQLsAAAAAAAAAPCAO3HihGrUqKHMzEyVKVNGu3btUlBQ0F1Ne/nyZW3YsEFdunS5z60EAAAAAAAAAAAPAztbNwAAAAAAAAAAcH9NnDhRmZmZkqRPP/30rsPrkuTp6XlLeD0hIUEWi0UWi0VTp06VJM2bN0+RkZGqXLmyHBwcCu3dffHixerZs6f8/Pzk7Oys8uXLKyIiQuPGjVNaWtpt2zBmzBjz793J2rVrzfHWrl17y/A2bdrIYrGYbYuLi9PQoUMVGBgoFxcX+fj46KmnntLWrVvv+Hfy8vI0depUdezYUd7e3nJycpKHh4eCg4PVvn17ffbZZ4qNjb3jPAAAAAAAAAAAeFg52LoBAAAAAAAAAID7xzAMTZs2TZLk7u6uQYMG3fP59+/f3/wbhcnMzNQzzzyj+fPnF3g/JSVFW7du1datW/XVV19p6dKlql+//j1t3+1ERUWpV69eunbtmvnemTNnNHv2bM2dO1d/+9vf9Nprr90yXVpamiIjI7Vhw4YC7+fk5Cg1NVVHjx7VL7/8ot27d2vOnDn3ezEAAAAAAAAAAChxCLADAAAAAAAAwAPswIEDunjxoiSpZcuWcnNzu6fz//vf/659+/apZcuWGjZsmGrUqKHLly8rISHBHGfAgAFmeL1evXoaOXKkQkJClJKSohkzZmjq1Kk6ffq02rdvr3379snX1/eetvFmp0+f1jPPPCMHBwd99tlnZo/sa9as0eeff67U1FS9/vrrCggIULdu3QpMO2bMGDO8/vjjj6tv377y9/eXi4uLzp07pz179mjJkiW/2Vs8AAAAAAAAAAAPKwLsAAAAAAAAAPAA27dvn/m6YcOG92X+/fv319SpUwsNbS9dulSzZs2SJLVv317Lli2Tk5OTOfzRRx9VRESEhg4dqpSUFL3xxhuaOXPmPW/njY4cOSIPDw9t2bJFISEh5vsRERHq2rWrmjVrptTUVA0fPlydO3eWo6OjOY51WXr27KnZs2ffMu9OnTrp3XffVUpKyn1dBgAAAAAAAAAASio7WzcAAAAAAAAAAHD/XLhwwXxdoUKF246Xn5+vAwcO3PZfTk5OodN5enrq66+/vm2P4998840kydHRUT/88EOB8LrVkCFD1KFDB0nSvHnzlJycfNfL93t98MEHBcLrVnXq1NF7770nSTp16pQWLlxYYPiZM2ckXe/N/k7KlSt3j1oKAAAAAAAAAMCDhQA7AAAAAAAAADzArl69ar52c3O77XipqamqW7fubf+dOnWq0Om6dOkid3f3Qofl5uZq3bp1kq73tF6lSpXb/v0hQ4aY06xdu/a3FusPsVgsGjBgwG2HDxo0yAzk//zzzwWG+fj4SJJmzpyp9PT0+9dIAAAAAAAAAAAeUATYAQAAAAAAAOABdmO4/Nq1a/d8/mFhYbcddvz4cTPk3aRJkzvO58bhBw4cuDeNu43AwEB5eXnddniFChUUEBAgSdq/f3+BYdbg++bNmxUYGKjhw4dr/vz5On/+/H1rLwAAAAAAAAAADxIC7AAAAAAAAADwACtfvrz5+k4ha09PTxmGUeDfnXoptypbtuxth6WkpJivK1aseMf5eHt7Fzrd/fBbbZGkSpUqFdqWDz74QIMHD5bFYtG5c+f0zTffqEePHqpYsaJCQ0M1evRonT179r60GwAAAAAAAACABwEBdgAAAAAAAAB4gNWrV898vWfPnns+f3t7+7saz2Kx3PO//Xv9kbY4Ojpq8uTJOnDggN5//301a9ZMTk5OkqSYmBiNHTtWQUFBWrhw4b1qLgAAAAAAAAAADxQC7AAAAAAAAADwAAsNDTV7Yd+wYYPS09OL7G+XK1fOfP1bvZKfOXOm0Okkyc7u15+y8/PzbzuPa9eu3VW77qaHdOs4N7fFqnbt2vr444+1adMmXblyRatWrdKgQYNkb2+vtLQ09enTR8nJyXfVHgAAAAAAAAAAHiYE2AEAAAAAAADgAWaxWPTss89KklJTU/Xjjz8W2d+uVq2aXF1dJUnbtm2747jbt283X4eGhhYY5u7ubr6+dOnSbedx+PDhu2pXfHy8Ll68eNvh58+fV0JCQqFtKYyLi4s6dOigKVOmaMKECZKkjIwMLVmy5K7aAwAAAAAAAADAw4QAOwAAAAAAAAA84N544w25uLhIkt59913Fx8cXyd91cHBQ69atJUmrVq3SyZMnbzvuv//9b3OaNm3aFBgWGBhovt65c+dt5zFjxoy7apdhGPrPf/5z2+FTp06VYRiSpA4dOtzVPK3at29vvr5w4cL/NC0AAAAAAAAAAA8DAuwAAAAAAAAA8IDz9/fXpEmTJElXrlxRixYttHHjxjtOYxiGLl++/If/9ssvvyxJys7O1nPPPaecnJxbxpkyZYpWrlwpSerRo4d8fHwKDG/WrJkcHBwkSV988YUZLr/RhAkTCvTi/ls+/vhjxcXF3fL+wYMH9emnn0qSfHx81LVrV3NYSkqKFi9eXOjft7Iuh1QweA8AAAAAAAAAAK5zsHUDAAAAAAAAAAD335AhQ3Tq1Cl99NFHOn36tFq2bKl27dqpS5cuqlu3rsqVK6e8vDydOXNGu3fv1qxZsxQTEyNJsre3l5OT0+/6u507d1avXr00e/ZsrVy5Uk2bNtUbb7yhWrVq6dKlS5oxY4amTJkiSSpXrpwmTpx4yzwqVqyoXr16afr06VqxYoWeeOIJvfzyy6pUqZKSkpI0bdo0zZ07V82aNdPmzZt/s01BQUE6f/68mjZtqrffftvs8X3t2rUaN26crly5Ikn66quvCix3amqqnnjiCQUEBKhHjx5q0qSJqlatKgcHByUnJ2vx4sVmT/K+vr56/PHHf9c6AwAAAAAAAADgQWYx7tRVDAAAAAAAAADggTJ//ny9+eabOn78+G+Oa7FY1LFjR02YMEGhoaHm+wkJCWbv4j/88IMGDhx4x/lkZmbqmWee0fz58287TuXKlbV06VLVr1+/0OFnz55Vy5YtdeTIkUKH9+7dW88//7w6dOggSVqzZo0ZTLdq06aN1q1bp9atW2vUqFF66qmnlJ6efsu87OzsNH78eI0cObLA+zcu9534+Pho8eLFCg8P/81xAQAAAAAAAAB42NADOwAAAAAAAAA8RLp3764uXbpo/vz5WrFihbZs2aJz587p8uXLcnV1Vfny5VW3bl1FRETo6aefvqvA9m9xcXHRvHnztHjxYk2dOlVbt27VhQsX5Obmpho1aqhbt24aPny4Spcufdt5VKpUSdu2bdPnn3+uefPmKSkpSW5ubgoNDdXQoUPVt29frV279q7b1LlzZ+3cuVMTJkzQL7/8ouTkZHl6eqply5YaOXKkIiIibpmmatWq2r59u5YtW6bNmzcrMTFRZ8+eVVpamjw9PVW7dm116dJFQ4cOVZkyZX7PqgIAAAAAAAAA4IFHD+wAAAAAAAAAgIfCjT2w/y9hdwAAAAAAAAAAcO/Y2boBAAAAAAAAAAAAAAAAAAAAAICHAwF2AAAAAAAAAAAAAAAAAAAAAECRIMAOAAAAAAAAAAAAAAAAAAAAACgSBNgBAAAAAAAAAAAAAAAAAAAAAEWCADsAAAAAAAAAAAAAAAAAAAAAoEhYDMMwbN0IAAAAAAAAAAAAAAAAAAAAAMCDjx7YAQAAAAAAAAAAAAAAAAAAAABFggA7AAAAAAAAAAAAAAAAAAAAAKBIEGAHAAAAAAAAAAAAAAAAAAAAABQJAuwAAAAAAAAAAAAAAAAAAAAAgCJBgB0AAAAAAAAAAAAAAAAAAAAAUCQIsAMAAAAAAAAAAAAAAAAAAAAAigQBdgAAAAAAAAAAAAAAAAAAAABAkSDADgAAAAAAAAAAAAAAAAAAAAAoEv8PAiv4dbnKZoAAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -659,7 +659,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAC7AAAAPgCAYAAACx8HFwAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeXieZZk3/m+2ZmlLWwhgSylBS0kQUVpBSqldVHQGECggKlHgVXF/UeoGzLAoijiConO44AJiR2AsBUZQZFSKpS+oVFzQhIJDKJUCpnSjeZouye8Pfs20dEuaNGmaz+c4cuTOfZ/XeZ1PyTF1nn5zpai9vb09AAAAAAAAAAAAAACwixX39QAAAAAAAAAAAAAAAAwMAuwAAAAAAAAAAAAAAPQKAXYAAAAAAAAAAAAAAHqFADsAAAAAAAAAAAAAAL1CgB0AAAAAAAAAAAAAgF4hwA4AAAAAAAAAAAAAQK8QYAcAAAAAAAAAAAAAoFcIsAMAAAAAAAAAAAAA0CsE2AEAAAAAAAAAAAAA6BUC7AAAAAAAAAAAAAAA9IrSvh4AAAAAAAAAAAAAAOh77e3tWbduXdra2vp6FHZjxcXFKSsrS1FR0U6tF2AHAAAAAAAAAAAAgAFsw4YNaW5uzqpVq7Ju3bq+Hod+oKysLEOHDk11dXVKSkq6tLaovb29fRfNBQAAAAAASZJzzjknP/jBD5IkTzzxRGpqana619y5czNt2rQkyaWXXprLLrus2/NtPCVmypQpmTt3brf7AQAAAAD0Fxs2bMhTTz2V1tbWDBs2LEOGDElJSclOn67Nnq29vT0bNmzICy+8kBUrVqS8vDwHHnhgl0LsTmAHAAAAABhAxo4dm7/97W9Jkj//+c85/PDDt1v/xje+Mb/85S+TJKNHj85TTz213fqWlpaMGDEia9euTWlpaZYtW5YhQ4b0zPBd8NWvfjXLly/P8OHD87GPfazX9wcAAAAA6C+am5vT2tqaMWPGpLKysq/HoZ8YMmRIhg0blkWLFqW5uTn7779/p9cW78K5AAAAAADYzWw8uTzJDk8aX7t2bf7f//t/HV8vXrw4jz/++HbXzJ8/P2vXrk2SHHXUUX0SXk9eDLBffvnl+epXv9on+wMAAAAA9Aft7e1ZtWpVhg0bJrxOl1VWVmavvfbKqlWr0t7e3ul1AuwAAAAAAAPIpgH2e++9d7u1v/nNb1IoFDa7t6M1m4biN93rhhtuSHt7e9rb21NTU9P5gQEAAAAA2GXWrVuXdevW9dlhJPR/Q4cO7fg+6iwBdgAAAACAAWTq1Kkd17/+9a+3eyLKxjD60KFDc9xxx212b0drks0D7AAAAAAA7H7a2tqSJCUlJX08Cf3Vxu+djd9LnSHADgAAAAAwgIwaNSrjxo1LkjQ3N+fPf/7zNms3htGPO+64vOENb9js3ta0tLTkd7/7XZJk0KBBmTRpUs8MDQAAAADALlVUVNTXI9BP7cz3jgA7AAAAAMAAs+nJ6NsKpK9duzYPPPBAkhdPbZ8yZUqS5Omnn87ChQu3umb+/PkdvyL0da97XSorKzuenXPOOSkqKkpRUVGampq2O9/Pf/7znHrqqRk5cmQqKioyZsyYzJgxI/fcc88OX1tNTU2Kiory5JNPJkmefPLJjn03/bjsssu222fNmjX52te+lokTJ2afffZJZWVlxo4dmw9+8IN54okndjgHAAAAAACwdQLsAAAAAAADzKYB9nvvvXerNb/5zW9SKBSSvBhgP+aYYzJo0KDtrtk0DL/pHp3V1taW973vfXnLW96S22+/Pc8880xaW1vz1FNP5bbbbsub3/zmfOxjH+ty36564okncvTRR+f888/Pgw8+mOeffz5r1qzJ3/72t3zrW9/Kq171qu2eRA8AAAAAAGxbaV8PAAAAAABA75o6dWrH9a9//eu0t7dv8Ss+Nwa0hw4dmvHjx6e0tDRHH3107r///sydOzfvf//7t+jb3QD7xz/+8Xz3u99NkpSUlOSss87K1KlTU15enj/84Q/53ve+l2uvvTZPPfXUNntcd911aWlpyXnnnZd//OMf2XfffXPddddtUVdbW7vV9StXrswJJ5yQhoaGHH/88TnppJOy//77Z8mSJfnBD36Q3//+91m9enXe/va3p6GhISNGjOjy6wQAAAAAgIFMgB0AAAAAYIDZf//9U1dXl4aGhjz//PP54x//mNe85jWb1WwMo0+aNCmlpS++lfz617++I8D+Ui0tLfnd736XJKmoqMjEiRO7NNP8+fPz9a9/PUkyePDg3H333TnuuOM6nr/zne/Mxz/+8UyfPj1z5szZZp/jjz8+STpOaq+qqsopp5zS6TkefvjhlJaW5sc//nFOP/30zZ596EMfykknnZS77747zz77bK6//vpccMEFne4NAAAAANCf/X15IctWr+3rMbptxOBBOWB4ZV+P0aNqamry5JNP5vrrr88555zT6Wd9RYAdAAAAAGAAmjZtWhoaGpK8GFbfNMC+du3aPPDAA0k2P619ypQp+cIXvpBnnnkmjY2Nm51iPn/+/Kxbty5JMnHixJSXl3dpnquvvjrt7e1Jkquuumqz8PpGI0eOzC233JLx48dnw4YNXerfFRdddNEW4fUkKS0tzVe+8pXcfffdSZKf/exnAuwAAAAAwIDw9+WFTP/y3LSub+vrUbqtvLQ4v/rE1F0SYm9vb8/s2bPzox/9KL///e/z3HPPpaSkJPvvv39GjhyZo48+OpMnT84b3vCG7LXXXj2+f1dddtllSZJzzjknNTU1vbZvca/tBAAAAADAbmPatGkd1/fee+9mzx588MEUCoUkL4bWNzr22GM7TmN/6ZpNv9409N4Zra2tueuuu5Ikw4YNy3vf+95t1h5xxBEdp6zvCsXFxTn//PO3+by2tjajR49OkjzyyCO7bA4AAAAAgN3JstVr94jwepK0rm/bJSfJL1++PNOmTcvb3va23H777Vm0aFHWr1+f8vLyLFq0KPPnz89XvvKVzJgxY7u/abSnveIVr8ihhx6aYcOGbfHs8ssvz+WXX56mpqZemycRYAcAAAAAGJCmTJmSoqKiJMm8efPS1va///Awd+7cJMmQIUPy2te+tuP+kCFDMmHChM1qXrom2Twc3xl//OMfs3bti/9YMGnSpB2e3v6GN7yhS/274tBDD83ee++93ZqNAfZly5btsjkAAAAAAOhf3v3ud+e+++5LSUlJZs6cmYULF6a1tTVLly5NoVDIH//4x1x11VV59atf3atz/fKXv0xjY2NOPfXUXt13ewTYAQAAAAAGoH333TevfOUrk7wYxP7DH/7Q8WxjGH3SpEkdJ65vtPFE9k0D66tXr85DDz2UJKmsrMzrXve6Ls3y9NNPd1yPHTt2h/WdqdlZ1dXVO6zZGLBvbW3dZXMAAAAAANB/PPbYY/nJT36SJLniiivy5S9/OYccckiKi1+MapeWluaII47Ipz71qfzhD3/ImWee2Zfj9jkBdgAAAACAAWrTk9I3BtJbW1vz4IMPJvnfsPqmNt577rnn8te//jVJMn/+/Kxbty7Ji6H3QYMGdWmOF154oeO6qqpqh/WDBw/uUv+u2PiPCQAAAAAA0FmbHhJz8skn77C+srJys69rampSVFSUG264IatWrcqFF16YQw89NJWVlamurs4pp5yS3/zmNzs126a9NzrnnHM6fktr8uK/FxQVFXV81NTU7NReneWdeAAAAACAAWrq1Kkd1/fee2+S5De/+U0KhcIWzzc67rjjUlJSstmaTU9j3zQU31lDhgzpuG5padlh/erVq7u8BwAAAAAA9IbFixfv9Nply5blqKOOyhe/+MU0NTVl0KBBWbp0ae64444ce+yx+f73v98jMw4bNiz7779/x9cjRozI/vvv3/Gx77779sg+2yLADgAAAAAwQE2ZMqXjhJV58+Zlw4YNHWH0wYMH56ijjtpizV577ZVXv/rVSXouwH7AAQd0XD/++OM7rO9MDQAAAAAA9Jajjjqq4/32mTNnZuHChTvV5/LLL89zzz2X//zP/8zq1auzYsWK/PWvf82UKVPS1taW97///fn973/f7XmvvfbaPPPMMx1fz5kzJ88880zHx+9+97tu77E9AuwAAAAAAAPUPvvskyOOOCJJsmLFijz88MMdYfRjjz02paWlW103ZcqUJMl9992XF154IQ899FCSF09S31rofUeOOOKIlJeXJ0nmz5+f1tbW7db/8pe/3GHP4uIX3/5ub2/v8jwAAAAAANAVNTU1ee9735sk+fOf/5za2tqMHz8+H/7wh/P9738/jzzySKfer16xYkV+/OMf54wzzuh4j76uri4/+9nPcsghh2T9+vX513/91136WnqDADsAAAAAwAC26Ynpd999dx588MEkydSpU7e5ZmOAvbm5Od/+9rezbt26JMlxxx23zdD79pSXl+ef//mfk7z45vz2fgXqI488knvuuWeHPYcMGZIkWb16dZfnAQAAAACArvrGN76Rf/3Xf83gwYPT3t6ehx9+ON/4xjfynve8J6961avyspe9LBdccEGeffbZbfaYNGlS3vCGN2xxv7KyMp/85CeTvPhe/ooVK3bZ6+gNAuwAAAAAAAPYpkH1r3/96ykUClvcf6nJkyd3/CrUL33pSx33Nw3Dd9XMmTM7en7605/OAw88sEXNs88+mzPPPDMbNmzYYb+DDz44SbJ06dIsWrRop+cCAAAAAIDOKC0tzWc/+9n8/e9/zw9/+MO8973vzatf/eoMGjQoSfLcc8/lK1/5Sg4//PD89re/3WqP6dOnb7P/xmdtbW35/e9/3/MvoBcJsAMAAAAADGCvf/3rU1z84lvFzz33XJKkqqoqRx111DbX7L333nnVq1612ZqkewH2SZMm5aMf/WiSZNWqVXn961+fc889NzfccENuuummfPrTn85hhx2Wv/71r5kxY8YO+73xjW/suD711FPzne98Jz/96U9z99135+67787jjz++07MCAAAAAMC2DBs2LPX19fnOd76TP/zhD1mxYkX++7//OyeddFKSF3+76WmnnZY1a9ZssfaAAw7YZt9Nn2363nx/JMAOAAAAADCAjRgxIq95zWs2u3fsscemrKxsu+umTJmy2dd77bVXxo8f361ZvvKVr+Q973lPkmT9+vW54YYbcu655+ad73xnvvSlL+X555/P+eef3xF0357/83/+T2pra5Mkv//973PeeeflhBNOyD/90z/ln/7pnzJr1qxuzQoAAAAAAJ1RUVGRN77xjfmv//qvnH322UmSxYsX5+677+7jyfqOADsAAAAAwAD30pPTp06dusM1Lw2wT548OSUlJd2ao7i4ON/97nfzs5/9LG9961uz3377ZdCgQRk9enROPfXU3H333fnqV7/aqV6DBw/Ogw8+mEsuuSSvfe1rM2zYsI6T5gEAAAAAoC+cd955HdePPvroFs///ve/b3Ptps/222+/nh2sl5X29QAAAAAAAPStL3/5y/nyl7/cpTWnnXZa2tvbO11/ww035IYbbuhU7Vve8pa85S1v2ebzqVOndmrvYcOG5fLLL8/ll1++w9quvJa5c+d2uhYAAAAAADYaMmRIx3V5efkWz++9995trt34rLi4OEceeWSPzFNUVJT29vYuvUfeExw3AwAAAAAAAAAAAACwk5544oksXLhwh3U/+MEPOq7Hjx+/xfP7779/q4eorFmzJldffXWS5M1vfnOGDx++07Nuaq+99kqSLF++vEf6dZYAOwAAAAAAAAAAAADATvrLX/6Surq6nHDCCbnxxhvT1NTU8WzdunV5+OGHc+655+aaa65Jkhx99NE57rjjtugzbNiwnHbaaZk9e3bWr1+fJGlsbMwJJ5yQxsbGlJSU5LOf/WyPzX344YcnSf7jP/4jLS0tPdZ3R0p7bScAAAAAAAAAAAAAgD1MWVlZ2tra8tOf/jQ//elPkySDBg3KkCFDsmzZsrS3t3fUjh8/PrfddluKi7c8h/zSSy/Nt7/97ZxxxhkpLy9PRUVFVqxYkSQpKirKN7/5zbz2ta/tsbk/8IEPZP78+bn11lvzX//1X9lvv/1SWlqa0aNH5/777++xfV5KgB0AAAAAAAAAAAAAYCe9+c1vzmOPPZaf/vSnuf/++/PII49k8eLFWb58eaqqqjJq1KgceeSRmTFjRs4444ythteTZMSIEfntb3+bK6+8Mrfeemueeuqp7L333pk0aVIuvPDCTJw4sUfnrq+vT5J8+9vfzp///OcsWbIkbW1tPbrH1hS1bxrpBwAAAAAAAAAAAAAGhDVr1uSJJ57IwQcfnIqKim3W/X15IdO/PDet63d9uHlXKy8tzq8+MTUHDK/s61E61NTU5Mknn8z111+fc845p6/H6ZLOfg9tygnsu4G2trY8/fTTGTp0aIqKivp6HAAAAAAAAAAAAAB2U+3t7Vm1alVGjRq1zZO8e9oBwyvzq09MzbLVa3tlv11pxOBBu1V4fSASYN8NPP300znwwAP7egwAAAAAAAAAAAAA+omnnnoqo0eP7rX9DhheKfhNjxBg3w0MHTo0yYv/h2Svvfbq42noSbW1tVmyZElGjhyZxsbGvh4HAAAA9kj+/28AOsvfGQB0hr8vAOgsf2cA0FdWrlyZAw88sCN/Cv2NAPtuoKioKEmy1157CbDvYTb+ao7i4mL/bQEAAGAX8f9/A9BZ/s4AoDP8fQFAZ/k7A4C+tjF/Cv2NADsAAAAAAAAAAAAAQB9pamrq6xF6VXFfDwAAAAAAAAAAAAAAwMAgwA4AAAAAAAAAAAAAQK8QYAcAAAAAAAAAAAAAoFcIsAMAAAAAAAAAAAAA0CsE2AEAAAAAAAAAAAAA6BUC7AAAAAAAAAAAAAAA9AoBdgAAAAAAAAAAAAAAeoUAOwAAAAAAAAAAAAAAvUKAHQAAAAAAAAAAAACAXiHADgAAAAAAAAAAAABArxBgBwAAAAAAAAAAAACgVwiwAwAAAAAAAAAAAADQK0r7egAAAAAAAAAAAAAAYDe3/KmkZWlfT9F9Vfskww/s6ykGNAF2AAAAAAAAAAAAAGDblj+V/PuEZH1rX0/SfaXlyUcW7NIQ+4YNG3LrrbfmzjvvzIMPPpjnnnsuLS0tGT58eMaNG5fJkyfnrLPOyuGHH77NHvfdd19+9KMf5de//nWWLFmSNWvWZN99982rX/3qnHTSSTn77LNTUVGxzfWXXXZZLr/88i3uDxo0KPvss09e9apX5YwzzsjZZ5+dsrKyHnndnSXADgAAAAAAAAAAAABsW8vSPSO8nrz4OlqW7rIA+4MPPpizzz47Cxcu7LhXVlaWoUOHZunSpZk/f37mz5+fL37xi5kxY0ZuuummDBo0qKN26dKlefe7352f/vSnHffKy8tTUVGRxYsXZ/Hixbnrrrvy+c9/PjfccEOmT5++w5n233//jutVq1ZlyZIlWbJkSe655558+9vfzj333JMRI0b00J/AjhX32k4AAAAAAAAAAAAAAHuon/zkJ5k6dWoWLlyYffbZJ1deeWUWLlyYtWvXZunSpVm7dm1+97vf5TOf+Uz22muvzJkzJy0tLR3rn3322RxzzDH56U9/mpKSknz0ox/NX/7yl6xZsybLly/PsmXLcv311+fAAw/MU089lbe85S25/fbbdzjXM8880/GxevXqPPnkk3nf+96XJHnooYfyf//v/91VfyRbJcAOAAAAAAAAAAAAANANjz32WOrr69Pa2prDDjssf/jDH/KZz3wmhxxySEdNSUlJXvva1+bKK6/ME088kZNPPrnjWXt7e975znfm8ccfT1lZWW677bZ87Wtfy2GHHdZRM3z48Jxzzjl5+OGH8+pXvzrr1q3L2Wefnb/97W9dmnXMmDG57rrrOk5v/8///M+88MIL3fwT6DwBdgAAAAAAAAAAAACAbviXf/mXrFy5MhUVFbntttsyevTo7dbvvffeuf322zNs2LAkyZ133plf/epXSZKLL744J5100jbX7rPPPvnxj3+cioqKrFy5MpdeeulOzfyWt7wlSbJ27do89thjO9VjZwiwAwAAAAAAAAAAAADspGeffTazZ89Okpx11lkZN25cp9cWFRUlSb7xjW8kSYYOHZqZM2fucN0hhxySd7zjHUmSW265Jc3NzV0dO+3t7R3XGzZs6PL6nSXADgAAAAAAAAAAAACwk+699960tbUlSU499dQur1+/fn3mzZuXJDn++OMzZMiQTq2bMWNGx/pf//rXXd735z//eZIXQ/QHH3xwl9fvLAF2AAAAAAAAAAAAAICd9Je//KXj+sgjj+zy+qampqxevbrL61/zmtd0XP/pT3/q9LpFixblvPPOy69+9askyUknnZR99tmn0+u7q7TXdgIAAAAAAAAAAAAA2MMsXbq043rvvffu1vquBMmrq6u32uOlXvayl3Vcr1q1Ki0tLR1f19bW5hvf+Ean9+wJAuwAAAAAAAAAAAAAAP1Ya2vrNp89++yzW73/7ne/O9/+9rdTUVGxq8baquJe3Q0AAAAAAAAAAAAAYA+y6anpzz//fLfWb+8k9Zdqbm7uuB4xYsQ269rb29Pe3p62trY8/fTT+da3vpXhw4fnxhtvzL//+793ed7ucgI7AAAAAF3W0tKSxsbGze4VCoU0NTWlpqYmlZWVmz2rra1NVVVVb44IAAAAAAAAveKVr3xlx/XDDz+cUaNGdWn9QQcdlMGDB2f16tX5/e9/3+l1Dz/8cMf1oYceusP6oqKijBw5Mu9///tz6KGHZvr06fnUpz6V8ePHZ/r06V2auTsE2AEAAADossbGxkyYMKHT9QsWLMj48eN34UQAAAAAAADQN6ZNm5bi4uK0tbXltttuywknnNCl9WVlZZk8eXLuvvvu3HPPPVm1alWGDh26w3Vz5szpuJ46dWqX9pw6dWre9a535cYbb8xHP/rR/OlPf0pJSUmXeuys4l7ZBQAAAIA9Sm1tbRYsWLDZx6xZs5Iks2bN2uJZbW1tH08MAAAAAAAAu8b++++f0047LUnyox/9KAsXLuz02vb29iTJhz70oSTJCy+8kGuuuWaH6x577LHcfPPNSZLjjjsuL3/5y7s6di655JKUlJTkr3/9a37wgx90ef3OEmAHAAAAoMuqqqoyfvz4zT7q6uqSJHV1dVs8q6qq6uOJAQAAAAAAYNe54oorMmTIkBQKhcyYMSN///vft1u/bNmynHbaaVmxYkWS5MQTT+w4Rf3zn/987rzzzm2uXbp0ac4444ysWbMmRUVFueKKK3Zq5le84hU588wzkySf+9znsm7dup3q01UC7AAAAAAAAAAAAAAA3TBu3Lj88Ic/zKBBg/KXv/wlr3nNa3LVVVfl8ccf76jZsGFDHn744VxyySV5+ctfnjlz5nQ8Kyoqyk033ZSXv/zlWbduXU499dScf/75aWho6KhZsWJFfvCDH2T8+PH54x//mOTFU9SnTJmy03NfeOGFKSoqSlNTU773ve/tdJ+uEGAHAAAAAAAAAAAAAOimU045Jb/61a8yduzYNDc35zOf+UwOOeSQlJeXZ5999smgQYMyfvz4fO5zn8uKFSvyjne8I4MHD+5Y/7KXvSwPPvhgjj/++Kxfvz5f+9rXcthhh6WysjIjRozI8OHDc84552TRokUpKyvLl770pVx22WXdmvnwww/PW9/61iQvnvze2trarX6dIcAOAAAAAAAAAAAAAGxb1T5JaXlfT9EzSstffD27yKRJk9LY2JibbropZ511VsaOHZuKioqsWrUqe++9d4477rhcfPHFaWhoyI9+9KOUlZVttn7ffffNz3/+8/zyl7/Me9/73hx66KEZNGhQli9f3lEzatSoPPLII/nkJz/ZIzNffPHFSZLFixfn29/+do/03J7SXb4DAAAAAAAAAAAAANB/DT8w+ciCpGVpX0/SfVX7vPh6dqGSkpK8/e1vz9vf/vad7jF9+vRMnz59s3u33HJL3vGOd+Tpp5/OD3/4w3zuc5/b5vrLLrus06ezH3XUUWlvb9/pWbtKgB0AAAAAAAAAAAAA2L7hB+7y4Dfbd+aZZ2bJkiX5+Mc/niuuuCJDhw7Npz71qb4eq8uK+3oAAAAAAAAAAAAAAAB27GMf+1g+8YlPJEk+/elP5xvf+EYfT9R1AuwAAAAAAAAAAAAAAP3Ev/3bv6W9vT3t7e350Ic+1NfjdJkAOwAAAAAAAAAAAAAAvUKAHQAAAAAAAAAAAACAXiHADgAAAAAAAAAAAABArxBgBwAAAAAAAAAAAACgVwiwAwAAAAAAAAAAAADQKwTYAQAAAAAAAAAAAADoFQLsAAAAAAAAAAAAAAD0CgF2AAAAAAAAAAAAAAB6hQA7AAAAAAAAAAAAAAC9QoAdAAAAAAAAAAAAAIBeIcAOAAAAAAAAAAAAAECvEGAHAAAAAAAAAAAAAKBXCLADAAAAAAAAAAAAANArSvt6gJ7y5JNP5mtf+1ruuuuuPPXUUykvL88rXvGKvO1tb8uHP/zhVFVV9dhev/jFLzJr1qzcf//9WbJkSUpLS7P//vvniCOOyBve8Ia8613vypAhQ3psPwAAAAAAAAAAAADoS0teWJJlrcv6eoxuG1E+IiOHjOzrMQa0PSLA/pOf/CT19fVZuXJlx72WlpY89NBDeeihh/Ld7343d911V8aOHdutfZYtW5Zzzz03d9xxxxbPVq5cmcceeyy33nprJk6cmNe85jXd2gsAAAAAAAAAAAAAdgdLXliSE28/MWs3rO3rUbptUMmg3HnKnbs0xL5hw4bceuutufPOO/Pggw/mueeeS0tLS4YPH55x48Zl8uTJOeuss3L44Ydvs8ef/vSn/Md//EfuvffePPnkk1m2bFkqKytzwAEH5KijjsqMGTPyz//8zykrK9ts3dSpU3Pfffdt0a+qqioHHHBAjj322HzgAx/IMccc0+Ovu7P6fYD94YcfzplnnplCoZAhQ4bkwgsvzLRp01IoFHLzzTfnO9/5ThYuXJgTTjghDz30UIYOHbpT+6xYsSJvetObsmDBgiTJqaeemtNPPz2veMUrUlJSkqeeeir33Xdfbr311p58eQAAAAAAAAAAAADQp5a1LtsjwutJsnbD2ixrXbbLAuwPPvhgzj777CxcuLDjXllZWYYOHZqlS5dm/vz5mT9/fr74xS9mxowZuemmmzJo0KCO2lWrVuUDH/hAbrrpprS3tydJioqKMmzYsBQKhTQ0NKShoSE33nhjXvGKV+Q//uM/8rrXvW6LOcrKyrL33nt3fN3c3JzHHnssjz32WG688cZceumlufTSS3fJn8GOFPfJrj3o/PPPT6FQSGlpae65555cdNFFmThxYqZPn57rrrsuX/rSl5IkCxcuzNVXX73T+3z0ox/NggULUl5enjvuuCNz5szJO9/5zrzuda/La1/72px66qn56le/mkWLFm33pyEAAAAAAAAAAAAAgD3PT37yk0ydOjULFy7MPvvskyuvvDILFy7M2rVrs3Tp0qxduza/+93v8pnPfCZ77bVX5syZk5aWlo71y5Yty8SJE/OjH/0oSfL2t7899913X9asWZNly5ZlzZo1+fvf/57vfve7OeKII/K3v/0tDzzwwFZnOfbYY/PMM890fLS0tOSee+7J2LFj097enssuuyx33XVXr/y5vFS/DrD/9re/zbx585Ik73nPezJx4sQtambOnJm6urokybXXXpt169Z1eZ/7778/P/zhD5MkV1xxRd761rdus7aoqCilpf3+YHsAAAAAAAAAAAAAoJMee+yx1NfXp7W1NYcddlj+8Ic/5DOf+UwOOeSQjpqSkpK89rWvzZVXXpknnngiJ5988mY9zjrrrPzlL39JaWlpbrnlltx00015/etfv9kJ7aNGjcp73vOe/OEPf8g3vvGNVFRUdGq+QYMG5U1velPuuOOOjn7//u//3gOvvOv6dYD99ttv77g+99xzt1pTXFycd7/73UmS5cuX59577+3yPhv/4wwbNiwf+chHuj4oAAAAAAAAAAAAALDH+pd/+ZesXLkyFRUVue222zJ69Ojt1u+99965/fbbM2zYsCTJz372s/zsZz9LklxyySU544wztru+qKgoH/zgB3Peeed1ac7DDjssEyZMSJL87ne/69LantKvA+z3339/kmTw4MEdf5BbM2XKlI7r+fPnd2mPtWvX5o477kiSvOlNb+r4KYUNGzbkqaeeSlNTU9asWdPV0QEAAAAAAAAAAACAPcCzzz6b2bNnJ3nxFPVx48Z1em1RUVGSzQ/cvuCCCzq9vri463HwjeH6lStXdnltT+jXAfaGhoYkydixY1NaWrrNutra2i3WdNYf//jHjoD6q171qqxcuTIf+9jHUl1dnTFjxuTggw/OsGHD8qY3vSlz587t+osAAAAAAAAAAAAAAPqte++9N21tbUmSU089tcvr169fn1//+tdJXjxwe/DgwT0630s1NTUlefEU+L7QbwPsa9asSXNzc5Ls8Ij9ESNGdPyHfOqpp7q0z1//+teO67a2trz2ta/Ntddem+XLl3fcX7t2bX7xi19k+vTpueqqq7rUHwAAAAAAAAAAAADov/7yl790XB955JFdXv/kk0/mhRde2On1XfHb3/42CxYsSJIcc8wxu3Svbem3AfZVq1Z1XA8ZMmSH9RsD7Bv/43bW888/33F91VVX5bHHHstb3vKW/Pa3v82aNWvy3HPP5Zvf/GaGDRuW9vb2fOYzn8kdd9yx3Z6tra1ZuXLlZh8AAAAAAAAAAAAAQP+zdOnSjuudOdW8u+s74+mnn84Pf/jDnHzyyWlra0tRUVE+9rGP7ZK9dqS0T3btAWvWrOm4HjRo0A7ry8vLkySFQqFL+6xevXqzPd/0pjflzjvvTElJSZJk3333zQc+8IEcfvjhmTJlStra2nLhhRfmrW99a4qKirba88orr8zll1/epTkAAAAAAAAAAAAAADrjvvvu22aWuaysLNdcc02mTp3au0P9//rtCewVFRUd12vXrt1hfWtra5KksrJyp/dJXjyFfWN4fVPHHXdcZsyYkSRpaGjIn//85232vPDCC7NixYqOj6eeeqpLMwEAAAAAAAAAAAAAu4d99tmn4/r555/v9fVbU1ZWlv333z/7779/Xvayl+Xggw/OpEmT8slPfjKPPPJIPvKRj/TIPjuj357APnTo0I7rF154YYf1G09SHzJkyE7vs+++++bII4/cZu2b3/zmzJ49O0nyu9/9LkccccRW68rLyztOhAcAAAAAAAAAAAAA+q9XvvKVHdcPP/xwRo0a1aX1Bx10UIYMGZIXXnghDz/8cI/MdOyxx2bu3Lk90qun9esT2Df+tMHixYu3W7ts2bKOAPuBBx7YpX02rR89enSna//xj390aR8AAAAAAAAAAAAAoP+ZNm1aiotfjGXfdtttXV5fWlqa17/+9UmS//7v/+7IPe+p+m2APUkOO+ywJMnjjz+e9evXb7OusbGx47qurq5Le2z6ExEbNmzYbu2mz0tL++3h9gAAAAAAAAAAAABAJ+2///457bTTkiQ/+tGPsnDhwk6vbW9vT5J8+MMfTpKsWLEi11xzTafXt7W1dWHS3UO/DrAfd9xxSZLVq1dnwYIF26y77777Oq4nTZrUpT0OOuigjBkzJknS1NTU8U2yNX/72986rg844IAu7QMAAAAAAAAAAAAA9E9XXHFFhgwZkkKhkBkzZuTvf//7duuXLVuW0047LStWrEiS/PM//3OOP/74JMlnP/vZzJ49e4d7XnfddfnOd77T/eF7Wb8OsJ9yyikd19dff/1Wa9ra2nLjjTcmSYYPH55p06Z1eZ+NPxGxcuXK/PKXv9xm3Zw5czquN4brAQAAAAAAAAAAAIA927hx4/LDH/4wgwYNyl/+8pe85jWvyVVXXZXHH3+8o2bDhg15+OGHc8kll+TlL3/5Ztnj5MXT2+vq6rJ+/fq87W1vy1lnnZV58+Zl3bp1HTVLlizJD37wg0yYMCHvf//7UygUeu019pR+HWA/+uijM3ny5CTJ9773vTzwwANb1Fx99dVpaGhIkpx//vkpKyvb7PncuXNTVFSUoqKinHPOOVvd52Mf+1gqKiqSJBdccEFWrly5Rc2sWbMyd+7cJMkJJ5yQAw88cGdfFgAAAAAAAAAAAADQz5xyyin51a9+lbFjx6a5uTmf+cxncsghh6S8vDz77LNPBg0alPHjx+dzn/tcVqxYkXe84x0ZPHhwx/p99tknDz74YN72trcleTHQ/vrXvz7l5eXZe++9U1lZmVGjRuWcc87J73//+9TV1XVkqfuT0r4eoLuuvfbaTJo0KYVCIccff3wuuuiiTJs2LYVCITfffHOuu+66JC/+VMPMmTN3ao8xY8bks5/9bD71qU/lz3/+c44++uh8+tOfzhFHHJGVK1dmzpw5+eY3v5kk2WuvvfKVr3ylx14fAAAAAAAAAAAAANA/TJo0KY2Njfnxj3+cO++8M7/5zW/y3HPPZdWqVdl7771TW1ubKVOm5F3velcOPfTQLdbvtddeueWWW3LRRRd1HLD95JNPZtmyZamsrMzBBx+co48+OmeccUbe8pa3pKSkpA9eZff0+wD7kUcemVtuuSX19fVZuXJlLrrooi1qxo0bl7vuuitDhw7d6X0++clP5vnnn89VV12VRx99NP/n//yfLWr222+/3H777TnkkEN2eh8AAAAAAAAAAAAA2J2MKB+RQSWDsnbD2r4epdsGlQzKiPIRu3SPkpKSvP3tb8/b3/72ne7x6le/Oq9+9au7vG7u3Lk7vWdv6fcB9iQ56aST8qc//SnXXntt7rrrrixevDiDBg3K2LFjc8YZZ+QjH/lIqqqqur3PlVdembe+9a355je/mXnz5mXJkiWpqKjIuHHj8ta3vjUf/ehHM2zYsB54RQAAAAAAAAAAAACwexg5ZGTuPOXOLGtd1tejdNuI8hEZOWRkX48xoO0RAfYkOeigg3LNNdfkmmuu6dK6qVOnpr29vdP1EydOzMSJE7s6HgAAAAAAAAAAAAD0WyOHjBT8pkcU9/UAAAAAAAAAAAAAAAAMDALsAAAAAAAAAAAAAAD0CgF2AAAAAAAAAAAAAAB6hQA7AAAAAAAAAAAAAAC9QoAdAAAAAAAAAAAAAIBeIcAOAAAAAAAAAAAAAECvEGAHAAAAAAAAAAAAAKBXCLADAAAAAAAAAAAAwADW3t7e1yPQT+3M944AOwAAAAAAAAAAAAAMQMXFL0aJN2zY0MeT0F9t/N7Z+L3UGQLsAAAAAAAAAAAAADAAlZWVpaysLC+88EJfj0I/tWrVqo7vo84SYAcAAAAAAAAAAACAAaioqChDhw7NihUrUigU+noc+plCoZCVK1dm6NChKSoq6vS60l04EwAAAAAAAAAAAACwG6uurk6hUMiiRYuy1157ZejQoSkpKelSIJmBo729PRs2bMiqVauycuXKlJeXp7q6uks9BNgBAAAAAAAAAAAAYIAqKSnJgQcemObm5qxatSrLly/v65HoB8rKyjJ8+PBUV1enpKSkS2sF2AEAAAAAAAAAAABgACspKcn++++f/fbbL+vWrUtbW1tfj8RurLi4OGVlZTt9Sr8AOwAAAAAAAAAAAACQoqKiDBo0qK/HYA9X3NcDAAAAAAAAAAAAAAAwMAiwAwAAAAAAAAAAAADQKwTYAQAAAAAAAAAAAADoFQLsAAAAAAAAAAAAAAD0CgF2AAAAAAAAAAAAAAB6hQA7AAAAAAAAAAAAAAC9QoAdAAAAAAAAAAAAAIBeIcAOAAAAAAAAAAAAAECvEGAHAAAAAAAAAAAAAKBXCLADAAAAAAAAAAAAANArBNgBAAAAAAAAAAAAAOgVAuwAAAAAAAAAAAAAAPQKAXYAAAAAAAAAAAAAAHqFADsAAAAAAAAAAAAAAL1CgB0AAAAAAAAAAAAAgF4hwA4AAAAAAAAAAAAAQK8QYAcAAAAAAAAAAAAAoFcIsAMAAAAAAAAAAAAA0CsE2AEAAAAAAAAAAAAA6BUC7AAAAAAAAAAAAAAA9AoBdgAAAAAAAAAAAAAAeoUAOwAAAAAAAAAAAAAAvUKAHQAAAAAAAAAAAACAXiHADgAAAAAAAAAAAABArxBgBwAAAAAAAAAAAACgVwiwAwAAAAAAAAAAAADQKwTYAQAAAAAAAAAAAADoFQLsAAAAAAAAAAAAAAD0CgF2AAAAAAAAAAAAAAB6hQA7AAAAAAAAAAAAAAC9QoAdAAAAAAAAAAAAAIBeIcAOAAAAAAAAAAAAAECvEGAHAAAAAAAAAAAAAKBXCLADAAAAAAAAAAAAANArBNgBAAAAAAAAAAAAAOgVAuwAAAAAAAAAAAAAAPQKAXYAAAAAAAAAAAAAAHqFADsAAAAAAAAAAAAAAL1CgB0AAAAAAAAAAAAAgF4hwA4AAAAAAAAAAAAAQK8QYAcAAAAAAAAAAAAAoFeU9vUAAAAAAOz+Fi1alObm5u3WNDQ0bPZ5e6qrqzNmzJgemQ0AAAAAAADoPwTYAQAAANiuRYsW5dDaQ7OmsKZT9fX19TusqaisyKONjwqxAwAAAAAAwAAjwA4AAADAdjU3N2dNYU1Gnzc65aPKt1nXtrYt65rXpay6LMWDirdZ1/p0axZftzjNzc0C7AAAAAAAADDACLADAAAA0Cnlo8pTWVO5/aJxvTMLAAAAAAAA0D9t+ygsAAAAAAAAAAAAAADoQQLsAAAAAAAAAAAAAAD0CgF2AAAAAAAAAAAAAAB6hQA7AAAAAAAAAAAAAAC9QoAdAAAAAAAAAAAAAIBeIcAOAAAAAAAAAAAAAECvEGAHAAAAAAAAAAAAAKBXCLADAAAAAAAAAAAAANArBNgBAAAAAAAAAAAAAOgVAuwAAAAAAAAAAAAAAPSK0r4eAAAAAIDet2HDhsybNy9LlizJyJEjM3ny5JSUlPT1WAAAAAAAAMAezgnsAAAAAAPMnDlzMnbs2EybNi3vfOc7M23atIwdOzZz5szp69EAAAAAAACAPZwAOwAAAMAAMmfOnJx++ul51atelQceeCCrVq3KAw88kFe96lU5/fTThdgBAAAAAACAXUqAHQAAAGCA2LBhQ2bOnJkTTzwxt99+e4455pgMGTIkxxxzTG6//faceOKJ+cQnPpENGzb09agAAAAAAADAHkqAHQAAAGCAmDdvXpqamnLRRReluHjzt4WKi4tz4YUX5oknnsi8efP6aEIAAAAAAABgTyfADgAAADBALFmyJEly+OGHb/X5xvsb6wAAAAAAAAB6mgA7AAAAwAAxcuTIJMkjjzyy1ecb72+sAwAAAAAAAOhpAuwAAAAAA8TkyZNTU1OTL3zhC2lra9vsWVtbW6688socfPDBmTx5ch9NCAAAAAAAAOzpBNgBAAAABoiSkpJcffXVufPOO3PKKafkgQceyKpVq/LAAw/klFNOyZ133pkvf/nLKSkp6etRAQAAAAAAgD1UaV8PAAAAAEDvmTFjRmbPnp2ZM2fm2GOP7bh/8MEHZ/bs2ZkxY0YfTgcAAAAAAADs6QTYAQAAAAaYGTNm5OSTT868efOyZMmSjBw5MpMnT3byOgAAAAAAALDLCbADAAAADEAlJSWZOnVqX48BAAAAAAAADDDFfT0AAAAAAAAAAAAAAAADgwA7AAAAAAAAAAAAAAC9QoAdAAAAAAAAAAAAAIBeIcAOAAAAAAAAAAAAAECvEGAHAAAAAAAAAAAAAKBXCLADAAAAAAAAAAAAANArBNgBAAAAAAAAAAAAAOgVAuwAAAAAAAAAAAAAAPQKAXYAAAAAAAAAAAAAAHqFADsAAAAAAAAAAAAAAL1CgB0AAAAAAAAAAAAAgF6xxwTYn3zyycycOTO1tbUZPHhw9t577xx11FH5t3/7t7S0tHSr9w033JCioqJOfdxwww0984IAAAAAAAAAAAAAAPYwpX09QE/4yU9+kvr6+qxcubLjXktLSx566KE89NBD+e53v5u77rorY8eO7cMpAQAAAAAAAAAAAAAGtn4fYH/44Ydz5plnplAoZMiQIbnwwgszbdq0FAqF3HzzzfnOd76ThQsX5oQTTshDDz2UoUOHdmu/n//85xk1atQ2n48ePbpb/QEAAAAAAAAAAAAA9lT9PsB+/vnnp1AopLS0NPfcc08mTpzY8Wz69Ok55JBD8qlPfSoLFy7M1Vdfncsuu6xb+40bNy41NTXdGxoAAAAAAAAAAAAAYADq1wH23/72t5k3b16S5D3vec9m4fWNZs6cmeuvvz4NDQ259tprc/HFF6esrKy3RwUAAAAAAOhTLS0taWxs3OxeoVBIU1NTampqUllZudmz2traVFVV9eaIAAAAAMAA0K8D7LfffnvH9bnnnrvVmuLi4rz73e/OhRdemOXLl+fee+/N8ccf30sTAgAAAAAA7B4aGxszYcKETtcvWLAg48eP34UTAQAAAAADUb8OsN9///1JksGDB2/3DdcpU6Z0XM+fP1+AHQAAAAAAGHBqa2uzYMGCze41NDSkvr4+s2bNSl1d3Rb1AAAAAAA9rV8H2BsaGpIkY8eOTWnptl/Kpm+wblyzs84999w8+uijaW5uzl577ZWxY8fmjW98Yz74wQ/mgAMO6FZvAAAAAACAXaWqqmqbJ6rX1dU5bR0AAAAA6BXFfT3AzlqzZk2am5uTJKNHj95u7YgRIzJ48OAkyVNPPdWtfefOnZslS5Zk3bp1Wbp0aX7zm9/k85//fMaOHZtvf/vb3eoNAAAAAAAAAAAAALAn67cnsK9atarjesiQITusHzx4cFavXp0XXnhhp/Z7+ctfnhkzZmTixIk58MADkyT/8z//k1tvvTWzZ8/OmjVr8oEPfCBFRUU577zztturtbU1ra2tHV+vXLlyp2YCAAAAAAAAAAAAAOhP+m2Afc2aNR3XgwYN2mF9eXl5kqRQKHR5r1NPPTVnn312ioqKNrt/1FFH5cwzz8ydd96ZGTNmZN26dfn4xz+et771rXnZy162zX5XXnllLr/88i7PAQAAAAAAAAAAAADQn/XbAHtFRUXH9dq1a3dYv/HE88rKyi7vNWzYsO0+P/HEE3PJJZfkX//1X9PS0pLvfe97ufjii7dZf+GFF+aCCy7o+HrlypUdp7oDAAAAAMCepKWlJY2NjZvdKxQKaWpqSk1NzRbv29fW1qaqqqo3RwQAAAAAoBf12wD70KFDO65feOGFHdavXr06STJkyJBdMs95552XSy65JO3t7bnvvvu2G2AvLy/vOBEeAAAAAAD2ZI2NjZkwYUKn6xcsWJDx48fvwokAAAAAAOhL/TbAXlFRkX322SdLly7N4sWLt1u7bNmyjgD7rjrpfL/99ss+++yT5ubm/P3vf98lewAAAAAAQH9TW1ubBQsWbHavoaEh9fX1mTVrVurq6raoBwAAAABgz9VvA+xJcthhh2XevHl5/PHHs379+pSWbv3lbPqrSV/6RnhPKioq2mW9AQAAAACgP6qqqtrmiep1dXVOWwcAAAAAGGCK+3qA7jjuuOOSJKtXr97i9JZN3XfffR3XkyZN2iWz/OMf/0hzc3OSZNSoUbtkDwAAAAAAAAAAAACA/qxfB9hPOeWUjuvrr79+qzVtbW258cYbkyTDhw/PtGnTdsks1113Xdrb25MkU6ZM2SV7AAAAAAAAAAAAAAD0Z6V9PUB3HH300Zk8eXLmzZuX733vezn77LMzceLEzWquvvrqNDQ0JEnOP//8lJWVbfZ87ty5HaH2s88+OzfccMNmz5uamrJs2bIceeSR25zjzjvvzGc/+9kkSWVlZc4999zuvjQAAACAHtXS0pLGxsbN7hUKhTQ1NaWmpiaVlZWbPautrU1VVVVvjggAAAAAAAAMAP06wJ4k1157bSZNmpRCoZDjjz8+F110UaZNm5ZCoZCbb7451113XZJk3LhxmTlzZpf7NzU1Zdq0aZk4cWJOOumkvPrVr85+++2XJPmf//mfzJ49O7Nnz+44ff3LX/5yDjjggJ57gQAAAAA9oLGxMRMmTOh0/YIFCzJ+/PhdOBEAAAAAAAAwEPX7APuRRx6ZW265JfX19Vm5cmUuuuiiLWrGjRuXu+66K0OHDt3pfR544IE88MAD23xeVVWVr3zlKznvvPN2eg8AAACAXaW2tjYLFizY7F5DQ0Pq6+sza9as1NXVbVEPAAAAAAAA0NP6fYA9SU466aT86U9/yrXXXpu77rorixcvzqBBgzJ27NicccYZ+chHPrLTv/J6woQJmTVrVh544IE89NBDWbJkSZqbm7N+/fqMGDEir3zlK/OGN7wh733veztOZgcAAADY3VRVVW3zRPW6ujqnrQMAAAAAAAC9Yo8IsCfJQQcdlGuuuSbXXHNNl9ZNnTo17e3t23w+dOjQnHXWWTnrrLO6OyIAAAAAAAAAAAAAwIBW3NcDAAAAAAAAAAAAAAAwMAiwAwAAAAAAAAAAAADQKwTYAQAAAAAAAAAAAADoFQLsAAAAAAAAAAAAAAD0CgF2AAAAAAAAAAAAAAB6hQA7AAAAAAAAAAAAAAC9orSvBwAAAABg91YoFJIkrU+39ki/jX029gUAAAAAAAAGDgF2AAAAALarqakpSbL4usU93nfSpEk92hMAAAAAAADYvQmwAwAAALBdNTU1SZLR541O+ajybvdrfbo1i69b3NEXAAAAAAAAGDgE2AEAAADYrsrKyiRJ+ajyVNZU9nhfAAAAAAAAYOAQYAcAAAAAAHrMokWL0tzcvN2ahoaGzT5vT3V1dcaMGdMjswEAAAAA0PcE2AEAAAAAgB6xaNGiHFp7aNYU1nSqvr6+foc1FZUVebTxUSF2AAAAAIA9hAA7AAAAAADQI5qbm7OmsCajzxud8lHl26xrW9uWdc3rUlZdluJBxdusa326NYuvW5zm5mYB9p3gNHwAAAAAYHckwA4AAAAAAPSo8lHlqayp3H7RuN6ZZaByGj4AAAAAsLsSYAcAAAAAANjDOA0fAAAAANhdCbADAAAAAADsoZyGDwAAAADsbrZ9lAYAAAAAAAAAAAAAAPQgAXYAAAAAAAAAAAAAAHqFADsAAAAAAAAAAAAAAL1CgB0AAAAAAAAAAAAAgF4hwA4AAAAAAAAAAAAAQK8o7esBAAAAAOgfWp9u3e7ztrVtWde8LmXVZSketO1zE3bUBwAAAAAAANhzCbADAAAAsF3V1dWpqKzI4usW91jPisqKVFdX91g/AAAAAAAAoH8QYAcAAABgu8aMGZNHGx9Nc3PzdusaGhpSX1+fWbNmpa6ubru11dXVGTNmTE+OCQAAAAAAAPQDAuwAAABAv9HS0pLGxsbN7hUKhTQ1NaWmpiaVlZWbPautrU1VVVVvjrjHGjNmTKcD53V1dRk/fvwunggAAAAAAADojwTYAQAAgH6jsbExEyZM6HT9ggULBmyQetGiRZ06MX3Tz9vjxHQAAAAAAACgJwiwAwAAAP1GbW1tFixYsNm9hoaG1NfXZ9asWamrq9uifiBatGhR6moPTUthTafq6+vrd1hTVVmRhsZHhdgBAAAAAACAbhFgBwAAAPqNqqqqbZ6oXldXN2BPW3+p5ubmtBTWZNaplanbt3ibdYX17Wla3paa4cWpLC3aZl3DP9pSf1shzc3NAuwAAAAAAABAtwiwAwAAAOyh6vYtzviRJdutmXRgLw0DAAAAAAAAkGTbR3ABAAAAAAAAAAAAAEAPEmAHAAAAAAAAAAAAAKBXCLADAAAAAAAAAAAAANArBNgBAAAAAAAAAAAAAOgVpX09AAAAAAAAsGcoFApJktanW3uk38Y+G/sCAAAAAND/CbADAAAAAAA9oqmpKUmy+LrFPd530qRJPdoTAAAAAIC+IcAOAAAAAAD0iJqamiTJ6PNGp3xUebf7tT7dmsXXLe7oCwAAAABA/yfADgAAAAAA9IjKysokSfmo8lTWVPZ4XwAAAAAA+r/ivh4AAAAAAAAAAAAAAICBwQnsAAAAAHuYQqGQJGlo3tAj/Tb22dgXAAAAAAAAYGcJsAMAAADsYZqampIk9XPW9HjfSZMm9WhPAAAAAAAAYGARYAcAAADYw9TU1CRJZs2oSF11Sbf7NTRvSP2cNR19AQAAAAAAAHaWADsAAADAHqaysjJJUlddkvEjux9gf2lfAGD3VygUkiStT7f2SL+NfTb2BQAAAADYWQLsAAAAAAAA/cCGDRsyb968LFmyJCNHjszkyZNTUrL1H1ZrampKkiy+bnGPztDU1JRJkyb1aE8AAAAAYGARYAcAAAAAANjNzZkzJzNnzuwIpidJTU1Nrr766syYMWOL+pqamiTJ6PNGp3xUebf3b326NYuvW9zRFwAAAABgZwmwAwAAAAAA7MbmzJmT008/PSeeeGJuuummHH744XnkkUfyhS98Iaeffnpmz569RYi9srIySVI+qjyVNZU9NsvGvgAAAAAAO6u4rwcAAAAAAABg6zZs2JCZM2fmxBNPzO23355jjjkmQ4YMyTHHHJPbb789J554Yj7xiU9kw4YNfT0qAAAAAECnCLADAAAAAADspubNm5empqZcdNFFKS7e/J91iouLc+GFF+aJJ57IvHnz+mhCAAAAAICuEWAHAAAAAADYTS1ZsiRJcvjhh2/1+cb7G+sAAAAAAHZ3pX09AAAAAMC2LFq0KM3NzdutaWho2Ozz9lRXV2fMmDE9Mlt/0PCPtu0+L6xvT9PyttQML05ladFO9wEAdp2RI0cmSR555JEcc8wxWzx/5JFHNqsDAAAAANjdCbADAAAAu6VFixbl0NpDs6awplP19fX1O6ypqKzIo42P7vEh9urq6lRVVqT+tkKP9ayqrEh1dXXH1y0tLWlsbNysZns/TFBbW5uqqqoemwcABorJkyenpqYmX/jCF3L77benuPh/f7luW1tbrrzyyhx88MGZPHlyH04JAAAAANB5AuwAAADAbqm5uTlrCmsy+rzRKR9Vvs26trVtWde8LmXVZSkeVLzNutanW7P4usVpbm7e4wPsY8aMSUPjo506vb6+vj6zZs1KXV3ddmtfenp9Y2NjJkyYsNXarf0wwYIFCzJ+/PhOTA8AbKqkpCRXX311Tj/99Jxyyim58MILc/jhh+eRRx7JlVdemTvvvDOzZ89OSUlJX48KAAAAANApAuwAAADAbq18VHkqayq3XzSud2bpT8aMGdPpoH5dXV2Xw+W1tbVZsGDBZvcKhUKamppSU1OTysrKLeoBgJ0zY8aMzJ49OzNnzsyxxx7bcf/ggw/O7NmzM2PGjD6cDgAAAACgawTYAQAAAOiyqqqqrYbeJ02a1AfTAMCeb8aMGTn55JMzb968LFmyJCNHjszkyZOdvA4AAAAA9DsC7AAAAAAAAP1ASUlJpk6d2tdjAAAAAAB0S3FfDwAAAAAAAAAAAAAAwMDgBHYAAAAAAKBDS0tLGhsbN7tXKBTS1NSUmpqaVFZWbvastrY2VVVVm91rfbp1u3u0rW3LuuZ1KasuS/GgbZ+1s6M+AAAAAAD0PwLsAAAAAABAh8bGxkyYMKHT9QsWLMj48eOTJNXV1amorMji6xb32DwVlRWprq7usX4DjR8mAAAAAAB2NwLsAAAAAABAh9ra2ixYsGCzew0NDamvr8+sWbNSV1e3Rf1GY8aMyaONj6a5uXm7e2yv30tVV1dnzJgxXXwV+GECAAAAAGB3JcAOAAAAAAB0qKqq6jhR/aXq6uq2+WyjMWPGdDpw3pl+7Bw/TAAAAAAA7K4E2AEAAIDdUqFQSJK0Pt3aI/029tnYFwBgT+eHCQAAAACA3ZEAOwAAALBbampqSpIsvm5xj/edNGlSj/YEAAAAAAAAoHME2AEAAIDdUk1NTZJk9HmjUz6qvNv9Wp9uzeLrFnf0BQAAAAAAAKD3CbADAAAAu6XKysokSfmo8lTWVPZ4XwAAAAAAAAB6X3FfDwAAAAAAAAAAAAAAwMAgwA4AAAAAAAAAAAAAQK8o7esBAAAAANj1Wlpa0tjYuNm9hoaGzT5vqra2NlVVVb0yGwAAAAAAADBwCLADAAAADACNjY2ZMGHCVp/V19dvcW/BggUZP378rh4LAAAAAAAAGGAE2AEAAAAGgNra2ixYsGCze4VCIU1NTampqUllZeUW9QAAAAAAAAA9TYAdAAAAYACoqqra6onqkyZN6oNpAAAAAAAAgIGquK8HAAAAAAAAAAAAAABgYBBgBwAAAAAAAAAAAACgVwiwAwAAAAAAAAAAAADQKwTYAQAAAAAAAAAAAADoFQLsAAAAAAAAAAAAAAD0itK+HgAAAAAAAOg7ixYtSnNz83ZrGhoaNvu8PdXV1RkzZkyPzAYAAAAAwJ5HgB0AAAAAAAaoRYsWpa720LQU1nSqvr6+foc1VZUVaWh8VIgdAAAAAICtEmAHAAAAAIABqrm5OS2FNZl1amXq9i3eZl1hfXualrelZnhxKkuLtlnX8I+21N9WSHNzswA7AAAAAABbJcAOAAAAAAADXN2+xRk/smS7NZMO7KVhAAAAAADYowmwAwAAAADAAFUoFJIkDc0beqTfxj4b+wIAAAAAwEsJsAMAAAAAwADV1NSUJKmfs6bH+06aNKlHewIAAAAAsGcQYAcAAAAAgAGqpqYmSTJrRkXqqku63a+heUPq56zp6AsAAAAAAC8lwA4AAAAAAANUZWVlkqSuuiTjR3Y/wP7SvgAAAAAA8FLFfT0AAAAAAAAAAAAAAAADgxPYAQAAgN1a69Ot233etrYt65rXpay6LMWDtv2z+jvqAwAAAAAAAMCuJ8AOAAAA7Jaqq6tTUVmRxdct7rGeFZUVqa6u7rF+AAAAAAAAAHSNADsAAACwWxozZkwebXw0zc3N261raGhIfX19Zs2albq6uu3WVldXZ8yYMT05JgAAAAAAAABdIMAOAAAA7LbGjBnT6cB5XV1dxo8fv4snAgAAAAAAAKA7BNgBAAAAAAB2A4sWLdrst88UCoU0NTV1en1NTU0qKys7vvbbZwAAAACA3ZEAOwAAAAAAQB9btGhR6moPTUthTY/1rKqsSEPjo0LsAAAAAMBuRYAdAAAAAACgjzU3N6elsCazTq1M3b7FSZLC+vY0LW/rdI+a4cWpLC1KkjT8oy31txXS3NwswA4AAAAA7FYE2AEAAAAAAPpYoVB48aKoveNeZWlR6qpLdq7h/9+noy8AAAAAwG5CgB0AAAAAAKCPNTU1JUnq56zp8b6TJk3q0Z4AAAAAAN0hwA4AAAAAANDHampqkiSzZlTs/Knrm2ho3pD6OWs6+gIAAAAA7C4E2AEAAAAAgF2mpaUljY2Nm91raGjY7POmamtrU1VV1Suz7U4qKyuTJHXVJRk/svsB9pf2BQAAAADYXfRogL2trS1//etf8z//8z9ZtWpVNmzYsMM17373u3tk7yeffDJf+9rXctddd+Wpp55KeXl5XvGKV+Rtb3tbPvzhD++SN7tbWlpy+OGH54knnkiSHHTQQR2/4hMAAAAAAPqLhn+0bfd5YX17mpa3pWZ4cSpLi7rUp7GxMRMmTNhqfX19/Rb3FixYkPHjx+9gYgAAAAAA+qseCbAXCoVcccUV+c53vpOlS5d2el1RUVGPBNh/8pOfpL6+PitXruy419LSkoceeigPPfRQvvvd7+auu+7K2LFju73Xpi655JKO8DoAAAAAAPQ31dXVqaqsSP1thR7rWVVZkerq6o6va2trs2DBgs1qCoVCmpqaUlNTs8UJ4bW1tT02CwAAAAAAu59uB9gLhUKmT5+e3/72t2lvb++Jmbrk4YcfzplnnplCoZAhQ4bkwgsvzLRp01IoFHLzzTfnO9/5ThYuXJgTTjghDz30UIYOHdpj+371q19NRUVFysrKsmrVqh7pCwAAAAAAvWXMmDFpaHw0zc3N261raGhIfX19Zs2albq6uu3WVldXZ8yYMR1fV1VVbfVE9UmTJu3c0AAAAAAA9GvdDrB/5StfyW9+85skyeGHH56PfOQjmTBhQvbee+8UFxd3e8AdOf/881MoFFJaWpp77rknEydO7Hg2ffr0HHLIIfnUpz6VhQsX5uqrr85ll13W7T03bNiQ973vfdmwYUMuvfTSfO973xNgBwAA2IO1tLSksbFxs3s7OjW0qqqqN0cEANhpY8aM2Sxwvj11dXVbDaPTcxr+0bbd54X17Wla3paa4cWpLC3a6T4AAAAAAH2l2wH2W265JUly7LHH5le/+lUGDRrU7aE667e//W3mzZuXJHnPe96zWXh9o5kzZ+b6669PQ0NDrr322lx88cUpKyvr1r7XXnttFixYkEMPPTSf/vSn873vfa9b/QAAANi9NTY2ZsKECZ2uX7BggWAXAABdUl1dnarKitTfVuixnlWVFamuru6xfgAAAAAAPaHbAfa//e1vKSoqyqc+9aleDa8nye23395xfe655261pri4OO9+97tz4YUXZvny5bn33ntz/PHH7/SeTz75ZC655JIkybe+9a1ef80AAAD0vtra2ixYsGCzew0NDamvr8+sWbNSV1e3RT0AAHTFmDFj0tD4aJqbm7dbt73/HfpS1dXVnT5dHwAAAACgt3Q7wD5o0KAUCoU+eQP0/vvvT5IMHjx4uyfhTZkypeN6/vz53Qqwf+hDH8rq1avzrne9K1OnTt3pPgAAAPQfVVVV2zxRva6uzmnrAAD0iDFjxnT631v871AAAAAAoL8q7m6DjafKPfPMM90epqsaGhqSJGPHjk1p6baz+JuefLdxzc64+eab89Of/jQjRozI1VdfvdN9AAAAAAAAAAAAAAAGom4H2M8555y0t7fnxz/+cU/M02lr1qzp+DWao0eP3m7tiBEjMnjw4CTJU089tVP7LVu2LB/72MeSJF/84hez77777lSfJGltbc3KlSs3+wAAAAAAAAAAAAAA2NN1O8D+vve9L9OnT8+NN96Ym266qSdm6pRVq1Z1XA8ZMmSH9RsD7C+88MJO7ffJT34yzz77bCZOnJj3ve99O9VjoyuvvDLDhg3r+DjwwAO71Q8AAAAAAAAAAAAAoD8o7WzhokWLtvns61//et73vvelvr4+t912W975znemtrY2VVVVO+w7ZsyYzo6wmTVr1nRcDxo0aIf15eXlSZJCodDlvX7961/n+9//fkpLS/Otb30rRUVFXe6xqQsvvDAXXHBBx9crV64UYgcAAGBA2LBhQ+bNm5clS5Zk5MiRmTx5ckpKSvp6LAAAAAAAAAB6SacD7AcffPAOa9rb23Prrbfm1ltv7VTPoqKirF+/vrMjbKaioqLjeu3atTusb21tTZJUVlZ2aZ/W1tacd955aW9vz/nnn58jjjiia4NuRXl5eUegHgAAAAaKOXPm5IILLsiTTz7Zce+ggw7KNddckxkzZvThZAAAAAAAAAD0luLOFra3t+/wo7N1L12zM4YOHdpx/cILL+ywfvXq1UmSIUOGdGmfz3/+83n00Udz4IEH5vLLL+/akAAAAECSF8Prp512Wp577rnN7j/33HM57bTTMmfOnD6aDAAAAAAAAIDe1OkT2K+//vpdOUeXVVRUZJ999snSpUuzePHi7dYuW7asI8B+4IEHdmmfq666Kknyxje+MT/5yU+2WrOx9+rVq3PzzTcnSfbbb79Mnz69S3sBAADAnmjDhg35wAc+kCR5wxvekIsvvjiHH354HnnkkXz+85/PnXfemQ9+8IM5+eSTU1JS0sfTAgAAAAAAALArdTrAfvbZZ+/KOXbKYYcdlnnz5uXxxx/P+vXrU1q69ZfT2NjYcV1XV9elPdauXZvkxQD/jkL8zc3Necc73pEkmTJligA7AAAAJJk7d27+8Y9/5Ljjjssdd9yR4uIXfyHcMccckzvuuCNTpkzJ/fffn7lz5+YNb3hDH08LALDnamlp2ezfTJKkoaFhs8+bqq2tTVVVVa/MBgAAAAAMHJ0OsO+OjjvuuMybNy+rV6/OggUL8rrXvW6rdffdd1/H9aRJk3prPAAAACAvBtiT5PLLL+8Ir29UXFycSy+9NG9605sE2AEAdrHGxsZMmDBhq8/q6+u3uLdgwYKMHz9+V48FAAAAAAww3Q6wf/azn02SfOhDH0p1dXWn1ixbtixf//rXkySXXHLJTu99yimn5Morr0zy4gnpWwuwt7W15cYbb0ySDB8+PNOmTevSHu3t7TusqampyZNPPpmDDjooTU1NXeoPAAAAAACwNT19YnptbW0WLFiw2b1CoZCmpqbU1NSksrJyi3oAAAAAgJ7W7QD7ZZddlqKiopx++umdDrA///zzHeu6E2A/+uijM3ny5MybNy/f+973cvbZZ2fixImb1Vx99dUdb+Kef/75KSsr2+z53LlzO0LtZ599dm644YadngcAAADY0tSpU3PFFVfk0ksvzdSpUzc7hb2trS2XXXZZRx0AAP+rp09Mr6qq2upzv70WAAAAAOhN3Q6w97Vrr702kyZNSqFQyPHHH5+LLroo06ZNS6FQyM0335zrrrsuSTJu3LjMnDmzj6cFAACAgWfq1KnZb7/9cv/99+fkk0/ORRddlMMPPzyPPPJIvvCFL2T+/PnZb7/9BNgBYDfR06d+s/OcmA4AAAAA7In6JMC+bt26JNniNPSdceSRR+aWW25JfX19Vq5cmYsuumiLmnHjxuWuu+7K0KFDu70fAAAA0DUlJSX55je/mdNPPz2//OUvc+edd3Y8q6qqSlFRUb75zW+mpKSkD6cEADbq6VO/2XlOTAcAAAAA9kR9EmD/wx/+kCTZd999e6TfSSedlD/96U+59tprc9ddd2Xx4sUZNGhQxo4dmzPOOCMf+chHnP4CAAAAfWjGjBmZPXt2Zs6cmaampo77+++/f7785S9nxowZfTccALAZp34DAAAAALArdTnAfuONN271/h133JGHHnpou2tbW1vzt7/9Ld///vdTVFSUo446qqvbb9NBBx2Ua665Jtdcc02X1k2dOjXt7e3d2nvTf3gHAAAAtm7GjBk5+eSTM2/evCxZsiQjR47M5MmTnbwOALsZp34DAAAAALArdTnAfs4556SoqGize+3t7fmXf/mXTvdob29PcXFxzj///K5uDwAAAPRjJSUlmTp1al+PAQAAAAAAAEAfKd6ZRe3t7R0fW7u3vY+ysrJMmjQp//Vf/5UpU6b02AsBAAAAAAAAAAAAAGD31uUT2J944omO6/b29rz85S9PUVFRfv7zn+eQQw7Z5rqioqJUVFRkn3328avBAQAAAAAAAAAAAAAGoC4H2A866KCt3h81atQ2nwEAAEB/smjRojQ3N2+3pqGhYbPP21JdXZ0xY8b02GwAAAAAAAAA0J91OcD+Um1tbT0xBwAAAOwWFi1alENrD82awppO1dfX12/3eUVlRR5tfFSIHQAAAAAAAADSAwF2AAAA2JM0NzdnTWFNRp83OuWjyrdZ17a2Leua16WsuizFg4q3WtP6dGsWX7c4zc3NAuwAAAAAAAAAEAF2AAAA2KryUeWprKncftG43pmF/9XS0pLGxsbN7jU0NGz2eVO1tbWpqqrqldkAAAAAAAAA2LFOB9inT5/e45sXFRXll7/8ZY/3BQAAAPrGokWL0tzc3PF1oVBIU1NTp9fX1NSksvJ/f3Cgurp6s9PrGxsbM2HChK2ura+v3+LeggULMn78+E7vDwAAAAAAAMCu1ekA+9y5c1NUVJT29vZt1hQVFW329cbazt4HAAAA+q9FixalrvbQtBTW9FjPqsqKNDQ+2hFir62tzYIFCzar2RiSf2n4fWM9AAAAAAAAALuPTgfYX//61283cP7000/nscceS/JiML2mpib7779/kuTZZ59NU1NT2tvbU1RUlEMOOSSjRo3q5ugAAADA7qS5uTkthTWZdWpl6vYtTpIU1renaXlbp3vUDC9OZemL7z80/KMt9bcV0tzc3BFgr6qq2uqJ6pMmTeqBVwAAAAAAAADArtalE9i35Wc/+1nOOuus7LXXXrn44otz7rnnprq6erOa5ubmXH/99fnCF76Qf/zjH/nqV7+af/qnf9rpwQEAAIDdU92+xRk/sqTj60kH9uEwAAAAAAAAAOxWOh1g35aFCxfmbW97W0pLSzN//vy88pWv3GpddXV1PvnJT+aEE07IpEmTcuaZZ+ahhx7KuHHjujsCAAAAsBsoFApJkobmDT3Sb2OfjX0BAAAAAAAA6P+6HWC/+uqrs3r16nz+85/fZnh9U4cddlg+9alP5eKLL86Xv/zlXHfddd0dAQAAANgNNDU1JUnq56zp8b6TJk3q0Z4AAAAAAAAA9I1uB9j/+7//O0VFRZk+fXqn10ybNi1J8otf/KK72wMAAAC7iZqamiTJrBkVqasu6Xa/huYNqZ+zpqMvAAAAAAAAAP1ftwPsS5Ys6fKaoqKiJMkzzzzT3e0BAACA3URlZWWSpK66JONHdj/A/tK+AAAAAAAAAPR/3Q6wDx8+PM8991zuu+++vO51r+vUmrlz5yZJhg0b1t3tAQAAgN1Mwz/atvu8sL49TcvbUjO8OJWlRTvdBwAAAAAAAID+p9sB9smTJ2f27Nn54he/mFNOOSXjxo3bbv3ChQtz1VVXpaioKMcdd1x3twcAAAB2E9XV1amqrEj9bYUe61lVWZHq6uoe6wcAAAAAAABA3+p2gP2CCy7InDlzsmLFihxzzDG55JJL8u53vzt77733ZnXLli3LjTfemM997nNZvnx5iouLM3PmzO5uDwAAAOwmxowZk4bGR9Pc3LzduoaGhtTX12fWrFmpq6vbbm11dXXGjBnTk2MCAAAAAAAA0Ie6HWA/5phj8m//9m+ZOXNmVqxYkZkzZ+YTn/hEDj744Oy3334pKirKs88+myeeeCLt7e1pb29PknzpS1/KMccc0+0XAAAAAOw+xowZ0+nAeV1dXcaPH7+LJwIAAAAAAABgd9LtAHuSfPzjH09NTU0++tGP5umnn057e3v+9re/5X/+53+SpCO0niQjR47M17/+9cyYMaMntgYAAAAAAAAAAAAAoJ/okQB7kpx66qk58cQTc8cdd+QXv/hF/vznP+f5559PkowYMSKvetWr8sY3vjGnnHJKysrKempbAAAAAAAAAAAAAAD6iR4LsCdJWVlZTj/99Jx++uk92RYAAAB6TaFQSJK0Pt3a7V4be2zsCQAAAAAAAAADXY8G2AEAAKC/a2pqSpIsvm5xj/acNGlSj/UDAAAAAAAAgP5KgB0AAAA2UVNTkyQZfd7olI8q71av1qdbs/i6xR09AQAAAPqjDRs2ZN68eVmyZElGjhyZyZMnp6SkpK/HAgAAoJ8SYAcAAIBNVFZWJknKR5WnsqayR3sCAAAA9Ddz5szJzJkzO35rXfLiAQBXX311ZsyY0XeDAQAA0G91OsC+8aeni4qKsn79+i3u74yX9gIAAAD2LC0tLWlsbNzsXkNDw2afN1VbW5uqqqpemQ0AAADYvjlz5uT000/PiSeemJtuuimHH354HnnkkXzhC1/4/9j7/+C2rvvO/38JIEUA/qWMoSRUaASsXQto6c82pJ3QpOHQ6aw7/YQpGZhJZxuM0x87arNtt9+Wqnfpjif2tCVnmjAdd3anGzX5ONNhS3eXppmt7Gk3TR0bdpwmglNnsQPQrmsEpsXEulnLsk2QogB+/1AAExJ+kbgkDoDnY8ZD6d6jg0O+fHGJe9/3HE1MTGhhYYEidgAAAADAjtVcwL61tbWj7QAAAAAAAMlkUgMDAyX3RSKRy7bFYjH19/fv9bAAAAAAAEAV2WxWk5OTGh0d1dLSkhwOhyRpcHBQS0tLGh8f1/HjxzU2NlbXxHcAAAAAgPZTcwH7Zz/72R1tBwAAAAAACAQCisVikqR//Md/1J/+6Z/q9OnThf1HjhzR7/7u7+ojH/lIoT0AAAAAAGi8aDSqVCql+fn5QvF6nsPh0NTUlIaGhhSNRjUyMtKYQQIAAAAAmhIF7AAAAAAAYM94PB719/drcXFR99xzj0ZHR/XII48ULTl+zz33sOQ4AAAAAACGWV1dlST19fWV3J/fnm8HAAAAAECtHNWbvOOLX/yiEonEXo0FAAAAAAC0oEuXHB8cHNSVV15ZWHJ8dHRUx48fVzabbfRQAQAAAADAj3V3d0uS4vF4yf357fl2AAAAAADUakcF7J/5zGfU19en97znPbrrrrv04IMP6rvf/a62trb2anwAAAAAAKDJ5Zccv/fee8suOf7yyy8rGo02aIQAAAAAAOBSoVBIfr9f09PTyuVyRftyuZxmZmbU29urUCjUoBECAAAAAJpVx07/wdbWls6cOaOlpSUtLS1Jkq6++moNDQ3p9ttv1+23365bbrlFHR077hoAAAAAAGNsnN6ouD93PqdNa1Od3k45DpZ+PrxaH+2CJccBAAAAAGgua2trSiaT+s3f/E3dc889uuOOO/RLv/RLcjqdymaz+uu//mtFo1H9yZ/8iZ5//nkFAgF5PJ5GDxsAAAAA0CR2VGX+la98RdFoVNFoVC+88EJh+xtvvKG/+7u/09/93d9Jklwulz70oQ8VCtpvvfVWud1ue0cOAAAAAMAe8Hq9crldWjmxYkt/LrdLXq/Xlr6a1fYlxwcHBy/bz5LjAAAAAACYJZlMamBgoPD3p556Sk899dRl7X7/939fkhSLxdTf379v4wMAAAAANLcdFbDffffduvvuuyVJZ86cKRSzR6NRPf/888pms5KkTCajJ598Uk8++aQkqbOzU/39/YWC9ttuu01XX321zd8KAAAAAAD18/l8Wk4uy7Ksiu0SiYQikYjm5uYUDAbLtvN6vfL5fHYPs6lsX3J8aWlJDsc7M9az5DgAAAAAAOYJBAKKxWKFv2ezWS0tLWl6elr33nuvxsfH5XQ6i9oDAAAApsmvLLRdJpNRKpWS3++/bGJmVhYC9s+OCti3O3z4sMLhsMLhsCTprbfe0je/+c1CQfu3v/1tra+vS5LOnz+vf/qnf9I//dM/6XOf+5wcDoduuukmffjDH9af/umf2vOdAAAAAABgE5/PV3PReTAYZIaxKpxOp2ZnZzUxMaHx8XFNTU2pr69P8XhcMzMzOnnypBYWFopufAMAAAAAgMbxeDyXXe9wOp2anp7WXXfdxbUQAAAANIVLVxaqhpWFgP2z6wL2S1155ZW68847deedd0qSNjc39Z3vfEfRaFRPPfWUvvnNb+qNN96QdPHp7H/+53/W888/TwE7AAAAAABtIBwOa2FhQZOTkxoaGips7+3t1cLCQuEBeQAAAAAAAAAAAMAOl64sJFVeZZmVhYD9Y1sB+6U6Ozs1NDSkoaEh/af/9J90/vx5feUrX9Gf/Mmf6OWXX9bW1tZevTQAAAAAADBQOBzW2NiYotGoVldX1d3drVAoxMzrAAAAAAAAAAAAsF2plYXyWGUZaKw9K2Df2NjQt771LT311FOKRqP61re+pbfffluSKF4HAAAAAKBNOZ1OjYyMNHoYAAAAAAAAAAAAAIAGsa2A/Y033tAzzzyjaDSqp556SrFYTJubm5LeKVh3Op266aabdNttt+m2225TKBSy6+UBAAAAAAAAAAAAAAAAAAAAAIbbdQH7D37wA0Wj0ULBejweLxSq5796PB598IMfLBSs33rrrbrqqqvsGTkAAAAAAAAAAAAAAAAAAAAAoKnsqID9K1/5SqFo/aWXXipszxese71eDQ8PF2ZX7+/vV0eHbZO8AwAAAEDbWFtbUzKZLNqWyWSUSqXk9/vldruL9gUCAXk8nv0cIgAAAAAAAAAAAAAAwI7tqLr8V3/1V3XgwIFCwfr1119fmF39tttu09GjR/dkkAAAAADQbpLJpAYGBmpuH4vF1N/fv4cjAgAAAAAAAAAAAAAAqN+upkfv6OjQJz7xCU1MTOi2227T4cOH7R4XAAAAALS1QCCgWCxWtC2RSCgSiWhubk7BYPCy9gAAAAAAAAAAAAAAAKbbUQH7u971Lr3++uu6cOGCHn74YT388MOSpJ/8yZ/UbbfdplAopNtuu03XX3/9ngwWAAAAANqFx+MpO6N6MBhktnUAAAAAAAAAAAAAANCUdlTA/qMf/Uj/5//8H0WjUT311FOKRqN69dVX9cILL+iFF17QQw89JEl6z3veo9tuu63w3wc+8AEdOHBgT74BAAAAAAAAAAAAAAAAAAAAAEBz2FEBuyT99E//tH76p39av/EbvyFJSqVShWL2aDSqF154QT/4wQ+0sLCgRx55RJJ05ZVXanBwsDBL++DgoFwul73fCQAAAAAAP7a2tqZkMlm0LZPJKJVKye/3y+12F+0LBALyeDz7OUQAAAAAAAAAAAAAANrSjgvYL+X3++X3+3X33XdLks6cOVNU0P7888/rzTff1Ne+9jX9wz/8w8UX7ejQBz7wAYVCIX3uc5+rdwgAAAAAABRJJpMaGBiouX0sFlN/f/8ejggAAAAAAAAAAAAAAEg2FLBf6vDhw7rrrrt01113SZLefPNNPfPMM4pGo3rqqad06tQpbWxs6Nvf/ra+853vUMAOAAAAALBdIBBQLBYr2pZIJBSJRDQ3N6dgMHhZewAAAAAAAAAAAAAAsPdsL2C/1FVXXaWf+Imf0KuvvqpXXnlFqVRKp0+f1tbW1l6/NAAAAACgTXk8nrIzqgeDQWZbBwAAAAAAAAAAAFpMOp2WZVkV2yQSiaKvlXi9Xvl8PlvGBqCY7QXsW1tb+ud//mdFo9HCf2fOnLmsDQAAAAAAAAAAAAAAAAAAAFCvdDqto4GjWs+s19Q+EolUbeNyu7ScXKaIHdgDdRewb25u6p/+6Z8Kxerf/OY39eabbxb2X1qsfv311ysUCun222/X7bffXu/LAwAAAAAAAAAAAAAAAAAAoI1ZlqX1zLp6jvWo60hX2Xa58zltWpvq9HbKcdBRtt3G6Q2tnFiRZVkUsAN7YMcF7G+99Za++c1v6qmnnlI0GtV3vvMdbWxsFPZvL1g/cOCA+vr6dPvttxeK1ru7u+0ZOQAAAAAAAAAAAAAAAAAAAPBjXUe65Pa7Kze6cX/GAqC8HRWw33zzzXr++eeVy+UK27YXrHd0dOgDH/hAoWA9FArpXe96l32jBQAAAAAAAAAAAAAAAAAAAAA0rR0VsD/33HNFf3e5XPrgBz+o22+/XbfffrtuvfVWXXHFFbYOEAAAAAAAAAAAAAAAlLe2tqZkMlm0LZPJKJVKye/3y+0unoEyEAjI4/Hs5xABAAAAACjYUQH7lVdeqeHh4ULB+i233KKDBw/u1dgAAAAAAAAAAAAAAEAVyWRSAwMDNbePxWLq7+8v/D2dTsuyrIr/JpFIFH2txOv1yufz1TweAAAAAEB72VEB+9mzZ+VwOPZqLAAAAAAAAAAAAAAAYIcCgYBisVjRtkQioUgkorm5OQWDwcva56XTaR0NHNV6Zr2m14pEIlXbuNwuLSeXKWIHAAAAAJS0owJ2itcBAAAAAAAAAAAAADCLx+MpmlF9u2AwWHafJFmWpfXMunqO9ajrSFfZdrnzOW1am+r0dspxsHztwMbpDa2cWJFlWRSwAwAAAABK2lEBOwAAAAAAAAAAAAAAaD1dR7rk9rsrN7pxf8YCAAAAAGhtFLADAAAAAAAAAAAAAAAAAACgaWUyGUkXVwSyQ76ffL8A7EUBOwAAAACg6aXTaVmWVbFNIpEo+lqJ1+tliWsAAAAAANAWKPQBAABAK0ilUpKklRMrtvc7PDxsa58AKGAHAAAAADS5dDqtYOCo1jLrNbWPRCJV23jcLiWSyxSxAwAAAACAlkehDwAAAFqB3++XJPUc61HXka66+9s4vaGVEyuFfgHYiwJ2AAAAADAAM4jv3iuvvKK1zLr+8I4u9b7rQNl2Gxek02/mdOQqh7oqfBp++fUt3ffEul555ZW2+RkCAAAAAID2RaEPAAAAWoHb7ZYkdR3pktvvtr1fAPaigB0AAAAAGiydTuto4KjWbZxB3OV2ablNZhDPzxJ23xP2LHO9vV9mCQMAAAAAAK2OQh8AAAAAwH6jgB0AAAAAGsyyLK1n1qvOcpU7n9OmtalOb6ccBx1l2+VnubIsqy0K2POzec2FXQp6nXX3l7CyiiyuM0sYAAAAAAAwlp2r+dWy2h8AAAAAAHaigB0AAAAADFHTLFc37s9Ymkl+Nq+g16n+7voL2C/tFwAAAAAAwCTpdFrBwFGt2biaHwAAAAAA+4kCdgAAAAAAAAAAAAAAmoRlWVrLrGvu424FD5dfpS9zYUupszn5Dznk7jhQtt3jL17QfU9s7MVQAQAAAAAoiQJ2AAAAAACqWFtbUzKZLNpWaRnuQCAgj8ezL2MDAAAAAADtKXjYUXU1uuHrqveTsLI2jQgAAAAAgNpQwI66ZbNZRaNRra6uqru7W6FQSE5n5Qsl2BtkYRbyMAdZmIMszEEW5iALs5CHOUzLIplMamBgoOS+Ustwx2Ix9ff37/Ww9oVpWbQzsjALeZiDLMxBFuYgC3OQhVnIwxxkYQ6yMAdZmIMszEIe5iALc5CFOcjCHGRhFvIAUAsK2FGXxcVFTU5OKpVKFbb5/X7Nzs4qHA43bmBtiCzMQh7mIAtzkIU5yMIcZGEW8jCHiVkEAgHFYrGibZlMRqlUSn6/X263+7L2rcDELNoVWZiFPMxBFuYgC3OQhTnIwizkYQ6yMAdZmIMszEEWZiEPc5CFOcjCHGRhDrIwC3kAqJWj0QNA81pcXNTExIRuuukmPfvss3rzzTf17LPP6qabbtLExIQWFxcbPcS2QRZmIQ9zkIU5yMIcZGEOsjALeZjD1Cw8Ho/6+/uL/hseHtanPvUpDQ8PX7bP4/E0ZJx2MjWLdkQWZiEPc5CFOcjCHGRhDrIwC3mYgyzMQRbmMCmLjdMbyqQyZf97+4W3dfabZ/X2C29XbLdxemPfxmwnk7IAeZiELMxBFuYgC3OQhVnIA8BOHNja2tpq9CDa3blz53TNNdfojTfe0NVXX93o4dQkm83qhhtu0E033aSlpSU5HO88C5HL5TQ+Pq54PK4XX3yxrZf/6Onp0auvvqr3ve99WllZ2ZPXIAuzkIc5yMIcZGEOsjAHWZjFhDyee+45DQwM6Pr7r5fb767+D6rIpDJ66f6XFIvF1N/fb8MI98dus8j//OY+7lbwcPnntDMXtpQ6m5P/kEPujgNl2yXO5BR5NNN0Pz87mXBc4CKyqM1+fP6WyMMkZGEOsjAHWdSGa7bthzzMQRbmIIvqTP+Mkb8WEjt2hfq768/osRc3NTqfkWysHHC5XVpOLsvn89nX6R7iuDALeZiDLKoz/ZwB+5GFOcjCLCbk0W73XJux7hTYrqPRA0BzikajSqVSmp+fLzrZSJLD4dDU1JSGhoYUjUY1MjLSmEG2CbIwC3mYgyzMQRbmIAtzkIVZyMMcu83C6/XK43Yp8mjGtrF43C55vV7b+ms2HBfmIAuzkIc5yMIcZGEOsjAHWZiFPMxBFuYgC3OYkkX3lQ5pS5qbm1MwGCzbLpFIKBKJVG0nXbxe0yzF65I5WeAi8jAHWZiDLMxBFuYgC7OQB4CdooAdu7K6uipJ6uvrK7k/vz3fDnuHLMxCHuYgC3OQhTnIwhxkYRbyMMdus/D5fEokl2VZVsX+W/kmq904LsxBFmYhD3OQhTnIwhxkYQ6yMAt5mIMszEEW5jAti2AwWNPMkrW2ayamZdHuyMMcZGEOsjAHWZiDLMxCHgB2qvza6kAF3d3dkqR4PF5yf357vh32DlmYhTzMQRbmIAtzkIU5yMIs5GGOerLw+Xzq7++v+F++aD1/k7XSf+1cvC5xXJiELMxCHuYgC3OQhTnIwhxkYRbyMAdZmIMszEEW5iALs5CHOcjCHGRhDrIwB1mYhTwA7NSBra2trUYPot2dO3dO11xzjd544w1dffXVjR5OTbLZrG644QbddNNNWlpaKlr2I5fLaXx8XPF4XC+++KKcTmcDR9pYPT09evXVV/W+971PKysre/IaZGEW8jAHWZiDLMxBFuYgC7OYkMdzzz2ngYEBXX//9XL73XX3l0ll9NL9LykWizXVbFh7nUX+59xsP5dGMOG4wEVkUZv9+PwtkYdJyMIcZGEOsqgN12zbD3mYgyzMQRbVmf4Zo3CN49gV6u+uP6PnVrMaOPF20TWTtbU1JZPJonaVVrcLBALyeDx1j6VROC7MQh7mIIvqTD9nwH5kYQ6yMIsJebTbPddmrDsFtmMGduyK0+nU7OysTp48qfHxcT377LN688039eyzz2p8fFwnT57U5z//eU7++4AszEIe5iALc5CFOcjCHGRhFvIwB1mYgyzMQRZmIQ9zkIU5yMIcZGEOsjALeZiDLMxBFuYwOYtkMqmBgYGi/yKRiCQpEolctu/SYvdmY3IW7Yg8zEEW5iALc5CFOcjCLOQBYKeYgd0AzfwkzOLioiYnJ5VKpQrbent79fnPf17hcLhxAzPEfj1pK5GFacjDHGRhDrIwB1mYgyzM0sg82m02gGr2KgtmYN853qfMQRaV7efnb4k8TEIW5iALc5BFZVyzbV/kYQ6yMAdZlGf6Z4xGzcCeyWSUSqXk9/vldhdfw2r2GdjzOC7MQh7mIIvyTD9nYO+QhTnIwiz15lHP76Htds+1metOAYkCdiM0+xtJNptVNBrV6uqquru7FQqFeFLqx/b7gwpZmIU8zEEW5iALc5CFOcjCLI3Ko90uptRiL7KggH13eJ8yB1mUt9+fvyXyMAlZmIMszEEW5XHNtr2RhznIwhxkUZrpnzGeeeYZ3XbbbZoLuxT01p9Xwsoqsriup59+WsPDw3X31+w4LsxCHuYgi9JMP2fsh3Z96EkyL4t2RhZmqSeP/P28Wm2/79du91ybve4UoIDdALyRtK5GfFABAABA4+zkIm07zwbQKBSwA62Lz98AgFpxzgAA1ML088Vf/dVfKRKJ2N7v3NycPvWpT9neLwC0MtPPGfuhnmJTALhUqfutiURCkUhEc3NzCgaDRfva+Z4rdadodh2NHgAAAAAAtIpkMlnzRVpTL3QAAAAAAADAbH6/X5Jsn4E93y8AADsRCAQUi8WKtlUrNgWAcjweT9l7qMFgkPurQAuhgB0AAAAAbLKTi7RcoN1b5WZn2P51u1ZashQAAACA+XaygpfEZxYAxfLvEUGvU/3d9RewX9ovAAA7QbEpAADYDQrYAQAAAMAmXKQ1R6XZ8Estsc2M+AAAAAD2005W8JL4zAIAAAAAQK02Tm9U3J87n9OmtalOb6ccBx277gdAfShgBwAAAAC0nFKz4VebzRAAAAAA9stOVvDKtwcAAAAAAOV5vV653C6tnFixrU+X2yWv12tbfwDeQQE7AAAAAKDllJsNf3h4uAGjAQAAAIBirOAFAAAAAIC9fD6flpPLsiyrYrtKD5Bfyuv1yufz2TlMAD9GATsAAAAAAAAAAAAAAAAAAACams/nq7ngnAfIgcaigB0AAAAAGiyTyUiSNk5v2NJfvp98vwAAAAAAAACa09rampLJZNG2TCajVColv98vt9tdtC8QCMjj8eznEAE0Gd5XAACACShgBwAAAIAGS6VSkqSVEyu29zs8PGxrnwAAAAAAAAD2TzKZ1MDAQM3tY7EYM4kCqIj3FQAAYAIK2AEAAACgwfx+vySp51iPuo501d3fxukNrZxYKfQLAAAAAAAAoDkFAgHFYrGibYlEQpFIRHNzcwoGg5e1B4BK6n1fSafTsiyr4mskEomir5V4vV75fL5ahg6gBfGeArQvCtgBAAAAoMHyy3F2HemS2++u0nrn/QIAAAAAAABoTh6Pp+zMx8FgkFmRAexYPe8r6XRaRwNHtZ5Zr+m1IpFI1TYut0vLyWUKToE2lE6nFQwc1ZqN7yket0sJ3lOApkABOwAAAAAAAAAAAAAAAACgIsuytJ5Zr7qibO58TpvWpjq9nXIcdJRtl19R1rIsik2BNmRZltYy65r7uFvBw+XfKzIXtpQ6m5P/kEPujgNl2yXO5BR5NMN7CtAkKGAHAAAAAAAAAAAAAKDJJM7kKu7fSaEPAAA7UdOKsjfuz1gANL/gYYf6u50V2wxft0+DAbBvKGAHAAAAAAAAAAAAAKBJeL1eedwuRR7N2Nanx+2S1+u1rT8AAAAAACqhgB07tra2pmQyWbQtk8kolUrJ7/fL7S5+wjIQCMjj8eznENsGWZiFPMxBFuYgC3OQhVkuzYMsGodjwxxkYQ6yMAdZmGUneZDF3uLYMAdZmIMszEEWZuH8bQ6ODXOQhTnqycLn8ymRXJZlWRVfI5FIKBKJaG5uTsFgsGJbr9crn8+3i++k+XFcmIU8zEEW5iALc5CFOcjCLOQBYDdaooD9+9//vv7sz/5Mjz32mF555RV1dXXp+uuv1yc/+Un95m/+Zl1vdolEQl//+tf1ne98R//7f/9vvfbaa7IsS06nU+95z3t0yy236Jd+6Zf0C7/wCzpwoPyya60kmUxqYGCg5vaxWEz9/f17OKL2RRZmIQ9zkIU5yMIcZGGWneRBFnuLY8McZGEOsjAHWZiF87c5ODbMQRbmIAtzkIVZOH+bg2PDHGRhjnqz8Pl8NRecB4NBcqyA48Is5GEOsjAHWZiDLMxBFmYhDwC70fQF7H/7t3+rSCSic+fOFbatra3p1KlTOnXqlL70pS/pscce0w033LCr/v/4j/9Yf/VXf1Vy38svv6yXX35Z//2//3d9+MMf1iOPPKJrr712V6/TTAKBgGKxWNG2Sk/vBwKB/RxeWyELs5CHOcjCHGRhDrIwy6V5kEXjcGyYgyzMQRbmIAuz7CQPsthbHBvmIAtzkIU5yMIsnL/NwbFhDrIwB1mYgyzMQh7mIAtz1JtFOp2uadWO7V+rtWtXHBfmIAuzkAeA3WjqAvbvfve7+sVf/EVlMhldeeWVmpqa0h133KFMJqOHH35Yf/EXf6EXXnhBH/3oR3Xq1CldddVVO36Njo4OfehDH9Lw8LBuuukmvfe979Xhw4f1+uuvK5lM6otf/KLi8biefPJJfexjH9PTTz8th8OxB99t49Tyi2wlly4P0s7Lz9mhnjzIwl4cG+YgC3OQhTnIwiycv81h+rGxcXqj4v7c+Zw2rU11ejvlOFj+c0e1fkxgehbthCzMQRZm4fxtDo4Nc5CFOcjCHGRhFs7f5uDYMAdZmIMszEEWZrEzD7KoD8eGOezMYnV1VZ+YuEuZ9druG0QikV2/biviuDAHWZjFrjza/aEYoN0d2Nra2mr0IHbr9ttvVzQaVUdHh5566indeuutRfs/97nP6Z577pEkffazn9X999+/49e4cOGCOjrK1/lns1l98pOf1OLioiTpq1/9qn7hF35hR69x7tw5XXPNNXrjjTd09dVX73iMeymdTutoIKj1zJptfbrcHi0nE23xS0BPT49effVVve9979PKykrd/dmdRztlYTeODXOQhTnIwhxkYRbO3+Zo1LHx3HPPaWBgoOJSeBfHdlTrmXUbx+bScnLZyP9XeJ8yB1mYgyzqw+fv1sWxYQ6yMAdZ1MfOcwZZmKUVzt+1fH5sBhwb5iCL3TP9M4Zk33WpdtMqx0WrZNsK5+9W0SrHRiM0wzlDkuY+7lbwcPmJcTIXtpQ6m5P/kEPujgNl2y0lN/WHT51Xz7EedR3pqntcG6c3tHJiRU8//bSGh4fr7s9OHBfmIAuz7EUesWNXqL/bWXc/z61mNXDi7aq/I7XK71Im150CtWjaGdi//e1vKxqNSpJ+7dd+7bLidUmanJzUQw89pEQioQcffFB/8Ad/oM7Ozh29TqXidUlyOp36/d///UIBezQa3XEBu8ksy9J6Zk3Xjk6q89rryrbbunBeF974oTqueY8OdBws227zR6/oRydnZVkWvwDsQi15kMX+4NgwB1mYgyzMQRZm4fxtDpOPDZ/Pp+Xkck1LeJZbau9SJs8cYXIW7YYszEEWZrEzD7KoD8eGOcjCHGRhDrIwC+dvc3BsmIMszEEW5iALs3D+NgfHhjnsziLzr6f0RnROwcOOqsWhw+VfruDxFzclSSsn6i/W3y6VShlXwM5xYQ6yMIudeeTfowC0p6YtYF9aWir8+Vd+5VdKtnE4HLr77rs1NTWls2fP6oknntCdd95p+1iuuuqqwp/X1+2bMdEknddep6733lC5Uc9P7c9gUD0Pstg3HBvmIAtzkIU5yMIsnL/NYeqx4fP5ar5IFgwGm3o2gDxTs2hHZGEOsjALeZiDLMxBFuYgC3OQhVnIwxxkYQ6yMAdZmIMszEIe5iALc9iVxeaPXrFpRBcdueri7Ox2z8Du9/vr7muvcFyYgyzMYkcedr9HAWguTVvA/vTTT0uSrrjiCg0MDJRt9+EPf7jw52eeeWZPCtgffvjhwp8DgYDt/QMAAAAAAAAAAAAA0CjZbFbRaFSrq6vq7u5WKBSS01l5Jl8AQOvp6rhYwN51pEtuv9u2ft1u+/oCAADNoWkL2BOJhCTphhtuUEdH+W9je0F5/t/YwbIsvfjii/rSl76khx56SJLk9Xr1qU99yrbXAAAAAAAAAAAAAACgkRYXFzU5OalUKlXY5vf7NTs7q3A43LiBAQAAAACaVlMWsK+vr8uyLElST09Pxbbvete7dMUVV+jtt9/WK6/Ut+TEyMiInnzyyZL7vF6vHn30UR06dKhqPxsbG9rY2Cj8/dy5c3WNCwAAAAAAAAAAAADQvtbW1pRMJou25Sd4KzXRWyAQkMfjqdrv4uKiJiYmNDo6qvn5efX19Skej2t6eloTExNaWFigiB0AAAAAsGNNWcD+5ptvFv585ZVXVm2fL2B/66239mQ8//E//kfdd9998nq9NbWfmZnRAw88sCdjAQAAALC/qq30VOlG4XZer1c+n8+2cQEAAAAAAKB9JJNJDQwMlNwXiUQu2xaLxdTf31+xz2w2q8nJSY2OjmppaUkOh0OSNDg4qKWlJY2Pj+v48eMaGxuT0+ms/5sAAAAAALSNpixgX19fL/z54MGDVdt3dXVJkjKZTF2v+9BDD+ntt9/W1taWzp49q1OnTunP//zP9V/+y3/Rv/7rv+pLX/qS3vOe91TtZ2pqSr/3e79X+Pu5c+d03XXX1TU2AAAAAPsr+9brchwofQOwlGrtPG6XEsllitgBAAAAAACwY4FAQLFYrGhbJpNRKpWS3++X2+2+rH010WhUqVRK8/PzheL1PIfDoampKQ0NDSkajWpkZKTu7wEAAADtZSu7KUlKWFlb+sv3U2+dKID90ZQF7C6Xq/Dn8+fPV22/sbEhSZd9KN+p3t7eor+HQiF95jOf0Sc+8QmdPHlSt9xyi775zW+qp6enYj9dXV2FonrT5d/MN3/0ii395fvhJLE7duZBFvXh2DAHWZiDLMxBFmbh/G0Ou4+N86+9pNyW9OWPufQz3eVnmMpc2FLqbE7+Qw65Ow6UbJM4k1Pk0Ywsy2qLAnbep8xBFuYgC7Nw/jYHx4Y5yMIcZGEOsjCL6efvdDoty7Iqtql1BS/J7FW8ODbMQRbm2I8sPB5PyRnVh4eHd/06q6urkqS+vr6S+/Pb8+2aAceFWUw/f7cTjg1z2J3FhTd+eLHfC1u29NdOOC7MQRZmsTOP8z94UZIUWVyv0nJnUqlUXb8HA9gfTVnAftVVVxX+/NZbb1Vt//bbb0uSrrzyStvH4nK59NBDD+n973+/XnnlFd1zzz3667/+a9tfp1FSqZQk6UcnZ23vl5PEzu1FHmSxOxwb5iALc5CFOcjCLJy/zbFXx0ZXp9RfoYBdkoZZcKkI71PmIAtzkIVZOH+bg2PDHGRhDrIwB1mYxeTzdzqd1tHAUa1narshX8tKXy63S8uGruLFsWEOsjBHs2bR3d0tSYrH4xocHLxsfzweL2rXDJo1i1Zl8vm73XBsmGPPsjib417FDnFcmIMszLIXefzhHQf1//5kZ939JKysIovr8vv99Q8KwJ5rygJ2l8ula6+9Vj/60Y+0srJSse3rr79eKGC/7rq9+U3M6/VqeHhYX/va1/TVr35Vm5ub6uys/w3VBPk382tHJ9V5bf0/v80fvaIfnZzd05PE2tqakslk0bZqy+N5PJ49G4+d7MxjP7JoZc14bLQqsjAHWZiDLMzC+dscdh8bmX89pTeic/IfclRvjCK8T5mDLMxBFmbh/G0Ojg1zkIU5yMIcZGEWk8/flmVpPbOunmM96jpSfoXe3PmcNq1NdXo75ThY/rPmxukNrZxYMXYVL44Nc5CFOZo1i1AoJL/fr+npaS0tLcnheOe9KZfLaWZmRr29vQqFQns6Djs1QxbttGqHyefvdtMMx0a74F6GOTguzEEWZrEzj/x71B29HVUnDNuJS+sDAZipKQvYJemnfuqnFI1G9S//8i+6cOGCOjpKfyvbC5mDweCejefw4cOSLhZPW5bVVE+ZV5J/M++89jp1vfcG2/vdC8lkUgMDAzW3j8ViJZfTM9Fe5MEJe3ea8dhoVWRhDrIwB1mYhfO3OezOIr8snrvjQN19tRvep8xBFuYgC7Nw/jYHx4Y5yMIcZGEOsjBLM5y/u450ye2v0ueNtr5kQ3BsmIMszNGsWTidTs3OzmpiYkLj4+OamppSX1+f4vG4ZmZmdPLkSS0sLMjptK/YaK+ZnkW7rdrRDOfvdmH6sdFOuJdhDo4Lc5CFWezMg/cooL01bQH7bbfdpmg0qrfffluxWEwf+tCHSrZ78sknC3/eyyU/Xn311cKfr7zyyj17HVQXCAQUi8WKtiUSCUUiEc3NzV32IEMgENjP4QEAAAAAAAAAAABAUwiHw1pYWNDk5KSGhoYK23t7e7WwsKBwONzA0bWedlu1AwAAQJISZ3IV92cubCl1Nif/IUfFYvdq/QAwS9MWsI+Pj2tmZkaS9NBDD5UsYM/lcvrLv/xLSdKhQ4d0xx137MlYVlZW9Oyzz0qS3v/+9+uqq67ak9dBbTweT9kZ1YPBYNPMtg4AAAAAAAAAAAAAjRYOhzU2NqZoNKrV1VV1d3crFAo11czrzaZdVu0A0Lw2Tm9U3L+TB20AtC9H15VyHJAij2Zs69Pjdsnr9drWH4C907QF7B/84AcVCoUUjUb15S9/WZ/+9Kd16623FrWZnZ1VIpGQJP3O7/yOOjs7i/Z/4xvfKBS1f/rTn9ZXvvKVov0vvPCCVlZW9JGPfKTsON544w390i/9ks6fPy9Juvvuu+v91oyUX66jnK0L53XhjR+q45r36EDHwV33g9pU+jmSxf7i2DAHWZiDLMxBFmbh/G0Ou46NC2/80O6htR3ep8xBFuYgC7PYkQdZ2INjwxxkYQ6yMAdZmIXztzk4NsxBFuZo5iycTqdGRkb2/XX3SjNn0Yo4f5uDY8Mcpt7LOOQ6IB2QVk6s2Nany/BiU44Lc5CFWezII7fxlnJb0tzcnILBYNm+EomEIpFI1XaS5PV6WXkGaBJNW8AuSQ8++KCGh4eVyWR055136t5779Udd9yhTCajhx9+WCdOnJAk3XjjjZqcnNxx/6dPn9bP/uzP6t/8m3+j8fFxDQwM6L3vfa86Ojr0gx/8QM8884y+/OUv6wc/+IEkqa+vT//5P/9nW7/HRvN6vXK5PfrRyVnb+nS5PUb/4mkyu/Mgi93j2DAHWZiDLMxBFmbh/G2OvTg2JClhZW3rI5Oxb3YBk/E+ZQ6yMAdZmIXztzk4NsxBFuYgC3OQhVk4f5uDY8McZGEOsjAHWZiF87c5ODbMsVf3MuzSfaVDapNiU44Lc5CFWfbi/B0KhWp6HwgGg+rv77fldQE0XlMXsH/gAx/Q3/zN3ygSiejcuXO69957L2tz44036rHHHtNVV12169d5/vnn9fzzz1ds89GPflQPPfSQPB7Prl/HRD6fT8vJhCzLqtiuFX7xbAa15EEW+4NjwxxkYQ6yMAdZmIXztznsPjYef/xx3XfffYosrts2xlQqpeHhYdv6MxXvU+YgC3OQhVnszoMsdo9jwxxkYQ6yMAdZmIXztzk4NsxBFuYgC3OQhVk4f5uDY8McdmeRb2e3WotIm7nYlOPCHGRhFs7fAOzS1AXskvSxj31M3/ve9/Tggw/qscce08rKig4ePKgbbrhBn/jEJ/Rbv/Vbuy4qHx4e1t///d/rH/7hH3Tq1CmtrKzohz/8odbW1nT11Vert7dXg4OD+nf/7t+1dJGJz+er+STRzL94Nota8yCLvcexYQ6yMAdZmIMszML52xx2Hhv52dLnwi4Fvc66xpWwsoosrsvv99fVTzPhfcocZGEOsjALeZiDLMxBFuYgC3OQhVnIwxxkYQ6yMAdZmIMszEIe5iALc+zFvQw7VpPd3k+7rCjb7MdFNptVNBrV6uqquru7FQqF5HTWd0+rUZo9i1ZDHgDs0PQF7JL0/ve/X1/4whf0hS98YUf/bmRkRFtbW2X3d3Z26s4779Sdd95Z7xCxh9LpdE1PdG3/WglPdQEAAKAWbrdbkhT0OtXfbc/FvnyfAAAAAIDWkS/u2Ti9YUt/+X7apWgIAACgmlYq0rVbKpWSJFtXk83328qTfbaCxcVFTU5OFv4fkCS/36/Z2VmFw+HGDQwAgB9riQJ2tK90Oq2jgaNaz9T2i3YtyyK53C4tJ5cpYgcAAAAAAAAAAHXLF4ysnFixvV+KhgAAQLujSLey/MqvdqwmK7XnirLNaHFxURMTExodHdX8/Lz6+voUj8c1PT2tiYkJLSwscHwAABqOAnY0NcuytJ5ZV8+xHnUd6SrbLnc+p01rU53eTjkOOsq22zi9oZUTK7IsiwJ2AAAAAAAAoImtra0pmUwWbctkMkqlUvL7/ZetfhMIBOTxePZziADaRL64p9q9jFrl72VQNAQAANodRbrV7cVqstv7hXmy2awmJyc1OjqqpaUlORwX66QGBwe1tLSk8fFxHT9+XGNjY6xUAABoKArY0RK6jnTJ7a/yy/GN+zMWAAAAAAAAAI2XTCY1MDBQc/tYLKb+/v49HBGAZlbPQzH5fTXdy9gBioYAAEA7o0h3ZxJnchX3Zy5sKXU2J/8hh9wdB3bdDxovGo0qlUppfn6+cFzkORwOTU1NaWhoSNFoVCMjI40ZJLCPSn2eTyQSRV+3Y5ILYP9QwA4AAACggFkqAQAA0CoCgYBisVjRtkQioUgkorm5OQWDwcvaA0A5PBQDAABgFop0a+P1euVxuxR5NGNbnx63S16v17b+YK/V1VVJUl9fX8n9+e35dkCrq/R5PhKJXLaNz/PA/qGAHQAAAEABN+QBAADQKjweT9nfVYPBIL/HAtgRHooBAAAwC0W6tfH5fEokl2VZVsV2lX63vZTX65XP57NzmLBRd3e3JCkej2twcPCy/fF4vKgd0OpKfZ6vNoEbgP1BATuaWiZz8QnRjdMbtvSX7yffLwAAQLvhhjwAAAAAAJfjoRgAAMAKpmahSLd2Pp+v5oJzfrdtfqFQSH6/X9PT01paWipaoSCXy2lmZka9vb0KhUINHCWwf8p9nh8eHm7AaABsRwE7mloqlZIkrZxYsb1fTlIAAKAdcUMeAAAAAAAAABqDCdzMxgqmZqFIFyjN6XRqdnZWExMTGh8f19TUlPr6+hSPxzUzM6OTJ09qYWFBTqez0UMFALQ5CtixY6WeKk4kEkVft9vLp4r9fr8kqedYj7qOdNXd38bpDa2cWCn0azqTsgB5mIQszEEW5iALs1yaB1k0DseGOcjCHGRhDrIwy07yIIu9xbFhDrIwB1mYgyzMwvnbHBwb5iALc5CFOUzKggnczMqj1Gu10wqmJmchtVeRrulZtJNmySIcDmthYUGTk5MaGhoqbO/t7dXCwoLC4fC+j8luzZJFuyAPALtBATt2rNJTxZFI5LJte/lUcX4Jrq4jXXL73VVa77xf05mUBcjDJGRhDrIwB1mYpVweZLH/ODbMQRbmIAtzkIVZdpIHWewtjg1zkIU5yMIcZGEW087f1WbTzZ3PadPaVKe3U46DjrLt7JqVdz9xbJiDLMxBFuYwKYt2n8BNMiuPS7XbCqYmZ5HXDkW6UnNk0S6aKYtwOKyxsTFFo1Gtrq6qu7tboVCoJR7qkJori3ZgZx4UwwPtgwJ27Fipp4ozmYxSqZT8fv9lxd/N/lSxycjCLORhDrIwB1mYgyzMcmkeZNE4HBvmIAtzkIU5yMIsO8mDLPYWx4Y5TMsinU7LsqyKbSrd7LqU1+uVz+ezZWx7zbQs2hlZmMWU87fX65XL7bJ1Nl2X2yWv12tbf3uNY8McZGEOsjCH3VmUKrqq1l++6KrdJ3CTODZM0ixZtHqRrtQ8WbSDZsvC6XRqZGSkoWPYK82WRauzMw8eTgDax4Gtra2tRg+i3Z07d07XXHON3njjDV199dWNHs6+q+cD/HPPPaeBgQFdf//1tnyAz6Qyeun+l2w7sfX09OjVV1/V+973Pq2s2LvMGwAAwH7J/87Fh/9ihZ/LsSvU313fhfDnVrMaOPF21Z8xWQBAaXz+BpBOp3U0cFTrmXXb+nS5XVpOLjdNETtqwzkDdtrJZ7RaH7KJRCKam5tTMBis2LaZHrIBmhHnC9Qjf36o1fbziOn3v3E5rtmiVc4Zdv+/zLEBYLfqqSVsN+1ed4rmxwzsaLhKT02Vwi+3AAAAAAAAALazLEvrmXX1HOtR15Gusu1y53PatDbV6e2U46CjbLuN0xtaObEiy7IoEAVgC5/PV/P7STAY5D4IADSxUjOQVnpIiRlhAQAA3uHxeEp+Jh4eHm7AaADsJQrY0XB2fIDfOL1R8TV2cmMKAACgndQ6A9z2r5W04wxwiTO5ivszF7aUOpuT/5BD7o4Du+oDAAAAtek60lV9psob92csAAAAaE/liq4kHlICAAAAgDwK2NFw9XyA93q9crldWjlh3zJMLrdLXq/Xtv4AAABMlU6ndTRwVOuZ9ZraRyKRqm1cbpeWk8ttUcTu9XrlcbsUeTRjS38efg8FAAAAAGPwwDcAAAAAAACwdyhgR1Pz+XxaTi7XdBG53Izul+IiMgAAaBeWZWk9s66eYz3qOtJVtt1OVrNZObEiy7La4vcpn8+nhI2/i/J7KAAAAACYIZ1OKxg4qjUbH/j2uF1KtMkD3wCA+rECOQC0h7W1NSWTyaJtmUxGqVRKfr9fbnfxKnOBQEAej2c/hwgAwJ6hgB1Nz+fz1XzBlyXZAAAALtd1pEtuv7tyoxv3ZyzNht9FAQAAAKD1WJaltcy65j7uVvBw+aLAzIUtpc7m5D/kkLvjQNl2iTM5RR7NFD3wXapQpdKM7hSqAEB7YAVyAGgvyWRSAwMDNbePxWI7uteUzWYVjUa1urqq7u5uhUIhOZ3O3QwVAADbUcAOAAAAAAAAAAAAXCJ42KH+7srFHcPX7a7vSoUqpWZ032mhCgCgObECOQC0l0AgoFgsVrSt0nt8IBCoue/FxUVNTk4qlUoVtvn9fs3OziocDtc1bgAA7EABO/ZdOp2u6QP39q+V8IEbAABgdzKZjCT7lpHN95PvF/VhNj4AAAAAaF2lClUymYxSqZT8fr/cbvdl7QEA7YFVHwGgfXg8nrLv4/W8xy8uLmpiYkKjo6Oan59XX1+f4vG4pqenNTExoYWFBYrYAQANRwE79lU6nVYwcFRrmfWa2peaZeRSHrdLieQyy24CAADsUH7GBTuXo833Ozw8bGuf7YjZ+AAAAACgdZUrVOHzNAAAAPYadTWtLZvNanJyUqOjo1paWpLD4ZAkDQ4OamlpSePj4zp+/LjGxsbkdFZecQoAgL1EATv2lWVZWsusa+7jbgUPO8q2y1zYUupsTv5DDrk7DpRtlziTU+TRjCzLKhSwU+gDAABQG7/fL0nqOdajriNddfe3cXpDKydWCv22o51c9K12wZfZ+AAAAAAAAADzsQI5gGZDXU1ri0ajSqVSmp+fLxSv5zkcDk1NTWloaEjRaFQjIyONGSQAAKKAHQ0SPOxQf3flp/iGr9td3xT6AAAA1Cb/e1HXkS65/e4qrXfebzvayUXfahd8mY0PAAAAAAAAMNt+rEAOAHajrqa1ra6uSpL6+vpK7s9vz7cDAKBRKGBH3bLZrKLRqFZXV9Xd3a1QKNTQJWbaudDHtCzaHXmYgyzMQRbmIAtzkIVZ6s1jJxd9ueBbGceGOcjCHGRhFvIwB1mYw+4syHb3+NmZgyzMUmsemUxGkpSwsra8br6ffL/g2DAJWZiDLMyxkyz2YwXydsexYQ6yMEe9WbRzXY3dTDwuuru7JUnxeFyDg4OX7Y/H40XtWoVpWZRatbnagyKVVm5uNqblAcBMFLCjLouLi5qcnFQqlSps8/v9mp2dVTgcbtzA2hBZmIU8zEEW5iALc5CFOcjCLHbkwUVfe3BsmIMszEEWZiEPc5CFOezOgmx3j5+dOcjCLDvJI98msljbbLq1SqVSfD4Ux4ZJyMIcZGGO3WaxlyuQtzOODXOQhTnIwhymZhEKheT3+zU9Pa2lpSU5HO88YJXL5TQzM6Pe3l6FQqGGjdFuJmZRadXmUqqt3NxMTMwDgJnKPwIMVLG4uKiJiQnddNNNevbZZ/Xmm2/q2Wef1U033aSJiQktLi5e9m+2z1ry3Gr9/zFryUW7yQJ7hzzMQRbmIAtzkIU5yMIs5GEOsjAHWZiDLMxCHuYgC3PYnQXZ7h4/O3OQhVl2moff75ckzYVdih27ou7/5sKuon7bGceGOcjCHGRhDrIwiwl5pNNpPffccxX/SyQSkqREIlG1bTqd3vMx7wUTssBFpmaxtra2o2NjbW2tIeO0k6lZSJLT6dTs7KxOnjyp8fHxovGNj4/r5MmT+vznP98ys2GbmkV+1ebt/83NzUmS5ubmLtvXKis3m5oHADMd2Nra2mr0INrduXPndM011+iNN97Q1Vdf3ejh1CSbzeqGG27QTTfdVPJpvfHxccXjcb344otFv/D81V/9lSKRiO3jmZub06c+9Snb+61XT0+PXn31Vb3vfe/TysrKnrzGbrPA3iAPc5CFOcjCHGRhDlOyeO655zQwMKDr779ebr+7+j+oIpPK6KX7X2q6GQJMyQNkYRKyMAdZ1GY/Pn9L5GESsjCH3Vnstj9+t+W4qBXXbNvPbvLIv6fEjl1RdTbdWjy3mtXAibeb6j1lL3BsmIMsquMzRvup9/fQ/T5nFF63Rc8tJhwb6XRaRwNHtZ6xb0UWl9ul5eSyfD6fbX3uNROyMB3njHfek2rV7O9de52FXe/xpWbB7u3t1ec///mWmQXb5OOiFM7fZuXRCpqx7hTYrqPRA0BzikajSqVSmp+fLzrZSJLD4dDU1JSGhoYUjUY1MjJS2Ld91pKgt/4TUcLKKrK43tazluw2C+wN8jAHWZiDLMxBFuawM4u1tTUlk8mibZlMRqlUSn6/X253cfFOIBCQx+Ox5ftoFRwb5iALc5CFOcjCLORhDrIwh91ZkO3u8bMzB1mYhTzMQRbmIAtzkIU5yMIsJuRhWZbWM+vqOdajriNdZdvlzue0aW2q09spx0FH2XYbpze0cmJFlmU1VQG7CVngIpOzyM80vV21e1XNzOQstguHwxobG1M0GtXq6qq6u7sVCoVaqnC4WbJoF+QBYKcoYMeurK6uSpL6+vpK7s9vz7fLK/xSunWgYv+ZC1tKnc3Jf8ghd0eFtj/u59JfdtvJbrPA3iAPc5CFOcjCHGRhDjuzSCaTbTWrxV7g2DAHWZiDLMxBFmYhD3OQhTnszoJsd4+fnTnIwizkYQ6yMAdZmIMszLHbLDKZjKSLE6/ZId9Pvt92ZdKx0XWkq/oqTzfu+TAaxqQs2p3JWXg8npL3noaHh/d9LPvBlCzW1tb0xBNP6OzZs4VtGxsbOn36dMn2L730kp5++umibUeOHFFX1zsP6Rw6dEh33HFH00yGZUoWuIg8AOwUBezYle7ubklSPB7X4ODgZfvj8XhRuzyv1yuP26XIo/Z94Pa4XfJ6vbb112x2mwX2BnmYgyzMQRbmIAtz1JNFOp2WZVmFv2cyGc3NzRW1efnll3XffffpD//wD9Xb21u0L5PJ6LnnnpMkJRKJ+r6RFsGxYQ6yMAdZmIMszEIe5iALc9idBdnuHj87c5CFWcjDHGRhDrIwB1mYY7dZpFIpSVJkcd3W8aRSqZYt/KwFx4Y5yMIcZGEOU7J44oknNDo6anu/J0+e1Ec/+lHb+90LpmSBi8gDwE4d2Nra2mr0INrduXPndM011+iNN97Q1Vdf3ejh1CSbzeqGG27QTTfdpKWlpaJlP3K5nMbHxxWPx/Xiiy9etvTMpUVXpSQSCUUiEc3NzSkYDFZs6/V6jV1iq6enR6+++qre9773aWVlZU9eo54sYD/yMAdZmIMszNFMWWSz2ZZezm63WaTTaQUDR7WWsfdmyPX3X199BpkaZFIZvXT/S003y3szHRutjizMQRbmIIva7Mfnb4k8TEIW5rA7i93299xzz2lgYKCtf7fluKgN12zbz27yyL+nxI5dof7u+jN6bjWrgRNvN9V7yl7g2DAHWVTHZ4z2s9ssnnnmGd12222aC7sU9NafUcLKKrK4rqeffrpiAXvhXNWi55a9OjZ2cu+BzxgX8T5VHeeM9rPXWdT6Hp8/B707/G4d9B68+PoXcrpw9kLNr9VxqEOOjovjP2+d12uLr1U9B5mk2Y4Lzt9m5dEKmrHuFNiOGdixK06nU7Ozs5qYmND4+LimpqbU19eneDyumZkZnTx5UgsLCyVPNj6fr+aC82Aw2JInbDvVkwXsRx7mIAtzkIU5miWLxcVFTU5OFmaukSS/36/Z2VmFw+HGDcxGu83CsiytZdY193G3gocdZXqXMhe2lDqbk/+QQ+6OA2XbPf7iBd33xIZt31ezapZjox2QhTnIwhxkYRbyMAdZmMPuLHbbXyZzccXHjdP2/H6b7yffbzPguDAHWZiFPMxBFuYgC3OQhTl2m4XbfbGwOeh12vLQ06X9tqu9ODba4d7DXuB9yhxkYY56sqh10s/tX8vJv59d9f9cZduDNq8tvtZU5yCOC7OQB4CdooAduxYOh7WwsKDJyUkNDQ0Vtvf29mphYYEPefuILMxCHuYgC3OQhTlMz2JxcVETExMaHR3V/Px84QPt9PS0JiYmjBijXerJInjYUfVmyPB11ceQsLI1j7fVmX5stBOyMAdZmIMszEIe5iALc9idxW76y9+0XTlh72x3qVSqaWYdkzguTEIWZiEPc5CFOcjCHGRhDrIwi515tNO9h73AsWEOsjDHbrLY6UrLkUikpnbbH+bPnc9p09qs6d9JUqe3U46Djsv6aSamHBd2PpwgSV6vt+YJYk1iSh4AmsOBra2trUYPot01+1IOO1lmq1atsmTKfi0VlbcXWWD3yMMcZGEOsjCHiVm065Jiu1my1K4lzP/qf59XZHG97ZdA3c7EY6NdkYU5yMIcZFHefn/+lsjDJGRhDruz2El/+WWze471qOtI165fM2/j9IZWTqw01bLZ23FclMc12/ZWax52f/5+bjWrgRNvN/XnZbtxbJiDLErjM0Z7a+Q121rPGa1yP70W9R4bu733kP8Zc/38HbxPlcY5o73t5pxh10rL0e9f0P/vf21INlb+udwuLSeXm7JwupHHRTqd1tHAUa3X+HBCLZo5C4n3qf3S7HWnADOwo25Op1MjIyONHgZEFqYhD3OQhTnIwhwmZhGNRpVKpTQ/P190AVmSHA6HpqamNDQ0pGg0atzY62FiFu2MPMxBFuYgC3OQhVnIwxxkYQ67s9hJf/nlrbuOdNlSXHJpv82G48IcZGGWneaROJOruL/WwpJq/bQjjg1zkIU5yMIcZGGWevPY7b2HTCYjyb4ZifP95PttRhwb5iALc+wmC7tWWpYkbW1obm5OwWBQ0sX3mPwqdbXw+/1F1z6addZvqbHHhWVZWs+sV51YIT9D/vaZ70vJT6xgWRZ5AGhpFLCj4dbW1pRMJou2VVoyJRAIyOPx1Nw/T3QBANAcVldXJUl9fX0l9+e359sBAAAAaC2lrhPmb7xeekNV2vl1QgColdfrlcftUuRR+wrMPG6XvF6vbf0BAMzCQ0/m2u29h3wB6MoJe2fUTqVSTbnKEwBzBYPBopUdeI9pnJomVrhxf8YCAM2AAnY0XDKZ1MDAQMl9kUjksm07WVJrcXFRk5OTRU8X+v1+zc7OKhwO72q8AABgb3R3d0uS4vG4BgcHL9sfj8eL2gEAAABoLZWuE5ayk+uEALATPp9PieSyLMuq2C6RSCgSiRTNeFhOM89kCAAoj4eezLf93sMtt9xy2eR35e49+P1+Sao6m26t8rPp5vsFAAAA2h0F7Gi4QCCgWCxWtK3azEq1WFxc1MTEhEZHRzU/P6++vj7F43FNT09rYmJCCwsLFLEDAGCQUCgkv9+v6elpLS0tFS3lmcvlNDMzo97eXoVCoQaOEgAAAMBeKXWdsFJxaKnrhBunNyq+xk6WagbQ3nw+X80F55fOeAgAaB889GS+/L2H3/7t35ZlWZdNfuf1ekvee8jXKdQ0m+4OXFr/AAAwAysDAsD+o4AdDefxeEpe2K1nSZtsNqvJyUmNjo4WFcANDg5qaWlJ4+PjOn78uMbGxuR0Onf9OgAAwD5Op1Ozs7OamJjQ+Pi4pqamCg+gzczM6OTJk1pYWODcvQco8gEAAEAjpNPpqoU+lWy/qbi6uqouV5dWTqzYMTRJkouZLwEAAFADHnoym9Pp1Cc+8Ql97nOf03ve8x6dOHFCo6OjOnnypO677z6dOnVKv//7v8+9BwBoc6wMCAD7jwJ2tKRoNKpUKqX5+fmi2VslyeFwaGpqSkNDQ4pGoxoZGWnMIAEAwGXC4bAWFhY0OTmpoaGhwvbe3l5WT9kDh1wHpAOiyAcAAAD7Lp1OKxg4qrXMek3tI5FI1Tauri6dPHlS3d3dZdsw8yUAAADQXrLZrP7H//gfuvnmm3XmzBkdO3assM/v9+vmm2/WwsKCZmZmKGIHgDZmx8qAAICdoYAdLWl1dVWS1NfXV3J/fnu+HQAAMEc4HNbY2Jii0ahWV1fV3d2tUCjEhWNdXKZOkhJW1pb+zq5vSVvSl7/8Zf3Mz/xM2XYU+QAAAMBulmVpLbOuuY+7FTxcfpWfzIUtpc7m5D/kkLvjQNl2iTM5RR7NqLu7u6bZr5j5EgAAAGgP2ye/u+WWWy679/Dtb3+bye8AtKxsNss91xp5PJ6y14q4jgQAe4MCdrSk/CxL8Xhcg4ODl+2Px+NF7QAAgFmcTicXiktIpVKSpMhibbNU1qqrq4siHwAAAOyr/MOZOrBVsZ2744CC3hpurP64n0K/AAAAQItYW1tTMpks2pZIJIq+bhcIBOTxePZlbM1g++R3pe49MPnd/in1/3Imk1EqlZLf75fb7S7aV+n/ZTv7AvaL3RNV5fspdy1kcXFRk5OThfuL0sWVJ2ZnZ1n1GgBgBArY0ZJCoZD8fr+mp6e1tLQkh+OdWZxyuZxmZmbU29urUCjUwFECAADsjN/vlyTNhV21FfFUkbCyiiyuF/oFAAAA9stePZyZSqU0PDxsa58AAADATthdcJ5MJjUwMFByXyQSuWxbLBZjIpJt6p38buP0RsX+c+dz2rQ21entlONg+dWlqvXTDir9v1xKpf+X7ewL2C/7eS1kcXFRExMTGh0d1fz8vPr6+hSPxzU9Pa2JiQktLCxQxA4AaDgK2NGSnE6nZmdnNTExofHxcU1NTRV+GZuZmdHJkye1sLDAsjgAAKCpFGYM2TpQsV3mwpZSZ3PyH3LI3VGh7Y/7uXQmEgAAAGCv5R+i/MM7utT7rvK/s25ckE6/mdORqxzqqnA1++XXt3TfExs8nAkAAICGs7vgPBAIKBaLFW2rNtM03rHbye+8Xq9cbpdWTqzYNhaX2yWv12tbf82m1P/LiURCkUhEc3NzCgaDl7Xfj76A/bJfE1Vls1lNTk5qdHS06H1vcHBQS0tLGh8f1/HjxzU2NkbdlE3ys+Db9bBSvh9WGgTQ6ihgR8sKh8NaWFjQ5OSkhoaGCtt7e3t5khAAADQlr9crj9ulyKP2XazwtPkFcwAAADTGddddJ4/bpfuesG/WMY/bpeuuu862/gAAAIDdsLvg3OPxlCxwZ+Wh2ux28jufz6fl5LIsy6rYf6Wi6Ut5vV75fL66v6dmVe7/ZUkKBoM7miHdzr6A/ZJ//w96nervtq9w/NLzSjQaVSqV0vz8fNFDO5LkcDg0NTWloaEhRaNRjYyM2DaOdpafXd/Oh57y/XK+B9DKKGBHSwuHwxobG1M0GtXq6qq6u7sVCoV4ghAAADQln8+nBBfMAQAA0AL43RYAAACtioJz8+x28jufz1fzZwyKpgHUKnEmV3F/rSstl+tndXVVktTX11dyf357vl27SqfTNV2X2v61nI2NizOm9xzrUdeRrrrHtnF6QysnVlhpEEDLo4AdLc/pdPLEIAAAaBlcMAcAAECr4HdbAAAAAPuFye8ANNp+rbTc3d0tSYrH4xocHLzs38Tj8aJ27SidTisYOKq1TG0rA0YikZradR3pktvvrt6wRpfOrg8ArYYCdgAAAAAFa2trSiaTRdsqzS4QCATk8Xj2ZWwAAAAAAAAAAOwWk98BaKT9Wo0uFArJ7/drenpaS0tLcjgchX25XE4zMzPq7e1VKBTa/TfT5CzL0lpmXXMfdyt42FG2Xa2z4T/+4gXd98TGXgwVAFoaBewAAABAE7O74DyZTGpgYKDkvlKzC8RiMWbCBAAAgC14mBIAAAAAALSy/ViNzul0anZ2VhMTExofH9fU1JT6+voUj8c1MzOjkydPamFhgRUoJAUPO9TfXfnnMHxd9X4SVlaStHG6chF77nxOm9amOr2dchwsXzhfrR8AaBUUsAMAAABNzO6C80AgoFgsVrQtk8kolUrJ7/dftlRdIBDYxagBAACAy/EwJQAAAAAAaCd79TB/OBzWwsKCJicnNTQ0VNje29urhYUFhcPhOkeO7Q65DkgHpJUTK7b16XK75PV6besPAExEATsAAADQxOwuOPd4PCWLgIaHh+sfLAAAAFDBpb/bZrNZfetb31IymVQgENDg4GDR7GA8TAlgP7FKBAAA5kun07Isq/D3/LXyWl16Td3r9dY8UzIA7MZePswfDoc1NjamaDSq1dVVdXd3KxQKMfP6Hui+0iFtSXNzcwoGg2XbJRIJRSKRqu0kzkEA2gMF7AAAAEATo+AcAAAArWL777aLi4uanJwsKjbx+/2anZ1lljAADcEqEQAAmC2dTisYOKq1zLptfXrcLiWSyxQQAtgze70ystPp1MjISL3DbDmZTEaSlLCytvSX78fv99f0OTAYDPJ5EQBEATsAAAAMUGoWs2oXZ5jFDAAAAGhNi4uLmpiY0OjoqObn59XX16d4PK7p6WlNTEyw1DWAhtjrwhIAAFCfV155RWuZdf3hHV3qfdcBSdLGBen0m7ma+zhylUNdP66iefn1Ld33xLpeeeUVCtgB7Jm9nqgqm80yA3sJ+QkTIov2PfSU75dJxgCgdhSwAwAAoOEqzWJWCrOYAQAAAK0pm81qcnJSo6OjWlpaksPhkCQNDg5qaWlJ4+PjOn78uMbGxqrecC31oGwikSj6uh0PygKohBXQAAAwW74Y8b4nNmzvl/M9gGbE6nbl+f1+SdJc2KWgt/6C/oSVVWRxvdAvAKA2FLADAACg4UrNYpZIJBSJRDQ3N6dgMHhZewAAAACtJxqNKpVKaX5+vlC8nudwODQ1NaWhoSFFo9GqS2BXelA2Eolcto0HZQEAAIDmRTGiedLptCzLqtim0kPGl9rY2FBXV5ctfXm9XmbWR0tjdbvK8itoBb1O9XfbNyP99pW5mFgBAKqjgB0AAAANV24WM0kKBoMUkQAAAABtYnV1VZLU19dXcn9+e75dJaUelM1kMkqlUvL7/UU3FfPtAQAAADSn/ShGRO3S6bSCgaNay6zX1L7UQ8aXOSBpy56+XG6XlpPLFLGjJdm5uh12j4kVAKA6CtgBAAAAAAAAAEbo7u6WJMXjcQ0ODl62Px6PF7WrpNyDssPDw3WOEgAAAABQiWVZWsusa+7jbgUPO8q2y1zYUupsTv5DDrk7DpRt9/iLF3TfExvqOdajriOlZ2HPnc9p09pUp7dTjoPlX3Pj9IZWTqzIsiwK2NGS7FzdrtUlzuQKf86/H9Vq+/vW9n7ymFgBAKqjgB0AAAAAAAAAYIRQKCS/36/p6emiWcIkKZfLaWZmRr29vQqFQg0cJQAAAABTlSoi3K7Wgulq/aA2wcOOqjPiD19XvZ+ElZUkdR3pkttfYVb8G3cyOqA12bm6Xavyer3yuF2KPJqxrU+P2yWv1/vO35lYAQCqooAdAAAAAAAAAGAEp9Op2dlZTUxMaHx8XFNTU+rr61M8HtfMzIxOnjyphYUFlrgGAAAAUGQ/ihEBoBnYubpdq/L5fEokl2VZVmFbfnb0Wl06i7rX62VVBwDYIQrYAQAAAAAAAADGCIfDWlhY0OTkpIaGhgrbe3t7tbCwoHA43MDRAQAAADBRqWLEUhKJhCKRiObm5hQMBiu2pRgRQDNidbva+Hy+y97jmR0dAPYXBewAAAAAAAAAAKOEw2GNjY0pGo1qdXVV3d3dCoVCzLwOAAAAoKxSxYjlBINB9ff37/GI2lcmc3Em/ISVtaW/l1/PSZJy53O29Ae0Mla3AwA0CwrYAQAAAAAAAADGcTqdGhkZafQwAAAAAECStLa2pmQyWbQtkUgUfd0uEAjI4/Hsy9hMk0qlJEmRxXVb+307+bYcBx3VG1awcXpD0jtF9kArYnU7AEAzoIAdAAAAAAAAAAAAAAAAqCCZTGpgYKDkvkgkctm2WCzWtrO8+/1+SdJc2KWgt/5Znr/03Ib+/NQFvbb4ml5bfK3u/qSLRfbDw8O29AWYiNXtAACmo4AdAAAAAAAAAAAAAAAALcXuGdMDgYBisVjRtkwmo1QqJb/fL7fbfVn7dpX/WQS9TvV3118se/MRp6QL6jnWo64jXXX1tXF6QysnVgpF9kArY3U7AIDJKGAHAAAAAAAAAAAAAABAS7F7xnSPx1NyP7N4772ujgMXvx7pktvvrtK6Npc+cAAAAID9RQE7AAAA9l06nZZlWRXbVJoF5VJer1c+n8+WsQEAAAAAAAAAgObHjOkAAACAuShgBwAAwL5Kp9M6Gjiq9cx6Te1LzYJyKZfbpeXkMkXsAAAAAAAAAABAEjOmAwAAACajgB0AAAD7yrIsrWfW1XOsR11Husq2y53PadPaVKe3U46DjrLtNk5vaOXEiizLooAdAAAAAAAAAAAAAFCXbDaraDSq1dVVdXd3KxQKyel0NnpYANBSKGAHAABAQ3Qd6ZLb767c6Mb9GQsAAAAAAAAAAADMtnF6o+y+nUyMBACVLC4uanJyUqlUqrDN7/drdnZW4XC4cQMDgBZDATsAAAAAAAAA7AFmagIAAAAAtLPEmVzF/ZkLW0qdzcl/yCF3x4Gy7ay3t6QD0sqJFVvG5XK75PV6bekLQGtZXFzUxMSERkdHNT8/r76+PsXjcU1PT2tiYkILCwsUsQOATShgBwAAwI6tra0pmUwWbctkMkqlUvL7/XK7i2dWDwQC8ng8hXaSfTNc5PvJ9wsAAACYgJmaAABoDvVc5wIAAKV5vV553C5FHrXv3o2rq0sLjzyi7u7ukvsTiYQikYjm5uYUDAarjs/n89k2NgCtIZvNanJyUqOjo1paWpLDcXE1h8HBQS0tLWl8fFzHjx/X2NgYk1QAgA0oYAcAAEBV6XRalmUV/p6/CFir7RcLn3jiCUn2zZKRl0qlNDw8bGufAAAAwG4wUxMAAM0jmUxqYGCg5vaxWEz9/f17OCIAAJqfz+dTIrlcdG+plL0oOg8Gg5yrAexKNBpVKpXS/Px8oXg9z+FwaGpqSkNDQ4pGoxoZGWnMIAGghVDADgAAgIrS6bSCgaNay6zvuo9Sxe49x3rUdaSrnqFJujgD+8qJFfn9/rr7AgAAAOrFTE0AADSXQCCgWCxWtK1SMV0gENjP4QEA0LR8Pl/Ns5xTdA7ABKurq5Kkvr6+kvvz2/PtAAD1oYAdAAAAFVmWpbXMuuY+7lbwsKNsu8yFLaXO5uQ/5JC740DZdo+/eEH3PbGhriNdcvvdZdvt1KXLOQMAAACNwExNAAA0F4/HU7ZgjmI6AAAAoH10d3dLkuLxuAYHBy/bH4/Hi9oBAOpDATsAAABqEjzsUH935Rkih6+r3k/Cyto0IgAAAMA8zNQEAAAAAAAANJ9QKCS/36/p6emilRUlKZfLaWZmRr29vQqFQg0cJQC0DgrYAQAAAAAAAMAGa2trevPNNyVJjzzyiG666SZlMhmlUin5/X653W5973vfkyS9+eabWltbk8fjaeSQAQAAAAAAAEhyOp2anZ3VxMSExsfHNTU1pb6+PsXjcc3MzOjkyZNaWFiQ01l50jcAQG0oYAcAAG1rbW1NyWSyaNulxSXbBQIBiksAAAAAlJVMJvXrv/7rkqRf/uVfrtj213/913XzzTerv79/H0YGAAAAAAAAoJpwOKyFhQVNTk5qaGiosL23t1cLCwsKh8MNHB0AtBYK2AEAQNPKZrOKRqNaXV1Vd3e3QqHQjp52TiaTGhgYqLl9LBZry+KSTCYjSUpYWVv6e/n1nCQpdz5nS38AAACAKQKBgGKxmP7xH/9R99xzj0KhkO644w498MAD+uxnP6snnnhC0WhUf/Inf6KPfOQjCgQCjR4yAAAAAAAAgG3C4bDGxsbqqkUAAFRHATsAAGhKi4uLmpycVCqVKmzz+/2anZ2t+annfHHJdolEQpFIRHNzcwoGg5e1b0f5n3Fkcd3WfjetTelGW7sEAAAAGsrj8ai/v1/9/f36iZ/4CU1OTuqBBx6QJD3wwAPM1AQAAAAAgA1KrbKcSCSKvm7HKssAdsrpdGpkZKTRwwCAlkYBOwAAaDqLi4uamJiQy+Uq2v7DH/5QExMTNReE5ItLSgkGg20523opfr9fkjQXdinorf+p8sdf3NR9T5xXp7ez7r4AAAAAU+Vnavryl7+sX//1X9cXv/hF/dqv/RozNQEAAAAAUKdKqyxHIpHLtrXrKssAAAAmo4AdAAA0lWw2q8985jPa2trSz/7sz+oP/uAP1NfXp3g8rj/+4z/WyZMn9ZnPfEZjY2MUhtjE7XZLkoJep/q76/+ZJqyspIszsGcOZsq2y53PadPaVKe3U46DjrLtNk5v1D0mAAAAYC84nU7dfPPNkqSbb76ZzygAAAAAANig1CrLmUxGqVRKfr+/cG9re3sAAACYhQJ2AADQVL7xjW/otdde02233aavfvWrcjguFjYPDg7qq1/9qm6//XY988wz+sY3vqGf/dmfbfBoUcoh1wHpgLRyYsW2Pl1ul7xer239AQAAAAAAAAAAwEzlVlkeHh5uwGgAAACwGxSwAwCApvKNb3xDkvTAAw8UitfzHA6H7r//fv3bf/tvKWA3WPeVDmlLmpubUzAYLNsukUgoEolUbSdJXq9XPp/P7qECAAAAAAAAAAAAAAAAsBkF7AAAAGiIYDBYcnaM3bYDAAAAAAAAAAAAAAAAYD4K2AEAQFMZGRnRH/3RH+mzn/2sRkZGimZhz+VyeuCBBwrtYK/EmVzF/ZkLW0qdzcl/yCF3x4Fd9wMAAAAAAAAAAAAAAACgdVHADgAAmsrIyIgOHz6sp59+WmNjY7r33nvV19eneDyu6elpPf3003r3u99NAbuNvF6vPG6XIo9mbOvT43bJ6/Xa1h8AAAAAAADax9rampLJZNG2TCajVColv98vt9tdtC8QCMjj8eznEAEAAAAAAFABBewAAKCpOJ1O/bf/9t9011136etf/7pOnjxZ2Je/CfXnf/7ncjqdjRpiy/H5fEokl2VZVsV2iURCkUhEc3NzCgaDFdt6vV75fD47hwkAAAAAAIA2kUwmNTAwUHP7WCym/v5+SVI6na7pOtf2r5VwnQsAgNqUegCt0jmXB9AAAABaGwXsAACg6YTDYT3yyCP6vd/7PX3/+98vbH/3u9+t2dlZhcPhBo6uNfl8vppvxAWDwcINQQAAAAAAAMBugUBAsVisaFulyRUCgYCki8XrRwNHtZ5Zr+l1IpFI1TYut0vLyWWK2AEAqKLSA2ilzrnbH0ADAABA66GAHQAANKVwOKyxsTFFo1Gtrq6qu7tboVCImdcBAAAAAACAFufxeMoWtFWaXMGyLK1n1tVzrEddR7rK9p87n9OmtalOb6ccBx1l222c3tDKiRVZlkUBOwAAVVz6AFo2m9W3vvUtJZNJBQIBDQ4OFt3nyz+ABgAAgNZEATsAAGhaTqdTIyMjjR4GAAAAAAAAgCbSdaRLbr+7cqMb92csAAC0i+0PoC0uLmpyclKpVKqw3+/3s9IyAABAG6GAHQAAAA23tramZDJZtC2RSBR93S4QCMjj8ezL2AAAAAAAANBY6XRalmVVbFPpWtKlbQAAQOMsLi5qYmJCo6Ojmp+fV19fn+LxuKanpzUxMaGFhQWK2AEAANoABewAAOxQNptVNBrV6uqquru7FQqFipazA7BzyWRSAwMDJfdFIpHLtsVisbJLQQMAAAA7Uephykwmo1QqJb/fL7e7eHZWHqYEAGB/LS8v62f+zf+j9Y3zNbUvdS3pUrnzuXqHBQAAdiGbzWpyclKjo6NaWlqSw+GQJA0ODmppaUnj4+M6fvy4xsbGuP8KAADQ4ihgBwBgB1jODtgbgUBAsVisaFu1oiEAAADADpUepixl+8OUds0Gm+f1euXz+WoeCwAA7eDUqVM1F6/XatPalG60tUsAAFCDaDSqVCql+fn5QvF6nsPh0NTUlIaGhhSNRjUyMtKYQQIAAGBfUMAOAECNWM4O2Dsej6fkjOrDw8MNGA0AAMDesnvGb2YQr0+phykTiYQikYjm5uYUDAYvay9dLF4/Gjiq9cx6Ta9Ty2ywLrdLy8llitgBANjG7/dLkubCLgW99c3E+viLm7rvifPq9HbaMDIAALBTq6urkqS+vr6S+/Pb8+0AAADQuihgBwCgBixnBwAAAMAu9cz4vR/9tZtyD1NKUjAYLLvPsiytZ9bVc6xHXUe6yvafO5/TprWpTm+nHAcdZdttnN7QyokVWZZFATsAANvkH8YLep3q767v2mvCykpSxXMyAADYO93d3ZKkeDyuwcHBy/bH4/GidgAAAGhdLVPA/v3vf19/9md/pscee0yvvPKKurq6dP311+uTn/ykfvM3f7OuWaXW1tb0d3/3d/ra176mU6dO6V/+5V/01ltv6eqrr9aNN96on/u5n9Nv/MZv6L3vfa+N3xEAwCQsZwcAAADALrud8Xu/+mt16XRalmVVbJNIJIq+VmrTdaRLbr+7bDtJ0o07GyMAALhc4kyu4v7MhS2lzubkP+SQu+NAyTYvv761F0MDAAA1CoVC8vv9mp6eLpo0TJJyuZxmZmbU29urUCjUwFECAABgP7REAfvf/u3fKhKJ6Ny5c4Vta2trOnXqlE6dOqUvfelLeuyxx3TDDTfsuO/vfe97Gh4e1ltvvXXZvv/7f/+vvvWtb+lb3/qW/vRP/1QnTpzQL/7iL9b1vQAAzMRydgAAAADsstsZv/erv1aWTqcVDBzVWma9pvaRSGSPRwQAAKrxer3yuF2KPJpp9FAAAECdnE6nZmdnNTExofHxcU1NTamvr0/xeFwzMzM6efKkFhYWWPEaAACgDTR9Aft3v/td/eIv/qIymYyuvPJKTU1N6Y477lAmk9HDDz+sv/iLv9ALL7ygj370ozp16pSuuuqqHfV/7ty5QvH68PCwRkdHdfPNN+vaa6/VmTNntLi4qL/4i7/QuXPn9KlPfUpXX321fv7nf34vvlUAQAOxnB0AAAAAND/LsrSWWdfcx90KHnaUbVfLDK6Pv3hB9z2xsVdDBQAAP+bz+ZRILte0gkq5FWgubQMAABonHA5rYWFBk5OTGhoaKmzv7e3VwsKCwuFwA0cHAACA/dL0Bey/8zu/o0wmo46ODv2v//W/dOuttxb2feQjH9FP/uRP6p577tELL7yg2dlZ3X///Tvq3+Fw6JOf/KQ++9nP6qd+6qcu23/nnXfq53/+5/Xxj39c2WxWv/3bv60XX3xRBw6UvrEFAGhO25eze+SRR/TMM89odXVV3d3dGh4eZjk7tJ21tTUlk8mibYlEoujrdoFAQB6PZ1/GBgAAAJSTyfx45tYDWxXbuTsOKOitPNvb+WzuYp9pe2aD3Th9sRi+MEYAAFDg8/nk8/lqaltpBZr8eTZ/3q0X528AAHYnHA5rbGxM0Wi0cM81FAox8zoAAEAbaeoC9m9/+9uKRqOSpF/7tV8rKl7Pm5yc1EMPPaREIqEHH3xQf/AHf6DOzs6aX2NoaKjoic9SxsbGFA6H9cgjj+ill17Sd7/7XZZmBoAWk1/O7q677tI111xTdEPC7XYrk8nokUce4aKK4dLpdE0zNW3/WonX6635xlmrSSaTGhgYKLmv1CxWsViM348AAADQcKlUSpIUWVy3rc/T/99p2/qSLo5xeHjY1j4BAMBF+d8FVk6s2N4v528AAHbG6XRqZGSk0cMAAABAgzR1AfvS0lLhz7/yK79Sso3D4dDdd9+tqakpnT17Vk888YTuvPNO28dyxx136JFHHpEkvfTSSxRoAUCLKrXCxoEDB1h5owmk02kdDRzVeqa2QpValhJ2uV1aTi63ZRF7IBBQLBYr2pbJZJRKpeT3++V2uy9rDwAAADSa3++XJM2FXVVnWK9mKXlef/jUpo786hG5fe7q/6CKjdMbWjmxUhgjAACwX/48++7wu3XQe7Bsu9yFnC6cvaCOQx1ydDjKtjtvnddri69x/gYAAAAAANihpi5gf/rppyVJV1xxRdkZQCXpwx/+cOHPzzzzzJ4UsG9svLPUILPvAkDryWazmpyc1OjoqB555BE988wzheXshoeHddddd+n48eMaGxureh5YW1tTMpks2lat8Nfj8dj+PbUby7K0nllXz7EedR3pKtsudz6nTWtTnd5OOQ6WvzmVLy6xLKstC9g9Hk/JB/aYaQoAAAAmK3ze2qr8EHLmwpZSZ3PyH3LI3VG67UHnxc8Lbp9bbn/9BeyXjREAANjuuuuuk8vt0muLr9nWp8vt0nXXXWdbfwAAAAAAAO2gqQvYE4mEJOmGG25QR0f5b2X7jJ/5f2O3J598svDnYDC4J68BAGicaDSqVCql+fl5dXZ2Xrac3dTUlIaGhhSNRqsudZdMJis+eHWpWCzGyh426jrSVb245Mb9GQsAAACA/eX1euVxuxR5NNPooQAAgAbw+XxaTi7LsqyK7RKJhCKRiObm5qre9/N6vW05wQUAAAAAAEA9mraAfX19vXBxqaenp2Lbd73rXbriiiv09ttv65VXXrF9LM8//7wee+wxSdJNN91U9ULWxsZG0Yzt586ds31MAAB7ra6uSpL6+vpK7s9vz7erJBAIKBaLFW2rdENk+4NY7SadThfdTMrPVF+r7TPa79VDbAAAAACah8/nU8KmorV8GwAAsP9KrXKZv/5X6jrg9lUufT5fzQXnwWCQyUWqYMVRAAAAAACwG01bwP7mm28W/nzllVdWbZ8vYH/rrbdsHcfGxob+/b//98pms5KkP/7jP676b2ZmZvTAAw/YOg4AwN7q7u6WJMXjcQ0ODl62Px6PF7WrxOPxlL3pwQ2Rd6TTaQUDR7WWWW/0UAAAAIC6XPpgZimVCq4utbGxoa6uLtv6a7dZQylaAwCg+VVa5bLUA2ascrl3WHEUAAAAAADsRtMWsK+vv1PMdvDgwart8zf1Mhl7lwf+rd/6LZ06dUqS9OlPf1of+9jHqv6bqakp/d7v/V7h7+fOndN1111n67gAAPYKhULy+/2anp7W0tKSHA5HYV8ul9PMzIx6e3sVCoUaOMrWYlmW1jLrmvu4W8HDF3/emQtbSp3N1dyH/5BD7o4DkqTHX7yg+57YqPIvAAAAAHvt9MHMmmb0PiBpq7bXr6U/l9ul5eRyWxWx22njdOXPGbnzOW1am+r0dspx0FG2XbV+AADAO0qtcllt1m/sDVYcBQAAAAAAu9G0Bewul6vw5/Pnz1dtv7Fx8QbQpRes6jEzM6MvfelLkqRbbrlF//W//tea/l1XV1fVWbIAAGZxOp2anZ3VxMSExsfHNTU1pb6+PsXjcc3MzOjkyZNaWFiQ0+ls9FBbRuGhswPvVOa4Ow4o6N3tz/hiP7nztRfAAwAAAPUq9WBmKfmHNbc/hFlK/sHMnmM96jpS/vrSToqmV06syLIsCth3yOv1yuV2aeXEim19utwueb1e2/oDAKBVXbrKZTabVTQalcPh0ObmpgYHB7lWu09YcRQAAAAAAOxG0xawX3XVVYU/v/XWW1Xbv/3225KkK6+80pbX/+IXv6h7771X0sWZAh5//HFdccUVtvQNADBTOBzWwsKCJicnNTQ0VNje29urhYUFhcPhBo6u9aRSKUlSZLG2mSprtWltSjfa2iUAAABQVfCwQ/3dlYuohmtYoC9hZSVJXUe65PZXmaiB33v3lM/n03JyWZZlVWxXaQbSS3m9Xh4kAABghxYXFzU5OVm4nihJfr9fs7OzXLMFAAAAAAAwVNMWsLtcLl177bX60Y9+pJWVyrMcvf7664UC9uuuq+FOYBXz8/P6D//hP0iS3v/+9+trX/saMyMBQJsIh8MaGxtTNBrV6uqquru7FQqFmM1nD9x8881ydR3U+kb1lVZ2otPbaWt/AAAAQCX5lYXyhef1evn1iysKsbKQfdbW1pRMJou2JRKJoq/bBQIBeTweSReL2GstOGcGUgAA7Le4uKiJiQmNjo5qfn6+sGrm9PS0JiYmmHgEAAAAAADAUE1bwC5JP/VTP6VoNKp/+Zd/0YULF9TRUfrb2X4DqtosR9X8z//5P3X33Xcrl8upu7tbX//619XT01NXnwCA5uJ0OjUyMtLoYbS8o0ePavmFF22bzTDfznHQYfdQAQAAgLJYWch8yWRSAwMDJfdFIpHLtsViMQrRAQAwQDab1eTkpEZHR7W0tCSH4+J1v8HBQS0tLWl8fFzHjx/X2NgYE5AAAAAAAAAYpqkL2G+77TZFo1G9/fbbisVi+tCHPlSy3ZNPPln48/Dw8K5f7+tf/7o++clP6sKFC7r22mv1ta99Tddff/2u+wMAAJVdOpthqZkRK9k+M2J+5suN0xu2jC3fT75fAAAAoBS/3y9Jmgu7FPTWXzj1+Iubuu+J86wsZKNAIKBYLFa0LZPJKJVKye/3y+12X9YeAAA0XjQaVSqV0vz8fKF4Pc/hcGhqakpDQ0OKRqMVJySpZzWWdpROp2uadGT710q8Xm/Va8DVfjdr5zwAAAAAAGhWTV3APj4+rpmZGUnSQw89VLKAPZfL6S//8i8lSYcOHdIdd9yxq9f65je/qbGxMW1sbOiaa67R3//93+unf/qndz94AACwY/XMjJif+XLlxIqtY0qlUnU9IAcAAIDWli+wCXqd6u+uv4A9YWUliZWFbOTxeErOqM7v+QAAmG11dVWS1NfXV3J/fnu+XTmsxlK7dDqtYOCo1jK1rS5U6ud3KY/bpURyuVDEXimPUto5DwAAAAAAmllTF7B/8IMfVCgUUjQa1Ze//GV9+tOf1q233lrUZnZ2tvB0/+/8zu+os7N4dqpvfOMbhaL2T3/60/rKV75y2ev88z//sz760Y/q7bff1hVXXKHHHntsRxdOAACAPeqZGTE/82XPsR51Hemqeywbpze0cmKl0C8AAAAAMIMrAAD7p7u7W5IUj8c1ODh42f54PF7UrhxWY6mdZVlay6xr7uNuBQ+Xf6Ayc2FLqbM5+Q855O44ULZd4kxOkUczsiyrUMBeKo9EIqFIJKK5uTkFg8Gife2cBwAAAAAAzaypC9gl6cEHH9Tw8LAymYzuvPNO3XvvvbrjjjuUyWT08MMP68SJE5KkG2+8UZOTkzvu/6WXXtLP/dzP6ezZs5KkP/qjP9I111xTuOhVyrvf/W69+93v3tX3AwAAyrt0ZsRsNqtoNCqHw6HNzU0NDg7K6Sw9q2X+RlPXkS65/e6SbXbj0htYAAAAANoXM7gCALB/QqGQ/H6/pqentbS0JIfjnYLqXC6nmZkZ9fb2KhQKVeyH1Vh2LnjYUXV1oeHrdtd3uTwkKRgM8rsTAAAAAAAtoukL2D/wgQ/ob/7mbxSJRHTu3Dnde++9l7W58cYb9dhjj+mqq67acf/RaFSvvfZa4e+/+7u/W/XffPazn9X999+/49cCAAC1W1xc1OTkpFKpVGGb3+/X7OyswuFw4wYGAAAAlJA4k6u4v9ZZKl9+fcvuocFGzOAKAMD+cTqdmp2d1cTEhMbHxzU1NaW+vj7F43HNzMzo5MmTWlhYKDvhBQAAAAAAABqn6QvYJeljH/uYvve97+nBBx/UY489ppWVFR08eFA33HCDPvGJT+i3fuu3WIoXAIAWsri4qImJCY2Ojmp+fr5wY2p6eloTExNaWFgoW8S+cXqjYt+58zltWpvq9HbKcbD8MrjV+gEAAAAkyev1yuN2KfJoxtZ+7fp9NN9PJmPv+NoVM7gCALC/wuGwFhYWNDk5qaGhocL23t7eitcIAQAAAAAA0FgtUcAuSe9///v1hS98QV/4whd29O9GRka0tVV+5qpf/uVf1i//8i/XOToAAGCXbDaryclJjY6OFi0NPDg4qKWlJY2Pj+v48eMaGxsrml3J6/XK5XZp5cSKbWNxuV3yer229QcAAIDW4/P5lEguy7Ksiu0SiYQikYjm5uYUDAbLtnv88cd133332fp7rSSlUimKrAEAQFMKh8MaGxtTNBrV6uqquru7FQqFmHkdAAAAAADAYC1TwA4AANpDNBpVKpXS/Px8oXg9z+FwaGpqSkNDQ4pGoxoZGSns8/l8WraxcEi6WBTv8/l2/b0AAACgPfh8vpp/bwwGgyVn8M7Lz5Tec6xHXUe66h7bxukNrZxYkd/vr7svAACARnE6nUXXArE38r+LJqysLf3l+2E1IAAAAAAA2g8F7AAAoKmsrq5Kkvr6+kruz2/Pt9vOzsIhAAAAoBHcbrckqetIl9x+t+39AgAAAOWkUilJUmRx3fZ+WQ0IAAAAAID2QgE7AAB7LJ1O1zTr9/av5TDjt9Td3S1JisfjGhwcvGx/PB4vagcAAAAAAAAAqF9+1Z65sEtBr7Pu/hJWVpHFdVYDAgAAAACgDVHADgCGWltbUzKZLNqWyWSUSqXk9/uLZscLBALyeDz7PUTUIJ1O62jgqNYztc1IE4lEKu53uV1aTi63dRF7KBSS3+/X9PS0lpaW5HA4CvtyuZxmZmbU29urUCjUwFECAAAA5ZX6vFfpoVY+8wEAAMAE+fsSQa9T/d31F7Bf2i8AAAAAAGgfFLADgKGSyaQGBgZqahuLxdTf37/HI8JuWJal9cy6eo71qOtIV9l2ufM5bVqb6vR2ynHQUbLNxukNrZxYkWVZbV3A7nQ6NTs7q4mJCY2Pj2tqakp9fX2Kx+OamZnRyZMntbCwIKfTvhsoAAAAgJ0qfd4r9VArn/kAAAAAAAAAAADQSihgBwBDBQIBxWKxom2JREKRSERzc3MKBoNFbbF3djIbvlR6dsSuI11y+6vMInOjLcNtC+FwWAsLC5qcnNTQ0FBhe29vrxYWFhQOhxs4OgAAAKCyUp/3qn3GuNTG6Y2Kr1HLQ7K19AMAAAAAAAAAAADYjQJ2AAV2FOnCPh6Pp+wMe8FgkNn39lA6nZZlWYW/5x8cqNX2BwwSiYTt48NF4XBYY2NjikajWl1dVXd3t0Kh0I5mXi/1vpfPrFR2vO8BAADADuU+7w0PD1f9t16vVy63SysnVmwbj8vtktfrta0/AAAAtLbEmVzF/ZkLW0qdzcl/yCF3x4Fd9wMAAAAAAFoXBewACiotYV4KS5ijFaXTaQUDR7WWWd91Hzspdkd9nE6nRkZGdv3vK73vlcqR9z0AAAA0ms/n03Jyueih21LKreBVitfrlc/ns3OYAAAAaEFer1cet0uRRzO29enhYUoAAAAAANoSBewACkotYV7phnepJcyBZmdZltYy65r7uFvBw46y7WqdQebxFy/ovic29mKosEGp971qK08AAAAAjebz+WouOGcFLwAAANjF5/MpwcOUAAAAAADABhSwAygot4S5xA1vtI9M5sczxxzYqtjO3XFAQa+zan/nsxeXQM2k65+RZuP0xUL4whhRt3Lve8PDww0YDQAAAAAAAACYjYcpAQAAAACAHShgBwBDpNPpmmYt2f61HGYs2b1UKiVJiiyu29rv6f/vtG19pVIpCqwBAAAAAAAAAA23tramZDJZtK3SvYxAICCPx7MvYwMAAAAAAOaigB0ADJBOpxUMHNVaprai6UgkUnG/x+1SIrlMEfsu+P1+SdJc2FXTDOvVLCXP6w+f2tSRXz0it89dV18bpze0cmKlMEYAAAAAAAAAABopmUxqYGCg5L5S9zJisVjRrOx2Tu4jMcEPAAAAAADNggJ2ADCAZVlay6xr7uNuBQ87yrbLXNhS6mxO/kMOuTsOlGyTOJNT5NGMLMviIu0uuN0Xi8yDXqf6u+svYE9YTkmbcvvccvvrK2DPy48RAAAAAAAAAIBGCgQCisViRdsymYxSqZT8fv9l17MDgUDhz+l0WkcDR7Vu0+Q+kuRyu7TMBD8AAAAAABiPAnYA+yabzSoajWp1dVXd3d0KhUJyOusvEG4lwcOOqkXTw9ft02AAAAAAAAAAAAAq8Hg8RTOq5w0PD1f9t5ZlaT2zrp5jPeo60lW2Xe58TpvWpjq9nXIcLD8JUH4VUyb4AQAAAADAfBSwA9gXi4uLmpycVCqVKmzz+/2anZ1VOBxu3MAAAAAAAAAAAADQMF1HuqqvYHrj/owFAAAAAADsDwrYgTaWTqdlWVbFNolEouhrJV6vt+SMFouLi5qYmNDo6Kjm5+fV19eneDyu6elpTUxMaGFhgSJ2GCdxJldxf+bCllJnc/IfcsjdcaBsu5df37J7aAAAAAAAAAAAAAAAAAAANC0K2IE2lU6nFQwc1Vpmvab2kUikahuP26VEcrmoiD2bzWpyclKjo6NaWlqSw3FxacfBwUEtLS1pfHxcx48f19jYmJxO5+6+GcBGXq9XHrdLkUczjR4KAAAAAAAAAAAAAAAAAAAthwJ2oE1ZlqW1zLrmPu5W8LCjbLtaZ5lOnMkp8mhGlmUVFbBHo1GlUinNz88XitfzHA6HpqamNDQ0pGg0qpGRkbq/L6BePp9PieRyTasTRCIRzc3NKRgMVm0HAAAAAAAAAAAAAAAAAAAoYAfaXvCwQ/3dlWc+H75u9/2vrq5Kkvr6+kruz2/Pt2tXmczF2b4TVrbuvvJ95PvEzvl8vqIHMSoJBoPq7+/f4xEBAAAAAAAAAAAAAAAAANAaKGAHsKe6u7slSfF4XIODg5ftj8fjRe3aVSqVkiRFFtdt7XN4eNi2/gAAAAAAAAAAAAAAAAAAAOpFATuAPRUKheT3+zU9Pa2lpSU5HI7Cvlwup5mZGfX29ioUCjVwlI3n9/slSXNhl4LeyjPiV5Owsoosrhf6BAAAAAC0trW1NSWTyaJtiUSi6Ot2gUBAHo9nX8YGAAAAlJNfSXbj9IYt/eX7YYVaAAAAAADMRwE7gD3ldDo1OzuriYkJjY+Pa2pqSn19fYrH45qZmdHJkye1sLAgp7O+ou1m53a7JUlBr1P93fb8LPJ9SqWLGTKZjFKplPx+f1FbiWIGAAAAAGgmyWRSAwMDJfdFIpHLtsViMfX39+/1sAAAAICK8qvTrpxYsb1fVqgFAAAAAMBsFLAD2HPhcFgLCwuanJzU0NBQYXtvb68WFhYUDocbODqzJM7kKu7PXNhS6mxO/kMOuTsO1NxHpWKGUihmAAAAAIDmEQgEFIvFirZVe2gZAAAAaLT8SrI9x3rUdaSr7v42Tm9o5cQKK9QCAAAAANAEKGAHsC/C4bDGxsYUjUa1urqq7u5uhUKhtp95Pc/r9crjdinyqD3LWnrcLnm93sLfSxUzJBIJRSIRzc3NKRgMFu2jmKFYqRnsE4lE0dftmMEeAAAAwH7yeDwlH0Jm1kkAAACYLP+gZdeRLrn97iqtd94vAAAAAAAwFwXsAPaN0+nUyMhIo4dhJJ/Pp0RyWZZlVWxXqeh8O6/XK5/PV/h7uWIGSQoGg8y2XkWlGewjkchl20rNYL9xeqPia+TO57RpbarT2ynHQUfJNtX6AAAAAAAAAAAAAAAAAADAdBSwA4AhfD5fUdF5JRSd769SM9hnMhmlUin5/f7LZnPZPoO91+uVy+3SyokVW8biumR2fQAAAAAAAAAAAAAAAAAAmgkF7AAAVFFuBvvh4eGq/9bn82l5D2fXBwAAAAAAAAAAAAAAAACgmVDADrSpTCYjSUpYWVv6y/eT7xfAO5hdHwAAAAAAAAAAAAAAAACAiyhgB9pUKpWSJEUW123vNz8r9drampLJZNH+TCajVColv98vt9tdtC8QCMjj8dg6HgAAAAAAAAAAAJhr4/RGxf258zltWpvq9HbKcdCx634AAAAAAIA5KGAH2pTf75ckzYVdCnqddfeXsLKKLK4X+pWkZDKpgYGBmvuIxWLMPA0AAAAAAAAAANAGvF6vXG6XVk6s2Nany+2S1+u1rT8AAAAAALA3KGAH2lR+9vOg16n+7voL2C/tV7o4o3osFivan0gkFIlENDc3p2AwWLQvEAjYNg4AAAAAAAAAAACYy+fzaTm5LMuyKrardG/pUl6vVz6fz85hAgAAAACAPUABO4A94/F4ys6oHgwGmW19D6XT6Zou+G7/WgkXfAEAAAAAAAAAgN18Pl/N9x+4twQAAAAAQOuggB1oc4kzuYr7Mxe2lDqbk/+QQ+6OA7vuB/snnU7raOCo1jPrNbWPRCJV27jcLi0nlyliBwAAAAAAAAAAAAAAAAAAdaGAHWhTXq9XHrdLkUcztvXpcbvk9Xpt66/dra2tKZlMFm0rN2t6IBCQx+ORJFmWpfXMunqO9ajrSFfZ/nPnc9q0NtXp7ZTjoKNsu43TG1o5sSLLsihgBwAAAAAAAAAAe2Yn90ak4vsjAAAAAACgeVDADrQpn8+nRHJZlmUVtiUSiZpm486bm5tTMBgs/N3r9VLgbKNkMqmBgYGS+y7NKRaLXbZsZteRLrn97sovcmNdQwQAAAAAAAAAALDNTu6NSKXvjwAAAAAAAPNRwA60MZ/PV1RwHggEFIvFitpkMhmlUin5/X653cXF0Mxqsbd2kkcgENjv4QEAAAAAAAAAANhqN/eqAAAAAABA86GAHUCBx+MpOUvF8PBwA0YD8gAAAAAAAAAAAO2EeyMAAAAAALQHCtgBoMVkMhlJ0sbpDVv6y/eT7xcAAAAAAAAAAAAAAAAAAGC3KGAHgBaTSqUkSSsnVmzvlxlOAAAAAAAAAAAAAAAAAABAPShgB4AW4/f7JUk9x3rUdaSr7v42Tm9o5cRKoV8AAAAAAAAAAAAAAAAAAIDdooAdAFqM2+2WJHUd6ZLb77a9XwAAAAAAAAAAAAAAAAAAgN1yNHoAAAAAAAAAAAAAAAAAAAAAAID2QAE7AAAAAAAAAAAAAAAAAAAAAGBfdDR6AAAAtJu1tTUlk8mibYlEoujrdoFAQB6PZ1/GBgAAAAAAAAAAAAAAAADAXqKAHQCAfZZMJjUwMFByXyQSuWxbLBZTf3//Xg8LAAAAAAAAAAAAAAAAAIA9RwE7AAD7LBAIKBaLFW3LZDJKpVLy+/1yu92XtQcAAAAAAAAAAAAAAAAAoBVQwA4AwD7zeDwlZ1QfHh5uwGgAAAAAAAAAAAAAAAAAANg/jkYPAAAAAAAAAAAAAAAAAAAAAADQHpiBHYBt0um0LMuq2CaRSBR9rcTr9crn89kytna0cXqj4v7c+Zw2rU11ejvlOFj+eaZq/QAAAAAAAAAAAAAAAAAAANSKAnYAtkin0zoaOKr1zHpN7SORSNU2LrdLy8llith3yOv1yuV2aeXEim19utwueb1e2/oDAAAAAAAAAAAAAAAAAADtiQJ2ALawLEvrmXX1HOtR15Gusu12Muv3yokVWZZFAfsO+Xw+LSeXa5oNPxKJaG5uTsFgsGJbZsMHAAAAAAAAAAAAAAAAAAB2oIAdgK26jnTJ7XdXbnTj/oylnfl8vpoLzoPBoPr7+/d4RAAAAAAAAAAAAAAAAAAAAFL56Y8BAAAAAAAAAAAAAAAAAAAAALARBewAAAAAAAAAAAAAAAAAAAAAgH1BATsAAAAAAAAAAAAAAAAAAAAAYF9QwA4AAAAAAAAAAAAAAAAAAAAA2BcUsAMAAAAAAAAAAAAAAAAAAAAA9kVHowcAoDVkMhlJ0sbpDVv6y/eT7xcAAAAAAAAAAAAAAAAAAADNjwJ2ALZIpVKSpJUTK7b3Ozw8bGufAAAAAAAAAAAAAAAAAAAAaAwK2AHYwu/3S5J6jvWo60hX3f39/9m77/AoyraNw/NsKhBaCL333nsvCogUAUVAAUFRfClKLyLSRKoUaSKgIFJEVEBBpPcmSA0k1ECA0Amk1+v7g28fd9MDKfdurvM4PF7Ynd3Mzu/VyczeOxt2J8y49d0t/bxERERERERERERERERERERERERERGT7OMBORCkiU6ZMhmEYhksBFyNTsUwp/rxERERERERERERERERERERERERERGT7TOm9AkRERERERERERERERERERERERERERESUMfAK7EREGUBwcLDh5eVlddvFixet/tdSuXLljMyZM6fJuhERERERERERERERERERERERERFRxsEBdiKiDMDLy8uoWbNmnPf16NEj1m0nT540atSokdqrRUREREREREREREREREREREREREQZDAfYiYgygHLlyhknT560ui0kJMTw8fExihUrZmTKlCnW8kREREREREREREREREREREREREREKY0D7EREGUDmzJnjvKJ6w4YN02FtiIiIiIiIiIiIiIiIiIiIiIiIiCijMqX3ChARERERERERERERERERERERERERERFRxsABdiIiIiIiIiIiIiIiIiIiIiIiIiIiIiJKE47pvQJEZF/C7oQleH90eLQR8TDCcPJwMkzO8X+GJrHnISIiIiIiIiIiIiIiIiIiIiIiIiIi28MBdiJKER4eHoZrJlfj1ne3Uuw5XTO5Gh4eHin2fERERERERERERERERERERERERERElL44wE5EKaJIkSKGt5e38fDhwwSXu3jxotGjRw/jp59+MsqXL5/gsh4eHkaRIkVScjWJiIiIiIiIiIiIiIiIiIiIiIiIiCgdcYCdiFJMkSJFkjxwXr58eaNGjRqpvEZERERERERERERERERERERERERERCSJKb1XgIiIiIiIiIiIiIiIiIiIiIiIiIiIiIgyBl6BnYhSTXBwsOHl5WV128WLF63+11K5cuWMzJkzp8m6ERERERERERERERERERERERERERFR2uMAOxGlGi8vL6NmzZpx3tejR49Yt508edKoUaNGaq8WERERERERERERERERERERERERERGlEw6wE1GqKVeunHHy5Emr20JCQgwfHx+jWLFiRqZMmWItT0RERERERERERERERERERERERERE9osD7ESUajJnzhznFdUbNmyYDmtDRERERERERERERERERERERERERETpzZTeK0BEREREREREREREREREREREREREREREGQMH2ImIiIiIiIiIiIiIiIiIiIiIiIiIiIgoTXCAnYiIiIiIiIiIiIiIiIiIiIiIiIiIiIjSBAfYiYiIiIiIiIiIiIiIiIiIiIiIiIiIiChNcICdiIiIiIiIiIiIiIiIiIiIiIiIiIiIiNIEB9iJiIiIiIiIiIiIiIiIiIiIiIiIiIiIKE1wgJ2IiIiIiIiIiIiIiIiIiIiIiIiIiIiI0gQH2ImIiIiIiIiIiIiIiIiIiIiIiIiIiIgoTXCAnYiIiIiIiIiIiIiIiIiIiIiIiIiIiIjSBAfYiYiIiIiIiIiIiIiIiIiIiIiIiIiIiChNcICdiIiIiIiIiIiIiIiIiIiIiIiIiIiIiNIEB9iJiIiIiIiIiIiIiIiIiIiIiIiIiIiIKE1wgJ2IiIiIiIiIiIiIiIiIiIiIiIiIiIiI0gQH2ImIiIiIiIiIiIiIiIiIiIiIiIiIiIgoTXCAnYiIiIiIiIiIiIiIiIiIiIiIiIiIiIjSBAfYiYiIiIiIiIiIiIiIiIiIiIiIiIiIiChN2M0A+40bN4xhw4YZ5cqVM7JkyWK4u7sbtWvXNmbOnGkEBwe/1HNHR0cbFy5cMFasWGH079/fqF27tuHi4mIopQyllLF3796UeRFEREREREREREREREREREREREREREREdswxvVcgJfzxxx9Gjx49jGfPnunbgoODjRMnThgnTpwwli1bZmzZssUoVarUCz3/qlWrjN69e6fQ2hIRERERERERERERERERERERERERERFlTDZ/BfZTp04ZXbt2NZ49e2a4ubkZU6ZMMQ4fPmzs2rXL+PDDDw3DMIxLly4Zbdu2NQICAl7oZwDQf3ZycjJq1KhhVK5cOUXWn4iIiIiIiIiIiIiIiIiIiIiIiIiIiCijsPkB9k8//dQICQkxHB0dje3btxufffaZUb9+faNFixbGd999Z8yYMcMwjOdD7F9//fUL/YwKFSoY33zzjXHkyBHj2bNnxsmTJ43OnTun5MsgIiIiIiIiIiIiIiIiIiIiIiIiIiIisns2PcB+/Phx48CBA4ZhGMYHH3xg1K9fP9Yyw4YNM8qXL28YhmHMmzfPiIiISPbPqVOnjjFo0CCjXr16hqur68utNBEREREREREREREREREREREREREREVEGZdMD7Bs3btR/7tOnT5zLmEwmo1evXoZhGIa/v7+xZ8+etFg1IiIiIiIiIiIiIiIiIiIiIiIiIiIiIorBpgfYDx48aBiGYWTJksWoWbNmvMs1bdpU//nQoUOpvl5EREREREREREREREREREREREREREREFJtND7BfvHjRMAzDKFWqlOHo6BjvcuXKlYv1GCIiIiIiIiIiIiIiIiIiIiIiIiIiIiJKWzY7wB4aGmo8fPjQMAzDKFSoUILL5syZ08iSJYthGIbh6+ub6utGRERERERERERERERERERERERERERERLHFf9ly4QICAvSf3dzcEl0+S5YsRlBQkBEYGJiaq5UkYWFhRlhYmP7706dPDcMwjGfPnqXXKlEqiY6O1v/LvkRERERERESpg8ffRESUVNxnEBFRUnB/QUREScV9BhERpRfzfgdAOq8J0Yux2QH20NBQ/WdnZ+dEl3dxcTEMwzBCQkJSbZ2SaurUqcbEiRNj3V64cOF0WBtKC35+fkb27NnTezWIiIiIiIiI7BqPv4mIKKm4zyAioqTg/oKIiJKK+wwiIkovAQEB3AeRTbLZAXZXV1f95/Dw8ESXN1/xPFOmTKm2Tkk1ZswYY+jQofrv0dHRxuPHj41cuXIZSql0XDM5nj17ZhQuXNjw9fU1smXLlt6rk6GxhSzsIQdbyMEWcrCFHGwhC3vIwRZysIUcbCEHW8jCHnKwhRxsIQdbyMEWsrCHHGwhB1vIwRZysIUs7CEHW8jBFnKwhRxsETcARkBAgFGgQIH0XhWiF2KzA+xZs2bVfw4MDEx0+aCgIMMwDMPNzS3V1impXFxc9BXhzXLkyJE+KyNctmzZuNMRgi1kYQ852EIOtpCDLeRgC1nYQw62kIMt5GALOdhCFvaQgy3kYAs52EIOtpCFPeRgCznYQg62kIMtZGEPOdhCDraQgy3kYIvYeOV1smWm9F6BF+Xq6mrkypXLMAzDuHXrVoLLPnnyRA+wFy5cONXXjYiIiIiIiIiIiIiIiIiIiIiIiIiIiIhis9kBdsMwjAoVKhiGYRhXrlwxIiMj413Oy8tL/7l8+fKpvl5EREREREREREREREREREREREREREREFJtND7A3atTIMAzDCAoKMk6ePBnvcvv27dN/btiwYaqvF708FxcXY/z48YaLi0t6r0qGxxaysIccbCEHW8jBFnKwhSzsIQdbyMEWcrCFHGwhC3vIwRZysIUcbCEHW8jCHnKwhRxsIQdbyMEWsrCHHGwhB1vIwRZysAWRfVIAkN4r8aKOHz9u1K1b1zAMw+jXr5/x7bffxlomOjraqFSpknHx4kUjR44cxv379w0nJ6eX/tkTJkwwJk6caBiGYezZs8do1qzZSz8nERERERERERERERERERERERERERERkT2z6Suw16lTx2jcuLFhGIaxfPly48iRI7GW+frrr42LFy8ahmEYn376aazh9b179xpKKUMpZfTu3TvV15mIiIiIiIiIiIiIiIiIiIiIiIiIiIgoo3JM7xV4WfPmzTMaNmxohISEGK1atTI+++wzo3nz5kZISIixbt0647vvvjMMwzDKlCljDBs27IV/zooVK6z+fvr0af3nbdu2GT4+PvrvpUqVMho1avTCP4uIiIiIiIiIiIiIiIiIiIiIiIiIiIjIHikASO+VeFl//PGH0aNHD+PZs2dx3l+mTBljy5YtRqlSpWLdt3fvXqN58+aGYRjGe++9F2tQ3UwpleT1Seh5iIiIiIiIiIiIiIiIiIiIiIiIiIiIiDIqU3qvQEpo3769cfbsWWPIkCFGmTJljMyZMxs5cuQwatWqZUyfPt04depUnMPrRERERERERERERERERERERERERERERJR27OIK7GTfoqKiDAcHh/ReDSIiIiIiIiIiIiIiIiIiIiIiIiIiInpJdnEFdrJf4eHhxvz5843Bgwen96oQERERERERERERERERERERERERERHRS3JM7xUgik94eLjx448/GuPGjTOCgoKMqKgoY/78+em9WkRERERERERERERERERERERERERERPSCeAV2Eik8PNxYuXKlMWTIECMoKMhwcXExFi5caLz//vvpvWoZEoA4/0xpjy3kYAs52EIW9pCDLeRgCznYQg62kIU9iIiIiIiIiIiIiIiIiCgtcYCdxDFfeX3YsGFGUFCQ4e7ubkRGRhqGYej/pdQVc2BBKRXrzxxqSBtsIQdbyMEWsrCHHGwhB1vIwRZysIUs7CFHzO0cHR2dTmtCbCEHW8jBFrKwhxxsIQdbyMEWcrCFLOwhB1vIwRZysIUcbCEHW8jCHkT2zzG9V4DIknl4fejQoUZgYKDRsGFDo0yZMsbPP/9s5M6d2+jTp49hGM93UJZvsFPKMm9bHx8f4+zZs4anp6fh5+dnODg4GOXKlTNq1aplVK5c2XB2djYMgz1SE1vIwRZysIUs7CEHW8jBFnKwhRxsIQt7yGC5XQ8cOGCULVvWyJMnjxEZGWk4OvKUXVpiCznYQg62kMWyx5UrV4xSpUoZJpPJiIqKMhwcHNJ57TIWtpCDLeRgCznYQhb2kIMt5GALOXjMJwdbyMEWsrAHUcbAf5tJjJjD67Vq1TL69+9vLFy40AgODjZKly5t1KlTxzAMg2+cpyIARmBgoDF27Fhj//79xtmzZ63uV0oZJpPJ6Nmzp/H6668bb731lqGU4kBDKmALOdhCDraQhT3kYAs52EIOtpCDLWRhDxkst+fu3buNL7/80vD09DQOHjxolC5dOp3XLmNhCznYQg62kMWyx86dO40vv/zSqF27tjFz5kwO+aQxtpCDLeRgCznYQhb2kIMt5GALOXjMJwdbyMEWsrAHUQYCIgHCwsKwdOlSZM2aFUopVK5cGWvXrsWaNWuQO3duuLu74+jRowCAqKiodF5b+xUYGIiNGzeiRYsWUErpf/LmzYsCBQqgcOHCKFOmDJRSMJlMyJo1K8aPH68fHx0dnX4rb2fYQg62kIMtZGEPOdhCDraQgy3kYAtZ2EMGy+24Y8cOtG/fHg4ODlBKYeLEiQB47iOtsIUcbCEHW8gSs0fHjh31/vuPP/7gvjkNsYUcbCEHW8jBFrKwhxxsIQdbyMFjPjnYQg62kIU9iDIWDrBTuos5vF6lShWsW7cOADBy5EgopdCyZUv4+fml85rat6dPn2Lx4sWoXr06lFJwdHREnjx5MGTIEBw+fBhPnjzBs2fP8PTpUyxZsgSdOnWCyWSCUgqffvqpfh4eXL48tpCDLeRgC1nYQw62kIMt5GALOdhCFvaQIa6T7+Y3bD/88EN9n/kEPE/Epx62kIMt5GALWRLqMWrUqFjLs0fqYQs52EIOtpCDLWRhDznYQg62kIPHfHKwhRxsIQt7EGU8HGCndBVzeL1q1apYu3YtIiIisHfvXr0TWrNmTXqvql0LCgrC999/jwoVKkApBScnJ3Tv3h0bN260Ws7yF4Vr165h5syZeqBh3Lhxab3adokt5GALOdhCFvaQgy3kYAs52EIOtpCFPWSIefL9jTfesLoSfsWKFZEzZ040bNgQn3/+uf4gf2RkZHqtst1iCznYQg62kCWhHo6OjujduzdatWqFL7/8Etu3b9fLskfKYws52EIOtpCDLWRhDznYQg62kIPHfHKwhRxsIQt7EGVMHGCndBPX8PqaNWvg7+8PABg1ahRMJhPefPNNhIaGAoh9pTd+kurlmLfn7t27UbNmTT3IMHjwYJw+fVovZ7mzt2wQGhqKefPmwWQywcXFBT/++GParbydYQs52EIOtpCFPeRgCznYQg62kIMtZGEPORL6quxy5cqhUaNGGDJkCOrWrYu8efNCKYWaNWvi2rVrsR5PL4ct5GALOdhCloR6eHh4oHDhwqhVqxYcHR2hlIKbmxtmzJgR5+Pp5bCFHGwhB1vIwRaysIccbCEHW8jBYz452EIOtpCFPYgyLg6wU7qI78rrz549AwBcvXoVefLkgVIK06dPT/T5Ll68iIULF2LQoEGpvep2w3Ln3bZtWz3IMGDAAHh7e8e5XFz8/PzQr18/mEwmvP3223jy5Al/MUgmtpCDLeRgC1nYQw62kIMt5GALOdhCFvaQI6GT7++//z6OHz+OkJAQAMCTJ0+wc+dONGjQAEoplCpVCk+ePEmnNbc/bCEHW8jBFrIk1KN79+74/fff8eDBA0RGRuLw4cMYM2aMvn/8+PHpt+J2iC3kYAs52EIOtpCFPeRgCznYQg4e88nBFnKwhSzsQZSxcYCd0lx8w+uBgYEAgJCQEAwaNAhKKdSvX19fCc58tXXz/wYHB+Phw4cYNmwY6tSpo3deHGJPni+//BJKKTg4OKBt27b4559/kv0cmzZtgpOTE0wmE3bs2JEKa5kxsIUcbCEHW8jCHnKwhRxsIQdbyMEWsrBH+kro5Pvw4cOtlrW8Ev7u3btRu3ZtDBkyBHfu3Emz9bVnbCEHW8jBFrIk1GPo0KFxfoAsJCQEn332GZydnTF06FA8ffo0LVfZbrGFHGwhB1vIwRaysIccbCEHW8jBYz452EIOtpCFPYiIA+yUphIbXgeAhw8fokGDBnB2dsY333wD4PnXlls6f/48+vXrh+rVq+s34pVSyJQpk/4EFiUuOjoanTt3hslkglIKK1eufOHnevPNN6GUQr9+/RAWFpaCa5kxsIUcbCEHW8jCHnKwhRxsIQdbyMEWsrBH+kro5PuIESPiXM4sICAAu3btwvXr19NiVe0eW8jBFnKwhSwJ9Rg5cmScy5lduHABq1ev1l+bTS+HLeRgCznYQg62kIU95GALOdhCDh7zycEWcrCFLOxBRAAH2CkNhYaGYvny5QkOrwPAhAkToJRCrly5cO7cOav7Nm3ahJEjR+rnyJQpE/Lnz493330XhQoV0juyPn36wN/fPy1fnk06c+aM3mY9evTQtyfn6+DNn3AbO3YslFIYMmSIvko+JR1byMEWcrCFLOwhB1vIwRZysIUcbCELe6SfpL5ha3nVmJgsPyiwbds2PHnyBOHh4QDABsnAFnKwhRxsIUtS37BNqIfl12XHvPIYeyQdW8jBFnKwhRxsIQt7yMEWcrCFHDzmk4Mt5GALWdiDiMw4wE5pIjo6GitXrtQ7m5jD6+Yd06VLl1CzZk0opbBgwQIAzz81tXHjRnz00UdQSsHR0RFKKbRp0wYLFizATz/9hPfff18/95AhQ3D79u10e622ZPfu3Xp7mrd3Qjv/hGzcuBFdu3bF48ePU3IVMwy2kIMt5GALWdhDDraQgy3kYAs52EIW9kh/O3bsQOfOnZN98t2S+YP+9evXx7Rp0/DgwYNkPZ6eYws52EIOtpBl165dL/SGraVPP/0URYsWxWeffYb9+/cn+/H0HFvIwRZysIUcbCELe8jBFnKwhRw85pODLeRgC1nYg4g4wE5pxsvLC0opFClSBD///LPVldfNA+xr1qyByWRC9erVsXr1auzYsQP169dHjhw59M6qa9euWLRoESIjI7F//35069aNw+vJZN7ea9euhVIKWbJkwfnz51/qOW/evImgoCAA/CUgOdhCDraQgy1kYQ852EIOtpCDLeRgC1nYQwYvLy80bdr0pU6+h4eHY+PGjahRowYyZ84MpRRatGiBmzdvJut5Mjq2kIMt5GALWfbu3YsWLVrAwcEhWVeotHTv3j307dsXJpMJSimULFlSf4AtOc+T0bGFHGwhB1vIwRaysIccbCEHW8jBYz452EIOtpCFPYgI4AA7pbGrV6/i119/RUBAQKz7bty4gVKlSkEphUKFCqF58+bImzcvlFIoXLgw2rVrh82bN+vl//nnH7Rr107vyIYOHcrh9WTatm2b3n579uxJkedMzlfR03/YQg62kIMtZGEPOdhCDraQgy3kYAtZ2CP9DRgwIFlv2Ma3fX19fbF06VJUrlwZSikUK1YMPj4+APh1qEnFFnKwhRxsIYevry+yZcsGpRRGjx6tb3+RN1o3bNiAnj176t8BvvjiC30feySOLeRgCznYQg62kIU95GALOdhCFh7zycEWcrCFLOxBRBxgpzQX387k33//hZubmz4AMQ+yd+zYEWfPnsXdu3cBPN+x7N+/Hx06dODw+ks6deqUPoDctGkTgJQdRuAn2ZKOLeRgCznYQhb2kIMt5GALOdhCDraQhT3Sj+VJ8Y0bN+o/x7fNYnaJiIiItUxYWBiOHTuGevXqQSmFqlWr4s6dOym0xvaLLeRgCznYQqYzZ85g/Pjx+u9J7RGXW7du4auvvtLnz6dOnZpSq5khsIUcbCEHW8jBFrKwhxxsIQdbpD8e88nBFnKwhSzsQURmHGAnUb7++msopeDm5oaRI0fi4MGDVjud6Oho7Nu3Dx07duTwegpp3749lFJo164dHj16lCLPuXv3bv1nfpIt6dhCDraQgy1kYQ852EIOtpCDLeRgC1nYI/3EPIke38l38zb09fXFjz/+iD59+qBz586YN29enFfOP3ToECpWrAilFD799FOEhoam+LrbG7aQgy3kYAvZEutx//59HDp0CHPmzMH8+fNx6tQpPH78GMB/b+oGBARg8uTJUEohe/bsVm8IU9KxhRxsIQdbyMEWsrCHHGwhB1ukHx7zycEWcrCFLOxBRAAH2EkIyze89+3bh/3798daJjo6Gvv373+h4XXzTi46OhoBAQEpt+I2zHzAt3z5cuTKlQtFihTBpk2bXnr44Msvv4RSCoMGDUqJ1cwQ2EIOtpCDLWRhDznYQg62kIMt5GALWdjDNpg7eXt7o0mTJsiVK5fVN9PlyJEDEyZMsHpMYGAgRowYAaUU6tevj5CQkPRYdbvDFnKwhRxsIYt5H37p0iW0adMGBQoU0C0KFy6MV155BZcuXbJ6jLe3N5o3bw4HBwcMGzYMQMp+G0tGxRZysIUcbCEHW8jCHnKwhRxsIQeP+eRgCznYQhb2ILJ/HGAnMeJ6E938aasXGV6PecASGBiIadOmoVmzZujdu3fKrrwNu3//Plq1agWlFBo0aIDz58+/8HOZP/mslELr1q3h6+urO/AAMnFsIQdbyMEWsrCHHGwhB1vIwRZysIUs7CGfj4+P/lrTLFmyoFixYujUqZO+SoxSCv/73//0FcgAYP/+/fq+Q4cOpePa2xe2kIMt5GALWa5cuYKaNWvq7evu7o58+fIhR44cUEohT5482LVrl9VjRo0aBaUU8ufPD39/f+6zUwhbyMEWcrCFHGwhC3vIwRZysIUcPOaTgy3kYAtZ2IPIvnGAncSyfBM8OcPrMb9S5OTJk5g9ezYqVKhg9SmsXr16pfprsBVXr15FyZIloZRC48aNsXPnTjx79gzAfx8sSOwqfZMmTdLbtlmzZli/fj3u3Llj9biYz8GDytjYQg62kIMtZGEPOdhCDraQgy3kYAtZ2EMm8/aaPXs2smfPDhcXF/Tt2xe+vr4AgIsXL2LWrFl6u3/wwQfw8/MDAFy4cAHZsmWDg4MD/vnnn3R7DfaCLeRgCznYQp7Q0FAMGjQIzs7OyJYtG95//31cv34dt2/fxi+//ILGjRtDKQUPDw9s3rwZYWFhAIBNmzbB2dkZ5cqVQ3BwcDq/CvvAFnKwhRxsIQdbyMIecrCFHGwhA4/55GALOdhCFvYgyhg4wE4ivejwuqUDBw5gxowZyJkzJzJnzgyllP7ErlIKhQoVwr1791L7pdgMLy8vFCpUCEoplC1bFoMHD8bZs2f1VfATYv4KefM/2bNnR44cOVC0aFF069YNq1ev1suaP2BgOcjwxx9/6F8iiC0kYQs52EIW9pCDLeRgCznYQg62kIU95HrjjTeglELBggVx7dq1WPevX79eb/uPPvoIvr6+GD16NJRSKF++PAICAtJhre0TW8jBFnKwhRyBgYGoUaMGlFKoVq0abty4YXX/gwcP8Prrr0MphVy5cmHbtm0IDQ1Fr169oJRCvXr10mnN7Q9byMEWcrCFHGwhC3vIwRZysIUsPOaTgy3kYAtZ2IPIvnGAncRJzvC6+dNW5sc8evQIZ8+eRe/evVG0aFH9uMKFC+PNN9/Eb7/9huLFi0MphUGDBiE0NDTtX6BgV65cQYsWLfTAv4uLC5o1a4aPP/4YO3fujPMxU6ZM0dvZzc0NNWvWRN++fdGjRw+rq95PnDgxzsevXbsWtWvXhpubG65cuZKaL8+msIUcbCEHW8jCHnKwhRxsIQdbyMEWsrCHLNHR0QgODkbt2rWhlELbtm31fTGvZr9x40a9rRs3boxy5crBZDJhyJAhCAsLS/QK+pQwtpCDLeRgC3nOnj2LrFmzwsHBAdOnTwcQ9wfH2rdvD6UU3N3d0b9/f5QqVQqZM2fG3LlzAST+rSuUOLaQgy3kYAs52EIW9pCDLeRgCxl4zCcHW8jBFrKwB1HGwAF2Eik6OhoHDx5McHjdfBADAP7+/jhw4ABee+01lC1bFkopODs7w83NDZ9++ikOHjwIAJg8eTKUUsiUKRNOnz6d5q/LFty9exeLFi3Ca6+9BqUUHBwc0KJFC/318pYsBxleffVVLFy40Or+q1evYtq0aXqZ+fPnW91///59NG/eXN+/YsWKVH1ttoYt5GALOdhCFvaQgy3kYAs52EIOtpCFPeT55JNPoJRChQoV4OXlZXVfdHS0vkr+hg0b9LZU6vmH9U+ePJkeq2y32EIOtpCDLeQICAhA9erVoZRC165dERgYaHW/5fnytm3b6vPgSilUrFgRnp6eab3Kdost5GALOdhCDraQhT3kYAs52EIWHvPJwRZysIUs7EFk3zjATiIdPnwYLVq00DuVoUOH4tatWwD++9St+dNRS5YsQbdu3eDq6qqXz5kzJyZPnowdO3bo57x48SLKlSsHBwcHDB8+3Oo5KG4bN27E2rVr4e/vD8D6YNFykKFz587YvXu3bmN5ZfvAwECMHDkSVapUwZYtW2L9jO3bt0MphW+++SaVX41tYws52EIOtpCFPeRgCznYQg62kIMtZGEPGVavXq239YwZMxAUFKTvM598DwgIwJo1a1CmTBm97LZt26yeJ75zHDz3kXRsIQdbyMEWcoSEhOD999+HUgpVq1bFsWPHrO633I8vXboUHh4eUErByckp1jetWF7ZkpKPLeRgCznYQg62kIU95GALOdhCFh7zycEWcrCFLOxBZN84wE4i+fr6wmQyQSmF4cOH4+bNm1b3P3z4ELNmzdKfuHVwcIBSCvXq1cPw4cNx+fLlWM/53XffQSkFk8mE33//PY1eiW2K60DPvNMHrAcZ3nzzTX2F+/gee/ToUZw4cULff+bMGav7La+sz18MrLGFHGwhB1vIwh5ysIUcbCEHW8jBFrKwhzyjRo3S23zixIk4evQoACAoKAg3b97EBx98oL9xTimFzZs3A3i+vS3f2AWABw8ewMfHB3fv3rW6nds+adhCDraQgy3kuHr1KgoXLgylnn8l9v79+/HkyRN9/8OHDzFs2DBUq1YtST2A578DWP4eALBHUrCFHGwhB1vIwRaysIccbCEHW8jCYz452EIOtpCFPYjsFwfYSaxz585hzJgxuHfvnr7t+PHj+O6771C6dGk4OjrqHY+joyM6d+4MAAgODgZgvWO5ePGiPgDq3bt32r4QO/Pll1/q7f7WW2/h0KFD+r7EPuEcHR2NtWvXomrVqvjkk09iPY6/DCQPW8jBFnKwhSzsIQdbyMEWcrCFHGwhC3ukLcuT5+PGjYOTk5O+qliNGjVQoUIF5MyZUzdRSuHPP/8E8Hy7hoeHAwDu3buH77//Hu3bt0ehQoXg4OCAvHnzon379vjmm2/w4MGDWD+PrLGFHGwhB1vI5O3tra8oVqhQITRu3BiDBw9G7969UaJECatvKjV/O4plj0ePHmHPnj3o168f2rZti7p166JFixZYvnw5jhw5on8OeySOLeRgCznYQg62kIU95GALOdgi/fGYTw62kIMtZGEPIvvHAXYSzfwm9549ezBt2jTkzp0bWbNmhVIK7u7uKFq0qNWnbvfv3w/g+Q7F8lNUS5cuRfbs2ZEnTx599XW+cZ58U6dOTfYgg+V2/vnnn/HKK6/o57A8cKTkYQs52EIOtpCFPeRgCznYQg62kIMtZGGP9GF5Unzjxo0YMWIEmjdvjipVqiB//vz6W+eUUvjjjz8AWJ98v3z5Mlq0aIH8+fNDKQVnZ2erE/aZM2dG06ZNcePGjVg/j6yxhRxsIQdbyOTj44PBgwejSpUqyJEjB1xcXODi4pLoG7ZXr17Fm2++iZIlS0IpZdXP2dkZ5cqVwzfffKN/Dnskji3kYAs52EIOtpCFPeRgCznYIv3xmE8OtpCDLWRhDyL7xgF2Eu/hw4do2LCh1c6jevXq+Pbbb3H27FmcPHkSLVu21Pft2LEDwH87lPDwcNSuXRtKKdSrVw/Pnj1L9GdGRUXpHRM9N2vWrGQPMljevn79ejRv3lw/x6JFi1J9ne0VW8jBFnKwhSzsIQdbyMEWcrCFHGwhC3ukr5gfsn/w4AG++eYb1KhRQ29Ty689NZ989/b2RqFChfQybm5uGDFiBGbMmIHly5ejc+fOKFGiBJRSKFasGHx8fOL8efQftpCDLeRgC5nCw8MRFRWFkydPYuzYsShdunSCb9h6eXmhWLFiehkXFxe0a9cO7733Hjp16oRSpUrp+7744gv9c9gjcWwhB1vIwRZysIUs7CEHW8jBFumPx3xysIUcbCELexDZLw6wk03w9PSEo6MjGjZsiM8++wyhoaH6vvDwcOzcuTPOIfaoqCjM1Pi8twABAABJREFUmTMHSinkzJkT27Zt07fHJyoqCv/88w8qVKiAnj17pu4LsyHnzp2DyWRCq1atcPjwYX17YoMM0dHRsQYZFi9erJeLiopK9GvoyRpbyMEWcrCFLOwhB1vIwRZysIUcbCELe8hy+PBhFC9ePM6T7+YP7F+9elW/YZsrVy506NAB586ds3oef39/7N69G/Xr14dSCjVq1ICfn1+avx5bxhZysIUcbCGDef+6cuVKlC9fPs4hn4iICADApUuXULBgQX2evFmzZvjnn3/0/QBw/PhxjBs3Tj/PjBkz0v5F2Si2kIMt5GALOdhCFvaQgy3kYAt5eMwnB1vIwRaysAeR/eAAO9mMu3fv4ubNm3r4PDIyUh/MREREYNeuXXEOsXfp0gVKKdSsWRNXr15N8GeYh9dbtGihn2fAgAGp+8JsiK+vL44dO6b//iJX4Ys5yBDXhwn4dSyJYws52EIOtpCFPeRgCznYQg62kIMtZGEPWXr37g2lrL8q27ztHz16hE6dOkEpBXd3d/Tu3RvXr18H8N/2tdz2J0+eRLVq1aCUwvDhwxEWFpa2L8bGsYUcbCEHW8hx9epVvR/eunUrAOsed+/eRbNmzaCUgoeHB3r37q3Pk1ueYweAoKAgzJgxQ7cz96WkYQs52EIOtpCDLWRhDznYQg62kIXHfHKwhRxsIQt7ENkHDrCTTYrrTfS4htiHDx+u/7xkyZIEn9M8vG4+6HF1dYWDgwOUUhg0aFBqvRSbldKDDFOnTsXo0aNTb4XtGFvIwRZysIUs7CEHW8jBFnKwhRxsIQt7pB/L7ebp6Qngv5Pv5u2/e/dulCxZEkopNG/eXL9hG1+3sLAwLF68GDly5EDZsmVx+/btVH4V9oEt5GALOdhCJk9PT/z9998A/uthbrVs2TLky5cPSim88cYb+g3b+HrcuXMHPXr0gJOTEwYOHGh1NUtKHFvIwRZysIUcbCELe8jBFnKwRfrjMZ8cbCEHW8jCHkT2hQPsZFdiDrGbTCYopfDqq6/i7t27AOLeGcUcXnd2dsY777yDsWPH6ucYOHBgWr8cm/OigwzffPONXm727Nlpus72ii3kYAs52EIW9pCDLeRgCznYQg62kIU90k7Mq9THPJfx4YcfQikFFxcX/PPPP3EuE9PNmzfh5uaGPHnyIDQ0NGVX2I6xhRxsIQdbyGX5Zq1Zu3btoJSCm5sbzp8/r5dLyM8//wylFOrVq8dvTnlBbCEHW8jBFnKwhSzsIQdbyMEW6YvHfHKwhRxsIQt7ENkPDrCT3QkNDcXx48fRoEEDPXw+cuTIeJePa3i9R48eOHr0KABg+fLl+nmGDRuWVi/D5rzoIMOcOXPg5OQEpRRq165ttax5eUoetpCDLeRgC1nYQw62kIMt5GALOdhCFvaQIzo6Gq1bt4aDgwPeeOMNREVFJfomrLnf1q1bERAQAIDbPiWwhRxsIQdbyHL37l3kz58fzs7OGDNmDIDYb/JaMrcIDQ3Fp59+iqdPn1rdTi+OLeRgCznYQg62kIU95GALOdhCDh7zycEWcrCFLOxBZFtMBpEdAWC4uLgYJUqU0H8vX768MXbsWP13S9HR0ca///5rjBgxwti3b5/h5ORkvP3228bAgQONunXrGoZhGL169TIWLVpkKKWM2bNnGzNmzEjbF2UDABhKKcMwDOOXX34xFi9ebOzdu9cwDMNYtGiR8fHHHxuG8Xx7G4ZhmEzP/9Mzb948Y8yYMUZkZKSRP39+I1++fEbOnDmNgwcPGpcvX9bLRkVFpfErsl1sIQdbyMEWsrCHHGwhB1vIwRZysIUs7CFLeHi4ce/ePSM6Otrw8PAwTCaT3ubxMfdr06aN4ebmZkRGRib6GEocW8jBFnKwhSyBgYHG3bt3jYiICCN37tyGYRiGg4NDvMsrpfQ59rlz5xrZsmUzIiMjdSN6cWwhB1vIwRZysIUs7CEHW8jBFnLwmE8OtpCDLWRhDyIbk6bj8kSpzPyJqb/++gvFixeHg4MDRo4cifDw8FifjErsyuvAf5+wevToEUaMGAGTyYSqVavqrxeh/0RHR2PDhg1JvgrfvHnz4OzsrJfNlCmTvtK9UgqlSpXC3LlzrR5PScMWcrCFHGwhC3vIwRZysIUcbCEHW8jCHnKEhYWhQYMGUEqhe/fuyX68+VyH5VXHeAWyF8MWcrCFHGwhi6+vL9zd3WEymbBmzRoAydvnmre95WOio6PZ5AWwhRxsIQdbyMEWsrCHHGwhB1vIwWM+OdhCDraQhT2IbAsH2MluWO4sevTooYfS4xo2Nw+vN27cWC/Xs2dPHDp0KM7nA4DNmzfrN9qXLVuWei/ERm3cuBHVq1dP8iCDo6MjlFLIlSsX+vTpgwMHDuDy5cv45ZdfMGjQIP08EydOTI+XY9PYQg62kIMtZGEPOdhCDraQgy3kYAtZ2EMW8zYuX748Tp8+naTHxDzP4eXlhTNnzmDPnj3Yu3cvwsLCEBYWBoAfKEgOtpCDLeRgC1latGih37Q1fw12YmL2CA4OxuPHjxEUFAR/f3+r+9gj6dhCDraQgy3kYAtZ2EMOtpCDLeTgMZ8cbCEHW8jCHkS2gwPsZHd+/PFH/Ub4F198AcD607Pm4fWmTZtCKQWTyYSaNWvi0qVL+jksd0rmnc6TJ0+QO3duKKXw1ltvxVouo/Px8dEDCkuWLNG3JzTIULVqVSxYsCDWcwUEBGDWrFn6wwUbNmxIk9dgL9hCDraQgy1kYQ852EIOtpCDLeRgC1nYQ5bdu3ejSJEiUEphypQpCAkJ0ffFda7C3CgqKgqHDh3CiBEjkCtXLmTKlEmfQ2ncuDFGjRoFPz8/AP99yx0ljC3kYAs52EIG87aeOnUqnJycULZsWRw8eDDRx5l7REdH49q1a5g+fTrq168Pd3d3FC5cGAULFsSYMWOwdetW/Rj2SBhbyMEWcrCFHGwhC3vIwRZysIU8POaTgy3kYAtZ2IPIdnCAnezK06dP0bNnT7i6uiJbtmzYtGkTAOuvhPrnn3/QrFkzKKX0m+pKKcyePVs/T8xPSkVGRmLNmjX668+7detm9bz03NmzZ/H999/rvyc0yFCtWjWrZS137FFRUbh69SqqVasGBwcHjB8/Pk3W356whRxsIQdbyMIecrCFHGwhB1vIwRaysIcsX331lT6nMW/ePNy/f1/fF9cH8yMiIjBlyhTUqlVLP65EiRKoVasWMmXKBAcHB93Ox8cHAE/CJxVbyMEWcrCFHLdu3ULNmjWhlEKzZs1w9uxZREREAIh9ftuyx5w5c/RVLs3/5MmTR18UJkeOHJg2bVqsx1L82EIOtpCDLeRgC1nYQw62kIMtZOExnxxsIQdbyMIeRLaBA+xkVyyvkt6nTx+r+2IOrzs7O6N79+74+OOP9Y5n+vTpennLndXt27fx1ltv6eWWLl2aZq/JViVnkCG+g8CGDRtCKYUWLVogMjKSO/4XxBZysIUcbCELe8jBFnKwhRxsIQdbyMIe6cdyew4bNkyfq+jbty82bdpktR3N5zYiIiIwYsQI5M2bVy+/bt06PH78GABw6dIlzJ49G5UrV4ZSCqVKlYKvr6/Vc1BsbCEHW8jBFjJdunRJb986depgxYoV+ophZpZv2I4cORIFChTQPZYvX44dO3bg3r17WLRoEbp06aLvmzBhgn4O9kgcW8jBFnKwhRxsIQt7yMEWcrBF+uMxnxxsIQdbyMIeRLaFA+xkd86dO4dq1arhl19+0bfFNbzeo0cPHD16FNHR0Vafuvr888/x5MkT/diLFy+iV69e+v7mzZvj3Llz6fDKbMuLDjJER0cjKioKnp6eKFu2LBwdHTFixIhEfwbFjy3kYAs52EIW9pCDLeRgCznYQg62kIU90pflSfZJkyYhR44c+lvjRo0aZbVsVFQUpk2bZvWGrVLK6upiABASEoJjx46hXr16UEqhU6dO8Pf3T5PXY8vYQg62kIMtZPL29tZvtLq7u8PDwwO7du2yWiYyMhITJkywesM2Z86csba1j48Ppk6dajUIREnHFnKwhRxsIQdbyMIecrCFHGyR/njMJwdbyMEWsrAHke3gADvZJT8/P/0pqPiG148cOaKXDwwMxPjx4/VOqHHjxujatSvatm2LGjVq6NtLliyJxYsXp9fLsknTpk1DpkyZkjTIYPn3yZMn6+3er18//P3331i+fDl27dqFa9eu6eV4hb6kYws52EIOtpCFPeRgCznYQg62kIMtZGGP9GO5bTZt2oQBAwagVq1aePbsGYD/rvxy/vx5NGrUCEopODg44L333tPbfsyYMfo5zMtv3boV+fPnR9GiRfHPP/+k4SuyXWwhB1vIwRYy3bx5E0OHDkWpUqXg4eGBwMBAAP9t3x07dqB69epQSsHFxQUVK1aEUgp58+bFxYsXrZYNDAzEyJEjoZTCa6+9hkePHvGqY8nAFnKwhRxsIQdbyMIecrCFHGyR/njMJwdbyMEWsrAHkW3gADvZtYiICBw+fBivvvqq1fD60aNH9TLmHcyVK1fQsmVLq09TWf5Tq1YtLFiwINbjKH6PHz+Gh4cHlFKoXbt2kgcZli5darXt8+bNCxcXF/33smXL4ptvvon3uSg2tpCDLeRgC1nYQw62kIMt5GALOdhCFvZIf5bbJioqSp+Uj4iI0LdPmDBBb9tly5YBAObOnatvGzt2rNVz3r17F5UqVYJSClOmTEmDV2Ef2EIOtpCDLWQKDQ2Fn58fQkNDAVj3GDhwoN72q1atwoMHD/SFYfLmzYtLly4B+O9N4O3bt8PR0REuLi7J+tZSnlt/ji3kYAs52EIOtpCFPeRgCznYIv1JOOYz98/oF8FgCznYQhb2IJKPA+xk10JCQtC+fXsopZAlS5Z4h9fN+vfvr98s79SpE1q2bImqVaviq6++woEDB/RycX0FekJ/z8g8PT3RpEkTLFq0SN+W0CDD8uXL9S8BZcqUQc+ePXHixAlcvHgRv//+OwYMGKDvHz9+fFq9DLvAFnKwhRxsIQt7yMEWcrCFHGwhB1vIwh7ymM9JREVFISAgQH+zXOfOnfWJ+ZCQkARPwvfu3RtKKXz55Zdpvv72hC3kYAs52EIWy330+fPnkT17diilMGjQIH27p6dnnMM+wPM3fCtVqgQHBwfs3r07wZ919uxZrFmzRv+d59CtsYUcbCEHW8jBFrKwhxxsIQdbyJGWx3znzp3D0KFD9YcOOBxqjS3kYAtZ2INIFg6wk907c+YM8uTJgzfeeAPHjh3Tt1seSISHhwP47xNUr7zyir7N/NUhZrzyW/L5+/vrPyd1kKFx48ZYtmyZ1afegOc9Zs6cqZdbt25d6q68nWELOdhCDraQhT3kYAs52EIOtpCDLWRhD7keP36MXLlyQSmF0aNHW90XHh4e50l4Pz8/lClTBkopTJ8+PT1W2y6xhRxsIQdbyHLq1ClkypQJjo6O+OGHHwD8dw7dy8srzmGfEydOwNXVFUopbN26Nd7nvnDhgr54TJ8+ffTtHPaJG1vIwRZysIUcbCELe8jBFnKwhRypecx34cIFDBo0CEopODk54cyZMwA4HBoftpCDLWRhD6L0xwF2yhBu376NEydO6L/Hd8X0zp07QymF8uXL6x1GXDsO8/KPHj3CpUuX8Pnnn2PAgAHo2rUrunbtiilTpmDfvn0IDAxMrZdkk5I6yNCkSROsXbtW3x/zK10uX76MihUrQimFMWPGpM3K2xm2kIMt5GALWdhDDraQgy3kYAs52EIW9pAnODgYxYoVg7OzM77//nsAQFhYmL4/5kn4kSNHYvPmzciXLx9y5cqFPXv26GVjnkvhB/yThy3kYAs52EKW3bt3QymFnDlz4tSpUwCst2PMYZ8zZ85g9erVyJIlCypXrgw/P784n/fChQsYMGAAcubMqVsOGDBA389hn9jYQg62kIMt5GALWdhDDraQgy3kSMljPkvmFuYr7SulkCNHDl7hOAFsIQdbyMIeROmPA+yU4cR34BAREYEGDRpAKYWWLVsiKioqwTc6Dh8+jLfeegvFixfXOxvLf0wmE3r37s2rxcUjqYMMlr0s/9y4cWMopdC0adNEW1HC2EIOtpCDLWRhDznYQg62kIMt5GALWdgj/UVFRcHf31+ftxgxYkScy4WHh2PevHm6Ub58+aDU86vkh4SEALBus2vXLvj6+gLgifakYgs52EIOtpAlOjoaBw8ehFLPrwoW3xuwlsM+7u7uKFGiBJRS6NSpE0JDQ2Mtb37DNkeOHFBKoWjRojCZTFBKYeDAgVY/n55jCznYQg62kIMtZGEPOdhCDraQI7WO+WK2KFOmDOrUqcPh0ASwhRxsIQt7EMnAAXai/7dq1Sq9s1m0aFG8y0VGRmLlypVwcXHRByVubm7w8PBAq1atULNmTdSuXRtKKTg4OCBLliyYOHFiGr4S+Sx33EkdZLB07NgxFCpUCEopfPbZZ2myzvaKLeRgCznYQhb2kIMt5GALOdhCDraQhT1kMG/fL7/8Ekop1K9fX381dkzh4eGYM2eOblW6dGlcvHhR32e2bds25M+fH/nz58f169dT/TXYC7aQgy3kYAt5IiMj9RDPoEGD4v12US8vLzRp0kT3KFOmTJwfGoj5hm2lSpWwbds2fPvttxz2SQRbyMEWcrCFHGwhC3vIwRZysIUMKXXMFxERoZeLq8WuXbtw8eJFtG7dWg+Hnj9/HgC/mcuMLeRgC1nYg0gGDrBThmfeIY0ePRpOTk7IkiULdu/eHeey/v7+mDVrlt4hKaVQrFgx/PTTT/rrp4KCghAaGorly5fjrbfe0gctQ4YMSauXZDMWLlyY7EGG8PBw/cuDUgorVqxIy1W2W2whB1vIwRaysIccbCEHW8jBFnKwhSzsIcOuXbtQoEABKKUwY8YMqyuJWXYIDw/HlClTkC9fPmzevBmA9Ru2W7ZsQaVKleDk5ASllP6wPt+YTTq2kIMt5GALGaKjoxEREYHJkyfDZDKhSpUqOHbsWLzLe3l5oXLlysicOTN27NgBIPE3bHfu3KmXWbZsmT5vPmrUqNR9cTaGLeRgCznYQg62kIU95GALOdhCnpc55rMc7IyrxY4dO3SLK1euoFWrVlBKoXjx4rh8+XKsn5HRsYUcbCELexClLw6wEwG4fv068uTJA6UUWrVqFe9yll8JkjdvXnTv3h337t2Ld3kfHx/MmjVLH7SMGTMmNVbf5kRHR8Pf319vlxYtWiRpkAEAvv/+e92gV69eabXKdost5GALOdhCFvaQgy3kYAs52EIOtpCFPeSZMmWK3q7z5s3DgwcP9H2WA6ARERG4fPlyrK/L3rJlCypXrgyTyYQ8efKgd+/euH37ttXj+ZWnScMWcrCFHGwhx61bt1C9enUopdCsWTOcPXtWb7uY++8rV65g3759CAsLs7rd/IZt9uzZrd6wtbxafkREBBYtWqR/V1iyZEnqvzgbwxZysIUcbCEHW8jCHnKwhRxsIcvLHvMlpYV5ufr160MphTfffBOPHz9O3Rdmg9hCDraQhT2I0g8H2ClDM795/vvvvyNnzpxwcHDQV+eJ+cb6+vXr9c6qcOHCGDp0KB49egQg9hsglgc9wcHBmD9/vj5oWbZsWaq/Lltx7tw5tG3bFitWrEjSIMOKFSt0g9atW+PcuXMA+JUqKYEt5GALOdhCFvaQgy3kYAs52EIOtpCFPdKf5bYbMWKE3r79+/fH33//naTn2LJlC6pUqaKvaqyUQq5cuVCwYEHUqlULw4cPx507dwBwQDQhbCEHW8jBFjJdunQJ+fPnh1IK9erVw5o1a3D//n0AiV8VLObVxipWrGh1tTFL9+7dQ9euXeHo6IjOnTvj2bNnqfJ6bBlbyMEWcrCFHGwhC3vIwRZysEX6S4ljvgsXLqB///56KDShFpGRkZg9ezaUUihRogROnz4NgFc3BthCEraQhT2I0h8H2IkAvPXWW1BKwc3NTb9Bbunff/+Fu7s7lFLw8PDAwIED4e/vDyBpb6Q/fvwYQ4cOhclkQuPGjXHx4sUUfw226unTp8keZGjevDn+/vvveD8lbcl8H3f2iWMLOdhCDraQhT3kYAs52EIOtpCDLWRhj/RnObD5xRdfwMnJCSaTCbly5cL777+PI0eOIDg4WC9juS23bt2KypUr68HQ4sWLo379+vjf//6HunXromDBglBKoXz58vDx8QHADxwkhC3kYAs52EImb29vlC1bFkop5MuXDy1btsTff/+d4LeRmt+wdXNzg1IK1apVw+7duxESEhLvYyZPngylFBwcHHD8+PHUeCk2jy3kYAs52EIOtpCFPeRgCznYIv0l95jPUswW5cuXx4kTJ+Jc3nyseOLECTg7O0MphcmTJ6fOi7JRbCEHW8jCHkTpiwPslOE9efIE1apVg1IKXbp0QUhIiH4jIyoqCuHh4Rg5ciQyZcoEpRRef/11PHz4UN+fVHv37kWRIkWglMIPP/yQGi/FpiU0bPDDDz9YDTJs3bo11tesAMCRI0ewceNGTJgwAd988w0OHjwIX19ffT/foEoatpCDLeRgC1nYQw62kIMt5GALOdhCFvZIX5Yn4VetWoUOHTrobT5t2jS9vWMOhlaqVEl/o1zbtm1x9epV/bWmjx8/xr59+1CvXj0opVC1alX4+fml7QuzQWwhB1vIwRYy+fj4oFevXihatCiUUsifPz++//77OPe3np6e6N+/P7Jly6bbffjhh/r+mFe/Nz/HkiVL9PKbNm1K3Rdkw9hCDraQgy3kYAtZ2EMOtpCDLdJfUo/5LJmvgm++orFSCkWKFMHt27cBIM4rGwPA9u3b9fITJkxInRdkw9hCDraQhT2I0g8H2Inw/EBEKYXPPvss1n1BQUGoVKkSlFIoUKAAbt68CeDF3hgfPnw4lFIoWbIk3zBJoqQMMmzfvh3Dhg2DUgqurq56eVdXV7zyyitYtmyZXpZfFfzi2EIOtpCDLWRhDznYQg62kIMt5GALWdgj7Viex7h9+zb++usvTJkyBUFBQQCst92WLVtQuXJlmEwmZM2aFYMGDbK633KIdO/evShRogScnZ0xZ86cWPdTbGwhB1vIwRYyPXnyBHv27MHAgQMxePBgfQUxy23o6elp9YZt/vz59b565syZermY59Nv3bqF1157Te/Td+7cmTYvykaxhRxsIQdbyMEWsrCHHGwhB1ukv8SO+SzvNw+F5siRA0oplCpVCiVLloRSCuXKlcP9+/cB/HecaO547949fPTRR/rKxjNmzLC6n55jCznYQhb2IEofHGAn+n++vr76U1CWO4YtW7bogw3zJ5/iekM8oZ2JeSd24MAB5MiRAwULFsS5c+dScvXtUlIGGb7++mtUr17darkOHTqgXbt2yJMnT5yfWuNV+ZKPLeRgCznYQhb2kIMt5GALOdhCDraQhT3SXnznLiy3+5YtW1ClShV9Er1///76PEhc50MePnyIOnXqQCmFzp07p86K2yG2kIMt5GAL2cxXDrO8gljMIZ/KlStjy5YtmDRpkt5HT58+PdZzPXz4EAsWLNBDQUWLFtXfekqJYws52EIOtpCDLWRhDznYQg62SD/xHfNZtog5FFqpUiXs3LkTR48eRbVq1fRw6K1bt6ye4969e1i8eDGKFCkCpRRy584NHx+fVH09towt5GALWdiDKO1xgJ0oEcuXL9cHJX/++Wecy5jfHH/06JH+5FVcnjx5guLFi6NTp06psq72ZPHixXBwcEhwkOGrr75CoUKFdJ8xY8YA+O8Xh3379mHw4MEJHlRS4thCDraQgy1kYQ852EIOtpCDLeRgC1nYQw7Lgf+tW7eicuXKcHJyglIKzZo1S3Aw1HxCv3///lBKoUGDBnj27FnarLgdYgs52EIOtkh/lm/eWvbw9PRE//79rYZ8du7ciYiICISFheHLL7/U++jPPvsMZ8+eRVRUFM6cOYNx48ahWLFi+g3bFStWxHp+io0t5GALOdhCDraQhT3kYAs52EImyy5xDYXu2LFDnws8ceKEHg4tVaoUVqxYgQMHDmDv3r3o16+fHgp1d3fH119/DYAtkoMt5GALWdiDKHVxgJ0oEUuWLNGflr1z5w6AuD9xdfnyZVSoUAGDBw+Gv79/rPujoqIQEBCAVatWWd0W3/NlZP7+/voAsWXLlnEOMvz4448oU6aMPlhU6vnXeF29ejXWc82YMUP/ArBt27a0fCk2jy3kYAs52EIW9pCDLeRgCznYQg62kIU95Ij5DXQVK1bU2zt37tw4fPgwgLgHQ80ePnyIWrVqQSmFNm3apPo62yu2kIMt5GALucxv2MYc8rHcnwcHB2PatGm6WcGCBVGuXDlkypQJbm5uet89YsQI3Lx5Mx1fjW1jCznYQg62kIMtZGEPOdhCDraQw9PTE4MGDUqwBQCcOXMGNWvWhFIKmTJlglIKJpMJjo6OUEohV65cGD58OK5du5ZOr8T2sYUcbCELexClDg6wEyVi3bp1UEoha9asOH/+fLzLbd++XR+0xDfEbsn8xor5jZibN29i7dq1KbfiNu7MmTPo0KEDNm7cqHf25oH/gIAAdO3aVW/vzz//HK+++iqUUsiTJw8uXbpktfydO3fQsWNHODg4YMqUKenzgmwYW8jBFnKwhSzsIQdbyMEWcrCFHGwhC3ukv/gGQ/PmzYusWbMiX758uHHjRryPN5/X8Pb21lcb6927N68Y8wLYQg62kIMt5PLy8kKvXr3g4eFh9Yat5ddpW1q+fDmyZs0KFxcXqw+meXh4YOLEibhy5UoavwL7wRZysIUcbCEHW8jCHnKwhRxsIcfdu3fRo0cPZMuWLUktHj9+jA4dOqBAgQJWLfLmzYvZs2dzKPQlsIUcbCELexClHg6wEyVi7969cHR0hKOjI3bs2JHgsqtWrdI7nU8//TTRIXbzGzF37txB//79YTKZ8O6776bYutu6wMDAOHf269ev19t53LhxAIBLly6hadOmeocfc6Bh3Lhx+peIsLAwvlmVTGwhB1vIwRaysIccbCEHW8jBFnKwhSzskX7iGgw1mUzInj07Bg0ahCZNmqB27drxPt48GBoREYHWrVvrDxccO3Ys1dfd3rCFHGwhB1vI5ufnh6JFi0IpherVqyf4hq3ZwYMHMXXqVDRq1Aht27ZF9+7d8e+//yIwMDCN1to+sYUcbCEHW8jBFrKwhxxsIQdbyDJixAgopVCpUiXs2rUr3haWx3s7d+7EjBkzMGrUKEybNi3WQKjlsSUlHVvIwRaysAdR6uAAO1ESmN/o6NixIx4+fBjrfssdivmK7UopDBw4EE+ePInzOc2PuX37Nvr3749ChQrpx509ezZVXoetM2+zoUOH6l8KvL299X1eXl5o1qxZrIEGAPjpp5+glEKdOnXSZd3tDVvIwRZysIUs7CEHW8jBFnKwhRxsIQt7pI34rmqcPXt2jBgxAsHBwWjTpg2cnZ1x8uTJWI83n4APDw9H//79oZSCq6sr3nvvPdy9ezfJP5vYQhK2kIMtbMOZM2fQsGFD/PXXXwkO+cS3Tc23mz9wFnM5tkg6tpCDLeRgCznYQhb2kIMt5GCL9Ge5jb766its2bIl0Q8SJHThisQuasEm8WMLOdhCFvYgSl0cYCdKgHmnsGzZMuTMmRPFihXDn3/+GefOwnxbZGQkunXrpofRx48fH2vHFXN4PX/+/PqNmD/++COVX5XtMm+3V155BUopNG3aNNYyMQcarl69CgDo2bMnlFLo3LlzWq6y3WILOdhCDraQhT3kYAs52EIOtpCDLWRhj7T1119/WQ2GDh8+XA9+Dhs2DCaTCVOmTEFoaGisx4aHh+Ojjz7SX5lasmRJ7N69O9ZykZGRiIyMjPe8CD3HFnKwhRxsIV9QUFCib9haioqK0ts2LCzM6r5r167hwoULuHTpEu7cuRPrcZQwtpCDLeRgCznYQhb2kIMt5GCL9Ge5/ZOznSyP3cLDw/Wfw8LCsHfvXmzYsAErV67Ehg0b8PTpU4SEhCT7Z2Q0bCEHW8jCHkSphwPsRElw9+5dvPrqq1BKoWHDhlZXSLfc2dy8eRNTpkyBu7s7lFIoVqwYlixZoncwlsvHHF53c3Pj8HoSvffee1BK4d133wVgvZMHrAca8uTJgx9++AFVq1aFUgpTpkwBwJ19SmELOdhCDraQhT3kYAs52EIOtpCDLWRhj9S3fft2FChQAC4uLnow1HKbbdiwQX8wf+rUqfjnn38AAFevXsXevXvRuHFjfX+ePHnw66+/Wj3/mTNn8Msvv6Bjx45o2bIl2rdvjwEDBmDXrl14/PgxgP+ukpzRsYUcbCEHW9g3y227atUqfPjhh3BxcYGDgwPc3NyQJUsWDBo0CL///nucj6GUwxZysIUcbCEHW8jCHnKwhRxsIYflYOncuXPxxhtv6GNC8z916tTBoEGD9AcL2CJ1sIUcbCELexDFjwPsREl09epVlChRQl8F7sSJE1ZX+PH19cWUKVOQM2dOKKVQtmxZrFy5Ev7+/nqZ5Ayv80o/8Rs+fDiUUihTpgzu378f5zJeXl5o2rQplFLIkiULlFIoUqRIrE86v+in5Og5tpCDLeRgC1nYQw62kIMt5GALOdhCFvZIfVevXtUfvh81apTeNpbba+zYsfrkuYeHB+rVq4dcuXIhb968ertXqlTJ6o1YAFi9ejXKly+PHDlyxDoJX7hwYbzxxhvw9fUFwJPwAFtIwhZysIX9smz4/vvvI1++fFYN3NzcoJSCg4MDsmXLhmnTpunl2SNlsYUcbCEHW8jBFrKwhxxsIQdbyGHZonv37siUKZPVsWL+/PlhMpn0bdWqVYOPjw8AtkhpbCEHW8jCHkQJ4wA7UTJ4eXmhcOHCUEqhevXqWLhwIfz8/PDs2bNYw+s//PADnj59qh9rfqMlucPrBw4cwHfffZc2L1A483Y5fvw4SpQogRw5cmDNmjXx7rC9vLzQpEkTvdPfuXMngP928OZfEoKDg3HhwgUAHGhIKraQgy3kYAtZ2EMOtpCDLeRgCznYQhb2SFteXl744osv9DYxbzfLbTRu3Djkzp071pBnvnz5MGTIEBw6dMjqOefMmWO1XLly5dCmTRv069cPZcuWRZ48eaCUQunSpXH9+nWrn5uRsYUcbCEHW9gfy23ZoUMHPdCjlMLAgQOxaNEi7N+/H5MnT0a7du10py+++EI/jvvxlMEWcrCFHGwhB1vIwh5ysIUcbCGHZYv27dtDKQUnJydkz54dEydOxKFDh3Dnzh0cP34ckydPRpUqVaCUQvHixXHz5k0AbJFS2EIOtpCFPYgSxwF2omS6fPky6tevD6UUMmXKhFKlSuHdd99NleH1Y8eOoUuXLlBKoV+/fmnzAm2Av7+/3i4NGjTA+fPn413W09MTrVq1wnfffWf1qTbLQYbSpUtDKYUTJ06k+rrbG7aQgy3kYAtZ2EMOtpCDLeRgCznYQhb2SHsxBzQt/7537158++23+PjjjzF06FDMmjUL169fR1BQkNVjvvnmG/2mbNWqVTF06FA8ffpUt7h16xY2bNiAOnXq6MHR27dvA+C30FliCznYQg62sH2W27B79+5QSsHV1RUNGjTA+vXrYy1/48YNTJ8+XTdbuHBhWq6uXWMLOdhCDraQgy1kYQ852EIOtpCpT58+ukXTpk2xadOmWMuEhITgxIkTetanZcuWePjwYTqsrX1jCznYQhb2IIofB9iJXsDt27cxevRoVK9e3eoTtRUqVEix4fWjR4/qN+zN/4waNSptXqANuHbtGkqUKAGlFJo2bYpDhw7pN6Zivqn09OlThISExHqOwMBA3VAphYIFC+LJkyd8UyqZ2EIOtpCDLWRhDznYQg62kIMt5GALWdgj/SV2ZRfL+3/99Ve9nevXr4/vv/8e4eHhAJ4Pmpq3eXR0NE6fPo3atWtDKYVevXrh2bNnsZ7bshF7sYUkbCEHW9imOXPmwNXVFU5OTmjWrJn+9hTgeTPLDycEBwdjwoQJUEqhcuXKOHXqVKzn4/Z/cWwhB1vIwRZysIUs7CEHW8jBFnKsWrUKefPmhYODAxo2bBirRUz79u1DmTJl4ObmhmXLlsW6P2YLfitX0rGFHGwhC3sQJYwD7EQvKDg4GDdu3MDw4cPRokULlCpVCsuXL0+x4fWuXbvqN1bc3NyglMJrr71m9fwZnbe3NwoUKAClFCpVqoSJEyfi8uXLSX78okWLrAYZ1q5dm4pra9/YQg62kIMtZGEPOdhCDraQgy3kYAtZ2EMWywFPSzdv3kTTpk2hlELp0qXx3Xff6ZPmcZ2Aj46Oxq+//op8+fKhePHisa6MH9cJd8ur6xNbSMIWcrCFfCEhIejQoQOUUsiZMyc2b96s74tvYMfT0xOvvvoqlFL47rvvrO4zt/D19YWXlxcAfq12UrGFHGwhB1vIwRaysIccbCEHW8jy4Ycf6vN/v/zyi749vhbPnj3DZ599BqUUOnbsiNDQUH2fuYWPjw+WLl0a63ZKGFvIwRaysAdRwjjATpQCgoKC4Ofnh8DAQH3bywyvd+vWTe+8zI9TSmH16tVp84JsyOXLl9GwYUM4OjpCKQV3d3d88803+uAuMZ9//jmUUtiwYYO+jZ9wfjFsIQdbyMEWsrCHHGwhB1vIwRZysIUs7CHfiRMn4O7uDqUU3nvvPT3ImdB2vn//Plq1agWlVJxfsQ0AI0eORN++fVNlne0VW8jBFnKwhRy7du3S57knT56sb09svzxy5EgopbBv3z4A1h8YuH79Onr27IncuXNj+/btqbPidogt5GALOdhCDraQhT3kYAs52EKOK1euwMnJCUopDBo0SN+eWItDhw7B1dUVW7duBfD8QwnmC0lev34dH3/8MZRSeOONN1Jt3e0NW8jBFrKwB1HiOMBO9BLi26Gk1PD6iBEj8L///Q8mkwn58uXD6dOnU+/F2LA7d+5g8uTJqFOnDpRS6N+/P548eZLgYyw/febp6an/zEGGl8MWcrCFHGwhC3vIwRZysIUcbCEHW8jCHrJNmjQJSikUKlQI165dA5C0K4Vt3LgRY8eO1X//+++/dddJkyYhd+7cUErh008/TY3VtktsIQdbyMEWcqxduxZKKeTJkwdHjx4FkHAL832PHj3C2bNnAQABAQGYNWsWlixZgqCgIPzvf//T596rVauGkJAQ7uuTgC3kYAs52EIOtpCFPeRgCznYQo5z587BZDJBKYUlS5YASPrV6+/evQvg+cUqp02bhpYtW+LgwYMYMmQI8ubNC6UUChQooJejhLGFHGwhC3sQJY4D7EQpzHwg8bLD6/3798exY8dQunRpfmoqCcLDw/Ho0SNs2LAB9+/fB5D4YELMXwp4EJgy2EIOtpCDLWRhDznYQg62kIMt5GALWdhDLvMVxAoVKoS7d+++0HbevXs38ufPj8KFC2PIkCHIkycPHB0dUbp0aXz//fepsNb2iS3kYAs52EKOJUuWQCmFggUL4t69e8l+fFRUFE6fPo2yZctCKYXq1asjT548UEqhVq1a8Pb2ToW1tk9sIQdbyMEWcrCFLOwhB1vIwRZynDt3Dq6ursiaNSuOHDkCwPqiFknx4MED9OnTB0opZMmSRX+DV/Xq1XH58mUAPKeYFGwhB1vIwh5EiTMZRJRiABhKKcPPz8+YMmWK8fvvvxt37941smTJYqxdu9Zo165drGUNwzCOHTtmzJ071/j5558NwzCMvn37GuPHjzdcXFyMkJAQw2QyGa+88ophGIYRFRWV9i/MBjg5ORnu7u7Gm2++aeTOnduIjo42lFJGZGSk1XKW289ksv5PoLkHvRy2kIMt5GALWdhDDraQgy3kYAs52EIW9pAHgGEYhuHq6moYhmHkz5/fyJs3r6GU0vclRVRUlFG+fHmjVKlSxq1bt4wFCxYYDx48MEqWLGlMmDDB6NOnj9XPo9jYQg62kIMt5MmcObNhGIbx8OFD4+7du8l+vFLKqFq1qtGlSxfDMAzj9OnTxoMHD4yaNWsaGzZsMMqUKcNz50nEFnKwhRxsIQdbyMIecrCFHGwhh5ubmxEZGWkEBgYaBw4cMAzDMBwcHJL8eACGh4eH0b17dyNv3rxGcHCw8eTJE6N8+fLGnj17jFKlShlRUVE8p5gEbCEHW8jCHkSJ4wA7UQpSShl37941Ro8ebfz5558vNLzer18/4/PPPzfy5Mlj/Pjjj8bt27eNTJkyGa1btzYMw3pHxjdG4mcymYzIyEjD0dHRCAoKMmbPnm0YxvPtxwO+tMUWcrCFHGwhC3vIwRZysIUcbCEHW8jCHunPfF6jXr16hmE8f8N127ZtVvclJioqynBwcDDy5ctnVK1a1XB2djaioqIMR0dHo3///sY777xjGIahP7BAcWMLOdhCDraQp3Xr1kblypWNyMhI4++//zbCw8OT/Fjz+fRbt24Z9+7dM9zc3PQ2r127tlG0aFG9XELPQc+xhRxsIQdbyJHeLcgae8jBFnKwhQwAjGLFihm9evUyTCaTcezYMePOnTvJery5xW+//WbV8fHjx/rCGGyROLaQgy1kYQ+iJErZC7oTkZ+fH8qVKwelFHLmzIk//vjD6n7Lr+04evQounXrBqUUlFL4+OOP4ePjo5dr06YNTCYTOnbsiPDwcKuvP7d8nl9++QWTJk1K5VdmWyIiIgAAwcHBqFmzJpRSGDJkSDqvVcbEFnKwhRxsIQt7yMEWcrCFHGwhB1vIwh5yXL16FXXr1oVSCiNGjEBAQECSHmd5jmPy5Mnw8PCAUgqZMmWCUgqFCxfGjRs3AMT9taqWj6fn2EIOtpCDLeQICAhA7969oZRC7dq1cebMmSQ9znwe/ObNm+jXrx9y584NpRQKFSqkz6uPGTNGL2/uER0djadPn+Lvv/+O9VwZHVvIwRZysIUcad2CEsYecrCFHGwhy08//QQnJycopTB37lyEhITo++Lbt8bXoly5cvo8Y8GCBXHt2jUA/52HBGIf6/HY7z9sIQdbyMIeRAnjADtRKjh79iwKFSqEX3/91er2xIbXzW96AMCuXbv0fTNmzIj3ef78809UqlQJSin07ds3lV6RbQoODkbJkiX1dlRKJfkAMiFx/QIRGRkZ6yCSJxv/wxZysIUcbCELe8jBFnKwhRxsIQdbyMIecsydO1c3WLBgAZ49e6bvi+sEeXyDoaVKlcKMGTPQtGlT/Sbu9evXAVi/cWt+/J49ezB+/PjUeVE2ii3kYAs52EKO69evo3Tp0lBKoVmzZjh69CiCgoIAxL1fNd/m6+tr9YZttWrVcOHCBSxfvly3/eKLL/TjzD1OnDgBpRS6deuWBq/OtrCFHGwhB1vIkVYtKGnYQw62kIMt0p/ldh43bpzeftOmTcOlS5cSfVxcLa5evYo7d+6gQYMGUEqhWLFiuHLlSpw/c/Pmzfq+jP5hA7aQgy1kYQ+ipOEAO1EqiXk1n+QMrwPA119/DVdXVxQvXhyenp76OSyf548//kClSpXg4uICpRRef/31VHxFtufatWt6GxcsWBAbNmx46ee03KkHBQVh3bp1GDt2LF5//XW88cYbmD17NrZv366X4UDDc2whB1vIwRaysIccbCEHW8jBFnKwhSzskf4shzxHjhype4waNQoHDhxI9DGWg6ElS5bE2rVrAQAXL15Ew4YNdVvzgKjl4w8fPgyTyQSlFObPn58Kr862sIUcbCEHW8jk5eWF/PnzQymFSpUqYdKkSThx4kSs5RJ6w/by5csAnn+YzfIDCuPGjdOPf/jwIerUqQOlFFxdXbF///60eYE2hC3kYAs52EKO1GzB4dDkYw852EIOtkh/lsdvI0aM0Nvv9ddfx/jx460+vAwkrUV0dDTOnz+vP7hcrFgxhIWFWV3deOPGjahcuTKyZ88eZ/OMiC3kYAtZ2IMocRxgJ0oDyR1eDwkJQe3ataGUQt26dfXXh8Q1vO7o6AilFHr27Knvz+hvoFu6cOECSpQogTVr1ujbXnT7mAcZoqKisGjRInTu3BlKKd3A/I+HhwfGjh370j/P3rCFHGwhB1vIwh5ysIUcbCEHW8jBFrKwR/qzHPofO3as3k6FChVCv3799BXIgISvamweDDXz9PTUA6LffPON1c86dOiQ/trV8uXLY+rUqQgLC0vNl2kT2EIOtpCDLWS6fPkymjVrhixZskAphWzZsuH+/fv6/qS8YWvuFR4ejunTp0Mphd27dwMAQkNDMXnyZGTLlg0ODg548803cevWrTR+lbaBLeRgCznYQo7UbkHJwx5ysIUcbJH+LI/55syZg4oVK+rjvvPnz+v7ktLC8rnOnDmDpk2bYufOnVY/77fffkOjRo3g6uqq53Ti+mavjIgt5GALWdiDKGEcYCdKQ8eOHUtweN28wzh9+jQKFy6MTJkyYcGCBQCeH7CYxRxef/fdd/WOjF/7EZvlJ9ZedLDA8sCxW7du+hcF85tYjRs3xltvvYXatWvrqyuNGDEiRdbfnrCFHGwhB1vIwh5ysIUcbCEHW8jBFrKwR/qzPBexcuVKdOzYEU5OThgwYIC+PamDoZbLeXp6YuXKlVY/y3IwtFKlSpg/fz6ePn2aGi/LJrGFHGwhB1vIdPfuXSxbtgzt2rXDX3/9pW9PzpCPWXh4OPz8/PTfLa+S7+LigqNHj6bBK7JdbCEHW8jBFnKkVov43k+Na7gno39o2RJ7yMEWcrBF+rPcVqdOncKSJUv0t5tER0fr7XPr1i18/PHHSWoBPL8yviXzUKiDgwOUUujWrRsePXqUWi/LJrGFHGwhC3sQxY8D7ERp5MSJE2jbtm28w+uWpk2bppfbu3ev1X0cXk++lLoy/b1799CgQQPdRqnnX9917Ngx/YuCj48P5s+frwcavv3225def3vCFnKwhRxsIQt7yMEWcrCFHGwhB1vIwh4yWJ5A9/f3x4ULF/TfLb++9KuvvtKDoSVLlox3MDQuMQdD582bpwdDM/qbtZbYQg62kIMt5DJv/6ioKL2d7t69i08++STJb9jG9NFHH+l9+cKFCwGwQVKwhRxsIQdbyJEaLSzFXP6nn37CokWL9N/ZyBp7yMEWcrBF+opre1q2ePDgAYYNG4Y8efIkuYXl7TGHQrt06YInT56k/AuxA2whB1vIwh5EceMAO1EauXXrln4DY+DAgXEOr0dFRSEkJARt2rSByWRCx44drQ40Nm/ejIoVK+rh9R49enB4PZWZd/bXrl1D7dq1oZRCpkyZULFiRaxbty7Oxzx79gz9+vWDUgpdu3a1+oWDXhxbyMEWcrCFLOwhB1vIwRZysIUcbCELe6SsuLaD5fmK7777DkWKFEnWYKj59oMHD+rzKhUrVsS8efP01fe5/WNjCznYQg62kC86OhoRERFYsGABihYtCqUUqlevjitXrgBI2pDP0qVL9WBox44d9WMpedhCDraQgy3kSIkW5uex9OzZMyxduhRdu3bVnfr27Zvi629v2EMOtpCDLeQwb+t169ahVKlSUEqhatWqiQ6FWm57DoWmDLaQgy1kYQ/K6DjATpSGzp07h2HDhuH69evxLnPhwgVkzpwZSikMHTpU387h9bRn/pT048ePUadOHSilkCVLFrz66qvYtWuXXi6uN6EWLFgApRRcXV0T7E1JwxZysIUcbCELe8jBFnKwhRxsIQdbyMIeacvX1xevvfYalFLIly8fVq9ere9LbDD0wIEDejC0Ro0amDdvHgIDAwHwnMiLYAs52EIOtpAjICBA75eLFCmCS5cuAUjakM/FixfRtm1bmEwmODs7Y9myZXEuF9e+nR80iI0t5GALOdhCjpdpEXMZT09P/Pzzz6hatSqcnZ31UKirqyuUUpg2bVqqvAZ7wh5ysIUcbCHLK6+8AqUUcufOnegHCRIaCn3rrbc4FPqS2EIOtpCFPSij4gA7URqz/EpaS+Y3M2bOnAmlFAoUKAAvLy8AwMaNG19qeD25Xz9F/22ziIgINGnSBEopZM6cGW3btsXBgwf1cjFPGoaHhwMAfv75Z7i5uSFXrlzw9fVNuxW3Q2whB1vIwRaysIccbCEHW8jBFnKwhSzskfZ+++03/QbrggUL9O3JGQwtWrQoRo4ciaNHjyI6OhqhoaEAOCCaXGwhB1vIwRZybN68WQ/j/P777wAS34bmHgsWLNBv2H7wwQf6fsv9ufm5IiMjsX//fvzwww+xnoeeYws52EIOtpDjRVrE5OXlhfnz56NEiRLImTMnlFLInz8/6tWrh4oVK0Kp59/QdeTIkVR4BfaFPeRgCznYQo47d+7Aw8MDSimMGzcOQNKHQhs0aACTycQrGqcQtpCDLWRhD8rIOMBOJEz79u2hlEKFChUQERGBP/7444WG12O+yX7v3j1s3bo1Vdfd3kRFReHDDz+EUgouLi5o1qwZDhw4oO9P6IoXH3/8MZRSyJYtG27evJkWq2vX2EIOtpCDLWRhDznYQg62kIMt5GALWdgjbW3atAlKKRQsWBAnT54EkPhg6MGDB/VgqPlN2cyZM8PDwwNVq1bFgAEDcPv2bQAcEE0OtpCDLeRgCzm8vb1RtGhRZM6cGd9//32SH3fy5ElkypQJSik0bNgQN27cABD3tg8NDcWIESNQvXp1KKXw0Ucfpdj62xO2kIMt5GALOZLbwnx8FxAQgFu3buF///sfateurffjOXLkQMOGDfH333/jwIED6N69O0wmE/r06YOQkBB+gCAR7CEHW8jBFnIEBwfj9ddf1x8iM1+gIqaYQ6ENGzbUQ6GVKlXSx3dJEdcH1IgtJGELWdiDMjIOsBMJcvz4cbi7u8PBwQErVqzAvn37UL58+WQNr8c8MDl9+jRWrlyJkiVLxrqqAyXst99+Q6lSpfTXem3btk3fl9Agw8mTJ1GtWjUopdC+fXuEhYXx6x1fElvIwRZysIUs7CEHW8jBFnKwhRxsIQt7pK3jx4+jWLFiUErh66+/jnc5y6sam8+HmEwm5M6dG126dEH//v3RvHlzFCpUCEoplC9fHj4+PlaPpYSxhRxsIQdbyPH48WO0a9cOSik0b95cD3km5Pbt2/rCMB4eHpgxYwbCwsIAWO/THz58iD179uhBIAcHB/1G7/z581PtNdkqtpCDLeRgCzmS0iLmvvf48eN4//33UalSJSil9L78o48+wpo1axASEgIAWLdunR4Y/fHHH9Pk9dg69pCDLeRgC1kWLVqkt1lcHyiw3Cf/+uuvaNSokd4Pm/+ZNGkSAgMDE/1Z5ufat28fzpw5A4DDoZbYQg62kIU9KKPiADuRICtXrtSfnu3bty+qVKmiv04wqVdeB57vaC5duoSpU6eiRIkS+qoOrq6uUEph8ODBafFybN5HH32kd/IrV67Ut8c1mGB526RJk/TjZsyYkSbrau/YQg62kIMtZGEPOdhCDraQgy3kYAtZ2CPtffXVVwmehI9rMLRkyZLo3bs3rl+/rpd7+vQpDh06hHr16kEphWrVquHu3btp9TLsAlvIwRZysIUcV65c0R8CaNOmjdX2tWRusmbNGhQpUgRKKdSpUwf37t2Ltew///yDfv366efNly8fihYtCqUUqlevjkePHqXmS7JZbCEHW8jBFnLEbHHt2jUAsd9HXb16NT7++GP9nqtSCjlz5sTAgQPx+++/Wy17+fJlVK1aFUopdO3aNa1eil1gDznYQg62SH+W5/RGjRqlPxiwePHiOJeJORTas2dPq2PFCRMmICgoKN6fZ97/79mzRz/m3LlzqfDKbA9byMEWsrAHZXQcYCcSICoqCgEBAXj11Vf1oHnZsmX1wHlSh9cDAgJw7do19OnTBzVq1NA7mkKFCqFo0aL6K2379++fVi/NZh05ckS/ETVgwAB9e2KDDOvXr9fbvW3btggICIj3cZQ0bCEHW8jBFrKwhxxsIQdbyMEWcrCFLOyRtiyvKDZ8+HC9DX/44YdYy1gOhlasWBEzZszQAzsxz4ns2LEDhQsXhqurKxYtWgSALRLDFnKwhRxsIZOXlxfy588PpRRef/11fbViM3OTkJAQNGjQAEo9vzDMv//+a7Xcw4cPsWrVKuTIkQNKKWTLlg1dunTBxo0bUa1aNeTMmROLFy9GZGQkr5IfD7aQgy3kYAs5YraIiIgAADx58gSrV69Gly5doJTSAz7FixfH4MGDce7cOX0lYwC64d9//418+fLB1dUVS5YsAcBvUUkO9pCDLeRgi/Rneaw2YsQIPRx6//59q20Xcyi0S5cuePr0KQBgzpw5iQ6Hmo/3du3apZdVSuG9997jlY3/H1vIwRaysAdlZBxgJxLi4cOHyJMnDxwdHWEymfQbIfENr8fccezZswd9+vRBiRIl9I5MKYUhQ4Zg7dq1GD16NLJmzYrKlSvj0qVLAPiGSUI2btwIBwcHuLq6Yu3atQASH2T466+/9IcESpcuje+//54HiymALeRgCznYQhb2kIMt5GALOdhCDraQhT3SnuV5jCFDhkAphSlTpgD4743W/fv36/MZRYoUwdSpU/UJ+Lj6PHr0SH+Av1u3bomuQ1RUFHx9fVPi5dg0tpCDLeRgC5k8PT1RoEAB7N69O95lzN+okilTJkyYMAHh4eH6vl9++QU9evTQb8i2adNG7/cHDx4MpRSaNm0KHx+fVH8tto4t5GALOdhCjvPnz6NgwYL4999/8ejRI6xfvx5VqlSBu7u73r65cuXSf/7tt98AQPcw78fDw8PRtGlT/UE1f3//dHtNtow95GALOdgi/cUcDt2zZ4/V/TGHQt9++208efLEapm5c+fGOxxqPm60HArNkSMH3nnnHfj5+aXa67JFbCEHW8jCHpRRcYCdSIgbN27or4QyX3n93Xff1Qcj5k/ixnwzZMWKFfj444+tPhlVuHBhDBkyBH///TeA52+W1KlTR79ZEhgYmLYvzgaZd+olSpSI940oy79v374dHh4eUErBzc0N/fv3T/ArWSjp2EIOtpCDLWRhDznYQg62kIMt5GALWdgjfViehN+5c6fVfZaDoUopdOjQAQ8fPgQQ92Co+TzJO++8owd+EhIVFYUjR46gYsWKGDRo0Mu+FJvHFnKwhRxsIZP5qpNxXQnst99+Q6lSpaCUQpUqVXDmzBkAwLNnz9C/f399ReMsWbLg888/19+csmTJEiil4ODggCNHjqTdi7FxbCEHW8jBFnKEh4dj06ZNyJkzpx4IdXR0RObMmTFlyhQsXLhQfxO2Ukq/hxodHa37rV69GtmyZUP27NmxevVqALyq8YtiDznYQg62SH/xXV34t99+S3Ao1PJxMYdDAwMD4x0K7dq1K+7duwfgv07mY8WMji3kYAtZ2IMyIg6wEwly4cIF/YZ4r1699JsfoaGhVsvdunULP/74I9q0aWM1uF6/fn189NFH8PX1tbqKg/mqQR4eHrhw4QIAXn09MQsXLoRSCjlz5sS1a9cSXHbr1q3ImTOn7tCpUyf9aWceML48tpCDLeRgC1nYQw62kIMt5GALOdhCFvZIP3GdhD9w4ID+ML+DgwMyZ84MT09PAAmfv3jy5AnKly8PpRRee+21eJeLiorC0aNH0axZM93xxIkTL/9ibBxbyMEWcrCFPPF9wCwkJAR9+vTR22zDhg0IDQ3FDz/8oK9K6erqih49emDTpk368f/88w9q1aoFk8mEadOmxfkzgNj/X+D5dLaQhC3kYAtZzp49i6xZs0Kp51cm/vTTT3Hy5EkAz7fZ3r170bJlS91l+/btVo/v168flFIoVqwYzp49mx4vwa6whxxsIQdbyLN69Wo0bNgQzs7OcQ6FmlmeA7QcDh0/fjyA5A2FBgYG6g8g0H/YQg62kIU9yN5xgJ1IGE9PT3z44Yf6ZJPlDub8+fNYu3YtypQpo6/M4OLignr16mHcuHG4du0awsLCAPz3dVK3bt1Cs2bNYDKZ8MEHH1h9sori5+npiRIlSsDd3d3q5KHlBwPCw8Px448/6h28o6MjWrdujcePHwOI/5NxlDxsIQdbyMEWsrCHHGwhB1vIwRZysIUs7CHH1atX9TauVKkS8uXLhwoVKiAgIMCqhyXzOZONGzcif/78MJlMmDRpktV9ZubB0MaNG+uT899++62+8j79hy3kYAs52EKu5cuX6zaffPIJrl69itdff12fN8+TJw9+/fVX3Llzx+pxkydPhslkQv369XHq1KkEf0ZISAh++eUX/XcOiMaNLeRgCznYIv1cuHABffv2xY0bN/S3ZpmP3cLDw7Fr1y6r4dAdO3YAAH799Vd925w5c9Jr9e0Oe8jBFnKwhSxz5szR27Vbt25xDoWaWc7ZWD7uvffeS3Qo1CwwMBDt27eHUgqTJ09Olddkq9hCDraQhT3I3nGAnUi4iIgIXL9+HZMmTUKFChXg4uICpRQyZ86sdy5z5861eozlzmXx4sV6uQ0bNqT16tusx48f6yvcN2nSBCdPnrR6U2rr1q0YOnSo3rY5c+ZEly5d9C8KHGRIOWwhB1vIwRaysIccbCEHW8jBFnKwhSzp0YMDJfHr1asXChQogJkzZ6JChQqoXbt2vMtavqnbqVMnKPX8ishHjhyJtWzMwVA3NzcsWbIEAQEBqfZabB1byMEWcrCFPIcPH0aRIkX0Prpt27bInj07lFIoXrw43n//fXh7e8d63L59+/S+fcGCBVb3We6nnz59ipMnT6JevXr6jV6KG1vIwRZysIVsERERsYZDf/vtN0yYMAGOjo6oUaMGLl68CIDHcGmBPeRgCznYIu316tULLVu2THAo1MxyFueHH36AUgomkwlKKWTPnj3BoVAAmDp1qp73efXVV2N9mC2jYws52EIW9iB7xgF2IsH8/PzQsWNHNGnSRB+cKKXQqFEjDBkyBI0aNdK37dy5E8DzgxTzgYqXlxcqVaoEpRT69OmTni/FJl25cgWFCxeGUgrly5dHp06dMHDgQLz++uvIlSuX3vaVK1fGyJEj9ZWROFiS8thCDraQgy1kScsePCGZMLaQIz3+O2X+NiKyxhZypGULyxOP3P/HLb1+n7I84ZvR9yWW23Lv3r24desWmjZtiuzZs+PcuXMJPvbDDz/Ug6ETJkwAYL09ORiaPGwhB1vIwRYyRUREYMyYMVBKIVOmTHo7K6XQunVr/PXXX/rbUix/H7p27Rrq1q0LpRR69+6tb4+5Xz958iRGjx6NYsWKQSkFJycnKKWwb9++DL/fjokt5GALOdjCNsQ1HGq+Ov5HH32UrOfidn957CEHW8jBFmnDcj8bHByc5MeZL4Jx6tQp3Sdz5sxxDoXGdR6xe/fuaNGiBU6ePPkyq29X2EIOtpCFPSgj4AA7kWBXrlyBo6Oj3pk0a9YMn3/+OSIiIhAaGoqDBw/G+fVR5h3Rxo0b4e7uDkdHRyxZsgRA4gconp6e+OGHH1L1ddmSS5cuoXr16nB2drb6EIH5hGO3bt2wadMmhISEAIj702mUMtK6hfnxPKiPjS3kYAtZ0rrHhQsXcObMGe574sAWcqRVi6ioKHh6euKtt97CmjVr4OPjo+/jf7OeYws50vq/UatWrcK3335r9fXzbPGftO7h6emJ7t27W73ZmNF7xNym/fv3h1IKM2bM0NvdLDIyEv7+/nj//feh1PMrx7Rr1w7Hjx+P9ZwcDE0+tpCDLeRgC5m8vLyQNWtWvc+uUKECRo4cGe/yYWFh+Prrr5E5c2ZUrVpVvwFr+aHL8PBwrF27FsWKFUO2bNmglELevHnx9ttv4++//7Z6Ph77/Yct5GALOdjCNkRERGD37t1o0aKFPg4sV66cPo8R81z406dPcfnyZWzatAn//vsvHj58qJ+L2/zlsYccbCEHW6SN5G4b8/I7duzQXbJmzZrgUGhwcDDu3r1r9TzXrl172VW3O2whB1vIwh5k7zjATiTchQsXUKpUKcyfPx+XL1+2ui88PDzWJ2/NJ6oePXqEKlWqQCmF+vXrJ+kKiN7e3ujZsyeUUujevXuqvB5bdOvWLcybNw+dO3dG3bp1UalSJXz++edYvXq11XIZfeggLaRmi5ifKnz27BkiIyNjfQUPOz/HFnKwhSxptc+4dOkS3n33XSil8Nlnn+Hw4cMp9tz2gi3kSIsWFy5cQLt27fSgUIcOHbBy5coUeW57whZypNV/o44cOYISJUpAKYXGjRtj+fLlKfbc9iStenh6emLQoEH6+H3AgAEp9tz2ZO3atXobTZ48GQcPHkRAQACuX7+OBQsWoE2bNvq/Mc2bN8fmzZutHs/B0JTDFnKwhRxsIcf58+fh5uaGvn37Wg1vxvUtNDdv3kTVqlWhlMKYMWMQFBRk9Vxbt27VH04w/1O6dGn8/PPPuHHjhtWyvr6+WLhwYazbMzK2kIMt5GAL27Fu3TrkyZMHSj2/+v2zZ8/0febjtGvXruH9999H8eLFoZSCo6Mj2rRpg6VLl+pl+c1nKYM95GALOdhCDvN+fNeuXXqfnCNHjkSHQps2bYqsWbPi+vXr6bLe9ogt5GALWdiDbBEH2IlsQMyvAbE8wRXX10dt27YNO3fuRLZs2ZArVy78/PPPABI+KDEPr5sPfhwdHXH16tXUeUE2LjQ01Orv/MRy+kmNFjt37sTcuXPRoEED1KxZExUqVMCwYcOwfv16vQyHS2JjCznYQpbU6BEVFYXdu3ejTp06UOr5VwU3atQI8+fP18uwR2xsIUdqtHj8+DG+/PJLdO/eHU5OTjCZTHB2dsaYMWP0MmwRG1vIkZrHGN988w1q1KgBBwcHODo6YsKECfo+tohbavTw9PTEwIED9XG7k5MTlFIYOHCgXoY9/jN27Fi9rXLlyoXKlSvDw8MDWbJk0VeyfPPNN/Hnn39aPY6DoSmPLeRgCznYQo7Hjx/rbyMFrPfZlvvVN998E0opVKhQweqKYpGRkRgyZAgqVKigm5YvXx59+vTBo0ePYv28O3fuYNasWXrZO3fupNIrsz1sIQdbyMEWtsH84QAHBwccOXIk1v13795F586d9bd2ubu76w+rKaWsjrH5fuHLYw852EIOtpDhRYZCg4KC0KFDB738+++/n6QLT1LC2EIOtpCFPchWcYCdyAaYT2TF92Z2XEPs5jdCihYtCm9v7wSf3zy8nitXLiilUKRIERw6dCjFX4cts9z2HCpIX6nRIjo6Go8fP0b//v31hzhi/uPq6orRo0en+M+2ZWwhB1vIkhb7jJCQEBw5ckRf+dt8IrJ///6p/rNtCVvIkZotYj7fhg0b0KdPH93i008/TbWfbYvYQo7U/m+U5RtSx48fx5AhQ9giAanZI+bweu/evbFw4ULdg0Ps/7H8/+348eNRoEABq98/s2bNiqxZs2Lu3Lk4f/58rMcmNhia0bdvcrCFHGwhB1vYpsWLF0MphZw5c2L37t0AAD8/P2zcuBEtWrSwavjOO+9g06ZN+sNsERER+nnu3LmD6dOnw8PDA0o9v/qxj49PurwmW8UWcrCFHGyRvnbu3In8+fPDZDLh448/BhB7f7xjxw7kzZsXTk5O6NmzJy5cuICff/7Z6qr4X375pV6ew6Evjj3kYAs52EIG8zZ/0aHQLFmyoEuXLjh27Fj6vAA7whZysIUs7EG2jAPsRHYiriF2pZTV10LFJebwesGCBTm8TnYjoW8dMP8CFxwcjL/++gutWrWyGjxs3bo13nvvPQwfPhyvvfaavn3UqFFptfp2hS3kYAtZXuQrG2OenJw5cyaKFCkCR0dHKKXQo0ePlFq9DIUt5HjRrzK1PPF+9+5dLFiwQP93aurUqSm1ehkKW8iREi38/PwwZ84c3WLs2LEptXoZTmI9LPcPMYfX+/Tpg8DAQADA0qVLOcQeB8vte+jQIaxatQpjxozByJEjsXHjxlhDoUDSBkPje4M2o2/vhLCFHGwhB1vYBvN2u3r1Klq2bAlHR0f9Ab5z586he/fuKFWqFJRScHFxQdmyZTFr1iyr57BsHXMwtG7duvz20iRiCznYQg62SH/mBuPHj9fHaqtWrYpzWfNV7fPmzYvr16/r2+/fv48ZM2boxy9evDgtVt0usYccbCEHW8hhPlbbvXv3Cw+Fdu7cGSdPnkyfF2BH2EIOtpCFPcjWcYCdyI6EhoZix44dKFOmDEwmE6pXrw5PT08Acb/ZweF1skfBwcE4ffq0/ntcwyXmfx+ePXuG5cuXo1atWlBKwdHREc2bN8fChQutlr9//74evHJ2dsaaNWtS90XYCbaQgy1kSUqPxFju10+cOIHGjRvrr4esWrUqbt68mSLrau/YQo6UaAFY9wgNDcVXX30Fk8mEcuXK4ejRoy+9nhkBW8iRUi1iPue0adNgMpng5uaG9evXv/RzZhQv0uP8+fMYMGCAPmnct29fPHnyxOo5li1bxiH2OCR2NTDL7ZOUwVBLu3btwvz583H69GkEBQUl6edlZGwhB1vIwRayWW7/L7/8EkopFCtWDCtWrMAvv/yCHDly6H1zlixZMHLkSOzbt8/q8ZbPEddg6JUrV9L0NdkqtpCDLeRgCzn++ecfuLq6QimFt956S98e81hswYIFUErB3d091nm+4OBgfPHFF1BKoUKFColesfL69eu4f/9+yr0IO8IecrCFHGwhx19//ZViQ6FRUVFp8u3B9oot5GALWdiDbBkH2InshHmHs3//fri4uEAp66+Fj4nD62nL/FWOKTF0QvELDQ3F+vXr4ejoiA8++CDBZQMCArBgwQJUrlxZD+kOHjwYR44c0ctYfgXnw4cP9S9xn3zySaq9BnvBFnKwhSzJ6REfy4PE/fv345133tFX/G7ZsiX+/fdfHkgmAVvIkRIt4nP8+HHky5cPSiksW7YsRZ/bHrGFHC/aIq7/5sS87cqVK/qr6M0D0/xvVcJepIevry/69OmjTxo3btwYoaGhAIDw8HC9XMwh9r59+6bKa7BXyR0MvXbtGjp16gSlFEqXLo1PPvkEfn5+AHi8/rLYQg62kIMt0teff/6p98N169ZF//79kSlTJv1mbqVKlbB//36EhITox8T8sAAHQ1MGW8jBFnKwRfqKiIjQ35SVL18+rFy5MtYy5uPke/fuoUKFClBK4bPPPkNwcLDVchcuXNDfZDpt2rR499mXLl1C586d4ejoyCvkx8AecrCFHGwhy6BBg6CUQvbs2dG9e/cXHgq1PCcYEz+4nDRsIQdbyMIeZMs4wE5kR+7du4dXX30VSilUr14dt2/fBhB7J8Lh9fRx9uxZvPfee/Dx8UnvVbFLoaGh+Omnn1CiRAl94vfHH3+Mc9mQkBD8+OOPqFq1qh7S/eqrr+Dr66uXiWuIZ+zYsfpNxIcPH6baa7F1bCEHW8iSnB7xsWxw6NAhdO/enQPTL4At5EiJFolp1KgRlFLo2rWr1YdwyBpbyJESLTZt2oQdO3bov8f879G4ceOglELOnDlx48aNFFlve/UyPebNm4c6deogc+bMyJo1K4YOHarvs/x3IDIyEsuXL9fPb3mFRYpfcgdDzfbu3YtOnTqhYMGCUEqhRo0a+jidA6Ivhi3kYAs52CJ9Xbt2Da1bt4aLiwucnZ2RK1cuODk5QSmF2rVrY9KkSfp8R3zHbXfu3MG0adP0OfT69evD29tb38/jvaRhCznYQg62kOHSpUtQSiF//vx49OgRAODmzZuxhjYDAwPx6aef6j7mb762PKabOXMmlFJYsWJFnD8rJCQEPXv21Md8U6dO5QBQDOwhB1vIwRayjBgxAq1atXqpKxoDzy968cknn6B79+748MMPsW7dOv3+Ko/5koYt5GALWdiDbBUH2InsgHkHsXPnTpQsWRJKKbz//vsIDAyMtSyH19NedHQ0QkJCkDdvXiil8Pbbb1sNhFLKePbsGcqXL68P5Lt3744zZ85YLWM+aXvw4EHUq1dPD+nOmjVLH/jHxXyA379/fyilUKlSJasrn5A1tpCDLWRJSo+EcGA65bCFHC/bIjH+/v4oXbo0lFJo164duySALeR42Rbnzp3Tx3u//vqr1X3mq2d89dVXcHFxgYeHB27dupWi629vXraHt7c3Zs6ciSxZskAphXfffVffZ3myNzIyEmvWrMGCBQtw9+7dFH0N9igpg6ExT6ZHR0fr//Y8fPgQGzZsQM2aNaGUQvHixfWHOfgGbfKwhRxsIQdbpL8HDx6gaNGiUErpbzlRSuGdd96Bt7e3viplfNvTPBiaM2dOKKVQpkwZeHt7629TMWOPxLGFHGwhB1vI4eXlhT/++AMAcOzYMVSsWBGrV68GYH3+7+LFi/pb5d577z19u3l/HhYWhu3bt+vb4zrnsW3bNiilMHz4cP0NK2SNPeRgCznYIv1ZHruZj+mSOxRqfk/1xIkTKFKkiN73my8w8sorr+DmzZuxfh5ZYws52EIW9iBbxwF2Ijvyxhtv6J3N2bNnAVifoOLwevrat28fMmfODKUU3nzzTQ6xp4KzZ8+iePHiaNeuHS5evGh1n/nfhaioKLRv314P6U6ePBkPHjyI9zktD+A7d+4MpRRq1qyJx48fc/AqAWwhB1vIklCPhHBgOuWxhRwv2iI+5v+2hYeHY8WKFcidOzeUUhgwYMBLP7e9Yws5XqaFv78//ve//+mTi99//73VFZeCg4PRtWtXKKXg4uJidZU+ituL9LDcF4SGhmLNmjVwc3ODUgojRoyI93Exh04otujoaOzfv19/q0NiVzX29/eP83fbqKgonD59GnXr1oVSCg0bNtRXp6GkYQs52EIOtpDj/Pnz+gNkr7/+OhYtWpSkx925cwfTp0/X59CVUnB3d0epUqVQrFgxfPDBB1i3bp1enm/cJo4t5GALOdhCDvOx28CBA6HU82+4tvygt/ncxsaNG/U5wKVLl8Z6vJnlNo/5jaVXr17lB5YTwR5ysIUcbJH+LGduzNszqUOh5uXv3buHYsWK6Q+ftW/fHo0aNUKhQoWglEKxYsX47VtJwBZysIUs7EG2jAPsRHbip59+glIKmTNnxsCBAwE832GYdzQcXk9f5l8WDh8+rL8KkkPsqePWrVvw8vKK9/7PPvsMSik4ODjgww8/jPU1a/FZuXKlPiH85ZdfptTq2jW2kIMtZEmsR0wcmE49bCFHzBZJ3Y6Wy1n+OTw8HL///jtatWql/zv122+/pdwK2zG2kCO+Fklp8ujRI/Tr109v8379+mHBggX46aef8N577+nbP/roo1Rbf3vzMj2A5x8cmDJlCpydnVGsWDHs2LEjVdYzo5gzZ44+4b506dJYg6EPHjzAxo0b0ahRIxQrVgzZsmXDhx9+iFWrVlktFxUVhT/++AMlSpRA5syZsWDBAgBJ70psIQlbyMEWcnh6emL+/Pm4dOmSvi2hN1nNg6EeHh5QSqFQoUKoV68eRowYge7du6NatWr696hJkybpx/Eqx4ljCznYQg62kGXHjh0oWbIkcuTIgSVLliAsLAzAf9+S8uDBA3Tu3BkODg7o06dPos93+fJltG/fHv3790/tVbdL7CEHW8jBFnKYj8mCgoLQqVOneIdCLS1duhRKKeTJkwfr169HaGgonj17hj///BN16tSBUgrVqlXD7du3AXD/nVRsIQdbyMIeZEs4wE5kJ3x8fJA1a1YopfD7779b3cfhdRksh9idnZ2hlEKrVq34KeY0dP36ddSsWRMmkwmVKlXCrl27kvS4f//9F61bt4aDgwM8PDywZcuWVF5T+8cWcrCFbByYliMlW8Rcjg2txXfCI+ZQdGRkJEJDQxEYGIjg4GDcvn0bJ0+exLZt29ClSxdUqFBBv3E7dOhQqytQU9KwhRyWw9Le3t5JugLrtWvX9Ld0mf/Jnj27/nODBg2wefPm1F51u2TZ4+rVq/FeVTemI0eO6GGTqVOnpuYqZgjDhg3DnDlzYm3/e/fuYfLkyShRogSUUsiUKZP+sKb5CviWg0EPHjxAmzZtoJTCG2+8kcavwj6whRxsIQdbyJTQsVfMwdCaNWti69atVlfIv3LlCr766iv9+9T06dPTYrXtElvIwRZysEX6evLkCfr06QOlFGrUqIF///1X32c+PzJu3Dh9MTHLDx7EdPnyZasPj2/bti3V19/esIccbCEHW8gSHh6uv3kre/bsCQ6FAsDChQv1FYxjXkH/5MmTqF27NpRS6NSpEx4/fpwWL8FusIUcbCELe5Ct4AA7kR05c+YMBgwYYHUbh9dlsRxiN3/C7ezZs+m8VhnHxo0b9YH45MmT9e0JnRj28/PD6NGj9RuKPXr0iLWMuevdu3etvmqNA4nxS60WlHyp2SK5VybNqMxXxwDi/novIOUGpoOCglJwze1PWrY4deoUZs+eHefPoOdXKt63bx/69u2L/v37o3v37ujQoQPefvttdOjQAU2aNEGzZs3QpEkTVKlSBRUrVkTRokXh7OyMzJkzWw3sDhgwAJ6enrF+Bv+9SJq0aAFwn5FUx44dwyuvvIJly5YBSHh7hYeHY+bMmVBKoUOHDnBxcdEt3n77baxfv14vG9cV9NkiccePH0eLFi2wbt06AEnbZq+//jqUUmjSpAkCAwMTXNZyv8Qe/7H8EIz5amPAf1erXL16NYoXLw6lFAoXLozZs2fjs88+w9tvv231rQSWwz7fffcdHBwcULlyZTx69CjtXoyNYws52EIOtrBNMQdD69atG+8VkYOCgjB69GgopVC6dGmcOnUqwefmPjx52EIOtpCDLdLOzZs3UatWLSil0KxZM5w8edJqfz5hwgQopeDq6oozZ87E+RyXL19Gz5499X59zJgxuHPnTlq9BLvCHnKwhRxsIctHH32khzktP1AQlx07duhtvnbt2lj3b926FSVLlkTWrFmxevVq7qOTiS3kYAtZ2INsAQfYieyM5Zsk3t7e6NGjhx5eL1SoEIfXBTAPxJ06dQq7d+9GeHj4Sz9ndHQ0v54lAeZtM3jwYCilUKFCBT1ontB28/f3x5w5c5AlSxYopdCoUSN9tcuYX+W5Z88eFC5cGB988AH++usvfTt/abOW2i1iPge3f/xSo4V5HxRzKPTZs2dWz8Eu1szb48CBA/jpp59iXaHv4MGD6Natm74iX6tWrXDq1Klkb8dTp06hRYsWWLp0KXx8fGL9fEr9Fublzp8/j+bNm0MphY8++ijW/QRs2bJFX5XyRf7x8PBAxYoVsXTp0gSvAsB/LxKXWi1i7muePHmC8PDwWENZbGHNPIhQv379JF2F/erVq3BycsLEiRNx48YNHDhwAEePHrV6Yyvm8cjTp08RGRkJf39/q9vZwlp4eDiGDBkCpRReeeUVq0HD+AQHB6NmzZpQSqFOnTpWHcxi/rtx//59BAYGxnp+9ohbVFQUatSooT/Af/36dX3fgwcPsGTJEv3fpw8++AD37t1DZGQkhg4dCqUU6tWrlyLH6MQWkrCFHGwhU8zB0Hr16uHq1asJPmbDhg1wcHCAs7Oz1XnAmMz79eDgYDx58iQlV9susYUcbCEHW6S9y5cvI3/+/FDq+RWOJ0+ejD179mDevHl6P92kSRPcv38fgPWx2eXLl9GjRw+93NixY5N07E7xYw852EIOtkh/lufvli5diqNHj1rdHxwcHGuWIDAwEF27doXJZEK3bt3g6+trdf+TJ0/0VfEnTJjAY78kYgs52EIW9iBbwgF2Ijt16dIlvPHGG/qkVoECBfDPP/+k92rR/3vZYYOkDKtzoCG2Dz74AEop1KpVC0DC2+jx48dYvHixHtKtXLkyNm3aFO9jJk6cCJPJBAcHBxQrVgyzZs3S97FFbCnVIqErUkZGRnKgPQlS69+L7du3o0OHDmjcuDFq1aqFyZMnW30FIVtYM3+iuVSpUlizZg2Cg4MBPB+kTonh9fv376N37976pOQ777wT75V3M7rUahFzeN3V1VX3GDhwYKzlMrpr167ByckJSik4OTmhfv36aNu2LXr06IE+ffqgW7du6Nu3L0aOHIlBgwZhyJAhmD59OubMmYNVq1bh0qVLiZ54578XSZMaLSy37f3797FmzRpUr14dlStXRsmSJTFq1Chs3LgxzuUzus2bN6NYsWLInTs3Vq5cafUBZkvm34HOnz+P7Nmzo2PHjnEuZ3mCcffu3Zg2bRqqV6+OmjVrokqVKpg4cSL+/PNPvQxb/CcyMhI//PADChQogPz582PNmjWJ9vDz80P16tWhlELz5s1jfQOE5QnjtWvX4pNPPkGhQoVQsmRJFC1aFMOHD8evv/6ql2GP2K5du4YcOXIgc+bM+OKLLwAAISEhVsv89ttv+r/9H374Ic6ePYtXXnkFSin873//Q2RkJLdtCmALOdhCDraQJ7mDoeZtf/DgQX1Mt2TJkgR/RmBgIEaNGoXatWsnOnSakbGFHGwhB1ukH29vb1SoUEHvky3P4+XPnx9TpkyJ9ZjEhkJ5EaoXxx5ysIUcbJH+Yg5+mgUHB+Ovv/7CyZMnYy23bNkyODg4wNXVVX+jo+V2//fff9GlSxds3bo1Fdfc/rCFHGwhC3uQreAAO5Gdun37NooUKQKlFNzc3PjpJzti+SaVt7c3fvzxR4wZMwb/+9//8NNPP1l9UIFvaFkbNmwYlFKoWLFirKvqWv7SdfPmTcyaNUsP6ZYtWxaLFy+OdRXpmH7//Xe8/fbbMJlMUEph9OjR+j62sJYaLS5evIhly5ahS5cuaN26NerUqYPWrVvju+++w5EjR/RybGEtpVqYP1AQGRlpdZUHy3/y5cuH8ePH6+dki/9cuHABzs7OUEqhWrVqWL9+PbZv34533nnnpYfXgecHor/88gtee+01KKVgMpmQJ08e/ncqDqnRIubwuqOjI1xcXFC3bl29z+AQe2wXLlzQb9I2bdoUnp6eL/Q88W1P/nuRdKnV4vbt2xg5cmSc+wx3d3d8/vnn8T42o3r8+DF69eqlP3wW11c+Wm6ruXPn6g/lhIaGWt1nuZ+fMWMGypcvH2eLnDlzskU8Hj58iC5dukCp51dUP3XqVKxlLE/+fvHFF3q7zpgxI97lhg8fjqxZs8bZI0uWLPzvVAIuX76st9XIkSPjXW7z5s16OfO3TLi4uOiT9vTy2EIOtpCDLWTx9fXFzJkzk3VVY+D5ccTnn38OJycnuLu7Y//+/fEuGxUVhfHjxyNPnjxQSqFKlSqxPrRAbCEJW8jBFunvxo0bGDRokP4QslLPv4100qRJsY7DEhsKtVw+5iARj+mShj3kYAs52EKmdevWQannF8wxszwPa76oTq5cueDl5QXgv/dYgefnzM1izvfEN4xKcWMLOdhCFvYgaTjATmTHzp8/r09uVatWDatXr441nEi2JzIyEvfv30ePHj2sPllt/qdUqVKYNGmSXp4Hlf9tgy1btsDDwwMFCxa0OnFruY0OHjyIgQMHInPmzFBKoXz58vj666/x+PHjeJ/f8pc5b29vjB8/Xg8kDhkyJM6fk1GlRosLFy5g7ty5yJEjh77CgHnI1PLfi2nTpsX5czKq1Pr3wvKNdnd3dxQrVgyvvfYaSpQoof+9+PTTT+P8ORmdl5eX3m+XKVMG9evXtxqY/vfff19qe0VHR+PZs2f45JNPkDNnTt2jX79+Kfgq7ENKtohveP3tt9/GrVu3sGbNGg6xJ8BycLpFixb6RAlgvY3i+3Ni+O9F0qVkC/Pt3377rd5nFC1aFNWqVcPbb7+NSpUqcZ+RgJs3b6J27dpQSqFZs2Y4c+aMPkloeXLwzz//RKVKlaCUQteuXa2ew3JbTpkyBa6urnqbN27cGJ07d0a/fv1Qv359ffuwYcPS5gXaGB8fH1SpUkX3OHnyZJxDH19//bX+/3vlypXj/b1r8ODBVr/Hvv766xg4cCBGjBiBV199VfcYPnx4mrw+WxMYGIhWrVrB0dERb775Jvz8/PR90dHRVsduq1at0tvT1dUV3377LQBecSylsIUcbCEHW8gRGRmpP+iXnMFQADh+/Lj+4F+NGjUSPd9++PBhKKWQLVs2/PXXXymx+naFLeRgCznYQo6wsDAEBgbiwIEDOHjwIO7fvx9rmcSGQi2dPn0aw4YNw7Jly3DhwgV9O/fvScMecrCFHGwhz/fffw+lnl8Jf8eOHfp28zc33rp1C7Vq1dLnvsPCwuLcvpZDodOmTYOPjw8ADocmB1vIwRaysAdJwwF2Ijt38eJFPWhStWpVDrHbuPv372PlypWoWbMmlFL6jayyZcuiWrVqyJcvnx6wsxycpufu3buHJk2aQKnnVw89ePAgAgMDAQBPnz7FvHnzUL16dbi4uOgPfixduhRPnjxJ9Lkth06ePn2KRYsW6T4zZ85MrZdks1Kqxfr169GxY0d90qVgwYKoW7cu5s2bh8WLF2PkyJFo2LChbjF48GD9WA7BPZeS/148fvxYX+mhXLlymDRpEu7evQsAOHPmDKZMmaJbjBs3Li1fps24ePEicuXKpa+wZx4UPX/+/EufILT8//zkyZORNWtWvc+YOHHiy6663UmJFvENr3fp0kX/uxEWFoZly5ZxiD0Blr/PtmjRAt7e3in23Pz3InlSsoWfnx8KFCgApZ5fufrHH3+Ev78/gOcfIpk+fbr+92LChAkp9RLsxuXLl62239KlS3Hnzh19/4oVK9CgQQP9jRKWV1C3tH79ehQqVMjqd6Xw8HD978bNmzexYMECff/s2bPT5PXZmkuXLiF//vxQSqF69er47LPPcOTIEVy6dAnbtm3DoEGD9O+rrq6uVt9IY2n+/Pl6uUKFCuGrr76yut/Pzw8LFy7UPebPn58Gr872zJ49W2/HefPmxfr2psDAQJw/f15fPd/Z2Rmff/651SAp35hNGWwhB1vIwRZyeHt76/OqSR0M9fb21uc9ChUqpL/xz9zE/L8xr0B28OBB7Ny5MwXX3r6whRxsIQdb2IbkDIU+ffoUCxcu1Ms2aNAAP/zwg76fgz4vjz3kYAs52CLtXbhwAc2bN9fv9zx48EDfFxkZiYiICPTr109/2Mw8MGrJ8pjP/I2O+fLlw82bN9PkNdgLtpCDLWRhD5KGA+xEGQCH2O3DjRs3MHr0aP3VwVmzZsUrr7yCH374QQ+SnjlzBnPmzOGASQIsh32KFCmCqlWrolGjRqhatao+IDcPZe3evVsP8sbHPNwTc8jwyZMnGDFiBEwmE6pVq4bz58+n2muyVS/b4rvvvkPlypX1/99btWqFn376KdZVwb29vTFz5ky9XHwDQxnZi7aI+f97f39/lC1bFkopDBgwQA8imgUEBGDWrFkwmUzInTs3Nm/enGav0ZZcuHAB7u7uUOr5VeynTJmCp0+fAni5gWbzgaS3tzcqVqyou1aqVAnnzp1LkXW3NynR4uTJk2jatCmcnJzg6uqKrl276ucwN4mMjLQaYre84jQ9l1pD7Pz3IvletoXlYHTevHnh7OyMGTNmICgoyGq5gIAATJs2DSaTCYUKFbK6CgQ95+XlhdKlS0MphSxZsiBfvnxo0qQJ6tevD6UUHB0doZRC27Zt9WMsf3eNjo5G37599X97Ro4cqZezfEMqJCQEEydOhMlkQtOmTeO8khM9/++I5TdkOTg4/B975x0WxfH/8ZmjiihFRUVRxN67sffeYokmxq8mJtHYNdbYe++9d9HEGhVLorF3Y6dLEywoiAKClOPevz/47bhHL3fcCp/X8/CIt7PL3Lx3dsq+5zOwsbGBjY2N+MzKygrjxo0T50jPII1Gg/fv36NTp05Cj+XLl4t0coNJVFQUpkyZApVKhU6dOiE8PJwWPP0/8nKYMGGCKPehQ4fi0KFDcHNzw+3btzFp0iQ0bNhQLFKbPHlyqqagO3fu4NChQzhy5AiOHj2KDx8+IDY2FgAZSNOCtFAOpIVyIC2Uib+/P/z9/TOU1svLC3Xq1BEvZTdv3qy164pU5lFRURg/fjwWLVqU4nWo3U4Z0kI5kBbKgbRQHvLyyYwpVM6yZcvQqVMncZ48gAK135mD9FAOpIVyIC2UwY4dO2BiYgLOOVavXo3o6Git4/KdGh88eKB1TD4vO3XqVLEDedGiRXHu3DlxjNrsjEFaKAfSQlmQHoSSIAM7QeQRyMT+ZePn54dff/1VRPWztbXF4sWLk5miNRoNoqOjMWPGDBgbG6Nt27YIDQ01UK6Vy7Nnz9CkSRMRWVf+U7NmTYwePVprcjclpFWG0otBIHkH7N9//0W+fPnAOcf+/ft1/0VyAVnVYvv27ShTpoww+HTs2BH379/XSiPXJiYmRkQPtbS0xKFDh/T+3b40dFEv3rx5I4zwHh4eAJJPZrm6uqJUqVJisoxIGTc3N6FFzZo18ccffySLzJcZJB3c3Ny0zHXVqlWDp6cnAIqekRrZ1WLDhg0oWrQoVCoVTExMMGXKFHFMbkiUTOxStORffvlFp98jN5DUOO3t7Z2t61G9yDqZ0SK1lxrPnz+HlZUVzMzMxI4ESdM+ePBA/J2kkaiJRPz9/dG3b1+xyDXpT48ePcSCsqT3s7e3N8zNzcE5R9euXcXnKd33ly5dEob4mzdv6vdLfcE8f/4cQ4cOTbYIkHOONm3aaJnSk5bzf//9J9L2799ffJ5SHXJxcQHniTtyPX78WH9f6AtEXq6LFi1CyZIlRbkWKVJE7KoiGUN///13+Pj4aF0jNDQU58+fR5s2bcRCNmnc0bBhQ0yaNEnseEDtROqQFsqBtFAOpMWXi9wYWrRoUaxYsULL/CM3hs6ZM0fMe8ydOzfZtUiX7EFaKAfSQjmQFjmPj49PmqbQlMpRHrnSw8NDRKpMqgUZfTIP6aEcSAvlQFoYhqQ7vkrlt2TJEvHOwd/fH4MHD07RGJrUFFqkSBGoVCo4OTlhxowZ8PX1xfv374XRlNrt1CEtlANpoSxID0KJkIGdIPIQKZnY04suTRieoKAgjBgxAnZ2duKF1rFjx7TMc0kHiidOnBCdiTt37uR0lr8IgoODceLECYwePRr9+/fH8OHD4ezsrGXASm8V+evXr1GiRAk4OztrfS4/r2nTpuCcY+DAgdBoNLQyPQUyooW8Y3v48GHUqFEDKpUKRkZG4JyjdOnSKFmyJL755ptUI6yHhITg119/hZGREb777jta3JECGdFCbrgNDg7GpUuXsHfvXri4uODhw4cYO3YsOOe4fv16qn+nY8eO4JzD0dERkZGRVC9SQd5uV69eHfv370+2+jkjpGXSTW2hAaFNdrX4559/MHbsWLGoacCAAeKYfFJYrVZj8+bN4JxjzZo1Ov0OuQW5Fi1atMhyJHaqF9knI1rI2+9Hjx7h8OHDWLBgAZydnXHx4kUMHjwYZmZmePLkidZ58r6t1JeqVasWYmJiaLIrBcLCwnD16lUMGTIELVq0QOnSpTFo0CCsWLFCpEnpxdKTJ0+QP39+mJqaYvr06QCQbCtI+Vbz1apVA+ccp06d0uO3+fL5+PEjgoODsWHDBsyfPx8LFizA8ePH8fr1a5EmtUUCRkZGKFCgAHbs2AFAu98lP+/t27coU6YMzM3Ncfv2bT1+my8TefneuXMH+/btw5gxYzBq1ChYWlqCcw5TU1NMnjw5mTE0ICAAkydPFrsbSFFoihUrJhZ8SM+kgICAZH+P0Ia0UA6khXIgLb48UjKGSgswgc9lHBUVhVmzZsHR0RGcc9jZ2eH06dNa15L3tfz8/ADQuCMzkBbKgbRQDqRFzuPr64uvv/46VVOoHDc3Nzx69AixsbGIiYnROhYVFYUlS5aI60jjQCJzkB7KgbRQDqSFYZG3nRMnThTlV6dOHfTo0QMdOnQQn/Xt21ekTWoKLVq0qEjHORfvl8qUKYMBAwbgxYsXyc4jtCEtlANpoSxID0JpkIGdIPIYcqNJnTp1sGfPHkRFRRk6W0QqhIWFYfbs2ShRooQwr58/fz7V9JIx5dmzZ7C2tgbnHCdPnsyp7OYqMjIxK195fvjwYQDa5qAHDx6IqPnDhg3TW15zO3ItHjx4gK5du4roYpxzWFtbo1y5cihcuLBWFNGgoCAA2hPvf/31Fzjn6NOnT45/j9yA3ES1c+dOrcEL5xzFixdHqVKlYGFhgRUrViSL2J6QkIBXr16hevXqUKlUqFq1Kr0ESQcPDw/Y2NiI+za1reNTg0y6uiMrWsjbhLCwMOzZswcFChQA5xw///yzOCbXQK1WZzuyeG7H09NT9HMmTZqU6b4s1QvdkZYW8jJcvHgxqlevrtVmWFtbo1ChQjA3N8fmzZu1dk6RePr0qZgAa9WqVY58p9xA0kXKqU0O3rp1S+ixcePGNK959epV0f86ceKEzvKaF0ktStX58+eFHunt3nT8+HGR9sqVK/rI5hdP0ud4WFgYvvvuO2EMnTRpUjJjqBRBXxrDFS5cGBMnTsSJEyfg5uaGO3fuYMqUKahRo4aYiH/+/HmKf4/4DGmhHEgL5UBafDlk1RharFgx/Pvvv6led/z48eCc4+LFi3r/DrkF0kI5kBbKgbQwDC9fvhTjsZkzZyYzhUZFRcHFxQU9evQQO5nVrVsXP//8M/z9/bXSBgUF4aeffoJKpUK3bt1o5+wsQHooB9JCOZAWhkc+H7tgwQI4ODhovdvmnKNTp064evUqAO33r9OmTRN+Humd9/Dhw7F161b0798fFStWBOcc5cqVEwuXacyXOqSFciAtlAXpQSgJMrATRB7Ew8NDGEFat26N9+/fGzpLRBKkzsLJkydRoUIF8WLq77//ztB5e/bsgampKczNzXHjxg295/dLRW4ekXeYMrr1WUhICEaMGCE6ZqtWrcKzZ88AJBq65syZg/z584NzjqlTp+o287mM1LRIenzhwoUi6rqDgwN69eqFp0+f4s2bN/Dx8cGxY8eEka5bt27ifHkHfPv27Sn+XSKR9LQAgF27dqF8+fJCiwoVKqBatWooU6YMrKyswDlH+fLlcfHixWSGxGPHjgkDb7t27fT6XXILHh4eaN68OVatWpWp88ikq3uyqoWEWq3Gjh07YGFhAc451q9fn2Z60id1PDw80KdPHxw6dChT51G90D3pabFkyRKYm5uLNqNevXpo3rw5ateuLSa4KlasiAsXLmgtfHr37h3WrFkj+lLfffddTn2lLxJ5+53RaBbv3r3DV199BZVKhbFjxwJI+f5Xq9VYvnw58uXLhyJFiuDx48e6yXQeIaP9zaCgIFSvXh0mJiaYPXs2gM9ayq/x5s0bjBw5EqampqhatSpevXql+0znQjZt2iSMoVOmTElmDI2IiMCcOXNgb28vTD03b95M1peNiorC7du30ahRI7G4JiQkJM2//e7dO51/ny8Z0kI5kBbKgbRQJt7e3lk2hl64cEHrWrt378batWsBJAbEkF4KN27cOF2NCNJCSZAWyoG0MCyurq6YP3++1k5bABATE4Nt27ahXr164JyLuRDpx97ePtk7uz179ojjSXeoIzIG6aEcSAvlQFoYHvkc7cWLF7F8+XLUrVsXrVu3xoQJE+Dt7Z1sHnfatGmwtbUF5xyFChXCunXroNFoxNxgVFQU7ty5g4YNG4JzjoYNG+Lt27c5+r2+REgL5UBaKAvSg1AKZGAniDyKm5sbKleuTNuNKxCpYY+JiREvnGxsbHDgwIEMnQdARG3Knz+/2OqRyBjycsxIRyokJAQ//vijGLhXqVIFHTp0QLVq1cTWz3Xq1KFOmQ64ffu22B67fPnyWLhwIUJDQ5Olu3fvHgoWLAjOOSZOnCg+T2rIkkdmJzLOo0eP0KJFC/EiY9CgQfDy8oJGo8Hr169x+fJlYQqtXLkyVq9ejSdPnuDu3bvYuHGjGNA4ODjA2dkZAJlFM8KHDx/E7xkxwpFJV3/ItZCvNk/peZQSL168QJcuXcA5R+/evZNty0lknKRRptOD6oX+SE2Ls2fPoly5cqLNGD9+vDCpv3v3Drdv3xZaVKxYEYsWLcKtW7dw9uxZTJkyRSxKq1ixIm7dugWANNI1o0aNEotlpRdQScv47Nmzov1u27atIbKZZxgyZIjQw9XVNdnxsLAwbN26VSwY7N27twFy+eUyduxYjBgxQssYKk3AP3nyRDyPihUrBk9PTwCf+11J68X169dRuXJlmJmZYd26dak+m549e4bhw4eLRQlEIqSFciAtlANpoSyePXuGMmXK6MQY6uXlJY43btwYnHOoVCo0a9YMf/75Z45+ry8R0kI5kBbKgbRQBnIzj9TWurq6inLknGPDhg34888/MW/ePNSvX1+M906dOiXOiYiIgIODAzjn+OeffwzyXXIDpIdyIC2UA2lheJKOxeTvlADt931Tp05FkSJFwHli1OKkAWPk1zp58iSKFi2KQoUK4fjx48muRSSHtFAOpIWyID0IJUAGdoLIw0iGqYxG6CNylkmTJgkT+pQpU9I0xskb+vXr14sV02PGjEl2nMgY165dw86dOwGkX343btxA9erVwTkXBmvpp2bNmjhy5Aji4+NJhyySkJCAhIQEjBs3DpxzWFtbY8qUKcJEKi9XyZQ+ZswYGBsbo1WrVlrRXInss2XLFnF///jjj1rHJC3evHkjXq4bGRmJBQVSFF0HBweMGjUqWeQHIn0yYtwkk27OIC/DI0eOYPfu3QAy1uauWLFC6HLnzh295TGvQIs6lENSLebMmSPKety4cVrpUmozOOcwMzPT+rdChQpYvnw5wsPDc/S75Bakco6IiNAqd+l+j4+PR7t27YTx4cqVK2JbYVdXV2zfvl2Y10uWLCkmJKm+ZA2p/KVd0JLqERMTg7Zt24JzDjs7O/z9999ii82rV69ixowZwrxeoUIF3Lt3T+t8ImXkC1dTG1f37dsXnHPY2toKU09acyUfP37EjBkzxILOlDR49uwZfv/9d7GI5+DBg9n8Jl8+pIVyIC2UA2mhTPz8/MA5h7GxMVatWpUlY6hGoxFpN2/eLK6nUqnQokULnDx5UistkTKkhXIgLZQDaaFcxo4dK+Y3Tpw4IT5Xq9Xw8/NDx44dRbTKEydOICEhAefPn4eFhQXMzc1pxzMdQ3ooB9JCOZAWhkU+NpPvqDV16lQULVoUnHNYWFjgjz/+SPEcicDAQBQrVizZvDuRcUgL5UBaKAvSgzAEZGAniDwMTTopl0+fPokBYqVKlTIcKf/8+fNo0qQJOOewtLRMtuKNyBgeHh5o3rw5LCwscP/+/XTTx8bGolOnTnB0dMTu3btRr149tGvXDgMHDoSbmxtF19UR0r1dpUoVEdE+teeY3DAnGROJ7KFWq6FWq9GyZUtwzlGmTBkR9U3+4lz6/cqVKyhSpAjs7e0xcuRIFChQALa2tmjQoAHWrVuHFy9eGOR75CY+fvwIf39/REVFAdB+8UQm3Zzj2rVrKFOmDAoVKiTqRGpI5pSDBw/C0tISxsbG+Pfff3Mim3kGqhfKICEhAZ8+fULFihXBOUf16tWFJim1GX///Tesra1Rrlw5TJs2DUWLFkX58uXRoUMHuLi4ICwszCDfI7fg4+ODsWPHCrOzhFT+fn5+wjSdP39+ODk5oU2bNrC3t4eFhYWoMx07dkRQUJAhvkKu4vHjx+jVq1cyPaTnkK+vr9DD3NwchQsXRt26dZE/f36xsMPS0hJDhw7Fu3fvDPEVvkjSmv8ICwtDzZo1wTlHr169Mlyu9+/fR926dbFx40bExsZq/Y1nz55h0qRJMDU1BeccPXr0QEhISLa/R26AtFAOpIVyIC2UiZeXF9avX49Xr16Jz7JiDAWA33//XUQ15lx7FxX5C2EiZUgL5UBaKAfSQnloNBr06tVLLAKIiIiAWq3WmnNSq9Xo1q2bMIcePXoUo0ePBueJu8/RnLnuID2UA2mhHEgL5SAv86lTp6Jw4cJiDnbJkiXiWFpjxaZNm4Jzjp9++indtETqkBbKgbRQFqQHkZOQgZ0gCEKBXLt2TTT+ixcvTjWdvIF/8OABBgwYIM6Toq8TmefNmzeiMzVmzBgR6TslJA2kqFX//fcfTerqgdevX6N48eIwNjbG0qVLAaQcbUza0mj+/PkwMzODhYUFvLy8cjSvuZ0OHTqAc46qVasm20JKzuvXr1G1alUULFgQFy9exMuXLxEQEEADEx0RGRmJ9evXo1u3bti9ezciIyPFMVdXVzLp5iAPHz5ErVq1wDnHnDlz8PHjx3TPWb16dYpRTojsQfVCeUjbzjZt2hRA6mX9/PlzODo6olixYnj06BFCQkLS7H8RGSc+Ph5r1qyBkZERunbtmupigNjYWEyYMAHNmjVDpUqVRJRvydhmbW2doYWdRNrExMRg8uTJ4Jzjf//7X6r3uVqtxsyZM9G5c2c0bdoUdnZ2WnrUrFmTFmnqkIcPH4r2YfXq1Rk6R+rTuru7IyIiQutYUmNoZgyneR3SQjmQFsqBtDAsKS2+zKwxdNq0acIY6uTkJPScMWNGin+HSBnSQjmQFsqBtFAePXv2FEF4ku6sIi/H7t27g3OOAgUKiDLfvn27VvqU5tFJi8xBeigH0kI5kBaGJ2k7bG1tDSMjI3DOUbduXbGzSlrvLZ48eYISJUqAc46ZM2fqPc+5FdJCOZAWyoL0IHIaFSMIgiAUR1xcHDMzM2OWlpasfv36jDHGNBqNVhoAjHPOGGPMzc2Nbdu2je3fv58xxlivXr3Y4sWLGWOMJSQk5GDOcwfW1tasW7duzMLCgp05c4b9999/qaaVdHn16hVjjLGgoCBmamqa7DiRdTQaDYuPj2exsbEsISGBFShQgDHGmJGRkVY6AMzExIS9e/eO7du3j8XFxTEHBwdmb29viGznWkqWLMkYY+zDhw/sw4cPKaZJSEhgxYoVY0WLFmXR0dEsPDyc2dvbs9KlSzPOOdULHaDRaNiePXuYi4sLW7NmDTtx4gRjjLFnz56xvn37Mg8PD8YYY1WrVmWHDx9mlSpVYhqNhqlU1P3XNeXLl2ft27dnnHN26NAh9uDBgzTTP3/+nP3zzz+Mc85sbGyYg4NDDuU090P1Qnk4OTkxxhh78+YN+/DhQ4plnZCQwGxsbJilpSULDQ1loaGhrHDhwszKyooxRn2p7KJSqZitrS3Lly8fc3d3Z/fu3UuWRq1WM1NTU7Z06VJ29epVtnXrVlatWjWWP39+Fh8fz1QqFTty5AirU6cOA2CAb5F7MDY2Zk5OTixfvnzs7t277OHDh8nSxMfHMyMjIzZnzhx2+vRptmLFCmZpacnMzMxYfHw8s7W1ZVu3bmWVKlUiPXSEjY0Ns7GxYfny5WN2dnaMsUQd0kIai1esWFGMTxhjzMfHh23bto2tXr2axcfHs549e7Jt27YxW1tb/X2BXARpoRxIC+VAWhgWae4pISGBGRkZsejoaLZ06VK2Z88e9vz5c1a0aFG2f/9+1qZNG8ZY4tyURqMR502fPp0tXLiQcc5Zw4YN2eLFi9mGDRsYY4zNnz+fTZs2TfwdatfThrRQDqSFciAtlEeLFi2YmZkZi4iIYLdv39YqN/m8+LFjx1iFChXYx48fGWOMjRo1ig0YMIAxlqiT/P3f4cOH2aZNmxhjpEVmIT2UA2mhHEgLwyK12YwltsMbN25kERERrFy5cowxxgoVKiTGfSnNpUtl++DBA+FNkN7bEpmDtFAOpIWyID0Ig6B/jzxBEASRWY4cOSJWNT969CjZcflKtnv37mHIkCFi9XP79u3x33//5WR2cyWvX78WkaabNm0KNzc3cUxaUR4fHw8A8Pb2RtGiRTMVDYvIPG3btgXnHEOHDkVMTIzWMUmT8PBwTJ8+HQULFgTnHH379kV0dDRF/dYBUhm6uLjA3t4e1tbWOHToULKylf4fGBgIe3t7cM4xf/58rWOEbnBzc0ORIkXEauclS5agUqVKFGHaALx48ULs3NG8eXO4ubklaysA4MOHD9iwYYN4RrVt29ZQWc61UL1QBtL9f+DAAdjZ2aFIkSI4depUsnSSBu7u7rC1tQXnHFu3btW6BpF93r59i44dO4JzjmbNmsHV1VWUfdKoSJ6enqhXrx4sLS3BOYexsTGOHDkCgDTRFcHBwWjTpo1oM54+fSraCvlzKSoqCpcuXRJRSjjnMDc3x/Xr15OlJbJHYGAgbGxswDnH3Llzs3wdimqcfUgL5UBaKAfSQjlERUVh4sSJKFeuXKajGjdu3BjHjh0T6VatWiXa90WLFuX4d/nSIS2UA2mhHEgLZRAYGCjmoZo3b45Hjx7h06dPWmnc3NwwceJEUcb/+9//tN4/ycd6J0+eROPGjcE5x/jx43Pse+QWSA/lQFooB9LCcCRth6VxXqVKlbBlyxZUrlwZ3377barnS3Ozt2/fFrtntmzZMtmuW0T6kBbKgbRQFqQHYSjIwE4QBKFAXr58icqVK0OlUmHDhg3C0JB0kvHkyZPo27evGEC2atUKFy5coO25dIS/vz8qVKggBvGXL19O1rny8/NDjRo1wDlHyZIlcffuXQPlNvei0WiQkJCAOXPmgHOO2rVr48mTJ6IDHBcXBwB49+4dli1bJiZeTE1NSQ89EBISorW4w93dXUxWSVoEBwfjxx9/BOcclpaWOH78uAFznLvx8PBA4cKFk23lWKNGDbi7uwMgg1tO4evrK7Znbtq0Kf766y8tQ8iTJ0+wfPlyWFtbiy06r1y5AoA00jVUL5TDmzdv0KpVK2GcdnNzE/1Uqc0ICgpC69atwTmHnZ0dbt26Zcgs51r8/PxQpkwZcM7RqFEj7N+/H69fvxbHb9y4gbVr16JQoUKizhgZGcHFxcWAuc69+Pr6onTp0uCc46uvvsK2bdvw/PlzcfzUqVMYP368aDNMTEzg4OAg6gc9w3SHNKYYPnw4VCoVOnXqhMDAwExfh4yh2Ye0UA6khXIgLZRFSEiImAN0cHDIkjFUShsXF4fVq1fD1tYW06dPz9HvkRsgLZQDaaEcSAvl4OnpiVKlSoFzjurVq2Ps2LE4fvw4XFxcMHr0aDFPwjnHwIEDtQJSyXU6ceIEmjRpItrvkSNHAvg8HqRF5hmD9FAOpIVyIC1ynrRMoX/99RfUajXs7OxQoUIF+Pr6irRJy/LBgwdo0KABOOcoUqQIlixZIubZiYxBWigH0kJZkB6EISEDO0EQhAKJjIxE//79hQnu8ePHYvWz1HGYP38+atasKQaQHTt2xJUrV6jx1zFeXl4i6mGlSpUwePBgXLx4EadOncKOHTtQvHhxMdnbsWNHLSMQoVsCAwNRvXp1cM7RokULnDx5EmFhYYiMjISPjw8GDBiAsmXLimihO3bsAEAGH33g4+MjJreaNWuGw4cPIyQkBAkJCQgKCsIPP/wABwcHMTDx9vY2dJZzNR4eHiJysampKRwcHMSEojz6N6F/PD09hSHRzs4OVatWxcCBA/Hdd9/B0dER+fPnB+ccZcuWxcqVK/HhwwdDZznXQvVCOTx79gwlS5YU/dp9+/YhODgY79+/h7u7O1q1aiUWGtStWxcvXrwwdJZzLV5eXihfvjw45yhYsCDs7e3RvHlztGrVCmZmZrCwsADnHLa2tqhdu7YwS9PLJv3g5eWFihUrisjqNjY2qFGjBmrXrg3OOczMzMQi2Z49e4qduahvqx8OHToEc3NzcM6xcuVKrR2f0qsDZAzVLaSFciAtlANpoRxcXV1RsWJFnDlzRnwmBV6QSMsYKk8XFxeH+/fv50zGcyGkhXIgLZQDaaEcfH190b17d9jZ2Yn3FdJOZ9LPgAED0jSFNmvWDEZGRsiXLx/at28PPz8/vHjxAu/fv0/xHCJ1SA/lQFooB9LCMMycOVPLFCoPANa3b1+oVCqsWLEC0dHRyc69ceMGateuDRMTE3DO0b17dxrbZQPSQjmQFsqC9CAMARnYCYIgFIo8SmK9evUwbNgw7N27F8OGDUO7du20BpD9+vWDq6srmRn0xLNnz/DVV1/B2NhYTO5yzpEvXz5hOKlatSoePnxo6KzmeuQLCmxtbVG2bFnUqFFDbEEk6bN+/XpERUUZOru5Gk9PT2FItLGxgZOTE5o3b44iRYoILYyNjUXkVjK/6Rd3d3dh1q1cuTJcXFzIHG0gfHx80LZtWzHxK7UZ0r/Vq1fH+vXrERISYuis5nqoXigHeVSf/Pnzw97eHpUqVdJ6KWJhYUHR13MAPz8/fPfdd6hcubLWeEL6+eqrr7BkyRKx+IzGF/rF398fP/74o9bCZOmnYMGCaNOmDY4cOSIWdlB/Sr/MmDFDlP/SpUvh5+cnjqVW9kmNoT179kRoaGia5xDpQ1ooB9JCOZAWykE+36TRaLTKcvbs2WlGNU4NWmSbNUgL5UBaKAfSQjm8f/8ejx8/xpYtW7B7926xcyznHP3790/TFNq8eXPxPkpa4CzNLTZv3hybN29O8VwidUgP5UBaKAfSImeZP3++KKukplAA2LFjhyjP6dOnw8XFBREREXBxccGyZcuEIZRzjtatWyM4OBgAzd9mBdJCOZAWyoL0IAwFGdgJgiAUjJeXl9ZgUd7gGxsbo2zZsrSFYw7x8uVLTJ8+HV999ZWWsaRUqVL47rvv8OTJEwD0AjAn8PHxQceOHYWRXfqxtraGg4MDTp48STrkED4+Pmjfvj2KFSsGzjmMjIzAeWK044IFC+L06dOGzmKewt3dHYUKFQLnHLVq1cKBAwcQERFh6GzlSd68eQNnZ2f06tULZcqUgbm5ORo1aoSBAwfC19c3xVXphH6geqEcfHx80LlzZ7H4SXqhYWNjgypVqgjzOk1k6Z/w8HD4+Phg+fLlmDJlCkaPHo01a9bg2LFjUKvVoh9F/amc4ePHjwgODsb27duxfPlyLF++HM7Ozrhz546hs5ZnkD93Jk6cKMYX3bp1w8KFC1M979mzZ5gwYYIYp3/33XfpLpRKaiIitCEtlANpoRxIC+WRWhlt3boVVlZWGTKGZrTPS3qkDWmhHEgL5UBaKJMpU6aINvz777/PUERjzjk6dOiAuXPn4vz581iyZAl69+4trjN79mxxHmmROUgP5UBaKAfSQv94enrC1tYWdnZ2+Ouvv8Tn8vKdPHmy1rtvR0dHrbl0BwcHfPvtt8IUSosDsgZpoRxIC2VBehCGggMAIwiCIBRLYGAg27FjB7t8+TLz8fFh+fLlY5aWluznn39mNWrUYC1atGCMMabRaJhKpcr09QEwzrn4v0ajYZxzrc+SpsmrxMfHs/j4eObi4sJiY2NZZGQka9OmDStatCiztramcspB3r17x9zd3dmZM2dYbGwsi42NZR06dGDVq1dnZcqUMXT28hRv375l165dY8ePH2fBwcFMo9Gw5s2bs169erEaNWpQvchhPD09WfPmzVloaCgrXbo027RpE2vfvn2W2gdCN0RERLCPHz8yOzs7ZmxsbOjs5EmoXiiHd+/esfv377OjR4+y9+/fM7Vazbp27cqaNWvGypcvn+X+LKFbSAdlkZCQwIyMjAydjVyPvJxXrlzJtmzZwp49e8ZsbGzYkSNHWLNmzbTacR8fH7Z161a2evVqplarWYUKFdjy5ctZhQoVGOecqVQqZmVlxUxNTZlarWaWlpbM1NSUffr0ieXLl490TQPSQjmQFsqBtFA+Hz9+ZP369WNnzpxhZcuWZQsWLGB9+vRhjKU89yr1tfz9/VlgYCD7999/WUREBMuXLx9r0aIFc3JyYhUqVGCMUV8gs5AWyoG0UA6khWF58+YNK168OGOMsR9++IGNHDmS1a1blzGmXX4nT55ky5cvZzdv3mQajYaNHDmSrV27VutaISEhbM+ePWzSpEmMMcbWrl3LRo4cmYPf5suH9FAOpIVyIC1yDl9fX+bp6cm6dOnCGPvcDsvLef78+czZ2Zl5eXlpndu5c2f29ddfsz59+jBra2tqg7MJaaEcSAtlQXoQhoAM7ARBEF8AGo2GaTQaFhgYyKytrZlKpWLW1tZaxzNrMkl6zp49e5i/vz+7ffs2U6lUrG3btqxq1aqsQ4cOjDEysRNfDnSvGg61Ws2MjIxE+ZMWhsHT05NVrVqVFS5cmJ07d47Vrl3b0FnKk6R2/5Mx1DBQvVA+1GYYDnouKQuqC4ZDPqF+584d9uTJE2ZhYcG6du3KrKysRDofHx+2bds2tnr1ahYfH88KFy7MwsLCmKmpKVOpVEytVjONRsNsbW2ZsbExi46OZoUKFWJWVlYsLi6OnTx5kjk6OlLdSwPSQjmQFsqBtFA2jx8/FmOMGTNmsDlz5jDG0u5nbd++ne3atYvdv3+fxcXFic8556xmzZps8ODBbNiwYYwxMohmBtJCOZAWyoG0MDxubm5s/fr17IcffmANGzZkjKVtCp04cSJbsmSJSCctQGOMsfDwcDZ27Fi2b98+1rJlS3bw4EFWpEgRw3yxLxTSQzmQFsqBtMh5krbD8vL29PRkPj4+LCAggBUqVIgVKVKEtW3bVswb0nhNt5AWyoG0UBakB5FTkIGdIAjiC0DXJgapYxEeHs6OHTvGjh49ys6cOcNUKhXTaDSMscSJSBsbGzZ06FA2f/58veTjS4fKw7DIy1/qzpAehiFpXaC6YXgCAgJYcHAwq1evHkX9Joj/h+qFMqA2gyAIJZPexHpSY+j//vc/VqdOHTZp0iSmVqtZ8eLFWWRkJIuJiWEWFhZityjGGDMyMmIJCQnM3Nycubu7M0dHxxz6Vl8mpIVyIC2UA2mhXN68ecOaNWvGXr16xdatW8cGDRqUzNAp12/KlCnC8FO0aFHWsGFDVq5cORYcHMxu3brF/Pz8GGOMzZw5k82ePTvZ+UTqkBbKgbRQDqSFMoiNjWVmZmaMscyZQlNaHDBnzhw2Z84cZmVlxf777z9WtmzZnPsiuQTSQzmQFsqBtDA86bWnWW1vU5qDpwVoaUNaKAfSQlmQHoQ+oLf2BEEQXwBpmXrS2uIxJaRGPjg4mI0fP57dvHmTPX/+nDHGWJEiRVitWrWYmZkZCw4OZvfu3WMLFy5ksbGxbNmyZWQuSgKVh2GRlz9pYViSlj/pYXgcHR3JcEAQSaB6oQyozSAIQskkHUvLx9u+vr5axtDu3buzjRs3ssOHDzO1Ws3KlCnDrl+/zmJjY9nHjx+Zubk5i46OZu/evWPGxsYMAHv//j3z8/Njfn5+1CalA2mhHEgL5UBaKBcLCwtWrVo15uPjw3bt2sXatGnDSpUqJY7L52snTZrEli9fzhhjLF++fGzSpEnst99+E2kfPnzI/vzzT7Z06VI2d+5cVqBAATZ+/HgyhmYQ0kI5kBbKgbRQBroyhTLGmImJCWMs0WwaFRWVA7nPfZAeyoG0UA6kheFJa8yX0vGMIL/GxYsXma+vLxs8eDAzMjKiBWhpQFooB9JCWZAehF4AQRAE8cWi0WjE776+vuJ3tVqdYnrp86CgINSpUwecc/Ezf/58XLp0SaQNCAjAunXroFKpwDnHpk2b9PMl8hAJCQmGzgLx/6RWR4ich7RQFvHx8YbOAvH/kBbKgbRQDqSFcqB+rbKg/pT+8fT0xKRJk5AvXz5wztGrVy+EhoYCALZv3w7OOezt7fHhwwckJCRojdXlv6f1GZExSAvlQFooB9JCGfj6+qJ06dLgnKNt27Z4/vx5sjRLliwRc7FFihQB5xxFixaFv7+/Vrrw8HAsXboUnHM4ODjg9u3bOfQtcgekhXIgLZQDaaE8Dh8+jFatWsHIyAicc0yaNEkcS2uM9+jRI9SuXRucc3Ts2BHR0dE5kd1cD+mhHEgL5UBa5C5u3LiBb7/9Fpxz9O/f39DZydOQFsqBtFAWpEfehZYoEARBfMFIq9CuXLnC2rZtyyZOnMgYYymudpZWQQcFBbEWLVqwhw8fMs45K1q0KDt37hybNm0aa9mypUhfunRp9sMPP7ChQ4cyzjm7cuVKjnyn3IxKpWIajYadOnWKvXnzxtDZydNIW2Pv3r2bvXr1ytDZydOQFsrC2NiYqdVqtmLFCvbixQtDZydPQ1ooB9JCOZAWyoH6tcqC+lP6x9PTky1btozFxMSwb775hm3bto0VKlRIK42JiQnTaDSMsfR3i6LdJ7IOaaEcSAvlQFooAycnJ/b3338zW1tb9u+//7JJkyaxyMhIcfzKlSts7dq1jDHGmjZtymbOnMlatGjB3r59yxo2bMiePXvGGEuMhFywYEH2zTffsK+++oq9ePGCPX361CDf6UuFtFAOpIVyIC2UxcePH9nOnTvZ5cuXMxXR+MWLF+zQoUPMx8eHMcZY/fr1Wb58+XIs37kV0kM5kBbKgbTIXdy9e5fNmzePubi4MMYYu3PnDnv8+LGBc5U3IS2UA2mhLEiPPI6hHfQEQRBE9jh//jyaNGkCU1NTcM6xaNGiZGmkCIlBQUEoX748OOfIly8f6tevj7t37wJIPbrS+vXrwTmHqakpAgIC9PdF8girVq2CiYkJvv76awQFBRk6O3ma8ePHg3OOnj17khYGhrRQFtLK5t69e5MeBoa0UA6khXIgLZQD9WuVBfWn9M/333+PVq1a4d27dwA+7wohjZkrVaqE2NhYQ2Yxz0BaKAfSQjmQFsrBw8MDVatWxZQpU7Q+37BhA8zNzcE5x4oVKwAAPj4+aNGihYhy7O3tDeDzPO2QIUNEVP2EhATadSWTkBbKgbRQDqSFcnB3d0eBAgUwcuRI8VlaZfjixQssWrQItra24Jyjffv24hjtnpJ9SA/lQFooB9Ii9/DmzRvY29uDc44WLVrgxIkT+PTpk6GzlSchLZQDaaEsSI+8DRnYCYIgvmCio6PRqlUrsa1jxYoV8eDBA6000oAwODgYjRo1Aucc5ubmaNq0KR4+fKiVRo70ouvUqVPInz8/bGxsyMCuAx48eCD0+uabb8hcYkDu3Lkjtr0jE5xhIS2UxfXr18WiKNLDsJAWyoG0UA6khXKgfq2yoP6U/pC/nI2KihK/S+PojRs3gnOOcuXKITIyMsfzl5cgLZQDaaEcSAtlEhYWJn5PSEhAbGwsmjVrBs45WrZsqZXW09MTLVu2TGYQBYCJEyeCc44ff/wxx/Ke2yAtlANpoRxIC+Xw5s0b8XtmTKFNmjRBSEhIuucRmYP0UA6khXIgLb58pECH3t7e6NKlCw4dOoSYmBgD5ypvQlooB9JCWZAehMrQEeAJgiCIrJMvXz62ceNGxhhjdnZ27OjRo6x27dpaaTjnLDIyks2ZM4c9fPiQMcZY5cqV2dq1a1mtWrUYgBS3BjY2NmaMMXbixAkWHR3NTExMaIuvbAKA1a5dm12/fp2Zmpqyo0ePsrFjx7IXL14YOmt5Do1Gwxo0aMCuXr3KTExM2LFjx0gLA0FaKAuNRsOaNGnCLl++THoYGNJCOZAWyoG0UA7Ur1UW1J/SL0ZGRkyj0TDGGLOwsBCfS+NoadtsjUbD4uPjmVqtzvlM5hFIC+VAWigH0kKZ2NjYMMYSy12lUjEALCYmhjHGmJOTE2OMCS0qVqzINm/ezFq0aMHevn3LmjVrxl6+fMkYY+zSpUuMsc/aAsjR75EbIC2UA2mhHEgL5WBnZ8cYYywhIUG02Ul59eoV27dvH1u2bBl7//49a9SoEdu/fz8rXLgwA5DqeUTmIT2UA2mhHEiLLx+VSsXUajUrX748O3ToEPv666+ZmZmZobOVJyEtlANpoSxID4IM7ARBEF84lSpVYs+ePWMXL15kVatW1TomvcC6ffs2u3LlCouNjWUFChRgGzduZLVr107VvC6d5+Pjw9zd3RljjFWpUoVZWFiIY0Tm4ZwzjUbDGjduzC5dusSMjY3ZsWPH2MiRI8lcksOoVCqhxeXLl4UWw4cPFxPwRM5AWigLSY9GjRpp6TF06FDSI4chLZQDaaEcSAvlQP1aZUH9Kf2jUiWfQpXGxpLZx8zMjFlYWIjF4IR+IC2UA2mhHEgL5SJpY2RkxKytrRnnnJUsWVLrGGPJDaJ16tRhI0aMYE+fPmV2dnbshx9+MEj+cxOkhXIgLZQDaaEc0jKF7t27V8sU6uzszBwdHRljLMX3e0T2IT2UA2mhHEgL5ZPWQjJpHGhhYcFMTU1zKkt5FtJCOZAWyoL0IFKDDOwEQRC5gLJly7IqVaok+1yaZNy9ezfz8PBgjDG2b98+1rBhwzTN69J5u3btYrdu3WKMMfbdd98xS0vLFF+KERlHbry6cuUKY4yxkydPsp07d7K4uDgD5y5vkZIWLi4u7MSJExSRLIchLZRFSnqcOXOG3bx5kxYx5TCkhXIgLZQDaaEcqF+rLKg/ZTji4+MZY4ka0HjZsJAWyoG0UA6khTIwNjZmDg4ODAA7c+YMe/v2bTI9JINo8+bNWUhICNu+fTuLi4tjjRo1YqVKlWKMkQFIF5AWyoG0UA6khTJJzxRK5Cykh3IgLZQDaaEc5L4PaRFzQkKCIbOUZ8lpLWgHnNQxRL0gPVInJ/WQdKDn4JcDzVgSBEHkcm7dusVOnjzJGGNs2LBhrFOnToyxlCcTAYiJya1bt7JFixYxxhjr0qUL+/rrr0UaOZGRkSw6OlrrGkTayM0lN2/eZB06dGB169allYQGIKkWgwcPZvXq1aOIZAaAtFAWcj1u3brF5s6dy+rVq0eGBwNAWigH0kI5kBbKgfq1yoL6UzmL9MzJly8fYyxxLPzp06dsT4zLx9Q0vs4YpIVyIC2UA2mhHKRy6tOnDytevDh79eoVu337dorlV7FiRbZlyxbWpEkTFh8fz8qVK8cmTpzIihUrltPZzpWQFsqBtFAOpIUyCQoKYvv37ydTqEIgPZQDaaEcSAvlIDeFXrp0iY0cOZJ5e3szIyMjCviSw+SkFh8/fmSM0QLC1MjpehEWFsZCQkIY55xM0ymQk3q8f/+ebdmyhbm5uTEjIyPS40sBBEEQRK7m8OHD4JyDc459+/almk6j0YjfDx48iGLFioFzjuLFi2PTpk0pnvPkyROMGzcO48aNw5UrV1K8FpE6CQkJAIDw8PBsXYfKO/tIWkRFRWXrOqRF9iEtlIWkR1xcXJbOl3QgPbIPaaEcSAvlQFooB+rXKgtd9acA4MOHD1i7di3279+PkJAQ8Tlp9Zlt27aBc44qVaogNjY2W2WjVqsz9BmRMqSFciAtlANpoRxCQkLQpUsXcM7RtGlTuLq6pprWw8MDXbp0gYuLSw7mMO9AWigH0kI5kBbKQa1WY9WqVeK9XuPGjeHv72/obOVZSA/lQFooB9JCmVy9ehX/+9//hC7Pnz/X6fWl+UaNRiN+l/4ltNG3Fn5+fpgyZQoGDBiA+/fvizl50iM5+tYCAEJDQzFz5kxUrVoVDx48AEBzJamhbz00Gg2OHz8OzjmMjY3x9OlTAKTHlwAHKEwGQRBEbmbdunVszJgxrHLlyuzWrVusYMGCWivcGGNMo9GIyExHjhxhU6dOZX5+fkyj0bChQ4eyjRs3MsZYsvP++usv1qtXL8YYY1WrVmWDBw9mo0ePTjEtkT6ZKTO5Zowlrur88OEDe/fuHbO0tGRlypRh5ubmmb4ukXmSahEUFMRevXrF3r17x+zs7JiTkxOztbVljJEW+oa0UBZyPdRqNfPy8mLe3t7sw4cPrEyZMqxs2bLMwcGBMUZ66BvSQjmQFsqBtNAv1K/NHcTExLAjR46wgQMHMsYYGzx4MOvWrRvr2rUrY4z0kPPLL7+wkydPstevXzMjI6MsXSMhIUGcO2LECGZhYcGWLVvGGKOyzgykhXIgLZQDaaEc/Pz8WKtWrVhQUBBr2rQpmz17Nqtfvz4rUKBAsj5RdHQ0s7CwYIxRGesD0kI5kBbKgbRQDl5eXqxy5cqscuXK7PTp0zqLaKxWq5mxsXEyPYm0IT2UA2mhHEgLZeHn58eGDh3K/v33XwaAVapUia1cuZJ17Ngx29dO2s6HhYWxuLg4VqxYMaET6fUZfWrBGGOhoaFs3bp1bNmyZSwmJoZVqVKFNW/enE2aNIk5Ojpqjd3zOvrWgjHG3r17x7Zt28Z27drFnj17xgoWLMiuXbvGqlevTlokISf0kP7Ojz/+yK5fv86srKzYtWvXWLVq1UgPpZMjNnmCIAjCYKxZswacc9ja2sLHxyfZcXnkJWdnZzg5OcHExAScc/Tu3VscS23F5vbt2/H1119DpVKBc45p06aleG1Cd8i1uHHjBlasWIHSpUujcOHCMDExgUqlQs+ePbF+/XqRjrTQP8ePH8f48eNhZWUFCwsLsXK0ffv2WLVqlUhHWugf0kJZbNmyBd999x1MTU1hZGSkFZVj2bJlIh3poX9IC+VAWigH0sKwUL9W2cTFxWH37t1o1KgROOdQqVQoW7YsZs6cKdLk9cg+8ugtmzdvxosXL7J9j06fPh1FixYF5xwDBgzIbhbzDKSFciAtlANpoUw8PT3h4OAAzjkqVaqEiRMn4tmzZ4bOVp6EtFAOpIVyIC2Ug7+/v06jUr58+RKrVq3Co0ePANBYLrOQHsqBtFAOpIWyGD16NDjnaNSoEVxcXPDp0yedXdvT0xOrV69G586dUa5cORQtWhRt2rTBrFmz4OfnB4AiHMvRpxYAcPbsWSxevBjlypWDmZkZOOeoWrUq3NzcAJAWcvSpRWhoKBYtWoTy5cuDc478+fODcw5ra2uK/J0K+q4bEr6+vujQoQPp8QVBBnaCIIhcztOnT+Hk5ARbW1scP35cvKiKj4/XSrd27VoULFhQGHe6dOkijqW3RbCrqyt+//13YWIfM2aMOEYGE/2xZMkSVK1aVSw44JzD3NxcbInDOce4ceNEetJCP8TExGDSpEkoWLCg0MLExAQFCxbU0uK3334T55AW+oG0MDxSearVanh5eWHw4MFaZW9lZYUiRYpApVKJz8aOHZvsfCL7kBbKgbRQDqSFcqF+rXKJi4vDmzdvMHToUGFi55xj6NChhs6aYtDlxPf8+fOhUqnEuHzUqFF0v2cC0kI5kBbKgbRQJj4+PmjTpg3y5csn+j7Lli1DcHCwobOW5yAtlANpoRxIi9zH69evsXr1ajG+lsyhhGEgPZQDaaEcSIusIzf6r1ixAn/++SdiYmKyfD35GO/Vq1dwdnZGoUKFRL9AmhuUfipXriyM03l90YGutUiP58+fY9myZahbty445yhcuDBp8f/oW4uk5nUbGxucOXMG3bp1I9N0CuR03QASxzRkYv9yIAM7QRBELufdu3fo1KkTOOdo3rw5/vvvP9EZ0Gg0uHTpEkaNGqU10Pj222/F+UmN7nLkA5j3799j/fr1YtAyb948/X2pPE5oaCiGDRumpVnr1q0xc+ZM3LhxA3v27MGECROEFrNmzTJ0lnMlCQkJePDgAb777jstLXr27IkdO3bA3d0dx44dw/Tp04UWc+fONXS2cyWkhTKQ2oTY2Fj89ddf6Nixo9CiSJEi+Omnn3Dx4kW8ePEC//zzD+bNmyf0WLBggYFzn7sgLZQDaaEcSAtlQv3aL4v58+ejdOnSwrhIeuiegIAA2NraivLN6y+bDAlpoRxIC+VAWuiW4OBgrF69Go0bN4apqSkOHTqEyMhInV2fFhdkHNJCOZAWyoG0yD1ERkZizpw5og03NzfHrFmzEBcXZ+is5UlID+VAWigH0iL7yP0c2TFnytvnmzdvYuTIkSLCt6WlJUqUKIEJEyZg0aJF+Omnn4Rx2t7eHl5eXtn6DrkFXWmRHpJWnz59wv3799G2bVtwzlGjRg2d7ozwJaNrLaQyT8m87urqCiBxt4L27duTaToFcqpuyCET+5cDGdgJgiDyAD4+PihVqhQ456hSpQp69OiByZMno3Xr1nBychJmkfLly2P8+PHivLTM6ykRHh4uzD5OTk64fPmyrr9KnsfX1xf9+/cXmpUuXRqTJ09Olu7jx49Yt24dVCoVihcvjosXLxogt7mX+Ph4XLp0CZ07dxZaNGrUCCtXrkyWNioqCqtXr4aRkRHKli2LO3fuGCDHuRfSQhlIg/aYmBjs3r0bjRs3Fnr06tULBw4cSHZOdHQ0li1bBiMjI1SrVk1EBSCyB2mhHEgL5UBaKBPq135ZvHr1CvPnzxfRlipXrozt27frPVJKXkKaOH/27BkWLlxIE+kGhLRQDqSFciAt9INGo0FcXByePHmis62z/f39ERQUBIBeymYG0kI5kBbKgbTIPSxcuBCcc9jZ2WHWrFkICAgwdJbyNKSHciAtlANpYXjk5vVz586he/fuYrfM2rVrY+bMmVrG6Li4OLi6uqJly5bgnKN3794IDw83RNYJAA8ePEC1atVgbGyM2bNnIyEhgRad64E3b95g6dKlKFOmDDjnsLW1xZMnTwB87tuSaVpZ+Pj4aC0qSKoXoQzIwE4QBJFH8Pb2Rq1atcQqWelHip43cOBAHDx4UKRPq8GOiooSvyeNlPHff/+hdOnSUKlUKRpIiazz/Plz9O3bV2jXsmVL7Nq1SxyXD0Q0Gg28vb1RuXJlcM6xYcMGA+U695GQkICrV6+iXbt2Qot+/frh7NmzIo1arRZ1Q6PR4OnTp7C3twfnHHv27DFU1nMdpIWyiI2Nxf79+1GvXj2hx7hx47S2ekzatty5cwcFChQA5xxHjx7N6SznWkgL5UBaKAfSQllQv/bL4vnz55g5cyYsLS3BOUfVqlVx4MABnUZgJBLJ7CJyQn+QFsqBtFAOpIXu0XUEYn9/fwwfPhylSpXCrVu3dHrt3A5poRxIC+VAWuQulixZgtGjRyMwMNDQWSFAeigJ0kI5kBaGQ97mnzlzBq1bt4axsTE452jbti0uXLiAjx8/AtCeQ09ISMD+/fthamqKsmXLws/PL8fzTiQSGxuLgQMHgnOOpk2bGjo7uZLY2FisXr0axYoVA+ccZmZmOHXqlDgmXzAgN7Hnz59f6z0UkfP4+vqKYIhWVlZ4/PgxADKxKwkysBMEQeQhXrx4gXXr1qFHjx5o3LgxateujQkTJuDYsWNa6dJajent7Y1Ro0bh5MmTqabp3r07OOeoX78+YmNjaTvIbCBpERUVhQEDBgiTT5cuXUSHWJ4uKa1atQLnHD169EgzHZE+0n3s7u6Obt26CS1++eUX3Lt3T6RLrYylbdSGDBmSZjoifUgL5aHRaHDu3Dk0bdpU6DFjxgy8ePFCK01KSIbEmTNnAiA9sgtpoRxIC+VAWigD6td+mTx//hyzZ88W5vXq1avD2dmZzOvZQH7v0ljZsJAWyoG0UA761oL01R/Pnj3D+PHjxS6cTk5OePPmjaGzlSchLZQDaaEcSAvDITfmUGRcw0N6KAfSQjmQFsrhypUr6NKlizCvd+3aNV1TekBAAGxtbcE5xx9//JFDOSXkSHVozZo14JzDwsICXl5eBs5V7iQgIADffvstqlWrBs45GjZsiCtXrgBInE+Rz3n4+vqiTZs24Jzjt99+o6AAOUxSc/quXbtEkENLS0thYieUgTEjCIIg8gwlSpRgI0eOZCNHjmQJCQlMo9EwExOTZOlUKlWK5wNgT548YevXr2fr169nhw8fZr1792YAGOecJSQkMCMjI2ZmZsYYYywuLo5xzhnnXK/fK7cCQGgxdepUtn//fsYYYx07dmSjR49m7du3T5ZOfi7nnKnVasYYYxYWFowxRlpkEY1GI8p4yZIlzMXFhTHG2KBBg9ioUaNYjRo1GGPJtQDAGGMsMjKSRUdHM8YYs7a2ZoyRFlmFtFAWkh5v375lGzduZDdu3GCMJT6zRo4cyezs7ERaeTlL53l6erL3798zxhgrUqQIYyz1NohIG9JCOZAWyoG0UA7Ur/0yCQwMZLt27WLLly9nUVFRrFq1auz3339n3bt3Z5aWlobO3heJvC8bGhrKChcuLMbRRM6iby3k10/p/8RncqJeSG1JSn+T+ExOaCHpEBkZyQoUKEDPQB3i6+vLVq5cyRhjrEyZMuzXX3+l+9xAkBbKgbRQDqRFziLv+xgZGYn/FyxY0MA5y5uQHsqBtFAOpIXy8PPzY3v27GH//PMPS0hIYF27dmXbt2/XmkNPiVevXrEPHz4wxhgzNiYLoiGQxtShoaGMMcY+ffrEYmJiDJmlXIlGo2GlS5dmO3bsYPfu3WNLly5l586dY+3atWMXL15kTZo0EX4ExhhzcnJimzZtYufOnWNdu3al+pHDSG3LqVOn2OXLl9mGDRtEuxMVFcUmTpzITpw4wczNzQ2cU4IxxmhkSBAEkceQOk1GRkbMxMREqxOVHpxz1rp1azZo0CDGGGN9+vRhW7duZe/evRPXdHZ2ZkeOHGGMMVanTp0UDfJExpA6UJs3b2Zr165ljDHWqFEj9uuvv2qZfFIy73DO2dmzZ9n169cZY4zVrFlT65pE5pAm0+fNm8f27t3LGGOsZ8+ebMiQIcIwzVjy8pUWcLi4uDBPT0/GGGMVKlRIMS2RMUgLZSFfTHDq1CnGGGPDhw9ngwcPTnNSSzrvwoUL7M2bN4wxxhwcHPSc29wNaaEcSAvlQFooB+rXfnmQeV33JCQkiOfLqFGjWLNmzZinp6eYTCdyDn1rITcBP3z4kDH2uW0hrbXJiXohb1+uXbvGnj17xlQqFUtISNDJ9XMLOfmMOnjwIPvf//7Hnj59yoyMjEgLHdGhQwc2ZswYZmxszEaPHs1++uknVrhwYUNnK09CWigH0kI5kBY5Q2RkJGOMiYBTEjR+Ngykh3LQpxZJ+8o05kubnKwXGo1G59fMjUjldPbsWebs7MzUajVr374927BhQ5pz6JJ+fn5+zMLCgqlUKhE4jMgZ5M+bhw8fshMnTjDOOatYsSKzt7c3YM5yJyqVigFg+fPnZy1btmSbN29mPXv2ZPHx8WzAgAHM1dU12bOsfPnybPjw4axMmTIGynXeIGnb++LFC3bt2jXWuXNnNnToULZ69WoWHx/P4uLiWM2aNdmCBQvY0qVLybyuJPQZ3p0gCIL4cki6hUpahIaG4ueffwbnHJxztG/fHoMGDcLIkSPFZ7a2ttiwYYMec5w38Pb2Rps2bWBkZAQbGxts3LhRHEtr2+Xg4GAMGTIEpqamsLGxwT///JPuOUTaXL9+HRUqVADnHDVq1MCxY8fEsbTK1cPDA+3bt4dKpULlypXh6emZE9nN1ZAWyuLYsWMwMzMD5xwdOnTAzZs3M3TezZs3Ua5cOXDO0bx5c9oaUgeQFsqBtFAOpIVyoH7tl8Pz588xe/ZsWFpagnOO6tWrw9nZGZGRkYbOWq5g8uTJKF26NDjnMDExQUhIiE6uK9UJqhsZR19aSGzbtg0VK1ZEp06dcOzYMXH9hIQEnf6d3IC+6wUAXL58GU5OTrC2tsajR48AZG4uLK+g73oRFRWFyZMniy2bnz59CoC0yC7y58qtW7cQHBxswNzkbUgL5UBaKAfSImd4/fo1Zs+ejenTp4vPaGxgOHJCD5qryhg5oYVardZ630R1L2VyQotbt25h9uzZert+buXhw4ewsLAA5xwNGjTArVu30kwvlWtoaCgqVqwIzjmqVq2KmJiYnMhunkPel0pp7Hzjxg0MGTIEBQoUAOccPXr0yMns5UoyOnd39+5d1KhRA8bGxhg7dizi4uJo3i+HkT/nX79+jSNHjqBBgwYoUaKE8K5xztGtWzfMmjULUVFRBswtkRq0PwFBEATBNBqN2Frozz//ZI0aNWIODg6prnYuVKgQGz16NHN1dWV3795lV65cYXFxceK4hYUF69mzJxs2bFiO5D838/TpU3bt2jWm0WjYt99+K8o0te2u8f+Rxa5cucKOHTvG4uPjWZ06dVi7du0YYxTZITs8ffqUBQQEMMYY69GjB+vZsydjLPVooYwlbj/k4uLC7ty5wwCw6tWrs4oVK+ZUlnMtpIUykMr78ePHIkLD119/zRo1apTuuS9evGAHDx5kr1+/ZowxVrt2bdoaMhuQFsqBtFAOpIXyoH7tlwFFXtcvJ0+eZEuXLhX/Hz58OLO1tc3WNaW6ItWJkJAQFhMTw3x9fZlarWb169dnxsbGzNLSMtX6lhfRhxZyHjx4wFxcXJiPjw/z9vZmrq6urGHDhmzhwoWsXLlyLCEhQczD5HX0pYV8fHj58mU2fvx49vr1axYTE8NatmzJrl27xqpVq0ZayNB3vWAscc7wl19+Yffv32f//vsva9asGWmhA1QqlXjGN2zY0NDZydOQFsqBtFAOpIX+efXqFTt06BBbv349e/fuHVOpVGzOnDk6GzdL/aq05t+Jz+hbj5iYGPbvv/+y33//nY0ePZo1adKEValShTGW9juSvIi+tWAscV7rypUrbOLEiaxGjRps165dVF9SICe0CAsLYwMGDGC+vr4sLCyMrVmzhrRIBwBMrVazzZs3s0+fPrGiRYuy/v37s1q1aqV5Duecffz4kc2bN4/5+fmxfPnysa5duzITExOae8oEad2barVavNeIj4/XKveYmBimVqvZrVu3mJeXF9uzZw979+4d+/TpE6tVqxZbt24dY0x73j3peJvG36nz/PlzFhMTwypWrJju/VyrVi1WvXp19vTpU/bPP/+wxYsXMxMTkxzMbd5F0kaqK8uXL2c3btxg586dE2lsbW1ZnTp12Pfff8++++47EXFdfv9T3VAIOWqXJwiCIBSNFFX99u3bGU5vbW2NqVOnwtHREcWKFUOXLl0wd+5csdKNVhhmDY1Gg9jYWHTt2hWcc9SpU0dEvUotKpX0+ZMnT2Bvbw/OOcqXL487d+6keR6RPuHh4ahbty4452jZsqX4PL37+9SpU7CzsxORwl++fJmh84jUIS2URXBwsIjO1717d/F5WlEtwsPDsWHDBtja2oJzjq+++gqfPn1K9zwibUgL5UBaKAfSQhlQv1Y5SP2eDx8+iEgj8vuaIq/nDMOGDQPnHFOnTs12X1R+/ps3b7B9+3bUq1cPxYoVE9Flqlevju+//x7e3t4AqP7I0aUWKeHm5gYXFxc0a9ZMjEUcHR3h6uoKgMYicnSthfzZdunSJdSpUwcqlQoWFhZwcnIC5xzW1tYU/TsF9F0vJHx8fNChQwfSIptQeSkH0kI5kBbKQd9a0Bg9EbVajXXr1kGlUoFzjmLFimHUqFF4//69Tq4tJzAwEK9fv0ZQUJBWP4G0+Iw+9ZC4fPkyqlevDs45jI2N0bp1a2zdulUcJz0SyQktEhIS8O+//6Jz585iDD5ixAhxnLRIJCe0ABL1WL9+PUxNTcE5x8iRI8Ux0iJ1oqKixHvXOnXq4NWrV+meExMTgx07dqBSpUrgnMPW1hYPHjzIgdzmTm7evIk5c+bg66+/RqdOndC9e3e0adMGDRs2RJMmTVC/fn1UqVIFlStXhqOjI2xtbcX7C/lP3bp1cf36dQDa97y8Pf/9999pV7o08PHxweDBg/Htt9+Kz1J7fkjlt2/fPvHcyegOwETWSDpP5efnh+nTp6NZs2ZadaFs2bJo1aoVbt68KTwhElQ3lAkZ2AmCIAgAQEREBOrVqwfOOf73v/8hNDQ01bRxcXEAgB07doBzjjNnziA8PBwvX77UaszpZWz2iImJEQPGLl26pLmdjVTu/v7+KFWqFDjnsLOzw6xZs/Dhw4ecynKu5f3792ILtMGDByM+Pj7djuuVK1eE4ap06dLYtWsX1Go1TZJkE9JCWbx48UJswTVv3jwAaQ/qoqKisHfvXmHgqVSpEi5fvpzueUT6kBbKgbRQDqSFcqB+rXK4d+8evv76a+zbtw8RERHi84CAADKv6xn5c+TUqVPZfq7Iz3d2dkbfvn21JuqtrKygUqlgbGwsjNNubm4AaKyuay2SknScERwcDGdnZzRp0gSccxQtWhQeHh4pps1r6EOL1MzrlpaWGDFiBFxdXYXBhIzTn9F3vUgJMrFnDW9vb5w4cUL8n8rLcOhbC+l5ltfbioygTy1SKn/SJHX0XS9iY2NFPwogLSS8vLzAOYeZmRlmzZqFwMBAnV07KioKO3fuxKBBg1CmTBnY29ujWLFiGDRoEHbu3CnSkRaf0aceABAaGopdu3Zh6NChsLa2FqbgSZMmiTSkRyL61CIl87o0/ibjdHL0XS8k1Go1tm/fLuoFaZE+V65cgYmJCUxNTeHs7Awg7f5PXFwcjh8/jkaNGol7/+jRozma59xEQEAA2rdvL54fmfkxMzMD5xzNmzfH4MGDU1wUIu+LTZgwQcwZPn78ONlxInEeydzcHJxzHDt2LEPnrFmzRmjy77//ppouvflYekalTtL79MKFC1i4cCEKFSok6o6xsTGsra3x66+/4vLly1rvPoDk5Ut1Q1mQgZ0gCIIAkNhgb9q0CYUKFYKjoyNOnDiRbidq6dKl4Jxj9erVKV6PyB7v3r1DjRo1YGRkhOXLlwNIu2Pr4+MjooxaWVmhT58+8PHxyans5mr8/f1RsmRJGBsbi0nZtO7xf//9VxjmihUrhokTJyI4ODinspurIS2UxePHj2FpaQkTExMcOXIkzbTv37/Hrl27ULRoUWGi2rBhAxnjdARpoRxIC+VAWigH6tcaHikS/ldffQXOOWrVqoUDBw4gNjYWr1+/xqxZs8i8ngPoauJbfp0ZM2aIBZ6cczRs2BC//PILrl69ikuXLmH9+vUiCo2TkxN8fX11kocvnZx6CSGNVeLj4+Hq6oo2bdqAc45mzZplKKpZXkBfWiQ1rw8fPhwxMTEAEs0TZJxOjiG+P5nYM4e/v794sfrzzz/r/Ppyw3ReX+yUHvrWIjw8HH/99Rdu3LihVR9ozj05+tRCvsvsrl27sGTJkmTHiM/kxDPq77//hqmpKQYNGqT1OZG4eGDevHkICAjQyfViY2Px8OFDNGzYEAUKFEhmmpPMoRMnThTnkBaf0bUeEknb5zNnzmDEiBFCj99++00cIz0S0YcWKZnX16xZgx07dpBxOg30VS+SQib2zHHt2jUYGxsjX758OH/+PIDk5ST9PyYmBidPnkSLFi3EvT9//nwaO2STMWPGgHMOIyMjWFtb45dffsGQIUPwww8/YMyYMZg2bRp+++03TJs2DStXrsTy5cuxevVqnDt3Djdv3hRzHYB2OyEfR4wfPx6cc2HOpvF3ynh7e6NLly4wMTHBwIED8eLFi1TTqtVqxMXFYfjw4TAzM4OZmRn++++/ZOmS1qfz589j+/btWLBgAebPn4+7d+/i7du3ACjoSFokJCTg0qVLGDt2LAoWLCju5Xz58sHGxgaLFi0SzzCJ9KLnA1Q3lAIZ2AmCIAjBmzdv0KNHD3DO0ahRI7GttYS8w+Tp6YnmzZuDc45p06bldFbzDB07dgTnHN9++61WpMqk2zPeuXMHDg4O4JzD0tISbdu2FR0rIvuo1WoxGB88eDA+ffokjsm1ePfuHQ4fPozixYuDc44iRYrgl19+gZ+fnyGynSshLZTFp0+fRJSF8ePHpzpJ4uPjgxUrVqBIkSLgnMPBwQHz588XA3Ii+5AWyoG0UA6khbKgfq0ycHd3F/d6rVq1sGbNGkyZMkUYEsi8rnzkE+ejRo3SMpOMGjUKjx8/1qpXCQkJcHNzQ8OGDcE5x7hx42g3IgNy8eJFlChRAoULF8bBgwcB0MspfXDu3DnUr18fKpUKBQoUwG+//SbaHqm8kxqnpTkwejmV8/j4+KBdu3ZCC4p2lTIBAQEYNmyY2KHGyMgIV69e1cm1M/IconbjM/rUAkic09q0aRNsbW3BOcewYcO0IlqTFp/RpxZy8/qff/6Jxo0bi/nIpGkI/dcLicOHD4u+LxkSkxMfH6+T67x69QqbN28WC8tNTExgbm6O0aNHY/HixVixYgUGDhwozKH0jjBldKVHSiR9F7Jx40ahx4oVK/T2d79UdKGFvF1Ial5ft24dADJOZwR91gs5pEXGefr0KSwsLMA5F/MUcqTnTVRUFPbv3y92l+OcY8KECQgKCsrpLOca5M/y0aNHi3LdsWNHlq4nv7dTMugaGxujQYMGqFevHhl108DZ2Rn58+cH5xzLli3Teq8klZOk3ePHj1GsWDFwzlGzZs1k5SilCw0NxV9//YXOnTuLyPnSj4ODA1q3bi12GSIttImJicGZM2fQrl07lC1bVqvsGjRogFmzZsHd3V3rnLTKkOqGMiEDO0EQBKFFQEAAqlWrBs45WrZsidu3b+Pjx49aafz9/TF//nxYW1uDc46lS5caKLe5F2mAsWLFCpiYmKBmzZp48OBBsg6Sj48Ptm3bJky61tbW6NSpEx4+fGiAXOdONBoNNBoNZs+eDc456tati8ePHyfT4r///sOMGTOEIah48eIYNmwYvL29DZTz3AdpoTzi4uLE4K5BgwZ4/PhxsgnICxcu4IcffoCNjQ045yhTpgyWLFlCESd1DGmhHEgL5UBaKAPq1yoPDw8PFC5cGJxzlChRQkQXqVGjBvbv30/mdQUjf7E1fPhwrQn7xYsXp5pWrVZj6tSp4nmYUy+MieRERUWhVq1aYkEPoXs+fPiATp06iReCZcuWxb179wAkRhKVv9CVm9g553jy5Imhsp3nCQwMRLdu3ZKZ2GmBx2fevHmD8uXLix011qxZo5Md5qQ6oVar8fTpU2zcuBHjxo3Djz/+iF27duHWrVvJ0uZ19KWFxMePHzFlyhRUr15dRDkuXrw45s2bJ9KQFonou14kJCTgjz/+EIF8yDidOvquFxJqtZoiHOsZPz8/zJo1S5ixihUrhv79+ydbkPDhwwesX78eKpUK1tbWcHFxMVCOCQCIjo7G9OnToVKpUL9+fXh6eho6S7kStVqNCxcuiCANnHNs2rQp2fhbbpweNWqUOEbPqZwlqRYjRowQx0iLRDQaDd69e4dOnTpBpVJh/PjxKQYeeffuHaZNmyb6p9KOD/SsyT7yOfKxY8dqPVtiY2PFsYSEBK37Nq17ODWDbvPmzXH69Gm8fPlSPMfIqPsZeZkuWrRIaLF69eoU3xd5eXmJxZtFihTBypUrAXwuR+lfX19fDBgwAOXKlRMLA42NjVG3bl0UL14cdnZ24JzD3t4ebm5uAGguJCkzZ87UGo917doV8+bNQ2xsrCirjDzXqW4oFzKwEwRBEMnw8vLSWik4efJkPHr0CAEBATh9+jR+/PFHEQGmZs2aCAkJMXSWcy1BQUFiMNi8eXPs378fPj4+8Pb2xp49e9ChQwdhuLK3t8eAAQOSRc4ndMPz589RuXJlcJ643fvmzZvh6uqKK1euYNWqVahSpYqIfujk5IQZM2bofRu8vAppoSwCAgJQsWJFcM7RuHFjLFu2DHfv3oWzszOmTZsGKysrYYyrWrUqduzYka12gyYWUycntaDJk7QhLZQDPaOUgxL6taTPZzw8PFCoUCERHdHBwQHbt2/XejFCKAv5/Tt58mTky5cPnHOYmZmJaG9J0wGfJ9iPHTsGIyMj2NraUt/YQMTFxQEAunTpIhYTEPohKCgIs2bNQoMGDcQCtcuXLwNI/tLX19dXRJCT0hA5g9SPjY6ORkBAAAYNGiQWHpiYmJAZIgWePHmCypUrY/HixTqbj42Pj8fz58/Ro0cPVKhQQeulMOccjo6OmDNnjkhP/alE9KGFHCnK34YNG9ChQwdhvBozZoxIQ1okomstkprXpZ0gOecYNGgQGafTQN/1QoKi6uqPgIAATJw4UQSGcXR0xOrVq7XGD/J5qBcvXoidnuRtBWEYLly4IPpSx44dM3R2ciVubm5a7UK/fv3EMWm8B3x+ThkZGYFzjp9//tkQ2SWQqMvevXtFmzF06FBxjNqMz2zYsEHc18uXLxemTT8/P1y/fh0NGjQQ87acc8ycOZPmlnSI3Bz722+/iXLevHlzpoNQyNvpcePGCYNus2bNcPLkSXHM29tba1c6MuomIi+/SZMmCS369u2L9evX49GjRzh16hQWLVoEe3t7cM5RoEABdO/eHT4+PuJcqRzd3d1RvXp10T6bmZlh0qRJ+OuvvxATE4OgoCCcPn0arVu3FgFmAgMDc/x7fwlMnjwZDRs2xMGDB/H+/XvxeUbfkVLdUDZkYCcIgiBSxNvbGzVr1hSdsvz588PR0RFGRkYwMTEB5xyVKlXCH3/8kezlH6FbvLy8xFaN+fPnR6FCheDg4KD1MqlKlSpYuXIlnj9/bujs5mq8vLzg6OgojD5WVlYoWLCglhZ169bF8ePHERoaaujs5moMoQVFI00dLy8vODk5abUZSV96t2zZEo8ePdLaai07vHv3TifXyW3khBbyNv/o0aO4e/duqsfzMqSFcjDEM+rx48da26eSFokYol/r5uaGP/74Q/yftPiMu7u7WJhcpkwZ7NixQ+uFK6FMtmzZIuoR5xwbNmwQx9KasJ81axY45zA1NYW/v38O5JSQI9emcePG4JyjdOnS+PjxIy1G0zFSecbExOD+/fvo0aMHOOfIly8fbt68CSB5W+Dj4yN2/KB2Qr/Iyzc2NhZeXl4YOHAg6tSpA865MJaUKVMGmzdvJj1SICwsTGfzHC9fvsSWLVtEkACp/KtVq4YGDRqgZMmS4rPffvtNJ38zN6FLLZIiv/c9PT2xZMkSocW0adP08je/ZHSlRVrm9e3btwMAGafTQZ/1Qg6Z2HXPmzdvMG/ePBEFtGzZsjh06BDCw8PTPG/QoEHgnKNJkyb49OkT9W0NgHTPR0ZGih22p0yZYuBc5V42bNiArl27wsLCAmZmZhg2bJg4JjeaSs8pKVCDZIAj9E/S55CHhwe6desmFhQMGTLEQDlTHkmDJUj9Hnt7e7Ro0QLFihUTxnWVSgVjY2Ps3bsXERER2fq7STWitlu3JnYAGDx4sHiH3rBhQ60F+1J5y3elkxt187oeci2mT58OIyMj0eeUgoBKgUVsbW3RqVMnsYucRqMR5z99+lSk5zxxx/jLly+neP/fu3cPVapUQb58+bBp0ybxOaHdtr5580brWFbKiOqGMiEDO0EQBJEqgYGBGDVqlNjeWv5Tp04dnD59OtsDFCJj+Pr6okePHihbtqzoUEmrML/99lv4+flly3Aldbao05U+fn5+6NevHypVqiQMIJxztGvXDmPHjsXHjx+zdf2MaEA6JaJvLeTcuHEDPXr0wLZt27SiCpAWn/H398dPP/0koutaWFjA3Nwc33//PZYtW6bTsnJxcUHt2rWxYcMGPHv2THxOeiSSU1qsWbNGbHk3duxYnD59WhwjLRIhLZRDTj6jli1bBs45+vTpoxXxirRIRN/9WjleXl4YPXq0iJYoQVp8xt3dXURir127Nvbv30+L9hSIdM+6ublpbVW+YsUKkSY1o4hGo0FYWBh69uwJY2NjNGzYUGs7aEK/aDQarWeO1EZwrr2VPKE/nj9/jm7duoFzjlq1ammNH5KSVC9CdySNVHX8+HH8+uuvYiGV9FOpUiWMGTMGnp6e9KzSM97e3hg7dixKliwpXrx37twZR44cEX0BV1dXrFmzRrysX716tYFznbeQP49iYmKwfv16qFQqWFtbU2RdPZKQkIA///wTzZo1E8+mLVu2iOOxsbGpGqfJuJuzkIldN0j3rbOzs4gk6uTkhJMnT6Y5No+Li0N8fDzatWsHzjk6deqUU1kmUuHhw4fCUEcLz/SLv78/1qxZA0tLS3DOMWDAAHFM3u9Vq9U4efIkTp48iU+fPhkiq3mKpM/+mzdvYs2aNShSpAisrKy05iGvXbtmoFwqD/k9u2DBAq1AMNKPk5MTvv/+e9y6dUvrXH9/fzx58iRT7a58J67Lly9rnZvX229dmdifP3+O6tWriznfWrVqwd3dHUCiGVheznKjroWFBQVL/H/kWuzZswe9evVKVi8qVaqEadOmwcPDA0Di/Svp5ObmhsKFCwuze5MmTeDm5ibSyf8FgE+fPokdG3v27JlTX/OLQVeLXqhuKBcysBMEQRBpEhUVhcDAQCxfvhwzZszAlClTsGHDBp0aQ4mM8eHDB3h5eWHLli1wdnbGsWPHdL6FUHh4OHx9fXHgwAHs2bMHly9fJrNuCkRGRiIoKAh//vkn/vnnH1y+fBnR0dHieFa2EEpatgEBAbh//z5WrFiBlStX4vTp06IDnVL6vIo+tEjKixcvMGLECDEg7d+/Pw4dOiSOkxafiY6ORmhoKM6fP4/79+/j0aNHWsd1oYevr6/WREGfPn1w4MABcZz0SETfWkRGRmLq1Klo0KABOE/cZs3BwQELFiwQaUiLREgL5ZATzygAGDNmDKysrGBqago7OzssXrxYHCMtEsmJfq2npydGjx4tJorJ0JA6Hh4eYov4GjVq4PDhw4iNjTV0togUWLJkibifJ06cKD5Py7wOACdOnBDGHjJNZ43sLDSOj49HfHw8Zs+eDXt7e6hUKpibm2PPnj26zmaeQH6/Z+QFrkajwZkzZ1C8eHFYW1tj48aNya5D6IekdSIhIQG7du3CTz/9BM652OHRxsYG9vb22LhxI+7fv5/mNQjd4O7ujh9++EG0/yVKlMCaNWvEAg+pfmg0GkRFRWHq1KkwNjZGx44d8eHDB0NmPU/z/PlzNG/eHCqVChMmTDB0dnIlGo0GO3fuRMOGDUWfa/fu3QAS2xypbqRlnCZylvj4eGzdulVoIY+ETG1I+kj3tJ+fH8qUKSN2CTp48KDWHHtq5338+FFE/P7mm2+SGX8I/SOVd1hYGGbNmoUCBQokW+xM6A75/R0XFwdnZ2dhYk9rhxQKIqY/kpZtZGQknj59ihEjRiQzYhcuXBhjx47FyZMnDZllRSKfF//vv/+wd+9ejBo1CtOmTcOqVavw8uVLMQ6QFn6HhIRg8ODBsLGxwb59+zJ1f0dGRmLu3LkoVKgQWrdujX379onIynl9rJ6aiX3t2rWZen8RGhqKbdu2oXnz5mLBshRpOunifR8fH7Ru3Rr169enOWEZ8nvxw4cPuH37Nnbu3Im1a9di7969CA0NFYuT5JHXnz17hvLlywvjc/v27eHl5ZXsmhLS3Jakd+vWrfX91fI0VDeUCRnYCYIgiCxDA23lkJXBXFL9Dh48iK5du4qXV9JK9EaNGmHp0qWpnkdok5Xykev3/v17bNy4EVWqVNGKRKZSqVCjRg0sXLgwW38rL6Gr8omOjsbRo0dFNBmVSgU7OztMnjxZpMnrEyo5SVRUFE6cOCFWokvRx+Qvb6lu5AyfPn1CdHQ0Vq1ahTZt2oiXhWPHjhVpSIucgbRQHufPn8cPP/wgtKBnVMbRRZsqmdelSBoVKlSgqHzp4OHhIfqeK1euNHR2iBRwc3MT2zZ37txZRH1Jz7z+4MEDrQUKDx8+TPM8IjnyF4SvXr3Cq1ev8Pr1a/j7+8PDwwM+Pj5wc3PDrVu3cPfuXdy9exenTp2Cs7MztmzZgl69eqFRo0ai75q0jU4JKdqlrhZX5UYOHTokFnmndz/HxMSgbt264JyjZcuWOZG9PE1SPZ49e4YjR46gadOmwuAjn3PauXMnvL2907wGQPVCV/j4+ODnn38W7X7p0qXx999/a0W8T9pHOnz4sNDtwYMHOZ1lQsawYcOEAevt27eGzk6uIz4+Htu3b4ednR2MjIxgaWmJtWvXah2XUKvV2LFjh4jkumrVKgPkOO+StJ1YunSp6GcNGTLEQLn6MomOjkanTp3AOUeRIkWwYMEChIWFpZpe3kaMHz9emLPIEGo4nj9/jjVr1qBixYpCR19fX0Nn64smo5GOIyIiMGXKFBgbG6NatWrJFmMSOUdERAQePnyInj17omrVqlrj7wYNGmDIkCHw9fXVaj9oXkSb9MojpXnUQYMGgXOOAgUK4ODBgxmea7169Sq6d+8uxhhFixZF9+7dxbgwr4/55N9famtLly4NT0/PDJ0vaRkfHw9PT0/07t0bnHNYWVnh7t27KZ4THBwsnn15vfzlpLcAKenx4OBgfP3112LOo0WLFuK+TquOxcTEiEW0TZs2peeTnqC6oVzIwE4QBEEQeRB5p/fu3bsYO3as1ip0a2trFCpUCKampmISXr7lIJl9Mk56ZSXX4vjx4/j++++1tChWrBhKly4Na2tr0iKbZKesEhISEB4ejjFjxsDa2jrFqD5E5siKHvJzoqOjMX78eBQrVkzo8euvv+oyi3kGXTxH3N3dsXDhQqHFlClTdJCzvAdpoRyyqoW8Xffz88P8+fOFFuPHj9dV9og0kMzrkimrUaNG+PjxIw4ePEgm9nTw9vbGrFmzqEwUysWLF2FtbQ3OOebNm5fmC3VJQy8vL3To0AFGRkYwNTXFsGHDaDe1bDBjxgx89dVXKFmyJOzt7VG8eHHY2NjAxsYGVlZWMDMzg7m5OfLnzy/Gc8bGxlqLkosWLaoVPT+lFx+PHz9G/fr18d9//6WaJq+zZcsWFC5cGMOHD083rRQhqX///jA2NkbZsmW1jLoZhZ6NmcfT0xM7d+5EuXLlxEIaaV5jwIABWL9+vdazLK0ypnqhG968eYPff/8ddnZ24JzD0dERt27dSjW9pMmjR4/Es+2ff/7JqewSMuLi4gAA06dPh0qlQuHChfH69WsD5yr3cu3aNcyYMQP58uUD5xz9+vUTx+TPH7VajQ0bNqB58+a4du2aIbKa53nx4gXOnTuHxo0bawWDmTp1qqGzpnikZ/ydO3dE9PW2bdsmW1SWGidPnkTt2rXBOUe5cuXw+PFjfWY3TyAt1gMS575jY2Px6dMnvH//HmFhYXj79i2eP38OX19f3L9/HwcOHMCqVatQq1YtFCtWTEQR3bp1KwDtOaqU+lnUv02Z2NhYPHz4MM1dCOScP39e7Cy0efNmPeeOAJKPBQ4ePIh+/fqhYMGCWu9X69evj2nTpuHVq1ciSjLVi4yTloFWXk4//PCDWMyUGRO7v78/Ll++jE6dOqFEiRLgnMPBwQGurq7p/v28gPw+nzdvHlauXIn3799n6Vo+Pj7o0KEDOOdo06YNXr58mWravF7uWSUhIQEajQYbN24U93PZsmVF4IX0DPDnzp1D6dKloVKpRD+Wnkf6h+qGciADO0EQBEHkIqSXGUDqL/PknauDBw+K6BpSdMpvv/0Wt2/fhre3N86fP4+5c+cKs8+CBQv0/h2+dKTBhHxyKyNaLF++XESE45yjSZMmGD16NPz8/PD69WvcvHkTixYtElosXrxYv18kF5AZLdJDrtXkyZNha2sLU1NTcM4xa9asbOUzryDpERERIT7Lqh7y88aNGwcLCwthhFi9enX2MpoH0KUW8gmUT58+YcOGDVCpVMifPz8OHTqUvYzmAUgL5aAvLT5+/Ci04Jxj3bp12ctoHiIj/dqkeHl5aUVeb9iwoXgB/OnTJ2zfvp1M7MQXy8yZM8E5R8mSJdM0rEn3s4+PD/r16yeitlevXl1MwtM9n3nOnj2rZUSXvxSXPjM1NYVKpYK5uTksLCxgbm6OQoUKwdHREdWqVcPChQvh4uIirpnSs83NzQ21atUS5pMnT56kmjavIpkFpfpw5cqVDJ0nRcDKnz8/goODM/z3JKODBL2w0kZ6nkjlEhUVhdDQUEyYMEHsPCBfoD9gwAAcP35c6xrp3d9UL7KPVFZ//vknSpUqBc45SpUqhevXr2fovC1btsDExAQFChQQiwiInEOqZ2/fvkWdOnXAOUf58uW1xi6EbpA/4yMjI+Hs7IwCBQokC2Ih70slJCQgJCSE2occQHomxcfHIzo6GitXrkSbNm3EHK3Uznfo0AE7duwwcG6/HGbPni3K78yZMxk6x83NDX379hXnyXcqIDLPy5cvsWfPHjRp0gTt2rVDs2bNULVqVdSuXRt169aFk5MTHB0dUb58eRQvXhy2trZinCf/sbW1xerVq5P1deXPrD179mDmzJkpHiMSny8HDhyAg4MDTp8+nWZaqezi4+PRoEEDcM4xcOBAqNVqKtccID4+HuvWrUO/fv20Fo8XLVoUVapUgbOzc5oLcqheZB/5YuQBAwZk2MSeNGL127dvceTIETRr1gyccxQvXlxEGs/rWsjHvPK5CanfGRkZqTWHnhrx8fHYtm0bjI2NUbx4cVy4cAEAla+uUavVaN68OTjnyJcvH+7cuQMg9Xkk+ec//vijaM9p0XjWobrx5UIGdoIgCILIJURHR2Pfvn1Yvny5+Cxp50r+/y1btuCrr74SneHevXvjyJEjySL5RUdHY9myZVCpVKhevTo8PDz0+0W+YKTyDQsLw+zZs7UM/0m1kA9KZs6cKaKcSFGkb9++nUyLT58+iai6DRo0wPPnz/X4bb5sMqNFRq8FALdv30bDhg1FBKbKlSsjJCREN5nOxUhl+Pr1awwcOFBrMjCr1wISo5sULVpU1J327dtnOQJBXkGXWqTEy5cv0aZNGy1zKA30U4a0UA661iJpOYeEhGDYsGFQqVRo1aoVXr16la3r5wUy0q9NytOnTzFy5EgRobpx48bimHyLR7mJffTo0fr5AgShB+bOnQvOOSpVqpRqf0ceef1///sfChcuLF7gPnv2DACZb7PDyJEjhVm9QYMG2LNnDw4dOoT9+/fj+PHjuHDhAs6ePYuLFy/iv//+w/379+Hm5obw8PBkke9T0sHNzQ3Vq1cXu6JJ/z59+hQAmXXl3Lt3Dw0bNoRKpcKYMWPw7t27NNPfvHkTDg4OMDIyQqtWrZKVpbyNefv2LR49eoSRI0eid+/eaNu2Lfr27Ytdu3YhMDAQAGmRGm5ubvjll1+EwVb6qVWrFr755ht4eHjgw4cPmb4m1YvsId3fHz58EGVZvHhx/PXXX2meJ39Ode7cGZxzivqtQzQajdazR252i4+PF/e2pENwcDDmz58v5kBatWqV4ciwRNaJj4/H5s2bkS9fPlhaWmLnzp2GzlKeI+k48O3bt/j999/Rtm1brYWFjo6OaNy4MS5cuEBj7gwiPV969+4tnivx8fHpjr2fP3+OoUOHar3LkK5FY43Mk5CQgE2bNmnt3JTaj3whrUqlgpGREczMzFC7dm107doVd+7cEbsPScj1PHLkCCpWrAjOOYYMGZJimrxOREQEevXqBc45+vTpg9DQ0HTPef78uWif+/btm2q6jNQP0iI5ScvNzc0N27ZtQ926dUVQI845LC0t0apVKxw9ehQBAQFpXoPqhe5IycRuYmKC27dvZ+h8+YJoNzc3tG7dWuwI8ubNG73k+UtHHrhi3LhxopzSu2fDwsJQvHhxcM4xaNCgDJ1DZA4p2IKpqakItpYR8/qcOXPEs2zo0KE5ktfcDNWNLxMysBMEQRBELiAqKgrHjh0TLwnHjx+fLI28o7V9+3YRvYpzjlGjRsHHxydZ5CyJO3fuwNLSEpxzHDt2TL9f5gvn3bt3WL16NcqXLw/OOSZMmJAsjVyLOXPmwN7eXmgxZ84cra0ik3aQL126JCYqz58/r78vkgvIiBaZ4fr162jQoIEwr1epUgVhYWEAkGyxAZGcly9f4rfffhPbmWZFD3l9OHv2rNj2XDKvh4eHAyA90kMXWqTFpEmTwDmHjY0NgoKCdHrt3AZpoRx0oYX8JXnS9vvw4cMUQSODZKRfm5SEhAQcPXpUvDBUqVRYsmSJOC5vFyQTuxSlb9SoUXr5HgSha/766y8YGRmhePHiWtFvpbGb9Nx59OgRunXrBltbW2Fev3fvHgAyemYVebmNHj1aPM/37t2b4Wuk9+JDbtK1t7fHjBkz0KpVKzLrpsHWrVuFFmvWrNEaR8uNO2/evMHUqVPFODqtNv7y5cvo168fSpYsmcwwVKBAAdSqVQtubm4AyKAlx9vbG/3790f+/PlFOZuamqJs2bL4/fff4eHhIaLFZeYlINUL3aHRaDB8+HBwzmFlZYW5c+emufhbrtPixYvBOYeZmRmmTJmS7DihX16+fIkbN26gR48eKF26tIhseePGjWRp0zJnEdp8+PAhQ6ZEINEAIQWB+emnn/ScM0Ii6f187do1LFiwQCsIjNTX7devH27cuJFMU41GQ/UiDaTykdrWb7/9NtV0En5+flr94a5du4qxBpF1vLy8xByFqakp+vXrhzFjxmDq1KlYvHgx5syZgwULFmDr1q3YsmULNmzYgEOHDuHvv//G1atXERkZKfq/cr3kvx8+fBgVKlSAiYmJ0I92pktOXFwcNmzYgCJFiqBUqVI4duxYqv1+qQ/633//oUSJEqKdSO+5c+PGDRw6dAjDhw/HyJEjsW/fPty8eTPV9EQi9+/fx/r162Fvby92IJDqzdChQ+Hs7Jyh61C90D3yedfvv/8ebdu2zfK1Tp8+jUKFCqF48eJiFwQaeycnMjIS3bt3B+ccc+fOTTd9bGwsPn78KN6X9+nTJwdymfeYMGECOOcoUaJEmos45Pf0xo0btYLmpbfQnEgbqhtfLmRgJwiCIIhcwIkTJ+Dk5CS2SevatWuq0bmPHTuGxo0bi8H4pEmTEBkZme7fqFGjBjjnIpI1DRiTk5CQgHXr1qFIkSJi8mT48OGpvhBZt24dypUrJ7RYunRpqteWJkpiYmLEObt379Y6Rnwms1qkx/Xr1/HVV1+ReT2LqNVqTJo0CWZmZuLF95IlS7RMJumRlnm9Q4cOIpIfmRfSRhdapIb0omTatGkwNTVFoUKF8PLly2xfN7dCWigHXWhx4MABcM7xxx9/aH0uj/xdoUIFcM5FVHFqv1MmM/3apBw7dgwjR46Eubk5OOf43//+J44lNbFLEc6mTZumtQUrQSiVR48eoXLlyuCcY9GiRSlGXf3333/h5OQk6kDRokVx69YtAPTMyS7yPuZvv/0m+qGbN29OFuUws7i6umqZdFevXo2QkBAEBgaiQ4cOZNZNgvxelnYm4Jxj8eLFYptxiadPn2L27NnCVN2iRQsEBwcDSF6Oe/fuhbm5uYh+WaxYMdSpUwejRo1CmzZtUKVKFaERbWeeHKleWFtbw8HBATt27EhmaMtMeVG90C2RkZFo2bIlOOeoUaMGHj16lGpauU6nTp1CgwYNRHm7uLjkRHZzJW/evMG1a9fw119/4cCBA/jjjz+wa9curF27FqtWrcLChQsxdepUTJw4EYMHD0b37t3Rvn17lC5dWpizpOiiu3btApC6SVHaqj7p50QioaGh2LJlixi7ZaSMJDOKsbExfH199Z1FQsbff/+NqVOnwtzcHBYWFmIRh5mZGWbPno0zZ85opad6kXkGDhwIzjmaNWuGqKgorWPy9vXBgwcYMmSIeB61atUKp0+fpvLUEe7u7ihUqBA452jTpg28vb0zfY30zOucc9ja2uLrr78W/WMy6ybn7du36Nq1KzjnaNiwIZ48eSKOyXdLkejYsaNoo8+dO6d1Lek9qlqtxp07d/Dbb7/B1NRUjNmlIAyOjo6YM2dOsr9DJAYM6devH2rXrq21gMne3h6jR49OVuZpjQuoXuiPlN6TZmWMFh4eLoykP//8sy6yliuJjIzExIkTwXniLqQPHz5MNa18Ry4peE+HDh20jhHZR61WizH3N998k2o6ub9mx44dKFmypHj2yNsBImtQ3fhyIQM7QRAEQeQC/Pz8xKB90KBByVZ1Sp0sDw8Psf2dFHksLi4uzWtrNBrcu3cPBQsWBOccmzZt0tv3yA34+PiI8p0+fXqqLzUuXLiApk2bar1sl0irU3zq1ClxzpEjR3Se/9xERrVIj6Tm9apVq5J5PQt4e3trGX2kaOkZgczruiU7WqSGvOyldsbMzAx+fn7ZvnZuhrRQDtnRIj4+HiNHjhTnS0YI+WTkvn37xPENGzboPP+5ifT6tSkhL+uQkBDs3LkTBQoUSBYlUZ5OrVbj6dOnaUYfJQilIUXBlfq3p06dwqtXr7Br1y6MHj1aa0v5cuXKwcPDw9BZzlWkZWLP6rjAzc0NVatWFRGaVq1aJQzWAPDs2TMy66aA/HkuvZjinKNevXoYPXo0FixYgNGjR6NBgwaiXtSuXRv79u1LNgcSHh6uVbcsLCzQtGlTPHz4UGgRERGB//77D23atBGGLdrOPBG5FitWrMCmTZvg7++fapqMQPVC9/z999/iHt+4cWOq6eRj71u3bqFPnz7ivFmzZuVATnMnQUFB+PXXX8VuQVn5KVy4MJycnPD3338ne47JdXN2dgbnHIMHD07xOAG4uLjAyMgIhQsXTnehrNS+L1u2TATIcHV1TTW9VNZU5pkjaXkFBwfj7t276NGjB0qVKqVVF6pWrYq5c+fi7t27WuekFfGY6kXKSGWwe/duFChQAOXLl9dafJa0DKVolpxztG3bFocPH6Z7Xse4u7ujcOHC4JyjdevWWoszM1PGaZl0Z82aBY1Gg71795JZNw38/f3FAtaWLVvi9u3byRZ4aDQa9OvXD5xzmJiYoHXr1loLD6S+aUxMDBYvXowmTZoke57Vq1cPTk5OQotx48bl6Pf8EggICNAqt4YNG+Lnn3+Gn59fphaTU73QP/K2OCtB8KQ+rrTzTdeuXXWWt9zIhQsXxH08bdq0FIMVyoPjLViwACqVCkZGRpg3b57WcSL7qNVqsatNagZ2eb3YvHkzSpcuDSMjI3DO8euvv6aYjsg8VDe+TMjAThAEQRC5BHd3d/z666+4fv26+Cxp52rWrFlikD906FBh+kwN+SSmdN7hw4d1n/lchoeHB+bMmZMsSoZcj2HDhmmZTyRSG5RI5y5evFhMoFy9elUPuc9dpKZFRqHI67rFw8MD27ZtS/fZIyepeV3+wpfM61knI1oknXCUv5SSjiVtZ5YuXQqVSgWVSoVu3brh06dPNNBPB9JCOaSkRUYnC0NCQjBixAjxfFq4cKGIenzs2DH07NlTHDt69Khe8p+bSKlfm5mJW7Vajd27d4sIfStXrtRHNgkix5Df/5MnT9Z6eVuyZElwzsULj3LlyuG7777DixcvdPp3iUR0aWL38PAQ+hUoUADTp08X15e32T4+PsKsW6BAAa0IgHkZuRbz5s1D4cKFxVhZimgo/b9JkybYtWtXMtNJWFgYZsyYIXSsVKkSxo8fn+LLrYSEBJw5cwaFCxdGsWLFaDwuQ37vp9Y3zShUL/SDi4sLTExMYG1tjZs3b2qNIyTk5fvgwQP88MMPom788MMPQgdqGzLP27dvRSRJqX9asmRJODg4oGDBgrC3t0flypXh6OgIJycnNGjQAF999RUaNmyIwYMHY+rUqbhy5UqKu2rJdTtw4ACsra2FbsOHD08xXV7n4sWLKFWqFCwsLLBixYo0d2PSaDRQq9X48ccfwTmHlZUVfHx8UkwnJzw8HC9fvoSPjw98fX216g1pkTphYWE4ffo0WrRogdKlS2v1eTt16oSpU6ciIiIi3TKkepE5Xr16JXbbaNGiBc6dO4ewsDC8f/8eXl5e+OGHH7T06NmzJ86dO0fmdT3h4eGhZWL38vLK8rWOHDkiDFyFChXSeg8VExOD7du3p2jWpbY+ES8vLxQvXlyYzYcOHYozZ87g3Llz2Lp1q5Yh3c7OTuvdqdQ//vTpE3766ScR2ZVzjv79+2PTpk2Ijo5GbGwsXF1dsXLlSqHFqlWrDPSNlYu7uzuaNm2KmTNnIjg4WBjXs3KvUr1QJtJY49OnTyhbtqxYrCB/F0IkZ82aNeLZsn79eq05D2l32bi4OLi4uKBx48Yi7bVr1wyV5VzNsmXLYGRkhGbNmiEwMDDFXTsAYNGiRbC1tRXPGvkusvSuWzdQ3fjyIAM7QRAEQeQi5BPuSQd0Z8+eFZ2vzp074/Hjxxm65qNHj8TkStOmTbO9PXpeIa3I9gcPHhRaDBw4EO/evQOQ/mTvjRs3YGJiQivPM0l6uwykBpnX9UNWo8XoMvI6TXglIi+H7EyKvHv3Dp6enhg5cqTWS8F169bpIpt5AtJCOaSmRXqR+YDEKHH9+/cX5V6oUCHUqFEDlpaW4jP5ZCSRNvJ+rVyLjC6CCg4ORt++fYXZISUzIkF8ScjrwerVq8W2tNJPkSJF0K9fP7i4uCTbWWDPnj1aJpOMIKV9/PgxFi9ejNDQUNGvzut9qdRM7Fu2bMnUOMHb2xsNGjQQpsbatWvj/v374m8kNeu2bdtWGIsysyA0NyPX4uTJkxg3bhysrKzELhylS5fGzz//DDc3N/GCSjonPj4eCxYsEPrVqVMHa9euFe1PSn2ysLAwlCtXLtlCdEJ3UL3QD1L0YWtr6xR355Abcq5fv44BAwZoGRWlKPdE1nF1dRWGxCpVquD69euIjo5GSEiI6KfGxsaKZxWQslFKXgeSmnSlcYd8G3qKHpqc8PBwsYNWzZo1U93xSWoHXr9+jTp16oBzjqJFiyI0NDTFdADw4sULrF69Gk2aNIGNjQ2srKxgbGyMPn36aO1+QFp8JiEhAeHh4VizZg2+/vprrf5twYIF0apVK2zZsgWRkZGiTqQ1b0L1Imt4e3ujRIkSYi7D0dERpUqVgr29vZYmv/32Gzw8PES5ZcXQSWWeProwse/evVv0p6ytrTFnzhxxTF6X5GbdMWPG6Oor5Bq8vb1Rq1YtrXrAORfPFjMzM5QqVQp79+4V50jj5ujoaPTu3RumpqbivJUrVyIkJCTZ34mKisLUqVNhZGSE9u3bU782BZLO62XlWUL1QpnI2xQp+Ju5uTkWLVqkdZz4jLz9lS/KnzlzplZAmJiYGGzatAktWrQQaRYsWGCILOcJzpw5I97LrVmzRutZrlar8eTJE60Ah5xz/PLLL1ppiOxBdePLhQzsBEEQBJELkQ/mpI7a77//DjMzM9ja2mLLli0ZGvAFBQVh0KBByJ8/P1QqFSZMmJBlMzCRqEV0dDS++eYbcM5RoUIFnDlzJkPnenp6CpNK4cKFsX79+hQjZhG6IbvmdTK4Zx99RF6XRyKlSa/PyMvw6tWrOHv2LFxcXHDw4EHs27cPe/bswZo1a7Bs2TKsXLkSs2fPxqhRozBy5Ej07dsXFSpUQJkyZbSiXE6YMEFck8o645AWymTjxo3YsGEDgLTLUKPR4OzZsyKSorToTPr59ttv4evrC4Ci9mQGeZnfu3cPx48fT/Z5amzevFmU/+XLl/WVRYLIMeTtxNu3b3H79m2cPXsWFy9ehLu7u1Za6Tlz5coVFChQAObm5jhw4ECm2oIHDx6IbdMbNWqExYsXi/5UXn+OpWZiX7VqVYbKRtIhIiICJ06cQLt27cRLWimyd1KtfHx8MGLECC0DHJH8XgwMDISXlxfu37+fbAGaPO2WLVuEbvXq1cOOHTvSjOQXHx+PDx8+oHr16uCca5kdCN1A9UJ/BAQEoEKFCjAxMcG2bdu0otrLn2d//vknunfvLupGly5dcP36dRpH6Ah3d3cUKlRIGBKfPXsGQNu0I80naTQarbmlpBrI/3/w4EFhpKtUqRJWrFiBrVu3klk3DQIDA/HVV1+JBTBPnz4V5Z10Tq9Hjx6pGqnkdWnNmjXo2LFjigZHGp+nTlRUFHr16iXKmHOOMmXKoFmzZrhy5QqCgoK00qc3JpegepF5fHx80K5du2SmdQsLC7Rt2xa7d+/WSh8dHY379+/j9evXGf4b8rK+c+cOXF1dUz2e10lqYs/sDrMrVqxAmTJlYGRkBDMzM8ydO1cckz/nJLOumZkZOOeYOHGizr5DbiEoKAgTJkxA/fr1tepG/vz5MXDgQLi4uIi00vvTT58+4dtvvxVpzc3NcfDgwTT/ztGjR0V6aQEnkZzsPCeoXuiP7OgSHh6O169fo3///rCxsQHnHLa2tvj33391mMPch3wcN2nSJK2gOh06dED79u1RsWJFrUBHo0aNgp+fHwBqc/XFrFmzRHn/9NNPWLJkCQ4cOIA+ffqgdu3a4lipUqUwZcoUcV5WzetJzyMTPNWNLxUysBMEQRBEHiAiIgKVK1cG5xzNmjXTehmSGqGhoVi2bJmIvFG2bFm8efMmp7KcawkJCUGpUqXAOUePHj0y1Al+/vw5RowYIV5yNWvWLFnUdupMZ47Y2FgEBgaKLaOSRhvLjnldGhh9+PABFy9epG2CM0BoaCg8PDzw8eNHANp66Cry+qNHj2BlZYXvv/9efEZ6aDN06FBhfs7Kj5GREWrWrKm1Sj0ljR4/foyzZ8+muWtIXientEgJ0kKbc+fOwcrKClZWVhmKeBUdHY1atWqhadOm+Oeff/Ddd99h/PjxWLt2rVa6zJgbiUS8vb3Rpk0bmJqa4smTJ2mmldrrmzdviv7Tn3/+mWJaKmfiSyO1ezatKIjS7hCWlpY4ePBghu97Z2dn9OnTBwULFgTnHPny5UPTpk1F9N68/lIkJRN73759M7zoWz6W8/PzEwudixcvjgcPHqR4jtRflp9PfCY1g2fSenHu3DnRb6pWrRo2btwozOtplevDhw+FiWHevHk6zj0BUL3QFxEREcJE1axZMzx69AjR0dEAEvtNarUakydPFouWOOfo3bs3bt++necXLOkaXUTVlWsijzBdsWJFrFq1StQDMuumjY+PDxwcHMRCvV27duHly5cAgPfv3+POnTvo2rUrOOcwMTFBs2bNcOvWLXG+fH590KBBWnNXzZs3x/Dhw3Hu3Dls2rQJI0aMEFrQDh7JefLkCWxtbWFsbIwff/wR//77b7IdhdK7b6le6IbQ0FDcuHED8+fPx6xZs7BkyRI8evRIK2K0RqOBRqPBmTNnwDlH+/btky00SI/jx4+jdevW4JxjypQpuHDhgtb1iUTkbUbTpk3FwqeMcu3aNUybNg0WFhbgnGvNi8vHMmq1GuvXr4etrS0ePnyoq+znKmJiYhAdHY1jx45h7969cHZ2hqenp3i/BHxuF2JjYzF8+HDxfsna2hpHjx4V6ZLe45IWPj4+sLOzg7GxMa5cuZID3ypvQvVC90jlFh0dDS8vL7i5ucHV1RUPHjzA1atXcf36dVy5cgV//fUXjh07hhMnTmD79u2YP38+pk+fjiZNmsDJyUnr/caWLVvS/JtSRH6al/r8/ZctW4ZKlSql+s5o+vTpyRbQyp9hWeHjx4/Cr5DXtZD3RadMmaK1iFWaR5J++vbti3379mmdL39fmhW2bNkiFgbmdS0Aw9cNIvOQgZ0gCIIg8gCBgYEoVqwYTExMsGLFCgBpG3Hfv3+PLVu2iAFjsWLFxHaq8sgyqUGTjKnz+PFjWFhYIH/+/Dh06BCAtAcSL168wJQpU1C8eHFwzlGiRAn4+/snOy8+Ph6BgYHYtm0btm3bhosXL1K06VSIiYnBrl270KZNG+zatQsRERHiWHbN6xIREREoVqwYOOeYPHmyiBYHkBZJefv2LaZPn44WLVpgz549CA8PF8d0ZV5//Pix1ov44cOHi2OkRyJv375F2bJlwTmHqakpVCoV7O3tYWlpiYIFC6JkyZIoUaIESpQogQoVKqBKlSqoUaMGmjdvjs6dO2PEiBE4fvy4lqk0JY08PDxEFI1x48bh4sWL4hhpkUhOaOHr64sLFy5g5MiRmDBhAv7880+t9KTFZ+RbBc+ZM0fLIJUa3bp1g42NDV68eJHqSymJ+/fv49ixYxg/fjxmz56NEydOCGMoQFrI8fDwEFFvJ0+erNV+p8bOnTvFs//AgQNppvXx8cGNGzewaNEirFu3DufPn9eK3EtaEF8i8mfOwIEDRQTFP/74I1P3tJubG4YOHSom+4sWLSpeiuR1Y6O8jPfu3ZvMbJUZnj59isaNG4Nzjv79+6f5nKNnUtbx8/NDq1atRPSlGTNmICYmBkDa5RoWFoaff/5ZjMvv3buXU1nO01C90B2+vr5wdHQE5xx16tTBoEGDsHnzZvz444+ijKWfX3/9FV5eXtl6xpMeqaMLEzsA7N+/X0SNq1SpEtatW6e1k4QUPZTMuqnj5eUl6kWBAgVQqlQpdO/eHVWrVhWfm5qaokaNGmIeF/gcYTchIQFdunTRqj9z584V0fskIiIisG7dOqhUKhQuXBh///13jn7PL4GgoCCcO3dO67Os3KdUL/RDSkF07t+/r7XoKaMm9ujoaMydO1fM1RobG6NcuXJYunRpsr9HJO7MKy3IWLFihbif00LefkdERGD//v0oUKCAaOMlku7kLM270+6yyUlvIbl84ezGjRtFG2JsbIwjR46kex0AWLVqlahT//33nw5zTwBUL/RNWFgYfvjhB5QrVw7W1tbInz+/2A3QzMxM7LIiLQxMyURqaWmJcuXKYceOHeK6KY1HTpw4AXt7e7FTQV4368q//82bN7FmzRrUrFkTlStXRrVq1dCvX78Ud4P38vJC48aN4ezsnKV2NzIyEmvWrEGxYsXEYnPS4vP337lzJ3788UdYWlrCzs4OZcqUQZcuXfDnn38K079EQEAAvvvuOxw6dChLWpw4cQKccxQsWBBPnz5Nlpe8iqHqRkREBC5cuIC3b9+KZxj1bdOHDOwEQRAEkcvRaDRwdXUVg8OkKzqTEhISgg0bNqB8+fLgnKNw4cLYuXMn4uPjkw0U4+LiEBMTg9u3b+PKlSu4e/dusigQ1CH7jEajwa1bt8Rg/MSJE2mmDwgIwMSJE1GyZEmxkECKRiLvdAcEBGDZsmUisru0qrdt27ZYs2aN1t8nEgfV0gR5nTp14OzsDCBx29IGDRpk27wOJJpXJAOqSqXCV199hZUrV4rjpMVnwsLCxPOmdu3aQo8LFy7ozLwuN1vRC6rUcXNzE+byUqVK4fLly/D394e/vz/CwsIQFhaG4OBgREZGIiYmBhEREam+NElpYjEhIQH79u0T9U+lUqFOnTpYsmSJSENaJKJPLa5fv44uXboIw4T0Q1qkTFRUFKZOnQojIyNUqVIF169fTzN9cHAw6tatCwsLi2TReeRlGhUVhY0bN6JgwYLiZYn0U69ePSxbtizF8/IyUVFRmDlzJkxNTVGpUiVcunQp1bRSmUkRkTnnKU5GSvzxxx+oXr06bG1ttfpSzZs3p/ab+OKR92MHDBggjFjpbV+eNHJ1eHg4Ll68KCIllilTJtMRAHMrKY0V5O3vy5cvER8fn+4zJDY2FpMnTwbnHE5OTpmOZEmkjaTJiRMnxDijS5cuKe4ClRL//POP2NmuRo0ayV44EukjrwNULwyDl5eX1uJuIyMj8bu5uTkqVaqk1Q8FEqPqSdHaM4q8PknjeEKb7JrY7927J8w/xsbG6N27tzgmj96X1Kw7dOhQnX2H3IKvry969uyJ0qVLa0VK5Dxx95muXbvi+PHjIr3cDC31i4yNjWFvb4/du3drXVveR/D390f9+vWhUqm05muJ5GTVcEP1QjckNW+mlebmzZswNTXNtIk9MjISr1+/xqJFi9CwYUOhxdixY1PMR17Hy8sLY8eOxd27d7N0fnx8PDZv3ox8+fLBwsICu3bt0m0G8yBJ70+prgQGBqJjx46iHZG/j03pnpY+U6vV+OGHH8RiWT8/P6oDeobqhW5xdnYW973ULhgZGYn3rWZmZihYsCDy588Pa2tr2NnZoUiRIihdujQaNWqE9u3bY9++fVoLxVNqg86dOyf60IUKFRJBefK6WTdpWUVFRSE+Ph5xcXHJ5qykZ8uMGTPAOUf+/PkztVsjkNiOb9u2TbzDsrW1JS3+n6Tf/9WrV3j9+jUiIiJE8AQJSbc1a9aIMXlmtQASAzW0b98enCfu+kEm9s/kdN2IiorCtm3bwDlHgwYNsHv3brx9+zbFvBDakIGdIAiCIPIAarUaTZo0ERFv5VtjSz9AYgd37ty5KFOmjBj8rVq1KtmL2bCwMDx+/Bg9evRAvXr1tAal5ubm+Omnn9KdmMmrREdHo379+uA8cctxqXOcdAXm06dP8dNPP4ko3kWLFsXRo0eTlWV4eDjmzZsn0pmYmIiJeulF5Lhx40R60iIRV1dXFC1aVJg2Z86ciXr16unEvA4k6uzq6ipMQtIkPEX+Thk3NzehR926dTFp0iQUKVJEPFvat2+fbfO6g4MD1qxZg9WrV5OJPQ3c3d1RqFAhsWjA09NTq2zk9UE+2M5o+X369AnPnj3Djz/+mGrdIBLRhxZubm5o27Yt8ufPLyIyFC1aFMbGxvSyMA1evnyJli1bgvPEreDd3NzEMemZJGng7OwsylK+BTbwuTzDwsIwdepULdN68eLFUaFCBVhZWZEWafDy5Uu0aNECnHM0a9ZMS4ukfSop8gjnHG3bttUqQ/nva9eu1dLC1tYWxYsXh6mpqehLkRbEl468zfj+++/BOUfLli21dmzKKO7u7mjatCk4T9xqOyO7IeRldu/ejSZNmohIrelF7nv48KFopzdt2pTmOUTWaNeunRgfBAYGAkj9JZLUzr99+xbNmzcXUeH++ecfAKRNVqF6YVgCAwMxb948tGnTBo6OjqhatSoaNWqEnTt3it0XJd6/f49Vq1Zh2LBhWjvTZJQ//vgDnTt3xt69e+Hr6ys+J/0SkZvY27VrB09Pz0ydv3fvXnz77bciaMmoUaPEMXnbr1arsWPHDjF3+/LlS519h9xCaGgo/v77bwwaNAht2rRBgwYN0KFDBxw+fFhrcYH8udW9e3dRppUrV8axY8dEutTala5du4Jzjq+//lqv3ycvQ/Ui55Du85s3b4r3EX379kVAQECa5yVtAx49eoQ5c+aIuZDJkyfrLc9fMvLAFdK9rFar8fr16wyd7+PjgwYNGoBzjkGDBukljwQwb948Mb80b9488Xl6fR+5+Xf06NH6zmauRHomUb0wHCNHjhT3cefOnXH69GncvHkTFy9exPXr1/H06VM8evQIjx8/hr+/P54/f46goCCxQ4qclOrMuXPnxC4r0qJ0MuumjLwvmpZpVr5bY0aNupJ5vWDBgiL4HmmhTWrlmJYW/fv3z7JpGkh8nnXo0IG0SAd91g0AeP36NUaMGCGehY6Ojujbt68YU5IeqUMGdoIgCILI5Wg0GsTGxmLcuHHgnKN+/fp4+vRpsg7S3bt30atXLzHQKFKkCNatW4fg4GCtdPfu3cOYMWNEVHBjY2Px8leKoqxSqWBsbIypU6dq5YNINDb/+uuv4JyjYcOGePr0aTKD9IULF1CrVi1YWVkJU9uJEydSjK7r4eEhIq+XLl0aEydOxD///IOdO3di+PDhYuJ3/PjxOfUVvxjkLwqtrKxEVIBq1aohNDQUQNbM60nv9VWrVqFixYrCBCc3TROfkethYWEhBncdO3bE+/fvAWTPvL5+/XqEhIQAAG0VnA662s48KUnLd9myZShXrpxoR8aMGaOTv5Ob0JUWUtkfOHBARJiuVq0aXFxc4O3tjdOnT+P3338X9WLSpEm6/Bq5Aj8/P7HAr1mzZjh79qx4NknIDdONGjUSC6GSsnz5cpGuZs2aGDNmDIKCghAaGopr165h3rx5QovZs2fnwLf7svD19YWTk5PQ4syZM1pahIWF4Y8//hBlLC1gUqvVyZ5De/bs0Ur3zTff4MmTJ/D398fff/+N6dOnCy1mzpyZw9+UIHSLvF87Z86cZBFCM3Od9evXg3OOChUqaBkSCW28vLzEM2bPnj0ZOufixYvinPXr1+s5h3mPDx8+oHr16uCc48cff0RcXFyqYwz5IrXOnTuD88RIvL/99luqbTyRPlQvlIFGo0FCQgICAwMREREhdiKQkF7kvn37Vsz1ffPNN5mKgH/ixAmx8FAa2+/YsUMrD0TimE9a0N+hQwcxH5UW8rILDAzEpk2bYGlpCc45Bg4cKI7JX8ir1WocPnwYjx8/1u0XyIXExsYiJiYm2TysvL2QDFpGRkaoUKGC1i6bad3bbdq0AeeJO4BQHdAtVC8Mg9zELs3nDhkyJEMRJpPuUrdp0ybxXmnv3r16y/OXjlRusbGxWLJkCfbv36/1eVpIu9qYmJjA29tbr/nMa97SkSAAALv6SURBVGg0GgQFBaFq1argnKNNmzYZLuOLFy+KYD7VqlUTOw5SO5F5qF4YBnkfafTo0aL/L+/7p0d6WsnN67Vq1cLq1avRtm1bMutmkZR2a8yfPz/++OOPNLVIal5v2rQpDh06RNG/s4G8nDKjRUqQiT37ZLVuyAkICMAff/wh6onku5LGHBSJPWXIwE4QBEEQeYSAgABh5mzcuDFWrVqF+/fvY9++fZgzZw7Mzc2FQad48eI4cOBAMmPWP//8g7p166JAgQJi1eBvv/2GS5cu4f3790hISMCRI0cwYsQIca0JEyaI82nCJRF/f3/xAvCrr77C3Llz8e+//2L58uXC3C79lCpVCjdu3Ej1WrNmzQLnidsKHjx4UGtr5nfv3mlFm6btaZPj4eEhzJxGRkYoWbKkiComRVXKKtIgJzAwUBjtzM3N0bhxY/j5+WU777kRuR6mpqaoUaOGiAyamcUEjx49QuXKlUUd2rx5s1bUjfj4eC0TuzwaEz2nEtGXiV3OlStXxAKcggUL4n//+1+yRVOEbk3sffr0AeccFStWxKtXr7SOR0ZGYs2aNVCpVFCpVNi2bZsusp+r8PT0FPeso6Mjunbtil27dmHBggUYOnSoaLvt7OwwY8aMFNuRv//+W6SrV68edu7cmWzryJiYGKxfvx4qlQrFixcXL66Iz3h5ecHBwUH0gZo0aYIZM2ZgyJAh6NSpk9bE4C+//JKsTwsAt2/fFm2Ok5MT5syZg+joaK000dHR2LBhA1QqFaytrXH69Okc+oYEoR9S6k9lpe/z7NkzMSZcvXq1LrKWK3nx4gW+++47mJmZoVevXmma/aWXF4cPHxZ91LVr1+ZUVvMMAQEBYoebrVu3Aki5Dsg/k0fYbdeuXbII1UTmoHqhDDLz7L969SrMzMzAOUfv3r0zbGJ/9+4d9uzZg379+ok5R5VKhd9//z1L+cjNuLu7w97eHr/88kuGI4bKy06tVsPZ2VmYdWfNmpXmufTCPGUyej/u3btXzPPZ2NjgyJEjGbrG+fPnYWdnB2NjYyxcuDDb+SWSQ/XCMEhld/nyZZQpUybLC1xDQkLQu3dvseggISGB2ok0+OOPP2BhYYHixYun+65BWpCzcOFCmJmZIV++fJne9YNIn8ePH4tnjry/kxZ37txBq1atRHClYcOGpRjIisgYVC8Mh9wg+9tvv4m52c2bN2cpUJicpOb1gwcPIioqCoGBgWSczgYpGXU55zh58mSK6ZOa15s0aYJbt25Bo9HAz8+PjNPZIDUtjh8/nulrkYk9+2S2bqSGl5cXWrduLZ5fnHN4eHjoOru5BjKwEwRBEEQewsvLC46OjqKTJG3BLEWGtrGxQZ06deDu7p7sXBcXF5QsWVK8NKxWrRoePHggtoyXm7TCwsKwceNGkXbFihU59h2/FLy8vFCuXDmhhTRBJUUidnJyQo8ePYR5V779nYRGoxHRAVq0aCFecskndkNCQjB06FAYGRmhXbt2GX4Rlpdwd3fXikh86tQpnUXU8/DwQL169URU8a+//hq3bt3SybVzK3I9qlevjhMnTqRoPEwJjUaDFy9ewN7eXjzb+vXrJxZ2yJ9TarUa27dvF3VuxIgR+vg6XzT6MrHHxcXh3LlzIiKNlZUVRo0aRQP3NMisFlI7IG8PYmJi0KtXL3DOxQ4pSSePg4KC0LNnTxgbG6Nfv37ZnlzOjfj4+KBly5Za0RPkfakSJUrgp59+wrt377TOk7T4/fffYWpqClNTU8yePVuY15O+lA0ICECjRo1oAVoaPHv2DC1btoSNjQ0456LfKT3Xy5cvjxEjRggtkhoSNm7cKF4s/vzzz8K8njTdq1ev0LFjR3DOsWDBgpz5cgShcO7evSvMjDTWS5tjx46JNnzhwoX49OmTOJa0vfb19UWNGjXAeeLuWk+ePDFInnMzr169EnosWbIkzbQRERHo0qWLiMZXp04dnDp1KodymruhevHlII+sa2JikmETe9K+7alTp/Drr7+K/trYsWNTTZtXCQkJEQEVgMwbDMLDwzFhwgQYGxujQYMGKc7tEtknISEB/fr1E+NAaTEUkP6CqJkzZ4rzDhw4kCP5zW1QvVAuUnshGUKzOp+0ePFi8a5EH8E0chNXr15FhQoVYGpqihUrViRbkJ8SgwYNEn1bqg+65/Tp0yKwxcOHDwEkn2OStwv379/H119/LRaHN2rUSOyKQ4tqsgbVC8OiDxP7uXPnxG7lderUgbOzs/AlAGTWzS5yXaRFZLt27UqmV0REBLZt2ybm0ps3b44bN25ovXMlLbKHvMz79u0LzhN3583IcywpPj4+Wos7pHkU0iLjZLRuJCXpDkOTJ08WuxTZ2tpi37591ManAhnYCYIgCCKP4efnh59++klsmy1Fvu3RowfWrVsntqqVd8D++ecflC5dWgziLS0tsXHjRly6dEkMQADtju+nT5+waNEiqFQqVKtWDXfu3Mm5L/mFEBAQgJEjR6Ju3brInz8/jIyMULZsWQwaNAinTp1CeHg4AGhFXIiNjUV8fDyioqIAJL4ENDMzw5gxY1L9O5s3bxZaX758Wa/f6UvF3d1dvECvVasWnJ2dERkZma1rent7o27duuCcw9LSEt27d9cyr9NL2tSR61G7du1M67Fq1Sr06dMH5ubm4Jxj5MiR4pj82aZWq7F161ZwzlG0aFHcv3///9g777Cojq+Pf2eXjggqoqCiqFgpIvbeYu8txthj7DVqmv5iSTSWxB6NiSaW2KKx94pd7KJ0EBEFu9IRWM77B+8dd2FBpFrO53l4gL1z786dM32+cyZX3+NDQFs43apVqxwvHiUmJtKRI0eoWrVqcvJkzJgxLF7PAtmxxYMHDyg8PJzu379P0dHRtGrVKhJC0MKFCzO859tvv5UiYJ60109ERAQtWrSIWrRoIesZIQQ1b96cfv31V7npJu1EVGJiIjVs2FB6wVcm2zNqDwYMGEBCCGrdujUR8QSjPh4+fEgrV66ktm3bUokSJcjAwIBsbW3p008/pR07dsg0TmsLjUYjRYllypShR48e6Q2nMH78eBJCkLu7OyUlJbEtmI8WJe9v27ZNLlopHkS5b6uLdnrMnz9fthXLly/X2Syr1Dt37tyhwYMHy4XZ5s2b59qmWkaXoUOHkoGBAQ0ZMoRevnwpbaUsvMbExNCFCxeoefPmUkDl6upK//77r3wG5/fsweXi/USfiL1z586y/5QZ2n2mR48eyVOGhBA0d+7cPIvz+46SbikpKfTff/9RbGxslha59+7dK8vVunXr8jqaHyWbN2+WaTxlyhT5+Zvss2fPHnlf165d8zqaHyRKGnO5eLfJbh9JWf9Ys2YNFSpUiExNTenmzZu5GbUPjsjISBozZgwJIcjFxeWNpwRduXJFrlU4ODhQWFgY92lzmR07dsg1VH320E7vixcvUseOHaWDDCcnJ3r8+DER8fxfTuByUfDkpoj92LFj8n4bGxudNQ3tPoC2cNrc3FxHt8C8GW27eHh4SJ2IwqtXr2jDhg3SFra2trRlyxZ5PSNbmJiY0O3bt/P+BT4gtG2xbds2CgkJyfazQkJCpC0sLS1lv4rbmKzzprKRGffv36fZs2dLh32Ojo60bt26LDvs+xhhATvDMAzDfITEx8fT06dP6eTJk+Tp6ZluMKfdeb106RLVqlWL1Gq1XGTS/rG0tKT+/ftLsbX24N7Hx4caNmxIKpWK/vrrLx746yExMZHi4uLo1q1b5Ovrm85Dunbn+PDhw/TFF1+Qu7s7OTk5Uffu3WnEiBFkb29PTZo0kRNcCsqg8ejRo3KRcfXq1Xn/Uu8pvr6+ZGNjQ0IIqlixIh05ciTbu2BZvJ5ztO3h4OBAHh4eb0w37eshISG0bNkyKa4aMGCAvKZdxyUnJ9Pu3bt1JlwYXXx9falEiRLSy8XDhw+z9RxFvK54Xmfx+tuTVVvExsbSqlWrqEKFCmRra0vFihWj2rVrU/v27cna2pr69u0rTyYgSi07SnuzcOFCUqvVZGBgQOfOncuX93qf8fT0pPPnz9OZM2coMTFRthv62o+YmBjpVb19+/YZhlMEdF9++aX0csm8mXv37lFQUJA8vUZBX9uh0WioY8eOJISgOnXqUHx8vN5wSrmYMWMGCSGocePGeRN5hikAtPN8Vv5W8Pf3p1KlSpEQguzt7cnb2ztvI/oeo13HKxvEhBA0atQo2rp1KyUmJlJoaCh5eHhQ48aNqVixYtIjj9I/4nFD7rN27Vppi6VLl9K9e/fkteDgYJo+fTq5urrKBdcmTZrQ7t27ZRi2Sc7gcvF+oi1iV+yRnXFhQkICzZ49m1QqFdWoUYPFiW9g2LBhVKJECbpy5UqWwr948YLKlClDQggaOXIkEXF5yS2UdBw3bhyp1WpydHSkM2fO6FzLiLNnz8rN6BUqVKD169dn6T5GP1wuPjy0+waK8FQIQZcuXSrAWL0fhIWFUd26dUmI1BN6b9++Lee9tZ0i3bt3T27MF0LQt99+W1BR/qCJiIggJycnMjExoT///FPvqcpEqR6l69evL9ctqlWrJh2VsLAw53C5KHgyErGvWrXqrUTsfn5+1Lp1a7me5OzsLNt/jUaj054HBQVRy5Yt5WZBxQkckzXeVPcEBwdTz5495elo1atXl2veaW0RHBwsHQKMGTNGnkDLZI2ctgPatjhw4ABVrFhRjuHZidvbkx17PHjwgObMmSNPDq5cuTL9/fffOmuyTHpYwM4wDMMwjCStiOrhw4c0bNgwMjc3lzuX7e3t6ZtvvqGpU6fSl19+KT0EtG/fnp49e0ZEuqLrefPmkaur6xuPF2Z0STvg27x5M6lUKjIwMNDZQKD8b29vTwcOHNDx0kRE9PTpUxo6dKgMzyLdzPH19SVjY2NycHCgM2fOZGtBg8XruYevry+p1Wpyd3enoKCgLN2jnb5JSUm0adMmORk8derUN97PR3fpx9fXl4QQ1KJFC4qPj3/r+1m8nntkZAsl78fExND333+v01aYmpqSEIKMjY1JCEHly5enEydOyDZDyfeBgYHSO76trS0f15wJ2a3LR4wYQUIIqlu3ruw36SM4OJhsbW1JCEHjxo3LbjQ/CjKyxZvq88mTJ8uFwgcPHmQYLjw8nNzc3EgIQX379s1RXBmmoMlO3ZWcnEwJCQl05swZWr58uaybLC0t6YsvvkjnDTntd3zsfV/thY7vvvtOp32uVKkSFStWjNRqtfysSJEi8tSs3Fy0IuJ+rjbatqhXrx717t2bevToQZaWlrLfVKhQIfryyy/p1KlT8r6c5mfFph+7MKUgywWTfZQ65MaNGxQcHExE2SsTZ86ckUdob9iwIVfj+CERHh5Obdu2JSEE9e/fP9PTBxQ7vHz5Um4y6927t841JuckJCSQk5MTCSGobdu2WbrH09OTatSoQSqVilQqFQ0aNCjHJz5+zHC5eH9IuylW+T8lJUXHm742W7ZsodKlS5NKpSJnZ+dMx+nMa4KCgqh06dIkhKD69evThg0bdBwd7d+/X85FKfVXYGAgEXFZyG2ioqLo008/JSEENWzYkG7evCmdVBClCtp+//13MjExkc7CnJyc6M6dO0TE9shNuFwUPBmJ2JcsWZKlNFbaipiYGDp48KBs/42NjTPcRBgcHEzffvst7d27NxffhFFsERsbS8ePH6f27dtLW5w9e5aI9Nti4cKFbzwFgck9tNcHHz58SKNHj6YGDRqQEKknC2o78mHyDhavZx8WsDMMwzAMkw5lYHnkyBEpUChZsiR988035OXlpRP20qVL8jjnTz/9NN0ziEhOJvOCefbYt2+fXLw1NjamBg0a0IYNG+jvv/+madOmUYUKFUgIQVWrVqXdu3fLY5wfPHhAK1askLtrixQpQnfv3i3gt3n3uXv3Lh09elTHG0NWYfF67hMWFkZ+fn4y7d62HomKiqJvv/2WDAwMyNXVlY+sywHh4eEUExPz1vexeD33ycwWS5culRPCrq6uNH78ePLz8yMPDw9avXo1VapUSbYZGzdupNDQUCIi8vLyol69esk2vU6dOvJ0FSb3WL58uRR+KoI4ZeOf0ncKDw+niRMnUqFChcjCwoJ27txJRNyPym3+/vtvEkKQhYUFHT16lIgo3aaOly9f0pIlS6hkyZIkhJBH1bItmPcRJX/funWL/v77b1q+fDmtWrWKFi9eTD/88AP9+OOP9NNPP9G4ceNo5MiRNGHCBPrss8+oadOmVK9ePTI2NpbC3qJFi1Lbtm0z7VfdunVLbmL+2AWn2u+/cuVKatasWbqTzYoXL04uLi7SG3Fa71VvO47QDn/s2DEpimBbvH7/GTNmkJWVVTpbmJmZUenSpWnLli063tmJUsfY2R3ThYeHU48ePejatWvp4vIxUtDlgske2mmYk/6QMjbs169fuucyqbx69YoWLVpEFhYWVL58edqzZ88b00kZa6jVatlvZXKPpKQkqlOnjo6DhLReRLVtdPHiRapXrx6ZmJjIDVPKsfM8nsgeXC7eTXJSh8fFxVF0dDTNnTuXXFxcpKh3ypQpesNrlx1uO17j5+dH5cuXl3Mc9vb21KJFC6pTpw4VLVpU9q2aNGlC27dvz5M6iO2RSnBwMDk4OJAQqadnjh49mv766y8aMWKE9A6tOBtp2bJlphtxsgvbIpV3oVx87GiP+caNG0dCCPr++++zfL92Xr579y716NGDhBBUpkwZunHjht579Dn8YXKOdlqGhoZKWzg4OKTTjShob+Bh8oa09ZanpycNHTpUjreVH2dnZ/rss8/kWiCTN7B4PWewgJ1hGIZhGL28evVKTsrb2NjQnDlzpNcLZaCiDD4PHDggvSdt2rRJPuNNx88zmZOSkkIPHz6kVq1akUqlImNjYxo2bFi647ZCQ0OlByB7e3tq1KgRjRs3jmrVqiWPSC1atCj98ccfRMSLJG/D2+RbFq/nPdp59+rVqxQREZGl+w4dOiQH6n/++WdeRY/RA4vX85erV6/K9tjFxYXWrl2bbkE9PDxcthk2NjZUpUoVat26NRUrVkx6YrC2ttYrFGKyxpsEaR07dpTpn3aC9+7du/Tdd9+Rvb09CZF6xLyyMY15e95ki86dO0tbpBXiPnz4kFatWkVVqlSRIjo+UYh53/Hw8CBDQ8N0ItG3+alcuTJ9/fXXmbblXl5e1Lt3bzIzM6Pr168TEYt1td8/NDSU9uzZQyNHjqRBgwbRhAkTaPfu3fTw4UMi0u3zzp07lwwNDWnDhg1ZbpO1wx05coQaNmxI5ubmcoGXbfH6/ffv309z5syhOnXqUOvWrWnQoEG0fv16un//frr7Nm3aRAYGBrR+/fpsCaenTp0qN5bfunUrXVw+RvKzXGiza9cu+umnn8jX11cKHLjPm/coNoyKipKbart27UpEnP4Z8ejRI2rXrh0JIahBgwbp+qvaZejy5cuybyuEoP/++y+/o/tRoKRxz549deZn0+bhU6dOkbOzsxxjV61aVY7rPva6P6dwuXi30G6fg4KC6OrVq3Tt2jU6f/48HT9+nI4cOUK7d++mLVu20JYtW2j16tU0f/58mjNnDk2cOJEaN25MNWvWJCGEFK9//vnnep+vzG9pC+K4/XhNcHAwderUSa4HKemp/O7evTvt2bNHp4xoNJoci6q05+fZHqn4+/tT1apVZd2T1hYNGzakqVOnUmxsrLwnJSUlRyd0nDhxghYsWKDzPKbgygXzGu20PXDggE69/rZr1deuXaPatWuTEIKGDx9O8fHxnNcLCE9PT3J1dSW1Wk0TJkygpKQktkU+krbsbN68mSZMmEAGBgY6zhns7Ozohx9+oBs3bsh+FGtE8gYWr+ccFrAzDMMwDKOXS5cuUcmSJUmtVlOfPn2kx7a0pKSk0L179+Ti08yZM/M5ph82gYGBZG1tLY+6i4uLI6LXE7XK4P/u3bvSE3uZMmWkd0RFvL58+fIsi30ZXZTBnEajyXDHOIvX85dVq1aREIKOHz+eaTjtdHd2dtbx8MaD9Jyj1D/Jycl6Tyxg8Xr+899//0lh4ujRo9N59lZ++/r6UtmyZUkIQe7u7lL0XqRIEapUqRJdvXqViLicZAdtz90nTpwgovQb/8LDw6XXpWLFitHkyZNp0aJFtGTJEnJycpLeYAsXLsze13OAkmbR0dHpjjNVbPHw4UNq0aKFFKj/9NNPtGHDBtq6dSt16NBBHjdsbm5Oixcv1nkuw7yPfPXVV/LoWBMTE7K3t6fy5ctTxYoVqVKlSuTm5kY1atSgmjVrUvPmzalVq1bUokUL6tu3L/3www+0cuVKevjwYboNtdrcvHmTvvzyS7kgXLRoURbr/j9ZGROkDdO3b1/ZJmzevPmNz9C+fujQIerUqZM8zYuF069JW5frSw8ljJKmn332mTxFJSu2SIu/v7889tzKyopt8f/kR7nQ5sqVK9SpUyfZD/7ll18oPDyciNgWeYl22i5evFjOV82ePbsAY/V+cOfOHbmhsmnTpnTmzJl0i+BnzpyhL774QqbrwIEDCyayHzBKPbN48WIyNDSk6tWr09WrV9PVPwkJCbR161adeVlnZ2c5J8v1TO7A5eLd45dffqGGDRvqjDWUtM/qBlorKysaOXJkupPRiF6L1+Pi4qhcuXI6JwHzvPtrnj59SgcPHqRBgwZRo0aNyMHBgXr16kWLFi2i2NhYnbRKTk6mzz//nPr375/tzfo+Pj5UokQJ6tu3r/yM7ZHKvXv36IcffqCmTZuSvb09WVtbU+vWrWn27NkUFBQk83RKSgppNBqaNm0ajRkzJt0JUFnh8ePHVK9ePRJC0KhRo+TnbItU8rtc+Pr60pEjRzLd6Paxoa//o/2Zn58faTSaN865xsfH04gRI0gIQZUqVaInT5688btTUlKyfbrzx0ZCQgL5+/sT0ZvTKj4+nvr16yc3auZkAw6TNdLWI8+fP6dt27ZRnz59SKVSybk/CwsLcnBwoNWrV9OlS5d07kk7z8VlI3dg8XruwAJ2hmEYhmH0smLFCjl5eOzYsUzDRkdHS48CPXv2zKcYfhzs379f7pRVPKin9aabnJxMKSkpNGnSJFKr1TRq1Cg6dOgQff311zRv3jzy9vYuiKh/UMTFxdEff/xBu3fvlgNxZWDH4vX85dmzZ9LLQp8+feTxyxmRkpJCERERUoTYq1cv+TmTc6Kjo2nWrFn077//6kxSsXi9YFi4cKEUCyoi9LQTxBqNhuLi4qh79+4khKCff/6ZLl++TH/++SedPHlSTvzypFX2iY2NJXt7e7K1tZWCqLQ8ffqUevbsKTcPpP0xMTGhESNGyNNvmOwRHx9PTZo0oQoVKmS4CPjo0SPq2rVrhovohoaG1KFDByk0ZJj3nQkTJsj8/fXXX9P9+/cpMjKSnj9/TpGRkRQXF0dxcXGUmJhIKSkp6cYeRBn3o27evEnDhg2Tz1c22LJYVz/abW3aNNX+f9CgQXJMmJlYV594XdtzPtsiY9J63MuIrNoiI4KCgqhNmzZsi0zI7XKRFj8/P5o0aZL0TFaiRAlq3ry5nDdhW2RMWnGPgtJeEKXOVynXtMUiCr///juVLVuWVCoVFS9eXG7WZDLH39+fbG1tpUCkd+/etHXrVtq4cSNNnDhRnqAphKC2bdvyiRt5yP3798nFxYWEENSkSRP677//KCAggJ49e0Z//fUXffnllzpeD5s1ayY9r+vrU2UHns9KhcvFu8PLly+pUaNGJISQ7WvRokV1hOkWFhZkampKNjY2ZGdnRyVLliRHR0eqXbs2tW/fnpYtW0aHDh2Sz9TO59ridUWky0LdrBETE5PhtZCQEOk4qXv37m8t1vX19SU3Nze2RyYo6fD48WN68uRJOudIyvXw8HC5vtqtW7e3toVGo6E1a9ZIW4wZMybddzCvyctyERQURCVLliQhBE2aNIlOnjwpr7Et9DNx4kSqV6+e/D+jdFLGiSdPnpSbpLZu3ZppWIW0DuF43SM9r169os8//5xatmz5xrBKOu7YsYOMjIxIrVa/0dkYk33Slgl/f3/atWsXubi4UIkSJXTWMdq1a0dLlixJtyalb54lMjKSfv/9d/Lz8yMi7iNnhJJ22m24dnqyeD33YAE7wzAMwzB6WbJkCalUKnJxcaEXL16QRqNJ10lWOmjh4eHSk2vv3r0LIrofLAcPHpRH2v3zzz+ZhlUmqfTZgAfkOeOXX34hlUpF1atXp40bN1JUVBQRpQ4UWbyevyQmJtLy5cupePHiVLZsWdq5c2eG+VtJ/5MnT8oB/Lhx4/Izuh88EydOlB7FNm7cKE+JOHz4MFWrVo3F6/nM77//TkIIUqvVdPr06UzDzpgxg9RqNU2dOjXdNW4zcsaFCxeoVKlSVLRoUVq9enU6oYJ223Dr1i3asWMHzZ07lwoXLkwqlYoMDAyoadOmdO7cufyO+gfHrVu3yMXFhUxMTGjZsmUZnqRCRHTq1CnaunUr/fLLL1S4cGEyMjIiIQQ5ODjQnj178jHWDJM3aC9EjBs3TvaNVq5cKT/Xrp/09WMz69umFa+PHj2abt++zWLdHKDdfvTv3196UtIn1s1MvD5t2jR6/vw5e//OAfpsUahQIRaxFwBvUy4yIjIykg4ePEilSpWSp0VYWVnRzZs3iYjH8frILH9qX0tISJCeLF++fEl+fn508+ZNmj9/Pn3++edyfksIQcOGDcvSd/PYJJXAwECqVauW9GRsYGAg+6vKT8eOHcnDw0M6usgNtNOfbZFKQEAA2dvby9NNLC0t5cmkyo+LiwuNHz+enj17luPvU2ypfToq11OpFFS5YNLj7e0tT5MrUaIE7dixgy5fvkxXrlyhO3fuUHBwMPn4+NCDBw/o2bNn8ndSUlK6Ux212xVt8XrdunVluVO8jLJQNz0ZjRP0pc+5c+dk+enRo0eWxbq+vr7k6upKQgiytrZme2TA29pC2QDyNrZQSE5OptWrV8t+FttCl/woFykpKbRx40a5GUGtVpO7uzvNnz8/w3h87Jw7d06211u2bMk0rJJ2mzdvlvfoE7Br91ePHj1KM2bMoHr16lHHjh1pwoQJFBgYSEQ8/k7L0aNHZbru2LEj07CKLX799Vd5j3ISrT7eNIbgcpEx2mkTHh5OS5YsIXd3dypcuLBMe5VKRf3799eZ3yXSn+7K86Kjo+m3336jEiVKkIGBgZwL4XKhi7Yjw7lz59Lt27d1rudUvM5lQxcWsDMMwzAMo5dffvmFhBBUqlQpun//frrr2p0qRahgZmZGGzduzM9ofvBERUVRrVq1SAhBw4cPp9jY2HRhFDGW4nm3Ro0aesMx2ScoKIgsLS1l+m7dupWuXbuWTrx+8eJFec/HNrDITx49ekQdO3YkIQTVr19fxyuu4uVNqaMCAgKkFyBra2vp4Y0XXnMHf39/6VXJzc2N1q1bR7t27ZKe14sUKUJjx45l8Xo+ERISQtWqVSOVSkVz5szJUKwbExND3bp1IyEEde3alctDLhMVFSU979WpU0dOABK9rnuUBdqoqCg6d+4cNWjQQC64u7q60v79+wsk7h8aMTExNGbMGBJCUK1ataTXPaLX7YViC41GQw8fPqQWLVrICeAiRYrQhg0bCir6DJPraC9EfPXVVzKv//777znyCnrz5k0dj6MjR46k+Ph4IkoVFrFYN/to22XAgAEyjc+ePSs/z0y8/v3338trfn5+bIsckJEttL3qZRUWseeMrJSLzFDS+e7du9SgQQM51hdCUGhoaJ7E+UPhzz//pIEDB1K3bt2oXbt21Lp1a2rQoAHVqVOH6tSpQ1WqVKFy5cpRpUqVpGdkc3NzHTGpgYEBDRo0SD5TX74PDAykn3/+Wf7P8yuphIWF0cyZM+Uch5KednZ2NGHCBAoLC0s3tlu2bNlbi+AUkpKS6NChQzRr1iz5GdsilaCgIOrQoYM8bUb5sbS0pCFDhtCJEyfkBn+FjRs3ZvuELUXgNWLECPkZ2yKV/C4XycnJ7FExA3x8fKhYsWLS631AQIDO9YxOvMkoL2uL1xWP+tbW1jRu3DiaPXs2C3VziGKD8+fPS7Fuz549Mzy9TsHHx0eeRGFra0u//vorLVy4kO2RA7Jri7SwiD3n5NQW8fHx5O/vL0+LUmyhfUIB85qQkBDq2bMnGRoaUt++fbM0Fps/f75s79Oe5qTdtvz2229UqFAhnX6aUm8pIlReE3lNQEAAderUiQwNDWnQoEF6dSFEunXJ5MmTZbqeOnUq0+e/fPmSrly5QnPnzqXZs2fTDz/8QGfPnqXHjx8TEdsiI5KSkujhw4c0btw4aty4sU5eLl++PHXp0oVOnDgh52CJMk5LbfH6smXLyNnZWWcNhOel9PPkyRN5MsfYsWPJx8eHiIgiIiJo9uzZOfa8zmXjNSxgZxiGYRhGLzdv3iQHBweysrKibdu26XSQtBcLFy9eLL2vV6hQgS5dulQQ0f1giY+PpwkTJkjh9LVr13Sua9uiadOmUkTKAvbcx9fXl4oXL05CpB5N6+DgoCNeZ8/r+Ysi1BVCULNmzejChQsUHR2tE8bPz4/69+8vBdYuLi5y0MfkHtplo2LFilSqVCk56cGe1/OXqKgoKeKpXbt2us0dCrdu3SInJycSQlCvXr14UioPCA0NlZOATZs2pVOnTsnTOxSCgoLop59+knWZiYkJ1a1bl3bt2lVAsf4wCQ0NpRo1asj24ty5c+nai/v379OGDRvkpkFF8PDXX38VUKwZJu/QrvOVk1RyImK/evWqjnh9woQJ6cYi2mJd7UWRj2kSPido26Vz585Uv359vQsie/bskZs8hRD0448/ymuK3dkWOUPbFt26daPKlSuTl5dXtp4VFBRErVu3liJ25TncL8saWS0XadHO63v37pVtvxCCOnXqlK6/xrxm2bJlUoTztj8mJiZkYGBAn3/+OS1fvlw+U19+DwkJkV52R44cKT/neZZUkpKSKCEhgQ4dOkR79+6lU6dOpfMEp6TVF198kW1PrklJSXTy5Ek5pmFbpOf58+fk6+tLK1asoJUrV9LevXvpypUrOmGUOud///sfCSGoe/fu2RJOb9myRZYnFiSmJz/LxeHDh8nFxYXmz5+vM9/FtkjF19dXinxatGhB/v7+2XqO0s7HxsbqiNcnTJgghfEs1M052mJdExMTEkJQnz596Pnz53rD+/j4SM/rtra2tGjRInr06BERsT1yirYtjI2NSYjUk5afPHnyVs9hEXvOedtyoZA2fefPn08VK1aUnvXHjh2bZ3F+n9myZYvcUDxv3jxKSEiQ1xTnIwqnT58mOzs7uV6e0caCpUuXyn5T9+7dafr06TRjxgxq2LAhCSGoWrVqb71B5GPgn3/+kZuPFyxYoGMLjUajM5bet2+fTOOWLVvqnKaibbOXL1/SyZMnqWbNmlS6dGmdMaKdnR21aNGC/Pz8iIjnQtJy7NgxmjBhglw7Un6qVq1Kn3/+Ofn6+sp6KbNTJbQ/V8TrykY0tVpN9erVY+cKb2Ds2LE6894nTpyguXPnvrV4nctG5rCAnWEYhmEYvTx//pw6d+5MQghq0qQJeXl56QxWiEhHdCWEoCVLlhRQbD9sQkNDdYS6ly9fTie86tevHwkhyNjYmCZPnkxEPCGVF/j6+kpPMiqVikxMTKh9+/Z09epVGYbTPf/w9/enkiVLykmnoUOH0tGjR2nHjh30999/U6VKleRRajY2NuTt7U1ELNDJC9KWDXNzcxo+fDgFBwcXdNQ+OkJCQsjR0VG2GadPn6YXL14QUeoE1Y0bN6S3BgsLizceCclkn4CAADmpXrFiRerRowetXbuWfvnlF/rhhx/I1tZWTtBbWFhQjx496OjRowUd7Q+SgIAA6QW0atWqNHDgQNq7dy/9888/9Pvvv1PNmjWlrczMzKhOnTp6j6FlmA+F3BKxv3jxgqZMmSLvr1Spktxwm5ycrNPn0hZOq1QqOQnPZA1tu6T16EpE9PjxYxoyZIjOgpbi5fXVq1c6YxRtWwghsi0s+ljRtsW9e/eyPf5LSUmh8PBwatWqFQmR6rWXj21+O95ULtKiXSdt2bKF6tevL8tB3759Wbz+BgICAuTmcFNTU6pVqxZ99tlnNHz4cBo8eDB9+eWX9PXXX9P3339P06ZNo19++YV+++03Wrt2LV29ejVTT7wKISEhOicTCSFo9OjR8jrPt2SeBmnnOs6ePUtGRkZvLdZVxOtubm5si2yS1haXLl2S6Zgd4TQLEjMnP8oFUerJHT179pTlomvXrrR+/fosxeNjIqcidiUd04rXJ02aJL1eEqXWVVwuco5SRs6ePUsWFhbUqVMnunv3brpw3t7eOuL1ZcuW6XjoTWsPbbEu2yNraNvCzMyMqlWrlm4zTlbgNiPnZLVcZMb58+elEyxzc3P69NNPs30Sy4eIdl6cO3euHJctW7ZM78aN8+fPU6dOncjU1JSEEDRgwAC944ldu3bJZ82ePZuePn0qr928eZOqV69OFhYWtG/fvrx5sfcQbVv8/PPPOpqP8PDwdOEPHjxILi4upFKpyMDAgL7//nu9AupLly7R5MmTdU48MzQ0pOrVq1P58uXleqKdnR2v3eph0qRJMt0sLS3J1taWZs+enW7D7JvIyPO6Wq2mM2fOUHR0tI5zBRaxv0Y7PyrOJoUQ1LBhQ5mvK1euTH/99ddbide5bOiHBewMwzAMw2RIcHAw2dvbkxCpnlwnTpxIW7dupSVLllCbNm3k7nMhBE2bNq2go/tBoy3UdXFxoQEDBtC6detozpw51KxZM2kHW1tb2r9/f0FH94PGx8dHLtoWK1aMZs6cKa99DAOId42AgACqWbOmLANqtTqdtzcbGxs6f/48EbGN8hLtslGyZElasGCBTG+eHM9f/P39pVjX0dGRWrVqRT/++CN16tRJbogyMzOjXr16sWgtjwkMDKSmTZvKzTT66ipbW1tavnw52yKPCQwMpPr168v+qz4PolZWVjRlyhSdU1UY5kMlt0TsYWFhNGHCBKpduzYJIcjBwYFOnz5NRKn9rrTC6UaNGpEQgv7++2/ul70lb0qv8PBwmjZtmvRcXKZMGTp58qS8V9sWwcHBVL9+fTIwMKDjx4/nZbQ/SLKbd9P2iSMjI2ny5MnyNCNLS0u6ceNGbkTxoyGrttAOt3XrVh3xer9+/Vi8nkW8vb3lYuonn3xCoaGh2XqOvvGhtni9aNGi1KtXLxZe5QBt76FvI9ZNK14vXrw4DRs2jG2RAxRbnDt3LtvCaSIWJOYG2S0XCnFxcfTvv/9St27ddBw4TJgwQYZhW6SSUxF7YmIiVaxYUc6ftGnThu7cuSOvKSjlQplj0d5ow2QdpWwEBQXJDZXahIeHy1OY1Wo1ffrpp9Lrqz576Nv4xGQNxRbe3t7k4eGRrWekpKSQRqPRaTOGDx+uc515M28qFxmRlJREx44dk30pCwsLGjlypM5JqUwq2mO0b775Ro7PBg8eTH/99Rc9efKEvLy86K+//qKqVatK7+Dap5Ar+Vmj0VBSUpI8aWXo0KEUExMjn5+SkkKRkZHyBK5Zs2bl78u+42jb4uuvv5a26NOnDy1fvpwCAgLowIEDNG/ePDIzM5P1fMuWLSk+Pp6IdOcZDx48SK1bt5Y2q1SpEg0aNIguXbpEz58/p6dPn9K+ffuoZcuWJIQgV1dX9oqvh+HDh5ONjQ2tXLkyw5OeMiMz8bp2GxMYGCgdXbCIXRftNNAWsQshqFy5crRu3bp0TifTot3uctnIGBawMwzDMAyTKf7+/lS5cmUdwZWhoaHcDSiE7tHkTN7h7+9PTk5OOrZQJtuNjIzIzs6O/v7774KO5keBj4+PXLStWbMmbdq0iRe8C5CwsDD65ptvpHBK+XF0dKQOHTpIL+A8OZv3aJcNNzc3LhsFSEBAANWuXVt6JdEW61pYWFDv3r2lwJDJWx4+fEjr1q2jTz/9lJydncnS0pKqVKlC3bt3p9mzZ2frCHkme4SHh9Nvv/1GnTp1Int7ezI0NCQbGxtq1qwZffnll+Tj46Nz5CnDfOhoT8J/9dVXsp34559/3ur++Ph4unjxojzBy8TERG4eTNv/Cg0NpQMHDuh4wWJyjmKLhIQEunbtGnXt2lXaQtmUk9YW9+7do6tXr3K9lw/o88S7bNkyqlixIhkbG+vMr3z33XcFFMsPl8w8r/fv35/HK2+Jj4+PFCU2bdpUihKTk5NlPaP9d1bG4WnF6z///DOFhobS2rVrWaybA7TFukod06FDBx2PudqkFa/b2NjQxo0bKSoqitasWcO2yAH6bNGpUycWsRcAb1su9JGSkkJTp06l4sWLS1sMHjw4r6L83qItYm/VqtVbi9h//PFH6tChA5mYmJBaraZJkybJa9obbpOTk+nPP/+UbfuxY8dy7R0+JtLWIWn///XXX6lHjx7SKYB2/ZORPaytrenSpUt5G/EPkDfZIqv3hoWF0fDhw2U9NWjQoFyL48fC29pC6UvVqFGDhBBUuHBhGjFiBIvXM0F7Xmrq1Kk66xi2trZUqFAhnTU/Nzc3uaEprfOF58+fU7ly5UgIQevWrdP7HS1btiRDQ0PavHlzHr/Z+4d2Ok2bNo0MDAzkBjFra+t0zsOaNm0qxeva80o7duwgd3d3OdfRoEEDOnToED179oyIXttNo9HQlStXqHr16lSoUCFas2YNEXGflkjXFspmDYW3TZ+oqCiaN2+edGxlaGgoHSdolyHt0xqLFStGXl5e2fq+DxFte4wdO1aWgU8++YQuXrwor+lLK+3PuGxkDgvYGYZhGIZ5I6GhofTNN99Qw4YNydDQkAoXLky2trY0aNAg2rJlS0FH76MiNDSUJk2aJI/PVLy09enTh3bt2lXQ0fuo0J6Ed3d3p7/++ivdQJLJPxITEykmJoa2bdtGmzZtor///psCAgKkGIE9fOYf2mWjRo0atGHDBoqLiyvoaH2U3L9/n+bOnUvNmzcnCwsLKlmyJFWsWJFWrlyZrSNomZwTFxdHjx8/TtdecB2V/zx69IhCQkLkUaiKDdgWzMeG9iT8uHHjSAhB586dy9az7t69S126dCEhBDk5OZGvr6/ecB/6hPu7wN27d+WGgpo1a1JgYGBBR4khogsXLtCPP/5IxYsXlwvxiueyCRMm0NatWws6ih8cLF7PG3LqWVebkJAQaZeiRYvSTz/9RA8ePCCiVPv9+eefLNbNAdpiXe2Namn7vGkFVzY2NrR+/Xo5llcEiWyL7KPPFosXL9bxXpwVWMSec7JaLvSh3XcePXq0PIlQCEG7d+/Oszi/r/j6+pKNjQ0JkXrC79tsFCBKdc6wcOFC6aWyf//+8pq2LZKTk2njxo20YMGCXIs7k4p2vXLnzh1aunSp7McOGDBAXktrj127dtGGDRvyNa4fM0r6JyUlUWxsLC1cuJDatGkjHWApP9n16s68GRavZx/t+uPPP/+k9u3b6+RbxdNx586dKTIykoj093mePHlCZcuWJZVKRdu3byci3fHg4sWLpUCeN9foR9sWa9eupR49eqSzhbu7O40aNYoSEhKISFe8vm/fPnJ1dZV1zyeffEIPHz7M8Puio6OpVatWJISgXr165d2LvYdo592crFfcu3ePOnfuLMcODRs2pIiICCLS3XhOlCpib9eunbT1x+L5Oyvomz9X5vKystbKZePNsICdYRiGYZgskZiYSImJiXT58mW6ffs2hYeHy8EJEU+Q5ycJCQkUExNDhw4doqNHj1JgYCC9ePGioKP1UeLr60u2trYkhKDmzZu/8ZgopmDg+in/8fX1peLFi5MQgvr27cubOwoQjUZDKSkpdOvWLQoNDWWPtwVERh57WCyd/2TUJrAtmI8Z7Un4u3fvEpFuWUlOTs7y0bRHjx6l8uXLU6FChWj+/PlExOUrN0lISEjnZUwfKSkptG/fPrK1tSUrKytauXIlEbEt8oO0XqefPXtGfn5+1LdvX6patarOwm/lypVp3Lhx6TaN8DHNuQOL1/OW3BCxBwUFyZPULC0tad68edL7mEJase6oUaNy6xU+GpSycOHCBZo6dWo6WyUnJ9ORI0eoevXqJISgIkWKSIcl2uUorS1GjhyZfy/xgaBtiwEDBmT7VLSkpKQMywW39VnjTeUiM16+fEn//vuvFClaWFjQtGnT5AmQjC6+vr6kVqupSpUqWU4j7bFIYmIibd68WYqmp0yZ8sb7uS+Vu2jbIykpiTZt2iTt8f3337/xfq6X8oa081uPHj2iH374QQrelDaibNmy1KRJEzp69Kj0lszkLixezzna9faTJ0/o+PHjNGPGDJo8eTItXryYzp07Jzf96avjU1JS6OXLl9S6dWsSQtDYsWN1xhW//fYbFSlShIQQvNnpDWjX2TExMXThwgVasWIFLVq0iP755x8KCwvT2TSjcObMGWratKn0Lt22bdtM56+UOmzChAlyTMmOsPKGx48f07Jly6hhw4ZyvHfq1CkiSrVDWhF7w4YNqWnTpvK0AyYV7bpHybfKhmI/P78M7+OykTVYwM4wDMMwTJbQd/QvTzy9O7AtCo5bt25RlSpVyMfHp6CjwjDvFD4+PtSqVStewCtg9LXfvKmDYRiGSUvaBUDt9sPLy0uKet407oiNjaXmzZuTEILq1KmTaXgew7wdsbGxdOjQIQoJCSGiN6dfXFycPLmrSZMm+RBDRtsm8fHxdPz4cercuTOVL19eR7jeqFEjGjVqFEVERLxRRKJcZyHW28Hi9fwhrYg9ICAgy/empKTQb7/9RkIIMjExIQsLC5o8ebK8ru3JLzk5mdasWSNtOHv27Fx9j48BpUxop6tCcnIyrVixgszMzMjExIQsLS1p6tSp8rq2h/C0tli2bFneR/4DQ7FFTExMtu7XHs8vXbqUN3fkgMzKRUbExMTQ5s2bycXFhYQQZG5uTv/73//kJlBGP2FhYXT79m29c1RZITY2lmbNmkWGhoZUqVIlOn/+fF5E86Plbe0RHR1N33//PRkaGpKzszPdvHkzj2LG6CPtuODMmTM0e/Zssre31xlzFC1alPr06UPHjx9Pt0GQyT1YvJ57ZKUuetM8yPr162UZ6N69Ow0cOJA+++wz+dnIkSPlnAqTMVlpr7Wv3b9/n4YNG0ampqYkhKDWrVvL65nNZTx+/FhuaO7atWsuxZ7RRikzSUlJ5O3tLb3qFypUiDw9PYlI/4Yo5dRaRhd9InYLCwvatm2b3vBcNrKOCgzDMAzDMFlACKHzGwBUKu5KvCuwLQoOJycneHl5oWrVqtBoNAUdHYZ5Z6hatSoOHjyI8uXLF3RUPmr0td/afzMMwzAMAKjVap3/lbbiypUr6NKlC6ZOnQog83FHcnIyzMzM0Lx5c6jVaty/fx/37t3TG5aI5LNevHgBPz8/REVFISoqCgCQkpKS43f6kEhJScGBAwfw+eefY+bMmQAyt0VSUhJMTU1Rq1YtqNVqPHr0CC9evHjj9xBRpv8z+lHyq2KT33//HcOHD0erVq2wd+9ehISEoHDhwqhRowYWLlyIf//9F8uXL0fJkiVhbGyc4XM9PT3RuXNneHl5Qa1W83gzE7Tzt0ajkbbYunUrlixZgosXLwIA+vXrh99++w0WFhZZfjaXi4ypUqUKzpw5g2LFiuHkyZMYOXIkfH19s3SvEAKjRo2Ch4cHxo4di+TkZPz6668YMGAAAMDIyAjJyckAUtuogQMH4o8//oCTkxMMDQ3z7J0+VJQyYWRklO6aWq3GyJEjcezYMXz11VdISkrCnDlz0L9/fwCAoaGhrH8UW6xatQqtWrVC8eLF8+8lPhAUW5ibmwPIep2i2EDpo+3cuRPBwcEwMzODgYEBVq5cidGjR+dBjD9cMisX+oiNjcXevXsxd+5c3Lp1C2ZmZpg0aRK++OILlC1bNi+j+t5TunRpVK9eHUIIpKSkyHzs6+uL8PDwN95vZmaGZs2aQQiBwMBAXLhw4Y338Hgi6yj28PLywsOHD98YvlChQmjWrBmSk5Nx+/Zt2c9i8gdl7H7ixAlMmzYN7du3x+zZsxEWFgYTExOYmppi2rRp+Oeff7B582a0aNECRYsWle2NvnaH+7fZIzk5GWfPnsXEiRNx8+ZNWFhYoG/fvhg9ejScnJwKOnrvHWnXLFJSUtLl24zmQZTr/fv3x9KlSyGEwN69e7F+/Xps2bIFADBjxgx89dVXKFeuHABkOL5OTEzM9PrHQNo1JX11hNKmA8DFixexZcsWJCQkoFGjRti6dSuEENBoNOnmG4HXafvo0SPZD7Czs8uTd/nYUcqMgYEBqlWrhvnz56Ndu3aIjY3FlClTEBoamq7s2djYwNbWtiCi+86jPTe3aNEifPPNN+jYsSM6d+6sE47LxttjUNARYBiGYRiGYZj3HQOD1G61vsEGw3zMKGWDYRiGYZj3k9u3b+Pu3buIjY3FsWPH0KpVqwzDKu2+v78/NBoNEhISMtw0JYRAfHw8vv/+e5w6dQo3btxA5cqV4eDggIULF6JKlSoZTuZ/rDx69AjPnz+Hh4cHTp06haZNm2YY1tDQEESEoKAgaDQaxMTEZEmUIIQAEaVbrExJSeFN02nQThOVSoWIiAjs2LEDBw4cwMGDB2Xa2djYoESJEvjxxx9RuXJlVK5cWT5DO63Tcu3aNXz77bc4deoUGjZsiPPnz8PZ2ZnLhR6WLVsGX19fjB49GtWrV5fpkxvidYDLxZuoUqUKzp49iyZNmuDEiRNYv3495syZ88ZNs0r6NWnSBC4uLnB2dsbo0aPxzz//wMzMDL///jsMDAxk2qvVagwZMgSNGzfWKUdMzlFsUb9+fTg5OaF69eoYMWIENm7ciMKFC+O3336DWq3WscUXX3yBtm3bokyZMgUd/feezMqKdt2jVquRkJCAHTt24NixY1i7di0MDAyQnJwMS0tLGBkZoXHjxvkV7Y8ObfG6l5cXzMzM8NVXX2HIkCEsXn9LlLZzz549GDVqFFavXp0lYU7jxo1Rq1YtXLhwAfv27cO4ceNknZTR9xARYmJiYGpqKscqmfW/PmY2bNiAgQMH4vDhwyhZsmSG4ZT0++STT+Dq6oqbN2/i5MmTGDZsWJb6RkSks5mZyRwlvZXfjx49QmhoKObNm4crV64gLCxMhq1SpQp69eqFzp07w93dXX6ujB/S9mVPnToFX19fjBgxIl1/l3mdbkSEpKSkdJudclO8zuVCP9rp8aa8qYipVSoVxowZAwcHB9y+fRuXL19GtWrV0LRpU7Rs2RIAdPq0Cn5+fnj06BH27NmDBw8e4JtvvoGbm1vevNh7SEbpr1Kp8OjRI0yePBnR0dGoXr065s2bBysrKxCR3jY6JSUFarUa8fHxGDt2LMLDw2Fra4uhQ4fm9Wt80Dx//hyWlpZvnC+yt7dHnz59cObMGfj7+8PLywtly5blNuAtUETsarUaP//8s/xbe76Oy8bbw2oChmEYhmEYhskhPKhjGIZhGIZhPkTc3NzQtGlTnD59Grt27YKrq6teb6vak/UREREAUkXUGXm0vHXrFqZOnYp9+/bJSfv79+/D398fV69ehYeHB6pWrcoLKP+PSqVCnTp1UK9ePXh6emLXrl1wdnZG0aJF04VVFm3v3r2LJ0+eAACsrKzSeSxOKzDx8PDA8ePHcfbsWRgYGKBw4cJo27atFCiycFoXJe2uX7+OGzduYNasWXj+/Dmio6OhUqmQkpKCTz/9FN26dUOrVq10bKXk68zE6+PGjcPFixdhZGSE2NhYNGnSBGfOnIGTkxPbQouzZ89i/PjxAFLrnDFjxsDR0RHbtm3Llnidy0X2qFy5Mk6cOIFZs2ZJQeGb0E5nKysr9O3bF69evcK4ceOwZs0auLq6YuTIkelOglTE67yBIPfQTkcLCwt8+umniI6OxsSJE7F27VrUrFkTX3zxRTpbKOJ1bqtzn7TtRFBQEAICAvDTTz8hICAAz58/B5AqnmvUqBH69OmD1q1bo2LFigUZ7Q+WjMTr7Hk9+8TExGDt2rUIDw/HkiVLULNmTdjY2GQYPjk5GUIIxMXFAUj1jqtsctJGKTu+vr44efIkdu3ahcePH6NSpUpo3Lgxxo4dy0JdPbx8+RIrVqwAAKxevRpubm6wtrbWG1YRiT59+lTWRa9evZLX0pK2vdbXB2Z76Ec7XV68eAFPT08sWLAAd+7c0TnprHXr1qhZsyamTJkCKyurdGmp9FW1n3fx4kUsWbIEu3btwrVr1/DHH39w2UiDWq3Gq1evsGjRIlSsWBFt27ZFoUKFAORcvM7lIm9QxuEqlQodOnRAhw4ddK4raZqUlIQnT57gxo0bOHnyJG7fvo1z584hISFBej/28fHB6dOnYWlpyXbIACWtjx49isePH8PExATdunWDs7MzAP1tgrJRIzExEdOnT8elS5egVqvRqFEjnc1sGY31uFzo5969ezh69Cg6dOiAkiVLZjpWNjAwQPv27VG8eHGEhIRgw4YN6NSpU4bpyrbQT9oN3tqi9LwsGx8yLGBnGIZhGIZhGIZhGIZhGIZh0lGjRg3069cPZ86cwYoVK1CxYkWMHDkSxsbGAF4fbapM0s+YMQMnT54EAAwcOFDnyFllAv/Zs2f49ttvcfDgQRQuXBh//vknihcvjsjISCxZsgQeHh4YM2YM/v33XxQrViyf3/jdpXbt2hg0aJAUGzg4OGD48OHSFklJSTA0NJQLS7/88gtu3LgBABg8eLCOcFdbdLtv3z4cPnwYv/32W7rvPHToEBwdHbF582ZUrVqVBaNavHr1Cl9//TV2796Nly9fIioqCkIIGBkZYcyYMahTpw569+4tw2unXWaLfGnF623atEFUVBROnjyJxo0bs4g9DY0aNcLIkSOxcuVKLFu2DCqVCqVLl8aOHTveWrzO5SJnVK9eHZs3b5ZpoYgKlRM3TE1NM71frVbjk08+QZMmTXDkyBGcO3cOI0eOzDC8dpp/7IvnWYWIEBsbK8VXGaFWq9GqVSu4u7vj3LlzuHjxIr744osMw3Pa5y7a+Tk0NBTHjh3DwoUL8fjxYzx79kyG++yzz1CrVi1MnDgx3b1p6yUuI9lHn3h90qRJ7Hk9h5iamqJz5864cOECbt26hZMnT6Jnz556+zZEBAMDA/j4+MDf3x8A5Bgjbb4WQuDChQsYO3YsfHx8kJCQAADw8vLC9u3bcefOHSxatIjLQxrMzc0xYMAA3LlzBxcvXsSZM2fQpUuXDAVrKpUKwcHBcuNyiRIlAKS3hxKWiODr64tz584hICAAL168QJMmTVC5cmXUrVuXhdNpSFuHL1q0CGfOnMGuXbvkZ5aWlqhRowY+++wzfPbZZ7Kfm5KSkqEwTvn8woULWLRokXze6tWrYWxsjGXLlrEt0vDDDz9gwYIFcHZ2RmJiIrp16wZTU1OcOXMGX331VbbE61wu8hYhRLqx8osXL5CcnIxTp07h9u3b8PDwwI0bNxAVFQUgtU0qU6aMPBmqU6dOAFI32TIZo9RTp06dQnx8PAoVKoR+/fplONbQ3kCwevVq7Nu3D/Hx8TAyMsKXX34p2xLl2U+fPoW3tzfu3r2LatWqoXTp0rC1teW5kDTEx8dj3bp1mD59OiZOnIhff/010/kJjUaDYsWKoWLFiggJCUFkZCSSk5MzPE2bbZEx2vVz2s3eQN6UjYzahQ9iXooYhmEYhmEYhmEYhmEYhmEYRouUlBT5948//khCCBJC0C+//ELBwcHpws+cOVOGqVChAu3cuVPvc4cOHUpCCLKxsaHr16/rXDty5AgVL16cHBwc6O7du7n5Ou812raYNWuWTOd58+aRr6+vTtiXL1/SuHHjZJhGjRrRxYsX5fXk5GT5908//UTVqlWTYcuUKUO1atWicePGUdu2balq1aokhCA7Ozv5Pdpx+dgZOHCgTDtnZ2caNmwYXb58WSeMdnq/iatXr1KjRo1IrVaTqakp9e/fn168eEGPHz+m1q1bkxCCrKys6NatW2/97A8R7fefMGGCtEWpUqXk3wMGDKCXL1++1bO4XOQOSpocOXKEZs2aRUREGo3mjffNmTOHhBBkaGhI165dy9F3M7r8/ffftHjxYiLKmi2+/fZbEkKQubk5+fv753X0PnqUfBsfH0/Pnz+nSZMmUZMmTWRdpNRv3bp1o507d+rYULsO087/N2/e1Ps5k8qbykFMTAxt3ryZXF1dZVn44YcfuI+aSzx58oS6d+9OQgiqW7euTn5VUPLtw4cPaejQoWRoaEgGBgY0d+5cIkpvQ09PTypXrhwJIahOnTo0YcIE+uOPP2j8+PGkUqnkWIZJz+PHj6lTp04khKB69erJ/ibRazso6R0SEkItWrQgIQQVLVqU/v33X53rCklJSXT//n3q2bMnVa5cWac+E0KQg4MDzZw5M933METh4eH01VdfUbt27XTSrGzZslSvXj06fvw4hYaG6tyTUfppf37+/Hnq1auXfF737t1l2RgzZswbn/Wx4e/vT0WLFiUhBLm5udH69etp//795ObmRkIIKly4MI0YMUKnvLwJLhe5i762PDY2lp48eULr1q2jH3/8kWrXrk329vY66VyrVi0aMGAA/fXXX3Tz5k16+vSp3udy+r+ZNm3ayPqEiCgxMTFdGCU9k5KSaO3atVSrVi1pi7/++ksn7LNnz2j37t1UoUIFMjU1JSEEFS9enNzc3Mjb21vneUzq2GHq1KkkhCB3d3e6dOnSG+8JCwsjR0dHEkJQ69atM0xPtkXOyM2yoS+dnz59mm6+6322BwvYGYZhGIZhGIZhGIZhGIZhmHRoT3xPmTJFTqK3aNGCvv/+e/rvv//op59+oh49eshrJiYmNGPGDL3P8/LyouLFi5OhoSEdPXpUfoeyKOjl5UUWFhYkhJDXmVS0bfH111/L9K5duzaNHTuWli9fTiNGjKDmzZvrbCT4/fff5X1JSUny79GjR+ss4H7++ed04MABio2NJaLURbDLly9Ty5YtSQhBzZs3p0ePHuXfC7/DpN3cMXLkSHry5AnFxcWlu55VFPG6gYEBmZqaUr9+/eQiekpKCgUFBcnFLxaxv0b7/cePH6+Tpzt16iTzc2Y20X4Gl4vc5erVqySEoEKFCtH9+/czDavYaNWqVSSEIFNTUzpz5ozesEp9GBERQRcuXKB58+bRpk2b6MSJE+mex6Ry+PBhuXksPDw807BK2v3000/SfpkJs7IimGP0k1ZgcPPmTRo3bpwUxik/1atXp27dupG3t3c6gZU22mm+Z88eqlGjBg0dOlTv9Y8d7br//PnzFB0dTUSv00ifeP1///tflsXrXC6yxt27d8nZ2ZmEENSsWTO6fPmybHOV8vHgwQOaOXMmlS1bVtZjd+7cSfesBw8eyL5Sx44d6cqVKzK9Y2Nj6X//+x8ZGBhQjx498u8F3zNCQkLkJr5mzZrRxYsXKSYmRifMnTt3aMiQIWRtbU1CCKpSpQo9ePAg3bPCw8Np9erV5OTkREIIKZKuVq0a1apVi0qVKkVqtZqEEDRx4sT8esX3hrt375KdnR0JIcjY2JgKFy5MgwYNomPHjqUTq2VWr6QVr/fu3Vu2LbNmzaLExERavXo1i9gzwdfXl4oXL05CCHJ0dJR1UXbE61wu8oa4uDh6+PAhbdq0iWbNmkUuLi6y/ChpXKtWLerZsydt3LiRLl++TK9evdJ5RtqNOsybSU5OJo1GQ/Xq1SMhRIbtq9LnevXqFf3+++9Up04dWQ/99NNPOmEfP35M8+fPp2LFipEQgipVqkT29vbk4OBAQggqWbIkb6zVw6lTp2R/6rvvvqPIyEi94RRbKM5DhBDUp08fvfU92yL75HbZUOZyExMTKTIykmbPnk29e/cma2trcnBwoGbNmtH06dMpJCRE57nvGyxgZxiGYRiGYRiGYRiGYRiGYfSiPfE9c+ZMsrKyIgMDA7mYri2wsrW1pWnTpsnwaRf/jhw5Ij3HhYWFEVHqQqHyHSdOnKBixYpR5cqVKSIiIh/e7v1C2xazZs0iGxsbucBtaGioYwt3d3davny5DK+9QDt48GC5mGtiYqJjM6LXiyMpKSl08OBBKlmyJJUuXVrHk/vHjr4FoeyKPK5evUouLi5kYGBAhoaG1K1bN3lN20OTtoi9ePHidOPGjWx934eGti3Gjh0ry8Dw4cPJz88vy/dyuch9PDw8qHz58mRiYkJz5syRokR9KLZYvHixbGP27duXLpzSrly5coWaNGkiF96FEGRpaUlTpkyRYVl49ZrDhw9T2bJlqVChQrRw4UKKj4/PMKyS1ydPnkyGhoZkbm6eoSc/7XY+JSWFfH19KSQkhIKCgighIUHnGvOatP2jnTt30jfffEMmJiZSaGViYkIlS5akb7/9lq5cuSLTMyvC6D179lDbtm1l2Rg9erTecAxRq1atqHr16rRx40aKiooiIqLo6GjatGlTtj2vc7l4OwICAqhkyZIkhCBXV1eaPHkyXbp0iS5dukTHjx+ndu3aydNVChcuTHv37iWi9N5xT506RUWLFqWyZcvSsWPH5HXl919//SXHKy9evMj/F31P8Pf3l/aoXr06jRgxgk6cOEH79u2jTZs2kZOTE1laWspNlcppKdp9quDgYPrqq6+oTJkyMlybNm1oy5YtspzdunWLFi9eLOu8RYsWFcTrvtPcunWLSpQoQdOmTZP5XuFtRbYXLlygnj17ynZhxowZsuwkJSVlKGJnMW8qvr6+UsSpUqnI1NSUvvjii7cSb3K5yF0uXrxI//77L02fPp3q1q2rcwqXEIIaNGhAPXr0oC1bttCJEyfS5WWlzuK2OOf8/PPPJETqySehoaEyTbXn+uLj42nGjBnk4uIibfT9999LobUSbuPGjfLUgy+++IJevnxJERERdOXKFWratCkJIWjw4MEUHx/PtkvDsmXLZNouW7ZMOlggSk1fJb2ePHkiN9GULFmSTp06RUTpN3GwLXJObpQNZWz+/PlzWrBgATVr1oyEEHIuWPuncuXK77VnfBawMwzDMAzDMAzDMAzDMAzDMBmiLUjYtm0bDR8+XIptlYnygQMH0rp16/Teo3Dx4kUyNTUle3t7un37ts61pKQkKc5t165dhh6DPna003X37t00ceJEMjc3JzMzMzI2NiZzc3P65ptv6MiRIzKctnh9xIgRcrGjdOnStHTpUnlN3wLH/fv3qXTp0tJLH/Ma7UW6nCzY+fr6Utu2bcnW1paEEFSvXj0pvNY+oYAoVcTeoUMHuYEkMjKSFwtJt1yMGzdO1kvjxo1LV9coaOd3Lhd5Q3R0NE2cOJGEEOTs7Exnz57VG07Jw/fv36fKlStLD28PHz7UG+7ChQtUqFAhEkJQuXLlqFatWlS3bl25iPvtt9/m7Yu9h0RGRsoTBlxdXTPceKHk9zt37sjNATVq1MhU8B4TE0PfffcddenShUxMTKhIkSJkZmZG3bt3pxUrVshwXFfp8vz5czp48CANHDiQjI2NZZ+qUKFCVKZMGVq5ciWdP39e556MhAhpxetKf0oIITeEsFfd9ISHh0shrqurK/37778UERFB27ZtkyKStxWvK3C5eDsCAgKk51AhBBkZGZGxsbGOOMfCwoLWr1+vs7mP6HUafvPNNySEoE8++URe0y4zf/75JwmRenqRtqiLSU9AQIDOSRCKHbTtYWVlRSdPniQiXWGcv78/DRkyhGxsbKQ4buHChVLoqy3eio2NpalTp5KBgQG1adOGNxboIe3mv+wI0jw8PKhr167pvLpqn86VnJycoYidScXHx0eKOUuUKEFz585Nt1EmI7hc5D4LFizQEW66uLhQ3759adOmTXTu3DkionRe1olS+19Er/P/++qp+F3iwIEDVKRIERJC0NKlS3VOiUhMTKQHDx5Qly5d5CYQZQz97Nkznefcu3dPjrFHjRqVro/022+/kRCCGjVqxP0nLbTrnx9++EEnjS9fviyvRUZG0tWrV2V/q1ChQvT555/rPSmNbZE75LRsKPVTREQEde7cWW4wFEJQzZo1adiwYbRkyRIaMWIE1axZk4QQVLp06XRty/sCC9gZhmEYhmEYhmEYhmEYhmGYTEm7KBsQEECnTp2i48ePk5eXV6ZhFXx9fal8+fJSYBgcHExPnz4lLy8vateunfQsrYh337fJ9vwibfqGhYXR7du36fbt2+kEVtrChGnTpkmvcfb29rRq1Sp5Le3CrZL2iYmJ8hhbFurmHZGRkbR9+3Zq2bIlCSHIzMyMTp8+TUTpy0FAQAA1a9aMVq9eXRBRfWfRzsMTJkyQC3tjxoyhe/fu6YTVTlMuF3lLWFgYNWjQgIQQ1KRJE/Lx8dHxmqv8HRERQV9++SWZm5uTEIJ69uxJ0dHR6Z7n5eUlxT/du3enc+fOUVxcHD148ICWLVtGKpWKbGxsMvQY/jFz7949eYx506ZN6fbt2zpthGKLu3fvUuvWrWVdNGXKFJ3NNMrvR48e0T///EP169fXERCZmprq/M9e8dOTnJxMrVu3Tuc5r2XLlrRw4cJ0dVZmwrjMxOtz5syhf//9V68gkW2Riq+vL1lbW8uNNmPGjJFeKc3Nzel///tflsTrXC5yTmhoKI0ePZpq1Kihk1bW1tZUtWpV8vDwyPT+WbNmkRCCOnXqRAkJCTrl5uLFi+To6EhCCJo+fXoev8mHQVhYGE2ePJlq1aqlYw8HBwf65JNPyMfHh4h08++dO3do2LBhskyVKlWK9u/fTzExMTJM2vz+33//yWdfuXIlf17uPSKn9UNiYiJt3LiRTExMpGDx559/1rmukJycTGvWrJFt0+zZs3P03R8iPj4+Umjo5uZGmzZtkt7TM4LLRd4xZ84cWrVqFV26dElnI43yW/vUk40bN9L48eOpUqVK1KlTJ5o8eXI6kSiTfWbMmCHz7NChQ2nBggX0999/05AhQ8jBwUGnHVmxYoXOGESx14oVK0gIQbVq1ZLXtcOtXbtWCnQfPnz4XnqYziu08/DXX3+t02b37NmThg8fTi1btpQnFZibm1OjRo3owoULep/Htsg9sls2lDS9f/++jnd2IQT99ttv0tM6Uar9vby8pHf2rl27vpebn1jAzjAMwzAMwzAMwzAMwzAMw2SZzBbS37TIvmrVKjnp7urqSlWrVpWT9tbW1lK0q70AkvYo26x8z8dCVtNh06ZNZG9vLz0mLl++XF7LbLFp//790ivs77//nuP4MunR9twXHBxMPXv2JCEEFStWjK5evar3nswEDx8z2gu3Y8eOJSEEdejQQXqgSguXi/whKCiIypYtS0IIatiwIW3ZskXH01tgYCD16dOH7OzspNDz2rVrOs9QPFJ+8cUXJETqSR0RERE6Ye7evUuVKlUiIQTt2rUrX97tfSMoKIjKlClDQgiqX78+/f3331KcGxkZSdevX6d69erJjQTlypXTESkq9U1wcDCNGTNGbkozMzOjSpUq0bRp0+iff/6hP/74g4YPHy6F09OmTSuwd35XuXXrljxJ4LPPPqNly5bpXM+KECQz8frcuXPltT/++INF7JmgLWIvXLiwzNMzZ86kkJCQN97P5SL3iIuLo4cPH9LKlStp4cKFNGvWLDp27Bg9evSIiPTnWeWzdevWkUqlonLlytHp06dlX+nUqVNyU84nn3xCgYGBRJQ9T9YfG69evaKoqCjavHkzrV+/nn7//Xfy8fGRoijtfteTJ09o6tSpVKJECSlqO3PmTIbPVux2+/ZtsrCwICEEHTx4ME/f52Pm6NGj9PXXX8vNNP369ZPX0npiX7FiBTk7O9Off/6Z7sQDRrfNqFGjBm3YsCHDUx24XOQNGQnOtT/P6IQu7U1lTk5O9OTJEyLiNiG7aKfbd999R0K8Pv0n7Wa0Jk2a0N69ezN81uTJk0kIQe3bt0/37Pj4ePrqq69ICEGDBw/Ouxd6j9HO83PnzqUKFSpkaIuuXbvKkwr0wbbIOTkpG4otw8LCqFy5ciSEIENDQypfvjydOHFC53uUNjwlJYU2btxI5ubmVLly5XQbot8HWMDOMAzDMAzDMAzDMAzDMAzD5CnagpMVK1aQra0tmZmZkRCCbGxsqF69enT79m0iej3Rr29h8uXLl1LEwouMWeP58+f02WefyQUSbY/RGaWh4hn5u+++IyMjIzI2NqbDhw/nV5Q/KN5WIOjt7S09J3366af09OnTPIrZh4l2vfHnn3/Snj179IbjcpG/+Pn5SRG7tbU1lS9fnj777DNq166dzpHZxsbGtH//fiJKb4fo6GhycXEhQ0NDWr9+fbrNTRqNRnrG3717d/6+4HuEn5+fXAi3tLQkOzs7at++Pbm7u0vxrnJN8WSv0WhkOvv5+VG3bt2k3aysrGjOnDnpPIRGR0fT0qVLpVf848eP5/u7vuv4+fnR0aNHdTyEZqdvs3v3bvrkk0+k7X755Red5yUnJ9Pq1atZxJ4JPj4+VLRoURJCkImJCXXr1k32S4kyTiflcy4Xec+bykZ0dDQ1bNiQhBBUvnx5atu2LQ0dOpSMjY1JCEG1a9em7du3ZyqCZ7KOkmZKv2v79u1yU3KpUqXe6DFfuW/16tVkaGhI5ubmfHpKHqBdbl68eEHr1q2Twujhw4frDafRaOjOnTsUGxubr3F9n/D19aXixYuTEIJ69eqV7tQgLhf5S9o6XPv/ESNGkBCCjIyM6IcffqADBw7Q3bt3qV+/fnKzM+f1nKE9/lY8SxcrVoyKFi1K1atXp5YtW9LOnTspKChIhtPX7q5evZqMjIyoefPm9PDhQ53n79y5U2781D4xjdFF2xbHjx+nn3/+mRwcHMjOzo4cHR2pbt26tGnTJrZFPpGdsqFsHAsPD6dq1arJTbF169YlT09PIsq433rz5k154srmzZvz8M3yBhawMwzDMAzDMAzDMAzDMAzDMHmO9sL4lStX6PDhw7R8+XK6ePGi9HxFpDsZn5iYSNeuXaM1a9bQqFGjqFq1amRra0teXl75Gvf3mR07dugcWauQkRBI+fzcuXPSC2+rVq3yJa4fGtpp7OfnRxqN5o0iqYSEBJo+fboUYPn6+uZ1ND849G1+SZvuXC7yn+DgYGrfvr30tK79Y2JiQkWLFqVjx45leP/ly5elyF3xGKddpo4cOSKf9yaB0MfOnTt3qFu3bnJTQVovcG5ublJ4m5ycLPO/v78/tWnTRgrdra2t6dChQzqeR7U9uYaEhJCrqysJIWjx4sX5+5LvIdkR0V67do0aN24s7detWzd5LT4+Xv6tiNjVajV7TMwAb29vKWKvVq0abd26VefEk7Qo9uJyUfAo7f6LFy+oYcOGcrOG8tO7d286cOCADJf2t4K2nVjU/maUNIqOjiY3Nze5Mfm///7L9D7tvlaXLl1ICEFFihTROZ2FyRuSkpJo9erVZGpqSgYGBvTbb78VdJTeW3x8fKhJkybk7e2t8zmXi3eHBQsWSPH6pk2bdDYMEhE5OztTmTJl6M6dOwUUww+HtO3pgwcP6M6dO/TixYtMNxhoc/z4cekdf9KkSXTy5Ek6fvw4zZ49W268GTJkSJ69w4dC2vmMFy9e0OPHj+nZs2c6/ZzMYFvkHm9TNpSwT58+pVatWsn6q379+vKEusw2YgYGBpKNjQ0JIWjLli158Tp5CgvYGYZhGIZhGIZhGIZhGIZhmHxBWUzRN+muCK08PT1p48aN1L9/f3J2dtY5ZrVIkSJUtWpVmj59Oh9p/gY0Gg0lJCRQx44dSQhBrq6udPPmTXkto3uIiAICAqh06dIkhCAHBwfavn07EVG6NE9rR/aKr581a9bQiBEj5P9vEkV5e3uTpaUlCSFo9uzZesO8aSGYbaGfvCgXnNZZ5/Hjx7Rnzx7q27cv1ahRgypUqEAtW7akWbNmkY+PDxFlXD4ePXpEzs7OZG5uTuvXr9dJ9wsXLlDVqlVJCEHDhg3Ll3d533n69CmdOHGChg4dSi1atKD69etTjx49aOPGjVLIo71BICQkhHr37i3rpuLFi9ONGzfe+D09evQgIQT16dNH7+YSJuf8+eef1L59ezIzMyMzMzMdD+vaQpXk5GRas2aN9BAeGBhYENF9p/Hx8SFra2sSQlCNGjVow4YNmYrYuVy8Oyh5PSoqitavX0+TJ0+mGTNm0N9//02xsbGZti0eHh40Y8YM6t69O40cOTI/o/1BMG7cOBJCUOHChWn69On0/PnzDMNq2+GXX34hIQQZGhrSlClT0l1nss6rV68oKioqS2FDQ0OpTZs2sg5iso8yNtZXj3O5KFieP39On3zyCanVapo5c6ZOfyg+Pp6Sk5OpQYMGJITgE7VyiczyaVbHy8uXL9c5DcrAwEDOBw4YMECG0y5z+sofj88zhm2R/7xN2YiLi6Pvv/+erKysSAhB1atXp8uXL7/xOUREs2fPlu1O2lOg3gcMwDAMwzAMwzAMwzAMwzAMwzB5SEpKClQqFVQqFQBACAEASE5Oxvnz5/HkyRNs374doaGhuHjxoryvVKlScHd3xyeffAI3Nze4ubnBwcEBRCSfwehHpVIhOTkZfn5+AIDy5cujatWq8lpaFBuFhITgyy+/xIMHD2BkZIT69eujcePGAABDQ0MAwOPHj3HlyhUcP34c8fHxcHV1RevWreHg4ACNRgO1Wp1Pb/nuExgYiFWrVuHy5cuoVq0axo4dm2HeVfK1gYEBTExMEBUVhVevXmUYDmBbvC15US6U+zi930zx4sXRqVMndOrUCVFRUUhOTkbRokVlns6sbreysoKTkxNu376Nn3/+GQBQsmRJPHnyBJMnT8bDhw/xySefYNy4cQBe247RT7FixdC8eXM0b94ciYmJSElJgYmJibxORDL9Xrx4gVWrVsHDwwNRUVGwtrbG6dOnUaVKlUzTOTo6GoGBgfJ5XD7yhqFDh6JVq1bYu3cvvv/+e/z22294+fIlNmzYAAMDA1k3qdVqDBw4EEWKFEHRokVRrly5go76O0fVqlVx5swZNG7cGDdv3sSSJUtQqlQpNGvWLF3dxOXi3ULJ6xYWFujfv7/eMLGxsRBC4OzZs/Dy8sLJkydx9epVPH78GABkO9S8eXP06tUrP6P/3hIbGwtvb28AgL29Pbp06YIiRYroDavdxh88eBDbt28HAJiamqJhw4YAUm2QWX+Kx4DpSU5OxpkzZxAREYF+/fq9MY3s7e3RpEkTHDlyBFu3bsW3334LV1dXvWHZFpljYJAqt0ubRnlRLpi3IywsDKdPn4ZarUbDhg2lrZKTk2FiYoLIyEi8ePECdnZ2qFy5cgHH9sMgs3z6pjGZ0m8aPXo0zMzM8McffyAkJASvXr1C8+bN0axZM3z99dcAgISEBJiYmMh7lPL3/PlzeHl5oVSpUnB0dOSxYAawLfKfrJQNJY1CQ0Nx7NgxREZGwtDQECtXrkStWrUybHOV+yIjI3Hp0iUAgLm5OSwtLfPmZfIQFrAzDMMwDMMwDMMwDMMwDMMwuYoyia5MsiuT8klJSbhy5Qru3LmDHTt24MGDB3KSHQDs7OxQs2ZNdO/eHeXLl0fTpk1hZWUFU1PTdM9nwc+biY2NRUxMDAwNDdG9e3cYGhoiOTlZLuAqaIt0x4wZI21Svnx5TJ8+HTY2NjLsoUOHsG7dOmzdulV+plKpYG9vj71796J69eof/QKVNkWKFIGzszMuX76MI0eOoHXr1hkukisLUtevX5diqrQLT9oLV2yL7JGb5SIlJQVCCAghZJ3k5+eHx48fIyUlBU5OTjAzM4OZmRnb4v9R8rCFhUW6zzLb3GFkZIQVK1bA398f169fx/Dhw5GQkCDDdOzYEZMmTUq3ISGjxV4WXr1OA0NDQ5kW2rZQhGtXr17Fzp078eTJExQtWhQHDx5ElSpVMhS2KZ8/ePBAbsIpX768zvOZ3EFJz3LlymHkyJGwtrbGsGHDsHHjRpQrVw4//vijjo3UajW6detWgDF+96lSpQrOnDmDFi1aICEhAQ4ODjp5lsvFu4m+sUF8fDySkpJw/Phx3L9/H3v27EFoaCiCgoJkmKpVq6JBgwZo1qwZ6tWrh3Llyun0e5nM8fT0xIkTJwAAX375Jdzc3PSG087jly9fxvr16+Hp6QkAGD16NLp06SLDKXY8duwYQkNDUahQIZQsWRJNmzZ942a3j5Hbt2+jZ8+eiI+PR6NGjTLdnKTUQxUqVJBp+fLlywzDsy0yJ6N3z+1yoY32eOJjT//MUOoSExMTOeYgIjneGzZsGPz8/FCzZk0ULly4IKPKIHXcpuTtwYMHo02bNkhKSkJ0dDTs7e11bKRsuH369CmCg4Nx4cIFnDp1Cr6+vggKCoKBgQG8vb3h6OhYUK/zXsO2KBiUen3lypW4fPkyAGDNmjVo3LhxpvMZyn2//fYb9uzZAwAYOXIkKlasqBPufWgrWMDOMAzDMAzDMAzDMAzDMAzD5AppBevPnj1DeHg4rl69ihMnTsDb2xs3btyQ4e3s7FCjRg10794d5cqVQ8eOHWFkZAQzMzOd56YVfrJ4PWukpKQgLi4OSUlJCAsLA4AMRbpBQUEYPnw4PD09kZCQAGtra2zZsgWVKlWSYfft24dZs2bh6tWrKFSoELp06YK4uDiEhobi2rVr6NixI06cOAEHB4d8fc93GWtra3Tt2hWHDh3C/v37Ua9ePXz11VfpNmUoRERE4Pjx41Cr1dBoNLCzs9O5riw8sS2yT26VC41GI4W+d+7cwYkTJ7B+/Xr4+Pjg+fPnAFKFkLVr18a0adPg6OjIXtrxOg9rL6K+SdiviKmtrKxw4sQJjB07Fn5+frh58yYqV66Mjh07YsKECShevHi6xVltIfbp06cRGxuLdu3avReLuHmNPlto/63k1Z9//hkBAQEoXLgwVq1aBXd39ww3kml/vnjxYgQEBEAIgU8++STd85mso2+TDaCbngYGBujYsSPGjRuH+fPnY/fu3ejatSvc3d3zM6ofBFWqVIGnpydevXqFcuXK6Qg/uFy8G6RtT5WNszExMThx4gRCQkKwbds2PHnyREewXr16dbRv3x7dunVDxYoVUaNGDb1eKnnTWdZITEyEoaEhTE1NUbNmTQDp0067/Ny8eROrVq2Smy/79u2LmTNn6jwzMDAQ48ePx/Hjx5GUlAQgdUPnsGHDMG/ePBZOpyEhIQFWVlaIjY3Fxo0bMXHixHRj6bT4+/sDSK3PMts8GBQUxLbIBrlZLtK2/0o9l5ycjFevXqFEiRJ6n/mxY2FhAQcHB/j4+ODEiRNwdHREoUKFkJiYiGHDhmHbtm0oWrQoVqxYgSJFinDavQMoJ6UZGBigRIkS6fpTwcHBiImJwf79++Ht7Q0PDw9EREQASO1HlSxZEl27dkXFihXx8OFDFk3nALZF/kNEePLkCU6dOgUA6NSpE1q3bg1A/zhBu85at24dpk2bBgBo2LAhOnToAOB1X1kJl5iYCAMDAzmH9a71dVnAzjAMwzAMwzAMwzAMwzAMw+QKQgjExsbip59+wuPHj+Hp6Yng4GDpabJYsWJo1KgRmjdvjqpVq6JZs2YwNjZOd6Q2Eel4k3mXJtXfJ0qWLImePXti7dq1CAwMxMuXL2FpaZlOOHr9+nX06dMHwcHBSElJgZWVFQ4dOgQXFxe56BEQEIA//vgDV69eRevWrTFq1Ch06tQJycnJCAwMxIABA3D16lXs3bsX48aN40VgvF5U6tixIyZOnIgpU6bgf//7H6ysrNCvX790gqmnT59i+/bt2LhxIzQaDZo2bYpPP/003XPZFjkjN8qFthjx7NmzmDhxIu7du4cnT55IT2RmZmbw8/ODn58fTpw4gcOHD6NatWrv3ELh+4KyqcPS0hJr1qyBRqPB48ePYW5ujmLFiqULHx0djZs3byIkJAQ7d+5EaGgorl+/DgAYPHgw1qxZk9+v8F6h1Bt//fUXTp48CWNjY3z55Zdo0aIFAP3tsna7vXLlSvz9998QQqBr165wdnaWz+Qy8HbExMTg1q1bcHd3h5GRUaZhLSws0Lx5c/z666+4ffs2rly5kqmAnW2RMWXKlAGgKxDJy3LBvB1KG3z//n34+Pjg5s2bOHz4MO7cuYO7d+/KcE5OTmjVqhU+/fRTlC5dGi1bttQr2k1bFrhcZI3IyEgkJSXB1NQURYsWBaCbdtrpevHiRaxatQrr1q0DkHpyypQpU2BoaCjHGxcuXMDEiRNx+fJlFC1aFA4ODtBoNLh58yYWLFgAIQTmzp3LZUYLJycn9OjRAwsXLsTWrVvRtGlTNGrUKF047U0fp0+flh6qS5curRNOsRnbIvvkZrlQxOspKSnYtm0b9u3bh3PnziEpKQlRUVHo0aMHGjVqhCFDhvCGAi3Kly+PTz/9FNOnT8f3338PDw8PaDQaPH/+HNevX0eRIkWwePFi1KlTh9OsAEk7NlDyu1qtRmhoKJ4+fYpdu3YhLCwMhw4dQlRUFBISEqBSqVCsWDH06dMH1apVQ7NmzeDo6KizoYN5O9gWBYsQAg8fPoSXlxcAoG7duhmeCKRdZ23btg3/+9//AACFCxdGx44d5cYptVqNxMRE+Pr6YtOmTbh16xaSk5Ph7u6OIUOGvHsOFohhGIZhGIZhGIZhGIZhGIZhcpGRI0eSEIKMjY2pZcuWNGnSJNqzZw89ePCA4uLi0oVPTk6mx48f0+XLl+np06cUHx8vP2dyxt9//01CCBJC0JIlSygsLExeu3z5Mi1btowsLCxkmPLly9ONGzeIiEij0VBKSgoREa1bt45UKhWVK1eODh06JJ+RmJhIRET9+vUjIQSNGDEiH9/u3Uej0ci/v/vuO5nOX331Fe3du5c0Gg1pNBo6duwYffvtt2Rubk5CCKpevTrt3r073TOI2Ba5QU7LBVFqev/zzz+kUqlkuOLFi9OsWbPov//+oxs3btCKFSuoSZMmJIQgR0dHCg4OLpD3/ZBISkoiIpJ1k8KjR4/owoULtHz5curRowc5OTlJuyg2bNWqFS1evJj++OOPgoj6e8mkSZNke378+PEMw2nbY+/evVSnTh0SQpCBgQH9+eefeu9JTEykhw8f6tRxae36sRMfH0+rVq2iKlWq0OHDh7N0T1xcHNWqVYuEEDRo0KAspSnb4u3Iy3LBZM69e/doy5YtNHPmTGrTpg2VKlVKp66vWrUqde3alf788086fPgwxcfH6x17KG0JkzNCQ0OpcuXKZGBgQKtWrZJjt5SUFJ1x3LZt26hbt27STm3btqXTp0/r1DnPnj2j+vXrkxCCnJ2dycfHh2JiYujBgwe0ZMkSUqvVZG1tTWfOnMn393zXCQsLowYNGpAQgpo0aUK3b9+WaZt2PD1ixAgSQpCRkRGNHDmSiF7XVco9bIuckZvlgoho586dNGjQIJ26zsTEhIQQchzy9ddfy/Afe/utnX7ffPMNqdVqUqvVMu3s7Ozo4MGD9OrVqwKM5cdJ2rpGm8ePH9OlS5doxowZ1LdvXypcuLDM5yYmJmRhYUGff/45/e9//6Nr167RgwcP0j1Dea6+5zO6sC3ePa5fv06mpqZUrFgxunz5MhGl769qp+f27dupSpUqZGBgQEIIGjhwoE7Y2NhY+vXXX8nd3V2n/RBCUKlSpej27dtE9O60GeyBnWEYhmEYhmEYhmEYhmEYhskV6P89waxYsQK9evWCnZ0dKleurBNGo9Ho/B8REYHRo0fD19cX/v7+qFSpEpycnPD777/D2tr63fII8x6h2GLQoEEICAjA3LlzMWHCBPz3338oWbIkhBA4f/48njx5glevXsHW1hY1a9bEggULUKVKFR3PcAkJCdiwYQOICL169UKbNm0ApNrS0NAQwGuvcikpKezRVQuVSiXz8Jw5cwAAc+fOxaJFi7Bo0SJUq1YNAKSX76SkJFSpUgXDhg1D06ZN5TMU2BY5I7fKRVRUFNatW4cJEyaAiGBjY4NatWph2bJlcHBwkN/n7OyMZs2aYfDgwbh06RKWLl2K+fPnw8DAgO2SBUiPR0TFG9yDBw8QGRmJgwcPwsvLC6dPn8a9e/dkOGtra7Rs2RKtWrVC9erV0bx5cwghYGZmlunzmVQ0Gg0SExNx4MABAEC3bt2kl+m0aKfjiRMn8Pvvv+Py5csAgBEjRmDo0KE6z3306BGmT58Ob29v3Lp1C02bNkWTJk3w9ddfs/fQNLx69QqnTp2Cv78/Vq9ejVq1aklvrhkRGRmJiIgI+XdGacm2eHvyolxktZ1mW6RiaGiIUaNG4cWLFzA0NETx4sXRq1cvNGjQALVq1UKtWrWgUqlkn0ghOjoaQggIIWBubg4DAwPuI+UCRYoUgZubGwICAvDPP/+gbt26qFy5MkxMTOSJWtOmTcOePXvg7e0NAOjSpQu+/vpr1KlTRyf9J0yYgIsXL6JcuXI4ePAgSpUqBQAwNzdH9+7dsXbtWty8eRNPnjwpkHd9lyldujTWr1+PFi1a4MyZMxg+fDjGjRuHJk2aoGTJkkhISEBsbCymTJmCtWvXQggBW1tbtG7dGgBk3aLYg22RM3KzXMyYMQM7d+7ErVu3AACOjo6oUqUK2rVrh+fPn8PPzw8bN27EggULoFKp8PPPP3/0bYX2+Hvu3LmoV68ewsLCEBISAldXV7Rs2TLdyQNM/qDkTY1Gg+joaFy5cgVXrlzB5cuXceHCBdl/NTAwQNGiRdGhQweUL18eXbt2RdGiRVG+fHmd5yl9I+U3n+CYddgW7x5GRkZ49eoVEhIS4O/vj1q1asm5DwUlPTdu3Ihp06bhwYMH0Gg06NSpE9auXSvDvXr1CsuWLcOiRYsQGRkJZ2dnfPHFFwgNDcWlS5dw7tw59OjRA8eOHXtn6kMWsDMMwzAMwzAMwzAMwzAMwzC5ghBCLhY2b94cQPqjaBUxekpKCjw8PDBx4kTcunUL1tbWcHR0RHJyMnbs2AE/Pz+cOnUKxYoVY9FONtC2xZw5c2BkZITFixfj3LlzSElJ0Qlbr149fPbZZ+jRowfs7OzSCXpUKhXi4uIAAFZWVgCApKQkKQ7y8PCAh4cHVCoVOnTowItUaVCr1Tq2sLW1xebNm+Hp6QkfHx+dsPXq1cPo0aPRoUMHWFpapnsW2yJn5KRcKPe9evUKf/31FyZNmgQiQqVKldCjRw9MnDhRZ9MNEUGlUsHR0RFNmzbFpUuXcPnyZRgaGnJ99gaUOkg7nUJDQxEZGYk9e/bg7t27OHToEJ4/f46EhAQAQLFixdClSxe4uLigcePGqF69OkqUKKFTBtJuoGI7ZIxKpYKxsbFcNC9WrBgAIDk5WWchXbu9OHbsGFauXCnFvb1798bixYtl2Pj4eBw6dAjz58+Hp6cnDA0NkZSUhMOHD+PAgQOIiIjAokWL2C5amJmZoUGDBjh8+DA8PT1x+vRpdO7cWW/drtji9u3bICIAQIkSJfT2odgW2SO3y0ViYiKMjIzkfZcuXcKdO3dw9uxZGBkZwc3NDZUqVULdunV5Q8H/U7JkSZw5cwb79u1Ds2bN4ODggOLFi+uESUxMlH+fOXMGp0+fxn///QeNRoMKFSqge/fu6NevH1QqFYvYc4iFhQXmzJmDixcv4uzZsxgyZAjc3NxQr149XLhwAUFBQThz5owMP2TIEEyZMgWVKlXSyctRUVG4ffs2zMzMsGLFCpQqVUqnXJmamiI5ORlEhOfPn+f7e74PVKhQAUeOHEHr1q1x/vx5+Pv7w9raGo0bN0ZgYCBevHgBLy8vqFQqmJubY/LkyejatWu657Atck5ulYtRo0Zh8+bNiIyMBJC6+enTTz+Vm5wB4OXLl6hXrx7Gjh2L5cuXo379+ujcuXP+vew7ivb4W18+57q/4Lhx4wb69euHmJgYnc3HdnZ26NatG2rWrInWrVvD2toaDg4OGfZ9tG34sfeNsgvb4t2BiFC2bFm0a9cOBw4cwLVr19C1a1eYm5vrhBFCYOHChfjmm2+QkpICIkL79u2xe/duAKnCdWNjY5w9exYbNmxATEwMRo4cieHDh6Ny5cpITk6Gj48PPv30U4SEhODKlSssYGcYhmEYhmEYhmEYhmEYhmE+PNJ6S0/r0U1ZSPTx8cH48ePh7e0NNzc3bNq0CSVLloSlpSUGDhyIDRs2YNq0aVi6dGk6L4pM1tBeuJ0xYwZq164Nb29v7Nu3D0IIuLu7w8HBAcOHD5eiWkV0q42hoSFcXV1x4cIF+Pv748WLFyhSpAgA4Pz581i1ahXCwsKkp2MmPdq2GDt2LFq1aoWbN29i+/btePnyJSpWrIgyZcpgwoQJMDMzy3Dhj22Rc7JTLjQajbTJxo0bpXi9evXqGDx4MIYOHYrChQsjJSVF1oFKeAMDA3kSxdWrVxEYGAhHR0de3M0EjUaDmJgY3LlzB/v370dQUBD27t2LxMRExMTEQK1WQ61Wo3PnztITnK2tLcqUKaNXsK4s9vJpHllH8VRcoUIF3L59GxEREelEutonpOzYsQN//vknDh8+DADo3Lkz5s+fD7VaLe87c+YMpk+fjtu3b6NKlSqYPXs2oqOjERoaihkzZmDJkiWoXLkyRowYUSDv/C5iaGiI3r174/Dhw9i3bx/mzZuHihUrwsnJSYZRvLkqeX/NmjXSa2L79u116hpFYMK2yB65WS6SkpKkeP3EiRM4evQo5s+fD1NTU7lRDQDKli2LQYMGYfr06Sxi/3+qVasmT7ABXudrZeOGkq6Kd8p79+6BiFCkSBHcunULu3btwsOHDzF58mQWMOYCDg4OOHz4MLp27Yrr16/j+vXrWLdunWyDjYyMUK5cOQwcOBDfffdduvuJCPfu3cONGzcAQI77DAwMZPm6c+cOnj17huLFi+vUf4wulStXxsmTJzF27Fhcv34d/v7+CAgI0CkblStXxqhRozB8+HAAusJDtkXukdNyMWTIEKxbt07abv78+Zg8ebK8rmyAsrKyQrdu3bBjxw54eHjg5s2bLGD/fzLr93PdX3DUqFED9evXx8GDB9GqVSu0adMGbm5ucHZ2TrchDUjte/n4+CAsLAyhoaGoVq0aXF1dYWFhka4PxrwdbIt3B+WEIEXAvmjRItjZ2aF9+/aoVKkS4uPjsXv3bhw/flx6Wjc0NESPHj2wadMmAKkbao2NjQEAmzdvho+PD1q0aIFRo0ahYsWKcrzo4uICOzs7+Pv7IyQkpKBeOT3EMAzDMAzDMAzDMAzDMAzDMPlIYmIiNWjQgIQQVKdOHXr27BkRESUkJBAR0ZMnT6hIkSLUtGlT0mg0BRnVD4K0aZiUlETJycmZhknL1q1bSQhBQggaOHAg/frrrzRlyhRyc3MjIQRVqFCBdu3aletx/9BISUnJcRi2Re7wNuVCscnRo0dl2letWpUWL15M0dHROmH03b906VIyNDQkS0tLunPnTpbywcdKXFwcjRkzhgwMDMjQ0JCEEGRoaEhWVlbUvXt3mjRpEp0/f54CAgLe+CxuP7KPkkcXLlxIhoaGVLVqVbp+/bresPPnz6fq1avLstGtWzfy9fXVCZOQkEDNmzcnIQS1bt2aQkJC5LXo6GgaN26crNOY9ISEhMg0btq0KV24cIFiYmJ0wiQlJdHQoUNJCEEqlYq6du1K9+7dS/cstkX2ya1yod3W/PTTT+Tu7i7DWVhYUPny5alBgwZUvnx5UqlUJISgSZMm5fn7fUhs3ryZTE1NSQhBvXr1on/++YceP35M27dvJysrKxJCcF8pl7l37x7NmjWLmjdvTvb29lS1alWqU6cO/fnnn3T+/HkZTl/bHBUVRW5ublSoUCHavHmzTpgnT55QzZo1ZZ0VHx+fL+/zPqPk9d69e1ONGjWoUqVK5OrqSosXL6YzZ87IcGyLvCer5SIxMVH+PXbsWNkHNjExoVWrVr3xewYPHkxCCGrYsKGcU2GYdw3t/k94eLjOmFj5OykpSX52//59WrFiBZmbm5NarSYhBBUqVIiaNWtGjx8/TvdMJuuwLd4ttNP/22+/leMCR0dHatCgAVWpUoUKFy4sP69Rowb973//k/do2+rhw4fk4OBAKpWK9u7dK5+vtOfx8fHk5OREQghavnx5Pr3hm2EBO8MwDMMwDMMwDMMwDMMwDJOv7Nu3jwwMDKhUqVIUFBRERLoT7levXiW1Wk0lSpSgBw8esAjxHWHZsmVywUT5MTY2poYNG9J///0nw2k0GrkAo28Rixe2XpNdITPbIv/x9vYmBwcHEkJQmTJlaNasWRQVFUVEmdvx6dOnVKNGDRJCUL169Vi8ngW8vb3J3t6eOnXqRFOnTqWzZ8+Sv7+/ThjtvOvr60tHjhyhb7/9lv755583irOYrHP//n2Zfxs3bky7du2i0NBQCg8Ppx07dtCnn36qUw99/vnndP/+fXm/kt8XLFhAQggqWbIkBQYGEpFuu79w4UISQpCLiwvFxMSw3fTg7+9PdnZ2JISg6tWr09ChQ2nPnj105MgRWrBgAbVv316K16tWrUqbN2/W+xy2Rc7JSbnQTs+hQ4eSkZGRDPfZZ5/RX3/9Rc+ePaOkpCTy9vamhQsXShH7okWLCuiN3y+uXbsmhTkjR46UYw2FP/74g4QQNGPGjAKK4YeLIpAKDQ2lyMhI2U9SyKg+efXqFX322Wdyg+C6devo4MGDtGHDBnJxcZGfh4eHZ/ocJj3Pnz+nFy9eUGRkpM7nbIv8403lQrtPO3/+fLKxsZEbONesWSOvZZbWvXv3lmMNFrAz7zJp83FG+To4OJjGjx8v+0AdO3akIUOGUMOGDaWA98WLF/kQ4w8XtsW7RdoNrmXLlpVpLoQgMzMzEkLQ+PHj6dChQ3rvI0rdxFaiRAkSQtCGDRuI6LVt4+Li6I8//iAzMzOqWLEi3b17Nx/eLGuw/36GYRiGYRiGYRiGYRiGYRgmXwkKCoJGo4GtrS1sbGwAQB43q9Fo4OnpCSJCs2bNYGdnV5BRZfD6aPkxY8agRIkSOHbsGHx8fGBgYIB+/frBzc0NNWvWBAAkJSXJ4+YB4NWrV3j+/DkuXbqEa9euoVu3bnB3dy+oV3nnEEK8VXi2Rf6TkpICjUaDrVu34tmzZwCARo0aYfTo0bCwsAARZWjH5ORk7N+/H0+ePAEAuLm5QaPRQKVS8dH1mVCtWjXcvHkTVlZW6a6lpKSAiKBWqwEA27Ztw48//oigoCAkJCQAAMzMzDBr1ix89dVXUKlUmdqIyZxSpUrh33//RYsWLXD27Fl4eXnJ/JucnIyoqCgIIWBtbY1BgwZh3rx5Ovcr6R4eHg4A6N27NypWrAiNRgMDAwMQETQaDcLCwgAATk5OMDc3z9+XfE+oVKkSPDw80KtXL3h5ecHHxwdr1qyBWq2GgYEBXr16BSEEnJ2dMWbMGPTp0wcA0uV/tkXOyW650Gg0su7q06cP/v33XwghIITA9OnT8b///Q/A63JTrVo1lCtXDo8fP8b8+fNx4MABDB48GJaWlgXz4u84Sl6/efMm/P394eLigmHDhqFChQoAgISEBJiYmMh8fe3aNW4f8gCVSgV7e/sMr6WFiGBkZIQVK1bAz88PN27cwIgRI5CQkABjY2O8evUK1apVw7Zt22Bra6tTjpS/lf6x9jM/drsqaVCkSBG919kW+UtWysWpU6ewc+dOOW5YunQphgwZAgDp0lUbX19f+Pn5QaVSwdXVFcbGxnnwBgyTO6TNx2n/V+qMzZs3Y9myZShUqBCmTZuGKVOmyDCffvoptm3bhjVr1mDSpElcz2QTtsW7hVqtlm3p1KlT0aJFCwQFBcHT0xNJSUlo3LgxypUrh0aNGsl7UlJSZDusYG5ujtq1a2P//v24cuUK2rZtC2tra8THx2P79u1Yvnw54uPj0aZNGxQtWjS/XzNDWMDOMAzDMAzDMAzDMAzDMAzD5CvFihUDkLpAEhcXBwsLCwCpCyTnz5/Hzz//DCJC3bp1CzKazP+jUqnkonmvXr3QtWtXEBGSkpLSidvi4+MRExODAwcOIDAwEPv378fdu3el8HfJkiW4c+cOihcvXhCv8t7Dtsh/VCoVXr16hT179iA6Ohr29vZYsGABihYtmqGYRPn83r17WLt2LcLDw2FkZITBgwfLzToAi3oyQxFoaoujgFRhp5Lma9eulcKe5s2bo0qVKrC2tsbSpUsxefJkFCpUCMOGDeM0ziGOjo7w8PDAhAkT4OPjg5CQEACpG89MTEwwdOhQNG/eHN26dQOgX2QVHx8PAIiIiJAiUiDVnj4+Pjh8+DAAoF69ehk+g0m1xb59+7B8+XKcPHkSly9fhkajgUajAQAMGzYMHTp0QMeOHQGwLfKSty0XiYmJMDIyAgB8/vnn+Pfff6FWq2Fra4tp06Zh2LBher/HzMwMtWrVAhHh2LFjCAkJQY0aNfLlHd9HUlJSsHv3biQnJ8Pd3V2mVXJysszrV65cAZC6QYDbh9wlO+kphIBGo4GVlRVOnjyJ8ePHw9fXF1euXEHt2rVRpUoVzJs3D0WKFEknklb6B5GRkbh79y78/f3Rp08ftivYFu8Sb0oD5fru3btx8eJFAMCPP/6IESNGAMi4HVbGEWfPnsWtW7cAAJUrV87NqDNMviOEwKlTp+SmvunTp+Orr74CAMTGxsLc3Bzjxo3Dtm3bcOfOHXkPk/uwLfIf7Xa1fv36qF+/Pvr3759heH1tg5mZGXr27In9+/dj6dKlCAoKQoUKFXDjxg34+fnhyZMnaNeuHb766is5F6+P/J6rYgE7wzAMwzAMwzAMwzAMwzAMk6/Y2trC3Nwcly9fxj///IP27dtDo9Hg/PnzmDNnDu7fv4927dphzJgxBR1V5v9RqVTSo7fi1dvIyAgvX75EQkICjh49inv37mHHjh14+PAhIiIi5L316tVDmzZt0LVrVxQtWlRuYGCyB9si/zlw4ABu3rwJc3NzzJkzB6VKlUonrFbQ/vy7776Dh4cHDAwMMH36dNSuXRsajUaKsFNSUpCYmIjAwECULFkSpqamsLCwYMEoXi9+p01j5fNdu3ZJ8fqkSZMwZswY2NvbQwiBxo0bo3Xr1vj999/RpUsX2NjY8GJ6DqlQoQI2bNiAR48e4ezZs0hMTIS9vT0qVqyoI5bKKO86OzsDAK5fv44LFy6gfv36SE5OxtWrV/H111/D19cXdevWRd++fQHoX4xnUildujRmzpyJGTNm4PDhw4iOjoaFhQXKlSsHFxcXmdfZFnlPVstFUlKSFK+PHj0amzdvhkqlQrly5fDDDz9IYUpamyntSaVKlVC8eHFERkbKkyaY9Cje7BUxjtJHIiK5eeyPP/7A4sWLAQAtW7YskHgy6VG8jlpaWuKPP/5AcnIyQkJC4OjoCACy/Ch9gidPniAqKgoHDhzA7du3cfLkSdy7dw/Jycm4fPkyfv311wJ7l/cdtkXBcPz4cVk39evXD+PHjweQ+SYyIQTOnTuHsWPHAkg9IUppT4hIhmGY942dO3cCAHr16iUF08nJyXLDvqenJwDg6dOnSElJAcD91byCbZH/5CT9FNH5wIEDER0djXHjxuHAgQPyur29PQYPHozvvvsO5cuXl22Mvrktpf3IaN4rt2EBO8MwDMMwDMMwDMMwDMMwDJOvtGzZEmPHjsXcuXMxZcoULFu2DDExMYiPj0d8fDyaN2+OnTt3wtDQkIWcBYiS9soiiCIECg0NxdmzZ+Hn54e9e/fi+fPnuH//vryvUaNGaN68OXr27AlbW1u4u7vreJ1m3h62RcGibAJITExExYoVAaQXVgO6RzgPHDgQ27Ztg0qlQocOHdC+fXsArz2IBwYGYsOGDTh48CB8fX1RqlQpVKlSBXPnzkXVqlXzbaHwfSQiIgK//fYbAGDkyJGYMWOGXEQnIrRq1Qqurq7w9/dHTEwMSpQoUZDR/WCwsrKClZVVOu+e2t7ZMmqv+/fvjw0bNsDT0xODBw9GlSpVEBsbi7t37+LBgwdwdHTEf//9h2LFiult97W/g08uSBUQCiHQpUsXnc8VwRrAtsgv3lQuiEi22UuXLsXmzZsBADY2Npg2bVqG4nXgdTtz8uRJPHnyJK9f5b1Hyf8VKlQAAFy9ehVeXl6wt7eHlZUVFi1ahB9//BEA8L///Q+tWrUqsLgy6VH6uWq1GkZGRqhevbq8FhYWhri4OOzduxd3797F/v378fjxY8THx0OlUqFw4cJo3749qlSpgqpVqyIuLg5mZmYF+DbvN2yL/ENpK7y8vGBoaAhjY2O0bdtWpllm8yC3bt3ClClTkJiYCEtLS3zyySewtLRM1zYnJiYiOTlZxw7cfjPvKkQEPz8/AEDRokUBpAqmlTkMf39/nDx5EgDQvn17nivMQ9gW7x9CCDmmGDNmDCpWrIirV6/izp07sLS0xGeffYZy5cqlO4VRGXM8ePAAN27cwPXr13Hq1Cn89NNP+XYyKs9SMgzDMAzDMAzDMAzDMAzDMPmGMpk+Z84cGBoaYt26dYiIiEBSUhLc3NzQsGFD/PrrrzA0NGQBZwGjLGr7+fkhICAAZ86ckWLpqKgoGaZmzZpo1KgRunfvjtKlS6NevXp6bcebEbIP26JgUMQdisfb6tWro06dOjrXtFHSdPDgwdiwYQNUKhVcXV0xYMAAuLq6yjC3bt3CkCFDcO3aNRARzMzMEBYWhsDAQFy8eBEeHh6oWrUqi0syIDIyEjdu3IClpSW6dOkiBTlKXn/69KkUTLFoKu95Ux7VaDSwsLDAwYMH0aVLF1y8eBH37t0DkCribd++PVavXo2SJUvK0yXS1lFCCGlTRRT8MZeNjN6dbfHuoKSJ8tvb2xu7d+/Gy5cvAQBTp07FwIEDAWTeJj979gznzp2DSqVC5cqVUaZMmbyP/HuKktaDBg3C33//jatXr+Kzzz6DsbExLC0tcerUKQDA8OHD0a9fv4KMKoPX/Sgl/2ufvBIZGYmwsDAcOnQIQUFB2LdvH+Li4mT5MTAwQKdOneDg4IBu3bqhRIkScoMh8/awLQoWIsLevXuRlJQEFxcXeQJKZvj5+WHGjBnw9vYGALi4uGDUqFFywxSQKkTcu3cvtm7dioiICNSuXRu1atXC+PHjuf1m3lmEEHB1dcWxY8cQFxeH2NhYuVH5zp07+OOPP7B//35UrVpVjq+ZvIFt8X6inPSnUqnQtm1btG3bNl0Y5XpwcDAiIiJw+PBhXLt2DZcuXcKLFy9kuMjISJw8eVLaPS9hATvDMAzDMAzDMAzDMAzDMAyTb2gfTzpz5kx0794dUVFRiI2NhZOTE+zs7OSEO4vX85/k5GTcuHEDz549w86dOxEYGAhPT0/ExcUBAExNTVG5cmW4u7ujadOmqFixohT0KnZT/k4LC6bfDrZFwaOIOhwdHQEAwcHBuHz5MmrXri2FH0o4IsKTJ08wYcIEbNmyBSqVCuXLl8f48ePRrVs3+Ux/f3/0798fXl5eqFu3Ljp37oyWLVsiKCgIf/31F06cOIHhw4dj9+7dKFKkSP6/9HvAzZs38ezZM5QqVQrVqlWDEELHG9xff/2FwMBAuLi4wMDAgAU6BYxarUZycjKsrKxw4MAB7N+/H3fv3gUA1K1bF25ubihcuDAASOGVSqVCXFwcIiIicO7cOfj4+GDXrl1o2LAh1qxZw/bMJmyLguPo0aPSS+U333yD0aNHA8hYvK58fubMGezcuRMpKSmoW7cuSpUqla/xfh8pW7Ysjhw5gm7duiE0NBRxcXGyfZg7dy569eoFBweHAo7lx0takTQRISYmBj4+Prhy5QouX76MkydPIjw8HMnJyVCr1TA1NUWzZs1Qvnx59OjRAzY2NulOPUj7fObNsC0KHiXtTUxMAABVqlQBALmJTB++vr746aef4OHhgejoaJQpUwYbN25EsWLFZJijR49i9erV2LZtm/wsODgYGzduxN27d7Fo0SJuv5l3lqpVqyIlJQUbNmyAvb093N3dERoaipMnT2LPnj0wMDDAlClTUKNGjYKO6gcP2+L9g4h05t21uXXrFl6+fIkdO3bg7t27OHnypHSIYWJigtKlS6Nbt25wd3dH/fr1UaJEiXwRrwMsYGcYhmEYhmEYhmEYhmEYhmHyGbVaLRe09XnqUSbcmfxn69at6N+/vxRAW1hYoESJEujQoQNcXFzQqFEjODg4wNDQUMdGiYmJMDIykp/xBoScw7Z4d6hcuTKqV68Ob29vHD9+HE5OTjA1NZXCjxcvXuDcuXNYvnw5jhw5ApVKBScnJ4wfPx4DBgwAkOr5+NWrV1i0aBG8vLzQqFEjLFiwAK6urjAxMUGtWrVga2uLGzduICQkBFFRUSxgzwBHR0fY2NhAo9HA398fpUuXluLEFStW4NtvvwUATJkyJd3x2EzBYGBgAI1GA3Nzc/Tu3TvddWWB/caNG/Dz88PZs2dx8eJFhISESC9whoaGSE5OhoeHB5o1a5bPb/DhwLbIf+7du4clS5YAAFq3bo3JkycDyFjcqfSDr1+/jgEDBiA5ORkuLi4YN24cAOhs2NEHb9oBKlWqhCNHjuDKlSu4ceMGKlSoAEdHR9StW7ego/bREx8fD3Nzcxw/fhwhISE4fPgwfH194evrKzcGWltbo1WrVqhRowY++eQTlCxZElWrVpXPUMJpbyRU4DFk1mFbvDsULVoUAPDw4UMkJCRIQbuCUq/fuHEDM2bMwOnTp/Hy5UuUKlUKBw4cQOnSpWX7ffbsWcyfPx/Hjx+HjY0NRo8eDSsrK9y7dw8LFy7EkiVLYG9vj4kTJxbEqzLMGxk0aBB8fHzwyy+/YPbs2VCr1TJ/lyhRAjNnzsSgQYMKOpofBWyLdx9lPKHvFJU7d+4gLCwMO3fuREhICA4ePAghBJKSkmBubo5ChQqhb9++cHR0RPv27VGiRAlYWVnpPD+/xhUsYGcYhmEYhmEYhmEYhmEYhmHyncwWtD920U1B8vnnn+PixYtQqVSoUKEC2rdvj+LFi8PS0lJv+Hv37uHQoUO4du0aAMDJyQmff/45ihQp8kaBFZM5bIt3hypVqqB///749ttv8f333yMmJgYNGzaEnZ0dXrx4gYULFyIwMBD+/v5Qq9Vo0aIFvvjiCykOVTYRKEcwGxkZYdCgQXBzc4ORkZFcBHZ0dIQQAg8ePMCjR49QtmzZAn7zdxN7e3tUqFABFy5cwMyZM+Hv7w8DAwN4e3tj2bJlAIBp06bh888/L+CYMsDrRXXtjTSKZ9HLly8jIiICu3btgp+fHzw9PaUIzsLCAhUrVkT//v3RpEkTODs7w9HREYmJiQX1Ku89bIuCISYmRno3dHd3l0LFjMTrQgh4e3vjyy+/RExMDAoXLoyWLVuiQoUKACDbc41GA09PT4SEhMDAwABly5ZFvXr15KkgH3t/ulSpUihVqhS6dOlS0FFh/p/ExEQMHz4cR44cwdOnT+Xntra2qFevHtq0aYNatWrBxcVFR5CbFiEEe/fOIWyLdwOlrm7ZsiV27dqFu3fv4ubNm6hTp45OHS6EgIeHB8aMGYO7d+8iLi4OpUuXxvbt21G9enVpn5SUFGzcuBHHjx9H3bp18cMPP6Bdu3YAgLi4OKjVasyfPx8nT57EiBEjYGpqWlCvzjB6UfLy/PnzUbx4cRw8eBCBgYEwNDREz5490bx5c5mnmbyFbfFuo7QfSvublJSEhw8fwtvbG6dOncLt27dx6tQpeYJj4cKFYWdnh/bt26NcuXLo3LkzihQpghIlSug8V2nTlefn13hCkDLyZBiGYRiGYRiGYRiGYRiGYRjmoyUzkbOyiKEtXli3bh02bNiAEydO6IR1c3PDoUOHULx4cRY0ZBO2xbuDdrp9++23mD9/PoBUD8QWFhaIj49HfHw8gFQx4qRJk9C1a1fUr18/3f07d+5Ejx49UKZMGXh6eqJkyZLQaDTSU9apU6fQvHlzGBgY4MaNG6hWrVoBvPH7QUBAAJo3b46IiIh012bMmIFRo0bB2tq6AGLGpPUCp0BE8PT0xKNHj7B9+3Y8ePAAHh4e8rqtrS2KFy+O9u3bo2rVqqhfvz4cHBxkPacsonNdlnXYFu8Ge/bsQdeuXWFlZYVTp07B2dlZr8Bc+czPzw8jR47EhQsXkJiYiAYNGmDr1q0oVaqUDHvo0CFs27YNf//9t/zMysoKX375JebNm6fzPIZ5l7h9+zb69+8PExMTdO3aFQ4ODmjSpAlsbGxkfaKdd58/f45z587h9u3bqFChAuzs7NCoUSMAGZ9iwGQNtsW7Q0REBLp06YIrV66gSZMm+P7771G9enWUKlUKR44cgaenJ6ZPny7DOzg44MCBA6hcubLOcw4ePIgOHToAALZv347u3bsDeC1E3bJlC/r27YtKlSrhwoULfNoT806iPc/x4sULvHr1CgYGBjy2KwDYFu82wcHBuHz5Mvz9/XHs2DH4+fnh2bNn8nr58uXRvHlzVK9eHe3atYOpqSns7e3ldSJ6Z05AZXcbDMMwDMMwDMMwDMMwDMMwDMPoFUyn9eqjLF6tWrUK8+fPx7179+Dk5IRhw4bBzs4OGzZswO7du9GtWzccPHgQFhYW+foOHwpsi3cH7c0Cc+fORcmSJfHff//B09MTz58/BwA4OjqidOnS+O6779CkSRMYGRkBQLrFQDs7OxgbGwNIFarY2NhIO3p7e2PmzJkAUr3vs3g9cypVqoTTp09jxowZCAwMxJMnT+Ds7IwBAwZIsQ6TvyjiNW0vcAEBAfD29saBAwcQHByMCxcuSO/QxYoVQ5UqVdCzZ084ODjIRfW0p0wo5U8R0L0LC+zvOmyLd5Po6GgkJCQASH/akGKz27dvY9SoUbh27RoSExNRrlw5rFu3Tke8/u+//2LevHm4fv06AKBJkyZ49OgRAgICsGDBAgghMHfuXBavM+8kTk5OOHXqFIBUb6DaaNcxycnJ8PT0xNChQ+Hv7w8gtX9sbGyMH3/8ERMmTNDxEMq8PWyLdwdbW1ts3LgRLVu2xOnTp+Hv7w+VSgU7Ozv4+fkhNjYWQOpYombNmli1ahVsbW3TbRzw9fUFAPTo0SOdeB1IFTsCgLm5uRyTMMy7hlqtlvWJlZWVrFe4jsl/2BbvNhs3bsSMGTPk/05OTmjZsiWaNWuGunXrwsHBAVZWVunsFRMTA2NjYxgYGKRzjlFQsICdYRiGYRiGYRiGYRiGYRiGYRi9aC9yKIseZ8+exZo1axAWFoZ+/fphzJgxcHd3BwB0794dLVq0wNmzZ3Ht2jU0bdq0oKL+wcG2KDjUarVc1JswYQJ69uyJ+/fvIyIiAklJSWjcuDHMzMxgaWkJ7YOP0y7qWlpaokyZMggKCsL27dthaWmJ8uXLw9PTE7NmzYKHhwfc3d3xxRdfAGBvlm+iQoUKWLNmDQwNDZGQkAADAwMYGhoWdLQ+WlQqFUJDQ7F9+3aEhobiwoULuHr1qrxuY2MDZ2dndOjQAeXLl0eHDh1gYmKSzvtn2jJU0Ivp7yNsi3eLunXrolq1aggODsbt27dRq1YtCCF0xCIqlQqXL1/GwIEDERQUhOTkZNjY2ODgwYOoUKGCPJnl/PnzWLp0KW7cuIEOHTrgiy++QNeuXREaGoqDBw9izJgxWLNmDXr06IHatWsX8JszjH4UsXRaQZUilAOAXbt2Yfz48YiIiEDNmjVRq1YtWFhYYPny5fjqq69gamqK4cOHs4Auh7At3h0cHR1x4sQJjBgxAgEBAXKsodCxY0d06dIFPXr0gJWVlV7BYVRUFADg0aNHiIqKgrm5ubSlv78/Tp8+DUNDQ/Ts2RNmZmYsQmXeWZR8qZ0/Oa8WDGyLd5cffvgBJiYmKFmyJCpUqAAXFxcdxxUajQZAqr2eP38OPz8/rFixAqGhoTA3N0eNGjXw9ddfo2jRogUuYmcBO8MwDMMwDMMwDMMwDMMwDMMwb0RZpNq3bx+uXLmC2rVrY9y4cXBzcwOQ6sWnUKFCqFu3Ljw8PHD37l0WTecRbIv8R9v7WKlSpVC6dGm94TJbzK1SpQomTZqEkSNH4ueff8Z///2HokWL4uLFiwAAV1dXjB07FnXq1AGg692Yxez6MTQ0hBACpqamSElJKejofPQkJSXhm2++QUpKCoyMjFC/fn3Uq1cP7u7uaNSoESwsLNKJpJOSkpCUlITIyEgUKVIEJiYmAFLzPIsjsg/b4t3BzMwM1atXh4+PD9asWQN3d3dUq1ZNnrbi7++P8+fPY9SoUXj16hUAoGLFiti3bx8qVaoEjUYjwx45cgTnz59Hw4YN8c0336BRo0YAUr3ytm3bFhUrVpTCRxawM+86GZ1EcPPmTUycOBERERHo0qULtmzZIr1Ft2jRAh06dMDKlSvRvn17lC5dmuunXIBt8W5QsWJFbNmyBcHBwTh27BiSkpJQqlQp2NnZoUOHDjJcSkqKXqGhk5MTjIyMEBYWBi8vL9StWxdqtRqXLl3CypUrcfToUVSoUAHNmjUDwCJUhmGY9xVlc+v/tXfnUVXX+R/HX5ddBL2yJCgiEFowio5Lgo0rTm6hZlqa5VZaTtbJpW0aR9Ms08amrFNOpVYzk0tqbuESbrjlnqImLiyBLCIii8Jlub8/PPcmCepvUq7A83EOp9v9fL+f+/7ywfvlcl/f933llVeuG7OE0S1/P0pJSdG8efO0dOlSJSUlWT8xcOPGjYqOjlZMTIy8vLxs+jcnAuwAAAAAAAAAAOCWnD9/XkuXLpUkPfvss9bAdGlpqdzc3GQ2m7Vv3z5JsgbfcGewFlWvou5jt8oSfn/22WdlNps1bdo0xcfHW8cff/xxjRw5Ut26dZOTk5P1Tcffvvlo6axYr149m3fJuhtcuxYE/G0vODhYp0+f1sGDBxUWFiZ/f3/rG+TSr13gJKmoqEjx8fF69dVXlZycrKSkJIWHh2vo0KEaPXq07OzsuHDjd2At7h7u7u565513tHfvXu3atUsjR47Ugw8+qPvvv1+nTp3Srl27dPjwYZWUlMjb21tt2rTRxx9/rKCgoHLP86mpqfrggw8kScOHD7eG10tKSuTo6KiAgADVr19fklRQUGCbgwV+Bzs7O+Xm5mrMmDFKTU1VZGSkli9fLjs7OxUVFcnZ2Vm9e/dWx44d9fPPP6uoqIgA7h3CWtiOl5eXvLy81KFDh+vGLK8nKjsf9+rVS+3bt9fOnTs1YsQItWvXTmVlZTp69Kji4+NlNBo1Z84cRUREVLg/53oAqB4sF7dWxPLawWAwKDMzU7Nnz9aCBQtUp04dDRkyRC+88IKcnJz03nvvacmSJRo2bJi+++471alTp6rKvw4BdgAAAAAAAAAAcEvMZrPy8/MlXe0oKv3a+aeoqEiffPKJtm/friZNmqh79+62LLXGYy2qF4PBYA2FPPfcc4qIiFBaWpouXbqkevXqqXfv3tZQivTrm465ubnKz8/X+vXrdfToUcXExCgrK0tr166luy7uSgEBAQoICJAka1d8y8+25ec6Oztby5Yt08yZM5WSkiJvb2+5ubkpJiZGMTExys7O1uTJkwlR/U6sxd0jKChIGzZs0IABA3T48GEdPnzYOma5QKBDhw6KiorS6NGj5ePjc12H3StXrshkMsnd3d0abLSc981ms5YtW6b9+/fL2dnZelEbUN2kp6crLS1Nvr6+mjt3ruzs7FRcXGzt+n3ixAklJiYqLy9Ply9ftnG1NRtrcfe50UUClouY16xZoz59+mjPnj1KSEiQJDk7Oys8PFxvvPGGtZO75feCay9S++25/trXJgCA6sPyvB4dHa1ly5bJ3d1dEyZM0DPPPCMPDw9J0n//+1/Fx8frwIED+uWXX9S8eXOb1UuAHQAAAAAAAAAA3BI3Nze1adNGMTExOn78uPLz8+Xm5qbi4mJ9/vnnmj9/vhwcHDR69GgZjUbe9L6DWIvq59qASKtWrdSqVaty4waDQRkZGSoqKtK6deuUmJioVatWKT093dp53c3NTQEBAfr2228JsOOuZwlCWZ57zGazJGn16tWaNm2aMjIy1K9fP82dO1dGo1EHDhzQsGHD9Morr6h169bq0aOHzWqvaVgL22vevLk2bNigzz77TDt37lR8fLzy8vLUo0cPhYSE6KWXXpKbm5ucnZ0r7IJbv359BQQEKDExUYcOHVJISIgcHR0lSbt379Z//vMfmc1mPf744woICOC8j2rp559/Vmpqqtzd3a0XcFh+zs1ms7Zv366srCx16dJFgYGBtiy1xmMtqhd7e3uVlJTIaDRqw4YNWrJkiRITE3Xx4kX16dNHwcHBuu+++yRd32k9LS1N6enp2rRpk3bv3i2j0agvv/yScwgAVFOW5/jPPvtMGRkZGjFihDW8XlZWppKSEjk5OSkwMFCHDh3S+fPnCbADAAAAAAAAAIC7n6urqyIjI7Vx40a99dZbOnPmjJo2bardu3dr//79MplMevTRRzV06FBrwAF3BmtR/VQUSCwoKFBqaqo2bdqks2fPavXq1crLy1NmZqZ1m969e6tp06YaOHCgfHx81KJFi6ouHbgtDAaDEhISNH36dGVkZGj06NH68MMP5erqqpKSEv35z3/WG2+8oQkTJujIkSOEpu8g1sI2mjRpojfffFMGg0HZ2dkqKSnRPffcc912FXW8NxqNatmypU6cOKHZs2erqKhIbdq00ebNmxUdHa1t27YpNDRUw4cPV926davicIDb7r777pOfn59KSkqUlZVlvb+goEA//PCDXnnlFZlMJnXv3l3u7u42rLTmYy2qHwcHB5WWlsrd3V1PP/20DAZDhRczJSQkKC8vT999953Onj2rjRs3Wl97ODk5yWQyaejQoerVq5ctDgMAcBscO3ZMBw8eVL169fTaa6/Jw8PD+ulNTk5OOn78uGJjYyVJLi4uNq2VADsAAAAAAAAAALgpy5vfL7/8ss6fP6/33ntP33zzjXW8cePGGjBggMaNG2fTzj21AWtRPZSWllo7VlqYTCadPHlSBw4c0N69exUTE6PU1FRdvnxZBoNB9vb26ty5s4KCgjR48GD5+vqqRYsWFYZP6K6L6mjmzJlKTEzUAw88oI8++kguLi7WN9Klq8EpSTpz5oykii/8wO3BWtiWh4dHuf+/0XO62WyWo6OjPv30U50+fVoHDx7Uiy++KGdnZ+Xl5cnZ2Vnt27fXlClT1L17d+s+0tWLFSpaO9YTdyNPT081adJEu3fv1htvvKGhQ4fKyclJhw8f1ldffaX8/HwNGzZMr732miR+F7qTWIvqxfL9t6zBtf9NSUlRWlqaVq1apcTEREVHR8tkMqmgoED29vZyd3fXU089pWbNmikqKkre3t7y9PS05eEAAH4ns9mswsJClZaWKiMjQ82aNbO+zktKStL777+v8+fPq3///mrbtq1NayXADgAAAAAAAAAAbspgMFgDubNnz1ZoaKgOHz6s5ORkGY1GPffccwoMDJS3t7etS63xWIvqwRJe37lzp5KTk7V+/XodP35cR48elclkkiTVr19f7du3V1hYmB566CE1btxYrVu3rnC+3waDCAmhOkpLS5MkDRo0SC4uLjKZTNag9Llz57R582ZJsn7SAAHbO4e1sI3Knrtv9JxuOe8bjUbFxMToxRdf1E8//aSUlBQ1adJEzz77rLp3767w8HBJKreW0tW1u3DhgrKysnTs2DENHDiQ9cRdycvLSwsXLlS3bt20c+dO7dq1y3oxhiSNGDFCCxculMRFGHcaa1E9WF4TWs4hpaWlunDhgk6ePKlt27bp6NGj2rhxo3JyciRd/RSvOnXqaMCAAQoMDNTAgQPl5eUlPz+/cvNeu9YAgOrHw8NDYWFhiouL0759+xQaGiovLy8dO3ZMn3zyiZYuXSp/f38NGTLE1qUSYAcAAAAAAAAAALfG3t7e+ib5yJEjJZXv8Imqw1rcvS5evKivvvpKsbGxSklJ0d69e61jHh4eCg0NVc+ePdWuXTu1atVK9957r8xmc7ngT1lZmcxmszUEz5qipigsLJQkZWVlyWw2W0O2ubm5Wr16tTZu3Kh7771XERERtiyzVmAtqhfLeb9+/fr64osvlJOTo9zcXNWrV09eXl7ltnVyclJRUZEOHz6sgwcP6sCBA9q+fbvS09OVn5+vUaNG6YsvvrDRkQA31rx5c23fvl1vvvmmzpw5o7Nnz+qhhx5SRESEnnvuOUkEpqsKa3H3+e0FraWlpSooKFBsbKyOHz+ubdu2KS4uTsnJydZt/Pz81KtXL4WGhqpPnz4yGo0KCgq64fy89gCA6q1Ro0Z69NFHdeTIEb388stavXq1GjVqpOjoaOXm5srHx0djxoxRv379bF0qAXYAAAAAAAAAAHDrLIFaC97cth3W4u7UoEEDnTlzRitWrFCTJk3UsmVLDRgwQEFBQYqMjFTDhg3l6OhYbp+ioiLl5eUpKSlJPj4+8vLykouLi/UiBaC6s1xgExYWpi1btmjHjh3as2eP2rRpo/j4eH3//feaPXu28vLyNG7cuEo/iQC/H2tRfdnb26ukpEQODg7y8vKyBtevXLmiOnXqaMeOHTpz5oyio6N15MgR/fzzz9Z9GzRooIiICLVr105hYWHXhSCBu8m9996r+fPny9nZWZmZmfLx8bGOEZiuWqzF3cVgMKisrExfffWVCgsLtXjxYiUlJSkpKcm6TUBAgPr27asuXbrowQcflL+/vxo3bmwdLysrkyTr+eS38wMAqjfL+XnKlCkqKCjQ7NmzFRsbax3v2rWrBg0apJEjR6pOnTo2rPQqg5nP/QAAAAAAAAAAAAB+t2sDgWvXrtUDDzwgR0dHNWjQoNx2xcXF1hD7jh07tGzZMq1evVqpqany9/dX27Zt9fHHH8vLy4sQO2qUhIQEdenSRSkpKWratKk8PT2VnJysvLw8FRUVacyYMZo/f76ty6wVWIvqobKAaFFRkWJjY5Wenq7ly5crNTVV+/fvt44HBgbKz89PDz30kFq1aqWwsDD5+/tXZenA72L5nerafwNceGEbrMXdJSUlpdzzecuWLeXj46P+/fsrODhY7du3v+61hyQVFBSotLRUbm5u1nXkIgQAqJmu/TvS2rVrFR8fb+28/thjj6levXrXXcRkKwTYAQAAAAAAAAAAgNvkZoHzawM/q1ev1gsvvKBffvlFrq6uCgwM1JUrV3T27FmFhoZq27Zt8vT0JCSEGiU+Pl6DBw/WmTNndPnyZUlSeHi4evbsqalTp9q4utqFtbj7WJ7vf/u8X1hYqH379unUqVNasWKFUlNT9dNPP1nH/f395evrq0GDBikoKEidO3eWm5ubnJ2dy83PRVEAUP2dPHlSO3fuVOPGjdWpUyfZ29uXe763nENKSkqUkJCgBQsWaMuWLUpLS1NERIT69Omj4cOHSyLEDgA1VXX5vZ8AOwAAAAAAAAAAAFDFNm3apGHDhikrK0sDBw7U8OHD1aNHDxUXF+uFF17Qv//9b40aNUrz58+/azpjAbdLRkaGDh06pJSUFHl5ealdu3by8/OzdVm1Emtxd7pw4YISEhK0b98+bd26VcePH9exY8es4wEBAWrYsKEeeeQR+fv7q2/fvnJwcFCdOnXKzUMwEQBqh992yjeZTFq+fLk+/fRTxcbGSpLc3d2Vl5cnSZo9e7YmT55sy5IBACDADgAAAAAAAAAAAFSl9PR0jR49WuvXr9eQIUM0depU3Xfffdbx7OxshYSEKDAwUDt37qwWXbMAAL9fWVmZXnzxRX399dcqLi5WYWGhJMnb21thYWHq1q2bQkJC1LlzZzk4OKh+/fo3nIvwOgDUPmVlZVqxYoWmT5+uuLg4tWnTRtOnT1ezZs10/PhxjRo1Sjk5OVq1apWioqJsXS4AoBajXQMAAAAAAAAAAABQhZKTk7Vjxw4ZjUY9+eSTCg4OlvTrRzzn5ubKbDYrOTlZ+fn5NwwoAgBqDjs7Oz399NP69ttvFR4errZt26pz585q06aNjEajnJycym1vNptVVFSk6OhoZWZmqn79+goMDFSHDh1kZ2dHiB0AahFLF/bs7GwtWLBAcXFxioqK0vTp09WqVSuZzWY1a9ZM77zzjsaNG6cff/yRADsAwKYIsAMAAAAAAAAAAABVwBIq2bZtm/Lz89WuXTv16dNHklRcXCxHR0dJ0rp165SVlaWOHTvKycnJuh8AoOb74x//qLNnz8rV1bXc/aWlpZKkkpISOTg4qKSkRN98842WLl2qdevWWbdzdXXVjBkzNGHCBNnZ2XEOAYBawvJcv3DhQq1fv15Go1FTpkxRq1atJF19veHk5KTAwEBJVy+qBQDAlgiwAwAAAAAAAAAAAFXAEipp3LixpKshxF9++UVNmjSxhteXLl2q119/XZI0evRo1alTxzbFAgBs5trwuqWLur29vSRZw+vz5s3Thx9+qOTkZPn7+2vIkCEymUyaP3++Jk2aJBcXF40bN47wOgDUMvHx8ZKkMWPGqF27djKbzTKbzXJyclJBQYGWLl0qSfLw8LBlmQAAiM+KAgAAAAAAAAAAAKpQo0aN5O7ursOHD2vlypU6duyYLly4oI8++kjPPvus8vPzNXbsWA0ZMsTWpQIAbMzO7tdYh9lsliStWrVKn376qTIyMjR69Gh99913mjVrlubOnas1a9bI0dFR//rXv5SZmWmrsgEANpKTkyNJOnfunEwmk8xms+zs7HTlyhWtXr1aMTEx8vHx0dChQyX9em4BAKCqEWAHAAAAAAAAAAAAqlDXrl31/PPPS5JeeukldevWTeHh4XrxxRd16dIlDR8+XH/5y1/KdeAFAMDSTX3lypU6deqU+vTpo8mTJ6t169YqKyuTyWRS9+7d1b59ex09etQaYgQA1B5t27aVdLUT+/HjxyVJV65c0aJFi/Tuu+8qKSlJPXv2VFBQkCTxSR0AAJsxmLmMCgAAAAAAAAAAAKgSZWVl1m66U6dO1cKFC5WSkiJnZ2fZ29vr73//u4YOHaomTZrYuFIAwN1o7969Cg8PlyTFxMSoW7dukn49v1y8eFHh4eFKTEzU0aNH1bx5c1uWCwCoYomJierWrZuSkpLUvHlz+fj4KCMjQwkJCTKZTOrVq5c++OADNWvWzNalAgBqOQLsAAAAAAAAAAAAQBUqLS2Vvb29JOnEiRNKT09X3bp15ebmptDQUBtXBwC4m23ZskWRkZHy8/PTwYMH5eXlpZKSEjk4OCg/P19vv/22Zs2apdatW2vfvn3W8w0AoPY4efKk+vfvr4SEBBUXF0uSgoKC1LNnT02YMEHBwcE2rhAAAMnB1gUAAAAAAAAAAAAAtYm9vb21U25ISIhCQkJsXRIAoJrw9vaWl5eXCgsLdfToUXXu3FkODg7Ky8vTokWLtHjxYjVo0EDjx4+Xvb29zGazDAaDrcsGAFSh++67T5s3b9aOHTuUnJwsBwcH9e/fX56enqpXr56tywMAQBId2AEAAAAAAAAAAAAAAKqF7Oxs9e3bVz/++KM6deqkfv36KSQkRJ999pl2796tnJwcPfXUU5o6dar8/PxsXS4AAAAAVIgAOwAAAAAAAAAAAAAAQDURHx+vbt26KS0tTZLk7OysoqIi+fr6qn///po4caKCg4NtXCUAwNb4FA4AwN2MADsAAAAAAAAAAAAAAEA1cvr0ac2YMUNHjhyRyWSSj4+PJkyYoLZt28rX19fW5QEAAADADRFgBwAAAAAAAAAAAAAAqGZMJpOKi4tlMpnUoEEDW5cDAAAAALeMADsAAAAAAAAAAAAAAEA1ZzabZTAYbF0GAAAAANyUna0LAAAAAAAAAAAAAAAAwO9DeB0AAABAdUGAHQAAAAAAAAAAAAAAAAAAAABQJQiwAwAAAAAAAAAAAAAAAAAAAACqBAF2AAAAAAAAAAAAAAAAAAAAAECVIMAOAAAAAAAAAAAAAAAAAAAAAKgSBNgBAAAAAAAAAAAAAAAAAAAAAFWCADsAAAAAAAAAAAAAAAAAAAAAoEoQYAcAAAAAAAAAAAAAAAAAAAAAVAkC7AAAAAAAAAAAAAAAAAAAAACAKkGAHQAAAAAAAAAAAAAAAAAAAABQJQiwAwAAAAAAAAAAAAAAAAAAAACqBAF2AAAAAAAAAAAAAAAAAAAAAECVcLB1AQAAAAAAAACAqlVSUqJVq1Zpw4YN2r17tzIyMnTx4kW5urrK29tbLVu2VMeOHTVo0CAFBgbaulwAAAAAAAAAAFCDGMxms9nWRQAAAAAAAAAAqsbq1as1adIknT59+pa279u3r2bNmqUWLVrc4coAAAAAAAAAAEBtQAd2AAAAAAAAAKgl3nrrLf3973+Xpa9J165d9fDDDyssLEyenp66fPmy0tLStH37dq1du1aJiYlat26d/Pz89Omnn9q4egAAAAAAAAAAUBPQgR0AAAAAAAAAaoEFCxbo6aefliQ1bNhQixcvVteuXSvdvrS0VIsXL9Zf//pX9e7dmwA7AAAAAAAAAAC4LQiwAwAAAAAAAEAN98svv6h58+YqLCxUvXr1dODAAQUHB9/Svjk5OYqNjVVUVNQdrhIAAAAAAAAAANQGdrYuAAAAAAAAAABwZ82dO1eFhYWSpJkzZ95yeF2SjEbjdeH1xMREGQwGGQwGLVq0SJK0YsUK9enTR40aNZKDg0OF3d3XrFmjQYMGyc/PT87OzvL09FRERIRmzZql/Pz8SmuYNm2a9fFuZOvWrdbttm7det14165dZTAYrLWdPHlSY8eOVWBgoFxcXOTr66vHHntMe/bsueHjlJaWatGiRerZs6d8fHzk5OSk+vXrq1mzZoqMjNTbb7+t48eP33AOAAAAAAAAAABqKwdbFwAAAAAAAAAAuHPMZrO+/vprSZK7u7tGjRp12+cfPny49TEqUlhYqCeeeEIrV64sd392drb27NmjPXv2aN68eVq3bp1at259W+urTHR0tAYPHqyCggLrfenp6Vq2bJmWL1+uf/zjH3rppZeu2y8/P199+vRRbGxsufuLi4uVm5ur06dPa/PmzTp48KC+/fbbO30YAAAAAAAAAABUOwTYAQAAAAAAAKAGi4uL04ULFyRJnTp1Ut26dW/r/P/85z915MgRderUSePGjVPz5s2Vk5OjxMRE6zYjRoywhtdbtWqlSZMmKSQkRNnZ2Vq8eLEWLVqkc+fOKTIyUkeOHFHjxo1va42/de7cOT3xxBNycHDQ22+/be3IvmXLFr377rvKzc3VhAkTFBAQoAEDBpTbd9q0adbw+sMPP6xhw4bJ399fLi4uyszM1KFDh7R27dqbdosHAAAAAAAAAKC2IsAOAAAAAAAAADXYkSNHrLfbtGlzR+YfPny4Fi1aVGFoe926dVq6dKkkKTIyUt9//72cnJys4w899JAiIiI0duxYZWdna+LEiVqyZMltr/Nap06dUv369bV7926FhIRY74+IiFD//v3VsWNH5ebmavz48erbt68cHR2t21iOZdCgQVq2bNl1c/fq1Uuvv/66srOz7+gxAAAAAAAAAABQXdnZugAAAAAAAAAAwJ2TlZVlve3t7V3pdmVlZYqLi6v0q7i4uML9jEajPvroo0o7jn/88ceSJEdHRy1cuLBceN1izJgx6tGjhyRpxYoVSktLu+Xj+19NmTKlXHjd4g9/+IPeeOMNSVJqaqpWrVpVbjw9PV3S1W72N+Lh4XGbKgUAAAAAAAAAoGYhwA4AAAAAAAAANVheXp71dt26dSvdLjc3Vy1btqz0KzU1tcL9oqKi5O7uXuFYSUmJtm3bJulqp/UmTZpU+vhjxoyx7rN169abHdbvYjAYNGLEiErHR40aZQ3k//DDD+XGfH19JUlLlizR5cuX71yRAAAAAAAAAADUUATYAQAAAAAAAKAGuzZcXlBQcNvnDwsLq3Ts7Nmz1pB3hw4dbjjPteNxcXG3p7hKBAYGysvLq9Jxb29vBQQESJKOHj1abswSfN+1a5cCAwM1fvx4rVy5UufPn79j9QIAAAAAAAAAUJMQYAcAAAAAAACAGszT09N6+0Yha6PRKLPZXO7rRl3KLRo0aFDpWHZ2tvX2Pffcc8N5fHx8KtzvTrhZLZLUsGHDCmuZMmWKRo8eLYPBoMzMTH388ccaOHCg7rnnHrVo0UJTp05VRkbGHakbAAAAAAAAAICagAA7AAAAAAAAANRgrVq1st4+dOjQbZ/f3t7+lrYzGAy3/bH/V7+nFkdHR33xxReKi4vT3/72N3Xs2FFOTk6SpGPHjmn69OkKDg7WqlWrble5AAAAAAAAAADUKATYAQAAAAAAAKAGa9GihbULe2xsrC5fvlxlj+3h4WG9fbOu5Onp6RXuJ0l2dr/+KbusrKzSOQoKCm6prlvpkG7Z5re1WISGhmrGjBnauXOnLl26pE2bNmnUqFGyt7dXfn6+hg4dqrS0tFuqBwAAAAAAAACA2oQAOwAAAAAAAADUYAaDQU8++aQkKTc3V19++WWVPXZQUJBcXV0lST/++OMNt927d6/1dosWLcqNubu7W29fvHix0jni4+Nvqa6EhARduHCh0vHz588rMTGxwloq4uLioh49emjBggWaM2eOJOnKlStau3btLdUDAAAAAAAAAEBtQoAdAAAAAAAAAGq4iRMnysXFRZL0+uuvKyEhoUoe18HBQV26dJEkbdq0SSkpKZVu+/nnn1v36dq1a7mxwMBA6+39+/dXOsfixYtvqS6z2ayvvvqq0vFFixbJbDZLknr06HFLc1pERkZab2dlZf2/9gUAAAAAAAAAoDYgwA4AAAAAAAAANZy/v78+/PBDSdKlS5f0pz/9STt27LjhPmazWTk5Ob/7sZ9//nlJkslk0tNPP63i4uLrtlmwYIE2btwoSRo4cKB8fX3LjXfs2FEODg6SpPfff98aLr/WnDlzynVxv5kZM2bo5MmT191/4sQJzZw5U5Lk6+ur/v37W8eys7O1Zs2aCh/fwnIcUvngPQAAAAAAAAAAuMrB1gUAAAAAAAAAAO68MWPGKDU1VW+++abOnTunTp06qXv37oqKilLLli3l4eGh0tJSpaen6+DBg1q6dKmOHTsmSbK3t5eTk9P/9Lh9+/bV4MGDtWzZMm3cuFHh4eGaOHGi7r//fl28eFGLFy/WggULJEkeHh6aO3fudXPcc889Gjx4sL755htt2LBB/fr10/PPP6+GDRsqOTlZX3/9tZYvX66OHTtq165dN60pODhY58+fV3h4uF599VVrx/etW7dq1qxZunTpkiRp3rx55Y47NzdX/fr1U0BAgAYOHKgOHTqoadOmcnBwUFpamtasWWPtJN+4cWM9/PDD/9P3DAAAAAAAAACAmsxgvlGrGAAAAAAAAABAjbJy5UpNnjxZZ8+evem2BoNBPXv21Jw5c9SiRQvr/YmJidbu4gsXLtTIkSNvOE9hYaGeeOIJrVy5stJtGjVqpHXr1ql169YVjmdkZKhTp046depUheNDhgzRM888ox49ekiStmzZYg2mW3Tt2lXbtm1Tly5d9PLLL+uxxx7T5cuXr5vLzs5Os2fP1qRJk8rdf+1x34ivr6/WrFmjtm3b3nRbAAAAAAAAAABqGzqwAwAAAAAAAEAt8sgjjygqKkorV67Uhg0btHv3bmVmZionJ0eurq7y9PRUy5YtFRERoccff/yWAts34+LiohUrVmjNmjVatGiR9uzZo6ysLNWtW1fNmzfXgAEDNH78eLm5uVU6R8OGDfXjjz/q3Xff1YoVK5ScnKy6deuqRYsWGjt2rIYNG6atW7feck19+/bV/v37NWfOHG3evFlpaWkyGo3q1KmTJk2apIiIiOv2adq0qfbu3avvv/9eu3btUlJSkjIyMpSfny+j0ajQ0FBFRUVp7Nixqlev3v/yrQIAAAAAAAAAoMajAzsAAAAAAAAAoFa4tgP7/yfsDgAAAAAAAAAAbh87WxcAAAAAAAAAAAAAAAAAAAAAAKgdCLADAAAAAAAAAAAAAAAAAAAAAKoEAXYAAAAAAAAAAAAAAAAAAAAAQJUgwA4AAAAAAAAAAAAAAAAAAAAAqBIE2AEAAAAAAAAAAAAAAAAAAAAAVcJgNpvNti4CAAAAAAAAAAAAAAAAAAAAAFDz0YEdAAAAAAAAAAAAAAAAAAAAAFAlCLADAAAAAAAAAAAAAAAAAAAAAKoEAXYAAAAAAAAAAAAAAAAAAAAAQJUgwA4AAAAAAAAAAAAAAAAAAAAAqBIE2AEAAAAAAAAAAAAAAAAAAAAAVYIAOwAAAAAAAAAAAAAAAAAAAACgShBgBwAAAAAAAAAAAAAAAAAAAABUCQLsAAAAAAAAAAAAAAAAAAAAAIAq8X/P9yXtwBfldQAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAC7AAAAPgCAYAAACx8HFwAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdf3jXdb0//vs2YD8AAZ16IJyzEDfDSkgPigRYeTpHPeLE06+VdirrdOpY0fGEnY9pp+R4Ttqxc646WR3NOJknRDxhmeeU2ORg5bIf1CbacSJJ2QwE2Riw7fuHX3ZEGGxsbIzdbte1a6+9Xo/n4/l4066Qcef5Lujs7OwMAAAAAAAAAAAAAAAcZIWDPQAAAAAAAAAAAAAAAMODADsAAAAAAAAAAAAAAANCgB0AAAAAAAAAAAAAgAEhwA4AAAAAAAAAAAAAwIAQYAcAAAAAAAAAAAAAYEAIsAMAAAAAAAAAAAAAMCAE2AEAAAAAAAAAAAAAGBAC7AAAAAAAAAAAAAAADAgBdgAAAAAAAAAAAAAABoQAOwAAAAAAAAAAAAAAA2LEYA8AAAAAAAAAAAAAAAy+zs7O7NixIx0dHYM9CoewwsLCjBw5MgUFBQe0XoAdAAAAAAAAAAAAAIax9vb2NDc3Z8uWLdmxY8dgj8MQMHLkyIwdOzbl5eUpKirq1dqCzs7OzoM0FwAAAAAAJEkuvfTSfOUrX0mSPP7446msrDzgXitXrsy8efOSJB//+Mdz9dVX93m+XafEzJkzJytXruxzPwAAAACAoaK9vT1PPvlk2traMm7cuIwZMyZFRUUHfLo2h7fOzs60t7fnueeey7PPPpvi4uIcd9xxvQqxO4EdAAAAAGAYmTJlSn71q18lSX7+859n2rRp+6x/3etel+9+97tJksmTJ+fJJ5/cZ31LS0smTJiQ7du3Z8SIEdm4cWPGjBnTP8P3wj/90z9l06ZNGT9+fD74wQ8O+P4AAAAAAENFc3Nz2traUlFRkdLS0sEehyFizJgxGTduXNatW5fm5uYce+yxPV5beBDnAgAAAADgELPr5PIk+z1pfPv27fmf//mfrq/Xr1+fxx57bJ9rVq1ale3btydJTjvttEEJryfPB9ivueaa/NM//dOg7A8AAAAAMBR0dnZmy5YtGTdunPA6vVZaWpojjjgiW7ZsSWdnZ4/XCbADAAAAAAwjLwyw33ffffus/cEPfpDW1tbd7u1vzQtD8S/c65ZbbklnZ2c6OztTWVnZ84EBAAAAADhoduzYkR07dgzaYSQMfWPHju36PuopAXYAAAAAgGFk7ty5Xdff//7393kiyq4w+tixY3PWWWftdm9/a5LdA+wAAAAAABx6Ojo6kiRFRUWDPAlD1a7vnV3fSz0hwA4AAAAAMIxMmjQpU6dOTZI0Nzfn5z//ebe1u8LoZ511Vl772tfudm9vWlpa8qMf/ShJMmrUqMyaNat/hgYAAAAA4KAqKCgY7BEYog7ke0eAHQAAAABgmHnhyejdBdK3b9+e1atXJ3n+1PY5c+YkSZ566qmsXbt2r2tWrVrV9Rahf/iHf5jS0tKuZ5deemkKCgpSUFCQpqamfc73ne98JxdeeGEmTpyYkpKSVFRUpKamJvfee+9+X1tlZWUKCgryxBNPJEmeeOKJrn1f+HH11Vfvs8+2bdvy2c9+NmeccUaOOuqolJaWZsqUKfmLv/iLPP744/udAwAAAAAA2DsBdgAAAACAYeaFAfb77rtvrzU/+MEP0tramuT5APvMmTMzatSofa55YRj+hXv0VEdHR9797nfnDW94Q5YvX57f/OY3aWtry5NPPpk777wzf/RHf5QPfvCDve7bW48//nhOP/30XH755XnwwQfz+9//Ptu2bcuvfvWr/Ou//mtOOeWUfZ5EDwAAAAAAdG/EYA8AAAAAAMDAmjt3btf197///XR2du7xFp+7Atpjx47N9OnTM2LEiJx++ul54IEHsnLlyrznPe/Zo29fA+wf+tCH8qUvfSlJUlRUlLe+9a2ZO3duiouL85Of/CRf/vKXc+ONN+bJJ5/stsdNN92UlpaWXHbZZfnd736Xo48+OjfddNMedVVVVXtdv3nz5px77rlpaGjIOeeck/PPPz/HHntsNmzYkK985Sv58Y9/nK1bt+ZNb3pTGhoaMmHChF6/TgAAAAAAGM4E2AEAAAAAhpljjz021dXVaWhoyO9///v89Kc/zate9ardanaF0WfNmpURI57/UfJrXvOargD7i7W0tORHP/pRkqSkpCRnnHFGr2ZatWpV/vmf/zlJMnr06Nxzzz0566yzup6/5S1vyYc+9KGcffbZWbZsWbd9zjnnnCTpOqm9rKws8+fP7/EcDz/8cEaMGJFvfOMbWbBgwW7P3ve+9+X888/PPffck9/+9re5+eab8+EPf7jHvQEAAAAAhrJfb2rNxq3bB3uMPpswelReMr50sMfoV5WVlXniiSdy880359JLL+3xs8EiwA4AAAAAMAzNmzcvDQ0NSZ4Pq78wwL59+/asXr06ye6ntc+ZMyfXXnttfvOb36SxsXG3U8xXrVqVHTt2JEnOOOOMFBcX92qe66+/Pp2dnUmS6667brfw+i4TJ07M7bffnunTp6e9vb1X/Xvjyiuv3CO8niQjRozIZz7zmdxzzz1Jkm9/+9sC7AAAAADAsPDrTa05+9Mr07azY7BH6bPiEYX53kfmHpQQe2dnZ5YuXZqvfe1r+fGPf5ynn346RUVFOfbYYzNx4sScfvrpmT17dl772tfmiCOO6Pf9e+vqq69Oklx66aWprKwcsH0LB2wnAAAAAAAOGfPmzeu6vu+++3Z79uCDD6a1tTXJ86H1Xc4888yu09hfvOaFX78w9N4TbW1tufvuu5Mk48aNy7ve9a5ua1/xild0nbJ+MBQWFubyyy/v9nlVVVUmT56cJFmzZs1BmwMAAAAA4FCycev2wyK8niRtOzsOyknymzZtyrx58/Jnf/ZnWb58edatW5edO3emuLg469aty6pVq/KZz3wmNTU1+3yn0f72spe9LCeddFLGjRu3x7Nrrrkm11xzTZqamgZsnkSAHQAAAABgWJozZ04KCgqSJHV1deno+L+/eFi5cmWSZMyYMXn1q1/ddX/MmDGZMWPGbjUvXpPsHo7viZ/+9KfZvv35vyyYNWvWfk9vf+1rX9ur/r1x0kkn5cgjj9xnza4A+8aNGw/aHAAAAAAADC1vf/vbc//996eoqCgLFy7M2rVr09bWlmeeeSatra356U9/muuuuy6vfOUrB3Su7373u2lsbMyFF144oPvuiwA7AAAAAMAwdPTRR+flL395kueD2D/5yU+6nu0Ko8+aNavrxPVddp3I/sLA+tatW/PQQw8lSUpLS/OHf/iHvZrlqaee6rqeMmXKfut7UnOgysvL91uzK2Df1tZ20OYAAAAAAGDoePTRR/PNb34zSfLJT34yn/70p3PiiSemsPD5qPaIESPyile8IldccUV+8pOf5I1vfONgjjvoBNgBAAAAAIapF56UviuQ3tbWlgcffDDJ/4XVX2jXvaeffjq//OUvkySrVq3Kjh07kjwfeh81alSv5njuuee6rsvKyvZbP3r06F71741df5kAAAAAAAA99cJDYi644IL91peWlu72dWVlZQoKCnLLLbdky5YtWbRoUU466aSUlpamvLw88+fPzw9+8IMDmu2FvXe59NJLu96lNXn+7wsKCgq6PiorKw9or57yk3gAAAAAgGFq7ty5Xdf33XdfkuQHP/hBWltb93i+y1lnnZWioqLd1rzwNPYXhuJ7asyYMV3XLS0t+63funVrr/cAAAAAAICBsH79+gNeu3Hjxpx22mn5+7//+zQ1NWXUqFF55plnctddd+XMM8/Mv/3bv/XLjOPGjcuxxx7b9fWECRNy7LHHdn0cffTR/bJPdwTYAQAAAACGqTlz5nSdsFJXV5f29vauMPro0aNz2mmn7bHmiCOOyCtf+cok/Rdgf8lLXtJ1/dhjj+23vic1AAAAAAAwUE477bSun7cvXLgwa9euPaA+11xzTZ5++un8x3/8R7Zu3Zpnn302v/zlLzNnzpx0dHTkPe95T3784x/3ed4bb7wxv/nNb7q+XrZsWX7zm990ffzoRz/q8x77IsAOAAAAADBMHXXUUXnFK16RJHn22Wfz8MMPd4XRzzzzzIwYMWKv6+bMmZMkuf/++/Pcc8/loYceSvL8Sep7C73vzyte8YoUFxcnSVatWpW2trZ91n/3u9/db8/Cwud//N3Z2dnreQAAAAAAoDcqKyvzrne9K0ny85//PFVVVZk+fXr+8i//Mv/2b/+WNWvW9Ojn1c8++2y+8Y1v5OKLL+76GX11dXW+/e1v58QTT8zOnTvz//7f/zuor2UgCLADAAAAAAxjLzwx/Z577smDDz6YJJk7d263a3YF2Jubm/OFL3whO3bsSJKcddZZ3Ybe96W4uDh/8id/kuT5H87v6y1Q16xZk3vvvXe/PceMGZMk2bp1a6/nAQAAAACA3vrc5z6X//f//l9Gjx6dzs7OPPzww/nc5z6Xd77znTnllFPyB3/wB/nwhz+c3/72t932mDVrVl772tfucb+0tDR//dd/neT5n+U/++yzB+11DAQBdgAAAACAYeyFQfV//ud/Tmtr6x73X2z27Nldb4X6D//wD133XxiG762FCxd29fybv/mbrF69eo+a3/72t3njG9+Y9vb2/fY74YQTkiTPPPNM1q1bd8BzAQAAAABAT4wYMSKf+MQn8utf/zpf/epX8653vSuvfOUrM2rUqCTJ008/nc985jOZNm1afvjDH+61x9lnn91t/13POjo68uMf/7j/X8AAEmAHAAAAABjGXvOa16Sw8PkfFT/99NNJkrKyspx22mndrjnyyCNzyimn7LYm6VuAfdasWfnABz6QJNmyZUte85rX5B3veEduueWW3Hbbbfmbv/mbnHzyyfnlL3+Zmpqa/fZ73ete13V94YUX5otf/GK+9a1v5Z577sk999yTxx577IBnBQAAAACA7owbNy61tbX54he/mJ/85Cd59tln81//9V85//zzkzz/7qYXXXRRtm3btsfal7zkJd32feGzF/5sfigSYAcAAAAAGMYmTJiQV73qVbvdO/PMMzNy5Mh9rpszZ85uXx9xxBGZPn16n2b5zGc+k3e+851Jkp07d+aWW27JO97xjrzlLW/JP/zDP+T3v/99Lr/88q6g+778+Z//eaqqqpIkP/7xj3PZZZfl3HPPzR//8R/nj//4j7NkyZI+zQoAAAAAAD1RUlKS173udfnP//zPXHLJJUmS9evX55577hnkyQaPADsAAAAAwDD34pPT586du981Lw6wz549O0VFRX2ao7CwMF/60pfy7W9/O3/6p3+aY445JqNGjcrkyZNz4YUX5p577sk//dM/9ajX6NGj8+CDD+aqq67Kq1/96owbN67rpHkAAAAAABgMl112Wdf1I488ssfzX//6192ufeGzY445pn8HG2AjBnsAAAAAAAAG16c//el8+tOf7tWaiy66KJ2dnT2uv+WWW3LLLbf0qPYNb3hD3vCGN3T7fO7cuT3ae9y4cbnmmmtyzTXX7Le2N69l5cqVPa4FAAAAAIBdxowZ03VdXFy8x/P77ruv27W7nhUWFubUU0/tl3kKCgrS2dnZq5+R9wfHzQAAAAAAAAAAAAAAHKDHH388a9eu3W/dV77yla7r6dOn7/H8gQce2OshKtu2bcv111+fJPmjP/qjjB8//oBnfaEjjjgiSbJp06Z+6ddTAuwAAAAAAAAAAAAAAAfoF7/4Raqrq3Puuefm1ltvTVNTU9ezHTt25OGHH8473vGO3HDDDUmS008/PWedddYefcaNG5eLLrooS5cuzc6dO5MkjY2NOffcc9PY2JiioqJ84hOf6Le5p02bliT593//97S0tPRb3/0ZMWA7AQAAAAAAAAAAAAAcZkaOHJmOjo5861vfyre+9a0kyahRozJmzJhs3LgxnZ2dXbXTp0/PnXfemcLCPc8h//jHP54vfOELufjii1NcXJySkpI8++yzSZKCgoJ8/vOfz6tf/ep+m/u9731vVq1alTvuuCP/+Z//mWOOOSYjRozI5MmT88ADD/TbPi8mwA4AAAAAAAAAAAAAcID+6I/+KI8++mi+9a1v5YEHHsiaNWuyfv36bNq0KWVlZZk0aVJOPfXU1NTU5OKLL95reD1JJkyYkB/+8IdZvHhx7rjjjjz55JM58sgjM2vWrCxatChnnHFGv85dW1ubJPnCF76Qn//859mwYUM6Ojr6dY+9Keh8YaQfAAAAAAAAAAAAABgWtm3blscffzwnnHBCSkpKuq379abWnP3plWnbefDDzQdb8YjCfO8jc/OS8aWDPUqXysrKPPHEE7n55ptz6aWXDvY4vdLT76EXcgL7IaCjoyNPPfVUxo4dm4KCgsEeBwAAAAAAAAAAAIBDVGdnZ7Zs2ZJJkyZ1e5J3f3vJ+NJ87yNzs3Hr9gHZ72CaMHrUIRVeH44E2A8BTz31VI477rjBHgMAAAAAAAAAAACAIeLJJ5/M5MmTB2y/l4wvFfymXwiwHwLGjh2b5Pn/IzniiCMGeRr6U1VVVTZs2JCJEyemsbFxsMcBAACAw5I/fwPQU37PAKAn/H4BQE/5PQOAwbJ58+Ycd9xxXflTGGoE2A8BBQUFSZIjjjhCgP0ws+utOQoLC/1vCwAAAAeJP38D0FN+zwCgJ/x+AUBP+T0DgMG2K38KQ40AOwAAAAAAAAAAAADAIGlqahrsEQZU4WAPAAAAAAAAAAAAAADA8CDADgAAAAAAAAAAAADAgBBgBwAAAAAAAAAAAABgQAiwAwAAAAAAAAAAAAAwIATYAQAAAAAAAAAAAAAYEALsAAAAAAAAAAAAAAAMCAF2AAAAAAAAAAAAAAAGhAA7AAAAAAAAAAAAAAADQoAdAAAAAAAAAAAAAIABIcAOAAAAAAAAAAAAAMCAEGAHAAAAAAAAAAAAAGBACLADAAAAAAAAAAAAADAgRgz2AAAAAAAAAAAAAADAIW7Tk0nLM4M9Rd+VHZWMP26wpxjWBNgBAAAAAAAAAAAAgO5tejL5lxnJzrbBnqTvRhQn768/qCH29vb23HHHHVmxYkUefPDBPP3002lpacn48eMzderUzJ49O29961szbdq0bnvcf//9+drXvpbvf//72bBhQ7Zt25ajjz46r3zlK3P++efnkksuSUlJSbfrr7766lxzzTV73B81alSOOuqonHLKKbn44otzySWXZOTIkf3yuntKgB0AAAAAAAAAAAAA6F7LM4dHeD15/nW0PHPQAuwPPvhgLrnkkqxdu7br3siRIzN27Ng888wzWbVqVVatWpW///u/T01NTW677baMGjWqq/aZZ57J29/+9nzrW9/quldcXJySkpKsX78+69evz913351PfepTueWWW3L22Wfvd6Zjjz2263rLli3ZsGFDNmzYkHvvvTdf+MIXcu+992bChAn99Cuwf4UDthMAAAAAAAAAAAAAwGHqm9/8ZubOnZu1a9fmqKOOyuLFi7N27dps3749zzzzTLZv354f/ehH+ehHP5ojjjgiy5YtS0tLS9f63/72t5k5c2a+9a1vpaioKB/4wAfyi1/8Itu2bcumTZuycePG3HzzzTnuuOPy5JNP5g1veEOWL1++37l+85vfdH1s3bo1TzzxRN797ncnSR566KH81V/91cH6JdkrAXYAAAAAAAAAAAAAgD549NFHU1tbm7a2tpx88sn5yU9+ko9+9KM58cQTu2qKiory6le/OosXL87jjz+eCy64oOtZZ2dn3vKWt+Sxxx7LyJEjc+edd+azn/1sTj755K6a8ePH59JLL83DDz+cV77yldmxY0cuueSS/OpXv+rVrBUVFbnpppu6Tm//j//4jzz33HN9/BXoOQF2AAAAAAAAAAAAAIA++Nu//dts3rw5JSUlufPOOzN58uR91h955JFZvnx5xo0blyRZsWJFvve97yVJPvaxj+X888/vdu1RRx2Vb3zjGykpKcnmzZvz8Y9//IBmfsMb3pAk2b59ex599NED6nEgBNgBAAAAAAAAAAAAAA7Qb3/72yxdujRJ8ta3vjVTp07t8dqCgoIkyec+97kkydixY7Nw4cL9rjvxxBPz5je/OUly++23p7m5ubdjp7Ozs+u6vb291+sPlAA7AAAAAAAAAAAAAMABuu+++9LR0ZEkufDCC3u9fufOnamrq0uSnHPOORkzZkyP1tXU1HSt//73v9/rfb/zne8keT5Ef8IJJ/R6/YESYAcAAAAAAAAAAAAAOEC/+MUvuq5PPfXUXq9vamrK1q1be73+Va96Vdf1z372sx6vW7duXS677LJ873vfS5Kcf/75Oeqoo3q8vq9GDNhOAAAAAAAAAAAAAACHmWeeeabr+sgjj+zT+t4EycvLy/fa48X+4A/+oOt6y5YtaWlp6fq6qqoqn/vc53q8Z38QYAcAAAAAAAAAAAAAGMLa2tq6ffbb3/52r/ff/va35wtf+EJKSkoO1lh7VTiguwEAAAAAAAAAAAAAHEZeeGr673//+z6t39dJ6i/W3NzcdT1hwoRu6zo7O9PZ2ZmOjo489dRT+dd//deMHz8+t956a/7lX/6l1/P2lRPYAQAAAOi1lpaWNDY27navtbU1TU1NqaysTGlp6W7PqqqqUlZWNpAjAgAAAAAAwIB4+ctf3nX98MMPZ9KkSb1af/zxx2f06NHZunVrfvzjH/d43cMPP9x1fdJJJ+23vqCgIBMnTsx73vOenHTSSTn77LNzxRVXZPr06Tn77LN7NXNfCLADAAAA0GuNjY2ZMWNGj+vr6+szffr0gzgRAAAAAAAADI558+alsLAwHR0dufPOO3Puuef2av3IkSMze/bs3HPPPbn33nuzZcuWjB07dr/rli1b1nU9d+7cXu05d+7cvO1tb8utt96aD3zgA/nZz36WoqKiXvU4UIUDsgsAAAAAh5WqqqrU19fv9rFkyZIkyZIlS/Z4VlVVNcgTAwAAAAAAwMFx7LHH5qKLLkqSfO1rX8vatWt7vLazszNJ8r73vS9J8txzz+WGG27Y77pHH300X//615MkZ511Vl760pf2duxcddVVKSoqyi9/+ct85Stf6fX6A3XYBNifeOKJLFy4MFVVVRk9enSOPPLInHbaafnHf/zHtLS09Ote//3f/51LL700U6ZMyejRozNu3LhMnTo1CxYsyOc///k899xz/bofAAAAwKGmrKws06dP3+2juro6SVJdXb3Hs7KyskGeGAAAAAAAAA6eT37ykxkzZkxaW1tTU1OTX//61/us37hxYy666KI8++yzSZLzzjuv6xT1T33qU1mxYkW3a5955plcfPHF2bZtWwoKCvLJT37ygGZ+2ctelje+8Y1Jkr/7u7/Ljh07DqhPbx0WAfZvfvObecUrXpEbbrghjzzySFpaWrJx48Y89NBDueKKK3Lqqafmscce6/M+GzduzPz58/P6178+X/nKV/KrX/0qLS0t2bx5cx599NHccccded/73tcvewEAAAAAAAAAAAAAQ8PUqVPz1a9+NaNGjcovfvGLvOpVr8p11123W664vb09Dz/8cK666qq89KUvzbJly7qeFRQU5LbbbstLX/rS7NixIxdeeGEuv/zyNDQ0dNU8++yz+cpXvpLp06fnpz/9aZLnT1GfM2fOAc+9aNGiFBQUpKmpKV/+8pcPuE9vDPkA+8MPP5w3vvGN2bx5c8aMGZNPfepT+Z//+Z9897vfzbvf/e4kydq1a3Puuedmy5YtB7zPs88+m9e//vW56667kiQXXnhh/v3f/z0PPvhgfvSjH2XZsmW5/PLLM3ny5H55XQAAAAAAAAAAAADA0DF//vx873vfy5QpU9Lc3JyPfvSjOfHEE1NcXJyjjjoqo0aNyvTp0/N3f/d3efbZZ/PmN785o0eP7lr/B3/wB3nwwQdzzjnnZOfOnfnsZz+bk08+OaWlpZkwYULGjx+fSy+9NOvWrcvIkSPzD//wD7n66qv7NPO0adPyp3/6p0meP/m9ra2tT/16YsRB3+Egu/zyy9Pa2poRI0bk3nvvzRlnnNH17Oyzz86JJ56YK664ImvXrs31119/wP8jfeADH0h9fX2Ki4vzH//xH13/Q+3y6le/OhdeeGE+85nPpL29vS8vCQAAAAAAAAAAAAAOHWVHJSOKk50HP9x80I0ofv71HCSzZs1KY2NjvvGNb2TFihX5wQ9+kKeffjpbtmzJkUcemaqqqsyZMydve9vbctJJJ+2x/uijj853vvOdfO9738ttt92Wurq6bNiwIZs2beqqmTRpUu67775MnTq1X2b+2Mc+lrvuuivr16/PF77whfzVX/1Vv/TtzpAOsP/whz9MXV1dkuSd73znbuH1XRYuXJibb745DQ0NufHGG/Oxj30sI0eO7NU+DzzwQL761a8mST75yU/uEV5/oYKCgowYMaR/WQEAAAAAAAAAAADg/4w/Lnl/fdLyzGBP0ndlRz3/eg6ioqKivOlNb8qb3vSmA+5x9tln5+yzz97t3u233543v/nNeeqpp/LVr341f/d3f9ft+quvvrrHB3+fdtpp6ezsPOBZe2tIJ62XL1/edf2Od7xjrzWFhYV5+9vfnkWLFmXTpk257777cs455/Rqn3/5l39JkowbNy7vf//7D3heAAAAAAAAAAAAABiSxh930IPf7Nsb3/jGbNiwIR/60IfyyU9+MmPHjs0VV1wx2GP1WuFgD9AXDzzwQJJk9OjRmTFjRrd1c+bM6bpetWpVr/bYvn177rrrriTJ61//+pSUlCRJ2tvb8+STT6apqSnbtm3r7egAAAAAAAAAAAAAAL3ywQ9+MB/5yEeSJH/zN3+Tz33uc4M8Ue8N6QB7Q0NDkmTKlCkZMaL7w+Srqqr2WNNTP/3pT7sC6qeccko2b96cD37wgykvL09FRUVOOOGEjBs3Lq9//euzcuXK3r8IAAAAAAAAAAAAAIAe+sd//Md0dnams7Mz73vf+wZ7nF4bsgH2bdu2pbm5OUkyefLkfdZOmDAho0ePTpI8+eSTvdrnl7/8Zdd1R0dHXv3qV+fGG2/Mpk2buu5v3749//3f/52zzz4711133X57trW1ZfPmzbt9AAAAAAAAAAAAAAAc7oZsgH3Lli1d12PGjNlv/a4A+3PPPderfX7/+993XV933XV59NFH84Y3vCE//OEPs23btjz99NP5/Oc/n3HjxqWzszMf/ehHc9ddd+2z5+LFizNu3Liuj+OOO65XMwEAAAAAAAAAAAAADEVDNsC+bdu2rutRo0btt764uDhJ0tra2qt9tm7dutuer3/967NixYqcdtppKS4uztFHH533vve9WbFiRQoLn//lXLRoUTo7O7vtuWjRojz77LNdH709FR4AAAAAAAAAAAAAYCgasgH2kpKSruvt27fvt76trS1JUlpaesD7JM+fwl5UVLRH3VlnnZWampokSUNDQ37+859327O4uDhHHHHEbh8AAAAAAAAAAAAAAIe7IRtgHzt2bNf1c889t9/6XSepjxkz5oD3Ofroo3Pqqad2W/tHf/RHXdc/+tGPerUPAAAAAAAAAAAAAMDhbsgG2EtKSnLUUUclSdavX7/P2o0bN3YF2I877rhe7fPC+smTJ/e49ne/+12v9gEAAAAAAAAAAAAAONwN2QB7kpx88slJksceeyw7d+7stq6xsbHrurq6uld7vPzlL++6bm9v32ftC5+PGDGiV/sAAAAAAAAAAAAAABzuhnSA/ayzzkqSbN26NfX19d3W3X///V3Xs2bN6tUexx9/fCoqKpIkTU1N6ezs7Lb2V7/6Vdf1S17ykl7tAwAAAAAAAAAAAABwuBvSAfb58+d3Xd988817reno6Mitt96aJBk/fnzmzZvX630uuuiiJMnmzZvz3e9+t9u6ZcuWdV3vCtcDAAAAAAAAAAAAAPC8IR1gP/300zN79uwkyZe//OWsXr16j5rrr78+DQ0NSZLLL788I0eO3O35ypUrU1BQkIKCglx66aV73eeDH/xgSkpKkiQf/vCHs3nz5j1qlixZkpUrVyZJzj333Bx33HEH+rIAAAAAAAAAAAAAAA5LQzrAniQ33nhjSktLs3PnzpxzzjlZvHhxHnzwwdx33315z3vekyuuuCJJMnXq1CxcuPCA9qioqMgnPvGJJMnPf/7znH766bn55ptTX1+f++67Lx/4wAe6wu9HHHFEPvOZz/TLawMAAAAAAAAAAAAAOJyMGOwB+urUU0/N7bffntra2mzevDlXXnnlHjVTp07N3XffnbFjxx7wPn/913+d3//+97nuuuvyyCOP5M///M/3qDnmmGOyfPnynHjiiQe8DwAAAAAAAAAAAADA4WrIn8CeJOeff35+9rOf5UMf+lCmTp2asrKyjB8/Pq9+9atz3XXX5eGHH86UKVP6vM/ixYuzatWqvO1tb0tlZWWKi4szbty4nHbaafm7v/u7rF27NmeccUY/vCIAAAAAAAAAAAAAgMPPkD+BfZfjjz8+N9xwQ2644YZerZs7d246Ozt7XH/GGWcIqQMAAAAAAAAAAAAwrGx4bkM2tm0c7DH6bELxhEwcM3GwxxjWDpsAOwAAAAAAAAAAAADQ/zY8tyHnLT8v29u3D/YofTaqaFRWzF9xUEPs7e3tueOOO7JixYo8+OCDefrpp9PS0pLx48dn6tSpmT17dt761rdm2rRp3fb42c9+ln//93/PfffdlyeeeCIbN25MaWlpXvKSl+S0005LTU1N/uRP/iQjR47cbd3cuXNz//3379GvrKwsL3nJS3LmmWfmve99b2bOnNnvr7unBNgBAAAAAAAAAAAAgG5tbNt4WITXk2R7+/ZsbNt40ALsDz74YC655JKsXbu2697IkSMzduzYPPPMM1m1alVWrVqVv//7v09NTU1uu+22jBo1qqt2y5Ytee9735vbbrstnZ2dSZKCgoKMGzcura2taWhoSENDQ2699da87GUvy7//+7/nD//wD/eYY+TIkTnyyCO7vm5ubs6jjz6aRx99NLfeems+/vGP5+Mf//hB+TXYn8JB2RUAAAAAAAAAAAAA4DDyzW9+M3Pnzs3atWtz1FFHZfHixVm7dm22b9+eZ555Jtu3b8+PfvSjfPSjH80RRxyRZcuWpaWlpWv9xo0bc8YZZ+RrX/takuRNb3pT7r///mzbti0bN27Mtm3b8utf/zpf+tKX8opXvCK/+tWvsnr16r3OcuaZZ+Y3v/lN10dLS0vuvffeTJkyJZ2dnbn66qtz9913D8ivy4sJsAMAAAAAAAAAAAAA9MGjjz6a2tratLW15eSTT85PfvKTfPSjH82JJ57YVVNUVJRXv/rVWbx4cR5//PFccMEFu/V461vfml/84hcZMWJEbr/99tx22215zWtes9sJ7ZMmTco73/nO/OQnP8nnPve5lJSU9Gi+UaNG5fWvf33uuuuurn7/8i//0g+vvPdGDMquAAAAAAAAAAAAAACHib/927/N5s2bU1JSkjvvvDOTJ0/eZ/2RRx6Z5cuXp7OzM0ny7W9/O9/+9reTJFdddVUuvvjifa4vKCjIX/zFX6Sjo6NXc5588smZMWNGVq9enR/96Ee9WttfnMAOAAAAAAAAAAAAAHCAfvvb32bp0qVJnj9FferUqT1eW1BQkOT/TkMfN25cPvzhD/d4fWFh7+Pgu8L1mzdv7vXa/iDADgAAAAAAAAAAAABwgO67776uk9AvvPDCXq/fuXNnvv/97ydJXv/612f06NH9Ot+LNTU1JXn+FPjBIMAOAAAAAAAAAAAAAHCAfvGLX3Rdn3rqqb1e/8QTT+S555474PW98cMf/jD19fVJkpkzZx7UvbojwA4AAAAAAAAAAAAAcICeeeaZrusDOdW8r+t74qmnnspXv/rVXHDBBeno6EhBQUE++MEPHpS99mfEoOwKAAAAAAAAAAAAAMBBcf/996egoGCvz0aOHJkbbrghc+fOHdih/n8C7AAAAAAAAAAAAAAAB+ioo47quv7973+fSZMm9Wl9fxg5cmTXae4FBQUpLS3NpEmTcuaZZ+Zd73pXpk6d2i/7HAgBdgAAAAAAAAAAAACAA/Tyl7+86/rhhx/udYD9+OOPz5gxY/Lcc8/l4Ycf7peZzjzzzKxcubJfevW3wsEeAAAAAAAAAAAAAABgqJo3b14KC5+PZd955529Xj9ixIi85jWvSZL813/9V7Zu3dqv8x1qBNgBAAAAAAAAAAAAAA7Qsccem4suuihJ8rWvfS1r167t8drOzs4kyV/+5V8mSZ599tnccMMNPV7f0dHRi0kPDQLsAAAAAAAAAAAAAAB98MlPfjJjxoxJa2trampq8utf/3qf9Rs3bsxFF12UZ599NknyJ3/yJznnnHOSJJ/4xCeydOnS/e5500035Ytf/GLfhx9gAuwAAAAAAAAAAAAAAH0wderUfPWrX82oUaPyi1/8Iq961aty3XXX5bHHHuuqaW9vz8MPP5yrrroqL33pS7Ns2bLdenzta19LdXV1du7cmT/7sz/LW9/61tTV1WXHjh1dNRs2bMhXvvKVzJgxI+95z3vS2to6YK+xv4wY7AEAAAAAAAAAAAAAAIa6+fPn53vf+14uvfTSPPbYY/noRz+aj370oxk1alTGjBmTTZs2paOjI0lSUFCQN7/5zRk9enTX+qOOOioPPvhg3v3ud+cb3/hGvva1r+VrX/taCgoKMn78+LS2tmbbtm1d9dXV1Zk9e/aAv86+EmAHAAAAAAAAAAAAAOgHs2bNSmNjY77xjW9kxYoV+cEPfpCnn346W7ZsyZFHHpmqqqrMmTMnb3vb23LSSSftsf6II47I7bffniuvvDJLlizJypUr88QTT2Tjxo0pLS3NCSeckNNPPz0XX3xx3vCGN6SoqGgQXmXfCLADAAAAAAAAAAAAAN2aUDwho4pGZXv79sEepc9GFY3KhOIJB3WPoqKivOlNb8qb3vSmA+7xyle+Mq985St7vW7lypUHvOdAEWAHAAAAAAAAAAAAALo1cczErJi/IhvbNg72KH02oXhCJo6ZONhjDGsC7AAAAAAAAAAAAADAPk0cM1Hwm35RONgDAAAAAAAAAAAAAAAwPAiwAwAAAAAAAAAAAAAwIATYAQAAAAAAAAAAAAAYEALsAAAAAAAAAAAAAAAMCAF2AAAAAAAAAAAAAAAGhAA7AAAAAAAAAAAAAAADQoAdAAAAAAAAAAAAAIABIcAOAAAAAAAAAAAAAMNYZ2fnYI/AEHUg3zsC7AAAAAAAAAAAAAAwDBUWPh8lbm9vH+RJGKp2fe/s+l7qCQF2AAAAAAAAAAAAABiGRo4cmZEjR+a5554b7FEYorZs2dL1fdRTIw7iPAAAAAAcJtatW5fm5uZ91jQ0NOz2eV/Ky8tTUVHRL7MBAAAAAABwYAoKCjJ27Nhs2rQp48aNS2lp6WCPxBDS2tqazZs3Z/z48SkoKOjxOgF2AAAAAPZp3bp1OanqpGxr3daj+tra2v3WlJSW5JHGR4TYAQAAAAAABll5eXlaW1uzbt26HHHEERk7dmyKiop6FUhm+Ojs7Ex7e3u2bNmSzZs3p7i4OOXl5b3qIcAOAAAAwD41NzdnW+u2TL5scoonFXdb17G9Izuad2Rk+cgUjirstq7tqbasv2l9mpubBdgBAAAAAAAGWVFRUY477rg0Nzdny5Yt2bRp02CPxBAwcuTIjB8/PuXl5SkqKurVWgF2AAAAAHqkeFJxSiv387aRUwdmFgAAAAAAAPpPUVFRjj322BxzzDHZsWNHOjo6BnskDmGFhYUZOXLkAZ/SL8AOAAAAAAAAAAAAAKSgoCCjRo0a7DE4zHX/Xs4AAAAAAAAAAAAAANCPBNgBAAAAAAAAAAAAABgQAuwAAAAAAAAAAAAAAAwIAXYAAAAAAAAAAAAAAAaEADsAAAAAAAAAAAAAAANCgB0AAAAAAAAAAAAAgAEhwA4AAAAAAAAAAAAAwIAQYAcAAAAAAAAAAAAAYEAIsAMAAAAAAAAAAAAAMCAE2AEAAAAAAAAAAAAAGBAC7AAAAAAAAAAAAAAADAgBdgAAAAAAAAAAAAAABoQAOwAAAAAAAAAAAAAAA0KAHQAAAAAAAAAAAACAASHADgAAAAAAAAAAAADAgBBgBwAAAAAAAAAAAABgQAiwAwAAAAAAAAAAAAAwIATYAQAAAAAAAAAAAAAYEALsAAAAAAAAAAAAAAAMCAF2AAAAAAAAAAAAAAAGhAA7AAAAAAAAAAAAAAADQoAdAAAAAAAAAAAAAIABIcAOAAAAAAAAAAAAAMCAEGAHAAAAAAAAAAAAAGBACLADAAAAAAAAAAAAADAgBNgBAAAAAAAAAAAAABgQAuwAAAAAAAAAAAAAAAwIAXYAAAAAAAAAAAAAAAaEADsAAAAAAAAAAAAAAANCgB0AAAAAAAAAAAAAgAEhwA4AAAAAAAAAAAAAwIAQYAcAAAAAAAAAAAAAYEAIsAMAAAAAAAAAAAAAMCAE2AEAAAAAAAAAAAAAGBAjBnsAAAAAAA5tra2tSZK2p9r6pd+uPrv6AgAAAAAAAMOHADsAAAAA+9TU1JQkWX/T+n7vO2vWrH7tCQB0r6WlJY2Njbvda21tTVNTUyorK1NaWrrbs6qqqpSVlQ3kiAAAAADAMCDADgAAAMA+VVZWJkkmXzY5xZOK+9yv7am2rL9pfVdfAGBgNDY2ZsaMGT2ur6+vz/Tp0w/iRAAAAADAcCTADgAAAMA+7TqNtXhScUorS/dT3fu+AMDAqKqqSn19/W73GhoaUltbmyVLlqS6unqPegAAAACA/ibADgAAADAMtbe3p66uLhs2bMjEiRMze/bsFBUVDfZYAMBBVFZW1u2J6tXV1U5bBwAAAAAGROFgDwAAAADAwFq2bFmmTJmSefPm5S1veUvmzZuXKVOmZNmyZYM9GgAAAAAAAHCYE2AHAAAAGEaWLVuWBQsW5JRTTsnq1auzZcuWrF69OqecckoWLFggxA4AAAAAAAAcVALsAAAAAMNEe3t7Fi5cmPPOOy/Lly/PzJkzM2bMmMycOTPLly/Peeedl4985CNpb28f7FEBAAAAAACAw5QAOwAAAMAwUVdXl6amplx55ZUpLNz9x0KFhYVZtGhRHn/88dTV1Q3ShAAAAAAAAMDhToAdAAAAYJjYsGFDkmTatGl7fb7r/q46AAAAAAAAgP4mwA4AAAAwTEycODFJsmbNmr0+33V/Vx0AAAAAAABAfxNgBwAAABgmZs+encrKylx77bXp6OjY7VlHR0cWL16cE044IbNnzx6kCQEAAAAAAIDDnQA7AAAAwDBRVFSU66+/PitWrMj8+fOzevXqbNmyJatXr878+fOzYsWKfPrTn05RUdFgjwoAAAAAAAAcpkYM9gAAAAAADJyamposXbo0CxcuzJlnntl1/4QTTsjSpUtTU1MziNMBAAAAAAAAhzsBdgAAAIBhpqamJhdccEHq6uqyYcOGTJw4MbNnz3byOgAAAAAAAHDQCbADAAAADENFRUWZO3fuYI8BAAAAAAAADDOFgz0AAAAAAAAAAAAAAADDgwA7AAAAAAAAAAAAAAADQoAdAAAAAAAAAAAAAIABIcAOAAAAAAAAAAAAAMCAGDHYAwAAAAAcqPb29tTV1WXDhg2ZOHFiZs+enaKiosEeCwAAAAAAAIBuOIEdAAAAGJKWLVuWKVOmZN68eXnLW96SefPmZcqUKVm2bNlgjwYAAAAAAABANwTYAQAAgCFn2bJlWbBgQU455ZSsXr06W7ZsyerVq3PKKadkwYIFQuwAAAAAAAAAhygBdgAAAGBIaW9vz8KFC3Peeedl+fLlmTlzZsaMGZOZM2dm+fLlOe+88/KRj3wk7e3tgz0qAAAAAAAAAC8iwA4AAAAMKXV1dWlqasqVV16ZwsLdf7RRWFiYRYsW5fHHH09dXd0gTQgAAAAAAABAdwTYAQAAgCFlw4YNSZJp06bt9fmu+7vqAAAAAAAAADh0CLADAAAAQ8rEiROTJGvWrNnr8133d9UBAAAAAAAAcOgQYAcAAACGlNmzZ6eysjLXXnttOjo6dnvW0dGRxYsX54QTTsjs2bMHaUIAAAAAAAAAuiPADgAAAAwpRUVFuf7667NixYrMnz8/q1evzpYtW7J69erMnz8/K1asyKc//ekUFRUN9qgAAAAAAAAAvMhhE2B/4oknsnDhwlRVVWX06NE58sgjc9ppp+Uf//Ef09LS0qfet9xySwoKCnr0ccstt/TPCwIAAAC6VVNTk6VLl+bnP/95zjzzzBxxxBE588wzs2bNmixdujQ1NTWDPSIAAAAAAAAAezFisAfoD9/85jdTW1ubzZs3d91raWnJQw89lIceeihf+tKXcvfdd2fKlCmDOCUAAADQn2pqanLBBRekrq4uGzZsyMSJEzN79mwnrwPAIaalpSWNjY273WttbU1TU1MqKytTWlq627OqqqqUlZUN5IgAAAAAAAygIR9gf/jhh/PGN74xra2tGTNmTBYtWpR58+altbU1X//61/PFL34xa9euzbnnnpuHHnooY8eO7dN+3/nOdzJp0qRun0+ePLlP/QEAAICeKyoqyty5cwd7DABgHxobGzNjxowe19fX12f69OkHcSIAAAAAAAbTkA+wX3755Wltbc2IESNy77335owzzuh6dvbZZ+fEE0/MFVdckbVr1+b666/P1Vdf3af9pk6dmsrKyr4NDQAAAAAAw0RVVVXq6+t3u9fQ0JDa2tosWbIk1dXVe9QDAAAAAHD4GtIB9h/+8Iepq6tLkrzzne/cLby+y8KFC3PzzTenoaEhN954Yz72sY9l5MiRAz0qAAAAAAAMS2VlZd2eqF5dXe20dQAAAACAYaZwsAfoi+XLl3ddv+Md79hrTWFhYd7+9rcnSTZt2pT77rtvIEYDAAAAAAAAAAAAAOBFhnSA/YEHHkiSjB49OjNmzOi2bs6cOV3Xq1atOuhzAQAAAAAAAAAAAACwpyEdYG9oaEiSTJkyJSNGjOi2rqqqao81B+od73hHJk2alFGjRqW8vDwzZ87M3/7t3+bXv/51n/oCAAAAAAAAAAAAABzuhmyAfdu2bWlubk6STJ48eZ+1EyZMyOjRo5MkTz75ZJ/2XblyZTZs2JAdO3bkmWeeyQ9+8IN86lOfypQpU/KFL3yhRz3a2tqyefPm3T4AAAAAAAAAAAAAAA533R9bfojbsmVL1/WYMWP2Wz969Ohs3bo1zz333AHt99KXvjQ1NTU544wzctxxxyVJ/vd//zd33HFHli5dmm3btuW9731vCgoKctlll+2z1+LFi3PNNdcc0BwAAAAAAAAAAAAAAEPVkA2wb9u2ret61KhR+60vLi5OkrS2tvZ6rwsvvDCXXHJJCgoKdrt/2mmn5Y1vfGNWrFiRmpqa7NixIx/60Ifyp3/6p/mDP/iDbvstWrQoH/7wh7u+3rx5c1coHgAAAAAAAAAAAADgcFU42AMcqJKSkq7r7du377e+ra0tSVJaWtrrvcaNG7dHeP2FzjvvvFx11VVJkpaWlnz5y1/eZ7/i4uIcccQRu30AAAAAAAAAAAAAABzuhmyAfezYsV3Xzz333H7rt27dmiQZM2bMQZnnsssu6wq533///QdlDwAAAAAAAAAAAACAoWzIBthLSkpy1FFHJUnWr1+/z9qNGzd2BdiPO+64gzLPMccc0zXPr3/964OyBwAAAAAAAAAAAADAUDZkA+xJcvLJJydJHnvssezcubPbusbGxq7r6urqgzbPrhPYAQAAAAAAAAAAAADY05AOsJ911llJkq1bt6a+vr7buvvvv7/retasWQdllt/97ndpbm5OkkyaNOmg7AEAAAAAAAAAAAAAMJSNGOwB+mL+/PlZvHhxkuTmm2/OH/7hH+5R09HRkVtvvTVJMn78+MybN++gzHLTTTels7MzSTJnzpyDsgcAAADAgWppadntXeqSpLW1NU1NTamsrExpaeluz6qqqlJWVjaQIwIAAAAAAADDwJAOsJ9++umZPXt26urq8uUvfzmXXHJJzjjjjN1qrr/++jQ0NCRJLr/88owcOXK35ytXruwKtV9yySW55ZZbdnve1NSUjRs35tRTT+12jhUrVuQTn/hEkqS0tDTveMc7+vrSAAAAAPpVY2NjZsyY0eP6+vr6TJ8+/SBOBAAcbOvWret699ju7Po7lF2f96W8vDwVFRX9MhsAAAAAMHwN6QB7ktx4442ZNWtWWltbc8455+TKK6/MvHnz0tramq9//eu56aabkiRTp07NwoULe92/qakp8+bNyxlnnJHzzz8/r3zlK3PMMcckSf73f/83S5cuzdKlS7tOX//0pz+dl7zkJf33AgEAAAD6QVVVVerr63e719DQkNra2ixZsiTV1dV71AMAQ9e6detyUtVJ2da6rUf1tbW1+60pKS3JI42PCLEDAAAAAH0y5APsp556am6//fbU1tZm8+bNufLKK/eomTp1au6+++6MHTv2gPdZvXp1Vq9e3e3zsrKyfOYzn8lll112wHsAAAAAHCxlZWXdnqheXV3ttHUAOMw0NzdnW+u2TL5scoonFXdb17G9Izuad2Rk+cgUjirstq7tqbasv2l9mpubBdgBAAAAgD4Z8gH2JDn//PPzs5/9LDfeeGPuvvvurF+/PqNGjcqUKVNy8cUX5/3vf3/KysoOqPeMGTOyZMmSrF69Og899FA2bNiQ5ubm7Ny5MxMmTMjLX/7yvPa1r8273vWurpPZAQAAAABguFq3bl2am5v3WdPQ0LDb530pLy8XmO6D4knFKa0s3XfR1IGZBQAAAAAgOUwC7Ely/PHH54YbbsgNN9zQq3Vz585NZ2dnt8/Hjh2bt771rXnrW9/a1xEBAAAAAOCwtm7dupxUdVK2tW7rUX1tbe1+a0pKS/JI4yNC7AAAAAAAh4nDJsAOAAAAAAAMrubm5mxr3ZbJl01O8aTibus6tndkR/OOjCwfmcJRhd3WtT3VlvU3rU9zc7MAOwAAAADAYUKAHQAAAAAA6FfFk4pTWlm676KpAzMLAAAAAACHlu6PNQEAAAAAAAAAAAAAgH4kwA4AAAAAAAAAAAAAwIAQYAcAAAAAAAAAAAAAYECMGOwBAAAAAACAw0Nra2uSpO2ptn7pt6vPrr4AAAAAAAx9AuwAAAAAAEC/aGpqSpKsv2l9v/edNWtWv/YEAAAAAGBwCLADAAAAAAD9orKyMkky+bLJKZ5U3Od+bU+1Zf1N67v60nNOwwcAAAAADlUC7AAAAAAAQL8oLS1NkhRPKk5pZWm/96XnnIYPAAAAAByqBNgBAAAAAAAOM07DBwAAAAAOVQLsAAAAAAAAhxmn4QMAAAAAh6rCwR4AAAAAAAAAAAAAAIDhQYAdAAAAAAAAAAAAAIABIcAOAAAAAAAAAAAAAMCAEGAHAAAAAAAAAAAAAGBACLADAAAAAAAAAAAAADAgBNgBAAAAAAAAAAAAABgQAuwAAAAAAAAAAAAAAAwIAXYAAAAAAAAAAAAAAAbEiMEeAAAAAIChoe2ptn0+79jekR3NOzKyfGQKR3V/bsL++gAAAAAAAACHLwF2AAAAAPapvLw8JaUlWX/T+n7rWVJakvLy8n7rBwAAAAAAAAwNAuwAAAAA7FNFRUUeaXwkzc3N+6xraGhIbW1tlixZkurq6n3WlpeXp6Kioj/HBAAAAAAAAIYAAXYAAAAA9quioqLHgfPq6upMnz79IE8EAAAAAAAADEWFgz0AAAAAAAAAAAAAAADDgwA7AAAAAAAAAAAAAAADQoAdAAAAAAAAAAAAAIABMWKwBwAAAACg/61bty7Nzc37rGloaNjt876Ul5enoqKiX2YDAAAAAAAAhi8BdgAAAIDDzLp161JddVJaWrf1qL62tna/NWWlJWlofESIHQAAAAAAAOgTAXYAAACAw0xzc3NaWrdlyYWlqT66sNu61p2dadrUkcrxhSkdUdBtXcPvOlJ7Z2uam5sF2AEAAAAAAIA+EWAHAAAAOExVH12Y6ROL9lkz67gBGgYAAAAAAAAgAuwAAADAENLS0pLGxsbd7rW2tqapqSmVlZUpLS3d7VlVVVXKysoGckQAAAAAAAAA9kGAHQAAABgyGhsbM2PGjB7X19fXZ/r06QdxIgAAAAAAAAB6Q4AdAAAAGDKqqqpSX1+/272GhobU1tZmyZIlqa6u3qMeAAAAAAAAgEOHADsAAAAwZJSVlXV7onp1dbXT1gEAAAAAAAAOcYWDPQAAAAAAAAAAAAAAAMODE9gBAACAQ9a6devS3Ny8z5qGhobdPu9LeXl5Kioq+mU2AAAAAAAAAHpPgB0AAAA4JK1bty4nVZ2Uba3belRfW1u735qS0pI80viIEDsAAAAAAADAIBFgBwAAAA5Jzc3N2da6LZMvm5ziScXd1nVs78iO5h0ZWT4yhaMKu61re6ot629an+bmZgF2AAAAAAAAgEEiwA4AAAAc0oonFae0snTfRVMHZhYAoGfanmrb5/Pe/AM0AAAAAAAOLwLsAAAAAIeZ1tbWJElDc3u/9NvVZ1dfAOhOeXl5SkpLsv6m9f3Ws6S0JOXl5f3WDwAAAACAwSXADgAAAHCYaWpqSpLULtvW731nzZrVrz0BOLxUVFTkkcZH0tzcvM+6hoaG1NbWZsmSJamurt5nbXl5eSoqKvpzTAAAAAAABpEAOwAAAMBhprKyMkmypKYk1eVFfe7X0Nye2mXbuvoCwL5UVFT0OHBeXV2d6dOnH+SJhre2p9r2+bxje0d2NO/IyPKRKRxVeMB9AAAAAAB6SoAdAAAA4DBTWlqaJKkuL8r0iX0PsL+4LwBw6CsvL09JaUnW37S+33qWlJakvLy83/oBAAAAAMOTADsAAAAAAMBhpqKiIo80PpLm5uZ91jU0NKS2tjZLlixJdXX1PmvLy8t7fLo+AAAAAEB3BNgBAAAAAACGgPb29tTV1WXDhg2ZOHFiZs+enaKi7t9tpaKioseB8+rq6kyfPr2/RgUAAAAA6FbhYA8AAAAAAADAvi1btixTpkzJvHnz8pa3vCXz5s3LlClTsmzZssEeDQAAAACgVwTYAQAAAAAADmHLli3LggULcsopp2T16tXZsmVLVq9enVNOOSULFiwQYgcAAAAAhhQBdgAAAAAAgENUe3t7Fi5cmPPOOy/Lly/PzJkzM2bMmMycOTPLly/Peeedl4985CNpb28f7FEBAAAAAHpEgB0AAAAAAOAQVVdXl6amplx55ZUpLNz9r3UKCwuzaNGiPP7446mrqxukCQEAAAAAekeAHQAAAAAA4BC1YcOGJMm0adP2+nzX/V11AAAAAACHOgF2AAAAAACAQ9TEiROTJGvWrNnr8133d9UBAAAAABzqRgz2AAAAAAAcHA2/69jn89adnWna1JHK8YUpHVFwwH0AgINn9uzZqayszLXXXpvly5ensPD/zibq6OjI4sWLc8IJJ2T27NmDOCUAAAAAQM8JsAMAAAAcZsrLy1NWWpLaO1v7rWdZaUnKy8v7rR8A0DNFRUW5/vrrs2DBgsyfPz+LFi3KtGnTsmbNmixevDgrVqzI0qVLU1RUNNijAgAAAAD0iAA7AAAAwGGmoqIiDY2PpLm5eZ91DQ0Nqa2tzZIlS1JdXb3P2vLy8lRUVHR93dLSksbGxj36vfDzC1VVVaWsrKynLwEAeIGamposXbo0CxcuzJlnntl1/4QTTsjSpUtTU1MziNMBAAAAAPSOADsAAADAYaiiomK3wPm+VFdXZ/r06b3q39jYmBkzZuz1WW1t7R736uvre70HAPB/ampqcsEFF6Suri4bNmzIxIkTM3v2bCevAwAAAABDjgA7AAAAAL1WVVWV+vr63e61tramqakplZWVKS0t3aMeAOiboqKizJ07d7DHAAAAAADoEwF2AAAA4JDU2tqaJGl7qq1f+u3qs6svfVNWVrbXE9VnzZo1CNMAAAAAAAAAQ4UAOwAAAHBIampqSpKsv2l9v/cVsgYAAAAAAAAYHALsAAAAwCGpsrIySTL5sskpnlTc535tT7Vl/U3ru/oCAHvX0tKSxsbG3e61tramqakplZWVKS0t3e1ZVVVVysrKBnJEAAAAAACGMAF2AAAA4JC0KxxXPKk4pZWl+6nufV8AYO8aGxszY8aMHtfX19dn+vTpB3EiAAAAAAAOJwLsAAAAAABAl6qqqtTX1+92r6GhIbW1tVmyZEmqq6v3qAcAAAAAgJ4SYAcAAAAAALqUlZV1e6J6dXW109YBAAAAAOgTAXYAAAAAAAAAAAAADmvt7e2pq6vLhg0bMnHixMyePTtFRUWDPRYMS4WDPQAAAAAAAAAAAAAAHCzLli3LlClTMm/evLzlLW/JvHnzMmXKlCxbtmywR4NhSYAdAAAAAAAAAAAAgMPSsmXLsmDBgpxyyilZvXp1tmzZktWrV+eUU07JggULhNhhEAiwAwAAAAAAAAAAAHDYaW9vz8KFC3Peeedl+fLlmTlzZsaMGZOZM2dm+fLlOe+88/KRj3wk7e3tgz0qDCsC7AAAAAAAAAAAAAAcdurq6tLU1JQrr7wyhYW7R2YLCwuzaNGiPP7446mrqxukCWF4EmAHAAAAAAAAAAAA4LCzYcOGJMm0adP2+nzX/V11wMAYMdgDAAAAAHDwtbS0pLGxcbd7DQ0Nu31+oaqqqpSVlQ3IbAAAAAAAAAfDxIkTkyRr1qzJzJkz93i+Zs2a3eqAgSHADgAAADAMNDY2ZsaMGXt9Vltbu8e9+vr6TJ8+/WCPBQAAAAAAcNDMnj07lZWVufbaa7N8+fIUFhZ2Pevo6MjixYtzwgknZPbs2YM4JQw/AuwAAAAAw0BVVVXq6+t3u9fa2pqmpqZUVlamtLR0j3oAAAAAAIChrKioKNdff30WLFiQ+fPnZ9GiRZk2bVrWrFmTxYsXZ8WKFVm6dGmKiooGe1QYVgTYAQAAAIaBsrKyvZ6oPmvWrEGYBgAAAAAAYGDU1NRk6dKlWbhwYc4888yu+yeccEKWLl2ampqaQZwOhicBdgAAAOCQ1vZU2z6fd2zvyI7mHRlZPjKFowq7rdtfHwAAAAAAAA5PNTU1ueCCC1JXV5cNGzZk4sSJmT17tpPXYZAIsAMAAACHpPLy8pSUlmT9Tev7rWdJaUnKy8v7rR8AAAAAAABDQ1FRUebOnTvYYwARYAcAAAAOURUVFXmk8ZE0Nzfvs66hoSG1tbVZsmRJqqur91lbXl6eioqK/hwTAAAAAAAAgF4QYAcAAAAOWRUVFT0OnFdXV2f69OkHeSIAAAAAAAAA+qJwsAcAAAAAAAAAAAAAAGB4cAI7AAAAAAAMY+vWrUtzc/M+axoaGnb7vC/l5eU9fgcVAAAAAACGHwF2AAAAAAAYptatW5fqqpPS0rqtR/W1tbX7rSkrLUlD4yNC7AAAAAAA7JUAOwAAAAAADFPNzc1pad2WJReWpvrowm7rWnd2pmlTRyrHF6Z0REG3dQ2/60jtna1pbm4WYAcAAAAAYK8E2AEAAAAAYJirProw0ycW7bNm1nEDNAwAAAAAAIe17o9TAQAAAAAAAAAAAACAfuQEdgAAAAAAGKZaW1uTJA3N7f3Sb1efXX0BAAAAAODFBNgBAAAAAGCYampqSpLULtvW731nzZrVrz0BAAAAADg8CLADAAAAAMAwVVlZmSRZUlOS6vKiPvdraG5P7bJtXX0BAAAAAODFBNgBAAAAAGCYKi0tTZJUlxdl+sS+B9hf3BcAAAAAAF6scLAHAAAAAAAAAAAAAABgeBBgBwAAAAAAAAAAAABgQAiwAwAAAAAAAAAAAAAwIEYM9gAAAAAAAMDhq6WlJY2Njbvda2ho2O3zC1VVVaWsrGxAZgMAAAAAYOAJsAMAAAAAAAdNY2NjZsyYsddntbW1e9yrr6/P9OnTD/ZYAAAAAAAMEgF2AAAAAADgoKmqqkp9ff1u91pbW9PU1JTKysqUlpbuUT9crVu3Ls3NzV1f7/p16qkX/3qWl5enoqKiP0cEAAAAAOgzAXYAAAAAAOCgKSsr2+uJ6rNmzRqEaQ5d69atS3XVSWlp3dZvPctKS9LQ+IgQOwAAAABwSBFgBwAAgP1oaWlJY2Pjbvf2d2poWVnZQI4IAMAQ19zcnJbWbVlyYWmqjy5MkrTu7EzTpo4e96gcX5jSEQVJkobfdaT2ztY0NzcLsAMAAAAAhxQBdgAAANiPxsbGzJgxo8f19fX1ez1lFAAA9qf66MJMn1jU9fWs4wZxGAAAAACAg0CAHQAAAPajqqoq9fX1u91raGhIbW1tlixZkurq6j3qAQCgN1pbW5MkDc3t/dJvV59dfQEAAAAADhUC7AAAALAfZWVl3Z6oXl1d7bR1AAD6rKmpKUlSu2xbv/edNWtWv/YEAAAAAOgLAXYAAAAAAIBBVllZmSRZUlOS6vKiPvdraG5P7bJtXX0BAAAAAA4VAuwAAAAAAACDrLS0NElSXV6U6RP7HmB/cV8AAAAAgEPFYRNgf+KJJ/LZz342d999d5588skUFxfnZS97Wf7sz/4sf/mXf5mysrJ+37OlpSXTpk3L448/niQ5/vjju97iEwAAAAAAhoqG33Xs83nrzs40bepI5fjClI4oOOA+AAAAAABwWATYv/nNb6a2tjabN2/uutfS0pKHHnooDz30UL70pS/l7rvvzpQpU/p136uuuqorvA4AAAAAAENNeXl5ykpLUntna7/1LCstSXl5eb/1AwAAAADg8DLkA+wPP/xw3vjGN6a1tTVjxozJokWLMm/evLS2tubrX/96vvjFL2bt2rU599xz89BDD2Xs2LH9tu8//dM/paSkJCNHjsyWLVv6pS8AAAAAAAyUioqKNDQ+kubm5n3WNTQ0pLa2NkuWLEl1dfU+a8vLy1NRUdGfYwIAAAAAcBgZ8gH2yy+/PK2trRkxYkTuvffenHHGGV3Pzj777Jx44om54oorsnbt2lx//fW5+uqr+7xne3t73v3ud6e9vT0f//jH8+Uvf1mAHQAAAACAIamioqLHgfPq6upMnz79IE80vDX8rmOfz1t3dqZpU0cqxxemdETBAfcBgN5ob29PXV1dNmzYkIkTJ2b27NkpKioa7LEAAAAYooZ0gP2HP/xh6urqkiTvfOc7dwuv77Jw4cLcfPPNaWhoyI033piPfexjGTlyZJ/2vfHGG1NfX5+TTjopf/M3f5Mvf/nLfeoHAAAAAAAMb+Xl5SkrLUntna391rOstCTl5eX91g+A4WnZsmVZuHBhmpqauu5VVlbm+uuvT01NzeANBgAAwJA1pAPsy5cv77p+xzvesdeawsLCvP3tb8+iRYuyadOm3HfffTnnnHMOeM8nnngiV111VZLkX//1XzNq1KgD7gUAAAAAAJA8fxJ+Q+MjaW5u3mddQ0NDamtrs2TJklRXV++ztry8vMen6wPA3ixbtiwLFizIeeedl9tuuy3Tpk3LmjVrcu2112bBggVZunSpEDsAAAC9NqQD7A888ECSZPTo0ZkxY0a3dXPmzOm6XrVqVZ8C7O973/uydevWvO1tb8vcuXMPuA8AAAAAAMALVVRU9DhwXl1dnenTpx/kiQAYztrb27Nw4cKcd955Wb58eQoLC5MkM2fOzPLlyzN//vx85CMfyQUXXJCioqJBnhYAAIChpHCwB+iLhoaGJMmUKVMyYkT3Wfyqqqo91hyIr3/96/nWt76VCRMm5Prrrz/gPgAAAAAAAABwKKurq0tTU1OuvPLKrvD6LoWFhVm0aFEef/zx1NXVDdKEAAAADFVD9gT2bdu2db2N5uTJk/dZO2HChIwePTpbt27Nk08+eUD7bdy4MR/84AeTJH//93+fo48++oD6JElbW1va2tq6vt68efMB9wIAAAAAAACA/rZhw4YkybRp0/b6fNf9XXUAAADQU0P2BPYtW7Z0XY8ZM2a/9aNHj06SPPfccwe031//9V/nt7/9bc4444y8+93vPqAeuyxevDjjxo3r+jjuuOP61A8AAAAAAAAA+tPEiROTJGvWrNnr8133d9UBAABAT/XrCewdHR355S9/mf/93//Nli1b0t7evt81b3/72w9or23btnVdjxo1ar/1xcXFSZLW1tZe7/X9738///Zv/5YRI0bkX//1X1NQUNDrHi+0aNGifPjDH+76evPmzULsAAAAAAAAABwyZs+encrKylx77bVZvnx5Cgv/73y8jo6OLF68OCeccEJmz549iFMCAAAwFPVLgL21tTWf/OQn88UvfjHPPPNMj9cVFBQccIC9pKSk63r79u37rW9ra0uSlJaW9mqftra2XHbZZens7Mzll1+eV7ziFb0bdC+Ki4u7AvUAAAAcetatW5fm5uZ91jQ0NOz2uTvl5eWpqKjot9mGuvb29tTV1WXDhg2ZOHFiZs+enaKiosEeCwBgWGhpaUljY+Nu9/b137VVVVUpKysbkNkAOPQUFRXl+uuvz4IFCzJ//vwsWrQo06ZNy5o1a7J48eKsWLEiS5cu9ed6AAAAeq3PAfbW1tacffbZ+eEPf5jOzs7+mKlHxo4d23X93HPP7bd+69atSZIxY8b0ap9PfepTeeSRR3Lcccflmmuu6d2QAAAADDnr1q3LSVUnZVvrtv0XJ6mtrd3n85LSkjzS+IgQe5Jly5blwx/+cJ544omue8cff3xuuOGG1NTUDOJkAADDQ2NjY2bMmLHXZ3v779r6+vpMnz79YI8FwCGspqYmS5cuzcKFC3PmmWd23T/hhBOydOlSf54HAADggPQ5wP6Zz3wmP/jBD5Ik06ZNy/vf//7MmDEjRx555G5vIdbfSkpKctRRR+WZZ57J+vXr91m7cePGrgD7cccd16t9rrvuuiTJ6173unzzm9/ca82u3lu3bs3Xv/71JMkxxxyTs88+u1d7AQAAMPiam5uzrXVbJl82OcWTun/3rI7tHdnRvCMjy0emcNTe//zb9lRb1t+0Ps3NzcM+wL5s2bJcdNFFe7wz2tNPP52LLrood9xxh7/0BgA4yKqqqlJfX7/bvdbW1jQ1NaWysnKP/1arqqoayPEAOETV1NTkggsu8I5qAAAA9Js+B9hvv/32JMmZZ56Z733vexk1alSfh+qpk08+OXV1dXnssceyc+fOjBix95fzwrfDrK6u7tUe27dvT5LcfPPNufnmm/dZ29zcnDe/+c1Jkjlz5giwAwAADGHFk4pTWlm676KpAzPLUNfe3p73vve9SZLXvva1+djHPtb1luOf+tSnsmLFivzFX/xFLrjgAn/5DQBwEJWVle31RPVZs2YNwjQADCVFRUWZO3fuYI8BAADAYaLPR6T/6le/SkFBQa644ooBDa8nyVlnnZXk+ZPPX3xiyAvdf//9Xdd+CAsAAAADa+XKlfnd736Xs846K3fddVdmzpyZMWPGZObMmbnrrrty1lln5emnn87KlSsHe1QAAAAAAAAADrI+B9h3hdYH463Q58+f33Xd3enoHR0dufXWW5Mk48ePz7x583q1R2dn534/jj/++CTJ8ccf33XPX7oDAADA83b9Gfmaa65JYeHuP4ooLCzMxz/+8d3qAAAAAAAAADh89TnAXlVVlST5zW9+0+dheuv000/P7NmzkyRf/vKXs3r16j1qrr/++jQ0NCRJLr/88owcOXK35ytXrkxBQUEKCgpy6aWXHvSZAQAAAAAAeqKlpSU//vGPd/vY9XceDQ0NezxraWkZ5IkBAAAAAPZvRF8bXHrppXnwwQfzjW98I294wxv6Y6ZeufHGGzNr1qy0trbmnHPOyZVXXpl58+altbU1X//613PTTTclSaZOnZqFCxcO+HwAAAAw3M2dOzef/OQn8/GPfzxz587d7RT2jo6OXH311V11AMDga2lpSWNj4273XhiafrGqqqqUlZUNyGzDTWNjY2bMmLHXZ7W1tXvcq6+vz/Tp0w/2WAAAAAAAfdLnAPu73/3u/Md//EduvfXWvO51r8ub3/zm/pirx0499dTcfvvtqa2tzebNm3PllVfuUTN16tTcfffdGTt27IDOBgAAADwfTD/mmGPywAMP5IILLsiVV16ZadOmZc2aNbn22muzatWqHHPMMQLsAHCIEJo+dFRVVaW+vn63e62trWlqakplZWVKS0v3qAcAAAAAONT1OMC+bt26bp/98z//c9797nentrY2d955Z97ylrf0+MSVioqKno7QrfPPPz8/+9nPcuONN+buu+/O+vXrM2rUqEyZMiUXX3xx3v/+9zv9BQAAAAZJUVFRPv/5z2fBggX57ne/mxUrVnQ9KysrS0FBQT7/+c+nqKhoEKcEAHYRmj50lJWV7fUfB8yaNWsQpgEAAAAA6B89DrCfcMIJ+63p7OzMHXfckTvuuKNHPQsKCrJz586ejrBPxx9/fG644YbccMMNvVo3d+7cdHZ29mnvpqamPq0HAACAw11NTU2WLl2ahQsX7vbn6GOPPTaf/vSnU1NTM3jDAQC7EZoGAAAAAOBg6nGAvach776GwQEAAIDDU01NTS644ILU1dVlw4YNmThxYmbPnu3kdQAAAAAAAIBhpMcB9ptvvvlgzgEAAAAMA0VFRZk7d+5gjwEAAAAAAADAIOlxgP2SSy45mHMAAAAA7FdLS0saGxt3u9fQ0LDb5xeqqqpKWVnZgMwGAAAAAAAAwP71OMAOAAAAMNgaGxszY8aMvT6rra3d4159fX2mT59+sMcCAAAAAAAAoIf6HGD/xCc+kSR53/vel/Ly8h6t2bhxY/75n/85SXLVVVf1dQQAAABgmKiqqkp9ff1u91pbW9PU1JTKysqUlpbuUQ8AAAAAAADAoaPPAfarr746BQUFWbBgQY8D7L///e+71gmwAwAAAD1VVla21xPVZ82aNQjTAAAAAAAAANBbhYM9AAAAAAAAAAAAAAAAw8OgBNh37NiRJBk5cuRgbA8AAAAAAAAAAAAAwCAYMRib/uQnP0mSHH300YOxPQAAAHCQrFu3Ls3NzV1ft7a2pqmpqcfrKysrU1pa2vV1eXl5Kioq+nNEAAAAAAAAAAZRrwPst956617v33XXXXnooYf2ubatrS2/+tWv8m//9m8pKCjIaaed1tvtAQAA4KBqbW1NkrQ91dbnXrt67Op5uFu3bl2qq05KS+u2futZVlqShsZHhNgBAAAAAAAADhO9DrBfeumlKSgo2O1eZ2dn/vZv/7bHPTo7O1NYWJjLL7+8t9sDAADAQbXrtPD1N63v156zZs3qt36Hqubm5rS0bsuSC0tTfXRhkqR1Z2eaNnX0uEfl+MKUjnj+5w4Nv+tI7Z2taW5uFmAHAAAAAAAAOEz0OsCePB9A78m9vRk1alROO+20LFq0KHPmzDmQ7QEAAOCgqaysTJJMvmxyiicV96lX21NtWX/T+q6ew0X10YWZPrGo6+tZxw3iMAAAAAAAAAAcUnodYH/88ce7rjs7O/PSl740BQUF+c53vpMTTzyx23UFBQUpKSnJUUcdlaKiom7rAAAAYDCVlpYmSYonFae0srRfewIAAAAAAADAcNfrAPvxxx+/1/uTJk3q9hkAAAB9097enrq6umzYsCETJ07M7Nmz/eNgDjmtra1Jkobm9n7pt6vPrr4AAAAAAAAADH29DrC/WEdHR3/MAQAAQDeWLVuWhQsXpqmpqeteZWVlrr/++tTU1AzeYPAiu75Ha5dt6/e+s2bN6teeAAAAAAAAAAyOPgfYAQAAOHiWLVuWBQsW5Lzzzsttt92WadOmZc2aNbn22muzYMGCLF26VIidQ0ZlZWWSZElNSarL+/4OAQ3N7aldtq2rLwAAAAAAAABDX+FgDwAAAMDetbe3Z+HChTnvvPOyfPnyzJw5M2PGjMnMmTOzfPnynHfeefnIRz6S9vb2wR4VkiSlpaXPX3QW7LOudWdnGprb07qzc98N//8+XX0BAAAAAAAAGPJ6fAL72Wef3e+bFxQU5Lvf/W6/9wUAADgc1NXVpampKbfddlsKC3f/98eFhYVZtGhRzjzzzNTV1WXu3LmDM+RhrO2ptn0+79jekR3NOzKyfGQKR+3934fvr8fhpry8PGWlJam9s7XfepaVlqS8vLzf+gEAAAAAAAAwuHocYF+5cmUKCgrS2dn96WgFBbufsLartqf3AQAA+D8bNmxIkkybNm2vz3fd31VH/ygvL09JaUnW37S+X/qVDKMAdkVFRRoaH0lzc/M+6xoaGlJbW5slS5akurp6n7Xl5eWpqKjozzEBAAAAAAAAGET/H3v/H93oWd/5/y9LnrGlTCZhUQiaTIzcCRkJPN9dxvwQ9ig4tCcti1MLIeAUdEK7y0mBtktBJvtx2pS0UHuXxGTp7rLtlG44PQbTXUVRtw6lBXYSRDIUorQU7ZEmIY3qOCNIRJOZSSx7ZiR//xikjMa/ZPu2dUl6Ps7J8cx9X750eV65fUv3/b6vq+4C9htuuGHNgvOTJ0/qiSeekHShMN3j8ejqq6+WJP3kJz9RLpfT0tKSOjo69NrXvlb79u3b4tABAAAAoLW53W5JUjqdlt/vX7Y/nU7XtIM1enp6dMLCIux2K8Du6emp++f1+Xw6fPjwNo8IAAAAAAAAAAAAAGCSDc3Avpq//uu/1gc+8AHt3btXv/M7v6Nf+7VfWza7XKFQ0L333qvx8XE999xz+i//5b/oHe94x6YHDgAAAACtLhAIyOPxaHx8XIlEQjabrbqvXC5rYmJCvb29CgQCDRxla6IIGwAAAAAAAAAAAACA7WFbv8naHn/8cb33ve/V0tKSHn74YX3yk59ccWl0l8ulT37yk3r44Ye1tLSk973vfXr88ce3+vIAAAAA0LLsdrsmJyc1MzOjYDCo48eP68yZMzp+/LiCwaBmZmZ09913y263N3qoAAAAAAAAAAAAAAAAddlyAfvk5KReeukl3XbbbXr961+/bvvXve51uu222/Tiiy/q7rvv3urLAwAAAEBLC4VCisVi+uEPf6iBgQHt3btXAwMDSqfTisViCoVCjR4iAAAAAAAAAAAAAABA3Tq32sE3vvENdXR06O1vf3vd33PjjTdKkr75zW9u9eUBAAAAoOWFQiGNjIwomUwqn8/L7XYrEAgw8zoAAAAAAAAAAAAAAGg6Wy5gz+fzG/6ejo4OSdKPf/zjrb48AAAAALQFu92uoaGhRg8DAAAAAAAAAAAAAABgS2xb7eDKK6+UJD300EN1f8+DDz4oSbriiiu2+vIAAAAAAAAAAAAAAAAAAAAAgCax5QL2QCCgpaUl/af/9J/0+OOPr9v+8ccf13/+z/9ZHR0dOnLkyFZfHgAAAAAAAAAAAAAAAAAAAADQJDq32sEnPvEJxeNxnTp1Sn6/X7/3e7+nW265Rf/qX/2rmnbPP/+8/vzP/1yf/vSn9cILL8hmsykajW715QEAAAAAgMHm5+eVzWZrtmUymZqvF/N6vXI6nTsyNgAAAAAAAAAAAADAzttyAbvf79ddd92laDSqU6dOKRqNanR0VL29vXrVq16ljo4O/eQnP9FTTz2lpaUlLS0tSZI++9nPyu/3b/kHAAAAAABgu1GEvXnZbFb9/f0r7otEIsu2pVIpHT58eLuHBQAAAAAAAAAAgBa30j2+YrGoXC4nj8cjh8NRs497fMDO2XIBuyR9/OMfl8fj0W/91m/p5MmTWlpa0pNPPql/+qd/kqRq0bokud1u/df/+l8VCoWseGkAAAAAALYdRdib5/V6lUqlJEn/9//+X91zzz06efJkdf++ffv08Y9/XG9/+9ur7QEAAAAAAAAAAICtWuse30q4xwfsHEsK2CXpXe96l4aHh/WXf/mX+uY3v6kf/vCH+pd/+RdJ0ite8QodOnRIv/ALv6BgMKhdu3ZZ9bIAAAAAAGy7i4uwK9abnQEXOJ1OHT58WPF4XLfddpuGh4d13333qa+vT+l0WuPj47rtttsUi8V42B0AAAAAAADAhpVKJSWTSeXzebndbgUCAdnt9kYPCwBggJXu8WUyGUUiEU1NTcnn8y1rD2BnWFbALkm7du1SOBxWOBy2slsAAAAAABqqUoR9qcHBwQaMpvmUSiVFo1ENDw8rkUjIZrNJkvx+vxKJhILBoEZHRzUyMsKNJQAAAAAAAAB1i8fjikajyuVy1W0ej0eTk5NMmAEAWPUenyT5fD5mWwcayNboAQAAAAAAgNaWTCaVy+V0++23V4vXK2w2m8bGxvTUU08pmUw2aIQAAAAAAAAAmk08Hlc4HNahQ4d0/PhxnTlzRsePH9ehQ4cUDocVj8cbPUQAAACsggJ2AAAAAACwrfL5vCSpr69vxf2V7ZV2AAAAAAAAALCWS1d99Pv92rNnT3XVx+HhYY2OjqpUKjV6qAAAAFgBBewAAAAAAGBbud1uSVI6nV5xf2V7pR0AAAAAAAAArIVVH81VKpX04IMPanp6Wg8++CAPEQAAgBV11tvQbrdLkjo6OnT+/Pll2zfj0r4AAAAAABfMz88rm83WbCsWi8rlcvJ4PHI4HDX7vF6vnE7nTg4RqFsgEJDH49H4+LgSiUTNDaVyuayJiQn19vYqEAg0cJQAAAAAAAAAmgWrPpopHo8rGo0ql8tVt3k8Hk1OTioUCjVuYAAAwDh1F7AvLS1taDsAAAAAYPOy2az6+/vrbp9KpXT48OFtHBGweXa7XZOTkwqHwwoGgxobG1NfX5/S6bQmJiY0MzOjWCy2pYfkAQAAAAAAALSPi1d99Pv9y/az6uPOi8fjCofDGh4e1vT0dPUa8Pj4uMLhsGKxGEXsALbd7OysCoXCmm0ymUzN17W4XC719PRYMjYAteouYP/Upz61oe0AAAAAgM3zer1KpVI12zKZjCKRiKampuTz+Za1B0wWCoUUi8UUjUY1MDBQ3d7b28uNCwAAAAAAAAAbwqqPZimVSopGoxoeHq7Jw+/3K5FIKBgManR0VCMjI0xkAmDbzM7O6qD3oBaKC3W1j0Qi67bpdnTrRPYERezANqCAHQAAAAAM5HQ6V51R3efzMds6mlIoFNLIyIiSyaTy+bzcbrcCgQA3LAAAAAAAAABsCKs+miWZTCqXy2l6errmYQJJstlsGhsb08DAgJLJpIaGhhozSAAtr1AoaKG4oP237lfXvq5V25XPlnWucE67XLtk221btd3iyUXNHZ1ToVCggB3YBnUXsEvSn/zJn+iGG25YNtMfAAAAAABAPex2OzcoAAAAAAAAAGwZqz6aI5/PS5L6+vpW3F/ZXmkHANupa1+XHB7H2o2u35mxAFjdhgrYP/KRj6ijo0Mul0tHjhzRDTfcoBtuuEH/5t/8G3V0dGzXGAEAAAAAAAAAAAAAAACgBqs+msHtdkuS0um0/H7/sv3pdLqmHQAAwIYK2CVpaWlJzz33nBKJhBKJhCRp7969GhgYqBa0v+lNb1Jn54a7BgAAAAAAAAAAAAAAAIC6sepj4wUCAXk8Ho2PjyuRSMhms1X3lctlTUxMqLe3V4FAoIGjBAAAJtlQlfmXvvQlJZNJJZNJPf7449Xtp06d0te//nV9/etflyR1d3frLW95S7Wg/a1vfascjnWWZAAAAAAAAAAAAAAAAA03Pz+vbDZbs61YLCqXy8nj8Sy7/+/1euV0OndyiAAAg9jtdk1OTiocDisYDGpsbEx9fX1Kp9OamJjQzMyMYrEYM+MDAICqDRWw33LLLbrlllskSc8991y1mD2ZTOoHP/iBSqWSpAsfXB966CE99NBDkqRdu3bp8OHD1YL2I0eOaO/evRb/KAAAAAAAAAAAAAAAYKuy2az6+/vrbp9KpXT48OFtHBEAwHShUEixWEzRaFQDAwPV7b29vYrFYgqFQg0cHQAAMM2GCtgvdtVVVykUClXfXLz44ot65JFHqgXt3/ve97SwsCBJOnv2rP7u7/5Of/d3f6e77rpLNptNhw4d0tve9jbdc8891vwkAAAAAAAAAAAAAABgy7xer1KpVM22TCajSCSiqakp+Xy+Ze0BAAiFQhoZGVEymVQ+n5fb7VYgEGDmdQAAsMymC9gvtWfPHt1000266aabJEnnzp3T97//fSWTSX3729/WI488olOnTkmSSqWS/uEf/kE/+MEPKGAHAAAAAAAAAAAAAMAgTqdz1RnVfT4fs60DAFZlt9s1NDTU6GEAAADD2bar4127dmlgYED/8T/+Rz3wwAP6yU9+oj/+4z/Wz/3cz6mjo2O7XhYAAAAAAAAAAAAAAAAAAAAAYCjLZmC/1OLior773e/q29/+tpLJpL773e/qpZdekiQtLS1t18sCAAAAAAAAAAAAAAAAAAAAAAxlWQH7qVOn9PDDDyuZTOrb3/62UqmUzp07J+nlgnW73a5Dhw7pyJEjOnLkiAKBgFUvDwAAAABA1fz8vLLZbM22YrGoXC4nj8cjh8NRs8/r9crpdO7kEAEAAAAAAAAAAAAAaEubLmD/8Y9/rGQyWS1YT6fT1UL1ylen06k3v/nN1YL1t771rbr88sutGTkAAAAAAKvIZrPq7++vu30qldLhw4e3cUQAAAAAAAAAAAAAAEDaYAH7l770pWrR+pNPPlndXilYd7lcGhwcrM6ufvjwYXV2WjbJOwAAAAAAdfF6vUqlUjXbMpmMIpGIpqam5PP5lrUHAAAAAABoV7OzsyoUCmu2yWQyNV/X4nK51NPTY8nYAAAAAACtZ0PV5f/u3/07dXR0VAvWDxw4UJ1d/ciRIzp48OC2DBIAAAAAgI1wOp2rzqju8/mYbR0AAAAAAOBnZmdnddB7UAvFhbraRyKRddt0O7p1InuCInYAAAAAwIo2NT16Z2en3vOe9ygcDuvIkSO66qqrrB4XAAAAAAAAAAAAAADYZoVCQQvFBe2/db+69nWt2q58tqxzhXPa5dol227bqu0WTy5q7uicCoUCBewAAAAAgBVtqID9Fa94hZ5//nmdP39eX/3qV/XVr35VkvTa175WR44cUSAQ0JEjR3TgwIFtGSwAAAAAAAAAAAAAALBe174uOTyOtRtdvzNjAQAAAAC0tg0VsP/0pz/V//t//0/JZFLf/va3lUwm9cwzz+jxxx/X448/rnvvvVeSdPXVV+vIkSPV/97whjeoo6NjW34AAAAAAAAAAAAAAAAAAAAAAEBz2FABuyS9/vWv1+tf/3p9+MMfliTlcrlqMXsymdTjjz+uH//4x4rFYrrvvvskSXv27JHf76/O0u73+9Xd3W3tTwIAAAAAAAAAAAAAAAAAAAAAMNqGC9gv5fF45PF4dMstt0iSnnvuuZqC9h/84Ac6c+aMvvGNb+ib3/zmhRft7NQb3vAGBQIB3XXXXVsdAgAAAAAAAAAAAAAAbWt+fl7ZbLZmW7FYVC6Xk8fjkcPhqNnn9XrldDp3cogAAAAAAFRtuYD9UldddZXe/e53693vfrck6cyZM3r44YeVTCb17W9/W48++qgWFxf1ve99T9///vcpYAcAAAAANJ1SqaRkMql8Pi+3261AICC73d7oYQEAAAAAgDaVzWbV399fd/tUKqXDhw9v44gAAAAAAFid5QXsl7r88sv1cz/3c3rmmWf09NNPK5fL6eTJk1paWtrulwYAAAAAwHLxeFzRaFS5XK66zePxaHJyUqFQqHEDAwAAAAAAbcvr9SqVStVsy2QyikQimpqaks/nW9a+olgsSpIWTy5aMpZKP5V+AQAAAAC4lOUF7EtLS/qHf/gHJZPJ6n/PPffcsjYAAAAAADSbeDyucDis4eFhTU9Pq6+vT+l0WuPj4wqHw4rFYhSxAwAAAACAHed0OledUd3n860523rlIf25o3OWjimXy2lwcNDSPsHKgAAAAABaw5YL2M+dO6e/+7u/qxarP/LIIzpz5kx1/6XF6gcOHFAgENANN9ygG264YasvDwAAAADAjiiVSopGoxoeHlYikZDNZpMk+f1+JRIJBYNBjY6OamRkhJuGAAAAAACgaXg8HknS/lv3q2tf15b7Wzy5qLmjc9V+YR1WBgQAAFgdKwsBzWXDBewvvviiHnnkEX37299WMpnU97//fS0uvnzAX1yw3tHRob6+Pt1www3VonW3223NyAEAAAAA2EHJZFK5XE7T09PV4vUKm82msbExDQwMKJlMamhoqDGDBAAAAAAA2CCHwyFJ6trXJYfHYXm/sAYrAwIAAKyNlYWA5rKhAvY3vvGN+sEPfqByuVzddnHBemdnp97whjdUC9YDgYBe8YpXWDdaAAAAAGhRs7OzKhQKa7bJZDI1X9ficrnU09NjydiawU78++XzeUlSX1/fit9T2V5pBwAAAAAAAFiBlQEBAADWx8pCQHPZUAH7Y489VvP37u5uvfnNb9YNN9ygG264QW9961t12WWXWTpAAAAAAGh1s7OzOug9qIXiQl3tI5HIum26Hd06kT3RFkXss7Oz8nkPat7Cfz+no1uZS/79KiuKpdNp+f3+Zd+TTqdr2gEAAAAAADSTxZOLa+4vny3rXOGcdrl2ybbbtmq79frBxrEyIAAAwPpYWQhoLhsqYN+zZ48GBwerBetvetObtHv37u0aGwAAAAC0hUKhoIXiwrqzAWzkJuHc0TkVCoW2KGB/+umnNV9c0Kdv7FLvKzpWbbd4Xjp5pqx9l9vUtcan4aeeX9Idxxb09NNP1/z7BQIBeTwejY+P18x0JUnlclkTExPq7e1VIBCw5OcCAAAAAADYCS6XS92Obs0dnbOsz25Ht1wul2X9tTtWBgQAAADQajZUwP7CCy8se5oXAAAAAGCNumYDuH5nxtJMcrmcJOmOY9bO7pXL5TQ4OFj9u91u1+TkpMLhsILBoMbGxtTX16d0Oq2JiQnNzMwoFouxTDMAAAAAAGgqPT09OpE9oUKhUN2WyWTqWsWuYmpqSj6fr/p3l8vVFhMr7BRWBgTQTEqlkpLJpPL5vNxutwKBANfNAQDAMhsqYKd4HQAAAABgGo/HI0maCnXL59r6RfBMoaRIfKHa78VCoZBisZii0agGBgaq23t7exWLxRQKhbb8+gAAAAAAADutp6enpuDc6/UqlUrVtCkWi8rlcvJ4PHI4aidh8Hq9cjqdOzLWdsTKgACaRTweVzQarU48I124hj85Ocn1cwAAUGNDBewAAAAAAJimcsPU57LrsNu6WVwuvRFbEQqFNDIywgwyAAAAAACgYWZnZ2tmTF9JJpOp+bqWS2dMdzqdOnz48LJ2F69Wh53DyoAAmkE8Hlc4HNbw8LCmp6erv6fGx8cVDoeZBAYAANSggB0AAAAAgA2y2+0aGhpq9DAAAAAAAEAbmp2dlc97UPPFhbraRyKRdds4Hd3KZE/UFLHDLKwMCMBkpVJJ0WhUw8PDNStF+P1+JRIJBYNBjY6OamRkhIdtAGy7xZOLa+4vny3rXOGcdrl2ybbbtmq79foBsDUUsAMAAAAAAAAAAAA7aH5+XtlstmZbsVhULpeTx+NZtiKU1+uV0+ncySECMFihUNB8cUFT73LId9XqBTfF80vKvVCW50qbHJ0dq7bLPFdW5P6iCoUCBeyGY2VAAKZKJpPK5XKanp6uFq9X2Gw2jY2NaWBgQMlkkslhAGwbl8ulbke35o7OWdZnt6NbLpfLsv4AvIwCdrS8UqnEB3gAAAAAAAAAAGCMbDar/v7+utunUikdPnx4G0cEoBn5rrLpsHvt+56D1+7QYLBjWBkQgIny+bwkqa+vb8X9le2VdgCwHXp6enQie0KFQmHNdplMRpFIRFNTU/L5fGu2dblcPOQJbBMK2LFlJheIx+NxfeITn9A///M/V7e95jWv0ec+97mWXELN5CzaEXmYgyzMQRbmIAtzkIVZyMMcZGEOsjAHWZiFPMxBFuYgC3OQhTnIwiwm5eH1epVKpWq2rXUD3ev17uTwtp1JWbQ7sjAHWZiDLMxCHuYgC3OYmIXb7ZYkpdNp+f3+ZfvT6XRNu1ZhYhbtiizM0sg8enp66i449/l8PCwONBAF7NiSeDyuaDSqXC5X3ebxeDQ5OdnwAvF4PK53v/vdy5bZfPbZZ/Xud79b9913X8PHaCWTs2hH5GEOsjAHWZiDLMxBFmYhD3OQhTnIwhxkYRbyMAdZmIMszEEW5iALs5iWh9PpXPUmeavfQDcti3ZGFuYgC3OQhVnIwxxkYQ5TswgEAvJ4PBofH1cikZDNZqvuK5fLmpiYUG9vrwKBQMPGaDVTs2hHZGEW8gBQL9v6TYCVxeNxhcNhHTp0SMePH9eZM2d0/PhxHTp0SOFwWPF4vGFjK5VK+vCHPyxJ+vmf//ma8f38z/+8JOkjH/mISqVSw8ZoJZOzaEfkYQ6yMAdZmIMszEEWZiEPc5CFOcjCHGRhFvIwB1mYgyzMQRbmIAuzkIc5yMIcZGEOsjAHWZiFPMxBFuYwOQu73a7JyUnNzMwoGAzWjC8YDGpmZkZ33313y8yIbXIW7YYszEIeADaiY2lpaanRg2h3p0+f1hVXXKFTp05p7969jR5OXUqlkq677jodOnRoxScng8Gg0um0nnjiiYa8+fzWt76lX/iFX9CRI0f00EMPLRvf2972Nn3nO9/RN7/5zWpB+3bYv3+/nnnmGV1zzTWam5vbltcwPYt2Qx7mIAtzkIU5yMIcZGEWE/J47LHH1N/frwN3HpDD41j/G9ZRzBX15J1PKpVKNdWsfZvNovLvN/Uuh3xXrf6cdvH8knIvlOW50iZHZ8eq7TLPlRW5v9h0/35WMuG4wAVkUZ+d+PwtkYdJyMIcZGEOsqgP12zbTzPlUfls06qfRZopi1ZHFusz/TNG9ffFrZfpsHvrGT2WL6n/6Est+/unHhwXZiEPc5DF+kw/Z+y0lWZe7u3t1d13390yMy83SxbtgCzM0kx5tMrn72asOwUuxgzs2JRkMqlcLqfbb7+95mQjSTabTWNjY3rqqaeUTCYbMr4HH3xQkvT7v//7K47vU5/6VE27ZmZ6Fu2GPMxBFuYgC3OQhTnIwizkYY7NZuFyueR0dCtyf1H9R19a9b8j/3NekfiCjvzP+TXbRe4vyunolsvl2skf3ygcF+YgC7OQhznIwhxkYQ6yMAdZmIU8zEEW5iALc5CFOcjCLORhDrIwR7NkEQqF9KMf/UjHjh3TV77yFR07dkxPPPFEyxSvS82TRTsgC7OQB4CN6mz0ANCc8vm8JKmvr2/F/ZXtlXbYPmRhFvIwB1mYgyzMQRbmIAuzmJBHsViUJC2eXLSkv0o/lX6bxWaz6OnpUSZ7QoVCYc3+M5mMIpGIpqam5PP51mzrcrnU09NT79BbjgnHBS4gC7OQhznIwhxkYQ6yMAdZmIU8zEEW5iALc5CFOcjCLORhDrIwRzNlYbfbNTQ01OhhbJtmyqLVkYVZyAPARlHAjk1xu92SpHQ6Lb/fv2x/Op2uabfThoaG9JnPfEaf+tSnNDQ0tGxJkjvvvLPartmZnkW7IQ9zkIU5yMIcZGEOsjCLCXlUltKcO2rt8qK5XE6Dg4OW9rmdtpJFT09P3QXnPp+vqZcD3AkmHBe4gCzMQh7mIAtzNFMWpVJJyWRS+XxebrdbgUCg4csVW6mZsmh1ZGEW8jAHWZiDLMxBFuYgC7OQhznIwhxkYQ6yMAdZmIU8AGxUx9LS0lKjB9HuTp8+rSuuuEKnTp3S3r17Gz2cupRKJV133XU6dOiQEonEsgLxYDCodDqtJ554oiE3gUqlkvbt26dnn31Ww8PDuv3229XX16d0Oq3x8XHNzMzoVa96lU6ePLmt49u/f7+eeeYZXXPNNZqbs7YYqcL0LNoNeZiDLMxBFuYgC3OQhVlMyOPhhx/WkSNHtP/W/era17Xl/hZPLmru6Jy+853vNFUB+3Zn8dhjj6m/v1+pVIoC9nWYcFzgArKoz058/pbIwyRkYY5mySIejysajVYfHJQkj8ejycnJllnGvFmyaDSu2bafZsqj1T+zNFMWrY4s1mf6Z4zq74tbL9Nh99YzeixfUv/Rl1r29089OC7MQh7mIIv1mX7OgPXIwhxkYZZmyqNVPn83Y90pUGMJDXfq1KklSUunTp1q9FA25L777lvq6OhYuvnmm5ceeeSRpdOnTy898sgjSzfffPNSR0fH0n333WfE+BwOx5Kk6n9Op3PHxnfNNdcsSVq65pprtvV1TM+i3ZCHOcjCHGRhDrIwB1mYpdF5pFKpJUlLB+48sNT3pb4t/3fgzgNLkpZSqdS2jns7bGcWlX/nZvx3aYRGHxd4GVmsb6c+fy8tkYdJyMIcpmdx8fiOHz++dObMmaXjx48bMz4rmZ6FCbhm256aJY92+MzSLFm0A7JYm+mfMaq/L269bGnpU3u3/F/q1sta/vdPPTguzEIe5iCLtZl+zsD2aJYszp8/v3Ts2LGlr3zlK0vHjh1bOn/+fKOHZLlmyaJdNEserfL5u1nrToEKCtgN0My/SO67774lj8dTUyDe29trzMmm0ePb6Q8qJmfRbsjDHGRhDrIwB1mYgyzM0sg8KGCvtV1ZtMrFqJ3E7ylzkMXadvLz99ISeZiELMxhahbnz59f8ng8SzfffPNSqVSq2VcqlZZuvvnmpd7e3pa6gWtqFqbgmm37aoY82uUzSzNk0S7IYnWmf8aggH37cFyYhTzMQRarM/2cge1jehYrjc/j8RgzPiuZnkW7aYY8WuXzdzPXnQJLS0tLHUtLS0tCQzX7Ug6lUknJZFL5fF5ut1uBQKDhy3xcrJHj26mloipMz6LdkIc5yMIcZGEOsjAHWZilUXlUlqk7cOcBOTyOLfdXzBX15J1PNvWyd9uRRassB7jT+D1lDrJY3U5//pbIwyRkYQ4Ts3jwwQd144036vjx4/L7/cv2Hz9+XAMDAzp27JiGhoZ2foDbxMQsTME12/Zmeh7t9JnF9CzaCVmszPTPGA8//LCOHDmiqVC3fK6t55UplBSJL+g73/mOBgcHt9xfs+O4MAt5mIMsVmb6OQPby9Qs4vG4wuGwhoeHdfvtt6uvr0/pdFrj4+OamZlRLBZTKBRq9DAtZWoW7WoreczPzyubzdZsKxaLyuVy8ng8cjhq76V6vV45nc4Nja9VPn83e90pQAG7AfhF0roa8UEFAAAAzYcC9p3RKhejACzH528Aq5mentb73/9+nTlzRnv27Fm2/8yZM9q7d6++8pWv6Fd+5VcaMELsNM4ZMBmfWQBzmH6++PKXv6xIJGJ5v1NTU/rABz5geb8A0MpMP2eg/ZRKJV133XU6dOiQEomEbDZbdV+5XFYwGFQ6ndYTTzxBgTeMVPlsXK/NfIZulc/f1J2i2XU2egAAAAAA0Co2MiPAZmYDAAAAwMa43W5JUjqdXnEG9nQ6XdMOAACgGXg8HkmyfAb2Sr8AAKB5JZNJ5XI5TU9P1xSvS5LNZtPY2JgGBgaUTCZbajU6tA6v16tUKlWzLZPJKBKJaGpqSj6fb1l7AM2JAnYAAAAAsEg2m617RoBmf6IfAACgGQQCAXk8Ho2Pj+u+++7Tww8/XF26eHBwUBMTE+rt7VUgEGj0UAEAAOpWmSTB57LrsNu6mVMvnnwBAAA0p3w+L0nq6+tbcX9le6UdYBqn07nqPVSfz8f9VaCFUMAOAAAAABbZyIwAzAawvVaaDT+TydR8vRgz4gMA0JrsdrsmJycVDod1xRVXqFgsVvc5HA4tLCwoFouxZDYAAAAAAGgJrEYHAGgWFLADAAAAgEWYEcAca82GH4lElm1jRnwAAFrb0tLSsm0dHR0rbgcAAAAAAGhWF69Gl0gkZLPZqvvK5TKr0QEAjEEBOwAAAACg5aw0G36xWFQul5PH41m2JDYz4gMA0JpKpZKi0ahuvvlm3XfffXr44YeVz+fldrs1ODiod7/73RodHdXIyAizsAMAAAAAgKZ38Wp0wWBQY2Nj6uvrUzqd1sTEhGZmZliNDgBgBArYAQAAAAAtZ7XZ8AcHBxswGgAA0CjJZFK5XE7T09PatWuXhoaGavaPjY1pYGBAyWRy2T4AAAAAAIBmFAqFFIvFFI1GNTAwUN3e29urWCymUCjUwNEBAHABBewAAAAAAAAAgJaUz+clSX19fSvur2yvtAMAAAAAAGgFoVBIIyMjSiaT1dXoAoEAM68DAIxBATsAAAAAAAAAoCW53W5JUjqdlt/vX7Y/nU7XtAMAAAAAoNXNz88rm83WbCsWi8rlcvJ4PHI4HDX7vF6vnE7nTg4RFrHb7aw4BwAwFgXsAAAAAGCIxZOLa+4vny3rXOGcdrl2ybbbtul+AAAA2kUgEJDH49H4+LgSiYRstpffQ5XLZU1MTKi3t1eBQKCBowQAAAAAYOdks1n19/fX3T6VSunw4cPbOCIAANCOKGAHAAAAgAZzuVzqdnRr7uicZX12O7rlcrks6w8AAKAZ2e12TU5OKhwOKxgMamxsTH19fUqn05qYmNDMzIxisRjLZwMAAAAA2obX61UqlarZlslkFIlENDU1JZ/Pt6w9AGyX2dlZFQqFNdtkMpmar2txuVzq6emxZGwAthcF7AAAAADQYD09PTqRPVHXxZnVLiBfioszAAAAF4RCIcViMUWjUQ0MDFS39/b2KhaLKRQKNXB0ANoFN+QBAABgCqfTueqM6j6fb8Ozrc/PzyubzdZsKxaLyuVy8ng8cjgcNfu8Xq+cTufGBg2gJc3OzsrnPaj54kJd7SORyLptnI5uZbIn+MwMNAEK2AEAAADAAD09PXVfSNnMBWQAAIB2FgqFNDIyomQyqXw+L7fbrUAgwMzrAHbE7OysDnoPasHCG/Ldjm6d4IY8AAAAGuDShzMrk+/U69JJeng4E2hfhUJB88UFTb3LId9VtlXbFc8vKfdCWZ4rbXJ0dqzaLvNcWZH7iyoUCvxeAZoABewAAAAAAAAAgJZnt9s1NDTU6GEAaEOFQkELxQXtv3W/uvZ1rdqufLasc4Vz2uXaJdvu1W/cL55c1NzROW7IA1DmufKa+zdS6AMAQD02+nDmSi4tdufhTAC+q2w67F57oonBa3doMAB2DAXsAAAAAKpY5hEAAAAAgO3Rta9LDo9j7UbX78xYADQ3l8slp6NbkfuLlvXpdHTL5XJZ1h8AoDXxcCYAALAKBewAAAAAqrLZrPr7++tun0qldPjw4W0cEQAAAAAAAICL9fT0KJM9oUKhsGa7TCajSCSiqakp+Xy+Ndu6XC4KBwEAdePhTAAAsFUtUcD+z//8z/qjP/ojPfDAA3r66afV1dWlAwcO6L3vfa9+4zd+Y0szQmYyGX3rW9/S97//ff3whz/Us88+q0KhILvdrquvvlpvetOb9P73v1+//Mu/rI6O1ZddayXMymkOsjALeZiDLMxBFuYgC7NcmodJWXi9XqVSqZpta93o8nq9Oza27cCxYQ6yMAdZmIMszLKRPMhie3FsmIMszEEW5iALs3D+NgfHhjnIwhxbzaKnp6fugnOfz8ckFGvguDALeZiDLMxhUhbF4oXVPxZPLlrSX6WfSr+mMymLdkcWZiEPAJvR9AXsf/VXf6VIJKLTp09Xt83Pz+vRRx/Vo48+qi9+8Yt64IEHdN11122q/z/8wz/Ul7/85RX3PfXUU3rqqaf0v/7X/9Lb3vY23XfffXrlK1+5qddpJszKaQ6yMAt5mIMszEEW5iALs2wkj53Owul0rvp6rXiji2PDHGRhDrIwB1mYxeTzd7vh2DAHWZiDLMxBFmbh/G0Ojg1zkIU5yMIcpmfRbgVhpufRTsjCHFvNYnZ2tq5VOy7+uppjx45JkuaOztU9nnrkcjkNDg5a2ud24LgwB1mYhTwAbEZTF7D//d//vd73vvepWCxqz549Ghsb04033qhisaivfvWr+tM//VM9/vjjeuc736lHH31Ul19++YZfo7OzU295y1s0ODioQ4cO6dWvfrWuuuoqPf/888pms/qTP/kTpdNpPfTQQ7r55pv1ne98RzabbRt+WnO026ycJiMLs5CHOcjCHGRhDrIwy6V5kEXjcGyYgyzMQRbmIAuzbCQPstheHBvmIAtzkIU5yMIsnL/NwbFhDrIwR7NlUSqVlEwmlc/n5Xa7FQgEZLfbGzomq5ieRbsVhJmeRzshC3NsJYvZ2Vn5vAc1X1yo67UikUhd7fbful9d+7rqaruWxZOLmjs6J4/Hs+W+dgLHhTnIwiwm57HSw4BrPbTT7A8DAs2kqQvYP/axj6lYLKqzs1N/+7d/q7e+9a3VfW9/+9v12te+Vrfddpsef/xxTU5O6s4779zwa3zxi19UZ+fK/0y/8Au/oI985CN673vfq3g8ruPHj2tmZka//Mu/vNkfyUj1PIm5lktPAC6Xq+7l7LDcVvIgC2txbJiDLMxBFuYgC7Nw/jYHx4Y5yMIcZGEOsjAL529zcGyYgyzMQRbmIAuzcP42B8eGOcjCHM2cRTweVzQaVS6Xq27zeDyanJxUKBTakTFYqdmyMLkgzApW5sHvqK1ptmOjlVmZRSaT0XxxQVPvcsh31eoTchbPLyn3QlmeK21ydHas2u5rT5zXHccW1bWvSw6PY9V2G3XpahKm4LgwB1mYxao81lv1wQprPQy40kM7zf4wINBMOpaWlpYaPYjN+N73vqe3vOUtkqRf//Vf1x//8R8va1Mul9XX16dMJqMrr7xSzz77rHbt2mX5WL773e9Wi+dHR0d11113bej7T58+rSuuuEKnTp3S3r17LR/fVszOzuqg16eF4rxlfXY7nDqRzbTFm4D9+/frmWee0TXXXKO5ua0vn2R1Hu2UhdU4NsxBFuYgC3OQhVla4fz92GOPqb+/v+k/rDfq2LDy348sVsfvqc0hC3OQxdbw+bt1cWyYgyzMQRZbY+U5gyzMYvL5u/JZ7sCdBywp8inminryzieN/WzIsWEOstg80z9jSDt3XSoejyscDmt4eFi33367+vr6lE6nNT4+rpmZGcVisaYqYm+V44LrhCtrl99R26FVjo1GaIZzhiSlbr1Mh91bXznjyz88q0h8oS3e23JcmIMszLIdeVj1O+qxfEn9R1+q+Z2y0gzsxWJRuVxOHo9n2QM0zTQDu8l1p0A9mnYG9kQiUf3zr/3ar63Yxmaz6ZZbbtHY2JheeOEFHTt2TDfddJPlY7n88surf15YqG/JnWZRKBS0UJzXK4ej2vXKa1dtt3T+rM6f+ok6r7haHZ27V2137qdP66czkyoUCrwB2IR68iCLncGxYQ6yMAdZmIMszML52xwcG+YgC3OQhTnIwixW5kEWW8OxYQ6yMAdZmIMszML52xwcG+YgC3M0axalUknRaFTDw8NKJBKy2S7M3Ov3+5VIJBQMBjU6OqqRkRHZ7VsvONoJzZpFq+L8bQ6ODXNYnUXxnx7VqeTUdgy15XFcmIMszGJlHjvxO8rpdK74gMzg4OC2vi6A9TVtAft3vvMdSdJll1226hIPkvS2t72t+ueHH354WwrYv/rVr1b/3GzLcdVr1yuvVderr1u70f7X7cxgsH4eZLFjODbMQRbmIAtzkIVZOH+bg2PDHGRhDrIwB1mYhTzMQRbmIAtzkIU5yMIs5GEOsjAHWZij2bJIJpPK5XKanp6uFq9X2Gw2jY2NaWBgQMlkUkNDQ40Z5CY1WxatjjzMQRbmsCqLcz992qIRtS+OC3OQhVmsyIPfUUB7a9oC9kwmI0m67rrr1Nm5+o9xcUF55XusUCgU9MQTT+iLX/yi7r33XkmSy+XSBz7wActeAwAAAAAAAAAAAACARsjn85Kkvr6+FfdXtlfaAa1ufn5e2Wy2ZluxWFQul5PH45HD4ajZ5/V65XQ6d3KIAAAAQNNoygL2hYUFFQoFSdL+/fvXbPuKV7xCl112mV566SU9/fTWntgZGhrSQw89tOI+l8ul+++/X1deeeWWXgMAAAAAAAAAAAAAgEZzu92SpHQ6Lb/fv2x/Op2uaQe0umw2q/7+/rrbp1IpHT58eBtHBAAAADSvpixgP3PmTPXPe/bsWbd9pYD9xRdf3Jbx/If/8B90xx13yOVy1dV+cXFRi4uL1b+fPn16W8YFAAAAYPutt9JTZf967Vwul3p6eiwbFwAAAAAAANrHSjNDr3Vdqp6ZoQOBgDwej8bHx5VIJGSz2ar7yuWyJiYm1Nvbq0AgYMFPAJjP6/UqlUrVbMtkMopEIpqampLP51vWHmhViycX19xfPlvWucI57XLtkm23bdV26/UDAABaV1MWsC8sLFT/vHv37nXbd3V1SbqwdNNW3HvvvXrppZe0tLSkF154QY8++qj+x//4H/pv/+2/6Z/+6Z/0xS9+UVdfffW6/UxMTOj3f//3tzQWrI5luwAAALATSi8+L1uHFIlE6mq/Xjuno1uZ7AmK2AEAAAAAALBha80MvdJ1qXpmhrbb7ZqcnFQ4HFYwGNTY2Jj6+vqUTqc1MTGhmZkZxWIx2e12S34GwHROp3PV48bn8zHbOtrCld0dUoc0d3TOsj67Hd11TxoKAABaR1MWsHd3d1f/fPbs2XXbV2Y7v7RweaN6e3tr/h4IBPSRj3xE73nPezQzM6M3velNeuSRR7R///41+xkbG9MnPvGJ6t9Pnz6ta6+9dktjw8tYtgsAAAA7obz4ospL0tS7HPJdtfrsIcXzS8q9UJbnSpscnR0rtsk8V1bk/qIKhQIF7AAAAAAAANiwlWaGXm+Sr3qEQiHFYjFFo1ENDAxUt/f29ioWiykUCm198ACApuHeY5OWVLPqQGUlgnpdumIBK9QC7WupdE6SlCmULOmv0s9WJzoGsDOasoD98ssvr/75xRdfXLf9Sy+9JEnas2eP5WPp7u7Wvffeq9e85jV6+umnddttt+krX/nKmt/T1dVVnRXedJVf5ud++rQl/VX6sfIkMTs7q0KhUP17sVjU1NRUTZunnnpKd9xxhz796U8vexChWCzqscceq/7d5DfGVuaxHVm0k2Y4NtoFWZiDLMxBFmbh/G0Oq4+N86d+IknyvKJDh91rzzI1yPOqNfg9ZQ6yMAdZmIXztzk4NsxBFuYgC3OQhVk4f5uDY8McZGGOnchitZmhBwcHt/x6oVBIIyMjSiaTyufzcrvdCgQCTTnzOseFWTh/m4NjwxzbdS+jeH7Jkv4qLl51YDMPUTmdTkvHsx04LsxBFmaxMo+zP35CkhSJL2y5r4vlcjlL3gcD2F5NWcDe3d2tV77ylfrpT3+qubm1l6R5/vnnqwXs2zXLucvl0uDgoL7xjW/oL//yL3Xu3Dnt2rVrW15rp+VyOUnST2cmLe/XipPE7OysDnoPaqFY30nsjjvuWLdNt6NbJ7InjCxi3448OGFvjunHRjshC3OQhTnIwiycv82xbcfGC2UK1DeI31PmIAtzkIVZOH+bg2PDHGRhDrIwB1mYhfO3OTg2zEEW5miFLOx2u4aGhnbktbZTK2TRSjh/m4NjwxzNeC9jOx+iaiSOC3O0QhalUqklHgaUtiePT9+4W//2tVuvt8wUSorEF+TxeLY+KADbrikL2CXpda97nZLJpH70ox/p/Pnz6uxc+UfJZrPVP1+8/IzVrrrqKknS/Py8CoWC3G73tr3WTqr8Mn/lcFS7Xrn1d7Lnfvq0fjozadlJolAoaKG4oP237lfXvtVntS+fLetc4Zx2uXbJttu2arvFk4uaOzqnQqFgZAG7lXlYnUW7Mf3YaCdkYQ6yMAdZmIXztzmsPjaK//SoTiWn5Lly9feXWBm/p8xBFuYgC7Nw/jYHx4Y5yMIcZGEOsjAL529zcGyYgyzMQRbmaIYsLl2BfCWZTKbm61pMXoGc87c5muHYaBfcyzAHx4U5mj2LeDyuaDRaLfyWLvxMk5OTCoVCOzIGK1mZR+V31I29neuueL0Rl678AMBMTVvAfuTIESWTSb300ktKpVJ6y1vesmK7hx56qPrn7Xxi6plnnqn+ec+ePdv2Ojut8st81yuvVderr7O8X6t07euSw7NOn9db+pINsR15cMLenGY5NtoBWZiDLMxBFmbh/G0Oq7OoLIvn6OzYcl/tht9T5iALc5CFWTh/m4NjwxxkYQ6yMAdZmIXztzk4NsxBFuYgC3OYnsVGVyCPRCLrtjF5BXLO3+Yw/dhoJ9zLMAfHhTmaOYt4PK5wOKzh4WFNT0+rr69P6XRa4+PjCofDisViTVfEbmUe/I4C2lvTFrAHg0FNTExIku69994VC9jL5bL+/M//XJJ05ZVX6sYbb9yWsczNzen48eOSpNe85jW6/PLLt+V1AAAAAAAAAAAAAABAa2q3FcgBAGhlpVJJ0WhUw8PDSiQSstkunLP9fr8SiYSCwaBGR0c1MjIiu9262cebUea58pr7i+eXlHuhLM+VtjWL3dfrB4BZmraA/c1vfrMCgYCSyaT+7M/+TB/84Af11re+tabN5ORkdcmsj33sY9q1a1fN/gcffLBa1P7BD35QX/rSl2r2P/7445qbm9Pb3/72Vcdx6tQpvf/979fZs2clSbfccstWfzQAAAAAAAAAAAC0iGKxKOlCEaEVKv1U+gUAtJ52WYEcALC9SqWSksmk8vm83G63AoFA2xdK76RkMqlcLqfp6elq8XqFzWbT2NiYBgYGlEwmNTQ01JhBNpita49sHVLkfus+3zod3XK5XJb1B2D7NG0BuyR9/vOf1+DgoIrFom666SbdfvvtuvHGG1UsFvXVr35VR48elSRdf/31ikajG+7/5MmT+vmf/3n963/9rxUMBtXf369Xv/rV6uzs1I9//GM9/PDD+rM/+zP9+Mc/liT19fXp//v//j9Lf0ZTVJbrWM3S+bM6f+on6rzianV07t50P6jPWv+OZLGzODbMQRbmIAtzkIVZOH+bw6pj4/ypn1g9tLbD7ylzkIU5yMIsVuRBFtbg2DAHWZiDLMxBFmYx8fydy+UkSXNH5yzvd3Bw0NI+rcSxYQ6yMAdZmIMszGLi+btdcWyYg3sZ5mjW4yIejysajVY/j0iSx+PR5OSkQqHQjo7FKs2WRT6fl3ShpnAlle2Vds3GijzKiy+qvCRNTU3J5/Ot2lcmk1EkElm3nSS5XC5WngGaRFMXsL/hDW/QX/zFXygSiej06dO6/fbbl7W5/vrr9cADD+jyyy/f9Ov84Ac/0A9+8IM127zzne/UvffeK6fTuenXMZHL5VK3w6mfzkxa1me3w8lTTptkdR5ksXkcG+YgC3OQhTnIwiycv82xHceGJGUKJcv6aJfZ8/g9ZQ6yMAdZmIXztzk4NsxBFuYgC3OQhVlMPn97PB5J0v5b96trX9eW+1s8uai5o3PVfk3DsWEOsjAHWZiDLMxi8vm73XBsmGO77mVg45r5uIjH4wqHwxoeHtb09LT6+vqUTqc1Pj6ucDisWCzWVEXszZqF2+2WJKXTafn9/mX70+l0TbtmsR3n70AgUFfRuc/n0+HDhy15XQCN19QF7JJ088036x//8R/1+c9/Xg888IDm5ua0e/duXXfddXrPe96j3/zN39x0Ufng4KD+5m/+Rt/85jf16KOPam5uTj/5yU80Pz+vvXv3qre3V36/X7/yK79i9AwXW9HT06MT2YwKhcKa7XjKaWfUkwdZ7AyODXOQhTnIwhxkYRbO3+aw+tj42te+pjvuuEOR+IJlYzR99jyr8HvKHGRhDrIwi9V5kMXmcWyYgyzMQRbmIAuzmHz+djgckqSufV1yeByW9Hlxv6bh2DAHWZiDLMxBFmYx+fzdbjg2zGF1FpV22LhmPS5KpZKi0aiGh4eVSCRks9kkSX6/X4lEQsFgUKOjoxoZGZHdbt/WsVilWbMIBALyeDwaHx+vyUKSyuWyJiYm1Nvbq0AgsK3jsBrnbwBWafoCdkl6zWteo8997nP63Oc+t6HvGxoa0tLS0qr7d+3apZtuukk33XTTVofY1Hp6euo+SfCU0/arNw+y2H4cG+YgC3OQhTnIwiycv81h5bFRmS19KtQtn2trF/gyhZIi8QVjZ8/bDvyeMgdZmIMszEIe5iALc5CFOcjCHGRhFvIwB1mYgyzMQRbmIAuzkIc5yMIcZGGOZswimUwql8tpenq6pmBakmw2m8bGxjQwMKBkMqmhoaHGDHITmjELu92uyclJhcNhBYNBjY2NVWfDn5iY0MzMjGKxWNM8SHCxZswDgHlaooAdAAAAAHZaZaY7n8uuw25rLixdPHve/Py8stlszf5MJlPz9WJer3fTq08BAAAAAAAAAIDWU5mMJ1MoWdJfpZ9KvzBPPp+XJPX19a24v7K90g7bKxQKKRaLKRqNamBgoLq9t7dXsVhMoVCogaMDgMaigB0AAAAADJTNZtXf37/ivpWW+0ylUsxeAAAAcJGVHggsFovK5XLyeDw1Dw9KPBAIAAAAAGg9uVxOkhSJL1je7+DgoKV9whput1uSlE6n5ff7l+1Pp9M17bD9QqGQRkZGlEwmlc/n5Xa7FQgEmnLmdQCwEgXsaGqVJzoXTy5a0l+lH54UBQAAQKN5vV6lUqmabesVXAEAAOBlaz0QuBIeCASw3da7l1E+W9a5wjntcu2Sbbdt0/0AAAAAFR6PR5I0FeqWz7X1YtlMoaRIfKHaL8wTCATk8Xg0Pj6uRCIhm+3lzxblclkTExPq7e1VIBBo4Cjbj91u19DQUKOHAQBGoYAdTa3ypOjc0TnL++VJUQAAADSS0+lcsYCK96kAAAD1WemBwEwmo0gkoqmpKfl8vmXtAWA1W1nVweVyqdvRbem9jG5Ht1wul2X9AQDMwARuAKxWfZ+61LFmu+L5JeVeKMtzpU2OzjXa/qyfS9//whx2u12Tk5MKh8MKBoMaGxtTX1+f0um0JiYmNDMzo1gsxuzfAICGo4AdTa3yROf+W/era1/XlvtbPLmouaNzPCkKAAAAAAAANLnVHgiUJJ/Px2zrADZkK6s69PT06ET2hAqFwprfs9ZDNpdyuVzq6empezwAgObABG4ArOZyueR0dCtyv3UPsjh5mNJ4oVBIsVhM0WhUAwMD1e29vb2KxWIKhUINHB3QWKVSSclkUvl8Xm63W4FAgAc6gAahgB1NrfJEZ9e+Ljk81j3dyZOiAAAAAAAAAACgYqurOvT09NRdcM5DNgDQvpjADYDVenp6lOFhyrYUCoU0MjJCoS5wkXg8rmg0Wn1oULrw/mtycpIHO4AGoIAdAAAAaGOzs7N1XbS8+OtauGgJAACARuG9LYDtxKoOAICdwARuALYDD1O2L7vdrqGhoUYPAzBCPB5XOBzW8PCwpqen1dfXp3Q6rfHxcYXDYVYnABqAAnYAAACgTc3Ozuqg96AWigt1tY9EIuu26XZ060T2BIU+AAAA2FG8twUAAAAAAACwklKppGg0quHhYSUSCdlsNkmS3+9XIpFQMBjU6OioRkZGWKUA2EEUsGPD5ufnlc1ma7atNXOR1+uV0+nckbG1G7IwC3mYgyzMQRbmIAuzXJpHo7IoFApaKC6suxxt+WxZ5wrntMu1S7bdtlXbVZajLRQKTVPkw7FhDrIwB1mYgyzMspE8yGJ7cWyYw6Qs2v29rUlZtDuyMAvnb3NwbJiDLMxBFuYgC7OQhznIwhxkYQ6yMAdZmMX0PJLJpHK5nKanp6vF6xU2m01jY2MaGBhQMplk1QJgB1HAjg3LZrPq7+9fcd9KMxelUqltX15o8eTimvs3cmOqmZiYRTsjD3OQhTnIwhxkYZbV8mhUFnUtR3v9tg6hYTg2zEEW5iALc5CFWTaSB1lsL44Nc5iYRbu+tzUxi3ZFFmbh/G0Ojg1zkIU5yMIcZGEW8jAHWZiDLMxBFuYgC7OYnkc+n5ck9fX1rbi/sr3SDsDOoIAdG+b1epVKpWq2FYtF5XI5eTweORyOZe23i8vlUrejW3NH5yzrs9vRLZfLZVl/28mkLEAeJiELc5CFOcjCLJfmQRaNw7FhDrIwB1mYgyzMspE8yGJ7cWyYgyzMQRbmIAuzmHz+Nn12OqtxbJiDLMxBFuYgC7OQhznIwhxkYQ6yMAdZmMXKPLbj87Lb7ZYkpdNp+f3+ZfvT6XRNOwA7o2NpaWmp0YNod6dPn9YVV1yhU6dOae/evY0eTtOZnZ1VoVBYs00mk1EkEtHU1JR8Pt+abV0ul2XLAu/fv1/PPPOMrrnmGs3NWVdkDwBAqyuVSkomk8rn83K73QoEArLb7Y0eVst57LHH1N/frwN3Hlh/lso6FHNFPXnnk20zg0Hl3y9162U67N7a/5+P5UvqP/pS2/zbAYDV+PwNgPe2qBfnDFip+rlwE78rKt9bL34fATuL8wW2YqWiq/UKuCpFV7yvNYvJtQgwR6ucM7by3vZS3OcDsBXb8Xm5VCrpuuuu06FDh5RIJGSz2ar7yuWygsGg0um0nnjiiab6fUXdKZodM7Cj4bbyAV6Senp66v6Q5/P5+GAOAIDh4vG4otGocrlcdZvH49Hk5KRCoVDjBgYAAAAAAGARZgsEgNaVzWZ5SKkFzM7O6qD3oBaKC3W1j0Qi67bpdnTrRPYERexoadznAy7Yaj1cO9uOz8t2u12Tk5MKh8MKBoMaGxtTX1+f0um0JiYmNDMzo1gs1lTF60AroIAdDccHeAAAUBGPxxUOhzU8PKzp6enqh8bx8XGFw2HFYjEubgEAAAAAgKbndDpXvNcxODjYgNEAAKy0UtHVWrN085CSmQqFghaKC9p/63517etatV35bFnnCue0y7VLtt22VdstnlzU3NE5FQoFCtgtQGGombjPB7yMerjN267Py6FQSLFYTNFoVAMDA9Xtvb29/H4CGoQCdjQcH+ABAIB0YdmuaDSq4eHhmmW7/H6/EomEgsGgRkdHNTIywpPPFikWi5IuXDi3QqWfSr/tIvNcec39xfNLyr1QludKmxydHZvqAwAAAAAAAEBzWK3oSmLF8GbUta9LDo9j7UbX78xY8DIKQ83DfT6gFvVwZgqFQhoZGVEymVQ+n5fb7VYgEOD3EtAgFLCj4fgADwAAJCmZTCqXy2l6erp6UavCZrNpbGxMAwMDSiaTGhoaaswgW0xl+ca5o3OW99sOM8a5XC45Hd2K3G9Nwb7T0S2Xy2VJXwAAAACArZmdnVWhUFizTSaTqfm6FpfLxWyrAIC6rTfpyEZm/QZaEYWh5uE+H1CLejhz2e12fg8BhqCAHQAAAEbI5/OSpL6+vhX3V7ZX2mHrPB6PJK27BGq9KkugVvptdT09PcpkT9RV0LDaRfOLUcwAAAAAAGaYnZ2Vz3tQ88WFutpHIpF12zgd3cpkT/C5DwCwJpfLpW5Ht6WTjnQzcQZaEIWh5uE+3+bMz88rm83WbCsWi8rlcvJ4PHI4aleA8Hq9cjqdOzlEAAC2DQXsAAAAMILb7ZYkpdNp+f3+ZfvT6XRNO2xd5aJXXUugbqLfdtDT01N38QEXzQEAAACgORQKBc0XFzT1Lod8V60+q23x/JJyL5TludImR2fHqu0yz5UVub+oQqFAATsAYE09PT06YeGkGRITZwDYGdzn25xsNqv+/v6626dSKe41AQBaBgXsAAAAMEIgEJDH49H4+LgSiUTN8oLlclkTExPq7e1VIBBo4CgBAAAAAEC78F1l02G3fc02g9fu0GAAAG2DSTMANCPu822O1+tVKpWq2bbWQ0per3cnhwcAwLaigB07bnZ2tq4nxi/+uhaeGAcAoDXY7XZNTk4qHA4rGAxqbGxMfX19SqfTmpiY0MzMjGKxmOz2tW8cA62qVCopmUwqn8/L7XYrEAhwPAAAAAAAAAAAgIbjPt/mOJ3OVR9E4iElAECro4AdO2p2dlY+70HNFxfqah+JRNZt43R0K5M9QRE7AAAtIBQKKRaLKRqNamBgoLq9t7dXsVhMoVCogaMDGicejysajSqXy1W3eTweTU5OclwAAAAAAAAAAIC6zc/PK5vN1mxba6JJr9crp9O5br/c5wMAABtBATt2VKFQ0HxxQVPvcsh3lW3VdsXzS8q9UJbnSpscnR2rtss8V1bk/qIKhQIF7AAAtIhQKKSRkRFmmkZT2shF33ov+MbjcYXDYQ0PD2t6ero6Y8n4+LjC4TAXfQEAAAAAsBAroAEAgFaXzWbV39+/4r6VJppMpVJ1zwTOfT60q9nZWRUKhTXbrPWgyKVcLhe1cABaHgXsaAjfVTYddq/95nTw2h0aDAAAMI7dbtfQ0FCjhwFs2EYu+tZzwbdUKikajWp4eFiJREI224WHQP1+vxKJhILBoEZHRzUyMsLFXwAAAAAAtogV0ABsBgVrAJqN1+tVKpWq2VYsFpXL5eTxeORwOJa13wju8+2cS89BlRzrdWnenIM2Z3Z2Vge9B7VQXKir/UoPilyq29GtE9kT5AGgpVHADgAAAAAW2chF33ou+CaTSeVyOU1PT1eL1ytsNpvGxsY0MDCgZDLJxWAAANBymAEXALCTWAENwGbMzs7K5z2oeQsL1pyObmUoWAOwjZxO54oT7AwODjZgNNisjRZN14Oi6c0pFApaKC5o/6371bWva9V25bNlnSuc0y7XLtl221Ztt3hyUXNH51QoFMgCQEujgB1bxo0kc5CFWcjDHGRhDrIwB1mYgyzMstU8rL7om8/nJUl9fX0r7q9sr7RrJRwb5iALc5CFWcjDHGRhDiuzYAbcreG4MAdZmKXePIrFoiQpUyhZ8rqVfir9wrxjo51XQDMti3ZGFubYSBaFQkHzxQVNvcsh31WrF6IVzy8p90JZnittcnR2rNou81xZkfuLFKxdhGPDHGRhDrIwRyOzePrpp7VQXNCrQq/SbtduSVL5fFnnXzhfdx+dV3bK1nnh/HW2cFbPxp/V008/3ZTnIBOOi659XXJ4HGs3un5nxtJoJuQBwHwUsGNLuJFkDrIwC3mYgyzMQRbmIAtzkIVZTMzD7XZLktLptPx+/7L96XS6pl2rMDGLdkUW5iALs5CHOcjCHFZmwQy4W8NxYQ6yMMtG8qi0icStm8mw0i+zWpp5bLTrCmgmZtGuyMIcm83Cd5VNh91rF2UNXmvVKNsHx4Y5yMIcZGGORmdRed1n489a3m+zfW5pdBaoRR4A6rX6I8DAOio3kg4dOqTjx4/rzJkzOn78uA4dOqRwOKx4PL7sey6eteSx/Nb/Y9aSCzaTBbYPeZiDLMxBFuYgC3OQhVlMzSMQCMjj8Wh8fFzlcrlmX7lc1sTEhHp7exUIBBoyvu1gahbtiCzMQRZmIQ9zNEMWpVJJDz74oKanp/Xggw+qVLJmJl/TWJnFpTPg+v1+7dmzpzoD7vDwsEZHR5f9W1auDy6eXFQxV9zyf4snF2v6bRbNcFy0C7Iwy0bz8Hg8kqSpULdSt1625f+mQt01/bYzU4+NdlwBzdQs2hFZmIMszNLoPPiM8bJGZ4GXkYU5TMii8vli/637deDOA1v+b/+t+2v6bRYmZIGXkQeAjehYWlpaavQg2t3p06d1xRVX6NSpU9q7d2+jh1OXUqmk6667TocOHapZSlG6UEgTDAaVTqf1xBNP1Cz/8eUvf1mRSMTy8UxNTekDH/jAqvsfe+wx9ff3K5VK6fDhw5a//mr279+vZ555Rtdcc43m5ua25TU2mwW2B3mYgyzMQRbmIAtzWJnF/Py8stlszbZisahcLiePxyOHo3aZOq/XK6fTKenl90gH7jyw/nJ2dSjminryzid3/D3XVpl+bFw8A+nY2Fh1BtKJiQnNzMy01AykpmfRTsjCHGRRn534/C2Rh0maIYt2mWnI6iwefPBB3XjjjTp+/PiKK9AcP35cAwMDOnbsWM0MuI267miSZjguTMA12/azmTyq9xRuvWzd2XTr8Vi+pP6jLzXd52WrmXxsbPb806xMzsIUfMZoP5vNolHnjEbd/94pJhwbfMa4wIQs6tXKdSFSc2XR6rY7i3r/X+Y+nznHBVlcYEoe7aQZ606Bi3U2egBoTptdSrHylN6nb+xS7ys6Vu1/8bx08kxZ+y63qWuN/0ufen5JdxxbbLqn/6zUrstamoo8zEEW5iALc5CFOazMIpvNqr+/v+7XbrYLHTvB9GMjFAopFospGo1qYGCgur23t7elitcl87NoJ2RhDrIwC3mYw/QsLn4AbXp6uvoA2vj4uMLhcEudw63OYrMz4F4861jXvq4N/hTLLZ5c1NzRuaa67mj6cdFOyMIs5GEOk7O4eAW0lQotWm0FNJOzaDdkYY7NZnHxCuRWYAXyC0w4NviMcYEJWeACsjAHWZiDLMxCHgA2igJ2bMpmbyRde+21cjq6dcexBcvG4nR069prr7Wsv2bTjstamow8zEEW5iALc5CFOazMwuv1KpVK1WzLZDKKRCKampqSz+db1h61muHYCIVCGhkZUTKZVD6fl9vtViAQaLnZCZohi3ZBFuYgC7OQhzlMzqJUKikajWp4eLimAM7v9yuRSCgYDGp0dFQjIyMtcS63Ogu32y1JSqfTK86Am06na9pVVFYe6trXZclMV5f22wxMPi7aDVmYhTzMYXIWdrtdk5OTCofDCgaDq66A1grnbsnsLNoNWZhjs1lUVlyKxK27/13pd3Bw0NI+m4kJxwafMS4wIYuK2dlZFQqFVfdnMpmar2txuVzq6emxbGw7waQs2p1pWSyeXFxzf/lsWecK57TLtUu23bZV263Xj4lMy6LdkQeAjaKAHZuy2RtJPT09ymRPrPmhQlq76OpSzfjBwkqbzQLbgzzMQRbmIAtzkIU5tpLFehdo15PNZqt/rucibjtolmPDbre3/GwEzZJFOyALc5CFWcjDHCZn0W4zDVmdRbvNgGslk4+LdkMWZiEPc5ieRTutgGZ6Fu2ELMyx2Swqs2lPhbrlc239IZdMoaRIfKHpZum2GseGOUzJYnZ2Vge9B7VQXP9hkUgksm6bbke3TmRPNFWtiSlZwJwsXC6Xuh3dmjs6Z1mf3Y5uuVwuy/rbbqZkUVk5xaqHACr9NNuKLKbkAaB5dCwtLS01ehDt7vTp07riiit06tQp7d27t9HDqUupVNJ1112nQ4cOrXgjKRgMKp1O64knntjUbBSPPfaY+vv7lUqldPjw4Q197/z8fE1hlrT+LKROp3PDY6zH/v379cwzz+iaa67R3Jx1bxgvtt1ZYGPIwxxkYQ6yMAdZmGOzWczOzsrnPaj5Oi7QbsSBOw9YMoNMMVfUk3c+uan3cI3EsWEOsjAHWZiDLOqzE5+/JfIwiclZTE9P6/3vf7/OnDmjPXv2LNt/5swZ7d27V1/5ylf0K7/yKzs6tu2wHVnE43GFw2ENDw+vOgPupUWEleuJ+2/dr659Xav2vZFZx+aOzjXVe1uTjwuTcM22/Wwmj+o9ilsv02H31jN6LF9S/9GXmup3ynZolmOjVCq1/ApozZJFI/EZo/1sNotGnTO2cj+9GWzXsbGR3/GVf2Oun5vxe6qez3yN+rzHOaP9bCWLeiaq2sikn4uLi+rqWv06yEb7a7ZJRE05Lr785S/X9fDMRk1NTekDH/iA5f1uF1PyaCfNWHcKXIwZ2LEpJi+lmM1m1d/fv+K+ld4sNNsHxEuZnEU7Ig9zkIU5yMIcZGGOzWZRKBQ0X1zQ1Lsc8l21+sXX4vkl5V4oy3OlTY7OjlXbfe2J87rjWPMtB2g1jg1zkIU5yMIcZGEW8jCHyVm020xD25HFZmbAZdYxs4+LdkMWZiEPczRLFu2wAlqzZNEOyMIcZGGW7cgjHo8rGo0ql8tVt3k8Hk1OTrbUKhtWM+3Y6NrXtfYDBdfvyDAawrQs2tlms9joRFX1FEQ7Hd3K1LmagM/na+r6qJWYclxUVk5Zb2KFelUetGm2FVlMyQNA86CAHZtm6lKKXq9XqVSqZluxWFQul5PH45HD4VjWvtmZmkW7Ig9zkIU5yMIcZGGOrWThu8q27mw+g9euP4ZMoVT3eFsdx4Y5yMIcZGEOsjALeZjD1CwCgYA8Ho/Gx8dXnGloYmJCvb29CgQCDRnfdtiOLEKhkEZGRuqeHbGnp0cnsicsncWs2WYdk8w9LtoRWZiFPMxBFuYgC3OQhTnIwixW5nHxKk/T09PVYrrx8XGFw2HyXQfHhjnIwhybycLqiaoyz5UVub+oQqHQdNcvrGTCcVGpRVv3IZtN9ttMTMgDQPPoWFpaWmr0INpdsy/lsB1LKbbKkmc7tVRURTssa9lMyMMcZGEOsjAHWZhjM0uWWrUc7Zd/eFaR+ELbL4F6MY4Nc5CFOcjCHGSxup3+/C2Rh0lMzKJSHPHOd75Tv/RLvySHw6Fisaivf/3reuCBB1r2Zo2JWVyqVa47rqcZsmgUrtm2t3rzsPrz92P5kvqPvtTyv3s2gmPDHGSxMj5jtLdGXrOt95zRLu9rpa0fG6VSSdddd50OHTq04kPGwWBQ6XRaTzzxRE2/lX9jrp+/rJG/p6zMw+osOGe0N9POGfPz88pmszXt1nqY3+v1yul0bnksJjDhd9R6M7CXz5Z1rnBOu1y7ZNu9+kMMlRnYOWdgPc1edwowAzu2rB2WUmwWZGEW8jAHWZiDLMxBFuYgC7OQhznIwhxkYQ6yMAt5mMPELEKhkEZHR3XPPfdoZmamur2zs1Ojo6MtWbwumZlFuyILc5CFWTaaR+a58pr7NzIzImpxbJiDLMxBFuYgC7NsNY9kMqlcLqfp6ema4nVJstlsGhsb08DAgJLJJLmvg2PDHGRhDtOyyGaz6u/vX3FfJBJZtq2ZC6Qv1cgsXC6Xuh3dmjtq3UMs3Y5uuVwuy/rbaaYdGwDMRAE7Gm61p/8u/nqxVnr6DwAAwASLJxfX3L+R2QAAAABwYQb2u+++W+985zv1jne8ozoD+1//9V/r7rvvlt/vb9ki9q1Y6TphsVhULpeTx+NZtmwy1wkBbBeXyyWno1uR+4uW9els8uIDAMDaeOjJXPl8XpLU19e34v7K9kq7S3H9HEAz8Xq9SqVSNdvWu7aCrevp6dGJ7AkVCoU12601G/6lXC6Xenp6rBwmABiHAnY0XDs//QcAANBIV3Z3SB1iNgAAAAALlUolRaNRDQ8PL1ue/sMf/rCCwaBGR0c1MjLCsrmXWOs64Uq4Tghgu/T09ChD8QEAoA489GQ+t9stSUqn03rTm96kZDKpfD4vt9utQCCgdDpd066C2XQBNCOn07nitZLBwcEGjKa99PT01P2Zz+fzcU0LAEQBOwzA038AAACN4d5jk5a07o12bsgDAADUj+XpN2+l64RrvRflOiGA7UTxAQCgHjvx0BMrmm9NIBCQx+PRb/3Wb6lQKCiXy1X3eTweuVwu9fb2KhAI1Hwfs+kCQHthZUAA2HkUsKPhePoPAACgseq90c4NeQAAgPVtdXn6djI7O7tuMchaLr2pSDEIAAAAGmG7H3piRfOtsdvtes973qO77rpLV199tY4eParh4WHNzMzojjvu0KOPPqpPfvKTK66QxQNtANA+WBkQAHYeBewAAAAAAAAAYJGLl6f3+/3L9q+2PH27mZ2dlc97UPPFhbrar1SYcymno1uZ7AmK2AEAANBSWNF8a0qlkv73//7feuMb36jnnntOt956a3Wfx+PRG9/4RsViMU1MTKxYxA4AaA+sDAgAO48CdgAAgJ8plUpKJpPK5/Nyu90KBAJcrAQAAACwIZXl6cfHx5VIJGSz2ar7yuWyJiYmVlyevt0UCgXNFxc09S6HfFfZVm1XPL+k3Atlea60ydHZsWq7zHNlRe4vqlAoUMAOAACAlsKK5luTTCaVy+U0PT2tN73pTcvuA33ve9/TwMCAksmkhoaGGj1cALAU97/rt9r5VmKVDQDYLhSwAwAASIrH44pGo8rlctVtHo9Hk5OTCoVCjRsYcJFisShJyhRKlvRX6afSLwAAALbObrdrcnJS4XBYwWBQY2Nj6uvrUzqd1sTEhGZmZhSLxdr+ZmH1PWjH0prtHJ0d8rnq+Lf6WT+8twUAAABwsXw+L0nq6+uT3W5fVqTe19dX0w7bZ35+XtlstmbbeqsJOJ3OnRwisK12+j4f978BAKajgB0AALS9eDyucDis4eFhTU9PV4tLxsfHFQ6HFYvF+BAPI1QuMEXiC5b3y2w9AAAA1gmFQorFYopGoxoYGKhu7+3t5fPFz/DeFgAAAK1qpSLdTCZT8/ViFOluL7fbLUlKp9Py+/3L9qfT6Zp22D7ZbFb9/f11t0+lUsx4jJayk9dCuP8NAGgGFLADAIC2ViqVFI1GNTw8rEQiIZvtwtL1fr9fiURCwWBQo6OjGhkZafsZEtF4Ho9HkvTpG7vU+4qOVdstnpdOnilr3+U2da3xjv+p55d0x7HFar8AAACwTigU0sjICMs0r6LyHnQq1F3fDOvryBRKisQXeG8LAACAhlurSDcSiSzbRpHu9goEAvJ4PBofH6+5DyRJ5XJZExMT6u3tVSAQaOAo24PX61UqlarZlslkFIlENDU1JZ/Pt6w90Ep26loI978BAM2CAnYAANDWksmkcrmcpqenay5aSpLNZtPY2JgGBgaUTCaXLSsJ67BsZH2uvfZaOR3duuOYdTMzOB3duvbaay3rDwAAAC9baXl6XFB9j7+0+oOZklQ8v6TcC2V5rrTJ0blG25/1c+lnBwAAAGCnrVSku971bmwfu92uyclJhcNhBYNBjY2NVWcinpiY0MzMjGKxGEWcO8DpdK76sIbP5+NBDrS8yu9/n8uuw27rfudcel7h/jcAoFlQwA4AANpaPp+XJPX19a24v7K90g7bg2Uj69PT06NM9oQKhcKa7daaseRSLpdLPT09Vg4TAAAAWJfL5ZLT0a3I/UXL+nQ6uuVyuSzrDwAAANiM1Yp0BwcHGzAaSBdWyIrFYopGoxoYGKhu7+3tVSwWUygUauDoAMBa3P8GADQLCtgBAEBbc7vdkqR0Oi2/379sfzqdrmmH7cGykfXr6empu+CcGUsAAABgKh7OBAAAALCTQqGQRkZGlEwmlc/n5Xa7FQgEmHkdwI7LPFdec3+9q9Gt1g/3v+szOztb13Wpi7+uhetSALBxFLADAIC2FggE5PF4ND4+rkQiUbOMWrlc1sTEhHp7exUIBBo4ytbHspHmmJ+fVzabrdm21sUZr9crp9O5I2MDAABAa+HhTAAAAAA7yW63a2hoqNHDANCmdmo1Ou5/r292dlY+70HNFxfqah+JRNZt43R0K5M9QRE7AGwABewAAKCt2e12TU5OKhwOKxgMamxsTH19fUqn05qYmNDMzIxisRgzcKBtZLNZ9ff3r7hvpYszqVSKQiIAAAAAAAAAAABgDTu1Gh33v9dXKBQ0X1zQ1Lsc8l1lW7XdRmbDj9xfVKFQoIAdADaAAnYAAND2QqGQYrGYotGoBgYGqtt7e3sVi8UUCoUaODpgbVbPmO71epVKpWq2FYtF5XI5eTweORyOZe0BAAAAK7AaEAAAAABgJcXihRmrF08ubrmvSh+VPoGddOlqdCtdC1lLvddCuP9dH99VNh12r13IP3jtDg0GANoQBewAAAC68CF+ZGREyWRS+XxebrdbgUCgrZ88R3OwesZ0p9O54v7BwcHNDxIAAACog9XvbSmIBwAAAIDWkMvlJElzR+cs7ZN7H2i07VwZmfvfAADTUcAOAADwM3a7XUNDQ40eBrAhzJgOAACAVnHpe9tSqaTvfve7ymaz8nq98vv9NTdZ13tvu503gQG0Hx6KAQDAfLOzsyoUCtW/V66V1+vSa+oul6tmpmQ0jsfjkSTtv3W/uvZ1bamvxZOLmjs6V+0TaKTtvs/H/e/G4TMkAKyPAnYAAACgiTFjOgAAAFrFxe9t4/G4otFoTbGJx+PR5ORk3ctc87AnACvxUAwAAGabnZ2Vz3tQ88UFy/p0OrqVyZ6giN0Alc9vXfu65PA41mm9sT6BRuI+X2MUi0VJUqZQsqS/Sj+VfiU+QwJAPShgBwAAAAAAAAAYIx6PKxwOa3h4WNPT0+rr61M6ndb4+LjC4bBisVhdRezcBAZgJR6KAQDAbE8//bTmiwv69I1d6n1FhyRp8bx08ky57j72XW5T18+qaJ56fkl3HFvQ008/TQE7ALSYyoQJkbh1Dz1V+q1cd+IzJACsjwJ2AAAA7LhLl/FcyVpLqF2KZTwBAACA1lAqlRSNRjU8PKxEIiGbzSZJ8vv9SiQSCgaDGh0d1cjIiOx2e4NHC6Cd8FAMAABmqxQj3nFs0fJ+Od8DQGvxeDySpKlQt3yurV9fyhRKisQXqv1KfIYEgHpQwA4AAIAdNTs7q4Peg1qocxnPlZZQu1S3o1snWMYTAAAAaHrJZFK5XE7T09PV4vUKm82msbExDQwMKJlMamhoqDGDBAAAAGCcnShGxMZYOZlRPZMdAUC9KrOf+1x2HXZbN0HCpbOqAwDWRgE7AAAAdlShUNBCcUH7b92vrn1dq7Yrny3rXOGcdrl2ybbbtmq7xZOLmjs6p0KhQAE7AAAA0OTy+bwkqa+vb8X9le2VdgAAWK1UKimZTCqfz8vtdisQCLDqBwA0AYoRzTI7Oyuf96DmLZzMCACslnmuvOb+4vkl5V4oy3OlTY7Ojk33AwBYGQXsAAAAaIiufV1yeNa58Hv9zowFAAAAgBncbrckKZ1Oy+/3L9ufTqdr2gEAYKV4PK5oNKpcLlfd5vF4NDk5qVAo1LiBAQDQZAqFguaLC5p6l0O+q1afpKje4tCvPXFedxxb3I6hAmhDLpdLTke3IvcXLevT6eiWy+WyrD8AaAcUsAMAAAAAAAAAjBAIBOTxeDQ+Pq5EIiGb7eVCh3K5rImJCfX29ioQCDRwlACAVhSPxxUOhzU8PKzp6Wn19fUpnU5rfHxc4XBYsViMInYAaALMpmsW31W2dWfEH7x2/X4yhZJFIwIAqaenR5nsCRUKheq2TCazodUgpqam5PP5qn93uVysFg4AG0QBOwAAAAAAAADACHa7XZOTkwqHwwoGgxobG6sWEE5MTGhmZkaxWEx2+9oFEAAAbESpVFI0GtXw8HDNA1R+v1+JRELBYFCjo6MaGRnhHAQAhtqJ2XTn5+eVzWZr2mQymZqvF/N6vXI6nZaNBwBgnZ6enpqCc6/Xq1QqVdOmWCwql8vJ4/HI4ahdWZzf8QCwdRSwAwAAAAAAAACMEQqFFIvFFI1GNTAwUN3e29vL7LcAgG2RTCaVy+U0PT1ds/qHJNlsNo2NjWlgYEDJZFJDQ0ONGSQAYE0rzaa7ksoMu5fOnLuSS2fTzWaz6u/vX7HtSrP2plIpHT58uI7Ro16LJxdX3Vc+W9a5wjntcu2Sbbdt1XZr9QGgfTmdzhV/Zw8ODjZgNADQHihgBwAAAAAAAJrYSjPAMTsQml0oFNLIyIiSyaTy+bzcbrcCgQCz3gIAtkU+n5ck9fX1rbi/sr3SDgBgpktn012Lz+fbcHH5ZmbnbVfF4oWZ8DOFkiX9FeaXJElzR+cs6a/7ktn1AQAAsPMoYAcAoMFKpRI35AEAAABs2lozwK2EGeDQLOx2O7PcAgB2hNvtliSl02n5/f5l+9PpdE07AEB7Ynbe+uVyOUlSJL5gab+f/vSn9W//7b9dcd9WZtcHAADAzqOAHQCABorH44pGo9WLOJLk8Xg0OTnJkugAAAAA6rLSDHBr3bRt5xngAAAAVhIIBOTxeDQ+Pq5EIiGbzVbdVy6XNTExod7eXgUCgQaOEgCA5uHxeCRJU6Fu+Vxbn7grUygpEl/QjTfeuO5D+ZuZXR8AAAA7jwJ2AAAaJB6PKxwOa3h4WNPT0+rr61M6ndb4+LjC4bBisRhF7AAAAADWtdoMcBI3bQEAAOpht9s1OTmpcDisYDCosbGx6vXaiYkJzczMKBaLsXImADSZ+fl5ZbPZmm2ZTKbm68W8Xq+cTueOjK3VORwOSZLPZddht3Xnz0q/AAAAaH4UsAMA0AClUknRaFTDw8M1M/r4/X4lEgkFg0GNjo5qZGSEmyJoOcViUZK0eHLRkv4q/VT6BQAAAAAAADYqFAopFospGo1qYGCgur23t5fJRgCgSWWzWfX396+4LxKJLNuWSqV4CBwAAADYIRSwAwDQAMlkUrlcTtPT0zXL0UqSzWbT2NiYBgYGlEwmNTQ01JhBAtskl8tJkuaOzlne7+DgoKV9AgAAAAAAoH2EQiGNjIwomUwqn8/L7XYrEAgwyQgANCmv16tUKlWzrVgsKpfLyePxLJvN2+v17uTwAAAAgLZGATsAAA2Qz+clSX19fSvur2yvtANaicfjkSTtv3W/uvZ1bbm/xZOLmjs6V+0XAAAAAAAA2Cy73c6kIgDQIpxO54ozqjMZTvObn59XNput2ZbJZGq+Xszr9crpdO7I2AAAAFAfCtgBAGgAt9stSUqn0/L7/cv2p9PpmnZAK6nMaNK1r0sOj2Od1hvvFwAAAAAAAAAAAK0rm82qv79/xX2RSGTZtlQqteLDDAAAAGgcCtgBAGiAQCAgj8ej8fFxJRIJ2Wy26r5yuayJiQn19vYqEAg0cJQAAAAAAAAAAAAAYBav16tUKlWzrVgsKpfLyePxLJv0yOv17uTwALSAUqmkZDKpfD4vt9utQCAgu93e6GEBQEuhgB0AgAaw2+2anJxUOBxWMBjU2NiY+vr6lE6nNTExoZmZGcViMT4AAQAAAAAAAAAAAGhKmefKa+4vnl9S7oWyPFfa5OjsqLsfp9O54ozqg4ODmxsoAFwkHo8rGo0ql8tVt3k8Hk1OTioUCjVuYADQYihgBwCgQUKhkGKxmKLRqAYGBqrbe3t7FYvF+OADo83PzyubzdZsW29mC6fTuZNDBAAAAAAAAAAAQAO4XC45Hd2K3F+0rE+no1sul8uy/gBgJfF4XOFwWMPDw5qenq5ORDg+Pq5wOEwtBwBYiAJ2AAAaKBQKaWRkhKWn0HSy2az6+/vrbp9KpVacCQMAAAAAAAAAAACtpaenR5nsCRUKhTXbZTIZRSIRTU1NyefzrdnW5XKpp6fHymECQI1SqaRoNKrh4WElEgnZbDZJkt/vVyKRUDAY1OjoqEZGRqjpAAALUMAOAECD2e12DQ0NNXoYwJpmZ2drLjIWi0VNTU3VtHnqqad0xx136NOf/rR6e3tr9hWLRT322GOSLlyMBAAAAAAAAAAAQOvq6empu+Dc5/MxERKAhksmk8rlcpqenq4Wr1fYbDaNjY1pYGBAyWSSGg8AsAAF7AAAAFjT7OysfN6Dmi8u1NX+jjvuqKvd4snFNfeXz5Z1rnBOu1y7ZNttW7Xdev0AAAAAAAAAAAAAALCWfD4vSerr61txf2V7pR0AYGsoYAcAAMCaCoWC5osLmnqXQ76rVi8kL55fUu6FsjxX2uTo7Fi1XfKfz+u3/3ZRc0fnLBtjt6NbLpfLsv4AAAAAAAAAAAAAAO3D7XZLktLptPx+/7L96XS6ph0AYGsoYAcAAEBdfFfZdNhtX7PN4LV1dra0qKmpKfl8vlWbZDIZRSKRddtJksvlqnsZSgAAAAAAAAAAAAAALhYIBOTxeDQ+Pq5EIiGb7eXJ3crlsiYmJtTb26tAINDAUQJA66CAHQAAAA3h8/l0+PBhy9oBAAAAAAAAAAAAALAZdrtdk5OTCofDCgaDGhsbU19fn9LptCYmJjQzM6NYLCa7fe1J3wAA9aGAHQAAAAAAAAAAAAAAAAAAtLVQKKRYLKZoNKqBgYHq9t7eXsViMYVCoQaODgBaCwXsAAAAWFOxWJQkZQolS/qr9FPpFwAAAAAAAAAAAAAAE4RCIY2MjCiZTCqfz8vtdisQCDDzOgBYjAJ2AADQtM6ePasvfOELevLJJ3XgwAF99KMf1e7duxs9rJaTy+UkSZH4guX9Dg4OWtonAAAAAAAAAAAAAABbYbfbNTQ01OhhAEBLo4AdAAA0pdtuu0333HOPzp8/X932yU9+Uh//+Mf12c9+toEjaz0ej0eSNBXqls+19afKM4WSIvGFar8AAAAAAAAAsJJSqcTMlwAAAAAAtCAK2AEAQNO57bbbdNddd+nqq6/WZz7zGQ0PD2tmZka/+7u/q7vuukuSKGK3kMPhkCT5XHYddlt3c6jSLwAAAAAAAABcKh6PKxqNVleIlC5MtjE5OalQKNS4gQEAAAAAgC2zNXoAAAAAG3H27Fndc889uvrqqzU3N6cPfehDevWrX60PfehDmpub09VXX6177rlHZ8+ebfRQAQAAAAAAAACbEI/HFQ6HdejQIR0/flxnzpzR8ePHdejQIYXDYcXj8UYPEQAAAAAAbAEzsAMAgKbyhS98QefPn9dnPvMZdXbWvpXp7OzUH/zBH+jXf/3X9YUvfEG//du/vWZf8/PzymazNduKxaJyuZw8Hs+yGcK9Xq+cTqclPwcAAAAAAAAAYLlSqaRoNKrh4WElEgnZbBfmZPP7/UokEgoGgxodHdXIyIjsdutWjAQAAAAAADuHAnYAANBUnnzySUnS8PDwivsr2yvt1pLNZtXf31/3a6dSKR0+fLju9gAAAAAAAACAjUkmk8rlcpqenq4Wr1fYbDaNjY1pYGBAyWRSQ0NDjRkkAAAAAADYEgrYAQBAUzlw4IAkaWZmRh/60IeW7Z+Zmalptxav16tUKlWzLZPJKBKJaGpqSj6fb1n7dpZ5rrzm/uL5JeVeKMtzpU2Ozo5N9wMAAAAAAADsFFZpNE8+n5ck9fX1rbi/sr3SDgAAAAAANB8K2AEAQFP56Ec/qk9+8pP63d/9Xf3qr/6qOjtffjtz/vx5/d7v/Z46Ozv10Y9+dN2+nE7nqjOq+3w+Zlv/GZfLJaejW5H7i5b16XR0y+VyWdYfAAAAAAAA2sdWis5nZ2dVKBSq+yoTWtTr0okvXC6Xenp6NvNjYBVut1uSlE6n5ff7l+1Pp9M17QAAAAAAQPOhgB0AADSV3bt36+Mf/7juuusu7d+/X3/wB3+g4eFhzczM6Pd+7/f0k5/8RJ/85Ce1e/fuRg+1ZfT09CiTPVFzY28la81efylu7AEAAAAAAGCzstms+vv7626fSqV0+PBhzc7O6qD3oBaKC5t+7UuL3bsd3TqRPcG1LgsFAgF5PB6Nj48rkUjIZrNV95XLZU1MTKi3t1eBQKCBowQAbNRKD6BlMpmarxdj1RMAAIDWRgE7AABoOp/97GclSffcc49+/dd/vbq9s7NTn/zkJ6v7L3Xp7EorWetC2aXaqQi7p6en7p+V2esBAAAAAACwnbxer1KpVM22tSZX8Hq9kqRCoaCF4oL237pfXfu6Vu2/fLasc4Vz2uXaJdtu26rtFk8uau7onAqFQttcJ9wJdrtdk5OTCofDCgaDGhsbU19fn9LptCYmJjQzM6NYLCa73d7ooQIANmCtB9BWWg2l8gAaAAAAWhMF7AAAoCl99rOf1Wc+8xl94Qtf0JNPPqkDBw7oox/96Kozr290dqV6lg1mdiUAAACgvV36kGyxWFQul6v7+z0ejxwOR/Xv7fSQLAAAW+F0OlctaKtncoWufV1yeBxrttH1mx0drBAKhRSLxRSNRjUwMFDd3tvbq1gsplAo1MDRAQA249IH0Eqlkr773e8qm83K6/XK7/fXPJxUeQANAAAArYkCdgAA0LR2796t3/7t366rLbMrAQAAALDSRh+SrQcPyQIAsL2KxaKkC9f2rFDpp9IvrBUKhTQyMqJkMql8Pi+3261AIMDM6wDQpC5+AC0ejysajdY8BO7xeDQ5OclDSgAAAG2CAnYAANBWmF0JAAAAgBVWeki28kBsvS5+cJaHZAEAWN2lq56sJJPJ1HxdybFjxyRJc0fnrBucpFwup8HBQUv7xAV2u11DQ0ONHgYAwELxeFzhcFjDw8Oanp5WX1+f0um0xsfHFQ6HWWkDAACgTVDADgAAAAAAAKBtzc/PK5vN1mwrFovK5XLyeDxyOGofgPV6vXI6ndW/L3tIlgdiAQCw1IkTJ/Rv/vX/TwuLZ+tqH4lE1m2z79/tk6NnnUku6lB5AM3j8Wy5LwAA2kGpVFI0GtXw8LASiYRstgsPdfv9fiUSCQWDQY2OjmpkZIQVNwAAAFocBewAAGxQqVRiyVIAAAAAaBHZbFb9/f11t0+lUtUlzwEAwPZ79NFH6y5er5et07b+Ko0bcOkDbwAAYGXJZFK5XE7T09PV4vUKm82msbExDQwMKJlMsgIHAABAi6OAHQCADYjH44pGo8rlctVtHo9Hk5OTLGUHbMFKs16utezzpbNeAgAANJOtzvg9OzurQqGw5mus9V7qUi6XSz09PfUOv+V4vV6lUqmabZlMRpFIRFNTU/L5fMvaAwCAnVOZ3Xwq1C2fa2sTiXztiXO649hZ7XLtsmBkAABgo/L5vCSpr69vxf2V7ZV2AAAAaF0UsAMAUKd4PK5wOKzh4WFNT0+rr69P6XRa4+PjCofDisViFLEDm7TWrJcrLfvMrJcAAKCZbWXG79nZWR30HtRCcaGu713pvdSluh3dOpE90bZF7E6nc9X3lj6fj/edAAA0WOXhPp/LrsPurRWwZwolSZJtt22dlgAAYDu43W5JUjqdlt/vX7Y/nU7XtAMAAEDrooAdANpQqVRSMplUPp+X2+1WIBCQ3b61C/+trlQqKRqNanh4WIlEorqknd/vVyKRUDAY1OjoqEZGRvi3BDZhpVkv15uFFAAAoFltZcbvQqGgheKC9t+6X137ulZ9jfLZss4VzmmXa9eaBVqLJxc1d3ROhUKhbQvYN6tYLEq68G9ohUo/lX4BAAAAAGg1gUBAHo9H4+PjNfdcJalcLmtiYkK9vb0KBAINHCUAAAB2QssUsP/zP/+z/uiP/kgPPPCAnn76aXV1denAgQN673vfq9/4jd+oWWZ5o+bn5/X1r39d3/jGN/Too4/qRz/6kV588UXt3btX119/vX7xF39RH/7wh/XqV7/awp8IALZHPB5XNBpVLperbvN4PJqcnGT28DUkk0nlcjlNT0/XXEiRJJvNprGxMQ0MDCiZTGpoaKgxgwSa2GqzXg4ODjZgNAAAANvLihm/u/Z1yeFxrN3o+s2MrvXNzs6qUCis2SaTydR8XcmxY8ckSXNH56wbnKRcLsf7YAAAVpB5rrzm/uL5JeVeKMtzpU2Ozo4V2zz1/NJ2DA0AANTJbrdrcnJS4XBYwWBQY2Nj1VWvJyYmNDMzo1gsxoRhAAAAbaAlCtj/6q/+SpFIRKdPn65um5+f16OPPqpHH31UX/ziF/XAAw/ouuuu23Df//iP/6jBwUG9+OKLy/b9y7/8i7773e/qu9/9ru655x4dPXpU73vf+7b0swDAdorH4wqHwxoeHtb09HT1YsD4+LjC4bBisRhF7KvI5/OSpL6+vhX3V7ZX2gEAAAAAzDM7Oyuf96Dmiwt1tY9EIuu2WW82/HpVZsP3eDxb7gsAgFbicrnkdHQrcr91q5Sst4LKRlazAQAAGxMKhRSLxRSNRjUwMFDd3tvby/1qAACANtL0Bex///d/r/e9730qFovas2ePxsbGdOONN6pYLOqrX/2q/vRP/1SPP/643vnOd+rRRx/V5ZdfvqH+T58+XS1eHxwc1PDwsN74xjfqla98pZ577jnF43H96Z/+qU6fPq0PfOAD2rt3r97xjndsx48KAFtSKpUUjUY1PDxcsxyb3+9XIpFQMBjU6OioRkZGeKJ9BW63W5KUTqfl9/uX7U+n0zXtAAAAAADmKRQKmi8uaOpdDvmuWr0YrZ4ZXL/2xHndcWyxvtnwN8DhsK4vAABaQU9PjzLZE3WtoBKJRDQ1NSWfz7dim3w+r3eH323pCirdjm65XC7L+gMAoB2EQiGNjIwomUwqn8/L7XYrEAhwnxoAAKCNNH0B+8c+9jEVi0V1dnbqb//2b/XWt761uu/tb3+7Xvva1+q2227T448/rsnJSd15550b6t9ms+m9732vPvWpT+l1r3vdsv033XST3vGOd+hd73qXSqWSfuu3fktPPPGEOjpWvrEFAI2STCaVy+U0PT1dLV6vsNlsGhsb08DAgJLJpIaGhhozSIMFAgF5PB6Nj4/XPAAgSeVyWRMTE+rt7VUgEGjgKIGdMz8/r2w2W7Mtk8nUfL2Y1+uV0+nckbEBAAAAqykWfzZza8fSmu0cnR3yuda7aX6hj/LZsgUjAwAAa+np6VFPT09dbX0+nw4fPrzq/sdPPG5JMXyFy+Wqe2wAAOBldrud+9IAAABtrKkL2L/3ve8pmUxKkv79v//3NcXrFdFoVPfee68ymYw+//nP63d+53e0a9euul9jYGCgZsmilYyMjCgUCum+++7Tk08+qb//+79f88IYADRCPp+XJPX19a24v7K90g617Ha7JicnFQ6HNTIyol/6pV+Sw+FQsVjU17/+dT3wwAOKxWLMCoC2kc1m1d/fv+K+SCSybFsqleL9EQAAABoul8tJkiLxBcv6fCn7kmy7V5/NvXy2rHOFc9rl2rVmu8WTi5aNCQAArM7KYngAAAAAAABsTlMXsCcSieqff+3Xfm3FNjabTbfccovGxsb0wgsv6NixY7rpppssH8uNN96o++67T5L05JNPcjELgHHcbrckKZ1Oy+/3L9ufTqdr2mG5UCik0dFR3XPPPZqZmalu7+zs1OjoqEKhUANHB+wsr9erVCpVs61YLCqXy8nj8cjhcCxrDwAAADSax+ORJE2FuuuYYX1tydnz+u2vL+rZ+LN6Nv6sBaOTuh3dcrlclvQFAAAAAAAAAABgqqYuYP/Od74jSbrssstWnQFUkt72trdV//zwww9vSwH74uLLMyQx+y4AEwUCAXk8Ho2PjyuRSMhme3nWt3K5rImJCfX29ioQCDRwlGaLx+O6++679c53vlPveMc7qjOw//Vf/7Xuvvtu+f1+itgNViwWJVk3q2Gln0q/7cbpdK74wN7g4GADRgMAAADUp/qg5VLHmu2K55eUe6Esz5U2OTpXbutyXPhcPTU1JZ/Pt2pfmUxGkUhk3XaS5HK56p4RFgAAAAAAAAAAoFk1dQF7JpORJF133XXq7Fz9R7l4xs/K91jtoYceqv55vRtRANAIdrtdk5OTCofDCgaDGhsbU19fn9LptCYmJjQzM6NYLMZDOKsolUqKRqMaHh5e9gDAhz/8YQWDQY2OjmpkZIR/Q0PlcjlJ0tzROcv7pWgbAAAAaA4ul0tOR7ci91vzIKrT0a1AIFBX0bnP52PVRgAAAAAAAAAAADVxAfvCwoIKhYIkaf/+/Wu2fcUrXqHLLrtML730kp5++mnLx/KDH/xADzzwgCTp0KFDFLADMFYoFFIsFlM0GtXAwEB1e29vr2KxGLOHryGZTCqXy2l6erqmeF2SbDabxsbGNDAwoGQyqaGhocYMsgXNzs5Wz/fShdnOK4Xo9fB4PNUZFiurpey/db+69nVteWyLJxc1d3ROHo9ny30BAAAA2Bk9PT3KZE/UfM5YSb2zpl86Y/r8/Lyy2eyyvi7+ejGv1yun07mRHwEAAIhzrklWyqJyHffi67MVZAEAAAAAAKQmLmA/c+ZM9c979uxZt32lgP3FF1+0dByLi4v60Ic+pFKpJEn6wz/8w7q+p1JEJ0mnT5+2dEwAsJZQKKSRkRElk0nl83m53W4FAgFmDV9HPp+XJPX19a24v7K90g5bNzs7K5/3oOaLC5b227WvSw6PY/2Gdbr0BgwAAABwqUsfzFzJWgVXK7XD5vX09NQ1Y7q08VnTs9ms+vv7V9wXiUSWbUulUszKDgDAJnDONcdaWayELAAAAAAAgNTEBewLCy8Xs+3evXvd9l1dF2ZaLRatWR644jd/8zf16KOPSpI++MEP6uabb173eyYmJvT7v//7lo4DADbCbrczS/gGud1uSVI6nZbf71+2P51O17TD1hUKBc0XFzT1Lod8V12Y9b54fkm5F8p19+G50iZHZ4ck6WtPnNcdxxbX+Q4AAADAWht9MHOlgquVLJ605r1tpR+rr5m1K6/Xq1QqVbNtvRlIAQDAxnHONcdKWay1mg1ZAAAAAAAAqYkL2Lu7u6t/Pnv27LrtKzOeWzlL6sTEhL74xS9Kkt70pjfpv//3/17X942NjekTn/hE9e+nT5/Wtddea9m4AADWCwQC8ng8Gh8fVyKRkM1mq+4rl8uamJhQb2+vAoHAun2xpGp9qgU0HUvVbY7ODvlcm10t4EI/5bP1F8ADAAAAW7XSg5krqTysefFDmCv54mNn9T8ePae5o3OWjjOXy2lwcNDSPtuR0+lccUZR/m0BALAW51xzrJaFtPHVbAAAAAAAQPto2gL2yy+/vPrnF198cd32L730kiRpz549lrz+n/zJn+j222+XdKGw8Gtf+5ouu+yyur63q6urOiM8AKA52O12TU5OKhwOKxgMamxsTH19fUqn05qYmNDMzIxisZjs9vWLq1lStT65XE6SFInXN1Nlvc4VzknXW9olAAAAsC7fVTYddq/9eWGwjvkN3rjvQhH8/lv3q2vf1q8vLZ5c1NzROXk8ni33BQAA0CilUknJZFL5fF5ut1uBQKCua7XSyhOOZDKZmq8Xa9cJRwAAAAAAAKzUtAXs3d3deuUrX6mf/vSnmptbe8ap559/vlrAbsVM59PT0/roRz8qSXrNa16jb3zjG3K5XFvuF2g1zDJtrq1czG9noVBIsVhM0WhUAwMD1e29vb2KxWIKhUJ19cOSqvV54xvfqO6u3VpYXH+llY0ony+rmCuuvv9sWecK57TLtUu23avPkLl4ctHScQEAAAD16PrZ7Oxd+7rk8Fi30qCVqxYCAADspHg8rmg0Wp0QQ5I8Ho8mJyfruma71oQjkUhk2bZ2nXAEAAAAAADASk1bwC5Jr3vd65RMJvWjH/1I58+fV2fnyj/OxQW0lxYFbtT/+T//R7fccovK5bLcbre+9a1vaf/+/VvqE2hVzDJtpq1ezG93oVBIIyMjG3oAYHZ2VoVCYdOvefF5zOVyqaenZ9N9NZODBw/qxONPrPtvt1bx/8Xy+bzeHX63Tv7Pk5aNsdvRzUNsAAAAWFOxeOHhyUyhZEl/Tz1flnThwUtYg1lXAQBoXvF4XOFwWMPDw5qenq6umjk+Pq5wOFzXxCMrTTiy3mQ8AAAAAAAA2JqmLmA/cuSIksmkXnrpJaVSKb3lLW9Zsd1DDz1U/fPg4OCmX+9b3/qW3vve9+r8+fN65StfqW984xs6cODApvsDWh2zTJvHiov5kOx2u4aGhupqOzs7q4Peg1ooLtTVfqUZfS7W7ejWieyJtili7+npqflZVyosWculhSWPn3jcsoJ4qb0eKAAAAMDmVB4ejsTr+0xQr3OFc9L1lnbZtph1FQCA5lQqlRSNRjU8PKxEIiGb7cJqin6/X4lEQsFgUKOjoxoZGVlzAhKn07niuX0r9xSxeazuCwAAAABAe2jqAvZgMKiJiQlJ0r333rtiAXu5XNaf//mfS5KuvPJK3XjjjZt6rUceeUQjIyNaXFzUFVdcob/5m7/R61//+s0PHmgDq130lS6shsDN3p1l1cV8bEyhUNBCcUH7b92vrn1dq7Yrny3rXOGcdrl2ybbbtmKbxZOLmjs6p0Kh0LZF01stLLm0IH4t/J4CAACAFTwejyRpKtQtn2vrn7W+9sQ53XHsrHa5dm25L1zArKsAADSnZDKpXC6n6enp6vXuCpvNprGxMQ0MDCiZTNY9IQnWV8+Ko2utZnOpSycJYXVfAAAAAADaQ1MXsL/5zW9WIBBQMpnUn/3Zn+mDH/yg3vrWt9a0mZycrF4c+djHPqZdu2pv7j344IPVovYPfvCD+tKXvrTsdf7hH/5B73znO/XSSy/psssu0wMPPLChCycAYAIu5jdW174uOTyOtRsxe+K6KCwBAABAs6m8R/W57Drs3noBe6ZQkqRVH3zFxjHrKgAAzSmfz0uS+vr6Vtxf2V5ph62bnZ2Vz3tQ8xatOCpJTke3MhetOsrqvgAAAAAAtIemLmCXpM9//vMaHBxUsVjUTTfdpNtvv1033nijisWivvrVr+ro0aOSpOuvv17RaHTD/T/55JP6xV/8Rb3wwguSpM985jO64oorlE6nV/2eV73qVXrVq161qZ8HALYLF/PRCi4tLCmVSkomk7LZbDp37pz8fv+GVhBYaTnatWYHYjlaAAAAAAAAwAxut1uSlE6n5ff7l+2v3MurtMPWFQoFzRcXNPUuh3xXrf5AZfH8knIvlOW50iZHZ8eq7TLPlRW5v1iz6iir+wIAAAAA0B6avoD9DW94g/7iL/5CkUhEp0+f1u23376szfXXX68HHnhAl19++Yb7TyaTevbZZ6t///jHP77u93zqU5/SnXfeueHXAoDtxMV8tJp4PK5oNKpcLlfd5vF4NDk5qVAoVFcfay1Hu9LsQCxHCwAAAAAAAJghEAjI4/FofHxciUSiZuXRcrmsiYkJ9fb2KhAINHCUrcl3lW3d1YUGr92hwQAAAAAAgKbU9AXsknTzzTfrH//xH/X5z39eDzzwgObm5rR7925dd911es973qPf/M3fZLZUAG2Pi/loJfF4XOFwWMPDw5qenlZfX5/S6bTGx8cVDocVi8XqKmJfaTnaYrGoXC4nj8cjh8OxrD0AAACwGZnnymvur3eWyqeeX7J6aAAAAE3JbrdrcnJS4XBYwWBQY2Nj1euEExMTmpmZUSwW29CKjQAAAAAAANgZLVHALkmvec1r9LnPfU6f+9znNvR9Q0NDWlpa/cbfr/7qr+pXf/VXtzg6AGg8LuajVZRKJUWjUQ0PD9c8jOH3+5VIJBQMBjU6OqqRkZF1/39ebTnawcHBbRk7AAAA2o/L5ZLT0a3I/cVGDwUAAKDlhEIhxWIxRaNRDQwMVLf39vbWPckFAAAAAOD/z959h0dRr/0fn+8mkEKHUIUQEJUgiIAoighi74r6KEdU8Kh4EI6igv1YEEX0WBEPKlYECyrYlaKCXVCpCT0CUjQUKakkn98f/HbcTQdS7iTv13V5HcnOTmbn/TwOM3vvLACUvyozwA4AKB4X81EVzJ0710tJSfGmTJkS9k0Cnud5gUDAu/32273jjjvOmzt3rtenT5+K2UgAAADg/4uPj/eSkpd5qampRS6XlJTkDRgwwJs0aZKXmJhY7HIAAADYq1+/ft55553nzZ0719u4caPXvHlzr1evXtysBQAAAAAAwDAG2AGgmuFiPiq7jRs3ep7neR07dizw8eDPg8sBAAAAFS0+Pt6Lj48v0bKJiYkFfksQAAAAChcREcHNLMpBevrebxVKSs0plfUF1xNcLwAAAAAAqD4YYAeAaoiL+ajMmjdv7nme5y1evNjr0aNHvscXL14cthwAAAAAAAAA4MClpKR4nud5A97NKPX19uzZs1TXCQAAAAAAbGOAHQCAMhS8c0zmhswDXldwHdX9bjS9evXyEhISvAcffNCbNm2aFwgE/Mdyc3O9hx56yGvTpo3Xq1evCtxKAAAAoGwVd46Rm5XrZadmezXianiBmoFClyuNcxUAAABUDwkJCZ7ned6kftFeYtyBf6trUmqON+DdDH+9AAAAAACg+mCAHQCAMhS8I83659aX6jqr891oIiIivP/+97/eRRdd5J1//vne7bff7nXs2NFbvHix99BDD3kffvihN3XqVC8i4sDfQAEAAACsiYuL86Jjokv1HCM6JtqLi4srtfUBAACgaoqJifE8z/MS4yK8rs1L7/prcL0AAAAAAKD6YIAdAIxKS0vzkpOTw36Wnp7upaSkeAkJCWEXdNu3b+/FxsaW9yaiBIJ3jml5bUsvqkXUAa0rc0Omt/659dyNxvO8fv36eVOnTvVuvvlm77jjjvN/3qZNG2/q1Klev379KnDrAAAAgKIVdL6XlJQU9r+hQs/54uPjvWXJy7zU1NQif0dSUpI3YMAAb9KkSV5iYmKRy8bFxXnx8fH78hIAAACAUlPQ34ELery45TyPv9sCAAAAAFBZMMAOAEYlJyd73bp1K9Gy8+fP97p27VrGW1R97cuHCTwvfLgk+FhUiygvJqF07iLD3Wj26tevn3feeed5c+fO9TZu3Og1b97c69WrF3deBwAAgHlFne8NGDAg38/ynvPFx8eXeCgnMTGR80UAAACYtHFXrue5gv8OXJCSLBcdE+0tS17GEDsAAAAAAMYxwA7AdyBDuih97du39+bPnx/2s8LuoNe+ffvy3rwqbe3atWF3Mwzu95IK7VOSO8Jg/0VERHh9+vSp6M0AAAAA9klB53vFnX8DAAAAViT9mVvk4+l75KVsz/US6ge8mEhX6HK/bMz1PBX/Daa5Wbledmq2VyOuhheoGSh0ueC3mKampjLADgAAAACAcQywA/Dtyx2/PY+7fpe12NjYQvcvd9ArO2vXrvUS2x/mpaVn7Pc69mXYHQAAAED1U9j5Xs+ePStgawAAAICSiYuL82Jjor0B76WX6npL9A2mh5bqrwQAAAAAABWMAXYAvn2543dweaCqSU1N9dLSM7xJF8R4iY0Lv5NLSe8g8/GKPd7dX2SWxaYCAAAAAAAAAFBu4uPjvaTkZWHfYFqQot5bKmg5AAAAAABQ/TDADsDHHb+BvyU2Dnhdm0cUuUzPVsWvJyk1p5S2CAAAAAAKlpaW5iUnJ4f9LCkpKex/Q7Vv396LjY0tl20DAABA1RIfH+/Fx8eXaFneWwIAAAAAAIVhgB0AjFi7dm2J7loS+r+FiYuLK/EFZIRLT9/71aelNXi+Zluu53mel5uVWyrrAwAAAIC8kpOTvW7duhX4WEF3tJw/fz6DRAAAAAAAAAAAAKgwDLADgAFr1671Etsf5qWlZ5Ro+eK+UjM2JtpLSl7GEPt+SElJ8TzP8wa8W7IWJZWdmu15h5bqKgEAAADA87y9d1SfP39+2M/S09O9lJQULyEhwYuJicm3PAAAAFAa+DYgAAAAAACwPxhgBwADUlNTvbT0DG/SBTFeYuNAocul75GXsj3XS6gf8GIiXYHLJP2Z6w14L91LTU1lgH0/JCQkeJ7neZP6RXuJcREHvL6PV2R7d3+R5dWIq3HA6wIAAACAgsTGxhZ4R/WePXtWwNYAAACgOjmQbwMKfiNq5obMUtmW4HqC6wUAAAAAAHYxwA4AhiQ2Dnhdmxc9NN2zVTltTDUVvDNhYlxEsS1KIik1x/O8vXdgT69Z+EXz3KxcLzs126sRV8ML1Cz4QwyldREfAAAAAAAAAIDScCDfBhT8RtT1z60v1W1KSUnhw5wAAAAAABjHADsAAGWofrTzPFd6F+CjY6K9uLi4UlkXAAAAAAAAAAAH4kC+DSj4jagtr23pRbWIOuBtydyQ6a1/br2/XgAAAAAAYBcD7AAAlKHmtQOeJ8+bNGmSl5iYWOhySUlJ3oABA4pdLi4uzouPjy+LTQUAAAAAAAAAoNwE784e1SLKi0mIKWbpfV8vAAAAAACwiwF2oBpbu3atl5qaWuQySUlJYf9bFAZrUZUk/Zlb5OPpe+SlbM/1EuoHvJhIV+x6EhMTC7wLTV4lXQ4AAAAAAAAAAAAAAAAAgMqIAXagmlq7dq2X2P4wLy09o0TLDxgwoNhlYmOivaTkZQyxo1KLi4vzYmOivQHvpZfaOmNjor24uLhSWx8AAAAAAAAAAAAAAAAAAJUVA+xANZWamuqlpWd4ky6I8RIbBwpdbl/uMj3gvXQvNTWVAXZUavHx8V5S8rISfTvBgAEDvEmTJnmJiYlFLsu3EwAAAAAAAAAAAAAAAAAAsBcD7EA1l9g44HVtHlHkMj1bldPGVGPp6Xvv9p2UmnPA6wquI7hO7Lv4+PgSD5wnJiZ6Xbt2LeMtAgAAAAAAAAAAAAAAAACgamCAHQAMSElJ8TzP8wa8m1Gq6+zZs2eprQ8AAAAAAAAAAAAAAAAAAOBAMcAOAAYkJCR4nud5k/pFe4lxRd8RvzhJqTnegHczvMzMTO/nn3/2PG/v3diDQ/Il3Z6YmBj/z3FxcSW+IzkAAAAAAAAAAAAAAAAAAEBhGGAHAAOCw+KJcRFe1+YHNsC+cVeu5znP++c//1kam+Z5nudFx0R7y5KXMcQOAAAAAAAAAABKVeaGzCIfz83K9bJTs70acTW8QM3Afq8HAAAAAADYwQA7gFKVlJRUoseLW87zquddv5P+zC3y8fQ98lK253oJ9QNeTKQrcJlfNuZ6njyv5bUtvagWUZ7n/X1xt6RCLwJnbsj01j+33ktNTa12PQAAAAAAAAAAQNmIi4vzomOivfXPrS+1dUbHRHtxcXGltj4AAAAAAFA2GGAHUCqCd/0eMGBAiZYvyXLV6a7fcXFxXmxMtDfgvfRSW2dUiygvJiHm7x8cWmqrrnbS0tK85OTksJ8V9WGM9u3be7GxseWybQAAAAAAAAAAVEbx8fHesuRlXmpqapHLJSUleQMGDPAmTZrkJSYmFrlsdbw5EgAAAAAAlRED7ABKxfYM5bvrd0H25Wseq9Ndv+Pj472kUrpIG1wGpSc5Odnr1q1bgY8VtK/nz5/vde3ataw3CwAAAAAAAACASi0+Pr7E7wMlJiZy7R0AAAAAgCqCAXYApSrfXb8Lwp3AC1RaF2nT0/fexT1zQ2apbFdwPcH1Vkft27f35s+fH/az9PR0LyUlxUtISPBiYmLyLQ8AAAAAAAAAAAAAAAAAAPJjgB0AqpiUlBTP8zxv/XPrS329PXv2LNV1VhaxsbEFfmCguu4PAAAAAAAAAAAAAAAAAAD2FwPsQDUVvJt2UmpOqaxvzbZcz/M8Lzcrt1TWh/2XkJDgeZ7ntby2pRfVIuqA15e5IdNb/9x6f70AAAAAAAAAAAAAAAAAAAD7iwF2oJoK3qV7wLsZpbre7NRszzu0VFeJfRQTE+N5nudFtYjyYhJiSn29AAAAAAAAAAAAAAAAAAAA+4sBdqCaCt5Ne1K/aC8xLuKA1/fximzv7i+yvBpxNQ54XQAAAAAAAAAAAAAAAAAAAKiaGGAHqqng3bQT4yK8rs0PfIA9KTXH8zzPC9QMHPC6AAAAAAAAAAAAAAAAAAAAUDUxwA4AQDlLS0vzkpOTw36WlJQU9r+h2rdv78XGxpbLtgEAAAAAAAAAAAAAAAAAUJYYYAequaQ/c4t8PH2PvJTtuV5C/YAXE+kKXW7NNpX2pgFVVnJystetW7cCHxswYEC+n82fP9/r2rVrWW8WAAAAAAAAAAAAAAAAAABljgF2oJqKi4vzYmOivQHvpVf0pgDVTvv27b358+eH/Sw9Pd1LSUnxEhISvJiYmHzLAwAAAAAAAAAAAAAAAABQFTDADlRT8fHxXlLyMi81NdX/WVJSUoF3fy7MpEmTvMTExP16LoqXlpbmJScnh/0sKSkp7H+D2rdv78XGxpbbtuHAxMbGFnhH9Z49e1bA1gAAAAAAAAAAAAAAAAAAUH4YYAeqsfj4eC8+Pt7/8/7cFZqh6bKTnJzsdevWrcDH8n5YYP78+QUORAMAAAAAAAAAAFQW+3JzH8/jvSoAAAAAACorBtgB+LgrtC378oGC9u3b53t+5obMItefm5XrZadmezXianiBmoFClytuPQAAAAAAAAAAAKVhX27u43nc4AcAAAAAgMqKAXYAMGp/P1AQFxfnRcdEe+ufW19q2xIdE+3FxcWV2voAAAAAAAAAAADy2p9vCwYAAAAAAJUPA+wAUMXEx8d7y5KXeampqUUul5SU5A0YMMCbNGmSl5iYWOSycXFxXnx8fGluJgAAAAAAAAAAQBi+LRgAAAAAgOqBAXYAqILi4+NLPHCemJjI12sCAAAAAAAAAAAAAAAAAIByEajoDQAAAAAAAAAAAAAAAAAAAAAAVA8MsAMAAAAAAAAAAAAAAAAAAAAAygUD7AAAAAAAAAAAAAAAAAAAAACAcsEAOwAAAAAAAAAAAAAAAAAAAACgXERW9AYAqBrS09M9z/O8zA2ZpbK+4HqC6wUAAAAAAAAAAAAAAAAAAEDlxwA7gFKRkpLieZ7nrX9ufamvt2fPnqW6TgAAAAAAAAAAAAAAAAAAAFQMBtgBlIqEhATP8zyv5bUtvagWUQe8vswNmd7659b76wUAAAAAAAAAAAAAAAAAAEDlxwA7gFIRExPjeZ7nRbWI8mISYkp9vQAAAAAAAAAAAAAAAAAAAKj8AhW9AQAAAAAAAAAAAAAAAAAAAACA6oEBdgAAAAAAAAAAAAAAAAAAAABAuWCAHQAAAAAAAAAAAAAAAAAAAABQLhhgBwAAAAAAAAAAAAAAAAAAAACUCwbYAQAAAAAAAAAAAAAAAAAAAADlggF2AAAAAAAAAAAAAAAAAAAAAEC5YIAdAAAAAAAAAAAAAAAAAAAAAFAuGGAHAAAAAAAAAAAAAAAAAAAAAJSLyIreAABA2UtLS/OSk5PDfpaUlBT2v6Hat2/vxcbGlsu2AQAAAAAAAAAAAAAAAACA6oMBdgCoBpKTk71u3boV+NiAAQPy/Wz+/Ple165dy3qzAAAAAAAAAAAAAAAAAABANcMAOwBUA+3bt/fmz58f9rP09HQvJSXFS0hI8GJiYvItDwAAAAAAAAAAAAAAAAAAUNoYYAeAaiA2NrbAO6r37NmzArYGAAAAAAAAAAAAAAAAAABUV4GK3gAAAAAAAAAAAAAAAAAAAAAAQPXAHdgBlKrMDZlFPp6bletlp2Z7NeJqeIGahX+Gprj1AAAAAAAAAAAAAAAAAAAAoPJhgB1AqYiLi/OiY6K99c+tL7V1RsdEe3FxcaW2PgAAAAAAAAAAAAAAAAAAAFQsBtgBlIr4+HhvWfIyLzU1tcjlkpKSvAEDBniTJk3yEhMTi1w2Li7Oi4+PL83NBAAAAAAAAAAAAAAAAAAAQAVigB1AqYmPjy/xwHliYqLXtWvXMt4iAAAAAAAAAAAAAAAAAAAAWBKo6A0AAAAAAAAAAAAAAAAAAAAAAFQPDLADAAAAAAAAAAAAAAAAAAAAAMoFA+wAAAAAAAAAAAAAAAAAAAAAgHLBADsAAAAAAAAAAAAAAAAAAAAAoFwwwA4AAAAAAAAAAAAAAAAAAAAAKBeRFb0BAKqutLQ0Lzk5OexnSUlJYf8bqn379l5sbGy5bBsAAAAAAAAAAAAAAAAAAADKHwPsAMpMcnKy161btwIfGzBgQL6fzZ8/3+vatWtZbxYAAAAAAAAAAAAAAAAAAAAqCAPsAMpM+/btvfnz54f9LD093UtJSfESEhK8mJiYfMsDAAAAAAAAAAAAAAAAAACg6mKAHUCZiY2NLfCO6j179qyArQEAAAAAAAAAAAAAAAAAAEBFC1T0BgAAAAAAAAAAAAAAAAAAAAAAqgcG2AEAAAAAAAAAAAAAAAAAAAAA5YIBdgAAAAAAAAAAAAAAAAAAAABAuWCAHQAAAAAAAAAAAAAAAAAAAABQLhhgBwAAAAAAAAAAAAAAAAAAAACUCwbYAQAAAAAAAAAAAAAAAAAAAADlggF2AAAAAAAAAAAAAAAAAAAAAEC5YIAdAAAAAAAAAAAAAAAAAAAAAFAuGGAHAAAAAAAAAAAAAAAAAAAAAJQLBtgBAAAAAAAAAAAAAAAAAAAAAOWCAXYAAAAAAAAAAAAAAAAAAAAAQLlggB0AAAAAAAAAAAAAAAAAAAAAUC4YYAcAAAAAAAAAAAAAAAAAAAAAlAsG2AEAAAAAAAAAAAAAAAAAAAAA5YIBdgAAAAAAAAAAAAAAAAAAAABAuWCAHQAAAAAAAAAAAAAAAAAAAABQLhhgBwAAAAAAAAAAAAAAAAAAAACUCwbYAQAAAAAAAAAAAAAAAAAAAADlggF2AAAAAAAAAAAAAAAAAAAAAEC5YIAdAAAAAAAAAAAAAAAAAAAAAFAuGGAHAAAAAAAAAAAAAAAAAAAAAJQLBtgBAAAAAAAAAAAAAAAAAAAAAOWCAXYAAAAAAAAAAAAAAAAAAAAAQLlggB0AAAAAAAAAAAAAAAAAAAAAUC4YYAcAAAAAAAAAAAAAAAAAAAAAlIvIit4AeJ4kz/M8b8eOHRW8JShtubm5/v/SFwAAAACAssH5NwCgpDhmAABKguMFAKCkOGYAACpK8LgTnD8FKhsn/q+3wq1fv95r1apVRW8GAAAAAAAAAAAAAAAAAAAAKol169Z5LVu2rOjNAPYZA+wG5Obmehs2bPDq1KnjOecqenNM2LFjh9eqVStv3bp1Xt26dSt6c6o1WthCDztoYQct7KCFHbSwhR520MIOWthBCztoYQs97KCFHbSwgxZ20MIWethBCztoYQct7KCFLfSwgxZ20MIOWthBi4JJ8nbu3Om1aNHCCwQCFb05wD6LrOgNgOcFAgE+AVOIunXrctAxgha20MMOWthBCztoYQctbKGHHbSwgxZ20MIOWthCDztoYQct7KCFHbSwhR520MIOWthBCztoYQs97KCFHbSwgxZ20CK/evXqVfQmAPuNj10AAAAAAAAAAAAAAAAAAAAAAMoFA+wAAAAAAAAAAAAAAAAAAAAAgHLBADtMioqK8u655x4vKiqqojel2qOFLfSwgxZ20MIOWthBC1voYQct7KCFHbSwgxa20MMOWthBCztoYQctbKGHHbSwgxZ20MIOWthCDztoYQct7KCFHbQAqiYnSRW9EQAAAAAAAAAAAAAAAAAAAACAqo87sAMAAAAAAAAAAAAAAAAAAAAAygUD7AAAAAAAAAAAAAAAAAAAAACAcsEAOwAAAAAAAAAAAAAAAAAAAACgXDDADgAAAAAAAAAAAAAAAAAAAAAoFwyww7ycnJyK3gQAAAAAAAAAAAAAAAAAAAAApYABdpiWlZXlPf30096NN95Y0ZsCAAAAAAAAAAAAAAAAAAAA4ABFVvQGAIXJysryXn31Ve/uu+/2du/e7eXk5HhPP/10RW8WAAAAAAAAAAAAAAAAAAAAgP3EHdhhUlZWlvfKK694w4cP93bv3u1FRUV5zzzzjHfVVVdV9KZVS5IK/HeUP1rYQQs7aGELPeyghR20sIMWdtDCFnoAAAAAAAAAAAAAKE8MsMOc4J3Xb775Zm/37t1ew4YNvT179nie5/n/i7KVd2DBOZfv3xlqKB+0sIMWdtDCFnrYQQs7aGEHLeyghS30sCPvfs7Nza2gLQEt7KCFHbSwhR520MIOWthBCztoYQs97KCFHbSwgxZ20MIOWthCD6Dqi6zoDQBCBYfXb7rpJm/Xrl1ez549vUMPPdR78803vcaNG3uDBg3yPG/vASr0DXaUruC+TUlJ8RYuXOgtWbLE27hxoxcREeG1b9/eO+qoo7xOnTp5NWvW9DyPHmWJFnbQwg5a2EIPO2hhBy3soIUdtLCFHjaE7te5c+d6hx12mNekSRNvz549XmQkl+zKEy3soIUdtLAltMfKlSu9du3aeYFAwMvJyfEiIiIqeOuqF1rYQQs7aGEHLWyhhx20sIMWdnDOZwct7KCFLfQAqgf+vxlm5B1eP+qoo7whQ4Z4zzzzjJeWluYdcsgh3tFHH+15nscb52VIkrdr1y7vzjvv9ObMmeMtXLgw7HHnnBcIBLzLL7/cO/PMM72LLrrIc84x0FAGaGEHLeyghS30sIMWdtDCDlrYQQtb6GFD6P6cPXu298ADD3hLlizxvv76a++QQw6p4K2rXmhhBy3soIUtoT1mzpzpPfDAA1737t29Rx55hCGfckYLO2hhBy3soIUt9LCDFnbQwg7O+eyghR20sIUeQDUiwIDMzEw9//zzqlOnjpxz6tSpk6ZMmaLJkyercePGatiwob7//ntJUk5OTgVvbdW1a9cuTZs2TX379pVzzv+nadOmatGihVq1aqVDDz1UzjkFAgHVqVNH99xzj//83Nzcitv4KoYWdtDCDlrYQg87aGEHLeyghR20sIUeNoTuxxkzZuicc85RRESEnHO67777JHHto7zQwg5a2EELW/L2OP/88/3j9wcffMCxuRzRwg5a2EELO2hhCz3soIUdtLCDcz47aGEHLWyhB1C9MMCOCpd3eP2II47QG2+8IUkaOXKknHM65ZRTtHHjxgre0qrtr7/+0rPPPqsuXbrIOafIyEg1adJEw4cP17fffqtt27Zpx44d+uuvvzRhwgRdcMEFCgQCcs7phhtu8NfDyeWBo4UdtLCDFrbQww5a2EELO2hhBy1soYcNBV18D75he8011/iPBS/AcyG+7NDCDlrYQQtbiupx66235lueHmWHFnbQwg5a2EELW+hhBy3soIUdnPPZQQs7aGELPYDqhwF2VKi8w+udO3fWlClTlJ2drS+//NI/CE2ePLmiN7VK2717t1588UV16NBBzjnVqFFD/fv317Rp08KWC/2LwurVq/XII4/4Aw133313eW92lUQLO2hhBy1soYcdtLCDFnbQwg5a2EIPG/JefD/vvPPC7oR/+OGHq0GDBurZs6fuuusu/4P8e/bsqahNrrJoYQct7KCFLUX1iIyM1MCBA3XqqafqgQce0Oeff+4vS4/SRws7aGEHLeyghS30sIMWdtDCDs757KCFHbSwhR5A9cQAOypMQcPrkydP1vbt2yVJt956qwKBgC688EJlZGRIyn+nNz5JdWCC+3P27Nnq1q2bP8hw44036tdff/WXCz3YhzbIyMjQk08+qUAgoKioKL366qvlt/FVDC3soIUdtLCFHnbQwg5a2EELO2hhCz3sKOqrstu3b6/jjz9ew4cP1zHHHKOmTZvKOadu3bpp9erV+Z6PA0MLO2hhBy1sKapHXFycWrVqpaOOOkqRkZFyzql27doaO3Zsgc/HgaGFHbSwgxZ20MIWethBCztoYQfnfHbQwg5a2EIPoPpigB0VorA7r+/YsUOStGrVKjVp0kTOOT388MPFri8pKUnPPPOMhg0bVtabXmWEHrzPOussf5Dh+uuv17JlywpcriAbN27U4MGDFQgE9H//93/atm0bfzHYR7SwgxZ20MIWethBCztoYQct7KCFLfSwo6iL71dddZV+/PFHpaenS5K2bdummTNn6rjjjpNzTu3atdO2bdsqaMurHlrYQQs7aGFLUT369++v9957T3/++af27Nmjb7/9Vrfffrv/+D333FNxG14F0cIOWthBCztoYQs97KCFHbSwg3M+O2hhBy1soQdQvTHAjnJX2PD6rl27JEnp6ekaNmyYnHM69thj/TvBBe+2HvzftLQ0paam6uabb9bRRx/tH7wYYt83DzzwgJxzioiI0FlnnaWffvppn9cxffp01ahRQ4FAQDNmzCiDraweaGEHLeyghS30sIMWdtDCDlrYQQtb6FGxirr4fsstt4QtG3on/NmzZ6t79+4aPny4NmzYUG7bW5XRwg5a2EELW4rqcdNNNxX4AbL09HTdcccdqlmzpm666Sb99ddf5bnJVRYt7KCFHbSwgxa20MMOWthBCzs457ODFnbQwhZ6AGCAHeWquOF1SUpNTdVxxx2nmjVr6qmnnpK092vLQy1evFiDBw9Wly5d/DfinXOKiYnxP4GF4uXm5qpfv34KBAJyzumVV17Z73VdeOGFcs5p8ODByszMLMWtrB5oYQct7KCFLfSwgxZ20MIOWthBC1voUbGKuvg+YsSIApcL2rlzp2bNmqU1a9aUx6ZWebSwgxZ20MKWonqMHDmywOWCli5dqtdff93/2mwcGFrYQQs7aGEHLWyhhx20sIMWdnDOZwct7KCFLfQAIDHAjnKUkZGhiRMnFjm8Lkn33nuvnHNq1KiRFi1aFPbY9OnTNXLkSH8dMTExat68uS677DK1bNnSP5ANGjRI27dvL8+XVyktWLDA32cDBgzwf74vXwcf/ITbnXfeKeechg8f7t8lHyVHCztoYQctbKGHHbSwgxZ20MIOWthCj4pTtzfpIgABAABJREFU0jdsQ+8ak1foBwU+/fRTbdu2TVlZWZJEg31ACztoYQctbCnpG7ZF9Qj9uuy8dx6jR8nRwg5a2EELO2hhCz3soIUdtLCDcz47aGEHLWyhB4AgBthRLnJzc/XKK6/4B5u8w+vBA9Py5cvVrVs3Oec0btw4SXs/NTVt2jRde+21cs4pMjJSzjmdccYZGjdunCZNmqSrrrrKX/fw4cP1+++/V9hrrUxmz57t78/g/i7q4F+UadOm6ZJLLtHWrVtLcxOrDVrYQQs7aGELPeyghR20sIMWdtDCFnpUvBkzZqhfv377fPE9VPCD/scee6zGjBmjP//8c5+ej71oYQct7KCFLbNmzdqvN2xD3XDDDWrdurXuuOMOzZkzZ5+fj71oYQct7KCFHbSwhR520MIOWtjBOZ8dtLCDFrbQAwAD7Cg3ycnJcs4pPj5eb775Ztid14MD7JMnT1YgEFCXLl30+uuva8aMGTr22GNVv359/2B1ySWXaPz48dqzZ4/mzJmjSy+9lOH1fRTc31OmTJFzTrVq1dLixYsPaJ1r167V7t27JfGXgH1BCztoYQctbKGHHbSwgxZ20MIOWthCDxuSk5PVu3fvA7r4npWVpWnTpqlr166KjY2Vc059+/bV2rVr92k91R0t7KCFHbSw5csvv1Tfvn0VERGxT3eoDLV582ZdffXVCgQCcs7p4IMP9j/Ati/rqe5oYQct7KCFHbSwhR520MIOWtjBOZ8dtLCDFrbQA4DEADvK2apVq/TOO+9o586d+R777bff1K5dOznn1LJlS5144olq2rSpnHNq1aqVzj77bL3//vv+8j/99JPOPvts/0B20003Mby+jz799FN//33xxRelss59+Sp6/I0WdtDCDlrYQg87aGEHLeyghR20sIUeFe/666/fpzdsC9u/69at0/PPP69OnTrJOaeEhASlpKRI4utQS4oWdtDCDlrYsW7dOtWtW1fOOd12223+z/fnjdapU6fq8ssv9/8O8J///Md/jB7Fo4UdtLCDFnbQwhZ62EELO2hhC+d8dtDCDlrYQg8ADLCj3BV2MPn5559Vu3Zt/wQkOMh+/vnna+HChdq0aZOkvQeWOXPm6Nxzz2V4/QD98ssv/gnk9OnTJZXuMAKfZCs5WthBCztoYQs97KCFHbSwgxZ20MIWelSc0Ivi06ZN8/+9sH2Wt0t2dna+ZTIzM/XDDz+oR48ecs6pc+fO2rBhQyltcdVFCztoYQctbFqwYIHuuece/88l7VGQ9evX68EHH/Svnz/00EOltZnVAi3soIUdtLCDFrbQww5a2EGLisc5nx20sIMWttADQBAD7DDlv//9r5xzql27tkaOHKmvv/467KCTm5urr776Sueffz7D66XknHPOkXNOZ599trZs2VIq65w9e7b/73ySreRoYQct7KCFLfSwgxZ20MIOWthBC1voUXHyXkQv7OJ7cB+uW7dOr776qgYNGqR+/frpySefLPDO+d98840OP/xwOed0ww03KCMjo9S3vaqhhR20sIMWthXX448//tA333yjxx9/XE8//bR++eUXbd26VdLfb+ru3LlTo0aNknNO9erVC3tDGCVHCztoYQct7KCFLfSwgxZ20KLicM5nBy3soIUt9AAgMcAOI0Lf8P7qq680Z86cfMvk5uZqzpw5+zW8HjzI5ebmaufOnaW34ZVY8IRv4sSJatSokeLj4zV9+vQDHj544IEH5JzTsGHDSmMzqwVa2EELO2hhCz3soIUdtLCDFnbQwhZ6VA7BTsuWLdMJJ5ygRo0ahX0zXf369XXvvfeGPWfXrl0aMWKEnHM69thjlZ6eXhGbXuXQwg5a2EELW4LH8OXLl+uMM85QixYt/BatWrXSSSedpOXLl4c9Z9myZTrxxBMVERGhm2++WVLpfhtLdUULO2hhBy3soIUt9LCDFnbQwg7O+eyghR20sIUeQNXHADvMKOhN9OCnrfZneD3vCcuuXbs0ZswY9enTRwMHDizdja/E/vjjD5166qlyzum4447T4sWL93tdwU8+O+d02mmnad26dX4HTiCLRws7aGEHLWyhhx20sIMWdtDCDlrYQg/7UlJS/K81rVWrlhISEnTBBRf4d4lxzulf//qXfwcySZozZ47/2DfffFOBW1+10MIOWthBC1tWrlypbt26+fu3YcOGatasmerXry/nnJo0aaJZs2aFPefWW2+Vc07NmzfX9u3bOWaXElrYQQs7aGEHLWyhhx20sIMWdnDOZwct7KCFLfQAqjYG2GFW6Jvg+zK8nvcrRebPn6/HHntMHTp0CPsU1hVXXFHmr6GyWLVqlQ4++GA559SrVy/NnDlTO3bskPT3BwuKu0vf/fff7+/bPn366K233tKGDRvCnpd3HZxU5kcLO2hhBy1soYcdtLCDFnbQwg5a2EIPm4L767HHHlO9evUUFRWlq6++WuvWrZMkJSUl6dFHH/X3+z//+U9t3LhRkrR06VLVrVtXERER+umnnyrsNVQVtLCDFnbQwp6MjAwNGzZMNWvWVN26dXXVVVdpzZo1+v333/X222+rV69ecs4pLi5O77//vjIzMyVJ06dPV82aNdW+fXulpaVV8KuoGmhhBy3soIUdtLCFHnbQwg5a2MA5nx20sIMWttADqB4YYIdJ+zu8Hmru3LkaO3asGjRooNjYWDnn/E/sOufUsmVLbd68uaxfSqWRnJysli1byjmnww47TDfeeKMWLlzo3wW/KMGvkA/+U69ePdWvX1+tW7fWpZdeqtdff91fNvgBg9BBhg8++MD/SwRoYQkt7KCFLfSwgxZ20MIOWthBC1voYdd5550n55wOOuggrV69Ot/jb731lr/vr732Wq1bt0633XabnHNKTEzUzp07K2CrqyZa2EELO2hhx65du9S1a1c553TkkUfqt99+C3v8zz//1JlnninnnBo1aqRPP/1UGRkZuuKKK+ScU48ePSpoy6seWthBCztoYQctbKGHHbSwgxa2cM5nBy3soIUt9ACqNgbYYc6+DK8HP20VfM6WLVu0cOFCDRw4UK1bt/af16pVK1144YV699131aZNGznnNGzYMGVkZJT/CzRs5cqV6tu3rz/wHxUVpT59+ui6667TzJkzC3zO6NGj/f1cu3ZtdevWTVdffbUGDBgQdtf7++67r8DnT5kyRd27d1ft2rW1cuXKsnx5lQot7KCFHbSwhR520MIOWthBCztoYQs9bMnNzVVaWpq6d+8u55zOOuss/7G8d7OfNm2av6979eql9u3bKxAIaPjw4crMzCz2DvooGi3soIUdtLBn4cKFqlOnjiIiIvTwww9LKviDY+ecc46cc2rYsKGGDBmidu3aKTY2Vk888YSk4r91BcWjhR20sIMWdtDCFnrYQQs7aGED53x20MIOWthCD6B6YIAdJuXm5urrr78ucng9eBIjSdu3b9fcuXN1+umn67DDDpNzTjVr1lTt2rV1ww036Ouvv5YkjRo1Ss45xcTE6Ndffy3311UZbNq0SePHj9fpp58u55wiIiLUt29f/+vlQ4UOMpx88sl65plnwh5ftWqVxowZ4y/z9NNPhz3+xx9/6MQTT/Qff/nll8v0tVU2tLCDFnbQwhZ62EELO2hhBy3soIUt9LDn3//+t5xz6tChg5KTk8Mey83N9e+SP3XqVH9fOrf3w/rz58+viE2usmhhBy3soIUdO3fuVJcuXeSc0yWXXKJdu3aFPR56vfyss87yr4M753T44YdryZIl5b3JVRYt7KCFHbSwgxa20MMOWthBC1s457ODFnbQwhZ6AFUbA+ww6dtvv1Xfvn39g8pNN92k9evXS/r7U7fBT0dNmDBBl156qaKjo/3lGzRooFGjRmnGjBn+OpOSktS+fXtFRETolltuCVsHCjZt2jRNmTJF27dvlxR+shg6yNCvXz/Nnj3bbxN6Z/tdu3Zp5MiROuKII/TRRx/l+x2ff/65nHN66qmnyvjVVG60sIMWdtDCFnrYQQs7aGEHLeyghS30sOH111/39/XYsWO1e/du/7HgxfedO3dq8uTJOvTQQ/1lP/3007D1FHaNg2sfJUcLO2hhBy3sSE9P11VXXSXnnDp37qwffvgh7PHQ4/jzzz+vuLg4OedUo0aNfN+0EnpnS+w7WthBCztoYQctbKGHHbSwgxa2cM5nBy3soIUt9ACqNgbYYdK6desUCATknNMtt9yitWvXhj2empqqRx991P/EbUREhJxz6tGjh2655RatWLEi3zqfe+45OecUCAT03nvvldMrqZwKOtELHvSl8EGGCy+80L/DfWHP/f777zVv3jz/8QULFoQ9Hnpnff5iEI4WdtDCDlrYQg87aGEHLeyghR20sIUe9tx6663+Pr/vvvv0/fffS5J2796ttWvX6p///Kf/jXPOOb3//vuS9u7v0Dd2JenPP/9USkqKNm3aFPZz9n3J0MIOWthBCztWrVqlVq1aybm9X4k9Z84cbdu2zX88NTVVN998s4488sgS9ZD2/h0g9O8BEj1KghZ20MIOWthBC1voYQct7KCFLZzz2UELO2hhCz2AqosBdpi1aNEi3X777dq8ebP/sx9//FHPPfecDjnkEEVGRvoHnsjISPXr10+SlJaWJin8wJKUlOSfAA0cOLB8X0gV88ADD/j7/aKLLtI333zjP1bcJ5xzc3M1ZcoUde7cWf/+97/zPY+/DOwbWthBCztoYQs97KCFHbSwgxZ20MIWepSv0Ivnd999t2rUqOHfVaxr167q0KGDGjRo4DdxzunDDz+UtHe/ZmVlSZI2b96sF198Ueecc45atmypiIgINW3aVOecc46eeuop/fnnn/l+H8LRwg5a2EELm5YtW+bfUaxly5bq1auXbrzxRg0cOFBt27YN+6bS4LejhPbYsmWLvvjiCw0ePFhnnXWWjjnmGPXt21cTJ07Ud9995/8eehSPFnbQwg5a2EELW+hhBy3soEXF45zPDlrYQQtb6AFUfQyww7Tgm9xffPGFxowZo8aNG6tOnTpyzqlhw4Zq3bp12Kdu58yZI2nvASX0U1TPP/+86tWrpyZNmvh3X+eN83330EMP7fMgQ+h+fvPNN3XSSSf56wg9ccS+oYUdtLCDFrbQww5a2EELO2hhBy1soUfFCL0oPm3aNI0YMUInnniijjjiCDVv3tz/1jnnnD744ANJ4RffV6xYob59+6p58+ZyzqlmzZphF+xjY2PVu3dv/fbbb/l+H8LRwg5a2EELm1JSUnTjjTfqiCOOUP369RUVFaWoqKhi37BdtWqVLrzwQh188MFyzoX1q1mzptq3b6+nnnrK/z30KB4t7KCFHbSwgxa20MMOWthBi4rHOZ8dtLCDFrbQA6jaGGCHeampqerZs2fYwaNLly763//+p4ULF2r+/Pk65ZRT/MdmzJgh6e8DSlZWlrp37y7nnHr06KEdO3YU+ztzcnL8AxP2evTRR/d5kCH052+99ZZOPPFEfx3jx48v822uqmhhBy3soIUt9LCDFnbQwg5a2EELW+hRsfJ+yP7PP//UU089pa5du/r7NPRrT4MX35ctW6aWLVv6y9SuXVsjRozQ2LFjNXHiRPXr109t27aVc04JCQlKSUkp8Pfhb7SwgxZ20MKmrKws5eTkaP78+brzzjt1yCGHFPmGbXJyshISEvxloqKidPbZZ+vKK6/UBRdcoHbt2vmP/ec///F/Dz2KRws7aGEHLeyghS30sIMWdtCi4nHOZwct7KCFLfQAqi4G2FEpLFmyRJGRkerZs6fuuOMOZWRk+I9lZWVp5syZBQ6x5+Tk6PHHH5dzTg0aNNCnn37q/7wwOTk5+umnn9ShQwddfvnlZfvCKpFFixYpEAjo1FNP1bfffuv/vLhBhtzc3HyDDM8++6y/XE5OTrFfQ49wtLCDFnbQwhZ62EELO2hhBy3soIUt9LDl22+/VZs2bQq8+B78wP6qVav8N2wbNWqkc889V4sWLQpbz/bt2zV79mwde+yxcs6pa9eu2rhxY7m/nsqMFnbQwg5a2BA8vr7yyitKTEwscMgnOztbkrR8+XIddNBB/nXyPn366KeffvIfl6Qff/xRd999t7+esWPHlv+LqqRoYQct7KCFHbSwhR520MIOWtjDOZ8dtLCDFrbQA6g6GGBHpbFp0yatXbvWHz7fs2ePfzKTnZ2tWbNmFTjEfvHFF8s5p27dumnVqlVF/o7g8Hrfvn399Vx//fVl+8IqkXXr1umHH37w/7w/d+HLO8hQ0IcJ+DqW4tHCDlrYQQtb6GEHLeyghR20sIMWttDDloEDB8q58K/KDu77LVu26IILLpBzTg0bNtTAgQO1Zs0aSX/v39B9P3/+fB155JFyzumWW25RZmZm+b6YSo4WdtDCDlrYsWrVKv84/PHHH0sK77Fp0yb16dNHzjnFxcVp4MCB/nXy0GvskrR7926NHTvWbxfsi5KhhR20sIMWdtDCFnrYQQs7aGEL53x20MIOWthCD6BqYIAdlVJBb6IXNMR+yy23+P8+YcKEItcZHF4PnvRER0crIiJCzjkNGzasrF5KpVXagwwPPfSQbrvttrLb4CqMFnbQwg5a2EIPO2hhBy3soIUdtLCFHhUndL8tWbJE0t8X34P7f/bs2Tr44IPlnNOJJ57ov2FbWLfMzEw9++yzql+/vg477DD9/vvvZfwqqgZa2EELO2hh05IlS/TZZ59J+rtHsNULL7ygZs2ayTmn8847z3/DtrAeGzZs0IABA1SjRg0NHTo07G6WKB4t7KCFHbSwgxa20MMOWthBi4rHOZ8dtLCDFrbQA6haGGBHlZJ3iD0QCMg5p5NPPlmbNm2SVPDBKO/wes2aNfWPf/xDd955p7+OoUOHlvfLqXT2d5Dhqaee8pd77LHHynWbqypa2EELO2hhCz3soIUdtLCDFnbQwhZ6lJ+8d6nPey3jmmuukXNOUVFR+umnnwpcJq+1a9eqdu3aatKkiTIyMkp3g6swWthBCztoYVfom7VBZ599tpxzql27thYvXuwvV5Q333xTzjn16NGDb07ZT7SwgxZ20MIOWthCDztoYQctKhbnfHbQwg5a2EIPoOpggB1VTkZGhn788Ucdd9xx/vD5yJEjC12+oOH1AQMG6Pvvv5ckTZw40V/PzTffXF4vo9LZ30GGxx9/XDVq1JBzTt27dw9bNrg89g0t7KCFHbSwhR520MIOWthBCztoYQs97MjNzdVpp52miIgInXfeecrJySn2Tdhgv48//lg7d+6UxL4vDbSwgxZ20MKWTZs2qXnz5qpZs6Zuv/12Sfnf5A0VbJGRkaEbbrhBf/31V9jPsf9oYQct7KCFHbSwhR520MIOWtjBOZ8dtLCDFrbQA6hcAh5QhUjyoqKivLZt2/p/TkxM9O68807/z6Fyc3O9n3/+2RsxYoT31VdfeTVq1PD+7//+zxs6dKh3zDHHeJ7neVdccYU3fvx4zznnPfbYY97YsWPL90VVApI855zneZ739ttve88++6z35Zdfep7neePHj/euu+46z/P27m/P87xAYO9/ep588knv9ttv9/bs2eM1b97ca9asmdegQQPv66+/9lasWOEvm5OTU86vqPKihR20sIMWttDDDlrYQQs7aGEHLWyhhy1ZWVne5s2bvdzcXC8uLs4LBAL+Pi9MsN8ZZ5zh1a5d29uzZ0+xz0HxaGEHLeyghS27du3yNm3a5GVnZ3uNGzf2PM/zIiIiCl3eOedfY3/iiSe8unXrenv27PEbYf/Rwg5a2EELO2hhCz3soIUdtLCDcz47aGEHLWyhB1DJlOu4PFDGgp+Y+uSTT9SmTRtFRERo5MiRysrKyvfJqOLuvC79/QmrLVu2aMSIEQoEAurcubP/9SL4W25urqZOnVriu/A9+eSTqlmzpr9sTEyMf6d755zatWunJ554Iuz5KBla2EELO2hhCz3soIUdtLCDFnbQwhZ62JGZmanjjjtOzjn1799/n58fvNYRetcx7kC2f2hhBy3soIUt69atU8OGDRUIBDR58mRJ+3bMDe770Ofk5ubSZD/Qwg5a2EELO2hhCz3soIUdtLCDcz47aGEHLWyhB1C5MMCOKiP0YDFgwAB/KL2gYfPg8HqvXr385S6//HJ98803Ba5Pkt5//33/jfYXXnih7F5IJTVt2jR16dKlxIMMkZGRcs6pUaNGGjRokObOnasVK1bo7bff1rBhw/z13HfffRXxcio1WthBCztoYQs97KCFHbSwgxZ20MIWetgS3MeJiYn69ddfS/ScvNc5kpOTtWDBAn3xxRf68ssvlZmZqczMTEl8oGBf0MIOWthBC1v69u3rv2kb/Brs4uTtkZaWpq1bt2r37t3avn172GP0KDla2EELO2hhBy1soYcdtLCDFnZwzmcHLeyghS30ACoPBthR5bz66qv+G+H/+c9/JIV/ejY4vN67d2855xQIBNStWzctX77cX0foQSl40Nm2bZsaN24s55wuuuiifMtVdykpKf6AwoQJE/yfFzXI0LlzZ40bNy7funbu3KlHH33U/3DB1KlTy+U1VBW0sIMWdtDCFnrYQQs7aGEHLeyghS30sGX27NmKj4+Xc06jR49Wenq6/1hB1yqCjXJycvTNN99oxIgRatSokWJiYvxrKL169dKtt96qjRs3Svr7W+5QNFrYQQs7aGFDcF8/9NBDqlGjhg477DB9/fXXxT4v2CM3N1erV6/Www8/rGOPPVYNGzZUq1atdNBBB+n222/Xxx9/7D+HHkWjhR20sIMWdtDCFnrYQQs7aGEP53x20MIOWthCD6DyYIAdVcpff/2lyy+/XNHR0apbt66mT58uKfwroX766Sf16dNHzjn/TXXnnB577DF/PXk/KbVnzx5NnjzZ//rzSy+9NGy92GvhwoV68cUX/T8XNchw5JFHhi0bemDPycnRqlWrdOSRRyoiIkL33HNPuWx/VUILO2hhBy1soYcdtLCDFnbQwg5a2EIPWx588EH/msaTTz6pP/74w3+soA/mZ2dna/To0TrqqKP857Vt21ZHHXWUYmJiFBER4bdLSUmRxEX4kqKFHbSwgxZ2rF+/Xt26dZNzTn369NHChQuVnZ0tKf/17dAejz/+uH+Xy+A/TZo08W8KU79+fY0ZMybfc1E4WthBCztoYQctbKGHHbSwgxa2cM5nBy3soIUt9AAqBwbYUaWE3iV90KBBYY/lHV6vWbOm+vfvr+uuu84/8Dz88MP+8qEHq99//10XXXSRv9zzzz9fbq+pstqXQYbCTgJ79uwp55z69u2rPXv2cODfT7SwgxZ20MIWethBCztoYQct7KCFLfSoOKH78+abb/avVVx99dWaPn162H4MXtvIzs7WiBEj1LRpU3/5N954Q1u3bpUkLV++XI899pg6deok55zatWundevWha0D+dHCDlrYQQubli9f7u/fo48+Wi+//LJ/x7Cg0DdsR44cqRYtWvg9Jk6cqBkzZmjz5s0aP368Lr74Yv+xe++9118HPYpHCztoYQct7KCFLfSwgxZ20KLicc5nBy3soIUt9AAqFwbYUeUsWrRIRx55pN5++23/ZwUNrw8YMEDff/+9cnNzwz51ddddd2nbtm3+c5OSknTFFVf4j5944olatGhRBbyyymV/Bxlyc3OVk5OjJUuW6LDDDlNkZKRGjBhR7O9A4WhhBy3soIUt9LCDFnbQwg5a2EELW+hRsUIvst9///2qX7++/61xt956a9iyOTk5GjNmTNgbts65sLuLSVJ6erp++OEH9ejRQ845XXDBBdq+fXu5vJ7KjBZ20MIOWti0bNky/43Whg0bKi4uTrNmzQpbZs+ePbr33nvD3rBt0KBBvn2dkpKihx56KGwQCCVHCztoYQct7KCFLfSwgxZ20KLicc5nBy3soIUt9AAqDwbYUSVt3LjR/xRUYcPr3333nb/8rl27dM899/gHoV69eumSSy7RWWedpa5du/o/P/jgg/Xss89W1MuqlMaMGaOYmJgSDTKE/nnUqFH+fh88eLA+++wzTZw4UbNmzdLq1av95bhDX8nRwg5a2EELW+hhBy3soIUdtLCDFrbQo+KE7pvp06fr+uuv11FHHaUdO3ZI+vvOL4sXL9bxxx8v55wiIiJ05ZVX+vv+9ttv99cRXP7jjz9W8+bN1bp1a/3000/l+IoqL1rYQQs7aGHT2rVrddNNN6ldu3aKi4vTrl27JP29f2fMmKEuXbrIOaeoqCgdfvjhcs6padOmSkpKClt2165dGjlypJxzOv3007VlyxbuOrYPaGEHLeyghR20sIUedtDCDlpUPM757KCFHbSwhR5A5cAAO6q07Oxsffvttzr55JPDhte///57f5ngAWblypU65ZRTwj5NFfrPUUcdpXHjxuV7Hgq3detWxcXFyTmn7t27l3iQ4fnnnw/b902bNlVUVJT/58MOO0xPPfVUoetCfrSwgxZ20MIWethBCztoYQct7KCFLfSoeKH7Jicnx78on52d7f/83nvv9fftCy+8IEl64okn/J/deeedYevctGmTOnbsKOecRo8eXQ6vomqghR20sIMWNmVkZGjjxo3KyMiQFN5j6NCh/r5/7bXX9Oeff/o3hmnatKmWL18u6e83gT///HNFRkYqKipqn761lGvre9HCDlrYQQs7aGELPeyghR20qHgWzvmC/av7TTBoYQctbKEHYB8D7KjS0tPTdc4558g5p1q1ahU6vB40ZMgQ/83yCy64QKeccoo6d+6sBx98UHPnzvWXK+gr0Iv6c3W2ZMkSnXDCCRo/frz/s6IGGSZOnOj/JeDQQw/V5Zdfrnnz5ikpKUnvvfeerr/+ev/xe+65p7xeRpVACztoYQctbKGHHbSwgxZ20MIOWthCD3uC1yRycnK0c+dO/5vl+vXr51+YT09PL/Ii/MCBA+Wc0wMPPFDu21+V0MIOWthBC1tCj9GLFy9WvXr15JzTsGHD/J8vWbKkwGEfae8bvh07dlRERIRmz55d5O9auHChJk+e7P+Za+jhaGEHLeyghR20sIUedtDCDlrYUZ7nfIsWLdJNN93kf+iA4dBwtLCDFrbQA7CFAXZUeQsWLFCTJk103nnn6YcffvB/HnoikZWVJenvT1CddNJJ/s+CXx0SxJ3f9t327dv9fy/pIEOvXr30wgsvhH3qTdrb45FHHvGXe+ONN8p246sYWthBCztoYQs97KCFHbSwgxZ20MIWeti1detWNWrUSM453XbbbWGPZWVlFXgRfuPGjTr00EPlnNPDDz9cEZtdJdHCDlrYQQtbfvnlF8XExCgyMlIvvfSSpL+voScnJxc47DNv3jxFR0fLOaePP/640HUvXbrUv3nMoEGD/J8z7FMwWthBCztoYQctbKGHHbSwgxZ2lOU539KlSzVs2DA551SjRg0tWLBAEsOhhaGFHbSwhR5AxWOAHdXC77//rnnz5vl/LuyO6f369ZNzTomJif4Bo6ADR3D5LVu2aPny5brrrrt0/fXX65JLLtEll1yi0aNH66uvvtKuXbvK6iVVSiUdZDjhhBM0ZcoU//G8X+myYsUKHX744XLO6fbbby+fja9iaGEHLeyghS30sIMWdtDCDlrYQQtb6GFPWlqaEhISVLNmTb344ouSpMzMTP/xvBfhR44cqffff1/NmjVTo0aN9MUXX/jL5r2Wwgf89w0t7KCFHbSwZfbs2XLOqUGDBvrll18khe/HvMM+CxYs0Ouvv65atWqpU6dO2rhxY4HrXbp0qa6//no1aNDAb3n99df7jzPskx8t7KCFHbSwgxa20MMOWthBCztK85wvVLBF8E77zjnVr1+fOxwXgRZ20MIWegAVjwF2VDuFnThkZ2fruOOOk3NOp5xyinJycop8o+Pbb7/VRRddpDZt2vgHm9B/AoGABg4cyN3iClHSQYbQXqH/3qtXLznn1Lt372JboWi0sIMWdtDCFnrYQQs7aGEHLeyghS30qHg5OTnavn27f91ixIgRBS6XlZWlJ5980m/UrFkzObf3Lvnp6emSwtvMmjVL69atk8SF9pKihR20sIMWtuTm5urrr7+Wc3vvClbYG7Chwz4NGzZU27Zt5ZzTBRdcoIyMjHzLB9+wrV+/vpxzat26tQKBgJxzGjp0aNjvx160sIMWdtDCDlrYQg87aGEHLewoq3O+vC0OPfRQHX300QyHFoEWdtDCFnoANjDADvx/r732mn+wGT9+fKHL7dmzR6+88oqioqL8k5LatWsrLi5Op556qrp166bu3bvLOaeIiAjVqlVL9913Xzm+EvtCD9wlHWQI9cMPP6hly5ZyzumOO+4ol22uqmhhBy3soIUt9LCDFnbQwg5a2EELW+hhQ3D/PvDAA3LO6dhjj/W/GjuvrKwsPf74436rQw45RElJSf5jQZ9++qmaN2+u5s2ba82aNWX+GqoKWthBCztoYc+ePXv8IZ5hw4YV+u2iycnJOuGEE/wehx56aIEfGsj7hm3Hjh316aef6n//+x/DPsWghR20sIMWdtDCFnrYQQs7aGFDaZ3zZWdn+8sV1GLWrFlKSkrSaaed5g+HLl68WBLfzBVECztoYQs9ABsYYEe1Fzwg3XbbbapRo4Zq1aql2bNnF7js9u3b9eijj/oHJOecEhISNGnSJP/rp3bv3q2MjAxNnDhRF110kX/SMnz48PJ6SZXGM888s8+DDFlZWf5fHpxzevnll8tzk6ssWthBCztoYQs97KCFHbSwgxZ20MIWetgwa9YstWjRQs45jR07NuxOYqEdsrKyNHr0aDVr1kzvv/++pPA3bD/66CN17NhRNWrUkHPO/7A+b8yWHC3soIUdtLAhNzdX2dnZGjVqlAKBgI444gj98MMPhS6fnJysTp06KTY2VjNmzJBU/Bu2M2fO9Jd54YUX/Ovmt956a9m+uEqGFnbQwg5a2EELW+hhBy3soIU9B3LOFzrYWVCLGTNm+C1WrlypU089Vc45tWnTRitWrMj3O6o7WthBC1voAVQsBtgBSWvWrFGTJk3knNOpp55a6HKhXwnStGlT9e/fX5s3by50+ZSUFD366KP+Scvtt99eFptf6eTm5mr79u3+funbt2+JBhkk6cUXX/QbXHHFFeW1yVUWLeyghR20sIUedtDCDlrYQQs7aGELPewZPXq0v1+ffPJJ/fnnn/5joQOg2dnZWrFiRb6vy/7oo4/UqVMnBQIBNWnSRAMHDtTvv/8e9ny+8rRkaGEHLeyghR3r169Xly5d5JxTnz59tHDhQn/f5T1+r1y5Ul999ZUyMzPDfh58w7ZevXphb9iG3i0/Oztb48eP9/+uMGHChLJ/cZUMLeyghR20sIMWttDDDlrYQQtbDvScryQtgssde+yxcs7pwgsv1NatW8v2hVVCtLCDFrbQA6g4DLCjWgu+ef7ee++pQYMGioiI8O/Ok/eN9bfeess/WLVq1Uo33XSTtmzZIin/GyChJz1paWl6+umn/ZOWF154ocxfV2WxaNEinXXWWXr55ZdLNMjw8ssv+w1OO+00LVq0SBJfqVIaaGEHLeyghS30sIMWdtDCDlrYQQtb6FHxQvfdiBEj/P07ZMgQffbZZyVax0cffaQjjjjCv6uxc06NGjXSQQcdpKOOOkq33HKLNmzYIIkB0aLQwg5a2EELm5YvX67mzZvLOacePXpo8uTJ+uOPPyQVf1ewvHcbO/zww8PuNhZq8+bNuuSSSxQZGal+/fppx44dZfJ6KjNa2EELO2hhBy1soYcdtLCDFhWvNM75li5dqiFDhvhDoUW12LNnjx577DE559S2bVv9+uuvkri7sUQLS2hhCz2AiscAOyDpoosuknNOtWvX9t8gD/Xzzz+rYcOGcs4pLi5OQ4cO1fbt2yWV7I30rVu36qabblIgEFCvXr2UlJRU6q+hsvrrr7/2eZDhxBNP1GeffVbop6RDBR/jYF88WthBCztoYQs97KCFHbSwgxZ20MIWelS80IHN//znP6pRo4YCgYAaNWqkq666St99953S0tL8ZUL35ccff6xOnTr5g6Ft2rTRscceq3/961865phjdNBBB8k5p8TERKWkpEjiAwdFoYUdtLCDFjYtW7ZMhx12mJxzatasmU455RR99tlnRX4bafAN29q1a8s5pyOPPFKzZ89Wenp6oc8ZNWqUnHOKiIjQjz/+WBYvpdKjhR20sIMWdtDCFnrYQQs7aFHx9vWcL1TeFomJiZo3b16BywfPFefNm6eaNWvKOadRo0aVzYuqpGhhBy1soQdQsRhgR7W3bds2HXnkkXLO6eKLL1Z6err/RkZOTo6ysrI0cuRIxcTEyDmnM888U6mpqf7jJfXll18qPj5ezjm99NJLZfFSKrWihg1eeumlsEGGjz/+ON/XrEjSd999p2nTpunee+/VU089pa+//lrr1q3zH+cNqpKhhR20sIMWttDDDlrYQQs7aGEHLWyhR8UKvQj/2muv6dxzz/X3+ZgxY/z9nXcwtGPHjv43yp111llatWqV/7WmW7du1VdffaUePXrIOafOnTtr48aN5fvCKiFa2EELO2hhU0pKiq644gq1bt1azjk1b95cL774YoHH2yVLlmjIkCGqW7eu3+6aa67xH8979/vgOiZMmOAvP3369LJ9QZUYLeyghR20sIMWttDDDlrYQYuKV9JzvlDBu+AH72jsnFN8fLx+//13SSrwzsaS9Pnnn/vL33vvvWXzgioxWthBC1voAVQcBtgB7T0Rcc7pjjvuyPfY7t271bFjRznn1KJFC61du1bS/r0xfsstt8g5p4MPPpg3TEqoJIMMn3/+uW6++WY55xQdHe0vHx0drZNOOkkvvPCCvyxfFbz/aGEHLeyghS30sIMWdtDCDlrYQQtb6FF+Qq9j/P777/rkk080evRo7d69W1L4vvvoo4/UqVMnBQIB1alTR8OGDQt7PHSI9Msvv1Tbtm1Vs2ZNPf744/keR360sIMWdtDCpm3btumLL77Q0KFDdeONN/p3EAvdh0uWLAl7w7Z58+b+sfqRRx7xl8t7PX39+vU6/fTT/WP6zJkzy+dFVVK0sIMWdtDCDlrYQg87aGEHLSpeced8oY8Hh0Lr168v55zatWungw8+WM45tW/fXn/88Yekv88Tgx03b96sa6+91r+z8dixY8Mex160sIMWttADqBgMsAP/37p16/xPQYUeGD766CP/ZCP4yaeC3hAv6mASPIjNnTtX9evX10EHHaRFixaV5uZXSSUZZPjvf/+rLl26hC137rnn6uyzz1aTJk0K/NQad+Xbd7SwgxZ20MIWethBCztoYQct7KCFLfQof4Vduwjd7x999JGOOOII/yL6kCFD/OsgBV0PSU1N1dFHHy3nnPr161c2G14F0cIOWthBC9uCdw4LvYNY3iGfTp066aOPPtL999/vH6MffvjhfOtKTU3VuHHj/KGg1q1b+996iuLRwg5a2EELO2hhCz3soIUdtKg4hZ3zhbbIOxTasWNHzZw5U99//72OPPJIfzh0/fr1YevYvHmznn32WcXHx8s5p8aNGyslJaVMX09lRgs7aGELPYDyxwA7UIyJEyf6JyUffvhhgcsE3xzfsmWL/8mrgmzbtk1t2rTRBRdcUCbbWpU8++yzioiIKHKQ4cEHH1TLli39Prfffrukv//i8NVXX+nGG28s8qQSxaOFHbSwgxa20MMOWthBCztoYQctbKGHHaED/x9//LE6deqkGjVqyDmnPn36FDkYGrygP2TIEDnndNxxx2nHjh3ls+FVEC3soIUdtKh4oW/ehvZYsmSJhgwZEjbkM3PmTGVnZyszM1MPPPCAf4y+4447tHDhQuXk5GjBggW6++67lZCQ4L9h+/LLL+dbP/KjhR20sIMWdtDCFnrYQQs7aGFTaJeChkJnzJjhXwucN2+ePxzarl07vfzyy5o7d66+/PJLDR482B8Kbdiwof773/9KosW+oIUdtLCFHkDZYoAdKMaECRP8T8tu2LBBUsGfuFqxYoU6dOigG2+8Udu3b8/3eE5Ojnbu3KnXXnst7GeFra862759u3+CeMoppxQ4yPDqq6/q0EMP9U8Wndv7NV6rVq3Kt66xY8f6fwH49NNPy/OlVHq0sIMWdtDCFnrYQQs7aGEHLeyghS30sCPvN9Adfvjh/v5u3Lixvv32W0kFD4YGpaam6qijjpJzTmeccUaZb3NVRQs7aGEHLewKvmGbd8gn9HielpamMWPG+M0OOuggtW/fXjExMapdu7Z/7B4xYoTWrl1bga+mcqOFHbSwgxZ20MIWethBCztoYceSJUs0bNiwIltI0oIFC9StWzc55xQTEyPnnAKBgCIjI+WcU6NGjXTLLbdo9erVFfRKKj9a2EELW+gBlA0G2IFivPHGG3LOqU6dOlq8eHGhy33++ef+SUthQ+yhgm+sBN+IWbt2raZMmVJ6G17JLViwQOeee66mTZvmH+yDA/87d+7UJZdc4u/vu+66SyeffLKcc2rSpImWL18etvyGDRt0/vnnKyIiQqNHj66YF1SJ0cIOWthBC1voYQct7KCFHbSwgxa20KPiFTYY2rRpU9WpU0fNmjXTb7/9Vujzg9c1li1b5t9tbODAgdwxZj/Qwg5a2EELu5KTk3XFFVcoLi4u7A3b0K/TDjVx4kTVqVNHUVFRYR9Mi4uL03333aeVK1eW8yuoOmhhBy3soIUdtLCFHnbQwg5a2LFp0yYNGDBAdevWLVGLrVu36txzz1WLFi3CWjRt2lSPPfYYQ6EHgBZ20MIWegBlhwF2oBhffvmlIiMjFRkZqRkzZhS57GuvveYfdG644YZih9iDb8Rs2LBBQ4YMUSAQ0GWXXVZq217Z7dq1q8CD/VtvveXv57vvvluStHz5cvXu3ds/4OcdaLj77rv9v0RkZmbyZtU+ooUdtLCDFrbQww5a2EELO2hhBy1soUfFKWgwNBAIqF69eho2bJhOOOEEde/evdDnBwdDs7Ozddppp/kfLvjhhx/KfNurGlrYQQs7aGHbxo0b1bp1aznn1KVLlyLfsA36+uuv9dBDD+n444/XWWedpf79++vnn3/Wrl27ymmrqyZa2EELO2hhBy1soYcdtLCDFraMGDFCzjl17NhRs2bNKrRF6PnezJkzNXbsWN16660aM2ZMvoHQ0HNLlBwt7KCFLfQAygYD7EAJBN/oOP/885Wamprv8dADSvCO7c45DR06VNu2bStwncHn/P777xoyZIhatmzpP2/hwoVl8joqu+A+u+mmm/y/FCxbtsx/LDk5WX369Mk30CBJkyZNknNORx99dIVse1VDCztoYQctbKGHHbSwgxZ20MIOWthCj/JR2F2N69WrpxEjRigtLU1nnHGGatasqfnz5+d7fvACfFZWloYMGSLnnKKjo3XllVdq06ZNJf7doIUltLCDFpXDggUL1LNnT33yySdFDvkUtk+DPw9+4CzvcrQoOVrYQQs7aGEHLWyhhx20sIMWFS90Hz344IP66KOPiv0gQVE3rijuphY0KRwt7KCFLfQAyhYD7EARggeFF154QQ0aNFBCQoI+/PDDAg8WwZ/t2bNHl156qT+Mfs899+Q7cOUdXm/evLn/RswHH3xQxq+q8grut5NOOknOOfXu3TvfMnkHGlatWiVJuvzyy+WcU79+/cpzk6ssWthBCztoYQs97KCFHbSwgxZ20MIWepSvTz75JGww9JZbbvEHP2+++WYFAgGNHj1aGRkZ+Z6blZWla6+91v/K1IMPPlizZ8/Ot9yePXu0Z8+eQq+LYC9a2EELO2hh3+7du4t9wzZUTk6Ov28zMzPDHlu9erWWLl2q5cuXa8OGDfmeh6LRwg5a2EELO2hhCz3soIUdtKh4oft/X/ZT6LlbVlaW/++ZmZn68ssvNXXqVL3yyiuaOnWq/vrrL6Wnp+/z76huaGEHLWyhB1B2GGAHSmDTpk06+eST5ZxTz549w+6QHnqwWbt2rUaPHq2GDRvKOaeEhARNmDDBP8CELp93eL127doMr5fQlVdeKeecLrvsMknhB3kpfKChSZMmeumll9S5c2c55zR69GhJHOxLCy3soIUdtLCFHnbQwg5a2EELO2hhCz3K3ueff64WLVooKirKHwwN3WdTp071P5j/0EMP6aeffpIkrVq1Sl9++aV69erlP96kSRO98847YetfsGCB3n77bZ1//vk65ZRTdM455+j666/XrFmztHXrVkl/3yW5uqOFHbSwgxZVW+i+fe2113TNNdcoKipKERERql27tmrVqqVhw4bpvffeK/A5KD20sIMWdtDCDlrYQg87aGEHLewIHSx94okndN555/nnhMF/jj76aA0bNsz/YAEtygYt7KCFLfQACscAO1BCq1atUtu2bf27wM2bNy/sDj/r1q3T6NGj1aBBAznndNhhh+mVV17R9u3b/WX2ZXidO/0U7pZbbpFzToceeqj++OOPApdJTk5W79695ZxTrVq15JxTfHx8vk867++n5LAXLeyghR20sIUedtDCDlrYQQs7aGELPcreqlWr/A/f33rrrf6+Cd1fd955p3/xPC4uTj169FCjRo3UtGlTf7937Ngx7I1YSXr99deVmJio+vXr57sI36pVK5133nlat26dJC7CS7SwhBZ20KLqCm141VVXqVmzZmENateuLeecIiIiVLduXY0ZM8Zfnh6lixZ20MIOWthBC1voYQct7KCFHaEt+vfvr5iYmLBzxebNmysQCPg/O/LII5WSkiKJFqWNFnbQwhZ6AEVjgB3YB8nJyWrVqpWcc+rSpYueeeYZbdy4UTt27Mg3vP7SSy/pr7/+8p8bfKNlX4fX586dq+eee658XqBxwf3y448/qm3btqpfv74mT55c6AE7OTlZJ5xwgn/QnzlzpqS/D/DBvySkpaVp6dKlkhhoKCla2EELO2hhCz3soIUdtLCDFnbQwhZ6lK/k5GT95z//8fdJcL+F7qO7775bjRs3zjfk2axZMw0fPlzffPNN2Doff/zxsOXat2+vM844Q4MHD9Zhhx2mJk2ayDmnQw45RGvWrAn7vdUZLeyghR20qHpC9+W5557rD/Q45zR06FCNHz9ec+bM0ahRo3T22Wf7nf7zn//4z+M4XjpoYQct7KCFHbSwhR520MIOWtgR2uKcc86Rc041atRQvXr1dN999+mbb77Rhg0b9OOPP2rUqFE64ogj5JxTmzZttHbtWkm0KC20sIMWttADKB4D7MA+WrFihY499lg55xQTE6N27drpsssuK5Ph9R9++EEXX3yxnHMaPHhw+bzASmD79u3+fjnuuOO0ePHiQpddsmSJTj31VD333HNhn2oLHWQ45JBD5JzTvHnzynzbqxpa2EELO2hhCz3soIUdtLCDFnbQwhZ6lL+8A5qhf/7yyy/1v//9T9ddd51uuukmPfroo1qzZo12794d9pynnnrKf1O2c+fOuummm/TXX3/5LdavX6+pU6fq6KOP9gdHf//9d0l8C10oWthBCztoUfmF7sP+/fvLOafo6Ggdd9xxeuutt/It/9tvv+nhhx/2mz3zzDPlublVGi3soIUdtLCDFrbQww5a2EELmwYNGuS36N27t6ZPn55vmfT0dM2bN8+f9TnllFOUmppaAVtbtdHCDlrYQg+gcAywA/vh999/12233aYuXbqEfaK2Q4cOpTa8/v333/tv2Af/ufXWW8vnBVYCq1evVtu2beWcU+/evfXNN9/4b0zlfVPpr7/+Unp6er517Nq1y2/onNNBBx2kbdu28abUPqKFHbSwgxa20MMOWthBCztoYQctbKFHxSvuzi6hj7/zzjv+fj722GP14osvKisrS9LeQdPgPs/NzdWvv/6q7t27yzmnK664Qjt27Mi37tBG9KKFJbSwgxaV0+OPP67o6GjVqFFDffr08b89RdrbLPTDCWlpabr33nvlnFOnTp30yy+/5Fsf+3//0cIOWthBCztoYQs97KCFHbSw47XXXlPTpk0VERGhnj175muR11dffaVDDz1UtWvX1gsvvJDv8bwt+FaukqOFHbSwhR5A0RhgB/ZTWlqafvvtN91yyy3q27ev2rVrp4kTJ5ba8Poll1ziv7FSu3ZtOed0+umnh62/ulu2bJlatGgh55w6duyo++67TytWrCjx88ePHx82yDBlypQy3NqqjRZ20MIOWthCDztoYQct7KCFHbSwhR62hA54hlq7dq169+4t55wOOeQQPffcc/5F84IuwOfm5uqdd95Rs2bN1KZNm3x3xi/ognvo3fVBC0toYQct7EtPT9e5554r55waNGig999/33+ssIGdJUuW6OSTT5ZzTs8991zYY8EW69atU3JysiS+VrukaGEHLeyghR20sIUedtDCDlrYcs011/jX/95++23/54W12LFjh+644w4553T++ecrIyPDfyzYIiUlRc8//3y+n6NotLCDFrbQAygaA+xAKdi9e7c2btyoXbt2+T87kOH1Sy+91D94BZ/nnNPrr79ePi+oElmxYoV69uypyMhIOefUsGFDPfXUU/7JXXHuuusuOec0depU/2d8wnn/0MIOWthBC1voYQct7KCFHbSwgxa20MO+efPmqWHDhnLO6corr/QHOYvaz3/88YdOPfVUOecK/IptSRo5cqSuvvrqMtnmqooWdtDCDlrYMWvWLP8696hRo/yfF3dcHjlypJxz+uqrrySFf2BgzZo1uvzyy9W4cWN9/vnnZbPhVRAt7KCFHbSwgxa20MMOWthBCztWrlypGjVqyDmnYcOG+T8vrsU333yj6Ohoffzxx5L2figheCPJNWvW6LrrrpNzTuedd16ZbXtVQws7aGELPYDiMcAOHIDCDiilNbw+YsQI/etf/1IgEFCzZs3066+/lt2LqcQ2bNigUaNG6eijj5ZzTkOGDNG2bduKfE7op8+WLFni/zuDDAeGFnbQwg5a2EIPO2hhBy3soIUdtLCFHrbdf//9cs6pZcuWWr16taSS3Sls2rRpuvPOO/0/f/bZZ37X+++/X40bN5ZzTjfccENZbHaVRAs7aGEHLeyYMmWKnHNq0qSJvv/+e0lFtwg+tmXLFi1cuFCStHPnTj366KOaMGGCdu/erX/961/+tfcjjzxS6enpHOtLgBZ20MIOWthBC1voYQct7KCFHYsWLVIgEJBzThMmTJBU8rvXb9q0SdLem1WOGTNGp5xyir7++msNHz5cTZs2lXNOLVq08JdD0WhhBy1soQdQPAbYgVIWPJE40OH1IUOG6IcfftAhhxzCp6ZKICsrS1u2bNHUqVP1xx9/SCp+MCHvXwo4CSwdtLCDFnbQwhZ62EELO2hhBy3soIUt9LAreAexli1batOmTfu1n2fPnq3mzZurVatWGj58uJo0aaLIyEgdcsghevHFF8tgq6smWthBCztoYceECRPknNNBBx2kzZs37/Pzc3Jy9Ouvv+qwww6Tc05dunRRkyZN5JzTUUcdpWXLlpXBVldNtLCDFnbQwg5a2EIPO2hhBy3sWLRokaKjo1WnTh199913ksJvalESf/75pwYNGiTnnGrVquV/g1eXLl20YsUKSVxTLAla2EELW+gBFC/gASg1kjznnLdx40Zv9OjR3nvvvedt2rTJq1WrljdlyhTv7LPPzres53neDz/84D3xxBPem2++6Xme51199dXePffc40VFRXnp6eleIBDwTjrpJM/zPC8nJ6f8X1glUKNGDa9hw4behRde6DVu3NjLzc31nHPenj17wpYL3X+BQPh/AoM9cGBoYQct7KCFLfSwgxZ20MIOWthBC1voYY8kz/M8Lzo62vM8z2vevLnXtGlTzznnP1YSOTk5XmJioteuXTtv/fr13rhx47w///zTO/jgg717773XGzRoUNjvQ360sIMWdtDCntjYWM/zPC81NdXbtGnTPj/fOed17tzZu/jiiz3P87xff/3V+/PPP71u3bp5U6dO9Q499FCunZcQLeyghR20sIMWttDDDlrYQQs7ateu7e3Zs8fbtWuXN3fuXM/zPC8iIqLEz5fkxcXFef379/eaNm3qpaWledu2bfMSExO9L774wmvXrp2Xk5PDNcUSoIUdtLCFHkDxGGAHSpFzztu0aZN32223eR9++OF+Da8PHjzYu+uuu7wmTZp4r776qvf77797MTEx3mmnneZ5XviBjDdGChcIBLw9e/Z4kZGR3u7du73HHnvM87y9+48TvvJFCztoYQctbKGHHbSwgxZ20MIOWthCj4oXvK7Ro0cPz/P2vuH66aefhj1WnJycHC8iIsJr1qyZ17lzZ69mzZpeTk6OFxkZ6Q0ZMsT7xz/+4Xme539gAQWjhR20sIMW9px22mlep06dvD179nifffaZl5WVVeLnBq+nr1+/3tu8ebNXu3Ztf593797da926tb9cUevAXrSwgxZ20MKOim6BcPSwgxZ20MIGSV5CQoJ3xRVXeIFAwPvhhx+8DRs27NPzgy3efffdsI5bt271b4xBi+LRwg5a2EIPoIRK94buADZu3Kj27dvLOacGDRrogw8+CHs89Gs7vv/+e1166aVyzsk5p+uuu04pKSn+cmeccYYCgYDOP/98ZWVlhX39eeh63n77bd1///1l/Moql+zsbElSWlqaunXrJuechg8fXsFbVT3Rwg5a2EELW+hhBy3soIUdtLCDFrbQw45Vq1bpmGOOkXNOI0aM0M6dO0v0vNBrHKNGjVJcXJycc4qJiZFzTq1atdJvv/0mqeCvVQ19PvaihR20sIMWduzcuVMDBw6Uc07du3fXggULSvS84HXwtWvXavDgwWrcuLGcc2rZsqV/Xf3222/3lw/2yM3N1V9//aXPPvss37qqO1rYQQs7aGFHebdA0ehhBy3soIUtkyZNUo0aNeSc0xNPPKH09HT/scKOrYW1aN++vX+d8aCDDtLq1asl/X0dUsp/rse5399oYQctbKEHUDQG2IEysHDhQrVs2VLvvPNO2M+LG14PvukhSbNmzfIfGzt2bKHr+fDDD9WxY0c553T11VeX0SuqnNLS0nTwwQf7+9E5V+ITyKIU9BeIPXv25DuJ5GLj32hhBy3soIUt9LCDFnbQwg5a2EELW+hhxxNPPOE3GDdunHbs2OE/VtAF8sIGQ9u1a6exY8eqd+/e/pu4a9askRT+xm3w+V988YXuueeesnlRlRQt7KCFHbSwY82aNTrkkEPknFOfPn30/fffa/fu3ZIKPq4Gf7Zu3bqwN2yPPPJILV26VBMnTvTb/uc///GfF+wxb948Oed06aWXlsOrq1xoYQct7KCFHeXVAiVDDztoYQctKl7ofr777rv9/TdmzBgtX7682OcV1GLVqlXasGGDjjvuODnnlJCQoJUrVxb4O99//33/ser+YQNa2EELW+gBlAwD7EAZyXs3n30ZXpek//73v4qOjlabNm20ZMkSfx2h6/nggw/UsWNHRUVFyTmnM888swxfUeWzevVqfx8fdNBBmjp16gGvM/Sgvnv3br3xxhu68847deaZZ+q8887TY489ps8//9xfhoGGvWhhBy3soIUt9LCDFnbQwg5a2EELW+hR8UKHPEeOHOn3uPXWWzV37txinxM6GHrwwQdrypQpkqSkpCT17NnTbxscEA19/rfffqtAICDnnJ5++ukyeHWVCy3soIUdtLApOTlZzZs3l3NOHTt21P3336958+blW66oN2xXrFghae+H2UI/oHD33Xf7z09NTdXRRx8t55yio6M1Z86c8nmBlQgt7KCFHbSwoyxbMBy67+hhBy3soEXFCz1/GzFihL//zjzzTN1zzz1hH16WStYiNzdXixcv9j+4nJCQoMzMzLC7G0+bNk2dOnVSvXr1CmxeHdHCDlrYQg+geAywA+VgX4fX09PT1b17dznndMwxx/hfH1LQ8HpkZKScc7r88sv9x6v7G+ihli5dqrZt22ry5Mn+z/Z3/wQHGXJycjR+/Hj169dPzjm/QfCfuLg43XnnnQf8+6oaWthBCztoYQs97KCFHbSwgxZ20MIWelS80KH/O++8099PLVu21ODBg/07kElF39U4OBgatGTJEn9A9Kmnngr7Xd98843/tauJiYl66KGHlJmZWZYvs1KghR20sIMWNq1YsUJ9+vRRrVq15JxT3bp19ccff/iPl+QN22CvrKwsPfzww3LOafbs2ZKkjIwMjRo1SnXr1lVERIQuvPBCrV+/vpxfZeVACztoYQct7CjrFtg39LCDFnbQouKFnvM9/vjjOvzww/3zvsWLF/uPlaRF6LoWLFig3r17a+bMmWG/791339Xxxx+v6Ohof06noG/2qo5oYQctbKEHUDQG2IFy9MMPPxQ5vB48YPz6669q1aqVYmJiNG7cOEl7T1iC8g6vX3bZZf6BjK/9yC/0E2v7O1gQeuJ46aWX+n9RCL6J1atXL1100UXq3r27f3elESNGlMr2VyW0sIMWdtDCFnrYQQs7aGEHLeyghS30qHih1yJeeeUVnX/++apRo4auv/56/+clHQwNXW7JkiV65ZVXwn5X6GBox44d9fTTT+uvv/4qi5dVKdHCDlrYQQubNm3apBdeeEFnn322PvnkE//n+zLkE5SVlaWNGzf6fw69S35UVJS+//77cnhFlRct7KCFHbSwo6xaFPZ+akHDPdX9Q8uh6GEHLeygRcUL3Ve//PKLJkyY4H+7SW5urr9/1q9fr+uuu65ELaS9d8YPFRwKjYiIkHNOl156qbZs2VJWL6tSooUdtLCFHkDhGGAHysm8efN01llnFTq8HmrMmDH+cl9++WXYYwyv77vSujP95s2bddxxx/ltnNv79V0//PCD/xeFlJQUPf300/5Aw//+978D3v6qhBZ20MIOWthCDztoYQct7KCFHbSwhR42hF5A3759u5YuXer/OfTrSx988EF/MPTggw8udDC0IHkHQ5988kl/MLS6v1kbihZ20MIOWtgV3P85OTn+ftq0aZP+/e9/l/gN27yuvfZa/1j+zDPPSKJBSdDCDlrYQQs7yqJFqLzLT5o0SePHj/f/TKNw9LCDFnbQomIVtD9DW/z555+6+eab1aRJkxK3CP153qHQiy++WNu2bSv9F1IF0MIOWthCD6BgDLAD5WT9+vX+GxhDhw4tcHg9JydH6enpOuOMMxQIBHT++eeHnWi8//77Ovzww/3h9QEDBjC8XsaCB/vVq1ere/fucs4pJiZGhx9+uN54440Cn7Njxw4NHjxYzjldcsklYX/hwP6jhR20sIMWttDDDlrYQQs7aGEHLWyhR+kqaD+EXq947rnnFB8fv0+DocGff/311/51lcMPP1xPPvmkf/d99n9+tLCDFnbQwr7c3FxlZ2dr3Lhxat26tZxz6tKli1auXCmpZEM+zz//vD8Yev755/vPxb6hhR20sIMWdpRGi+B6Qu3YsUPPP/+8LrnkEr/T1VdfXerbX9XQww5a2EELO4L7+o033lC7du3knFPnzp2LHQoN3fcMhZYOWthBC1vogeqOAXagHC1atEg333yz1qxZU+gyS5cuVWxsrJxzuummm/yfM7xe/oKfkt66dauOPvpoOedUq1YtnXzyyZo1a5a/XEFvQo0bN07OOUVHRxfZGyVDCztoYQctbKGHHbSwgxZ20MIOWthCj/K1bt06nX766XLOqVmzZnr99df9x4obDJ07d64/GNq1a1c9+eST2rVrlySuiewPWthBCztoYcfOnTv943J8fLyWL18uqWRDPklJSTrrrLMUCARUs2ZNvfDCCwUuV9CxnQ8a5EcLO2hhBy3sOJAWeZdZsmSJ3nzzTXXu3Fk1a9b0h0Kjo6PlnNOYMWPK5DVUJfSwgxZ20MKWk046Sc45NW7cuNgPEhQ1FHrRRRcxFHqAaGEHLWyhB6orBtiBchb6lbShgm9mPPLII3LOqUWLFkpOTpYkTZs27YCG1/f166fw9z7Lzs7WCSecIOecYmNjddZZZ+nrr7/2l8t70TArK0uS9Oabb6p27dpq1KiR1q1bV34bXgXRwg5a2EELW+hhBy3soIUdtLCDFrbQo/y9++67/hus48aN83++L4OhrVu31siRI/X9998rNzdXGRkZkhgQ3Ve0sIMWdtDCjvfff98fxnnvvfckFb8Pgz3GjRvnv2H7z3/+03889HgeXNeePXs0Z84cvfTSS/nWg71oYQct7KCFHfvTIq/k5GQ9/fTTatu2rRo0aCDnnJo3b64ePXro8MMPl3N7v6Hru+++K4NXULXQww5a2EELOzZs2KC4uDg553T33XdLKvlQ6HHHHadAIMAdjUsJLeyghS30QHXGADtgzDnnnCPnnDp06KDs7Gx98MEH+zW8nvdN9s2bN+vjjz8u022vanJycnTNNdfIOaeoqCj16dNHc+fO9R8v6o4X1113nZxzqlu3rtauXVsem1ul0cIOWthBC1voYQct7KCFHbSwgxa20KN8TZ8+Xc45HXTQQZo/f76k4gdDv/76a38wNPimbGxsrOLi4tS5c2ddf/31+v333yUxILovaGEHLeyghR3Lli1T69atFRsbqxdffLHEz5s/f75iYmLknFPPnj3122+/SSp432dkZGjEiBHq0qWLnHO69tprS237qxJa2EELO2hhx762CJ7f7dy5U+vXr9e//vUvde/e3T+O169fXz179tRnn32muXPnqn///goEAho0aJDS09P5AEEx6GEHLeyghR1paWk688wz/Q+RBW9QkVfeodCePXv6Q6EdO3b0z+9KoqAPqIEWltDCFnqgOmOAHTDkxx9/VMOGDRUREaGXX35ZX331lRITE/dpeD3vicmvv/6qV155RQcffHC+uzqgaO+++67atWvnf63Xp59+6j9W1CDD/PnzdeSRR8o5p3POOUeZmZl8veMBooUdtLCDFrbQww5a2EELO2hhBy1soUf5+vHHH5WQkCDnnP773/8WulzoXY2D10MCgYAaN26siy++WEOGDNGJJ56oli1byjmnxMREpaSkhD0XRaOFHbSwgxZ2bN26VWeffbacczrxxBP9Ic+i/P777/6NYeLi4jR27FhlZmZKCj+mp6am6osvvvAHgSIiIvw3ep9++ukye02VFS3soIUdtLCjJC3yHnt//PFHXXXVVerYsaOcc/6x/Nprr9XkyZOVnp4uSXrjjTf8gdFXX321XF5PZUcPO2hhBy1sGT9+vL/PCvpAQegx+Z133tHxxx/vH4eD/9x///3atWtXsb8ruK6vvvpKCxYskMRwaCha2EELW+iB6ooBdsCQV155xf/07NVXX60jjjjC/zrBkt55Xdp7oFm+fLkeeughtW3b1r+rQ3R0tJxzuvHGG8vj5VR61157rX+Qf+WVV/yfFzSYEPqz+++/33/e2LFjy2Vbqzpa2EELO2hhCz3soIUdtLCDFnbQwhZ6lL8HH3ywyIvwBQ2GHnzwwRo4cKDWrFnjL/fXX3/pm2++UY8ePeSc05FHHqlNmzaV18uoEmhhBy3soIUdK1eu9D8EcMYZZ4Tt31DBJpMnT1Z8fLycczr66KO1efPmfMv+9NNPGjx4sL/eZs2aqXXr1nLOqUuXLtqyZUtZvqRKixZ20MIOWtiRt8Xq1asl5X8f9fXXX9d1113nv+fqnFODBg00dOhQvffee2HLrlixQp07d5ZzTpdcckl5vZQqgR520MIOWlS80Gt6t956q//BgGeffbbAZfIOhV5++eVh54r33nuvdu/eXejvCx7/v/jiC/85ixYtKoNXVvnQwg5a2EIPVHcMsAMG5OTkaOfOnTr55JP9QfPDDjvMHzgv6fD6zp07tXr1ag0aNEhdu3b1DzQtW7ZU69at/a+0HTJkSHm9tErru+++89+Iuv766/2fFzfI8NZbb/n7/ayzztLOnTsLfR5KhhZ20MIOWthCDztoYQct7KCFHbSwhR7lK/SOYrfccou/D1966aV8y4QOhh5++OEaO3asP7CT95rIjBkz1KpVK0VHR2v8+PGSaFEcWthBCztoYVNycrKaN28u55zOPPNM/27FQcEm6enpOu644+Tc3hvD/Pzzz2HLpaam6rXXXlP9+vXlnFPdunV18cUXa9q0aTryyCPVoEEDPfvss9qzZw93yS8ELeyghR20sCNvi+zsbEnStm3b9Prrr+viiy+Wc84f8GnTpo1uvPFGLVq0yL+TsSS/4WeffaZmzZopOjpaEyZMkMS3qOwLethBCztoUfFCz9VGjBjhD4f+8ccfYfsu71DoxRdfrL/++kuS9Pjjjxc7HBo835s1a5a/rHNOV155JXc2/v9oYQctbKEHqjMG2AEjUlNT1aRJE0VGRioQCPhvhBQ2vJ73wPHFF19o0KBBatu2rX8gc85p+PDhmjJlim677TbVqVNHnTp10vLlyyXxhklRpk2bpoiICEVHR2vKlCmSih9k+OSTT/wPCRxyyCF68cUXOVksBbSwgxZ20MIWethBCztoYQct7KCFLfQof6HXMYYPHy7nnEaPHi3p7zda58yZ41/PiI+P10MPPeRfgC+oz5YtW/wP8F966aXFbkNOTo7WrVtXGi+nUqOFHbSwgxY2LVmyRC1atNDs2bMLXSb4jSoxMTG69957lZWV5T/29ttva8CAAf4bsmeccYZ/3L/xxhvlnFPv3r2VkpJS5q+lsqOFHbSwgxZ2LF68WAcddJB+/vlnbdmyRW+99ZaOOOIINWzY0N+/jRo18v/93XfflSS/R/A4npWVpd69e/sfVNu+fXuFvabKjB520MIOWlS8vMOhX3zxRdjjeYdC/+///k/btm0LW+aJJ54odDg0eN4YOhRav359/eMf/9DGjRvL7HVVRrSwgxa20APVFQPsgBG//fab/5VQwTuvX3bZZf7JSPCTuHnfDHn55Zd13XXXhX0yqlWrVho+fLg+++wzSXvfLDn66KP9N0t27dpVvi+uEgoe1Nu2bVvoG1Ghf/78888VFxcn55xq166tIUOGFPmVLCg5WthBCztoYQs97KCFHbSwgxZ20MIWelSM0IvwM2fODHssdDDUOadzzz1XqampkgoeDA1eJ/nHP/7hD/wUJScnR999950OP/xwDRs27EBfSqVHCztoYQctbAredbKgO4G9++67ateunZxzOuKII7RgwQJJ0o4dOzRkyBD/jsa1atXSXXfd5X9zyoQJE+ScU0REhL777rvyezGVHC3soIUdtLAjKytL06dPV4MGDfyB0MjISMXGxmr06NF65pln/G/Cds7576Hm5ub6/V5//XXVrVtX9erV0+uvvy6JuxrvL3rYQQs7aFHxCru78LvvvlvkUGjo8/IOh+7atavQodBLLrlEmzdvlvR3p+C5YnVHCztoYQs9UB0xwA4YsnTpUv8N8SuuuMJ/8yMjIyNsufXr1+vVV1/VGWecETa4fuyxx+raa6/VunXrwu7iELxrUFxcnJYuXSqJu68X55lnnpFzTg0aNNDq1auLXPbjjz9WgwYN/A4XXHCB/2lnThgPHC3soIUdtLCFHnbQwg5a2EELO2hhCz0qTkEX4efOnet/mD8iIkKxsbFasmSJpKKvX2zbtk2JiYlyzun0008vdLmcnBx9//336tOnj99x3rx5B/5iKjla2EELO2hhT2EfMEtPT9egQYP8fTZ16lRlZGTopZde8u9KGR0drQEDBmj69On+83/66ScdddRRCgQCGjNmTIG/Q8r/fwtcT6eFJbSwgxa2LFy4UHXq1JFze+9MfMMNN2j+/PmS9u6zL7/8Uqeccorf5fPPPw97/uDBg+WcU0JCghYuXFgRL6FKoYcdtLCDFva8/vrr6tmzp2rWrFngUGhQ6DXA0OHQe+65R9K+DYXu2rXL/wAC/kYLO2hhCz1Q1THADhizZMkSXXPNNf7FptADzOLFizVlyhQdeuih/p0ZoqKi1KNHD919991avXq1MjMzJf39dVLr169Xnz59FAgE9M9//jPsk1Uo3JIlS9S2bVs1bNgw7OJh6AcDsrKy9Oqrr/oH+MjISJ122mnaunWrpMI/GYd9Qws7aGEHLWyhhx20sIMWdtDCDlrYQg87Vq1a5e/jjh07qlmzZurQoYN27twZ1iNU8JrJtGnT1Lx5cwUCAd1///1hjwUFB0N79erlX5z/3//+5995H3+jhR20sIMWdk2cONFv8+9//1urVq3SmWee6V83b9Kkid555x1t2LAh7HmjRo1SIBDQscceq19++aXI35Genq63337b/zMDogWjhR20sIMWFWfp0qW6+uqr9dtvv/nfmhU8d8vKytKsWbPChkNnzJghSXrnnXf8nz3++OMVtflVDj3soIUdtLDl8ccf9/frpZdeWuBQaFDonE3o86688spih0KDdu3apXPOOUfOOY0aNapMXlNlRQs7aGELPVDVMcAOGJedna01a9bo/vvvV4cOHRQVFSXnnGJjY/2DyxNPPBH2nNCDy7PPPusvN3Xq1PLe/Epr69at/h3uTzjhBM2fPz/sTamPP/5YN910k79vGzRooIsvvtj/iwKDDKWHFnbQwg5a2EIPO2hhBy3soIUdtLClInowUFK4K664Qi1atNAjjzyiDh06qHv37oUuG/qm7gUXXCDn9t4R+bvvvsu3bN7B0Nq1a2vChAnauXNnmb2Wyo4WdtDCDlrY8+233yo+Pt4/Rp911lmqV6+enHNq06aNrrrqKi1btizf87766iv/2D5u3Liwx0KP03/99Zfmz5+vHj16+G/0omC0sIMWdtDCtuzs7HzDoe+++67uvfdeRUZGqmvXrkpKSpLEOVx5oIcdtLCDFuXviiuu0CmnnFLkUGhQ6CzOSy+9JOecAoGAnHOqV69ekUOhkvTQQw/58z4nn3xyvg+zVXe0sIMWttADVRkD7IBhGzdu1Pnnn68TTjjBPzlxzun444/X8OHDdfzxx/s/mzlzpqS9JynBE5Xk5GR17NhRzjkNGjSoIl9KpbRy5Uq1atVKzjklJibqggsu0NChQ3XmmWeqUaNG/r7v1KmTRo4c6d8ZicGS0kcLO2hhBy1sKc8eXJAsGi3sqIj/TgW/jQjhaGFHebYIvfDI8b9gFfX3qdALvtX9WBK6L7/88kutX79evXv3Vr169bRo0aIin3vNNdf4g6H33nuvpPD9yWDovqGFHbSwgxY2ZWdn6/bbb5dzTjExMf5+ds7ptNNO0yeffOJ/W0ro34dWr16tY445Rs45DRw40P953uP6/PnzddtttykhIUHOOdWoUUPOOX311VfV/ridFy3soIUdtKgcChoODd4d/9prr92ndbHfDxw97KCFHbQoH6HH2bS0tBI/L3gTjF9++cXvExsbW+BQaEHXEfv376++fftq/vz5B7L5VQot7KCFLfRAdcAAO2DYypUrFRkZ6R9M+vTpo7vuukvZ2dnKyMjQ119/XeDXRwUPRNOmTVPDhg0VGRmpCRMmSCr+BGXJkiV66aWXyvR1VSbLly9Xly5dVLNmzbAPEQQvOF566aWaPn260tPTJRX86TSUjvJuEXw+J/X50cIOWthS3j2WLl2qBQsWcOwpAC3sKK8WOTk5WrJkiS666CJNnjxZKSkp/mP8N2svWthR3v+Neu211/S///0v7OvnafG38u6xZMkS9e/fP+zNxureI+8+HTJkiJxzGjt2rL/fg/bs2aPt27frqquuknN77xxz9tln68cff8y3TgZD9x0t7KCFHbSwKTk5WXXq1PGP2R06dNDIkSMLXT4zM1P//e9/FRsbq86dO/tvwIZ+6DIrK0tTpkxRQkKC6tatK+ecmjZtqv/7v//TZ599FrY+zv3+Rgs7aGEHLSqH7OxszZ49W3379vXPA9u3b+9fx8h7Lfyvv/7SihUrNH36dP38889KTU3118U+P3D0sIMWdtCifOzrvgkuP2PGDL9LnTp1ihwKTUtL06ZNm8LWs3r16gPd9CqHFnbQwhZ6oKpjgB0wbunSpWrXrp2efvpprVixIuyxrKysfJ+8DV6o2rJli4444gg553TssceW6A6Iy5Yt0+WXXy7nnPr3718mr6cyWr9+vZ588kn169dPxxxzjDp27Ki77rpLr7/+ethy1X3ooDyUZYu8nyrcsWOH9uzZk+8reOi8Fy3soIUt5XXMWL58uS677DI553THHXfo22+/LbV1VxW0sKM8WixdulRnn322Pyh07rnn6pVXXimVdVcltLCjvP4b9d1336lt27ZyzqlXr16aOHFiqa27KimvHkuWLNGwYcP88/frr7++1NZdlUyZMsXfR6NGjdLXX3+tnTt3as2aNRo3bpzOOOMM/78xJ554ot5///2w5zMYWnpoYQct7KCFHYsXL1bt2rV19dVXhw1vFvQtNGvXrlXnzp3lnNPtt9+u3bt3h63r448/9j+cEPznkEMO0ZtvvqnffvstbNl169bpmWeeyffz6owWdtDCDlpUHm+88YaaNGki5/be/X7Hjh3+Y8HztNWrV+uqq65SmzZt5JxTZGSkzjjjDD3//PP+snzzWemghx20sIMWdgSP47NmzfKPyfXr1y92KLR3796qU6eO1qxZUyHbXRXRwg5a2EIPVEYMsAOVQN6vAQm9wFXQ10d9+umnmjlzpurWratGjRrpzTfflFT0SUlweD148hMZGalVq1aVzQuq5DIyMsL+zCeWK05ZtJg5c6aeeOIJHXfccerWrZs6dOigm2++WW+99Za/DMMl+dHCDlrYUhY9cnJyNHv2bB199NFybu9XBR9//PF6+umn/WXokR8t7CiLFlu3btUDDzyg/v37q0aNGgoEAqpZs6Zuv/12fxla5EcLO8ryHOOpp55S165dFRERocjISN17773+Y7QoWFn0WLJkiYYOHeqft9eoUUPOOQ0dOtRfhh5/u/POO/191ahRI3Xq1ElxcXGqVauWfyfLCy+8UB9++GHY8xgMLX20sIMWdtDCjq1bt/rfRiqFH7NDj6sXXnihnHPq0KFD2B3F9uzZo+HDh6tDhw5+08TERA0aNEhbtmzJ9/s2bNigRx991F92w4YNZfTKKh9a2EELO2hROQQ/HBAREaHvvvsu3+ObNm1Sv379/G/tatiwof9hNedc2Dk27xceOHrYQQs7aGHD/gyF7t69W+eee66//FVXXVWiG0+iaLSwgxa20AOVFQPsQCUQvJBV2JvZBQ2xB98Iad26tZYtW1bk+oPD640aNZJzTvHx8frmm29K/XVUZqH7nqGCilUWLXJzc7V161YNGTLE/xBH3n+io6N12223lfrvrsxoYQctbCmPY0Z6erq+++47/87fwQuRQ4YMKfPfXZnQwo6ybJF3fVOnTtWgQYP8FjfccEOZ/e7KiBZ2lPV/o0LfkPrxxx81fPhwWhShLHvkHV4fOHCgnnnmGb8HQ+x/C/2/23vuuUctWrQI+/tnnTp1VKdOHT3xxBNavHhxvucWNxha3ffvvqCFHbSwgxaV07PPPivnnBo0aKDZs2dLkjZu3Khp06apb9++YQ3/8Y9/aPr06f6H2bKzs/31bNiwQQ8//LDi4uLk3N67H6ekpFTIa6qsaGEHLeygRcWaOXOmmjdvrkAgoOuuu05S/uPxjBkz1LRpU9WoUUOXX365li5dqjfffDPsrvgPPPCAvzzDofuPHnbQwg5a2BDc5/s7FFqrVi1dfPHF+uGHHyrmBVQhtLCDFrbQA5UZA+xAFVHQELtzLuxroQqSd3j9oIMOYngdVUZR3zoQ/AtcWlqaPvnkE5166qlhg4ennXaarrzySt1yyy06/fTT/Z/feuut5bX5VQot7KCFLfvzlY15L04+8sgjio+PV2RkpJxzGjBgQGltXrVCCzv296tMQy+8b9q0SePGjfP/O/XQQw+V1uZVK7SwozRabNy4UY8//rjf4s477yytzat2iusRenzIO7w+aNAg7dq1S5L0/PPPM8RegND9+8033+i1117T7bffrpEjR2ratGn5hkKlkg2GFvYGbXXf30WhhR20sIMWlUNwv61atUqnnHKKIiMj/Q/wLVq0SP3791e7du3knFNUVJQOO+wwPfroo2HrCG2ddzD0mGOO4dtLS4gWdtDCDlpUvGCDe+65xz9Xe+211wpcNnhX+6ZNm2rNmjX+z//44w+NHTvWf/6zzz5bHpteJdHDDlrYQQs7gudqs2fP3u+h0H79+mn+/PkV8wKqEFrYQQtb6IHKjgF2oArJyMjQjBkzdOihhyoQCKhLly5asmSJpILf7GB4HVVRWlqafv31V//PBQ2XBP//YceOHZo4caKOOuooOecUGRmpE088Uc8880zY8n/88Yc/eFWzZk1Nnjy5bF9EFUELO2hhS0l6FCf0uD5v3jz16tXL/3rIzp07a+3ataWyrVUdLewojRZSeI+MjAw9+OCDCgQCat++vb7//vsD3s7qgBZ2lFaLvOscM2aMAoGAateurbfeeuuA11ld7E+PxYsX6/rrr/cvGl999dXatm1b2DpeeOEFhtgLUNzdwEL3T0kGQ0PNmjVLTz/9tH799Vft3r27RL+vOqOFHbSwgxa2he7/Bx54QM45JSQk6OWXX9bbb7+t+vXr+8fmWrVqaeTIkfrqq6/Cnh+6joIGQ1euXFmur6myooUdtLCDFnb89NNPio6OlnNOF110kf/zvOdi48aNk3NODRs2zHedLy0tTf/5z3/knFOHDh2KvWPlmjVr9Mcff5Tei6hC6GEHLeyghR2ffPJJqQ2F5uTklMu3B1dVtLCDFrbQA5UZA+xAFRE84MyZM0dRUVFyLvxr4fNieL18Bb/KsTSGTlC4jIwMvfXWW4qMjNQ///nPIpfduXOnxo0bp06dOvlDujfeeKO+++47f5nQr+BMTU31/xL373//u8xeQ1VBCztoYcu+9ChM6EninDlz9I9//MO/4/cpp5yin3/+mRPJEqCFHaXRojA//vijmjVrJuecXnjhhVJdd1VECzv2t0VB/83J+7OVK1f6X0UfHJjmv1VF258e69at06BBg/yLxr169VJGRoYkKSsry18u7xD71VdfXSavoara18HQ1atX64ILLpBzTocccoj+/e9/a+PGjZI4Xz9QtLCDFnbQomJ9+OGH/nH4mGOO0ZAhQxQTE+O/mduxY0fNmTNH6enp/nPyfliAwdDSQQs7aGEHLSpWdna2/01ZzZo10yuvvJJvmeB58ubNm9WhQwc553THHXcoLS0tbLmlS5f632Q6ZsyYQo/Zy5cvV79+/RQZGckd8vOghx20sIMWtgwbNkzOOdWrV0/9+/ff76HQ0GuCefHB5ZKhhR20sIUeqMwYYAeqkM2bN+vkk0+Wc05dunTR77//Lin/QYTh9YqxcOFCXXnllUpJSanoTamSMjIyNGnSJLVt29a/8Pvqq68WuGx6erpeffVVde7c2R/SffDBB7Vu3Tp/mYKGeO68807/TcTU1NQyey2VHS3soIUt+9KjMKENvvnmG/Xv35+B6f1ACztKo0Vxjj/+eDnndMkll4R9CAfhaGFHabSYPn26ZsyY4f8573+P7r77bjnn1KBBA/3222+lst1V1YH0ePLJJ3X00UcrNjZWderU0U033eQ/Fvr/A3v27NHEiRP99YfeYRGF29fB0KAvv/xSF1xwgQ466CA559S1a1f/PJ0B0f1DCztoYQctKtbq1at12mmnKSoqSjVr1lSjRo1Uo0YNOefUvXt33X///f71jsLO2zZs2KAxY8b419CPPfZYLVu2zH+c872SoYUdtLCDFjYsX75czjk1b95cW7ZskSStXbs239Dmrl27dMMNN/h9gt98HXpO98gjj8g5p5dffrnA35Wenq7LL7/cP+d76KGHGADKgx520MIOWtgyYsQInXrqqQd0R2Np700v/v3vf6t///665ppr9MYbb/jvr3LOVzK0sIMWttADlRUD7EAVEDxAzJw5UwcffLCcc7rqqqu0a9eufMsyvF7+cnNzlZ6erqZNm8o5p//7v/8LGwhF6dixY4cSExP9E/n+/ftrwYIFYcsEL9p+/fXX6tGjhz+k++ijj/on/gUJnuAPGTJEzjl17Ngx7M4nCEcLO2hhS0l6FIWB6dJDCzsOtEVxtm/frkMOOUTOOZ199tl0KQIt7DjQFosWLfLP9955552wx4J3z3jwwQcVFRWluLg4rV+/vlS3v6o50B7Lli3TI488olq1ask5p8suu8x/LPRi7549ezR58mSNGzdOmzZtKtXXUBWVZDA078X03Nxc/789qampmjp1qrp16ybnnNq0aeN/mIM3aPcNLeyghR20qHh//vmnWrduLeec/y0nzjn94x//0LJly/y7Uha2P4ODoQ0aNJBzToceeqiWLVvmf5tKED2KRws7aGEHLexITk7WBx98IEn64YcfdPjhh+v111+XFH79Lykpyf9WuSuvvNL/efB4npmZqc8//9z/eUHXPD799FM553TLLbf437CCcPSwgxZ20KLihZ67Bc/p9nUoNPie6rx58xQfH+8f+4M3GDnppJO0du3afL8P4WhhBy1soQcqOwbYgSrkvPPO8w82CxculBR+gYrh9Yr11VdfKTY2Vs45XXjhhQyxl4GFCxeqTZs2Ovvss5WUlBT2WPD/F3JycnTOOef4Q7qjRo3Sn3/+Weg6Q0/g+/XrJ+ecunXrpq1btzJ4VQRa2EELW4rqURQGpksfLezY3xaFCf63LSsrSy+//LIaN24s55yuv/76A153VUcLOw6kxfbt2/Wvf/3Lv7j44osvht1xKS0tTZdccomcc4qKigq7Sx8Ktj89Qo8FGRkZmjx5smrXri3nnEaMGFHo8/IOnSC/3NxczZkzx/9Wh+Luarx9+/YC/26bk5OjX3/9Vcccc4ycc+rZs6d/dxqUDC3soIUdtLBj8eLF/gfIzjzzTI0fP75Ez9uwYYMefvhh/xq6c04NGzZUu3btlJCQoH/+85964403/OV547Z4tLCDFnbQwo7gudvQoUPl3N5vuA79oHfw2sa0adP8a4DPP/98vucHhe7zvN9YumrVKj6wXAx62EELO2hR8UJnboL7s6RDocHlN2/erISEBP/DZ+ecc46OP/54tWzZUs45JSQk8O1bJUALO2hhCz1QmTHADlQRkyZNknNOsbGxGjp0qKS9B4zggYbh9YoV/MvCt99+638VJEPsZWP9+vVKTk4u9PE77rhDzjlFRETommuuyfc1a4V55ZVX/AvCDzzwQGltbpVGCztoYUtxPfJiYLrs0MKOvC1Kuh9Dlwv996ysLL333ns69dRT/f9Ovfvuu6W3wVUYLeworEVJmmzZskWDBw/29/ngwYP/H3vnHRbF8f/xmaOKIEVURFHE3ntXrLHEEjVfW4wmJtHYNdbYe++xt1jRxF6wJBpjr7HTm2JFQRQpUo57//7gt+MeHbnjFvi8nocn5nZ2b3beNztl3/MZrF27Fnv27MF3330nPh88eLDe8p/XyI4eQNLCgfnz58PU1BTOzs44e/asXvKZX1i5cqWYcN+yZUsKY2hoaCiOHj2KZs2awdnZGYUKFcKgQYOwe/durXSJiYk4ceIEXFxcYGFhgbVr1wLIvK4EaaEkSAvlQFooB09PT6xZswZ+fn7is/ReskrGUHt7e3DOUbJkSTRq1AgTJkxA3759UatWLdGPmjNnjjiPohxnDGmhHEgL5UBaKIuzZ8+ibNmysLGxwaZNmxAXFwfg0y4poaGh6NGjB4yMjDBw4MAMr+fv748uXbpg2LBh+s56noT0UA6khXIgLZSDNCaLjo5G9+7d0zSFytmyZQs45yhatCj279+P2NhYfPjwAe7u7mjQoAE456hVqxZevHgBgNrvzEJaKAfSQlmQHkRuggzsBJFHePLkCaysrMA5x5EjR7SOkXldGchN7KampuCco127drSKOQd5/Pgx6tatC5VKhWrVquGff/7J1Hl3795F+/btYWRkBHt7e5w8eVLPOc37kBbKgbRQNmSYVg661CJ5OtJQm7QmPJKbotVqNWJjYxEVFYWYmBi8ePECd+7cwZkzZ9CzZ09UqVJFvLgdO3asVgRqInOQFspBbpb29fXNVATWoKAgsUuX9GdtbS3+3aRJExw/flzfWc+TyPUIDAxMM6pucq5fvy7MJgsXLtRnFvMF48aNw8qVK1OU/+vXrzF37ly4uLiAc44CBQqIxZpSBHy5MSg0NBQdO3YE5xxfffVVDt9F3oC0UA6khXIgLZRJemOv5MbQunXr4tSpU1oR8gMCArBgwQLRn1q8eHFOZDtPQlooB9JCOZAWhuXdu3cYOHAgOOeoU6cO7t69K45J8yPTp08XwcTkCw+S4+/vr7V4/MyZM3rPf16D9FAOpIVyIC2URXx8vNh5y9raOl1TKACsW7dORDBOHkH/zp07qF+/Pjjn6N69O8LDw3PiFvIMpIVyIC2UBelB5BbIwE4QeYgHDx5g+PDhWp+ReV1ZyE3s0gq3hw8fGjhX+YejR4+KgfjcuXPF5+lNDL969Qq//vqreKH47bffpkgj6RoSEqK11RoZEtNGX1oQWUefWmQ1Mml+RYqOAaS+vRegO8N0dHS0DnOe98hJLe7du4cVK1ak+h1EUqTiixcv4qeffsKwYcPQt29fdO3aFb169ULXrl3h6uqKli1bwtXVFTVq1EDVqlVRunRpmJqawsLCQsuwO3z4cHh6eqb4DqoXmSMntACozcgsN2/eRJs2bbB161YA6ZdXfHw8li5dCs45unbtCjMzM6FFr169sH//fpE2tQj6pEXG3Lp1C61bt8Yff/wBIHNl9uWXX4JzDldXV0RFRaWbVt4ukR6fkC+CkaKNAZ+iVbq5uaFMmTLgnMPJyQkrVqzAlClT0KtXL61dCeRmn82bN8PIyAjVq1fH27dvc+5mcjmkhXIgLZQDaZE7SW4MbdiwYZoRkaOjo/Hrr7+Cc47y5cvj3r176V6b2vCsQVooB9JCOZAWOcfTp09Rr149cM7RsmVL3LlzR6s9nzVrFjjnMDc3x4MHD1K9hr+/P/r37y/a9cmTJ+Ply5c5dQt5CtJDOZAWyoG0UBaDBw8WZk75goLUOHv2rCjzffv2pTh+6tQplC1bFlZWVnBzc6M2OouQFsqBtFAWpAeRGyADO0HkMeQvSXx9ffHtt98K83rJkiXJvK4AJEPcvXv3cP78ecTHx2f7mhqNhrZnSQepbMaMGQPOOapUqSKM5umV2/v377Fy5UoULFgQnHM0a9ZMRLtMvpXnv//+CycnJ/z44484ffq0+Jw6bdroW4vk16DyTxt9aCG1QclNoR8+fNC6BumijVQely9fxp49e1JE6Lty5Qr69OkjIvK1a9cO9+7dy3I53rt3D61bt8aWLVvw5MmTFN9P6F8LKZ2HhwdatWoFzjkGDx6c4jgBnDx5UkSl/Jw/e3t7VK1aFVu2bEk3CgDVi4zRlxbJ25p3794hPj4+hSmLtNBGMiI0btw4U1HYAwMDYWJigtmzZyM4OBiXL1/GjRs3tF5sJR+PREREQK1W4/3791qfkxbaxMfH45dffgHnHG3atNEyGqZFTEwM6tatC845GjRooKWDRPK68ebNG0RFRaW4PumROomJiahTp45YwP/48WNxLDQ0FJs2bRLPpx9//BGvX7+GWq3G2LFjwTlHo0aNdDJGJ0gLJUFaKAfSQpkkN4Y2atQIgYGB6Z5z8OBBGBkZwdTUVGseMDlSux4TE4N3797pMtt5EtJCOZAWyoG0yHn8/f1RvHhxcJ4U4Xju3Ln4999/sXr1atFOu7q64s2bNwC0x2b+/v749ttvRbqpU6dmauxOpA3poRxIC+VAWhge+fzdli1bcOPGDa3jMTExKbwEUVFR6N27N1QqFfr06YNnz55pHX/37p2Iij9r1iwa+2US0kI5kBbKgvQgchNkYCeIPIqfnx+++uorManl6OiI27dvGzpbxP+TXbNBZszqZGhIyY8//gjOOerVqwcg/TIKDw/Hhg0bhEm3evXqOHbsWJrnzJ49GyqVCkZGRnB2dsayZcvEMdIiJbrSIr2IlGq1mgztmUBf9eLvv/9G165d0bx5c9SrVw9z587V2oKQtNBGWtFcrlw57N27FzExMQCSjNS6MK+/efMG33//vZiU/Oabb9KMvJvf0ZcWyc3r5ubmQo8RI0akSJffCQoKgomJCTjnMDExQePGjdGpUyd8++23GDhwIPr06YOffvoJEydOxMiRI/HLL79g8eLFWLlyJXbv3g0/P78MJ96pXmQOfWghL9s3b95g7969qF27NqpXr46yZcti0qRJOHr0aKrp8zvHjx+Hs7MzihQpgp07d2otYJYj9YE8PDxgbW2Nbt26pZpOPsF4/vx5LFq0CLVr10bdunVRo0YNzJ49G+7u7iINafEJtVqN7du3w9HREcWLF8fevXsz1OPVq1eoXbs2OOdo1apVih0g5BPG+/btw6hRo1CyZEmULVsWpUuXxvjx43Ho0CGRhvRISVBQEGxsbGBhYYEZM2YAAD5+/KiV5vDhw+LZP2jQIDx8+BBt2rQB5xxDhw6FWq2mstUBpIVyIC2UA2mhPLJqDJXK/sqVK2JMt2nTpnS/IyoqCpMmTUL9+vUzNJ3mZ0gL5UBaKAfSwnD4+vqiSpUqok2Wz+MVL14c8+fPT3FORqZQCkL1+ZAeyoG0UA6kheFJbvyUiImJwenTp3Hnzp0U6bZu3QojIyOYm5uLHR3l5X737l307NkTp06d0mPO8x6khXIgLZQF6UHkFsjAThB5lBcvXqBUqVLgnMPS0pJWP+Uh5C+pfH19sWvXLkyePBlDhw7Fnj17tBYq0AstbcaNGwfOOapWrZoiqq680/X06VMsW7ZMmHQrVqyIDRs2pIginZwjR46gV69eUKlU4Jzj119/FcdIC230oYW3tze2bt2Knj17on379mjQoAHat2+PzZs34/r16yIdaaGNrrSQFhSo1WqtKA/yPwcHB8ycOVNck7T4hJeXF0xNTcE5R61atbB//378/fff+Oabb7JtXgeSBqIHDhxAhw4dwDmHSqVC0aJF6TmVCvrQIrl53djYGGZmZmjYsKFoM8jEnhIvLy/xkrZFixbw9PT8rOukVZ5ULzKPvrR48eIFJk6cmGqbYWdnh2nTpqV5bn4lPDwcAwYMEIvPUtvyUV5Wq1atEotyYmNjtY7J2/klS5agcuXKqWpha2tLWqRBWFgYevbsCc6TIqrfu3cvRRr55O+MGTNEuS5ZsiTNdOPHj4eVlVWqehQsWJCeU+ng7+8vymrixIlppjt+/LhIJ+0yYWZmJibtiexDWigH0kI5kBbK4tmzZ1i6dGmWohoDSeOIadOmwcTEBHZ2drh06VKaaRMTEzFz5kwULVoUnHPUqFEjxaIFgrRQEqSFciAtDE9wcDBGjhwpFiFznrQb6Zw5c1KMwzIyhcrTJzcS0Zguc5AeyoG0UA6khTL5448/wHlSwBwJ+TysFFSncOHC8PHxAfDpHSuQNGcukdzfk5YZlUgd0kI5kBbKgvQglAYZ2AkiD+Ph4SEmt2rVqgU3N7cU5kQi96FWq/HmzRt8++23Wiurpb9y5cphzpw5Ij0NKj+VwcmTJ2Fvb48SJUpoTdzKy+jKlSsYMWIELCwswDlH5cqVsXz5coSHh6d5fXlnztfXFzNnzhSGxF9++SXV78mv6EMLLy8vrFq1CjY2NiLCgGQyldeLRYsWpfo9+RV91Qv5i3Y7Ozs4OzujQ4cOcHFxEfVi9OjRqX5PfsfHx0e02xUqVEDjxo21DNN3797NVnlpNBp8+PABo0aNgq2trdDj559/1uFd5A10qUVa5vVevXrh+fPn2Lt3L5nY00FunG7durWYKAG0yyitf2cE1YvMo0stpM83btwo2ozSpUujVq1a6NWrF6pVq0ZtRjo8ffoU9evXB+ccLVu2xIMHD8QkoXxy0N3dHdWqVQPnHL1799a6hrws58+fD3Nzc1HmzZs3R48ePfDzzz+jcePG4vNx48blzA3mMp48eYIaNWoIPe7cuZOq6WP58uXi9169evU0+11jxozR6sd++eWXGDFiBCZMmIC2bdsKPcaPH58j95fbiIqKQrt27WBsbIyvv/4ar169Esc0Go3W2G337t2iPM3NzbFx40YAFHFMV5AWyoG0UA6khXJQq9VioV9WjKEAcOvWLbHwr06dOhnOt1+7dg2ccxQqVAinT5/WRfbzFKSFciAtlANpoRzi4uIQFRWFy5cv48qVK3jz5k2KNBmZQuXcv38f48aNw9atW+Hl5SU+p/Y9c5AeyoG0UA6khfL4/fffwXlSJPyzZ8+Kz6WdG58/f4569eqJue+4uLhUy1duCl20aBGePHkCgMyhWYG0UA6khbIgPQilQQZ2gsjjeHt7C6NJzZo1ycSey3nz5g127tyJunXrgnMuXmRVrFgRtWrVgoODgzDYyY3TRBKvX7+Gq6srOE+KHnrlyhVERUUBACIiIrB69WrUrl0bZmZmYuHHli1b8O7duwyvLTedREREYP369UKfpUuX6uuWci260mL//v3o1q2bmHQpUaIEGjZsiNWrV2PDhg2YOHEimjZtKrQYM2aMOJdMcEnosl6Eh4eLSA+VKlXCnDlzEBISAgB48OAB5s+fL7SYPn16Tt5mrsHb2xuFCxcWEfYko6iHh0e2Jwjlv/m5c+fCyspKtBmzZ8/ObtbzHLrQIi3zes+ePUXdiIuLw9atW8nEng7y/mzr1q3h6+urs2tTvcgautTi1atXcHR0BOdJkat37dqF9+/fA0haRLJ48WJRL2bNmqWrW8gz+Pv7a5Xfli1b8PLlS3F8x44daNKkidhRQh5BXc7+/ftRsmRJrb5SfHy8qBtPnz7F2rVrxfEVK1bkyP3lNvz8/FC8eHFwzlG7dm1MmTIF169fh5+fH86cOYORI0eK/qq5ubnWjjRy1qxZI9KVLFkSCxYs0Dr+6tUrrFu3TuixZs2aHLi73MeKFStEOa5evTrF7k1RUVHw8PAQ0fNNTU0xbdo0LSMpvZjVDaSFciAtlANpoRx8fX3FvGpmjaG+vr5i3qNkyZJixz9JE+m/ySOQXblyBefOndNh7vMWpIVyIC2UA2mRO8iKKTQiIgLr1q0TaZs0aYLt27eL42T0yT6kh3IgLZQDaZHzeHl5oVWrVuJ9T2hoqDimVquRkJCAn3/+WSw2kwyjcuRjPmlHRwcHBzx9+jRH7iGvQFooB9JCWZAehNIgAztB5APIxJ43CA4Oxq+//iq2DrayskKbNm2wfft2YSR98OABVq5cSQaTdJCbfUqVKoWaNWuiWbNmqFmzphiQS6as8+fPCyNvWkjmnuQmw3fv3mHChAlQqVSoVasWPDw89HZPuZXsarF582ZUr15d/N7btWuHPXv2pIgK7uvri6VLl4p0aRmG8jOfq0Xy3/379+9RsWJFcM4xfPhwYUSUiIyMxLJly6BSqVCkSBEcP348x+4xN+Hl5QU7OztwnhTFfv78+YiIiACQPUOzNJD09fVF1apVha7VqlXDo0ePdJL3vIYutLhz5w5atGgBExMTmJubo3fv3uIakiZqtVrLxC6POE0koS8TO9WLrJNdLeTG6GLFisHU1BRLlixBdHS0VrrIyEgsWrQIKpUKJUuW1IoCQSTh4+OD8uXLg3OOggULwsHBAa6urmjcuDE45zA2NgbnHJ06dRLnyPuuGo0GP/30k3j2TJw4UaSTv5D6+PEjZs+eDZVKhRYtWqQayYlIeo7Id8gyMjKCra0tbG1txWfW1tYYO3asOEd6Bmk0Grx79w4dO3YUeixbtkykkxtMoqOjMXnyZKhUKnTs2BERERG04On/kZfD+PHjRbkPGTIE+/fvh6enJ27cuIGJEyeiUaNGYpHapEmT0jQF3bx5E/v378fBgwdx6NAhvH//HnFxcQDIQJoepIVyIC2UA2mhTB4/fozHjx9nKq2vry/q1KkjXspu3LhRa9cVqcyjo6Mxbtw4LFy4MNXrULudOqSFciAtlANpoTzk5ZMVU6icpUuXomPHjuI8eQAFar+zBumhHEgL5UBaKINt27bBxMQEnHOsWrUKMTExWsflOzXevXtX65h8XnbKlCliB/JixYrhzJkz4hi12ZmDtFAOpIWyID0IJUEGdoLIJ5CJPXcTFBSEn3/+WUT1s7Ozw6JFi1KYojUaDWJiYjB9+nQYGxujbdu2CAsLM1CulYu/vz+aNm0qIuvK/2rWrIlRo0ZpTe6mhrTKUHoxCKTsgP3zzz8oUKAAOOfYs2eP7m8kD/C5WmzduhVlypQRBp8OHTrgzp07Wmnk2sTGxorooZaWlti/f7/e7y23oYt68fr1a2GE9/b2BpByMsvDwwOlSpUSk2VE6nh6egotatasiT/++CNFZL6sIOng6empZa6rVq0afHx8AFD0jLTIrhbr1q1DsWLFoFKpYGJigsmTJ4tjckOiZGKXoiX/9NNPOr2PvEBy47Sfn1+2rkf14vPJihZpvdQIDg6GtbU1zMzMxI4EydPevXtXfE/ySNREEo8fP0avXr3EItfkf926dRMLypL/nv38/GBubg7OOTp37iw+T+13/++//wpD/LVr1/R7U7mY4OBgDBkyJMUiQM452rRpo2VKT17O//33n0jbr18/8Xlqdcjd3R2cJ+3I9eDBA/3dUC5EXq4LFy5EyZIlRbkWKVJE7KoiGUN//fVXBAQEaF0jLCwMZ8+eRZs2bcRCNmnc0ahRI0ycOFHseEDtRNqQFsqBtFAOpEXuRW4MLVasGJYvX65l/pEbQ2fPni3mPebMmZPiWqRL9iAtlANpoRxIi5wnICAgXVNoauUoj1zp7e0tIlUm14KMPlmH9FAOpIVyIC0MQ/IdX6XyW7x4sXjn8PjxYwwaNChVY2hyU2iRIkWgUqng4uKC6dOnIzAwEO/evRNGU2q304a0UA6khbIgPQglQgZ2gshHpGZizyi6NGF4nj17huHDh6No0aLihdbhw4e1zHPJB4rHjh0TnYmbN2/mdJZzBSEhITh27BhGjRqFfv36YdiwYXBzc9MyYGW0ivzVq1coUaIE3NzctD6Xn9esWTNwzjFgwABoNBpamZ4KmdFC3rE9cOAAatSoAZVKBSMjI3DOUbp0aZQsWRL/+9//0oywHhoaip9//hlGRkbo06cPLe5IhcxoITfchoSE4N9//8WuXbvg7u6Oe/fuYcyYMeCc48qVK2l+T4cOHcA5h7OzMyIjI6lepIG83a5evTr27NmTYvVzZkjPpJvWQgNCm+xq8ffff2PMmDFiUVP//v3FMfmksFqtxsaNG8E5x+rVq3V6D3kFuRYtWrT47EjsVC+yT2a0kLff9+/fx4EDBzB//ny4ubnh/PnzGDRoEMzMzPDw4UOt8+R9W6kvVatWLcTGxtJkVyqEh4fj0qVLGDx4MFq0aIHSpUtj4MCBWL58uUiT2oulhw8fomDBgjA1NcW0adMAIMVWkPKt5qtVqwbOOU6cOKHHu8n9REVFISQkBOvWrcO8efMwf/58HDlyBK9evRJp0lokYGRkBCsrK2zbtg2Adr9Lft6bN29QpkwZmJub48aNG3q8m9yJvHxv3ryJ3bt3Y/To0Rg5ciQsLS3BOYepqSkmTZqUwhj65MkTTJo0SexuIEWhcXBwEAs+pGfSkydPUnwfoQ1poRxIC+VAWuQ+UjOGSgswgU9lHB0djZkzZ8LZ2RmccxQtWhQnT57Uupa8rxUUFASAxh1ZgbRQDqSFciAtcp7AwEB89dVXaZpC5Xh6euL+/fuIi4tDbGys1rHo6GgsXrxYXEcaBxJZg/RQDqSFciAtDIu87ZwwYYIovzp16qBbt25o3769+KxXr14ibXJTaLFixUQ6zrl4v1SmTBn0798fz58/T3EeoQ1poRxIC2VBehBKgwzsBJHPkBtN6tSpg507dyI6OtrQ2SLSIDw8HLNmzUKJEiWEef3s2bNpppeMKf7+/rCxsQHnHMePH8+p7OYpMjMxK195fuDAAQDa5qC7d++KqPlDhw7VW17zOnIt7t69i86dO4voYpxz2NjYoFy5crC3t9eKIvrs2TMA2hPvR48eBeccPXv2zPH7yAvITVS///671uCFc47ixYujVKlSsLCwwPLly1NEbE9MTMTLly9RvXp1qFQqVK1alV6CZIC3tzdsbW3F7zatrePTgky6uuNztJC3CeHh4di5cyesrKzAOcePP/4ojsk1UKvV2Y4sntfx8fER/ZyJEydmuS9L9UJ3pKeFvAwXLVqE6tWra7UZNjY2KFy4MMzNzbFx40atnVMkHj16JCbAWrVqlSP3lBdIvkg5rcnB69evCz3Wr1+f7jUvXbok+l/Hjh3TWV7zI2lFqTp79qzQI6Pdm44cOSLSXrx4UR/ZzPUkf46Hh4ejT58+whg6ceLEFMZQKYK+NIazt7fHhAkTcOzYMXh6euLmzZuYPHkyatSoISbig4ODU/0+4hOkhXIgLZQDaZF7+FxjqIODA/755580rztu3DhwznH+/Hm930NegbRQDqSFciAtDMOLFy/EeGzGjBkpTKHR0dFwd3dHt27dxE5mdevWxY8//ojHjx9rpX327Bl++OEHqFQqdOnShXbO/gxID+VAWigH0sLwyOdj58+fDycnJ61325xzdOzYEZcuXQKg/f516tSpws8jvfMeNmwYNm/ejH79+qFixYrgnKNcuXJi4TKN+dKGtFAOpIWyID0IJUEGdoLIh3h7ewsjSOvWrfHu3TtDZ4lIhtRZOH78OCpUqCBeTP3111+ZOm/nzp0wNTWFubk5rl69qvf85lbk5hF5hymzW5+FhoZi+PDhomO2cuVK+Pv7A0gydM2ePRsFCxYE5xxTpkzRbebzGGlpkfz4ggULRNR1Jycn9OjRA48ePcLr168REBCAw4cPCyNdly5dxPnyDvjWrVtT/V4iiYy0AIDt27ejfPnyQosKFSqgWrVqKFOmDKytrcE5R/ny5XH+/PkUhsTDhw8LA+8XX3yh13vJK3h7e8PV1RUrV67M0nlk0tU9n6uFhFqtxrZt22BhYQHOOdauXZtuetInbby9vdGzZ0/s378/S+dRvdA9GWmxePFimJubizajXr16cHV1Re3atcUEV8WKFXHu3DmthU9v377F6tWrRV+qT58+OXVLuRJ5+53ZaBZv375Fw4YNoVKpMGbMGACp//7VajWWLVuGAgUKoEiRInjw4IFuMp1PyGx/89mzZ6hevTpMTEwwa9YsAJ+0lF/j9evXGDFiBExNTVG1alW8fPlS95nOg2zYsEEYQydPnpzCGPrhwwfMnj0bjo6OwtRz7dq1FH3Z6Oho3LhxA40bNxaLa0JDQ9P97rdv3+r8fnIzpIVyIC2UA2mhTPz8/D7bGHru3Dmta+3YsQO//fYbgKSAGNJL4SZNmmSoEUFaKAnSQjmQFobFw8MD8+bN09ppCwBiY2OxZcsW1KtXD5xzMRci/Tk6OqZ4Z7dz505xPPkOdUTmID2UA2mhHEgLwyOfoz1//jyWLVuGunXronXr1hg/fjz8/PxSzONOnToVdnZ24JyjcOHCWLNmDTQajZgbjI6Oxs2bN9GoUSNwztGoUSO8efMmR+8rN0JaKAfSQlmQHoRSIAM7QeRTPD09UblyZdpuXIFIDXtsbKx44WRra4u9e/dm6jwAImpTwYIFxVaPROaQl2NmOlKhoaH4/vvvxcC9SpUqaN++PapVqya2fq5Tpw51ynTAjRs3xPbY5cuXx4IFCxAWFpYi3e3bt1GoUCFwzjFhwgTxeXJDljwyO5F57t+/jxYtWogXGQMHDoSvry80Gg1evXqFCxcuCFNo5cqVsWrVKjx8+BC3bt3C+vXrxYDGyckJbm5uAMgsmhnev38v/p0ZIxyZdPWHXAv5avPUnkep8fz5c3Tq1Amcc3z99dcptuUkMk/yKNMZQfVCf6SlxenTp1GuXDnRZowbN06Y1N++fYsbN24ILSpWrIiFCxfi+vXrOH36NCZPniwWpVWsWBHXr18HQBrpmpEjR4rFstILqORlfPr0adF+t23b1hDZzDcMHjxY6OHh4ZHieHh4ODZv3iwWDH799dcGyGXuZcyYMRg+fLiWMVSagH/48KF4Hjk4OMDHxwfAp35X8npx5coVVK5cGWZmZlizZk2azyZ/f38MGzZMLEogkiAtlANpoRxIC2Xh7++PMmXK6MQY6uvrK443adIEnHOoVCo0b94cf/75Z47eV26EtFAOpIVyIC2UgdzMI7W1Hh4eohw551i3bh3+/PNPzJ07F/Xr1xfjvRMnTohzPnz4ACcnJ3DO8ffffxvkXvICpIdyIC2UA2lheJKPxeTvlADt931TpkxBkSJFwHlS1OLkAWPk1zp+/DiKFSuGwoUL48iRIymuRaSEtFAOpIWyID0IJUAGdoLIx0iGqcxG6CNylokTJwoT+uTJk9M1xskb+rVr14oV06NHj05xnMgcly9fxu+//w4g4/K7evUqqlevDs65MFhLfzVr1sTBgweRkJBAOnwmiYmJSExMxNixY8E5h42NDSZPnixMpPJylUzpo0ePhrGxMVq1aqUVzZXIPps2bRK/7++//17rmKTF69evxct1IyMjsaBAiqLr5OSEkSNHpoj8QGRMZoybZNLNGeRlePDgQezYsQNA5trc5cuXC11u3ryptzzmF2hRh3JIrsXs2bNFWY8dO1YrXWptBuccZmZmWv+tUKECli1bhoiIiBy9l7yCVM4fPnzQKnfp956QkIAvvvhCGB8uXrwothX28PDA1q1bhXm9ZMmSYkKS6svnIZW/tAtacj1iY2PRtm1bcM5RtGhR/PXXX2KLzUuXLmH69OnCvF6hQgXcvn1b63wideQLV9MaV/fq1Qucc9jZ2QlTT3pzJVFRUZg+fbpY0JmaBv7+/vj111/FIp59+/Zl805yP6SFciAtlANpoUyCgoLAOYexsTFWrlz5WcZQjUYj0m7cuFFcT6VSoUWLFjh+/LhWWiJ1SAvlQFooB9JCuYwZM0bMbxw7dkx8rlarERQUhA4dOoholceOHUNiYiLOnj0LCwsLmJub045nOob0UA6khXIgLQyLfGwm31FrypQpKFasGDjnsLCwwB9//JHqORJPnz6Fg4NDinl3IvOQFsqBtFAWpAdhCMjAThD5GJp0Ui4fP34UA8RKlSplOlL+2bNn0bRpU3DOYWlpmWLFG5E5vL294erqCgsLC9y5cyfD9HFxcejYsSOcnZ2xY8cO1KtXD1988QUGDBgAT09Piq6rI6TfdpUqVURE+7SeY3LDnGRMJLKHWq2GWq1Gy5YtwTlHmTJlRNQ3+Ytz6d8XL15EkSJF4OjoiBEjRsDKygp2dnZo0KAB1qxZg+fPnxvkPvISUVFRePz4MaKjowFov3gik27OcfnyZZQpUwaFCxcWdSItJHPKvn37YGlpCWNjY/zzzz85kc18A9ULZZCYmIiPHz+iYsWK4JyjevXqQpPU2oy//voLNjY2KFeuHKZOnYpixYqhfPnyaN++Pdzd3REeHm6Q+8grBAQEYMyYMcLsLCGVf1BQkDBNFyxYEC4uLmjTpg0cHR1hYWEh6kyHDh3w7NkzQ9xCnuLBgwfo0aNHCj2k51BgYKDQw9zcHPb29qhbty4KFiwoFnZYWlpiyJAhePv2rSFuIVeS3vxHeHg4atasCc45evTokelyvXPnDurWrYv169cjLi5O6zv8/f0xceJEmJqagnOObt26ITQ0NNv3kRcgLZQDaaEcSAtl4uvri7Vr1+Lly5fis88xhgLAr7/+KqIac669i4r8hTCROqSFciAtlANpoTw0Gg169OghFgF8+PABarVaa85JrVajS5cuwhx66NAhjBo1Cpwn7T5Hc+a6g/RQDqSFciAtlIO8zKdMmQJ7e3sxB7t48WJxLL2xYrNmzcA5xw8//JBhWiJtSAvlQFooC9KDyEnIwE4QBKFALl++LBr/RYsWpZlO3sDfvXsX/fv3F+dJ0deJrPP69WvRmRo9erSI9J0akgZS1Kr//vuPJnX1wKtXr1C8eHEYGxtjyZIlAFKPNiZtaTRv3jyYmZnBwsICvr6+OZrXvE779u3BOUfVqlVTbCEl59WrV6hatSoKFSqE8+fP48WLF3jy5AkNTHREZGQk1q5diy5dumDHjh2IjIwUxzw8PMikm4Pcu3cPtWrVAuccs2fPRlRUVIbnrFq1KtUoJ0T2oHqhPKRtZ5s1awYg7bIODg6Gs7MzHBwccP/+fYSGhqbb/yIyT0JCAlavXg0jIyN07tw5zcUAcXFxGD9+PJo3b45KlSqJKN+Ssc3GxiZTCzuJ9ImNjcWkSZPAOce3336b5u9crVZjxowZ+PLLL9GsWTMULVpUS4+aNWvSIk0dcu/ePdE+rFq1KlPnSH1aLy8vfPjwQetYcmNoVgyn+R3SQjmQFsqBtDAsqS2+zKoxdOrUqcIY6uLiIvScPn16qt9DpA5poRxIC+VAWiiP7t27iyA8yXdWkZdj165dwTmHlZWVKPOtW7dqpU9tHp20yBqkh3IgLZQDaWF4krfDNjY2MDIyAuccdevWFTurpPfe4uHDhyhRogQ455gxY4be85xXIS2UA2mhLEgPIqdRMYIgCEJxxMfHMzMzM2Zpacnq16/PGGNMo9FopQHAOOeMMcY8PT3Zli1b2J49exhjjPXo0YMtWrSIMcZYYmJiDuY8b2BjY8O6dOnCLCws2KlTp9h///2XZlpJl5cvXzLGGHv27BkzNTVNcZz4fDQaDUtISGBxcXEsMTGRWVlZMcYYMzIy0koHgJmYmLC3b9+y3bt3s/j4eObk5MQcHR0Nke08S8mSJRljjL1//569f/8+1TSJiYnMwcGBFStWjMXExLCIiAjm6OjISpcuzTjnVC90gEajYTt37mTu7u5s9erV7NixY4wxxvz9/VmvXr2Yt7c3Y4yxqlWrsgMHDrBKlSoxjUbDVCrq/uua8uXLs3bt2jHOOdu/fz+7e/duuumDg4PZ33//zTjnzNbWljk5OeVQTvM+VC+Uh4uLC2OMsdevX7P379+nWtaJiYnM1taWWVpasrCwMBYWFsbs7e2ZtbU1Y4z6UtlFpVIxOzs7VqBAAebl5cVu376dIo1arWampqZsyZIl7NKlS2zz5s2sWrVqrGDBgiwhIYGpVCp28OBBVqdOHQbAAHeRdzA2NmYuLi6sQIEC7NatW+zevXsp0iQkJDAjIyM2e/ZsdvLkSbZ8+XJmaWnJzMzMWEJCArOzs2ObN29mlSpVIj10hK2tLbO1tWUFChRgRYsWZYwl6ZAe0li8YsWKYnzCGGMBAQFsy5YtbNWqVSwhIYF1796dbdmyhdnZ2envBvIQpIVyIC2UA2lhWKS5p8TERGZkZMRiYmLYkiVL2M6dO1lwcDArVqwY27NnD2vTpg1jLGluSqPRiPOmTZvGFixYwDjnrFGjRmzRokVs3bp1jDHG5s2bx6ZOnSq+h9r19CEtlANpoRxIC+XRokULZmZmxj58+MBu3LihVW7yefHDhw+zChUqsKioKMYYYyNHjmT9+/dnjCXpJH//d+DAAbZhwwbGGGmRVUgP5UBaKAfSwrBIbTZjSe3w+vXr2YcPH1i5cuUYY4wVLlxYjPtSm0uXyvbu3bvCmyC9tyWyBmmhHEgLZUF6EAZB/x55giAIIqscPHhQrGq+f/9+iuPylWy3b9/G4MGDxerndu3a4b///svJ7OZJXr16JSJNN2vWDJ6enuKYtKI8ISEBAODn54dixYplKRoWkXXatm0LzjmGDBmC2NhYrWOSJhEREZg2bRoKFSoEzjl69eqFmJgYivqtA6QydHd3h6OjI2xsbLB///4UZSv9/9OnT+Ho6AjOOebNm6d1jNANnp6eKFKkiFjtvHjxYlSqVIkiTBuA58+fi507XF1d4enpmaKtAID3799j3bp14hnVtm1bQ2U5z0L1QhlIv/+9e/eiaNGiKFKkCE6cOJEinaSBl5cX7OzswDnH5s2bta5BZJ83b96gQ4cO4JyjefPm8PDwEGWfPCqSj48P6tWrB0tLS3DOYWxsjIMHDwIgTXRFSEgI2rRpI9qMR48eibZC/lyKjo7Gv//+K6KUcM5hbm6OK1eupEhLZI+nT5/C1tYWnHPMmTPns69DUY2zD2mhHEgL5UBaKIfo6GhMmDAB5cqVy3JU4yZNmuDw4cMi3cqVK0X7vnDhwhy/l9wOaaEcSAvlQFoog6dPn4p5KFdXV9y/fx8fP37USuPp6YkJEyaIMv7222+13j/Jx3rHjx9HkyZNwDnHuHHjcuw+8gqkh3IgLZQDaWE4krfD0jivUqVK2LRpEypXrozevXuneb40N3vjxg2xe2bLli1T7LpFZAxpoRxIC2VBehCGggzsBEEQCuTFixeoXLkyVCoV1q1bJwwNyScZjx8/jl69eokBZKtWrXDu3DnanktHPH78GBUqVBCD+AsXLqToXAUFBaFGjRrgnKNkyZK4deuWgXKbd9FoNEhMTMTs2bPBOUft2rXx8OFD0QGOj48HALx9+xZLly4VEy+mpqakhx4IDQ3VWtzh5eUlJqskLUJCQvD999+Dcw5LS0scOXLEgDnO23h7e8Pe3j7FVo41atSAl5cXADK45RSBgYFie+ZmzZrh6NGjWoaQhw8fYtmyZbCxsRFbdF68eBEAaaRrqF4oh9evX6NVq1bCOO3p6Sn6qVKb8ezZM7Ru3RqccxQtWhTXr183ZJbzLEFBQShTpgw452jcuDH27NmDV69eieNXr17Fb7/9hsKFC4s6Y2RkBHd3dwPmOu8SGBiI0qVLg3OOhg0bYsuWLQgODhbHT5w4gXHjxok2w8TEBE5OTqJ+0DNMd0hjimHDhkGlUqFjx454+vRplq9DxtDsQ1ooB9JCOZAWyiI0NFTMATo5OX2WMVRKGx8fj1WrVsHOzg7Tpk3L0fvIC5AWyoG0UA6khXLw8fFBqVKlwDlH9erVMWbMGBw5cgTu7u4YNWqUmCfhnGPAgAFaAankOh07dgxNmzYV7feIESMAfBoP0iLzzEF6KAfSQjmQFjlPeqbQo0ePQq1Wo2jRoqhQoQICAwNF2uRleffuXTRo0ACccxQpUgSLFy8W8+xE5iAtlANpoSxID8KQkIGdIAhCgURGRqJfv37CBPfgwQOx+lnqOMybNw81a9YUA8gOHTrg4sWL1PjrGF9fXxH1sFKlShg0aBDOnz+PEydOYNu2bShevLiY7O3QoYOWEYjQLU+fPkX16tXBOUeLFi1w/PhxhIeHIzIyEgEBAejfvz/Kli0rooVu27YNABl89EFAQICY3GrevDkOHDiA0NBQJCYm4tmzZ/juu+/g5OQkBiZ+fn6GznKextvbW0QuNjU1hZOTk5hQlEf/JvSPj4+PMCQWLVoUVatWxYABA9CnTx84OzujYMGC4JyjbNmyWLFiBd6/f2/oLOdZqF4oB39/f5QsWVL0a3fv3o2QkBC8e/cOXl5eaNWqlVhoULduXTx//tzQWc6z+Pr6onz58uCco1ChQnB0dISrqytatWoFMzMzWFhYgHMOOzs71K5dW5il6WWTfvD19UXFihVFZHVbW1vUqFEDtWvXBuccZmZmYpFs9+7dxc5c1LfVD/v374e5uTk451ixYoXWjk8Z1QEyhuoW0kI5kBbKgbRQDh4eHqhYsSJOnTolPpMCL0ikZwyVp4uPj8edO3dyJuN5ENJCOZAWyoG0UA6BgYHo2rUrihYtKt5XSDudSX/9+/dP1xTavHlzGBkZoUCBAmjXrh2CgoLw/PlzvHv3LtVziLQhPZQDaaEcSAvDMGPGDC1TqDwAWK9evaBSqbB8+XLExMSkOPfq1auoXbs2TExMwDlH165daWyXDUgL5UBaKAvSgzAEZGAnCIJQKPIoifXq1cPQoUOxa9cuDB06FF988YXWALJv377w8PAgM4Oe8Pf3R8OGDWFsbCwmdznnKFCggDCcVK1aFffu3TN0VvM88gUFdnZ2KFu2LGrUqCG2IJL0Wbt2LaKjow2d3TyNj4+PMCTa2trCxcUFrq6uKFKkiNDC2NhYRG4l85t+8fLyEmbdypUrw93dnczRBiIgIABt27YVE79SmyH9t3r16li7di1CQ0MNndU8D9UL5SCP6lOwYEE4OjqiUqVKWi9FLCwsKPp6DhAUFIQ+ffqgcuXKWuMJ6a9hw4ZYvHixWHxG4wv98vjxY3z//fdaC5Olv0KFCqFNmzY4ePCgWNhB/Sn9Mn36dFH+S5YsQVBQkDiWVtknN4Z2794dYWFh6Z5DZAxpoRxIC+VAWigH+XyTRqPRKstZs2alG9U4LWiR7edBWigH0kI5kBbK4d27d3jw4AE2bdqEHTt2iJ1jOefo169fuqZQV1dX8T5KWuAszS26urpi48aNqZ5LpA3poRxIC+VAWuQs8+bNE2WV3BQKANu2bRPlOW3aNLi7u+PDhw9wd3fH0qVLhSGUc47WrVsjJCQEAM3ffg6khXIgLZQF6UEYCjKwEwRBKBhfX1+twaK8wTc2NkbZsmVpC8cc4sWLF5g2bRoaNmyoZSwpVaoU+vTpg4cPHwKgF4A5QUBAADp06CCM7NKfjY0NnJyccPz4cdIhhwgICEC7du3g4OAAzjmMjIzAeVK040KFCuHkyZOGzmK+wsvLC4ULFwbnHLVq1cLevXvx4cMHQ2crX/L69Wu4ubmhR48eKFOmDMzNzdG4cWMMGDAAgYGBqa5KJ/QD1QvlEBAQgC+//FIsfpJeaNja2qJKlSrCvE4TWfonIiICAQEBWLZsGSZPnoxRo0Zh9erVOHz4MNRqtehHUX8qZ4iKikJISAi2bt2KZcuWYdmyZXBzc8PNmzcNnbV8g/y5M2HCBDG+6NKlCxYsWJDmef7+/hg/frwYp/fp0yfDhVLJTUSENqSFciAtlANpoTzSKqPNmzfD2to6U8bQzPZ5SY/0IS2UA2mhHEgLZTJ58mTRhn/zzTeZimjMOUf79u0xZ84cnD17FosXL8bXX38trjNr1ixxHmmRNUgP5UBaKAfSQv/4+PjAzs4ORYsWxdGjR8Xn8vKdNGmS1rtvZ2dnrbl0Jycn9O7dW5hCaXHA50FaKAfSQlmQHoSh4ADACIIgCMXy9OlTtm3bNnbhwgUWEBDAChQowCwtLdmPP/7IatSowVq0aMEYY0yj0TCVSpXl6wNgnHPx/xqNhnHOtT5Lnia/kpCQwBISEpi7uzuLi4tjkZGRrE2bNqxYsWLMxsaGyikHefv2LfPy8mKnTp1icXFxLC4ujrVv355Vr16dlSlTxtDZy1e8efOGXb58mR05coSFhIQwjUbDXF1dWY8ePViNGjWoXuQwPj4+zNXVlYWFhbHSpUuzDRs2sHbt2n1W+0Dohg8fPrCoqChWtGhRZmxsbOjs5EuoXiiHt2/fsjt37rBDhw6xd+/eMbVazTp37syaN2/Oypcv/9n9WUK3kA7KIjExkRkZGRk6G3keeTmvWLGCbdq0ifn7+zNbW1t28OBB1rx5c612PCAggG3evJmtWrWKqdVqVqFCBbZs2TJWoUIFxjlnKpWKWVtbM1NTU6ZWq5mlpSUzNTVlHz9+ZAUKFCBd04G0UA6khXIgLZRPVFQU69u3Lzt16hQrW7Ysmz9/PuvZsydjLPW5V6mv9fjxY/b06VP2zz//sA8fPrACBQqwFi1aMBcXF1ahQgXGGPUFsgppoRxIC+VAWhiW169fs+LFizPGGPvuu+/YiBEjWN26dRlj2uV3/PhxtmzZMnbt2jWm0WjYiBEj2G+//aZ1rdDQULZz5042ceJExhhjv/32GxsxYkQO3k3uh/RQDqSFciAtco7AwEDm4+PDOnXqxBj71A7Ly3nevHnMzc2N+fr6ap375Zdfsq+++or17NmT2djYUBucTUgL5UBaKAvSgzAEZGAnCILIBWg0GqbRaNjTp0+ZjY0NU6lUzMbGRut4Vk0myc/ZuXMne/z4Mbtx4wZTqVSsbdu2rGrVqqx9+/aMMTKxE7kH+q0aDrVazYyMjET5kxaGwcfHh1WtWpXZ29uzM2fOsNq1axs6S/mStH7/ZAw1DFQvlA+1GYaDnkvKguqC4ZBPqN+8eZM9fPiQWVhYsM6dOzNra2uRLiAggG3ZsoWtWrWKJSQkMHt7exYeHs5MTU2ZSqViarWaaTQaZmdnx4yNjVlMTAwrXLgws7a2ZvHx8ez48ePM2dmZ6l46kBbKgbRQDqSFsnnw4IEYY0yfPp3Nnj2bMZZ+P2vr1q1s+/bt7M6dOyw+Pl58zjlnNWvWZIMGDWJDhw5ljJFBNCuQFsqBtFAOpIXh8fT0ZGvXrmXfffcda9SoEWMsfVPohAkT2OLFi0U6aQEaY4xFRESwMWPGsN27d7OWLVuyffv2sSJFihjmxnIppIdyIC2UA2mR8yRvh+Xl7ePjwwICAtiTJ09Y4cKFWZEiRVjbtm3FvCGN13QLaaEcSAtlQXoQOQUZ2AmCIHIBujYxSB2LiIgIdvjwYXbo0CF26tQpplKpmEajYYwlTUTa2tqyIUOGsHnz5uklH7kdKg/DIi9/qTtDehiG5HWB6obhefLkCQsJCWH16tWjqN8E8f9QvVAG1GYQBKFkMppYT24M/fbbb1mdOnXYxIkTmVqtZsWLF2eRkZEsNjaWWVhYiN2iGGPMyMiIJSYmMnNzc+bl5cWcnZ1z6K5yJ6SFciAtlANpoVxev37Nmjdvzl6+fMnWrFnDBg4cmMLQKddv8uTJwvBTrFgx1qhRI1auXDkWEhLCrl+/zoKCghhjjM2YMYPNmjUrxflE2pAWyoG0UA6khTKIi4tjZmZmjLGsmUJTWxwwe/ZsNnv2bGZtbc3+++8/VrZs2Zy7kTwC6aEcSAvlQFoYnoza089tb1Obg6cFaOlDWigH0kJZkB6EPqC39gRBELmA9Ew96W3xmBpSIx8SEsLGjRvHrl27xoKDgxljjBUpUoTVqlWLmZmZsZCQEHb79m22YMECFhcXx5YuXUrmomRQeRgWefmTFoYlefmTHobH2dmZDAcEkQyqF8qA2gyCIJRM8rG0fLwdGBioZQzt2rUrW79+PTtw4ABTq9WsTJky7MqVKywuLo5FRUUxc3NzFhMTw96+fcuMjY0ZAPbu3TsWFBTEgoKCqE3KANJCOZAWyoG0UC4WFhasWrVqLCAggG3fvp21adOGlSpVShyXz9dOnDiRLVu2jDHGWIECBdjEiRPZL7/8ItLeu3eP/fnnn2zJkiVszpw5zMrKio0bN46MoZmEtFAOpIVyIC2Uga5MoYwxZmJiwhhLMptGR0fnQO7zHqSHciAtlANpYXjSG/OldjwzyK9x/vx5FhgYyAYNGsSMjIxoAVo6kBbKgbRQFqQHoRdAEARB5Fo0Go34d2BgoPi3Wq1ONb30+bNnz1CnTh1wzsXfvHnz8O+//4q0T548wZo1a6BSqcA5x4YNG/RzE/mIxMREQ2eB+H/SqiNEzkNaKIuEhARDZ4H4f0gL5UBaKAfSQjlQv1ZZUH9K//j4+GDixIkoUKAAOOfo0aMHwsLCAABbt24F5xyOjo54//49EhMTtcbq8n+n9xmROUgL5UBaKAfSQhkEBgaidOnS4Jyjbdu2CA4OTpFm8eLFYi62SJEi4JyjWLFiePz4sVa6iIgILFmyBJxzODk54caNGzl0F3kD0kI5kBbKgbRQHgcOHECrVq1gZGQEzjkmTpwojqU3xrt//z5q164Nzjk6dOiAmJiYnMhunof0UA6khXIgLfIWV69eRe/evcE5R79+/QydnXwNaaEcSAtlQXrkX2iJAkEQRC5GWoV28eJF1rZtWzZhwgTGGEt1tbO0CvrZs2esRYsW7N69e4xzzooVK8bOnDnDpk6dylq2bCnSly5dmn333XdsyJAhjHPOLl68mCP3lJdRqVRMo9GwEydOsNevXxs6O/kaaWvsHTt2sJcvXxo6O/ka0kJZGBsbM7VazZYvX86eP39u6Ozka0gL5UBaKAfSQjlQv1ZZUH9K//j4+LClS5ey2NhY9r///Y9t2bKFFS5cWCuNiYkJ02g0jLGMd4ui3Sc+H9JCOZAWyoG0UAYuLi7sr7/+YnZ2duyff/5hEydOZJGRkeL4xYsX2W+//cYYY6xZs2ZsxowZrEWLFuzNmzesUaNGzN/fnzGWFAm5UKFC7H//+x9r2LAhe/78OXv06JFB7im3QlooB9JCOZAWyiIqKor9/vvv7MKFC1mKaPz8+XO2f/9+FhAQwBhjrH79+qxAgQI5lu+8CumhHEgL5UBa5C1u3brF5s6dy9zd3RljjN28eZM9ePDAwLnKn5AWyoG0UBakRz7H0A56giAIInucPXsWTZs2hampKTjnWLhwYYo0UoTEZ8+eoXz58uCco0CBAqhfvz5u3boFIO3oSmvXrgXnHKampnjy5In+biSfsHLlSpiYmOCrr77Cs2fPDJ2dfM24cePAOUf37t1JCwNDWigLaWXz119/TXoYGNJCOZAWyoG0UA7Ur1UW1J/SP9988w1atWqFt2/fAvi0K4Q0Zq5UqRLi4uIMmcV8A2mhHEgL5UBaKAdvb29UrVoVkydP1vp83bp1MDc3B+ccy5cvBwAEBASgRYsWIsqxn58fgE/ztIMHDxZR9RMTE2nXlSxCWigH0kI5kBbKwcvLC1ZWVhgxYoT4LL0yfP78ORYuXAg7OztwztGuXTtxjHZPyT6kh3IgLZQDaZF3eP36NRwdHcE5R4sWLXDs2DF8/PjR0NnKl5AWyoG0UBakR/6GDOwEQRC5mJiYGLRq1Ups61ixYkXcvXtXK400IAwJCUHjxo3BOYe5uTmaNWuGe/fuaaWRI73oOnHiBAoWLAhbW1sysOuAu3fvCr3+97//kbnEgNy8eVNse0cmOMNCWiiLK1euiEVRpIdhIS2UA2mhHEgL5UD9WmVB/Sn9IX85Gx0dLf4tjaPXr18PzjnKlSuHyMjIHM9ffoK0UA6khXIgLZRJeHi4+HdiYiLi4uLQvHlzcM7RsmVLrbQ+Pj5o2bJlCoMoAEyYMAGcc3z//fc5lve8BmmhHEgL5UBaKIfXr1+Lf2fFFNq0aVOEhoZmeB6RNUgP5UBaKAfSIvcjBTr08/NDp06dsH//fsTGxho4V/kT0kI5kBbKgvQgVIaOAE8QBEF8PgUKFGDr169njDFWtGhRdujQIVa7dm2tNJxzFhkZyWbPns3u3bvHGGOscuXK7LfffmO1atViAFLdGtjY2JgxxtixY8dYTEwMMzExoS2+sgkAVrt2bXblyhVmamrKDh06xMaMGcOeP39u6KzlOzQaDWvQoAG7dOkSMzExYYcPHyYtDARpoSw0Gg1r2rQpu3DhAulhYEgL5UBaKAfSQjlQv1ZZUH9KvxgZGTGNRsMYY8zCwkJ8Lo2jpW2zNRoNS0hIYGq1OuczmU8gLZQDaaEcSAtlYmtryxhLKneVSsUAsNjYWMYYYy4uLowxJrSoWLEi27hxI2vRogV78+YNa968OXvx4gVjjLF///2XMfZJWwA5eh95AdJCOZAWyoG0UA5FixZljDGWmJgo2uzkvHz5ku3evZstXbqUvXv3jjVu3Jjt2bOH2dvbMwBpnkdkHdJDOZAWyoG0yP2oVCqmVqtZ+fLl2f79+9lXX33FzMzMDJ2tfAlpoRxIC2VBehBkYCcIgsjlVKpUifn7+7Pz58+zqlWrah2TXmDduHGDXbx4kcXFxTErKyu2fv16Vrt27TTN69J5AQEBzMvLizHGWJUqVZiFhYU4RmQdzjnTaDSsSZMm7N9//2XGxsbs8OHDbMSIEWQuyWFUKpXQ4sKFC0KLYcOGiQl4ImcgLZSFpEfjxo219BgyZAjpkcOQFsqBtFAOpIVyoH6tsqD+lP5RqVJOoUpjY8nsY2ZmxiwsLMRicEI/kBbKgbRQDqSFcpG0MTIyYjY2NoxzzkqWLKl1jLGUBtE6deqw4cOHs0ePHrGiRYuy7777ziD5z0uQFsqBtFAOpIVySM8UumvXLi1TqJubG3N2dmaMsVTf7xHZh/RQDqSFciAtlE96C8mkcaCFhQUzNTXNqSzlW0gL5UBaKAvSg0gLMrATBEHkAcqWLcuqVKmS4nNpknHHjh3M29ubMcbY7t27WaNGjdI1r0vnbd++nV2/fp0xxlifPn2YpaVlqi/FiMwjN15dvHiRMcbY8ePH2e+//87i4+MNnLv8RWpauLu7s2PHjlFEshyGtFAWqelx6tQpdu3aNVrElMOQFsqBtFAOpIVyoH6tsqD+lOFISEhgjCVpQONlw0JaKAfSQjmQFsrA2NiYOTk5MQDs1KlT7M2bNyn0kAyirq6uLDQ0lG3dupXFx8ezxo0bs1KlSjHGyACkC0gL5UBaKAfSQplkZAolchbSQzmQFsqBtFAOct+HtIg5MTHRkFnKt+S0FrQDTtoYol6QHmmTk3pIOtBzMPdAM5YEQRB5nOvXr7Pjx48zxhgbOnQo69ixI2Ms9clEAGJicvPmzWzhwoWMMcY6derEvvrqK5FGTmRkJIuJidG6BpE+cnPJtWvXWPv27VndunVpJaEBSK7FoEGDWL169SgimQEgLZSFXI/r16+zOXPmsHr16pHhwQCQFsqBtFAOpIVyoH6tsqD+VM4iPXMKFCjAGEsaC3/8+DHbE+PyMTWNrzMHaaEcSAvlQFooB6mcevbsyYoXL85evnzJbty4kWr5VaxYkW3atIk1bdqUJSQksHLlyrEJEyYwBweHnM52noS0UA6khXIgLZTJs2fP2J49e8gUqhBID+VAWigH0kI5yE2h//77LxsxYgTz8/NjRkZGFPAlh8lJLaKiohhjtIAwLXK6XoSHh7PQ0FDGOSfTdCrkpB7v3r1jmzZtYp6enszIyIj0yC2AIAiCyNMcOHAAnHNwzrF79+4002k0GvHvffv2wcHBAZxzFC9eHBs2bEj1nIcPH2Ls2LEYO3YsLl68mOq1iLRJTEwEAERERGTrOlTe2UfSIjo6OlvXIS2yD2mhLCQ94uPjP+t8SQfSI/uQFsqBtFAOpIVyoH6tstBVfwoA3r9/j99++w179uxBaGio+Jy0+sSWLVvAOUeVKlUQFxeXrbJRq9WZ+oxIHdJCOZAWyoG0UA6hoaHo1KkTOOdo1qwZPDw80kzr7e2NTp06wd3dPQdzmH8gLZQDaaEcSAvloFarsXLlSvFer0mTJnj8+LGhs5VvIT2UA2mhHEgLZXLp0iV8++23Qpfg4GCdXl+ab9RoNOLf0n8JbfStRVBQECZPnoz+/fvjzp07Yk6e9EiJvrUAgLCwMMyYMQNVq1bF3bt3AdBcSVroWw+NRoMjR46Acw5jY2M8evQIAOmRG+AAhckgCILIy6xZs4aNHj2aVa5cmV2/fp0VKlRIa4UbY4xpNBoRmengwYNsypQpLCgoiGk0GjZkyBC2fv16xhhLcd7Ro0dZjx49GGOMVa1alQ0aNIiNGjUq1bRExmSlzOSaMZa0qvP9+/fs7du3zNLSkpUpU4aZm5tn+bpE1kmuxbNnz9jLly/Z27dvWdGiRZmLiwuzs7NjjJEW+oa0UBZyPdRqNfP19WV+fn7s/fv3rEyZMqxs2bLMycmJMUZ66BvSQjmQFsqBtNAv1K/NG8TGxrKDBw+yAQMGMMYYGzRoEOvSpQvr3LkzY4z0kPPTTz+x48ePs1evXjEjI6PPukZiYqI4d/jw4czCwoItXbqUMUZlnRVIC+VAWigH0kI5BAUFsVatWrFnz56xZs2asVmzZrH69eszKyurFH2imJgYZmFhwRijMtYHpIVyIC2UA2mhHHx9fVnlypVZ5cqV2cmTJ3UW0VitVjNjY+MUehLpQ3ooB9JCOZAWyiIoKIgNGTKE/fPPPwwAq1SpEluxYgXr0KFDtq+dvJ0PDw9n8fHxzMHBQehEen1Cn1owxlhYWBhbs2YNW7p0KYuNjWVVqlRhrq6ubOLEiczZ2Vlr7J7f0bcWjDH29u1btmXLFrZ9+3bm7+/PChUqxC5fvsyqV69OWiQjJ/SQvuf7779nV65cYdbW1uzy5cusWrVqpIfSyRGbPEEQBGEwVq9eDc457OzsEBAQkOK4PPKSm5sbXFxcYGJiAs45vv76a3EsrRWbW7duxVdffQWVSgXOOaZOnZrqtQndIdfi6tWrWL58OUqXLg17e3uYmJhApVKhe/fuWLt2rUhHWuifI0eOYNy4cbC2toaFhYVYOdquXTusXLlSpCMt9A9poSw2bdqEPn36wNTUFEZGRlpROZYuXSrSkR76h7RQDqSFciAtDAv1a5VNfHw8duzYgcaNG4NzDpVKhbJly2LGjBkiTX6P7COP3rJx40Y8f/4827/RadOmoVixYuCco3///tnNYr6BtFAOpIVyIC2UiY+PD5ycnMA5R6VKlTBhwgT4+/sbOlv5EtJCOZAWyoG0UA6PHz/WaVTKFy9eYOXKlbh//z4AGstlFdJDOZAWyoG0UBajRo0C5xyNGzeGu7s7Pn78qLNr+/j4YNWqVfjyyy9Rrlw5FCtWDG3atMHMmTMRFBQEgCIcy9GnFgBw+vRpLFq0COXKlYOZmRk456hatSo8PT0BkBZy9KlFWFgYFi5ciPLly4NzjoIFC4JzDhsbG4r8nQb6rhsSgYGBaN++PemRiyADO0EQRB7n0aNHcHFxgZ2dHY4cOSJeVCUkJGil++2331CoUCFh3OnUqZM4ltEWwR4eHvj111+FiX306NHiGBlM9MfixYtRtWpVseCAcw5zc3OxJQ7nHGPHjhXpSQv9EBsbi4kTJ6JQoUJCCxMTExQqVEhLi19++UWcQ1roB9LC8EjlqVar4evri0GDBmmVvbW1NYoUKQKVSiU+GzNmTIrziexDWigH0kI5kBbKhfq1yiU+Ph6vX7/GkCFDhImdc44hQ4YYOmuKQZcT3/PmzYNKpRLj8pEjR9LvPQuQFsqBtFAOpIUyCQgIQJs2bVCgQAHR91m6dClCQkIMnbV8B2mhHEgL5UBa5D1evXqFVatWifG1ZA4lDAPpoRxIC+VAWnw+cqP/8uXL8eeffyI2Nvazrycf4718+RJubm4oXLiw6BdIc4PSX+XKlYVxOr8vOtC1FhkRHByMpUuXom7duuCcw97enrT4f/StRXLzuq2tLU6dOoUuXbqQaToVcrpuAEljGjKx5x7IwE4QBJHHefv2LTp27AjOOVxdXfHff/+JzoBGo8G///6LkSNHag00evfuLc5PbnSXIx/AvHv3DmvXrhWDlrlz5+rvpvI5YWFhGDp0qJZmrVu3xowZM3D16lXs3LkT48ePF1rMnDnT0FnOkyQmJuLu3bvo06ePlhbdu3fHtm3b4OXlhcOHD2PatGlCizlz5hg623kS0kIZSG1CXFwcjh49ig4dOggtihQpgh9++AHnz5/H8+fP8ffff2Pu3LlCj/nz5xs493kL0kI5kBbKgbRQJtSvzV3MmzcPpUuXFsZF0kP3PHnyBHZ2dqJ88/vLJkNCWigH0kI5kBa6JSQkBKtWrUKTJk1gamqK/fv3IzIyUmfXp8UFmYe0UA6khXIgLfIOkZGRmD17tmjDzc3NMXPmTMTHxxs6a/kS0kM5kBbKgbTIPnI/R3bMmfL2+dq1axgxYoSI8G1paYkSJUpg/PjxWLhwIX744QdhnHZ0dISvr2+27iGvoCstMkLS6uPHj7hz5w7atm0Lzjlq1Kih050RcjO61kIq89TM6x4eHgCSdito164dmaZTIafqhhwyseceyMBOEASRDwgICECpUqXAOUeVKlXQrVs3TJo0Ca1bt4aLi4swi5QvXx7jxo0T56VnXk+NiIgIYfZxcXHBhQsXdH0r+Z7AwED069dPaFa6dGlMmjQpRbqoqCisWbMGKpUKxYsXx/nz5w2Q27xLQkIC/v33X3z55ZdCi8aNG2PFihUp0kZHR2PVqlUwMjJC2bJlcfPmTQPkOO9CWigDadAeGxuLHTt2oEmTJkKPHj16YO/evSnOiYmJwdKlS2FkZIRq1aqJqABE9iAtlANpoRxIC2VC/drcxcuXLzFv3jwRbaly5crYunWr3iOl5CekiXN/f38sWLCAJtINCGmhHEgL5UBa6AeNRoP4+Hg8fPhQZ1tnP378GM+ePQNAL2WzAmmhHEgL5UBa5B0WLFgAzjmKFi2KmTNn4smTJ4bOUr6G9FAOpIVyIC0Mj9y8fubMGXTt2lXsllm7dm3MmDFDyxgdHx8PDw8PtGzZEpxzfP3114iIiDBE1gkAd+/eRbVq1WBsbIxZs2YhMTGRFp3rgdevX2PJkiUoU6YMOOews7PDw4cPAXzq25JpWlkEBARoLSpIrhehDMjAThAEkU/w8/NDrVq1xCpZ6U+KnjdgwADs27dPpE+vwY6Ojhb/Th4p47///kPp0qWhUqlSNZASn09wcDB69eoltGvZsiW2b98ujssHIhqNBn5+fqhcuTI451i3bp2Bcp33SExMxKVLl/DFF18ILfr27YvTp0+LNGq1WtQNjUaDR48ewdHREZxz7Ny501BZz3OQFsoiLi4Oe/bsQb169YQeY8eO1drqMXnbcvPmTVhZWYFzjkOHDuV0lvMspIVyIC2UA2mhLKhfm7sIDg7GjBkzYGlpCc45qlatir179+o0AiORRFYXkRP6g7RQDqSFciAtdI+uIxA/fvwYw4YNQ6lSpXD9+nWdXjuvQ1ooB9JCOZAWeYvFixdj1KhRePr0qaGzQoD0UBKkhXIgLQyHvM0/deoUWrduDWNjY3DO0bZtW5w7dw5RUVEAtOfQExMTsWfPHpiamqJs2bIICgrK8bwTScTFxWHAgAHgnKNZs2aGzk6eJC4uDqtWrYKDgwM45zAzM8OJEyfEMfmCAbmJvWDBglrvoYicJzAwUARDtLa2xoMHDwCQiV1JkIGdIAgiH/H8+XOsWbMG3bp1Q5MmTVC7dm2MHz8ehw8f1kqX3mpMPz8/jBw5EsePH08zTdeuXcE5R/369REXF0fbQWYDSYvo6Gj0799fmHw6deokOsTydMlp1aoVOOfo1q1buumIjJF+x15eXujSpYvQ4qeffsLt27dFurTKWNpGbfDgwemmIzKGtFAeGo0GZ86cQbNmzYQe06dPx/Pnz7XSpIZkSJwxYwYA0iO7kBbKgbRQDqSFMqB+be4kODgYs2bNEub16tWrw83Njczr2UD+26WxsmEhLZQDaaEc9K0F6as//P39MW7cOLELp4uLC16/fm3obOVLSAvlQFooB9LCcMiNORQZ1/CQHsqBtFAOpIVyuHjxIjp16iTM6507d87QlP7kyRPY2dmBc44//vgjh3JKyJHq0OrVq8E5h4WFBXx9fQ2cq7zJkydP0Lt3b1SrVg2cczRq1AgXL14EkDSfIp/zCAwMRJs2bcA5xy+//EJBAXKY5Ob07du3iyCHlpaWwsROKANjRhAEQeQbSpQowUaMGMFGjBjBEhMTmUajYSYmJinSqVSqVM8HwB4+fMjWrl3L1q5dyw4cOMC+/vprBoBxzlliYiIzMjJiZmZmjDHG4uPjGeeccc71el95FQBCiylTprA9e/Ywxhjr0KEDGzVqFGvXrl2KdPJzOedMrVYzxhizsLBgjDHS4jPRaDSijBcvXszc3d0ZY4wNHDiQjRw5ktWoUYMxllILAIwxxiIjI1lMTAxjjDEbGxvGGGnxuZAWykLS482bN2z9+vXs6tWrjLGkZ9aIESNY0aJFRVp5OUvn+fj4sHfv3jHGGCtSpAhjLO02iEgf0kI5kBbKgbRQDtSvzZ08ffqUbd++nS1btoxFR0ezatWqsV9//ZV17dqVWVpaGjp7uRJ5XzYsLIzZ29uLcTSRs+hbC/n1U/t/4hM5US+ktiS17yQ+kRNaSDpERkYyKysregbqkMDAQLZixQrGGGNlypRhP//8M/3ODQRpoRxIC+VAWuQs8r6PkZGR+P9ChQoZOGf5E9JDOZAWyoG0UB5BQUFs586d7O+//2aJiYmsc+fObOvWrVpz6Knx8uVL9v79e8YYY8bGZEE0BNKYOiwsjDHG2MePH1lsbKwhs5Qn0Wg0rHTp0mzbtm3s9u3bbMmSJezMmTPsiy++YOfPn2dNmzYVfgTGGHNxcWEbNmxgZ86cYZ07d6b6kcNIbcuJEyfYhQsX2Lp160S7Ex0dzSZMmMCOHTvGzM3NDZxTgjHGaGRIEASRz5A6TUZGRszExESrE5URnHPWunVrNnDgQMYYYz179mSbN29mb9++Fdd0c3NjBw8eZIwxVqdOnVQN8kTmkDpQGzduZL/99htjjLHGjRuzn3/+Wcvkk5p5h3POTp8+za5cucIYY6xmzZpa1ySyhjSZPnfuXLZr1y7GGGPdu3dngwcPFoZpxlKWr7SAw93dnfn4+DDGGKtQoUKqaYnMQVooC/lighMnTjDGGBs2bBgbNGhQupNa0nnnzp1jr1+/Zowx5uTkpOfc5m1IC+VAWigH0kI5UL8290Hmdd2TmJgoni8jR45kzZs3Zz4+PmIyncg59K2F3AR87949xtintoW01iYn6oW8fbl8+TLz9/dnKpWKJSYm6uT6eYWcfEbt27ePffvtt+zRo0fMyMiItNAR7du3Z6NHj2bGxsZs1KhR7IcffmD29vaGzla+hLRQDqSFciAtcobIyEjGGBMBpyRo/GwYSA/loE8tkveVacyXPjlZLzQajc6vmReRyun06dPMzc2NqdVq1q5dO7Zu3bp059Al/YKCgpiFhQVTqVQicBiRM8ifN/fu3WPHjh1jnHNWsWJF5ujoaMCc5U1UKhUDwAoWLMhatmzJNm7cyLp3784SEhJY//79mYeHR4pnWfny5dmwYcNYmTJlDJTr/EHytvf58+fs8uXL7Msvv2RDhgxhq1atYgkJCSw+Pp7VrFmTzZ8/ny1ZsoTM60pCn+HdCYIgiNxD8i1U0iMsLAw//vgjOOfgnKNdu3YYOHAgRowYIT6zs7PDunXr9Jjj/IGfnx/atGkDIyMj2NraYv369eJYetsuh4SEYPDgwTA1NYWtrS3+/vvvDM8h0ufKlSuoUKECOOeoUaMGDh8+LI6lV67e3t5o164dVCoVKleuDB8fn5zIbp6GtFAWhw8fhpmZGTjnaN++Pa5du5ap865du4Zy5cqBcw5XV1faGlIHkBbKgbRQDqSFcqB+be4hODgYs2bNgqWlJTjnqF69Otzc3BAZGWnorOUJJk2ahNKlS4NzDhMTE4SGhurkulKdoLqRefSlhcSWLVtQsWJFdOzYEYcPHxbXT0xM1On35AX0XS8A4MKFC3BxcYGNjQ3u378PIGtzYfkFfdeL6OhoTJo0SWzZ/OjRIwCkRXaRP1euX7+OkJAQA+Ymf0NaKAfSQjmQFjnDq1evMGvWLEybNk18RmMDw5ETetBcVebICS3UarXW+yaqe6mTE1pcv34ds2bN0tv18yr37t2DhYUFOOdo0KABrl+/nm56qVzDwsJQsWJFcM5RtWpVxMbG5kR28x3yvlRqY+erV69i8ODBsLKyAucc3bp1y8ns5UkyO3d369Yt1KhRA8bGxhgzZgzi4+Np3i+HkT/nX716hYMHD6JBgwYoUaKE8K5xztGlSxfMnDkT0dHRBswtkRa0PwFBEATBNBqN2Frozz//ZI0bN2ZOTk5prnYuXLgwGzVqFPPw8GC3bt1iFy9eZPHx8eK4hYUF6969Oxs6dGiO5D8v8+jRI3b58mWm0WhY7969RZmmtd01/j+y2MWLF9nhw4dZQkICq1OnDvviiy8YYxTZITs8evSIPXnyhDHGWLdu3Vj37t0ZY2lHC2Usafshd3d3dvPmTQaAVa9enVWsWDGnspxnIS2UgVTeDx48EBEavvrqK9a4ceMMz33+/Dnbt28fe/XqFWOMsdq1a9PWkNmAtFAOpIVyIC2UB/VrcwcUeV2/HD9+nC1ZskT8/7Bhw5idnV22rinVFalOhIaGstjYWBYYGMjUajWrX78+MzY2ZpaWlmnWt/yIPrSQc/fuXebu7s4CAgKYn58f8/DwYI0aNWILFixg5cqVY4mJiWIeJr+jLy3k48MLFy6wcePGsVevXrHY2FjWsmVLdvnyZVatWjXSQoa+6wVjSXOGP/30E7tz5w77559/WPPmzUkLHaBSqcQzvlGjRobOTr6GtFAOpIVyIC30z8uXL9n+/fvZ2rVr2du3b5lKpWKzZ8/W2bhZ6lelN/9OfELfesTGxrJ//vmH/frrr2zUqFGsadOmrEqVKoyx9N+R5Ef0rQVjSfNaFy9eZBMmTGA1atRg27dvp/qSCjmhRXh4OOvfvz8LDAxk4eHhbPXq1aRFBgBgarWabdy4kX38+JEVK1aM9evXj9WqVSvdczjnLCoqis2dO5cFBQWxAgUKsM6dOzMTExOae8oC6f021Wq1eK+RkJCgVe6xsbFMrVaz69evM19fX7Zz50729u1b9vHjR1arVi22Zs0axpj2vHvy8TaNv9MmODiYxcbGsooVK2b4e65VqxarXr06e/ToEfv777/ZokWLmImJSQ7mNv8iaSPVlWXLlrGrV6+yM2fOiDR2dnasTp067JtvvmF9+vQREdflv3+qGwohR+3yBEEQhKKRoqrfuHEj0+ltbGwwZcoUODs7w8HBAZ06dcKcOXPESjdaYfh5aDQaxMXFoXPnzuCco06dOiLqVVpRqaTPHz58CEdHR3DOUb58edy8eTPd84iMiYiIQN26dcE5R8uWLcXnGf2+T5w4gaJFi4pI4S9evMjUeUTakBbKIiQkRETn69q1q/g8vagWERERWLduHezs7MA5R8OGDfHx48cMzyPSh7RQDqSFciAtlAH1a5WD1O95//69iDQi/11T5PWcYejQoeCcY8qUKdnui8rPf/36NbZu3Yp69erBwcFBRJepXr06vvnmG/j5+QGg+iNHl1qkhqenJ9zd3dG8eXMxFnF2doaHhwcAGovI0bUW8mfbv//+izp16kClUsHCwgIuLi7gnMPGxoaif6eCvuuFREBAANq3b09aZBMqL+VAWigH0kI56FsLGqMnoVarsWbNGqhUKnDO4eDggJEjR+Ldu3c6ubacp0+f4tWrV3j27JlWP4G0+IQ+9ZC4cOECqlevDs45jI2N0bp1a2zevFkcJz2SyAktEhMT8c8//+DLL78UY/Dhw4eL46RFEjmhBZCkx9q1a2FqagrOOUaMGCGOkRZpEx0dLd671qlTBy9fvszwnNjYWGzbtg2VKlUC5xx2dna4e/duDuQ2b3Lt2jXMnj0bX331FTp27IiuXbuiTZs2aNSoEZo2bYr69eujSpUqqFy5MpydnWFnZyfeX8j/6tatiytXrgDQ/s3L2/Nff/2VdqVLh4CAAAwaNAi9e/cWn6X1/JDKb/fu3eK5k9kdgInPI/k8VVBQEKZNm4bmzZtr1YWyZcuiVatWuHbtmvCESFDdUCZkYCcIgiAAAB8+fEC9evXAOce3336LsLCwNNPGx8cDALZt2wbOOU6dOoWIiAi8ePFCqzGnl7HZIzY2VgwYO3XqlO52NlK5P378GKVKlQLnHEWLFsXMmTPx/v37nMpynuXdu3diC7RBgwYhISEhw47rxYsXheGqdOnS2L59O9RqNU2SZBPSQlk8f/5cbME1d+5cAOkP6qKjo7Fr1y5h4KlUqRIuXLiQ4XlExpAWyoG0UA6khXKgfq1yuH37Nr766ivs3r0bHz58EJ8/efKEzOt6Rv4cOXHiRLafK/Lz3dzc0KtXL62Jemtra6hUKhgbGwvjtKenJwAaq+tai+QkH2eEhITAzc0NTZs2BeccxYoVg7e3d6pp8xv60CIt87qlpSWGDx8ODw8PYTAh4/Qn9F0vUoNM7J+Hn58fjh07Jv6fystw6FsL6XmW39uKzKBPLVIrf9IkbfRdL+Li4kQ/CiAtJHx9fcE5h5mZGWbOnImnT5/q7NrR0dH4/fffMXDgQJQpUwaOjo5wcHDAwIED8fvvv4t0pMUn9KkHAISFhWH79u0YMmQIbGxshCl44sSJIg3pkYQ+tUjNvC6Nv8k4nRJ91wsJtVqNrVu3inpBWmTMxYsXYWJiAlNTU7i5uQFIv/8THx+PI0eOoHHjxuK3f+jQoRzNc17iyZMnaNeunXh+ZOXPzMwMnHO4urpi0KBBqS4KkffFxo8fL+YMHzx4kOI4kTSPZG5uDs45Dh8+nKlzVq9eLTT5559/0kyX0XwsPaPSJvnv9Ny5c1iwYAEKFy4s6o6xsTFsbGzw888/48KFC1rvPoCU5Ut1Q1mQgZ0gCIIAkNRgb9iwAYULF4azszOOHTuWYSdqyZIl4Jxj1apVqV6PyB5v375FjRo1YGRkhGXLlgFIv2MbEBAgooxaW1ujZ8+eCAgIyKns5mkeP36MkiVLwtjYWEzKpvcb/+eff4RhzsHBARMmTEBISEhOZTdPQ1ooiwcPHsDS0hImJiY4ePBgumnfvXuH7du3o1ixYsJEtW7dOjLG6QjSQjmQFsqBtFAO1K81PFIk/IYNG4Jzjlq1amHv3r2Ii4vDq1evMHPmTDKv5wC6mviWX2f69OligSfnHI0aNcJPP/2ES5cu4d9//8XatWtFFBoXFxcEBgbqJA+5nZx6CSGNVRISEuDh4YE2bdqAc47mzZtnKqpZfkBfWiQ3rw8bNgyxsbEAkswTZJxOiSHun0zsWePx48fixeqPP/6o8+vLDdP5fbFTRuhbi4iICBw9ehRXr17Vqg80554SfWoh32V2+/btWLx4cYpjxCdy4hn1119/wdTUFAMHDtT6nEhaPDB37lw8efJEJ9eLi4vDvXv30KhRI1hZWaUwzUnm0AkTJohzSItP6FoPieTt86lTpzB8+HChxy+//CKOkR5J6EOL1Mzrq1evxrZt28g4nQ76qhfJIRN71rh8+TKMjY1RoEABnD17FkDKcpL+PzY2FsePH0eLFi3Eb3/evHk0dsgmo0ePBuccRkZGsLGxwU8//YTBgwfju+++w+jRozF16lT88ssvmDp1KlasWIFly5Zh1apVOHPmDK5duybmOgDtdkI+jhg3bhw458KcTePv1PHz80OnTp1gYmKCAQMG4Pnz52mmVavViI+Px7Bhw2BmZgYzMzP8999/KdIlr09nz57F1q1bMX/+fMybNw+3bt3CmzdvAFDQkfRITEzEv//+izFjxqBQoULit1ygQAHY2tpi4cKF4hkmkVH0fIDqhlIgAztBEAQheP36Nbp16wbOORo3biy2tZaQd5h8fHzg6uoKzjmmTp2a01nNN3To0AGcc/Tu3VsrUmXy7Rlv3rwJJycncM5haWmJtm3bio4VkX3UarUYjA8aNAgfP34Ux+RavH37FgcOHEDx4sXBOUeRIkXw008/ISgoyBDZzpOQFsri48ePIsrCuHHj0pwkCQgIwPLly1GkSBFwzuHk5IR58+aJATmRfUgL5UBaKAfSQllQv1YZeHl5id96rVq1sHr1akyePFkYEsi8rnzkE+cjR47UMpOMHDkSDx480KpXiYmJ8PT0RKNGjcA5x9ixY2k3IgNy/vx5lChRAvb29ti3bx8AejmlD86cOYP69etDpVLBysoKv/zyi2h7pPJObpyW5sDo5VTOExAQgC+++EJoQdGuUufJkycYOnSo2KHGyMgIly5d0sm1M/MconbjE/rUAkia09qwYQPs7OzAOcfQoUO1IlqTFp/QpxZy8/qff/6JJk2aiPnI5GkI/dcLiQMHDoi+LxkSU5KQkKCT67x8+RIbN24UC8tNTExgbm6OUaNGYdGiRVi+fDkGDBggzKH0jjB1dKVHaiR/F7J+/Xqhx/Lly/X2vbkVXWghbxeSm9fXrFkDgIzTmUGf9UIOaZF5Hj16BAsLC3DOxTyFHOl5Ex0djT179ojd5TjnGD9+PJ49e5bTWc4zyJ/lo0aNEuW6bdu2z7qe/LedmkHX2NgYDRo0QL169ciomw5ubm4oWLAgOOdYunSp1nslqZwk7R48eAAHBwdwzlGzZs0U5SilCwsLw9GjR/Hll1+KyPnSn5OTE1q3bi12GSIttImNjcWpU6fwxRdfoGzZslpl16BBA8ycORNeXl5a56RXhlQ3lAkZ2AmCIAgtnjx5gmrVqoFzjpYtW+LGjRuIiorSSvP48WPMmzcPNjY24JxjyZIlBspt3kUaYCxfvhwmJiaoWbMm7t69m6KDFBAQgC1btgiTro2NDTp27Ih79+4ZINd5E41GA41Gg1mzZoFzjrp16+LBgwcptPjvv/8wffp0YQgqXrw4hg4dCj8/PwPlPO9BWiiP+Ph4Mbhr0KABHjx4kGIC8ty5c/juu+9ga2sLzjnKlCmDxYsXU8RJHUNaKAfSQjmQFsqA+rXKw9vbG/b29uCco0SJEiK6SI0aNbBnzx4yrysY+YutYcOGaU3YL1q0KM20arUaU6ZMEc/DnHphTKQkOjoatWrVEgt6CN3z/v17dOzYUbwQLFu2LG7fvg0gKZKo/IWu3MTOOcfDhw8Nle18z9OnT9GlS5cUJnZa4PGJ169fo3z58mJHjdWrV+tkhzmpTqjVajx69Ajr16/H2LFj8f3332P79u24fv16irT5HX1pIREVFYXJkyejevXqIspx8eLFMXfuXJGGtEhC3/UiMTERf/zxhwjkQ8bptNF3vZBQq9UU4VjPBAUFYebMmcKM5eDggH79+qVYkPD+/XusXbsWKpUKNjY2cHd3N1COCQCIiYnBtGnToFKpUL9+ffj4+Bg6S3kStVqNc+fOiSANnHNs2LAhxfhbbpweOXKkOEbPqZwluRbDhw8Xx0iLJDQaDd6+fYuOHTtCpVJh3LhxqQYeefv2LaZOnSr6p9KOD/SsyT7yOfIxY8ZoPVvi4uLEscTERK3fbXq/4bQMuq6urjh58iRevHghnmNk1P2EvEwXLlwotFi1alWq74t8fX3F4s0iRYpgxYoVAD6Vo/TfwMBA9O/fH+XKlRMLA42NjVG3bl0UL14cRYsWBeccjo6O8PT0BEBzIcmZMWOG1nisc+fOmDt3LuLi4kRZZea5TnVDuZCBnSAIgkiBr6+v1krBSZMm4f79+3jy5AlOnjyJ77//XkSAqVmzJkJDQw2d5TzLs2fPxGDQ1dUVe/bsQUBAAPz8/LBz5060b99eGK4cHR3Rv3//FJHzCd0QHByMypUrg/Ok7d43btwIDw8PXLx4EStXrkSVKlVE9EMXFxdMnz5d79vg5VdIC2Xx5MkTVKxYEZxzNGnSBEuXLsWtW7fg5uaGqVOnwtraWhjjqlatim3btmWr3aCJxbTJSS1o8iR9SAvlQM8o5aCEfi3p8wlvb28ULlxYREd0cnLC1q1btV6MEMpC/vudNGkSChQoAM45zMzMRLS35OmATxPshw8fhpGREezs7KhvbCDi4+MBAJ06dRKLCQj98OzZM8ycORMNGjQQC9QuXLgAIOVL38DAQBFBTkpD5AxSPzYmJgZPnjzBwIEDxcIDExMTMkOkwsOHD1G5cmUsWrRIZ/OxCQkJCA4ORrdu3VChQgWtl8Kcczg7O2P27NkiPfWnktCHFnKkKH/r1q1D+/bthfFq9OjRIg1pkYSutUhuXpd2guScY+DAgWScTgd91wsJiqqrP548eYIJEyaIwDDOzs5YtWqV1vhBPg/1/PlzsdOTvK0gDMO5c+dEX+rw4cOGzk6exNPTU6td6Nu3rzgmjfeAT88pIyMjcM7x448/GiK7BJJ02bVrl2gzhgwZIo5Rm/GJdevWid/1smXLhGkzKCgIV65cQYMGDcS8LeccM2bMoLklHSI3x/7yyy+inDdu3JjlIBTydnrs2LHCoNu8eXMcP35cHPPz89PalY6MuknIy2/ixIlCi169emHt2rW4f/8+Tpw4gYULF8LR0RGcc1hZWaFr164ICAgQ50rl6OXlherVq4v22czMDBMnTsTRo0cRGxuLZ8+e4eTJk2jdurUIMPP06dMcv+/cwKRJk9CoUSPs27cP7969E59n9h0p1Q1lQwZ2giAIIlX8/PxQs2ZN0SkrWLAgnJ2dYWRkBBMTE3DOUalSJfzxxx8pXv4RusXX11ds1ViwYEEULlwYTk5OWi+TqlSpghUrViA4ONjQ2c3T+Pr6wtnZWRh9rK2tUahQIS0t6tatiyNHjiAsLMzQ2c3TGEILikaaNr6+vnBxcdFqM5K/9G7ZsiXu37+vtdVadnj79q1OrpPXyAkt5G3+oUOHcOvWrTSP52dIC+VgiGfUgwcPtLZPJS2SMES/1tPTE3/88Yf4f9LiE15eXmJhcpkyZbBt2zatF66EMtm0aZOoR5xzrFu3ThxLb8J+5syZ4JzD1NQUjx8/zoGcEnLk2jRp0gScc5QuXRpRUVG0GE3HSOUZGxuLO3fuoFu3buCco0CBArh27RqAlG1BQECA2PGD2gn9Ii/fuLg4+Pr6YsCAAahTpw4458JYUqZMGWzcuJH0SIXw8HCdzXO8ePECmzZtEkECpPKvVq0aGjRogJIlS4rPfvnlF518Z15Cl1okR/7b9/HxweLFi4UWU6dO1ct35mZ0pUV65vWtW7cCABmnM0Cf9UIOmdh1z+vXrzF37lwRBbRs2bLYv38/IiIi0j1v4MCB4JyjadOm+PjxI/VtDYD0m4+MjBQ7bE+ePNnAucq7rFu3Dp07d4aFhQXMzMwwdOhQcUxuNJWeU1KgBskAR+if5M8hb29vdOnSRSwoGDx4sIFypjySB0uQ+j2Ojo5o0aIFHBwchHFdpVLB2NgYu3btwocPH7L1vck1orZbtyZ2ABg0aJB4h96oUSOtBftSect3pZMbdfO7HnItpk2bBiMjI9HnlIKASoFF7Ozs0LFjR7GLnEajEec/evRIpOc8acf4CxcupPr7v337NqpUqYICBQpgw4YN4nNCu219/fq11rHPKSOqG8qEDOwEQRBEmjx9+hQjR44U21vL/+rUqYOTJ09me4BCZI7AwEB069YNZcuWFR0qaRVm7969ERQUlC3DldTZok5XxgQFBaFv376oVKmSMIBwzvHFF19gzJgxiIqKytb1M6MB6ZSEvrWQc/XqVXTr1g1btmzRiipAWnzi8ePH+OGHH0R0XQsLC5ibm+Obb77B0qVLdVpW7u7uqF27NtatWwd/f3/xOemRRE5psXr1arHl3ZgxY3Dy5ElxjLRIgrRQDjn5jFq6dCk45+jZs6dWxCvSIgl992vl+Pr6YtSoUSJaogRp8QkvLy8Rib127drYs2cPLdpTINJv1tPTU2ur8uXLl4s0aRlFNBoNwsPD0b17dxgbG6NRo0Za20ET+kWj0Wg9c6Q2gnPtreQJ/REcHIwuXbqAc45atWppjR+Sk1wvQnckj1R15MgR/Pzzz2IhlfRXqVIljB49Gj4+PvSs0jN+fn4YM2YMSpYsKV68f/nllzh48KDoC3h4eGD16tXiZf2qVasMnOv8hfx5FBsbi7Vr10KlUsHGxoYi6+qRxMRE/Pnnn2jevLl4Nm3atEkcj4uLS9M4TcbdnIVM7LpB+t26ubmJSKIuLi44fvx4umPz+Ph4JCQk4IsvvgDnHB07dsypLBNpcO/ePWGoo4Vn+uXx48dYvXo1LC0twTlH//79xTF5v1etVuP48eM4fvw4Pn78aIis5iuSP/uvXbuG1atXo0iRIrC2ttaah7x8+bKBcqk85L/Z+fPnawWCkf5cXFzwzTff4Pr161rnPn78GA8fPsxSuyvfievChQta5+b39ltXJvbg4GBUr15dzPnWqlULXl5eAJLMwPJylht1LSwsKFji/yPXYufOnejRo0eKelGpUiVMnToV3t7eAJJ+v5JOnp6esLe3F2b3pk2bwtPTU6ST/xcAPn78KHZs7N69e07dZq5BV4teqG4oFzKwEwRBEOkSHR2Np0+fYtmyZZg+fTomT56MdevW6dQYSmSO9+/fw9fXF5s2bYKbmxsOHz6s8y2EIiIiEBgYiL1792Lnzp24cOECmXVTITIyEs+ePcOff/6Jv//+GxcuXEBMTIw4/jlbCCUv2ydPnuDOnTtYvnw5VqxYgZMnT4oOdGrp8yv60CI5z58/x/Dhw8WAtF+/fti/f784Tlp8IiYmBmFhYTh79izu3LmD+/fvax3XhR6BgYFaEwU9e/bE3r17xXHSIwl9axEZGYkpU6agQYMG4DxpmzUnJyfMnz9fpCEtkiAtlENOPKMAYPTo0bC2toapqSmKFi2KRYsWiWOkRRI50a/18fHBqFGjxEQxGRrSxtvbW2wRX6NGDRw4cABxcXGGzhaRCosXLxa/5wkTJojP0zOvA8CxY8eEsYdM059HdhYaJyQkICEhAbNmzYKjoyNUKhXMzc2xc+dOXWczXyD/vWfmBa5Go8GpU6dQvHhx2NjYYP369SmuQ+iH5HUiMTER27dvxw8//ADOudjh0dbWFo6Ojli/fj3u3LmT7jUI3eDl5YXvvvtOtP8lSpTA6tWrxQIPqX5oNBpER0djypQpMDY2RocOHfD+/XtDZj1fExwcDFdXV6hUKowfP97Q2cmTaDQa/P7772jUqJHoc+3YsQNAUpsj1Y30jNNEzpKQkIDNmzcLLeSRkKkNyRjpNx0UFIQyZcqIXYL27dunNcee1nlRUVEi4vf//ve/FMYfQv9I5R0eHo6ZM2fCysoqxWJnQnfIf9/x8fFwc3MTJvb0dkihIGL6I3nZRkZG4tGjRxg+fHgKI7a9vT3GjBmD48ePGzLLikQ+L/7ff/9h165dGDlyJKZOnYqVK1fixYsXYhwgLfwODQ3FoEGDYGtri927d2fp9x0ZGYk5c+agcOHCaN26NXbv3i0iK+f3sXpaJvbffvstS+8vwsLCsGXLFri6uooFy1Kk6eSL9wMCAtC6dWvUr1+f5oRlyH+L79+/x40bN/D777/jt99+w65duxAWFiYWJ8kjr/v7+6N8+fLC+NyuXTv4+vqmuKaENLcl6d26dWt931q+huqGMiEDO0EQBPHZ0EBbOXzOYC65fvv27UPnzp3FyytpJXrjxo2xZMmSNM8jtPmc8pHr9+7dO6xfvx5VqlTRikSmUqlQo0YNLFiwIFvflZ/QVfnExMTg0KFDIpqMSqVC0aJFMWnSJJEmv0+o5CTR0dE4duyYWIkuRR+Tv7ylupEzfPz4ETExMVi5ciXatGkjXhaOGTNGpCEtcgbSQnmcPXsW3333ndCCnlGZRxdtqmRelyJpVKhQgaLyZYC3t7foe65YscLQ2SFSwdPTU2zb/OWXX4qoLxmZ1+/evau1QOHevXvpnkekRP6C8OXLl3j58iVevXqFx48fw9vbGwEBAfD09MT169dx69Yt3Lp1CydOnICbmxs2bdqEHj16oHHjxqLvmryNTg0p2qWuFlflRfbv3y8WeWf0e46NjUXdunXBOUfLli1zInv5muR6+Pv74+DBg2jWrJkw+MjnnH7//Xf4+fmlew2A6oWuCAgIwI8//ija/dKlS+Ovv/7SinifvI904MABodvdu3dzOsuEjKFDhwoD1ps3bwydnTxHQkICtm7diqJFi8LIyAiWlpb47bfftI5LqNVqbNu2TURyXblypQFynH9J3k4sWbJE9LMGDx5soFzlTmJiYtCxY0dwzlGkSBHMnz8f4eHhaaaXtxHjxo0T5iwyhBqO4OBgrF69GhUrVhQ6BgYGGjpbuZrMRjr+8OEDJk+eDGNjY1SrVi3FYkwi5/jw4QPu3buH7t27o2rVqlrj7wYNGmDw4MEIDAzUaj9oXkSbjMojtXnUgQMHgnMOKysr7Nu3L9NzrZcuXULXrl3FGKNYsWLo2rWrGBfm9zGf/P6ltrZ06dLw8fHJ1PmSlgkJCfDx8cHXX38Nzjmsra1x69atVM8JCQkRz778Xv5yMlqAlPx4SEgIvvrqKzHn0aJFC/G7Tq+OxcbGikW0zZo1o+eTnqC6oVzIwE4QBEEQ+RB5p/fWrVsYM2aM1ip0GxsbFC5cGKampmISXr7lIJl9Mk9GZSXX4siRI/jmm2+0tHBwcEDp0qVhY2NDWmST7JRVYmIiIiIiMHr0aNjY2KQa1YfIGp+jh/ycmJgYjBs3Dg4ODkKPn3/+WZdZzDfo4jni5eWFBQsWCC0mT56sg5zlP0gL5fC5Wsjb9aCgIMybN09oMW7cOF1lj0gHybwumbIaN26MqKgo7Nu3j0zsGeDn54eZM2dSmSiU8+fPw8bGBpxzzJ07N90X6pKGvr6+aN++PYyMjGBqaoqhQ4fSbmrZYPr06WjYsCFKliwJR0dHFC9eHLa2trC1tYW1tTXMzMxgbm6OggULivGcsbGx1qLkYsWKaUXPT+3Fx4MHD1C/fn38999/aabJ72zatAn29vYYNmxYhmmlCEn9+vWDsbExypYtq2XUzSz0bMw6Pj4++P3331GuXDmxkEaa1+jfvz/Wrl2r9SxLr4ypXuiG169f49dff0XRokXBOYezszOuX7+eZnpJk/v374tn299//51T2SVkxMfHAwCmTZsGlUoFe3t7vHr1ysC5yrtcvnwZ06dPR4ECBcA5R9++fcUx+fNHrVZj3bp1cHV1xeXLlw2R1XzP8+fPcebMGTRp0kQrGMyUKVMMnTXFIz3jb968KaKvt23bNsWisrQ4fvw4ateuDc45ypUrhwcPHugzu/kCabEekDT3HRcXh48fP+Ldu3cIDw/HmzdvEBwcjMDAQNy5cwd79+7FypUrUatWLTg4OIgoops3bwagPUeVWj+L+repExcXh3v37qW7C4Gcs2fPip2FNm7cqOfcEUDKscC+ffvQt29fFCpUSOv9av369TF16lS8fPlSREmmepF50jPQysvpu+++E4uZsmJif/z4MS5cuICOHTuiRIkS4JzDyckJHh4eGX5/fkD+O587dy5WrFiBd+/efda1AgIC0L59e3DO0aZNG7x48SLNtPm93D+XxMREaDQarF+/Xvyey5YtKwIvZGSAP3PmDEqXLg2VSiX6sfQ80j9UN5QDGdgJgiAIIg8hvcwA0n6ZJ+9c7du3T0TXkKJT9u7dGzdu3ICfnx/Onj2LOXPmCLPP/Pnz9X4PuR1pMCGf3MqMFsuWLRMR4TjnaNq0KUaNGoWgoCC8evUK165dw8KFC4UWixYt0u+N5AGyokVGyLWaNGkS7OzsYGpqCs45Zs6cma185hckPT58+CA++1w95OeNHTsWFhYWwgixatWq7GU0H6BLLeQTKB8/fsS6deugUqlQsGBB7N+/P3sZzQeQFspBX1pERUUJLTjnWLNmTfYymo/ITL82Ob6+vlqR1xs1aiReAH/8+BFbt24lEzuRa5kxYwY45yhZsmS6hjXp9xwQEIC+ffuKqO3Vq1cXk/D0m886p0+f1jKiy1+KS5+ZmppCpVLB3NwcFhYWMDc3R+HCheHs7Ixq1aphwYIFcHd3F9dM7dnm6emJWrVqCfPJw4cP00ybX5HMglJ9uHjxYqbOkyJgFSxYECEhIZn+PsnoIEEvrLSRnidSuURHRyMsLAzjx48XOw/IF+j3798fR44c0bpGRr9vqhfZRyqrP//8E6VKlQLnHKVKlcKVK1cydd6mTZtgYmICKysrsYiAyDmkevbmzRvUqVMHnHOUL19ea+xC6Ab5Mz4yMhJubm6wsrJKEcRC3pdKTExEaGgotQ85gPRMSkhIQExMDFasWIE2bdqIOVqpnW/fvj22bdtm4NzmHmbNmiXK79SpU5k6x9PTE7169RLnyXcqILLOixcvsHPnTjRt2hRffPEFmjdvjqpVq6J27dqoW7cuXFxc4OzsjPLly6N48eKws7MT4zz5n52dHVatWpWiryt/Zu3cuRMzZsxI9RiR9HzZu3cvnJyccPLkyXTTSmWXkJCABg0agHOOAQMGQK1WU7nmAAkJCVizZg369u2rtXi8WLFiqFKlCtzc3NJdkEP1IvvIFyP3798/0yb25BGr37x5g4MHD6J58+bgnKN48eIi0nh+10I+5pXPTUj9zsjISK059LRISEjAli1bYGxsjOLFi+PcuXMAqHx1jVqthqurKzjnKFCgAG7evAkg7Xkk+efff/+9aM9p0fjnQ3Uj90IGdoIgCILII8TExGD37t1YtmyZ+Cx550r+/5s2bULDhg1FZ/jrr7/GwYMHU0Tyi4mJwdKlS6FSqVC9enV4e3vr90ZyMVL5hoeHY9asWVqG/+RayAclM2bMEFFOpCjSN27cSKHFx48fRVTdBg0aIDg4WI93k7vJihaZvRYA3LhxA40aNRIRmCpXrozQ0FDdZDoPI5Xhq1evMGDAAK3JwM+9FpAU3aRYsWKi7rRr1+6zIxDkF3SpRWq8ePECbdq00TKH0kA/dUgL5aBrLZKXc2hoKIYOHQqVSoVWrVrh5cuX2bp+fiAz/drkPHr0CCNGjBARqps0aSKOybd4lJvYR40apZ8bIAg9MGfOHHDOUalSpTT7O/LI699++y3s7e3FC1x/f38AZL7NDiNGjBBm9QYNGmDnzp3Yv38/9uzZgyNHjuDcuXM4ffo0zp8/j//++w937tyBp6cnIiIiUkS+T00HT09PVK9eXeyKJv330aNHAMisK+f27dto1KgRVCoVRo8ejbdv36ab/tq1a3BycoKRkRFatWqVoizlbcybN29w//59jBgxAl9//TXatm2LXr16Yfv27Xj69CkA0iItPD098dNPPwmDrfRXq1Yt/O9//4O3tzfev3+f5WtSvcge0u/7/fv3oiyLFy+Oo0ePpnue/Dn15ZdfgnNOUb91iEaj0Xr2yM1uCQkJ4rct6RASEoJ58+aJOZBWrVplOjIs8fkkJCRg48aNKFCgACwtLfH7778bOkv5juTjwDdv3uDXX39F27ZttRYWOjs7o0mTJjh37hyNuTOJ9Hz5+uuvxXMlISEhw7F3cHAwhgwZovUuQ7oWjTWyTmJiIjZs2KC1c1Naf/KFtCqVCkZGRjAzM0Pt2rXRuXNn3Lx5U+w+JCHX8+DBg6hYsSI45xg8eHCqafI7Hz58QI8ePcA5R8+ePREWFpbhOcHBwaJ97tWrV5rpMlM/SIuUJC83T09PbNmyBXXr1hVBjTjnsLS0RKtWrXDo0CE8efIk3WtQvdAdqZnYTUxMcOPGjUydL18Q7enpidatW4sdQV6/fq2XPOd25IErxo4dK8opo99seHg4ihcvDs45Bg4cmKlziKwhBVswNTUVwdYyY16fPXu2eJYNGTIkR/Kal6G6kTshAztBEARB5AGio6Nx+PBh8ZJw3LhxKdLIO1pbt24V0as45xg5ciQCAgJSRM6SuHnzJiwtLcE5x+HDh/V7M7mct2/fYtWqVShfvjw45xg/fnyKNHItZs+eDUdHR6HF7NmztbaKTN5B/vfff8VE5dmzZ/V3I3mAzGiRFa5cuYIGDRoI83qVKlUQHh4OACkWGxApefHiBX755Rexnenn6CGvD6dPnxbbnkvm9YiICACkR0boQov0mDhxIjjnsLW1xbNnz3R67bwGaaEcdKGF/CV58vb7wIEDFEEjk2SmX5ucxMREHDp0SLwwVKlUWLx4sTgubxckE7sUpW/kyJF6uQ+C0DVHjx6FkZERihcvrhX9Vhq7Sc+d+/fvo0uXLrCzsxPm9du3bwMgo+fnIi+3UaNGief5rl27Mn2NjF58yE26jo6OmD59Olq1akVm3XTYvHmz0GL16tVa42i5cef169eYMmWKGEen18ZfuHABffv2RcmSJVMYhqysrFCrVi14enoCIIOWHD8/P/Tr1w8FCxYU5WxqaoqyZcvi119/hbe3t4gWl5WXgFQvdIdGo8GwYcPAOYe1tTXmzJmT7uJvuU6LFi0C5xxmZmaYPHlyiuOEfnnx4gWuXr2Kbt26oXTp0iKy5dWrV1OkTc+cRWjz/v37TJkSgSQDhBQE5ocfftBzzgiJ5L/ny5cvY/78+VpBYKS+bt++fXH16tUUmmo0GqoX6SCVj9S29u7dO810EkFBQVr94c6dO4uxBvH5+Pr6ijkKU1NT9O3bF6NHj8aUKVOwaNEizJ49G/Pnz8fmzZuxadMmrFu3Dvv378dff/2FS5cuITIyUvR/5XrJ/33gwAFUqFABJiYmQj/amS4l8fHxWLduHYoUKYJSpUrh8OHDafb7pT7of//9hxIlSoh2IqPnztWrV7F//34MGzYMI0aMwO7du3Ht2rU00xNJ3LlzB2vXroWjo6PYgUCqN0OGDIGbm1umrkP1QvfI512/+eYbtG3b9rOvdfLkSRQuXBjFixcXuyDQ2DslkZGR6Nq1KzjnmDNnTobp4+LiEBUVJd6X9+zZMwdymf8YP348OOcoUaJEuos45L/p9evXawXNy2ihOZE+VDdyL2RgJwiCIIg8wLFjx+Di4iK2SevcuXOa0bkPHz6MJk2aiMH4xIkTERkZmeF31KhRA5xzEcmaBowpSUxMxJo1a1CkSBExeTJs2LA0X4isWbMG5cqVE1osWbIkzWtLEyWxsbHinB07dmgdIz6RVS0y4sqVK2jYsCGZ1z8TtVqNiRMnwszMTLz4Xrx4sZbJJCPSM6+3b99eRPIj80L66EKLtJBelEydOhWmpqYoXLgwXrx4ke3r5lVIC+WgCy327t0Lzjn++OMPrc/lkb8rVKgAzrmIKk7td+pkpV+bnMOHD2PEiBEwNzcH5xzffvutOJbcxC5FOJs6darWFqwEoVTu37+PypUrg3OOhQsXphp19Z9//oGLi4uoA8WKFcP169cB0DMnu8j7mL/88ovoh27cuDFFlMOs4uHhoWXSXbVqFUJDQ/H06VO0b9+ezLrJkP+WpZ0JOOdYtGiR2GZc4tGjR5g1a5YwVbdo0QIhISEAUpbjrl27YG5uLqJfOjg4oE6dOhg5ciTatGmDKlWqCI1oO/OUSPXCxsYGTk5O2LZtWwpDW1bKi+qFbomMjETLli3BOUeNGjVw//79NNPKdTpx4gQaNGggytvd3T0nspsnef36NS5fvoyjR49i7969+OOPP7B9+3b89ttvWLlyJRYsWIApU6ZgwoQJGDRoELp27Yp27dqhdOnSwpwlRRfdvn07gLRNitJW9ck/J5IICwvDpk2bxNgtM2UkmVGMjY0RGBio7ywSMv766y9MmTIF5ubmsLCwEIs4zMzMMGvWLJw6dUorPdWLrDNgwABwztG8eXNER0drHZO3r3fv3sXgwYPF86hVq1Y4efIklaeO8PLyQuHChcE5R5s2beDn55fla2RkXuecw87ODl999ZXoH5NZNyVv3rxB586dwTlHo0aN8PDhQ3FMvluKRIcOHUQbfebMGa1rSe9R1Wo1bt68iV9++QWmpqZizC4FYXB2dsbs2bNTfA+RFDCkb9++qF27ttYCJkdHR4waNSpFmac3LqB6oT9Se0/6OWO0iIgIYST98ccfdZG1PElkZCQmTJgAzpN2Ib13716aaeU7cknBe9q3b691jMg+arVajLn/97//pZlO7q/Ztm0bSpYsKZ498naA+DyobuReyMBOEARBEHmAoKAgMWgfOHBgilWdUifL29tbbH8nRR6Lj49P99oajQa3b99GoUKFwDnHhg0b9HYfeYGAgABRvtOmTUvzpca5c+fQrFkzrZftEul1ik+cOCHOOXjwoM7zn5fIrBYZkdy8XrVqVTKvfwZ+fn5aRh8pWnpmIPO6bsmOFmkhL3upnTEzM0NQUFC2r52XIS2UQ3a0SEhIwIgRI8T5khFCPhm5e/ducXzdunU6z39eIqN+bWrIyzo0NBS///47rKysUkRJlKdTq9V49OhRutFHCUJpSFFwpf7tiRMn8PLlS2zfvh2jRo3S2lK+XLly8Pb2NnSW8xTpmdg/d1zg6emJqlWrighNK1euFAZrAPD39yezbirIn+fSiynOOerVq4dRo0Zh/vz5GDVqFBo0aCDqRe3atbF79+4UcyARERFadcvCwgLNmjXDvXv3hBYfPnzAf//9hzZt2gjDFm1nnoRci+XLl2PDhg14/PhxmmkyA9UL3fPXX3+J3/j69evTTCcfe1+/fh09e/YU582cOTMHcpo3efbsGX7++WexW9Dn/Nnb28PFxQV//fVXiueYXDc3NzdwzjFo0KBUjxOAu7s7jIyMYG9vn+FCWal9X7p0qQiQ4eHhkWZ6qaypzLNG8vIKCQnBrVu30K1bN5QqVUqrLlStWhVz5szBrVu3tM5JL+Ix1YvUkcpgx44dsLKyQvny5bUWnyUvQymaJeccbdu2xYEDB+g3r2O8vLxgb28Pzjlat26ttTgzK2Wcnkl35syZ0Gg02LVrF5l10+Hx48diAWvLli1x48aNFAs8NBoN+vbtC845TExM0Lp1a62FB1LfNDY2FosWLULTpk1TPM/q1asHFxcXocXYsWNz9D5zA0+ePNEqt0aNGuHHH39EUFBQlhaTU73QP/K2+HOC4El9XGnnm86dO+ssb3mRc+fOid/x1KlTUw1WKA+ON3/+fKhUKhgZGWHu3Llax4nso1arxa42aRnY5fVi48aNKF26NIyMjMA5x88//5xqOiLrUN3InZCBnSAIgiDyCF5eXvj5559x5coV8VnyztXMmTPFIH/IkCHC9JkW8klM6bwDBw7oPvN5DG9vb8yePTtFlAy5HkOHDtUyn0ikNSiRzl20aJGYQLl06ZIecp+3SEuLzEKR13WLt7c3tmzZkuGzR05y87r8hS+Z1z+fzGiRfMJR/lJKOpa8nVmyZAlUKhVUKhW6dOmCjx8/0kA/A0gL5ZCaFpmdLAwNDcXw4cPF82nBggUi6vHhw4fRvXt3cezQoUN6yX9eIrV+bVYmbtVqNXbs2CEi9K1YsUIf2SSIHEP++580aZLWy9uSJUuCcy5eeJQrVw59+vTB8+fPdfq9RBK6NLF7e3sL/aysrDBt2jRxfXmbHRAQIMy6VlZWWhEA8zNyLebOnQt7e3sxVpYiGkr/37RpU2zfvj2F6SQ8PBzTp08XOlaqVAnjxo1L9eVWYmIiTp06BXt7ezg4ONB4XIb8t59W3zSzUL3QD+7u7jAxMYGNjQ2uXbumNY6QkJfv3bt38d1334m68d133wkdqG3IOm/evBGRJKX+acmSJeHk5IRChQrB0dERlStXhrOzM1xcXNCgQQM0bNgQjRo1wqBBgzBlyhRcvHgx1V215Lrt3bsXNjY2Qrdhw4almi6/c/78eZQqVQoWFhZYvnx5ursxaTQaqNVqfP/99+Ccw9raGgEBAammkxMREYEXL14gICAAgYGBWvWGtEib8PBwnDx5Ei1atEDp0qW1+rwdO3bElClT8OHDhwzLkOpF1nj58qXYbaNFixY4c+YMwsPD8e7dO/j6+uK7777T0qN79+44c+YMmdf1hLe3t5aJ3dfX97OvdfDgQWHgKly4sNZ7qNjYWGzdujVVsy619Un4+vqiePHiwmw+ZMgQnDp1CmfOnMHmzZu1DOlFixbVencq9Y8/fvyIH374QUR25ZyjX79+2LBhA2JiYhAXFwcPDw+sWLFCaLFy5UoD3bFy8fLyQrNmzTBjxgyEhIQI4/rn/FapXigTaazx8eNHlC1bVixWkL8LIVKyevVq8WxZu3at1pyHtLtsfHw83N3d0aRJE5H28uXLhspynmbp0qUwMjJC8+bN8fTp01R37QCAhQsXws7OTjxr5LvI0rtu3UB1I/dBBnaCIAiCyEPIJ9yTD+hOnz4tOl9ffvklHjx4kKlr3r9/X0yuNGvWLNvbo+cX0otsv2/fPqHFgAED8PbtWwAZT/ZevXoVJiYmtPI8i2S0y0BakHldP3xutBhdRl6nCa8k5OWQnUmRt2/fwsfHByNGjNB6KbhmzRpdZDNfQFooh7S0yCgyH5AUJa5fv36i3AsXLowaNWrA0tJSfCafjCTSR96vlWuR2UVQISEh6NWrlzA7pGZGJIjchLwerFq1SmxLK/0VKVIEffv2hbu7e4qdBXbu3KllMskMUtoHDx5g0aJFCAsLE/3q/N6XSsvEvmnTpiyNE/z8/NCgQQNhaqxduzbu3LkjviO5Wbdt27bCWJSVBaF5GbkWx48fx9ixY2FtbS124ShdujR+/PFHeHp6ihdU0jkJCQmYP3++0K9OnTr47bffRPuTWp8sPDwc5cqVS7EQndAdVC/0gxR92MbGJtXdOeSGnCtXrqB///5aRkUpyj3x+Xh4eAhDYpUqVXDlyhXExMQgNDRU9FPj4uLEswpI3SglrwPJTbrSuEO+DT1FD01JRESE2EGrZs2aae74JLUDr169Qp06dcA5R7FixRAWFpZqOgB4/vw5Vq1ahaZNm8LW1hbW1tYwNjZGz549tXY/IC0+kZiYiIiICKxevRpfffWVVv+2UKFCaNWqFTZt2oTIyEhRJ9KbN6F68Xn4+fmhRIkSYi7D2dkZpUqVgqOjo5Ymv/zyC7y9vUW5fY6hk8o8Y3RhYt+xY4foT9nY2GD27NnimLwuyc26o0eP1tUt5Bn8/PxQq1YtrXrAORfPFjMzM5QqVQq7du0S50jj5piYGHz99dcwNTUV561YsQKhoaEpvic6OhpTpkyBkZER2rVrR/3aVEg+r/c5zxKqF8pE3qZIwd/Mzc2xcOFCrePEJ+Ttr3xR/owZM7QCwsTGxmLDhg1o0aKFSDN//nxDZDlfcOrUKfFebvXq1VrPcrVajYcPH2oFOOSc46efftJKQ2QPqhu5FzKwEwRBEEQeRD6Ykzpqv/76K8zMzGBnZ4dNmzZlasD37NkzDBw4EAULFoRKpcL48eM/2wxMJGkRExOD//3vf+Cco0KFCjh16lSmzvXx8REmFXt7e6xduzbViFmEbsiueZ0M7tlHH5HX5ZFIadLrE/IyvHTpEk6fPg13d3fs27cPu3fvxs6dO7F69WosXboUK1aswKxZszBy5EiMGDECvXr1QoUKFVCmTBmtKJfjx48X16SyzjykhTJZv3491q1bByD9MtRoNDh9+rSIpCgtOpP+evfujcDAQAAUtScryMv89u3bOHLkSIrP02Ljxo2i/C9cuKCvLBJEjiFvJ968eYMbN27g9OnTOH/+PLy8vLTSSs+ZixcvwsrKCubm5ti7d2+W2oK7d++KbdMbN26MRYsWif5Ufn+OpWViX7lyZabKRtLhw4cPOHbsGL744gvxklaK7J1cq4CAAAwfPlzLAEek/C0+ffoUvr6+uHPnTooFaPK0mzZtErrVq1cP27ZtSzeSX0JCAt6/f4/q1auDc65ldiB0A9UL/fHkyRNUqFABJiYm2LJli1ZUe/nz7M8//0TXrl1F3ejUqROuXLlC4wgd4eXlhcKFCwtDor+/PwBt0440n6TRaLTmlpJrIP//ffv2CSNdpUqVsHz5cmzevJnMuunw9OlTNGzYUCyAefTokSjv5HN63bp1S9NIJa9Lq1evRocOHVI1ONL4PG2io6PRo0cPUcacc5QpUwbNmzfHxYsX8ezZM630GY3JJaheZJ2AgAB88cUXKUzrFhYWaNu2LXbs2KGVPiYmBnfu3MGrV68y/R3ysr558yY8PDzSPJ7fSW5iz+oOs8uXL0eZMmVgZGQEMzMzzJkzRxyTP+cks66ZmRk455gwYYLO7iGv8OzZM4wfPx7169fXqhsFCxbEgAED4O7uLtJK708/fvyI3r17i7Tm5ubYt29fut9z6NAhkV5awEmkJDvPCaoX+iM7ukRERODVq1fo168fbG1twTmHnZ0d/vnnHx3mMO8hH8dNnEi86sMAAM27SURBVDhRK6hO+/bt0a5dO1SsWFEr0NHIkSMRFBQEgNpcfTFz5kxR3j/88AMWL16MvXv3omfPnqhdu7Y4VqpUKUyePFmc97nm9eTnkQme6kZuhQzsBEEQBJEP+PDhAypXrgzOOZo3b671MiQtwsLCsHTpUhF5o2zZsnj9+nVOZTnPEhoailKlSoFzjm7dumWqExwcHIzhw4eLl1zNmzdPEbWdOtNZIy4uDk+fPhVbRiWPNpYd87o0MHr//j3Onz9P2wRngrCwMHh7eyMqKgqAth66irx+//59WFtb45tvvhGfkR7aDBkyRJifP+fPyMgINWvW1FqlnppGDx48wOnTp9PdNSS/k1NapAZpoc2ZM2dgbW0Na2vrTEW8iomJQa1atdCsWTP8/fff6NOnD8aNG4fffvtNK11WzI1EEn5+fmjTpg1MTU3x8OHDdNNK7fW1a9dE/+nPP/9MNS2VM5HbSOs3m14URGl3CEtLS+zbty/Tv3s3Nzf07NkThQoVAuccBQoUQLNmzUT03vz+UiQ1E3uvXr0yvehbPpYLCgoSC52LFy+Ou3fvpnqO1F+Wn098Ii2DZ/J6cebMGdFvqlatGtavXy/M6+mV671794SJYe7cuTrOPQFQvdAXHz58ECaq5s2b4/79+4iJiQGQ1G9Sq9WYNGmSWLTEOcfXX3+NGzdu5PsFS7pGF1F15ZrII0xXrFgRK1euFPWAzLrpExAQACcnJ7FQb/v27Xjx4gUA4N27d7h58yY6d+4MzjlMTEzQvHlzXL9+XZwvn18fOHCg1tyVq6srhg0bhjNnzmDDhg0YPny40IJ28EjJw4cPYWdnB2NjY3z//ff4559/UuwolNHvluqFbggLC8PVq1cxb948zJw5E4sXL8b9+/e1IkZrNBpoNBqcOnUKnHO0a9cuxUKDjDhy5Ahat24NzjkmT56Mc+fOaV2fSELeZjRr1kwsfMosly9fxtSpU2FhYQHOuda8uHwso1arsXbtWtjZ2eHevXu6yn6eIjY2FjExMTh8+DB27doFNzc3+Pj4iPdLwKd2IS4uDsOGDRPvl2xsbHDo0CGRLvlvXNIiICAARYsWhbGxMS5evJgDd5U/oXqhe6Ryi4mJga+vLzw9PeHh4YG7d+/i0qVLuHLlCi5evIijR4/i8OHDOHbsGLZu3Yp58+Zh2rRpaNq0KVxcXLTeb2zatCnd75Qi8tO81Kf7X7p0KSpVqpTmO6Np06alWEArf4Z9DlFRUcKvkN+1kPdFJ0+erLWIVZpHkv569eqF3bt3a50vf1/6OWzatEksDMzvWgCGrxtE1iEDO0EQBEHkA54+fQoHBweYmJhg+fLlANI34r579w6bNm0SA0YHBwexnao8skxa0CRj2jx48AAWFhYoWLAg9u/fDyD9gcTz588xefJkFC9eHJxzlChRAo8fP05xXkJCAp4+fYotW7Zgy5YtOH/+PEWbToPY2Fhs374dbdq0wfbt2/HhwwdxLLvmdYkPHz7AwcEBnHNMmjRJRIsDSIvkvHnzBtOmTUOLFi2wc+dOREREiGO6Mq8/ePBA60X8sGHDxDHSI4k3b96gbNmy4JzD1NQUKpUKjo6OsLS0RKFChVCyZEmUKFECJUqUQIUKFVClShXUqFEDrq6u+PLLLzF8+HAcOXJEy1Samkbe3t4iisbYsWNx/vx5cYy0SCIntAgMDMS5c+cwYsQIjB8/Hn/++adWetLiE/KtgmfPnq1lkEqLLl26wNbWFs+fP0/zpZTEnTt3cPjwYYwbNw6zZs3CsWPHhDEUIC3keHt7i6i3kyZN0mq/0+L3338Xz/69e/emmzYgIABXr17FwoULsWbNGpw9e1Yrci9pQeRG5M+cAQMGiAiKf/zxR5Z+056enhgyZIiY7C9WrJh4KZLfjY3yMt61a1cKs1VWePToEZo0aQLOOfr165fuc46eSZ9PUFAQWrVqJaIvTZ8+HbGxsQDSL9fw8HD8+OOPYlx++/btnMpyvobqhe4IDAyEs7MzOOeoU6cOBg4ciI0bN+L7778XZSz9/fzzz/D19c3WM570SBtdmNgBYM+ePSJqXKVKlbBmzRqtnSSk6KFk1k0bX19fUS+srKxQqlQpdO3aFVWrVhWfm5qaokaNGmIeF/gUYTcxMRGdOnXSqj9z5swR0fskPnz4gDVr1kClUsHe3h5//fVXjt5nbuDZs2c4c+aM1mef8zuleqEfUguic+fOHa1FT5k1scfExGDOnDlirvb/2DvruKiy948/Z2YIQQQRAwPFRgm7u7t7dY117a71q+5aq2vs2t0dq2t3dxcoKRKioKIoXTN8fn/wu8c7zBCSxnm/XryAuefeufc89zn5Oc9RqVQoXbo0Fi1apPN9gsSdeaUFGf/88w9/n1NCXn+HhYVh165dMDMz43W8RNKdnKVxd7G7rC6pLSSXL5xds2YNr0NUKhUOHjyY6nUAYOnSpdynHjx4kIl3LwCEX2Q1ISEh6N+/P0qXLg0LCwuYmpry3QCNjIz4LivSwkB9ItLcuXOjdOnS2Lx5M7+uvv7I0aNHUbhwYb5TwY8u1pU//61bt7B8+XI4OTnBzs4O9vb26N27t97d4D09PVGnTh3s3r07XfVueHg4li9fjkKFCvHF5sIWn59/y5YtGDBgAHLnzo0CBQrA1tYWbdu2xf79+7noX8LPzw+9evXCv//+my5bHD16FIwx5MmTB0+fPtW5lx+VnPKNsLAwXLhwAe/eveNlmGjbpo4QsAsEAoFA8J2TkJCAZ8+e8c5h0hWdSQkODsbq1atRpkwZMMZgZWWFLVu2ID4+XqejGBcXh5iYGNy5cwdXr17FvXv3dKJAiAbZZxISEnD79m3eGT969GiK6f38/DB58mQULVqULySQopHIG91+fn5YvHgxj+wurept1qwZli9frvX9gsROtTRAXqVKFezevRtA4ralNWrUyLB4HUgUr0gCVIVCgZo1a2LJkiX8uLDFZ0JCQnh5U7lyZW6PCxcuZJp4XS62EhNUyePq6srF5TY2Nrhy5Qp8fX3h6+uLkJAQhISE4M2bNwgPD0dMTAzCwsKSnTTRN7Co0Wiwc+dO7n8KhQJVqlTBwoULeRphi0Sy0hY3btxA27ZtuWBC+hG20E9kZCSmTZsGpVKJChUq4MaNGymmf/PmDapWrQoTExOd6DzyPI2MjMSaNWuQJ08ePlki/VSrVg2LFy/We96PTGRkJP744w8YGhqifPnyuHz5crJppTyTIiIzxvQORkrs27cPDg4OsLS01GpLNWjQQNTfgm8eeTu2X79+XIiV2vblSSNXh4aG4tKlSzxSoq2t7RdHAPxe0ddXkNe/r1+/Rnx8fKplSGxsLH777TcwxlCyZMkvjmQpSBnJJkePHuX9jLZt2+rdBUof586d4zvbOTo66kw4ClJH7gPCL3IGT09PrcXdSqWS/21sbIzy5ctrtUOBxKh6UrT2tCL3J6kfL9AmoyL2+/fvc/GPSqVC165d+TF59L6kYt1hw4Zl2jN8L7x48QKdO3dG8eLFtSIlMpa4+0y7du1w+PBhnl4uhpbaRSqVCoULF8a2bdu0ri1vI/j6+qJ69epQKBRa47UCXdIruBF+kTkkFW+mlObWrVswNDT8YhF7eHg4goKC8Ndff6FWrVrcFuPGjdN7Hz86np6eGDduHO7du5eu8+Pj47Fu3TrkypULJiYm2Lp1a+be4A9I0vdT8pWXL1+iVatWvB6Rz8fqe6elz9RqNfr3788Xy/r4+AgfyGKEX2Quu3fv5u+9VC8olUo+32pkZIQ8efLA1NQUFhYWKFCgAPLnz4/ixYujdu3aaNGiBXbu3Km1UFxfHXTmzBnehs6XLx8PyvOji3WT5lVkZCTi4+MRFxenM2YllS2///47GGMwNTX9ot0agcR6fOPGjXwOy9LSUtji/0n6/IGBgQgKCkJYWBgPniAh2W358uW8T/6ltgASAzW0aNECjCXu+iFE7J/Jbt+IjIzExo0bwRhDjRo1sG3bNrx7907vvQi0EQJ2gUAgEAh+ANRqNerWrcsj3sq3xpZ+gMQG7pw5c2Bra8s7f0uXLtWZmA0JCYGzszM6deqEatWqaXVKjY2NMWjQoFQHZn5UoqKiUL16dTCWuOW41DhOugLz6dOnGDRoEI/iXbBgQfz33386eRkaGoq5c+fydAYGBnygXpqInDBhAk8vbJHIs2fPULBgQS7a/OOPP1CtWrVMEa8DiXZ+9uwZFwlJg/Ai8rd+XF1duT2qVq2KKVOmIH/+/LxsadGiRYbF68WKFcPy5cuxbNkyIWJPATc3N+TLl48vGvDw8NDKG7k/yDvbac2/6OhoPH/+HAMGDEjWNwSJZIUtXF1d0axZM5iamvKIDAULFoRKpRKThSnw+vVrNGrUCIwlbgXv6urKj0llkmSD3bt387yUb4ENfM7PkJAQTJs2TUu0bm1tjbJly8Lc3FzYIgVev36Nhg0bgjGG+vXra9kiaZtKijzCGEOzZs208lD+94oVK7RsYWlpCWtraxgaGvK2lLCF4FtHXmf06dMHjDE0atRIa8emtOLm5oZ69eqBscStttOyG8KPzLZt21C3bl0eqTW1yH2PHz/m9fTatWtTPEeQPpo3b877By9fvgSQ/CSSVM+/e/cODRo04FHhzp07B0DYJr0Iv8hZXr58iblz56Jp06YoUaIEKlasiNq1a2PLli1890WJjx8/YunSpRg+fLjWzjRpZd++fWjTpg127NiBFy9e8M+F/RKRi9ibN28ODw+PLzp/x44d6NmzJw9aMnr0aH5MXver1Wps3ryZj92+fv06057he+H9+/c4e/YsBg4ciKZNm6JGjRpo2bIlDhw4oLW4QF5udejQgeepnZ0dDh06xNMlV6+0a9cOjDF07NgxS5/nR0b4RfYhvee3bt3i8xE9evSAn59fiuclrQOePHmC2bNn87GQ3377Lcvu+VtGHrhCepfVajWCgoLSdL63tzdq1KgBxhgGDhyYJfcoAObOncvHl+bOncs/T63tIxf/jhkzJqtv87tEKpOEX+Qco0aN4u9xmzZtcPLkSdy6dQuXLl3CjRs38PTpUzx58gTOzs7w9fWFv78/AgIC+A4pcvT5zJkzZ/guK9KidCHW1Y+8LZqSaFa+W2NahbqSeD1Pnjw8+J6whTbJ5WNKtvjpp5/SLZoGEsuzli1bClukQlb6BgAEBQVh5MiRvCwsUaIEevTowfuUwh7JIwTsAoFAIBB85yQkJCA2NhYTJkwAYwzVq1fH06dPdRpI9+7dQ5cuXXhHI3/+/Fi5ciXevHmjle7+/fsYO3YsjwquUqn45K8URVmhUEClUmHatGla9yFIFDYPHToUjDHUqlULT58+1RFIX7hwAZUqVYK5uTkXtR09elRvdF13d3ceeb148eKYPHkyzp07hy1btmDEiBF84HfixInZ9YjfDPKJQnNzcx4VwN7eHu/fvweQPvF60nd96dKlKFeuHBfByUXTgs/I7WFiYsI7d61atcLHjx8BZEy8vmrVKgQHBwOA2Co4FTJrO/OkJM3fxYsXo3Tp0rweGTt2bKZ8z/dEZtlCyvs9e/bwCNP29vY4ceIEvLy8cPLkSUydOpX7xZQpUzLzMb4LfHx8+AK/+vXr4/Tp07xskpALpmvXrs0XQiXl77//5umcnJwwduxYBAQE4P3797h+/Trmzp3LbTFr1qxseLpvixcvXqBkyZLcFqdOndKyRUhICPbt28fzWFrApFardcqh7du3a6Xr1q0bXFxc4Ovri7Nnz2LGjBncFn/88Uc2P6lAkLnI27WzZ8/WiRD6JddZtWoVGGMoW7asliBRoI2npycvY7Zv356mcy5dusTPWbVqVRbf4Y/Hp0+f4ODgAMYYBgwYgLi4uGT7GPJFam3atAFjiZF4x48fn2wdL0gd4RdfBwkJCdBoNHj58iXCwsL4TgQS0kTuu3fv+Fhft27dvigC/tGjR/nCQ6lvv3nzZq17ECT2+aQF/S1btuTjUSkhz7uXL19i7dq1yJ07Nxhj+Pnnn/kx+YS8Wq3GgQMH4OzsnLkP8B0SGxuLmJgYnXFYeX0hCbSUSiXKli2rtctmSu9206ZNwVjiDiDCBzIX4Rc5g1zELo3nDhkyJE0RJpPuUrd27Vo+r7Rjx44su+dvHSnfYmNjsXDhQuzatUvr85SQdrUxMDCAl5dXlt7nj0ZCQgICAgJQsWJFMMbQtGnTNOfxpUuXeDAfe3t7vuOgqCe+HOEXOYO8jTRmzBje/pe3/VMjNVvJxeuVKlXCsmXL0KxZMyHWTSf6dms0NTXFvn37UrRFUvF6vXr18O+//4ro3xlAnk9fYgt9CBF7xkmvb8jx8/PDvn37uJ9IuiupzyEisetHCNgFAoFAIPhB8PPz42LOOnXqYOnSpXj48CF27tyJ2bNnw9jYmAt0rK2tsWfPHh1h1rlz51C1alWYmZnxVYPjx4/H5cuX8fHjR2g0Ghw8eBAjR47k15o0aRI/Xwy4JOLr68snAGvWrIk5c+bg4sWL+Pvvv7m4XfqxsbHBzZs3k73WzJkzwVjitoJ79+7V2pr5w4cPWtGmxfa0uri7u3Mxp1KpRNGiRXlUMSmqUnqROjkvX77kQjtjY2PUqVMHPj4+Gb737xG5PQwNDeHo6Mgjg37JYoInT57Azs6O+9C6deu0om7Ex8dridjl0ZhEOZVIVonY5Vy9epUvwMmTJw/69u2rs2hKkLki9u7du4MxhnLlyiEwMFDreHh4OJYvXw6FQgGFQoGNGzdmxu1/V3h4ePB3tkSJEmjXrh22bt2KefPmYdiwYbzuLlCgAH7//Xe99cjZs2d5umrVqmHLli06W0fGxMRg1apVUCgUsLa25hNXgs94enqiWLFivA1Ut25d/P777xgyZAhat26tNTA4ePBgnTYtANy5c4fXOSVLlsTs2bMRFRWllSYqKgqrV6+GQqGAhYUFTp48mU1PKBBkDfraU+lp+zx//pz3CZctW5YZt/Zd8urVK/Tq1QtGRkbo0qVLimJ/afLiwIEDvI26YsWK7LrVHwY/Pz++w82GDRsA6PcB+WfyCLvNmzfXiVAt+DKEX3wdfEnZf+3aNRgZGYExhq5du6ZZxP7hwwds374dvXv35mOOCoUCU6dOTdd9fM+4ubmhcOHCGDx4cJojhsrzTq1WY/fu3VysO3PmzBTPFRPm+knr+7hjxw4+zpc3b14cPHgwTdc4f/48ChQoAJVKhfnz52f4fgW6CL/IGaS8u3LlCmxtbdO9wDU4OBhdu3bliw40Go2oJ1Jg3759MDExgbW1dapzDdKCnPnz58PIyAi5cuX64l0/BKnj7OzMyxx5eycl7t69i8aNG/PgSsOHD9cbyEqQNoRf5Bxygez48eP52Oy6devSFShMTlLx+t69exEZGYmXL18K4XQG0CfUZYzh2LFjetMnFa/XrVsXt2/fRkJCAnx8fIRwOgMkZ4vDhw9/8bWEiD3jfKlvJIenpyeaNGnCyy/GGNzd3TP7dr8bhIBdIBAIBIIfCE9PT5QoUYI3kqQtmKXI0Hnz5kWVKlXg5uamc+6JEydQtGhRPmlob2+PR48e8S3j5SKtkJAQrFmzhqf9559/su0ZvxU8PT1RunRpbgtpgEqKRFyyZEl06tSJi3fl299JJCQk8OgADRs25JNc8oHd4OBgDBs2DEqlEs2bN0/zRNiPhJubm1ZE4uPHj2daRD13d3dUq1aNRxXv2LEjbt++nSnX/l6R28PBwQFHjx7VKzzUR0JCAl69eoXChQvzsq137958YYe8nFKr1di0aRP3uZEjR2bF43zTZJWIPS4uDmfOnOERaczNzTF69GjRcU+BL7WFVA/I64OYmBh06dIFjDG+Q0rSweOAgAB07twZKpUKvXv3zvDg8veIt7c3GjVqpBU9Qd6WKlKkCAYNGoQPHz5onSfZYurUqTA0NIShoSFmzZrFxetJJ2X9/PxQu3ZtsQAtBZ4/f45GjRohb968YIzxdqdUrpcpUwYjR47ktkgqSFizZg2fWPzll1+4eD1pusDAQLRq1QqMMcybNy97Hk4g+Mq5d+8eFzOKvl7KHDp0iNfh8+fPR3R0ND+WtL5+8eIFHB0dwVji7louLi45cs/fM4GBgdweCxcuTDFtWFgY2rZty6PxValSBcePH8+mO/2+EX7x7SCPrGtgYJBmEXvStu3x48cxdOhQ3l4bN25csml/VIKDg3lABeDLBQahoaGYNGkSVCoVatSooXdsV5BxNBoNevfuzfuB0mIoIPUFUX/88Qc/b8+ePdlyv98bwi++XqT6QhKEpnc8acGCBXyuJCuCaXxPXLt2DWXLloWhoSH++ecfnQX5+hg4cCBv2wp/yHxOnjzJA1s8fvwYgO4Yk7xeePjwITp27MgXh9euXZvviiMW1aQP4Rc5S1aI2M+cOcN3K69SpQp2797NdQmAEOtmFLldpEVkW7du1bFXWFgYNm7cyMfSGzRogJs3b2rNuQpbZAx5nvfo0QOMJe7Om5ZyLCne3t5aizukcRRhi7STVt9IStIdhn777Te+S5GlpSV27twp6vhkEAJ2gUAgEAh+MHx8fDBo0CC+bbYU+bZTp05YuXIl36pW3gA7d+4cihcvzjvxuXPnxpo1a3D58mXeAQG0G77R0dH466+/oFAoYG9vj7t372bfQ34j+Pn5YdSoUahatSpMTU2hVCpRqlQpDBw4EMePH0doaCgAaEVciI2NRXx8PCIjIwEkTgIaGRlh7NixyX7PunXruK2vXLmSpc/0reLm5sYn0CtVqoTdu3cjPDw8Q9f08vJC1apVwRhD7ty50aFDBy3xupikTR65PSpXrvzF9li6dCm6d+8OY2NjMMYwatQofkxetqnVamzYsAGMMRQsWBAPHz7M1Of4HpALp5s1a5bhyaO4uDicO3cOFSpU4IMno0aNEuL1NJAeW7x+/RqBgYF49eoVwsPDsX79ejDGsGTJkmTPmTp1KhcBi0F7/QQFBWHp0qVo0qQJL2cYY2jcuDH++ecfvugm6UBUXFwc6taty6PgS4PtydUHP//8MxhjaNGiBQAxwKiPN2/eYO3atWjVqhUKFiwIlUoFa2tr9OzZE4cOHeJ5nNQWGo2GixKLFSuGt2/f6k0nMXbsWDDGULVqVcTHxwtbCH5YpHf/wIEDfNJKiiAq2rbayPNj0aJFvK5YtWqV1mJZqdzx8fHBwIED+cRs48aNM21RrUCbwYMHQ6VSYdCgQfj06RO3lTTxGhERgdu3b6Nx48ZcQOXk5IR///2XX0O87+lD+MW3iT4Re4cOHXj7KSXkbaa3b9/yXYYYY1iwYEGW3fO3jpRvCQkJ+O+//xAZGZmmSe7jx49zv9q+fXtW3+YPyd69e3keT548mX+emn2OHTvGz+vUqVNW3+Z3iZTHwi++btLbRpLmPzZv3ozcuXMjV65ccHZ2zsxb++4IDQ3FqFGjwBiDo6NjqrsEPXjwgM9V2NraIiAgQLRpM5lDhw7xOVR99pDn9507d9CuXTseIMPe3h7v3r0DIMb/MoLwi5wnM0XsFy5c4OcXKFBAa05D3gaQC6dNTU21dAuC1JHb5cqVK1wnIhEbG4udO3dyW1hbW2Pfvn38eHK2MDY2xrNnz7L+Ab4j5LY4cOAAfH19030tX19fbgtzc3PerhJ1TNpJzTdS4tWrV5g3bx4P2FemTBls3749zQH7fkSEgF0gEAgEgh+Q6OhovH//HpcvX8bdu3d1OnPyxuu9e/dQrVo1KJVKPskk/zE3N0e/fv242FreuXdzc0PdunWhUCiwZcsW0fHXQ1xcHKKiovD06VO4u7vrREiXN47Pnj2LX375BVWrVoW9vT26dOmCYcOGwcbGBg0aNOADXBJSp/H8+fN8knHTpk1Z/1DfKO7u7ihQoAAYYyhdujTOnTuX7lWwQryeceT2sLW1xZUrV1LNN/lxX19frFy5kourfv75Z35MXsap1WocPXpUa8BFoI27uzsKFizIo1y8efMmXdeRxOtS5HUhXv9y0mqLyMhIrF+/HqVKlYK1tTXy5cuH6tWro02bNrCyskKfPn34zgRAou9I9c2SJUugVCqhUqlw8+bNbHmub5m7d+/i1q1buH79OuLi4ni9oa/+iIiI4FHV27Rpk2w6SUD366+/8iiXgtR5+fIlvL29+e41EvrqDo1Gg3bt2oExhho1aiA6OlpvOskvZs2aBcYY6tevnzU3LxDkAPJ3Pi1/S3h6eqJIkSJgjMHGxgaurq5Ze6PfMPIyXlogxhjDiBEjsH//fsTFxcHf3x9XrlxB/fr1kS9fPh6RR2ofiX5D5rNt2zZuixUrVuDly5f82IsXLzBz5kw4OTnxCdcGDRrg6NGjPI2wScYQfvFtIhexS/ZIT78wJiYG8+bNg0KhQKVKlYQ4MRWGDBmCggUL4sGDB2lK//HjRxQrVgyMMQwfPhyA8JfMQsrHMWPGQKlUokyZMrh+/brWseS4ceMGX4xeqlQp7NixI03nCfQj/OL7Q942kISnjDHcu3cvB+/q2yAgIAA1a9YEY4k79D579oyPe8uDIr18+ZIvzGeMYerUqTl1y981QUFBsLe3h7GxMTZu3Kh3V2UgMaJ07dq1+bxFhQoVeKASISzMOMIvcp7kROzr16//IhG7h4cHWrRoweeTHBwceP2v0Wi06nNvb280bdqULxaUgsAJ0kZqZc+LFy/QrVs3vjtaxYoV+Zx3Ulu8ePGCBwQYNWoU34FWkDYyWg/IbXHq1CmULl2a9+FFELcvJz32eP36NebPn893Di5Xrhy2bt2qNScr0EUI2AUCgUAgEHCSiqjevHmDIUOGwNTUlK9ctrGxwW+//Ybp06fj119/5REC2rRpgw8fPgDQFl0vXLgQTk5OqW4vLNAmaYdv7969UCgUUKlUWgsIpP9tbGxw6tQprShNAPD+/XsMHjyYpxci3ZRxd3eHkZERbG1tcf369XRNaAjxeubh7u4OpVKJqlWrwtvbO03nyPM3Pj4ee/bs4YPB06dPT/V8sXWXftzd3cEYQ5MmTRAdHf3F5wvxeuaRnC2kdz8iIgLTpk3Tqity5coFxhiMjIzAGEPJkiVx6dIlXmdI7/3z5895dHxra2uxXXMKpLcsHzZsGBhjqFmzJm836ePFixewtrYGYwxjxoxJ723+ECRni9TK80mTJvGJwtevXyebLjAwEJUrVwZjDH369MnQvQoEOU16yi61Wo2YmBhcv34dq1at4mWTubk5fvnlF51oyEm/40dv+8onOv73v/9p1c9ly5ZFvnz5oFQq+Wd58+blu2Zl5qQVINq5cuS2qFWrFnr06IGuXbvC3Nyct5ty586NX3/9FVevXuXnZfR9lmz6owtTctIvBOlHKkOePHmCFy9eAEifT1y/fp1vob1z585MvcfvicDAQLRq1QqMMfTr1y/F3QckO3z69IkvMuvRo4fWMUHGiYmJgb29PRhjaNWqVZrOuXv3LipVqgSFQgGFQoEBAwZkeMfHHxnhF98OSRfFSv8nJCRoRdOXs2/fPhQtWhQKhQIODg4p9tMFn/H29kbRokXBGEPt2rWxc+dOrUBHJ0+e5GNRUvn1/PlzAMIXMpuwsDD07NkTjDHUrVsXzs7OPEgFkChoW7duHYyNjXmwMHt7e/j4+AAQ9shMhF/kPMmJ2JcvX56mPJbqioiICJw+fZrX/0ZGRskuInzx4gWmTp2K48ePZ+KTCCRbREZG4uLFi2jTpg23xY0bNwDot8WSJUtS3QVBkHnI5wffvHmDkSNHok6dOmAscWdBeSAfQdYhxOvpRwjYBQKBQCAQ6CB1LM+dO8cFCoUKFcJvv/0GFxcXrbT37t3j2zn37NlT5xoA+GCymDBPHydOnOCTt0ZGRqhTpw527tyJrVu3YsaMGShVqhQYY7Czs8PRo0f5Ns6vX7/GmjVr+OravHnzws/PL4ef5uvHz88P58+f14rGkFaEeD3zCQgIgIeHB8+7Ly1HwsLCMHXqVKhUKjg5OYkt6zJAYGAgIiIivvg8IV7PfFKyxYoVK/iAsJOTE8aOHQsPDw9cuXIFmzZtQtmyZXmdsXv3bvj7+wMAXFxc0L17d16n16hRg++uIsg8Vq1axYWfkiBOWvgntZ0CAwMxfvx45M6dG2ZmZjh8+DAA0Y7KbLZu3QrGGMzMzHD+/HkA0FnU8enTJyxfvhyFChUCY4xvVStsIfgWkd7vp0+fYuvWrVi1ahXWr1+PZcuW4Y8//sDcuXPx559/YsyYMRg+fDjGjRuH3r17o2HDhqhVqxaMjIy4sNfS0hKtWrVKsV319OlTvoj5Rxecyp9/7dq1aNSokc7OZvnz54ejoyOPRpw0etWX9iPk6S9cuMBFEcIWn59/1qxZsLCw0LGFiYkJihYtin379mlFZwcS+9jp7dMFBgaia9euePTokc69/IjktF8I0oc8DzPSHpL6hn379tW5riCR2NhYLF26FGZmZihZsiSOHTuWaj5JfQ2lUsnbrYLMIz4+HjVq1NAKkJA0iqjcRnfu3EGtWrVgbGzMF0xJ286L/kT6EH7xdZKRMjwqKgrh4eFYsGABHB0duah38uTJetPLfUfUHZ/x8PBAyZIl+RiHjY0NmjRpgho1asDS0pK3rRo0aICDBw9mSRkk7JHIixcvYGtrC8YSd88cOXIktmzZgmHDhvHo0FKwkaZNm6a4ECe9CFsk8jX4xY+OvM83ZswYMMYwbdq0NJ8vf5f9/PzQtWtXMMZQrFgxPHnyRO85+gL+CDKOPC/9/f25LWxtbXV0IxLyBTyCrCFpuXX37l0MHjyY97elHwcHB/Tu3ZvPBQqyBiFezxhCwC4QCAQCgUAvsbGxfFC+QIECmD9/Po96IXVUpM7nqVOnePSkPXv28Guktv28IGUSEhLw5s0bNGvWDAqFAkZGRhgyZIjOdlv+/v48ApCNjQ3q1auHMWPGoFq1anyLVEtLS2zYsAGAmCT5Er7kvRXi9axH/u4+fPgQQUFBaTrvzJkzvKO+cePGrLo9gR6EeD17efjwIa+PHR0dsW3bNp0J9cDAQF5nFChQAOXLl0eLFi2QL18+HonByspKr1BIkDZSE6S1a9eO53/SAV4/Pz/873//g42NDRhL3GJeWpgm+HJSs0WHDh24LZIKcd+8eYP169ejfPnyXEQndhQSfOtcuXIFBgYGOiLRL/kpV64cpkyZkmJd7uLigh49esDExASPHz8GIMS68uf39/fHsWPHMHz4cAwYMADjxo3D0aNH8ebNGwDabd4FCxbAwMAAO3fuTHOdLE937tw51K1bF6ampnyCV9ji8/OfPHkS8+fPR40aNdCiRQsMGDAAO3bswKtXr3TO27NnD1QqFXbs2JEu4fT06dP5wvKnT5/q3MuPSHb6hZwjR47gzz//hLu7Oxc4iDZv1iPZMCwsjC+q7dSpEwCR/8nx9u1btG7dGowx1KlTR6e9Kveh+/fv87YtYwz//fdfdt/uD4GUx926ddMan036Dl+9ehUODg68j21nZ8f7dT962Z9RhF98XcjrZ29vbzx8+BCPHj3CrVu3cPHiRZw7dw5Hjx7Fvn37sG/fPmzatAmLFi3C/PnzMX78eNSvXx9VqlQBY4yL13/66Se915fGt+SCOFF/fObFixdo3749nw+S8lP63aVLFxw7dkzLRzQaTYZFVfLxeWGPRDw9PWFnZ8fLnqS2qFu3LqZPn47IyEh+TkJCQoZ26Lh06RIWL16sdT1BzvmF4DPyvD116pRWuf6lc9WPHj1C9erVwRjD0KFDER0dLd71HOLu3btwcnKCUqnEuHHjEB8fL2yRjST1nb1792LcuHFQqVRawRkKFy6MP/74A0+ePOHtKKERyRqEeD3jCAG7QCAQCAQCvdy7dw+FChWCUqlEr169eMS2pCQkJODly5d88mn27NnZfKffN8+fP4eVlRXf6i4qKgrA54FaqfPv5+fHI7EXK1aMR0eUxOurVq1Ks9hXoI3UmdNoNMmuGBfi9exl/fr1YIzh4sWLKaaT57uDg4NWhDfRSc84UvmjVqv17lggxOvZz3///ceFiSNHjtSJ7C39dnd3R/HixcEYQ9WqVbnoPW/evChbtiwePnwIQPhJepBH7r506RIA3YV/gYGBPOpSvnz5MGnSJCxduhTLly+Hvb09jwabJ08eEX09A0h5Fh4errOdqWSLN2/eoEmTJlyg/ueff2Lnzp3Yv38/2rZty7cbNjU1xbJly7SuKxB8i0yYMIFvHWtsbAwbGxuULFkSpUuXRtmyZVG5cmVUqlQJVapUQePGjdGsWTM0adIEffr0wR9//IG1a9fizZs3Ogtq5Tg7O+PXX3/lE8KWlpZCrPv/pKVPkDRNnz59eJ2wd+/eVK8hP37mzBm0b9+e7+YlhNOfSVqW68sPKY2Up7179+a7qKTFFknx9PTk255bWFgIW/w/2eEXch48eID27dvzdvDff/+NwMBAAMIWWYk8b5ctW8bHq+bNm5eDd/Vt4OPjwxdUNmzYENevX9eZBL9+/Tp++eUXnq/9+/fPmZv9jpHKmWXLlsHAwAAVK1bEw4cPdcqfmJgY7N+/X2tc1sHBgY/JinImcxB+8fXx999/o27dulp9DSnv07qA1sLCAsOHD9fZGQ34LF6PiopCiRIltHYCFuPun3n//j1Onz6NAQMGoF69erC1tUX37t2xdOlSREZGauWVWq3GTz/9hH79+qV7sb6bmxsKFiyIPn368M+EPRJ5+fIl/vjjDzRs2BA2NjawsrJCixYtMG/ePHh7e/N3OiEhARqNBjNmzMCoUaN0doBKC+/evUOtWrXAGMOIESP458IWiWS3X7i7u+PcuXMpLnT70dDX/pF/5uHhAY1Gk+qYa3R0NIYNGwbGGMqWLYvg4OBUvzshISHduzv/aMTExMDT0xNA6nkVHR2Nvn378oWaGVmAI0gbScuRkJAQHDhwAL169YJCoeBjf2ZmZrC1tcWmTZtw7949rXOSjnMJ38gchHg9cxACdoFAIBAIBHpZs2YNHzy8cOFCimnDw8N5RIFu3bpl0x3+GJw8eZKvlJUiqCeNpqtWq5GQkICJEydCqVRixIgROHPmDKZMmYKFCxfC1dU1J279uyIqKgobNmzA0aNHeUdc6tgJ8Xr28uHDBx5loVevXnz75eRISEhAUFAQFyF2796dfy7IOOHh4ZgzZw7+/fdfrUEqIV7PGZYsWcLFgpIIPekAsUajQVRUFLp06QLGGP766y/cv38fGzduxOXLl/nArxi0Sj+RkZGwsbGBtbU1F0Ql5f379+jWrRtfPJD0x9jYGMOGDeO73wjSR3R0NBo0aIBSpUolOwn49u1bdOrUKdlJdAMDA7Rt25YLDQWCb51x48bx93vKlCl49eoVQkNDERISgtDQUERFRSEqKgpxcXFISEjQ6XsAybejnJ2dMWTIEH59aYGtEOvqR17XJs1T+f8DBgzgfcKUxLr6xOvyyPnCFsmTNOJecqTVFsnh7e2Nli1bClukQGb7RVI8PDwwceJEHpmsYMGCaNy4MR83EbZInqTiHgmpvgASx6ukY3KxiMS6detQvHhxKBQK5M+fny/WFKSMp6cnrK2tuUCkR48e2L9/P3bv3o3x48fzHTQZY2jVqpXYcSMLefXqFRwdHcEYQ4MGDfDff//By8sLHz58wJYtW/Drr79qRT1s1KgRj7yur02VHsR4ViLCL74ePn36hHr16oExxutXS0tLLWG6mZkZcuXKhQIFCqBw4cIoVKgQypQpg+rVq6NNmzZYuXIlzpw5w68pf8/l4nVJpCuEumkjIiIi2WO+vr48cFKXLl2+WKzr7u6OypUrC3ukgJQP7969Q3BwsE5wJOl4YGAgn1/t3LnzF9tCo9Fg8+bN3BajRo3S+Q7BZ7LSL7y9vVGoUCEwxjBx4kRcvnyZHxO20M/48eNRq1Yt/n9y+ST1Ey9fvswXSe3fvz/FtBJJA8KJeQ9dYmNj8dNPP6Fp06apppXy8dChQzA0NIRSqUw12Jgg/ST1CU9PTxw5cgSOjo4oWLCg1jxG69atsXz5cp05KX3jLKGhoVi3bh08PDwAiDZyckh5J6/D5fkpxOuZhxCwCwQCgUAg0Mvy5cuhUCjg6OiIjx8/QqPR6DSSpQZaYGAgj+Tao0ePnLjd75bTp0/zLe127dqVYlppkEqfDUSHPGP8/fffUCgUqFixInbv3o2wsDAAiR1FIV7PXuLi4rBq1Srkz58fxYsXx+HDh5N9v6X8v3z5Mu/AjxkzJjtv97tn/PjxPKLY7t27+S4RZ8+eRYUKFYR4PZtZt24dGGNQKpW4du1aimlnzZoFpVKJ6dOn6xwTdUbGuH37NooUKQJLS0ts2rRJR6ggrxuePn2KQ4cOYcGCBciTJw8UCgVUKhUaNmyImzdvZvetf3c8ffoUjo6OMDY2xsqVK5PdSQUArl69iv379+Pvv/9Gnjx5YGhoCMYYbG1tcezYsWy8a4Ega5BPRIwZM4a3jdauXcs/l5dP+tqxKbVtk4rXR44ciWfPngmxbgaQ1x/9+vXjkZT0iXVTEq/PmDEDISEhIvp3BtBni9y5cwsRew7wJX6RHKGhoTh9+jSKFCnCd4uwsLCAs7MzANGP10dK76f8WExMDI9k+enTJ3h4eMDZ2RmLFi3CTz/9xMe3GGMYMmRImr5b9E0Sef78OapVq8YjGatUKt5elX7atWuHK1eu8EAXmYE8/4UtEvHy8oKNjQ3f3cTc3JzvTCr9ODo6YuzYsfjw4UOGv0+ypXx3VFFOJZJTfiHQxdXVle8mV7BgQRw6dAj379/HgwcP4OPjgxcvXsDNzQ2vX7/Ghw8f+O/4+HidXR3l9YpcvF6zZk3ud1KUUSHU1SW5foK+/Ll58yb3n65du6ZZrOvu7g4nJycwxmBlZSXskQxfagtpAciX2EJCrVZj06ZNvJ0lbKFNdvhFQkICdu/ezRcjKJVKVK1aFYsWLUr2Pn50bt68yevrffv2pZhWyru9e/fyc/QJ2OXt1fPnz2PWrFmoVasW2rVrh3HjxuH58+cARP87KefPn+f5eujQoRTTSrb4559/+DnSTrT6SK0PIfwieeR5ExgYiOXLl6Nq1arIkycPz3uFQoF+/fppje8C+vNdul54eDhWr16NggULQqVS8bEQ4RfayAMZLliwAM+ePdM6nlHxuvANbYSAXSAQCAQCgV7+/vtvMMZQpEgRvHr1Sue4vFElCRVMTEywe/fu7LzN756wsDBUq1YNjDEMHToUkZGROmkkMZYUebdSpUp60wnSj7e3N8zNzXn+7t+/H48ePdIRr9+5c4ef86N1LLKTt2/fol27dmCMoXbt2lpRcaUob1IZ5eXlxaMAWVlZ8QhvYuI1c/D09ORRlSpXrozt27fjyJEjPPJ63rx5MXr0aCFezyZ8fX1RoUIFKBQKzJ8/P1mxbkREBDp37gzGGDp16iT8IZMJCwvjkfdq1KjBBwCBz2WPNEEbFhaGmzdvok6dOnzC3cnJCSdPnsyRe//eiIiIwKhRo8AYQ7Vq1XjUPeBzfSHZQqPR4M2bN2jSpAkfAM6bNy927tyZU7cvEGQ68omICRMm8Hd93bp1GYoK6uzsrBVxdPjw4YiOjgaQKCwSYt30I7fLzz//zPP4xo0b/POUxOvTpk3jxzw8PIQtMkBytpBH1UsrQsSeMdLiFykh5bOfnx/q1KnD+/qMMfj7+2fJPX8vbNy4Ef3790fnzp3RunVrtGjRAnXq1EGNGjVQo0YNlC9fHiVKlEDZsmV5ZGRTU1MtMalKpcKAAQP4NfW998+fP8dff/3F/xfjK4kEBARg9uzZfIxDys/ChQtj3LhxCAgI0OnbrVy58otFcBLx8fE4c+YM5syZwz8TtkjE29sbbdu25bvNSD/m5uYYNGgQLl26xBf4S+zevTvdO2xJAq9hw4bxz4QtEsluv1Cr1SKiYjK4ubkhX758POq9l5eX1vHkdrxJ7l2Wi9eliPpWVlYYM2YM5s2bJ4S6GUSywa1bt7hYt1u3bsnuXifh5ubGd6KwtrbGP//8gyVLlgh7ZID02iIpQsSecTJqi+joaHh6evLdoiRbyHcoEHzG19cX3bp1g4GBAfr06ZOmvtiiRYt4fZ90Nyd53bJ69Wrkzp1bq50mlVuSCFXMiXzGy8sL7du3h4GBAQYMGKBXFwJolyWTJk3i+Xr16tUUr//p0yc8ePAACxYswLx58/DHH3/gxo0bePfuHQBhi+SIj4/HmzdvMGbMGNSvX1/rXS5ZsiQ6duyIS5cu8TFYIPm8lIvXV65cCQcHB605EDEupZ/g4GC+M8fo0aPh5uYGAAgKCsK8efMyHHld+MZnhIBdIBAIBAKBXpydnWFrawsLCwscOHBAq4EknyxctmwZj75eqlQp3Lt3Lydu97slOjoa48aN48LpR48eaR2X26Jhw4ZcRCoE7JmPu7s78ufPD8YSt6a1tbXVEq+LyOvZiyTUZYyhUaNGuH37NsLDw7XSeHh4oF+/flxg7ejoyDt9gsxD7hulS5dGkSJF+KCHiLyevYSFhXERT/Xq1XUWd0g8ffoU9vb2YIyhe/fuYlAqC/D39+eDgA0bNsTVq1f57h0S3t7e+PPPP3lZZmxsjJo1a+LIkSM5dNffJ/7+/qhUqRKvL27evKlTX7x69Qo7d+7kiwYlwcOWLVty6K4FgqxDXuZLO6lkRMT+8OFDLfH6uHHjdPoicrGufFLkRxqEzwhyu3To0AG1a9fWOyFy7NgxvsiTMYa5c+fyY5LdhS0yhtwWnTt3Rrly5eDi4pKua3l7e6NFixZcxC5dR7TL0kZa/SIp8nf9+PHjvO5njKF9+/Y67TXBZ1auXMlFOF/6Y2xsDJVKhZ9++gmrVq3i19T3vvv6+vIou8OHD+efi3GWROLj4xETE4MzZ87g+PHjuHr1qk4kOCmvfvnll3RHco2Pj8fly5d5n0bYQpeQkBC4u7tjzZo1WLt2LY4fP44HDx5opZHKnN9//x2MMXTp0iVdwul9+/ZxfxKCRF2y0y/Onj0LR0dHLFq0SGu8S9giEXd3dy7yadKkCTw9PdN1Hamej4yM1BKvjxs3jgvjhVA348jFusbGxmCMoVevXggJCdGb3s3NjUdet7a2xtKlS/H27VsAwh4ZRW4LIyMjMJa403JwcPAXXUeI2DPOl/qFRNL8XbRoEUqXLs0j648ePTrL7vlbZt++fXxB8cKFCxETE8OPScFHJK5du4bChQvz+fLkFhasWLGCt5u6dOmCmTNnYtasWahbty4YY6hQocIXLxD5Edi1axdffLx48WItW2g0Gq2+9IkTJ3geN23aVGs3FbnNPn36hMuXL6NKlSooWrSoVh+xcOHCaNKkCTw8PACIsZCkXLhwAePGjeNzR9KPnZ0dfvrpJ7i7u/NyKaVdJeSfS+J1aSGaUqlErVq1RHCFVBg9erTWuPelS5ewYMGCLxavC99IGSFgFwgEAoFAoJeQkBB06NABjDE0aNAALi4uWp0VAFqiK8YYli9fnkN3+33j7++vJdS9f/++jvCqb9++YIzByMgIkyZNAiAGpLICd3d3HklGoVDA2NgYbdq0wcOHD3kake/Zh6enJwoVKsQHnQYPHozz58/j0KFD2Lp1K8qWLcu3UitQoABcXV0BCIFOVpDUN0xNTTF06FC8ePEip2/th8PX1xdlypThdca1a9fw8eNHAIkDVE+ePOHRGszMzFLdElKQfry8vPigeunSpdG1a1ds27YNf//9N/744w9YW1vzAXozMzN07doV58+fz+nb/i7x8vLiUUDt7OzQv39/HD9+HLt27cK6detQpUoVbisTExPUqFFD7za0AsH3QmaJ2D9+/IjJkyfz88uWLcsX3KrVaq02l1w4rVAo+CC8IG3I7ZI0oisAvHv3DoMGDdKa0JKivMbGxmr1UeS2YIylW1j0oyK3xcuXL9Pd/0tISEBgYCCaNWsGxhKj9optm7+M1PwiKfIyad++fahduzb3gz59+gjxeip4eXnxxeG5cuVCtWrV0Lt3bwwdOhQDBw7Er7/+iilTpmDatGmYMWMG/v77b6xevRrbtm3Dw4cPU4zEK+Hr66u1MxFjDCNHjuTHxXhLynmQdKzjxo0bMDQ0/GKxriRer1y5srBFOklqi3v37vF8TI9wWggSUyY7/AJI3LmjW7du3C86deqEHTt2pOk+fiQyKmKX8jGpeH3ixIk86iWQWFYJv8g4ko/cuHEDZmZmaN++Pfz8/HTSubq6aonXV65cqRWhN6k95GJdYY+0IbeFiYkJKlSooLMYJy2IOiPjpNUvUuLWrVs8CJapqSl69uyZ7p1Yvkfk7+KCBQt4v2zlypV6F27cunUL7du3R65cucAYw88//6y3P3HkyBF+rXnz5uH9+/f8mLOzMypWrAgzMzOcOHEiax7sG0Rui7/++ktL8xEYGKiT/vTp03B0dIRCoYBKpcK0adP0Cqjv3buHSZMmae14ZmBggIoVK6JkyZJ8PrFw4cJi7lYPEydO5Plmbm4Oa2trzJs3T2fBbGokF3ldqVTi+vXrCA8P1wquIETsn5G/j1KwScYY6taty9/rcuXKYcuWLV8kXhe+oR8hYBcIBAKBQJAsL168gI2NDRhLjOQ6fvx47N+/H8uXL0fLli356nPGGGbMmJHTt/tdIxfqOjo64ueff8b27dsxf/58NGrUiNvB2toaJ0+ezOnb/a5xc3Pjk7b58uXD7Nmz+bEfoQPxteHl5YUqVapwH1AqlTrR3goUKIBbt24BEDbKSuS+UahQISxevJjntxgcz148PT25WLdMmTJo1qwZ5s6di/bt2/MFUSYmJujevbsQrWUxz58/R8OGDfliGn1llbW1NVatWiVskcU8f/4ctWvX5u1XfRFELSwsMHnyZK1dVQSC75XMErEHBARg3LhxqF69OhhjsLW1xbVr1wAktruSCqfr1asHxhi2bt0q2mVfSGr5FRgYiBkzZvDIxcWKFcPly5f5uXJbvHjxArVr14ZKpcLFixez8ra/S9L77iZtE4eGhmLSpEl8NyNzc3M8efIkM27xhyGttpCn279/v5Z4vW/fvkK8nkZcXV35ZGrz5s3h7++fruvo6x/KxeuWlpbo3r27EF5lAHn00C8R6yYVr+fPnx9DhgwRtsgAki1u3ryZbuE0IASJmUF6/UIiKioK//77Lzp37qwVwGHcuHE8jbBFIhkVscfFxaF06dJ8/KRly5bw8fHhxyQkv5DGWOQLbQRpR/INb29vvqBSTmBgIN+FWalUomfPnjzqqz576Fv4JEgbki1cXV1x5cqVdF0jISEBGo1Gq84YOnSo1nFB6qTmF8kRHx+PCxcu8LaUmZkZhg8frrVTqiAReR/tt99+4/2zgQMHYsuWLQgODoaLiwu2bNkCOzs7Hh1cvgu59D5rNBrEx8fznVYGDx6MiIgIfv2EhASEhobyHbjmzJmTvQ/7lSO3xZQpU7gtevXqhVWrVsHLywunTp3CwoULYWJiwsv5pk2bIjo6GoD2OOPp06fRokULbrOyZctiwIABuHfvHkJCQvD+/XucOHECTZs2BWMMTk5OIiq+HoYOHYoCBQpg7dq1ye70lBIpidfldczz5895oAshYtdGngdyETtjDCVKlMD27dt1gk4mRV7vCt9IHiFgFwgEAoFAkCKenp4oV66cluDKwMCArwZkTHtrckHW4enpCXt7ey1bSIPthoaGKFy4MLZu3ZrTt/lD4Obmxidtq1Spgj179ogJ7xwkICAAv/32GxdOST9lypRB27ZteRRwMTib9ch9o3LlysI3chAvLy9Ur16dRyWRi3XNzMzQo0cPLjAUZC1v3rzB9u3b0bNnTzg4OMDc3Bzly5dHly5dMG/evHRtIS9IH4GBgVi9ejXat28PGxsbGBgYoECBAmjUqBF+/fVXuLm5aW15KhB878gH4SdMmMDriV27dn3R+dHR0bhz5w7fwcvY2JgvHkza/vL398epU6e0omAJMo5ki5iYGDx69AidOnXitpAW5SS1xcuXL/Hw4UNR7mUD+iLxrly5EqVLl4aRkZHW+Mr//ve/HLrL75eUIq/369dP9Fe+EDc3Ny5KbNiwIRclqtVqXs7I/05LPzypeP2vv/6Cv78/tm3bJsS6GUAu1pXKmLZt22pFzJWTVLxeoEAB7N69G2FhYdi8ebOwRQbQZ4v27dsLEXsO8KV+oY+EhARMnz4d+fPn57YYOHBgVt3yN4tcxN6sWbMvFrHPnTsXbdu2hbGxMZRKJSZOnMiPyRfcqtVqbNy4kdftFy5cyLRn+JFIWoYk/f+ff/5B165deVAAefmTnD2srKxw7969rL3x75DUbJHWcwMCAjB06FBeTg0YMCDT7vFH4UttIbWlKlWqBMYY8uTJg2HDhgnxegrIx6WmT5+uNY9hbW2N3Llza835Va5cmS9oShp8ISQkBCVKlABjDNu3b9f7HU2bNoWBgQH27t2bxU/27SHPpxkzZkClUvEFYlZWVjrBwxo2bMjF6/JxpUOHDqFq1ap8rKNOnTo4c+YMPnz4AOCz3TQaDR48eICKFSsid+7c2Lx5MwDRpgW0bSEt1pD40vwJCwvDwoULeWArAwMDHjhB7kPy3Rrz5csHFxeXdH3f94jcHqNHj+Y+0Lx5c9y5c4cf05dX8s+Eb6SMELALBAKBQCBIFX9/f/z222+oW7cuDAwMkCdPHlhbW2PAgAHYt29fTt/eD4W/vz8mTpzIt8+UorT16tULR44cyenb+6GQD8JXrVoVW7Zs0elICrKPuLg4RERE4MCBA9izZw+2bt0KLy8vLkYQET6zD7lvVKpUCTt37kRUVFRO39YPyatXr7BgwQI0btwYZmZmKFSoEEqXLo21a9emawtaQcaJiorCu3fvdOoLUUZlP2/fvoWvry/fClWygbCF4EdDPgg/ZswYMMZw8+bNdF3Lz88PHTt2BGMM9vb2cHd315vuex9w/xrw8/PjCwqqVKmC58+f5/QtCQDcvn0bc+fORf78+flEvBS5bNy4cdi/f39O3+J3hxCvZw0Zjawrx9fXl9vF0tISf/75J16/fg0g0X4bN24UYt0MIBfryheqJW3zJhVcFShQADt27OB9eUmQKGyRfvTZYtmyZVrRi9OCELFnnLT6hT7kbeeRI0fynQgZYzh69GiW3fO3iru7OwoUKADGEnf4/ZKFAkBicIYlS5bwKJX9+vXjx+S2UKvV2L17NxYvXpxp9y5IRF6u+Pj4YMWKFbwd+/PPP/NjSe1x5MgR7Ny5M1vv9UdGyv/4+HhERkZiyZIlaNmyJQ+AJf2kN6q7IHWEeD39yMuPjRs3ok2bNlrvrRTpuEOHDggNDQWgv80THByM4sWLQ6FQ4ODBgwC0+4PLli3jAnmxuEY/clts27YNXbt21bFF1apVMWLECMTExADQFq+fOHECTk5OvOxp3rw53rx5k+z3hYeHo1mzZmCMoXv37ln3YN8g8nc3I/MVL1++RIcOHXjfoW7duggKCgKgvfAcSBSxt27dmtv6R4n8nRb0jZ9LY3lpmWsVvpE6QsAuEAgEAoEgTcTFxSEuLg7379/Hs2fPEBgYyDsngBggz05iYmIQERGBM2fO4Pz583j+/Dk+fvyY07f1Q+Lu7g5ra2swxtC4ceNUt4kS5AyifMp+3N3dkT9/fjDG0KdPH7G4IwfRaDRISEjA06dP4e/vLyLe5hDJRewRYunsJ7k6QdhC8CMjH4T38/MDoO0rarU6zVvTnj9/HiVLlkTu3LmxaNEiAMK/MpOYmBidKGP6SEhIwIkTJ2BtbQ0LCwusXbsWgLBFdpA06vSHDx/g4eGBPn36wM7OTmvit1y5chgzZozOohGxTXPmIMTrWUtmiNi9vb35Tmrm5uZYuHAhjz4mkVSsO2LEiMx6hB8GyRdu376N6dOn69hKrVbj3LlzqFixIhhjyJs3Lw9YIvejpLYYPnx49j3Ed4LcFj///HO6d0WLj49P1i9EXZ82UvOLlPj06RP+/fdfLlI0MzPDjBkz+A6QAm3c3d2hVCpRvnz5NOeRvC8SFxeHvXv3ctH05MmTUz1ftKUyF7k94uPjsWfPHm6PadOmpXq+KJeyhqTjW2/fvsUff/zBBW9SHVG8eHE0aNAA58+f59GSBZmLEK9nHHm5HRwcjIsXL2LWrFmYNGkSli1bhps3b/JFf/rK+ISEBHz69AktWrQAYwyjR4/W6lesXr0aefPmBWNMLHZKBXmZHRERgdu3b2PNmjVYunQpdu3ahYCAAK1FMxLXr19Hw4YNeXTpVq1apTh+JZVh48aN431KEQgra3j37h1WrlyJunXr8v7e1atXASTaIamIvW7dumjYsCHf7UCQiLzskd5baUGxh4dHsucJ30gbQsAuEAgEAoEgTejb+lcMPH09CFvkHE+fPkX58uXh5uaW07ciEHxVuLm5oVmzZmICL4fRV3+LRR0CgUAgSErSCUB5/eHi4sJFPan1OyIjI9G4cWMwxlCjRo0U04s+zJcRGRmJM2fOwNfXF0Dq+RcVFcV37mrQoEE23KFAbpPo6GhcvHgRHTp0QMmSJbWE6/Xq1cOIESMQFBSUqohEOi6EWF+GEK9nD0lF7F5eXmk+NyEhAatXrwZjDMbGxjAzM8OkSZP4cXkkP7Vajc2bN3Mbzps3L1Of40dA8gl5vkqo1WqsWbMGJiYmMDY2hrm5OaZPn86PyyOEJ7XFypUrs/7mvzMkW0RERKTrfHl/fsWKFWJxRwZIyS+SIyIiAnv37oWjoyMYYzA1NcXvv//OF4EK9BMQEIBnz57pHaNKC5GRkZgzZw4MDAxQtmxZ3Lp1Kytu84flS+0RHh6OadOmwcDAAA4ODnB2ds6iOxPoI2m/4Pr165g3bx5sbGy0+hyWlpbo1asXLl68qLNAUJB5CPF65pGWsii1cZAdO3ZwH+jSpQv69++P3r1788+GDx/Ox1QEyZOW+lp+7NWrVxgyZAhy5coFxhhatGjBj6c0lvHu3Tu+oLlTp06ZdPcCOZLPxMfHw9XVlUfVz507N+7evQtA/4IoaddagTb6ROxmZmY4cOCA3vTCN9KOggQCgUAgEAjSAGNM6zcRkUIhmhJfC8IWOYe9vT25uLiQnZ0daTSanL4dgeCrwc7Ojk6fPk0lS5bM6Vv5odFXf8v/FggEAoGAiEipVGr9L9UVDx48oI4dO9L06dOJKOV+h1qtJhMTE2rcuDEplUp69eoVvXz5Um9aAPxaHz9+JA8PDwoLC6OwsDAiIkpISMjwM31PJCQk0KlTp+inn36i2bNnE1HKtoiPj6dcuXJRtWrVSKlU0tu3b+njx4+pfg+AFP8X6Ed6XyWbrFu3joYOHUrNmjWj48ePk6+vL+XJk4cqVapES5YsoX///ZdWrVpFhQoVIiMjo2Sve/fuXerQoQO5uLiQUqkU/c0UkL/fGo2G22L//v20fPlyunPnDhER9e3bl1avXk1mZmZpvrbwi+QpX748Xb9+nfLly0eXL1+m4cOHk7u7e5rOZYzRiBEj6MqVKzR69GhSq9X0zz//0M8//0xERIaGhqRWq4kosY7q378/bdiwgezt7cnAwCDLnul7RfIJQ0NDnWNKpZKGDx9OFy5coAkTJlB8fDzNnz+f+vXrR0REBgYGvPyRbLF+/Xpq1qwZ5c+fP/se4jtBsoWpqSkRpb1MkWwgtdEOHz5ML168IBMTE1KpVLR27VoaOXJkFtzx90tKfqGPyMhIOn78OC1YsICePn1KJiYmNHHiRPrll1+oePHiWXmr3zxFixalihUrEmOMEhIS+Hvs7u5OgYGBqZ5vYmJCjRo1IsYYPX/+nG7fvp3qOaI/kXYke7i4uNCbN29STZ87d25q1KgRqdVqevbsGW9nCbIHqe9+6dIlmjFjBrVp04bmzZtHAQEBZGxsTLly5aIZM2bQrl27aO/evdSkSROytLTk9Y2+eke0b9OHWq2mGzdu0Pjx48nZ2ZnMzMyoT58+NHLkSLK3t8/p2/vmSDpnkZCQoPPeJjcOIh3v168frVixghhjdPz4cdqxYwft27ePiIhmzZpFEyZMoBIlShARJdu/jouLS/H4j0DSOSV9ZYRUpxMR3blzh/bt20cxMTFUr1492r9/PzHGSKPR6Iw3En3O27dv3/J2QOHChbPkWX50JJ9RqVRUoUIFWrRoEbVu3ZoiIyNp8uTJ5O/vr+N7BQoUIGtr65y43a8e+djc0qVL6bfffqN27dpRhw4dtNIJ3/hyVDl9AwKBQCAQCAQCwbeOSpXYrNbX2RAIfmQk3xAIBAKBQPBt8uzZM/Lz86PIyEi6cOECNWvWLNm0Ur3v6elJGo2GYmJikl00xRij6OhomjZtGl29epWePHlC5cqVI1tbW1qyZAmVL18+2cH8H5W3b99SSEgIXblyha5evUoNGzZMNq2BgQEBIG9vb9JoNBQREZEmUQJjjADoTFYmJCSIRdNJkOeJQqGgoKAgOnToEJ06dYpOnz7N865AgQJUsGBBmjt3LpUrV47KlSvHryHP66Q8evSIpk6dSlevXqW6devSrVu3yMHBQfiFHlauXEnu7u40cuRIqlixIs+fzBCvEwm/SI3y5cvTjRs3qEGDBnTp0iXasWMHzZ8/P9VFs1L+NWjQgBwdHcnBwYFGjhxJu3btIhMTE1q3bh2pVCqe90qlkgYNGkT169fX8iNBxpFsUbt2bbK3t6eKFSvSsGHDaPfu3ZQnTx5avXo1KZVKLVv88ssv1KpVKypWrFhO3/43T0q+Ii97lEolxcTE0KFDh+jChQu0bds2UqlUpFarydzcnAwNDal+/frZdds/HHLxuouLC5mYmNCECRNo0KBBQrz+hUh157Fjx2jEiBG0adOmNAlz6tevT9WqVaPbt2/TiRMnaMyYMbxMSu57AFBERATlypWL91VSan/9yOzcuZP69+9PZ8+epUKFCiWbTsq/5s2bk5OTEzk7O9Ply5dpyJAhaWobAdBazCxIGSm/pd9v374lf39/WrhwIT148IACAgJ42vLly1P37t2pQ4cOVLVqVf651H9I2pa9evUqubu707Bhw3Tau4LP+QaA4uPjdRY7ZaZ4XfiFfuT5kdq7KYmpFQoFjRo1imxtbenZs2d0//59qlChAjVs2JCaNm1KRKTVppXw8PCgt2/f0rFjx+j169f022+/UeXKlbPmwb5Bkst/hUJBb9++pUmTJlF4eDhVrFiRFi5cSBYWFgRAbx2dkJBASqWSoqOjafTo0RQYGEjW1tY0ePDgrH6M75qQkBAyNzdPdbzIxsaGevXqRdevXydPT09ycXGh4sWLizrgC5BE7Eqlkv766y/+t3y8TvjGlyPUBAKBQCAQCAQCQQYRnTqBQCAQCAQCwfdI5cqVqWHDhnTt2jU6cuQIOTk56Y22Kh+sDwoKIqJEEXVyES2fPn1K06dPpxMnTvBB+1evXpGnpyc9fPiQrly5QnZ2dmIC5f9RKBRUo0YNqlWrFt29e5eOHDlCDg4OZGlpqZNWmrT18/Oj4OBgIiKysLDQiVicVGBy5coVunjxIt24cYNUKhXlyZOHWrVqxQWKQjitjZR3jx8/pidPntCcOXMoJCSEwsPDSaFQUEJCAvXs2ZM6d+5MzZo107KV9F6nJF4fM2YM3blzhwwNDSkyMpIaNGhA169fJ3t7e2ELGTdu3KCxY8cSUWKZM2rUKCpTpgwdOHAgXeJ14Rfpo1y5cnTp0iWaM2cOFxSmhjyfLSwsqE+fPhQbG0tjxoyhzZs3k5OTEw0fPlxnJ0hJvC4WEGQe8nw0MzOjnj17Unh4OI0fP562bdtGVapUoV9++UXHFpJ4XdTVmU/SesLb25u8vLzozz//JC8vLwoJCSGiRPFcvXr1qFevXtSiRQsqXbp0Tt72d0ty4nUReT39RERE0LZt2ygwMJCWL19OVapUoQIFCiSbXq1WE2OMoqKiiCgxOq60yEmO5Dvu7u50+fJlOnLkCL17947Kli1L9evXp9GjRwuhrh4+ffpEa9asISKiTZs2UeXKlcnKykpvWkkk+v79e14WxcbG8mNJSVpf62sDC3voR54vHz9+pLt379LixYvJx8dHa6ezFi1aUJUqVWjy5MlkYWGhk5dSW1V+vTt37tDy5cvpyJEj9OjRI9qwYYPwjSQolUqKjY2lpUuXUunSpalVq1aUO3duIsq4eF34RdYg9cMVCgW1bduW2rZtq3VcytP4+HgKDg6mJ0+e0OXLl+nZs2d08+ZNiomJ4dGP3dzc6Nq1a2Rubi7skAxSXp8/f57evXtHxsbG1LlzZ3JwcCAi/XWCtFAjLi6OZs6cSffu3SOlUkn16tXTWsyWXF9P+IV+Xr58SefPn6e2bdtSoUKFUuwrq1QqatOmDeXPn598fX1p586d1L59+2TzVdhCP0kXeMtF6VnpG98zQsAuEAgEAoFAIBAIBAKBQCAQCAQCHSpVqkR9+/al69ev05o1a6h06dI0fPhwMjIyIqLPW5tKg/SzZs2iy5cvExFR//79tbaclQbwP3z4QFOnTqXTp09Tnjx5aOPGjZQ/f34KDQ2l5cuX05UrV2jUqFH077//Ur58+bL5ib9eqlevTgMGDOBiA1tbWxo6dCi3RXx8PBkYGPCJpb///puePHlCREQDBw7UEu7KRbcnTpygs2fP0urVq3W+88yZM1SmTBnau3cv2dnZCcGojNjYWJoyZQodPXqUPn36RGFhYcQYI0NDQxo1ahTVqFGDevTowdPL8y6lSb6k4vWWLVtSWFgYXb58merXry9E7EmoV68eDR8+nNauXUsrV64khUJBRYsWpUOHDn2xeF34RcaoWLEi7d27l+eFJCqUdtzIlStXiucrlUpq3rw5NWjQgM6dO0c3b96k4cOHJ5tenuc/+uR5WgFAkZGRXHyVHEqlkpo1a0ZVq1almzdv0p07d+iXX35JNr3I+8xF/j77+/vThQsXaMmSJfTu3Tv68OEDT9e7d2+qVq0ajR8/XufcpOWS8JH0o0+8PnHiRBF5PYPkypWLOnToQLdv36anT5/S5cuXqVu3bnrbNgBIpVKRm5sbeXp6EhHxPkbS95oxRrdv36bRo0eTm5sbxcTEEBGRi4sLHTx4kHx8fGjp0qXCH5JgampKP//8M/n4+NCdO3fo+vXr1LFjx2QFawqFgl68eMEXLhcsWJCIdO0hpQVA7u7udPPmTfLy8qKPHz9SgwYNqFy5clSzZk0hnE5C0jJ86dKldP36dTpy5Aj/zNzcnCpVqkS9e/em3r1783ZuQkJCssI46fPbt2/T0qVL+fU2bdpERkZGtHLlSmGLJPzxxx+0ePFicnBwoLi4OOrcuTPlypWLrl+/ThMmTEiXeF34RdbCGNPpK3/8+JHUajVdvXqVnj17RleuXKEnT55QWFgYESXWScWKFeM7Q7Vv356IEhfZCpJHKqeuXr1K0dHRlDt3burbt2+yfQ35AoJNmzbRiRMnKDo6mgwNDenXX3/ldYl07ffv35Orqyv5+flRhQoVqGjRomRtbS3GQpIQHR1N27dvp5kzZ9L48ePpn3/+SXF8QqPRUL58+ah06dLk6+tLoaGhpFark91NW9gieeTlc9LF3kRZ4xvJ1QvfxbgUBAKBQCAQCAQCgUAgEAgEAoFAIJCRkJDA/547dy4YY2CM4e+//8aLFy900s+ePZunKVWqFA4fPqz3uoMHDwZjDAUKFMDjx4+1jp07dw758+eHra0t/Pz8MvNxvmnktpgzZw7P54ULF8Ld3V0r7adPnzBmzBiepl69erhz5w4/rlar+d9//vknKlSowNMWK1YM1apVw5gxY9CqVSvY2dmBMYbChQvz75Hfy49O//79ed45ODhgyJAhuH//vlYaeX6nxsOHD1GvXj0olUrkypUL/fr1w8ePH/Hu3Tu0aNECjDFYWFjg6dOnX3zt7xH5848bN47bokiRIvzvn3/+GZ8+ffqiawm/yBykPDl37hzmzJkDANBoNKmeN3/+fDDGYGBggEePHmXouwXabN26FcuWLQOQNltMnToVjDGYmprC09Mzq2/vh0d6b6OjoxESEoKJEyeiQYMGvCySyrfOnTvj8OHDWjaUl2Hy99/Z2Vnv54JEUvODiIgI7N27F05OTtwX/vjjD9FGzSSCg4PRpUsXMMZQs2ZNrfdVQnpv37x5g8GDB8PAwAAqlQoLFiwAoGvDu3fvokSJEmCMoUaNGhg3bhw2bNiAsWPHQqFQ8L6MQJd3796hffv2YIyhVq1avL0JfLaDlN++vr5o0qQJGGOwtLTEv//+q3VcIj4+Hq9evUK3bt1Qrlw5rfKMMQZbW1vMnj1b53sEQGBgICZMmIDWrVtr5Vnx4sVRq1YtXLx4Ef7+/lrnJJd/8s9v3bqF7t278+t16dKF+8aoUaNSvdaPhqenJywtLcEYQ+XKlbFjxw6cPHkSlStXBmMMefLkwbBhw7T8JTWEX2Qu+uryyMhIBAcHY/v27Zg7dy6qV68OGxsbrXyuVq0afv75Z2zZsgXOzs54//693uuK/E+dli1b8vIEAOLi4nTSSPkZHx+Pbdu2oVq1atwWW7Zs0Ur74cMHHD16FKVKlUKuXLnAGEP+/PlRuXJluLq6al1PkNh3mD59OhhjqFq1Ku7du5fqOQEBAShTpgwYY2jRokWy+SlskTEy0zf05fP79+91xru+ZXsIAbtAIBAIBAKBQCAQCAQCgUAgEAh0kA98T548mQ+iN2nSBNOmTcN///2HP//8E127duXHjI2NMWvWLL3Xc3FxQf78+WFgYIDz58/z75AmBV1cXGBmZgbGGD8uSERuiylTpvD8rl69OkaPHo1Vq1Zh2LBhaNy4sdZCgnXr1vHz4uPj+d8jR47UmsD96aefcOrUKURGRgJInAS7f/8+mjZtCsYYGjdujLdv32bfA3/FJF3cMXz4cAQHByMqKkrneFqRxOsqlQq5cuVC3759+SR6QkICvL29+eSXELF/Rv78Y8eO1Xqn27dvz9/nlGwiv4bwi8zl4cOHYIwhd+7cePXqVYppJRutX78ejDHkypUL169f15tWKg+DgoJw+/ZtLFy4EHv27MGlS5d0ridI5OzZs3zxWGBgYIpppbz7888/uf1SEmalRTAn0E9SgYGzszPGjBnDhXHST8WKFdG5c2e4urrqCKzkyPP82LFjqFSpEgYPHqz3+I+OvOy/desWwsPDAXzOI33i9d9//z3N4nXhF2nDz88PDg4OYIyhUaNGuH//Pq9zJf94/fo1Zs+ejeLFi/NyzMfHR+dar1+/5m2ldu3a4cGDBzy/IyMj8fvvv0OlUqFr167Z94DfGL6+vnwRX6NGjXDnzh1ERERopfHx8cGgQYNgZWUFxhjKly+P169f61wrMDAQmzZtgr29PRhjXCRdoUIFVKtWDUWKFIFSqQRjDOPHj8+uR/xm8PPzQ+HChcEYg5GREfLkyYMBAwbgwoULOmK1lMqVpOL1Hj168Lplzpw5iIuLw6ZNm4SIPQXc3d2RP39+MMZQpkwZXhalR7wu/CJriIqKwps3b7Bnzx7MmTMHjo6O3H+kPK5WrRq6deuG3bt34/79+4iNjdW6RtKFOoLUUavV0Gg0qFWrFhhjydavUpsrNjYW69atQ40aNXg59Oeff2qlfffuHRYtWoR8+fKBMYayZcvCxsYGtra2YIyhUKFCYmGtHq5evcrbU//73/8QGhqqN51kCyl4CGMMvXr10lveC1ukn8z2DWksNy4uDqGhoZg3bx569OgBKysr2NraolGjRpg5cyZ8fX21rvutIQTsAoFAIBAIBAKBQCAQCAQCgUAg0It84Hv27NmwsLCASqXik+lygZW1tTVmzJjB0yed/Dt37hyPHBcQEAAgcaJQ+o5Lly4hX758KFeuHIKCgrLh6b4t5LaYM2cOChQowCe4DQwMtGxRtWpVrFq1iqeXT9AOHDiQT+YaGxtr2Qz4PDmSkJCA06dPo1ChQihatKhWJPcfHX0TQukVeTx8+BCOjo5QqVQwMDBA586d+TF5hCa5iD1//vx48uRJur7ve0Nui9GjR3MfGDp0KDw8PNJ8rvCLzOfKlSsoWbIkjI2NMX/+fC5K1Idki2XLlvE65sSJEzrppHrlwYMHaNCgAZ94Z4zB3NwckydP5mmF8OozZ8+eRfHixZE7d24sWbIE0dHRyaaV3vVJkybBwMAApqamyUbyk9fzCQkJcHd3h6+vL7y9vRETE6N1TPCZpO2jw4cP47fffoOxsTEXWhkbG6NQoUKYOnUqHjx4wPMzLcLoY8eOoVWrVtw3Ro4cqTedAGjWrBkqVqyI3bt3IywsDAAQHh6OPXv2pDvyuvCLL8PLywuFChUCYwxOTk6YNGkS7t27h3v37uHixYto3bo1310lT548OH78OADd6LhXr16FpaUlihcvjgsXLvDj0u8tW7bw/srHjx+z/0G/ETw9Pbk9KlasiGHDhuHSpUs4ceIE9uzZA3t7e5ibm/NFldJuKfI21YsXLzBhwgQUK1aMp2vZsiX27dvH/ezp06dYtmwZL/OWLl2aE4/7VfP06VMULFgQM2bM4O+9xJeKbG/fvo1u3brxemHWrFncd+Lj45MVsQsxbyLu7u5cxKlQKJArVy788ssvXyTeFH6Rudy5cwf//vsvZs6ciZo1a2rtwsUYQ506ddC1a1fs27cPly5d0nmXpTJL1MUZ56+//gJjiTuf+Pv78zyVj/VFR0dj1qxZcHR05DaaNm0aF1pL6Xbv3s13Pfjll1/w6dMnBAUF4cGDB2jYsCEYYxg4cCCio6OF7ZKwcuVKnrcrV67kARaAxPyV8is4OJgvoilUqBCuXr0KQHcRh7BFxskM35D65iEhIVi8eDEaNWoExhgfC5b/lCtX7puOjC8E7AKBQCAQCAQCgUAgEAgEAoFAIEgWuSDhwIEDGDp0KBfbSgPl/fv3x/bt2/WeI3Hnzh3kypULNjY2ePbsmdax+Ph4Ls5t3bp1shGDfnTk+Xr06FGMHz8epqamMDExgZGREUxNTfHbb7/h3LlzPJ1cvD5s2DA+2VG0aFGsWLGCH9M3wfHq1SsULVqUR+kTfEY+SZeRCTt3d3e0atUK1tbWYIyhVq1aXHgt36EASBSxt23bli8gCQ0NFZOF0PaLMWPG8HJpzJgxOmWNhPx9F36RNYSHh2P8+PFgjMHBwQE3btzQm056h1+9eoVy5crxCG9v3rzRm+727dvInTs3GGMoUaIEqlWrhpo1a/JJ3KlTp2btg32DhIaG8h0GnJyckl14Ib3vPj4+fHFApUqVUhS8R0RE4H//+x86duwIY2Nj5M2bFyYmJujSpQvWrFnD04mySpuQkBCcPn0a/fv3h5GREW9T5c6dG8WKFcPatWtx69YtrXOSEyIkFa9L7SnGGF8QIqLq6hIYGMiFuE5OTvj3338RFBSEAwcOcBHJl4rXJYRffBleXl48cihjDIaGhjAyMtIS55iZmWHHjh1ai/uAz3n422+/gTGG5s2b82Nyn9m4cSMYS9y9SC7qEuji5eWltROEZAe5PSwsLHD58mUA2sI4T09PDBo0CAUKFODiuCVLlnChr1y8FRkZienTp0OlUqFly5ZiYYEeki7+S48g7cqVK+jUqZNOVFf57lxqtTpZEbsgETc3Ny7mLFiwIBYsWKCzUCY5hF9kPosXL9YSbjo6OqJPnz7Ys2cPbt68CQA6UdaBxPYX8Pn9/1YjFX9NnDp1Cnnz5gVjDCtWrNDaJSIuLg6vX79Gx44d+SIQqQ/94cMHreu8fPmS97FHjBih00ZavXo1GGOoV6+eaD/JkJc/f/zxh1Ye379/nx8LDQ3Fw4cPeXsrd+7c+Omnn/TulCZskTlk1Dek8ikoKAgdOnTgCwwZY6hSpQqGDBmC5cuXY9iwYahSpQoYYyhatKhO3fKtIATsAoFAIBAIBAKBQCAQCAQCgUAgSJGkk7JeXl64evUqLl68CBcXlxTTSri7u6NkyZJcYPjixQu8f/8eLi4uaN26NY8sLYl3v7XB9uwiaf4GBATg2bNnePbsmY7ASi5MmDFjBo8aZ2Njg/Xr1/NjSSdupbyPi4vj29gKoW7WERoaioMHD6Jp06ZgjMHExATXrl0DoOsHXl5eaNSoETZt2pQTt/rVIn+Hx40bxyf2Ro0ahZcvX2qlleep8IusJSAgAHXq1AFjDA0aNICbm5tW1Fzp76CgIPz6668wNTUFYwzdunVDeHi4zvVcXFy4+KdLly64efMmoqKi8Pr1a6xcuRIKhQIFChRINmL4j8zLly/5NuYNGzbEs2fPtOoIyRZ+fn5o0aIFL4smT56stZhG+v327Vvs2rULtWvX1hIQ5cqVS+t/ERVfF7VajRYtWuhEzmvatCmWLFmiU2alJIxLSbw+f/58/Pvvv3oFicIWibi7u8PKyoovtBk1ahSPSmlqaorff/89TeJ14RcZx9/fHyNHjkSlSpW08srKygp2dna4cuVKiufPmTMHjDG0b98eMTExWn5z584dlClTBowxzJw5M4uf5PsgICAAkyZNQrVq1bTsYWtri+bNm8PNzQ2A9vvr4+ODIUOGcJ8qUqQITp48iYiICJ4m6fv+33//8Ws/ePAgex7uGyKj5UNcXBx2794NY2NjLlj866+/tI5LqNVqbN68mddN8+bNy9B3f4+4ublxoWHlypWxZ88eHj09OYRfZB3z58/H+vXrce/ePa2FNNJv+a4nu3fvxtixY1G2bFm0b98ekyZN0hGJCtLPrFmz+Ds7ePBgLF68GFu3bsWgQYNga2urVY+sWbNGqw8i2WvNmjVgjKFatWr8uDzdtm3buED3zZs332SE6axC/g5PmTJFq87u1q0bhg4diqZNm/KdCkxNTVGvXj3cvn1b7/WELTKP9PqGlKevXr3Sis7OGMPq1at5pHUg0f4uLi48OnunTp2+ycVPQsAuEAgEAoFAIBAIBAKBQCAQCASCNJPSRHpqk+zr16/ng+5OTk6ws7Pjg/ZWVlZctCufAEm6lW1avudHIa35sGfPHtjY2PCIiatWreLHUppsOnnyJI8Ku27dugzfr0AXeeS+Fy9eoFu3bmCMIV++fHj48KHec1ISPPzIyCduR48eDcYY2rZtyyNQJUX4Rfbg7e2N4sWLgzGGunXrYt++fVqR3p4/f45evXqhcOHCXOj56NEjrWtIESl/+eUXMJa4U0dQUJBWGj8/P5QtWxaMMRw5ciRbnu1bw9vbG8WKFQNjDLVr18bWrVu5ODc0NBSPHz9GrVq1+EKCEiVKaIkUpfLmxYsXGDVqFF+UZmJigrJly2LGjBnYtWsXNmzYgKFDh3Lh9IwZM3Lsmb9Wnj59yncS6N27N1auXKl1PC1CkJTE6wsWLODHNmzYIETsKSAXsefJk4e/07Nnz4avr2+q5wu/yDyioqLw5s0brF27FkuWLMGcOXNw4cIFvH37FoD+d1b6bPv27VAoFChRogSuXbvG20pXr17li3KaN2+O58+fA0hfJOsfjdjYWISFhWHv3r3YsWMH1q1bBzc3Ny6Kkre7goODMX36dBQsWJCL2q5fv57stSW7PXv2DGZmZmCM4fTp01n6PD8y58+fx5QpU/himr59+/JjSSOxr1mzBg4ODti4caPOjgcC7TqjUqVK2LlzZ7K7Ogi/yBqSE5zLP09uhy75ojJ7e3sEBwcDEHVCepHn2//+9z8w9nn3n6SL0Ro0aIDjx48ne61JkyaBMYY2bdroXDs6OhoTJkwAYwwDBw7Mugf6hpG/8wsWLECpUqWStUWnTp34TgX6ELbIOBnxDcmWAQEBKFGiBBhjMDAwQMmSJXHp0iWt75Hq8ISEBOzevRumpqYoV66czoLobwEhYBcIBAKBQCAQCAQCgUAgEAgEAkGWIhecrFmzBtbW1jAxMQFjDAUKFECtWrXw7NkzAJ8H+vVNTH769ImLWMQkY9oICQlB7969+QSJPGJ0cnkoRUb+3//+B0NDQxgZGeHs2bPZdcvfFV8qEHR1deWRk3r27In3799n0Z19n8jLjY0bN+LYsWN60wm/yF48PDy4iN3KygolS5ZE79690bp1a60ts42MjHDy5EkAunYIDw+Ho6MjDAwMsGPHDp3FTRqNhkfGP3r0aPY+4DeEh4cHnwg3NzdH4cKF0aZNG1StWpWLd6VjUiR7jUbD89nDwwOdO3fmdrOwsMD8+fN1IoSGh4djxYoVPCr+xYsXs/1Zv3Y8PDxw/vx5rQih6WnbHD16FM2bN+e2+/vvv7Wup1arsWnTJiFiTwE3NzdYWlqCMQZjY2N07tyZt0uB5PNJ+lz4RdaTmm+Eh4ejbt26YIyhZMmSaNWqFQYPHgwjIyMwxlC9enUcPHgwRRG8IO1IeSa1uw4ePMgXJRcpUiTViPnSeZs2bYKBgQFMTU3F7ilZgNxvPn78iO3bt3Nh9NChQ/Wm02g08PHxQWRkZLbe67eEu7s78ufPD8YYunfvrrNrkPCL7CVpGS7/f9iwYWCMwdDQEH/88QdOnToFPz8/9O3bly92Fu96xpD3v6XI0vny5YOlpSUqVqyIpk2b4vDhw/D29ubp9NW7mzZtgqGhIRo3bow3b95oXf/w4cN84ad8xzSBNnJbXLx4EX/99RdsbW1RuHBhlClTBjVr1sSePXuELbKJ9PiGtHAsMDAQFSpU4Itia9asibt37wJIvt3q7OzMd1zZu3dvFj5Z1iAE7AKBQCAQCAQCgUAgEAgEAoFAIMhy5BPjDx48wNmzZ7Fq1SrcuXOHR74CtAfj4+Li8OjRI2zevBkjRoxAhQoVYG1tDRcXl2y992+ZQ4cOaW1ZK5GcEEj6/ObNmzwKb7NmzbLlXr835Hns4eEBjUaTqkgqJiYGM2fO5AIsd3f3rL7N7w59i1+S5rvwi+znxYsXaNOmDY+0Lv8xNjaGpaUlLly4kOz59+/f5yJ3KWKc3KfOnTvHr5eaQOhHx8fHB507d+aLCpJGgatcuTIX3qrVav7+e3p6omXLllzobmVlhTNnzmhFHpVHcvX19YWTkxMYY1i2bFn2PuQ3SHpEtI8ePUL9+vW5/Tp37syPRUdH878lEbtSqRQRE5PB1dWVi9grVKiA/fv3a+14khTJXsIvch6p3v/48SPq1q3LF2tIPz169MCpU6d4uqS/JeR2EqL21JHyKDw8HJUrV+YLk//7778Uz5O3tTp27AjGGPLmzau1O4sga4iPj8emTZuQK1cuqFQqrF69Oqdv6ZvFzc0NDRo0gKurq9bnwi++HhYvXszF63v27NFaMAgADg4OKFasGHx8fHLoDr8fktanr1+/ho+PDz5+/JjiAgM5Fy9e5NHxJ06ciMuXL+PixYuYN28eX3gzaNCgLHuG74Wk4xkfP37Eu3fv8OHDB612TkoIW2QeX+IbUtr379+jWbNmvPyqXbs236EupYWYz58/R4ECBcAYw759+7LicbIUIWAXCAQCgUAgEAgEAoFAIBAIBAJBtiBNpugbdJeEVnfv3sXu3bvRr18/ODg4aG2zmjdvXtjZ2WHmzJliS/NU0Gg0iImJQbt27cAYg5OTE5ydnfmx5M4BAC8vLxQtWhSMMdja2uLgwYMAoJPnSe0oouLrZ/PmzRg2bBj/PzVRlKurK8zNzcEYw7x58/SmSW0iWNhCP1nhFyKv0867d+9w7Ngx9OnTB5UqVUKpUqXQtGlTzJkzB25ubgCS94+3b9/CwcEBpqam2LFjh1a+3759G3Z2dmCMYciQIdnyLN8679+/x6VLlzB48GA0adIEtWvXRteuXbF7924u5JEvEPD19UWPHj142ZQ/f348efIk1e/p2rUrGGPo1auX3sUlgoyzceNGtGnTBiYmJjAxMdGKsC4XqqjVamzevJlHCH/+/HlO3O5XjZubG6ysrMAYQ6VKlbBz584URezCL74epHc9LCwMO3bswKRJkzBr1ixs3boVkZGRKdYtV65cwaxZs9ClSxcMHz48O2/7u2DMmDFgjCFPnjyYOXMmQkJCkk0rt8Pff/8NxhgMDAwwefJkneOCtBMbG4uwsLA0pfX390fLli15GSRIP1LfWF85LvwiZwkJCUHz5s2hVCoxe/ZsrfZQdHQ01Go16tSpA8aY2FErk0jpPU1rf3nVqlVau0GpVCo+Hvjzzz/zdHKf0+d/on+ePMIW2c+X+EZUVBSmTZsGCwsLMMZQsWJF3L9/P9XrAMC8efN4vZN0F6hvARUJBAKBQCAQCAQCgUAgEAgEAoFAkIUkJCSQQqEghUJBRESMMSIiUqvVdOvWLQoODqaDBw+Sv78/3blzh59XpEgRqlq1KjVv3pwqV65MlStXJltbWwLAryHQj0KhILVaTR4eHkREVLJkSbKzs+PHkiLZyNfXl3799Vd6/fo1GRoaUu3atal+/fpERGRgYEBERO/evaMHDx7QxYsXKTo6mpycnKhFixZka2tLGo2GlEplNj3l18/z589p/fr1dP/+fapQoQKNHj062XdXeq9VKhUZGxtTWFgYxcbGJpuOSNjiS8kKv5DOE/mdOvnz56f27dtT+/btKSwsjNRqNVlaWvJ3OqWy3cLCguzt7enZs2f0119/ERFRoUKFKDg4mCZNmkRv3ryh5s2b05gxY4jos+0E+smXLx81btyYGjduTHFxcZSQkEDGxsb8OACefx8/fqT169fTlStXKCwsjKysrOjatWtUvnz5FPM5PDycnj9/zq8n/CNrGDx4MDVr1oyOHz9O06ZNo9WrV9OnT59o586dpFKpeNmkVCqpf//+lDdvXrK0tKQSJUrk9K1/ddjZ2dH169epfv365OzsTMuXL6ciRYpQo0aNdMom4RdfF9K7bmZmRv369dObJjIykhhjdOPGDXJxcaHLly/Tw4cP6d27d0REvB5q3Lgxde/ePTtv/5slMjKSXF1diYjIxsaGOnbsSHnz5tWbVl7Hnz59mg4ePEhERLly5aK6desSUaINUmpPiT6gLmq1mq5fv05BQUHUt2/fVPPIxsaGGjRoQOfOnaP9+/fT1KlTycnJSW9aYYuUUakS5XZJ8ygr/ELwZQQEBNC1a9dIqVRS3bp1ua3UajUZGxtTaGgoffz4kQoXLkzlypXL4bv9PkjpPU2tTya1m0aOHEkmJia0YcMG8vX1pdjYWGrcuDE1atSIpkyZQkREMTExZGxszM+R/C8kJIRcXFyoSJEiVKZMGdEXTAZhi+wnLb4h5ZG/vz9duHCBQkNDycDAgNauXUvVqlVLts6VzgsNDaV79+4REZGpqSmZm5tnzcNkIULALhAIBAKBQCAQCAQCgUAgEAgEgkxFGkSXBtmlQfn4+Hh68OAB+fj40KFDh+j169d8kJ2IqHDhwlSlShXq0qULlSxZkho2bEgWFhaUK1cunesLwU/qREZGUkREBBkYGFCXLl3IwMCA1Go1n8CVkIt0R40axW1SsmRJmjlzJhUoUICnPXPmDG3fvp3279/PP1MoFGRjY0PHjx+nihUr/vATVHLy5s1LDg4OdP/+fTp37hy1aNEi2UlyaULq8ePHXEyVdOJJPnElbJE+MtMvEhISiDFGjDFeJnl4eNC7d+8oISGB7O3tycTEhExMTIQt/h/pHTYzM9P5LKXFHYaGhrRmzRry9PSkx48f09ChQykmJoanadeuHU2cOFFnQUJyk71CePU5DwwMDHheyG0hCdcePnxIhw8fpuDgYLK0tKTTp09T+fLlkxW2SZ+/fv2aL8IpWbKk1vUFmYOUnyVKlKDhw4eTlZUVDRkyhHbv3k0lSpSguXPnatlIqVRS586dc/COv37Kly9P169fpyZNmlBMTAzZ2tpqvbPCL75O9PUNoqOjKT4+ni5evEivXr2iY8eOkb+/P3l7e/M0dnZ2VKdOHWrUqBHVqlWLSpQoodXuFaTM3bt36dKlS0RE9Ouvv1LlypX1ppO/4/fv36cdO3bQ3bt3iYho5MiR1LFjR55OsuOFCxfI39+fcufOTYUKFaKGDRumutjtR+TZs2fUrVs3io6Opnr16qW4OEkqh0qVKsXz8tOnT8mmF7ZImeSePbP9Qo68P/Gj539KSGWJsbEx73MA4P29IUOGkIeHB1WpUoXy5MmTk7cqoMR+m/RuDxw4kFq2bEnx8fEUHh5ONjY2WjaSFty+f/+eXrx4Qbdv36arV6+Su7s7eXt7k0qlIldXVypTpkxOPc43jbBFziCV62vXrqX79+8TEdHmzZupfv36KY5nSOetXr2ajh07RkREw4cPp9KlS2ul+xbqCiFgFwgEAoFAIBAIBAKBQCAQCAQCQaaQVLD+4cMHCgwMpIcPH9KlS5fI1dWVnjx5wtMXLlyYKlWqRF26dKESJUpQu3btyNDQkExMTLSum1T4KcTraSMhIYGioqIoPj6eAgICiIiSFel6e3vT0KFD6e7duxQTE0NWVla0b98+Klu2LE974sQJmjNnDj18+JBy585NHTt2pKioKPL396dHjx5Ru3bt6NKlS2Rra5utz/k1Y2VlRZ06daIzZ87QyZMnqVatWjRhwgSdRRkSQUFBdPHiRVIqlaTRaKhw4cJax6WJJ2GL9JNZfqHRaLjQ18fHhy5dukQ7duwgNzc3CgkJIaJEIWT16tVpxowZVKZMGRGlnT6/w/JJ1NSE/ZKY2sLCgi5dukSjR48mDw8PcnZ2pnLlylG7du1o3LhxlD9/fp3JWbkQ+9q1axQZGUmtW7f+JiZxsxp9tpD/Lb2rf/31F3l5eVGePHlo/fr1VLVq1WQXksk/X7ZsGXl5eRFjjJo3b65zfUHa0bfIhkg7P1UqFbVr147GjBlDixYtoqNHj1KnTp2oatWq2Xmr3wXly5enu3fvUmxsLJUoUUJL+CH84usgaX0qLZyNiIigS5cuka+vLx04cICCg4O1BOsVK1akNm3aUOfOnal06dJUqVIlvVEqxaKztBEXF0cGBgaUK1cuqlKlChHp5p3cf5ydnWn9+vV88WWfPn1o9uzZWtd8/vw5jR07li5evEjx8fFElLigc8iQIbRw4UIhnE5CTEwMWVhYUGRkJO3evZvGjx+v05dOiqenJxEllmcpLR709vYWtkgHmekXSet/qZxTq9UUGxtLBQsW1HvNHx0zMzOytbUlNzc3unTpEpUpU4Zy585NcXFxNGTIEDpw4ABZWlrSmjVrKG/evCLvvgKkndJUKhUVLFhQpz314sULioiIoJMnT5KrqytduXKFgoKCiCixHVWoUCHq1KkTlS5dmt68eSNE0xlA2CL7AUDBwcF09epVIiJq3749tWjRgoj09xPkZdb27dtpxowZRERUt25datu2LRF9bitL6eLi4kilUvExrK+trSsE7AKBQCAQCAQCgUAgEAgEAoFAIMgUGGMUGRlJf/75J717947u3r1LL1684JEm8+XLR/Xq1aPGjRuTnZ0dNWrUiIyMjHS21AagFU3maxpU/5YoVKgQdevWjbZt20bPnz+nT58+kbm5uY5w9PHjx9SrVy968eIFJSQkkIWFBZ05c4YcHR35pIeXlxdt2LCBHj58SC1atKARI0ZQ+/btSa1W0/Pnz+nnn3+mhw8f0vHjx2nMmDFiEpg+Tyq1a9eOxo8fT5MnT6bff/+dLCwsqG/fvjqCqffv39PBgwdp9+7dpNFoqGHDhtSzZ0+d6wpbZIzM8Au5GPHGjRs0fvx4evnyJQUHB/NIZCYmJuTh4UEeHh506dIlOnv2LFWoUOGrmyj8VpAWdZibm9PmzZtJo9HQu3fvyNTUlPLly6eTPjw8nJydncnX15cOHz5M/v7+9PjxYyIiGjhwIG3evDm7H+GbQio3tmzZQpcvXyYjIyP69ddfqUmTJkSkv16W19tr166lrVu3EmOMOnXqRA4ODvyawge+jIiICHr69ClVrVqVDA0NU0xrZmZGjRs3pn/++YeePXtGDx48SFHALmyRPMWKFSMibYFIVvqF4MuQ6uBXr16Rm5sbOTs709mzZ8nHx4f8/Px4Ont7e2rWrBn17NmTihYtSk2bNtUr2k3qC8Iv0kZoaCjFx8dTrly5yNLSkoi0806er3fu3KH169fT9u3biShx55TJkyeTgYEB72/cvn2bxo8fT/fv3ydLS0uytbUljUZDzs7OtHjxYmKM0YIFC4TPyLC3t6euXbvSkiVLaP/+/dSwYUOqV6+eTjr5oo9r167xCNVFixbVSifZTNgi/WSmX0ji9YSEBDpw4ACdOHGCbt68SfHx8RQWFkZdu3alevXq0aBBg8SCAhklS5aknj170syZM2natGl05coV0mg0FBISQo8fP6a8efPSsmXLqEaNGiLPcpCkfQPpfVcqleTv70/v37+nI0eOUEBAAJ05c4bCwsIoJiaGFAoF5cuXj3r16kUVKlSgRo0aUZkyZbQWdAi+DGGLnIUxRm/evCEXFxciIqpZs2ayOwLJy6wDBw7Q77//TkREefLkoXbt2vGFU0qlkuLi4sjd3Z327NlDT58+JbVaTVWrVqVBgwZ9fQEWIBAIBAKBQCAQCAQCgUAgEAgEAkEmMnz4cDDGYGRkhKZNm2LixIk4duwYXr9+jaioKJ30arUa7969w/379/H+/XtER0fzzwUZY+vWrWCMgTGG5cuXIyAggB+7f/8+Vq5cCTMzM56mZMmSePLkCQBAo9EgISEBALB9+3YoFAqUKFECZ86c4deIi4sDAPTt2xeMMQwbNiwbn+7rR6PR8L//97//8XyeMGECjh8/Do1GA41GgwsXLmDq1KkwNTUFYwwVK1bE0aNHda4BCFtkBhn1CyAxv3ft2gWFQsHT5c+fH3PmzMF///2HJ0+eYM2aNWjQoAEYYyhTpgxevHiRI8/7PREfHw8AvGySePv2LW7fvo1Vq1aha9eusLe353aRbNisWTMsW7YMGzZsyIlb/yaZOHEir88vXryYbDq5PY4fP44aNWqAMQaVSoWNGzfqPScuLg5v3rzRKuOS2vVHJzo6GuvXr0f58uVx9uzZNJ0TFRWFatWqgTGGAQMGpClPhS2+jKz0C0HKvHz5Evv27cPs2bPRsmVLFClSRKust7OzQ6dOnbBx40acPXsW0dHRevseUl0iyBj+/v4oV64cVCoV1q9fz/tuCQkJWv24AwcOoHPnztxOrVq1wrVr17TKnA8fPqB27dpgjMHBwQFubm6IiIjA69evsXz5ciiVSlhZWeH69evZ/pxfOwEBAahTpw4YY2jQoAGePXvG8zZpf3rYsGFgjMHQ0BDDhw8H8Lmsks4RtsgYmekXAHD48GEMGDBAq6wzNjYGY4z3Q6ZMmcLT/+j1tzz/fvvtNyiVSiiVSp53hQsXxunTpxEbG5uDd/ljkrSskfPu3Tvcu3cPs2bNQp8+fZAnTx7+nhsbG8PMzAw//fQTfv/9dzx69AivX7/WuYZ0XX3XF2gjbPH18fjxY+TKlQv58uXD/fv3Aei2V+X5efDgQZQvXx4qlQqMMfTv318rbWRkJP755x9UrVpVq/5gjKFIkSJ49uwZgK+nzhAR2AUCgUAgEAgEAoFAIBAIBAKBQJAp4P8jwaxZs4a6d+9OhQsXpnLlymml0Wg0Wv8HBQXRyJEjyd3dnTw9Pals2bJkb29P69atIysrq68rIsw3hGSLAQMGkJeXFy1YsIDGjRtH//33HxUqVIgYY3Tr1i0KDg6m2NhYsra2pipVqtDixYupfPnyWpHhYmJiaOfOnQSAunfvTi1btiSiRFsaGBgQ0eeocgkJCSKiqwyFQsHf4fnz5xMR0YIFC2jp0qW0dOlSqlChAhERj/IdHx9P5cuXpyFDhlDDhg35NSSELTJGZvlFWFgYbd++ncaNG0cAqECBAlStWjVauXIl2dra8u9zcHCgRo0a0cCBA+nevXu0YsUKWrRoEalUKmGXNAA9ERGlaHCvX7+m0NBQOn36NLm4uNC1a9fo5cuXPJ2VlRU1bdqUmjVrRhUrVqTGjRsTY4xMTExSvL4gEY1GQ3FxcXTq1CkiIurcuTOPMp0UeT5eunSJ1q1bR/fv3yciomHDhtHgwYO1rvv27VuaOXMmubq60tOnT6lhw4bUoEEDmjJliogemoTY2Fi6evUqeXp60qZNm6hatWo8mmtyhIaGUlBQEP87ubwUtvhyssIv0lpPC1skYmBgQCNGjKCPHz+SgYEB5c+fn7p370516tShatWqUbVq1UihUPA2kUR4eDgxxogxRqampqRSqUQbKRPImzcvVa5cmby8vGjXrl1Us2ZNKleuHBkbG/MdtWbMmEHHjh0jV1dXIiLq2LEjTZkyhWrUqKGV/+PGjaM7d+5QiRIl6PTp01SkSBEiIjI1NaUuXbrQtm3byNnZmYKDg3PkWb9mihYtSjt27KAmTZrQ9evXaejQoTRmzBhq0KABFSpUiGJiYigyMpImT55M27ZtI8YYWVtbU4sWLYiIeNki2UPYImNkpl/MmjWLDh8+TE+fPiUiojJlylD58uWpdevWFBISQh4eHrR7925avHgxKRQK+uuvv374ukLe/16wYAHVqlWLAgICyNfXl5ycnKhp06Y6Ow8Isgfp3dRoNBQeHk4PHjygBw8e0P379+n27du8/apSqcjS0pLatm1LJUuWpE6dOpGlpSWVLFlS63pS20j6LXZwTDvCFl8fhoaGFBsbSzExMeTp6UnVqlXjYx8SUn7u3r2bZsyYQa9fvyaNRkPt27enbdu28XSxsbG0cuVKWrp0KYWGhpKDgwP98ssv5O/vT/fu3aObN29S165d6cKFC19NeSgE7AKBQCAQCAQCgUAgEAgEAoFAIMgUGGN8srBx48ZEpLsVrSRGT0hIoCtXrtD48ePp6dOnZGVlRWXKlCG1Wk2HDh0iDw8Punr1KuXLl0+IdtKB3Bbz588nQ0NDWrZsGd28eZMSEhK00taqVYt69+5NXbt2pcKFC+sIehQKBUVFRRERkYWFBRERxcfHc3HQlStX6MqVK6RQKKht27ZikioJSqVSyxbW1ta0d+9eunv3Lrm5uWmlrVWrFo0cOZLatm1L5ubmOtcStsgYGfEL6bzY2FjasmULTZw4kQBQ2bJlqWvXrjR+/HitRTcASKFQUJkyZahhw4Z07949un//PhkYGIjyLBWkMkieT/7+/hQaGkrHjh0jPz8/OnPmDIWEhFBMTAwREeXLl486duxIjo6OVL9+fapYsSIVLFhQyweSLqASdkgehUJBRkZGfNI8X758RESkVqu1JtLl9cWFCxdo7dq1XNzbo0cPWrZsGU8bHR1NZ86coUWLFtHdu3fJwMCA4uPj6ezZs3Tq1CkKCgqipUuXCrvIMDExoTp16tDZs2fp7t27dO3aNerQoYPesl2yxbNnzwgAEREVLFhQbxtK2CJ9ZLZfxMXFkaGhIT/v3r175OPjQzdu3CBDQ0OqXLkylS1blmrWrCkWFPw/hQoVouvXr9OJEyeoUaNGZGtrS/nz59dKExcXx/++fv06Xbt2jf777z/SaDRUqlQp6tKlC/Xt25cUCoUQsWcQMzMzmj9/Pt25c4du3LhBgwYNosqVK1OtWrXo9u3b5O3tTdevX+fpBw0aRJMnT6ayZctqvcthYWH07NkzMjExoTVr1lCRIkW0/CpXrlykVqsJAIWEhGT7c34LlCpVis6dO0ctWrSgW7dukaenJ1lZWVH9+vXp+fPn9PHjR3JxcSGFQkGmpqY0adIk6tSpk851hC0yTmb5xYgRI2jv3r0UGhpKRImLn3r27MkXORMRffr0iWrVqkWjR4+mVatWUe3atalDhw7Z97BfKfL+t773XJT9OceTJ0+ob9++FBERobX4uHDhwtS5c2eqUqUKtWjRgqysrMjW1jbZto/chj962yi9CFt8PQCg4sWLU+vWrenUqVP06NEj6tSpE5mammqlYYzRkiVL6LfffqOEhAQCQG3atKGjR48SUaJw3cjIiG7cuEE7d+6kiIgIGj58OA0dOpTKlStHarWa3NzcqGfPnuTr60sPHjwQAnaBQCAQCAQCgUAgEAgEAoFAIBB8fySNlp40ops0kejm5kZjx44lV1dXqly5Mu3Zs4cKFSpE5ubm1L9/f9q5cyfNmDGDVqxYoRNFUZA25BO3s2bNourVq5OrqyudOHGCGGNUtWpVsrW1paFDh3JRrSS6lWNgYEBOTk50+/Zt8vT0pI8fP1LevHmJiOjWrVu0fv16CggI4JGOBbrIbTF69Ghq1qwZOTs708GDB+nTp09UunRpKlasGI0bN45MTEySnfgTtsg46fELjUbDbbJ7924uXq9YsSINHDiQBg8eTHny5KGEhAReBkrpVSoV34ni4cOH9Pz5cypTpoyY3E0BjUZDERER5OPjQydPniRvb286fvw4xcXFUUREBCmVSlIqldShQwceCc7a2pqKFSumV7AuTfaK3TzSjhSpuFSpUvTs2TMKCgrSEenKd0g5dOgQbdy4kc6ePUtERB06dKBFixaRUqnk512/fp1mzpxJz549o/Lly9O8efMoPDyc/P39adasWbR8+XIqV64cDRs2LEee+WvEwMCAevToQWfPnqUTJ07QwoULqXTp0mRvb8/TSNFcpXd/8+bNPGpimzZttMoaSWAibJE+MtMv4uPjuXj90qVLdP78eVq0aBHlypWLL1QjIipevDgNGDCAZs6cKUTs/0+FChX4DjZEn99raeGGlK9SdMqXL18SAMqbNy89ffqUjhw5Qm/evKFJkyYJAWMmYGtrS2fPnqVOnTrR48eP6fHjx7R9+3ZeBxsaGlKJEiWof//+9L///U/nfAD08uVLevLkCRER7/epVCruXz4+PvThwwfKnz+/Vvkn0KZcuXJ0+fJlGj16ND1+/Jg8PT3Jy8tLyzfKlStHI0aMoKFDhxKRtvBQ2CLzyKhfDBo0iLZv385tt2jRIpo0aRI/Li2AsrCwoM6dO9OhQ4foypUr5OzsLATs/09K7X5R9ucclSpVotq1a9Pp06epWbNm1LJlS6pcuTI5ODjoLEgjSmx7ubm5UUBAAPn7+1OFChXIycmJzMzMdNpggi9D2OLrQdohSBKwL126lAoXLkxt2rShsmXLUnR0NB09epQuXrzII60bGBhQ165dac+ePUSUuKDWyMiIiIj27t1Lbm5u1KRJExoxYgSVLl2a9xcdHR2pcOHC5OnpSb6+vjn1yLpAIBAIBAKBQCAQCAQCgUAgEAgEgmwkLi4OderUAWMMNWrUwIcPHwAAMTExAIDg4GDkzZsXDRs2hEajyclb/S5Imofx8fFQq9UppknK/v37wRgDYwz9+/fHP//8g8mTJ6Ny5cpgjKFUqVI4cuRIpt/790ZCQkKG0whbZA5f4heSTc6fP8/z3s7ODsuWLUN4eLhWGn3nr1ixAgYGBjA3N4ePj0+a3oMflaioKIwaNQoqlQoGBgZgjMHAwAAWFhbo0qULJk6ciFu3bsHLyyvVa4n6I/1I7+iSJUtgYGAAOzs7PH78WG/aRYsWoWLFitw3OnfuDHd3d600MTExaNy4MRhjaNGiBXx9ffmx8PBwjBkzhpdpAl18fX15Hjds2BC3b99GRESEVpr4+HgMHjwYjDEoFAp06tQJL1++1LmWsEX6ySy/kNc1f/75J6pWrcrTmZmZoWTJkqhTpw5KliwJhUIBxhgmTpyY5c/3PbF3717kypULjDF0794du3btwrt373Dw4EFYWFiAMSbaSpnMy5cvMWfOHDRu3Bg2Njaws7NDjRo1sHHjRty6dYun01c3h4WFoXLlysidOzf27t2rlSY4OBhVqlThZVZ0dHS2PM+3jPSu9+jRA5UqVULZsmXh5OSEZcuW4fr16zydsEXWk1a/iIuL43+PHj2at4GNjY2xfv36VL9n4MCBYIyhbt26fExFIPjakLd/AgMDtfrE0t/x8fH8s1evXmHNmjUwNTWFUqkEYwy5c+dGo0aN8O7dO51rCtKOsMXXhTz/p06dyvsFZcqUQZ06dVC+fHnkyZOHf16pUiX8/vvv/By5rd68eQNbW1soFAocP36cX1+qz6Ojo2Fvbw/GGFatWpVNT5g6QsAuEAgEAoFAIBAIBAKBQCAQCASCbOXEiRNQqVQoUqQIvL29AWgPuD98+BBKpRIFCxbE69evhQjxK2HlypV8wkT6MTIyQt26dfHff//xdBqNhk/A6JvEEhNbn0mvkFnYIvtxdXWFra0tGGMoVqwY5syZg7CwMAAp2/H9+/eoVKkSGGOoVauWEK+nAVdXV9jY2KB9+/aYPn06bty4AU9PT6008nfX3d0d586dw9SpU7Fr165UxVmCtPPq1Sv+/tavXx9HjhyBv78/AgMDcejQIfTs2VOrHPrpp5/w6tUrfr70vi9evBiMMRQqVAjPnz8HoF3vL1myBIwxODo6IiIiQthND56enihcuDAYY6hYsSIGDx6MY8eO4dy5c1i8eDHatGnDxet2dnbYu3ev3usIW2ScjPiFPD8HDx4MQ0NDnq53797YsmULPnz4gPj4eLi6umLJkiVcxL506dIceuJvi0ePHnFhzvDhw3lfQ2LDhg1gjGHWrFk5dIffL5JAyt/fH6GhobydJJFceRIbG4vevXvzBYLbt2/H6dOnsXPnTjg6OvLPAwMDU7yOQJeQkBB8/PgRoaGhWp8LW2QfqfmFvE27aNEiFChQgC/g3Lx5Mz+WUl736NGD9zWEgF3wNZP0PU7uvX7x4gXGjh3L20Dt2rXDoEGDULduXS7g/fjxYzbc8feLsMXXRdIFrsWLF+d5zhiDiYkJGGMYO3Yszpw5o/c8IHERW8GCBcEYw86dOwF8tm1UVBQ2bNgAExMTlC5dGn5+ftnwZGlDxO8XCAQCgUAgEAgEAoFAIBAIBAJBtuLt7U0ajYasra2pQIECRER8u1mNRkN3794lANSoUSMqXLhwTt6qgD5vLT9q1CgqWLAgXbhwgdzc3EilUlHfvn2pcuXKVKVKFSIiio+P59vNExHFxsZSSEgI3bt3jx49ekSdO3emqlWr5tSjfHUwxr4ovbBF9pOQkEAajYb2799PHz58ICKievXq0ciRI8nMzIwAJGtHtVpNJ0+epODgYCIiqly5Mmk0GlIoFGLr+hSoUKECOTs7k4WFhc6xhIQEAkBKpZKIiA4cOEBz584lb29viomJISIiExMTmjNnDk2YMIEUCkWKNhKkTJEiRejff/+lJk2a0I0bN8jFxYW/v2q1msLCwogxRlZWVjRgwABauHCh1vlSvgcGBhIRUY8ePah06dKk0WhIpVIRANJoNBQQEEBERPb29mRqapq9D/mNULZsWbpy5Qp1796dXFxcyM3NjTZv3kxKpZJUKhXFxsYSY4wcHBxo1KhR1KtXLyIinfdf2CLjpNcvNBoNL7t69epF//77LzHGiDFGM2fOpN9//52IPvtNhQoVqESJEvTu3TtatGgRnTp1igYOHEjm5uY58+BfOdK77uzsTJ6enuTo6EhDhgyhUqVKERFRTEwMGRsb8/f60aNHon7IAhQKBdnY2CR7LCkAyNDQkNasWUMeHh705MkTGjZsGMXExJCRkRHFxsZShQoV6MCBA2Rtba3lR9LfUvtYfs0f3a5SHuTNm1fvcWGL7CUtfnH16lU6fPgw7zesWLGCBg0aRESkk69y3N3dycPDgxQKBTk5OZGRkVEWPIFAkDkkfY+T/i+VGXv37qWVK1dS7ty5acaMGTR58mSepmfPnnTgwAHavHkzTZw4UZQz6UTY4utCqVTyunT69OnUpEkT8vb2prt371J8fDzVr1+fSpQoQfXq1ePnJCQk8HpYwtTUlKpXr04nT56kBw8eUKtWrcjKyoqio6Pp4MGDtGrVKoqOjqaWLVuSpaVldj9msggBu0AgEAgEAoFAIBAIBAKBQCAQCLKVfPnyEVHiBElUVBSZmZkRUeIEya1bt+ivv/4iAFSzZs2cvE3B/6NQKPikeffu3alTp04EgOLj43XEbdHR0RQREUGnTp2i58+f08mTJ8nPz48Lf5cvX04+Pj6UP3/+nHiUbx5hi+xHoVBQbGwsHTt2jMLDw8nGxoYWL15MlpaWyYpJpM9fvnxJ27Zto8DAQDI0NKSBAwfyxTpEQtSTEpJAUy6OIkoUdkp5vm3bNi7sady4MZUvX56srKxoxYoVNGnSJMqdOzcNGTJE5HEGKVOmDF25coXGjRtHbm5u5OvrS0SJC8+MjY1p8ODB1LhxY+rcuTMR6RdZRUdHExFRUFAQF5ESJdrTzc2Nzp49S0REtWrVSvYagkRbnDhxglatWkWXL1+m+/fvk0ajIY1GQ0REQ4YMobZt21K7du2ISNgiK/lSv4iLiyNDQ0MiIvrpp5/o33//JaVSSdbW1jRjxgwaMmSI3u8xMTGhatWqEQC6cOEC+fr6UqVKlbLlGb9FEhIS6OjRo6RWq6lq1ao8r9RqNX/XHzx4QESJCwRE/ZC5pCc/GWOk0WjIwsKCLl++TGPHjiV3d3d68OABVa9encqXL08LFy6kvHnz6oikpfZBaGgo+fn5kaenJ/Xq1UvYlYQtviZSywPp+NGjR+nOnTtERDR37lwaNmwYESVfD0v9iBs3btDTp0+JiKhcuXKZeesCQbbDGKOrV6/yRX0zZ86kCRMmEBFRZGQkmZqa0pgxY+jAgQPk4+PDzxFkPsIW2Y+8Xq1duzbVrl2b+vXrl2x6fXWDiYkJdevWjU6ePEkrVqwgb29vKlWqFD158oQ8PDwoODiYWrduTRMmTOBj8frI7rEqIWAXCAQCgUAgEAgEAoFAIBAIBAJBtmJtbU2mpqZ0//592rVrF7Vp04Y0Gg3dunWL5s+fT69evaLWrVvTqFGjcvpWBf+PQqHgEb2lqN6Ghob06dMniomJofPnz9PLly/p0KFD9ObNGwoKCuLn1qpVi1q2bEmdOnUiS0tLvoBBkD6ELbKfU6dOkbOzM5mamtL8+fOpSJEiOsJqCfnn//vf/+jKlSukUqlo5syZVL16ddJoNFyEnZCQQHFxcfT8+XMqVKgQ5cqVi8zMzIRglD5PfifNY+nzI0eOcPH6xIkTadSoUWRjY0OMMapfvz61aNGC1q1bRx07dqQCBQqIyfQMUqpUKdq5cye9ffuWbty4QXFxcWRjY0OlS5fWEksl9+46ODgQEdHjx4/p9u3bVLt2bVKr1fTw4UOaMmUKubu7U82aNalPnz5EpH8yXpBI0aJFafbs2TRr1iw6e/YshYeHk5mZGZUoUYIcHR35uy5skfWk1S/i4+O5eH3kyJG0d+9eUigUVKJECfrjjz+4MCWpzaT6pGzZspQ/f34KDQ3lO00IdJGi2UtiHKmNBIAvHtuwYQMtW7aMiIiaNm2aI/cp0EWKOmpubk4bNmwgtVpNvr6+VKZMGSIi7j9SmyA4OJjCwsLo1KlT9OzZM7p8+TK9fPmS1Go13b9/n/75558ce5ZvHWGLnOHixYu8bOrbty+NHTuWiFJeRMYYo5s3b9Lo0aOJKHGHKKk+AcDTCATfGocPHyYiou7du3PBtFqt5gv27969S0RE79+/p4SEBCIS7dWsQtgi+8lI/kmi8/79+1N4eDiNGTOGTp06xY/b2NjQwIED6X//+x+VLFmS1zH6xrak+iO5ca/MRgjYBQKBQCAQCAQCgUAgEAgEAoFAkK00bdqURo8eTQsWLKDJkyfTypUrKSIigqKjoyk6OpoaN25Mhw8fJgMDAyHkzEGkvJcmQSQhkL+/P924cYM8PDzo+PHjFBISQq9eveLn1atXjxo3bkzdunUja2trqlq1qlbUacGXI2yRs0iLAOLi4qh06dJEpCusJtLewrl///504MABUigU1LZtW2rTpg0RfY4g/vz5c9q5cyedPn2a3N3dqUiRIlS+fHlasGAB2dnZZdtE4bdIUFAQrV69moiIhg8fTrNmzeKT6ACoWbNm5OTkRJ6enhQREUEFCxbMydv9brCwsCALCwud6J7y6GzJ1df9+vWjnTt30t27d2ngwIFUvnx5ioyMJD8/P3r9+jWVKVOG/vvvP8qXL5/eel/+HWLngkQBIWOMOnbsqPW5JFgjErbILlLzCwC8zl6xYgXt3buXiIgKFChAM2bMSFa8TvS5nrl8+TIFBwdn9aN880jvf6lSpYiI6OHDh+Ti4kI2NjZkYWFBS5cupblz5xIR0e+//07NmjXLsXsV6CK1c5VKJRkaGlLFihX5sYCAAIqKiqLjx4+Tn58fnTx5kt69e0fR0dGkUCgoT5481KZNGypfvjzZ2dlRVFQUmZiY5ODTfNsIW2QfUl3h4uJCBgYGZGRkRK1ateJ5ltI4yNOnT2ny5MkUFxdH5ubm1Lx5czI3N9epm+Pi4kitVmvZQdTfgq8VAOTh4UFERJaWlkSUKJiWxjA8PT3p8uXLRETUpk0bMVaYhQhbfHswxnifYtSoUVS6dGl6+PAh+fj4kLm5OfXu3ZtKlCihswuj1Od4/fo1PXnyhB4/fkxXr16lP//8M9t2RhWjlAKBQCAQCAQCgUAgEAgEAoFAIMg2pMH0+fPnk4GBAW3fvp2CgoIoPj6eKleuTHXr1qV//vmHDAwMhIAzh5EmtT08PMjLy4uuX7/OxdJhYWE8TZUqVahevXrUpUsXKlq0KNWqVUuv7cRihPQjbJEzSOIOKeJtxYoVqUaNGlrH5Eh5OnDgQNq5cycpFApycnKin3/+mZycnHiap0+f0qBBg+jRo0cEgExMTCggIICeP39Od+7coStXrpCdnZ0QlyRDaGgoPXnyhMzNzaljx45ckCO96+/fv+eCKSGaynpSe0c1Gg2ZmZnR6dOnqWPHjnTnzh16+fIlESWKeNu0aUObNm2iQoUK8d0lkpZRjDFuU0kU/CP7RnLPLmzx9SDlifTb1dWVjh49Sp8+fSIiounTp1P//v2JKOU6+cOHD3Tz5k1SKBRUrlw5KlasWNbf/DeKlNcDBgygrVu30sOHD6l3795kZGRE5ubmdPXqVSIiGjp0KPXt2zcnb1VAn9tR0vsv33klNDSUAgIC6MyZM+Tt7U0nTpygqKgo7j8qlYrat29Ptra21LlzZypYsCBfYCj4coQtchYAdPz4cYqPjydHR0e+A0pKeHh40KxZs8jV1ZWIiBwdHWnEiBF8wRRRohDx+PHjtH//fgoKCqLq1atTtWrVaOzYsaL+Fny1MMbIycmJLly4QFFRURQZGckXKvv4+NCGDRvo5MmTZGf3f+3deVyVdf7//+dhR0URQUEQAUGTEE00wHLFSYNcUmsyRzMdM8uazNZpKq1pxnQ+9mmb8jPjUn36jrnvKIa74paSggqKLEqACyqLsp/fH/7ONZJofiblAD7ut5u3Tud9neu8Lt/H6+JwPa/X1dH4fo07g7monyx3+rOxsdHAgQM1cODA65axjKelpSknJ0cbNmzQgQMHtHfvXl24cMFY7tKlS9q8ebMx73cSAXYAAAAAAAAAQK259vak06dP17Bhw1RQUKDi4mKFhISodevWxi/cCa/XvoqKCiUmJur8+fNavny5jh8/rj179ujy5cuSJGdnZ3Xo0EFhYWHq3bu3AgMDjUCvZd4sj3+OwPT/DXNhfZZQR1BQkCQpLS1N+/btU/fu3Y3gh2U5s9mss2fP6qWXXtLChQtlY2OjgIAA/eEPf9Cjjz5qrDMlJUWjR4/WoUOHFB4ersGDBysqKkonTpzQvHnztGnTJk2cOFErV65U8+bNa3+j64Eff/xR58+fl7e3t4KDg2Uymap1g5s3b56OHz+u0NBQ2dnZEdCxMltbW1VUVMjV1VXr1q3T2rVrlZGRIUkKDw/Xfffdp6ZNm0qSEbyysbHR5cuXlZOTo507d+rIkSNasWKFHnjgAc2dO5f5/A8xF9azceNGo0vl66+/rueff17SjcPrlue3b9+u5cuXq6qqSuHh4fL29q7Vuuujtm3bKi4uTo8++qgyMzN1+fJl4/gwY8YMPfbYY/L397dylXevn4ekzWazioqKdOTIEe3fv1/79u3T5s2b9dNPP6miokK2trZydnZWnz59FBAQoOHDh6tly5bX3fXg5+vHL2MurM/yd+/k5CRJuueeeyTJuIisJkePHtWf//xnbdmyRYWFhWrTpo2+/fZbtWjRwlhm48aN+uc//6nFixcbz6Wlpenbb79VRkaGPvroI47fqLM6duyoqqoqffPNN/L19VVYWJgyMzO1efNmrVq1SnZ2dnr11VfVpUsXa5fa4DEX9Y/ZbK72e/drHT58WBcvXtSyZcuUkZGhzZs3Gw0xnJyc5OPjo0cffVRhYWGKjIxUq1ataiW8LhFgBwAAAAAAAADUMltbW+OEdk2deiy/cEft++677zR69GgjAO3i4qJWrVopJiZGoaGhevDBB+Xv7y97e/tqc1RWViYHBwfjOS5A+PWYi7qjQ4cOuvfee5WcnKz4+HiFhITI2dnZCH5cuHBBO3fu1Geffaa4uDjZ2NgoJCREf/jDHzRmzBhJVzsfl5aW6qOPPtKhQ4f04IMPatasWercubOcnJzUrVs3eXl5KTExUenp6SooKCDAfgNBQUFq2bKlKisrlZKSIh8fHyOc+Pe//11vvPGGJOnVV1+97vbYsA47OztVVlaqcePGevzxx68bt5xgT0xM1LFjx7Rjxw7t3r1b6enpRhc4e3t7VVRUaMuWLerTp08tb0HDwVzUvqysLH388ceSpIceekivvPKKpBuHOy0/Bx88eFBjxoxRRUWFQkND9eKLL0pStQt2asJFO1L79u0VFxen/fv3KzExUe3atVNQUJDCw8OtXdpd78qVK2rcuLHi4+OVnp6uDRs26OjRozp69KhxYaC7u7v69++vLl266De/+Y08PT3VsWNHYx2W5a69kNCC75C3jrmoO9zc3CRJubm5KikpMQLtFpb9emJioqZNm6Zt27bp4sWL8vb21rp16+Tj42Mcv3fs2KGZM2cqPj5eLVu21PPPPy9XV1dlZWVp9uzZ+vjjj+Xr66spU6ZYY1OBXzR27FgdOXJEf/vb3/TBBx/I1tbW+Hy3atVK06dP19ixY61d5l2Buaj7LN8narqLysmTJ3Xq1CktX75c6enpio2NlclkUnl5uRo3bqwmTZroySefVFBQkKKjo9WqVSu5urpWW39tfa8gwA4AAAAAAAAAqHU3O6F9t4durGnUqFHavXu3bGxs1K5dO0VHR8vDw0PNmjWrcfmsrCytX79eBw4ckCSFhIRo1KhRat68+S8GrHBzzEXdcc8992j06NF644039Mc//lFFRUV64IEH1Lp1a124cEGzZ8/W8ePHlZKSIltbW/Xr10/jx483wqGWiwgst2B2cHDQ2LFjdd9998nBwcE4CRwUFCSTyaTs7Gzl5eWpbdu2Vt7yusnX11ft2rVTQkKCpk+frpSUFNnZ2Sk5OVmffvqpJOlPf/qTRo0aZeVKIf37pPq1F9JYOovu27dPOTk5WrFihY4dO6Y9e/YYITgXFxcFBgZq9OjR6tWrlzp16qSgoCCVlZVZa1PqPebCOoqKiozuhmFhYUZQ8UbhdZPJpOTkZE2YMEFFRUVq2rSpoqKi1K5dO0kyjueVlZXas2eP0tPTZWdnp7Zt2yoiIsK4K8jd/vO0t7e3vL29NWTIEGuXgv9fWVmZJk6cqLi4OJ07d8543svLSxERERowYIC6deum0NDQaoHcnzOZTHT3/pWYi7rBsq+OiorSihUrlJGRoR9//FH3339/tX24yWTSli1bNHnyZGVkZOjy5cvy8fHRkiVLdO+99xrzU1VVpW+//Vbx8fEKDw/XO++8o4cffliSdPnyZdna2mrmzJnavHmznn32WTk7O1tr04EaWT7LM2fOlIeHh2JjY3X8+HHZ29trxIgR6tu3r/GZxp3FXNRtluOH5fhbXl6u3NxcJScna+vWrUpKStLWrVuNOzg2bdpUrVu3VnR0tPz8/DR48GA1b95crVq1qrZeyzHdsv7a+j5hMlu+eQIAAAAAAAAAgLvWzULOlpMY14YXvvrqK33zzTfatGlTtWXvu+8+rV+/Xh4eHgQa/kPMRd1x7d/bG2+8oZkzZ0q62oHYxcVFV65c0ZUrVyRdDSNOnTpVQ4cOVWRk5HWvX758uYYPH642bdpoz5498vT0VGVlpdEpa+vWrerbt6/s7OyUmJio4OBgK2xx/ZCamqq+ffsqJyfnurFp06bpueeek7u7uxUqw8+7wFmYzWbt2bNHeXl5WrJkibKzs7VlyxZj3MvLSx4eHoqOjlbHjh0VGRkpf39/Yz9nOYnOvuzWMRd1w6pVqzR06FC5urpq69at6tSpU40Bc8tzx44d06RJk5SQkKCysjL16NFD3333nby9vY1l169fr8WLF2v+/PnGc66urpowYYI+/PDDausD6pKkpCSNHj1aTk5OGjp0qPz9/dWrVy+1bNnS2J9c+9nNz8/Xzp07lZSUpHbt2ql169Z68MEHJd34Lga4NcxF3ZGTk6MhQ4Zo//796tWrl/74xz/q3nvvlbe3t+Li4rRnzx69++67xvL+/v5at26dOnToUG09sbGxiomJkSQtWbJEw4YNk/TvIOrChQv15JNPqn379kpISOBuT6iTrv09x4ULF1RaWio7Ozu+21kBc1G3paWlad++fUpJSdH333+vY8eO6fz588Z4QECA+vbtq3vvvVcPP/ywnJ2d5evra4ybzeY6cwdU2m0AAAAAAAAAAIAaA9M/7+pjOXk1Z84czZw5U1lZWQoJCdEzzzyj1q1b65tvvtHKlSv16KOPKjY2Vi4uLrW6DQ0Fc1F3XHuxwIwZM+Tp6amlS5dqz549ys/PlyQFBQXJx8dHb775pnr16iUHBwdJuu5kYOvWreXo6CjpalClZcuWxjwmJydr+vTpkq523ye8fnPt27fXtm3bNG3aNB0/flxnz55Vp06dNGbMGCOsg9plCa9d2wUuNTVVycnJWrdundLS0pSQkGB0h27RooXuuecejRgxQv7+/sZJ9Z/fZcLy788SoKsLJ9jrOuaibiosLFRJSYmk6+82ZJmzpKQkPffcczpw4IDKysrk5+enr776qlp4fdGiRfrwww918OBBSVKvXr2Ul5en1NRUzZo1SyaTSTNmzCC8jjopJCREW7dulXS1G+i1rt3HVFRUaM+ePfr973+vlJQUSVd/PnZ0dNT777+vl156qVqHUPzfMRd1h5eXl7799ltFRUVp27ZtSklJkY2NjVq3bq1jx46puLhY0tXvEl27dtWcOXPk5eV13YUDR48elSQNHz78uvC6dDXsKEmNGzc2vpMAdY2tra2xP3F1dTX2K+xjah9zUbd9++23mjZtmvH/ISEhioqKUp8+fRQeHi5/f3+5urpeN19FRUVydHSUnZ3ddc0xrIUAOwAAAAAAAAAAqNG1JzksJz127NihuXPn6tSpU/rd736nyZMnKywsTJI0bNgw9evXTzt27NCBAwfUu3dva5Xe4DAX1mNra2uc1HvppZc0YsQInT59Wjk5OSovL1fPnj3VqFEjNWvWTNfe+PjnJ3WbNWumNm3a6MSJE1qyZImaNWumgIAA7dmzR++99562bNmisLAwjR8/XhLdLH9Ju3btNHfuXNnb26ukpER2dnayt7e3dll3LRsbG2VmZmrJkiXKzMxUQkKCfvjhB2O8ZcuW6tSpk2JiYhQQEKCYmBg5OTld1/3z5/+GrH0yvT5iLuqW8PBwBQcHKy0tTUlJSerWrZtMJlO1sIiNjY327dunp556SidOnFBFRYVatmyp2NhYtWvXzrgzy65du/TJJ58oMTFRMTExGj9+vIYOHarMzEzFxsZq8uTJmjt3roYPH67u3btbecuBmlnC0j8PVFmCcpK0YsUK/eEPf1BOTo66du2qbt26ycXFRZ999plefvllOTs7a+LEiQTofiXmou4ICgrSpk2b9Oyzzyo1NdX4rmHxyCOPaMiQIRo+fLhcXV1rDBwWFBRIkvLy8lRQUKDGjRsbc5mSkqJt27bJ3t5eI0aMUKNGjQihos6yfC6v/XzyWbUO5qLueuedd+Tk5CRPT0+1a9dOoaGh1RpXVFZWSro6X/n5+Tp27Jj+/ve/KzMzU40bN1aXLl302muvyc3NzeohdgLsAAAAAAAAAADgF1lOUq1Zs0b79+9X9+7d9eKLL+q+++6TdLWLT5MmTRQeHq4tW7YoIyOD0PQdwlzUvmu7j3l7e8vHx6fG5W52Mveee+7R1KlTNWnSJP31r3/V0qVL5ebmpt27d0uSOnfurBdeeEH333+/pOrdjQmz18ze3l4mk0nOzs6qqqqydjl3vfLycr3++uuqqqqSg4ODIiMjFRERobCwMD344INycXG5LiRdXl6u8vJyXbp0Sc2bN5eTk5Okq595whH/Oeai7mjUqJHuvfdeHTlyRHPnzlVYWJiCg4ONu62kpKRo165deu6551RaWipJCgwM1Jo1a9S+fXtVVlYay8bFxWnXrl164IEH9Prrr+vBBx+UdLUr78CBAxUYGGgEHwmwo6670Z0IfvzxR02ZMkU5OTkaMmSIFi5caHSL7tevn2JiYvTFF18oOjpaPj4+7J9uA+aibggMDNTChQuVlpam77//XuXl5fL29lbr1q0VExNjLFdVVVVj0DAkJEQODg46deqUDh06pPDwcNna2mrv3r364osvtHHjRrVr1059+vSRRAgVAOory8Wtr7322nVjljC65fdHp0+f1qeffqpFixYpMzPTuGNgXFycYmNjFR8fL3d3d6v+zokAOwAAAAAAAAAAuCVnz57VokWLJEkTJ040AtOVlZVq0qSJzGaz9u3bJ0lG8A13BnNR+2rqPnarLOH3iRMnymw2a9q0aUpNTTXGf/vb32rs2LHq27evHBwcjJOOPz/5aOms2LRpU6t3yaoLrp0LAv7WFxgYqBMnTujAgQMKDQ2Vr6+vcYJc+ncXOEkqLS1VamqqXn/9dWVlZSkzM1MREREaOXKkxo0bJxsbGy7c+BWYi7rDxcVFf/3rX7V3717t2rVLY8eO1QMPPKB77rlHx48f165du5SYmKiKigp5eHioa9eu+vzzzxUQEFBtP5+dna2PP/5YkjRmzBgjvF5RUSF7e3v5+fmpWbNmkqTi4mLrbCzwK9jY2KigoEATJkxQdna2oqKitHTpUtnY2Ki0tFSOjo56+OGH1aNHDx07dkylpaUEcO8Q5sJ63N3d5e7urvDw8OvGLN8nbnQ8HjhwoLp3766dO3fqqaeeUrdu3VRVVaXDhw8rNTVVrq6umjVrliIjI2t8Pcd6AKgfLBe31sTy3cFkMunMmTOaOXOm5s2bJ2dnZz3xxBN64YUX5ODgoL/97W/67rvvNGrUKK1YsULOzs61Vf51CLADAAAAAAAAAIBbYjabVVRUJOlqR1Hp351/SktL9cUXX2jbtm1q06aN+vXrZ81SGzzmon4xmUxGKOTZZ59VZGSkcnJydOnSJTVt2lQPP/ywEUqR/n3SsaCgQEVFRVq/fr0OHz6s+Ph4nTt3TmvWrKG7LuokPz8/+fn5SZLRFd/y2bZ8rvPz87V48WJ98MEHOn36tDw8PNSkSRPFx8crPj5e+fn5euWVVwhR/UrMRd0REBCgDRs2aOjQoUpMTFRiYqIxZrlAIDw8XIMGDdK4cePk6el5XYfdK1euqKysTC4uLkaw0XLcN5vNWrx4sfbv3y9HR0fjojagvsnNzVVOTo68vLw0e/Zs2djYqLy83Oj6ffToUWVkZKiwsFCXL1+2crUNG3NR99zsIgHLRcyrV69WdHS0du/erfT0dEmSo6OjIiIi9NZbbxmd3C0/F1x7kdrPj/XXfjcBANQflv16bGysFi9eLBcXF02ZMkW///3v5ebmJkn6f//v/yk1NVU//PCDTp06pfbt21utXgLsAAAAAAAAAADgljRp0kRdu3ZVfHy8jhw5oqKiIjVp0kTl5eX65z//qTlz5sjOzk7jxo2Tq6srJ73vIOai/rk2INK5c2d17ty52rjJZFJeXp5KS0u1du1aZWRkaOXKlcrNzTU6rzdp0kR+fn5asmQJAXbUeZYglGXfYzabJUmrVq3StGnTlJeXp8GDB2v27NlydXXVDz/8oFGjRum1115Tly5d1L9/f6vV3tAwF9bXvn17bdiwQf/4xz+0c+dOpaamqrCwUP3791fHjh310ksvqUmTJnJ0dKyxC26zZs3k5+enjIwMHTx4UB07dpS9vb0kKSEhQd9++63MZrN++9vfys/Pj+M+6qVjx44pOztbLi4uxgUcls+52WzWtm3bdO7cOfXu3Vv+/v7WLLXBYy7qF1tbW1VUVMjV1VUbNmzQd999p4yMDF24cEHR0dEKDAxUhw4dJF3faT0nJ0e5ubnauHGjEhIS5Orqqq+++opjCADUU5Z9/D/+8Q/l5eXpqaeeMsLrVVVVqqiokIODg/z9/XXw4EGdPXuWADsAAAAAAAAAAKj7GjVqpKioKMXFxenPf/6z0tLS1LZtWyUkJGj//v0qKyvT8OHDNXLkSCPggDuDuah/agokFhcXKzs7Wxs3btTJkye1atUqFRYW6syZM8YyDz/8sNq2bathw4bJ09NTISEhtV06cFuYTCalp6frvffeU15ensaNG6dPPvlEjRo1UkVFhX7zm9/orbfe0pQpU3To0CFC03cQc2Edbdq00fTp02UymZSfn6+Kigq1bNnyuuVq6njv6uqqTp066ejRo5o5c6ZKS0vVtWtXbdq0SbGxsdq6dauCg4M1ZswYNW7cuDY2B7jtOnToIB8fH1VUVOjcuXPG88XFxfr+++/12muvqaysTP369ZOLi4sVK234mIv6x87OTpWVlXJxcdH48eNlMplqvJgpPT1dhYWFWrFihU6ePKm4uDjju4eDg4PKyso0cuRIDRw40BqbAQC4DZKTk3XgwAE1bdpUb7zxhtzc3Iy7Nzk4OOjIkSPavn27JMnJycmqtRJgBwAAAAAAAAAAv8hy8vvVV1/V2bNn9be//U3/+te/jHFvb28NHTpUkyZNsmrnnrsBc1E/VFZWGh0rLcrKypSSkqIffvhBe/fuVXx8vLKzs3X58mWZTCbZ2tqqV69eCggI0GOPPSYvLy+FhITUGD6huy7qow8++EAZGRm6//779dlnn8nJyck4kS5dDU5JUlpamqSaL/zA7cFcWJebm1u1/7/ZPt1sNsve3l5ffvmlTpw4oQMHDujFF1+Uo6OjCgsL5ejoqO7du+vtt99Wv379jNdIVy9WqGnumE/URS1atFCbNm2UkJCgt956SyNHjpSDg4MSExP19ddfq6ioSKNGjdIbb7whiZ+F7iTmon6x/P1b5uDa/54+fVo5OTlauXKlMjIyFBsbq7KyMhUXF8vW1lYuLi4aPXq0goKCNGjQIHl4eKhFixbW3BwAwK9kNptVUlKiyspK5eXlKSgoyPiel5mZqY8++khnz57VkCFDFBYWZtVaCbADAAAAAAAAAIBfZDKZjEDuzJkzFRwcrMTERGVlZcnV1VXPPvus/P395eHhYe1SGzzmon6whNd37typrKwsrV+/XkeOHNHhw4dVVlYmSWrWrJm6d++u0NBQPfTQQ/L29laXLl1qXN/Pg0GEhFAf5eTkSJJGjBghJycnlZWVGUHpn376SZs2bZIk404DBGzvHObCOm60777ZPt1y3Hd1dVV8fLxefPFF/fjjjzp9+rTatGmjiRMnql+/foqIiJCkanMpXZ278+fP69y5c0pOTtawYcOYT9RJ7u7umj9/vvr27audO3dq165dxsUYkvTUU09p/vz5krgI405jLuoHy3dCyzGksrJS58+fV0pKirZu3arDhw8rLi5OFy9elHT1Ll7Ozs4aOnSo/P39NWzYMLm7u8vHx6faeq+dawBA/ePm5qbQ0FAlJSVp3759Cg4Olru7u5KTk/XFF19o0aJF8vX11RNPPGHtUgmwAwAAAAAAAACAW2Nra2ucJB87dqyk6h0+UXuYi7rrwoUL+vrrr7V9+3adPn1ae/fuNcbc3NwUHBysAQMGqFu3burcubPatWsns9lcLfhTVVUls9lshOCZUzQUJSUlkqRz587JbDYbIduCggKtWrVKcXFxateunSIjI61Z5l2BuahfLMf9Zs2aae7cubp48aIKCgrUtGlTubu7V1vWwcFBpaWlSkxM1IEDB/TDDz9o27Ztys3NVVFRkZ5++mnNnTvXSlsC3Fz79u21bds2TZ8+XWlpaTp58qQeeughRUZG6tlnn5VEYLq2MBd1z88vaK2srFRxcbG2b9+uI0eOaOvWrUpKSlJWVpaxjI+PjwYOHKjg4GBFR0fL1dVVAQEBN10/3z0AoH5r3bq1hg8frkOHDunVV1/VqlWr1Lp1a8XGxqqgoECenp6aMGGCBg8ebO1SCbADAAAAAAAAAIBbZwnUWnBy23qYi7qpefPmSktL07Jly9SmTRt16tRJQ4cOVUBAgKKiotSqVSvZ29tXe01paakKCwuVmZkpT09Pubu7y8nJybhIAajvLBfYhIaGavPmzdqxY4d2796trl27KjU1VevWrdPMmTNVWFioSZMm3fBOBPj1mIv6y9bWVhUVFbKzs5O7u7sRXL9y5YqcnZ21Y8cOpaWlKTY2VocOHdKxY8eM1zZv3lyRkZHq1q2bQkNDrwtBAnVJu3btNGfOHDk6OurMmTPy9PQ0xghM1y7mom4xmUyqqqrS119/rZKSEi1cuFCZmZnKzMw0lvHz81NMTIx69+6tBx54QL6+vvL29jbGq6qqJMk4nvx8/QCA+s1yfH777bdVXFysmTNnavv27cZ4nz59NGLECI0dO1bOzs5WrPQqk5n7fgAAAAAAAAAAAAC/2rWBwDVr1uj++++Xvb29mjdvXm258vJyI8S+Y8cOLV68WKtWrVJ2drZ8fX0VFhamzz//XO7u7oTY0aCkp6erd+/eOn36tNq2basWLVooKytLhYWFKi0t1YQJEzRnzhxrl3lXYC7qhxsFREtLS7V9+3bl5uZq6dKlys7O1v79+41xf39/+fj46KGHHlLnzp0VGhoqX1/f2iwd+FUsP1Nd+2+ACy+sg7moW06fPl1tf96pUyd5enpqyJAhCgwMVPfu3a/77iFJxcXFqqysVJMmTYx55CIEAGiYrv090po1a5Sammp0Xn/88cfVtGnT6y5ishYC7AAAAAAAAAAAAMBt8kuB82sDP6tWrdILL7ygU6dOqVGjRvL399eVK1d08uRJBQcHa+vWrWrRogUhITQoqampeuyxx5SWlqbLly9LkiIiIjRgwAC9++67Vq7u7sJc1D2W/f3P9/slJSXat2+fjh8/rmXLlik7O1s//vijMe7r6ysvLy+NGDFCAQEB6tWrl5o0aSJHR8dq6+eiKACo/1JSUrRz5055e3urZ8+esrW1rba/txxDKioqlJ6ernnz5mnz5s3KyclRZGSkoqOjNWbMGEmE2AGgoaovP/cTYAcAAAAAAAAAAABq2caNGzVq1CidO3dOw4YN05gxY9S/f3+Vl5frhRde0P/+7//q6aef1pw5c+pMZyzgdsnLy9PBgwd1+vRpubu7q1u3bvLx8bF2WXcl5qJuOn/+vNLT07Vv3z5t2bJFR44cUXJysjHu5+enVq1a6dFHH5Wvr69iYmJkZ2cnZ2fnaushmAgAd4efd8ovKyvT0qVL9eWXX2r79u2SJBcXFxUWFkqSZs6cqVdeecWaJQMAQIAdAAAAAAAAAAAAqE25ubkaN26c1q9fryeeeELvvvuuOnToYIzn5+erY8eO8vf3186dO+tF1ywAwK9XVVWlF198Ud98843Ky8tVUlIiSfLw8FBoaKj69u2rjh07qlevXrKzs1OzZs1uui7C6wBw96mqqtKyZcv03nvvKSkpSV27dtV7772noKAgHTlyRE8//bQuXryolStXatCgQdYuFwBwF6NdAwAAAAAAAAAAAFCLsrKytGPHDrm6uup3v/udAgMDJf37Fs8FBQUym83KyspSUVHRTQOKAICGw8bGRuPHj9eSJUsUERGhsLAw9erVS127dpWrq6scHByqLW82m1VaWqrY2FidOXNGzZo1k7+/v8LDw2VjY0OIHQDuIpYu7Pn5+Zo3b56SkpI0aNAgvffee+rcubPMZrOCgoL017/+VZMmTdKePXsIsAMArIoAOwAAAAAAAAAAAFALLKGSrVu3qqioSN26dVN0dLQkqby8XPb29pKktWvX6ty5c+rRo4ccHByM1wEAGr777rtPJ0+eVKNGjao9X1lZKUmqqKiQnZ2dKioq9K9//UuLFi3S2rVrjeUaNWqk999/X1OmTJGNjQ3HEAC4S1j29fPnz9f69evl6uqqt99+W507d5Z09fuGg4OD/P39JV29qBYAAGsiwA4AAAAAAAAAAADUAkuoxNvbW9LVEOKpU6fUpk0bI7y+aNEivfnmm5KkcePGydnZ2TrFAgCs5trwuqWLuq2trSQZ4fVPP/1Un3zyibKysuTr66snnnhCZWVlmjNnjqZOnSonJydNmjSJ8DoA3GVSU1MlSRMmTFC3bt1kNptlNpvl4OCg4uJiLVq0SJLk5uZmzTIBABD3igIAAAAAAAAAAABqUevWreXi4qLExEQtX75cycnJOn/+vD777DNNnDhRRUVFeuaZZ/TEE09Yu1QAgJXZ2Pw71mE2myVJK1eu1Jdffqm8vDyNGzdOK1as0IwZMzR79mytXr1a9vb2+p//+R+dOXPGWmUDAKzk4sWLkqSffvpJZWVlMpvNsrGx0ZUrV7Rq1SrFx8fL09NTI0eOlPTvYwsAALWNADsAAAAAAAAAAABQi/r06aPnn39ekvTSSy+pb9++ioiI0IsvvqhLly5pzJgxeu6556p14AUAwNJNffny5Tp+/Liio6P1yiuvqEuXLqqqqlJZWZn69eun7t276/Dhw0aIEQBw9wgLC5N0tRP7kSNHJElXrlzRggUL9OGHHyozM1MDBgxQQECAJHGnDgCA1ZjMXEYFAAAAAAAAAAAA1Iqqqiqjm+67776r+fPn6/Tp03J0dJStra3eeecdjRw5Um3atLFypQCAumjv3r2KiIiQJMXHx6tv376S/n18uXDhgiIiIpSRkaHDhw+rffv21iwXAFDLMjIy1LdvX2VmZqp9+/by9PRUXl6e0tPTVVZWpoEDB+rjjz9WUFCQtUsFANzlCLADAAAAAAAAAAAAtaiyslK2traSpKNHjyo3N1eNGzdWkyZNFBwcbOXqAAB12ebNmxUVFSUfHx8dOHBA7u7uqqiokJ2dnYqKivSXv/xFM2bMUJcuXbRv3z7jeAMAuHukpKRoyJAhSk9PV3l5uSQpICBAAwYM0JQpUxQYGGjlCgEAkOysXQAAAAAAAAAAAABwN7G1tTU65Xbs2FEdO3a0dkkAgHrCw8ND7u7uKikp0eHDh9WrVy/Z2dmpsLBQCxYs0MKFC9W8eXNNnjxZtra2MpvNMplM1i4bAFCLOnTooE2bNmnHjh3KysqSnZ2dhgwZohYtWqhp06bWLg8AAEl0YAcAAAAAAAAAAAAAAKgX8vPzFRMToz179qhnz54aPHiwOnbsqH/84x9KSEjQxYsXNXr0aL377rvy8fGxdrkAAAAAUCMC7AAAAAAAAAAAAAAAAPVEamqq+vbtq5ycHEmSo6OjSktL5eXlpSFDhujll19WYGCglasEAFgbd+EAANRlBNgBAAAAAAAAAAAAAADqkRMnTuj999/XoUOHVFZWJk9PT02ZMkVhYWHy8vKydnkAAAAAcFME2AEAAAAAAAAAAAAAAOqZsrIylZeXq6ysTM2bN7d2OQAAAABwywiwAwAAAAAAAAAAAAAA1HNms1kmk8naZQAAAADAL7KxdgEAAAAAAAAAAAAAAAD4dQivAwAAAKgvCLADAAAAAAAAAAAAAAAAAAAAAGoFAXYAAAAAAAAAAAAAAAAAAAAAQK0gwA4AAAAAAAAAAAAAAAAAAAAAqBUE2AEAAAAAAAAAAAAAAAAAAAAAtYIAOwAAAAAAAAAAAAAAAAAAAACgVhBgBwAAAAAAAAAAAAAAAAAAAADUCgLsAAAAAAAAAAAAAAAAAAAAAIBaQYAdAAAAAAAAAAAAAAAAAAAAAFArCLADAAAAAAAAAAAAAAAAAAAAAGoFAXYAAAAAAAAAAAAAAAAAAAAAQK0gwA4AAAAAAAAAAAAAAAAAAAAAqBV21i4AAAAAAAAAAFC7KioqtHLlSm3YsEEJCQnKy8vThQsX1KhRI3l4eKhTp07q0aOHRowYIX9/f2uXCwAAAAAAAAAAGhCT2Ww2W7sIAAAAAAAAAEDtWLVqlaZOnaoTJ07c0vIxMTGaMWOGQkJC7nBlAAAAAAAAAADgbkAHdgAAAAAAAAC4S/z5z3/WO++8I0tfkz59+uiRRx5RaGioWrRoocuXLysnJ0fbtm3TmjVrlJGRobVr18rHx0dffvmllasHAAAAAAAAAAANAR3YAQAAAAAAAOAuMG/ePI0fP16S1KpVKy1cuFB9+vS54fKVlZVauHCh/vjHP+rhhx8mwA4AAAAAAAAAAG4LAuwAAAAAAAAA0MCdOnVK7du3V0lJiZo2baoffvhBgYGBt/Taixcvavv27Ro0aNAdrhIAAAAAAAAAANwNbKxdAAAAAAAAAADgzpo9e7ZKSkokSR988MEth9clydXV9brwekZGhkwmk0wmkxYsWCBJWrZsmaKjo9W6dWvZ2dnV2N199erVGjFihHx8fOTo6KgWLVooMjJSM2bMUFFR0Q1rmDZtmvF+N7NlyxZjuS1btlw33qdPH5lMJqO2lJQUPfPMM/L395eTk5O8vLz0+OOPa/fu3Td9n8rKSi1YsEADBgyQp6enHBwc1KxZMwUFBSkqKkp/+ctfdOTIkZuuAwAAAAAAAACAu5WdtQsAAAAAAAAAANw5ZrNZ33zzjSTJxcVFTz/99G1f/5gxY4z3qElJSYmefPJJLV++vNrz+fn52r17t3bv3q1PP/1Ua9euVZcuXW5rfTcSGxurxx57TMXFxcZzubm5Wrx4sZYuXar/+q//0ksvvXTd64qKihQdHa3t27dXe768vFwFBQU6ceKENm3apAMHDmjJkiV3ejMAAAAAAAAAAKh3CLADAAAAAAAAQAOWlJSk8+fPS5J69uypxo0b39b1//d//7cOHTqknj17atKkSWrfvr0uXryojIwMY5mnnnrKCK937txZU6dOVceOHZWfn6+FCxdqwYIF+umnnxQVFaVDhw7J29v7ttb4cz/99JOefPJJ2dnZ6S9/+YvRkX3z5s368MMPVVBQoClTpsjPz09Dhw6t9tpp06YZ4fVHHnlEo0aNkq+vr5ycnHTmzBkdPHhQa9as+cVu8QAAAAAAAAAA3K0IsAMAAAAAAABAA3bo0CHjcdeuXe/I+seMGaMFCxbUGNpeu3atFi1aJEmKiorSunXr5ODgYIw/9NBDioyM1DPPPKP8/Hy9/PLL+u677257ndc6fvy4mjVrpoSEBHXs2NF4PjIyUkOGDFGPHj1UUFCgyZMnKyYmRvb29sYylm0ZMWKEFi9efN26Bw4cqDfffFP5+fl3dBsAAAAAAAAAAKivbKxdAAAAAAAAAADgzjl37pzx2MPD44bLVVVVKSkp6YZ/ysvLa3ydq6urPvvssxt2HP/8888lSfb29po/f3618LrFhAkT1L9/f0nSsmXLlJOTc8vb9596++23q4XXLe6991699dZbkqTs7GytXLmy2nhubq6kq93sb8bNze02VQoAAAAAAAAAQMNCgB0AAAAAAAAAGrDCwkLjcePGjW+4XEFBgTp16nTDP9nZ2TW+btCgQXJxcalxrKKiQlu3bpV0tdN6mzZtbvj+EyZMMF6zZcuWX9qsX8VkMumpp5664fjTTz9tBPK///77amNeXl6SpO+++06XL1++c0UCAAAAAAAAANBAEWAHAAAAAAAAgAbs2nB5cXHxbV9/aGjoDcdOnjxphLzDw8Nvup5rx5OSkm5PcTfg7+8vd3f3G457eHjIz89PknT48OFqY5bg+65du+Tv76/Jkydr+fLlOnv27B2rFwAAAAAAAACAhoQAOwAAAAAAAAA0YC1atDAe3yxk7erqKrPZXO3PzbqUWzRv3vyGY/n5+cbjli1b3nQ9np6eNb7uTvilWiSpVatWNdby9ttva9y4cTKZTDpz5ow+//xzDRs2TC1btlRISIjeffdd5eXl3ZG6AQAAAAAAAABoCAiwAwAAAAAAAEAD1rlzZ+PxwYMHb/v6bW1tb2k5k8l029/7P/VrarG3t9fcuXOVlJSkP/3pT+rRo4ccHBwkScnJyXrvvfcUGBiolStX3q5yAQAAAAAAAABoUAiwAwAAAAAAAEADFhISYnRh3759uy5fvlxr7+3m5mY8/qWu5Lm5uTW+TpJsbP79q+yqqqobrqO4uPiW6rqVDumWZX5ei0VwcLDef/997dy5U5cuXdLGjRv19NNPy9bWVkVFRRo5cqRycnJuqR4AAAAAAAAAAO4mBNgBAAAAAAAAoAEzmUz63e9+J0kqKCjQV199VWvvHRAQoEaNGkmS9uzZc9Nl9+7dazwOCQmpNubi4mI8vnDhwg3XkZqaekt1paen6/z58zccP3v2rDIyMmqspSZOTk7q37+/5s2bp1mzZkmSrly5ojVr1txSPQAAAAAAAAAA3E0IsAMAAAAAAABAA/fyyy/LyclJkvTmm28qPT29Vt7Xzs5OvXv3liRt3LhRp0+fvuGy//znP43X9OnTp9qYv7+/8Xj//v03XMfChQtvqS6z2ayvv/76huMLFiyQ2WyWJPXv3/+W1mkRFRVlPD537tz/6bUAAAAAAAAAANwNCLADAAAAAAAAQAPn6+urTz75RJJ06dIlPfjgg9qxY8dNX2M2m3Xx4sVf/d7PP/+8JKmsrEzjx49XeXn5dcvMmzdPcXFxkqRhw4bJy8ur2niPHj1kZ2cnSfroo4+McPm1Zs2aVa2L+y95//33lZKSct3zR48e1QcffCBJ8vLy0pAhQ4yx/Px8rV69usb3t7Bsh1Q9eA8AAAAAAAAAAK6ys3YBAAAAAAAAAIA7b8KECcrOztb06dP1008/qWfPnurXr58GDRqkTp06yc3NTZWVlcrNzdWBAwe0aNEiJScnS5JsbW3l4ODwH71vTEyMHnvsMS1evFhxcXGKiIjQyy+/rHvuuUcXLlzQwoULNW/ePEmSm5ubZs+efd06WrZsqccee0z/+te/tGHDBg0ePFjPP/+8WrVqpaysLH3zzTdaunSpevTooV27dv1iTYGBgTp79qwiIiL0+uuvGx3ft2zZohkzZujSpUuSpE8//bTadhcUFGjw4MHy8/PTsGHDFB4errZt28rOzk45OTlavXq10Une29tbjzzyyH/0dwYAAAAAAAAAQENmMt+sVQwAAAAAAAAAoEFZvny5XnnlFZ08efIXlzWZTBowYIBmzZqlkJAQ4/mMjAyju/j8+fM1duzYm66npKRETz75pJYvX37DZVq3bq21a9eqS5cuNY7n5eWpZ8+eOn78eI3jTzzxhH7/+9+rf//+kqTNmzcbwXSLPn36aOvWrerdu7deffVVPf7447p8+fJ167KxsdHMmTM1derUas9fu9034+XlpdWrVyssLOwXlwUAAAAAAAAA4G5DB3YAAAAAAAAAuIs8+uijGjRokJYvX64NGzYoISFBZ86c0cWLF9WoUSO1aNFCnTp1UmRkpH7729/eUmD7lzg5OWnZsmVavXq1FixYoN27d+vcuXNq3Lix2rdvr6FDh2ry5Mlq0qTJDdfRqlUr7dmzRx9++KGWLVumrKwsNW7cWCEhIXrmmWc0atQobdmy5ZZriomJ0f79+zVr1ixt2rRJOTk5cnV1Vc+ePTV16lRFRkZe95q2bdtq7969WrdunXbt2qXMzEzl5eWpqKhIrq6uCg4O1qBBg/TMM8+oadOm/8lfFQAAAAAAAAAADR4d2AEAAAAAAAAAd4VrO7D/X8LuAAAAAAAAAADg9rGxdgEAAAAAAAAAAAAAAAAAAAAAgLsDAXYAAAAAAAAAAAAAAAAAAAAAQK0gwA4AAAAAAAAAAAAAAAAAAAAAqBUE2AEAAAAAAAAAAAAAAAAAAAAAtYIAOwAAAAAAAAAAAAAAAAAAAACgVpjMZrPZ2kUAAAAAAAAAAAAAAAAAAAAAABo+OrADAAAAAAAAAAAAAAAAAAAAAGoFAXYAAAAAAAAAAAAAAAAAAAAAQK0gwA4AAAAAAAAAAAAAAAAAAAAAqBUE2AEAAAAAAAAAAAAAAAAAAAAAtYIAOwAAAAAAAAAAAAAAAAAAAACgVhBgBwAAAAAAAAAAAAAAAAAAAADUCgLsAAAAAAAAAAAAAAAAAAAAAIBaQYAdAAAAAAAAAAAAAAAAAAAAAFAr/j9wQ4+z5z5UfAAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -685,7 +685,11 @@ "- Here, the ``CCP`` method is the best one. We can see that the basic ``Split`` method has a strong over-coverage for small target values, and under-coverage for big target values. Moreover, it seems to have a strong bias on the ``'racepctblack'`` and ``'racePctWhite'``.\n", "- The ``CQR`` method is better than the ``Split`` but suffers from the same issues.\n", "\n", - "$\\to$ We managed, with the ``CCP`` method, to have almost a homogenous coverage on the target value, and a much smaller bias on the ethnicity groups." + "$\\to$ We managed, with the ``CCP`` method, to have almost a homogenous coverage on the target value, and a much smaller bias on the ethnicity groups.\n", + "\n", + "$\\to$ However:\n", + "- the ``CCP`` method needs few iterations (or cross-val optimisation) to find the best parameters (especially for ``sigma``)\n", + "- its calibration is much longer than the other CP methods. The computational time can increase a lot if you have a lot of calibration points and if you use a lot of dimensions in the calibrator (here, we used ``40``)." ] }, { @@ -728,7 +732,6 @@ " ],\n", " normalized=True,\n", " bias=True,\n", - " reg_param = 1e-4,\n", ")\n", "\n", "mapie_ccp = SplitCPRegressor(\n", @@ -753,7 +756,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABxYAAAH5CAYAAACs6ttbAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3wUdf4/8NfubM2WNJIQUlGqiiIWRD0Vz4Lo2U7PUxSwcPbuWX8qeGf5nqLYUE8UFPFOTxG7iAVQCFUBQSAkkALpfftO+/0xmSVl22zJ7ob38/HgEcjOzn52sySTec37/VaJoiiCEEIIIYQQQgghhBBCCCGEEEKCUCd6AYQQQgghhBBCCCGEEEIIIYSQ5EfBIiGEEEIIIYQQQgghhBBCCCEkJAoWCSGEEEIIIYQQQgghhBBCCCEhUbBICCGEEEIIIYQQQgghhBBCCAlJk+gFEEIIIYQQQgghhBBCCCGEDEY8z4Nl2UQvg5Cw6XQ6qNWB6xIpWCSEEEIIIYQQQgghhBBCCIkhURTR0NCAjo6ORC+FEEXUajWGDx8OnU7n93aVKIriAK+JEEIIIYQQQgghhBBCCCFk0Kqvr0dHRwdyc3ORlpYGlUqV6CUREpIgCKirq4NWq0VxcbHf9y1VLBJCCCGEEEIIIYQQQgghhMQIz/O+UDE7OzvRyyFEkZycHNTV1YHjOGi12n63B26SSgghhBBCCCGEEEIIIYQQQhSRZyqmpaUleCWEKCe3QOV53u/tFCwSQpLGokWLoFKpUFVV5fvcGWecgTPOOCNhayKEEEIIIYQQQgghhJBIUPtTkopCvW8pWCSEROW3337DZZddhpKSEhgMBhQUFODss8/Gyy+/HJfHq6urw+zZs7Fly5a47J8QQgghqamyshI33ngjDjvsMBgMBlitVpxyyil48cUX4XK5fNuxLIuXXnoJJ5xwAiwWC8xmM0444QS8/PLL4Diu335LS0uhUql8f0wmE0488US8++67A/n0CCGEEJIiwj0m4XkeCxcuxBlnnIGsrCzo9XqUlpbi2muvxaZNm3zbyRdhy38MBgNGjRqF2267DY2NjYl4ioQQQg5xNGOREBKxtWvXYvLkySguLsasWbMwdOhQ1NbWYt26dXjxxRdx++23R/0Y3377ba9/19XVYc6cOSgtLcX48eOj3j8hhBBCUt+XX36Jyy+/HHq9HtOnT8dRRx0Fr9eLn3/+GX//+9+xY8cO/Pvf/4bD4cD555+PVatW4YILLsDMmTOhVqvxzTff4I477sCyZcvw+eef92tXNH78eNx7770AgPr6eixYsAAzZsyAx+PBrFmzEvGUCSGEEJKEwj0mcblcuPTSS/HNN9/gtNNOw8MPP4ysrCxUVVXhww8/xDvvvIOamhoUFhb69v3EE09g+PDhcLvd+Pnnn/Haa6/hq6++wvbt26nVIiGEkAFFwSIhJGJPPvkk0tPTsXHjRmRkZPS6rampKSaPIfdzJoQQQgjxZ9++ffjrX/+KkpIS/PDDD8jPz/fdduutt6KiogJffvklAOCee+7BqlWr8PLLL+O2227zbXfzzTfj1VdfxW233Ya///3vePXVV3s9RkFBAa6++mrfv2fOnInDDjsML7zwAgWLhBBCCAGg7Jjk73//O7755hu88MILuOuuu3rt5/HHH8cLL7zQb//nnXcejj/+eADADTfcgOzsbDz//PP49NNPceWVV8bviRFCSJzMnDkTHR0dWLZsGQBpJNb48eMxb968iPcZi32Q0KgVKiEkYpWVlTjyyCP7hYoAkJub6/u7SqXCbbfdhiVLlmD06NEwGAw47rjjsHr16pCP0XPG4sqVK3HCCScAAK699lpfG5BFixbF4ukQQgghJAX961//gt1ux1tvvdXrBJ5sxIgRuPPOO7F//3689dZbOPPMM3uFirJbb70VkydPxr///W8cOHAg6GPm5ORgzJgxqKysjNnzIIQQQkhqU3JM8sYbb+Dss8/uFyoCAMMwuO+++3pVK/pz5plnApACTUIIiaWZM2f6zrvqdDqMGDECTzzxhN/REbG0dOlS/OMf/whr25UrV0KlUqGjoyPifZDIUbBICIlYSUkJNm/ejO3bt4fcdtWqVbjrrrtw9dVX44knnkBrayumTJkS1n1lY8eOxRNPPAEA+Nvf/obFixdj8eLFOO200yJ+DoQQQghJbZ9//jkOO+wwnHzyyUG3+/rrr8HzPKZPnx5wm+nTp4PjOHzzzTdB98VxHPbv34/MzMyI1kwIIYSQwUfJMQnHcbjmmmuiejz5Aqfs7Oyo9kMIIf5MmTIF9fX12LNnD+69917Mnj0bzz77bL/tvF5vzB4zKysLFosl4fsgoVGwSAiJ2H333Qen04nx48fj5JNPxgMPPIBvv/0WLMv223b79u345ptv8Oijj+L+++/H6tWrIYoiHnvssbAfLy8vD+eddx4AYNKkSbj66qtx9dVX47DDDovZcyKEEEJI6ujq6sKBAwcwbty4kNv+/vvvAIBjjjkm4DbybfK2MpZl0dLSgpaWFmzfvh3XXXcdGhoacNlll0WxekIIIYQMFkqOSXbu3AkAYW3bU2dnJ1paWrB//3588MEHeOKJJ2A0GnHBBRdEtGZCCAlGr9dj6NChKCkpwc0334yzzjoLn332GWbOnImLL74YTz75JIYNG4bRo0cDAGpra/GXv/wFGRkZyMrKwkUXXYSqqirf/niexz333IOMjAxkZ2fj/vvvhyiKvR7zjDPO6FXJ7fF48MADD6CoqAh6vR4jRozAW2+9haqqKkyePBkAkJmZCZVKhZkzZ/rdR3t7O6ZPn47MzEykpaXhvPPOw549e3y3L1q0CBkZGVi+fDnGjh0Ls9nsC1VJYDRjkRASsbPPPhtlZWV4+umnsXz5cpSVleFf//oXcnJysGDBAlx44YW+bSdNmoTjjjvO9+/i4mJcdNFF+Pzzz8HzPBiGScRTIIQQQkgK6+rqAoCwrki12Wwht5Vvk7eVffvtt8jJyen1uWuvvdbvFbuEEEIIOfQoOSZRsm1PZ511Vq9/l5SUYMmSJSgoKFC0H0JI4jidTuzatWvAH3fMmDFIS0uLah9GoxGtra0AgO+//x5WqxUrVqwAIF2Iee6552LSpEn46aefoNFo8M9//hNTpkzBtm3boNPpMHfuXCxatAhvv/02xo4di7lz5+KTTz7xtXX2Z/r06SgrK8NLL72EY445Bvv27UNLSwuKiorw8ccf489//jN2794Nq9UKo9Hodx8zZ87Enj178Nlnn8FqteKBBx7A1KlT8fvvv0Or1QKQvi7PPfccFi9eDLVajauvvhr33XcflixZEtVrNphRsEgIicoJJ5yApUuXwuv1YuvWrfjkk0/wwgsv4LLLLsOWLVtwxBFHAABGjhzZ776jRo2C0+lEc3Mzhg4dOtBLJ4QQQkiKs1qtAPoHgf4ECg17km/rOSsaACZOnIh//vOf4Hke27dvxz//+U+0t7dDp9NFunRCCCGEDCJKjkmUbNvTq6++ilGjRkGj0SAvLw+jR4+GWk3N6AhJJbt27epVeDFQNm/ejAkTJkR0X1EU8f3332P58uW4/fbb0dzcDJPJhAULFvh+H3rvvfcgCAIWLFgAlUoFAFi4cCEyMjKwcuVKnHPOOZg3bx4eeughXHrppQCA119/HcuXLw/4uOXl5fjwww+xYsUK34UVPbvWZWVlAZB+d8vIyPC7DzlQXLNmja9N9ZIlS1BUVIRly5bh8ssvByAFo6+//joOP/xwAMBtt93mG8dF/KNgkRASEzqdDieccAJOOOEEjBo1Ctdeey3+97//4fHHH0/00gghhBAySFmtVgwbNiysmc3yxU7btm3D+PHj/W6zbds2AOjXZn3IkCG+X2bPPfdcjBkzBhdccAFefPFF3HPPPVE8A0IIIYQMBkqOScaMGQMA+O233wIek/hz4okn4vjjj490iYSQJDBmzBhs3rw5IY+r1BdffAGz2QyWZSEIAq666irMnj0bt956K8aNG9frIsutW7eioqKiXyW22+1GZWUlOjs7UV9fj4kTJ/pu02g0OP744/u1Q5Vt2bIFDMPg9NNPV7x22c6dO6HRaHo9bnZ2NkaPHu1rSw0AaWlpvlARAPLz89HU1BTx4x4KKFgkhMScfKDbsxd1z97VsvLycqSlpfVrLRaMfNULIYQQQggAXHDBBfj3v/+NsrIyTJo0KeB25513HhiGweLFizF9+nS/27z77rvQ6XS46KKLgj7m+eefj9NPPx1PPfUUbrzxRphMpqieAyGEEEJSn9Jjkvfeew/XXHPNAK6QEJJoaWlpEVcODrTJkyfjtddeg06nw7Bhw6DRHIyS+v7+Y7fbcdxxx/ltHarkvG9PgVqbxoPcElWmUqkCBp5EQvXyhJCI/fjjj36/yX711VcA4BveCwBlZWX45ZdffP+ura3Fp59+inPOOUfRfEX5B1dHR0eEqyaEEELIYHL//ffDZDLhhhtuQGNjY7/bKysr8eKLL6KwsBDXX389vvvuO7z22mv9tnv99dfxww8/4MYbb0R2dnbIx33ggQfQ2tqKN998MybPgxBCCCGpLdxjkqKiIsyaNQvffvstXn755X7bCYKAuXPnYv/+/QOxbEII8ctkMmHEiBEoLi7uFSr6M2HCBOzZswe5ubkYMWJErz/p6elIT09Hfn4+1q9f77sPx3FBqzfHjRsHQRCwatUqv7fLFZM8zwfcx9ixY8FxXK/HbW1txe7du30dbUhkqGKREBKx22+/HU6nE5dccgnGjBkDr9eLtWvX4oMPPkBpaSmuvfZa37ZHHXUUzj33XNxxxx3Q6/WYP38+AGDOnDmKHvPwww9HRkYGXn/9dVgsFphMJkycOBHDhw+P6XMjhBBCSGo4/PDD8f777+OKK67A2LFjMX36dBx11FG+45L//e9/mDlzJgDg+eefx65du3DLLbfgm2++wZQpUwAAy5cvx6effoozzzwTzz77bFiPe9555+Goo47C888/j1tvvbXfVa6EEEIIObQoOSaZO3cuKisrcccdd2Dp0qW44IILkJmZiZqaGvzvf//Drl278Ne//jWxT4gQQsI0bdo0PPvss7jooovwxBNPoLCwENXV1Vi6dCnuv/9+FBYW4s4778QzzzyDkSNHYsyYMXj++eeDFo6UlpZixowZuO666/DSSy/hmGOOQXV1NZqamvCXv/wFJSUlUKlU+OKLLzB16lQYjUaYzeZe+xg5ciQuuugizJo1C2+88QYsFgsefPBBFBQUhOxSQ4KjikVCSMSee+45TJ48GV999RXuuece3HPPPdiwYQNuueUWrF+/vtfg3NNPPx3z5s3D4sWL8dhjjyErKwtff/01jj76aEWPqdVq8c4774BhGNx000248sorA165QgghhJBDw4UXXoht27bhsssuw6effopbb70VDz74IKqqqjB37ly89NJLAKSrbr/77jvMmzcPBw4cwH333YdbbrkFn376KWbMmIEVK1ZAr9eH/bj33Xcfamtr/bb8IYQQQsihJ9xjkrS0NHz99ddYsGABeJ7HP/7xD9x0001YtGgRJk6ciM2bN6OgoCDBz4YQQsKTlpaG1atXo7i4GJdeeinGjh2L66+/Hm63G1arFQBw77334pprrsGMGTMwadIkWCwWXHLJJUH3+9prr+Gyyy7DLbfcgjFjxmDWrFlwOBwAgIKCAsyZMwcPPvgg8vLycNttt/ndx8KFC3HcccfhggsuwKRJkyCKIr766iu6MDRKKpGaxRJC4kylUuHWW2/FK6+8kuilEEIIIYT00tXVhdNPPx2VlZVYvXo1xo8fn+glEUIIIYQQQlKc2+3Gvn37MHz4cBgMhkQvhxBFQr1/qWKREEIIIYQQcsiyWq34+uuvMWTIEEydOhXV1dWJXhIhhBBCCCGEEJK0aMYiIYQQQggh5JA2dOhQ7N27N9HLIIQQQgghhBBCkh5VLBJCCCGEEEIIIYQQQgghhBBCQqKKRUJI3NEoV0IIIYQQQgghhBBCCCEk9VHFIiGEEEIIIYQQQgghhBBCCCEkJAoWCSGEEEIIIYQQQgghhBBCCCEhHXKtUAVBQF1dHSwWC1QqVaKXQwghhCQFURRhs9kwbNgwqNV03VE80bEIIYQQ0h8diwwcOhYhhBBC+qNjEULCd8gFi3V1dSgqKkr0MgghhJCkVFtbi8LCwkQvY1CjYxFCCCEkMDoWiT86FiGEEEICo2MRQkI75IJFi8UCQPoGYbVaE7waQgghRBk3y+OEf34HEcATFx2BSyfE5qRQV1cXioqKfD8nSfzQsQghhBDSHx2LDBw6FiGDQaurFed/cj7GZo3Fq398FWnatEQvadBosDfg4s8uxtE5R+PfZ/875vt/cfOL+M/u/wAAHpv4GKYePjXmj0FS100rboKLc+GqMVcF/X+9tm4tPqn4BMOtw/GfC/4Tk8ceqGMRN8vDywtxfYyedIwaBi0zYI+nxMyZM9HR0YFly5YBAM444wyMHz8e8+bNi3ifsdhHKCtXrsTkyZPR3t6OjIyMuD1OvKlUKnzyySe4+OKLFd/3kAsW5TYfVquVDqAJIYSknJoDnVDp06ACoDdaYv6zjNphxR8dixBCCCGB0bFI/NGxCBkMvFovGCMDtUENs8UMs86c6CUNGg61A4yRgS5NF5fvEXVcHdKt6bCzdqRZ0uj7EOmljqvDqMxRyMjIgFatDbidwWQAY2SgTdOm1HkRN8vj2x0N6HSzcXuMvtINWpxz5NCww8WZM2finXfeAQBotVoUFxdj+vTpePjhh6HRxDdOWrp0KbTawF/3ngKFe0r2EamTTz4Z9fX1SE9PD/s+fUPUVHfIBYuEEEJIKtvTZEv0EgghhBBCCCEkKXACBwEDV/lDorevax+yDdmws/ZEL4UkGQfrQKu7FRmG4KFiKvPyAjrdLAwaBnpN/Oc4ejjp8by8oKhqccqUKVi4cCE8Hg+++uor3HrrrdBqtXjooYf6bev1eqHT6WKy3qysrKTYRyg6nQ5Dhw6N++P4E8vXOxo0hZQQQghJIeWN9MsXIYQQQgghhAAAJ3IQRTHRyyBh8vAe1NvrkWHISPRSSBKq6qoCAGTqMxO7kAGg16iRptPE/U+k4aVer8fQoUNRUlKCm2++GWeddRY+++wzAFLl3cUXX4wnn3wSw4YNw+jRowFILdb/8pe/ICMjA1lZWbjoootQVVXl2yfP87jnnnuQkZGB7Oxs3H///f2+f59xxhm46667fP/2eDx44IEHUFRUBL1ejxEjRuCtt95CVVUVJk+eDADIzMyESqXCzJkz/e6jvb0d06dPR2ZmJtLS0nDeeedhz549vtsXLVqEjIwMLF++HGPHjoXZbMaUKVNQX18f8PVZuXIlVCoVOjo6wtrH7Nmz8c477+DTTz+FSqWCSqXCypUrw3rd/L3eDz/8MCZOnNhvXccccwyeeOIJAMDGjRtx9tlnY8iQIUhPT8fpp5+OX375JeBzUoqCRUIIISSF7KrvgkZNLcIIIYQQQgghhBM4CCJVLKaKmq4aCBCQZYh/RRFJPVWdVQCAHGNOYhdC+jEajfB6vb5/f//999i9ezdWrFiBL774AizL4txzz4XFYsFPP/2ENWvW+MI1+X5z587FokWL8Pbbb+Pnn39GW1sbPvnkk6CPO336dPznP//BSy+9hJ07d+KNN96A2WxGUVERPv74YwDA7t27UV9fjxdffNHvPmbOnIlNmzbhs88+Q1lZGURRxNSpU8GyB9vROp1OPPfcc1i8eDFWr16Nmpoa3HfffYpeo2D7uO+++/CXv/zFFzbW19fj5JNPDut18/d6T5s2DRs2bEBlZaVvmx07dmDbtm246qqrAAA2mw0zZszAzz//jHXr1mHkyJGYOnUqbLbYdEKjVqiEEEJICilvtGOIRY+GTneil0IIIYQQQgghCUXBYmrZ17kPAJBtyE7wSkgyquqqgkVrgVVPczeThSiK+P7777F8+XLcfvvtvs+bTCYsWLDA15LzvffegyAIWLBggW9G5cKFC5GRkYGVK1finHPOwbx58/DQQw/h0ksvBQC8/vrrWL58ecDHLi8vx4cffogVK1bgrLPOAgAcdthhvtvllqe5ubm9Ziz2tGfPHnz22WdYs2YNTj75ZADAkiVLUFRUhGXLluHyyy8HALAsi9dffx2HH344AOC2227zVf6FK9g+zGYzjEYjPB5Prxaq4bxuQP/XG5CqE99//308+uijvuc1ceJEjBgxAgBw5pln9lrfv//9b2RkZGDVqlW44IILFD03f6hikRBCCEkRTi+Hug4XhpgT30udEEIIIYQQQhKNF3mISN1WqLVdtXii7AlwPJfopQyIfZ37kKZJQ7o+PdFLIUlob8deZBmzoGf0iV7KIe+LL76A2WyGwWDAeeedhyuuuAKzZ8/23T5u3LheIdfWrVtRUVEBi8UCs9kMs9mMrKwsuN1uVFZWorOzE/X19b3ad2o0Ghx//PEB17BlyxYwDIPTTz894uexc+dOaDSaXo+bnZ2N0aNHY+fOnb7PpaWl+QJBAMjPz0dTU5Oix4pkH6FeN1nf1xsApk2bhvfffx+AFAD/5z//wbRp03y3NzY2YtasWRg5ciTS09NhtVpht9tRU1Oj6HkFQhWLhBBCSIqoaLJDBJBjpoNsQgghhBBCCEn1isUtzVvwv/L/4YrRV2B01uhELyfuKjsrMcQ4BDqGLpYl/e3r3IdMfSa9P5LA5MmT8dprr0Gn02HYsGHQaHrHSCaTqde/7XY7jjvuOCxZsqTfvnJyImttazQaI7pfJLRaba9/q1QqxfN7I9lHuK9b39cbAK688ko88MAD+OWXX+ByuVBbW4srrrjCd/uMGTPQ2tqKF198ESUlJdDr9Zg0aVKvFqvRoGCREEIISRHljXYAQK7FkOCVEEIIIYQQQkji8SKf0sGizM0dGqMu9nbsRaaBgiPSnyAKqLHV4KT8k6hiMQmYTCZfS81wTJgwAR988AFyc3NhtfpvZZufn4/169fjtNNOAwBwHIfNmzdjwoQJfrcfN24cBEHAqlWrfK1Qe5Ir+HieD7iusWPHguM4rF+/3tcKtbW1Fbt378YRRxwR9vOLBZ1O12+t4bxugRQWFuL000/HkiVL4HK5cPbZZyM3N9d3+5o1azB//nxMnToVAFBbW4uWlpbon0g3aoVKCCGEpIg9jTZkmXQwG5hEL4UQQgghhBBCEo4TOMVVJcnIK8SmgiSZiaKI6q5qZOgzoFNTsEh6a3I2wcN7kKnPhFpFkUWqmTZtGoYMGYKLLroIP/30E/bt24eVK1fijjvuwP79+wEAd955J5555hksW7YMu3btwi233IKOjo6A+ywtLcWMGTNw3XXXYdmyZb59fvjhhwCAkpISqFQqfPHFF2hubobdbu+3j5EjR+Kiiy7CrFmz8PPPP2Pr1q24+uqrUVBQgIsuuigur0Ww57Nt2zbs3r0bLS0tYFk2rNctmGnTpuG///0v/ve///VqgwpIz33x4sXYuXMn1q9fj2nTpsW0CpT+lxJCCCEpYleDDbkWPXQM/fgmhBBCCCGEEF7kwYuBq1VSBcuziV5C3DU6G+Hm3cg0ZEKlUiV6OSTJ7OvcBwDINmYneCUDw8MJcHq5uP/xcANT0Z2WlobVq1ejuLgYl156KcaOHYvrr78ebrfbV4l377334pprrsGMGTMwadIkWCwWXHLJJUH3+9prr+Gyyy7DLbfcgjFjxmDWrFlwOBwAgIKCAsyZMwcPPvgg8vLycNttt/ndx8KFC3HcccfhggsuwKRJkyCKIr766qt+rUvjbdasWRg9ejSOP/545OTkYM2aNWG9bsFcdtllaG1thdPpxMUXX9zrtrfeegvt7e2YMGECrrnmGtxxxx29KhqjRa1QCSGEkBRR3mjD8CEm6BiqWCSEEEIIIYQQXuAHRcUiKw7+YNEXHBkOjeCIKFPVVQVGxWCIcUiilxJXOkaNdIMWnW4Wbm5gLopIN2gVXaC+aNGiiG4fOnQo3nnnnYD302g0mDdvHubNmxdwm5UrV/b6t8FgwPPPP4/nn3/e7/aPPvooHn300aD7yMzMxLvvvhvwMWfOnImZM2f2+tzFF18c9GfLGWec0ev2cPaRk5ODb7/9tt++Qr1uwb4eGRkZcLv9t9I+9thjsXHjxl6fu+yyy3r9O5qfnxQsEkIIISnA4eFQ3+nG8SWZ0DB0dSchhBBCCCGEcCJHFYspYl/nPmhUGuQYcyAg9ediktiqaK9AliELRk3sWjUmI4OWwTlHDoWXH7j/AzpGDYOWLlAnsUXBIiGEEJIC9jRJveKHWGiIOSGEEEIIIYTIWCH1QzlO4BK9hLjb27kXWUYpOHJwjkQvhySZ9Q3rUWQpgkFjSPRS4s6gZSjoIymPhjQRQgghKaC80QYVgHzr4D/IJoQQQgghhJBweXlvopcQtcEQjoayt2Mvsg3Z0GvoYlnSW4OjAdVd1RhmHjboKxYJGSwoWCSEEEJSwO4GG7LNOlgMAztcmhBCCCFx9t9pwPJHEr0KQghJWR7ek+glRO1QCBb3de1Dpj4TOkaX6KWQPliBhSAmrj3tuvp1UEGFEmsJ1CqKKwhJBfQ/lRBCCEkBuxtsyLHoYdDSj25CCCFkUKkpA+q3Aqw70SsJn6sDWHYL4GpP9EoIIQReYRBULA7yGYsO1oEWVwsyDBnQquli2WRz36r78PBPD0MUxYQ8/toDazHMPAxDjEMS8viEEOXo7CQhhBCSAsobbcg26agPPyGEEDKYeB2AsxXgWSCBlQKKVXwHbFkifSSEkAQbDK1QB0PVZTBVnVUAgCxDVmIXQvrhBA5rD6zFvq59cLADP/tSFEWsq1+HYksxLFrLgD8+ISQyFCwSQgghSa7LzaLJ5kGWSQctQz+6CSGEkEGjvVr6yHtSK1isLpM+Cnxi10EIIRgcoRw/yL+f1tprAVCwmIx2te2Cm3fDzbnBiwP/PixvL0e7px0F5gKav0lICqGzk4QQQkiS29NoBwDkWOggmxBCCEk5v38WuM1pe5X0kecAJKb9WESq1yR6BYQQ4jMY2ogOhnauwThZJwDApDUleCWkr82NmwEAHs6TkDmL6+rXQavWosRaMuCPTQiJHAWLhBBCSJLb02iDSgUMtRgSvRRCCCGEKNFeBXx4DfDpLYFvBwCBS52KRVcH0Lwr0asghBCfZKpY7PR0+kI0JVgh9cPRYJysE1q1Fhq1JtFLIX1satgEQAq3E1GxuLZuLYotxUjXpw/4YxNCIkfBIiGEEJLkyhttGGLSw2ygIfeEEEJISvFIXQfgbPd/uxwsinzqBIv7NyKlqisJIYNeMs1YvHvl3Xhq/VMQRWXfJwdD1WUwLs4FHaODWhX+qehx74zD/C3z47gqIogCfmn6BSqowArsgFcsenkvfmn8BYWWQph15gF9bJIYs2fPRl5eHlQqFZYtW5bo5cTF7NmzMX78eN+/Z86ciYsvvjiqfcZiH7FGwSIhhBCS5HY12JBj0cOgpR/bhBBCSEqRT3YHqtBo2yt9FDhA4UnohKlem+gVEEJIL24+QLvpBGhyNqHZ1ay4tSkncHFaUXJwsA7o1MqCRQB487c347QiAgD7Ovehy9uFYeZh4ARuwIPFrc1b4ebdKLIUQaumC6mTxcyZM6FSqaBSqaDT6TBixAg88cQT4Ljovk/t3LkTc+bMwRtvvIH6+nqcd955Ua+1b4gXbDv5OWk0GpSWluLuu++G3W6Peg2hvPjii1i0aFFY21ZVVUGlUmHLli0R72OgUP05IYQQkuTKG20YO9QKg5ZJ9FIIIYQQooRcgaIOcCLV1wqVT6FgcQ2Qlg04WxO9EkIIAZBcFYse3qO4WhE4BGYsck5oGa3iYJHE1+bGzVCr1CixlmBz4+YBb4VaVlcGk9aEInPRgD4uCW3KlClYuHAhPB4PvvrqK9x6663QarV46KGHFO+L53moVCpUVlYCAC666CKoVKpYLzmkI488Et999x04jsOaNWtw3XXXwel04o033ui3rdfrhU6ni8njpqdH3+Y3FvuINfpuTkiKarUnzwwBQkj8dDpZtNi9yDLroGXoxzYhhBCSUoJVLIoi0Fkr/V1IkVaonAeo+xXIKE70SgghxCeZZixGGnIO9opFJ+uUKhbpVHRS2dSwCcNMw5Cpz5QqFoWBPRZZW7cWpdZSWPSWAX1cEpper8fQoUNRUlKCm2++GWeddRY+++wzAIDH48F9992HgoICmEwmTJw4EStXrvTdd9GiRcjIyMBnn32GI444Anq9Htdddx3+9Kc/AQDUanWvYHHBggUYO3YsDAYDxowZg/nze7dA3r9/P6688kpkZWXBZDLh+OOPx/r167Fo0SLMmTMHW7du9VUjBqvq02g0GDp0KAoLC3HFFVdg2rRpvuckVz4uWLAAw4cPh8FgAAB0dHTghhtuQE5ODqxWK84880xs3bq1136feeYZ5OXlwWKx4Prrr4fb3buKvm8bU0EQ8K9//QsjRoyAXq9HcXExnnzySQDA8OHDAQDHHnssVCoVzjjjDL/78Hg8uOOOO5CbmwuDwYBTTz0VGzdu9N2+cuVKqFQqfP/99zj++OORlpaGk08+Gbt37w74+ihF380JSUH7Whw44cnv8GttgFkthJBBo7zJBgDIMcfmSilCCCGEDCChu2JR5afrgL0J4NyA3po6MxbrtkhhaQZVFhBCkkfSVSxGMId2sAeLDtZBFYsJIooi5m6ai30d+/rdtrlpMwrMBTBpTeBFfkD/L3V6OrGzdScKzYVI06QN2OOSyBiNRni90vvjtttuQ1lZGf773/9i27ZtuPzyyzFlyhTs2bPHt73T6cT//d//YcGCBdixYwdeeuklLFy4EABQX1+P+vp6AMCSJUvw2GOP4cknn8TOnTvx1FNP4dFHH8U777wDALDb7Tj99NNx4MABfPbZZ9i6dSvuv/9+CIKAK664Avfeey+OPPJI3z6vuOKKiJ4TAFRUVODjjz/G0qVLfa1IL7/8cjQ1NeHrr7/G5s2bMWHCBPzxj39EW1sbAODDDz/E7Nmz8dRTT2HTpk3Iz8/vF4z29dBDD+GZZ57Bo48+it9//x3vv/8+8vLyAAAbNmwAAHz33Xeor6/H0qVL/e7j/vvvx8cff4x33nkHv/zyC0aMGIFzzz3Xty7ZI488grlz52LTpk3QaDS47rrrwn59QqFWqISkoC4XC0EEyhtsOLYoM9HLIYTEUXmjDWoVkGc1JHophBBCCFHK1wrVz6/echtU0xDAYwciOBE94GrKAI0BSKeKRUJI8mDliziSQKStUDlxcAeLTs4JrZqCxURw824s2rEIaqhx9/F3+z5fZ69Dk7MJJ+WfhDStFOy5ONeArWtjw0YIEFBsKQajPrTGvvQM1mSZmZkYPnw43G43fv/99373mTBhAgBg9+7dcDgcvW4rLS1FVlYWmpubUVtb2+s2i8WCkSNHRrxWURTx/fffY/ny5bj99ttRU1ODhQsXoqamBsOGDQMA3Hffffjmm2+wcOFCPPXUUwAAlmUxf/58HHPMMb59ZWRkAACGDh3q+9zjjz+OuXPn4tJLLwUgVez9/vvveOONNzBjxgy8//77aG5uxsaNG5GVlQUAGDFihO/+ZrPZV4moxObNm/H+++/jzDPP9H3O6/Xi3XffRU5ODgDg559/xoYNG9DU1AS9Xg8AeO6557Bs2TJ89NFH+Nvf/oZ58+bh+uuvx/XXXw8A+Oc//4nvvvuuX9WizGaz4cUXX8Qrr7yCGTNmAAAOP/xwnHrqqQDge+zs7OyAz8nhcOC1117DokWLfHMq33zzTaxYsQJvvfUW/v73v/u2ffLJJ3H66acDAB588EGcf/75cLvdvorMaFCwSEgK83IpcFVziqltc+IP//oR/7vxJJwwPDvRyyEE5Q02DDHrYdbTIHNCCCEk5QRrhdpRLX005QKujtSoWKxeC2SUAjpzoldCCCE+ydIKlRf4iCsPB3vFootzUbCYIB5O+v/RN7ze3LgZAFBsKfaF807OOWDrKqsrwxDjEAw1KwuEBoM33ngDc+bM6fW5adOm4b333sP+/ftx3HHH9buPfMHCzJkzsW7dul63LV68GFdffTU+/PBD3Hbbbb1uO+ecc7B8+XLFa/ziiy9gNpvBsiwEQcBVV12F2bNnY+XKleB5HqNGjeq1vcfjQXb2wfOoOp0ORx99dNDHcDgcqKysxPXXX49Zs2b5Ps9xnG+m4JYtW3Dsscf6QsVo/PbbbzCbzeB5Hl6vF+effz5eeeUV3+0lJSW+YA8Atm7dCrvd3ut5AYDL5fLNi9y5cyduuummXrdPmjQJP/74o9817Ny5Ex6PB3/84x8jfh6VlZVgWRannHKK73NarRYnnngidu7c2Wvbnl+D/Px8AEBTUxOKi6O/SJCCRUJSmJsd2KHKh4JfaqT2sp/8WkfBIkkKuxpsyLHoYdDSL2CEkG6CAFR8B4w6J9ErIYSE4gsW/VyJ314F6C3SH1GQZi4mM0EAatcBhScAWmOiV0MIIT4snxwVi3LAGUkr1GSquowHJ+uEUWOkYDEB3Hx35VSft+Xmxs3ITctFliELbW6pfaKb819lFQ9r69eixFICs/bQu1jpxhtvxIUXXtjrc5mZUke6wsJCbN68OeB9Fy1a5LdiEQD+8pe/YNKkSb1us1gim185efJkvPbaa9DpdBg2bBg0GilGstvtYBgGmzdvBsP0Pr41mw9+LY1GY685iv7Y7XYAUrXdxIkTe90m79tojN0x5+jRo/HZZ59Bo9Fg2LBh0Ol6jxwymUz91pefn99rfqRMrr5UKpbPJxxa7cEiBfnrEatZqhQsEpLCKFgkZPDb02THUcOsMGgPrdYghJAgVj4FrH4WuHopMCLyKx0JIQMgWCvUtr1AWjag0QMCl/wViy27AXcnkF4EMNRJgRCSPJIllIsmWORFHqIohjwRn6rcvBsWnYWCxQSQw0IBvY8zNjVuQqG5ECatCXZWCngGqmKxzl6H/bb9OC73OBg1h97FSvn5+b7qsb4MBoOv7ak/o0ePDnhbTk5Or4q7aJhMpl4tR2XHHnsseJ5HU1MT/vCHP0T1GHl5eRg2bBj27t2LadOm+d3m6KOPxoIFC9DW1ua3alGn04Hnwzs/rtPp/D6nQCZMmICGhgZoNBpfeNvX2LFjsX79ekyfPt33ub4VpT2NHDkSRqMR33//PW644Qa/awQQ9Dkdfvjh0Ol0WLNmDUpKSgBIrWc3btyIu+66K4xnFhsJ/W6+evVq/OlPf8KwYcOgUqmwbNmykPdZuXIlJkyYAL1ejxEjRmDRokVxXychycrNJvlVzYSQqLQ5vGhzeJFl1kPL0C9g8UDHIiQl2Rqkj62ViV0HISS0YBWLbXsBYxag0XVXLCZ5sFhTBqjUUitUmbMtYcsZLOhYhJDoeQVvopcAILqWrJzARRRIpgonSzMWE0WuWOz5/mpzt6G6qxpDTUNh0BigY6QwY6BmLK6rXwcVVCi2FA/aMH2wGjVqFKZNm4bp06dj6dKl2LdvHzZs2ICnn34aX375peL9zZkzB08//TReeukllJeX47fffsPChQvx/PPPAwCuvPJKDB06FBdffDHWrFmDvXv34uOPP0ZZWRkAqVpz37592LJlC1paWuDxxK419llnnYVJkybh4osvxrfffouqqiqsXbsWjzzyCDZt2gQAuPPOO/H2229j4cKFKC8vx+OPP44dO3YE3KfBYMADDzyA+++/H++++y4qKyuxbt06vPXWWwCA3NxcGI1GfPPNN2hsbERnZ2e/fZhMJtx88834+9//jm+++Qa///47Zs2aBafT6Zv1OBAS+t3c4XDgmGOOwauvvhrW9vv27cP555+PyZMnY8uWLbjrrrtwww03RNQnmJDBwM1RxSIhg1l5ow0AkGPWhdiSRIqORQghhMRVsIrFjhrAkA4wBkDgkz9YrC4D0osBU/QzbshBdCxCSPSSpWJRrgwTI2htzQs8hGT/ORAFN+8Go2YoWEwAf+/LXxt/BQAUWAqgVqmhU3cHi+zABItrDqxBgbkA2UYaQZSKFi5ciOnTp+Pee+/F6NGjcfHFF2Pjxo0Rze274YYbsGDBAixcuBDjxo3D6aefjkWLFmH48OEApAq+b7/9Frm5uZg6dSrGjRuHZ555xtcq9c9//jOmTJmCyZMnIycnB//5z39i9jxVKhW++uornHbaabj22msxatQo/PWvf0V1dTXy8vIAAFdccQUeffRR3H///TjuuONQXV2Nm2++Oeh+H330Udx777147LHHMHbsWFxxxRVoamoCAGg0Grz00kt44403MGzYMFx00UV+9/HMM8/gz3/+M6655hpMmDABFRUVWL58ua+l7kBIaCvU8847D+edd17Y27/++usYPnw45s6dC0AqNf3555/xwgsv4Nxzz43XMglJWl4KFgkZ1PY02sCoVMizGhK9lEGLjkUIIYTElK0BWDoLuPQtwJIbOFjkPNK2RRO7KxZ59Bt+lGxq1gKZhwE6M+CxJXo1gwYdixASPU7gIIhCwkOraCoWeZEf1BWLbs7tq4ojA8s3Y7GHzY2bkanPxNC0oQDg+9o4OEe/bWNNEAWsb1iPI7OPhFl36M1XTAWhOiFotVrMmTMHc+bM8Xv7zJkzMXPmzH6fv/jii/1eeHHVVVfhqquuCvh4JSUl+Oijj/zeptfrA97W0+zZszF79mzFt1ssFrz00kt46aWXAt734YcfxsMPP9zrc//3f//n+3vf11OtVuORRx7BI4884nd/N9xwQ782qX33YTAYgq7rjDPO6Pdajx8/PqILXwJJqctEysrKcNZZZ/X63LnnnusrffXH4/Ggq6ur1x9CBgsPN3ivZiOEALsbbMix6GHW9z4ZueaL/8K179cErerQRscihBBCgqr8Edi3Gqj+Wfp3oFaoHbUARCAtSwodBR6I4S/6Mdd5AOjcD1gLAI0B73+7EZ/sTI4KoUMNHYsQ0p8cLCaar+VkhBWLsTzhm0w4gQMrsNCqaD5vIni4/oH3xsaNKLQUIk2TBgAD2gp1d9tudHo6UWguhJ7RR7yfnat3omNtR+wWRghRJKWCxYaGBl+ZqSwvLw9dXV1wufx/43v66aeRnp7u+1NUVDQQSyVkQHgpWCRkUNvVaEOORQeDRjoZyfM8Xv+/x/HBvMfgrt6a4NUdmuhYhBBCSFD1W6SP8slhOVjsW0XTUSV9NGYBKgaAeLC6MRnVSKGVmFGCx19egmmz38G3lVyCF3VoomMRQvrjBG7AQrm3fnsLXt7/TEd/AU64eHHwtkKVwyqqWEwMF9/7Z4ODdaC8rRz5pnykabuDxe5WqHLb1HhaV78OOrUORZbIfhaJoogP3vgA/33ov7Btsw3aQJ6QZJdSwWIkHnroIXR2dvr+1NbWJnpJhMQMBYuEDG4VjXZkmXQwaNVwOuyYfftMfPLem7jstkeRecbMRC+PhImORQghivAsMDsdaKtK9EpIJA780vvfgcLC9iopUDTnHGyTmtTB4jq49Lm48plleGL++3j6pgsx/3xq1Z4q6FiEDHacwEFA7M+PCKKAn/b/5Asu6ux1mPfLPNy78l6/2/trORmuwdwK1ck6AQAaf/OGSdz1Dby3Nm2FAAHDzMN87YPl+ZcDUbG4pm4Niq3FyDBkKL4v62Xx3APP4fUnX8cfrvkDCv9WCJVKFftFEkJCSqlgcejQoWhsbOz1ucbGRlitVhiNRr/30ev1sFqtvf4QMlh4eQoWCRmsWuwedLhYZJt00DBqvPD4vdi2qQz/nP8eTrv4mkQv75BFxyKEkLjbv0n6+O3DwbdTwmMHatbFbn/EP0EAGn/r/bkAVS1oq5LaoGqMB9ukBto2GVSvwV3fuPDZT1vw0YsP48Hp59CJvAShYxFC+uMEDrzAx3y/21u245bvb8H6hvUADgaHgQLEqGYsDuJWqFSxmFh9qxA3N22GWWtGvim/1+e1am1U4Xg4PLwHvzb+iiJLEUxak+L7v/XsW/j242/x4PMP4qybzoJKTccihCRKSgWLkyZNwvfff9/rcytWrMCkSZMStCJCEovlBQjC4DzwJORQV95oAwBkm6Rfvq6762G8+P4XOOEPZyZyWYc8OhYhhKSkHUuBhVOB1spEr2Rwa6sE2D5X+gcMFvcCadkAoztYsSgkZ8Wi4GwHmnZi9lUn46f3/oU/n3tqopd0SKNjEUL640QuLtV+DtYBAOj0dIa1fTRtJDkxOeZExoOTkyoWtWqasZgIfcPCjQ3SfEWzztzr81q1NqpwPBy/Nv0Kr+BFkblI0ftBEKT/G1feciVe+OAFnHvZufFaIiEkTAkNFu12O7Zs2YItW7YAAPbt24ctW7agpqYGgNSuY/r06b7tb7rpJuzduxf3338/du3ahfnz5+PDDz/E3XffnYjlE5JwLCeCH6RXtBFyqNvTaId79894896/wt7VifzCEpSOGJPoZQ06dCxCCDkkuLsAkffNySNxUrel/+eEAHMI26sAQwagMRwMFqOYzRUvX375JcZPOA5NDh75w8fiuKNGJXpJgw4dixASHRVU4IX4zCdUGrJEE8oIojBoW6HKFYt6Rp/glRyaegbeXt6L7S3bkW/Kh0nTu2JQx+jg4T1xrZxdV7cOZq0ZBZaCsO/z69pfcd3Z16Gprgnpmek46vij4ra+eJGDUUJSSajvBQltbr1p0yZMnjzZ9+977rkHADBjxgwsWrQI9fX1voNpABg+fDi+/PJL3H333XjxxRdRWFiIBQsW4Nxz6SoFcmjyCgIEChYJGXREUcRbLz+LxmXzceqUi6HT0y9g8ULHIoSQQ4I8L6fuV+DYq8O7z+x04JS7gbNnx21Zg079lv6f4/xULIoi0FENlJzSXbGYfK1QRVHEiy++iHvvvRd/OmkU0kxWIL0w0csalOhYhJDoMCoGrMCmfLAYr3A0GcgzFqkVamL0rFjc0boDrMCiwFQARj7+6KZVa+HlvOBFHhpVfCKDNXVrMDx9OCw6S1jbf/mfL/HCIy/g2EnHIs2UFpc1xZNOp4NarUZdXR1ycnKg0+molTxJCaIoorm5GSqVClqt/+rihAaLZ5xxRtDkc9GiRX7v8+uvv8ZxVYSkDp4XQRe9EDK4uN1u3HDDDfjpv0sw+vzrcc8Ts6HTU8uYeKFjEULIIcHbHSw27ZLmAKrDbFyz7T8ULCpx4BdAnw70bJnnLyx0tQNeO2DMlL4WcsVikgSLLMvi9ttvxxtvvIH7778fT4/4FWreBejNoe9MFKNjEUKiw6gZcAIXlyorpUFhNK1QeXHwz1g0MIYEr+TQ5OrRpn1z42boGb3fikEdo4NX8MYt4O5wd2B3226cW3puyPmKPM/jzWfexAdvfIALr74Qt8+5HRptQmOMiKjVagwfPhz19fWoq6tL9HIIUUSlUqGwsBAMw/i9PfX+RxJCfFieKhYJGWzWrl2LTz75BEV/fggnnX8xjDr/P8AJIYSQsHVXCqCjGvDaAEN6YtczGAkC0LANSC8CmnsGi35OSndUSx+NWdJHX7CYHDMWt2zZgnfffRcLFizA9TOuBp4uAkacRcEiISQpMSoGvMhDQIpXLIr8oG2FKs9YpIrFxOhZsbipYZPf+YpAd8UiL1UsxsP6hvUQIaLYWgy1KvhFbrWVtfh08ae4bfZtuPTaS1O6yk+n06G4uBgcx4Hn4/PaEhIPWq02YKgIULBISEqjYJGQwaO2thaFhYU488wzsWHbTpz/5m/INumgCbeqhBBCCAlEDhZt9YCzjYLFeOiokqoQLUOB5p0HP++vCrG9SvqYli19TJKKxf379yM/Px8nnHACqqqqkJubC9RukMLRjKKD6ySEkCQiVyzGo8rKq/D7clQVi4O4FaqLc4FRMRQsJohcMSqIArY0bcGEvAn95isC8a9YLKsrQ64xF3lpeQG3aW1sRXpWOkpHleL9n99H5pDMuKxloMntJAO1lCQkFdHZSkJSGCdQK1RCBoPly5fjqKOOwhtvvAEAaBek2QG5FpqtSAghJAZYB6BiAIEDGnckejWDU90W6aO1T2sxfzMW26sAbRpgzJD+Lc84Erg4LS601atXY/z48XjuuecAQAoVAaCmDNAYgIyShK2NEEKC0ag0cWsjqjQolAOcSAzqikXWCR2jgwqpW3WWyuT3cb2jHg7OgXxTPrRM/4BLp9aB5dm4VSyW1ZWh2FoMs9Z/B4TdW3fjxvNvxMLnFwLAoAkVCRmsKFgkJIWxvEgVi4SkuFdeeQVTp07FaaedhmnTpgEAyhtt0DIq5FppBgUhhJAYYN1AeqH09zqayxYX9Vul1qam7N6fF/y0N22vkqoVNd0XEMmVgGzkLfSisWjRIpx11lk4+uijMWvWrN43Vq+VQkWqciWEJClGzcSt2k9xxSIfecWiIAqDesaijtGBUdGYj0SQ35eVHZVgVAwKLYV+t9MxOrACCyEOFQy1tlrUOepQYC6AUWPsd/uqL1fhzsvvRF5hHv583Z9j/viEkNijYJGQFMYJ1AqVkFTFcRxuu+023H777bjzzjuxbNkyWCwWAFKwmGPRI01Lv3gRQgiJAdYJ6C2AMRNo3A7Q8WPsHfgFsA6Tqvt68ndSunWv9LWQt/VVLA5sK1RBEPDQQw/h2muvxYwZM7B8+XJkZWX13ACoWSfNjfQzi4kQQpIBo2LAifFphaq0YjGqVqji4G2F6uSc0Kq1KT0nL57sXjtYfxcixYj8vtxv348CcwHS9f4vFtIzeniF+MxYXFe/DmqVGiWWkl7vA1EUseSVJZh982yccs4peP6/zyMrJyvIngghyYKCRUJSGMeL4OnEECEpSaVS4cCBA3j99dfx/PPP9xqIvKtBChYNFCwSQgiJBdYFqLVSQNS29+DMRRIbogg0bAPMQ8MLFjuqAEMGoOmeNZWgGYsqlQq1tbV47rnn8O9//7v/3J+WcsDdIVW7amguFiEkOfkqFhGHYFFhBWLUFYuDtBWqw+uATp0cFYtt7rZEL6Gfa76+Bq/8+krc9u/hD3ZEKDAXwKTtP18R6FGxGIeAe+2BtSg0FyLbmN3vtqa6Jsy8eyb+38v/D3oDjYMhJFXQ9HVCUhgniHTBOSEpZt++faivr8fJJ5+MpUuX9rtqUxRF7Gmy4cThWdBr6fofQgghMcC6AEYLWIuBPSsAdxeg839SiUSgs1YK4KxDD4aEMr5PBYLAA111wNBjpLAXkOZfAv7nMcZBXV0dysvLccYZZ2Dx4sWBK0hqygCVGsgsHZB1EUJIJOQZi8lQsejhIm9pzQvxmROZDJycE1om8RWLtbZaXPDJBXj1zFdxauGpCV1LT/WOelS0V4AXeDDq2IevPWd/5pnyoGf8h3c6RgeO52JescgLPDY0bMC4IeNg6j7+7GzrRPn2cpxw2gm468m7Ev7eIIQoR2csCUlhHE+tUAlJJWvXrsXEiRNx1113QRRFvwfPDV1uODw8sk06aNT0Y5oQQkgMsC4p8Mo8TKpWbK1I9IoGl7ot0kdLQf/b+lYhdh0ABA5IywLk4wBm4CoWf/31V5x44om45ZZbwPN88BN5NWVSlWsatSQjhCQvRsXELZTrWekVjmgqFnkx8qpLTuDAC7FvXxkrcitUtSqxv982O5shiAJW1q5M6Dp6EkQBTtYJJ+eMSwtSoPf7uMhcFHA7PaOPS8XirrZd6PJ2odBSCD2jR/Weatxy4S2Y+8BceD1eChUJSVF0xpKQFMYJIniBgkVCUsGSJUswefJkjBkzBl999VXAg+fyRjsAINdMLUAIIYTECOeWquPkyjM5CCOxUb8VMKQDlrz+t/nCwu6f++1V0kdjj7BugFqhLlu2DKeeeiry8/Px/fff92rD7lf1WiCjGNDTfEVCSPJi1AwECOAELub7VhosRlOxKIhCxIHOsYuPxfjF45O24tHJxidY3Nm6E2V1ZWFv72AdAIDyjvKkCWJdnAsiRLg4V1zew0Dv93GWMfDFQjq1TgqpYxxwltWXQc/oUWQuwqbVm3DrJbdCb9Rj3ofzoNNTq3VCUhUFi4SkMI6nVqipSBRF1LTSbKNDybx583D11VfjyiuvxIoVKzBkyJCA2+5ptEHHqJFjNQTchhBCBgWelSrpAuE8wIrHB249gxnrkqriTEMAbRpQvyXRKxpc6n4BrAXSa9sX332SUNUzWFQBppyD26jkYLFP29QYevvtt3HppZdi6tSpWLVqFfLz84PfoatOavFqLQQ0xritixBCAlm9fzXGvTMO3hAXXchz+zxC5KFeIAM5Y5EXeUQ7YrHL2xXdDuLExbniEiy+v+t9PLn+Sdi99rC2d3BSsFjbVQs7G9594k1eu4tzgRPjGyzq1LqA8xWB7laoIhfzgHNt3VqUWEqw48cdeGDGAzjquKPw8tKXMbRoaEwfhxAysChYJCSFcYJAFYsp6PudTThz7kpUtzoSvRQyQM4880w8++yzWLhwIfT64JWIuxtsyLXqkaZN/GB7QgiJq5+eBxZdEHiu3Kr/A9bMA7b8Z0CXNShxLqliUc1IrS1bKwZsnt+gJ4pSxaJlKKDzFyx2h4W+YLEaMGb23nYAKhZPO+00zJkzBx988AHS0vyss6+a7gqQzJKDayeEkAH01m9vAQDW160Pup08ky5UABkJxRWLCrfvSRCFiFuhJrt4BYuCKMDFunrNEAzGyUoXeLe4W9DgaIjpWiIlB5xuzh23KkpX94V8WYYsGJjAFzDrGKl6UH6dYvLYnAtbmrag0FKIY084FtNunYYn33oSJgvN+iYk1VGwSEgKE0QpXCSpZdv+DnCCiIauyK9mJMmvoaEBN910E1wuF44++mjcd999Yc0O2NVgwxCzDgYKFgkhg52jWaqKcrb6v93bfVLD2TJwaxqsOI8ULAJAVqlUieZJzqqGlGOrl97D5qEA46edl9CnFWrbXmlmoabHiT21WrpdiG3FYmtrK2688UZ0dXVhxIgRePTRR6EOd35zdRlgzvXf3pUQQgaQVwivYtEbhwtmlLY2jSbcFCGCjfHPgWTh5JzQqDVQx+E0tIt3hd26s2dg9lvLbzFfSyR8wSLvjsuMRUEUfJWQKpUq6DkJnbo7WORiFyz+XPEzqt6uQhafhfyCfFx333VgNHSug5DBgIJFQlKch6VgMdXsbLAlegkkzrZu3YoTTzwRn3/+OWpra8O+nyiKqGy2I9ukp2CREHJo4L1AhPOESJgEXnqdme6quMzDpSCsqy6x6xos5HmV1gL/t/sqFrt/9W7bCxgyAU2fEFLNxLQV6u7du3HSSSfh448/xt69e5XvoHotkFEK6CwxWxMhhMSDXLEYTbVgIANZsQggbjP2Es3NueNSsQhI4W+4r5uDdSBNkwaNSoPfmpMjWHR4pU5WHj7856GEkveklpEuQnNzsbkIvqqqCtMvmI6u9V1Ac0x2SQhJIhQsEpLi3FxyDJwm4dtNweKg9sUXX+DUU0/FkCFDsGHDBowaNSrs+9Z1uuH08sg268Coqe0YIeQQILAULMabfHKI6VGxCNCcxVip3wroLYEr+/q2Qu2sBYzp/asbVczBeYxR+uGHH3DSSSdBq9Vi/fr1GD9+vLIduDuB5p1AeoH/9q6EEJJEfBWLKd4KFQC4GP0cSDYuzgWNWhNWBx+lvII3ZFWrzME6YNAYkJuWiz0deyKqEH17+9u468e7IMTo+NXGSueH4hYsKqi6lVuhhttaNpiysjJMnDgRXfYuTJk7BRMmToh6n4SQ5ELBIiEpzs3RybhU4vLyqG2LXVsJklx+//13XHTRRTjrrLPw008/oaAgQPVCAOXdoXOO2U8rNUIIGYx4FohD2yfSQ/dcHV+QZR0mhVhypR2JTt0vUrWiLsCsoJ5ViB67VC1qzDg4V1GmZnq0TY1cdXU1pkyZghNOOAFr167F4Ycfrnwn+zdKgX96ycFKS0IISVIalfT9NNxwSQklYaUoilGHm/F4DokmiAI8vMcXWsWD3WsPbzvWDh2jQ6GlEPtt+8O+X0/7Ovfh16Zf0eoK0MpfIQcrVSxyAhezcNzDe7Bw+0J4eA/cfPjVh3Ir1GiDxebmZpx99tk4bMRhKH6kGEcceQRMWpqpSMhgQ78lEJLiPF4KFlNJRZMdYqIXQWKO56WT4kcccQQ+//xzfPzxxzCZlB84lzfaoNeokWMJPFCdEEIGFWqFGn/yPCE5yFJrpHCxeZfUJpVEp34rYMkHtAEq+3zVECqgo1r6qzGr/3bq6CoWBUGAKIooKSnBZ599hq+++goZGRmR7axmHaC3AumFEa+HEEIGitwKNS7BooJ9sgILMcrf9gfjjEW5raZWnvUcB11hzo22s3bo1DqUWEvQ7mlHvb0+osfr9HTGrF1oz3DT5o1Nd6v3d76P5zc/j6/3fq1ondFWLIqiCEEQkJOTg08++QQPvfUQNFYNSiwlcWmDSwhJLPpfTUiK81Ar1JSyu5HaoA427e3tOOecc/DGG28AAKZOnQq1OrIfr7sbbMi16JGm04TemBBCBgOBAwQKFuOK7dMKFQAyS4D2asBDxyVRsTUC9kbAnAdo9P636dnWrL1K+piW3X87taZHCKmM3W7HxRdfjGeffRYAMGXKFGg0URxLVP0MZJYCenPk+yCEkAEit0KNVdDTk5LWpkoqwwJhYzhrN1k4OekCp3hWLDo4R3hrYZ3QMToUW4oBANtatkX0eLzIx6xi0c4eDBa7vOEFpMF0ebvw5m9vAoDyisXur5FcRamEy+XCVVddhUcffRQAcPbZZ2NT6ybkpeUhNy1X8f4IIcmPgkVCUhzNWEwtuxuiP1AkyaOiogInnXQStmzZgtGjR0e9v92NNgyx6GHQ0o9nQsghhI1+jgsJwlex2OOEXubhgK0ecLYlZk2DRf1W6aN1WHjbt1dLLWmNfoJFFSNVkCoM2mtra3Hqqadi5cqVOOqooxTd1y/OCxz4RapWpGCREJICfBWLcZixqGSfSmbZBTIYKxbl6rd4ViyG29LUwTqgVWuRk5YDPaPHb82/RfyY9c7Iqh376lml2DNkjNTC7Qt77VNRxWKErVAbGxtx5plnYtmyZTj22GMBSNWLa+vWothaDLOOjicIGYzozCUhKc5NrVBTys56G9Sxn1dOEmDVqlWYOHEiAGDdunU444wzotqfIIiobLYj26SDQcPEYIWEkEHj8zuB2emDt7osDhUGA2p2OrDo/ESvIjDfjMUeJ/TSC6TZlm2ViVlTpBytgL0p0as4qH6r1ALVEm6wuE+qVtT6aXmuZrqrG8Nvo7dhwwaceOKJ6OjowJo1azB16tSw7xtQ/VaA9wDpRf3nQPbkapc+ujuif0xCCImCXLEY62BR6czEmFQsDsJg0dl9gZMm2M+UKIVb6edgHdAxOmjVWgwzD0NFR0XEVaINjoaI7teX3WuHgZGOC2xRHus3OZuw+PfFGJ158KJnJe9LbfexopJg8bfffsOJJ56IqqoqrF69GpdddhkAoMZWg0ZnIwrNhb7nRwgZXChYJCTFUSvU1FLeaEO2KUCrLJIyRFHEnDlzcMwxx6CsrAwjR46Mep8HOlxwswKyzTqoKX0mhPS0+xvp44FfEruOeIlwjktSqfpZqvRKRvLr27NVZ3d1B1Kt5dq3jwAfXpM8r3Vdd2WfLsB8RbFPSNi2V5qv6K8dnNwKVcHM0aeffhqlpaVYv349xo0bp2DhQdSUAYweyCgJvp0cLLo6YvO4hBASoXjNWOQErt/MRL57NrEK/X9fi0XFIidEPms33pqcTRGFt3JIFc9WqOFW+jk5J7RqLVQqFUosJdhv3w8bG1mYF02w2OBo8L2XurxdsOqs0t/Z6Dpcvb71dWjUGkzIneD7nJL3pUalgQoqRVWOc+fORWZmJjZs2IATTjjB9/l1devAqBgUW4qhUtH5DUIGIwoWCUlxLpYqFlNFp5NFk82DIZb4HVCT+BIEAbW1tVCpVPj444+xfPlyZGVlxWTf5d3zN3PNFDwTQgJQEDhEzdYA/PLuwDwWm+IVi7KB/Poo4atYHAQ/Xzw2oPMA4EmS1vJ1WwDL0MDBYt8TxO3VgDHD/zxGdXcr1L5hZB+iKKKmpgYA8M477+CHH35AXl6e8rUHUr1WmsFpzIjdPgkhJI40KqkSTsk8xHD4q/Sqd0jtL616a7/b5Mf3FzqGK5krFmd8PQMv//qy4vvJMxb1cTwOcXjDn7GoVWvBqBgMTx+OLm8Xam21ET1mi6slovuxPIs/ffInfFT+EQApFLXoLNLfw2zp6k9VZxU+3vMxJg6diHxzvu/zSioWVSoVtGptyPv0PBaZP38+fv75ZxQVFfXaZk3dGhRZipBljM35EkJI8qFgkZAU52apYjFV7O4OjnIsg+DE3iHI4XDg8ssvx6mnngq3243MzExotbGbE1HeaIdBq8YQChYJIcngvT8Dn90OtFTE/7EGQ8VivNVuBDwRnmxi/VQspjJ3JxCDqpCoOVoBWx1gHgpoArT46lsR2lEDGDJ6t6WVqTVSEBkkoPZ4PJgxYwaOP/54dHZ2wmq1wmg0Rv4c+hJFqWIxvQigeUiEkBTha4Ua42p2f0FlTZcUpmQb+s/KlcOYaFp+xmNOZKzYWBvK28t9lXbh8lUsqhNfsejiXNCoNVCr1Ci2FgMAtjVti+gx29xtEVWYOjkn3LwbB+wHAEjtWU1aE1RQ9ZqNqNTLv76MdF06xueOh1Fz8NhASfUhILVDDVblyLIsbr31VowbNw6NjY1IS0uD2dz7mIEXeGxo2IBCcyHMWjqeIGSwomCRkBTnpVaoKWN3ow2MSoVcC/WXTzUHDhzAaaedhuXLl+OVV16BwRD7r+Guhi7kWgww6uI3e4IQQsLm7q4I66yJ/2MNlorFeHr3IuDn5yO772ALFj225Aij67dIH4PNV+x5gtjVLs0uNGYAKj+/hqvkikX/wWJzczP++Mc/4sMPP8RLL72E9PT0iJceUEu5NDMxvRDQUIcNQgYTlmchhqiIHmj/3fVfvL397aj3o1ZL31Nj3QrVX8hXY5OOi/xV38lhTDTBYjJXLAJAp6dTcWWoPGPREOginBhwsKErFkVRhJNz+r522YZsGDVG/NbyW0SP2eXpiigIloM+uc2unbVDz+ihZ/RhPQ9/drTswLfV3+Kk/JMwzNT7uETp10un1sHNu/1+v+jo6MD555+PN998E3Pnzg3YMWFH6w44WAcKLYVxbYEr79ukNcXtMQghgVGwSEiKc3NJ2naL9LO7vgs5Fj2MWibRSyEK/PrrrzjxxBPR1NSENWvW4E9/+lNcHmd3gw05Zh0MWvrRTAg5xFCwGBrvBbrqI7sv65Kq4dSD5fhDlKoFE61+K6AxAun5gbfpWbFob5I+BmoJxnRXLKL/ibydO3di4sSJ2LNnD1auXIm//vWvka87mJoyKfTMHB6f/RNCEmbCexNw44obE72MXp5c/yRe2PwCOtwdUe1HBRXUKnXMg0V/7SCru6pDbi+3Zo1ErJ9DuJqcTbjss8twwHYg6HYdng7FYZqLc0EFqcVmvLg4F4QQLek9vAeCKEDb3TVApVKhwFyAvZ17I2qj2+ntjCxY7H6fyMGdg3VAq9ZKwSIXWbD4wuYXkJeWh6OGHAV9nwvJXJzLV9UbDi2jhZf39ns99+7di5NPPhkbN27E8uXLccMNNwTcx7r6dTAwBl9VaLzIsynzTUGOxQghcUNnLwlJcR4KFlPGzgYbcix66Bj61ptKHA4HDjvsMGzYsAHHHHNMXB6DF0TsbXEgy6SDQTNYTvwSQkiYkqH6LBWEOT+oH84FMDr/VXKpyt6Q6BVI8xXTC4DuuUh+9TzhaG+UPppy/W+rYgDRf8Wi2+1GXl4eNmzYgJNOOinyNYdSXSZVK6bRPCRCBqPKzspEL8EvGxt5+0eZRqUB27f9dJT8Vix2Be7kIIdT0VQscrzy1pqxsKNlB3a378amxk1Bt+vydCkO4VycCzpGF9XrEoqH94AXg3fzkqsBe7ZkLbWW4oD9QEQtSG1eW0SBZN+KRSfrhJbRQq/Rw826FbeaLasrw/qG9Tgp/yQMNQ3td7uH9yh67bVq/8Gi1+uF2WzG+vXrceaZZwbdx5oDa1BqLfUFf4SQwWkQ/XZJyKHJSzMWU4IoitjTaEO2WQetJvJh7mRgiKKIDz74ABzH4dRTT8Xq1auRnx+/q+Bq25zwcgKGmPVQq+n9QQg5xCic/XLI4lxSq0yl2EEYLNqaEr0CoO5XwJIPaNMCb9M3WNRbAUOAWUNqbb9WqB999BE8Hg+OPfZYrF27FiUlJTFafAA1a4GMEkBP85AIIamFUTMxbyPqbzbdfvv+kNunYivUOkcdgNDz+OysHS5W2QVhTs4JHaODShW/33PdnDvkvEO5JWuvYDG9FHbWjqrOKsWP6eScvn0qIYeRoiiCF3g4OScMjAFGjREu3gVODD9cFkQBL2x+ASXWEhyRfYTftqMuzqWoWlSn1sEreH1B7bJly2C32zFmzBisX78eo0aNCnp/J+vEtuZtKLAU0HxFQga5QfTbJSGHJi+fXHMSiH9NNg+63ByGmHVg4nhATaLn9Xpx/fXX469//Su++eYbAIjrL0EAUN4oXSE5xDJI5l8RQpJf0y6gNUkqFxSeoDpksa7uVpkR3I/RDq5gUa7+SxRXuzR/1JwXfHZlr1aoDUBaNuBnLhcAqVWtwAGiAI7jcOedd+Lyyy/Hxx9/DCD+xyLoqgc6agBrgdTilRBCevi88nOMe2dcRBVaA0Gj0kTUljKYvvvr8nYF3d7De6BWqaGO4udtwoJFe3jBoggRjU5lP4OdrBM6tU5RO06l3HzoSj8nJ4WAcitUACi2SK06tzVvi+hxlb4WQO/XWF6TjtHBwBjg4TyKKha/rf4WO9t24qShJyEvzf+8QzfnVhYsMjqwPAuO5/D//t//wyWXXILFixcDCO9YZHPjZnAihyJLEZhB04afEOLPIPrtkpBDk4ejisVUsLtBCo5yzRQcJbPW1lacc845WLJkCd59911ccMEFA/K4e5rsSNMxyDHHb7A5IYT0Mn8i8PIEgEvMLJ9ewq1YbK8GZqcDvy6J73qSFeeOrGLR6xh8waIjwRWLDb9JHy3DgGAn2XqeIGZdgDEzcBCp1gACj67OTlx44YV49dVXMX/+fFx11VWxW3cwteukj5klwZ8TIeSQ9N9d/wUAbGoI3iozGtO+nIZx74yDK4IW6Rq1BpzA+ebWxULfGYu1ttqg23t4T9RzBBMVLMqVmP7mSvbV6FIWpjlYB7SMNqrANRQlrVD1PS7wSdenQwWVr2IzXPIczQan8tbsPV9jX3tWRgeDxgA37w67YpEVWLz0y0sYnTkao7JGBQzxFFcsMjo4XU5cc9U1eOqpp/Cvf/0LN910U9j3X1e/Dhn6DAwzDQv7PoSQ1BS/BteEkAHB8gJEUYz/Vcxh6HB6YdJroKUZgv3sbrBBp1Ejx2pAiy05r/I81LW2tuKkk05CR0cHfvjhB5xyyikD9ti/13ch16KHUUc/lgkhA8zVBlj6z2MZUOEGi60V0sfK74Fjp8VvPcmK80RYseiU2mzGO1is/AGo+B4455/xD6acrfHdfyh1W6TKw/SC4Nv1rZ4xZASpWNTA7vbilD9ORe2BOnz99dc4++yzY7Ha8FSXSfMfE/39gBCS1OIZfG1rkarGytvLcUyOstn2jJoBJ3AQRCFmlXF9KxZru4IHi3JlmAqR/wxMdMViOBWp9fZ6Rft2cS7o1Lr4BoucJ2QrVDnEM2gMvs+pVWoYNIaQ1ah9WXQWtHva0eBQHiz2fI3l2Y46tQ5GjRGNjsaQz0P2yZ5PsN+2H9PGTMMQ45CA27l5t6L2vAzPYM2ja8AeYLF06VJcfPHFYd8XkOYrllhLYAk2g5oQMijQ2X9CUhzLiRCSpBvqRa+uwcs/7En0MpLSroYu5Fn0MIUZHLU5vDG92pKElpWVhauvvhrr168f0FCRF0SsrWhBYWYajFpqFUIIOQTRjMXwcG4gxNX4frHOgalY3LsKKHsFqFkX5rrcwH+vBloiOHZ0dwB8BCEr5wHeniIFg9Go+1UKFUPNIuT7nCA2pANMgGNBtQZmLTDtij+jrKxsYENFAKhdD2QUATqah0QISaxIfg/WqDXgRA4ChNAbh6lvyFZjqwm6vdIAxx8ukp9tMSAHZOG0k1Xa/tPBOqBVx7liUQijYpHrDhYZQ6/Pp2nSYPfaFb3vjBoj1Cp11K1QfVWUGj2MGqNUeRlGdwon68T8LfMxbsg4jMwcGfS1dbHKKhbTDGnIPTkXX3z3heJQscXVgsrOShSYC5AWbAY1IWRQoGCRkBSmVkkVi3ySJItNXR7UtCofXn0o2NVgQ45FD4M29Lddlhcw4R8rcNv7vwzAysibb76Jjz/+GCqVCo8//jgOO+ywAX38rfs70O5kMXxIGgxhBoudbVKlhtdDJ+MJIYMAS5X8YYm0FepABYuyrf8Jb7v6rcCuz4Edy5Q/hrsLiGTOl6MFqCmTqiujUfcrYMkHQp0063uCNi3T72b/+WIl3ll7ABA4PHjP7Rg7dmx061OK8wBNO8J7Tt1sTqlVodNN/38JIYmnVWt9FYux0jdYrOqqQpYhK+D2bq47WIyiaJ8VB75i0ck60eHpABBexWKLq0XR/uVWnPGuWAw5Y5GVzlX1rFgEpJDQwTrCrhQEpFmDZq0ZLU5lrwXQuxWqnbX71uALFsO4iOz9Xe+jw9OB44cejwxDRsjHCyfwXvPtGix7dxl0jA755+XjqGOOCnmfvtbVSxeXlVhL4vr1lnm6j0FcDprXTkgiULBISApj1CqwggghSSrbPByP5FhJcuEFERVNdmSZdDBoQgdHHC+9inubHfFe2iGN53nce++9+Nvf/oa1a9cmbB3f72yESc9g+BBT2Pcp/30rAKCjLcGt4AghJBYiCYgORZwnwhmLLqkVqjrGv/qt/D/gi3uAvsehe1ZIcx1DaeyeU+hR1n7Md58wqir6kasEhChOPLu7gPZ9gDkP6HNysp++azRm9/qnKIqY/fJ7uOq+f+Gn8jbp6xvDk+Jha9wuVVemFwABZjT1tadKapvX3NYZz5URQkhYGBUT92CxpqsGmXr/F4gA0bdCVUGlKNyKlZ7tPMMJFjvcHYpatjpZpzRjMY6noL2CN+Rr52Sd0Kq1/UK2NG0anJxTcRtai86CDk8H2L7dCULwcAdfY7u3d7Do5b0h19Hp6cRbv72F4/KOw2Hph4UM8HyBdwCiKOKDNz7Ao7MexZa1W3whfTgBZ19ldWXIN+Ujx5ij+L6RqKmUqog72+lYhJBEoGCRkBTGqFXgeKHf+ZxEYHkBghhZ25LBrrbNCQ8nIMesh1qd+FmYBLDb7bjkkkswb948vPTSS5g7d27C1rLi90aMzLUgw6gL+z6NB4LP9yCEkJQSSUB0KIp0xiLnkioWY/2rX/0WoHqN1Ja0J1sdsHd1GPeXZmmBjeAqc48d4CIJFuWTeVGceG7cLn20DAs9S7LnyUYVA5gPzkByuT246t5/Yc6r7+PJu2bgzb+dJLW6TUSweOAXQK0B0ovDvktdE13cRAhJHnIYEsvzET0DIACotdUiXZ8ecPtoW6HK4ehAO2A/4Pt7OCFZp7czrJapMhfngkatiWsFmyAKcHHBjyccrAN6Rt9vHWmaNLhYFzhR2Wtv1VnR6ekMK4ztqW/FogoqGBgDDBoDOJHr1SrVnwW/LQArsJiQOwFWnTXk43l4T8D3JetlMfeBuXj9yddx5S1X4rH5j8GgMYAVWMUhvSiKKKsrQ7GlGOYBaqveuF95K1pCSOxQsEhICtOo1WB5EXwShHkuVrqaKfErST67G6WB3LlWfYJXcujpdLI46anvsW1/R6/P/+1vf8PKlSvxxRdf4Pbbb0/M4gAc6HChvNGO0iEmmA3h/xLaWEfBIiFkEOG90VWQDbTZ6cAnNw3840YaLLIuKTSKxwk91tV71qExU6ri2/ZB6Ps2dAeLkczY9Nqjq1iM5ti5botUAZpeEHrbnido07IAjdH3z3ueeROf/rAO/5v3MB6+6QqoGG13xWICjqb3bwKshdIMyDDVN7fFcUGEEKKMRq2Ja8Wim3Ojzd2GdF2QYJFzQ6OKPFhUq9RRB4uhwjV/6h31UKvU0DN6eIXQP1u7vF2KwrSBaIUKADavLejtDtYBHaPrtw6T1iRVLCqsPEzXpSt+LYD+Mxb1jB4atcY3+1Fuj+pPg6MBS3YuwYlDT0SxtRiqUBc4oTvYDfC+XDh3IZZ/vBwPzH0Asx6YBbVaDR2jAyuwiisW93XtQ7OrGQXmgn5zLOOl8QAFi4QkEgWLhKQwqRWqkBStUN1ysJj4pSSdvc0OGLUMsk3hV6SR2KjrdKGhy43NVe0ApPanAPDUU09h7dq1OO+88xK5PPywsxGMSoUROSaow/ilQNZwYH8cV0UIIQOM9yamSisa1Qlooc17pIo2pTh3/IJFzt077FRrgKFHA/tWAs4gwZPAA027Du4jksf1Bj7xFvh+MWi7W/erFCrqLaG37Rl+GjMBjd53LPL4rVdh9eL/w2VTTpVuV2sS1wp1/0bpOenCm68IAHWNFCwSQpKHRq0BJ3IQoqlI76NnYNTolAKMYPPs5IrFSFuhqlVqXxvMivaKiPahNBwDgDp7Haw6K3RqXchgUafWwe61R1SxGE4IFo1ggZx8u47RgVH1bvlt0prg5t2KQ90MfQbsrLLXAugdLNq8Nug1UhWlsfviI5sncEA6f8t8GBgDxueOh0UXxnEIpPcx06fNuXwscuXNV+KFD17AlMun+G7ztUJV2H5/Xd06aFSasAPPWKCKRUISi4JFQlKYRq0Cx4sQhMSneW6vdACf+JUkn8YuN6wGDfRhzFckseXwSL8cCBDx4Ycf4oQTTkB7eztKS0tx1FHKh5HH2oqdTRieY0KOOfxqVofdhs425UPiCSEkafFs6gWLiSAKABtBCMd2t0KNV8Vi37Cz5GTA1Q6ULw98v7a9UotWeR+RsEVwMimSELOvul8BS354IVzPE7zGDHy1ZjvGX3wbGlvaMTQnC8ePG3XwdrWm+7Uc4KNpVwfQVglYhvaqqAyGZTk0tLbHd12EEKKARqWJeSvUngGQPIcwy5AVdPtoWqGqVWrwIo8fa37EJZ9dgk/2fKJ4H5EEq/tt+5GuS4dGrQHLB2+BadaZ4ebd6PKGPx85UMWiHMBGMsuvJ3m/NjZ4xaKdtUOn9l+x6Obcyluh6q3w8B50epTN93NyTt/fbV4b9IwejJqBoXtuc6DnUdlRiU8rPsXE/IkoNBeG/Xh9W6FuKduC68++Hg37G2DJsOCo43ufF9Ez0rkJpdWva+vWoshShExD4DmksSSKIhoONITekBASNxQsEpLCNIw0YzEeuaKb5bGmIvzwws11HwwqOJDfsK8Nj3+2PSmC0XhqsrlhMmigYehb7kBzeHmIoogv3nkFV1xxBcaOHQujMbyTZvHm9HJYV9mK4UPSYDVqw75fdWV5HFdFCCEKxKp9Kc9GVol3KApyFXtAnEua7xePq8f7ViwCQPbhgCED+O3DwMeFDb9JHzV65a1wtSbpo6NJ8XKjrlj0OqQQzpQrtXwNpbuKQRRFvLSyCX+6/WkcVpQPk9HPfeVgcaBD9rpfpY/WwrDfIxU1deB5uhiAEJI8NIwGvMjHtBVqz1l4jc5GGDXGoDPtgs2yC4dapQYv8Nhvk7rTVHZUKt5HJMHqAccBWPXWg5VqQY7JzFppdp4ctIazHjfvhlbd//ddOcByss5+tykh78ceopOBk3X6bYWapk0DK7CK1yG/F8J9LWR9Zyzq1VLFotw+NFBL1xd/eREZhgwcPeRopGnD7zDg4T2+Ks0DPxzAfdPuw5ChQ2C2+J+DqGWkr5VLwYVfnMBhY8NGFFmKfO+ReGttbIXbEYMLxgghEaOz3ISkMI1aDU4Q49IK9fudTbh6wXpUtTjC2t7lVT5jcWNVGz7cuB/1XYP7YKDZ5oFJx0DLDEw7CHJQh82B1i+fx7IFL2DOnDl47733YDAMTL//UH7e0wIvL+CwIWZoFYTO1RW747gqQggJk6MFeCofqN0Q/b6oYjF8EQWLHoDRxSdY5L0A16cFmEoNFE8CatYBtnr/92vcLoWP+nRpfUq+/vruE1aJqFhs3CGtNX1YeBWgvBcsL+KWrzy4871tuPfaS7D05UdgNvm5yEnNSAHrQP9fOLAZ0Bql5xSmHXtq4rggQghRTqvSxnzGYs8AqN5RjyxDFnRM4PEmHt4DjSq6Vqi8yEOMonI9kvvW2+th1pmhZbQhqz7NOulncKMjvJ/BXsELQRR8YVVPek13IBiihWkocrAYzoxFf5WTJo10wVKnW1nloVXfHSw6FQaLPY5FurxdUsWiivG1Qu3y9K8G3dq8FT/W/oiT8k/CMEv4P68BwMt7wYgMGj5owO+v/Y6pV0zFM+88A3O6/wBQp5be4z0rK0PZ3rIdTs6JAktB0P8jsVRVXjUgj0MICYyCRUJSmNQKNT4zFu0eFiKALld4PfrlGYtKeTkeLDe4Tya22r1I02mgUdO33IH266aNcJavxd8en4fHHnvMb6//H3c3hR2gx9J3OxuRZ9GjKCv8qw0BChYJIUnC1SGFNAc2R78vgZVmy5HQlM4VFEWpfaqfE3ox4+9E3uGTAdYJ7Fjm/z51WwDrsIMVi0oqVrtPasIeSbAYZcVi3RapstAaZgsynsXWZjXe/U3Egkdm4l9/vx4ME6A1vq9icYA7eezfCKQXA2HOagKAHRXVcVwQIYQop1F3t0KNYTtpDycFhYAUpGXoM4IHi1z3LLsIr+NhVIziOX99KX3+Xt6LVncrrFqpYpEVgrdCNXV3DQi3Sk+uepPDqp7kCj0HG93v4r5gMUQrVAfr8Dtj0aiVAr1Or7JgUZ5xqLhisUewaPfafVWUcitUf0Hr55WfI1OfiaOGHOV7vuEQIcLDe2BvsKPthzaMnjkadz91NzTawJW18nu8Z7AeSll9GYwaI4otxWHfJ1oULBKSeHSWm5AUpmFUUsViHHI5N6tsp64Ig0Ve7NFGdZBqdXhh1DHQUMXigKmpqYEoiig56ngU3PgWTjzrT363q2iy4YZ3NuGZr3cOaEteQRDxw64mjMg1w2pQ1i5nX8Uu6I3KwkhCCImbaIMagCoWlVAaLMptZqNozRaS28+JvIxiaQ7hjk/8h8aN2w+2E+W8yoJlNSPdz9GsfK18lO/X+l8ByzDAELgVnmx/Qyt4rxvHFxmw77Nncf01fwl+BzUj/T8YyJBdFKWLA6zDAJ0p7Ltt31MNo35gKhIIISQcGrXUCpWP4ffQnq1Nu7xdsOqsflt6+ts+EmqVGoIoRFexqPDiFDkUs+gsvlaowYJFPaOHTq1DozO8i3vkqjd/r5tWrYUKqqiDRd9+vMH34+Sc0rZ9LjaWKxY7PB2KHlfP6KFn9GG/FrKegZ2DdUDLaMGoGN/z8BcscgIHo8aIdH26osdqbmiGwAnIK8nDqGdHofj8Yr8XW/fkCxYVdHlYc2ANSq2lQVsFx9q+8n0wpCVHNypCDlUULBKSwjRqFVg+Pq1QlVYgKg0ie3J5Bm+wyPICOl0sTDoG6ni0ICP9LF++HOPGjcNrr70Gp5cHY8rwu50oinj80x3gBRFtThbcAAaL2+s60WL3ojTbhDSdsl8+qyt2Y2hBUZxWRgghCsUiWBQoWAybvxAvGK57Pk4821L5adkFACg9VZrf17a39+cdrVK1oTlPCgiVViwCUtWiq015dV+079cDvwDWfCDEbKOfqjmM/8t9+NeSbwG1BrnZGaH3LZ+M5r3Bt4ulrjopoLXkS9WjYdpRUY1hudlxXBghhCijVWvBC9G1Ee2rb1CYrk8PGSz2rYZTQq1Sh2xFGorS+9Y56gBIz02j1oAVg1csAlII2epqDeuxXN3HIf4CV5VKBR2jU9RyMxAdo4ODCxEsslKw2PdrJM8rbPe0K35ci86CNneboha8nh7HInbWDp1aqlhUqVQwaAwhZ0WGy7XPhUf/8iialjZBo9ZAYw3vvIP8Hg838HWwDmxv2Y4Cc4GvonUgVJVXIa8gb8AejxDSHwWLhKQwDaMGLwjg4xCIKA0KPVFUHdq90bX7SGZtDunkkElheEQiM3/+fJx//vn4wx/+gGuuuQZ2d+BWvt9sb8CaylYYNGq4WT4u/48C+W5nE9J0DIbnKDvwtnd1orWpAXnDKFgkhCQJqlgcWCHmB/XDysHiALdCBYDhp0mh8baPen++8Tfpo2UooNEBgsKKRUCas+julN47SkQzY5F1Ay17pEBU62dGYrd3v96AP77rxNEjS3Dj+ccDKia8+ZaJCBblVsYZ4R9XeL0s9lTXIT83K06LIoQQ5bSMFpwY4xmLnLtXIJahzwi6vRxERjNjMeqKRYX3rbNLwWKWIUuq+hR4CAj+Glr1VnR4OuAVQv+8koNFfzMWASkQdLKxCRZD7cfFuaBRa/rNWEzTSMFip0dZK1QASNelo8PTAVYI/3ikb8Wi3AoVkKognZwzqnAZANZ/ux57n96LzKGZGHLuEKlFb5jkVqvhBr6bGjaBF3kUW4sVPU40RFFE9Z5qChYJSTAKFglJYRq11Ao1HqNY3KyysM/ljTxYdEZx32TXbJNOuKbpB+YAK5nZ3CwueXUN9jbH5gq8njiOwx133IFbb70Vd9xxBz799FNYLBbY3P7fxy4vjzlf/I4jh1lRlJUGDyeAi0dP4QC++70RI3PNyExTVkFS1T1fMa8gzNlOhBASb9G2lgQSW7HobAP2rFB+P6UVdrESos1XP3KwONCtUAHAlANkHQ7s+qx3ANiwXaqgTB8mfeS8yr/+eivg7lL+/osmWGzaIX3drfmAqv+v0YIg4JEX3sGMJ5dg+jFafPP6I8hK03S/9kkcLBqzpLA0TOVVB8BxPIZRsEgISSK+UCyGxxNe3tsrWMwyBP++13d7pdQqNTgxujmRSp9/nb0OVp0VRo3RN2MxVKiVoc9Ap7cTnjB+Bsthn17tvypez+jh5t1B1x3Oc9Izerg4V8BWuKIowsk5/c4n1DJaaNSayIJFfTq6PF2K2ob2fN3kKsqewaKbc4OP8DhTFEUseWUJ5t05D9ZjrbjltVugSdf4nXEZiNwKVQ6FQymrL0OmPhP5afkRrTkSzfXNcNgcyCukYJGQRKJgkZAUplGrwfEi+Dgkiy6FFYtKW6f2eqxBXLHYYpcOGi2GOFYKpIgDHS78WtuBNRURzEQKQaVSoa6uDq+99hqef/55MIwU5No8/t9b81dWoNXuwR9GDoHVqIWH5eMyq9Sfhk43fq/vQml2Gix65W1Q1QyDnKHD4rQ6QghRKBYhCM8N7Fy5nnZ8AvznSsCmbD4OuAEMf3pS2h7LFywmoBUqIFUtNu2UwkRZwzZpTqHWJLVCjSRYNlgBj0351yGaCtu6LVKgaPVf3adSqbC/oQXP3XoR3vyTATqtVgo+1YzfILIf+Sr/gQwWazcA6YWK5ivuqKgGAAoWCSExE0mg05dGJc1YVFrp9WPNj3jk50f8BlIeoXdr02AVi7zAgxM5aFTRBYu8wCOG3VxD2m/fj3R9OnSMzjdjMVSolaHPgM1rgzeMn1dyOKUP0G5bz+jh4TxBZ2MKogBOCH7OyLefAGv38B4IohCwctLIGNHlDXI8E0CmIRM2r01RxaLcClUQBbh5d6/XxqgxSgFpFBewNTc048+3/hmFNxUC3Yd/SgJvuRVquBWLaw+sRYm1BBa9RfFaI1VVXgUAVLFISIJRsEhIEvp2RwNmvL0h5HYaRgUR0hy/WFNagag0iOxpMFcsttilg+10ChZ97yk+hl/uffv24eeffwbDMPjf//6Hm266qdftDj/BYlWLA6+vqsQpI4ZgZK4FRi0zoBWLP+xqgloFjMg1Q61W1ianqnI3CoqHQ6OJ4wliQsihxa38JEovMZmxyCWuYlEUpGDL2absfgpOIMVUpBWLmjhWLHqChJ0lp0ih2tb/Hvxc/VapDao2TapY5NkIWqGmSy1YlYZwbHhX3/tVv1UKRA3WXp+ua2zFD+u2QKVSYdEz9+DeK8+ESm59ynulVqjhGOiKRYEH6rdI8xUVzETaUVGDoTmZMBkN8VsbIeSQEkmg05dGLQWLSgOZ7S3bsap2FZpd/S9+9XAHZywyKiZgOAYcrEKLpmKRUTFSODqArVAP2A7AqrNCq9ZK7WSF0O1kM/WZsHvtYVXpyeGUgfH/M0PP6OHhPeDE4MFhqMeSKx8DBZDyvMBAlXtGrREO1hE04PQnU58JO2uHS8HxhdwKVf7Ys5rToDEEfR6BdLZ1YsPKDVCpVLjzH3fistsug0ql8oW/kQSL4Xx9m5xN2Ne1DwXmAhg1gdvEx1pVeRUMRgOycugiJ0ISiYJFQpLQTe9txqryZuxqCH6AzXSHEp4oqgUDcSucmRhNxaI9QFXZYNBi98CoZWDUpX4r1IZON5pskbcQc8X4fbp27VpMnDgRd999N0RRPHgSrwe7p/9jzvl8B6wGLU4cnol0oxYGrRpeLj6zSv1Z8XsDSrNNyLUoPyFXXbEbJYePjsOqCCGHrGjn2igJQfasACpX9v98IluhypQGdpwX/XrRD0Qg5FX49ZLbWPlp/RUzweY+6s1A3hHAnm+kUI/zAq0VUptUrQHQ6KXXTemV+YZ06WumtLVpNK1Q634BrMMAXZrvU7/+XokT/3IXbpkzHxzH9z8W4bwKKha7T/pxAxRat5RL//+twwAm/BOOO/ZU48gRJXFcGCGEKCcHJ+HM/euLFVi/gaRX8PoqFrMMWX7baMrkkCjaVqjRzlhU2gq13lEPi9YCLaOFVqUFL4ZuJ5thyAAncmhzh74oy1exGOC1MzAGePjgFYtA77mEgfYTrIWo3JI1ULCYpkmDk3WGDDj7Stengxd5tHpaw76PHELLwV3PKkoDY4CH8ygKFqv3VOOWC2/B3Afnwuv29joWkYNFub1pOFQqFbRqbVjB4rr6dQCAEmtJv9mV8bSvfB+KRxT7PQdECBk4FCwSkoTkw8hA8+Fkmu5g0c3F/mSc0qCQZiz612zzwKxnfF+rVPbIst9w13+3RFwh64miqrWvJUuWYPLkyRgzZgy+/vrrgAeUfSsWv9/ZiB93N+PMMTkoyZSuzjdoGXh5IS4thftyeXmsrWzFYTkmWI3Kq1irK3ajdCQFi4SQJMIrCEHWvgSsfApgu09U7PpC+ihwiZtZKAuz3ZMP72cu4EA8B87VP9AMxlexGMdgMVjFIgAMPx1orwJq1gEtu6WvtyVPCtsYfYQVixZpP652ZfdjIwwWOS/QvAsw5wIaKVhc9t1anDrtPuTnZOGHRU9Do/FzERkvB4vhzFjsvn8EJ8UjcmAzABWQUazobjsqanDUSAoWCSHJxRcsRtCqPFCVnoc/WLGYrk8POqdObm8pV3tFQq1SS4FSFL+WKgklOYFDs6sZZp1ZUcViuj4dANDoDN1G3sk6oVPrwKj9X2it10gVi6EqTW3BLmJCj8rHAIGcXDkZqBVqmjYNTs6puFJQfi0a7A1h30cO+3wVi0zvVqhuPvwZi5tWb8Ktl9wKnUGHF//3InSG3u9RX7CosCW+Vq0Na4ZmWV0ZhpmGISctR9H+o1VVXoXho4cP6GMSQvqjYJGQFKZRS/+Fown1AlEcLEZRjeYcxDMWm2xumA1aaJjU/3br9PCobXPCHiLwDiRWFYsvvvgirr76alx55ZVYsWIFhgwZEnBbR4/3lpvlMfuzHRg91IJxBenQa6VfboxaBl5OAMfHP1gs29sCDyfgsBwTtArfE10dbWhraULpCAoWCSFJREmVnlzlJ7cRtdV37yOBrVBlSis3BT9h2ABcoALWLQVqYW8/EBWLIao9C0+QWp5u+wBo+E36nLVQ+qjRd1esRhAsAoC9Sdn9Iq1YbN4pBaCWfECtxsKPv8Wltz+JqaedgFWL/w/D8rL938/XCjWcYFGuWBygYHH/Jun5pIXfRszt8WJPdR1VLBJCko4vWIygewArsH4r5nruy6qzBgylgIMhERNu+2s/5IpFAVEcEyk4FGlyNkEQBV84Js9YDDWnMl0Xfpjm4lzQMtqA1Wy+isUQxwH7bfuD3m7QGODlvQH3I7dCDVQ5maZJg4tzgVVywRx6hKyO8GZ196yOlSsC+waLwQLSnlZ9uQoPzHgAR044Eq988gqGFg3tt41cwaukYhGQ3guhqkRFUURZXRmKrcUwa82K9h8NQRBQVV6F0lGlA/aYhBD/Uv9MNyGHMA3T3QpVYdvScLgVVpdFEw66vAk+mRhHzTYPTLrBUbEIAK0Or+I2ubJYBeB//OMf8eyzz2LhwoXQ64OfKO1ZDfvm6r2o73Tj9BFDMNR6sP+/XqPuDhbj/z787vdG5Jj1KMpIC71xH1UVuwEAJRQsEpLcXO3A7HSgbV+iVzIweDb8QC3QXEKRl8LFRFLaYhTwU7E4AMEi51ZW3eerWIzjbF7WBQSbU6zRA8MmABXfS1VyplzAmHFwXZEEy/ruOYf28E7k+XARzlis2wJA5QtETzthHJ6442p88MKDSAs2a1BJxaJ8MlphtUTE9m8E0gsVzVfcvW8/BEHAkSOUVTkSQki8aVRSsBgqDPFHhOi3haqX9/oCKYvOEnQfsZixqFappRmLURxPKKlYrLPXAZBCU0Cq5gtnTqW1+2dwgzN0sOhgHdCpdQGDRaPGKAWCIY5tamw1QW83aAxBAzn562jQ+P+ZbdKa4OJcyluhdoes9c76sLb39JhNLreJ7bkmOVgMZ9bjEccdgWm3TsNTbz8Fk8X/z3I5HA8WivujY3Qhvy6VHZVodbeiwFwQ8HWNh6YDTXA73RQsEpIEKFgkJIUdnLGY+FaoSoPIngb3jEUv0nQaXwicKIIgYkddZ9T7cXp5tNkju5I+morFhoYG3HjjjXA6nTjqqKNw3333hdVP39n93mqxefDKjxWYdHg2Rg21QN0j6DVoGYiIf0teURTx3c4mjMg1IT0tsjaojEaDguLD4rA6QkjMVHwvffzp+cSuY6AomY8ocAh4KX04lWTyNlG0GQu87wgCp34n3gYiWPQoq+5jnQBUUsVgvHBhVFEedgbgaAJ2fAJYhgLa7gtsGJ30fJRW6fkqFhUGi2zotl5+1W9BG5ODv72wDJ02Bw4vzsf/u/lKqNUhfp1WEizKcw65CNeoBOuSWrv2/FqEYceeagDAERQsEkKSjBzosYEuYgrB0+d7LydwUsjWHayEanHqb16eUnKwGA0lMxbrHFKwmGnIBCCFs+FULGrVWqRp0tDkDN01wMk5g1Ys6hk9vELgSkM50K211QZ9HANjgEcIXPno4By+7fwxa81wc27FrVAZNQOT1oQWV0tY2/cMvuW/p2kO/hw2aqWgNVDA6bQ5MffBueho7UDO0Bxcd991YPy1Yu/mFbxQQw2tStn7UqvWwst7g76f1tWvg0atQbF1YI8J9pVLF29SsEhI4lGwSEgKk6vgPPGYsahwn9GERp4YtchMRq12D4w6NbShTjzF2aryZlzw0s/4PQbhYm1bBFUdUB5Wy7Zt24YTTzwRn3/+OWpqgl+p2JccFi5eVwOjjsHE4VnISOt9clWvkb42jji35N1R14UmmwelQ0wwapW3yKmq2I3CksOg1cXx5DAhhCilpNos2MkaNoxgT56npwu/wipsngh+tvVrhToAHRh4ha1QOTfAaA/O74sHzhV6TUPHAToz4GyVKha13Z0D5MBTaStanQmASnkr1DDmBflT/usanPTKASz98RfsrQ1/jpLUClWDsH7tlisWI2jjp1jDb9LXzFoAKDhG3VFRg4K8bGRYB67lGSGEhEMOFsOZC+dP30pHudIr0GzAvuTHVTrLridGxUgVi1FcqKS0YtGkNcHUXbmuUWvCqlgEpMCvzd3Wq6JtV9surK9f32s7ecZiwFao3S1MAwV6cqArV1cGotfopf0E6IDh7D7OCFRZl6ZNg5t3R9RK16qzos3VFlaVobvHhXRuzg0VVL1aoRoYA3iRh8vPcbGr2YUHr3gQP37+I2r3Bg9aZV7eGzTYDcRXsRjkvbCmbg2KLcXI1Gcq2ne0qsqrYDQZkVeQN6CPSwjpj4JFQlKYPGMx0sAmGKVhXzTBopcXomr3kax4QUSni0WaTtOrQi4R9ne4IAIob7RHva/a9siCxUhaoX755Zc45ZRTkJ2djQ0bNmDMmDFh39fD8eAE6X1l93CYPCoXpdn9T0YbukM+uzu+AfcPu5pg1DI4fIg5rGrLvqordlMbVEJI8lFSschzgYv6wqlYjGewyIaYE+hPQlqhehS2QnVK4Z3CE0rK1hRG2KlmgKKJ0t8teVLYCRwMFpW2olWpAb0ZcIZXIdBrrQr9+N13OOnpTWA0Wqz/71wce8Th4d+ZZ6W1hvNzX26fNxDB4v5NUuVvepGiu+2oqKb5ioSQpOSrWFQ4I0/Wt2JRDgqLLNL3ySxD8Hm0vorFKLoqyDMWo2qFquC++237kaHL8M3fk9ceTjibrk9Hl6erVwvZyz+/HDd8ewO6vF2+z/kqFgOcfjZoDGAFNmSlabOzOWjoJ4dzds7/+Q4n64RWrQ3YqtakNUEQBdhYW9B1+GPVWdHp7Qzrdeu5jYtzwaAx9FqTHHzavL3XsX/7fqx/aD1cThdeXvoyxp0wLqy1eXkvtGqt4vMPOkYHVmADViyyAotNDZtQZCka0PmKgBQslowsieicCiEktihYJCSFMd3tNeMRLCqtWIxmDR5WAC8MvmCxzeGFIAImfRyrBMLUYpMOYBu6Ipwt1EOkFYtKw+ddu3bhwgsvxJlnnomffvoJhYWFiu7v9PR+vGOK0n0hYk8DVbG44vcGjMg1I9MU2VWs1ZW7UUrBIiEk2QhKKhaDnDRSEiwqmAkXNqUVc4CfYHEAKhYVB4suKcSLZ7DIesKrohx5DmDMBNJ7tMzSdF+lH8nrr7cAzvbg8x37UthmtLa2FlPOn4rj8tUomzsNh5cqOxYBz3ZXiyZhsJheCBisiu62o6KG5isSEoLda8c1X10zKC+cTWa+ikUhsorFvqGQ/O9iSzEen/Q4jhpyVND7yxWPuihaj6tV6rCq3oJRUrF4wH4AFr3FFyjKbVzDCcgy9Bno9Hb6Dft6tgV1sA5o1cFboQKAwxv8Aq82d5tvJqE/cotTu9d/sOhgHdAz+oDrkNuRdrg7gq7Dn0xDphSyhvHzu1crVM4NPaMHozp4jsKokTo69Aw4W1pasPiuxUgbmobnPn4Ow0cPD3ttEQeL6uAVi9uat8HNu1FoLoyq/W8kqsqrqA0qIUmCgkVCUpjcCjUZKhajChZ5Afwg/MWrxS4dkJt1kQ9wj5Vmm3QA29gV/dye+k7lV/sD4QeLPC9tN2bMGHzxxRdYunQpzGblV8H1nN15XEkm8tONfrc7WLEY2dWt4WiyufHbgS6UZqfBrFf+fmhvbUZHWytKDqdgkRCSZJRWLAY64aWkFWo82osrrZgD/DzvOB/LMLruYFHBhTBe1wBVLIbxMz6zBJj6LJAz8uDnIm2FCgB6K+DpUtbeNMxgURCkipGioiJ89vzd+OqqNGQUjFC+RjlYTLaKxQPdwaKC6l+X24PKmnocOZIqFgkJ5u3tb2NL8xa8s+OdRC8lrmxeG87+6Oyog7BY0ai6g0WFF5D8dOAnAL1bVAIHwzUto8UQ4xDfHMJAem4fKV/FYjStUBWcV6l31MOqtfratyp5DTP1mbB5bSFDSBfnCi9Y5AIHi4yKQYeno9/XyN9++lb6yRysAzomcEvWtO55w50e5aNjMvQZsLGhXwugTytUXgoWe85r7hmQiqIIQRAwZMgQXPH0FTjuseOQnp2uaG1ewQuNWhNZK1Qh8IzFdfXrkKZJQ6FF4QVXURIEAdV7qhWFq4SQ+KFgkZAkxvLBT9T5gsU4zFhUOrfRzUa+Bi8XecXiLUs2Y3V5c8SPHU9ysGiKIEiKtcbuikV5TdFotnvhjeA917eC0J+Ojg5MmTIF8+fPBwCcd955YJjIKj57ViCqATAB2tHKFYs2T/wqFlfuaoYKwIg8U8B1BFNdsRsAqBUqIST5KJqxGKxiMYyfT66O8B4nEkGugg+o34zFAQgWea+yYJF1xL9iMZxWqDKdGeg+eQfgYLAYyetvSO8OFhUEcWFUxtrtdlxyySV45plnAADnDhegTR8qVVsqxXuVt0Ll4hwsOtuAjmrAPBQIMGvKn52VtRBFkVqhEhKCXOETaGbcYLFk5xI0OBrwxrY3Er0UAAcrFpXOyNvZthMA0OzufU5BDonksC0UeV5euNv745uxGE0r1DBDSUEU0ORsgkln8r12SuZUZhgy4GAdcHLBLwwKFSz6gjQ28MgWq84KJ+dEu6c94Da+VqgB9mNn7dAxul7VgT35KhY9HQEfI5BMQ6b0WoRxkVTP0FauWOz52sitUFttrZg2bRoefvhhAMBhJxwGRqf8vIhcsRioFW0gcivUQBWLaw6sQWl6Kax6ZZ0PolVfUw+P20MVi4QkCQoWCUlCcmAYKojRMNJ/YaXVheFQGhxFU7EYTbD41W8NuHbRxogfO57kEC/dOLCtIfxp7g4W2x1eCFG2nW13eiOaqRnqPhUVFZg0aRI2b96MI444ItLl+TjCDAr1csViHIPFFb83oiQ7DXkW/1WToVRV7IZWq0NBMV2ZRwhJMopaoQb5OcCG0wq1LbzHiUQ4FZN99T3ZEu9WqBq9FFQFOMnjF+uSZunFM1hUGnb2pOkOFj2RBos2ZUFciJOl+/fvxx/+8Af88MMPOProo6VP2hul6siegWi4BC+gYhDWr93q7hOGIeZMRe3AL9LH9MLwAs9uOyqqAQBHUCtUQlLCG1vfCDm3LhpygJUsLV+jbYXaN5CUAyB1mF0SPLwHWrUWjDryMSixqFgMVGHWV4urBazAIl2X7muTqXTGoggRzc7gF3m7OFfQijl9d0v0YKFchj4DAFDTVRNwG3k/gSoW7awdOnXoisVIgsV0nVRF2OhsDLmtiz94vCNC7Bd2GjVGcJ0cnpjxBD755BMcd9xxitfTk4f3QKPWRDZjkfc/Y9HmtWFH6w4Umgth0sRhPEEQVeVVAIDho+i8CCHJgIJFQpKQjgnvv6Zc+aS0ujAUXhDBKQyfolmDl+MVjcfpK1l+memrxeaFXqNGWhJULMohZ6eLgzdEJWwo7Q5vRGG2M8gMw9WrV2PixIngeR7r16/HGWecEcUKJfYwKiQBwCDPWIxTsOhmefxc0YLDc8ywGiILmasrd6Nw+OHQaBMfUhNCSC+KgsUgrVDDqVhzJluwmIBWqDwr/QnXgFQsKmzP2pOvYjGCVqiGDMBjV9gKNXAIuWnTJpx44oloa2vD2rVrcf7550s3yF/WSF5DXyvUMLYdqFaoBzZLlaPWAkV321FRg+JhObCaIwhYCSEDanfbbryy5RU88tMjiV7KgPEFiwpbocr6BYvdP1vkNqGhyAGO0paTPalV6oAVYuEKN1iss9cBQK+KMw0Tfjgrh30Njoag24VdsRhgNmLPNdbYAgeLofbjZJ1BW6HKsw0jaYWarg8/WOz7/uy7pvqKelQ+UYmm/U1YtWoVLr/8csXr6ckreIO+/oHoGT04gfPb6nhjw0YIooBiS3FUQXokqsqrYLKYMGTokAF9XEKIfxQsEpKEtJrw/muqIIWLsQ4W/VUf/ra/E6UPfokfdvk/WIqmatLLi4NyxmKz3QOzQQNtBK0vY63NIf2i1OVmo36/2NxcRNV9gSoWRVHEE088gWOOOQbr1q3DyJEj/W6nlDPMNWoYNRiVCg5vfOaDrNvbChfLY/gQE3Rh/t/uq7qinOYrEkKSk8CF3wI0WOWEkhmL8RDJich+rVDjXLHI6ACIyuZBDsSMRUFh2NlTd+syeAPPVgrImCHNZlQSCgcJIZ955hkUFxdjw4YNGDdunPL1+H08tvu1D+P1l79G8a5Y3L8ByCgG9MqqDHbsqaY2qISkCFf3xTpuPoxuAElIDtcqOirCvo+vFaoQ2cUZfVvXykGjXMUXiptzR9Rysie5YjHccNCfcGdeyiFYpv5gm28lMxblKr1wgsWgFYshZiMCgElrgkalwX7b/oDb6LovVLKxgWcsBgvY1Co1DIwhqmCx3lEfctu+1aA6de+KxWVvLwOTxuCGN2/AiSeeqHgtfXl5Lxg1A1VYVzj1Xhcr+K9YXFe3DtmGbOSb86Nen1JVe6pQOqpUcQUmISQ+KFgkJAmFW7EISG1TI5l3F4zfYPGAdIC1eneL//tEVbEogIumZDFJNXV5YNZrfC1rE8Xh4eBmBZj1GtjcHDxc5AGajlFDBHCgQ3llR985nIIgoKamBiqVCh999BG++eYbZGVlRby2vpSEnzqNOqwZkJH4fmcTskw6FGdF1gZVFEVUVexGKc1XJIQkI0UzFoOEkGHMvoO7I+xlKca5obh9Qr9WqANQsQhI7T/DxbmkSrh4n4BRsqae5OcUScWo3gpABOwKZm33OVkqiiKqq6UWnwsXLsSPP/6IvLw85WsJRGDDn7GoUknVjVwcg0VRlFqhWvIBncJgsaKGgkVCyICQQ6YubxcAhFXFJ4dibIQXuvStWJRDWTmwCsXNuSNqOdmTHHpFM5+TE8O7rxxAapmDwakcooYzp9KsM0MFFZqcTUG3c3PuXo/Rl9zC1M4FrlhUQYVMQybq7HUBQ1eNWgNGxcAR4EIlB+sIOmMRkKoWbaxNcUcsk9YEtUod8rUADob+Mi0jhdEN+6WA9s5/3okjHzsSmuzYdL1iBTaiisVgMxbX1K1BibUEJu3AtkEFpIrF0pGlA/64hBD/Eh4svvrqqygtLYXBYMDEiROxYcOGoNvPmzcPo0ePhtFoRFFREe6++2643al5FRYhgchVTYHmDvY80NHEo2JR4f5YPvIZifL9B2GuiGa7GyadxjczM2Hr6J6vmGfVw+7hogqi09OkXwpqWpW3LOsZWDscDlx++eU45ZRT4HK5kJGRAZ0uvF/awqWktaleo4YrSKvWSImiiO92NmJkrhnpxsieX3tLM2yd7SihYDFu6FiEkMiJSlqh8kG+z4YTLEYaXoWDZ5XNLgT6B5EDUrEIIEi7sH5YV/xboQKApyuy+/mCxUhaoUoVAnCEbj0GQPp69ThZ6/F4MGPGDBx33HHo6OiAxWKB0RjZRUAB8aw0YzHcE80qJr4Vix010qxS67CDr30YHE439u1vwJE0XzGu6HiEEEnf8CjUrEhREH1VWeGEYv70fQx5P3IlZCguPnBl3j/K/oFbvrslZGAVk2AxivvKwaI7jGMytUoNi84SNEzjBA6swEKnCvzzRqfWQQVVwEBQlmXIQqu7Nej8Rz2jh4P1vx8n54RWrQ0a/Bo1RjhZZ9jhrEx+LZpdoS90klvmyjSiBi8/9jKuP+d6tDW1QW/QI82cBifnjMnIH07goFEpb9GrY3R+W6E2OBpQY6tBgbnA1z52oPA8j5qKGpSOKh3QxyWEBJbQYPGDDz7APffcg8cffxy//PILjjnmGJx77rloavL/g+n999/Hgw8+iMcffxw7d+7EW2+9hQ8++AAPP/zwAK+ckPiSg8VAVXyVlVJLkJa6WmgY9YBULMZy+768vDAoW6G22LxI0zHQMIkNFuX5inlWA7ycgE5X5CesMozSLxu17cpPAMqtUNtbGnH66adj+fLlePXVV2N/Eq+bktameq0abja6gNyf3Y021He6UZqdhjRdZPMHqip3AwBVLMYJHYsQEpkDdQcAAC6XK/xALVhwF06wGE+8p39r01AiqbKLhkYOFiOpWIzTr32RVFH2pFZLVXpsBF9/Q/dcKFvoCgEAvdqgtnQ6cNZZZ+HDDz/Eyy+/jIyMDOWPH9Zjds9YDJdaEzyAj9aBTdJHa6Giu+2slOZaHTmSKhbjhY5HCDmob3gUKCzr6OgAANTslr5HadSaiFuhBqpYlFt1huLhPAGDqw/LP8RPB34K2TZUrqYLFaQGE02wKM9YDLeFrlVnRYenI+B65eq8YBWLKpUKOkYHZ4hZy9nGbLS724OGngaNAS7e5TeQc7JSsBisYjFNKwV6kbyGVp0VHe6OkBWzbt7tm9vJO3gsf3Q5vvzPl7j5/92MrNysg8+DdSkOOAOJtBWqCBEuvvexblldGVRQodhaHNU80UjU19TD6/FSsEhIEklosPj8889j1qxZuPbaa3HEEUfg9ddfR1paGt5++22/269duxannHIKrrrqKpSWluKcc87BlVdeGfJKPkJSjdwKleP9hxxer3Sw4nY7oWVUYAUBQgwDEeXBYnTBJssL4AM811TW6vAgTcdAq05scbhcsZifLg00b7JFfvJWp1HDqGVQ16F8H26Wh7exEv/42yVobGzEzz//jAsvvDDitYSirGKRgZuLfbD4/c4m6DVqHJ5jjrgtTnXFbmh1euQXlcZ0bURCxyKERMbr7T4BJ7DhBYuCEHg7lTp0sBjPsAUAOK/yisW+VXYD1gpVYcViPINFjTwjMYpqUrU2smC5e6YR7GFWLHY/xs5mHhNveRXl5eX48ccfceWVVyp/7HAJCoPFeFcs7t8MpA0BLLmK7rajQjppP/awonisioCORwjpydnn52ugoIdjpc97XdIxCaNiIg7l+gaSXt4LNdRBg6iefLMEg5xmDRUU+SoWowiUhChaQckVi8GqAnsyaU1wsI6AYZr8dQw1p1LH6OAKcbFWrjEX7Z72oNvpGX3AQC7UrEegO1hkIwsWM/QZ6PR2hnzt3KzUMtfb7MXeJ/eicVcj/rX4X7jgqgt82xgYA9y8O+x5maGEel/6I7cA7vt6l9WVYZh5GIYYh8RkbUpUlVcBAIaPHj7gj00I8S9hZ7u9Xi82b96Ms8466+Bi1GqcddZZKCsr83ufk08+GZs3b/YdLO/duxdfffUVpk6dGvBxPB4Purq6ev0hJNkdrFgMfoKKY73QMmqplWgMT2YpDQqjrVhkeTFpKharq6UTJ3U1VVHtRxBEtDtYGHUM1Aluhdpi94BRq5BnkYLFxghCwZ4y0rRosrkVh3BuVoDAejEkvxAbNmzA+PHjo1pHKDa3slaoHpaPebC44vdGjMg1I8sUeZvXqj27UDR8BBgmsopHEhgdixASPZUYJDDsyXeiz8/3WTUDsCFOYrk7Fa9NEcGrvGKxz5ycWLVCbeyuUNq970DvGyKpDmTdcQ4WpWMLuKL4vsboIgsWNXoplHSEWbHYPV/RwwO5GWasX78ekyZNUv64SvCs9PqHSx3vYHEjkF4EKJyLtH1PNUoL8mA2DWzbs0PFQByP0LEIUarL24WarpqEPHbf6rVQQQ/ffT5Co9ZE3Aq172PIswHDrcqSW1wGu5hUngMZiPxYkc6JBMILJV2cy28LU3l9Xt4Lu0O6iGn/3v0B92PSmuDknFFVLALdgSDvCjg/EQCGpA0BJ3BocAWu+gwUyImiCCfnDFl9atKY4OJcEYXTGfoM2Ly2kMGi3DJX5EWoDWrMfH0mJpwyoffz0Bjg5txhzRYNh0alfPanL1jscawriALW1a9DsaUYFq0lJmtTYt/ufbCkW3yVnYSQxIvNNNgItLS0gOd55OXl9fp8Xl4edu3a5fc+V111FVpaWnDqqadCFEVwHIebbropaLuPp59+GnPmzInp2gmJt4MVi8FPUPGsFxq1CiwvIpZ5iMdPUBgsuIw2WOQFMebtXCO1f/9+AGlobqyLaj8dLha8KMKkT9i3WZ9muxdmvcYXbjXZIvtlS5aZpkOr3Qs3y4f1/ERRxAcffACX2wxD4Vg8dOMHyM/PByDNahyWYYCGif0JT5sn/F8IDFo1PBzf3X44NgFeq92DrbUdOP/ofFgMwX+ZCqaqYje1QY0TOhYhJHoqkQ8vUAt2kkyt6dWm0i9Xu7KFKRVJxaK371XzsTkYa2xsQB6A+uY29Prur4lgxiLnBpgBqFiMdMYicDBYFMXwZxEC0rZ6C+BsC2vzjz5eigs4EeOHMlj7ys1QlZZGtt6widJMxzCrXQB0B4uc8tciHDwHNGwDDp8M6NIU3XVHRTXNV4yjgTgeoWMRotTiHYvx5b4v8dGfPkKaVtn3jGjZ+/ycCxWWcZx0u0atibjar9+MRcGrKJBxc+6Qs+xChZRKKhbvX3U/zi45G2eXnt3r8z0D0nZ3O/Z27sXezr3Y17EPFR0V2Ne1D42ORogQYdQYe1VkyrP/PLwHnZ3SBV2d7YEv7DJrzajuqg4YxMkBsdz6MxA9o4eH84AXeKgDnBfINmQDAGq7ajEhd4LfbfQaPTy8p18g5+E9EEQhZMBp0prg5twRVSxm6jNh89pCBttbftgCVYEK+qF6HPboYRg2fFi/bQwaA1pdrVG1te2JUTPKZyyq+weLe9r3oN3TjkJzIfSa8FoEx1JVeRVKR5VG3AmKEBJ7ie3Pp9DKlSvx1FNPYf78+fjll1+wdOlSfPnll/jHP/4R8D4PPfQQOjs7fX9qa2sHcMWEREbLhFmxyLHQMmpwsa5Y5PqfWJPbaVqN/YMkV5TBorSPOLc4G2DyXENThHP1Yqmpyw2zXgOLUQO1CmiMohUqAGSbdOhwsmEFyl6vFzfccAOuvPJKtO2WrqiWDwR5QcQ581bh9VV7o1pPIA4PF/YkAYOGgSfGrVB/3N0MEcDhOSYwEVatiqKI6srdKB05JmbrItGhYxFCelOHGyzKJ538fZtVJUGwKHildq1K9K2yi1HFYkCRtELl3ECIE3pRka/+VxJ29tuHNrIZl4AULLo7ggbXPM/jrrvuwuXX3oqPfpe2G5CTUvLzUdISX56xGI/3UvNO6f1gHaasihJSsHgUzTRKKkqPR+hYhCjl5t2we+3o8g58daud7RMshqpY7D5/wagYsDwbtPItEFZge83mkysQw20h6eE9UoATZHsmRGtsOeTjwmj//tOBn7CiekW/z8uh5Cu/voLTPjgNM7+ZiX+U/QNf7fsKre5WlFhKcE7JObhy9JX429F/Q7Yx23dflUoFRsWE3QrVrDPDxbkCfn3kUEqufgtEz0iBYLBAVV5nsCpaI2OEh/P0W4+D/f/snXeYXFd9/t/bp23TrrpkSbZcsDEYMNhg03sSSCiBGJsOCQT8I3RTDKGaEqqxSeiYUBxaaA5uuACWJXdbsrq0atvL7E67/f7+OPfM3Llz68ysdmWfz/P4WWvmlnPL7j33vOd9vxXSjpj+UNzxRNGf6SeCrBYsxNq2jY9+9KP4+Yd/jvHbSYQ7x3GQxdY2ZcUsVKs9gTOIuCjaIOg189a0vHP0Tki8hJN6F2eiERUWGQzG0mHRrDRDQ0MQBAHj4801McbHx7Fq1arAdS6//HK89rWvxVve8hYAwNlnn41KpYJ//ud/xkc+8hHwAS9tiqJAUY7/TAoGoxPqUagxdQct3YCY545LFOqRGTLbrC/b2inptMYiAJTV7sQ8LBWmXCG2R2nfqdYtJkoaCooIWeBRUERMl5O9KIQxVFBQrE3HCsrT09N4xStegS1btuB7P/gBPrGzOYe/qptQDRv3Hp6B4zhdH+SraBYUkYeawA2rSN0XFm/aOY6TluWwqrf92LDpiTFUSvPYcApzLC4ErC/CYHQOj6RRqPSZERKFahlE2AsTYRbcsZiwVmTTOv4o1AWOdecE8l9SEc9xXMfiAvZFBAkAR+JZM31tbkMGLL09MS3TS2JyLT3wOOfn53HRRRfh+uuvx1Wf/RAu0a5qr43tQMX0thyL3UtQqHPsHuJcTTkgWCpXcXhkkjkWF5Dj0R9hfRFGHF/Y9gXMarP47IWfbUwEdawmse14QYUgSlw0KK21KPIiTNuE5VipHVpUkKTinmqqsdGmXlRLhSIokct307HowIFqqbAdu2m7VFQ9PH8YK3Ir8MINL8TK/ErkpTwUQYEiKJB4KbSdIi8mjmLNS3molhrq0qM1FuOExYyQIU7DiAlGWTGLrJjF0XJ4NGtGdKNQfY7FejtihMWcmINu601iWlL63LrPY9UxnDHYPCm4Wq3i9a9/PX75y1/iaW99Gvpf1I/DJSKQBsWzZsVsoPOyXcSUk4mARnytN5b4jpE7cFLvSejP9HelXWmwTAtHDhzB3170t8d93wwGI5xFcyzKsownPelJuPnmm+uf2baNm2++ObTWRbVabekg05pTi9HZYTAWikaNxegBlkaNRaergogW4Fg85AqLXIAHrNMo1G5tYykx6Yp3fbnFFxYnSxpysgBJ4NGblTBbNWJjdqNYlpdgWA7G58MFypmZGZx//vnYsWMHbr75Zrzi1a9pWaaqk2s+UlS74nr1U9bM+u9SHFmJ76qwqJs2/rxnEqcsz6M30/4cnuF9uwGARaEuEKwvwmBEQAeczOjJKALsZE4//yCVdx1ejBeW1GL8PjrBaicKter74Dj8DRAVwPBHsIZAB8aEBZ5LKiqAXolfLgxBbi+KFgAy/UTUDLhPK5UKLrjgAvzlL3/BH/7wB/zrJf/QfhvbgTpO0gzocSIR4RfieXL0HuJWzA2kWu3h/WTw86zNG7rfJgYA1h9hLA32z+3HgeIBlIxGHV/LtmDj+JcsaREWY2reNUWh2mZbvwOmbTY5HamwmKrGYkx0apz7sS4sJnSqBYlPdF0HDrJCFmcOnokNvRswlB1Cj9wDWZCj60DyInQ7WemUvJSH7dihrlbqWMwImcjtUMdinJA2oAxgvDoeen7qgpxPoKxHsga4A73QyN8w12EUfTIRFscrzRNEdF3Hs5/9bFx33XX45S9/ibNeeVaT0JoVWychZ8VsPRq2G7TlWHRFWCrK6paOe8fvxbrCOuRT1mnuBseGj8HQDeZYZDCWGIsahfqe97wH3/72t/HDH/4QO3fuxNvf/nZUKhW88Y1vBAC87nWvw4c+9KH68i95yUvwzW9+Ez/72c9w8OBB3Hjjjbj88svxkpe8pN6JZjAeCdAai0aM+EOFRRKF2r39BzkQD8/4B88aUFGoE79ZRX+kRaHqkAUeeXnxayxOlTXkFAGiwKE3I2G+ZkDvSFgkncwjEffEwMAAXve612Hr1q248MILoeqtneKKRq75+LyKitZ9YbGSQljMSAIM046NH07KtoMzqOgWNg3loUjtP58O7dsNJZPFqnXMJbBQsL4IgxFCzOxyCschun4ixT8o6P23IJJtRAmLCx6FaqSP4mxxLB6Hwdc0Ih4VIBcyChXoXFgUFSLstjOAlukjwmKAWyKfz+O1r30ttmzZghe+8IWt0bULDb3HU0Wheh2LXeboXUDvOkBONyC4Y99hcByHM05e1/02Meqw/ghjsTFtE45vgozpmIljMTvB73irGJUmcTBOWLTc8QiRF3HvxL2YqE6kboNhG00iqmqlcyxqZnwUahxphEUOHDRTq4uh1GnZqctN5NIJiwAwowbXOk4ahZoRM4mExcHsIGZqM6H3ZFbMQrf0lu0kjULNiR0Ii9SxWBlr+lyWZVxyySX485//jJe97GWomTWIXGOMKCsEC4u6rSd2jsbRjmORXrOaRa7hA5MPQLVUnNRzUltCZacc3HMQAJiwyGAsMRZ1xPvVr341Jicn8bGPfQxjY2M455xz8Mc//rFetPzw4cNNs/A++tGPguM4fPSjH8WxY8ewfPlyvOQlL8FnPvOZxToExqOAa7YM4+pb9+OODz4HfJt10tJCxRAjJgrVMHRkBA6G7XR1ZmqQe5DWWIxaXhTaPz9V7REmLJZU9GTEjs5JN3AcB9MVHWet6YXI8+jLSjg8U4Vu2si1Oc444K54dLZVWPzOd76D3t5evOpVr8Lll19e/zzIkUgdi7NVA8WqjuU93Y1nquhWXaSPIyMJ0K3uORZv3jmOgZyEDctyHW1neP9unHTyqS0z0tlE9O7B+iIMRgii+zc5kRsxwaBjfXDE8f0brmPRiHasLbSwGLf/IPzOwePxx1lQiKAZFRtLoe1byChU2iaj1v7xC7K7fpuORb3cJCz+7Gc/Q7VaxZve9CZ84AMfaCwb477tOnRgOFUUquiehy7fS1oZmNoNPOalgJQuon3H3kM4ef0q5LLRjhNGZ7D+CGOx8Yt3juPAciwcnj+Mk/tOPq5tqRrVpjjQOKGtHoXKiXDg4M3XvxnXv/L6VPs0bZM4xNw/2ZrpOhATTp/WLA0CJ7Q4HONEUS903aTraLZWbzPP8bAcq2OXG41CTVKnkgqLxZBUiapZhcAJiYRF3dZj2z6UHcLh0mHUzFqgay4jZqBbesv5o8JiRox+jlHHYlErRi4XREbMQBZkjFeJY/F3v/sdhoeHcemll+LSSy+tL0drcQLkmgWdm6yYhe3YqFrhE7nT0JGw6IrDW0a2oCAVsK6wOJOMhvcMo3egFwND6VIXGAzGwrKojkUAeOc734lDhw5B0zRs3boV5513Xv27W2+9FT/4wQ/q/xZFER//+Mexb98+1Go1HD58GFdddRX6+/uPf8MZJwQl1cDGy/6An20LL/Acx8d+swNjcyoeHj1+RcuTOxYNyAIPy+5uFKrfsRgnWtaFxTQzsn2UF8Cx1g1s28E//+hu3H843YDmRElDXhEhdiBGd+OKljUTumkjr5DOZH9OQlkzoCWoOxhGT4Yc15HZxoCqZVl43/veh7e+9a248847W9YJEhYrHjF530TCelEpqOkWpBSORd20O4qIpTiOgxt3juPUFQX0taveuhzatxsbNp/W8vm4Su6r0hL9vTnRYH0RBiMAKkYlieNK4gSj26EPN687gZfio1Cr02S5hcJqw7Go+4TFLkVWRSIq5HwnuS51x+ICC4tixnVvtvkM7dSxaOlAbQ6O4+ATn/gELrroIvz1r39tXfZ4OxapeM6lGNDjxYVxLI4+QLbZu5bUWUzBjn2HWQzqcYL1RxiLid8d5cDpWhRjWqpmtak9sY5Fs+FYBBpiSBoM22hybFLHYqoo1ACHY5p6fWmjUL3uPLpup45FiZdaYmHDoOLerBo8VlIzayR6NUaczQiZQKehn+XZ5ZjX5lEOqTWdETPEZeubSFQxK/X9REEdi2HHE0ev3Ivp2jS+9KUv4e///u9x++23t4ylaZZWd/wpghIo+tF2lrXujJG0VWPRbSO9f+8YuQMbezeiR+npSpvSMrxnGJtO35TYQcxgMI4Piy4sMhgLyUiRPAR//+Box9s6njUAJZE8LOPiKi3DcGssdjsKtflYo9yKZHkbIs+hk2d8dYlGoeqWjRt2jON3D4ykWo8IiwLEhI45L4IrRnbjnpsqk4HbgkJmxQ3kZJQ1C1oH2+Y4Dv05CWNzKhzHQblcxstf/nJ85Stfwde//nV86UtfalmnFhCFWvW0Ye94qeX7TqnqJpSEwqIi8nDQcFF2wv7JMo7O1rBxMI+83H4UleM4RFg8pbW+4rxB7pEYUzODwWC0j0AdiwlmzSdxgvnjnPyORduMFpaqM4DcmQs8kraiUH2Dhc5x6MuIGXK+kwwcunVxFtyxKCqAoXbmWIwTlsPI9AIA1JkjuPjii/Hv//7v+MxnPoPvfOc7rcsed8eie41SR6Fa3RcWj91Dfqf71qdedfveYZy1mUWyMxiPdEynNQrVgZNIYKKMVca6kqRUNZsdi3GRkHXHYhsCSn0bPjGNOsuSOhZ1Sw+MiPSKnHHCGY0zTVVj0fYJix2KwQIvJK5TmRddYVELFuJM2wx0cfqhTsO44x7KDsGBg5Fy8NhMXZAzmgU5WicwsWNRL0YuF0aBL+CmL9+E973vffjgBz+Ia6+9NlBopo5FRVDq17zpONx2zhvdMTe083vBczxETkTNrGFOm8PO6Z1YW1hbF1+PNwd3H2QxqAzGEoQJiwzGEkQWaIcyujNnmjpEgYNpdTcK1e8ui6qvSJdPWsvOD40K7Yags5DMVtPl20+VNeRkEVIbjkXa9yx3IR6WisIF17HYmxVh2SQetROW5WRMlzVopo23ve1tuOWWW/D73/8el156aeAssqC6nVXXbSfwHPZNdtexqJs2DMtJFYUKAOUuCNw37ZyALPA4eXm+oxl1k6PHUK2UsXFzuLDIYDAYC4boOq6T1HcJqG/XQn2wyO2vtNRYjBGWajOAtMCDGUbCyCn6t93viLCOh7CoEIEsjZN0wYXFDNlXu2KYILfnGAWIYxHAez/5Vfzv//4vfv7zn+PDH/5w8PP3uAuLtMZiyihU2+x+rO7Ru4H+9UAmndOgOF/GsfFpnHUqcywyGIvJj3f+GJdcd8mC7iPMFZhUqJrT5vCiX74INwzf0HFbamatSWQynOi+iO2m8XRbWBS5ZI5Fx3Gg23rg/r3CYpxIW3csJpioxIFrcvl1q8aixEuk3mSCZ7osyBA4ITQK1dvWKBRBgWEbsc7UwewgAODwfHAiGRXk/I7GqlGFzMux94fMk+OZ19oT9IZ/PoyDNx/E1d++GldccUVLOROgEZkLkPMXtEzYcbRLuzURJUGCaqm4a+wu2LBxUu9JdVH0eGLoBo4ePMqERQZjCcKERQZjCUJFurhYRsuNQjVtB9YC1liMExZVw4LUhjMPaMS+BkVlLiVKqpFKvJ0u68jJ7TkWKRXN6jjidqpMBtH6MrL7k3Qqx+c7G1wbLCiYKatQDQuf/exn8de//hUvfvGLQ5cPcl9WXBFvqCDj6GytKzGk9W27omxSwZs6G8tqF4TFh8dxyoo8Bgud1Ywc3r8bALCBCYsMBmMxqDsWkwhYCZ4p/u34o1Dj4h9rxdS14VJjVIk4+NevxSzo/g02fI7F4yEsSpkUUajUsdjdGsbBbdLaFxbFTNuORUssAAA+fvHTcfvtt+OVr3xl+MLHOwqVXqNUwuJCORbvBnrXAAE1qaJ4eB8ZvGWORQZjcfncts/hgckHcKB4YMH2YVpmYC2OJCIX4LrnHAs7Z3Z23BbVVJtciolrLHYgLPrFNM0MjjYNQnNrTQeJLt4o1DjRr15jMcmkLjTOuXfdbkWhJhn74DgOWTGLOX2uo31SIY3WQgxjIEPq6x0uhQiLIY7FilEhIl6MSMxxHDJiJvXxWBY55xdcfAEee/lj8Y8X/2PosjQyF2gIs2HHUdK7k+ok8+2VZ5F4CaqpYsvIFgxlh7Aqv6or7UnL0YNHYZkWExYZjCUIExYZjCWI7Lr4YmssmjpkkYfZ5ShUf2xlrGNRtyAJ7QkdPMdB4LnAqMylRFmzYh2kFMdxMFvVkZWEeqxpO9QMK/YeiGOypEHkORQypMPam6XCYmeDa8Udt+Per78NoxNTOOmkk3D22WdHLh8kHFc1E5LAYWVPBhMlDZUu3gNUtEwsLEpkuUqHNQtnKzruPTyLTUN59GTaf7EFSH3FTDaHlWuaY8ts20HFZMIig8FYYAR3ECKJgGW1E4Xq2S4vku8jhcVZIkAtJHoV+MuXgRs/Btz3k/jl/cedJDa2U8Ss61hM0D+gNRbFhRYWs505FkWZnLuUg6HX3XYXHn/RRzFasrFCquLcc8+NXuF4OxbbqrEokUjdbgqL5Qlg/hhQWJ36Xtix7zB4nscZJ6ePUGUwGN2naiZ01rdBmICYJgoVQMciE+A6Fj3tiRMWLfddM60zy3tspm02iXK6rZMYzwTDplRY7DQKNZU4yJH4VXoM3XIsirwIwzFaYnHDyEk5lI1yRxGsijsBKk5YlHgJvXIvjpWPBX5PBUq/IJdUWARIncWKXkl8399/5/140/PfhLEjY1g1tAr8Rj6yrqa3xqLMB7cpK5KJdPN6d6JQpTaTK2RBhm7puGPkDmzo2YCCVOhKe9IyvGcYALDptE2Lsn8GgxEOExYZjCUIz1NhMbozZ7g1Fk3bgd1FZdHvLjs0XYUYIZDVDKsjZ57Ic0vesVjVzcQi33zNhGE5yCudCUtAvLgcx1RZQ0ERIbnxun0dCouO4+Dab38Nf/z6ByEsWw/DSXaMQcJxRbegiAJW9mUwWdJQ0bo3IEsFwsRRqKLgrtdZG27bMwnbAU5ZnoeYpqZSAMP7dmPDKae1xKNMlDXYCWt9MBgMRtvQKNRENRaTRKH6hUXPOoLkCksRzzx1buGFRaNK9gMAlfH45f0DRwlrInWEmCWCZiLHojuYudCORbFTYTGTKgrVcRx8/cfX4SVv/wROOWkNevI5oDoVv+JiORbTDOjxAhGNuxmFeuxe8rN/HdIWRN+x7xA2n7QaGaU9twODwThxMOxgMSlpvT/KnJpeWPS74wzbaBJnFsqx6N2u6TS79DST1FhMIkbRtga5z7xisBmTbJC2xqJuN+oS0nXTCsF+RF6EaZmwkWw7OTGHilFJ7GwNIqmwCJA41JHyCPSAGP56bUKfIFc2yqHuQD9ZMUtqfCa4Bjf+/Ea8/+L3Y2jlEPI9efQr/bAcC1NqcJ/EdmwYttHkWAy6vxR3ElDJWHzH4kR1AkfLR7GuZ11d8DzeDO8ZxsDQAPqW9S3K/hkMRjhMWGQwljBmjLBoGjokgYdlO7AXsMbi8HQFA/nwzghxLLb/50QSeGim1VVxtNtUdCtW6KVMuvGj3REWg/f5wJEido7Gz2CbmNdQyIh1R2lGEiALfL32YhosQ8cD//0Z/PdVX8DfvP7/Yegl78N4LdkLR5BwXNFMyAKPVT0KNNPGsdnuDfiVU0ah0hqL8x1God60cxzrB7JY3dd5p/vQvt2BMagjxVrA0gwGg9FlqBiVJN7THwkaRItj0ReFapnhwpLjEMFvoaNQ/TUT47D0ZudgwuiyjpAyRMhN4kg4no5FS2tfDBNoFG78MRmmjXf8z2G86ws/wHve8DL86sqPoNDbB1Rn4vdvakCCQcWuQe+HNAPdtMZiQqdIIo7dAyi9QM/q1Kvu2HeI1VdkPOL58t1fxlhlbLGbseiECSlpnWgVoxK6zmh5NNCFFVRbb1adjfy+qY2m61jk0jmzvOKU37Go2URYTBOFGudYVK3o/lLaOFPDMurnmk5G7cQ5CLhRqE6yKFQAyEt5VI1q4vjWIJJGoQLA5v7NGJ4fRlErtnxHBUp/FGrZKIe6A/3kpFyssOjYDnb/aDeu/NCVePGrXozPX/N59PT3oE8hwtd4yOQ0ep/UhUU+WOyUeAkCJ3StxqIstCcsyoKMA3MHwIHDST0nJfpdWAiG9wyzGFQGY4nChEUGYwljxAhtpqFDFDhSY7GLopxmNotFR2dq6M+Gd9JrhgWJjyvJHY7Ic9AMu6t1IrtNTTcT1wCkdQ3zcueDV2H7/ML1u3DZLx+EZka/OEyUVORlsck915MRMV3RUtWMBIDp4Ycx/uDteP/nrsYlb38vOI7DkZlkg7CBNRY1C7LIY2UfeZHYO9GdqA+ybfIikElZY5Gu1w6GZePW3ZM4eXm+XsuyXWzbxqH9e7CRCYsMBmOxoI7FJANFSaJQ/QNd3gEbIabGoqkS0WmhhUU9ZcScX+A7HlGoUgrHolkjDjih84lOkYiKey7adEkIMjmeBCL29iNFXLNtGt/++L/gix94MwRBAJQeQJtrFquDMNV07sFOofd8WmHR6XKNxaN3Af0nAXL6CLMdew+z+oqMRzzf3/F9/MuN/7LYzVh0QoXFlNGaFTPcvfaCX74AF/z0gvp7KI0ZDRIOvZGqcTX/6o7FlM877379+9AtHSInIskoBxUMg2oseoXFJMIZBy6xY9GBg6pF+i5UNEvrMPVDaywmdT4WpAKqZjVW/I2iLggmENIes+wxUC0VD0w8ELod/3muGtVUUag1sxZ5PDNHZ3Dk+iN480fejHd/9t0QJXLfxQmL1NlKhUUqIAaRETOJ7pc4ePCpI4IpMi/Dciys61mHwexgx21pl+G9TFhkMJYqTFhkMJYwcUKWZRp1p6BqdG8AQjWsevdZMy1MlrV6hGYQJAq1/dlLksBDN+2uiqPdpqonr7FIhcUoMTYpesg9YFoOjhVrKMU47CZLGvKK0HR9ejIiilUzsQPz8OHDsG0bK049B8/6+P/gGS/6ewzkJHAAjs4mG4QNikItawZkkcfyggIOwN7xzjvOlKpbY1GRkom7VFgsdyAs3j08i7JmYtNQIfF+w5gYPQq1Vg10LB6draGrTgYGg8EIQkghLCaJmIyKQuVjolDpQJOUi99PJ6QVFv1tPi5RqCliQ40awMtAgoG0jttkG+0fP3XHGuETZ44ePQrTNPGETctw8N/Pxlte/tzGl5k+QJuPr6Fo1NKJfJ1it+tYtLoXheo4wMi9xK0op/v9mSmWMDo5g7M2M8ci45FPJ6LII4XQKNSUEZdJ3GtUbKORj0GxlkW12NS2KKGLOhbFNDVtffu1HKu5xqKlJ3csms1ONC/eSNeqEd/PEDghlZhb08m5pOJRp1GokuAKiwmjUAtSgdTE7KAPlBHIRGO/0zCIjX0bIXIitoxuafmO53jIgoyK3jyuUDEqkHgpkbCYl/KoGcHC4ujoKDRNw+BJg3jGVc/A37/x75vuj165FwBCHdB1xyLXEBbD2qQICmpmLfVkcD+SkOy4w9YFgPU961FoY3JSN9A1HUcPHmXCIoOxRGHCIoOxhIkTFk1Dh+TWPtRjnGtpUA27LkSNz5POz0AuQljUO6yxKHDQTLurca7dpqZbiesdTpU0iDyHvNK5YzHI6UeZrugoVqJf2qbKOrJys7DYl5UwrxqxbkcAuOGGG3D22WfjqquuAgAohX4AgCjw6MmIGCkmiy8NjELVLcgCD1nkMZCXcXCq0nHHmVJ2ayxmEwp8osBD4DlUAwTQpNy8cxx9WQkbBjsf+B7euwsAsPGUVmHxWLGGnLB0f1cYDMYjBCr22AnqJ8YJOkB0FKogRkdh0gGiha7tknZmuKk3C3zHIwpVVMi5ShI/a9SIQLzQwqLk1r7U25wgRN2xIQOuf/nLX3DOOefgc5/7HABgeY+vT5rpA9TSEnQs0hqLKQa6678LXZowOHOAxAj3rGlMFkjIjn2HAIA5FhmMRwlhEZppozWT1qcDGhGNQSKON+oyTuiqR6Em+Bv/wOQD2Dq6tWW/gY7FhBNDXnPdawAE17Jrciya8c9JgRdSiXS0hmPaGNUw0kahFuRCrMMvjrAI07D2re9djwcnHwwUsBVBaTnPFaOSuMZiXsqjZrUKpffccw/OPfdcfPSjHwUAyH2t11rkReTEHCZrk4HbpiIzFYFlQQ4VrjNChgi2HdSupG1qN8KU3s/rCuvq1+h4c+TAEdiWjU2nbVqU/TMYjGiYsMhgLGEM24msO2gaRl3Q67ZjkUZnjs6RjvBALnwwQnOjUNtF5Dnolp3YEbgYqKYNLeE5nirr6MmIkITOhcXZSvggmeMA+ybDC3o7joOZio6cLDRFofZlJZRUA7oZfTxXX301/uZv/gYXXnghXv/617d8P5CTMVnWEgmuNcOC4OvQVjQTkshB4Dms7FEwNq927T6uaCZEnms67jhkge9IWLxx5zhOXVHoilN1eN9u5PIFLF+9tulzy3YwUdJQEJfu7wqDwXiEUI9C7ZKw6B8k88Ze8iL5d5iYorkDTSkdV6lJ4CRowtYXx7EINFycURg1IqQdD8ci0L6wSAWvgPWvueYaPPe5z8XZZ5+Nf/3Xfw1eP9NPzkcSYfF4OhbrNRZT9At4kdTt7JaweOwe8rN/XepVd+w7BEHgcdqm9OsyGIwTj25FoaYRQ6hYEehY9AmLiaJQE/yNv+S6S/CWG96Csl5uEsO8jkXHcaDbemoHZFyNxVqCWs48x6c651REo7Gy3RAWLdtK7HzMS3loltbkzEwLFZiTRn+eMXAGhueHMV2bbvlOERSoptrU/qpZTexYLEgFqKbadG/86le/wtOf/nSsX78e733veyPX71V6Ma1OBwryNDJXFmRIvIS8lA/djiKS4+hGtC3P8aCRZGnci7IgQ+RFrO9Z31EbOmF4zzAAMMcig7FEYcIig7GEMS0n0sVnGTok14kW5AhrF82069sdnVMh8lyksFjzOBzbgUahRomoURwviWWulmBwFcB0RUNOFuvnsBOmI4RFANg3GT6wWNJM6JaNgtL8gtOflVFWzdCYVcuy8P/+3//DO97xDlx66aX47W9/i97e3pblluVlzFT0SFclpapZkETO95kJWeDBcxxW92UwUdLqEaadUtZMyCKPFLoiMhLf9v4PTJZxaLqKjUM55JXOBy0P7d+Nk045rWV24URJhWU7EF0hf17tYg0mBoPB8EJnJieoe5dIfIxyLNK6cmH7oiLagsUwuX9r9ZQ1bC3j+NdYTCUsVo6zsJigTUFQYdEz4GrbNj7ykY/g9a9/PS655BJcf/31WLZsWfD62X6y7zgX53GPQnXv54CaW6HwIuB00bF49G4gvwLIL0+96o69h3HqhrVQ5OPo8mQwGIuCZVuhjsC0wkbNrMVGoVKosKj5ajULnIB5bb6pDd2OQp1RZ1oETSr86G5aQ1DNxCjkAGe4N/40SQ1BgRNSuUSpWEnfG7viWIwRcr3k3Jh6rxCcFo7jIAtyoqhYADhj8AxoloZ7J+5t+Y46/bznsGokFxZzUg6WY6FikDSlK664Aq94xSvw0pe+FLfccgtWrVoVuX6f3Id5bb7lngY8jkVBwnuf9F6cu/Lc0O0oggLN1lI7hv3Q45Z4CZv7N+Pp656eeN3HL388zl15LgYyAx21oROG9wxjcMUgevp7Fq0NDAYjHCYsMhhLGNN2EKW1GYZer7GYJNYyKZrZiDYdnVOxLC9DFsP/XKimRYSONnU0USCOxXZrLB6vBNXZmNhRimU74DiAbzNywstMjLC4fyJ8Vt9kiXRm83LzC1F/TkJFt0JFNI7jMDY2hm9+85v4yle+AiHEebm8R0GxqicStWuGVb9XKRWdfMZzHNb0ZzFb1VGsdmdQtqqbUEQ+1TWQRR6q0d59+KddE5AEDicPFbpy3Q/t24ONAfUVjxXJi2MhXZoZg8FgpIfGiSWJQg0YPGnBPzDpFeGo2BM2210vAxwHyOEzuzuCF4j4ZqZ0LPprHR6PKFQaO6qFJxbU0Y9TFCoVFtM6Pil0INZTY5HjOIyMjOCLX/wivvOd70CWIx58Si8R4qoz0fsxtXTuwU6xjca9lRTqWOzWtLmjdwF969r63dmx7xCLQWUwHiVQh2GQmGQmmWDkQTXVQAdiEHVh0Zd8oAgK5vWGsGg50Q46v2MxqdvOL5pSMcgfWZl0G2FRqDmRiG8LUWPRL1Z2LEQJUuz59kJdd7PqbEf7VXilHusax4aeDZB4CVtGWussZsQMNEtrcs3WzFpyYdG9VkW1CI7jMDo6io997GP4yU9+gmw2PpK/X+nHnD4X+DtA7y+FV7C2Zy1W5FeEbkcWZBiW0bFQLPJi3c36rie+CxesuSDxuo9b/ji88rRXok/p66gNnTC8Z5i5FRmMJQwTFhmMJYxpRdcdNA2jLtboZvfUNc2w646oY8UaBnJypPtOM+yOaixKAg/DtGF1oBC263ZMQzHEsfizbYdx/Y7gAt2dEicsHpmthtbinHKFxYKv1mOvG9U5Md/8Ajc8PIzbb78dPM/j2muvxdve9rbIfQ8VZMzVDNQSxIdWdbNFWKzqFiSBA88Dq/oycBxg/1SbbgcfJdWEIgpIo/EpogDNtGDa6V0CNz48jlOWFzBU6Lz2gG3bOHxgLzZuPqPlu5GiipwsIBMh9DMYDEZXEN2/Z2aSKNQEy/jdfF4Rjg7cGSGOQb0CSPmFdZvxYrK6hV4so3l203GpsZjGsVglx9UtYfH2LwHbfxXQJvdeabvGIl2/ipGREdx0003gOA7f+9738L73vS++NlDGHfCqjEcvZ2nB7sF7fgBMH0jd7FgsE+BSnn/q3u2GY9HUgfHtQM9qQEofI7xj32E89tQNnbeDwWAseaIchoaT7tnmwMGcPpdoWerw032TmBRBaYrFNG0TTsSEC8ud6EqFxaRRrP66gFRQpKJQkpp83m0EOhbNal18S1pjMY2Y5Bcro2pRJkHkxVSORXpsM2rM5J4YZEFuiTANQ+AFbOzdiO3T21uWzwgZaGbD6ec4DqpmNfDaBJGTcjBLJm744w0AgK997Wv4xCc+AT5hFFK/0o+SXop2LCYQrBVBgW7piQXeMCRearvGIm3HYsKERQZjacNGJhmMJYxpO5FuPMsw6oKf2lXHYiPadHRORV9OahGFvKhu/TyuTcsirbHYrmMRQKQA2y1mQ9x0l/3qIfzLj+5JFAmaljhhcXxeRTVkv5Nl0pntyzZ3ovuosFhqdHbvuOMOPOUpT8G73/1u2LadqPM5WFBgO8BIMT46jjgWfVGorthIolDJ7L+94+0LixXNxMd+sx1P+cxNOFaskSjUFJ1oReShGTbS6opzNQN3H5rFpqE8ejOdD3qPHT0MTa1hQ4Bj8ehsFct7FIidmyIZDAYjGjqYliQCLZGr0V9j0bOOEONY1MpEGEkZSZYKXgrffxAcR8RSx/Kcq+MoLGoJhcVuRqHe/V3g3mtaBdQuORbv274bT3nKU/COd7wDpmkmHwjLuHHt5Rhh0Qioseg4wHXvB/70qZSNToBtuo7FFA9tXiAu2G4IixM7yO9Z79rUvztTs3OYmC7iLCYsMhiPCvwCm5d2HFNFtZhoubAoVEVQmgQz0zYj22FbNmzbbgiLCeNb/a4y+m8aiZpEAPJuIyg6tWpU6y64JDUWBU6AHfBCun1qe6Ab0S9WdupYFDmROBYTCpR50XUsah06FgUFmpU8+vP0Zafj0PyhlrqMGTED1VLr94tmabAdG5KQLLFg9tAs9n9yP7724a+hVqulFuUGMgOoGlXUAibLeWssxqEICgy7S47FhU6uWCB0VcfIoREmLDIYS5gT868Lg/EowbSTOxbVBK4xL5btBDrdHMeBZlqQ3BlZkyUNfRkxsoaiV4hsB0ngYXQsLLa9amKK1eiB07LWnfqAzfuMHqScKumoasHXfqqkQeQ55H2ORSosjs+Tju1PfvITPOc5z8Hpp5+O66+/PvFsvGV50iE+OhP/gqQadv2eotSoY5Hj0JsRoYg89k20Jyz+dd8UXvCV23HNlkOYKGk4PF1NHYWalQSobTgWb98zCct2cMryfEfOXcrwvt0AEBiFOlJUsbovA4FnyiKDwThOJHHhmQmWiXQsxkWhVgB5gYVFQUwnLPJiIwqVPt9SxsW1Rd3dl0RY7HIUanUa0OZba2rSeNYwx2kcgozf7DJw4du/hFWrVuGWW26BKKaYqEMjukoxwqKptQqLRo0cz8z+9I7VOGgUapqJd3XHYhc6tsfuIaJ3f/o40x17DwMAztrMhEUG49EAFeKCXIFpaywCyevtUWHRL/ApYnMspunEO+gM3UgtLLY4Fq1mx2KS92LvNoImWtfMGmRBhsiLyaJQeaFF1JtVZ3HRHy7CJ7d8MnD7XrrhcAOixWYvtMZix1GoogLVVBMLaY9Z9hgYtoFdM7uaPqdRqLT9VHhU+Hjn3d23342PXfQx8BKPd3/v3YmiT/30KX1w4GC82tonoQJ6ImGRV6DbeudCMS+2bQBYbA7vPwzbtrHp9E2L3RQGgxECExYZJzSaaWHL/unFbsaCYVpOjLCo1yNLaykdi6d8+Dps/sj/QTebO56GReo6eoXCvpwcOVNLDaiflwaR58h+O+gDHw/HYrHWHSeCZSZ/OZtXw/cpcBxqhhXqGJwq6+jJiJB8NRJ7XFfd+LyKK6+8EhdffDFe/epX46abbsLQ0FDitg26wuKhmfgXJNWwmu4px3FQM6x67U6O47CiR4mMdg2ipBr40K8exMXf2YqsxOMFZ64E0HBIptHfFImHbqYXuG/aOY61/Zm667JTDu3fjXxPLwZXNBeGNy0bEyUV6wZyXanjyGAwGIlIIJbZRoIai36BMkhYDI1CLRNXXIJIsrYRJBIdmbQ/wUuuY9EmcZfA8XUsqglqLEZEoVppO116hQivWrn1WvKuK7JNYfEHv/8rXnZtDS86dzNuv/12rFmzJt0G5BzZf2UiejkrwLFYcwdC544lE2vTYJvu+U8rLNroqFNMOXo30LcWyKavjbRj3yFIkohTN6S8FgwGoy0cx0kcPbkQRDoW2xA2krrXqJNKs1sdi17BzLTNWMFMV3WI7vM4qTjlFzRprUcqAElcOsdikDOsZtYg8iJkXq5HYUYRFL9KhaEd0ztavvOLlZ063Kizzx9PG4bIi5AFGXNasvhbL47jYMtNW+A4DokwtbTE7V/Xsw6KoGC0Mtr0eU7MNTkf6fmJc5/edt1t+ODrP4gzn3gmTv7oyZCG2qvJ3K/0AwDGa63Comqq4MDV79MoFFGBYRkdC8Uid+I6Fg/uOQgA2MDSExiMJcuJ+deFwXD5wC8exEXfvhN7xxMMrpyAmLYT6cQzDb0u6GltxnAe9olCNFJV9CgyA9nwTpVp2TBtB1IHDqq6Y7GDl6nj8R423yVhccf9d5HtzRVjly2pJowQoY06BvdPBg+Ejc+rKChiSwSpJPDISgImSxqe+9zn4gtf+AJ+8IMfQFHS5efnZOIyPFaMFxZrPvFZM23YDiB7RM+VvZnIaFc/t+6ewPO/fDt+fd8x/M3Zq/Ca807CGat6ABAhUxaFVMJiRhSgpRQWTcvGrbsnccryQt0J2inDe3dhwymnt4j54yUNtgOcurKQaoySwWAwOiLBwJKVxOnlH7T0/psO9pghAqVeBqTsAkehyqQGX0QNp+blXceiYzXadTwci7TWjZHUsRgsLG57gLjjR8ZixDhKZYr81Mut8bgcR5yUbQqLzzzv8fjEsxT8/LKXIpdLXwsQHA/IhUYbwzADaixSYbE6DZQTnoukWIYrhqcUFoFWV2g7HL0L6F1H6pOmZPveQzht41pI0gLWNWUwGHUed83j8PSfPX3R9h8lLLbjWEzrXtPN1hqLXmHRsq14YVHT647FpITVWKwLiwmiUJsciwEvaTWzBomXIAsyalYtVkAOFBbd7ZY9z34qnPnFym5EZwLJhUWAiHnz+nzqfT207SF8+E0fxsHdB5ERMtAtPfH9xnM8NvW2Otn8EaI0KlYWo12Cj33SY3HxOy/GFd+/AtmebFtCKUAciwAwWh5t+U41VUi8FBiZ64dFoQLDu4exfPVyFHoLi90UBoMRwon514XBcBmbI52oduMTlzqWHT1z0bYt8G5MhmpEd7TNhFGjmrsdrwg0VAgXnFSzdfm0iAJxLBpW+52m4+FYLKnJi5hHMXbsCABSCyKOimbCtIL3OVggneM9IcL6RElDXhEh+iJcZiYnMP3HKzE5O48zzngM3v/+97dd0HsgJ2N8XoMdc2/5HYsVNzaWOhYBYE1/JjLalTJXNfC+n9+PN3z/LvRlJbzpgk14wWNW4aRl+bqTj8aspjmujMSnFhbvPVzEXM3AxqE8MlJ3BryH9+0OiUElL9ePXZ3eecBgMBhtk0AsMw0t3mHldTw4TnCNxTCB0tIBcYGFRUEi+0k6M1yQiMBmH+caizxP4k31SvyyphrqWNx/ZAwAkve9qGhnVIPjcYUMEouyAGaKJfzz5V9Hcb6MTSetw+XPyoK324xSBQClF6gVm+8zP0FRqPU6YA4w8XD7+w+iXmMxRR+Z75L7VZ0DpvcDPasaUbUp2LH3EM7anD5ClcFgtM+cPtdSa/B4ESXmmE56YXFOTyfK+EWsFseiYwbGtDZtowvCIj3/9KcoxG8vsWNRkKGbeqxQFCQsUspGuUVgVS21aYzCtu2OXG7UTZdWWPTXOkzC/l37AQCmYUIRlVSORQA4Y9kZZP2Ae5TeL9SxKPOtwmK1XMWXLvsSZqdmMbhyEG9675sgiAIKUgEz6kxbYz95KQ+e40OjUCVBSjRGIQsyDNtoS9j3IvJi22M9i83wnmFWX5HBWOIwYZHBWASu3zGGB48WY5czLTu2dqDjDu5oZnTncfNH/g+nfPi62M6R6rrFaA03WeBRyIR3qOvLdyQsknVrevsd4OMhLFY0C2YXijlOjBxNvk/dhB4iQIo8h76shINTwZ34yZKGnCw0CXoHdj+MSy96MeZ234mxkaOh207KsryEmYped7qGoRp2k8BZdWuCegXpNX3ZyGhXALjx4XE87yu34bqHxvCSx63GRU9Zj3PW9bfco6phQ05ZYzEjCdBNO9U1vnnXOHoyIjYNpncDBGFZFo4c3IcNIcJiXhawuj/9ACGDwWC0jW3EioaWkUCQ84pRlcmQGosRwpKUaUSOLgSpo1BFIhw5tsexeByERYAIiwnqNMGouTGlrc/CA0fH0u2zSoXFWrDoJSZPPdhz8CjOf/W78csb/ooDrsAJQeqsxmGmh9R/DHO9AsHCYs3jqhnb3v7+g7CMNqJQ3Xsp6jiSMHI/AAfoXZ+6xqbjONix7zCrr8hgPIqoC2wBj8B2olBLWrpEKd3Sm8YpFEGp1zsEiAuv245FwzZaolDpPmkkahLHoleA4wOGWFVThciLUAQinMUdR9QxVI1qqxhqNotxlmN1NBmaHnMqYVFqT1g8uOtg/f+zQhaaraW6305fRt6ZxyrhfRrarozY/A49fmwcl778Utzyu1tw9EDz+Myq3CqMVkZb6lcmged49Eg9mKq1pihQ92rQfeKH1h+tWR1MugIRqpPsbymSRFjM8OS6Zjg2RsJgLAYn5l8XBuME519+dA9e+o2/hkZcUkgUanSn0DY0cAD0hDUW52vNM55M32ChRqNQXTFqWV5ucpX5qbkCkRwgLP7wjmH88p54EY3GqFa19mdjtav33T08g8d/4gZMluIHs6p6eCxpGiZGjyVaThZ5VHUrcp8rehSMzKl1gdfLdEVDTmkIi1tvuxH/dslL0NM3gOd88Dtw+tZGCtJfv3kvbtsdHQs2VFAwW9FjHbN+x2I14L5Z2Uc6g3sDHMgzFR2X/uRevPWau7G8IONNF2zEcx+zktQbDMg7tRwHIs+nGsvLygL0hM5eyk0Pj+O0FQX057oTgzp6ZBiGrgU6Fo/M1rCiV0FBYbFkDAbjOELFs8hFkgiLngEq20pYY9Hz91jMpBNo0kIdi0lFQloLz/Ss0+Gs8sSIGUCvxougEY7Fg2mFxcpkY5tBAmBCV9wtdz6A8//pPeB5Hlv/5yt44lmbyReCTLbdLpk+IixGRYhaEcKiXACmdre//yBs0z33ixCFeuwe4vLtT18jcWK6iOniPHMsMhiPIgz3mRfkCoyKSQ2jZJRSueZ0q9nJpwhK0/pJo1CTCIGUmlmLdSwGudz8GFZ0FKpqNYRF3Y6P+oxyLBq20bQ/2tamc+VYse7OKKhLM811z0t5VM0EE558HNzdEBYVUWm5D+JYU4h/xtEo1IzQ6Kc8fN/DePtL345qpYorf3Ulzn7K2U3rrC2sxUR1oq1jAoBepRdFtRgYtZvUQSgL5N6r6Z0JiyeqY1GtqRg9MhorLK7OrMbR7x7FGfwZx6dhDAajCSYsMhiLCBVXwrASCIuGYUAUuFjHIsXfySxWfZ0dXxRqf06CEiEsUiEyyLD48d/uwHt//gDKMYIhdSzGnY8o2p2Vt2NkHnM1A7vG4mdVEpGvM8dipTSPudnpRMtmJQFV3QqNQgVIXcLJea3l3DmOg5mKjpxEolCPDu/Hx975epxz3oX4yjW/wZq161BSTegR9813/nwA1959JPLcDhUUFGtGoLDpRTPtpjqcFZ3cE6LY+GxlD+ns+6Ndr3toFM/78m34064J/MM5a/Dqc9fjcev6YwU2ReTqhe6ToIiuYzGheHx4uor9kxVsGMoj3yWxb3gfGdTcuLm1YzxSrGFVX7Zr+2IwGIwm7r0G+M07Wz+3jC4Ji74BKq8jq+5Y9AlLXnFFzEZvv1MEmewvu4z8W42JcavXhax5olCPl7Aok/MXN6vfUAMdi7pu4PDoZLp9VjzL1+NDvW2KFxaPjk3hxf/8MTzprM3Y8rMvYfMGz4AgFRbbdVlk+gCtFC3ImXqAsFgk9Tt7VgPFQ23XiQzEMtwo1BQDelyX3K9H7wb61wNyT+pVd+w7BAB47KkbO2sDg7EEKapFnP3Ds7FtdNtiN2VJERV32k6sZtWopopwNGyjaT+KzwVv2vElSQzd6HoUqiQkcCwmiEKlNRaTOBbj6u/52+wXK23H7khYrDsWU0xwKUiFeuRoUhzHwcE9HseimIVhpYv+9J7vsPbSdlHH4nxxHu+/+P1Yc9IaXP2bq7Hp9NY6jWt71qJslAPrJCahT+7DnD7X0qaa5ToWEyQJUFG7XXGTIvDCCVlj8dDeQ3AcJ1EUavHPRfQo6fs7DAajc068vy4MxqMI03Zix1cMTYPAJxcWW9b3iShUIJLc2Mq+rBToRmwsH19jsRYjGFLBiYpN7dCuY3FsngxiltTofUsCh5phJRadwji4d1fiZbOSgFqMY3FVbwbTFQ1zteZO63zNhGE5yEocHMfBuo2n4NPf/DE+/rXvIZvPYyAnoayFx6yqhoV51XTrfIa3caigQDNtTJbDI7sM1wXovUdoHcWsR7SWRR79WQmHpyv1F8ev37wX//rje7G2P4s3XbgJzzljBdYO5BJFnEY5bYPIuMtXEgrcN+8ah8hz2Lw8nypyNYpD+3ajp28AA0PLmz43LBtTZQ3rB7LIyQtYY4zBYDx6+e2lwH0/AmYPNX9uRwuLlu3ATiA+tsRnegdb6iKdT1j0OuPk4yQs5gbJv2vFmOXdwUu92nAEpphl3xFixhXhYvZn1ogT08ee4WOw0vZnKp5Ir9pM6/dS+PWxbZv0RVYN4Xff/Diu+69PYqDPNwBEz3+7daEyA4BeDo8QdRziWPTXy6rNAlIO6F0LzI8CWhfrttvtRKF2y7F4NzkmOZd61R17D0OWRJxy0urO2sBgLEF2zuwEAPx8z88XuSVLC78LzkvaGm8cOFTNdMJikGPRi+VYsU62tmos+t1/ZkNY5MDV6w1GbsPTv/FPanUch9TV4yXiWEzgyPM6Fq/dfW2LuNUiLFp6k1hpO3ZHUajt1FgsyIXUsaGTo5OozDfiU5M6OsMIa2/FqEDmZQicANu20dvfi099+1P48k+/jIGhgcB11uTJxKfds+0lGfRn+jGvz7fUTKWOxUTCotAdYTGNi3cpMbxnGACwkU1yYjCWNExYZDCWMEkci7qmQuL5SOdZFIbpFxbJv+kYSE9GrDsKg6gZ4VGolLhoSbr9X99/DBsv+wMOz6TP52+3xiKt51eqRc8Mz7giX6c1Fof37YLjDpTO1aI7zTlZgGk7mFfD27ayV4HtAMPTzR3OybIGWy3jd5+/FL/5yXcBAE++8NkQBPKi0peVoZl26HFPlkgnOO7aDRZIh/foTHiHl94jktDqWMxIzSJZXhFQ9pznbQdncNqKAl75xLU4e20fcnLyl0UlZd1PxW1LUoH7xofHcfLyPIYK3cvzH963Gxs3n94SVzI2r8J2gNNW9pyQUSYMBuMEQptv/ndMFKpmAY6ZQFi0fH9bvQNjQohj0ftvMb1AkgoqbNEZz0HimRdvXUj6Z7mNOlRtQYXFqME3yyTfBwiL2/ceClghhvI4OUcAUJ1t/T7EUVqu1PDySz+Nz/znzwAAz7/giZCkgGe5ICVzYYaR6SNuQz2kD0kHj/2DztVpIiz2ryfXvBIdAZ8K23QdiCn6I/Uo3g6ExfkRcr16VidykvrZse8Qzjh5PUSRTWRiMB4tRMVepommBIgzLKgWYBS63SyOtQiLdnzdQF3TEwmBXvyioNexKPJirHsQiHYsUidmPQo1gbDoFUdVS8Xf/Ppv8Jk7PxPYZtrWphqLdmdRqO3UWCxIBagp48y9MahA45rT6NJuUTWqEC0R33j/N/CtK74FAHjiBU+EnAmPuV2eWw6e47F7pj1hcUAZQEkvtdbwbENYbKfOo5e0YvtSYXjPMFauW4lcYYH7/wwGoyOYsMhgpOSP28ew8bI/oNJBPcCkEGExehld1yAKHHSzvZlp/ghN6likn8fFLtYdjhEijr+Oox8qON0zTAaqtuxLFhXqpV1hcWyOOhajX3yykoCaEe0eTMLw3l3Qju2CY+q481B0zFrWFbpmKuGd+pW9ZMBo33jzDPv7tu/C6I/eh7H9OwJjNXuz5LpSx6afCVdYjDuty/Kkw3tkNrzDq+r0Hmm8mFVd8U7xCYsZSYCqW02CpiBwWJZXUrsCpbSORYksX45xrwLkftl2cAabhvLoyXSvs35o/25s2Hxay+dUAH/s2r6u7YvBYDASEScsmoBjxddhbBFKvM4yjicCTJSw2IbzKhWi3Bw/WUsahepp4/GssRgnwtGBqEBhcTj9PiuTQN5109cChMWAGotHx6bw9Evej5u3PIAnPOaU6O0L7vlv1/WZ6W20Mwh6nYJqLEpZoG89+ff4jvb2H0Q9CjXFOrR9bdQ0q3PsXvKzb11bq+/Yd5jVV2QwHmVEucSiYlKDyAiZwPqFURiWEelYtGEviGPRK56JvFj/NxUWkwhA3m34J4BSUUgWZGSEDHRbhxUzgcbrWDxz8Eyct+o83HLklvpnZb35vV+3m8VKGx06FoX0jsW8lE99n/iFRRpV6j++ThkbH8Ouz+7Cthu34fTHnZ5oHZEXMZQZwsG5g21FAfcr/dAsDXNac1+yZtZIzcMEHQP6O5A2YtbPiexYTBKDymAwFhcmLDIYKfnxVjLL+9bdXZzRHIJp27BjlEVd0yAJPAzbbisO1C+Qqm7NRFoXMR/jEKMxp1F1GGN0xbpjsV3XJdB+SR4qrM3HiEkZiYdm2nVHZ7sM790FSeCgHn4I9x0r12tUBpF1Iy9nI4TF/pwESeCwd6JRl/DPf/4z3vyKFwCOjQ9e9Qucc96FLev1ZUkHcyJEWJws0c+jT2xfVoLAcTiSwLEoeh2LmgWea3UVUgG3U2cokD4KVXFn5ieZNPDnvVMwbQenLM9HiuppMA0DRw7sw4ZTWl94RooqCopYF5IZDAbjuBEjGmqWAycmLhVAQBSq79+CCBi+GEtvvTu5kKCxHcDLbhvd41CLrS7LpuXdgT9vG9uN8UxLEscibVfAgNL2vYcgyykHmipTQH6I/H+gsNgs/N790B485R//DTNzJfz1p/+Bv33WU6K3L8gkqrTtKFR34k15PPh7KmS3CIszrrDoinDj29vbfxBtORa7EIV67G4SDduzKvWqjuNg+95DOOvUDe3vn8E4wXnBL16Ar97z1cVuRkdQx1rSOnmRjkXbSiWuZEQiLKausegZNKBuraRtBDqPQhU4oX6+aHxpEgGoybHo+3tPhUXqWPQLqEF4XZIyL+OfzvgnfPApH8RpA2Ty6YzanKgQFIXajhhGacexmJPST/46uPsgZKVxneuORaN7jsXt27fjq2/4KtQJFZ/+8afx7Jc8O/G6qwurMVoZbcsx2KeQPslYZazpc9VSIXJiogQi+jvQ6fnwCtUnEgf3HGQxqAzGCQATFhmMNokTy7pBXH07gAiLosDBNONjU4Mo+4VFVzijjrEowRAAVFcMjBJxYh2Lbo3FdutEAu07FqkzrxQjJtHITn8twzQ4joODe3dhwymnoXbgHhye1XB0JryjmkngWOQ5DkMFBUdmqrBtB47j4NOf/jTWbDod69/wZWzavDlwvf4c6ageKwbvn56XOHiOQ29WxOicGjozshbgaq3qJhRRAM83d6qzkgDNtGBZXRAW00ahuvdwXL1NALh55zhW92Wwtr97Dppjhw/CNA1s3NwqLB6drWJFj4K8cmK+GDAYjBOYGNFQtxDragTQKiT6Bzt5iQhLXrxuQGWBhUXqWKR9Fm2utT1eqBPQKyxGCZHdRMqQtnldD//eR/6jz2Ij3LH40J5hbFyzIt0+K1NAdgAAFyIsNkehfuG7v8BJa5Zj67VfweNO3xS/fepYbDcKVXEdi6HCYoRjUcwAch7ILgMm97S3/yBsE+D59mosmh0Ii0fuAvrXkWNKyejEDIrzZeZYZDyqGa2M4rvbv9t2rbelwEh5BACwf25/ouXjhMU0DrismIVqqYlFTbp/r+DGc3yLazFue7qmpxZRvNsUeI+waCZ3LHrPnX95Gg8qcRIyYqbFXRhE0DEMZYfw0lNeCgCY1WabljVso+lejXNExkHF2TSO07yU/nlzcPdBbPBMYmnXoXfO8nNQkAqBMbhf+9rXIOUkXPD5C3DGOa0pTlGsLazFRHUCJa0Uv7APKiyOV5v7JJpJBOtEUai8Kyx2GA17IjoWa5Uaxo+OM8cig3ECwIRFBmMJk6TGomFopMaibbclrvkFNdUgTjKRTzYIQmMuo4TFpDUWO5GS2jG4lVSj7rj0C6x+qMhXrLQfTTU7NYn54gw2bj4dtYP3wHKina8517E4FSEsAiQOdbRYw+79B8FxHK699lq87hP/hb7+Acgh9XHysgBJ4DA6FxKFOp9MWARIHOpUWYMeEhNLz7H3FqloFmSRh+C7zzKyANWwY8XoJGSldC+W9BrH3QuW7eBPuyaweXkBvZnuddQP7SM1HDYECIsjxRpW92VQiIkmZjAYjK5jWzFRqA4424qPDmhxLPqebUKAsEjFMVEh/y0k9ShOKiyWmuNa/VABqMmxeDxrLGrB+5s72twun7BYqao4cGQMm9atTL4/x3GdfXkiaqoBMbFSFo7jYHiGXOfvfebduOWHn8Oq5cuS7UNUyD3RaRRqrGPR99xW58j55AWgdy1QPNR8TTuBOhZTCYsd1li0bWD0PqBnDbleKdmxjySznLWZORYZjE5cX4tNXTBL+I4cF4VqI4VjUcjAdmyUjOSCDK1F6CXrq92rRU32AREW09ai1+zGNqlIZzs2VFOFwAmJtkddj0HL14VFQYIsyC3OzCDCXJdUvJv1TO4ReRGG1XzuLKezGotUoEsVhSqme95YloXhvcPY5Jl4RKNQS3o6Ie/NZ78Zlz3lMizPLa9/pk2S63rllVfi77/y9+hb1ZdIzPOytrAWqqXiSPlIqvUAEoUKBDsWBU5ocbYGQYVW1UhXu9LPiVhjcdiN7N90WoKJaQwGY1FhwiKDsYSxnXi3H4lC5WBaTlsuyvla80Cfalipoh1V04LIc3VxMIi4uoQCzyGhjhlKXGRsEGMeUa0aIyZRkarYgWNxeN8uAMCm0x4Dc+YY+jICbtszGToDVBF58BxQrEbvc3kGuPf7H8Nzn/V0VKtV9Pf3Y0Z10JORQgVijuPQl5UwPq8F7n90Lvmg2mBewWxFh6oHX2fqgvWKnBXNhCzyLXUTc7IAzbBixegkZFIKi9SxGBeFev+RImarBjYO5epxtd3g0P7d6BtYhoHB5U2f66aNqbKOdQO51GIpg8FgdIxtRoqGmgXASeJY9P1t9QuNvNTsGAQadQKlvBspuYDwEhG16OCqVooWd+hAje6ZWd+uKOY4jbp4SZCypG2BA8HutTKDo1Af3n8YAHDyuhQxmfRcyHmyb22+5Z7QHAlv+I2KJ339KGbnKyjks8hmUojBgisstjuxSMwQcbg8Ffw9dSwKvvuoRoVFEeg/CSiNAlqX6jtZpisUHkfH4vReQK8AvWtIvHBKduw7jIwi4+T16WNUGQzG0iGN2yxu+bSORSoQFdUiDs8fTuRcNG2zxcmXE5uTYeKELl1rfL82vzZRW5uiUHmPsGipxFmWYMiUtivI4Viz3BqLvAxFUGA7dv2zMMKEoIJEkhum1en6ZzJPxEqvS9F2OquxyHEcBE5IVTMxrWNx5NAIDM3AyWecXP+MCmllI/0zmDoELdPC9V+5Htsv246x0TFkMhmYkpnYJehldX41AGDPTPokg4yYgczLmKg2TyLXLA0CLyRqC10u7n4JY0VuBZ657plY19NeveXFZHjPMADgpFNZegKDsdRhwiKDsQTQTRuqETwYpZutncKSK+DwSt6NQuVhWO05Fv3uLM20IQpc4tl+NZ0IkVHCYFWPH2jrtE5dO31nWl+R50gbozrgGYm0b7bavmPx4J6dkJUMVq0js8BPX57FQ8fmMBexzawkoBjx/fTEGK773L+gvP9uXPapLyKXIy9gE/Mq8rIQKfj252TMVvXACNrxFI7FoR4ZxapRr8/ph97bXldrWTMhB9w3JArVhrEYwqJ7jeNicf+0axwFRcSmofROgCiG9+0OdCuOzalwAJyxuif1LFwGg8HomJiYU90CeCfa1Ui2k6DGoqU3b4fO0pZzrRGW3cYfberY0Y5FurzpERZjRNhQhv8CfPvZJMIyCSIVFiP6VyGOxYf2DIPjOJyUJgq16op1cp6IvFq5SdScmp3H8z76C1y73cDXXzqEgd42no80irYT16fSA9Smg69BUI1F2wL0UiPGtf8kEo0a5npMS1uOxQ5rLB67h/zsW9/W6jv2HcIZJ6+D4BdgGQzGCQUVCpM61wz/M9lDWgdcRiDC4pw2h4uvuxhX3391/P4TOBbjBEpDI8cg8RLOWXFOorZ6xUqRI+4/x3HqAlCSdy/arqevfXrLd7Q+nyzI9Zp5tRhXfFicqyIoEDgBs2rDsSgJEizHanJz2o6dymEahMiLqcTpjJhJVI+ScmDXAQBodiy69027NQXL82Vc9obLcN9v78P616zHqtWr6tuTBTl1TO5gdhAiL2LPbHsR6b1yL6Zr001jTPXanQn7BTIvt1XjESCxvK849RXY2LuxrfUXk+E9w1i9fjWyuWz8wgwGY1FhwiKDsQQ47aP/hzMu/yP0AIFHDxBriipZTigMQtdV17HYprDoqyenGRYkPoVj0bAhCVyL88xLnAMMiI5SpeimjQs+9yfctLN1wKedY6eOxf6c7MZvRgmLpCM6G+MejGJ4H6mvSAdrHrsqh9mqgfuPFkPXySsiSqoR6MicO7oH773kb1Gbm8aqi7+Ak57wjPp3k2UNOUWs168MYllORrGqQzNa77uJUvLIjaGCgpJmoqQGv3zQGoveep3UseiPQqXCYqc1FgWegxISAxuGyPMQeS5WCL/h4XGcuqKA/qwcuVxaDu3bjY2bW2s/HHPdo2et6e3q/hgMBiMRMcKiZjrgHDt9jUW/I4s6FpuERepYzCYXFvf/CZg5mGxZL7SGjre2T60Yvnw9CtXzvEwSCRsEFbKm9yZbXsqQ8xcxEFw/Dl+Nqu17hnHy+lXIKimeYRVXWJRyRFw0KvV97xqr4byLP4LdR2fwp9fncPETe5Jv1wuNQu2kNpTSQ6JNg5ycdcei57hppKvkumL63Fn949vbb4MXWmMxzSt3p1GoR+8GelYB+cG2Vt+x9zAe66l5xWAwTkzS1DcEEOlOsxwrVSwsdSzOarOomTVsn9oeW/fPX2MRaHXBJYlCTUtTjUU3CtVyLKimmtjlpts6euQePGnlk1q+o6KQIiqJHXlhjkWO45ATcyhqxfpntH6etw5fp45F2oY0wiLP8S1CcBTDu4fRt6wP/YP99c8kdyJUO8Li6OFRvPNl78Su+3fh1V98NVY8tzF5qmpW23Is8hyPFdkVGJ4fbqtuZa/Si6JWbBKvNVMjUagJ2yIJUj1Otx04LrlhYCkxvGeY1VdkME4QmLDIYCwhjs62FqoOcpNROEGEoWmQBB5Gm1GoZc1sEq1qhgVJSD7fTDVMSAIfuXxZi++IyQkci9MVDceKNdx3aLblO6uNgx+fV1FQRORlATU3fpOebstpPiJFJMcY5R6MY3jvLmw8tSEcbR7KQuA53Lwzus5iWbNgBByfbRpYtW4DvvLj6yCvPAV7xhsvKVNlHbkYx+KyvIRi1YAWIF5PlpI7FgfzZJDu6GzwbDpaY1HxtKWiW5AFvqWjm5EFmLaDmpE8eiUIReSRQh+vI4s8qnr4vo/OVrF3vIwNQ3kUMt1zzxi6jqOHDmBjSH3F3oyIFT2Zru2PwXhU8+u3AaUuOZIeDcQJixbAI4ljMSYKVQhwrNHBFDHXEFzi+N27gD99Kr3A53csAiQWM4x6ZKVXWEwgsAZB6yVVZ5ItL2YAOM0iqB8qePpqU27fewhnpx2socJipo8Ii3q1fj11y8HKwT5s+9a78bT1HTwXBYVEh3ZS00zpI2JhkNOUXidvNCw975L7fO1zo/PGd7Tfhiac4+9YPHoXcSu2UV/RcRzs2HeI1VdkMB4BpI5CjXIspoxCpQJTUS0CAEYro6iaEc8ruFGoPvEmJzVHoUa1EWhPWPSeJ4EXYNombMcmjkVOSOTC0y0dAie0tBdo1FhUeKXhWIxxoEU563JSDiWjVD9XVFisevoDfoG2HUROTBWFSttGibtfDu4+iJPPOLlpLIDneMi83HQsSbFtG7lCDlf971XYdG5zXb6q0Z6wCACrC6sxVhlrEm6T0qf0YU6faxLENUtLVfNQ5mVolnZC13tth+E9zfU3GQzG0oUJiwzGEidKWIQgujUWeZi202YUarNoVdMtIkYlGAO5Y/8UilWDRKEGOOMkgXxWiRBqKEoCx+JshXT8rYDj1AIiY+MYnVPRmxGRlQWohgXTdnCs5tZSRPOLAQfiWvTXpEyKbdsY3rcbmzzCoiLyOHkoj60HpwPFPYA4FiuaCcN18DmOg5/+9KewLRMDG8/CFd/9JdauXYOCIuLgVKW+zGyFCIt+R6AX6jSs+IRf07JTCaiDeTJoeWQm+CWgZljgOTSJnBXNhCRyELhWxyLQ6qRNiyLyLdtOul4twrH4p10TEDgOm5fnI126aTl2+AAs0wyMQj06W8OKHgV55cQrvM5gLDnUOeCBnwLXXrzYLTlxsKNFQ90CBCQQ1GKjUKXWKFQqBkmZ5MKiOk/WSzsIU3cgegb8IiMxObKOd4DQNoEUcXF13MFXVKcjF6vjukGgR7ge6m7PVmExtSOtMkl+UmHRqOLnP/8FarqJx63N4a/XfAob1yerZxWKqJB7pJMB0UxfeG1MKjZ6HYtUWKR1vMQMkBsEJne35zwNgk8rLFLHYhv9TUMFJh4GCqsaLswUHBufxny5yoRFBuME5MZDN+LsH56NbaPbAKR3LEYJkaZjphI2ZF4GB67urJuoTqCixwsz/lpyi+JYdIy6sCjyYiK3l2EZoSJkzayBAweJl+qOxThHnhDR38lLeVT0Sv16BQmLtmN3LESJfBvCoqcmphlYA7rBwT0HAx1psiDHitBe/nL9X1ApVbB241pc9b9X4aTNrTX52nUsAsC6wjpM1iZRjupvhdCv9KOkl+r3mOM40C29fs2SIAsydEvvilh8olApVTAxMsEciwzGCQITFhmMJU5QFCqFEyTougZZ4GHa7UWhVvWGaAU0HItxlFQDF397K/7w0CjEkCjUnEwG6ZJEoUoJhMWiG0MaFAtqWOk7WyNzNfRkJDd+04qN38zJAkqa2Va0yPixI1Br1Zaoy8et68P+yQpGisEzFwuusGhaNnRdx1ve8ha85jWvwehDfwWA+svOih4FI8UadNPGXM2AaTsoyNFC1EBehuMAY/PN+54q66mGRZe5jsXDIcKiapA6nN5bhDoW/a5CKizO1ToTFmUxWOyOQxEFqIYNKyQW98aHx7FpeR7LC0rg9+0yvHcXAIQ6Flf3Z1FgwiKD0Tl0NnzMgEcqyhPA917Uve0tNRJEofJJhEXLd86DhEXbbI7CpAN+YiZZFKrjELGtHVGIDvR4hcLSWPQ6gtTsjktSazKIqitwUaErDupCpPGtQdDj8Ahp07PzGJ2caU9YlAuAqMASc/i3Xx7Bq173Zvz8ziMA3L4Idf21K8hRx2onUajZPnL9A4VFGoXqdSwWyU+l0Pisdw0wd7hZYO4IDolm61HqjsU2hMWxh8jvUO9atBPbsH3vMADgrFNbB2YZDMbSZuf0TgDAvRP3AkjvWIwSgmzHTlVjkeM4ZMQM5vV5AIBqqThWORa7nmo0Rz7mRZ+wGFX3GJ07FkVehGmZsGHXaywmEaOoCBm0rGqqpL4fL9SFxThHnsiF93fyUh4VwyMsus80rwsy7fUKQuKlWHHQj9exGCWE6aqOowePBjrSFEFBzazFCqO2beO7X/wuLn/r5bj+F9cDQKAI7DgOamat7hZNy9rCWhi2gYNz6SP2B5QBlPVy3bVq2AZs2JHCsR9ZePQ5Fof3DAMAExYZjBMEJiwyGEscI0Ls4gQJhq65NRadQCdfHFS0oqiGDZGPjjYFSISqAyIQSQKPIA0nJ5NOUymB+yyJY7EY4RZsx7E4NqeikBGRk0W3xmJ0hy0rC6hqVmQtxjAOusLRptMe0/T549f1w7Id3Lp7MnC9noyIqm5hfHIKL3zhC/GjH/0IP/zhD7H2nGc2LbeyV8F0WUdVN+sxpnEOt4Ec6WAfm21+iUtTXxEgIl5eETBaDF6PCote8bmqmy2fAY1almWt/chZgAiE7TgKFZGHalqB90JFM3HngWmcPJRHbzb5TMMkDO/bjYHB5ejtX9b0uWZamKnoWD+QRUZij2wGY0ly078Dh7cA9/9ksVuyMCSIQhU4p40oVN8AYJBjkSJmSKRkHKbmtreNATUhrWMRRIz0DnS2W2Ox5kagUudiHEkdi4LUJMhu33sIAHD2aSnjpSpTgFLAfNXAS7+8Bd/YMo9vfOFTeN0zPNtJUVspEEEmjsVOhMXMAKCVg6NQqdgY5FiUPXUh+04C5kejz20a0joW6X2eUhQAABy7h1zv/vXp1wWpr5jLKti4dmVb6zMYjKVDWsei7n8me7DsdDUWAeJeK+mNyS/7Z/fHruOPCM3LPmHRjhEW9TaERc8kDoETiDvTdh2LnJgqCjXMsSjzMjiO64pjsUfuQdWstjgWvXUbu1VjMa1jsSA1JulE3S+H9x+Gbdk4+YyTW75TBAWapUUKk2pNxSff8Un895X/jX++7J/xsje8LHRZKspJQnvv7qsLqwEAu2d2p163P9MP0zExrZI0CtUiYyVpo1AN22irxuOJyvCeYfA8H+g+ZTAYSw82SslgLHHCIjIBUmNR1zSIAg/Tstsay6rqFnSPsFgzLIgCFzu5msZFWrZDajJyHCzThK41xCUqLEbVrKMkikKthr8sRJ2nMCbmNeQVAXlFgGaGu9QoOVlwHZ7pZ4wN79uFQm8fBlesavp8dV8G/VkJt+2ZDHwBKCgiyvNFvPi5z8RDDz2Em2++Ga973etalpMEHpbjwLAcTJaTCoukg32s2DxrcmKerB8Vo9q6LRkTJbVJpKZUdQuywDWJz1WdOGPDolDnu+FYbCOpVJF4aCGOxb/sm4JhOdg0lIeUoCZoGg7sfjgwBnV0ToUD4IxVPSdk4XUG41EBfdnvmsNpiZEgClXkuhGFKoeLmIKcTJxxHXzVWroJMgCCo1ArwZN+Gu3qlmORCovzSFQwuy4sRgxOGlX3vDWeV9v3DkOSRJy6YU269pXHUUUOF77l0/jLrnH84TV5vONNFzUvQx2L7UJdmG3UVqqT6SX3mTrX+l3dsejpG6lFct29bR/YQD6Pc6smJcJ5Erw8R8TFdmosHr0L6FtHImHb4IHdB/CYk9eDb6dINYPBWFJ0tcaik67GomZpyIm5JgFt79ze0OWpQ88vLHqjNYF4sTSJY9EveAXWWESjxmISx6Ju6xB4oeldTdd0aKoG1VIhCSSGk7rm4ur1RdVYLEgFIixazcKi91x3w7Eo8mLq+E1vdG2U2/HgbuL+C3Kk1YXFECHNNEy855/eg61/2opPfuuTuOhfL4p8R6bnReHbSxvqk/uQETLYM7sn/boKeRaPV8gkNeq4TROFmkRofaSxf+d+rD5pNZRMsmtWtao47QunYUzrUr+NwWCkgr01MBhLnKgai5wgQdc0yCIPw3ZihbEgaoYF0+OKVA1SYzFu+K7qqUMn8EQ0qpTnse/hB+ufZ11h0V/DLwhFjHciRNX906NqUQZgWDZmKjoKCnEsama8EzEvE/dglIs0jIN7dmLj5jNaOr4cx+HMNb146Ohci5hmGgZ6MhI0PouXv+o12Lp1K57+9KfH7os6Fvty0YNZBUWEyHMtMawTJQ0c1xCGkzCYlzFT0aEGXIeaYUES+aZjp7U8/XGl1JU336FjURa4VMJoff+iG4sbcC/cvHMcK3sUrF+Wvm5RFLqu4f6tf8E5513Y8t0x99qcuaa9QUIGg8HoGCc+ClXg0Bp16qclCtX3b96Nwgzal5zQDaeR2LV7dh5ItnzT/mkUqitAiRniaIs6LkFuFoBsC+3VWHSdc3o5mVMtSRSqobYIiw/tGcYZm9ZBkgL6B5YJ/PHDwHzzwIxl2UBlErl8D173kmdhy1fegBeeIgCqb9+85O6rgyhUoENh0X1WBjlNTY0Iwd5B4tosqRnpFRv7XLff+I722+ElReRZ0zptORbvBnrXAXL6fopt27jhr/fhOec/Pv1+GQzGkiO1sBixvOVYqYWqnJRrivw8NHcoVJykbjIaGendhpe4GotGgvdHv+DVJCxyrrDo2MSFyAe7EP1QEdK77PiRcQzvHEbVIPX9BK4RhVqLmYgWJSz2yD2ombWWKFSvsJhWCA5C4qXUYpbXsegXib0c2HUAK9euRL4n3/JdRsxAtdSmfWuaBrXiuv0kEc9/+fPxtV98DU9/Ufy4CL0H04h5XjiOw8r8ShwuHU79O9Uv9wNoCIv0/k5dY9HWHzVRqI7jYNut2/CEpz0h8Tqj2ijkFTLKTpeSJhgMRiqYsMhgLHGihEVekj01Fp22aizWDKupjqNmWJB4LrYTXTMa60g8ibR0HBu2p9YhdaN1y7E4UwmfhZhWWJwoaXAA9CgispIAPYFjMa8IqBpWoCsvjuF9u7Dp1DMCv3vC+n5MV3Q8cJQMLGoaeWn67Tcux94tfwQ4Dhe/7V045ZRTEu1rqqxDFnjkgwYOPXAch76sRM6F596ZKKnoyYipokQH8wpmqwZUo/UFpKq1RqHW3BqLfrrmWAyIWU2CIvGB7lXbdnDzzglsXllAb6a7tQ4fuvtO1KoVnP/M57d8N1KsoS8rYnlPd2s6MhgMRmIcJ7Lem+G4f2tjBvxahJKgKFQ7RFgUEwolbnyl1Ubd5ZYoVLlAnG9Rx0XjWylOu1GoRfJTrySrrUcddlpUFGrVdWE2noXb9x7C2WE1a2b2A3deRf7z8J+3j+LbNzwMyDm8700vx5mnuuurM83rc1xD8GwHKizqHTh/lV7yM1BYVF3x2BufMANI2eaY3d41ZJnx7e23w0u7wqKZUliszgCzw0DPqrZiae/evhfjU7P4u2c9JfW6DAZj6RHlQAxcPkpYbCcKVcqhajaExfHqeKjYRKMha1b7jkVe4BM5FiOFRb4hLKZxLBq2QYRFz7unZVmwLbsuLHIcB57jIXJi03kJIioKtSAVYNomym5/h4pUTTUW0R3HYuooVLkhLEbVkTy452BgfUWAOPR0U2+6TsXZIq77ynX4xXd/AQB42etfhtPOPi1Rm6g7VBbbq7EIAKvzqzFeGY+tjemn1+2TjFZHATSiUNPUWFQEBYZlpK53eaJy5MARHBs+hqc+96mJ15nSpwAg0e8qg8HoPuw3j8FY4mhGeCdekDPQNRWiwMGynUTpWX4cByh6RBzVtCEkiEL1OhZFgQPghA6mqRHHQEkmLIYP7ukpxb6xOdKx68kQYdGwnEgRFyDRoqqevsaioes4cnAfNoYIi2eu7oXIc7juQeIS0HUds7d8DyN334jx/WTG/HQ5+cvhVInUjpQSnNP+nITpit507ONzKnoUqeUWiDrq5T0y5moGagEics1orsNpOQ50y4YstN5kskjcsiW1M8eiJPJtORazUnAs7kPH5jBd0bFxWR45ubvC4p233oDlq9bi5NPPbPnu6GwNK3ozsbG2DAZjifPAtdGxlUsdM3ywzqbCYlBdu6YFYxyLokw+C4q/SurAog6+dsbT6o5Fj7CozUcfFy81C4ExsbGh1IXFakLHIhUWIxyLjgOAqzv0HMfB9r2H8NhTNwQvT6M/R+4HbFKf6ZO3aXjnHyrYsncKjpghx0trXlVng9vV7lgmHfSLGXCNJM6xyPsdizOAlGuqQwlRAXKDwNSe9kRiP+0Ii5zQ+vsSx8h95GffunQ1HV1+d8tWDPQV8LQntPZFGAzGiUdUzcTA5SNEu3Yci3kpj5pZgwMHEi9hsjoZKqhRccwv3Pgdi1FtFCQhkbDoF1C92xQ5IqY1ORYT/D0NcjfSSbs1s0aiUN2hV0mQIt18QLRjkcaN0rp9PMdD4IRmYbELNRbbcSx6o1CjxNPh3cOhwmJGzDRFfzqOg5lbZzB5+yQe2vZQ6uOi95TMty8sriusw5Q6hTktIGY9ApEXkRNzmKySWH3quE1TY1ERFBi28ahxLG65aQtkRcYTL3xi4nUm9ZiyBQwGY0FhwiKDsUSh3dKo2oGCpMDQNUhujcV2HItAs2CnmTZELj4K1SsgiTwPO2JmtWrEx3EoUvzAy0yle1Go4/NEWBzIKfX4zXKMmNWjiKgZVuoai8cOH4BlmqHCoiIJOHNNL/68bxITM0W89pKLMX/X/2LorKfhtf92OYDo+pJ+xue1esxpHMvyMopVo0lYHJtXUVDEFnFZNazQbQ4WFJi2g7H51rpWVd2EyHP1FzPNdTXKAcInx3FQJB4VrbNZeX6HZFIUiQ90r968cxw5WcDJy1sjWzrBcRzceduNOP+Zzwt8cR0p1rCmL0OuB4PBODHRq8Cv/xn471cudkvaxwqvWWjBfX7HCou+/oxfQIuqsZjpD9/u1N7GvqOEtjg4jghMdFuZHlLzMMr1IfqiUB0bbSlr2jwRvIyEjkUqkBnJxepj49OYK1XwWOo49EPFuNkDUOcncckll+Djt2p43wUKvvt3Ijg5D/C8R1icad2GqKD9KFRaY7ETx2IPAA4oT7R+Z6jEleoVFqlj0T/Ilx0AqtPx93QS3AHiqdm55AOivJg+CvXYvYCUdx2X6fn9rdvw4qefCzFBaQIGg7H0SeJYPPuHZ+N5P38egOiaeO1EaxakQl3sWpZZhpJRwlR1KnDZINcdkM6xKEpiW8Ki97glXmqKQpW4ZJGVuqW3OBZtd8Z3zaxB4qS6m0oRlFhhMUp4ouLdrNaY3CMLcquwuAg1Fr3XK+wYK6UKxo+NhwuLQga6rcOyLRiGgbe97W2Y/N9J5E7N4ePf/Hgiobdpf24/KSO2Xwd6TWENbMfG3mJ4ndAweuVezKgzsGyrfk7SiJzUsditGotzs3P1e3MpsuXmLXjiBU9EJpv8ejFhkcFYXJiwyGAsUajbKkrE4iUFhq5DEnjYTvSyUcx6IkZVwyKOxRj8jkVDCx98UUNq1nnxikxGyLJR4poeEMEZxdicCkng0JMRkHFFzVKMmJVTRGim3eTA9L5kSXzwn9SDe3YBADZuDhYWAeCpmwZxrKji9W/+F/z59tux4hWXo3/TY1FQyAvNTDn54NZkWUNBESAGRI36GcwTp6HmOX9EmBRaxOWKZoY6AQfzpIN8ZKb1JYI4Frn6BHpah1EKaV9GFFBJEJ8bBXVIluaKAIBScTrRejQW1+9KvXHnOE5dUUB/rv3ZjkEc2r8bY0cP4/xnv6DlO9WwMFs1sH5Zrn6PMhiMExA6aKV3IHotNhECi0VfJyLERwCtQol/0FOQW6NQeQlY9xSgf33INm3gPy8Etv4n+aeabjZ5C4LUOFall0SrRkahys3HFSaMRmGoJKYz00fiS5MIixxH9q0lFxYf2nMQAMKjUEskqgvzo/jA+9+PX/3qV/j5P2bxoQsVcI5FHJxAQ1isBTkW00dw1ulGjUVeIO7WSsDgtVkjgp2/xqKYbXUVKj1uLG06x09Ym+bLVZz07Dfg9rsSxqvyrmMxzUD+0bvI74nSk7qJR0Yncf/OA3jJs89LvS6DwViaJHUsjlfHoZpq5PK2Y6d2TOWlPIl+dIDB7CAAhAozVFj011ikNQkBgAMX2UZBTOZYjIpCVUQFlm3Bsi3olp7YWUajUL1RjI7tcyy630m8BN0iwlnosUQ4Fmkdw+la491W5gOExS44FtNGoTY5FkOe5Qd3k77IpjPCHYu6pcNyLHzyk5/E97//fay6aBV6zuoBHzLWEgWNQs0I7QuLq/OrAQC7Z3anXrdX6cWcNgfN0uqOxTQ1FhWROBa7ISyahomLL7wYW27a0vG2FoJSsYSH7noIT31e8hhUx3EwYwRMdGMwGMcNJiwyGEsIb/dPdMW9uBqLmkYEsrhlo5ipNjrUxLEYX6bcKywKPAdDC595pxo2rDjHokdYnCkHvxQUq+GDbWmPfWxeRV9Wgix6hEU1uvOcdyMw5zwC50SJdBBlgYckBp+1kcMH0TewDL39A6HbPmtNAZLAYeOL3ow/3nAjsqc8GQDqTrXpFI7FyZKGnCxCSuBYHMwrKKlG0/WcLGvIBTjkqm5dxCAn4LK6sNj6EqEaNkRPFKoa4VgEgIwkoKbH17yMQhZ5cByH0hwZ+DS0mAFvz751q3nfY3Mqdo6WsHEoj54uOwfvvPVGZLJZnPOUC1q+G5kjv1NnrOrt6j4ZDAYjNWb431CHvk5ExKUCaI0+9bsj6o5F93lk20S0611DHGRB6GXStvkRAIBR6nBwQZAbxyoXiLBUCxIrHc/yHdZYVIvkZ24ZcesldaqJSioRbt+hUciSiJPWLA9eoDQGywbgWLj8kmfiz3/+M155poRldCyOxtFSYVENEhY7cSy6A216B8IiQIS12gxa6gPQGoveLoxaJG32Dx4rPa6o3FksOwCAEzBdnEdN1TAzl3ByAZdSWHQc4Njd5HdFSp+s8IfbtkEQeLwwRfQYg8FY2kTVTPTjwGlaftb3973dKFTTNmHYBpYpywAA+4r7Apet11j0udy87jSBEyKPKamw6N+G9980CtWwDdiwE9fCMywDPM83R6G675KqqULkxSbHojfqM/BYIvabd5/BM546x5IgQbO0+jXqhmNREjqMQg3pnxwbPgYAWH9y8ISxjJiBZmgwbRPve9/7cOutt6LvvL5U7fBC29GJY7EgF1CQCtg3G3z/RjGgDGBen4dhG9DciWtewTwOWZDJ/dgFl2G1UkWlVEEpaV/kOLPttm2wLTtVfcVZdRaG04W+GoPBaBsmLDIYS4hpjytNdGdkRUV88qIMXdPqy6oRsalReIU8zbCIqBkTM1HzCFGSwEGPcCxqRgLHose9NlsLfimYq0UIiyndmiPFGnoyEiSBr0ehliK2DwA5mXTyZz0C564x0jFb2RveQZyZmsDA0IrQ72+//nf4t396IU7tdXD/jICTTz29/p0s8pAELlJU9TNd1pGTkzkWB/IybAcYc0Us23YwU9GRk0X45eWKbjbVSvRSUERIAocjs60Cs0prLLrbo45POcyxKPGoGRbMDjrQirttLaGgWN+36DoWPffTzbvGwXPA5uV58G3UbYxi62034YlPfSZkpfVlZ6RI2v6Y1endBwwGg9FVIlx7Np2hH+fu8gqJjhPgWJSI+EhdEVTgEyImdOhld3tkHTOo7l8aBE+0qeI69Eojzcs4bk3pqT0BjsV26iu6bc4OknOUNM5VcIXFhPscm5rFyqGB0Bn//3fbXTj7WxpGSg6WV/fi3HPPbV7AdUmAF8lx07qQTct04FgU3X5Ux8Jirxth67sfjZp7L3me47UiqQvpH8TN9HbVsViqpIx35cXm34U45o6Q6NaeNY1alSn4/S3b8PQnPRYDfay/wWA8UoiKDQ3C6+Tzi0KWnT4KlcZiOnAgCRJ65V4cnDsYuCzP8eA5njgcQxB4ITYK1dDi35f9jkXvvwVegO3Y9eMXuWQTSnVbh8iJdSHUNMy6sFezak3fyYJcd+SFEeVYlHkZIic2ib+KoBDRyr1E7ThM/XRaYzHsWs5MziDfk4eSCR47GX1gFDsu24GDBw6ir68PT3va01K1wU/FqJBzlqKu/i8/0gABAABJREFUYRCDmUGMV8dT/171K/0o6SWopoqa1UYUKq/AcqzU+w2iWu6wf7XAbLl5C0597KlYvjpkAlwAo5XRBWwRg8FIAhMWGYxFxPSJYQcnG5FWVL+IjkIlwmLdsZgyDpTuxxsxqpk2JIGDaUR3XpqiUHkemho+aKIFREsCwI4dO1ApzQMAFE9Nl+kAx6JtOyi5NRB1zzkRuPbcmqNzKgoZIoZl647F6JeRumPRI3zuHiPtH8iHdxBnpycxMNjaQXIcBz/51tfwqfe8FRtOOR1PPW0NRudU3Hek2R2Rk8XEwqLtOJip6sjKYmBkqZ9lbrTnyBzp/M9UdVi2gx6l9YWmqluQRS6wtgHHcejPyRifV2H7rnXNrc3I+RyLSkgdn4wkQE0gRkchu+7RqPsyCIXW2/Tc3zc9PI6Ng3ms6Gl/pmMQ88UZPHz/XTjvmc8P/H6kWEN/TsLyQnf3y2AwGKmJcCM6dAAswtUIwCcsWmhxtvES+Zw6G93t/faOXeEDmlSEo8JiJb2wuGvXLuiGu09BahwrjZSktQcp1GGozbtCpOf57Fjpo1CpQJcjjo7A2oVB5JYRMSnhYNP49CxWDva3fO44Dr7+9a/j7z5/MzavLKB3cBUwvr1VsMx6HANSLlgAFbNtGxYbUagx8a622Rxn6ifTR66N/7yYqi8K1QHUOSKG+ren9BKBM22dwyB4EeXUwqKQ7l46dg/52bcu3X4AVGsqbr7zAfzds56Sel0Gg7F0SVJjMenytmPDRrpnW05qro+4IrcCo+VwEUDkxZYoVC88x0dGc7btWPQcNxWfSm50PXUO6pqOn/3nz2BZwWMthmUQcdQdXlVrjeNQTRWiINbFwrpj0ReFun//fgCAZVqRjkWO45CTcpjTGuMFMi9Dt/XuOhZ5CRbSjS3JQmM8JOxazk7NYmAoOIXi//7n//CDd/0A0jIJYqE7KUFVowpZkJtiatuB53k4cCJrkQYxkBlAxaigZtbqjkVJSB6FSs8pjXTthFravshxxDItbLtlG85/7vmp1hurji1QixgMRlKYsMhgLCJecQ4A9k81Ogwcx0HguUjHIifI0DW1XquuZiTr8HsH6DKSUHcCOo4DzbQh8Dxmp0l9Gl0NntlU9dTAkwQuVli0rNbO7eTkJCyT7NsbixlUS7GkmgjSmWg9yKjzFMT4vIqCLEISeCiusDgfE4WaU1odiw+PEGExSsIrTk9hWYBj8cpPfxjf/9oVeN073ocPf/GbeNIpqyAJHK7b3jyImZMFlDQzkdA2XzNg2Q7yAcJgEAN50rE96joNJ+ZJh7eQae7Mm5YN3bShCOHbHczLmC7rLSKv6rpgaYRqXViUwqNQVcMKFKOTQu8nPaVjkYqdFfdeqOkW7tg/jZOX59GbTf4SkIRtf/4TbNvGec98XuD3R2arWNmTSXwtGQwGY8GIcCzWhcVYx6KnzxM0MEMHWuhglPvzm7/dhpGJkDq5GnUsuoNp1WJ0GwIYnxiH4zgkZkpQGmISrSlY8g1alCcb+xSUZmHRbiMKlToWc0PuvxMKi71rSV1EPdlg0/hUEat8g3mm7eBjV/4E73rXu/DuZw3h1+86D4VVpwAzB4g4R+G45tp9VFj0H6uURftRqK57wYgZ+DK11lqJXjJ9pG0twqK7nje61zaCXZZKD7nnO3VPAgDadCymqdd59B4gNwj0rEzdupu3PABV05mwyGA8wkhaY5ESFTNqOVZbNRa9rM6vxkRtInR5kROjHYucAMMyQtshSmLqGouO4zSJldShOK+T5x+thbfr/l34r8/+F47sPxK4Td3WIXBCffKtrnombVsacSy6owWKoEC3Wx2L42Pk/V+v6ZGORYCItmWa2ABSh0/z9NNsx25/ko9LmjqAXnpk0lcIu5azU7NYtnxZy+e//N4v8YX3fQHnvfQ8bHzPRgi57rz/VoxKV4TFdulT+uDAwUR1AqpFYnGTRuwCDWGxanbeH1nKwuL2e7ajNFdKFYMKACPlEchc+qQGBoPRPZiwyGAsIjOV5s7vvvFSk+gncNHCIi9K0HWtLiwaCcU1r+MvKwkoqQZs26kLQpLAww6ZkUepaF5hMc6xaIXWWHQcB47jNNVYnK3oLa63ILERAEQ+vbDoOA4mShryigCR5xpRqFqMsFiPQm20ZedYfGTZ7PQk+geHWj7fdvuN+NAXvonX/uv7wHEcZJHHY9f0YcvBYtNyeUVERTMj3auUafeeKiQUowoKcTaOFF1hsUReAnoyzS8TFY3WRQyXUAfzMmarel04pKiGDZHnG45F91pRp6ifnCQQl2uAGJ0U+juhqvHC4q+u+RZ23HcXANTvBXp/37F/Cppp4+Tl+fo2u8Wdt96A0856PAaXBw8EjhRVrO7PIN/luo4MBoORGiNcWKzXpzMi/t46TqN2ItBabxHwONZqTT9rRsSzQG9+BrcjLFKqmkFiJKljUcoR8arkcyxWXGERDlneOxjr2Okdi9QBWXCTDSohIqqf/vVAZaqxfgzj00WsHOpv+mzHhI1f3nAHvvWtb+E/nitCyPQAQ6cRMbV+nADknsb1AUi9RaOClpHL/BAgtemy5wUAXLzztV4rMaQ/kukngrPpu2frgqS7Hr13goRFKipXp5K2PhyeTyQs/tfPrsPNW+5313FrLCYdGT56F9C3vq36ir+7ZStO3bAGp5+c3u3IYDDa58k/fjJuOXzLgm2/kyhUP+0IVTQKlbImv6aldqMXkRcj2yxwAkzbDBUW23Es+sU9KviUjFJ9n0D8+6RhE8ciFQ/9jkWJl+qioyIokVGouqrHRrAWpEKTg43Gq1Icx0ntMPWTxlXnhV53LWRC2uxksGPx9utux79+7F/x+o+9HpzIoRKXXpCQslGGLMixYu1C0aeQtIex6ljjXoickt4MrcdYi5t0lYAkUajX/+J6bLlpS8f7SsuWm7ZgYPkATn/c6fELexgpj2BADKnDzmAwjgtMWGQwFhG/UHRgqtLkYuR5wIhwbXGCBEPX61GoSWsseusjZiUBFd2CbtnQXMejxCO2QHTFG4Uq8JG17HTTjnTbWYbR5FicqxlN4ifQXWFxrmZAN230ZkgnX+R5iDyHcoywmJEEcEA9ltS0bByYLEeuAzRHoY6PHKmf26t/fiOe87cva1r2/JMHMVVpnjFaUARUNLPlnARBY2QLcrKXAY7j0JeVMF5S64IrAPT73Hll16HqvU5+hgoKilWj5T5UDQsij/oLFRUew7aVlaljsYMai9SxGBOF+uDdW/DNz38Mt/7xN+56rmPRPd6bdo5jeUHB+v5c6DbawTQM3PWXW3D+s4JjUKu6ibmagQ3LcsiECLAMBoNx3IgSe+qOxQjx0R+xlsKxWIt6NPvjOL0uu5RUVQPgPTUWOZ4ITBWfw8IruPmjUO2AiNc4arNkOxl3YCRpFGrvWiLWTu1LtDiJQiX7ODI6CdOy8fhVAv7y48/hra+7iNRrlAvA4ClkuyP3NVaW843rA5Dl9EqriHrGS4CnXUqEyLRwHNmHETPwZWqkVmKY+yDbT0RP/z3rj0KlblcxxLEIEOG2UzgBpUr0Md27Yx/e/omr8KPf/Il8kMaxaJnA6ANAzyoi+KbAcRz8/tZtzK3IYCwCqqnic9s+t2Dbj3Igpl3ecqzUQlXW97d1ZX5lZDynyIuRcawCHy0sipIIXU/nWPQfM41CpaIWFdfiBEvDNpoci5pK+kMOHGiW1uT+UwQl0nmpq3qsoy0v5ZuEt4yQaTp3NuzYsZw42q1JSCNwQ4XFqVkMLCd9kamxKRg6afdnvvsZ/ONb/hEZkUxO6qqwyC+uYxEAxipj9XshTVvoPdgNx2I1pi9y5MAR/McH/wPXXXtdx/tKy5abt+D855wfWgc8CNuxMVGdwKA8uIAtYzAYcTBhkcHoMppp4cVfvR13HYwfGPI7u44Va5ipNjphcVGoEES3xqLrztKTdSC94mVWJqKVaTt1QUgQeNh2tEjZFIXKc9Bq4QKOHlJjsf69Vm0RFjVfrGtYjUHagY8SYP2MzVNXXqPDnJEEVGOERZ7jkJEEzLvRsQenKjBiXHW6pqJSmsfA4HLc/ddb8c8vew623nYjAKC3v3V21ePW9dWFYkpBEVHVrUSOVOqC7csln2U4kJMwWyFi7mRJQ0ERW8Qs6uCLcu0N9SioGRZmfcIoqdvZWE81LMgCH7qtrEwci53UWKTxtmrEfWmZJr7xmQ+T5ark5aXuXlVNOI6Dm3ZOYPOKfKrzmYSH7tmKarmE85/1gsDvR92al2esbmNwlsF4NKNXgb98dbFb0TnH7gV2dfhiv+f6+FjJpEQ5H+jgk98h5sU/YBk0gMn7hEXXARnpWNR8k3v0+Mk+YVRUAxCV5rYpvUT48/aJvMKiqLTWjkwdhVokTjMqZtXCHR1N9K4lPycfjl3UcRyMTxWxcrAff7lnB57wskvx3f8jdfmW9fU06khmeoD+DUR8O3p3YwNyoXGdASI0GtXWYxVEYNkpxMnZDoIcfR8B5P7ghHDHotJLBDm/29DUiBOw7lh07xUpQIyj1yKpyBuFIKJcDRfmbdvGOz/1TTiOg3LV/X3lhOSxulO7AbMG9KxpvkYJuHfHPoxOzuAlzz4v1XoMBmPpk8axaNhGrBCZVqgUeKHutgKAVflVkcuLvBgZ3ypwAkwnwrEoCbAtG1bMRGvvcfhdmtTV1lJjUY0RFi2jSQykwiIEIi563X8ZMUOiUEPGWpJEoRakQpPwJgty/dxRN1yYIzIp7Uah5kXinNdMLfBa0RqLux/cjbe/5O349Q9+DQAo9JGkAHrPlPT4VKgkLHYUakEqgOd4TFQmUDNrqYVFhSfnoxo36SoBUVGojuPgyo9fCdMwj3tk6rHhYzi87zCe9rynpVpvVp2FbutYk1mzQC1jMBhJYMIig9FlqpqFnWMlXL8jvpBwseYvHu7goaONQtwCx8G07aZ4VC+cIMLQGzUWEzsWPYJmThbqohUVOkWBi53l5nU9CgIX6FikYqJuBddYpOiqCtkjMs2rJjTfsYQ5FuvbSHjsADDmija9nrhPReRdwTV6EIfWO3QcB7vcGNShQvgAWtGtVbl7+/34yNsvxllPeDKecP4zQpeXBB5nrSo0fVbIEGExSc3BmYoGReSRl5MPLg3kaISpjfE5FT0ZsUX0o25OJcKxOJgn5+HwTKPja1hEIGwWFm0oIl+vuegnJ7cfhXrqigKe/5gVWNlDOuFRNRZ/+7MfYHjvLixftRY1V1ikjsWSZmLHyDwmSxo2DuVDY1vbZettN2JwxSpsfszZgd8fK9bAAXjMqr6u7pfBeMRz/YeBmz4O7L1xsVuSjspUs6C09T+BGz4CqHPh60RhGcBPXgX86GXxyyYhIuaUE8jzxokSMf0uhCBXAh14o9sx3SjUqDk/PiGR72CGe1XTWwWxTB+5Bl6xq8mxKPmExTaiUGszgJwlIqWoJK+xmB0gy0/ujl10vlyFphvYffAonvuGD+Gxp27Aq5/lef7QOpJKLzkHPauB8e2N7+V8Q/gFiNBoVNMfaxyClCAKNUGNRaA1wtbvWKT3jhIwgUdx+2F+t2o78NE1Fn/0mz9hy/07sWHNioYAKYiusJjg/B67hxxT/0mpm/b7W7eht5DDhU86K/W6DAZjaRMVbRq0bNzyaYVFoDkOtSAVWlyMXpJEoVp2eK1HwX2Hi3MXeo/Tf8zUpVc2yPNB4shzry4UhmDYwcKiLdhN2wXio1DzTj7Wsdgj96BmNp4rGSFTFxapaOWtHdkOcXGsYZy3ikxU0Syt5Rgty8LczBymxqbwrle+C0OrhvCCVzZPsu22Y7FqVFOLed2E53gUpAImakRYFHkxVVtojcVunI8ox+Jfb/gr7rrtLqxctxK16vEVFrfctAWSLOFJFz4p1XpjFdJ33ZDfsBDNYjAYCWnrr+uPfvQjXHDBBVizZg0OHToEAPjqV7+K3/zmN11tHOORxbxqYONlf8Bv7j+22E05LtBIyShmfTUWOQ6451BjYFHgOZiWg1A9iSeORVFojpiMwysK5qgbzrah1qNQ42ssel2PksBDD6g9UNZMZCQehuVExnjqarVFsKoZfmHRiEyjj3MOehmfV8GBCGqUjMRDNezYALOsLKCqWTAsB7vHSujLSpEi3vQk6fD89qffx0sveiM+9Y1rkMmGv1QBwJM3NItJvRkJNd1KFPc6VdFRUMQW12MUy/Iy5qoGNNPC6LwauD51LEbFclJh8ehMo+NLr6MkcJgvknt7rlyBLPLgw8ojSQJ0004U/epHkQS8+sknYY0bXRpW+3N2ahI/uPLz+NtXvRannfW4urDorbF4884JZCUBpwwV6s7YbnHnbTfivGc8L3S7I7M1DOQkLMuzYuRhsL4IIxAajTk/srjtSMsXTwE+v7HhjCtPELdSnHsrDLqdhPX3YomIOaXCoqVHCEL+AcvAKFT37x095kSOxeYZ7UIHUVEV1QA87goAQLaPxKt6j98rWAmyG1nptrGdKNTqDInj5AXiXEwa58pxQGEVMHMwuGalh7FJIlZe/dM/4OKXPBs3fPfT6C94aiGWRsnPrJuksOxkYHa48b2ca3bDKQVXAG4/WSAQ6liMmtxmuc7DsNfYTC/56RWAAbJdTkTFTQYpTlExtXkyFwBAKgDggGrCepdR8FJoFOpcqYIP/Mf3cNHfPhPPesrjGo5FXnTdrwn6QUfvJkJwblnqpv3+1m140dOfBElitZzbhfVFGEsVv4MtjljHYkRMaRhUSLQdGxzHYXl2eeiyEi8FOhape0/gBRi2ERqnKkidC4t0X2V34gkVdaKERcdxYNhGkxDndSwCgMw33ucUQYFhG6HColpT4x2LcqFJWKTxqoBHWIzpF8TRbo3Fc1aegw29G6BZrY7F4nQRtm3jdz/+Hc5/7vn46s+/iv5l/U3LZMUsJF7Cr/f9Gjumd7Tb/DrUsbhYNRYBEoda1Ip1YZHjOFimhVee+0rcd8d9kevSe7BmdS721crB29BUDd/4xDdw3nPOw9Oe97REtRi7yZabt+Ccp56DbD56jMzPaGUUEi9hVTbaDc1gMBaW1MLiN7/5TbznPe/B3/zN36BYLMJyxYf+/n589atf7Xb7GI8gDk+TB9Sv7310CIszFT00ypG6n+bV5g76YF7G9mPz9fGphrAYMnDDCzB0rV5nMLGw6FkuLwuo6UQooy7BRI5FzzYknocaIOBUNBM9iuT+f/jLiK7W6k4xykSpeYCyWNWRlcM7hP56lVGMzWkoZEQoUuNPoCIKqBlWbOoUcXiaMG0bO0bmsLJXAR+mkAGYdR2Lb3zXh/COD30aghg/eHPmqgLUI9vBlcmAVl4WoVt2i9gaxFSJHJsYEVnqZ6ggY141UNMtTLjCoujLt69oZN9Rzr2+nAQOwJHZxr2g6vSe4jE3O+1ui9TUFELOG91HWU3/AusnrPbnd7/6GQiCiDf+v8uQyeVRqzQ7FsuaiZt2jmHzigIGuizuHTm4D8cOHQiNQQWAo8UaVvRmkFdYfcUgWF+E8YiF1nSrTqHrok070FnVZvhAHe8OPhlaxECEX0iMdCzSGovkWaKmqLEodDDwUqnpxAHoJdMPqKXm4y/7hEWgEZ/q2G1Eoc6QOE5eIM5ArQTETO6q07uGiIIxM9nHp4sAgPe+8WX47mf+DbK/DnN5nIiqsiuyDW5uiI2AK3x6o1BdYbHrjkW3xmVUhJs/0tSPQh2LvuQQUwMEATPz5FxZtXly3oMGT3kekLJANWEsbRSCGOpY/Pdv/BiVmoovfuDNKOQyjeXS1Fg8ehfQty51fcWR8WncvX0vi0HtANYXYSxl0joMw6I569trQ1jM+aKmV+ZXhi4rcsE1Fjf2bgTgOhadVsciFRpFd4JEknqIlDDHIo3hrNdYjIhCpdvwutC0WrRj0XIs6CH9Kq2mJYpCtRyrXsdQEZVWx2IKx2oQ7dZYBFwHpdUa91p0+yIv+scX4WNXfQxKRmlZVxZkvOXst6BslPGaP7wGV2y9AlyKCdN+qubiOhYBoFfuxZw2h4pRgcRL4MChVqlhemIak6OTkevSaNiFdCz+9OqfYmZiBu/8+DuRK+SOq2OxPF/GA1sfwFOf99TU646URzCYHWxyRjMYjONP6r+uV155Jb797W/jIx/5CASh8cA799xz8dBDD3W1cQzGicxcTQ91mPW6tf38dQNX9WZwcKqCW2+7DdMToxA4DoZtRwiLIhzHgW2SjmPSmnRet2FOJoKaZlh1x6LMJ6mx2PheEblQx2Ih0xBqwjA0tanGIgCMFJu3N13WkeuSsDhSrKE3IzXtMysLUBMIi/V6h65jcaigQBI4mLbTtK46M4Yd92zB3CxxCbzqjf+auH2SwGP8J5chWyWDl3mF3C8zlegXJQCYKmvIy2JdbE7CQE6G7RAn50RJQ04W2nIsijyP3qxUrw8IeB2LfF3kMyxAFvlQt15DeO/shQgIdiw+/MA9uP7XP8Ob/u1D6O1fhlwuX3csCjwHkecwOqfioWPz2DSUQ0Hp7kz+O2+7EbKSwRPOvzB0mZFiDWv6s/Vrz2iG9UUYj3iq0+kFqi6z5c4tjWd9hGNREkXYjgMzSlisDxa6f/cDHYu0xqL7d5s6Fs0ox2Kzu0+yY2I0I6hqQY7FAUAvNR+/Nx6z7rL0Cotpo1CLgJQhYpKcJxGdSbfRt56Igv5aky6j8yZu2PIQJqZJpO6H/+Wfgp+9pTHi9KPXYHBzcxukPBHbKHKeXMOIiNy2oMJiVB/U1Egsa5iwKLnuT3+MqaUBnICaTq6VZKuuoBvynJXzxPHb6e8hF1xjcfueYVz537/F5W+/CGtXDqEnn/U4FoXoc0DRKyQKt2dVcK3ICK67/S7wPI8XP/3cVOsxGrC+yCOfMHfciUBdpEv4ShgnREbVPwwjL+Wb/r0mH14LTRKkwDbMz5LnvMAJMO3WGovzOvleBnkep3Es+vdHI0ipiCNz8Y5Fuo0gx6IjkPvHW6+QOtCqIQkLuqrHinr0vFLXoyIo9XPTrSjUdmss0vZollZvg1EycPctd2N2kkzWed27XgeeDx+KPnPwTFz25Mtw/urzce3uayH2tP8+vNhRqADQr/SjpJdQNar1KFS1lqz/RK+DGhcTn4Cg2okjh0bwk2/+BP/41n/Euk3rkMvnjmuNxbtvvxuWaeGpz00vLI5WRrEiu6KpliuDwTj+pP7revDgQTzhCU9o+VxRFFQq3cnBZjAeCczVjJY6gRTqvPPXWFy/LIeJkoY/37EVAMDzHCyfYNWE20HS9XRRaU1RqDIVOfW641EWSfHzyG143HOyKEBVmzvHpkWiValjsRQhEulqtUXIGplt7tAUq9HComk7sBMKq6NzNVJH0NOhzYgCNNOKfYHMyURYLFZ1jMypGCrI6M/KKKlmvSbgsd0P4MGr3oHvf+kTmJmaQG//MohS+s45dfRRYWu6HH+dZyo68opQj8dNAnXkHZ2tEQFXEVocjxXdBM8B48N7oreVkzBV1uqiel1Y5Hno7kuWbgOywEMIGRSk4mXUPZMUv+BtWRa+8ZkP4dQzH4cXv+JiAEDWIywCpI7kPcOz4DjglBX5UGdlu9x56w14wvkXIpMNHgSsaCbmVRMblmUjhdxHM6wvwnjEU53BYjsWb7zxRpCuABfpWJREAZoJmBE1beuOPjqwEyQs0kEsf43FqLFOr2PRtiGjfad7RQ1xLFo6UPPUuqSuUqAhxNG6UE4bUahqERAzAEeFxWrw+Qmibx2pHTh7qPGZmzhx//4xPOXKo3jH536AkYkpSJKIgb6A2E+ARAcrvQ2htH99cw1DpXlwGLL7b73ZMdoxYrxj0TZUHJ6M2C/HAXJPa4ypqQGCiJo76CzbNSJChjlDqMjbhkunCUFoiUJ1HAeXfvo/ccr61fi31/8DAKCQzzYESF5KVmNx9EFyrnrXhtecDOF3t2zD057wGAwO9KZaj9GA9UUe+XTq+lpM6Dtt0ijUuGONczQG4XcSrc6vDl1W4oOFxckx4ujiwcO0TTi+gZEpjTyTFYc8v1M5Fn3iGxUHacwoFRqjhEVaF7KpxmKtWVj0Ch/0/2kdRz9aNZlj0QuNWjVsoy6gtVMT00u7NRYB4qA0bAO2bWPs4Bi2f3w7/utj/4WJETLhZ2D5QOw2slIWF51xEd55zjsxt20OtX3tiV0L5VgsFouJBbiBzABKeolEoXJEWIyr20nhOA4SLzVF37ZLkGPx6k9djf5l/bjk0ksAANl89rg6Fu+46Q6cfMbJWLUuXZyp7diYqE5gdWF1vS4ng8FYHFL/dd20aRPuv//+ls//+Mc/4jGPeUw32sRgHFfe8sO78Jk/PBy7nD+2NH55M9SxSGeLz/tGy9b2k1xxedUpAIiwZEREoTpup9M0UgqLRqMTTd1hMxWjLixKIhfrWFSbHIs8dN+AInUo9rjuTK/D0Y+uqS0z6Efnm7c3U9UjRRbDinB2+hgLqCNIHIt2AscicXjuGSeDWst7FPRlRZRVE5pl4Sc/+Qmu/cRbkV2+Dpdf9WMUZ6YwMDiUqF3h+0zuWJyp6MhKQpNoGgetNblnvATdaojBXsqaCUev4ef/+YXIbQ0WFExXdKiuqE5dsKIA6BrppBo2qbkY1kR6T5YiR5OT4Xcs/vGXP8HeHQ/inR/5bH12ecYnLMoij8myhg2DOazsSZf1H0dprojt927Dec98fugyI0XS5jNWs8G+MFhfhPGIRq8SsWiRHYun9lvoUTg3ljG8nyFLIjQLsKL6IrTWDx3YCYxCpe4/GoWqwbC5aJlO9TgW9eBBuqRUVaNVWMz2k59lTyxo1Sss0ihUnRyb3YZjUZ0j++UFQOkhsaZRUaBeeteSn5O7Gm3ZdzN++9vf4sL3XoMVBQG3fvsjmCqWsGJZX3i94NIY2TcVSgWZxKxS5BBhUeuysBjnWHQc8LaOn93yYPR2lB7iBPXWmLI0gBdRcyPtiGMxG+FY7HFjadO7dJrgpZYo1P/5v9tx67YH8fWPvA2KG0tbyGWaHYtOgijUY/eQc9a3PlWTaqqGm7bch7971lNSrcdohvVFGI8k4hxueht/C/0CWFQUqszLkWIYz/MkChXNfxenVPJMzvPkudRJjUXqFPS3I1JY9EWQepenwiJ1KXr/P0wo0jU9VgTzO0EVt++iWQ1Rsh0h2IsodCAs8sSx+Kc//Qmff+3nwYs8Pv2TT6M8X0Y2n0Umm1wI2jywGUeuPoLanvRil+M4qJm1pvPfLXZs34HJo9ExppR+pR+qpWJenyeORSR3LALknumGsOivsbj1lq346w1/xds/+nZkc2TMI5vPwtAMmMbCT6qwLAtbb9mK8597fup1Z9VZ6LaOTb2bFrV+JoPBAFI/Ld7znvfgHe94B1RVheM42LZtG37605/iiiuuwHe+852FaCPjBOHKm/fiSzfuwf2XPx/9Xa5JlpSJeRVP+ezNuO/y5yeui7Z7rATdtFHRzMjYwZiSgy2UVDO25uG8ajbFlw4WZMgCD3v16bDVEgSOg2nbCDPiOdSxGNOB9lPTGwdDXYAzFR0Z9/9lgYdjkg4xHzII1VRjUeCh1mqAp49L3WYFV1iMEon0gLjKcZ+wOFs1Iuv7WZYTep78TMxrWNOXheRx5WUlHppp118AwigoIlTDwu7xEniOxNfO10yUdRPf+ubVuPyD78WZz/g79L3gHegbGERxehIDg+GF6pNA6+zFCYuOQ5yyeUWIrPvopycjQuA57BojA4RB0Z8VzQQsHVNj0TVShwoy9k2UoRoWejNS3R0ri0JdfDYdDrLAh95bGbf2ZVoxPwhNVevzdOeLM/juVz+LF/zDq3HmOY3or2wuj1qlMSBN6iwaOGWogN5M+zEwQdz1l1tgWxbOjxIW51RwHHDGKiYshsH6IoxHNHWn1eIKixed5j5zeKER9RmAJAnQLQeOnsCxyEc4FutRqO52jBp0O+ZZ5hW2OhS5KqrREOcoGVqvb7zeJugeJ1JdWLSIQOVY6QRhxyHiqJh1nXYFIiwnFRZ7VhJBc2IncPKzgL034JpvfhFv+OEevOxpp+GaFxvIr1iG8akiVg5GOARKo0DP6oZrFAAGNgFzR8n/hwqL5dQRnJEISvTxuwPbIzMxbrBMLxFsLR2gg6Om7gqLpH8rwIqOQlV6yHnpsrBYrtTw3s9/B//wvKfihU9/Uv3zQi6Lak2DZVkQeNF1LMbcS0fvIqKi0pOqSbdsfRDVmsbqK3YI64swHknEORZ1p40oVN+zY1lmWeiykiBFtiEsCnVKm4I5ZyIrE2Ek1rHomdjk3x8VKPwialSNRbqsN75Uq2mAHO1YrBrBUahaTQufBOTiFxapY1G39Lpz0krajwihoyhUUcHo1lG86muvwunnnY7cG3NYuX4lbpu8DQND8W7FQNoIENJtHbZj12tldhPHcWAYRouDNoh+pR8AMF4dx+b+zeA4ru5qTYLMy9AsreNoZq9jUdd0fOPfv4EnPO0JeNbfPav+ORUYa5UaevrT9S3SsvO+nZifncfTnve01OuOVsiEvzMGzwDmYxZmMBgLSmph8S1veQuy2Sw++tGPolqt4jWveQ3WrFmDr33ta/inf/qnhWgj4wThtj1kxs5dh2bw/DPTWdm7xa/uI6LHt24/gA+++IxE69QMCw7CBbR2sWwH0xUdJw3mQ5cpq0aTq5HnOKxflsX+SZsIi24UapgTz3Z7WHpKx2JV9zgWXTFxtqJhgCMdXVnkoey8DuPSQ1j+rPe07td2oLnt5jlAinQsulGokTUWm4VFgecwU9FhWHZd/JurGugfDB+8MiLOkxfNtFCsGSj4xLes7Eahxkx4yikiNNPG7rESVvRkUFAk9GUl6KaNc85/Or7whS9gYuPzseUAqa04OzWJgaEVTduY0gWsect/oqxa6IttcSOuNk5YrOombAfIy+n+tPMch96MiP0TRFwLEhZLqgnOJMKi4zihLzzLCwrmVQNl1cSKHtTFdUXkoWmN+1QU+dCIUXpPdqXGoqaCzon8wdc/D8sy8ZZ3f7RpmVy+ALVWhW3b4Hkeilt78+ShfEvtz07ZetuNOOWMx2L5qvAaI8dmq1iWk7FskSZonAiwvgjjEQ11xC2mY/HQlsb/80KkuKK4UahCVF+EDt7RWcVBrgTeJyyaKjQrpm/mdSl2KCxWtQDHYl1YHCM/K77Z6d7BKo4nx5nmumklIqJRcU7pIeJlUqcBLwK5IWBmf10ge2bfCD7xrjfiIy9YBX77/wAAxqdnsXKoP3w7lUlg8JSGCAcAQ6cBw3922+Vblw5q6mUAzX2cjhBl4v4MO4fuvTE6W4VhmJCkkP5Opg+YH3VrY+aIc9Eh4m/VO+hMnaJBKD3A9N7ksbRh8ELDiQjgM//5M0wXS/jyZW9tWqwnTwbzKjUNvUmjUI/dAwxsJIJ0Cn5/6zZsWrcKjzklndOR0QzrizAeSQS5Be8Zv6f+/5aVXqjKi+RZQcXAKCdeWBQqReAEmE6rsDhRm4Axa0BRkkWhep2ZfmGR4zgInNBSTzKRYxE+x6IMOGK4Y5HWcaTsx37yeTU+RlkW5Kbz5XUsFnjyPOg0CrUTYTEjZJA5OYNL33cpTnvVabhm1zUAgNmp2faFxTaoudH6Cr8wNfhsy0alVEGvEj0ZuE8hfcmKUalHoaZxLEqCBN3UE4mYUXijW3/xnV9g5PAIPvmtTzaN62QLrrBYXXhhcctNW9C3rA9nnJNs3NbLWGUMEi9hY89GjM6Pxq/AYDAWjLZGTC+++GLs3bsX5XIZY2NjOHr0KN785jd3u22ME5RFTu6K5cs37sGBycZAFI2/7LKuCAAYn48W/EoBcaknDzWESIHnYFpO6LgCdSyaKR2LXicldSxOVw1ohgWB5yAKPIzKHIq3/RCbBlsHK5rqKwo8OLRGTlLHYo8rUlW0iChU37oFRXRrVDYOfK5mQJHC/2SZVnyMKUDcigBQ8DnRspII3bRj54FR0e6BI3NY3qNAm5/BdVf/O2y9hsLKDXj/+9/f1DmbDXAsjmgypMF1GC8lE4QFnkNG4jEXEw1acd2BQc5bTa3hT3/4dei6AzkZI0XSwe3PBUShqiY4S4daraA8P9fyPWWwoMBxGnGetXrdzmbxWRL40N+5jNi9GotalQw0l2fG8fv/uQavf+cHMDDUfD0yuTwcx6nfwxlJQH9Wwvpl3Y1BtUwTd/35T5FuRQA4WqxhZW8m0kHNYH0RxhKGDpy1O1u8Mh2/zEJz2+cb/88JkXXm6lGoph4e75AkCpXnyb48jsVYYbGrjkW91bEo9wDggHKYsOhZvi6apnh21WbJT8mdAiMXyPGnqevXuxozo4fw1u/chdnsJmxYXsDl55aaJk8Rx2J/4Oq8pQPaPBHSvIO+y05u/L/i6wtSF0pKN59hmPjv3/4pfHBMkMmxhwmrbppG1XBwbDzi9yTTT+4HWhvUcvtbnihUAMQpGiYsZnqJe7ITxyIvAjxfdyzuGT6GL/3g17jsrf+ITb56QgXXJVCu1Nwo1Jh6nZUpYO4IcZr6BfEIHMfB72/dhr971lNiXTGMeFhfhLHUSVJj0XbsFsEOAHZM76j/v19sS0LOnTSjmY133uXZ5Xjyyie3CFciL0ZHoXI8LNtqaeekOgmjaCCb6dyxSNvh/zxKWKTb8zoW66IRTwRRr7AYVmNx1CHiSLmWLNbdW7+SCmeGbdQdi3HRtnG0U2OxWq7iPz74HzDnTXC9HN77kfdCEBvP2NmpWSxbHu5a7TZVkzj0/Peabdu44Zc3tCWW+5k8Fh+HSoVFgNwnHNI5Fmm0bLcci5Ojk/jR13+El7/x5dh0+qamZbyOxYVmy81bcN6zz6uXp0nDSHkEQ9mhFlc0g8E4/qQWFg8ePIi9e/cCAHK5HFasILNU9+7di+Hh4a42jvHo4y0/vBv/ddv+Bd3H12/ei1f9V2MmvmpYcODURY57D89iy/7uDOqNz0XPRCprJnSruXN86koyM0jsGQLPczDjnHiC2OIWjMNb71ASeIg8h7mqAdWwIQnk9UPXwjs73vVFN9JSU/2ORdLJ7nMFvIoe5VhsXjcvC5hzhU6AuAxrhoVc2Mx0INLZ6WXMjViltR8pGYkn9SxjJodTIfbwTBVC8TA++Pq/w8PbboU1P9US3woAs9NTLULWjE62kaZzuKIng+0j8zCs8AbSWN0gx+HW227CFR94OyZGg6NMB/IyLMdBVuKRC1i/7EahAsD4yNHQNlCX3ZEZ0nGlUaiKyEPXG/eUxHMQQga0eJ5EpZYjXK5JcBwH8/vuQWXXX7Dt6ndjw+bT8fcXvbFluWyOdEjVKmnz004ZxPknD6I/113H4I7770JpvojznxUtLI4WVazuz9QjcBmtsL4IY0lD3UNmujSBOt4afovB+HbgwC2Nf/MCcZGFPCBl0Y1CNXWECiF0sJCLiEIFiGOOOh+NKtS4MR9vLKlOhEXVbG/gpRoUhcrzRHCjgmI5QljkI0TTMNQi+UkHCJUCAAeiGe9YoOyt9uGpX3wQv7rrGA7MWsDJzwD2/wmYbzzvx6eLWBniEhB0d7KQP06z/6TG/4u+8yLI4YJcBLduexCv/cB/YMfeQ8ELiBly/sJEeVd0Vk0Hh0YmwneU6SduSioK0t9FXoLq7d9KmegoVLPW/u8x4J4jri4sXval72PtikF84C2vbFm0kCPicrlaI+7dOMfisXvJz751qWZHPrj7II6MTuIlz2b1FTuF9UUYC8kTfvQEnP3Dszt2KSUhLgYVaM8BR4VF1Wq8Iwu8ECh2Snx8FKplWy3nY0qdgjlr1uv2pXEsBh1TkMAZtU26LM83hla9y0u81HS8VFj018wroki2l7AUiDcO1Ru1Svdlp63j4yNtjcXxY+O49OWX4pbf3YL5Y/MwbKPlPB53x6J7jmVfH2b3g7txxbuvwMP3PtzxPiaORfRFXDJCpi5uCrwAnuMjxWo/siBDt7vgWHRrLH7vP76HbCGL1//b61uWyeYbjsWFZOzIGA7uPthWDCpAolBX5FbU/8YwGIzFI7Ww+IY3vAF33HFHy+dbt27FG97whm60ifEo5qad47ji/3ZBMzufPRSFYTnuTxumrzDfJ3/3MD71+4eb4kLbZXQ++oFc0awWYXGT17HIcbBsO1Iw4wQZhpFuBqFXGASIWFas6VANC5IrFEaJlbUmYZIDz5HISS/UbZZTBMgiT2r0haCrzTUG8oqIedWsOxaLVdIppRGZQcQKsC5jrti7zCca0fqNceOR1LFY238XrvvsW9HTN4AvXvN7SEPrWxyqpmmgNDeLgcGhps9njfSDcS88ayX2TZRxw8Pjscv2ZVsdhzNTZL2ZyeD1B11BsCcjQQqIKC1rxLEIIFSc9G7nyKwrLBoWOA6QeB666ncshg+EKWLnwqKuqbAtC1O/+RxgmXjnhz8DQWx9ScrmSIe05kbPXLB5CH9/zpp6BG232HrrjRgYXI7THntO6DJl1URJM7FxWd6t9cgIgvVFGEsa2X3JNdp8Ka8ssrB49w+A3jUYoZPmOcGNkgwRFiURmgnYphEuhFgJhUVearjLjBpix9e8wqLrWCxp7Q28BDoWASIwVWeI0BMZher+zU7jcKOORbc2FBWlRSOZ+/LWrQ/ivI/dBM6xsfVDT8STTioAp74QgAPs+FV9ufHp2VDHoqC6bfALi+6xHZjjWsU3jmurtuLo5Kz7cyZ4gYSORdUEDo9GCYt9RISk9wd1wbY4FjOt61KUHnI/14rhy8TBCQDHoeQZoPvqh/8Z2Uyrw7DuWKyqRGB34oTFu0kbe8Oj1YP4/a3bUMhl8Ywnn51qPUYrrC/CWEioyDZejX/3iyJJrb0gQc9fA9BfdzAJNApVNeMnQYthkzxcBE6A5Viw0fx3cVqbhjFrIJclz6ROHYtBkaxJaixKXKM/4BWNZEFuioANi0JNsi8vXmHR64ik++rUsZgmCvXh+x7G21/6dlQrVXzj19/A6U86HUDDMUiZnVwkYZFv7ttNTxATwcxESF8kBZMj8Y5FjuPQK5O4VJEXwXFcqihUWZChW3pXayz+y4f+BYXe1mQy6lisloNrgHaLLTdvgSiJOPcZ56Ze13ZsjFfHsTq/uv43hsFgLB6phcX77rsPF1xwQcvn559/Pu6///5utInxKGLjZX/AZ/7QOlOICn8LDRXYqB41rxp46OgcDMtuiSgN477Ds9h42R9w54FWl+NkRNQlxxHRpeYTTwY8gpdQdyyG758TZRh6uo6+X+TLKSLKmomqYUHkXaFQDR8QrRqN9SWBB89z0GqtUagcR5yAisC3iJle/CJmXhFRMyyU3BHF2So5vkxUFGrMeaKMz6uQBb7F1ZdxhUXDiZ71nVMEGLMjmPjlp3DqOefhK9f8Bhs2nASeAyZLzccxN0MGh71RqJbtYM5ML1g9eeMyDBVk/Ndt++vOxCAUMdhxODtF2jIzFdz5pU7DQkaEKLSe54pm1iPFJkaPhO4/IwnISgKOzrquAsOC7N4jXhesHHEtAUCReKi62VEHulppRMkMDC7H45/S+uwCGo5F7/JSwDnolC233Yjznvm8phmtfkbmyO/RmasXtqbBiQ7rizCWNDSWx2xTWFxsx+KRO4ENFzaeqbzg1g4MdyxqlgPHjhCE/I7FMFef0Cws1qJm+zgOYAQIi20mVwbWWASISKXOEVGrMtFcz64pCjVGNA2CilZU1HPvHdGMj0IbGZ/Gi956OZ54xknY8uY8NstTjW2d9NR6W8pVFdWaFiosiprbhkzrYF/VcDBaRqP+pZc2hMXxaSIsjk3NBi8Q5Fj0ThpL7Fh06x2Vx5vWAy+h1uRYjDgG2b0mfjE5DbwI3bBgePrNL33O+YGLUsdiqVIjQm6cY/HIXUDf+tT1FX93y1a88MInQpHbr5/FILC+CON4EBRR2m2CBLbds7ub/t2JY7FmxfeH4oSsoBqLhmVg3piH4ziQ3L9phh7dTu9xdCMKlUbEBkahghyXV1gUeVJjz+tY9DrROhUWBXeSk2F2VmMxTuillIolfOCSD2DNSWtw9W+uxqbTN9UdlFW9IU7Zto3Z6VkMLD/+wmLGN4lo1p3kNBM2ySkFSYRFAPU6jPQ+XwzHoldYfP7LgxOU6o7FBY5C3XLzFjz+vMcj35NeGJxRZ2DYBjb1bapH/zIYjMUj9cgpx3EolVpn0c7NzbWVUX3VVVdh48aNyGQyOO+887Bt27bI5YvFIt7xjndg9erVUBQFp512Gq677rrU+2UsHX51b7j7aaGp+YTFrQdmYDkOrBQP7XsPFwEAf9rZOsAxXQ7vAFDn22Q5vFNBhcWoTgQnSk0Rk0nw1kgkbRFQVk1UdbMuFEY5FqstjsXW5cuaiYwoQOB5yCKPmtEaXUIJqrEINESW2QrpGEc5yEiNxfjrZlgORIFrEc+osBilJ1uWhazEQxpYg7X/9Em87/PfQjafB89xyCsipsrNLwJUWOz3CIuTJQ12gloXfniOw4sfuwoPHp3Dn/eGd2B7MmKg43B2mqwzOxU8EFcXFhURktC6fkW3wJnxjkUAGMhJmCipsGynyQXrdbXKEeIaQK5HzUhWNzMMGm0KAC96xWtCl8vmC+7yyaPn0nLs0EEcObAX58XUVzw2WwPPAacxYTES1hdhLGnoAE+CGfqBdCJkdIPCSmDNExr/5gUiDIYJi7II3YIrFoZFobq/l3wSx6JBYleNGmpGxEPAqDa3SSuhZnItSRRJCXUsZvpIDUJLI1GoSoywmNqxyDXEoQSORdsm/Z01Kwfx+//8d/zff30SA1mu+b458x/c7c9gfJpEnYZGoWpFct6pGOdjRg1wLALtCYtTRQARwqIgk3vNK1D/6GXATZ8g/+91LEYN5mXcekZ1YZFGoQrNjkUpopYyFXurHZRH4AWUqo0++mv+7lmhaQ09eXI+y9UacTo6dnjhescBRu4lbkU5+XUYn5rFtgf34O+exWJQu0G3+yIA648sVd7wxzfgdf/3usVuRmLSChD1OE+PALZzemfgMmmgdQCTOBbjhEWe51uiUCdr5Dmw8mUrMWwNQ5KleMeiV1h0zJZY1m7UWPSKg5LQLCwCxEHnFRan1cZzJmkUao/ceFf0xq12y7EYV2PRcRxYloWe/h586tufwpd/+uW6G5EKnV7HYrlYhm3Zi+JYzAg+YXHq+AuLfTLpl1DhN1WNRUGBYRkdTbi2TAuGW6ro7CefHTrROVegSU4LJyxWy1Xcv+V+nP/c4IlWcYxVSN3z05ed3s1mMRiMNkktLD7jGc/AFVdc0dRZtiwLV1xxBS688MJU27r22mvxnve8Bx//+Mdx77334vGPfzxe+MIXYmIieOBb13U8//nPx/DwMH7xi19g9+7d+Pa3v421a9emPQwGA0Cj7h99SP/FFWy6VcqgWNNbok4ptH5alKtR4DjYSRyLEfUQg/C7BwuKiKpuoapZEN0ai/6aiV5Ub41FngfPAapPHCyrJjISqd+YkXhoRmvsLMXQmtel52bEdb3N1UjnvCfAiUejPa2EjsUwqBvSDHEsapUSPvy21+CP134fHICTz3kq8tmGs6EnI2K2qje5CYvTrY7Fo8X2YyUu2DyEvqyEq2/ZF7pMQQl2HP5/9t47XnKzvho/qtNv72WrveuOe8UNmxLAlJA3QELo8EIopoVOCA4xIXQI+RFMJ+UNJRSbahvbuOyuu43brrfv7W36qEu/Px5JI2kkjTT33l0bdD6f/dy9dyTNI41G+up7nnOORSiuBBGLplI2xzO+ar16xIxFgJCUK3VirduQNfCmXa6TfObZ8NtPhmMIGR26VDicCsQwlaClWBTWkVjcdduN4DgeZ11waehy0yUBfTkePZm1zXf8Y0NSiyR4asO8jyhPU2Jx08VA12jz9zZWqBxDQ1IBI2SZphWqObNYV5pEnBMMS+41BiEW60rIbB+p1vJ7XY0/ccdCQ1RaswQBINNL1JCqDNTmmko2gJCu5n4sWvb3WoxmnlgiBJ1lqWoTi/6Kxbqo4mXv/Cdc89X/AgBceeEZ4HJdQMpDCnY3r0fzi6RhGaxYLBJS0Y9UBbAsgHwuXvDxZ5lbhOLcYpBi0WOFWjpC8j5nHyLH31YsIlyxmApSLHqtUMOIRZPsXY01Mc2i2nBki4W4IbgyFpk2isXiAXLuFMYCPzc//PK2ewAAz7/0nMjrJAjGWtYiQFKPPJVx3/x9eGDhASwLq5hoEBFrkakYl1SyiLQwYrETK1TOvLdJWvteRVsrVDAwYLiIwYUG+W5QNIWqVo1GLHqsUC2ixx6zT9bjWioWAUK8OYnFw5XDze21Gb8FJ7FIUZR9rOcPk/teJ0SwE85JMF5CS5VVXPuua/G1f/oaAOCMC88An27eiyzFYt2RF11aLgHAUSUWLTtfr2LRIhTXgliMkrEIAL2mK4RFoMe1QlV0ZVXqZae1KR1Si6TSKVAUta6KxfvuuA+KrOCCKy7oaP25+hw4msOmwqa1HViCBAk6Qmw/vk9/+tO45JJLsH37dlx88cUAgNtvvx2VSgW/+93vYm3r85//PN70pjfhda97HQDga1/7Gn7xi1/gW9/6Fj74wQ+2LP+tb30LKysruOuuu8Bx5IK8adOmuLuQIIENr2Lx9ifXzn6MoShUBJIT6JeVRhSLki+xaBg6KIoGTbfPDqQYHrJphSqFNeAc8OZH5k21XUNWwdGt6rLW9R3EIkOBoijIogDnPMOyoCDFMaBpCimWgaho0HQDnI9bgVexaKk5Zy3FYkMBBZIF6YX18BU1YzEIVsai3yFUSnP4wT/8E5TqCl7xhncgc5BBX4631wGArjSHqqC6LHRLK6Q53OPIWJwudl6ksTSN5548jB/eO4XhrjQG8q3NpFyKBduBYrHXVCxmeMZ3/Yas2cRiO8Vifz6Fx2YrEBUNgqKBY32sUNtYjWY4cs6sJudQqLe3kgOODrG487Yb8YxzL0ImF96InSoJGO5Kt1j1JnAjqUUSPC2gxpv0Y+NYZyz2bCCWlBQFwGirWKQoCopOERViZCtUlajgvI1KS7Fo6IAqoC6F1DWyl1isoN6hDSoA1EUFYHysUC1iUZOA2kIroWbmQs6u1DA4zABxGrqNIslXtKyc2BRA0WDV1vvRVFnDiz5xI55cEPH6P3+O+8XCKFFV+mDeJCWCFYtFos5j/NUiKyL8FYsxLTiBCFaoDA/AaNrhPnED+Wk1gh1WqIdnwxSLJrFY9SgWGQ4N52S8VMg+WE3b1VgTUwxqQrSTMmtOVqs1RIAyMxb1gPN/+n7ys3si1nBuuPVunHfadgwFkMwJ4mEtaxEgqUeeDlgtWRMFkia1ECFxoQTZjQfAIiKdJNujy4+6t7mKfY+itApSLFIUBQMGKHPyr6w2r6nO/Emd0sGn+PbEotHcD0VXwNAMVMeEIJZiW3Ipw+xJ2ykWeZr3JRYlTYJu6KApGocqh5rbi6hYzHPu+xdPkxy+4kwR+b68r81rp9C6m8dDLsu4/h+vR3FfER/43Ad8l7eJRUcOdnmJuCf0Dfat2bjaQVAF8DTfQlrbVqhrkLG4NButRuhJ9QBwWKHGVCzK+uoyFqMqECmKQiaXWVfF4l033YWNx23E+KbOJsHM1GYwkBlAroMJbgkSJFh7xFYsnnTSSXj44Yfxl3/5l1hYWEC1WsWrX/1qPPHEEzjllFMib0eWZdx333248sorm4OhaVx55ZXYsWOH7zo///nPccEFF+Btb3sbhoeHccopp+Daa68NtRqRJAmVSsX1L0ECC06CbL4iYv9S3ZdU6QS5FIOKqEBWdWz64C/wwR8/3PI6EM0KNZRY7MQK1atYTLNoyCoaMlEs6qoKPeR71VCcikX/TMaKqCDFEpIyzTGQVC0wG9BLLPIsDZ6hMVch+1VsyMgGKOksaKskFlOWFapHsXjnnXdg7nvvga6q+Mp//xJnnP9M/NkpIzh5rBspR05gd4ZDVVIgqc1jU15eQr6rGzzfbFROrYJYBIDLtg0hm2IwV/EnfrM8A9bHytTKVlxZ9m/EFdIstg/nMdad8bXpasgqKLMxt9BGsTiY51FuKBAUooK1rFCd5ynHhn/P0hwDUYlmbxuERiMesRh1+bio16p4+N4dOO/SK9suO1sSMNadQS4hFkOR1CIJnhZQxWBiIAyrsV5cDU79SyA7YOcMWrZaBsW0zXvTQIEyNARaoWoeYlFXmmSaEwzfzNhTJdTkMMWi53skllGRO79nBFuh9hACVCgT0tdrPWkScva8olhWqCtEsWg1vSgK4LLgNDexeN999+G868pYqkq4878/i6uedZ57O93BzZn5lQoYhkZ/j7/FNisVicLPp6l73f0yfj9F+6tLO1EsLkYhFgFYuUyP/dx8wfxcFbdiMbBGYHhCjlukoKVYZHiIzgYx739MABD1JM0BjVU0Hj1WqGFgGAbZTKqZsQgEWwZP3QvkBoH8UOShSLKC3975AF54eWKDulZYq1oEODr1SFKLPD3gJbU6QVwS0GuFquoqDpQPuJZR46jxO0CQYpGyejPmPdapflxoLIABY74ckVj0KBa9lp+czySbIMWiYRi2YtFJjDrVaCzNttitppgUZE2GZk7GchKLcTMWreNh2Y8aZr9FC5roFQO01S42D9Gjjz6Khz/2MCqzFXzhB1/As170LN/1bGJRObaKRUEVwDOtxO5aKhZXFlYiqUwtxaJ1nsfJWEwzaWKFupq+SC26a1Ymm4FQWx9iUdd17Prdro5tUAFgpj6DoeyQK2c0QYIExw4ddS7HxsZw7bXXruqNl5aWoGkahoeHXX8fHh7GE0884bvO/v378bvf/Q5//dd/jV/+8pfYu3cv/vZv/xaKouDjH/+47zqf+tSn8IlPfGJVY03wx4u6Q7m3Yx9p5I33htgixUA+xWKlIUMyO02/+MMs/vllp9mvcwyxCV0OmV5vWaGG1RBsOgslRF3oB2/GYiHFQpA1CIoOlqGhyK3be+Kh+wFksPuRB5A7++zm+1v5eaII57y5mqgizdJgaAoplkZFVAKtUGWptXDpyrBYrEowDAPFuhyopLOgtjlO7RBkhfqZT/8zuIEN+MuPfgkTm7YCAP7slFHougHaQcD1ZDjsma+6rG9LK4suG1SAKNKytIqG3hlxxLM0rjxhGD97aMb39SzPgPPYfhqGgVIbxSJNUXj3ldugaK0HUVZ1KJoB3myWriwtQJYlF2HqxEA+BVnTsVCRICiaTT7LDntdngkP2s7yhIxejRlQVAUiw7LgU+l1y1i8985boKkqzr8sPF+xIiioyxo2DWbbWsUmSGqRBE8DqBIhyOJiNUTGasDyANdUSVi3OAM0qBDFIgCoBk3Ix0DFollvORWLlB+xyNlWqIYioOZRLO45OI1tAG688wE8e4PHQkmqoCIZGOxQ6NGQAqxQ7by+OUJU9Uy2jhmAXVrFUYo0Vogdp5Nk5XOgFHK8UhTZ6Gc/+1lMdDH42Uefi5Htm1u30z3Z+jcT88UqBvu6Ay3BGakM8Mf7Khbf9WsJx2/s999wmNovaCxmYzGQWDRJbSgNkmd5ZKf7dYdiUZAlLJcqGOjtDhhfgZD0huFSLAqmYlEDDYZrc7LwOWI56neuRgHNuKxQ26GQyxIrVNqsHYNI6ql7iFoxRr7ibXf/AbWGgKsuP6/9wgkiYy1qEeDo1CNJLfL0wGrsDi04bUujbM8iDS0C5kj1SIudqlPptx4IJBatYsS8x0p6k5CZr88jx+ZQUSswKIMQi22IOVfGoq6C8Uxy8huH5ImdKZrq+zt+fQc2vnwjALfaUxIlm/BkabbFbpWniWJRMzRw4HCg0iRx4xKLVn6lReZZxOJqMxYBot6UjeZ4vvKVr4BJM3jpp16Kk844KXA9i+SsK3WbqC0vlZFKp5DJrU2vLQoaasOXWFzLjEUAWJxdbKu+82YsdmKFuhrFYqMenVjM5rPrplh84qEnUFwq4sIrL+xofd3QsdBYwKkDp9oZrgkSJDi2iNTZfvjhh3HKKaeApmk8/PDDocuedtppoa+vBrquY2hoCF//+tfBMAzOOussTE9P4zOf+UxgM+9DH/oQ3vOe99i/VyoVTE4GP3wn+NOCU7l3595lTPRkUEixqMurn+GVT7OYKYuohdhZZHkGxRBikabaKxa5dBaKqsTSH3uJxVyKhajqaEgqWJqC4qOAXFqYA7AZSwtzbitUmlilea1TK6ICnqXBUCRjcbGmR1YsAkQBWDSJ2ZW6jCzPgvFR4lmwFIs3PDyDmx4jtig0TeYH0hQFUOTnE7P+s3NZmhC9qk7BMHRIFTLL/bvf/0+c++nfI1PocS1Pe0jO7gyHmqS67GjLK0suG1RZ1bFUlTDKa2jInSvSnn3SMH7z6JxvaZnl2Zax1asVKIqMsclNgRmLACGJfVx7bQKe0mQUunpQrZSwODuD8Y0+zU0AfaZF61SxQex1GZrY5TrOkTQXfsJmeAbSKhWLUa1QASCTzUJodJ5/GYZdt96ITcefgJHxDaHLzZjWvyePBjRJ/8SR1CIJjhnu+QYw9wjwgs8DIXmtLdCkYMVR4DoKUeL5KcTawTCabOAawGrmaaBBRyAWaWjBIdUtikXV316T4WxLVUMRICju7c0vl7ANwPTCSqsVqlhBWeycWKyLsq9qzyYWKzOAUAS8M6TNdRSrxonzmYtFgMsQ60sLfA5QZBiGgWqN7ON1110H5tO/RaYnoCEXYok5v1LFcH+wQoDWZUJQBVihBiJM7ecDVdWwVKxg64bR4IxFp2Jx9y9b38ckCNOZLGpyA4emF8KJRbFMzj2bWOTtjEWFSoHxy450gs8DYgXI9ETYQx9Q8YjFfDZNrFCtRrdfLpmmAHN/AI67svVcDMENt96NydFBnLptU+R1ErTiqVKLAPHrkaQWeXqgndIsiqLRSZ5ZirowWCSURcAcKB8ABcomMihQ665YDLNCBQBDJWNxKg7nGnM2sWgpFhU5nAB1HhtFV3wzFr3wkn31CpmMurywbG/DSVDKoowMMvb2vG5AKTZlE4sAcLB8sDmmqFaoph25oJDnR1uxaB2nNbDttRSL8hLZ/y9+8Yt48LwHURgOv/9bJGdDbaCbIffo0nIJvYO9vs5I64WGQohF72dcXCpibOMY5qfnoet64MSrdmDMidLz0/NticWJwgTOGj4LozmSYR5HsZhiUqvOWIyjQExn0+uWsbjz5p0odBdw8lknd7T+irgCRVewpXtLy6SABAkSHBtE6myffvrpmJubw9DQEE4//XTic+7TOKAoKtQKzImBgQEwDIP5+XnX3+fn5zEyMuK7zujoKDiOsy/gAHDiiSdibm4OsiyD51tnGadSKaRS/qqaBAnqEimQDQB37VvC9uGCS8W4GlgZaXPl4KIhy7MoC8FFHw1CxgURcgDAprIkuy7G5K8WK1RzrMt1GQN5HmobBWRD1sDQFDTdAMNQ0LVW69SapJokF0wrVB1qgCWc4qNY7M3yWKxJNrGY4RgwZiFabLiPmaFr0HQWugF8+86D2D1XRX+ONx+FiJLRAMyfBk4YKcBP/JjmGMh1GUvXfwmzM4+h/tk3obu7G1SEZlt3loOiGa7Ps7Sy5FIszpVFGACG0jpmVpEDleYYvO6izSg25BYVp2Wx64RFJm7ZfjLuueN3MAwjVlFvfU+gyRgam0C1UsLC7HQgsdifI9fcIysNiIoOjjEVi7KTWIyiWNRXpUJt1KMrEDPZ3LpkLGqahrtvvxl/9hevarvsTEkEQ1PY1uZh7U8VSS2S4Jhh/63A/GNA6SDQtyX6eqoUrOALglgiPy2byagXwfoS8NXzgJd9E9h6Wbz3DIB1l9BAgdPV0LFooEGHWaHqKtliWytUDlAEW7EohJVkUrXl96KgAT2dNa0aouJPzFqqtvIUIVe9Sj2zmWdbocZp5gkl04bUqVjMQytO43U/E/HT3VPY/6kV9PX1AVzIfnWNkZ8+nxEhFnvCx5EqxCez7XM0WqNrcaUMwzDwjO2b8b833gVJVpDiPfWVRSyqAvD4z4G+rYDs+JxVEZoBTAz3Y6ncwOHZRZx1yvEB+9RNSHpNahKLLAdBsohFHukAhUxzG3ny/lZmY1zQDGoxcpTy2QxqTitU1adYXHiM7FPXmP93yAeGYeD6W3bhqsvPPapN3T9GrEctAhydeiSpRZ4eaEceFMWAiRkOOBWLUfIWrTw+m1isHMBAZgCLwqL99/VWLAYRizbpYykWNbdiMUOTJkjUjEVn9qCfYtE7Dk3TQslKWZNb7E5FUbSJRZZmfTMWK1IFmqFBN3RM16ab24uoWLQyFhsamRhrkXmWZexaWOry4LH/+/tRuqOE6ddPY3x8HGymfQvZ2ueG0kB3ihCL5aXyUbVBBUxi0ZNxKQoiGrUGzrr4LMwcmkG1VEV3X2eTelmeHIuFmeCJ2xZ4hserT3q1/XucjEWLNJb8JhtFRBwFYiaXWTdiccfNO3Des84D4zebPQLm6nMAgO1929dyWAkSJFgFIhGLBw4cwODgoP3/tQDP8zjrrLNw88034yUveQkAMuvu5ptvxtvf/nbfdS666CL813/9l2tWyZ49ezA6OurbyEuQoB0s5d5iVcJSTcYVJ2awd35tctYssm6+GkzS5VIMqmJw14wyK0NFC37AYFIZqLIci1gUFff2cjaxKGGkO902s1GQNfAMDUHXwFI0VKl1+ZqkoifDgaEpZDgGsqoFRk35KRb7cjz2LdYgqRqKDQUZnraVm3+YLruWNTQVms6ZtrEGtgzm8KrzNoIzFY7W877zsb/gk2FHC0Uc/s+PQV4+guNe+BbkcjmISrSivCtNHkLmHdmH5eVFbDlum/37VIkU/iNZA1hlrMlZG/0L87zPfhVNG9Qt20/CHTf9Ao16Dbl8dPKqZhKLlCpjcHgU+554BPOzRwKXL6RZsDSFIyWBWKFaGYuiaD9ytVMsWrmcIZx6W8RRLKbXiVh84uH7US6u4PxLw21QAWC61EB/jkdXhAe2P0UktUiCdcMXTwMufDtw7pv9XxfMJl7cvERLsRiHsLFsUFnzpr78JFAYDl7eXm+Z2HTe8klg88XxxhkES7Fo2ZyGNDt1igENPdwK1dm805QAK1SeLGvogCq2KBZdkKrk2JrjMqQqSoIOwLPdX7wPUOrAi/8tVNFZD1QJmOtYpC/nJRa9VqgxmnliieTkOQiuJYnHS749jXumFHz1hXn0dUWwHM30AUwKdkfRgfliFVs2bwpfP6b6kKxjEotKNEXevGkd94wTtuB/b7wLC8slTI667eJtYrGxBBy4DTj+ucDMA83XVQmKTmOgp4BMOoVDYc28TDewvGgqFpsZi4LZzJMpvr3FKZ8nqsdOVQI0g2o9DrHoVSz6nJNT95LzvifcBcGJx/YexsHpebzwsiRfcbVYj1oESOqRBE2sdcZiFMWitbyl7Npf2o+h7JCLWFTjOjDERFQrVOf+LAgL6GXIM7EOHRzPxcpYjKJYbLs9XQFLsa5JG05ykKO5FmIxzaSxpC1B0zUsNBZchJGqqJEmJWQ5YgPZolg0Y01W+3nVKjU8/rnHUXykiLG/HsPo2Gis9Xmah6A2ezyl5dJRJxbrar3FCrVoOiZsPXErbv/V7VhZXOmYWKQoCj0DPZifmm+/MNBCcEaF9dlatredIFbGYi4Tyzo1KhZmFrD30b145Vtf2fE2Zuuz4GkeGwsb13BkCRIkWA0idTo2btwIiqKgKAo+8YlPQNd1bNy40fdfHLznPe/Bddddh+9+97t4/PHH8da3vhX1eh2ve93rAACvfvWr8aEPfche/q1vfStWVlZw9dVXY8+ePfjFL36Ba6+9Fm9729tivW+CBBYsS88DS3WwNIVNfWsXAJyzFYvBBUA+xdqkjRNWWcpTpDCU1TBiMetSgkWBlyyzxioqOrEDbbO9uqzaGXAsQ0HyURzWRBU8y5hWqAxk1QhRLJL3s0gxhqbQl+VREVWIsoZSQ0aaZWyLzyUze9GGpkDT3RP1czyDQppDIc2hK0P+dTv+ee1C9z7+CHZ//Z1Qa0WM/PW/oG/b2YiDrgx5CFlwEItexeJ0UUB3hkU+THWwSuR5H2LRVCxuPeFk1+9RYX1PKE0Gl0qhb2AICzNTgcvTFIXuDIe5sghB0cBZxKJJQNMw2mYsZjgGugHIaucP13GIwkw2F4uIjIqdt/4W3b19OOG0M9sue2RFwHBXypccTpDUIgnWEaVDwC/fH/y6WAZgAO1sE71Q5fiEhGASi5xJLAZlrAVh6l7g8I546wTA6pGpBtUk+wKggwGDEPLRSyRqsr/aiubJsoYOSpUQMveKWKGyTd9TQ6qiIvkQkTMPAId2AJXp1tccaEhKuP22UCI/WxSLHivUOJ+ZWCb7YB6LJ/YfwfnX7sKeRQW3vCaLN55ON0mxMFAUIaB96qx2VqgAiGIxLmxiMVrzycpVfMYJm12/u2BlXO6/lZwHA9vdxLwqQtYpUBSFDaOD4cRiugeQakStqJpkHcU0FYvg/e14nUgVALneObEY2wo1g2q90RyXnzph+l6ga7xp0RsB19+yC9lMCpef94zI6yTwx3rVIkBSjyQgWJOMRQf5FoVgcioWDRg4VD2EgUwzzoOhmHUnFmmKbiH5AIAyn9kNc6KRpcY0DANLjSWkaKLU0ykdXCoCsehQXira6olFWZPB0IxtGwq4SSOGYnwVi4quQDM0HKocAgCk1KaaOIqazRqnRd5Zx8HOWFzF5zV7eBZvf+nbUd1bxab3bkLfFX2oK/Em4PKMm1g8FopFURVbiF0rV3HrSVvJ7wsd5iyaNfLQ+BDmpudirx5HsWipUVdFLMYgCjPZ9VEs7rx5J2iGxrmXdj7JaaY2g/5MP3L82vVtEyRIsDrE8rzhOA4//vGP1+zNX/7yl+Ozn/0s/v7v/x6nn346HnzwQfz617+2Q8sPHz6M2dlZe/nJyUn85je/wT333IPTTjsN73znO3H11Vfjgx/84JqNKcGfFhoOUm9jfxb9+bWzh8lyDGjKrWDzopD2JxYtUGZBKIUQiyyfblvwOqFoOlSPDCzHNwtqJiBj0Ym6RBSL1vJ+isW6rIFnSbZemmMga+0zFrePkMYWS1PoyXHQdAOLNRllQUHKYYVaEVXXMTE0Baquh2ZRtoOqyMj0jWLk1Z8DP7w19vrdtmKRHAvDMFAtrbiIxSNFAcNdaZuUXQ90Z1ttZIrLS+D4FMY3Egu/sJxFP1hWqJQ5w3NodBwLs+EN2r4cj+WaBEHWwNKmFapJILN0+5gyyyp1NXmnjTgZi7n8uigWd952I869+AqXTZUfDMPAbFnEWE/GJvoT+COpRRIcdYhlMnMlwKYrGEb8jEVLschHUKkFveedX0agJWkMWLZeqkGbxGLw9VinGDDEdDxgAcV94Q9ULHJkWUMHNAmCGqZYrAGso24LIhaVBlCbb9phBsAwDIjOespbU1iKRS+h47VCjUosagohrbim5YSqahjqyWLXG3O4cNKyw4zYfNp0KdC7qUUhO79SaW+Fmm7zuh+spo4arfk0v1QCAJy23SQW/XIWLSu3/b8HejYCPZ78N1WCopPzcsPoIA6HKhZ7CPmsiuQY0hxA0WiYNasCrj2xmO4iatdO60uaQTWG/VghlzEVi+a4/K4fU/cCXROxrhE33Ho3nn3hGUinEhXbWmGtaxEgqUcSEKyJYjGC/akTTmJxRVyBrMkuYpGm6DXJ7GsHP9WipQTUzZuspe6ryBXIuowsS5R7BoxIVqjOY+NrheqJQGlnTSprMhiKscepKio0x8RYS23mRJpJQ9ZkaDohFmmKRlprTpQSY0xIsXIwU1Y9ZL71aohFXdeRK+Rw3jXnIX8yuddU5Hh2SzzDQ9REe8JWabmEvsG+jsfUCRpqa8Zi0ZzUdNyJxwFoEo1xodEaDNnAwOgAFqbj9VaADhWLWufEolATkEpH63Vm89lY1qlRcdfNd+G0c09DvrvTZxyiWBzODiMXI2M6QYIE64vY3e2XvOQl+OlPf7pmA3j729+OQ4cOQZIk7Nq1C+edd5792q233orvfOc7ruUvuOAC7Ny5E6IoYt++ffjwhz/ctmGbIEEQnKTFhr4s8ikWpnsEluurCMEDAAoopDks1YIbQoU028yv864MQDL9/KUwK1Q+3ZYIdMLP2tNJZLA0ZSsIndDN4pSiKDRk1bYZ5RgKouieASWrOmRVR9ok0FIcDU03bOtZLzRVgaoocOr4erOkgJopNVARVWQ4onqz0HB8doamQjcQqIgMgmEY+N0vfgJFlnHCaWfignd+BWxhoP2KPsimCJG8aH7euqbCMAz0OIjFmZKAse4MOGZ9iEWepZHxUywuL6JvYBD9g6QxEVexaFuhms3SobEJzIcoFgGgP8ejWFcgmHmcTsUiRxk2SXzfXbf5EoAZk1j05oHGgdCIQSyugxXq3PRhHHzyCZx3WXsb1LKgQFA0bB7Irdv58ceEpBZJcFQhVkAUi3GJRcQnFoUVoqxiO5zo1LsF2Pc7YHFPZ+s7YDfJbGIxhFyhWTBUiBWql0j0WqNaYHlAUwFVBm1o8MZQa1Y9RAGQyi7FIqXU/YlFuU7IxfpS8PhNNJwzyL2qEaFEiK8WxSL5rOwSJ2rzVTRt3dk0fvjr29EQRJyybRPu/MwrsLnXrdKLhBNfADzjlS6iEgCqDQnDAz2BqxkUTWxD48JWLEYkFpeL6OnKY3JkEBRF+SsWrQasXAUGTyDkoBOqaBKLFDaOD4UrFlNd5DwTy+QYMoRYFM0msQzOPgdv3fUwVkpV/23IjVUpFmsNqTVLMgDEClUIVixKVWDpSaAw0sz+bIOlYhk7HnwisUFdB6x1LQIk9UiCtVEseknAUDU+3FaoJakEABjJNrM9aYqGZmg2ibVe8MtZtNRmhjnRyFJtzTeI/WSWJsRiVMWik3Dzs0LlaTcRKImtfRbdrEUoULZi0aqZvMv77VOKSUHWZeiGjkOVQ+hN9YJx2LjHIZ2c2wTIZ02B6oigvuM3d6BWqWF80zj+9Sf/iu6JZm2wt7g39nhkTYZuWrSXl4++YlFQBV/FIs3QGBwbRDaf7ZxYZDVABobHhzE/Hc0K1Qm/8+qRex/xVVBa5+RqMxaz+WykZddDsSg0BNx/5/244IoLOt6GbuhYaCxgNDdqTyhIkCDBsUdsWcTxxx+Pa665BnfeeSfOOuss5HLumQLvfOc712xwCRKsN5yk3lh3BjzbzPGreLtZHaCQZlFsBG8nx3NQtOAC3TALX1kJfsCguTRk2acZEgBvviIAcAwNnqEhazpYhoLsM0uuuLwEdB+Pnv5BrMgaOMsKlaYhi+7lLSLKUualzXBmfxKVQPLkLPaY1qL7F+vQdKOFMGvIKvpyVpYAOcZymLLBA0WW8ZVPfgi/+vF/gv/St/DMK5+PrOM9DBfN2R40RSGfYrFck9CV4aCpZF97Bwbt8ZYEBRv7s+BW1oc4yvIMOLp13MWlBfT2DyJX6ALHp7CytBhru3WpaYUKpDA0Oo69jz8Sus5AIYU/zJTB0TRYmgJguBSLFEVBU1V8+P++Em/5wDV46ave6FrfIhYbsoreXAfNfABCvQ6W5aCq7b/LmWwWlWKHVigB2HnrjWBYFmdfdHnbZWdK5NicNNq1pmP4Y0VSi/yRQJWATw4Bz/knknH4VIRhkGZ+ugeIeV8AEEy0BaGxQvLugrLf2pFMGy8AHj4C7PjX1tf+oRs489XAi74SaSjWXB5FR9uMRYNmwVJG8DK65iYS9QArVCtj0bTX9CoWZ80G0GBvFyBWmwSsroDSVVT8ei6yOcmkdAjYcJ7PAk3UBRH99k559kUsEVLRq6iwrVDN36MqRYQSNN3A+75zN7748wfw7Wvfjdf++bNBeZVojWKrci8IvH+jJcwKVWPzYDshsq3Z4hGb4HOLRQz394BlGQz2dWNuyeeeyzoaugPbXMQxAEARIBsUQAEbx4bws5t3Br+hpSytzpmKRRagKNMKlTYVi+QcfNHffgJ/94aX4WN/+1fubaQKhCiOqMpsAU2j2hBQyGXsyYJhyGcz4RmLMw8CMIDuicjZrb/6/b3QdR0vWIX1WAJ/JLVIgvXAmhCLnmuHZmhgqeDWn0W2WSRYd6obfZmmuuxoWKECpjLLc9mzrFB1RQe4phXqQoNMLMmx5HtnwADP8yhLZRdJ54WTdFV1tdUK1TOJzI8AWponE5UKPQVIukQyFhFALPpMSkuzaSiaAtVQcaB8AL3pXhQrzck2qyEWAZMIjlF/6rqO73zhO/j+l76Pt338bfiLN/wFKIpyHZvHVx7HpZOXRt4mT/OQNBJfYxgGVEV9SlihFheL6OnrAcMw6Bvs65xYZDQYkoGRiREszC64sm6jwO+8uuZt1+Dyqy7HWz/6VtffLcWipEottrpR0ag1kMllbMVmGDK5tScWH7jzASiSgguu7JxYXBFXoOgKNndvblEaJ0iQ4NghNrH4zW9+Ez09Pbjvvvtw3333uV6jKCopoBM8reAkujb2kWbMozOVQMvOuOjOcCiHEYupNjdETQHAQFA0TBUbmOhtbRjRfApqPfrspSDVYJZnIAs6WJqG5KNYXF6YA7qBfKGAKVG1VVUsQ0H0kII1MxQpZRKKaY52/d0P3m1Ylp5PLtRc27AwWxKbx0MzCdiIeXyVUhH/+O434pH778b7r/0ynnnl8wEAGYclrID4dlGFNIeSoKCQ4aBaxGI/UUBOl8j+nTTWhSfXlr8CAJy5oRcMTfnarBaXF9E7MASKotA3MNiRFSpLU6DNGYfDYxNYnJ0OLaAH8inUJQ0co4NjKKiqYpP2LGWAoSkIjTp0Xcfh/a3KmjRPtht0vkaB0Kgjk82hWim1XTaTWXvF4q7bbsJpZ1+AXL59dtVMWQBDUzh+uIOcqz9BJLXIHwmszLrHfvrUJRblumkB2mFd0Ilikc83Wb244LLAxguBx3/m//r93wNe+KX2ftRoKhYVnWprhQqaBUuHEYvejMUgK1SeLGuq4LxzvI7MLQHDINaeUrVpnamQuqUapFgEgJX9weM30XA1eryKxSIhmrxNQtayQrUyFqMRi9XFKbzy/wn49b4H8a8feyte++emut2riKxMAWOnRdpmEMIUiyqXBxvb5heRFXMW5pdLGDGbiiMDvf6KRZoDQAG5QaBvs89gRSg6DYDChtEhLK6U0RBEZDM+Y0mbE3VqC+R8Mq1QBVECkIFMkd81TUO1LuDxfUdat2FlTwrlWPtqg2JQrTeQz2awVGxvI9eqWPScS9P3ETK9eyLyEG649W6cfcrxGB06uhZ0fwpIapEE64G1zliMsk2nFSpA1IoZtql+j0tUdQo/dZ9thSrrQLa5bwuNBVCgUODIddpSLCqyEkosehWLXqLGOwY/Amhueg4YA/qG+loVi57sPL/cSJ7hoRoqFF3BocohDGWHUELJfr0TYjHtmIhDUzRUI1r9KYkS/vk9/4xbb7gVb/7gm/Gy17/Mfs1pTbt7ZXes8aTYFCRNgm7o0E1Xqd7Bp4BicWkFfeb9cFXEoqVY3DYMRVJQWirZ240Cv4zFerWOQ3sPtfzdIo0lTXJ9L+OgUSfEYhSsh2LxrpvuwsTmCUxuiThRzgezdWIFfkLfCWs1rAQJEqwBYhOLBw4cWI9xJEjgiw/97x+wVJNw3avPXpftO+00u0wiyyIVqyEkWFT0ZDgcWAomK/LtstR0FQCDHfuWcfX/ewA3vvsSbBpwN5xoLm1bTEaBnxUqQEi1kqCAodGiQASApblZ4HgAoCDIGvIpFpdtG8SWgRzkg+7lKyJphKRYyvxJCuqwPEmx4bZTZWkauRSDg8vk+GV5d1F+cKmOczaT4s1WLIaoPy3UKmVc/dcvRKVUxL9864c49azz7dcyDvKyYXBQQixo/dCVYVERVOi60VQsmlaoMyURFAWcMNKFJ8PFfh3hlPFubB8p+Nporiwt4PgTSVOyd2AIpeV4isWarJqZh+TzHBqdhKLIKC0voW9wyHedflNNqmgGOIaGJDSLU5YyQFOwibypA/ta1rdUrmGK3nZo1GvI5CISi7l8rEzGKO/90N134o3v/Vik5aeLAgbyPLoynakz/9SQ1CIJjhqsXL2jRSw2lonqrMMZyZDrwEkvBQ7cFrJQvH1RNLRVLILhwhWLqkehGGSFaikWTYWYV7F4ZHYBGAZYhgGkSlOxaC7fYoWqa02VZ7H9daNu5dv5Wb+KZSA/1Jq12WKF2v4zFwQBz3zpG3DwsIpffOq1eO6Lr2q+6FUsVsIzjaNgJEQloLG5zmx+Y56jc0tFm+AcGei1Mxfd26QIYTm4vdUGFXBYoRLFIgAcmV3C9i0+RFvKVCzW58k5QLPQNAOSTD4fxZxAZtnf7j7gc5ytz0IqN0nsOKAYVOtEsRgFhVwW1brQ/G6oHku/qXuB7g1NwrMNZFnBr2+/D+993Z/HGXWCiEhqkQTrgbXIMvRuo50tpm2Fal57BjIDSDNuoupoWKH65RFaikXLClUyc4fnG/PIcTnbJlJH0wo1jeCJLy7FotGqWPTmPPplLM5PzQNjQDqTbmYsBigW/fbJIopqcg0ztRkc13OcTUwC8TIWvdsEohPBqqLiPa94D/Y9tg+f+PdP4JI/u8T1uvPYHKkeiWXFmWJSqEgVGDBgmP21o5mxaMCArMktx7+4WLSVk72DvSj65T1HgKVYHJ0YBQDMz8zHIha95LFhGBDqAo74THKyFYurIRZrDWRzEa1Q85k1zVg0DAM7b96JZ734WavazmxtFjzDY0NhwxqNLEGCBGuBWMTizp07cf3110OWZVxxxRV43vOet17jSnAM8OWbn8Sfnznuq4o7Vvjvuw8DABYqIoa62s+MLgsWwRSNEHJmLHqJK1ld/WzBniyPqhg8yznnk4fnhK4qAFIoCwoUzcDO/SutxCLLxyIWgzLrUqbSjab8FYtLC3OwTBobsoaeLIeXnzMJhqZw126yPJ3KoWHINoGY9igWLUtNP4hCA/A8BPRkOEwXSVHjPVYHlpskkGEqFqUIisVcoQvPecnLcelzX4SxDZtcrzkViyrFodyQkU9Hb7Z1pzlMlwRougFNU5DNFZBKk+LvSLGBvhxv27euB4Ky+UrLS7Yla9/AUEeKRZ6lrSx4DI2OAwDmZ6cCiUXnfnIM7bK6ZWliHWsRi0cOthKLGX719hZCvYZsLlo4eCabg7iGisX7d/weiiLj/Evb5ysCwO75Kib7Msi3uSYkSGqRBEcZlqrSMIjiLT8YungLpDoQ7TJE0Fgm2XWdKhYBoGsEGD4ZmH80PBexDawml2wrFsMzFnkGQFDWsa64iShN8SemKJpsI0CxeHh2ETjd/EWuNTP5FCex6Dh2smPCSHmabDtErVkXREIg6WorSarJhGjyWqGaisU4VqiZTAaveeFFeG5jHidfdKb7Rd5tp4jy6ohFmqYw0Btss62y2c6IxZiYXy7hlOM3AiDE4r4js/4LPvO9hLzlfJ5HlAY5H0Fhwxj5Lh6aWfAnFvk8AAqoLpgZiywEWUVZMnDLARX6NtJYrJkN3D0Hp0k2lfO7ZxF4YoWoKOOCYlBriJGJRaJYFIMzFqfvBQa2B1reenHH/Y+iUmsk+YrrgKQWSbBeEKPm6obAsgu10E6xqOkaKFComwr/3lSvy8JzPRWLO2d32uNrq1hEU7E4X59HF98FliHXSx06WI5tm7Ho3A9VV1veM4picX5qHjAvqxaxaKnirOUtotFLVAJNouhg+SBUQ0Vf2k1IiQ0RDMvEykl0ZkNaRHA7sByL57zsOTjhmhOw/bTtra9b9rkKUYvV5OiTcO2MRadi8ShaoWq6Bt3QW6xoVxZXMLGZ1Ax9g304vPdwZ9tnNRgysUIFyDlx4uknRlrXMIwWxaIkEtvYuSNzkCUZfKr5ea5FxqLYEGNlLCqyAkVWwEXMiA7Dnj/swfLC8qryFQFyDvan+5Hz1skJEiQ4pog81fRHP/oRLrroInzpS1/CN77xDbzgBS/AZz/72fUcW4KjjM/fuAev/HpIVskxRFQ7xCfnSbEzV45WkDfk5qxyqpPsJAf8ZvD1ZjnU5OCZ69k2Vqi8SeVYJOcj026SkgJAsTwUefWKRd4kpYIUi/Vq870FRQPL0KApCjRFNUkjhoNCcbblqZWLaCkWq1Jws82bsQgA3RnezqgspNxFzeHl5vLNjMXgh6Zf/fi/cPMNPwZFUXjlm97ZQioCQIZzF/57FuIp2LqzHKqiCt0ANFVFt2mDCgBTRQGjXen2KlUAumFg4wduQGPo5Fjv7wfDMFBcWrSVk70DQyjGzFisiipSLG33uYfHSDG+MDsVuI6bWHTb5TqtUAFis+tVC7I0BWY1jXUAjXodmRjE4lpaoe689bfYsOV43/PMi/mKiIWqhLM29KKQTojFMCS1SIKjDufkoE6afY4mTCSOr7ECsJkW0q1ai56lDICoFgFg8Yl46zlgE4saABihhBllEXxBTQ+v9amu+luh2sGO5Fi3KBbnlpq/SH7EIpm44loGIERVfcHObgxCQ5SaOX9+jVguAzDejEXLCtX8PeQ4/c///A/+/d//HQDwnv/zTJw8kiLbdMKrWKzOhI65HQa682CY4HpTYzKtKsy4CCKUHSAZi6YV6mCAFSoAjJwCDLU2OAEAiqlYpICJ4QFQFIXDswGTpWiakLSNJaJopVk0JAWyBjzrew3Uu44DAGI9av6cWVh2b8OypZVifv8cY6g2RBQiqgTyuQwEUYJmmOewkxyozgHVWaAw2po9GYDrb7kbY0P9OOOkrXFHniAESS2SYD0haqsnFr2KxXbEoqIrYGgG8415AEBvxk0AWdaaC/PxJqdGgTU2SZNc5JgFqxbRzAnK1r7N1eeQ5/M2cadTOvgU35ZYdFqEKrrSVrEYaIXq3AbtUCyahJGltPQjSy114f4ysWjvTbuPtyiIsTPkUqxbsRiWibnjph34wXU/AAC8+G9e7EsqAm5isSJXMFef813OdzxMCrIuk4xF3QDHc8gVjh4hZJ0nKdrtNuBULPYNdWaFqhs6dEaHIRkodBeQyWWwMBP9u6HIik22WrCsR3Vdx8whd93H0AwYKh7R7IWVsRgF1nKdKGf9sPPmnch15XDqOaeuajuz9VkMZ4eR4xJiMUGCpxIiE4uf+tSn8KY3vQnlchnFYhGf/OQnce21167n2BIcA6yFSu+pACs7cWWFNAj8MtyAYPVeHFiWjyv11iK2O8P5NhKtllchzSHDBReNTYtP8rnsXaxBd+Q/0pSpWJTDC2gngkhaK5uPoakWxaKmudcRFQ0cTcGslyE5iEgKTQLRIk4jZSwKrc2+vhwpxDmGalGwzVbEplVpCLGoaRqu++w1+Pzfvwe7//Bg4Ps7x2nhngMr0M19nzvS3u6oN8ujJqlQTSvUnj5CLBqGgZmSgLGeDHIRiEVrt6TBk9ou2w7VcgmqqtjEYicZizVTsWgh39WNTDaHhZlgYpFjaJskY2naRVYzMEBRcCkEpzyqRYqikOI6tAI0IZoZi1GQyeYgCo2WIr8T6LqOXb+/KbJa8aGpEhiawhUnDoOmV0em/rEjqUUSHHXYVqgdQq5BMu/Rew9FIIjEEiGaPMRivR5OiLWg/7h4y/vAuhrZ+cVq8CQm2poRHkS+6qpbKagp/lao9usmsejh6MpVxwQQudokAc33rcqG3cwjy5jEYn4YqC/ZBGQQ6g2xSVb6Eou5VsWiZYVq1Wc+uUaGYeCaa67BK17xCuzcuROGYZDMRi7bSlR61Wi1RUDXISsKHt0foPILwXBfuG2mymZDPws9CiPexv5VUVQslyouK9RAYjEMqmQqFgGOYzE21IdDYc28VBc5zqoE0CwE5wQ389ypORpnuw946houC4AKzxcNA02sUPPZaESgtZwd1eC0Qp02M/x6xiNtyzAMXH/LLrzwsnPdKswEq0ZSiyRYTwjq6i0IwxSLy/PL3sWh6ipYirUnSg+kB1yv0xQN3dCxZE7uWY1yKgiaobWoywAHsahoYCjG3reFxgJyXM4mBnXoYFPtFYtO0lXTtY4yFuen5u3/21aoVsai6SRFmzWPH1lqKRb3l/eDpVj0p/tdr4uC6JvNGIYoikXDMPDDb/wQH3nDR/DIvY+0fe61iUXzkD62/BgqpQqO7PbJJPYgzaZdisXuge5V3YsMvTMHDu/nubK0Ymc99g32obxShqrEiy1oKA1SJMvk/BwaG8LcVHTS1c9e15lpeGR/6/H1I6jjIFbGorlcI+6zRwDuuukunHvpuWC5zidQ64aOhcYCRnOjyLJPHYe9BAkSxCAWd+/ejfe97332jNf3vve9qFarWFhY+1lLCRKsFpYV5/IKmYFULvrPRGqEEItRSdbJPnJj2zPfOpu5OyAvzVlT+SnYhsqPk/+Yha9ijmWqKLgUkCwNUCwHOYZisRqQc2ipCl0KRBNL8+5mqCBr4BiqWUCLAlKZnP17TVRBU0DKVEGmuQgZi0LrQ1RflhTIWZ4F4yFclmqSTZJaVqheC1yhXsc173oDfvTdr+FvP/RJvPWD1wS+P4AWkvf+wyXICin8VubbN4S70hxU3UBdUolisY+QeRVRRUPWsHkg5yLogsCYTca1sJwpmnmKfQPEsrR3YAjF5cVYBFpdUsEztD0Tk6IoDI9NYD6EWAQI0QoQktGpWGQoA4zDChUIylnsnFg0DAONRi2yYjGdzZm2JKt/mN/zyIMoLS/hvMsiEotHytjUn8WG/qRIboekFklw1GFZoXYKuWY3mSpRHtDFMiGvVumisBaw7/HWrShEsUmzFrEY0NDTZI9iUQm1JLVITKdisVTxuAjIdV8rVF/FYmGUfJZSJfg9YSoWrZwiP0LNz37JHIMWoFgURRGvetWr8PGPfxyf/OQn8a1vfYscW6Fo5ml6moc0C5Vy1I/CCqARi6yppWB7/SAM94YTixobPgHHReYGoQ2xuLhCxm1lPY4M9KLeEFGrx7zn2hmLzZzFUGIxXSDfKblhKhZbz8+aI0eoJWeRoiPbjvqComNlLOazZLmqxajrHmIx3Q3kRyNta8+Baew7PJvYoK4DklokwXpiLaxQwzIW/Yg31VBdBFvGo6RnKAaqroISzGf9GJaYceCXR2iVQ6qigqVZKOY9dlFYRI7LuRSLVsZiGJxKPlVvzVj0EjheEkhVVBcJJGtyqGLRqSS0YCkWD5QPoC/T15KbJwlSk9SLCOf7MBTTolJVFRWf/9Dn8W/X/Bte8ZZX4B/+v3+wyc8gWMeWUikwFIPHVx6Hqqko+WUke8djKRZhwDAM9PT3xNofL+KSfxZ4tnlOCXUBYkO0sx6tn8XleBOdago5/w0z13tkYgTz0/Nhq7jgzVcE4Mo0DMtZ7BRCTYiesWjWIkLcGs0HS3NL2POHPau2QV0WlqHoCrZ0b4mt5k2QIMH6InLXttFooKurmc/B8zzS6TRqtfUpKhIkWA0aAfajFlloKdPCLFaDtuGF1b86sNRoUUAGEYtO+FkfbhD24dCnX4he3rIhI+OeK4soN5oPCgwFUAwHNYZiUZT9CSVrPxiaguLJbJw9csj1u6Borjw/SRTAZ5uNq6qkIsMxYBgrW4CoG30zFs039lMs9ppq0BRLg2XcTdaVmgxRtohFf8Xiv177YTyw83Zc86/fxUtf9ca2s+TSDmKR1WXsXaihZo7Zz6rVi64M+SxX6jI0VUGPaYU6VST7dspYcMaRH3S1swLaiaKpTuxxZCzqmoZKKbrth61YdBy+wdFxLMyG5z5Zal6OoV2EHUORxq/1mWeyORw+8GTL+ukQNW87KLIETVWRzhXQ//x3QWoTKZzNkcbqWtih7rz1RhS6enDy6ee0XbYhq3hyoYpnTPSgP9f64JnAjaQWSXDUsWrFYsxriqEDqaeIxY95zRcVk2ALUSjQnHn9ClI1WhmL1n04yArVgrkdp9HBgSlP00auN0lARYAOCpLuebSRzUlfXaNEdVYKztKhaYpkLIZZoaZ8JquYCgsDMDMi3ffuD37wg/jf//1f/OAHP8BHPvKRZi3SWAbYbKsCEoBKE+VaRWXJOWg2mhs+s9zbob1iMfx8Wy51aAPqgKVOHDYbixbBGFu1qEkmsUiwYXQIh2dC7N1T3cTGVDGtUMVWm9q62eDLZzN4wkcl0GJNGwcUjVpDiGyFahGQNYtYdJLUR+4Buif9yW0fXH/LLqRTPK644BmxhpygPZJaJMF6Yk2IRc8El6hWqBa85JqtgDMf56rK6u8LfvDaVjqhyoRYlHUZsiajJJWQ43KgzZamDh0cz0EJiV4BPMSih1AFWq1QvUSl1/JS1mUwcCgWrYxF83eLRHTtp/m3Q5VD6E31ukgjLsWRjMWY5Ek7xeL3v/x9/PqHv8b7P/t+vPlDb25LKgJokq4GMJQdwoEycXDyU9x5kWJSUDTFpVg8FnAeF8v21LZCNYnFlYV4dqg2sW4ehqGxoVhWqH4qWMt2NJPL4PC+1lp11cRiQ4icsWgt5yQ7O8WuW3aBpmmce/nqJjlZNrzb+wKs8hMkSHDMEGsazDe+8Q3k882HK1VV8Z3vfAcDA02rhHe+851rN7oECTqEL4EF4OAyafANd5GGTZgVaj2mTWpNUrFcl5Djm1+rrgjEYt6HWOR4UjhQ5kxlRSNNPVU38ORCs5BnKApgWMhSO9qkCUIKUnjW9iHMVURbpWeRlzTVaoU6O9UsbjQD0A2AY93EYrpgFYsUqoKCFMfYGXkURYFnaV+y1ql6hKd3YyneVN1oydurSiqKpv2spViULAWjqfR73dUfwl+85i3YvC1akLaTyOINCbNlAQtVcixksb3SpCtNPu+VugzVoVicLYtgaQrHDYc397zQ1PAHoygoLhPLGqdiEQCKS4u2VWs71CXNVCw2MTw2gccevC90vf48+fxYBpAcx4+hDNA0BaFB/rb1hFNarFCB1RGLVmYj0z2M/OiVWFy+O3R5yzJ1TYjF227EORc/Cwzb/lv56EwFugFcfsJQJDWrhdE8DUBHd3p1drFPRyS1SIKjCmfGYkfrhyvkfME9NdTL1jW/qVgMJhYZi4xrm7FoWZhHIxYFpaka3H+kaQNKGRoh8NimYlE2WGTTnsaLpVjsMu0jl/cDWy/3fctcmkdDcCgW/eCX6+Js9lCMTSxqmgaGYfDRj34Ur3rVq3D22We71xOKAJcOJha1Ksoqjy6hZB+PtSQW61w//vdxBaefNBS6vhEpHDQc86YaYMRs4o0MNonF4zaORd+QZYVq1oQbx4ew86GQHNFMDyGTU/lAYrFWJ3XemSdtbVUsApGJPD9oBg1JVmIrFmuC+Tlbdoa6Dsw+AExeEHk8N9x6N644/xnIZqLZsCaIh6QW+dNEXVm7PPYgrIXNqKy77xXtXHD8lHtO0BQNTddsxWKljfo/KrwEaBh5oirErrUsl3HWf5wFAMhzze+gjg4Vi3S4YtFLAs0edluSK7qCFJOyFYuWGs0i7sKIRQMGulPdrv3m03xHVqjO96Ep2nYnMsw+0l+++S9xzqXn4JSzT4m8TecYxvJjmK6Re2Q78tYaj2qo0AwNhr56xWKnSDsyiYvmZCavYjFuzqJXsTg8Poxbb7g18vq+ikVTHXj8Kcf7WqH6WerGQayMxTVULN510104+ayT0d27OmJ5tj4LnuaxobBh1WNKkCDB2iIysbhhwwZcd911rr+NjIzg+9//vv07RVFJAf00wrfvPIC/OX8jWOaPrzHdkDXfRsjeBVIEDBZSMAwDYohisR5i2xmEh4+UccHWpkc+x9DIcEyoMtIio5xgOfI3zbQ4VRwZh3+YajY5GRrQGQ6KEkOxqBCS6LLtQxjI8zaxZ9mtsj4Zi7NTTcWiYvYEecd5I4si+EyzsK+IKlIs7bIvTbFMoPUsy6d8FYuWmlM3DLAMBdUsjFMsDUnVcXDFXMehWJx+4FY8/otv4ZWn/hRDwyMYGBppf1BMODMWeV1CwyjggcNlcx/bF1aWQrXUkKFpzYzFYl1GIc362t6GYS3y/opLC0ilMzZx1mcqF1eWFiITrnVJxUA+5bLwHRqdwG2/+nnoeoN58oDDswyqjuPHmvkdQqOOdCaDjVu34fGH729ZfzXEolAnD/5sJhqZm14jYnFhdhr7nngEL3/D2yMt/+CREoYKKZw6Hq/YPq6bnKvd6T8tK5CkFvkTwKEdwOB2INt3rEdCIHSQA+dEJ3Zhq1FIrQNE69Yd0uxkuAjEIk0TggRoKhiDYCo2BEcptt+RX8MaZt1jWX+pAiSdQSblabxYx79rDAAFrLROYrGQTXFuxaIfMj7XaufyNFEs/vrXv8a73/1u3HjjjZiYmHCRDTaEIsnT9FElqEwaUICKyjUVd4A7IzAigohFhc3jZT8QsPd1k7G3GRdzi+R7NNRHjp+tWFyM+f1SRbsOBYgV6tT8kk3itiDdQ1Srai/AF9DwOX6WFepZJx+Hn9y0o3UbfLxJYU5YzxlxMxarXsXiyj5yHnSN2grZMBTLVdxx/6P46sf+Nv6gE7RFUov86aIqr49Sz4m1yFj0WqG2UyyqWqtyzwmvYnGtiMWSVHL93o5YZGgGu2Z32X8r8AXArFF0SgfLt3/WdhKLfhmLXsWil1icOeyOR5E1GVk2a/dUZFEGx3NkdpbWuj3AvZ/dfLeLzLSJxZiKRS+xqBkaDj94GLf9y2148fdejG3btsUiFQG47Fg3FDbgoYWHQNFUZMUiAAiKcEwVi2mmef+1CESLUOzp7wFFUR0Ti5ZicXhiGNVyFY1aI5Iq0LLLdcJSB247dRt+88PfwDAMl9vWahSLmqpBEqWjnrEoiRLuv+N+vPpdr17VdgBCLA5kBpBbxWSvBAkSrA8id7kPHjy4jsNIcLSxd6GKT1z/GB44XMKXX3nGsR7OmqOhqFB9Ap6fnCdFQI5nISo6wuZgh+UBBmHXgWUXsQgQe8wwYtHPLtWa4dYkFpuE2hOzVWw26yOGAnSKabEu9cJJsgqyBo6lQVNwFSvWe7A0DVkkDT2KJ0XF7JFDSKUzruU4hzWpKArgs13QQWroqqgizTGunKMUS0NUNOg6UasBgGQwAM2CT2d8s+2s8WU4BgzdJBa70hwWaxIOLBESyNBUGIaBn33v33D3Nz6HsTOvQDobX/HhzFjkdBk8Q+P+IyUy1gjZe1mejLMua4ABdJtWqGVBQS7FIsUdfRK/uLyI3v4B+1j29jeJxaioyyrG2LRbsTg6gWqlhEa9hmxAjuFodwY0RY7LouP4WYdBaNSRzuYwsWkrbrr+R9B13WXL4s28jAOLIGQz0Rr0FvEqrpJY3PX7m0AzDM6+6LK2y+q6gT9Ml3Hupj4MFBIb1ChIapE/AXz7eUBuEPi7vcd6JASNeM2GFgQRi4t7gMIIkPaxyE53TmSsB2yRV4hikeZSgAYYiuSfDqlbikWzttI1Qqid+3+BwztaVVg+Vqj7Ds8ib6qvGN0ci8MKVdRZZNMp2J0egJAxFENUoOluoOS2dncil+ZMxaLVvPFWiRSx1mzdecciDL7yi4fxru98E89//vPR3R3SSBNLQH7Yn1ikSc1VVnli4VojNrAdKRbbZCyCiTfpqRPML5fQ250Hz5Nj1dOVB8+x8a1QVQmKTsPS024YHYSqaphdLGJixIe8TXeTfEW5AaR70Gi0nsO1hogUz+Hk4zfii9/7GQRRQibtuCenVkMskmZ+VCvUpmJRJMS7RSxOmw4RPdFm6v/69vugaTpekOQrrguSWuRPF2VplS4GEbAWxKLsyTtWjfC+hqIrbRWLiq7YJF5FXhtisSi57wF+6j4LVsaiE918t0126tDBcubrIU0e57FQDdW2UrXQLmNx5tCMi6Cxjp21HVEQkTLvIZRG+RK2TsKuN93r6slwKa4jxaKTeGIoBk/85gns+MoO9J7Yi67eeHEszu1YmChMkOOVpe3s8CjjaaiNp5RikWZoFHrIfZ3lWHT3daMYc5KTTSyah2F4bBgAMD89j83bN7ddP0yxuO3UbfjRN36E8krZdcxWQyxa246csZhbG8XiA3c9AFEQV52vCAAztRkMZYeQ83MOSZAgwTHFH59ULUEkWLlxUXMEn24QZM0moZzYM9+cZdhu3+MSiyxN4ZGZCjSPUtJPkehEWA6jqshgqCahNphP4eBKHao545+hAYNmICvhxZ3kyB4UTMWiN2/QskJlGKJYTG98Bib+9ruoiDLmpg5hYHgUQFOx6FS6ypIIPtu8yVdEBTxL2wQiYBGLuovwXdbSoPg0+HTWV7FowSIWLWRTDFiasq1tdUXE8i+/gJ9/43M44fmvw5mv/bhNhMZBykNkbezP4ok58h5SBCtUiqJcqsQe0wq1LCgopFmXynO1uP23N+Du229uu1xxedG2PwWAVDqDXKHLzl6MgoZsZWo2P4OhUWIrtzA7FbjeiaMFvO/Z2zHanYHsUMEyFDkHxEYdmWwOk5u3QhIFLM25Z4Bm+NVbobLpaMSiRY42GqvLx9l5629x6pnnodDd03bZfUs1NGQNFx7XH1vNmiDBHzWE0rEeQRPrlbH41XOAL/lln1FAqrMG0HpBsG78qtxUHHrAmhmLshBwDdVUouaz7iOaqVjccilw+YeBvMeOUzMtLx3Yf2QOk6NkOcayebOakJqMhkq3KhalKsCmCXmXGwSqs2Q/fJBL86g7rVA9WYlIFfzVYmazR9MNvO36Kt75rV1417vehZ/+9KcoFEJIKaFEFJd+VqgMqWEqqvl+FWI/5qe4a4d2GYtHA/PLJVulCJB6aWSwF3NLMYl7TYLT/GLjGDkfDgdlG6W7ARhAYwmgWV/FZ60hIJ/NYPvmCRiGgb2HZjzb6Pz7KKoWsRitJrWWq9YF01bXHO/UvYSEzvaHrN3E9bfswhknbfUnWxMkSNAxjNBpyWuDNSEWY1qhyrocqpBjKMa1japSXROb7JKnxuJCFNmqrLoIOcDfChUI/px0Q3epNzVda7VC9YzBzwp1eIIQSRzNQdEU0DTtUiy6iEWflquzD9Ofdl/X+QxPMhY7JBYNw8De/9yLO79wJ05+7sk496PnIt/dmROGcwzj+XH7/+3sZoEmSVwVqjBgoGegp6MxRMEDdz2AG39yY8vfOZpzkdHFxSL6BvpcE5n7BvviKxatSYPmLdo6H6LmLPplLAoNAQzLYOuJWwEAR/a57VBXRSyaasioGYupdAo0Ta+aWNxx8w6MbRjDxuM3rmo7uqFjQVjAWH4MWfapEReRIEGCJhJiMUEgyg0l1Cr0qQzdABSf5pcznzDIltNCXGJxpDuN/Yu1pn2RiZ42OYtdPhmLFhRFBkNTUEzSb6Q7jZmSCNlsVDAUBYNioCrhjSanratgkkS0R1JgvQfPUJBFAUzXIOhUFsW6glkfYtFJkkmiCM5ShlFAzbRCZZ3EIsdAUjVoLUpSCnwqDTGEuEtxNFhHAUgB6MvxmC6SYkctzaKx+y684v2fwYkveEMLaRoVaY+i8LihPI6Y7xHFChVo2rcCQLdphVoRFXSluVgZeu1www++hx9952ttl1tZWrBVihb6BoYiKxYNkO+Kd+xDYxMAgPmZYGKRoihsGymgO8NBdFqhOhSLmUwOE5uOAwAc8eQsZvjOj5dgEot0qn0zrywoYEx17mqsUIVGHQ/svAPnXfbsSMs/dKSMLM/gmccNtl84QYIExwarJTnlkEkpwgrgbczxOXdm31MAds7h3CPAP08CxVbVH8eTGeGyEHAN1T2ZioZmWqEG3K9VCbLuvgfsn5rD5Ci5r7JW05RrzkRvqDSyGY/aQa6ZOYYMIS/rS4AnI4sxNKRYCtk0h4bosEJtIRbz/sSiufx83cD3Hmjg3994Dj73uc/5W3Pa+28AUoVYofqoGRSGNE7KqjmWErnXrmXG4tHE3GIRw/29rr+NDPR2oFiUoTgI5w0msXgokFg0SUG5DlCM7/EjxGIa2zeTuqYlZ3EVRL9gTuSMSixa52+tIZBz1lIsTt0DdE9GsklWVQ2/uv0+vDBRKyZI8LSErMW/znvhzWkUtVaFlBOqroJBuGLRScjV5JrLUrRTeBWLYTlymqq1KBadZIsGDUybSaneMXeSsThzeAYj482oFVmXwVCMnbEoiRJS5rWcUqm2fYnetPveyKU4SILka6EaBpqioUs6tKqGI789gjPfeCaufO+VoFfRf3ASizkuR6xnASg+ecVeWMRiuUFUvt39q7dCDYqJufEnN+J7X/xey995hncpRlcWV9A76D7efYN9WFmIRyzWlTr5bM3PvH+oHzRDY35qPtL6vlaodQGZbAbjm8ZBURQO7z/sej1Fd+5u1KiRZ5GoVqgURSGTy0BshF83wmAYBnbevBPnX3F+x705C8vCMlRdxZauLbEtghMkSLD+SIjFBIF4xjW/xckf/82xHkbH8CoWNd3AweVmg68dsRg3Y3GkK41iQ3G9BwD0ZMOJxUKIolGRTWLRLKLGezIoCwqqkkUsAkZYRpEJ574KigaOoVwKQMBJLNKQJBGM2SQUGnWUiyvoN7MKZcuW1UUsCmDTzdlDVUklikVHEZFmaYiqbqstLVAUZSoWW4k7a9k021pADOR5HD50EIahg833Y/wt38RJFz+/7bEIA0vToNAc3/bhgr2/URSLgFuh2mMSelVRRdcaKxYBYMpDxPmhtLzkUiwCQO/AIIpLi5HeQ9UMaLrRQiz2D42AZhgszE4HrOmGJAjQassQ9t+Hbpacj5YV6sj4JFiWw5EDbuvDLNe5is9SHlJceK5RTVLx8Z8/ip89tmKPqVM8uOtOKLKE8y+NSCxOlbBtuIDhrsQGNcFTFL/9GDD70LEexbHFahWLSsx8klTeV8F2LGErFmuzhKg7eEfLMixPrmOKGKRYNBWKlON3mgGCmg2qBEkDGPO+qaoaDs0sYMMoua8ydsZis0lSV+CvWGRShNQsjBDlmuKuN7ZLDwAwFYsNqUkeap7GGZ93256aOLJUh6IZGCvQOPCBCbz58s2thLEXigBosmv8rt03FYs1jQVAARWioutIsdihBZprPGp4zdxOuTK/XHQpFgFgZKCvs4xFo3nOdOWz6OnK4/BsQE3jJAXpIGJRRD6XwUBvF3q789h90DNhahVWqFb9bVmctgNN08hl06g1RPL90FViC7zwKDl/ufYz9e964DGUKrWEWEyQ4GkKr9qwE3gzFkUlnCBQdMWl4vLCzlg0UVNqazJOp2Ixx+XCMxblVitU1mnlTQGM5T4UcEvyHhfVaFVB+mUs0o5neKdiESDkJE01FYtOK1RoCM2uBFoVkqlMCqIgtl3Pi+X5Zag1FWwXi8v/7XJsf8n2wLlbUeE9NqM5c6K5pASSfBYsYrFm1oVroVisV4Kf02cOz0CR3Z9vikm5jmNxqWjnK1roHeyNrVisylVQSvPgMiyDwdFBzM9EIxaDrFAzuQxS6RSGJ4ZbFIthNsHtYGUlRiUWASCTzdiEZCfY9/g+LMwsrIkN6lydZKxv79u+6m0lSJBg7ZEQiwlCoenG09YuVdXcxc50UbCVfkB7K9SGTPIAo2K0mxAY9x50FyY92dYCWVJ1W7lXCFMsyjJYpmmFOtJF3mO2RsbO0IDeEbHoY4VqHhuapiCLItg0sTZdmiMNlsERt2Ix5SD7JFEEk2o2O2qiCp6h4Xw+SXMMZFXzdVFjs12+xF3DnOntl02oHH4Id37mDag99FsYugom2w1FDS9wo8D5TlsGm/auUTIWgaa1LUXTSGey0A0DNUlFT5Z32cdGhSIHP7Qtzs20JcKIYtFthRVHsWjZ6HpJUYZhMDg8ioUQxaJrO6IAQ5Gw8MOPY0MP+U4IphUqw7IY27CphShdjRWqdVwoNpxY/NmD06hJKuqyTpSzqyAWd976W4xv3ILJzce1XXaxKmG2LOKsjb3o9blGJEjwlMBdXwa+/WfHehTHFuIq85RUIdA+1Bf8U49YbFg3fktFsbK/ZRkuRa61fbv+GfjRG1o3oituhaJXweiFKkHUKJsonJpfgqpqmLSIRauhyTebJDUZ7mw8ABArxG6UooHCKFGu1Zddi+Q0khWVTXFoiJKvgpC8V64lj/CO+x7Fma/7ND75ezL7fKDAk31rRyxazdQ2xKJmUITYqs0CAARJhqbFcxMZ7O3MAs2JYiXcJnxuOfx7MrdUxLCnqRhbsahrgK5C1tz164bRwRDFokMhQZufrweWYpGiKGzfNIHdB9aeWIyqWAQICUkUiyz5zs09Qkju7nEgpPFv4fpb7sbwQC/OPuX4jsedIEGCY4e1UCzKmmyrqQCScxcGRQvPWGQoBpqh2RajdaUOxTv5pgM4FYsZNtOiFnTCSyzyNN+yPJUKZ9L8VJZeAs8vY9EiCqvlKmqVmotYVHTFRcDJotxULAZkLDrhnZjDpliIghhLsbjnD3vwlhe+BQs/IffCTHfGpTDtFN5zYjI/af8/jOQDmmrSukSWWwvFYqUUnO2pazpmD8+2jMG5DyuLK+gd8FEsdkAs0irt+o4Njw1jfjqiYjHACtUi/ia3TOLI/rUjFuNmLAKEhLQsVDvBzpt3IpPL4Bnn+8U+xMNsfRY8zWOya7L9wgkSJDjqSIjFBE8LlBrxC1fFQwruXay6fo+iWPSzUw1CPsWiK83i/sMl19/9FItTRQEPTZEmTFgGo6rIYGnKziXsz/NgaApzdTJ2hgL0CF/juoNEFU3FYqsVKnkPmiIZi5xpIbk0S4qagSFCLFrcnZPsk0QBrMNysi6p4BgajFOxyDGQlFbFIgDwuS6IPoWLtd853l1Yz+z4GW7+4rvBj52A3MmXAYYBmmrmRK4GjEOxmOVZDOVJUazKUlvLWQDozpKxsiz5WZdU6AYwUOisGKyUw5tu04daG7wWdF1HaWWpxQq1t38ocsaiZKoUUj6q0aGxiciKRVEUwJmKFs4kKa2MRQCY3HJ8i2Ixw62CWKzXwafSUENsfQ6vNHDr7kVQIOdaJptDo94ZsWgYBnbedmNkteLDUyXQFHDFCYOuLNKoECXyQKKpq3+oT5AgFGtgdfW0hlRtv0wYFJHYfkYFl20hr441BNmRsQgAxQMty/DOXOO5P7RuRFPdhJ2uEUVWEFQBotpUIO4/QmYrW8Qiq5tNGQcxV5EMZDOeySRSlViVWhmLALDinsSSMsjM8VyaQ91nFrkNLusifb9/XxVXvPZDOGnLON55njlBhGIIkdyuoSeY93Y+nFgEQMix+pL9a6lNM69l2D7377hYDmnmAcDug7Ohr88vlTDc3+P6W2xi0bT2kw133btxbCg4Y5FNNz8zhkVDlJDi3XV3rSHaisITtkzgif1eYrFzYtZyP4lDLBZyGZKxSLPkezJ9L/l/94ZI699w6914waXnhKqP1gqKWSMqbRStCRIkiA4vsehV2UXdhtMy0GuN6oWkSaEEmFexWFfqHSsWLcJLh46i6LFCDVMsqm51YYEvtJBvFBf+TOV3LL3kmfd3SZRsYtEirpxWqIqmuI61KMZTLHoJwFQmFStjsXhvEVf/xdUYGBlAz4U99j6sC7HoIHaq5fD62CLCRFUEBarjnEcnysXwSUxe+1CedluhFheLrcTiUGfEIqW6z7Xh8WEsTEfsrwiSnQdqwbJCBYANWze0ZiyynU9EthSLUTMWAZNYXEXG4l033YVzLjkHHB/c64yKmdoMBjIDrkxVJxSzRyeHTMhPkCDB+iHSE0elUon8L0GC9UBZiF9QS558yCfna0ixNDiGFAHtiEVB1lrsVNth80AO+xbds7q7PRmLzoxBVdORTQUXjbKZsWipLxmawnAhhWXBsH/XjPakhKX8A5qKRdqjWDx/S5+9TacCcXF2GplsDrkuMstM9iMWJcHOqAMIkZlm3arINEe7lJpOsOkcRKF1JuVp49147knDOGNDDwBA0zSs3PR1PPmTL+HCF74Sgy/7e3A9IzAMAyxN23auqwFDuce3qd+hhqi2V670ZEjRR5uN4YpImkpD+c6IxWobYvHIgWA71FqlBE1Vfa1QVyJaodqKRZ98hqHRidCMRdd2BAHpTA7dF7/KtpcVGg1ksuQ8m9y0tWVf0qsgFhv1GrK5HKSAU8IwDPznrkPoz/M4ZbwbiqYjnc11bIX65GMPY2VxHudHzFd88EgJm/pz2DTQ2UPW4489BgBYjkgQ/zEgqUUSHHWoEqCK4cq6MFA0IUNiEYsZX7vNY4m6VS9Zzc7KLCEKHbAyFgOhe4lFtQ2xKEJUDRexSFEUxof6AZhWqGzaRcJWJL1VsSg7rFDzpsJg2T0hhwHZv2yaRz0sT4bLADQLwzDw0d+JePX/LOCvXngZbvzah9GfNfeNZgBDRaAPmwUruzPA2tJFLGb6mkQk2qsH1wMrpfAG4u5Dc4GvybKClXK1xQp1eKAH88ultnZqNlTSGHdmLAJtFIsU1VQc0iwagtSSw1mrE8UiAGzfTBSLLgUJ37lisSaq4DkWfAxr93w2TRSLFEOUvlP3Al0TbvVlAPYemsET+4/gqsuPjg3qjJlLNRuzKft0RlKLJFhvyLrsugYtNqI9sznhVdEJWjhBoBpqKJFFU7TrWt1QGh0RngCg6eSeK6piK7EYlrEouzMWc1yuxarTSSz6EXp+ikVvZhtFUa738SMWXVaohup6L6fCkVLbKxZ1uO+BXIojxGKELLnFXyxi/5f247zLz8MXfvAF6IIOtaS2EMGdwnt8x/Pj9v+jEouKoYCi2mdNRkG1TS3SQsY5MhYNw/C3Qh3ohVAXYpFoVYVYoTr3aWh8KLJiURREpNPuutmlWNw6iZnDM1CV5vmaZtrU2SEQakdXsbiyuIInHnwCF1y5ehtUgCgWh3PDyAbUzLOz5Ht5eO9h39cTJEiwvoj0lNPT0xP5RhDXnidBgvVCxRMq/eRCDYOFFBYqpDHR1gpV0WITVduGC7YS0YKXWDyy4ibQvASfE4osg2NoCA4SdLw3g3vL5CbPUEAUt1a3YlFHd4Zred+/OncDnn3SMHqzPGRJRMahWByd2GhbPSg6UQfyjGMWpNAkFg1QUDQDvMe+lFih6tB87MHYbAFSuVX5RtMU/s/ZzZlxFEVBE8o47iXvxJv+7t34+M8fJS8YBhiaWiPFont8xw/lcPch8pnWKmX09A34rWbD/rzNbL+KSYqPdHeoWCyFE4tTB/cGvmbZnbYoFgcGUS0XIcsSeD58XJLib4UKAMOjE3j4nrtC17e3IwpID29C9sJXYPdKHeegmbEIABObtmJxbtq2RwUIGd0phHoN6WzOtu71YueBFexbrOPtlx+H3fNV7F+sIZ3NdmyFuuu2G5HNF3DKmee1XVZUNOyZr+GFp42iP5/YoEZFUov8ieL+75NsseOjkfZrCpv86fBhnuEIManHVCw+xaxQ69aMIotYrC+0ZEemUu2IRQWgHRMpDA0IUZRDFSEoBjLpJrE4OToAznQDYHSTWHQ0QkuC7qNYrAEMTywkuW5C2hb9J+Tk0v5WmTb4PCFHDQOLdQP//Gd9eP+17walOO4bFEM+78iKRf/JJSpt7ocBINsHLO22XzsWxOLyKojFhRVSQw23ZCz2QlU1rJSrGOiNYJEWQCxuHB/CoZ8twDAM/3tEqkCON00Ui9l0CsVy8xjWGiImRkhtt33zBCq1BuaXihixmo+2YjHeZEMAqIla5HxFC/lsBrW6lbFoKha7xwG+fUPwhlvvBs+xuPKCM2KPNUE0JLVIgvWGoimrVpvJuuwiCgWlDbGotycWnUSVaqioSKsnz1dE96QEb96ga4weK9Qcl2v5LhqseZ2OmLEIALSP1oKlWKgg/RNZksGbtcjM4RnkunLId5H7gkaRY+IclyiISGfTqKFGFItttBzez5rP8BDFaIpFtapi5MUj+Psv/T1omsbhrxBihX09C0mT2uYft4OX3BzMDEKXdRiagVo5vBZhaIZY6NKrvw7munKoV+qoFMPPOa99KEdzNrEo1AWIgojewVYrVICQYeO5cURBTa75KhaX5pagKirYNpOJJEFCKpNykbNOxeLklkloqoaZwzPYsJW4FYSpeduhUW+AZugWlWQYMtnOFYu7btkFADjv8vZ9kXbQDR0LwgLOGDoDWTY6MZogQYKjh0idi1tuucX+/8GDB/HBD34Qr33ta3HBBWQGwo4dO/Dd734Xn/rUp9ZnlAkSdACvfeqe+SoG8ryDWGyvWFQ0t7qwHY4fam0QWUSTVdc9MdfeVk2kUshsuwCqpVh0sIcb+3K45yBpSBErVIrMyA5Bw2OFOpDnW6xQKYrCUIE0smRJQp5PwwCwNDuF0cmN9nKKRmwxnW8pSyIojhBUljVryqNwy3AMZE33VYGyqRyqPopFC/MzRzB75BC2nHYeBl74PowP5DDgIWRYmoqtMPUDQxmuh5HjBpo5i9WKv2LxMx+5GoMjY3jtOz7QtLY1G1EWwT3U1Vljuj2xGGyFWlwi1ml9HsWi9XtpeQlDo+EFtGWF6mdLOjQ6juWFOaiKApYLL1QlSQSfJcfEeshxkohWLuH0oQM47sRTAt+zHQzDQGllCUKjjmw2bytsnRBkDT+89whOGu3C/zl7Al++eS8kVUc607liccetv8U5z7y87XEAgEdnKtAMA5efMOhrMZvAH0kt8ieKn7+d/PzIfOcEX6ewc/A6fF+aJ/ahYXayhuG+h3OZcCXfMYDtemDlKTWWAU+TMpVuQ57YikWqqeBkwohFCQ3FoVicmsOWiVH7ZVaXAT7lUkGWBB2Zfk/jRa4B2QGyHEUBuQGgPE3sSj1Wkdk072+Fan4+s1UDD99+H5578Vn42gvToPK95DVns4emTWIxYsZigM2mxHWhLhuoaiyQ7XdlfRYDmnnv+dTXoagavvKxt4a/dwwwDA1N09taoe45HEwszpt2p17FovX73GIxIrFIPhvZSyyODaFaF1Cu1tHT5XM8U+a2aRaCKLWoWq2MRYAQiwCw+8B0k1i0FIsxGrSGYYACUJOUWDaogEOxSDPEyndlPzB2RmAepxPX37ILl5/3DORjvmeC6EhqkQTrDVmTV08seqxQ22Usqrra1grVO6ZlcTlg6egoSSXX76GKRcWtWMz4XBNpH4cdJ/yIRb8sQ5ZmYZoZQJZkl2JxbMOYTWhaakPGMVFKEiV093VDn9HBMExsK1Q+xUNsiPax8JKn5WIZj977KC589oUYefkI0my6xfra7/PqBF7FIkMzWLpuCcXdRVSv8u9pfe9L38OR/UfwkS99BDzDQ6LDbXgrWgXbP78dy3Lw+ZRKpVBHva0V6pTHytyZsVg0axGvYtFFLG6KSCwqNUCFO2NxYhi6rmNpfgkjEyMha7tVsBaEumDbtE5uJRPrj+w7smpisbhUhFAXkM1lXeNth0wug9JyqaP33HHzDpx4xokttrOdYFlYhqqr2Ny1OZKKN0GCBEcfkYjFSy+91P7/Nddcg89//vN45Stfaf/tRS96EU499VR8/etfx2te85q1H2WCBB2g1FCaJzhFYf9iHedsbt7cGrKGFEvbVo+iqiHDO2f2aS7bzuV6e8/uDX2ts2gscsQi8nZHIBbvy56NoZdegNqD17kyFgFgY3/zPSwRGRUyuw9wk6iSooOlqdBcN1kSQHNpaAAWZ6dw2mmn2q8pOrHFZBzrS2IrsZj2ECaWYtFJ0C5oZF/YTA6i6D8j6rGH7sPH3/Ea9A0M49Pf/6VdXKdYBoU0i6ppNcoy1LpYoQ4VeBR//z2Ihx9GrVzyXee3P/0fAMBr3/EBH8WiCpamWpSrUdGOWDwSolgsBigWLWKxuLQQgVgkxzTN+1ihjk2QAnphFiPj4dk/kiCAzxRcZi/OjMWJTVsBEAWmRSzGtUKdnTqEz//9e/Ho/XfjrIsuQyaXb1E2AMD1D89AUDS84ZmbMNmbRSHNQlZ1pDLZjojFpYU5PPnow/jzv3lzpOUfmiphIM/jGZOrL7b/lJDUIn/ikOtHj1j85DDQtwW46kvkd7YzxTkYDtDENuo1D1nRKYm5jhAV3bR1NesgoeQiugAgnU5B0Qzbbr4FmtIkAS0FZ1izTRHRkN2KxeddfJb9MqNLAFtwqTuLgt5icwm5BnSNNZWNuUGgNg+oAsDnXIvm0jwagk8DLDuAh7qejas+cgP4VBqP3fA18M5Gn9O6lmZM4rQNCaVKZP8DGkUqk0X3P1fxrlcNEGJRrsPqlxYr/nXkF777UwBYU2KR5zgImrQqxaKVozg80OP6+4ipGphbKuKUbZvaDybQCpXUNIdmFvyJRctClGkqFp1wZixu3TAKmqax+8AULj33VHs9MClEVSxOzy/hC5/9Jj57JvDkTKkDYjGDSq1Bzu2iOXmsa6LtJMJytY7f3/sIvvihaLVIgs6Q1CIJ1huyLq/axtKrQGwo4cSi1zrVC4ZiWsa0LKw9sRiqWFRUcI777cauja0LmbtgBFyvo1ihAnC9jyRKKHSTCSazh2dx0pkn2a/ZxKJjG5YVqnGbgf4T+0P3CWglFtkMC0mQMNk1iXvm70FPqsd+7fC+w/jQaz8ESZBwxkVnBKqnrc8r6DhEhZ/aUt4vQ6togVao3/7ctwGAEIs0D4EOV73NKrPg+jjMS+1tRCttJjmFKRZXTOtuv4xFALFyFutKnVihOonFMWKPOz8935ZYFAURKU+9KjQEjGXHAAADwwPI5DKu/bGsZaOiuFTElz72Jdz2i9tw6fMvjZWvCBBicfZIeH62H2RJxr2/vxd/9ba/ir2uH2brZAwn9J+wJttLkCDB2iO2z9yOHTtw9tlnt/z97LPPxt13370mg0qQYC1QajSJQJVJoyap6Ms2GzgNSQXnsHf0TkQWPVaoC5WQ3B0TLENjqGASbOb2rILvzA2kiHlirr1tiGpWxQ1BBMvQLoJzorfZoLD6d22JRUfGoqhqYBka89OHcWDP4y3LGoYBSRRBm0RheXkBoxMOxaJOGodOK1VJFECZgdK6+XdvJl+KpWHAkdUEwKJ+2VQGYqP1geeWX/4U73vtn2N8wxZ8+hv/0zIbrz/X/DwZem2IRdZTgFMUhcqOH0CrrQQqFp3oyrgfyiqiglyK7ViZVimFF7lTB/YF2pwUlxeRzmSRybmbp1bmYpScRcsKNc0yqB73bCyOXWi/n0VKLsy22ti2bEcUwGXdDT+nYrGrpxfdvX2unEWL6G8nEtB1HT/9z2/gzS+5DI89eC8URUZxaQHZXK5FsThTEnDT4/O4fPsQLts+BJqmkEuxkDUd6WweQj2+xdzdv78ZNE3j3Iuf1XZZ3TDw8FQZJ412tahuE0RHUos8TVBfAn70hmM9ivhQRWDhMaBkPtB3SvYxnKlYDGkQei9wVuOgfASotL+2Hg1IikpIDnumvwGUDrmWSad4SGF9UGfGonU8aAbT80u475EnW5dXRdRlHWlTsTizsIwtk81GDWPIZnZisy5YbqjIpLzEYp0Qf1bTLz9MzksfW7hsivNVLF5/y9246GO/wGB/P277/qfB856ai6IgKFbRx0azQnWsGwTNACG1M6R+tCZ0HRsr1PDa9cDMImTZP29r3pzxPtTX4/r7cH+TWIwEU7HYYoU6RmqawzMBNU3afF8rYzFEsZjiOWyeGMbuA578aD7XthgxDAPf/NFvcNIL3oK7/7AHADC9XEMhRqYRABRyGVTrZsZiY4XYI3ePtV3vt3feD1XV8MLLjk6+IgBIIMdSojqcfPE0R1KLJFgPKLrbCrWuxJ/06FUsimp4H0PTtVA1kJ8CbklYij0uL8qS+9k6TJXltULl/PKorZfjWKH6THLyZizyZi2yNL+E0Q1N9wTNlDU6SVxREJFKp0CB8h+jB97jmkqlIAqivQ8WeXXfHffhbS9+Gziew5d//GXbNtMPDM2siWIxRZvXdh/jjXZWqID5ebYRyS2p5DyKQoK2s0ItLZdcOYwuYnGJ9FQsItFCobsAlmM7Ihad+zY0TmqRhemAzGcHJFFC2mPdL9SbGYsURWFi84SLWAxT8zphGAZu/tnNeO0Vr8WOm3YAIGRnJuYkp2wu25EV6kO7HoJQF3DBFWuXr5hiUpgoTKzJ9hIkSLD2iE0sTk5O4rrrrmv5+ze+8Q1MTk76rJEgwfpBUYJVhCsOhaHMk9nKg45GfkNWXXadXiJM0QyXhehsBGIRALYOEqJEdQScp1gahTQpUB+fDZ717VVoqYoC1qMsLKQ5pGhSeLFmQ8oi9YJQ91ih8gyFVz/3PLz5pZe3LKsoJDDeuU2vFSrH0C4rVUkSSQMVwYpF61hbY5krN48nw2cheRSL1/+/7+Dav3sLLnnuVfiXb/3QN9vQInEBgKVpqPpq5+W1KhadqFVKbdf32neWBQX5FNNiDRsV1QCVJACkMxkIjTqWF/1n+BWXF9E7MNjy957eflAUZSsawyCpGjiGAsfS0FJdkLODtgLWIhbnZ6bCNgEAEMUG2HST4NR1HaLQsIlFAJjcfDymDjqIRfNYhn2mU4f2472veSm+eu1H8ZyXvAIf+NRXAAANM7/R2YA0DAP/dfdhdGc4vOnizejPk/MnnyKKxXQmC8GH4G6Hnbf+Fiedfg66evraLntgqY6apOKCLf0opDtTsSZIapE1wfxjwD90A4d3rt97/OoDwCM/Ap741fq9x3rCysFrY0GoqP6EChieqKziZCxa997iAfJTDbeQ6hgxbB1lRSPEoubYz2V3TmGa5xDqMK9rTTtSw6xJKAYTl74aZ//F1a3LqxJqkm5boQLAFscMcFaXCenmmHC0XFdthWNz8HW34rQwAggrRMnoQS7Nt2Qs/sfPf4cXv+0aPOeiM/H7//gXjA/75ywLVplF00SxuMpcIxey7ntLkBXqemIlQJlgQdN07AuY2T6/VER/Txc4T+ZQLptGIZfB3GJUYpF8NrLhrqeGB3rAcywOzQTUNJmmFWpDlFpUrU7FIgCcsHnCn1gMqUYOTc/juW/4KN740S/hZc+5CB/+0Adw9a9FPDyv2aRlVOSzGWKFypjHq3uyaccagutv2YVTt23CxvHhWO+3GhygNuLN1ws4TPsoh/4EkNQiCdYDiqa41IFRn251R+9B1mUXYSao7TMWw7IArYxF51hWSyxKqgRRc/dX2lmhtiPqDCoga9eEr2LRJ+/ZSSzKYjNjEQDGNjQneliKRe/yXtIodMyeeoEznw81tXkO3PHbO/CBV38AJ5x+Av71J/+KsY3hk03WzArV2i+flluQYtGJKPadS0r086ga4p5gHXMnGeckFotLRbAca6tPLdA0jd6BXhSj1iIwiUVPxmImm0FXbxfmp9srLyWh1QpVbIgu8m/DcRtwZJ+DWIxwLJfnl/GxN30Mn3zHJ3HWM8/Cv/zHvwAgGYtxicVMLgOxEa3/6cSOm3ZgeHwYW07YEntdP8zWZjGQGUCe848OSJAgwbFHJCtUJ77whS/gZS97GX71q1/hvPNIGOvdd9+NJ598Ej/+8Y/XfIAJEoThiSd2A/lxyHJr460sKIA5SVjh8mBoCkOF5g21LmvgHGQP41OEloRmE22uLEYKwN42XMCO/Su2RacToqLhyEqTuPCq2BgPiagqMlgfW7FuHlgQm1aoaKNYrEvNsRCrsuAZibJICgjK0YgbndiIA4ukkSXrQJahbcWiqijQVBUGzQF6k1jM8u73sEjTmtl9u/HxZtFFpzIQPRmLZ5x/Md74no/iL1//tsAHBGduoZ2xuMpeXhixGEWx6ByrAXIeFtJcC3EdFZVycJE7tmEL9u9+FFMH9mJgqNVyY2VpocUGFQAYlkV3Xz9WIhCLsmYgn2Lt74eeKtjK0Ew2h66evmiKRUFANtWctS+JAgzDQNpBLE5s3op9jz9i/86zNJkI6PORaJqG//3+1/GdL38aA0Mj+Ox3/hfPOOdC3HMHyb4RG3Vkc3msOJ6p7jtcxBNzVbz5ki04daLH/nsuxUBSdfAdWKFKooAHdv4ef/2W90Ra/uGpMjIcjUu2t34uCaIjqUXWAIfJLFY8+hNgw/nr8x62dWb0WcBPKUgVQqi1ucfee+99uCALTM8vw2UuzXDkGMQhFrmjkI32y78DnvhF8/c2lmu2YtFJLBYPAINb7V/TKR411UDg1HTdxwo1RB1haDJqsu7KwyOKRTIGxlBMxWJzG4tVhajRrHJClYhS0kss6ipQngJ6NwFasz7KZXioqgZN0+0246XnnIpr3vkqfPj/vrzFNcGJpmKRIfmNa9DQs5Fx23YdG8Vi+wbi7gNTOHFrqy363FKxxQbVwshAbwzFor8VKk3TmBwdxOHZgJom7SAWBQkDvV32S4ZhEMVirllPbt88gZ/9zjPhIpUH5NaJR7qu49//51d4/2e+hd7uPH513TV43sVnY+eDT+DLu2RMjBg4oaOMRZGoXwGge7zFttcLTdPwy9vuxZv/8nmx3mstcN39Cs7/q/bE5x8jklokwXrAq1iMih07dgBdwIHdB6CybitUL4Hn957tMhYB2Ld4nuZRFIvoSnUFrtMOZbn1uTqMOFRVtS2xqEEDn+IDyVhFa50Ixvj0RbxWqCmHG8LoxlbFovPYiYLoIiLbwTtWa13F4QJw8pkn46/e9ld4zdWvARPBBYmhiGJx9VOugxGFWIxi37mkRScWwxSLY5vGsP/x/Ti87zDoPvJ5OMm4lcUV9PT3+PaV+gb7bKvUdlB1FZImIae23peHx4cjEYuiIPorFh2TnCa3TOLe399r/x52LA3DwG9+9Bt89RNfBZficM3Xr8HFz7sYh548ZG97IGBiXBAy2QwatXgTrg3DwI6bd+D8K84PJfjjYKY+g5HcCHJceB2UIEGCY4fYne7nP//52LNnD6666iqsrKxgZWUFV111Ffbs2YPnP//56zHGBAkCoVnNKR/Cryy4C8eBPI9sqlmI1SQVfFAWkAmnnepiVSI5Q22wqT9nL+/FvsUaNMdYQ3pUAAixyDkWsvLu+tJk3LYVKhteZNckN8kZmIEEU30IAI5tDo81rQcU3QDHNq1Q7eXNGW26+cSR8RCLKc6tWPzNI808HppLQZZECOVlLP/qy5CEOiY2bcXL3/D20KJkuOAgFhlqTRSL7CoVi07ohoGKoKCQZjsmFqshGYujkxtBMwyOHNzn+3ppedG2PfWir38oErEIELWpxXkbXA4NpXk+DY9NYCGCYlESBTDpJrFoWd+6FIubtmLqYNPalaYo8Czd8lB0aO9uvOtVV+G6z16Dq17+Gvz7T36HZ5xzoWuZRr1GMhYNkxClGPzPPUewbTiPV5wz6VIH53gWmm6AS+diE4sP3n0nREHABZc9J9ryR4o4friA4a54CoYEbiS1yB8Z5Pg2X0cFYoXYEIZlAQLQTHJKVjwTiixiMU5W0noRi3VHFtJjPwUGjm/+roQ3HJtWqE2lIUqHXcuwLBPBCpVBTZAgWqrAkDwnQxEhKIaHWBx1L8RwLnJysaa4lrdVic5mTN68J1qKS6nZpMqmSN2zUBbwxp8LWKmKmBwdxEff+spQUhFwKhYjZizGAZ93Z0k+Ba1QC7k0dh/wn2Q0v1zCiCfTyMLIYAxiUbOsUFs/iw2jg8GKRZtY5FoUi5KsQNN0l2Jx++YJHJiah+S0du0aJ9cCB/YdnsUVr/0w/vYTX8VfX3UZHrn+/8PzLnbbYlbrQmwrVFuxaH3m+ZG2Oa87H3oCy6UKrrr8vFjvlWB1SGqRBOsBRVc6ylhUVXIjUmUVsh7TCtXQQu9zNklp/siwGUIMruJW57VBBfzzDi14rVB9l9FVcDwXOC7VaJ347Zct6bVCdarL/BSLThJXklptLuPAUiw2yg1Mf3sa9eU6egd68fr3vj4SqWiNRzO0SJPiO8VaEIuCKqCuR38GKBeDJ3lnshkMjg66FYuOiYHFxSL6Bv3dhfoG+yJboVrWxF7FIhCdWJQEyTdjMe2Y5DS5ZRLllbKdK2mRpN6+yMLMAj74mg/i0+/9NC648gJ85+bv4OLnXexaplFvxM5YTOfSEBrxrFAP7jmIuSNzuPDKC9svHAG6oWNRWMRYbgxZLt74EyRIcPQQW7EIENuPa6+9dq3HkiDBmqIqqoDDLmkwn3LZczZkDXyIcg8ASvVmU2GpLrusUYNgqSBVrbWQ2zPfvgBzwmuFWjHJ0n6z5rAUi+0yFuuebp8zW9ILS7FoKTQy+QL4VLPIUXTTCtXchCSQgkM3C3CDosHSVIsa0zr2VVFFWVCwY3+zyUmZeY63fObNkCUJlaU5AJtC9wkABh1WqAxNQdX02LOjDMPAwuwUhseIZVG4FWp7xaITqmagIqrYNsyBDznmYaiEEIscx2F0YiOmDvgTiytLizjxGWcCIBacX7xpDz5+1cnoy/HoHRhCMULGIkCUg7aalqKwXFUwZvbphsYmoikWJRE03zyPLAIvnWkWiRObjiPWrgtzGBgmDeQ0x9jzBlRFwQ++/W/4j3/7HEYmN+KL/3E9Tjq9NdvG2n42m4dqKhsW81sgiyo+8LwTbPLfQs6ccMDluiDGJBZ33XojRiY2YMPWbW2XXa5JmC6JePZJw6681wSdIalFnoaozgOf2wa88wGgb0uT+Fl47NiOKwhimRB9sWfdmhctmiMqP59Mn0BEyOPpCLsdCsVL3g/k+oGDt0da1bZCtYjFTA9QnXMpGCmKQujcK00FaAa3P7gPk90UThliQmdXGaoIQYWLKBzo7cJh522L5V2kb0WC2+ZSqjaXs5AzicUV874pNO+xObOZd8k1v8NKRcVb5qtob3BN8LkdEv4wr+O9NEuI2g6aeYem5/1tLCmKkGMNUjcdCyvUdorF7RtHW+1DTcwtFjE25H8kYykWTQJcNlq/jxvHhvDE/oBJTgPHAxsuAAojEETJlcNZM5tmuYxbsajrOvYdnsVJx5kKzDNfB9TnAC4LTdPwlf+4Hh/+wncxMtCLm79zLZ51/um+b11rCCjEVCwWchmiWLQa7D3tLTVvuOVuDPR24dzT2tciCdYWSS2SYK2h6uqqbSxVXXXZirZTLKq6GkmxaJhxLGk2jZpc64gAteBHLIaOUWlPLOqGbuch+sFPsei3TUuxqGkaNFVzKRCHxoawWCLFiJ8VqiRIsRSLXljr/vff/TfKc2WUXlKKvY3VWKHOTc1hxGE9H4QoGYvtiMXZmr+FehAqbSY5TW6ZxJH9R7ARxJ7bzogEUSz2DvpPcuob7MPex/ZGGoNNLCr+xKJTZRgEL1mtyAoUWXEpFjeYDhBH9h3ByWed3GITbBgGbvivG/C1f/oasvksrv32tYG5hs78xqjI5rJQFRWKrBCyPgJ23rwT6UwapwfURHGxJCxB1VVs7t4cen1KkCDBsUVH387bb78dr3rVq3DhhRdiepo0lL///e/jjjvuWNPBJUiwGtRlFarebOz05nhbNQcADUkNVe4BbsXiSl12ZRV2gifmqujLRS80g6xQh7PkbzmO/KS58KLNS4iyISSXJJkzk8yCenDU3dCwiUVbsWgSi+ZMPR000hwDhqbwD1e/Hl/79McBOKxQJRW37l6A5vhsVg48CgDg0jmMvPrzGJxs2quFwUkssgwNTTdiz8y7+/ab8brnX4RGnRTHYVRzWN6hH2RVQ01S0ZPlQo95EBiGRaUUPntuctNWHDnoXwgXlxfRZyoWp4oN1GUN+01L276BwbaKxXKRWJMQxWLzPFysNx9Oh0bGMT8bQbEoCGD4ZkFrEYuZbJNYnNxMPvcjDqI0zdIwABzY/Sje+VcvwHe/8mm87DX/F1/70Y2BpCIA6JqGVDYHzVTQCnwvLjl+AFecOAzaYzmc5cnDIJPJ2+dBFBiGgZ233YTzL312JEL74ekyaAq40mcMCeIjqUWehnjyt+Tnzv/v2I4jKsSiqSCMef1e3E1+CkUABqg2ikAXImSodIRHf9L8f/ckUcFFhOTNWMz0AvXFlvxHr0WlC7pqk4B2KUaF3HFVGaLaVCz293S1XmcZ3rWNqmS4Mhkhkev5P37/VrzhI18kf2NTQKoAFIk9FMSSvfieKULcUTCw6405nH1cdMvqr92r4M4j5nEytNhWqHfe/yi2PPsNmAuaMe+wQ22Xd7jW6O3Ot1Usbt84EkgshioWB/raEotH5pbx2IGZZsair2JxKFixyGWBC94O9G5uUSzWzHrGmYO4fTMxNHbtD8MAXeN44uA0LnnV+/Gef74Ob/o/z8XDP/tqIKkIwFRDxs1YTEMQJVJXp7qAfPvMxOtvvRvPv+QcX0u/BOuLpBZJsNZQdKXpytQhvIpFWZNDn5GjZCyS/5AfaTaNmlJbFQHqZ4UahijEomqohJgLUiz6ZCz6KRYtpZsskV6QkwRykiyWFao1Lk3VoCpqS34eAHz1E1/F3//fvw8dPwCszJA6QK7L2PLRLRg/bbzNGq2wrFDjYv8T+/HKC1+JqYD7uRPtSD6gPbE4XWs/OdlCobsQaoUKAJNbJ125hE5L2+JSiGJxqL1ice7wHKb3T6OmkNrST7E4ND6E+en5tv0oURBdikUry9BJLI6btYilwHTaus4fmcd7X/lefP5Dn8flL7wc377p24GkIgDomt5RxiKAWKrFu266C2ddfNaqiHUn5urE4ezEvhPXZHsJEiRYH8TudP/4xz/Gc5/7XGQyGdx///2QJPKQVy6Xk9l6CZ5SaMgaHBnm6MvxLqWeN2PRD0WHnaqmG5haiWcH4MVjMxUMFcILLCdURfZVF2ZZUsj0pE2lVSq8UKi1KBZDrFBNxaJhPowMjE64Xlc0sr5NLIrkmGgmJWdQtG2deedNv8SPv/fvAAg5Rcai4tePzGGyNwPK0KEUZ/HQ/3wOAHD+278Atit6I68rzUKXyXg5mnIRyVExfXA/FEVG1cwyZBBchFdjWqE2ZA2abqA/H/0zd4Jh2bZk5sTmrZg+uL/l77quo7SyhB4zY7FiZn5WRHJO9w4MobQcrliUzc+WZ2kXEVZxfC+GxyawODsVWkAbhgFJFGxlKgA7U9NphTo6sREMy2LKQZSmWBpzh/biPa96PhRFxpf/+5d4w7s/4lLRBoHPujN/3nTxFhcZbcFSLNKpHEShAV2P9iC2f/djWJybxvmRbVBL2NCXxebBJHx8tUhqkQRHBWIZYDNA3IkAFlllkV5KmwkLzusn42lw+TTBYqOxAhz4fcerS4pKxmWNJTtA1HNaTGKRtjJvzOVCLM8oXYagNBWLJF/RAyZlq0kNioWiexSLpiL2v255BN/68W+bf88OAJVZQpSKpLE5W9Xxga//GgBww3svxHF9Hc6Mpuh4mZom9hyYhq7rWFgJaLQ6iMWjbYXa39OFlTbKhO0bR7DnYJAVahHDgcRiL+bbEIvlegOLxSpgWvmpPufZxvEhzC6uuO1LnaCJQrYhSiSH00RdsIjFZh09PNCLrnzWRSyqqoZPX/dDnP6St2NxpYzf/8e/4EsfeQvyERp1sa1QzW2KA6cCE+eQfMcQHJiaw6NPHkpsUI8BklokwXpA0ZWOsvGc63gViIoWbq+qGZrLztMLe1sOK9S6Ul+VYrEklULf0wtVbp+xqOpqeMaij4OEr2KRMolF0U0sehVvXsWiZFq9+1mh/uibP8Ltvwp3itDqGn7+2Z8DAF70iRchPdGZpSpDd0YsWoRilLzBSIrFNjbecYjFrt4uCHXBlT3pxeSWSUwfmrb7ErzDsaK4VERvQC3SO9iL4lIxtJ9RLVVRK9XaKhZFQWxLukqi2y5XNGsRJ/mXyWYwNDZkE6UWsVheLuMdz38HZg7N4DP/8Rm871/eh3xX+95CNmYtYo0las5ieaWMx+5/DBdcGUxwxsVsfRYpJoXxQnxyPUGCBEcPsZ+aP/nJT+JrX/sarrvuOnBc88Z+0UUX4f7771/TwSV4esFS1mkdkDvtoHdgKdWQVWiOgmog7545I8iaTbAN5PkWpzOachMoAGy1V6fYM19Ffz76DB5NdVuhepHlyVeYTYeHGXsVi2HEoixZxCIpkL3EogGApZuZexYRqTsOoKVYdMJSi5YaMm7bs4gtAxkYhgGudxSnv5rM3qPbZEV6QVEUVn77VdSfuB0sTUPV4hfQSwvEgqNRMxWLAVaouUIXauV4MyutbMuhQmeztmiGRaUUXuRObjoOc9OHIcvuBm+ltAJd09BrEotW5qg1pr6B8IxFoVG3v3c8Q4OhnMRi83waGh2HKAihykpFkaHruotYbCoWm+cuy3EYHp3A3FQzu2tlai/mD+7B/3n9O/DVH/wG2085PfB9vOAcxOKANI3TN/T4LmcpFmmeFNyWvW877LztRmSyOZx69vltl5UUDbvnqjhlvBv9MVTLCfyR1CIJjgrEMsCmAcQkFmXzIdyc8U4FZkia23Uq/7wNLk3GqrH7Vx2RXRZkVSMuBjax2A8oDdAOtR8AqD4WlQAIcWpoNtFqRzA7VALe+xylKRDUpgLRn1hsXks18/9Om0vLCrUqee6h+WGgvgAoDej1FeiGgdECjX+7+kUAgBy/CkU5zRK1YsyG3vQCUUtWgho4WTLLPpPij7oVal93HoIoQRClwGW2bxzFUrGCFY9lqiQrKJZrGO7v8V1vZLAXS8UKFG8+qQld16Gq5rmrSQDNwvB5fN04ZrozzC2F7ktD8CgWzZn4TlUhRVE4bsMYDkw1c5I+9qXv4cNf+C7e8aoX4cGf/iueedbJoe/jRFwrVGssxf4zgTP+hqgWQ/CLW+8Bx7F4zjPPjPU+CVaPpBZJsB5QdbUjwk6jTPUcWCia4lYs6nIo0aTqamjGop9icbXEYlkqI8eF9zCc0BStrWJR07VQK1Q/xaKTrLSIREuxqJgTci1i0ZmvCDiIRcpNLMZVbBmGAUM3wOQY/PmH/pyMIdu5Nb6lWIzr5LRk3kPrtfBokFxXLlLGYpoJJ0ana9PoosPvcRYKPeS5vhpizT65dRKKpKBmTsCy7EMNw8DKwkogsdg32AdVUUP3STXrFItYZNRWUnxknNSq8476wQ/ejEWhTmoRp2IRAMY3jWP2COlVcTTJDl2eXcaz/vxZ+NaN38LZlwS7N3kRN2PRGos1tnbYdcsu6LqO8y9v3xeJitnaLAYyA8hzyaTsBAmeyohNLO7evRuXXHJJy9+7u7tRKpXWYkwJ1gl7F9bXOimfIgWVqKzOugNoJRL98grbQZB1aI6hDBfchU1DVsHSNP7tr87E2y47zrbqtJBiGVvlZeHAcrQZO77jUTTMVyQMxCAVFFkOtdC0SEemjXqrIbs/E2f+oVedJZuzbXXz8uC1QgXcikWLiFQdeZYpZyafPVaSvXjf4RJqlTLu+ur7ULnnpwCA/m2kKNr3BLFEFWrRz1WtUYYu1cEyRLEY90xZnDOJRdMCM0WZIexwH7NCVzeqMTMW6yaJN9LlLhILXaSAXp4Ln6XHsCxUVbFJOD9MbN4KXdcxe/ig6+9FU41oWaFatr5W3mbvwBBEoQGh7r/tlcUm6UgUi83XKqJiTyAYGiPE8/xMsGWKRdRRjiawnbGY9eQddnWh7rAj5R/7JUZre/Cad/wdeD6e8pNJN4vQjCHbBKIX1rXLIhbDjrcTO2/9Lc6+6LJI43pstgJVN3D59qGWa02C+EhqkQRHBWIF4NKuHL9IsIhEi1hUPNcU676bKhDFnewgirxNMzWYzImMx34C9EezGPeDJFuKRfO+aJJcXPWIazlnHeCC1cizrFCtS6BDnVlzNi4MDRR0CAqQMi3Htvjl/ThmwmumuiDjbOaZx7UqeyqDdBegNFAvLeNlV1+Lf7iVHOMrziTH6L5HiWp+ajHePR+AmUWpxc5YtAixaj2IWBwgP1LcmikWB/tIWPL+I+EZR/09Zs0S0szbvpF8Pl471IXlEgBCIPrBskhdWCn5vr5cqjYPpSoRgtuH990wSiZRHZoJbuZpmgZJVlyKxZppP+ZVHvZ05Vwk78HpBVx6zin4zPvfgKyPEiUM8YlFsnytLpLrTxtcf8suXHrOKeiK2TRMsHoktUiC9YCiK5HdU5zQaJNYpFiougrGEfAha3IoCajqaqh60HrNyljMMBk01MaqrFCLYhEZNvr1UVPDVZVAU7EYaIVq+FihOuquWoncXy2y0VLHWUTh6IZR95jMfoFFRNqKxXT0+4QiK/jUuz6FvT8gtcfx5xwPAHjy0ScBAAuHwqNL/NBpxuLiLOkftCOTCt0F1Kv1tudpmBWqYRiYq89hKEN6FcX5cPeC7l5Ss5SLwbXZhi0kl7Bsuj+kWfI5NGoNyJIcbIVq/j1IqSlLMjRzkpOtWAywQgWA+elwYlEURNc5YhOLnnoh35W3FYMURYHSKPAZHm/5xFviE4XrbIW64+YdOOEZJ6B/uD/W+4Rhpj6DoexQrAkICRIkOPqITSyOjIxg797WPK877rgDW7ZsWZNBJVh7/O/9U7jy87/Hbx6dW7f3sJr2orK6sHGAqAlXvw23YrGQds/6EhSiWGRpCpN9rTfmFEujKjYVi4UUi8PLdTy0fwYAsHPfYiwSda5MmhdxrFCVACtUC5aTqzO7zg9exWLKYQHb8JB4tgLRvDwMjLRaD7BM0xpTNEkjJ/fLezL5nH9/6LE9WPyv92Nm7yPgh8k1w8pnrJnEnSxGJ3CH//IajL72y2AZipBdMZnF5QXynbCOQ4o2Zx56HjzyXT2oxbRCrZnHfajL/XCx7XjywPD4fXeFrs+YTdcwNeDkpuMAAEcO7nP9vbhEHgwsxWLFoVg0DAN9A+TvQarFlaVmQezM1ASAqqhCMdWhQ6Pk/FiYDSZJLbtcw2FHIvooFgEglyu4zklWqaKLlsGGzKINAp2KVnBnTfkMbX6PGo32Tdvi0iJ2/+EBnHfpsyO9x0NTZfTleJwRoJpMEA9JLfJHiA6cCXxhkYCraHbZkKqEvIqQoeqC4iYW4VUsCmbzJGWqqp3Eopc1CSAW9+8/AAAot5lVDgDYdwsweEL75QIgKSpRF1oEYcYkFmsz7qEGEYtWNiNtKRYtK9RmM8+VG2h+doJq2GSWr2LRQSyqIMfaSRpZx7XWIvqkMF1WcfHzXowbdz2Kc8YYc11yj7JIrpVqB/b3FE3UmTGLken5NopF85hn0zwqtQY0bfV18knHbcD4cD9+fft9ocv1myqBsJzF4zeQHEAvsWjlJw73hxOLc4v+DcVZZ+aRKppkdOv3cdIkFg/PBFu8C6YSxU0sWopFdx3dlc+i4iF5o2Qp+8G77XawiMhAktmBaq2BW+9+GC+87NyOxpZgdUhqkQTrAd3QIXfgVqDS5B7NgIEOPZZiMbIVqvkjw2ag6iqe3E/Ir2IbS2s/lKRSLGIRAKgwy3WQ/eB4LtgKVWu10XTud71MaiqLWLQUjJZazUsstigWBVKz+WUs+kGtqPjsGz+LW395K7q2kEk8Fom5PEfqAovsjINOMxaX5k3FYjW8tix0F2AYBuqV8OXCrFCLUhGiJmLb4DYAwN4HW6+lTnSZk5zCbEaHxofAp3iUzElNlmLSyk9sSywG5Cw6/15TaqAp2vdc7OnvAZ/iQ4lFwzBaFYsNf2Ixm8+6PgtK69xRIy6xaFmnRlEsKrKCe267B+dfsXZqRd3QsdhYxFhuDFkumTiVIMFTGbE7tW9605tw9dVXY9euXaAoCjMzM/jP//xPvO9978Nb3/rW9RhjgjXAIVNp98Rs+5BlL7xqtyDkLMWiuvpmR11SIavNYsgvFy0MHENBUHQ4NuEi0wDLCtWdHedEiqNRd+x7V4bDfFVCRSPF3n/eM4WzP3kTPvqTRyKNabYsgqEoDHe3v6nTZpGqKUqobamlWGT5uIrF5rGolNwPArIkAKACMxYBR1MQDsWi51h7FYsAIE89hrnvvQccpeMz37semY3PANAkFvUOrdqYbDc4mu5IsWhbobYhk/Jd3RAadahKsK+/F3VJA0NT6PVYmTAM2d/H7g0nFi1rWO9n5ERP/wByhS5MHfAQi6ZisaefqBzKpvq2IWtQdQO9ppJxedF/soFFuAKEWHRaoZYFxf5+9vQNgE+lsRCiWBQtYtHRRBYadbAsB453K3iz+QIa9bVRV9NtCHcL1rXLsmoVIygWd91+EwDg3EuuaLusbhh4aKqEk0YLGIh5LUvgj6QW+SPEWhCBAGAqj9dE6SdVVmmFSq5vLVaoDdOukTdV1VLI/SdgP6ZnyGQOSxEGxXxPzWd5XQUGT2o36kDIqkZIUotY5PMAw4Oru4lFPeixwso0oqyMRfPvjqannxpOUIC5JdLMCcxYtMZokOt4xtnMk2oAw8Pr0H/fgSLO/fJhLC2v4M7PvxZXbSf32pw5AU1dTR27SivUalADx1SJZlNkjKU2zbwooCgKz7v4LPzq9ntDl2sqFoOfIbLpFDaMDbYQi1Z+4khIxiIAzASoBGbM4wKgqVj0+T6mUzyGB3pxaCZY2dEwlSQZP8Vi1l1Hd+WywSRvTHSsWDTHFoYb73oAsqLihZcl+YrHAkktkmC9IKjxJ7ZYVqgW2eUkzKJkLIZNnvBmLFpKsINzBwEA8yFq8SCsF7HYzgrVmT3JUIzLAtYmFhk3sWgRS14rVNt+1pOx6CSNgiBOi9h3zT4sHF7AF//nixg+l0zQoVkaDMtAVTvP2LYyFuN2Riwr1HZkkpXp184O1VYs+nDWM+bktOP7yITrfQ/uC7Vu7eo1icVicC1C0zQmNk+0KBaL5uSlQGJxiPx9eX7Z93Xn3+tKHSkm5TqPLFAUheHx4VBiUZGJItlJPgdZoWbzWVfG4WqIxU4zFqMoFv9wzx9Qr9Zx4ZUXdjQ2PywJS1ANFVu6t/ge6wQJEjx1EG5S7oMPfvCD0HUdV1xxBRqNBi655BKkUim8733vwzve8Y71GGOCpwlyZqdoLaxQgabCrxOkWAZ1WYXmsGewMv4sEMVi8E0qxTJoSM196c5wWKo2G3YvPLEPyxKwYz8pNL22qV4s12WMdKVt28Uw0GSeIVQlXKlFUwBDU9BNK0bvPlrwfiZOK9RquQhgk/27JIqgHMqyVIYUIQ21WehxTHN9y+bSSSzyAcTizO//H7iBDXjDP/4btm3bBuy4GwCgmblMq5mBbysWY8AwDCzNW4rFcGKx0EXsN2rVMnr6BiJtvyapyPFMoPXloScfQaW0gq4e/yKXYcm5Ui2XAt+DoihMbtqKIwfds/yKS4vIZHO2IrBmqm/rkgpVMzA4Qh6MrP33glihkmV4lnIR8KWGAknVAHCgKApDo+OhikVZtHI7OZjPuhAa9Ra1IgBk83nMTweTlHFAcWkA7a8jKdbMDDVnVUaxQt1160044bQzbUVoGA4vN1AVVZy3pR9dHuV0gs6Q1CJ/hNA1F9HUMSy7HD+CLS6UBiEWpZiTHSwikQ6wQq1bxKI5Vjk+sdiCuUfc23aibyvQ0+o+EBW6bkCnGNBWg4qigGw/OMGtDtOCiEXNY4VqLRakWDQhqAa6zf/7qr44J7FoqQ5Tzau+XDOJYTe+8Ks9mOhm8bPf/Qojj10HmLfBtOm8oagaOph7SdChFWp7xSIh4CxVZbFSQ39vtFyiMPzZxWfjmz/6LQ5Nz2Pj+LDvMpZicaWNamL7pgnsPuiuBeaXS6AoyrZd9WJ4oAcMQ2N6wT8bcXZhBfaoVJEc34C+2saxQRyeDVMsku+SK2OxLoCmaaQ9jeiu/LEkFsk5W4vQzLvh1rtx4tZJbPWoaBIcHSS1SIL1gqC5v/9+2YBeWIpFy57TqViMYq8axQrVqVgEAJnpPAe6JJXQk+qJtY7RJh7HUiwKhv/1U9EVsBQL2SDjZmgGlOOmUiu7rVBl2b1/XuJHhw4KlH18oigWFVkBx3NYuXkFdJrGR7/xUZx00knAb5rLpLNpKLKCNOJZb1ug0ZkVqp2xGEGxCEQnFmm+taaaqc2AZ3hsLGwEAFRWKjiw+wC2nOCv9rbeM0yxCACTWyZRXC6C3cbahK+lqA3KWMxkM8h35e3992LZMcmpJteQZtKgA+rE4fFhLEwHT3KyyOooisVcIefKu1wVsdihdapQa1+L7Lh5BwaGB3Dcycd1NDY/zNbJ5P8T+jp3XEmQIMHRQeynZoqi8JGPfAQrKyt45JFHsHPnTiwuLuIf//Ef12N8CZ5GsFQ/cW1Ml+v+BelUqfMH+hRLwzCAktAsqHgHiagbBhTNAM8G35xTLA1BaRbx3RnONdbuNIs3PHMLXnI6IV8sa8gwDBZSSLPtG6eU2ZDSFBlsiGIRIOpMJiSDRdMNlz0tQ1PgnIpFD2klSyLYdGvhMVVrFvLOMUm2YrH5utcKdW76MABg4Kq/w/DL/xEnbfbM9ourBvEBaysWozfzquUiFJk8AAj1dorFHgBNu9YoqIkqcikWPOt/qTV0A/fd9fvA9WnbCjXcXmZ801ZMtVihLtikl6LpEBQdGY5GXSY2ptlcHtl8AUvzM36bxPJic6ad87sDnSgei/WmcnNobCI0Y9FSLOqOB1ahUW/JVwSAbK6AeoyMzVCE2K84QVEUMjwD3Xz4aEcsyrKE++66NYYNagkplsalx7cnIRNEQ1KL/BFizRSL5nVF6Xxykguc4yE/qjVZixWq5/5iKRYtK9RQxWLE/ahaOXk+98DBE4C0fzMlKnTvXMTcIDhpxbNMQH1jNUTNJqftxEA3J1r4EosKWggfF9hmrSLp5D7lyliUaq77wN5DhPT6+hvOwq1vncDI8BAglOzXaZpGNpMyicUOQTOxrVBlWbGVp4GKRZNYzJi19lrlLF5xwelgGDrUDrUrnwVN06GKRQDYtmnc1wq1v6cANqD2ZRgGY0P9dsakF7NOi1RFaH6nfLBhdCiSYtGbsZjPpluUOseWWIymWNR1Hb+47Z7EBvUYIqlFnhr4/H2fx7N/+OxQtdPTDaLn3l/3TlDygUUsWoSSS7GohysWgaadpx+8VqiWEmw1xGJFqtjbiYw2/Kqmx1MsshTruv4HWaEGbdOynLVUj2GKRc7MjD645yAAYOSVI9jykS3oH2vNpEun01BiuCS1wCBji9MXMQzDJtYabay4LZLPImKDwFvOHZzPhPPaDAYzgzZJzaU47LplV+C2aIZGvisfqlgEgIktE1jevYzR7Kj9Wa8sroDjOeS784HrDY4OYnHOf3KSi1hUamS/AtpXQ+NDoYpFUSDf7bQjr9lSLHrPm2w+i0b12CgW+RQPmqbbqlcNw8COm3bg/CvO79gy3g9z9TmkmBTGC51PjEyQIMHRQWxi8fWvfz2q1Sp4nsdJJ52Ec889F/l8HvV6Ha9//evXY4wJnibIpUjxKqyRYnGmtArFojkdfkkg1SetCq4bnWXjyIcoFvMpFoLcbHR2ZzhIamvjMxWBKLTQn+eR9pmx5YVlharrgcZirven+WACxft5cAwFp5iw6iGtJFFEKlsIfU/ncZPEBvh01k0sMm7F4jtf+QII9TroVBYUwyGfcjeGFM0Aw65OycV1kLHoVOu1I7MsxWI1BrFYlVQU0mzgeTa+6Tjcc/vNgevTNAOW5UIzFgEQxaKPFapld2rlK072ZVETVfuzGhwexeKcP7HozFjkHec4YzbIl+tNFQ1RLAYTi5aq1Uksio0GMtnWAnctrVANJqQh7X1fjoVhNizbEYsP37MDQqOOCy57TqRtP3ikhOOH8xjtiddcTBCMpBb5I0SbhldkWFaoSgf5eH5g001iLIJiAECTKKRJHhzltTSzVIVWZogccs2LaodW8b+WAwAGTwTY6NdDP2heG6L8MDjFfT80gtQOHitUGw73A18rVNVAJhUyQcQxqUpQSc3hyli0rWwJznrZ1VguVpBNschYsknBXQNl06m2qo5QdGCF6swRDCSz2BQ+u0PBnEYIxmKbZl5U9HTlceEZJ4baodIUjb7uvO9n9O4Ht+Ltd/QB6W5s3zyBvYdmXO4T80ulQBtUCxPDAzgyG0QsejIWaf+MRQDYODaEw2HEouBHLAq+ati1JRbjNfOymRQoimqrWLznD3uwsFzCVZcnNqjHCkkt8tTAtx/5NuYaczhQPnCsh7Jm8FqhNpT21yOV8igWPcRiOwUbFRAPA/hYoZrZdTLbObFYlav2diKjTamoGiq4VEjGoq64lJxexWK95CYWFYnUL0EKRA0aISfNbYimS4/f8haR9PaXvh2Ls4ugORpMxr9uSmfTUOXOrVChmwRzjL5IvVK3Sa9Gm/ufRdBFtkL1wXRtGiPZEZtY3HzKZtx9692+y3IbOKiMiq7errbE4uSWSUz/bhqvPf616E2ZNdNSEb0DvaHE1+DoIBYCaogVh117Va4SK9QwxWJILeJHPgt1Aels2mXLCwC5PFEsWpMmaK1zS9BMPqbtMEUhk8+0tUI9sv8Ipg9Or6kNKkCI54HMAPJcMBmcIEGCpwZiX5m++93vQhBaLy6CIOB73/vemgwqAfAPP38UB5dWn59yNJE1LaQ6IRZ1HwvL6WLrefbW/7gPmz74C9OGMRiWKrAm+RfQFkHIhhCLhTTr2pfuTOfEl/V+A3k+1NrUgkUsUiwHuk0FzTM06BDFYkNyF6VeNWGl7CEWJRF8Lg6x2EpEpljapXh7y/s/gUyuqU7TPTNKFU1HOrM60oVlKKgxm4FWvmI6k4HQJmOx0E0K01qILakXddEkFgMUiyecdSHuufOW4CYmBXT19LZVLE5s3opquegiIFeWFm3FomXTu3Uwj7qs2da4A8NjWJyfbd0gLCtUAuf4abMBXmw0HySHRyfCiUWRPJw4bfKCrFBzuUJbW9qo0EJm3nqR4RkY5vLt1Ku7brsRgyPj2LztxLbbLTZkHCkKOH2iB3251TX2EzSR1CJ/hOgwY7cFlhVqVKVf2+11cG9yKgtYHpTsadA0zJnP1r3Ym8HoRFQr1Kr/tRwA0DsZaROVag11wf/9NMNzHyuMgPI0KfWga65mEYue16lwxaIKJjAHG0CTmAUgaBRomgbHOd5DqmJZbI77H6/+m1b7UNFNjuYy0Zucfv06HXRsK1TLBjWbSQUrFgF85BYFct82AECxskbKfhA71Jt3PARZDlZH9Pd0+SoWjwhZ7JP7ATaF7ZsnICuqSzU4t7SC4TbE4uToAKbmV08sbhglVqhBNVXDzwrVVCx60ZXPolJvrIkCKp+L1zinaRq5TDr0XACIDWpvdx4XnN6+FkmwPkhqkacWRG2N7vtPAXj3JYpiUaM9GYt0PMUiE+Q6gFbFIkMzSDNpqExn5JeiK5B1GVk23sQLQw2/Jmu6Bi7FBRJqqq66CFeGYtyKRTO/2LLQtBWL6XDForUN2+bSQyzWq3VIErkHveItr8DgaLiLTSqTipyx6HefMnQjdsaipdZLZ9JticVcIQeKojomFlVdxYKwgPHCuK1aPf6M4+2sPi8G3zGIhzc/TIjFdlaoW0nNW54u29+BlYWVQBtU+z1GB7EYYKfuVSyGEaZDY0MoLhVtAtELW7GYdkyOawgtNqgAkC1koWu6va3VKBa9Nr5R12mnWNxx0w7wKR5nXHRGp0PzxWx9FsPZYeS41n5RggQJnlqITCxWKhWUy2UYhoFqtYpKpWL/KxaL+OUvf4mhoaH1HOufFL5z10H8zTeDrQCeirDIpk6IRdnHRnSq2FrQ/OoRojB7bCa8oEiZREhN9m8uWIrFVADhAxCiVFwjYtHCUCGiNaNVINIsqDbNVp6lQYcoEeoea1qecROLVQ+xKIsi+Ez4zCDWYSEriUILEVmZ3od3vOLP7N+fcd5Frte99a+s6Uj52K96IZmWmjUfBR/H0ND1eBHlS/NzoCgKYxu2tCWz8t3xFYt1WUVXmgskFk8+6yKUlpew9/E/BG6jq6e3hfz1YnIT8bN3qhaJYpE8tJRNxeLxQ3nX74OjY1gKUiw6iOGUg0imVQlplkZZaD7sDI9NoLSybH8+Xlh/1yMQi9l8vi2xFwUcn4ISg2fO8gxU3UAqnYbQCH6YMgwDO2/9Lc6/7NmR7D4eniqDAvCck4Z9c0cTxENSi/wRY82sUM17yVoRi3wHD7ROIpFJtaoO657GRZgValTlpVex6LzcRLRB/f5//wC7D/nn7qrehmO+NY/PoAOIRUvp6b1mOpqey34z0IO2B3PiiMMWs64QG1TndXn3wRmc9/k99qF4zkVntm7ISyz6kExeWE28Uq31HFMNxFYsTpsNqxM2T6LSzn4sXwDD0GtmhQoAf3bJ2ag1BNxx/6OBy/T3FHwVi05s30zsqpx2qFEVi8FWqI56z7JCDcpYHB+CJCtYXPGv0+IqFlVVgxRCtkZFXMUiQMjIdorF62+5G8+/5JxAm9kE64ekFkmw3hA89/66GsEK1VQs2sSiU7GotVcshmUsWsSiwTSftHNcDjrj3qZl4dqOCG2o5F4XV7HYllg0MxaDIOtyK7HozFg0s4THC+MYy41BkRRQFAWe9++1WIpFS71mkUapdArUZgpSQcLckTm8/aVvh2LeT857VnuVeRwSSPPpvVnHKc7kmCVzgs/k1sm2xCJFU8h35dtaoQYRcAuNBeiGjuN7jrfPreNOPw6aquH+O+/3XUflVXT3drdVLG7YsgEAUdJZKC4V0TfYF7pemBWqU7FYk4kVKu114TAxMjECAIGqRTuH06NY9PvMc3nyDGJ9HrRGx1KhOhE3YxEgOYvtbHF33LwDZz3zLJe162qhGzoWG4sYy48hy8Ufd4IECY4uIhOLPT096OvrA0VR2LZtG3p7e+1/AwMD/z97bx4uyV1XjZ/aq3rve/vus08ymSyTTMgespKwb4LKFkERFxQUCctPBUVERXgFRV9eURRERUAgAgbBkD2ByZ6ZySSZzGT25W7dt/fu2uv3Ry1dW1dV33uHJEOf58kzud3V1d+qruVTn/M95+BXf/VX8Z73vOdUjvVnDmqIiu+5QJj9ZxTEPmReFMLyCY+FKBZt9Ns1thKOY8yCsd2HWbCJTCZCsSgwpGfbWZpEml3Zw/t4NtkN161YjLOH42gSZISNaMdno8FQpMcK1Z+xKEldMDHEYkCxmPYqAChCx+TMOudvv7VkQLGoGmD5+ALaJtg0LdjoIYnBz5ny/EkUR8eQyxfQiSGzeCEFiqYDRGwU2rKGQorte5xtPPcCpNIZPHz/XX3XkS0U0YxRSc6s3wiCIHDs8LPOa+6MxYZo7q8zJmxi0ZxNGWWFWvEoFt1dPAPjOR4NUXF+x/Eps5m4MHsidF2iNZvb/SzYN2Mxk4WiyJDlhCqdPkil0wNNckizFGTNAC+kI61Qjxx4BnMnjuHy6xLmKx6rYc2IgE3jQxuP1cCwFjmNsVrEIrPKVqjLmSnrzlSkORB+krPlazZEWqEuU7FoNzxy0yu2QQUA1a9YzASb5n2tUO17totIBEkDLgeHpbDmFNm/ttEIxrO+tkx4bVAB6FIbEzkOY6PmxKBW2KxrH7HoX0cY6tZsei1EGafphHUsJ69Hjs+VIfAc1k6VYlVqBAEUshks1VaPWLxg6yZMjhUjcxZHC7lQVakba6fGIPAcnjnUqwXmylVMjBYiP7dmsoRjc+XQBqgnY1GVYq1QAfTNWbQVi0KAWAxRLFpk4ErtUBmGBhfR5O6HTEqIzFg8NruIXXsPDvMVnyMMa5EhTjX8VqiDKBb9VqgECKiGGlAsar7Jy26Fox8OGecqBcKURHcdM59pF7vhBI0N29pViHCFSNMh9VfEXA/SIE3FIsv0JdT8GYsUSXn+tjMWN+Q24H0veh9YjTXzFftMaPErFiVRAs3QoGgKxBUEKtMVqLqKdDaNTVs3AUCsAgxAIpLGth0P3VarPFGN5IpSW62XhFgEzJzFOPVgP2LxZMvsP5wzeo7zWnG8iLWb1/a1QwWAXCFesZjJZ1AsFXHsQI9YXFpcQnEsXrFYXaxCloL2vm7FYlttO9mRYZiYMSfezR8Pz1l0k882ohSLgItYVEkYy+wRL4tYjFEsNmtNPPHwE7j8hsuXNaZ+KHfLUA0VG3Mb+xK4QwwxxPMHiX3i7rrrLhiGgZe85CX49re/jZGR3owPlmWxfv16TE9Pn5JBDvHcIsymFADmGyJO1Lp40TrvTdpW+RmGge/tOonXb48P3JVDyMuTtcGbgotNs2lQSJkP8f0Ui7aVaiSxGEIiljIc2kvLbzLYdrFxcIhFiom1h2NpEkREcdPxKxZp0jOj35+xKIsiGCEdacBqKz2/97Uvo7I4DzaVgW4Y6Dx9L1JbrsSGs87DO77yX3jNRRshSyLEmMw6W7EYV/pGEWykoUNbhmJxdGISQjoTm+tHEASyuTxaAygWNd3AaKb/b0NRNC684ho8fN+duOk3fy90mVy+GJuxyPECxqdmcNxSLGqahnq1ghFXxmKKpTCdNwtW2xq1NDGNamURiiyDcc3ElGUJzXoVtg6V9c2Gn8rzqHUVKJoOjqYwPr0GADB/8jjWbjwjMD5ZEkHRNNynudhpOxmQbqQs9Wun1QQ7kkzhGwYhnRmMWORotJsS+FQ0sfjAXT8CLwjYfumL+y5jQ1Z1PD3XwEvPnkAps/xtGaKHYS1yGmO1iEW7MbYqikUiXLH4nd8Gdn4V+IMTABcyacCdhURzQXJwEMVi0u3wr9NGhAJhEKiGr6uWDlHjUH0IFCeb0k0sUnB36sJsNvuuDxaxaG3bXn0DfnLSgGBZlf3PPgWbNug4e9TA/X9wCbb++dNYqNSDRI1hAJL33p/ECrVSa6LQ5z3FAARd6x3PmgIsHQLKzwCLe4GFvcDi00DlgKPIPDFfwczEKHKZFA71aUS5MZLPrKpikSAIvOKqi/CDex/Bpz/0rj7fmcX+I+GTh2yQJIkz1097FYuVGiZjmnlrJkvoihKq9RZGCj0HDMMwLMWidRw4xGJ4Z3ndVI9YvPT8swLvd8UwxaKITEgzL5fpEYvjMcRoFLLLsB4DgEwqWrF4690PgaJIvOLqi5Y7tCFWgGEtMsSpht8KNUnGok6a9x2/FSpN0qYVqq+nsHNxJwCT/JE0KdKJxW+FCgAZNlj//PeB/waAWAtOW7EYZYUaNp4wdZ4NChRUQ0WK679OWZO9xGIfxSIApJgUVEntm68ImCQuR5i5uD+65Uc4duCYo0Rr7G2AHqcxsWYCf3fL3+FDN30IAGIz6wBLzRbT1IhSC+rWQ7f/N49Cea6MwmgB+WIeh585HLt8tpCNtULtR8CdbJ9Els1iIj3hObYvvfZS3PfD+2AYRujvny1ksf/J/bFjW7tpLY4ePOr8nVSxCACV+Qqm1k153qssVFCwKr+O0kGJL/U9X0qT5nvzJ8LrOdvW1E0exykWbXvYwqEC5vfPg3vbYH0FkiLBciwkUcL696+Hti/ZcSGkozMWH7rnIeiajituvGKg8cRhtm1Oltw6snVV1zvEEEOcGiQmFq+99loAwKFDh7Bu3bpEFnBDnN74tx1H8O8PHsE9H7we+VSv+SOqGjTdwDcfOYbfv+UJdGQNb710XcSaAEXzVk6GYWCu0Suok5JFs3XzxsfTFDiaRFcJ/6RNZAoR9kE8E3xvLMvhyAqIRZ5JNuOGsLaYoGhAi6bbWJoEwfRvvrV9GYsMSYCKyVik+VSAWJRcL/A0hUatir/7sz9AKpPFzPkvxuz//l+0dv0vSj/3B+CuO9MMfE6lIEtirBoQAGhfTmMYTGIxXD1CGDp0w8wUQELLyfLCLErjU0hlspEZgTYyuQKajVqidduIs7+99KqX4HN/+mE06zVk84XA+9lCEYf3PR37PWs2nIHjh01isVFbgq7rHivUNEdjIseBQO+YGJuchmEYWCrPY2K6l8FVLXtn+wu+c2E6z+PYUgeKaoCjgdL4FAiC6K9YFLvgeMFjTdrttDGVSuOPvrsHrzt/GpdsNIv9dMZ8SO20WiiMlGK3ux+EVNpjZRyHNEdDrnUhpNKRVqwP3PMjvOiKa8Fy8c3nvXMNKJqBa84aC72eDDE4hrXIaYzVyli0sRrEIiOEk1vP/MD89/B9wFmvDL7vtkKleRCaj1js+CaLSBGzr/2fDcNKc+AS5EgqfsUiw0OlUqC13rYSfYlFiwiiXNdBgvJYo4ap4fquD4BKsABBQtM0nP2J3chlUpgaG8HNn/xH/PX/dPChG+t45RYWBF9wrC4DakClHXCFcOfv9UOl1sDmfuPSDJNUfPK/gF1fB5YO9ohVNg1kJoH0GLD5JUB+LcCmTWJxfBS5dCpWsQgAxXxmVTMWAdMO9V/+63Ycm13E2pDsp9FCFg/siv/OszbOOMSiKMmoN9uYGI3JWJw0v+/4fNlDLNabbYiSjB6xKJqENBFeFxfzGWRSAo6eDCfZbcUiz/WOq1ani5F8sP50E4srwaD5ijayaSHyWLj17odw9UXnoZAbuiE8FxjWIkOcaixHsWjDVizSVq6xTSx2Ne867zx6JwBgKj2Fw43DzvJhcMg41208y3qvnZVuBc9Un0k0RptM8q8jDnpEzgWJnmKxHxRd8Sgz+2Us2pBEqW++ImCSuDRJgwCBz/7hZ0FRFFiOxZc/82Uc//JxGC+3ejoE4SjSuq0EisUUD8T85PVq/8nOhtVbi8vVdKM8V0ZpsoRUJhVrfwmYisXlWqEebx7HuDCONJP2EovXX4pvf+nbOLzvMDaetTHwuVwxF2uFCpjE4r49+wDA6nXEZyyOW5OTFmcXPcSipmqolWsOsdhW2mBIxkNIu8GwDEYnRjF/sg+x2M8KNUyxmPEqFhmJAVNjIjMewyCkBRAEAVmTkb0gC3UhmZI1lU5FKhZ33LEDZ553JsYmozNDB8VsaxY8xWMmGy9QGWKIIZ57DKwrvvPOO/Gtb30r8Po3v/lNfOUrX1mVQQ3xwoCq66h1FByueAsKUdGh6joqbdNGIInyUPIRALWu4lExlpvJrMDKLfM7CcLMTOv08eG3LU7ZCKLPT6YAwERu+aojnibBJ8xBIQ23YjH6xs/R1ECKRYYi3e5jQcWiJIEOmenXknv7kqMpiF2zwBG7HZx8+jG0nrgDo696P9JnvdixohXSZsMjSgHmrDMd/2ARpRYkrMJ5EDvUyvwcShNTSKXS6Lbjx5gZULEIAJO56KbSJVe/BLqu47Ed94S+byoW4+1XJ2fWYmHOJPaqZbOpVhjtEYtZjkaKpZEXGLQcYtEsmhfnvBZ6bhtUIEiIrxlJmeeobSnMshgdn8TCyXByVup2wQtpj4Vxt9MGl85hti7i8WO97UtlLMVijII0DkIqA1HRQRPJjoc0R0NRdXARisV6tYKndz2Cy65NaIN6vIaCwOCiddEPMkMMjmEtchpigOZHIqwGscimvPadSeFWFlBcCLFY8f7tVixyvnuhKgEhlpvez8c3WSLB52MXUfRgvaRwvmtbPyLQniDlVk/6LC39+X26AdBM/9pGI00r1LbVoGl3RcwuLuFz//Y9/Ml1PF51bhGQ2wDFIms1awIKMDG435IpFvvvb9W2Qt1/O9CtAlteCVz8TuDaPwBu/FPg6g8Al/0GsP2XgM3XA1wOJxbKWDNZssik+GZeMZdFNaaZNyheeuWFIEmyrx3qaCEXud02NsxM4JiVlzhfNu/tSaxQAQRyFj35ioBLsRgOgiCwbnqsvxVqV4LAcyBdRXCrLfbNWARWTiwuJ18RiLZCbXdE3LFj59AG9XmAYS0yxKmC6KthBiEW7SxFR7FoEYbu3EbDMHD70ds9yxMRE3PDFIs5xhuF8sPDP0w8xq7WBU3Sg2cs9pk0DpiKRc3QwHBM31npiq6AcrGjFOlVLLZr3v0sS3KsYtG2iZW6ErqdLrqdLv71c/+K8dePY/yKnrsDy5k1zWpZoYYRbDRj/tZ2xuKgxOLY5BhS6VQiK9RMPhOrWOxnY3myfRKT6UlkGO/kmO2XbQfHc33tUHNF0wo1Ljtycu2kY+3abrShSEossWgrFv05i9Vy1fN9HbUDjub6EouAaYcaZ4XK8ixmfnUGNdRMK9QwxWLWUiy2kp//YUhZtYhkP48knAsjpPtboWqqhofuemjVbVABYH9tf+jxMcQQQzw/MTCx+MlPfhKlUlBFMj4+jr/4i79YlUEN8cLCvnlvc0NSTMXiIKh2vbZG842VNwQFloLYh5OzScsoBWEYsTiZX56lEWA2PMiESjrbChUJiEWeJk1lYx/4FYs0RYL0KBZrnvdlSQTNBbez6fqJWIZwiEVd0yC26ph4y58hs+0GAEDKJhatDL04K1QAoIQkisUIgs1Su4TldfZDecEkFoV0Bp1WPJE1qBUqAIzHkNFjk9PYcObWvjmLuUIxoCoNA0n2wryrFbMgHnEpFrM8DZYmMZph0ZY06IaBsQnTpsmfs1hZmDPXaR0nfrXddEFAR9bQknoHxfjUTF/VpyR2wWW8D5/dTgeMpVK1bVWBHhndTvB7RCGVzkBUNDAJicUMR0NSdfBCqi+x+NB9d0LXdVx27Y2x6zMMA7uO1XH2VBbjMeTyEINjWIs8TyA1g+q75WK1rFBtKOLKVZC0sDwrUfd9m+EBzZXXYhhA173PCK8dp78Jo0rxpGtjNvr9VYBHJGBtn8J5baXIOMWiJ2OR8myrX7Go6KQnC88PDaYVatsiXzRNR7sj4vv/8Cd4x3brc3IboDlnPQGiJoSQTfEc9lXMjZWJ8Gu3nwT1jtsAYJi/WXocOPfngDNfDkxfAORngNSImQPqIrdsK9RsOpWIyCrmVtcKFQCK+Syu2L4VP7zvkdD3RwtZLNVb0GNIbooknQbcfKUGALFWqJOlIkiSxLFZbzPv5IJ5njhEoCYBRP+MRcDMWTw62z9j0Z+h2S9j0SajGwmI3iisyAq1TzPvjgd2QpIVvPb6IbH4XGNYi7ww8OMTP8a2r2zDofqh53ooiUARVECxaFuHJkGYYhHwqiD3Vfc5OXc2+UQTNN59/rvxyo2vDDT0CYIwSSI3sch5n+1uPXDrQArENJ0GHdHDCIOq9O+LUKCg6ipolu5rxaroimdyCU3QXsVive0hkSRRiiQWdeigCAqKqMAwDOiaDqkr4eP/8HGMvXrMq2a2/jeJFepyiUVbrbksK9R5U7EoZITEGYtxxGIYOkoHdamOddl14GnvdrI8i+1Xbu9LLOaLeaiKGkvOkq5aZKls1hIj49FWqKlMCulsGgu+yUmVeXMyIEmRMEgDqq6CJaOzyydmJgLrsSGJEiiagkZoKF5TxHHjeF/Fov1ap7myWsQmFv0Wy3GIyljc8+geNOtNXHnjlSsamx8dpYNna89iW2kbRvjo32yIIYZ4fmBgYvHo0aPYuDEoS1+/fj2OHj0a8okhTnfsnfMWFJKqD6QaA4BKyzubf76RTKEYhRRLQ9LCxyGrOiiSAEv1bxiGZSzG2VquFtxWqLoakVIOS3UZMYO7I2ugXYQmQxFu97GAYlESRVBssLBpWTMEKQKgSdIhFgFg6w2/AH7tec7fdpYkL1j2DQnUgIwQPyOp1YiYLe8Qi8mOPVkS0agtoTQ+iVQmi04nvkk3qBUqSQCj6ejCEwAuuep6PHz/XaGz73KFEbQadWhq8vD1JcvKtGgpFhtdFVmBAUuTKGU4dGQVqmYglclCSKVRnvcSi0uL86BpBgRJgdTVQBbpdME8PsrNXrN8fGoN5vsQi6LYBZv2PnyKnbbzm9c6imNbmnYyFlfWNBXSaUiqBppMTizKqg5OSPclwh+850fYcu4FGB2biF3fsWoXta6CyzaOIMcP9tA8RDyGtcjzBJ9cA3x6I6DEN0lisdpWqJq08nUyQuT9NRH8VqhSIzhhSIpozKgJtqN56olFj/mBZE6wUXhvQ52g7fud77qrWXWMm6T1EbZL9aa3macTELj+90+VoAGSRLvba5Jccv6ZeMXVF5urJwxTOUqzThMxoAa0FIu6Kz8yneLxxccUnPG3TYjZ9aHfvRRFLNr7yfnNoieUGYbRs0LNDGKFurrEImDaod6+YyeUkMbtaCEHXddRbyafNT+XULFI0xSmx0dwfD5cscjYbh+q5LXTDcG6qQjFoigFrG5bnVOtWFwusdhfsXjrXQ/hzPXT2LJxzUqGNsQqYFiLvDDw45M/BgDcfezu53QcSUGTdE9ZZGEgxaI1QdkmFO1/3SrIO4/dCZ7ikWfzDrFIERTOLZ2LV218VYDwARAgFt3kYxNN7KnsGSgTTWAEZ2xRmJam7Q2DKkUQi4RJLDKW3XXYRBhVUx2FIWBuk1t5pioqRNe1VxblSCtUDRookoLc7T0Tr9u8Dle/4uq+oVNJSLtExGKIi4BNLK7ECjWdSUNVVMiSHLl8EitUN2yy18nPGw0/Vi677jI88fAToYRWrmD2E5LYodpYsmqJOMUiYKoWF32TnCoLJrFIMzQMxtyGftmRNsanx/sqFqWuBF7gIeu9/dvthBOLLMeCYZkVKxaFjLlu/3Ul9nMRisUdt+/AyNgItmzbsqKx+bGnvAe6oeP6tdeDiYhEGGKIIZ4/GJhYHB8fx+7duwOv79q1C6Ojo6syqCGen9g338STJ4NqrUOLLW8zSNWhD0gsln3E4kJDBEcPfHh6kGYpTy6gG5Kqg/VZgvrB0mSgHTSW+ekQix4rVC2aWORpKpZYZF37kia9isVWsw5N6+0oWRJBheTHteyIJAK499b/xP0/+r7zXnrUtNQ0DAOEoYOxvo+01AlJrFApPjw70Y1IUs9SRKhxlnEWKgtmsVeamEIqnUlEZGVyebTqyRWLaZYGR8c/MF1y1Q1YWpzHs08/EXjPzl1sNZN/b62yiFQmC463cqUkBQWBBkuRGM9yaMsaFE0HQRAYm5wOWKEuLS6gWDKtW0hD9RwvgJmxCABLnd55ayoWwzMWpW4XrI847nbaoK3XltqyQyym7IzFFVuhpiEqOpiEVh8Znoas6eBTaXQ7wQc+RZbx8P134fLrXpZofbuO18BSJK7bOj7M3jkFGNYizzPUjq18HautWFSlWMV/LGhheVaonnX4iMV2ObiMHHH/0RIoFn8axKIevI4pgpdYJGmrAeAfr/07uJUJPsWipukeEkfSACGqmUfQ+M//fQBfvuVHzmtjxYLz/yxhjcGVQ9NPsSi5un+2ou1A1TCzEEMQqVi0JzclPPaWak1IsmIpFgVIsgJZjq77irnMqluhAsArrroIjVYH9z/6ZOC9kYJ1vx7ge+fLNZAkibGReKvdNROlUCvUXCbVc/tQpUA2px/rp8f7Zyx2pQBZ3U+xyLEMGIZehYzF5RGL2bQQtO6F2Si/9e6H8NrrL1vRuIZYHQxrkSFOBRiSCRAATTn6ucjdi7EViwxp3pPDFIt3HLkDZxTOAEmSjqotjuSjCMqTsZhhe892h3EYPMXjjPwZketwQ6AFD8nXD+vF9djzK3sAJFAsGi5iMcTFSNEVjz2nP2MR8BJ2khStWDQIA4uPLuK7X/6u81p+1CRrCZIItctMpFgMuS/5EUosMua2a6r5myYlFhVZQbVcdTIWgXgCNIkVqhs2sTjfmQcBAlsK4YTUpdddCkVW8Oj9QWv2rJXDHLbt/VBdNCc5jYzFq9/GpsZQ9tUilYUKSJL0EItxGYcTayawOLfo6bHZELsiWJ6FYvWuCBCmYrGPw0Eqk1qxYtFet6QPSCxmhL7H6447duDyGy73KIBXA7sWd2EqPdWXeB5iiCGefxj4KvDWt74Vv/u7v4u77roLmqZB0zTceeedeN/73oe3vOUtp2KMQ4Rgw+9/Hxt+//ux/uKriZf99b149d/ej64vs+9ETYTo8siSVG1gxeKiL0NxriGhkBpshoo7kxEwSR17GIavqJM1HRxNBggTN0iCCFhAZn9KyiPbCpWgmVjFIseQkY3Pjqx6SFqGJjzbbRgG2k1XAS12QTLhxaxh6Kjc9SX8459/GIf273Vepx2Fo0ksUr792m3HN6LoRMRiBLmmDaZYLC+YjdjR8Umk0hnIkghVCd/XmQtfDUknkc0VosfgQ9qyH43DtosuQzZfxL233Rp4L1cwZ9clyVm0Ua0sOmpFRdMhKjpG0xwIgsB4jkdLVJ1ztDQ5HbBCXSrPY3TMJhY1UD4L37EsB5IwLVZtTEyvweLcydACWpZEsKmeNY6mqlBVxcnyVHUDc5ZKmeV4UDSdyJo2Cql0BpKqg0moWEyzFCRVByek0Ak5Xvc89hA6rSYuvy5ZvuLOYzWcMZ521J1DrC6GtchpiNVWLCaxEI0Dww1OLPrrMkbwThDy5ysC0cSiKsfvm8bJ6PdXAXLIEIJWqCZpY2i+xp9NskUoFgGvHaqkEeDZ8DrQMAx89s45vPmDf4XHnnrWed2tRuNIa8B077WAGtBSLEpG73uWm7FoN1YUfTBi8YQ1E35mouSo5OJUi6fCChUAXnTuGVg3PYZv3XZ/4L1RSyWQJGfRxnylilIxBypGZQiYOYvH/MTiwhKm3I1ATQIoOnLy4rrpcSzVm6E2ol0puWKRIAjkElrTRmH5VqhC6HHw+FMHMLu4NMxXfJ5gWIsMcSpAkzRkzasWi1MsutVPtmLRyVi0CEPbTpXMk3im+gw25DcAgEexGAWKoPoqFiuoYOvIVhT4QuQ63BCoZIpFN2S5v4rOtkKlrP6NTa65oepexSJFUiBBQuv0lm26Jg9JouRkI/phGAbK/1vGjr/YgWd2PeO8zvFc4PdzI4likRPiJ7OHWqFapKqdRZnUCtVW5Q1CLGbzWbSb7ViLdBt2lme5W0aWzSLfJ997ZsMMNp61Eff8zz2B9/JF8zODKBar5SoYjnHyCqMwNjUWsDBdWlhCYbQAAgQMukcs6hETIiemJ6AqqqOWdEMSJfA87xCLQH/FIgCkM+lEx0wU7N90YMViHyvUE4dP4OizR3HFDVesaFx+yJqMp5eexrmj56Lkm7w4xBBDPH8xMLH4iU98ApdddhluuOEGCIIAQRDwspe9DC95yUuGWQLPAU7Ww21yDMMIEG2rBb+6cL4poi33GiiSqg+csehf51y9i7wwGLHoz2VMc72i0fAVrYpqquqiiEUgaIf601IeOVaoJA1Djbah4GkKRkTjsyWpHnKLIkn4ox7dGX6yJIJkvMVsW1Khy10s/tdfYOnB7+CX3//HuPG1v+C8T7K8s04SeoCISqRYtEimKLQa/ck1w2rcqgkzFm2Vnq1YBBBKKCmajtGX/RaerNPI5PNoDWCFmuWSEYs0w+CqG1+Fe3/4PRiG4exLHcSyiMWl8qLLBtXcL3bO32SOQ0tSnf00NjEVsEKtLM5jxLL7JHS1Nx5NA0lRoCkSY1kO9W7vvB+fmoGmqqiWgxZkotj1WN0q1kMh4bLcnaubRStBEEilsyvOWBTSGUiqBjbhXS7F0tB0AwwfboX6wN23YXR8EmecvS12XfWugiOVDravLWIkFW+FO8TgGNYipyFWw07VjSQWonGg+MGtUFXfQzvNg3A3mGzFojtLUY64R2pyPEl1ihSLsotwC7OWl1LT2D2vQaTM6zvFWMSif0KUTayS/RWLAFBxNYpEFaEZi6Ks4O3/JeIzPzqOT/zuL+H9v/xzzntuNRoXqlj0HWNSA6A56K7HIT/xFIYwxSLLmNsmqzaxmOzYs1V6tmIRiM/1K+YzaLQ6oRN5VgKCIPCLL78a3/rfHwfWvRxicW6xGmuDamPtZJhiseolFlUZIBi0uyLSfdQc66fNSVFHZ4OqxU7Xm7GoaTpESe67rlxmFYjFZVuh8qGKxf++60Hks2lcddG5KxrXEKuDYS0yxKkAQzJQfI5FLSV6MknXVUNp0ECAcAg0+197GYIx39uU3wSgR/gMqlj05ymeUTgDKTr+ed4GT/OJFItdsoux142BpEgoEYp+m1i0yTU1JEbEr1gkCRIggP1/sB8HP3kQAFCv9iYRy6IcqlhUVRUnv3ISc1+bw1lvOAu/8oFf6W2X4CWNAtvTRwHmVjcuO2NxmYpF2/5zbHJsIGLRMAy0G8lsOu2xLHQWUOSKEOj+98frXnMdfnzbjyGJ3po6V7SsUAeoRZYWlzBSGknUxxufGg+1Qh2dMBXobsWi2BH7qgwn1ph9lIUTwb6I1JXACT3ymSRIiB2xr0o1lU2t2ArVzlhcjhVqp90JiFl23L4DDMfgoqsuWtG4/Hh66WkouoJr11wbeXwMMcQQzy8MTCyyLItvfOMb2Lt3L7761a/illtuwYEDB/ClL30JLDtsoP600U+x+JHv7MGWj/4AC83BAnqXg1pHQbXVa5rJy8hYrLa95NlcQ0KOH4xYnAsQi/2LYwMwrVBj6otUSM7iTwO2FSoSKhYN61TWQki1lujNyKNJIlBYNes15/8lSQRBewvoxZaEpdv/EeKRXdj45j/Ca2/6dUhirygmWd75DsLQA/s1GbHYKx5kMbzgjrIhNawCXkl47FUWZiGk0khnskhlstY4+z+0yaCQzRfQ7bQ9ysaoWXrZhIpFALj2Fa/DyWOH8ezTTzi/jwYaubzZVBtYsVgyiUVbVThp5YOO53hIqo6WNRlgbHIai/NBK9QRR7GoOkSxpmugLCu7yRyPpqg4BOXE9FoAwPzJYM6i1O2CEXqzBGXZerC1iEUCQMV1DUhnMqEk7yDgUxkomgGWSqhYtCYi0Kls4Hg1DAMP3H0bLr/2pYkeSp44bh6nN5w9Dpoa+DY7RAIMa5HnCF+/CfjRn5yada82saglUPrFgeZClXWRUHyNGEYA4W4wdcrO6w7kNpCdBs77BYDxNeU0Od4mth6eb7tSfEe9BjffZl6bJTV4LdWZNC74QhtyzswipKxJSYbfwt3efrdyjQxaWrptNruqEZqx+H/+7Yf49tMKPve2c/HR334bOq6mU6hi0ZXPEiBqxHpgf7sVi/Pl8PtuGLnGWepKeUAr1BPzFRAEgclScSDFIgDUEjbzBsGbXnk1Fio13PvwHs/ro5b9WJQNrB/zlRomE2QaAaZi8fh82fNcM7u4hKkx8/MEDEex2Gx3+xJ2NrF45GQw28ifsWjnc4ZZoQLPNbEYnrF4690P4RVXXwSGGWY3Px8wrEV+OjjWOBZrBXqqEKU8GxTPLD0TvxAsxaI+mGLRViMCpmLRbfHpWKFqvXvLpvwmRxFkq9piFYukV7GYZrwKsM2FzR7SLg48zSdSLJaZMibeOAFGYKDK0Vaomq6BZs11JrFCtTMW1bqKzjPmPgwoFkNs2b/7pe+iel8V0++cxove+SJPHqHf5tIPsR3en5uSp2BoBmiS9hBWrWr4M3EosWjVIpoyGLFo23+WJgazQgWQ2A7Vvr+Xu2WMCCPRxOKrr0O33cXD9zzseV1IC6AZ2kP+xqFarqI4lqwWKU2VUC1XPQR2ZaGCkXGzH2MTiwJtEm79VIYTMyaxOH8iWIuIXdFDPhuGEUlSrooV6nIzFlMCNFULEPo77tiBC6+4sO/2Lxe7FndhlB/F9vHtq7reIYYY4tRi2R3PLVu24Bd/8Rfxmte8BuvXr1/NMQ2xCnjyhHmztRvcpxp753sFhazq0BLaUdqodRWPtdFiU4q0HdVDCNWTNW8jJopYBMwMRb+yzo/nilgk0MtY1JXoAoCnKeiEbfkRJCHbsgrWRW4wIdvcqPVsGiRRBEH3CmhNU1FuSihc83ZM3vRpjJ51CUgCELu9AoegOdCUuV4SRlCx2Ickoo3ewwHhsl9tLAVndwFeAtQP23ot6bFXnp9DacLMhhRsxWJEzqJqmFaogDfvcP6kmS2WzQcL1hzPePZ9FLZf+mLkCiO454ffc15TQCGdtyw/akErjR9jYvgAAQAASURBVH6olhd6ikXR3C/jVi6inRNa65jHytjENJYW5z1k6dLiPEZKZkFM6qrzYKprKigrM3KmmEJDVCFbD23j02sAIDRnURK7HqtbRTKPaZvAnszzWGrLznmdSmdXbIVqKyS5uNkDFuzrBSVkAsTi8cMHcPLYYVx2bUIb1OM1zBQEbJnIxi88xIowrEV+yth7K/Djv45W2C0XatxDs3VtVyVATvCAnSSbMA40F57nljXvHaEWpv5945uog3YZYNI9tZ5hmGTkzEXAtl8AaF8DKwlB2jjpJSpXCS2k8cVdBCiKDCUWHdDm/YVmrW31z9S3rVEJV11GUICv4eYm7LqK4VEsqpaC7nfedAPue2caL98+AwBod3s1ksCFEIuu/RK0Qq0DtIC92npnTG7i6eDxuZCNDSfXHGJRHZRYLGOiVADD0D3FYkwzzyYW3XaolQFswaJwybYtWD89jv/84X2e1wWeg8BzgykWy1VMlAqJll0zWUK7I6Le7J0/JrFoNvNIAibBTkYTi1NjI6AoMjRn0VQs9mpNm2gOs0IFgFxGiFWPxmG5GYuZFA9RkqG6rPxOzlfw6JPPDm1Qn4cY1iKnFq/6r1fhJf/5kud6GCvCofoh/MJ//wI++8hnY5dlSTZAaHb8k5Z8cOcn6tBBk7RDaoVlLG7Ib3AUhzb5RFODKRbdpGBGz2CEj8+wc4MjuYGISEZgYhWLOnSQjLnOfopFjxWqL2ORpEgPYSeJZsaiSqiYumkKkuVK8aqbXoVNv78JI9eOgCIoSJ1eLcLzfEBx6kanz32FBAmCIsBRHDiBQ/Mxs9Zo7elDLIZlLFq1iG7FFCW1Qi3Pl8HxHDL5jKNui1PJZfPm8eMmFmWxPxFvH2eVbgUloQSe6q/KXHfGOmw6exPuuvUuz+sEQSBXyA1khbq0YCoWk2BsagyGYTjWsPbnR8etzFzrkBdoAd1W1yHs/Ehn00jn0qHEoiRaikVr8oCqqDAMI9IKdaWKRZu0FLXBRCf2mNwq21ajhV0P7sLlN1y+ojH5oeka9pT34JzRczCWCs84H2KIIZ6fSDTd8eabb8YnPvEJpNNp3HzzzZHLfvaz8cXSEKcPUiyFjqxh33wTa4u9vDQ5oR2ljYaoQnEpv1qSimyEYrHeCRZrsz5b2DQbfXgzVFC550cqYh2nwhTVVr+RthUqRUOLIxYZ0smQDMsIbPutUKngyN2EnSyJzgz/9t778df/8Q284Y/+CXRmBMiMgCTM/EkvsciCIXuKxaAVangBPaPN4aA8AkbIenIdm0vl0OWbzTr6lYWGIgPgPcdRFMoLsw6xmI6wQrWhEZQzg69Zr6EwYs7yPLTvaQDAxi3BgOmcwIAJ2d9hoGgaV7/01bjnf7+HX/rtDwEAVIICSTEQUulIUtWPamURIyVz1n6jq4BAj1Acs5SL9jlUmpyCYRhYWpzH+PQaaKqK2lIZo2MTwIJJLFIOsdhTLK4tCvjJgTJkVUeKBdKZLNLZnEO0uiGKHeRdVreKZJ2rNAeSULChlMZsrQtZ1cEzFFKZVSAWU1mgBXAJFYv2uU5xGYjdDnRddzKzHrj7NrAcjwsvvyp2PYqm46mTDVy/dQylTLyl3hDJMaxFnkdQJYCNzyoZCErMw25nCUiXgD8zr234yDzQJw8YgJVNmIzc6QuqTx0yvR1YeBKoHAq+FyAWfWNslwEu01M2apI5Tj+huOYS4PjDlmIxpjHUmge47KqpPkVZgXvUHMugqxqxTw20baPu3+820Uj2VywyDG1lLJr7vCObxGJbNu/pb735U7j/P/4KhWwK66cpPElYdYpL1eVRLBJBYjGgABNrACPgcX0rrv+LhyH94llICz2V4on5kDxMhCsWbStUyY4hSNjMO7FQwZoJs57oKRY7yKb728kVLZWAO5PyiX2HAQAb10wm+t5+IAgCb3rl1fiX/7odf/fR3/K8N5LPYKmW3E1gvlzF5RcEa6MwrJ00m0jHZhdRsIhTh1iUAIaw9ivFoNXp9t0/NE1hzUQJR04GJ6h1RAnjIwXn71Y7RrH4HGYs2tvX7orIW7lQ37/nYZAkiVdeffGKxjTEyjCsRZ4biJoIRVfAkIM5Gj1XsMkrN5kCAMeaweckPxiKCVhpxioWXcSjZmigSJdi0ZrUI6q9e+Cm/CaHGHSIRSKGWPQpFt0YVUaRYlJAgjLE3jbOP/HKh1a9Bbhi+BiBic1YBADSysFIkrFIEiRI10Zl81k06kFiscW1wK/l8fk//TzOOf8cCGkBqTPN6zRFUJBck5xYng0oTt0Iy6xzoyk3wad4KEsK9vzKHmy/cnvocvVqHSl474WkNaFZk3uKRQbx50x5royxqTEQBOFkEcaN0yEWXZOtjjx7xDMONwzDQFtpQ9RETKWnnAzQfrj+Ndfjq5//asAONVvIer4zDtVyFWece0aiZcenzGeMxZOLmLTqqcpCBZdcewmO4igA8zzhaA7ydhm1M2qmo1PItkzMTIQTi13Jo1i0Vbh9FYvZFCp96tGkGCRj8VjzGBiSwWR60iGZu+2uk2/5yL2PQFO1Vc9XfLb2LLpqF1dOXxlQQw8xxBDPbyQiFh9//HEoFmHx+OOP913up5U/N8TzB4IVjn1goeUQiwDQkoIEl002hdmktkQ1kAmZEwaz+TlZ9RY/cWpDJoEVajpkHXTtKNTCOpCnwOFw7uhBTBfO62Us0pxFmPUHx1DQbWIxRLHYkTWvFarvPOV4wWOzKYkiDJJGfcd/onbvv+KCq25ETXHP7AsSi6BYMBZ5SUAPZFf2s0IlYQCGDpYmQRC9h4tmLUgsaqqKdrPRn1jUbDuJPgv4UJ6fw8y6DQDcisX+RaoKCqmsWVA1Gz3Fok0sjo4Fm3l5gRnounjNK16H73/z37D/6SesVwhouoFcoejJwYyCpmloVJccxWJdVCCwlJMXapNdbcmyQp2YBgAszs9ifHoNqkumFdnI2DiwoJsZi2Rv3aRFLK4bTaHRVSAqvfN2YmoNFvpYodKuPEXZIhYNigFLa9hUSmPPiTpERbOIxZVboVJ8xiQW6aSKRXP/EBYBKnY7TvbmA/f8CBdefhV4IT435Jm5JmRNx9VnlgIZrUOsDMNa5DRC2IV6UFKsehgYjyAtVsMKlerT9BrdbP5b2Rd8z9/8CxCLCyYpazcBpVb4d139AeDxfwcO3hW5HYShm2TlyEagFa72HxQ7n53F5S7RDccypmIxjljkrG0NEIu2YtF1TSS8xOJoIWspAc27fFvRIaQ5/HjXkwCAdVNjKGTTWLL6fZpNLHZ7jVJPxqKjWHTVpgEr1IZJTtvjoDmPFWp/YrFHgDrf57dCNZIqFiuYsbJ7bDKp0YohFm3Foss61iYWz1w/7bz2+fmL0T7yGD78ujwGwZtecTX+zz9/G/c8/ITn9dFCbiDF4nylljhjcc2kSa4eny9j21kb0e6IaLa7mBofAY65iMUYxSIArJseCycWu14r1HjFYgpzfexwk2LZVqhp8zhstrsOsXjr3Q/hygvPxqiVMTXEc4NhLTJEEtg2j1FZe/3AkEyAAOjEuDoErFBJylEsEoSZqehWLE6me8+tmmFmMpIxZmYU0Z9YJI3kjRGb4OT61VgWDu85jG3retn2tEBDVaKtUAEzQxIIJxYVXQFD9+7fbgIWMDP83Go4O2Px2ceexeHvHMbEpgnkijm0XI4VJElCdNUivBCtWOyXsWijrbYxyfd+n36kUqPaCBCLNgbNWCzPlVGy7sN8igdBEGg3B1csHtxr5lRuPGtjcEyG5hDsG3IbYsd07auvxT//n3/Gg3c9CLgOlXwxP5BisVquYmSsXwfJi7Eps3+yOGe6Hui6bmY0jvc+z9M8SIKEyqlQ8gpaSgt5LlhnTUxPYP54uBWqkBKcY8RW4UYpFo8+ezTR+PvBJgjdkwvCUBWr+NvH/hZrsmvwnu3v6SkWXSTzjjt2YNPWTQ7xulrYtbgLWTaLy6dWVwk5xBBDnHokYm7uuuuu0P8f4mcTLclb0I1lOByvdgOKQz/yglnENcVgodWSVCg+C8uCMFg2xQmfFWqKiycWqZiHvjA7VSIu62gZqNz296AzIzgmvAgvOv88p+lKsxxUNXpmEUeTLmIxuN87sknW2KAowpNhk80X0LRIK8MwoMgSnv2ff0Jtz33IX/lWvO39v4M7jigQKANdjQBFImCFalC0Y7EarliMJolMYrH3e4cpFpuNWuQ64ixj/agszOL8S8yZVmkrY7HTaQEIP+40UBAyZjOn5RrLof0msRjWQCimB5tVe8HFV6AwMor7/ve/genXAjCJ+FxhJJCxqNMc9JBZu/WlCnRdR8EmFjsKMlwv6zEvMKBJwjlHxybNJmR5/iQA0wYVAEbHJ4EnT5oZiwQBRZZhGAYoKyNruiBAN4BKW8KkZbM6PjWDhblwK1SS7TVrbcWiQTJgKRkbS2k0RRX1roJCikUqnUWtj2o1KSjLepVPyO3ZCmeStWbmddpIpTNo1mvY89hD+J2PfjLRenYdryEv0Lhs42B2QEPEY1iLnAawZ6eHNVzU1VHbOTC0lSsW+ykjbIKsciC4LbFWqIumFSoWvcv7FYsAIBTN9UdsB622zG3lVo9seOjpY7j8ht7fLMOgq+hAhEAU6CkWCf94NcVUKLpnZJEU3B3KkXzWUuBZucJdDT/Y8zh+stPMpPr0h9+FbCaFRTaLe4+oYC4w7cc9xKLLOpUjNZMwdO3/flaobsLTTTyFEYuyrFiElPfYoK17o2RPthkgY/Gqi84B0FPOxWYsWs08txWqTSwydG9bjihFfPfpND6cHsxS6qLzzsTGNZP4zx947VB75G88uqKERquT2Ap1slQESZI4Pmfu89lF0/59eswkFmnSqlttYjFCCbh+ehyHT4QrFt3ks61gjcpY3Hc4WNMMgiiCOAo22WmTn11Rwo9+8jj+5L1vW9F4hlg5hrXIEEnAW5OKBs00A0xisaV4n50HsULVoJkWny5/JT9ZmWN7NYOmm8uTMbOmKYICkXDCZhRsNV9Uxh4AHHziIPCq3t80T0ORFRAgYCA4Qc0hRq3bcz/FoidjEaRnP+UKuUDG4p5H9uDJR59E8ZoiXv76lyNXyKG10Pt9/FaoHM9FEspx2YUdtQPedV+y8w/9aFQbmEQ4ueMoFpNaoc6VMT5jqvUIgkAqk4pVLKayKRAE4SEWDz1jOnmk3Pc+AwBh9pkWRbP23ZgPEo9+rN20FmecewbuvvVu4Od7r+eKuVAb2DAYhmFmLCbMe05n00hlUlicNcfZqDagqRpKEyXAKis4yrTw1RQNOqejo3TCicU1E9j94O7A61JXQmGk4JwHihRNLKYyqdhjJg62ZWuUFapu6Pj3p/8doiZC0zUouhIgFjVNw4N3PYjXvO01KxpP2HfvWtyFs4tnD21QhxjiBYhToLka4oUMO48tCtW2V0E3keMw1xA9isNmN7ge2iKbGt1wu07FZZ9KEsBIejBi8WTdl7GYwAqVjJEsZmJyGlcLrce/j9p9/4Yje3d5XicZHkqE5QcAcDQFm5NVQ9SNHVl19j0AUCTpKMYAIJcvOqSV/Xpl38MYfc0HULj6JpAkiXJLQsaa/UfBAEkSEN32piTTUywaWoCw7adY7G0D6cl1DFMsxlmBhuVL9oOu66gszKM0bhbjfMokoaIyFhWQEDJm0diq9xSLBy3FYhhGBiTHKZrGVS99Ne770fed1zTdQLZQDGQsts58BeYnr/BkkwKmDSoAjJTMoqzWVZDlaSfrkSQJFNMsWpbtRjqbAy+ksDDnJRZHxiag7bsH6fYsSJJwyGE7Y3FNwSw0K63eMTc+vQbzYYpFSfRkaCqy+fClggJLk9hYMvf/bM08/tKrYIVKWgpJIbFi0dwue5z2Mfvw/XdB1zRcds2NseswDAM7j9WwdTKHsWxMB36IIX7aOHQf8Cd5QF5lAm8Q2LaUYTNm3eMadIZ/P6n6SonFMLLPjdoRU/Xmhj//McwKlXU1XGTrWhc2c5/mLGKxf2OIlq3vX0Vi8cGnvVZtHEujK8dPqmI58/cl/Go9XQ1mKhKU50+TtOrty/1LGh596iBecvkFAMzaBQAMisO1/9KBZDWlPFaoLmKRJTRz37syoAKKRakZyNF0KxZPLgSJRbf9qBv25KKBrVDnK5gZN1UCJEkikxJi7TezaQEURXqIxd37Qmx5lwnbDvXbt/0YmtbbjkEUi/PlGgCTMEwChqExWSrimKUSsInFKUslYCsWVZ2EKMnRisWp8VDFYlccXLG4UitUW3k48OespnLLaubd9eBudEUJr7nushWNZ4ghTgds+8o2XPhvFz7Xw4iETSzKavRzfBgYivEo3gzD8BCHYXATj45i0W03TjEetRJL9eobAwZI0kuwhSHOunJQpOjoiRcHnzjo+ZsWaMiS7Ml2dMNRLNL9J1z7iUV/xqI/v0/siNi/Zz+2vXobpt85HWrxSRLkYFaoMYrFjtoB76pFwgg+SZQgSxF5hop579YTTogvz5VN8syCkBZiFYskSSKTy5iWtRYOPH0gsBxhWApSQ0O5WwZP8SgJpcByYbju1ddhx+07PK/lijnUq/U+n/CiVW9BkZXEikUAGJscw4JVQ9hZi27FIkdxoAjKOb7K3XDid3x6PDJj0SafHcVin1oknU2vnFhMkLF47/F7sa+6D2PCGBRdgW7ozufsY/Dpx59Gfam+6jaoR5tH0ZAbuHTyUs+khyGGGOKFgUSsyRvf+MbEK7zllluWPZgh+mPD738f583kcOvvXD3Q55LaQtroKoPbhk3meTx6tIaO3PtsW+7fzGuIKnTd8JB6HVmD5PruvMA4NqtJMVcXwVCEo3yMs0KlKTJg2elHmGLxVOKZJ7yWOhTLmXY7EZvC0e6MxXDFojvnjyW9NqamYrGGuRNHwfFmgX/Be7+AJcYs+HQDqHZkbMgCi6LLClV0hcSTNFiSBFQZvN4NELbdGFtLliZhGL3Z/62lYDPPr9jzQ4+xjHWjvlSBqipOxiJFUeCFlDnOdHjhqYICzfGgaNpRT8qSiBNHDoYuDwD51OA5INe+/HW49Ztfhe0sr2o6cvkCahVv0WpQHBQ+i46sIcP3jtOlslkIFy1isdFVkBMYT85mKcOiI2lQdR00SWJschrluVkAQGVhHiRJojBSgr73DqxZ/3qQBOFYk9oZi9MWsVjruojFqRkszIYoFrtdkEyvmSdLIgiCgGIQYCkSG8fMrV1omcXualihguEASIgRLjuwrxcEa45TtIjFB+6+DWecvc1RdkbhRK2LakfBJRtGHIX2EKuHYS2yQuz4vPnv3v8Gzn/T6q7bblzsuw148AvA2/vsf9uWMoxYjLH56otdXwfu/yzwG/cGMxf9JN+g8JOCfnQqQMM3mSLOCtXOirRhW6GGfRfFATB6tqkhYBSrAcaH210aToXQH4amepZ5aK93mziGQVeJLygZ3tyGwPfZikU3SBKKy0rbVCy2cGyxiUnNQJEn8H8++Ms4cHwRdz6wCwFYTdGOK3tH4HuNUpKAuU9dDcSAElBqANRGzzJucvJECLEYp9gTFd2s2RIQi11RQqXWcKxQAZPMilMsEgSBQjbjWKHquo49+4/Eft8geNMrrsanvvhNz2sj+SwOHptL9HnbQnQiIbEIAGunSjhuKTNsUndqbASz6BGLHeuYiVICrp8ex4n5ClRVA+1ScHZEyfP7OorFPiRlLpNCI+a3iMNyrVDt7bPH+N93PYhNaydx9ua1KxrPECvHsBZ5fkDVVSx2Fp+36haeshSL+uCKRZZkPYo3VVdjLS0DVqg+xSJLRpNdfoKt3zLLRkgJkfZldUtdCXBdMg/tOeRxWbKtUGmSDlUE2sRinGLRk7HoU2lmC1mcPHISlfkKMvkMFEXB23/n7VgaX8J+Yn/oplEEhZbYe26NtUJtdT3bFXhf7YItRE9si7MCtXP7klihGoaBxflFxwoVMO03O+34Gjqbz3oVi3uDk5zcCtNyp4wCV3CI9zhc95rr8E+f/qfAdya1Ql2yJiklVSwCwNj0mGOFatvQjo736jSWYmHohjPxaklcCq4EZsZiu9lGq9FCxrKwB0wrVF7gIWvm+ahaLlJRisU4kjcOcRmLc+05fPfAd3HxxMWYTE/iodmHoBma8zmbDN9x+w4URgvYuj1ZfnZS7F7cDZ7icfWaq4c24kMM8QJEIsViPp93/svlcrjjjjvwyCOPOO8/+uijuOOOO5DPD5bhMcRg2HOiAXEZxN+pxkSWh6YbOFrpFR+tCOVjU1Qha97ZU6pueNSSeYHxkGFxUDUD1Y6CHN9r5qfiFIskEZqxePZUFiMpFjRJxJKTYZAswq0Vorrzwz0THAAOPvOUR01IMZyj7uoHN2HUzwrVnbHI0CSkbq9RkisUcfzwAbz752/Ed/7dLNyodN5RejQlHboBFHhL8UYYAStUnaDA0AQMVQKj98ZvF81JFIuger9ds7YYWCaOWNTkaM94N8oLJolmKxYBIJXOoB2VsWhQ0A0gm8ujZWUsHj24H7qmgeP7zDBbBjG97eIrUBjpFfaKriObL6IRotjU+Dy6PjK5ZikW7YzFhqggx9Oe42Qsw6Etq1AtEn5schqLthVqeR6FkZJjeWqTxN22+RvaisU0RyPH06i71MkT02vQaTWd/QOYx4Akdj3KH0USwQspSKoOjqGQ5xmMpllULDV0Kr18xSJt5WZQliIoaVQrR5uZq4SlGuq0W9BUFQ/ffycuuzZerQgAu4/XwVAEXrJ1bFgUnwIMa5FVwimw80bVaiR885eBA3cAc0+EL2c3kcKIRX/Gou4bZz9yrXESWNwH1EPyR+QVTlDw25iG4dgj3r/jrFC7S4B7lr4cQSzan40gFmmlYZJ2vHeGr27tv6VGPDHSKJ/0/P3siQoqrqYNyzLoyvH1J8f2aRTpiqVQdD12EBQ6rtn2o4UcDp+Yx0U3fx0fv0dCVzEwNlKI/U63FaqbNAJgErMk5dQirY7vuJNa3oxFAGmX/Zga0pSMU+w5k+QSqGVPLpjNKDexmE3HKxYBYCSfcRSLh0/Mo90RPVawK8WF52zG5nVTntdGC9m+ik0/5itmzZZUsQgAayZ6xOLsYhUCzyFnNbVsK9S2bBOL0RmLuq7jxLy3Du/0USymhfD9lksvX7FoW9IWc9llfd5ti2sYBm69+yG85rpLh7XF8wDDWuT5g6T5cc8FbJvP5VihshQL1XUPiVIZ2fBbodKE9wGIoRiHyAgDTdCxisUwpSClJuuVuBV9NvxWqI0l7/21udTEnGsyC82aVqhxikX7H3+fBQBUI2iFqrvqzVwxh/JcGe9+7bvxhT//AmRRRm4kB53oXzvTJA3RVV+wPBtuhWpxibquR6oNu2oXDBc9QTVOsWeTVUnOkUa1AUVSPMSikBESqeSyhR6xWF+qo7JQARdRiyx0FzDCj8Ta4NqY2TCDM8870/Navpj32NVGoWpNcnIrDuMwNjXmWKE6ikWX4pGlWCguB7a6HP5bTMxMAEBAtRhQLCrRisVUJgVZkiPzRfuBZsxzxc7DDLseabqGrzz5FeTYHN59/rsxkZqArMsexaJ9LOy4Ywcuu/4yp0+0Wti5sBNbRrZgMrO6uY1DDDHETweJiMUvf/nLzn8TExN405vehEOHDuGWW27BLbfcgoMHD+Itb3kLSqVkkvYhnt9QtcGajuM58+H3YLnXwGtGEIuypvesolwot1y+/z6FVX+YBXDVurnnXCohf86fHwxFhj6gf+ClZ+EPX7UVoxluWcSiTQR22/EFj51taENVFTy790nnb5LhElihuonF4LJdH7HI0iS6LlKwWlnE/qd245wLLsJVL301AEAH5WQk1UWzIB0VzH1BEeZseQ+xCNKx2nRDsXIPu53owpSlSBgECcNSHbaqYcRi+GwwZwwDWM2U582HlNGJXtMslclGZkEqIKHqOjK5gqNYPPjMUwCA9Zu3eJZNdeYBTV0WsUhRFK66sRco0RY15ArFwLECACBpzDe9BWK1soh0NgeWs5pSooq8wHh+n7Esh7akOcRiaWIK5XlLsbi4gJGxicBX2QpC0lVITuZ5NEXFsWMdn1oDAB7VoqLI5gMbxTiPq7IkQUilIaoaWJoETZLYMJpCtS1D0XSkMtllKxbPv/hyfPIfvw46lQUBONmfcSAIAgJLwbAI7m6njSd3PoxWo47Lr31ponXsPFbD5lIGM8XlZSoNEY1hLfICgD0DW+zT8LDJMyUBsegnQP3vexcGmkG7oRUTi1G2XzRvZjCefMz3nf2tUHnKMElVLoRY9KstgR6x6CcrXWDkOsDlPZNzADjX5bYYf2+sHng08NrDe/Y5/88xjMeVoh9Yoc+1T9e8pCIAkKRnbHPlKp5+9ijOXlPE+y9nIaqAwMfPaG933IpFXzOL5gCCgiTbzRsVsvX/0FVAkwKErp+c9KsK4hWL1n5K0Myzia9BFYsAUMxnUG2YY9ltZRpt27I+9nNJQRAE3vQKr0vKoFaoJElitJCcWFszWcLxeZtYXMLUWNGp023FYkuKJxbXT5s5UUdnvbVkpysh5TqmWhYZ269Blsuk0BWlUII5Di869wz84It/umyFoTtjcfczh3B8rozXXHfpstY1xOpiWIsMkQScNVExiszrB4ZkPMRUEnLSbYWqQTOtTQmvYjFKRedfPgxhikVGTebQooVMjvevr14J1o5P7+xFjlA8BVmWA6Sp876PWNRD+k2qrnq2kyRISC7ng+piFXPH51CaKOHNv/lm6LoOjuciiUWKoDzEIi/woepQ2/ISCLc3dd7TuqB9M2PdnwXiFYt2xmISK1RbnTc22VP/pjPJ7Dez+axjhXpwr+nitHFr//zESreCUWE0MbEIANe/5nrP37liDq1GK5Q49mNZisXJMZRnzVqkslBBrpgDw/aOc47iILV7x0xDCv8tbGJxwZf5LHUlj2LRzljk++Q9p7NWZE8CBakf0+un8al//RTOeZGZ5R12Lfnh4R/iZPsk3nHOO7B9YjsybAaSJkHXdTAcA5Ii0e10MXdsDoeeObTqNqhz7Tksdhdx0fhFKHCFVV33EEMM8dPBwBmLX/rSl/DBD37Q8xBGURRuvvlmfOlLX1rVwQ3x3MC2Ek2KHE+Do0kcXerd7NpSkFhcWOw94MsxxKI7Ey5yrII5e6hhqaZyfHIih2X6r7+QMtVVcarHyLFJ8bML60ve2dQMy2Hv7l6TMhGx6LKMVRVv0SmrOlTd8JCPHEU5qkoA2PPYQ0hlMvjE5/8NtKVG00B4iEUCQFHoKRYBr2JRA+khL220m03kiyOQJRFaiJrSGRNNQScoLN3+D2g8/B3o7Vpg+Ua96iG1/FBlOZDt2A/lhVmQFOWo+gBASKcjMxYNEOjKGjIuxeKh/U9jcs06pNIZz7K8Ugdai9g8lglbVSyufvlrnf9vSSpyhZG+is05X7boUnnB2S5J1SCpOkYzrOchaiLHoyWpUK0ZmmMT01h0ZSyOjI0HvsdvhQoA03kBDZcCeXzaJBbdOYuOOpZiYB+GitwFn0pDUnRwNAmKIrBpPIOltgJJ1ZFKpyF2O4keGPygaBoXv/g6SIoOlo63O3YjxdDQrVmwYqeNB+6+DcXRMWw5b3vsZ5uigkPlNs5fm8fogPmwy8GSZZbbUX821QvDWuQFCvt8DGuS+cnGQZUIzdngayGEnCiZ373/yMnAewOBIIHMOLDoy9n1k5kuxWKesbaJcdl/2WNkQkg5OwMpZDtShFkbMErDVCv2mcEvJ3C6EE/s8fw9khPw4K5nnL85lkEnQcZiP/W+Y4XqVyy6rLT/556HwTA0fvSnb8BoikRXNcBz8Qo8t2JR4HzXXpoDSBL1ZhuloqnodEg7+3jzEbrujEUAAcVapdaIbL52bXvXBFaoJyyLrRlXrlE2LaCRoHlUzGUdK9Qn9h3GSD6LqQEyhJLgTa/0E4tZNNvdHjkbgblyFWMj+YFmta+dHMOx2TIMw7CIxd720FZTt2kRi/3sSwEzYxGAJ2dR0zRIshJQLGb6NPKAHnnZXEYzjyAIvOLqi5etMBR4s25rdUT8910PIpMScO0l25a1riFOHYa1yBD9YKvqouxHgR6p4wZDMl7FYpjLgw/+jEW/ApEhmXgr1GVkLDKKSbjYOXr9oPtdKBBUQPrJstJMyUMs0jwNVVZjFYuGpXBPmrHoVlPe8b07AAL47Dc+69hXshwLnUxOLHI8F0rithot5EdMJXMUaddRO05OpA2bILPh3ldGiM+sTUQmIRbLllOAW7GYyqQSEYuZfMZRLB7cexAMx2DNxjWhy6q6irpcx0RqwpPxGYdrX32t5+9cMQfDMDzZjv2wtLgElmMdS08bmq7h3uP3Qgup1canx1FZqEBVVCwtLHlsUAHzXJJck9qactNzvtoYGR8BzdCYO+G1kBe7IjiBc85HRVbAsIyHvHQjZVmjd5rLq0Uudbkd+K8Bh+uHcdvh23D19NV47ebXgqM4pJk0ZE2GZmjmxOu0gG67ix137ADN0Lj4mosHHkcUdi3uAkMyuH7t9Z5zc4ghhnjhYOAzV1VV7N27N/D63r17QwuGIV54UAb8HQmCwHiWw3zDdYMNIRbn5no3VSVEFVl2Ka8yHA06AbGoW825ascsngoDZNqxZPz6l6NYtBFnYQqYWX9unHnONi+xSLOQY9bDRVih2tZlrMtWlqO9asMrX/IKEAQJiqYdwlEzXMSipCEnMBCs77G/zUssEqEK0067idFxUxUYZYfK0iQ0g4Qhd1C907RjrVa8D1qNWhXZbHiYM0FSUBQ5VqVqozI/h5HSuKcRkErF5/q1JM1jhXpo315s2nJOYDkdJKCricfjx3kX9malm8RiEZLY9RDCNpba3gKxVim78hXN33A8622cTeZNYtFWDpcmp7C0OA9NVS1iMahY7IYQi2tHUmh0Fed8HimNg6YZLMy6iEVrzDpJ94hFS7EoqRp4mgRFENgynkWlLaErq0ils57vXA5sNeQgP0GKo6Bbs2C7nTYeuOd2XHbtjYH8jTA8caIOA8CN50wkunatFLJhjlMdMEf3dMGwFnmBQw25r6m+61sCYsaDRhixGLyGdK3JDraN5IqQnQSqR7zqSr9tqat5kmdDiEWpZaoNqZD6xVF4BpsJF6VMZTjfmQW4nGk1GgIpgdqKsK1sLVy6dS0e3N0jFlmGRltKYIXal1iUg+MjSLRdKoE33HglZEV1rp9dxZuZ2A8eK1S/pSVlKhYbrY5D3tn2l87xRnubTf512OSfjUqtiULOmwvlhjSQYrGCTEpw7D4Bk8xKpFjM9axQn9h3GOeftXHVbTIv2LoJ73vH63H1xecCMBWLABLZoc5XqgPZoALAmslRtDpdNFqdALHIWI3iRgLFYjrFY7SQw9GTvTqya6lj3eRzqyM6ysAw2L/Lcu1QVwKSJJEWeLQ6Xdx690N4+VUvAtun6TjEc4dhLXL6I4y0GQRxisUwi1CGGlyx2FZ7z9maoYEivZmJLLXyjMUwpWCmY5JvnBE9EUgP6f3EKRY3nb8JTz/eIxZJlkxkhWqTPGEZi4queDMWCdJDCl718qsAwxyvbN03OJ6DjghikaQgumoRN2nkRqfVccg7O7MuDG21HbAwtck/G41qA6T9vBnys9mKxTDizI/yXBkEQXjsPoV0QitUV8biob2HsOHMDX0nFDVlc7m12cGU/NPrpwHAIZ1y1kSxODtYwLRCHRkfCRzb+2v78c1938Qj848EPjM2NQbDMFBZqKAyXwkQiyzFeojFhtwIPc9JksT41LhHsWgYBqSuBI7jehmLstrXBhUAUlmzFmm3VpazCHivJZIm4StPfQXjqXH8xvm/gfGUOSkrRaegGZpDjgupHrF4wWUXOArK1cKuxV3YlN+ENdlwQnqIIYZ4/mPg7uc73/lOvOtd78JnP/tZ3H///bj//vvxmc98Br/2a7+Gd77znadijEP8lKGEqAnjMJXvERcMRaAjR3uAd0KIx0UXsZhOoBScdSm1ql0FaZYCz3gLGS7KxSxBhmOScfSDmkSxWPU2rM4670I888Tjzt8msZjcChU+y6629TswrmUa5Vk8+fjDzt+XX/cytJsNaKoKyRqzZhBOPlCtq6GYYpz91SMWXVkOBhGqMO20WhgdN0mqKNKOpUlovqrYtua00axVkcn3b1LJspSYyCsvzKLkskEFLCvUGCKrLanI5ouOFeqhfU9h45lng8qV0FaCD57L7fGRrn3ZkVVk8wUA4TmTlbYC3fW7uxWLDdEsCCdz3oe9sQwHTTfQtN4fm5yGrutYKi9gqbyA0VKIFaplE0vSvZNqbVFAraM4jVSSJDE2NY0Ft2JRNI8pnaBAW7+PLIkmsajoYGkKFEngjPEMFM3AYlNCKmMSi8vNWQRMUp2jSScjMglSLGUqfHkBB/Y+iWMH9+Py616W6LM7j9UwneexdSKc/B5idTGsRV7gCGuS+Wfkr4ZiUVoF8jAKmQmgU3bUgwCCZCZBwLCaWFnGqq84lz2k3LRsVUMKFjubVurfTCCgm+tbgWJR6M56rGYv3boGD+3e59iAciwT6kThB2mpMxvwqfVDFItzDQV3PLDb+fttr7kOQE9R2lWNRJmBHsViwAqVNYnFdhfTVr6OQ9rZZLDPCtXfEPPn9FVqDYdgC4OTRZlEsbhQwRqXQgCwrVATKBZdGYu7nzmMbVs2QOBYtEOa1MsFQRD4mz/8TWw/ezMAYKRg/q5xdrAAMLdYxcRoYaDvs/fF8bkyZherXmLRUiw2uuZ+jSIWAdMO1a1Y7Fp5Vh7FYjtasfhcEouAuY0Hjs7iod378NrrL3tOxjBENIa1yOmPfoqvf3rin/Dz3/v52M8vxwqVJVkPoZkkY9GvWCQJ0qNAZKkYK1Tf8mEIUyzGKRWdMYUQiwHFYsWrWNx03ibs37Pf+SzFUZHEIml1KVRD7bstmq55iEWxIeInt//E+fv1v/R6AECz1nQsUjmeg0b2v6dTBOUhCjkuXLHYaXVQsiY5RZF2XbULyTcBL0As1hrIWbUI1w7WSqoVSxRFiLrXPTI24uTxAab9ZhLrTbcV6oG9B7DxrI3geM5DtNqoSyYRuCm/KXa9YSCsZ3p7u+PsYAFTsRhmg3qkccQzJjfGpsw+yuLsIioLlUA+I0MyHivbulwPz9QEMLFmwpOxqCqqaa/rVixKCoSoyVIZy6VoGYpFP9zXo+/s/w5qUg2/tu3XcHbp7N73WZMf7dzWVCaFykIFO3fsxBU3rq4NalWs4ljzGLaPbUeRH2wy2hBDDPH8wcCsyV/91V9hcnISn/nMZzA7azZxpqam8KEPfQgf+MAHVn2AQyTDjgMVPHCwgve/dEv8wjFQ9cFn5s0UU8Bhk/RgKDI2i2exJeGMiV5jjadJLLV7N2QhgVLw3n29mcjVjoKcwASsMDkS6DfJnrMIknq1ApblIaSDs2+SjKMfZCmJYtFbJG49/0X4r3//ItaKXYADCJqB2oq2nOLo/mO0CV7bplQ6+Qw+/cVPeuzFcgXzJt5s1CBbJJBqAITVFKuJKjZPpEGT5jgoa9a46MpNVA2THHTvfUWWIUsiSgkVi/7jrrzgtY1o1JaQyeXRr6RSFMUhruJQnp9zxmUjlc5gYe5En0+YaCsqMrk8Du/fi9pSGUvlBWzcshX3F24AAGi6sWyVYj90FR1rClZDtF7D2OS05/1qW/ZYC1cri07mY8PKHrVzUG2MZc3fv24pGscmzHUuzJ7AUnkh1ApV7LRBEKTHomLNSAqypqMuKihZqsiJqTWe/egoFomeYlGWJAilFCRVB8+QoEkCm8bM82+2LmLKIhbbCXJK/Xj8aBWPHq3C0M3szkHI3RRLQ1Z1CKk07vnh98AwLF50+TWxn1M1HU+ebOCaM0soZU+9DeoQw1rkBQ9VChIvfhXjoIrF1kLwtZVmLPZRATrImJMw1vOu5kYYmUmxXkUmn/cuT3FYanRBo+NRr8HKaILiW6dvEhHYdN88SDmBYrFoVAGxtw2Xnb0Wf/qvd+LgMfM+zLFMT4kXBeuCu5s4F1e5X9cVD6m4a07Da//ux1CpXrajncXX7kpIwVIs+q1NQ9B2KQ38+YigWMcK1c4xbHV8zS4uAyDcahwIVyyaYw0/tsQk+8lZd9mTrwhYVqithIrFegtdUcL+IyfxgXe+EU8fOIqdVsbRqcBgisUaNq+dil3OjbVWvtOxuUXMLpgZizYcYlGyicXoLON102M4Otu7JnSsJqf7GGl1REz7lAhuOMTiMqxQVwOZFI9v3fZjAMArV9l6bIjVwbAWeX5hperC0HX677cWPvfY5wAA9x2/D1evuTp0GcC0Huy3jn7wE2d+kikMHbUDGAAIk0zyqwFZiu1LfgA9K9RWvQXDMJANyccNy1hMijAFb0CxuBRULMqSbNrFFgCSIa3n/WjFYpRKT9VV53ulWQlf/chXoXd6Y3Or4TjrfsHyLDQimlj0WKEKXCih3Gq2HGIxSrEImCo4N/yWufVq3Rlrqhm8H9q5fUlQnit7bFCB5IpF2wpV13UcfuYwrnv1dRA7IqqLwbqqLtdBERRmsjOJxxYGm1hsJpjkVC1XPUpMGzax2FGD22gTiwsnF7C0sITzLz3f8z5P857fryW30FE6yHN5+DE+PY7jh9wRMea57M7hVGSlb74iAMfGdaWKRU3XoBpm74dcR+L+k/fjVRtfhZdueCkYsueIkLKiGewJDUJKwE9u/wkUWVn1fMXdi7tBEiRuWH9D3/N6iCGGeP5jYMUiSZL48Ic/jBMnTqBWq6FWq+HEiRP48Ic/PFCOxhCri7d+8QF87o79OLa08offMJvSOMwUerNsWIqEqGgeFZUfbnUiAKQ5GlVX1k4SpeBdz/iIRZ4JqJOiVmMr8D7+e+/Cv//9Z0KXWQlJpMpJMha9Dauzz38RgB6pRtJMrKVqmAWpDdu6jKVJtJ++F3P/8fsYm16HN73zt51lbDVcs15zFIuqboC0FIsNScdYhgNj7S97j7itUBU9OI6ORQqVJibN5SOIRY4mA9melQCxWEU2V+i7DkWWEqlQzXXPOuOykUpn0G1HF2yioiObK6DZqOHQPtP6aKPLCjWJomNQdGUVOUup2agtBd6vtGXH0hQAapVFFBzFogoCQCnjUyxaxGLDOuds9eaBvXugqSpGx737BgA67XbgGj9tnfflZu/cHZua8WQsira9Lkgw1vmkSFbGoqqDZyiQJIE1xRQYikClLSFtZVZGZV760RQV/MO9B/D5uw/ggYNLOFHvgmOogc7hNEtB0XTwqTSqlUVsv+zFoRMO/Ng334Kk6rjqzLEV5bIOkRzDWuQFjiTEYoJcGA86FUDXvQ28kGzCgRD3kJsaASgWo4xbsRj8ToNyXYNp3pvrJzUAmsOv/MkX8aFP/7P3g3Y+o+yr7ZZ85BGX8+YXupBEsZilZKB62Pn70rNNm6qHnjDtUFmGhpQgV8+G4d9vmmKStASJB09ouOrLbZSyLP7s997hLDJiNTFtAii5YrF33ASsUykWsqJDlGTMjNvEoq+Zx0ZnIZ9c8N534xSLnQSWsTZOzFeccdnIpRMqFnMZLNWbeOrZo9B1HeeftQETpSLmyv1J0pXC3u5KLV4lMF+pYaJUGGj9U2OmXdmBo7NYqjc9pJ9phUqg3pHBMDS4GFtQv2KxYylPBslYfK4Vi5m0gPlyFZdfsBXjA6o/h/jpYFiLPL+w2AnmFa4UfkvKQd+3s8oGgT9/LokVakfpgNTMOkCDqcpzTwZlyWjFom2d+rd//Lf464/8degyYVaoSWFoRsCa1E1mAEEr1HVb14GiKcweNUl72wqVIcKv/44VqhH+PK7pmqPmbD3VwoFPHABFU/idj/+Os4ybtHIrFnUiJmPRbYXKc5D04G/WabqsUGMsz+uyd19UfJOcGtUGciVzrGHqTDXGPcyN8nyQWExn0omtUFuNFk4cPgGxK2LT2ZtQLBWxVF4KkMl1qY4cm3OIq+ViICvUxWqkYrGtBGv2dDYNIS04isVR3wQwhmTQdU0AM2CgIlb8qwEATMxMYP54T7FoHyec0FO1KnKMYtGyHk3ye0TBfR0ht5DYkNuAd533LozwXuLVVizaywtpAdXFKtafud6xpV0t7FzcifXZ9diY37iq6x1iiCF+ulhWEJSqqrj99tvxta99zfGrPnnyJFoDNIHd+PznP48NGzaA53lcdtlleOihhxJ97utf/zoIgsDP/dzPLet7T0dU2oPbbfjRjVEbhsFrhUpCVHRERUss+IjFDE+jKfYKoCiyDDCVYffvL4PomA2UakdBlqfRsHL5Os0aAICLIJrs3MFqeRHtFWS59YMiS7H5GvWqV7E4uWYd8sURxwaUoAa0QvXBVo4+/r/fRPl7n0Z661X48N98FSRNY+Ktn8Ta3/sGsg5pVTUViwQJ3TAbiQCgG8B0kUfaUm+ytmLRRSyqmhGwobVJIVsZ2Ikg7ViahOwjtP2KxWa9hmw+OBPMhiInz1hcnJ8NkGdCOhNrvSkpGjK5PJr1Gg7tfxoMy2FmXa8QGnRGahJ0Fc1RlQasUA0D9a7iKBM1VUW9uoSRkqk4bHQVpDgqoLy1icaWRYRm8wVwvIBn9uwEgL4Zi6SvSWJPKFjq9I7Riek1HmJRsixzVYNwFIuaqkJIpU11oHXcUBa5WGkr4B1iMX4momEYePjwEv7ou0/iiRN1XLbRLI4lRTetUGNsfdxIc6ZikRfMB57Lrn1pos/tOl5DlqdxxabgjMghTh2GtcgLGJrs2G33XpPgKRwGJRbFGqBJ+Oa3vtV7bbmKxfGzgekLvQRgGAgSyPsyQVzE4lzV/H7D3SRkM948RdlULM5VGkECwyYk/WTlkZ94/+aDygIbmq6jlSCzDyd7NuylfBqb1k7iod37AFiKxQGIxQB0FSBJfPV/7sef3iPhxk007vvodRBc7gk2aWVbm9qKxTXW7P6RfPg2ejIWA4pFBk0rB8fOWPTkFxJU7G98YsFbpy3Vm466MgxxUQBuHA9VLKYSEVnFfAbNdhePP30AAHDuGesxWSqiWm+t7LeK+s7cYFaog2YsMgyNyVIRj+zZDwAeK1SKMKzfU0Y2IovIxrqpMRw5ueDUZR2LgE7xvd9bkhVkIpp5ufRzTCxapOdrrrs0ZskhnksMa5HTG8t9trvtttsAAK12q6+daj/4lTuiJoIloxX8HbUDQjePPx06KJJyyKvaQs1ULBrxVqhLi0t9CYwwK9RBUI2Z+OInFlmexaatmwLEIk2FE5wECJAE2VexaBOOB3ccxOHPHIawUcAv//0vI5PrTTCySatGreHJWGQEs27LFIOTkSjSp1jkg1aoqqJCEiWHpIojFls+p4qyz5a9WWsiU+o/MUqRFQ+xHIXF2cWgYjGTPGMRAJ54+AkAwKazNmFkfAS6pgcUhVWpihF+BAIdfw+PAsMyENICGgkmOS0tLgUUi3Wp7ihCu2o3cLwQBIGxqTEc3ncYsiQHMhY5ikOn3QFBEM62LInByd8AMD4zjspCBYpVl9lkNS/wjoJYV/XIjEU+xYMgCLSbK5ss6bdUfvcF78bmwubAcmnaskLVzGPUHttqqxXbShsHawexbWwbRvn+7hFDDDHE8x8DE4tHjhzBtm3b8PrXvx7vec97sLhoEjmf+tSn8MEPfnDgAXzjG9/AzTffjI997GN47LHHcMEFF+DlL385FhZCLK1cOHz4MD74wQ/i6qv7W0/8LOAU8BiodpKRk/Z3l1uSRxHFUARERYu0I/ErFrMcjZaLWIwjiA4utkxSxGq2LXVkZHgaJ4+YDZbF44cBRBOLnEVouAmy1YRhGKEKMzdqPitUgiBw1rYLe3/TNFQlhlhkoohFc5+ee/FVKFz3Kxh99c3geB5itwN+3TaQXBoybTZOmvUqZFkEYWU6bT7zTGc9G0bSGE2Z+0ugAE3THCUlw3BQdQO8bxztllmwjVrKwCgrVI4mPdmeqXQGFV/GYqNeRSYbTSzSZPwlrdtpo91shGYs2jmC/SAqOjL5PMRuB88+tRvrN28BRfcebuIyGpcDUdEhpLMgSRKNuveBjLKa5nN1s1CsVSswDAPFUfPhoNZVkOHogF1umqMhMJSjaCUIAmOT006+52gpaIXaabcCs69H0ywYivBMChifWoOlxXnI1vEhieb5pRmEo1gEAC6VgWYYSHO9/bexlEa1LYPhrZl5MVao9a6C/3f3AfzDvQextijgr37xAvzKizcAAGTNtFkdxAo1w9Hm51Lmg9rl18UTi4ZhYOexGrZOZjGWjSEhhlg1DGuRFzhUKZihqCne1wa1QhVrgCrixAmXpbVf6XcqMOLLinGRmc8cs+7xtIvwYtNeJaTUBOg+2XgUA4AAFN92HPmx92+uEDnEOBVbRyWA2V2e1y47/6ze6lkGsrICskqTAYLCtRefg186n8G33yQgnWI9pOBI3rzuti0lvalYZPGBX30j7viXv8AZfWZJR2YsUhzqlvqvZ4XqauaxqVhVapgVaj+SE0huharrOk4uLAWIRTNjMZkVKgDc98iT2LR2Epm04CgEFyq1RGMYFDRNoZDLxCoW210RrU4XEwMSiwCwdqqEh54wCW23FSoAgKTR7Eix+YqAqVjsdCUsWY1NR7HoO0aiFItpq5mXxJr2VMC2e33N9UNi8fmKYS1y+mNQtaGNY0ePAQC6UndwxaKPRJRUCRwVVPB/6qFPYdtXtqEm1tBVux7FIgnSUUotHlsES7FQtf4TXyjCVCyGZePZWKlVYWUhXNVlo7EUvLecvb2X/UYyFrEYoZxkSbbv/latCW1rz12LsdeMYcPNG5DKpjykoJAWQNGUSSxKPWIxP2H2IDacsyGw3gCxKHAB21nbxjI/kgfDMbHEYsdX94VlLNokJxHysDsIsRhmhZrOpKEqKlQlerJUxqrddj2wC7liDiPjI45CcGnR2wdrSA2MCqPgqZU/L+eKudiMRUM3UKvUUPTVEkebRwEAU+kpdNVuqMJ1fGocT+98GgDCicVWBzRNI8tmQYAIzWoEgMmZSRiGgcVZ897gVizaVqgAIhWLBEEglU2tXLHodoapAFevuTp0soCtWFRU8xgWMqeGWHyi/AR06HjJ2peAoaJdKIYYYojnNwYmFt/3vvfh4osvRrVahSD0LoBveMMbcMcddww8gM9+9rP49V//dbzzne/EOeecgy984QtIpVL40pe+1Pczmqbhpptuwsc//nFs2rS88N/TBbP1eLvNQbGUUPVo04YdWfMQgQxFQlJ1REU1Lra8DbQczzjqKXMd0WzAnpMNZDgahjXTXFIN5HgmQCJwdHA9NtHBW2RLFOG1UiwtRj8I+q1QAWCri1gEySRQLIbPHlxYWMBf/uHvQZc6WLthI/KX/QIIggBB9FRkACBk7Jl5VUiiCFYwC0TeFeC9edw7I85NxrJWHh7vG0fbUpuNjiWxQqUguRSLo+OTIRmLVUddGQZFlhNZodoWqyWfYjGVzsRab3YVzbFjfeLRB7Bxy9me9/1E8WpAVDXoIJDJFVCvegt0SqwBAOabouf7i5YVar0rI8sxoefTaIZFS1admbiliSkcPWiqBIohxGKYYpEkCUzkeNS6vfyQiWlTvVOeM4lhO2NRNbznNZc2jzu3mvKM8QwqbRkEa95b2n1+D8MwsONABX/03T14Zr6Jd1yxHp+/6UV41XlTjhWprOrgaAr5vPk9vBDfiHQUi+k0Nm45GxPTa2M/M1sXUWnLuHj9CAqpYVH808KwFnmBQ5ODxKEme1WKgzbzpCag9u6XBkF6cw1jscyZWqNnev9WOlDgvVZ6rFAtYnGh1sZTB09YxCKHVlgzjyBMctFPLB6+3/u3EE3gzC5GT3Lau0QA5X2e1y61iEVZUQa2QnWjWq3iXf/3bpTbBtZMlvDW8xiQBAGAdFRkAJASePAc61Us8hwIgsBLLt8eum7DMJx1EAQRtMekOUdtNjaSB01T3oxFWogkFgWei8hYDEcnYa7R4lIdqqqFZixKshJL5NrE4r2P7MH5Z5nOCROj5nEwfwrtUEfyGZRjmnmLVk7WxDLsO9dMlPD0AbMhPzXucwGgGDQ7YiJicd20WcfYdqj2ceK3y81EqARIkrQyL1c+QcH+Hvs3SoJsWsC66TFs27Jhxd8/xKnBsBY5/TGo2tAPDdrqKBapoGLx0Xkzp3h3eTc6SgeE5lUsugknjgqSXQBQnTXvF3bGYhThtZKMRQBYWoiuRfyKRQA4+8LeszbBECaxGHHf7pcl2Wq18Nu/+dtQqgqyI1lMvGECBGUqHN1kKkEQDmllq8tYPjqfkiZodF29FY4PZix2muZ9JJ1JQ0gJkfuZJumARWeAWKw2kC4G4zqIawkUrysmJhYlUUKj1nCyH23YuX5xZJatWNz90G5sPnszCILoTyzKDYwJY+DpVSAWC7lAJqcfrWYLqqIGrFCPNo5CoAVsKW5BR+k4hLMbpakSjj5rEpAjvlqEpVh0211QDAWKoFDgCoFMTBvjM2YtMn/CJPntjEWO956PUcQiYB43K81YdCsWaZ1Gjg239betam3iM5VOIVfI4dyLzl3R9/uxa2EXptPTOGvkrPiFhxhiiOc1BiYW77vvPnz0ox8Fy3qLmw0bNnhniSeALMt49NFHceONN/YGRJK48cYbsWPHjr6f+9M//VOMj4/jXe96V+x3SJKERqPh+e+FDL9CMSrHcLmoxRCLnRirVIYiIKkajAhmsdr2BplnBdqTT+e3QvXPAN9zso7NY2mPyWGWDxa7bAihYljNTI4mYRhGQLF4z/9+D7d95xt9xz4IlspxxGKQiNq67UXO/xMUDWUZVqh79uzBpZdeiofvvQNqY8GjaiRJwrPNDMuBF1Jo1muQJRFsOhtY73jWO0vS/Xk+bc7g89tt2iTdSGkcJElGqgFZijSPbcvaZHR80pOxKHY7kCUR2VyEYlGVQSewQrVtZgOKxXQGsiRGBr5LqoaURcTOnTgWJBYr0b/3ctCVNWi6gbO2bce9P/ye57whNQl5gXEskHXNHLtNDNY7KrI8HWotPJph0ZE0qNZ5OjYxBcMwkCuMgGGDD6+dTjBjEQCm8gJaouqsZ3zKDGRfmDXtUEXbClUH3KJWOmUeZxmut84tE1nUuwpakmYRvUHF4lJbxt/e+Sz++ceHsHksg8/+4gX40MvPwqaxjCdj1VQsUthiKW/POu/CwLr8yFrE4ht/9Xfxu3/0qdjlAWD38TpoksANZ4+Fzhgd4tRgWIu8wOEnEQGTFNRXoFiUmqadqv1xggGU7mDWDpYV646de3HnI88k+8yoX7HYhgpv08twKxaZFEAyEGUV37r9IdN5gQoqFr9/90P4+699H6BYL0HaqQD1Y97v5KJzAuMUi4/PaoF1XuYQi+qyrVCfffZZXH755fjOw0dwqKoA7qqNID1qQ8C0O7UzFkUNsTl6XVFy7okCzwavwRTrkEL5TAqZlODNL2SiicWZiVFPxqJhGLEZi7Ki9s27dMMmLGd8zTw71y9OtVi0VAKHT8w7xJNtPXoqcxYv3XYWvn3bj6Gq/c9PzZooNqgVKgCsmSzBMAwwDB3czyRjKRbj85nWW8Ti0VmLWAzJWASiFYuA+XusBrE4PTGKb33uD/HJm38l8Wc+9Ks/jy//xfuHtcXzGMNa5PTHSolFFeqqZCyGEYtudNWuh1i0rU2ddZJsKIEitsx7LkmQpmKxc+oUi36iyY/GUiNgPbv1gq3O/xN0MmLR/yx/7NgxXHXVVbjlW7dAnpc9+8VPLAJALp8LZCxGEYskSQasUN1qNKCnWEznzPy+TkSWcpbJoqO6ezUMyvNlz76pV+tIFcx7oWd7tpOY+ZUZKLKSiAi2CcuxyTHP6zaxGHU8AD1ice7YHDZak5xshaD/99YMDTPZmcRKyihsvWArfvyjHzt2tWHQrVrEb4V6uH4YU+kpTKYm0VbaoefF2NSYs7/9GYsCLTiKRQCYSE2gITdC1zMxbcbL2MSio1j0E4sxFu+pTMohp5cLd8bius3r+n+XRSzadr5vfOcb8ZG//QioPmKG5Y5lb3Uvziudh5JQiv/AEEMM8bzGwFd1XdehacHi6Pjx48hm+8/gDUO5XIamaZiY8OZ5TUxMYG5uLvQz999/P/75n/8ZX/ziFxN9xyc/+Unk83nnv7Vr4xUoz2dIEQ/yAFD2WYwuB5VOdPPIrSx0gxDNhxOWthWL/Zt59a4KReu9nxcYtF25NCzlPTR/5+uP48bP3uP8faTSwbrRlI9YDDagQrhGBxxDQlFkaKp3e776hb/Gj773zf4fHABLi/OR79erQcXiWR7FIg01hjDzE4s/+MEPcOWVVyKfz+MP//EWZCY3eSxCZVV3VGSA2XPNFYo9xaJF+NiZicUU47GrBACx41Ispm2FY9AKlZ3agqbBgk+lI5WhNvFFWgrU0oRXsWhnC9oZi2EXLtMKNQGxaK3XzlhcaIr4f3c/C0YwZ/3JYv8CWlJ1pFx2rJu2nON5v15ZXcUiQxHoKhpUXceb3/VeHNz3FB6850eeZdYWBVTbMtyPvQXLCrUhKsgJTKiqdTzDoy2rUK3zcGzSJARHxnpqRWLyLIik+Zt02y2QIXYZa4oC6qIKybKyHZs07ersnEVZEkHRpsWoW7HI8OZxk+F65+2mMfM3OFnvmta0LitUwzBw3/5F/PH39uBQuY13vXgj/vatF+Ll502GnvuabkBgyJ6aOkFfLs2b49yy7SKc96Jk1mM7j9WwaSyNNSGzRoc4dRjWIi9w6GqQONSVlSkWNRnouEggkgYUcTCC0rIxlWQFJ8u1ZJ/Jznj/VjrQfMQi3LZPjM9+U24BFONV0gH4yy9+E//8rf81bVQV13sLe4NjiGk4zsaoBB44KsFoLSDlGtaF5/RyV0wr1OTZgQBwzz334LLLLjPX//EbcMmGLDy2EiTlkD02RgtZh2A1CCqWUHGTse68Rgc0h7rViMllUsimBe9+ZgQgwkJ9ZnwUc+WqQ6I1212oqhapWJRkxcxujIFDLI4HFYtAfK5f0ZUJdf4Ws5k3NpIHQRCYP0VWqADw4V/7BRw8Nodv/ODe2GWXY4W6xrJjmywVg78/SaPZEWPJQMDcFzzHOorFbl8r1OhmXi6TQiOiATwIfv7lV4EeoDF30Xln9lXrPl8wZpRhfCyH0e6h53oozwmGtcjpj1VRLOorVCyq4YpFzzKaCFI372cGjACpxFJsqOWjDZuI7HailXQrQZwVqqqogRy5dWf0CBCSIaEoPWIxjLBlSMbz+kMPPYRLL70UtVoN3/3Rd5HemvZsB0mQjorMRq6YQ71a9xKLWv/+GKER0Kw6gaIp0AwdWN7erlQmhVQ6FalYzDJZdJXe+6WJEsSO6KxD13W06i3wuf73QlmWExF4dnaj3wrVUSzG3P+yLmv4TWebE+2ElAAhLYRmam7IbYgdUxK8+TffjHqljv/5z/+JXdZNLBqGgaPNo1ibXYvp7DTaSjt0UrlNtKazafCCdz8LtEkM28TiZHoSTbkZSj6zPIviWLGnWHRlLLqJyFjFYnYVFItqr/4lI2pfhmTAkAwk3RzrxrM24tJVznp+uvI0VF3FtWuuXRUF6xBDDPHcYmBi8WUvexn+5m/+xvmbIAi0Wi187GMfw6te9arVHFsAzWYTb3/72/HFL34RpVKymQ1/8Ad/gHq97vx37Nix+A/9jKPmy1j084P758NzzwjRtCOgSQKSEmGFqmtoSgpkl/VllmM8RCPhYwFectY40j5F3KaSt5E/mg4W3Fyf53dDkUCTpIcgA4BqeRGH9j3dZ+DhOHLAtA+rnDwSeC9OsdhpNSFLvllyBVcjhqSgyHJk5iRB9LLrmpUFvO51r8O1116L+++/H0JhAixNWrZjFgyv4rAlqcjmi2jWq5AkEWzKSxSOpFkIjHdHuolJNmXOKLctKN3bNvWOz+ITP3wWQiodmT9ok6MEYzZ8SuNT6LSa6LbNAsomFsdHCujs24GNCBK2iqyAouIvadXyAlLpDISUefzsnW3isaM1NA2zqLGzAcMgKrpjHQsAG8/0KharlcXY7x8EaY52FIvnX3wFzr3wUvzHP37OM2NxYymNpY4MzTrhsrkCWNbcj01JRV4It0Idz3FoSyZpCQClSVPBOTLWa2gwV/wyjhBmNkCn3QJJBR8o140IqHcUKNb5zPECCqMlLMyaM7VFsQuOF6BohifzlOTM/Z9xkdabrRD6xabksaZV2Sw++6N9+MqOI9g6mcNfv/kC3PyyLdhYSkc2nnmGClxLopDmaIhKb5/EoSWpOLDYwvlrChjNRD/wD7G6GNYizzG6q6CI8s/s1WQvmbicZl6jl81rELSpYByEoOxGE3Ch8D+cK92gFWpAseh6X25DJ7yKwFa7iwd2WQQixZqZlDYW9wKZSTQU89qpUGmAYnDwmLntTx4O1h3xikUVBAycN94bF8/1rmmDWqFWmhJe+cpX4oILLsCOHTtw5rhgkW1uxSKBto9MdSsWDTLeWrrjUhn4lWgAAIpzSKFcJoVMivcqAWk+VrGo6zrmK+b+s7MFYxWLCfKe7d/EzkW0kVyx2Gvm2YpFmqZQKuZOqWLxwnM241XXXoJP/uN/RjbLKYqMJGD7Ya3VzAvkKwIARSe2QiUIAuumxnD0pFmX2SS2+7gGgLQQ3dDKpVdHsXi6YhTmNXPEWMa18zTAsBb56SJMEXSqsRrE4oozFjUp8JobhmF4FIsAAopFJuaeamcsuolFd75ehsl4yMoxwatws1FZNMnDk/tPBt6LUywCQM03McZDgNCAIkUTiyzVy1hUugpe/vKXY8OGDXjwwQdx5tmmi42bcPPnIwJAtpBFs9aELMogKdIkCiMUi7rcO0ZsEsq/vMcKNUaxmGEyHsWiTfrZ6sJWowVd1yOJRUVRQCZo9dr2tP4cQZtYjCKaASCVTTnP4pu29hw8RsZGQq1v1+fWx44pCWY2zOC6116Hr3/h67E5kG5icUlcQkftYEthCyZSE5B12bOvbYxbrgd+G1Sgp1ikrP7YdGYaDakRsL+1MTE9gQVrkpNjherL4eRjJkyttmIxDgItRJLpK8XOxZ0oCSVcMH7BKfuOIYYY4qeHgacd/dVf/RVe8YpX4JxzzoEoinjb296G/fv3o1Qq4Wtf+9pA6yqVSqAoCvPzXpJgfn4ek5OTgeUPHDiAw4cP47Wvfa3zmv1QS9M0nnnmGWzevNnzGY7jwIXNYh6iL6o+xaLoU0nuORm0qQDgMJAsRULWdOh98oooTURLTENWXcQiH30onj2Vw/lr8viNfzOzBNYUBUzmeo2FFEMGiC1zLOGkgqGKIAkiYIP6+IP3hy4fhXq1DGAtWrVg8RSXsQgAtZCcRQcWsZimCPQRigIAKEKHbADZ0XH84Ac/wPXXXw+KotCRj4OjSbh5SYLs2VMCprIrVyiiUa+CYTmwvEn42IrFUoYL2Jx6MhaFNGQAKR/52Gm1AOvU4/iUqVjs02NiHWLRLKpGx01yq7wwi7Ubz0CjbjbJcoURLP7Xn2PLp/8+sA5FkRyCNQqapoGiew9XVZtIZ83tlkQRCHn2IqFDVDTwFrGYL46gWPI+VNWXVpdYzHA0FpsSVN0AQRB462/8Lj76W7+E3Q//xFlm83gGtz01j7RFLBasMUmKBlnVMZoJsYcDMJnj0ZQUh9Afs6xhRy0bVU03AD4HQ1mEAVOxmAmxQl1TTKElqWhLKoop86F3YmqNY4UqdbvghTQ03fBYslJcCpC8534+xaCYMq1dU5ks2u0mpOImNLa8Cp1aF795zSbcdNl6rB0RElmDpUOuCdHLU9ANQFGTWSfuOVGHAeDGreNgEpDaQ6wehrXIaQB/Q0hTvOpCdRkPtK2eqkMnGUAVLQIz4b6f3Q0UNwz8tRWZwShrjVfuQIN34pPhno3LprzKPbkN2fBeP+59ZE/PapJiPRavWHzaHGPNbDCpdBoMxWChUsMmAIv1YOMhLmPxyUUdBghsmyDx1KIOpLyNFI5lIMVk/gHmeUAYBkazHG699VZcffXVYBjG/G0J0rvdRD/FonkeGglUf17FYkjTlebQaNVA0xQEnkMmJaDV6cK5ydN8pLpw2mq0nZivYGaihErVRSwG55IBSK5Y1HQNFEUGLMaTKhazaQEURYKhaZyxvmftPjFawHxSte0y8Ye/+SZc9bYP4b/verDvMuMjhcgZ8f1gKxanxoLNPJAMmu0OpnyKrn5YPz3uyVgUeC4wpqRWqHRI/TPEEMNa5KeL0P7DKcagpGDg88vIWPSTgHGKRVVXoRu6o1gETMLMjTjFI0mQMHTDo957emdvsjUBwrPOfhM3mzVzAnq3ESSk4jIWAYSq3NJZs6YiKNMK1d4/YfuVpViomgpDN8AIDL773e/ikksugSAIOFg/aK6H8BKwASvUYg5Hnz0KSZLAWrVFFLGoSb1jhLVyfP0kuMcKNSZjMctkURbLYDkWsiQ7VpzluTI2bNmAhlWLcBkO6OMEqshK4BgIg33NoHx9nFTaZYXafy4VSJJEJpdBq9HCBlcecLFUDPyWaSaNAleIHVNSvO2334Zfe/mv4Y7v9s+z5QXeowY82jRzEy+YuMAh6+tSHWuyazyfG5sy+yl+whWqqdzttruOYnE6PY2G3ICoishzwdieiZkJzB/3WqEyvFdZm8QKtd1oIz/SPxYoDu6MxTik6BRk3YyuWm07dlVX8WT5SVw6denQBnWIIU4TDPzEt3btWuzatQsf+chH8P73vx8XXngh/vIv/xKPP/44xsfH41fgAsuyuOiiizzh5rqu44477sAVV1wRWH7r1q144oknsHPnTue/173udbj++uuxc+fOoZ1HBOz7QZJ6vNGNbh7tm2/2tUMFAIYiIas69D6SRVIV0ZLUgYhFAB7V3aZS2ktICHRoYz/NmJ8h/DMcFRkkgYA95+MPxFs7DYKlcrQVKgDUQnIWbRgkBVWRPVamgc/XajjxjY+h8dAtAIAbb7zRaVS1JA0sTXoUjwxFeohBTTeQzRfQrNcgSSJoyxLU3p9jWS5gt+rJaBRMlZmf2G23erkdfDqNbqd/k8wmnISNF2H9/3crcqPmA7Sds9i0SNtsIWQGuwVFlkEvg9xxiHTWLOj8ClJnjIRJLDKcAIqmsXHLOYFCK+q3dIO2CG9Fi37QzHA0JFV3LJAvvfoGbN56Hv7jHz/nLLN5LANJ1SETZqOg6Nigmse8Px/TxniOQ0fSnPzS0oRpYWorFpuiAoIkncfGbqcNMqSxNlM091ul1XsQHZ9e4ygWJbELziJjPYpF1mzm+W12R9IcRKWXsdiZuABkt4bPvWU73nfjmaYFcsICN53guuKGfQx3Yyynbew6VsNkjsPZ0xFPXEOcEgxrkdMAoVaorrpBGWBmrk3kNHoz5A2SNpV+g1ihnng0+bIuHGhbtpQEAWgSVJ9iER5isUc6EgQApQNR8y5/+08ed32W8yoW68eBfK8BolBpIELJAACzi9EKNlEF2nQBPG1dW1lzFtC6abOxwrEMZDl6Rni7I+IXf++T+KM7zbG+5CUvMUlFwCR3yRDFoj9jsdBTLBJ0vAq8HadYZATUm23k0uZ9I5sW0Gq7vpPmvOpRH2asZt5Jy76tYjVMV8MKtR+SKhYJgkAhm8G5Z6zzkJMTpaKjsDxVePGLzsU1F5+HP//CN/o2+v1KzKRYMxFFLNJodaVEikXAPH6PzvYUi34bVADIxKxrtTIWhzg9MaxFTn8YfSZKJ8VyFIt+SJoUqTi0LQtJzUUshlihRoEkSMii7LmmP3b/Y55lkmT2RSHOChUIKhYBk6QyB2Aq8WjCUiyG1HeURuHHn/kx5v7T7CFcc801EATzOm8rsOzPA+Y2BYjFQi9jkbPuG36i0L2fdKn3PG8vH8hYbLZBUiQ4nkMqk4rMLsyyWbTVNljB/M1K1n3Rti21iUU2xK3LhiqrK8oytMncKALUGW8+i+n10x5yrDgWJBaLXBECnez+nQSbz96MK2+8Ev/x//4DRp++Y9FnyX6kcQQZJoP12fUYFcwarykH3dhsK1S/YpFQCJAE6SEWJ9OTMGCg3A3vA43PjPcUi6IEiqZgkN7x2uTnLftvwc6FnYF1rIYVqqRGX0fcSDEpKLqyYsV2GPZX90PURLx4+sVIM8MomSGGOB0wUNdVURRs3boVt956K2666SbcdNNNKx7AzTffjF/+5V/GxRdfjEsvvRR/8zd/g3a7jXe+850AgHe84x2YmZnBJz/5SfA8j/POO8/z+UKhAACB139W0I+882M0YxY5ddFLGob1A1qS6tgqhmG2LuLYUv+HbIa2iMU+q6BUEW1JhaT0isGwjLQoTOUFR1EHABmeDuQyAnAy90jVOyveUCWQpFexaBgGHv1JPLFoJMwXIEkKS/PxisV6hGLRIMwcyH7ZgeW5k7jyyt9C98QxjF78xsD7LUkFS5O+mXleK1NR0ZArFHHy6GGMjk2A4dNQ0cvSnMhxASLHQyxaCke/qrHdagLWJC9OSGaFmrvs5wEAC9bUODsPsVGrgqJppNP9m3mqoiTKWPRjqW0V/pYNqySFF9AsqaMja9ANIF8YCdigAkAtxvrWxvlrCgCAA4ttnDdT6LucTbo1LZLQVi3+2c2/gelNr0I2xWPDqNmElBhz34xYisO6NUFgso9NyliWgwHzmjANAeNTXmKxZn3e/um77XZAWQEAMwWLWGz3HqDGp2bwwDNPATCtUO3czjBiMeMjFjMcBVnVIaSzlhWqAUpu4uINI6Gq5ChkuQEVi5Z3sqjENwBUXceekw1cuXkUpcwLd/b3CxHDWuQ0QZhi0f2aHPcA7SoyGMFUJ7oVi4RFLA7S0JvbnWwGlg2rUfdgrYhLi1UY1nw91VdeG32IRY4CoKsQde+96/YdO13fwQGqb0p6oWclpdICEGJTbYMkiUTWmGVjBBl4l7MVCSxjKxbDm1iLS3Vc80sfxjOHjuOdrw9pPPZTLPpyjUYLObSPWMRiTBMUgMdKNTxjUUCj1XHIukxKQNNtP0ZzkSRgqZgDw9BOHmJyK9TBalo3spZKIAmZVSrmHBtUG5OlIo7Nrq57Qhg+8u634OW/9lEcnV3EhWdvCrw/uYx8RQCYHh8BQRDhxCJFo9nuJiYW10+P47/vegiASSwKfPCYSqJYPD5Xxki+f/15WuHAnUC7DJz/pud6JM97DGuRnw20lZU184Fl2KkSpirKJrNETYwmFq0+h9sKNUAsxkxAoggqkDX46P2PAi6nwhVlLBLxVqgESZhk1LTvdYIwCV4K0DXdIcz8hG2n0cE9n74Hlf0VTL19Cn7YGZME6e6LhCgWC2bGoizKDlHoVywuyb1t0bq9cTjL+2wkO80O0hkzwoNP8aEEqo0sk0VH6YBLc2jVWmA5FrliziEW61UrfihiAq2iKCsiFvkUb1rjJiAWcyM5h4izMTI2gj2P7PG+xo+sep7eTe+9Ce/5ufegWW9iet104H0/MXi4fhjTmWlk2d49Pewcz+Qz4FN8ULGomOdKp91xSLHJtDkhfkkMP74nZiYwf2IehmEqgjmeCxDPNin70OxDeGbpGZw7ei4YqnfOr4YVqqiKYEk2Un3rfB+TgqKZxCLlnyy5Quxa3IUcm8Nlk5et6nqHGGKI5w4DVQcMw0AUk0uok+DNb34zFhcX8cd//MeYm5vD9u3b8cMf/tAJLj969OiyrHR+VtCRkzXMpvPmTXyxaRaMdo7i03ONwLJtSY1VUt2/v78yi6EI0zqxT3Oe1EToBrDkynJMolh0w5+nmOVoMHRyUslQglaoJ44ewuLcCWRy0RYDWsosMOL2EcNxHivUbjs8mzJSsUhQUGU5NCNPPP4k/vrv/wJT42PY9u7PocpNwEDNs0xbVsFQBKgIYlBUdU/GImVZVFQtomgqF2zguLMpKd5sgvEBK9Te9vJCOqAOdcMmhW2yiWE5ZHJ5lOfNzKhGvYZsvoCouDxFlhwl4CCwzwXCKnQVKdx/niN0tKz8vd//1P/D2o2bA8vUEyoWSxkOWyezOLDYgq4bIPsQojbp1hJ7sySvuvHVWLvxDEiqAoDHmmIKJAEoVoFcGDUL+4Y1iWAi34dYzJiv163tz+aLePO73ovLrrnRfN1WLhOEmbHYCc9YnMzzIADUur0xTkyvxcLsCei6DqlrEosyAI7pbaeZOaYHCOkMT2OpJUNIZ1BNoPiNQmbA64pN5CYhFp9daKGraHjxGaWA6nKIU4thLXKaQJEAtypNU7y5impMM6N6GBh3TfBgM0CrR6gYJGPmNg6iWFw6CMj9J8EEkDGPD926OZGWasBPLIJyZyz2iMUsZ36uq/SOrbnFJTyx7zAKOUsFSXOA5KrVUiNAfsb5UyGjSRaWpmKtUHmOwXE5iw19egcca2VAEnxo9uVvfuzvIPAc7v/qp7F910dxn38BXTWJxYBi0Xu/HclnUBYlaAYJhh1MsRhGGoFNod5qI2/NvM+mBRyfK8MhpWnOS3b6QBIEpsdGHGJxqd4CxzLh6kgLkqwA5PIbZzbRFadYBIB/+rP3OapKGxOjBTyyZ/+yvz8pXvriC3HRuWfg0SefDX1/YnR5xCLLMvjYe96GN9wYVGiBTJ6xCADrpsaxUKmhK0rodPsoFmPsx3KZlJPTedqjfgx4+J/NyRjpErD5Jc/1iJ7XGNYiPxvol5s2CJajWGRIxiEWJVXykAx+2GPUyd792U8sRn0eMMk7N7HYaXXw1ONP4Wz06qyVKBZJikRloRJpZ5sbyZmEW5AfsgZg/WttppuwFU+I+M+/+U/Iioxr/vwaLGQXAF8511exGJKx2Kq3IHbFvsSiG6rrOb2fwrHVbCGdM2uRVCaFbqcLHuG1QpbJwoABrsgBpgEQSpMlJ2PRtpul+P6/hyIrK/q9CIKAkBZiMxYB4Hf/9HcdhaONYqmIqs8toySUVp1YPOdF5+DCKy/E4z95PJRYdCsWdUPH8dZxXD1zNXJsDiRBggQZSiwSBIF3vO8d2H7Fdu/rCgGKoNBt9RSLYymz91KX6qFjnJiZgCzJqJar5jElcIHriq1YlHQJJ9sncax5DJsKvUlb6czKFYuiZloqt9X49aTpNKpSddUVi7qhY3d5N84ZOQel1NAGdYghThcMXJm+5z3vwac+9Smo6uqFZ7/3ve/FkSNHIEkSHnzwQVx2WW/2wt13341/+Zd/6fvZf/mXf8F3vvOdVRvLqcDXHjqKDb///UTN6lMFW+lj2xWKinmTOFkLPhB1ZC2SNMtyNB44tAT0sQaxLTQ7fexSSdX8zoWG5PkMSyc/HP1ETJqmBso4M1TTClV0kV2P77gXFE3jvAsvTbaOmPcZlsfSYo8Y0bXg/hDS2WhiEaSpxLO2zW1p2njwFkyu3YAHHngAuSlTveAv1tuSCpYi4X8Glbo+xWK+iGa9BlkUQVnknk0MF1LBBxE3MUlzJrGYClMsWuBSqRjFovlZgu41fUbHJlxWqFVk89FNKlVVwCzjYdtW5unWA5fUp0nAEKYKtyNruPDyq1CaCM6ErFaSqwSuO2sMhyudgIrYDVtB13ZZ0FEUhTe/673O3yxNYrogQGFNBYWtWGx0FRAEUMqEN2cncpaK2VEmEvi1mz+KmfUbzdddWauKLEFT1VDFIkdTGEmzaHS9ikVFllBfqkCWRJdi0fX7UCxYigyct1mOgaTp4FNpDzm9HOQGVELbmYz29TEKu4/XkeYoXHnGaOyyQ6w+hrXIaQA/gaf7MhZjFYs+cBmgu+QoDnWSNrMJfcSi7TogUCHnef0E0InPAOoH0moU+K1QDde9DXxv8lLGukS1XLeBOx/YBQC47tJt5gs0ZxKkdtVR3GhuqwUlhsTiGAqLS/VeZmMIxos57G/0J/I4loGqan0dG0rFPB78xl/jgq1B5RqAHrHoUSyS6Pjut6OFHO4/2MWOxTSEEBLID48Vqm95RScAirEUi2bDJpPiTcJOsWqgPqpImu79ftPjox7F4kg+G2nHLSs2ibo8kCSJTEpIRGZdddG52LjGm702OVZMpFBNjPrxoGIWZs3wkXe/pe/HJseWRywCwMfeexO2nbUx+AZpKxZTidazftqsh47NLqIrSaGEcJxiMZsWfjasUHUdePAfgFQRmNgG7Po60D21lrqnA4a1yOmPJOoeAPjMI5/Btq9sQ0MOTtoOs+yMg1uhGGuFauUwK6neWAMZiwkUi26CbdeDu6D56oaVEouKpKBV798PyI/kI5V8dudSD+lTLd21BIZj8Iuf/0UUthRCP26Tfe7tIAkyoNTMF/PQdR1Li0tgeRa6ofcnWAxAcT3L8wIP3dAddaSNTquDlOWeIKQEdCLuKxnGrPH40d79qTTRIxYb1Yb5PWT/59WVWqECFgGaYJLT2dvPxrrN6zyvjYyNoFapQdM0x054PDWe2IpzEPzS7/xS3/dGXO4HC50FSJqErSNbwVAMKJJCnsv3Jdre+ltvxdnbfQ5VinnMdNod0IxZE3MUhxF+BHW5P7EIAAsnFyCJEnieD1xXhLRgHjfWMfr4wuOe91OZVOQxkwRxWa2e72NSUDV1xTbOfhxpHEFTbuKyqcuQY4dRMkMMcbpgYJnFww8/jDvuuAO33XYbtm3bhnTaOzvllltuWbXBnS741x1HAAAPH17C1WeOxSx9alFpywGbU79iyiQW+9Nm0wUBe+caWD8S/mBvq8/6qSkpi1hcbHkbShmWwpK6vFkxAkd6MhhjoUqgfFaoj+24D2effxH4VBqiGFVEJbNJYzge3U4b3Xb/5mi+OIpapT+xqBOExwpV0zTMHjePp9JrPoDfuryI0dHRUBtYAOhIGhgquG/Ebgd2WSerOrL5AjrtFtrtJpgZswFnk5lhDTT3fqOsbEKB8Y6h41JocnwK1dljfbfTJpUJlyJudGIK5XnbCnUJuRhi0cxYNMe6e8dd+L2/fw8o0rSBJex/CRLl+V4Gl6LpznGq6AAvCJEZi4BJ1vZDfakcORPTjZeeM4Ev3HMQe2cbuGJz+IwtWwnXlb3nxQ2v+Xl8/ZmvgbCI1I2lNB49ZhZndsZivasgzdLg6fDL/GiGA0USjs1qYFtcWasdixQOy1gEgKkCj4aoQtV10CSJiWkz/2v+5DGIYheMYDbS3ceITjJg6KB9bZanIas6RlMZtFstLD+iPGizGgebHI+6/tnYeayGrZNZjGdXd+blEMkwrEVOA8htU31nQ1O9tqXqgEoQLg+IdcAwyQODYExCxP9QbJFjE3xIs1BXgLknBvteFwjdJhZ9VqhUuBWqrVh0OUnj9h07sW3LBkyMFkxLS9pnhZpbAzAZqIZ5PVWoOMUiDcMwsFCp9RUBjBVz2LMIoM9tlrWaJyBpQDMzmA4dm3Xe/7uPvhtT4yMw9D41nK4AZApe2wES7Y5fsZjFjuMaPvpwEUIM4QP4rFB9ikVJp8CQFBqtLnLpnhVqq9PtkdZ9Gq0pnnPIpJmJUZxwZSxG5SsC3ozFex5/Bh/4/IdBUjQIwmxGEQQRa0+bTfssWwfAxGgR9WYborRylQ0A4EcfA864Adj+tsBbr7/hcpxzxjqwTLBRODFaWJ3vd0EDCVlRk1uhzpjE4pGTC8tXLKZ/RjIWn70NqDwLXPcHwLlvAP7hGlO9ePUHIlW9P+sY1iIvbCTJT7RJuzj8+OSPAQC7F3fjqpmrPO91tXhyxg8/sciREUp5a4yEy1Z9UMUiSZCQXPfkx+5/zCFEnHVGZBLHwVbaRtmhOorFPrBz6dyE58kjJwEGmHzLJK5RroEwLaBaDb+/2mSO29KVIIiAFWrWus+X58rgeC6SXCbgVXqyPBtQKwJmxmI6Y8XHxCgBbZtOptj7zUqTJRx46gAAoFFrIFfMBew03VDknhXqwacO4v0fez9oigYI87cw+yKEY6saBltZuRwUx4rQdd3JgwSAidRExCeWjwuvvBBnX3i2Q/R5xuFSLB5tHAUAbB/f3nufL6KrdKEbejIiVjHPg06r4ygWAdMOtSk3oela4DyZWGNu9/zxedMKVeACVrlCSvAoavdV90HWZIcItIlFvV+dnQCiJoKj4iftAUCaSUPW5VVXLO5e3A2BFnDVmqsiJ+kNMcQQLywMTCwWCgX8/M///KkYy2mPOOvMnwaqbQWSb/ZZR9E8DfiOrEKNGOtMUcCde5sot8MLbdu2s92HWCS1oGIRMEmUpU6yWYF++EmtONhWqF2LINM1DTsfuh9vfPuv4+jBcFsnG1SnAjWf6kvm2WBY88a9FJG7lxsZRTVWsWgSi7oi4T8+9UEce+oR/NrHvwCSS4G2mjmstc/9uZYdRUOWoz1KR8DMvXOIRU3HRMFs7lYW5jF9Hg+aJBAVV9jtdsByPGRJBMnxIAiA9VmhtptuxaJphdpvlQxlJjm5h18an8SxQ+Zv0ahXkSsUnWLq0P6nAbzBsw5zP1mZC6qKs8/eBpIgzILIMKDrOgzDwNTaddh01rkAgKrLjldWdaTSWUiSGCrl7hGL/WduKbKEdjM4UzUM29cWkeFo7J1r9icWLQVdV/E+oNAMg01bt4GzjvszxjJ4wHoIKVpWqPWuggxH9VUCUySBUoZFow+xWHPtG5sc7/dAOZ0XsH+hBUU1QLOmYhEAFmZPQOp2wYyb7WzOZVesExRYigwcm1megaSYGYvdzgqJRZ4eKC7NJnLlmAkOcw0RC00JP7d9GgVh9WdeDhGPYS1yGiBMseh+gJUHbObzOaB6BDBMFbFhkWAIafAAwDivAooIMD4C68Sjg32vCz3Foq+8disWXc29LGte/5pW6WPAwO07duIXXvZidESrRqJ5S7FoIT0GkCSebuXw4mIZapwVqnVvnl1c6kssjo/kcHCxjeOT4dc+jjXHbJA0FM3Au//6B/j2jv+L//2nT3je7wtNhSk1cF3vSbK3jRZs0u7EYg3nnbkecWh3JcemNcV7f0fJoJAhKNSbbccuNJsW0OqIgG171SebMi3wHmLxyWfNCV2VWsOTr9jxOQ7QNGVlLJr7XFY0XHTOZhgEBd3QYRiwahFg09pJ/Mobbgz9/lxm+WSWnW04v1qqRU3yWAy7QZIk/vvvPxaa934qiEXFyg9LSizOjI+CIAgcnV1ER1yeYjGXSaHZ7iYiIF6waJeBXV8D1l1hEsiFdcD1HwF+9EfA4fuBjVc/1yN83mJYi7wwYTfX/c39MNj5hUkR1ojvKssgFl21ggEDLN1faWTbKhKGNzvQjTjFoj9r8NH7H8WLrnoRjqE3MdhtITooSKtvUrEm6oQhP5pMsahpGgzNwF1/dxc+/z+fxye//kmQNAmWZsFSbF+VVZhiEUAwY7Fo3ufLc2WMT4/HHiey5drDcix4IahGAyxi0bILTaWjlYBZxiIWCy5icaKEh6zM4Hq1jlwx54xr/mh4dAhp537LKjaftxk0YU40MwwDhm7+O7VuCle/4mrwQvBemMqkILaXZ/dsKwXdRPJE+tQQiwRB4ONf+Hiooq/ock840jiCAlfAdLpXDRf5IlpyC6quxqv5ngIolgKhEZAlGRRDQbd8eWcyM3hm6RnIugzBV5dn81nwKR7zJ+chdkXwAh9qhWpPELhg/AI8Ov8ojtSP4MyRMwHAUbv6j9VBIKrJicUMk4GsrS6xaBgGdi7uxFnFs04ZyTzEEEM8Nxi4Ovjyl798KsYxxE8Jta4csPnryKqHWOwqGpSQJoGNmYJ5s9x5tBb6vm1t2JXDm3mkpoAiCSy2vIV6lmcALG9WFE8PNoPOUGUQLivUZ59+Aq1GHRdefk0ssUgktDNhOLNAq5YXAFBoP/Qt4De9eSX5YinSChUAQNJQm0uY/9ofYG7pGD7yf/4fFCEFJ2AAvX3uJ1E6soqRFBOYbCx2O7Dn3EuWYhEAKgtzWMvwFtHXn1kUux3wQgqyJIKieTAUGchx7LSbsMszhs+g22mjn3kVQRDgGcqTy1kan8LjD9wPAGjUqli36UxHTfj4jnuB3/tDzzoUpZdFmckX8d73fBocE31c1Cwim7D2g5DOQJbE0MQDm1jsKNF2R0ntUCmSwBWbR/HkyTokRQsdK0maqrtuiDUnJwiOheyZExkoTBqgaBQtK9R6V0GGZyIthidyPFqiOZGA9hHl1U5yxeLakRQeOVKFrOkQQCGbL4IXUpifPQ5J7CLDmw9SvOs7FJj2x35iMcfTkFQN3CpYoWY4uq8iMwy29aysRZ/ju4/XQJEEbjxnom8+5hCnFsNa5DSA4msA6KrXttT/fhwI0swiNMwmgu4QixHns9LxEoupEjC7a7DvdYG0FYsE7ZkpY7gf5F0z5W3FYl0yF95/+CSOzS7ixisvxPfufMBciOYBTcGxJonJtA4IBXP7okKHXWCt+0SUQm58JIf9x8vYOadhOhu8Z9jEYbkDvOnfOthx4il86ZM3YyQfrd5zoCsm2eazQm37GiT2+k7MV3DJeWfGrrbdFZEWeEiyEqJYJAGCRKPdwdmZtQBMdVqz3emR1nR4gyXtIptmJtxWqF7FYsOnuGQZGqLUUyzm0gL+4QO/CbDJrDttmIrF5dXDE6UCAGA+qjk7KDTRPI9CJhdtWhu0hQdWZoXaD5LlJpCUWGRZBtPjIy7FYrC6S5KxaBiGRx17WsEwgIf/ycyBveoDQN48V3DFe4EnbwF2fhWYOt9j4TxED8Na5IUJgbbyzBKoEZMqFqPQVbuJG/o2/ERgEitUN7FIEzRU9J6B4kgTkiAdddrS4hIOPXMIN733Jg+xuGqKxT4OiLmRHE7sP4EMMqHv29afYkvEkc8dQXtPG7/3id/D6OQoUDOX4Sk+VDEIhCsWAQQyFnOFHrG4ZtOaRIpFkiTBcAxYng3N5ey0OhgZN8k2IS0EvtMNmqSRolOQcr1jrzRZwtLiEjRVQ6PaQK6Qc373haPhk9jt44HlWbz3z96LDBu+X/shlTYVi+Tg6VkYKZnb6s5ZtC1eTwXGpsJd4dxWqIcbhzGdmXYUoQBQ4ktY7CwmIhapAxRGJkegWK5ONE1Dhvlbz2Rm8PDcw1A0xbm+2CAIAhMzE6ZiUTQVi361qZDqEYtXTl2JJxafwOOLjzvEok1Kd5rLd1CQNCmx/WiGyUDSJIc4XQ3MtedQ7pbx+s2vR4ErrNp6hxhiiOceie8Suq7jU5/6FF784hfjkksuwe///u+j213eQ+8Qzx0UzQhkPVbb3hubqOgQXWrDrk95mONp5Hgax6rhv79NcvVTLAIGMhyNSsv7vVl+GbPgrFk0AjsgsahIoAgColVA739qN4RUGlu3XTj4GPqA4cwHiEp5Hkc+9Rpoz9wTWCZXHEVtqYzJt38Wa9//rXAbTZLCg5/7LWjNMn79L/8VL77hlYFF+pFHXTlohWoYhsfKVFY15ApmA0gSuyAYDjRFRjofmcSiWTQRDAeaJAIEkZsUYlJZdDv9LWEBgHepTmmWw+j4BJbK86aNRs1SLBoGRl/5u5hvBI89VZYHytkEeorF0QwLRdORSmf6Ziyy9sNMTP5elELVj5eeM4GTNREn6/0fLvICg66sRVqsbhrLAAQJpjDlUSzmeDqSWJzKC2hKaqj1Z81lhdrtmMRiWMYiAKwtCqh3FefaQhAExqdmsDB7AqLYcexyWes3pmgasgZwIcRiVmAgqTr4VAa6rkNfRi4JYJLF/tzPONgKSilGsbjzWA0bR1NY28cOeohTh2EtchpB8ikWDd2rzPMTi2Iten1sGpDbIK2HYINkTLJSagF/uT5cAenPcRzZAFQPJRp+GEirKRCwQvUoFl3EotXDqIvmNfixp54FTVO45uLzestbGYv/c4g0lxvQOoilKRAEgdkI+7HxkRwWlur4h0cV/NtuBf5gZtsK9cV/P4+nFnXc+ZdvwU2vvT75IOyMRY9ikQqQNbYasCtKiTMWbRLQb3MpaRRAUlbGonmtthWLhv27M17bQhtbN5p23iOFLKbHR9FoddBqdwOKRb+7B8cypiJxhblGuUwKYqcN42M5jFL986jCYCsFVy9nkQBUqa/yt/84TgWxaP4bRwa6sW5qHEdPmopFP/kMAJkYktI+dk5bO9QjPwZmdwIXvh1Yf0Xv+kKSwBu+aF6HHxmSZ34Ma5EXNgYhFpNmLEZBHNTaHUEiMYr06KrmsecmFv0koJ9M84MkSIfs2r9nPwDTYtKNlWQsEiSBVCaFpYX+tUicYtFWjn/7w99GZ38Hb/z0G/G6t7/OswxHcX0zLfsqFjsiRl8xiq1/txW6oTuKRUmUwHHxVqhyVwaf4kGAiFYsuqxQ41Dki0iNmfef4lgRpYmSmftYXjKJxWIulMD0j20lSGfT6ITYsgvbBYhM9DFtKwXdisXnwvrStkLVdA0n2yexPrveQ7CWUiV0lE4gE7MfCIJw9onbenVtdi0aUgOiFr5fJmYmzIzFrgSO5yIVi0W+iCumr8C+6j7nNVux2G4NmD/vgqRJyRWLbMa0Ql2B9aofuxZ3gSVZXL/m+hXnfw4xxBDPLyQ+o//8z/8cf/iHf4hMJoOZmRl87nOfw3ve855TObYXLJbaMvbP91faGIaBWx47/lMckRcVn1Lw2YXgDare7d3sDMBDRhIEgTMn+s9St1VjfkLSjQxHo+GzkMotg1gkLGsRPzkRB8cK1UV2XXDJlY616GqAohgwLIelRZNoCqulcsUR1CoVcNNbQLI8yq1ggUiQFISRSUy+47OYOuOc0O+yrVD96MgaGIrwEIuaqkB3KbL+f/b+O06yvC4Xx5+TT+Wqrs493ZNndmZnd2fzLrvLsoAISDIhKqioKCpeA9crJpSfqFe56vUncFEuF5WkIJJVJMdlYdmd2TRhJ/dMz0znyief7x+fk3NV92yiHl68ZrvqpDrxc97P+3keWTNRLFfd9bF8KPcuCKnXhZDLO9NzDO1Tbpmm6bNCpSzFYhK85DDDsBidmIKuaVhfWSbEYmUEHcVA8doXQImw0tBU1clYzIr1rgqepVEvClAcxWL0S6atWAwS86FlZlQsAsA9e4m68OEL67HTVHIcJFWHnkgskhcVdmQG1RFiq9qSNJRFLtGyd7oqoiWpUCKsj5teYtFRLEZfo1tqeeiG6bOWnZjegsWF85B7PTCClcNpWaFyQg6SqoNnmXDGosBC1gzwOTLo17XBiEWOpfsmmimKQo5jEm2ru4qGE4ttXLulinqhv+7jITaO4VjkGYQgqQcAXrswpc8iLV8AYKLMkPuQYVt2Hf0kISX/6/fC87Qu+f8e2QU0zqPPR4kDO2NRpwJjiRjFYtGyQl3rufec2w9e5Sc7WMGyiR1wmyhgbKSSQixWsLiyjk8f1/C/v6UAvH+MJ1hjo7Eig/t+voA7rt7S30YYGtmQgGIxaIU64lED5oQUSyqQjEWbUAwpFk0asKxQK1Yxr5gXSZOOfe7FKAn3WsRiMZ/DzDixUb1weSU1Y9FWdhoDdPd7USrksLtMilO3i8kuGkGMjVRA0zQuL69vaBt80HrJyt8ITI5uPrEoqf0pFgFg6/R4bMYiyzJufmgMHGJxwMzLpzTkJvDdfwAmrwVu/jlACKhJxnYDz/4fwPy3gHP3Pimb+FTFcCzy9IZNumUhFuPUb/3AJv4iETPeCBKJSYpFxVDA07yPSKIDDUI0RSeSizRF++w5d+zbgZGxEeRaOWc7N6JYBIh6LM0KtbHagNaI3ueG9S7O5Tjs/IOd2Hpj2DKdZ/hYkshRLAYsXSVJwtSrpsCWWFxoX4AgCuAEsr+jSKAg7Ny8pOm9VqhZiMURcQRsmWxntV7F6CR5v1++tJwpYxHwE82DIE5ZWX1FFecK5xLnFUQBhVIBa5vW5IRYi9sk2IrFi52L0AwN++r7fNfBWG4MbbXd13VuW64yHse0meIMDBhY6UWf3xMzE7h8gVihCrkwWZ0r5JzjWeSLeNnOl+Fy9zJOrZ8C4FEsbqDJSdZliGx6fjlAMhZlXd6U+5+NQ0uHsLO6EzPlmU1b5hBDDPHUQOY333/6p3/CO9/5Tnz2s5/Fxz/+cXzqU5/CBz7wgU3tYnim4Ka3fg7f99df9WWUefGer5/Gb3748JNGLp4PKA1PLoZJ0NWO/2F3YtHtmOYYCldPkU6uKJLFLuYnETBlkUWz539QVZ7ArDJTk0HTlE+5d/3tz97clVBAfWw8OWMxYIVqk0emaaLz2JdhaipoXsTNv/S/wJaic/gAovwKwjRNolgMfCcHOmolVUOh5Foc2URhomKxSxSLFCcADA+OoXxWqKoiQ9NUUFYllOYL0LXkgYkYsAKtj08CAJYuXUC7uY5ytYZuAlmtm2bIjjUNqx0FJYFFkWcdYjEOtgIuSbHI8QJWl7MTi2MlAXsmiji51InMKAKAat4iFiNUhc5yigIYQ0Vhahc4nryINiUVlTznEP1R2FLNYb2nQg2Qd4Zp+ixEe11yncRZoc7UyAuSlxgfn9qCxYsXiF2urVi0iEVeECBrBgSWDlmJFq0GA9qyT9VTbEnjEKWGzII8zyRmLD5yoQnDBJ67bzxRDTrElcFwLPIMQhSx6FUVan2+PFsdyFWWFApNu3AgJzS1rARIm/pOQFewpz7YtU3rCkDR0KmgYtHzIh+0QqU5tD332+ffHnBOYATA0NBnn4QPU2MjyVaotbJfkRV4lurW9fX5X9qG7bUBNkTXiD2ot8nJpCDJ/nGywHOOAjGzYjEXPb2s0wBN+xSLNmFL2cXktDwdwMlnXFhcCSkWg7BJKmODXfnlYh7dXnLBMA4Mw2C0Vsal5XgiuW+oUl+KRZZlUKtsvuVZT+ufWJybHsO5i4voyUqIWCzmc6kKime0YvGB9xHC+M7fBGrbo6e56zeBiQPAg+8HpI3Z0z+TMByLPDOQhVhMI5WyIJFYjHnUBYlEkYknBGRNDhGRbETiURI5GcxYvPHOGwEAOx/diaU3L2G6ML0hxSIAjIyP+BRsQVRGKjBNE8f/x3Ece+MxjOfHne+a321CsVy2fuAPfwDCdPSOS7JCdRSLdFixaEM1VFAUhUqV1EZ4kc9khZqznJx4wZ3e1Nx392672xexWBfr0Fj3d9jE4srlFTTXmqjUKr5zM8rZaKPEYqFUcOxxg9BpPTV/rzZaSzzegyBOjRq7DZZy8mzzLChQODh20Pf9aG4Uki71pSq29wnLutfYdJHkNq5I0cTi+Mw4Ll8gVqiiGM5Y9BLSOTaHZ295NkRGxKGlQwBcxeJGrVD7IRYN09gUxTYArPZWcaF9AQfHDqImbH7j2RBDDPHkInN14Ny5c3jxi1/s/P385z8fFEVhYWHhimzY0xk2P3B2JfrGv2oNii5YBF+jq2Lbmz6DLx2NDl7ebMyv+bfrdMR2rnsKGjmOwWMLTedvmqJw1RTp2I6yO6UpQj4mEos5Dq2AYpFkLBLIA6qUsmD1C/8X6qnvAICPWLzh9rs2fV0jYxNYXYo/rpVaHarif6nRVBXSye9g+VP/C90T94FiuFB2YhBRxKKkGjABCAEySJb8A0RZNQCaQb5odeEzyWSUvQyhUMaWX3kfFlG2FIvu9x3LBpWlLGJRSLeMzAeIxdEJkttz9uRxmKaJUrWGjofUC768UwwHqs9OtrWugnKOQynHQtENiHnXFi14XACgLHK+HMggqvWxzBmLNp6zdxynlzshBa+NWp5HT9WhJeSeUhSFvNFGbmI7dIPYHau6idGikFg0m6rmoOkmGoF1d2TNp5C0FYtxnarTVu5qw5PLOD69BZcXzkOSeqCs3E6b+OUFEbJKiMWgYtHOe6UEciwMfbBOOZ6h+1awAkQ5q+kmjJiL7vD5dYyXBByYHuYNPRkYjkWeQYgiFr3FN3UQxSJQZSxi0VYNJmU1rpz0/z1CiusTxQGJRUOx1In+e08sscgD4ER0ZPfe+fzbD/oXatmo5tgBJYsApsZquLiUQCyOhMkyXdex2iDP8i9/+yEAgEn17ywBwGOF6kKKaeCwcxajbCuD6EoyCnmyf0JWqAYNWTWgqBoqJcsKNWihmUF9MW0pFs8uLKLZ7oYUi11PIdZWdhrYWPG1VMg5RUIlxSUhCpOjtc1VLKrdzMQiRVGYqFdDapnNQE+xicXsNuRbp8cxf2kZ7W4P+VyQWEwvsJULz1BiceEQcOZrwDU/DOy8J2R/7IBmgB96NyA1gQf+8QndxKcyhmORZwaSSEObRNsMYrGbMA6h8lQkQRMkCpMIAVm3iEXP0CPqnS2Y2+gFDdpHsNnEIkBsVHmGT7VTTUN9vI6Vy/GKxXKdjEUM2YC6oqLAFWCaJi4fuoxzf3sOi18lzdpJhJbACqkZi16C1DRNyL3wO3/JetYLYrQVqr0OyqSgSMQKFYDfCtWzGZ22q1jMZ3iGjeZGfcRiZaQClmOxdGmJKBarfivUtagx3uDDRgCEAFWt8WnQQchgjVQF4cjYSPR2bQBZVYsURSFXyCFnjfvONs+inqtjLO/PYhwRiaKxKTdDywjCuMlAa2sLvbZFLHocD6YKpG7VkBuR807MTKC51kRjpeEoFm2FMSdwoCjKaXQosAWIrIi7ttxF7FA12bHR3agVajD/MQ55lpyjg9g4R+Gh5YfAUAyeO/fcDSufhxhiiKceMr/1aZoGMRB6z3EcVHVzuhi+l3HcUgx+6NvzKVO6ZORGEFQsnl/rhnJiVj3KI4oCHrvof9iOFZM7yXmGTlR2VXIc2rJ/0OfNWLySSqDOw58D3SWDWq8959adewEAX/6Pj+PQfV/flHXVRscdK9QolEfq/m1rNvA7v/jjUBZPo/7iX0fhqjsBhoWuJV9nUfurq5D9G1IsSv6XG5u0snMWTYYjisUEX36p14VYHgEt5NEDF7JbtYlFOzaR5tMHMWIgD686MgqaYXD68SMAgHKliq7inlMri34LO4phQaV0zgWx1lFRzXEoi26un62gW1sMFwfKORaypkOPUxeOjPZNLH7f/gl0FR3HLkV3go8UCLEYt04b1+2YxvjeGyBrOhqWjelYKfk6naqQe/pK239+efMVAaDbaUMQc6BiFICVHIcCz6Ah+a1QW401tBrroK3cTvsc4QQBkqZD4BjfeQO4ikVw5JxJU7rGYVDFYoEnJHOUglQ3TDx8oYGrp8sYTdm3Q1wZDMcizyCoUcSiFP3fWcCRl+AqR17MDbsAlkQsBvMU+SKQr0dPmwGUoThEoP8L8nw7us76CDaGpgBGQNvjcHHzNXsAAO/56H/hu4+e8BCLA28WJkdruJiQaxQkFtudHn7wDW9Fy7JF+7EXEUcHddDud0MLkXgdKfp5bRN3Ip/NCrWQE8EwtC93zwQg6TQabXIOBRWLDjKoLwp5EZVSAY88fhaA364VAE6fd5vHeNsKdYMqgXIhD8ZqjLm42r9KbKJexeWEnKq+oWQnFl/7Q9+Hd/3RGzZv3R50rDFgX4rFqTGoqoazC4uRisU02OdO44kgFtO6CDcLqgR8593AyE7gtl8BctXk6Sf2A3f8GsljPH//E7KJT3UMxyJPbSi6glONU5mmiyOpbHVfmt1kFvT0+PoNxVKRxFWQBExSLCqGAo7mfO/uUSQgx8QrFimK8lmhXnvLtQCAL3/my7hw5gKAjWUsAoRoSstY9EKWZLz1V9+KxYcWMfEjExh9IVHtJcVk8HS8FapmaGAoxtf4oilapNLYzlnkBR6qHj4+yzJxnGLAQOpJEPMiaIYmlpY24WfNpsgKVFl1VGdZFItj+TFojPs7aJpGfbyOi+cuQupKKFVLvvNm4VxEU8MGHymFYgGa1eDbbfqfgSZrpiq0a6O1TbVCBbJbEz/35c/Fb//lbzt/n22exUxxBqWA1X89R8b8TSWdWDTnTPSqPTRbZFqvFarIiqgK1djlTEyTGJ/zZ85DzBHFon2NctbY0T5v8tb7zEt3vhTLvWUcXzvuZiy2BiMWVUOFYRoosNHZ4kHY25B07+oHhxYPYWt5K7ZVtm3K8oYYYoinFjKXKUzTxM/8zM9AENyXMkmS8PrXvx6FgnuD+rd/+7fN3cIhfPip934bH3rdbRtaxsWGv1i32JJDKqzVgI3rIxf83Tdp1kECx6CjxA/EKzkOHdm/Tq9iMUhqpSnoBoVXsZj2mwpC/4PpkdFxPPrgd2K/r9Rce1ND7uKPXveD6DTWULj6HhSveT7ZLoaDfOkUkNsOqbUGIFz0FCI80mzb0GDGXlCxaJNWhSIZQJsUCzbNCrXXxdTWq7AEkiXEMbTPhrRrEYsCS6OrA+DTu8ILvP92xDAMRkbHceq4RSxWR3Cp6w5gF+bPYGxy2vl7EMXiek/BttE8qnkOikUs2oTS6sWwVbGtWNQNM5K0qtbHsLa8CIyFvorF9bNVFAUWRy+3cOuO8LGtF3h0lWTFIgDMTo7idNOEqpuO+nGqnLzfpyrkxSZo22wrD03LbqTXbSNXSB6ITlRENHoaDNMETVEYnyL++bqmASwPjqZg7zKOz5H9naBYNDmy7VHWLlkgcEzf1rgAsUKVNQO6aYYekKeW2ugqOm7fWXe2c4gnFsOxyDMIUYSfV6Wo9kks0gzAF1BlrfuXbfkVpYy00bxAbDq9qG4Fuv6O+n//5sOoUy3c+mIkgtZlYq+pBZ7JVuGyE1VzZgV0PE0ZnNUBrdmFM0u1kN+QYnEEX/72w7HfB4nFu179Wzh57iLJXlxtONmBi+sdVAXg1MIadsQ4J0bC0EIkXjdGiZemWGSUFsw/LOP+9il0ejKKeREff/sf4M4br3am+ZP7eOzZNY5pS31hq85CCrWMz4iZiToeOkZI6KAV6sn5i7h6N8l5shWLekJjVhaUCnnH/nxpvf8i0uRYDafPX8b2LeE86oFgqMkEvQe7t81g97bNzc8pcmRfdBQDAs8510gWbJ0mVnqapg+kWLRJTFXdvJyhWHzlz4HiBHDTa6/seh7+F6JAfN4fAWN7s83znN8Bjn6KqBbH9zkK8e9VDMcimwfTNPEvx/4Fz5l9DiYLk5uyzF/70q/h6xe+js/9yOcSl6kYCnRDBx3xHs3SLKA/AVaoAFRdhcD4709exSIFKqRg9ELWZPA0jx7c9UQSi31Yodrk16V5t5F3o8RifbyO1aVVlBCdVVwZ8ROLb/zxN+LEoycwd/ccyi8pQ4fubtMWYHl+GdjpX4bAxCsWbWLRW2dSYxyDytazPk6xuCSRRmLWZCF3ZYg5Eb//t7+PXft34Yxxxloh+cfOxXOsUDM0tYzmRqEyqk+FOjo5itNHyVikXPMrFhfOLuDATQd8y6CMDWYsFnMwrbGIHhizGUwGxeL4COZPzaOAzXteZFUsTsxMYGKGjIFUXcWl7iXcNHkTipzfpr0uktpLW22HlhGEKZigepRzPE3GBEuzTg1xsjCJptKEbughVd6ENR7TNR1CTnCaAVRDBWvVwGRdBgXKUSffOX0nClwBh5cO45qxayDmRN812g9kjTRd2oRhGgocOWaboVhsKS2capzCy3e+3CFyhxhiiGcWMsvCfvqnfxrj4+OoVCrO/1/96ldjenra99kQm4cohZJhmPjRd31z4GXmeQbLbRmap8NouSX7susYmsKax9LQNE0cjVFTxSHKmtOLco6DElBJehWLaYib1lbKKVK27hovsXglMDI6jtXleCvUcs19uNJCHs956Y/hbz/072ArbqYAxXAYX3sY5/76R4GVM5HLidrfHUuxGCIWAxmLPYu0EkQyyDVpBhyTpFck+43NuQMzYoUaRSySQRXNpau7clz4ZWV0fBKnjz0GACgFMhYvnj/rn5hhSVZMRhimiUZPxUiBRyXnKhZtKFI3RGpV8hzkBPVgpT6GtT4yFgGAZWjcumMEp5Y7kCMKrTWbWNSzqDHJMbDzS8fLyft9rCSAphCyYbUVj3aeTrfTQT5fDM7uw3Qlh5akQrXs7SamtrhfWipY+xzxZiwGCVqHsItS/fQBYrPav/K5IBDFYhSfefh8A3mewZ27+mCOh9hUDMcizyBEFdq8L7C63L+CRyijwpH7l6tYTBgPtBfDhMnoLgDwqakvLK1nWj2tKwDDo23ZatmKOVhFqZlCxH2c8ROLIVgFhg0rFhNybsZqfrLsZ3/oBfjmh/7SyS3kLcLM7gd79Gyf1v0RVqjB5jIbacQi3yHKidH1w07G4kvuuRXVsvuM+toChxV+Bs0O2f8Vq5jXj4WmFzPjdTx0/AwAhKxQT3mKrnbGom5uzHXDVsnZUJT+VFAT9Roub7JK4MnM1xvLkeumLWl9qRUBYOuMS67mAwqzLIpFjmMz5X1uGJoCXHqY5L7221TRD5YfB479J7D3xcBVL85kBwyAjLF/8N1AbxV48H1XbvueJhiORTYP8615/Ml9f4KXf/zl+NTJT23KMs+3SHPoifUTidMpuhJLVHTXydggSq3WL9KK85GKRQ+RKDBCog2pYighNSJDMY6NZa/VCy0zCIqiYvP0nGVu0MKwNlZDqxH/LBELIjjB/R0v/NEX4m8+8jeobCXXkgkToADNavRYvrAcWgbP8LEqVNVQwdCMr5k8ygYVSCcWL0tkHGRnLIp5ETc/+2bURmvuORNDLOaL6WOReq4OUABTdPf56MQoTh4lFv6VWsW3XRfPXQwtY8MZi0U/IdhuuuSbzuqpJN+VUCxmJRa9ON8+D8M0cHX96tA5PJIjVqjdLLnu1lCg2+mC5Viopgqe4R3CfaY4g5bSilQ5j06MOg0MIcWiYI+xZXA05zQAcAyH/fX9WJPXoOhKpvMmDpJO7kFFPlv+tU0sbkZjxSPLj8CEiefOPTexuWGIIYZ4+iJzmeK9733vldyOITywswkXW+GBzs88axs++O1zaPT665w1LS+EkshiraNA9ZAUHUX3rSvPM2h6rBAvN+WQbWkaUonFCGKwtAkKoFajAVSA1mo2csdrhbpRmBF+EyNjE2isxmcJlCrEfrT98OdRvOb5+IFX/yImAyozimGhKTJMpYels8cBPD+0HJ6LIBatoh3L+geVQdLVJq1EK3TcoBhihZrQyS/1uuBEd7DJBwgixwqVYwDoMJn0okyeD7+s1CemcPThBwEA5WoNHY+9xKX5c75pKYbLbNUFAC1Jg2ECkxXRskLVfRmLAHD+zEmMTLiqyGqOwzHNsIj58PZWR0ZxeGUJ/ZW9gO/bN4EvHlnExYaEbaP+bajmOeiGiW4f3fLNngqaAurFZCs5hqYwWhTQlPzLbvRU5DgGXWt/9jpt5ArJA9EttRxOLLah6AYEjkF9fBI0w8DQdctel/JYoYroaAZyPBM6z2wrVB00eCFbwHgUBI52rOT6QUFgoGpGJHl8aH4deydKmEghbIe4chiORZ5BiCqeK54Xe01xlH6ZkauiypHiipMHGGW5CuBSl8GkuBwmFkcIsbh7hO57/cQKlcdaqwuMAJfWrCKMdS+NVB2yPNrd6MIWQOzJKWQnFqNU3lPjI5AVFYh5Ogk8h5zAoyeTAsKvvuZloe8BwO59OXp2ES/NtjmEHO6DWLRJtZyQfp/t9CQUElRnDcsyyrFCzaBQi8LMRB2f+yYZiwQVi15i0d5P+gbtx4Lk2YNHTuLW667KPP9EvYpLm00syk8esWgPL1uS1jc5XC7mUSkV0Gh1QmR11vOhXMyjJ8Vfo5uC1ROAqQNKG9AVgBt8/BMLXQO+/XdAeRq489eAwmj6PF5MXwfc9svAve8AZm8Dpg9u/jY+TTAci2we7PdnkRXxu1//XXzl/FfwltvfgsIToIpNskLttXoQCsLmWKGmKRYzEIs0FV9bsQkJLziaQ7vVBvJAZ408C9MyFr1WqEEoktKXYjGqLlKfSFYrURSFfCHv5NS95CdeQr74iGcajoKuk/HD6kK4YSqo/PRCM7TQflRiGrvsjEVe5BMVi3Y2ZWnSbTpypreGObZ9pU0MiRmePbaSjq24g7/RyVEns7BcK0NdSLZCNVPcjtIQJLKOHDqCm599M4BsisXaaA3rK+vYgi2J0/WDQYj+c81zoCka145eG/qOozmUuBI6Me8KNgzTAKzLp9fpIV/Ik2xT2k8sPnD5Aai6GsoyZFgGY5NjuHzhMniRJ8QiFbZC5RjOd46W+TKWu8vQDA2FUgGrCU2CSbDzG4OKzTjYxKI930ZweOkwZooz2DOyZ8PLGmKIIZ6auHJBdkMMjMPz67HfFQUWb3qhW1ywc/TS8LXHSUcXBQrrXRWK5h9En7jsFgzyPIOWR8F0cindGiAIMUJ95kVZDHerCCnz9INgjmAckhSLWS0Yi+UqAKAZka1XHxuPXY5pGvjQ//kLAIBy6fHY5VMMB1Ulg95Txx+LnCaoSgTccyOXkrGoGSYk1XAUiwbFgGfoZMVitwtG8BCLMVaodlcYxaZ3J0USi2Ok01zM5cHzAjoexeLC/BnftP0Si7b953Qlh4LAQlYN8Dn/S+yjh/w2ttU8j56SkLE4gGIRAJ67jyhUD82HC4G1PBnFtqU+iEVJRUFgIbLpleiJsoi2rPlUzOtdxWf12eu0kU8hFudG8ljvKVCtiirDshgdJ/ZDJs36yGpeyEHRDeQj7MxsS1xZM5AvZhv8RkFkmZDNahYULcWiEbhul1oyLjUl3LC15hyTIYYYYgPQpDBx5yX5dLkvFToAQKw6JIRjhRqjWLzYY4kdYC9w3x0hHp83TNF9kymOFaqFnpyhAMIK6CSQFpJOnuG5FCtUO/tvqREe10yNjcTOZ5om3vrujzmkYhRswszmAh+fj8+ODsE+hp4ucc0w0YmxH7Nz8OIUi17YGYtxaHbIvnCJxX7bfgimx91iqK2otHFynhDZR17TwHvvImpKfaMZi4Fi3jcfPNLX/JNjNbQ6PXRjlBgDQXnyiEW7R6gp6X0rFgHXDnWQjEUAKA+wzr6xeJT821sHtCtEYh75BNBcAG77JWDimsGW8bw/BGrbge++F1A2J3tpiCEA4Plzz8eLt78YXzj3BfzgJ3/QUR1eSSiGEpvHZ/NiqrlxxWJacT5KFeQlFnmGTyYWNTkxY1G1VO9JGYsMxSTaLLYarUTVpI1ihby72SpJL+rj8cSiaZr4zD98Bo3VRuw0AEBztEMsriyEm7ft/RZFbKqGSjIWPSVQLaZZ36dYDJBZuqGjpbnPRLknI5dznxOKofj2VVCxSNN0KrloW0ayZXc5XmK2XCv7tmvhbJhY3KgVapBYfPT+R53/NhgDesoYfWRsBKZpRh6LQTGINefZ1lmM58ZjbThrYg09tRfbZABYNqU0BQoUeu0ecsUcZF32kf6zpVk0lIajDgzCtmYVRaJYdJSJlmJR0iRwNOc7d4pcEYpBGiA2oli0rVCDGZNxsC1TN9pYIWkSjq0ew4HRAxjN9dnMNMQQQzxtMCQWn4L49unkThRvFuGZlWyKu4fPk0FanmfQlFTIFrFokzle8rDAsz4C5+RSu281oRihoPMizfZ0owMQW5VXEciAipWjB6lJxKLUzUZOForkAb184Uzou9roeOgzADAUCUsf+1N8+v1/h1p9DLXnv973/V0veIn7B8tBVcnA8dTRaGJRsFSJ3uGQrQYIkryyFB7stGQVgmURRTITKSQxi1KvC0ZwB9AcQ/miijrtFjheAGVVeM0MLyKFiHNsdGIKAFErAiRfx0bQCpViWJjBrKwE2Ha/syN5FEUWJuCzdwWAxx683/d3Le9mLEahOjIGTVOhJuSLRmG8JOK62SqOXGr5CD6yTvKC1OpDNbzeJcQin6IcBoCpioi2pEHV3N+01lV912i324aYz0PVjchsSQCYqeUgqYbPVnXcskM1KIaoWq1ZGZEMVgsR9wGGppDjSM5hvpBt8BuFKJvVLCgILBTNQPAQHz6/DpoCnn/VuM/2d4ghhhgAFE0UicFmEG9Xv64QBU8/yNWc/zQpBgAVSyxe6jIATGDlpP8Lgdx3yP2jv2udNhSA4WAPr7tZiEWGRyeBAFq3nlX5lP4cmzQ5d3k99N3kaC30GQBImonXfEzCH7zzXzE7GX7h/7u3/Cqu2jHrWHwqVuPIqQt9NNDYnfsea2pVj983NqHoKBYNnVhERoBYocarE5pWMc+2QmVZBqLQf2PIjFXMKxVyYFn/mMqrWNxeIueztkFiMUie3XuoP2Jxol4FAFxeWfd/sXgE+PxbAG2AQnnGjMVNh646zQKNnjaQ6nRuitiXhzIWC9kVi1cci4+RHFJdBqRNVpsCQOMC8OjHgB33AAd+GGAHbJBiOOAH/w7oLAGHPrC52zjE9zxetP1FeMPBN+Bi5yI+dPRDV3x9hmnAMJKdCdRB7pcBpJEhrYjGDa8C0Wu3GIUoK1QvOWHn4yUpFgFA6iYTi1kUiyxD1ttaCf+mkZgmJ1MzsfCPC/iHP/sHTM1Ohb5/zkuf4/w3zdMwLOet1YXVUAN3kt2rTSx63XLUmLGITfxxPBdSLC713DEQbZJsSi9RqOqqo0YDgG7LTywCboZlHOIUizaK5WKqFaq5QfuEELH4gJ9YjFJyelEbs8aem8crxmYh3n/pfrzn4fdENiScbZzFTGkm1ga0JtbQ03qJRGnXMwbqdrrI5XNQdMVnUzxTnIFhGljtRddyx2dIXVDICZANV2VsZywqugKe9jcRlPgSZF3eMLFok50FNpsSPM+SdW3UCvrI6hFopobnbHlOopp4iCGGeHpjSCw+BfGt0/HWmUGcWspGLD66QIi1osDCMIHLTfJwEVgaBYHB6WX3YVkQGHQ8JMaJxTYmKv29yIuewsvjl8MDgJLIJZbr+o1VCkKxVHk2sUBZA3rb+tQmqqQEK9RWc72vdUYRiyNjE+EJAax94e8hnTmE3/3r/4e5HbtDdpDbd+9zt51moSqk6Hju1OORpJVN/C7IvDPA7lnWmUElqBxBprZlzen+00GBY+MVi6ZpQup1QfPugJhnmZAVasGjNjNAg01RLXoJUPvw24o3MUcGN17C+1KQWGQ5YvOUEetdBRQFjJcEFAUrC9KjwqyMTuKxgGKxkuchqXqI/LNRGyXFK1nuv4v7ZQencXq5g4U1/7xVq5rcjbGNi0Kjp6KUlVisimhKqi/zdL2nopxzj1ev00G+UCQ5lFy0EnBLjZwPSx5b5Ylpm1j0KxZttWshQqUKkHuQrBkOaT8IcjzjU9FmRVFgIUdYoR6eX8e2egFbR7MNyIcYYogE0BxRLAbvpYqnqKUp/SsW84FuZJb35zZ6cKlnFWtWT0Z+T+bv7yWYsjIWbcQpFu3nLQCA4dBOKOatdcgyslqhLq6HxzVxisXf/6KMf31MxYf+7A248cDu0Pfff9eNOPLvf+cqFq0GlOX1Ntab0cWdEJyihPs8UnTEKhZ161nkKBYXHwO+9CeEFAug05NTrFC74DnW2X5gMDtUm1gMKtkB4PT5S6HC9EYVi15icbxawDceOJLZRQNwieTLKwGCauEBYOkIsBrvkhGLpKzSKwlPMa/RVQfKydywYvFKE4uGTrIPJw+Qv9v9O18kwjSIBapYAe58I7FC3QhmbwZueR1w6ksY0Td5W4f4nsfO6k4ArsLmSiPNznGjih3apKHoSmLT9IoUobyj+1As6jJYmvXVE6JIwCTSjaGYRCvUVqPVV8airumh51a5VgbDhpex9JklrH1tDa9/6+tx7a1hu8rpWfeexeU56Bo5ZkpPweKC30HBIS8iHsOqroatUHvRx9cep3E8FzoHFtoedaAJyF3ZTywaKjke1kbYVqjezMJcyvMnz+XBGqyPWBybHHP+m6IoH7G3srgSVpz2mSYQ2gbP8zZXyuHIg0d849c0+9A4InkjaCvRY88jq0dwaOkQ/vw7f453P/RuLHbJeSFpEhZ7i9hW3ubYewZRz9XR1brx6mW4GYwUKGKFWswTItBzbc4UZwBEX8+AR7GYCygWrTGqpEuhJgKbWNRN3UdM9wtbNZ3VYpqlWfB0tA1wPzi0eAhjuTFcOxa+rocYYohnDobE4lMMmm7gwXPrmac/s9Lx5SXGwVZn2fllF9fdgcdYUcBCwx1IFngWXa9icbGD8VJ/xTXRQxj856OXcG7VP/BgaAq5GFIBALgMhEgSosgzgGTmAcDWncTjO0mx2G4mW3EEoaoKFNk/oKuNjPoG+bpGBizVZ78Gk6/+C9xy9/ehWo+2BXCIRZZzyERNUzF/OhxEL1gK0fOyiOU2mbYj66ApQAjYpCpyz8lTtNGRNWfbdZOyrFCjC2O6psA0TVCce07wLBWyQvWqzRTNSM3o81qhdlXyIlK3FIu2FWxX9ZBfqyvodjyDS5qD2cfgZ72roiiwyPOsY79JCe42jkxuwdmTx9Fuuh2XlRwHw4Tv+vDaEY+OkeJVlCo0DS+5dgomgO+e8xcCbWLRzl7NgkZPRVnMRizO1vJo9jSomrv8Zk9F1UssdjvIFYqQVD1WCThdJefUWtd9+RqbIgNsHTR4lnaUfjYpbe/3IGzVYC4/+AA6xzEDKQuLjmLRfRnuKTqOX27jmi2V1NzKJwp79pB72PTstid3Q4Z45sA0gT8eBy494v/8ShT3GDZakRhSLPZZFRGrgfUIsdu/IjMAzYYVixsAbSiENLWeh90YpfmZC55CWIpicbVNvkuzQvVireFXChTyoo+s0qz7/e/dJeBrry3gVS+8HeMj1djlsSzp8Nc83e8PHTsNmAb+4Nk86BjbJwCuKtVTkFR009k3X//g2/DeP/0N5zvbktUhFm1yefV0aNGdnhQii7xotrshUmgQYmrGsm+TlfAYQ1ZULCz6u9O1DRbzvNs8XS9jYXEF8xezEzgTFrF4aSlALK6dIf82LvS/UcqTpFhU3PeHRk8dyAp1bjpasZikdvVikHOmL6yfI0rFXVaGei97g2kmnPg8sHwcuPl1wJYbNmeZ3/fHQGUGB2jyTnLV9s3L0BpiiCcSacSiaqh9NXYEQYOGYiiJ61mVwgonrwIxqGIKQtZkcJQ7PQUqkgQMEote21GaohOtUNuNtk+Fl4VwCJJ+NE37yCabIKx/fx073rQDz/vR56FqKe7jwOU4H7l18jH/GC6LYtG7L+MyFu3PeZEPqbYW2guOnSqNsGLRSxoBxAqV5VjH8hIIqwGjIBoisUK1Tj+vYlEztRBZHVIt9tmbF4R3GwuVAjqtDs4+7jZ2d1OcDGp1MhbZTCvUjhZPZk4WJvGafa/BqcYp/Ml9f4JPnPgEzjXPAQCuHbs29hoay42ho3agJUTqeHNS7YxFRVcgsIJDBE4WSEN8I8YpbXzaVSyquupc47ZiUdZlcAznIxaLXNEhFtNUrkmwVdNZMxYBIMflNpSxqBkaHl15FPvr+6+4Der+/fvJvzfsv6LrGWKIIaIxJBavIDoZ8w+9eOxi00daBKEHBrbzqz20UrLX2p7Clm1veNEiEk3DwGRZxGLTfWgURRY9zzYstWWM9llMzwVUcn/4yUdDMsR+7VX7gW2FGsS5U6RLe3b7LhiGAamX0JnXp2IRAB5/zG/XxbAsKiOkIKUoMl73g/dgbXkJTKEGfnwHAKA64j5ovfvdIRYZDprqDnpPHnNtKGzYGYsqGHzlOBnEdxXNR+bYkHs9RwFoQ1INhwyzicU4yaKtnvQqOYLr6XZaKJTK7jy6ATGfPID2Es1dSxVRrlQBwCE5bWIxlyeDoovz7uCWYrm+rFBXuwrKIguBox3CHZz7UjAySYokRx95wPmsYpFt3mvqwjo5h8ZKAmp1UrxSBlAsjpdEXD9bxZGLLeie4m1RYMHQFLp9EItNiSgOhUxWqCTvsGGpR0zTRFNSUS14FYtt5PNEsRinBBwviWBoCo2e+/JlKxY165yyj7BNLMZZItvkXhoZnYQ40jINeYGFrOnQPQqUxy42oZsm7tk7BiGi0/bJwPQ06d4tFMspUw4xREY0zpPi9mfeeOXXRXOE8PMShzTrJxYNta/cXABArur/mxViFYumCSA/CjTm+1tHAogVKu8Qi1pM49eRk+c8M3Fod+OfGautHkAxyPdxS/vW4aOhz2wV22dPaNj/0l/C2QuXUctRuHmG3NPG65XY5VEUBZ5jfcq8h46dASet4P93j4jK6uH4jbGPoaegoxpAR1LAcyzuuOFq/MwPfZ/zXc/Km3SsUG10/WSLbphQVS01Y7ES6PAeRLFo51cG3SXsP0/N+4t52gZzjbxE1nSdrLsfO9R6tQSapsNWqOvWedcZQGWmdfsn+jcDnsLlamcwYtFVLPqPfXbF4hXOWFw6SmxQ97yINEP01jdv2Z1l4NAHgdlbgYM/AXCb9FtYAXjFu5w/x0bi7x9DDPFUhjdXTYnIGlZ1NTF7LQ0MGKJYTCAno6wTvYrFINkQhGIojgUpQN6boxqEg1aoXpKIpulUxaKXmFmT0y2bH/1uuGZhE4udYx287vteh3Mnz4ERGeR3k+deLca63QYr+scip46e8n2fSizSjG/fyDGNXbI1FhFEIZSBeb59HiM8+R0UKEhdCWIunljstDsolAq+MUSaYhEARJMQi4YlPSxV3abtKIvKILG4mVao+UoeNEP7jqmXbIsCL/IolAsbIuadZVnnbtI6GYrBz1/78/jkKz6JWyZvwTcWvoHH1x8HS7PYPxJPOI3lxohiMeGdw0ui9jokY1ExFIiM6BzXPJdHha+goUQTi5NbbCcuEYqhOL+Jc3LMZQi04GsKKPJFKLoCzdA2rFhkaTbx+ggiz+Y31FhxfO04ZF3GndN3OpmNVwp1q946t3Puiq5niCGGiMaQWLyC6Me60Ma3T6+SfLsYBO35VjqKQxLG4dilpvPfPENDYGmcvUwGg53mOiYrIlbaHmJRYNELkBjj5X6tUN1T67otFXzp6BLuO+/vMPJmRW42FCm6m+nsyeMAgHyxBDmBVASATquZ+H0UgtaZAFCrk4JGt93Gjj37kPdahBp+YnHZcxxs8oZiXMVirT6G08fDOYs2gcRBw388cgmmaaIj6xAsi1LvAFyWehBEdzBLUUBXdRWLmuEqIKOgyjax6A5MxADZ0mm1kPeQQopuQMwlD4a8ZLTL25F9UKpUYZomehaxWKqRfXbx/FmY1m+jaBamGt11GIXVjoKKRb4VbZKbd8/zYqWGSm0ERw991/nMJhY7nmv7vGVdOlYUkCsUIYg5aOpgthEvOziNMysdLKy75yZFUaiInI90ToJpmmjLGqp5HhyTfouftGyOVy27vZ6qQ9VNjBXdom6300GuUICsGrFKQIamMF4S0Oy5A9Dd+69FqVyFQTHEXtfaHFvtWkwiFnUDuQ1kLOaFwQjAosDAMOHLnDw0v47RIo/rZpNfdocY4hmFPho1+gbDAbqCleVl9zOaJfanNjSlf1/0ILGYoFgEABTGgNal+O/7BKXLRI2ZgiOn5p2ylskIyRmLzQ7A8sj1MWT65oNhEmpqbATv+LaCF3+wiz3bZjBS8d9fkxSLACDwnNNwUS/ncfiYW8wTtYTxkl388ikWiZozH0EKhhSLzhcrPmLLVtknW6F2QorFrGSSF3bRKLjPeJYca2/OIkCI043Au815kcPOuanIYxoHhmEwXq84GZMAALkJSFaxq7va/7WlSv1bE28GPIrF1fZgxOLBq3aiXMxjetxvy/aUsUJdPAJUtgClSaA8BUjrG8+EAMgy7n8PaeS4641AdZMLbtvuAOzMKml9c5c9xPcc0nIIrxS8SsJL8+HxgGqoDrGTBcEiPA2aLCOBnIyyTuxLsajLPtKQBh1qhAHCpNvZEy6xyFBMYsZiu9kGRVF9kQyP3P9I6LP6eB1rX1/Dmb84g7HpsZBCMU2xyOZYR+mYK+dw4jG/k5NAk3fMqN+vGpYVqucrVVIjp3WIRUGItEKtC3XftF6iUDEUX8Zlt9X12aAC6RmLAJAzcmArrJP958uG9ChGOZEDL/BYOOdatNIMDdPY2HNEzLukGc3Q2Llvp59Y1NMbqTfLDtU+d6UkhwwLY/kx3Dp1K2jQONc8h8n8JKpBRxMPRnOj6KrdEIHsRVCxmCvkoBoqcqz/OE4WJtFSWpF5jdv3bkehVMD49DhRLAasUG1rVW8TgW3fKmnSxjIWNSn1PhKETSwO2lhxeOkwKnwFN0/dPND8QwwxxNMHQ2LxKYZvnVrF3Eh/D43DKdapjy24BR+KolDNc2jI5AFhwsRUJQfJ49tUFPyKRZamMNUnsZjzqIWunq5gqiLiA4/47RLKWQODBoASQxraikUg2QYVAFqN9b7WKeTyeMxDQgGAqihorpMuREHM4Xff9i4fqafohs8K1U8oEbKG4UUoFrG4Y+/VOHksTCzalpd1qof7z6yh0VXRkTXwDAWaoiB7FJyy1PUpFgs8C0lxFYuaYYaIQv9vsgZ0nk48MaBQ7XZayHvy8bLYWuY954wU6LArV2uQNQP2+JjPFZDLF3Bx/oyjhqBYDoaWnVhc6yqo5nmIHOMQixTrOc8pCvsP3ozHHnKPqW0PaudXAi6xyNIUKIpCLcbaNgtecu00TAD3B+xQK3kOkqpH5jsFIWsGVN1EvZCtI226Sn6zbWG6btkmT3pyVXvdNnKFIhTd8B2nIKYqIlqSBs06UHsPHMS/3XsUukkseWn7hchSuxZiVMtFceOKxaIwWOOC/ftshahhmHj4QgP7p8p9K7eHGOJpjYgO+k0DwwG6DMNLXjKBPEQjwio1DcHCAcsTS9U4lCaJoicOfSomaVMH6PT7xGMnzsG+/algQxl9Xqw1WwDDZ1YsFkQO9x7yKxY1TcfC0gre8B8Sfu1WHp94+++jFChQJCkWAYtYtBSYe2brxArVAq8n5Ow4xS/GKUiquomOpEZaUfYs+7GQYrG37juWimWFlqhYbHdRDthYDkJM2ahX/cQiTZH8xZMBxWIfBgORCKoqn3X9vr6IRQCYqAcaYdYstWJhnFzbEWqHRKi9/hXEmwGPSmClLQ90/Pbu2ILG/f/qWMTayKpeDZ5DmwrTJIrF0d1AfgQozwBSq//jE4Vz9wILDwLXvxrY+ixXYruZOPDD5N/NVFkOMcQTCM0zDokizbIW1ifzRI1kZ7vZYMBAMZTIZRhW/WVNCqv/fIpFmkskBAzT8BGRNKIjTZz8QQtexSJLsYlWqC3bYj0jV8UJHB57wF+zMAwDlxcu48L/vYDqHVW89b1vRbnqd15JUyx6rVDrU/WQYjH4G71QdWKFGlQsihHPAlu9KoiCL5tR0RWsyWuYypG4FtNqRBU845koxWK+5H+OZCIWzRzYMhuy0c0Vcj4SjAKFqbkpLJx1iUWWY51tGxQ0TUPIu7/rwE0HfMRilmaAtOPZL3p95j1faF/AltIWlPl4h596rg4TJppyfJOcnbEIEGvbXMWKdQnkNk4Xp9FSWpFWwWNTY/j0o5/G9NZpqEYCsUj7rVABsq+D5HQ/sPMbvXbGachzxO51EGLRMA08tPQQ9tX3YSw/lj7DEEMM8bTGkFh8CsE0ge+cWcVMLftLM0tTOHR+PXGaRxf8D8mRPI+O5g6oJsqBzBGB9Y0ZJyuiq+jKCK8FI0UBP337VnQD9YjyFVQsxnm5e4nFXjc5cLrfjMXRma1EsehZ9aljj2J9lRQtc/k8aNp/ybUlzadYXO34C6AsTYHmBMcKdcfefTgdQSzaOYpjnIxGT8U3Ti6jo2jgWQY0BUhddzAk93rgPepBW6Eqyz2AJsde4OKJRc1SNhpeYjFgudlptVAoee06DIgpxGKOd5fR00zfy125OoKOx36UooCpLVtxcf6sY39KMRzMPojFRk9FLc+BZ2iH4DIY/zm5/7qbfPa2tmJR8sgR5lf9BHVtdDzzNgQxWhRww1wNRy/687GqOQ6SaoQUy1GwrZHHy/EvVl6MFQXQlDufbWU6bROLpolepw0uTwbkcSpDAJip5dCQ1FDuq6IZxC7XepEzra7DuPtKSWQhawbE/ODEYpzNahpsC1XZqgyfXumgLWu4fUf9iqqshxjiKYduuIN+00BzliLRUyxhOL+6UFf7V0gFrXZYMdm+sTyVTKAOQqSw6cTikVPzKPHkfijpycX+tUYbYHhk7cWaG6/ivsPHfHbOx89cwLmFJfyfHxDxV98vgmHCz/jxkSoe++UCzD8sR/5urxXqnpk6Hj5+1vlbNHvxClf7c5p2MgoVnVihRuUj2laoYrA5pLviOz8cxWICsdhodTbFCtVGkFgEgB2zkz7FIkVRG1Ys0jTt2ze3H9yHQ0dPxVrrRmEyWMxbP0dUwVufZe3LPtVBavfJIRY9isWVlrKpeYdPCcVi+zJRk04dBPgCURVK68kNEVkgt4DvvheYOADc/POAMLgDRCKuBFk5xBBPINIyxDRDy1RYv3HiRgDA0VV/Yw9t0ql2quvyeugzL1HI0myq0shLRFKg+lYswgDUiBxhG+1GO3H9QZTqJZx47ISPrFy8sIj5k/OY/LFJTL922iFUvEhTLNICDcN6Fo5Mj+DC6QuOuhDw77cgbMWil1hUeorPxtSGvUxe5IkC0SJklnukrrO1uBWASw57yUnVUH3b0Wl1QjaWWYjFPPLECjVw7pRr5ZCKcnpu2meFyvLshq1QAb9l6/4b9uP86fNOjSZJ4WdjsxSLNiRdykx0SbqEhtLAjsqOkLLQixGRbGNTjScWvYRmr9MDbzUbB5e7pbgFTbkZOj5BeK1QWcHNWBQYwXet28RlT++FyOl+IGlSiLRMQ4ErDKxYPNM4g7baxu1TtyeSupuFCx2SHX6qcSplyiGGGOJKYEgsPoVwsdlDo6diupKdWBwtCjh+OXmg98iCnyAbCahuxkoBYjGgSBovCb78uywIKth2jZewzXqnNawHcCX/xBbpNVXFwjm3wz5VsdhnxuLY9HasLi9iefEStMZlmIaBvddcj5f9+Gtj51ENw0csLrZkHynDMTQYXoSquorFtZUltBr+zkaeJQPkIq0gxzH4j0cuoSPr4FkaDE35fqsi9SAWXWUCIXF0KJIEiiXHREyyQrW2RffYNIiB86PbbiHvsbGUNQNCGrHIeSxDVBOaYUKx8hxL1Zov1xAApua24eL5c25XN8PCyGiFKqs6JNXAWEkATVMQWBosTYqBPO9eH/uvv8nNlARQdhSLpKBpmiYWAlbEds7ioHj5wWmcC5CV1TwHSdMzEouW4jCjyphlaNQLAprWfDaxOGndhwxdh2EY4PLkeCY1GczW8mj2NChagFjUDYgcg9k5krmYqxD7mELMfaUkcpA1HeIGFIuDEou2hapkFa0Pn19HjqPx7L3DbrshvsdwJYlFhiNKNu/LKsP7VTq62r9iMVhIY1Pug8WJTSFLSoxnuxOKWgB5bhw5OY8cR7a1l0YsNtsAIyCDszUAYOtEFe1uD48+fhbzDQOKbmL/rjn89ut+FK+/KZ70HBupYN+YdU9uLoS+91qh7tkyip4k49xFktUnGJ14IsTu2qYYdCybNWKFqkbamLpWqBEZi4r7bFSt50yU6tFGs9MN5eMNQkzZRbR6QFlBwcTO2SkfschzLNRNKOZ5icVnXb8PmqYnKluDmAgWZ9fPkvN9Yj9R6arJY2AfaNYiFp8MK1R3O5db0oYUpzZGa2X89ut+FHffck2m6a8osbh0FAAFbL+b/F3bBvTWNk4sPvA+cg+98zeBkR0b3cohhnjGoqMmNxpnLazbyqKjq0d9WW0MmNRltNV2SOEUVCxGEYVeeBVycYrFYMbiuRNu3rOeEuHTr2KxPFqGruk49tAxqOsqDNnA5Owkfva//yxGXzQa+3tSrVBF1lUsTtdhGAbmT7lZ2bZi0TRM6JT/N2mGBoZiHCtVAFCkFGJR4H3qsqXeEmjQ2FoixKJN3uVyXkcqv2Ixygo1n2EsUjALYMssNNM/Ti1Xy6GMxemtAWKRYx3ScyPwEqAHbjzg+y7OlvR04zQeXiKN2ZuhWDRMw7k+ZE1OzEL0wlZ6XjN6TeL1U8+RukRbia+peu8TvU4PghUZY1/3NmZLs2gojVQ1p6qrEK0Ini27SX1EMcJWqPbye1pv44rFQaxQdTWkmM2Cw0uHkWfzuGPmjr7nHQT2+DjKgnaIIYa48hgSi08i3vHlE3j2X3wJP/quewEAj1xogqEobO3DCnW8JIQUU17ohonjl9s+BaE3Ow0ABJZxlFgAUAhkk40WhURrzChEEVN3TJNlKFZXUKWfwKBNwIVzp6Fr7kAkjVjMqljcZ42Xrt5OLDG+8u8fxcJ7/xsW7vs0AKKsi4Oi6aiOuB79C42eT5nH0BQYTnAyFnfsIcHT58+e9i3HPr4mgAMzZdx3ehWNngqeIR2LXnWmLHUdkgggBIykEitUyrKozCUqFslAW/fcPvJBYrHTQqHkFuAUzfDZr0bBS153VROqbqBl2ciWKxHE4pY5LMyfcQrTFMNB18igM80xdM0iz6Ys8oyiKOR5hijrBPflYs/V14FhXYKKoSkUeMZRLK52FJ96EdiYYhEAfuCaqVBtvFbg0VN0aBmKlS1rP030YV88XhbQljRohkHOG5Z2rk9bLcsKZDCbRNjNjeTR7Knoqv5jpeomIW8t4tqgSPZnnDK2LHKQN2iFOiixaBOn9nE9PL+O3ROlvvbnEEM8I7ARYlFuJX9Pk4xFH1FBE3tUB0HicRCwKcrt4uTGlm/htppH9cgkKxYvLq76su+6agZiMYMK0saWsTJYlsEHP/NV3Pj3Hfyvr5CxzM7ZqcT5xr3FvIiHqNcKdfcMGbccPX2efKcnEYvW84Ci0e6SRhzVADqSmqhYzAmB32wavjxMJUPGYrPdQ6W4ccWiTYg6ikXrvCzxRLHotUIVeG7DikUAyHvtx3Zv7TsbcnIsaIV6hthsju0nhH27j2xRvkiUg0+iYtEwSZPaZhCLNE3jf77xtRgbSbb/tbFpxOLa2TA5u3iUEL7VWfJ3dSugtAEl5R6ahIsPAWe+Clz9Q8Cu5wL08HV/iCHi4LU4jEJWxaKNE+snsO7JHGXAEMViQk5jR+n4iCLN0HzqQm9eXxy801AmFSIQDMNvl9rr9LC44Nq2ZiYWMyJfziNXyOErn/4KTr7lJC58lCiKZrbNJM5XTcl7ZnjGUSxWp6qgaRpnj7vKS4dYlE0ojN/G0VYsyp5ca7kn+2xMbSiS3wrV3r+L3UXUxJqjwjLUGMWil1hsd1EoFXC+dd5RVGXNWKQYCjLI9tpNTpVaJaSIm5qbwsK83wrV6MPlIHYbPNs5sWUC9XFPtqQmR9oH/9V3/wp///Dfo6N2MDK+ccXi5e5lyLqMHJtDT+v1RXQJjICrRq5KnKYukt+U1GTQ0fzEIlckxzfP+scHM6UZ6KYeaW/shTefsVgl9Q5FVyAyou/aLVo5xoqmDJSxuCat4Z8e/Ses9lYhsEKme4mNAleItXFOgmmaOLR0CHtH9mI8v7G62BBDDPH0wPBN40nA/mkyEJmq5DBdFV3LQRArwZGM2WgAURuudOK7Wi83JSia4bM7rRfCgyevajGYe1bNc6Dp/qxuhAgikrWWYQ8/rqQVahS8NqhABivUVrwdghc5lsLZP38Jbtozh+rIKD7/L/8XwvRVqBz8fgDAyFj8A7Wn+BWLHVn35SxyDLFCtVWCU7NbIebyPuUl4GYsGqBwy7YRLLVkPLrQAMvQYELEYg+8h1gs5zjLClUCZRUvg4pTL1SFbJ/muX141YYAsULNF4pOJqKsGeDFtIxFd51theQE8gIZcG3duQedwAvP1JatuLzgdigynABdyWbttW7lCW7x2A4XBNbaTvd6FHN5h8y1URJJ3iEAXLCO1bjn+tlIxiIA1IsCbtzqLwiO5Hl0FR1aBrVCS9LA0FRf95Gpioi2rEHVTKx3FRQF1iH9NIuspUUymC0lKBanqzmYAFbb7suxbpjQDdN3Tim6AZ6hwcYUu8pWxuIgVqi7x4u4Ya7qkMb9wj4PFd3ASlvGhXUJN8xVMZIf5isO8T2GpOxBXQH6UE+FwHBhq1P7M2cd2sYVUqmKxTEgoqu/X/iWECAWgyqzI57OegBopQiT1puddILUA55lMDs5ir9+36dw1SiNX7yNPO+nUuyoomw+fcvlXMXiSDmHybEajjnEYhvQYnJv7GNKM2g7ikWTKBYjVAK2YpHjIp41LZfAy2qFGiSFigMQU7aN/XV7LeWX1YlOUcCO2SksrbqNaDzHhlT7g8BLujIMg1uv29vX/D7FoqETFWptKzBpqfQaYVVqLIQiyVjcqIpuEHiIRWBjGZmDYlOIxe4K8J9vAk592f/50hGgvpPkKwIuwdjy57RlhiYB33k3USk+61eB3ObmWw0xxDMNvbhnl4V+rQC7WhcPLT/k/E2DhmqokQSMjY7WCSkWvcRUFjLAS0RS1v9829Xu+qbxqhUBQJOSG0faTUvNlVGxSNEUpman8In3fQJclcPki0kjVxrRxIvJ71uMwDiKRZZjMbN9BmceP+N8b5OnhmxAozWfuk01SMai3PXYqktqZMairVgURAGq4RKLy71lTBYmHUJJt2oCkcSidQg6LZKx+Pmzn8c/H/1nQpJlaBbKmWQah1i0HoR7rt0TsiGdnpuGKrvnEMuxDum5EXiVmBRFYf+Nbl1E1uXEa6OltDZFsXhq/RQoUDg4dhCSLvWlSpssTKIsJFtxiqyIHJtLbDLoWi4PhmlAVVSwVvC5TfzZmCqQJr6VXnxzpmEa0E3dlwdqmiYUXUGO858XthWqbMghO900tJU23nHoHfjO5e/gXOscBFrwqSHTUOSLA2UsLnQWsCqt4qaJm1AVqn3NO8QQQzw9MSQWnwTUrAL1XbtG8TO3b8OLrnG7yLfUciFiz4vgmHS8lFxsml8jD0Gv2iaKcPDaJgatUAdRFkYpFu0BtWENzMoDKoqywh502jh38jhKlRrylgoqXbG43tf6Pvzed2B9dRn52iTGf+TNoERSpKuPTvims9WHAFGXeZV9AHBq2SUBWZoGzfHOPDRNY/uefbhw1u8fzlseabpJ4cBMBRxDYbmtgGdo0JSfRCUZi+4gqJrj0FN0/OQb3oT6FCloJCkWVUuxqBnuC0vee7xNoNNpoVAsQVYNcAwFJZMVqrtO3SRFw4O33oG/ft8ncdcLXhJWLM5ug65pTtGW5kUYGTMW17pWjmDVHbzleRaq7lcsAsC+6270/V3OEetY3TBxfq0HgaV9xPxGrVAB4OUH/d2c9SIhFrNaoeZ5JpEcDmKmmkOzp0HVDax1VZQE1j2nLFKbtga6aRmLALDc9rywWd2SXkWqk7kY8wQqiiwkVfdlgWbFdDWHD/z8bbhqarA8Ifv+p2gGHjrfAE0Bz9830XdzxRBDPO3RTcgelNskG2xQMBxgGqC8hRGW9xMXxgAZiwAaqucelUYsMjwgZlMtZUaAWPSqEwHgyMl58B7SrK0mD8VtK9QsME0Tf/VfZ3H6/GUURR6fe00e9Ty5904FFGzBImdU7qIXAs/6chuv27sDR08SkpSCGU9E20U9mnEUi4oOdHoK8hEqgd/9xR9DuZiPtq3quutQMhCLzXY3RAoNQkxdvXsrvvHB/4U3vPql1srtY0qFlKACz22KFWrwdz3r+n19zT9hFfPaXYmoEw0VGN9PMvwYvj9FMl8EYKYrka8ELGsye5f2q9zcDJQ3I9dx9RQA0/k9AIDeOrmPTl4D2IXPikUsDqoYf+gjxEr1Wf8NGN2zkS0eYoinPbJYJqZZoWqG1pdCiqZo3Ltwr/N3mhWqqZroqBHEItMnseixOaVBh56h7UbbN42dr8jYjaS9FGIxJmNR4ci4TaX823/2v87i1NFToBka29+0HVyV/B6v4m0QMILfynTnvp0+YpGlWNCgYSgGVEb17VdbsSh13UZkuSdHWqG+4qdfQRyNSnmfAlHSJUwVpiBYDV8OsehZhqIrPhK32yZWqAYMKLoCRc+mPqOtUq1BWQrNehXv+Pg78LNv/Fnnd9lk4/TWad+8LM/C1DbBlj2wnV47VFmXU6+NkdGNKxZPrp/EeH4cc+U5dNVuX9fjbHEWJT69JlATauiq3dgGALsBwbaXZXLkuskHst2ni+Q4NOR45zNbnSx63lE0U4MJEyLjPxdtAlvV1b4Ui5Im4Z2H3+lkguqmDoEV+spYLHKEWOzXCvXw0mHwNI97Zu9JtXAeYoghnhkYEotPMliG9h2E6WoukRAwAg+7Wp4Hl1Dwnl/toZbnfCqjKGJxyqOaFDlCRtmIUh+mIWqeVWsMp1lWqKUrrFjsBBSH5049jrkdu50MptSMxUY2K1QbvU4bz3nRy6HxRVA0AxMUDNMMWWOeP3sShkp2Rk/RfQ/c0SKPhfWeM6hhaAo0y/vIyB179mPp0gXfMl3FIg2OobF/ihQoOIYGTfsVi4rUA+shbCoWsfiCH/lp/Om7PwwAiZmaqiKD43goHpIr7zm/dE2DoesoFMvoqTrKIgcTAJdLVp8F19mSyb45cMMtoCgKHVkDx7j7amrWbzHL8AI0RclUiF7vKhA9dp8AUBRsK1R/oXP/dTf4/i6LHCTVgG6YmF/rYrwkOGpcwLVCDRLb/eAHrpmCyNIoWqH2tTwPSdWhZLA0aUkaigLrnBNZMFPNoSGpUDQd6z0V5RwLwSKLNds+mCP3iCRi0c6HtXMaATjKjZyHfFa1ZMViUWBhmAArDmaFmuOZge5bgJuxqOoGDs2vY24kj+1jg1uyDjHE0xbdBMUiQDLbBoXdie/tDqY5N4/PRj85cPZmeYlFLgMJUdjk/NQAsbjW9Bfjjpw6h90eK7A0xSKxQvV3NceBoig0ehpe9eK7IUkyBNZ9Nk0GFIvnL3mPb/qLv8BzPluta/duwxmPjVosEeIoFllHsajaGYsRxbyffOk9aNz/r+HlcHlCmFhyCSdjMcba1DRJxmIl0OE9iBUqADzrhv3ueE1xx1Q7Zv12ugLPQt6MYl6AdO2XWJy0iMXLK2vAuqVMmb6e2GJW58jxytqFbnfkS08CsWgV/fWnu2Jx1XYa8Vxry8fJv9vudPNhy9MARQMpNmqRWDkJHPt3YM+LgKteAjBXtoFziCGuJIK5clcK3ZRxRj+KRYZiMJGfwKGlQ9BB3gNpk060UzW7Jnpaz2eFytIsWMq9fr3/HQcvSRGlWGw1Wj6y6+yJsxibGgNlvcOqUmD8FYBthWpnCmpW7IXMk2ZSmZJ906sdFfe89B5oqgZacN/3ggq2djOasIwCTdGgedo3Ftm5b6cvW5CiKHAMB1M1oTFayGI2SCzGZSze/rzb8cWzXwTDEGLYS/TuqOxwiEZbFehVIMZZoQJwiJosVqhR2H/DfjAs4ygWDZmsfzIwFmE51kfADgoh7x+LXH3j1c5/ZyIWU9wysuBk4yS2lbdhIj+BntbLnLEIALtquxzL0STUxBpZdsx9x1Yz2vuUES1iMWCFWuAKKPNlNJT4OqJtY+u9Zu3jaSsUbTA0gxybg6xnVyyquoq/f+jvcblzGT9+1Y87n4uMmOleYqPIF1NVqVE4vHgYu6q7MFVMjmAYYoghnjkYEotPMcyNJD/4gs5jNE1hqho/z/xqF5MVESzjGdDlw4TepIdYpCjKpx6LUh+mIcs85Vz8g41nNn5qBjMSHWLRQq/bSeyiCSoWFTlss7m4cB7HHn4QAPDTv/o/8BO/8OvOdzpo6IYZskI9ffwojC7ZNjkw4NsxWsTFhuQo04gVKu/k3AHAjr37YQSUa67NLPn3lm1kEMexFGiKghSwQmU8tqTlHIeOokHTDYe4SlYsShBzeZ/Vl5cU1FTyYpEvFiGpOqrW+caI4W4xw9BhGtHrXAtY/LZkDTlPkXRiaotjTwYADCtAVWXA0FJdWlY7Ckoi58v4KwhsKGMRAK669iYAcBRrlTwHWXUVi1PVHFiGdkh/W7HozfPsF7UCj//6jbvxwzeS4nM1T8jZjpy+zEZPRUlk+7qGpqo5KJqBlqyj0VNRyfPO/M65ZxW2S0J8Q0COZ1DNcX5i0TqnvFa3ip6iWLSIampAYnEj4BkaDE2hLWs4ermFAzMV1PuwlR1iiGcMOkvJ369tgFi0CjS014KM5YGg6nwgYtG+R5npikUAKE2kTxOHKAVXYJ1rgS7/IyfnsW/HrPP3upT8xFpr+InFpfWwuuLS0iq+cOgMAOCPXrYDf/7fXxvK6g1anT58/AyotzRBvaUZr9o89WXgQ68CDN1nhQoA1121wz8W6cUQITZZTHkViyY6UrRiMRblKaC3SixyQRSLNE1D4KOfST1JhqbpYSvUCMXbPvM45N/N+614k+A5L8dGKr5l8hy3KVaohcC+ue26q0BRFJiMz3bbClXXDUIsCiVCKAJAbYe1LzNam9rEopItImBTYalD7TpyaTPUg31ic4jFk+HPFo8AYhUY85DGDEeaHXrr/S3f0ID73gWUJoE7f92yeR5iiCHSkEYsamZ/GYszxRmcbpx2yIM0xaLRNdDTepB0f53BW6PIolj02ipGKRZbjZaP7Dp34hy27rKadA1A7WUjFm2sXgy7WjTXm3joa8QGducrduI3/uQ3QtPwgfzk08dOh6aJA0uzoHna17y7c9/OkOU8z/AwNYtYjFAseq1QlZ7iy1iMUrCqup8ovHrUJdd0JWyFqhkaOIZzyF3bChUgpJJhGJmsUJOgGiooUA7RK4gCRifdOBaGYxw15UaQDzxzdx9wa2lZbDJrwbznPtGQG1iVVrFnZA8m8hNQDAWyLqfPaOHg2MFM09VzdXS1bixpKVkW+A6xaDUiF9gw2TdRmEBLbcXuG5tE9JKS9m8KEpX2Z7IhZ1Is6oaO9z76XpxunsbPHfg5vGj7i5zv+lUsFtgCIcL7cI9Z7i1jobOA68evR00YWrEPMcT3CobE4pOAk0ukyBSlPhor9t9JvbUe/5CZX+tirCj4lF5sRFFiohSQ3Vt2gOrKeYgDKH+y2DAmKYriRJhveuFe3Lp9BKUMNqotLzFompg/fcJHLErdLnIJ9pxBYnLZk+cHABcefwRveNWL8LH3vxsAeQGY27kHhkSOLw0Tqm446xBEMoA8c+Io9B4ZnEsB7/urpkq42JAgWUUplqYjFYtpuG62CoamwNEUaMqvzlSkHljBPWfKIgfDBLoKydgD0hWLQi4H2VM48x5ve1tzhRIUzXCsf5kIxeLhb3/T+e8Qsdj1F7zakuojrDmex9ika/tBcwKUjIrF1Y6Cco6F6FH1lUQWim6A4/3FvPEpso4dVxHrj2qOg6QZkFQNl5sSZms5jBUFYlVqmhixFIvmRvLHAMzV89haJ+dO1dqH7ZT8C4AoFssi15dicbpKrv/ltoxmT0U1x0FgbStU8kJmMDwo+AnCKExWRLQkzSHH7QJr3mP9p2gGBDZZsQgA4J94ZQJFUcjzDI5fbkM3TNyzd7wvW9khhnjGIIlYlJvA2pnBl20VyShvAYcRXNtMG0qg4Jeg1rPR0cj1ShtqtmzC0gY6aqX18GeBdQYVi4+dnMe+nS6x2JaTn1lEseiO0U4s+It5R8+v4ZZX/gb+4B+/ClkzQVEUZqfGMDFa9U1HB+63j3isw0IspDORpRxcPg6B9xOL1+7Z5p82jgjRXSvUTleCYZqQdaAr64k2pg7swkxlDuisOOeIqunIiwIpnj7+XyHFZLNDzp2gjWWU4m2udT/5j6Wj6dsDOIrF000KFEX5VIsCx0LeBCtUb8YiAFTLRXz6XX+EH/3+uzLNP+kt5q2dIee5TRCO7SH7S82WS+0Si/0T/RuGta81h1jMAa1LQOP8E7YJm6tY9MDOVwzmIJZnAKnpXjtZcORTQPMCcNsvA5PXbmxbhxjiewgdLd0KNYk8CX43XZyGrMtYF9YBEJJPN/VYwsLskufFWoJK2auWi4OXWMykWHz8LOZ2kWYTyqCg9JIbTaSuBE3VHNeE5Xm/q0Xncge/8vJfwYf/6sPQe8R1qFQtYevurVGLc+AlFtOUaBzNgeEZH7G4Y9+OyOmiiMU4xaKX5AtmF9rzeYnFraWtKHLkuagvk23xkpOqoTrHwzAM6JqOQtFVLGqGhlwxPBZ56D5CymoZmpMVXQkRztNzbl2EFTcnYzGYP8kLvEOSSlpy3qEJE1Vv3vMAONUg8T+3TNyCqkiW1VLS3RMm8hOYKkxhW2VbpvWM5kaJzWrE7zFN07FCtc89iifXmBDxnjFdmEZLbkWeS4BHseixPbWJxaBiESB2q6qupqpcDdPAB49+EI+uPIqfvOon8eP7ftw5TwEgx+RAU9nrQ3kuT+x7jez52g8tPQSGYvC8uef1RWIOMcQQT28MicUnAf/yHUJQSRFdRAWh/xvwzlH3AdQK2Fg0JQ1jJQF0oGhEBTRdo0V/95htB9g7/UBo3ixgLUIrC4x29hyRXeMlvO6uHRgvpRejvMSgLPUgSz3M7fQrFsVcHuXbX4n83jtC87cCxOLiBVed0TnyNfzTH/0Spma34Vd+90+dzxmGwbat1iCdgi9n5wWv+DEAwOnjRxzyK6hY3DtZgmaYuGBlY7IMBYrloWnucd2+N51YFDkGv3rPLlw/VwNF+a1QZakLmnf3n60cbcuaQ3YnESmaEqFY5MKKRS5fggmSDwgAtBAeDBmewVsww64VUOe1ZR35AFk2tcV9WXGyKDMQi2tdFZWcX7FYFFjImgGOjz63RJF8Xs3z6Ck6LjYkGCZw1WQZ42UBbVmDppubkrEYhE3OBvdJFNqyhnKuP2Jx0rIwXWpJkDUDYyXB6XTVLAWRQRF7VS5FLTFTzaEpqU62okMseuxybcUiE3OTcOxWM1iXXAnkOAbn13oYKfC4fq76pGzDEEM86UjKWDQ0YC17l3kIdpHMS2wwfFhBpQWIDG+OHxOtJDa9xbQrTSxGIWC/6lUsGqaJy8tr2L9zzvms3VOQE+O3syfJ0Ci3oHXSQyx+5riKH//L/0K9WsJH/+CHHOtTiqJw67V7Ezfz4eNnMv0cAICuEitUj0Lxqh2z4L1jBakRba3pZCwSK9Q/+oqMt35VRkdWQ+RZJC49ZM3PAL1VUFbxRdF0YoOqScD9/w849h/OLD+0S8WoQcaWlVK6YlGxLN1CxHYcLIXLF+bJcfESizzH+RqvBkUugnR98d03o14rR0wdxkjFo1BdP0fUiqI17+gecn0ryQV1B4L1npGSRXZFYO1rzRpPlwo54KEPA1//67DC+QphYGJx+XHyb3eVNGN4oUrkuIxdBeSq/u+qs4DcyK4obS4Aj3wU2H43cM2PEPX3EEMMkQk9r3NCBNKIxe9e/q7v77HcGDiaw2qBPKsZkOdkUJFow+iSZa9I8fUQL6kVBZ7mfUV8ClRkxqJ3ORfOXnBJP5NkDaah1WjZbuQ+YrF9pI17//xe0AyNX3/7rzv5c4DfOjMKXmJxXV5PnJalWFAc5VMojk+PhywieZoHdMBgDMfCEiDHkqEYP7EYUCxGkVaqoTqkbI7NocgXHYJGa2vgBd6XU+0lFm3LWHsbTZiQdClSsWhnRRoZok+CdqsAMDXnjmcZcXMUi7lceDtZjgVHc5B0KdEKdVVaDSlU+8XJ9ZOoCBVsr25HVagCANpqun3uS3e+FP/4wn/EltKWTOsZy42ho3YirVBVQ3V+p61YNDkTPMNHqolnijNoKI1QbqqzPMsdw5vPGGeFan+m6AoYngHLRYsrTNPEx058DN++9G388K4fxs8c+BnURH/TUjAPMg329LZaMwsOLR7CtvI2zJXn0iceYoghnjEYEotPMEzTxKML/pdLm1ApCmyiBWUctnqIxS8eXQx9P1kOF26KgfGprWI0rfyUAu8+tOLsCoOgrSKkaZKO+czERgYFQmZYgwFTlX1WplKH7HOfYrHXhZgvoLDvbohbD4asq1RF9tmfXpwnxGLjsa9j+ZN/jqtuvQdv+38fQalS9c2395rrAQCywUCzBoalchVijjycz5xwO+IlVfflZm4fLYChKZxfJy85LE2BCnQpFool1Mf9PvpRODBTwdXTxN7MTyxKoD2FTzvrsiVrDhmUaIWqyIRY9Ax6vSo2W7FIW6rIekGw/vYPlOZPn0jc/iBJ3pY1X04fAEzNbnP+m2Z5qKoCKkPAdKOnopbnHVUeQPZDlBVqELU8h56qY8E6RtduqWC8ZBGLholcIZv/fT+w7Yu7SvJvM2GiLWuo5LhUAtCL8ZIACsBCg5zvXgWzpqoQc3nIKWSgjS0jOTR7mnM9RVmhqroJkYtflmO3yvVhk7eJsLd1/1QJo6UnZxuGGGLD+MbfAH9UydRsEYkkYhEAVk8NtlzAtUL1WpAxfNiKUg0U/LxkZpaiexYr1OJ4+jRxqMyGPwtaoXoUi7aS26tY7Mhqau6fpLn3c5tY/PyxFl72zz3ctncSX3v/2zA14ncFuO3gVQDC2dw2Hnm8PytbgfOPRTiOxU6rO16jeEKcRFmJ2oUVmlih3r9g4PBlA11Jic1H9MFWIuZHAdMAaxVfVU0ndqERSsnfulHGLaVLACxS6Ny9wFnikBBULF5cTDnPoxCwzts56xbzBJ6FsgkqgUIW0jWIhz8CHPogAFehWhFA9uHIDpf0ru8CYBKFWxbQLMm4DF6PTwSsdarWtVPM58g51boUn+u5yRAFHmy/7i3z3wY+9wfAyS9GN2EsHydE/NwdhDT3orqNnNdZ7nGmAXz77wChDNz5mySjcYghhkiG18U7gVg0DRO6oScSix8/8XGs9tznCEMz2FbehnaZPPttYjFuPWaPbMyqFP8sSiUWGd6nRKJMCnSgzBdULBq64RCLlEFBl3RwMdbiNtrNtkssnifE4urDqzjzv86gPFfGOz72DozOjPrmsYnFoF2pjX6sUDmaAx2oBVAUhW0BBwWe4R2L0DWPTbtmaKAoKjFjMdIK1UMsjufHUeTd8ZaqqD5Vn32+2Go0m1jMe5qcJE0K2Vp2Wv017kQqFrd6FIs5dnOIxQhlJUAI1rS8w6BqdhCcWD+BudIcKnzFsdbsZGyKmipO+ZS8SbCJRTViHOu9dp3cStZS0Eao8uZKc2jIjVhCzlYAerMfHWKRD9eRilwRqqHChBlrh/rZM5/Fl+e/jBdvfzF+4bpfwGhuNDRNv8SiTXJmJRabShOnm6dx3dh1GMltPFtziCGGePpgSCw+wXhwfj30WTVHBnE7xwqJmX9xmK64D6UvHlvEYtO9+YscHanuK/PR6zEtm6OiRzmZRiTYMPLkAWL/hiSr0ysFZwBDUT7FoSL1IOZyGJ9yu5akXhdiLu+o98yI4pt3GcsL5wAA+S17UX3Oa/GKX31LJAm19+qDAAANNDoBIqjbaePS+XPu31ZWnw2BZbBzrICOZY3GMjQoNjzIn9m6PXoHxMBLLKqKDMpD2Ni2sj1F92Qs0vhvzyUkbK3gX78qSxByeagWcUQBPhJZU0jHI82TwcuYRcxQnH9ffeML/4E4UCAKRa86oiNryPNBYtGjWGSzKRYNw0RLUlEv8j7yrSQSxSLLJw9Aq3kekqrjwrqEsshioixivCyiq+iRKuTNQMUiFtOWL6sGdMPEWLG/7kCOoVEv8rhoEYu2NSoAGLqOfKGInqKDZ2iwTPL9YK6Wx3pPgWINvG2CMaiCFVjGyQYNwlYs6jSHTXgn6Ru2FfStO+ooi+n2Q0MM8ZTE599C/l04NNj8vQTCxbRy2waFVSSjvIpElndJKBshYvGM+99ZXpCzKBaLG8hYjEKgyLDWdLvf7carPdtmnM86PSXVErSjuc/CExcImXJwJoc/ulvA23/hLhQj7JFuvZYQi+0IezNN03Hk5Hzo8yTwEV3Se7eTMZXMVSzrxggixC7SUESx+OWfzuMTr8qh05OIYnHpKPD45+JXLFnjsBJpqOIsYlHRLCtVu2ho73dNRj0HyFYxr1zMAye/RKwiNSmkWPzkF7+F7dU+X4cCRS2/YpF17Ow3gkxqziAe+Shw5JO+7M9rJqz9MnWdO119F/m3dTn7ssXqQJmnG4KuOPcEzQByoofgM/Xo3MIrAIqiIi10E2Grq5sL5L5FBd6Jlo+Re9jMDeF5a1uJzXKW/X3yi8DSMeCmnwNmb+5vG4cY4hmALLaIQZxuumRWErFoKEaqYrGttvE3D/yN77O9I3ud9xfaJM+XuOK8bYW60otvlEizFAwSi3EZizztfz90MhYtxaKYMhbxKhaX5oldfml7CWMvGcNNv3oTipVw7MnVNxBiUVPCBJRpmjh9tL+MRYoLvxg6v8MCz/BOXcdL2KqGCoZi0Ou6xzz4u4OZm7qhw4TpELXThWkfIaQpmk99aKvUbItMm9yzrVABcs4FFYv3fem+2N8dBVmXExWLtEg7+Y8bQVwWpMiK0E09Me8weL71C0mTsNBewK7qLpT4EipWHnic+ncjqOfqMGBE3k+cc0J31aQ6oxNiMfhsBzBTmoFu6rEKXJu89J5HSRmLtmJRN/VIYvGr57+Kz5z+DO7Zcg/ecP0bMFmIFiB4bVGzwM6PzLq/H156GBQoPHfuuanNEEMMMcQzC0Ni8QpCi+jM+vThhdjpByEVAT/x15F1/OM3zzh/T1VyPgtCG+WU53zBM8+ggkKhDyvGzYJpPdwplke74bcy3bJtF2iaBl0agwHKsUK1Ca+gFScAtBvrAAC9s45H7/08Oq0muPIYKrf+cOzx2rrbtR8L5gSeOXHM93dX0R2VoI2Ds1Xnv1maAhVlsTDXH7Eodf2DZC+xaBMnPUWHqhmgAHAsjWu2VHD0j1+Iu/f41RyqIkMslJ1mT5ahfFl5mmr9Zmu/TpSjicVvfvE/Y7e3LNDoeBSUAMmALATy/aa2uDYLlGOFmmxl1pRUGCYwUfZvDyEW9VTFYiVHMinPrHQwURFRFFmMFclvbKQE3w8KgWUgcjR6KS8ILSuDcTxCpZyGibLoEIuTFf9LRK5QhKTqEDIoFmdqeai6iTVrX0QpFgEkqh9tS2hFM8Aw6Xmqm42CQPb3c/Zsvq3tEEM84ejDwsaB0k2eT9eIYmhQWIpFykscMnx6xqI3pyxLdkcWxSLf34t2EkwgTCw2/JZN27dM+KxP2z05VbnXkckTd10y8V/3n8TSagOjRRZ/cLcAJsZWws5A7Mrh59LjZxcgK/09r4QIJcNVO2xisQZIa9HEon1MGRbtbg93b2Pxsr0cuj2ZEIOf/yPg/vfEK2RtYjFfBxgenEKIRFUz/MSiDYvQsZtbKsUCAJNsmx5Wh37s8/ciZxcqpYBdZRwSiEWB50L52YMgk5ozDp5r99oJmpBaE9e43xfHAa4AdJcjZo5BrkqI/qx2sZsBz/WvGyZKwX2ykZzXPhHM6uwLKycdYtzB5ceA2jYgH9HVX50jzRtpx6e7Cjz4AWDLzcANrw7ZMD8hsO+fWZo4hhhik9FW2phv9dckAwCXu25TRZIax1RNGDB8Kqajq/4s3gOjB/CpU5/C2ZbrArC/7saWpFmhmpIJClSiYjENQYIjKmOx3Wj7FG7lWtnJv6MMCnJXDuXpBdFutGHChC7pOPXgKSxdXAJX5DDxgxOgY5xyZi2HBl0Lv8OuLq6iuZ7xuQtCLNIR9aUoxSJlkt/v3a9OxmInoFj0/O6O1vE1m9tEYUMmY5EtpS0+EldV1FC+IoCQYtFr19rTeqG8vK9/9uuxvzsKiq6EyBtvxiIt0pujWIxpqskx5PMgEesl4ScKG2vcO9M8AxMmbhi/AQzNoMSVQFN0qn3xIBgRybO4qYTPR8dO1+JQOZ6DahIVaxSxOFUgBO9yL/oZ7mQset5RkojFIl+EoiswTCNELH7n0nfwkeMfwS2Tt+DXbvw1zJYinFTs5fRLLFqKxSTy2IvDS4expbgFu2u70yceYoghnlEYEotXADdvIzL9b5zwP0x0w8SnH7p4Rde9Y7SAj3z3PDRL6TVeEiJtLcspTSS2ig2IJtyyICmn74lAy2OFCgBbd+4BANR/6v+Pb+q7IfW6yOULPpINAOhcGUyhZi2jAWXpDC6+741orS1j8WK6bRTLuvuu0fUX7s48ftSxpwIIsehVLALATVvJwEbWDJKxGEGszGwNB5UnwatYBODLpsrzDBiaQlc1oOqmjygUOSZE/qiyBD7vZvxwDO3L4VQVGYKYg2KQz2zFLMUJmP+bV+G5Iw1QvTUcOezPpPCiLDBoSZqTUakbJnqqgXIgg9RnhcpwUJV0K9Q165hsqfoHykWBg6waYPlk1r1iKYwvrPcwU8mhKLCOKrOREny/EYwVBVxuSZHKWhs2iTdZ7r+4NFkWoWgGWJpyrFdt5AoFQixyjI9EjsKMtV+XW3YOlp2x6D92IkeDiSHnBZYBx1CQNcOXWTEIbthaBQDcsTNsCRKHa7dUcceu0RDBOsQQ3zNIsxjsLgEYsOsI8CgWvcSiELbSDNod9Wu/mqXYPWBTVxRMigMo/z3Sa4UKAPt2+F/6O5KSaoXalA2cWDXwgvd1sdzs4PT5SzjWIc9hjYkmPLiEMVi/NqhAHLFIfovMV8mxkiOUI45ikUHbYz9mmqafPJMaiIT9OUUBlVlwCvlbUa2MxaAVaodEAshWI46jNNOJo4FXedZo9/DF+w678zbOR29DEIHz0m+FykHehGLeQIrFCFw7wQDFMSDvydqhKKKK664AMfZ04Q2qk1zAJ5JY9BQsdTNsY4vmhezbv0EMnLMIECvUqidvyNCA1RPA2F4gVwtPb1sst5fil2mahJCnGeDONwLVrfHTXknY6tfNzqodYogM6GgdnGv1756w7CHtZV2OVSSaChnnSLoE+RJ5r3nHoXfg5z77c840N4zfAJZm8b7H3ud8NlN0XQlspVusYtE0kefyWJfW+/4dNnia9zU8R2Usthot32c+lZ+lWIwjkbzLUFdVnP6T0+i1e5g/lU7q0gnvjWf6yXqGpVhkw2O27Xv8DdcCI0QqFh1isefPWPQSi22l7bP3tIlC0xrzlnhPfjEATdZ8ikfb0jJnNXpoWphYlA3ZRxCpipqoWIw6dxRDAcuErVANmZzLjMhAlzc+Fokjm21SrKP5x0NtxR3z9muFGswkPLV+CiIj4upRonqlKAplvnxFiMV6rg4gWgEdJBbzxTxkTQbHRFuhThcJwRunWLTPES+J6HwW4cZS4kqQdRm6qfuUr48sP4L3P/Z+XDN6DX7rpt/CzurOxN8YPHfTYG+LTYQmoaf1cHztOA6MHnD25RBDDPG9gyGxeAWwd5LctD95+CKW226Hx4nLbSy2ZMzWBi9Wp9W/rp+tYrElOzmO9SIfqRwsxVih2igKG5evb0SxmOf9AyU7p68ftJv+ItWsJ19RZkRIvS6EfAF0QElXf+GvYuSFvwoAePDer+LS+38LNJ8DQPkyGjNtg+wvwJx+/IiPFCSqPH9x1iZCCMlDAxHE4t4DBwEAk1Mzoe+iIPX83WSmp8ONoiiURRaSShSCbIAoDEJVZPAFt+OJY2gwHntMVVWIdaZVWKsVOPAsDZPhYUht7CybuP+rnwOdQBiVBBotSYVqFYy6ln1KWQwqFt2XIorloGSwQl23VKQzgeuwIDAwAVB88vVpE4uGCWwfzUPkGIxaisWWdGWsUAHgx26exWMLLZxZSc8VGC/3r3SYtgjBosCGmgJy+QJ6qkEUiyk3IXu/2vvZsUJlg8Qik9i0UBBYKJoOht2YYjHPszj21hfiFddnu1YA4Pd/YB/+5BXXYLRPS9khhnjGII1YbIfznPsCzQCg/MQiG6FYDFoBeq0Po0isILIoFi3EZRH2A4PmQpaHIWJx55zv7yxWqF87chG3/t8OTJgwTULofasxBuotTegju6Jnsn6PyIR/18OPn8HkWA3H31DAV34mgTDpuMXXKCvUg1eR8Ux1yhrXdCKIEPuY0gw6XX9xLBN55i2ojewAp6wD8CoWAyoPaxtkTYMo8OBtQlSTAdPwWaH+x72PQlU951zrIlGKpUHxH9Ot066zA8+xzvhnI8innBNZce04DZRnACFQUBrZSdSeWS3F8iOWYvHKjXNCsAhc0yRWqCECvrnwhNmzDkwsql2yn0c97w+rpwnhvuVmct8LomLFNgTVuF7M3wdc+C5w8CeB7XduaoPEEEM8nXC+lbEhxIOlnvussgv2UTAs9bmsyZAvyWg+0MTz557vUy3yDI8XbXsRADjLoSkatJWNnJaxCBCCIUoplRUck65YbDXcMZOhGZjb5XH9MahUK1SGZfD4o4/jzNvOQO+S37ll+5bY6bPgzLEzqfarXrA0C0SUD+ysyJmt5F2PZ3hQNAWYwJrsyVg0CbHY6/gz87zb0FSaPiLFVqvGZfVpiuYj34KKRVs16CUSFU0BL7j3/qP3HUW33UWpkp34UXQlZDVarVdhqmTMx/BMpP1sv8jHqPVtG8+u5n8G2+dxlJIvDjuqOzCeH8c3LnwDmu5u84n1E9hS2oKa6DbglPkyJE1KtCceBHWRkGFttR36rme5q1AKuabEvAhZlyHQQuTvLPElFLlirE1z0C4XIPchlmJ9Oaje5dkNEHZW54m1E3jPI+/BzupOvOnmNxH75RQMqlhUtHRi8bGVx6CbOp4z95zMuZZDDDHEMwdDYnET8L8/dxx/+IlHfEoimiKWi2//4uPOZ985u4ZqnsPWejiUNyvS8s0mK6KPuKzmuEjLzhHrfs/FPPAKHnUR169i0S5mcRlPLyZMYgYLfCkiqUgEFYtBUlDqdiEUAl1nhgFx20FQ1oP+/e/6K4izBzD5k38B09AjFYtt1cTW3/402nJ4gNMKEItnHj+KbbvcB39H1qDo/peZHaPuQ5+lKSDCCjVnEXuimI2kDioWjcAyyzkOPcWArBngaCpxf2uKDC7v7jeOoeA9RQxdR6FUdgprRYFFnmccMlPqdvDNL/wnrr3pdrBcNHFTFhi0ZM3JFLQJ2mpASVeqVEFZG0sxHDRNAXf+u+BXT8SSVmtdFTQVtgt1VLophWibWASA/dPE679uEVDtCMu5zcJr79iOHM/gs49eTlQtMhGKwyzYYt03iiILIXDt5vJFSJpOVIYp96BanoPA0mhYtqyKboBjKLABi5ygNWoQBZ6FrJmgN8EKVWAZ5FLW5wVFUZisiAPbUw8xxNMeacRiZymkzMsEW3EoNQCGB+UljWguglhMyFhMgWniytnztS9HEhoGzYYViwEr1P07/YrFtm0JGgOOZfBb7/0Grpug8a2fJ8/+k+c87hdBwsiGVXQpceHnxSOPn8WB3Vuxu87g2VvZdJLWNCIVi3mRPPtydau4GGVnaqiEbKUotLv+45lGqIYwuguUpRpQdR2FnBBrharrBipeMkiXAUND3mNZ9vGvPoQbr/YQs435bERVQLHIe/YNsULdDGJx440tFKyMxeocEOxUH9tLrmMtm8UVUSx2nhTFom4CugGUgllP7cX0e9UmYWBisW1ZLk7f6H62dIzc7+aeFT2PUATECslZjILSBu7/f8D4fuCW18XfA4YY4nsAZxpn+p5nqesSi4quQI9pmLBJmp7uPrt2VHfgd279Hd90z97y7NC8hSap99hKtyTL1SJXjCQ0soKjOR+RSJvhjMV2YCyybfc29w8DqVaoxVIRH/uHj4Eb4bDzzUQZtXA2PuInC84cOxOyMU0CR3ORikXWakiv1Mh7OU/zoFgKrM46FqYAUSwGMxYB+IlFuelTztkkYxThAxCr06iMRZt4M3QDvMCD84wTZF32HZ8Hv/QgZrbNYGwqewRHlBUqRVGgLMcoRmAcG9Z+YJgGvnXxWw5xl5SxCBDS3YuG5SpR7CNmQGAEvPn2N+N8+zw+e/azAEi25dnmWWwvb0eZd52yqkIVki7FXrODosAVkGNz6KjhBu6u1gVLsYC1ylwhB1mXY61QAWCyMImm0owkQBVdAUuzZJmezziG89ns2nCIRcNAoVgANU7hXQ+9C9OFabzp5jfhwNiBTDWLfo4J4Coqg0rSKBxeOoyJ/AQO1A/0tY4hhhjimYEhsbgJODS/jo989zwuNd0B42hRwP6pMj58/3nHHvG7Z9ewb6qUnXAbABRF4YUH3BwPOz8vCHsTmKDNmIWCRzEYJASCKFp5jJRF5NgZe1mtUCn2yoT7BhWLIWKx1wVfIAOVSUtFeHqpA4olgd+8IOClr/ppjP3Q74MWyIN1Yf5MaD3H18m/35oP78tOiFg8gu179gEA9G4Dhgm0Jf80XkKMZaiQ+mEQBIlFPbDMao6DrOmQNR0sk5yjZ5omWNElxzkmrGLLW5l8PEODZxnkOcZZ5/LlSzh039dxx/NeGLuOikjDNIF1y7bUJhZH8uEBdL5EXiIohoWiKBAuP4Ix5RK4mPNW1khWoBhQwtnnvJlSiLaJRZoC9k2VnH1QzrHobILlSBwKAotX3zaHw+fXcWE9vuu1wDMD2RBPWYrFsshBCKhJ84UiZFWHyDKE7E4ARVGYLIto9FSYpkmUt1HnCJ9MGBYFFoqugxcEsFfoHjHEEEPEIFWxeBnIRWSDpcG2mtRkgA0Qi6GiDeVXq2lytCIuAPv5pajalSMW7/s78m/QvpOKIBZTFYsyinkRB/ftwMuee1toVSPVMn7jFTfis6/OYyRHfpuPWEwBx5ihsOyHj5/BNb6iYkrxSVciiUUH+VEAVDQRomtEoUrRPitUAD6SLxPqe5z/NE0rhzBIZtpEDgJkkEYymL22bP9+72N4xfNv98/bzLBvE8hHnmUgpeQhZ0HfpGsEttcoFHkKGLsq7H4xugeQm/EWtEHkR0nmYfBc+eR/Az7yMxve1khY7ygdlcK5poGS93iKFQAmsPx49LybjK3T46hXByDw2pdJw9r4PvezxSNAdZZkXcahPE2OTZTV6wPvJ9a+d/wGUZ4OMcT3MAaxQl3sua4LdnZZFLyKRS+Cyh+GZjCe91/PedWyEbTUPnEZiwAhNaIIjawIZiwCCBEUXsUiAMzt9igWTQpST0KukMNNd92Eq2+8OrSOcq2MO19wJ+beMAe2woKiKFw4mx4Rk4Qzx85g+1Xb0ye0EKdYDEJgBFAcBUZn0JRdckezxgBexSIAX0ZiR+ug46mPOeqyGBWWaZo+YtJWOHptLoO5eEFryUNfOoQ7v//O9B/mgWqoIWIRAMoVUtuiBRqa3D+xeHL9JD5w5AP47mUSWRObsWgRp8H8vaZMFIv9quPu3nI3XrD1BfjS/Jew0F7AhfYFKIaCa8au8ZG6FaECSZNiVcaDgqIo1MU62ko71MDd1bo+dWG+mCeKRUaIJAIBkrPYUlq+fFYbNinsnVfW5cjrGCD3B1mXoRkaqjuq4H6EQ02o4U23vAk3Tt4Yuw1Ry+kHDM1AYIRUK1RVV/Ho8qPYX9+P0Vz26JkhhhjimYMhsbgJMEGy8r72uD9T8eZtI1A0AwvrZCDZ6KnYNVaKJTyyIItX+c1b3WKfTQomKZyiUBDcAgQXUCjVCv7in80X2B7jco8MxoLWh3Ew5StjYxQkFmfm/ANXqdcFlyODnj3X3QoAePDkBSz+61vQPfJVFEoVVGqjoKzfRTMsFs6d7msbOooGzSoKrK0sYX11Bdt2u8QiADR68YM+lqZhRni39wspqFgMXPrVPOmwl1XDUiAmn2deYpFn6JA6MF8soafoEDgaLE0hL7DQTUAQRXz5Pz8BTVPxrHviiUU7S3HVstO0CbtKLkxGMTbpRLMOqZ22/UDYNapoKRaZHBmQ54rl4Cxk2yxicawkoJp3r4V6QUBH0TbFTi8Or797JxiawmcfvRw7TVFgwQ9gQzxVIS9F1TwXViwWCpBUIzJzM3JZVdHJyFRiVLCFFAVhUWCgaCbmdl6Fud37EqcdYoghNhndlQiiz4P2ErFG7BOmRWKYMAFGAKV7XlaDloAM51csdrLZr9o5x21JAZjNsZMMwS5oBIqNBs2GLBbCxGIgY7Eno5AX8eDH3o5PvPPN5DMPAVctFTBeKzljsUpBxIlz2VUCHA2iGvTg5PwlHOhDJQBNirRCdUCzQGE0mqSyFYtA/4rFYEGm7idRCjkxTGZ6yGe/yswEAlZ0ra6EVzzvdt9nuPxY8jYBhGCLgcCx6A1KLHrUl+MjVQBAtTj4OXzthPWc9arlbNjZeM2MheHCKFEsBo9JZ5E0AHSWo+fbCNQuAAqXegxOrZkoeS3ZCmMAlwPW+88LHQR//Tu/gH/4s9/sf8bOMiEJHVWhCSwfBeq7o/MVbVRmAalJCEQvLj0MnP4ycPUPArufP5ilyxBDPIMw30rP+QtiueferxRDiSUpbMWibKQru73qIwDgOCs6QyJ1gCTFYokvJRKLwWUHwTFcKGMxiCCx6MtYNKyswZyIt33gbXj7x94OAFBk9/5TKBcg5kVQHFl2daKKhTMbUyyeffwstu+9QsSipVhsq22HHNQNHQzFQAo0OQVVecuSe36kEYuAP4fQJmF8RFTJTywGiermShN3vOCO1N/lha1wC22LSLaF5umBMhbtTEr7X9ueNahm5WgOLM2GzutBrFBtvPn2N0NkRfzLsX/BifUTYCgGN0/c7JtmRBy5IsQiAIznx9FRO76MTQDoql2IjOhcV7lCjljRMnxkxiIAbCltQUNuRJJyqqGCpdgQsRingCxyRZgwIekSxl44hnwxj9+++bdx2/RtseuPQlR+YxpybM7Jf4zDsbVjUAwFd83cNdA6hhhiiKc/hm8jm4jPH/EX+4sCizt3u10btTyHnWOFPmOM/QiSfFGIsoA8+tADAIDL506GvouC1wo1ODi1lUdveel+PH/fOGoWuUI7xCIpuIi8//Ryx7tXjnjxImiFynL+wVev2wErEmKRooBL58/hA7//05AXjoEbmUGhVPGRkyMTM1iYP4NumwzMv/Ch/4OL8wkFDdNAV9ahWRmKZx4/BgDYvvsqAIBhEYstKdzJZO8roljMfpnqenTHZVCxqAUu/VqeR08likWOTs5YBADGk0PIReTuFUpldBWiDGQZCnmegaobyOWLOPrQA9h99bUYn47PZSgJZPuaPbJvbOVnLZegmKBZqEq6B3wcbOWtaQ3SxXx0px1DUyjwDGaqOWceABgt8ugqOnTjyp3f1TyPV940iwfOrcWqI0siB36A5gWHWMyF588VipA1A6JFFKdhSy2PpqRC0QzIukFUrYH5vM0LUSiKHBTdAEUzzr1liCGGeILQXQGSLHM6i8lF8RicfJSMRb57fIFYoXqLdUEik+H8isWMuY6c1dTUldTIjOIrCSNKsRiwH6uU/B3D7a7kI9gWLq/g7tf8D+fvWrmI5Za7n3bNjODk/EUcPUXUn7/9l+/F0VPxhVWeRoicME0T1/RDLOpqsmIRIOSJHJERpauWYpEKKxbTMhaDRGWAWMyLAtBb90/jIbgqQfvKACG4a8sYrt7tKa4WJ4C100gdpyYpFjka3UGIxUc/Dnz8l4HVMwBcNedGiMVrxmksdgxgZFv4y7qVi9nKmJeaGyFqxaA9sY1NzjsCQBSLnOgIbkte5QRFA2P7SM6i3r8qIxWXHnYV1gBEgR8897K6zSUWO0vkd01fD/AJBbjqHCHNvdeuJgPf/nugtg24/VcGau4YYohnEhRd8ZGEWbHc9RCLXivUwOuToaSTgnFgrWYczXImSlIslvhSKKvOiyhlmm9dNBvKWAyi3fQrscY92cAwAakr+Qi2xmoD//0n/ru7jZUSISetRYzNjuHC2QtQrHfvI988glNHTyVuZxCKrGDH3h2Zp2dpFiZtgq2QfRtH+PIMD4ojxGJH7UDVVeiGDgMGaNAhK1Qh4J6wJrlNPmkZi4CfdLOntxV9AFAIjPsUw6+SLdfL2H/D/tjlR0E11FDGIuASejRPQx0gosX+7XY+oG0zmyuFlYslrhRSLHqtZ20oF7LVZypCBb936+/hVOMUPnf2c5gsTGI071fA1cQaulo3RP5tBibyEz4i2kZX7TrWr4BlhWoQxWIcgTpbmkVDaUTmE8q6HLI9lTSJKBYjah62hamkSTAoA2WhjIMTB1PvC15wNNfX9DbybB6KoSSKVB5aegg1oYYbJm7oe/lDDDHEMwNDYnET8eDZdbQk1TeUe8V1M85/758uOyTcZiEXY3m4rR6wXFDIQ1+VyUBq3BobFNdPRM7vtULlIrzsAWCmlserbp7DiKVgpC0ywiYWg9tWE8lyuF5EBk8EpN7gSkZeEEOKxajl28q71VOP4Nd/8gegyAomX/028JO7UCxXfOTkyNQsLs6fhaaRwca9n/ln/NQLb8UnPvReACGnMTCahLasQdUNlH/sf+KcxIMXREzNbgMA6F2y7KQCFEtTMDfFCtW/LzUzrEJ1MhbZZCtUAKAFD7HIUGHFYqGInmWdSYg4FopmgrGUJHc890WJyy9YBFbLehlryxp4loaQpMRjGGjq4BmHNkmoxJCzXty1eww3bxsJEIsCugo53lcSb3juLhimGWuHWhIHUyxOlEWURBbbRwvh45kvQtZ05Hgmk4f/bC2PRleFohuErGaoEPlcSiUWWSia7mSTDDHEEE8gOksAn2CZ0160rAj7g61Y7MkqwAYUi8EXXob3E4uty5GZzEGwFrHYlgZvNPHCCFoRShHkmQWTZkP25eutTngZHnR6EopWUeqBR0/gllf+Oi6vrDvf1ypFLDXd+/3O6RGcPHcRx88Qpdm/f+U72PfiX8Tv/fU/kW0IDEY42gypzCiKwv6AJWsi0qxQAaCyBZCaUHQTnOlZn6FbZGtExmJCnhOAMFFZmvavMs/5VYia4psnlIsXsP9/xbOv9T/TxvcRBVwSUWWa8eQaSKavpPRZ8Dp/P/DQPwMwLWJzc1DkKaz1TCCqgzxXA8QqkLUon7caCaLI4ysFpQN4irOhjMXp64nicgMWgpHQFeDrfwU88E/k/N0oRne7x2D9HAAK2B7OZPOhtp0oWL33wIf/lXz2rP9GSNUhhngK4h8e+Qe87r9ed0UK/5rpX+YgakUAMOA+k72KRYr3v6vYisWNEIuqRCwrk1Q/Jb6EXsJzJQqSJuHI6hEAAEf5FYt0RInP0A102249wKdwNCjIPdmxvTz7+Fn88st+GedPu80VpUrJl9M4umUUC2cXoFhjrU6jg597wc/hz37jzwAAZsZG2yjFIltlUdgXHoNyNAfQcHIWFTN6n4qM6CgWu1oXqqE65w5DMyErVK+VKU3RTk4g4FEsJljre+e3FWqixzEjaIWqGqqPWDz4nINgmP7qPYqhxOY+AgDN0dD6HYsAWOmRKIQoS9AginyRZP95fksUsdg+1IbaUDFXSh93vmj7i3DXzF1oq21sK2/z5SsCQE2ooaf1Nj1jESC5iC2lFSYWtS4hiq1LJl/MQ9GVRGJxpjgDzdCwpqyFvrMzFr3zyroMno5WLNoWpj2tv3uEF0l5kEnIc3mouhpvF20aeGj5Iewb2Reygx5iiCG+dzAkFjcJLE1hqS3j0Ll1XxnctlcEgG0jhVSVTr8IWhZmBUNTOPvnL8EkHz0gy/EMzMADZN9kCZNlMVY1aauKFFuxGCAW7bmojNYFS5cGt9fgxTw6rWbioLbX7YCxshMf//wHUZ/Zjsmf+kuYKnl5CCoWR6fncMFjhfrf3/Up/Pb/fDsMnfye5po/+4nVe2hbdpDsyBbwt78GW3fucQaOhtwFQ1OhHEYvOIaG0YdiMQ5BklYNjA3qBR5dRSO2lQyFNFEazbuDZYGlQ9M7ikWOBkfTKAgMFN3AyuIlAMCzEvIVAaLYHC0KTrZiR9aQ45hkxS7NQFXSrWriYF+bspZODL79J67HLz1npy9/dLwsoC3rUPUrS4SNl0S8/Lrp2O8rOW4gYpFjaHzhN+/Gj98aHvQLhSJU3fQ1HCRhdiSHjqKjI9vnVNgu13tvjEJJYCEHT9QhhhjiiUE7hVhU2gMRi7zhKc4FicWgFSrN+a1GO4tWll8yWMajWNwELHpIPgDA0tHYac2AYpGiCDHZ6cYXJb2Kxb99/ycxPV7Htz/8v53va+UiLq+5xYRd0yM44clY/MzfvQX/8tdvAmuNuc4v+4kfjoaPnOgoJnZsmUwn9bzQNfBcCrFY3QrIDTx02UDdWHQJGUN1MhY7Pf8zum/FYsD2cSwXeN52/SRZUB0aJARf8exr/d+P7wdaF5FHAlGlSUhSNAocg24/9mNrZ4Fv/i0wYqk25E0myYCw97uNke0kozILAWBnqj7RxCLnIRaDWU8zNxJVX5ZczH5w/n5yruhy2Pp1EMzc5B6DtTNAeYoQ8UmozhKC01bOrJ4Gjn4a2PP9wL6XPuFq7CGGyIr51jyOrBxxCIogHll+BNf84zU+VdiguNDyWzlniX4JWo6quuraKgr+ZdgZi0lqwzjYSi9FJnlqQWWXF0WuGCJNg5B67jZc7FzEqz7zKnddtN9WMe4RFbRDdWAAvU7PIcg+9YFPQcgJeOcn3+luY6XoUyyOzhJi0cZVt12FP373H6NYJeqqxmJ6fm9lpILaWNj9Ys9f7MH2394eIqlYmoVBu++GOqKftQJLrFA5nXPUbbaSkAYdskL1EoNVoerkBAIusZhE4tlKz7954G/w7UvfJp8lKRYDuZ4Hn3swdtlx0HQtcZsojoI6wDh4RbKIxQjlXhBFLkws2laoUfCq/pLwlme9BXOlOdwyeUvIWrMm1iDpUuL1NCimi9Noqa1QE0BX7fqOp22FKrJibMP1dJHUaqLug4qugKf5SCvUqLxEO6+yp2+MWGTp/scNeTYP1VBjrWdPNU6ho3Zw2/RtKPED5FAPMcQQzwgM30o2CbMjeZxb6eK/Hgtnn9EUYJgku2yjCD680lQ/aYizvKQpCobkt+964wv2otFTUYmxo6SZ6IzFSgqBYMR0HF1eOA+gv+BnG7yYh2maWF9dAlACHcwgMQFd09DrtAERuOmn/gCVUg6HF9pYOHMIdK6CYrmC1UV3wFyfmsMDn/8YyteTv1khh+e+9EdweI3BEQCm7v8drNZDW9Yga+7n2ywbVLINJsoii06CYpGhKZgbJBZ1TYMiuwNojhdC5Fc1z6Or6pA1AzmeibTT9YL2DAwjbS4LJSwpOsnkYygUBRaKh7DbtusqpIEQdRo03UBL0pDnGR+RFwLFQFUV6Pk6mpWd+ObJZVAUMYOhKGILQ1HA+bXoQZnAEpWkkoFYZBnal68IABMlEW2JbO+Vxq89fzf+7cELkbbK1Tw3cI7reDl6wC/kS4CcTgbamKmSwfdyW4asGuAj7HKLQvL9sCSykDUDhaFgcYghnnh0V3wF/UjYREMf4L0vxQwPyps9EiyQsLzfBrB9mayzlUwicCwDGEC7tzmKxbMLAavIxfgMPoNiAIpBnSHjoOunOAAK1pptzMTM0+720LNyjN75h78C0zR9lou1chEnT7u26zunR3D+0rJDsogChxfffTPmtNNA+z9CdtwUBaC7BpSm8Jp/5/Clo6u4+ZYD2X6888M0CHwe9y6Q8YoRpYCrbgV6a/jOgo5XTa0QUjA/QogZaxxDFIvucU4lNyMyGw1GBG0VeUdFHfA+cq18RZvXKxcC2xlQndx2dUApMU5UYNv5hIJ3gg0qAPAsja5iF+NSHmBSE/jq24h68IV/AXzwRwElpvB7JVDfBcx/mxD4aY1Dtu2mcgWIzzjYxKI1fAgRi1MWMbxyAhhPH1dmxumvkH9Vycon3WBW6+TV7n/rCtnvaVbSFSuLtbUEjOwE7nsXseq94zeA4lAVMMRTG2217RT+dUNHW22jIpBmpE+c+AQA4FMnP4WfuvqnNrSepd4SeJp3VGJpWWAAsNT1NwL71GMCUUVyFHlHcTIWByAxWIboFLjaAAEAAElEQVQFTKJY5Bk+cdtsRVISFi+4Y5G3fedtqIt1d10BwiDKChWAT3HogwnIPRmq5fzz+t97PRRZ8SntSpUS2s02KiY5jqOzo+i0OlA1FSxYUDSFO7//ThijBj7S+EgmxeK2vdsiiRnaitNZlVad8wYgikWTcpcbSywyAiiOAqdxWFVXoRoqOIMcU1uxWIG7XK+V6Yg44qjWOJpzCEkxIbNbzIswTRMn10+iyBdBg/blHwYVi7Iu+4iafbdEK9BtZa33N9tQDCXRnhUsBrJCtbMV22o7VXVc5stYl9ehmzpYq6ycRCxmxVh+DB992Ucjr7uqUHW2b7Mxnh+HYRpYV9Yxlh9zPu9pPYzlx5zrSiyIUA3VRzYGYROLa3KEYtEIKxZtojJJsbgRMlWg49WVSShwBaxIK7FNG4cXD6PAFXDHdH8ZoUMMMcQzC0PF4ibgK8eXcHq5g+1jBXzr1AqCvIJdZM9iIZgG0VIo/vANM7hjZz2kCtxMGL3wAzuOVATgkHcOsbjBbVu8eCH0mWEYmewu+RwZwK2tkO51hvVvt66Q4tJn3/2nMOQuWDGP40sSdo0VHU/TQqnsUyzWp+Yg9bJ3CrFaDyaARs/d3u17/APHco5DT01RLG4olTOsVhREMUSe1fI8TJNYjkbZVobA8k7zNc+EMxnzxSIkVUeOY8DSFPIC67MYzXIt2ESdqptoyYRY5GwCM/QCBZgUsUKV9rwQizN34f994wze8/XT+L9fP413f+00/v5rp/B3Xz2F+06voiiGz2OKIlmQWYjFKIyXRfRUHZK6+dYcQcyOFPC6Z+/AdbOV0L6vF1MUIAOAzZEOtKyKxWnrnrfSkaHo0YrFAp98fyjnOMiaMTRCHWKIJwPdlWj7RC8yqAeD4E3P84gVQXnVQEGbUyaKWKymrsNWLHYssq6fnOIonLvoL0Li8qOx05KMRQp5mqx7skTumctr0YUWRTchKyre9p6PYnFlHTlRCOW41SpFXFxzyaad0yMwTRPNdh928ZaS7+sLLC60TBzYszVlhgAMFQLP4p8Oq3j2ezswRvaEp6lsAWVoOLaso4qWqyLTFYBiYJimT7lJ0xR4LuWZEkEsqiVX6VXjA+PBzhJA0VjskudNyApV8xdlmGATTmEMKE1iZy6B3FOS97vAsehlUSzqGvD1vyRWrs97M7DjbnJ+22oau2ClDNChnkG1AwAY3UMyKbUMxSq7kSDl928qlLZ1HyLHM0QslqbJdnmyEDeM3hpw8SFAKBNic6N2jlwuTCJOXONmLsaharlHdFeAo58hFqq3vd4lU4cY4ikM3dSxLq8DAH7tS7+GO//5zoGyENOw3FvGiOg2ObXU9MaMpZ77TKd0ym+FSlM+i0U7Y3EgC0LrtUeRlFQr1GJSprWFywtu8/o1o9fglXtf6fwdzGWjApEnlPUOFqVYpEABKtBab+Fj//AxXJq/BJZjQ2SYnbFoEwyjW8gYUNlAE9fWPsciLMX6icUYFZXACKA5GozOQDEUdNWuo76jqXDGolex6BCL1vjUni8pn07Mi5B1GSZM6IYeIo0KRT9xHLSW5GKabZcZcs10ufBzVzXURGKR4ign3zMrDNPAurwOkREjLUGDKPNlQpJa14xpmk4240YhsqKPVLZRE8nz9EoQixOFCQDAurTu+7yrdZFn3etBLJHzxftZEGW+jAJb8KlfbSg6uSd4hQ+2YjEyY9FSLKra4A4KcctOQ54jtq9R15ppmji8dBh7a3uHNqhDDPE9jqFicRPAUBRMmLh6qoxPPbSAHWODqeyisNKW8ZXj7gDYJhFedGBq09YRh8a3Pgxt9QLojMQWTTOk400ig59BbVptLC6cB6p7fZ/9/MuejfnTJ/C5Ry8lzsuLpPjQbbdCZ7neXsPSR98CALj1R34RZ4U82rKKS00J33/1BL5qTVcoEytUe8gwOt1HHhEAxnoJWe+6A+6gUq+a41IzFgGKFEZjvM3T0Ov6u8uFXD6UI2iraVuSFqlADMJkePAMDVmz1GhB0qhYJhmLHAOWplEKKBazYKoq4tD5dai6gbasoSCwsJsf1TH/ecHQFEyDhqooMGka+bWT+NDv/xQ4hoJhmjBMMvgh/5Jzc6wUHowXBDbxeCRhtEhUGI3e5meKROF3XrQPTUlFLkDQTZQ3n1hkrCzSUi7bI2OyIoKmyL5QLBVs8BwppiyrJLBE7Zu1QDrEEENsHnqrQC2h4MMIbuYakPk6DVmhJikWQ8TiEjB1ffpKrFuNY4XKComZeGk4e2ERvtLG5UdipzUpxmc7yVm21I12WOW10jXwwx8m2/VzP/wCjN//F4TMeM6bfNNVS0WsNTowTBY0RWHXdD20rFT01sk610mB45o92/qb3yBWqPdsZ/C51xSwGFU4sqwdL7VNsgsu3E+UWjqxQg1a0xZyQnqTkbXdXqjlrRDWT4BjgCqrkEYjm/zpLAFCGZpJfmclRCxmsLObvR07lj4b/31Knh/PMujIKoCUAs65e4GlY8BzfhfY/zKi0M2PEjLLNFwr4s4Sub76aU7MOl4c3UN+T3fFVSR6oUlk3zI8IcJoJlWxualQu0DBLVaFiEWKAqYPAuvzJF8zaKc8CM58nfzOq14CPPpvGycWK7Pkuvbey7bfnX4883Vy71o7BVx4gGQyXvNK8tkQQzwNYBOJJ9ZPAACOrR7D6Ez/DUlJWOotoSpUcalL6gJZyAYvwUkZFFRdhebJ1fWqtGzFYhYlZBxUSUWJLiWSNDZxkITL5y8Dk+S/b5q8Cbuqu5zvWCpZschZGcntZttrGgAA0CUdJ95/Arqm43kvfx4mZyejt7FcRKfZca1QLWIxKUM6DVH5iklgaRYG5a5PgxappOIZ3slYBIgKz1Z9MRQTIhaFnHtfHRFHcGT1iHO8VEMNW80GIOZEh3zWTC00fb6UrFhMg8b4n0O6ocMwjWTFIgOYfcaztJU2dFPH3upeHFk5AlmXE+0zy0IZki45v0XSJbK/qCtXYrbJxqCl8WZgIk+IxaAFb0/roeCJh+Ctmk8uxdllojCBptKEYRq+8yFKnajoSqyq0FEsGhtQLCbkQSahwBVC1r02LrQvYE1ewysnXxlJAg8xxBDfOxgqFjcBD7z5+/CWl1+Ng7MVGCbw3bOrm7bsm976efzmhw87f6dZHJYCVoUbEUl2Hv485AtHUm0x3XWR6WzFoq1u5AbIewOAxYvhDuT50ycyzSuIZADX7fhfME4dewwX/+k3obWI3/ncwWeTz5fJNt+9x7U9KJaqaDXWnb9HJlPyUAJgrQFm09MtFlQs1vI8eglElq36pIJKjj4QIhbFXIjks4nFnqqDY+jU88agXbvNKJvLfLFEFIs8sRctiiwULcMA2no5oEBhupJDq6dC1Q10ZA0FnnXORSOgWmEty1hNU5zl7J4oYv90BQdmqrh2SxXXzdZw/VwNN2yt4erpSqSiNs/3T4DaGLWUguubZL+XBeUI5eVkjJ3pRkDz5HoqpdiX2uAYGvWigEZPhaIZ4Bn/OULBtUqOQ1HkoOomtAxWOkMMMcRmwiCETkInLgp1wJuVkvEFnzc8xRxWBOUttKURi4bqJzNT4FihJhVeMsCnWDRNYPFIaBr77mYGCjC8dZ9rtPz75/jp87jtPV08ukSeNy969k3A6ing4iGi0vKgVimi1ek53O1UvQhR6JNAsYokrQ7Z/wd2b+tvfl2FwHPgrZxjOmAlB8CxbtQMQDMZklMHkONG0Wj3m68IuPlyHqgl0uS1vUqjRMt+5Vd70acOS1MsRmLnczAtdFGJ27wUK1CBo7NlLGoSaRq7+gfd31AYJWSap8iNziLJ+usHMREDIdhkYlxu4uJRACaw5WbyQiFWN65YNE2gEXYkiYTSBXj3GBajrHO33Aw0z4eum4G37dSXSdbm1DXkGA2iGPWitiOcVzu6K3paLygKKE0B8/cBQhG46zeBSpyh8hBDPPXgVQZeKSz3llEWys7fUeqgILxWqJROmsO9FoNewsc0TFCgIGd5dsRAlS0rVCP+/TCTFWrAlt3bmJOmWLTzHoOKxUvnL+HsO8+ic5Y812573m2x6y9W/OSnWBBRG80+JotC34pFmnXsQQFC4kVlUwoMyVhkNLJfVqQVhyg0NAOG7lcLepVjI+II2kobXauJRtEVsBSb2Agl5j3EoqGlKhaDuYRpCBKL9m9JsuIEi0x2tF7YNqj7RvbBhIm1XnIOakWoQNbc32KrFb3X5GbDtkKVsjSK9YkRcQQMxaDtGU/ohg7VUFHi3LEmZ9XNCmzydTtVmEJbCWdVKoalWPSSjYZCVIUR5B/HcMTyeQMNDiIrDpSxWOSKfrtoDw4vHYbACLhn9p5NceYbYoghnr4YEoubAPs+Wi8KmCgLWG5vHrHwA9dO4deft9v5W0wh6ext+b79pOOGtYiYrLd6U9q4fYFiWW9uqxfwP75/L2ZrKXZqMbgcQSymwc5rFPNk8Ntt+18wTNMEW53A1E/8KfnbIuxU3cR4ScCucXfQUCxXfDainCBidCK7UpTRe6AAdGR3MFgfm/BNUyvw6CQUoPKCTSwO3vkVskLNFUJkjTcvMEgCRcGgGafAyLNhm8t8sQhJMxwysCiQvLw0VLvzZBtZClNVEZJmoK1o6MgaioKbsWjmqlA9LwUsQ8MEDU3Z2LVXEBhfJmY/GLcUkK0+bUc2GxOlK0EskmVGEZlxmK6IaEkqsUJlaXhjTnmWTm2SKFr5sVnOmyGGGGITofQAU/cV9EPIjfjVQRGWlVHgTU9xjhVBedVAwQYalicqpOB6baRYCfoUixuAL2NRahCrxABoy5rLsFRqdgc9bzWwNJphMmqySOH9ryRFuYLX/lT3P0NqZTKesZ/aNE1jR4yiIBZS06cq3b11ur/5DUIs2qCiFKD5EZisgC1lGiuokixKXXUUi51A000hl+G49MLnlWYp2KZLFApml6jBbLQXidLLQphYzFCI2nYXaAq4cy5m3JVCrPEs3d9zy1sQLo4DcsfK9fNA7rMzP7PKzhq7xSmOLz1M9u/MTeRvsUqsWwd00ABArIT//Y3ApXjlrwO16yPlSvmIIursLUSRvH42/F2/WD0FNC8AO59PCEEg870tBNE6Lyf2+7s8uXx6vqINSwWMG38W2HLLYNsxxBBPEpa7m299GsSqtIoy7yEWM+S7+axQDXJtdjX3vh4kAVia3ZBSSJEIYaDqYcUixVCgazR4hk+02sxzeVw6H+/WFKdYtAk0mqaRL+ZDGYs0TYPO09jxC+R+J+ZFfObUZ/D+I+8PKQFLFWvM5fl4ut+xRABbd/dPLHpzFTVokYpJnuFBcRRonbxrrklrjhJVk/3PRzFgPz8ijsCEiRWJNKE7isWEsqlXsWiYRog0ilQsZm0AAqAyYWIKSCYWTdrsW7Fo5wFeM3oNAGBVXnXOJTMinKTMl9HTes5vsZV+Nvl3JVDmy6BAobcBJ5I40BRNiGWP8tm+N3jJUrZArre0hoAtpS1oKI0QIagaaohEdFSMMXaleS6/sYzFARWLRb4Yq7A9tHQIu6q7HAvZIYYY4nsXQ2Jxk3Hdlqrz32xGpV8cjMYlvPTaaRyYcaXlWbtBbt1ex/9+5UHsmSCDwGnlPPTOOkaYeOLl8offDOlL/yfz9p0+fgRf+PRHQ5/bikVVUfDPf/bribmMSVhcOA919QIMuZue+Weh27Y6perjoCgK3XYbpmmid/4xKLKEnVddjYkf/zOwBfJSr3s6d/ZMFFEruNsqFMLdVtNz2zJvP2WaqOQ4tD0D2ODxqxd43/dBOAQgu3mKRb4QLsbW8u7yeZZKtULVwTpK1CjlX65QhqIZKFjkUIFnoepmatYV7SlWjVsE2WpHQVfRURI533bZykKGJttrUHSm/M0kFD12q/1ipMCDAtBVnjxikWMoVPKDnyvxCybHoihkH5BOV3NoSRpkzYAQIKv5DHa7tvp6SCwOMcQTDNlqMAqqbLwQq34lYIRlZRQob2GCDTRBhBSLQphg8dgi2lheWUFPCd/72xIZ75gWsTioXZePWGzMR07DWMSiaQ2r21aWoMhzqJQKaFh5iB8/qqLV7mLP9i04I1fxjsdJUa4QocR6wU4Grz3IucSiZ9ftmuuzmCe3fGQTl5ZtGISu+vIQaT2CoLMUVnMVCsv0KLB2mhCaepxiMYPqUo4iddxxhGi2AdFjv9RdJjmJFkJWqLqSToqN7EBDF3H3tpjnndoBaDZWTZ9jSbPaQCiME+VdkBhsLfS3nJRcpMy49BAwuhcoWvs0XwNUaWP2oEuW4vfSw+nTql2Ad8espUJEs8P0DeTflVODb5ON018h67v65YTkBeLVnGkoWoU2S8nrKF3ru8n9MwsO/Aiw/xXADa9JbvQYYoinIK5EpmIQhmmg6rmeshCLi133mU7p5F3Ea6sYJHwYmsmkFNK06PuiKqvgad4hLHXdXT5FURD2kzFKEkkhMiIuX7gc+30cGdFdJGMPTuacjEQAaD7QRHO9ifHpcWz/re0Q6mQbcrkczrfO4/5L9/v2E+ASi3buJLBxYrFQSldqesHRHAwYaD1AfgcFKlKxyFvjSZtYXJVW3f0faOjmc/6xiJ3Zaav3FF0BS2dXLAKEAPUek+DvHIRY9E5vn49icBztgcn0TyyuSqvgaA67a0TU0FJajt1qlGq3IlQg67JD2trXn52DeCXA0AyKXBE9ffOJRQAYy4+ho3ac32Qf1ypfdbchR45tWjbqbGkWDbkBJdAkqepqWLFoEYtxyLP5RNVzGgRGGChjscgVI61Ql7pLuNS5hBsmbvDl3A4xxBDfmxgSi5uMG+bcB+l0Ndl3Ow3G+kJq8T0JRZF1VEEcNJx/+6uxazz+ASidfgCCmb0Y8cXP/Bve/ie/G+pos4nFj3/wPfja5z6DB+79atTsidB1HUuXL2Lh3b+I+f/9StSL2RQHnRYZ0HCCiGKpgnazidXPvgPNB/4d3/zifwIgg3h7mw1P586BmYqjkgIAM8I3fXp2W1+/Y7QkJCoSawUePTX+e/sCpRK6GNMQskLNhz3QcxwDzlEgMqkEtg4avHVu5SKIRS5HzjObHHKUl1x2Nd1khUy71JKhGaZj12rDmxNpk/i6aW4ok893/Pucl2XoEJH8RKMkcpFE70ZhF+ZLfTQJzI7kXCtUlnbyYQFE5nIGYR+LTBa6QwwxxObBLsxxCYVssewnArsDWMAHnwc0628+YQW/FapYJZaAATzyyCNodyRouv9e0bWIxeUW+fdbh46mblJUVs+5i57i2vo8wPBYl/zT2bczw2pWsi1HRZ5BrVzExfUe3vhZCa/7lIwPfeYrAACKptHRreJEkFg0Dbz9RSJ++WYetZyl1Pd8vbNfxaLcIgTfoDA0CB77aipOvVGewVyFxjJGSW7f+jnLCpUJEYuFTFaoyUViQesAtjW6oRN1Wdl1loi0QjUM/NbnJHzjnBYmtwGAonBSn8TdW9lo61SlGz2fhTxL7GAHQmkSUCKO1dqZ/pazUbtSgDQLNOZJhqFduM/XiWJxQ8TiMfJv80IyyasrZD2i2+QXylgEiJ1rZQuxQ91IJrOuAme/AczeTPJlC1YW3KDEog2b+LbPJbEMn4VDEm56LfCyvwVG+sshG2KIpwJsYuZKw6uOaivtyOe4F4vdRXAmeZ+xFYteUihIVLEUm0kp1P3/2HvvMEnO8ur7VA4dJ6ed2awNCrvKCRRAEhJgksGykI3J2WAwWIYXE2xjjM2LE+CEwRj7NQ582JhkTBBGIFCWVnm1QZsmz/R07orfH09VdaWuqu6ZzfXTpWunu6urq6urq56+z3PObU0galS9gofaJO4kW9h6/IHHQ5/vFhbVkMlS/ihUN363o+0yKx8q48n3PImhlSFkC1mUS2XMfm0WRz53BN/6yreg6ipoiYZeJuMnyTrH6qaOB+ce9KzTERab7fP2xPpgPLPj7DsOnSzsKEc74rNlhgt0thhGmRQoUFhqLjlCkdry7lu/Y3FQHgQFynHfqQYRgSKFRckrLHI05+lzKfvGIibMroQxhVY8Tlr7b5GJEBZpE+hyLLLYWESez2NQHITIiCgrZed9u9+fTY7PwYTpuPrKShksxSaK9l0NBaGAhtaI/a73wog8gqraji8NcywyIhkPy1EtIwBMZCegGipKSslzv+1YtIVF0zShmVqkAzXDZaDqaqhzNAkiK/bU+zLDZUKF8EcWHgFLsXj+5PMj+4+mpKScHaRngTVm02AGEsfAME1PRGq3HPqTX4L6039Y461be6rlFSwveHsouB2L5N/4wbjfSbC8MAu9w8y/KFrN9ix6OZfF3vvuRHXP95Df/QJcd8vLnMfsi7Jmtgtlz9kyCIqiwA1OQRjdDDkXFODGuhQWh7ICapaDjQopJPjFMj+s9RxqFY7Fpk9Y5ORgYZaiKCfmUkjQE1M1iTgEhAuLlEAGWvY6becizScX2+1egXNlcvz0Z7wzClca7QG2E/nLcKsaZLp7lJbq3Rdh+7M86hE9M48nW4dz2DGaS/T5dYvJ8KS9Epd83ZP9GUdYFDnGE5fLs3SsozubOhZTUrrj6P3Avh+ufj12JHpU1KiQ88b7xfRhARAs+vsdigARF92PuwUWecAba2o7K8nKse+Yt4hZtaJQVes6r+rx5+Za3evEqyjAsjs6bOUQkBuFfxJ40LFICjAURSGfk/GfP3oQf/pzBW+/hMObb72l/XoN8noZX2EL049g6wDZ7mKGvGf37ts8lTyWXTVABLdV9GaBrkBwOxY7RYoWJjGZpzFvWpPsjtzrRKFWffs2tseioROXV9hxYsFqlXY8brNE/i22o9UCwqKuAKaGT/1UwXO+WAfy4W6L/foELhqjQbdKwQeVWqSwKDE62ee9kB0m6/cLmuUEjkX3AbIW/QZnHyP/br6hLYTJA0S07FVYNAxg8RkygaByjESYdsIWR13OB0dY9AuS4xeSfbSankvHHiT7fscvkKhSO1I3Yf/Y44YYTE9JSTkdKCtlR8w5XjAUg0Fx0LldVauxrznfmIcIcg63HW3uKFS/iMjSbCAeNYq5g14BUGkpjoMOgKe/n5ss1/59Xl7yTmjQdR3z0/P+p3i20Y0tas1Pz0Nb1jDcP4xMNoOf/eBnmP/PeQy/Yhi3vuVWJ/rSsH5ria5JTk8uPekRE7L5YP0gzLE4yAyi9nQN4t61b81hv0+KI++vZbQ69lgEAJMyIXMyVlorbcdi0+dY9KUnSKyEfrHfcd85jsWIxkKSLHmOIY7mPLGTfmER6K5HoML4hEVrbBwl4JlU947FxeYiCkIBIidiUBr0CPV1rR4Ql3JWokBNI9fJldYKMlymp8jNbigIBTT1Zmg852oZzYx6ziN25KrbhUkL5LwRJyyOZ8n3Y7Gx6Llf0RUIjOAIckl6Zmb4DBRD6bnOJbJiT30QZU4O9KEFgIfmHsLGwkasy63raXtSUlLOLFJhcY2haQrnjudBUxRaVmXhLddswq9cPoXJPnKxuHHnCDiGchyN6wfIoODc8faPR1OpQ2TbJ/8dozlct20o8STXE8mh/U97brca3c+UrpZLntvz00cBAOKmSyBvu7rr9WmtJpbm59GslTFy6+9Bmjrfu4BpC4vtfTxh9YLkhzeCFrPg5GBRdaKLKFQAGM4Lnh6LfmKFRctFKE6eh7E3fBa1Vvdil9+xyEnhxeK85UYTYnrfURQF1aCQEVicN5HH5qHgoJbmbWGxHYUKAFQXwqLEM8gKLOYq4cKiLTgCcNxvqxcW25/HTLkJo8t1DWYE1E6SsPj652zEn9y6G4M9TGSIQ6cYCEx8X0Q364oSDJM4S/1ip5DAsZizxOieI+VSUs42fvZXwDff6xPcQPoldoNdvIgqaPuLGbaoE4XqGxuE9T5091lkRa+wKPVH9kt84llv0a1uXS81KvnEnLmlkuf2oVnvbawcbkccuqCtyUqmFTNki2gtzcT+Q9OYXVzBN26T8NLt3m2xlwsIi3v/2/mzL0/2tftM2E0UqmpQ5PMJc98lRVfBu8akHYXF4hSmChTKpkw+v6P3WY7FYBRqoMeivxjcqgAwO8ZGiixAa4129Kkdx9u/yVmmkPUdp5ZjMY4l5MDSFDg1pO+4UgVCEi1sJMbs3bFoR/36v0+VmWhh2DSBB7/cvt1rX0A3M3vIsT68rX2fPEi+x11EuHkoHyHi39SV5D1FOZ1tQU8OERaVOnFU27Fek1cQYTHG4RrJ/juB/ASw8Vpym8+Q881auD9TUs5Cqko1UYRoN/h/4xWFIgTXuKCqVGNFwMXGIniT/Ka0o1DrrvFJteWdmMFSbGh/xE7MHPD2QlSbJAo1DrdItLLoPYeX5kvQIxJcOCbcsWi7HE3DxMGnD2JhegGT75jE4AvJZGpb8LDX7XbvHSwfxGy9Hb8q5+SAMDGxIehYpCgKB/7gAIa4ocBj3eIXZGxhkbYmurbMVuhnYzs4dUpHhs2grJSdY1Fr+nos+hIjWIrFSGYEFaUC3dChGEq8Y1EWPT3/WJoF7SrauaNQbdHNLUQmwS2Y2+8lSogyKKP7KNTGEvqEPoiMiGF52COwtfSgiFvgySR8+/uz0lpBls+eEGGxpXUXJ5uUscwYKkol4FgsCK7WVDw5FuKcmRNZ8v0o+SapqYbqcZsmEYqzXHZ1jsUId2sUtnjadLVAKLfKOFg+iF1Du9BvT+5LSUk5qzkFZarTn9suncKLLxhzRCOOoXHdtmHHuZgTOXz21RfhwskiAOLe+cvbL8JVmwc6rvM3b9qGX7500nGw+Sn22MfQDZMdiO2BF8ah/Xs9t23HYjeUlrwDxzlLWBx51Ucx9LIPJO9bZ+0fVpAwPDaB7NgmiH5REeSHCccLaLkGXH0+kY8WgzPzunUsjuRFVJudBz1FKfqHBme/n4F14AfX44mZ7vdto14HL7QHE6wUPmiReTII5GIcbywvQNEMSByDf3rjFbjl/KBzwo7OLMi8Z900392gZjAnYN4SFv2C2UKtXaRkLcGLYliYPfbRAryOxflKC40uRcKhnID6SYxCHc6LHmfgWsByvBNn2k00szsK2u90TBSFKnYf15GSclZj6iR+0i8sKj04brhMpIgH0TdBpVGKj9r0F/3DXF9udxor+ITFgrevo48nDnmFxVrDSk3oQlicX/IW856dJbP5B2UK/RKAlSNEXPFvNmXHq5Pzlm45EgSWwpapcZy/eQy3bA1uh+2QzLojHmsLwLGHsGLFreYyEhiGXp1j0dCAMPddUnQFgiudgDI6CHTFKYzlaNCmAhSngLkn2z0W6zE9Fp/5nve2LY7J4UWLsax1XbGjTxslAFS0Y1FrAiHuhiD29SmkgKPUIoVFkSH7pSdx0RFJXcdhcQNQmSbuvp/8GfDAl7wivWkCj3wFeOpbwKbn+ba/R0wTmHkYGNredu4BlrBY692xuPA0+Z2x+9XEdbj4TOdlbUHPVbRyIoOVChH+7Pi/dZcQAXupxz6LahOYfpgInm4Xq9Tf2/kzJSUFFbXSldOvE+7eXn5hsU/sc9xpAOmVGCVmqoaKqlqFYFpRmUawx+KK4h0HMDTT1fuYPeDthag0vY7FTuRc/WRXfGOR+aOd3YoAnIhD2iDXRcZKarBdjhRNYWrrFKa2TKFwaVsgWWx6hUU7CnVYHoZhGnho7iFnWZqmA67F8fXjaBywot+bMb/xe7gsHa54+1rbgiHlmuhUCZkAZB8TBmVA5mTU1JojjKhN72fpdyyyNIuJ7AQqSgWKoUDVVSIURpRNRVn0OhYZn2Mx1x6L2MdCN45FwBtFavfai+rJp1O6E4WaVIwqtUrol/ohMALGMmOeSFAAATewfcza72WltYIclzvu0Zh9Yh8aWiPUrbpaRjOjaOktZ4JBXa2DAuVxFIMn4n3U/geAPJ+HxEpOrC5Azme6qXsmRNifZ5QD0u512OsEeonprUWXLXa6j9dHFh4BBQrPn3x+IIY5JSXl7CQVFo8DBZnDVZsHI3ud0RTlmfnEMbSnf00YblGxVimjWm5fpP7oFy/Ar1+/GeOF3vs6rnvHl4Cr39Dx8Tu//R/47n/8S+B+v7Co1Luf3buy7BUW52eOIptvD3yT9q0zlQYqD38XNZPD5u3nQlHCf1yYpglRkqG4Kj9+oYMXZdCM9zPptsfiaF5EJcJlWIhxLGatDHfKmok4U+7ecdBs1CHJ7YEKJ4YLi3akqe2S7ATHC44LTeYZj8sPAFiWcwRbW6iz++VREcW4MEZyAuar4Y7FUr392Tqf3RpGoQLAYrW7mbbDeeGk9lg8HjAsh4aqW/GlyS8ZE33tz1rivftVYJlYYVHiGKyxRpqScubTLAeFxV5wF+3D8BfJWivxjji/iypMuHS/JsO33ZMAIOTbDiUX5+uPYChDB4TFqiUsauhdWDy02ATLMnj5do5Ek2otElfpq5A5wqI1rH5oRsef/5zsj0vO3xraLwkgkakMQ4N3xYziwI8AVsB/PkWeQ1EUirmspyy0fnw48XtSrcIpqguJnxPAJyzSeitcoCtMAgAyRhUY2AKUDhJBjGJQa7bAud5nwLF48C5g5tH2bdu110lYzFnvK285JprLxGUb1ZMvoWMxEqUWdOy6WJWwmLWERVcRCgNbyL6ozQFH7gGe+jbw9V8nQqJhAI/9f8Dj/wnseAlw4++S54T0QuqK6gyJN153qde5LPeTz7NX9+v800B2lAh4rACUnu28rC3oWT0KOYZpO0CUGjkf2Oeh0QsAigGWexQW5x4nEzO2PN8rGsv9lkPzzBrXpaScCGpqbU2ExeVm56j1Al/wiHZ1rR75mmWrZ6oAS1jUg8KiX6hiabarSFe/Y1FTNI/42Qm3sOiPQu0Ug2oskwuNXVPiNGtSuzXuKS2WnGV3Xrgz4Hq0+2A6jkVr8kaOy2F7/3Y8ueTtTW33WbQp9BdgtBz1KhJK6P5H3aHKIY8rzR+FChCXqh+3sJjlsqirdUcYURve40OQhIDzbSI7gbJShqqriXssul2vPM137LFoO8daXV5H3a63JNGZOsh7SupabGgNNPUmRuQRMDSDsSxx7rmP/U7Cov1eykoZOf4ECIsCERaPh2NxWCbj66UW+W40tAYEVvC4jk3GBMdwgQhiPxRFYUQeQVkpOxMkwj47+z6PeOkjx+fQMlo9OxalLmtwNo6w6HIsPjz3MCZzk9jUt6nT01JSUs4yUmHxNOVlV5yDl1/ZjieiaQq7Jvsixcwk0PnOxaqPv++t+OP/8+7A/QFhsdm9sBhwLB47guGx5JndhmHgr//oo6g88A0os/uggUEuX4RhdLj4WsJiVP82iqKQc4mbADxipw1jTQfTENz3w3khMspxMCNE9q0Tea+wOFftfqZSo16DJLeLYLQQPrCQrNfiYwRuThChaAYEjgYTMsjmeAFNKwY4L5EBlyzYjsXuBjWjBasHBgUUfK7cUl11okrbPRZZz8zWbskK3tfYO9ddgX4kL55xwiLLcWgoBgSW6SqKOSuwjlAr+Y7xJFGoFEVB5lPXYkpKd5jJ+rHFwWe8/Q7jaJbje/i1fI7FsBn8jF9YdJ1PeZ+YQ7OAYWDAJD/+nzjkFc7qLbI9OpX8fQQcizNLWDficyhmRzs+3wTw+3/5z/j7hzXcc9SAaZroy2dRqoS7nmqNFjKSr+/Jsz8BJi+Hu81vXyHrcSy6BTqbBY4IbHsbfZ77FVtYtKNCe0FrgXdFYVN6KzwOs0DGbRmzCgyeQ8Tk8jGAJo7FrCtyLNBjMT8B3PM3bUHJcSwGHaIAwNuToPLWWFGpkX58VvGEYxmw/vGM1ug+GtiPWgfCxjKWKC7QdvEIiK20+rEdi26XnB3tumiJZtteCExcAjzwD8B/vgPY82/AObcAN3wUGD2PCGxRvQuTMLOHOAu3PN97vy3y+r/LSVl4ChjYRN7n8LlA+Whn0c4u0lpRqJz7s1RqRPBkrO8BLwODW8mx1ssYcOYRImCOX+y9Xx4k+zIVFlNSuibOPZiU+UZnt16ez3scM3U1RlhUfMKidX10u8FWfJOgOJpblWMRQNeOxYCweGw+IOoBADrsXtM08dUvfLV92zCRK+RQWfH+rp2vk31rC4uC67p804ab8GzlWTCZ9rk3W/AKH930bKNoqusaxrPlZx3xE2g7FmlXulItpA+uvb8N2kCWz3odi3XVE1MqSEIglnQyN4lyq4ym3mwLix0slxRNgeO5YI9F10S4jCuW3d62ltGdsOh2vTlRqBEuNA3WdSvhJdEW8O2eeePZcVSUiqe3nv/77DgWrX1bUSrIC/njHoU6IA6grtWPi2NxRCbtDuz9XVfrEBmxHcPL0NBMDTzNez7jToxnxz0RzfY+dEeT2oJtVBRqhssQx2KX40r7O5NlO4uWUcgcEcUVjWx3Q2tgb2kvzh88H4NS+Pg8JSXl7CMVFs9Qmo06HvjZj0/IawWiUOvhBbQowhyLw2PB3P4wDKWJf/mj9+Gr//DXyJx/A/pvfCt00KEioI1pmpBkGa2IfgW6YSKbL8a+fhZkMFWlgnEIw7noiASaBvrk4I+Ni6esQoor4hMAFmuqx2WZhEa9BtElLDIdhEU7rtTfD88PZ0WhEqEpOMhmOR4NlexXW6hzHItdRqHacZoix4D3bddKo70vPD0WO4nJCcgI3gHioeXuRPKhLBFVqQQ/IE8XWJZDU9UhdOlYBIhjF2gfWzYClyxW1f95pKSkJGDlyOrXwcvdCYutSqiLydOnNuBYjIlCZXivSCD4ej5yErD/h87NJw/Ne4pWVWtWuoZO7yN4rZhf9jkWZ5cwNebqE8TJbVeZj5Zm4je+dB9+58++jJs3M/jyy4lg2JfPYqWDsNhotpCVfddktQ6c/yrPXX35bGBrr1jHwPxI3ul3qNASqI+VsSyt9yynGSBiU8u3/7tBVyC4HAK03gwXFq0YyQzVaAtiywcBikG13vS814Bj8ap3Ao0l4L4vktvNMjkG/IKyG5pti3EAkBlwhEUhRHyF1mG7u0GthzsWGbtPtdXDu5exCCeRdbsdGPlxgJXaEwbkAeA1/wnc+v+IkLvthcBNvwcMbAYoChByqxcWpx8hUbZF77HkxJKGuaKP3Edcpwd/AiyHOBFbZaA6CwzvJNu47hLynvy9V22UGhE3efK9d2L6dYX87++9OX5h9PqimNkDDG4LfrdXG/2aknIWoxqq4xBcDXP1uY6PZbiMxx2lGIrHOeZgnY5tYVECuU5QJgWaoj3CYkVZnWNx4cgClJZXgEkSF+gWFfzC4sKxBQxPJEsqMDUT9/3zffjMRz/j3EfRFLKFbEBYdEehirLoEdxumLoBpmkif4krBSBM3EwKFXS8xaEaKvbM73FuhzkWGyEOfVu8MykTOS6HulZ3XHVqXXUiXwFLWPQdM+PZcRgwsNRYIsIi09mxyPHkMfd2cAznHJcMy4BxTYyxt62bvp2A97i0xSmB6+yEtUW3pI5FW8CdzJLkiRF5BCZMlFw9n8O+GxIrkf6Lhoa6VseAOACRFaEY3YtgSSmKRTS1Ztf7MAm2Y9F+rzWtBomVnGOPYRm09BYRjxMIqBPZCawoK85nZm+z20FoP2aLeGHk+BxaeqtrcX4yP4mPXfkxXDF+RVfPs8mw5Lxkx7U+tvAYdFPH9VPXJ5owkZKScnaQCotnKH/w/rfhjje8Kn7BNWBxbga1SnsA3OrBsbjicyzOTx/FyHgyx+LyDz6PfQ/djdf++h2Qt14BiqKggQkVFp0ip6EFolD9tDQ94FgMg7IGTRVI0HwRW0O5+OiTgUzwovzvb7sK//7WK7F9lAzgHcdipZW836RFs16DKLUHKlSHPHhbxIwVFgURim440anBxwU0FCJE2Q4HkWVAoXvH4rjlWJQ4xtk+m1JddRynbsfiWkWhFiQWx0rNroRc+/NmMsWet+FUg+EsYTGhGOjGFoZlX4FXZJlQt6sfW5BOSUnpgrUQFrkOjkU+CwxsDd6vVIlo4+Phhx8GAOLYSxKF6nYssr5rY1iMz72fd/6sNhQcmWm7Fu1rgS0s2ukC9nZeOxYsRs37innPTi9ivbuYlx8n4mIIH/5hC9964Aj+4D2/hpu3sE4Rqq8QPUs4ILANngNsvMZzVzGXgf/S9oYLyb6SFh/1PsCEFDAzQ727zABAa3l7LGrNcLHFGl/QMMlrcjIAk/RYbDSRkdrjj8D77t8EXPN+4Nm7iEDVLJHjLapww2cBd2EtM0REOHQSFlveeN1eUBvhYqdVOOZtx2Kv+qXcT75P9gdOUaTXYWW6vQxFATteBLz5h8BL/oK49WzEAtnGXsdChgHMPkYche7+iva2AeHC4oP/ANz9GeDuvwB+/KmgwLdgTUKcuops/+QVpCdsJejuAUCez4oAa+1X1vo8rb5HgW2bvAKozAD1zrGJ3vdpfUD1JeKcHN8dFCuzg0Tg1FNhMSWlFxaaq4jgtogTFv2EORzvu/8+AMCxxWNgKMZxLAIkttLdP8wWH21Ymu3KsWgaJo4ePOq5z+59GEWOi3YsjkyMJHr9+W/P45kfP4M3/Ja3vU2ukGtHoVqXB3fMrB2Daif/iKyIXUO7ULi8XQvx91jsChqxDjP/b/ixzBieKj0FA/bv/WTCoh2FalImsnwWDa3hOO/UhgrRNRYRJTHgWBzPkElSC80FqDpxLHbqschav1U9wqJLdGJ89RKaoiEyoscJmISq2p5wpBoqWIqNFKx1UwcoJJ5wvdRcAg0ao1Yqh+3cW261j5GVkAlqWS6Lpt50hLgBaQCD0iDqap1sw3GgKBRhwvTsk7WCZ3gU+IKzbr9jkWEZtLRWoI9mJyZzkx5h0Rbo3G7TJNG2WS6LltZbFOorznkFdg7u7Pp5QPscax+vD80/hFF5FDv7e1tfSkrKmUkqLJ6hLM13+KF+nDh04Bnn71aje8diqQfHoq6RwWnxub+CN37i7zE0Ou48poFGLsRtaPfMU5ePQZIzUPQoYdFI5Fi0qZs8ak3vgHk4ibCYDZ/tc8mGfvRnrKgWq1BYVw3MVbobiPqjUClOBENTOHc8D4GlwVlxYrZI53cG+mEFCbphOtGpgcc53nG42UIUTVMQOQaUT1iM+4xHLMebaSIgLC7XFTQUMmBlbWcny8FcRRRqxhW9uW0kj6OlRlfRpoPZM09YZFkeTU2HyDKOgJuUdVafRf+xInLxPRYBpFGoEdjnjdTVmRKgfDR+mThYKVxYzI87Pc88GBrpyeaj2STFumZLCQqLoVGofOfH/ZMRqnPA09/x3PXEvsOe2y1FhWySMclzqPsBwyCiGIABIXitCPRY9DsWM8MBgVOzCnUfeK6Af3/vtdi5ZcrzeF9MIS7r7wN4zs3tvoH2OgpBx2JX5MaA5ip6b+otuBOtaa0ZHylKUUDfRutv2nIsuqNQQz7/a34LmLgYePifiegk5EL7ajqIea/zNTvqCNJ8p9YAyircfKZJBC8hxLVhbSdHk09K7XUokhkClLrXWTl2Ael76D8IGA7I+KKopOLqnJnL+0lk7IarAM43Ec12LCquIuzExUQUfs3XgTf9CNj1anK/3zW58DQRgoetYtS6i9v3h6HUyGdrFU45+/O0RU1/RO66SwCYwKI3RSWUxjLwL7cD+38EzFrC/OYbEch7zwyT7UgdiykpXWHHRi7UVy8s2nGdAAJF9SwfvL66ozNtajUyDlhprSDH5zwRhhzDoaE1HAHG37PPdixmtmWQ2R7hoHfx7F6va9tU4q/gbpF0xTcWWZheiBUWbdFw8KZB3PC+G3Dexed5Hne7DbVlDYqueIQZyUoUsMW/5eYyXrzpxchsz4DJk/3lj0IFgEw+2T6haCpWoPULjxcMXYD9pf2OaMda0fa0a0AS51jMcBmohuoIX61qy+NY5CU+4Fgcy44BID0543oschy5RrnFaYERHMciGzLJyXb5+ZnYQMZ+fMj4qKpWHeFV0RWPK9KPvZ8ojoKpJRQWG0vI8TnILJk8N5ohAuOK0j4W/f1HAfIdVHTF6QE5lhnDoDRIeqweB0chQIRFILy/5lowKA+iqlZhmAbqWt3rWGQYtIwWeIZP1EtyIjsBRVccUdaJsXX3WLT2k+0ODCPLZ6GZWteu39Vib6dqqFB0BU8sPoFzB8/FYIc2BSkpKWcnqbB4VtN9E20//YNkJv9hVxyqrqrQ1O4GEn7HYr1aiXQs3vW9b+FNL7sOWn0FTKaI0Y3bMDfT7iulgUa2ECx+Tq+Qwae6cBiCHONYVA1k8/mOj9NMcP8dLXkHtxmB7ejss7HFqDAc9yDTHpQeXu6uKBYUFgVwNIXP3X4R/uc912Kqnwwgm9b0eoGJ6bEokR8V/nhLG5bjUVd0CD6XocwzoH1FqptfcRtyfQP+VTgMW8KibpqOAAoAMDQYJrBQI4NyR6RiOJhG78Ji1uVY3D6Wg6IZOLiQXCgfzJEfAnSmL2bJ0wfiWDQg9uBYtI8t2Sd+STydqC+H20Ga4uW1V23AO6/fgks29J/sTUk51ajO9u5WsuGkaEEnjMpM9ON+x1ySKNQonvo2wAqwJ2MLHIsn93uFxWqtAYVyXWN/8PuRq/RHoR6dL2H9uKuYJw94nJb/fc9T2PGit+BQSUdRpLBrQz8OT3sLqX358OiwQ29u4RPPFzwuPgDA9hd5rvlkHVnUVe9nmsvYzrwEn1N+bNWORdpV0KX1hH3nBraQfym7x2JEFCpAhJ3zX0XEo9oCib+NKtwIBa/ztdgWdXl/Mc+e2b+aQpTeIvG8YeK6BUdZwmLC+LEAmUEiXroLrBMXA9X5ZP0hxSIRFnvtPTSzB2AEYOO1wccka2zjKcJS5Ls6dgEwsRvIdojrm38S6NvQdj0W15NtXTkcvrxSJecha2Kd02PR/vyyvqLW0HZyTikdinmDAJYOkH9n9pDY19wYMBTixLZF3m77xFVmgEf+BQAVHeWbknKGYotkc43ObsOkzNbbk6X9DqiwHmeLjcXAfTZ1o44sl/U4jXia94g8fvHE7rHISAwYOf56mylmcGif9zxkKPG/Td0iaXnZ51g8Gu1Y3PfAPrzm+tegNlcDLdAY2jyEuWPefe8WBU3dDAiwQsg1+QUbXgAYQOFScs0Li0IdGCK/48PEMA89RKHuGtqFpt7E00tkAorjWGS9jkW/05GnXT0WOfK+FxpkbNaqe4XFMMeixEoo8AWsKCuxwiLLBx2L7ohIxt/rGVa/PCN4XbnmFpJWwfPBfel2AKqGCoZiOjrmOOu6SXN04ijUxeYiCkIBojU2z/N5CIzgEe/ChLwcRyI67d6kw/Iw+sV+6KYe2v9yLbCFxZp2fNY/LA07/Vrrah0SF4xC5WneuS+KiSwRi+3YYVtcd08kUA0VFCgIYUkuFn7n4ImCoRkIjABFV/DU8lNQDAXXrLsm0l2ZkpJy9pEKi2cpFcXE+jv+C8e4sVWtR5RkDI9NBPosNkL6LDJWjJGhBwsj/h6LADA01llY/Ni7X4+N5+zwRGvOu4RF1aQhZ8OERTKbTK8sQJSziEqHUA0jNE41XySFFTpkMLFvPvi+OzkSbaLiUjmXEw8gkZ+z5WDcXBTNRt0jLILhwbE0aIrC1IDsDJRb1vR6LkQwdcOKZICe6eAm43gBdVWDyHqFKJkPOhbjsLdF4miPSMlaBdI5a1+wrh6Lq8EdvbllKAuGprB/MfmgdSAjgKbOMMcix6GlGhC5XhyLlrDoO1aSOhHTKNTOUBSF971gG3ZNFk/2pqScatQXuy+E++GloEMwjmowfsxDI0kUariweN8xPeigfPq/gYmLoZjk/nPWDeAJn7BYqTVQocl1XDEZ4K5PQzjwPwB8/R8t/I5FwzC9jkWx6Ahdn7tXwYt++4s4Z8ME+qT2vjo8490PUVGov/0cISiw2S4/911513jF2i/jw0SgycQV8wDSi281wqJpeI4pytAANcFYxI7opGjUGgkci9ayAAClQhyJUQK3VCQimM3AZudPwX+dsSc2rab/oO3U80dmumApq/DXq7CYHSHimdvZMbYLYT1BQ5H6VudYnH6Y7MdsSBGbYYnrsNt9aGhEzBvcSj4zgJxfxnaRvohh5yulZk1wIJ8j7xcW/bPlGZa4IctH40XvmvUdFYvAzCPA8I6g8xOw7jODbutO6Brw2NeAb72fRFJf+eskYjUl5SzDdj1FiXxJmanFTFryYQtIYdSNeqAvI8/wjosIIAKOW6jiaK4rQWxkwwiefcbrWDRanYVF24XpLtT7o1AbtQaGx8MnbSz/ZBmfeetnMDw+DN5Vc5ibJsLi1LunYNBGQBS0hQ6zSV5flIOTvYpiEdXHqyhcWoCqq+HC4ggRFqV89G98iqZC3YVRrMuuw5A0hKdLRFi0oz9tYVGkSaSoX3B2olBhImNN7lhsLoKhGLQaLcedCRBBNEwAG82MoqJUoBoqeIZ3XLh+OJ6DaZpo6u0xkci096XtaHQjc3LXbr6aWnNEKbvHXyfHnL2faIFOHIW62FxEUSg6205RFIakIU9fxTAhLy/k0dJbKCklUKAwJA+hXyTjU3+s8FpRtMZg3R5PSbE/e83Q0NAbgR6Liq54XKlRjGdJopodO2yfa0TX5ErFUMAz0UKlLZCfaGERIOdzxVDw8NzD6BP6cOHwhSd8G1JSUk5tUmHxLKVqjWWqbHHV65radE5QWKwFZzRlsmQwqinBYlRpKfjDw+9YVJX2oP/2t7wH/+dTfw3a1YNpfqYd/6aaNORciLBoOQpN04SQie6fqHaMQu1cbD1SqgdmzUU5EuMeZ2gKNNUWzMaLAuYqLehduPIa9Rp42fVDgOHAMUH3WdOKUImLQmVEMkCXO4g+LM+THos+IUrm2a57LDrPFViPsMi0KqApYLlODmTG1WNxNbiFLIGlcc5IFse6cIgyNIWCxIFKMNA8HaAAcByPlqb35Fh8/o5hvPfGrdg46J2xn1QwTB2LKSk90FgO7XfYFSF9i2Jx94ALo1ny3g77Ae0WFi3hsaGaeGwuRCRprQCjuxwBdMf6oUAUaqXWnoX+88YGYHArpDs/BqAdYerGLywC8PZYlIvQNB0f+F4T7/hWE7/+iqvw9c99GDmhfc4/PO0TFuOiUGXfdTHE4RTXpzEcsl80gwIKk8nFkU74CzhJnH/9m6xNsaNQ3Y7F8H7PDq0qcQZG9bCR+rzO1771zp+BHov2cv7ef91gFx9t514ILEXGZ120Z/aSHSHv3T0Jb3hHcgex1EfeYy9xWVqTRImOnt+OPQ2sv2g5KrsQTkuHiHg4frG3B+i6y4gA1wo5lpQa6dHpCIt2j8UKAKrtfHSz7hIiVCoxn7EtLCoVIrivuzw83tYWL5N8d+afBL5zB7Dn34ANVwOv+hJw/W8DudH4557O2D1nI5wWKWcfNEVDYqXQWNJucfdYjBP4GIrx9A30o0AJCIsCI3iK9Q294XkdlmZjewO6Gd04ikPPeB2LerPzRA9b+HFvk19YBICRdd7JHoZhYO47czj6t0dx6YsuxR99+Y/Aye3z6/yxeYgbROQvzOPw2OGAKLjUWAJN0TCrnYVFAGgeaYItsqhr9dAo1G4o+ceBMVAUhWsnr3U+D3+PRZmR0dAaMHx1EZZmYRqmx7G42LCERb9jUQ46FgESh2qLS3xEggbLs1AMxelNCcDjPPP3WAQsoaaLCYCCIaCqVp39oOpqZI8/RwQTGSDhHKNSs4R+sd+z7cPysEd0rSm1QJ0rzxNhcaW1AomVIDES+q3xg1uUXEsKAqnhHS9hcSwzhopKROWm2kSGyzjxsm7HYpIei7ZYa4ustlPVLT7brtgwB7bNyRQWJY5E9+5Z2IOdAzsxJA3FPyklJeWs4syofp8FKK2m01PweNLLa0xt2prIsWiLLUorWPD0OxZZjkffgPeidWDvE87fr33XHaB9vVAWZtpFTQM05GwwxvToSvu1OTmkiOBC0Q3kQhyLnehnFRwrNZ1ehTbD+d6FRQDgGdoRzDYOyJivtKAkzMsHgGa9DiHTfq8GzYJjqKCwaEehctGnBVogRYRsRBRqQ9UhcTRYl/sxIzCg/P16EpLlWa+T0tQxnBdRsoTFtXIsZnyC18VTfYF42zgGYj7P04lifz8mt+xASzMg82yi+FI3IsfgXc8/B+sHvIVyfzRqJ3Li6j7PlJSzkuZKMjdZFB2ERcM0Q51+oGigFtPb2V9QCjufsEHHosR1OO8Mbms74gDsmBoKOBar9fZ+MEAB1/wWTKsQHtaP1x+FCgCTo66xCCvimUPH8JVHFfzli0T8yTtfAsYXH35kdgG06/oaJyzGCmzoHKcaiXU9/PYRGShMAFoTuQTmxo74exO2EhSM5H4iUNEMERYzCRyLAHFIKjXy3KiJOpmhdl88Ie+JKA30WLSFRS2+KMOAHBtMw1cUtwWrTqIbABZ2VFnsy4STGyX71u1YZAWgf0uy58sDxFHYi2Nx/inyvE3XBeJ4HQrrgMZSd8LlwtNEIJ66wnv/1BVEpCyFxKHawiLDYXx0FOdvsfqot6rEfRpW6J28gji2qzHnopolVCwfIMLl5uvDl7NdjM0I10WrCvz8b4DvfZSc0278PeBlfwlsvu7siEG94JeArTcBG557srck5RShptZQ1+qQWdnpK7Ya3A5Ev6jhR2Ilp9dbJ2RWDjoWXbGUTa3pERK7dixuHMHhfYc926o1Oz8/zFFWK9egqd7njIx7hcW5Y3NY+tkSRm8dxW0fvg0c7/3NND897wiBJm0i6xuLLDYWkefzsC53HYVF2yzf0BqhjsVucPfrS8otG25x/rYFM7vHokzLgc8LIIKkqZkwadOJkFxuLoOhGTTrTc977eRYXJddh7JCeiy6RSA/LM8GBC738mFRqFk+GxqF2gnRFFFVql7HIhXvWOQyXKIoVNVQUVErGJKHnOcClnPPFQ3c0BqB70Kez6OltVBWysjyWfAMjwGRuFjDBNu1gKM5yKyM5mp/63RgNDOKmlpDQ22goTeQ43KgKApT66cwsXnCcSxGCYE2FEVhRB5BuVWGYRqOU9V2dQOWUEx3FoqBdhRqN4L0WiGzMg6uHERdq+PK8StDe9umpKSc3aTC4mnCiy7agFc+99wT+prr7/gGhl/10djlpjZtxfThg54iXT1EWLRRW8GizsrSomcAPjQ67giH2sosdE3DOefuityO+ZljYNn2YEjyCYumaWLGJSyyUvRFUenoWAxniG1httxEpeUt5ozkoouGcVGpLEM7gtmWoQwWqi1UW8l/4DTqNacvIkCERT7MsWhVwYSQAbAbu09imGMxk81hauu5aCi6FZ3p7rHYvWPRnoCYFYKi1ro+CSsNv2NxdUKU4ItvvXxTP8oRPwbDGMispnJ7aiHLMqRcAZphdnSodkNeZCGwNMYLyQTmfOpYTEnpnubK6uIeAUAIL4jf/eAT+NI37w4+wMmkJ17cdsXRTY/F8d2eOMQdU0OYWyxBcRXjKjXffhCyUC5+MwCgXwwp5tWbaDTbY5TBYhYZqwB1eMVAS9GwfdMkHnhLDm+9JHz7Dk8vIONy5hXz0eJCaK9BH3HriKKiskCe9HgpfyCPu14nxzyjA34XbFLn3/N+B9h8A6qNpkdEjXzfhgbABLIxs6Jzrjh/eQCwouSGBgawe4svTt8RFuO/GxsZEr13UeW7wIP/2HZnKrZjsfOkM8rUQFEU1B6TSJEZJL0U/Y7Q0fOTPV/uJwJoL47FmT3EuTdxaedlxnYB5enuzjHzTwH58aB7b+Ii8u/iM8HnqHWAlwGaQz6XxUDB+g60KpbgGPL9s9e3sDf4mJuqJSyuHCV9HwsdWi/IA+1t8WOawMG7gG++Fzj0E+D8XwJu/Sfg8reQ93q2QFHA7f8GnHPTyd6SlFOEbx74JspKGRkug7JSdqI+e0E11Fih0I3IioEeiX4yfAY0vI5Fd7HeL56wNNu1sNhqtlCvtM8bar272EsAWHElKLAci74h4pRXSypajRZG141i629txeAtg6ETP+em51AcLwIA9IwOlmM9Tr2F5oLj/AJIr8Eo5hvzq3YsVtXuexxfNHKR8zdN0aAp2nEsZtgM6lo94FgE4Dj1REYETdEotUptx6LsdSzWlGDdajI36Thuo3rfcTyHhu96aMdcjo2PYXLrZOA5GS7TlfNMNEQ09Sbq1rVIMRRwTLywyEpsoihU20k6lvG2SBrPjjuuQwoU6lo9IOIWhSKaehOlVgk5Lgee4ZHjc2Aoxtne40FBKKCu1aHqKlZaK2vqXhyRiYg/UydjwRxPBPVCoYBsMQtFV8CzyRyLgOV+VYn71RaUBa59TKlGtAMVaPdgPRnCYobLYLG5iCyXxZVjV57w109JSTn1SYXF04hqefWz/rpF2nQJVD162vXU5q0wDAOKSzAMcyzaqCGORU1TUa+2fwgMjZEiWOPgQ5j+4rvwjX/868htUJp1VMol8GJ7UOx26QFAuamh4ar02L0CO65TM5DJBV2PnRjkFBgmcGjFO+AajRFRBjIxjkWWdpwHmwZkGCa6ctE16jWPiGqAAc/SYKhwx2JcFKotDmZCHIuCICCTL6Cp6pA4xiPSZQW26x6L5Sb5IZYNEZjW98soNRSYJhFfAXSeYZ8QiqI87+vi9Z1dCZ0YjuiZeTpiO3A7OVS7YSAr4Ce/fT2uOSe8T4ifvJQ6FlNSusbQ2lF/vSIkv/YBIAJAo3P8GIBQYdGgfeKAJwo1RljMT3jO+TumiAhVdhXzqvXgtdK0esd18l+741DXj5JrwE8Pa7j4b2r48N9/HwA8PRU96zZNHJ1bxBGFFOum1VzA0egn28ElcPWVV6LfEhQ9rsdeigouoePqKbY9a6cbAlGoCcch+TFgaCuq9UayHotuMiF9/twUXAW7zCDpyQcgm5HbQpQNKwCgEu0/2rJwrIhTpJfnf77DKzBGRKFShgaB53qPQs1Y18dGyXv/xMXJni/1AXqL/N8t0w8TJ3BmoPMy4xcTx2LcRAI3C0+TWFy7v6KN3E9EvfLRYLSqWif9HP2Rya0ycVSHCYt9G4hrtXwkenvs86OpA8PntgVEP2KBRND6i86VGeCHHwfu/gyJ333J54BbPkkmO6xygltKypkCR3OoKtXE7WHDWGwsdiVMSqxE4hojnpPxJTLwtLfHYlNrQnc5vrt1LI5uJBMoVlwJCFq9+4kepaWS8/fg+CBomkbj2Qb2fWwf/uPT/wEAYOTO44v5Y/MojJGxiJYnr+92HC42FtEntK9lbtHRzc0vvBmCLASe3wt+oSmJuObvO8fTvNNjMctkiRAcEVVLURRkVkZFqYChiGPR/V55kQ911rldWZGORSHoWJQYsv58IY9cX3CfZblsVwKRaJLXt0V2RVcS9VhkZTaRY9EWUKfyU577xzJjzmeU5/OeOFabvJBHQ2ugolSQ44mwSFO0I/wBCKSMrQUFoYD7Zu/De3/0XnzoJx/CnoU9kZG13TBijT1nrSQWtwAPEGFXYITEwuJEdgIVpQJFV6DqKlia9ThD7T6eUT0bT6Zj0X7t7f3bnX2TkpKS4uaUEBY/+9nPYsOGDRBFEZdffjnuueeejsv+7d/+LZ773Oeir68PfX19uOGGGyKXT1k9RsxMp6lNJIqs1WwPqsJ6LNqYHeKZlpfaRYqh0Ql881+/jLl//TD4sXNw3ct+pcPKyLatLJALvyC0B36mr2w4veId9LFi9Kz9lqaHxql2osBokHkGMzVfFGqI0CSMb0Nu980AgMEYxyLHUE4U6oYBCRSA6ZVk0Q+maRJh0SWi6qDBMbQnqg1oC4t0TNwlZc2winKwNTUDMu/tsZgR4h2LkkQeF0Ty73KdDJ7Ceu1tGspiuaYCMEFT8PSiXA0y336t8aKEoS6jTYes6Nv+kbGYJU8PFFtYXCP34GBWjI3/tUnaizElZS04I8YidizPSki0YCeUGrB0AJh+qH2f0OWsdC5jCYcR44VmGarp/RFu+s/Z7lnhcQUCn7hzzuQAaJrGSrUtAgQcixHYV6u5xZJz39RoP/7ff/0Qz/tSHdsGabz/1ueEPtd+16VqE6qqoa9Axg6GNcyO6pGY6SAsnn/+udg0QcTSuDjVWLJr0OfNX8zocnZ4tdZlj0Ug3vmVd11nM8OOsBgORaIp1fhCZjZL9vfyxhcBb74T2Px84MlvAM/+lER6RsVA6Sp4joVqmOipop6xXJp+IX58d7Lni0Xyb6uCW295blBg7URzhZw3xi9sryOMMSs9ZGlfsvU2lkk86ci54ftt/EKgcizEEduwhEXfT9VWlXyOYeM9irIclUc7C8im6RUKNz6XRKuGQVGA2NdeXteAx74GfOt9pDfkle8ivRTPe0V4z8eUlB44I8YiIH25amq0yBeHu79iEkRGRFWtRkam+oVFgRUcF5GpmGjq3mhNlmahm8kt6MXRIkRJRLnUjlBuVbuf6FFaKDl/D40N4a7v3oX9H98PtsDi5jffHPoc252mKirKpTIKfUQQMXlyv9txuNRcciIrAUDokCJw7rnnon+YnN9WKyz24lgEgN1DuwGQugbHcG3HIpNBQ2s4EaGdkDkZBgzQFE2ERbdjURJDo1DdCEyMY9EvLLLR9Y4cn0skqhYK5PPrs8a7trAY53DjmLZjMUmPRVtYnMhOeO4fzbTHjnkhj5paC+zrPJ+Haqgot8rI83lH3OsT+kj/S9PALb90CwRxbSde//qFv44XbXwRbt12K9666634nct/Bx+58iPIcas7RgHSWxIgLl2AuDLdqLoKkRUTt4iZyk2h1CpB0RUohgKWYgMiIk/zARHdje287SZCd63IsOSceenopSQ+OSUlJcXHSRcW/+Vf/gXvfe978ZGPfAQPPPAAdu3ahRe84AWYmwsfSN5555247bbb8MMf/hB33303JicncdNNN+Ho0aMneMtTbAp9Ayj09XuFxQjHYidWlkifRdM0cOTAM/jTj70fuQtvwfCrPgqlw0wxO3K1skQu/LxLWNR8TsvpUhM0BZhWUSlO5GpqBuRc8h6LFEycP1HAfMPfY9G77e4fO6puoi8mOpNzRaGKHIPxooS5SjJhUVUVGLru9EUEAM2kA5GfALB1hAzEYoVFq/CbieiT11R1SDzrES8zAgOKjy4kXrDrAgBA1uptec05Q9g5lsfVW4KzydcPyGiouhPhyjE0mJj1J8HfZ3HXZPJjAGhH3xZ8PUJPVxTre5QXTvws/LUSM1NS4jhjxiL2rNqVBNtRtpZ58MvAn+8G/sU1gafbSRq8TJxEUbTKUOBdrxnlWIwTFn0ikshz2LhuBOVqtGMxDrvPommaODa/gtvf/8e49TwO3/tVGYMdRJqWQgotTYVUcAZ8M9SLuc7iTqIei6uMHwPLd3ZlAeExtf5ehFoXwmJI/8pawyssJnIs+qMz/VjuUwh5oH+jV5gOg88Aevz46eKLiTtww8QIMHoecPMnyAOtstXfL+L7oSsQOJZEofZST7fjX/1RqCPnAaCCDj4/tuDeqmL9+DAGkx47s4+Rf7fcEBTz3AxuJfu5nPBcZ8eSrr86vK/q5BXkfOXuY6grxHkthhSwlAqJau70GUxcStbX6vA7xH2e4mRg/VXR2y/3A1odWDoIfOe3gD3/RvoJ/tKXgOs/AAxsjt5fKSldcMaMRUD6ctW0trAYJ/6EMV/vLn1BZEXUtXqkmOkvjAuM4PQ9M1smWnrL48pK6kqyoWkak5snUV52CYu1aBEpTAh1OxabtSY+/KYPI3d+Dps+sAkT4xOB5QFgcW7RWiH5J9/Xfq+GaTjCIC3QqGt1j/uoY49FF0mjUIvPLYZ+BnW17nGD+qE6ZEl4emLSPBgrRUdmSH0jTrC0hRG7x6LHsSiFOxbdRAmF7h6L9rEiRU5yIuJ2M8FYZPfu3QCAbVu2AYAT2aroCni6s8PNFqiSRqEuNZeQ4TKB74YdCQoABb6AhtZA0zcJyI4JrWk1FISC48TrE/ucWOGhsSGImdXXaNxcs+4afOKaT+BDV3wI79j9DvzS9l/CxSMXO6LqashyWYiM6PR39QuLiqE4rtQkjOfG0dJJH0pFV8DSbOC8EvV5Am3n7WqxX6MbgTDLZyGxEq5dd21iMTUlJeXs4qT/Evr0pz+NN73pTXjd616HnTt34q/+6q8gyzK+8IUvhC7/T//0T3j729+O3bt3Y/v27fj85z8PwzDw/e9//wRveYqbqU3nQFEswY5mIh2LnVhZtgbDoMCwLN7xwY+j/8a3gerQGNk0TZhWnFd5kTgWeaFdVGqouqfn4rGVBvoyvOOYjBUWVQNyF1GoAHDphn7M1b0DOL9j0e4LaL8Hjon+GvIuYREAto1mMV9JNvOxaQmvjNB+r5qJ0CjUL7z2UnzyF8/H1pGYHw1WPJ3YoRejbphQdTMgCuVEDnTMQNs/oMqLHP7jHVfjRRcEXQtT/WRwpVkDZo6hQXOrnw3nF0wv29jdLPRhy7GoJogeOR2wo1Bz0okX+VLHYsqJ4owZi9iF+JWYKECg3WcsMwRc9FrgvF9sPxYnXvjhMkAzuq8RWhUopne9pl88dN+m6K63Y8emSdQa5PrI0HSsY1HXgwWu+SVSDKQoCjzH4g/e82v4+5eKENjOP6ZVq6/jwgq55g4UvWOHKGGxUxSqm0SORdPET18vg+k0PT1KpPMXNetLwP982Hufa3a9CaqrHnuqqqGlqJ73GttbkmYjI0cBtJ1mb70LuOT18RvCZ4KCaQgdP2m1Sfo4RgqLxLHYcxSqWCTv3R+/KeaBl34G2P6i6OfbcaN+YTKO6UeI63NoW/RyNEPiUiszQESB2GH+KRIpOrQ9/PF1lwKG6nVAKlaRVwz5/FtVgM91nngwdTl57+UOrm13TPTQtnb0bCfkAXKsP/GfRKy86ePAyz4HbLqOTKhISVlDzpixCIiw6O9X2C2z9dmuhD2RFVFX65GOxVBh0XAJi5pXWHRHFiZl/db1qFm/wWmGjnUs1ire8z3LsSi50hNYgcVtb78Nk++YBC3QHQWI6cPTAIBGhVyf866xiGqojrDI9ZP3NJlrx4nbLr6nl5/GvpVwR3o2Fz8WWdaXse4N63B0XVDcrmv1yOMhyrFlw9EcaJ68/wxDxlZhPRLd2C5V27HoFlFFSYztzxflWGR5FnWtDpqiHbdeVHQqQITOrqJQGRESKzkCqmKQKFSmQ43MPmYZgUkchZrn84H36XcsAsBKyzsRzRYWAWBQavc9HxAH0FBX9/0/WVAUhUFp0BEW3VGo9rkiTjx2M5EhEwEWGgsdY2yTRKv63da9wNEcPnzlh3H7jtsTP+f2HbfjTee/CetyHfpRp6SknPWcVGFRURTcf//9uOGGG5z7aJrGDTfcgLvvvjvROur1OlRVRX9/ePG/1WqhXC57/k9Ze+w4VADgJTnWsaiE9Fk8tP8ZNA48AIqicNtb3oOX3f6GyHUcOdge9JbmZ1EcGPRkuFdbGuRsewB8rNTwiHxUp+gji6aqQ3JFoUb9SLEJE6GGfMJiN/0RASICUq4+UueNFxyxJw7nc2BdTk7DBM8yAcdiQeJw66VT8TGVDAeeodt9DX3YDrecTxTqpcciQN6/ECJiru/3Dq44hloTx6JfzLpsY4TLIwR7/9Vap99AOgw7CjUnnnjHYlgEbkrKWnNGjUXsmMbqdPLnFKeAbTcDk5e37+tWWORl4iTqtFmmAaj1oGMxICxy0bdj2LG5XSTLiFysY3Gx5N3mrCxh36FpfONpUjh4963X4wNvuTVyhu6x2UXn7/mVGkSB9zjzAKAYIQwmcSzms/ECxjrlaVw5yeI682fhC+SiYkV945uf/rnX2UUxnmhJk5WIyJZgXAQQtyLgjX0NOhZ9+5jPxjsQ7bFN33riHItDyPXWo9JGaxCnbFShWVcg8HYUag9QFCD1hwuDF/4KsPXG6OfbYmzSHpgA+RxnHgGGt5NelXGMXQBUZ5KJywtPkd6H/v6Kzrp2EbF27vH2fXaROCxeVKmSqOZOn8H4ReTfxQ5RrVWX82tsd3yEaWaQCJ26StykF9waH9GbktIDZ9RYBO3CezkuzSCC+ca8R7iIfU1GQlNvRkaX+vuwuYVFtADN1DyurF4cUOu3rIe8mVy3M+szaMSMRdwiIgAU+guYOzaHlfuIiHP9y6/Hm+54Eyg6fCxCgUK13L5mVJbJ2CZXbO87zdACjsP1+fXOpVfyjVvCxEumw6RiN4ppxcpywWtgWJRmt/AMD5oj25bUsWgfQwzFoNVoed4rJwSjTP1EOcXsKFSBERzHpchGj+uyUXHqHRgQB5yYX03XInvy0RQNhmKIYzGBsLjYWERRKAa22y022oK8X1h0C/Vuh+OANECE5Ij+l6cyw/Iwygo5d7nfo+1u7kbkG8+SMcNya5kIiyExtjzDdxSKbWRubSYzveqcV+GmDTclXn5b/za86YI3BXpNpqSkpNicVGFxYWEBuq5jZMTbBHZkZAQzMzOJ1nHHHXdgfHzcMwh384lPfAKFQsH5f3JyMnS5052v//MX8e7bf+Gkvb5bWBSkDOoxjsXS0qLntpzN4//99Z9g+fufh2noGB6LnxFz710/dP5eWZjB0Kj3h36tpUHOtgfU0ytNjBXaA0mKFTw9AO1IzfZtHbzUHvjVlPiZ2bunioH7+mXvD5huhUWOoT3F1XMnkl/UbWGRcjn5FN2EwFABYTEpJs2CYyjPvnPTsvZj3icKZQQGtE/4e3KmjHqC/RpGQeY8IiDP0mC41Tft9guLO8fy2LWu4Dgk47CF5F7f16mGLSxm+BMv8mVPQvxqytnHGTcWEQtAbSF+uSg6CItXT7G47fyQ7yUnE8HG3yfNgrLuV9CFYzHsdgw7NrmERYmPdSzO+Yt5ORl/8qWv4Z3faqKpmVg/Fj+x5Ls/ecD5e36lhnWjg2BBCikCRf4t5rtwLNpFWNsNVpsHw8QX8zI6ed7F2ZnQKFIUIsZVfhdfYR3wks+2n8OKnihUg5PJZ52w71S1Tj5/93uVBN9n63d/Cdn4z7/L4wN8NpFjsSNqk7gko4R3Kwr1f/br2LPEh8d/xpEZDDoWk2L3R4yJdvNQXwQaS8Q9KCQo4k9cAlRmgUYpejldBZYPAgNbO/dt5ERg0zXA/JPtz0btICyaJqDWLVdnh5+w2SEgN0Zc22HCd22eHM/P/yhxascU8pAZImKm/Z1KY8BSjhNn2ljEjo9cTU+w2dpsV8KiLYws1ZY6LuN3xfEM33YsNsk5wy2Gsuj+98/UlilnQhIrsahXo8/Hy/PLnttSVsI3//mbOPYPx6A3dAxNxLfXePCnDzp/15ZrKA4UwXLtbVd0xdMjkaEYjGZGHTEsk/H1noxw6fWCaZioKtVVC008wwcci3HCYJYj9RzKJO/VHYXKiAyMsDGTC4mV8AubSZ1t58BOz2OswKKhNjz7K86x2Euk5aA0iLpKHJ+OYzHC4cYzPBiRSdRjcbm1jD6hLyAsUhSFIYkce7a45u9H2UlYHJQGUVNrkdG3pzL2e+FpHoJrkpt9PrPjdZPQL/aDZ3iUlTJaequjYzEqChVYG8diSkpKyvHgpEehroY//MM/xFe+8hV87WtfgyiGX8A/8IEPYGVlxfn/8OEO0TinOX/x+x/A4w/de9Jef9IjLMpo1KILIsuL7Sii+jP3olGrQMpkMXLbH4CiGQyOxs8GvvfHP3D+Li3MYHjU22+goerIWMIixcsoNzVM9rUHkibLe2JIVV9Pxoaqk7gvi5V6/Ay7vMihKJJ12uUMu8+gepTMxj6y1INj0RXpunMseTxro279kHEV31TdgMDR6FFXJMIiS3v6J7qx3ZR5yVt8zvAsiXR1uS+fmI6JzothwvV5sjQNOs7dkAC/S45nafzrW6/ESy8M72fhJ9bxeZphC4sno9+h/ZppGS/lVOaUG4tIRRJluRoihBMxLBKUj/6xS1sih2L6HYu+86X7WqVq0c6wEHZsnnL+lkUuVlicdQmL33xaw/T8EjiWxV2vz0BkKawfjRcWv/3j+/DQDDlP7pluYnJ0EFmDFCXHOfJvMSI+LOMXFm1x1i50dRE56jD7ePC+gq+A7I6n8gvRz/8osO0WOD8TOAHQW86EJJOzIkWNZOkJtnPU7eSkadr7fH+slJBP7lhMipBbnbCoNYmIzkQLizzH4k9/puDrM6PB95WEzFA7DrRbOJHst26Om6V9JHp48/OTLT+2C4AJLO+PXm75IDnO1l0Wvc92voIIgcsHyW1bVPW7HNUG+V7EReSOXwiUj4V/1tU58vwLXgVM7I5eD0CiUpUagF6zbVNSTgyn2lhkLfqBzdZnHVEoCbYw0kL4eV6AEIg2FRgBhmmAoimYiiUsqm1h0Wh2/91fv2W98zfLsajX6h37BwLA8mJbWKw+UcX0s9MwDAObPrQJjMRgaDxeWPz5D3/u/F1ZrmBozPucptb0CIt5Pu9xQImy6HETJokl7QqDiFKt1VyDQaIcKWscKjESKFCBvn9+cvaEGeujdDsWdS5e+OJZHv1iPx74lQfwvKnnebeH51DX6h4xsdOxrxkaaIruSSAalodRVYkwqxpqrBBlC7BxPRYN00CpVcKANADe3/fcel2AiLM0RQeERbfwPyS3j7lBaRB1rd5V5OuphB0DK7CC57vQi2ORoiiMyCMot8pQDTVUFBZYASwV/Z3r5lyYkpKSciI5qcLi4OAgGIbB7Oys5/7Z2VmMjkb0ggHwqU99Cn/4h3+I7373u7jgggs6LicIAvL5vOf/lGjCYkrjWO9zLMZFoZaWSBGr8tB3sPy9v0K+rx8XXHoVmEwRAMAL0cWiVrOBR+67G6JEBm7l+aBjsaEakDPkAsz0kce2jbYHPybNgmfbXwGB9X4dmqrhxHoCQFVJFt2xfYhsu+EayOmNCrSFgwCAI6XOxSKRC34leYYG5Ro4ruuTIPPJ+k00LWHRdDkeibDIdN18eXCQxGNRrACeCfZotLGFxYJfWLR6F9p9Fpvq6mewuV2EPEuDXgvHYoiAJrAM8gmjQPvk1W/DqYSiG6ApQEp4zK0ltns0NQikHE/OuLGI1A80S6tbR1hBKcqdFBPP09mx6BcW2+fZ5XK1e8eiKwo1K/KxUai2Y/Erj6p46b80MNRXwOUXbMO6PLnmDhajf8Rrmo7/+emD4CVSYJhZrGJytF1YKTCkgLbaKNSuefxrQdei37HoFhMP/dTr7uJFryOMFQFdBcuSz8/gs5ZjMZnzoOY4Fn0iW93V785fIBPyoZ+/7aowQccLj36EfEdXbTJMcqzHRaHaLpFeC7PZ4e57JLoR8t0Jiwt7ifDctz5+WQAY3knicUsxosTC02QfTF4Wvdy2m8n6DlsTJDv1WLT3iRwj+E9eBpSPeuN8bapz5PlJI8Vs92hCET0lpVfOtLGI7Vi0iXOFhTFXn+sq/s//mn5ESgwIZm6nmdki18GKK9pdTTCx2A0NGhMb2pNRWZ5Fo9aIdD4uLxBhsfxQGQc/dRC5Yg6btm2CMEy2bSBmkpNpmrj3R/eib4CcM6vLVQyPe/vHLjWXPFGoBaHgEcNEWcRy0+ucXFNMwITpxEv2isAIoDjyw5CmaGS5bKxj0XGX2cKiy7GoIv7ztY8rjuEcYdoeixSHi0RYdE10ErjwsUlDa0BkRKdfYTeMyCNOlKxqqB4XXRg8zYMW6Ngo1LJShmEamMhOhNaGbIGNpmgUhSJqmrfGl+EyoEGDp3lPVGa/SBIHVhOFfDIZy44BIOK1W/BzHItdisNjmTFUlAqaepOI4759LTJibG0uFRZTUlJOVU6qsMjzPC6++GJPg3G74fiVV17Z8Xl/9Ed/hN/7vd/Dd77zHVxyySUnYlPPKirllfiFfLgdhpwkoVGPLojYjkVxw27kL38lzrvwclRXSolf75F774bSaiJXKAIASotzAWGxqbajUJkieWz7aHsgZ1Ak0tOGZ4NfB3efvGrCnnnnj5LBpxFSEDMME9Mr7aKWv3egxAXFG87nDqEoCluGkw0sbIFXp9wzrUzIXPfFrqFBUiwlUah0xyhVRSOCYcCxaItEVhzqo8e6P878bBhwCYsMDZpdvaiXVEDsRK8Rs6cqimZAYOmO0bfHk4wlZqbCYsrx5Iwbi8j9QHOV59eweMC5JzovH+tYJEWfQI9F/+xo13VzaaUCdHlOL+QyGJCsWC+BTexYvHY9g49ey+Pmay4hgqZF3I/8e586guWVKsaHSdFvZrmKybF2j7oC0wRMA8VcF1Goa8HsY6Bm93jvy495b7t7zU0/DMw/1Xl9rAToKjhrzGJyOSJcJXYsBqNQARBXWSfEYqhwKFviJCUV42Ms/Qj51TkWAYDLdO79yQiApoAPmSTWFdmR1QmLYtESfhP2eazOACM74wU7G04E+jeR5/n7c7qZf4oI2tkYt41UBKYuB+afIPGpao0Izf4+VHaxPzMcWIWHdZeSaGbbAemmNm8JiwmdpJlBEvnbi3M4JaULzrSxCEuznn6G1R7OaQuNha6cj3G97QQEXUHubbSFRbcY0qx2PxnFHUHKckRYZND5elVaKAEA5C0yhl48hKtfeDUq5ba4yfujw33MHJjB3LE5jK0n1/naci0gLC63lj2OxX6x37O/JFnCUnOVaRcR2M65FaXz+PRwJd5ByzO841gEgLyQjxcWeZ+w6JrkFPdcIDzaVBDI+GRwHYkolVgJFEWBoZiAK9b9WhIr9SQsjmZGUVEqUDQFmqHFxq0KjEAcizHCov2ZT+TCk5nGMu2xY7/YH3AsUhSFDJdBjs95RHpHWFRPT2HRjkINOBYtV2+3/Q7XZdeholTQ0lqhPRbjzl1Ab705U1JSUk4EJz0K9b3vfS/+9m//Fl/60pfwxBNP4G1vextqtRpe97rXAQBe85rX4AMf+ICz/Cc/+Un8zu/8Dr7whS9gw4YNmJmZwczMDKrVVfwAT/FQWel+thrtmtke51g0lAa+/v++iGp5BVxxFLkLb0FxYBAry4sdn+Pn3rt+iOGxCQgSGRiqrQaGfFGoTdVwhEWKplGQOAxk2wNzDQx4JvorUGu1XXXluhaISw1j5zDZppYULNDMV1tQXQO8MDHTj+DaRtsEmTQOtWkLi74fM2HOyKSoukH6GcZFofoEOtnq0UdbfZQeeLbU8zbYbBxsD7A4hloTx6I/CnU16DHxI6cDJgCeZU6KYMoyNESWRhqGmnK8OaPGIlIf6UOWsP+dQ0xvD8yFxGvacBKivqeUIyx6hSLTLxy5hcVSpfseegC2DZL3MVVkHUErjJWmiS9+9buYWyxhLEfjQ9cIGBkoYn45uSj7nXueQl8hi8E+ck1utDSPYxEAoCuRwuJaOxb3aSNAfgLs09/0PpD3FY2qLleMWAQe/ffOK2VFQFfAWb0eDT7b1TEWFoUKIFpYlIrhAp59nMbFYYYhrtaxCCKihzkRKcoSwk3khFWOI7Ij3qjabpEK1vvswiE0dWV3sa2j5wOVmXYvUD+mSRyL/ZuTfVY7Xw4sHyDHhFInxxzr+/xb1vk1Mxh8vpux3eQ4WfJFtZom6SeZHUkeoytbr9Vrz8uUlC44o8Yi8DpsSq1SV89VDRVVtdqVS4en+dB4SNOaACFAAOObkOIWFmFdHtyuOrXSnWPRhrZ+v3M8F+lYNFoGfvBfP8DcsTmwWRYjLx9BcbCIkq8HdBjanRr0mo69d+8FL/AYmSBiiKqogSjUilLxCotSf8CxuNhIXovpGqO9HX7K95P9/cPDP4x1TfqFxaJQRFOPvq7bx5Atsrkdi3ExqkC8E7ahNRxhiKM50B1KrE2tCYmVUOALoY9HMSwPQzEUrLTIGDWuB6YtLMYNA+z1TWTDhcXxbHvi/oA0gEbIJJscn0Oez4Nzjdn6JSIs+oXI0wVbWJRYySMs2tGu3fRYBIB1uXUotUpo6a3Q81TcMQYAOS55v9mUlJSUE8lJFxZvvfVWfOpTn8KHP/xh7N69Gw899BC+853vOI3LDx06hOnpaWf5v/zLv4SiKHjlK1+JsbEx5/9PfepTJ+stnHFUunAOhiFIMuq18B80ysIhlO/5Kg7t34u56aPO/cW+AZSWOg9mDz21B5raHtjfe9cPcOlznufpVzA04p2N31B1JwoVAIZygiNuAYAGGkKIQ9CN27G43FAc0SyKgmjN6A+ZrXa01P2MZ97lajyyROKhzhtPNiBt1GugKAqqr+CbNEo1DNWwhMWIKFSKCr6GHYVK8SI03cAjR0s9b4PN+gFvFCq1Bo7FrLA6x6IbJcHxcjrAszRY+uRcLmSBTWXFlOPOGTUW8fclS4pdaB/YEv54lLBI0ZGuxY6OxYgei0sr0cKi2cGNxVjnKinCsbhvycCL/7mOJw8cwYEjM879Q30FzC91FhZ//sRhtFyx6N/++VO46eqLPM7GdaM+0UNTUCycuChUAzRw3W+DWdrrfSDndyy6hMWLXgPMPtp5pZwlLLK2sGg7FrsTFgP9JMtHQ5a26ORyK1p9NEfOS/TaHlYdhQoiToaNf2jWOV5zwiqvWtkYR14cUh+gduFYZHhg43XdvcbExZaw2KHo3lgmkcwj58U6mgEAO19C4nuP3EtEPE4KRs46Uaj90esSssRRuXLUGwncXCHbW5xKHoWQWSNh0d7mvo2rW0/KGc0ZNRaBV1jsVrSyxb1uhEWKokIdjipLzlO8GRxTeKJQlRDHYjn6mqF3aO0hiGS9jMCgXquH9k9Tl1Qc+swhHD1wFEcPtq+Hhf4CKqWgAGez94G9UJoKzMMmnnjHE9j3833YfeVuMK6agV9YrCpVj7A4Ko96RFZREo+rY9E2t4cJTdld5DPWDA1ffvzLkavhaR5ujbYoFOMdi1ZspS0siq6xSBLHItcppcCiqTWd446jOc+Ee/9yEichz+cje26GYfcvnG9YqV9x7lxGAMVTsY5F3RrHdXIG21GoADAsDQeiUAEiLBaEgkek7xPIhKLTVljMkHNuhs14HKg9OxZz69DUm6iqVfA0H5jgkGR9qWMxJSXlVGWNuzL3xjvf+U68853vDH3szjvv9Nw+ePDg8d+gs5w4YXFhdhqDPhEPAHgr4lKQMliaPRR4/MkH7sbMl38bNC/i4suuxqZtO4Gf3wcAKPQPYGV5EZ0uqZ9+5yvxWbE9k+fIwX14w3v+D77pqosNjY0De9oFQcXVYxEARvOip2ebagA8Ez2oa2jtHwtLNQWtVfYFPLrcgMQxaHSxnjBX48Ub+kBT7XjRTjTqNYiSjJbqFbjcAmu3aLoJgaXBdNh3LSs607/dGduxyIl4araCpmub4t6HDc+TAStrzWJ391jkGBo0wwH66j4jWwBdC5II0acDQoRD9XiTFdg0CjXlhHDGjEX8fcm6hepwDowSngAiuHSIOqO0BsDwMAzvuk2/cOgq3iytVIG+zjOynzgwjZ0XTgbupxkWgIacwKAaEsv+k4f34pc/X0NBBK66cCcu37UdsDTTof4CytU6gPBUgCve+TcQ+C/iyLsFADTue+oI3v6aVwL4ibPM5NgQ4K6fag3iWCyFv49s5jhEoe6+HcadfwjaLdzxvhFWpS2o4pLXA499DSg9G74+VgCaK+A4BoAGk88Ceguwes3EYTtHM5Lv81w50vlJVlEniHVBYLoYxyg14soUsoCugKWBni/PrgizjD+ezjqe88IqJ+JkYqJD4xD7AG1vsM9mJ/o3A7lO+7sD47uJSFeZDXcQLh8g/254TrL15UaB0QuAuceA7CiZ6OAv5io1IuAmiZEbvxB49qdEYLWP/ZrV07N/U7JtAtqORbUGYBWfi9wPvPP+1UXcppwVnDFjERDBwWax2aWwaIl73RbTM1wGVdX7PWtxJAKbQ1Ag4t2R7AYRhipqW9Srr9SBiGHVoccPYffY7uB6Bd7p39eoNRwhSeHJdfO+++7Dvt/dB1DApu2bcOFVFwI/IM/N9+c7Tp4CgI+/5uP4JPdJaCqZAL3nnj148wfejGW03X7DY8OoGu39UFEryOTbY5HJnHf8JGUkLCwv4LhhAnk+HxCaWnoLtFUzuG37bfjCo1+IXI3ACKBcNYiiWERjMZmwaFgXfn8UqsiIHV2PDMUEYiv9NHQScUqBAkuzocubpomG3kCWy4KhGUishLpWj1yvm2GJTDiyv0duIZAXQwRzlvSiXPz+IuTzZXC39TZx2nbuAUTcrKk1xwFs866L3oXp6rTHdSdzMkRGRENttKNoTyP6xX4wFIMMnwn0ZaVAJYoudWM7P8tKGRzDgaZoz3c8Sc9G9/k0JSUl5VTipDsWU049yjFRqI/ce3fo/SxHBiy8KAUci3PHjuALH38vxMlzUbjilWg2vAOpQt8AlFbnGYHv/rOv4HXv+m3nNsOyuPCK5zq3KYrCwJC3sX1TMyBm2hfgdX2SEwHKsDxamuFxA4bhFhKbqoGVRm9xKDaHl+sYzkdHV/gJExZ3jOXx379xDXZNFiOf26jXIMkZNDWv2LYa8UzVDfBMZ8ci6ckXjM5s91iU8eChEgoSa8VcJiefJ8WkTdt2AgDGCiIYmgJLU5ZjcfVuw+xqI8xcaAn7T53qnKwei4B1rKbCYkpKcnp1LEZhmsDck9HLCJ2d9LTWAFgJGViRmBS53geFxeQ9Fn/04NPhm2rNApYYgzgWnR/uJuaXVvCy930GF4zQ+NarM6g1vOOOoX7fe9C8wtk9n30L/uh9r2+/lmniBc+52LPMpN+xWJ2PjEKVxe7GBImgGWjP+S0AwI5iWE9B0+tYZAXgho91Xp8Vhcpa0W6GXQBpJRNJqvUGJFEAw/jGHpXp8CcAQH6882PdoLWA5WeBwXMckSi3mnADkRwjNE3jzS+9wvuY5XzJCTRet5vDmzZNA40e+p2uVliU+4mjNKmwOHJe8v6KNqPnk3/rHQrRi/sBqR8Y2Jx8nTtfAiw+Q/p/cnLQsdiqECdjknSKySvI8dVwOXBsYbEb16DcD4BaXTStzeAWIsimpJwluAvhy83lSLHMj+1YLESMLcIIcziqDPn9Hios+sYhAiN4xK96KVr8eeaBZ0Lvt/ssmrqJeq3uiIwrgysol8t4wQteAK6fw/r3rEej7hXGCv6xiI/3/9P78fYPv925rSoqLr/+cs8y/h6LNbUGKdcWfqbyU57HRVnsWvztlrAefT879jPn7wuHL8TNG26OXAfP8J7fhf1Cf6zrUGRE0BTtuEs9jkW9ESkSsTQb2W/bNE00taYjDHE0FxrHqxoqDNNAliXHZ4bLoDVDxmdx/bwBYNAav5SaJfIerG2WMzKu+6XrAsuLjAiKpdB4pgHxmAghpGd1Esaz4+BoDhk+g2F5GBWlEhAWr1l3DW7dfmugt2RRKIY6HE8HaIrG9v7tWJddFxAWOZrr2EezE+6oWZ7hA+Jzkl6y3bi3U1JSUk4kqbCYEiDOsfjwvT/t8IjVv0DKenosmqaJ4fF1ePNH/gJDr/gQhEwey4vznmcW+6MLGht3Xohf/LW3OLfPvfBSZLLtHyu5/kFH2LRpaTokuX0B3jKcdQZuLMtZAljnrwAFoOFz+s3ExKHEcWS5gfFCdzOcOm3j1pEchnLRg8Rmow5RzgQci5lVOBYNk2xTVDKmEBKdaUej0oKEBw+XcO54PtFAOgw7YoRlaLzo/DGcM5IDz9CgYqJKkrCWwuKZgsAxHR2qx5tsGoWaktIdnOQIHGtGdZbEGkYhxQiLnIQsZUVi0raw2HsU6p33PxV6v26SM0ZRolGtN9BvLMAwTQxSZQz1F/C1P34nvvMrMgZkGrOL3olUQWHRe82/dPs6vOs1L8X39pPi1O4t4xgbbscyygKHYt73w78yE7zPRUBsWyOMHS8FAKzPhggiptEWWWzOfVnnlbESoLWjUE3bQZLQfVWrt5D1x6AqdSIUdSI32vmxblh4mvSCnLrKEd0L4iquKjKxrtAUFXQssnYUKvCy7Sx+YV0J+Ma7gSe+DnQz0WjVUagDVg/MmCK+mCcxxpuuC+9nGfncApBf1/nxpX1EwOumF+a5rwB0FZh/kgiLfleqUgG4TFBwDGPdJeQ4X9zXvq82T47lbvYvzThickpKSne4e8ktt5adGMEklJUyBEbwFNONBH1jwxyOJkXOhWHxk/5edRIrecSvain6Orf3vr2Rj7McC7WlgjEZmKYJUzfxbOtZfP3rX8fG394IvsBj2TcWyfdHu7Ind0zi5b/2cuf22OQY1m1sn48pisKgb5JTValCcNUNxmRv+lTSKFSO7/239qA0iLraFmp1Q8f3D33fs8zHroqY5IRgBOiANICWHjaBqo0dkWuoBjie87yHulr39Jr008mBaKObOnRTd/rf8Ux4n09b/MxbjvsMl0HlkQoefe2jWJeNuJZaSKyEDJdBSSkBaEdnKpSCKh08RgVGWJNsuhyfw/970f/DjetvxKA0CN3UoWjJ0ir6xD40tSaMpJOcTjG+fMuX8cbz3xj4PG3HYTf0i/2OGBl2jCQRDZO4GlNSUlJOBqmweJZAWRcvXY+fcdursEhZgwwuk0ejVnUciD/6ztcBAFsuuAQUzYATJJQWvTOcC33RwqLqy4e/9OrneW4XB4PRrE1VR84lWJ473h6ksxznRHZ+613PwZ/dujsgtkk8g6YvsnSxmmwgFQbFcFiotjDZ310mO8/0/jW1HYstn2NRXmXcpxDRYxEARI4G6xOiBJaGqWsQpy7ASkPFlZsH1yTi8k9v3Y3XPWcjcSx2E43Wgf6MFbe6iv1+piGeRMfiW67ZhBt3joBLP4+UlOSstWsxqr+ijdj5NSmtAXCiM5nErjGYdIRjsVQhTroO3Hn/k6HuB82whEWRRr3RQrPVwqv+rYE/+REZdzxn91bwDAWapjC3uOJZx1BfMgHhtq82QH2sjJuv9ToExgaywQkzjQXHsch16dJ306lnT0eiLrBKNdhr0L28vzDLSYDWBGeJoIZdAFGSxXhV6w1kXdFj5M7Z8IUZjhwH3TroOjH3BBGpJi9xIjTzdg9ErQXc+3fdrU+yhGTTAJ76pldwt47fDE/W/1hJANY/B3jon4Fv/SYw+1iy11jte5f7yGcTV8wb2wW88QfA1ht7ex3btehHV0j/zKFt3YlyA5tJTKmpW45F35iuVSGxphETDhxGziXLueN9q3Pk3MhJHZ8WSjfiaEpKikPeFVtcapVCBaCmdS3yP1ZulZHjcx5nUBLHY5K4QIq2xyJmwLEosqKzTQBxLPodS272P7TfiSQNg7UnrLaAo58/imP/cAx/9+jf4eqrrwbN06BoCrVyDUqzXWOIcyz6ufS6Sz1jDykvOY5Jm4pSgcm095/kOg/SNA2KpVBRIib72O+H7f239pA05In/fGjhISy3vKKqu9dcmHjj/7yKQjHRa+f4HAzF8LgVASL4uSM8/bA0Gyki2cetfax3ciyGCYuMRMZU/vfUiUFx0HEsuh1uTy4Fx8MiKwIswOQYmBMmjlSOYKW14vRU7Ibt/duxPr8eQxJJU0gi8ANETGtojdNWWOQYzum16Ian+chzQhg0RWNYJpOawoRsKcG4JHUspqSknKqk1pyzBHNgI9bf8Q3sO/I03GUwM+RCX4mJQj367H4szM0E7qd0MiBmROJY/Oa/kubbkxu9MUgcL2BleRG6qxdewedYbGkGRK6z+HXpc73CYmEgeNFvqAbpuWdFj4zk2xdxhuPR0nQIHINzRnLYOR4cwGd41tMHMCeyWK4rTnRbXelukMQUx2CYwLbR7vLRo1yVcTQdYXHteiwCgMBF99wTOSYgRFEUBUNtInPu9ZA4BtdvG8Zf3rmvwxqSQ9MU8iJH9lOXg7wwto7k8JnbLsR5Ewl6+JwliBwD+iQ1Orxh5yiev2OkZ3drSspZidTXWbjphbknSJFej5hcE1F8p7UGIIiQRABNoN4i1+XoHosVgOlcXJsr1fDUgSPY4LvfdixmLfHoV/7uCTy7oOFTL/X+aKcpCs2Wgkqt4XRUDDgWY7jlOm8U5mh/yI/++rLjSszLvTtJDSfRdQ0KNHHHhr8fDidbUahk+x1hUY2OH3Nert4MOharwXEkAOC8VxLHbVjfvl6YfYyIVfIg0LKj9SjsGqGB//4AEZtsksxA9x/n3/xN4OLXkb9tYZGjAAWoqgzwyr8Dnv0J8N//B/jB7wHrLmsv3wmGI0J9nEs4ahtNPSgehzFxYW+vAZA+hk9/O3h/04p/XXcpcfx1w/YXAz/9cyIghkWh8tlk7kqGA4Z2ACtHAUMn21GdJcdBt8KiPNDuGZmSkpIYt8hXVsqhwuJTyyR9wB/D2dSbGOVGwbomjcb1ugNIH7/Y7SrkgAWgWW86wpFhGlBbKiRW8vTbq6xUwFIsNISLh0pDwdOPhkezA+1I1D1/vAeVgxVMvHECPzryI+xdJk5He9JQaankPCeTz4CJadcCAJkdGUy9cwqXipd6319fsNZQVatoqu335XZqMiyD5WZ0/WctGJaHUZ1uu+v+98j/YlNhE/av7A9dPuyzdIsyJkwUIya1uQWwX935q/jKj74CKeM9/ze0RqQYzdFc5HGnWONiR1hkwpe3hUXbxZvlsqCl7mo8g/IgHlsgE5T8zs2W3vLcZzsWR145AvNaE5+895POYyIjIsNlkOWyXbmIB6XuxmUD0gAOlg+etsJiJ3pxLALAeGYcR6tHQ2NpEzkWT8NelSkpKWcHqQXkLKEmEeHtyWMlAG1X4tLMkcCyfsei3y0IdOizaDkWVxZJkUbTyEBl8/bzPItxggjDMDwCZqHY71mmpekwXDOv/PGUdo895/lDXmGRhommorcLcb51sBwHRSeOxU4CmSwwHqffUFZAqaFCs/r+/PueBfzf7z6FGbMY+nw/TD+JuTh/orvCZViPxaQ06nWIkhwiLK7OsShyTKTQI3LBHosAYCp1UDSD7aM5jHUZCRsHx9LB2KweefGucWwYTGeF2ZxMxyKQrPdESkqKC7k/fplumH0MyAWTATxEOJMorQGwIkQrOrJmzcxv6r7rm+u7vrRS9ToWfSIkQ9O4855HAq9lWFFnR5dIAW2xquKu12fw/K3eH+S2AXBuseTcl5FFSGLn17S5dJzG518i4srdOzz3j/aHFKcaJRLvuErunbb2zUpw3NY1bjEtCZwEaC3wnB2Fau3LmL5GzsvVG8hIvmt+ZTrc5SrmgQtvXxthUVNIJOfQdvKdEMjnc+t5HH7+xgwRnG76ODCwhSyfpFDk3maxAAzvBO7+DNmn1vGacR82FAVsfxHw9p8B194BzD0GfOM3gGfvin6d1XyHbceycpx7G01c1PkxhidxpN1y3ivIv3wmKCC2quH3d2LdxUDlGImFBUgUaqYHYTGzRu7ZlJSzDLdgU1WqnhhMm2PVYwAQ6NsGEFdXt73MkjgWbbGvWSHjBN5KTygvliGyoqdnX6VUiXQn8RKPh+9+uOPjygoZ7zRmG9j42xsxsGsAFCj83aPELW+7J5fn23URiqJQSJCgMHrrKJgMg8JO77LZvpA4WJgotUrObbdLj+GYRDGoq2VYHkZVbQuLC40F3LLhlq7W4Xb36ZqOPiGZo3wyNwm5KUOSgsJipGORiu6xaIvltnMyqWMxy2cdx2JShqVhR/T2b7O/d6XESjAZEzRHw5wz8ZErP4J3X/hu/MqOX8Hzp56PHQM7UBSLkDkZ5w6cG9ln0qYXYbGu1s84YZGngz0SkzCRI30WJSZ4vEUdgzapYzElJeVUJRUWTwB/+39/Dzeeu0a9YnrEni1fLZHZgHYMQqsRLDr4hUXDF60wtWkrHrkvKCxS1sBq3wM/BgA854YXhW4LJ5CBi7vPIsfzyOTas9IMEyg32oU4v0jlH+DlfY5FgTZQV3UYLmVR9guLmgEpQiCTecYjyA3lBJTq7W164c4BVFsaDlDks20Z0QMMpn8dChKL4Vx3ghqfYMai8xq+uEgShSpDWWPHosRFP1/imNDoSiZHBqSXbOhDn5ws9iMpxLF4fHpVne2IHJNGw6aknE5IrkK41dtt/wEyI7zZ6kHkmn0UyAaTATyECIscRcYatNYgootVbLGFRZ3qXDBcWvFFofqKHpdum8CP7nm04/O/+hApkv3dr2zE7tHgtcEu/Nh9Fu3RwpC7txEXfr3+r1dn8IYLeXDVo577x8Ici41lwIju/xPKY18DVg47W/bwvDVWWToQ3zsvjuoccSEmhRMBU4fEkX1mMiJAMV04FhvIZnz7snwMyAwl34ZeWHoGMDRg/VVEjLKExVftZDFdNYFf/DvgkteT95IEivbGxIpF4HX/DdzwMbKPsuT9yGFDJE4Erv8g8La7gS03APOdHS4AVrdvRKvQGlLEX1NGL+j8WGGyN3F4bDew6XoS0+ofn6s1gM8li0IFgMkriJhYnSNO3/oiOY8lKKB6kI/zcZqScoZi950DSC+6hfoC9u0jaTWVFRK7aQuLYWS5bNeRg90U35s1ItJwrskKMit7olArpUqkuLnlwi14+OedhcXZB0lCwEW/eRHkLTJojcYVY1fge89+D0Dbsejvs1gcKMZuv2BNhKIE77kyUwx3NrljR/2OxaXmUmgPyrVkWB72OOTGMmO4acNNXa3DLSyqihrpWPTTqDUCjsWm1ozsXRfXY9GJQrXclTwTLjo5jkWhd8fiaKZdT/QLUfb3yP6+5Pk8TNoaK6rA86eejzde8Ebccdkd+MNr/hCfe/7n8IUXfAH/+MJ/xF/d8FdYn18f+/oyJ0f2o/QzJA2hqlbPPGGR6T4KFYDTSzNMRJQTjMmd4zSdb52SknKKkVaKTwD3/eTOk70JDtWV+NlocT0WL7j0Sjzi67NoGAbUEhk4X/7Kt1v3hWe4czwZkJQWichJS2QgVuz3FiAWa8n7Gfp7LPK0Cd0w0XS5LWVXtCrD8VB1E1KEc0/mWU+PxeGcgOV6e5ueu2UA//Pea7GTI32bGmb014miaIzkRWTF7gYiq3Ms1iDIGY+wSIH0QFwNUfsNIMJimGPR7vX5vO1DoNfYAcczaxOFmhJEFtL9mpJyWuEu6FdIsWF+nlyrKrUexIb5p+P7voUUdzaIZGY6pdZJvKVFrdkhCtUFiULtXMy7dtcG3Hmv17FomiaeXSZxZZ94MSnAFITw6519DZpbXPHcP9wffB9+HAd3y9uPaDQkfgyNRUDrQsy195Nd2DTI+3G0xIWngVYVPEf2jSR05+YAYEVCJnDEDW0j/1pCTNZ6Kd0wiEjXVRSqv8fiXLwLFgCKk+RfobsYeQAkwpcVgUmrCQAnAxSDgkChqpjA4FaA7WKSEysCrG9/MwzwnN8AfuNR4HkfBigGMhcxvulbD/zyPwG3/xtw1bs6u+dWIyzajsXjLSzmRsh5IazoOrA5su9qRygKuP3fgcveFHxMqQFiLrljceJi8u/CXhLPamjkeOo2BSE73N3yKSkpAILuwWO1Yzh6lEzIWZwjdYAoYVFiJbDU8RMWG1VyDeNd/Z5lVg5GoUb8vtx00SY8cs8jgR53zXmyjm0vIddRId8eA71gwwugWdd2x7G40L2w2ElgyPnSE9gW2f6yUnbuY1yTcRmGCItJ3J5+eCuJQnCnPXRgQPKOI2+YugGTucmuXs8tiGqalrjHIgA06iHCot709Cv008mBaBOIQqW50EnrDa0BCpRzfOb5fNeORXe/P7/r7UiFpFnY2ypxUltYDIGiKPAMjwyXQVEsJhbK+sXkaQr9Yj9UQ/V8n84EeJrvKQp1XS5cWORoLpEz2z52jvcEgJSUlJRuSYXFs4xaKYmwGJ2xv+vSq3D4wDNYnCdCYqvZwB+8/604/IMvw2jVwOeKAIBGrRr6fE4gA0LbsUjz5OJa6PMONheryYVFfxQqTxEhbaVFBlSM3vQIWQxPBpCZCMEkJ3p7LA7nRFSa7f4KoihB5BgMismdA+MFKRDrGsdqhMVmow4xk/eEy3AMDZZe3Vc/LkpV4qOjM0cLXTglEiKwTLIYs5Su6faYTUlJOcm4RaPFZ1a/Pq0RX1wPcSzatRXaVImAY91RtRyLBh0u6pimaQmLZLwwmg1eT667cCtm5pdhWI5MRdXwxg/9GV7xjwuYrRooWrUnVQvvi0RRxOU/63MJdNtn0c3YQEhRTqmBaq4E73djuGZz+4s7/klazRIwuweXnLcVALBuqId+wNXZZC6s274C/NI/kihRAFnr41JUlXzeSXr4AajZPRZd/Z3QWCKutjiueDvw4j9ti4PdMPc40LexLdJRFMBnILA9FmU4Kdj3zyYzSIRKToLExowLKQrYeiNw48cAK14/QJxDOAq7D6R6Aop5Y7vDxdHRC0ifxF5g2OD5xDDI8daNWNm/iQjSK0eIcxEA+jZ1vz2psJiS0hMBV1UtKCIe9Tn/3WS5bNftELJ8cmHRtJKN3C44iZU8vSDjHItbL96KRq0BxR7X6AY+89HP4NE/eBTKvAJeIus2Wu3rfEEo4OIRa+IDRXo+lhZKnvUmEhbt9+GLkfVHodI6DYmVUFG8k6FsGI7BQmPBcdN1w44LSST86Kb4dK4hyTvuuGzsMo9bNAnuz0JVVOT5fGKhpVlrQvJNclIN1REFO71eXI9Ft2AY5VgUGMHZ/izfvWNxWG5fi/z7bbYx6xG3RUaEQa+9U9AvDkdhi5D+mNbTHYEReotCzZIoVH/sbJx4bZPE1ZiSkpJyMkir8Kco3ODUcYl1rK4sxi5TjnMsXnIVAGDP/T+Drmt432tfgZ/d+T8YueBa0EIGtBUd1qiHz5RmWA6CKKG0tODcZ5omiv0+YbEWjA7L7roZY6/988CswOKgdzArWDO0Gpq1nK/GY4uZbhejn+Gc4HEsDuXiZ+J1ghHJYHPDoAwx4jXD4Jn2YLnbKIlmvQZe9g6WOYbq2FcyKZkYYVHmo/sRHI92fTxLwexhkJcST0ZI92tKymmF5BMWVxudCQDZmKKRGCNwuX5I28U8wyo6fn+/5giENqVyDYYlsr1gCwcYXtff1ZfuBsPQ0DQdSw0TL7jjH/Dlr/8Av/P8PEayNASaXL9VLTw9gQIREf2OxSF3XyOmu+u+Pwq1ZJLYIrru62lovdeaRpHxSStCeHS5ImuKSaI4jz0Ixj1ByNCxvXEvWcZMEFNVnUsmljAssPMXgAKZZW33Dmy1LGExoXDlOBYbrsltpkGEuDgoCrjkdcDwjvhl3RgaOfaHd7SFNqA356MNJ8W75TgJInMCvm9R2KJcQkfpqnjpZ4Dr7vBGxALAhueu7evY7ss457QbmgZGzwfKR4HyNLlvYHP3ry2vQb/PlJSzEPdvQZqiMVObCSwzXZvu+PwM3zmisuNzImItwzBN0yMscuAcFxpAUpnoiFSiqZ1TECURjXoDekPHX7/nr/G1L30NUy+fAj/Eg7Xaj+gt71jE7i2o0zqKg0UsLXgnfxdWMckp0GPRJP3xOgqLLIPF5mJov8KD5YOR/Re7EX79Pfqm8lOJnmcL1BRFeRyLqqqCpdnELtVGvQHRH8sORAqqHBMt+rT0FgRGcFyvHXssqg1PhGaOz3XtWHQLs35ha74+D8VoH7cCK8CkzDWv9vYiLFaVcLPB6QrP8B7Hb1LOHTwXt2+/Hef2nxtYXxJnNk2RCQKpYzElJeVUIxUWT1HG3/A5GFe8bs3Xa+h6QJSrVb2DzHq1Ak3tHNvVPzSMyY1bMHPkEBZmpzE3cwyf/of/QG7UymbnyICv3sGxCADF/gFPj0XNMIOOxZAo1IGb3wl+ZBOOlEixRBCteC7fc3lrhlYrvJ4IyopjjRJM8iKHhi8KtWesQffO8e5/JLgdi1GfSxiNeg2c7C2icSy96hjSTEyPxpwYXXjTjTUouvngWQZm6lg8LkQ5e1NSUk5B3I7FpQMkQnA18Bmnf1z449n4KGrfDN2W0r6erbRMHJ31TnwyTZMIac4TvGOVXEbExeduwd5FHVd8voY9B2bx/S/+AV62k8zo5UCcigHHouWuqpkSRgb6oh2LRrjb0U/OitZaN+S9xq+YpNhF1xe8T2iQ9zrXssYVjVLnlbfa0WWaARLvOP9Ue9tMA7j7s2BAxiu2mBlJcwUoTMQvZ2MVdzPWR6xqGnGOJXQsVusNS1j0JWIM70y+Dd1SPkrE6KkrvHGnXbhZAnByZ8eiDSuiy8T7cHKrcMnRDHmfCT+fVZEfB7be1BZci+vJ59qXrGCcGFtY7LZv48QlQPkIOR44ube+j0lig1NSUiLJsBnM+SbZmKYJ3ezwYx3BKNVEr9OlsFgulT1iVXO5Cd3UQbkirSmj8+9mhmNw3iXnoTHfwP6P78e+h/bhE3//CQxfQ87hDMOAZmjoTe/7HHRNWOgb7IuMQvU7EjuRzZPrW99YUCAclodDnWMmTKfHYljM5f8e+V8AcKJbsQrTVIbLePa1P86zEx9/zsdx84abMZoZ9YjAmkq2Kcpx6KZRbwQciwBQ5IsdnxPnJrOFRVsw7ORYrGt1iKzoLJflsqAFGuhCn3I7Fmlf+tRsfdbz+dq9EGl+bWsjw1LysYktQta14xzLfoIRGKGnKFSO5nDHZXdg18iuwP1J19ft+S0lJSXlRJBW4Y8DzzyxB//9ta90fLzZqON33vGagMDnh8p2MSu3C/xRp0ef3R9Yplppz57XTTMgEl5wKXEtMiyLz3zl2zjn3F2OK5CyigvNeudCZt/AkMexqBsmCj7H4kIl6Fi0sXsGylnyg4O2Zg3Ze5SnyF8tPXwfU5b4GReF6hYWcyILqUu3oZ/toz30LmDarxl3zPhp1GtgRe8vAI6hwXTbX8ZHJqZqlotxuB0PYVFg6VRYPE7kU2ExJeX0wj37euUIic/0YVjXk0TXlewoKcp3fL0EYg3nFRaPzi4QUQxAv0Rh77PBOLSyrxCn+dyH1112ASgKGMlS+Pln34LnXnKe8xgDFRRFBYVF6zrRBI/hMMeiW1iMKHi66bOKeaJv0k3L5AE+C7rlE9QqxLWxpFkFrkZETH3LN5ZadylQmyOfKwA89S3g8M9wmO0m4tEkEaFJscQ4kSGfl2mapI+flrzHYkYSvMIiwwN9G5JvQ7esHCGO06krvPeHORYvvJ38GzcDnZOJizNmGWEtHIur6bEIWK7FtR9rxXLp60mPxCQxt93gOBa7FAanriCTEhaeIs5VNoGj108vYmRKSoqHDJ/BcnPZI5Itu66Nhh5M5Qlz0MURVqDXKXIt1xG8ps8dnfOIVZV5MomJH+SRPdca2/iGEf5x064rd4GiKTAyg9/8+9/EZdde5nlczsjQGp0nKvUN9HmiUClQKLr6PZdapcBzwsjlyfVNkIKToUflUVTVkEnfJsDwDKpq1dPDz4/dw48qkBpCS+tcp+kERVFd9eizGZAG8MfX/jF2Duz0fFb255C0z2KjFi4s9omdj7MkPRZFVgRDM2BoBjIrh7o461odIuMSFq1xFSMmry25RSW/eNnSWx5HsB23udbCYtQx4sf+XOrHu9/zCUZgha57v9qEHRsCIyR2QHY6vlJSUlJOJmkV/jjwtlfeiE996Dc6Pv6vX/gsfnbnd/HYA/ecuI1yMTftLd4dORgUFiuuOFRNN3Hg6Sec29//xlexc/clAM2AETIYGvX2h7Gjy+r1CMfiwBBKCy7Hom6i6HMdLoU4FuPQYA3WGPLDQenkWGTJgDsndJ55nhU5T3ocRVFY15dsZl0n+uTwflJRcExvgwfDMNBs1MEI3plNPEOvQRRqjLAoddcvYS3gGBpGeko7LuSl7o/blJSUk4h7JrPeAmYfCyyyd+9eAMBThxcCjwXIjoT3UesG38z0Q8fmwWhENNvaT+Ppg0FhcaXudek/deCI8/e/fu8+XHb+Vmzqo/G/r5WxedxbrKL1FrKyAEXtXMwbGSw6jkWaogDT9AqLWvfjEDcmABSnQPuF3QqJfqvZU//9Tj43/gip0QuIOLJ8gNyuLQCXvAFHh67pbuMGz0m+rFUAE9z9eqRi4qjNUMdiZogI0pe9uXfBJwrTAPo3ABnf7PowZ8PV7wZ+41Fg8orgY244Od6Zy8tOHP+q8G93t4T0PD1hFCbiI2O7RenVsWj1MVvYS2JUezmPOWJmWsxLSemVDJfBSmvF09bjWLXdc/HAIwcCz/H3IuuFulpHUyDubc2vEAKYPTYLgW4LcaWjJedvaco6X/ietjDTHjc98sNHsGXnFghjAjZ+YCMGNwTPUVJGgtoITx2iDRp9Q17HogkThYH2ObzbicVhjGXHwqNQKYDKkXPbeKZDz18QYdH92S37J0wlxB2lycZdT0PgQ3pzJxUWm/UmpMzaCostveU4ET/53E/ixZteHLpcQ2sQAdISBG2RsNs+izZhcZiHK4edv21nKMWv7XXLjmONchrbsDSLPJ8/4xyLIiOuqbjXyeUaRupYTElJORVJq/AnAdWKs7T/XZidxo3njuKu733rhLz+3LS3cfrRZ/cFlqn4+izue/JR5+8/vOMdaDbqyF/yUhR/8WOOe9BGMwBRkqEW12P9Hd/A0WpwMFwcGPQ4FjXDCDgWl+rdF/SalOVEZHSILI1WSEtCUZKQHyID56go1FyIK2+qf3VNk7M9OL/cUajd0GqQgh8teLeZZ1cvLMoxjsTiSRAWeduxmM7iWnOyXcymTElJOQU5cn/gLrunoWE5yGt1Unh75mhIL2Z5AGBXEQcOBJ5/eGbec/vpA0FhseQbBzz05H7ohon3fbeJW//P3+DQNBlHUBQVEKZovYWcLEFVOxc/hvuLXseioXt7LK5FlGTfetD+HoqWY/Gi7VZcZJSw2CoDhoatG6yCH8sDG69tP771BcA173PiShNBs0Cxi6hKa90C49qXUj+gx4/TTNMkPRYzIlB3HVu5UYCXgRf+MfDO+7oTOpMyuCMYYyl2SI4oTpLtiYLPJIhClcAz3fXDDqUwAYCKdgpHIXXv9Dml6aXHIkCOs8wwEZrlwd72py1mpuPLlJSuMVUyxshwGawoKx7HoltYDHMscnHn2xhaWgtv+97bnNt0SOlr/th8O56TARaOBCdb2e/B5pnHnoFpmpj7jzl8/jc/j2ceewYAGYtU1KB4J2dkKNXw6yWrsygOFLHsi2V3R6GuBWOZcGFxaHQI4igZP23Ib+j4/APlAygr7Wh2999JMMrk83X3WXS7D5MihPS+LorFRM/t5FiM67EYJfropg6JkcDSLK6euBqXjV0WulxDa0BiJOeYznFkLNJtn0Ubt8NNZmUMSoOYrc069x0vx6ItDCftm1gUilCN7lr5nOrYPT/Xim56Nma4TNpjMSUl5ZQjFRZPAWaOHAIAPPZgvINx7+OPrPr15qaPeG4ffTY4Q9Afl/rUngedv3/z9z6Nl/zya0GLOXBD67FQ9UZhqJoBKZOFUSQxSEdrIdEmA0ORPRabqo6m2n7eSodZfn6aIANUCqTPX5hjkWFYGNYAUYpw3uVCRMCNg73PEhJYGtkeGu/0Kiw2G6QIQ/PewQ/PUKuOQpX56MFP/iQ5FgGA6mH2Y0o0vQjiKSkppwhCHph5OHaxUoUUCeZXQmLMs8NOhCgA3LXn2e63wyd8HZr2Cot7n/VOegKAJV8h7t49T+MV/9rAn/xMwZ//5i/jN37tZR1fjoKJnMwHo1BdEMdiqX2HoXgdi2tB/2ZQfuGwTN5r1o4rq0cIi80VQFfw6hddh0LGEk/PfXn78XWXEvGkG6Rid0IkKwAUA9HtWEzYd66lqDAMgzgW667I19x4u99hZvD4iDZTlwUF8YgCYix8Jt6Jx2fAU2sgLObHgdd8HdhyQ2/Pl4qr34ZTCUMjn2UvjsPx3eTf7EhvEyRYAeAySB2LKSndY9TJ+TDLZVFRKh73nVtYDCPO0fbE3U9EPv5Xj/wVHl98HHSr82/p2aOzjljVf20/ZvfPeh6nGRp6y1tQeGrPUzjy10cw9x9zePE7Xozb33m781iYeCdlJShLZDwTti19g31Y8cWyu6NQ14LRzGhor0ZBFFDTa6BAYSLbufdyQ2vg8cXHndvlVhmmaTrvt2lNxOIpUosxxPZ10GgZaD5AHh+RO0dpJhEaw5bpF5KNRxr1BsSMdxIaQzGRLjCe4WPdaSIrxkZj2o5F+5jO8KtzLPpdlNv6tmG+Me+4Su0ei2vtWLSF4TABPYwoN+jpyloLiwIjJHYsZlfTJ/wM5qKRiwAAV01cdZK3JCXl7CQVFk8z3vfaV+Dhe3+6qnXMB6JQg47Fssux2KzXcOd3/tO5ffMrXu38TVE0jpa8UViqYUKUZehaZzGw2D+I0lJ75npd0VF0ORZL9R5nNrkGfnmJhdKhtmO7LMNciTZhj20c6l1Y5FnaEb+6ep7rOZKU/PUbVo9Lu5+kezvoVX7z44SmqP16vHAE2Lj+RyldEyayp6SknCbkRoDFffD0WzNNbGiRApGWZCiY88Zj3XTHl/Dt/723u+3wC4vHfI5FXxQqz7FYdPVabikavvDV7+KHBzT8120Sfv2Xnhdb7BnKCdHC4kAfSmXXrGtdW3thcXAraH8MVGXGe7sR4hK1aZaCkazbblndNsmD3QmLFAVwEsaKpJiybmwYSOgQqNbJGDEri95eksV1ax+X6Ybhgamrg/evJiJUyMULoLwMbi2ERQDYdA0w0E3vTBdS932sTnk4ubdjZp3lIClO9i5gy32pYzElpRcsTS7DZaCbOlS2/Rv/aDWYVOAmzrH4N+/+G/zomz/q+PjhymG8bOvLwCqdf8fMHZuDYE04YDIMju31ip25Qg66q9+zoRv42t9/DeX7y5h8xyRuesNNoCgKtPV7PayfnCRLaC4TYY2tB7elf6jfSZGwWWvHYpSgp5kacnwOcoRrvygU8eTSk87tUqsE1VAxWydC7L2z98I0TXAU+cz0gu6JTrUZllcX8+0WFjduIb2i3fGqndBUDaqiBhyLIiuCozkU+PCxgf1+opBYKfZYbWpNSJzkCEhZjghEvQqLfiHqvMHzMFefc/a5LZavtWPRjkJN6lgcELtMGTgNkHtNkugATyePQs1y2bTHYggiK+KBX30AL9z4wpO9KSkpZyWpsHgKYxrBwdi28y/EB9/y6pClk5EtDmBuxjuIP3rogGf2oChJqJTas+d5QYQeEk9iM1P2RoUpmg5Jjp5N0zcwhFazLUiWG4rHsVhqrK6vEQDkOzgWAUDVDVAgLsJOhIlnGwdOfK6527HI8ckjQ2xhEazgqYXwDLOqKFSGpmIF0sJJ6MlnC7DU8SxUnoWwNAWBS6NQU1JON3Qr4hTZEWDlMCir2EDBBL79W5AMco0oGwl+IGe8IsWNF2/GS97+u4HFVD2iD5DLPZ+ReByanvM8vP/IDDStfdEeKOYxv9Iu0PEcA9M08ZPXZ/DCre3zfNTVbDTPQdM6j1+GB3yFJENde2Gxb4PvNQyg7hVVI6NQG8vBSNbVutEyw907v3gZg1my34uFfOJtqNbItmck0fs+C+u7e/1uGdgC5EIKmKsSFkP6M/rhM+Co+N5Dx50zUljMEMG4WzY8h/w7tL3315YHkDoWU1J6x3aFKUL7N/6RyhGEmOgAAEbNiBVrdt+4G7/7juBYxOalm1+K3UO7OxbixaxIhEVXvObSkSXPMrm+HLRGe4ISzdCgaRobP7ARhUvb1xPK+m1dVaqBnohyVkar6U14sjFhBkREmqKRK3aI7e6RKGERIHGgUU6s8wfPx75SezL6YnMRTb09NqmpNTy22O7nbUiG42J0YwtTveLuscj2kVpNkh6LTSvu3y8s2jGmX3/51/GbF/8m1uXWAWj3teQS1BVkTo6NsmxoDWS4jLOcLSz2EoVKgQo4Fs8fPB91rY5yi0TUHq8oVNuBWFUTCosJRN/TjbXucyiwyR2Lt++4HS/Z9JLQSOCzHY7meopXTklJWT2psHgKUquQAYGuB2fZ//5f/iMue+7zu16nrpMiR6bQhzmfY7FaXsHKcnu2fK7Qh/LKMqp7vofKQ9/B9OEDke7DRX8Uqm5CjHHWFfu9jc3LTc3jWFypq1hlG0AUpGhhkYtxEIbFlk4NrO0MpST0GoXqCIsM73E98iwFehUznTiGihQmGYqCyJ34UwvPkm2iUsfimiKwNNjVWlxTUlJOOE5ZKzsKaE2MCqSokn/k88C9n8eCES2SKIrruu8rNn31o7+MV7/oOue2f6Z9cFsogOZg19pkgQtEoWqajoNH2xFk/cUc5lYa+PfHVfzJ3S3MLFVRrTdx/kjyIsxwloFqCaxGSPFyZMAX0aQ2kcu43qsWXgjsir6N3tv1BcDwDU4apc7PNw2gNt/58YR9WTxkRwKfaSxcxttTMcqx6Cp4OY5FSSTuS5vCOI4bm68nEaJh4tpqhMUkYiqXAYtTQFjsthfh6QAvx/e4DGP9lcBrv0n+7RVpIHUspqSsAltIUfj2deRY7RgkM/xaZNZMMDQTOb741d/7VbzkV1/i3FZbZNyiL5JzcFEshosA1nhAkATMHp31FqNNgEX7t2S2kIXSUFB5uIK5r8+hWWtiZWkF8qbwmkBZKQd6ykkZCc1GeM9mgzHQN+gdizAUA3qNf3sVhIJHlPPTJ/Q58Zlh7Bra5emruNJaQaXljcP8r33/Bd3UPcv4GZJXKSyGCAdJeiw2rLGIlJE8Tko7nrRf7Mdrz3utE/XZ0lsdX89Phs0EhD43uqlDNVRk2fbEe4mVYBpmT45Fjg72fdwxsAMAUNNI/ed4RaHaUa41NaRtQgjunppnCmvtWBQYIXGPxfMGz8Nbd78VOX5tJx6kpKSkrIa0WnwK8thDnePFeF7Ah/7vX2PoZR/E0Cs/guWFiGKTiyPP7id/mGZAWAS8fRazuQJ+/qPvYfFbfwplbj+e3Uvi0tbf8Q2sv+MbMHyz8JZqClSXo1HRDIhytLDYN+gdZNRaOnihPZgt1dWu+/T5t6sgc9A6zIJUdRM8Q0cLZDQd6CU4VljbTPUk9BKfCrSFRYNmPeKkwDJgV6HacjH7TeB6i3xdLTxDPqvUsbi2CBwDhkmLaSkppy1Z4tqakq3+N8t7gV234XFzc+TT7nt0b/uGz93GMgy++In3OLefOex1H/oxGQGgGczMEyeAouk4dGwevss29j7bHp/05TP43j1P4FX/1sD90wYe3Bvei+m/nrFWElL0H86yuPcoGZ/M6kEhddgfNdZc9jkbIhyYEQgm2dcKOKCwzvtgZdp729CBVkyvmmrI/t1lpVf00m+lOImuM9F5n7CY1LFouQQKguEVVNe4R42HF/0JcM37AC6kSCqQYozQjR6bGwO23AiM7Ypfls+CQef43RPGmdZjESDHeq9jvA3PIX0re2XXL5N1pH28U1J6QmIl0BQNTWifH2dqMxDNDmKWtdizezv3dKZpGu/63Xc5t50Y05hL9+EDhwEQF9vi7KJHSAQARm9fILL5LI7+5Cie/dNn0TjQwJGnjwQciW7ChEU501mI0GkdBX96wnGAoqhIkadf7HciYcPYUtwSEGmna+3xzHmD5+FY7Rj21PY49x0oH4Cf1QpNYUJfnxDfx69Rs4RFWcJys52eIHNyqDPWERYjxFibuL53tnMzz7fHoRRFwWgYYMTuJ4exNBsQMoflYc9+OF6ORZuwfp1h2J930uVPB+xJEmuFyIiRwnRKSkrKqU56BjsF2XP/zyMfZ1gW8rarIG++FA89+ECidS4vkKKUnO/D4twMDMsNKVjOQrvPoqG2sDQ/i2ee2IO+69+A/hvfhmeffhxDo+1m3ks1b0zpYk1BS/UKi4LkGkCHDL79jsW64i3CLNcVFLsUFitN7zqKcvv5ouQtYCm6Eeu8A4K9AlcTIdorfAKRjrFENVVpz4ZsNkiEnE6zPsditDCYZHuini9yDNiTICxyjO1YTIXFtYQ4FlNhMSXltIXPeNxlKxtfDGy8NjZS8Mf3tyOtwpZ1z6a//0lS+HPmsDz8FU9fQIMRAYrB0goR0DIih2q9gXKtHXUq8JzTZ7GmmDh4dA4PPnkAH7tOwJdfLuLh/TPIZ4PFuXd+1wT1sTLQH+xF1y/RTinDNEOER3/sab0UWKYXCgYRUEtmjjgKLefctnWDQHWWOPokqwDUKiO2CtpYCt7Xi1PRZmBr98/hM14HZ4RDoOUa09Usl0ae9UXcd9PjsVtourMz0RIW80LEde3i15J/+6xjihWA2/4Z2HRd/GvzGTDmqSAsxhdaTzuEbG9RqGvBrluBGz4GiAnicFNSUgJQFEVcNtapt2W0UNfqkIzoSSZ77tkT+bh7MtChJw4l2pYjh48AAKRBCaZpolVuX9uKA0XAulyZmoljzx7D4R8dxuALBjH161OY3jsNlus8wWC5uRyIAJVcSQh+UdKkTfASD0E8/tGGYf0NbRF0UB6MjJ5laAZXjV/luW+u0Z70tK1vG64cuxIPqQ8594X10DwewmKoY5ECdFd0lSMsZiSnLyTQuT+iLSxGia02ce4xR1j0xanrDR203H3NhGfCe/Kd03+OZxmgHdG71lwyckmi5fpFMv5trUUCyCnCWkehRkUQp6SkpJwOpMLiKcie+36WeNm9jz8cer82eTHW3/ENKFZvIVtYzBb7YZomSksk+pRmGAyNjuPoITKjrPzzf0elsoItO85H/rKXg6IoHNr7ODZvP9dZt18nXKgqHmGwpRsQXT0WDzz2YGD78sV+T1Gy7sssXa6r6JO7Kx74Bc8+V58/yleAM81kAltePPkiVVQfSJtsluzvw5a7FACalmNRA+1xLIosvaqmzzxLg4l4vsidHCHKeY9pFOqaInL0qqJzU1JSTgGK7X52Kl9IVBz/3/seBWAVwWLOAfc/6SvmPfF14K+uhkSTsYFB8wDNYLFkCYsCuT7bDkYA2LJ+HHsPErfBR3+kYHpuCVumxvHhawVQFIWH981g9/ageOhgzc6uu5wG/Zn2te+BZ4KOR57nUMy7Zh43g7FdvZDXyWx4wx5m95H9n5V4oDxNhEZ7dnJUf0WACGHuCNG1YCBiP3aCz/qiUIPCnT222LO/7WJwolDR8C4c5iY8EVjHfqSwOLgV+OA0sO3m9n0MRwTGOHgZtNm5fcAJ44x0LOZ6dyyuyeuf+HYIKSlnEu5eeBWDjAdERF8LHr4nvNYRxuEnDida7tgKGQ/wY2QsUltuxzpObJiAXiN1iYXvLGD64DSGLhnC6C+PgqIpHH36KNZv7dwjWDEUlFolCE1yvZAgQcpIjoC0WFoMPMeAgeJgMdG2r4aRTLDPou3eS9L78OYN7WtiUShiseF9Lx+64kOe27O1Wei+6Pck7sIownrLjcqjGM+MYzQz6txHMzSmD7THIo1GuLAos7IT7+nGFhbj+nwCQIGPdpw2NPLaBcG7nNEwwEhMYB/FwdFcqMPtvIHznL9pigZHHZ/r5b2334vfvuy3Ey1rC4sGolsmnE7I7NqMBSjrv7UWKlNSUlJONKmweIrRajbw9KMPJV7+wJOPht6vT10KAHh6lgzaVZUUObJFcnF3R6hOrN+Ew/tJ5Fnu4pfgyute4DjgAODZvY9j87a2sBh4LcPETLk9M8/vWNz38M8wfdgbY0LTNAp97f4vdUXzzOBbaajoz65OWHQ7FsOIc94BQcfiyaCbWNFnn3oUSot8Fo16DSxL+kx6olC5VbgcEB+FKnHJo1bXUoC091PqWFxbxFVG56akpJwCDETHnvrRdR0/eeDxiCW85wTbseiw+9VAfREyQ4olJkuExVKFFO8y1qSd6fm2qHbOhgk8eYC4CN5/FY9ffuE1oF3nnof2zWBXlLBo8ePFdl+9oks82ntkEY8+fTCw/MhAEXM1q+ChxESSJkSAb2a2u89i5RiQcc3Yt4XFbbcAl76RuLLcZIaBxgrptbhW9NJ/j894t0HIw38c2Dx+cAYr1mdtR6HKZrJ+PMcdy7EocTHXNV5OJiT64WTQhtZhz5xAzkTHolhYnVM3JSXlpBImLMpm5yK9aZp45OePOLc1I9oNbguLlBx9Bl6YWwAAsDz5nV9dqDqPTW6aRKtEruEDNw7ghlfeAH6wXZM4+vRRbN4RPaZaaCyAU8k4hwEDKSOBHyDrMDMmHveNr3RTD/RZdGPCRF2td3w8KeOZYBy0ZjnsJ7OTsc9/zsRznL9HM6NYbi576jdT+SlclrsMAEBpFGZqM6hr3u2O6iVni1BRhEWTypyMr730a7hu8jrnPpZlsXB0AYuzRPx0R6HO1Gac5TJcJlxYtBx2Ah0/DnAf12HYwqI7ChUA9LoOWqQ9PR+TwDN8qLB4/uD5geWOByIrYmNhY/yCSPaZnm5k2LURAjmGw0eu/IjnuE1JSUk5HUmFxVOMJ/c8CFVV4he02P9kdDyIbpool9qOgEzeEhYX28Iiw7L4+Y++B62yCEbKYWL9RlRWSs7jpcV5j2PRjWFFb06vtGeitzQDvOS94H7mDz4YiP7oG2jPjGuoOnTX49WWhpFc5xmM/thTgMSnuinECYsxzjsAKEgnKXLJBZ/AsWijKS08+LMfAyDCoijLaGmGx/XYzfo6bU9sFGrC3k1ffsPleN72YQx0KSKHYb9HKnUsrikin/ZYTEk57elSWNzz9EFHGErCA08egmG4CiO5MeDmP4Sdkm6wMpqKjsNlcofOZcFxLPbNkWLeY/MGWIbGj+7Zg/3LBgoihZ1b1jvRqQDw9JFF7N4RLywaVuSpSbEo+OpBb/vYZ2EY3rHI8EABqj1ZXKli1YT1XhrY0v67MgNkXa6BxjJxL17/O8CL/m8wIjQ3QpyUZncz2iPheohd8gueNO2IdH503cA377wHAFCtNUBRFDi1cnzjT5MiHOcoSz4DCma8cHm8iYiqPW05E12YKSlnEW63Wlkvg6O5SMfizOEZLMwsJF7/9L5pKE0FFN/5/GsYBupVInbRNI18MY+V+XZaAcMx2Pvne9E82gQt0Fi/Yz3qK21x7Ngzx7Dl3C2B9bpZanrjy/09Fj/9wU9D19rXdN3U0TfQWVj8j2f+Ax+864ORr5mEsexYT4/ZyFz7fYzKo1hqLkH3jU1uGrwJAEAbNFaUFczX55GUJM4tlmZBhUzdkTnZ4whkGAY0Q+Ou794FoC0sirLoERZlTg4V6Zq61Zc8gThX6BS9btHQw4VFo2mAkZmuhUWO5kLTp3YO7AQAZ/+IzElKhnAxIPUwke0UhgIFcQ0TN37xnF/EJaPJYmVTUlJSTlVSYfEU49H7f45MLnnRY2lu2iMShrHvyfasOE4QkCv0YXlhDqZporL3Htz/kzuh6xpokQzmcoWiR1gEgM3bz0MYem0ZIkdjoeoV9TipXYC65MZX4J7//T4eufcnnmWKgy5hUTGg6d5i3ESxu4u237FYiOnRyLO0xw0RRpjrcfsoKaQlFc9WSzdCYGFwGHd971sAiLAoyRm0VN0jLIrc6rZbiNlvEpdciNo1WcQXXnspzhmJ7k2QBD4VFo8LYhcO1JSUlFOUkP6DUfz4vsfAR/QQ8kcClmsN7Ds07V1GyOFAjQhYBi3gsf1H8WyJXOdrkLBuZBBHZ0nx7d8fV/HV7/4Emq5jUKYgshT6i1ksrbSFPtM0vVGoMdFRBishy7fHFS+7egfuuv8x/Mu3/9ez3Ii7mNeqrN4ZGBanau9/pQbU5oH8hGv5EokZ7RSzmJ8gy3QZlRUJ10OMk7uHkO0a6RCpu3G8H//f//wUAHEsZmURVGPp+It6STje22Dt25i5bccf27F4JkWZ9+K0TUlJOWVwiwwVo4KiUAztFWfzyD2PeG7TMb+9Dc3A/qf2Ry4z7RurDE8MozRTAgCU7yvjO//6HdASDbZAxkDZYhZaoz2hWW2q2LKzs7CY5bIotUqe+6SMBGWJ1CmG+oew/4n9+NqXvuY8rhs6+oY6C4uaoeEFG16AlXtXoK303sN3RA5Godp0G8c4khnBcnM54CK1RTqhTGZ2HSgf6LiOJDGjfiiKSvQ8iqIwNDmEH3/bnnBNxD1BEjBXb/eGzHLZ0OfbUahJhEW/YOgnsseiSAfE2U7Yk/Q7bdNoZhQ5Ptf+DHpJXVhjOu3f0xWe4Xs6blNSUlLOZFJh8RTjkft/hvMuuqyr5+x9/JHIx/f54lKHxyawuDCLxW//GSqP/xjX3vwSGIYB2pp9ky/0oVppF8ZEOYPRdVPObd0zG9/EZJ+MxZoCE+37WaldgJrafgGuuPZG/PPn/ggAoFqHXV9/OwqsrmjQfC6C9QPdDXAXuxQWk0Q8hgmLQ7m1H6RdtqEfBYkLjT3tRtTZuHM3fvqD/4auaWjW6xDlDJqaAYFt/2hz/90LPBPt9JT5kyNEdRMZm5IcMUEv0pSUlFOcLmMR//e+R3HZBds6LxBSCLz/sWc6Lm4yPB56ytuHcWpsCIdnFvDubzfxtw+oeMWNVwFo977rz+c8LkiGprFzS3ssgnq0i8FgJWS59rjinHWDuP0XrsdH/uIfPcsND7hmmit1QF9lf7yVkB5P/VZkVH2BCJduobduCW5sh8lU+QnialztdrnpRVh0uxOrVlGuwyz9i8+ZxLd/fB8azRaq9QaysgTUF70uOnkw9LnHnQ4uyzXDcoNmTrZjkc+cebGhmfgeYCkpKacmLMUGolDzfD4yGvORex7BJteEIjqmdEUzNJ7e83TkMs/4xirD48NYOLqA2a/OYuYrM7jieVegeHURbNYSFgtZmKq3RrF5Z+cUiAFpAGWl7ElqkjMyDCtyvT/Xj5f86kvwxf/7RedxzdBQHCgG1lV9oorGwQY+cPkH8LtX/y4KlxbAFtiAIzIpYT0WbcROYxAfFwxeAICIWAYMLDaDPSMBgGtyKApFTFenQx9fDUkjPtdtXYcH734Q5VIZjVoDoiSiZbRQVduT1joJX7YYyMW0WKFAIctHi2cNrUHcub59bDQMiOtEHKocwhOLT+D+2fsj16MaZBwYFgcLEDH15Vteju1924mzLuFnejxxOyvdtcLTFZ4Oj6FNSUlJOZtJz4qnELqm4/EH78V5F12e+DmZXB57H4sRFp8KCovlxTnUn/oJihfdgl975285j1E0g1yh6M3L37LDM0Nw2SfgrR+QA25BWmwPsChQePsHf9+JTVVN8gOiOOAWFnVoutclsK6/u6iupWr3jsU4waTvBEWh/utbr8S33v1cTPYHi31hURed2LRjN8qlJTz6wM/RbNQhSTJaquFxPa6FYzGyx+JJEhZXG/GaEmTbSA4bBjMnzJ2bkpKyCg79DFjat+rVmAB+fP9jeO7FnXsr+5ka7Y8UFg2aw0NPemetT40P4cCxeXzpYQVvuojDX3zobZ7H+/Pe6+GO9YMQheA1mQIwnqMCjj6DlSAz3iLGp37rDVBV7+x6j2NRqQLGaoXFI8H7sr5i3pBLtG0sEYGu08zy3BhxCDZLq9suN730Ig4T5DrEbV60bRL1Rgvf/ckDqDWIYxGNZW+U5cnqh3y8Z/Bbca+ZiCi+EwJFAUIBnfpgnpakwmJKymlN0XXNqBpV5IU8GHQWFvfcswfnX3Z+x8f9jG4cjRcWH/eOVUYmRjC7fxZLP1jC4IsG8cE/+yCMVrsmkSvkYKjt232jfcgXOzvUBqVBlFtlj4giZb01jTe+/40QxPa1qKW1QnssGg0DaomMSQSmvfy39n8LRytHI99nGFGOxbjYTH+vvFF5FABQUzvH5u8c2InZ+mwXW5iMpI6xdVvXwTRM/PR/fopmowkpIwW2J86xGPdaAiN0FPpsGloDAiME3LnFq4pg8yw++9Bn8bmHP4fHFh8D0O576cc+pvqlzn0L33fJ+/DW3W8Fz/CnhLDoxtMy4TSFZ/jQnpwpKSkpZzNptfgko6kqVqweiM88uQfNRh0XXHJlYLnRX/008pe/MnD/hm3nRToWTRPY9+Rjzu3a8jwGR8ZAcyIm3voFyJM7MTox5QiHbHEUuULRs471W3dEvofNQ1ksVFpwGw4p3juAHlu3Hje97JcBkH6Kpmmi6HIs1hQNumsFMs903d9wua6AckWY5WOExTiBDIjv0wgALEMGiQyzupnhE8Ueeh75GJqYwtDoOO763rfaUaiaDtElusn86gZDPNd5v20ZzmJ9v3xSHG6pY3Ht+dvXXIK3Xbc5dSympJwOlK0ik1KPXi4ETdOxXCbFoWpDwezCMq65NDwCPYyLt6/H/Y/t7fi4SXN46Ml2PNlsuYXxoX6Uy1Xsf3cON29hMTLYR5xtFv057zVx16bR0HW/9gIKR9+bA/71V4H/fAfes4UImAYjQaS9YuPoUD8+9NbbAADlGikaeRyLrQqg9x4zBiDcsegW5SjG61i0BTe/4GWLKHmr71GMQ5NlyXglyv2xKsL6I3boeTc6kMe5W9fj//vuT0kUakay3mfnYtgJYy2jQcOKdqdKFCrQjqoN6/t5OpJGoaaknNa4eywCRNRxT17WdR3lUpn8rek4vP8wLrjsAufxOKfQ5I7JRI5F2vrNqK6o6Bvsw9L0ErZ+civ6r++HnJEhse3xR7bodSyObx2PXP+gOIhSq+TpmyfJ3vFMtpDF21yTqWpaLVRY7ESWy+JzD38OVLa765lfHHST6bIHcpbPosAHUws4jlz8KJrC7qHdmK5Nr/n8lqSORSkjYedFO/Hj7/wYjVoDkixhtuYTFju4De0ei7HCIivECk22sOhfjhbIcfi+i9+HP3/en2N7/3YA8EzwdzMsD+MDl30At2+/veNrURTl9Jo8FXosulEMJX6hUxyeSR2LKSkpKX7Ss+JJwL4Y/dYbXolbdk/io+96HQBgz30/gyBK2LrzgsBzhPFz0Hfda6H5Zvps2n4+no5wLGqKgkP790KSZTQOPoQf/tXv4NjhgwAAxoor5XgeoxPteLFcwTuwXb812rWwaYjEbZquwhktBJ13197yEgCAYjLQDBN9A+2Zx03VQFNtFwALEgeJS14cMwGUmyoEsz1giY1C5aIjPakE6wCAK64kQvC28y5MtK3HEwoUrr7hhbjre99CvVqBJGegaAYE175crbAosp332z+98Qq88ZpNXbks1wohdSyuOSxDYzh3av0oSUlJiSGsxx+AxZZ17rdmTNvn6c9/+wFw5/0CXvjmDwMAStUmaJrGVRfu7Pwavn6AF2/qxwOPd3ZL6hSLh5/cj9HBPtx9WMObvvS4s3y/RDnbc86Gdu/B/qxXaNu9ZSx03QUBqLRM4KJfAyYuaT9AAQIVdB/e9uJrAQCVBhkv2I7FUtMkwmI3jkVrRruH0iEYUVU0ud8rNDZKJKrWL1K9/xng9f8NrH9Oe7kILr74IgDAVRdGTwbrmbDiWwfHIgC84sar8PUf/hzLK1UUMgLZt6ea42w1gtuVvw485z3B+y1h8aRHoQLk86EoQD/9i3mg6MjjLSUl5dQnx3ud7+4o1L337sUNG2/ASy94KQBAs9IF3MJiXJTi5I5JHHiqc08/gDgWB0cG0Xi2gSc//SQe/OmDqJVqYLMsDMWKK823BbhsIevcDwDrtq2LXL8ThWptqw4dcjZYF7nh5Tc4f9dUr7CoxoxD3nnhO8HQDKgMuc7YsZ1x2DWoQTEYRd5L37j1+fWB+7Zu2QoA2HnhTuwe3o2W3gLNr+1v9G629ZpbrsG9/3svluaXIGZEzNRnPD0R5Q7R8K/Z8RoIjOCIdJ0QGTGRsCiynZc7f+h8XD95PQbE+Mkzr97xalw1cVXsckDyeNsTRdxxfToQ5jxNSUlJOdtJK/EngR27SPHnZb/yRrzv9/8UN7yk7UTcfv6F4PjOs7D8CQIbt5///7d33+FxVNffwL87s72verG6JffecMMGbGx6h5hQQyC0hJLAjwQILZSXlkIJSUiBJGAgAUIoDsSBgE0LxXQMNu62ZMuyurbP+8ds77saaVW+n+fxg3Z3dvZqJLRn77nnXOxrTt4Ko2X7Jvi8XqB9F/Y+dQMclfVYuvLYuOMqa+pCX5us0QFUTVOKyUUAtYG9EP2mcJAqaOMDmWAw6xd18PqkqFaoANAZsTG6w6jNqmVnr9sHvwQYVOHJk3R7Ceo0IoQElVhbbj8Sj50/D1UFxowSi8FKxXwk0xJZtOxItLbswWcb3oPeaITb54dRG5lY7F8wlOy6AXI70nwlooZSxeLECvkDS6rENRGRoq76BjjirqTJm03d8t9mKfB3qbJEnsBYOKkaf7j1clx13kmhY6eNr4M1wURYiC66Ddisxkp0dCVvh7W3w4Wunj40OzU45JFeVBfo8Z2TD487rrE2XAlQEPNeMr0hcWIRAJxeSU7ynP4E1nfIx/lFAzSIT6jErjQOViw2d/vlRKGrK+nrZKRjFzpU9uSPm4rC1X+SX26/aipOvB9e9UGAqVBORPYdSPmyqkAyUxyo1tUJKxaTVz+cuHwB2ju78fL6D1Bp1QCQAEviqtO88fejOnXFz4Dpq+LvDyTdTYPTST+1YEVpf77PoUJrAtRD4aISUa5i338tWgscxXJCrbS2FFfddRVufOjG0OMV1RUoKgvPFySr5AqqmlAFr8ebNAHp7nGjtbkV6AC23LYFarMaJ30nHPtILvl5hY5wgsdoMQIRf0Irx4UXQCVSZJDH61fJkzYeeOIqFoHoeYNeT29WFYsOvQO/W/670O3mnuaMnwsgqkq0PxrsyfeaFNUiJhVl3lI/G+n2PYy0aMUieFwevPnymzAYDWjuaQ79jABEVadGWlC5AP859T+YUzYn5flTJQyDer29cgJSNbgtNIdcxeIIWOTExCIRUbyhMxM/imj1cgBz4pnnY8UJ38KchYeGHpsy+6CszlU/PvW+A7s2y21Qm//3EszTVmD+t3+IqrrGuOMqa8OBoclij3qsqn4cUqlw6KERVZDMEYlCTepAxuv3R1UsAkCHM7yKqcCkgT6DisWOPvk5PS454jcmqE5IJlmCTaVSYUFDEURBlbad6lA0eeY82AsK0dVxADqjGR6fFPW9ZlMJmog+TcK2Py5aKv8eFlqynzwSBRWGSsfOF3+wGP+6/GDUF6fezJ2ISDEaPSBqATGziQsxsBhjxZyxOPekw7F8Qbjq/uDZmbdBBYBZTalbg23c3Q4A+OO6XTh1kgb3njYOUxpr446LrFi0aMNjBIBpDRkkpVSqUKtLv9oAMYO2S8GKxT1dgYnI3tQJPAAoTNa53N0NePvQKaZYdW4uDVW1wdUNOeGWPGkKALBWAJ7sW9wqKlFi0Zg8sThtfD3qxpShraMLVbZA3GCrGqDB5WggEm6Bn20+9pqOY3AAUAG+4V8lAK05f/tyEtGAcOgcoQRb7bRaHHnakVhy5JLQ41PnxXdxSqWyqTJl0uxAi/z+/sXfv4B5shlNP2hC05SmuOPKS8LvyYIgwKgPL7SqbMwusegW3AkrFiM5fc6sEosAMK5gHLBP/npv7960SdeB0OiIn1OKZNVaUWVR/n0/uN9kZOVhMhU1FRg7aSw62zvlVqi9LSg2huegUrW1tGqtaduuGkRD2kRTnyd1xeJASZY0HWzBn9eISSwO1JYDRETDFBOLQ8yUWdklFkvH1MBkSR5U7d68ESazBfVLT0bB8osgiCJKyuMD4jE14f1+RK0eGk04iNLqUycJ1YKAMQ4jYI5IFKYJwrz+6D0WgXByEAAKzbqMWlu2dMptyLoDzzVlkVg0aNIHd5lULA41oihi/iErAQA6o/y7YdKFv1dDPysWjbqBC6YmV9rw5S0rsbSpJKfna4dQ1eK4Mgv3JiSi/EvS5imVxbOyW2VebDehqjx5m8svdnXAqNfh/MOa8MjxemjVQsLjIxOLKucBFNjCbdOK7dnt/+NXGyD4nGm31CsptAMAmrsDk3LO9jQn9iV/rEfeB7FDmyIJaq0ENIHJnmB1pDX1RCVs1akfHwyJWqEm2WMRkBdpnbhcbtdVbgn8EOypW8gNuoFILGa5T9WAMhSMnFaoWnPazxZENPSpvOE3ZXua9sZT5kYvoPZJ0e+/sYkKrUGLmsb49pxB7S3tciXdkZNQdUkVRJ2IgpKC0J6LQZUxcyUmY/jveuGY1O0qbTob1IIaPq08VrfKDb0x9VyKy+eCxW5JeUxCgbBld8/u0J6AgylVxWLQ5MLEC9X6U70XbIWarjVu0OKViwEAeose+/v2o9yYZjFXFgwaQ9rWrE6fMz+JRc3QSCwGO2pk+vMaqiYUTkCdrY4Vi0REMYbOLDwBACZMm5XV8SqVCo0T4qsWvd1t6PvmfezZ8iVmLVyKyulLQisCC4pL446vjEgs+iXAYrNnNY6GYlNoJbFWFCCJupTHu73+uFaoPe7wBE+xWZu2tWifO/zhotvphUZUQSdEf+Cw6JMHcJm0BLUaBjcAVMqi5UcCADRG+UNK5L6Khn7uc9Dfisd09BoR6hwThLk+j4iIwhZnWbEIALMmjY27r7XHh+c2erBh234smjUJZy4ZG3pvT9RqtbEmovKxLzqxmC2/2gCV5IcpyXyPoJInOCwmeeKluSfQa97VmfrEX/8r+WO9rYCgQY82xV6CBfWhqsrQa6VLuNmHQmIxQcIszaRwMLFYZpTkvT3N8fFnXg1EYlHUJG5rmw/zLgRmnjX0WtDmQseKRaKRQO0KfybVpZkvmDZvWtTt2Kq8Dlf8ntKJKhC9PV50/K8DB5oPoGlKE2afNhuqwOJPURRRHLPQqboq/J7rl/wwm8ILa9K1ERVUAsqMZfAa5PcXt8oNqACtPn5hhN8rxx1OrzO0tUo2NGr5b+K+3n1o7W3N+vmZOHPimQCQsHKv3lYfd1+s6SXT5S8i/ny/ftrr+PnSnyfd3zCd4O9NbKI5mWBiUV2khgQJ9fb0486UUW3MaI9Fo9o46JVuQ60V6nD347k/xuWzLs/595aIaKTiLHwefP7h/wAA3Z3xwbDBmP1K58ZJUyHozVAXyhNTX378AfY8cwcO/Odh7Nr8JcbGJB4TBa5jasMBlk+Ssk4sNpWGJ/90GgH+NIFTZ58HWm34w4ROLUQlCksz2Kfvy+bw5F+XywurXgMxJhdp1SefhDBlUHmXS8VicbH84aSoVLnVcNmaPm8RrPYCmAvksZgjKhbV/dxXwaQduslWbQZVrkREBOxs2Q8AaOvqi3ssWMWXjVmTxsIZkaf5ZOMWnPTYAXz/JSfe/LIVMybGr2wvKojuuNBYE1El0NfR78QiABSbo9+zpECrWItGnqAMJjo7nJArotzdyU/q7AQ+fiL54z2tgLkYUqrKquIJ4a9dXYBKSJ9wK8h+EkyjkeOXQkf6VmEZ0WVXsQgAB00fj+qKYlRaBfn5Q2T1fMhA7T04RNqPobgJOOQnIySxaAXSVIUQ0dAXTCxqoIFG1KBtXxsAoOdA/D7NFTWp26x3ueP3RI5MLEqShJ1bduLLe77E7kd3o3NfJxonxbfvLK2Ifg+urg4nFj1+DyyW7GKRSkslvHr5/cUFF7x+L3T65ElUpze3asO6ujoAciXYxgMbczpHOlfPuRqvnvoqmhzxCdtSY/rFQtNK5ORw+YzwvIhD78DS6qVJn2PSpJ4PCyY5M62Aq22qRW1TLQyV8ntzoz38O5Cu2jAdg9qQNrHo9Dph1BgHfY/FodIKdaRQqVRR+3MSEZGMs/B58PI/5Emp7s40q+Iz1DhxGiov/hMqv/sQnnzkYfzwnBOhNheidNVtcPV2o2F8fEsztTo6iCouC0/meX1+WGxZ9vkvCwfcerUInyRATLHPU6czejLHYdSiJyKxWJxBYvGTXeHEbLfLC5tBAzGmyjFVYjCyPWgyuhz2EzSZ5GC4rDJ/FQZarQ4P/+O/mL/sGACAOSKJ2u/EYgbXLV80sZllIiJK6J2PvgQAdPe6Mn7O9Ie6UffLroTtVWdNGhua4nngn+9jwaofwaITsO5cE7x+CdPHxyfHxpREtxQriGwF5u5CgS33fWr9ojzG2MQiAi2ZCvU+IHZPImMR4IyYqPxoNfDPy8O3N68FhBRJw979gKUidcvGgtrw155eQGcB1GlinhwqFoMr46vKFJoESdQKNU3FoiAIeO9vv8K8pmI5MZTu+8yELpAoTTPxmJGBSixyNbuy5l8CNK5Q5veHiPJK45Q/m5sFM7SCFh+9/REAwNUXH4uk617U7YlfCNQ0pSnUIvT11a/j4mMvBlRA/XX1UKlVaEiwyKmkMnoLDrMh/H4nqkRYbdkt0KkyV0ES5UE44YTH74HekPzvl8vvgi+izbo3w/em4GLxIn0RtndtV6TV5OzS2aiz1UVVkxYZihLuRZju5wMATXY5Iamvzvzv9/PHP48fzf4RxlgSd3MIji3TfSVVKhV+8dQvMHn5ZOhEHcrN4SRnpTlNK/o0TBpTyn0aJUhw+VwwaUwZXa9c6JO8NzKxSEREg4GJxUHm9XiwZ8e2qPt0BvlNv3bsuJzO2ThpKgSNHl0fvYzf3XkdFh52BEqPuRKiSU4ONoyPb2nmKIpu+RFZxejx+7OuWBxbEg7AdRoBbp8PGm3ypF6nM3pPBIdJgz5POKBOV00oSRI+2dUR2oex2+WF3aiBLRD4m602AKkTi+YhXHmnBEdRMXyBHvDmiJawueYVg/sFpmovm28atkIlIkpLkiR8tXVX1H3qDBbSfNTix9Z2KWGrx1mBKoAnP/Pg+794FoceNA2/PrEYVTb57/L0CfGJxcrSFHsVubqiE43ptMuxVUODPGloL5InCotMib+vIr0/PrFkLgE8EVUTpmKgZHz49v5NwPRVycfgdQK2KtgdcoxlsyRIfuks8bcHILGouEStUAvqgIKGlBVxxQU2qJ3tgMEBqFO3vctI1Rxg9nnA+KP6f66BomECTFEzzwQOughIsWCRiIYH43554YVD5YBG0ODjdz7O+Vydrs6ohBwAjJ00Ft52L7o+6sLf7/47Gic3YtJlk6Ar1cHX7cPYBG3bSyqiE4uxCSCrPbvEYq2tNvS1E065YtGQ/P3P5XVFtfXMNkE41jEWu7p3xSUkjSb5WotZLJT+48o/4g8r/oBiY4qW7lnQBFpY+yV/xs8pMhbh7ElnJ60O0wYWeGVzTpvDhn2ufSjUF8KsiWhtmyIpmAmLNnWc6vF5IEGCRZN7B45Uvjv5u7hs5mUJH0uWcCQiIlISZ+EH2YfvrIu7z2YvAADMXnRITuesqKoFABhqp0NUa3DptbdBCFQkmu2FKCgqiXtOovuCepy+rBKLB3o8aCgOB2gGjQiPT4Jak3zFfo8r+kNAgUkb1QpVTFN5dqDXgwO9HkyqkAP9bqcXDpMWs2bJe1RW1ckfGuzGFInFIZwgU4orsHdD5B6LwQRhtiaUW3DTsZMws9quxNAGBBOLRESy9TuST7i881F8yyydSV6Q49LlVuEWbJ96cI0IlaDC/dddBGPEnr6NCVqaVaaqpnN3o8CaRcWiW04IlpXKrbk0Rjk+KDCkeF/weaJvm0tC5wEALLkaWPUEVn8aOK5oHDD7u6nHUdSIiZPlThGJqjTjKu309vQJt2BiUYX8tRNNNEFlcAAXvgHUL0n93L4DcttUpSa5jr4XGLdSmXMNBFYsKq+f3TaIKD8838jvn8FknV8txyY6SYedm3fC4/EkfJ7WmmAeIeYjbLurHS5fdKWj3qCH5JVgHGsEJOD7N38fJkl+3/V2eFGf4H05thVqLEsGbdl9m8PzGFWWqqjH3D43dLoUrVB9zoz3C0yk0d6Ivb170eGO3manMLB4y5plS/Rs2j0qURX37HHP4tp512b8ulp19olFAGjuaUaxoViRPfJ0og4aQYNSU+rfneDvp1WrUFv6GJfNugwnNp6Y8LGhklg8buxxAJC2ZSwREQ1P/JQ2gPp64vcK+O+afyj6Gjubm3H3dZfD5+yG2lYClaDCi0/9JfR4Rf34hG0X7IXJA7dulxdWe+atUHe390GvCa+E06kFeLx+aFIkFnvd0cFzoUkXlVjUp1lZt72tF2pBhXl1clK2z+NDsVkXlzRLlVg0agd3A+18cAWqQCOrDGPbxWZKpVLh7AW1aCgZmBV3StAysUhEBAA49m8SVDd1Yr+qIO6xJ156HVvb5QmZbkmeeJDUBqhu6sQ/92SfWGzv7sO5P74Xzd1+lJkFmA06PPj486HHK4ssCfd3riiOH1uIuweFthSTP+lahWkDVRGGFO95vujuCTCXAa7I1moqQKPHtyYHYom5FwBF8dUOUcqmZjSuEL09fcLN4Agkq1SAvSb1sQMlWeygNQH6mAmz2IStsx0wFACiAhWLwwETi0REAADfKz58es6nMHbLfxc7y+WtYPzw47XnX0v6PNEWHzP85I2f4NN9n4ZutznbovYndPW5cNfVd8FzwAPRJMJSYMEzf3om6hx6gx5aBBJTgSRncUXy6jy/5M8oMSe1SPAHFvTGtvDscHekrVjMNkkWqdEhd4zY0rEl53Pkaqxdjon6U/nXYG/At8Z/K+MkZbatUIPH7uvbh1JTqSLJUKPGiKeOeQrLq5enPM7pk38/rbqBSSymoheHRmLxuoOuw/MnPI+JhRPzPRQiIhoAnIUfAIsPPxoA8PSffxt1v8ftxvq1Lyn2Ou7W7bj9wpPwv3X/ga9zLwDgoOXH45m/PhwKtMrrxyd8bkFh8gC6x+VNuceiz586iNNrRLh9/pQVi92u6AnBIrMWPe7wfTpN6qTftv09qCk0otAcDtIrbPHBk7WfeywOd87ABxyTNrIV6sjdh1Cr5p80IiIAOOu4wwAAd/zx+aj7JQl4as0bWLsNmPLrbjSro1fWx7a8dKdZRL+5zY/53/8t/vGft7G9Q44Pzj96Hh564iV4ffJ70MSaxF0SKktTJDFd3SiwpEjQtKWZQBM0gKiFNVUuKzaxaC0HXF2JjwUAW2XCNrBRihoT3BnxvhubRMykRahKBVjjKz6HHJUKqJ4P7PoA8AaqSLxueS9Jc8noqTqLTR4TEY1SS49eCgB48oEnAQB+UY4LREnEq/98FUZz5n8vt3Vuw6oXw+3InT4nOlxylZ6nzYNfnvdLvPrPV+HrkAOXxactxpon18Ad2ILFWignd0TI7+N+nR9+yY/SytRVZ9m2Qh1jjk4stjvbodMnfp+X3JJcsejPvWLRoXeg3FSONmdbzufI1cLKhQCAAn2KhWIKCyUWs2gZ2+nuhMvnQrW1WrHKuQZ7AyotqfdodAViIbvOrshrZmOoVCwCQI21JmrfTiIiGjlGySf8geX3++H1hldnl5TLAcaTf3wQne3hAO+Dt19Hd2cHDlqSemVTKp7AJF3fN++j+c8/gk5vwv2rX4K2RG7rseiEc9C2rwWuvj4AQGVD4sSioyh5AN3rSd0K1elJHPgG9zPUa0S4vX6oNcmTen1uH7z+8Mq8Yosuqj1qbDXh397ficfeCe9NubvDiUkV1qi9GKsK4j+YpNxjcRglFtU5JgNdHh9EQRWVcMu1YnE40ARb6I7cb5GIKCG/3w+PN7xAp7hAbm16/1//iV0trXh3v9xW9K2NLdjVsh+nHXEwPt3rl/cRTMGTYhH9G9u8mPdwD3w+CW+vvhdzK+X35MtOXozu3j60tB4AAEyqTZxYHJNyj8VOFFhSTIrs3wT406zw11mQqJta+DVikoiWMsDVmfqcqRgL4/dQBIDAHkMoHhdf+WcuTp+sBADbmPTHDAUHXw107Qa2Blr/9wXiYMswSIwqJVCxOILDLSKijAQThy89+RJ2fLMj9Bmta28Xtm3ahqnz5Cr/TJJEF0+/GEfVRe+v29Lbgr4tfdh882b0tPfgvqfvg7lRjncWnbwIKpUK276W5xCKa6LjHb/aD6fXGd5jMclbsSWb/Z6BuFabne7OpBWLklNCn7cPXim+C8OE+RMwdX6aLggBs0pnZTVGpQQrFVWD+OFbJ8jXMpsqz+aeZgBy29jBFGyFmm4vxoEwVCoWiYhoZGNiUQE/uOQi/PbmH0bdZ7E54Pf58MTD94fu++9L/0BVfSNqGxMn+zIhAdi7Zxf2/v0W6Ksm4cpfrUZpRbjaoHBMPeYtWRa6XVE/IeF5SivkCSqzPX5Sr8/jgzVFYrGl05Xw/ppCOYjWqgW4vKkrFns9Pvh84Q8QhSYd+iISlkLMbEyZTYcPdrSHbvv8EhY3FkMdsfq9ypF5YlEtqIbVfny5VuK5vH5oRSHqOuW6x+JQ4DDKv1PLJiROjAevU2VtmlZ1REQjzFXXXIvjfvirqPtMRj1MBj1ufuBxvNLsgOqmTjz+9k5Ulhbi+BnFkG6wosC1PafXaz3QgSP+2ouppQLevv8CNNWFE19VpXacunJx6HayxGJ5oBWq3Zxg8sPVhQJzitXNrRuB7ubUg9RZYdakmHjq3R9921wGZLECPo6lHNCl2BdSjIiLVIEZzEwTbvYaDItVMw2HACUTgU3/ltvV9snJZdiqUj9vJAlMKjdWJd/PnIhotBAEAYUlhfjjPX8M3bf1k60wW80om1QGAPCYEu+1GEmv1mNlXfT+unva9mDrPVuhKdDgh4/+EA0TGkKPmR1mrDhlReh2cVX8Qqo2ZxvMgf2cDdWGhMmqbCsWY3V7upNXLPZJcHqd8PriE4tqnRoaXfJF0pHmV8zv1xiHE62YasWYLHYroJbeFggqAXW2uoEaVkLBVqg2rW1QXxcIVywWV6ZeQEhERNQfwyezMoS17tuL9//7cqhKEJD3MDz5nAvx7GN/wP69ewAA6/+zBktXHpvzEmbJ74MkSSgpr0TpaTej+MTroDfGT2Cdcs5Foa+LxtQmPFdwryONNn4yz+n2RbVCDVZJBjV3OmOfAiC8v51eI8itULWJgz7R50SvywtPREvVAlPqAPHSQxrxnx8uDd22GTSYXmUPv7ZagMMcf45kiUWtOjrZNtTlmgR1ef3QqoWo7mPDObEoCips/NlKnL2wNuHjwetkstoHb1BEREPA3n378K+3P0VbR3iPQKvJiJ9871T8/u//wldbdwEAnln7Lk5ZuRglKjnhU+DamfVr+Xw+FDlseOnbRqw5w4gCa8zCHk8ffnjuiaGbDRWJW2QFW3MbE02cST6UpOqQ5vMA299JPVC9FUYxRWIxWE2nAg6fPwUwxy5ayTLJaBsDaFMkFiMF35htqdtohZRNiWtTmzfGFJWmKhVw8I+AA1uAne+FE4v2YVJxqYTAz8lhGSI/LyKiQda2J9y1SavT4uwrzsar/3wVLqe8QHn3pt1YtHIRfGp5YbEkpn+/jayKkyQJNrUNPWIPai6rQd01dbAWxScAT/nuKaGvC8rjY5HN7Zujbne4O+KOybZiEQAK9eH3yW53N/SGJNVjTnm/yT5veB5JyGGKbm7Z3NDXX7R9kfXzc7V0zFIAQLW1etBeU5eufXxAZHKxpacFdp190Pc69Pg9EFRCXBXrYAhWLBos/d9TkoiIKJnhk1kZ4jxuFz55782o+04+5yLoDUZ0HJAD697uLixZcWxO5/e7erH37zfjyd/+HACgr54KVZLWWVPnLAh9LYrR7T4zmSLri2mFGvucPR19cHv90OoSB3V6tShXLKqTVAv6nOhx+UJ7LwFAQYKkYKzI5GNTqRnFlvDrW/Vq6BPsy1hoko+JrfjTikLWW/3kc09GbY6JRafHF1exOJwqNRPRqUVY9Yl/t3TcY5GIRjG/X8Ka9Rui7rv49KNRXlyAjVvkBKLb442qJszFVXf+HgCwuEYNrZh4scrMSeHKcXWO7ztFWnfyBwsbgeaP4LCmSOTpbNAIKSIfp9z2tLLQigXTmuR9AHMRaHUFe3VmbU0jWTNMLM46F/j2U4Apxb6U/bVqNTBtVerEIQCk2wtq4gnytfj6X3JVqKgFDIO3/1LeDZUEMBFRnnz6xqdRt1eevBJVDVVw9YU7Hx1y9CFZnTPYdtPv8WPXw7uw84870eHsgLHRCEGbOM4YE9FNQUgQi+zu2R11e2PbxrhjMqlYjD1mjCXQHUpjRo+nBxpt4s+uklOOUXq8PaH7xGzjCABlprLQ11s6tuDtPW9nfY5cTCicgNdPex1LqpYMyusBgFZIP28Uq7m3GUWGIhjVg5/g04k6aITMKk8Vfd0ME7BERET9wVl4Bf3v9X9H3TaZLfjW+d8P3a5tHI+aseOyPm/zru1o/suP4Nr1JcZNm532+NjWDwCgDvTt90ryj1wIVCyqElSvOb3+lBVfOw/0ob3XjaNOPQuFpfETYuE9FqODPp1BXi2lgxfdLi+8/shWqNkFiNPG2KOqEe0GLfQJkkrBZOT4suiVhrlULGqSTJ4OhlxbofZ5fNCqVVFJ1Hx+HwNtuCdNiYj66/nXP4i6rddpccMlp4duF9qtOGh69i3Z9+xtw/giAVoROHjO5IyeowtMpBm0iRfmhGKRJJ0c7JoUrdFqFgCtX+Oi4+bBEVsxGaSPnwzUqCMm7Jwx+ynmmljc8W7g+eXZPU8lJqiSTEJUA5UzE+/hqJRxRwAnPARYk7RnDSbM/PEt26IIArDwcmDvF8DuDwGdFdCMor1+Mq1aJSIaYSZ9MQl7Vu/Bl+u+jLpfVIv4zg+/A1eLnFj0tHowc+HMrM/f0daBrXdtRcc7HWiY3YB2V3va5xSXy60g9aaY9yFJ3nvP4wvHGrGJRUmSQq1SUzlq1VEQI+KLKovc/tuoMaLH2wNNkkWxold+To+nJ+HjuXpi4xP4+sDXip4zGYfeAat28CoBdWL2CbP9fftRqC/MS+WgTtRBLQz+AnWDKM+9Deb+l0RENPpwFl5B/3vj35Ck6JXxx37rnNDXuVQrfr7hPXz/W0dA8rpRfsbdmH7QwVGPR+5LGElvjA6adJIcxLslOXgtqaoHAJirJ8U91+XxwWRJ3gfe65ewsaULGq0Oojo+SNKpBfj8ElSa6KCvoqoWANA4tgFunx+9rvDY07VCjTWtyhY1EWk3ahJWLAbF7tmoU2dfsZhPuSYDXR4ftGpxWLV97Q9WLBLRaPfSuo/g8UQnfs45YXno61NWLkqayEtmwxebMffUy9HlkvD2eSYcvySzycAihzzRJCZ5DyoKrPCfWp84uWZSJW69DgCoPgiABO3ej5O/x+ntcXdZTBHxkbsL8Ee0SlXrAH0/9sExZPlcvW14Jdw0gcSilKZiEQBmnCFXV+79XE7wqofR99lfrFgkolGqoKsA+9fsx+fvfI6+3r6oxw4+8mB42+X4pHZiLdSa7JItOzfvxMXHXQzXHhfq/q8OC45ZgDZnW9rn2YvsAOQ9CyNp3Brs6d4jJ/UCocDWzq1RbUndfndUwjAZUS1GxVbFBjmZKapE9LgTJxYFUcC8xfMAAE5vingnQxVmeVHQyU0no95Wj/W712f0vDllcyCqsq+SzJdM9liM1eXugkPvyKnasb/ylVjUj6a4i4iI8oaz8AoxmCzY37IHm7/8LOp+nd4AbWkDSlfdjiUrs08sPv3n36KqrhFlZ94DTVFVzuPTSPJKPFcgsRhMSO7tjq8GcHp80BqST4oYNCK2tCZfVRdM8KmSTJbZjHLCsb0v3OLMrFNnlTwzxHwQKTBps0oqadUCxBz3uswHXeADjTrLBKPT64dumH2v/ZFrZScR0UhgNRnQ3tWDNz+M3l9HHTEpduyh87I+74OPvYCyIgfePd+EGeUioMAEWCRDohZhOiuEVCv4DQ6gcrbcajPVMam4ugF/TLtVY5atRvvaszs+kt42vBJu2iwSi2odMC+w57feId8eLZhYJKJRzGgxwuP24IN10R0UBEGAVicndqrGp57XkFzyYu29vXtD97381MvQ6rQoP6McPpcPJYYSuGPfw7Og8WjQ5+vDzu6dUAkqNDma0NrXiu2d20PH+NK1/k4imGS0aW3o8nRBnaBzgyAIsFvsAJRJLK6oWQEAKDWW4rfLf5vRcz466yPcuvDWnJJ1+ZLtWJ1eJ9x+Nwr1hVkvrFOCQW3Iqb1tfwVbobJikYiIBhJn4RUydvIMGM0WvPPfV+IeKz76Suirp8AV0fs+FUmS4Dkg9/v/4S0/xx0PPwHR2I8V9BGckhhVVenzS3FVln0eP3wptiRqKjVjR1svfFLig0IJviSTSBa9HFh39oUrKlQqFeyG3APaQpM2qz2cdDm0Qs2nYMLMn+SaJ+MKJhZHcPvTSEwsEtFoNrVxDMqK7Hj+tXfjHps/fQIAYObEsXGPJSJJEja1yUv477v+Ivz3z/8PFZbA31h3bi271JDf97VI00oTAEzFckVhUM+++GOmfUv+r6c38TlSJRZFLeDqBHwxY8m2Hequ97I7PpLBIY9juNAF2sFlOtE673ty61Zz6fBKoPaXxpDvERAR5U1JZQkq6irw1tq34h4rHSN3KBgzfkzcY5GkLvkz7+s7Xw+1Tz3rh2fh/mfuh6gX4Xf6QxV6udK4NVBBhW2d2wAAjY5GqAU1PtsfXije6e5M9vSMWHVW9Hh6IOjjP6P6JT+0ohYqqKISix/u/TCn14qsiis0FOLWhbcCkBONyQgqAeXZtnHPs2wTi8GfYYkxx3b3/aQX9XlthUpERDSQOAuvgJdeeAGfvPM6ZsxfgrcTJBbVGnklfq87/USay9mH2666EM2P/hB+Vy8MRhO0WuVWeTv9IjwxWUO3zx91u8/jg8+fPIE1rsyCne196HMnacMaqFiUkgR91kArkG53dLWkI8t2qJGKLdldI51azLkV6jkLagEARt3grTwLVnP6/WkOjOHy+KBTi1An2EtzJNJl0KqGiGgk+stjq7Fuw9c4+uCZCROLwbakmazWdrs9OP/6X2L6Q91o7vZDp9XAaIhIDLm7cxqjTeoAAJSr29MfbC4F3L34pDXwd33Px0Ds4ppJJ6Q+R6rWpAZ7ILEYU+2Q6Z6HQdvfye74SMaC/CbcLnoTOOZXgLEws+O1WSYWdRbgOy8DC38wvBKo/aVhxSIRjU5/fvTP2PrlVsw9dC7eXvs2nIIT9uX20OOawLyIkMGC4F5XL5666ylsunYTXHtdENUiTJbw39ciYxGEfkxnCZKAKksV9vTsASC3rJxWPA1bOraEjsmk1Woqdp0dAODRRs97dLjkeOiT1k9g1BjR5wu3X/3713/Hs5ue7dfrAkC1tRqAnGQcSbLdYzF4rctN+Umg6tV6qFWDn1hUC2r5/4/RMQ1ERER5wsSiAhYvWYoJs+Zj9uJl2PjJh2jf35rTeZy9vfjRuSfhrVdfRsHKSyHojPj4vbfwu3tuUWysvT4hLpHo9sYkFt2pE4tNpRZ4fBK2tyWuENBpAtV1QuJNyk06EYIK6HFFT0wVmBIfn4mxJek3VY+k0wgQc0y2HTahFBt+uhyLGrNrlza5Iveq02AlnoQcKhY1QtwekyOVNouqVSKikeSUk07A5IZKHH3wTHz5zQ5s2r4763N8cpEJZvRixXevx6P/+A8ePEqPMrOANz/4HNf94pHwga/dAay7N+exFooZJCYtZYCrCzVlBfLtlk+BruboY4wFqc+RYI/F8GMOwNkJeKL3gIIls+4SAACPE9j7WfrjEhm7HKiYld/EYukkYNbZgJhh/KXNLtaSX2MiUDMfGCVxCABAa0x/DBHRCHTGmWfAXmzH7ENmY//e/Xjf8T6KTiwKJe8y5XP5cMXZV2DvK3tR9q0y6Ep0+Prjr/Gne/8UOkYjaPpdhTa1eCqae8KxxaFVh2JH147Q7a7IzgnBsWXRHtWmkz//u9XRi5he2/GafL/PDYvGElWxeHT90Vi7fS22dW6Dxx+/bc1op0kyx5RMMLFYaspy4ZhCDGpD1mMGgMlFkwEAlebKnF5XpVJBp9axFSoREQ2owV86MwI9v+Zl/GPDLqBXbrPwv3WvwlaQ/cqwtS88DYPRhHseeQZ3feCFu3U7fnj2CbAXFsH23SMUGatbEuCJSSz2un2wRGwo3uv2whtxTOzx1Q4jjFoROw70wWGMD5L06og9Fj0SdMboldsqlQo2gwY9MRWchabsKzO1agGCCqgqyG4SR68Wc04sAoDdmN3K+09vWoHt+5O0asuANnBNs65YDLRCHT0Vi0wsEtHo9ORjfwY+fgrdXhV0Wg1e/O970GoyD/NE5wHoROCVtz5Cn8qEtX+8DYu//hm63RIWnv4jFNqt+NllgYPHHgbszq1VFwCYVK74SsFY1nJgy+uwGvWAdhywfxOw6d/xx2nNySso9eEFPVZDzLUw2AFIgPNAzOtmMYHTthmQ/ED5dGDPhsyfB8iVgu5u5Nw+IR+Cewf6M2hlO5qxFSoRjVK/uu9XWH75csAHmKwmOD1OqKFGu7M9YcWYEfJneNEd7jrj3u/Gtt9sg7fDi4XXL0RHnZwY+tFJP4LZakbheYF5FgmoslahuVdODHpzeG+aVToLL3zzQmjx7iHVh+Cu9+4KPd6TYK/nyCRpb7JW7AHBxKJP7wOcgM6oQ5+3D2/segOAvP+dRWeJ2ivyqjlXYUrRFNz+7u3Y2rk16+9ppCs1lUItqGHI8L22090JjaAJ/SwGm1FjzGmPxWnF07DmpDX9qsrNtrqTiIgoW8NoNmPosxUUYsK0Wehsz61lhslswf2rX8K4ydND992/+iU88drHWZ+rpDx63wJNRDvVHld00L230xV12y8hKunnlyT4IyoYBUGFmdXJ9y3Sa6L3WNQZ41e4O0xa9MZULBaZs2+TdfjEMtx18jRUOjKfxBFUgYrFQVw9b9apMbHCmvPzg1skJtvXMhmX1we9RoQwShKLGiYWiWiUMxv1OGTeVOxvz3ZfIAmioEKhUcA7T/4ci2dPDj3y5uP3oGX9X8OHzr0AuCR9C9BJY2sAAKUOOQ5QixETK+40i20sFXKrUkiA3gpUzQV2JHhNVYrJmojEYkHXF3ISMCi4/2JvTMwW1Qo1zXtn61eArRqwpd4rKiFBkL+vXJVNkf+rs+R+jmwFKxZ9rtTHjXZshUpEo5xao8bcJXPh96VeFWuA/Ble7Qwv/lEJKohWEXXX1eH0408P3X/bX2/DsxueDd12+92otdaGbne6Esc946aMAwCU18mJTY1WXhgtiiKmFU+L6ghUZalCtaU6dLvL3RVXobiza2fo68e+fAy//+T32Nm9E4kY1UZoBA3cKjlxaLKb8MbON6KSoBatBa6Y99XTJ5wOSqzeVo8XTngBB1cenNHxHa4OmDSmvCXZTGoTBFVucxSV5sp+7YGpE1mxSEREA4uz8Ao7aOnhKD3jLgin/Dyu0i+oTVOMmv97Hru63Fj7/N/hdsmB5JKVx6K4LLwJuVqjxbgpMyDksJrdYIyu4Dv48GNCX+/via4SaO6MaQMGoDs2+dgdHewuHCuvFEzUMjW4x2Jsy9VIRSYd+jwxicUs90kEAINWxEmzxqDEkl0rMb0691ao+ZDJnliJuL1+mLSjZ99BViwSEQHHHDIvq+OffOl1dPb0od4h4MHjHGiojp7EmD9jAkQx5r0kg4SW1SxPGAbfwxprwzEOevaFv06UqLKUyVWNwcrGphVAb5at5iMSi3B2ANveDN8OJhb72qOfY86irdqBrUDlTECTh3am874HnPsSULNAvj12mfzfhqUD95rqwAIwH1uzpcRWqEREmL9sPqTAXEFkRV4y6/61Du3726FxaFD34zpUNlTi8JrDQ49PmjsJojo6Fqm31Ye+TtS2FAAMpkAsEvjsX1kndyaoHluNels9DOroBcoHjwknrNpd7XFjj2yVekzdMdjSsQVv7n4Tfil+7kMFFQr1haGx+fw+vLrjVUwpmhI6xqa1RbVCTXQeilZhroA9Vbv7CO2udli0FmjztNezOZc28gphxSIREQ00zsIr7KAly6GvnAAA2NUen7ADgG61DZLPi3/+9fe44/8uwcfvvYUxP3gMXiH6jV9nUG7Fc2QQ3haTJDzQGx/oRyYWNYKAnRH7KRq1IhaOlfcX7HTGtxwRBRU0oipu78ZIhWZtXOVkkTn8/bu8me9dkK2Dm4oxodyacbJuGOUfo3h9fvglwKAdPR2PtUwsEhHhqCVz4u5bXtYO6QarnGAL8PklPPjqdpx2xR145tUPAMQvZFEn2rs2TeuvZKJWTe/fHE4otm8HYivyg3sdugNtyIrGAYVjs3vByMSiSgV8+nfAG3hNrRkQ1IGqyAjmLPbg8XuBcUcAqjy9z9YsABxyVSi0RuD6/cCkEwfwBYdpQDTYNIHEIi8XEY1ic5fOhXuPPM8Q3OcuEUmSsOPVHbj+/OvxwuMvAJBjkYUVC1FpCbcnj6wsDKq11Ya+7vZksH8zAItGXhhlN9ghCiImFEyIenxZzbLQ1+2udrhjWrdv69oWPrZ2GZ4/4fmUe+gVGYtCLVW/OvAVuj3dOH7s8aHHbTpbVMWiZwQu3gnuF5gPHa4OWDSjM7GoV+sZixAR0YDiLLzCahvHh74OzpHpDdErlyWPG3ufuhFb3n8NV958LypmHgrRYMU32rqo48z2grjz+3zZtcJMJDYZuL/HA3/MhF6fO5zYEwQVth+InkScWJ66fZdBI6asWCyx6NDrjk4eFpjCwd5AVhPet2oGvn1QTcbH/+OShThxRiWKc6iozCdnILFr0o2eikVNoglwIqJRpqayFFOaaqPuOyKwqN/SvRkA4PEBJz3Zhyfe3YNf/uR7OOeYRYEjo99/9Vns05iVrl3RycRt66MfDyb4gklMlQqYd2F2rxGZWJxxNtC1B/jin+HzmYoBZz8Si+YyYEx8EjeOOlDRWDIx83PnQlQDYvLJTQCAPfP4h3IUTCxyNo+IRjGbwwaLR07i7e/bDwBwFMvdAiwO+X6VpMLO3+zEjv/swHlXnYfTLwm3AD1u7HFR1YQ+KX7hcY0l/J7W5e7KqNqvxCR3JhhfIM/bTC+ZDkBOcALy3nZB3Z5udLrDcYJf8mN39+6o89n19qgEZ9zrGUpCSU+3341xjnGYXzE//HydPapicaR5a9VbuHzm5Xl7/U53J6w6a96q9+xae15eF2ArVCIiGnichVdYoiq44tJwS7G+3h588ez9cLdswonX/hpHnHR6KBlZPW5q2vM/8NomOD39q+br6IteBdfe646rLoxtU7ptf3RiMWEFQwSjVp2yYrHYootrt1oYkVhUx7R/zaEbbFJqUYBFn2biLcKUMXbce9p01BTmb88ck06e2M1mX0hX4GdoGk0Vi0wsEhEBAC45cgqunh9eWDK2Rm5DatCq4XZ7cPXjH2HtFi/+8cNF+MFZx6GiRG5xPq2hbHAG2NUsV/wFfbQacPWEbydK8E3Pcs8htR4IVhEUjgXGHw18vSbiNcoAd0yFQ7BFaiLGwujblTMyS0SqtcBVm4GFl2c07AHz413ACb8BhNGz4Cgv2AqViAgA0NDQAABoc7ZBkiRU1VcBkPca9Pv9eOm+l9D5ficOvuZgnPH9M0JzKRqVBo2OxoTnrBxXicZp8mOR+891uDri9irMxKzSWQCAA64DAAC1EP3ZeW/v3qjX8PizqygsNZVGJTyPaTgGZaZwrGXT2dDnTdzpaiQwa80Y68iy44SCOt2dsOvs0Ar5qVi06vqxn3Y/6dV5aNVPRESjyujJOAwRBqMJkw47CVsMTRgzcTaA8HpmtTb9KqodB3px57++zPn1jVoRXU4v/BF7I7b1uOGKSAIKKqDPHZ0U3Hkgu2DXmGZfvxKLPmXFYqzYRKPdmHlicCS47YTJ0Ioq1BVnntwM/kzNutHzv7mGrVCJiAAAFxS8DZXNJVfpWaL3TNRqNbhgxRQs8L+NKTMqox4z6nJ/f5X3Ycxwb6CuZiByhX7fAeCjx8K3dRY5MRh5jDbLBT4qlXyevjb59hF3AhtfDD9uLQdav45+TqqVTLHtrGoWA7oMW1yZiuR/+aQzAzXz0x+XTHCylYnJ1EKtUFklQESj29R5U7F502bs69sXl/QTBAHzj58P/9F+1M2XOzcFE3BNBU1w6KMX+gQfsxXbYFTLf2cjk4AHXAfg8XlgNBvhQuYJxuB+hzs6dyR8PFhtCQD7+vYlPCaVMmP0gq1Dqg6BoArHGnadHU7fyK1YzCe3zw2Xz4UCfUHG2+AoLa+JRVHPikUiIhpQnIUfJN2f/BtvPr8aADB1xSpoCiqTHhtM+h3ojV8Nd/3RE7GvK/3m58kUmrTocnrgi0gstvd6ovY7tOg16POEb/e4vHFVjukY07TfLLLEJxELTZm3p8hXYJgvFr0G95w6HZMrbekPDnAG9qk0jaLEIisWiYhkquCK+r720H1/+9yDu//2DgDge0dMxZTSBO/VCVqNZUqXadtUUQv07JOTiUFzvgtseS18O9iqtL/0ERM6tkrgoIvkr7v3AtbK+D0WI6VLZBbUpX48n4LJP0Nh6uOycchPgLJpQGHiKhIKEDWBJOzoilWJiGIFE2gtvS2hdqBdH3fhv3/4LwBg3tHzYKwPV3kHk3hd7q64c0mxezHH6HR3otvdDVtB+POy1+/FJ/s+iRpLrGAC0+2Pn2Mxqo1od7WHbrf2tcKus6ccR6xSU7izQaG+MKrKEshv4mmkC+7tWWIsydsYbNrM52+UZtFaIHIxGBERDSDOwg8wv9+PrWsexv4Xf4Hd32RWabirPXl14MxqBx75ztzQ7cgEYSo72uRzatUCOpxeeCKeJwFo7gyvkrMaNHB6whUHkY9lKl37zURJRKth9CTABoMr8DO06EfPddWxYpGIKJqnF5Ik4bYXt+KUp/rw4eaWxJNzez+X/9u2ZeDG0rZJ/m+B3BoNB7aGH1t+E2CKmfgxR9wWc2xhFTtht+Cy8GtbK+P3WIykTzLZZwjsga0Zwi2mRA1w4u+Agy5W7pwGO3Dh60DDIcqdc6TSGMDEIhGRzOv3YkfnDnz8zMfY9vNt2PPlHvi88QuZWnpbAOS+iDj4fAA44DyAe967B63OVgCI2q8xU2WmsqjE4v6+/Sg3lSd/QgKRSS2D2gCNEN0ZwqpVJrE4tVjeVqfIkOfuCENIcH/M2KrRSYWTYNfZ434WAyHTn+/pE+R2/0aNcu3UL51xKb4z+TuKnpOIiCgSZ+EHkKuvF7dccT52/nc1HId8Byd9/4aMnvf13u6Uj8+tKwh93dqdWZuPr/bKq/4MGhEdvR74fP7QbQDY2xk+j82ghisi0G/ucEIjZhfcp6uSK7LEJxYHogqxJPA6jaUZtiob5iKnioOtUEdTxaKGFYtERFFcbi/OvuYeXPvsFty4RIe/XH1M/Put5Ac+/Evg6xwqFnv3p35c8gMbHgf2b5Zv18yXE4Udu8LHaAzAUfdGP88cMREU24Y0U/qYleJiYBJJpZIrGL19gC9JV4ZkycyFgeRkcJIymGgz2HMb40CZeiow4ah8j2J00hiYVyQiCvIBj9z6CNY/uB6Fhxfi1NtPhaiOr6Rq7mkGgJzbN7b2tYYWTz399dPo9fTiiNojch52pbkyVPUWPP8Y85iszlFsSN19wabrX0VbsBJzadVSPHf8c1hYsbBf5xtJgj+72CrR1UevxuqjV8fdrzSdqINGzCx5efCYg7HuW+uwoGKBYq9fZanCUfVHQSdm3hmMiIgoG6Mn45AHf3/o/+G99a9iwpk3o7d8RsaJs43N8a0/kmnryawt6o62XgDyPoZunx+dgdanwWq2tt7weewGbVTCsrnDiRKLPmUlZazIff26nPETdoUp9lMEMq/ETMdh0uLdnxyGTqc3/cGD6PnvL8LG5i5YFEr6mbQiLDp1VHVpMDk8mvZY1LJikYgoyk2PvoonX3oLj313IlZV7ky879u2t1K3BE3nq5eBuqXJH//saaCnFTCXAt0tcpvIwrHy/o+Rxh8ZfdsaMeGjznFSJDaxGCm496QvySItvT3x/YsuB6atAoyBhV7TvgWMmZP6tWjoWPRDeT/PgVzBr2bFIhGNTrFdEdSCGt2vdGPzPzdjyRVLsH/afgiBxaCf7v8UQLgFanNvc9LziqrULR31oh7trvbQPojTi6fjwmkXwulz4qWtL+X0vVRbq/HRvo9Ctz1+D5oKmvDK9lcyPke6NpxKVSwCQJ1tCLdoz4NOdyfUKnXC5G2lOfnWREoxqA1R+4Cm098kMxER0WDjLPwAkHxyEuuYcy/DL/7yTxROzHzVkSRJoerCTOzvccGfZr8BAGjtlhOHBYGEXlvgtkoFVBcYoxKUdqMGTk+4YmF3Rx8qHdm1DolMZq3fvD/qfACg14gwaZN/ONBplPvVLLHqMbZkaFUsTq604aRZYyAIykw6qUUBS8YV4+uWbvS55WsdbIVqSHGdR5psK2uJiEYqj0+ODa5ZtRhv/PUurJpbmvhAvxf46HHA4Ii+P4PYIqRzJ/Dp3+LvdwZW+ffsAxZeDiz4fvix8qnxicWgYGsqS0XmYwgK7osYXCGeLDkIhBOLyaSaDLKUhl8DAAobAFOg/Viw0lEcPQt7hpVlPwUufhsoahq412DbMSIahR757BH8/tPfh/YrDLY7XXDqAsy+aTbGHTEudGyXuwvrdq0DICfsgHDFYkJpPuYVG4uj2paeM/kcHFRxUL/aXVZbqkPtNIOmFU3L6hzp2lAqmVikaB2uDpg0JujV+Wldrxf1UKsYCxIR0cg1JBKLDzzwAGpra6HX6zFv3jy8++67KY9/6qmnMH78eOj1ekyZMgUvvvjiII00vfVrX8Lu318Eb1crTDYHGsZPyur5e7tc6EpRXRc7z7e30xWXtIvl9YX3SwwmFtv7wonE2iIj2iMqFh1GLfoiztnW40ZNQXYTJOaIff18fgn/+Gh33DGOFFWLTA9l79hpFdjX7cKmfXIrXafXB42oGlXtQVmxSES5GkmxyCvrP8D4+7uwuc0Pq0mPOVMSJFBaNwb++xXQ1wbMPDv8mOQH3v+j/LUpg716Gg8HvloD+GK6KOwLvMbBVwGLr4hO8lXOjj8+ljWHFlUrbgMmnxROGsUmTPt7/kyMPxoonwY0HDow56f+M9gTV+8qRWsc2PMT0Yg03GORXd27sKN7B17f8To+efcTPLDqAfTt7EN9cT3cVW44vXJ3HQkSHv/y8ajnSpKElp6WRKfNSJGhCB3ujvQHZqHGWhN126q1oiKXRU8pmDSmUDtTUla7qx1mrTlvrUCzrVgkIiIabvIewTzxxBO48sorccMNN+CDDz7AtGnTsGLFCuzduzfh8W+++SZWrVqF8847Dx9++CGOP/54HH/88fj0008HeeTRJEnC04/8Gjdd9h1oi+sg6M0pE4TJfN2Sen9FV8wm5y2dLnT1JdkbKGBPRHtMq14DjaiKag06ttiM/REViwUmbajqDQD8EjChPLuVdJEVi5PKrfjvxn1xrVTTtUOl7BzcVAy9RsBHO9oByHssakUBaoWqIocDbSCJOnq+YyJSwkiJRQDg10++jCMu+CmaCgUUm5L8NfR7ga1ylQDatwFj5gL1S8OPv3kf8HWgzVdpBgukpq1K33I09vHy6enPa07dPixKsFWqzgyc/AdgzGz5dqrEotaU+96NqQgC8L3XgQnHKH9uGh40RjAaIaJsjKRY5IW/vYArV10Ja4kVGpsG1ZZq+CRfqCLxqwNf4ZPWT1BnDbfu7HJ3welzJjtlWiWGEhxwHuj32CNVWaqibpeZymDRWrI+T6rkkkqlglkztLorjRQdrg5YtJZ+Va32h0HDxCIREY1seU8s3nvvvTj//PNx7rnnYuLEiXjooYdgNBrxhz/8IeHxv/zlL7Fy5UpcddVVmDBhAm655RbMnDkT999//yCPPMztduP3t12DR35xK751/g9QdPw1EDS5tVv4am8XSq2Zr6jySRK2BvZPTGZnWzihp1IBJRY9OiOSkQ0l0UlQh1GDXnd0AnNaVXb93iMTi8fPqIRBK+Kp93dGHVNo5ibSStJrRCxsKMJXLV1weXxwenzQqgXF2q0OB6GKxdHzLRORAkZCLOLz+XD5PY/h4lv/gEtOPxr/XGWCVZfkj+G2N6Nvz7sQMBWHb+94F5h7PqDLcFGRxgAc/fPw7U1rgd621M/JJGFpLsvs9YHkbUsNaeIXc5IWsTQwlvwfMOucgUnoDiWTTpAT9pxQJKIMjYRYxO/348CzB/DNQ9+g/pB6nPmLM6G2qFFproSoErGnR26B/vn+zzG5aDKW1ywPPTfV/oqZKDIWxbUt7a8CfQH0YnheZ4x5TE5JwCJD6u4PbIc6MDrcHbBqrUOyYlHFCQsiIhoB8ppYdLvdeP/997Fs2bLQfYIgYNmyZXjrrbcSPuett96KOh4AVqxYkfR4l8uFzs7OqH9K+/KLz/G/V1/CZTf/At+57MdQ9aOVxcbmLtQXZx6sCipg54G+lMdsb+uJul1u00dVLNYVmaIetxu18PrDPVcLTFoUm7NLlJp04X39DFoRPz5ifNw4iy1MLCrtmGkV2N3hxLa2Hrg8fmjVo6xiUc2KRSLKzkiJRb75ZgseeWE9HvjJd/DLay+EOumesxLw+T/CN8umAnWLo9s2LroSOPjq7AYQWZ237wvgnz9IfbzWmLrKEQAswcSiEN9WMt1zQ8fZM3wNGhSH/AQ45peAfoRPos45Dzjs+vCen0REKYyUWKSrtQt71+7F4gsWw/BtA/Z79gMAtKIWtdZaSJDnGASVgIumXQR7xHt0S08LhH5MT5UYsuhykCGVSoUKc7j1aa2tFlox+65L6cYWWQWpU3OORCld7i7YdLacfmb9dUjVIZhePD1pteQfV/4RS6uWwqFP0VmDiIhoiMtrYrG1tRU+nw+lpdGrxUtLS9HcnHjFWnNzc1bH33777bDZbKF/VVVVCY/rj6nTpuPep9/Aocec3K/z9Li82N/jxsTyzNtrlNsMaO5I3TJkW0xFY4XdAF9E4jA2sWgzRgc/FTZ91J6JmTDpoo8/bU4VqgoMAABPYM/HYlYsKu6wCSVQCyp8sL0dTq8PWlGAOIoSi6NpP0kiUsZIiUUaG8fim2fvxMWnHZ76wLYtQOcuoHq+fLvqIHkfRV0g9jCXAgsuAczFyc+RTHDy5NgHgOnfDt+fbMFV6eTU5zMUACpRfr6hIP6xTKRNXg7QPotEuhFelUlEihkpsYitxIbF9y3Gz2/6OQxqA97Y9UbosYlFE0Nfn9p0KmaXzo6q2mruaY5KNGaryJi4KtDrz357mkjVlurQ13W2uhRHJldiTJ1YHIiKRVVgQdZorYzzST70eftQqC/Myx6WF027COdPPT9pUnNW6Szcd+h9Of9OERERDQUjfhb+xz/+MTo6OkL/duzYMSCvY7Jm1yoUAD7Y3o5H396K377xDQBg8z55f8WFDalbZUSqKTSipTN5YlGSJOw80BcVTgYTfEF2oxbWiMSh3RCdWBxTYIQl28SiNvp4lUqFG46WP0xs3it/n9m0fB3KFjQUAohP0OaDRa/B3LoCfNXSjT633ApVjK3yGMFYsUhEQ9FgxSIOa5L3IXc3sOt9+esd7wD2aqBuiXxbCIaCgb+cjrrU+xKmEmz3pDUCx/4KqF0s3062UrxiRprzCYDBLlcrCmLqY5NJl1i0jcntvERERMPIYMUiGrMGJq0J35v2PQDhxN604mmhYyYXTYZRY4x63p6ePSlbhqZLEFo0FhjUhrj7398rxz8f7fsos28gRo2tJvR1g60hp3OUmlK3Xbfpkscque6/OLVoKspN5VhRuyKn5w93PR65a1exMYeFcgpQqVQwafI/P0RERDSQ8ppYLCoqgiiKaGlpibq/paUFZWWJW1OVlZVldbxOp4PVao36l2/BvQW3t/Xiq+YuHOiV9zv0S3Lb0WxaodYUGNHS5Ur6eLfLi163D1UF4cC9ymGMO6464nG7MXoCsLbQmHUlWGzFIgCU2eRAXwoUSxaNkIrFCeVW/O/aZTh80tDYp+noqeXY0daLlk4XdGoBYtJ2eCOPVoyZICciSmPExyIbHgOehSAg1QAAJWFJREFUviB8u+8AMOFYwFio3Gto4uMKAOkTlOXT05/bWgmImnBL0+IJ8n8zTTQWjwMqZwOWJO/RiRKL444CJh4H5LhfNhERUTZGYixyxoQzom5PKZqS8viW3haUGpN/nnb5ks95AHIip9JcGXd/MCH52f7P8M6ed1KeI5aoElFnDVeUWTPdezpGsSF1citVYjFXKpUKL5/8Mo6sP1Lxcw8H3R55MXu5iZ0piIiIBkpeE4tarRazZs3C2rVrQ/f5/X6sXbsW8+fPT/ic+fPnRx0PAK+88krS44eiksDegrefMAX/uHQRfnZ8uBVYXaERdmPiPuyAnHyMVFNoimprGqu12w0AaCwJJysr7PEr+eqKw6upYisWG3KoxDNq00/4FY6QxCIg7xc5VL6flZPLoVIBzZ1O6NTiqKpYDCXAR8+3TET9NGJjEVNgEktvA6atCt+vMcq3c60ATCTXdqLlU+X/ptpP6Mi7gBlnhKseL3kbuOgtoCBQNWCtSP5cQP7+z31RTqYmkmjsqx4DTvhtuD0sERHRABqJsYhaUEe1AG20NyY91u1zo9PdiTGW5F0EDjgPpH3NyLalsaxaK5766ils79ye9jxBgkpAtVU+Z721HnadPePnRo0rcI5kLU8HIrE42gUrFstM3EubiIhooOS9FeqVV16J3/3ud3jkkUfwxRdf4KKLLkJPTw/OPfdcAMBZZ52FH//4x6HjL7vsMqxZswb33HMPvvzyS9x444147733cOmll+brW+iXUqs+qs3ouDIrrPrkiUVJik4iVhUYkGoLvdZuFwwaISqZWGGPX4HfEFElaTVoovIysRWMmTAnqFiMVWQe/E20R4MCkxbTq+wAAJ1mdO2xKAoqCCrmFYkoOyMiFnnp/4C37g/frjsY0JqBw34KHPPL8P2NK4CC+uzP39ce/jq4V80xvwKmnJK+3WgywWrBCcclP6b6IGDqqYAYEVeUTgy3cD3vX8DhtwKFY5OfQ60LVx8G27WKgWSmNUlSlNWKREQ0iEZELBJDI4TnNTRi8jmOdlc7AGCsPfl7+d7evWlfr9ZWm/SxMyacgQJ9AVZvXJ32PJGqLPJelBpRA1GV2aKs0L6GwS7zOrmDQ4U58WKo4OOknG5PN0SViAJdhntyExERUday2zhvAJx22mnYt28ffvrTn6K5uRnTp0/HmjVrQhuRb9++HYIQzn8uWLAAjz32GK677jr85Cc/QWNjI5599llMnjw52UsMKwvqCyCkSAR5fNGJRZ1aRE2hCVtaexIe39rtQqlVD506fA3LbfEVi2MjKhpFQQWzXo0up9w2RJ9B9WEso65/FYvZtl6laEdNLccH29uhV4ujKrEIRLZDJSLKzIiIRT78s/zfTa8Ck4KJusDff1EDFI0DWjcCYw+T90DMlKcP2PA48NVL4fuCVX6zzpb/JRNshZpsj0WtCfjBR0BsFcLkEzMfn94GLMhiElVvlZOhjYE9hyzBSb7R9V5JRERDy4iIRdIoM5Whuac57n6PX94apsnRlPS5Ha6OtOevs9UlfUyv1uPBwx7E6S+ensFIw0qMJdAIGgiq9J8xg8ecM+kcPP3106i3ZbaQK9cWq5Rcj6cHRo0RulRdMYiIiKhf8p5YBIBLL7006cq61157Le6+U045BaeccsoAj2rgdLvkhJ1fim9hOr4i+6ByUoU1RWLRjSmVNmgjEouJ9j+sLYxud2rVa0KJRUuKCspkMqlYtOqTHxOZCI10zcrxeOC1TdBrhm7ySK8RA//N3xiPnFKOW57/AjqNAHUgsegwalBbZIJ6hCfeNGqB88NElLURE4t8/Djgc4Yr84IK6uXEYoqKgTiuTmDbekDQyBWQmwMt1xLtSwgAFTOA7W+Gbx9xJ6DWy/scJlNQC6A2fPv6/UBfW+ZjzMVJD4e/NhXLFZhCivfGyz4GNr4I2OL3biIiIlLKiIlFkphSNAXNPc0J90u0aC0o0CevLutwd8R1b4qVqhUqAIx1jMWti27F1f+9GmaNOeWxQYJKQJmpDIJKgE/yZfQcu96O17/1ekbHAtEtUoX8NxUbEbx+L8waM3QiE4tEREQDZUgkFkebdZtaAQBtPe64xxw5tB2dUe3A8x/vAYC4/RY7+jyoLTRCI6bOtNTF7KNoM2iwq70PCxsKQ4mpbBg0IlQAUoX+qsDef6YsKiIvXNqAVfOqYckgcZkvFXYDTp9bhUVjU2/SPpDKbQZcckgDym360HX+4PrlaO50ZpT0Hc40osC8IhGNXhOOAz57BtDbUx9XPk3+r71G/q9tDKBSAVNOij/2pN8DtQuBuxpSn/PcF+VEZGmgWkKjB468M6vhQ1QD5pL0xylFVMv7NRpStMpy1AAHXTR4YyIiIhqGJhVNQrurHSa1KeHjhfpCAIDT64x7rEhfBKMmeUeFdmc73P74+ZNIwb0MU1lesxwPH/4wPJIn7bFBU4umotvTDbcv8etfMu0SXP7a5TCo4ztDZSJyj8VULWMpO1atFdpkXTOIiIio30Z2hmGI+mx3Z8L7tWoBNkP2geS0MeFA9Ou9XZhVE92jf3KlDXs6ooP3IrMWrd3hwDi2itFmDI9DUGWWpim3G4BtcjszlUoFg1ZErzv9qr5ghV+mcrlGg+22E6fmewi4asV4eH3+0G2VSpWwDe5Iky6JTkQ0Il36vlxROP3bcoXg63fJeywa5Um8ULVdcIJlzGzgBxvkZCIg//f6NiB2Nb69OtxadcaZciWkOsn+gyoVULtI0W9rUJy/FuhpzfcoiIiIhrWTm07GsQ3H5pTMKTGWwKhOnlhs7WuFyxtf6RgpmLhMZ1bZrKzGdtvi2/B+y/soNCQ+/2E1h+Ht09/OuTousmIxlkVryemcJF87JhaJiIgGDhOLg2xvV/zqvFKrPEE3q9qRU5vKiRHtUz/e2YETpocnBUWVCpMqrXGJxQqbISqxGBqLRQ6G7RHJu0xbet59ylRMr7JhfJk8HmOGiUUlnTizEne89CUm5dBSdiQa6W1PE5ErFplcJKJRpmis/A8ADr1WTiRufjXctnTl/wNsVYA1op1nQcxeRIIARLbg+u5aoGN3+PZx9w/I0PNOb5P/ERERUb/kmsgpN5WnrPjr8nThgOtA0seBcEckpQkqAXPK5sTdH1lpaNIkrtLMBBOLA8Oms0ErMLFIREQ0UJhYHGTvbY0PhsVAq1FLij0HUzFqw8/b2+XC21vCexMVWbQJ26tWOgz4eFfyDdAdpvBzPL7UexkE6dQizlsU3qBcHlfqdiVKK7HosfFnKzOusqSRRytyj0UiIsw6B5j6LUAdWD0vqoFFl2d3jjGzgSTbKeZkwtHAc5cCVXMVPCkRERENdw32hrSJwd3du1M+PljUghpev1exarjIBGUygkqAX/KnPY7CCvQFEIXsumMRERFR5phYHACFJi3297ix80AvplfZox57NyLpNxBqCo1Yt2lfaG/DSrsBFn1869BKe+qWmAURychcW0sas9g7UUk6NYPHoep3Z83CG1+3osA0cCsHucciEVGAJknL0nwxOIDr9uV7FERERDQIsqniG+cYl/JxUSVib+/e/g5JEf899b94ZdsrqLJUKXI+fbIW8xHWnrwWa7auwdTi/G+5MlwUG4rzPQQiIqIRbfT1SRwEkyvlVhbvbGmDxxtuBbq/x42d7X0oseTWez8Th08sxZbWXuxo6wUAVBcYYdbF54/L0yQWHQokfkw5JBZn1Thw6uwxcXs+FpkH7prR4Fk+sQw3HzcZhQP489Sq+WeNiGjIUmvlf0RERDSi/XrZr3Fq06motlanPbbMXJby8XJTOfY79ys1tH6x6qw4qemklC1MM1FkKMr8WGMRzph4Bgr0Bf16zdGkzJT6d4qIiIj6hxWLClj7RQs+3dWBhQ1yYBjc321PhxP//bo1dNymvd3QigIOqi/Acx/tyem1dGn2O5xV48CzG3ZjX5e8sXldkSnUajVSXZG8MXqipCMQvceiWsgtURObHMzE3y9aALfXH5ccMulYhUiZmTrGBpfXx30WiYiIiIiI8qTEWILr51+f0bFGtTHl43W2Omzv2p7ytQCg1lqLrZ1bMx5jvvxhxR/Q5+nL9zBGNCYWiYiIBhZLexTw9Ae78PJnLeh1eUP3FZq1mFBuwb+/aIHPLzcm3bS3G+PKzP1qA5kuVaIWBJw9vyZ0u7YocYBeYJIrxuqKErcnsRvDicV0FWDJWp5mmlgstUa3/mDFGfXHz46fjKtXjIchT614iYiIiIiIKHPp2qY2OhrR2tua8phIamFor6GfUzYHB1cdHHe/qOJnWCWooMqqIpSIiIiyxwyOAvwScKDXg837eqLuP3HGGLR2u7G7wwlAboV6UH0hDJqBDXLPXlAb+tqkjd9fMRORicXYBE1sm1R9kgROsmrISM9dshBXrWjKYYREialUKpRYh9i+YkRERERERBRHL+phUKfeqmWsfSx6vD1wep1R91u0loEc2qBTqdh1RwlmjTmjvSuJiIgod0wsKuiL5s6o23VFJhzcGN4wWqsWsHJSGfoTK2ZSzWfR55ZMjGQzBJKHCcYaTBjefuIUNJWakyYQM6lYnFplxyHjS3MeJxERERERERENL8GqwjJTGUQhdaVek0NejHzAeQAAoBXl+Yp131qHXy/7NepsdQM40sF3x+I7cN7k82DT2fI9lBCjJnW72qHEorVAJ+ryPQwiIqIRbWj3hxhmtrf1wu31R9133VETcPgv9gEAJpRZUF2YusVHOkJMVtKsT/wjHFdqwcaWrqTnqSmQg8JJFYkD1WDFogoqGDSJg/xVc6tx4sxK6NSJH7fEjK2+WP7e5zcUJh0XEREREREREY0sY+1jAYSrDCvMFQCACQUT0j63yloFtaCG1y9vP+PQOQAAgkrAospFAzHcvDqq/qgBOW+hPve5mDsPvhO/+OAXKDeVKziigWHVWaEVct+CiIiIiNJjYlFBO9r6sKcjegPuprJwa455dQUo7Mf+iomohcTlj3pN6spGh0mL969bBmdMIjTIZpATi4IKKSsskyUVgfjEolGrxuc3r4DHK6UcGxERERERERGNHKeNPw1VliqMsYyJuj+T9p8aQYMqcxW2dG4BEK5YpMz9Ztlv0OftS39gEg69AzctuEnBEQ0cm87G3xEiIqIBxsSiQmoLjdi6vxcf72pPesyMajuEJInAXJX2Yy+5QnPy1hAaUYBRK0YF+VtuPxLvbGlDpT31/gdBRq3861Uc8TpGrRpgfEdEREREREQ0qiyoXJDzcxvsDaHEokPvUGpIo0Z/rn0mgvtkDoW9De06OxOLREREA4x7LCpg54FeOL1+1BeZ8FVLN2Lr8SaUWwEAGjH1vgGZMGrlc0wdY0N1gRG6DPZczJVVr4mqVlSpVDiovjDj5GiyvReJiIiIiIiIiDLVVNAU+jpZm8sSY8lgDYdi1NvrcfzY43Fk3ZF5HcdJjSdhbunc0B6eRERENDD4TquAbft7AQBnza/Bk+/tgFWvUfT8bT3u0NcaUU4kPnfpIjR3OFHSj4rFdOY3FMKWZA/HTASToEREREREREREuWpyNKU95r5D78NjXzyGWmttv16LSanc3LLwlnwPAVfNuSq0FycRERENHEZLCnjrx4firU37UVdswqNvbcPW/T2KnfuG5z7DrvZwH/xgYhEAymzxSUVzTCIwg+0KkrrnlGlo63VHvWY2gmPpzxiIiIiIiIiIaGSxauXOTiaNKaPjG+2NaY8xaoz47tTv9mtcj658FLt7dkMjKLtgnAaHoBLYBpWIiGgQsBWqAsptBpw4awymV9lRaNKipdOl2LmLzFqcPb8mdNukS10FqNfIj8+uLQCQfVIvck9FQVChKMU+jOnMqS3AFcsbUV+c2QcFIiIiIiIiIhr5ppdMx3mTz8Nh1YdldHyluRJaQQtBNbDTWDNKZ+Co+qOi5kaIiIiIKBorFhWkUqmwpKkYT3+4S5HzlVp1+P05c1Bg1OKRt7YBQMbVg9cfPREnzKhEhV3eQHv5xFL8cu3XqC4wJn3OnFoHVkwq6//AAzSigMsOS9+uhIiIiIiIiIhGl8tnXZ7xsaIgotpaDVHFLVeIiIiI8o2JRYWtnFwWSiw2lpr7dS6jVt2visHJlbaorz+4fjnUYvJVd09duCDn1xoon964Aq9t3BtKkBIRERERERHRyNToSN7y9DuTv4OtnVu5ByIRERFRnjEaU9iixiJoRBVUCLcl1aZI5iVz+txqzKy2Kzq2AtPw6zNv1qtx9LSKfA+DiIiIiIiIiAbQG6e9gb19e5M+fkzDMfD4Pdz/kIiIiCjPuMeiwoxaNWbXOCCoVHB5/ACAX62agaVNxSi16gHIbUkBYIxDrsKrCbQnHVdmCZ3nthOn4OTZVVHnnlFlz3rPRCIiIiIiIiKioc6ut6PJkXo7leGWVJxaPBUAsLByoWLnLDYWK3YuIiIiolywYnEAXHn4OKz5ZA/0GjlvW1Nowp++Mzf0+IxqB967bllov8QSqx7vXnsYnG5/0nNuvu1IbG/rhU7N/QSIiIiIiIiIiIY6rajFB2d+AL+UfL4nW3cvuRt/+fwvqLPWKXZOIiIiomwwsTgA5tQWYFa1A4KQvLwwdu/EEos+5TlFQYW6IlPSx1++/GD8/YOdKLelPg8RERERERER0VDXYGvAzNKZEHJstnVS40n48+d/RqW5UuGRZUfpKkuD2oDzp56v6DmJiIiIssHE4gBJlVQcCE1lFvz4yAmD+ppERERERERERAPhmeOegdPnhCjk1rmpwd6Ad05/J+fnExEREVFiTCwSEREREREREdGQolKpYFAb+nUOo8ao0GiIiIiIKCi3fhJERERERERERERERERENKowsUhERERERERERKOOqBJxbMOx+R4GERER0bAy6lqhSpIEAOjs7MzzSIiIiIaO4Pti8H2SBg5jESIioniMRQYPY5GwV499FR6/J6/XwtfnAyD/PHSiLm/jICIa7RiLEGVu1CUWu7q6AABVVVV5HgkREdHQ09XVBZvNlu9hjGiMRYiIiJJjLDLwGIsMTSUXleR7CEREBMYiRJlQSaMsBe/3+7F7925YLBaoVCpFztnZ2Ymqqirs2LEDVqtVkXOOVryWyuG1VA6vpXJ4LZUxENdRkiR0dXWhoqICgsBO6QOJscjQxmupHF5L5fBaKofXUhmMRYY3xiJDG6+lcngtlcNrqRxeS+UofS0ZixBlbtRVLAqCgDFjxgzIua1WK98QFMJrqRxeS+XwWiqH11IZSl9HrsgbHIxFhgdeS+XwWiqH11I5vJbKYCwyPDEWGR54LZXDa6kcXkvl8FoqR8lryViEKDNMvRMRERERERERERERERFRWkwsEhEREREREREREREREVFaTCwqQKfT4YYbboBOp8v3UIY9Xkvl8Foqh9dSObyWyuB1pFj8nVAOr6VyeC2Vw2upHF5LZfA6Uiz+TiiH11I5vJbK4bVUDq+lcngtifJHJUmSlO9BEBEREREREREREREREdHQxopFIiIiIiIiIiIiIiIiIkqLiUUiIiIiIiIiIiIiIiIiSouJRSIiIiIiIiIiIiIiIiJKi4lFIiIiIiIiIiIiIiIiIkqLicUMPfDAA6itrYVer8e8efPw7rvvpjz+qaeewvjx46HX6zFlyhS8+OKLgzTSoS+ba/m73/0OixcvhsPhgMPhwLJly9Je+9Ek29/LoNWrV0OlUuH4448f2AEOI9ley/b2dlxyySUoLy+HTqdDU1MT/z9H9tfxF7/4BcaNGweDwYCqqipcccUVcDqdgzTaoev111/HMcccg4qKCqhUKjz77LNpn/Paa69h5syZ0Ol0GDt2LP70pz8N+DhpcDEWUQ5jEeUwFlEOYxFlMBZRBmMRSoSxiHIYiyiHsYhyGIsoh/FI/zEWIRriJEpr9erVklarlf7whz9In332mXT++edLdrtdamlpSXj8+vXrJVEUpTvvvFP6/PPPpeuuu07SaDTSJ598MsgjH3qyvZann3669MADD0gffvih9MUXX0jnnHOOZLPZpJ07dw7yyIeebK9l0JYtW6TKykpp8eLF0nHHHTc4gx3isr2WLpdLmj17tnTkkUdK69atk7Zs2SK99tpr0oYNGwZ55ENLttfxr3/9q6TT6aS//vWv0pYtW6R//etfUnl5uXTFFVcM8siHnhdffFG69tprpaeffloCID3zzDMpj//mm28ko9EoXXnlldLnn38u3XfffZIoitKaNWsGZ8A04BiLKIexiHIYiyiHsYgyGIsoh7EIxWIsohzGIsphLKIcxiLKYTyiDMYiREMbE4sZmDt3rnTJJZeEbvt8PqmiokK6/fbbEx5/6qmnSkcddVTUffPmzZO+973vDeg4h4Nsr2Usr9crWSwW6ZFHHhmoIQ4buVxLr9crLViwQHr44Yels88+mwF0QLbX8te//rVUX18vud3uwRrisJDtdbzkkkukQw89NOq+K6+8Ulq4cOGAjnO4ySSAvvrqq6VJkyZF3XfaaadJK1asGMCR0WBiLKIcxiLKYSyiHMYiymAsMjAYi5AkMRZREmMR5TAWUQ5jEeUwHlEeYxGioYetUNNwu914//33sWzZstB9giBg2bJleOuttxI+56233oo6HgBWrFiR9PjRIpdrGau3txcejwcFBQUDNcxhIddrefPNN6OkpATnnXfeYAxzWMjlWj733HOYP38+LrnkEpSWlmLy5Mm47bbb4PP5BmvYQ04u13HBggV4//33Qy1BvvnmG7z44os48sgjB2XMIwnfd0Y2xiLKYSyiHMYiymEsogzGIvnF952RjbGIchiLKIexiHIYiyiH8Uj+8H2HaHCp8z2Aoa61tRU+nw+lpaVR95eWluLLL79M+Jzm5uaExzc3Nw/YOIeDXK5lrP/7v/9DRUVF3BvFaJPLtVy3bh1+//vfY8OGDYMwwuEjl2v5zTff4D//+Q++/e1v48UXX8SmTZtw8cUXw+Px4IYbbhiMYQ85uVzH008/Ha2trVi0aBEkSYLX68WFF16In/zkJ4Mx5BEl2ftOZ2cn+vr6YDAY8jQyUgJjEeUwFlEOYxHlMBZRBmOR/GIsMrIxFlEOYxHlMBZRDmMR5TAeyR/GIkSDixWLNGzccccdWL16NZ555hno9fp8D2dY6erqwplnnonf/e53KCoqyvdwhj2/34+SkhL89re/xaxZs3Daaafh2muvxUMPPZTvoQ0rr732Gm677TY8+OCD+OCDD/D000/jhRdewC233JLvoRERJcRYJHeMRZTFWEQZjEWIaLhhLJI7xiLKYiyiHMYjRDQcsWIxjaKiIoiiiJaWlqj7W1paUFZWlvA5ZWVlWR0/WuRyLYPuvvtu3HHHHfj3v/+NqVOnDuQwh4Vsr+XmzZuxdetWHHPMMaH7/H4/AECtVmPjxo1oaGgY2EEPUbn8XpaXl0Oj0UAUxdB9EyZMQHNzM9xuN7Ra7YCOeSjK5Tpef/31OPPMM/Hd734XADBlyhT09PTgggsuwLXXXgtB4NqXTCV737FarVyVNwIwFlEOYxHlMBZRDmMRZTAWyS/GIiMbYxHlMBZRDmMR5TAWUQ7jkfxhLEI0uPiXKQ2tVotZs2Zh7dq1ofv8fj/Wrl2L+fPnJ3zO/Pnzo44HgFdeeSXp8aNFLtcSAO68807ccsstWLNmDWbPnj0YQx3ysr2W48ePxyeffIINGzaE/h177LE45JBDsGHDBlRVVQ3m8IeUXH4vFy5ciE2bNoU+hADAV199hfLy8lEbPOdyHXt7e+MC5OCHEkmSBm6wIxDfd0Y2xiLKYSyiHMYiymEsogzGIvnF952RjbGIchiLKIexiHIYiyiH8Uj+8H2HaJBJlNbq1aslnU4n/elPf5I+//xz6YILLpDsdrvU3NwsSZIknXnmmdI111wTOn79+vWSWq2W7r77bumLL76QbrjhBkmj0UiffPJJvr6FISPba3nHHXdIWq1W+tvf/ibt2bMn9K+rqytf38KQke21jHX22WdLxx133CCNdmjL9lpu375dslgs0qWXXipt3LhRev7556WSkhLpZz/7Wb6+hSEh2+t4ww03SBaLRXr88celb775Rnr55ZelhoYG6dRTT83XtzBkdHV1SR9++KH04YcfSgCke++9V/rwww+lbdu2SZIkSddcc4105plnho7/5ptvJKPRKF111VXSF198IT3wwAOSKIrSmjVr8vUtkMIYiyiHsYhyGIsoh7GIMhiLKIexCMViLKIcxiLKYSyiHMYiymE8ogzGIkRDGxOLGbrvvvuk6upqSavVSnPnzpXefvvt0GNLliyRzj777Kjjn3zySampqUnSarXSpEmTpBdeeGGQRzx0ZXMta2pqJABx/2644YbBH/gQlO3vZSQG0NGyvZZvvvmmNG/ePEmn00n19fXSrbfeKnm93kEe9dCTzXX0eDzSjTfeKDU0NEh6vV6qqqqSLr74YunAgQODP/Ah5tVXX034ty94/c4++2xpyZIlcc+ZPn26pNVqpfr6eumPf/zjoI+bBhZjEeUwFlEOYxHlMBZRBmMRZTAWoUQYiyiHsYhyGIsoh7GIchiP9B9jEaKhTSVJrKkmIiIiIiIiIiIiIiIiotS4xyIRERERERERERERERERpcXEIhERERERERERERERERGlxcQiEREREREREREREREREaXFxCIRERERERERERERERERpcXEIhERERERERERERERERGlxcQiEREREREREREREREREaXFxCIRERERERERERERERERpcXEIhERERERERERERERERGlxcQiEQ1bKpUKzz77bL6HQURERKMUYxEiIiLKJ8YiRESUD0wsEo1SKpUq5b8bb7xx0MaydOnS0Ovq9XpMnDgRDz74YNrn7dmzB0ccccQgjJCIiIiUxliEiIiI8omxCBERUW7U+R4AEeXHnj17Ql8/8cQT+OlPf4qNGzeG7jObzaGvJUmCz+eDWj1wfzLOP/983Hzzzejt7cWjjz6KSy65BA6HA6tWrYo71u12Q6vVoqysbMDGQ0RERAOLsQgRERHlE2MRIiKi3LBikWiUKisrC/2z2WxQqVSh219++SUsFgteeuklzJo1CzqdDuvWrcM555yD448/Puo8l19+OZYuXRq67ff7cfvtt6Ourg4GgwHTpk3D3/72t7TjMRqNKCsrQ319PW688UY0NjbiueeeAyCv3Lv00ktx+eWXo6ioCCtWrAAQ3/Jj586dWLVqFQoKCmAymTB79my88847ocf/8Y9/YObMmdDr9aivr8dNN90Er9eb+0UkIiKinDEWYSxCRESUT4xFGIsQEVFuWLFIREldc801uPvuu1FfXw+Hw5HRc26//Xb85S9/wUMPPYTGxka8/vrrOOOMM1BcXIwlS5Zk/NoGgwFutzt0+5FHHsFFF12E9evXJzy+u7sbS5YsQWVlJZ577jmUlZXhgw8+gN/vBwC88cYbOOuss/CrX/0KixcvxubNm3HBBRcAAG644YaMx0VERESDh7EIERER5RNjESIionhMLBJRUjfffDOWL1+e8fEulwu33XYb/v3vf2P+/PkAgPr6eqxbtw6/+c1vMgqgfT4fHn/8cXz88cehABcAGhsbceeddyZ93mOPPYZ9+/bhf//7HwoKCgAAY8eODT1+00034ZprrsHZZ58dGtctt9yCq6++mgE0ERHREMVYhIiIiPKJsQgREVE8JhaJKKnZs2dndfymTZvQ29sbF3S73W7MmDEj5XMffPBBPPzww3C73RBFEVdccQUuuuii0OOzZs1K+fwNGzZgxowZoeA51kcffYT169fj1ltvDd3n8/ngdDrR29sLo9GY7tsjIiKiQcZYhIiIiPKJsQgREVE8JhaJKCmTyRR1WxAESJIUdZ/H4wl93d3dDQB44YUXUFlZGXWcTqdL+Vrf/va3ce2118JgMKC8vByCEL0FbOxYYhkMhpSPd3d346abbsKJJ54Y95her0/5XCIiIsoPxiJERESUT4xFiIiI4jGxSEQZKy4uxqeffhp134YNG6DRaAAAEydOhE6nw/bt27PaNwAAbDZbVIuObE2dOhUPP/ww2traEq7OmzlzJjZu3Niv1yAiIqL8YixCRERE+cRYhIiIiIlFIsrCoYceirvuuguPPvoo5s+fj7/85S/49NNPQ+08LBYLfvSjH+GKK66A3+/HokWL0NHRgfXr18NqtYb6+A+EVatW4bbbbsPxxx+P22+/HeXl5fjwww9RUVGB+fPn46c//SmOPvpoVFdX4+STT4YgCPjoo4/w6aef4mc/+9mAjYuIiIiUw1iEiIiI8omxCBERESCkP4SISLZixQpcf/31uPrqqzFnzhx0dXXhrLPOijrmlltuwfXXX4/bb78dEyZMwMqVK/HCCy+grq5uQMem1Wrx8ssvo6SkBEceeSSmTJmCO+64A6Iohsb+/PPP4+WXX8acOXNw0EEH4ec//zlqamoGdFxERESkHMYiRERElE+MRYiIiACVFNsYnIiIiIiIiIiIiIiIiIgoBisWiYiIiIiIiIiIiIiIiCgtJhaJiIiIiIiIiIiIiIiIKC0mFomIiIiIiIiIiIiIiIgoLSYWiYiIiIiIiIiIiIiIiCgtJhaJiIiIiIiIiIiIiIiIKC0mFomIiIiIiIiIiIiIiIgoLSYWiYiIiIiIiIiIiIiIiCgtJhaJiIiIiIiIiIiIiIiIKC0mFomIiIiIiIiIiIiIiIgoLSYWiYiIiIiIiIiIiIiIiCgtJhaJiIiIiIiIiIiIiIiIKK3/D5u9Kqp6Co+cAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABxYAAAH5CAYAAACs6ttbAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3wUdf4/8NfubG9pJARSka6iCCKinopnQfQUPT1PUcDC2btn/angneWrooj9RMGCnp4iYsWKCAm9KSUhQBrpffvulN8fk11Sts32De/n4+Ejkp2d/exmk0zmNe/3WyYIggBCCCGEEEIIIYQQQgghhBBCCAlAnugFEEIIIYQQQgghhBBCCCGEEEKSHwWLhBBCCCGEEEIIIYQQQgghhJCgKFgkhBBCCCGEEEIIIYQQQgghhARFwSIhhBBCCCGEEEIIIYQQQgghJChFohdACCGEEEIIIYQQQgghhBAyEHEcB7fbnehlEBIylUoFudx/XSIFi4QQQgghhBBCCCGEEEIIIVEkCAIaGhrQ0dGR6KUQIolcLsewYcOgUql83i4TBEGI85oIIYQQQgghhBBCCCGEEEIGrPr6enR0dCAnJwc6nQ4ymSzRSyIkKJ7nUVdXB6VSicLCQp/vW6pYJIQQQgghhBBCCCGEEEIIiRKO47yhYlZWVqKXQ4gk2dnZqKurA8uyUCqV/W733ySVEEIIIYQQQgghhBBCCCGESOKZqajT6RK8EkKk87RA5TjO5+0ULBJCksbSpUshk8lQWVnp/dyZZ56JM888M2FrIoQQQgghhBBCCCGEkHBQ+1OSioK9bylYJIRE5Pfff8dll12GoqIiaDQa5OXl4ZxzzsHLL78ck8erq6vDvHnzsH379pjsnxBCCCGpaf/+/bjxxhtx1FFHQaPRwGQy4dRTT8VLL70Eu93u3c7tdmPRokWYNGkSjEYjDAYDJk2ahJdffhksy/bbb3FxMWQymfc/vV6Pk046Ce+99148nx4hhBBCUkSoxyQcx2HJkiU488wzkZmZCbVajeLiYlx77bXYvHmzdzvPRdie/zQaDUaNGoXbbrsNjY2NiXiKhBBCjnA0Y5EQEraSkhJMnToVhYWFmDt3LnJzc1FTU4P169fjpZdewu233x7xY3z//fe9/l1XV4f58+ejuLgY48ePj3j/hBBCCEl9X3/9NS6//HKo1WrMmjULxx57LFwuF9auXYt//vOf2LVrF/7zn//AarXiggsuwK+//ooLL7wQc+bMgVwux3fffYc77rgDK1aswJdfftmvXdH48eNx7733AgDq6+uxePFizJ49G06nE3Pnzk3EUyaEEEJIEgr1mMRut+PSSy/Fd999h9NPPx0PP/wwMjMzUVlZiU8++QTvvvsuqqurkZ+f7933E088gWHDhsHhcGDt2rV4/fXX8c033+CPP/6gVouEEELiioJFQkjYnnzySaSlpWHTpk1IT0/vdVtTU1NUHsPTz5kQQgghxJeDBw/i73//O4qKivDzzz9jyJAh3ttuvfVWVFRU4OuvvwYA3HPPPfj111/x8ssv47bbbvNud/PNN+PVV1/Fbbfdhn/+85949dVXez1GXl4err76au+/58yZg6OOOgovvvgiBYuEEEIIASDtmOSf//wnvvvuO7z44ou46667eu3n8ccfx4svvthv/+effz5OPPFEAMANN9yArKwsvPDCC/jiiy9w5ZVXxu6JEUJIjMyZMwcdHR1YsWIFAHEk1vjx47Fw4cKw9xmNfZDgqBUqISRs+/fvxzHHHNMvVASAnJwc7//LZDLcdtttWLZsGUaPHg2NRoOJEydizZo1QR+j54zF1atXY9KkSQCAa6+91tsGZOnSpdF4OoQQQghJQc8++ywsFgvefvvtXifwPEaMGIE777wTtbW1ePvtt3HWWWf1ChU9br31VkydOhX/+c9/cOjQoYCPmZ2djTFjxmD//v1Rex6EEEIISW1SjknefPNNnHPOOf1CRQBgGAb33Xdfr2pFX8466ywAYqBJCCHRNGfOHO95V5VKhREjRuCJJ57wOToimpYvX45//etfIW27evVqyGQydHR0hL0PEj4KFgkhYSsqKsKWLVvwxx9/BN32119/xV133YWrr74aTzzxBFpbWzFt2rSQ7usxduxYPPHEEwCAf/zjH3j//ffx/vvv4/TTTw/7ORBCCCEktX355Zc46qijcMoppwTc7ttvvwXHcZg1a5bfbWbNmgWWZfHdd98F3BfLsqitrUVGRkZYayaEEELIwCPlmIRlWVxzzTURPZ7nAqesrKyI9kMIIb5MmzYN9fX12LdvH+69917MmzcPzz33XL/tXC5X1B4zMzMTRqMx4fsgwVGwSAgJ23333QebzYbx48fjlFNOwQMPPIDvv/8ebre737Z//PEHvvvuOzz66KO4//77sWbNGgiCgMceeyzkxxs8eDDOP/98AMCUKVNw9dVX4+qrr8ZRRx0VtedECCGEkNTR1dWFQ4cOYdy4cUG33b17NwDg+OOP97uN5zbPth5utxstLS1oaWnBH3/8geuuuw4NDQ247LLLIlg9IYQQQgYKKccke/bsAYCQtu2ps7MTLS0tqK2txccff4wnnngCWq0WF154YVhrJoSQQNRqNXJzc1FUVISbb74ZZ599NlauXIk5c+ZgxowZePLJJzF06FCMHj0aAFBTU4O//e1vSE9PR2ZmJi6++GJUVlZ698dxHO655x6kp6cjKysL999/PwRB6PWYZ555Zq9KbqfTiQceeAAFBQVQq9UYMWIE3n77bVRWVmLq1KkAgIyMDMhkMsyZM8fnPtrb2zFr1ixkZGRAp9Ph/PPPx759+7y3L126FOnp6Vi1ahXGjh0Lg8HgDVWJfzRjkRAStnPOOQelpaV4+umnsWrVKpSWluLZZ59FdnY2Fi9ejIsuusi77ZQpUzBx4kTvvwsLC3HxxRfjyy+/BMdxYBgmEU+BEEIIISmsq6sLAEK6ItVsNgfd1nObZ1uP77//HtnZ2b0+d+211/q8YpcQQgghRx4pxyRStu3p7LPP7vXvoqIiLFu2DHl5eZL2QwhJHJvNhr1798b9cceMGQOdThfRPrRaLVpbWwEAP/30E0wmE3744QcA4oWY5513HqZMmYLffvsNCoUC//73vzFt2jTs3LkTKpUKCxYswNKlS/HOO+9g7NixWLBgAT7//HNvW2dfZs2ahdLSUixatAjHH388Dh48iJaWFhQUFOCzzz7DX//6V5SVlcFkMkGr1frcx5w5c7Bv3z6sXLkSJpMJDzzwAKZPn47du3dDqVQCEL8uzz//PN5//33I5XJcffXVuO+++7Bs2bKIXrOBjIJFQkhEJk2ahOXLl8PlcmHHjh34/PPP8eKLL+Kyyy7D9u3bcfTRRwMARo4c2e++o0aNgs1mQ3NzM3Jzc+O9dEIIIYSkOJPJBKB/EOiLv9CwJ89tPWdFA8DkyZPx73//GxzH4Y8//sC///1vtLe3Q6VShbt0QgghhAwgUo5JpGzb06uvvopRo0ZBoVBg8ODBGD16NORyakZHSCrZu3dvr8KLeNmyZQsmTJgQ1n0FQcBPP/2EVatW4fbbb0dzczP0ej0WL17s/Xvogw8+AM/zWLx4MWQyGQBgyZIlSE9Px+rVq3Huuedi4cKFeOihh3DppZcCAN544w2sWrXK7+OWl5fjk08+wQ8//OC9sKJn17rMzEwA4t9u6enpPvfhCRTXrVvnbVO9bNkyFBQUYMWKFbj88ssBiMHoG2+8geHDhwMAbrvtNu84LuIbBYuEkKhQqVSYNGkSJk2ahFGjRuHaa6/F//73Pzz++OOJXhohhBBCBiiTyYShQ4eGNLPZc7HTzp07MX78eJ/b7Ny5EwD6tVkfNGiQ94/Z8847D2PGjMGFF16Il156Cffcc08Ez4AQQgghA4GUY5IxY8YAAH7//Xe/xyS+nHTSSTjxxBPDXSIhJAmMGTMGW7ZsScjjSvXVV1/BYDDA7XaD53lcddVVmDdvHm699VaMGzeu10WWO3bsQEVFRb9KbIfDgf3796OzsxP19fWYPHmy9zaFQoETTzyxXztUj+3bt4NhGJxxxhmS1+6xZ88eKBSKXo+blZWF0aNHe9tSA4BOp/OGigAwZMgQNDU1hf24RwIKFgkhUec50O3Zi7pn72qP8vJy6HS6fq3FAvFc9UIIIYQQAgAXXngh/vOf/6C0tBRTpkzxu935558PhmHw/vvvY9asWT63ee+996BSqXDxxRcHfMwLLrgAZ5xxBp566inceOON0Ov1ET0HQgghhKQ+qcckH3zwAa655po4rpAQkmg6nS7sysF4mzp1Kl5//XWoVCoMHToUCsXhKKnv3z8WiwUTJ0702TpUynnfnvy1No0FT0tUD5lM5jfwJCKqlyeEhO2XX37x+UP2m2++AQDv8F4AKC0txdatW73/rqmpwRdffIFzzz1X0nxFzy+ujo6OMFdNCCGEkIHk/vvvh16vxw033IDGxsZ+t+/fvx8vvfQS8vPzcf311+PHH3/E66+/3m+7N954Az///DNuvPFGZGVlBX3cBx54AK2trXjrrbei8jwIIYQQktpCPSYpKCjA3Llz8f333+Pll1/utx3P81iwYAFqa2vjsWxCCPFJr9djxIgRKCws7BUq+jJhwgTs27cPOTk5GDFiRK//0tLSkJaWhiFDhmDDhg3e+7AsG7B6c9y4ceB5Hr/++qvP2z0VkxzH+d3H2LFjwbJsr8dtbW1FWVmZt6MNCQ9VLBJCwnb77bfDZrPhkksuwZgxY+ByuVBSUoKPP/4YxcXFuPbaa73bHnvssTjvvPNwxx13QK1W47XXXgMAzJ8/X9JjDh8+HOnp6XjjjTdgNBqh1+sxefJkDBs2LKrPjRBCCCGpYfjw4fjwww9xxRVXYOzYsZg1axaOPfZY73HJ//73P8yZMwcA8MILL2Dv3r245ZZb8N1332HatGkAgFWrVuGLL77AWWedheeeey6kxz3//PNx7LHH4oUXXsCtt97a7ypXQgghhBxZpByTLFiwAPv378cdd9yB5cuX48ILL0RGRgaqq6vxv//9D3v37sXf//73xD4hQggJ0cyZM/Hcc8/h4osvxhNPPIH8/HxUVVVh+fLluP/++5Gfn48777wTzzzzDEaOHIkxY8bghRdeCFg4UlxcjNmzZ+O6667DokWLcPzxx6OqqgpNTU3429/+hqKiIshkMnz11VeYPn06tFotDAZDr32MHDkSF198MebOnYs333wTRqMRDz74IPLy8oJ2qSGBUcUiISRszz//PKZOnYpvvvkG99xzD+655x5s3LgRt9xyCzZs2NBrcO4ZZ5yBhQsX4v3338djjz2GzMxMfPvttzjuuOMkPaZSqcS7774LhmFw00034corr/R75QohhBBCjgwXXXQRdu7cicsuuwxffPEFbr31Vjz44IOorKzEggULsGjRIgDiVbc//vgjFi5ciEOHDuG+++7DLbfcgi+++AKzZ8/GDz/8ALVaHfLj3nfffaipqfHZ8ocQQgghR55Qj0l0Oh2+/fZbLF68GBzH4V//+hduuukmLF26FJMnT8aWLVuQl5eX4GdDCCGh0el0WLNmDQoLC3HppZdi7NixuP766+FwOGAymQAA9957L6655hrMnj0bU6ZMgdFoxCWXXBJwv6+//jouu+wy3HLLLRgzZgzmzp0Lq9UKAMjLy8P8+fPx4IMPYvDgwbjtttt87mPJkiWYOHEiLrzwQkyZMgWCIOCbb76hC0MjJBOoWSwhJMZkMhluvfVWvPLKK4leCiGEEEJIL11dXTjjjDOwf/9+rFmzBuPHj0/0kgghhBBCCCEpzuFw4ODBgxg2bBg0Gk2il0OIJMHev1SxSAghhBBCCDlimUwmfPvttxg0aBCmT5+OqqqqRC+JEEIIIYQQQghJWjRjkRBCCCGEEHJEy83NxYEDBxK9DEIIIYQQQgghJOlRxSIhhBBCCCGEEEIIIYQQQgghJCiqWCSExByNciWEEEIIIYQQQgghhBBCUh9VLBJCCCGEEEIIIYQQQgghhBBCgqJgkRBCCCGEEEIIIYQQQgghhBAS1BHXCpXnedTV1cFoNEImkyV6OYQQQkhSEAQBZrMZQ4cOhVxO1x3FEh2LEEIIIf3RsUj80LEIIYQQ0h8dixASuiMuWKyrq0NBQUGil0EIIYQkpZqaGuTn5yd6GQMaHYsQQggh/tGxSOzRsQghhBDiHx2LEBLcERcsGo1GAOIPCJPJlODVEEIIIdI43Bwm/ftHCACeuPhoXDohOieFurq6UFBQ4P09SWKHjkUIIYSQ/uhYJH7oWIQMBK32Vlzw+QUYnTEar5/9OnRKXaKXNGA0WBowY+UMHJd9HP5zzn+ivv97frkHO5p3wMpa8djkxzB9+PSoPwZJXTesugG8wOPvo/8OrVLrd7uSuhJ8XvE5hpmG4aMLP4rKY8frWMTh5uDi+Jg+Rk8qRg6Nkonb40kxZ84cdHR0YMWKFQCAM888E+PHj8fChQvD3mc09hHM6tWrMXXqVLS3tyM9PT1mjxNrMpkMn3/+OWbMmCH5vkdcsOhp82EymegAmhBCSMqpPtQJmVoHGQC11hj132XUDiv26FiEEEII8Y+ORWKPjkXIQOBSusBoGcg0MhiMBhhUhkQvacCwyq1gtAxUOlVMfkbUc/XIzsyGw+yAzqijn0Okl3quHsdkHYOM9Awwcv9hmEavAaNloNQpU+q8iMPN4ftdDeh0uGP2GH2laZQ495jckMPFOXPm4N133wUAKJVKFBYWYtasWXj44YehUMQ2Tlq+fDmUSmVI2/oL96TsI1ynnHIK6uvrkZaWFvJ9+oaoqe6ICxYJIYSQVLavyZzoJRBCCCGEEEJIUmAFFpzAJXoZJEQsz6LOUocxmWNQg5pEL4ckmU5nJzqcHUhXpwcMFVOZi+PR6XBDo2CgVsR+jqOTFR/PxfGSqhanTZuGJUuWwOl04ptvvsGtt94KpVKJhx56qN+2LpcLKpUqKuvNzMxMin0Eo1KpkJubG/PH8SWar3ckaAopIYQQkkLKGy2JXgIhhBBCCCGEJAWO5yAIQqKXQUJUb6kHK7DI1MT+xD9JPVVdVQCADE1GglcSe2qFHDqVIub/hRteqtVq5ObmoqioCDfffDPOPvtsrFy5EoBYeTdjxgw8+eSTGDp0KEaPHg1AbLH+t7/9Denp6cjMzMTFF1+MyspK7z45jsM999yD9PR0ZGVl4f777+/38/vMM8/EXXfd5f230+nEAw88gIKCAqjVaowYMQJvv/02KisrMXXqVABARkYGZDIZ5syZ43Mf7e3tmDVrFjIyMqDT6XD++edj37593tuXLl2K9PR0rFq1CmPHjoXBYMC0adNQX1/v9/VZvXo1ZDIZOjo6QtrHvHnz8O677+KLL76ATCaDTCbD6tWrQ3rdfL3eDz/8MCZPntxvXccffzyeeOIJAMCmTZtwzjnnYNCgQUhLS8MZZ5yBrVu3+n1OUlGwSAghhKSQvfVdUMipRRghhBBCCCGEsDwLHvGbVUYiU2U+coIjIl1lVyUAIFubndiFkH60Wi1cLpf33z/99BPKysrwww8/4KuvvoLb7cZ5550Ho9GI3377DevWrfOGa577LViwAEuXLsU777yDtWvXoq2tDZ9//nnAx501axY++ugjLFq0CHv27MGbb74Jg8GAgoICfPbZZwCAsrIy1NfX46WXXvK5jzlz5mDz5s1YuXIlSktLIQgCpk+fDrf7cDtam82G559/Hu+//z7WrFmD6upq3HfffZJeo0D7uO+++/C3v/3NGzbW19fjlFNOCel18/V6z5w5Exs3bsT+/fu92+zatQs7d+7EVVddBQAwm82YPXs21q5di/Xr12PkyJGYPn06zObodEKjVqiEEEJICilvtGCQUY2GTkeil0IIIYQQQgghCcUKLHiBgsVUUdVVBYVcgUw1VSyS/io7K5GmSoNRZUz0Ukg3QRDw008/YdWqVbj99tu9n9fr9Vi8eLG3JecHH3wAnuexePFi74zKJUuWID09HatXr8a5556LhQsX4qGHHsKll14KAHjjjTewatUqv49dXl6OTz75BD/88APOPvtsAMBRRx3lvd3T8jQnJ6fXjMWe9u3bh5UrV2LdunU45ZRTAADLli1DQUEBVqxYgcsvvxwA4Ha78cYbb2D48OEAgNtuu81b+ReqQPswGAzQarVwOp29WqiG8roB/V9vQKxO/PDDD/Hoo496n9fkyZMxYsQIAMBZZ53Va33/+c9/kJ6ejl9//RUXXnihpOfmC1UsEkIIISnC5mJR12HHIEPie6kTQgghhBBCSKKleivUTQ2bMPWTqehydiV6KXFR2VmJTE0m1Ap1opdCktCBzgPi+4Oh90eiffXVVzAYDNBoNDj//PNxxRVXYN68ed7bx40b1yvk2rFjByoqKmA0GmEwGGAwGJCZmQmHw4H9+/ejs7MT9fX1vdp3KhQKnHjiiX7XsH37djAMgzPOOCPs57Fnzx4oFIpej5uVlYXRo0djz5493s/pdDpvIAgAQ4YMQVNTk6THCmcfwV43j76vNwDMnDkTH374IQAxAP7oo48wc+ZM7+2NjY2YO3cuRo4cibS0NJhMJlgsFlRXV0t6Xv5QxSIhhBCSIiqaLBAAZBvoIJsQQgghhBBCWD61KxYbrA1osbeguqsax2Yfm+jlxNzBzoPIVGdCKVcmeikkCVV2ViJdkw4VQxdTJ9rUqVPx+uuvQ6VSYejQoVAoesdIer2+178tFgsmTpyIZcuW9dtXdnZ4rW21Wm1Y9wuHUtn7Z5JMJpN80Uo4+wj1dev7egPAlVdeiQceeABbt26F3W5HTU0NrrjiCu/ts2fPRmtrK1566SUUFRVBrVZjypQpvVqsRoKCRUIIISRFlDdaAAA5Rk2CV0IIIYQQQgghiccJXEoHix5u3h18owGg2lyNQmMhBYukH17gUWupxSmmUyhYTAJ6vd7bUjMUEyZMwMcff4ycnByYTCaf2wwZMgQbNmzA6aefDgBgWRZbtmzBhAkTfG4/btw48DyPX3/91dsKtSdPBR/HcX7XNXbsWLAsiw0bNnhboba2tqKsrAxHH310yM8vGlQqVb+1hvK6+ZOfn48zzjgDy5Ytg91uxznnnIOcnBzv7evWrcNrr72G6dOnAwBqamrQ0tIS+RPpRq1QCSGEkBSxr9GMTL0KBg2T6KUQQgghhBBCSMKxPAseqR8suvjoVJAkMxfnQqO1ESa1CYyc/qYlvTVaG+HknEhXp0Muo8gi1cycORODBg3CxRdfjN9++w0HDx7E6tWrcccdd6C2thYAcOedd+KZZ57BihUrsHfvXtxyyy3o6Ojwu8/i4mLMnj0b1113HVasWOHd5yeffAIAKCoqgkwmw1dffYXm5mZYLJZ++xg5ciQuvvhizJ07F2vXrsWOHTtw9dVXIy8vDxdffHFMXotAz2fnzp0oKytDS0sL3G53SK9bIDNnzsR///tf/O9//+vVBhUQn/v777+PPXv2YMOGDZg5c2ZUq0Dpu5QQQghJEXsbzMgxqqFi6Nc3IYQQQgghhAyUikWWZxO9hJirNdeCB48MdQZkMlmil0OSzMGugwCALE1WglcSH06Wh83Fxvw/Jxufn486nQ5r1qxBYWEhLr30UowdOxbXX389HA6HtxLv3nvvxTXXXIPZs2djypQpMBqNuOSSSwLu9/XXX8dll12GW265BWPGjMHcuXNhtVoBAHl5eZg/fz4efPBBDB48GLfddpvPfSxZsgQTJ07EhRdeiClTpkAQBHzzzTf9WpfG2ty5czF69GiceOKJyM7Oxrp160J63QK57LLL0NraCpvNhhkzZvS67e2330Z7ezsmTJiAa665BnfccUevisZIUStUQgghJEWUN5oxbJAeKoau7iSEEEIIIYQQTuAkz8FKRkdCsFjZVQngyAmOiDRVXVVgZAwGaQcleikxpWLkSNMo0elww8H6b+EZTWkapaQL1JcuXRrW7bm5uXj33Xf93k+hUGDhwoVYuHCh321Wr17d698ajQYvvPACXnjhBZ/bP/roo3j00UcD7iMjIwPvvfee38ecM2cO5syZ0+tzM2bMCPi75cwzz+x1eyj7yM7Oxvfff99vX8Fet0Bfj/T0dDgcDp+3nXDCCdi0aVOvz1122WW9/h3J708KFgkhhJAUYHWyqO904MSiDCgYurqTEEIIIYQQQniBHxCh3JHQCrW6qxpqRo0MTQZYIfW/ZiS6KtorkKnJhEahSfRSYkqjZHDuMblwcfGrtFYxcmiUdIE6iS4KFgkhhJAUsK9J7BU/yKhO8EoIIYQQQgghJHk4eWeilxAxlhv4QdvBzoPe4Mji7j8LjRzZ1tevR4GxYMAHi4AYLlLQR1IdDWkihBBCUkB5oxkyAENMA/8gmxBCCCGEEEJC5WJTv9rPLbgTvYSYq+yqRIY6AypGleilkD52texCeXt5wh6/wdqAanM18gx50Cq0CVsHISR0FCwSQgghKaCswYwsgwpGTXyHSxNCCCEkxv47E1j1SKJXQQghKcvJpX7Fopsd+MFiVVcV0tRpFCwmoUfXPYqnNjwFN5eY92FpXSlkkKHQVAi5jOIKQlIBfacSQgghKaCswYxsoxoaJf3qJoQQQgaU6lKgfgfgdiR6JaGzdwArbgHs7YleCSGEwMWlfsXiQJ+xaHPb0OpoRbo6HUo5XSybTMwuM/Z37IfFZYGDS8yxSGldKYYahmKQdlBCHp8QIh2dnSSEEEJSQHmjGVl6FfXhJ4QQQgYSlxWwtQKcGxD4RK8mdBU/AtuXiR8JISTBBkTFIj+wKxarzdUAgAx1RoJXQvra2bwTPHg4WAf4BByLCIKA9fXrUWgshFFpjPvjE0LCQ8EiIYQQkuS6HG40mZ3I1KugZOhXNyGEEDJgtFeJHzlnagWLVaXiR55L7DoIIQQDo9ovUS0o46XWXAsAyNRmJnglpK9tTdsAiN9HnBD/3+vl7eVod7Yj35APtUId98cnhISHzk4SQgghSW5fowUAkG2kg2xCCCEk5exe6b/NaXul+JFjAQjxWlHkqtYlegWEEOI1EFqhuoWBHSyaXWYAgEFlSPBKSF9bGrcAEKtmE1GxuL5+PZRyJQpNhXF/bEJI+ChYJIQQQpLcvkYzZDIg16hJ9FIIIYQQIkV7JfDJNcAXt/i/HQB4NnUqFu0dQPPeRK+CEEK8kqkV6ktbX8J/9/5X8v0GQjgaiI21QSFTSJqv+MjaR7CpYVMMV0XcvBt/tPwBpVwJN+8Gl4BOBCV1JSg0FiJNnRb3xyaEhI+CRUIIISTJlTeaMUivhkFDQ+4JIYSQlOIUuw7A1u77dk+wKHCpEyzWbkJKVVcSQga8ZAoWf6n+Bb/U/CK5tSnLszFaUXKws3aoGBXkstBPRa/cvxI3/XBTDFdFytvK4eAcyDfkw83Fv2LRxbmwtXEr8o35VM16hJg3bx4GDx4MmUyGFStWJHo5MTFv3jyMHz/e++85c+ZgxowZEe0zGvuINgoWCSGEkCS3t8GMbKMaGiX92iaEEEJSiqcCRa7wfXvbAfEjzwJCioR1VSWJXgEhhPTiYpOn2s/BOQAB4CEtoHHzA7sVqp21Q8koIZd4Klrq60ik2da0DQq5AgXGArA8G/cZizuad8DBOVBgLJBUzUpia86cOZDJZJDJZFCpVBgxYgSeeOIJsGxkF0Ds2bMH8+fPx5tvvon6+nqcf/75Ea+1b4gXaDvPc1IoFCguLsbdd98Ni8US8RqCeemll7B06dKQtq2srIRMJsP27dvD3ke8+PnrhhBCCCHJorzRjLG5JmiUTKKXQgghhBApPBUrcj8nUr2tULkUChbXAboswNaa6JUQQggAwMknT8Wii3NBCKOqe6BXLFpdVqjkKshkskQvhfSwtWkr8gx5SFOnJaQVamldKfRKPQoMBXF9XBLctGnTsGTJEjidTnzzzTe49dZboVQq8dBDD0neF8dxkMlk2L9/PwDg4osvTsjPgmOOOQY//vgjWJbFunXrcN1118Fms+HNN9/st63L5YJKpYrK46alRd7mNxr7iDYqfSAkRbVakufAmRASO502N1osLmQaVFAy9GubEEIISSmBKhYFAeisEf+fT5FWqKwTqNsGpBcmeiWEEOKVTPMJnZwzrGBxoFcs2lgblHIlGBldLBtvgiDg4d8exh8tf/T7/NbGrRiiHwK9Ug8BQtxD+pK6EhSbimFUG+P6uCQ4tVqN3NxcFBUV4eabb8bZZ5+NlStXAgCcTifuu+8+5OXlQa/XY/LkyVi9erX3vkuXLkV6ejpWrlyJo48+Gmq1Gtdddx3+8pe/AADkcnmvYHHx4sUYO3YsNBoNxowZg9dee63XWmpra3HllVciMzMTer0eJ554IjZs2IClS5di/vz52LFjh7caMVBVn0KhQG5uLvLz83HFFVdg5syZ3ufkqXxcvHgxhg0bBo1GAwDo6OjADTfcgOzsbJhMJpx11lnYsWNHr/0+88wzGDx4MIxGI66//no4HI5et/dtY8rzPJ599lmMGDECarUahYWFePLJJwEAw4YNAwCccMIJkMlkOPPMM33uw+l04o477kBOTg40Gg1OO+00bNp0eCbt6tWrIZPJ8NNPP+HEE0+ETqfDKaecgrKyMr+vj1R0hpKQFHSwxYpJT/6IbTV+ZrUQQgaM8iYzACDbEJ0rpQghhBASR54Txb5OpFqaANYBqE2pM2OxbrsYlqZTZQEhJHlInWcYS07OGdYY2oFesWhjbVAySqpYTAA7a8eXB77E95Xf9/r8IcshtDpakavLhU6p824bL53OTuxp3YN8Qz50Cl3cHpeER6vVwuUSL+K47bbbUFpaiv/+97/YuXMnLr/8ckybNg379u3zbm+z2fB///d/WLx4MXbt2oVFixZhyZIlAID6+nrU19cDAJYtW4bHHnsMTz75JPbs2YOnnnoKjz76KN59910AgMViwRlnnIFDhw5h5cqV2LFjB+6//37wPI8rrrgC9957L4455hjvPq+44oqwnhMAVFRU4LPPPsPy5cu9rUgvv/xyNDU14dtvv8WWLVswYcIE/PnPf0ZbWxsA4JNPPsG8efPw1FNPYfPmzRgyZEi/YLSvhx56CM888wweffRR7N69Gx9++CEGDx4MANi4cSMA4Mcff0R9fT2WL1/ucx/3338/PvvsM7z77rvYunUrRowYgfPOO8+7Lo9HHnkECxYswObNm6FQKHDdddeF/PoEQ61QCUlBXXY3eAEobzDjhIKMRC+HEBJD5Y1myGXAYJMm0UshhBBCiFTeVqg+/vT2tEHVDwKcFoR1JjreqksBhQZIo4pFQkjySJZWqIIgwM25qRWqD3bWDpVcBbmMalzizcmJ3x995ydua9oGAMg35nvff/EMFjc1bAIPHoXGQjDyI6uStWew5pGRkYFhw4bB4XBg9+7d/e4zYcIEAEBZWRmsVmuv24qLi5GZmYnm5mbU1NT0us1oNGLkyJFhr1UQBPz0009YtWoVbr/9dlRXV2PJkiWorq7G0KFDAQD33XcfvvvuOyxZsgRPPfUUAMDtduO1117D8ccf791Xeno6ACA3N9f7uccffxwLFizApZdeCkCs2Nu9ezfefPNNzJ49Gx9++CGam5uxadMmZGZmAgBGjBjhvb/BYPBWIkqxZcsWfPjhhzjrrLO8n3O5XHjvvfeQnZ0NAFi7di02btyIpqYmqNVqAMDzzz+PFStW4NNPP8U//vEPLFy4ENdffz2uv/56AMC///1v/Pjjj/2qFj3MZjNeeuklvPLKK5g9ezYAYPjw4TjttNMAwPvYWVlZfp+T1WrF66+/jqVLl3rnVL711lv44Ycf8Pbbb+Of//ynd9snn3wSZ5xxBgDgwQcfxAUXXACHw+GtyIwEBYuEpDAXmwJXNaeYmjYb/vTsL/jfjSdj0rCsRC+HEJQ3mDHIoIZBTYPMCSGEkJQTqBVqR5X4UZ8D2DtSo2KxqgRILwZUhkSvhBBCvJKlFSrLs+DBU7Dog81tg0KuoGAxARxsd8DR5225tWkrcrQ5yNRkosPZASC+wWJpXSkGaQch1yAtEBoI3nzzTcyfP7/X52bOnIkPPvgAtbW1mDhxYr/7CN2zuOfMmYP169f3uu3999/H1VdfjU8++QS33XZbr9vOPfdcrFq1SvIav/rqKxgMBrjdbvA8j6uuugrz5s3D6tWrwXEcRo0a1Wt7p9OJrKzD51FVKhWOO+64gI9htVqxf/9+XH/99Zg7d6738yzLemcKbt++HSeccII3VIzE77//DoPBAI7j4HK5cMEFF+CVV17x3l5UVOQN9gBgx44dsFgsvZ4XANjtdu+8yD179uCmm27qdfuUKVPwyy+/+FzDnj174HQ68ec//zns57F//3643W6ceuqp3s8plUqcdNJJ2LNnT69te34NhgwZAgBoampCYWHkFwlSsEhICnO44ztU+UiwtVpsL/v5tjoKFklS2NtgRrZRDY2S/gAjhHTjeaDiR2DUuYleCSEkGG+w6ONK/PZKQG0U/xN4ceZiMuN5oGY9kD8JUGoTvRpCCPFKllaoDs53hUooWGFgB4t21g6lXEnBYgJ43pc8el/AtLVxK/IMedAr9bCxNgDxDRZL6ktQZCyCQXnkXax044034qKLLur1uYwMsSNdfn4+tmzZ4ve+S5cu9VmxCAB/+9vfMGXKlF63GY3hza+cOnUqXn/9dahUKgwdOhQKhRgjWSwWMAyDLVu2gGF6H98aDIe/llqtNmjrY4vFAkCstps8eXKv2zz71mqjd8w5evRorFy5EgqFAkOHDoVK1XvkkF6v77e+IUOG9Jof6eGpvpQqms8nFErl4SIFz9eD56NzMSMFi4SkMAoWCRn49jVZcOxQEzTKI6s1CCEkgNVPAWueA65eDowI/0pHQkgcBGqF2nYA0GUBCjXAs8lfsdhSBjg6gbQCgKFOCoSQ5OHmkyNY9LScDLdiURCEATuD0M7aka5Op2AxATwViz3fl53OThzsPIjzis+DRqGBSi4GLHZ3fILFOksdas21mJgzEVrFkXex0pAhQ7zVY31pNBpv21NfRo8e7fe27OzsXhV3kdDr9b1ajnqccMIJ4DgOTU1N+NOf/hTRYwwePBhDhw7FgQMHMHPmTJ/bHHfccVi8eDHa2tp8Vi2qVCpwXGjnx1Uqlc/n5M+ECRPQ0NAAhULhDW/7Gjt2LDZs2IBZs2Z5P9e3orSnkSNHQqvV4qeffsINN9zgc40AAj6n4cOHQ6VSYd26dSgqKgIgtp7dtGkT7rrrrhCeWXQk9Kf5mjVr8Je//AVDhw6FTCbDihUrgt5n9erVmDBhAtRqNUaMGIGlS5fGfJ2EJCuHO8mvaiaERKTN6kKb1YVMgxpKhv4AiwU6FiEpydwgfmzdn9h1EEKCC1Sx2HYA0GYCClV3xWKSB4vVpYBMLrZC9bC1JWw5AwUdixASORefHK1QvQFOGBXonMCFFUimCm/FYmJPRR+RvIF3j/fljuYdECBgqH4o5DI5lN0XDHkqF2Ntff16yCBDobFwwIbpA9WoUaMwc+ZMzJo1C8uXL8fBgwexceNGPP300/j6668l72/+/Pl4+umnsWjRIpSXl+P333/HkiVL8MILLwAArrzySuTm5mLGjBlYt24dDhw4gM8++wylpaUAxGrNgwcPYvv27WhpaYHTGb2Zu2effTamTJmCGTNm4Pvvv0dlZSVKSkrwyCOPYPPmzQCAO++8E++88w6WLFmC8vJyPP7449i1a5fffWo0GjzwwAO4//778d5772H//v1Yv3493n77bQBATk4OtFotvvvuOzQ2NqKzs7PfPvR6PW6++Wb885//xHfffYfdu3dj7ty5sNls3lmP8ZDQn+ZWqxXHH388Xn311ZC2P3jwIC644AJMnToV27dvx1133YUbbrghrD7BhAwEDpYqFgkZyMobzQCAbIMqyJYkXHQsQgghJKYCVSx2VAOaNIDRADyX/MFiVSmQVgjoI59xQw6jYxFCIsfyLPgk+BnqCXDCwfFcUjyHWLGzdpqxmCC+2ptub9oOg9KAXL0431DFqPxuGwvrDq1DniEPWVoaQZSKlixZglmzZuHee+/F6NGjMWPGDGzatCmsuX033HADFi9ejCVLlmDcuHE444wzsHTpUgwbNgyAWMH3/fffIycnB9OnT8e4cePwzDPPeFul/vWvf8W0adMwdepUZGdn46OPPora85TJZPjmm29w+umn49prr8WoUaPw97//HVVVVRg8eDAA4IorrsCjjz6K+++/HxMnTkRVVRVuvvnmgPt99NFHce+99+Kxxx7D2LFjccUVV6CpqQkAoFAosGjRIrz55psYOnQoLr74Yp/7eOaZZ/DXv/4V11xzDSZMmICKigqsWrXK21I3HhLaCvX888/H+eefH/L2b7zxBoYNG4YFCxYAEEtN165dixdffBHnnXderJZJSNJyUbBIyIC2r9EMRibDYJMm0UsZsOhYhBBCSFSZG4Dlc4FL3waMOf6DRdYpblswubtikQOSvVKlugTIOApQGQCnOdGrGTDoWISQyHmCxUSHVp5ZdmFXLCb7rN0IOFgHlHIlVaclgKeStqctjVtQYCyAXiXOlPO2Qo1DsMgLPDY0bMAxWcfAoDry5iumgmCdEJRKJebPn4/58+f7vH3OnDmYM2dOv8/PmDHD58+5q666CldddZXfxysqKsKnn37q8za1Wu33tp7mzZuHefPmSb7daDRi0aJFWLRokd/7Pvzww3j44Yd7fe7//u//vP/f9/WUy+V45JFH8Mgjj/jc3w033NCvTWrffWg0moDrOvPMM/u91uPHj4/q75mUukyktLQUZ599dq/PnXfeed7SV1+cTie6urp6/UfIQOFkB+7VbIQQoKzBjGyjGgZ175OR6776L+wHtyVoVUc2OhYhhBAS0P5fgINrgKq14r/9tULtqAEgALpMMXTkOSCZTyh3HgI6awFTHqDQ4MPvN+HzPckx0+xIQ8cihPTn5t1JEco52fArFlmeHbCtUAVBgJNzQimn+byJ0LeS1s25sat1F3L1udArxGDR87XxFUJGW1lbGTqdncg35EPNqMPez541e9BR0hG9hRFCJEmpYLGhocFbZuoxePBgdHV1wW73fUXF008/jbS0NO9/BQUF8VgqIXHhomCRkAFtb6MZ2UYVNArxZCTHcXjj/x7Hxwsfg6NqR4JXd2SiYxFCCCEB1W8XP3pOcHuCxb5VNB2V4kdtJiBjAAiHqxuTUbUYWgnpRXj85WWYOe9dfL+fTfCijkx0LEJIfyzPgkf0z4/Y3DY8t+m5XoHh3O/nosPR4XP7iFqhCgO3FaqDc0CA4J3jR+KrbxXinrY9cHJO5OpzwXRf+MTIGTAyJi4Vi+vr10MlV6HAGN7vIkEQ8PGbH+O/D/0X5p3mpLiogJAjUUoFi+F46KGH0NnZ6f2vpqYm0UsiJGooWCRkYKtotCBTr4JGKYfNasG82+fg8w/ewmW3PYqMM+ckenkkRHQsQgiRhHMD89KAtspEr4SE49DW3v/2Fxa2V4qBoiH7cJvUpA4W18OuzsGVz6zAE699iKdvugivXUCt2lMFHYuQgS5Wodzu1t14b/d7+O3QbwCA6q5qrK9fjwd+e8Dn9jRj0Teb2wbgcLtNEl9935fbmrZBKVci35Df6/NKuTKiqttQratbh0JTIdI16ZLv63a58fwDz+ONJ9/An675E/L/kU/tdQlJkITOWJQqNzcXjY2NvT7X2NgIk8kErVbr8z5qtRpqdfhl1YQkMxc3MA86CSFAi8WJDrsbWXoVFIwc//f4vdi5uRT/fu0DGEaciE0/lCd6iUckOhYhhMRc7Wbx4/cPA3//MDr7dFqAxj+AwpOjsz/iG88Djb/3/pynYrGvtkqxDapCe7hNqr9tk0HVOtz1nR0rN27Hpy89jL9OGgqsWp3oVR2R6FiEkP5Yno1J1ZKr++cyJ3Di4whipba/ANAzYzEcnscYiDxVcNQKNTH6tjfd2rQVeYY8GFXGXp9XypURvYdD4eSc2Na4DafmnQq9Ui/5/m8/9za+/+x7PPjCg9CdrMMn5Z/EYJWEkFCkVMXilClT8NNPP/X63A8//IApU6YkaEWEJJab48HzVPJPyEBU3mgGAGTpxas6r7vrYbz04VeY9KezErmsIx4dixBCUtKu5cCS6UDr/kSvZGBr2w+4+7QQ8xssHgB0WQCjOlyxyCdnxSJvawea9mDeVafgtw+exV/POy3RSzqi0bEIIf2xPBuTaj+pFYiRVHsN5FaonmBRwaRUfcuA0TMsFAQB2xq3YYh+CHRKXa/tlIwSTs4Z09ai25q2wcW7UGAokBQ087z4vXHlLVfixY9fxHmXnRerJRJCQpTQYNFisWD79u3Yvn07AODgwYPYvn07qqurAYjtOmbNmuXd/qabbsKBAwdw//33Y+/evXjttdfwySef4O67707E8glJODcrgKNe4oQMSPsaLXCUrcVb9/4dlq5ODMkvQvGIMYle1oBDxyKEkCOCowsQOO+cPBIjddv7f473M4ewvRLQpAMKzeFgMQ7tx6T6+uuvMX7CRDRZOQwZNhYTjx2V6CUNOHQsQkhkGBkTsxmLkoPFCFuhChiY53eoYjGxelYs1phr0O5sx2D9YKiZ3pXsKrkKLs4V0+rZ9XXrYVAakGfMC/k+20q24bpzrkNTXRPSMtJw7InHxmx9seIJRglJJcEuMkjopSKbN2/G1KlTvf++5557AACzZ8/G0qVLUV9f7z2YBoBhw4bh66+/xt13342XXnoJ+fn5WLx4Mc47j65SIEcmF8+Dp2CRkAFHEAS8/fJzaFzxGk6bNgMqal0VM3QsQgg5InSf0EPdNuCEq0O7z7w04NS7gXPmxWxZA0799v6fY31ULAoC0FEFFJ3aXbGYfK1QBUHASy+9hHvvvRd/OXkUdHoTkJYf/I5EMjoWISQyjJwBK8SmFarUoLBvy0kpBnLFoo0VZyz2DbJIfHiCXUCsGJRBhgJDQb/tlIwSbt4d0/dhSV0JhqUN69eG1Z+vP/oaLz7yIk6YcgJ0el3wOyQZlUoFuVyOuro6ZGdnQ6VS0UxIkhIEQUBzczNkMhmUSt8XhSQ0WDzzzDMD/uJfunSpz/ts27YthqsiJHVwnAC66IWQgcXhcOCGG27Ab/9dhtEXXI97npgHlZqu7IwVOhYhhBwRXN0nlJr2inMA5SE2rtn5EQWLUhzaCqjTAGfn4c/5Cgvt7YDLAmgzxK+Fp2IxSYJFt9uN22+/HW+++Sbuv/9+PD1iG+ScHVAbEr20AYmORQiJDCNjwPFcTKqs4lqxKHAxbUGZSPbuNuEULCZG32AxR5eDTG1mv+1iXbHY4ejA3ra9OK/4vKDzFTmOw1vPvIWP3/wYF119EW6ffzsUytRrpSuXyzFs2DDU19ejrq4u0cshRBKZTIb8/HwwDOPz9tT7jiSEeLk5qlgkZKApKSnB559/joK/PoSTL5gBrcr3L3BCCCEkZG6xUgAdVYDLDGjSEruegYjngYadQFoB0NwzWPRxkrmjSvzoOannDRaTY8bi9u3b8d5772Hx4sW4fvbVwNMFwIizKVgkhCQlRiZWLCbFjMUIW6HGop1rMvAEWxQsJkbPStotjVuQZ8iDTtG/+k/FqODiXTGrWNzYsBECBBSYCiCXBb7IrWZ/Db54/wvcNu82XHrtpSld5adSqVBYWAiWZcFxsWszS0i0KZVKv6EiQMEiISmNgkVCBo6amhrk5+fjrLPOwsade3DBW78jS6+CItSqEkIIIcQfT7BorgdsbRQsxkJHpViFaMwFmvcc/ryvKsT2SvGjLkv8mCQVi7W1tRgyZAgmTZqEyspK5OTkADUbxXA0veDwOgkhJIko5ApxPmGKt0LlBX7gVixSsJhQdk58/W1uGyq7KjE2cyw0Ck2/7ZSMEg6nI2YViyV1JcjWZiNXl+t3m9bGVqRlpqF4VDE+XPshMgZlxGQt8eZpJ+mvpSQhqYjOVhKSwlieWqESMhCsWrUKxx57LN58800AQDsvXj2YY6Q/vAghhESB2wrIGIBngcZdiV7NwFS3Xfxoyuv9eV8zFtsrAaUO0KaL//bMWOTZGC0uuDVr1mD8+PF4/vnnAUAMFQGguhRQaID0ooStjRBCAollxaJL4gUfngAnHJzAQcDADBZtrA0quQqMnLrxJIKTFQPyg10HAQB5hjyfFYMquUqcsRijE42ldaUoMhXBoPTdAaFsRxluvOBGLHlhCQAMmFCRkIGKgkVCUpibE6hikZAU98orr2D69Ok4/fTTMXPmTABAeaMZSkaGHFP/qwgJIYQQydwOIC1f/P86mssWE/U7xNam+qzen+d9tDdtrxSrFRXdFxB5KgHd4bfQi8TSpUtx9tln47jjjsPcuXN731hVIoaKVOVKCElSjFycsRiLUK7nbLpQRFKxOKBnLLJ2KBll0PaXJDY87+MDnQdgUpmQo8vxuZ2aUcPNu2NSsVhjrkGdtQ55hjxoFdp+t//69a+48/I7MTh/MP563V+j/viEkOijn+iEpDCWp1aohKQqlmVx22234fbbb8edd96JFStWwGg0AhCDxWyjGjolXdFJCCEkCtw2QG0EtBlA4x8AHT9G36GtgGmoWN3Xk69ql9YD4tfCs623YjG+rVB5nsdDDz2Ea6+9FrNnz8aqVauQmZnZcwOger04N1JF8xUJIclJIVOA5ZNjxmKkrVBjNdsu0WxusWKRgkXf3vn9HWxu2Byz/Ts48X1pdpmRb8iHwc/vdBXTXbEYg/fh+vr1kMvkKDIW9ZqXKAgClr2yDPNunodTzz0VL/z3BWRmZwbYEyEkWdBPdEJSGMsJ4OjEECEpSSaT4dChQ3jjjTfwwgsv9BqIvLdBDBY1FCwSQgiJBrcdkCvFgKjtwOGZiyQ6BAFo2AkYckMLFjsqAU06oFCJ/07QjEWZTIaamho8//zz+M9//tN/7k9LOeDoEKtdPWslhJAkw8gZcAIXkyorTwvJkLeXGET2NNBboVLFon9Ldi3Bh3s/jFnFas/3Za4+FzqFzud2nmAxFt9LJYdKkG/IR5Y2q99tTXVNmHP3HPy/l/8f1BoaB0NIqqCf6ISkMJYX6IJzQlLMwYMHUVJSAoZhsHz5ctx44429bhcEAfuazMjUq6BW0q9pQgghUeC2A4wCyBwGdNYCjq5Er2hg6awRAzhT7uGQ0IPr0wqV54CuOrG1qLw7yJN1X0jkax5jDNTV1WH16tWQyWR4//33ce+99/aqHvCqLgVkciCjOC7rIoSQnswuMz7f93nQ7RgZE7M2op5Kr5C3j6RikecHbCtUb8Vigk9Ddzo7cfU3V6Oqsyqh6+jL4rbA4rKAFWIza7nn+3KIfojfWZdqRg03F/2KRY7nsLFhIwqMBdCr9ACAzrZObFqzCTKZDHc9eRdm3z3b97EIISRp0RlLQlIYy1ErVEJSSUlJCSZPnoy77roLgiD4PHBu6HLA6uSQpVdBIadf04QQQqLAbRcDr4yjxGrF1opEr2hgqdsufjTm9b+tbxVi1yGAZwFdJuA5DmDiV7G4bds2nHTSSbjlllvAcVzgk3jVpWKVq45akhFC4u/htQ/jsZLHsLdtb8DtGDkDXuDB8tEPZaRWIEZascgjvECnor0CDdaGsB871mysDUp59CsWpX7dK7sqsaN5Bz6vCB5Yx4uLc4HlWdhYGzg++pWCQO/3ZZ7Bx7FKN5VcBVZgo16xuLdtL7pcXcg35EPNqFG1rwq3XHQLFjywAC6niwJFQlIUnbEkJIWxvACOp2CRkFSwbNkyTJ06FWPGjME333zj9+C5vNECAMgxUAsQQgghUcI6xOo4T+WZJwgj0VG/Q6xANA7uf5s3LOz+vd9eKX7U9gjr4tQKdcWKFTjttNMwZMgQ/PTTT73asPtUVQKkFwJqmq9ICIm/LqdYXX/IfCjgdkx31bcrBnNq4xksRjJj8ZKVl+CcT8+JWTAVKZs7Nq1QF21dhJt/vDnkcNHqtgIAdrXuSpp5lmaXGQBgZ+0xCceB3u9Lo9rodzsVowLLs1FfR2l9KdSMGgXGAmxesxm3XnIr1Fo1Fn6yECo1tVonJFVRsEhICmM5aoWaigRBQHUrzTY6kixcuBBXX301rrzySvzwww8YNGiQ3233NZqhYuTINmn8bkMIIQMC5xYr6fxhncAPj8dvPQOZpxWqfhCg1AH12xO9ooGlbitgyhNf27647pNzsp7BogzQZx/eRuYJFvu0TY2id955B5deeimmT5+OX3/9FUOGDAl8h646scWrKR9QaGO2LkIIiZSi++IMVwwuzpDa2jTSisVIRyxa3JbIdhAjdtYek4rFZnszqrqq0OHsCGl7W/eM6crOSm/ImGier5mDdcRktiFweFaoUWn0O18RAJTdLdojaenrS2ldKYqMRdj1yy48MPsBHDvxWLy8/GXkFuRG9XEIIfFFwSIhKYzleapYTEE/7WnCWQtWo6o1OQ5kSeydddZZeO6557BkyRKo1YErEcsazMgxqaFTBqkiIISQVPfbC8DSC/3Plfv1/4B1C4HtH8V1WQMSaxcrFuWM2NqytSJu8/wGPEEQKxaNuYDKV7DYHRZ6g8UqQJvRe9s4VCyefvrpmD9/Pj7++GPodP5PKnpVl4ofM4oOr50QQpKQp2IxklDPH6lhZcQVi2G2Qk12NtYGhVwR9WAR6A7kQqzU9ISJjbZGNNmaor6WcHiDRc4Rk4pFjue8sxsNKgNUjP8KQc9t9kAX/knkYB3Y1rQN+cZ8nDDpBMy8dSaefPtJ6I36qD0GISQxKFgkJIXxghguktSys7YDLC+goSu6V4GR5NLQ0ICbbroJdrsdxx13HO67776QZgfsbTBjkEEFDQWLhJCBztosVkXZWn3f7uqu7re1xG9NAxXrFINFAMgsFivRulvMkQiZ68X3sCEX8HWyju/TCrXtgDizUNGjM4FcLt7OR7disbW1FTfeeCO6urowYsQIPProo5CHOr+5qhQw5Phu70oIIUnE2wo1BhdnxLMVqgAB7ij/HkgWsapYBMRALtRKP0+wKEDAzuadUV9LOCwuMVh0cs6YVCxKeU96gkUbG70OW7/t/w2V71Qik8vEkLwhuO6+68Ao6FwHIQMBBYuEpDinm4LFVLOnwZzoJZAY27FjB0466SR8+eWXqKmpCfl+giBgf7MFWXo1BYuEkCMD5wKSZMbNgMVz4uvMdFfFZQwXg7CuusSua6DwzKs05fm+3Vux2P2nd9sBQJMBKPqEkHImqq1Qy8rKcPLJJ+Ozzz7DgQMHpO+gqgRILwZU/mcxEUJIMmDkA2PGIoCYzdhLNAfriFnFopN1guVCe91srA0aRgOFTIHtTdujvpZweINF1hmTGZl2NvTqQ5VcPDZxcNG5CL6yshKzLpiFrg1dQHNUdkkISSIULBKS4hxscg7nJv6VUbA4oH311Vc47bTTMGjQIGzcuBGjRo0K+b51nQ7YXByyDCowcmo7Rgg5AvBuChZjzTMnh+lRsQjQnMVoqd8BqI3+K/v6tkLtrAG0af2rG2XM4XmMEfr5559x8sknQ6lUYsOGDRg/fry0HTg6geY9QFqe7/auhBCSRGJZsSh1n5GuwR3DWbuJ5GAdUMhiEyzy4GHjQquws7lt0Cq0yNHloKy9LCkqRD2tUF28K2pf/yZbE+Z8NwfVXdWSwm4lE70Zi6WlpZg8eTK6LF2YtmAaJkyeEPE+CSHJhYJFQlKcg6WTcanE7uJQ0xa9thIkuezevRsXX3wxzj77bPz222/Iy/NTveBHeXfonG3wP/eAEEIGFM4NxKDtE+nBMyfHE2SZhoohlqfSjkSmbqtYrajyMyuo50lCp0WsFtWmH56r6CFnerRNDV9VVRWmTZuGSZMmoaSkBMOHD5e+k9pNYuCfVnS40pIQQpKUt2IxFsGihJ/LgiBEXLGYDEFXLNhZuze0igWL0xLSdmaXGSpGhSJTEWrMNTC7En/RtydY5AUedi46sw3f+eMdbGncgvX16yWFhJ6KRU/L2HA1NzfjnHPOwVEjjkLhI4UYe/RY6JU0U5GQgYb+SiAkxTldFCymkoomC4REL4JEHceJJ8WPPvpofPnll/jss8+g10s/cC5vNEOtkCPbqAm+MSGEDATUCjX23N0XNHmCLLlCDBeb94ptUklk6ncAxiGA0k9ln/cksQzoqBL/V5vZfzt5ZBWLPM9DEAQUFRVh5cqV+Oabb5Cenh7ezqrXA2oTkJYf9noIISRePBWLTjayUM8XKUFhNELBgRgscjwHF+/yhlaxYGZDCwitbitUjArFacXocnWhqrMqZmsKlacVKoCoBJ0t9hZ8Wv4pADHsltLW1DNjUUr71J4EQQDP88jOzsbnn3+Oh95+CAqTAsWm4phUqxJCEou+qwlJcU5qhZpSyhoTf0Ucia729nace+65ePPNNwEA06dPh1we3q/XsgYzcoxq6FSK4BsTQshAwLMAT8FiTLn7tEIFgIwioL0KcNJxSUTMjYClETAMBhRq39v0nJfVXil+1GX1306u6BFCSmOxWDBjxgw899xzAIBp06ZBoYjgWKJyLZBRDKgN4e+DEELiRNF94Uyk1YK+SKmCjMZcuoHYCtXzusSyYtHqCq3CzuK2QCUXKxYBYFvzNsmPVWepQ1lbmeT7+dMzTOwZMobr/d3v9/pekFSx2B0s2ljpXbbsdjuuuuoqPProowCAc845B5tbNyNHl4McXY7k/RFCkh8Fi4SkOJqxmFrKGroSvQQSRRUVFTj55JOxfft2jB49OuL9lTWaMciohkZJv54JIUcQd3TaPhE/vBWLPSoFMoYD5nrA1paYNQ0U9TvEj6ahoW3fXiW2pNX6CBZljFhBKjFor6mpwWmnnYbVq1fj2GOPlXRfn1gXcGirWK1IwSIhJAV4KxajHCwKgiAp6ItGxeRArFj0VL8pZLG7eDbUSj+r2wqlXIkMdQYMSgN2NO+Q/FiLf1+Me3+9FzZ3dEbcdLm6vNV8ZndkF3x1Ojvx0d6PMCpjlPdzUgJvpVwMf6UGi42NjTjrrLOwYsUKnHDCCQDE75+SuhIUmYpgUNHxBCEDEZ25JCTFOagVakrZU2+GXJboVZBo+PXXXzF58mQAwPr163HmmWdGtD+eF7C/2YIsvQoaBROFFRJCBowv7wTmpQ3c6jIJV1InpXlpwNILEr0K/7wzFntUCqTlibMt2/YnZk3hsrYClqZEr+Kw+h1iC1RjqMHiQbFaUemj5bmc6a5uDL1p/saNG3HSSSeho6MD69atw/Tp00O+r1/1OwDOCaQV9J8D2ZO9Xfzo6Ij8MQkhJALeGYtRmFPbE8uz4BH6+ZaoVCwmcbD4feX3qLPUSb6fJ4DzVMPFQqjBos1tg4pRgZEzKDQW4kDHAcltP928G632VnS5onPRuMVtgVFlBBB5K9Rle5aB4zkcn32893NSKhY9waKU+/z+++846aSTUFlZiTVr1uCyyy4DAFSbq9Foa0SePg8ahka9EDIQUbBISIqjVqippbzRjCy9n1ZZJGUIgoD58+fj+OOPR2lpKUaOHBnxPg912OFw88gyqCCn9JkQ0lPZd+LHQ1sTu45YCXOOS1KpXCtWeiUjz+vbs1Vn90lYpFrLte8fAT65Jnle67ruyj6Vn/mKQp+QsO2AOF/R18lVTytUCTNHn376aRQXF2PDhg0YN26chIUHUF0KMGogvSjwdp5g0d4RncclhJAweSrhol2xKHV/0ahYZPnwZ+3G2r/X/xuLti6SfD9PcOcJrWLB4g6thaiVFSsW5TI5hqUNwyHLIbQ72sN6vFDbrwZjdplhUpq8/x8ui8uC93e/jxNyTsBQw+ELnqSEhDKZDEq5UtJ9FixYgIyMDGzcuBGTJk3yfn593XowMgZFpiLIZHR+g5CBiIJFQlKc3U0Vi6mi0+ZGk9mJQcbYXalHYovnedTU1EAmk+Gzzz7DqlWrkJmZGZV9l3fP38wxUPBMCPFDQuAQMXMDsPW9+DyWO8UrFj3i+fWRwluxOAB+vzjNQOchwJkkreXrtgPGXP/BYt8TxO1VgDbd9zxGeXcr1L5hZB+CIKC6uhoA8O677+Lnn3/G4MGDpa/dn6oScQanNj16+ySEkBjytEJ1RfmiE1/BYlf37x+1j9+pnu1lCD9ESeaKRR48WuwtktfoDRZjOGMx1GDR7rZDySjByBgMTx8ON+/GntY9YT1mg60hrPv1ZXEdrliMpAryv2X/hYN14Pjs42FQHm49KjUgV8qVQe/T81jktddew9q1a1FQUNBrm5L6EuQb85Gpjc75EkJI8qFgkZAU53BTxWKqKOsOjrKNA+DE3hHIarXi8ssvx2mnnQaHw4GMjAwoldH746i80QKNUo5BFCwSQpLBB38FVt4OtFTE/rEGQsVirNVsApyhnTTrx+2jYjGVOTqBKFSFRMzaCpjrAEMuoPDT4qtvRWhHNaBJ792W1kOuEIPIAAG10+nE7NmzceKJJ6KzsxMmkwlarTb859CXIIgVi2kFAM1DIoTEWHVXNfZ3RN6SWy4XT21GuxWqr3ClqqsKAJCp6R+WeFqhKgK1kQ7CxSVJRb4fHc4OSXMngcPz+nyFsdES6rxDG2uDQq6AXCZHobEQMsiwvWl7WI/ZaG0M634AsKtll/drbXFboFPqwMgYWN3hVUHa3Da8u+tdjM8Zj0JTYa/bpLZ6VcqVAdv6ut1u3HrrrRg3bhwaGxuh0+lgMPQ+ZuB4DhvrN6LAUNAr5CSEDCwULBKS4lzUCjVllDWawchkyDFSf/lUc+jQIZx++ulYtWoVXnnlFWg00f8a7m3oQo5RA60qdkPtCSEkZI7uK6Y7q2P/WAOlYjGW3rsYWPtCePcdaMGi05wcYXT9dvFjoPmKPU8Q29vF2YXadEDm489wmadi0Xew2NzcjD//+c/45JNPsGjRIqSlpYW9dL9aysWZiWn5gII6bBBCYuuCzy/AjC9mSA4++pJBBrlMHpdgsdosHhelqfv/DPZsH0mwmMwVi4BYUSe1As7efRwSy2DRyoYWyNlYm3cdaoUa2bps7GrdBT6MrhMN1vAqFp2cEzO/mYmP9n4EALC6rVAySqgZdcgBaV+fln8Ks8uM47OPh0ll6vd4Ut6TSkYJF+fy+Zp0dHTgggsuwFtvvYUFCxb47Ziwu3U3LG4L8o35MZ2tSQhJLAoWCUlxDjZJ226Rfsrqu5BtVEOrZBK9FCLBtm3bcNJJJ6GpqQnr1q3DX/7yl5g8TlmDGdkGFTRK+tVMCDnCULAYHOcCuurDu6/bLlbDyQfK8YcgVgsmWv0OQKEF0ob436ZnVYelSfzoryUY012xiP6tUPfs2YPJkydj3759WL16Nf7+97+Hv+5AqkvF0DNjWGz2TwhJmBM/OBGrKlclehk+tdhbIt6HQqaQXEkXjK/qQU/Foq92p54Zi56Zj2E9ZpTD0Wgzu8ySqyrjUbHoYB3g+MAX3bs5N1iehUp+OOgqMhWhylwVcivVnsJthWp328EJHFrt4rGM1W2FSq6CmlHDylohBGmJ3peTc2LJriUYN2icz3mGDtYhab6lSq6Cm3ODE3q/ngcOHMApp5yCTZs2YdWqVbjhhhv87qO0vhQaRoMCY4HfbaJhkHYQAGBE+oiYPg4hxDc6e0lIinNSsJgy9jSYkW1UQ8XQj95UYrVacdRRR2Hjxo04/vjjY/IYHC/gQIsVmXoVNIqBcuKXEEJClAzVZ6nAFV57LLB2gFH5rpJLVZbozDWKSN12IC0P6J6L5FPPk6+W7pZp+hzf28oYQPBdsehwODB48GBs3LgRJ598cvhrDqaqVKxW1NE8JEIGGifnxLObng37/sv3Lce4d8fBwSbnxUCMnIl6tZ+vdpCVnZV+t/dU8jERXMjDcmzwjWIklAo8i9virUAMlZ21QwaZpHBLKgfr6BeE9eVpM9pz1uPwtOFotjWH1da01d4qOQQEDr+vBAjgBR521g61XA2NQhPS8+hrxb4VaLW3Ynz2eKSr0/s/nsRgUcko4eL7Vyy6XC4YDAZs2LABZ511VsB9lNSVoMhU5LOylxAycAygvy4JOTK5aMZiShAEAfsazcgyqKBUhD/MncSHIAj4+OOPwbIsTjvtNKxZswZDhgSoSIhQTZsNLpbHIIMacjm9PwghR5gkPUmZdFi72CpTKvcADBbNTYleAVC3DTAOAZQ6/9v0DRbVJkDjZ9aQXNmvFeqnn34Kp9OJE044ASUlJSgqKorS4v2oLgHSiwA1zUMihPT2WflnAIDNjZsTvBLfFDJF1OcT+tpfjbnG7/bRmLGYqFao5e3lOOfTc7C1cWvQbZvs0n4H21k7VIwqotclGCfnBMsHDmU97VJ7ViwOSxsGAUJYcxY7nB1hfb08AbQgCLC6rRAgQMWIFYtSg0U378bi3xfj2EHHYlj6sH7VioBYMRpWxWL3MeeKFStgsVgwZswYbNiwAaNGjQp4f5vbhh1NO5BvzKf5ioQMcAPor0tCjkwuTvoVUiT+msxOdDlYDDKowPg42CPJw+Vy4frrr8ff//53fPfddwDg8wA9msobzQCAQcYBMv+KEJL8mvYCrfsTvQqRxCvfj1hue3erzDDuxygHVrBokV5ZEFX2dnH+qGFw4NmVvVqhNgC6LMBfKzg5I359BR4sy+LOO+/E5Zdfjs8+E0/mx/pYBF31QEc1YMoTW7wSQogPwcKbRFHIFWB5NqwKMn/6zhJ0c25vW0+f27NOyCEHIwu/YjFRweL+DvGY8GDnwaDbNtmkBYs21gaVXBXT32PhViwO1okzAvd3Sj8mDmfeJABv1a8nWATENrEahQYOziHpe+yr/V+hwdaA8Tm+qxUBMfCWEuqqGBVcvAssx+L//b//h0suuQTvv/8+gNCORbY2bQUrsCgwFkRUvUsISX4D6K9LQo5MTpYqFlNBWYMYHOUYKDhKZq2trTj33HOxbNkyvPfee7jwwgvj8rj7mizQqRhkG2iwOSEkTl6bDLw8AWCTYJZPqBWL7VXAvDRg27LYridZsY7wKhZd1oEXLFoTXLHY8Lv40TgUCHSSrecJYrcd0Gb4DyLlCoDn0NXZiYsuugivvvoqXnvtNVx11VXRW3cgNevFjxlFgZ8TIYTEyOxvZ4fdbpWRM2B5tl/7xkh4ZiZ61FpqA27v4By9QqtwJCpYrDWLzy2U1z6Ulqk92d1ixWIkgWswoVQs2tz9Zz0ycgZqRo1OZ6fkxww7WOzRCtXsEs8TqRgVtIwWDjb0YJHjOfxn539wdObROCrtKMj9HOfZWbvkikWHzYFZM2fhqaeewrPPPoubbrop5PuX1pUiTZWGofqhId+HEJKaYleHTgiJCzfHQxCE2F/FHIIOmwt6tQJKmiHYT1mDGSqFHNkmDVrM0g8+Sey1trbi5JNPRkdHB37++WeceuqpcXvs3fVdyDGqoVXRr2VCSJzZ2wBjbmLXEOoJxNYK8eP+n4ATZsZuPcmKdYZZsWgT22zGOljc/zNQ8RNw7r9jH0zZWmO7/2DqtouVh2l5gbfr20ZPkx6gYlEBi8OFU/88HTWH6vDtt9/inHPOicZqQ1NVKs5/TPTPA0LIEWtrk9iGs6y9DMdnS5ttr5ArwAosePBgEJ0Aq29oVN1VHXT7SNt9JipY9LR4DSUoa7Y3S9q3lbVCKVf6Db6iwcW5glYseoJFDaPp9XmtQguzyyz5vJrZZQ6r/W7PwNritgAA1AqxYtHJOUNuhbqqchVqLbWYOWYmMjX+ZyM7WGkViwzHoOSxErB1LJYvX44ZM2aEfF9AnK9YnFYMY6AZ1ISQAYHO/hOS4tysAD5JuqFe/Oo6vPzzvkQvIyntbejCYKMa+hCDozarK6ptXEhwmZmZuPrqq7Fhw4a4hoocL6CkogX5GTpoldQqhBByBKIZi6FhHYCEuTteblt8KhYP/AqUvgJUrw9xXQ7gv1cDLWEcOzo6AC6MkJV1Au9ME4PBSNRtE0PFYLMIuT4niDVpAOPnWFCugEEJzLzirygtLY1vqAgANRuA9AJARfOQCCGJFc7fwUq5MuatUKu6qoJur5QrIUP4F9ckqtWsJ1j0VNMF0mJvkbRvu9sOJaOM6cXwUmYsahS9g0WdQger2wpWkPbau3k32h3t0haK3q+xxSUGi1qFFlqFNqTnAQC8wOPNnW9iVMYoDE8fHjC0lRosarVa5JySgy9//FJyqNhib0FFRwXyDHnQBZpBTQgZEChYJCSFyWVixSKXJMliU5cT1a3+Zw4cyfY2mJFtVEOjDP5j183xmPCvH3Dbh8EHp5PIvfXWW/jss88gk8nw+OOP46ijjorr4++o7UC7zY1hg3TQhBgsdraJlRouJ52MJ4QMAG6q5A9JuK1Q4xUseuz4KLTt6ncAe78Edq2Q/hiOLiCM9mOwtgDVpWJ1ZSTqtgHGIUCwk2Z9Kxl0GT43++ir1Xi35BDAs3jwntsxduzYyNYnFesEmnaF9py6mW3ibFSbg75/CSGJx8gYuHl3yNVeoehXsWiuDliF5Q1wIsjPElWxeMhyCEBoFYvtjnZwEo5HrG6xYjGWrVBdfPCKxZ7zDHvSKXWws/awQt1Gq/SZzz1fY0/FYs9gMZTX9pfqX3Cg8wAmZE8IWK3oebxQgsV136/DivdWQMWokHt+Lo457pig9+lrQ/0GAECRqSimFaoezu5jELuV5rUTkggULBKSwhi5DG5eAJ8klW1OlkNyrCS5cLyAiiYLMvUqaBTBD6ZZTnwVDzRbY720IxrHcbj33nvxj3/8AyUlJQlbx097GqFXMxg2SB/yfcp37wAAdLQluBUcIYREQzgB0ZGIdYY5Y9EutkKVR/lPv9X/B3x1D9D3OHTfD+Jcx2Aau+cUOrukP7azq39oFwpPdSwfwQwuRxfQfhAwDAb6VD3003eN2qxe/xQEAfNe/gBX3fcsfitvE7++UZwPFrLGP8TqyrQ8QB7aid99lXUAgOY26XOpCCEk2uJRsXiw8yAy1L4vEAHEWXYKmSLsikUZZAmpWGR5Fo02MSBz962090HqbEHPjL9IKjmDcXJOsEE6GVjdVihkCqgYVa/P6xQ62Nw2Sa+9VqEFANRb6yWvteccS7PLDBlk0DAaaBVauDhX0MpJQRDwxs43cFTaURiZORJMkN/bnvdloP19/ObHeHTuo9hesh0quQpu3h3WvNLSulLk6nKRrc2WfN9wVO8X2xN3ttOxCCGJQMEiISmMkcvAcny/8zmJ4OZ48EJ4bUsGupo2G5wsj2yDGnJ54mdhEsBiseCSSy7BwoULsWjRIixYsCBha/lhdyNG5hiRrlUF37hb46GaGK6IEELiLJyA6EgU7oxF1i5WLEb7T7/67UDVOrEtaU/mOuDAmhDuv1P86A7jKnOnBWDDCRY9J0IjCO8a/xA/GocGnyXZ8wStjAEMg7z/tDucuOreZzH/1Q/x5F2z8dY/ThZb3SYiWDy0FZArgLTCkO9S10QXNxFCkodCrgDLs2GFIf70nZ9Xba5Gujrd7/YOTlrLyb7kMnlCgsVGW6P3dQulFarZZZZUWekJFmNZsQgAFtYS8Hab2wa1Qt2vkk6v1MPO2iU9J0/laoOtQfI6e77GVrcVakYNhVwBjUIDTuDgcAf+Gqw9tBZ72/ZiQs4EZGmyAm4LBK5YdLvcWPDAArzx5Bu48pYr8dhrj0GtUIdV/SsIAkrqSlBkKoIhTm3VG2ulV4wSQqKHgkVCUphCLoebE8AlQZhnd4sHHYlfSfIpazQDAHJM6iBbkmjrtLlx8lM/YWdtR6/P/+Mf/8Dq1avx1Vdf4fbbb0/M4gAc6rCjvNGC4kF6GDSh/xHaWEfBIiFkAOFckVWQxdu8NODzm+L/uOEGi267GBrFoiWV29571qE2Q6zi2/lx8Ps2dAeL4czYdFkiq1iM5Ni5brtYAZqWF3zbnsGiLhPornAAgHueeQtf/Lwe/1v4MB6+6QrIGGV3xWICjqZrNwOmfHEGZIjqm9tiuCBCCJFGIVeAEzjwkVw40kfPAMjNu9FkbYJJbfK7vZMNreWkP9EIFs0us+T71Jprvf/fN0ztSwYZzG6z5IpFhVwR0xmLwOF5hf5Y3Vao5Cq/waKU114pV0LNqNFka5K8Tid7+LUzu8zQKDRgZIx39mOgr6EgCHhjxxsoNBZiVMaooNWKQODAe8mCJVj12So8sOABzH1gLuRyOVRyVVghfWVXJZrtzRhqGAoNE6SjQ5Q0HqJgkZBEomCRkBQmtkLlk6IVqsMTLCZ+KUnnQLMVWiWDLH3oFWkkOuo67WjocmBLpThUnePE9+lTTz2FkpISnH/++YlcHn7e0whGJsOIbD3kEv7QajhUG3wjQghJFZwrMVVakahKQAttzilWtEnFOmIXLLKO3mGnXAHkHgccXA3YAgRPPAc07T28j3AeN8gJRN/3i0Lb3bptYqio9j9ny6vnCVptBqBQe49FHr/1Kqx5//9w2bTTxNvlisS1Qq3dJD4nVWjzFQGgrpGCRUJI8lDIFNFvhdrjd0azrRk8+ICtUCOtWPTMiYxEOBWbhyyHIIMMSrkSLj5wsKhX6mF1W3u18wzGxtriU7HoDnxcYHFboGJU/dahV+rh4BySQ12j0og2R5vk17xnYG1xWaBm1JDL5d4wLtDz2NSwCTtbdmLi4InI1oXWbtRX4O05Frny5ivx4scvYtrl07y3qRgVeIGXFB4DYhtURsagyFQU8xDZgyoWCUksChYJSWEKuQwsJ4DnE5/mOVziwVTiV5J8GrscMGkUUIcwX5FEl9Up/nHAQ8Ann3yCSZMmob29HcXFxTj22GMTvDrghz1NGJatR7Yh9GpWq8WMzraWGK6KEELijHOnXrCYCAIPBGmP5ZO7uxVqrCoW+4adRacA9nagfJX/+7UdEFu0evYRDnMYJ5PCCTH7qtsGGIeEFsL1rFjUpuObdX9g/Izb0NjSjtzsTJw4btTh2+WK7tcyzkfT9g6gbT9gzO1VURmI282iobU9tusihBAJFEz0W6H2DIA8s/QyNAGCRdYR0YxFuUwOXuCxu2U3xr07DtubtkvehxDG75Bacy1MKhNUjCpoxaJeqQcv8Gizh35xiYN1+KxY9LxOkYbBntAslIpFNaPutw69Ug8n55QUlgJiO9ROZ2fQ16yvno/T5e4Sg0WZ3Du30ez2X7H4+o7XkWfIw5jMMSGH2E7O2StM3V66Hdefcz0aahtgTDfi2BN7nxfxzKC0s9KOz0rrSlFgLAj4PRJNgiCg4ZD0VrSEkOihYJGQFKZgxBmLscgVHW4O6ypCDy8cbPdJJQkHhRsPtuHxlX8kRTAaS01mB/QaBRQM/ciNN6uLgyAI+OrdV3DFFVdg7Nix0GpDO2kWazYXi/X7WzFskA4mrTLk+1XtL4/hqgghRIJotS/l3OFV4h2JnNJbnIG1i/P9YnH1eN+KRQDIGg5o0oHfP/F/XNjwu/hRoZbeClepFz9apbcfi7hi0WUVQzh9jtjyNZjuk42CIGDR6ib85fancVTBEOi1Pu7rCRbjHbLXbRM/mvJDfo9UVNeB4+hiAEJI8lDKlGIr1GgGiz0CoAZrA1RyFTI1mX63d3GuqLRC3dK4BQDwY9WPkvcRTkhXa65FujodCrkCbt4dcB/67t/BjbbQL+7xtELt24LUG2BxYV5g1E3NiBfpBgsWLW4LVPL+FYs6pXihUKezU9LjmtQmdLm6JFf29XxfmV1mbxVlsFao25q2YXPjZrFaURtatSIgBotKuXi+4dDPh3DfzPswKHcQDEbfcxA920oJFlmexaaGTSgwFsCgjM98xdbGVjisUbhgjBASNjrLTUgKU8jlYHkhJq1Qf9rThKsXb0BlizWk7e0u6TMWN1W24ZNNtajvGtgHA81mJ/QqBkomPu0gyGEdZitav34BKxa/iPnz5+ODDz6ARhOffv/BrN3XAhfH46hBBiglhM5VFWUxXBUhhITI2gI8NQSo2Rj5vqhiMXRhBYtOgFHFJljkXADb50p9mRwonAJUrwfM9b7v1/iHGD6q08T1Sfn6q7tPWCWiYrFxl7jWtKGhVYByLrg5Abd848SdH+zEvddeguUvPwKD3sdFTnJGDFjj/b1waAug1IrPKUS79lXHcEGEECKdQt7dCjWKVd89K70arA3I1GR6wzBfHJwjpJl3/shlcnACF9FzCGfGZLW5Gia1CUq5Em7OHTCc9QSLUmYLOjiHz9fNEwhaXaGdc/LHs59AlX6AWLGoZJT9Ak6dQgwWO5wdkh43XZ2OLleX5IrFnkGqxSW2Z5XLDrdCNfs51ntzx5sYrBuMozOPhpIJ7cJkjufACRzkghwNHzdg9+u7Mf2K6Xjm3WdgSPMdAHpeTynB4h8tf8DKWpFvzA/4PRJNleWVcXkcQoh/FCwSksLEVqixmbFocbohAOiyh9bj3zNjUSoXy8HNDuyTia0WF3QqBRRy+pEbb9s2b4KtvAT/eHwhHnvsMZ+9/n8pawo5QI+mH/c0YrBRjYLM0OcZARQsEkKShL1DDGkObYl8X7xbnC1HgpM6V1AQxPapIZ6ACouvK+uHTwXcNmDXCt/3qdsOmIYerliUUrGq6j4RZgknWIywYrFuu1hZaMoPbXvOjR3Ncrz3u4DFj8zBs/+8Hgzj56Szt2Ixzp08ajcBaYWAKoSZkd12VVTFcEGEECKdQq4AJ3Dgong84eQOz6art9YjXZPuDV38bi/r3/IzVHKZPPL1h/ErpM5SB5NKDBaDtZP1BIsNttBaULp5N1iehVLW/zjEW2kYZDZiMN5g0U+ln4fNLc567BcshlmxmKZOg9VlhY21Sbpfz4rFnlWU3opFHwHprtZdWFe3DicOPjHk2YoAvDMzLXUWtP3chtFzRuPup+6GQum/stYTWkoJFkvrS6FVaFFoLAz5PpGiYJGQxKOz3ISkMAUjEysWY5DLOdzSdmoPM1jkhB5tVAeoVqsLWhUDBVUsxk11dTUEQUDRsSci78a3cdLZf/G5XUWTGTe8uxnPfLsnri15eV7Az3ubMCLHAJNGWrucgxV7odZKCyMJISRmIg1qAKpYlEJqsOhpMxtBa7agHD5O5KUXinMId33uOzRu/ONwO1HWJS1YljPi/azN0tcqsV1ZP/XbAONQQGMKumltQys4lwMnFmhwcOVzuP6avwW+g5wRvw/iGbILgnhxgGkooNKHfLc/9lVBq45PRQIhhIRCKVeC4yOr9uvLExQCYjVbuird2ybS5/asM6KKRUbGRFyxKPW+dtaOdmc7jCqjWLHIuwNWPSrkCmgVWrTYQxub4wmnfFXYeSrbrGxkF/kyMgZymRxWd+D9WN1W38Fid8VimyP0uZEAYFKZwINHq61V0v16BYvdFYuMjIFSroQMMp9B65f7v0S6Oh1HZx0tqSKwuaEZPMsjZ1gORj03CoUXFAYNvlVy6TMWSw6VoNhUDJMq+PFRtBwsPwiNLjm6URFypKJgkZAUppDL4OZi0wpVagWi1CCyJ7tz4AaLbo5Hp90NvYqBPBYtyEg/q1atwrhx4/D666/D5uLA6NN9bicIAh7/Yhc4XkCbzQ02jsHiH3WdaLG4UJylh04l7WRvVUUZcvMKYrQyQgiRKBrBIk/BYsh8hXiBeE4KxbItlbPL9+eLTxPn97Ud6P15a6tYbWgYLAaEUisWAbFq0d4mvbov0vfroa2AaQigDHyBz29VLMb/7T48u+x7QK5ATlZ68H17wl+JLdUi0lUnBrTGIWL1aIh2VVRhaE5WDBdGCCHSKBklWCFwtZ1UTtbZa2aip12o3+17tE4Nh7cVagTnd6Te95D5EAAgTZXmrVgMVjVpVBrR5mgL6bW2u7uDRR+vm1wmh1KuhM0treLPF5VcFXQ/NtYGJaPs9zXyVGFKbYXqCdHqbX7avvvh4A4Hi1bWCpVcbIUqk8mgZtQ+A1IH64BOoUO6Oj3kx7EftOPfV/4bTcuboJQroTCFdt7BO/vSHVqwaHPb8HvL78gz5Hlfy3ioLK/E4LzBcXs8Qkh/FCwSksIUjBwcz4OLQSAiNSh0RlB1aHGxYd832bVZxZNDeonhEQnPa6+9hgsuuAB/+tOfcM0118Di8N/K97s/GrBufys0Cjkcbi4m30f+/LinCToVg2HZ0g68LV2daG1qwOChFCwSQpIEVSzGV5A2X/14TgrFuxUqAAw7XQyNd37a+/ONv4sfjbmAQgXwEisWAXHOoqNTfO9IEcmMRbcDaNknBqJKHzMSu7337Ub8+T0bjhtZhBsvOBGQMaHNt0xEsOhpZZwe+nGFy+XGvqo6DMnJjNGiCCFEOoVcAY7nohsscr0rEDPUGUG3V8gVkCGyVqjxnLF4yCIGixmaDG+wGOzxTWoTupyhzRYMVLEIiG1Mg7YSDeHl8OwnULBqZ+0+KxaVcjFs7PJ3oZQfnmCxwRpaW1iPnhWLVrcVKoXKW0WoUWgCV16G+Nba8P0GHHj6ANJz0zHovEG9AvJgPBWLobZ43dy4GZzAodBUGFHFrhSCIKBqXxUFi4QkGAWLhKQwhVxshRqLUSwOt7Swz+4KP1i0RXDfZNdsFk+46tTxOcBKZmaHG5e8ug4HmiOboeALy7K44447cOutt+KOO+7AF198AaPRCLPD9/vY7uIw/6vdOGaoCQWZOjhZHmwsegr78ePuRozMMSBDJ62CpLJ7vuLgvBBnOxFCSKxF2loSSGzFoq0N2PeD9PtJrbCLFpfEdmGeYDHerVABQJ8NZA4H9q7sHQA2/CFWUKYNFT+yLulff7UJcHRJf/9FEiw27RK/7qYhgKz/n9E8z+ORF9/F7CeXYdbxSnz3xiPI1Cm6X/skDha1mWJYGqLyykNgWQ5DKVgkhERLFM5neGYsRlLt11fPVqgAkKkJ/HPPxbkCVjQG461YjKQVqsTnX2uphUKuQIYmAwpGIbZCDfI72aQyocvVBWcIv4M94ZS/10XFqOBgHQHXHUolqmc/XIDjM7vb7rONqEwmg1ahRZdLWrCoV+khgwyNVmkznz2vGyuwYHkWavnhjgFqRg0H6wDLh3fxvSAIWPbKMiy8cyFMJ5hwwys3QJGm8Dnj0h+pMxZL60qRoc5Ari43rDWHo7m+GVazFYPzKVgkJJEoWCQkhSnkcrCcAC4GyaJdYsWi1NapvR5rAFcstljEg0ajJoaVAiniUIcd22o6sK4ijJlIQchkMtTV1eH111/HCy+8AIYRg1yz0/d767XVFWi1OPGnkYNg0irhdHMxmVXqS0OnA7vru1CcpYNRLb0NqpxhkJ07NEarI4QQiaIRgnBsfOfK9bTrc+CjKwGztJNCYOMY/vQkdcaiN1hMQCtUQKxabNojhokeDTvFOYVKvdgKNZxgWWMCnGbpX4dIKmzrtouBosl3dZ9MJkNtQwuev/VivPUXDVRKpRh8yhmfQWQ/nqv84xks1mwE0vIlzVfcVVEFABQsEkKips5aF/E+FDIxWAwULPmyvn49Fmxe4DO4cnGuXpVeGRr/FYuCIMDFuyJuhcrybFSC1lAdMh9CujodakYNpSy0drJp6jRY3Ba4+eBdAzzhlJrx3W7bG6QJgc8JOYJcGKRm1HBw/oNFF+cCK7Deary+tAotLG6LpIpXRsbAoDSg2S7t/IbnuXhem55hp0ahCfg8QtHc0Iy/3vpX5N+UD0Elvpn8VYz64nmNgr3mHuvq1qHIVASTOn7zFSvLKwGAKhYJSTAKFglJQt/vasDsdzYG3U7ByCBAnOMXbVIrEKUGkT0N5IrFFot4ciiNgkXve4qL4pf74MGDWLt2LRiGwf/+9z/cdNNNvW63+ggWK1useOPX/Th1xCCMzDFCq2TiWrH4894myGXAiBwD5HJpbXIq95chr3AYFIoYniAmhBxZHNKuzu4nKjMW2cRVLAq8GGzZ2qTdL4STaTERbsWiIoYVi84AYWfRqWKotuO/hz9Xv0Nsg6rUiRWLnDuMVqhpYgtWqSFciPOCfKrfIQaimt4nzuoaW/Hz+u2QyWRY+sw9uPfKs7wtzcC5xFaooYh3xSLPAfXbxfmKEmYi7aqoRm52BvRaTezWRgg5okQSonh4AkAnL+24ZFP9Jny+73O02Fv63ebkD7dCZWQM1AFm0bp48We3ggn/9200KhaltoKtNlcjXZ0OFaOCglGA5YMHi+nqdFhclpCCJ1/hWU9qRg0n5wz6mD3nEvrbj4N1+J0P6Wkv6m8dOqUONrctpLC0J5PahHZHu6QKQ89z8bx+PUNXDaMJ+Dz86WzrxMbVGyGTyXDnv+7EZbddBplM5m1XKyVYZOQM5DJ5SBWLzbZmHOw8iDxDHrQK/23io62yvBIarQaZ2XSREyGJRMEiIUnopg+24NfyZuxtCHyyj+kOJZwRVAv645A4MzGSikWLn6qygaDF4oRWyUCrSv1WqA2dDjSZw28hZo/y+7SkpASTJ0/G3XffDUEQDp/E68Hi7P+Y87/cBZNGiZOGZSBNq4RGKYeLjc2sUl9+2N2A4iw9cozST8hVVZShaPjoGKyKEHLEcoc2P8UvKSHIvh+A/av7fz6RrVA9pAZ2rAv9etHHIxBySfx6eU4K+akUiIpAcx/VBmDw0cC+78RQj3UBrRVim1SlBlCoxddN6kllTZr4NZPa2jSSVqh1WwHTUECl835q2+79OOlvd+GW+a+BZbn+xyKsS0LFYvfJaDZOoXVLufj9bxoKSDgRvmtfFY4ZURTDhRFCiHSeYNEVRkcBT0vKvlzc4QrEDE2G36o74HBIFEkrVEbGgBf4yFqhSrxvrbkWJpUJKrnKO2MxlIpFVmDR4ewIun9b93FmoIpFJ+cMGqTZg1wYpFFo4OScfisfvcGin4pFnUIHG2uT3II0TZ2GTldnSPMmPTytUH0Gi0Gehy9V+6pwy0W3YMGDC+ByuHodi3jWFei964tSrgwa5gJixS8AFJoK+82ujKWD5QdROKLQ5zkgQkj8ULBISBLyHAr6mw/noegOFh1s9E/GSQ0Kacaib81mJwxqxvu1SmWPrPgdd/13e9gVss4Iqlr7WrZsGaZOnYoxY8bg22+/9XtA2bdi8ac9jfilrBlnjclGUYZ4db5GycDF8TFpKdyX3cWhZH8rjsrWw6SV/kdnVUUZikdSsEgISSKchBCkZBGw+inA3X2iYu9X4keeTdzMQg9WYmDH+ZgLGI/nwNr7B5qBeCsWYxgsBqpYBIBhZwDtlUD1eqClTPx6GweLYRujDrNi0Sjux94u7X7uMINF1gU07wUMOYBCDBZX/FiC02behyHZmfh56dNQKHxcRMZ5gsVQZix235+PU8XioS0AZEB6oaS77aqoxrEjKVgkhCQXb8ViGLOf3ZzbZ9Vkz1ao6ep0v6FUz8eNtBUqJ3ARtUKVEiwKgoB6az0MKgOUjDL0YFGVBgBosjb1+vyG+g34+sDXvT4XrBVqqEFag7Uh4O0aRhMwoPQEi/4q9/RKPeysPaxgMdR5kx6esM/Xa6NVaOHgQp+xuHnNZtx6ya1QaVR46X8vQaXp/R71VNIGeu/6opQrQ3pOJXUlGKIfghxdjqT9R6qyvBLDRg+L62MSQvqjYJGQFKaQi9/CkYR6/kgOFiOoRrMN4BmLTWYHDBolFEzq/7i1OTnUtNlgCRJ4+xOtisWXXnoJV199Na688kr88MMPGDRokN9trT3eWw43h3krd2F0rhHj8tKgVop/9GmVDFwsD5aLfbBYeqAFTpbHUdl6KCW+J7o62tDW0oTiERQsEkKSiJQqPU+Vn6fNlLm+ex8JbIXqIbVyk/cRhsXhAhW4HWKgFvL28ahYDFLtmT9JbHm682Og4Xfxc6Z88aNC3V2xGkawCACWpsDb9RVuxWLzHjEANQ4B5HIs+ex7XHr7k5h++iT8+v7/YejgLN/387ZCDSVY9FQsxilYrN0sPh9d6G3EHE4X9lXVUcUiISTpeCsWw+gewPIsBB+/w3vuK02VFrCdpLO7NXzPmYxSyWVycDwHHuEfE/l6Hv50ODtgY21IU6VBLpOLwWIIMxY9s/Qa7b3nU9/w/Q148LcH0eHo8H7OztrByBi/lZxqRg0X5wpasVhtqQ54u1rRXfno53jC1n0Bmb9WqJ5gUWor1Ex1Jswus6Rg0bOtnROP0Xq2ENUqtCG9HgDw69e/4oHZD+CYCcfglc9fQW5Bbr9tvK1QJVbSqhgVnJwz4PtJEASU1pWi0FQIvYSW6pHieR6V5ZUoHlUct8ckhPiW+me6CTmCKZjuVqgS25aGwiGxuiyScNDuSvDJxBhqNjuhVw2MikUAaLW6JLfJ9YhWAP7nP/8Zzz33HJYsWQK1OvCJ0p7VsG+tOYD6TgfOGDEIuabDB+9qhbw7WIz9+/DH3Y3INqhRkK4LvnEflRVlAIAiChYJSW72dmBeGtB2MNEriQ/OHXqg5u9kjcCJ4WIiSW0xCvioWIxDsMg6pFX3eSsWYzib120HAs0pVqiBoROAip/EKjl9DqBNP7yucILl7pOasDQG3q6vEOYF+VS3HYDMG4iePmkcnrjjanz84oPQBZo1KKVi0VPlIrFaImy1m4C0fEnzFcsO1oLneRwzQlqVIyGExJpC1h0shlH1zYPvF0gKggAX7/JWuulVgX9WetpGRhwsRlqxKOFY5JDlEACx6g6A5IrFRqvv38FtzsNzq+2sHSpG5bdNpkahEYM0P4GgJwis7gocLHr246/Sz9OSVcP4/p0dbsViujoddtYOq4SW+n1boeoUh88NaBVaccZiCBdcHT3xaMy8dSaeeucp6I2+35+eqlvPrNBQKeXKgF8XADjQeQCtjta4z1dsOtQEh81BwSIhSYCCRUJS2OEZi4lvhSo1iOxpYM9YdEGnUnhD4ETheQG76joj3o/NxaHNEt6V9JFULDY0NODGG2+EzWbDsccei/vuuy+kfvq27vdWi9mJV36pwJThWRiVa4S8R9CrUTIQEPuWvIIg4Mc9TRiRo0eaLrw2qIxCgbzCo2KwOkJI1FT8JH787YXEriNepMxH5Fn4PVsWSiWZZ5sI5hf533cYgVO/ky3xCBad0qr73DYAMrFiMFbYEKoojzoTsDYBuz4HjLmAsvskGqMSn4/UKj1vxaLEYNEtvUUeAKB+O9qYbPzjxRXoNFsxvHAI/t/NV0IuD/LntJRg0TPnkA1zjVK47WJr155fixDs2lcFADiagkVCSJLxVGSFU7EI9G+h6gkoPcFKsFaSnvtHI1iM14zFWkstACBTI1auqxhVSBWTaoUaKrkKzfbmoI9hY21QypX+g0VGAxfvv0LPoDSIazXXBnwcTytUf8GgJyDWKPwHiw7OIfn94wllG2yBW7V6cDznXaODdUAhV0DV4+IvT8Wiv8pJm9mGBQ8uQEdrB7Jzs3HdfdeB8dWKvZuLc0El9x/s+qNiVHBxroAhc2ldKRQyBYqM8e1icLBcvHiTgkVCEo+CRUJSmKcKzhmLGYsS9xlJaOSMUovMZNRqcUKrkkMZ7MRTjP1a3owLF63F7iiEizVtYVR1QHpY7bFz506cdNJJ+PLLL1FdHfhKxb48YeH766uhVTGYPCwT6brefxSqFeLXxhrjlry76rrQZHaieJAeWqX02RuVFWXILzoKSlUMTw4TQohUUqrNAoVP7hCCPc88vSBVA2FxhvG7rV8r1Dh0YOAktkJlHQCjPDy/LxZYe/A15Y4DVAbA1ipWLCq7r2z3BJ5SW9Gq9ABk0luhhjF7CwDKt63Dya8cwvJftuJATWgnD8XHcwEyBUL6s9tTsRjmSXFJGn4Xv2amPEDCMequimrkDc5CuskQw8URQoh0kbRCBQ63MvX+2xMUykILCj3VZ1Jn2fUkl8nBC3z8gkVzLTSMBiaV2AVAIVeE1AoVAIwqI9ocbUErJG1uW8CKRW/rzyAXTTXZmgJWE6oZNdy8228gFyxY1Cl04AUeZrc54Dr68gSL/qo3++oZYDs4BzSMptdro2E0YAW23/sRAOzNdjx4xYP45ctfUHOgJqTHc/FixaIslJbsPSjlSrh537NHPUrqSlBoKkSGJkPSviNVWV4JrV6LwXmD4/q4hJD+KFgkJIV5ZiyGG9gEIjXsiyRYdHG8pJYdqYLjBXTa3dCpFL0q5BKhtsMOAUB5oyXifdW0hxcshtMK9euvv8app56KrKwsbNy4EWPGjAn5vk6WA8uL7yuLk8XUUTkozup/MlrTHfJZHLENuH/e2wStksHwQYaQqi37qqooozaohJDkI6VikWP9F/WFUrEYy2DRHXoLK6+EtEJ1SmyFahPDO4lXqktbUwhhp5wBCiaL/28cLIadwOFgUWorWpkcUBsAW4v0tUr0y48/4uSnN4NRKLHhvwtwwtHDQ78z5xbXGsrvfU+VSzyCxdrNYuVvWoGku+2qqKL5ioSQpOQJFqXMuuvJ08rUwxPsDE8Xf+YP1gcOMcKdZdcTI2Pi2gq11lyLDE2Gt92oUq4Ex3MhzfczqozodHYGbT0brGJRxajg4l1gg7TEb7W3esNbX9Tds6T9tSS1sTYo5Aq/Xx/PjMCe8yFDka5OBwDUW+tD2r7n+8zO2qFm1GBkhy/+8gSfFnfv8za1f9Riw0MbYLfZ8fLylzFu0riQHs/JOaGUKyWffwhWsejm3djcuBkFhgJvVWm8VJZXomhkUVjnVAgh0UXBIiEpjOlurxmLYFFqxWIka3C6eXD8wAsW26wu8AKgV8ewSiBELWbxD6OGrjBnC/UQbsWi1PB57969uOiii3DWWWfht99+Q35+vqT725y9H+/4gjRviNhTvCoWf9jdgBE5BmTow7uKtWp/GYopWCSEJBteSsWinxmLgLRgUcJMuJBJrZgDfASLcahYlBws2sUQL5bBotsZWhXlyHMBbQaQ1qONpqJ7VnI4r7/aCNjaA8937Etim9GamhpMu2A6Jg6Ro3TBTAwvlnYsAs7dXS2ahMFiWj6gMUm6266KapqvSEgQmxs2Y9y741DZWZnopcRceXt5opfgFW7FoicYc/K+KxZz9bl4+rSnMW5Q4CDHExhFEizKZXLwfPwqFmvMNUhTp3mDRYVcAQGC36q/nkwqE8wuc9DX2+YO3gqVF/h+wW5f7c72gNt4gkV/FYdWtxVqRu13HbrutuCdLmkdnrQKLRQyBRptIVYs9jgOcbCOfmvyBItm1+Hn0dLSgvfveh+6XB2e/+x5DBs9LOT1eWYsSm6FKlcFrFj8vfl32Fk78ox5UDIxGFEQQGV5JbVBJSRJULBISArztEJNhorFiIJFjgc3ACsWWyziQaNBFf6chWhpNosH4Y1dkc/tqe+UfrU/EHqwyHHidmPGjMFXX32F5cuXw2CQfhVcz9mdE4syMCTN90DxwxWLwf+ACleT2YHfD3WhOEsHg1r6+6G9tRkdba0oGk7BIiEkyUitWPR3wktKK9RYtBeXWjEH+HjeMT6WYVTdwaKEC2Fc9jhVLIbwOz6jCJj+HJA98vDnwm2FCgBqE+DsktbeNMRgkefFbhoFBQVY+cLd+OYqHdLzRkhfoydYTLaKxUPdwaKE6l+7w4n91fU4ZiRVLBISyG+HfgMA/Fj1Y4JXEltf7v8Sf135V6yqXJXopQA43LI0WEDV14d7PgQAmJ29AylPYMbIGBhUBm9Fmz+eIFIVwUzjqMxYlHBe5ZDlEExKk7d9q7fqM4TflenqdJhd5qAVosGCRXX3BUYWl//OSiaVCV2uLnQ5u/xu463087MfqytIsKgQg0WpFYsymQxGlREt9paQXns7d/h41827+weLzOGKRUEQwPM8Bg0ahCuevgITH5uItKw0Setzca7IKhb9XLy1vn49dAodCozSOh9Eiud5VO2rkhSuEkJih4JFQpKYmwt8os4bLMZgxqLUuY0Od/hrcLHhVyzesmwL1pQHHxqeCJ5gUR9GkBRtjd0Vi541RaLZ4oIrjPdc3wpCXzo6OjBt2jS89tprAIDzzz8fDBNexWfPCkQ5AMZPO1pPxaLZGbuKxdV7myEDMGKw3u86AqmqKAMAaoVKCEk+kmYsBqpYDOH3k70jtMcJBxtGRX+/GYtxCBY5l7Rg0W2NfcViKK1QPVQGoLsqAMDhYDGc11+T1h0sSgjiQqiMtVgsuOSSS/DMM88AAM4bxkOZlitWW0rFuaS3QmVjHCza2oCOKsCQC/iZNeXLnv01EASBWqESQgAAtZZaAEBFe0WCVyJSMJFVLHY4O3p9XmoFonfGYoTBYqQzFkOZjwgAHM+h0doIo9roDRQ9zzWUcDZdnQ6L2wI3F/jiXBsbeMait4Up678lvWeOYbW52u823v34aW1vcVugkqt6tR3tyVOx2Pd9EIo0dRo6nZ0hVXr2DW1VjMpnK9TWrlbMnDkTDz/8MADgqElHgVFJPy/i4sVgUS7x9L+KCVyxuO7QOhSbir3zOeOlvroeToeTKhYJSRIULBKShDyBYbAgRsGI38JSqwtDITU4iqRiMZJg8ZvfG3Dt0k1hP3YseUK8NG18W0P40twdLLZbXeAjbDvbbnOFNVMz2H0qKiowZcoUbNmyBUcffXS4y/OyhhgUqj0VizEMFn/Y3YiiLB0GG31XTQZTWVEGpVKFvEK6Mo8QkmQktUIN8HvAHUor1LbQHiccoVRM9tX3ZEusW6Eq1GJQ5eckj09uuzhLL5bBotSwsydF9wlYZ7jBollaEBeksqK2thZ/+tOf8PPPP+O4444TP2lpFKsjewaioeJdgIxBSH92y7tPGIZwYjIih7aKH9PyQws8u+2qqAIAHE2tUAlJek22Jox7dxyW7V6W6KXEjadiMdwZi30DSW/Fojy0MMfJOSGXyb0hXTi8FYsRXKgUaijZZGsCK7BIU6V5q9k8wWIor2GaOg1Ozokul/8qQkCcIxioFaenQs9fIAgAaSoxWKzpqvG7jSdY9LceK2sNGHBqFeLf6Z0Oaa1QgcPBYiivW99tfM1YZDtZzJs9D59//jkmTpwoeT09hdsKVS1Xw827fQbVFpcFf7T+gTxjXtBK3mirLK8EAAwbRedFCEkGFCwSkoRUTGjfmp7KJ6nVhcFwvABWYvgUyRpcLCdpPE5fkRx4x1KL2QW1Qg5dElQsekLOTjsLV5BK2GDara6wwmxbgBmGa9asweTJk8FxHDZs2IAzzzwzghWKLCFUSAKAxjNjMUbBosPNYW1FC4ZnG2DShBcyV+0vQ/6w4VAoEx9SE0JIL5KCxQCtUEOpWLMlW7CYgFaonFv8L1RxqViU2J61J2/FYhitUDXpgNMisRWq/xBy8+bNOOmkk9DW1oaSkhJccMEF4g2eL2s4r6G3FWoI28arFeqhLWLlqClP0t12VVSjcGg2TIYwAlZCSFzVWeoAABsaNiR4JZGRUn3onbHIh/cztG+1mbe1qTy0CkQn5xRbTob0A983RsaEXHHoT6j391SceqoBAWmtUE1qsVIt2GxBO2sPWDEXrNIQAIwqI2SQhVSxaHH7b4UaKFiUy+TQMBrJMxaB7raw7uBtYYH+1aBKuRLyHi3+GyoasP+J/WiqbcKvv/6Kyy+/XPJ6enLxYrAYTitUlmd9VixuatgEXuBRZCwKOXiPlsrySuiNegzKHRTXxyWE+EbBIiFJSKkI7VtTBjFcjHaw6Kv68PfaThQ/+DV+3uv7wDGSqkkXJwzIGYvNFicMGgWUYbS+jLY2q/gHVpfDHfH7xexgw6ru81exKAgCnnjiCRx//PFYv349Ro4c6XM7qWwhrlHByMHIZLC6ol/5CwDrD7TC7uYwbJAeqhC/t/uqqiin+YqEkOTEs6G3AA1UiSVlxmIshDh7r5d+rVBjXLHIqAAI0uZBxmPGIi8x7Oyp+0QgXP5PKPqlTRdnM0oJhQOc9HvmmWdQWFiIjRs3Yty4cdLX4/Px3N2vfQivv+drFOuKxdqNQHohoJZWZbBrXxW1QSWExIWnHeUfrX8AAHgE//3qDRbDvDijbyDpCYmktEL1N8uu1d6KRmvgAA44XLEYSbgYSjtOAGixtwAA0jXp3s95Kxb5ECoWu6sIm6xNAbcLVrHombFodpl93g6Ir0uaOg111jq/F5V7gkV/+7G4LQFnPQJi1aLZbZZ84XqGOkOcNxnCsWS/VqiK3q1QVy5ZCUbH4B+L/4GTTjpJ0jp8cXPusCoWPa1Qfb0X19evR6YmE7n63IjXJ1XlvkoUjyqWHJQSQmKDgkVCklCoFYuA2DY1nHl3gfgMFg+JV26tKWvxfZ+IKhZ5sJGULCappi4nDGqFt2VtolidLBxuHga1AmYHCycbfoCmYuQQABzqkF7Z0XcOJ8/zqK6uhkwmw6efforvvvsOmZmZYa+tLynhp0ohD2kGZDh+2tOETL0KhZnhtUEVBAGVFWUopvmKhJBkJGnGYoAQMoTZd3B0hLwsyVgHJLdP6NcKNQ4Vi4DY/jNUrF2shIv1CRgpa+rJ85zCqRhVmwAIgEXCrO0+J/QEQUBVldjic8mSJfjll18wePBg6Wvxh3eHPmNRJhOrG9kYBouCILZCNQ4BVBKDxYpqChYJIQnBhlAVL5fJIZfJg87886fv/bzBIhNasOjknH4DnDM/ORNnf3p20Io2z339zbULBReo7XwPnvCsZ6glJZz1VDo22SIMFoNUGnpkabLQYmvxW5HKyBkoZAq/lY82tw0quf+KRUCcs2h1W8EK0i6iTtekw827Q5rPaOd6H++o5CrIIENDbQMA4M5/34kxj46BMis6nYoECOLrH8UZi+vq1qHIVASDyhCVNUpRWV6J4pHFcX9cQohvCQ8WX331VRQXF0Oj0WDy5MnYuHFjwO0XLlyI0aNHQ6vVoqCgAHfffTccjhBORBCSQjxVTf7mDva8gkoRi4pFiftzc+HPSPTcfwDmimi2OKBXKbwzMxO2ju75ioNNalicbERBdJpOPMCtbpXesqxnYG21WnH55Zfj1FNPhd1uR3p6OlSq8Afd+yKltalaIYc9QKvWcAmCgB/3NGJkjgFp2vCeX3tLM8yd7SiiYDFm6FiEkPAJUlqhcgF+zoYSLIYbXoWCc0ubXQj0DyLjUrEIwBX45FsvbnvsW6ECgDPwjCW/vMFiOK1Qu9u3hVAFAkD8evU4Oe10OjF79mxMnDgRHR0dMBqN0GrDuwjIL84tzlgMNdiVMbGtWOyoFmeVmoYefu1DYLU5cLC2AcfQfMWYouMRQkR9g8RgwaLAHw7Jwm6F6i9YlFCxqJArArZCDVbd5wm9QglS/Ynkvp7n6gjhmEyr0IKRMWiyB35OgSo5gcMzFm1BjgOytFloc7QFXJtaofa7HytrhZIJXLGoU+hgc9skh9OekLXB2hB0274Vi0pBiZcefQnXn3s92praoNaooTPoAraGlYqRMWEFiyzP9guqG6wNqOqqQr4h3zuXMl44jkN1RTWKRxXH9XEJIf4lNFj8+OOPcc899+Dxxx/H1q1bcfzxx+O8885DU5PvX0wffvghHnzwQTz++OPYs2cP3n77bXz88cd4+OGH47xyQmLLEyz6q+Lbv78CANBSVwMFI49LxWI0t+/LxfEDshVqi9kFnYqBgklssOiZrzjYpIGL5dFpD/+EVbpW/GOjpl36CUBPK9T2lkacccYZWLVqFV599dXon8TrJqW1qVoph8MdWUDuS1mjGfWdDhRn6aBThTd/oHJ/GQBQxWKM0LEIIeE5VHcIAGC320MP1AIFd6EEi7HEOfu3Ng0mnCq7SCg8wWI4FYsx+rMvnCrKnuRysUrPHcbXXyPOd4I58ElNrx6VIi2dVpx99tn45JNP8PLLLyM9PV3644f0mN0zFkMlVwQO4CN1aLP40ZQv6W579otzrY4ZSRWLsULHI4QcZu8zd9lfWNbR0QEAqC4Tf0Yp5IqwW6H2bSHq2U/IwSLnCNpqs+csPZ+3d9831HamvkRS7egNFrngv5NlMhmMKiNaHa1+txEEwfu6+MPIGTAyJmiQlqPLQYezo997oyc1o4aNtflsZWpz26CUK3tVaPalU+pgZ+2SKxY9bWFDChZ7HItwVg5fPPwFvvrwK9z8/25GZo7YvUmj0MDO2kOuPg0mrBmL3bNF+1ZYrq9fDxlkKDIVSW6vGqn66nq4nC4KFglJIgkNFl944QXMnTsX1157LY4++mi88cYb0Ol0eOedd3xuX1JSglNPPRVXXXUViouLce655+LKK68MeiUfIanG0wqV5XyHHC6XeKDpcNigZGRw8zz4KAYi0oPFyIJNN8eD8/NcU1mr1QmdioEyyB8QseapWBySJl4N2GQO/+StSiGHVsmgrkP6PhxuDq7G/fjXPy5BY2Mj1q5di4suuijstQQjrWKRgYONfrD4054mqBVyDM82hD0HoKqiDEqVGkMKiqO6NiKiYxFCwuNydZ+4492hBYs87387mTx4sBjLsAUAWJf0isW+V8XHrRWqxIrFWAaLCs+MxAiqSeXK8ILl7goBWEKsWOx+jD3NHCbf8irKy8vxyy+/4Morr5T+2KHiJQaLsa5YrN0C6AYBxhxJd9tVIZ60H3tUQSxWRUDHI4T01LfqzF+wyLrFz7vs4jEJI2PCDuXcQu/7OVgHFDIFmBB/hnsqFgOFLYFCLUBaxeKcb+fgs/LP+n0+kopFBSO2Qg3WstXDqDKi09Hpt8LPxbvAC3zQdrIqRhUwMASAQdpBcHAOtNh8j+YBxGDRwTp8BoPBWrICgF6ph421SX4NpVQsOliHWFnb7MKBJw+gfk89nn3/WVx41YXebTSMBg7WEVFI3BMjYySHgJ6vmb3PRXSldaUYahiKLG1WVNYmRWV5JQBg2OhhcX9sQohvCTvb7XK5sGXLFpx99tmHFyOX4+yzz0ZpaanP+5xyyinYsmWL92D5wIED+OabbzB9+nS/j+N0OtHV1dXrP0KS3eGKxcAnqFi3C0pGLrYSjeLJLKlBYaQVi25OSJqKxaoq8cRJXXVlRPvheQHtVje0KgbyBLdCbbE4wchlGGwUg8XGMELBntJ1SjSZHZJDOIebB+92YdCQfGzcuBHjx4+PaB3BmB3SWqE63VzUg8UfdjdiRI4Bmfrw27xW7tuLgmEjwDDhVTwS/+hYhJDIyYQAgWFP3hN9Pn7OyhnAHeQklqNT8tok4V3SKxb7ngSLUivUxu4KpbKDh3rfEE51oNsR42BRPLaAPYKfa4wqvGBRoRZDySCt5by62485OSAn3YANGzZgypQp0h9XCs4tvv6hksc6WNwEpBUASmnzFf/YV4XivMEw6OPb9uxIEY/jEToWIVL9VvsbFmxe4LP6K9b6VSwGqSDjus9HKOQKsDwb1pr7hmMuzhW0tWlPdtYOhSzw9sHCHU/wGEo4WtZehvX16/t9PtQwSvBxPNazFarFKl7EVHug1u8+9Eo9rKzV73o9oZSn+s0fT6VhIJ4gq8pc5XcbDaOBg3P0q/QTBAF21u6d5+iPXqGHg3VIboWqYlTQMJqgbWEBsRpUIVdA4ATINXLctPgmTDh1Qu/nodDAyTkjCol7CrXqtidvxWKP70VBELC+fj0KjYUwKOM/X/Fg2UEY04zeyk5CSOJJ+CsnulpaWsBxHAYPHtzr84MHD8bevXt93ueqq65CS0sLTjvtNAiCAJZlcdNNNwVs9/H0009j/vz5UV07IbF2uGIx8Akqzu2CQi6DmxMQzTzE6SMoDBRcRhoscrwQ9Xau4aqtrQWgQ3NjXUT76bC7wQkC9OqE/Zj1ara4YFArvOFWkzm89jAeGToVWi0uONxcSM9PEAR8/PHHsDsM0OSPxUM3fowhQ4YAEGc1Dk3XQMFE/4Sn2Rn6HwQapRxOlutuPxydAK/V4sSOmg5ccNwQGDXhD1+vrCijNqgxQscihEROJnChBWqBTtLIFb3aVPpkb5e2MKnCqVh09b26PjoHY42NDRgMoL65Db1++ivCmLHIOgAmDhWL4c5YBA4Hi4IQ+ixCQNxWbQRsbSFt/ulny3EhK2B8LoOSV26GrLg4vPWGTBBnOgapUOlFzoj3kfpahIJjgYadwPCpgEon6a67KqpovmIMxeN4hI5FiFQbGzbiy/1fYtbRs5Cty47rY1v6/J4LFrCwrHi7Qq6Am3ODF/ig1YF99Q3HnJwz4GzAvpycM2hFXLBg0XN7KC0wBQhwsA7wAt9rv31fK17gUWuuxb6OfdjXvg/lbeUo7yhHjbkGcpm8130VMvFvexfnQmeneEFXZ7v/C7v0Sj0arY3+g8XuUEoR5AIbFaOCk3OC4zm/FaKDNIMAANVd1X73o1aoxf30OZ5z8S5wAhc0YDOoDGG1QgUAk9qENkdbv69HXxt/2Ah5uhzqXDWOevQo5A/v35pcw2hgdpnDWocvYQWL3Rez9Zxpua9jH9ocbcgz5EHjubAsjirLK1E8qjjsTlCEkOhLbH8+iVavXo2nnnoKr732GrZu3Yrly5fj66+/xr/+9S+/93nooYfQ2dnp/a+mpiaOKyYkPEomxIpF1g0lIwcb7YpFtv+BrKedpknb/6DQHmGwKO4jxi3O4swz11Af5ly9aGrqcsCgVsCoVUAuAxojaIUKAFl6FTps7pACZZfLhRtuuAFXXnkl2srEK6o9B4IcL+Dchb/ijV8PRLQef6xONsTrSwGNgoEzyq1QfylrhgBgeLYeTJhVq4IgoGp/GYpHjonaukhk6FiEkN7koQaLnpNOvn7MypIgWORdYrtWKfpW2UWpYtGvcFqhsg4gSKVARDxX/0sJO/vtQxnejEtADBYdHQGDa47jcNddd+Hya2/Fp7vF7eJyUsrzfKS0xPfMWIzFe6l5j/h+MA2VVkUJMVg8lmYaJRWpxyN0LEKCqWivQFlbWa/PsQIbtXaMUlhYacEi133+QiFTgBX+P3vnHSdZVaf95+ZKnWZ6cmaGIIiiIqCiYl531V2zCGbdNfG65oCYlVXXiMiaFdfAKromVpIElWHIYQYmT89Md0/nru5KN9/3j3NP1a1bN1ZVz/TA+fLh09NVN5wbuurc85zn+Zmwkf4z1C+OUWdZ0ghJ1VIh8ELk90vSKNQkjkUOXF0w80J/v/HgjXj1H16Ns392Nv7pt/+Ef7/p3/Gj7T/CnuIeDGYH8ez1z8aFj7kQ/Up/fV0qACaNQi1IRIiLExbjhK2MkIFmtgqCXvJSHjIvY7gU7qDMClloZqvTj9ZvjItkzYk5GLbRJKYlpU/uw5w2F3rubNvGxz/+cfzgAz/A9N9IXUqO45AVW5MAqGOxWzUWk8b5eqHCotexePvo7ZB4Cet7j81EIyosMhiMxcMxs9IMDg5CEASMjzfXxBgfH8fKlSsD17nkkkvwute9Dm9961sBAKeffjoqlQr+9V//FRdffHFgIWRFUaAo0XZ3BmOxUY9Cjak7aOkGxDx3VKJQD8+QaIq+bGtnrNMaiwBQVo/+A8tCMuUKsT1K+061bjFR0lBQRMgCj4IiYrqc7EEhjMGCgmJtOlZQnp6exstf/nJs3boVP/zxj/Hphweb3q/qJlTDxj2HZuA4TtcH+SqaBUXkoSZwwypS94XFGx4ex/olOazsbT82bHpiDJXSPDZsZo7FhYD1RRiMzuGRNAqVfmeERKFaBhH2wkSYBXcsJqwV2bSOPwp1gePiOIH8n1TEcxzXsbiAfRFBAsCReNZMX5vbkAFLb09My/SSmFxLDzzO+fl5nH/++bj22mtx+Rc+igu1y9trYzvQgda2HIvdS1CoM3I3ca6mHBAslas4NDrJHIsLyNHoj7C+CCOOy+69DNO1afzgH35Qj4y0bAv2Qk+aCYAKQRTdik7cobUWBV5oPwrVNprcZpqpQeCT16bTTA0iFy1ExsWqpqmxSPfpvz5UjLr24LUYLg/jnFXnYGlmKZbnlmMgM4CclIMiKJAFuaWtHMdB4IRUwmJUTUIab5okCpVGf1JByw/HcRjIDGCsOhbqCsyIbhSqT6Ck91NcO3IScfPPqun7nP1KP0bKI9AtvUUsrFareMMb3oCrr74az3vn82A8w8CUSmpFBgmLWTEbeBzt0o5jka7j/Vu8bfQ2rO9Z3yRGHy0s08Lh/YfxT+f/01HfN4PBCOeYORZlWcaTnvQk3HjjjfXXbNvGjTfeGFrrolqttnSQac2pY5H7zmAsFI0ai9Gd+EaNRaergogW4Fg86AqLQZ3hTqNQu7WNxcSkK9715Y69sDhZ0pCTBUgCj96shNmqERuzG8WSvATDcjA+H/7AMTMzg3POOQc7duzAjTfeiJe/+rUty1R1cs1Hi2pXXK9+yppZ/1uKIyvxXRUWddPGX3dPYvOyPHoz7c/hGdpLZg2zKNSFgfVFGIwI6GQPM3pwSYCdzOnnd5R51+HFeGFJLcbvoxOsdqJQ/fWAjsJngKgAhj+CNQQ6415Y4LmkogLolfjlwhDk9qJoASDTT0TNgPu0UqngaU97Gv72t7/hT3/6E9554b+038Z2sNyB1jTuQE4kIvxCfJ8M303cirmBVKs9tI/Ezp22ZUP328QAwPojjMVBzaxBt/UmUclyjo6w6BcOa77vuTgHH41ClXgJpm221WYaoUpRLZVEoSbMwKFRqP7l0/w9UkdjYmHRbnW10fhMx3EwoAzg+Rufj/PWn4dTB0/FqsIq9Cl9yIiZUAGUxskmoSAXoJoqdDNY+KVutzCxkBIWYepnaXYppmvToY7CrJiFbukt56RqVBO1gwqLc1r6ut79Sj9KRqlFlNV1Hc961rNwzTXX4Oqrr8aZrzmz7pzkwCEjtEaK0uPoVo3FuCjaIPyORcMycPf43VjXs+6Y1FccGRqBoRvMschgLDKOaRTq+973Pnzve9/DT37yEzz88MN4xzvegUqlgje96U0AgNe//vX46Ec/Wl/+xS9+Ma644gr88pe/xIEDB3D99dfjkksuwYtf/OJ6J5rBeCRAaywaMeIPFRZJFGr39h/kQDw0E15Mm4pCnfjNKvojLQpVhyzwyMvHvsbiVFlDThEgChx6MxLmawb0joRF0sk8HHFPDAwM4PWvfz22bduGc889F6re+pBQ0cg1H59XUdG6LyxWUgiLGUmAYdqx8cNJuePADCq6hU2DeShS+99PB/fugpLJYuVa5hJYKFhfhMEIIWbwhcJxiK6fSPEPCnp/F0SyjaiBwAWPQjXSR3G2OBaPgqsjjYhHB2YXMgoV6FxYFBUi7LYT+ZXpI8JigJsln8/jda97HbZu3YoXvOAFrdG1Cw29x1NFoXodi11m+E6gdy0g51OttmPvIXAch1NOaK0DxegerD/CONboduvnqGVbKBsdRF23ScWsNAlysVGo7niEyIswbbOtCEm/IKlaaqwD0YtmBTsck8SaUtI6FnWrEYVKRUm/qJpUGKWIvAjNTuZYzIk5OHAwZwQLcVSUog7YMDICif6ME4QHM4OYUWea4jm9ZMVsoEBJXXdx7ciJRFgsasXI5YIYyAygolda2ibLMi688EL89a9/xUtf+lLUzFrdDagISqDoR4+jW8JiWzUW3b5jzSLHc9/kfVAtFWt61sRGyi4EB3YfAAAmLDIYi4xjOuL96le/GpOTk/jEJz6BsbExnHHGGfjzn/9cL1p+6NChpll4H//4x8FxHD7+8Y9jZGQEy5Ytw4tf/GJ8/vOfP1aHwHgUcOXWIXz75n247cPPBt9mnbS0UDHEiIlCNQwdGYGDYTtdnZka5B6kNRajlheF9s9PVXuECYslFT0ZsaNz0g0cx8F0Rcdpq3sh8jz6shIOzVShmzZybY4zDrgrDs+2Covf//730dvbi1e96lW45JJL6q8HORKpY3G2aqBY1bGsp7vxTBXdqov0cWQkAbrVPcfijQ+PYyAnYcOSXEfbGdq3C+tPOLFlRjqbiN49WF+EwQhBdD+TE7kREwxA1cVHx/c7XMeiEe1YW2hhMW7/Qfidg0fjw1lQiKAZFRtLoe1b6AEgwXVRtnv8guyu36ZjUS83CYu//OUvUa1W8eY3vxkf+tCHGsvGuG+7Dh0QTBWFKrrnocv3klYGpnYBj3kJIKWLaN+x5yBOWLcSuWyrq4LRPVh/hHGs8YsYtmPDciyMVcZwypKjW++9ajTHa8Y6Ft0oVJEX8dDMQ3jHDe/Alf94Zap90ihUCo1CTeVY5Fodi16hKc6Rx7veD8NJJkZ66/AJnADLsTquyyfxUmIxNC+RiSqzIX00GoWqiNHP+YqgJHLoLc8tx7w+j4pZwVIsbXk/I2ag23pL+2k7MmL091j9eLT0fc4+pQ82bExVp7ChdwP+8Ic/YGhoCBdddBEuuuii+nK0didAjjss0tWwjUCxvx06qrHo9iVvP3I78lIe6wvHrr5i70AvBgbTpS4wGIyF5Zg6FgHg3e9+Nw4ePAhN07Bt2zacffbZ9fduvvlm/PjHP67/LooiPvnJT2Lv3r2o1Wo4dOgQLr/8cvT39x/9hjOOC0qqgY0f+RN+ecehtrfxid/twNicioeOzHexZdEkdywakAUelt3dKFS/YzFOtKwLi2lmZPsoL4BjrRvYtoN//elduO9Qus7lRElDXhEhdiBGd+OKljUTumkjr5DOa39OQlkzoCWoOxhGT4Yc1+FZz0OSZeEDH/gA3va2t+H2229vWSdIWKx4xOS9E92fCVvTLUgpHIu6aXcUEUtxHAfXPzyOE5cX0NeueutycO8ubNhyUsvr4yq5r0qL9O/meIP1RRiMAKgYlWS2dBInGN0O/XLzOsx4KT4KtTpNllsorDYci7pPWOxwMC8RokLOd5LrUncsLrCwKGZc92ab36GdOhYtHajNwXEcfPrTn8b555+Pv//9763LHm3HIhXPuRRzeXlxYRyLR+4n2+xdQ+ospmDH3kMsBvUowfojjGNJkJhkOdYxidatmbWm9sRFc1pmw7EIAEPzQ6n36a8nWY825ZILi0GORa+wGOfIo5MHkjjVOHBNjsW0bscwaBRqkjhZKsSFOfyoKBXrWHQFwSRRqJZjYbQ8GrwdIQPTNlvuF+pYDIod9ULrHbYbhQoAo5VRfPWrX8U///M/49Zbb235+1FNte4ulQU5UPSj7SgnrakdQzuORfq3RO/fv4/8HRt7N6KgHP0YVIAIi5tO3pT475HBYBwdjrmwyGAsJKNFMoDwxweOdLyto1kDUBLJl2VcXKVlGG6NxW5HoTYfa5RbkSxvQ+Q5dPIdX12kUai6ZeO6HeP4w/3BndcwiLAoQEzomPMiuGJkN+65qTIZuC0opMM6kJNR1ixoHWyb4zj05ySMzalwHAflchkve9nL8LWvfQ3f/OY38ZWvfKVlnVpAFGrV04Y946W22xNGVTehJBQWFZGHg4aLshP2TZYxPFvDxqV55OX2o6gcxyHC4ubW+orzBrlHYkzNDAaD0T50ECjJrPUkTjD/oKDfsWib0cJSdQaQO3OBR9JWFKpPqHKOQl9GzJDzncTd59YUWnDHoqgAhtqZYzFOWA4j0wsAUGcO44ILLsCnPvUpfP7zn8f3v//91mWPumPRvUapo1Ct7guLI3eTv+m+dalX3b5nCKdtYZHsDMYjHdM24QRMbT0aNRb91MxavVYgEC+W1R2LaSZy+DAco1VYTBGFqls6BE5oET689QCTOhbbiUKl7ez0etE42TTC4rQ6Hfh+1axC5MXYGn8ZIRNYG9HPYHYQAHBoPtg4QB2JJb15bIHWWIxzLMqCDJEX2xIW+5Q+OKaDL3/4y3j/+9+PD3/4w7jqqqta7gfN0pqiUAMdi64AOq91x9wgtxGJz3M8RF6EaqqY1+fx8PTDWFtYi7yYLk69WxzYdYDFoDIYixAmLDIYixBZoEW7owdoTFOHKHAwre5GofrdZVH1FenySWvZ+aFRod0QdBaS2Wry2giAW9dQFiG14Vikfc9yF+JhqShccB2LvVkRlk3iUTthSU7GdFmDZtp4+9vfjptuugl//OMfcdFFFwXOIguq21l13XYCz2HvZHcdi7ppw7CcVFGoAFDugsB9w8MTkAUeJyzLdzSjbvLICKqVMjZuCRcWGQwGY8EQ3UGIJPUTA+rbtVAfJHP7Ky01FmOEpdoMIC2gsAg0hLg46Ge7v8aPdTSERYUIZGmcpAsuLGbIvtodzBTk9hyjAHEsAnj/Z76O//3f/8WvfvUrfOxjHwv+/j3qwiKtsZgyCtU2ux+rO3wX0L8OyPSkWq04X8bI+DROO5E5FhmMY8mb/vwmnP6T02Ode50QJmaZCSfNOI6Dq3df3SSktUvNrDVHocZEg9puGk+cgBWFaZuw0SwsCrxQF/vioA5HP6miUFM4FgEiLFIBkLrgkl6vMGgUapLxpZwUXZOwZtYg83KsOJsRibAY1/YlmSUAgEOlYGGROiP9wmLFqEDipUT3R1bIYl5PL+j1yD2Y+N8J3Pa72/CjH/0Il156aUs5E6BxXwGuYzEgLp0KoN2qbyonrJvuR+IlaJaGO4/cCRs21vWsaytWtVMM3cDwgWEmLDIYixAmLDIYixAq0sXFMlpuFKppO7AWsMZinLCoGhakNpx5QCP2NSgqczFRUpN1rinTZR05uT3HIqWiWR1H3E6VySBaX0Z2f5LBxfH5zgbXlhYUzJRVqIaFL3zhC/j73/+OF77whaHLB7kvK66IN1iQMTxb60oMaX3briibVPCmzsay2gVh8aFxbF6ex9JCZzUjh/btAgBsYMIig8E4FtQdi0kErATfKf7t+KNQ4+Ifa8XUteFSY1SJOPj3b8Qs6H4GG77B06MhLEqZFFGo1LHY3RrGwW3S2hcWxUzbjkVLJJFcn7zg6bj11lvxile8Inzhox2FSq9RKmFxoRyLdwG9qwEpndPgob1k8JY5FhmMY8td43cBAHYXdy/YPgzbCKzFkbRm31RtCp/a+ilctfOqjtuiWmpbNRbbiXz07sP7vK9beuIoVNuxYdhG4P69wqIZ009I5Vjk0BQfSsW7Tmssilxyx6LME2GsqBYD37cdGzzHx9apVAQFptMaYdqyP0FGQSpgpDQS+H6YIFcxKqHuQD9ZKYuKUUl1Hi3LAs/x2PiSjXjZV1+GN77xjaHLqmajxqIsBIuu1LF4rIVFmZehWiq2HtmKwewgVhVWdaU9aRk+MAzLtJiwyGAsQpiwyGAsQmTXxRdbY9HUIYs8zC5HofpjK2Mdi7oFSWhP6OA5DgLPBUZlLibKmhXrIKU4joPZqo6sJNRjTduhZlix90AckyUNIs+hkCGDWr1ZKix2NrhW3HEr7vnm23FkYgrr16/H6aefHrl8kHBc1UxIAocVPRlMlDRUungPUNEysbAokeUqHdYsnK3ouOfQLDYN5tGTaX/GLEDqK2ayOaxY3RxbZtsOKiYTFhkMxgJDByGSDG5Z7USherbLi+T9SGFxlghQC4leBf72VeD6TwD3/jx+ef9xJ4mN7RQx6zoWE/QPaI1FcaGFxWxnjkVRJucuSbyrh2tuuROPP//jOFKysVyq4swzz4xe4Wg7FtuqsSiRSN1uCovlCWB+BCisSn0v7Nh7CDzP45QT0keoMhiM7rOQ9Q4N2wiMQo1z2VHouuPV8dT79otYqtksLFpWdBsso7nGYlK84pFpm03HqlpqYLRpELo7WSpo/14HpxbTX6JusDSORSpW0nW7FYWa5F7jOA45MRfr8IsTFqkgSGshRrE0uxRjlbFAETJMkKsYlVARz09OzKFqVBM7P++7/T68+XlvxtjhMSxZsgTZLdnI66dZWt2lKPFSpGOxpHWnXEw7UagAIAkSdEvHbaO3YUPPBhSkY1dfEQA2nbTpmOyfwWCEw4RFBmMRwvNUWIzuzBlujUXTdmB3UVn0u8sOTlchRghkNcPqyJkn8tyidyxWdTOxyDdfM2FYDvJKZ8ISEC8uxzFV1lBQREhuvG5fh8Ki4zi46nvfwJ+/+WEIS9bBcJIdY5BwXNEtKKKAFX0ZTJY0VLTuDchSgTBxFKoouOt11oZbdk/CdoDNy/IQ09RUCmBo7y5s2HxSS4TKRFmDHfNwxmAwGB1Do1AT1VhMEoXqFxY96wiSKyxFfOepcwsvLBpVsh8AqCQYGPU74BIOBHaEmCWCZiLHoissLrRjUexUWMykikJ1HAff/Nk1ePE7Po3N61ejJ58DqlPxKx4rx2KaKFpeIKJxN8WDkXvIz/61SFsQfcfeg9iyfhUySnuDkgzG8cDpPzkd/7v3f491M445YQ6tpMIiZU4Pr083p80FRqX6hRjN0upiHRAfhdquY9HrhPS79GjNxCRRqFQwjItCrZrRE7brjsWk8bNw6vuuOxZTXi8/9SjUIPtqAFkpi5JR6sgpSSNMkzj0NvVuwsH5g4FiZliNxbJRDo0d9ZOX8qia1USxw9f/6np88IIPYnDFIPI9efQpfZjX55vuXT+0difQcHyGHofRubDIgWs7IljiJUzWJnG4dBhretYgKy5wckgIQ7uHMDA4gL4lfcdk/wwGIxwmLDIYixgzRlg0DR2SwMOyHdgLWGNxaLqCgXz4gAJxLLb/cSIJPDTT6qo42m0quhUr9FIm3fjR7giLwfu8/3ARDx+Jz/6fmNdQyIh1R2lGEiALfL32YhosQ8f9//15/PflX8I/vuH/YfDFH8B4LdkgYpBwXNFMyAKPlT0KNNPGyGz3BvzKKaNQaY3F+Q6jUG94eBzrBrJY1dd5p/vg3l2BMaijxVrA0gwGg9FlqBiVJN7THwkaRItj0ReFapnhwpLjEMFvoaNQ/TUT47D0ZufgAta+qiNliJCbZODwaDoWLa19MUygUbjxx2SYNt71P4fwni/9GO9740vxm8suRqG3D6jOxO/f1IAEg4pdg94PaQb0aI3FhAO6iRi5G1B6gZ70EWY79h5k9RUZjwq++8B3j3UTjjlhcaNJ3XOUkl4Kdbud+8tz8eSfPbn+PhVVgoSYea3xrBvXBstsz7HYJCw6rcJi0ihUKpYGCotWo28R58ijE0rTiHR0m90SFkVBbHFvRpEX86kcfkFQYTGJY/GkJSehZJSwZ3ZPy3tRUahJaj0CxLHor/Hpx7Ed7PrpLlz20cvwwle9EF+88ovo6e9Bv9KPeW0+0pnqrcUp8VJgm9IIrXGIvNh2XURZkLGvuA8cOGzo2ZDob2EhGNo9xGJQGYxFChMWGYxFjBEjtJmGDlHgSI3FLopymtksFg3P1NCfDZ/9VzMsSHxcwEU4Is9BM+yu1onsNjXdTFwDkNY1zMudD16F7fNL1+7ER65+AJoZ3eGfKKnIy2KTe64nI2K6oqWO0pkeegjjD9yKD/7Ht3HhO94PjuNweCbZIGxgjUXNgizyWNFHHgD2TKQvkh4GrbGYSVljka7XDoZl4+ZdkzhhWb5ey7JdbNvGwX27sZEJiwwG41hBHYtJxLIkUaj+QTLvgI0QU2PRVInotNDCoh7tJGjBL/AdjShUKYVj0awRB5zQ+USnSETFPRdtOhYFmRxPAhF7++EirrxjGt/75L/hyx96CwRBAJQeQJtrFquDMNV07sFOofd8WmHR6XKNxeE7gf71gJw+wmzHnkOsviKD8SghTEhJG61ZNsqxIhN18dHab7rd+vld1Iv1fxu2EdmObjgWLdtq2odmaeA5PpEYVXcsBkRfNzkWjeh+Bh1RSSPmUhckFWk7rbFYdywmHCvIS0RYTOLwCyONsHhC3wkAgDvG7gjfjt68nTRRqHkpT4TFiHt4ZngGh689jLdc/Ba89wvvhSiR6z6gDKBklGKFRcnti0iCFCjW8RwPmZdbjqMdwsTLJMi8DMuxsKawBkuySzpuS7sM7WHCIoOxWGHCIoOxiIkTsizTqDsFVaN7AxCqYdVFQs20MFnW6hGaQZAo1PZnL0kCD920uyqOdpuqnrzGIhUWo8TYpOgh94BpORgp1lCKcdhNljTkFaHp+vRkRBSrZmIH5qFDh2DbNpafeAbO++T/4Bn/8M8YyEngAAzPJhuEDYpCLWsGZJHHsoICDsCe8c47zpSqW2NRkZKJu1RYLHcgLN41NIuyZmLTYCHxfsOYODIMtVYNdCwOz9bQVScDg8FgBCGkEBaTRExGRaHyMVGoujtjW8rF76cT0gqL/jYflSjUFLGhRg3gZaDNAaVUbbKN9o+fumON8Ikzw8PDME0TT9i0BAc+dTre+rLnNN7M9AHafHwNRaOWTuTrFLtdx6LVvShUxwFG7yFuRTnd389MsYQjkzM4bQtzLDIYjwbC4i/TOhYreiXxOlQIChKlvFGX/phSP+06Fr1OSX9dQepYTMJEdQIAAp1h3ujXuChUgAiEaVyHVKykwmKnNRYlXoLpmImjUPOyGx3aweSqukNPj3fo5aU8lmWX4f7J+1uOled4SLzUkWOxIBVQM2uB9+SRI0egaRqWrl+KZ1z+DPzzm/65SRjsz/SjZtZCBUEqkEu8BJmX0SP3hLZDERRUzC4Ji20O/VMBdH3PevRI4W1dSHRNx/CBYSYsMhiLFCYsMhiLmDhh0TR0SG7tQz3GuZYG1bDrQtT4PBmkGchFCIt6hzUWBQ6aaXc1zrXb1HQrcb3DqZIGkeeQVzp3LAY5/SjTFR3FSnQHfqqsIys3C4t9WQnzqhHrdgSA6667Dqeffjouv/xyAIBS6AcAiAKPnoyI0WKy+NLAKFTdgizwkEUeA3kZB6YqqV2UYZTdGovZhAKfKPAQeA7VAAE0KTc+PI6+rIQNSzsf+B7asxMAsHFzq7A4UqwhJyzevxUGg/EIgYo9AS6CFuIEHSA6ClUQo6Mw6QDNQtd2STBTvglTbxb4jkYUqqiQc5UkftaoEYF4oYVFya192e7MeuqODXFy/O1vf8MZZ5yB//iP/wAALOvx9UkzfYBaWoSORVpjMcVAd/1voUsTBmf2kxjhntWNyQIJ2bH3IAAwxyKD8SihWzUW04hMVFAKdCyqxfq//aJfSxu7EIVqOVbTsep2cmHxTde+KXT/aRyLABEI08SKUrGS7ruTSFKACFGWbcFGsu+hgliIjQ6NIyzCNIzNfZuxr7ivpZYi4ApyRqtjURKkRDUWc1IOqqm2CIt33303zjzzTHz84x8HAMh9rd+pfTKpAThWHQvctub2l2Vexoef/GGcueLM0HYoooKaWetcKA5xRSZB5skxrulZA2WhY/VDOLz/MGzLxqaTNh2T/TMYjGiYsMhgLGIM24msO2gaRl3Q67ZjkUZnHpkjHeGBXPhghOZGobaLyHPQLTuxI/BYoJo2tITneKqsoycjQhI6FxZnK+GDZI4D7J0ML+jtOA5mKjpystAUhdqXlVBSDehm9PF8+9vfxj/+4z/i3HPPxRve8IaW9wdyMibLWiLBtWZYEHwd2opmQhI5CDyHFT0KxubVrt3HFc2EyHNNxx2HLPAdCYvXPzyOE5cXuuJUHdq7C7l8ActWrWl63bIdTJQ0FMTF+7fCYDAeIdSjULskLPoHnLyxl7xIfg8bPNHcgaaUjqvUJBjwa8LWj41jEWi4OKMwakRIOxqORaB9YZEKXgHrX3nllXjOc56D008/He985zuD18/0k/ORRFg8mo7Feo3FFP0CXiR1O7slLI7cTX72r0296o69ByEIPE7alH5dBoNxfOE4TqggZSaptewhjchEo1C1gH7EnD7XaINtRgpd/ijUKLfdrplduH/yfgC+Gose8dKyLZi2GRhtGgUVYrxUjWpd0EokLPJCqjhTuk0ao9ppjcW0UagF2XX4dcOxmFBYPHHgREyr0zg8fzhwW6qpNglyVbOaOBI0J+XgwMG80XDM/uY3v8HTn/50rFu3Du9///tD1+1X+gEAY+VgYVG1GrU4l+eXY1luWei2MkIGqql2HG0rciI5bncoJo3IKAsyRF7E+p5jN8FoaPcQADDHIoOxSGHCIoOxiDEtJ9LFZxk6JNeJFuQIaxfNtOvbPTKnQuS5SGGx5nE4tgONQo0SUaM4WhLLXC3B4CqA6YqGnCzWz2EnTEcIiwCwdzK8813STOiWjYLSPKDVn5VRVs3QmFXLsvD//t//w7ve9S5cdNFF+P3vf4/e3t6W5ZbkZcxU9EhXJaWqWZBEzveaCVngwXMcVvVlMFHS6hGmnVLWTMgijxS6IjIS3/b+90+WcXC6io2DOeSVzgctD+7bhfWbT2rp+E+UVFi2A9EV8ufVLtZgYjAYDC/UsZhkQDGJ+BjlWKR15cL2RUW0NmrEJcP9rNVT1rC1jKNfYzGVsFg5ysJisgHBFqiw6HF12LaNiy++GG94wxtw4YUX4tprr8WSJSH1fbL9ZN9xLs6jHoXq3s8B0Xih8CLgdNGxOHwXkF8O5MMHL8PYsecQTtywBop8FF2eDAbjmECFwMAo1JQOuKqZvN5e3bEY0I+Y1zxRqE66KNSoZV/xh1fgwmsubKkL6HUsUgdlWgdkUI3HmllDXsoDAMpm/Pckz/FtRaHS58ZuONwsx0q8nbyUh2ZpTZGvqffJS+DAJRJeAWDLwBYAwLaxbS3vZcQMVEttOodVI7mwSK/VrDoLx3Fw6aWX4uUvfzle8pKX4KabbsLKlStD1+1TYhyLtBZngvtKERSoltqRYAuQ60kjYtf3rMfT1zw98bqnD56OJy5/IgYyAx21oROGdg9h6fKl6Ok/NlGsDAYjGiYsMhiLGNN2EKW1GYZer7GYJNYyKZrZiDY9MqdiSV6GLIZ/XKimRYSONnU0USCOxXZrLB6tBNXZmNhRimU74DiAbzNywstMjLC4byLcHTBZIh3XvNw8oNWfk1DRrVARjeM4jI2N4YorrsDXvvY1CCHOy2U9CopVPZGoXTOs+r1KqejkNZ7jsLo/i9mqjmK1O4OyVd2EIvKproEs8lCN9u7Dv+ycgCRwOGGw0JXrfnDvbmwMqK84UiSDroV0aWYMBoORHhoZmSQK1WrDsegdKKEDLGGDUnoZ4DhAzsfvpx14gYhvCWofNeGvdXg0olBp7KgWnlhQRz9KUahUWEzr+KRQYdFTY5HjOIyOjuLLX/4yvv/970OWI774lF4ixFVnovdjauncg51iG417KynUsditaXPDdwJ9a9v629mx9yCLQWUwHiXUxYuAj560EZeqmVwMCYtClXm5pcZilIOOOhbrcaAJ2jxVm2ppJ3WUUaEzqGZiy749+5IDIqe9wqKaIMZc5MRULjW/WNmpw03m5djz7aUuxGmzbe+T4zjIgpyoBiUALMksQZ/ch3sm7ml5jzoWvdcllWNRJOkYc/ocOI7DkSNH8IlPfAI///nPkc1GR/JnxSxEXsR4dTzwfSq+JhUWdUvvWCiuOxYBfPDJH8S5a85NvO4Zy8/Aq056VV0wPRYM7R5ibkUGYxHDhEUGYxFjWtF1B03DqIs1utk9dU0z7LojaqRYw0BOjnTfaYbdUY1FSeBhmDasDhTCdt2OaSiGOBZ/ecchXLsjeFZap8QJi4dnq6G1OKdcYbHgq/XY60Z1Tsw3DwQPDQ3h1ltvBc/zuOqqq/D2t789ct+DBRlzNQO1BPGhVd1sERarugVJ4MDzwMq+DBwH2DfVptvBR0k1oYgC0mh8iihAMy2YdvrO+/UPjWPzsgIGC53XHrBtG4f278HGLae0vDdaVJGTBWQihH4Gg8HoCrSWipkkCjXBMv5BRq8IR8UeI8QxqFcAKb+wbjNeTFa30ItlNM9uOio1FtM4FqvkuLolLN76FWD7bwLa5N4rbddYpOtXMTo6ihtuuAEcx+GHP/whPvCBD8THdmXcAa9K8EBeHUsLdg/e/WNgen/qZsdimQCX8vxT9243HIumDoxvB3pWAVL6GOEdew/hsSdu6LwdDAZj0RMlBKYVFg3bSOw8q0eh+iYoKYLSVD/PsqMddJbR7FhM2mb/cdN2pBGAvG7LwChUswpFUCBwAipm/PdkWseiX6zsODqTF2PPt5ec+/3irYnZDrIgoxbWDwxgU98m7Jvd13KtM2IGmqXVz4PjOKiZtUDRN4iclINZMnHzdTcDAL7xjW/g05/+NPgEUUgcx6FH6sFUbSpQmKXCdZCz1Y8syNAtveNoW5EX6zG57XCsaitSmLDIYCxu2Mgkg7GIMW0n0o1nGUZd8FO76lhsRJsemVPRl5NaRCEvqls/r90OC62x2K5jEUCkANstZkPcdB/5zYP4t5/enSgSNC1xwuL4vIpqyH4ny+TBqC/b3Inuo8JiqfEAd9ttt+Gss87Ce9/7Xti2nSh7f2lBge0Ao8X4BwDiWPRFobpiI4lCJbP/9oy3LyxWNBOf+N12nPX5GzBSrJEo1BTKoiLy0AwbaXXFuZqBuw7OYtNgHr2Zzge9x4YPQVNr2BDgWByerWJZjwKxc1Mkg8FgROPWA0pUNzCRq9FfY9GzjhDjWNTKRBhJEymZFl4K338QHEfEUsfynKujKCxqCYXFbkah3vUD4J4rWwXULjkW792+C2eddRbe9a53wTTN5HWAMm5cezlGWDQCaiw6DnDNB4G/fDZloxNgm65jMcWXNi8QF2w3hMWJHeTvrHdN6r+dqdk5TEwXcRoTFhmMRwVRwmI7wkZS91pYFKosyE3ipGmbke2wLRu2bddrIiaNb/XvlwqK9PUkNRa95y7MsSjxEiReShQXKvBCoKh3+5HbA6+T3+UXVYsyCSIvxkbPeqGOxRk1JjUgBkVQULNqifd74sCJOFI90uRsBYCskG2KQtUsDbZjJxYWp4amsO8z+/D9T34ftVotVU1CgMShFrVi4LWitUSTCIuKoEC3uyQsdiFR6VigqzpGD44yYZHBWMQwYZHBWMSYdnLHoprANebFsp1Ap5vjONBMC5I7I2uypKEvI0bWUPQKke0gCTyMjoXFtldNTLEaPXBa1rpTH7B5n9GDlFMlHVUt+NpPlTSIPIe8z7FIhcXxefJg8/Of/xzPfvazcfLJJ+Paa69NNBsPIDUWAWB4Jl5YVA27fk9RatSxyHHozYhQRB57J9oTFv++dwrP/9qtuHLrQUyUNByarqaOQs1KAtQ2HIu37p6EZTvYvCzfkXOXMrR3FwAERqGOFlWs6stA4I/PhwMGg3EcksSFZyZYJtKxGBeFWgHkBRYWBTGdsMiLjShU+v2WpB5lp9TdfUmExS5HoVanAW2+taYmjWdN4TRoQpDxu50Gzn3HV7By5UrcdNNNEMUUE3VoRFcpRlg0tVZh0aiR45nZl96xGgeNQk0z8a7uWOxCx3bkbiJ696ePM92x5xAA4LQtTFhkMB4NRNZYTOlYBJK712hEo2a3OhZrnrq7phMfzWnoRqIai03r+PomVFCkzsUkUajebQQtXzNrEHkRsiDXHWtRCJzQIiZN16bxtuvehov/dnHL8v5tdipESbwE27ETb6cbUagAueaaqSV2XJ7YfyJsx8bO6Z1Nr1PHIr1vKwZxiQa5Sf3cdetd+MArPwBe4vGWK94SG30aRJ/Sh3ltvsWFC3gci0IyYdGwjM6jUHkxUQTsYuTQvkOwbRubTt50rJvCYDBCOD4/XRgMF820sHXf9LFuxoJhWk6MsKjXI0trKR2Lmz92DbZc/H/QzeaOimGRuo5eobAvJ0fOclID6uelQeQ5st8O+kxHw7FYrHXHiWCZyR/O5tXwfQoch5phhToGp8o6ejIiJF+NxB7XVTc+r+Kyyy7DBRdcgFe/+tW44YYbMDg4mLhtS11h8eBMvENBNayme8pxHNQMq167k+M4LO9RIqNdgyipBj76mwdwwfe3ISvxeP6pKwA0HJJp9DdF4qGb6QXuGx4ex5r+TN112SkH9+1CvqcXS5c3F4Y3LRsTJRVrB3JdqePIYDAYiUggltlGghqLfoEySFgMjUItE1cct5DCokSiI5P2J3jJdSzaJO4SOLqORTVBjcWIKFQrbadLrxDhVSu3XkvedUW2KSz++I9/x0uvquEfztyCW2+9FatXr063ATlH9l+ZiF7OCnAs1tyB0LmRZGJtGmzTPf9phUUbHXWKKcN3AX1rgGz62kg79h6EJIk4cUPKa8FgMNriV7t/hQcnHzxm++9mFCqQ3r2mm62OxSZh0TZjnXi6qieKLvViWNHCYtoo1KAEp5rRcCx6IzrDEAL6OvS1fcV9rds3m797O41CpW46w0nWp6E1CWfV9MKi4zjYesNWOI5DhEVLS+w2XZFfgayQxZQ61fR6Rsw0RYhS52ucY/GWa27Bh9/wYZz2xNNw6qdOhbC0vT7ngDKAeT1EWDSTR6FmxAwM22jr78+LyIvgj9Oh/wO7DwAANrD0BAZj0XJ8frowGC4f+vUDOP97t2PPeILBleMQ03YinXimodcFPa3NGM5DPlGIRqqKHkVmIBve8TEtG6btQOrAQVV3LHYgDh4FXRHzXRIWd9x3J9neXDF22ZJqwggR2qhjcN9k8EDY+LyKgiK2RJBKAo+sJGCypOE5z3kOvvSlL+HHP/4xFCVdfn5OJi7DkWK8sFjzic+aacN2ANkjeq7ozURGu/q5edcEnvfVW/Hbe0fwj6evxGvPXo9TVvYAIEKmLAqphMWMKEBLKSyalo2bd01i87JC3QnaKUN7dmLD5pNbxPzxkgbbAU5cUUg1RslgMBgdkSDm1Eri9PIPWnp/pwMsZohAqZcBKbvAUagyqcEX4NYIXt51LDpWo11Hw7HoxsbBSOpYDBYW77ifuONHx2LEOErFHbjTy63xuBxHnJRtCovPPPvx+PR5Cn71kZcgl0tfCxAcD8iFRhvDMANqLFJhsToNlBOei6RYhiuGpxQWgVZXaDsM3wn0riX1SVOyfc9BnLRxDSRpAeuaMhiMOp/Z+hm89prXdiwKtUu3o1CLWjHV8rqvr+F3LFpOfM0/XUsvLPr3S8Ug+lPi4p/vvOcuaDJ2zWo4FjVTiz2OINcj3S513wENAZFGfVJs2LHuzijoOQwSxsKWlwUZc9pc6n09eMeD+NibP4YDuw7UhcWkDj2e47Ghr1VwygiusOieH1rXMs4l+NgnPRYXvPsCfOGHX8DgwCAma5Nt/T32K/0oG+V67KkXek6TxLIqggLd0jt2LAqccNw6Fod2DWHZqmUo9BaOdVMYDEYIx+enC4PhMjZHBrLajU9c7Fi2E9kptG0LvDtzTzWiOxxmwqhRzd2OVwQaLIQLTqrZunxaRIE4Fg2r/Qepo+FYLKnxESxJGBs5DIDUgoijopkwreB9Li2QDunuEGF9oqQhr4gQfRGkM5MTmP7zZZicnccppzwGH/zgB9vO3R/IyRif12DH3Ft+x2LFjY2ljkUAWN2fiYx2pcxVDXzgV/fhjT+6E31ZCW9+2iY8/zErsX5Jvu7kozGraY4rI/GphcV7DhUxVzOwcTCPjNSdAe+hvbtCYlDJw/VjV6V3HjAYDEbbJBDLTEOLd1h5B2ccJ7jGYphAaemAuMDCoiCR/SQdwBEkIrDZR7nGIs+TeFO9Er+sqYY6FvcdHgOA5H0vKtoZ1eB4XCGDxKIsgJliCf96yTdRnC9j0/q1uOS8LHi7zShVAFB6gVqx+T7zExSFWo/rc4CJh9rffxD1Gosp+sh8l9yv6hwwvQ/oWdmIqk3Bjj0HcdqW9BGqDMbxwHglJjb5GJLUrdX1/dIJIwEf41GiYxhpRSbDNpqesxVBaYr4NO345/B2hEX/sdF91oXFBJGVXsdikICjmipEXkxcMy/IsUipGtUWockrogFEcAyKtE0KddPpTvIJLjkx11LrMAn7dhIHpmmYdUEwjUPvxP4TATRH3/IcDwdO3eEaFYVaLVfxlY98BbNTs1i6Yine/P43QxAFLM8tx0R1osUNmoT+TD8M2wiMhqWORVpbNApZkGNriybheK6xOLR7KLa+InUJB7mFGQzGwsOERQbjGHDtjjE8MFyMXc607NjagY47uKOZ0QNhWy7+P2z+2DWxHXLVdYvRGm6ywKOQCe+g15fvSFgk69b09mdjHQ1hsaJZMLtQzHFidDj5PnUTeogAKfIc+rISDkwFDy5OljTkZKFJ0Nu/6yFcdP4LMbfrdoyNDoduOylL8hJmKnrd6RqGathNAmfVrQnqFaRX92Ujo10B4PqHxvHcr92Cax4cw4sftwrnn7UOZ6ztb7lHVcOGnLLGYkYSoJt2qmt8485x9GREbFqa3g0QhGVZOHxgLzaECIt5WcCq/vQDhAwGg9E2thErGlpGAkHOK0ZVJkNqLEYM4EiZRuToQpA6ClUkwpFjexyLR0FYBIiwaMSnBcCouTGlrd+F+4fH0u2zSoXFWrDoJSZPPdh9YBjnvPq9uPq6v2O/K3BCkDqrcZjpIfUfw1yvQLCwWPMM/I1tb3//QVhGG1Go7r0UdRxJGL0PgAP0rktdY9NxHOzYe4jVV2Q8Itk/tx/P/fVz8Z0HvnOsm7KooAJbkCB1VByLZrPg5o9CTexYTNFPMG2zJQqVuszqwmKCyEqv6zFMWBQ4oe5AizufUeJoxay0CG+apTVt03a641jUUzjnc2KuyU2ZlAM7D9T/rYhKy7HEceIAERbHquF9GtqujNj8DD0+Mo6LXnYRbvrDTRje3zw+szK/ElO1KVTNBH0tH31u3eegCQyapYHn+EQCuCIoMB0z1XUI4rh2LCYQFjdkN0Cf0HGqcOrRaRSDwWji+Px0YTCOc/7tp3fjJd/6e2jEJYVEoUZ3Cm1DAwdAT1hjcb7W3BE1fYOFGo1CdcWoJXm5yVXmp+YKRHKAsPiT24Zw9d3xIhqNUa1q7c/QbFfvu2toBo//9HWYLMUPZlX18FjSNEwcGUm0nCzyqOpW5D6X9ygYnVPrAq+X6YqGnNIQFrfdcj3+/cIXo6dvAM/+8Pfh9K2JFKS/eeMe3LIrOhZssKBgtqLHOmb9jsVqwH2zoo909vcEOJBnKjou+vk9eNuVd2FZQcabn7YRz3nMClJvMCDv1HIciDyfaiwvKwvQEzp7KTc8NI6TlhfQn+tODOqRw0MwdC3QsXh4toblvQoKCoslYzAYRxEqnkUukkRY9AyM2FbCGouez2Mxk06gSQt1LCYVCWktPNOzTod1cBIjZgC9Gi+CRjgWD6QVFiuTjW0GCYAJXXE33X4/znnN+8DzPLb9z9fwxNO2kDcEmWy7XTJ9RFiMGoCzIoRFuQBM7Wp//0HYpnvuj0EU6sjdxOXbn75G4sR0EdPFeeZYZDwioYP9e2f3HuOWLC78ApuXdmq8lYxSKnFLt5sjH2ksJsWyux+FWjWr8Y7FBMKi99wFuaY0S4MkSImFxSgRSLf0ljb7t2k5Vmw9yiioS9MfExtFTmpTWNzVEBazQpY4OlPEj67rWQcAkfcGFQezYrb+2kP3PoR3vOQdqFaquOw3l+H0s05vWmdVfhWqZrUtd3O/0g8AOFI50vKeZmmQeTmRu47GpdbajJmnJLmHFyNqTcWRw0fiHYsch90f2o0lypKj0zAGg9EEExYZjGMIFVfCsBIIi4ZhQBS4WMcixT8LsVj1daZ9Uaj9OQlKhLBIhcggw+Inf78D7//V/SjHCIbUsRh3PqJod1bejtF5zNUM7ByLr9NJRL7OHIuV0jzmZqcTLZuVBFR1KzQKFSB1CSfntZZz5zgOZio6chKJQh0e2odPvPsNOOPsc/G1K3+H1WvWoqSa0CPum+//dT+uuutw5LkdLCgo1oxAYdOLZtpNdTgrOrknRLHx2ooeMijpj3a95sEjeO5Xb8Ffdk7gX85YjVefuQ6PW9sfK7ApIpcqEkMRXcdiQvH40HQV+yYr2DCYR75LYt/QXjKouXHLKS3vjRZrWNmX7dq+GAwGo4l7rgR+9+7W1y2jS8Kib9DS68iqOxZ9wpJXXPEMCC0Igkz2l3UHJtSYGLd6XciaJwr1aAmLMjl/cYNvhhroWNR1A4eOTKbbZ8WzfD0+1NumeGFxeGwKL/zXT+BJp23B1l9+BVs2eEQvKiy267LI9AFaKVqQM/UAYbFI6nf2rAKKB9uuExmIZbhRqCmERa5L7tfhu4D+dYDck3rVHXsPAgAee+LGztrAYDCOG6LiTu24qPMAKkYlVayrYRtN4pgiKE1iURKxzNCNjqNQqaBIXWJJauF5txHmWJR4CYqotMSWBhHnuvQLvX5h0XbsNMnkLVAhKo2gnJfyqd19juPgwO5mx2IS4dWL93qHrVd1Ex5o/Oh8cR4fvOCDWL1+Nb79u29j08mbWtZZkVsBANg3ty9xWyi9ci+AYMdizawljial9147rkkvaf8mFgsH9xyE4zixwiKDwTi2HJ+fMAzGowTTdmLHVwxNg8AnFxZb1veJKFQgktzYyr6sFOhGbCwfX2OxpluRIhAVnKjY1A7tOhbH5skgZkmN3rckcKgZVmLRKYwDe3YmXjYrCZgqa5GOxZW9Gdy2bwpzNR1L8o0Hn/maCcNykJU4OI6DtRs343NX/AxPfMozIAgCBnLzKGvhMauqYWFeNd06n+FjYoMFBZppY7KsYXV/8KCv4boAvfcIraOY9YjWssijPyvh0HQFjuOA4zh888Y9+Or1u3H6mj6cd/IynLi8gJyc7KsrymkbRMZdvpJQ4L5x5zhEnsOWZflUkatRHNy7Cz19AxgYXNb0umHZmCprOO/kZcjJC1hjjMFgPHr5/UXk5zM+CAx4IhDtaGHRsh3YCcTHlvhMrwBUF+l8wqLXGScfJWExt5T8XivGLO9+F+nVhiOwwzo4iREzrghnIfJxzqwRJ6aP3UMjsNL2Z2iNRQCozbS+L4VfH9u2wXEc1q4cxB+u+CTOO+txkCRfu+n5d+yGuJaGzACgl8MjRB2HOBaFAMeilAN61wBjDwBaOfJYUmG3E4XaLcfiXcDyUwE5l3rVHXsOQZZEbF6/qrM2MBiM44YoEamduo9VowrDMhK7pXRLb5rM6hf0TNtM5FhM687yOzVpDTzVUsGBSxStGlVj0bRNmI4JiZOg8AlrLMbUk25xLNp6k/jbaY1FKkR5HaNxFKQCRsujqfYzeWQSlfmGyzEjZhKdnzBUUwUCUtkrRgUyL0PgBNi2jd7+Xnz2e5/FY5/0WMiZYOF4eW45gPaczbIgIytmMVFrTX6iInOSaFJaE/LRKiwO7R4CAGxkk5wYjEUNcywyGIuYJI5FXVMh8Xyk8ywKw/QLi+R3OgbSkxHrjsIgakZ4FColLlqSbv+3941g40f+hEMz6WM02q2xSOv5lWrRM8MzkoCa3nmNxaG9O+G4A6VzteiHtJwswLQdzKvhbVvRq8B2gKHp5g7nZFmDrZbxhy9ehN/9/AcAgCef+ywIAnlQ6cvK0Ew79LgnS+RBIu7aLS2QDu/wTHiHl94jktDqWMxIzQ9OeUVA2XOe7zgwg5OWF/CKJ67B6Wv6EouKAKCkrPupuG1JKnBf/9A4TliWx2ChezUPh/buwsYtJ7fMYhybV2E7wEkreo7b4usMBuM4QZtv/j0mClWzAMdMICxavs9W78CYEOJY9P4uphdIUkGFLcV1eAWJZ168dSHpx3KK+K6OoMJilJvAMsn7AcLi9j0H0++zPE7OEQBUZ1vfD3GUlis1vOyiz+Hz//VLAMDznvbEVlERcGtcJnBhhpHpI25DPaQPSQeP/QNs1WkiLPavI9e8Eh0BnwrbdEXSFP2RehRvB8Li/Ci5Xj2rEjlJ/ezYexCnnLAOosgmMjEYjxaiHItphUVFUFA1qh07Fr1YjhWbUJQ2ChVojfukIqFukW3xfPznt/fc+dNyqFBJo1AN20jlWCwbZRwpH8Hh0uHG/qzWKFTvubaczoRFKs6miUItSIWmmphJ8MagAkBGyMCwDJj+/mJCwo65YlQgWiK+9cFv4buXfhcA8MSnPTFUVASIONgn9+HgfBv9JQA9cg9m1JkWMVw1VXJfJRAW6d/Ao1lYXLF2BXKFBe7/MxiMjmDCIoORkj9vH8PGj/wJlQ7qASaFCIvRy+i6BlHgoJvtFen2R2hSxyJ9PS52se5wjBBx/HUc/VDB6e4hMlC1dW+yqFAv7QqLY3PUsRgtLGYlATUjut5hEob27IQ2shOOqeP2g9Exa1lX6JqphHfqV/SSAaO94811Ce/dvhNHfvoBjO3bERir2Zsl15U6Nv1MuMJi3GmlLsnDs+EPEqpO75HGAFXVFe8Un7CYkQSoutUkaAoChyV5JbUrUErrWJTI8uUY9ypA7pc7Dsxg02AePZnuddYP7tuFDVtOanmdCuCPXdPXtX0xGAxGIuKERRNwrPg6jC1CiddZxvFEgIkSFttwXqVClJvjJ2tJo1A9bTyaNRbjRDg6wBcoLA6l32dlEsi7bvpagLAYUGNxeGwKT7/wg7hx6/14wmM2R29fcM9/u67PTG+jnUHQ6xRUY1HKAn2kThPGd7S3/yDqUagp1qHtixjkj2XkHvKzb21bq+/Ye4jVV2QwHmVECYuWHS/qeckIGVK/MEWks2EbLTUW/cRFc7YjLAa5/wC3LmJCZ5nXseifAErFNpEX61Gfcc5Lr5h59Z6r8fyrn4/z/3R+/TW/k9B/7mzHjt1HFPQcphIW5UK9PmVS/MKiIihw4KBipp9kHsXY+Bh2fmEn7rj+Dpz8uJMTr7c8txxjlbFUzk1Kn9yHolZsWVe1XMdigqH4R3uNxaHdQywGlcE4DmDCIoORkp9tI7OWbt7VxRnNIZi2DTtGWdQ1DZLAw7DttuJA/QKp6tZMpHUR8zEOsZorGkXVYYwry0Adi+26LoH2S/JQYW0+RkzKSDw00647OttlaM9OSAIH9dCDuHekXK9RGUTWjbycjRAW+3MSJIHDnolGXcK//vWveMvLnw84Nj58+a9xxtnntqzXlyUdzIkQYXGyRF+PPrF9WQkCx+FwAsei6HUsahZ4rtVVSAXcTp2hQPooVMWdmZ9k0sBf90zBtB1sXpaPFNXTYBoGDu/fiw2bWx94RosqCopYF5IZDAbjqBEjGmqWAycmLhVAQBSq73dBBAzf4I13MEUuJGhsB/Cy20b3ONRiq8uyaXl3Yoy3jR0M5KUiiWORtitgQGn7noOQ5ZQDTZUpID9I/h0oLDYLv3c9uBtnvfLfMTNXwt9/8Z/4p/POit6+IJOo0nbPYcadeFNurWkEoCFktwiLM66w6Ipw49vb238QbTkWuxCFOnIXiYbtWZl6VcdxsH3PQZx24ob4hRmMRyhX774aD08/fKyb0RFU0JquJZuwGyXapXXAZcQMamYtVY0+w2p2LAbVNowTunRNTyQE+vdLETgBmvtdoZkaqYWXYGaIt13+/VOxTeI9jsWYCTRex+KK3Aq8fMvL8eqTX41zVp0DAJjTGhOfJF5qcUHaTnsTzr3bBNIJi3kpn+p6A0RYlJXGdVZEIiZXwpIH2mD79u34xhu/AXVCxed+9jk868XPSrzuivwKTNQmUDHSt6df6ce8Nt8kOgPt1VgsG+WYJaM5Xh2LB3YfYDGoDMZxABMWGYw2aaOGeWqsBDUWdY04Fk0zPjY1iLJfWHSFM+oYixIMAUB1xcAoESfWsejWWGy3TiTQvmOROvNKMWISjeycq7U/0OM4Dg7s2YkNm09Cbf/dODSrYXgmfAZaJoFjkec4DBYUHJ6pwrYdOI6Dz33uc1i96WSse+NXsWnLlsD1+nOkozpSDN4/PS9x8ByH3qyII3Nq6ANMLcDVWtVNKKIAnm/uVGclAZppwbK6ICymjUJ17+G4epsAcOPD41jVl8Ga/u45aEYOHYBpGti4pVVYHJ6tYnmPgrzCYskYDMZRJkY01C3EuhoBtAqJfuGEl4iw5MXrBlQWWFikjkXaZ9HmWtvjhToBvcJim/FdqZEypG1ex+Kn+sj/9LvYCHcsPrh7CBtXL0+3z8oUkB0AwIUIi81RqF/6wa+xfvUybLvqa3jcyZvit08di+1GoSquYzFUWIxwLIoZQM4D2SXA5O729h+EbQI8316NRbMDYfHwnUD/WnJMKTkyMYPifJk5FhmPaj619VN41R9f1ZHr61gzVSN1cSeqySZDxzkW05yLrJiFaqkwbAO3Dt+KWTXgOyNg/3GORb9I0/K+lv5z0+soE3mxybEo8EIiodIrTvqdaFTg9QqLcQKct8biqvwqnLf+PJy75lyctZJM0PGeT4mXoFvNdQnbrVFIacexmJPSPxMf2HUAGzyTWOg1T+tYfP2pr8dZK89CXmz9zvvGN74BKSfh3C+ei1POaE1ximJVfhWKWhHz/hIBCRjIDKCkl1odi21EoaaNmKUsySzBaUtPw4rcirbWP5bUKjWMD48zxyKDcRzAhEUGYxGTpMaiYWikxqJttyWu+QU11SBOMpFPNghCYy6jhMWkNRY7kZLaMbiVVKPuuPQLrH6oyFestB9NNTs1ifniDDZuORm1A3fDcqKdrznXsTgVISwCJA71SLGGXfsOgOM4XHXVVXj9p7+Dvv4ByCH1cfKyAEngcGQuJAp1Pnnkx5K8jKmyBj0kJpaeY+8tUtEsyCIPwXefZWQBqmHHitFJyErpRDh6jePuBct28JedE9iyrIDeTPeiRQ7u3QUA2BAgLI4Wa1jVl0EhJpqYwWAwuo5txUShOuBsKz46oMWx6PtuEwKERSqOiQr5fyGpR3FSYbHUHNfqhwpATY7Fo1ljUQve39xwc7t8wmKlqmL/4TFsWptioMlxXGdfnoiaakBMrJSF4zgYmiHX+Yeffy9u+sl/YOWyJcn2ISrknug0CjXWsej73lbnyPnkBaB3DVA82HxNO4E6FlMJix3WWLRt4Mi9QM9qcr1SsmMvSWY5bQtzLDIYaR1Yi4kooTBw+YjYUtM2U0ehmraJilHBB2/5IL55zzdj1zFts8l1J/BCi9MqLpLSKyyet/a8RG31imcCJ9TFS9VUIXFSImdZU41FLrzGYj3aMkYo8joWveTdz/RZrVlYDHIsdhSF6u4/zT0UJOpFYVkWhvYMYZNn4lFGIMk8aR2CT175ZLzu1Nehl04wAqBNknvlsssuwz9/7Z/Rt7IvtZt1ZX4lbMfGgfkD8Qv76Ff6UTbKLddatVSIXDInLL1fqkZ7NRZlQcbbTn8bNvfHRNEvQobcyP5NJyWYmMZgMI4pTFhkMBYxthPv9iNRqBxMy2nLRTlfa+4wqoaVKtpRNS2IPFcXB4OIq0so8BwS6pihxEXGBjHmEdWqMWISFamKHTgWh/buBABsOukxMGdG0JcRcMvuydAHNUXkwXNAsRq9z2UZ4J4ffQLPOe/pqFar6O/vx4zqoCcjhQrEHMehLythfF4L3P+RueSDakvzCmYrOlQ9+DpTF6xX5KxoJmSRb6mbmJMFaIYVK0YnIZNSWKSOxbgo1PsOFzFbNbBxMFePq+0GB/ftQt/AEgwsXdb0um7amCrrWDuQSy2WMhgMRsfYZqRoqFkAnCSORd9nq3/AipeaHYNAo06glHcjJRcQXiKiFh1I1krR4g4d8NQ9Az7timKO06iLlwQpS9oWOOjtXiszOAr1oX2HAAAnrE0Rk0nPhZwn+9bmW+4JzZHwxt+peNI3hzE7X0Ehn0U2k0IMFlxhsd2JRWKGiMPlqeD3qWNR8N1HNSosikD/eqB0BNA6ix2rY5muUHgUHYvTewC9AvSuJvHCKdmx9xAyiowT1qWPUWUwGIsHKhQmjTA1ne5GoQLEWWc5FvbP7Y8VqfyORQDICs1OeC1qsg8awqLES3URLo6mKFRegGEbcByHCEC8mKgWHhUjeY5vEa+osKQISsORFyOceR2LXugxzagz9dckd/JQ1Wr0RWzHTnW9gvbPc3w6YTHlRJbRg6MwNAMnnHJC/TV6fsp6+9/Blmnh2q9di+0f2Y6xI2PIZDIwRAOSkKxephfq9Ns3uy91O/qVfjhwMFltrvtMI3aTtIVG0lbN9oRFIFigPx4Y2j0EAFh/IktPYDAWO0xYZDAWAbppQzWCB6N0s7VTWHIFHF7Ju1GoPAyrPcei352lmTZEgUs0Ow8gbjRJ4COFwaoeP9DWaZ26dpJQaX1FniNtjJqJmZFI+2ar7TsWD+x+GLKSwcq1ZBb4ycuyeHBkDnMR28xKAooR709PjOGa//g3lPfdhY989svI5UgMycS8irwsRAq+/TkZs1U9MIJ2PIVjcbBHRrFq1Otz+qH3ttfVWtZMyAH3DYlCtWEcC2HRvcZxsbh/2TmOgiJi02B6J0AUQ3t3BboVx+ZUOABOWdWT+O+SwWAwukZMzKluAbwT7Wok20lQY9HSm7djuGKQnGuNsOw2/mhTx452LNLlvQM+MSJsKEN/A773LBJhmQSRCosR/asQx+KDu4fAcRzWp4lCrbpinZwnIq9WbhI1p2bn8dyP/xpXbTfwzZcMYqC3je9HGkXbietT6QFq08HXIKjGom0BeqkR49q/nkSjhrke09KWY7HDGosjd5OffevaWn3H3oM45YS1EPwCLIPBOK5IE2MJRDsWLSd9FCoAFLUiAGCsMhbrugqqPUi3Q4mLQjW09M/p3m0KnFAXOGkUapJnL3qug5xo3ijUugMtRigKE4JyInnOp+eVbhcAanpjUnBaITiwDZyYusZiEzG7379zPwA0ORZpjcV2awqW58v4yBs/gnt/fy/WvXYdVq4iE2QqZgUSL0FIOUGtV+6FzMvYP7c/dVv6FFL3eaw61vQ6FayT3Fc8x0Pipbrr9dHE0O4hrFq3CtlcNn5hBoNxTGHCIoOxCDjp4/+HUy75M/QAgUcPEGuKKllOKCyFrquuY7FNYdFXT04zLEh8CseiYUMSuBbnmZc4BxgQHaVK0U0bT/uPv+CGh1sHfNo5dupY7M/JbvxmlLBIOqKzMe7BKIb2kvqKdLDmsStzmK0auG+4GLpOXhFRUo1AR+bc8G68/8J/Qm1uGisv+BLWP+EZ9fcmyxpyilivXxnEkpyMYlWHZrTedxOl5B3YwYKCkmaipAY/zNEai956ndSx6I9CpcJipzUWBZ6DEhIDG4bI8xB5LlYIv+6hcZy4vID+rBy5XFoO7t2FjVtaaz+MuO7R01b3trzHYDAYC06MsKiZDjjHTl9j0e/Ioo7FJmGROhazyYXFfX8BZtLHVkErufv0DPjViuHL16NQPd+XSSJhg6BC1vSeZMtLGXL+IgaC68fhq1O1ffcQTli3ElklxXdYxRUWpRwRF41Kfd87x2o4+4KLsWt4Bn95Qw4XPLEn+Xa90CjUdmssAkRYVOeCnZx1x6LnuGmkK60N1beW/Bzf3n4bvNAai2keuTuNQh2+C+hZCeSXtrX6jj2H8FhPzSsGg3F8kjoKtYs1FmmkJa0FOFmbjHXp+aNQASDrq90bJ3S1U2PRH4VqWAZs2CQKlU/mcqOi7IbeDaFRqF7HYpzIGiaASYIEiZdaaiwCzXUJbcdOFV0bhMiLkS5WPxkx0ySqxtV5HNo1hL4lfehf2l9/re5YbENYPHLoCN790ndj53078eovvxrLn9OYPFU1qomvpReO47AstwzD5eHUsch1YbEcLCwmccICeFQLi6y+IoNxfMCERQZjETE829rJDHKTUThBhKFpkAQeRptRqGXNbBKtaoYFSUiS+k5QDROSwEcuX9biB4nkBI7F6YqGkWIN9x5sLQBvtXHw4/MqCoqIvCyg5sZv0tNtOc1HpIjkGKPcg3EM7dmJjSc2hKMtg1kIPIcbH46us1jWLBgBx2ebBlau3YCv/ewayCs2Y/d4oxM+VdaRi3EsLslLKFYNaAHi9WQpuWNxaZ4M0g3PBsen0hqLiqctFd2CLPAtD18ZWYBpO6gZndU0UUQeKfTxOrLIo6qH73t4too942VsGMyjkOmee8bQdQwf3I+NIfUVezMilvdkurY/BuNRzW/fDpS65Eh6NBAnLFoAjySOxZgoVCHAsUYHU8RcQ3CJ4w/vAf7y2fQCn9+xCJBYzDDqkZVeYTGBwBpEze3XVGeil6OIGQBOswjqhwqevtqU2/ccxOlpB2uosJjpI8KiXq1fT91ysGJpH+747nvx1HUdfC8KCokO7aAuFJQ+IhYGOU3pdfJGw9LzLrnfr31ryM/xHe23oQnn6DsWh+8kbsU26is6joMdew+y+ooMxnGIaqp4z1/eUxeU4tx9fqKEkziRyE89CtWtBWjYBg7NH4pcx4EDzW7+7G5xLC6AsOgVVAVegGmbDcciJySqhafbOiRewrPXP7vlPa+w2KljESDnZF6fr/8eFJfZNWExhZjGc3z9ugPx98yBXQdwwiknNI0FJBVeg7BtG7lCDpf/7+XYdGZzXb6q2Z6wCJA41MnqZGxdTD89cg84cBivNj9vaCa5r5K2RRZkqJba8fU83hja3Vx/MwrHcbDh/RtSCeEMBqN7MGGRwVjkRAmLEES3xiIP03bajEJtFq1qukXEqARjILftm0KxapAo1ABnnCSQ1yoRQg1FSeBYnK2Qjr8VcJxaQGRsHEfmVPRmRGRlAaphwbQdjNTcWorINS3LgbgW/TUpk2LbNob27sImj7CoiDxOGMxj24HpQHEPII7FimbCcB18juPgF7/4BWzLxMDG03DpD67GmjWrUVBEHJiq1JeZrRBh0e8I9EKdhhWf8GtadioBdWmePAQcngl+CKgZFngOTSJnRTMhiRwErtWxCLQ6adOiiHzLtpOuV4twLP5l5wQEjsOWZflIl25aRg7th2WagVGow7M1LO9RkFeOv/oIDMaiQ50D7v8FcNUFx7olxw92tGioW4CABIJabBSq1BqFSsUgKZNcWFTnyXppBaq6A9EzeBQZicmRdbyDTbaJ2PyvINQi+VmdTrY8HbyLqkNUd3u2CoupHWkVt0YQFRaNKn71q1+jppt43Joc/n7lZ7Fx3Zp02/QjKuQe6SQKNdMXXhuTio1exyIVFt14OYgZILcUmNzVnvM0CD6tsEgdi230Nw0VmHgIKKxsuDBTMDI+jflylQmLDMZxyI92/Ah/OfwX/GTHTwAcW8ciFePmtLn6a3uK8Y58v3hDoz8pcc6tthyLvihU0zHTR6FaOnrlXqwptH4PqhZxPgq8kLzGYkRkZ07KoaJX6qIfFSG9567TGot0u4aT7h7yXq9YYXH3gRZHGo3+TCMs/u3av6FSqmDNxjW4/H8vx/otrTX5qka1rRqLALAqvwpTtSlU9Ohr5ofneBTkQmuNRUtLHIUKEGFRs7TU4v7xTKVUwcToRGLH4iH1EHpO78G22raFbRiDwQiECYsMxiInKAqVwgkSdF2DLPAw7faiUKt6Q7QCGo7FOEqqgQu+tw1/evAIxJAo1JxMOrpJolClBMJi0Y0hDYoFNaz0na3RuRp6MpIbv2nFxm/mZAElzWxrxtj4yGGotWpL1OXj1vZh32QFo8XgWXAFV1g0LRu6ruOtb30rXvva1+LIg38HgHqndHmPgtFiDbppY65mwLQdFORoIWogL8NxgLH55n1PlfVUjyJLXMfioRBhUTVIHU7vLUIdi35XIRUW52qdCYuyGCx2x6GIAlTDhhUSi3v9Q+PYtCyPZQUl8P12GdqzEwBCHYur+rMoMGGRwegcGrOVMtIokvIE8MN/6N72FhsJolD5JMKi5TvnQcKibTZHYdIBPzGTLArVcYjY1o4oRJ1s3oHN0ljwshRBanbHJak1GUTVFbio0BUHdSHS+NYg6HF4hLTp2XkcmZxpT1iUC4CowBJz+PerD+NVr38LfnX7YQBuX4S6/toV5KhjtZMo1Gwfuf6BwiKNQvU6Fovkp1JovNa7Gpg71CwwdwSHRLP1KHXHYhvC4tiD5G+odw3aiW3YvmcIAHDaia0DswwGY3FD4zhVS236PfH6UcKiY8FGCmGR45ARMk21APcX4+vU+YVDf92+OBdmW45Fz3kSeRGGbcBxHOiWnjiyUrf0UBdazazV3XJ1x2JcFGrERKq8mEfFbAiLdJte4asbNRYlXkotZnmvlx2RJqWrOoYPDAc60mRBjnV00u3/4Ms/wCVvuwTX/vpaAAgU6xzHgWqqdVE3LSvzK6FaKo5UIxIsQuiVezGrzTb9bUXdK0HIvAzd0lMJ+8c7Q7uHACCxsEjPTZrPKAaD0T2YsMhgLHKMCLGLEyQYuubWWHQCnXxxUNGKoho2RD462hQgEaoOiEAkCTyCNJycTDrFpQTusySOxWKEW7Adx+LYnIpCRkROFt0ai9GdkawsoKpZkbUYwzjgCkebTnpM0+uPX9sPy3Zw867JoNXQkxFR1S2MT07hBS94AX7605/iJz/5Cdac8cym5Vb0Kpgu66jqZj3GNM7hNpAjDyIjs80PcWnqKwJExMsrAo4Ug9ejwqJXfK7qZstrQKOWZVlrP3IWIAJhO45CReShmlbgvVDRTNy+fxonDObRm5UC1m6fob27MLB0GXr7lzS9rpkWZio61g1kkZHYVzaDsSi54VPAoa3AfT8/1i1ZGBJEoQqc00YUqm8AMMixSBEzJFIyDlNz29vGgJqQ1rEIIkZ6hcV2ayzW3AhU6lyMI6ljUZCaBNntew4CAE4/KVm8VJ3KFKAUMF818JKvbsW3ts7jW1/6LF7/DM92fJF1qRFk4ljsRFjMDABaOTgKlQ5IBzkWZU9dyL71wPyR6HObhrSORXqfp3QbAQBG7ibXu39d+nVB6ivmsgo2rlnR1voMBmPxkNqxGCFEWo6VemJtTsqhpDcmvxwqHQoVR6jI0uJY9DmvY4VFvcMoVI5EoVqOBdVSSRRqQseiwAfHpqqmClmQwYOHwrtRnzHCWZRjMS/nUTEq9XaHRaF2KkTRc5EG7/WKuv8O7TsE27JxwikntLynCEps9KdaU/GZd30G/33Zf+NfP/KveOkbXxq+rKXChl0/T2lZkSPfh/tm96Vet0/pw5w21/S3RWssJkUWiLD4aHIsDu0eAs/zge5TBoOx+GCjlAzGIicsIhMgNRZ1TYMo8DAtu62xrKpuQfcIizXDgihwsZOraVykZTukJiPHwTJN6FpDXKLCYlTNOkqiKNRq+MNC1HkKY2JeQ14RkFcEaGa4S42SkwXX4Zm+oz60dycKvX1Yunxl0+ur+jLoz0q4ZfdkYAe6oIgozxfxwuc8Ew8++CBuvPFGvP71r29ZThJ4WI4Dw3IwWU4qLJIO9kix+eFmYp6sHxWj2rotGRMltUmkplR1C7LANYnPVZ04Y8OiUOe74VhsI6lUkXhoIY7Fv+2dgmE52DSYh5SgJmga9u96KDAG9cicCgfAKSt7EkemMBiMowwVQrrmcFpkJIhCFbluRKHK4SKmICcTZ1wHX7WWboIMgOAo1ErwpJ9Gu7rlWKTC4jwSFcyuC4sR0VxG1T1vje+r7XuGIEkiTtywOl37yuOoIodz3/o5/G3nOP702jze9ebzm5eRMsHrJoW6MNuorVQn00vuM3Wu9b26Y9HTN1KL5Lp72z6wgbwe51ZNCpcybYDjiLjYTo3F4TuBvrUkErYN7t+1H485YR34dopUMxiMRUXaGotxjsXUwqKYa3LmjVfGQ+vUUdEn1rHYhRqL/uMIEhZtxyaORS5ZZKVmay0ipK7p0FStXt+P4zhIrmM+1rEYJSyKedTMWouw6I1X7Ya7TRKk1DXr8mLjekWJpwd2HQAQ7EhTBAWqqYbu2zRMvO8178O2v2zDZ777GZz/zvMjrxE9L+06Fgdzg+DAYe/c3tTr9iv9KOmluouYOmHTiJyKoJAo1E4mXR1n7Ht4H1atXwUl092EKAaDsTCwpwYGY5ETVWOREyTomgZZ5GHYTqwwFkTNsGB6XJGqQWosxnWhq546dAJPRKNKeR57H3qg/nrWFRb9NfyCUMR4J0JU3T89qhZlAIZlY6aio6AQx6JmxjsR8zJxD0a5SMM4sPthbNxySkvHl+M4nLq6Fw8Oz7WIaaZhoCcjQeOzeNmrXott27bh6U9/euy+qGOxLxc9mFVQRIg81xLDOlHSwHENYTgJS/MyZio61IDrUDMsSCLfdOy0lqc/rpS68uY7dCzKApdKGK3vX3RjcQPuhRsfHseKHgXrlqSvWxSFrmu4b9vfcMbZ57a8N+Jem1NXtzdIyGAwGB3jxEehChxao079tESh+n7n3SjMoH3JCd1w2jwA4O6H4yPXWqhHoboDm2KGONqijkuQmwUg20J7NRZd55xeTuZUSxKFaqgtwuKDu4dwyqa1kKSA/oFlAn/+GDDfLKhZlg1UJpHL9+D1Lz4PW7/2RrxgswCovn3zkruvDqJQgQ6FRfe7MshpampECPbGj9VmSc1Ir9jY57r9xne03w4vSWuD+tdpy7F4F9C7FpDT91Ns28Z1f78Xzz7n8en3y2AwFh1pHYtRop1lp4tCBdxagGZD1JmsTYYKanVh0WoWFv01FjUrwI3uwUjw/Oh34TUJi3xDWKQ1FpNEoRqW0eJYHD88jqGHh+pRqDT+UuKlUIGVEuVoK0gFIiy6k7NCayx2WCdY4iWYSCcsFuRGrHiUeLp/536sWLMC+Z58y3u0pqBXHNU0DWqF3BuiJOJ5L3sevvHrb+Dp/xA/LkLb0a5jUeIlDGQGcHD+YOpzOqAMoGSU6iK/YRtw4ERG3fqRBRm6/ehxLDqOgztuvgNPeOoTjnVTGAxGQpiwyGAscqKERV6SPTUWnbZqLNYMq6mOo2ZYkHguMMrDvx5F4kmkpePYsD21DqkbrVuOxZlK+ANPWmFxoqTBAdCjiMhKAvQEjsW8IqBqWIGuvDiG9u7EphNPCXzvCev6MV3Rcf8wGVjUNPLQ9PtvXYI9W/8McBwuePt7sHnz5kT7mirrkAUe+aCBQw8cx6EvK5Fz4bl3JkoqejJiqijRpXkFs1UDqtHa6a1qrVGoNbfGop+uORYDYlaToEh8oHvVth3c+PAEtqwooDfT3VqHD951O2rVCs555vNa3hst1tCXFbGsh83YYzAYxwjHiaz3ZjjuZ23MgF+LUBIUhWqHCItiQqHEja+02qi73BKFKheI8y3quGh8K8VpNwq1SH7qlWS19ajDTouKQq26LszGd+H2PQdxeljNmpl9wO2Xk/89/NetR/C96x4C5Bw+8OaX4dQT3fXVmeb1Oa4heLYDFRb1Dpy/Si/5GSgsqq547I1PmAGkbHPMbu9qssz49vbb4aVdYdFMKSxWZ4DZIaBnZVuxtHdt34PxqVm86LyzUq/LYDAWH3HuPj9dj0L1OBaXZpaialYxVgl2gtfjPPVmMSrr+yzTzfBj4gU+kWPRL7j6HYuGbdQdi6miUH3LWpYF27JRM2p1xyJAjtXvzPQT5VgsyERYpI4+juMgcmKTkNeNKFSRF1O75ApSQ1iMEk8P7D4QWF8RADJCBprZ7NArzhZxzdeuwa9/8GsAwEvf8FKcdPpJidpEHYuyNwY9JcuyyzBeGW8RvuPoz/SjZtZQdvumdP00UaiKoDyqaiwe3n8YI0MjeMpznnKsm8JgMBLChEUGY5GjGeGdCEHOQNdUiAIHy3YSpWf5cRyg6BFxVNOGkCAK1etYFAUOgBM6mKZGHAMlmbAYPrinpxT7xuZIx64nQ4RFw3IiRVyARIuqevoai4au4/CBvdgYIiyeuqoXIs/hmgfIw5au65i96YcYvet6jO8jM+any8kHmKZKpHaklOCc9uckTFf0pmMfn1PRo0gtt0DUUS/rkTFXM1ALEJFrRnMdTstxoFs2ZKH1JpNF4pYtqZ05FiWRb8uxmJWCY3EfHJnDdEXHxiV55OTuCou333wdlq1cgxNOPrXlveHZGpb3ZmJjbRkMxiLn/quiYysXOxGDeTYVFoPq2jUtGONYFGXyWtBAVlIHFnXwtTNRv+5Y9AiL2nz0cfFSsxAYExsbSl1YrCZ0LFJhMcKx6DgAuLpDz3EcbN9zEI89cUPw8jT6c/Q+wCZuh8/couHdf6pg654pOGKGHK/sOgyqs8HtatckIbqDfjG1pyKJcyzyfsfiDCDlmupQQlSA3FJgand7IrGfdoRFTmj9e4lj9F7ys29tupqOLn+4aRsG+gp46hNa+yIMBuP4I0oopLz2T6/Ft+/7NoBWJ58Xy7HgpPxwpwKYAwdLsqSG/N5icJxkkOsOaHUsRomlgiS0JSx6I2MVQYFpm3Dg1MVCnot/ntZtV1j0PD1TIbZqViHyYn07siDH1hCMcrTlpTwM22gSYek2KTbs1NfLj8RLqV1y3ujaKPF0aNdQqLBIoz+pcOo4DmZunsHkrZN48I4HUwvcnUahAsDK/MpIx20Y/Uo/ANQFdc3tT6ZxT8qCDMM2HjWOxa03bIWsyHjiuU881k1hMBgJYcIig7FIod3SqNqBgqTA0DVIbo3FdhyLQLNgp5k2RC4+CtUrIIk8DztiZrVqxM9yVKT4gZeZSveiUMfnSWd3IKfU4zfLMWJWjyKiZlipayyOHNoPyzRDhUVFEnDq6l78de8kJmaKeN2FF2D+zv/F4GlPxev+/RIA0fUl/YzPa/WY0ziW5GUUq0aTsDg2r6KgiC3ismpYodtcWlBg2g7G5lsfIqq6CZHn6jM1NdfVKAcInxzHQZF4VLTOHIt+h2RSFIkPdK/e+PA4crKAE5a1RrZ0guM4uP2W63HOM58bOCN2tFjD6r4MuR4MBuP4RK8Cv/1X4L9fcaxb0j4Rs7QtuN/fscKirz/jF9Ciaixm+sO3O7Wnse8ooS0OjiMCE91WpofUPIwanBV9UaiOjbaUNW2eCF5GQsciFciM5GL1yPg05koVPJY6Dv1QMW52P9T5SVx44YX45M0aPvA0BT94kQhOzgM87xEWZ1q3ISpoPwqV1ljsxLHYA4ADyhOt7xkqcaV6B4mpY9HvHsgOANXp+Hs6Ca7zZGp2LvmAKC+mj0IduQeQ8q7jMj1/vPkOvPDpZ0JMUJqAwWAsfpI4Fh+cehBX3H8FDMuIXL4dBxyN7ARIJCQQLixSoaVFWJR8wmJE3UhREhMJi34B1fu7wAmwHAuWbUG39cTOMsMyWhyLtjvjW7VUSLzUJCxqphYpFEXWWHTFu1mtMblHFuTmKNR2Zpv7kPg2aix6hMWwGouVUgXjI+PhjkUxA93SYdkWDMPA29/+dkz+7yRyJ+bwySs+mchB6oW2oxPH4qr8KsxpcyhqxVTr9clkshMVFqnYmrbGomEZXauxODc715X7Y6HYeuNWPPFpT0Qm22HdbgaDcdRgwiKDsUihbqsoEYuXFBi6DkngYTvRy0Yx64kYVQ2LOBZj8DsWDS188EUNqVnnxSsyGSHLRolrekAEZxRjcyokgUNPRkDGFTVLMWJWThGhmXaTA9M7SCTxwR+pB3bvBABs3BIsLALAUzYtxUhRxRve8m/46623YvnLL0H/pseioJCO50w5+eDWZFlDQREgBkSN+lmaJ05DzXP+iDAptIjLFc0MdQIuzZPO+uGZ1gFB4ljk6hPoaR1GKaR9GVFAJUF8bhTUIVmaKwIASsXpROvRWFy/K/X6h8dx4vIC+nPtP5QEcXDfLowNH8I5z3p+y3uqYWG2amDdklz9HmUwGMchdNBK70D0OtZECCwWfZyIi4jyCyV+AU2QW6NQeQlYexbQvy5kmzbwX+cC2/6L/KrORbchDkFqHKvSS6JVI6NQ5ebjChNGozBUEtOZ6SPxpUmERY4j+9aSC4sP7j4AAOFRqKUj5Of8EXzogx/Eb37zG/zqlVl89FwFnGMRByfQEBZrQY7F9BGcdbpRY5EXiLu1MtX6nlkjgp2/xqKYbXUVKj1uLG26KMGwNs2Xq1j/rDfi1jsTxqvyrmMxzYTB4TvJ34nSk7qJh49M4r6H9+PFzzo79boMBmNxkqbGoumYTQ5HvzOrnSjUvJQnQopDHIkDygCG5oYCl60Li1bzc6Q3CpXGlIYhiO05Fr2/S7xUdyxqlpZYWNRtvaUeo+M+S9bMGkRBrL+n8EpLDcGWY4lxLALArNr4DpZ4Cbql112K3aixKPJiR47FSsjEpwO7SF9k0ykRjkWbCK+f+cxn8KMf/Qgrz1+JntN6wIeMtURB2+GP1U3DyvxKOHCwv5iufnef4gqLVVdYdPvJaWosZoQMdLs7UaimYeKCcy/A1hu2drythaBULOHBOx/EU57LYlAZjOMJJiwyGIsIb/dPdMW9uBqLmkYEsrhlo5ipNjrUxLEYV2GxWVgUeA6GFj7DXDVsWHGORY+wOFMOfigoVsMfJtIe+9i8ir6sBFn0CItqtJiVdyMw5zwC50SJDDjKAg9JDD5ro4cOoG9gCXr7B0K3fdrqAiSBw8Z/eAv+fN31yG5+MgDUnWrTKRyLkyUNOVmElMCxuDSvoKQaTddzsqwhF+CQq7p1EYOcgEvqwmLrgKBq2BA9UahqhGMRADKSgJoeX/MyClnkwXEcSnPkocvQktVEyEgCdKt532NzKh4+UsLGwTx6uuwcvP3m65HJZnHGWU9reW90jvxNnbKyt6v7ZDAYjNRERFo59HEiIi4VQGv0qT92re5YdL+PbJuIdr2riYMsCL1M2jY/CgAwSgEuujQIcuNY5QIRlmpBYqXjWb7DGotqkfzMLSFuvaSDwaKSSoTbe/AIZEnE+tXLghcojcGyATgWLrnwmfjrX/+KV5wqYQmdNE7jaKmwqAYJi504Ft0Z/HoHwiJAhLXaDFrqA9Aai94ujFokbfYPHis9rqjcWSw7AIATMF2cR03VMDOXcHIBl1JYdBxg5C7ytyKlT1b40y13QBB4vIBFjzEYjxhM/3du3PKe7+RZ3+e7baeP1sxLeZiOWXdCLs8trwssfqjQ4o/P9Eah8hzfFWHR71hsqrEoCDBtIrLajh3pHPQSVGORCouqqULimh2Luq1HRs8mcSzOeOocy4IMzdLqYqLt/tcJ7USheh2mWsikrJGhEQDAuhOCJ4xlxSw0g9RY/MAHPoCbb74ZfWf3pWqHFyqSZ4T2HXDLc8sBhDtuw8iKWYi8iIkKSVGg5yRNjUUahZrWPRpEtVJFpVRBKWlf5Chzxy13wLZsVl+RwTjOYMIig7GImPa40kR3RlZUxCcvytA1rb6sGhGbGoVXyNMMi4iaMTETNY8QJQkc9AjHomYkcCx63GuzteCHgrlahLCY0q05WqyhJyNBEvh6FGopYvsAkJNJJ3/WI3DuHCMdsxW94bn9M1MTGBhcHvr+rdf+Af/+mhfgxF4H980IOOHEk+vvySIPSeAiRVU/02UdOTmZY3EgL8N2gDFXxLJtBzMVHTlZhF9eruhmU61ELwVFhCRwODzbKjCrtMaiuz3q+JTDHIsSj5phwewgpkNxt60lFBTr+xZdx6Lnfrpx5zh4DtiyLA++jbqNUWy75QY88SnPhKy0PuyMFknbH7MqvfuAwWAwukqEa8+mDrA4d5d3EM1xAhyLEhEf6axsOsAoRAzA6GV3e2QdM6juXxoET7Sp4jr0SqPNyzhuTemp3QGOxXbqK7ptzi4l5yhpnKvgCosJ9zk2NYsVgwOhM/7/75Y7cfp3NYyWHCyr7sGZZ57ZvIDkng9eJMdN60I2LdOBY1F0+1EdC4u9boSt7340au695PkerxVJXUi/eyDT21XHYqmSMt6VF5v/FuKYO0yiW3tWN2pVpuCPN92Bpz/psRjoY/0NBuORQpiwE0aUaGc5VmrHlD/GdGV+JSaqATHVLiIvtrTZG18pcEJsFKqhxT8v+4/TK/CJHHHpUedk0shKwzbAc3z92dk0zLoQq5pqU41FRVCgW9EONJEL7/cERaHSbVK64ViUeRkW2ncsaiFJFzOTM8j35KFkgsdOxh8cx70fvBf79+9HX18fnvrUp6Zqg5+KUYHMy6lcgn4KUgFZMYsDcwdSrcdxHHrlXkypU3Acpy6cy3zy72la9zNKiE5Ktdxh/2qB2XrjVpz42BOxbFXIBDgGg7EoYcIig3EMMX1i2IHJRmQE1S+io1CJsFh3LKaMA6X78UaMaqYNSeBgGtGDKU1RqDwPTQ0fNNECoiUBYMeOHaiU5gEAiqemy3SAY9G2HZTcGoi655wIXHtuzSNzKgoZIoZl647F6IeRumPRfNx1SAABAABJREFUI3zuGiPtH8iHdxBnpycxsLS1g+Q4Dn7+3W/gs+97GzZsPhlPOWk1jsypuPdwszsiJ4uJhUXbcTBT1ZGVxcDIUj9L3GjP0TnS0Z2p6rBsBz1Ka+e7qluQRS6wtgHHcejPyRifV2H7rnXNrc3I+RyLSkgdn4wkQE0gRkchu+7RqPsyCIXW2/Tc3zc8NI6NS/NY3tPdrP/54gweuu9OnP3M5wW+P1qsoT8nYVmB1RhgMBjHmAg3okNn1ke4GgH4hEULLc42XiKvU5eFu73f37YzfICMinBUWKykFxZ37twJ3XD3KUiNY6WRkrT2IIU6DLV5V4j0fD87VvooVCrQ5ZaQn0G1C4PILSFiUkLxa3x6FiuW9re87jgOvvnNb+JFX7wRW1YU0Lt0JTC+vVWwzHocA1IuWAAVs20bFhtRqDHxrrbZHGfqJ9NHro3/vJiqLwrVAdQ5Iob6t6f0EoEzbZ3DIHgR5dTCopDuXhq5m/zsW5tuPwCqNRU33n4/XnTeWanXZTAYi5c0UahAdE3GdoTFvM89TevUhSFyYotj0fvMKfDETRjWH+iKY9HdBxXFqLNM13T88r9+CcsKHmsx7OYai2qtcRyqRYRF+p4syKSGoM8NuG/fPgCAZVqRIhiN9JzzRL8rgtJ0/WwnvcPUjySkdyw2CYshwvbs1CwGBoNTKP7vf/4Pv3zfLyEOiCj0FlLtO4yKWYEiKHVhtx04jsPSzFKMVcZS/131yr0oakUYtlGPQk1TY5GK6/76o+1QS9sXOYpYpoU7broD5zznnNTr6g6591Un3YRyBoPRHZiwyGAcQ7ziHADsm2oMpnAcB4HnIh2LnCBD19R6rbqakazD7+2QZySh7gR0HAeaaUPgecxOk/o0uho8s6nqqYEnCVyssGhZrZ3byclJWCbZtzcWM6iWYkk1EaQz0XqQUecpiPF5FQVZhCTwUFxhcT4mCjWntDoWHxolwmKUhFecnsKSAMfiZZ/7GH70jUvx+nd9AB/78hV40uaVkAQO12xvHsTMyQJKmplIaJuvGbBsB/kAYTCIgTzp2A67TsOJefIQUMg0z5Q0LRu6aUMRwre7NC9juqy3iLyq64KlEap1YVEKj0JVDStQjE4KvZ/0lI5FKnZW3Huhplu4bd80TliWR282+UNAEu74619g2zbOfuZzA98/PFvFip5M4mvJYDAYC0aE86EuLMY6Fj19nqCZ1zQKkw4suj+v+P0dGJ0IqZOrUceiG/9VLUa3IYDxiXE4jgPbtokLkA4a0ZqCJV90W3mysU9BaRYW7TaiUKljMTfo/p5QWOxdQ+oi6snqLI5PFbHSN5hn2g4+cdnP8Z73vAfvPW8Qv33P2Sis3AzM7CfiHIXjmmv3UWHRf6xSFu1HobruBSNm4MvUWmslesn0kba1CIvuet7oXtsIdlkqPeSe79Q9CQBo07GYpl7n8N1AbinQsyJ1627cej9UTWfCIoPxCCPK3RdElCOqHaEqL7YKi1HbEHkRmh3e1xA4IvqFCZyiJKauseg4Totj0YGDslGu7xMAdt63E9/5wndweN/hwG3qFqmxSB2LuuqdtK21OhbtVmFxfIw8/+s1PTIKled4ZMUsinqx/hoVKyndqrGY9prLvFxvuxpSd3t2ahZLli1pef3qH16NL33gS3jSi56EDe/bACUiDSoNFb0CWZATx9qGIfFSSy3SJPQr/ZjT5qBZWl2w9jpx46DL+uuetsNiFha3370dpblSWzGooypJFplzOqyzzmAw2oIJiwzGMWSm0tz53TteauoECly0sMiLEnRdqwuLRkJxzev4y0oCSqoB23bqgpAk8LBDZuRRKppXWIxzLFqhNRYdx4HjOE01FmcreovrLUhsBACRTy8sOo6DiZKGvCJA5LlGFKoWIyzWo1AbbXl4LD6ybHZ6Ev1LB1tev+PW6/HRL12B173zA+A4DrLI47Gr+7D1QLFpubwioqKZke5VyrR7TxUSilEFhTgbR4uusFgiDwE9mWYRraLRuojhEurSvIzZql4XDimqYUPk+YZj0b1W1CnqJycJxOUaIEYnhf5NqGq8sPibK7+LHffeCQD1e4He37ftm4Jm2jhhWb6+zW5x+83X4aTTHo+ly4IHAkeLKlb1Z5Dvcl1HBoPBSI0REalGa8UYEZ+3jtOonQi01lsEPI61WtPPmhHxXaA3fwe3IyxSqppBYiSpY1HKEfGq5HMsVlxhEQ5Z3jt73bHTOxapA7LgJhtUQkRUP/3rgMpUY/0YxqeLWDHY3/TajgkbV193G7773e/iP58jQsj0AIMnETG1fpwA5J7G9QFIvUWjghYRMT8ISG267HkBABfvfK3XSgzpj2T6ieDsj2GrC5LuevTeCRIWqahcnUra+nB4PpGw+J1fXoMbt97nruPWWEw6qDt8J9C3rq36in+4aRtO3LAaJ5+Q3u3IYDAWL2mdVVHLtyNU+aNQV+SjJz6IvBgphgqcAMM2QmsHtuNY9It71KFYcSfsiG4Ue9zzpGmbJAo1xLHodajFRaHqqh4b25kVs5jXG5N/AqNQO3UspnDVUTiOqzsqQx2Lk8GOxVuvuRXv/MQ78ZqLXwNO5FCJSy9ISNkoQxbkjhyLAKJnkUfQr/SjpJegWVpdbE0bhQoAVbNzYTFJFOq1v74WW2/Y2vG+0rL1hq0YWDaAkx93cvzCPsZ1t5/e3Yo1DAYjIUxYZDCOIX6haP9UpcnFyPOAEeHa4gQJhq7Xo1CT1lj01kfMSgIqugXdsqG5jkeJJ0Xao6h4o1AFPrKWnW7akW47yzCaHItzNaNJ/AS6KyzO1Qzopo3ejASO4yDyPESeQzlGWMxIAjigHktqWjb2T5Zj9+eNQh0fPVw/t9/+1fV49j+9tGnZc05YiqlK84NdQRFQ0cyWcxIEjZEtyMkeBjiOQ19WwnhJrQuuANDvc+eVXYeq9zr5GSwoKFaNlvtQNSyIfCPOhgqPYdvKytSx2EGNRepYjIlCfeCurbjii5/AzX/+nbue61h0j/eGh8exrKBgXX8udBvtYBoG7vzbTTjnvOAY1KpuYq5mYMOSHDIhAiyDwWAcNaLEnrpjMUJ89M/wTuFYrEV9NfvjOL0uu5RUVQPgPTUWOZ4ITBVfTSiv4OaPQrUDIl7jqM2S7WTcgbakUai9a4hYO7U30eIkCpXs4/CRSZiWjcevFPC3n/0H3vb680m9RrkALN1Mtjt6b2NlOd+4PgBZTq+0iqinvBh46kVEiEwLx5F9xM3KNzVSKzFskDDbT0RP/z3rj0KlblcxxLEIEOG2UzgBpUr0Md2zYy/e8enL8dPf/YW8kMaxaJnAkfuBnpVE8E2B4zj44813MLcig/EIJCratGVZS490LLYThZr1fbbmpTxyYvhnlMiLkW4wnuPjHYt6OmHRf8zU1UZFO1rrME6wpDUWqXilqaQ/5HAODNuA5Pn+zIgZGLYByw4et9HVaMciQNygFU9agSzIzU5MOLFjOXG0IywCDUFZt/RAMXp2ahYDy0hfZGpsCoZO2v35H3wer3zrK5F1J/tUEqYxxNE1YbFNBjIDKBklaKZWF1uPlWOxGtMXObz/MP7zw/+Ja666puN9pWXrjVtxzrPPCa0DHsW4Nh6/EIPBWDCYsMhgdBnNtPDCr9+KOw/EDwz5nV0jxRpmqo2BubgoVAiiW2PRdWfpyTqQXvEyKxPRyrSduiAkCDzskM5uYxsexyLPQauFCzh6SI3F+vtatUVY1HyxrmE1BqlYFSXA+hmbp668hhMsIwmoxgiLPMchIwmYd6NjD0xVYMS46nRNRaU0j4Gly3DX32/Gv7702dh2y/UAgN7+1tl6j1vbVxeKKQVFRFW3EjlSqQu2L5f8YWAgJ2G2QsTcyZKGgiK2iFnUwRfl2hvsUVAzLMz6hFFSt7OxnmpYkAU+dFtZmTgWO6mxSONt1Yj70jJNfOvzHyPLVcnDS929qpIaHjc8PIEty/OpzmcSHrx7G6rlEs457/mB7x9xa16esqqNwVkG49GMXgX+9vVj3YrOGbkH2Nnhg/3ua+NjJZMSFalGHYt+h5gXvxMiyBnB+4RF1wEZ6VjUfJN79PjJPmFUVAMQlea2Kb1E+PP2ibzCoqi01o5MHYVaJE4zKmbRaNQ4eteQn5MPxS7qOA7Gp4pYsbQff7t7B57w0ovwg/8jdfmW9PU06khmeoD+DUR8G76rsQG50LjOABEajWrrsQoisGQzcXK2gyBH30cAuT84IdyxqPQSQc7vNjQ14gSsOxbde0UKGOim1yKpyBuFIKJcDRfmbdvGuz97BRzHQbnq/r1yQvJY3aldgFkDelY3X6ME3LNjL45MzuDFzzo71XoMBqNzTv/J6fjuA99dsO2niWy0HCtSWATSOyBpZKeXZbllocuLvBgphgq8ANMJFxYFSYBt2bBiJlp7j6NFWHSdgiWj1PS7N9o0CN1qFgPrwqJAPsOpQAk03IVh9QvjolABIt55HWwZIVM/d1RAM5zOagSLKb9PKDQCV7M0mE7rPUVrLO56YBfe8eJ34Lc//i0AoNBHkgKoQ4/G0XZKxahA5o+dsNin9MG0Tcxqs1BNFSInxjpSvVB3o7/+aDtERaE6joPLPnkZTMM86pGpI0MjOLT3EJ763Ke2tX7NXrwRrwzGowEmLDIYXaaqWXh4rIRrd4zFLlusNXf4DMvBg8ONbHCB42Da4dEjnCDC0Bs1FhM7Fj2CZk4W6qIVFTpFgYud5eZ1PQoCF+hYpGKibgXXWKToqgrZIzLNqyY037GEORbr20h47AAw5oo2vZ64T0XkXcE1ehCH1jt0HAc73RjUwUL4AFrRrVW5a/t9uPgdF+C0JzwZTzjnGaHLSwKP01Y2FysvZIiwmKTm4ExFgyLyyMvJHwYGcjTC1Mb4nIqejNgi+lE3pxLhWFyaJ+fh0EzjQcewiEDYLCzaUES+XnPRT05uPwr1xOUFPO8xy7GihzyURNVY/P0vf4yhPTuxbOUa1FxhkToWS5qJHaPzmCxp2DiYD41tbZdtt1yPpctXYstjTg98f6RYAwfgMSv7urpfBuMRz7UfA274JLDn+mPdknRUppoFpW3/BVx3MaC2WS/EMoCfvwr46Uvjl01CRMwp50aFOVEipn+AM2jAk87op9sx3SjUqLFOn5DIdxCdVdX0VkEs00eugVfsanIsSj5hsY0o1NoMIGeJSCkqyWssZgfI8pO7YhedL1eh6QZ2HRjGc974UTz2xA149Xme7x9aR1LpJeegZxUwvr3xvpxvCL8AERqNavpjjUOQEkShJqixCLRG2Podi/TeUQIm8ChuP8zvVm0HPrrG4k9/9xdsve9hbFi9vCFACqIrLCY4vyN3k2PqX5+6aX+8+Q70FnI490mnpV6XwWB0ztW7r16wbXczChUAzKAI8xj8wuLK3MrQZUUu2rFIayyGjYsI7jNcnLvQKyb6j5mKadQdRkUdKhRGbdMrxPmFRa/7TxZkmLYZKixm7Wys8JSX8k3CoiIo9XPHu0O8YY7IpHTqWNQsrUUEtiwLczNzmBqbwnte8R4MrhzE81/RPMmWCovdikKtGtVj6ljsV/oBAGOVMRKLK0j1WpxJ6KbQGuVY/Pt1f8edt9yJFWtXoFY9ukLd1hu2QpIlPOncJ6VeN20tWQaD0X3a+nT96U9/iqc97WlYvXo1Dh48CAD4+te/jt/97nddbRzjkcW8amDjR/6E3903cqybclSgkZJRzPpqLHIccPfBxsCiwHMwLQehehJPHIui0BwxGYdXFMxRN5xtQ61HocbXWPS6HiWBhx5Qe6CsmchIPAzLiYzx1NVqi2BVM/zCohHZBYtzDnoZn1fBgQhqlIzEQzXs2ACzrCygqlkwLAe7xkroy0qRIt70JBms+/0vfoSXnP8mfPZbVyKTDYjd8vDkDc1iUm9GQk23EsW9TlV0FBSxxfUYxZK8jLmqAc20cGReDVyfOhajYjmpsDg803gQoNdREjjMF8m9PVeuQBZ58GHlkSQBumknin71o0gCXv3k9VjtRpeG1f6cnZrEjy/7Iv7pVa/DSac9ri4semss3vjwBLKSgM2Dhboztlvcfsv1OPsZzw3d7uhsDQM5CUvybbo+HgWwvggjEBqNOT96bNuRli9vBr64seGMK08Qt1KceysMup2E9fdiiYg5pcKipUcIQn4nRGAUqvt5R485kWOxOQpV6KAGTUU1AHcAp062j8Sreo/fK1gJshtZ6baxnSjU6gyJ4+QF4lxMGufKcUBhJTBzILhmpYexSSJWfvsXf8IFL34WrvvB59Bf8NRCLB0hP7NuksKSE4DZocb7cq7ZDacUXAG4sxpOLVDHYtTkNst1HoY9xmZ6yU+vAAyQ7XIiKm4ySHGKiqnNk7kAAFIBAAdUE9a7jIKXQqNQ50oVfOg/f4jz/+mZOO+sxzUci7zoul8T9IOG7yJCcG5J6qb98eY78A9PfxIkidVybhfWF2EsVqhollTEiBMW00SrUmj0KRWYVhVWhS4r8VJkG6iwGOVYBJLFllLColCpY5GKhXHComEbkY5Fb/SlIigwHTNUENFVvcnhGERBKjRFYyqi0uJYjHOgxuGNb03D45Y9DgBxzPrFzeJ0EbZt4w8/+wPOec45+Pqvvo7+Jf1Ny2QE0jcpd5BA4aViVCDxUqwLdKHoU8i4zlhlDJqpQeRF8BwPy7TwijNfgXtvuzdy/W5GodbKweMimqrhW5/+Fs5+9tl46nOfmqgWYzfZeuNWnPGUM5DNR4+RBTFaPs6e9xiMRyCphcUrrrgC73vf+/CP//iPKBaLsFzxob+/H1//+te73T7GI4hD0+QL6rf3PDqExZmKHhrlSN1P82pz53lpXsb2kfn6+FRDWAwZuOEFGLpWrzOYWFj0LJeXBdR0IpRRl2Aix6JnGxLPQw0QcCqaiR5Fcv8d/qCgq7W6U4wyUWoeoCxWdWTl8A6hv15lFGNzGgoZEYrU+AhURAE1w4pNnSIOTxOmbWPH6BxW9CrgwxQyALOuY/FN7/ko3vXRz0EQ4wdvTl1ZgHp4O7gyGdDKyyJ0y24RW4OYKpFjEyMiS/0MFmTMqwZquoUJV1gUffn2FY3sO8q515eTwAE4PNu4F1Sd3lM85man3W2RmppCyHmj+yirnUW4AAit/fmDr38egiDiTf/vI8jk8qhVmh2LZc3EDQ+PYcvyAga6LO4dPrAXIwf3h8agAsBwsYblvRnkFVZfMQjWF2E8YqE13apT6Lpo0w50hrcZPlDHu4NPhhYxEOEf4Ip0LNIai+S7RE1RY1Gw2p9lXanpxAHoJdMPqKXm4y/7hEWgEZ/q2G1Eoc6QOE5eIM5ArQTETO6q07uaiIIxM/vHp4sAgPe/6aX4wef/HbK/DnN5nIiqsiuyLd3SEBsBV/j0RqG6wmLXHYtujcsQJweA1khTPwp1LPqSQ0wNEATMzJNzZdXmyXkPGjzleUDKAtWEsbRRCGKoY/FT3/oZKjUVX/7QW1DIZRrLpamxOHwn0Lc2dX3F0fFp3LV9D4tB7QDWF2EsZtJEoQLxDre0DkiAOOu8rMpHCIuCFCle8hxPaj0ivMYikM6x6I/qpEIire9HRZ2oKFTbsWE5VrOwWGsWFr0ORLrNWkjKg1bTYh2LBbmAmtlYX+bluujaLWGx3SjUp65+Kh6z5DHQLb1FBC66fZF/eOU/4BOXfwJKRmlZX3H7YaOV7ghGVbMKiZeOXRSq3BAWVVOtt6VWqWF6YhqTRyYj168Lix1MnKOEORZ/8e1fYGZiBu/+5LuRK+SOqmOxPF/G/dvux1Oe+5S21h8uD3e5RQwGIy2pP10vu+wyfO9738PFF18MQWh84Z155pl48MEHu9o4BuN4Zq6mhzrMet3afv66gSt7MzgwVcHNt9yC6YkjEDgOhm1HCIsiHMeBbZKOY9KadF63YU4mgppmWHXHoswnqbHYeF8RuVDHYiHTEGrCMDS1qcYiAIwWm7c3XdaR65KwOFqsoTcjNe0zKwtQEwiL9XqHrmNxsKBAEjiYttO0rjozhh13b8XcLHEJvOpN70zcPkngMf7zjyBbJYOXeYXcLzOV+JmiU2UNeVmsi81JGMjJsB3i5JwoacjJQluORZHn0ZuV6vUBAa9jka+LfIYFyCIf6tZrCO+dPRABwY7Fh+6/G9f+9pd4879/FL39S5DL5euORYHnIPIcjsypeHBkHpsGcygo3Z3Jf/st10NWMnjCOeeGLjNarGF1f7Z+7RnNsL4I4xFPdTq9QNVltt6+tfFdH+FYlEQRtuPAjBIW6wOc7ud+oGOR1lh0P7epY9GMciw2u/sku/0aNFUtyLE4AOil5uP3xmPWXZZeYTFtFGoRkDJETJLzJKIz6Tb61hFR0F9r0uXIvInrtj6IiWkSqfuxf3tN8HdvaYw4/eg1WLqluQ1SnohtFDlPrmFERG5bUGExqg9qaiSWNUxYlFz3pz/G1NIATkBNJ9dKslVX0A35npXzxPHb6d8hF1xjcfvuIVz237/HJe84H2tWDKInn/U4FoXoc0DRKyQKt2dlcK3ICK659U7wPI8XPv3MVOsxGrC+CGMxUxcCEz4SxjoW24gczPk+l1bkVoQuGxuFygdHoaoW+XylQlg3HYs0DjTKsUi35xUDo6JQ61GfZvCEIF2Nr7GYl/L14/Zu07CNhrAYUN8wDe1GoQIkAleztXrcq1EycNdNd2F2kkzWef17Xg+eDx6Kzok5nDRwEn6x8xf45j3fDI2+TUrVOLbCoiRIyIpZTNYmUbNqEDkRHMdBrSXrP9Fr6xWS2yWoduLowVH8/Iqf45VveyXWblqLXD53VGss3nXrXbBMC095TnvC4uHS4S63iMFgpCX1p+uBAwfwhCc8oeV1RVFQqXQnB5vBeCQwVzNa6gRSqPPOX2Nx3ZIcJkoa/nrbNgAAz3OwfIJVE24HSdfTRaU1RaHKVOTU645HWSTFzyO34XHPyaIAVW0eUDQtEq1KHYulCJFIV6stQtbobHOHpliNFhZN24GdUFg9MlcjdQQ9HdqMKEAzLTixNRaJsFis6hidUzFYkNGflVFSzXpNwJFd9+OBy9+FH33l05iZmkBv/xKIUvrOOXX0UWFruhx/nWcqOvKKUI/HTQJ15A3P1oiAqwgtjseKboLngPGh3dHbykmYKmt1Ub0uLPI8dPchS7cBWeAhhAwKUvEy6p5Jil/wtiwL3/r8R3HiqY/DC19+AQAg6xEWAVJH8u6hWXAcsHl5PtRZ2S6333wdnnDOuchkgwcBK5qJedXEhiXZSCH30QzrizAe8VRncKwdi9dffz1IV4CLdCxKogDNBMyImrZ1Rx8d2AkSFukglr/GYtRYp9exaNuQ0b7TvaKGOBYtHah5al1SVynQEOLogKvTRhSqWgTEDMBRYbEafH6C6FtLagfOHmy85iZO3LdvDGddNox3/cePMToxBUkSMdAXEPsJkOhgpbchlPava65hqDS7TiC7v+vNjtGOEeMdi7ah4tBkxH45DpB7WmNMTQ0QRNTcQWfZrhERMmwAl4q8KV0/LQhCSxSq4zi46HP/hc3rVuHf3/AvAIBCPtsQIHkpWY3FIw+Qc9W7JrzmZAh/uOkOPPUJj8HSgd5U6zEasL4IYzFDn2mTRqHGOdzaEaoKUvN3zkBmIHRZWZCDxU03JEBAcBTqlEq+kzMOidBM5Vi0QxyLbgpAEmGRCq5RjkVaqxGId6BpVS2RsGg7dl1cpOKTbul1AS2tY9VPu45F2h7d0mE5FsYOjGH7J7fjO5/4DiZGyYSfgWXh9wHHcXjH49+Bs1edje89+D2884Z3ghPbfxavmTVIQveFxWKxmFiA65V7MV2bboic4GPjdSk8x0PghAVzLH77s99G/5J+XHjRhQCAbD57VB2Lt91wG0445QSsXBtefzUKJiwyGMee1J+umzZtwn333dfy+p///Gc85jGP6UabGIyjylt/cic+/6eHYpfzx5bGL2+GOhbpbPF532jZmn6SKy6v3AyACEtGRBSq43Y6TSOlsGg0OtHUHTZTMerCoiRysY5FtcmxyEP3DShSh2KP6870Ohz96JraMoP+yHzz9maqeqTIYlgRzk4fYwF1BIlj0U7gWCQOz93jZFBrWY+CvqyIsmpCsyz8/Oc/x1Wffhuyy9bikst/huLMFAaWDiZqV/g+kzsWZyo6spLQJJrGQWtN7h4vQbcaYrCXsmbC0Wv41X99KXJbSwsKpis6VFdUpy5YUQB0jXRSDZvUXAxrIr0nS5GjycnwOxb/fPXPsWfHA3j3xV+ozy7P+IRFWeQxWdawYWkOK3rSZ/1HUZorYvs9d+DsZz4vdJnRImnzKavYYF8YrC/CeESjV4lYdIwdiyf2W+hRODeWMbyfIUsiNAuwovoitAYgHdgJjEKl7j8aharBsLlomU71OBY7rMdTVY1WYTHbT36WPbGgVa+wSKNQdXJsdhuORXWO7JcXAKWHxJpGRYF66V1Dfk7ubLRl7434/e9/j3PffyWWFwTc/L2LMVUsYfmSvvB6waUxsm8qlAoyiVmlyCHCotZlYTHOseg44G0dv7zpgejtKD3ECeqtPWlpAC+i5kbaEcdiNsKx2OPG0qZ36TTBSy1RqP/zf7fi5jsewDcvfjsUN5a2kMs0OxadBFGoI3eTc9a3LlWTaqqGG7beixedd1aq9RjNsL4I45FEnGOxHaHKH4UaJe6IvBjcBquxruVYLcLipEqiJHMgEzY7ciy6rkP/sSYRFr3H5ncsKp6+BRUBw2rm6ZoeG4VKzys9F1Ss1Cyt3o6wWpRJ6cSxmBEyMGwDN914E774ui+CF3l87uefQ3m+jGw+i0w2E7m+yIu44DEX4JUnvRLbxrZBLLQncjqOg5pZaxJ2u8WO7TswORwdY0rplXsxp8+halYh8ukciwC5vqrZeUKEv8bitpu24e/X/R3v+Pg7kM2RMY9sPgtDM2AanU/wjsOyLGy7aRvOec457a1vWzhSOYI+sa/LLWMwGGlI/Qn9vve9D+9617ugqiocx8Edd9yBX/ziF7j00kvx/e9/fyHayDhOuOzGPfjK9btx3yXPQ3+Xa5IlZWJexVlfuBH3XvK8xHXRdo2VoJs2KpoZGTsYU3KwhZJqxtY8nFfNpvjSpQUZssDDXnUybLUEgeNg2jbCjHgOdSzGdKD91PTGwVAX4ExFR8b9tyzwcEzSIeZDBqGaaiwKPNRaDfA8O1C3WcEVFqNEIj0grnLcJyzOVo3I+n6W5YSeJz8T8xpW92UheVx5WYmHZtr1B4AwCooI1bCwa7wEniPxtfM1E2XdxHev+DYu+fD7ceozXoS+578LfQNLUZyexMDSZckaFgKtsxcnLDoOccrmFSGy7qOfnowIgeewc4wMEAZFf1Y0E7B0TI1F10gdLMjYO1GGaljozUh1d6wsCnXx2XQ4yAIfem9l3NqXacX8IDRVrc/TnS/O4Adf/wKe/y+vxqlnNKK/srk8apXGgDSps2hg82ABvZn2H6qCuPNvN8G2LJwTJSzOqeA44JSVTFgMg/VFGI9o6k6rYyssnn+S+53DC42ozwAkSYBuOXD0BI5FPsKxWI9Cdbdj1KDbMd9lXmGrQ5GrohoNcY6SofX6xuttgu5xItWFRYsIVI6VThB2HCKOilnXaVcgwnJSYbFnBRE0Jx4GTjgP2HMdrrziy3jjT3bjpU89CVe+0EB++RKMTxWxYmm4QwClI0DPqoZrFAAGNgFzbu2aUGGxnDqCMxJBiT5+dwB3dCbGDZbpJYKtpQOC26cxdVdYJP1bAVZ0FKrSQ85Ll4XFcqWG93/x+/iX5z4FL3j6k+qvF3JZVGsaLMuCwIuuYzHmXhq+k4iKSk+qJt207QFUaxqrr9ghrC/yyCcuyeaRRGyNRSf9c5nfsQiQONQNPRtahCuJlyJdkwIX7FicVCdhVS3k5GTConcffiFT5Nw4VV+tx6gai3QbdF3AdSzKHmHRE7Nedyz6hEUTZn3dOHedX7Ct14K09Hr8bDs1Mb104liURRljt4/h1Ze9GieffTJyb8phxboVuGXyFgwMRvRFfDxj7TOwprAGl/72Uujj6b+LVUuFAwdSUC3lDnEcB4ZhJIpq7Vf6MVIeQS1Tg8iL4Dm+7mpNgszLUC21JVo4LV7Hoq7p+NanvoUnPPUJOO9F59VfpwJjrVJDT3+6vkVaHr73YczPzuOpz31qW+tP1CZg2iZWZVdhzpyLX4HBYCwIqb8t3vrWtyKbzeLjH/84qtUqXvva12L16tX4xje+gde85jUL0UbGccItu8mMnTsPzuB5p7ZnZe+U39xLRI/v3rofH37hKYnWqRkWHIQLaO1i2Q6mKzrWL82HLlNWjSZXI89xWLcki32TNhEW3SjUMCee7UomekrHYlX3OBZdMXG2omGAI51eWeShPHwNxqUHsey897Xu13ague3mOUCKdCy6UaiRNRabhUWB5zBT0WFYdl38m6sa6F8a3pkyIs6TF820UKwZKPjEt6zsRqHGJE/mFBGaaWPXWAnLezIoKBL6shJ008YZ5zwdX/rSlzCx8XnYup/UVpydmsTA4PKmbUzpAla/9b9QVi0kmV9F42rjhMWqbsJ2gLyc7qOd5zj0ZkTsmyDiWpCwWFJNcCYRFh3HCXU9LCsomFcNlFUTy3tQF9cVkYemNe5TUeRDI0bpPdmVGouaCjon8sff/CIsy8Rb3/vxpmVy+QLUWhW2bYPneShu7c0TBvMttT87Zdst12PzKY/FspWrQ5cZma1iSU7GkmM0QeN4gPVFGI9oqCPuWDoWD25t/JsXIsUVxY1CFaL6InQgj8Z7BQ148T5h0VShWTF9M69LsUNhsaoFOBbrwuIY+VnxzU73DlZxPDnONNdNKxERjQ4WKT1EvExSXw8golhuEJjZVxfIntk3ik+/5024+PkrwW//HwDA+PQsVgz2h2+nMgks3dwQ4QBg8CRg6K9uu3zr0kFNvQyguY/TEaJM3J9h59C9N47MVmEYJiQppL+T6QPmj7i1MXPEuegQ8bfqHXSmTtEglB5gek/yWNoweKHhRATw+f/6JaaLJXz1I29rWqwnTwbzKjUNvUmjUEfuBgY2EkE6BX+8+Q5sWrsSj9mczunIaIb1RR75mLbZJAo9UnEcJzDqdGh+qP7vThyLXjEv7BkyibAY5FicUCdgzBjIKMmiUJM4Fv31JCNrLFohNRZDhEWFd2ssGs0TZHY4OwAA89Xm2tFB+IXFehSqraPAke+DY1ljMSNkkN2cxbs/8G6c/KqTceXOKwEAs1OzqYRFANjcvxn7PrkPkpy+PbQu4UI4FgHAtmxUShX0KtGTgQcyA9g5sxM1syEspnUsaqbWcb1Jb3Trr7//a4weGsVnvvuZpr/JbMEVFqsLLyxuvWEr+pb04ZQzko3b+hkpkbHfjbmN2FnZ2c2mMRiMFLQ1YnrBBRdgz549KJfLGBsbw/DwMN7ylrd0u22M45RjnNwVy1ev3439k42BKBp/2WVdEQAwPh8t+JUC4lJPGGx0FAWeg2k5oeMK1LFopnQsep2U1LE4XTWgGRYEnoMo8DAqcyje8hNsWto6WNFUX1HgwaE1cpI6FntckaqiRUSh+tYtKKJbo7Jx4HM1A4oU/pFlWvExpgBxKwJAwedEy0oidNOOnZdKRbv7D89hWY8CbX4G13z7U7D1GgorNuCDH/xgU+dsNsCxOKrJkJauxXgpmSAs8BwyEo+5mGjQiusODHLeamoNf/nTb0PXHcjJGC2SDm5/LiAKVTXBWTrUagXl+fAZYUsLChynEedZq9ftbBafJYEP/ZvLiN2rsahVyUBzeWYcf/yfK/GGd38IA4PN1yOTy8NxnPo9nJEE9GclrFvS3RhUyzRx51//EulWBIDhYg0rejORDmoG64swFjF0pnlS15mfynT8MgvNLV9s/JsTIuvM1aNQTT083iFJFCrPk315HIuxwmJXHYt6q2NR7gHAAeUwYdGzfF00TfHdVZslPyV3CoxcIMefZgC3dxVmjhzE275/J2azm7BhWQGXnFlqmjxFHIv9gavzlg5o80RI87oklpzQ+Lfi6wtSx2JKN59hmPjv3/8lfHBMkMmxhwmrbppG1XAwMh7xd5LpJ/cDrQ1quf0tTxQqAOIUDRMWM73EPdmJY5EXAZ6vOxZ3D43gKz/+LT7ytldik6+eUMF1CZQrNTcKNaZeZ2UKmDtMnKZ+QTwCx3Hwx5vvwIvOOys8GpeRGNYXYSx2ktRYDBP0bh2+tf7vdhxw1GGVJMZREqTIfQi8AMu2Wlyk47VxIixmOq+xSGsb+tsRGYXquht5T42PumjEEyej1/1HY1H9wuIkSP+iVouvb5cXgx2LQCOSNc6BGkc7jsVquYr//PB/Qp/T4fQ6eP/H3g9BbHzHzk7NYsmyJe01qI2vq5pbs1v29e1s28Z1V18Hy+rsHAHA5Eh8HOpAZgBlo4yKWSFRqODSORYFuUXsbgfqWJw8MomffvOneNmbXoZNJ29qWsbrWFxott64FWc/6+x6eZq0HC4dRq/ci365v7sNYzAYqUgtLB44cAB79uwBAORyOSxfTmap7tmzB0NDQ11tHOPRx1t/che+c8u+Bd3HN2/cg1d9pzETXzVIB5U+W99zaBZb93VnUG98LroTXdZM6FbzINyJK8jMILFnEDzPwYxz4glii1swDm+9Q0ngIfIc5qoGVMOGJJDHD10L7+x41xfdSEtN9TsWSYe8zxXwKnqUY7F53bwsYM4VOgHiMqwZFnJhM9OBSGenlzE3YpXWfqRkJJ7Us4yZHE6F2EMzVQjFQ/jwG16Eh+64Gdb8VEt8KwDMTk+1CFkzOtlGmnid5T0ZbB+dh2GFN5DG6gY5DrfdcgMu/dA7MHEkOMp0IC/DchxkJR65gPXLbhQqAIyPDoe2gbrsDs+QjiuNQlVEHrreuKcknoMQMqDF8yQqtRzhck2C4ziY33s3Kjv/hju+/V5s2HIy/vn8N7Usl82RhzO1Str81M1Lcc4JS9Gf6+7sxh333YnSfBHnnBctLB4pqljVn6lH4DJaYX0RxqKGuofMdGkCdbw1/I4F49uB/Tc1fucF4iIL+YKURTcK1dQRKoTQQTouIgoVII456nw0qlDjxny8saQ6ERZVs70ZbtWgKFSeJ4IbFRTLEcIiHyGahqEWyU+ROhYLAByIZkzUp4c91T485csP4Dd3jmD/rAWc8Axg31+A+cb3/fh0EStCXAKC7k4W8sdp9q9v/Fv0nRdBDhfkIrj5jgfwug/9J3bsORi8gJgh5y9MlHcHp1XTwcHRifAdZfqJm5IOxNG/RV6C6u3fSpnoKFSz1v7fMeCeI64uLH7kKz/CmuVL8aG3vqJl0UKODIqXqzXi3o1zLI7cQ372rU01O/KBXQdw+MgkXvwsVl+xU1hfhLGQPDT9EHZM7zgq+0ribmvHsVgXFq34sQqRE2FFTMgSOAGmExyFaswayGaJINKJY5HnePAc33KsUdukgo/oCYPzLi8JUpO4S91zVbM5ClUFOUdGglIgsiDXRVCg2RFJhcUo92cS0joWx0fGcdHLLsJNf7gJ88PzsB0bmtX8/dmOY7ET6Dn2C4u7HtiFS997KR6656GO9zExEtEXcemT++DAwWR1shGFGiFW+5F5Gbqtd1w3k9ZY/OF//hDZQhZv+Pc3tCyTzTcciwvJ2OExHNh1oO0YVIAIiyvzKyH7+6gMBuOoklpYfOMb34jbbrut5fVt27bhjW98YzfaxHgUc8PD47j0/3ZCMzufPRSFYTnuTxumrzDfZ/7wED77x4ea4kLb5ch89BdyRbNahMVNXscix8Gy7UjBjBNkGEa6GUxeYRAgYlmxpkM1LEiuUBglVtaahEkOPEciJ71Qt1lOESCLPKnRF4KuNnes84qIedWsOxaLVdLBphGZQcQKsC5jrti7xCca0fqNceOR1LFY23cnrvnC29DTN4AvX/lHSIPrWhyqpmmgNDeLgaWDTa/PGukH415w2grsnSjjuofGY5fty7Y+CMxMkfVmJoPXX+oKgj0ZCVJARGlZI45FAKHipHc7h2ddYdGwwHGAxPPQVb9jMXwgTBE7FxZ1TYVtWZj63X8Alol3f+zzEMTWAcRsjjz01qpkIPdpWwbxz2esrkfQdottN1+PgaXLcNJjzwhdpqyaKGkmNi7Ju7UeGUGwvghjUePW+YHR5kN55RgLi3f9GOhdjVEa7sAJbpRkiLAoidBMwDaNcCHESigs8lLDXWbUEDu+5hUWXcdiSWtPWAx0LAJEYKrOEKEnMgrV/cxOM6ucOhZl1yHvitKikcx9efO2B3D2J24A59jY9tEn4knrC8CJLwDgADt+U19ufHo21LEoqG4b/MKie2z757hW8Y3j2qqteGRy1v05E7xAQseiagKHjkQJi31EhKT3B3XLtDgWM63rUpQecj/XiuHLxMEJAMeh5Bmg+/rH/hXZTKvDsO5YrKpEYHfihMW7SBt7w6PVg/jjzXegkMviGU8+PdV6jFZYX4SxkLz6j6/Ga/74mnqcY7tEiXWUIBHK73jzi0RJoM66JMcQJ2TxHA/Lbo1CnVKnYEwbyGbaEBYDBFWRF1sci0lqLLZEobrIvNxUM5E61mohfcSofVE4jkNWbCTrNDkW0R1hMY1j8aF7H8I7XvIOVCtVfOu338LJZ54MAKj4JknNTh5dYZHed/444+kJYiKYmQjpi6RgcjTesdinkFj9GXUGAieA47jUUai6pXdc89VbY/HfPvpvKPS2JpNRx2K1XG15r5tsvXErREnEmc84s631HcfBSHkEawprFizqlsFgJCO1sHjvvffiaU97Wsvr55xzDu67775utInxKGLjR/6Ez/+pdaYQFf4WGiqwUT1qXjXw4PAcDMtuiSgN495Ds9j4kT/h9v2tLsfJiKhLjiOiS80nngx4BC+h7lgM3z8nyjD0dMKiX+TLKSLKmomqYUHkXaFQDX8AqBqN9SWBB89z0GqtUagcR5yAisC3iJle/CJmXhFRMyyU3BHF2So5vkxUFGrMeaKMz6uQBb7F1ZdxhUXDiZ71nVMEGLOjmLj6szjxjLPxtSt/hw0b1oPngMlS83HMzZDBYW8UqmU7mDPTC1ZP3rgEgwUZ37llX92ZGIQiBjsOZ6dIW2amgju/1GlYyIgQhdbzXNHMeqTYxJHDofvPSAKykoDhWddVYFiQ3XvE64KVI64lACgSD1U3O+pAVyuNyOOBpcvw+LNav7uAhmPRu7wUcA46Zest1+PsZz63KSrHz+gc+Ts6ddXC1jQ43mF9EcaihsZEtjsYeKwdi4dvBzac2/hO5QW3dmC4Y1GzHDh2hCDkdyyGOR+EZmGxFjXbx3EAI0BYbDMtKrDGIkBEKnWOiFqVieZ6dk1RqDGiaRBUtKKinnvviGY5eHkPo+PT+Ie3XYInnrIeW9+SxxZ5qrGt9U+pt6VcVVGtaaHCoqi5bci0DvZVDQdHymjUv/TShrA4Pk2ExbGp2eAFghyL3kljiR2Lbr2j8njTeuAl1JocixHHILvXxC8mp4EXoRsWDE+/+SXPPidwUepYLFVqRMiNcywevhPoW5e6vuIfbtqGF5z7RCht1KtiNMP6Ioyjwawa8nnZRag4xnuGBw+Xmp/32onWpLUAkwiLcUIWrbHojdI2LANzxhyMWQOKQr6/DT16RlJUFCpAnJOpolCpY9HTfq9oRB1qFI7jIAkSalbjnBRpegGSCYtAww0KNIuydF/tRNd6SepYLBVL+NCFH8Lq9avx7d99G5tO3lQXOqtGQ5yybRuz07MYWHb0hcWM0DyJaNad5DQTNskpBWmERQcOuR+QzrGoCAoRFjusOeUVFp/3suAEpbpjcYGjULfeuBWPP/vxyPfk4xcOoKgVUTWr2Ny3uUnUZzAYR5/UI6ccx6FUap1FOzc311ZG9eWXX46NGzcik8ng7LPPxh133BG5fLFYxLve9S6sWrUKiqLgpJNOwjXXXJN6v4zFw2/uCXc/LTQ1n7C4bf8MLMeBleJL+55DRQDAXx5uHeCYLod3AKjzbbIc3qmgwmJUJ4ITpaaIySR4aySStggoqyaqulkXCqMci9UWx2Lr8mXNREYUIPA8ZJFHzbBCjyOoxiLQEFlmK6RjHOUgIzUW46+bYTkQBa5FPKPCYpSebFkWshIPaWA11rzmM/jAF7+LbD4PnuOQV0RMlZsfBKiw2O8RFidLGuw2igTwHIcXPnYlHhiew1/3hHdgezJioONwdpqsMzsVPBBXFxYVEZLQun5Ft8CZ8Y5FABjISZgoqbBsp8kF63W1yhHiGkCuR81IVjczDBptCgD/8PLXhi6XzRfc5ZNHz6Vl5OABHN6/B2fH1Fccma2B54CTmLAYCeuLMBY1VGxKUFMokE6EjG5QWAGsfkLjd14gwmCYsCiL0C24YmFYFKr7d8kncSwaJHbVqKFmRHwJGNXmNmkl1EyuJYkiKaGOxUwfqUFoaSQKVYkRFlM7FrmGOJTAsWjbpL+zesVS/PG/PoX/+85nMJDlmu+bU//F3f4MxqdJ1GloFKpWJOedinE+ZtQAxyLQnrA4VQQQISwKMrnXvAPYP30pcMOnyb+9jsWowbwMGcRrCIs0ClVodixKEbWUqdhb7aA8Ai+gVG300V/7ovNC0xp68uR8lqs14nR07PDC9Y4DjN5D3Ipy8uswPjWLOx7YjRedx2JQu0G3+yIA648sVk7/yek4/Sendzywf7RI204qsHknP+6e3d20DK0lmIaM6wpPUmMxqbDodWCOV8lnvDFjgOd5SLIU61j01qoLEt8kvrXWY5Iai972e8VBWWh2LALExeg9J/vmGqWAkkShAs11FnmOrwuB3aqx6I1aDcJxHFiWhZ7+Hnz2e5/FV3/x1bobUeGJyOsVFsvFMmzLPiZRqBlfOsHs1NEVFnvknnocLnUspq6xaHfmWLRMC4Zbquj0J58eOtE5V6BJTgsnLFbLVdy39T6c85zgiVZJGC6T0jyPHXxst5rFYDDaJLWw+IxnPAOXXnppU2fZsixceumlOPfcc1Nt66qrrsL73vc+fPKTn8Q999yDxz/+8XjBC16AiYnggW9d1/G85z0PQ0ND+PWvf41du3bhe9/7HtasWZP2MBgMAI26f/RL+m+uYNOtZ4ZiTW+JOqXQ+mlRrkaB42AncSxG1EMMwu8eLCgiqrqFqmZBdGss+msmelG9NRZ5HjwHqD5xsKyayEikfmNG4qEZrbGzFENrXpeem1HX9TZXI53zngAnHo32tBI6FsOgbkgzxLGoVUr42Ntfiz9f9SNwAE444ynIZxvOhp6MiNmq3uQmLE63OhaHi+3HSjxtyyD6shK+fdPe0GUKSrDjkAqKM2HCouuUzctCoFuvkrDGIkBEypkKidat6hZkNy7XKz7LYvTXT1YSiBgduVQ0XgdilEuQOhZrCygsbrvlekiSjCc95ZmRy40Ua1iSl9GfZZEeUbC+CGNx436PGMepsLjx6UDvqsbvMVGoksBDMwEnYplGFKo7UGUbDSHOi/D/2XvveMnN+mr8qE69vd+9d7u97hj3ghs2JYAJhLwJJIQOL4ReQicEh5gQOoT8CCbUlDcEQjHdNrZx2XUv2GZ37a231+mjLv3+eCSNpFGde++uDTqfjz/rO6PyjEYjffU9zzmHJfcagxCLDSVkto9Ub/u7oSafuGOhKSrtWYIAkOsjakhVBurzLSUbQEhX83MsWfb3WgLFolgmBJ1lqWoTi/6KxYao4iVv+wdc8+X/BABcddHTwRW6gYyHFOxpXY8WlggxFqxYLBFS0Y9UBbAigHwvXvDJZ5lbhOL8UpBi0WOFWp4ieZ9zD5HjbysWEa5YzAQpFr1WqGHEokn2rsWamGZRa7auA0yIG4IrY5GJUCyWDpFzp2s88Hvzw89uvQcA8LzLzo29TopgrGctAqT1yFMBi83oPLW1Yq2EEBAvM9G1vEUsIphY7EQBZ+f9xRhPlELOIrokvdX3sIhFdZVsPw6x6FQparrWRqCxNNumZAwjFq1lWSqeYhEgRJGoibat64Fyi1iMGr+FvGdyj6USXDhikq1rVCyGRZaosopr33EtvvIPXwEAPP2ip4PPtu5FGdP9walULa+UAeDYWqEqAihQbVaoFqG4HsRinIxFmqJRtOo783xIYoW6HopFp7UpHVKLZLIZUBS1oYrF+26/D4qs4MIrL+x4G9O1aWSZLLb2bF2/gaVIkaIjJPbj++QnP4lLL70Uu3btwiWXXAIAuO2221CtVvHrX/860bY++9nP4vWvfz1e/epXAwC+8pWv4Kc//Sm+/vWv4/3vf3/b8l//+texurqKO++8ExxHCo+tW7cm/QgpUtjwKhZve3z97McYikJVIDmBfllpRLEo+RKLhqGDomjQdHR2IMXwkE0rVCmsAeeANz+yaKrtmrIKjm5Xl7Wv7yAWGQoURUEWBTgfByqCggzHgKYpZFgGoqJB0w1wPpPfvIpFS805ZykWmwookCxIL6wCK27GYhCsjEW/Q6iU5/Hdv/sHKLVVvPS1b0XuMIP+Am+vAwDdWQ41QXVZ6JZXSXO415GxOFPqvEhjaRrPOXUE/3PvNEa6sxgstjeTChkWbAeKxT5TsZjjGd/1m7JmE4tRisWBYgaPzVUhKhoERQPH+lihRliN5jhyzqwl51BoRFvJAceGWNxz6w142nkXI1cIb8ROlwWMdGfbrHpTuJHWIimeElCTTfqxcbwzFns3E0tKigJgRCoWKYqColNEhRjbClUlKjivus9SLBo6oApoSCF1jewlFqtodGiDCgANUQEYHytUi1jUJKC+2E6ombmQc6t1DI0wQJKGbrNE8hUtGyc2A1A0WLX9fjRd0fDCj92AxxdFvOZPnu1+s2uMqCp9sGCSEsGKxRJR5zH+Td1VEf6KxYQWnEAMK1SGB2C07HD3/oT8axHTDivUo3NhikWTWKx5FIsMh6ZzMl4m5DNYBPJarIkpBnUhZpPYnKxWb4oAZWYs6gHn/8z95N+eiUTD+cktd+P8M3ZhOIBkTpEM61mLAGk98lTAWjPO4kDW5DbSKCmUILvxoOUtK1QHAbZ3de+atpkUQcQiRVHkuJuXQ1ltXVPnG/NkbCUyNj7DRysWHcpLVVfB0qxrcgBLs2go7ntwmD2ppYDkHPdQl2KR9lEsmpl5mqGBpmg8Xnrcfi+uYrHIue9fPM2jgQZKcyUUB4qJyWU/UKDaznm5IuP6v78epQMlvO8z7/Ndz8q8cx7HyjJxT+gf6l/zuOJCUAXwDN9mlWlboa5DxuLyXLwaoYfvQU2u2ed5EsVihslA0ZU1XX/iKhApikKukNtQxeKdN96JLTu3YNPWzifBTNWmMFIYQTfv77aRIkWKY4fEisVTTjkFDz/8MP7sz/4Mi4uLqNVqeMUrXoG9e/fitNPiy5BlWcZ9992Hq666qjUYmsZVV12F3bt3+67z4x//GBdeeCHe/OY3Y2RkBKeddhquvfbaUKsRSZJQrVZd/6VIYcFJkC1URRxcbviSKp2gkGFQFRXIqo6t7/8p3v/9h9veB+JZoYYSi51YoXoVi1kWTVlFUyaKRV1VoYf8rpqKs/j2z2SsigoyLCEpsxwDSdUCswG9xCLP0uAZGvNV8rlKTRn5ACWdBW2NxGLGskL1KBbvuON2zH/7XdBVFV/6r5/h6Rc8A3902ihOHe9BxpET2JPjUJMUSGrr2FRWllHs7gHPtxqV02sgFgHg8hOHkc8wmK/6E795ngHrY2VqZSuurvg34rqyLHaNFDHek/OdodiUVVBmY24xQrE4VORRaSoQFKKCtaxQnecpx4b/zrIcA1GJZ28bhGYzGbEYd/mkaNRrePje3Tj/sqsil50rCxjvyaGQEouhSGuRFE8JqGIwMRCGtVgvrgWn/xmQH7RzBi3bJoNiIvPeNFCgDA2BVqiah1jUlRaZ5gTDtzL2VAl1OUyx6PkdiRVU5c7vGcFWqL2EABUqhPT1Wk+azUR7XlEiK9RVoli0iDuKArg8OM3d1Lzvvvtw/nUVLNck3PFfn8bVzzzfvZ2e4ObMwmoVDENjoNffYpuVSkTh59PUve5+Gb+Zpv3VpZ0oFpfiEIsAZHNm/WM/Nt8wv1fFrVgMrBEYnpDjFiloKRYZHqKzQcz7HxMARD1Jc0BzDY1HjxVqGBiGQT6XaWUsAsGWwdP3AoUhoDgceyiSrOBXdzyAF1yR2qCuF9arFgGOTT2S1iJPDTitPjtFUrWapbpzEjBexaJfHuF6IsgKlbJ6M+Y9VtLcisUMnYEukjfjEIuqw1VA0ZU1KRYNw2hlLIYoFilPDEqGyUDSJFux+Hi5RSzGzVj0EosWsWlo1qTrtX9f3mPz6KOP4uGPPIzqXBWf++7n8MwXPtN3PUs96SQWj4ti0SQWvcTueioWVxdXY6lMu00nBVt5mzBjUdEV+3zpBE7FYhRy+RyE+sYQi7qu465f37UmG1SAKBbHC+N2jmuKFCmOHzrqXI6Pj+Paa69d046Xl5ehaRpGRkZcr4+MjGDv3r2+6xw8eBC//vWv8Zd/+Zf42c9+hieeeAJ//dd/DUVR8NGPftR3nU984hP42Mc+tqaxpvj9RcOh3Nt9gDTyNvWF2CIlQDHDYrUpQzI7TT/97Rz+8SVn2O9zDLEJXQmZXm9ZoYZxK2w2DyVEXegHb8ZiV4aFIGsQFB0sQ0OR27e396H7AeSw75EHUDjnnNb+rfw8UYSzvK2LKrIsDYamkGFpVEUl0ApVltoLl+4ci6WaBMMwUGrIgUo6C2rEcYpCkBXqpz75j+AGN+PPPvwFTGzdAQD4o9PGoOsGaAcB15vjsH+h5rK+La8uuWxQAaJIy9MqmnpnxBHP0rjqpBH86KFZ3/fzPAPOY/tpGAbKEYpFmqLwzqtOhKK1H0RZ1aFoBnjzwWl1eRGyLLkIUycGixnImo7FqgRB0WzyWXbY6/JMeG5Dnidk9FrmBcdVIDIsCz6T3bCMxXvvuBmaquKCy8PzFauCgoasYetQPtIqNkVai6R4CkCVCEGWFGshMtYClge4Vg6NdYszQIMKUSwCgGrQhHwMVCya9ZZTseiX38NwthWqoQioexSL+w/P4EQAN9zxAJ612WOhJFVRlQwMuaN0YqMpBVih2nl984So6p1sHzMAu7RKouporhI7TifJyhdAKeR4ZSiy0U9/+tOY6Gbwow8/B6O7trVvp2ey/TUTC6Uahvp7Ai3BGakC8Cf4Khbf8QsJJ2wZ8N9wmNovaCxmYzGQWDRJbShNkmc5tcf9vkOxKMgSVspVDPb1BIyvi5D0huFSLAqmYlEDDYaLOFn4ArEcjciaCgTNuKxQo9BVyBMrVNqsHYNI6ul7iFoxQb7irXf/FvWmgKuvOD964RSxsR61CHBs6pG0FnlqYC3kgYVOiUXLCrWpNDHXmHMt00nGYhIEEotWMWLeY50ZiXP1ORTZIgaeNQAFCiEWI4g557FRDbVNzcbSbJvaT/LEzpRM9f3tv7gdO1+2s238kiiBAWO/7iXoeNpULOoawAAHywft92ITix7XAMvu09DXl1h0HosvfelLYLIMXvyJF+OUp58SuJ41lobSsG1RK8sVZLIZ5Arr02uLg6baRIbOtB3/9cxYBICluaVI9V1fhhCqrGktn8gKlc1A0damWGw24hOL+WJ+wxSLex/ai9JyCRdddVHH22gqTZSkErZ2b0UuzNI+RYoUxwSxOtsPP/wwTjvtNNA0jYcffjh02TPOOCP0/bVA13UMDw/jq1/9KhiGwdlnn42ZmRl86lOfCmzmfeADH8C73vUu++9qtYrJyeCH7xR/WHAq9+54YgUTvTl0ZVg05LXPFCxmWcxWRNRD7CzyPINSCLFIU9GKRS6bh6IqifTHXmKxkGEhqjqakgqWpqD4KCCXF+cBbMPy4rzbCpUmVmle69SqqIBnaTAUyVhcquuxFYsAUQCWTGJ2tSEjz7NgfJR4FizF4k8ensWNjxHrK5om8wNpigIo8u/eOf/ZuSxNiF5Vp2AYOqQqmeX+re/8B8775G+Q6+p1LU97SM6eHIe6pLrsaCuryy4bVFnVsVyTMMZraMqdK9KedcoIfvnovG9pmefZtrE1alUoiozxya2BGYsAIYl9XHttAp7SZHR196JWLWNpbhabtvg0NwH0mxat06UmsddlaGKX6zhHslyEFSrPQFqjYjGuFSoA5PJ5CM3O8y/DcNctN2DrCSdhdNPm0OVmTevfU8cCmqR/4EhrkRTHDfd8DZh/BHj+Z4GQvNY2aFKw4ihwHYUo8fwUYlEwjBYbuA6wmnkaaNAxiEUaWnBIdZtiUfW312Q421LVUAQIint7CytlnAhgZnG13QpVrKIidk4sNkTZV7VnE4vVWUAoAd7Z0eY6ilXjJPnOxRLA5Yj1pQW+ACgkS6dWJ5/xuuuuA/PJXyHXG9BACbHEXFitYWQgWCFA6zIhqAKsUAMRpvbzgapqWC5VsWPzWHDGolOxuO9n7fsxCcJsLo+63MSRmcVwYlGskHPPJhZ5O2NRoTJg/LIjneCLgFgFcr0xPqEPqGTEYjGfJVaoVqNb81E0aAow/1tg51Xt52IIfnLL3ZgcG8LpJ26NvU6KdjxZahEgeT2S1iJPDawHsegk3+KQEV4r1KnalOt9CtSGKxbDrFCBlhLPSXDONeaQY3IY+8sx7BP2gc/wUORwUtVFLGpqG+nkNw4v2deoksmoK4srkHUZFCjXdmRRRg45e3teNyCe4SGqIjRDQ0ksoSS17olxrVAtpZZ1vlj2o+upWGQpFhIkSCVyL/r85z+PB89/EF0j4fd/S7EoqIJNLJZXyugb6gvNblxvNJSGr2KxtFzC+JZxLMwsQNf1wIlXUWDMidILMwuRxGJvphdA6/zqRLG4pr5IAgViNp/dsIzFPTftQVdPF049+9SOtzFTJ7E8pwyeckzPpxQpUvgjVmf7zDPPxPz8PIaHh3HmmWcSn3OfixpFUaFWYE4MDg6CYRgsLCy4Xl9YWMDo6KjvOmNjY+A4zr6AA8DJJ5+M+fl5yLIMnm+fZZzJZJDJ+KtqUqRoSKTgMgDceWAZu0a6XCrGtcDKSJuvBBcNeZ5FRQguHmkQMi6IkAMANpMn2XUJJuu0WaGaY11pyBgs8lAjFJBNWQNDU9B0AwxDQdfarVPrkmqSXDCtUHWoAZZwio9isS/PY6ku2cRijmPAmIVDqek+ZoauQdNZ6AbwjTsOY998DQMF3nyMIkpGAzD/NXDSaBf8xI9ZjoHckLF8/RcwN/sYGp9+PXp6ekDFaLb15DkomuH6Psuryy7F4nxFhAFgOKtjdg2TPrMcg1dfvA2lptym4rQsdp2wyMTtu07FPbf/GoZhJCrCrN8JNBnD4xOoVctYnJsJJBYHCuSaO7XahKjo4BhTsSg7icU4ikV9TSrUZiO+AjGXL2xIxqKmabj7tpvwR3/68shlZ8siGJrCiREPa3+oSGuRFMcNB28BFh4DyoeB/u3x11OlYAVfEMQy+deymYx7EWwsA18+H3jJvwE7Lk+2zwBYdwkNFDhdDR2LBhp0mBWqrpItRlqhcoAi2IpFIawkk2ptf5cEDejtrMnQFBV/YtZStVWmCbnqVeqZDTTbCjWJUkQomzakTsViEVppBq/+kYgf7pvGwU+sor+/H+BCPlf3OPnX5zsixGJv+DgyXcnJbPscjdcEX1qtwDAMPG3XNvzvDXdCkhVkeE99ZRGLqgD87sdA/w5AdnzPqgjNACZGBrBcaeLo3BLOPu2EgM/UQ0h6TWoRiywHQbKIRR7ZAIVMaxtFsn8rszEpaAb1BDlKxXwOdacVqupTLC4+Rj5T97j/b8gHhmHg+pvvwtVXnJc24daIjahFgGNTj6S1yFMD661YjEMw2YpFk2A5UjsCmqLtsdAUfdysUG3Sx0exON+YR54mym0VajwrVMfnkHU5kljUNC2UrJQ1sg0nOSWKok0ssjTbRmxlmAyqchW6oeNA+QAAgNd4yIwcW7FoEYuSeX+zVILWcVqXjEWNwux3ZlG+rYyZd81g06ZNYHPRLWTrMwuqgF70AiCKxWNpgwoQZZuXWBQFEc16E2dfcjZmj8yiVq6hp7+zSb0sT47F4mzwxG0LfVlTsWie50kyFnmahwHDde4nRRIFYq6Q2zBicfdNu3H+M88H4zebPSam69NgKRYn9Z20jiNLkSJFp4hFLB46dAhDQ0P2/68HeJ7H2WefjZtuugkvetGLAJBZdzfddBPe8pa3+K5z8cUX4z//8z9ds0r279+PsbEx30ZeihRRsJR7SzUJy3UZV56cwxML65OzZpF1C7Vgkq6QYVATg4s+ygwTULTgBwwmk4Mqy4mIRVFxb69gE4sSRnuykZmNgqyBZ2gIugaWoqFK7cvXJRW9OQ4MTSHHMZBVLTBqyk+x2F/gcWCpDknVUGoqyPG0rdz87UzFtayhqdB0zrSNNbB9qICXn78FnKlwtJ73nY/9XT4ZdrRQwtH/+AjklSnsfMEbUSgUICrxmgLdWfIQsuDIPqysLGH7zhPtv6fLRBE3mjeANcaanL3FvzAv+nyukmmDun3XKbj9xp+i2aijUIxPXtVNYpFSZQyNjOHA3kewMDcVuHxXlgVLU5gqC8QK1cpYFEW7UR2lWLRyOUM49UgkUSxmN4hY3Pvw/aiUVnHBZeE2qAAwU25ioMCjO8YD2x8i0lokxYbh82cAF70FOO8N/u8L5kzypHmJlmIxCWFj2aBa1j4rjwNdI8HL2+utEJvOmz8ObLsk2TiDYCkWLZvTkGanTjGgoYdboTpJEE0JsELlybKGDqhim2LRBalGjq05LkOqoSzoADzb/el7AKUB/PG/hCo6G4EqAXMdi/TlvMSi1wo1AZkslklOnqOhuizxeNE3ZnDPtIIvv6CI/u4YlqO5foDJwA6hcmChVMP2bVvD10+oPiTrmMSiEk+Rt2Baxz3tpO343xvuxOJKGZNjbrt4m1hsLgOHbgVOeA4w+0DrfVWCotMY7O1CLpvBkbBmXq4HWFkyFYutjEXBbObJFB9tccoXieqx00Y/zaDWSEIsehWLPufk9L3kvO8Nd0Fw4rEnjuLwzAJecHmar7hWbEQtAqT1SIoWogihVTHavtFJQMQhI7xWqEeqRzCUG8JCkxDdDMUktldNikgrVPOwOD/PYnMRmzPkWqhDB8dzkcSil3T1s0J1Ig5R6c1RdJKDQcSirMlQdRUHygdAUzRyag4yI0NV1FiTEvIcIVQFjfRRLJWgZYWqJZ3Y5kG9Wse+z+5D6ZESxl86jk2bwhV5XvA0D0Ft9XjKK+VjTyyqTXAM5yKPS6Zjwo6Td+C2n9+G1aXVjolFiqLQO9iLhemFyGV7MmQfVhZnEitUWwGqdU72JcpYLOQSWafGxeLsIp549Am87E0vW9N2pqpTGMoP2cc0RYoUxxexOh1btmwBRVFQFAUf+9jHoOs6tmzZ4vtfErzrXe/Cddddh29961v43e9+hze96U1oNBp49atfDQB4xStegQ984AP28m9605uwurqKt7/97di/fz9++tOf4tprr8Wb3/zmRPtNkcKCZel5aLkBlqawtX/9wn8LtmIxuGgoZlibtHHCKkt5yrT8UMOIxbxLCRYHXrLMGquo6MQONGJ7DVm1M+BYhoLkozisiyp4ljGtUBnIqhGiWCT7s0gxhqbQn+dRFVWIsoZyU0aWZWyLz2Uze9GGpkDT3RP1CzyDriyHriyH7hz5r8fxn9cu9InfPYJ9X30b1HoJo3/5T+g/8RwkQXeONBYXHcSiV7E4UxLQk2NRDFMdrBFF3odYNBWLO0461fV3XFi/E0qTwWUy6B8cxuLsdODyNEWhJ8dhviJCUDRwFrFoEtA0jMiMxRzHQDcAWe38oSgJUZjLFxIRkXGx55ZfoaevHyedcVbkslOrAka6M77kcIq0FkmxgSgfAX723uD3xQoAA4iyTfRClZMTEoLZMORMYjHp7OTpe4Gju5OtEwC7l2dQLbIvADoYMAghH71Eoib7q61onixr6KBUCSFzr4gVKtvyPTWkGqqSDxE5+wBwZDdQnQnZGMlYDLWZEsrk3zbFoscKNcl3JlbIZzCPxd6DU7jg2ruwf0nBza/M43Vn0i1SLAwURQhonzorygoVAFEsJoVNLMZrPlm5ik87aZvrbxesjMuDt5DzYHCXm5hXRcg6BYqisHlsKJxYzPYCUp2oFVWTrKOYlmIRvL8drxOZLkBudE4sJrZCzaHWaLbG5WeFOnMv0L2pZdEbA9fffBfyuQyuOP9psddJ4Y+NqkWAtB5JQRBldxhH0egkz+IQghaxaJFshyqHMJRrPcPSFA2tk8zoBKApuk09CACU+cyum/0QybwuypqMklRCjiH1kg49lmKxjViMUCxGbU/WZDA041KDO0kjlmonFrNMFrIuQzd0PF5+HIO5QTuTEYinZrMUi4JC+jB2xqJlhboGxeLc0Tm85cVvQe2JGra+eyv6r+xPrKTlGM5FLB4PxaKgCOBpt2LRylXcccoO8vfi2nIWhzcNY35mPnK50cIoMkwG3RnigJBEsWh9t5Y6tRMkIQpz+Y1RLO65aQ9ohsZ5l61tktNUbQpjhbG2nNEUKVIcHyTyvOE4Dt///vfXbed//ud/jk9/+tP427/9W5x55pl48MEH8Ytf/MIOLT969Cjm5lqh0ZOTk/jlL3+Je+65B2eccQbe9ra34e1vfzve//73r9uYUvxhoekg9bYM5DFQXD97mDzHgKbcCjYvurL+xKIFyizypRBikeWzkQWvE4qmQ/XIwAp8q5BlAjIWnWhIRLFoLe+nWGzIGniWZOtlOQayFp2xuGuUNLZYmkJvgYOmG1iqy6gICjIOK9SqqLqOiaEpUHU9NIsyCqoiI9c/htFXfAb8yI7E6/fYikVyLAzDQK286iIWp0oCRrqzNim7EejJt9u2llaWwfEZbNpCLPzCchb9YFmhUubM+eGxTVicC2/Q9hd4rNQlCLIGljatUE0CmaWjY8osq9S15J02k2QsFooboljcc+sNOO+SK102VX4wDANzFRHjvTmb6E/hj7QWSXHMIVbIzJWA/J9gGMkzFi3FYscPywZwxxcRaEmaANbse9WgTWIx+HqsUwwYYjoesIDivvAHKhY5sqyhA5oEQQ1TLNYB1lG3BRGLShOoL7TsMANgGAZEZz3lrSksxaKX0PFaocYlFjWFkFZcy3JCVTUM9+Zx1+sKuGjSssOM2UjaehnQt7VNIbuwWo22Qs1GvO8Hi1hU4zWfFpbLAIAzdpnEol/OomXldvA3QO8WoNeT/6ZKUHRyXm4eG8LRUMViLyGfVZEcQ5oDKBpNs2ZVwEUTi9luonbttL6kGdQS2I91FXKmYtEcl9/1Y/peoHsi0TXiJ7fcjWdd9HRkM6mKbb2w3rUIkNYjKQjWg8BzqvoUP+WzB86MRQMGpmvTGMgN2O/TFL3hikXAP9/Qzlg0HQysz7bYJNd/m1ikYhKLmpt0jSQWI6xJLTtVS+2pKio0x8RYv8/EszwUTYFmaHi89DgGs4NuYjLGhBSLWBQ1sqyVZWgZF6xFsajrOgpdBVxwzQUonloEGLhIwjjIMBlIWmsyeHmljP6h/o7H1AkETQBHcy5isWROatp58k4ALaKxUwyODWJxJrq30pvpxTUXXYOdvWS/HSkWE34HTgh1AZlsvF5nvphPZJ0aF3fedCfOOO8MFHs6JwQVTcGisIjJrkn7N5AiRYrji8Td7Re96EX44Q9/uG4DeMtb3oIjR45AkiTcddddOP/88+33brnlFnzzm990LX/hhRdiz549EEURBw4cwAc/+MHIhm2KFEFwkhab+/MoZliYk7yw0lhDCB4AUEBXlsNyPbgh1JVlW/l13pUBSKafvxRmhcpnI4lAJ/ysPZ1EBktTtoLQCd1sblAUhaas2jajHENBFN0zoGRVh6zqyJoEWoajoemGbT3rhaYqUBUFTh1fX54UULPlJqqiihxHVG8Wmo7vztBU6AYCFZFBMAwDv/7pD6DIMk464yxc+LYvge0aTLQNC/kMIZKXzO9b11QYhoFeB7E4WxYw3pMDx2wMscizNHJ+isWVJfQPDmFgiDQmkioWbStU80FueHwCCyGKRQAYKPAoNRQIZh6nU7HIUYZNEt93562+BGDOJBa9eaBJIDQTEIsbYIU6P3MUhx/fi/Mvj7ZBrQgKBEXDtsHChp0fv09Ia5EUxxRiFUSxmJRYRHJiUVglyiq2w4lOfduBA78GlvZ3tr4DVpOrRSyGkCs0C4YKsUL1Eolea1QLLA9oKqDKoA0N3hhqzaqHKABSxaVYpJSGP7EoNwi52FgOHr+JpnMGuXd2vlAmxFebYpF8V3aJE7f5Kpq27mwW//OL29AURJx24lbc8amXYlufW6UXCyc/H3jay1xEJQDUmhJGBnsDVzMomtiGJoWtWIxJLK6U0NtdxOToECiK8lcsWlaocg0YOomQg06ookksUtiyaThcsZjpJueZWCHHkCHEomg2iWVw9jl4y10PY7Vc89+G3FyTYrHelNqzJANArFCFYMWiVAOWHwe6RlvZnxFYLlWw+8G9qQ3qBmC9axEgrUdSrH/Gou5jke2FpW7jaA5VqQpRE9GfbZFAlmLRWIdJS2HwI+EsUsgwJxpZRNp8g6jEigy5J8dVLDqVfIqutFmhcp5aTxLb+yy6WYtQoKBoikux6F2e9XG7yDJZKDohFg9VDqEv29eWAxiFAmsqFk2yKcuQe4JhGKBAdZSJefsvb0e9WsemrZvwzz/4Z/RMtmqDmjfXOgI8zUPWZPv8q6wcB8WiSohFJ3m8urQKmqExND6EfDG/ZmJxeNMwFmairVABYl9rZ2P6nFeP3PuIr4LSIhYlPxeDmBCaAvLFfKxlN0KxKDQF3H/H/bjwygvXtJ25xhx0Q8dJ/Se1KYFTpEhxfJBYFnHCCSfgmmuuwR133IGzzz4bhYJ7lsDb3va2dRtcihQbDSepN96TA8+2cvyq3m5WB+jKsig1g7dT4DkoWnCBbpgFoawEPxDQXBayHL/Q8+YrAgDH0OAZGrKmg2UoyD6z5Eory0DPCegdGMKqrIGzrFBpGrLoXt4ioixlXtYMZ/YnUQkkT85ir2ktenCpAU032gizpqyiv2BmCZgzD+UwZYMHiizjSx//AH7+/f8A/4Wv4xlXPQ95xz4MF80ZDZqiUMywWKlL6M5x0FTyWfsGh+zxlgUFWwby4FY3pgjK8ww4un3cpeVF9A0ModDVDY7PYHV5KdF2G1LLChXIYHhsE5743SOh6wx2ZfDb2Qo4mgZLUwAMl2KRoihoqooP/t+X4Y3vuwYvfvnrXOtbxGJTVtFX6KCZD0BoNMCyHFQ1+recy+dRLa3twcKLPbfcAIZlcc7FV0QuO1smx+aUse51HcPvK9Ja5PcEqgR8fBh49j+QjMMnIwyDNPOzvUDC+wKAYKItCM1VkncXlP0WRTJtuRB4eArY/c/t7/1dD3DWK4AXfinWUKy5PIqOyIxFg2bBUkbwMrrmJhL1ACtUK2PRtNf0KhbnzAbQUF83INZaBKyugNJVVP16LrI5yaR8BNh8vs8CLTQEEbZGw/tZxDIhFb0qN9sK1fw7hjoEACCUoekG3vPNu/H5Hz+Ab1z7TrzqT54FyqtEa5balXtB4P2bRmFWqBpbBNsJkW3NFI/ZBJ9fKmFkoBcsy2Covwfzyz73XNahqBs80UUcAwAUAbJBARSwZXwYP7ppT/AOLWVpbd5ULLIARZlWqLSpWCTn4Av/+mP4m9e+BB/5679wbyPTRYjiTlUCNI1aU0BXIWdPFgxDMZ8Lz1icfRCAAfRMxM5u/flv7oWu63j+Gq3HUrQjrUVSbATWQ7EYR6XohKqZVqgUg2WRTMIZzg/b7zMU0xFRlRQcwwGeodtWqIoOcC3FopX/2MURxyOLWCytlFy2ol44j42vFSoVTSwuL5Bj1NXbBUmTwFJsILHI0+1KcZ7hoegKSkIJJamEvqz7Hh2HWLQIUdGsCy27TICQsUmsUHVdxzc/90185wvfwZs/+mb86Wv/FBRF2XmAAHC0fhSjxdHY2+QZ3lYsGoYBVVGPObEoqiI4hnOpQUtLJfT294JhGPQP9XdOLFIAdEIsLs4turJu48DvvLrmzdfgiquvwJs+/CbX67YVqia5sjyToFlvIlfI2YrNMOQK608sPnDHA1AkBRdetTZicaY+AwoUTh88fZ1GliJFirUiMbH4b//2b+jt7cV9992H++67z/UeRVFpAZ3iKQUn0bWlnzRjHp2tBlp2JkVPjkMljFjMRMwo1RQADARFw3SpiYm+9oYRzWegNuLPXgpSDeZ5BrKgg6VpSD6KxZXFeaAHKHZ1YVpUbVUVy1AQPaRg3QxFypiEYpajXa/7wbsNy9Lz8cW6axsW5spi63iYD0Nx8/iq5RL+/p2vwyP33433XvtFPOOq5wEAcg5LWAHJ7aK6shzKgoKuHAfVIhYHiAJypkw+3ynj3Xh8ffkrAMBZm/vA0JSvzWppZQl9g8OgKAr9g0MdWaGyNAXanHE4Mj6BpbmZ0AJ6sJhBQ9LAMTo4hoKqKjZpz1IGGJqC0GxA13UcPdiurMnyZLtB52scCM0GcvkCatVy5LK53PorFu+69Uaccc6FKBSjs6tmKwIYmsIJIx3kXP0BIq1Ffk9gZdY99sMnL7EoN0wL0A7rgk4Ui3yxxeolBZcHtlwE/O5H/u/f/23gBV+I9qNGS7Go6FSkFSpoFiwdRix6MxaDrFB5sqypgvPO8ZqaXwZGQKw9pVrLOlMhdUstSLEIAKsHg8dvoulq9HgViyVCNHmVq6xlhWplLMZr6NaWpvGy/yfgFwcexD9/5E141Z+Y6navIrI6DYyfEWubQQhTLKpcEWxim1/EVsxZWFgpY9RsKo4O9vkrFmkOAAUUhoD+bT6DFaHoNAAKm8eGsbRaQVMQkc/5jCVrTtSpL5LzybRCFUQJQA4yRf7WNA21hoDfHZhq34aVPSlUEn1WGxSDWqOJYj6H5VI1cvF2xaLnXJq5j5DpPROxh/CTW+7GOaedgLHhY2tB94eAtBZJsRFYb8Witc0wdY+1vEVW5dgcBrJuK9S1WGvGhR8JZ9UiuqwD+ZZqa74xjxybQ45tWaFyGQ6KrIQSi22KRS+xGEOxOD8zD4wD/cP9kDQJDMXYhI83O89PhZlhMna+IgAMZt2OSUlsMi0VqaVqAwgRHPc8kkQJ//iuf8QtP7kFb3j/G/CS17zEtR0Le1f24rzR+BNUMkwGsibDMAzopqtU39DxUSy6MhaXV9Fv3g/XQixqjAZDNDA0NgRFUlBeLtvbjQO/jMVGrYEjTxxpe936bkVVtM/3pGg2CLEYBxuhWLzzxjsxsW0Ck9tjTpQLwFRtCn3ZPvTn0pomRYonCxITi4cOHdqIcaRI4YsP/O9vsVyXcN0rztmQ7TvtNLtNIssiFWshJFhc9OY4HFoOJiuKUVlqugqAwe4DK3j7/3sAN7zzUmwddDecaC5rW0zGgZ8VKkBItbKggKHRpkAEgOX5OeAEAKAgyBqKGRaXnziE7YMFyIfdy1dF8nCSYSnzX1KUhuVJik23nSpL0yhkGBxeIccvz7uL/sPLDZy7jRQUtmIxRP1poV6t4O1/+QJUyyX809f/B6effYH9Xs5BXjYNDkqIBa0funMsqoIKXTdaikXTCnW2LIKigJNGu/F4uNivI5y2qQe7Rrt8bTRXlxdxwsmkKdk3OIzySjLFYl1WzcxD8n0Oj01CUWSUV5bRPzTsu86AqSZVNAMcQ0MSWsUpSxmgKdhE3vShA23rWyrXMEVvFJqNOnKFmMRioZgokzHOvh+6+w687t0fibX8TEnAYJFHd64zdeYfGtJaJMUxg5Wrd6yIxeYKUZ11au8jN4BTXgwcujVkoWSfRdEQqVgEw4UrFlWPQjHICtVSLJoKMa9icWpuERgBWIYBpGpLsWgu32aFqmstlWcp+rrRsPLt/KxfxQpQHG7P2myzQo3+zgVBwDNe/FocPqrip594FZ7zx1e33vQqFqvhmcZxMBqiEtDYQmc2vwnP0fnlkk1wjg722ZmL7m1ShLAc2tVugwo4rFCJYhEApuaWsWu7D9GWMRWLjQVyDtAsNM2AJJPvRzEnkFn2t/sO+Rxn67uQKi0SOwkoBrUGUSzGQVchj1pDaP02VI+l3/S9QM/mFuEZAVlW8Ivb7sO7X/0nSUadIibSWiTFRmA9sgy929AMLZRYVA0VFCg7J3AkP4I815rQfMysUH3uRZZi0bJClXVyXZxvzKOb7wZrTsQwKAOZTAayJCOL4IkvzmPjq1iMkbG4ML0AjAPZXNa2Uw20QvXJ8rWIon2r+8BQjEsdCsTLWPSiTbEYoxZRFRXveum7cOCxA/jYv34Ml/7Rpa73nerN/aVkFvs8w6OhNKBDh2H2145lxqJhGJA0CRnafe8uLZVs5WTfUB9KfnnPMaCyKiADo5NExbkwu5CIWPSSx4ZhQGgImPKZ5GQR7pImdU4s1pvIF2JaoRZz65qxaBgG9ty0B8/842eueVtTtSmMFcZspXKKFCmOPxIRi3v27MH1118PWZZx5ZVX4rnPfe5GjSvFccAXb3ocf3LWJl9V3PHCf919FACwWBUx3B09M7oiWARTPELImbHoJa5kde2zBXvzPGpi8Czngk8enhO6qgDIoCIoUDQDew6uthOLLJ+IWAzKrMuYSjea8lcsLi/OwzJpbMoaevMc/vzcSTA0hTv3keXpTAFNQ7YJxKxHsWhZavpBFJqA5yGgN8dhpkSKGu+xOrTSIoEMU7EoxVAsFrq68ewX/Tkue84LMb55q+s9p2JRpThUmjKK2fjNtp4sh5myAE03oGkK8oUuZLKk+JsqNdFf4G371o1AUDZfeWXZtmTtHxzuSLHIszSsozs8tgkAsDA3HUgsOj8nx9Auq1uWJtaxFrE4dbidWMzxEWreGBAadeQL8cLBc/kCxHVULN6/+zdQFBkXXBadrwgA+xZqmOzPoRhxTUiR1iIpjjEsVaVhEMVbcSh08TZIDSDeZYiguUKy6zpVLAJA9ygwciqw8Gh4LmIErCaZbCsWwzMWeQZAUNaxrriJKE3xJ6YommwjQLF4dG4JONP8Q663MvkUJ7HoOHayY8JIZYZsO0St2RBEQiDpajtJqsmEaPI2CU3FYhIr1Fwuh1e+4GI8p7mAUy8+y/0m77ZTRGVtxCJNUxjsC7bZVtl8Z8RiQiyslHHaCVsAEGLxwNSc/4LPeDchbzmf5xGlSc5HUNg8Tn6LR2YX/YlFvgiAAmqLZsYiC0FWUZEM3HxIhX4iaSzWzQbu/sMzJJvK+duzCDyxSlSUSUExqDfF2MQiUSyKwRmLM/cCg7sCLW+9uP3+R1GtN9N8xQ1AWouk2ChIauc5ahYsu1ALUeo1L8E2mBu0M/uA+ERVJ6hKVdQVcq/2U/dZ12TN7CNYn222MYsuvstWWeqUDpZnozMWHZ9D1dWOMhYXphcA87Iqa7JbsWgub/3tRyxaJOC+0j4M5AZcJC5AiEWKoRIRuU7FokUER9lmshyLZ7/k2TjpmpOw64xdbe87nYkOVw8nOgcyTAYlseRWLB5DK1SLQOZZd+9ldWkVE9tIzdA/1I+jTxztaPsao8GQDIxuMonF6QWcfObJsdY1DKNNsSiJxDZ2fmoesiSDz7TGbZ0v3t91EohNMVHGoiIrUGQFXMyM6DDs/+1+rCyurDlfUTd0zNZnccXkFSh4a+UUKVIcN8Seavq9730PF198Mb7whS/ga1/7Gp7//Ofj05/+9EaOLcUxxmdv2I+XfTUkq+Q4Iq4d4uMLpCidr8Sb5dWUW8VRp37lFvwKv748h7ocXIDlI6xQeZPKsUjOR2bcJCUFgGJ5KPLaFYu8SUoFKRYbtda+BUUDy9CgKQo0RbVII4aDQnG25amVi2gpFmtScLPNm7EIAD053s6o7Mq4i5qjK63lWxmLwQ9NP//+f+Kmn3wfFEXhZa9/WxupCAA5zl34719MpmDryXOoiSp0A9BUFT0DLVuT6ZKAse5stEoVgG4Y2PK+n6A5fGqi/fvBMAyUlpds5WTf4DBKCTMWa6KKDEvbfe6RcVKML85NB67jJhbddrlOK1SA2Ox61YIsTYFZS2MdQLPRQC4BsbieVqh7bvkVNm8/wfc882KhKmKxJuHszX3oyqbEYhjSWiTFMYdzclBUvqEfHMRWLI6vuQqwuTbSrVaPn6UMgKgWAWBpb7L1HLCJRQ0AjFDCjLIaWl4ixILX+lRX/a1Q7WBHcqzbFIvzy60/JD9ikUxccS0DEKKqsWhnNwahKUqtnD+/RiyXAxhvxqJlhWr+HXKc/vu//xv/+q//CgB41/95Bk4dzZBtOuFVLNZmQ8cchcGeIhgmuN7UmFy7CjMpgghlB0jGommFOhRghQoAo6cBw+0NTgCAYioWKWBiZBAUReHoXMBkKZomJG1zmShaaRZNSYGsAc/8dhON7p0AQKxHzX9nF1fc27BsaaWEvz/HGGpNEV0xVQLFQg6CKEEzzHPY2USszQO1OaBrrD17MgDX33w3xocH8PRTdiQdeYoQpLVIio1EUw2/T8VBm2IxwsbUUt1ZNqF92T5fompxIdnk1Dh4ZOURLDYXoRmaa58WbGJRJqpLKyNxobGAIle0VXU6dHA8l5xY9NimeonAQCtUExaxaClCLcLIUlr6kaXW53y89DgGs4PIeq7poiC2KSmjkESxuPvG3fjudd8FAPzxX/2xL6kIoJWxqAFzjTk0lPjPyhkmA1mXoRtEscjxHApdx44MsrJKvcffqVjsH16jFapkoKe3B7lCDouz8X8biqzYZKsFy3pU13XMHnHXfQzNJM7N9MLKWIwDa7lOlLN+2HPTHhS6Czj93LXlIi4Ly5B1GTv7dvr+rlKkSHF8EJtY/MQnPoHXv/71qFQqKJVK+PjHP45rr712I8eW4jhgPVR6TwZY2Ymrq6RB4JfhBgSr95LAsnxcbbQXsT05zreRaLW8urIcclxw0diy+CTfyxNLdeiO/EeaMhWLcvzZS0EkrZXNx9BUm2JR09zriIoGjqZg1suQHEQkhRaBaBGnsTIWhfaHqP4CKRg4hmpTsM1VxZZVaQixqGkarvv0Nfjs374L+377YOD+neO0cM+hVejmZ5+firY76svzqEsqVNMKtbefEIuGYWC2LGC8N4dCDGLR+ljS0CmRy0ahVilDVRWbWOwkY7FuKhYtFLt7kMsXsDgbTCxyDG2TZCxNu8hqBgYoCi6F4LRHtUhRFDJcMps1L0QzYzEOcvkCRKHZVuR3Al3XcddvboytVnxougyGpnDlySOg6bWRqb/vSGuRFMccthVqh5DrkMx79BNHYhBEYpkQTR5isdFI2Ggc2JlseR9YVyM7vzhERUFbM/yDyFdddSsFNcXfCtV+3yQWPRxdpeZoasm1Fglo7rcmG3YzjyxjEovFEaCxbBOQQWg0xRZZ6UssFtoVi5YVqlWf+TR+DMPANddcg5e+9KXYs2cPDMMgmY1cvp2o9KrR6kuArkNWFDx6MEDlF4KR/nC7KJXNh34XehxGPELFoCgqVspVlxVqILEYBlUyFYsAx7EYH+7HkbBmXqabHGdVAmgWgnOCm3nu1B2Ns32HPHUNlwdAheeLhoEmVqjFfDwi0FrOjmpwWqHOmBl+vZtibcswDFx/8114weXnuVWYKdaMtBZJsZGQgiboJIBlF2rBqVhcWVjxLg5N18BQDFYE8l433+26bjAUA03XsLxAJvcoMbOEk0DSpHDFokLGaH22heYCinzRJgKtjMVExKKhulR5QDsRFahYNGFboVqKRdNJytpuxsdG23qtIlfQl+1rW0YUxDYlZRS8RLCfStUwDPzP1/4HH3rth/DIvY9EPveylsGdAqwIK6hIFVTLVUzt88kk9sDOWARRLPYM9qzpXmTonTlweMnq1eVVO+uxf6gfldUKVCU5YaexGgzZAEMzGB4fxvz0fPRKJvzsdZ2ZhlMHg+1QO0WijEVzuWbSZ48A3HnjnTjvsvPAcmubQD1dIzXaGQNryx1PkSLF+iJ213bfvn14z3veY894ffe7341arYbFxfWftZQixVphWXGurJIZSJWS/0ykZgixGJdknewnDaD9C+2zmXsC8tKcNZWfgm248jvyP+ZsQ8Ucy3RJcCkgWRqgWA5yAsViLSDn0FIVuhSIJpYX3M1QQdbAMZQjS0BAJlew/66LKmgKyJgqyCwXI2NRaG/29edJAZXnWTAewmW5LtkkqWWF6rXAFRoNXPOO1+J73/oK/voDH8eb3n9N4P4BtJG89x8tQ1ZI4be6EN0Q7s5yUHUDDUklisV+QuZVRRVNWcO2wYKLoAsCYzYZo2aXxkHJzFPsHySWpX2DwyitLCUi0BqSCp6h7QcmiqIwMj6BhRBiESBEK0BIRqdikaEMMA4rVCAoZ7FzYtEwDDSb9diKxWy+YNqSrD1PYP8jD6K8sozzL49JLE5VsHUgj80DTx4b6icr0lokxTGHZYXaKeS63WSqxnlAFyuEvFqji8J6wL7HW7eiEMUmzVrEYkBDT5M9ikUl1JLUIjGdisVy1eMiIDd8rVB9FYtdY+S7lKrB+4SpWLQafH6Emp/1kjkGLUCxKIoiXv7yl+OjH/0oPv7xj+PrX/86ObZCyczT9DQPaRaqI9cIwiqgEYus6eVge/0gjPSFE4saGz4Bx0XmBiGCWFxaJeO2sh5HB/vQaIqoNxLec+2MxVbOYiixmO0ivym5aSoW28/PuiNHqC1nkaJj2476gqITZSwW82S5msWo6x5iMdsDFMdibWv/oRkcODqX2qBuANJaJMVGQoiYABMHXuJPc0yO8CPeFF0BQzGoyuQeOZxzR11YikWYZYBlXbre8FMsWuWQqqhgaRaKpkDWZJSlMgpcwVYK6uiAWOwgY1FVVBcJZFuhWjWTR7Ho95mcRGJ/tr9dJSlIiRWLfgpT77g/+4HP4l+u+Re89I0vxd/9f3/XRqp6YY9LJufQ4+XHoWoqyn4ZyR5kmAwUXSGKRcNA70Bvos/jRSfkH+D+PoWGALEp2lmP1r+lleQTnTRWAyRyrEcnRrEwsxC9kglvviIAV6ahX86iX/5oEgh1IX7GolmLCElrNB8szy9j/2/3r9kGFQCm69MockVs6o43wSpFihTHBrG7ts1mE93drXwOnueRzWZRr29MUZEixVrQDLAftchCS5kWZrEatA0vrP7VoeVmmwIyiFh0ws/6cLNwAEc++QL08ZYNGRn3fEVEpdl6UGAogGI4qAkUi6LsTyhZn4OhKSiezMa5qSOuvwVFc+X5SaIAPt9qXNUkFTmOAcNY2QJE3eibsWju2E+x2GeqQTMsDZZxN1lX6zJE2SIW/RWL/3ztB/HAnttwzT9/Cy9++esiZ8llHcQiq8t4YrGOujlmP6tWL7pz5LtcbcjQVAW9phXqdIl8ttPGgzOO/KCra8+yKJnqxF5HxqKuaaiW49t+2IpFx+EbGtuExbnw3CdLzcsxtIuwYyjS+LW+81y+gKOHHm9bPxui5o2CIkvQVBXZQhcGnvcOSBGRwvkCaayuhx3qnltuQFd3L04989zIZZuyiscXa3jaRC8GCu0zWlO4kdYiKY451qxYTHhNMXQg8yTJDTGv+aJiEmwhKgqaM69fQapGK2PRug8HWaFaMLfjNDo4NO1p2siNFgmoCNBBQdI9jzayOemre4yozsrBWTo0TZGMxTAr1IzPZBWz2WMAZkak+979/ve/H//7v/+L7373u/jQhz7UqkWaKwCbb1dAAlBpolyrqiw5B01St+kzyz0K0YrF8PNtpdyhDagDljpxxGwsWgRjYtWiJpnEIsHmsWEcnQ2xd8/0EBtTxbRCFdtVNg2zwVfM57DXRyXQZk2bBBSNelOIbYVqEZB1i1h0kgNT9wA9k/7ktg+uv/kuZDM8rrzwaYmGnCIaaS3yhwtBXXujPQqitnb7Qa8VaqyMRYdCrivjvm/YmX2COYl4g4jFDB38LKTKqq1YXGiSeqCLa43TgAE+w0MJiV4B2olF2uMQ4SX5vESl1/IyMGPRvNf7KRadJOBAdsD1HpfhIDZF32zGMDj3YylMnfjOF7+DX/zPL/DeT78Xb/jAGyJJRWs7AEAp5LPsXSH2+n6Ku7bxsIRYdCoWjwecWaGW7althWoSi6uLyexQFV2BwRgwZFIfD48PJ7JC9VPBWrajuUIORw+016prVSwKTSF2xqK1nJPs7BR33XwXaJrGeVesfZLTVHUKI4URFLgnyXNSihQpACCi0+rB1772NRSLrYcrVVXxzW9+E4ODrRyxt73tbes3uhQpOoQvgQXg8App8I10kwIjzAq1kdAmtS6pWGlIKPCtn1V3DGKx6EMscjwpHChzprKikaJF1Q08vthq8DAUBTAsZCmKNmmBkIIUnrlrGPNV0VbpWeQlTbVboc5Nt4obzQB0A+BYN7GY7bKKRQo1QUGGY+yMPIqiwLO0L1nrVD3C07uxFG+qbrTl7dUkFSXTftZSLEqWgtEspF/99g/gT1/5Rmw7MV6QtpPI4g0JcxUBizVyLGQxWmnSnSXf92pDhupQLM5VRLA0hZ0j4c09LzR17TYzpRViWeNULAJAaXnJtmqNQkPSTMViCyPjE3jswftC1xsoku+PZQDJcfwYygBNUxCa5LUdJ53WZoUKrI1YtDIbmZ4RFMeuwtLK3aHLW5ap60Is3noDzr3kmWDY6F/lo7NV6AZwxUnDsdSsFsaKNAAdPdm12cU+FZHWIimOKZwZix2tH66Q8wX35FAvW9f8lmIxmFhkLDIuMmPRsjCPRywKSks1eHCqZQNKGRoh8NiWYlE2WOSznsaLpVi0ZjevHAR2XOG7y0KWR1NwKBb94NfMcKoRKMYmFjVNA8Mw+PCHP4yXv/zlOOecc9zrCSWAywYTi1oNFZVHt1C2j8d6EosNbgD/+zsFZ54y7Pu+BSNWOGg4Fkw1wKjZxBsdahGLO7eMx9+QZYVq1oRbNg1jz0MhOaK5XkImZ4qBxGK9Qeq8s07Z0a5YBGITeX7QDBqSrCRWLNYF83u2MhZ1HZh7AJi8MPZ4fnLL3bjygqchn4tnw5oiGdJa5A8TFWmNNUEMiJ3kOXuQlFi0FIsWvGQYTdGEqDJ5hlqnubMeeO8vYaosS7Go6irmG8R2sovvAswaRaM0sDwbrVh02JVbFrBORGUszh11W5Jbx46yJ0uT788i7vwUi06SaDjvvgfzWb6zjEUHKeu0QjXMPtKfveHPcO5l5+K0c06LvU37WOiExH28TCYCR5G3gKlY1EiWoKGvXbHYKTJs67iUzMlMXsVi0pzFppXXbZ4aI5tGcMtPbom9vq9i0VQHnnDaCf5WqH5q3gRIlLG4jorFO2+8E6eefSp6+tZOLE/Xp3HW8Fnkd58iRYonDWITi5s3b8Z1113nem10dBTf+c537L8pikoL6KcQvnHHIfzVBVvAMr9/jemmrPk2Qp5YJA2moa4MDMOAGKJYbITYdgbh4akKLtzRmnXGMTRyHBOqjLTIKCdYjrymmRaniiPj8LfTrQcahgZ0hoOiJFAsKoQkunzXMAaLvF0EW3arrE/G4tx0S7GomM8lvOO8kUURfK71cF0VVWRY2mVfmmGZQOtZls/4KhYtNaduGGAZCqpZGGdYGpKq4/CquY5DsTjzwC343U+/jped/kMMj4xicHg0+qCYcGYs8rqEptGFB45WzM8YXVhZCtVyU4amtTIWSw0ZXVnW1/Y2DOuR91daXkQmm7OJs35Tubi6vBibcG1IKgaLGZeF7/DYBG79+Y9D1xsqkkKeZxnUHMePJboOCM0Gsrkctuw4Eb97+P629ddCLAoNQhCyuXiFZ3adiMXFuRkc2PsI/vy1b4m1/INTZQx3ZXD6pmTF9s4ecq72ZDs/Rk9FpLXIHwCO7AaGdgH5/uM9EgKhgxw4J+QOZvWvRSG1ARCtW3eIYpHhYhCLNE0IEqClYAyC2VgVHKXYQUd+DWuYdY/VMFIFSDqDXMbTeLGOf/c4AApYbZ/EYiGf4dyKRT/kfK7VzuVpolj8xS9+gXe+85244YYbMDEx4SIbbAglkqfpk6OkMllAAaoq11LcAe6MwJgIIhYVtoiXfFfAE6+eTLzNpJhfIr+j4X5y/GzF4lLC35cq2nUoQKxQpxeWbRK3DdleolpV+wC+C02f42dZoZ596k784Mbd7dtYQwPLes5ImrFY8yoWVw+Q86B7zFbIhqFUqeH2+x/Flz/y18kHnSISaS3yh4v1yD+MQlNde66ZrLl7A3GIRadyz6visxWLInkYtCxT1wqv8tFP3WfBaYU6VyfkXl+2DzAf3QwY4Pjo62NbxqLns0ZlLM4edcejyLqMDJOxFYuyKJNxUAD09u0B7s+Z49xkT6fEol/G4tEHj+LWf7oVf/ztP8aJJ56YiFQE4BrDaGHUzriLpVhkMjBgQNKkJ51i0SIUewd6QVFUYmKxZrphGBLpaYxMjKBWqaFZb8ZSBVp2uU5Y6sATTz8Rv/yfX8IwDJfb1lqIRU3VIInSMc9YlEQJ999+P17xjlesaTsAUJWqqCt1bO/dHnqdSJEixbFH7C734cOHN3AYKY41nlis4WPXP4YHjpbxxZc9/XgPZ93RVFSoPgHPjy+Q4rXAsxAVHWFzsMPyAINw16EVF7EIEHvMMGLRzy7VmuHWIhZbhNreuRq2mfURQwE6xbRZl3rhJFkFWQPH0qApuIoVax8sTUMWSUOP4klRMTd1BJlszrUc57AmFUUBfL4bOkgNXRNVZDnGlXOUYWmIigZdJ2o1AJAMBqBZ8Nmcb7adNb4cx4ChW8Rid5bDUl3CoWXyJGFoKgzDwI++/S+4+2ufwfhZVyKbT674cGYscroMnqFx/1SZjDVG9l6eJ+NsyBpgAD2mFWpFUFDIsMhwx57EL60soW9g0D6WfQMtYjEuGrKKcTbrViyOTaBWLaPZqCMfkGM41pMDTZHjsuQ4ftZhEJoNZPMFTGzdgRuv/x50XXfZsngzL5PAIgjZXLwGvUW8imskFu/6zY2gGQbnXHx55LK6buC3MxWct7Ufg11pgRwHaS3yB4BvPBcoDAF/88TxHglBM1mzoQ1BxOLSfqBrFMj6WGRnn1wzcW2RV4hikeYygAYYiuSfDqlbikWzttI1Qqid93+Bo7vbVVg+VqgHjs6haKqvGN0ci8MKVdRZ5LMZAI6Gl1Qj++XyJJ+u7LZ2d6KQ5UzFotW88VaJFLHWbP/wjkUYfOmnD+Md3/w3PO95z0NPT0gjTSwDxRF/YpEmNVdF5YmFa53YvnWkWIzIWASTbNJTJ1hYKaOvpwjebPr2dhfBc2xyK1RVgqLTsPS0m8eGoKoa5pZKmBj1IW+zPSRfUW4C2V40m+3ncL0pIsNzOPWELfj8t38EQZSQyzruyZm1EIukmR/XCrWlWBQJ8W4RizOmQ0Tv5ljb+cVt90HTdDw/zVfcEKS1yB8ujoUVqhRyr40LL7HozdvzQtGUUCKLoRiigjQvSTVlfRSLZans+juMPFEVFSzFYm9pL+68404AQIErQDSDHy3FIoD227dzO0mtUD333dkjsy6CRtZk5Nm8S7GYMe8hlEa1bR+Ay3a2jdjMcIRY9KkNwuAlFvf+ci92f2k3+k7uQ3dfsjgWCyzVOhabipvwwOIDAOIpFq3xCKpw3BSLFCgXCVVaLoFmaHT1kvs6y7Ho6e9BKeEkJ5sQN0+NkfERAMDCzAK27doWuX6YYvHE00/E9772PVRWK65jthYyzdp27IzFwvooFh+48wGIgrgu+YpTdaLiPH3g9DVvK0WKFOuL3z+pWopYsHLj4uYIPtUgyJpNQjmxf6FVBEd99qTEIktTeGS2Cs2jlPRTJDoRlsOoKjIYqkWoDRUzOLzagGrO+GdowKAZyEr4A4jkyB4UTMWiN2/QskJlGKJYzG55Gib++luoijLmp49gcGQMQEux6FS6ypIIPt9qClZFBTxL2wQiYBGLuovwXdGyoPgs+GzeV7FowSIWLeQzDFiasq1tdUXEys8+hx9/7TM46Xmvxlmv+qhNhCZBxkNkbRnIY+882YcUwwqVoiiXKrHXtEKtCAq6sqxL5blW3Parn+Du226KXK60smTbnwJAJptDoavbzl6Mg6ZsZWq2voPhMWIrtzg3HbjeyWNdeM+zdmGsJwfZoYJlKHIOiM0GcvkCJrftgCQKWJ53zwDN8Wu3QmWz8YhFixxtNteWGbLnll/h9LPOR1dPb+SyB5braMoaLto5kFjNmiLF7zWE8vEeQQsblbH45XOBL/hln1FAprMG0EZBsG78qtxSHHrAmhmLshBwDdVUouaz7iOaqVjcfhlwxQeBoseOUzMtLx04ODWPyTGyHGNaxdvEoiajqdLtikWpBrBZQt4VhoDaHPkcPihkeTScVqierERkuvzVYmbzTNMNvPn6Gt729bvwjne8Az/84Q/R1RVCSgllorj0s0JlSA1TVc39VYlFp5/iLgpRGYvHAgsrZVulCJB6aXSoD/PLCYl7TYLT/GLLODkfjgZlG2V7ABhAcxmgWV/FZ70poJjPYde2CRiGgSeOzHq20fnvUVQtYjFeTWotV2sIpq2uOd7pewkJnR8IWbuF62++C08/ZYc/2ZoiRYonNQRt7eRlJ4rFMGLRtkI1H+MtxdZa4bWW9VP3WVBlkgO5Kq76Lq9Dt4lFI4BZNAzDRbJqhtZG4EUpFueOzmFkYqQ1LpOcpM3WqizKkcRiGPgcD7GZXLHI0RwM3SD3sf94And87g6c+pxTcd6Hz0OxpzMnDNahQ5nomkBFroDiqUi7WaBl91oTajBgoHewt6MxxMEDdz6AG35wQ/sYGN5FFJeWSugf7HdNZO4f6k+sWKybkwadikWgPX8zCH4Zi0JTAMMy2HHyDgDA1AG3HepaFIuWGjJuxmImmwFN02smFnfftBvjm8ex5YQta9oOAMzUZpBhMtjRu2PN20qRIsX6IiUWUwSi0lRCrUKfzNANQPFpfjnzCYNsOS0kJRZHe7I4uFRv2ReZ6I3IWez2yVi0oCgyGJqCYpJ+oz1ZzJZFyGajgqEoGBQDVQlvNDltXQWTJKI9kgJrHzxDQRYFMN1DoDN5lBoK5nyIRSdJJokiOEsZRgF10wqVdRKLHANJ1aC1KUkp8JksxBDiLsPRYB0FIAWgv8BjpkSKHbU8h+a+O/HS934KJz//tW2kaVxkPYrCncNFTJn7iGOFCrTsWwGgx7RCrYoKurNcogy9KPzku9/G9775lcjlVpcXbZWihf7B4diKRQPkt+Id+/D4BABgYTaYWKQoCieOdqEnx0F0WqE6FIu5XAETW3cCAKY8OYs5vvPjJZjEIp2JbuZVBAWMqc5dixWq0GzggT234/zLnxVr+YemKsjzDJ6xcyh64RQpUhwfrJXklEMmpQirgNe2nS+4M/ueBLBzDucfAf5xEii1q/44nigJZSHgGqp7MhUNzbRCDbhfqxJk3X0PODg9j8kxcl9lLWKRa1lcNVUa+ZxnRrdcN3MMGUJeNpYBxT1GxtCQYSnksxyaosMKtY1YLPoTi+byCw0D336giX993bn4zGc+42/NaX9+A5CqxArVp+moMKT5U1HNsZTJvXY9MxaPJeaXShgZ6HO9NjrY14FiUYbiIJw3m8TikUBi0SQF5QZAMb7HjxCLWezaRuqatpzFNRD9gjmRMy6xaJ2/9aZAzllLsTh9D9AzGcsmWVU1/Py2+/CCVK2YIsVTEl5SsKNt6MkUi6quusgWLywrVAt1ue5S/nWKkui+B4SRJ5qqtakJnX/r0MFlwvsu3jGruupS5QHxrFBHN7WiVmRdBkO3MhYlUULGqkW0dkViFLgMB0mQEisWKYqCLunQahqmfjWFs153Fq5691Wg19B/cI5hU5FMKqZ5GopPXrEXlsKu0iDkcc/A2q1Qg2JibvjBDfj257/tOwbn8V9dWkXfkLsW6R/qx+piQmJRcROLA8MDoBkaC9MLsdb3tUJtCMjlc9i0dRMoisLRg0fdn4XuXLHYrJNnkbhWqBRFIVfIQWx2nvdqGAb23LQHF1x5Qce9OSeO1o5iOD+M4pMsLiJFihQpsZgiBE+75lc49aO/PN7D6BhexaKmGzi80mrwRRGLSTMWR7uzKDUV1z4AoDcfXuB2hSgaFdkkFs0ialNvDhVBQU2yiEXAiFGsOj+roGjgGMqlAAScxCINSRLBmE1CodlApbSKATOrULZsWV3EogA225oBVZNUolh0FBFZloao6rba0gJFUaZisZ24s5bNsu2F9WCRx9Ejh2EYOtjiADa98d9wyiXPizwWYWBpGhRa49s10mV/3jiKRcCtUO01Cb2aqKJ7nRWLADDtIeL8UF5ZdikWAaBvcAil5aVY+1A1A5putBGLA8OjoBkGi3MzAWu6IQkCtPoKhIP3oYcl56NlhTq6aRIsy2HqkNv6MM91ruKzlIcUF55rVJdUfPTHj+JHj63aY+oUD951BxRZwgWXxSQWp8s4caQLI92pDWqKJyl+9RFg7qHjPYrji7UqFpWE+SSZoq+C7XjCVizW5whRd/j2tmVYnlzHFDFIsWgqFCnH3zQDBDUbVAmSBjDmfVNVNRyZXcTmMXJfZeyMxVaTpKHAX7HIZAip2TVKlGuKu97YJRFrr0KWR6MptchDzdM444tu21MTU8sNKJqB8S4ah943gTdcsa2dMPZCEQBNdo3f9fFNxWJdYwFQQJWo6DpSLHZogeYajxpeM/vlmjuxsFJyKRYBYHSwv7OMRaN1znQX8+jtLuLoXEBN4yQF6SBiUUSxkMNgXzf6eorYd9gzYWoNVqhW/W1ZnEaBpmkU8lnUmyL5fegqsQVefJScv1y02uDOBx5DuVpPicUUKZ6iWBdi0bONKBIwjmLRqXqsK3VijbpGtFmh0iFWqLLqIv0KXMG1vE7pkVao3jHHsUKVRAm04xneqVhkKMa2kbUyFl1WqGq0YtF7/8zkMh1lLK4srECtq2C7WTzzX56JXS/aFTh3Ky6cYxgpjNifUZGUQJLPgkUS1wQysX89FIuNavBz+uzRWSiy+/vlGd51/EvLJTtf0ULfUF/HGYuUTI4HwzIYGhvCwmw8YjHICjVXyCGTzWBkYqRNsbgWK1QrKzEusQgAuXzOJiQ7wYHfHcDi7OK62KACwHRtGuOFcXStIfc6RYoUG4OUWEwRCk03nrJ2qarmLnZmSoKt9AOirVCbMskDjIuxHkJg3HvYXZj05tsLZEnVbeVeV5hiUZbBMi0r1NFuso+5Ohk7QwN6R8SijxWqeWxomoIsimCzxNp0eZ40WIZG3YrFjIPsk0QRTKbV7KiLKniGhnPiY5ZjIKuar4sam+/2Je6a5kxvv2xC5ehDuONTr0X9oV/B0FUw+R4oaniBGwfOPW0fatm7xslYBFrWthRNI5vLQzcM1CUVvXneZR8bF4oc/HC5ND8bSYQRxaLbCiuJYtGy0fWSogzDYGhkDIshikXXdkQBhiJh8X8+is29ZuaCaYXKsCzGN29tI0rXYoVqHReKDScWf/TgDOqSioasE+XsGojFPbf8Cpu2bMfktp2Ryy7VJMxVRJy9pQ99PteIFCmeFLjzi8A3/uh4j+L4QqxELxMGVQi0D/UF/+QjFpvWjd9qVK4ebFuGy5Brbf9d/wh877XtG9EVt0LRq2D0QpUgapRNFE4vLENVNUxaxKKlxuBbTZK6DHc2HgCIVWI3StFA1xhRrjVWXIsUtCoAIJ/h0BQlXwUh2VehLY/w9vsexVmv/iQ+/hsy+3ywiyefLYpYtAjrCGJRMyhCbNXnAACCJEPTkrmJDPWtfXZ3qRpuEz6/Ev47mV8uYcTTVEysWNQ1QFcha+76dfPYUIhi0aGQoM3v1wNLsUhRFHZtncC+Q+tPLMZVLAKEhCSKRZb85uYfISR3zyYgRFFk4fqb78bIYB/OOe2EjsedIkWK44eNUCyKarjySNGVUAKMoRhohmZbjDaUxroQi04r1DybB+fnCmBCld3qwi6uy7W8Dh0cHz6h2ztmA0YbgedVLDqtTWuVGurVuk0s0hRNyEm0eiuyKLsUi1FqLa9NLZthIQpiG8EZhv2/3Y83vuCNWPohmWST68lFEn9x4Dw2HM1hINey4w4j+YAWEdaQyHLroVislquB7+majrmjc67XeJp3fYbVpVX0DfooFpNaoSp1QAfgKMdGxkewMBNTsRhghWoRf5PbJzF1cP2IxaQZiwAhIS0L1U6w56Y9yBVyeNoFfrEPySCqIlbEFWzp3oJcQN2cIkWK44eUWEzxlEC5mbxwVTyk4BNL7iyAOIpFPzvVIBQzLLqzLO4/Wna97qdYnC4JeGiaFNJhGYyqIoOlKTuXcKDIg6EpzDfI2BkK0GP8jBsOElU0FYvtVqhkHzRFMhY500JyeY4UNYPDhFi0uDsn2SeJAliH5WRDUsExNBinYpFjICntikUA4AvdEH0KF+tzF3h3YT27+0e46fPvBD9+EgqnXg4YBmiqlRO5FjAOxWKeZzFcJE1NVZYiLWcBoCdPxsqy5N+GpEI3gMGuzorBaiW86TZzpL3Ba0HXdZRXl9usUPsGhmNnLEqmSiHjoxodHp+IrVgURQGcqWjhTJLSylgEgMntJ7QpFnPcGojFRgN8JgsVwds4utrELfuWQIGca7l8Ac1GZ8SiYRjYc+sNsdWKD0+XQVPAlScNubJI40KUyAOJpq79oT5FilCsg9XVUxrSGnOEFJHYfsYFl28jr443BNmRsQgApUNty/DOXOP537ZvRFPdhJ2uEUVWEFQBotpSIB6cmgcAm1hkdbMp42gwVCUD+ZxnMolUI1alVsYiAKy6J7FkDNJwLWQ5NHxmkdvg8i7S9zv31XDlqz6AU7ZvwtvONyeIUAwhkiPyrCCY93Y+nFgEQMixxrL9Zzmimdc2bJ/7d1KshDTzAGDf4bnQ9xeWyxgZ6HW9lphY1Mh3LhvuunfL+HBwxiKbbX1nDIumKCHjaTzXm6KtKDxp+wT2HvQSi50Ts5b7SRJisauQIxmLNEt+JzP3kv/v2Rxr/Z/ccjeef9m5obaG6wXFrBGVCEVrihQp4sNLCna0DU12kXCCGk4QqLoanbHoqGWaShOKV9UfE5Z6UtZll2Ixz+XDFYuqCtZRHxW5oosM1aC1FIsR+3bCaznqp1i0iEWLuPKzQrUgiqI7YzGiV+MlFjO5DMSmGNtCtXRvCW//07djcHQQPRcR8o6maGhY+3XZaxM7Xhi3/79WCa+PLcWioAqgQHWc8+hEpRQ+iclrH8ozvIvYLS2V2onF4eTEYkNpgFZpW8EJACObRrA4E7O/Ikhttr2WFSoAbN6xuT1jke18IrKlWIybsQiYxOIaMhbvvPFOnHvpuZFkfxzM1Em/6ZSBU3yJes2sQdaDTE+RIkVyxLpbVavV2P+lSLERqAjJC1fJkw/5+EIdGZYGx5CbURSxKMham51qFLYNFnBgyT2ru8eTsejMGFQ1HflMcBEvmxmLlvqSoSmMdGWwIhj235oRTUpYyj+gpVikPTflC7b329t0KhCX5maQyxdQ6CaFquxHLEqCnVEHECIzy7pVkVmOdik1nWCzBYhCu2LxjE09eM4pI3j65l4AgKZpWL3xq3j8B1/ARS94GYZe8rfgekdhGAZYmrbtXNcChnKPb+uAQw1Ri1au9OZI0UebDz5VkTzADBc7IxZrEcTi1KFgO9R6tQxNVX2tUFdjWqHaikWffIbhsYnQjEXXdgQB2VwBPZe83LaXFZpN5PLkPJvcuqPts2TXQCw2G3XkCwVIAaeEYRj4j7uOYKDI47RNPVA0Hdl8oWMr1McfexirSwu4IGa+4oNTZWwdKGDrYGcPWb977DEAwEpMgvj3AWktkuKYQ5UAVQxX1oWBogkZkohYzPnabR5PNKx6yVJRVOcIUeiAlbEYCN1LLKoRxKIIUTVcxCJFUdg0TGbLM4ZMSCNHk7Eq6e2KRdlhhVokCgOsuCfkMGbzLZ/l0QjLk+FyAM3CMAx8+NciXvHfi/iLF1yOG77yQQzkzc9GM4ChItCHzYKV3RlgbekiFnP9LSIS0erBjcBqObyBuO/IfOB7sqxgtVJrs0IdGezFwko5fiNIJcSiM2MRiFAsUlRLcUizaApSWw5nvUEUiwCwaxtRLLqs6dZgu1UXVfAcCz6BtXsxnyWKRYohSt/pe4HuCbf6MgBPHJnF3oNTuPqKY2ODOmvmUs0lbMo+lZHWIik2GrImu65Blu1iEii64iK7oohFSZNCiSyaol3X6qba7FixaH02VVexKrqvHaEZi7LmIrpynHvChk7poB39Cb/P4zdmL6Eah1i0FIvWNp3rOBWOcTIWvcQil+EgNuMpFpd+uoSDXziI8684H5/77ucgPC6gua8JhmKg63qkTXkUvMfGylkE4hOLsi6Doqh1ydmrRdQibWQc01IsGobhb4U62AehISQi0WpSDZRCuYjF4U3DsRWLoiAim3XXzS7F4o5JzB6dhaq0au0sE1Fnh0CoH1vF4urSKvY+uBcXXrVONqj1aTAUg5MHTvZ9v1QiNfJarFtTpEjROWI95fT29sa+ESS150mRYqNQ9YRKP75Yx1BXBotV0piItEJVtMRE1YkjXbYS0YKXWJxadd/wvASfE4osg2NoCA4SdFNfDvdWyE2eoYA4bq1uxaKOnhzXtt+/OG8znnXKCPryPGRJRM6hWByb2NLy1NeJOpBnHFaoQotYNEBB0QzwHvtSYoWqQ/MpcNl8F6RKu/KNpin8n3Mm7b8pioImVLDzRW/D6//mnfjojx8lbxgGGJpaJ8Wie3wnDBdw9xHyndarFfT2D/qtZsP+vs1sv6pJio/2dKhYLIcTi9OHnwh8z7I7bVMsDg6hVilBliXwfPi4JMXfChUARsYm8PA9d4aub29HFJAd2Yr8RS/FvtUGzkUrYxEAJrbuwNL8jG2PChAyulMIjTqy+YJt3evFnkOrOLDUwFuu2Il9CzUcXKojm893bIV61603IF/swmlnnR+5rKho2L9QxwvOGMNAMbVBjYu0FvkDxf3fIdliJ8Qj7dcVNvnT4cM8wxFiUk+oWHySWaE2rBlFFrHYWGzLjsxkoohFBaAdEykMDQhRlEMVISgGctkWsTg5NgjOdANgdJNYdDS9yoLuo1isAwxPLCS5HkLalvwn5BSy/laZNvgiIUcNA0sNA//4R/1477XvBKU47hsUQ77v2IpF/8klKm1+DgNAvh9Y3me/dzyIxZU1EIuLq6SGGmnLWOyDqmpYrdQw2BfDIi2AWNyyaRhHfrQIwzD87xGZLnK8aaJYzGczKFVax7DeFDExSmq7XdsmUK03sbBcwqjVfLQVi8kbtHVRi52vaKGYz6HesDIWTcVizyaAj24I/uSWu8FzLK668OmJx5oiHtJaJMVGQ9EUlzqwI2JRc2cmRlmhJlUsCqoASQ25X8ZESXQ/50ZaoTrqo+H8cNsyNG8+OwZcrv0Ui17ir80KVZLBm7XI7NFZFLoLKHa37t3eYycKIrL5LOqox8pY1OGuF/gcD1GMl7Go1lSM/vEo/vYLfwuaprH4Q/Lsz9JsJJkcB94xTHRN2P9fr4TXIpZ1p0av/TpY6C6gUW2gWgqfsOG1D+XpVsai0BAgCiL6htqtUAFChm0qbEIcVJUqKNV9HxjZNILl+WWoigo2YjKRJEjI5DIuctapWJzcPglN1TB7dBabdxC3gjDSPQrNRhM0Q7epJMOQy3euWLzr5rsAAOdfEd0XiYOp2hQGc4PozfSuy/ZSpEixvojVubj55pvt/z98+DDe//7341WvehUuvJDMQNi9eze+9a1v4ROf+MTGjDJFig7gtU/dv1DDYJF3EIvRikVFc6sLo3DCcHuDyCKaLD5t73z0w4FIZZA78UKolmLRwR5u6S/gnsOkCCdWqBSZkR2CpscKdbDIt1mhUhSF4S7SyJIlCUU+CwPA8tw0xia32MspGrHFdO5SlkRQHCkeLWvWjEfhluMYyJruqwJlMwXUfBSLFhZmpzA3dQTbzzgfgy94DzYNFjDoIWRYmkqsMPUDQxmuh5Gdg62cxVrVX7H4qQ+9HUOj43jVW9/XsrY1G1EWwT3c3VljOppYDLZCLS0T67R+j2LR+ru8sozhsfAC2rJC9bMlHR7bhJXFeaiKApYLL1QlSQSfJ8fEmj3pJBGtXMKZI4ew8+TTAvcZBcMwUF5dhtBsIJ8v2gpbJwRZw//cO4VTxrrxf86ZwBdvegKSqiOb61yxuPuWX+HcZ1wReRwA4NHZKjTDwBUnDflazKbwR1qL/IHix28h/35ooXOCr1PYOXgd7pfmiX1omJ2sYbjv4VwuXMl3HGC7Hli2Z80VQHE3GzLZCPLEVixSLQUnE0YsSmgqDsXi9Dy2T4zZb7O6DPAZlwqyLOjIDXgaL3IdyA+S5SgKKAwClRliV+qxisxneX8rVPP7masZePi2+/CcS87GV16QBVXsI+85mz00bRKLMTMWA2w2Ja4bDdlATWOB/IAr67MU0Mx71ye+CkXV8KWPvCl83wnAMDQ0TY+0Qt1/NJhYXDDtTr2KRevv+aVSTGKRfDeyl1gcH0atIaBSa6C32+d4Zsxt0ywEUWpTtVoZiwAhFgFg36GZFrFoKRYTKD8MwwAFoC4piWxQAYdikWaIle/qQWD86YF5nE5cf/NduOL8p6GYcJ8p4iOtRVJsNGRdblOxJd6GJq87segckwEDJSmBlXUAnFaoAEKtUDVFc5F+A9mB9oUiHsP8FIteu0/vcZAl2aVYHN88bk8usEhBJ3koiRJ6+ntIvmIcYtHzXfMZHmIzmFislCp49N5HcdGzLsLon48iy2bbrK+931en8I5hvBhthfrtL3wbUwen8KEvfAgsxUKj1k4sZjIZNNCItEKd9liZszRrH/+SWYt4FYsuYnFrPGKxJtdAqW4V5sjECHRdx/LCMkYnRkPWdqtgLQgNwbZpndxBJtZPHZhaM7FYWi5BaAjIF/IuhWUUcoUcyivljva5+6bdOPnpJ7fZznaK6do0RgujKAZMxkuRIsXxRSxi8bLLLrP//5prrsFnP/tZvOxlL7Nfe+ELX4jTTz8dX/3qV/HKV75y/UeZIkUHKDeV1glOUTi41MC521o3t6asIcPSttWjqGrI8Q7LEEVz2XauNKLzDjb3t88mtsgRi8jbF4NYvC9/DoZffCHqD17nylgEgC0DrX1YIjIqZHYf4CZRJUUHS1OhuW6yJIDmstAALM1N44wzTrffU3Rii8k41pfEdmIx6yFMLMWik6Bd1MhnYXMFiKL/jKjHHroPH33rK9E/OIJPfudndgGXYRl0ZVnUTKtRlqE2xAp1uItH6Tffhnj0YdQrZd91fvXD/wYAvOqt7/NRLKpgaapNuRoXUcTiVIhisRSgWLSIxdLyYgxikRzTLN/+UDQ8PkEK6MU5jG4Kz/6RBAF8rss1J9OZsTixdQcAosC0iMWkVqhz00fw2b99Nx69/26cffHlyBWKbcoGALj+4VkIiobXPmMrJvvy6MqykFUdmVy+I2JxeXEejz/6MP7kr94Qa/mHpssYLPJ42uT6FNt/KEhrkT9wyI1jRyx+fATo3w5c/QXyN9uZ4hwMB2hihHrNQ1Z0SmJuIERFN21dzTpIKLuILgDIZjNQNMO2m2+DprRIQEvBGdZsU0Q0Zbdi8bmXnG2/zegSwHa51J0lQW+zuYRcB7rHW8rGwhBQXwBUAeALrkULWR5NwUeBkR/EQ93PwtUf+gn4TBaP/eQr4J1ksFPdQDMmcRpBQqkS+fwBjSKVyaPnH2t4x8sHCbEoN2DN1ypV/evIz33rhwCwrsQiz3EQNGlNikUrR3FksNf1+qipGphfLuG0E7dGDybQCpXUNEdmF/2JRctClGkpFp1wZizu2DwGmqax79A0LjvvdHs9MBnEVSzOLCzjc5/+N3z6LODx2XIHxGIO1XqTnNslc/JY90TkJMJKrYHf3PsIPv+BeLVIis6Q1iIpNhqK7lYsdroNpxVqUw23CFR1FRwb/KzqVSwCaLMx7QReYtGrFnRCVdRoe1BzdSPgeh0nY5GiKLA0ay8riRK6esgEk7mjczjlrFPsZXWK1HdOctKyQtVu0pAbz0WO2UsAsjkWkiChy5zU4iSUjh44ig+86gOQBAlPv/jpgepphmKgQw88DnHBU+a+zc30Z/uhN3Xoih5ILH7jM98AAHzoCx8Cx3CQ6LUrWy1UIyY5eRWLHMPZ5Oiqad3tl7EIIFHOYk0mVqhOjIwTe9yFmYVIYlEURGQ89arQFDCeJ8Tt4MggcoWc6/NYCtC4KC2X8IWPfAG3/vRWXPa8yxLlKwKEWJybCs/P9oMsybj3N/fiL978F4nX9YOma5hvzOOs4bNQYAvRK6RIkeKYI7HP3O7du3HOOee0vX7OOefg7rvvXpdBpUixHig3W0SgymRRl1T051uFWVNSwTnsHb0TkUWPFepiNXymHwCwDI3hLpNgM7dnFXxnbSZFzN756MwN1aREm4IIlqFdBOdEX6tBYfXvIolFR8aiqGpgGRoLM0dxaP/v2pY1DAOSKII2icLKyiLGJhyKRZ00Dp1WqpIogDIDpXXzdW8mX4alYcCR1QTAon7ZTA5is/2B5+af/RDvedWfYNPm7fjk1/67bTbeQKH1fTL0+hCLrKcApygK1d3fhVZfDVQsOtGdcz88VEUFhQzbsTKtWg4vcqcPHQjMTyitLCGbyyNXcBdhVuZinJxFywo1yzKo7XwWlsYvsvdnkZKLc+02tm3bEQVweXfDz6lY7O7tQ09fvytn0SL6o0QCuq7jh//xNbzhRZfjsQfvhaLIKC0vIl8otCkWZ8sCbvzdAq7YNYzLdw2DpikUMixkTUc2X4TQSG4xd/dvbgJN0zjvkmdGLqsbBh6eruCUse421W2K+EhrkacIGsvA9157vEeRHKoILD4GlM0H+k7JPoYzFYshDULvBc5qHFSmgGr0tfVYQFJUQnLYM/0NoHzEtUw2w0MK64M6Mxat40EzmFlYxn2PPN6+vCqiIevImorF2cUVbJ9sNWoYQzazE1t1wUpTRS7jJRYbhPizGofFEXJeKu2TmfIZzlexeP3Nd+Pij/wUQwMDuPU7nwTPe2ouioKgWEUfG88K1bFuEDQDhNTOkfrRmtB1fKxQw2vXQ7NLkGX/vK0Fc8b7cH+v6/WRgRaxGAum4qbNCnWc1DRHZwNqmqy5XytjMUSxmOE5bJsYwb5DnvxovhBZjBiGgX/73i9xyvPfiLt/ux8AMLNSR1eCTCMA6CrkUGuYGYvNVWKP3DMeud6v7rgfqqrhBZcfm3xFAJBAjqVEdTj54imOtBZJsRGQNbdiUdSiexBt29DdisU4xGKYYpGhmDYCbEVYSTwuLyqS+9k6TJWlymoo8Qig5bAecLn2Uyz6KQqdRKEkSuDNWmR5YRljm1vuCZqZ0ewkJ0VBRCabAbVCoU/vS6xYzGQyEAURQzkyMbjIkefn+26/D2/+4zeD4zl88ftftG0z/UDTNLQkNvwBsL8Ps2SiKRqL/7yI0q2lSCtUgChQdXrt/RkLUVao5ZWyK4eRozn7+K8uk56KRSRa6OrpAsuxiYjFukxsbr0ZiwCwOBOQ+eyAJErIeqz7hUYrY5GiKExsm3ARi3EVi4Zh4KYf3YRXXfkq7L5xNwBCduYSTnLKF/IdWaE+dNdDEBoCLrxyffIV55vz0AwNu/p3tU0CSJEixZMDiYnFyclJXHfddW2vf+1rX8Pk5KTPGilSbBwUJVhFuOpQGMo8ma085GjkN2XVZdfpJcIUzXBZiM7FIBYBYMcQIUpUR8B5hqXRlSUF6u/mgmd9exVaqqKA9SgLu7IcMjSpllmzIWWRekFoeKxQeYbCK55zPt7w4ivallUUEhjv3KbXCpVjaJeVqiSJpIGKYMWidaytscxXWseT4fOQPIrF6//fN3Ht37wRlz7navzT1//HN9vQInEBgKVpqPpa5+W1KxadqFfLket77TsrgoJihmmzho2LWoBKEgCyuRyEZgMrS/5B4aWVJfQNDrW93ts3AIqibEVjGCRVA8dQ4FgaWqYbcn7IVsBaxOLC7HTYJgAAotgEm20RnLquQxSaNrEIAJPbTsD0YQexaB7LsO90+shBvPuVL8aXr/0wnv2il+J9n/gSAKBp5jc6G5CGYeA/7z6KnhyH11+yDQNFcv4UM0SxmM3lIfgQ3FHYc8uvcMqZ56K7tz9y2UPLDdQlFRduH0BXtjMVa4q0FlkXLDwG/F0PcHTPxu3j5+8DHvkesPfnG7ePjYSVgxdhQaio/oQKGJ6orJI0d6x7b+kQ+XcdMox8kcDWUVY0Qixqjs+54s4pzPIcQh3mda1lR2qYNQnFYOKyV+CcP317+/KqhLqk21aoALDdMQOc1WVCujkmHK00VFvh2Bp8w6047RoFhFWiZPSgkOXbMhb//ce/xh+/+Ro8++Kz8Jt//ydsGvHPWRasMoumiWIxwfGNRN59bwmyQt1IrAYoEyxomo4DATPbF5ZLGOjtBufJHCrks+gq5DC/FJdYJN+NbLjrqZHBXvAciyOzATVNrmWF2hSlNlWrU7EIACdtm/AnFkOqkSMzC3jOaz+M1334C3jJsy/GBz/wPrz9FyIeXtBs0jIuivkcsUJlzOPVM9myYw3B9TffhdNP3Iotm0YS7W8tOERtwRuuF3CU3hK98O8h0lokxUbAq1j0U9n5QXf0HlRddRFakVaohhpKgFmKReeT9oq4dmKxKruJojDiUFO0aPUfrYdmoMZRLAJw7UcWWxmLADC+uTXRw88KVRblNtIoDN4Jwpz5fKiprXPg9l/djve94n046cyT8M8/+GeMbwmfbOJHBK8X1AUVuhisWHSCZ3gkcN+MRC3EPcE65i4yjubt86G0XALLsbb61AJN0+gb7EMpbi0CoKE02hSLuXwO3X3dWJjx78s4IQntVqhiU3SRf5t3bsbUAYdikY6ewLOysIKPvP4j+PhbP46zn3E2/unf/wkAyVhMSizmCjmIzeSTGnbfuBsjm0aw/aTtidf1w3SN1GOnD54esWSKFCmOF2JZoTrxuc99Di95yUvw85//HOefT8JY7777bjz++OP4/ve/v+4DTJEiDHv37gOKmyDL7Y23iqAA5iRhhSuCoSkMd7VuqA1ZA+cgexifIrQstJpo8xUxUBnmxIkjXdh9cNW26HRCVDRMrbaIC6+KjfGQiKoig/WxFevhgUWxZYWKCMViQ2qNhViVBc/2kUVSQFCORtzYxBYcWiKNLFkH8gxtKxZVRYGmqjBoDtBbxGKed+/DIk3rZvftht+1ii46k4PoyVh8+gWX4HXv+jD+7DVvDnxAcOYW2hmLa+zlhRGLcRSLzrEaIOdhV5ZrI67joloJLnLHN2/HwX2PYvrQExgcbrfcWF1ebLNBBQCGZdHTP4DVGMSirBkoZlj796FnumxlaC5fQHdvfzzFoiAgn2nN2pdEAYZhIOsgFie27cCB3z1i/82zNHkW8flKNE3D/37nq/jmFz+JweFRfPqb/4unnXsR7rmdZN+IzQbyhSJWHc9U9x0tYe98DW+4dDtOn+i1Xy9kGEiqDr4DK1RJFPDAnt/gL9/4rljLPzxdQY6jcemu9u8lRXyktcg64CiZxYpHfwBsvmBj9mFbZ67dLuu4QKoSQi3iHnvvvffhwjwws7ACl7k0w5FjkIRY5I5BNtrP/gbY+9PW3xGWa7Zi0Ukslg4BQzvsP7MZHnXVQGAHSfexQg2ZeWxoMuqy7srDI4pFMgbGUEzFYmsbSzWFqNGsckKViFLSSyzqKlCZBvq2AlqrPirkeKiqBk3TbdHDZeeejmve9nJ88P/+eZtrghMtxSJD8hvXs6GXc9t2HR/FYnQDcd+haZy8o90WfX651GaDamF0sC+BYtHfCpWmaUyODeHoXEBNk3UQi4KEwb5u+y3DMIhisdCqJ3dtm8CPfu2ZcJEpAnL7xCNd1/Gv//1zvPdTX0dfTxE/v+4aPPeSc7Dnwb344l0yJkYNnNRRxqJI1K8A0LOpzbbXC03T8LNb78Ub/uy5ifa1HrjufgUX/EU08fn7iLQWSbERUHQlVs/Bi927dwPdwKF9hyBzsoscE9Rw5ZGXiPTCfs9x+S0JJfTmehOP04KkSpA0dw8nVLGoRisWVUMFn+EDLUDjKhad+5FECRmHG8LYlpZi0SIWncdaFEQXERkF71itdRWHC8CpZ52Kv3jzX+CVb38lmBguSFbGYifnUVzEJhbXEWGKxfGt4zj4u4M4euAo6H7ynXKO+n11aRW9A72+faX+oX7bKjUO6kq7YhEARjaNxCIWRUH0Vyw6JjlNbp/Evb+51/477FgahoFffu+X+PLHvgwuw+Gar16DS557CY48fsTe9mDAxLgg5PI5NOvJJlwbhoHdN+3GBVdeEErwJ8FUbQq9mV5bwZsiRYonHxJ3up/3vOdh//79uPrqq7G6uorV1VVcffXV2L9/P573vOdtxBhTpAiEbfHgUzRVBHfhOFjkkc+0CrG6pIIPygIy4bRTXapJJGcoAlsHCvbyXhxYqkNzjDWkRwWAEIucYyEr764/S8ZtW6GGZCIA5LM6EZiBBFN9CACObY6MT9j/r+gGOLZlhWovbxbUullg5TzEYoZzKxZ/+Ugrj4fmMpAlEUJlBSs//yIkoYGJrTvw5699S2hRMtLlIBYZal0Ui+waFYtO6IaBqqCgK8t2TCzWQjIWxya3gGYYTB0+4Pt+eWXJtj31on9gOBaxCBC1qcV5G1wBTaV1Po2MT2AxhmJREgUw2RaxaFnfuhSLW3dg+nDL2pWmKPAs3fbAdeSJfXjHy6/GdZ++Blf/+Svxrz/4NZ527kWuZZqNOslYNExClGLw3/dM4cSRIl567qRLHVzgWWi6AS5bSEwsPnj3HRAFARde/ux4y0+VcMJIF0a6kykYUriR1iK/Z5CTZ5seE4hVYkMYYWOlmeSUrHgmFFnEYpKspI0iFhsOZcFjPwQGT2j9rYTPSG5ZobaUhigfdS3DskwMK1QGdUGCaKkCqeD5jYYiQlAMD7E45l6I4Vzk5FJdcS1vqxKduTRF855oKS6lVpMqnyF1z2JFwOt+LGC1JmJybAgfftPLQklFwKlYjJmxmAR80Z0l+SS0Qu0qZLHvkP8ko4WVMkY9mUYWRocSEIuaZYXa/l1sHhsKVizaxCLXpliUZAWaprsUi7u2TeDQ9AIkp7Vr9yZyLXDgwNE5XPmqD+KvP/Zl/OXVl+OR6/8/PPcSty1mrSEktkK1FYvWd14cjcx53fPQXqyUq7j6ivMT7SvF2pDWIik2AorWWcaiqpIbkSqrUHQlmWJRV0Pvc7ZNqvlPhsmgJMdXePmhIrdP2A2zY1Xl6IxFRVfA8VzgLdhPschR7X0U534k0a0ucyoWLStU2tFWlaR2m8sksBSLzUoTM9+YQWOlgb7BPrzm3a+JRSoCLcXi2jsjwVhXYjFmm6RSCp7kncvnMDQ21KZYtFBaKqF/yN9dqH+oP5EVakNpkHlunjZVXGJREiTfjMWsY5LT5PZJVFYrdq6kdSy93+ni7CLe/8r345Pv/iQuvOpCfPOmb+KS517iWqbZaCbOWMwWshCayaxQD+8/jPmpeVx01UXRC8fEVG0Ko4VRFHmfDO0UKVI8KZBYsQgQ249rr712vceSIsW6oiaqgMMuaaiYcdlzNmUNfIhyDwDKjVZTYbkhu6xRg2CpIFWtvZDbvxBdgDnhtUKtmmTpgFlzWIrFqIzFhqfb58yW9MJSLFoKjVyxC3ymVeQoummFam5CEkjBoZsFuEHRYGmqTY1pHfuaqKIiKNh9sNXkpMw8x5s/9QbIkoTq8jyAraGfCQCGHFaoDE1B1cLtT/xgGAYW56YxMk4si8KtUKMVi06omoGqqOLEEQ58yDEPQzWEWOQ4DmMTWzB9yJ9YXF1ewslPOwsAseD8/I378dGrT0V/gUff4DBKMTIWAaIctNW0FIWVmoJxs083PD4RT7EoiaD51nlkEXjZXKvIndi6k1i7Ls5jcIQ0kLMcY88bUBUF3/3Gv+Df/+UzGJ3cgs//+/U45cz2bBtr+/l8EaqpbFgqbocsqnjfc0+yyX8LBXPCAVfohpiQWLzrlhswOrEZm3ecGLnsSl3CTFnEs04ZceW9pugMaS3yFERtAfjMicDbHgD6t7eIn8XHju+4giBWCNGXeNatedGiOaLy85khH4io/KBOsc+hULz0vUBhADh8W6xVbStUqyGX6wVq8y4FI0VRCJ17pakAzeC2Bw9gsofCacNM6OwqQxUhqHARhYN93TjqvG2xvIv0rUpw21xKtdZyFgomsbhq3jeF1j22YDbzLr3m11itqnjjQg3RBtcEn9kt4bcLOt5Ns4So7UAlcGRmwd/GkqIIOdYkddPxsEKNUizu2jLWbh9qYn6phPFh/yOZSLFoEuCy0f573DI+jL0HAyY5DZ4AbL4Q6BqFIEquHM662TQr5NyKRV3XceDoHE7ZaSowz3o10JgHuDw0TcOX/v16fPBz38LoYB9u+ua1eOYFZ/ruut4U0JVQsdhVyBHFokWa90Zbav7k5rsx2NeN886IrkVSrC/SWiTFekPRlTXbWCq6gizTuq5F5TRqhuYix7ywSErDjGPJsllUpeqaFHHefEUA4TamSjSxqOmanYfouw0fYtFvm9ZrmqZBUzWXAnF4fBhLZVKM+CkWJUFKpFj0wlr3v/7mv1CZr6D8onLibTAUY48tKean5zHqsJ4PQpyMxQwTbd9ZUks45SunYFFaxIkIv4dVIyY5TW6fxNTBKWwBsed2EpurS6voG/Kf5NQ/1I8nHnsicqwA6R01lSayajt5PLJpxKUyDIKXrFZkBYqsuBSLm00HiKkDUzj17FPbjqVhGPjJf/4EX/mHryBfzOPab1wbmGvozG+Mi3whD1VRocgmWR8De27ag2wuizMDaqKkMAwDs/VZPGPTM1JiMUWKJzE66nTfdtttePnLX46LLroIMzOkofyd73wHt99++7oOLkWKtaAhq1D1VrHbV+Bt1RwANCU1VLkHuBWLqw3ZlVXYCfbO19BfiF9oBlmhjuTJawWO/Etz4UWblxBlQ0guSbLSuUkBMTTmbmjYxKKtWDSJRXOGoQ4aWY4BQ1P4u7e/Bl/55EcBOKxQJRW37FuE5vhuVg89CgDgsgWMvuKzGJps2auFwUkssgwNTTcSP+DcfdtNePXzLkazQYrjMKo5LO/QD7KqoS6p6M1zocc8CAzDoloOnz03uXUHpg77F8KllSX0m4rF6VITDVnDQdPStn9wKFKxWCktA7AUi63zcKnRejgdHt2EhbkYikVBAMO3ClqLWMzlW8Ti5DbyvU85iNIsS8MAcGjfo3jbXzwf3/rSJ/GSV/5ffOV7NwSSigCgaxoy+QI0cyqhwPfh0hMGceXJI6A9lsN5njwMMrmifR7EgWEY2HPrjbjgsmfFIrQfnqmApoCrfMaQIjnSWuQpiMd/Rf7d8/8d33HEhVgyFYQJr99L+8i/QgmAASpCEejCOttG2Xj0B63/75kkKriYkLwZi7k+oLHUlv/otah0QVdtEtAuxUKUCVBliGpLsTjQ291+nWV41zZqkuHKZIRErud//51b8NoPfZ68xmaATBdQIvZQEMv24vunCXFHwcBdryvgnJ3xbZe+cq+CO6bM42Roia1Q77j/UWx/1msxHzRj3mGHGpV3uN7o6ylGKhZ3bRkNJBZDFYuD/ZHE4tT8Ch47NNvKWPRVLA4HKxa5PHDhW4C+bW2KxbpZzzhzEHdtI4bGrs/DMED3Juw9PINLX/5evOsfr8Pr/89z8PCPvhxIKgIw1ZBJMxazEESJ1NWZbqAYnZl4/S1343mXngsmYsJkivVHWoukWG+outpyZVrDNhIrFuNYoZr/5Jgc6nJ9TQSoH7EYhljEomGSgAHtAD8r1LCMRVkivSAnCeQkWWzFojlRSlM1qIralp8HAF/+2Jfxt//3b0PHDwCrs6QOkBsytn94OzadsSlijXZ0mrF4cO9BvOyil2E64H7uRBTJB8QjFmeUGdA8jSU5fMJzV09XqBUqAEzumHTlEjqJxdJyiGJxOFqxOH90HjMHZyCoAnTobRmLADC8aRgLMwuR/ShREF2KRSvL0EksbjJrEUuB6fwsC1MLePfL3o3PfuCzuOIFV+AbN34jkFQEAF3TO8pYBJBItXjnjXfi7EvOXhOx7sSKuAJRE7Gzb2ekDXKKFCmOHxJ3ur///e/jOc95DnK5HO6//35IEnnIq1Qq6Wy9FE8qNGUNjgxz9Bd4l1LPm7Hoh5LDTlXTDUyvJrMD8OKx2SqGu6ILLAuqIvuqC/MsKWR6s6bSKhNeKNTbFIshVqimYtEwi+zBsQnX+4pG1reJRZEcE82k5AyKtq0z77jxZ/j+t/8VACGnyFhU/OKReUz25UAZOpTSHB76788AAC54y+fAdsdv5HVnWegyGS9HUy4iOS5mDh+EosiomVmGTMjsvlpCK9SmrEHTDQwU43/nTjAsG0lmTmzbgZnDB9te13Ud5dVl9JoZi1Uz87MqknO6b3AY5ZXwAl42v1uepV1EWNXxuxgZn8DS3HRoAW0YBiRRsJWpAOxMTacV6tjEFjAsi2kHUZphacwfeQLvevnzoCgyvvhfP8Nr3/khl4o2CHzenfnz+ku2u8hoC5Zikc4UIApN6Hq8B7GD+x7D0vwMLohtg1rG5v48tg2lM+7WirQWSXFMIFYANgcknQhgkVUW6aVETFhwXj8ZT9PMZ3Z9YjRXgUO/6Xh1SVHJuKyx5AeJek5LSCyajTfbhj4kY5HSZQhKS7FI8hU9YDK2mtSgWCi6R7FoKmL/8+ZH8PXv/6r1en4QqM4RolQkjc25mo73ffUXAICfvPsi7OzvzGUAFJ0sU9PE/kMz0HUdi6sBjVYHsXisrVAHeruxGqFM2LVlFPsPB1mhljASSCz2YSGCWKw0mlgq1QCzMa76nGdbNg1jbmnVbV/qBE0Usk1RIjmcJhqCRSy26uiRwT50F/MuYlFVNXzyuv/BmS96C5ZWK/jNv/8TvvChN6IYo1GX2ArV3KY4eDowcS7JdwzBoel5PPr4kdQG9TggrUVSbATWQ7Eoa7KLMPNmGXqh6qovwWbBSyxm2SzqyhqJRR8r1DDEtUINy1iMq1i0SAxZdBOLXsWbpQq07FQl0+rdzwr1e//2Pdz283CnCK2h4cef/jEA4IUfeyGyE51ZqjI0A83QEk+4tgjFOHmD66VYXFTiRbN093VDaAiu7EkvJrdPYubIjP25XVaoyyX0BdQifUN9KC2XQo9XrVxDvVxH3azpKdVn8v+mEYiCGEm6SqLbLlc0axEn+ZfL5zA8PmwTpRaxWFmp4K3Peytmj8ziU//+Kbznn96DYnd0byGfsBaxxhI3Z7GyWsFj9z+GC68KJjiTYrpGzsczBs9Yt22mSJFi/ZH4qfnjH/84vvKVr+C6664Dx7VmDVx88cW4//7713VwKZ5asJR1WgfkThT0Dmw2mrIKzVHsDhbdM2cEWbMJtsEi3+Z0RlNuAgWArfbqFPsXahgoxp/Bo6luK1Qv8jz5CbPZQuAyQLtiMYxYlCWLWCRFtpdYNACwdCtzzyIidccBtBSLTlhq0XJTxq37l7B9MAfDMMD1jeHMV5DZe3REVqQXFEVh9VdfRmPvbWBpGqqW/OFmeXEOANCsm4rFACvUQlc36pVkD0BWtuVwV2eztmiGRbUcXuRObt2J+ZmjkGX3A2O1vApd09BnEotW5qg1pv7B8IxFodmwf3c8Q4OhnMRi63waHtsEURBClZWKIkPXdRex2FIsts5dluMwMjaB+elWdtfq9BNYOLwf/+c1b8WXv/tL7DrtzMD9eME5iMVBaQZnbu71Xc5SLNI8Kbgte98o7Ln1BuTyBZx+zgWRy0qKhn3zNZy2qQcDCVTLKfyR1iIpjgnECsBm0RaiEgXZfAg3LcWpwAxJc7tO5Z+3waXJWDP2/bwjssuCrGrExcAmFgcApQnaofYDANXHohIAIU4NzSZa7QhmR8ai9z5HaQoEtaVA9CcWW9dSzfx/p82lZYVakzz30OII0FgElCb0xip0w8BYF41/efsLAQAFfg2KcpolasWEzdaZRaKWrAY1cPJkln0uwx9zK9T+niIEUYIgBjemd20Zw3KpilWPZaokKyhV6hgZ6PVdb3SoD8ulKhRvPqkJXdehqua5q0kAzcLweXzdMm66M8wvh36WpuBRLJoz8Z2qQoqisHPzOA5Nt3KSPvKFb+ODn/sW3vryF+LBH/4znnH2qaH7cSKpFao1ltLAWcDT/4qoFkPw01vuAcexePYzzkq0nxRrR1qLpNgIqLraUcaik0xTddWVVyjrcujzpHd5L2xi0Vwky2bRVJsdjdNCVaqGqiS90BQNbEg2MwDohh5qheqnWHRu0yISLbJRMSfkWsSiM18RaLdCtYjFpIotwzBg6AaYAoM/+cCfAAC4fOcKLZqiO7KpXTbvoY16eDRIobuwbhmLi2o8YrGrlzzX10Ks2Sd3TEKRFNTNCVgWsWkYBlYXVwOJxf6hfqiKGvqZVLNOsYlFH8Xi6CZSqy446gc/eDMWhQapRZyKRQDYtHUT5qZIr4qlWMAAVuZW8Mw/eSa+fsPXcc6lwe5NXiTNWLTGYo0tCnfdfBd0XccFV0T3ReJipj6DPJvHRNdE9MIpUqQ4bkhMLO7btw+XXnpp2+s9PT0ol8vrMaYUG4QnFjfWOqmYIQWVqKzNugNoJxL98gqjIMg6NMdQRrrcM76asgqWpvEvf3EW3nz5Ttuq00KGZWyVl4VDK/Fm7PiOR9GwUJUwmIBUUGQ51ELTIh2ZCPVWU3Z/J878Q686SzZn2+rm5cFrhQq4FYsWEak68iwzzkw+e6wke/G+o2XUqxXc+eX3oHrPDwEAAyeSoujAXmKJKtTjn6taswJdaoBliGIx6ZmyNG8Si6YFZoYix4OB+5h1dfegljBjsWGSeKPd7iKxq5s0iVbmw7MJGZaFqio2CeeHiW07oOs65o4edr1eMtWIlhWqZetr5W32DQ5DFJoQGv7bXl1qFflEsdh6ryoq9gSC4XFS6C3MBlumWEQd5Xi4sDMW8568w+5uNBx2pPxjP8NYfT9e+da/Ac8nU34y2dbsvZwh2wSiF9a1yyIWw463E3tu+RXOufjyWON6bK4KVTdwxa7htmtNiuRIa5EUxwRiFeCyrhy/WLCIRItYVDzXFOu+m+kiijvZQRR5iUU1XGUQC4/9ABiIZzHuB0m2FIvmfdEkubjalGs5Zx3ggkVIWlao1iXQoc6sOxsXhgYKOgQFyJiWY9v98n7Y1rVXM9UCOWczzzyuNdlTGWS7AaWJRnkFL3n7tfi7W8gxvvIscozue5So5qeXkt3zAZhZlFrijEWLEKs1gojFQfJPhls3xeJQPwlLPmg2rYIw0GvWLCHNvF1byPfjtUNdXCkDIASiHyyL1MXVsu/7K+Va61CqEiG4fXjfzWNkEtWR2eBmnqZpkGTFpVism/ZjXuVhb3fBRfIenlnEZeeehk+997XI+yhRwpCcWCTL1xsiuf5E4Pqb78Jl556G7oRNwxRrR1qLpNgIdKpY1O1nWAaKrriJRVUOJQE7yVhsKI01EYsVuYI8G/+6pala/IzFgFuwr2LRWYuUyf3VUixa6jiLKBzbPOben9kv8BKL2Wz8+4QiK/jEOz6BJ75Lao8Tzj0BAPD4o48DABaPxCPenOjUCnVpjvQPosikrp4uNGqNSJefKMWipmtY0cz86IVw94KePlKzVErBtdnm7SSXsGK6P2RZ8j00603IkhxshWq+HqTUlCUZmjnJqWHW9H6KxeFNpO+yMBNOLIqC6DpHbGLRUy8Uu4u2YpCiKFAqBT7H440fe2NyonCDrVB337QbJz3tJAyMDCTaTxiOVo9itDCKLr4reuEUKVIcNyQmFkdHR/HEE+15Xrfffju2b9++LoNKsf743/uncdVnf4NfPjq/YfuwmvaisjbrDoCoCde+DbdisSvrnvUlKESxyNIUJvvbb8wZlkZNbM1q68qwOLrSwEMHZwEAew4sJSJR5yukeZHEClUJsEK1YDm5OrPr/OBVLGYcFrBND4lnKxDNy8PgaLuvP8u0rDFFkzRycr+8J5PP+fpDj+3H0n++F7NPPAJ+hFwzrHzGukncyWJ8Anfkz67B2Ku+CJahCNmVkFlcWSS/Ces4ZGhz5qHhPmbF7l7UE1qh1s3jPtztfrg48QTywPC7++4MXZ8xH3TC1ICTW3cCAKYOH3C9XlomDwaWYrHqUCwahoH+QfJ6kGpxdblVEDszNQGgJqpQTHXo8Bg5PxbngklSyy7XYFsNX9FHsQgAhUKX65xklRq6aRksnfh2BToTr+DOm/IZ2vwdNZvRTdvS8hL2/fYBnH/Zs2Lt46HpCvoLPJ4eoJpMkQxpLfJ7iA5mVvvCIgHXaCMGgCje2JbdZmwobmIRXsWiYDZPMuaDspNY9LImAcTiwYOHAACViFnlAIADNwNDJ0UvFwBJUYm60GrI5UxisT7rHmoQsWhlM9KWYtGyQm0181y5geZ3J6iGTWb5KhYdxKIKcqydpJF1XOttok8KMxUVlzz3j3HDXY/i3HHGXJfcoyySa7XWgf09RRN1ZsJiZGYhQrFoHvN8lke13oSmrb1OPmXnZmwaGcAvbrsvdLkBUyUQlrN4wmaSA+glFq38xJGBcGJxfsm/oTjnzDxSRZOMbv89TprE4tHZYIt3wVSiuIlFS7HorqO7i3lUPSRvnCxlP3i3HQWLiAwkmR2o1Zu45e6H8YLLz+tobCnWhrQWSbERMGBEWpf6QaNNkotioRlam2IxjGjSDC3UCtXelmWFymQhqAIOHz4MgNhMJkVFqiDHJrs+UmGW6yCkLMdzgVaoUYrFRoXUVF4rVEut5iUW2xSLAvne/DIW/aBWVXz6dZ/GLT+7Bd3bySQei8RcmSd1gUV2JgFDE2Ix6ZTr5QVTsVgLry27erpgGAYa1fDlskw4wTrfnLfJ6ScebL+WOtFtTnIKsxkd3jQMPsOjbE5qsvZv5SdGEosBOYvO1xtmTU+r7TVv70Av+AwfSiwahtGuWGz6E4v5Yt71XVBa544aSYlFyzo1jmJRkRXcc+s9uODK9VMrAkSxOF4YR5FLY2RSpHgyI3Gn9vWvfz3e/va346677gJFUZidncV//Md/4D3veQ/e9KY3bcQYU6wDjphKu71z0SHLXnjVbkEoWIpFde3NjoakQlZbxa9fLloYOIaCoOhwbMJFpgGWFao7O86JDEej4fjs3TkOCzUJVY0Ue/9xzzTO+fiN+PAPHok1prmKCIaiMNITfVOnzSJVU5RQ21JLscjySRWLrWNRLbsfBGRJAEAFZiwCjqYgHIpFz7H2KhYBQJ5+DPPffhc4Ssenvn09clueBqBFLOodWrUx+R5wNN2RYtG2Qo0gk4rdPRCaDahKsK+/Fw1JA0NT6PNYmTAM+byP3RtOLFrWsN7vyInegUEUuroxfchDLJqKxd4BonKomOrbpqxB1Q30mUrGlSX/yQYW4QoQYtFphVoRFPv32ds/CD6TxWKIYlG0iEVHE1loNsCyHDjereDNF7vQbKyPupqOINwtWNcuy6pVjKFYvOu2GwEA5116ZeSyumHgoekyThnrwmDCa1kKf6S1yO8h1oMIBABTebwuSj+pukYrVHJ9a7NCbZp2jbz5oCyF3H8CPsfMLJnMYSnCoJj79GtG6iowdErUqAMhqxohSS1ikS8CDA+u4SYW9aDHCquRR1kZi+brjiamnxpOUID5ZdLMCcxYtMZokOt4ztnMk+oAw8Pr0H/foRLO++JRLK+s4o7PvgpX7yL32oI5AU1dSx27RivUWlADx1SJ5jNkjOWIZl4cUBSF515yNn5+272hy7UUi8HPEPlsBpvHh9qIRSs/cTQkYxEAZgNUArPmcQHQUiz6/B6zGR4jg304Mhus7GiaSpKcn2Ix766juwv5YJI3ITpWLJpjC8MNdz4AWVHxgsvTfMXjgbQWSbFRENTkE1tUityjLeWhkyhUdCVSXRhmS+q1Qs2xOSi6giNHjwAAFkLU4kEoiaV1JxY1Qwu1QlV11aXMpEG7VJAWsWi9ZhGLFrEU1wrVSRoFQZwRceCaA1g8uojP//fnMXIemaBDszQYloGqdp6x3ali0bJCjSKTrEy/KDvUDBt+HKaqLeeLAw8eCLVv7e4zicVScC1C0zQmtk2gsloBBcq2Yi2Zk5cCicVh8vrKworv+87XLStUP2KRoiiMbBoJJRYVWYGu6y7yOcgKNV/MuzIO10IsdpqxGEex+Nt7fotGrYGLrrqoo7H5oS7XUZEr2Nqz1VaepkiR4smJcC8BH7z//e+Hruu48sor0Ww2cemllyKTyeA973kP3vrWt27EGFM8RVAwO0XrYYUKtBR+nSDDMmjIKjSHPYOV8WeBKBaDC+gMy6AptT5LT47Dcq3VsHvByf1YkYDdB0mh6bVN9WKlIWO0O2vbLoaBhg4dDFQlXKlFUwBDU9BNK0bvZ7Tg/U6cVqi1SgnAVvtvSRRBOZRlmRwpQppqq9DjGEcYvKlYdBKLfACxOPub/wducDNe+/f/ghNPPBHYfTcAQDNzmdYyA99WLCaAYRhYXrAUi+HEYlc3sd+o1yro7R+Mtf26pKLAM4HWl0cefwTV8iq6e/2LXIYl50qtUg7cB0VRmNy6A1OH3bP8SstLyOULtiKwbqpvG5IKVTMwNEoejKzP7wWxQiXL8CzlIuDLTQWSqgHgQFEUhsc2hSoWZdHK7eRgPn9BaDba1IoAkC8WsTATTFImAcVlAURfRzKsmRlqPvzEsUK965YbcdIZZ9mK0DAcXWmiJqo4f/sAuj3K6RSdIa1Ffg+hay6iqWNw5nWlg9n+bVCahFiUEk52sIhEOsAKtWERi+ZY5eTEYhvmH3Fv24n+HUBvu/tAXOi6AZ1iQFtTdygKyA+AE9zqMC2IWNQ8VqjWYkGKRROCaqDH/H9f1RfnJBYt1WGmddWX6yYx7Mbnfr4fEz0sfvTrn2P0sesA8zaYNZ03FFVDB3MvCTq0Qo1WLBICzlJVlqp1DPSFZ+/FwR9dcg7+7Xu/wpGZBWzZNOK7jKVYXI1QTezaOoF9h921wMJKGRRF2barXowM9oJhaMws+mcjzi2uwh6VKpLjG9BX2zI+hKNzYYpF8ltyZSw2BNA0jaynEd1dPJ7EIjln6zGaeT+55W6cvGMSOzwqmhTHBmktkmKjIKru5xc/C08vVJosY5FdLsWiFq5YBBCaX2gTi5Zi0by3SkzntVZFqiQmDIyIeBxFV8BneAiG//VT0RXQNG1beHpVmnUzw5inyT1Blt2WB17iR6M8VqgxFIuKTFSVqzetgs7S+PDXPoxTTjkF+GVrmWw+C0VWkEVnhAoFak3EYhzFIhBNLFrHMei+fbR21P7/6moVh/YdwvaT/NXe1j7DFIsAMLl9EqWVErgTOft7sRS1QRmLuXwOxe6i/fm9WFmMRywCwMimESzOBE9yssjqOIrFQlfBlXdJax3WpuggY9EiFuvRtcjum3ZjcGQQO0/d2dHY/DBdJ/2g0wdPX7dtpkiRYmOQ+MpEURQ+9KEPYXV1FY888gj27NmDpaUl/P3f//1GjC/FUwiW6iepjelKo82jCgAwXe78gT7D0jAMoCy0CireQSLqhgFFM8CzwbN+MiwNQWkV8T05zjXWniyL1z5jO150JiFfLGvIMAx1ZZBloxunlNmQ0hQZbIhiESDqTCYkg0XTDZc9LUNT4JyKRQ9pJUsi2Gx74TFdbxXyzjFJtmKx9b7XCnV+hhSNg1f/DUb+/O9xyjb3bD8tqRrEB6ytWIzfzKtVSlBk8gAgNMIbZsXuXgAtu9Y4qIsqChkWPOt/qTV0A/fd+ZvA9WnbCjXcXmbT1h2YbrNCXbRJL0XTISg6chyNhkxsTPOFIvLFLiwvzPptEitLrZl2zt8OdKJ4LDVays3h8YnQjEVLsag7HnCFZqMtXxEA8oUuNBJkbIYiYpakBYqikOMZ6ObDRxSxKMsS7rvzlgQ2qGVkWBqXnRBNQqaIh7QW+T3EuikWzeuK0vnkJBc4x0O+5l+vtKHNCtVzf7EUi5YVaqhiMebnqFk5eT73wKGTgKx/MyUudO9cxMIQOGnVs0xAfWM1RM0Gnu3EQLcmWvgSiwraCB8XHNlMkk7uU66MRanuug88cYSQXl997dm45U0TGB0ZBoSy/T5N08jnMiax2CFoJrEVqiwrtvI0ULFoEos5s9Zer5zFKy88EwxDh9qhdhfzoGk6VLEIACdu3eRrhTrQ2wU2oPZlGAbjwwN2xqQXc06LVEVo/aZ8sHlsOJZi0ZuxWMxn22xOjy+xGE+xqOs6fnrrPakN6nFEWos8OWAYRqjS6akIL7HY8E5Q8oFNLBrtxGIsxWLIZGY/K1QAkJmYdZEPKnIFOSbZ9RER/KqdsRi0uq66CFSGYkA5+hBBisWgbdqKRSpasciZmdGH9x8GAIy+bBTbP7QdA+PtmXTZbBZKApckLyiDgg490e/CMAybWGtGWHFbJJ9FxAbBylikOP9ez9HaUQxmyYRtLsPhrpvvCtwWzdAodhdDFYsAMLF9Agu3LuDSiUttxeLq0io4nkOxJ9hSc2hsCEvz/pOTnMRiQ2kgw2QCFb7Dm4ZDFYuiQH7bWUdes6VY9J43+WIezdrxUSzyGR40TUeqVw3DwO4bd+OCKy/o2DLeD9O1aXA0h52960dWpkiRYmOQmFh8zWteg1qtBp7nccopp+C8885DsVhEo9HAa17zmo0YY4qnCAoZUnAK66RYnC2vQbFoTodfFkxLEFVw3egsG0c+RLFYzLAQ5FajsyfHQVLbG5+ZGEShhYEijywf/bOzrFB1PdBYzLV/mg8mULzfB8dQcIoJax7SShJFZPLhAcnO4yaJTfDZvJtYZNyKxbe97PkQGg3QmTwohkMx424MKZoBhl2bkovrIGPRqdaLIrMsxWItAbFYk1R0ZdnA82zT1p2457abAtenaQYsy4VmLAIgikUfK1TL7tTKV5zsz6MuqvZ3NTQyhqV5f2LRmbHIO85xxmyQrzRaM1SJYjGYWLRUrU5iUWw2kcu3F7jraYVqMCENae9+ORaG2bCMIhYfvmc3hGYDF17+7FjbfnCqjBNGihjrTfjwnCIQaS3ye4iIhldsWFaoSgf5eH5gsy1iLIZiAECLKKRJHhzltTSzVIWcOVY55JoX1w6t6n8tBwAMnQyw8a+HftC8DZTiCDjFfT80qCBi0W2FasPhfuBrhaoayGVCJog4JlUJKqk5XBmLtpUtwdkveTtWSlXkMyxylmxScNdA+WzGVjJ0hA6sUJ05goFkFpvBp3crmNcIwViKaObFRW93ERc9/eRQO1SaotHfU/T9jt754A685fZ+INuDXdsm8MSRWZf7xMJyOdAG1cLEyCCm5oKIRU/GIu2fsQgAW8aHcTSMWBT8iEXBVw27vsRismZePpcBRVGRisV7frsfiytlXH1FaoN6vJDWIk8OPOP/PQNnfPuMjuxDn6wQNPdnaSrR1yNLPWcrFj1WqFH3Njqk6xCkWFwLsViVqrEUi65JwxGlomWFGpax6CSEGJpx9YgaZXfGoiKR+iVIgahDB0Mx9rEWTZcev+UtIuktL34LluaWQHM0mJx/3ZTNZ6HKnVuhQkfiWqZRbdikVzPi/mcRdJFWqBaxyLfftzVdw2x9Fpu6iKPGttO24e5b7g7dXndfdySxOLl9EguPLeDZY89GT4b0b0rLJfQN9oUSX0NjQ1gMqCFWHXbtdaWOLJN1EdJOjGwaCdwO4E8+Cw0B2Xy2jdwvFIli0SKI15SxWExoO0xRyBVzkVaoUwenMHN4Zl1tUAFgqjaF4fwwujNrd+dIkSLFxiIxsfitb30LgtB+cREEAd/+9rfXZVApgL/78aM4vLz2/JRjibxpIdUJsaj7WFjOlNrPszf9+33Y+v6fmjaMwbBUgXXJv6CyCEI2hFjsyrKuz9KT65z4svY3WORDrU0tWMQixXKgIyponqFBhygWm5K7KPWqCasVD7EoieALSYjFdiIyw9Iuxdsb3/sx5AotdZrumT2naDqyubWRLixDQU1YQFv5itlcDkJExmJXD2mM1UNsSb1oiCaxGKBYPOnsi3DPHTcHF/4U0N3bF6lYnNi2A7VKyUVAri4v2YpFy6Z3x1ARDVmzrXEHR8axtDDXvkFYVqgEzvHTZgO81Gw9SI6MTYQTiyJ5OHHa5AVZoRYKXZG2tHGhhVj6eJHjGRjm8lHq1btuvQFDo5uw7cSTI7dbasqYKgk4c6IX/YW1NfZTtJDWIr+H6DBjtw2WFWpcpV/k9jq4NzmVBSwPSvY0aJrmzGfrXuzNYHQirhVqzf9aDgDom4y1iWqtjobgvz/N8NzHukZBecgzPeiaq1nEoud9KlyxqIIJzMEG0CJmAQgaBZqmwXGOfUg1rIitcf/92/+q3T5UdJOjhVx82zG/tqUOOrEVqmWDms9lghWLAD50swK5/0QAQKm6Tsp+EDvUm3Y/BFkOVkcM9Hb7KhanhDwOyAMAm8GubROQFdWlGpxfXsVIBLE4OTaI6YW1E4ubx4gValBN1fSzQjUVi150F/OoNprrooIqFpJZ2dE0jUIuG3ouAMQGta+niAvPjK5FUmwM0lrkyYGqTK5NhyqHjvNI1g9rUSxqZu/ApVjUFJtwDAITNDkI/hmLAKAwnavqqnLVVpSFQaGsGgIw1PBrsmZoRBkYsJiiKy7ClaVYF6HaMPOLOXOyqa1YzPqPU4MGlmZtksm2ufQQi41aA5JE7kEvfeNLMTQW7mKTyWViZyz63acM3SCKxQQzri21XjaXjSQWC10FUBQVbYVqZY371HILzQUouoKdPUSRdsLTT7Cz+oLQ3dcdbYW6g9S80w4HhdXF1UAbVAtDY0NYCrBTd1mhynVk2EwgsTg8PozScskmEL2wFYtZx+S4ptBmgwoA+a48dE23t7UWK1SvjW/cdaIUi7tv3A0+w+PpFz+906H5Yro2jfHCOLr48L5kihQpjj9iX5mq1SoqlQoMw0CtVkO1WrX/K5VK+NnPfobh4eGNHOsfFL5552H81b8FWwE8GWGRTZ0Qi7KPjeh0qb2g+fkjRGH22Gx4QZExiZC67F9AW4rFTADhAxCiVFwnYtHCcFdMa0arQKRZUBHNVp6lQYcoERoea1qecROLNQ+xKIsi+FywTQQAsA4LWUkU2ojI6swBvPWlf2T//bTzL3a9761/ZU1Hxsd+1QvJtNSs+yj4OIaGricpn4likaIojG/eHklmFXuSKxYbsoruLBdILJ569sUoryzjid/9NnAb3b19beSvF5NbSUHuVC0SxSJ5aKmYisUThouuv4fGxrEcpFh0EMMZB5FMqxKyLI2K0HrYGRmfQHl1xf5+vLBe12MQi/liMZLYiwOOz0BJwDPneQaqbiCTzUJoBj9MGYaBPbf8Chdc/qxYdh8PT1dAAXj2KSO+uaMpkiGtRX6PsW5WqOa9ZL2IRb79OhUJJ5HIZNpVhw1P4yLMCjWu8tKrWHRebmLaoH7nv76LfUf8c3dVr81psT2Pz6ADiEVL6em9Zjqaeyt+M9CDtgdz4ojDFrOhEBtU53V53+FZnP/Z/fahePbFZ7VvyEss+pBMXlhNvHK9/RxTDSRWLM6YDauTtk2iGmU/VuwCw9DrZoUKAH906TmoNwXcfv+jgcsM9Hb5Khad2LWNqA6cdqhxFYvBVqiOes+yQg3KWNw0DElWsLTqX6clVSyqqgYphGyNi6SKRYCQkVGKxetvvhvPu/TcQJvZFBuHtBZJsdHwqi8bagxikXJnLDqVeYquRGbuefMGnbC2ZdDk/sfSLDia65hY1KGjqTaRZ6Ovj9bTPcVS0CMe7jRdA5cJ7tmouuoiUGmadtUNdTNL2FIsypIMiqLA88FWqAzVUj1apJGTWJyfmsdbXvwWKOb95PxnRqvMk5BAmk/vzSJgk+QsLpsTfCZ3TEYSixRNodhdjLRCDSOOp2pTAIBTB08FAOw8cyc0VcP9d9wfuE5PX0+kYnHz9s1k+wen7NdKyyX0D/WHrhdmhepVLGboTGAfYHRiFAACVYt2DqdHsej3nReK5BnE+j4ojUrkzuVE0oxFgOQsRtni7r5pN85+xtkua9e1QtZkLAlL2Ny92Z7EkCJFiicvYhOLvb296O/vB0VR+P/Z++94Oe76ahw/02e27+1FXbYkF7lX3LHpLZCE5kBCSJ4kDySAKb9QEgIkIfAkEJIvCQkJkBACBHAIJYDBNsYGuduSZVu2rHol3bb3bt+dPr8/puz0mb33ykXseb38su7u7Oxnys68530+55xt27ahXC47/42MjOC3f/u38ba3ve1kjvWXDmqIiu+ZQJj9ZxzECDIvDmH5hDMhikUbUbvGVsJxjFkwtiOKT5vIZGIUiwJDeradpUlk2dU9vI/l091w3YrFJHs4jiZBxtiIdnw2GgxFeqxQ/RmLktQFk0AsBhSLWa8CgCJ0TExvcP72W0sGFIuqAZZPLhpsgk3Tgg8xJNH/b6YyfwLl4VEUiiV0EsgsXsiAoukAERuHtqyhlGEjz7PNZ52LTDaH++66PXId+VIZzQSV5PTGzSAIAjOHn3Jec2csNkRzf502bhOL5mzKOCvUJY9i0V04Gxgr8GiIinMcxybNZuLC7PHQdYnWbG73JNPIjMVcHooiQ5ZTqnQikMlm+5rkkGUpyJoBXsjGWqEeOfAE5o7P4LJrU+YrztSwbkjAlrH439QA6TCoRU5hrBWxyKyxFSqzEmLRdT+hORB+krPlazbEWqGuULFoNxQLU6u2QQUA1a9YzAWb5pFWqPY92920JGnA5eCwHNacIqNrG41gPOtry4TXBhWALrUxXuAwOmxODGqFzbr2EYv+dYShbs2m10KUcZpOWOdy+nrk2FwFAs9h/eRIokqNIIBSPofl2toRi+fu2IKJ0XJszuJwqRCqKnVj/eQoBJ7DE4d6tcBcpYrx4VLs59ZNjGBmrhKquvBkLKpSohUqgMicRVuxKASIxRDFokUGrtYOlWFocGz/ExNzGSE2Y3FmdhG79x0c5Cs+QxjUIgOcbPitT9MoFjXSfO6xFYu0a3KOqqvQEiYrx02Y9CsWASBDZ6DR3nU2JJP0qUm12O+yiVOOjr7n0j6XA4ImEjMWVUMFwzKRanNZkz2EK03QXivUulexqIiKma8YsWt06KadqrWAJEqgGRqUa8KHYRjI5rPYsmMLACQqwACkImls2/EoxSJg7o+0sNV6aYhFwMxZTFIP2laoYZhpzqDMlTEqmP2K8lgZ67euj7VDLZSSFYu5Yg7lkTJmDvSIxeXFZZRHkxWL1cUqZClo7+tWLDblJjgqWrE4Pm1OvJs/Fp6zGEY+xykWgR6xSIs09O7KnpdWRCwmKBabtSYeue8RXHb9ZSsaUxROtE7AgIEzhs+IzLIcYIABnj1I7RN3++23wzAMPP/5z8e3vvUtDA31ZnywLIuNGzdiamrqpAxygGcWYTalADDfEHG81sUFG7w3aVvlZxgGvrP7BF513nTid8gh5OWJWv9NwcWm2TQoZcxiMEqxaFupxhKLISTiSI5De3nlTQbbLjYJDrFIMYn2cCxNgoiZDdbxKxZp78w8f8aiLIpghGysAaut9PzOV7+IpcV5sJkcdMNA5/GfIbPtedi0/Wy8+d/+Gy+/cDNkSYSYkFlnKxaTSt84go00dGgrUCwOj09AyOYSc/0IgkC+UESrD8WiphsYzkUfG4qicf7lV+O+O2/Djb/3ztBlCsVyYsYixwsYm5zGMUuxqGka6tUlDLkyFjMshamiWbDa1qgj41OoLi1CkWUwrpmYsiyhWa/C1qGyvtnwk0Ueta4CRdPB0RTGptYBAOZPHMP6zcGAbVkSQdE03D9zsdN2MiDdyFjq106rCXYoncI3DEI21x+xyNFoNyXwmXhi8e7bfwxeEHDeJVdELmNDVnU8PtfAC84Yx0hu5dsyQA+DWuQUxloRizbZtCaKRSJcsfjt/ws8/BXg/ccBLmTSgLshSHNBcrAfxWLa7fCv00aMtVk/UA1fAyUbosahIggUJ5vSTSxScHfqwmw2I9cHi1i0tm2fvgm/OGFAsKzK/vdJBVs26Thj2MBd778YO/7icSws1YNEjWEAkvfen8YKdanWRCniPcUABF3rnc+aAiwfAipPAIv7gIV9wOLjwNIBR5F5fH4J0+PDKOQyOBTRiHJjqJhbU8UiQRB48ZUX4gc/ux+ffO9bI74zj/1HwicP2SBJEqdvnPIqFpdqmEho5q2bGEFXlFCttzBU6jlgGIZhKRat88AhFsMVMhsme8TiJedsD7zfFcMUiyJyIc28Qq5HLI4lEKNxyK/AegwAcpl4xeL3fnovKIrEi6+6cKVDG2AVGNQiA5xsBBSLfVihrlSx6Cfy3PBnLAJAlsmiLnufi289eiuAZGLRJk7j1Ej+/EWCJkLVeW5oupmxGAVFVzyKRYqgPARRmGIxKl8RsKxQLXLyxzf/GDMHZhwlWrPehCIrmNwwib+/+e/x3hvfCwCJmXWApWZLaGrEqQUdxWIfMTGVuQpKwyUUy0UcfuJw4vL5Uj61FWoYjjSOYCI7AcEVOXDJNZfgzh/eCcMwPP2qsfeNYaG7gHwpj/2P7k8c2/ot63H04FHn77SKRQBYml/C5IZJz3tLC0soWZVfS26BpVh0ifDjODIxAoIgMH88vJ6zbU3d5HGSYtG2hx06OITZR2aR/e3+Jj2SFAmWY53M0LQQsvEZi/fecS90TcflN1ze13qTcKx1DCRInDl05pqud4ABBjg5SE0sXnPNNQCAQ4cOYcOGDaks4AY4tfHlXUfwH/ccwR3vuQ7FTK/5I6oaNN3AN+6fwR/f/Ag6soY3XLIhZk2AonkrJ8MwMNfoNYDSkkWzdfPGx9MUOJpEV4mYrWYxHEKMfRDPBN8bzXM4sgpikWfSzbghbMsPiga0eLqNpUkQTHTzre3LWGRIAlRCxiLNZwLEouR6gacpNGpV/P2fvx+ZXB7T51yB2R/9f2jt/hFGfuX94K493Qx8zmQgS2KiGhAAaF9OYxhMYjG8kCIMHbphzdBLaTlZWZjFyNgkMrl8bEagjVyhhGajlmrdNpLsby+58vn4zEffh2a9hnyxFHg/Xyrj8JOPJ37Puk2n4dhhk1hs1Jah67rHCjXL0RgvcCDQOydGJ6ZgGAaWK/MYn+plcFUr3tn+gu+3MFXkMbPcgaIa4GhgZGwSBEFEKxbFLjhe8FiTdjttTGay+JP/2YtXnjOFizebxX42ZzbpO60WSkMjidsdBSGT9VgZJyHL0ZBrXQiZbKwV6913/BgXXH4NWC65+bxvrgFFM3D19tHQ68kA/WNQi5zCWKuMRRtrQSwyQji59cQPzP8fvhPY/pLg+24rVJoHofmIxY5vsogUM/va/9kwrDYHLkWOpOJXLDI8VCoDWuttKxFJLFqNDMp1HSQojzVqmBoucn0AVIIFCBKapuGMj+1BIZfB5OgQbvr4P+PT/9vBe2+o4yXbWBB8ybG6DKgBlXbAFcKdvxeFpVoDW6PGpRkmqfjofwO7vwYsH+wRq2wWyE0A2VFg6/OB4nqAzZrE4tgwCtlMomIRAMrF3JpmLAKmHeqX/vsnmJldxPqQ7KfhUh53707+zu2bpx1iUZRk1JttjA8nZCxOmN93bL7iIRbrzTZESUaPWBRNQpoIr4vLxRxyGQFHT4ST7LZikXfZ5LU6XQwVg/Wnm1hcDfrNV7SRzwqx58L3fnovrrrwbJQKAzeEZwKDWmSAk42u1j+xqJPmg5ZNLLqJQkVXoPnud34FY1gOng2HjPMRi3788PAPASAx288mTvuxOSRoAnqCM5aTsRgBRVc8hKvbxhToZSxyFAcSJGRRjsxXBFzEIgh86gOfAkVRYDkWX/ybL+L44eMoDJmuTgRBOIq0biuFYjHDAwmHvF6NnuysW+5c/mMeh8pcBSMTI8jkMon2l4CpWEyyQo1SLOqGjhOtE7hu/XXIuPKyL7nuEnzrC9/C4ScPY/P2zc7r9CiNw/phXFS7KNEKFTCJxSf3PgkAVq8jOWNxzJqctDi76CEWNVVDrVLrEYtKC1kmG6lYZFgGw+PDmD8RQSxGWaGGKRZzXsUiYRBgdCbWtjgMQlZY0X0qk83EKhZ33boLp599OkYn4jND+8Wh+iEMC8MYEuLJ4AEGGODZgb51xbfddhu++c1vBl7/xje+gX/7t39bk0EN8NyAquuodRQcXvIWFKKiQ9V1LLVNG4E0ykPJRwDUuopHxVhpprMCq7TM7yQIMzOtExHwbVucsjFEn59MAYDxwspVRzxNgk+Zg0IabsViPLHI0VRfikWGIt3uY0HFoiSB5oJWCS25ty85moLYNQscsdvBiccfROuRWzH80nchu/0Kx4pWyJoNjzgFmLPObDKxGKcWJKzCuR871KX5OYyMTyKTyaLbTh5jrk/FIgBMFOKbShdf9Xzouo4Hd90R+r6pWEy2X52YXo+FOZPYq1bMplppuEcs5jkaGZZGUWDQcohFs2henPNa6LltUIEgIb5uKGP+Rm1LYZbF8NgEFk6Ek7NStwteyHosjLudNrhsAbN1EQ/N9LYvk7MUiwkK0iQImRxERQdNpDsfshwNRdXBxSgW69UlPL77flx6TUob1GM1lAQGF26If5AZoH8MapFTEH00P1JhLYhFNuO170wLt2KR4kKIxSXv327FIue7F6oSkDTjPI6YTAO+mLiIogfrJYXzXduiiEB7gpRbPemztPTn9+kGQDMxzTzStEJtWw2adlfE7OIyPvPl7+DPruXx0rPKgNwGKBZ5q1kTUICJwf2WTrEYvb9V2wp1/0+AbhXY9hLgorcA17wfuOGjwFXvBi79P8B5vwFsvQ7gCji+UMG6iRGLTEpu5pULeVQTmnn94gXPOx8kSUbaoQ6XCrHbbWPT9DhmrLzE+Yp5b09jhQogkLPoyVcEXIrFcBAEgQ1To9FWqF0JAs+BdBXBrbYYmbEIrJ5YXEm+IhBvhdruiLh118MDG9RnAQa1yAAnC6KvhklDLNrwW6FSBBVqhfrggjfLrl/FYp711is1sYanak8hDTqqeW3NMeknR5A0CSNi0jgAkAYJTddAc3TkrHRV82Ysum1MAaBdM/fzuaPn4g1nvAGEQsQqFnXooEmTWJS6ErqdLrqdLv79M/+OsevHkH9x3rEqtZWUa2WFGkaw0Yx5DG3FoprQR3KjMlfB6MQoMtlMKivUXDG3YsXiQmcBsi5je3m757w779LzwPFcpB1qoWxaoUZZ3dqYWD/hWLu2G20okpJILNqKRX/OYrVS9XxfW2mDoZhYom58ejzRCtWjWOxEKBbzlmKxlf73H4bMCmsRIRtthaqpGu69/d41t0HVdA17K3uxvbwdRTb5+WSAAQZ45tE3sfjxj38cIyNBFcnY2Bj+8i//ck0GNcBzC0/Oe5sbkmIqFvtBteuV5c83Vt8QFFgKYkQtZZOWcQrCMGJxorjy8GCCIECmVNLZVqhIQSzyNGkqGyPgVyzSFAnSo1ised6XJRE0F9zOpusQsQzhEIu6pkFs1TH++j9Hbuf1AICMTSxaGXpJVqgAQAlpFIsxBJv1sBSW1xmFyoJJLArZHDqtZCKrXytUABhLIKNHJ6aw6fQdkTmLhVI5oCoNA0mSzkNUdcksiIdcisU8T4OlSQznWLQlDbphYHTctGny5ywuLcyZ67TOE7/abqokoCNraLnsNMYmpyNVn5LYBZfz5nB2Ox0wlkrVtlUFemR0O8XxiEMmm4OoaGBSEos5joak6uCFTCSxeO+dt0HXdVx6zQ2J6zMMA7tn6jhjMo+xBHJ5gP4xqEWeJZCaQfXdSrFWVqg2FHH1KkhaWJmVqPu+zfCA5sprMQyg695nhNeO058lokrJpGtjNv79NYAnstraPoXzziQmkxSLnoxFyrOtfsWiopOeLDw/NJhWqG2LfNE0He2OiO//05/hzedZn5PbAM056wkQNSGEbIbn8OSSubEyEX7t9pOg3nEbAAzzmGXHgLN+BTj9RcDUuUBxGsgMmTmgLnLLtkLNZzOpiKxyYW2tUAGgXMzj8vN24Id33h/6/nApj+V6K9FWjSJJpwE3v1QDgEQr1ImRMkiSxMyst5l3YsH8nThEoCYBRHTGImDmLB6djc5Y9GdoRmUs2mR0IwXRG4dVWaFGNPNuvfthSLKCV1w3IBafaQxqkecG7jp+F3b+204crB18poeSCjRBQ/JZqPszF+NgW57aqiaapGHAgKR713nL4VsAAOOZced7o0AQhEnAuW7jflLwtpnbUo/R3p4cm0wsFlWTXCAoAqoS3RehYBKoLMdGKibDFIvuv9v1NgzDAEuxuGzyMhiKkUgsUgQFRVRgGAZ0TYfUlfCRf/oIRl4yApVVe+SedetKY4W6UmLRVmvq6goUi/OmYlHICakzFpOIRSYiK3umaeYfnjN2jud1lmdx3vPOiyQWi+UiVEVNJGdJVy2yXDFriaGxePVbJpdBNp/Fgm9y0tK8ORmQtCKU2mobLMlGKhYBk1j0r8eGJEqgaMqTwxmlWLRf6zRXV4usmFiMyVjc+8BeNOtNPO+G561maAEcqh9CR+3gssnLUl0fBhhggGcefROLR48exebNmwOvb9y4EUePHg35xACnOvbNeQsKSdX7Uo0BwFLLW+jON9IpFOOQYWlIWvg4ZFUHRRJgqeiGYVjGYpKt5VrBbYWqq/Fe6CxDxs7g7sgaaBehyVCE230soFiURBEUGyxsWtYMQYoAaJJ0iEUA2HH9r4Fff7bzt50lyQuWfUMKNSAjJBcOrUbMbHmHWEx37smSiEZtGSNjE8jk8uh0kpt0/VqhkgQwnI1WXNi4+MrrcN9dt4fOviuUhtBq1KGp6WccLltWpmVLsdjoqsgLDFiaxEiOQ0dWoWoGMrk8hEwWlXkvsbi8OA+aZkCQFEhdDWSRTpXM86PS7DXLxybXYT6CWBTFLtisl1gUO23nmNc6imNbmnUyFlfXNBWyWUiqBppMTyzKqg5OyEYS4ffc8WNsO+tcDI+OJ65vptpFravg0s1DKPCpXccHSIlBLfIswcfXAZ/cDCj9ZyIHsNZWqJq0+nUyQuz9NRX8VqhSIzhhSIppzKgptqN58olFj/mBZE6wUXhvQ52g7fud77qrWXWMm6T1EbbL9abnHijpBISYnCSVoAGSRLvbIwsvPud0vPiqi8zVE4apHKVZh5gKqAEtxaLuyo/MZnh8/kEFp/1dE2J+Y+h3L8cRi/Z+co5Z/IQywzB6Vqi5fqxQ15ZYBEw71J/sehhKSON2uFSAruuoN9PPmp9LqVikaQpTY0M4Nh+uWGTs5psqee10Q7BhMkaxKEoBq9tW52QrFldKLEYrFr93+704feMUtm1et5qhDbAGGNQizw384sQvAAB3HAt3h3m2gSZpSD6ng9UoFu3/u3MbNV3DLUdMYtFNRP7FFX+BN5/5ZpS4UmC9FEnFKhZ/cOgHYMnk514AUA0VPMVHEk9ujChmrUHQRGxGHAUKqqGCtvoQYRNhFF3x2EiSvslcqqJCdF1701ihUiTl2FsCwIatG3D1S66ODJ1KQ9qlIhZDXARsYtGw+iErsULN5rJQFRWyJMcun8YK1b9/bRxtHEWRK2IyOxl479JrL8Uj9z0SSmgVSmY/IY0dqo1lq5ZIUiwCpmpx0TfJaWnBJBZtNWhH6YCl4onFsamxSMWi1JUCx7fbCScWWY4FwzKrViwKuZXVInGKxV0/2YWh0SFs27ltNUMLYE9lD7JMFpdPrW1u4wADDHDy0DexODY2hj179gRe3717N4aHh9dkUAM8O/HkfBOPngiqtQ4ttrzNIFWH3iexWPERiwsNERzd9+npQZalPLmAbkiqDtZnCeoHS5OBcmE09/QQix4rVC2eWORpKpFYZF37kia9isVWsw5N6+0oWRJBheTHteyIJAL42ff+C3f9+PvOe9lhsyg0DAOEoYOxvo+0Cvc0VqgUnxxCHUvqWYoINWVI+dKCWeyNjE8ik82lIrJyhSJa9fSKxSxLg6OTm9IXX3k9lhfn8dTjjwTes3MXW83031tbWkQmlwfHW7lSkoKSQIOlSIzlObRlDYqmgyAIjE5MBaxQlxcXUB4xcwZIQ/WcL4CZsQgAy53e79ZULIZnLErdLlgfcdzttEFbry23ZYdYzNgZi6u2Qs1CVHQwKeMEcjwNWdPBZ7LodoIPfIos4767bsdl174w1fp2H6uBpUhcu2NskL1zEjCoRZ5lqM2sfh1rrVhUpUTFfyJoYWVWqJ51+IjFdiW4jBxz/9FSKBafDmJRD17HFMFLLJK01SD0j9c+Dm53BZ9iUdN0D4kjaYAQ18wjaPzXj+7GF2/+sfPaaLnk/JslrDG48n2iFIuSq/tnK9oOVA0zCzEEsYpFe3JTynNvudaEJCuWYlGAJCuQ5fi6r1zIrbkVKgC8+MoL0Wh1cNcDjwbeGypZ9+s+vne+UgNJkhgdSrayWjc+EmqFWshlem4fqhTI5vRj49RYdMZiVwqQ1VGKRY5lwDD0GmQsrqyZl88KQetemI3y7/30XrziuktXNa4B1gaDWmSAkwGGZALEYlNO/1zkz1gMIxYfXHgQy6JJuNjkE0VQKHAFXDxxsfMZNyiC8igW3cSiBAn3zt2L7UPbU48zw2RiVZJ+pFEsaroGxsrR1UNcjFQ9aIXqJ7/chJ0kSYmKxcoDFXzni99xXisOWwpLmgidW5RKsRhyX/IjlFhkzG3XVPOYpiUWFVlBtVJ1MhaBZAI0jRVqFI42j2IyOxmqSLvk2kugyAoeuCtozZ63cpjDtj0K1UVzktPQaHJe3+jkKCq+WmRpYQkkSYJmaBikAUVXIrMjbYyvG8fi3KKnx2ZD7IoOWc2MMDBgmIrFCIeDTC6zasVi1LoTP5cTIs/XXbfuwmXXX+axl18tDMPAnsU92FbehrHM2Jqtd4ABBji56Psq8IY3vAF/9Ed/hNtvvx2apkHTNNx22214xzvegde//vUnY4wDhGDTH38fm/74+4n+4muJF376Z3jZ392Fri+z73hNhOjyyJJUrW/F4qIvQ3GuIaGUSZ7B5oY7kxEwSR17GIavqpM1HRxNBggTN0iCCFhA5p8m5ZFthUrQTKJikWPI2MZnR1Y9JC1DE57tNgwD7aargBa7IJnwYtYwdCzd/gX881+8D4f273Nepx2Fo0ksUr792m0nN6LoVMRiDLmm9adYrCyYjdjhsQlksjnIkghVCd/XufNfBkknkS+U4sfgQ9ayH03CzgsvRb5Yxs9u+V7gvULJnF2XJmfRRnVp0VErKpoOUdExnOVAEATGCjxaour8RkcmpgJWqMuVeQyP2sSiBspn4Tua50ASpsWqjfGpdVicOxFaQMuSCDbTe/jUVBWqqjhZnqpuYM5SKbMcD4qmU1nTxiGTzUFSdTApFYtZloKk6uCEDDoh5+veB+9Fp9XEZdemy1d8eKaG08ayjrpzgLXFoBY5BbHWisU0FqJJYLj+iUV/XcYI3glC/nxFIJ5YVOXkfdM4Ef/+GkAOGULQCtVslBiar/Hn2IBFKxYBrx2qpBHg2fA60DAMfOq2ObzuPX+NBx/r5Tm51WgcaQ2Y7r0WUANaikXJ6H3PSjMW7caKovdHLB63ZsJPj484Krkk1eLJsEIFgAvOOg0bpkbxzVvuCrw3bKkE0uQs2phfqmKkXACVoDIEzJzFGT+xuLCMSXcjUJMAio6dvLhhagzL9WaojWhXSq9YJAgChZTWtHFYuRWqEHoePPTYAcwuLg/yFZ8lGNQipz76yahbK9AkDVnzqsVaSvw1390TCigWiSCx+KPDP0KZK6PMlZ3sxTAy0Q2K8CoW3aTQMRyDYRg4rXRa7DrcEGjBox5MAsEQkOVoFR1FWIpFS1lmk2tuhFmhAsDCt3tK96Zr8pAkSk42oh+GYWDhlgXc91f34cndTzqvO0TkKhSLnJA8mT3UCtUiVe0sSn+uZhRsVV4/xGK+mEe72U60SLdh29Pqho7jreNYl1sXUL0CwPSmaWzevhl3/G9QYVwsm6RtP4rFaqUKhmOcvMI4jE6OBixMlxeWURougQABgzG3gaM4R+kbhvGpcaiK6qgl3ZBECTzPQ9VVnP4Xp+MQcShSsQgA2Vw21TkTB/uYAkDunJyzHUmIskI9fvg4jj51FJdfv7aqwtn2LJbEJVw4diGK3CBfcYABnivom1j82Mc+hksvvRTXX389BEGAIAh44QtfiOc///mDLIFnACfq4TY5hmEEiLa1gl9dON8U0ZZ7Rbek6n1nLPrXOVfvoij0Ryz6cxmzXK9QNXyFsqKaqro4YhEI2qE+XcojxwqVpGGo8TYUPE3BiCnKW5LqIbcokoQ/6tGd4SdLIkjGW8y2JRW63MXif/8llu/5Nn7zXX+KG17xa877JMs76yShB4ioVIpFLtn7vdWIJtcMq3GrpsxYtFV6tmIRQCihpGg6hl/4B3i0TiNXLKLVhxVqnktHLNIMgytveCl+9sPvwDAMZ1/qIFZELC5XFl02qOZ+sXP+JgocWpLq7KfR8cmAFerS4jyGLLtPQld749E0kBQFmiIxmudQ7/Z+92OT09BUFdVK0IJMFLseq1vFeigkXJa7c3WzaCUIAplsftUZi0I2B0nVwKa8y2VYGppugOHDrVDv/uktGB6bwGln7ExcV72r4MhSB+etL2Mok84SaID+MKhFTkGshZ2qG2ksRJNA8f1bofpykUzFous+bisW3TPk5Zh7pCYnk1QnSbEouwi3MGt5KTOFPfMaRMq8vlOMRSz6J0TZxCoZrVgEgCVXo0hUEZqxKMoK3vTfIv7mx8fwsT/6DbzrN3/Fec+tRuNCFYu+c0xqADQH3fU45CeewhCmWGStRqas2sRiunPPVunZikUgOdevXMyh0eqETuRZDQiCwK+/6Cp880c/D6x7JcTi3GI10QbVxvqJMMVi1UssqjJAMGh3RWQj1Bwbp8xJUUdng6rFTtebsahpOkRJjlxXIbcGxOKKrVD5UMXid2+/B8V8FldeeNaqxjXA2mBQi5z6iCMPThYYkoGse5//k6xQFb1333UUiz4rVFG1eiUE8OMjP8a28jaAcFmhJmRKB4hFV8biDGawubgZo0K40j8MAi0kkpme72cpKDGKfjtj0bZCVUNiRPzEIkmQIEFi4dsL2PtbewEA9WpvErEsyuB4DiqhYuo3p6AYirPuE/92ArNfncW2V23Dm979Juczjs1lxKalzVjUmhbhq4evKJRYXKFi0bb/HJ0Y7YtYNAwD7UY6m077PFvsLELSJGwf2h5phXvty6/Fz2/5OSTRW1MXypYVah+1yPLiMoZGhlL18cYmx0KtUIfHTQW6QZs1HkuxEDtipBJwfJ3ZR1k4HuyLSF0JnMBB0iSQHImO3oHYESNVqpl8ZtVWqHbGoqIp2PjOjVDWxwsXbAhZAZ12JyBm2fWTXWA4BhdeeeGqxuXHI5VHwJAMrl137cDxaYABnkPom1hkWRZf//rXsW/fPnzlK1/BzTffjAMHDuALX/gCWHbQQH26EaVY/OC392Lbh36AhWY48biWqHUUVFu94ldeQcZite0tnucaEgp8f8TiXIBYjC5UDcC0Qk24X2VCchafDthWqEipWDSsn7IWQqq1RG9GHk0SgRt1s15z/i1JIgja21hbbElY/sk/QzyyG5tf9yd4xY2/C0nsFcUkyzvfQRh6YL+mIxZ7hZkshhfccTakhvVApaQ895YWZiFkssjm8sjk8tY4o2eDyqCQL5bQ7bQ9ysa4WXr5lIpFALjmxa/EiZnDeOrxR5zjo4FGoWg21fpWLI6YD3a2qnDCygcdK/CQVB0tazLA6MQUFueDVqhDjmJRdYhiTddAWVZ2EwUeTVFxCMrxqfUAgPkTwZxFqdsFI/RmCcqyRSJaxCIBYMl1DcjmcqEkbz/gMzkomgGWSqlYtCYi0Jl84Hw1DAN3//QWXHbNC1IVuY8cM8/T688YA031fZsdIAUGtcgzhK/dCPz4z07OuteaWNRSKP2SQHOhyrpYKL5GDCOA0N2KxYrzugO5DeSngLN/DWB8k2w0Odkmth6eb7tafFu9GjfdYl6bJTV4LdWZLM79XBtywcwipKxJSYbfwt3efrdyjQxaWrptNruqEZqx+P++/EN863EFn3njWfjQ/30jOq6mU6hikerVkgGiRqwH9rdbsThfCb/vhpFrnKWulPu0Qj0+vwSCIDAxUu5LsQgAtZTNvH7w2pdchYWlGn52317P68OW/VicDawf80s1TKTINAJMxeKx+YrnuWZ2cRmTo+bnCRiOYrHZ7kYSdjaxeOREMNvIn7Fo53OGWaECzzSxGJ6x+L2f3osXX3UhGGaQ3fxswKAWGaAfHK4fTrUcQzFQfPfRJGKx46o9NGgmYWYRaH4rVGqYwrK4jC2lLebyFvlEUwmKRdJrhZplvAqwraWtgdfiwFN8Ipnp+X6egirHW6GquhprhapoQcVioC/iVyzyLFpcC0PXDWFWNp+Z/+cL/4PqnVVMvWUK577lXE/2I8uz0A0dBE2E5vCJ7fD+3DbRzKoTKAFCRkD9njqO/fMx4HD49oYSi1YtolkRI2kVi7b958h4f1aoAFLbodqKxWMts2Y9Z+ScyGWvfdm16La7uO+O+zyvC1kBNEN7yN8kVCtVlEfT1SIjkyOoVqoeAntpYQlDY2Y/xq1Y7LQ7kSrD8WmTWJw/HqxFxK4IXuB7kwcMxJKUa2KFamUsdrUuCJKAkdLRScgI0FQtQOjvunUXzr/8/MjtXyl2L+7G1uJWTOWn1nS9AwwwwMnFijue27Ztw6//+q/j5S9/OTZu3LiWYxpgDfDocfNmaze4Tzb2zfcKClnVoaW0o7RR6yoea6PFphRrO6qHEKonat5GTByxCJgZin5lnR/PFLFIoJexqCtS7LI8TUG3inIthIRsyypYF7nBhGxzo9azaZBEEQTdexjWNBWVpoTS1W/CxI2fxPD2i0ESgNjtFTgEzYGmzPWSMIKKxQiSiDZ6DweEy361sRyc3QV4CVA/bOu1tOdeZX4OI+NmNqRgKxZjchZVw7RCBbx5h/MnzGyxfDFYsBZ4xrPv43DeJVegUBrCHT/sZTQooJAtWpYftaCVRhSqlYWeYlE098uYlYto54TWOua5Mjo+heXFeQ9Zurw4j6ERsyAmddV54NI1FZSVGTldzqAhqpCth7axqXUAEJqzKIldj9WtIpnntE1gTxR5LLdl53edyeZXbYVqKyS5pNkDFuzrBSXkAsTiscMHcGLmMC69JqUN6rEapksCto0H7V0GWFsMapGnGfu+B/z80/EKu5VCTXpotq7tqgTIKR6w02QTJoHmwvPc8ua9I9TC1L9vfBN10K4ATCmG6k4AAQAASURBVLan1jMMk4ycvhDY+WsA7WtGpyFIGye8ROUaoYUsPr+bAEWRocSiA9q8v9Csta26X7FoW6G66jKCgj98yE3YdRXDo1hULQXdH772etz5lixedN40AKDd7dVIAhdCLLr2S9AKtQ7QAvZpG50xuYmng8fmQjY2nFxziEW1X2KxgvGREhiG7ikWE5p5NrHotkNd6sMWLA4X79yGjVNj+K8f3ul5XeA5CDzXn2KxUsX4SCnVsusmRtDuiKg3e78fk1g0m3kkAZNgJ+OJxcnRIVAUGZqzaCoWe7WmTTSHWaECQCEnJKpHk7DSjMVchocoyVBdVn4n5pfwwKNPDWxQn4UY1CIDJOFw/TBe8e1X4O8e/LvEZVeiWOy4aigdOmiCdkgtm7zruiZwlbkyNhU2AXARiwl5hyRBerqHfhvL00qn9aVA5On+iEWao1etWFQNX8YiQXnIP5IiPYSdJJoZizphPu/aav6X3vhSbPnjLRi6ZggUQUHu9I4Xz/MBYtiNTsx9RTwhYkNhg2OFWvtFDe0T4cc+NGPRqkV0K6YorWKxMl8Bx3PIFXOOui1JJZcvmsffTSzKYrTTlj2WSrcCnuIxlYsmjzactgFbztiC2793u+d1giBQKBX6skJdXjAVi2kwOjkKwzAca1j788NjlmLRIhZ5ike31fVYjLqRzWeRLWRDiUVJNBWLtt2xpmowDCPWCnW1ikWbtPRntyZ+zhqTW2XbarSw+57duOz6y1Y1Jj9qUg0zzRmcM3oOynw6IniAAQZ4diDVnf+mm27Cxz72MWSzWdx0002xy37qU59ak4EN8NxAhqXQkTU8Od/E+nIvL01OaUdpoyGqUFzKr5akIh+jWKx3gsXarM8WNsvGn94MFVTu+ZGJWcfJEOfb6jfStkKlaGhJxCJDOhmSYRmBbb8VKhUcuZuwkyXRmeHf3ncXPv2fX8er/+RfQOeGgNwQSMLMn/QSiywYsqdYDFqhhhfQ09ocDspDYIS8J9exuVwJXb7ZrCOqLDQUGQDvOY/iUFmYdYjFbIwVqg2NoJzisVmvoTQ0AgA49OTjAIDN23YEPlMQGDAh+zsMFE3jqhe8DHf86Dv4jf/7XgCASlAgKQZCJhtLqvpRXVrE0Ig5a7/RVUCgRyiOWspF+zc0MjEJwzCwvDiPsal10FQVteUKhkfHgQWTWKQcYrGnWFxfFvCLAxXIqo4MC2RzeWTzBYdodUMUOyi6rG4Vyfqt0hxIQsGmkSxma13Iqg6eoZDJrQGxmMkDLYBLqVi0f+sUl4PY7UDXdScz6+6f3gKW43H+ZVcmrkfRdDx2ooHrdoxiJJdsqTdAegxqkWcRVAlg089KTwUlwWGhswxkR4A/N69t+OA8EJEHDMDKJlxlNhIVUYdMnQcsPAosHQq+FyAWfWNsVwAu11M2apI5Tj+huO5i4Nh9lmIxoTHUmge4/JqpPkVZgXvUHMugqxqJTw20baPu3+820UhGKxYZhrYyFs193pFNYrEtm/f0N9z0Cdz1n3+NUj6DjVMUHiWsOsWl6vIoFokgsRhQgIk1gBHwkL4D1/3lfZB+fTuyQk+leHw+JA8T4YpF2wpVsmMIUqoEji8sYd24WU/0FIsd5LPR9vBlSyXgzqR85MnDAIDN6yZSfW8UCILAa19yFb703z/B33/oDzzvDRVzWK6ldxOYr1Rx2bnB2igM6yfMyVAzs4soWcSpQyxKAGM1dUExaHW6kfuHpimsGx/BkRPBCWodUcLYUMn5u9VOUCw+gxmL9va1uyKKVi7U9++4DyRJ4iVXXbSqMQ2wOgxqkacfO/9tJ0aFUdz22tue6aGsGJWu+Wx7qB5SN/jAkIzH2hToX7FIkT0lnl+xCADbyttQ4krm8oYGAkQ6K1TXIgLtvb5NZCYSsyDd4Ck+NmOxVW8Brpg1mqNjMxZp0B5iMTRjUQtaobr7QfliHo16CLFI6mjva+O///W/ccNFN0DICsicnnHWIYq9+oLl2QAx7EZYZh0AdMgO+Ckes+1Zjy1mZS68L1Kv1pGB915IWhOaNSsYO62Vb2WugtHJURAE4WQRRo3ThkMsuiZbHXnqiGccbtiOBAudBZT5cuD88eO6l1+Hr3z2KwE71Hwp7/nOJFQrVZx2Vrrsz7FJ8xlj8cQiJqx6amlhCRdfczGO4qhDLAq0gG6n65CwYRifHg8nFrsSeIF3fuO2CjdSsZjPYCmiHk0Lu4flvgak+py1fd1218m3vP9n90NTtTXPV3xk8REQIHD9xuv7mqAwwAADPPNI9Yt96KGHoFiExUMPPRS53MAH+ZcPAmMWgwcWWg6xCAAtKUhw2WRTmE1qS1QDmZAFob8byomq90aZpDZkUlihZkPWQdeOQi1tAHkSHA7njh7EVOnsXsYizVmEWTQ4hoJuE4shisWOrHmtUH2/U44XPDabkijCIGnUd/0Xaj/7d5x75Q2oKe6ZfUFiERQLxiIvCeiB7MooK1QSBmDoYGkSBNFrCDZrwQJaU1W0m41oYtGaGRjhDhxAZX4O0xs2AXArFqOLVBUUMnmzoGo2eopFm1gcHg0284oC09d18eoXvxLf/8aXsf/xR6xXCGi6gUKp7MnBjIOmaWhUlx3FYl1UILCUkxdqk11tybJCHTdnCy7Oz2Jsah2qy6YV2dDoGLCgmxmLZG/dpEUsbhjOoNFVICq93+345DosRFih0q48RdkiFg2KAUtr2DKSxd7jdYiKZhGLq7dCpficSSzSaRWL5v4hLAJU7Hac7M277/gxzr/sSvBCcg7oE3NNyJqOq04fCWS0DrA6DGqRUwhhF+p+SbHqYWAshrRYCytUKmJywPBW8/9LTwbf8zf/AsTigknK2k1AqRX+XVe9G3joP4CDt8duB2HoJlk5tBlohav9+8XDT83iMpfohmMZU7GYRCxy1rYGiEVbsei6JhJeYnG4lLeUgOZdvq3oELIcfr77UQDAhslRlPJZLFv9Ps0mFru9Zp4nY9FRLLpq04AVasMkp+1x0JzHCjWaWOwRoM73+a1QjbSKxSVMW9k9NpnUaCUQi7Zi0WUdaxOLp2/sKQA+O38R2kcexPteWUQ/eO2Lr8L/+9dv4Y77HvG8Plwq9KVYnF+qpc5YXDdhkqvH5ivYuX0z2h0RzXYXk2NDwIyLWExQLALAhqnRcGKx67VCTVYsZjAXYYebFiu2Qs2a52Gz3XWIxe/99F487/wzMGxlTA3wzGBQizwzWOwuQtGVyEy2Zxtski6tYswNhmQCBEAnwdXBvbxu6B6S0G7Su9expbQFGev+qOlaqCWoHzRJexSLboJuVBtFnsv3RSyyFOtZhx+H9x7Gzg29bHuap6Eq0fdWEiRUI55YVA0VHNm7D1CkV7FYKHvVcHbG4lP3P4XD/30Y41vGUSgX0HI5VlAEBanTI794oadYDLNCTcpYbCpNZPheDVCZDycWG9VGgFi00W/GYmWughHrPsxneBAEgXazf8XiwX0HAQCbt28Ojskay2JnEUP8EHh/fezDNS+7Bv/6//4V99x+D+AqkYvlYl+KxWqliqHR9IpFAFicM10PdF03MxotK1S7DhZoAZ1WtBUqAIxPjWP+WLgVqpARHPLZIRZjFItHnzqaavxRsAlCUesvJstRLLpI5l237sKWHVsc4nWtsGdxD9bn12NzIXjuDDDAAM9upGJubr/99tB/D/DLiZbkLehGcxyOVbsBxaEfRcF8EGiKQfKrJalQfBaWJaG/bIrjPivUDJdMLFIJBXSYnSpxEkLcl275R9C5IcwIF+CCc852mq40y0FV4xWLHE26iMXgfu/IJlljg6IIT4ZNvlhC0yKtDMOAIkt46n//BbW9d6L4vDfgje/6Q9x6RIFAGehqBCgSAStUg6Idi9VwxWL8Q4ZJLPaOd5hisdmoxa4jyTLWj6WFWZxzsTnTKmtlLHY6LQDh550GCkLObOa0XGM5tN8kFsMexsrZ/h5+z73ocpSGhnHnj74LTL0CgEnEF0pDgYxFneaghzxc15eXoOs6Sjax2FGQ43pZj0WBAU0Szm90dMJsQlbmTwAwbVABYHhsAnj0hJmxSBBQZBmGYYCyMrKmSgJ0A1hqS5iwbFbHJqexMBduhUqyvYcHW7FokAxYSsbmkSyaoop6V0EpwyKTzaMWoVpNC8qyXuVTcnu2wplkrZl5nTYy2Rya9Rr2Pngv/vBDH0+1nt3HaigKNC7dnO4BZoD0GNQipwBsW9Awi6g+Z9EmwtBWr1iMamDaDbulA8FtSbRCXTStULHoXd6vWAQAoWyuP2Y7aLVlbiu3dmTDvY/P4LLre3+zDIOuogPxPSBHsUj4x6sppkLRPSOLpODuUA4V85YCz8oV7mr4wd6H8IuHnwAAfPJ9b0U+l8Eim8fPjqhgzjVtkjzEoss6lSM1kzB07f8oK1Q34ekmnsKIRVlWLELKe27Q1r1Rsifb9JGxeOWFZwLoKecSMxatZp7bCtUmFhm6ty1HlDL+5/Es3pcdTTUWGxeefTo2r5vAf/3Aa4faI3+T0RUlNFqd1FaoEyNlkCSJY3PmPp9dNO3fp0ZNYpG284BsYjFGCbhxagyHj4crFt3ks61gjctYfPJwsKbpB3EEcRxsstMmP7uihB//4iH82dvfuKrxDLB6DGqRAdLAJk38ysM0YCgGDdlLnHT8+c0+BKxQyZ4Vqk0sSq6egm2DCpjZd36CLQwkQXoUi27klFxq0te2gGSp+F7PwUcOAi91fT9LQpEVUAQVSphR9uCsYYQqFnUFGbp3XfYrFgulQiBjce/9e/HoA4+ifHUZL3rVi1AoFdBacBGLJAXJZcvO8VysYjEpu7CttDGU6T1HRikWG9UGJhBO7tiKxX4yFsemTbUeQRDI5DKJisVMPgOCIDzE4qEnTEVumJLP7j9VxAouKFzgOQ5hWL9lPU476zT89Hs/BX6193qhXAi1gQ2DYRhmxmLKvOdsPotMLoPFWbNGb1Qb0FQNI+MjgFVW0AQNjjYzFqOsUAFgfN049tyzJ/C61JVQGio55LOdzxlFLGZymcRzJgl2xuJqiUVN03DP7ffg5W98+arG40dX7WJ/bT9evOnFGBaG13TdAwwwwMnHSdBcDfBchp3HFodq21sojRc4zDVEj+Kw2Q2uh7bIpkY33K5TcdmnkgQwlO2PWDxR92UsprBCJRMki7mEnMa1Quuh76N255dxZN9uz+skw0OJsfwAAI6mYHOyaoi6sSOrzr4HAIokHcUYABSKZYe0sl9fevI+DL/83ShddSNIkkSlJSHHWDkNMECSBES3vSnJ9BSLhhYgbKMUi71tID25jmGKxSQr0LB8ySjouo6lhXmMjJnFOJ8xSai4jEUFJIScOeu/Ve8pFg9aisUwDPVJjlM0jStf8DLc+ePvO69puoF8qRzIWGyd/mLMT1zuySYFTBtUABgaMRuJta6CPE87WY8kSaCcZdGyZsdl8wXwQgYLc15icWh0HNqTdyDbngVJEg45bGcsriuZheZSq3fOjU2tw3yYYlESPRmaimw+fKmgwNIkNo+Y+3+2Zp5/2TWwQiUthaSQWrFobpc9Tvucve+u26FrGi69+obEdRiGgYdnatgxUcBoPqEDP8AATzcO3Qn8WRGQ15jA6we2LaUa8mDrHle/jbgoqfpqicUwss+N2hFT9eaGP/8xzAqVdTUiZOtaF6aOpDmLWIxuDNF283ENicV7HvdaWnMsja6cPKmK5czjS/jVeroazFQkKM+fJmnV25f7lzU88NhBPP+ycwGYtQsAGBSHa77UgVQ0ZzR7rFBdxCJLaOa+d9kpBRSLUjOQo+lWLJ5YCBKLbvtRN+zGZN9WqPNLmB4zVQIkSSKXERLtN/NZARRFeojFPU8m2+ulhW2H+q1bfu7kSQH9KRbnKzUAJmGYBgxDY2KkjBlLJWATi5OWSsBWLKo6CVGS4xWLk2OhisWu2L9icbVWqLbysO/PWWRny2rm3X7PHnRFCS+/9tJVjWeAAQZ4esBTKycWWZL1fM4wDIhhdZMLAStUV3YgSZAgQHhUjbYNqo20isW1UOLa5AYX5Qph4eAjB73fz9GQJTnSJtEmFgkmesK1qqtBK1R4iUW3Gk7siNi/dz/OevlZmHrLVKjFJ0mQEF21CMuzscc9SbHYUTvgXbVIGMEniRJkKbpH1HfG4lzFJM8sCFkhUbFIkiRyhZxpWWvhwOMHosdk6JA1GU25iYnMBJiouAEXrn3Ztdj1k12e1wrlAurVesQnvGjVW1BkJbViEQBGJ0axYNUQdtaio1iEOWmAJEgzYzFm8tDY1Fh8xqJFPtu5oVFWqNl8dvXEorXupOtI1Ofsc/Dxhx5Hfbm+5jaojy89Ds3QcPX6qxMnHAwwwADPPqRiTV7zmtekXuHNN9+84sEMEI1Nf/x9nD1dwPf+8Kq+PpfWFtJGV+nfrmOiyOOBozV05N5n23J0M68hqtB1w0PqdWQNkuu7iwLj2KymxVxdBEMRjvIxyQqVpsiAZacfYYrFk4knHvFa6lAsZ9rtxGwKR7szFsMVi+6cP5b02piaisUa5o4fBWfZbpz79s9hmTGLS90Aqh0Zm/LAouiyQhVdliskDZYkAVUGr3cDhG03wdaSpUkYRq+4bC0Hm3l+xZ4feoJlrBv15SWoquJkLFIUBV7ImOPMhheeKijQHA+Kph31pCyJOH7kYOjyAFDM9G/Xc82LXonvfeMrsNPLVE1HoVhCbclLthoUB4XPoyNryPG983S5YhbCZYtYbHQVFATGk7M5kmPRkTSoug6aJDE6MYXK3CwAYGlhHiRJojQ0An3frVi38VUgCcKxJrUzFqcsYrHWdRGLk9NYmA1RLHa7IJnew6MsiSAIAopBgKVIbB41t3ahZRa7a2GFCoYDICFBuOzAvl4QrDlO0SIW7/7pLTjtjJ2OsjMOx2tdVDsKLt405Ci0B1g7DGqRVWLXZ83/7/sucM5r13bdtpL/yVuAez4HvCli/9u2lGEPtgk2X5HY/TXgrk8B/+dnwcxFP8nXLxJsmtBZAhq+yRRJVqh2VqQN2wo17LsoDoDRs00NAaNYDTA+3O7ScCqEaBia6lnm3n3ebeIYBl0luaBkeHMbAt9nKxbdIEkoLittU7HYwsxiExOagTJP4P+95zdx4Ngibrt7NwKwGg8dV/aOwPeaESQBc5+6GogBJaDUAKjNnmXc5OTxEGIxSbEnKrpZs6UgFruihKVaw7FCBUwyK0mxSBAESvmcY4Wq6zr27j+S+H394LUvvgqf+Pw3PK8NFfM4ODOX6vO2heh4SmIRANZPjuCYpcywSd3J0SHMokcsdqxzJk4JuHFqDMfnl6CqGmiXgrMjSp7j6ygWI0jKQi6DRsKxSMJKrVDt7bPH+N3b78GW9RM4Y+v6VY1ngNVjUIs886h0KyAJEkP8s9cdxFYsSgnOQ2FgKG/GoqzL0BE/ucevWHQr8QgQYEgGkt4bS4bxXkPdRGQUkjIYY+EqIext82fsSV0JcL10aO8hj8sSyZJQFRU0SUPSgvs1jWLRTyz6CdV8KY8TR05gaX4JuWIOiqLgTX/4JixMLuAQET6Bx5+x6LZCDUO31fVsV+B9tQu+FF9/JlmB2mRVmoxFwzCwOL/oWKECpv1mp51cQ+eLea9icV/0JCfd0J2s0Q2FDYnrBoBrX34t/uWT/xL4zrRWqMvWJKW0ikUAGJ0adaxQ7WzD4bFencZRHAzdQPbqLPZN7INu6KGWvuPT42g322g1WshZFvaAaYXKC7yj3FWleCvUTC6TSPImwVZW9qtYdLIZLTJ81092oTRcwo7z0uVnp8Xuxd0YFUZx9vDZa7reAQYY4OlBKsVisVh0/isUCrj11ltx//33O+8/8MADuPXWW1Es9pfhMUB/2Hu8AXEFxN/Jxnieh6YbOLrUKz5aMcrHpqhC1rxFjqobHrVkUWA8ZFgSVM1AtaOgwPea+ZkkxSJJhGYsnjGZx1CGBU0SieRkGCSLcGuFqO78cM8EB4CDTzzmURNSDOeou6LgJoyirFDdGYsMTULq9holhVIZxw4fwO//6g349n+YhRuVLTpKj6akQzeAEm8p3ggjYIWqExQYmoChSmD03vjtojmNYhGuWWvN2mJgmSRiUZPTF0qVBZNEsxWLAJDJ5tCOy1g0KOgGkC8U0bIyFo8e3A9d08DxETPMVkBM77zocpSGeoW9ouvIF8tohCg2Nb6Iro9MrlmKRTtjsSEqKPC05zwZzXFoyypUi4QfnZjCom2FWplHaWjEsTy1SeJu2zyGtmIxy9Eo8DTqLnXy+NQ6dFpNZ/8A5jkgiV2P8keRRPBCBpKqg2MoFHkGw1kWS5YaOpNduWKRps3ziLIUQWmjWjnazFwlrNmznXYLmqrivrtuw6XXJKsVAWDPsToYisDzd4wOsnVOAga1yBrhJNh5o2o1Er7xm8CBW4G5R8KXY60pE2HEoj9jUfeNM4pca5wAFp8E6iH5I/IqJyj4bUzDMHO/9+8kK9TuMuC2f5JjiEX7szHEIq00TNKO9yoWdWv/LTeSiZFG5YTn76eOL2HJ1bRhWQZdObn+5NiIRpiuWApF12MHQaHjmm0/XCrg8PF5XHjT1/CROyR0FQOjQ6XE73RbobpJIwAmMUtSTi3S6vjOO6nlzVgEkHXZYqohTckkxZ4zSS6FWvbEgtnwchOL+WyyYhEAhoo5R7F4+Pg82h3RYwW7Wpx/5lZs3TDpeW24lI9UbPoxv2TWbGkViwCwbrxHLM4uViHwHApWU8u2Qm3LNrEYn7Go6zqO+3KpOhGKxawQvt8K2ZUrFm1L2nIhv6LPu21xDcPA9356L15+7SWD2uJZgEEt8szjuv+6Dtd8/ZoVqQGfLjjEYggBlgSWZKG67iFpVEZuYlGD5rFCBUyyMo7kpMhkxeJqiEW3VagNvxVmY9l7f20uNzHnmsxCsRQUWQFNxCsW7f/5+yxAiGIRpFMvAaYarjJXwe+/4vfxub/4HGRRRmGoAI2IroEowmuFyvJsuBWqxSXquh6rNuyqXXAR9yUbSYo9TUqfsdioNqBIiodYFHJCKpVcvtQjFuvLdSwtLIHz1SKEbp5XbmJxa2lr4roBYHrTNE4/+3TPa8Vy0WNXG4eqNcnJrThMwujkqGOF6igWXYpHjuKgdBVwUxyWuWU05fCxjE+PA0BAtWgrFu3rl53ZG6VYzOQykCU5Nl80CjRj/lbsPMy+rVCtMdnnwq5bd+HS6y51+kRrAU3X8NjSYzhz+EyMCCPJHxhggAGedUhFLH7xi190/hsfH8drX/taHDp0CDfffDNuvvlmHDx4EK9//esxMjK4EJwKULX+mo5jBbNwPljpNfCaMcSirOk9qygXKq1eQeZXWEXDLFSqlr1qwaUS8uf8+cFQZGgB/e4XbMcHXroDwzluRcSiTQR228kFj51taENVFTy171Hnb5LhUlihuonF4LJdH7HI0iS6LlKwurSI/Y/twZnnXogrX/AyAIAOyslIqotmQTosmPuCIszZ8h5iEaRjtemGYuUedjvxhSlLkTAIEoalOmxVw4jF5cBrbugh2x6Fyrz5kDI83muaZXL52CxIBSRUXUeuUHIUiwefeAwAsHHrNs+ymc48oKkrIhYpisKVN/QCJdqihkKpHDhXAAAkjfmm90GturSIbL4AlrOaUqKKosB4js9onkNb0hxicWR8EpV5S7G4uICh0fHAV9kKQtJVSE4UeTRFxbFjHZtcBwAe1aKiyOYDG8U4j7eyJEHIZCGqGliaBE2S2DScQbUtQ9F0ZHL5FSsWz7noMnz8n78GOpMHATjZn0kgCAICS8GwCO5up41HH74PrUYdl13zglTreHimhq0jOUyXV5apNEA8BrXIcwD2DGwxouFhk2dKCmLRT4D63/cuDDSDdkOrJhb9Kjs3aN7MYDzxoO87o61QecowSVUuhFj0qy2BHrHoJytdYOQ6wBU9k3MAONfltph8b6weeCDw2n17n3T+zTGMx5UiCqwQce3TNS+pCAAk6RnbXKWKx586ijPWlfGuy1iIKiDwyTaS7Y5bsehrxNEcQFCQZLt5o0K2/g1dBTQpQOj6yUm/qiBZsWjtpxTNPJv46lexCADlYg7VhjmWPVam0c5tGxM/lxYEQeC1L/a6pPRrhUqSJIZL6Ym1dRMjODZvE4vLmBwtO3W6rVhsScnE4sYpMyfq6Ky3lux0JWRc51TLImOjGmSFXAZdUQolmJNwwVmn4Qef/+iKFYbujMU9TxzCsbkKXn7tJSta1wBri0Et8uzBUjeoKn+2wLZCjcvaiwJLea0005CTXVeNpEM3SUDXIxBDMrGkQirFYlxNlAAtZHJ81p5sZqG+FKwdH3+4FzlCMiRkOdkK1aDN+7Ye0m8KEIskCcnlfFBdrGLu2BxGxkfwut97HXRdB8dzMBCtMKRIymOFygt8KOltqwiBcHtTG6IuguW8dpDuzwLJisV+MhZtdd7oRC+POZtLZ7+ZL+YdK9SD+0wXp807NnuWsc8rAwYq3QoYksFEJjwbMgzXvfw6z9+FcgGtRiuUOPZjRYrFiVFUZs1aZGlhCYVyAQzbq7E5ioPUNs8ZhVIi809tYnHBl/ksdSVTsWhboVoZi3xE3nM2b0X2pFCQ+jG1cQqf+PdP4MwLzCzvbp959gzHgKRIdDtdzM3M4dATh9bcBnV/bT9ETcQVU1cElNQDDDDAcwN9Zyx+4QtfwHve8x7PQxhFUbjpppvwhS98YU0HN8AzA9tKNC0KPA2OJnF0uXeza0tBYnFhsfeALycQi+5MuNixCubsoYalmirw6YkclolefyljFnNJqsfYsUnJM4Lqy97Z1AzLYd+eXpMyFbHosoxVFW/RKas6VN3wkI8cRTmqSgDY++C9yORy+NhnvwzaUqNpIDzEIgGgLPQUi4BXsaiB9JCXNtrNJorlIciSCC1ETemMiaagExSWf/JPaNz3bejtWmD5Rr3qIbX8UGU5kO0YhcrCLEiKclR9ACBks7EZiwYIdGUNOZdi8dD+xzGxbgMy2ZxnWV6pA61FbB3Nha0qEVe96BXOv1uSikJpKFKxOefLFl2uLDjbJakaJFXHcI71kOjjBR4tSYVqzdAcHZ/CoitjcWh0LPA9fitUAJgqCmi4FMhjUyax6M5ZdNSxFAP7NFTkLvhMFpKig6NJUBSBLWM5LLcVSKqOTDYLsdtJ9cDgB0XTuOiKayEpOlg62e7YjQxDQ7ceVsVOG3f/9BaUh0ex7ezzEj/bFBUcqrRxzvoihvvMh10Jli2z3I76y6leGNQiz1HYv8ewJpmfbEyZC+OgORt8LYSQEyXzu/cfORF4ry8QJJAbAxZ9Obt+MtOlWCwy1jYxrmaaPcawh2k7ZyRkOzKEWRswSsNUK0Y02uQUThfi8b2ev4cKAu7Z/YTzN8cy6KTIWIxS7ztWqH7FostK+3/vuA8MQ+PHH301hjMkuqoBnktW4LkVi4KvEQeaA0gS9WYbI2VT0emQdvb55iN03RmLAAKKtaVaI1bV0bXtXVM0845bFlvTrlyjfFZAI0XzqFzIO1aojzx5GEPFPCb7yBBKg9e+xE8s5tFsd3vkbAzmKlWMDhX7mtW+fmIUM7MVGIZhEYu97aEtYrFpEYtR9qWAmbEIwJOzqGkaJFkJKBZzEY08oEdeNlfQzCMIAi++6qIVKwwF3qzbWh0R3739HuQyAq65eOeK1jXAycOgFhkgCrZiUU6Y+GqTOm4wJLMqxaJNLHoUiyTjWC+GwW2dGoUwpSClprvG634XCgStUP1k2cj0iIdYpFgKqqwmEou6nckblbHoaoGSBOlRG976nVsBAvjU1z/l2FeyHAuNjFcsuolFjudC93Wr0UJxyFQyx5F2XbULgvUeC5sgs5FohSqlt0KtWE4BbsViJpdJRSzmijlHsXhw30EwHIN1m9dFLr/QWUCRK/ZFIF3zsms8fxfKBRiG4cl2jMLy4jJYjnUsPdNgbGoMSwtLUBUVywvLHhtUwCT+JdektsVu8DcMmCpJmqExd9xrIS92RTNjUetlLDIs4yEv3bBzHDvNldUil7jcDrpaf8QiQRAQsgK67S523boLNEPjoqsv6nsccdizuAcFtoBLJgaTpwYY4LmKvolFVVWxb9++wOv79u0LLRgGeO5B6fM4EgSBsTyH+UbvBtsMIRbn5no3VSVEFVlxKa9yHA06BbGoW825ascsnkp9ZNqxZPL6V6JYtJFkYQqYWX9unH7mTi+xSLOQE9bDxVih2tZlrMtWlqO9asPnPf/FIAgSFE07hKNmuIhFSUNBYCBY32N/m5dYJEIVpp12E8Njpiowzg6VpUloBglD7qB6m2nHWl3yFmmNWhX5fCHs4yBICooiJ6pUbSzNz2FoZMzTCMhkknP9WpLmsUI99OQ+bNl2ZmA5HSSgq6nH48fZ5/cKK5NYLEMSux5C2MZy2/vgUluquPIVzWM4lvc2ziaKJrFoK4dHJiaxvDgPTVUtYjGoWOyGEIvrhzJodBXn9zw0MgaaZrAw6yIWrTHrJN0jFi3FoqRq4GkSFEFg21geS20JXVlFJpv3fOdKYKsh+zkEGY6Cbj00dztt3H3HT3DpNTeATHGteOR4HQaAG84cT3XtWi1kwxyn2meO7qmCQS3yHEeYHZd/Fm0KYsaDRhixGLyGdK3JDraN5KqQnwCqR7zqSv/MZapHdhXZEGJRaplqQyqkfnEUnsFmwoUZUxnOd2YBrmBajYZASqG2ImwrWwuX7FiPe/b0iEWWodGWUlihRhKLcnB8BIm2SyXw6hueB1lRnetnV/FmJkbBY4Xqtw6jTMVio9VxyDvb/tI533xWbP512OSfjaVaE6WCV2XhhtSXYnEJuYzg2H0CJpmVSrFY6FmhPvLkYZyzffOa22Seu2ML3vHmV+Gqi84CYCoWAaSyQ51fqvZlgwoA6yaG0ep00Wh1AsQiY1mhNlIoFrMZHsOlAo6e6NWRXUsd6yafWx3RUQaGwT4uK7VDXQ1IkkRW4NHqdPG9n96LF115AdiIpuMAzxwGtcgAUbDJL3euYRjCLEJpku5bsehWTWnQQJGUR5nHkEysdexKFYuMmu66pIf0fvzWqn7F4pZztuDxh3rEIsEQqRSLNikbmrFoqJ7nOhKkhxS88kVXAoY5Xtm6b3A8F2uFShM0RFct4ra5dKPT6jjknZ1ZF4au2g1YmNrkn41GtQHSqpcYMXgMVNncB2mJRYIgPHafQjalFaorY/HQvkPYdPqm2AlFi91FDPFDAVI5DlMbpwDAOZ8L1kSxJDtYwLRCHRobCtRHy+Iy3n/n+3G8eTzwmdHJURiGgaWFJSzNLwWIRY7iIHd6/ZclMVw5TZIkxibHPIpFwzAgdSVwXO8cUWU10gYVADJ5sxZpt1aXswikUyx21a5nOSHTIxbPvfRcR0G5FjAMA3sqe7C9vB0jmYHKf4ABnqvou/v5lre8BW9961vxqU99CnfddRfuuusu/M3f/A1+53d+B295y1tOxhgHeJqhhKgJkzBZ7BEXDEWgI8d7gHdCiMdFF7GYTaEUnHUptapdBVmWAs94CxkuzsUsRYZjmnFEQU2jWKx6C5HtZ5+PJx55yPnbJBbTW6HCZ9nVto4D41qmUZnFow/d5/x92bUvRLvZgKaqkKwxawbh5APVuhrKGcbZXz1isbf/NYMIVZh2Wi0Mj5kkVRxpx9IkNN/DjG3NaaNZqyJXjG5SybKUmsirLMxixGWDClhWqAlEVltSkS+WHSvUQ08+hs2nnwGqMIK2EmR4VtrjI137siOryBdLAMJzJpfaCnTXcXcrFhuiWbBOFLyN0tEcB0030LTeH52Ygq7rWK4sYLmygOGRECtUyyaWpHs/qvVlAbWO4jRSSZLE6OQUFtyKRSvMXico0NbxkSXRJBYVHSxNgSIJnDaWg6IZWGxKyORMYnGlOYuASapzNOlkRKZBhqVMhS8v4MC+RzFzcD8uu/aFqT778EwNU0UeO8bDye8B1haDWuQ5jrAmmX9G/looFqU1IA/jkBsHOhVHPQggSGYSBAyreZZnrPqKc9lDyk3LVjWkYLGzaaXoZgIB3VzfKhSLQnfWYzV7yY51uHfPk44NKMcyoU4UfpCWOrMBn1o/RLE411Bw6917nL/f+PJrAfQUpV3VSJUZ6FEsBqxQWZNYbHcxZeXrOKSd3WzzWaH6G2L+nL6lWsMh2MLgZFGmUSwuLGHdhLeRYlqhplAsujIW9zxxGDu3bYLAsWiHNKlXCoIg8Lcf+D2cd4aZhTRUMo9rkh0sAMwtVjE+XOrr++x9cWyugtnFqpdYtBQoja65X+OIRcC0Q3UrFrtWnpVHsdiOVyw+k8QiYG7jgaOzuHfPk3jFdZc+I2MYIB6DWuTUR5QF5gfu/AB2/tvOSOLGJuniVIJRYCnvpJo0uWhtpVcn6IYeIO1Yio0dC0WsLGORVs3agzDiP5uGWGwseVV4W87egv179zufJRkyVcaioiuRJKmqq57vlRoSfvGTXzh/v+o3XgUAaNaajkUqx3OOCjIMJEF6iEKO46BoEcSiNckpVrGodT2KVSCEWKw1UCgVUPlKBROHg7aiqhVLpCMdsTg0OuTk8QGm/WYa6023FeqBfQeweftmcDznIVo939WtYIQfcRS9/YCwnukLVg2WpNoETMVimA3qgdoBtJQW9tf2B94bnTT7KIuzi1haWArkMzIk4yGja2It8vvH1417MhZVRTXtdQXOmTCgSAqEuMlSOculaAWKRT+SriUHagfwZ7/4M/zH4//hXNsyuQyWFpbw8K6HcfkNa2uDeqx1DHWpjosnLkaBHfRQBhjguYq+WZO//uu/xsTEBP7mb/4Gs7NmE2dychLvfe978e53v3vNBzhAOuw6sIS7Dy7hXS/YlrxwAlS9fwnMdDkDHDZJD4YiE7N4FlsSThvvNdZ4msRyu1eACSmUgj97sjcTudpRUBCYgBUmRwJRk+w5iyCpV5fAsjyEbHD2TZpxREGW0igWvUXijnMuwH//x+exXuwCHEDQDNRWvOUUR0eP0SZ4bZtS6cQT+OTnP+6xFyuUzGKr2ahBtkgg1QAIqylWE1VsHc+CJs1xUNascdGVm6gaJjno3vuKLEOWRIykVCz6z7vKgtc2olFbRq5QRFRJpSiKQ1wloTI/54zLRiabw8JccNaaG21FRa5QxOH9+1BbrmC5soDN23bgrtL1AABNN1asUoxCV9GxrmQ1ROs1jE5Med6vtmWPtXB1adHJfGxY2aN2DqqN0bx5/OuWonF03FznwuxxLFcWQq1QxU4bBEF6Zr+uG8pA1nTURQUjlipyfHKdZz86ikWip1iUJQnCSAaSqoNnSNAkgS2j5u9vti5i0iIW2ylySv146GgVDxytwtDN7M5+yN0MS0NWdQiZLO744XfAMCwuuOzqxM+pmo5HTzRw9ekjGMmffBvUAQa1yHMeqhQkXvwqxn4Vi62F4GurzViMUAE6yJmTMDbyruZGGJlJsV5FJl/0Lk9xWG50QaPjUa+Bsu7Vim+dvklEYLOReZByCsVi2agCYm8bLj1jPT7677fh4Ix5H+ZYpqfEi4N1wd1DnIUr3a/riodU3D2n4RV//3OoVC/b0c7ia3clZGApFv3WpiFou5o7/nxEUKxjhWrnGLY6vqYKlwMQbjUOhCsWzbGGn1timv3krLviyVcELCvUVkrFYr2Frihh/5ETePdbXoPHDxzFw1bG0clAf4rFGraun0xczo31Vr7TzNwiZhfMjEUbDrEo2cRivK3ZhqlRHJ3tXRM6VpPTfY60OiKmfEoENxxicQVWqGuBXIbHN2/5OQDgJWtsPTbA2mBQizy7sBISLwlRxOF3D34XALC/uh/bh7ZHfj5OJRgFvyIvjRVqW+09Z2vQTGtTnxVq3FhI0ly+VW/BMAzkQ/Jxw5SC+XYerVwLnBE/EShMwetXQNaXg4pFWZJNu9iSi1hMUCz61X5uuIlFaVbCf37wP6F3emNzq+E4637B8mwssejPWOQELjRbs9VsOcRinGKxrbQD2Yh+y9x6tY5CuYDca3JoLwd7LP5MxjhU5ioeG1QgvWLRtkLVdR2HnziMa192LcSOiOpisK7SDA1VsYqx7Bg4KnniWBRsYrGZYpJTtVL1KDFtHGuak6DD8hFtYnHhxAKWF5ZxziXneN5naa8Val2uwzCMUGJ+bGoMxw65I2LMz/ECjwXNrFEUWYnMVwTg2LiuhWIx7lrywPwD+PJjX4ZmaGjKTUiaBIEWIGQE/OInv4AiK2uer7hncQ84isPV665ec9eNAQYY4OlD34pFkiTxvve9D8ePH0etVkOtVsPx48fxvve9r68cjQHWFm/4/N34zK37MbO8+offMJvSJEyXerNsWIqEqGgeFZUfbnUiAGQ5GlVX1k4apeDtT/iIRZ4JqJPiVmMr8D7yzrfiP/7xb0KXWQ1JpMppMha9DaszzrkAQI9UI2km0VI1zILUhm1dxtIk2o//DHP/+ccYndqA177l/zrL2Gq4Zr3mKBZV3QBpzZRrSDpGcxwYa3/Ze8RtharowXF0LFJoZNycRSfGEIscTQayPZcCxGIV+UIpch2KLKVSoZrrnnXGZSOTzaHbji/YREVHvlBCs1HDoSdN66PNLivUNIqOftGVVRQspWajthx4f6ktO5amAFBbWkTJUSyqIACM5HyKRYtYbFi/OVu9eWDfXmiqiuGx4MzHTrsduMZPWb/7SrP32x2dnPZkLIq2vS5IMNbvSZGsjEVVB89QIEkC68oZMBSBpbaErJVZGZd56UdTVPBPPzuAz/70AO4+uIzj9S44hurrN5xlKSiaDj6TRXVpEeddekXohAM/npxvQVJ1XHn66KpyWQdIj0Et8hxHGmIxhX2TB50lQNcdlR2A0GzCvhDRvHKQGQIoFsOMW7EY/E7D3UCheW+un9QAaA6/9Wefx3s/+a/eD9r5jLKvtlv2kUdcwZtf6EIaxWKekoHqYefvS85YDwC49xHTDpVlaEh9NKkM/37TFJOkJUjcc1zDlV9sYyTP4s/f+WZnkSGriWkTQOkVi73zJmCdSrGQFR2iJGN6zCYWfc08Nj4L+cSC976bpFjspLCMtXF8fskZl41CNqVisZDDcr2Jx546Cl3Xcc72TRgfKWOuEk2Srhb2di/VklUC80s1jI+U+lr/5KhpV3bg6CyW600P6WdaoRKod2QwDA0uwRbUr1jsWMqTfjIWn2nFYi4rYL5SxWXn7sBYn+rPAZ4eDGqRZxdqUm3N12nE9DOAZOJwRYpF0nsvkzTJM7EzDB2lA1ucpkABRXqtTVmKTWWF+nd/+nf49Ac/HbmMH0lKRRuGZgSsSf0Eod8KdcOODaBoCrNHTdKeoIlUxKJf7eeMwTCgGSbp2nqshQMfOwCKpvCHH/lDZxk3aeVWLMZaoZI+K1Q+QrHYdFmhxliey7ocUJYt+SY5NaqmYpFgiVBVoprgHuZGZT5ILGZz2dRWqK1GC8cPH4fYFbHljC0oj5SxXFkOkMlNuQkDBtbn16+KROrLCnWxGqpYnGnOAAi3Bs3msxCygqNYHPZNAGNJFmK7d3yacjPytzU+PY75Yz3Fon2euMlnRU5QLFrWo2mORxLCFIuGYeCWw7fgS49+CduHtuOyycugaIozqULICqguVrHx9I2OLe1aYffibpxWOg3j2aBb1gADDPDcwYqCoFRVxU9+8hN89atfdW4KJ06cQKuPJrAbn/3sZ7Fp0ybwPI9LL70U9957b6rPfe1rXwNBEPiVX/mVFX3vqYil9upn6nUT1IZh8FqhkhAVHXHREgs+YjHH02iKvQIojiwDTGXYXfsrIDpmA6XaUZDnaTSsXL5OswYA4GKIJjt3sFpZRHsVWW5RUGQpMV+jXvUqFifWbUCxPOTYgBJUn1aoPtjK0Yd+9A1UvvNJZHdciff97VdA0jTG3/BxrH/n15F3SKuqqVgkSOiG2UgEAN0Apso8spZ6k7UViy5iUdWMgA2tTQrZysBODGnH0iRkH6HtVyw26zXki0VEQZHTZywuzs8GyDMhm0u03pQUDblCEc16DYf2Pw6G5TC9YbPzftLD50rQVTRHVRqwQjUM1LuKo0zUVBX16jKGRkzFYaOrIMNRAeWtTTS2LCI0XyyB4wU8sfdhAIjMWCR9TRJ7QsGyK2dgfGqdh1iULMtc1SAcxaKmqhAyWVMdaJ03lEUuLrUV8A6xmDwT0TAM3Hd4GX/yP4/ikeN1XLrZnJUoKbpphZqQF+JGljMVi7xgNhMvveYFqT63+1gNeZ7G5VuCMyIHOHkY1CLPYWiyY7fde02Cp3Dol1gUa4Am4Rvf/GbvtZUqFsfOAKbO9xKAYSBIoLjO+5qLWJyrmt9vuG3N2Jw3T1E2FYtzS40ggWETkn6y8sgvvH/zQWWBDU3X0UqR2YcTPRv2kWIWW9ZP4N49TwKwFIt9EIsB6CpAkvjK/96Fj94h4YYtNO780LUQXO4JNmllW5vaisV11uz+oWL4NnoyFgOKRQZNa1a5nbHoyS8kqMRjfHzBW6ct15uOujIMSVEAbhwLVSxmUhFZ5WIOzXYXDz1+AABw1mkbMTFSRrXeWt2xivvOQn9WqP1mLDIMjYmRMu7fa1qTua1QKcKwjqeMfEwWkY0Nk6M4cmLBqcs6FgGd4XvHW5IV5GKaeYXsM0wsWqTny6+9JGHJAZ5JDGqRUxtx6jfAtHYMwy233AIAaLQaAfVZEsIUi2EKr+8e+C52/ttOyJrsUV7p0EGBclRxtYUaWJINJbtskAQJgiCwvLgcSWBEEXppUfVNfEnKWGR5Flt2bAkQiwwZPrHEUSxG7G+bcDz4i4M4/DeHIWwW8OZ/eDNyhd4EI5u0atQanoxFijfXnSsHJyP5cxo5PpixqCoqJFFySKo4YhEAGpJ3Ak/FZ8verDWRH8qDoIhQ21dFVkKJ4DAszi4GFYu59BmLAPDIfY8AALZs34KhsSHomh5QFNYl8/huLm7GasCwDISsgEaKSU7Li8sBxaJhGDjeMt2V2ko70L8hCAKjk6M4/ORhyJIcmrHYaXec631dqkcSi2PTY1haWHIUpDZZzQu883vUVT02Y5HP8CAIAu3m6hWL/rxWTdfw1X1fxXcPfhdXTl+Jj17+UWwuboasyc61zx7bWqsVK90KZtuzOG/0PAzxgx7KAAM8l9E3sXjkyBHs3LkTr3rVq/C2t70Ni4smkfOJT3wC73nPe/oewNe//nXcdNNN+PCHP4wHH3wQ5557Ll70ohdhYSHE0sqFw4cP4z3veQ+uuuqqvr/zVMJJ4DFQ7aQjJ+3vrrQkjyKKoQiIihaZSQAEFYt5jkbLRSwmEUQHF1smKWI125Y7MnI8jRNHzAbL4rHDAOKJRc4iNNwE2VrCMIxQhZkbNZ8VKkEQ2L7z/N7fNA1VSSAWmThi0dynZ110JUrX/haGX3YTOJ6H2O2A37ATJJeFTJuNk2a9ClkWQViZTltPP91Zz6ahLIYz5v4SKEDTNEdJyTAcVN0A7xtHu2UWe8OWMjDOCpWjSU+2Zyabw5IvY7FRryKXjycWaTL5ktbttNFuNkIzFu0cwSiIio5csQix28FTj+3Bxq3bQNG9h6ykjMaVQFR0CNk8SJJEo+57ILOa5nN182GmVl2CYRgoD5sPB7WughxHB+xysxwNgaEcRStBEBidmHLyPYdHglaonXYrMPt6OMuCoQjPpICxyXVYXpyHbJ0fkmj+vjSDcBSLAMBlctAMA1mut/82j2RRbctgeGtmXoIVar2r4B9+egD/9LODWF8W8Ne/fi5+64pNAABZM21W+5kQmeNo83MZ86HxsmuTiUXDMPDwTA07JvIYzfefFzHAyjCoRZ7jUKVghqKmeF/r1wpVrAGqiOPHXZbWfqXfycDQFu/fLjLziRnrHk+7GoJs1quElJoAHZGNRzEACMBv1XTk596/uVLsEJNUbB2VAGZ3e1679JyetRvHMpCVVZBVmgwQFK656Ez8xjkMvvVaAdkM6yEFh4rmdbdtKelNxSKLd//2a3Drl/4Sp0XMko7NWKQ41C31X88K1dXMYzOJqtQwK9QokhNIb4Wq6zpOLCwHiEUzYzGdFSoA3Hn/o9iyfgK5rOAoBBeWaqnG0C9omkKpkEtULLa7IlqdLsb7JBYBYP3kCO59xCS03VaoAACSRrMjJeYrAqZisdOVsGw1Nh3Fou8ciVMsZq1mXhpr2pMB2+715dcNiMVnKwa1yKmPlU4anTlqKaLEbqqcOzf8GYuSJgVeA4AvP/ZlAMD98/ejo3ZA6OZDjw4dJEk6SqnFmUUzYzHEntOGrViMysazl1kNlha891M/QdhYDt5bzjjvDOffBE1Y0ScJikUjfIKPTf6sP3s9Rl8+ik03bUKmkPGQgkJWAEVTJrEo9YhFm1DcdOam4PeGWKH6CRzbxrI4VATDMcnEouwjFkMyFvPD0bWIIiuJKlf3usMUi6qiQlXiJ0vlrNpt9927USgXMDQ25CgElxe9fbC6VAdJkNiQ25BqXHEolAuJGYuGbqC2VEPZV0vUpBo6qlkbipoYOnlgbHIMjz/8OAAEiEWWZNFpdUBbPaCaVIPkd12xMDE9AcMwsDhr3hvCFIsAYhWLBEEgk8+siWLRfV521S4+t/tzuGfuHvzK1l/BBy79ALYPb0eeyUPSpJ5iMXdyiMW9lb2gCArP3/D81OfqAAMM8OxE37/gd7zjHbjoootQrVYhCL0L4Ktf/WrceuutfQ/gU5/6FH73d38Xb3nLW3DmmWfic5/7HDKZDL7whS9EfkbTNNx44434yEc+gi1btkQu98uA2Xqy3Wa/WE6perTL7I6seYhAhiIhqTriohoXW96bb4FnHPWUuY54NmDviQZyHA3DmmkuqQYKPBMgETg6uB6b6OAtsiWO8FotlhfjHwT9VqgAsMNFLIJkUigWw4v8hYUF/NUH3gld6mD9ps0oXvprIAgCBNFTkQGAkLNn5lUhiSJYwSwQeVeA99Yx7+w8NxnLWnl4vG8cbUttNjyaxgqVguRSLA6PTYRkLFYddWUYFFlOZYVqW6yO+BSLmWwu0Xqzq2iOHesjD9yNzdvO8LzvJ4rXAqKqQQeBXKGEetVboFNWWPh8U/R8f9myQq13ZeQ5JvT3NJxj0ZJV54F5ZHwSRw+aKoFyCLEYplgkSQLjBR61ruysZ3zKVO9U5kxi2M5YVA3v75rLmuedW0152lgOS20ZBGveW9oRx8MwDOw6sIQ/+Z+9eGK+iTdfvhGfvfECvPTsSceKVFZ1cDSFYtH8Hl5IbkQ6isVsFpu3nYHxqfWJn5mti1hqy7ho4xBKmXhrtgHWDoNa5DkOTQ4Sh5rsVSkmqAQCkJqA2rtfGgTpzTVMxApnag2f7v1b6UCB91rpsUK1iMWFWhuPHTxuEYscWmHNPIIwyUU/sXj4Lu/fQjyBM7sYP8lp3zIBVJ70vHaJRSzKitK3Faob1WoVb/3/fopK28C6iRG84WwGJEEAIB0VGQBkBB48x3oVizwHgiDw/MvOC123YRjOOgiCCNpj0pyjNhsdKoKmKW/GIi3EEosCz8VkLIajI6XbT4vLdaiqFpqxKMlKIpFrE4s/u38vztluzv4fHzbPg/mTaIc6VMyhktDMW7RyssZXYN+5bnwEjx8wG/KTY74Z7BSDZkdMRSxumDLrGNsO1T5P/Ha5uRiVAEmSVubl6pt59vfYxygN8lkBG6ZGsXPbplV//wAnB4Na5NRHkmIxCaqhRuY0RsFPuImaGLBH9XyHrprEotEjFimC8thNMhQTahFanTXvF7ZiMY7wWq1icdlnLe5X2vkViwBwxvkuYpEioEjRxCIBAhRBhSoWW60W/uD3/gBKVUF+KI/xV4+DoAhTbeiqvwiCcEgrW13G8vE2sjRJo+vqrXA8F7DA7TTN+0g2l4WQERKJRXdmJhBCLFYbyA3lnO32Iy2xKIkSGrWGk/1ow871SyKzbMXinnv3YOsZW0EQRCyxWGSLyLLJMSNJKJQKgUxOP1rNFlRFDVih2vmK6/Pr0VW7oefLyOQIjj51FAAw5KtFOJpDt90FZYkUJE1y1Jh+jE2btcj8cZPktzMWOT49sQiY581qMxZ1Q3e+kx/j8ekHPo1DjUN461lvxTsufAfW582+R541iUV7v2SyGRRKBZx14Vmr+n4/Hl54GBsLG7GhsHqieYABBnhm0TexeOedd+JDH/oQWNZb3GzatMk7SzwFZFnGAw88gBtuuKE3IJLEDTfcgF27dkV+7qMf/SjGxsbw1re+NfE7JElCo9Hw/Pdchn/SXFyO4UpRSyAWOwlWqQxFQFI1GDHMYrUte2YA5gXak0/nt0L1zwDfe6KOraNZTxmV54MEGxtCqBjWTZKjSRiGEVAs3vGj7+CWb389cuz9YLmSRCwGiagdOy9w/k1QNJQVWKHu3bsXl1xyCe772a1QGwseVSNJEp5tZlgOvJBBs16DLIlgs/nAesfy3hne7s/zWVNF6LfbtEm6oZExkCQZqwZkKdI8tynzQWF4bMKTsSh2O5AlEflCjGJRlUGnsEK1bWYDisVsDrIkxtrVSKqGjEXEzh2fCRKLS/HHeyXoyho03cD2nefhZz/8jud3Q2oSigLjWCDrmjl2mxisd1TkeTrUWng4x6IjaVCt3+no+CQMw0ChNASGDT68djrBjEUAmCwKaImqs56xyWkAwMKsWbSLthWqDrhFrXTGPM9yXG+d28bzqHcVtCTNInqDisXltoy/u+0p/OvPD2HraA6f+vVz8d4XbceW0ZwnY9VULFLYZilvt599fmBdfuQtYvE1v/1H+KM/+UTi8gCw51gdNEng+jNGB6HjTyMGtchzHH4SETBJQX0VikWpadqp2h8nGEDp9mftYFmx7np4H267/4l0nxn2KxbbUOFtehluxSKTAUgGoqzimz+513ReoIKKxe//9F7841e/D1CslyDtLAH1Ge93cvE5gUmKxYdmtcA6L3WIRXXFVqhPPfUULrvsMnz7viM4VFUAd9VGkB61IWDandoZi6KGxBy9rig590SBZ4PXYIp1SKFiLoNcRvDmFzLxxOL0+LAnY9EwjMSMRVlRI/Mu3bAJy2lfM8/O9UtSLZYtlcDh4/MO8WRbj57MnMVLdm7Ht275OVQ1+vepWRPF+rVCBYB1EyMwDAMMQwf3M8lYisVM4no2WsTi0VmLWAzJWATiFYuAeTzWglicGh/GNz/zAXz8pt9K/Zn3/vav4ot/+a5BbfEsxqAWeXrRL0H3bPhODVrfVqgBYjHCCtWNrtL1EIskQYJ0tfo4MmjPCQBiy7znOorFzslTLPqJJj8ay42AQnTHuTucf/szFsPcsViKDRCoMzMzuPLKK3HzN2+GPC97iDiCCKo0C8VCIGMxjlgkiWQrVJsUyhbM/L5OQpZyV+nVAAzLoDJf8eyberWOTMm6F4bcIlRFTUUs2oTl6MSo53WbWIw7H4AesTg3M4fN1iQnWyHoP95VqYoyX4ZAJ08OSsKOc3fg5z/+uWNXGwbdqkX8VqjHWsfAUzxOK52GrtINVbiOTo46+zssY9FWLNq/iUVxMXQM41NmvIxNLDqKRV8OZ5wVKmAeD5ucXilEtXcs1XNUtJQW3nnBO/FbO38LI0KvFs2yWQ+x+Jq3vAYf/LsPgooQM6wEbaWNQ/VD2DmyE8P8cPIHBhhggGc1+iYWdV2HpgWLo2PHjiGfj57BG4ZKpQJN0zA+7s3zGh8fx9zcXOhn7rrrLvzrv/4rPv/5z6f6jo9//OMoFovOf+vXJytQns2QYh7kAaDisxhdCZY68c0jt7LQDUI0H05Y2lYsRjfz6l0VitZ7vygwaLtyaVjKe2r+4dcewg2fusP5+8hSBxuGMz5iMdiACuEaHXAMCUWRoane7fnK5z6NH3/nG9Ef7APLi/Ox79erQcXido9ikYaaQJj5icUf/OAHeN7znodisYgP/PPNyE1s8ViEyqruqMgAs+daKJV7ikWL8LEzE8sZxmNXCQBix6VYzNoKx6AVKju5DU2DBZ/JxipDbeKLtBSoI+NexaKdLWhnLIZduEwr1BTEorVeO2NxoSniH376FBjBnD0ni9EFtKTqyLjsWLdsO9Pzfn1pbRWLDEWgq2hQdR2ve+vbcfDJx3DPHT/2LLO+LKDalj0mOyXLCrUhKigITKiqdSzHoy2rUK3f4eiESQgOjfbUisTEdoikeUy67RZIMriedWUBdVGFZFnZjk6YdnV2zqIsiaBo02LUrVhkePO8yXG93+2WUfMYnKh3TWtalxWqYRi4c/8i/vQ7e3Go0sZbr9iMv3vD+XjR2ROhv31NNyAwZE9NnaIvl+XNcW7beSHOviCd9djDMzVsGc1iXXn1sy8HSI9BLfIch64GiUNdWZ1iUZOBjosEImlAEfsjKC0bU0lWcKJSS/eZ/LT3b6UDzUcsgnKRF4zPflNuARTjVdIB+KvPfwP/+s0fmTaqiuu9hX3BMYRYpLkxuxDfzLv7qASjtYCMa1jnn7nV+bdphZo+OxAA7rjjDlx66aXm+j9yPS7elIfHVoKkHLLHxnAp7xCshk9tEQY3GevOa3RAc6hbjZhCLoN8VvDuZ0YAYizUp8eGMVepOiRas92FqmqxikVJVszsxgQ4xOJYULEIJOf6lV2ZUOdsM5t5o0NFEASB+ZNkhQoA7/udX8PBmTl8/Qc/S1x2JVao6yw7tomRcvD4kzSaHTGRDATMfcFzrKNY7EZaocY38wq5DBoJDeC0+NUXXQm6j8bchWefHqnWfbZg1KjA+HABw91Dz/RQnhEMapGnF/0SdGuB1RKLKlavWIyyQnVD1ETYD4MGjAAJyFLxqjtHsdg5eYpFvxWqH6qiBnLkNpzmUjNR8FihhqlJGdKrzLz33ntxySWXoFar4Ts//g6yO7Kgid52kCTpqMhsFMoF1Kv11MQiVECz6gSKpkAzdECxaG9XJpdBJpuJVSxSBOVYdQLAyPgIxI7orEPXdbTqLQil6PuXLMvpiEUru9FvheooFhPuf3mXNfyWM8yJdkJGgJAVApmadamOYWF4TYjF1/3e61BfquN//+t/E5f1E4tHm0cxnh3HeGYcbbUdquS1idZsPgte8NYcHG1mLNI0jQJrToCqiuETulieRXm03FMsujIW+1Is5levWHQTiwDwoUs/hF/d9qvONtjIMTkYMMxrCoDN2zfjkjXOen608ih06Lh2/bVgqIHj0wADPNfRN7H4whe+EH/7t3/r/E0QBFqtFj784Q/jpS996VqOLYBms4k3velN+PznP4+RkZHkDwB4//vfj3q97vw3MzOT/KFfctR8GYt+fnD/fHjuGSGaFgA0SUBSYqxQdQ1NSYHssr7Mc4yHaPRbOjx/+xiyPkXclhFvI384Gyy4uYjnd0ORQJOkhyADgGplEYeefDxi4OE4csC0D1s6cSTwXpJisdNqQpZ8s+RKrkYMSUGR5djMSYLoZdc1lxbwyle+Etdccw3uuusuCKVxsDRp2Y5ZMLyKw5akIl8so1mvQpJEsBkvUTiUZSEw3h3pJibZjFmM2BaU7m2bfPOn8LEfPgUhk43NH7TJUYIxGz4jY5PotJrots0CyiYWx4ZK6Dy5C5sRJGwVWQFFJV/SqpUFZLI5CBnz/Nk328SDR2toGmbRaGcDhkFUdMc6FgA2n+5VLFaXwmerrRRZjnYUi+dcdDnOOv8S/Oc/f8YzY3HzSBbLHRma9YPLF0pgWXM/NiUVRSHcCnWswKEtmaQlAIxMmArOodFeQ4O5/DdxhDCzATrtFkgq+EC5YUhAvaNAsX7PHC+gNDyChVlzprYodsHxAhTN8GSekpy5/3Mu0nrriHnuLTYljzWtyubxqR8/iX/bdQQ7Jgr49OvOxU0v3IbNI9nYxjPPUKH2MFHIcjREpbdPktCSVBxYbOGcdSUM5+If+AdYWwxqkWcY3TVQRPkf5DXZSyaupJnX6GXzGgRtKhj7ISi78QRcKPzElNINWqEGFIuu9+U2dMKrCGy1u7h7t0UgUqyZSWljcR+Qm0BDMa+dCpUFKAYHZ8xtf/RwsO5IViyqIGDg7LHeuHiud03r1wp1qSnhJS95Cc4991zs2rULp48JFtnmViwSaPvIVLdi0SCTGw0dl8rAr0QDAFCcQwoVchnkMrxXCUjziYpFXdcxv2TuPztbMFGxmCLv2T4mdi6ijfSKxV4zz1Ys0jSFkXLhpCoWzz9zK156zcX4+D//F/SYeyVFkbEEbBTWW828QL4iAFB0aitUgiCwYXIUR0+YdZlNYrvPawDICvEkZSG7NorFUxXDMK+ZQ8YKrp2nAAa1yKmPNVEs9jlRyt9oF9V4K1TAzEuzFYsAAqQSR3OhBIp7eQJeYtGdr8eQDKiQCaZ+LC2a5OGJ/ScC7yUpFgGg5psYQ7rvpyQ8isUwopmlWGd/K10FL3rRi7Bp0ybcc889OP3M0wPrpAgqoMrLl/Jo1pqQRRkkRYJm6FhiUVd654hNQvnzLD1WqAmKxRyTQ8dlgW+Tfra6sNVoQdd1CAXzXhj2rKsqaiqFqW1P688RtInFOKIZADL5jPMsvmVHz8FjaHQoYH3bkBsYE8bA08mTg5IwvWka177iWnztc19LzIH0E4vHm8cxlZ3CRHYCbSWcWByzXA/8NqgAINACOq0OKIYCT/PI0JlIK1TAVC0uWJOcHCtUwUtW8wkTptZCsdjVesfytNJpeMGmF4SSvFnG7NF0+4qT6A97FvdgMjuJ7UPbkxceYIABnvXoe9rRX//1X+PFL34xzjzzTIiiiDe+8Y3Yv38/RkZG8NWvfrWvdY2MjICiKMzPe0mC+fl5TExMBJY/cOAADh8+jFe84hXOa/ZDLU3TeOKJJ7B161bPZziOAxc2i3mASFR9ikXRp5LceyJoUwHAYSBZioSs6dAj8oooTURLzEJWXcQiH38qnjFZwDnrivg/X34AgKmSmij0boQZhgwQW+ZYwkkFQxVBEkTABvWhe+4KXT4O9WoFwHq0asFiOSljEQBqITmLDixiMUsRiBCKAgAoQodsAPnhMfzgBz/AddddB4qi0JGPgaNJuHlJguzZUwKmsqtQKqNRr4JhObC8WUzYisWRHBewOfVkLApZyAAyPvKx02oB1k+P4zOmYjGix8Q6xKJZVA2PmeRWZWEW6zefhkbdbJIVSkNY/O+/wLZP/mNgHYoiOQRrHDRNA0X3HtiqNpFu+f1LogiE9DNJ6BAVDbxFLBbLQyiPeG1D6strSyzmOBqLTQmqboAgCLzh//wRPvQHv4E99/3CWWbrWA63PDaPrEUslqwxSYoGWdUxnAuxhwMwUeDRlBSH0B+1rGGHLRtVTTcAvgBDWYQBU7GYC7FCXVfOoCWpaEsqyhnzoXd8cp1jhSp1u+CFLDTd8FiyUlwGkLy//WKGQTljWrtmcnm0201I5S1obHspOrUufu/qLbjx0o1YPySksgbLhlwT4penoBuAoqazTtx7vA4DwA07xsCkILUHWDsMapFTAP5Gm6Z41YXqCjL9Wj1Vh04ygCpaBGbKfT+7Byhv6vtrl2QGw6w1XrkDDd6JT4a7icJmvMo9uQ3Z8F4/fnb/3p7VJMV6LF6x+Lg5xprZYFLpLBiKwcJSDVsALNaDjYekjMVHF3UYILBznMRjizqQ8eXJsAykhMw/wPwdEIaB4TyH733ve7jqqqvAMIx5bAnSu91ElGLR/B0aKRpiXsViSNOV5tBo1UDTFASeQy4joNXpwrnJ03ysunDKarQdn1/C9PgIlqouYjE4lwxAesWipmugKDJgMZ5WsZjPCqAoEgxN47SNPWv38eES5tOqbVeID/zea3HlG9+L795+T+QyY0Mlb0M4JWzF4uRosJkHkkGz3cGkT9EVhY1TY56MRYHnAmNKa4VKh9Q/AwwwqEVOfawFsdjvOvxEkaRJTrM/DLqhQ1RF0Hrvuce2NrXBkEwsOUYRFAzd8Kj3Hn+4N9map/hURFWzZk5A7zaCpISfaAqDX+UGmGotAD1ikYhWLNpWqIZugBEY/M///A8uvvhiCIKAQ/VD1mpcETEEGbRCLRdw9KmjkCQJrFVbxBKLUu/4slaOr9vmEvBZoSZkLOaYHLpaFyzHQpZkx4qzMlfBpm2b0LBqET7PAxFOoIqULmPRvmZQvj5OJuuyQo2eSwWSJJEr5NBqtLDJlQdcHikHjqVmaJjOT6caVxq88f++Eb/zot/Brf8TnWfLC7xHDdhROqhKVWwubsZ4ZhyKrqCjdDAseInV0Umzn+InXAEgQ5uKU5o2z8OxzBjqUh26oYdu2/j0OOaPea1QeYH3nFNprFDbjTaKQ9GxQEnwKxb9ymgbOcac6H2yiEVFU/D48uO4at1VHgvWAQYY4LmLvq/q69evx+7du/HBD34Q73rXu3D++efjr/7qr/DQQw9hbGwseQUusCyLCy+80BNurus6br31Vlx++eWB5Xfs2IFHHnkEDz/8sPPfK1/5Slx33XV4+OGHn3N2Hk8n7F5OmqihRje+efTkfDPSDhUAGIqErOrQIySLpCqiJal9EYsAPKq7LSNZLyEh0KGN/Sxjfobwz0RSZJAEAvacD92dbO3UD5Yr8VaoAFALyVm0YZAUVEX2WJkGPl+r4fjXP4zGvTcDAG644QanUdWSNLA06VE8MhTpIQY13UC+WEKzXoMkiaAtS1B7f47muYDdqiejUTCLDz+x2271cjv4bBbdTnSTzCachM0XYuP/73soDJsP0HbOYtMibfOlkBnsFhRZBr0Ccsch0lmzoPMrSJ0xEiaxyHACKJrG5m1nBsituGPpBm0R3ooW/6CZ42hIqu5YIF9y1fXYuuNs/Oc/f8ZZZutoDpKqQybMRkHZsUE1z3l/PqaNsQKHjqQ5+aUj46aFqa1YbIoKCJJ0Hkm7nTbIkMbadNncb0ut3oPo2NQ6R7EoiV1wFhnrUSyyZjPPb7M7lOUgKr2Mxc74uSC7NXzm9efhHTecblogp8wbyqa4rrhhn8PdBMtpG7tnapgocDhjKuaJa4CTgkEtcgog1ArVVTcofczMtZtdjd4MeYOkTaVfP9Zpxx9Iv6wLB9qWLSVBAJoE1adYhIdY7DUHCQKA0oGoeZf/yS8ecn2W8yoW68eA4jrnT4XKAglKhtnFeAWbqAJtugSetq6trDkLaMOU2VjhWAayHD8jvN0R8evv/Dj+5DZzrM9//vNNUhEwyV0yRLHoz1gs9RSLBJ2sAm8nKRYZAfVmG4Wsed/IZwW02q7vpDmvetSHaauZd8Kyb1uyGqZrYYUahbSKRYIgUMrncNZpGzzk5PhI2VFYnixcccFZuPqis/EXn/t6+ERDBJWYabFuPI5YpNHqSqkUi4B5/h6d7SkW/TaoAJBLWNdaZSwOcGpiUIuc+uhXbeiHCrXvdfjJCVEVI0kAwCS9DBhwz+n2r4Ml2ViCkyRIyJLsuaY/eNeDnmXcVqhjQn/nN5BshQoEFYuASVKZgzSVePY4wraH1mjc8ck7MPdfZg/h6quvhiCY13lbmeZWXlIEFSQWS72MRc66b8SpPTW5d3zt5f2KxXazDZIiwfEcMrlMbHZhjsmhq3bBWXXNiHVftG1LbWKRjXLLIUwCdjUEnk3mxhGgNvLFPKY2TnnIsfJokFgEgM2FzSsekx9bz9iK593wPPznP/wnjIi+Y9lnyX6sZU58PnP4TIdMbCpBNzbbCjWgWDQAjuI8xOJkbhINuRGwv7UxNj3WUyyKkmOX6yEWrVpkobMASZUC61gLK9S0RKE9icFPRK4Vnqg+AVmXceX0lWtiizvAAAM88+ir66ooCnbs2IHvfe97uPHGG3HjjTeuegA33XQTfvM3fxMXXXQRLrnkEvzt3/4t2u023vKWtwAA3vzmN2N6ehof//jHwfM8zj77bM/nS6USAARe/2VBFHnnx3DOLEzqopc0DOsHtCTVsVUMw2xdxMxy9EM2Q1vEYsQqKFVEW1IhKb0iLCwjLQ6TRcFR1AFAjqcDuYwAnMw90neDNlQJJOlVLBqGgQd+kUwsGinzBUiSwvJ8smKxHqNYNAgzBzIqO7AydwLPe94foHt8BsMXvSbwfktSwdKkh4ghCa+VqahoKJTKOHH0MIZHx8HwWajoZWmOF7gAkeMhFi2Fo1/V2G41AWuSFyeks0ItXPqrAIAFa2qcnYfYqFVB0TSy2ehmnqooqTIW/VhuW0WgZcMqSeFFF0vq6MgadAMoloYCNqgAUEuwvrVxzroSAODAYhtnT5cil7NJt6ZFEtqqxT+/6f9gastLkc/w2DRsNiElxtw3Q5bisG5NEJgohM/GH81zMGBeE6YgYGzSSyzWrM/bh77bbgeUFQAwbeU7LLV7xfTY5DTufuIxAKYVqp3bGUYs5nzEYo6jIKs6hGzeskI1QMlNXLRpKFSVHIc816di0fJOFpXkBoCq69h7ooHnbR3GSG4w+/vpxKAWOUUQplh0vyYnPUC7igxGMNWJbsUiYRGL/TT05vakm4Flw8o8uqdWxiXlKgxrvp7qK6+NCGKRowDoKkTde+/6ya6HXd/BAaqvWVHa6PxTpQUgxKbaBkkSqawxK8YQcvAuZ6sdWMZWLIY3sRaX67j6N96HJw4dw1teFUKqRSkWfblGw6UC2kcsYjEhTwqAx0o1PGNRQKPVcci6XEZA020/RnOxJOBIuQCGoZ08xPRWqCvPi8lbKoE0ZNZIueDYoNqYGCljZnZt3RPC8MHffz1e9DsfwtHZRZx/xpbA+xMryFcEgKmxIRAEEU4sUjSa7W5qYnHj1Bi+e/u9AExiUeCD51QaxeKxuQqGitH15ymFA7cB7Qpwzmuf6ZE86zGoRX458IwoFgnCozAUNTE2Y9EmItxWqH7b0qQcM5IgIXW89+QH7noAOLf3dxrFYiSIZCtUgiRMMmrK9zpBwIABgzSgazooa/KWn7DtNDq45xP3oPpUFZNvmoQf9v5MVCyWzIxFWZTB8Rw0PXgM3baSmhgkFv0Kx06zg2zOjPDgM3wogWojx+Qw25kFL/Bo1ppgORaFcsEhFutV03aTyTCAb5dS76BwNs7GzE0zqyIW+QxvZm6mIBYLQwWHiLMxNDqEvffvDSy7sbAx8NpqcOPbb8TbfuVtaNabmNowFXjfTwweax4DTdDYPrTdqXGbUpBYzBVz4DN8ULGomAR7p91xCLh1uXV4Yskky3gEa4rx6XHMH5+HYZiKYI7noBt6qGLxHx7+B0znp/E7Z/+Op/+2FlaoaYnCHGtOlpT06Hig1WDP4h6UuTIuGLvgpKx/gAEGePrRV9eVYRiI4trOXHjd616HxcVF/Omf/inm5uZw3nnn4Yc//KETXH706NEVWen8sqAjp2uYTRXNm9xi07xB2DmKj881Asu2JTVRSXXX/mhlFkMRpnViRHOe1EToBrDsynJMo1h0w5+nmOdoMHR6UslQglaox48ewuLcceQK8RYDWsYsMJL2EcNxHivUbjs8mzJWsUhQUGU5NCNPPPYoPv2Pf4nJsVHs/P3PoMqNw0DNs0xbVsFQBKgYYlBUdU/GIsWVAABViyiaLAQbOO5sSoo3m2B8wAq1t728kA2oQ92wSWGbbGJYDrlCEZV5MzOqUa8hXywhLi5PkSVHCdgP7N8CYTV+FSm8iOIIHS0rf++PP/EPWL95a2CZekrF4kiOw46JPA4stqDrBsgIQtQm3Vpib5bklTe8DOs3nwZJVQDwWFfOgCQAxVKYlIbNwr5hTSIYL0YQiznz9bq1/fliGa9769tx6dU3mK/bymWCMDMWO+EZixNFHgSAWrc3xvGp9ViYPQ5d1yF1TWJRBsAxve00M8f0ACGd42kst2QI2RyqKRS/ccj1eV2xidw0xOJTCy10FQ1XnDYSUF0OcHIxqEVOESgS4FalaYo3VzFpZm31MDDmmuDB5oBWj1AxSMbMbexHsbh8EJCjJ8EEkDPPD926OZHWQ7ifWATlzljsEYt5zvxcV+mdW3OLy3jkycMoFSwVJM0BkqtWywwBxWnnT4WMJ1lYmkq0QuU5BsfkPDZF9Aw51sqAJPjQ7Mvf+/DfQ+A53PWVT+K83R/Cnf4FdNUkFgOKRe/9dqiYQ0WUoBkkGLY/xWIYaQQ2g3qrjaI18z6fFXBsrgKHlKY5L9npA0kQmBodcojF5XoLHMuEqyMtSLICkCvPD7KJriTFIgD8y5+/w1FV2hgfLuH+vftX/P1p8YIrzseFZ52GBx59KvT98eGVEYssy+DDb3sjXn1DUKEFMn3GIgBsmBzDwlINXVFCpxuhWEywHyvkMk5O5ymP+gxw37+akzGyI8DW5z/TI3pWY1CL/HKgpaSrCT63+3P47MOfxT1vvAcZJuO8bsBYETnpJhYlTfKoBf2w1XGEa5KSnwRMymgkSdJjg9ppdfDYQ4/hDPTqrDQZi5Hrp0gsLSxFqtwBk6CqLdUCxKINgzQ/a9t3utclHhfxX3/7X5AUCc//y+fjRO4E4Dt0kYrFkIzFVr0FsSuC48OzKTuqy/0phFhUNe9nWs0WsgWzFsnkMuh2uqEkFADk6Bw6ages0DtmIxMjTsaibTdLxzznypK8KiKYIAgIWSExYxEA/uijf9Szq7VQHimj6nPLyDE5lKw+00pghMQsnXnBmTj/eefjoV88FEos+hWLM80ZjGZGUeJKzv4J+40TBIE3v+PNOO/y87yvKwQogkK31VMsTuemUZNrEFURBTY48Wx8ehyyJKNaqZrnlBA8p2zFYltp4/Glx1HpVjCa6ZG12dzqFYuilpJYtKxQZf+kxjWAbuh4pPIIdo7s9GzfAAMM8NxG35Xp2972NnziE5+AqsZbIvWDt7/97Thy5AgkScI999yDSy+91Hnvpz/9Kb70pS9FfvZLX/oSvv3tb6/ZWE4GvnrvUWz64++nalafLNhKH9uuULRCpk/UgjeYjqzFkmZ5jsbdh5aBiAxF20KzE2GXSlqzZRYakuczLJ3+dPQTMVma6ivjzFBNK1TRRXY9tOtnoGgaZ59/Sbp1JLzPsDyWF3vEiK4F94eQzccTiyBNJZ61bW5L08Y9N2Ni/SbcfffdKEyas7/8xXpbUsFSJPzPoFLXp1gsltGs1yCLIiiL3LOJ4VImOMPRTUzSnPnwlAlTLFrgMpkExaL5WYLuNX2GR8ddVqhV5IvxTSpVVcCs4GHbVubp1kxOKaJJwBCmCrcjazj/sisxMh6cCVldSq8SuHb7KA4vdQIqYjdsBV3bZUFHURRe99a3O3+zNImpkgDFKmRtxWKjq4AggJEIm5TxgqVidpSJBH7npg9heqNpUVJ3Za0qsgRNVUMVixxNYSjLotH1KhYVWUJ9eQmyJLoUi67jQ7FgKTLwu81zDCRNB5/JesjplaDQpxLazmS0r49x2HOsjixH4XmnBbMXBjj5GNQipwD8BJ7uy1hMVCz6wOWA7rKjONRJ2swm9BGLtuuAQIX8zuvHgU5yBlAUSMsGyW+FarjubeB7k5dy1iWq5boN3Hb3bgDAtZfsNF+gOZMgtauO8mZzWy0oCSQWx1BYXK73MhtDMFYuYH8juunIsQxUVYt0bBgpF3HP1z+Nc3cElWsAesSiR7FIouO73w6XCrjrYBe7FrMQQkggPzxWqL7lFZ0AKMZSLJoNm1yGNwk7xaqBIhQgNN07flNjwx7F4lAxH2vHLSs2iboykCSJXEZIRWZdeeFZ2LzOm702MVpOpVBNjfqxoGIWZs3wwd9/feTHJkZXRiwCwIfffiN2bg+xSyNtxWIm+F4INk6Z9dDM7CK6khRKCCcpFvNZ4ZfDClXXgXv+CciUgfGdwO6vAd2Ta6l7KmBQi5z6iLPAdOOWI7cAAB5aeCjw3krsVN3Wp5IqgaNiJrSEWCf6SaVExSJID8G2+57d0Hx1w2qIKpIioUgKWvXofkBxqBir5DMIq74L6VMt374MhmPwir99Bcrbw+8/NlHr3g6S8BKqAFAsF6HrOpYXl8HybMDW1A/VNQGYF8x7iv8znVYHGcs9QcgI6MTcV3JMDm2l7VihAqYdqk0sNqoN8AIPPayOtcekqKvOMszkMqkUi2ecdwY2bN3geW1odAi1pRo0rXcODfFDEJiVW19GEfS/8Ye/EfmZIZ/7wUxzBpPZSZPk5EsAvOpTN97wB2/AGed5HaoIhQBJkui0O6AZsyaeyk1BN3Qsd8OfH8anzYkhCycWIIkSeJ4P2KbaxKKiK1B0BffMeTOsM7lM7DmTBl216+STxsGeGCFpa69YPNI4gpbSwiUTlyDP/pI4QQwwwC8B+pZZ3Hfffbj11ltxyy23YOfOnchmvbNTbr755jUb3KmCf991BABw3+FlXHX6MzszY6ktB2xO/Yopk1iMps2mSgL2zTWwcSj8wd5Wn0WpKSmLWFxseRtKOZbCsroyuxGBIz0ZjIlQJVA+K9QHd92JM865EHwmC1GMK6LS2aQxHI9up41uO7o5WiwPo7YUTSzqBOGxQtU0DbPHzPNp5OXvxh9cVsbw8HCoDSwAdCQNDBXcN2K3A/vxQlZ15IsldNottNtNMNNmYWOTmWENNPd+o6xsQoHxjqHjUmhyfAbV2ZnI7bRJZcKliBsen0Rl3rZCXUYhgVg0MxbNse7ZdTve+Y9vA0WaNrCE/X+CRGW+l8GlaLpznio6wAtCbMYiYJK1UagvV2JnYrrxgjPH8bk7DmLfbAOXbw0PrraVcF3Z+7u4/uW/iq898VUQFpG6eSSLB2ZMYtHOWKx3FWRZGjwdfpkfznGgSMKxWQ1siytrtWORwmEZiwAwWeLREFWoug6aJDE+ZeZ/zZ+YgSh2wQhmI919jugkA4YO2tfmeRqyqmM4k0O71cLKI8qDNqtJsMnxuOufjYdnatgxkcdYfuXKlAFWjkEtcgpAbpvqOxua6rUt7TfbgysCYh0wzEaMQTAmIeJv6Fnk2DgfMqlDV4C5R/r7XhcI3SYWfVaoVLgVqq1YdDlJ4ye7HsbObZswPlwyLS1pnxVqYR3A5KAa5vVUoZIUizQMw8DCUi1KBIDRcgF7FwFE3GZZq3kCkgY0M4Pp0Mys8/7ff+j3MTk2BEOPqOF0BSAz8NoOkGh3/IrFPHYd0/Ch+8oQEggfwGeF6lMsSjoFhqTQaHVRyPasUFudbo+0jlBwZHjOIZOmx4dx3JWxGJevCHgzFu946Am8+7PvA0nRIAizgUkQRKI9bT7rs2ztA+PDZdSbbYjSGs00//GHgdOuB857Y+CtV11/Gc48bQNYJtiwHh8urc33u6CBhKyo6a1Qp01i8ciJhZUrFrO/JBmLT90CLD0FXPt+4KxXA/90talevOrdsareX3YMapFTH/2qdsJIRD3q3hgDNxGoGmqs4tAmAEi995zlVzjGWakCQSvUB+960CFEotbZD2ylbZwdqqNYjIBuPYu7Cc8TR04ADDDx+glcrVwNfUrHYid8oq9NEru3I8wKNW/d5ytzFXA8F7A1DazX5drDWrWIn5BuN9vI5qz4mAQlYJbJQtEVMLneOTAyMYIDjx0AADRqDRTKhchMP8CbsXjwsYN414ffBZqiAcI8FmZfhHBsVcNgKytXgvJoGbquO3mQgEks8tTqnps1XQsoZ89/3vk44/wzHKLPMw6XYlHRFCx0FnD55OXIMBmQBIkck0Onn0x3xSSmO61OL2Mxa042X+wuYgd2BD4yvs78Hc0fmzetUAUuQDwLGQGarkEzNJAgsWdxD1608UXOdcAmFldyLbEhqqalctJEGIZkwFJs4nm/EuxZ3AOBFnDFuivWfN0DDDDAM4e+q4NSqYRf/dVfPRljOeWRZJ35dKDaViD5Zp91FM3TgO/IKtSYsU6XBdy2r4lKO3wWi23b2Y4gFkktqFgETBJlubOyG5if1EqCbYXatQgyXdPw8L134TVv+l0cPRhu62SD6ixBLWYiyTwbDGs2MJZjcvcKQ8OoJioWTWJRVyT85yfeg5nH7sfvfORzILkMaKuZw1r73J9r2VE05Dnao3QEzNw7h1jUdIyXzObu0sI8ps7mQZME4uIKu90OWI6HLIkgOR4EAbA+K9R2061YNK1Qo1bJUKbLvXv4I2MTmDlkHotGvYpCqewUU4f2Pw7g1Z51mPvJPCaaquKMM3aCJAhzdpthQNd1GIaByfUbsGX7WQCAqsuOV1Z1ZLJ5SJIYKuXuEYvRs04VWUK7GbQXDsN568vIcTT2zTWjiUVLQddVvAUgzTDYsmMnOOu8P200h7utWV9lywq13lWQ46hIJTBFEhjJsWhEEIs1176xyfEoC5ypooD9Cy0oqgGaNRWLALAwexxStwtmzGxncy67Yp2gwFJk4NzM8wwkxcxY7HZWSSzydF9xaTaRKydMcJhriFhoSviV86ZQElaepTXAyjGoRU4BhCkW3bOR5T6b+XwBqB4BDFNFbFgkGCLUBmO8CigiwPiaHMcf6O97XegpFn3ltVux6GoW5lkr38UqfQwY+Mmuh/FrL7wCHdGqkWjeUixayI4CJInHWwVcUa5ATbJCte7Ns4vLkcTi2FABBxfbODYRfu3jWHPMBklD0Qz8/qd/gG/t+v/wo3/5mOf9SGgqTJMU1/WeJHvbaMEm7Y4v1nD26ck5PO2u5Ni0ZnjvcZQMCjmCQr3ZduxC81kBrY4IKBaxGJFNmRV4D7H46FPmhK6lWsOTr9jxOQ7QNGVlLJr7XFY0XHjmVhgEBd3QYRiwahFgy/oJ/Narbwj9/kJu5WSWnW04v1aqRU3yWAy7QZIkvvuPHw7Nez8ZxKKimedPWmJxemwYBEHg6OwiOuLKFIuFXAbNdjfUgu2UQbsC7P4qsOFyk0AubQCu+yDw4z8BDt8FbL7qmR7hsxaDWuS5CZtYSqNGFPXV292upEHP+LJ6YzMWteSMxUQrVIL0kEgP3PUALrjyAsxgxrPMSkFafZMla6JOGIrDCYpF6zqsaRoMzcDtf387Pvu/n8XHv/ZxkDQJlmZhUEakQjRMsUgQRDBjsWze5ytzFYxNjUHRYo6fAciWaw/LsY5i0X/M2822YxeaycYrAfOMWQuxZZcV6vgI7rUyg+vVOgrlgvMd80fDo0PsLElVVrH17K2gCXOimWEYMHTz/5MbJnHVi69yxu1GJpeB2F7Z+W8rBd1E8khmBAK9csUiYBL3lM8VhCAIfORzHwlV9JVd7gmz7VkYMLBjeIdzLpe4EjpqB4ZhxLpROFAAQzNMq1mGgg4d45lxECBQk2qhH8kX8+AzPOZPzEPsiuCFcMWiTTaeO3YuHlp4CPuq+7BzxHQvsdWu/nO1H3SUDjia89j4RiFLZ0+KYnHP4h5sK2/DeGY8eeEBBhjgOYO+icUvfvGLJ2McAzxNqHXlgM1fR1Y9xGJX0aCENAlsTJfMguDho7XQ921rw64cXqyTmgKKJLDY8t6s8jwDYGWzoni6P2sOQ5VBuKxQn3r8EbQadZx/2dWJxCKRMq+J4cwCrVpZAEChfe83gd/z5pUUyyOxVqgAAJKG2lzG/Fffj7nlGXzw//0DFCEDoHcc7X3uJ1E6soqhDBOYbCx2O7Dn3EuWYhEAlhbmsJ7hLaIvurgSux3wQgayJIKieTAUGchx7LSbsMthhs+h22kjyryKIAjwDOXJ5RwZm8RDd98FAGjUqtiw5XRHTfjQrp8B7/yAZx2K0suizBXLePvbPgmOiT8vahaRTVj7QcjmIEtiaOKBTSx2lPiH0LR2qBRJ4PKtw3j0RB2SooWOlSRN1V03xJqTEwTHQvb08RwUJgtQNMqWFWq9qyDHM7EWw+MFHi3RnEhA+4jyqovkT1Isrh/K4P4jVciaDgEU8sUyeCGD+dljkMQucrz5IMW7vkOBaX/sJxYLPA1J1cCtgRVqjqMjFZlhsK1nZS3+N77nWA0USeCGM8cj8zEHOLkY1CKnAPwzhHXVa1vazwxiwLSflBqAYTYRdIdYjPk9Kx0vsZgZAWZ39/e9LpC2YpGgPTNlDLeFmWumvK1YrEvmwvsPn8DM7CJueN75+M5td5sL0TygKZhpkpjI6oBQMrcvLnTYBda6T8Qp5MaGCth/rIKH5zRM5YP3DJs4rHSA1365g13HH8MXPn4ThoopbYx0xSTbfFaobV+DxF7f8fklXHz26YmrbXdFZAUekqyEKBZJgCDRaHdwRm49AFOd1mx3eqQ1HW4tl3WRTdPjbitUr2Kx4VNcsgwNUeopFgtZAf/07t8D2HTWnTZMxeLK6uHxkRIAYD6mOds3NNH8HYVMLtqyPmgLD6zOCjUKkuUmkJZYZFkGU2NDLsVisLpLk7FoGIZHHXtKwTCA+/7FzIG98t1A0fyt4PK3A4/eDDz8FWDyHI+F8wA9DGqR5yZsciNO8WUjzTJJSJtt5oafSEyjWHQTiyRIz4QIP1Hph5tYXF5cxqEnDuHGt9+I+e48ZMHcB2lsFCPX71YsBmPoAJiKxeP7jyOHXOj7tmJRbIk48pkjaO9t450feyeGJ4aBmrkMR3HQIuq+sIxFAIGMxUKpRyyu27IukRiWRRkkSYLhGLA8C8MwAp/ptDoYGjPJNiErBL7TjayVxc0UvYrF5cVlaKqGRrWBQqngEJ4LR8Mnsdu9HJZn8fY/fztybPh+jUImayoWyf7TszA0Ym5rdbHqnIfjmfFV5XQC0bbCo5PhrnBuK9RjrWMgQODs4bN77/NDEFURqqGCIRImySkAoRHOsaNpGjJksBSLYWEYDTl8cjlBEBifHjcVi6KlWPQTixnBee2SiUtwsHYQ983eh7OHzwZBEA4p3Wmu3EFB1ERwZHLMAGDaocqWQ0kqwjUF5tvzWOgu4KVbXrqqrM0BBhjg2YfUdwld1/GJT3wCV1xxBS6++GL88R//MbrdlT30DvDMQdGMQNZjte29sYmKDtGlNuz6lIcFnkaBpzFTDT/+NskVpVgEDOQ4Gkst7/fmYwKoI2GpGwS2T2JRkUARBESrgN7/2B4ImSx27Dy//zFEgOHMG/dSZR5HPvFyaE/cEVimUB5GbbmCiTd9Cuvf9c1wG02Swj2f+QNozQp+96/+HVdc/5LAIlHkUVcOWqEahuGxMpVVDYWS2QCSxC4IhgNNkbHORyaxaD6UEQwHmiQCBJGbFGIyeXQ70ZawAMC7VKc0y2F4bBzLlXnTRqNmKRYNA8Mv+SPMN4LnnirLfeVsAj3F4nCOhaLpyGRzkRmLLGk9zCTk78UpVP14wZnjOFETcaIe/XBRFBh0ZS3WYnXLaA4gSDClSY9iscDTscTiZFFAU1JDrT9rLivUbsckFsMyFgFgfVlAvas41xaCIDA2OY2F2eMQxY5jl8tax5iiacgawIUQi3mBgaTq4DM56LoOPSWR7weBYO5nEmwFpZSgWHx4pobNwxmsj7CDHuDkYVCLnEKQfIpFQ/cq8/zEoliLXx+bBeQ2SGvSjUEyJlkptYC/2hiugPTnOA5tAqqHUg0/DKTV3AtYoXoUiy5i0eoT1kXzGvzgY0+BpilcfVGv6WFnLP7vIdJcrs8HfJamQBAEZmPsx8aGClhYruOfHlDw5T0K/MHMthXqFf84j8cWddz2V6/Hja+4Lv0g7IxFj2KRCpA1thqwK0qpMxZtEtBvcylpFEBSVsaiea22FYuGfdwZr22hjR2bTTvvoVIeU2PDaLQ6aLW7AcWi392DYxlTkbjKXKNCLgOx04bx4QKGqeg8qjDYSsG1y1kkAFWKVP5Gj+NkEIvm/5PIQDc2TI7h6AlTsegnnwEgl0BS2ufOKWuHeuTnwOzDwPlvAjZe3ru+kCTw6s+b1+H7B+SZH4Na5LkNm1hMQ/ithWqnq/R/bviJwLiMxDBicSVWqDZhsn/vfgCmxeS23duw8KcLmMxNrooUIkgCmVwGywvRtUiSYlG36rtvve9b6Ozv4DWffA1e+aZXepbhKA6qEX6/CrNCBUKIRUuxKIkSOC7eCpUAAbkrg8/wIECAF/hQJazfCjUOOcYkAAvrrJiT0TJGxkfM3MfKskkslguJ56b7fFgJsvksOiu0ZbeVgm7F4lqo1KJyFiPH4bJCnWnOYIgfwrAw7Lw2xA+hq3ZTqZeJ2whkHslA65rFiNt6dSo7hbpUj1zP+PS4mbHYlcDxIVao2R6xmGfyeNmWl2FfdZ+jgrQVi+1Wn/nzLnTUDng6nRVtlslC1uW+93ccHqk8Apqgcd3661ad/znAAAM8u5D6F/0Xf/EX+MAHPoBcLofp6Wl85jOfwdve9raTObbnLJbbMvbPRyttDMPAzQ8eexpH5MWSTyn41ELwBlXv9m52BuAhIwmCwOnj0bPUbdWYn5B0I8fRaPgspAorIBYJq1D3kxNJcKxQXWTXuRc/z7EWXQtQFAOG5bC8aBJNYb3AQnkItaUlcFPbQLI8Kq3grEiCpCAMTWDizZ/C/5+9946bJa2rxE/lqs7db443x8mJmWESMEiSMIKC7oKKu6wYUMK65sAuCoKK/gTFRQWR4GIAJCg5D8wwDDN3Zm7O773vvffNnSvX74+nqrpyV/fbdxJ9+PCZ+3ZX6opPfc/3nDO1c3/kuhwr1CBaqgGOoXzEoqFrMD2KLEW3kCuUOutj+VDuXRByuwVByrjTcwztU25ZluWzQqVsxWISvOQww7AYnZiCoevYWF0hxGKxgqZqInf186BmwwNTXdPcjMW02Ghp4FkaIzkBqqtYjB6kO4rFIDEfWmZKxSIAPHsPURc+cn4jdpqixEHWDBiJxCJ5UWErMyhViK1qXdZRELlEy97pkoi6rEGNsD6ueYlFV7EYfY3OljMwTMtnLTsxPYulxXNQ2m0wgp3DaVuhcoIEWTPAs0w4Y1FgoegmeIm8VBl6f8Qix9I9E80URUHimETb6paq4/hSA1fPljCSTdf1N8TgMByLPI0QJPUAwFt8U3ssxPFZABYKDLkPmU5n/eF/J6TkF347PE/9ov/vyk6geg49PkpcOBmLRrDrOUaxmLOtUNfbnXvOrdfu9ZMdrGDbxPa5TRQwVil2IRaLWFrdwGeO6vjz76oA7x/jCfbYaCzH4L7/nsVtV8z2thGmTjYkoFgMWqFWPGpASUguggIkY9EhFEOKRYsGbCvUol3My2VE0qTjnHsxSsI9NrGYy0iYGScFqPOXVrtmLDrKTrOP7n4v8lkJuwqk0HmrmOyiEcRYpQiapnFpZWNT2+CD3k5W/kZgcnTwxKKs9aZYBIAt0+OxGYssy3TyQ2PgEot9Flef1FBqwPc/CExeDdz03wAhoGYZ2wXc+b+Ahe8CZ7/zhGzikxXDschTG476Lw1pOIicsbbeO7EYVCgKTPw7h2IoJMPXq1gMFO67Eougffac2/dtd9VeHM1BYASfhWg/qIxVulqhVtfiM//sDQUncdjxuzuw5YawZbrIRhN7QOdYBpWXcqCpWBAFcALn/jtJtUqBKNgE22o7LpPRa4XajVh0FIviKCGBSiMljE6S9/uViytuxuLlJha7KSuTIIgCsvks1j1NTpPZyU1tDxCvWIyDV7G4UF/AZHYSec8YtyJV0NJbsSpXL2iVRpbKuvawjMcxbS4/h5paiz1XJmYmcOk8sUKNVCx6rFAzXAY/tfen0Nbb+N7F7wFAR7G4iSYnWZd7IhY1Q+t5fyfh4eWHsa24DbP5Ht8hhhhiiCc9Ur/5fuhDH8Jf/dVf4fOf/zw++clP4tOf/jQ+8pGPbCpA9umKG9/2RfzIu7/hyyjz4u++dQpv/vjDTxi5eC6gNDyxFCZB15r+AdHxpU7HNMdQuGKKdFBFkSxOMT+JgCmILGpt/6Cv+DhmlVm6ApqmfMq96269c7AroYCRsfHkjMWAFapDHlmWhebBr8HSNdC8iJt+4U/A5qNz+ACi/ArCsiyiWAx8pwQ6amVNRzbfsThyiMJExWKLKBYpTgAYHhxD+axQNVWBrmug7EoozWdhdAmKFgNWoCPjZPC5fPE8GrUNFEpltBLIasOyQnas3bDWVJEXWOR41iUW4+Ao4JIUixwvYG0lPbE4lheweyKHE8vNyIwiAChlbGIxQlXoLicngDE1ZKd2guPJi2NN1lDMcC7RH4XZkoSNtgYtQN6ZluWzEG23yHUSZ4U6UyYvSF5ifHxqFksXzhO7XEexaBOLvCBA0U0ILB2yEs3ZDQa0bZ9qdLEljUOUGjINMjyTmLH46PkaTAt4zr7xRDXoEJcHw7HI0whRxKJXVZgiA8QH2+KpxJJCi+UQeEpCU8tqgLQZ2QEYKnaP9Hdt04YKUDQMKqhY9LzIB61QaQ4Nz/32ubcGnBMYATB19Ngn4cPUWCXZCrVc8CuyAs9Sw76+vvQLW7Gt3MeGGDqxB/U2OVkUZMU/ThZ4zlUgplYsStHTKwYN0LRPsegQtpRTjOtSaAXg5jMuLq2GFItBOCSVuUnbqEIug1Y7vpCZBIZhMFou4OJKPJHcMzS5J8UiyzIoF3uzXEuDtt47sTg/PYazF5bQVtQQsZjLSF0tvp7WisUH/5EQxre/GShvi57mjjcDE1cCP/gwIG/Onv7phOFY5CkO+7JPY3OamK+XEoOwQk0iBGRdDhGPQXVhGitUb37bDbffEJpmszaWlfGKT8EWRLFSjHXoqX2/BqNpgOZo/Ojv/yiE6egxgsAIscSi8zkdcGUIkmcURaFYIrURXuS7KxZlFZLt5MQLfEiNBhBCKC2xyFAMclwOOtP5HQ6xuHppFbX1Gorlom89UfttEIpFb+5mryiPln3He7P5igBSEYC+bbCVk6Zl4kLjAmbzsy5xCwCj0ihaWitW5RoFZ5+wbGc8P1eYw4ayEXnsAWB8ZhyXzhMrVFEMZyx6CWyJlbC1uBVXjlyJh5cfhm7qrmJxU1aougyRSUcs5rgcVFMdGLFYU2s4XTuNq8euRkWsdJ9hiCGGeEohdXXg7NmzeNGLXuT+/dznPhcURWFxcfGybNhTGQ4/cGY1+sa/ZluPnrcJvmpLw9bf+Cy+ejg6eHnQWFj3b9epiO3c8BQ0JI7BwcWOZzhNUdg7RTp9ouxOaYqQj4nEosShHlAskoxFAqVPlVIarH35b6GdJN0/XmLx+lvvGPi6KmMTWFuOP67F8gg01d9tpmsa5BPfw8qn/wSt4/eBYrhQdmIQUcSirJmwAAgBMkiR/QNERTMBmkEmZ3dvMclklLMMIVvA7C/9I5ZQsBWLne+btg0qS9nEotDdMjITIBZHJ0huz5kTR2FZFvKlMpoeUi/48k4xHKgeBz/rLRUFiUNeYqEaJsRMZ6AZPC4AUBA5Xw5kEKWRsdQZiw6etWccp1aaIQWvg3KGR1szoCfknlIUhYzZgDSxDYZJ7I41w8JoTkgsmk2VJOiGhWpg3U1F9ykkHcVi3AvltJ27WvXkMo5Pz+LS4jnIchuUndvpEL+8IELRCLEYVCw6ea+UQI6FafRmv+aAZ+ieFawAUc7qhgUz5qJ7+NwGxvMCrpwe5g09ERiORZ5GiCIWvV39vVqH8eSeUWJsYtFRDSZlNa6e8P9dIcX1iVyfxKKp2upE/70nlljkAXAimkrn3vncW6/1L9S2UZXYPiWLAKbGyriwnJyxGIRhGFirkmf51+4/AACw+s1Xcq1QO5BjGjicnMUo28ogWrKCbIbsn5AVqklD0Uyomo5i3rZCDVpopiiSTtuKxTOLS6g1WiHFYstTiHWUnSY2V3zNZyW3SKh2cUmIwuRoebCKRa2VmlikKAoTI6VQ4XYQaKsOsZjehnzL9DgWLq6g0WojIwWJxe4FtkL2aUosLj4EnP4mcNUrgB3PDtkfu6AZ4OXvB+Qa8OA/PK6b+GTGcCzy9EAaxeJAMhb1BGIx5jYUtD5NIgQUQwkRhwz6IBZbycTiZjIWAWBkfASrl+IVi4WR8FjEsixceugSzv7lWax/Yx0USyXaM4qsGEsSRSkWLcuC0g6fB3n7WR+nQPRCaSsQ7eeJKImRZHSz0VEsZlI8w0pCCQbbef4XK0WwHIvli8tEsejJWARIlmEQg1Asavb4tB8HocpYJXK7NoO0RBdFUZCyEiR73LfcWoZqqthd2u2zwh2VRtHUmqkaCMx9JlqTLbQbNrHocTyYz8+jqTXRUKPt6ydmJlBbr6G6WoUg+c8pTuBAUZR7r3GIz1fteRXO1s/iZPWka6O7GSvUttFOrVjMcTmoxuCsUB9deRQUKDxn7jkhK+IhhhjiqY/Ub326rkMMhN5zHAdN23wX1w87jtqKwY/dv9B12vMxuYa9IKhYPLfeCuXErHmURxQFHLzgDyMeyyV3kvMMnajsKkocGop/0OfNWLycSqDmI18E3SKDWq8955YdewAAX/uPT+Kh+741kHWVR8ddK9QoFCojvr+btSp+8+d/CurSKYy86I3I7r0dYFgYevJ1FrW/WirZvyHFouwvjjiklZOzaDEcUSwifjAqt1sQCxXQQgZtcCG7VYdYdGITab57h5oYyMMrVUZBMwxOHTsEACgUS2ipnXNqdclvYUcxLKgeBz/rTQ0liUNB7OT6OQq69aVwcaAgsVB0A0acurAy2jOx+CP7J9BSDRy5GN0JXskSYjFunQ6u2T6N8T3XQ9ENVG0b07F88nU6VST39NWG//zy5isCQKvZgCBKoGIUgEWJQ5ZnUJX9Vqj16jrq1Q3Qdm6nc45wggBZNyBwjO+8ATqKRXDknOmmdI1Dv4rFLE9I5igFqWFaeOR8FVdMFzDaZd8OcXkwHIs8jaBFEYty9L/TgCOFmhJHCkSm8+KaRCwG8xT5HJAZiZ42BShTdYlA/xfk+XZ4g/URbAxNAYyAhsfh4qardgMA/u5fv4DvP3bcQyz2vVmYHC3jQkKuUZBYbDTb+LFffhvqti3aq15IHB20fotUph4i8Zpy9PPaIe5EPp0ValYSwTC0L3fPAiAbNKoNcg4FFYsuUti6ZTMiivksHj12BoDfrhUATp3rNI/xjhXqJot5hWwGjN0Yc2Gtd5XYxEgJlxJyqnqGmp5YfO3LfwTv+4NfHty6PWjaY8CeFItTY9A0HWcWlyIVi93gnDvVx4NY7NZFOChoMvC99wOVHcAtvwRIpeTpJ/YDt/0qyWM898DjsolPdgzHIk8PqIYaq5Bzit+DIBZbCQ4MlBRNlAWtUJMIAcVQwDO8r5mUCTQWUxSVWNCnKMpnhXr1M64GAHzts1/D+dPnyTI3q1gcq3TNWPRClVW87Q1vw9KBJUz8+ARGXjACiqUSSS6RibdC1U0dNGjf79BVPVJp7OQs8gKfSDpRoFxikWZoQsYFiEhVUaEpmqs666ZYBICyWPYpFmmaxsj4CC6cvQC5JSNfyvvUcYtnI5oaNvlIyeay0O0G31at92dgebTss0IdBNIqiJ/zsufg1//0192/zzWIU9xVo1f5piuLZRiWgWbUO0kA1l4LjYkGanVSF6XZTr3MsfdcbkXXgSamSYzPudPnIEp+xSJnjx2d4+koO1+w7QXIslnct3hfJ2Ox3j+xqOhKatVojh8ssXhg+QBmcjPYUd4xkOUNMcQQTy6kLlNYloWf/dmfhSB0XspkWcbrX/96ZLMdlc+//du/DXYLh/Dhpz9wPz72uls2tYwLVX+xbqmuhFRYawEb10fP+/3uu1kHCRyDpho/EC9KHJqKf51exWKQ1OqmoOsXXsVit9+UFXofTFdGx/HYD74X+32x3LE3NZUW/uB1P4ZmdR3ZK56N3FXPJdvFcFAungSkbZDr6wDCRU8hwiPNsQ0NZuwFFYsOaZXNkQG0RbFgu1mhtluY2rIXyyBZQhxD+2xIWzaxKLA0WgYAvnt3VJb3344YhkFldBwnj9rEYqmCi63O4GZx4TTGJqfdv/tRLG60VWwdzaCU4aDaxKJDKK1dCFsVO4pFw7QiSavSyBjWV5aAsfTbcN1cCTmBxeFLddy8PXxsR7I8WmqyYhEA5iZHcapmQTMsV/04VUje71NFMrgM2jY7ykPLthtptxqQPPf5KEwURVTbOkzLAk1RGJ+aAWATgywPjqbg7DKOl8j+TlAsWhzZ9rgX/m4QOKZna1yAWKEqugnDskIPyJPLDbRUA7fuGHG3c4jHF8OxyNMIUYSfV6Wo9Ugs0gzAZ1Fi7fuX050fpYx0UDtPbDq9KG0BWv6O+s/d+whGqDpufhESQRsKsdfUA89k+8W8GVUPYQU0PU0ZnN0BrTuFM9sOLbMpxWIFX7v/kdjvg8TiHa/+NZw4e4FkL65V3ezApY0mSgJwcnEd22OcEyNh6iESrxWjxOumWGTUOqzfL+CBxkk02wpyGRGffM/v4vYbrnCn+cP7eOzeOY5pW33hqM5CCrWUz4iZiREcOEJI6KAV6omFC7hiF8l5chSLRkJjVhrksxnX/nx5o/ci0uRYGafOXcK22XAedV8wtWSC3oNdW2ewa+vMYNZrI8eRfdFUTQg8514jabBlmmRZ67rRl2LRITE1rb8mp57w9T8GchPAja+9vOt55P8RBeLdfwCM7Uk3z7N+Ezj8aaJaHN/nKsR/WDEcizw9oBgKdEsHF8xFBlH46aY+mIzFBAcGiqOgmVrIytRrhcrTfCIpqBoqeJqHis5YIkpd6PymKAStUB3y6+JCp5F3sxmLI+MjWFteQx7RWcXFSodYtAwLf/K6P8HC4QXM3zWPwovJs5fiKLJNs8DKwgoQ4Cl4hk/MWAyq6VU5ul5VsJ/13RSLlGUTi5KI3/nL38HO/TtRNUjdzLLtu51cPNcKNUVTS0Ws4Ax7xvfZ6OQoTh0mY5FCueAjpxbPLOLKG6/0b5u5ScViToJlj0WMPtwTKuMVLJxcQBaDe16kIQABohCcmOmMgc7VzyHP5zGdn/ZNNyKS2ktN9YsoIsEDlEy5x9OkTXAMB5qiMZsjxOKqEq3InbDHY4ZuQJAENxfVtEywvL+JIWM3SoqsiCtGr8C6sg6d0iFKou8a7QWWZUE2ZJ8NbBLyfB6KoQyEWFQMBUfWj+Du+bsxKsVHOw0xxBBPXaSWhf3Mz/wMxsfHUSwW3f+/+tWvxvT0tO+zIQaHKIWSaVr4iffd2/cyMzyDlYYC3dOZtVJXfNl1DE1h3WNpaFkWDseoqeIQZc3pRUHioAZUkl7FYjfETeso5VQ5nbLTSyxeDlRGx7G2Em+FWih3iCRayOBZL3kV/vJjnwNbHHc/pxgO4+uP4Oy7fwJYPR25nKj93bQViyFiMZCx2LZJK0Ekg1yLZsAxSXpFst9YqZOfQ6xQo4hF8gJCc93VXRIXflkZHZ/EqSMHAQD5QMbihXP+wTYYlmTFpIRpWai2NVSyPIpSR7HoQJVbIVKrmOGgJKgHiyNjWO8hYxEAWIbGzdsrOLnShBIxaC87xKKRZmBHjoGTXzpeSN7vY3kBNIWQDaujeHTydFrNJjKefROF6aKEuqxBs+3tJqY8wdy2CtY5R7wZi0GC1iXsolQ/PYDYrPaufM4KRLEYxWc+fK6KDM/g9p09MMdDDBTDscjTCHrEc9qrUjSU3hU8QgFFjty/OorFhPFAYylMmIzuBACfmvr88kaq1dOGCjA8GratlqOYg12UmslG3McZP7EYgq1S2LRiMSHXaKzsJ8t+7uXPw70f+1M3t5C3CTOnH+yxMz1a90dYoQabyxx0Ixb5JlFOjG487GYsvvjZN6NU6DyjvrnIYZWfQa1J9n/RLub1YqHpxcz4CA4cPQ0AISvUk56iq5OxaFibc91wVHIOVLW3wvbESBmXBqwSeCLz9cYkct00ZL0ntSIAbPEUFjMBhVkaxSLHsanyPjcNXQUuPkJyX3ttqugFK8eAI/8J7HkRsPdFqeyAAZAx9o+9H2ivAT/4x8u3fU8RDMcig0VDbfTdSLgZJCly5Dq5DuMy03pB20iuS0SpsLzEosAIoKn454piKCHrVJZmXRvLdp2sP6iC9IIG3TVPb7PEYnmsjHo1/lkiZkVwAocL/3QB2oaGO++5E3/xz3+B4pbOtUQxFHS70WPl/EpoGd0yFlmK9TWwa+3o52taYhHoWKHedOdNKI+WO9PbmxEkFjO57mOREWnEp1gEgNGJUZw4TCz8i+Wij1i8cPZCeCEDUCx60ahF23zG4XIoFpPUv0k4Wz+LicwEcpy/nuHk/cVZmHph8TZR3GyB5Vholgae5kFTNEalUfA0j5oSTVCOToyCtmtyoiRCMzWX/OcEW7Fo+BWLALEk1Q0dhmmkOm/ioJkaTMtElk1JLHKEWBxExuLhtcPQTR13zd4VaqAYYoghnh5IXab4wAc+cDm3YwgPnGzCpXrY7/1nn7kVH73/LKrt3jpnLXtkkRdZrDdVaB6SoqkavnVleAY1zyDrUk0J2ZZ2Q1diMYIYzA9AAVSvVoEiUF9LR+54rVA3Cyti9FYZm0B1LT5LIF8k9qONR76E3FXPxY+++ucxGVCZUQwLXVVgqW0snzkK4Lmh5fBcBLFoF+1Y1k/cBElXh7QS7dBxk2KIFWpCJ7/cboETOwMTPkAQuVaoHAPAgJViEJHhwy8rIxNTOPzIDwAAhVIZTU832cWFs75pKYZLbdUFAHVZh2kBk0XRtkI1fBmLAHDu9AlUJjqdbSWJwxHdtIn58PaWKqN4eHUZvUaT/8i+CXzl0BIuVGVsHfVvQynDwTAttHrolq+1NdAUMJJLtpJjaAqjOQE12b/saluDxDFo2fuz3WxAyiYTi7NlCceXGlANEwLHYGR8EjTDwDQM216X8lihimjqJiSeCZ1njhWqARq8kC4HIAoCR7tWcr0gKzDQdDOSPH5oYQN7JvKY6ELYDnH5MByLPI0QVTxXPQUDXXWVfqkhlVDiSHHFzQOM6W6+2GIwKa6EicUKIRZ3Veie10+sUHms11tABbi4bhcq7HtppOqQ5dFoxec8WQwHCumJxaji7NR4BYqqATFPJ4HnIAk82goparzhNS8NfQ8ATu/L4TNLeEm6zSHkcA/EokOqSUL3+2yzLSOboDqr2pZRrhVqCoVaFGYmRvDFe8lYJKhY9BKLzn4yNlnMC5JnPzh0Ajdfszf1/BMjJVwcNLGoPHHEojO8rMt6z+RwIZdBMZ9Ftd4MkdVpz4dCLoO23D2LbVNYOw5YBqA2AEMFuP7HP7EwdOD+vwEK08Dtvwpke1QOTF8D3PKLwHfeC8zdAkxfO/htfIpgOBYZHFbbq7j7n+/GeGYcL9j6Atyz6x5sL27f1DK/ff7b+O1v/Ta+8sqvJBJymqnBMI2oVzoodQW8xA/ECrUd1UgV2I4gvCQgz/CJpJ5iKCHSkKVYNOoNIAM018mzsBcr1CBUWe3JCjWqLjIykWw1T1EUMtkMVv9zFav/uYr3nXkfeU/8Z880HAXDIOOHtcVww5TACLFkiGZqoCl/jUOTo0lDJ2ORF5PPAQoUlJaCwmRnbOCS0fbrtWNf6RBDYopnz4g4Ao31b9vo5KibWVgoF6Bd6nwfaYW6SbFZkMg69NAh3HTnTRD3iVDZ7tdFebSMjdUNzGK267Rp0UrpnuCFZVk43ziPGyduRI6PJhZTEZb2JdZutpHJZqAaKkRWBEOResZkdhJVpQrTMkP3HYZlMDY5hkvnL7nnFEdzUE3VZ4XKUIwvDzXLZaGapAEim89iLaFJMAmyQd65gr8/Djk+RxTdQVeXPvDw8sMYEUdw9djVm17WEEMM8eTE5QuyG6JvPLywEftdTmDxGy/oFBecHL1u+OYx0tFFgcJGS4Oq+0caxy91CgYZnkHdM8g6sdxbdxIAiBHqMy8KYthyROgyTy8I5gjGIUmxmLZzMlcoAQBqEdl6I2PjscuxLBMf++t3AgDUi8dil08xHDSNDN5OHj0YOU1QlQh0zg2pS8aiblqQNdNVLJoUA56hkxWLrRYYwUMsxlihOi8gFJscGA/EEItjpNNclDLgeQFNj2JxceG0b9peiUXH/nO6KCErsFA0E7zkJ/Uee8hvY1vK8GirCRmLfSgWAeA5+4hC9aGFcCGwnCGj2IbcA7Eoa8gKLES2eyV6oiCioeg+FfNGS/VZfbabDWS6EIvzlQw22io0u6LKsCxGxycBABbN+shqXpCgGiYyEXZmjiWuopvI5NINfqMgskzIZjUNcrZi0Qxct8t1BRdrMq7fUnaPyRBDDLEJ6HKYuPMWDAylJxU6AEAsuSSEa4Uao1i80GaJHWA7cN+tEI/P66fonskU1wrVRltJoTRjBTQTSAvZIM9wqYsVqpP9t1wNj2umxiqx81mWhbe9/xMuqRgFhzBzuMBjC/HZ0SE4x9CbaWRaaMYU85wcvDjFohdOxmIcak2yLzrEYq9tPwTT451iqKOodHBigRDZh15TxQfuIGpKY7MZi4Fi3r0/ONTT/JNjZdSbbbTaAyTD1CeOWHR6hGqy0bNiEejYofaTsQgAhT7W2TOWDpP/tjcA/TKRmIc+BdQWgVt+AZi4qvv0Ubj794HyNuD7HwDUdO4wQwyRhIbWgGEZYCgGHz38Ubzsky/DPZ+8B4dWe7vvefGO+9+BVXkVDy09lDidaqixJJRjATkIxaLcJTM6klhk/MRiN8VikDT0/q3ZqnfvMoMIWqEGUa/WI+1Vg8gVybubo5L0YmQ8nli0LAuf/eBnUV3rxO9ENTlTTIdYXF0MN28n/UbN1MDQjE+xqMc0z3dTLHrrO3JbhiR1nhOuAjVGsUjTdFdycVQaDSkWvcRsoVzwZyyeufzE4mMPPAYAKL+yjDO5M1Gz+FAZq8CyrEiSuV84BFkSTMvEF05/Af90+J9gWiZqag1NrYltxW0hxVxRKIIG3ZWwNEwDFEeBAoV2ow0pJ7nZpk69ayY3g5pai1XMOtasoigSlbH9nuJVLHI052si8GYdbkax6NyDCnyhy5QEWS4LwzI2bQVtmAYeXXkU+0f2D21QhxjiaYwhsfgkxP2nkjtRvFmEp1fTKe4eOUcGaRmeQU3WoNjEokPmeMnDLM/6CJwTy42e1YRihILOi262p5sdgDiqvKJABo6sUo2cLolYlFvpyMlsjhSZVs6fDn1XHh0PfQYApipj+RN/hM98+G9QHhlD+bmv931/x/Ne3PmD5aBp5KF+8nA0sSjYqkTv+NFRAwRJXkUOD8jqigbBtogimYkUkphFud0CI3QG0BxD+aKKmo06OF4AZVd4rYQOSQfZiHNsdGIKAFErAiRfx0HQCpViWFg9dFU5dr9zlQxyIgsL8Nm7AsDBHzzg+7uc6WQsRqFUGYOua9AS8kWjMJ4Xcc1cCYcu1n0EH1kneUGq96Aa3mgRYpHvohwGgKmiiIasQ9M7v2m9pfmu0VarATGTgWaYkdmSADBTliBrps9Wddy2QzUphqha7VkZkQyMsxH3AYamIHEk5zCTjc7gSIMom9U0yAosVN1E8BA/fG4DNAU8d++4z/Z3iCGG6AMUTRSJwZdvb1e/oRIFTy+Qyu4/LYoBQMUSixdbDAALWD3h/0Ig9x1y/+jtWqdNFWA4OMPrVhpikeHRTCCANuxnVaZLf45Dmpy9tBH6bnK0HPoMAGTdwms+IeN3/+pfMDcZfuH/m7e+AXu3z7kWn6pdaD15vocGGqco4bGm1oz4feMQiq5i0TSIRWQEiBVqvLKxZhfzHCtUlmUgCr03hszYxbx8VgLL+sdUXsXitjw5n/VNEotB8uw7D/VWYJ8YKQEALq1u+L9YOgR86a2A3kehqA+VwEBgaG6zQLWt96U6nZ8i9uWhjMVsesXiZcfSQZJDaiiAPGC1KQBUzwOPfQLY/mzgylcAbJ8NUgwH/NjfAM1l4KGPDHYbh/ihxjOnn4nfvPk3cc/Oe3CiegKfOvGpTS+zmwpJt/SuGWJPmGKxBytUJ2PRS5h5VU9OPp73syBomobcSiYW0ygWWYaMF+qr4WaUSkyTk6VbWPyHRXzw7R/E1NxU6PtnveRZne3kaZi289ba4lqogdshjqJqSbqpu+oyB6JJngOFmwrY8pYtnc/tZw3Hc5HnQFUjtSUGjGuF6iBkhVr3E4tAJ8MyDhWpAouyQEud4z7qGaflCjmfmizSCnWTLpYhYvFBQiyCAnSm+7VTHrPHngPgFZ1zVzGSG2/W5DX8xYN/gU+f/DQeXHoQVaWKhfoCAODq0bBijqZoFIRC13uFl9BsNVuQMhJUQ4VACy4ROJufRVWpxt4zxmdIXdDJWHTIf2/GIkuzvussx+VcS9LNEIvOPSgtsehYxna7d3XDyepJtPU2bpm6JXW+4xBDDPHUw5BYfBLiu6firTODOLmcjlh8bJEMfnICC9MCLtXIw1FgaWQFBqdWOg/TrMCg6SExji81MFHs7UVe9BRejl0KKx7zIpdYrttszIJqq/IcYoGyu3Qc61OHqJITrFDrtY2e1hlFLFbGJsITAlj/8v+FfPoh/Na7/x7z23eFOvK27drX2XaahaaSQdTZk8ciSSuH+F1UeHeA3batM4NKUCWCTG0outv9Z4ACx8YrFi3LgtxugeY7A2KeZUJWqFmP2swEDbaLatFLgDqH31G8iRIZSHkJ74tBYpHliM1TSmy0VFAUMJ4XkBPsLEiPCrM4OomDAcViMcND1owQ+eegPEqKV4rS+yDspddO49RKE4vr/nlLdjW5FWMbF4VqW0M+LbFYElGTNV/m6UZbQ0HqHK92s4lMNkdyKLloJeBsmZwPyx5b5Ylph1j0KxYdtWs2QqUKkHuQopsuad8PJJ7xqWjTIiewUCKsUB9e2MDWkSy2jA4HxUMMsWnQHFEsBu+lqqeopau9KxYzgW54lvfnNnpwsW03NqydiPyezN+b7TFlZyw6iFMsOs9bAADDoZFQzFtvkmWktUJd2giPa+IUi7/zFQX/clDDx97+y7jhyl2h759/xw049Lm/6SgW7QaUlY0GNtJm7bjZUZ3nkWogVrFo2M8iV7G4dBD46h8SUiyAZlvpYoXaAs+x7vYD/dmhOsRiUMkOAKfOXYQZOI83q1j0EovjpSy+/eChnvLHHCL50mqAoFp8EFg+BKzFu2TEIimr9HLCQ2hWW1pfOZmbVixebmLRNEj24eSV5O9G784XibBMYoEqFoHb30KsUDeDuZuAZ7wOOPlVVIwBb+sQP9QYEUdw9/zdADAQC7406JYhFqc+6gXdyMmoXDYvCcgxXFcrVJZmfb1QUbaniYpF0IlWqPVqvaeMRUM3Qs+tQrkAhg0vY/mzy1j/5jpe/7bX4+qbw+TP9FznnsVJHAydHDO1rWJp0e+gkPQbVYNYTXoJWMW2op//pXnkr8rjQoMQdM44jeO5SOJ3sU0UgrzFQ27JPmLRPd4BK1RvZqHU5flTEci4jS10juPY5Jj7b5qmfYrF1aXVkOLUimmETouM53kr5SUc+sEhd7+YrElshBMQRyT3A+e4JhGL37/0fbz9vrdjubWMK0auAAUKpmXifOM8BEaItVguCSW09XYiUeoo/igQy+BMLgPVVH02xVsKW7ChbMRuo6tYlERXnQjAtUJ1VIzeJgKvYtFLTPcKZ/vzQrraimOZulli8cDyAeS4HG6ZumVTyxliiCGe3BgSi08y6IaJH5zdSD396dWmLy8xDo46y8kvu7DRGXiM5QQsVjsPjSzPouVVLC41MZ7vrbgmegiD/3zsIs6u+QtdDE1BiiEVAIBLQYgkIYo8A0hmHgBs2bEbQLJisVGLVjnGQdNUqIp/QFeujPpIQ0MnI8zSna/B5KvfiWfc9SMojUTbArjEIsu5ZKKua1g4dTw0rWArRM8pIlYaZNqmYoCmACFgk6oqbTdP0UFT0d1tNyzKtkKNLowZugrLskBxnXOCZ6mQFapXbabqZteMPq8VaksjA+ERW7HoWMG2NA/5tbaKVtNT2KQ5WD3YNWy0NOQEFhmede03KaGzjZXJWZw5cRSNWqfjsihxMC34rg+vHfHoGCleRalCu+HFV0/BAvD9s/5CoEMsOtmraVBtayiI6YjFuXIGtbYOTe8sv9bWUPISi60mpGwOsmbEKgGnS+ScWm91XnLGpmYA2HmJLO0q/RxS2tnvQTiqQSnT/wBa4pi+lIU5V7HYeRlrqwaOXmrgqtli19zKxwu7d5N72PTc1id2Q4Z4+sCygP8zDlx81P/55bDlY9hoRWJIsdijj5NYCqxHiN3+VYUBaDasWNwEaFMlpKn9PGzFKM1Pn/cUwrooFtca5LtuVqherFf9SoFsRvSRVbp9v//tOwR887VZ/OQLbsV4pRS7PJYlHf66JzzwwJFTgGXid+/kQSdZUzlFWU8HtmpY7r751kffhQ/80Zvc7xxLVpdYdApXa6dCi2625RBZ5EWt0QqRQv0QUzO2fZuihscYiqphccnvNKJv0n7Mu83TIwUsLq1i4UJ6AmfCJhYvLgeIxfXT5L/V871vlPoEKRbVzvtDta31ZYU6Px2tWExSu3rRzznTEzbOEqXiTjtDvZ2+wTQVjn8JWDkK3PQ6YPb6wSzzR/4PUJzBlTR5J9m7bXAZWkMM8XiiGzkyCMViN/vGVTnZ0pOnu1uhcgzne3ePIgGDikWv7ShDM4lWqI1qoydiEUCI9KNp2kc2OQThyPNHsP03tuPun7gbJVtxHwdWZH3NWScO+sdwrtVlxCtgVMaiErCibxtkHKrK5LjzIh9ph3u+RZ6jlEVFKha9trGtRgssx7qWl0BYDRiEk/3H5Dv7fDTgLBEkPEOqxQEqFrPFLJr1Js4cI43dJmtCt5JJ9/IIGYsMwgrVObeVmDH9N859Ax987IPYWtyKP7rjj3DX7F3uPGdrZzGeGY8l1cpiGW29nXgv8BJs3oxFge2oiWfzs9BMDetKtOvA+HRHseglFr2KxWATQZbNEsWiaXRVuSbB2f48l45YdNSF3Wyck2BZFg6sHMDu8m6MZ6Jd3AaF2TkyBimU0ikyhxhiiMFiSCxeRjRT5h96cfBCzUdaBGEEOr8W1tqod8lea3gKW4694QWbSLRME5MFEUu1zkM6J7Joe7ZhuaFgtMdiuhRQyf3+vz8WkiH2aq/aCxwr1CDOniRd2nPbdsI0TcjthM68HhWLAHDsoN+ui2FZFCukIKWqCl73Y8/G+soymGwZ/DjpmipVOoNE7353iUWGg651BrQnjjwWWq+TsaiBwdePkkF8S9V9ZI4Dpd12FYAOZM10yTCHWIyTLDrqSa+SI7ieVrOObL7zYNcME2ImeQDtJZpbtiqiUCwB6AwmHWJRyhAC8MJCR7VIsVxPVqhrLRUFkYXA0S7hDq7zUlCZJAOUw48+6H5WtMk27zV1foOcQ2N5AeURUrxS+1AsjudFXDdXwqELdRie4m1OYMHQFFo9EIs1mSgOhVRWqCTvsGqrRyzLQk3WUMp6FYsNZDJEsRinBBzPi2BoCtV25yXHUSzq9jnlHGGHWIyzRHbIvW5kdBLiSMtuyAgsFN2A4VGgHLxQg2FZePaeMQgRnbZPBKanSfduNjccQA8xIFTPkeL2Z99y+ddFc4Tw8xKHNOsnFk2tp9xcAIBU8v/NCrGKRcsCkBkFqgu9rSMBxAqVd4lFPabx69CJs56ZODRa8c+MtXoboBhkerilfffhw6HPHBXb54/r2P+SX8CZ85dQlijcNEPuaeMjxdjlURQFnmN9yrwDR06Dk1fxv58torj2cPzGOMfQUxTVTKApq+A5FrddfwV+9uU/4n7Xtot8rhWqg5a/8GqYFjRN75qxWAx0ePejWHTyK4PuEs6fJxf8xTzd3Kxi0UssknX3Yoc6UsqDpumwFeqGfd41+1CZ6a3eif5BwKNYXGv2Ryx2FIv+Y59esXiZMxaXDxMb1N0vJM0Q7Y3BLbu5Ajz0UWDuZuDa/wJwA/otrADc8z73z7FK/P1jiCGezPAqFtWIrGHN1HpSjAdBWRRUQ00kV9bkcAyOT7EYUDEFoRqqj8iiQIGmw9MH1XwOSQQALMV2VyymsEL14rHvh2sWDrHYPNLE637kdTh74iwYkUFmF3nulWOs293t5P1jkZOHT/q+D2boeeESi54ix0p1JXJah3AURAGaoYVI1cUWUSxSoIhiUfIrFr2K0WajiWw+6xtDdFMslkWyH7yKxXypQwoZphFS2AWJxU0rFj3EYqaYAc3Q7jE1WbOrFSov8sgWspu6foJQDCVyeWdqZzCRmcAf3vaHuHP2TnBM5/o51ziHmdyMa+8ZREWsoK23E4lSL8HWbpKMRdVQITKie1xnc6TusdyKHmNNzjpOXCRjkafJ9ehVLAabCDJcBhYsKIayOcWi0VvGorOv0mRaxuFC8wLW5DXcOHkjisLlHSPkbZerzdjFDjHEEP1jSCxeRvRiXejg/lNrJN8uBkF7vtWm6pKEcThysWOvwTM0BJbGmUukk6ZZ28BkUcRqw0MsCizaARJjvNCrFWrn1LpmtoivHl7Gfef8qkVvVuSgocrRFqdnThwFAGRyeSgJpCIANOthW5JuCFpnAkB5hBQ0Wo0Gtu/eh4zXItT0E4srnuPgkDcU01EslkfGcOpoOGfRIZA46PiPRy/Csiw0FQOCbVHqHYArchuC2BnMUhTQ0jqKRd3sKCCjoCkOsdh5OREDZEuzXkfGQwqphglRSh4MecnoDm9H9kG+WIJlWWjbxGK+TPbZhXNnYNm/jaJZWFr6rtK1poqiTb7lHJKb75znuWIZxXIFhx/6vvuZQyw2Pdf2Odu6dCwnQMrmIIgSdK2/oOuXXjuN06tNLG50zk2KolAUOR/pnATLstBQdJQyPDim+y1+0rY5XrPt9tqaAc2wMJbrvJi1mk1I2SwUzYxVAjI0hfG8gFq78wK+a//VyBdKMCmG2Ovam+OoXXNJxKJhQtpExmJG6I8AzAkMTAu+zMmHFjYwmuNxzVzyy+4QQzytcDltyBgOMFSsrngKOjRL7E8d6GrvvuhBYjFBsQgAyI4B9Yvx3/cIylCIGrMLDp1ccMtaFiMkZyzWmgDLQ+phyHTvD8Ik1NRYBe+9X8WLPtrC7q0zqBT999ckxSIACDznNlyMFDJ4+EinmCfqCeMlxwrVp1gkas5MBCkYUiy6X6z6iC1HZZ9shdoMKRbTkkleOEWj4D7jWXKsvTmLACFONwPvNmdEDjvmpyKPaRwYhsH4SNHNmAQAKDVAttUprbXery1N7t2aeBDwKBbXGv0Ri9fu3YFCLoPpcb8t25PGCnXpEFCcBfKTQGEKkDc2nwkBkGU88HekkeOOtwCl+c0v04uttwG2XRrkjcEue4ghHid4icWLC+HxgGZqXe1Sk0CDhmZoiSTMaoRK2SEdgHRWqF7SkLL/F1pmkFg83iEWGYpJzFhs1BqgKbonsurRBx4NfTYyPoL1b63j9DtPY2x6LKRQ7KZYZETGVTpKBQnHD/qdnJKsUHVDD1mharIWahoCPMSiIBAFopco1JpQTPI9ZVFQZMVHFDrTu43R9ZbPBhXonrFYEkqABbB5D2Hs2U6vipITOfACj8Wzi+5nNEPDMjb3HBEzHdKMZmjs2LfDJRYNxuiq9gUGa4cKkHM97lpiaRajmVEfMSfrMtbkNczn5yGx0ft8VBpFS2sl2h57CbZ2sw0pK0G3dN8yZ/OEWNxQNiKXsW3PNmTzWYxPj0MzNZf8dIhFR8XoUyw6ykFD3hRpJusyWIpNvD68cNYbpdZNiwPLB8DTPO6auSvyGhtiiCGePhgSi08yfPfkGuYrvT00Hu5inXpwsVPwoSgKpQyHqkIeyBYsTBUlyB7fppzgVyyyNIWpHolFyaMWumK6iKmiiI886rdRKqQNDOoDagxp6CgWgWQbVACoVzd6WqcgZXDQQ0IBgKaqqG2QLkRBlPBb73qfj9RTDdNnheonlAhZw/AiVJtY3L7nCpw4EiYWHcvLEaqNB06vo9rS0FR08AwFmqKgeBScitzyKRazPAtZ7SgWddMKEYX+32QPrDydlGJAodpq1pHx5OOlsbXMeM4ZOTAQLpTKUHQTzrsML2UhZbK4sHDaVUNQLAdTTz/4WW+pKGV4iBzjEosU6znPKQr7r70JBw90jqljD+rkVwIdYpGlKVAUhXKMtW0avPjqaVgAHgjYoRYzHGTNiMx3CkLRTWiGhZFsuoHjdIn8ZsfCdMO2TZ705Kq2Ww1I2RxUw/QdpyCmiiLqsg7dPlB7rrwW//adwzAsYslLO4NKW+2ajVEt58TNKxZzQn+NC87vcxSipmnhkfNV7J8q9KzcHmKIpzTa4Q76gYHhAEOB6SUvmUAeohlhldoNQStUlieWqnHITxJFTxx6VEzSlgHQ3e8TB4+fhXP708CGMvq8WK/VAYZPrVjMihy+85BfsajrBhaXV/HL/yHjV2/m8an3/A7ygQJFkmIRsIlFW4G5e26EWKHa4I2EvG/Xqotxm040w0JT1iKtKNu2/VhIsdje8B1L1bZCS1QsNlooBGws+yGmHIyU/MQiTZH8xRMBxWIPBgORCKoqn3ndvp6IRQCYGAk0wqzbasXsOLm2jR4boLR27wriQcCjWFxtKH0dvz3bZ1F94F9ci1gHadWrwXNooLAsolgc3QVkKkBhBpDrvR+fKJz9DrD4A+C6VwNbntmR2A4SV76C/HeQKsshfiixGcu9zcD7/I1SQmlGOsWiQzA0tUD8Cxioppq4jEjFokdx1c0K1UtSAITMjCrk83S8YrGbFWrdsVhP2TjDCRwOPuivWZimiUuLl3D+b8+jdFsJb/vA20LWhV0Vi0LHCnVkaiRWsRj1+yOtUAM2pg4c9aogCiEF4unaafffDtEqeMYzXptLgCgWM/kMHrz0IL668FUA3YlFhmYgWIJPsehAyko+G1QKFKbmp7B4pkMsshwLS98csUjTNIRM53ddeeOVPsVinMLvsZXHcO/ivQC6H89eoRpqT0T/xRZpFrhy9MpYcmtUGkVLTyYWvVaorUYLUpEcvwznqalxWRT4AqpKdJzS2NQYPvPYZzC9ZTo2Y5FneJ/a2GtJGiSne0Fbb0NghNSqYydjcTNW0A8vP4ztxe2Yzm8y13mIIYZ40mNILD6JYFnA906vYaac/qWZpSk8dG4jcZrHFv2d5JUMj6beebBOFAKZIwLrM+uYLIodRVdKeC0YKQr4mVu3oBV4Vhcuo2Ixzm7ESyy2WwmFMPSesTg6s4UoFj2rPnnkMWyskaKllMmEbEkasu5TLK41/Q9vlqZAc4Jrhbp9zz6ciiAWnRzFMU5Bta3h2ydW0FR18CwDmgLkVqcwo7Tb4D3qQUehqihtgCbHXuDiBx26rWw0vcRiwHKzWa8jm+8U4IgVahfFIt9ZRlu3fC9ghVIFTY/9KEUBU7NbcGHhjGt/SjEcrB6IxWpbQznDgWdol+AyGf85uf+aG332to5iUfbIERbW/AR1ebR/D/nRnIDr58s4fMGfj1WSOMiaGVIsR8GxRh4vxFvBeDGWE0BTnfkcK9Nph1i0LLSbDXAZ8uIXpzIEgJmyhKqshXJfVd0kdrl256Zld8vF3VfyIgtFNyFm+icW42xWu8GxUFXsyvCp1SYaio5bt49cVpX1EEM86dAKd9APDDRnKxI9xQGG86sLDa13hRQXIABYMdm+sTCVTKD2Q6Sw3YnFQycXkOfJ/VA2kov969UGwPBI24s1P17CfQ8f8dk5Hz19HmcXl/HXPyriz54vgmHCz/jxSgkHfzEL6/cLkb/ba4W6e2YEjxw94/4tWu14havzOU27GYWqQaxQo/IRHStUMdgc0lr1nR+uYjGBWKzWmwOxQnUQJBYBYPvcpE+xSFHUphWLNE379s2t1+7DQ4dPxlrrRmEyWMzbOEtUwVueae/LHov4WuuJIRY9isXVujrQvMMnhWKxcYmoSaeuBfgsURXKG8kNEWmg1IHvfwCYuBK46b8DMdlSm8ZQhTDEUxyKkZwjnVaxeM3YNQCAExv+zD8adCwZYtqN3VHEopcEZGm2q+KHowLEYo+KReiAFpEj7KBRbZB/pByW5UfyOH7wuI+sXDq/hIUTC5h81SSmXzvtEipedFMs0gIN034WVqYrOH/qvC8nMUmRpZkaGNqvWFTbqs/G1IGzTF7kCXHrqXucrp52/21p5N3cS06GrFDrxAr1oeWH8O3z30ZLa6XKyxNMAUyeCZHShXIhRPhMz0/7rFA5ntu0YhHwW7buv34/zp06B8uyYDAG9Jhx372L9+KrZ7+KmlK7LIrFnojF5kUwFIM9lT2x01TECppaE1pCQ08wY5G3m40zrH98MJ2dRk2tdc9uNVWXBGfteohqquAZPl6xmO9/LNLW2+AZPpSzGgee5sFSbGymZTesy+s41ziHa8evRVkYOj4NMcTTHUNi8UmEC7U2qm0N08X0xOJoTsDRS43EaR5d9BNklYDqZiwfIBYDiqTxvODLv0uDoIJt53geW+13WtPu6CtmHt8iva5pWDzb6bDvqljsMWNxbHob1laWsLJ0EXr1EizTxJ6rrsNLf+q1sfNopukjFpfqio+U4RgaDC9C0zqKxfXVZdSrfkUbz5IBco5WIXEM/uPRi2gqBniWBkNTvt+qym2IuY4ygZA4BlRZBsWSYyImWaHa22J4Bj1i4PxoNerIeGwsFd2E0I1Y5Dwh55oF3bSg2nmO+VLZl2sIAFPzW3Hh3NlOVzfDwkxphapoBmTNxFheAE1TEFgaLE2KgTzfuT72X3djJ1MSQMFVLJLBomVZWAxYETs5i/3iZddO42yArCxlOMi6kZJYtBWHKVXGLENjJCugZs/nEIuT9n3INAyYpgkuQ45nUpPBXDmDWluHqgeIRcOEyDGYmycWIVKR5I5mY+4reZGDohsQN6FY7JdYdCxUZbto/fC5DUgcjTv3bO64DjHEUw6Xk1hkOKJk85J+DO9X6Rha74rFYOGN7XIfzE0MhCzJM57tZpLHNpZl4dCJBUgc2dZ2N2Kx1gAYASmcrQEAWyZKaLTaeOzYGSxUTaiGhf075/Hrr/sJvP7G+ILbWKWIfWP2Pbm2GPrea4W6e3YUbVnB2QskR0Ywm/FEiNNVTzFo2jZrxApVi7Qx7VihRmQsqp1no2Y/Z6JUjw5qzVYoH68fYsop6o0ElBUULOyYm/IRizzHQhtAMc9LLD7zun3QdSNR2RrERLA4u3GGnO8T+4lKV0seA/tAszax+ERYoXa2c6Uub0px6mC0XMCvv+4ncNczrko1/WUlFpcPA6CAbXeRv8tbgfb65onFB/+R3ENvfzNQ2b7ZrRxiiKctmnpyo7Fu6l2z5ABgPk+sho+sHfF9zoAhOY0JGYtRCievAtFLUsXBOz0FKlqxGCDdzh7v5D2bSvJv7FWxWBgtwNANHDlwBNqGBlMxMTk3iZ/7nz+H0ReOxhKl3YhFlvcoFqdHYJomFk52srK7ZSwyVMdKFQBUuQuxKPAhK9RT1VMYE8h7oaNYlCSPI5XpVyx6rVA1U4Nu6cikGIuIpgg2z4bOv0KpECLBprf4iUWGY1ziejPwEqBX3nBl5wsq/tqpqTVQFAXVVAeuWEyyQo3CheYFjEqjieTWiDgCCxYaWnxNNZixKNiRMQ7x52AmP4OaUutqIaoZGgTbwWl2F6mPRFmhOopIRVc2rVgUWTHVvQQgTXIZLtO3FeojK4+ABo1nzz+752zWIYYY4qmHIbH4BOK9XzuOO9/5VfzE+74DAHj0fA0MRWFLD1ao43khpJjywjAtHL3U8CkIvdlpACCwjKvEAoBsIJtsNCckWmNGIYqYum2aLEMVSedSsZfAoAHg/NlTMPROAbEbsZhWsbjPHqdcsW0KAPD1z/0rFj/wK1i87zMAiLIuDqpuoFQZcf9erLZ9yjyGpsBwgpuxuH33fgDAuTOnfMtxjq8F4MqZAu47tYZqWwPPkBcLrzpTkVsuSQQQAkbWiBUqZQ9wpETFIhloG57bRyZILDbryOY7BThVN332q1HwktctzYJmmKjbNrKFYgSxODuPxYXTbmGaYjgYOhlkd3OsWbfJsymbPKMoChmeIco6ofNysfuKa8CwnQEYQ1PI8oyrWFxrqj71IrA5xSIA/OhVU6HaeDnLo60a0FMUK+v2fprowb54vCCgIevQTZOcNyztXp+OWpYVyGA2ibCbr2RQa2toaf5jpRkWIW9t4tqkSPZnnDK2IHJQNmmF2i+x6BCnznF9eGEDuybyPe3PIYZ4WmAzxKJST/6eJhmLPqKCJvaoLoLEYz9guyi3c5ObW76NW8oetUGX/JILS2u+7LuWloJYTKGCdDA7VgDLMvjoZ7+BG/5vE3/ydTKW2TE3lTjfuLeYF/EQ9Vqh7poh45bDp86R74wkYtF+HlA0Gi3SiKOZQFPWEhWLkhD4zZbpy8NUU2Qs1hptFHObVyw6hKirWLTPyzxPFIteK1SB5zatWASAjNd+bNeWnrMhJ8eCVqinic3m2H5C2Dd6yBblc0Q5+AQqFk2LNKkNglikaRrveMtrMVZJtv91MDBicf1MmJxdOkwI39Ic+bu0BVAbgNrlHpqECweA098Arng5sPM5AD183R9iiDi0ujRZaGZyPqIDRwV3bOOYzw6Vtuiuy2ioDZ+1pWVZ/oxFqnvNxEsaRikWTdP0kW7tZhtLi0vu35qSbL/sEosp+0syhQykrISvf+brOPHWEzj/r+cBADNbZxLnKyXkPbMU61MslqZKoGkaZ452lJdJxKJu6qApGoon11ppKz4bUweq3LFC1YyOYtGChTO1M5gUyfjRIe+CikUfsdhoIWu7J6iGCtMyUykWJUsCW2BdhZ7T5FQsF0OEz9T8FBYXOk1hHMe5+2kz8G7nxOwERsY7dauGGk3EOec/QzGojA9WsSgbcqpsRwcXGhcwnZ12rT2jUJHINtbU+LzwoGKRy5HjG8xtnM/PY0PZSFQ/AuS+4hCLuRLZNs3QwopFtpN1uJmMRccKNclSOYgMm4FiKKmsoIM4sHwAc4U5bCts63neIYYY4qmH4ZvGE4D904RwmSpKmC6JHctBECvBSspsNICoDVeb8Z0kl2oyVN302Z2OZMODJ69qMZh7VspwoOnerG6ECCKStZfhPJoupxVqFLw2qEAKK9R6/ODCC4mlcOaPX4wbd8+jVBnFl/7f30KY3ovitc8HAFTG4ommtupXLDYVw5ezyDHECtVRCU7NbYEoZXzKS6CTsWiCwjO2VrBcV/DYYhUsQ4MJEYtt8B5isSBxthWqDMouXgYVp15oKtk+3XP78KoNAWKFmsnm3ExERTfBi90yFjvrbKgkJ5AXyGBty47daCr+QeTU7BZcWux0KDKcAENNZ+21YecJznpsh7MCa29n53oUpYxL5jrIiyTvEADO28dq3HP9bCZjEQBGcgJu2OIvCFYyPFqqAT2FWqEu62Boqqf7yFRRREPRoekWNloqcgLrkn66TdbSIhnM5hMUi9MlCRaAtUZnMG2YFgzT8p1TqmGCZ2iwMcWugp2x2I8V6q7xHK6fL7mkca9wzkPVMLHaUHB+Q8b18yVUMsN8xSF+yJCUPWioQA/qqRAYLmx16nzmrkPfvEKqq2JxDIiwC+sVviUEiMWgyuyQp7MeAOpdmoE3as3uBKkHPMtgbnIU7/7HT2PvKI2fv4U876e62FFF2Xz6lst1FIuVgoTJsTKOuMRiA/AUXXxwjinNoOEqFi2iWIxQCTiKRY6LeNbUOwReWivUICmU64OYcmzsr9ljK7/sznWKArbPTWF5rdOIxnNsSLXfD7ykK8MwuPmaeBuvKPgUi6ZBVKjlLcCkrdKrhlWpsRByJGNxsyq6fuAhFoHNZWT2i4EQi61V4D9/Azj5Nf/ny4eAkR0kXxHoEIz1JfQFXQa+936iUnzmGwBpaEE2xBBJ6EYs6qbek/XiYmMRi43O/dXJWExSnDe0ho+IMCzDp0CMsi8PwktkURYVIhBajZZvGq9aEQD0dnLjSKNmk0iBn2HQdiZ94AuKpjA1N4VP/eOnwJU4TL6IEHHdiCZejH/fYmkWDM+4ikWWYzGzbQanj53uzO+MwSKGdk7GotLy2KrLWmTGoqNYFETBZ4W6Lq9DNmRsyxPCxNTCxKJmamAZvxWqY2OpmRpM0/RZjMbBIRYdUtpRR+6+enekFaqXHGY4xt22zcCrxKQoCvtv6NRFWnr0tdPSW6BAgaXZgSoWGYqBrMupr0fd0rEir2A2PxtSFnrhqBmTFIsOsWhaJjRVA2sHnwcJy/nCPGpqzUdERkE11BAJrppqKE/V2W7VUF1yuh+09TZERuxJPZjlsqkbK4LrOr5xHFeOXIkRaaT7DEMMMcRTHkNi8QlA2S5Q37FzFD9761a88KpOF/lsWQoRe14EG0bG88nFpoV18sD3qm2iCAevbWLQCrUfZWGUYtHpdjFtCX6hT0VRWjiDTgdnTxxFvlhGxlZBdVcsbvS0vo9/4L3YWFtBpjyJ8R//PVAiKdKNjE74pnPUhwBRl3mVfQBwcqVDArI0DZrj3Xlomsa23ftw/ow/qJy3PdIMi8KVM0VwDIWVhgqeoUFTfhKVZCx2BkEliUNbNfBff/k3MDJFChpJikXNVizqZmfEnvEebwtoNuvI5vJQNBMcQ0FNZYXaWadhkaLhtTffhnf/47/jjue9OKxYnNsKQ9fdFzWaF2GmzFhcb9k5gqXOYDnDs9AMv2IRAPZdc4Pv74JErGMN08K59TYElvYR85u1QgWAl13r7+YcyRFiMa0VaoZnEsnhIGZKEmptHZphYr2lIS+wnXPKJrVpjuyrbhmLALDS8Lyw2d2SXkWqm7kY8wTKiSxkzfBlgabFdEnCR/77Ldg71V+ekHP/U3UTB85VQVPAc/dN9NxcMcQQT3m0ErIHlQbJBusXDAdYJihvYYTl/cSF2UfGIoCq5rlHdSMWGR4Q06mWUiNALHrViQBw6MQCeA9p1tCSh+KOFWoaWJaFP/vCGZw6dwk5kccXX5PBSIbce6cCCrZgB3K3wqXAs77cxmv2bMfhE4QkpWDFE9GOyo1mXMWiagDNtopMhErgt37+VSjkMtE2aa3OOtQUxGKt0QqRQv0QU1fs2oJvf/RP8Muvfom9cueYUiElqMBzA7FCDf6uZ163r6f5J+xiXqMlE3WiqQHj+0mGH8P3pkjmcwCs7krkywFbEeHs0l6Vm4NAYRC5jmsnAVju7wEAtDfIfXTyKkCw3wWKNrHYr2L8wD8TK9Vn/gowunszWzzEEE956ClU1t0IAM3UelLsWLBw/4X73b9p0NANPdEKtak1fYpFIJCxSHWvmXhJCsr+nxeNasOnanTyFRmOASzAkJPHW07GYjC3ryWR52GL9o91znzhDE4ePgmaobHtN7aBK5F6klfx1isYmgHN0T4r0x37dviJRTqemNQMYoXabnWOudJWIq1Q7/mZe4ijUT7jIxYvNEmD074SeSYbdrOxdxmqofq2o9XwWKEaGnRTT6U+y1gZMHnGJdJKIyW895Pvxc+95edC58v0lmnf3xzPwdIHYMse2E6vHWrUtWNaJlpaCxRFzsHK6OAUiyIrEsViSmLRsU3dW9mbqNRzFItJTQYusWg3jrF28HlQsTibn4UFC8vt5dhlmZYJ3dIhMf55HXtU77Y6VqiaqW1KsSjrMrFCTXEvcZDlsq7CthccXD0IwzLw7LlnJ2aeDhITWVJvncvPPS7rG2KIIfwYEotPMFiG9h2E6ZKUSAiYgYFtOcODSyh4L6y1Uc5wPpVRFLE45VFNihwhoxxEqQ+7IWqeNVtMpttWqPnLrFhsBhSHZ08ew/z2XW4GU9eMxWo6K1QH7WYDz3rhy6DzOVA0AwsUTMsKWWOeO3MCpkZ2Rls1fMWz0RyPxY22+wLD0BRolveRkdt378fyxfO+ZXYUizQ4hsb+KVKg4BgaNO1XLKpyG6yHsCnaxOLzfvxn8Efv/zgAJGZqaqoCjuOhekiujOf8MnQdpmEgmyugrRkoiBwsAJyUrD4LrrOukH1z5fXPAEVRaCo6OKazr6bm/BazDC9AV9VUheiNlgrRY/cJADnBsUL1Fzr3X3O97++CyEHWTBimhYX1FsbzgqvGBTpWqEFiuxf86FVTEFkaOTvUvpzhIWsG1BSWJnVZR05g3XMiDWZKEqqyBlU3sNHWUJBYCDZZrDv2wRy5RyQRi04+rJPTCMBVbkge8lnTkxWLOYGFaQGs2J8VqsQzfd23gE7GomaYeGhhA/OVDLaN9W/JOsQQT1m0EhSLAMls6xdO17y325nmOnl8DnrJgXM2y0sscilIiOyA81MDL9HrNX8H9KGTZ7HLYwXWTbFIrFA7z6WkAidFUai2dfzki+6CLCsQ2M6zaTKgWDx30Xt8uzdOCLzfVuvqPVtx2mOjFkuEuIpF1lUsak7GYkQx77++5NmoPvAv4eVwGUKY2MVZN2MxxtrUskjGYjHQ4d2PFSoAPPP6/Z3xmtoZU22f89vpCjwLZRDFvADp2iuxOGkTi5dW14ENW5kyfR2xxSzNk+OVtljkdOTLTwCxaFuqGU91xeKa4zTiudZWjpL/br29kw9bmAYoGpD9WeqpsHoCOPI5YPcLgb0vBpjL28A5xBBPB3htS6OgmVpqIoOmaGTYDO6/2CEWnYzFoKLPgaVaaOmtEFHkVRZ5lYZxCFmhBppz6tW6j+w6c/wMxqbGQNEUYHYUenFwrFAdhWK9y/NAa2p49kueDV3TQQud972ggq1Ri1eJBcFSLGiO9o1Fduzb4c8WpJlY8kS3bCvUZue3xmUs3nr3rfjKma+AYRjopu4qSBcbi6iIFYxKxKHIUQV6FYheIhLwW6GaMKGaajorVEjgSpzv/Nt//X4wLBNSLE4GxiIsz/oI2H4hZPxjkStuuML9dxSx2NbbsGC5xHali1tGGliWBd3UkeWy0E099Nu74arR5DzlPJcHS7GJeavOb3X2KSOS69OxKnUwmyN5iavt+OYg51oXOf95p5pExei9dmmKhsiIm1YsyroMkUmfsQgQNWY/isUDywcwkZnA/pH93SceEJx7m8gMo2uGGOKJwJBYfJJhvpI8yAi6aNA0halS/DwLay1MFkWwjGdAlwkPTic9xCJFUT71WJT6sBvSzFOQ4h9sPLP5UzOYkegSizbarWZscDiZf8P3t6qEbTaXFs/hyCM/AAD8zBv+F/7L/3ij+50BGoZphaxQTx09DLNFtk0JDPi2j+ZwoSq7yjRihcq7OXcAsH3PfpgB5VrHZpb89xlbySCOYynQFAU5YIXKeGxJCxKHpqpDN0yXuEpWLMoQpYzP6stLCuoaGaxncjnImoGSfb4xYlhBZpoGLDN6nesBi9+6okPyFEknpmZdezIAYFgBmqYApp7QE0qw1lSRFzlfxl9WYEMZiwCw9+obAcBVrBUzHBSto1icKklgGdol/R3FojfPs1eUszy+8Ka78IobSPG5lCHkbFPpvsxqW0NeZHu6hqZKElTdRF0xUG1rKGZ4d3733LML23kh/uVW4hmUJM5PLNrnlNfqVjW6KBZtoprqk1jcDHiGBkNTaCg6Dl+q48qZIkZ6sJUdYoinDZrx3bYASF5Yv7ALNLS3KMHyQFB13hex6NyjrO6KRQDIT3SfJg5RCq7AOterAWLxxAL2be901G7IyU+s9aqfWFzeCBc+Li6v4csPnQYA/MFLt+OP/+drQ1m9QavTR46eBvXWGqi31uJVmye/BnzsJwHT8FmhAsA1e7f7xyLtGCLEKZZSXsWihaYcrViMRWEKaK8Ri1wQxSJN0xD46GdSW1ag60bYCjVC8bbPOgrltzJ+K94keM7LsUrRt0ye4wZihZoN7JtbrtkLiqLApHy2O1aohmESYlHIE0IRAMrb7X2ZsjjnEIsJ+UOXDbY61Kkj5wehHuwRgyEWT4Q/WzoEiCVgzEMaMxxpdmhv9LZ8Uwfuex+QnwRuf6Nt8zzEEE9d6Nbjk+najVjUzWS1oRcUKEzlpnBk/YirlqRBu/aXUTBbROGVlMnGpmgS8BbUoxSL9WrdZ6969vhZbNlJmnQpi/LZg0bBIRYdQuXMmfAYsLZRw4FvHgAA7LhnB970h28KTcMH8pNPHTkVmiYOrmLR8CsWg/uWYzjAAkzK/7mjWPRmLKptNTJj0TefqbnExYXmBczmZl1CyVUsBqxQOZpz+0i8VqgAIXnSWKEuM2QcfpY6G/rOIadMhfxGQRQwOtmJY2E4xt22zSATeObuurJTS5ONcG3MyV10amzlYN5zH7jYvAjZkLG3vBdA92vWi7JQxmgmOaaGoigUhSLaWrx6OUgsOmS5oyh0MJmdBE3R2FA3YpflEKNetaNlWdBMLaSAdKZTTKVvxaJpmZANGSLXG7GY5bJQDKUnK2jd1PHY6mPYV9k3tEEdYogfIgyJxScAJ5bJAzdKfTSW673LYstI/ENmYb2FsZzgU3qxEUWJibx/vRnbDlBbPQexD+VPGhvGJEVRnAjzN16wBzdvqyCfwka17iUGLQsLp477iEW51YKUYM8ZJCZXPHl+AHD+2KP45Z98IT7x4fcDIIOS+R27Ycrk+NKwoBmmuw5BJAOF08cPw2iTwbkc8L7fO5XHhaoM2bFZoOlIxWI3XDNXAkNT4GgKNOVXZ6pyG6zQOWcKIgfTAloqydgDuisWBUmC4imceY+3s61SNg9VN13rXyZCsfjw/fe6/w4Riy1/washaz7CmuN5jE12bD9oToCaUrG41lRRkFiIHlVfXmShGiY43v9yMT5F1rF9L7H+KEkcZN2ErOm4VJMxV5YwlhOIValloWIrFq3N5I8BmB/JYMsIOXdK9j5syN1fsuuyjoLI9aRYnC6R63+loaDW1lCSOAisY4Vqv7gwPCj4CcIoTBZF1GXdJcedAmvGY/2n6iYENlmxCADgH39lAkVRyPAMjl5qwDAtPHvPeE+2skMM8bRBErGo1ID10/0v236xpbzFAUbo2GY6UAPEYgo7sqZOrlfa1NJlE+anuk8TB3kj/FlgnUHF4sETC9i3o0MsNpTkZxZRLHbGaMcX/Ra1h8+t4xmvfBN+9x++AUW3QFEU5qbGMDFa8k1HB+63j3qsw0IspDuRrRxcOQqB9xOLV+/e6p82jggxOlaozZYM07KgGEBLMRJtTF04ndLFeaC56p4jmm4gI9qd3ce+EFJM1prk3AnaWEYp3ubrD5B/LB/uvj2Aq1g8VaNAUZRPtShwLJQBWKF6MxYBoFTI4TPv+wP8xPPvSDX/pLeYt36anOcOQTi2m+wvLV0udYdY7J3o3zTsfa27xKIE1C8C1XOP2yYMVrHogZOvGMxBLMwAcq1z7aTBoU8DtfPALb8ITF69uW0dYogfIsTlxDnQLR1GwrtlUGk4lZ3CYmMRMsj9lQFRvMWpfqyWBdmQfdsRLP4n2Xs6ED3jhFSKxWNnML+TNJtQJgVVTm40kVsydE13XRNWFvyuFs1LTfzSy34JH/+zj8NoE9ehfCmPLbu2RC3ORS/EIkuzIWJx+77toel4hoepmlBp1efyoFs6KIryWaGqsuoj+YKklUP4OIpQwzKwrbjNJYAMlWyLl5xUDdWd3jRNGLrhWqEChKSScuGxyIH7CCnruAVpFDm3mlyYSHPIKW+O4vR8py7CcuxAMhaD+ZO8wLskqRwxhnD2n0Nsl7x5z33i6MZR0BSN22ZuA9A9F9WLyewk8lz3eJSSWEJbb8dep4pByGjn3HOIRTHQTMjSLMalcVTleOcz59hl2M7YwlUxRijuMlwGmqGlUrl6YZgGPn3i03jz196MmlpDhs0kWsIGkefyUA21J2Lx2PoxKIaC26ZvC5GuQwwxxNMXQ2LxCcD/+x4hqOSILqKs0HsBe8doZ6BSl/2D25qsYywvgA4MLqlA591ozj9gdewA26ceDM2bBqxNaKWB2UifI7JzPI/X3bEd4/nuxSgvMajIbShyG/M7/IpFUcqgcOsrkdlzW2j+eoBYXDrf6cxrHvomPvQHv4Cpua34pd/6I/dzhmGwdYs9SKfgy9l53j2vAgCcOnrIJb+CisU9k3nopoXzdjYmy1CgWB663jmu2/Z0JxZFjsEbnr0T182X7QG0V7HYAs139p+jHG0oukt2JxEpuhqhWOTCikUuk4cFkg8IALQQHgyZnhe1YIZdPaDOaygGMgGybGq287LiZlGmIBbXWxqKkl+xmBNYKLoJjo8+t0SRfF7K8GirBi5UZZgWsHeygPGCgIaiQzesgWQsBuGQs8F9EoWGoqMg9UYsTtoWpst1GYpuYizfseHQbQWRSRF7Va6LWmKmJKEma262oksseuxyHcUiE3OTcO1WI7r2Hg9IHINz621Usjyumy89IdswxBBPOJIyFk0dWE9fDArB6Zr3FiUYPqygChb8vDl+MbkdlrdL/3ITi1EI2K96FYumZeHSyjr275h3P2u0VUhi/Ha2ZQU61VEZnPAQi589quGn/vQLGCnl8a+/+3LX+pSiKNx89Z7EzXzk6OlUPwcAYGjECtWjUNy7fQ68d6wgV6OtNd2MRWKF+gdfV/C2byhoKlqIPIvExQP2/AzQXgNlF3dU3SA2qLoMPPD3wJH/cGd5+U4NoyYZWxbz/sJGlGJR1XT/tnaDXdT68gI5Ll5ikec4X+NVv5AiSNcX3XUTRsqFiKnDqBQ9hbSNs0StKNrzju4m17easutfsN8zelAJDAz2vtbt8XQ+KwEHPg58691hhfNlQt/E4sox8t/WGmnG8EKTyXEZ2wtIJf93pTlAqaZXlNYWgUf/Fdh2F3DVjxP19xBDDJEKSSolAImkIEBs/7yYzk7DgoU1iTyraYtOtkJtk3vbWjt+zNXNCpWlWB8ZGZex6FUsnj9zvkP6pchYBGzVoj0M8BKLjUMNfOePvwOaofHG97wRjNQZG3itM6PQE7HoWKF6mpzGp8dDFpE8zcPSLGiM5iN+NZMoFuVWZ+wZVCzKup8sc5Sz3gzLq8eudq1qDdUAL/C+nGqvFapujy+82ygb0YpFJyvSsXqlLfLObVHhZiXVVEME9NR8ZzzLcIxLem4GkhTeTtZuFnYyDL2oa34nj6BCtR8cXTuK6ew0tha2Auiei+rFbG4WWb67hWhFrKCtt2NzWYOKRXDkPIu6NqdyU6ir9VgVsmqSZ7uXRHTIxiBRCRACUjM1sDzr7vtuWGmv4N3ffze+cOYLLjGY5XqzUs3xuchjnIQDKwdQ4Au4afKmntY1xBBDPLUxJBYfZ1iWhccW/S+XDqGSE9hEC8o4bPEQi185vBT6frIQLtzkAs9AR8Vo2X75Wb7z0IqzKwyCtouQlkU65lMTGz0EondfFhkMWJriszKVm2Sf+xSL7RbETBbZfXdB3HJtyLpKUxWf/emFBUIsVg9+Cyv//sfYe/Oz8a6//2fkiyXffHuuug4AoJgMdHtgmC+UIEqkMHH6eKcjXtYMX27mttEsGJrCuQ0yeGFpChTjP1jZXB4j434f/ShcOVPEFdPE3sxPLMqgPYVPJ+uyruguGZRohaoqhFj0KG69KjZHsUjbqsiRrGD/7R/MLJw6nrj9QZK8oei+nD4AmJrb6v6bZnlomgoqRVdVta2hnOFdVR5A9kOUFWoQ5QyHtmZg0T5GV88WMZ63iUXTgpTt3/8+aZ0A0OrygmDBQkPRUZS4rgSgF+N5ARSAxSo5370KZl3TIEoZKF3IQAezFQm1tu5eT1FWqJphQeTil+XarXI92OQNEM627p/KYzT/xGzDEENsGt/+C+APiqmaLSKRRCwCwNrJ/pYLdKxQvV3HDB+2ogwW/LxkZpqiexor1Nx492niUJwLfxa0QvUoFh0lt1ex2FS0rrl/st65nzvE4peO1PHSf2rjlj2T+OaH34Wpit8V4JZriWVUMJvbwaPHerOyFTj/WITjWOywu+N1iifESVQRxSnq0cQK9YFFEw9fMtGS1dh8RB8cJWJmFLBMsDL5W9MNYhcaoZT8tRsUPCN/EYBNCp39DnCGOCQEFYsXlrqc51EIdMvvmOsU8wSehToAlUA2DekaxCP/DDz0UQAdhWpRANmHle0d0ntkJwCLKNzSgGZJxmWXAvxlgb1Ozb52chmJnFP1i/G5ngOGKPBge3VvWbgf+OLvAie+Et2EsXKUEPHztxHS3IvSVnJep7nHWSZw/98AQgG4/c0ko3GIIYZIja6KRVOPJQUB4Jvnvukjr4pCEVkui/UcsQfvplg0m+TzNTn+WcQE7xEB8AzvUyJRoLoqFk3DdIlFyqSgtlRwMdbiDrx5iCvnCLG49sgaTv/JaRTmC3jvJ96L0Rm/7aRDLMZZwfaqWKTYQLM8RWFrwEGBZzrEojePTzftjEWP7WswY7EWsPx2yCEvsXjV6FUd4rCph1R9TiYjBcolFr1WqIoetrVs1ntr3NEMLURqTW/p3P8ZkRmIYjFKWelANuSQmrcXm9I0MC0TxzaOYUdpB6Zz5PcFyd8k7CrvSpVROiKOJBKLim4rFm1i0WItcAwXqQCcy8+hqlZdAjEI55zyKvqcaaPIvyyXhWaQ5oQ0dqgPXHwA77j/HVhX1vGqPa9yP8/z3ZWbXhT4Qk9WqJZl4cDyAeyt7O1qPzvEEEM8vTAkFh9n/GBhI/RZSSIPux1j2cTMvzhMFzsP/K8cWcJSrfOwFTk6Ut1X4KPXY9k2RzmPcrIbkeDAzJBcP+c3JFmdXi643XkU5VMcqnIboiRhfGrW/UxutyBKGVe9Z0UU37zLWFkk/vaZ2T0oPeu1uOcNb40kofZccS0AQAeNZoAIajUbuHiu45PfsrP6HAgsgx1jWTRtazSWoUGx4cHQzJZt0TsgBl5iUVMVUB7CxrGVbauGJ2ORxq88h5Cw5ax//ZoiQ5Ay0GziiAJ8JLKukoEXzZOBz5hNzFCBgOpvf/k/EAcKRKHoVUc0FR0ZPkgsehSLbDrFomlaqMsaRnK8j3zLi0SxyPLJxbxShoesGTi/IaMgspgoiBgviGipRqQKeRAo2sRit+UrmgnDtDCW6607kGNojOR4XLCJRccaFQBMw0Amm0NbNcAzNFgm+X4wX85go61CtQfeDsEYVMEKLONmgwbhKBYNTz7F4wnHCvrm7SMoiN1fRoYY4kmJL72V/Hfxof7mT+ieh2XntvUL+yWf8hb0WL5DQjkIEYunO/9OY7GTRrGY20TGYhQCBcD1Wqd722m82r11xv2s2Va7WoI29c6z8Ph5QqZcOyPhD+4S8J7/cQdyEfZIN19NiMVGO1zY0HUDh04shD5PAh/RJb1nGxlTKVzRtm6MKKI4ZCNFFItf+5kMPvWTEpptmSgWlw8Dx74Yv2LHTipPGqo4m1hUddtK1cl2dPa7rmBEAhS7mFfIZYATXyVWkbocUiz++1e+i22lHl+HAko/v2KRde3sN4NUas4gHv1X4NC/+7I/r5qw98vUNZ3pRnaS/9YvpV+2WOor83RTMFT3nqCbgCR6CD7LiM4tvAygKCrSQjcRjrq6tkjuW1TgnWjlCLmHzVwfnre8hdgsp9nfJ74CLB8BbvxvwNxQITDEEGmwLncygZPUT6ZmElIwId7iRPUEHrz0oPs3RVHYXtwOOUfeqWjQsGD5CC4vrBZ5vq/K/TdK8AwP2lPWoyzK9zcQzlgE4GYswgKUtuIj2KLgVSwuLxC7/Py2PMZePIYb33AjcsVw7MkV1xNiUVfDhI1lWTh1uEMs1tWI3GoPGJoJEYu+32GDZ3hYelix6BCL7WbnmAd/t5MR6MCZ37E2lVgJZbHsWqGqF9SQ+lA1VZeIdHIOvVaoqhme576v3pf000PoqliUGJfU3AySsiCjSKfg/tssFhuLaOttXD12NcYyxBUqKtsxDleNXpVquhFxBC29FZntalmWu05HTWrSJjiaAxN8tgPYkt+CDWUj9pp3bFW9VqhRuYsOMlwGqqnCtJKJRUVX8OGDH8Y/HPwHbC9ux9vveDtesesV7vdpLGG96FWxuFBfQE2t4aaJm1Dg07lrDDHEEE8PDInFywg9YhD6mYcXY6fvh1QE/MRfUzHwD/eedv+eKko+C0IHhS68Q9YzT7+CQqEHK8ZBwbIf7hTLo1H1W5nObt0JmqZB58dggnKtUB3CK2jFCQCN6gYAwGhu4LHvfAnNeg1cYQzFm18Re7y27OrYjwVzAk8fP+L7u6UarkrQwbVzJfffLE2BighZnpnvjViUW/7ihJdYdIiTtmpA001QADiWxlWzRRz+Py/AXbv9ag5NVSBmC66ZLstQvqw8XbN/s71fJwrRxOK9X/nP2O0tCDSaHgUlQDIgs4F8v6nZjp0c5VqhJg+ia7IG0wImCv7tIcSi0VWxWJRIJuXp1SYmiiJyIouxHPmN1Xa05cVmIbAMRI5Gu4tisW5nMI5HqJS7YaIgusTiZNE/qJWyOciaASGFYnGmnIFmWFi390WUYhFAovrRsYRWdRMMkz5kfFDICmR/P2v34G1thxjicUcPnb0u1FbyfIZOFEP9wi5uUV7ikOG7Zyx6c8q6dPADSKdY5MOFsH5hAWFiseovsmybnfBZnzbaSlflXlMhT9wN2cIXHjiB5bUqRnMsfvcuAUyMrYSTgdhSws+lY2cWoai9Pa+ECCXD3u0OsVgG5PVoYtE5pgyLRquNu7ayeOkeDq22QojBL/0B8MDfxStkHWIxMwIwPDiVFIQ13fQTiw5sQsdpbinmsiA+bypghNWhn/jSdyBx9rNIDthVxiGBWBR4LpSf3Q9SqTnj4Ll2r56gCak14Smu5cYBLgu0ViJmjoFUIkR/WrvYQcBz/RumhXxwn2wm57VHBLM6e8LqCZcYd3HpIFDeCthNmT6U5knzRrfj01oDfvARYPYm4PpXh2yYHxc49880TRxDDHEZ0I2MisKZWkexn6R+slQLhmUkKnYERsDHj3zc99ne8l733wyYxPW4VqgJisVu4Gnel6MclbHYqDZ8isVCudDJvzNtgq3Lc6dRbcCyLBiygZM/OInlC8vgchwmfmwCdIxTzpzt0GDo4X24trSG2kbnuesQLnFgqbBiEUBIsSgwAizDgs7qkYpFnxWqrPp+d1Bx52bf2ePJufycjzTRVM1npeqsxyEWo6xQVUMN5eV96/PfivnV0VAMJaxYnPcrFgdihZrQVCPrcuja6Od6TMKxjWNgKAa3TN1CMgJBxyoBvZjNzWJLYQtm87NdpwWAEWkETa0ZqVhUTRWWJ0aK4zloFlGMRqmJ5wpzaOvt2H3hbL9PsRiRu+ggx+WIYjGBWDxbO4s//t4f48GlB/HynS/HO+54B+6YucOntO1VsZjjctBNPdbSNYgDKwcgMALunL2z77r2EEMM8dTEkFi8DLhpaxkA8O3j/hdCw7TwmQMXLuu6t49m8c/fPwfdVnqN54VIW8tCFxGOo2IDogm3NEjK6Xs8UPdYoQLAlh27AQAjP/3/4V5jF+R2C1Im6yPZAICWCmCyZXsZVajLp3HhH9+C+voKli50t41i2c6+q7b8D+LTxw77Bv4t1a9YBIAbt5Aig6KbJGMxgliZ2RIOKk+CV7EIwJdNleEZMDSFlmZCMywfUShyTIj80RQZfKYzoOYY2pfDqakKBFGCapLPHMUsxQlY+IufxHMqVVDtdRx6+Pux21sQGNRl3c2oNEwLbc1EIZBB6rNCZThoancr1HX7mMyW/APlnMBB0UywfDLrXrQVxuc32pgpSsgJrKvKrEYoQwaFsZyAS3U5UlnrwCHxJgu9F5cmCyJU3QRLU671qgMpmyXEIsf4SOQozNj7daXu5GA5GYv+YydyNJiYQafAMuAYCopu+jIr+sH1W0oAgNt2pLfkuHq2hNt2joYI1iGG+KFBN4vB1jKAPruOAI9i0UssCmErzWAGXK/2q2mK3QN8+bUoDgjYInmtUAFg33a/fWpTVrtaodYUE8fXTDzvH1tYqTVx6txFHGmS57DORBcZuIQxWK82qEAcsUh+i8KXyLFSIooormKRQcNTzLMsy0+eyVVEwvmcooDiHDiV/K1qdsZi0Aq1SSIBFLug5irNDOJo4FWeVRttfOW+hzvzVs9Fb0MQgfPSb4XKQRmAe0FfisUIXD3BALkxIFPufEhRRBXXWgUSlDj+DRohuYCPJ7HoUewZVtjGFrXz6bd/k+g7ZxEgVqilTiMcTB1YOw6M7QGkcnh6x2K5sRy/TMsihDzNALe/BShtiZ/2csJRvw46q3aIIVKgpbdwtta7e8JKu1OjSVLkOFaSSQqpXeVd+Nb5b/ksNHdXdrv/dpSDbSNaGWkpFmiKHqxiMSJjsV6tu6o7wK/yo0wKSktJJJGcZWhrGk794Sm0G20snOzufEAnvDee7iXrGdFWqACwbbe/4ZpneMAEdMZPLGqmRojFtj9j0Uss1tW6z97TIRadLM4thS0+QkhXdJ/i0TANmJbp5ufpegSxaKo+gkhTtd4Vi4aaaIVKS/RAiMUkslnWw1aoDW2wisWja0cxk5vBeGYcFEUhy2VTWaG+YNsL8PfP/3vXPrUbRqVRtPU21Ijs5uD6MrkMFEMJWRA7mM0RMnO5Hf0Md4g6b56ic57GWaGqpgrDMnzKV4BYxX757JfxZ9//M9AUjV+/6dfxphvehO2l7SFyrygUI7cnDjmONA51s4t28PDyw9hV2oWJ7ICdYIYYYognPYbE4mXAnknSDfLvD1/ASqPTeXX8UgNLdQVz5f6L1d3qX9fNlbBUV9wcx5EcH6kczMdYoTrICZu3/9uMYjHD+8k0J6evFzRq/iLVnCdfUWFEyO0WhEwWdEBJN/KCN6DygjcAAH7wnW/g4od/DTQvAaB8GY2ptkHxF2BOHTvkIwWJKs9fnHWIEELy0EAEsbjnymsBAJNTM6HvoiC3/QMCyzMQpSgKBZGFrBGFIBsgCoPQVAV8tqPw4BgajMceU9NUYp1pF9bKWQ48S8NieJhyAzsKFh74xhdBJxBGeYFGXdag2QWjlm2fUhCDikXPSxHLQU1hhbphq0hnAtdhVmBgAaD45OvTIRZNC9g2moHIMRi1FYv1FMH3/eJVN83h4GIdp1e7ZxeMF3pXOkzbhGBOYENNAVImi7ZmEsVil5uQs1+d/exaobJBYpFJbFrICixU3QDDbk6xmOFZHHnbC3DPdemuFQD4nR/dhz+85yqM9mgpO8QQTxt0IxYb4TznnkAzACg/schGKBaDVoBe68MoEiuINIpFG3FZhL3ApLmQ5WGIWNwx7/s7jRXqNw9dwM1/24QFC5ZFCL3vVsdAvbUGo7Izeib794hM+Hc9cuw0JsfKOPrLWXz9ZxMIk2an+BplhXrtXjKeKU3Z45pmRBHFOaY0g2YrUJxJQ555CzqV7eDUDQBexWJA5WFvg6LrEAUevEOI6gpgmT4r1P/4zmPQvFZh9QtEKdYNAauvLdMdZweeY93xz2aQ6XJOpMXV4zRQmAGEQKd6ZQdRe6a1FMtUbMXi5RvnhGATuJZFrFBDBHxt8XGzZ+2bWNRaZD+Pet4f1k4Rwn32JnLfC6JoKyyCalwvFu4Dzn8fuPa/AttuH2iDxBBDPFVQV+s+9WFaeAv+SRlilkqen7LWuU8GSci9lb1o6S186cyX3M8mMp3COmORMYGT0RZah2Uhw2awIW/09iM84Giu54zF+Z2esUgKK1SGZXDssWM4/a7TMFpkf81uS6cGi8PpI6e72q96wdJsZPXSyYqc2ULe9QRagGVasGgLVbVTDzJMAzT8VqiGbvi2IZiN55BADmE2k/O/T+qqP2PRmdextHSsUL1Eomqo4IXOsTh832G0Gi3ki+kVZVHEYmmkBMu2zmd4JtJ+tldkYtT6PM2jbbQvq2LRtEwc3ziOHaUdKAklAB17zqRGawfjmXEfmZ6Eikga+6O237VLti99MSMSYpHmwVIRAoA8OUfWYiIlotSJwfPGixyfg2rYVqierM6aUsNfP/TX+OTxT+KmyZvwrjvfhZfvfjlKYilyvb1aoWZ5QmIm2UU7WGmv4GLzIq4dvxZlMaJhaoghhnhaY0gsDgB//sWj+P1PPep7wNEUsVx8z1eOuZ9978w6ShkOW0bCnShp0S3fbLIo+ojLksRFStErdi2Hi3n4Zz3qIq5XxaJTzOJSnl5MmMQMFvi6iKQiEVQsBklBudWCkPU/YHXThLj1WlC2yuHD7/sziHNXYvK/vhOWaUQqFhuahS2//hk0lHAxqh4gFk8fO4ytOztWqU1Fh2r4B2TbRzukHUtTQIQVqmQTe6KYjqQOKhbNwDILEoe2akLRTXA0lbi/dVUBl+nsN46h4D1FTMNANl9wC2s5gUWGZ1wyU241ce+X/xNX33grWC56sFcQGNQV3c0UdAjaUkBJly+WQNkbSzEcdF0Fd+774NeOx5JW6y0NNBW2C3VVul0K0Q6xCAD7p0nn14hNQDUiLOcGhdfetg0Sz+Dzj11KHEwzEYrDNJi17xs5kYUQuHalTA6ybhCVYZd7UDnDQWBpVG1bVtUwwTEU2IBFTtAaNYgsz0LRLdADsEIVWAZSl/V5QVEUJovi0MZjiB9edCMWm8shZV4qOIpDuQowPCgvaURzEcRiQsZiF1gWLp89X+NSJKFh0mxYsRiwQt2/w69YbDiWoDHgWAa/9oFv45oJGt/97+TZf+Ksx/0iSBg5sIufeS78vHj02BlcuWsLdo0wuHML252ktcxIxWJGtDOHRuziYpSdqakRspWi0Gj5j2c3QjWE0Z2gbKWsZhjISkKsFaphmCh6ySBDAUwdGY9l2Se/cQA3XOEhZqsL6YiqgGKR9+wbYoU6CGJx840tFOyMxdI8ELTAGttDruOYYnd4g0YArfmEKBYNCzBMIB/Memosdb9XDQh9E4sNO8dy+obOZ8tHyP1u/pnR8wg5QCySnMUoqA3ggb8HxvcDz3hd/D1giCF+CNAPsehVLDrZZVFwFIuK2blPvu27b8NHD33U/bsiVjCXn8PBtYPuZxRFgdbIWKCbYhEgiqTNEDIcE0EsBhSLjWrDl7G4ddfWzvQmBbklJ6rTcvkcPvHBT4CrcNjxezsAAItn4iN+0uD0kdMhG9MkMBTJWGQy5J1Os8h7N2s3pBfL5L2cZ3nXVMN7rHVLB03TaAfGIl5icV1eD6kcAbiWkkGFmq7pvhxCN5PRbhoxDRO8wIPzjBNUQ/W9Y/7gqz/AzNYZjE2lj+CIIhYpigKcXi6RHgixGJexKHES2lo7ZJM5SMXiufo5yIaMa8euddV9Oa633L+0cMiwmha2xHcVi/ZpIWWljmIxomhWFsoQWREbykbkulRTBQXKR3o655wYUYfy/mZHsXhw9SDefv/bcbZ+Fj935c/hrc98K66buC50TniR73Gs4CgW0yhEDywfAEMxuHvu7kgV5xBDDPH0xvCqHwAeWtjAP3//HC7WOjfd0ZyA/VMFfPyBc6494vfPrGPfVD494dYHKIrCC67s5Hg4+XlBOJvABG3GbGQ9isEgIRBEzs5jpGwix8nYS2uFSrGbV0dGIahYDBGL7Rb4LLESm7RVhKeWm6BYHpZlgRcEvOQnfwZjL/8d0AIpKCwunA6t5+gG+e93F8L7shkiFg9h2+59AACjVYVpAQ3ZP42XEGMZKqR+6AdBYtEILLMkcVB0A4pugGWSc/QsywIrdshxjgmr2DJ2Jh/P0OBZBhmOcde5cukiHrrvW7jt7hfErqMo0rAsYMO2LXWIxUomPIDO5MlLBMWwUFUVwqVHMaZeBBdz3io6yQoUA0o455y3uhSiHWKRpoB9U3l3HxQkFk3l8nXyZwUWr75lHg+f28D5jYSXU57py4Z4ylYsFkQOQkBNmsnmoGgGRJYhZHcCKIrCZEFEta3BsiyivI06R/hkwjAnsFANA7wggL1M94ghhhgiBl0Vi5cAKSIbrBscq0ldAdgAsRjqKqb8ajVdiVbEBeA8v1RNv3zE4n1/Q/4btO+kIojFropFBbmMiGv3bcdLn3NLaFWVUgFvuucGfP7VGVQk8tt8xGIXcIwVCst+5OhpXOUpKnYliww1klh0kRkFQEUTIYZOFKoU7bNCBeAj+VJhpGMvZ1l2DmGQzHSIHATIIJ1kMHuLQJ/7zkHc89xb/fPWUuzbBPKRZxnIA7Af65l0jcC2MoUcTwFje8PuF6O7AaUWb0EbRGaUZB4Gz5V//xXgn39209saCfsdpalROFszkfceT7EIwAJWjkXPO2BsmR7HSKkPAq9xiTSsje/rfLZ0CCjNkazLOBSmybGJsnp98MPE2ve2NxHl6RBD/BDjVPVU94kCWG4FFIsxSmxLsxWLuozaQzVo6xoKQgHvuP8dvunumLkDAHzqrXyD3C8cK8yk4nyWyyYSMlGqKC9CikUrWrHonWZ+V1ixKGUl3HjHjbjihitC6yiUC7j9ebdj/pfnwRZZUBSF82e6R8Qk4fSR09i2d1v3CW04ikVaIr9DsaIbYwRagMOrrrY741nd1MFSrE+xCMCXkdjQGj6SN0gsBmFZlo+YdIg2r/IsmIsXJLMf+upDuP35t0cuPw6qqfqIYgeSRNZL8wMiFmPscTNsBibMkE1mMKNyMzi2cQwszeIZU89wPysIBaiGmph72g8cxWLU9rtWyDaxmMlliOqUiVYsUhSFqcwUamotkgB1SGHvvA6x6JB5XmS5rPubx2bHID1fwl8//NcYk8bwv2/73/gfV/+PVJavUTaraaaPU1t7cWD5AMm0LGxOxTzEEEM8NTEkFgcACyQr75vH/JmKN22tQNVNLG6Qh1G1rWHnWD6W8EiDYPdZFG7a0in2OaRgGrsAL7JC50HHBRRK5ay/+OeMW53wYqVNHshB68M4WMrlsTEKEosz8/6Bq9xugZPIw3v3NTcDAH5w4jyW/uWtaB36BrL5IorlUVD276IZFotne3t5aao6dLsosL66jI21VWzd1SEWAaDajh/0sTQNKyIUulfIQcVi4NIvZUiHvaKZtgIx+TzzEos8Q4fUgZlcHm3VgMDRYGkKGYGFYQGCKOJr//kp6LqGZz47nlh0shTXbDtNh7ArSuHBG+OQTjTrktrdth8Iu0blbMUiIxGyWcoVgrOQbbOJxbG8gFKmcy2MZAU0VX0gdnpxeP1dO8DQFD7/2KXYaXICC74PG+KpInkpKmW4sGIxm4WsmZGZm5HLKoluRqYao4LNdlEQ5gQGqm5hfsdezO/alzjtEEMMMWC0ViOIPg8ay8QasUdYNolhwQIYAZSnKzxkCchwfsViM539qpNz3JBVgBmMnWQITkEj8LJt0mzIYiFMLAYyFtsKshkRP/jEe/Cpv/o98pmHgCvlsxgv592xWDEr4vjZ9CoBjgZRDXpwYuEiruxBJQBdjrRCdUGzQHY0mqRyFItA74rFYObmiJ9EyUpimMz0kM9+lZkFBOyc6i0Z99x9q+8zXDqIrlDjx60Cx6LdL7HoUV+OV0oAgFKu/3P46gn7OetVyzlwsvFqKQvD2VGiWAwek+YSaQBorkTPtxloLQAULrYZnFy3kPdasmXHAE4CNnpXK/WDd//m/8AH3/7m3mdsrhCS0FUKWMDKYWBkV3S+ooPiHCDXCIHoxcVHgFNfA674MWDXc/uzdBliiKcRTtdO9zyP1wo1iaQIZiy2T7Vx9/zd+KVrf8k33Q0T4XtsziI1BtV+N00qzuf5fCIhk6RCcr7vplisVztkmamb4YxF2wr1XR95F97zifeQbVc6959sIQsxI4K23xFLEyUsnt6cYvHMsTPYtqc3YtGiO+/ZccdNZEX39weJRZqiIQeanIKqvKVWZ7zpEIVJlpqRVqiMh1jM+4lFzdB8hFNttYbbnndb7PKjoBla5HkhcIQAZQQGxgAanh171qCa1bHxbOr+87YfYtEhbb2EPwAcWTuC2dwsxqSOkjPP5xPti/tFErHoWIFSKjmnfIrFGHXeTH4GNbXmEtNeqIZK8kI9xagoFaODHJcjGYumgelXTMO6ysLztz4f77zznXju/HNTE4bd7iNR6wX8iu0oNLUmTlZP4urRqzEijfS0jiGGGOLpgeHbyADxpUP+Yn9OYHH7rlH373KGw46xbApqMB5Bki8KURaQhw88CAC4dPZE6LsoeK1QgwNTR3n01pfsx3P3jaNskyu0SyySgovI+0+vzrPz8hEvXgStUFnO/zBtt5pgRfLApCjg4rmz+Mjv/AyUxSPgKjPI5os+crIyMYPFhdNoNcjA/Msf+2tcWEgoaFgmWooB3c5QPH3sCABg2669AADTJhbrcnjA4ewrolhMf5kaRrQtRFCxqAcu/XKGR1sjikWOTs5YBADGk0PIReTuZfMFtFSiDGQZChmegWaYkDI5HD7wIHZdcTXGp+M7mvIC2b5am+wbR/lZlhIGRDQLTQ0HbqeFo7y17O4/MRPuGAOIGibLM5gpSe48ADCa49FSDRjm5Tu/Sxker7xxDg+eXY9VR+ZFDnwfzQsusSiF55eyOSi6CdEmirthtpxBTdag6iYUwySq1sB83uaFKOREDqphgqIZ994yxBBDPE5orQJ89D0QACETkoriMTjxGBmLfP/oIrFC9b6sBl+mGc6vWEyZ68jZTU0tWYvMKL6cMKMUiwEr1GLeXwBotGQfwbZ4aRV3veZ/uX+XCzms1Dv7aedMBScWLuDwSaL+/PU//QAOn1yI3SaeRoicsCwLV/VCLBpasmIRIOSJEraQgqHZikUqrFjslrEYJCoDxGJGFID2hn8aD8FVDNpXBgjBnbNjuGJXp7iK3ASwfgpdx6lJikWORqsfYvGxTwKf/EVg7TSAjppzM8TiVeM0lpomUNka/nLEzsWsp8xLlSpErRi0J3YwYFsyAESxyImu4DbvVU5QNDC2j+QsGpfBnvXiIx2FNQBR4PvPvSxt7RCLzWXyu6avA/gEe9XSPCHNvdeurgD3/1+gvBW49Zf6au4YYojLjW+d/xb+9pG/vSzL1i3/tW5ZFs7Wz/a8nEv1Ts0myQrVyVhUDH9hfU9lj+9vnuHBBNyAOLvuYMjkeZCUU5bjcn0RMgt18uxPk7HYqDV8jebjnmxgmIDckn0EW3Wtiv/5X/6n+3e+mEe9WieNYQDG5sZw/sx5qPa796F7D+Hk4ZM9bb+qqNi+Z3vq6YMZiwain7UCI5DprA6xaFkWDMsATYWtUIWAe4KXjHSIwjjFIuAn3aIUi9nAuE8z/cRiYaSA/dfvj11+FFRTjSShWDvuhuZpaAOIaHFsZqW8n3x1fl/T436mGio0U3Ptf9NiW3Eb7py5E19Z+ApObpBzyDANnKyeJPmKnszAAl+4LFaoGS4DkRHRihjfuWpje3dKWQmqqUKghdB172A+P4+qUvXZ6jpQDAUczfnmdVWMERFIDnEo6zIaegPj0jh+9fpfxd6Rva6wIw2ilp0EV7FoJBOLj648CgsWnjX/rJ7JyyGGGOLpgSGxOED84MwG6rLmo+HuuaYT8Lx/uuCScIOCFGN5uHUkYLmgkgeCppCB1Lg9NshtHI+c32uFyrHRRMJMOYOfvGkeFVvBSNtkhEMsBretLJLlcDFBxkHI7f6VjLwghhSLUct3lHdrJx/FG//rj0JVVEy++l3gJ3ciVyj6yMnK1BwuLJyBrpNRxXc++0/46RfcjE997AMAQk5jYHQZDUWHZpgovOodOCvz4AURU3NbAQBGiyw7qQDF0hSsgVih+velboVVqG7GIptshQoAtOAhFhkqrFjM5tC2rTMJEcdC1S0wtpLktue8MHH5WZvAqts2sQ1FB8/SEJKUeAwDXet/AO2QhGoMOevFHbvGcNPWSoBYFNBSyfG+nPjl5+yEaVmxdqh5sT/F4kRBRF5ksW00Gz6emRwU3YDEM6lyB+fKGVRbGlTDJGQ1Q4XI53xXYpGFqhvuC+wQQwzxOKK5DPAJHbCNJduKsDc4isW2ogFsQLEYfBlleD+xWL8UmckcBGsTiw25/0YTL8ygFaEcQZ7ZsGg2ZF++UW+Gl+FBsy0jZxelHnzsOJ7xyjfi0uqG+325mMNyrXO/3zFdwYmzF3D0NFGafe7r38O+F/08fvvdHyLbEBiMcLQVUplRFIX9AUvWRHSzQgWA4iwg16AaFjjLsz7TsMnWiIzFhDwnAGGiMu+3eipmOL8KUVd984Ry8QL2//fcebX/mTa+jyjgkogqy4on10AyfeVe7cfOPQAc+CcAlk1sDgY5nsJ62wK4CAJLKgNiCWinVBpm7EaCKPL4ckFtAp7ibChjcfo6orgcoPUaAELmfevPgAc/RM7fzWJ0V+cYbJwFQAHb7kyep7yNKFi998BH/oV89sxfIaTqEEM8CfG1ha/hIwc/gjU5+n3fsiwcXE2hDE+Bmlrri5CTrc51pRkadMfiOfCK4ygW2wn3fAcTmQnf36yt8jfa5B7i2ilGIM/nQ5aSSbAsC5849gnXPpWl2RCxGIRpmGg1OuvwPfs8VqgAURL+4kt/EedOdZor8sU8GtWG23czOjuKxTOLUO2xVrPaxH973n/D29/0drLIlI22vSgWGYrxKxZjiEWREUFxFBiDwbpCnACcY0xTdMgK1WtlKjCCLxvPUZxFZd8F5z++ftyd11H0ARFWqAGV7LXPuhYM01u9RzVU8HS4rugQTYOyQo1Dxn6mec9b51oMKuiMRvJzlKIovPPOd2I8M44PPvZB1JU6FuoLUAwF141f5yN1i3wRih5vX7wZlMUymlozNI5u621CmNkfe61Q44i9+fw8NpSNSAtk1VBDuaiOijFKAensa+89xEtcp0UcCRoHiZVAg3bJ9TgcWD6AqewU9pT3JE43xBBDPH0xJBYHBJamsNxQ8NDZDV8Z3LFXBICtlWxXlU6vCFoWpgVDUzjzxy/GJB/9oJB4BlagE2jfZB6TBTFWNemoilRHsRggFp25qJTWBcsX+7fX4MUMmvVa4qC23WqCsbMTj33poxiZ2YbJn/5TWBp5aAcVi6PT8zjvsUL9n+/7NH79He+BaZDfU1v32zewRhsN2w6SrcyCv/U12LJjtztwNJUWGJoK5TB6wTE0zAEEIAdJWi1Q4xzJ8mipOrGtZCh0E6XRvGcAztKh6V3FIkeDo2lkBQaqYWJ16SIA4JkJ+YoAUWyO5gQ3W7Gp6JA4JlmxSzPQ1O4e8HFwrk1F704Mvue/XIdfeNYOX/7oeEFAQzGgGZeXCBvPi3jZNfE++kWJ64tY5BgaX37zXfipm8PFZiGbg2ZYvoaDJMxVJDRVA03FOafCdrnee2MU8gILJXiiDjHEEI8PGl2IRbXRF7HIm54X7CCxGLRCpTm/1Whzyc7ySwbLeBSLA8CSh+QDACwfjp3WCigWKYoQk81WfEHRq1j8yw//O6bHR3D/x//c/b5cyOHSeqcItnO6guOejMXP/s1b8f/e/Rtg7THXuRU/8cPR8JETTdXC9tnJ7qSeF4YOnutCLJa2AEoVBy6ZGDGXOoSMqbkZi822/xnds2IxYPs4JgWety0/SRZUhwYJwXvuvNr//fh+oH4BGSQUqnUZSYpGgWPQ6sV+bP0McO9fAhVbtaEMmCQDwt7vDirbSEZlt4xNoJOp+ngTi5yHWAxmPc3cQFR9aXIxe8G5B8i5Yihh69d+MHNj5xisnwYKU4SIT0JpjhCcsm2Pu3YKOPwZYPfzgX0vedzV2EMMkRaWZaGm1mIVeh86+CG86jOvwr2L9256XZea8dEQcdAD9zuvYpHi/fdKN2MxgRSMg6P0chSLSaqfPJ/vSl7K7c42/P2jf4/fu/f3OusKEBJxijGvHaoPJiA3ZZcg+/RHPg1BEvBX//5X7iS5Yo7M7xCLc4RYdLD3lr34P+//P8iViNtFdal7fm+xUkR5LL37BUuzPvI3qGB1ILACKJYCq7PYUDZgWqZLEDIUE7JC9RKLo9IoqmrVPSc0QwMFKlHt5Sg933fgffjSmS+52+AgqFgMqmSvfc61scuOg2ZGW6E6pDLFUdAGNA6OgkNsea8Nh+jO8/484to3a9Brus/SNIgsn8VfPucv0dJb+MBjH8CR9SPgaA43Ttzom64gFCAb8sCtUAFih9rW26Fly7rsIzelrATVUCGyYqwV6lxhDoZlRDZYKKatWPSQkoqhgGO4SPLPIWqTVM9p0KtikaIoSJwUqbp0oBoqDq0dwhUjV2BU6v6ONsQQQzw9MSQWB4S5SgYMReELB8MDXKeeXspsXhoeVAt1U/10Q5zlJU1RMGW/fddbnrcHv/b8Pb5cOd88THTGYrELgWDGdBxdWjwX+Xka8GIGlmVhY42QfXQwg8QCDF1Hu0l+440//bu4/Vf+HJVKBfoGIb9yhSIa9c6geGRqHhfPdaxPWUHCc1/y43jmc55PFmn4fwert9FQdCh65/Ottg0qmcFCQWTRTFAsMjQFa5PEoqHrUJXOoI/jhRD5VcrwaGkGUSxGkEBB0J6uvUibyyzJWBQ5BgxDISewUD2E3dade9ENhKjToRsm6rKODM/4iLwQKAaapsLIjKBW3IF7T6zgOydX8d2Tq7jv1CruP7WG751ew7n16EGZwBKVpJqCWGQZOnQdTORFNGSyvZcbv/rcXaCpUGMtAHKf6TfHdbwgYrYcVjYIGfKC0I0MdDBTIi8bKw0FimaCj7DLzQnJ98O8yELRzZASeIghhngc0Fr1FfQj4RANPYA3PPdfhgfl7YINWjqxvN8GsHEp1TodK9RGezCKxTOLAavIpXilhUkxAMVghCHjoOumyH0umLPoRaPVRtvOMfqr3/8lfO1D78DUeOd3lgs5XKr6FYvnLq5AUe0ueoHDK194J17342QsErTjpigALUJOvOZzHPa8p9GbDSoAmDoEnsMDi2S8YkYp4EpbgPY6vrdoYNRa7ZCChuaSrT0rFiMyG01PbuaoGBg/2fmKDq9XyAa2M9A5fssVAaXEOFGBbePXEYsEG1QA4FkaLdUp5nV5gMk14BvvIurBF7wTAAWoMYXfy4GRnYRYTMj+cuHYbqqXgfiMg0Ms2sOHELE4ZRPDq9HuK33j1NfJfzU5lE/aFyav6PzbUMl+72YlXbSzWOvLhPi9733Eqve2NwG58eR5hxjiCYZqqqjZTQjfPPdNPO9fnucSKefq5P3++Prmr9sLzd6bCoKFfs3QOkRCoNfFVO2MxQjVUTewNvmvtQkxlUQs5rgcTCS/Py6d74xFjq4fxUu3v9T9O639YKMaPRahTApyW4ZmO/+8/rdfj/d84j2YnJ10p8kX82jUGj5isVlvQrOdnCiawu3Pvx2vecNrAKRTLG7dszWVE44DlmJhUp39ZMCIVK4JjACKo8AaLOpqHZqpdYhFmgkrFj1jkTFpzGdhqZkaIW4TyqZiRoRhGlAMBW17nOtVlEUpFr3E4r5nRCvQeYuMiw06/Bs1U0vMfeyXWKwqVbzj/ndgpZXsZiAwxAbUe200VHJ+FQV/46FlWrAsC2Ux+bm3q7wLv3fr7+HYxjF84fQXMJufxVjGT0YW+AJk/fIQi6PSKFp6K5SL2NJb5JxCJ2NRNdVEFetMjrjWeW11HTi2p15S0rFHjSIqXSvUPhocHIiM2DOx6Kxb1ePfp46uH4Vmarhj9o7E/THEEEM8vTEkFgeArx9dxqmVJraNZfHdk6sI8gpOkb2XgVMcRFuh+IrrZ3DbjpGQKnCQMNvhwWcxIePOIe9cYnGT27Z04Xx4m0wzld0lL5EB3PoqGRQxrH+7DZU8mD///j+CqbTAihkcXZaxcyzneppm8wWfYnFkah5yO32nEKu3YQGotjvbu223f+BYkDi0tS6KxU2lcobVioIohsizcoaHZRHL0SjbyhBY3m2+5plwJmMml4OsGZA4BixNISOwPovRNNeCQ9RphoW6QohFziEwAwMjCoBFEStUefcLsDRzB/7+26fxd986hb/91im8/5un8H89oegbAAEAAElEQVS/eRJ/842TuO/UGnJiRIcfRbIg0xCLURgviGhrBmRt8APdIOYqWbzuzu24Zq4Y2vcjuS4KkD7ASoRYTKtYnLbveatNBaoRTVZn+eT7Q0HiCLHYx/YOMcQQm0RrNdo+0YsU6sEgeMvzPGJFUF41UNDmlIkiFktd1+EoFps2WddLTnEUzl7wuxHg0mOx05KMRQoZmqx7Mk/umSvr0Sov1bCgqBre9Xf/iqXVDUiiEMpxKxdzuLDeIZt2TFeIIqTRg128XSD61iKL83ULV+7e0mWGAEwNAs/iQw9ruPMDTZiV3eFpirOgTB1HVgyUUO+oyAwVoBiYluVTbtI0BZ7r8kyJIBa1fEfpVeYD48HmMkDRWGqR503ICjVAoDHBJpzsGJCfxA4pgdxTk/e7wLFop1EsGjrwrT8lVq53/x6w/S5yfju2fk5RUu2jQz1tR87obpJJmYZYdEj9Lr9/oFAb9n2IHM8QsZifJttV7b8RMYT2OnDhACAUCLGZRs2ZBE4Kk4gTV3UyF+NQst0jWqvA4c8SC9VbXt8hU4cY4kmO5RZ5dv7hfX+IC80LOLB8YODruNi8iJJQcv9Ok7u23PY80w1C0LgkBe9XNDqKxW4ZY5GwX3tUmVgcKgn32VxSprWNS4ud5vUf3/3juG3mNvfvoMqJCkSeUPY7WJxi0dIt1Dfq+MQHP4GLCxfBcmyIDAtmLI7OkjGguokmri0xY5Ftv7UNV37wypBSiqVZWFTn+aZbeiTBJLIiaI4Gq7Noak03+w8gir5gxmJQsbihbISIxaTahZgRXTWZQ3R6SZZsLqBYDBCLXEyzbcYix0Bnws8hzdAScx8pluorY/F07TTON87jkZVHuk6b5/N+YtFWLBb4Qs/rdfDSHS/FT+z+Caimip2lnb7r21mnbumJ11O/GJPG0NSaIVVzW2/79rWYE2FaJiQmvgFzOkfcpRwrXi9cG9VAxiJPR1urZlly/mibcFBwiOBekWEziTm0Dy8/jLJQxnXj1/W9bUMMMcRTH0MflQGAoShYsHDFVAGfPrCI7WPdB4dpsdpQ8PWjnQGwQyK88Mqpga0jDtXvfhz62nnQKYktmmaIR79Mig792rQ6WFo8B5T8Xt3//aV3YuHUcXzxsYuJ8/IiedC3GvXQWW401rH8r28FANz84z+PM0IGDUXDxZqM518xgW/Y02ULxArVGVaPTveQRwSAsQeYG63OoDio1CtJXNeMRYAihdE+Q6rbLX93uSBlQjmCjpq2LuuRCsQgLIYHz9BQdFuNFiSNcgWSscgxYGka+YBiMQ2mSiIeOrcBzTDRUHRkBRZO86M25j8vGJqCZdLQVBUWTSOzfgIf+52fBsdQMC0LpkWsech/ybk5lg8PxrMCm3g8kjCaI12D1fblyzPw4jdfuA81WYMUIOgmCoMnFhk7izQvpXtkTBZF0BTZF6puQuKZ0DmS67KsvMASte9QsjjEEI8/2mtAOYF8YoRO5hqQ+joNWaEmKRZDxOIyMJXixdW+1bhWqKyQmInXDWfOL8HXe33p0dhpLYrx2U5yti11tRFWea22TLzi42S7/tsrnofxB95JyIxn/YZvulI+h/VqE6bFgqYo7Jwe6f1HtDfIOjcIwdmPYpHnODx7G4MvviaLpShVnW3teLFhkV1w/gGi1DKIFWrQmjYrCd2bjOzt9kIrbIGwcRwcA5RYlTQaOUWg5jIgFKBb5HcWQ8Riim7vuVuxffnz8d93yfPiWQZNRQPQpYBz9jvA8hHgWb8F7H8pUehmRgmZZZkdK+LmMrm+emlOTDteHN1Nfk9rtaNI9EKXyb5leEKE0UxXxeZAobWAbEedFyIWKQqYvhbYWCD5mkE75X5w+lvkd+59MfDYv22eWCzOkevaey/bdlf345kZIfeu9ZPA+QdJJuNVrySfDTHEUwArsl/x1E8WYjcs1BdQESturl2adXiVWLRJQzM1NweZYikYlgHWLh44isXNkBiaTCwrY3PKaKJY7IZL5y4BtoBQZEU3dw0IWxwGiUXOzkhu1BpA4DZpyAaOf/g4DN3A3S+7G5Nzk4hCrpBDs9b0ZSwCETnUPSAuXzG7mzz/zjfOY1uxMw1DMz7Foo5oYpGneVAsBa7NoaE1oJmdHE0GTIhYFKTOfXVUGkVVqaKtt1EQCtAMm1hMqIeJkodYtLfHSzpl8v6xiGIoqRR3jmJRo8OEkmZqyQoxFoiJoEzEip277M2ZjEOez0M2ZJiWCZqi0dAaYGl208q137r5t1DgC7hu/LqQKtMhLVuXYSwyloknFr2/SbCbuDMJDZgSK6EiVlBVwg1yjmLRS/Q5isUo8s9ZT5IlaTeIbP+KRaf5IqimNC0Tj648iqtGrxraoA4xxA85horFAeDB3/sRvPVlV+DauSJMC/j+meiw8n5w49u+hDd//GH3724Wh/mAVeFmRJLNR74E5fyhrraYnXWR6RzFoqNu5PrIewOApQvhDuSFU+lsUwTRDpRu+lWXJ48cxIUPvRl6ndgSzF97J/l8hWzzXbs7dgu5fAn16ob7d2WySx5KAKw9wKzJncFJULFYzvBoJxBZjuqTCio5ekCIWBSlEMnnEIttzQDH0F3PG5Pu2G1G2VxmcnmiWOSJvWhOZKHqKUa3dnGaAoXpooR6W4NmmGgqOrI8656LZkC1wtqWsbpj1WBZ2DWRw/7pIq6cKeHq2RKumSvjuvkyrt9SxhXTxUhFbYbvnQB1MGoPMjcGZL+XBoUI5eVkYfA2FDRPrqd8F/tSBxxDYyQnoNrWoOomeMZ/jlDoWCXHISdy0AwLegornSGGGGKQMAmhwyYoFrMjgLdwkLJgyJueYg4rgvLaDXUjFk3NT2Z2gWuFmtDRnQY+xaJlAUuHQtM4dzcr8NLO2/e5at2/f46eOodb/q6Fx5bJ8+aFd94IrJ0ELjxEVFoelIs51Jttl7udGslBFHokUOzCRt22/7py19be5jc0CDwH3s45plvL4Wls60bdBHSLITl1ADluFI1Gr/mKQCdfzgMtT5q8tpVo5GnFr/xqLPnUYd0Ui5HY8SxMCy0U4zavixWowNHpMhZ1mTSNXfFjnd+QHSVkmuEpajWXSNZfL4iJGAjBIRPjchOXDgOwgNmbyAuFWNq8YtGygGrYkSQSagvgO8cwF2WdO3sTUDsXum763raTXyNZm1NXkWPUj2LUi/L2cF7t6M7u81EUkJ8CFu4DhBxwx5uB4szmtmWIIR5HLEc9JwaMpdaST9HUSHEfcIgTAKAMCqZluvaVQCCD0b6VKuYmiEWFWFZGkQI0S0O4TkhFLC4Fbdk9CKqcgiSYk/cYVCxePHcRZ997Fs2z5Ll2y923ACDNuEHkivY22l+JWRHl0fRjsijEKRbjwNKszzLWSxh64bVCbektqIbqTmeZFkzDrxb0RuaMSqOwYGGpRfa3k4eXVrGomzpoigbnqd10Uyx2g8ZovmNimAYMy0hULIIFLKP3d2jnd1eVauR54EVRKELROyRpU21CYqXY3MG0YGkWb7zhjbhz9s7Qd05+Y0u/fMRi8FqVdRkiI7qDfS5Ljq3X7jYKU9kp1NRayK5XNYk60bufVFMFxyRbocY2J6SAwAiRashuyHG52PP1dO00GloDt0zfEsrVHGKIIX64MCQWBwBnnDGSEzBRELDSGByx8KNXT+GNd+9y/xa7kHTOtvzI/gkAjuItOostCpa8+WwX1bbe3DqSxf96/h7MRWS2pcGlCGKxG5y8RjFDBr+thr9YYlkW2NIEpv7LH5G/7UGfZlgYzwvYOd55KOYKRZ+NKCeIGJ1IrxRljDYoAE2lM+AdGZvwTVPO8mgmFKAygkMs9i8uDlmhStkQWePNCwySQFEwacYtMPJs2OYyk8tB1k2XDMwJJC+vG0qtBbKNLIWpkghZN9FQdTQVHTmhk7FoSSVonpcClqFhgYaubu7aywqMLxOzF4zbCsi6/PgoFuMwkb8cxCJZZhSRGYfpooi6rBErVJaGN+aUZ+muTRI5Oz82zXkzxBBDDBBqG7AMX0E/BKniVwdFWFZGgbc8xTlWBOUtCAUbaFieqJCC63XQxUrQp1jcBHwZi3KVWCUGQNvWXKatUnOKMbzdwFKthcmoyRyFD7+SFOWyXvtTw/8MKRfIeMZ5atM0je0xioJYyDWfqnTXlune5jcJseiAilKAZiqwWAGzBRqrKJEsSkNzFYvNQNNNVkpxXNrh80q3FWzTeQpZq0XUYA4aS0TpZSNMLKZQLG69AzQF3D4fM+7qQqzxLN3bc8tb6MmNA0oznOun9Kj0Sa2ys8duccXDi4+Q/TtzI/lbLBHr1j4dNAAQK+HPvQW4GK/8daG1fKRcPhNRxJt7BlEkb5wJf9cr1k4CtfPAjucSQhBIfW8LQbTPy4n9/i5PLtM9X9GBrQLGDT8HzD6jv+0YYognCF4C73Jhub3sy3OrqTFNEoF5HFAmuTbbWjSxaMECS7N9ZSw6cKxQ49RGtEi7xEEcCkIBF8/FuzXFWRwW1SLUVRXKdxRkcplQxiJN00AT2PtM4qgkZkR84tgn8OcP/rlvnwDEChWALzp4utexRABbdvVGLDIU4ycWLS2S8OAZolhkDRZtvQ3FUFwrVD3wni4G7OedTD/n/HUUi0lkmVexqJs6WJr1HZOgYlG39J5sLVVahW51ttv5LYnKQCZdzmUQTkNATa2FsgaDKPJFKIbiqlZrag0ZNrNpYtFBFJl7OYnFUZGQyjXNfx9p620IbCdjkc2S8WG363Y2P4uaWgsRgqpBSEQv0edaoUZcywIjgKbo/iyZbUisBJbqvZ6Y4wmxGJVlemD5ADJsBs+cfmbf2zXEEEM8PTAkFgeMa2ZL7r/ZlEq/OJjVi3jJ1dO4cqYzYE6b03jzthH8+Suvxe4J8vCdVs/BaG6gwsQTL5c+/nuQv/rXqbfv1NFD+PJn/jX0uaNY1FQV//T2NybmMiZhafEctLXzMJVW98w/G60GIUYLI+OgKAqtRgOWZaF97iBURcaOvVdg4qfeDjZLXuoNj7pg90QO5WxnW4Vs2B9+en5r6u2nLAtFiUPDQywGj99Ilvd9H4RLALKDUyzy2XAxtpzpLJ9nqa5WqAZYV4kapfyTsgWouomsTQ5leRaaYXXNuqI9LwfjNkG21lTRUg3kRc63XY6ykKHJ9poUnSp/Mwk5j91qr6hkeVAAWuoTRyxyDIVipv9zJX7B5FjkhPSdbtMlCXVZh6KbEAJkNZ/CbtdRXw+JxSGGeJyh2A1GQZWNF2LJrwSMsKyMAuWtSAULIiHFohAmWDy2iA5WVlfRVsP3/oZMxjuWTSz2a9flIxarC5HTMDaxaNnD6oadJSjyHIr5LKp2HuInD2uoN1rYvW0Wp5US3nuMFOWyEUqs5+1g8NpruQ6x6Nl1O+d7LOYpdR/ZxHXLNgzC0Hx5iLQRUWS1FVbzRQor9CiwfooQmkacYjGF6jLCQsr76iJaDUD0GNW2VkhOoo2QFaqhdifFKttRNUTctTXmeac1AZqNVdNLLGlW6wvZcaK8CxKD9cXeltOlGJgaFw8Ao3uAnL1PM2VAkzdnD7psK34vds9vIsRiZ8yaz0Y0O0xfT/67erL/bXJw6utkfVe8jJC8QLyasxtydiOhreR1la4ju8j9Mw2u/HFg/z3A9a9JbvQYYognIdbkwTk4xUEzNZ9iMQ2x6CiyAKJYBDrZcABCCjiWYlMphXQ9+r6oKRp4mndJGsMIF+gZmiGKqBiwFItL5y/Ffx9wS6At8pxcvbiKo285iunKtJuRCAC1B2uobdQwPj2OqekpFBnyHJUkCUutJZysnsRfH/hrHxl6OYjFbD6ZmAmCozlYsNA+bZN40GMViwDAGAxMy8SGvOFOZwSconjJPxYpCSWwNOtm46mGCo5KfrcOKhaDCseo39kTMUb5z8s0xKJFW30pFh1CtapWu1pvloQSZEN2Sc+G1kCWyw6MWIyCQyxuhuyPw4hEGtNqgee+bMg+a1tWSkcszufnfXmdDpx8TJ9i0c5djNp3FEVBYqW+MhadTFSRFVPXkb3IcbnYjMWHlx/GrvIuTGQmIuYcYoghfpgwJBYHjOvnO12o06VkeXw3mBuLXYvvSciJrKsK4qDj3HtejZ3j8VYb8qkHIVjpH1hf+ey/4T1/+FshmwSHWPzkR/8O3/ziZ/Hgd74RNXsiDMPA8qULWHz/z2Phz1+JkVw6xUGzTgYCnCAily+iUath7fPvRe3Bz+Her/wnAPJwdrbZ9HQFXTlTdFVSAGBx4eM3Pbe1p98xmhcSFYnlLI+2Fv+9c4FS9ACtUDPF0DQSx4BzFYhM14GHARq8fW5JEcQiJ5HzzCGHXOUll15NN1kk0y7XFeim5dq1OvDmRDokvmFZm8rk8x3/HudlGTpEJD/eyItcJNG7WTiF+XwPTQJzFaljhcrSbj4sgMhcziCcY5HKQneIIYYYHJzCXEJ2CMSCnwhs9VFADD4PaNbffMIKfitUsUQsAQN49NFH0WjK0APFupZNLK7UyX+/+9DhrpsUZft09oKHWNxYABgeG7J/Oud2ZtrFPcdyVOQZlAs5XNho4y2fl/G6Tyv42Ge/DgCgaBpNg9yvQxaPlon3vFDEL97EoyzZSn3P1zt6VSwqdULw9QtTh+Cxr6bibOEKM5gv0ljBKMnt2zhrW6EyIWIxm8oKNblILOhNwLFGNw2iLit0nCUirVBNE7/2RRnfPquHyW0AoCicMCZx1xY22jpVbUXPZyPDEjvYvpCfBNSIY7V+urflbNauFCDNAtUFkmHoEGGZEaJY3BSxeIT8t3Y+meQ1VLIesdPkF8pYBIida3GW2KFuJpPZ0IAz3wbmbiL5slk7L6hfYtGBQ3w755JYgM/CIQk3vhZ46V8ClegcsiGGeDJjQ9mIVLkMGhWx42SQllh0MghdxaIeY4UKQtqlyVhs2Q1E7YZf6afJGjiGQ0sm3x988GDk/F6SQotolkqyQuVi6gRL9vhlbGoMuWIOtY0aLn3iEs791Tl87p8+BwAQXiSgPksIR8m+x+b5PM7WzuL9j7zfFbY7xKLe7OyfmS2Prz2zo+bSV8k26JYeSX45xCJt2ARrezW1YpGmaExlp7ChbMC0TGimBpbpUbFIBRSLwbEIeifGvOel85szCZEFFmP1nLGomRo2lA2MSWPYkDe6KuRKQgltve1aoTbUy08sOhmLm1HvxcHJCawHcsRlXfaRuKyYklgszKOu1kPZr6pJSETvOeIqFmPsSjNspq+MRWeebratccjzeaJKDYzXLjYvYqW9ghsmbvCpxocYYogfTgyJxQFj+2gWEsfAtCyfRWqvOPvuV0K790MD3rrBo1GrYn3Fn6HgVSyS/3Z/8AeVBOsrl2DEdP4lQZE7g7RMPodjD3wNjUe+hMK1z8ezXniP+53TvaNbnYf37TtHQVEUuNF5CJM7kMmHH5JTPRKLYzkBTVvBRkUUEoJkWRCsPQ+1CcWiHCAWuUy4MEtRlGtzKaTIxNQsQg4B0cQiJZCBrrNMR7lI8+kHNU5W4FKNnD+VrL+jsNruvHS5lr8M9/+zd95xjtz1+X+mF9Vdba9XfcX2+ew7d+MCNmBMTImJMQRC76EFQiAJgRBS+RGSQBoEQkihhkBoAQImuIB7b9d8ZW/3tmp31TXl98d3ZjRNU6S96nm/Xve6lTQajUbSzHc+z/d5PqH9AIKw9ygtVuIXYXvTPCoBPTOPJ5sHMtg2lIn0+cVFZ3jSXomLvu7x3pQlLIoc44jL5Vk61NGdThyLCQnxmLoX2PfT7tdjRqIHRY0KGWe8n088qAf3sdntUASIuGh/3C6wyAVnrGndfuGvY99Rp7hZMqJQm8Z5vunjEnBTrjgLPasNYMkeHbZ8CMgMwT0J3OtYJAUmiqKQzcj41s/ux6d+2cDbdnN4083Xt16vSl4v5SpsYfohbC6Q7c6nyHu2776NE9Fj2ZsaiODWQUHCQm1AsDsW2xXEcuMYz9KY041JdkfutqJQS659G9pjUVOJy8vve2LAKquteNxakfyfb0WreYRFtQHoCj5xRwNXfKECZP3dFvvVUVwwTIOuF70PNsqBwqLEqGSfd0J6gKzfXcReieBYtH9B1qLf4LFHyf8br20JYXKBiJadCouaBizsJRMIVo+SCNN2mOKo2JqwaQmLbkFy5Hyyj7pxMBy9n+z7bb9CokrNSN2I/WOPG6I3PSUh4XRgtbHaVU+wKNAUjYLYir92O438mKvOQQQ5hpuORbuwaIokJgzNhEZC2pl92ikANupEMDBdXfb+fnbsIkVxoeh4TFVVzE3PoR1ux6IZ2Wg+R07LSKVT+MVPfoG5b81h4KUDuPnNNwMAmLMY1DPknCMak5wGpAG8f/f78eTikxh5NTlPpo30BFsSadeOxbiY75NiW+NPv76avDFuoDVy7pqvzVvCXLPu/Cx5n/SEsfQYVuokCrSpNYkDMaCxkCRL1ndIg+aJTrULi6YIHFcYs38Hzd9VkMtVo7TYUaiL1UXo0HFO3zloaA0U/cZANvKiISwaEwgsx+JxLDGbPRxrfskZXWI6Ft1CYF2tO36flEi+C0HCLgCMponw7o6FbmpNjzvR7z47MiejGcMAYmK6sbsVFt3HxYfnHwZLs7h67OrjKiQnJCScHiRHgTWGpimcPZIFTVGoG5WFN1+5Ab9+8QTGe8gB/brtg+AYynI0ThbIierskdbFo96oQLQNmrYNZXD1lv7Ik1xPJIf2P+W4Xa/GnyldWik6bs9NTwEAxA27IW+5PPb6lHoNi3NzqJVXMHjzxyBNnOtcQDeFxdY+HjV6QfID60GLaXCyt6g6GiMKFQAGsoKjx6KbUGHRcBGK4+dg+PWfQbkef0Dhdixykn+xOGu40YSQ3ncURaGpUUgJLM4ZzWJjv3e2Fs2bwmIrChUAqBjCosQzSAssZlf9hUVTcARgud+6FxZbn8fMSg1azHX1pQSUT5Kw+Lor1uMvb96Jvg4mMoShUgwEJrwvop2xvARNJ85St9gpRHAsZgwxuuNIuYSEZxq/+Hvgu+91CW4g/RLjYBYvggra7lm6pqgTRNM1NvDrfWjvs8iKTmFR6g3sl/j4QWfRrWKcL5WQCCs7s4tFx+1Dx5y3sXy4FXFogzYmK+nGTGNTRKsrOvYfmsaxhWV85xYJL9rq3BZzOY+wuOd/rD97smRf24+EcaJQmxpFPp8Ijou2qE3wtjFpW2ExP4GJHIUVXSaf39Q9hmPRG4Xq6bHoFqvqqwD0trGRIgvQSrUVfWrG8fZusJbJpV3fU8OxGMYiMmBpClzTp+94owT4JFqYSIzeuWPRjPp1/55WZ4KFYV0H7v9S63anfQHtzDxMvusDW1r3yX3kd9ypC2nlCBH/Ji4l7ynI6WwW9mQfYbFRIY5qc2b/+CVEWAxxuAay/1YgOwqsv4rc5lPkeLMW7s+EhGcgpWapI4dNHHqEHki243GpUQp1Sc5X58HDEJ4MR5tdSHBvM0uxsYTFmQPOXoimY1ENsY+l+dbE36V552St4lwRakCCC+fqUW2KYKbLUdd0PP3U05ifnsf428fR9wIymbqhNkDLNDTjpGV37/3Kpl/Be3e9F73X9KL/Rf2QM7In0Wh0ndexKFHk86Crzms/iuuuRRAAy83lEBYVr7BoOhZN4Xi+Ot+Koq0596PoSozgaA6T2UkrwrKhNsDRXLBj0RaFaq7D7jyzR6Gaoqd9+SjYe16akZhBjjmN1qAr5qS3aNfSpgC2e3C343a7dZiORVO0LTfLSHPp4yo0URSFNJc+Lo5FgRGQ4lKO44GqqWhqTce+pnljcn2IWDeeIVHoC9UFx/0NteGIVgX8XYx2ZFZGU206eoxGwfxscnxnrkJzX7uFxQdnH8SG7AaMZk6sazkhIeHU5BSUqU5/brlwAi/cMWyJRhxD4+otA5ZzMSNy+MwrLsD543kAxL3zd6+8AJdtLLRbJX7ruVvw8gvHLQebm3yHfQztMOlCaA88Pw7t3+O4bToW41BcdJ5wZw1hcfBlH0H/iz8YvW+dsX9YQcLA8CjSwxsgukVFkLgzjhdQt4kWPS6Rjxa9zr64jsXBrIhSrf2FQF5qPxMfADjz/RTGwPdN4vGZ+Pu2WqmAF2zxDZL/IFTmyUCGC3G8sbyAhqJB4hj82xsuwfXnep0TZnRmTuYd66b56FGoAImSnTOERbdgNl9uDShZQ/CiGBZ6h320AKdjcW61jmpMkbA/I6ByEqNQB7Kiwxm4FrAcb8WZxolmtkdBu52OkaJQRTbw8YSEBBe6SuIn3cJiowPHDZcKFPEguiaoVIvhUZvuor+f68vuTmMFl7CYc/Z1dPH4IaewWK4aqQkxhMW5Racgc/AYKe71yRR6JQDLR4i44t5syoxXJ8ct1XAkCCyFTRMjOHfjMK7f7N0O0yGZtkc8lueBow9g2YhbzaQkMAzdnWNRU4CQmeeBqA0ItnQCSmsj0OUnMJyhQesNID8BzD7R6rFYCemxuPfHztumOCb3wo/htHFeMaNPq0UAVLBjUakBepRztHl+8inGNcqBwqLIkP3SkbhoiaS272F+HbA6Tdx9t/8VcN8XnSK9rgMPfRl48nvAhme7tr9DdB2YeRDo39py7gGGsFju3LE4/xS5ztj5CuI6XNjbfllT0JNan78VGdxYJcKfGf83tpsI2Isd9lls1oDpB4ngaXexSr2dHT8TEhJQapRiCXJRcE8e7RV7LREJAFab4S7JxdoiBN0QnowoVLuQ4I5BZGk2Vm+zYwecvRAbNeJYDBUWuVbdYWXROV6am2rvVgSI+GnH7VikaAoTmycwsWkCuQtbAoPpSDP7PkquuOnXnPMaLP3fEvKX5lFWyi3XosHI5IjV71CokX2aZbLY90f7ID/tPP/axcBO8XMsln2O0aZ4R+kUaIrGQnXBEljcUahuxyJLs1ifW49ivYiaUovkWBRl0dEz0R2dKmda+4KnyevFFd3Nno/25wYJWyrU2H1d5qpzYCgGOwd2AjB+K8bvy+83kBNy0HQNFaUCTddQVarIC3nwDOkpGlXQjEuaS6Ou1LuaTN6OHqEHFaVirdt0Rma41nUPxZPvQiqoFz2AfqkfLM06nJ+arkHVVQiua6yG2vD0XbST4lLk2BbzLV88fDFee/Zr8YINL4j3RIM0n0ZDbTiieFfqKzi4ehA7+nc4oqgTEhKeuSTC4nEgJ3O4bGNfYK8zmqIcs744hnb0r/HDLiqWV1dQWmkVHv78V3fgN6/ZiJFc530dx97+ReDy17d9/Nbv/xd++F9f8dzvFhYblfize5eXnMLi3MwU0tnWwDdq3zq9UcXqgz9EWeewcevZaDT8B226rkOUZDRslR+30MGLMmjG+ZnE7bE4lBWxGuAyzIU4FtOiMTPPmIk4sxJ/dlatWoEk2yI4RP9BkBlparok28HxguVCk3nG4fIDAJblLMHWFOrMfnlUQDHOj8GMgLmSv2OxWGl9ttZnt4ZRqACwUIo36B/ICie1x+LxgGE5VJuqEV8a/ZQx2tP6rCXeuV8FlgkVFiWOwRprpAkJZz61Fa+w2An2or0f7njK+nK4I87tovITLu2vyfAt9yQACNmWQ8nGuepD6E/RHmGxZAiLCjoXFg8t1MCyDF6ylSPRpEqdxFW6CkyWsGgMqx+YUfHXvyT7Y/e5m337JQEkMpVhaPC2mFEc+BnACvjWk+Q5FEUhn0k7agmTIwOR31PTKJyiNB+8YBAuYZFW6/4CXY7Mzk5pJaCwCSg+TQQxikG5Vgdne58ex+LTtwEzj7Rum669dsJixnhfWWO2dG2JuGyDevJFdCwG0ih7Hbs2uhIW04awWLd9DwubyL4ozwJH7gKe/D7w7d8kQqKmAY/+J/DYt4BtNwLX/SF5TkwnhIfSDIk3HrvQ6VyWe8nn2an7de4pID1EBDxWAIoH2y9rFouNHoUcw4A2xyCNMjkemMehoR0AxQBLHQqLs4+RiRmbnuMUjeVew6F5Zo3rEhJOBOVmeU0ci/aCtvsaLy/kHcJiuVkOFDPLzTIUTWkJi6pXWHT3aWTp7hyLSkMBz/ChIkuGbwkXq0vOcVy7GFRtiZxozJqS2TvSjKK0R6puP3+7x/W4WCOucfN+t3sPAJRVsv9VXbX6LJrkenPQaprjtQGgureKHluMNVkAHjdp3KhcU0C1C4t+kZjmd0KndcisjKXakvUZNqvOz1JwjUU4msN4Zhyqrlq9GTma87g17YiSiIptwg9Hc217LJrbFve9L9vGBeZ7EQNi2U0hW4+R/DNXmUNOyKFP6kOOz2G5vmwJXX772XTBVZoVVJoV6NDRI/agIBVQaVY8ffnWigyfQUNrHJf1F6QCqs2WC9N0lmYF21iIJTHMQsBkR4A4bAflQSw3lq1jlynQukXhptYM/DxljvRYjCvW0hSN9+5+Ly4duTTW80xMp6a9J+jD8w+DAoVnjz/bE8OckJDwzCQRFk9TXnzJWXjJpa14IpqmcN54T6CYGQU6275Y9fH3vQV/8bvv8tzvERZr8YVFj2Px6BEMDI9Ffr6mafiHP/8IVu/7DhrH9kEBg0w2D61dtrwhLAb1b6MoChmbuAnAIXaaMEYkgQLvvh/ICoFRjn0pIbBvncg7hcXZUiO2cFatlCHJtvgGwV/ck4zX4kMEbk4Q0VA0CBwNxmeQzfECakYMcFYigw1ZMB2L8YTFoRwZYNEUkHO5couVphVV2uqxyHY1yEwLztfYMxuvQD+YFc84YZHlOFQbGgSWiRXFnBZYS6iVXN/xKFGoFEVB5pPBakJCPPRo/djC4FPOfodh1FbCe/i5ex/59c5j3MKi7XjqnhlMs4CmoaCTwtjjh5zCWaVOtkelor8Pj2NxZhFjgy6HYnqo7fN1AH/0d/+Bf35QwV1TGnRdR082jeKqv+upXK0jJYnOgtXB24Hxi2Fv89uTSzsci3aBzmSeIwLbnqqzmNcwhUUzKrQTlDp4WxQ2pdb94zBzZNyW0ktA31lETF45CtDEsZi2FS09PRazo8Bd/9gSlCzHotchCgC8OQkqa4wVG2XSj88QhjiWAesezyjV+NHAbpoVwG8sY4jiAk3GIGQYFHOik+lYtDswzGjXBUM02/ICYHQ3cN+/AN96O/Dw14Czrgeu/QgwdA4R2IJ6F0Zh5mHiLNz0HOf9psgboY+ZL/NPAoUN5H0OnA2sTLUX7cwirRGFytk/y0aZCJ6M8TvgZaBvM/mudTIGnHmICJgju5z3y31kXybCYkJCbBpaw7f/XVzcMYJ2skLW6lkHhIuZphtRgNOxaI+l9DgWKdYhbobhdiwCLQddEHZHlMexeHTOI+oBAFxvlWsaaVkah298/hvW/bqmI5PLYHXZ+d6KxgQeU1gUQnofp3NOx2KQ2OaB9vavjFvT8ItC9YsUNQUfDRpSXAorjRU0FCPFotJsTVIBERbt20FTNCayEwCIg88UFtv1DaRoChzPObaDp3nHvknZYtnN2No4LljA2UvSFCVDHYsA4iRnzlZnURALEFkRw+lhrDRWLDG4ptQ8NZacMfGn1CxZvfwKYgF9Ut+aTSzwI8Nn0FAbnu/TWlCQCqgoFasnqimomcI/zdBo6uQ74XYK+zGSHsFqY9USg+ua0c/UJiJqugZN1wJ7Zqa5NHGBHgeXZhCmk9ouLD409xDG0mPY2LPxhG5LQkLCqUsiLJ6h1KoV3PeLn5+Q1/JEoVb8C2hB+DkWB4ajZXZrjRq+8ufvwzf+5R+QOvda9F73FqigfUVAE13XIcky6gH9ClRNRzqbD339NMiJtkR5BwMDmeDoT5oGemTvxcauCaOQYov4BICFctPhsoxCtVKGaBMWmTbCohlX6u6H54YzolCJ0OS9oGA5HtUm2a+mUGc5FmNGoZpxmiLHgHdt13K1tS8cPRZjNiq3kxKcRchDS/FE8v40EVWpCBeQpwssy6HWVCHEdCwCxLELtL5bJgIXLVbV/XkkJCREYPlI9+vg5XjCYn3V18Xk6FPrcSyGRKEyvFMksM8WBoiAtP+n1s0nDs05LrhLxqx0Be3eh/dcMbfkciweW8TEcL/tNeWWq8xFXdHx7i/eg9//qy/h+RsZfOklRDDsyaax3EZYrNbqSMuuc3KzApz7MsddPdm0Z2svGWOg/0HW6nfYoCVQH13BkjTpWE7RQMSmumv/x0FtQLD1R6LVmr+waMRIpqhqSxBbehqgGJQqNcd79TgWL3sHUF0E7vkCuV1bId+BoKgpmm2JcQCQKljCouAjvkJps91xaFb8HYuM2afa6OHdyViEk8i67cX47AjASq0JA3IBePW3gJv/nQi5W14APPdjQGEjQFGAkOleWJx+iETZ5p3fJSuW1M8VfeQe4jp9+nZgyceJWF8BSseAge1kG8d2k/fk7r1q0igTcZMnv3srpl9tkH/u3psj5wevL4iZh4G+Ld7fdrfRrwkJz3Bmq7Ndr+NYxSvUmaS5tEPAqSgVfxHQOBybri9RJ+MPMyrTLgotu86VLBPPsTh/ZB6NulNQMeMvg7D3WHQLi/NH5zEwGp5UQIGCrui45z/uwac/8unW/TSFdC7tERYX6y3HoiiLDsHND19xMyIURcUSaP3wi0L1ExZNIVendWT4DFabq5bjrlFtOCJfBUnwuAdHUiOgQVtOR47h2iaMczxxM3p6LBqORYZlwNgmxphOt7iORVO4A6JFoZrCWBzH4nx1HgWpAImVMJYew3J92drOmlLzCHmmY7GqVFvColRAQSxA0RWHi3MtyfAZ375/a0G/1G85m4GWoJY1xiIMy6ChGX03I9RFxtPjWK4vW8cQ87NLsa1xpPmYzMneFRikuFRHjsVuMR2LVZV8v+tKHU8tPYWz+85GQWrfxishIeGZRSIsnqH88fvfig+8/mXhC64BC7MzKK+2BsD1DhyLyy7H4tz0FAZHojkWl37yOex74E685jc/AHnzJWTgCsZXWLSKnJriiUJ1U1dUj2PRD8o4wa9CguKK2OrPBM/8A4BCynux8fW3Xoavv+VSbB0iA3jLsbhaj95v0qBWKUOUWgMVqk3MgilihgqLgoiGqlnRqd7HBVQbRIgyHQ4iy4BCfMfiiOFYlDjG2j6TYqVpOU7tjsW1ikLNSSyOFmuxhFzz82ZS+Y634VSD4QxhMaIYaMcUhmVXgVdkGV+3qxtTkE5ISIjBWgiLXBvHIp8GCpu99zdKRLRx8eCDDwIAcexFiUK1OxZZ17nRL0r77s9Zf5aqDRyZabkWzXOBKSya6QLmdl417C1GzbmKeQenFzBpL+ZlR4i46MOHf1rH9+47gj9+z2/g+ZtYq9jZ45rh78YjsPWdBay/0nFXPpOC+9T2+vPJvpIWHnE+YN+H1ov0d+4yAwCl7uyxqNT8xRZjfEFDJ6/JyQB00mOxWkNKao0/PO+7dwNw5fuBg7cRgapWJN83KmCCCZ8GONt6Uv1EhEM7YbHujNfthGbVX+w0XDO86VjstN4l95Lfk/mBUxTpdbg63VqGooBtNwBv+ilw498Qt56JmCPb2OlYSNOAY48SR6HsKhrJAcLi/f8C3Plp4M6/AX7+Ca/AN29MQpy4jGz/+CWkJ+xqG9GgWSHfJ9bYr6zxedaN4qp728YvAVZngMoSImEKzJVF4pwc2ekVK9N9ROBUE2ExISEOZj+6ILdhVGYr7cXJlGuSR1WpouozseKee+8BAEzNTQEAJKo1nuBp3iEKeaJQKSIspjanIJ/VvvBvoms6pp6ectxH6+ElN4ewuOR1LA6ODoauAwDmvj+HvT/fi9f/NmlvI4wI0EEci+4o1KVq63gpSuGTf909FmNBt8SuqLiFIysK1TbRqabUPNf+lmOR1pDm0ig3ypawqFQUx3t1x5gCxFU4IA+gWC9CURVwDNe29x1rXKs6hEXb8oxPvURkRdTVeJHi5WbZep+mOBUUnRlXWFQ1FYu1RQxIAxAZEZPZSSzXl6EY5z9FVzxRtjnBJiw2bMKiITitNtegNYMPWT5LhMVuJ4r5MCgPOoRFU1DLCKQmx7AM6mrdE3fbjsnsJIr1IurG5Eu/KFTzvqDPM82lT4qwaDoWze/344uPQ9EVXDV2VWgUbEJCwjOHRFg8Q1mcaz+773hw6MBe6+96Nb5jsdiBY1FVyAk//6xfxxv+5J/RPzRiPaaARsbHbWj2zGsuHYUkp9BQg4RFLZJj0aSi8yi7GoIPRBEW0/6zGHev60VvyohqMQqFlaaG2dV4A1F3FCrFiWBoCmePZCGwNDgjTswU6dzOQDesIEHVdCs61fM4x1sON1OIomkKIseAcgmLYZ/xoOF403V4hMWlSgPVBhlQsqazk+WgdxGFmrJFb24ZzGKqWI0VbdqXPvOERZblUVNUiCxjCbhRGTP6LLq/KyIX3mMRQBKFGoB53EhcnQkeVqbClwmDlfyFxeyI1fPMgaaQnmwuajVSyKnVG15h0TcKlW//uHsyQmkWeOoHjrse33fYcbveaELWyZjkCupeQNOIKAagIHjPFZ4ei27HYmrAI3AqRqHug88S8PX3XoXtmyYcj/eEFOLS7j6AZz2/1TfQXEfO61iMRWYYqHVR4FHrsCda00otPFKUooCe9cbftOFYtEeh+nz+V/42MLoLePA/iOgkZHz7alqIWafzNT1kCdJ8u9YAjS7cfLpOBC/Bx7VhbCdHG310Oh2KpPqBRsXprBzeQfoeur8EDAekXFGxUr47Z+bSfhIZu+4ygHMVuUzHYsNWhB3dRUThV38beOPPgPNeQe53F/fnnyJC8MB2cntsV+t+Pxpl8tkagi1nfp6mqOmOyB3bDUAHFpwpKr5Ul4CvvBLY/zPgmCHMb7wOnrz31ADZjsSxmJAQC9N5EyQKRsXuWNRcuY5uYRFo9Q20Uy6TccByfRkiIzoiDHmGd8T8uYVFjuagaAqYFAM2He265OAep2ubUsKveYKiUOen50OFRVM07HtuH65937U4Z9c5YDIMNv3RJiyllnzdhgu1Vv1FTEUQFn0mSqWyAakCdijEdix+b//3HOKR5Vg0ahc8xaOu1j3CoulY1CgNGT6DcrNsCTv1ct3hWOQl3tFj02Q0M4rlBnGaBTlOOY6co9o5FlmfSU4yK/vGhI6uI2M/3md8ZI/nbGpNsBTbtr8dTdHkt8JEFxaX6kvQdA3jmXFQFIXJ7CRWGiuoKK3zvVvoTXNp0BSNmlJDuVkGBQo9Qg96RTJWcP+W1oosn/WNZl0L+qQ+VJSK9X2xHIuc4VhkGDSUBniGjyQsjmXGUFfrlhPajEK1uxPN34Xdxegmzad9v+vHG3PCgxkl/NDcQ+iT+nBu/7kndDsSEhJObRJh8RlNPJHAj94+MpP/sC0OVW02oTTjzQh3OxYrpdVAx+JtP/4e3vjiq6FUlsGk8hhavwWzM62+UgpopHPe4uf0Mhn0NecPQ5BDHItNDelstu3jNOPdf1NFZyElJbBtnX0mphjlh+UeZFoDx8NL8YpiXmFRAEdT+NtXXoAfvecqTPSSgU3NmF4vMCE9FiUywHDHW5qwHI9KQ4XgchnKPAPaVaR6/ktvQaanfYzCgCEsqrpuCaAAAE2BpgPzZTI4s0QqhoOudT7ITNsci1uHM2goGp6ejy6U92XIhQCd6glZ8vSBOBY1iB04Fs3vluwSvySejtSXw+4gTXDymsvW4R3XbMLudb0ne1MSTjVKxzp3K5lwUrCg48fqTPDjbsdclCjUIJ78PsAKMBMnBY7FE/udwmKpXEWDsp1jf/JHgat0R6FOzRUxOWIr5skFh9Pyf+56EttueDMOFVXkRQrnrevF4Wlnr8eerH902KE31fEnzxEcLj4AwNYbHOd8so40Kk3nZ5pJmc68CJ9TdrhrxyJtU7VoNWLfucIm8j9l9lgMiEIFiLBz7suIeFSeJ/G3bVwCAAAh53S+5luiLu8u5pl9uLrp+aXWSTyvn7huwFGGsBgjfsxBqo+Il3Znx+guoDQXrT+kmCfCYkxniMXMwwAjAOuv8j4mGWMbh7uDIr/V4R3A6E4g3Saub+4JoGddy/WYnyTbunzYf/lGiRyHjIl1Vo9F8/NLu4TF/q3kmFI8FPIGASweIP/PPExiXzPDQL+PE9sUeeP2iVqdAR76CgAqOMo3IeEMxSyQz1fnQ5YM51i5JSy6xRi/a4mg16xoFWT4jEMQ4BkeNbVmtdJw91jkGC5WFGoqn8Khfa7jUITDsV0k9fRYnAp2LO67bx9efc2rUZ4tgxZo9G/sx+zRWdAcDYqmUBNqvqJgsV60/o7iWPQTJwv95DreTwyzQ9GUJda0w72f9xb34ouPftESlM3PjTZmOsmMjJpa8zghLScVRUSostJyLNbKNYewKEqir7A4mZm0IiyDnFmsMQnWLk5ztM2x6O71DOJW8/tOXXk9Savgee++tLvoGmoDLM22dVGafUdpno4sLJq/m/U5MiFsLDMGHbrj9+QWhimKQppLo6bWUGqWILIiBEawhMXjFYWaE3Koqd5o1rXAdFsuN8j1QFWpgqZoy03IsAxqai3QxWpnLEPqmXPVOQAtd6JdWDS/C0HRtic7CrWuEYfoIwuPYFvvNvRJ/v3PExISnpkkwuIzlNWGjskP/DeOcsNdrUeUZAwMj3r6LFZ9+iwyRoyRpnoHAe4eiwDQP9xeWPzou16H9Wdtc0RrztmExaZOQ077CYtk0KeuzkOU0whqgdPUNN841WyeFFZon1li++a877udI9EkKC6VsznxABL5eWzFGzcXRK1acQiLYHhwLA2aojBRkK2LsroxvZ7zEUztsCK5MEm1cZNxvIBKU4HIOoUomfc6FsMwt0XiaIdIyRoF0lljX7C2HovdYI/e3NSfBkNT2L8QXVgspATQ1BnmWOQ41JsaRK4Tx6IhLLq+K1GdiEkUansoisL7nrcF543nT/amJJxqVBbiF8Ld8JLXIRhGaS748WqUKFR/YfGeo6rXQfnU/wCju9DQyf1njRXwuEtYXC1XsUqT83hDZ4DbPgnhwI8AuPo/Grgdi5qmOx2LYt4Suv727gZu+J0v4Kx1o+iRWvvq8IxzPwRFof7OFYJXYDNdfva7srbxirFfRgZI4SYVUswDQHrxdSMs6prjO0VpCtCMMBYxIzopGuVqBMeisSwAoLFKHIlBAreUJyKYSWGj9afgPs+YE5u66T9oOvXckZk2WIqMcTsWFtODRDyzFx2Hz4NfT1BfpJ7uHIvTD5L9mPYpYjMscR3G3YeaQsS8vs3kMwPI8WX4PNIX0e941SgbExzI58i7hUW3Y5FhiRtyZSpc9C4bv1ExD8w8BAxs8zo/AeM+3eu2boeqAI9+E/je+0kk9aW/SSJWExKeYdAUDYmVfN2DcZkut2Kgo7h15mvBwmKKSzmFRZp3CJZukYml2VhOu8F1gzi41+lY1BrtJ72aQoE9CnV10SluVstVDIz4T9pYun0Jn37LpzEwMgDeVnOYnW65RTVB84iCuq47hUXj/GyKdH4Cra+wOEiEGCkbfo1fijmx55att+D+ufvxrb3fAuB1LEqMRHr/uc53lmORJo7FqlIlAhFo0mPRNsmJF3mHK89kXW4dFmuLUHU1UFjkeA6arlnCpfn6puhkOhrtyKwcS6zmNd4hLDa1ZmAUZ6fCIk3RmMyS3spjaVKHs7ta/X4HpntwtbEKiZXAMRxyQg406OMmLGYF8prd9uz0wxTMTIdhTalBYARrn5o9Fnmab+sYtWMKi0t1kuri1x/T/C6kAiYipbiUbxzt8UZmSS2nqTaxb3kfqkoVl45c6usWT0hIeOaSCIvPUErGWKbE5rte18SGs7zCYtk7cEylyWBUaXiLUcVFr7Dodiw2G61B/yvf/B787if+AbStB9PcTCv+ranTkDM+wqLhKNR1HUIquH9is20Uavti65FixXPRE+RIDHucoSnQVEswG8kLmF2tQ43hyqtWyuBl24UAw4FjvO6zmhGhEhaFyohkICG3EX1Ynic9Fl1ClMyzsXssWs8VWIewyNRXQVPAUoV8kRlbj8VusAtZAkvjrME0jsZwiDI0hZzEgYowg+10gALAcTzqitqRY/E52wbw3us2Y32fc/AZVTBMHIsJCR1QXfLtdxiLTi4Y7T3g/KgVnbf9LsjtwqIhPFabOh6d9bmQri8DQ+dZAui2yX5PFOpquVXU+GV1HdC3GdKtHwXQijC14xYWATh7LMp5KIqKD/64hrd/r4bffOll+PbffhgZoXXMPzztEhbDolBl13nRp7AQ1qfRH7JfFI0CcuPRxZF2KK5zYZQCYe8GY1PMKFS7YzHEHVEvEWdgUNSU1ON0vvZMWn96eiyay3VT6DILzqZzzweWIuOzGO2ZnaQHyXu3T8Ib2BbdQSz1kPfYScFNqZEo0aFzW7GnnvXnDUdlDOG0eIiIhyO7nD1Axy4iAlzd57vUKJMenZawaPZYXAVAtZyPdsZ2E6GyEfIZm8JiY5UI7mMX+8fbmuJllN/O3BPADz4APPw1YN3lwMu+CFzzO0BmKPy5pzOm68JvokjCM5LZyizmq/OQWdkhXHWKPQo1CkGOxbJeRopLOZxGPOMVFu3X8hzNxeoNOLR+CIf2Oh2Ler398dJ0StrFK3ePRQAYHHNO9tA0DbM/mMXUZ6dw4Q0X4s+/9Ofg5Nbxde5oayyiCZonsrSiVBziliksmvGSfu5CP9djHFaa8SY4XTpyKd6y4y2W8GcJi0aPRZmRibDocq7RFA29qUOndGR4cmyfr86DpmnUKi7HouztsQgAvWKvtX/CHIvufol2YdGvx6LM+UehtkPURaw2Vq3tqav1QMecJYJJDBBxLDJXmUOWz1oC94A8AJZiUbSN3f36QmYF0u9wpbGCFJeynJQ5Iecr2K4FGT4DVVdj96mMQkEkQnmpScYlVaXqEBEZlkFDJcJiFMdils8ixaWsY2FDay8shjkWAf/P4HjC0AwkVkJdreOhuYeQ5tK4dPjSE7oNCQkJpz5nRvX7GUCjXrN6Ch5POnmNiQ2bIzkWTbGlUfcWPN2ORZbj0VPod9x3YM/j1t+veecHQLt6oczPtIqaGmjIaW+M6dSyLaZC9o8nM2moGjI+jsV29LINHC3WrF6FJgPZzoVFAOAZ2hLM1hdkzK3W0VCiF3RqlQqEVOu9ajQLjqG8wqIZhcoFHxZogRQR0gFRqNWmComjwdrcjymBAeXu1xORNM86nZS6ioGsiKIhLK6VYzHlErx2TfR44m3DKIR8nqcT+d5ejG/ahrqiQebZSPGldkSOwTufcxYmC86LWXc0ajsyYnefZ0LCM5LacjQ3WRBthEVN132dfqBooBxS/HMLi37HE9brWJS4Nsedvi0tRxyAbRP9HsdiqdLaDxoo4Mrfhm4Uwv368bqjUAFgfMg2FmFF7D10FF9+pIG/u0HEX77jRjCu+PAjx+ZB286vYcJiqMCG9nGqgRjnw+8fkYHcKKDUkIlgbmyLuzdhfdV/OTtyLxGoaIYIi6kIjkWAOCQbZfLcoMJNqr/VF0/IOiJKPT0WTWExJIoNABgzdq3qctuYglU70Q0AC8Ox2KmwmBki+9buZmAFoHdTtOfLBeIo7GRW+9yT5HkbrvbE8VrkxoDqYjzhcv4pIhBPXOK8f+ISIlIWfeJQTWGR4TAyNIRzNxl91Osl4j71i0oev4Q4tkshx6Ky4eRZOkCEy43X+C9nuhhrAcXwegn45T8CP/4IOaZd9zHgxX8HbLz6mRGDuuPXgM3PBdY962RvScIpwq1HboWiK5A5GauN1a6j++IIizRFY6nm7fdsokFDinUKiwIjOESeqlJ1CIlmj8WoDK4fxOF9hx3iZKBj0Sc+qbxShtJ0vubgiFNYnD06i8VfLGLo5iHc8uFbwPHOa6a56TmkMuQYpPEaxHTr/Ks3dM9+EuXwsYifYzEOcR2LAPD2899uiSqmQ49iyRgrxaRQUSq+Li5ddQqLc5U5sBSLernueK+86N9j0X7NK/pF9xuwPIuqy8UvMq3l/aJQU1zKisSMgqiLqKk1q4+jGYUa5ljkUlxkx+JsZRY9Yo8lbjE0g8HUoBUJCnhjggEgx+dQV+soNUqQWdl67byYR0WpHJc+iFme1PiOhyOyV3LGuFaVKgRWAEMzmJicwOjGUdTVOgRGiNRjEQBGUiNYqa9A0zVfx6J5fDHdgX6Y8dInWlgEyHaZwuKWni3ol/vDn5SQkPCMIhEWTxNuuGAdbnrW2Sf0NSc/8B0MvOwjoctNbNiM6cNPO4p0FR9h0aRZ954QlxcXHAPw/qERSzhUlo9BVRScdfZ5gdsxN3MULNsaVEsuYVHXdczYhEVWCi72Ndo6Fv3pZ+s4tlLDat05uB3MBA/Uw6JSWYa2BLNN/SnMl+oo1aNf4FQrZasvIkCERd7PsWhUwQSfAbAds0+in2Mxlc5gYvPZqDZUIzrT3mMxvmPRNGamBa+oNdYjYbnqdix2J0QJrvjWizf0YqUWT2wvpLqp3J5ayLIMKZODoultHapxyIosBJbGSC6awJxNHIsJCfGpLXcX9wgAgn9B/M77H8cXv3un9wFOJj3xwrYrjDg9Fkd2OuIQt030Y3ahiIatGLdadu0HIY3GrjcBAHpFn2JepYZqrTVG6cunkTIKUIeXNdQbCrZuGMd9b87gLbv9t+/w9DxSNmdePhssLvj2GnQRto4gVpsskB0FAKx8MIvbXtu+cBGI2wUbtaDz7N8HNl6LUrXmEFED37emANCBdEjxImOL85cLgFGo6S8UsHOTK07fEhbDfxvrGdIv9ILVHwL3/2vLndkwHYvtJ51RugKKotDsNK0q1Ud6KboLsEPnRnu+3EsE0E4cizMPE+fe6IXtlxk+D1iZjneMmXsSyI543XujF5D/F/Z6n9OsALwM0ByymTQKOeM3UF81BEef35+5vvk93sfslAxhcXmK9H3MtWm9IBda2+JG14GnbwO++17g0O3Aub8G3PxvwMVvJu/1mQJFAa/8GnDWc0/2liScYvAMT4SILnRFXdcxVwmJWbchsVKgsAgAEid5HYuaS1i0HT9jR6GuH0S9VkdltXXcUKrxj8fLtgQFlmPR00+c8s1iE/VqHUNjQ9j825vRd32f78TP2elZK6ZUEzTojG459ZRlxYpm1CvkA4rSY7Fbx2KnDrYtPVsAELELcAqLVaXq32vP+N6lObLNZtRnvVp3RKGKsn+PRTtBwiLHc6iqzvOh6XAcHhnG+OZxz3NkTnZ858IQNLI+M56zoTYcfRw922T2JpajC4tz1Tn0iX0OwWskPYKVRmtizWrTKyzmhTyqShWrzVWk+bQVQ9sr9np+S2uFKRaXlejtaqLC0ZzVlxMg31mREcHSLHK5HNL5NHEsMrz1fQxjND2K1cYqGmoDDbUBGrTDBWuKzEHfM7MnYxyn61ohczKmSlNYqi9h99BuS9hNSEhIMEmExdOI0kqXMVYdIG3YjaYaPNNoYuNmaJqGhk0w9HMsmjR9HIuK0kSl1Bqs9A+TIlj16Qcw/YV34jv/+g+B29CoVbC6UgQvtk7IdpceAKzUFFRtlR6zV2DbdSoaUpnoJ84+rgFNBw4tOwdQQyEiSiEV4lhkact5sKEgQ9MRy0VXrZQdIqoGBjxLg6H8HYthUaimOJjycSwKgoBUNodaU4XEMQ6RLi2wsXssrtTIQCvtIzBN9sooVhvQdSK+Amg/wz4iFEU53teuyfauhHYMBPTMPB0xHbjtHKpxKKQF3P471+DKs/z7hLjJSoljMSEhNprSivrrFCHmRSMvkwjWIHyERY12iQOOKNQQYTE76jjmb5sgItSKrZhXqnjPlbrRO66d/9oehzo5RM4BdxxWsOsfy/jwP/8vADh6KjrWreuYml3AkQYRnqabGY+j0U26jUvg8ksvRa8hKDpcj50UFWxCx+UTbGvWThw8UagRxyHZYaB/M0qVarQei3ZSPn3+7ORsBbtUH+nJByCdkltClAkrAKAi7T/acCwuixOkl+e33u4UGAOiUClNgcBznUehpozzY7XovH90V7TnSz2AWif/4jL9IHECpwrtlxnZRRyLYRMJ7Mw/RWJxzf6KJnIvEfVWprzRqs0K6efojkyurxBHtZ+w2LOOuFZXjgRvj3l81FVg4OyWgOhGzJEI2obrmmZ1Bvjpx4E7P03id2/8W+D6PyOTHbqc4JaQcKYgsRKJFe1CWVyuL8fqRScyoq+ryk6KS4GyjQDcjkV3zz6WZmP1NRtaTyZQLNsSEJSYk1QBoLhYxJ4P7cGe392DgdEB0DSN6sEq9n10H/7rk/8FAGDk9uOLuaNzKAyQY5vKq1A0xeE4XKotkcjQMvl87PGgdq5/wfUQZHJt261j0e3siwtLGVGobCsKVdVVy8nnhxntuVBbAEMznijUdo5FO0ERlazgdSyaolE2l0Wmx7vP0lw6lvNM1MnYyYwlrWv1SD0WWYn1dcS60XQNi7VF9Mv9DnFrIjNhiZmAv0MwL+ZRU2qoNEn/UvO1C2IB1SYRFt0pY92S4cg+NYXqptrE/uJ+S0Tull6xF5UmcVuaPRbt+7qpNR1xt2GMZ8dRrBfR0BpoaA2wDOtZH9ASD/0wXbtxBOm1IsWlcGj1EHiax1XjV8VOsEpISDjzOSWExc985jNYt24dRFHExRdfjLvuuqvtsp/97GfxrGc9Cz09Pejp6cG1114buHxC92ghA5KJDSSKrF5rDar8eiya6G0G50uLrSJF/9AovvvVL2H2qx8GP3wWrn7xr7dZGdm25XkSkyIItpgPV9lwetk56GPF4Fn7dUX1jVNtR45RIPMMZsquKFQfoUkY2YLMzucDAPpCHIscQ1lRqOsKEigA08tecdYPXdeJsGgTUVXQ4BjaEdUGtIRFOmSwQHHk/QQ52GqKBpl39lhMCeGORUkijwsi+X+pQgZPfr32NvSnsVRuAtBBU3D0ouwGmW+91kheQn/MaNN+I/q2d3A4ZMnTg4YpLK6Re7AvLYbG/5pE7cWYkLAWnBFjEXP27LJPtGA7GmVg8QAw/UDrPiHmxTmXMoTDgPFCbQVN3VkE0d3HbHufrjDHokvcOWu8AJqmsVxqFYg8jsUAzLPV7ELRum9iqBf//t8/xbO/WMGWPhrvv/kK3+ea77pYqqHZVNCTI2MHzRhmB/VITLURFs8992xsGCViaVicaijpNejz5hbkIjj/7JTKMXssAuHOr6ztPJsasIRFfygSTdkML+al02R/L62/AXjTrcDG5wBPfAc4eAeJ9OQDPg+1CZ5j0dR0dGTVSRkuTbcQP7Iz2vPFPPm/voqbr3+WV2BtR22ZHDdGzm+tw49hIz1kcV+09VaXSDzp4Nn++23kfGD1qI8jtmoIi65L1XqJfI5+4z2KMhyVU+0FZF13CoXrn0WiVf2gKEDsaS2vKsCj3wS+9z7SG/LSd5Jeiue81L/nY0JCB5wRYxGQ6D57v8I4AqFJ3P6KEiuh1CwFipkpV9S7n7Bod1nF7bGYH8pDlESsFFtOr2Yl/nsvzhdRP1pHfaqOwZFB3PbD27D/4/vB5lj86tt+1fc5pojUbDSxUlxB3yBJdVAFFQ214XAcLtWWiEBj7CqhTYrAOeecg94BcnzrVlhcC4cZS7EOYRFAoDAoMiIYikGxVgRDGcKi3bEohTsWJab92ILjOY+wGeQ8A4iwGMV5lsuRSWqFlLPvX1NtEsdiG8HOISxGaJ+z0lhBU2tiLDPmEMsms5NOYdHHcWo6FivNCrJ81upFWJAKJKZWV3H9r10PQVy7idemY9HsA/rDgz/EYn0RN22+aU3cdL1iLypKBYqmoKpUIbGStU8B4hoUGMESusOYzExiubGMmlLzdZs2tSZYinW8hhtLWDwJjkVTsN2Y34jh1JlR30pISFhbTrqw+JWvfAXvfe978Qd/8Ae47777cN555+F5z3seZmdnfZe/9dZbccstt+CnP/0p7rzzToyPj+O5z30upqamTvCWJ5jkegrI9fQ6hcUAx2I7lhdJn0Vd13DkwF586qPvR+b86zHwso+gwfgP0MzI1dVFMvuYtwmListpOV2sgaYA3SgqhYlcNUWDnIneY5GCjnNHc5irunssOrfdHvnaVHX0hERncrYoVJFjMJKXMLsaTVhsNhvQVNXqiwgAik57Ij8BYPMgGaSFCotG4TcV0Cev1lQh8axDvEwJDCg+eKC947wdAIC00dvyyrP6sX04i8s3eWeTTxZkVJuqFeHKMTSYkPVHwd1n8bzx6N8BoBV9m3P1CD1daRi/o6xw4mfhr5WYmZAQxhkzFhGM49VyhO1YMZa5/0vAX+8EvmKbwBN3kgYvEydREPUVNOBcrx7kWAwTFl0ikshzWD82iJVSsGMxDLPPoq7rODq3jFe+/y9w8zkcfvwqGX1tRJp6gxQNaw0yQafgmqGez7QXdyL1WOwyfgws396VBfjH1Lp7ESoxhEWfnjrlqlNYjORYdEdnujHcpxCyQO96pzDtB58C1PDx065dxB24bnQQGDoHeP6fkAfqK0Z/v4Dfh9qAwLEkCrUTo44Z/+qOQh08BwDldfC5MQX3egmTIwPoi/rdOfYo+X/TtV4xz07fZrKfVyIe68xY0snL/fuqjl9Cjlf2PoZqgzivRZ8CYWOVRDW3+wxGLyTrq7e5DrEfpzgZmLwsePvlXkCpAItPAz/4beDhr5F+gr/2ReCaDwKFjcH7KyEhBmfMWATEfVNTax0JiiZxhUWRFYmw6NcL2sDtahIYwXIB6Q0dNbXmEBKj9lEzoWka4xvHsbIUXVj0297iYtH6u1Kq4MNv/DAy52aw4YMb0DvoP5FhYXbBWCH5z1qOJqKUXRhcqC0ga0unCOuxWFNqXUehVpVqoPszyr7mGA6MkaJjCoum4OYHRVFIcSlU1WpLWLQ7FqUuHYs8awmLpjAUtDzQ6lkXxs6dOwEAZ511Fjias96nFcUZ5liUWSBCesJ8hUzuX59d77h/PDPuEOl9HYtCHuVmGYquoEdoTfjrl/rJ/ZqC/uF+iKnuazQm5ve2rtYxU57Bjw7+CJcNX4bnTD7HEja7oV/qR6VJhMWaUoPIio7Y04bagMiKkZ17Y5kxaLqGheqCJSzaPztFU8Ax7aNtgZaw2M3xtFPM197Zv9PxGSckJCSYnPQroU9+8pN44xvfiNe+9rXYvn07/v7v/x6yLOPzn/+87/L/9m//hre97W3YuXMntm7dis997nPQNA3/+7//e4K3PMHOxIaz0GgYgh3NBDoW27G8ZAyGQYFhWbz9Qx9H73VvBdUmv1zXdehGnNfKArnw4IVWUanaVB09F48uV9GT4i3HZKiw2NQgx4hCBYAL1/VituK8OHA7Fs2+gOZ74JjgnyFvExYBYMtQGnOr0eIzaobwygi2BtE6fKNQP/+aC/Fnv3ouNg+GXDQY8XRim16MqqajqeoeUSgjcqAD3QTwDKiyIof/evvluGGH17Uw0UsuJhRjdibH0KC57mfDuQXTi9bHm4U+YDgWmxF7GpzqmFGoGenEi3yJYzHhRHHGjEXMQvxySBQg0OozluoHLngNcI5tBnzcC3MuBdSC48dQX0VDd65Xd4uH9tsUHXs7tm0YR7lKzo8MTYc6FlXVW+CaWyTFQIqiwHMs/vg9v4F/fpEIgW1fQGgafR3nl8k5t5B3jh2ChMV2Uah2IjkWdR13vE4GgzZFuyCRzl3UrCwCP/qw8z5bEUwHFavHXrOpoN5oOt5raG9Jmg2MHAXQcpq95TZg9+vCN4RPeQVTH9p+0s0a6eMYKCwSx2LHUahinrx3d/ymmAVe9Glg6w3BzzfjRt3CZBjTDxHXZ/+W4OVohsSlrs4AUeIB554kkaL9W/0fH7sQ0JpOB2TDKF6KPp9/vQTwmfYTDyYuJu99pY1r2x4T3b+lFT3bDrlAvuuPf4uIlc/9OPDivwU2XE0mVCQkrCFnzFgELXHF7niKy7HKMUdsaZTXDItfzfHOCaM8w1vFer1uCIsux2JcJjdPorxKjuE0Q6NRCnYZmcuasByLoi09QRAF3PK2WzD+9nHQQvu6wfThaQBAdZWcn/sGWn2oi/WiJwo1z+et23YXnx3NmCg0V51DOhM+FtF1HVv/eiuanFcAqSm1QPdnlGhJlmZBc2Q5U1gMikIFWmIyTdGoVWoOEVWUxFAnpRAwackUFhmKsUStMGExxaViCUQUKPSKvZYA2tCi9VhkRCZSj8W5KjkvTmYnHfePZZz9h/32c07IWb+3Hts523QsHg+HnciIYCkWNbWGLz/xZWT4DF537uvQL6/NpO4+uc8SS2tqzXK9mjS1Zqgr1Y65H+er86irRowt7VwfS7GBwvpa91iMc1xN82kwFINnTzw7cl/JhISEZxYnVVhsNBq49957ce2111r30TSNa6+9FnfeeWekdVQqFTSbTfT2+hf/6/U6VlZWHP8S1h4zDhUAeEkOdSw2fPosHtq/F9UD94GiKNzy5vfgxa98feA6jjzdKkIU544hX+hzREKU6grkdGsAfLRYdYh8VLvoI4NaU4Vki0INmv1o4idC9buExTj9EQEiAlK2PlLnjOQssScM63OwDX4UTQfPMh7HYk7icPOFE+ExlQwHnqFbfQ1dmA63jEsU6qTHIkDev+AjYk72Ogu1HEOtiWPRLWZdtD7A5eGDuf/K9bVvVn4yMKNQM+KJdyz6ReAmJKw1Z9RYxIxpLE1Hf05+AtjyfGD84tZ9cYVFXiZOonabpWtAs+J1LHqERS74dgjbNrZ67qVELtSxuFB0bnNalrDv0DS+8xQp+Lzr5mvwwTffHDgr+eixBevvueUyRIF3OPMAIB8gDEZxLGbT4QLGWOMpXDrO4mr9F/4LZIJiRV3jmzv+2unsohhHtKTOSkRkizAuAohbEXDGvnodi659zKfDHYjm2KZnkjjHwhAynfWoNFGqxCkbVGhWGxB4Mwq1AygKkHr9hcHzfx3YfF3w800xNmoPTIB8jjMPAQNbSa/KMIZ3AKWZaOLy/JOk96G7v6K1rvOIWDv7WOs+U1T1ixdtlEhUc7vPYOQC8v9Cm6jWks35NbwzPMI01UeETrVJ3KQ7bg6P6E1I6IAzaiwC4soCECtG1M1sZdaKPYyCxEqoNCuB1+zuPmYiKzqExbpadwqLHbTZmNzUEmg4nkO9HDyhxS4iAkC2N4vZo61j1fNe9jy88QNvBEX7j0UoUCittM4Zq0tkbNMz0BJ6VuorzijU+pJDCApzLAIA02ZSsZ05dQ5slsXM2IznMTNeshs4mgPNG8IiHVFY5FvCYr1ad4iovMiH9n4U2yRnAa0oVIERLLEm1LEY0EuvHQWpYLnommoTPN2+xx9N0UToFKP1WJyrziHDZZAX8o77R9Ojjts1pWYJzSY5oSXU90mt8UOvSI5BK2FpJh1AURRSfAoPzT2Efcv7cNPmm3Bu37lrtv4BaQClZgmKpqCu1CFzsiUaK5oCHbp1fIvCcGoYFCjSZ7FNFGqYY5GjOXA0B1WP3u/VD4ERMJoexU1n3RT5OVeMXIGrxq7Cuty6rl47ISHhzOWkCovz8/NQVRWDg4OO+wcHBzEz4x2M+PGBD3wAIyMjjkG4nT/5kz9BLpez/o2Pj/sud7rz7f/4At71yl85aa9vFxYFKYVKiGOxuLjguC2ns/j3f/hLLP3v56BrKgaGx9o8s8Xdt/3U+nt5fgb9Q84L/XJdgZxuXYxML9cwnGsN9ChWcPQANCM1W7dV8FJrAF5uhJ/Id07kPff1ys7iWVxhkWNoR3H17NHo0ZymsEjZnHwNVYfAUB5hMSo6zYJjKMe+s1M39mPWJQqlBAa0S/h7YmYFlQj71Y+czDlEQJ6lwXARotVCcAuL24ezOG8sZzkkwzCF5E7f16mGKSym+BMv8qVPQvxqwjOPM24sIuaA8nz4ckG0ERYvn2Bxy7k+v0tOJoKNu0+aAWXc30AMx6Lf7RC2bbAJixIf6licdRXzchkZf/nFb+Id36uhpuiYHA6fWPLD2++z/p5bLmNsqA8sSOFMoMj/+WwMx6JZhDHdYOU5MEx4MS+lkuftSs/4RpEiFzCucrv4cmPAjZ9pPYcVHVGoGieTzzpigaNUIZ+//b1Kguuzdbu/hHT45x/z+wE+Hcmx2JZmjbgkg4R3Iwr1R/tVPLzI+8d/hpHq8zoWo2L2R/TphdSWygJQXSTuQSFCEX90N7B6DKgWg5dTm8DS00Bhc/u+jZwIbLgSmHui9dk02wiLug40K4ars80lbLofyAwT17afuFCeI9/n53yEOLXDZt+n+omYaf6mOvk8ExIicKaNRcLElShMl6ZjCYsiK6Km1lAKqEPwrvOGwAhoqoZ7rA4r/tCERfzrn4lNExBGyfWgOCiithIcwb00t+S4LadlfPc/vmvdHhwddD/Fw/133G/9XV4qI1/Ig+db77XcLLccixQRfHqlXmviVDrVZeS6QTu3qK7rljDWDRzNWY5FgRbAUExkxyKlG8KfLQpVkATf3oF2gtxprMCirJQdy4QJh3FEKZMBaQDlZhlNrRlJiOIZHozIoF2IhZ3Zyix6xB5IrmSpDJ9x/P7cbl7A6QAuSK0xc0Ekf680j8/khTSXxnx1Htt7t+Olm18ay0EYRr/cj7paR7VZRU2tOfqympMQ4hzfeIZHn9SH5fpyy7HockC67/NjLY6pAPCDX/0Bbtl6S+TlX7jxhfjYFR/DoBx+HEpISHhmctKjULvhT//0T/HlL38Z3/zmNyGK/ieTD37wg1heXrb+HT7cJhrnNOdv/uiDeOyBu0/a6487hEUZ1XJwQWRpoRVFVNl7N6rlVUipNAZv+WNQNIO+ofDZwHf//CfW38X5GQwMOWdVVZsqUoawSPEyVmoKxntaJ2Sd5R0xpE1XT8ZqUyVxXwbLERqvZ0UOeZGs0xxWm30Gm1NkNvaRxQ4ci7ZI1+3D0eNZqxVjoGy7iGqqGgSORoe6IhEWWdrRP9GO6abMSs7ic4pnSaSrzX35+HRIdF4Io7bPk6Vp0GHuhgi4XXI8S+Orb7kULzp/tM0znIQ6Pk8zTGHxZPQ7NF8zKeMlnMqccmMRKU+iLLshQDgR/SJB+fbCGQDQRtGmobsdi67jpf1c1VSCnWE+bNs4Yf0ti1yosHjMJix+9ykF03OL4FgWt70uBZGlMDkULix+/+f34IEZcpx8eLqG8aE+pDVSSBnhyP/5gPiwlFtYNAuappARI3LU4thj3vtyrgKyvTjkFqKf8xFgy/WwLhM4AVDr1oQknTMiRbVo6Qmmc9Tu5KRp2vl8d1S6kI3uWIyKkOlOWFRqRERngoVFnmPxqV808O2ZIe/7ikKqvxUHGhdOJPstzvdmcR+JHt74nGjLD58HQAeW9gcvt/Q0+Z6NXRS8z7a/lAiBS0+T26ao6nY5NqvkdxEWkTtyPrBy1P+zLs2S5+94GTC6M3g9AIlKbZQRqVFVQsJJ5FQbi7iL4JZ4F4OZ8gwyXDzHIgAsVZd8H6dAeaJNeZqHDh0UTUGvk6t3u8tKqcYXwiY3TYJNk2Men+etaNJ2LC20trf0eAnTB6eh2c6PQ2Mh/YYB/PKnv7T+Xl1aRf+wMxbS3mORzbPQoWNYHrYej+JY7AqNOBaDeixGgaM5UMY4lKIoZPiMQwj2I8uT2oklLNrGIhRPhbrAJEbCVWNXAQA25pzpCBzPodokjkUTt3jtWV8HAlG/3OpZ2NSagT0WzW2gBTpSFOp8dR59Up/vdo2kSE2OBk2ibF3Cot3laLoUAaBXIn+H9a/slDSXhsiIeN05r8NoJlqNJiqmKDpfnYcO3SEsmlGkcV2nw+lhrDRWiLDoEoWj9FgEOhOk2xG1P6RJls/Gfk5CQsIzh5MqLPb19YFhGBw75mzMfezYMQwNBQ+gPvGJT+BP//RP8cMf/hA7duxou5wgCMhms45/CcH4xZSGMelyLIZFoRYXSRFr9YEfYOnHf49sTy92XHgZmFQeAMALwYPbeq2Kh+65E6JETrArc17HYrWpQTZm3zE95LEtQ62LE51mwbOtn4DAOn8OtaZmxXoCQKkR7YJoaz/Zds0WPaFWV6HMPw0AOFJsXywSOe9PkmdoULaBxliPBJmPlm9eM4RF3eZ4JMIiE3tw0NdH4i0oVgDPeHs0mpjCYs4tLBq9C80+i7Vm944+u4uQZ2nQa+FY9BHQBJZBNmIUaI/c/TacSjRUDTQFSBG/c2uJ6R5NxrEJx5Mzbiwi9QK1Ynfr8BMWg9xJIRfY7R2LbmGxdZxdWinFdyzaolDTIh8ahWo6Fr/8SBMv+koV/T05XLxjC8ay5Jzblw+ewa8oKn50x/3gJVJ0mFkoYXyoVczLMUTY6DYKNTaPfdPrWnQ7Fu1i4qE7nO4uXnQ6wlgRUJtgWfL5aXzacCxGK7iWLceiq2hVsfW7cxdUhKzv559KkX2tgw4XHt0I2bau2mjo5LseFoXKGd/zuJHCJumB+D0S7QjZeMLi/B4iPPdMhi8LAAPbSTxuMUSUmH+K7IPxi4KX2/J8sr7DxgTJdj0WzX0ihwj+4xcBK1POOF+T0ix5ftSioOkejSiiJyR0ypk2FmFoxhEhudyI32txtjKLVMjEJTvm61Gi/4WDCNGKNDSxi0CWsGhzWTUq8eOzR9e1hA6WZ1ErhTgW54mwuPLACp7+xNPI5DPYsGWD9Xj/UH+7p5Lt1nXc/bO70VMgx8zSUgkDI87+sZVmBSkjPYERyTWdXZAxhcWnlp7CvuU2UdLdoIO4wNQOJkvZsDsWASJ41NXgCUOmsGjOD7E7FptUeH1H4ASsy63DbS+/Dc+eeDaA1lgkP5BHRalAZMTIUah2oSoqw6lhrDZXoWgKGmoDAiMEClECIxBhMSQKVdd1zFfnUZAKvpGvZn/AFJdCpVnxiLBZgexbjuYsZygA9Ajku3i8hMVXbX8VXnP2a3DJyCWRenPGwXRemr0n7a5N07GYYuN9huPpcazUibDI015RmKd5z7HJTScRugkJCQkngpMqLPI8j127djkajJsNxy+99NK2z/vzP/9zfOxjH8MPfvAD7N69+0Rs6jOK1ZX4A3+7w5CTJFQrwQUR07EortuJ7MU34ZzzL0ZpuRj59R66+0406jVkcnkAQHFh1iMs1pqtKFQmTx7bOtS6gNIoEulpwrPen4O9T14pYs+8c4fIYFLzKYhpmo7p5dbFhbt3oMR5xRvO5Q6hKAqbBqLFlZgCr0q1BipNVYfMxS929feRixoShUq3jVJtKGTA6XEsmiKREYf6yNH43zM36wo2YZGhQbPdi3pRBcR2dBoxe6rSUDQILN02+vZ4kjLEzERYTDienHFjEbkXqHV5fPWLB5x9vP3yoY5FUkjy9Fik20efLi6vAjGP6blMCgWJHDBSAhvZsXjVJIOPXMXj+VfuJoKmQdgEnLufPIKl5RJGBkgRYmaphPHhVo+ZHFMDdA35TIwo1LXg2KOgjj3svC877Lxt7zU3/SAw92T79bESoDbBGWMWncsQ4SqyY9EbhQqAuMraIeZ9hUPZECcpKR8eY+lGyHbnWAQALtW+9ycjAEoDvM8ksVikB7sTFsW8IfxG7PNYmgEGt4cLdiacCPRuIM9rE3sHgHyncmMknjQIKQ9MXAzMPU7iU5tlIjTzrrGu2cc1NeBZhYOxC0k0s+mAtFOeM4TFiI6RVB+J/O3EOZyQEIMzbiyCVm87ACh2MOFptjobq4AfJuiIlFdYtDvNTGFx1dYzWinHdyyytutslmNRDRmLFOeLAAB5k4z+F/bj8hdcjtWVVeSvyKPnyh7wnp7ETmYOzGD26CyGJ8l5vrxU9gqLSktYNDFFI8Dp4gOw5mKNKep123OPY1qORYAIW2GORUsYMoVF23sNi1GlQIE16ig5IWd9pwWBfG/6xvpQVarku2ds1vHosdgv96OqVFFVqmhqzcC+j4BNWAxxLJaaJdTVOsbSY2B8xlQTGZIEkubTvj0yM3wGFCjInOzoRypzMkRGRKXZYfpCCC/a9CK85by3OHo8rhVmr8jFGkl/8RUWY4rDE9kJFBtFIiwy3v6YQT0zTRJhMSEh4VTlpEehvve978VnP/tZfPGLX8Tjjz+Ot771rSiXy3jta18LAHj1q1+ND37wg9byf/Znf4bf//3fx+c//3msW7cOMzMzmJmZQanUxQV4goPVZf/4kCBo28z2MMei1qji2//+BZRWlsHlh5A5/3rkC31YXlpo+xw3d9/2UwwMj0KQyMCtWa+i3xWFWmtqlrBI0TRyEodCujUwV8CAZ4J/AuV6a1bWSkXxxKX6sX2AbFNd8hZo5kp1NG0DPD8x041g20Zz0lnUONSaKSzCOVD0c0ZGpalqpJ9hWBSqS6CTjR59tNFH6b6DxY63wWR9X+uClWOoNXEsuqNQu0GN0DD9VEcHwLPMSRFMWYaGyNJIwlATjjdn1FhE6iF9yCL2v7MIKyLN+sRrmnASgn6nlCUsOoUi3S0c2YXF4mr8HnoAtvSR9zGRZy1By4/lmo4vfOOHmF0oYjhD4/euFDBYyGNuKboo+4O7nkRPLo2+HnJOrtYVh2MRAKA2AoXFtXYs7lMGgewo2Ke+63wg64qKKtlcMWIeeOTr7VfKioDaAGf0etT4dKzvmF8UKoBgYVHK+wt45vc0LA7TD7FbxyKIiO43q5yiDCFcR0bochyRHnRG1cZFyhnvM4bLbuLSeLGtQ+cCqzOtXqBudJ04Fns3Rvustr8EWDpAvhONCvnOsa7Pv24cX1N93ufbGd5JvieLrqhWXSf9JNOD0WN0ZeO1Ou15mZAQgzNqLAI4YkyX6vHqCw21gXKz7BAnwwjrsyZACBYWa94o1OZq/AhXAKCN63eO5wKFRa2u4Sf//RPMHp0Fm2Yx+JJB5PvyKC4UMfaGMYy+bjRU/Hr8jsfBC7zVi7HZaDqiUJkmg3KzDCnTOsbzNO+IrhRlEbptMspa9qwDYK3bLtp2gj0KFSBRnGEuSPM7ZIpsdsdi2L5laTa0911VqTr2l8SECIsdRFr2S+TzXKotQdVV8CET7wRGIM7OkGHafJWkV6zLrvN9fDJLkgzSnL+wSFM00lwaKTbliRnOC8TNqUed5BQTPyF0LcgLedCgLWHR3kfSjHSO46QGgPHMOMrNMkrNEnEsuradY8J7LMZ1SSYkJCScKE66sHjzzTfjE5/4BD784Q9j586deOCBB/CDH/zAalx+6NAhTE9PW8v/3d/9HRqNBm666SYMDw9b/z7xiU+crLdwxrEawznohyDJqLRpmt6YP4SVu76BQ/v3YHZ6yro/31NAcbG9sHjoyYehNFsD+7tv+wkuvOLZVuQEAPQPOmfjV5uqFYUKAP0ZwRK3AEABDcHHIWjH7lhcqjYs0SyInBEvovtEZU0V48945m2uxiOLZNbXOSPRZmdVK2VQFIWmq+AbNUrVj6ZmCIsBUagU5X0NMwqV4kUoqoaHpoodb4PJZMEZhUqtgWMxLXTnWLTTiPB9OR3gWRosfXJOF7LAJrJiwnHnjBqLuPuSRcUsihQ2+T8eJCxSdKBrsa1jMaDH4uJysLDYrlDBGMcqKcCxuG9Rwwv/o4InDhzBgSMz1v39PTnMLbYXFn/5+GHUbbHo3//lk3ju5Rc4nI1jQy7RQ2kgnztxUagaaODq3wGzuMf5QMbtWLQJixe8Gjj2SPuVcoawyJrCoulYjCcsevpJrkz5LG3QzuWWN/poDp4T6bUddB2FCiJO+o1/aNb6vmaELs9a6RBHXhhSD9CM4VhkeGD91fFeY3SXISy2KbpXl0gk8+A5oY5mAMD2G0l875G7iYjHSd7IWSsKtdf7fDtCmjgql6eckcC1ZbK9+YnoUQipNRIWzW3uWd/dehLOaM6osQicTh+zSB8VMzo1jrDI0ZzlLrOjU+RYKMAbH+noh1d3vjYAVFeCr91VV2sP2iivCSIZ3zACg0q54qhZmDQXmzj06UOYOjCFqadb58Ncbw6rxZYAV3U5pvfctweNWgMwLoMfu/0x7Lx0JxhbzcAhLDa8wmKGzzhcb6IkOt53mMgRG+NQ3G00Js/woBinsBjVsWgKi/Z+kmHCIkMxjgn0ftSUmsOlGNZjsSNhUSaf50KN1MvCxEuBEUDxFLSGFuhaXKoRwX9dbp3v46arNcNnoOma7+eX4TPI8BnwrhSSHrEHVaUKPSjZ4BSEoRnkhJy1b8y4VwBoaEaPxZif4XiGtGpYri/79lP0czG66SRCNyEhIeFEsHbWnC54xzvegXe84x2+j916662O208//fTx36BnOGHC4vyxafS5RDwA4I2IS0FKYfHYIc/jT9x3J2a+9DugeRG7LrocG7ZsB355DwAg11vA8tIC2p2iP/mOm/AZsTWAOvL0Prz+Pb+L79rqYv3DI8DDrQFxw9ZjEQCGsqKjZ1tTA3gmuLBQVVoXC4vlBupd9gWcWqpC4hhUY6zHz9W4a10PaKoVL9qOaqUMUZJRbzoFLrvAGhdF1SGwNJg2+65uRGe6tztlOhY5EU8eW0XNtk1h78OE58mAlTVmsdt7LHIMDZrhALW7z8gUQNeCKEL06YAQ4FA93qQFNolCTTghnDFjEXdfsri0KyYFCU8AEVzaxDdSShVgeGiac926u/hic6gtLpeAnvY99B4/MI3t54977qcZFoCCjMCg5BPLfvuDe/Dyz5WRE4HLzt+Oi8/bChiaaX9vDiulCgD/VIBL3vGPEPgv4Mi7BAA07nnyCN726psA3G4tMz7cD9jnSSlV4lgs+r+PdOo4RKHufCW0W/8UtF24410jrNWWoIrdrwMe/SZQPOi/PlYAasvgOAaAAp1PA2od0KL1njKdoynJ9XkuH2n/pNRgmweMEwITYxzTKBNXppAG1AZYGuj49GwrMKUE/yjfrNDlRJxUSHRoGGIPoOzx9tlsR+9GINNuf7dhZCcR6VaP+TsIlw6Q/9ddEW19mSFgaAcw+yiQHiITHdyO1UaZCLhChNSOkfOBg3cQgdX87peNnp69G9o/z43pWGyWAXTxuci9wDvu7S7iNuEZwRkzFoGzIF+sF2M5l0zXoL1vW5hAQVEkknGl4YzbrLNEMeR07+RRR4/FhuGqq7dEvUqxAgQMqw49dgg7h3d61yvwaIJMvKiWW+JKKUuOAffccw/2/eE+gAI2bN2A8y87H/gJeW62Nxu4rz7+6o/jz7g/w1mfPgsAsPe+vXjLh96CJbRcoQPDA6iATEhmGyxWm6sQ+0QYdyEn5CDYUiOklISZsm1csNYYb6eitI/GrCpV/PzIzwNXw9Gco4LZI/SEioPmd0hXDMeiKwqVAtX2u8XRnCUWB223zMmgQIGjuVAnHcdw4GjOitWMguVYNJy/DiHTJypXZERQHIXZb80itTMF/lX+YqdmjBME90Q/A1NYNAV+P8dpn9QHiZMcUagA6VU4U56xXuN0olfqxdESSdWwH4PMzyyusDiabqWG8AzpsajY+pT79V10kwiLCQkJpyon3bGYcOqxEhKF+tDdd/rez3JkMMGLksexOHv0CD7/8fdCHD8buUtuQq3qHFTmegpo1NvPNnvXX30Zr33n71i3GZbF+Zc8y7pNURQK/c7G9jVFg5hqzZQc65GsCFCG5VFXNIcb0A+7kFhraliudhaHYnJ4qYKBbPtCqR9+wuK24Sz+591X4rzxfOBzq5UyJDmFmuIU27oRz5qqBp5p71gkPfm80ZmtHosy7j9URE5ijZjL6GSz5AJ1w5btAIDhnAiGpsDSlOFY7N5tmO42wsyGErH/1KnOyeqxCBjf1URYTEiITqeOxSB0HZh9IniZgD4ntFIFWAkpGJGYFDnfe4XF6D0Wf3b/U/6bahR0JEYjjkWrOKdjbnEZL37fp7FjkMb3XpFCueocd/T3ut6D4hTO7vrMm/Hn73td67V0Hc+7YpdjmXG3Y7E0FxiFKovxxgSRoBkoV/w2AGBb3q+noO50LLICcO1H26/PiEJljWg3zSxu1KOJJKVKFZIogGFcY4/Vaf8nAEB2pP1jcVDqwNJBoO8sSyTKdBNuIJLvCE3TeNOLLnE+ZhTmMgKN1+7k8MYN00C1g36n3QqLci9xlEYt5g2eE72/osnQueT/yrz/4wv7AakXKGyMvs7tNwILe0n/T072Ohbrq8TJGCWdYvwS8v2q2lxSprAYxzUo9wKguoumNenbRATZhIRnCPYIwWKtaLl9orBcJ8dOe1ynGsElbxcBTBoceV0e3mOHQ1DRiJC02rS5BZeDRau99+31vd/ss6irOirlVt2jmq5iYWkBz3ve88D1cph8zySqFedr5NxjERcf+epH8LYPv826rTZVXHzNxY5l7D0W2QaLhtoAlXI6/RyORVk87sJiiksF9tz7wiNfwNee+pp128/BxTGcw7HYI/agrgb3TjZFMc2YUeR2LAbFvrI0G+gk03UdNbVmiT4c7XWj+SGxEprL0etKeSEPlmKtXqWSEV0up2Rc/WtXe5YXWAEUR6E534S4Koa6KNsxkhrBq7a9CpcNXwaA9GR088fP+mO87uzXefo+FsQCqs3qaSksFsSCJVjbndfme4nb77BP6rMcnQLj75wO+97EcW8nJCQknEgSYTHBQ5hj8cG772jziBEzIqUdPRZ1XcfAyBje9Ad/g/6X/h6EVBZLC3OOZ+Z7gwsa67efj1/9jTdbt88+/0Kk0q2TfKa3zxI2TeqKCklunYA3DaStuDKW5QwBrP1PgAJQdTn9Zla6i9A6slTFSC6eO6HdNm4ezKA/E1yQrFUrEOWUx7GY6sKxqOlkm4JSQQSf6EwzGpUWJNx/uIizR7KO+Lg4mJEkLEPjhnOHcdZgBjxDg/LrxxSTtRQWzxQEjmnrUD3epJMo1ISEeHCSJXCsGaVjJNYwCClEWOQkpCkjEpM2hcXOo1BvvfdJ3/tVnRwx8hKNUqWKXm0emq6jj1pBf28O3/yLd+AHvy6jINM4tuCcSOUVFp3n/Au3juGdr34RfryfFDd3bhrB8ECr6CkLHPJZ14X/6oz3PhsesW2N0La9CAAwmfYRRHStJbKYnP3i9itjJUBpRaHqZnEjovuqXKkj7Y5BbVSIUNSOzFD7x+Iw/xTpBTlxmSW658Quzioysa7QFOV1LLJmFCrw4q0sfmWsCHznXcDj3wbiTDTqOgq1YPTADHEHiVkSY7zhav9+loHPzQHZsfaPL+4jAl6cXphnvxRQm8DcE0RYdLtSG6sAl/IKjn6M7Sbf84V9rfvKc+S7HGf/0owlJickJMTD7lhcbiyHCkB2lhvLkFnZ4cyKgl/xvckQAYf1CetyCy4iIzrEk3IxOLpzzz17Ah9nORbNepO44nQduqrjR8d+hG9/+9tY/zvrwed4LLnGItneYFf2uu3r8JLfeIl1uzBawNj61vGYoij02SY5sQ3yvhWhNR7oEXscoqooRRMWOb7za22z5147blh/A/7q2X9l3c7y3v3A0zxgGzblxXzo6wqMAI7moDZVcDzneA9VpeoRxOywNBvoQFR1FZquWf1Eo/RkBIjIWry9iMfe8hiGU94kMDcURaFX7EWxXgTQikJlORaiT/KFyIhrkk1HURTef+H7cd266wD4R8dOZidx2ehlnv1UkAooK+XTUljsk8jvh6d5zzGCoRhPP8kwKIrCUIqMa/2OaQIjhDpd/SZNJCQkJJwKJMLiMwTKmAGjquEzbjsVFiljZj+XyqJaLlkOxJ/94NsAgE07doOiGXCChOKCc4ZzridYWGy6suEvvPzZjtv5Pu+ArNZUkbEJlmePtAanLMdZkZ3fe+cV+Kubd3rENolnUHNFli6Uos+0dEMxHOZLdYz3xpvhxDOd/0xNx2Ld5ViUu4z7FAJ6LAKAyNFgXUKUwNLQVQXixA4sV5u4dGPfmkRcfurmnXjtFeuJYzFONFobelNG3GoX+/1MQzyJjsU3X7kB120fBJd8HgkJ0Vlr12JQf0WTgOIOpVQBTrQmk5g1Bp0OcCwWV4mTrg233vuEb1SYohnCokijUq2jVq/jZV+r4i9/RsYdV+zcDJ6hQNMUZheWHevo74kmINzyjSqoj67g+Vc5HQLDhbR3wkx13nIscjFd+nbCevx4CDrBNkreXoP25d2FWU4ClBo4QwTVzOJGo32B0E6pUkVadhVS7I5JOwxHvgdxHXTtmH2ciFTju60IzazZA1GpA3f/U7z1SYaQrGvAk991Cu7G9zfFk/U/WhSAySuAB/4D+N5vAccejfYa3b53uYd8NmHFvOHzgDf8BNh8XWevY7oW3agN0j+zf0s8Ua6wkcSU6qrhWHSN6eqrJNY0ivNi8GyynD3etzRLjo1cPKEiljiakJBgYXf6rDZW0VC919GmC1FxuYKX68vI8tnYBXxT4AmCos2xiO7pCyeyosNVVyqWArdh/wP7oTTb11dYM7GnQWHqc1M4+i9H8YVHvoDdF+8GzdOgaArllTLpmWgQ5lg00TUyftl22TbH2EPKSpZjEmgJiyWtJZj2S/1gaAa6roOmaeisjulyQIqAuS6282vtHrHH0w/RPgZ73vrn4ZrxawLXwdO8o4KZF/KRXjvFpaA2VYdbESDRrEGOxTAHoimWZ4RMpOVNZFYGLdDQalpk91tBKlhO3jDBXWSJsCiMCdB36Hhg9gEcXj0c6BhtB0VR6DHaLAQJw276pX6Um2Woendtak4GAzKZgMQzPFjXWCRK3K0fZhyqX+xsuyhaO4ljMSEh4VQlseY8Q9AL6zH5ge9g35GnYC+D6T5Fh9WQKNSpg/sxP+ud0UYZFwuMSByL3/3qlwAA4+udMUgcL2B5aQGqrRdezuVYrCsaRK79CfvCZzmFxVzB2xum2tRIzz2jv8FgtjVoZDgedUWFwDE4azCD7SPeAXyKZx19ADMii6VKw4puqzTizb5i8sPQdGDLUPgFj50gV2UYNUtYXLseiwAgcME990SO8QhRFEVBa9aQOvsaSByDa7YM4O9u3ddmDdGhaQpZkSP7yV2E6oDNgxl8+pbzcc5ohB4+zxBEjgF9khodXrt9CM/ZNtixuzUh4RmJ1NNeuOmE2cdJkd6nKOh4zTbQShUQREgigBpQqZPzcnCPxVWAaV9cmy2W8eSBI1jnut90LKYN8ejX/+lxHJxX8IkXOYswNEWhVm9gtVy1Oip6HIshXH+1MwpzqNfnor+yZLkSs3LnTlLNSnRdg5nfYd8N3hXdyslGFCrZfktYbAZHxFkvV6l5HYulNs6Ic24ijlu/vn2dcOxRIlbJfYDRsysnUDhvkAb+54NEbDKJUAz0fM+/+1vArteSv01hkaOABlBqMsBN/wQcvB34n98FfvIxYOyi1vLtYDgi1Ie5hIO2UVe94rEfo+d39hoA6WP41Pe999eM+NexC4njLw5bXwjc8ddEQPSLQuXT0dyVDAf0bwOWpwBNJdtROka+B3GFRbnQ6hmZkJAQGbuwWGqUPKISADy++DgAYLY667hf1VWk+XR8YZEPv87O5DLAPFCr1MDQDBiKgaqraNabkFjJ4cpaXV4FS7Nt++E1qg089Yh/NDvQikTd9xf7UDlQwegbRnG0fNSK/DQnDRUXi9ZzUtkUmIB2LeUmcVE25hqQJiRsu2yb8/31OPcB0yDrKjda7suRdCtu3HytY5U1HDf60CP0WH3rTPYv74+1Do7hLGFRhx5ZWNzSswVPPvokpJTz+F9pVgKFPZZmA3ssmsKiGfvLMVxbx2JTbYKhGKsXKC3Gq/H0y/3YWyTRu2FipMiKAAP0Pb8P+uU6/umR1iQqgRHQI/agV+z1CPrt4GgOKS6FasRxH0BijJtaE3UlulP5VMHsaSkwgufzDPqMgxjPjOPO6Tt9ReEozuwUm/RYTEhIODVJLCDPEMoSEd6eOFoE0HIlLs4c8Szrdiy63YJAmz6LhmNxeYFcGCgKGYBv3HqOYzFOEKFpmkPAzOV7HcvUFRWabQabO57S7LFnPb/fKSzS0FFrqK1CnGsdLMehoRLHYjuBTBYYh9OvPy2gWG1CMfr+fP3hefy/Hz6JGT3v+3w3TC+JKDl3NF7h0q/HYlSqlQpESfYRFrtzLIocEyj0iJy3xyIA6I0KKJrB1qEMhmNGwobBsbQ3NqtDXnjeCNb1JbPCTE6mYxFAIiomJMRF7g1fJg7HHgUyIVFNAc4kSqkCrAjRiI4sGzPza6rr/Gb7rS8ul5yORXcUEU3j1rse8ryWZoQnTy2SAuZCqYnbXpfCczY7L8hNA+DsQtG6LyWLkMT2r2ly4QiNz90o4tKdzmLeUK9PQbNaJPGOXXL3tLFvlr3jttiUZsOXscNJgFIHz5lRqMa+9InE8n25ShUpyXXOX532d7mKWeD8V66NsKg0SCRn/1bymzAcBTefw+GXb0gRwem5HwcKm8jyUYRF+zaLOWBgO3Dnp8k+Nb6vKfvXhqKArTcAb/sFcNUHgNlHge+8Gzh4W/DrdPMbNh3LjeAIv64ZvaD9YwxP4kjjcs5Lyf98yisg1kv+97djbBewepTEwgIkCjXVgbCYWiP3bELCM4ws15qkqegKFmoLnmWmSlMAiEjkJs3FFxb94jPdmGJfbZWME8yow5WFFYis6BBAV4urHseSHV7i8eCdD7Z9vLFMxjv1mTrW/8569J/dj/XZ9fjio18E0HJPLs216iIURSEXkKBgOcCMy/stF25xPJ7ucV7DMioDnuEdEa9j6VZ0KsMxqDQrlmB5vChIBY/j7c6jPjWlAOyxlKqiRvq8AeAV216BwlQBkuQ8/leVKmS2vUjH0VxgYoTpws0ZfcaDHIsVpQKJlcBQDNJcGowUrx4zIA1YAneYECUxEnRWB0VT0Kd0/ON1/4iPX/5xvHnHm3HtxLUYT4+jrtQxV5lDv9Tvce76keNzsRyLBYmcO/36Mp7qmFGoIiN6fv88zXckLE5kJwD4f3ZBrlmTuH0dExISEk4UibB4Avjs//sYrjt7jXrFdIg5W75UJAN6M3akXvUOIN3CouaKGpvYsBkP3eMdBFLGjK199/0cAHDFtTf4bgsnkBOnvc8ix/NIZVoDQ00HVqqtQpxbpHILDVmXY1GgNVSaKjSbsii7hUVFgxQgkMk84xDk+jMCipXWNr1gewGluoIDFPls61rwAIPpHUNOYjGQiSeo8QEzFj2v4YqLJFGoMhpr7FiUuODnSxzjG13JZMggbfe6HvTInTURbwdxLB6fXlXPdESOSaJhExJOJyRbIdzo7bb/AJkVXqt3IHIdewRIe5MBHPgIixxFxhq0UiWii1FsMYVFlWpfMFxcdkWhui66L9wyip/d9Ujb53/jgUUAwD/9+nrsHPKeG8zCj9ln0Rwt9Nt7G3H+5+v/fkUKrz+fB2cURE2G/RyL1SVA62C29qPfBJYPW1v24JwxVlk8EN47L4zSLHEhRoUTAV2FxJF9pjMiQDExHItVpN09gFaOAqn+6NvQCYt7AU0BJi8jYpQhLL5sO4vpkg786j8Bu19H3ksUKNoZEyvmgdf+D3DtR8k+SpP3I/sNkTgRuOZDwFvvBDZdC8y1d7gA6G7fGJFl6CDyLBZDO9o/lhvvTBwe3glsuIbEtLrH580ywGeiRaECwPglREwszRKnb2WBHMciFPAcyMf5e5qQcIbidg/OlGewbx9Jq1ldJj12p1znUTspLuUs6keYZxjFsWhSKxvCok1UkVgJNdUpLAaJmxt2bsCDv2wvLB67n7gAt//OdsibyHn3Vzb+CmYqxLVvilbuPov5Qj50+wVjIpTgSkNI5V3OJh0oiAWHcOh2LM5WYk446oA+qc8RxVlX6rh/9v5Y67B/Vs1GM7JjkaZoKDXF41gMFRZD3GmmY9EUOHmaby8sNiuQWRkszSLFpWI7FgdTrXF4UF9IAJA4CRrdqv9s7d2KGzfdiHec/w786ZV/is8+97P49xv+Hd980Tfxry/4V4xnx0NfPy/mY/VJ7RXJBKnjLVgfD0xhUWAFsJRLWGT4jqJQxzNkH/t934K+gyYpLnEsJiQknJokleITwD2333qyN8GitLwYukxYj8UdF16Kh1x9FjVNQ7NIBs4X3/Q24z7/PHWOJwOh4gIROWmJDMTyvc4CxEI5ej9Dd49FntahajpqNrelbItWZTgeTVWHFODck3nW0WNxICNgqdLapmdtKuBH770K2znSt6mqB/+cKIrGYFZEWown6nXnWCxDkFMOYZEC6YHYDUH7DSDCop9j0ez1+eyt/aDX2AHHM2sThZrgRRaS/ZqQcFphL+ivktipuTlyrlotdyA2zD0V3vfNx322TiSzlKlmhcRbGpRrbaJQbZAo1PbFvKvOW4db73Y6FnVdx8ElEuv0Jy8kk35ygv/5zjwHzS4sO+4f6PW+DzeWg7u+6rh/qMfPsbgAKDHEXHM/mY4JI6bK0hLnnwLqJfAc2TeSEM/NAcCIhIzgiOs3XBCGEJM2XkrVNCLSxYpCdfdYnA13wQJA3ih2CfFi5AGQCF9WBMaNJgCcDFAMcgKFUkMH+jYDbIxJTqwIsK79zTDAFe8G3v0I8OwPAxQDmQsY3/RMAi//N+CVXwMue2d791w3wqLpWDzewmJmkBwX/IquhY2BfVfbQlHAK78OXPRG72ONMiBmojsWR3eR/+f3kHhWTSHfp7gpCOmBeMsnJCQAMGIrbRwrH8PUFBESF2ZJHeDwyuG2z09xKUcB313g9yNOH7JqqerZTpmVnY7F5WBhcduF2/DQXQ95ej7X5sg6ttxIzqNCvjUG2tyzGRtzpFWM5Vicjy8sthNaMz7pCW63oF2AZRgGxyrHQEVRbl3wRhKFIAohSxKxpqy0RKaHFx5GQ4te7wGcjkVFUZCPcZ6pVqoeYbGm1AKdYBzNBe4X07GYNXo4BzkWq2oVMteFsCi3hMUwIUpkROh0+0loDM1A5mQUpAJG0iORHHN5Ie8bZ9wOS1hUTj9h0XRbiozoERGj9tF0sym/CTRFW+u2I0VIUkiExYSEhFOVRFh8hlEuRhEWg3ssnnfhZTh8YC8W5oiQWK9V8cfvfwsO/+RL0Opl8Jk8AKBa9o894AQy8DQdizRPTqS5HudJdqEUfaDpjkLlKSKkLdfJgIpRaw4hi+HJYCwVIJhkRGePxYGMiNVaK4deFCWIHIM+MbpzYCQneWJdw+hGWKxVKxBTWUe4DMfQYAMiPaIQFqUq8cHRmUO5tY9yEFgmWoxZQmzifmcTEhJOMnbRaGFv9+tTquHFdR/Holm/p/UmEXCMO0qGY1FrE72k67ohLJLxwlDaez65+vzNmJlbgmY4MhtNBW/4vb/CS/91HsdKGswaXlPx7x9DUcTlf8zlEojbZ9HOcMFH/GqUQdWWvffb0WypAu4JMu5JWrUicOxh7D5nMwBgrL+DfsClY9FcWLd8Gfi1fyVRogDSxsfVaDbJ5x2xwFQ2eyw2bctXF4mrLYxL3ga88FMtcTAOs48BPetbIh1FAXwKAtvhxCZO8vb9M0n1EaGSkyCxIeNCigI2Xwdc91EgO+K/TJhDOAizD2QzegGwY4Z3+oujQztIn8ROYFjv8UTTyPctjljZu4EI0stHiHMRAHo2xN+eRFhMSFgTZsre3rpHSu3jveO4D03iCIu6kWwk2CY+WY5FBqBYikShBgia51x0DqrlKhrmuEbV8OmPfBqP/PEjaMw1wEvGidM1FLlx441keUZDJpdBcb7oeDySsNgGdxQq4HUL2t8zwxHHohnnGYdt55NI+KEN4elc7p5+d8/cjXXZdbFezy4sNhtNCIzgeC923PG6tXINkmuSU1WtBsapcjQX6E5rqA1QoJA2ek8HORxNdyRLs8jwmdhRqKaLDgAELljIFRiBOBbXcB53r9gbKwo1L+RBgXJ8704XzH0tsZI3CpXpPAr1P2/8T1w0fJHnMYlJhMWEhITTl6QKf4rC9U0cl1jH0rK3t4GblTDH4u7LAAAP3/sLqKqC973mpfjFrT/C4I6rQAsp0EZ0WLXiP4hgWA6CKKG4OG/dp+s68r0uYbHsjVpIn/d8DL/mrz2zAvN9zsGsYMzQqirGcq4ajylm2l2MbgYygsOx2J8Jn4nXDkYkg811fTLEgNf0g2daI0JN1wKW9FKrlMHLzsEyx1Bt+0pGJRUiLMo8G9gX73i06+NZCnoHg7yEcFJCsl8TEk4rJJew2G10JgCkQ4pGYojAZZsNbRbzNKPPyP/uVyyB0KS4UoZmXMw/bxMHaE7X3+UX7gTD0FAUFYtVHc/7wL/gS9/+CX7/OVkMpmkINDl/NxX/9AQKRER0Oxb77X2N2hSr2uGOQi3qpAhAuyPGjPdaVigyPqkHCI82V2S5oZMozqP3g7FPENJUbK3eTZbRI8Q8lmajiSUMC2z/FSBHejGZvQPrdUNYjChcWY7Fqm1ym64RIS4MigJ2vxYY2Ba+rB1NId/9gW0toQ3ozPlowknhbjlOgsicgN9bEKYoF9FR2hUv+jRw9QecEbEAsO5Za/s6ZmEyzDlth6aBoXOBlSlgZZrcV9gY/7XlNej3mZDwDEdkRMxWvXGb0+Xpts+JIxKaZLh4x3hd1614zeyuLARKQE2pQRgQULimAE3TQAeUzNadvQ6iJKJaqUKtqviH9/wDvvnFb2LiJRPg+3mwRvsRvek8L2zIk0kOOnTk+/JYnHdO/s51McnJT1gclAcdve7sDjWGJY5FPydVGG2v933uNh1sJkdKR3DZyGWxXs8Rhdok48J2ArRbWKxWqhBdseyaroUKi0HutLpah8AI1nbxjH8UqqqpaKgNa1vTXDq2Y3FAbo3bwnqPmp8vFZSgEJNesRdVperbD9UPhmaQ5bOxxMhThSyfBUuxkHnZPwq1w5rTxvxGx+doEkU0THosJiQknKokwuIpysjr/xbaJa9d8/VqquoR5colZ5RXpbQKpdk+tqu3fwDj6zdh5sghzB+bxuzMUXzyX/4LmaFJsoAxg6rSxrEIAPnegqPHoqLpXseiTxRq4fnvAD+4AUeKpFgiiEY8l+u5vJEpX/evJ4Iy4liDBJOsyKHqikLtGGPQvX0k/kWC3bEY9Ln4Ua2UwcnOwTbH0l3HkKZCejRmxODBrqqtQdHNBc8y0BPH4nEhyNmbkJBwCmJ3LC4eIBGC3cCnrP5x/o+nw6OoXTFL9UbrfLZc1zF1zDnxSdd1IqRZT3COVTIpEbvO3oQ9Cyou+VwZDx84hv/9wh/jxdvJhTdn2AM8jkXDXVXWJQwWeoIdi5q/29FNxojWGut3nuOXdVLcoyvzzidUyXudrRvjimqx/crrK9afigYS7zj3ZGvbdA248zNgQMYrppgZSG0ZyI2GL2fCk3WmjI+4qSjEORbRsViqVA1h0ZWIMbA9+jbEZWWKiNETlzjjTjsoVFtwcnvHogkrImbivT+ZLlxyNEPeZ4zIso7JjgCbn9sSXPOT5HPtmVjb1zGFxbh9G0d3AytHyPeBkzvr+xglNjghISGQFJfCYs0pnqlt2qaY5Pm843bQpFWTuGLkSnHFcsEJIwLqy3UrnpMy3O2U2v51a6jhnN3noDpXxf6P78e+B/bhT/75TzBwJTmGMwwDmqGhNdpPDu7p63FEoWq6FsuxaAo96Sx57z3DPZ5l3MKiw7Fo9Fi0R23GZbo8ja8/9XV8bflrAAAl5x0/uYVFgRFw/brrQ9d9dt/ZAMjnb4+tVZrkNXJ8tPpKtVL1OBYBBPZp5BguUFg2hUXT1cbT/v33zL6d5ram+fjCol34bSd2moKXKWDS/NrVRgpiIbb7sEfscbhUTxcoisJZPWdhNDXq+TyD+mh2ShTRMMUa4/vjMEE/ISEhoRuSKvxxYO/jD+N/vvnlto/XqhX8/ttf7RH43FDp+LPGouCOOp06uN+zTGm1NXte1XWPSLjjQjK7jGFZfPrL38dZZ59nuQIpY8BXq7QvZPYU+h2ORVXTkXM5FudX2zeHNnsGymlj0GSc8M09ylPkr7rqv48pQ/wMi0K1C4sZkYUU023oZutQ/JnyPNN6zbDvjJtqpQxWdA5UOIYGE7e/jItUSNUsE+JwOx7CosDSibB4nMgmwmJCwumFPc5q+QiJz3ShGeeTSOeV9BApyrd9vQiFPM4pLE4dmyeiGIBeicKeg1Oep6zUnEVHxeU+vPqiHaAoYDBN4ZefeTOetfsc6zEGTVAU5RUWjfNEDTwG/ByLdmFRDy56mvQYxTzRNemmrvMAnwZddwlqqyQOblExClzVgJj6umssNXYhUJ4lnysAPPk94PAvcJiNE/Gok4jQqBiFWpEhn5eu66SPnxK9x2JKEpzCIsMDPeuib0Nclo8Qx+nEJc77/RyL57+S/B+WFMLJxMUZsoywFo7FbnosAoZrce3HWqFc+DrSIzFKzG0cLMdiTGFw4hIyKWH+SeJcjdBHykMnYmRCQoKDFJfCcn3Zkb4za3Pza6pXeDPjJU2aWvgE23axmO2YnZp1PKc0X/ImBLmGEfZxk6qrOO/S80BRFBiZwW/982/hoqucUYdySoZW9xcWKZ1CT6HHEYWq6iryEfo9u8lkyflNkLz7oF/uR9V2znYIiwKDYr2IkVSbaO4ATIHlwbkHce+xe5GhyDbovPf80yM6Bc8dfTswmZsMfY33734//u0F/4Yd/TscjkXzc4ga4VotxxcW2wmFJg21AZFt9eFr53A0BbmckSggczKJQo1RkrG7FE0BsaJU8NjCY637je0wfztrKSz2iD2oqbVYCVpuMfl04ksv+BJef+7rPZ+nXUheKyQ2ehRqJ71QExISEo4nSRX+OPDWm67DJ37v3W0f/+rnP4Nf3PpDPHrfXSduo2zMTjuLd0ee9gqLq7Y4VEXVceCpx63b//udb2D7zt0AzYARUugfcg5CzeiySiXAsVjoR3He5lhUdeRdrsNFH8diGArIa6cZUgxstHMssmQwnRHazzxPi5wjPY6iKIz1hJ/0g+iR/ftJBcExnQ0eNE1DrVoBIzjdCzxDr0EUaoiwKIXM6D8OcAwNLTmkHReyUvzvbUJCwknEHpOp1oFjj3oW2bNnDwDgycPznsc8pAf9+6jFwdU/5NDROTAKEc0299J46mmvsLhccRYRnzzQ6sX01R/fg4vO3YwNPTT+7zUyNo44ixe0WkdaFtBotp8pPdiXtxyLNEUBuu4UFpX44xA7OgDkJ0C7hd1VEv1WhiHWup18dhqusdTQDiKOLB0gt8vzwO7XY6r/yngb13dW9GUNYVGgbcUkKR85atPXsZjqJ4L0RW/qXPAJQteA3nVAyuX8E3wizy5/F/DuR4DxS7yP2eHkcGcuL1tx/F3h3u64+PQ8PWHkRsMjY+PS6NSxuIv8P7+HxKh2chyzxMykmJeQEBe9So6HMidjpb7iiFG091c88NABz3Pt/fTIytZ++44dPeZ4nZWZFc8yuuJ84fmZ1rjpoZ8+hE3bN4HNsVj/wfUY3jDseb6UkqDW/IsSnMKhp9/pWORoDrnC2h7D+yXnZBXL/UkBMF5qU35T7PVOZokw+Ortr8a/Xv+vuGXoFt/ltJpm9dwzedboswJFPfu27ujfgT6pz+FYNImyDgCoVWqQUt5zQFAErN/r2WmoDYiMaAlNAiP4OhzNOFDLsWgKf0JntQu72LVYW8RC1Zn6YUWh8mt33jKF4brafvK/m9NZWOQZHkMpbyy9wAgnxbGYRKEmJCScqiRV+JOAmQdv/j9/bBrXnT2E2378vRPy+rPTRx23pw7u8yyz6uqzuO+JR6y///QDb0etWkF294uQ/9WPWu5BE0UDRElGMz+JyQ98B1Ml71VAvtDncCwqmuZxLC5W4hf0apThRGRUiCwNv8mBoiQh20/E0KAo1IyPK2+it7sTeroD55c9CjUO9Sop+NGCc5t5tnthUQ5xJOZPgrDIm47FLt2YCV7SYtJjMSHhtObIvZ67zJ6GmuEgL1dITNPeKZ9ezHIBYLuIAwc8zz88M+e4/dQBr7BYdI0DHnhiP1RNx/t+WMPNv/uPODRNxhEURXmEKVqtIyNLaDbbuw4HevNOx6KmOnssrkWUZM8kaHcPRcOxeMFWIy4ySFisrwCags3rjElcLA+sv6r1+ObnAVe+z4orjQTNAvkYUZXGugXGti+lXkANH6fpuk56LKZEoGL7bmWGAF4GXvAXwDvuiSd0RqVvmzfGUmyTHJEfJ9sTBJ+KEIUqgWfi9cP2JTcKgAp2CgcheaPwTms66bEIkO9ZaoAIzXJfZ/vTFDOT8WVCQmy0GjkeprgUVpurDrffVKl13vdzLLJuh/hx+AnOHZ1zuPcWp7wJAu7+iHsf3Qtd1zH7X7P43G99Dnsf3QuKpUBRlG//OTklo1lt77bMF/JYcsWyx4lCjUKf5D8po3+oH3SB1Bq29G4JXQ81RD4E83M0nXOT2Uls7Nno6N1oojU01O6ugaVZRz/EC4YuiBRva8fuWDQ53o7FIBRdgci2hEWe8Xc4uh2LpvssbhyqiVvY+t4BZx1RZMjn0Klw6YfbcRqFdt+70xme7bzHYjuiOBZpiobIiIljMSEh4ZQjERZPAWaOHAIAPHp/uINxz2MPdf16s9NHHLenDnpnCLrjUp98+H7r79/62Cdx48tfA1rMgOufxHzJOWupqWiQUmloeRKDNFX2Xij0FPoDeyzWmipqzdbzlgMG43ZqIIM/CqTPn59jkWFYaMZgQApw3mV8RMD1fTEKdy4Elka6g8Y7nQqLtSoZwNK8c6DCM1TXUagyHzyYyp4kxyIAUGscTZHQmSCekJBwiiBkgZkHQxcrrhJn3NyyT4x5esCKEAWA2x4+GH87XMLXoWmnsLjnoHPSEwAslpzC1d0PP4WXfrWKv/xFA3/9Wy/Hu3/jxW1fjoKOjMx7o1BtEMdisXWH1nA6FteC3o2g3MLhCnmvaTOurBIgLNaWAbWBV9xwNXIpo2B39ktaj49dSMSTOEj5eEIkKwAUA9HuWIzYd67eaELTNOJYrNgKtpmRVr/DVN/xEW0mLvIK4hELkL7wqXAnHp8CT62BsJgdAV79bWDTtZ09X8p3vw2nEppCPstOHIcjO8n/6cHOJkiwAsClkDgWExI6wNDZUmwK5WYZmu34aBcW/eBcEzlYynk98vidjyOIHx38ET5176dQFtu3Zzk2dcwSYQBg9sCs43GaoT0xpk8+/CSO/MMRzP7XLF749hfile94pSXg+Lm5pLQEtdp+klNPXw+WXbHsnUShBtEv+8drC6KAmlZDikv5LnPH0TucvTGNw2C5GaN3tw4YbaAdIt6QHHPsAn8HYVRXXLVShZhyCp8UKF9h0uz/6XHN+iCxEliKxbl951oOTs9rGzG0pmNRZskkl7USFu87dh8Orx62bpsC75pGoQqJsAgQ0TauIB4ETdGRI5yjCJAJCQkJJ5pEWDzNeN9rXooH776jq3XMeaJQvY7FFZtjsVYp49YffMu6/fyXvsL6m6JoTBWdUVhNTYcoy1CVgJl5vX0oLrZmrlcaKvI2x2KxEk1I9GA7yWclFu36pJsuSz9XoonfY+v7OxcWeZa2xK9Yz7M9R5Kiv37V6HFp9pO0bwfd5S8/TGgK2q/HC0uADet/lBAbP5E9ISHhNCEzCCzsgyNDTNexrk56sihRhoIZZ+T5cz/wRXz//+6Otx1uYfGoy7HoikLlORYLtl7L9YaCz3/jh/jpAQX/fYuE3/y1Z4de2PdnhGBhsdCD4ootalRV1l5Y7NsM2ojAsjAcixZVH5eoSa3ojWTdcn132yT3xRMWKQrgJAznSUFjbHgAEPORnlqqkDFiWhadvSTzY2sfl2mH4YGJy733dxMRKmTCBVBeBrcWwiIAbLgSKMTpnWlDOn3jx9rCyZ19Z8aMfmf58c4FbLkncSwmJHSBGePX4Frns0Mrh9our1d0j7Do5h/f9Y/42Xd/1vbxHx38Ef5zz39at3l4RaLZo7MQbBMOZvY5z8+ZXAZKrTWO0FQN3/znb2Ll3hWMv30cz339c0FRFGjjen21sep5DUmW0Aho8dLb32ulSJjYHYsauj+n5IV8oMuqT+yzxC47e4t7AcApLgIo1ou+6zGdezrnn1trd7253Y1+bkc3dgfh+k3rPetsh9JU0Gw0PY5FgRF8xcOaShIrwr6DACzH4meu/Qxu2eofBVtRKqBAIcuTOPa0MbGKkTpzvtk/S5qiIXESvrvvu45tAtZWWMxHHPfZMWNm/Zy8pytrLe5xNBfZASlz8pqKmgkJCQlrQSIsnsLomncQueXc8/GhN7/CZ+lopPMFzM44i3dThw44YklEScJqsTV7nhdEqD7xJCYzK86osIaiQpLTbZYm9BT6Ua+1BMmVasPhWCxWu+trBADZNo5FAGiqGigQF2E7/MSz9YXOhcVOsTsWOT56rztTWAQrOGohPMN0FYXK0FSoQJo7CT35TAGWOp6FymcgLE1B4JIo1ISE0w3ViDhFehBYPgxKJ+dxCjrw/d+GpJFzxIoWIRow5RQprtu1ETe+7Q89izXVgMKBzT2fkngcmna6AvYfmYGitE7ahXwWc8stQY7nGOi6jttfl8ILNreO80Fns6EsB0VpP34ZcPcw0pprLyz2rHO9hgZUnKJqYBRqdckbydqtGy01EN/5xcvoS5P9ns9lI29DqUy2PSWJzveZ85/Vv2YUNgEZnz6FXQmLPv0Z3fApcFR7Z8oJ44wUFlNEMI7LuivI//1bO39tuYDEsZiQ0Dlm9GOTb00ePrJ6BJzuf92mlTRLpGrHzut24g/f7h2LmNGlr9r+Krz7gncje4Qcu90RgmJaJMKiPQr1iFNAy/RkoFRawiLN0KBpGus/uB65C1vnE8q4ti43vE4+OS0HCovu2FOaopHJtyJDZ8quyUgdQFN0oAA3IA9Yn5EfTyw84agX+QmoAJBmSA1I53Rounf8VRDbx1mPpEbaPmZiF/oGRwYBROuxWDPi/t3CosRK4GgOX3jeF/Cciee0+ggqZGJbFMeizMpgaRYczbUV3yrNikPETLFrF4UqMiLetONNeGzxMcxX5637gLXtsZjhMrEjQE03qenYPBPwE+C7gaO5yD0b1/q1ExISEtaCRFg8BSmvkqbhquqdZf9Hf/evuOhZz4m9TlUlRY5UrgezLsdiaWUZy0ut2fKZXA9WlpdQevjHWH3gB5g+fCDQfbjgjkJVdYghzrp8rzMWYaWmOByLy5UmumwDiJwULCxyIQ5Cv9jSicKJP5l3GoVqCYsM73A98iwFuouZThxDBQqTDEVB5E78oYVnyTZRiWNxTRFYGmy3FteEhIQTjlX+SQ8BSg1DAimqZB/6HHD35zCvBYskjYbtvO+anfuNj7wcr7jhauu2e6a9d1sogOZg1qRkgfNEoSqKiqenjlm3e/MZzC5X8fXHmvjLO+uYWSyhVKnh3MHoRY2BNIOmIbBqPprnYMFVZGvWkEnZ3qvijTSLTc965+3KPKC5BifVYvvn6xpQnmv/uE8vn1DSg57PNBQu5eypGDRz3VYgsRyLkkjclya58AJix2y8hkSI+olr3QiLUcRULgUWp4CwGLcX4ekAL4f3uPRj8lLgNd8l/3eKVEgciwkJXeAnLE6VpiDpbc5FRhnEPr5QNGdt5FUfexVufNWN1u1mnaxbL7dO+L1SLxpZcu6qwhA3jIcFScCxqWMO8Uiraw4BMp1Lo1ltYvXBVcx+exa1cg3Li8uQN/jXBMqKV1iUUhLqpfbjiZ4+51iEpoh4abJWbi8/UU/VyflqKD0U6Bh8culJzFZbE8JW6iu+wqGdov2cb26D1P7cFMWJ5ReFGqXHYtUYi0gp5/dNZEVwDIfdQ7vxqWs+ZUWZmo7FSMIiJ4cKQ1WlCoERLGHUdPB2IiwyFOMR+F657ZUYTA1aAp7lWFzDHosU1XJcRiXo8z5dkTqJZA+Ao7nQSRQmQeJ/QkJCwskiqRafgjz6QPt4MZ4X8Hv/7x/Q/+IPof+mP8DSfECxycaRg/vJH7ruERYBZ5/FdCaHX/7sx1j43qfQmN2Pg3tIXNrkB76DyQ98B5ruHNwulhto2hyNDUWDKAef9Hr6nMJiua6CF1qD2WKlGbtPn3u7cjIHpc04vKnq4Bk6WCCjaU8vweHcic817yQ+FWgJixrNOsRJgWXAdqHaciH7TeA6i3ztFp4hn1XiWFxbBI4BwyTFtISE05Y0cW1NyEaRZGkPcN4teEzfGPi0ex7Z07rhuohmGQZf+JP3WLf3Hna6D93ojADQDGbmiBOgoag4dHQOrtM29hxsjU96sin8+K7H8bKvVXHvtIb793h7MALAf+81VuJTkBpIs7h7ioxPjqneYsiAyyWA2pKrsNVZMU/Qyb5ugANyY84HV6edtzUVqPvP/Lco+ezf84z0Cj44IcKX/DhiZ6LzLmExqmPRcAnkBM0pqB7PPjE3/CVw5fsAzqdIKhAXiBBHj80MA5uuA4bPC1+WT4NB+/jdE8aZ1mMRIN/1Tsd4664gfSs75byXk3UkfbwTEjpCYAQwFANFIMdHVVexUFuAqAXHXx7c076nM03TeOcfvtO6fdQYJ+iuAoBOk9uqMenj8AHSi65WqWHh2AJY2H7XOsBorRNEOpvGkduP4OCnDqJ6oIojTx1xOPfclJtlz+NySobWrj8LvMKiW0BdK/x6KJoOt7HUWKA4puoqbp+63bq9VF9CQw1OmHpk4RHPfUGOxSjYHYsVI2Y+imOxWjaERZdjUWZlT+9OoNUr0x692o4MnwldptwsQ2RFMMZksG6iUFma9XxWHM3hPRe0xuWmIEp1O1PfRRQR107U/penE6bbdK3gmBiORU72OK8TEhISTjaJsHgK8vC9vwx8nGFZyFsug7zxQjxw/32R1rk0T4pScrYHC7Mz0Aw3pGA4C80+i1qzjsW5Y9j7+MPoueb16L3urTj41GPoHxq11rXoivJYKDdQbzqFRUGyzeLzGXy7HYuVhnMAvVRpIB9TWFytOdeRl1vPFyXnILKhaqHOO8DbK7CbCNFO4SOIdIwhqjUbrbi0WpUMtlWadTkWg4XBKNsT9HyRY8CeBGGRY0zHYiIsriXEsZgMYBMSTlv4lMNdtrz+hcD6q0IjBX9+76OtGz7L2mfT3/sEKfxZc1ge/LKjL6DGiADFYHGZCGgpkUOpUsVKuRV1KvCc1Wex3NDx9NQs7n/iAD56tYAvvUTEg/tnkE17HQLv+KEO6qMrQK+3F12vRFvSoK77CI/u2NNK0bNMJ+Q0IqAW9QxxFBrOuS1jfUDpGHH0SUYhsb6CUAGzuui9rxOnoklhc/zn8CmngzPAsVi3jenKVcMpy7oKkHF6PMaFpts7Ew1hMSsEnNd2vYb832N8p1gBuOU/gA1Xh782nwKjnwrCYnjPqdMOId1ZFOpacN7NwLUfBcR4bo2EhAQCRVEOAWZVI+MBSQueZPLwXQ+Hrtfk0OPtezbaOXqQCJBiSoSu66ivtM5t+UIeVJOsU1d0HD14FIf/7zD6nteHid+cwPSeabBc+wkGK40VNDVn0pOUkqBVjDj6mvfcI6UkCKLguX+t6Ze8wqLpWNyQC+7nu7N/Jx6YfcC6vVBbsMS3djy5+KRHZO2T+tosHQ27g7DaJGKhr9hFAaotusoSFlOSI5ZT5mRfF2RNie5YjCIsVpQKJFaynGk8zUNX9I4cizzNWwKlnevXX4/dg7sxnBoGTdHgqLWviUTpZ2mnWyH5VMR0m64VPM1HFhbTXAeTCRMSEhKOM4mweAry8D2/iLzsnsce9L1fGd+FyQ98Bw2jt5ApLKbzvdB1HcVFEn1KMwz6h0YwdYg4Fld++XWsri5j07Zzkb3oJaAoCof2PIaNW8+21u3WCedLDYcwWFc1iLYeiwcevd+zfdl8r6MoWXFlli5VmuiR4xUP3IJnj63PH+UafOl6NIEtK558kSqoD6RJOk3292HDXQoANcOxqIB2OBZFlu6q6TPP0mACni9yJ0eIst5jEoW6pogc3VV0bkJCwilAvtXPrsnnIhXH/+8eMtNc1/XQCMB7n3AV8x7/NvD3l0OiydhAo3mAZrBQNIRFgZyfTQcjAGyaHMGep0mx7yM/a2B6dhGbJkbw4asEUBSFB/fNYOfWgMKXEftUUVvn+95U69x3316v45HnOeSztov02nLg+4xKViW9BDVzmN1D9n9a4oGVaSI0mkWEoP6KABHCfOLEuqIQXED0hU+7olC9hTxzbPHw/pYr04pChau/jp+b8ERgfPcDhcW+zcCHpoEtz2/dx3BEYAyDl0Hr7dsHnDDOSMdipnPH4pq8ftLbKCGhG3J867yxopLWLxKChcUH7/Kvdfhx+PHDkZazhMU0OQ+VlkrWY6PrRqFVSf1k/gfzmH56Gv27+jH08iFQNIWpp6Ywubl9j+CVxorHySelJLB5cn1aqpYcj+nQQVEU8n35SNveDYPyYNvHhtPDgc+9avwqLNVb45Vys4xivRj4nH3L+zy9GHu77P/L+cRhD6WGsC67DsOp1nugGRrTB1pjkWq1JSweXGm5YM3+iG5M0dTef7Md9u91OyrNitXPESDjJbWmdiQstnO4URSFzz73s3jPrvdAYIRI2x6XHiGesCgdz3SKk8Rax5HyDB+5d+VIeiSSkP1M4/zB8wEAlwxfcpK3JCHhmUkiLJ5i1GtVPPXIA5GXP/CEN2ICANSJCwEATx0jg7lmkxQ50nkymLNHqI5ObsDh/STyLLPrRlx69fMsBxwAHNzzGDZuaQmLntfSdMystJxybsfivgd/genDzhgTmqaR62nNYKo0FMeMtuVqE73p7oRFu2PRjzDnHeB1LJ4M4sSKHnzyETTq5LOoVspgWdJn0hGFynXhckB4FKrERY9aXUsB0txPiWNxbRG7jM5NSEg4BSgEx566UVUVt9/3WMASzmOC6Vi02PkKoLIAmSGThnSWCIvFVTLhJWVM2pmeaxWpzlo3iicOHAEAvP8yHi9/wZWgbceeB/bN4LwgYdHg5wutolXeJh7tObKAR5562rP8YCGP2bKRutAIiSSNiADXLH57n8XVo0DKNmPfFBa3XA9c+AbiyrKTGgCqy6TX4lrRSf89PuXcBiEL9/fA5LGnZ7BsfNZmFKqse/tOnRQMx6LEhZzXeDmakOiGk0FryskPqjoTHYtirjunbkJCwknF7ixb0VbAUAxkvb1gr+s6HvrlQ5HXbwmLIYeJKSN23ey3V5priX3jG8bRWCY1hcJ1BTznpueA62tdW049NYWN29qPqYq1osfJZ+/rpzQUPGYbX2kMOa+641CPBwOpgbaPhYkl67PrPa7G6dJ0m6UBfpVHuVnGE4tPOO7vNhrTz0EosRK++itfxdUTV1v3sSyL+al5LBwjk+ntUahPLz9tLSdzwVGofkKmmyjxoG7HIgBoNQ201KFjsY0QxdIshlJDAKKJonGJ+/nZJ7OvVa/Qk81aC4scHT0K9TfP/0187PKPxY6kPdORWAn3/vq9uGHjDSd7UxISnpEkwuIpxhMP349mMziv3s7+J4LjQVRdx0qx5QhIZQ1hcaElLDIsi1/+7MdQVhfASBmMTq7H6nLRery4MOdwLNrRjOjN6eXWTPS6ooGXnCfcT//xhzxRGD2FVhxHtalCtT1eqisYzLSfze6OPQVIfKqdXJiwGOK8A4CcdJIil2zwERyLJkqjjvt/8XMARFgUZRl1RXO4HuOsr932hEahRuzd9KXXX4xnbx1AIaaI7If5HqnEsbimiHzSYzEh4bQnprD48FNPW8JQFO574hA0zSY6ZYaB5/8pzJR0jZVRa6g4vELuULk0OI7FvllSzHt0TgPL0PjZXQ9j/5KGnEhh+6ZJKzoVAJ46soCd28KFRc2IPNUpFjlXTeWtH/0MNM05Fhko5NA0QxMaTidBR/j1Xipsav29OgOkba6B6hJxL17z+8AN/88bEZoZJE5K3Zns0BVcBzPI3YInTVsinRtV1fDdW+8CAJTKVVAUBa65enzjT6MiHOcoSz4FCnq4cHm8CYiqPW05E12YCQnPIOxupxV1BTkh5+sWM5k5PIP5mfnI65/eN41GrQE60/46VNM0rBrpCQzHIJvPYnm2lVbAcAz2fHIPalM10AKNddvWoVps1TmO7j2KTWdv8qzXpKE1sFxfhlgldQwZMuSUDGWV1C6UFQWf/NAnoSrknK7SKjRdQ0/h+AuLflGoJmFiCUVReOW2V7Zug8Jcda7t8uKKiByfw+OLjzvujxul6cYu9Em2sYzESsjyrfM7wzCgGRq3/fA2AC1hUZRFHFg+YC2X4lK+saJmFKpfTKqbbIRxRVWpetyRWlUDIzLQYk4ci9qT77gIi104TlVtDcexJxGZXdv0ArP/bBR4hseW3i2RBO9nGjzDH5fvfEJCQjiJsHiK8ci9v0QqE73osTg77RAJ/dj3RGtWHCcIyOR6sDQ/C13XsbrnLtx7+61QVQW0SAaUmVzeISwCwMat5/iuWy0vQeRozJecoh4ntQpQu697Ke76v//FQ3ff7lgm32cTFhsaFNVZjBvNx4vJcjsWcyE9GnmWdrgh/PBzPW4dIoW0qOJZt8QRAnN9A7jtx98DQIRFSU6h3lQdwqLIdbfdQsh+k7joQtR543l8/jUX4qzB7iMd+ERYPC6IMRyoCQkJpyg+/QeD+Pk9j4IP6CHkjgRcKVex75Br5rqQwYEyKfpotIBH90/hYJGc58uQMDbYh6ljZOLT1x9r4hs/vB2KqqJPpiCyFHrzaSwut4Q+XdedUaghBQqNlZDmW+OKF1++Dbfd+yi+8v3/cyw3aC/m1Ve7dwb6xama+79RBspzQHbUtnyRxIy2i1nMjpJl1rIg00l/GHv0kmZM7moTqbt+pBf/+aM7ABDHYloWQVUXj7+oF4XjvQ3Gvg2Z23b8MR2LZ1KUeSdO24SEhFOGvG3Cw4q2gryQ9xV1TB66K7pbEQA0RcP+J/cHLjPtGqsMjA6gOFMk23TPCn7w1R+AlmmwOTIGSufTaNZa8dbNWhObtrcXFgFgvjYPViHPp0FDSklQiuS8OT4yjv2P78c3v/hNAIBO61A1FT39J1dYbBevuGtgl/X3jRtvtP4uiAUs1hY9E8dNKJ3ClWNXYl9xn+P+bnvu8XRrMnKQwENRFPrH+/Hz75sTromwyIs8nl552lqu3fs242yjCDhZLqKw6HJHajUNtEjHFtzs+yCI4xFD2o3j1B0RfLqSYtfYschwgcfBhISEhFOdRFg8xXjo3l/gnAsuivWcPY8FD7r3ueJSB4ZHsTB/DAvf/yusPvZzXPX8G6FpGmij300214PSaqswJsopDI1NWLdVxwBSx3iPjIVywxFvwEqtQdrE1h245Krr8B9/++cAgKbxtevpbUWBVRoKFJeLYLIQ76S9EFNYjBLx6Ccs9mfWfibMRet6kZM439jTOKLO+u07ccdP/geqoqBWqUCUU6gpGgS2NVix/90JPBPs9JT5kyNExYmMTYiOGKEXaUJCwilOzFjE/7vnEVy0Y0v7BXxm1t776N62i+sMjweedPZhnBjux+GZebzr+zV89r4mXnrdZQBave96sxmHC5KhaWzf1BqLoBLsYtBYCWmuNa44a6wPr/yVa/AHf/OvjuUGCrY4oUYFULvsj7fs0+Op14hCrcwT4dIu9FYMwY1tM5kqO0pcjd1ul51OhEW7O7FE+nb79VkEgF1njeP7P78H1VodpUoVaVkCKgtOF53c5/vc404bl+WaYTgoUifbscinzrzY0FT7onhCQsKpT17IW3+vaqvIClkwAbmlD931EDbYJhQFuRsB0lfvqYefClxmr2usMjAygLkjczj2jWOY+fIMLnn2Jei9uhds2hAWc2noDWeNYuP24BSIoqsvspxqnXOzhSxufNWN+ML/+4J1n6IryBfygetcC/qk9ufddsLGP1//z/jqC7+KS0cuhWgbpwykBrBUW4IakKbw/PXPx1J9CbTQukbvtj9cFAehydjmMdx/5/1YKa6gWq5ClEQsNZZQUSrWMmku7fvcwRRJlojigApzLGq6hppSQ5pLO6JB1ZoKWqKhIdqENtPZ6BcH64fUSTpFCF0Ji9rpLyxSoCCucY/wOI7FhISEhFORpBJ/CqEqKh67/26cc8HFkZ+TymSx59EQYfFJr7C4sjCLypO3I3/B9fiNd/y29RhFM8jk8o7ZZxObtoG2ufOWXALeZEH2uAVpsTVIo0DhbR/6Iys2tamTE2e+YBcWVSiqc1A11htvMLRYiu9YDBNMek5QFOpX33IpvveuZ2G811vso2LMNt+wbSdWiot45L5folatQJJk1Juaw/W4Fo7FwB6LJ0lY7DbiNcHLlsEM1vWlTpg7NyEhoQsO/QJY3Be+XAg6gJ/f+yietat9b2U3E0O9gcKiRnN44IkDjvsmRvpx4OgcvvhgA2+8gMPf/N5bHY/3Zp3nw22TfRAF7zmZAjCSoTyOPo2VIDPOYuAnfvv1aDadUeoOx2KjBGjdCotHvPfZo08BoN8m2lYXiUDXrp9fZpg4BF2Fyq7opBexnyDXJm7zgi3jqFTr+OHt96FcJY5FVJecUZYnqx9yJ30T42DEvab4kywsUhQg5NCuD+ZpSSIsJiSc1tiFRYA4vYKcOg/f9TDOvejcyOsfWj8ULiw+thdcLzn/NOUmBkcHcWz/MSz+ZBF9N/ThQ3/1IWj1Vk0ik8tAa7Zu9wz1IJtvLySJjIhivei4T0o7axpveP8bIIitc5GqqSekx2JB6swtuK2wzRLYNuWJW3NIHsJibTFQLLpk+BKPay5qL7l2xImAHNs8Bl3TcceP7kCtWoOUkhxuRaC9sPi+3e/D7138e9he2B74GjzNhwp9DZVMwLdHtQLEsRgnCtXs+3gyHYvu33Acmt2Or08BOJoLneAQF57hu/5dJCQkJJxMkiPYSUZpNrFs9EDc+8TDqFUr2LH7Us9yQ6/6JLIX3+S5f92WcwIdi7oO7HviUet2eWkOfYPDoDkRo2/5POTx7RganbCEQzY/hEwu71jH5OZtge9hY38a86t12A2HFO8cyAyPTeK5L345ANJPUdd15G2OxXJDgWpbgcwzsfsbLlUaoGwDs2yIsBgmkAHhfRoBgGXIBRHDdDfTaDTf/eCvf3QC/UMjuO3H32tFoSoqRJvoJvPdDYZ4rv1+2zSQxmSvfFIcboljce357Kt3461Xb0wciwkJpwMrU+T/RiV4OR8URcXSCumpWKo2cGx+CVde6B+B7seurZO499E9bR/XaQ4PPNGKJzu2UsdIfy9WVkrY/64Mnr+JxWBfD3G2GfRmnOfE8zYM+a77NTsoTL03A3z1VcC33o73bCICpsZIEGmn2DjU34vfe8stAICVMinQOByL9VVA9fZwjoWfY9EuylGM07FoCm5uwcsUUbLD5P8QhybLkvHKcYtT8uuP2Kbn3VAhi7M3T+I/f3gHiUJNScb77Hym+5qxltGgfi7TUyUKFWhF1baJqjvtSKJQExJOW1iKRU5wutwzfMbp4FJVrBRXyN+KisP7D2PHRTsiv8b4tvFIjkUuTw7Q9XIdPX09WJxexOY/24zea3ohp2SITOvYns47HYsjm0cC198r9WKlsQIzyEmHDkl2jmfSuTTeaptMpeonRlg0BZFuesSZzx1MDaJYL6KqVB2PcxzZtxRNgWd4XDrsrWuZBLkd2xHHsSilJGy/YDt+/oOfo1quQpIlHFg+4Oj12c5BKbIibt56M8YyY4GvIbJiqNBkOiRzrpQHreqMQr1rhvSmbic0mtt60XC0dDOxXRJGF3TSI9MUpZtrmbxxkuAYbs3dhTzNJ47FhISE05qkEn8SMGek/Pbrb8L1O8fxkXe+FgDw8D2/gCBK2LzdO4AWRs5Cz9WvgaI5Bxobtp6LpwIci0qjgUP790CSZVSffgA//fvfx9HDTwMAGCOulON5DI224sUyOeeAYXJzsGthQz+J29RthTNa8A5Yr7qe5PI3dAaKpqOn0Jp5XGtqqDVbg8ucxEHiop9gdQArtSYEvTVrLjQKlQuO9KQirAMALrmUDJi3nHN+pG09nlCgcPm1L8BtP/4eKqVVSHIKDUWDYNuX3QqLItt+v/3bGy7BG67cEMtluVYIiWNxzWEZGgOZtb8oSUhIOI749fgDsFA3jv3Gxat5nP7c9+8Dd86v4AVv+jAAoFiqgaZpXHZ+wCxtVz/AXRt6cd9j7d2SKsXiwSf2Y6ivB3ceVvDGLz5mLd8rUdb2nLWu1XuwN+0U2nZuGvZdd04AVus6cMFvAKO7Ww9QgEB5ixi3vPAqAMBqlYwXTMdisaYTYTHOjGpj9riD4iFoQS4xudcpNFaLJKrWXQB6/17gdf8DTF7RWi6AXbsuAABcdn7wZLCO4X1m9bdxLALAS6+7DN/+6S+xtFxCLiWQfXuqOc66Edwu/U3givd47zeExZMehQqQz4eigDOhrxFFB37fEhISTn3cwmJOyFl1kT1378G166/Fi3a8CACgGOkCcYXFA08eCFxm72N70TfYh+rBKp745BO4/477UV4pg02zUCukFtGTadVC0rk09GbrXDG2JVhoKogFrDZWwdTJWKuBBuS0ty5y7Uuutf4+UY5Fk7Tf+TwmQ/IQdOiYrcw67t+8aTMAYLsxhnzeuucBAOge73V6lJhRN1HdeiZXXn8l7v6/u7E4twgxJWL/8n6MZ8atx1Ncd/3yBEZw9E30wxRfc7zz+29Foeoa6kodTyw+Qe5vI7imuBR++Ypf4lXbXxVp246HY9EUZakYaQjmsva2SacrxyO2VGKlk1I7S0hISFgrkkr8SWDbeaT48+JffwPe90efwrU3tpyIW889HxzffsDk0hWxfuu5mJuZarv8sUN7oSoKUJzC7Nf+AD2jG3D182/0LDc6ud76O5V1DnomzwqOgFhn9ELUUi0HIs17xQjzwkFjBCiq7ohCBYCVassl0CPzsSI7Kw0Vmg5IVKt4EtZLUOAY0D5OrAN/8gL8+xsvxnivHElYNJ2Kp8qA4IprX4D5Y9N49IF7IMoyGqoGmbcLi90NhtrtN4DEkZ4sIepUcixuHyEugSDhOiEhIWFNef9+4Pq/aCve7C2RY7NuHJdGB4j75/KzJ/D5j78b73/9r1rLnrd1PbI+hTALVz+ZXZtHsbxabrv47HIdq+UqZmocrvliBRO9Il5303M9y21e13IC9LrOJTs3+guLAFBTdCLyvOIruH2ZLKcxEjh4BRV33JDpWJwpaUQorK+2fZ1ILE9hmcq3fzzV13L/6RqJX031+/fDm7gESBWIEFldCnxZs3DDHK/oal/HYnsH4kuvuwzFlRJ+ePt9GM1yAHQg4+86PWloXbhTn/dHwM5bvPcbonvqxCTpB2M6Srt5n6cKfApgT4WdmpCQ0CnuyMhesRc9/USoGFw3iPf/xfvxkb//iPX4yMQI+oba9wV0O6DGt41DaSptBYxGuYH5mXlgGTjwxwfApln86utaYx8Yek5vrnVukzOyQ1gc3dKaAOVHQSpgub4Muk7OxQ264XEsAs66QV2tn1BhcS0wexC6hUUTxqjDXDVOJnPxG/2i7ONfJ8eJQgWAK553BZr1Ju744R2QshKmy9NYn2vVvbp19UmsFOpYNIVFt9tPq2mgBdJj8ceHfhzp9WROjuwaPB6OxbwxweeZGt15PGJLOxHYExISEk4lnplnhJMM///bu+/wOKrrb+Df3dmd7VVdsqxmuXcbGzdMMdiY3mMCGEIgtCSUQAglDiXAj4SWAOFNIAkJHUILYJoDAUzHNoYABveC5Sarr7bO+8doe1/NalW+n+fxY+3s7OzVYLRX99xzjl6eXJ545nlYeMIPcMCcQ0PPTZh+YFbXqh+duu/Ajg1yGdSmT5bDPGkhZv3wClTXNcadV1UbbkJustijnquuH4VUKh16aAUVJHPExD9NU2NfIBCVsQgArd3hXw6cJi30GWQstrrk13S65UUTY4LshGSSBdhUKhVmNxRDUKvSllPtj8ZPnQm7swjtrfuhM5rh9UtR32s2maCJ6NMEbHvjwoPlf4dFluwXjwS1Cv2lYucrP5uH1y49CPUlvd8RSkSUEa0eEERAyCwrXejZjLHwgBE456QjcPjscNb9QdMzL4MKANNGpi4Ntu77FgDA397bgVPHaXHnaaMwobE27rzIjEWLGB4jAExqyCAopVKFSl0GNAYIKXr/BAUzFne29ywcdqUO4AFAUbJN4J4OwOdCm5CiZKO5LJTVBncH5IBb8qApAMBaCXizL3GrqESBRWPywOKk0fWoG1aO5tZ2VNt65g226qTnF0Q+Am49/20L0Ws6jsEBQAUMgvJjEM2F68tJRHlhFa2hAFvtpFosPm0x5i+eH3p+4szU2Yrt3uiNQFUjq0LtXRLZv0v+fP/6X1/DPN6MkT8biZETRsadV1Yc7ousVqth1Ic3WlU1pgks6uXAIno2g3tUiTMWI3V4OlIGFju90Ru3+kOvOpPWBJtoQ3N3c9rzAEClUBa/oBayCuxU1lRixLgRaGtpg65ah4AUwMSS8L+r3gaJsiqFGpOxiIC87tTS3YIVW1f0ahyJ5CNjUSfooBf0QzawqFPrFGs5oFKpIKrFuExuIqKBZmh+IvRjE6ZlF1gsG1YDkyV5A/HvN6yDyWxB/cEnw3n4hVALAkor4ifEw2rC/X4EUQ+tNhzYEfWpg4QatRrDHEbAHBEoTNPE2heI7rEIhIODAFBk1mVU2nJXm1yGrKPntaYsAosGbfrF10wyFvsbQRAw65BFAACdUf63YdKFv1dDLzMWjbr8BRbHV9nwzU2LcPDI0pxeL/ajrMVR5Rb2JiSiwtNm30tn3rTUJdBjldhNqK5IXuby6x2tMOp1OO+wkXj4eD1EjTrh+ZGBRVX3fjht4ZKhJfbsylUFNAao/d1pW+qVFtkBAE0dPYHF7pY0F07RE6hT7oPYKqYIglqrAG3PYk8wO9KaeqEStuGpn+8LiUqnJemxCMgLJicePhsAUGHp+Y9gT11Crs/lI7CYKABbKAbn4CmFKprT/m5BRAOLLra3cIwJM1JvoO70RAfcRIOImsaapOe37GqBoBEwbvE4VF9cDUEnwFnqhDrm98eK8vBmn4AUgMkU/rleNCx1r9cifRF8kg8erfxz161yQzSk/tnV4euAxR7f669rgxyQem3za1Hf67++/Re+2fdNymv2hRprTdrAYiIPHvEgbpx9Y84ZddlmLc5bNA8AIFQJ0Kg1mFCc+t9VNjLKWPT2lEJNEkD6z9b/QKPWoMHWkPD5XPWml2YqP5v6M0wrm5aXa/d3oqBcP0StWouHFj6ExXWLFbkeEVGh9J9VeAIAjJmU3Ye0SqVC45j4yZGvoxmujZ9h56ZvMG3OwaiaPD+0I9BZUhZ3flVEYDEgARabPatxNJSYQjuJRUENKU1Kv8cXiCuF2ukJL/CUmMW0pUVdnvDiXke3D1pBBZ06esHPok8+0cukJKjV0Lt+hIUy93B5gqI1yr+kRPZVNIi9+9++txmP6ei1AjQ5BghzfR0REYXNyzJjEQCmjRsRd2xvpx8vrvNizZZ9mDttHM6cPyL02Z6o1GpjTUTmoys6sJitgMYAlRSAKcn6k1olBxItJjnI19TZk17gbkt94e9eS/5c115ArUWnmKKXoLM+lFUZeq90ATd7fwgsJgiYpel5FwwslhslubenOX7+WVD5CCwK2sRlbQth5gXA1LP6XwnaXOiYsUg0GAR7DxpUhrT98ibNnJTy+WAmWKREGYi+Th9aP2nF/qb9GDlhJKafNh2qns2fgiCgJGaj0/Bh4c9cr98Liyk8F0mVEQnIpVABwKuTNzu74UYAAYj65N9rp6cz1FolatytPnj2etDuacefv/hz6LhT78R9n98HdVlhf++ts9XFZVNmYmbFTJzQeEIo6+3mOTfj9NGnwyom3ywfKdfAYqAsgApTRcalRDORaSlUrVqbMJCuLdJi9Z7VOKT6EBQbkpf9zYUxh42FmThz7Jk4ZdQpebl2f6cTlMtYBIDJpZMxwhH/+xMR0UDCVfgC+Gr1JwCAjrbWuOcMxux3OjeOmwi13gxNkbww9c3aVdj53G3Y/58HsWPDNxgRE3hMNHEdVhsOLPolKevA4siy8IRbp1UjkOYDt83lhSiGJ1c6jToqUFiWQZ++b5rCi3/tbh+sei2EmFikVZ984mnKIPMul4zFkhL5l5PisjSlzfJo8sy5sNqdMDvlsZgjMhY1vey/ZBL7b7BVzCDLlYiIgO279gEAmttdcc8Fs/iyMW3cCHRHxGm+WLcJJz22Hz9d3o33v9mLKWPjd2IXO6MXkRprIjL3XK29DiwCQIk5+jNL6ikVa9HKgcVgoLO1G3JGlKcj+UW724C1TyZ/vnMvYC6BlCqzqmRM+Gt3O6BSpw+4OetTP5+AVivPX4ocmS3UpaXLLmMRAA6cPBrDK0tQZVXLr9cqX5arV/LVezAP5cdyUjISOOSaQRJYtAJZLiYTUf8TDCyaVCaIgojmPXLGW+f++ABVZU10mXW/FL2BuNPbCUmK7qcYGViUJAnbN23HN3d8g+//8T3a9rShcVx8S5iyyujP4OrqcNlulUoFizXzuUiRXg4s+nTy50s3uuENeKHTJ9907fJHz8MiS512b+/GOePPwabWTaFjl027DEvHLg099qeqpJBHIx3xQdxk9MbkazvHjTgOv5r5q4xLQqYL5MWqHVmL2pG18Bf5MdwyPCqA2dtyoQaNARpV+sCiXkhQMrVn3cqhc+D00adn/X1lMjZSjlFrhEW0KJaxSEQ0WHAVvgBef0FelOpoS7MrPkONYyeh6qK/o+rHD+Cphx/EFWefCI25CGVLboG7qwMNo+NLmmk00b+cl5SHF/N8/gAstux2co0qD0+49RoBfkkNIUWfp7bu6MUch1FEZ0RgsSSDwOIXO8KB2Q63DzaDFkJMlmOqwGBkedBkdDn0EwyWSymvKlyGgSjq8OAL/8WsBccAAMwRQdReBxYzuG+Foo2NLBMRUUIffS6X0erocmf8mskPdKDunvaE5VWnjRuB4PLeff/+DLOX/AIWnRrvnWOCLyBh8uj44Niw0uiSYs7IUmCedjhtufepDQjyGGMDi8GVnCK9H4hZkISxGOiO6Nn0+RPAvy8NP96wAkiVYdG1D7BUpi7Z6KwNf+3tAnQWIF05sBwyFoM7qqvLFdoBn6gUapqMRbVajU+f+QNmjiyRA0M5lj2LoutZENQqUHI0X4HFPGUJDFmzLgYaFyrz74eICkrjkT+TjTBCq9bi8w8/BwC4XfFzkdjqRbFBxA5PB3wxP8cjA4vvPPEOLjr2IkAF1F9XD5VGhYYEm5xKq6JbcFgN4cCTX/LDas98g45Oo4NVtMKnDwcWfQEf9Ib4n19SQP5+ur3dKa85rmgcLplySeixWqXGLw74BVQ985kv9n6R8fiU1GDPvHRnNvcwnWDGogQpzZkylUqFGx69AT6dD42OxqhMvgpT7zaCm7SmtBlsnb5OuRdjTADSPF6eVx1dfzRGOUflPIZkAUm9wM9MJd00+yacP/F8BmyJiGIwsNjHfF4vdm7bEnVMZ5A/nGpH5DahaBw3EWqtHu2fv46/3H4d5hx2JMqOuRyCSQ4ONoyOL2nmKI4u+RGZxegNBLLOWBxRGl5w0mnV8Pj90IrJg3pt3dH9XhwmLVzecGAxXTahJEn4YkdrqA9jh9sHu1ELm02etJqt8o63VIFFcz/OvFOCo7gE/p4dVeaIkrC5xhWD/QJTlZctNC1LoRIRpSVJEr7dvCPqmCaDjTSf7wpgc4uUsNTjtJ4sgKf+58VP734ehx44CX86sQTVNvnn8uQx8YHFqrIUvYrc7dGBxnRa5LlVQ4O80GUvlhcKi02Jv69ifSA+sGQuBSLLeplKgNLR4cf71gOTlyQfg68bsFXD7pDnWDZLguCXzhL/OA+BRcUlKoXqrAOcDSkz4kqcNmi6WwCDA0jTTysj1QcA088FRh/V+2vli5aLeYqaeiZw4IVAig2LRNQ/+fdGZ9Op/fKcwAgjVCoV1n60NuHrVNr0m0XbPG1R2X0AMGLcCPg7/Wj/vB3/+v2/0Di+EaOvGA1dmS70fKzSSnm+IFjl+YI2ouxyt7c7o6CYtDsc5KowVUBwhOcebr8bOkP8518wsBibsZjI+RPPjzs22inPT1btXoUtbVvinjf3bM6yOHOv/pBKna0uL9dNJ1QKNbO4IgBgn0qu0qF0b0CLmP7ednm75MBiTADQ2CAHOGdVzsq53+RJjSfh4skXJ3wu12tSYqWmUkwvnx4q4UtERDL+VOxjqz96L+6Yze4EAEyfe0hO16ysrgUAGGonQ9Boccm1t0Ddk5FothfBWVwa95pEx4I6u/1ZBRb3d3rRUBIOLBq0Arx+CRptil4C7uhfMpwmMaoUqpAm82x/lxf7u7wYVylP9Du6fXCYREybJk8Wq+vkXxrsxhSBxX4cIFOK2yf3jIrssRgMEGZrTIUFNxw7DlOH25UYWl4wsEhEJFu5LZD0uY8+Xxd3TGeSN+S4dblluAXLpx5UI0ClVuHe6y6EMaKnb2NMSTMAqEqVTefpgNOaRcaiRw4IlpfJJc20Rnl+4DSk+FzwRy9Iwlwaug4AYP5VwJIn8cSXPecVjwKm/zj1OIobMXa8XCkiUZZmXKad3p4+4BYMLKpQuHKiiRaoDA7ggneB+vmpX+vaL5dNVWqR6+g7gVGLlLlWPjBjUXm9rLZBRIXR/mg7vrn0G1Sa5TmA1tWzRgEztny3BV6vN+Hr9OUJMvxiIkmtnlZ4AtGblfUGPQJdARhHGAEJ+OmNP4W2pzWK5JZQn+BzOVgKVSwS0e5pj3quzdsGSwZl2f3r/Qj0/N5dZa5ClxTu/9jiboFOl/xzvsvXFZeNmQ2z1oxnv3sWAUTP+6p6yssHewwqrdxUDp2gwIahGIvrFgNInokXDPwGpOTz3FibWzfDKloVC4YGg0sWbQaBRV9Xyl6Mpl5UYPjN7N/g9DGnJ3yOgUUiIuoL/C0tj1yd8b0C/vvqC4q+x/amJvz+ukvh7+6AxlYKlVqFV55+JPR8Zf3ouDIiAGAvSr6Y1+H2wWrPvBTq9y0u6LXhXXk6jRpeXwDaFIHFLk90YLHIpIsKLOrTZE5sbe6CRq3CzDo5KOvy+lFi1sUFzVIFFo3i4K+P7u7JAo3MMowtF5splUqFpbNr0VCan12PShAZWCQiAgAc+4wE1Q1t2Kdyxj335PJ3sLlFXpDpkOSFB0ljgOqGNvx7Z/aBxZYOF8751Z1o6gig3KyG2aDD/Y+/FHq+qtiSsL9zZUn82EI8nSiypQjQpCtjKcqvdRhSfOb5oxckYS4H3JE9FlWAVo8fjO+ZS8w4HyiOz3aIUj4xo3GF6O3pA24GR0+wSgXYa1Kfmy/J5g6iCdDHZHPEBmy7WwCDE8jDAmS/xMAiEREAQK/Xw9fig6dZ/rz1GOW/1VDj7Zfezupay95fhjZ3uJVMp7cTnRGbgdwuN3531e/g3e+FYBJgcVrw3N+fg6Fd3pDj2etJWJK0pDJcyend7e9GPdfh6YA1y17FwyzDoh63dLckzFgMjdvvjusfmY2TR56Mja0bsWb3moTPJ1oLUoJapUa1pTr9iVn6v4P+Dy+d8FLS8qDBjMXYQGoqm1o3ocpclVGGYSZsOhsun3Y55gybk/Zcl88Fo8YYzrTsIyzZSUREfYGr8Hkw74ijAQDP/vPPUce9Hg9Wrliu2Pt49m7FrRechE/e+w/8bbsBAAcefjyee/TB0K63ivrRCV/rLCpJeBwAOt2+lD0W/YHUO+r0WgEefyBlxmKHO3pBsNgsotMTPqbTpg76bdnXiZoiI4rM4Ul6pS3+FwVrL3ssDnTdPTsnTWJkKdTB24dQ1PBHGhERAJx13GEAgNv+9lLUcUkCnn71XazYAkz4UweaNDGLQjElLz1p1ro2NAcw66d/xgv/+RBbW+X5wXlHz8QDTy6Hzy9/Bo2tSVwloaosRRDT3QGnJUWApnlT6oGptYAgwpoqlhUbWLRWAO72xOcCgK0qYRnYKMWNCQ5GfO7GBhEzKRGqUgHW+IzPfkelAobPAnasAnw9/bJ8HrmXpLl06GSdxQaPiYiGqIOPPhgA8PDdDwMAvEZ540mX1IW3/v0WjObMf16u3bMWJ7xwQtSxvd175es2e3HPuffgrX+/BX+rPHGZd9o8vPrUq/D0tGCxFiUOEJZVlYXKkn7U9BG6feGehy6fK+v+gDXW6A1ArZ5W6PQpAos+N/yB3AOLE4snYnrZdOxx7cn5GrnKVznUGmtN0kBcLqVQm93NKDGWZJRhmKlzxp+DqaVT057n8rlSZizmC3ssEhFRXxgiv+HnVyAQgM8X3p1dWiGXnXjqb/ejraU5dHzVh++go60VB84/POf38vYs0rk2foamf/4COr0J9z6xHGKpXNZj7glno3nPLrhdcq3+qobEgUVHcVnS9+jypi6F2u1NPPEN9jPUawV4fAFotMmDei6PH75AeJdZiUUXVR41Npvwmc+247GPwr0Dvm/txrhKa1Qvxmpn/C8mKXssDqDAoibHYKDb64egVkUF3HLNWBwItMESuoP3WyQiSigQCMDrC2/QKXHKpU3vffTf2LFrLz7eJ5cV/WDdLuzYtQ+nHXkQvtwdkPsIpuBNsSH83S0+zHywE36/hA+fuBMzquTP5J+fPA8dXS7s2rsfADCuNnFgcVjKHottcFpSLIrsWw8E0uxW11lgTb7HKT6IaCkHIrIhsmYsiu+hCADBfk0lo+Iz/8wl6YOVAGAblv6c/uCgq4D274HNPaX/XT3zYMsACIwqpSdjcRBPt4iIMhIMHC5/ajm2bdwWOt66uxVb1m/BxJlpsvwj/Gj8j+J+x9vfvR+uTS5suHEDOls68cdn/whzozzfmXvyXKhUKmz5Tl5DKKlJPN8J9ljc/+5+NHc348OdH4ae6/Z1w5JNv2fIpVAjdXg6UmYsunwu+KT4KgxjZo3BxFnp749KpcINs27IaozJBEubCqrMKjs12hNtpsqvbEuhSpKEDk8HHDpHVP/MvlKwwCJLoRIRUR9gYFEBP7v4Qvz5xiuijllsDgT8fjz54L2hY/9d/gKq6xtR25g42JcJCcDunTuw+183QV89Dpf/4QmUVYazDYqG1WPm/AWhx5X1YxJep6xSXqAy2+MX9VxeP6wpAou72twJj9cUyb84iBo13L7UGYtdXj/8/vA2syKTDq6IgKU6ZjWm3KbDqm0tocf+gIR5jSXQROx+r3ZkHljUqFUDqh9frpl4bl8AoqCOuk+59ljsDxxG+d/UgjGJA+PB+1RVm6ZUHRHRIHPl1dfiuCv+EHXMZNTDZNDjxvsexxtNDqhuaMPjH25HVVkRjp9SAmmZFU731pzeb+/+Vhz5aBcmlqnx4b3nY2RdOPBVXWbHqRE9fZIFFit6SqHazQkWP9ztcJpTZPLtXQd0NKUepM4KszbFwlPXvujH5nJktQU+lqUC0KXoCylEzIuCi3aZBtzsNRgQu2YaDgFKxwLr35TL1brk4DJsypdL67d6AouN1cn7mRMRDRVqtRpFpUX42x1/Cx3b/MVmmK1mNI6TA1Ox/RMTqbJU4arpV4Wvq1JjT8sebL5jM7ROLa74xxVoGNMQet7sMGPhKQtDj0uqEwcWzT39nL3bvBhXNA7vf/9+6Lluf3fWGYuRgUUVVOjwdiTNWJQ8Elw+V8KMRY1OA60us0DYcNvwUPZcpkHBRD4941M8efSTKDeVZ3R+g70h/UkKE9XyXCrTUqhdvi74JT+KDbn1EO+tbl83zFpzqC9jpmqttQCQ87iDgcWSqtQbCImIiHpj4ERW+rG9e3bjs/++HsoSBOQehieffQGef+yv2Ld7JwBg5X9excGLjs15C7MU8EOSJJRWVKHstBtRcuJ10BvjF7BOOfvC0NfFw2oTXivY60grxi/mdXv8UaVQg1mSQU1t3bEvARDub6fXquVSqGLiwKLg70aX2wdvRElVpylVSgFwySGN+M8VB4ce2wxaTK62h99bo4bDHH+NZIFFURMdbOvvcg2Cun0BiBp1VPWxgRxYFNQqrLt5EZbOqU34fPA+maz2vhsUEVE/sHvPHrz24Zdobg33CLSajLjmJ6fioX+9hm837wAAPLfiY5yyaB5KVXLAx+nenvV7+f1+FDtsWP5DI149wwinNWZjj9eFK845MfSwoTJxL8VgaW5jooUzyY/SVBXS/F5g60epB6q3wiikWHgKZtOpgCNmTQDMsZtWsgwy2oYBYorAYqTgB7OtKvV5QeUT4srUFowxRaapSgUc9Atg/yZg+6fhwKJ9gGRcKqHnv5PD0k/+exER9bHmneGqTaJOxNLLluKtf78F9155g/LWT7di7qK5aNfIlQM8Zk/C60QKBALQ9ZQOlyQJNo0NLsGFmp/XoO7qOliL4wOAp/z4lNDXzgp5LqKBnDkW0ETPDxzFDpw/4Xzs7NwZOubyuWC2Zfi53qPSHN4wZNPZ0OnthKhPvNYhuaSkGYvZ+smknwAATNrMP3ueOeYZ/N+8/4sqmzm2aGzGfRnnVs3FMfXHYKRjZHaD7YVgKdRMgtEA0OpuBQCUGvt+s4834IVf8sMqZhecBoA5VXPw0BEPYd6weelPTsAgyD0WjanaChAREfXSwIms9HNejxtffPp+1LGTz74QeoMRrfvliXVXRzvmLzw2p+sH3F3Y/a8b8dSf7wIA6IdPhCpJ6ayJB8wOfS0I0SUXMpl+uWJKoca+ZmerCx5fAKIu8c47vUaQMxY1SbIF/d3odPtDvZcAwJkgKBgrMvg4ssyMEkv4/a16DfQJ+jIWmeRzYjP+REGddaufQvZkFHMMLHZ7/XEZiwMpUzMRnUaAVZ/435aOPRaJaAgLBCS8unJN1LGLTj8aFSVOrNskBxA9Xl9UNmEurrz9IQDAvBoNRCHx4tPUceHMcU2OnzvFYoqFxqJGoOlzOKwpFvx0NmjVKWY+3XLZ06oiK2ZPGin3AcyFv6eSg314ZmVNI1kzDCxOOwf44dOAKY877pc8AUxakjpwCADpekGNPUG+F9+9JmeFCiJgSBxcHpT6SwCYiKiP1W6pRduaNqxbuS7q+KKTF6G6oRrN6+V1EX+XH4ccfQj86Pk8yWSa0DPdCHgD2PHgDmz56xZ0eDpgbDRCLSa+wLCIagrqnrmIFvLvkT6TD96AN+r8Q4YfguGW4aHHLp8LRlv6wExkVqMYUZ3ArrOj09uZNPMwGFj0+r0Jn89GLpmKo5yjsLh+ccaBxFhGrRE3z70Zk0om5fT6XATvryQln9+pVKrQ9xQMLFaYKvI/uBjBfp1WffaBRQCYUTEj56xQlkIlIqK+wFV4BX3yzptRj01mC35w3k9Dj2sbR6NmxKisr9u0YyuaHvkF3Du+wahJ09Oen2hiqOnZBeeT5P/k6p6MRVWC7LVuXyBlxtf2/S60dHlw1KlnoagsfkEs3GMxOlioM8i7pnTwocPtgy8QWQo1fWAx0qRh9qhsRLtBhD5BUCkYjBxdHt0bIZeMRW2SxdO+kGspVJfXD1GjigqiFvL7yLeBHjQlIuqtl95ZFfVYrxOx7OLTQ4+L7FYcODn7kuw7dzdjdLEaogAcdMD4jF6jE+XPaYOYeGNOaC6SZEHLrk2x0FYzG9j7HS48biYcsRmTQQkWcrSaiIW37ph+irkGFrd93PP6LBetVEKCLMkkBA1QNTVxD0eljDoSOOEBwJqkPGswYBZIk1mhVgNzLgV2fw18vxrQWQHtEFrgyjRrlYhokKneVY2td2/F1+99HXVc0Aj40RU/ijo2dc7U5BfqWSaIDB4JKgGtza3Y/LvNaP2oFXXT6tDmSd8XuaRCLgWpN8V/Dm3YvyH0tUotB6POnXBu6FintxP6ROXaYxy15CgImvjAnk1nQ7unPWlgUe1VQ4KETm9neBw5lj0PllPNNJNPKWqVOufAZC6CGYuZ9lgM/hspMfZ9SVB3z8Yzm2jr8/cOBhZz/feklJvm3oRKc2VWmbRERDRwcBVeQZ+8+2bczqljf3B26OtcshW/WvMpfvqDIyH5PKg44/eYfOBBUc9H9iWMpDdGL7LpJHlS45HkCW9pdT0AwDx8XNxr3V4/TJbkkx9fQMK6Xe3QijoImvjFQp1GDX9AgkobndFYWV0LAGgc0QCPP4Aud3js6UqhxppUbYuawNqN2oQZi0GxPRt1muwzFgsp12Cg2+uHqBEGVNnX3mDGIhENdcvf+xxeb3Tg5+wTDg99fcqiuVkvAK35egNmnHop2t0SPjzXhOPnp1gMjFDskAN7QpLPoOKeHf4T6xMH10yqxKXXAQDDDwQgQdy9NvlnnN4ed8hiipgfedqBQMTClEYH6Hux+GPI8rV628AKuAUXhaQ0GYsAMOUMObty91dygHco7ZxnxiIRDXFrP1gLV5cLAQSgLZUDQQctDq9j1E+uh0abvBpQYL/82by9I1yufceGHbjouIvg3ulG3S/rMGPxjFA2Wir2YjsAuWdhrE92fQJADr4sOHkBAOCYhmNCz3d6OyGlqnzQQ9AIUXOrIr2c+W/X2dHubU/43mpBjbHjxgIAOrzhMvYadW5Vkj7f8zkA4Nv93+b0+oEilLGYRSlUvaCHRczjxqwkuv3yPNaus/f5e/eXjMVFtYvw0vEvYYxzTKGHQkREecBVeIUYTBbs27UTG775X9Rxnd4AsawBZUtuxfxF2QcWn/3nn1Fd14jyM++Atrg65/FpJXnXv7snsBgMSO7uiM8G6Pb6IRqSL4oYtAI27e1M+nwwwKdKslhmM8oBxxZXuMSZWafJKnhmiPlFxGkSswoqiRo1hD7cWddbup4dkJosA4zdvgB0A+x77Y1cMzuJiAYDq8mAlvZOvL86OlNAE7GL/thDZ2Z93fsfexnlxQ58fJ4JUyoEwJci4JcDg5hgJ7/OCrU3+VwDBgdQNV0utZnqnFTcHUAgptyqMctSo66W7M6PpLcNrICbmEVgUaMDZvb0/NY75MdDBQOLRDSEGS1GeD1erHpvFb4o/wI1N9Sgxd0CtVoNUScHhapHp1nX6Nnz80nTJ6FDbzz9BkSdiPIflMPX4UOxoTgqIJctwSvgq31fod3TDpVaBWeJXLI7mBEHyAE/X7os/QSqLHJVJ7vODo/fAyT4qFer1bCZ5A1JkRmLuWYcBsu6rt69Gnu69uR0jYEg24zFVk8rTFoTRHV2G9mVECyFWojAolatlcvj9oNlIK2g7dOsViIi6jtchVfIiPFTYDRb8NF/34h7ruToy6EfPgFuU3lG15IkCd793wMArrjpLtz24JMQjMqUT+iWhKisSn9AisuydHkD8KeYz44sM2Nbcxf8SerahwJ8SRaRLHo5KNjmCk/SVSoV7IbcJ3tFJjGrHk66HEqhFlIwYBZI0UsgEXcwsDiIy59GYmCRiIayiY3DUF5sx0tvfxz33KzJ8k7hqWNHxD2XiCRJWN8sL9r88foL8d9//h8qLT0/Yz0pAn4paCB/7ovIYJHOVCJnFAZ1Jlgkm/QD+W9vV+JrpAosCiLgbgP8MWPJthzqjk+zOz+SwSGPY6DQ9ZT4TNdjMWjmT+TSreaygRVA7S2todAjICIqmNKqUlTWVeKDFR+gWyMHVnZ27AQAlA2TKxQMGz0s6euDAlIAn+76FO5dcuWls35xFu597l5ozBpIfqnXpS0NLgM6vB1YvXt10nNcPhdcPlfUsdi+jIkMM8vfX7D8o1eX+DVGjVxFoStiHhMMZG5p24LvWr5L+16J/Ou7f6XsQTiQ6YSeNaYMv71WdyvMojmq92VfCWYsWnW59VjsLZ2gK3gpVCIiGty4Cq+A5S+/jC8+egdTZs3HhwkCixqtvKuqy5N+Ic3d7cItV16Apn9cgYC7CwajCaKo3C7v7oAAb0zU0OOP3u3l8vrhDySfqY0qt2B7iwsuT5IyrD0Zi1KSyZtVL9+PDk/0BNuRZTnUSCWW7O6RTiPkXAr17Nm1AACjLvsG6bkKZnMGMtuYF+L2+qHTCNAk6KU5GOkS9LYgIhoKHnnsCby35jscfdDUhIHFYFnSTHYMezxenHf9PZj8QAeaOgLQiVoYDRGBIU9uGQI2SS5ZVqFpSX+yuQzwdOGLvT0/13euBWIXycadkPoaqUqTGuw9gcWYjMVMex4Gbf0ou/MjGZ2FDbhd+D5wzB8AY1Fm54tZBhZ1FuBHrwNzfjawAqi9xT5CRDRE/fMf/8TmbzZjxqEz8OGKD+Oe1/asi6gz2BD8zd5v8O3fv8X6a9fDvdsNQSPAZAn/fC0yZPjZlWTao/VqUWutxZo9a1K+PLbc6t6uvWnfstQob1JSq+Tv06OJnmsEpAACUgA7OnYAAFz+6ODl1/uiK09kY3LJZPxv3/9CpVEHG60g/xvKphSqVWsNByT7kC/gg6ASCtZfsBDfMxERDS0MLCpg3vyDMWbaLEyftwDrvliNln3pJ5uJdHd14RfnnIQP3nodzkWXQK0zYu2nH+Avd9yk2Fi7/Oq4QKLHFxNY9KQOLI4ss8Drl7C1OXGGgE7bk12nTtyk3KQToFYBne7ohSmnKfH5mRhRas7qfJ1WDSHHYNthY8qw5teHY25jduXSxlfmnnUazMTLtjSK2xeATquO6zE5WIlZZK0SEQ0mp5x0AsY3VOHog6bim43bsH7r91lf44sLTTCjCwt/fD3+8cJ/cP9RepSb1Xh/1Ve47u6Hwye+fRvw3p05j7VIyCAwaSkH3O2oKZdLk2HXl0B7U/Q5RmfqayTosRh+zgF0twHe6MU8WDKrLgEA8HYDu/+X/rxERhwOVE4rbGCxbBwwbSkgZDj/ErOba8nvMRaomQUMkXkIAEA0pj+HiGgQOuPMM2AvsWP6IdOxb/c+eN3yRmJPbNnxNPxuP2678Dbse3Mfyn9QDl2pDt+t/Q5/v/PvoXMcOgfUGSxntZbKgUEP4sdwYuOJ2NiyMeXv2LGBxV1duwCEsw0DUgCvb3k9qjRnMKBo08m//3s10Ruqv++Q52htnjYYNIZQyUwAcPvdeOybx9J+X8nMrpyNRnsjXtr4Us7X6M90ajlYlmkp1DZPG6w6a0EyFgE5uJdr38ze0mv0zFgkIqK8Kswn3CDz0quv44U1O4CuNgDAJ++9BZszwx10EVa8/CwMRhPuePg5/G6VD569W3HF0hNgLyqG7cdHKjJWj6SGNyaw2OXxw6LXRjz2wRdxTuz5wx1GGEUB2/a74DDGL0bpNRE9Fr0SdMboHVoqlQo2gxadMRmcRabsd1SJGjXUKqDamd0ijl4j5BxYBAC7MbuJ6Zc3LMTWfUlKtWVA7LmnWWcs9pRCHToZiwwsEtHQ9NRj/wTWPo0Onwo6UYtX/vspRG3m0zyhez90AvDGB5/DpTJhxd9uwbzvbkaHR8Kc03+BIrsVN/+85+QRhwHfJy8dlo5J5Y7PFIxlrQA2vQOrUQ+Io4B964H1b8afJ5qTZ1Dqwxt6rIaYe2GwA5CA7v0x71uVdvwhzRsAKQBUTAZ2rsn8dYCcKejpQM7lEwoh2Dswh35TQwpLoRLREPWHP/4Bh196OOAHTFYTOrZ2wDDWgI4kn9NayGsJqkD4d1XPPg+2/L8t8LZ6ccxvj8Gmik0AgF+c9AuYrWYUnSuvswhqAUWGIuxxpe4nGNDIv0AnCh4eP+J43LPqnpSv74zp97y7azcAucxpl7cL966+Fy3uloSv1ag0sIpWeAUv4AV0Rnm9Y2PrRvn7hgpW0RpVbvXNLW/GvWc2VCoVbpxzI5a8vCTna/Rn2kw3Q0Eu69/uaYdNZ4vqndmXDBpDwd5bJ+j6RY9FIiIavAbQakb/Z3MWYcykaWhrac7p9SazBfc+sRyjxk8OHbv3ieV48u21WV+rtCK6b4E2opxqpzt6QWh3mzvqcUBCVNAvIEkIRGQwqtUqTB2evG+RXhvdY1FnjN/h7jCJ6IrJWCw2Z7+L7Iix5fjdyZNQ5ch8EUet6slY7MPd82adBmMrc6+tH2yRmKyvZTJunx96rQD1EAksahlYJKIhzmzU45CZE7GvpS3LV0oQ1CoUGdX46Km7MG/6+NAz7z9+B3atfDR86ozzgYvTlwAdN6IGAFDmkOcBGiGiXLUnzWYbS6VcqhQSoLcC1TOAbQneU5WiBHZEYNHZ/rUcBAwK9l/sipmzRZVCTfPZufdbwDYcsKXvFRVHrZa/r1yVT5D/1llyv0a2ghmLfnfq84Y6lkIloiFOo9VgxvwZ6NgiBxRjs/6CrJA/B8WO8DqASq2CYBVQf109zj353NDxmx69Cc+veT702OP3oMJUkXIcW9u2hr4uGSb3ZNSKcpBHEAQ49A7MrpwNAAl7EqqgQoc3Oija1ClXT9jj2oNnvn0mlH2YTImxBN2SnJFossufD+tb1oeet+vsoV58APDprk+xYPiClNdMZ3zxeMyrmgcg+b0fqLLJPOz2d8Mb8KJYX5xRK4B80At6ZiwSEdGgxVV4hR148BEoO+N3UJ9yV1ymX1CztgQ1v3wJO9o9WPHSv+Bxyws08xcdi5LyytB5Gq2IUROmQJ3DbnaDMTqD76Ajjgl9va8zOkugqS2mDBiAjtjgY0f0ItKcEfJOwUQlU4M9FmNLrkYqNung8sYEFrPskwgABlHASdOGodSSXSkxvSb3UqiFkOtE2OMLwCQOnb6DzFgkIgKOOWRmVuc/tfwdtHW6UO9Q4/7jHGgYHr1QN2vKGAhCzGdJBgEtq1ne9BP8DGusDc9x0BmRYZAoUGUpl7Mag5mNIxcCGfQ1ihIRWER3K7Dl/fDjYGDR1RL9GnNp5tffvxmomgpoC1DOdOZPgHOWAzXygihG9CxCNhycv/fU9Czm+b2pzxvqWAqViAizFsyCb7+8ptDqSR/ceu+199CyrwVahxZ1v6pD3cg6TC2dGnp+7AFjIWii5yKV5vC8wp+g/+/K71eGvlb1/O4/snEkAGD0mNEAgFNHnQoAoX6HkWw6W3xgsStclr3cVI4b5tyAEfYRSb+vUkMp2r3tUceCGYvB93D7wvOgKnMVzhl/TtLrZepH438kj7ezKc2Z+XdMwzHpT8qQqM48sNjmljfZlRhLFHv/bOm1+oJlLOoLWW6fiIiGBK7CK+zA+YdDXzUGALCjJT5gBwAdGhskvw//fvQh3PbLi7H20w8w7GePwaeODqzpDMrteI6chDfHBAn3d8WXI4sMLGrVamyP6KdoFAXMGSH3F2zrji+HJahV0AqquN6NkYrMYlzmZLE5/P27ffG/GCjloJElGFNhzThYN4Dij1F8/gACEmAQh07FY5GBRSIiHDX/gLhjh5e3QFpmlQNsPfwBCfe/tRWnXXYbnntrFYD4jSyaRL1rvbmV9o7aNb1vQzig2LIViM0UCPY69PSUAyseBRQlX7hLKDKwqFIBX/4LCC7eiWZArenJiowQlbGYRsAHjDoSUBXoc7ZmNuCQs0IhGoHr9wHjTszjGw7QCVFf0/YEFnm7iGgIm3HwjNDnfqu7NWHgD5AzBbe9tQ3Xn3c9Xn78ZQDyXGRq6VSUmsKbfRL11Ku2VIe+ji0f6vF78OmuT+NeU26W5xcTSuTM/7lVcwEgYeahQ+eIKlMqSRL2dIU3Rl069VIsGL4g5bpCmakM7ogNVM3dzVFZhHadPeo9zhhzBhodjUmvl6lgllyhMvWC1py5BhdMukCx62VTCrXNI8/x0mW25pNBY4CQqrpGPt9bMDBjkYiI8oqr8AqrbRwd+jq4RqY3RO9clrwe7H76N9j02du4/MY7UTn1UAgGKzaKdVHnme3OuOv7/dmVwkwkNhi4r9OLQMyCnssTnvir1Sps3R+9iDi2InX5LoNWSJmxWGrRocsT/cuF0xTefZbPbMI/LpmCHx5Yk/H5L1w8BydOqUJJDhmVhdTdE9g16YZOxqI20QI4EdEQU1NVhgkja6OOHVkv/23p2AAA8PqBk55y4cmPd+Kea36Cs4+Z23Nm9OevPos+jVlp3xEdTNyyMvr5YIAvGMRUqYCZWS5MRQYWpywF2ncCX/87fD1TCdDdi8CiuRwYFh/EjRPcMV46NvNr50LQAOkW3OyZz38oR8HAIhfziGgIszlsKK+Wg3jN3c1w+91wlMjVAiwOueqBSlJh+//bjm3/2YZzrzwXp198euj1C+sWyj3ieiQqVTrMEi5FHptZuL5lPbx+LwyaxC1TggG3VAE4h96BrojNVC6fK6psqaAWIKhT/65dbiqPeryxZWPUY4c+Ong5pWxKwUpn5oOgFmBSsER4Ntl/wQBumSmLuZ3CjBpjVsFQJTFjkYiI8o2r8ApLNCEtKQvvkHJ1deLr5++FZ9d6nHjtn3DkSaeHgpHDR01Me/373l6Pbm/vsvlaXdElrFq6PHHZhbFlSrfsiw4sJsxgiGAUNSkzFkssurhyq0URgUVNTPnXHKrBJqUR1LDoM5/cTRhmx52nTUZNUeF65ph08i8X2fSFdPf8NzQNpYxFBhaJiAAAFy+egKtmhRe7RtTI5cIMogYejxdXPf45Vmzy4YUr5uJnZx2HylK5xPmkhvKE11Nce5Oc8Rf0+ROAOyLbIFGAb/Lp8cdS0eiB4AJU0Qhg9NHAd69GvEc54IleiAyVSE3EWBT9uGpKZoFIjQhcuQGYc2lGw86bX+0ATvh/QJpFUOollkIlIgIANIxtAADsde2Fy+dCdb2cYWiymxAIBLD8j8vR9lkbDrr6IJzx0zOi1lJGO0YnvGbVqCo0TpIz+iJLoXbFVFP4pvkb1NvrUWrIosR5DIfeEZUJmUu/wthsuY2tG+HQhecaTr0zKrDo1MVvLqewbAKLbZ42aNVa2HS29CfniUFjgKZAlS1mVc7CaOdoqFVcIyEiovwYOhGHfsJgNGHcYSdhk2Ekho2dDiC8n1kjps+I27a/C7e/9k3O728UBbR3+xCI6I3Y3OmBOyIIqFYBLk90UHD7/sRlXVO9TyqlFn3KjMVYsYFGu7Ewu74K5ZYTxkMUVKgryTy4GfxvatYNnf/NtSyFSkQEADjf+SFUNrecpWeJXtQSRS3OXzgBswMfYsKUqqjnjLrcP1/lPozJNxVFaW8CfOFd/3DtBz5/LPxYZ5EDg5HniFlu8FGp5Ou4muXHR94OrHsl/Ly1Atj7XfRrUu1kEs3Rj2vmATpz4nNjmYrlP4WkMwM1s3J/fTCDgoHJ1EKlUJmxSERD28SZE7Fh/QZ4A17sdu2Oek6tVmPW8bMQODqAully5aZguVSDxoBiY+LPTFuJDUaN/HO2yhSewwQDi0azEW64sde1F8fWH4u3t7+d8/iL9cVRmZAt7haooIKEzKtIlRqjA5vrW9aj2lqN/Xv2A+jJivTlVmJ+KBKFzHsstrpbYdKaojJf+5pJa0qb1ZovS0YvweK6xQUNrBIR0eDGVfg+0vHFm3j/pScAABMXLoHWWZX03GDQb3+XN+65648eiz3t8T0RM1VkEtHe7YU/IrDY0uWN6ndo0Wvh8oYfd7p9cVmO6RjTlN8stsRPCItMmU/4Ct0roK9Z9FrccepkjK/KfFLY3dOn0jSEAovMWCQikqkCPZ/brpbQsWe+8uL3z3wEAPjJkRMxoSzBZ7WUe1UEXaZlUwUR6NwjBxODDvgxsOnt8ONgqdLe0keUbrdVAQdeKH/dsRuwVsX3WIyULpDprEv9fCEFF7EMRanPy8Yh1wDlk4Ci3vd+GtQEbU8QdmjNVYmIYkVmSu3s2AkAaF/bjv/+9b8AgJlHz4SxPpzlvbtLDj6WGEoyykyLLDPa4euAP+CHzSn/vmzWmrGwbmGvesw5Dc64wGK2QZoyY7iygcfvQVNnE0bYwj2j7Tp7wv6RlFg2GYst7haYtea4YOTMipmoNFVmFaTMlUW05P09UmFQkYiI8omr8HkWCASw+dUHse+Vu/H9xswyDXe0JM8OnDrcgYd/NCP0ODJAmMq2ZvmaokaN1m4fvBGvkwA0tYUzAqwGLbq94clt5HOZSld+M1EQ0WoYOgGwvuDu+W9o0Q+d+6pjxiIRUTRvFyRJwi2vbMYpT7uwesOuhH2KsPsr+e/mTfkbS/N6+W+nXBoN+zeHnzv8BsAUU67MHPE418UfXUxP6Nk/D7+3tSq+x2IkfZJ+0oaeMmXafty7RtACJ/4FOPAi5a5psAMXvAM0HKLcNQcrrQEMLBIRARqVBjpBh72uvVj73FpsuWsLdn6zE35f/EamHR07ACTeRJwo6yuyd12HpwOeQHgD9vSy6ai2VPdq7CXGkqigX6u7FUX67DbsRGYs7u7aDQkSppVNCx2z6+y9GuNQk00wsM3TBotoiXvNg0c8iH8u/mdc/8t8sIpJ5pIxFtcvBoCCZlcSERFli6vweeR2deGmy87D9v8+AcchP8JJP12W0eu+292R8vkZdeG6+3s73Bld89vd7QAAg1ZAa5cXfn8g9BgAdreFr2MzaOCOmOg3tXZDK2S3OJIuS67YEj9hykcWYmnP+zSWZViqbICLXCoOlkIdShmLWmYsEhFFcXt8WHr1Hbj2+U34zXwdHrnqmPjPWykArH6k5+scMha79qV+XgoAax4H9m2QH9fMkgOFrTvC52gNwFF3Rr/OHLHgE1uGNFP6mJ3awUVIlUrOYPS5AH+SqgzJFq/m9AQnNQb572CgzWDPbYz5MvFUYMxRhR7F0KQ1MK5IRAQAKqBUX4o37noDK+9fiaIjinDqradC0MQHCkOBxRx+gLa52+ANeEP97OZXz+91tlixProca4u7BSXG7KopRAaW9nXvg17QY2zR2NAxBhazk03GYqu7FVbRmjBYF1uiNl8yzRg8tuFYvHnym5hV2YuS9URERH1s6EQcCuBfD/wfPl35FsaceSO6KqZkHDhb19Se8Xs0d2ZWFnVbs1y332kS4fEH0NZT+jSYzdbcFb6O3SBGBSybWrtRatGnzKSMFdnXr707fsGuKEU/RSDzTMx0HCYRH19zGNq6felP7kMv/XQu1jW1w6JQ0M8kCrDoNFHZpcHg8FDqsSgyY5GIKMoN/3gLTy3/AI/9eCyWVG1P3PdtywepS4Km8+3rQN3ByZ//37NA517AXAZ07JLLRBaNkPs/Rhq9OPqxNaI3pCbHHdyxgcVIwd6T/iSbtPT2xMfnXgpMWgIYezZ6TfoBMOyA1O9F/cfcK+R+nlpj+nNzpWHGIhFR0J7le7DhtQ2Y9/N52D9lP9RJNoNua9+W83u0elrh9rkxrWwavt/4PYoNve9r7NA7oh63e9pRYapIcnZisWtAwyzDYI+YXzCwmJ1sMhbbPe2w6+1ZBSOVls1/3zJTWfqTiIiI+hGuwueB5JeDWMec83Pc/ci/UTR2duavlaRQdmEm9nW6EUhU0izG3g45cOjsCeg19zxWqYDhTmNUgNJu1KLbG85Y+L7VhSqHIeMxAdHBrJUb9kVdDwD0WgEmMXkfRp1WuX+apVY9RpT2r4zF8VU2nDRtGNRqZRadNIIa80eV4LtdHXB55HsdLIVqSHGfB5tsM2uJiAYrr1+eG1y9ZB7effR3WDIjyWJFwAd8/jhgiF48QwZzi5C27cCXz8Qf726V/+7cA8y5FJj90/BzFRPjA4tBwQUgS2XmYwgK9kUMZiYmCw4C4cBiMuoUG3MsZeH3AICiBsDUs4gZXPQShs7GngFlwa+Biz4Eikfm7z3yGbQkIhogguVOD/vhYWi8phGNR6bu0RvMWMzpvSQ/9rv3Q6fRQVAp8/tvbNlTCRLqbNn3V47MwGywNcAmhjcixWa05aOK02AytmgsDqk+BJXm1HNEn+RDt78bTp0zqtdnX4sNThMREQ0m/SKweN9996G2thZ6vR4zZ87Exx9/nPL8p59+GqNHj4Zer8eECRPwyiuv9NFI01u5Yjm+f+hC+Nr3wmRzoGH0uKxev7vdjfYU2XWx63y729xxQbtYPn+4L0AwsNjiCgcSa4uNaInIWHQYRbgirtnc6UGNM7sFEnNEXz9/QMILn38fd44jRdYip9PZO3ZSJfZ0uLF+j1xKt9vnh1ZQDanyoMxYJKJcDaa5yBsrV2H0ve3Y0ByA1aTHARMSBFD2ruv5+1vA1QxMXRp+TgoAn/1N/tqUwY7/xiOAb18F/DFVFPb0vMdBVwLzLosO8lVNjz8/ljW7rAAAwMJbgPEnhYNGsQHT3l4/E6OPBiomAQ2H5uf61HsGe+LsXaWIxvxen4gGpcE0F/ni4y9w35L74NruQrWjGmKDiObu5qTnt3na0OFN3RImnX2uNKXZs2TUGmHSmqKONdpTB0cTiSy7Ob54fFRvSIPGAFEdXhfJJiNvKDJpTbjr4Lswp2pOyvM6vZ0AkHXpWqUl67EYLIfLQDIREQ1kBV+Ff/LJJ3H55Zdj2bJlWLVqFSZNmoSFCxdi9+7dCc9///33sWTJEpx77rlYvXo1jj/+eBx//PH48ssv+3jk0SRJwrMP/wk3/PxHEEvqoNabUwYIk/luV+rJtDumyfmuNjfaXUl6A/XYGVEe06rXQiuookqDjigxY19ExqLTJIay3gAgIAFjKjJrOh0UmbE4rsKK/67bE1dKNV05VMrOQSNLoNeq8fm2FgByj0VRUEOjUFbkQCD2BFGHzndMREoYLHMRAPjTU6/jyPN/jZFFapSYkvw0DPiAze/JX7dsAYbNAOoPDj///h+B796Qvy7LYIPUpCXpS47GPl8xOf11zVn0vwmWStWZgZP/CgybLj9OFVgUTbn3bkxFrQZ+8g4w5hjlr00Dg9YIzkaIKBuDaS7y1vNv4YrTr4C11AqtTYtyk9wzeY9rT9LX7GhPk62YQSGFNk8vyronoFFr4NQ7Q49FQUSFOftNSZGBxell06OeU6lUve4FOdQIaiFtFmIwSB38t1cIKiT/b/vk0U/ibwv/llOgmoiIqL8oeGDxzjvvxHnnnYdzzjkHY8eOxQMPPACj0Yi//vWvCc+/5557sGjRIlx55ZUYM2YMbrrpJkydOhX33ntvH488zOPx4KFbrsbDd/8WPzjvZyg+/mqotfqcrvXt7naUWTPvI+SXJGzu6Z+YzPbmcEBPpQJKLXq0RQQjG0qjg6AOoxZdnugA5qTq7PoGRQYWj59SBYMo4OnPtkedU2TOsV8SJaTXCpjTUIxvd7XD7fWj2+uHqFErVm51IAhlLA6db5mIFDAY5iJ+vx+X3vEYLvrtX3Hx6Ufj30tMsOqS/DDc8n7045kXAKaIHd3bPgZmnAfoMtxUpDUAR98Vfrx+BdCVPCsBQGYBS3MWi0HJypYa0sxfzOxn06fm/xKYdnZ+Arr9ybgT5IB9qnK6REQRBsNcJBAI4JE7H8HdV96Nw44/DGfefSY0Fg0cegf0gh6t7takr93RsSNlLzxPIHWVA4PGkPL6udCoNVG9Gov0RXEZjJkoM4bnGsXG+EoQseVQI+XyfgR0euSMxUIGFmOzUWNNL58O82CfDxER0aBW0MCix+PBZ599hgULFoSOqdVqLFiwAB988EHC13zwwQdR5wPAwoULk57vdrvR1tYW9Udp33z9FT55azl+fuPd+NHPfwVVL2q4r2tqR31J5pMLtQrYvt+V8pytzZ1Rjyts+qiMxbri6Mmq3SjCFwhvCXSaRJSYswuUmnThvgYGUcCvjhwdN84SCwOLSjtmUiW+b+3GluZOuL0BiJohlrGoYcYiEWVnsMxFNm7chIdfXon7rvkR7rn2AmiS9pyVgK9eCD8snwjUzYsu2zj3cuCgq7IbQGR23p6vgX//LPX5ojF1liMAWIKLQer4spLpXhs6z57he1CfOOQa4Jh7AH12lTAGnAPOBQ67Ptzzk4gohcEyF7nn7Xvw4qMvouzUMny/+Hs8v/l5+AI+qFVqDLcOD53X4e2AFNPjZXv79pRlK91+d8r3dugdaPe0x123t0oM4TEVG4phzKGHbplJDizadfaEpTHtOnvS16oy/M12tHM0gPi+kENVp7cTgkqIyjjta3qNHhpuMCIiokGsoIHFvXv3wu/3o6wserd4WVkZmpqaEr6mqakpq/NvvfVW2Gy20J/q6mplBh9h4qTJuPPZd3HoMSf36jqdbh/2dXowtiLzUhgVNgOaWrtTnrMlJqOx0m6APyJwGBtYtBmjdwpW2vRRPRMzYdJFn3/aAdWodhoAAN6eno8lzFhU3GFjSqFRq7Bqawu6fX6IghrCEAosDqV+kkSkjMEyF2lsHIGNz9+Oi047IvWJzZuAth3A8Fny4+oD5T6Kup65h7kMmH0xYM6hJ00w0+DY+4DJPwwfT7bhqmx86usZnIBKkF9vcMY/l4m0wcs89Vkk0jELgYgyM1jmIi6TCwfcdQAu+PkFOG7EcVHPNdgbQl+/seUNXPPeNfjr/+RszIAUwPaO7agwJf9MTlfm1Kl3ot3TDr8UXXkp2MPOF8i+TQ0Q3aOvzFgGoyb7wGKNtSb8+gSByVSBxUwdUXsEnj7maRxYeWCvrzUYdHo7YdQaoRMKt+Zk1BgZWCQiokFt0K/C/+pXv0Jra2voz7Zt2/LyPiZrdqVCAWDV1hb848PN+PO7GwEAG/bIdeDnNMSXx0impsiIXW3JA4uSJGH7flfUPrdggC/IbhRhjQgc2g3RgcVhTiMs2QYWxejzVSoVlh0tN6jesFv+PrMp+dqfzW6QdwXGBmgLwaLXYkadE9/u6oDLI5dCFYZQQ3BmLBJRf9RXcxGHNcnnkKcD2PGZ/PW2jwD7cKBuvvxYHZwK9vzkdNSl7kuYSnDxRDQCx/4BqJ0nPxaSlIGqnJLmemrAYJezFdVC6nOTSRdYtA3L7bpEREQDSF/NRWwOG34w+ge4cc6NqDJXhY6PdIwMff2DUT/AjPIZ8Pjl8qZNnU3Y3bUb1ebkwc49Xcn7MwIRgcVAdGBxfLG8iWnt3rU5ZTNGljGtMFXkFChqsMlB1WpL4u/Pnq66QoZGO0cnfY+hxif5YNaaGVgkIiLKo4J+yhUXF0MQBOzatSvq+K5du1Benrg0VXl5eVbn63Q66HT9K4AV7C24tbkLHp8f+7vkfocBSS47mk0p1BqnER9tSt7HqMPtQ5fHj+FOI7b2ZC5WO+J3yQ13GvHl9/IuQLsxegGwtsiYdSZYbMYiAJTb5IBmcD5fPEgyFsdUWPHJtQvQXxIDj55YgWuf+xIenx5OkxZC0nJ4g48oxCyQExGlMejnImseA9p3hh+79svZhEYFS2UlKwuWLkBZMTn9ta1VgKANlzQtGSOXWs000FgyCqiaDliS9FJMFFgcdRQgaIAc+2UTERFlY9DPRQA02htDX48vHo/jRhyHv37xV9y16i7s694HCRJGOUcBGxK/vs2dPmOx1dMKnxSdmWgR5YoMzd3N+Lr5a5QaS7Mad2TGYq5BO3WaVjlOXeHKdQ5mFtECMdnmtj5g1DKwSEREg1tBMxZFUcS0adOwYsWK0LFAIIAVK1Zg1qxZCV8za9asqPMB4I033kh6fn9U2tNb8NYTJuCFS+bi5uPDpcDqioywG5M3LQ/EbLKrKTJFlTWNtbdD3gXYWBoOVlbaDXHn1ZWEsxxiMxYbcsjEM4rpF/yKBklgEZD7RfaX72fR+AqoVEBTWzd0GmFIZSyGAuBD51smol4atHMRU89CmN4GTFoSPq41yo9zzQBMJNdyohUT5b81KT4/F/8OmHJGOOvx4g+BCz8AnD0l1ayVqd9DbwPOeQUYc2zi5xONfcljwAl/DpeHJSIiyqPBMhfp8HagELj3JAAAJChJREFUw9OR8LnIUqhBwaBPMHMxmF2YSLu3PeV7O/VOuP1udHm7kp7z0saX4jIa0yk2hKtJ1dnqsnptppwR5d2zDUSlC1oOZVbRWrDAol1nR4mxhIFFIiIa1Ar+KXf55Zdj6dKlmD59OmbMmIG7774bnZ2dOOeccwAAZ511FqqqqnDrrbcCAH7+859j/vz5uOOOO3DUUUfhiSeewKeffoo///nPhfw2clZm1UeVGR1VboVVnzywGFu+o9ppgFoVH3AM2tvhhkGrjgomVtrjd+A3RGRJWg1aqAAELxmbwZgJc4KMxVjF5sLtHhvMnCYRk6vtWLW1BTrt0OqxKKhVUKsYVySi7AyKucjyXwJbPwTmXyk/rjsIWLccOOzXwIgFwJpH5eONCwFnvVwSNRuulvDXwUWsY/4AbH43fbnRZILZgmOOS37O8APlP5HKxoa/Pvc1YNU/gaIRya8RGbgMLvAES2NZkwRFma1IRER9aDDMRV7d/GrS5yrNqTcCOXQOFBmSV1NodbfCG/CmfD0gZyYmsrB2IV7b/Bo+2pnd/KfEEM5YtOlynO+kEdljUVApuPFriLPqrBDVhVlzuufQe7CzfSf0AueTREQ0eBU8sHjaaadhz549+PWvf42mpiZMnjwZr776aqgR+datW6FWh3dhzZ49G4899hiuu+46XHPNNWhsbMTzzz+P8eOT724bSGbXO6FOEQjy+qMjiDqNgJoiEzbt7Ux4/t4ON8qseug04XtYYYvPWBwRkdEoqFUw6zVo75bLiOgzyD6MZdT1LmMx29KrFO2oiRVYtbUFeo0wpAKLQGQ5VCKizAyKucjqf8p/r38LGBcM1PX8/Be0QPEoYO86YMRhcg/ETHldwJrHgW+Xh48Fs/ymLZX/JBMshZpst7hoAn72OdC9P/r4+BMzH5/eBsy+JIvzrcCEU+QAKwBYggudQ+uzkoiI+pdBMRdJIV1mXZmpDGZt8pYw+7v3hzIbE3Hq5ay/VndrwufHFY1DU2cT3tnxTgajDYvMWDTGlH6PLJMa6cyxZ+KRrx5Bvb0+o/fIV8ByqCvSFUFQskJHFowaIxoc8Vm6REREg0nBA4sAcMkll+CSSxIvCr399ttxx0455RSccsopeR5V/nS45YBdIEHz8NGV1qyvN67SmiKw6MGEKhvEiMBiov6HtUXR5U6tem0osGhJkUGZTCYZi1Z98nMiA6GRrl40Gve9vR56bf8NHum1Qs/fhRvj4gkVuOmlr6HTqqHpCSw6jFrUFpugGeSBN61GzfVhIsraoJmLrH0c8HeHM/OCnPVyYFHI4jPd3QZsWQmotXIG5IaekmuJ+hICQOUUYOv74cdH3g5o9HKfw2SctQBqw4+v3we4kveOVsRJD4a/NpXIGZjqFJ+NP18LrHsFsFXld1xERDSkDZq5SBI20YZWT+LAX5W5CmYxeWCxubsZLq8r6fNm0QytWot2T/KSqdfOvBanvXQagPggYTJWMbw+YxMzCwAWG4rxyRmfQJXhL6XBbEtSVrGxOP1JRERElLN+EVgcat5bvxcA0NwZv+POkUPZ0SnDHXhp7U4AiOu32OryorbICK2QelJbF9NH0WbQYkeLC3MaikKBqWwYtEJUOdVEVD29/0xZZERecHADlswcDksGgctCqbQbcPqMaswdkXgHY1+osBlw8SENqLDpQ/d51fWHo6mtO6Og70CmFdSMKxLR0DXmOOB/zwF6e+rzKibJf9tr5L9twwCVCphwUvy5Jz0E1M4Bfpdm5/U5r8iByLKebAmtHlh8e1bDh6ABzKXZvaY3BI3crzGiv1EcRw1w4IV9NyYiIqJBqN5ej9W7V0NKsErQYGuAVp1885NP8mGPa0/S59UqNUqNpWjqbEp6zpiiMVhUuwjLNy+HGuk322rUmtDv0gCyyn7LpvdhZClUpQTv5VAurVpmLCv0EIiIiAa1wR1h6Kf+931bwuOiRg2bIfvswEnDwjvnvtvdjmk10TvexlfZsLO1O+pYsVnE3o5wYDM2i9FmDI9DrcosTFNhNwBb5HJmKpUKBlFAlyd9c/Rghl+mcrlHfe2WEycWegi4cuFo+PyB0GOVSpWwDO5gky6ITkQ0KF3ymZxROPmHcobgO78DRDNg7OlXFMy2C5YlHTYd+NkaOZgIyH9f3wxIMZ/b9uHh0qpTzpQzITVJ+sWoVEDtXEW/rT5x3gqgc2+hR0FERDSg/WTiT/Da5tdg0CT+nbPeJgcWOzwdcc+NKx6X9vq7unalfL7cVI4dHTtSBtOuOuAqbGvflrbnI4C4jENfwJfy/GyCiZFsufaqTmFc8ThMKpmERXWLFL/2QFFuKi/0EIiIiAY1Bhb72O727rhjZVZ5gW7acEdOZSrHRpRPXbu9FSdMDi8KCioVxlVZ4wKLlTZDVGAxNBaL3PfQHhG8y7Sk5+9PmYjJ1TaMLpfHY8wwsKikE6dW4bbl32BcDiVlB6PBXvY0ETljkcFFIhpiikfIfwDg0GvlQOKGt8JlSxf9H2CrBqwR5TydddHXUKuByB38P14BtH4ffnzcvXkZesHpbfIfIiIiytklUy7Bj8b/KGmZ0WAWXUAKxD1XY61JeW2NWoPmNKXSK82V+GzXZynPKTYW4+EjH4Y/diNVBpL1eDRpTAmPZ8qitWR8rlGTeZ/sRxY/kstwBgUVVEl7YBIREZEyGFjsY59u3h93TOgpNWpJ0XMwFaMYft3udjc+3BSecBdbxITlVascBqzdkbi/AQA4TOHXeP2pCpqG6TQCzp0bblAujyt5g/V8KLXose7mRRlnWdLgIwrssUhEhGlnAxN/AGjkDUMQNMDcS7O7xrDpQJJ2ijkZczTw4iVA9QwFL0pERET9Raa9C2NZxNTBtQpTBZrdyQOLJcYSVJkz64UsCtm3nwGQsIQrANx1yF24f839Gb9/LFUWaxe53t+hxqQ1wSAM/mpNREREhcTAYh4UmUTs6/Rg+/4uTK62Rz338abUu+x6q6bIiPfW7wlNeavsBlj08aVDq+ypJ1nOiGBkrqUljVn0TlSSTjN0+wj0d385axre/W4vnKbcfpnLBHssEhH10CYpWVooBgdwXfL+SERERDQ0mbXmlM9XW6qxo2NH0udVUGGYWcndUGGvnfgaPt31KYoMRQmfLzYU49ezfp2X96bcWERLzgFkIiIiyszQq5PYB8ZXyWU4P9rUDK8vXGJjX6cH21tcKO0pN5oPR4wtw6a9XdjW3AUAGO40wqyLjx9XpAksOhQI/JhyCCxOq3Hg1OnD4no+Fpvzd8+o7xw+thw3HjceRXn87ylq+GONiKjf0ojyHyIiIiIATr0zaV/GoHpbPfZ3x1d/ipRJ38RcVFoqceyIY0OlXPMpVX/IQktXrrY/YWCRiIgo/5ixqIAVX+/ClztaMaehGEC4yffO1m7897u9ofPW7+6AKKhxYL0TL36+M6f30qXpdzitxoHn13yPPe1uAEBdsSlUajVSXbFcQiNR0BGI7rGoUecWqIkNDmbiXxfOhscXiAsOmXT9d4JN/cvEYTa4fX72WSQiIiIiIuqnSo2lAIAxzjFpy4HW2erQ5mkLlQJNFDSqMFUoP8g+FnsfBHX/WQe5cc6NmFs1F6Mcowo9lLRsOht0AjenExER5RNTexTw7KodeP1/u9Dl9oWOFZlFjKmw4M2vd8EfkAuTrt/dgVHl5l6VgUwXKtGo1Vg6K7yTrLY4cQ1+p0meZNUVJ240bjeGA4vpMsCSlTzNNLBYZo0u1caMM+qNm48fj6sWjoahQKV4iYiIiIiIKDW9Rl4HsOlsac9tsDcAAFrdrUnPKTOVQT3IlrjKjGUA5HKrhaZRa7C4fjEqzP0/gGsTbdAK+c8wJSIiGsoG16yrQAISsL/Liw17OqOOnzhlGPZ2ePB9azcAuRTqgfVFMGjzmyi6dHZt6GuTmNtkKjKwGBugiS2Tqk8SwEmWDRnpxYvn4MqFI3MYIVFiKpUKpdZ+1leMiIiIiIhoCFKihGidrQ4A4PK5AABFernfoV4I/96nVWvhNDh7/V790YpTVuBPh/0J9bb6Qg+l3zto2EGYWDyxT0rXEhERDWUMLCro66a2qMd1xSYc1FgSeixq1Fg0rhxpqnyklEk2n0Xf+wmUzdATPEww1mDA8NYTJ2BkmTlpADGTjMWJ1XYcMros53ESERERERER0eBlES2w6+yhxxq1vNbw/pL3ccf8O1BrrQUAlBvLB0xLjJkVMzM+V61SY+6wuaFSsJTcbfNuw6mjTy30MIiIiAY9BhYVtLW5Cx5fIOrYdUeNCX09ptyC4UWJS49mSh0TlTTrEwfvRpVZUl6nxilPSMdVJi47EsxYVEEFgzZxRuKSGcPx75/Oxcgk72WJGVt9ify9z2ooSjk2IiIiIiIiIqKg4Zbhcce0ghZH1B4RCrgNhDKdAPDxDz/GhZMuLPQwFBXsmTncGv/fqS9p1BqYtL1bdyMiIqL08luTc4jZ1uzCzlZX1LGR5eGg28w6J4p60V8xEY068W48vTZ1zNhhEvHZdQvQHRMIDbIZ5MCiWoWUGZY6TfI+drGBRaOowVc3LoTXJ6UcGxERERERERFRUJ2tDmv3rk15TpW5Ku/j0Kg18AV8vbqGQWOAwWxQaESZq7ZU5+3aJcYSvHbSa+jwduTtPYiIiKj/YGBRIbVFRmze14W1O1qSnjNluB3qJIHAXJX1opdckVmX9DmtoIZRFKCKiCpuunUxPtrUjCp7ZhNgoyj/8yqJeB+jqAGUja0SERERERERUT+idI+7BntD6GtVkt3PM8pn4J3t76DB1pDweSW8ferbeGPLG3kN0uXD6ye9jqbOpry+R6W5Mq/XJyIiov6DpVAVsH1/F7p9AdQXm/Dtrg7E5uONqbACALRC8uy+TBlF+RoTh9kw3GmELoOei7my6rVR2YoqlQoH1hdlHBxN1nuRiIiIiIiIiAavew65B/OHzUexoRgAcFT9UQCAMmNZytclCxpGBhZLDCUJz5k3bB7+tuhvKDOlfo/esOlsOHnkybCK1ry9Rz5UmCswpWxKoYdBREREgwQjPwrYsq8LAHDWrBo89ek2WPXK7sxr7vSEvtYKciDxxUvmoqm1G6W9yFhMZ1ZDEWxJejhmIhgEJSIiIiIiIqKho95ej3sPuzf0eHLpZLx72rsQheQljKaWTsXiusUJn6u11oa+ViH5Zmen3pn9YImIiIgoKwwsKuCDXx2KD9bvQ12JCf/4YAs27+tU7NrLXvwfdrSE+zYGA4sAUG6LDyqaYwKBqfojpnPHKZPQ3OWJes9sBMfSmzEQERERERER0cBn19tDXwcz/oxaY+jYw0c+nPS1leZKaFQaqFWDv/DW6aNPR1NnE4waY/qTiYiIiAqAgUUFVNgMOHHaMEiShCKTiF1tbhSZlWkkWGwWsWBMKR7+YAsAwKRLnQWo18rPT6914vPtrVkH9SLLjqjVKhSn6MOYzgG1Tlx2eCPqS0w5X4OIiIiIiIiIBpfJpZNxxpgzMKdyTkbna9QaVJorIagGf2WkX838FbwBb9I+lRo1l/KIiIiosAb/Vq8+pFKpMH9k4lr/uSiz6vDQ2Qdg2THjQscyzR68/uixeOmnczG52gEAOHys3GNguDP5jrcDah348by6Xow4mlZQ4+eHjcSIUoti1yQiIiIiIiKige+XM36JucPmZnz+/Or5qLHWJO3DOJgkCyoCwK3zbsWM8hks+0pEREQFw21OCls0vhzPrt4BAGgsM/fqWkZR06uMwfFVtqivV11/ODRC8gn40xfMzvm98uXL3yzE2+t2o9JuKPRQiIiIiIiIiKhArpx+JfZ174NJO7SrItVYa/DQwocKPQwiIiIawhhYVNjcxmJoBbmVeLAsqZgimJfM6TOGY+pwu6Jjc5qUKc/al8x6DY6eVFnoYRARERERERFRAalUKhQbivP6Hhq1BvOq5g2JXo5EREREuWJgUWFGUYPpNQ5s2NMJtzcAAPjDkilY9sL/UGbVA5DLkt7/9gYMc8hZeDU95UlHlYdLht5y4oS4a0+ptmfdM5GIiIiIiIiIiNL77IzP0NzdzD6GRERERClwppQHlx8xCq9+sRN6rbzDrabIhL//aEbo+SnDHfj0ugWhfomlVj0+vvYwdHsCSa+54ZbF2NrcBZ1m8DcqJyIiIiIiIiLqa2qVWtGsyAkl8qbx2ZX9r/UMERERUa4YWMyDA2qdmDbcAbU6eXphbO/EUos+5TUFtQp1xcn7CLx+6UH416rtqLClvg4RERERERER0UAwrmhcoYfQKzpBh1VnrIJf8hd6KERERESKYWAxT1IFFfNhZLkFv1o8pk/fk4iIiIiIiIgoH1adsQpb2rZAq9YWeii9ohW00GJgfw9EREREkdiNmoiIiIiIiIiI+hWtoMUIx4hCD4OIiIiIYjCwSERERERERERERERERERpMbBIRERERERERERERERERGkNuR6LkiQBANra2go8EiIiov4j+LkY/Jyk/OFchIiIKB7nIn1nqMxFNB4N/C4/Aq5A0u/V7/LDK3gLei/8Lj8A+b+HTtAVbBxEREMd5yJEmVNJQ+z/lO3bt6O6urrQwyAiIuqXtm3bhmHDhhV6GIMa5yJERETJcS6Sf5yLEBERJce5CFF6Qy6wGAgE8P3338NisUClUilyzba2NlRXV2Pbtm2wWq2KXHOo4r1UDu+lcngvlcN7qYx83EdJktDe3o7Kykqo1ayUnk+ci/RvvJfK4b1UDu+lcngvlcG5yMDGuUj/xnupHN5L5fBeKof3UjlK30vORYgyN+RKoarV6rztOLBarfxAUAjvpXJ4L5XDe6kc3ktlKH0fbTabYtei5DgXGRh4L5XDe6kc3kvl8F4qg3ORgYlzkYGB91I5vJfK4b1UDu+lcpS8l5yLEGWGoXciIiIiIiIiIiIiIiIiSouBRSIiIiIiIiIiIiIiIiJKi4FFBeh0Oixbtgw6na7QQxnweC+Vw3upHN5L5fBeKoP3kWLx34RyeC+Vw3upHN5L5fBeKoP3kWLx34RyeC+Vw3upHN5L5fBeKof3kqhwVJIkSYUeBBERERERERERERERERH1b8xYJCIiIiIiIiIiIiIiIqK0GFgkIiIiIiIiIiIiIiIiorQYWCQiIiIiIiIiIiIiIiKitBhYJCIiIiIiIiIiIiIiIqK0GFjM0H333Yfa2lro9XrMnDkTH3/8ccrzn376aYwePRp6vR4TJkzAK6+80kcj7f+yuZd/+ctfMG/ePDgcDjgcDixYsCDtvR9Ksv13GfTEE09ApVLh+OOPz+8AB5Bs72VLSwsuvvhiVFRUQKfTYeTIkfz/HNnfx7vvvhujRo2CwWBAdXU1LrvsMnR3d/fRaPuvd955B8cccwwqKyuhUqnw/PPPp33N22+/jalTp0Kn02HEiBH4+9//nvdxUt/iXEQ5nIsoh3MR5XAuogzORZTBuQglwrmIcjgXUQ7nIsrhXEQ5nI/0HuciRP2cRGk98cQTkiiK0l//+lfpf//7n3TeeedJdrtd2rVrV8LzV65cKQmCIN1+++3SV199JV133XWSVquVvvjiiz4eef+T7b08/fTTpfvuu09avXq19PXXX0tnn322ZLPZpO3bt/fxyPufbO9l0KZNm6Sqqipp3rx50nHHHdc3g+3nsr2Xbrdbmj59urR48WLpvffekzZt2iS9/fbb0po1a/p45P1Ltvfx0UcflXQ6nfToo49KmzZtkl577TWpoqJCuuyyy/p45P3PK6+8Il177bXSs88+KwGQnnvuuZTnb9y4UTIajdLll18uffXVV9If//hHSRAE6dVXX+2bAVPecS6iHM5FlMO5iHI4F1EG5yLK4VyEYnEuohzORZTDuYhyOBdRDucjyuBchKh/Y2AxAzNmzJAuvvji0GO/3y9VVlZKt956a8LzTz31VOmoo46KOjZz5kzpJz/5SV7HORBkey9j+Xw+yWKxSA8//HC+hjhg5HIvfT6fNHv2bOnBBx+Uli5dygl0j2zv5Z/+9Cepvr5e8ng8fTXEASHb+3jxxRdLhx56aNSxyy+/XJozZ05exznQZDKBvuqqq6Rx48ZFHTvttNOkhQsX5nFk1Jc4F1EO5yLK4VxEOZyLKINzkfzgXIQkiXMRJXEuohzORZTDuYhyOB9RHuciRP0PS6Gm4fF48Nlnn2HBggWhY2q1GgsWLMAHH3yQ8DUffPBB1PkAsHDhwqTnDxW53MtYXV1d8Hq9cDqd+RrmgJDrvbzxxhtRWlqKc889ty+GOSDkci9ffPFFzJo1CxdffDHKysowfvx43HLLLfD7/X017H4nl/s4e/ZsfPbZZ6GSIBs3bsQrr7yCxYsX98mYBxN+7gxunIsoh3MR5XAuohzORZTBuUhh8XNncONcRDmciyiHcxHlcC6iHM5HCoefO0R9S1PoAfR3e/fuhd/vR1lZWdTxsrIyfPPNNwlf09TUlPD8pqamvI1zIMjlXsb65S9/icrKyrgPiqEml3v53nvv4aGHHsKaNWv6YIQDRy73cuPGjfjPf/6DH/7wh3jllVewfv16XHTRRfB6vVi2bFlfDLvfyeU+nn766di7dy/mzp0LSZLg8/lwwQUX4JprrumLIQ8qyT532tra4HK5YDAYCjQyUgLnIsrhXEQ5nIsoh3MRZXAuUliciwxunIsoh3MR5XAuohzORZTD+UjhcC5C1LeYsUgDxm233YYnnngCzz33HPR6faGHM6C0t7fjzDPPxF/+8hcUFxcXejgDXiAQQGlpKf785z9j2rRpOO2003DttdfigQceKPTQBpS3334bt9xyC+6//36sWrUKzz77LF5++WXcdNNNhR4aEVFCnIvkjnMRZXEuogzORYhooOFcJHeciyiLcxHlcD5CRAMRMxbTKC4uhiAI2LVrV9TxXbt2oby8POFrysvLszp/qMjlXgb9/ve/x2233YY333wTEydOzOcwB4Rs7+WGDRuwefNmHHPMMaFjgUAAAKDRaLBu3To0NDTkd9D9VC7/LisqKqDVaiEIQujYmDFj0NTUBI/HA1EU8zrm/iiX+3j99dfjzDPPxI9//GMAwIQJE9DZ2Ynzzz8f1157LdRq7n3JVLLPHavVyl15gwDnIsrhXEQ5nIsoh3MRZXAuUliciwxunIsoh3MR5XAuohzORZTD+UjhcC5C1Lf4kykNURQxbdo0rFixInQsEAhgxYoVmDVrVsLXzJo1K+p8AHjjjTeSnj9U5HIvAeD222/HTTfdhFdffRXTp0/vi6H2e9ney9GjR+OLL77AmjVrQn+OPfZYHHLIIVizZg2qq6v7cvj9Si7/LufMmYP169eHfgkBgG+//RYVFRVDdvKcy33s6uqKmyAHfymRJCl/gx2E+LkzuHEuohzORZTDuYhyOBdRBucihcXPncGNcxHlcC6iHM5FlMO5iHI4Hykcfu4Q9TGJ0nriiScknU4n/f3vf5e++uor6fzzz5fsdrvU1NQkSZIknXnmmdLVV18dOn/lypWSRqORfv/730tff/21tGzZMkmr1UpffPFFob6FfiPbe3nbbbdJoihKzzzzjLRz587Qn/b29kJ9C/1Gtvcy1tKlS6Xjjjuuj0bbv2V7L7du3SpZLBbpkksukdatWye99NJLUmlpqXTzzTcX6lvoF7K9j8uWLZMsFov0+OOPSxs3bpRef/11qaGhQTr11FML9S30G+3t7dLq1aul1atXSwCkO++8U1q9erW0ZcsWSZIk6eqrr5bOPPPM0PkbN26UjEajdOWVV0pff/21dN9990mCIEivvvpqob4FUhjnIsrhXEQ5nIsoh3MRZXAuohzORSgW5yLK4VxEOZyLKIdzEeVwPqIMzkWI+jcGFjP0xz/+URo+fLgkiqI0Y8YM6cMPPww9N3/+fGnp0qVR5z/11FPSyJEjJVEUpXHjxkkvv/xyH4+4/8rmXtbU1EgA4v4sW7as7wfeD2X77zISJ9DRsr2X77//vjRz5kxJp9NJ9fX10m9/+1vJ5/P18aj7n2zuo9frlX7zm99IDQ0Nkl6vl6qrq6WLLrpI2r9/f98PvJ956623Ev7sC96/pUuXSvPnz497zeTJkyVRFKX6+nrpb3/7W5+Pm/KLcxHlcC6iHM5FlMO5iDI4F1EG5yKUCOciyuFcRDmciyiHcxHlcD7Se5yLEPVvKkliTjURERERERERERERERERpcYei0RERERERERERERERESUFgOLRERERERERERERERERJQWA4tERERERERERERERERElBYDi0RERERERERERERERESUFgOLRERERERERERERERERJQWA4tERERERERERERERERElBYDi0RERERERERERERERESUFgOLRERERERERERERERERJQWA4tENGCpVCo8//zzhR4GERERDVGcixAREVEhcS5CRESFwMAi0RClUqlS/vnNb37TZ2M5+OCDQ++r1+sxduxY3H///Wlft3PnThx55JF9MEIiIiJSGuciREREVEicixAREeVGU+gBEFFh7Ny5M/T1k08+iV//+tdYt25d6JjZbA59LUkS/H4/NJr8/cg477zzcOONN6Krqwv/+Mc/cPHFF8PhcGDJkiVx53o8HoiiiPLy8ryNh4iIiPKLcxEiIiIqJM5FiIiIcsOMRaIhqry8PPTHZrNBpVKFHn/zzTewWCxYvnw5pk2bBp1Oh/feew9nn302jj/++KjrXHrppTj44INDjwOBAG699VbU1dXBYDBg0qRJeOaZZ9KOx2g0ory8HPX19fjNb36DxsZGvPjiiwDknXuXXHIJLr30UhQXF2PhwoUA4kt+bN++HUuWLIHT6YTJZML06dPx0UcfhZ5/4YUXMHXqVOj1etTX1+OGG26Az+fL/SYSERFRzjgX4VyEiIiokDgX4VyEiIhyw4xFIkrq6quvxu9//3vU19fD4XBk9Jpbb70VjzzyCB544AE0NjbinXfewRlnnIGSkhLMnz8/4/c2GAzweDyhxw8//DAuvPBCrFy5MuH5HR0dmD9/PqqqqvDiiy+ivLwcq1atQiAQAAC8++67OOuss/CHP/wB8+bNw4YNG3D++ecDAJYtW5bxuIiIiKjvcC5CREREhcS5CBERUTwGFokoqRtvvBGHH354xue73W7ccsstePPNNzFr1iwAQH19Pd577z38v//3/zKaQPv9fjz++ONYu3ZtaIILAI2Njbj99tuTvu6xxx7Dnj178Mknn8DpdAIARowYEXr+hhtuwNVXX42lS5eGxnXTTTfhqquu4gSaiIion+JchIiIiAqJcxEiIqJ4DCwSUVLTp0/P6vz169ejq6srbtLt8XgwZcqUlK+9//778eCDD8Lj8UAQBFx22WW48MILQ89PmzYt5evXrFmDKVOmhCbPsT7//HOsXLkSv/3tb0PH/H4/uru70dXVBaPRmO7bIyIioj7GuQgREREVEuciRERE8RhYJKKkTCZT1GO1Wg1JkqKOeb3e0NcdHR0AgJdffhlVVVVR5+l0upTv9cMf/hDXXnstDAYDKioqoFZHt4CNHUssg8GQ8vmOjg7ccMMNOPHEE+Oe0+v1KV9LREREhcG5CBERERUS5yJERETxGFgkooyVlJTgyy+/jDq2Zs0aaLVaAMDYsWOh0+mwdevWrPoGAIDNZosq0ZGtiRMn4sEHH0Rzc3PC3XlTp07FunXrevUeREREVFicixAREVEhcS5CRETEwCIRZeHQQw/F7373O/zjH//ArFmz8Mgjj+DLL78MlfOwWCz4xS9+gcsuuwyBQABz585Fa2srVq5cCavVGqrjnw9LlizBLbfcguOPPx633norKioqsHr1alRWVmLWrFn49a9/jaOPPhrDhw/HySefDLVajc8//xxffvklbr755ryNi4iIiJTDuQgREREVEuciREREgDr9KUREsoULF+L666/HVVddhQMOOADt7e0466yzos656aabcP311+PWW2/FmDFjsGjRIrz88suoq6vL69hEUcTrr7+O0tJSLF68GBMmTMBtt90GQRBCY3/ppZfw+uuv44ADDsCBBx6Iu+66CzU1NXkdFxERESmHcxEiIiIqJM5FiIiIAJUUWxiciIiIiIiIiIiIiIiIiCgGMxaJiIiIiIiIiIiIiIiIKC0GFomIiIiIiIiIiIiIiIgoLQYWiYiIiIiIiIiIiIiIiCgtBhaJiIiIiIiIiIiIiIiIKC0GFomIiIiIiIiIiIiIiIgoLQYWiYiIiIiIiIiIiIiIiCgtBhaJiIiIiIiIiIiIiIiIKC0GFomIiIiIiIiIiIiIiIgoLQYWiYiIiIiIiIiIiIiIiCgtBhaJiIiIiIiIiIiIiIiIKC0GFomIiIiIiIiIiIiIiIgorf8PL7TEqfhwht0AAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -765,12 +768,12 @@ "name": "stderr", "output_type": "stream", "text": [ - "100%|██████████| 10/10 [00:18<00:00, 1.90s/it]\n" + "100%|██████████| 10/10 [00:30<00:00, 3.03s/it]\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAC7AAAAPgCAYAAACx8HFwAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzde1zb5d3/8TcJp6T0SLSlthhmbUmHU1u7MZBZnXq7iStSOnWLWk/Te3OH3+iczKnd5sp2T9yt8+GcrlMrFjeRomI9TG0Va50r6jpcqO00Qi1Wg6Unwjm/P7iTlUJCgEAS8no+HjwI3+/1vb6fBJKQ6/u5Plecx+PxCAAAAAAAAAAAAAAAAAAAAACAMWYIdwAAAAAAAAAAAAAAAAAAAAAAgNhAAjsAAAAAAAAAAAAAAAAAAAAAYFyQwA4AAAAAAAAAAAAAAAAAAAAAGBcksAMAAAAAAAAAAAAAAAAAAAAAxgUJ7AAAAAAAAAAAAAAAAAAAAACAcUECOwAAAAAAAAAAAAAAAAAAAABgXJDADgAAAAAAAAAAAAAAAAAAAAAYFySwAwAAAAAAAAAAAAAAAAAAAADGBQnsAAAAAAAAAAAAAAAAAAAAAIBxQQI7AAAAAAAAAAAAAAAAAAAAAGBcxIc7AAAAAAAAAAAAAAAAAAAAAADh5/F41NXVpd7e3nCHgghmMBiUkJCguLi4ER1PAjsAAAAAAAAAAAAAAAAAAAAQw3p6euRyuXTw4EF1dXWFOxxEgYSEBE2ePFkWi0VGo3FYx8Z5PB7PGMUFAAAAAAAAAAAAAAAAAAAAIIL19PSoqalJHR0dmjp1qlJSUmQ0GkdcXRsTm8fjUU9Pjw4dOqT9+/crKSlJc+fOHVYSOwnsAAAAAAAAABChDh8+rA0bNujFF1/U3//+d33yySfat2+fTCaTLBaLTjnlFJ1++um66KKLNHv27HCHCwAAAAAAAACIQnv37lVra6vS09NlMpnCHQ6iiNvtVmNjo6ZNm6aZM2cGfRwJ7AAAAAAAAAAQYXp6evTb3/5Wv/71r+VyuYZsbzAYtGLFCv3yl7/UCSecMA4RAgAAAAAAAAAmAo/Ho3//+99KSUnRrFmzwh0OolBzc7MOHz6sE044Ieiq/fFjHBMAAAAAAAAAYBhaW1t18cUX67nnnvNtmzdvns477zzZbDZZLBYdPnxYe/bs0ebNm/XKK6+os7NTf/7zn9Xe3q7q6urwBQ8AAAAAAAAAiCpdXV3q6upSSkpKuENBlJo8ebJaW1vV1dWlxMTEoI4hgR0AAAAAAAAAIkR3d7e+9rWvqba2VpI0c+ZM3X333Vq+fPmgVUtuuukmuVwu3X777frd73433uECAAAAAAAAAKJcb2+vJMloNIY5EkQr79+O928pGIaxCgYAAAAAAAAAMDw/+clPfMnr6enpev3111VUVBRwyU2LxaJf/epXeuONN/TZz352vEIFAAAAAAAAAEwggcahgUBG8rdDAjsAAAAAAAAARIA9e/borrvuktQ32PvII4/IarUGffxnP/tZ/fKXvxx0n9vt1t13361zzjlHaWlpSkxMVGpqqpYsWaKf/vSn2rNnz6DHtba2Kjk5WXFxcTrhhBOCimPv3r1KSEhQXFycsrKy/Lbbv3+/ysrKdPbZZ2v27NlKSkrSjBkztHjxYpWUlOjDDz8MeJ6VK1cqLi5OcXFxcjqdkqTq6moVFhbq+OOPV1JSUr99kuTxeLRlyxbdcsstOuecczRnzhwlJyfLZDJpzpw5+trXvqY//elP6uzsDOq+StJTTz2lr33ta0pLS1NycrLS09NVVFSkF198UZK0efNmX5yrV68Oqr/LLrtM8+bN0+TJk2U2m5WRkSG73a4XXngh6LgAAAAAAAAAAIhU8eEOAAAAAAAAAAAg3XPPPero6JAknXfeeTr99NND0u/f//53LV++XE1NTf22f/rpp/r000+1bds2/fa3v9Xvfvc7XXnllf3aTJs2TRdccIEqKyv13nvv6dVXXx0yroqKCnV3d0uSLrvsskHbPPbYY7ruuuv06aef9tve2dmpffv26c0339T//u//6t5779Xll18+5H3s7OxUUVGRHn/88YDtrrrqKj3wwAOD7vvwww/14Ycf6qmnntJvfvMbPfnkkzrxxBP99tXd3a2VK1fqkUce6be9qalJTU1Nevzxx1VcXKz8/Pwh4/ced9FFF2nr1q0D9jmdTjmdTj3yyCNavny51q1bJ7PZHFS/AAAAAAAAAABEGhLYAQAAAAAAACACPPvss77bwSRtB2P79u0688wzdfjwYUnSwoULdemllyojI0Offvqpqqur9fzzz6utrU1XXXWVPB6Prrrqqn59XH755aqsrJQkPfzww0MmsK9bt06SZDAYZLfbB+y///77de2118rj8SgxMVHLli3Tl770Jc2cOVOHDh3Sq6++qvXr16u9vV0rV65UYmKiLrnkkoDn/MEPfqBnnnlGxx9/vC677DJlZmaqvb1db7zxhpKSknzt2tralJiYqNNPP11f+MIXNG/ePE2ZMkUdHR3atWuXqqqqtH37djU0NOgrX/mK3nzzTU2ZMmXQc1533XW+5PX4+HjZ7XadccYZSkpK0vbt27V27VqVlZUNmDgwmKamJn3hC19Qc3OzJOnUU09VQUGB5s2bJ4PBoB07dmjdunV677339Pjjj+vw4cPauHEjS/oCAAAAAAAAAKJSnMfj8YQ7CAAAAAAAAACIZYcPH9aUKVPU29srqS+hec6cOaPqs7e3VyeffLLq6+slSVdffbV+//vfKz6+f12TtWvX6pprrpHH45HZbNY777wjq9Xq29/d3a3jjjtOH3/8saZNm6aPPvqoX1L4kd555x1lZWVJks455xw9//zz/fZv375dS5YsUWdnp0488UQ9+eSTyszMHNCPw+HQ2WefrT179mjy5MlyOp2aMWNGvzYrV67UQw895Pu5oKBAFRUVSk5O9vuYvPLKKzrppJM0ffr0Qfd7PB79+te/VklJiSTpF7/4hX76058OaLdp0yadddZZkqQpU6bo+eef1xe+8IV+bVwul84++2z94x//8G279dZbtXr16gHnzM3N1datW2U0GvX73/9e11xzzYBzdnR0aOXKlXr00Ucl9U0EuPrqq/3eVwAAAAAAAAAIRnt7u95//31lZGQEHF+VpA9b3dp3uHOcIhs70ycl6rhppnCHEVJWq1UffPCBHnjgAa1cuTLofaEwnL8hLyqwAwAAAAAAAECYffTRR77k9aSkpFEnr0vS008/7Ute/9znPqd7771XRqNxQLurrrpK27Zt07333qu2tjbdeeed+u1vf+vbHx8fr0suuUR33nmnWltb9eSTT2rFihWDnvPhhx/23b7ssssG7F+9erU6OzuVnJysjRs3at68eYP2Y7PZ9OCDD+rcc8/VwYMHdf/99+vHP/6x3/t63HHH6eGHHx5yYPxLX/pSwP1xcXG68cYb9fTTT+vVV1/VQw89NGgC+5GPz29+85sByeuSZLFY9Oijj+qkk05Sd3e333M+9dRT2rp1q6S+x2ew5HWp7+/ioYce0uuvvy6n06mysjIS2AEAAAAAAACMmw9b3Trr9s3q6O4NdyijlhRv0Eurlo5JErvH41FlZaXWr1+vN998Ux9//LGMRqNmzpyptLQ0ff7zn1deXp6+/OUv+10BdDx5i66sXLmyX3GbsWYYtzMBAAAAAAAAAAbV0tLiuz1t2rSQ9FlVVeW7XVxcPGjyuteNN96ouLi4Acd5XX755b7bRyapH6m3t1ePPPKIJCklJUWFhYX99re2tuqJJ56QJF144YV+k9e9zjnnHKWlpUmSnnvuuYBtr7zySqWkpARsMxynn366JGnXrl39fjdSXyWZZ599VlLf7ypQtZrMzEx95StfCXgubxX5pKQkfe973wvYNjExUZdccokkqaGhQY2NjQHbAwAAAAAAAECo7DvcOSGS1yWpo7t3TCrJt7a26swzz9TXv/51VVdXq7GxUd3d3UpKSlJjY6O2bNmi3/72tyosLBx0LH6snHDCCVqwYIGmTp06YN/PfvYz/exnP5PT6Ry3eCQqsAMAAAAAAABA2Hk8npD3+be//c13+9xzzw3Y9vjjj1dmZqYcDocaGxvV3NzsSx6XpFNPPVVZWVmqr6/Xs88+q08++UTHHHNMvz42bdqk3bt3S5KWL18us9ncb/+WLVv6VZmvrq4e8j5MnjxZzc3N+te//hWwXV5e3pB9eXV3d6uqqkrV1dV6++23tWfPHh08eNAX29F2796t1NRU38//+Mc/1NXVJUnKzc1VYmJiwPOdeeaZeuqpp/zuf+WVVyRJM2fO1EsvvTRk/Pv27fPd/te//qX09PQhjwEAAAAAAAAAjL3LLrtML7/8soxGo37wgx/o2muv1QknnCCDwaDu7m7961//0rPPPqv169ePa1wvvvjiuJ4vGCSwAwAAAAAAAECYHZkg3draGpI+m5ubJfUlgc+aNWvI9vPnz5fD4fAde2QCu9Q38H7DDTeoq6tLFRUVA6qFH1mZ/bLLLhvQ/5HVWx588EE9+OCDwd4VffrppwH3z5kzJ6h+duzYocLCwiET4o904MCBfj/v2bPHd/uEE04Y8vjPfOYzfvcdPnxYLpdLktTY2KgLL7ww6LikoR8XAAAAAAAAAMD42Llzp6+YyW233aYbb7yx3/74+Hh97nOf0+c+9zndcMMNcrvd4QgzYhjCHQAAAAAAAAAAxLpZs2bJYOgbru3o6PBVMh+NgwcPSpImTZoUVPuUlJQBxx7JbrfLaDRK6p+sLkltbW16/PHHJUnp6ek688wzBxw/msR8b8Vzf0wm05B97N+/X2eddZYveX327Nm65pprdMcdd+iRRx7R448/rg0bNmjDhg266KKLfMf19PT06+fw4cO+20dXmR9MoMd/tJMVOjtDv8QtAAAAAAAAAGD43n77bd/tZcuWDdn+6HFtq9WquLg4Pfjggzp48KBKSkq0YMECmUwmWSwWFRQU9Ft5dTiO7Ntr5cqViouL8/185plnKi4uzvdltVpHdK5gUYEdAAAAAAAAAMIsJSVFp556qurq6iRJW7Zs6ZdEPRKTJ09Wa2trv4TrQA4dOtTv2KOlpaXp7LPP1nPPPadt27bJ4XDIZrNJkjZs2OA73m639xv09joyQf6uu+7Sd7/73WHdn9G6++67fdXTv/nNb+pPf/qTEhMTB227ZcsWv/0cmZDe1tY25HkDPf5HPiaLFi3y/f4BAAAAAAAAANFr9+7dvvHz4dq3b5+WLFmiHTt2KDExUcnJyWppadETTzyhp556Svfff7+uvPLKUcc4depUzZw5U3v37pUkTZ8+vd+Y+THHHDPqcwRCBXYAAAAAAAAAiAD/9V//5bv90EMPjbq/tLQ0SX3V1L0D0IG8++67vtuzZ88etM1ll13mu71u3bpBbx/Z5khz5szx3W5qahoynlB7/vnnJfUt0/q73/3Ob/K6JL3//vt+9x352Pz73/8e8rzvvfee331Tp071JbGHouo+AAAAAAAAACA8lixZ4ivuUlxc3G/MfTh+9rOf6eOPP9Zf/vIXHT58WPv379e//vUvnXHGGert7dW1116rN998c9Tx3nnnnfroo498P1dVVemjjz7yff39738f9TkCIYEdAAAAAAAAACLAt7/9bSUlJUmSnn322YBVwIPxhS98wXfbm7ztT2NjoxoaGiRJ6enpmjVr1qDtLrzwQk2ZMkWS9Mgjj8jj8ai5uVkvvviiJOnzn/+8FixYMOixeXl5vsH7Z599dnh3JgS8A/GpqamaPn2633bt7e3avHmz3/0nn3yyEhISJEmvvfaaOjs7A55306ZNAfefccYZkqSPP/6YCuwAAAAAAAAAEKWsVquuvvpqSdI///lPZWZmatGiRfrOd76jP/3pT6qvr5fH4xmyn/379+uxxx7TihUrFB8fL0my2Wx65plndOKJJ6q7u1s333zzmN6X8UACOwAAAAAAAABEgOOOO07XX3+9JMnj8egb3/iGPvjgg6CPdzgcuummm3w/L1++3He7rKxMPT09fo/99a9/7Rs4P/K4o5lMJhUVFUnqq6K+adMmrV+/3te3v+rrknTsscfqK1/5iqS+wfuKioog7lXoTJo0SVJfoviBAwf8trvzzjvV0tLid39ycrKvWv6+ffv04IMP+m3b0NCgZ555JmBcl19+ue/2T3/606AuYAAAAAAAAAAAIs8999yjm2++WZMmTZLH49Fbb72le+65R1dddZVOOukkzZo1Sz/84Q8Drpqam5urL3/5ywO2m0wm/ehHP5LUVyRm//79Y3Y/xgMJ7AAAAAAAAAAQIUpLS5Wbmyupryp6dna2Hn/88YBJzZ9++ql++tOfasmSJXrnnXd827/61a/qpJNOkiT94x//0H//93+ru7t7wPEPPvig7r33XkmS2WzW97///YAxHpmkvm7dOq1bt06SlJiYqIsvvjjgsb/85S+VmJgoSbr66quHTGL/9NNPdccdd+iFF14I2C4YS5YskdQ3OeDIRP8jVVRUBFW55v/9v//nu/2jH/1If/vb3wa0cblcuvjiiwd9zI9UVFTkq5b/7LPP6rLLLtOhQ4f8tu/p6dGzzz6r2267bcg4AQAAAAAAAADjJz4+Xj//+c/14Ycf6uGHH9bVV1+tk08+2Tcu/vHHH+u3v/2tsrKy9MYbbwzax1lnneW3f+++3t5evfnmm6G/A+MoPtwBAAAAAAAAAAD6JCQk6Mknn9RFF12kF154QR999JGKiop04okn6rzzztPChQuVmpqqw4cPa8+ePaqtrdXmzZvV3t4+oC+DwaDy8nLl5OTo8OHDuv/++7V161Zdeumlslqt+vTTT/XEE0/o2Wef9R1z11136fjjjw8Y45e+9CVZrVY5nU5VVFSos7NTUl/CfGpqasBjTznlFP3hD3/QVVddpba2Nn3jG9/Q//zP/+iCCy7QiSeeKJPJpP3792vXrl1644039Morr6i7u1sPP/zwCB7N/q6//nr96U9/Und3t+6++269+eabKioq0nHHHae9e/fqiSee0IsvvqiUlBR97Wtf0+OPP+63r7POOktXXXWV1q5dqwMHDigvL092u11f+tKXlJSUpO3bt2vt2rX65JNP9PWvf11/+ctfJPX9To4WFxenxx9/XF/84hfV1NSk8vJyPf3001qxYoUWL16sGTNmqL29XXv27NE//vEP/fWvf9Unn3yiL3/5y/rpT3866scFAAAAAAAAABBaU6dOld1ul91ulyS1t7fr1Vdf1V133aWnnnpKLpdLy5cv186dO5WcnNzv2OOOO85vv0fu+/jjj8cm+HFCAjsAAAAAAAAARJAZM2bo2Wef1e23367f/OY3amlp0c6dO7Vz506/xxiNRl1yySX6xS9+0W/75z73OW3atEmFhYXavXu36uvr9eMf/3jA8WazWXfddZeuuuqqIeOLi4vTpZdeql/84he+5HWpf2X2QFauXKm0tDRdeeWV2rNnj95++229/fbbftsnJSXJYrEE1XcgJ510kv7whz/o2muvVXd3t1577TW99tpr/dqkpqZq/fr1eu211wImsEvSvffeK7fbrfXr16urq0sPPPCAHnjggX5tiouLdd555/kS2CdPnjxoX8cdd5y2bdumlStX6plnntG+fft03333BTz/nDlzhrrLAAAAAAAAAIAIkJycrLPPPltnn322Vq5cqYceeki7d+/Ws88+q4KCgnCHFxYDy70AAAAAAAAAAMLKaDTqxz/+sZxOpx566CFddtllWrhwoSwWi+Lj4zVlyhSdcMIJKiws1P/+7/9q9+7devjhh2W1Wgf0tWTJEr377ru666679OUvf1kzZ85UQkKCpk+frsWLF+snP/mJdu7cGVTyutfRyeqpqak6//zzgz7+v/7rv/Tee+/pT3/6k4qKipSRkaGUlBTFx8dr+vTpOvXUU7Vy5UqtW7dOH330kc4777yg+w7kyiuv1N/+9jd985vf1Jw5c5SQkKAZM2bolFNO0c0336zt27fr3HPPDaqv+Ph4PfLII3ryySeVn5+vY489VomJiZozZ46WL1+uF154QbfffrtaWlp8x8yYMcNvf8cee6w2btyorVu36vrrr9cpp5yi1NRUGY1GTZo0SSeccILy8/P1q1/9SvX19XrwwQdH+3AAAAAAAAAAAMbZt771Ld/tHTt2DNj/4Ycf+j32yH3HHntsaAMbZ1RgBwAAAAAAAIAIlZKSossuuyzo6ub+mEwmffe739V3v/vdkMQ1b948eTyeUfWRlJSkK664QldcccWIjn/wwQdHlMS9aNEilZeXB2yzevVqrV69Oqj+LrjgAl1wwQV+97/xxhu+2yeffPKQ/WVnZys7OzuocwMAAAAAAAAAoktKSorvdlJS0oD9mzZt8nusd5/BYNCpp54aknji4uLk8XhGPeY/XFRgBwAAAAAAAABgDOzfv18PP/ywJOmYY45RVlZWmCMCAAAAAAAAAIyF999/X+++++6Q7R566CHf7UWLFg3Y/+qrr2rz5s0Dtre3t6usrExS3yqn06ZNG3GsR5oyZYokqbW1NST9BYsEdgAAAAAAAAAAhun999/XBx984Hd/a2urVqxYoU8++USSdPXVVys+nkVRAQAAAAAAAGAieuedd2Sz2XT++edr3bp1cjqdvn1dXV166623dMUVV+iOO+6QJH3+85/X6aefPqCfqVOnavny5aqsrFR3d7ckqaGhQeeff74aGhpkNBr185//PGRxewuvPPLII2prawtZv0NhtBwAAAAAAAAAgGGqq6vTxRdfrNzcXJ1xxhmaN2+eJk2apH379qmurk6PPvqor2LNvHnzdNNNN4U3YAAAAAAAAADAmElISFBvb682btyojRs3SpISExOVkpKiffv2yePx+NouWrRIGzZskMEwsA75rbfeqj/84Q9asWKFkpKSlJycrP3790uS4uLi9Pvf/16nnXZayOK+7rrrtGXLFj3++ON68skndeyxxyo+Pl5z5szRq6++GrLzHI0EdgAAAAAAAAAARqCnp0evvPKKXnnlFb9tTj31VD3xxBOaNGnSOEYGAAAAAAAAABhP//Vf/6WdO3dq48aNevXVV1VfX6/du3ertbVVZrNZs2fP1qmnnqrCwkKtWLFi0OR1SZo+fbreeOMNlZaW6vHHH1dTU5NmzJih3NxclZSU6Itf/GJI47bb7ZKkP/zhD/rnP/+p5uZm9fb2hvQcg4nzHJnSDwAAAAAAAAAAhnTw4EE99thj+utf/6p33nlHLpdLn376qYxGo4499lgtWbJEy5cvD3ghAgAAAAAAAADCrb29Xe+//74yMjKUnJzst92HrW6ddftmdXSPfXLzWEuKN+ilVUt13DRTuEPxsVqt+uCDD/TAAw9o5cqV4Q5nWIL9GzoSFdgjQG9vr/bs2aPJkycrLi4u3OEAAAAAAAAAAIJQVFSkoqKigG0OHTo0TtEAAAAAAAAAiBUej0cHDx7U7Nmzx62AxnHTTHpp1VLtO9w5LucbS9MnJUZU8nosIoE9AuzZs0dz584NdxgAAAAAAAAAAAAAAAAAAACIEk1NTZozZ864ne+4aSYSvxESJLBHgMmTJ0vqeyGZMmVKmKNBKGVmZqq5uVlpaWlqaGgIdzgAAAAAAExIfP4GAASL9wwAQDB4vwAABIv3DABAuBw4cEBz58715Z8C0YYE9ggQFxcnSZoyZQoJ7BOMd2kOg8HA7xYAAAAAgDHC528AQLB4zwAABIP3CwBAsHjPAACEmzf/FIg2JLADAAAAAAAAAAAAAAAAAAAAQJg4nc5whzCuDOEOAAAAAAAAAAAAAAAAAAAAAAAQG0hgBwAAAAAAAAAAAAAAAAAAAACMCxLYAQAAAAAAAAAAAAAAAAAAAADjggR2AAAAAAAAAAAAAAAAAAAAAMC4IIEdAAAAAAAAAAAAAAAAAAAAADAuSGAHAAAAAAAAAAAAAAAAAAAAAIwLEtgBAAAAAAAAAAAAAAAAAAAAAOOCBHYAAAAAAAAAAAAAAAAAAAAAwLgggR0AAAAAAAAAAAAAAAAAAAAAMC6iOoH9448/Vk1NjW655RZ95StfkcViUVxcnOLi4rRy5coxOWdFRYXOPfdczZo1S8nJyTr++ONlt9u1devWMTkfAAAAAAAAAAAAAAAAAAAAAEwU8eEOYDRmzpw5budyu90qKirSxo0b+21vbGzUI488ooqKCt1yyy269dZbxy0mAAAAAAAAAAAAAAAAAAAAAIgmUV2B/Ujp6ek699xzx6z/K6+80pe8fuaZZ6q6ulpvvPGG1q5dqxNOOEG9vb1avXq17rvvvjGLAQAAAAAAAAAAAAAAAAAAAACiWVRXYL/lllu0ZMkSLVmyRDNnzpTT6VRGRkbIz/PSSy/p0UcflSRdcMEF2rBhg4xGoyRpyZIl+trXvqbFixersbFRP/7xj7VixQpNnz495HEAAAAAAAAAAAAAAAAAAAAAYdHaJLW1hDuK0TOnStPmhjuKmBbVCew/+9nPxuU8t99+uyQpPj5e99xzjy953ctisejXv/61LrnkErW2tuqPf/yjfvSjH41LbAAAAAAAAAAAAAAAAAAAAMCYam2S7l4sdXeEO5LRi0+Srq8b0yT2np4ePf7446qpqdHrr7+ujz/+WG1tbZo2bZrmz5+vvLw8ffOb31RWVpbfPl5++WWtX79er7zyipqbm9Xe3q5jjjlGJ598si644AJdfvnlSk5O9nv86tWrB821TkxMVGpqqk466SStWLFCl19+uRISEkJyv4NlGNezRaGDBw/qxRdflCSdffbZmjNnzqDtCgsLNWXKFEnShg0bxi0+AAAAAAAAAAAAAAAAAAAAYEy1tUyM5HWp736MYSX5119/XQsXLtRFF12khx9+WDt37lRbW5smT56slpYWbdmyRb/61a900kknafny5ers7Ox3fEtLi84//3wtXbpU9913nxoaGtTe3q7k5GTt3r1bTz/9tK677jrNnz9fL730UlAxzZw50/cVHx+v5uZmPf/887rmmmuUk5Ojffv2jcVD4RcJ7EP4+9//7vvDOOOMM/y2S0xMVHZ2tu+Yrq6ucYkPAAAAAAAAAAAAAAAAAAAAQPg99dRTWrp0qd59912lpqaqtLRU7777rjo7O9XS0qLOzk79/e9/14033qgpU6aoqqpKbW1tvuP37t2r7Oxsbdy4UUajUd/97nf1zjvvqL29Xa2trdq3b58eeOABzZ07V01NTTrvvPNUXV09ZFwfffSR7+vw4cP64IMPdM0110iStm3bpu9973tj9ZAMigT2IfzrX//y3c7MzAzY1ru/u7tbO3fuHNO4AAAAAAAAAAAAAAAAAAAAAESGnTt3ym63q6OjQwsXLtTbb7+tG2+8USeeeKKvjdFo1GmnnabS0lK9//77WrZsmW+fx+PRN77xDe3atUsJCQnasGGD7rrrLi1cuNDXZtq0aVq5cqXeeustnXzyyerq6tLll1+uf//738OKNT09Xffdd5/OOussSdJf/vIXHTp0aJSPQPBIYB/C7t27fbfnzJkTsO3cuXN9t5uamsYsJgAAAAAAAAAAAAAAAAAAAACR46c//akOHDig5ORkbdiwYci84xkzZqi6ulpTp06VJNXU1Oill16SJN1000264IIL/B6bmpqqxx57TMnJyTpw4IBuvfXWEcV83nnnSZI6OzvHtXg3CexDOHjwoO92SkpKwLaTJk3y3Q40C6Gjo0MHDhzo9wUAAAAAAAAAAAAAAAAAAAAg+uzdu1eVlZWSpG9+85uaP39+0MfGxcVJku655x5J0uTJk1VcXDzkcSeeeKIuueQSSdKf//xnuVyu4YYtj8fju93T0zPs40eKBPYhtLe3+24nJiYGbJuUlOS77Xa7/bYrLS3V1KlTfV9HVm4HAAAAAAAAAAAAAAAAAAAAED02bdqk3t5eSdKFF1447OO7u7tVW1srSTr33HOHLLrtVVhY6Dv+lVdeGfZ5n3vuOUl9SfQZGRnDPn6kSGAfQnJysu92Z2dnwLYdHR2+2yaTyW+7kpIS7d+/3/fV1NQ0+kABAAAAAAAAAAAAAAAAAAAAjLt33nnHd/vUU08d9vFOp1OHDx8e9vGnnHKK7/b27duDPq6xsVHf+ta39NJLL0mSLrjgAqWmpgZ9/GjFj9uZotTkyZN9tw8dOhSwrfcPR1LAmQ9JSUn9qrUDAAAAAAAAAAAAAAAAAAAAiE4tLS2+2zNmzBjV8cNJJLdYLIP2cbRZs2b5bh88eFBtbW2+nzMzM3XPPfcEfc5QoAL7EObMmeO7vXv37oBtj6ykPnfu3DGLCQAAAAAAAAAAAAAAAAAAAAC8Ojo6/O7bu3ev7+vI5PXLLrtMb731lo477rjxCNGHBPYhLFy40He7oaEhYFvv/vj4eJ144oljGhcAAAAAAAAAAAAAjEZPT482b96siooKbd68WT09PeEOCQAAAACAqHRk1fRPP/10VMcHqqR+NJfL5bs9ffp0v+08Ho88Ho96e3u1Z88e3XvvvZo2bZrWrVunu+++e9jxjlb8uJ8xyixZskSJiYnq7OzUyy+/rBtvvHHQdp2dnXr99dd9xyQkJIxnmAAiQFtb24CJLm63W06nU1arVSaTqd++zMxMmc3m8QwRAAAAAAAAAABAklRVVaXi4mI5nU7fNqvVqrKyMhUWFoYvMAAAAAAAotBnP/tZ3+233npLs2fPHtbxxx9/vCZNmqTDhw/rzTffDPq4t956y3d7wYIFQ7aPi4tTWlqarr32Wi1YsEBnnXWWbrjhBi1atEhnnXXWsGIeDSqwD2Hy5Mn68pe/LEl64YUXtHv37kHbVVVV6cCBA5KkCy+8cNziAxA5GhoatHjx4n5fp59+uux2u04//fQB+4Za1QEAAAAAAAAAAGAsVFVVqaioSCeddJK2bt2qgwcPauvWrTrppJNUVFSkqqqqcIcIAAAAAEBUOfPMM2Uw9KVlb9iwYdjHJyQkKC8vT5L0/PPP6+DBg0Edd+Rn+KVLlw7rnEuXLtWll14qj8ej7373u+O6MlvMJ7A/+OCDiouLU1xcnFavXj1om1WrVkmSuru79Z3vfGfAL8jlcunHP/6xJGnatGm6+uqrxzRmAJEpMzNTdXV1/b7Ky8slSeXl5QP2ZWZmhjliAAAAAAAAAAAQa3p6elRcXKz8/HxVV1crOztbKSkpys7OVnV1tfLz87Vq1apxvWgNAAAAAEC0mzlzppYvXy5JWr9+vd59992gj/V4PJKkb3/725KkQ4cO6Y477hjyuJ07d+rRRx+VJJ1++un6zGc+M9ywdcstt8hoNOpf//qXHnrooWEfP1Lx43amMfDqq69q165dvp9dLpfv9q5du/Tggw/2a79y5coRneess87SxRdfrEcffVRPPvmkzjnnHP3gBz/Q7Nmz9c9//lO//OUv1djYKEn69a9/renTp4/oPACim9ls1qJFiwbdZ7PZ/O4DAAAAAAAAAAAYL7W1tXI6naqoqPBVhvMyGAwqKSlRTk6Oamtrh125DQAAAACAWHbbbbfpmWee0aFDh1RYWKjnnntOxx13nN/2+/bt09VXX621a9dq2rRpys/P19KlS7V582b98pe/1OLFi5Wfnz/osS0tLVqxYoXa29sVFxen2267bUQxn3DCCbrooou0fv16/eIXv9Cll16qhISEEfU1HFGdwP7HP/7Rb7b/li1btGXLln7bRprALkl/+tOfdODAAW3cuFGbNm3Spk2b+u03GAy6+eab9a1vfWvE5wAAAAAAAAAAAACAsdTc3CxJysrKGnS/d7u3HQAAAAAACM78+fP18MMP66KLLtI777yjU045RatWrdLy5cs1b948SX0ro23fvl0bNmzQ7373O7W2tmrt2rWSpLi4OFVUVCg3N1fvvfeeLrzwQn3729/WddddJ5vNJknav3+/qqurdcstt/iKb99yyy0644wzRhx3SUmJKioq5HQ6tXbtWl133XWjfCSGZhi6CSTJZDLp6aef1iOPPKJzzjlHxx57rBITEzV37lx94xvf0KuvvqrVq1eHO0wAAAAAAAAAAAAA8CstLU2SVF9fP+h+73ZvOwAAAAAAELyCggK99NJLmjdvnlwul2688UadeOKJSkpKUmpqqhITE7Vo0SL94he/0P79+3XJJZdo0qRJvuNnzZql119/Xeeee666u7t11113aeHChTKZTJo+fbqmTZumlStXqrGxUQkJCfqf//mfUecvZ2Vl6Wtf+5ok6Ze//KU6OjpG1V8woroC+4MPPqgHH3xwVH2sXLlyWJXZv/GNb+gb3/jGqM4JABhbbW1tamho6LfN7XbL6XTKarXKZDL125eZmSmz2TyeIQIAAAAAAAAAEBZ5eXmyWq1as2aNqqurZTD8p+ZZb2+vSktLlZGRoby8vDBGCQAAAACIOOZUKT5J6h775OYxF5/Ud3/GSG5urhoaGvTYY4+ppqZGf/vb3/Txxx/r4MGDmjFjhjIzM3XGGWfo0ksv1YIFCwYcf8wxx+i5557TSy+9pIqKCtXW1qq5uVmtra2+NrNnz9amTZs0f/78kMR800036YknntDu3bv1hz/8Qd/73vdC0q8/UZ3ADgDAYBoaGrR48eKg29fV1WnRokVjGBEAAAAAAAAAAJHBaDSqrKxMRUVFKigoUElJibKyslRfX6/S0lLV1NSosrJSRqMx3KECAAAAACLJtLnS9XVSW0u4Ixk9c2rf/RlDRqNRF198sS6++OIR93HWWWfprLPO6rftz3/+sy655BLt2bNHDz/8sH7xi1/4PX716tVBV2dfsmSJPB7PiGMdLhLYAQATTmZmpurq6vptczgcstvtKi8vl81mG9AeAAAAAAAAAIBYUVhYqMrKShUXFysnJ8e3PSMjQ5WVlSosLAxjdAAAAACAiDVt7pgnfiOwiy66SM3Nzfp//+//6bbbbtPkyZN1ww03hDusYSOBHQAw4ZjNZr8V1W02G9XWAQAAAAAAAAAxr7CwUMuWLfMtQ56Wlqa8vDwqrwMAAAAAEOF+8IMf6MMPP9Ttt9+uH//4x0pJSdG3v/3tcIc1LCSwAwAAAAAAAAAAAEAMMhqNWrp0abjDAAAAAAAAw/Sb3/xGv/nNb8IdxogZwh0AAAAAAAAAAAAAAAAAAAAAACA2kMAOAAAAAAAAAAAAAAAAAAAAABgXJLADAAAAAAAAAAAAAAAAAAAAAMYFCewAAAAAAAAAAAAAAAAAAAAAgHERH+4AAIxcW1ubGhoa+m1zu91yOp2yWq0ymUz99mVmZspsNo9niBNaY2OjXC5XwDYOh6Pf90AsFovS09NDEhtCi+caAAAAAAAAAAAAAAAAAAChQQI7EMUaGhq0ePHioNvX1dVp0aJFYxhR7GhsbNSCTJva3W1Btbfb7UO2STaZtaPBQRJ7BOK5BgAAAAAAAAAAAAAAAABAaJDADkSxzMxM1dXV9dvmcDhkt9tVXl4um802oD1Cw+Vyqd3dptT8YiWkzvXbztPdqe79exU/dabi4hP9tutqaVJLTZlcLhcJ7CMw1tXwea4BAAAAGM7KTKzKBAAAAAAAAAAAAPhHAjsQxcxms98qzzabjQrQ4yAhda6SZs0L3GjOwvEJJkaNRzV8nmsAAAAAhrMyE6syAQAAAAAAAAAAAP6RwA4AiGpUw48tw6l6KVH5EgAAAKEznJWZWJUJAAAAAAAAAAAA8I8EdgDAhEA1/NgwnKqXEpUvAQAAEDqszAQAAAAAAAAAAACEBgnsAAAgagyn6qW3PQAAAAAAAAAAAAAAAAAgcpDADgAAogZVLwEAAAAAAAAAAAAAAAAgupHADgAAAAAAAAAAAAAxoK2tTQ0NDf22ud1uOZ1OWa1WmUymfvsyMzNlNpvHM0QAAAAAABADSGAH4MOgJfAfDocjqP1DtZMki8Wi9PT0kMQFAAAAAAAAAMBINTQ0aPHixUG3r6urY+VLAAAAAIBP86Fm7evYF+4wRm160nSlpaSFO4yYRgI7AB8GLQGp59A+GeIku90eVPtg2plNyXI07CCJHQAAAAAAAAAQVpmZmaqrq+u3zeFwyG63q7y8XDabbUB7AAAAAACkvuT1/Op8dfZ0hjuUUUs0JqqmoGZMk9h7enr0+OOPq6amRq+//ro+/vhjtbW1adq0aZo/f77y8vL0zW9+U1lZWX772L59ux555BFt2rRJH3zwgfbt2yeTyaTjjjtOS5YsUWFhob761a8qISGh33FLly7Vyy+/PKA/s9ms4447Tjk5ObruuuuUnZ0d8vsdLBLYAfgwaBlZhlMRP5ar4bvdbklSV0tTSPrr/Pjf6vVIay9I1ilpRv/n7fbI2dor6zSDTPFxfts5PumVfYNbLpeLBHYAAAAAAAAAQFiZzWa/xYlsNhuFiwAAAAAAfu3r2DchktclqbOnU/s69o1ZAvvrr7+uyy+/XO+++65vW0JCgiZPnqyWlhZt2bJFW7Zs0a9+9SsVFhaqoqJCiYmJvrYHDx7Uddddp4qKCnk8HklSXFycpk6dKrfbLYfDIYfDoXXr1umEE07QI488oi984QsD4khISNCMGTN8P7tcLu3cuVM7d+7UunXrdOutt+rWW28dk8dgKCSwA/Bh0DKyDKcifixXw3c6nZKklpqykPablCAtCpDALkm5c0N6yglpOBMxpNiejAEAAAAAAAAAAAAAAAAguj311FNasWKFOjo6lJqaqlWrVmn58uU68cQTJfVVZn/rrbf0+OOP65577lFVVZXa2tp8Cez79u1TXl6e3nnnHcXFxeniiy/Wf//3fys7O9vXZs+ePXrmmWd01113afv27dq6deugCew5OTnavHmz7+fOzk69/PLL+va3v61du3Zp9erVOu2003T++eeP/QNzFBLYASBCDacifixXw7darZKk1PxiJaSOPqPc/d427a8tl3WaYdR9YXgTMaTYnowBAAAAAAAAAAAAAAAAIHrt3LlTdrtdHR0dWrhwoZ577jnNmTOnXxuj0ajTTjtNp512mn70ox/pyiuv7Lf/m9/8pt555x3Fx8dr/fr1WrFixYDzzJ49W1dddZWuvPJK3XvvvYqLiwsqvsTERJ1zzjl64okndOqpp6qzs1N33303CewAgP+gIn5wvBW8E1LnKmnWvFH319XS1NdvfHBv6ghsOBMxvO0BAAAAAAAAAAAAAAAAINr89Kc/1YEDB5ScnKwNGzYMSF4/2owZM1RdXS2PxyNJeuaZZ/TMM89Ikm655ZZBk9ePFBcXp//+7/9Wb2/vsOJcuHChFi9erK1bt+rvf//7sI4NFRLYAQDAmGEiBgAAAAAAAAAAAAAAAICJbu/evaqsrJTUV0V9/vz5QR/rraB+9913S5KmTp2qH/7wh0EfbzAYhhFpH29y/YEDB4Z9bCiQwA4AAAAAAAAcpbGxUS6XK2Abh8PR77s/FotF6enpIYsNAAAAAAAAAAAAkWXTpk2+SugXXnjhsI/v7u7WK6+8Ikk655xzNGnSpJDGdzSn0ymprwp8OJDADgAj4Ha7JUldLU0h6c/bj7dfAAAAAED4NDY2akGmTe3utqDa2+32gPuTTWbtaHCQxA4AAIBxF8qJmRKTMwEAAAAA8Oedd97x3T711FOHffwHH3ygQ4cOjfj44XjjjTdUV1cnScrOzh7Tc/lDAjsQZYYaaGSQcXx4Zx+11JSFvN/c3NyQ9gkAAAAAGB6Xy6V2d5tS84uVkDrXbztPd6e69+9V/NSZiotPHLRNV0uTWmrK5HK5+AwOAACAcRXqiZkSkzMBAAAAAPCnpaXFd3skVc1He3ww9uzZoxdffFE33HCDent7FRcXpx/84Adjcq6hkMAORJHhDDQyyDi2rFarJA2ZzBAsb0JDR0eH3nzzTb/tWJ4eAAAAAMZPQupcJc2aF7jRnIXjEwwAAAAwTKGcmCkxORMAAAAAgGjz8ssvKy4ubtB9CQkJuuOOO7R06dLxDer/kMAORJFgBhoZZBwfJpNJUpDJDEHoObRPhjjpqquuCqr9UBMUzKZkORp28LsFAAAAAAAAACDGMTETAAAAAICxl5qa6rv96aefavbs2aM6PhQSEhJ81dzj4uJkMpk0e/Zs5eTk6Oqrr9b8+fNDcp6RIIEdiEJDDjQyyBh1ejsOqdcjlV9oku0Yg9927m6PnK29sk4zyBQ/+Mwoxye9sm9wMzkBAAAAAAAAAIAY5na7JfUVNQoFbz/efgEAAAAAwH989rOf9d1+6623hp3AfvzxxyslJUWHDh3SW2+9FZKYcnJytHnz5pD0FWoksANABLEdY9CiNGPANrn+V/kEAAAAAAAAAACQJDmdTklSS01ZyPvNzc0NaZ8AAAAAAES7M888UwaDQb29vdqwYYPOP//8YR0fHx+vL33pS9q4caP++te/6vDhw5o0adIYRRt+JLADUSSUlTKokgEAAAAAAAAAAMZDW1ubGhoa+m1zu91yOp2yWq0ymUz99mVmZspsNo9niBOS1WqVJKXmFyshdfTVcbpamtRSU+brFwAAAAAA/MfMmTO1fPlyPfbYY1q/fr1uuOEGzZ8/P6hjPR6P4uLi9J3vfEcbN27U/v37dccdd+jmm28O6vje3l4ZDIbRhD/uSGAHoshYVMqgSgbQn6enS5LkcPWEpD9vP0wWAQAAAAAAABCrGhoatHjx4qDb19XVadGiRWMYUWw4emKAP57uTnXv36v4qTMVF58Ysn4BAAAAAIg1t912m5555hkdOnRIhYWFeu6553Tcccf5bb9v3z5dffXVWrt2raZNm6avfvWrOvfcc/X888/r5z//uWw2m4qKigKe87777pPH49G1114b6rszpkhgB6JIKCtlUCUDGFzPoU8lSfaq9pD2y2QRAAAAAAAAALEqMzNTdXV1/bY5HA7Z7XaVl5fLZrMNaI/Rs1gsSjaZQ1oYKdlklsVi8f1MdX0AAAAAAP5j/vz5evjhh3XRRRfpnXfe0SmnnKJVq1Zp+fLlmjdvniSpp6dH27dv14YNG/S73/1Ora2tWrt2ra+P9evXKy8vTw6HQ1//+td1ySWX6LrrrlN2drYSEhIkSc3NzXr++ed111136c0339Rvf/vbsNzf0SCBHYgi3kG+hNS5Spo1L6R9IrxCWfU7Vit+d7U0BdwfbAUZT0+3JKm8MFk2i3HUcTlcPbJXtTNZBBGnp6dHtbW1am5uVlpamvLy8mQ0jv5vHgAAYCLwfp4a6nNGMLx9xNpnNAAAgCOZzWa/FdVtNhvV1sdIenq6djQ45HK5fNu8EweCdfQEA4vFovT0dN/PVNcHAAAAAKC/goICvfTSS1q5cqV27dqlG2+8UTfeeKMSExOVkpKi1tZW9fb2SpLi4uJ0ySWXaNKkSb7jU1NT9frrr+uaa67RY489pvXr12v9+vWKi4vTtGnT5Ha71d7+n+KsNptNeXl5434/R4sEdgAYhVAlTXd+tFNSaKt+x0rF77GoICNJNotRi9JCl8zLZBFEkqqqKhUXF8vpdPq2Wa1WlZWVqbCwMHyBAQAARAjv/0mh/JwRK5/RAAAAEFnS09P7JZwPVg1/NBXTqa4PAAAAAMBAubm5amho0GOPPaaamhr97W9/08cff6yDBw9qxowZyszM1BlnnKFLL71UCxYsGHD8lClT9Oc//1k/+clPVF5ers2bN+uDDz7Qvn37ZDKZlJGRoc9//vNasWKFzjvvvKgsWkkCOwCMwFglTYei6nesVfwerILMYAINmA/WDpioqqqqVFRUpPz8fFVUVCgrK0v19fVas2aNioqKVFlZSRI7AACIed7PU6n5xUpInTuqvrpamtRSUxYzn9EAAAAQ2fxVwx/pZEuq6wMAAABA7JieNF2JxkR19nSGO5RRSzQmanrS9DE9h9Fo1MUXX6yLL754xH2cfPLJOvnkk4d93ObNm0d8zvFCAjsAjMBYJU2Hsup3LFX8PrqCTCAMmEeXxsbGoJ5nR34P5OjlbWNNT0+PiouLlZ+fr+rqahkMBklSdna2qqurVVBQoFWrVmnZsmVROTMTAAAgVLyfpxJS5ypp1ryQ9gkAAAAAAAAAABCN0lLSVFNQo30d+8IdyqhNT5qutJS0cIcR00hgB4ARImkaGCiUCefNzc1aUbRc7vaOoM4dTOV8sylZjoYdMZvEXltbK6fTqYqKCl/yupfBYFBJSYlycnJUW1urpUuXhidIAAAAYAhtbW1qaGjot83tdsvpdMpqtQ6YLJCZmSmz2TyeIQIAAAAAAAAAMCGlpaSR+I2QIIEdAACERGNjoxZk2tTubguqfTAJ55JUfqFJtmMMfve7uz1ytvbKOs0gU3yc33aOT3pl3+CWy+WK2QT25uZmSVJWVtag+73bve0AAACASNTQ0KDFixcH3b6uro5J5QAAAAAAAAAAABGEBHYAABASLpdL7e42peYXKyF1rt92nu5Ode/fq/ipMxUXn+i3nfu9bdpfWy7bMQYtSjMGPHeu/9PhCGlpfTNg6+vrlZ2dPWB/fX19v3YAAACxrqulKeD+YP63HaoPDF9mZqbq6ur6bXM4HLLb7SovL5fNZhvQHgAAAAAAAAAAAJGDBHYACJHBljB3OBz9vh+JJcwxUSWkzlXSrHmBG81ZOGQ/JPqEXl5enqxWq9asWaPq6moZDP+pbN/b26vS0lJlZGQoLy8vjFECAACEn8ViUbLJrJaaspD0l2wyy2KxhKQvSGaz2W9FdZvNRrV1AAAAAAAAAACACEcCOwCESKAlzO12+4BtLGEOYLwZjUaVlZWpqKhIBQUFKikpUVZWlurr61VaWqqamhpVVlbKaAxc8R4AAGCiS09P144Gh1wuV8B2gap+H8lisSg9PT3UYQIAAAAAAAAAAABRiQR2AAiRwZYwd7vdcjqdslqtMplMA9ojcjk+6Q24393tkbO1V9ZpBpni40bcDzDeCgsLVVlZqeLiYuXk5Pi2Z2RkqLKyUoWFhWGMDgAAIHKkp6cHnXQ+3Krfg63gNdTnR1bwAgAAwFjo6elRbW2tmpublZaWpry8PApcAAAAAACAMUcCOwCEiL8lzHNzc8MQDUbKYrHIbEqWfYM7ZH2aTcmyWCwh6w8YrcLCQi1btowLUwAAAGESaAWvwbCCFwAAAMZCVVWViouL5XQ6fdusVqvKysoodAEAAAAAAMYUCexAFOpqafK7z9Pdqe79exU/dabi4hNH1AcQy9LT0+Vo2CGXyxWwncPhkN1uV3l5uWw2W8C2Fosl6MqNwHgxGo1aunRpuMMAAACISYOt4BXoMwYreAEAgGjT2NgY1Bjrkd8DYYw19KqqqlRUVKT8/HxVVFQoKytL9fX1WrNmjYqKilitEQAAAAAAjCkS2IEoYrFYlGwyq6WmLCT9JZvMVIUGBpGenh70xRCbzUYlRAAAAADD4m8FL4nPGAAAIPo1NjZqQaZN7e62oNrb7fYh2ySbzNrR4CCJPUR6enpUXFys/Px8VVdXy2AwSJKys7NVXV2tgoICrVq1SsuWLWPVRgAAAACIIR6PJ9whIEqN5G+HBHYgiqSnp2tHgyNg1RKqQgMAAAAAAAAAgHBxuVxqd7cpNb9YCalz/bYbzoqyLTVlcrlcXNMIkdraWjmdTlVUVPiS170MBoNKSkqUk5Oj2tpaVnEEAAAAgBjg/WzY09MT5kgQrbx/O0ePMwRCAjsQZYKtDE3FNsSytrY2NTQ09NsWaDnazMxMmc3mcYkNAAAAAAAAAGJBQupcJc2aF7jRnIXjEwz6aW5uliRlZWUNut+73dsOAAAAADCxJSQkKCEhQYcOHVJKSkq4w0EUOnjwoO/vKFgksAMxrLGxMWA1dylw0u/RqOiOSNHQ0KDFixcPum+w5Wjr6uqY8AEAAAAAAAAAiAlpaWmSpPr6emVnZw/YX19f368dAAAAAGBii4uL0+TJk9Xa2qqpU6fKZDKFOyREEbfbrQMHDmjatGmKi4sL+jgS2IEY1djYKFvmArW524NqP1jS79HMpmQ5GnaQxI6wy8zMVF1dXb9tbrdbTqdTVqt1wD9ZmZmZ4xkeguTp6ZIkOVyhWZ7I24/b7Q5JfwAAAAAAAAAQjfLy8mS1WrVmzRpVV1f3W967t7dXpaWlysjIUF5eXhijBAAAAACMJ4vFIrfbrcbGRk2ZMkWTJ0+W0WgcVkIyYofH41FPT48OHjyoAwcOKCkpSRaLZVh9kMAOxCiXy6U2d7vKLzTJdozBbzt3t0fO1l5Zpxlkivf/ZuT4pFf2DW65XC4S2EfB8UlvwP3B/D6G6iMWmM3mQSuq5+bmhiEajFTPoU8lSfaq4CbaBMvpdPK3EIHa2trU0NDQb9tQE0/MZvN4hggAAAAAAABMCEajUWVlZSoqKlJBQYFKSkqUlZWl+vp6lZaWqqamRpWVlTIajeEOFQAAAAAwToxGo+bOnSuXy6WDBw+qtbU13CEhCiQkJGjatGmyWCzDHkcggR2IcbZjDFqUFviFI3fuOAUTwywWi8ymZNk3hKYytNmUPOwZTUCkMabMkCSVFybLZhn9hRKHq0f2qnZZrdZR94XQa2ho0OLFi4NuX1dXN+hEFQAAAAAAAABDKywsVGVlpYqLi5WTk+PbnpGRocrKShUWFoYxOgAAAABAOBiNRs2cOVPHHnusurq61NtLIVX4ZzAYlJCQMOIq/SSwA0AESE9Pl6Nhh1wuV8B2DodDdrtd5eXlstlsfttZLBYq4SPqxRkTJEk2i3HIiTbDcXQlb0SGzMxM1dXV9dsW6DUvMzNzPMMDAAAAAAAAJpzCwkItW7ZMtbW1am5uVlpamvLy8qi8DgAAAAAxLi4uTomJieEOAxPchEhg/+CDD3TXXXfp6aefVlNTk5KSknTCCSfo61//ur7zne/IbDaP+hzvv/++7rrrLv31r3/VBx98oN7eXs2ePVvnnHOOvvOd7+izn/1sCO4JgFiWnp4edNK5zWaj8jAijtvdt4JAV0tTSPrr3r+3r99uT0j6Q2Qzm81+X9d4zQMAAAAAAADGhtFo1NKlS8MdBgAAAAAAiDFRn8D+1FNPyW6368CBA75tbW1t2rZtm7Zt26Y//vGPevrppzVv3rwRn+O+++7Td7/7XXV2dvbbvmvXLu3atUtr165VWVmZrr/++hGfAwCAaOd0OiVJLTVloe23tVe5c0PaJQAAAAAAAIAxEupCF95+vP0CAAAAAAAg+kV1Avtbb72liy66SG63WykpKSopKdGZZ54pt9utRx99VPfff7/effddnX/++dq2bZsmT5487HM8+uijuvbaayVJU6dOVXFxsc466ywlJSXprbfe0v/8z/9o165d+t73vqdjjz1WX//610N9NwEAiApWq1WSlJpfrITU0Wecu9/bpv215bJOM4y6LwzU09PD0sAAAADD0NbWpoaGhn7bHA5Hv+9emZmZIVkREAAAIBqNWaELp1O5ubkh7RMAAAAAAADhEdUJ7N///vfldrsVHx+v559/Xl/84hd9+8466yydeOKJuuGGG/Tuu++qrKxMq1evHlb/bW1t+v73vy9JSklJ0auvvqqsrCzf/tNOO00XXXSRTj/9dP3zn//U9773PX31q19VSkpKSO4fAADRxGQySZISUucqadbIVz7x8lZWMsXHjbov9FdVVaXi4mLfxUSpbwJCWVmZCgsLwxdYjGIyAQAA0aGhoUGLFy8edJ/dbu/3c11dnRYtWjQeYQEAAEScUBe66GppUktNma9fhBZjUwAAAIhGgxUccbvdcjqdslqtvvwFL4qOAEDkidoE9jfeeEO1tbWSpKuuuqpf8rpXcXGxHnjgATkcDt1555266aablJCQEPQ5Nm7cqI8//lhSX7L8kcnrXlOmTNEdd9yhc845R3v37tWDDz6o66+/foT3CgCA6DfU0sCe7k5179+r+KkzFRef6Ldd9/69oQ4N6kteLyoqUn5+vioqKpSVlaX6+nqtWbNGRUVFqqysJIl9HDGZAACA6JGZmam6urp+2/xdEMnMzBzv8Ca0xsZGuVyugG38VcMfjMViUXp6ekhiAwAAAx2dKOJPsOOEw+0XwWNsCgAAANEqUMGRwVB0BAAiT9QmsFdXV/tuX3HFFYO2MRgMuuyyy1RSUqLW1lZt2rRJ5557btDn2LZtm+/2V77yFb/tli5dquTkZLW3t6uyspIEdgBATLJYLEo2mUO+NDBCp6enR8XFxcrPz1d1dbUMBoMkKTs7W9XV1SooKNCqVau0bNkyqiyNAyYTAAAQXcxm86AXOHJzc4c8lgTskWtsbNSCTJva3W1BtT+6Gv5gkk1m7WhwxMxjCADAeBuLccJkk1kWiyVk/YGxKQAAAES3wQqOOBwO2e12lZeXy2azDWgPAIgsUZvA/uqrr0qSJk2aFHA21RlnnOG7vWXLlmElsLe0tPhuz5w502+7+Ph4zZgxQ3v27NHWrVvV3d2t+PiofWgBRIjBljvyl9DAUkeIBOnp6drR4AgqMcffh8bB2jk+6Q3Yn7vbI2drr6zTDDLFx/nvb4h+YkFtba2cTqcqKip8yeteBoNBJSUlysnJUW1trZYuXRqeIGMEkwkAAIgdjY2NsmUuUJu7Paj2wSRgm03JcjTsiIkEbJfLpXZ3m1Lzi5WQOtdvu2AruHa1NKmlpkwulysmHj8AAMIh1OOEUmxN4BsPoxmbYnImAAAAIoG/giOSZLPZqLYOAFEgarOsvQMe8+bNC5gsfuTsqWAGSY6UkpLiu71//36/7Twejw4cOCBJ6uzs1K5du5i1BWDUAi13dHRCA0sdIVKkp6cHfbFhqA+NFotFZlOy7BvcoQpPZlNyTFdqam5uliRlZWUNut+73dsOY4fJBAAAxA6Xy6U2d7vKLzTJdozBb7vhTMy0b3DHXAJ2QupcJc2aF7jRnIXjEwwAABhSKMcJEXojHZticiYAAAAAAAiVqExgb29v983snzNnTsC206dP16RJk3T48GE1NTUN6zxHVnt4+eWX/SaSvvXWWzp06JDv58bGRhLYAYzaYMsdud1uOZ1OWa1WmUymfm2BiSY9PV2Ohh1UagqhtLQ0SVJ9fb2ys7MH7K+vr+/XDmOHyQQAAMQe2zEGLUoLvLJKrv8C4wAAAEDIjHRsismZAAAAAAAgVKIygf3gwYO+20dWSffHm8B+ZJJ5ML7yla8oPj5e3d3duuOOO3TZZZcNqNra29urm266yW98g+no6FBHR4fvZ2/1dgA4kr/ljnJzc8MQDRAeVGoKrby8PFmtVq1Zs6bf0sBS3/80paWlysjIUF5eXhijjA1MJgAAAAAAAEC4jHZsismZAAAAAABgtPxPjY9g7e3/WZYuMTFxyPZJSUmS+ioXD8fcuXN13XXXSZI+/PBD5ebm6oknntCBAwfU3t6u119/XV/96lf17LPP9otjqPOUlpZq6tSpvq+5cxnBAQAAY89oNKqsrEw1NTUqKCjQ1q1bdfDgQW3dulUFBQWqqanR7bffLqMx8MWnwfT09Gjz5s2qqKjQ5s2b1dPTMwb3YOI4cjJBb29vv31MJgBCo62tTW+++Wa/ry1btuiRRx7Rli1bBuxra2sLd8gAAAAAAIwLxqYAAAAAAEC4RWUF9uTkZN/tzs7OIdt7q52bTKZhn+v222/Xe++9p40bN+rdd99VQUHBgDannXaalixZot///veSpMmTJwfss6SkRD/84Q99Px84cIAkdgAAMC4KCwtVWVmp4uJi5eTk+LZnZGSosrJShYWFw+6zqqpKxcXFcjqdvm1Wq1VlZWUj6i8WeCcTFBUVqaCgQCUlJcrKylJ9fb1KS0tVU1OjysrKEU0mANCnoaFBixcvDrp9XV0dK3kAAAAAAGICY1MAAAAAACDcorIC+5EJ4ocOHRqy/eHDhyVJKSkpwz5XUlKSnnrqKd1///065ZRTFBcX59t37LHH6qabblJtba08Ho9v+/Tp04fsc8qUKf2+AAAAxkthYaF27dqlTZs2af369dq0aZN27tw54uT1oqIinXTSSf0qup900kkqKipSVVXVGNyDicE7mWD79u3KycnRlClTlJOTo3/+858jnkwA4D8yMzNVV1fX76u8vFySVF5ePmBfZmZmmCMGAAAAAGD8eMem/vnPf/Ybm6qvr2dsCgAAAAAAjLmorcCempqqlpYW7d69O2Dbffv2+RLYR1rl3GAw6Oqrr9bVV1+tgwcPau/evTKbzZo1a5YMhr45ADt37vS1X7hw4YjOAwBjpa2tTQ0NDf22ud1uOZ1OWa3WAStUZGZmymw2j2eImKAG+9tzOBz9vh+Jv73xYzQatXTp0lH10dPTo+LiYuXn56u6utr3f1F2draqq6tVUFCgVatWadmyZVRrCuDICZIAQsdsNvutqG6z2ai2DgAAAACIeYWFhVq2bJlqa2vV3NystLQ05eXlMZYHAAAAAADGXFQmsEt9SeK1tbXatWuXuru7FR8/+F05MmnOZrON+ryTJ0/uVwFe6kveevvttyVJn/nMZ2SxWEZ9HmCsud1uSZLD1ROS/rz9ePtFZGloaNDixYuDbl9XV0dSF0Ii0N+e3W4fsI2/vehSW1srp9OpiooKX/K6l8FgUElJiXJyclRbWzvqZPmJyFu9Pj8/XxUVFb5lmtesWaOioiIqXQEAAAAAgAmDQheRKxSFLgAAAAAAAIYrahPYTz/9dNXW1urw4cOqq6vTF77whUHbvfzyy77bubm5YxLLpk2b1NLSIkm66KKLxuQcQKg5nU5Jkr2qPeT9jtVzDSOXmZmpurq6ftscDofsdrvKy8sHTPDJzMwcz/AwgQ32tzdU9X9Ej+bmZklSVlbWoPu9273t8B9UrwcAAAAAALGEQhcAAAAAAAA4UtQmsBcUFKi0tFSS9MADDwyawN7b26t169ZJkqZNm6Yzzzwz5HF4PB6tXr1akpSQkKBrrrkm5OcA/BlNxRKr1SpJKi9Mls0y+sQ4h6tH9qp2X7/+4hsqcZWKKmPDbDb7Hey32WxcCMCY8fe3x0SXiSEtLU2SVF9fr+zs7AH76+vr+7XDf1C9HgAAAAAAxBIKXUwMrO4LAAAAAABCJWoT2D//+c8rLy9PtbW1Wrt2rS6//HJ98Ytf7NemrKzMl8T7/e9/XwkJCf32b9682ZfUfvnll+vBBx8ccJ6WlhalpKQoKSlpwL6enh5973vf05YtWyRJJSUlysjICMXdA4Iymool3sFgm8WoRWmhq+x65CBzoPgGQ0UVjJWenh7V1taqublZaWlpysvLo6IxEAJ5eXmyWq1as2ZNvyriUt9EwtLSUmVkZCgvLy+MUUYmqtcDAAAAAIBYEk2FLhhP9o/VfQEAAAAAQKhEbQK7JN15553Kzc2V2+3Wueeeq5/85Cc688wz5Xa79eijj+q+++6TJM2fP1/FxcUjOsemTZt0/fXX6+KLL9YZZ5yh9PR0tbe3a/v27brvvvv09ttvS5K+8pWv6KabbgrVXQOCEukVSwaLz+FwyG63q7y8XDabbUB7INSqqqpUXFzsG1iX+lYgKCsrU2FhYfgCAyYAo9GosrIyFRUVqaCgQCUlJcrKylJ9fb1KS0tVU1OjyspKLvANgur1AADEDqpUAgAAhN5YrQDLeHJg47G6LwAAAAAAiA1RncB+6qmn6s9//rPsdrsOHDign/zkJwPazJ8/X08//bQmT5484vPs3btXd955p+68884B++Li4nTFFVfonnvuUWJi4ojPAYxEpFcs8RefJNlsNqqtY8xVVVWpqKhI+fn5qqio8CXWrlmzRkVFRaqsrOSiAzBKhYWFqqysVHFxsXJycnzbMzIyeI4FQPV6AABiB1UqAQAAQm8sVoBlPHlo47G6LwAAAAAAiA1RncAuSRdccIG2b9+uO++8U08//bR2796txMREzZs3TytWrND1118fVEUFf/Ly8vSb3/xGL730khoaGrR3714ZDAbNnj1bZ555pq644gp94QtfCOE9AgCEQk9Pj4qLi5Wfn98vOTQ7O1vV1dUqKCjQqlWrtGzZMqpDA6NUWFioZcuWsbTyMFC9HgCA2EGVytHxVprvamkKSX/efqhgDwBAdAv1CrCMJwMAAAAAAIyvqE9gl6Tjjz9ed9xxh+64445hHbd06VJ5PJ6AbWbOnKlVq1Zp1apVowkRADDOamtr5XQ6VVFR0a+ysSQZDAaVlJQoJydHtbW1Wrp0aXiCBCYQo9HIc2mYqF4PAEBsoErl6Hgr2LfUlIW8X38V7Ht6epicCQBAhAv1CrCMJwMAAAAAAIyvCZHADqAPF1iB/2hubpYkZWVlDbrfu93bDgDCger1AAAAgXkrzafmFyshde6o++tqaVJLTZnfCvZVVVUqLi72Jc57YygrK2OCIQAAExjjyQAAAAAAAOOLBHZgguACK9BfWlqaJKm+vl7Z2dkD9tfX1/drBwDhQvX68Gpra1NDQ0O/bW63W06nU1ardUB128zMTJnN5vEM0YfJigCAWOR9L05InaukWfNC3u+RqqqqVFRUpPz8fFVUVCgrK0v19fVas2aNioqKWCUHAIAJjPFkAAAAAACA8UUCOzABcIEVGCgvL09Wq1Vr1qxRdXV1v2Vfe3t7VVpaqoyMDOXl5YUxSgBAuDU0NGjx4sVBt6+rqxv2MuShwGRFAADGVk9Pj4qLi5Wfn9/vM2R2draqq6tVUFCgVatWadmyZUwgAwBgAmI8GQAAAAAAYHyRwA5EOS6wAoMzGo0qKytTUVGRCgoKVFJS4pvcUVpaqpqaGlVWVgb1vBisOq/D4ej3/UjhrM4LABiezMxM1dXV9dvmcDhkt9tVXl4um802oP14Y7IiAABjr7a2Vk6nUxUVFf0S1iTJYDCopKREOTk5qq2tZfUcAAAmoFCOJwMAAAAAAGBoJLADUY4LrIB/hYWFqqysVHFxsXJycnzbMzIyhpXsF6g6r91uH7AtXNV5AQDDZzab/b5m22y2sL+eM1kRACYOxye9Afe7uz1ytvbKOs0gU3zciPvB8LW1tem1116TJHV3d+vNN9+U2+2W0+mU1WqVyWRSd3e3JOm1117T5z//eSYtAwAwAYVqPBkAgIlisCJfR39ePhJFvgAAADAcJLADUa65uVmSlJWVNeh+73ZvOyDWFBYWatmyZaqtrVVzc7PS0tKUl5c3rCS/warzDjU4AwBAKDBZEQCin8VikdmULPsGd8j6NJuSZbFYQtZfNOhqaQq439Pdqe79exU/dabi4hOH1U9DQ4NuuukmSVJeXl7A89x0000677zzwj7JDQAAjI1QjCfHAiZnAkBsCFTkazAU+QIAAMBwkMAORLm0tDRJUn19vbKzswfsr6+v79cOiEVGo3FUSX3+qvPm5uaOIiqMxGCVHhwOR7/vR6LSA4Box2RFAIh+6enpcjTskMvlCtjO4XDIbrervLxcNpstYFuLxaL09PRQhhmxLBaLkk1mtdSUhazPZJO53wSAzMxMvfHGGyooKNC8efNUVlamHTt2+H4fCxYsUHFxsf79739rw4YNTFoGAGCCG+148kTG5EwAiC2DFfkKNH7B52UAAAAMBwnsQJTLy8uT1WrVmjVrVF1d3a8yZ29vr0pLS5WRkTFkBTEA44fl9kYuUKUHu90+YBuVHgBEOyYrAsDEkJ6eHnTCuc1m43/YI6Snp2tHg2NMJwCYzWYtWbJEv/vd71RUVKSf//znKiwslCR1dXXp5z//uWpra1VZWaklS5aM/k4BAABEKSZnAkBs8VfkS2L8AgAAAKNHAjsQ5YxGo8rKylRUVKSCggKVlJQoKytL9fX1Ki0tVU1NjSorK1neEoggLLc3coNVehgq+T9WNTY29ruQ5H2cgnX048mFJCA8mKwIAMD4TQAoLCxUZWWliouL9dRTT0mSrrjiCmVkZKiystKX1A4AAMbf0WNdgwm0UuORGOcaHSZnAgAAAACAUCCBHZgAjrzAmpOT49vOBdbYFcrBfIkB/VBjub2R81fpITc3NwzRRK7GxkYtyLSp3d0Wsj6TTWbtaHDwWhAFenp6VFtbq+bmZqWlpSkvL4+JbFGMyYoAgGCwylPoFBYWatmyZVq7dq2uvfZa/eEPf9BVV13Fey0AAGHU2NgoW+YCtbnbg2o/2EqNRzKbkuVo2ME4FwAAAAAAQBiRwA5MEN4LrMNNWHN80htwv7vbI2drr6zTDDLFx424H4yfvsTVBWoP0WC+JCWbkrWDAf2QYbk9jDWXy6V2d5tS84uVkDpXkuTp7lT3/r1B9xE/dabi4hMlSV0tTWqpKZPL5eJ1IMJVVVWpuLi4X7V9q9WqsrIyJrRFMSYrAgCGwipPoWU0GnXaaadJkk477TSS1wEACDOXy6U2d7vKLzTJdozBb7tgrmc4PumVfYObcS4AAAAAAIAwI4EdmECMRqOWLl0aVFuLxSKzKVn2De6Qnd9sSpbFYglZfxiZvsTVds351hwlzU7y2663s1ddri4lWBJkSPQ/6N+xp0O779vNgD4QhRJS5ypp1rz/bJizMHzBYMxVVVWpqKhI+fn5qqio8FXpXrNmjYqKikh0jnIjnawIAIgNrPIEAABige0YgxalBf4cnDt3nIIBAAAAAADAqJDADsSo9PR0ORp2yOVyBWwX6IL30SwWCwnOESRpdpJMVlPgRvPHJxYAwNjq6elRcXGx8vPzVV1dLYOhb2JSdna2qqurVVBQoFWrVmnZsmUkPEex4UxWBADEFlZ5AgAAAAAAAKJPW1ubGhoa+m1zu91yOp2yWq0ymfrnfGRmZspsNo9niAAAjBkS2IEYlp6eHnTCORe8ASB6uN19q2t0tTSFpD9vP95+EXlqa2vldDpVUVHhS173MhgMKikpUU5Ojmpra0mABgAAAAAAUcU7JuVw9Yy6L28fjHMBAAAgEjQ0NGjx4sVBt6+rqyN3BwAwYZDADgAAMME4nU5JUktNWcj7zc3NDUlfjY2NQa0CcuT3QGJ9FZDm5mZJUlZW1qD7vdu97QKh0gMAAAAAAIgk3rEue1V7SPsM1TgXAAAAMFKZmZmqq6vrt83hcMhut6u8vFw2m21AewAAJgoS2AEAACaY0047TYlJyersCN1FvcSkZJ122mkh6auxsVELMheo3R1cfHa7fcg2yaZk7WjYEbNJ7GlpaZKk+vp6ZWdnD9hfX1/fr10gVHoAAAAAAACRxGq1SpLKC5NlsxhH1ZfD1SN7VbuvTwAAAIwexZFGzmw2+73OZrPZuAYHAJjQSGAHAACYYBYsWKCd7+7oV+HcO0gUrKMHk0JZ4dzlcqnd3a4535qjpNlJftv1dvaqy9WlBEuCDIkGv+069nRo93275XK5YjaBPS8vT1arVWvWrFF1dbUMhv88Xr29vSotLVVGRoby8vKG7ItKDwAAAAAAIJJ4x6hsFqMWpY0ugf3oPgEAADB6FEcCAAAjQQI7AADABJSenj4gmTvSlkVOmp0kk3WIi4XzxyeWaGc0GlVWVqaioiIVFBSopKREWVlZqq+vV2lpqWpqalRZWSmjceiLvFR6AAAAAAAAAAAAQLAojgQAAEaCBHYAPoMt6+RwOPp9PxLLOgEAEDkKCwtVWVmp4uJi5eTk+LZnZGSosrJShYWFYYwOAAAAAAAAAAAAExHFkQAAwEiQwA7AJ9CyTna7fcA2lnUCACCyFBYWatmyZaqtrVVzc7PS0tKUl5cXVOV1AAAAAAAAYLgojgQAQPQZ7P3b7XbL6XTKarXKZOq/gjLv38Dw8TwDgKGRwA7AZ7BlnYb65wnA0BobG+VyuQK2CTSgfySLxaL09PSQxRbr+NCIichoNGrp0qXhDgMAAAAAAAAxgOJIAABEn0Dv34Ph/RuxINS5AzzPIgd5IUDkIoEdgI+/ZZ1yc3PDEA1Gyu12S5I69nSEpD9vP95+MTyNjY1akLlA7e72oNoPNqB/pGRTsnY07CCJPUT40Agg1IYzAMLgBzAyDDQCAAAAscnxSW/A/e5uj5ytvbJOM8gUHzeiPjB8FEcCACD6DPb+7XA4ZLfbVV5eLpvNNqA9EG6hLBwoDSweGOrcAZ5nkYO8ECBykcAOIGTG+p9FBMfpdEqSdt+3O+T9Mplh+Fwul9rd7ZrzrTlKmp3kt11vZ6+6XF1KsCTIkGgYtE3Hng7tvm+3XC4Xz40Q4UMjwuXo5EsSLyeO4QyAMPgBjAwDjQAAAEBssVgsMpuSZd8QmiIrZlOyLBZLSPoCxZEAhB7FC4Cx5+/9W5JsNhvjqYg4fYUDbWp3twXVfqjCgZKUbDJrR4PDl3sR6twBnmeRg7wQIHKRwA4gJEJdZVqi0vRIWa1WSRoyYTpY3qRpb78YmaTZSTJZTYEbzR+fWCaSnp4e1dbWqrm5WWlpacrLy5PRaAz6eD40YrwcPcnL+4E4GEd/aGaCV2QbzgAIgx/AyDDQCAAAAMSW9PR0ORp2BFVAx9/ngiMxthJdRjsGDCD6ULwAAHC0vsKBbUrNL1ZC6ly/7Tzdnerev1fxU2cqLj7Rb7uulia11JT1Kx5I7sDExe8WiFwksAMIiVBWmZaoND0a3qoDQSVMj6BfIFJUVVWpuLjYt+qA1DeBo6ysTIWFheELDDjKcCsCHO3oRPejqwEgvIJZgcafo6sIcQEdCA4DjQAAAEDsSU9PD/ozM58LJg7GgIHYRPECAIA/CalzlTRrXuBGcxaOTzAAgFEjgR1ASFFlGsB4qKqqUlFRkfLz81VRUaGsrCzV19drzZo1KioqUmVlJRcwEDGCqQgwmmoAoxVMArbD4ej3PZBYSsJubGyULXOB2kK0Ao3ZlCwHq88AAAAAAAAwBgzEMIoXAAAAALGBBHYAABBVenp6VFxcrPz8fFVXV8tg6FvNITs7W9XV1SooKNCqVau0bNkylpJFRBmyIkAYqgH0VYdfoPYQJWBLUrIpWTtiJAnb5XKpzd2u8gtNsh3jf2UZd7dHztZeWacZZIqPG7SN45Ne2Te4WX0GAIAgtLW1DVjJJNCEu8zMTJnN5nGJDQAAAKPHGDAAhAcFbyYufrcAACASkcAOAACiSm1trZxOpyoqKnwXLrwMBoNKSkqUk5Oj2tpaLV26tN9+BmeA/vqqw7drzrfmKGl2kt92vZ296nJ1KcGSIEOi/0Ttjj0d2n3f7phLwrYdY9CitMAXS3MHL74PAABGoKGhQYsXLx5032AT7urq6qjQBwAAEEVGMwYMAEcabAK02+2W0+mU1WqVydR/ZfFYngDdV/DGpnZ3W1Dtgyt4Y9aOBkdMXS+IRKFeTVZiRVkAABAaJLADAICo0tzcLEnKysoadL93u7edF5WmAf+SZifJZDUFbjR/fGIBAAAYSmZmpurq6vptGyoBAQAAANFjpGPAAHC0QBOgBxPLE6D7Ct60KTW/WAmp/iuyeLo71b1/r+KnzlRcfKLfdl0tTWqpKYu5gjeRKJSryUqsKDtaFFwDAOA/SGAHAABRJS0tTZJUX1+v7OzsAfvr6+v7tfOi0nRoUbUEAAAA4WI2mwdNKMjNzQ3q+FBeKOQiIQAAQOiNdAwYAI422ARoh8Mhu92u8vJy2Wy2Ae1jXULqXCXNmhe40ZyF4xMMQorVZMOPavgAAPRHAjsAAIgqeXl5slqtWrNmjaqrq/stIdvb26vS0lJlZGQoLy9v0OOpND0yRyf5eAd4g3XkQHAw1QIQPCYTAAAABC/UFwq5SAgAABB6ox0DBgAvfxOgJclms8VstXUA4UE1fAAA+iOBHQCAMeR2uyX1VeseLW8f3j5jldFoVFlZmYqKilRQUKCSkhJlZWWpvr5epaWlqqmpUWVlpYzGwBUEELzhJvkMZjjJ7hON9znb1dI06r68fRz5OsASqAAAAMEL5YVCLhICAACMDcaAAWBioiAP0Idq+AAA9CGBHQCAMeR0OiVJu+/bHdI+c3NzQ9ZfNCosLFRlZaWKi4uVk5Pj256RkaHKykoVFhaGMbqJJ9TVADbu7NbNm0Y/qSNaeF8HWmrKQtqn93WAJVABAACGjwuFAAAAkY0xYACYeCjIAwAAgCORwA4AwBiyWq2SpDnfmqOk2Umj6qtjT4d237fb12esKyws1LJly1RbW6vm5malpaUpLy+PqjtjKFRJPg5XT4giig7e52xqfrESUkeXBdXV0qSWmrJ+rwMsgQoAAAAAAGLNYBVcHQ5Hv+9HooJrdGIMGAAmFgryAAAA4EgksAMAMIa8S90lzU6SyWoaovXw+kTfUrJLly4NdxhAQN7nbELqXCXNmhfSPgH8R2Njo1wuV8A2gZIZjmaxWJSenh6S2AAAAAAAoRWogqvdbh+wjQqu0YsxYACYOCjIAwAAgCORwA4AAAAAiGqNjY2yZS5Qm7s9qPaDJTMczWxKlqNhB0nsAMYEFUMBAOEy2HuQ2+2W0+mU1WodMGGa9yBEqsEquA71twwAwGjxvxQAXgcAAAgdEtgBAACAcdDV0uR3n6e7U9379yp+6kzFxSeOqA8EJ5RVuoOp4o3x4XK51OZuV/mFJtmOMfht5+72yNnaK+s0g0zxcX7bOT7plX2DWy6XiwR2AGOCiqEAgHAJ9B40GN6DEKn8VXDNzc0NQzQAgFjB/1IAeB0AACB0SGAHAAAAxpDFYlGyyayWmrKQ9JdsMstisYSkr1jT2NioBZk2tbvbgmofTJVuRBbbMQYtSjMGbJM7d5yCAYAAqBgaPm63W5LkcPWMui9vH94+YxFVx4DoM9h7kMPhkN1uV3l5uWw224D2AAAgvPi/O3LwvxQAXgcmlmCLWQVT1MpisVAUCQCGiQR2AAAAYAylp6drR4MjYNXvQANbR2PwY+RcLpfa3W1KzS9WQqr/LOZgK+K739um/bXlYxEqAGCCo2Jo+DidTkmSvao9pH3G6u+OqmMIFklXkcPfe5Ak2Ww2nqMAgJgU6f+r8H935OB/KQC8DkwMPYf2yRAXfDGrYNqZTclyNOzgOi4ADAMJ7AAAABhXHd2evu97OkLT3//1E8mVL9PT0/sNVgx2QcQfEjdCLyF1rpJmzQvcaM7CIfvpamkKUUQAAGC8WK1WSVJ5YbJslsCrdgzF4eqRvard12csouoYgkXSFQAAYy/Sk7AjWaT/r8L/3cBAvOYBGI3ejkPq9UjlF5pkO8bgt5272yNna6+s0wwyxcf5bef4pFf2DW65XC4S2AFgGEhgBwAAMcGb3BxLSdOh4r2PDldPSPrbtqevn9337Q5Jf17RVPnS3wWRwWbvk7gBAAAQOt4L2DaLUYvSRpfAfnSfsYiqYwgWSVcAAIy9SE/CjmSR/r8K/3cDA/Gah2gU6muu3n5i4Xr1WLEdYxhyjDDX/6LOAzgcjqD2D9VOYlVuALGBBHYAmKCGStLt7exVl6tLCZYEGRL9zygNVbIvEG5Op1NSbCdNj5T3sbNXtYe032MLj9Xkz00edT8dezq0+77dUVX58ugLIkNVBUFsooJMZOH3AQAAMHIkXQEAMPYiPQk7kvG/ChB9eM1DNBqra66xcL060jUf6pXiBi9WNphg2iWbkrWjYQdJ7AAmNBLYAWCCsVgsSjYlhzRJN9mULIvFErL+gHDwJjfP+dYcJc1OGnV/0Zg0faSenh7V1taqublZaWlpysvLk9E4+Oxy730sL0yWzTL6KpUbd3bp5k2dmpQ5SSZr6KpVRlPly8EuiDCwhKNRQSay8PsAAAAAAACRjCRsRKvGxka5XK6AbYKtWEu12tjBax7GSyhfozo6+ooHhuqaq8PVI3tVe9Rer55IWts9kmfoXIThFJrcfd9uuVwu3tcATGgksAPABJOenq4dDTuC+hDlbwb60RjswUTgTW5Omp0Us0nTXlVVVSouLvbN8pf6ktTLyspUWFg4oL33PtosxiGXUAuGdzm7QB/KAVBBJtLw+wAAAACAiYkVtwAgfBobG7Ug06Z2d1tQ7YeqWJtsMmtHg4PrmgBCItSvUV6huubqFY3XqyeqoHIR5o9PLAAQDUhgB4AJKD09PeiBGWagA7GlqqpKRUVFys/PV0VFhbKyslRfX681a9aoqKhIlZWVgyaxAxh/VJCJLPw+AAAAAGBiYsUtAAgfl8uldnebUvOLlZA61287T3enuvfvVfzUmYqLTxy0TVdLk1pqyqhWCyBkQvkaJUnu97Zpf235WIQKAEBUIoEdYUdlCwAAxkdPT4+Ki4uVn5+v6upqGQx9FdCzs7NVXV2tgoICrVq1SsuWLZPRGLpZ/8BE5enpkvSfVQVGw9uH2+0edV8AAAAAACB4rLgFDI5ruBhPCalzlTRrXuBGcxaOTzAAcJRQvUZ1tTSFKCIAACYGEtgRdlS2ABALOvZ0BNzf29mrLleXEiwJMiQaRtQHMJTa2lo5nU5VVFT4kte9DAaDSkpKlJOTo9raWi1dujQ8QQJRpOfQp5Ike1V7yPp0Op3Kzc0NWX8AAGBwjk96A+53d3vkbO2VdZpBpvi4EfUBAEAgJIZGDlbcimw9PT2qra1Vc3Oz0tLSlJeXR/GNccI1XACRprGxUS6Xy+9+h8PR73sgFouFSv0AAABhRgI7wo7KFgAmMovFomRTsnbftzsk/SWbkmWxWELSF2JPc3OzJCkrK2vQ/d7t3nYAAjOmzJAklRcmy2YZ3YVTh6tH9qp2Wa3WEEQGAAD8sVgsMpuSZd8QmlVPzHxGCymSOQHEEhJDgaFVVVWpuLhYTqfTt81qtaqsrEyFhYXhCyxGcA0XQCRpbGzUgswFancPXVDGbrcP2SbZlKwdDTtIYgeihHcF41BVse/ev7ev325PSPoDAIwMCewIOypbAJjI0tPTtaNhR8BqAFLgQd8jUQ0Ao5GWliZJqq+vV3Z29oD99fX1/dodLRRVKiXp/X0MBCA8Qj245a3Abp1m0KK00FT+OjopC+E1VKWeYCv68P4NAJEjPT1dDj6jRSySOSeOoSojSlRHBEgMBQKrqqpSUVGR8vPzVVFRoaysLNXX12vNmjUqKipSZWUlSexjjGu4ACKJy+VSu7tdc741R0mzkwZtE8yK11Lfqte779stl8sVE58zvNdGHK6ekPTn7cfb70RG0nTk8E5obKkpC2m/m97vDnhdO1jv7+u7jt7byYqNADAcJLADADDG0tPTgx78YNAXYykvL09Wq1Vr1qxRdXW1DIb/DN719vaqtLRUGRkZysvL63dcqKtUYnRCmQgSTKLIRDJWg1vO1l7lzg1plwiz5kO9UlxwlXqkodtRzQdAqJEYOjpj+RmNCuKjQzLnxDCcyogS1RERu0gMBfzr6elRcXGx8vPz+41jZmdnq7q6WgUFBVq1apWWLVsmozE0RQUAINaFOlHX20+ok5yTZifJZA1QCGZ+SE83IXivjdirgvuMNpx+c3NzQ9pnpOG6UuTwrmCcml+shNTRP3iHtj+nQ289o5s3dermTZ2j7s+ry9XF6xAADAMJ7AAAADHCaDSqrKxMRUVFKigoUElJia9yUWlpqWpqalRZWTngok+oq1R622H4GhsbZctcoLYQJoLEklAPbrnf26b9teWyTvNfyQXRqbXdI3kUsJqPFFxFn1ir5gNg7JEYGtmoID46JHNODMFURpSojggA8K+2tlZOp1MVFRX9inBIksFgUElJiXJyclRbW6ulS5eGJ0gAEStUqypKsTXhe8wSdWMgyTnSea+NlBcmy2YZ/cQvh6tH9qp2X78TGdeVIoe3KERC6lwlzZo36v46P35P0jMhe15s3Nmlmzd1KsGSMOq+ACCWkMCOYYv0SlKRHh8AAOFUWFioyspKFRcXKycnx7c9IyMj4LK7rCQQGVwul9rc7Sq/0CTbMf4Ht9zdHjlbe2WdZgi47N3Gnd26eVPHWIQakUI9uOWtIBOKpQURmYas5iNRSQPAuCMxNLJRQRz4D/6XAhCpWM0m8jU3N0uSsrKyBt3v3e5tBwCS1HNonwwhXFVRksymZDliZMJ3qBN1u1qa1FJTFhNJzpHOe23EZjFqUVroVi45OvdmIuK60sQVZ+xLNA/V88Lh6pGkgOOwAICBSGDHsEV6JalIjw8AgHArLCzUsmXLVFtbq+bmZqWlpSkvL4/ldqOI7RjDkIMpwSw96B1MAQAA0YfE0MhEBXEAACIbq9lEh7S0NElSfX29srOzB+yvr6/v1w4AJKm345B6PQpZARjHJ72yb3DHzITvUCfqHt0vAAAAcDQS2DFskV5JKtLjAwAgEhiNRpbXBQAAAAAAQExhNZvokJeXJ6vVqjVr1qi6uloGw39+B729vSotLVVGRoby8vLCGCWiGSsxTGyhKgADAGPF8UlvwP3DmWgDAEA0I4EdwxbplaQiPT4AaGtrU0NDQ79tgQZCMzMzZTabxyW2WNCxpyPg/uFcnAKiXUe3p+97iP6evf243e6Q9BeLhrogxoUzAAAiC4kvAABEJ1aziWxGo1FlZWUqKipSQUGBSkpKlJWVpfr6epWWlqqmpkaVlZWsKIkR6VuJwaZ2d1tQ7YNbicGsHQ0O/pcfAe9YcldL06j76t6/t6/P/xv3BoBQGeo1ytPdqe79exU/dabi4hP9tutxH5AhTrJvCN11NLMpWRaLJWT9AQAwniZMAvsHH3ygu+66S08//bSampqUlJSkE044QV//+tf1ne98JySJf06nU7///e/1wgsv6N///rcOHz6syZMnKzMzU+edd56uu+46HXvssSG4NwCAiayhoUGLFy8edN9gA6F1dXVMvgkBi8WiZFOydt+3O2R9JjMggCi352DfQH4onxdS3//Nubm5Ie1zoms+1CvFBXdBTGIJcwAAIkFf4ssCtbvbg2rP+zcAAEDwCgsLVVlZqeLiYuXk5Pi2Z2RkqLKyUoWFhWGMLjIwmXJk+lZiaFNqfrESUv2X4Q42GbGrpUktNWWsxDBCTqdTktRSUxa6Plt7qbAOICT6ri+bQ/oalZSUrMcfr1RaWprfNg6HQ3a7XeXl5bLZbEPGeOT7z2DF9Nxut5xOp6xWq0ym/pM4KaYHAAinCZHA/tRTT8lut+vAgQO+bW1tbdq2bZu2bdumP/7xj3r66ac1b968EZ/j4Ycf1rXXXjugmuS+ffu0detWbd26VXfeeaceffRRnXPOOSM+DwBg4svMzFRdXV2/bUN9aMTopaena0fDjqAG9Ec6IABEm9mT+5YdHGrZ7GB5l822Wq2j7iuahGKpx7eaeyXP0L+LibyEOYOqAIBo05f40h7T798AAABjqbCwUMuWLVNtba2am5uVlpamvLw8Kq+rL3ndlrlAbSGcTGk2JcsRQ5MpE1LnKmnWEPkDcxaOqG/GuYLnHUseakJBMNzvbdP+2nJZp/n/3AUAw9F3fdkRtuvLNptt2IXuAhXTGwzF9EKDVa8jCxM9gegR9Qnsb731li666CK53W6lpKSopKREZ555ptxutx599FHdf//9evfdd3X++edr27Ztmjx58rDPsWXLFq1cuVK9vb0yGAy6/PLLtWzZMs2ePVuNjY166KGH9NRTT+nTTz/VsmXLVF9fr8985jNjcG8BABOB2Wwe9EMg1YrHXnp6+pgOCESTnp4eLvxASf+XTB3UstnDcPQFmInKkJQS8qUeY3kJcwZVAQDRKpbfvwEg0g0ngTCWkweBSGY0GrV06dJwhxFxXC6X2tztKr/QJNsx/pN1gymsIPUVaLBvcDOZMkQY5wqe9704qAkFQ+hqaerrM8DfOgAMV7RdXx6smF6gBHuK6YUGq15HDlbNBKJL1Cewf//735fb7VZ8fLyef/55ffGLX/TtO+uss3TiiSfqhhtu0LvvvquysjKtXr162OcoLS1Vb29fVcXf/e53+va3v+3bt2TJEi1fvlzFxcW644475Ha7dccdd+juu+8e9X0DAAAYC1VVVSouLvYtzSn1VTkpKytj6V1gGIwp09Xr0ZAVNYKpvOFtE8sYVAUAAKFG5UsAw0kgjOXkQQDRy3aMQYvSAhcmyR1dUWuMAONcAIBw8VdMT4qMBPtIE4pVliWps6fvO6tehx+rZgLRJaoT2N944w3V1tZKkq666qp+yetexcXFeuCBB+RwOHTnnXfqpptuUkJCwrDO89prr0mSUlNT+yWvH+mWW27RHXfcIUnaunXrsPqPNaFepqOjo0NJSYHf/Fn2AwCAPlVVVSoqKlJ+fr4qKiqUlZWl+vp6rVmzRkVFRaqsrCSJPYJ5l4lzuHpC0t/7+/oGZXo7Aw/OILBgB/wYGAyMQVUAQLgMluQcaCyJJOfoQeVLAMNJICR5EAAQKoxzTSxD5RiQixBYqB6/YB5fjC+eG4hmY7HKssSq15GEVTOB6BDVCezV1dW+21dcccWgbQwGgy677DKVlJSotbVVmzZt0rnnnjus83R2dkqSMjIy/LaZOnWqLBaLXC6Xr/1EEcqE8+bmZq0oWi53e0dQ5w6qCmWcJE9Q3bHsBwAgpvX09Ki4uFj5+fmqrq6WwdA3kzg7O1vV1dUqKCjQqlWrtGzZMhmNgav2IDy8VfPtVcEteRasLldXTH1A9y4l64+nu1Pd+/cqfupMxcUnjrgfAKER6knQXAwBcLRASc6DjSWR5Bw9qHwJIJISCPm/FgCA6NJ8qFeKCzJnQeQiHK3n0L6+5NAQPn4YnVBVmq79oJvnBqJeKFdZPrIdAGB4ojqB/dVXX5UkTZo0KWAlnTPOOMN3e8uWLcNOYF+wYIHefPNNvf/++37bHDhwwDfwuGDBgmH17+NySR3BJXaPl927dys3J1ft7UPPOLNI+kEQb8aTJK37arLmp/pffsPd7VHTgV7NnRL4H+MX3utW6ZZOzb40TUmzhlj249MuJcwYYtmPjzq05+Fmte7cqfQQzGKb0dOjjv/7rk8+GXV/kSx+3z5ZJM043KPkA92j7s90uEf7/6/fif7YhYv3d8ZjDPQ3kZ8br2/ZokNOp2655x4ZWlr67TNIuvm66/TV88/X6089pdzc3GH3H+xjx3vGyM2bNk3TJN371WSdmOr/f6RgvfB+t0pf7dK0g90yvXPIb7tg/5cyfNQR0c+fY+PiNCfZpPaaMg31lxcnaag693GS5iSbdGxcXFB/84EeF54Xgxvu60q82yMdHv2KAkkdnpD9PibK7yKUenp69Prrr2vv3r2aOXOmsrOz/U6c6vtM+kW1BzEJOtjPpMnJSdr62lbNmTNnuKEjgvH5e+R4nZIyU1P1jxde6LfN7XarqalJc+fOHVDpaF5qqvTJJ/wu/Aj1Z6rR9GeWtGju3EH7O2nWLH3uqH06fLjvC6MS6c+NWHrPCNZEHgsZTDjuL//XRo5If41C5Ij094tQj4XEuz3DG4OJ4r95731IbT+kxLb9o+6vs/2QujX+j91E+F1Iof19JLTtV4+knbt7JPfonxfvNHZrmkeac8ksmeYk+20XrlyEUPP+Lqbs2aGEdv/XCzzdneo+8InipxwTsACMcfc78nik34c4NyQSx2zH4z2jra1Nu3bt6rct4NjFvHm+1eOOjYtTenKSfhDCStMWKWLzdMIh0l/jJ8J7xli9fw86PjTIeYNtx+eM8Iu538XBg+GOABiVOI/HE2Tt6shzzDHHyOVy6eSTT9bbb7/tt92+ffs0Y8YMSdKKFSv0l7/8ZVjnuf/++/Wtb31LkvT73/9e11133YA2P/rRj3T77bdLkv7617/q7LPPDrr/AwcOaOrUqdovacqwIgMAAAAAAEAsaZPUMAb9Zqov2RcAAAAAgGj0piT/ZQ9Hrk4Sa3ABAIBIdEDSVEn79+/XlClkniL6RG0F9vb2dl/F86GqS0yfPl2TJk3S4cOH1dTUNOxzXXnllXr11Ve1bt06fec731FdXZ2+9rWvKS0tTY2NjXr44YdVXV0tSbrpppuGTF7v6OhQxxGV1g8cODDsmAAAAAAAABB7GsQFeQAAAAAAjpapvs+2Y9Evho8J+AAAABhK1CawHzxi+YOUlJQh23sT2A8d8r/UkT9Go1EPPfSQLrjgAq1Zs0Z//OMf9cc//rFfmzPPPFM/+clPgqq8Xlpaqp/97GfDjmMi4EMKAAAAMBD/JwMAgsUFeQAAAAAABjKLidmRhAn4AAAAGErUJrC3t7f7bicmJg7ZPikpSZLkdrtHdD6Hw6F169bpn//856D7t27dqrVr18pms+m4444L2FdJSYl++MMf+n4+cOCA5s6dO6K4og0fUgAAAICB+D8ZABAsLsgDAAAAAIBIxwR8AAAADCVqE9iTk5N9tzs7O4ds39HRIUkymUzDPldtba0uuOAC7d+/X8cff7xuu+02nXPOOZoxY4b27t2rJ598UjfffLMeffRRvfLKK3r++ef12c9+1m9/SUlJvoT6fv79b2ny5GHHN5a2b9+uL599tmZedJsSj80YdX8H39mkaS/9Ufd+NVknpsaNur8X3u9W6atduuYH6Zr0mdHXlmxvatf7v3HqxRde0Oc+97lR9/e5z31OzR99pLRZs7R9+/ZR9xfJvH8rGT+yKnlu8tAHDCHUvwsM5P2d8RgD/cXCc6Ompka33nqrGpuafNuOT0/X6tWrlZ+fP+J+g33seM8YOd9jfKlZn5tpGH1/e3v15Yfbgv6dxcJjLIX+/gbTX9cbb2hafr5mX5ampJmDfFYYpo69HdqzrlldNTXS5z8/6v7CZbivK6F6blQ6uvTfT3eE5HUqll6jAqmqqtK1112n9997b9BV1A4dOqSMz3xGf7j3XhUW/n/27j26rfrK+/9Hkh1bSkIIFhCHRMjTECQwBWIKxkbF6RR6wWDjGvoUNATaGZiHwsMU59epYZgZ2mfZ7QwG0pkOq1waSl0CrTBu69DLQ8tFsCgQlQLqSCEUhOOJS5AhV8uOL/r9kUqNsSzL9rEl2e/XWl0W52ztsx3XlnTOPvvbkNzOawYyxefv6eP3YvoW2s/C6POEh3a/rXcf/ac5fy+60N7bZkOu/24spNcMSerp6dH777+fNuaNN97Q/77+et3zX/+ltWvXpo095phjtGrVKiNLnHPZ+DuQ678XC8mLL72kT8/C5+9fdHXpnDz+/I3xcv31IpfPhUi5/Xdqtt7XTvY6avTr7Xx5X2vkz+Ng+Dm9///uMez34ofBQ7rhF4d4zfiQTP+/9+Zrr+lTOfp3ar58xsjW52Xe2443k59F4rmZmskx8vnfWBr/+TYWi2nnEde7Jam7u1ut3/ymmr/2NTkcjjH7Vq9ePaZv0MjXW34vcseC+1ns3y995CPZrgKYtrxtYF96RKP3gQMHJo0/ePCgJKW8UJ7O4OCgvvCFL2jv3r1asWKFfvvb32rFihXJ/atWrdL111+v888/X2eddZZ27dqlDRs2aNu2bVM6jiTJbpeOOmrqz5tFw8uXKyqpoHiJimzLZpzvgG2Z9kg6aZVF60otM84XOhjXHg1p79GFOnTUzP/vHFtsUVSHv28de+yM871vOZyvyGIxJF8uS/x/Zdlii6w5+LPAeImfGf/GwFgL4Xej9ppr9JmrrpLf71dvb69KS0vl8XhksczstTnTfzteM6Yv+W9sNUmLZ37Cd9gan9LPbCH8G0vGf7+Z5CssLdUeSSV/ZZPZOfWbbj9scLFFe/6cN59/ZlP9u2LU78Zgkcmwv1ML6W9UOsecfLKikoLvvqvKsvEXI19/801F/xx35L8TrxnIFJ+/p4/fi+lbaD8Lo88TDhYvUVTS63/60+HveQKhP/0pozhJstvt4y5OfthCe2+bDbn+u7GQXjO6u7t1cnWVBmIDkwdLuuz66yeNKbYWa3t4+6S/a7ksG38Hcv33YiF5c88e7ZG056Few/Oew89iXsn114tcPhci5fbfqf3FxYpKih/8QIX7ptY7kMrAe93aq8xeR5VhnM1arNAkr7fz5X2tkZ8zDhTZ1Cfjfi/eHhSvGSlwzna8bL1mZONaxpFxC+E1I5X+/n6Fw+Ex29Kdu3C5XLLZJh7Iuebcc/XLwNj1CmKxmCKRiJxO57hBrWtcLilNvlTmy2vGqmOP1ZHt5r/73e902cUXp4xt+uY3x20LBAL66LqprW3J70X+WXA/i1RDlIE8krcN7MXFxSopKVFfX596enrSxn7wwQfJBvbVq1dP6Ti/+MUv9D//8z+SpBtvvHFM8/qRTj31VHm9Xt1///0KBAJ69dVXdfrpp0/pWAAAAHPFYrGopqYm22VgmkLvjabdHxuOK7JnVM6jzbIWTLzqzWR5AMAoHo9HTqdTLS0t6uzslNn8l4tWo6Ojam1tVVlZmTweTxarBADMpZEDH8hskrxeb0bxmcRl0ugDLCTRaFQDsQGtunaVilZOfEFz9NCohqJDKrQXyrxo4uaiwV2D6rm3R9FolN8z5C2n0ylJk/5eZCrxe5HICyD3RSIRSVJfV5uheb+xvkifPWni9oupnLP1Ph7j9TYHrFx6+OfEawaAI4XDYVVUVKTcl+rcRSAQ0Lo0TdM2my3l/urq6ozq6e7uVjQaTRsTCoXGfE0nk+EAucLlcikwheZ/l8s1l+UBADKQtw3sknTKKafI7/frzTff1PDwsAoKUn87R9755na7p3SMI1+8072hkKSKigrdf//9yWPSwA4AAAAj2e122azF8j4eMyynzVosu91uWD4ASMVisaitrU2NjY2qr69Xc3OzysvLFQwG1draqq6uLvl8vhmvBgIAyB+jgwc0GpfaL7XKfezEDbM0+gAzV7SySNbJVnpaOze1ANmWaGLJ6PdiGnkB5L5E83BJbZMKS6Y2/C6V2FvbtNffrvVlk69AXj3zw2EOFf3588dCfs1IOWk6TSPsZJOmgfkgl5qmu7u7dbLr5IxX3cpkOEA+rbo10+Z/AED25XUD+3nnnSe/36+DBw8qEAjonHPOSRn3zDPPJB9P9UXqyKb44eHhtLFDQ0MpnwcAADDfcNIyOxwOh0Lh7RlNUvB6vWpvb5/0Bs58mqQAIL81NDTI5/OpqalJVVVVye1lZWXy+XxqaGjIYnUAgGxxH2um0QcAAABzJtFYWFiyWkUr1sw431DfzsN509xsCeQroydNI3OzPVWb63zTl0tN06y6BQDId3ndZV1fX6/W1lZJ0ubNm1M2sI+Ojuqhhx6SJB199NFav379lI5RVlaWfOz3+1VbWzth7JGN8kc+DwAAYL7hpGX2OByOjE8aud1u/t0B5JSGhgbV1dXJ7/ert7dXpaWl8ng8TF4HAAAAAAAAckwuTZpeSA5P1XZrINafUXxmU7Vt2h4OJa8vcZ1vfmHVLQBAvsrrBvazzz5bHo9Hfr9fDzzwgDZs2KBzzz13TExbW1vy7sCbbrpJhYWFY/Y//fTTyab2DRs26MEHHxyz/6//+q9ls9nU39+ve+65R16vV6eddtq4Wn7+85/r8ccflySdcMIJOuOMMwz6LgEAAHKPESctB3cNpj3GVKYBAADyh8ViUU1NTbbLAAAAAAAAAJBGLk2aXkgOT9XuV0ltkwpLJl6SLD58SMN731XBsuNlKlg0YdxQ3071dbWNmarNzQkAACAX5HUDuyRt2rRJ1dXVisViuvDCC3XLLbdo/fr1isVieuSRR3TvvfdKktauXaumpqYp5z/66KP1ta99Tf/8z/+s/fv3q6qqSjfeeKMuuOACLV++XO+++65+8pOf6L777tPo6Kgk6Zvf/KbM5ombrAAAAPLdTE5a2u12FVuL1XNvj2H1FFuLZbfbDcsHAAAAAAAAAADmxlDfzrT7M2nUHd777myUBmRNYclqFa1Ykz5o1SnTys3NCQAAIBfkfQP7mWeeqUcffVRer1f79u3TLbfcMi5m7dq12rp1q5YuXTqtY/zTP/2T3n//fW3atEkHDhxQa2urWltbx8UVFhaqpaUlo+V5AAAAFiqHw6Ht4e2KRqNp40KhkLxer9rb2+V2u9PG2u325NQIAAAAAAAAAACQ+w4PvLGpr6st26UAAAAAmGN538AuSRdffLFee+01bdq0SVu3blVPT48WLVqkNWvW6LLLLtMNN9wgm8027fwmk0l33XWXvF6v7r//fj333HN655131N/fryVLlmjNmjU6//zzdd1112nt2rUGfmfzV+i90bT7Y8NxRfaMynm0WdYC04Rxb38QN7o0AAAwBxwOR8YN5263O+UUCCAX9ff3KxwOj9kWCoXGfE1wuVwz+pwCAAAwl2KxmKTJJyNmKjEdMTbM+T0A+SHV571YLKZIJCKn0ymr1TpmH5/5ctvgrsG0+0cPjWooOqRCe6HMiyZedXmyPADmv/jIkCQpFB0xJF8iz+9///v0cROcc0wllwfAHB54EzJk4E0iBgAAAEB+mBcN7JJ04okn6s4779Sdd945pefV1NQoHs/sIklFRYUqKiqmUx7+zFy0RGaT5H08lu1SYLDERUyjTtYm8iTyAgAA5INwODzhZ4YPXzwJBALcnGGQxHtGoy4Uvv3B4RtuRw+lv/EWAICFJBKJSJLhkxEje0ZVvdrQlAAwK9J93kuFz3y56fCk32L13NtjWM5ia7Hsdrth+QDkl5ED70uSvB0Dhub90pe+lFFcJg3bxdZibQ9vz+kmdgbeAAAAAAvPvGlgx+wwerLS6OABjcalBx54QGecccaEcZncQX1kHLIvcRHTyJO+ibzV1dWG5gQAAJgtLpdLgUBgzLaJJvK5XK65Lm/eSrwXNfpC4VB0SGKRLQAAJElOp1OSVFLbpMKSmXecx97apr3+djmPnniqLQDkklSf99Jdy+AzX246POl3uyGTfhNyebIxgNlnWXKMJKm9oVhuu2XG+Z7YMaTbnjqklV9cKavDOmHcVFaK6Lm3R9FolL9VAAAAAHIKDexIa7YmKxUVFWV0ZzR3UOePxEXMVdeuUtHKohnnS5xMSeQFAADIBzabLeX7V27Im12J94xGXygstBfOOBcAAPNF4ka8wpLVKlqxZsb5EgMzrAWmGecCgLkw0ec9iWsZ+YZJv5gPWI0ud5gsh88fue0WrSud+XmpxM/U6rDK6py4gV0SgxeQF0Lvpf+7EhuOK7JnVM6jzWk/H779Qdzo0oC8l3g/MLhr0JB8iTyJvAtNf3+/wuHwmG2hUGjM1yO5XC7ZbLY5qQ0A5isa2JGW0ZOVhvp2qq+rjabkeShxEbNoZdHkJ1OmkRcAAACYSOI9o9EXCtNNrwIAALkp1QXFVPsni5OYqAsAAHIXq9EByHV2u102a7G8jxvbCGtEo+5Cb9LF/JF4P9Bzb4/heRfiYKZwOKyKioqU+7xe77htgUCAm10BYIZoYEdaRk9W+nBeAAAAAH8x2cn3qSwNDAAAkMviI0OSjJsa6u8elpT6gmIqmcQVW4u1PbydJnYAAJBzjF6NrjN8SN94dkijw6OKRWbe0ElzKLKJid+5weFwKBTermg0mjYuFArJ6/Wqvb1dbrd7wrgnnnhCt912m6GNurnapJv425lYuWymEnn4mzz/JN4PrLp2lYpWFs043+CuQfXc27Ngh5K6XC4FAoEx22KxmCKRiJxO57heN5fLNZflAcC8RAM7AABYsFgGDECusNvtKrYWG3ryvdhaLLvdbli+hWRw+PDFKab5AAAwe0YOvC/J+KmhxzUcp6UfXTrh/qncENhzb4+i0SgN7AAwz3GOEPnI6NXonthxuIl31/d2zTjXkXK1OVSavDE0PnxIw3vfVcGy42UqWDRh3PDed40uDdM0WxO/MX0OhyPjz1NutzvtJOPE+VUjGnVzvUk3MVW7r6vN8Ly5+jcZ05N4P1C0skhWp3GDRBfqUFKbzZby7xC/NwAwe2hgBwAACxbLgAHIFQ6HQ9sNnEYjHb5gQ7PV9Ozaf7iBfSFM8wEAIFssS46RZNzU0Cd2DOm2pw5psWvx5Bdt1874cACAeYRzhIC0cunhBvaFMMH18CAJm+GNocg+oyd+J+JYNTM3zEajbq426Sb+dpbUNqmwZPWM8w317VRfV1tO/k0GAAALGw3sAABgwWIZMAC55MPTaFJNgEuHCXDGLQ98aOTw14UwzQcAgGwxWQolGTc19Pd/GpYkDUWHFFs084mLrKICAAsH5wizq7u7e0yzaeLfPlMf/hlxQ//0FP35PMlCmOB6eJBEyPAmZ+QGIyd+s2omsiXxt7OwZLWKVqwxPC8AAECuoIEdgKG4Ax1APmEZMMwHLHM9M7n878cEuMzN1vLAC2GaDwAA2WbUDWjbdh3OY2RzicQqKgCwEHCOMHu6u7t1sutkDcQGDMtZbC3W9vB2mtiRlpFNzpi/WDUTAAAAmF00sAMwBHegAwCQHTQ5z0wu//sxAS5zs7U8MLIvMfXWqBtcmaaL+YQbyJHvzEVLZDbJ8BvQjFhBRWIVFQAA5kI0GtVAbGDM63fifWymjny/m3j9jkajNIgCMAQ3OwAAAACzhwZ2ZGSob2fa/fHhQxre+64Klh0vU8GiaedB/uIOdAAAsoMm55nJ5X8/JsBNDReT5qfEsvFM0wX+ghvIMV9YlizXaFwZ31iWaZyRK6hIrKICAMBcGPf6vTZ7tQBAOrm8oifmH/p0AADAfEcDO9I6fFHUpr6uNsNyFltthl0UZRpfbqFpKHdxMgVAruPv1PTR5Dwz/PsBuS0x9ZZpusBfcAM5ss3oC+iZniPiXBIWqlSflye76ZbPywAAzL3Qe6Np98eG44rsGZXzaLOsBaYJ497+IG50aTBQLq/oifmDPh0AALBQ0MCOtA5fFA3l7EVRpvEBmeFkCoBcx98pAEAqiYYspukCY3EDObIh1y+gA/NVus/LqSz0z8vd3d0ZXc848utEuMELwEI0WTPi6KFRDUWHVGgvlHmRedp55hO73S6btVjex41tvKQxNDfl8oqemD/o0wGw0HEzP7Bw0MCOSeXyRVGm8QGZ4WQKgFzH3ykAuciIi7YL6YItAGB+y/UL6MB8lerzcrrfs4X8ebm7u1snu9waiPVnFJ/qhvkjFRUV67HHfCotLZ0wJtNm+Mn2A8B0GTX1O3owLpmMbUYsthYviJsVHQ6HQgaukvXEE0/otttuozE0R7GiJ+YKfToAFjJu5gcWDhrYkXWp7ppKd9L3yLummMYHZIaTKbltZGREfr9fvb29Ki0tlcfjkcViyXZZwJzi7xSAXHJ4wmyxYRcKF8oFWwDA/DfbF9Bncp4QmK8m+rwsscrGh0WjUQ3E+lVS26TCktUTxsWHD2l477sqWHa8TAWLUsYM9PxB+35zn2prazM69mTN8ABgtNmY+l1cVCTfY49NeuMONyuOZ+T75MSkdBpDAeQq+nRyDyuoYL7hZn5g4aCBHVmX7q6pVCd9uWsKwHzS0dGhpqam5FJr0uG71tva2tTQ0JC9wgAAmGXd3d0ZTaY68ms6Rl4UPTxh1rjJWQvpgi0ALCSJxhKjLu4l8iTyLkScJwRghMKS1SpasSZ90KpT0u4e6tup0bjUfqlV7mMnbvDIdLJxZ3hI33j2EK8ZwIfwfmr6jJ76LU3t/AU3Uc0eGkMBAJkyehiPxECemeJmAmNwMz+wcNDAjqxLdddULBZTJBKR0+kc92Gau6YAzBcdHR1qbGxUbW2ttmzZovLycgWDQbW0tKixsVE+n48mdgBzjqmXmAvd3d062eXWQKw/o/hMphkWW23aHg4Z2sTORVsAQDqJG5GNvEiYyJsvKxEZ/d6R84QAco37WLPWlaZfKbF64mHvSU/sGJK0sF8zgFQW+vupVO+lJnvvc+R7Kc5dYL7iHDXSSdfUSWMoFhqjh/FIDOSZLm4mAIDpoYEdWTfRXVP5cGIJAKZrZGRETU1Nqq2tVWdnp8zmwydRKisr1dnZqfr6em3cuFF1dXWyWNJfJINxRkZG5Pf71dvbq9LSUnk8Hv79seAw9RJzIRqNaiDWr5LaJhWWTNztER8+pOG976pg2fEyFSyaMG6ob6f6utoUjUY5sQoAmDNOp1OStOraVSpaWTTjfIO7BtVzb08ybz4w+r0j5wnnB6bpAuOtXHp4OvtCfs0AUlno76fSvZdKhfNwWCg4R41UjG4OpTEU8wU3tOUGbiYAgOmhgR3zAkuwAMg3fr9fkUhEW7ZsSTavJ5jNZjU3N6uqqkp+v181NTXZKXKB6ejoUFNTU3Lqj3T4AkpbWxuT8LGgMPUSc6mwZLWKVqxJH7TqlLkpBgCAKUq8LypaWSSr0zpJ9NTz5gPeO85fM5kIu9Cn6QKpFBUcbmBfyK8ZQCoL/f1UqvdS6ZqaeC+FhYLPGUglk+ZQGkMBZBM3EwDA1NHAjrzGEiwA8lVvb68kqby8POX+xPZEHGZXR0eHGhsbVVtbqy1btqi8vFzBYFAtLS1qbGyUz+ejiR0LBlMvAQAAkCneO85fM5kIu9Cn6QIAkKmJ3ktJNDVhYeNzBiaSaXMof0MBAADyAw3syGsswQIgX5WWlkqSgsGgKisrx+0PBoNj4jB7RkZG1NTUpNraWnV2diYn4ldWVqqzs1P19fXauHGj6urqZLFYslwtAAAAAACzbyYTYRf6NN1cEovFJBm38mgiTyIvAABArku1slAoFBrz9UhHriwEAADyD+dCgPxCAzvyHkuwAMhHHo9HTqdTLS0tY5qmJWl0dFStra0qKyuTx+PJYpULg9/vVyQS0ZYtW8b8HCTJbDarublZVVVV8vv9qqmpyU6RAAAAAHLWZBdDRg+Naig6pEJ7ocyLzBPGGXVRBTACE2Hnh0gkIkmGrmCayMsEVAAAkA/SrSzk9XrHbTtyZSEAAJB/OBcC5Bca2DFl3KUMADNnsVjU1tamxsZG1dfXq7m5WeXl5QoGg2ptbVVXV5d8Ph8Tv+dAb2+vJKm8vDzl/sT2RBwAAAAASIdX8Su2Fht6MaTYWiy73W5YPgALm9PplCStunaVilYWzTjf4K5B9dzbk8wLAEbhhkAAsyXVykKxWEyRSEROp3PcKj9HriwEAADyD+dCgPxCAzumjLuUAcAYDQ0N8vl8ampqUlVVVXJ7WVmZfD6fGhoasljdwlFaWipJCgaDqqysHLc/GAyOiQMAAAAA6fCqgNvD2xWNRtPGhUIheb1etbe3y+12p4212+0ZrzQIAJNJNGQVrSyS1WmdJHrqeQFgprghEMBsm2hlISaoAgAwP3EuBMgvNLBjyrhLGQCM09DQoLq6Ovn9fvX29qq0tFQej4fJ63PI4/HI6XSqpaVFnZ2dMpv/MsFndHRUra2tKisrk8fjyWKVAAAAAHKRw+HIuOHc7XYz5AEAAOAIqW4ITNz8l6kP3yTIDYEAkLv6+/sVDofHbAuFQmO+Hsnlcslms81JbQAAAJh7NLBjyrhLGQCMZbFYVFNTk+0yFiyLxaK2tjY1Njaqvr5ezc3NKi8vVzAYVGtrq7q6uuTz+bipAAAAAAAAAAAM9uEbAqczSIvmRgDID+FwWBUVFSn3pbp5KRAIcCM4AADAPEYDOwAAWPAaGhrk8/nU1NSkqqqq5PaysjL5fD41NDRksToAAAAAAAAAWBgYpAUA89d0blICAOSHVKtscCMqgMnQwA4AAKDDTex1dXXy+/3q7e1VaWmpPB4Pk9cBAAAAII8M7hpMu3/00KiGokMqtBfKvMg87TyYHD8LAADyW6ompFAoNObrkWhCMhbvpTAfcZPS9PE3GUCuS7fKRiqssgFAooEdAAAgyWKxqKamJttlAAAwrzB1AwAwF+x2u4qtxeq5t8ewnMXWYtntdsPyLRT8LAAAmB/SNSF5vd5x22hCMgbvpQCkwt9kALku1SoboVBIXq9X7e3tcrvd4+IBgAZ2AAAAAAAwa5i6AQCYCw6HQ9vD2xWNRtPGpbtw9mF2u10Oh8PIMhcEfhYAAMwPqZqQJrshHTPHeykAqfA3GUCum2iVDUlyu91c9wGQEg3sAAAAAABg1jB1AwAwVxwOR8aNOVw4m138LAAAmHupVkALhUJjvh5pshXQJmpCqq6unmGlmAzvpQB8GH+TAQDAfEQDOwAAAAD82cjIiPx+v3p7e1VaWiqPxyOLxZLtsoA5leqC92TTfKZzwVviIisAAAByU3xkSJIUio4Yku/tD0YlSaOHRg3JBwCppFsBzev1jtvGCmgAAAAAgGyigR0AAAAAJHV0dKipqUmRSCS5zel0qq2tTQ0NDdkrDJhj6S54p8IFbwAAAMw3IwfelyR5OwYMzTsUHZLWGpoSQB7p7u5WNBpNG5NuYvqH2e32MVO6U62ANtkN6QAAAAAAZAsN7AAAAAAWvI6ODjU2Nqq2tlZbtmxReXm5gsGgWlpa1NjYKJ/PRxM7FoxUF7xDoZC8Xq/a29vldrvHxQMAAADziWXJMZKk9oZiue0zX5XriR1Duu2pQyq0F844F4D81N3drZNdbg3E+jOKTzUx/cOKrTZtD4eSTewTrYBWXV09tWIBAACAOWTkjZ6Z3AgKIHfQwA4AAABgQRsZGVFTU5Nqa2vV2dkps9ksSaqsrFRnZ6fq6+u1ceNG1dXVyWKZeeMCkOsmuuAtSW63m2nrQA7q7+9XOBwesy3dCX2XyyWbzTYntQEAkI9MlsON5m67RetKZ/45MBQdkSSZF5lnnAtAfopGoxqI9auktkmFJasnjIsPH9Lw3ndVsOx4mQoWTRg31LdTfV1tikajY6awAwAwVwZ3DabdP3poVEPRIRXaC9O+D54sD6aG84TIN93d3XK7TlZ/LLMV0DK50RNA/qCBHQAAAMCC5vf7FYlEtGXLlmTzeoLZbFZzc7Oqqqrk9/tVU1OTnSIBAEgjHA6roqIi5b5UJ/QDgQA3owAAAABZUFiyWkUr1qQPWnXK3BQDAMA02O12FVuL1XNvj2E5i63FstvthuVbyDhPiHwTjUbVHxtQ+6VWuY+d+GaX2HBckT2jch5tlrXANGHcEzuGddtT3BgD5Asa2AEAAAAsaL29vZKk8vLylPsT2xNxAADkGpfLpUAgMGZbLBZTJBKR0+mU1WodFw8AwHwTi8UkHZ5KPFPDe989nHM4PuNcAAAAwHzicDi0Pbxd0Wg0bVwoFJLX61V7e7vcbnfaWLvdzooiBuE8IfKV+1jzpCugVU+8kFFSYgU0APmBBnYAAAAAC1ppaakkKRgMqrKyctz+YDA4Jg4zZ2RjyZF5EnkBYKGx2WwpJyVVV1dnoRoAALIjEolIkvq62ozLuWc0owvkAAAAwELicDgybjh3u91M+J5DnCcEAOQTGtgBAAAALGgej0dOp1MtLS3q7OyU2fyX5elGR0fV2tqqsrIyeTyeLFYpjYyMyO/3q7e3V6WlpfJ4PLJY0k8iyFWz0ViSyMtJWAAAAGBhcjqdkqSS2iYVlsys6zz21jbt9bfLefTEy5cDAAAAAAAAmD4a2AEAAAAsaBaLRW1tbWpsbFR9fb2am5tVXl6uYDCo1tZWdXV1yefzZbVZvKOjQ01NTcnGb+lwc0ZbW5saGhqyVtd0GdlYIh2ewN7X1ZbMCwAAAGDhsVqtkqTCktUqWrFmRrkSqzxZC0wzrgsAAAAAAADAeDSwAwAAAFjwGhoa5PP51NTUpKqqquT2srIy+Xy+rDaJd3R0qLGxUbW1tdqyZUuyub6lpUWNjY1Zr286jGwsSZUXAAAAAAAAAAAAyJb+/n6Fw+Ex20Kh0JivR3K5XLLZbHNSGwDkChrYAQAAAECHm9jr6urk9/vV29ur0tJSeTyerE5eHxkZUVNTk2pra9XZ2Smz+fDy9ZWVlers7FR9fb02btyourq6rNYJAAAAIHcN7hpMu3/00KiGokMqtBfKvMg87TwAMBtGRkZy6lzNdMViMUl/WeFhphJ5EnkxM0Y3mNGwBgAAwuGwKioqUu7zer3jtgUCAa1bt262ywKAnEIDOwAAAAD8mcViUU1NTbbLSPL7/YpEItqyZUuyeT3BbDarublZVVVV8vv9OVU3AAAAgOyz2+0qthar594ew3IWW4tlt9sNywcA6XR0dKipqUmRSCS5zel0qq2tLe9Wo0t8D31dbYbnra6uNjTnQmR0gxkNawAAwOVyKRAIjNkWi8UUiUTkdDrHrSrscrnmsjwAyAk0sGPe4Y52AAAAzBe9vb2SpPLy8pT7E9sTcQAAAACQ4HA4tD28XdFoNG1cKBSS1+tVe3u73G532li73S6Hw2FkmTkt9N5o2v2x4bgie0blPNosa4Fpwri3P4gbXRow73V0dKixsVG1tbXasmWLysvLFQwG1dLSosbGRvl8vrxqYnc6nZKkktomFZasnnG+ob6d6utqS+bFzBjdYEbDGgAAsNlsKW9Q4+ZDAPgLGtgx73BHOwAAAOaL0tJSSVIwGFRlZeW4/cFgcEwcAAAAABzJ4XBk3HDudrs5V/5n5qIlMpsk7+OxbJcCLEgjIyNqampSbW2tOjs7k6vSVVZWqrOzU/X19dq4caPq6upksViyXG1mEg3LhSWrVbRijeF5MTNGN5jRsAZgoWHQJAAAmA4a2DHvcEc7AAAA5guPxyOn06mWlpYxF2wlaXR0VK2trSorK5PH48lilQAAAAAwv1iWLNdoXJNOpc90en0iDkBm/H6/IpGItmzZMuZciCSZzWY1NzerqqpKfr9fNTU12SkSAAAkMWgSAABMBw3smHe4ox0AAADzhcViUVtbmxobG1VfX6/m5ubkktmtra3q6uqSz+fLm2ljAAAAAJBPMp1Kz/R6wFi9vb2SpPLy8pT7E9sTcQAAILsYNAkAAKaDBnYAAAAAyGENDQ3y+XxqampSVVVVcntZWZl8Pp8aGhqyWB0AAAAAAICxSktLJUnBYFCVlZXj9geDwTFxAAAguxg0CQAApoMGdgAAAADIcQ0NDaqrq5Pf71dvb69KS0vl8XiYvA4AAAAAAOYdj8cjp9OplpYWdXZ2ymw2J/eNjo6qtbVVZWVl8ng8WawSAAAAAADMBA3sAAAAAJAHLBaLampqsl0GMKnu7m5Fo9G0MaFQaMzXyeIAAACA+WBw12Da/aOHRjUUHVKhvVDmReYJ4ybLA+Q7i8WitrY2NTY2qr6+Xs3NzSovL1cwGFRra6u6urrk8/m4sR8AAABASnz+BvIDDewAAAAAAMAQ3d3dcrtOVn9sIKN4r9c7yxUBAABgoRnq25l2f3z4kIb3vquCZcfLVLBoWjmmym63q9harJ57ewzLWWwtlt1uNywfkGsaGhrk8/nU1NSkqqqq5PaysjL5fD41NDRksToAAAAAuejoYpNkEp+/gTxBAzsAAAAAYN7p7+9XOBwesy3d1G+XyyWbzTZn+earaDSq/tiA2i+1yn3sxBMrYsNxRfaMynm0WdYC04RxT+wY1m1PMd0CAAAAkzvcJG5TX1ebIfmKrTbDLlA7HA5tD2/PaKUir9er9vZ2ud3utLF2u10Oh8OQ+oBc1dDQoLq6Ovn9fvX29qq0tFQej4fJ6wAAAABSKl1iluKa9HM1n7+B3EADOwAAAABg3gmHw6qoqEi5L9XU70AgoHXr1s1ZvvnOfaxZ60rTNxRUr548Tyg6YlBFAAAA+aG7uzujJucjv6azkC6yHm4SDxnWJG70v53D4cg4n9vtXtCfJ4AjWSwW1dTUZLsMAAAAALMgFotJMu56UCKP0+nM6HM1n7+B7KKBHQAAAAAw77hcLgUCgTHbYrGYIpGInE6nrFbruPi5zAcAAAB8WHd3t9yuk9UfG8goPtWNlB9msxYrFN6+oJrYaRIHAAAAACA/RCIRSZK3I7NzIVPJW11dbWhOAMajgR0AAAAAMO/YbLaUzSjTPVlldD4AAADgw6LRqPpjA2q/1Cr3seYJ42LDcUX2jMp5tFnWAtOEcaH3RuV9PKZoNLpgGtgBAACwMPT39yscDo/Zlm6lIpfLJZvNNie1AQAy53Q6JUntDcVy29Ov7JuJUHRE3o6BZF4AuW3eNLC/8847+va3v62tW7dq586dKioq0kc+8hFdfvnl+vKXvzztN6KRSERlZWVTes6JJ56YvDsIAAAAAAAAAAAgU+5jzVpXmv6ibfXqOSoGWIBGRkbk9/vV29ur0tJSeTweWSwzb6QAAADGCYfDqqioSLkv1UpFgUCA1XcAIAclVjh22y2TnguZTl4AuW1eNLD/7Gc/k9fr1b59+5Lb+vv7tW3bNm3btk3333+/tm7dqjVr1sxJPSeffPKcHAcAAAAAAAAAAACAMTo6OtTU1DRmUJXT6VRbW5saGhqyVxgAABjD5XIpEAiM2RaLxRSJROR0Osc1LrpcrrksDwAAABnI+wb2V155RZ///OcVi8W0ZMkSNTc3a/369YrFYnrkkUd033336Y033tBFF12kbdu2aenSpVPKf8IJJ+j111+fNK61tVUPP/ywJGnDhg3T+l4AAAAAAAAAAJhr3d3dikajaWNCodCYr+nY7XY5HA5DagOAudLR0aHGxkbV1tZqy5YtKi8vVzAYVEtLixobG+Xz+WhiBwAgR9hstpQT1aurq7NQDQAsPEadS8rkPBOA+SvvG9hvuukmxWIxFRQU6Fe/+pXOPffc5L5PfOITOumkk/TVr35Vb7zxhtra2vSv//qvU8pfWFio8vLytDEjIyN6+umnJUlLly7VpZdeOtVvAwAAAAAAAACAOdfd3S2362T1xwYyivd6vZPG2KzFCoW308QOIG+MjIyoqalJtbW16uzslNlsliRVVlaqs7NT9fX12rhxo+rq6mSxGLesPQAAAADkm+7ubp3scmsg1p9RfCbnkgAsTHndwP7SSy/J7/dLkr70pS+NaV5PaGpq0ubNmxUKhbRp0ybdeuutKiwsNLSOJ598Urt27ZIkNTY2jluKCFio+vv7FQ6Hx2xLd3edy+WSzWabk9oAAAAAAACMxrkQ5KNoNKr+2IDaL7XKfax5wrjYcFyRPaNyHm2WtcA0YVzovVF5H48pGo3SwA4gb/j9fkUiEW3ZsiXZvJ5gNpvV3Nysqqoq+f1+1dTUZKdIIMtGRkbk9/vV29ur0tJSeTwebugAAABYgKLRqAZi/SqpbVJhyeoJ4+LDhzS8910VLDtepoJFKWNib23TXn/7bJUKIMfldQN7Z2dn8vE111yTMsZsNuuqq65Sc3Oz9uzZo6eeekoXXnihoXU89NBDyccbNmwwNDeQz8LhsCoqKlLuS3V3XSAQSLnMFwAAAAAAQD7gXAjymftYs9aVpm9Cq574miQA5LXe3l5JmnBV5sT2RBwwXUN9O9Puz6TJJ5M8Ruvo6FBTU5MikUhym9PpVFtbmxoaGua0loWIG2UBAEAuKixZraIVa9IHrTol7e65fl8LILfkdQP7c889J0lavHjxhBeGJOn8889PPn7++ecNbWDfv39/spHe6XTq4x//uGG5gXzncrkUCATGbIvFYopEInI6neNWK3C5XHNZHgAAAAAAgKE4FwKkRtMVgFxXWloqSQoGg6qsrBy3PxgMjokDpsput6vYalNfV5thOYutNtntdsPyTaSjo0ONjY2qra3Vli1bVF5ermAwqJaWFjU2Nsrn89HEPsu4URYAAADAfJTXDeyJE9tr1qxRQcHE38qRF4JSnQyfCZ/Pp/7+fknS3/zN38hkmnjpVGChsdlsKU+OVFdXZ6EaAAAAAAAWhpGREfn9fvX29qq0tFQej0cWS/qpyjAG50KA1Gi6ApDrPB6PnE6nWlpa1NnZKbPZnNw3Ojqq1tZWlZWVyePxZLFK5DOHw6Ht4ZCi0WjauFAoJK/Xq/b2drnd7rSxdrtdDofDyDLHGRkZUVNTk2pra8f8blRWVqqzs1P19fXauHGj6urq+Mwxi7hRFgAAAMB8lLcN7AMDA8kP+KtWrUobu3z5ci1evFgHDx7Uzp3GLjvx0EMPJR9fddVVGT1ncHBQg4ODyf/et2+foTUBAAAAAABgYero6FBTU5MikUhym9PpVFtbG1MRseAw9TszsVhMkhSKjhiSL5EnkVei6QpA7rNYLGpra1NjY6Pq6+vV3NycnDLd2tqqrq4u+Xw+GnQxIw6HI+OGc7fbnRM3c/n9fkUiEW3ZsmXMjR2SZDab1dzcrKqqKvn9ftXU1GSnyAWAG2UBAAAAzEd528C+f//+5OMlS5ZMGp9oYD9w4IBhNXR3d+uZZ56RJFVVVWnNmjUZPa+1tVW33367YXUAAAAAAAAAHR0damxsVG1trbZs2ZJsumppaVFjY6N8Ph9N7FhQmPqdmcQNL96OAcPzJpqqaLoCkA8aGhrk8/nU1NSkqqqq5PaysjLeR2HB6u3tlSSVl5en3J/YnogDAAAAACBTedvAPjDwl5PpixYtmjS+qKhI0tipLzPV3t6ueDwuKfPp65LU3Nysm2++Ofnf+/bt0+rVqw2rCwAAAAAAAAvLyMiImpqaVFtbq87OzuR0xMrKSnV2dqq+vl4bN25UXV0dk0OxYDD1OzNOp1OS1N5QLLd95n8fQtEReTsGknkBIJ80NDSorq5Ofr9fvb29Ki0tlcfj4f0TFqzS0lJJUjAYVGVl5bj9wWBwTBwAAAAAAJnK2wb24uLi5ONDhw5NGj84OChJ4y5KzMQPfvADSYeb4z//+c9n/LyioqJkQz0AAAAAAAAwU36/X5FIRFu2bEk2ryeYzWY1NzerqqpKfr9fNTU12SkSmGNM/c5M4py5227RulLjGjSNPBcPAHPJYrHwfgn4M4/HI6fTqZaWljE3ykrS6OioWltbVVZWJo/Hk8UqAQAAAAD5KG8b2JcuXZp8fODAgUnjDx48KElasmSJIcd/6aWXFA6HJUmXXHKJjj76aEPyAgAAAAAAAFPV29srSSovL0+5P7E9EQcAALKrv78/eZ0pIRQKjfl6JJfLJZvNNie1AUCCxWJRW1ubGhsbVV9fr+bmZpWXlysYDKq1tVVdXV3y+XysUgAAAIAZCb03mnZ/bDiuyJ5ROY82y1pgmnYeALklbxvYi4uLVVJSor6+PvX09KSN/eCDD5IN7KtXrzbk+A899FDy8VVXXWVITgAAAAAA8lksFpMkhaIjhuR7+4PDJxpHD3HCEZhMaWmpJCkYDKqysnLc/mAwOCYOAABkVzgcVkVFRcp9Xq933LZAIJByVQkAmG0NDQ3y+XxqampSVVVVcntZWZl8Pp8aGhqyWB0AAADymbloicwmyft4zLCcNmux7Ha7YfkAzJ68bWCXpFNOOUV+v19vvvmmhoeHVVCQ+ts5coKF2+2e8XGHhob0yCOPSJKOO+44ffrTn55xTgAAAAAA8l0kEpEkeTsGDM07FB2S1hqaEph3PB6PnE6nWlpa1NnZKbPZnNw3Ojqq1tZWlZWVyePxZLFKAADm1lSmnM/1hHOXy6VAIDBmWywWUyQSkdPplNVqHRcPANnS0NCguro6+f1+9fb2qrS0VB6Ph8nrAAAAmBHLkuUajUvt7e1p+zpDoZC8Xu+kcZJkt9vlcDiMLhXALJi1Bvaenh796U9/Un9/vz72sY+NO9FmhPPOO09+v18HDx5UIBDQOeeckzLumWeeST6urq6e8XG3bt2qvr4+SdIVV1wxYeM8AAAAAAALidPplCS1NxTLbZ/5RewndgzptqcOqdBeOONcwHxnsVjU1tamxsZG1dfXq7m5WeXl5QoGg2ptbVVXV5d8Ph8NJgCABWUqU87nesK5zWZLeTwjrmMBwGywWCyqqanJdhkAAACYh9xud0afyTONA5AfDO283r9/v/7t3/5NDz74oHbt2pXc/vrrr+uUU05J/vcjjzyijo4OLVu2TPfdd9+0j1dfX6/W1lZJ0ubNm1M2sI+Ojuqhhx6SJB199NFav379tI+XkMgnSRs2bJhxPgAAAAAA5oPEzetuu0XrSmfeJBuKjkiSzIvMk0QCkA5PRfT5fGpqalJVVVVye1lZmXw+nxoaGrJYHQAAc28qU86ZcA4AAAAAAADMHcMa2Hfs2KHPfvazeuuttxSPx5PbTSbTuNjKykp5vV7F43Ft2LBB55133rSOefbZZ8vj8cjv9+uBBx7Qhg0bdO65546JaWtrSy4DedNNN6mwcOzUtqeffjrZ1L5hwwY9+OCDaY/5/vvva+vWrZKk0047TWeccca0agcAAAAAAACM1tDQoLq6Ovn9fvX29qq0tFQej4fJ6wCABYkp5wAAAAAAGCsWi0mShvp2zjhXIkciJ4CFxZAG9oGBAV100UX64x//qMWLF+vLX/6yPv7xj6u2tjZlvNPp1Pr16/Wb3/xGP/3pT6fdwC5JmzZtUnV1tWKxmC688ELdcsstWr9+vWKxmB555BHde++9kqS1a9eqqalp2sdJeOSRR3To0CFJTF8HAAAAAGAuDO4aTLt/9NCohqJDKrQXpp3WPlkeYL6wWCyqqanJdhkAAAAAAAAAgHkmEolIkvq62gzNyc3mwMJjSAP7PffcozfffFOLFy+W3+/PaCr5Zz7zGf3617/WCy+8MKNjn3nmmXr00Ufl9Xq1b98+3XLLLeNi1q5dq61bt2rp0qUzOpYkPfTQQ5IOXwi88sorZ5wPAAAAAACkdnSxSTJJPff2GJaz2Fosu91uWD4AAAAAAKajv79f4XB4zLbEyuKJr0dyuVyy2WxzUhsAAAAwEafTKUkqqW1SYcnqGeUa6tupvq62ZE4AC4shDewdHR0ymUy66aabMmpel6TTTz9dkrRjx44ZH//iiy/Wa6+9pk2bNmnr1q3q6enRokWLtGbNGl122WW64YYbDPkwv2PHDr344ouSpAsuuEArVqyYcU4AAAAAAJBa6RKzFJfa29vldrsnjAuFQvJ6vZPGSZLdbpfD4TC6VAAAAAAApiQcDquioiLlPq/XO25bIBDQunXrZrssAAAAIC2r1SpJKixZraIVawzNCWBhMaSBPXEH+IUXXpjxc0pKSiRJe/bsMaIEnXjiibrzzjt15513Tul5NTU1isfjGcWedNJJGccCAAAAAABjuN3ujC7SZxoHAAAATBWTkgEYzeVyKRAIjNkWi8UUiUTkdDrHNfG4XK65LA8AAAAAgFllSAP7gQMHJElLlizJ+DmDg4OSpMLCQiNKAAAAAAAAAAAAyFuxWEySFIqOGJIvkSeRFzPDpGQARrPZbCn/TlRXV2ehGgAAAAAA5pYhDewlJSX605/+pEgkkvHJuD/84Q+SpBUrVhhRAgAAAAAAAAAAQN6KRCKSJG/HgOF5aYacOSYlAwAAAAAAAMYxpIF93bp1euKJJ/Tss8+qoaEho+c89NBDMplMOvfcc40oAQAAAAAAAAAAIG85nU5JUntDsdx2y4zzhaIj8nYMJPNiZpiUDAAAAAAAABjHkAb2xsZGbd26Vffee69uvvlmORyOtPF33323nn32WZlMJn3hC18wogQAAAAAAAAAAIC8lZjg7bZbtK505g3sH84rSf39/QqHw2P2h0KhMV+P5HK5ZLPZDKsFAAAAAAAAACSDGtj/5m/+RnfddZdee+011dTU6Dvf+Y4+/elPJ/ebTCbF43Ft27ZNd999tx555BGZTCZ5PB595jOfMaIEAAAAAAAAAAAApBEOh1VRUZFyn9frHbctEAiknDoOAAAAAAAAADNhSAO72WzWT3/6U5133nmKRCKqra2VzWaTyWSSJNXU1Gj//v0aHByUJMXjcX3kIx/Rj370IyMODwAAAAAAAAAAgEm4XC4FAoEx22KxmCKRiJxO55hp7Yl4AAAAAACADxvq25l2f3z4kIb3vquCZcfLVLBoWjkAzG+GNLBLksPh0O9//3vdeOON+tGPfqSDBw8m97333nvJxyaTSZdffrnuueceLV++3KjDAwAAAAAAAAAAIA2bzZZyonp1dXUWqgEAAAAAAPnGbrer2GpTX1ebIfmKrTbZ7XZDcgHIL4Y1sEvSMcccox/+8IdqaWnR1q1btW3bNu3evVsjIyMqKSnRmWeeqYsvvlhr16418rAAAAAAAAAAAAAAAAAAAACYRQ6HQ9vDIUWj0bRxoVBIXq9X7e3tcrvdE8bZ7XY5HA6jywSQBwxtYE848cQTdf31189GagAAAAAAAAAAAAAAAAAAAGSBw+HIuOnc7XanXA0OAGalgR0AAAAAgMkM9e1Muz8+fEjDe99VwbLjZSpYNO08AAAAAAAAAAAAAAAgd9DADgAAAACYU3a7XcVWm/q62gzLWWy1yW63G5YPAAAAAAAAAAAAAADMDkMa2J999tkpP8dkMqm4uFjLli2T0+nUokUTT9MDAAAAgIVuZGREfr9fvb29Ki0tlcfjkcViyXZZ0+JwOLQ9HFI0Gk0bFwqF5PV61d7eLrfbnTbWbrdnvFQhZl/ovdG0+2PDcUX2jMp5tFnWAtO08wAAAAAAAAAAAAAA8o8hDew1NTUymSa+4DxpEQUFOuOMM3T11Vfrb//2b1VYWGhEWQAAAAAwL3R0dKipqUmRSCS5zel0qq2tTQ0NDdkrbAYcDkfGDedut1vr1q2b5YpgBLvdLpu1WN7HY4bltFmLma4PAAAAAAAAAAAAAPOIIQ3skhSPx6f93KGhIb388svatm2b7rnnHnV1dTE5DwAAAAB0uHm9sbFRtbW12rJli8rLyxUMBtXS0qLGxkb5fL68bWLH/ONwOBQKb2e6PgAAAAAAAAAAAABgQoY0sD/11FMaGhrSbbfdphdffFErV67UZZddprPOOkvHHnusJOm9997Ttm3b9OMf/1i7du3SOeeco9tvv12xWEzBYFCPPvqogsGggsGgPvvZz+r3v/+9CgoM668HAAAAgLwzMjKipqYm1dbWqrOzU2azWZJUWVmpzs5O1dfXa+PGjaqrq5PFYslytcBhTNcHAAAAAADAQjAyMiK/36/e3l6VlpbK4/FwnhYAAADIkNmIJOeff76+/e1v66WXXtKNN96oN998U3fddZeuvPJKXXjhhbrwwgt15ZVX6q677tIf//hHffnLX9aLL76ou+++W3V1dbr11lv12muv6dZbb5V0eBLb5s2bjSgNAAAAAPKW3+9XJBLRLbfckmxeTzCbzWpubtbbb78tv9+fpQoBAAAAAAAAYOHp6OjQmjVrtH79el1xxRVav3691qxZo46OjmyXBgAAAOQFQxrYN2/erK6uLn32s5/Vpk2bVFxcPGFsUVGR/uM//kOf/exn9ctf/lL33ntvct83vvENnX/++YrH47ypBwAAALDg9fb2SpLKy8tT7k9sT8QBAAAA0xV6b1S/6x2Z8H/P7xzWD18/pOd3DqeNC703mu1vBQAAAJhVHR0damxs1GmnnaYXXnhB+/fv1wsvvKDTTjtNjY2N9LsAAAAAGSgwIsn3vvc9mUwmXXvttRk/57rrrtMTTzyh73//+2Oed/XVV+uZZ57Rq6++akRpAAAAAJC3SktLJUnBYFCVlZXj9geDwTFxAAAAwFTZ7XbZrMXyPh4zLKfNWiy73W5YPgAAACBXjIyMqKmpSbW1ters7EyunFlZWanOzk7V19dr48aNqqurk8ViyXK1AAAAQO4ypIE9FApJklatWpXxcxKx4XB4zHa32y1Jev/9940oDQAAAADylsfjkdPpVEtLy5iLIZI0Ojqq1tZWlZWVyePxZLFK5Lvu7m5Fo9G0MYnP/Ymv6djtdjkcjuR/9/f3j/vsny6fy+WSzWab9DgAAMAYDodDofD2jN4PeL1etbe3J8/jT+TD7wcAAACA+cLv9ysSiWjLli1jztdKktlsVnNzs6qqquT3+1VTU5OdIgEAAIA8YEgD+8DAgCSpp6dHZ555ZkbP6enpkSQNDg6O2V5YWChJXKwGAAAAsOBZLBa1tbWpsbFR9fX1am5uVnl5uYLBoFpbW9XV1SWfz8ckH0xbd3e3Tna5NRDrzyje6/VOGlNstWl7OJRsWguHw6qoqMg4XyAQ0Lp16zKqBwAAGMPhcGTccO52u3mtBgAAwILV29srSSovL0+5P7E9EQcAALKLQUtA7jKkgf0jH/mIgsGg7r//fl188cUZPee+++5LPvdIu3btkiQde+yxRpQGAAAAAHmtoaFBPp9PTU1NqqqqSm4vKyuTz+dTQ0NDFqtDvotGoxqI9auktkmFJasnjIsPH9Lw3ndVsOx4mQoWTRg31LdTfV1tikajySY4l8ulQCAwJi4WiykSicjpdMpqtY7Z53K5ZvAdAQAAAAAAALOntLRUkhQMBlVZWTlufzAYHBMHAACyi0FLQO4ypIG9sbFRr7/+urq6urRx40a1trYmJ6l/2NDQkL72ta+pq6tLJpNJl1122Zj9zz//vCRpzZo1RpQGAAAAAHmvoaFBdXV18vv96u3tVWlpqTweD5PXYZjCktUqWjHJ5/BVp0wrt81mS3mir7q6elr5AAAAAAAAgGzxeDxyOp1qaWlRZ2enzGZzct/o6KhaW1tVVlYmj8eTxSoBAEACg5aA3GVIA/vGjRv1gx/8QG+++abuuusu/fjHP9Zll12mioqK5CT19957T4FAQD/+8Y/V09Mj6fD09aampmSekZERPfzwwzKZTLrwwguNKA0AAAAA5gWLxaKamppslwEAAAAAAAAAC5bFYlFbW5saGxtVX1+v5uZmlZeXKxgMqrW1VV1dXfL5fAwfAQAgRzBoCchdhjSwW61W/eY3v9FFF12k119/XTt37tRdd92VMjYej0uSysvLtXXr1jF3sPT09Oiaa66RdHiqOwAAAAAAAAAAAAAAAJArGhoa5PP51NTUpKqqquT2srIy+Xw+NTQ0ZLE6AAAAID8Y0sAuSatWrVIgENB3vvMdffe731U4HE4Zt3btWl133XW64YYbVFhYOGbfiSeeqH/5l38xqiQAAAAAAAAAAAAAAADAUA0NDaqrq5Pf71dvb69KS0vl8XiYvA4AAABkyLAGdkkqKCjQTTfdpJtuukm7du1SMBjUBx98IElavny5Tj31VJ1wwglGHhIAAAAAAAAAAGDeCL03mnZ/bDiuyJ5ROY82y1pgmnYeAAAAzIzFYlFNTU22ywAAAADykqEN7EdauXKlVq5cOVvpAQAAAAAAAAAA5g273S6btVjex2OG5bRZi2W32w3LBwAAAAAAAABGmLUGdgAAAAAAAAAAAGTG4XAoFN6uaDSaNi4UCsnr9aq9vV1utzttrN1ul8PhMLJMAAAAAAAAAJgxGtgBAAAAAAAAAABygMPhyLjh3O12a926dbNcEQAAAAAAQHr9/f0Kh8NjtoVCoTFfj+RyuWSz2eakNgC5y/AG9v379+vJJ5/Uq6++qmg0qlgspng8PmG8yWTSAw88YHQZAAAAAAAAAAAAAAAAAAAAmEXhcFgVFRUp93m93nHbAoEAN+UDMK6BfXR0VN/4xjfU1tamgwcPZvSceDxOAzsAAAAAAAAAAAAAAAAAAEAecrlcCgQCY7bFYjFFIhE5nU5ZrdZx8QBgWAP71VdfrR/+8IeKx+OyWCwqKSnR7t27ZTKZtGrVKn3wwQc6cOCApMNT1+12O8tAAAAAAAAAAAAAAAAAAAAA5CmbzZZyonp1dXUWqgGQL8xGJPnlL3+p9vZ2SYcb2Xfv3q0nn3wyuf+dd97Rvn37FAqF9H/+z/+R2WzW8uXL9fOf/1xvv/22ESUAAAAAAAAAAAAAAAAAAAAAAHKcIQ3smzdvliSdeuqp+t73vqfly5fLZDKNizv55JN19913q6OjQ3/84x/12c9+Vnv37jWiBAAAAAAAAAAAAAAAAAAAAABAjjOkgf23v/2tTCaTvvzlL2cUf/HFF2vDhg1655139O1vf9uIEgAAAAAAAAAAAAAAAAAAAAAAOc6QBvbdu3dLktauXZvcZrFYko8HBwfHPaexsVHxeFyPP/64ESUAAAAAAAAAAAAAAAAAAAAAAHJcgZHJjjnmmOTjpUuXJh/v3r1bq1evHhN73HHHSZIikYiRJQAAAAAAAGAO9Pf3KxwOj9kWi8UUiUTkdDpltVrH7HO5XLLZbHNZIgAAAAAAAAAAAIAcZEgD+/HHH6/u7m69//77Y7YtWrRIQ0NDeu2118Y1sL/zzjuSpIGBASNKAAAAAAAAwBwKh8OqqKjIOD4QCGjdunWzWBEAAAAAAAAAAMhnqYbnhEKhMV+PxPAcIH8Z0sB+2mmnqbu7W//93/+t9evXH05cUKAzzzxTL730kjZv3qyLLrpozHPuueceSdKJJ55oRAkAAAAAAMyZkZER+f1+9fb2qrS0VB6PRxaLJdtlAXPK5XIpEAiM2RYKheT1etXe3i632z0uHgAAAAAAAAAAYCLphud4vd5x2xieA+QvQxrYa2pq1NXVpSeffFJf/vKXk9u9Xq9efPFFPf7449qwYYMuv/xyHTx4UN///vf15JNPymQyqa6uzogSAAAAAACYEx0dHWpqalIkEkluczqdamtrU0NDQ/YKA+aYzWab8KSw2+3mhDEAAAAAAAAAAJiSVMNzYrGYIpGInE6nrFbruHgA+cmQBvZLL71UGzdu1C9+8Qu9++67Ov744yVJ1113nTZv3qzf/e53am9vV3t7+5jnORwO/eM//qMRJQAAAAAAMOs6OjrU2Nio2tpabdmyReXl5QoGg2ppaVFjY6N8Ph9N7AAAAAAAAAAAAMA0TDQ8p7q6OgvVAJhNZiOSlJWV6a233lIwGNRRRx2V3F5QUKD/9//+n6688koVFBQoHo8rHo9Lki666CL5/X4tX77ciBIAAAAAAJhVIyMjampqUm1trTo7O1VZWaklS5aosrJSnZ2dqq2t1caNGzUyMpLtUgEAAAAAAAAAAAAAyFmGTGCXDi+Xnsry5cv1gx/8QP/1X/+lHTt2aHh4WGvWrNExxxxj1KEBAAAAAJh1fr9fkUhEW7Zskdk89n5ws9ms5uZmVVVVye/3q6amJjtFAgAAAAAAAAAAAACQ4wxrYJ/M0qVLUy7tAAAAAABAPujt7ZUklZeXp9yf2J6Iw+zo7+9XOBwesy0UCo35eiSXyyWbzTYntQEAAAAAAAAAAAAAJmdIA7vZbJbZbFZLS4u++tWvGpESAAAAAICcUlpaKkkKBoOqrKwctz8YDI6Jw+wIh8OqqKhIuc/r9Y7bFggEuKEeAAAAAAAAAAAAAHKIIQ3sixYt0tDQkDwejxHpAAAAAADIOR6PR06nUy0tLers7JTZbE7uGx0dVWtrq8rKyvhsPMtcLpcCgcCYbbFYTJFIRE6nU1ardVw8AAAAAAAAAAAAACB3GNLAvnLlSr3zzjsqKDAkHQAAAAAAOcdisaitrU2NjY2qr69Xc3OzysvLFQwG1draqq6uLvl8PlkslmyXOq/ZbLaUE9Wrq6uzUA0AAAAAAAAAAAAAYKrMk4dM7uMf/7gkjZuABgAAAADAfNLQ0CCfz6fXX39dVVVVOuqoo1RVVaVgMCifz6eGhoZslwgAAAAAAAAAAAAAQE4zZGT6jTfeqIcfflh33HGHrrjiCh111FFGpAUAAAAAIOc0NDSorq5Ofr9fvb29Ki0tlcfjYfI6AAAADNff369wODxmWygUGvP1SC6XSzabbU5qAwAAAAAAAIDpMqSBvaKiQv/xH/+hG264Qeeff76+853vqKqqyojUAAAAAADkHIvFopqammyXAQAAgHkuHA6roqIi5T6v1ztuWyAQ0Lp162a7LAAAAAAAAACYEUMa2L/4xS9Kkk4++WS9+uqr8ng8Wr16tT760Y9q+fLlaafQmUwmPfDAA0aUAQAAAAAAAAAAMG+4XC4FAoEx22KxmCKRiJxOp6xW67h4AAAAAAAAAMh1hjSwP/jggzKZTJION6TH43F1d3dr586daZ8Xj8dpYAcAAAAAAAAAAEjBZrOlnKheXV2dhWoAAAAAAAAAwBiGNLA7HI5kAzsAAAAAAAAAAAAAAAAAAAAAAKkY0sAeiUSMSAMAAAAAAAAAAAAAAAAAAAAAmMfM2S7AKO+8846amprkcrm0ePFiHXPMMfrYxz6mf//3f1d/f7+hx3ryySd19dVXa82aNVq8eLGWLVumtWvXqrGxUffcc48OHDhg6PEAAAAAAAAAAAAAAAAAAAAAYD4wZAJ7tv3sZz+T1+vVvn37ktv6+/u1bds2bdu2Tffff7+2bt2qNWvWzOg4H3zwga655hr95Cc/Gbdv37592rFjhx577DGde+65OuOMM2Z0LAAAAAAAAAAAAAAAAAAAAACYb2atgX10dFTvv/+++vv7dcIJJ8hisczKcV555RV9/vOfVywW05IlS9Tc3Kz169crFovpkUce0X333ac33nhDF110kbZt26alS5dO6zh79+7VBRdcoEAgIEm69NJL1djYqI985COyWCzauXOnnnnmGT322GNGfnsAAAAAAAAAAAAAAAAAAAAAMG8Y2sA+MjKiBx98UA8++KBefvllDQ0NyWQy6bXXXtMpp5ySjOvq6tKzzz6rZcuW6dZbb53RMW+66SbFYjEVFBToV7/6lc4999zkvk984hM66aST9NWvflVvvPGG2tra9K//+q/TOs6NN96oQCCgoqIi/ehHP9Ill1wyZv9ZZ52lSy+9VHfddZdGRkZm8i0BAAAAAAAAAJA1/f39CofDY7aFQqExX4/kcrlks9nmpDYAAAAAAAAAQP4zrIF99+7dqq+v14svvqh4PJ421ul06pJLLpHJZNJFF12kM844Y1rHfOmll+T3+yVJX/rSl8Y0ryc0NTVp8+bNCoVC2rRpk2699VYVFhZO6TjPPfecfvCDH0iS/u///b/jmtePZDKZVFAwa4PtAQAAAAAAAACYVeFwWBUVFSn3eb3ecdsCgYDWrVs322UBAAAAAAAAAOYJQzqtR0ZGdPHFF+vll1+W2WzWZZddpo9//OO64YYbUsaXl5frnHPO0UsvvaTHH3982g3snZ2dycfXXHNNyhiz2ayrrrpKzc3N2rNnj5566ildeOGFUzrOf/7nf0qSli1bNuH3BAAAAAAAAADAfOByuRQIBMZsi8ViikQicjqdslqt4+IBAAAAAAAAAMiUIQ3s3//+9/Xyyy+rsLBQP/3pT/WpT31KktI2e19yySV68cUX9dxzz037uInnLl68eMJpMJJ0/vnnJx8///zzU2pgP3TokH7yk59Iki644AIVFxdLOty0v2vXLo2MjGjFihXJ7QAAAAAAAAAA5DObzZZyonp1dXUWqgEAAAAAAAAAzDdmI5Js2bJFJpNJ1113XbJ5fTJnnnmmJGn79u3TPm4oFJIkrVmzRgUFE/fiHzn9JfGcTL366qsaGBiQJJ122mnat2+f/uEf/kF2u10Oh0NlZWVatmyZLrjgAj399NNT/yYAAAAAAAAAAAAAAAAAAAAAYIEwpIH9tddek3R4qnqmjjvuOElSX1/ftI45MDCgaDQqSVq1alXa2OXLl2vx4sWSpJ07d07pOP/93/+dfDw6OqqzzjpLmzZt0p49e5LbDx06pCeffFKf+MQn9K1vfWvSnIODg9q3b9+Y/wEAAAAAAAAAAAAAAAAAAADAfDfx2PIpSDRzl5SUZPyckZERSZLFYpnWMffv3598vGTJkknjFy9erIMHD+rAgQNTOs7777+ffPytb31LAwMD+vSnP62vf/3r+uhHP6p9+/bpscce09e+9jXt3btXX/va1+RyuVRXVzdhztbWVt1+++1TqgMAAAAAAAAAAOS2/v5+hcPhMdtisZgikYicTqesVuuYfS6XSzabbS5LBAAAAAAAAICsM6SB/ZhjjtHu3bu1c+dOnXnmmRk9Z8eOHZKkY489dlrHHBgYSD5etGjRpPFFRUWSDp8onoqDBw+OOeYFF1ygrq6uZOP9scceq7//+79XeXm5zj//fI2Ojqq5uVmXXHKJTCZTypzNzc26+eabk/+9b98+rV69ekp1AQAAAAAAAACA3BIOh1VRUZFxfCAQ0Lp162axIgAAAAAAAADIPYY0sJ966qnavXu3Xn75ZV1yySUZPefRRx+VyWTSxz72sWkds7i4OPn40KFDk8YPDg5K0rjpJlM5jnR4CnuqqfHnnXeeGhoa5PP5FAqF9Prrr+ujH/1oypxFRUXJhnoAAAAAAAAAAGaCqd+5w+VyKRAIjNkWCoXk9XrV3t4ut9s9Lh4AAAAAAAAAFhpDGtjr6+v1m9/8Rv/5n/+pm2++WcuXL08b7/P59LOf/Uwmk0mf+9znpnXMpUuXJh8fOHBg0vjEJPUlS5ZM+zjHHnts2gnzn/rUp+Tz+SRJL7/88oQN7AAAAAAAAAAAGIWp37nDZrNN+G/rdrv5dwcAAAAAAAAAGdTA/nd/93e64447tHPnTl144YX6/ve/r1NOOWVc3O7du7Vp0yb9+7//u0wmk8rLy3X55ZdP65jFxcUqKSlRX1+fenp60sZ+8MEHyQb21atXT+k4R8avWrUq49j33ntvSscBAAAAAAAAAGA6mPoNAAAAAAAAAMgnhjSwFxUV6Sc/+YlqamoUCAR02mmn6eSTT07u93q9OnDggN566y3F43HF43GVlJTosccek8lkmvZxTznlFPn9fr355psaHh5WQUHqb+fIpVM/fKJ+Mqeeemry8cjISNrYI/dPVAsAAAAAALkiFotJkob6dhqSL5EnkRcAAMwNpn4DAAAAAAAAAPKJYV3Wp59+ul5++WVt2LBBL7zwwpim8VdffVXxeDz532effbYefvhh/dVf/dWMjnneeefJ7/fr4MGDCgQCOuecc1LGPfPMM8nH1dXVUzrGiSeeKIfDoe7ubkUiEcXj8Qmb7v/4xz8mH59wwglTOg4AAAAAAHMtEolIkvq62gzPO9XP3wAAAAAAAAAAAACAhcHQMeFr1qzR888/r+eee04//elPtW3bNu3evVsjIyMqKSnRmWeeqUsuuUQXXHCBIcerr69Xa2urJGnz5s0pG9hHR0f10EMPSZKOPvporV+/fsrH+dznPqe77rpL+/bt069//Wt98pOfTBnX0dGRfHzeeedN+TgAAAAAAMwlp9MpSSqpbVJhyeoZ5xvq26m+rrZkXgAAAAAAAAAAAAAAPszQBvaE8847b04auM8++2x5PB75/X498MAD2rBhg84999wxMW1tbQqFQpKkm266SYWFhWP2P/3008mm9g0bNujBBx8cd5x/+Id/0D333KOBgQHdfPPNeu6553TUUUeNiWlvb9fTTz8tSbrooou0evXML/wDAAAAADCbrFarJKmwZLWKVqwxPC8AAJgfRkZG5Pf71dvbq9LSUnk8HlkslmyXBQAAAAAAAADIU+ZsFzBTmzZtktVq1fDwsC688EK1trbqt7/9rZ566ildd911+upXvypJWrt2rZqamqZ1DIfDoa9//euSpNdff11nn322Nm/erEAgoKeeeko33nijrr76aknSUUcdpbvuusuQ7w0AAAAAAAAAgGzq6OjQmjVrtH79el1xxRVav3691qxZM2ZFUgAAAAAAAAAApsKQCez/63/9L3m9Xn36059WQcGsDHWf0JlnnqlHH31UXq9X+/bt0y233DIuZu3atdq6dauWLl067eP8f//f/6f3339f3/rWt7R9+3Z98YtfHBdz3HHHqbOzUyeddNK0jwMAAAAAAAAAQC7o6OhQY2OjamtrtWXLFpWXlysYDKqlpUWNjY3y+XxqaGjIdpkAAAAAAAAAgDxjyAT2H/3oR6qrq9OKFSt0/fXX67nnnjMibcYuvvhivfbaa/rKV76itWvXymaz6eijj9ZZZ52lb33rW3rllVe0Zs3Ml0JvbW3V888/r7/5m7+R0+lUUVGRli1bpo997GP6xje+oTfeeEPnnnuuAd8RAAAAAAAAAADZMzIyoqamJtXW1qqzs1OVlZVasmSJKisr1dnZqdraWm3cuFEjIyPZLhUAAAAAAAAAkGcMGZe+dOlS7d+/X++//76++93v6rvf/a4cDoeuuOIKXXHFFTr11FONOExaJ554ou68807deeedU3peTU2N4vF4xvHnnnsuTeoAAAAAAAAAgHnN7/crEoloy5YtMpvHzsIxm81qbm5WVVWV/H6/ampqslMkAAAAAAAAACAvGTKBfffu3frxj3+sSy+9VIsWLVI8Htc777yjb37zm/roRz+qM844Q3fccYd6enqMOBwAAAAAAAAAAJhFvb29kqTy8vKU+xPbE3EAAAAAAAAAAGTKkAb2oqIife5zn9Njjz2md999V/fff78+8YlPyGQyKR6P67XXXtM//uM/yul0av369XrggQe0d+9eIw4NAAAAAAAAAAAMVlpaKkkKBoMp9ye2J+IAAAAAAAAAAMhUgdEJjzrqKH3xi1/UF7/4RfX29uqRRx7Rww8/rEAgoHg8rmeffVbPPvusbrjhBn3mM5+R1+tVQ0OD0WUAAAAAAADAQN3d3YpGo2ljQqHQmK/p2O12ORwOQ2oDABjP4/HI6XSqpaVFnZ2dMpv/Mg9ndHRUra2tKisrk8fjyWKVAAAAAAAAAIB8ZHgD+5FKS0v1la98RV/5yle0Y8cOtbe365FHHtGOHTs0ODiozs5O/fSnP9Xw8PBslgEAAAAAAIAZ6O7u1smukzUQG8go3uv1ThpTbC3W9vB2mtgBIEdZLBa1tbWpsbFR9fX1am5uVnl5uYLBoFpbW9XV1SWfzyeLxZLtUgEAAAAAAAAAeWZWG9iPdNJJJ+n222/X7bffrkceeUTXX3+99uzZo3g8PlclAAAAAAAAYBqi0agGYgNade0qFa0smjBu9NCohqJDKrQXyrzIPGHc4K5B9dzbo2g0SgM7AOSwhoYG+Xw+NTU1qaqqKrm9rKxMPp+P1VUBAAAAAAAAANMyZw3s7733nh599FH98Ic/1EsvvTRXhwUAAAAAAIBBilYWyeq0pg9aOze1AADmRkNDg+rq6uT3+9Xb26vS0lJ5PB4mrwMAAAAAAAAApm1WG9gPHjyojo4OPfzww/r1r3+tkZGR5MR1k8mk6upqXXnllbNZAgAAAAAAAAAAmAGLxaKamppslwEAAAAAAAAAmCcMb2AfHh7Wz3/+cz388MP62c9+plgsJknJxvVTTjlFV155pa644gqdeOKJRh8eAAAAAAAAAAAAAAAAAAAAAJCjDGtg9/v9+uEPfyifz6cPPvhA0l+a1k844QR94Qtf0JVXXqnTTz/dqEMCAAAAAAAAAAAAAAAAAAAAAPKIIQ3sJ554onp6eiT9pWl92bJlamxs1JVXXqnzzz9fJpPJiEMBAAAAAAAAAAAAAAAAAAAAAPKUIQ3sO3fulCQVFRXpoosu0pVXXqmLLrpIixYtMiI9AAAAAAAAAAAAAAAAAAAAAGAeMKSBff369bryyiv1uc99TsuWLTMiJQAAAAAAAAAAQE7r7u5WNBpNGxMKhcZ8Tcdut8vhcBhSGwAAAAAAAADkKkMa2H/9618bkQYAAAAAAAAAACAvdHd362SXWwOx/ozivV7vpDHFVpu2h0M0sQMAAAAAAACY1wxpYAcAAAAAAAAAAFhIotGoBmL9KqltUmHJ6gnj4sOHNLz3XRUsO16mgkUTxg317VRfV5ui0SgN7AAAAAAAAADmtVlpYA8EAnryyScVDAb1/vvvS5KOOeYYlZeX65Of/KQqKipm47AAAAAAAAAAAABzqrBktYpWrEkftOqUuSkGAAAAAAAAAPKAoQ3sr7/+uq699lq99NJLE8bccsstOuecc/Td735Xp512mpGHBwAAAAAAAAAAAAAAAAAAAADkMMMa2J988kldfPHFOnTokOLxuCSpsLBQJSUlkqS+vj4NDQ1Jkn7729/q7LPPVldXl/76r//aqBIAAAAAAAAwgf7+foXD4THbYrGYIpGInE6nrFbrmH0ul0s2m20uSwQAAAAAAAAAAACwABjSwB6NRnXZZZdpcHBQZrNZX/rSl/R3f/d3OvPMM1VQcPgQIyMjeuWVV3Tffffpe9/7ngYHB3XZZZdpx44dySZ3AAAAAAAAzI5wOKyKioqM4wOBgNatWzeLFQEAAAAAAAAAAABYiAxpYN+0aZP27t2rRYsW6Sc/+Yk+9alPjYuxWCw666yzdNZZZ+lzn/ucLr74Yu3du1ebNm3S17/+dSPKAAAAAAAAwARcLpcCgcCYbaFQSF6vV+3t7XK73ePiAQAAAAAAAAAAAMBohjSwb926VSaTSTfccEPK5vUPu/DCC3XjjTfqzjvv1NatW2lgBwAAAAAAmGU2m23Cieput5tp6wAAAAAAAAAAAADmhNmIJG+//bYk6ZJLLsn4OYnYt956y4gSAAAAAAAAAAAAAAAAAAAAAAA5zpAG9oGBAUnS4sWLM35OInZwcNCIEgAAAAAAAAAAAAAAAAAAAAAAOc6QBvYVK1ZIkl555ZWMn5OIPf74440oAQAAAAAAAAAAAAAAAAAAAACQ4wqMSOLxeNTe3q5vfvObuvzyy3XUUUeljd+/f7++9a1vyWQyyePxGFECAAAAACCP9ff3KxwOj9kWCoXGfD2Sy+WSzWabk9oWgqG+nWn3x4cPaXjvuypYdrxMBYumnQcAABiju7tb0Wg0bUy691IfZrfb5XA4DKkNAAAAAAAAAIDJGNLAft1116m9vV1vv/22Pv7xj+v+++/XWWedlTJ227Ztuvbaa/XHP/5RJpNJ1113nRElAAAAAADyWDgcVkVFRcp9Xq933LZAIKB169bNdlnznt1uV7HVpr6uNsNyFlttstvthuUDAABjdXd362SXWwOx/oziU72X+rBiq03bwyGa2AEAAAAAAAAAc8KQBvbq6mpdf/31+q//+i+9/vrrOuecc3TqqafqnHPO0XHHHSeTyaR3331XL774ov7whz8kn3f99derurraiBIAAAAAAHnM5XIpEAiM2RaLxRSJROR0OmW1WsfFY+YcDoe2h0MZTXD1er1qb2+X2+1OG8sEVwAAZlc0GtVArF8ltU0qLFk9YdxUVlDp62pTNBrlNRwAAAAAAAAAMCcMaWCXpP/4j/+QzWbTnXfeqdHRUQWDwTHN6pIUj8clSWazWRs3btQ3v/lNow4PAAAAAMhjNpst5UR1bnqefQ6HI+NmNbfbzeR7AAByRGHJahWtWJM+aNUpc1PMAhWLxSQdvgnACIk8ibwAAAAAAAAAMF8Z1sBuMpn0b//2b7rqqqt0zz336Mknn9SOHTvGxJx00kn65Cc/qf/9v/+3ysvLjTo0AAAAAAAAAADAnIpEIpKkvq42w/NyIycAAAAAAACA+cywBvaE8vJyfec735EkHTp0SB988IEkafny5Vq0aOJlSgEAAAAAAAAAAPKF0+mUJJXUNqmwZPWM8w317VRfV1syLwAAAAAAAADMV4Y3sB9p0aJFOv7442fzEAAAAAAAAJhlsVhMkjS4a9CQfIk8ibwAAOQjq9UqSSosWa2iFWsMzwsAAAAAAAAA89W0Gth//vOf69Zbb5Ukbdy4UVdccUXGz3344Yd1xx13SJL+7d/+TZ/85CenUwIAAAAAAADmSCQSkST13NtjeN7q6mpDcwIAAAAAAAAAAADIbVNuYI/H4/rKV76iHTt26JOf/OSUmtcl6Qtf+IIefPBBPfnkk2pqatKrr7461RIAAAAAAAAwh5xOpyRp1bWrVLSyaMb5BncNqufenmReAEDmEqtXDPXtNCRfIg+rYgAAAAAAAAAA5sqUG9h/85vf6I033pDFYtFdd9015QOaTCbdfffdOv300xUMBvXMM8/o/PPPn3IeAAAAAAAAzA2r1SpJKlpZJKvTanheAEDmEqti9HW1GZ6XVTEAAAAAAAAAAHNhyg3sjz32mCTpggsu0CmnnDKtg55yyin61Kc+pZ///Ofy+Xw0sAMAAAAAAAAAkIHE6hUltU0qLFk943xDfTvV19XGqhgAAAAAAAAAgDkz5Qb2l156SSaTSRdffPGMDlxbW6snnnhCv/3tb2eUBwAAAAAAAACAhSKxekVhyWoVrVhjeF4AAAAAAAAAAGabeapPeOeddyRJJ5988owOvHbtWkl/We4UAAAAAAAAAAAAAAAAAAAAADC/TbmBfe/evZKkY445ZkYHTjx/3759M8oDAAAAAAAAAAAAAAAAAAAAAMgPU25gP+qooyRJe/bsmdGBE89funTpjPIAAAAAAAAAAAAAAAAAAAAAAPLDlBvYjz32WEnSf//3f8/owKFQSJJ03HHHzSgPAAAAAAAAAAAAAAAAAAAAACA/TLmB/eyzz1Y8HtfPfvazGR34Jz/5iUwmkz72sY/NKA8AAAAAAAAAAAAAAAAAAAAAID9MuYH9M5/5jCTpV7/6lZ577rlpHfTZZ5/Vr371qzH5AAAAAAAAAAAAAAAAAAAAAADz25Qb2D/3uc/J6XQqHo/rsssu044dO6b0/DfeeEOXX365TCaTnE6nGhsbp1oCAAAAAAAAAAAAAAAAAAAAACAPTbmBvbCwUHfccYckaffu3aqoqNCmTZt08ODBtM87cOCA7r77bp111lnavXu3JKmtrU0FBQXTKBsAAAAAAAAAAAAAAAAAAAAAkG+m1T3e0NCg22+/Xf/yL/+igwcP6uabb9Ztt90mj8ejiooKHXfccVq8eLEOHjyod999V7/73e/k9/t18OBBxeNxSdLtt9+u+vp6I78XAAAAAAAAAAAAAAAAAAAAAEAOm/b489tuu02rVq3SjTfeqP7+fh04cEC/+MUv9Itf/CJlfKJx3Waz6T//8z919dVXT/fQAAAAAAAAAAAAAAAAAAAAAIA8ZJ7Jk6+55hq98cYbuvnmm2W32xWPxyf8n91uV1NTk9544w2a1wEAAAAAAAAAAAAAAAAAAABgAZr2BPaElStX6o477tAdd9yhP/zhD3r11VfV19en/fv3a+nSpSopKdHpp5+uU0891Yh6AQAAAAAAAAAAAAAAAAAAAAB5asYN7Ec69dRTaVQHAAAAAAAAAAAAAAAAAAAAAKRkznYBAAAAAAAAAAAAAAAAAAAAAICFgQZ2AAAAAAAAAAAAAAAAAAAAAMCcoIEdAAAAAAAAAAAAAAAAAAAAADAnaGAHAAAAAAAAAAAAAAAAAAAAAMwJGtgBAAAAAAAAAAAAAAAAAAAAAHOiINsFAAAAAACA3NHf369wODxmWygUGvP1SC6XSzabbU5qAwAAfzHUtzPt/vjwIQ3vfVcFy46XqWDRtPMAAAAAAAAAAGC0edPA/s477+jb3/62tm7dqp07d6qoqEgf+chHdPnll+vLX/7yjC6mP/jgg7rmmmsyit28ebOuvvrqaR8LAAAAAIBsCofDqqioSLnP6/WO2xYIBLRu3brZLgsAAPyZ3W5XsdWmvq42w3IWW22y2+2G5QMAAAAAAAAAIJ150cD+s5/9TF6vV/v27Utu6+/v17Zt27Rt2zbdf//92rp1q9asWZPFKgEAAAAAyH0ul0uBQGDMtlgspkgkIqfTKavVOi4eAADMHYfDoe3hkKLRaNq4UCgkr9er9vZ2ud3utLF2u10Oh8PIMgEAAAAAAAAAmFDeN7C/8sor+vznP69YLKYlS5aoublZ69evVywW0yOPPKL77rtPb7zxhi666CJt27ZNS5cundHxfvnLX2rlypUT7l+1atWM8gMAAAAAkE02my3lRPXq6uosVAMAAFJxOBwZN5y73W5WSwEAAAAAAAAA5JS8b2C/6aabFIvFVFBQoF/96lc699xzk/s+8YlP6KSTTtJXv/pVvfHGG2pra9O//uu/zuh4a9euldPpnFnRAAAAAAAAAAAAAAAAAAAAALAAmbNdwEy89NJL8vv9kqQvfelLY5rXE5qampLLo27atElDQ0NzWiMAAAAAAAAAAAAAAAAAAAAA4LC8bmDv7OxMPr7mmmtSxpjNZl111VWSpD179uipp56ai9IAAAAAAAAAAAAAAAAAAAAAAB+S1w3szz33nCRp8eLFqqiomDDu/PPPTz5+/vnnZ70uAAAAAAAAAAAAAAAAAAAAAMB4ed3AHgqFJElr1qxRQUHBhHEul2vcc6brmmuu0cqVK7Vo0SLZ7XZVVlbqn/7pn/Q///M/M8oLAAAAAAAAAAAAAAAAAAAAAPPdxF3fOW5gYEDRaFSStGrVqrSxy5cv1+LFi3Xw4EHt3LlzRsd9+umnk4/7+vrU19enF198UW1tbbr77rt13XXXzSg/AAAAAABArhrcNZh2/+ihUQ1Fh1RoL5R50cRzEybLAwBAPhnqS3/dIT58SMN731XBsuNlKlg07TwAAAAAAAAAMF/kbQP7/v37k4+XLFkyaXyigf3AgQPTOt5f/dVfqaGhQeeee65Wr14tSXrrrbf02GOPyefzaWBgQH//938vk8mka6+9Nm2uwcFBDQ7+5ULtvn37plUTAAAAAADAXLDb7Sq2Fqvn3h7DchZbi2W32w3LBwDAXDv8+mhTX1ebYTmLrTZeHwEAAAAAAADMe3nbwD4wMJB8vGjRxBNLEoqKiiRJsVhsyse69NJLtWHDBplMpjHbP/axj+nzn/+8urq61NDQoKGhIX3lK1/RJZdcohUrVkyYr7W1VbfffvuU6wAAAAAAAMgGh8Oh7eHtydXwJhIKheT1etXe3i6325021m63y+FwGFkmAABz6vDrY4jXRwAAAAAAAACYorxtYC8uLk4+PnTo0KTxiYnnVqt1ysdatmxZ2v21tbX653/+Z912223q7+/XAw88oFtvvXXC+ObmZt18883J/963b19yqjsAAAAAAEAucjgcGTfUud1urVu3bpYrAgAg+3h9BAAAAAAAAICpM2e7gOlaunRp8vGBAwcmjT948KAkacmSJbNSz7XXXpuc0P7MM8+kjS0qKtJRRx015n8AAAAAAAAAAAAAAAAAAAAAMN/lbQN7cXGxSkpKJEk9PT1pYz/44INkA/tsTTo/7rjjkvX8z//8z6wcAwAAAAAAAAAAAAAAAAAAAADyWd42sEvSKaecIkl68803NTw8PGFcOBxOPna73bNWT2ICOwAAAAAAAAAAAAAAAAAAAABgvLxuYD/vvPMkSQcPHlQgEJgw7plnnkk+rq6unpVa3nvvPUWjUUnSypUrZ+UYAAAAAAAAAAAAAAAAAAAAAJDP8rqBvb6+Pvl48+bNKWNGR0f10EMPSZKOPvporV+/flZquffeexWPxyVJ559//qwcAwAAAAAAAAAAAAAAAAAAAADyWV43sJ999tnyeDySpAceeEAvvPDCuJi2tjaFQiFJ0k033aTCwsIx+59++mmZTCaZTCZdffXV454fiUT0yiuvpK2jq6tLX//61yVJVqtV11xzzXS+HQAAAAAAAAAAAAAAAAAAAACY1wqyXcBMbdq0SdXV1YrFYrrwwgt1yy23aP369YrFYnrkkUd07733SpLWrl2rpqamKeePRCJav369zj33XF188cU6/fTTddxxx0mS3nrrLfl8Pvl8vuT09TvuuEMnnHCCcd8gAAAAAAAAAAAAAAAAAAAAAMwTed/AfuaZZ+rRRx+V1+vVvn37dMstt4yLWbt2rbZu3aqlS5dO+zgvvPBCygnvCTabTXfddZeuvfbaaR8DAAAAAAAAAAAAAAAAAAAAAOazvG9gl6SLL75Yr732mjZt2qStW7eqp6dHixYt0po1a3TZZZfphhtukM1mm1buiooKtbe364UXXtC2bdvU29uraDSq4eFhLV++XKeeeqr++q//Wn/7t3+bnMwOAAAAAAAAAAAAAAAAAAAAABhvXjSwS9KJJ56oO++8U3feeeeUnldTU6N4PD7h/qVLl+rKK6/UlVdeOdMSAQAAAAAAAAAAAAAAAAAAAGBBM2e7AAAAAAAAAAAAAAAAAAAAAADAwkADOwAAAAAAAAAAAAAAAAAAAABgTtDADgAAAAAAAAAAAAAAAAAAAACYEzSwAwAAAAAAAAAAAAAAAAAAAADmBA3sAAAAAAAAAAAAAAAAAAAAAIA5QQM7AAAAAAAAAAAAAAAAAAAAAGBO0MAOAAAAAAAAAAAAAAAAAAAAAJgTNLADAAAAAAAAAAAAAAAAAAAAAOYEDewAAAAAAAAAAAAAAAAAAAAAgDlRkO0CAAAAAAAAAAAA5oP+/n6Fw+Ex20Kh0JivR3K5XLLZbHNSGwAAAAAAAADkChrYAQAAAAAAAAAADBAOh1VRUZFyn9frHbctEAho3bp1s10WAAAAAAAAAOQUGtgBAAAAAAAAAAAM4HK5FAgExmyLxWKKRCJyOp2yWq3j4gEAAAAAAABgoaGBHQAAAAAAAAAAwAA2my3lRPXq6uosVAMAAAAAAAAAucmc7QIAAAAAAAAAAAAAAAAAAAAAAAsDDewAAAAAAAAAAAAAAAAAAAAAgDlRkO0CAAAAAAAAAADA9PX39yscDo/ZFgqFxnw9ksvlks1mm5PaAAAAAAAAAAD4MBrYAQAAAAAAAADIY+FwWBUVFSn3eb3ecdsCgYDWrVs322UBAAAAAAAAAJASDewAAAAAAAAAAOQxl8ulQCAwZlssFlMkEpHT6ZTVah0XDwAAAAAAAABAttDADgAAAAAAAABAHrPZbCknqldXV2ehGgAAAAAAAAAA0jNnuwAAAAAAAAAAAAAAAAAAAAAAwMJAAzsAAAAAAAAAAAAAAAAAAAAAYE7QwA4AAAAAAAAAAAAAAAAAAAAAmBM0sAMAAAAAAAAAAAAAAAAAAAAA5gQN7AAAAAAAAAAAAAAAAAAAAACAOUEDOwAAAAAAAAAAAAAAAAAAAABgTtDADgAAAAAAAAAAAAAAAAAAAACYEzSwAwAAAAAAAAAAAAAAAAAAAADmBA3sAAAAAAAAAAAAAAAAAAAAAIA5QQM7AAAAAAAAAAAAAAAAAAAAAGBO0MAOAAAAAAAAAAAAAAAAAAAAAJgTNLADAAAAAAAAAAAAAAAAAAAAAOYEDewAAAAAAAAAAAAAAAAAAAAAgDlBAzsAAAAAAAAAAAAAAAAAAAAAYE7QwA4AAAAAAAAAAAAAAAAAAAAAmBM0sAMAAAAAAAAAAAAAAAAAAAAA5gQN7AAAAAAAAAAAAAAAAAAAAACAOUEDOwAAAAAAAAAAAAAAAAAAAABgTtDADgAAAAAAAAAAAAAAAAAAAACYEzSwAwAAAAAAAAAAAAAAAAAAAADmBA3sAAAAAAAAAAAAAAAAAAAAAIA5QQM7AAAAAAAAAAAAAAAAAAAAAGBO0MAOAAAAAAAAAAAAAAAAAAAAAJgTNLADAAAAAAAAAAAAAAAAAAAAAOZEQbYLAAAAAAAAQP7p7+9XOBwesy0UCo35eiSXyyWbzTYntQEAAAAAAAAAAADIXTSwAwAAAAAAzEPd3d2KRqNpY9I1nH+Y3W6Xw+FI/nc4HFZFRUXKWK/XO25bIBDQunXrJj0OAAAAAAAAAAAAgPmNBnYAAAAAAIB5pru7W27XyeqPDWQUn6rh/MNs1mKFwtuTTewul0uBQGBMTCwWUyQSkdPplNVqHbPP5XJlWD0AAAAAAAAA4P9n797jbKr3x4+/P3uGmWHcx63IbRJFSIRJLpVOSUl11ElSp1LKVxJFp3siRSkpRfdQqXTRqUSEQpwimsk9d+U65m5m3r8//PZqj7kzs+c94/V8PDwas9dee+31epyzrL3fe20AAMoyBtgBAAAAAADKmL1790pScoq8e1WENK/py3W55HSVLQczpWFVn0SEulyXi/0rU/p9kix79+71BtgrVKiQ4xXVY2JiTvwJAAAAAAAAAAAAACizGGAHAAAAAAAoo5rX9Mk5dUPyXCamfpA2BgAAAAAAAAAAAABEJPdLcAEAAAAAAAAAAAAAAAAAAAAAUIQYYAcAAAAAAAAAAAAAAAAAAAAABAUD7AAAAAAAAAAAAAAAAAAAAACAoGCAHQAAAAAAAAAAAAAAAAAAAAAQFAywAwAAAAAAAAAAAAAAAAAAAACCggF2AAAAAAAAAAAAAAAAAAAAAEBQlJkB9j/++EOGDRsmzZo1k4oVK0r16tWlXbt28swzz0hSUlKxPGZSUpI0btxYnHPinJOGDRsWy+MAAAAAAAAAAAAAAAAAAAAAQFkQWtIbUBQ+//xz6devn8THx3u/S0pKkhUrVsiKFStk6tSpMmfOHImOji7Sx3344Ydl8+bNRbpOAAAAAAAAAAAAAAAAAAAAACirSv0V2H/++Wfp27evxMfHS2RkpIwePVp++OEHmTdvntx2220iIrJu3Trp2bOnHD58uEgf9/nnn5fw8HCpVKlSka0XAAAAAAAAAAAAAAAAAAAAAMqqUj/APmTIEElOTpbQ0FD55ptvZNSoUdKxY0fp3r27vPrqqzJu3DgROTrEPn78+CJ5zIyMDLntttskIyNDRo0aJdWrVy+S9QIAAAAAAAAAAAAAAAAAAABAWVaqB9iXL18uixYtEhGRf//739KxY8dsywwbNkyaN28uIiITJ06UI0eOnPDjTpw4UVauXClnnHGG3H///Se8PgAAAAAAAAAAAAAAAAAAAAA4GZTqAfbZs2d7P9988805LuPz+aR///4iInLw4EH57rvvTugx//jjD3n44YdFROSVV16R8uXLn9D6AAAAAAAACiIjI0MWLFggM2bMkAULFkhGRkZJbxIAAAAAAAAAAAAAFFqpHmBfvHixiIhUrFhR2rZtm+tyXbp08X5esmTJCT3moEGDJDExUW688Ubp2rXrCa0LAAAAAACgID7++GOJjo6Wbt26yb/+9S/p1q2bREdHy8cff1zSmwYAAAAAAAAAAAAAhVKqB9hjY2NFRCQ6OlpCQ0NzXa5Zs2bZ7nM8Zs6cKV9++aVUq1ZNxo8ff9zrAQAAAAAAKKiPP/5YrrnmGmnZsqX8+OOPcvjwYfnxxx+lZcuWcs011zDEDgAAAAAAAAAAAKBUKbUD7CkpKbJ3714REalXr16ey1arVk0qVqwoIiLbtm07rsc7cOCA3HPPPSIiMnbsWKlZs+ZxrQcAAAAAAKCgMjIyZNiwYXL55ZfL7NmzpUOHDhIZGSkdOnSQ2bNny+WXXy733XefZGRklPSmAgAAAAAAAAAAAECBlNoB9sOHD3s/R0ZG5ru8f4A9ISHhuB5v+PDhsmfPHunYsaPcdtttx7UOv9TUVImPj8/yBwAAAAAA4FiLFi2SLVu2yKhRo8Tny/oyjs/nk5EjR8rmzZtl0aJFJbSFAAAAAAAAAAAAAFA4pXaAPSUlxfu5fPny+S4fFhYmIiLJycmFfqzvv/9eXn/9dQkNDZVXXnlFnHOFXkegMWPGSJUqVbw/9evXP6H1AQAAAACAsmnXrl0iItKiRYscb/f/3r8cAAAAAAAAAAAAAFhXagfYw8PDvZ/T0tLyXT41NVVERCIiIgr1OKmpqXL77beLqsqQIUPk7LPPLtyG5mDkyJFy6NAh78+2bdtOeJ0AAAAAAKDsqVu3roiIrFmzJsfb/b/3LwcAAAAAAAAAAAAA1pXaAfZKlSp5PyckJOS7fGJiooiIREZGFupxRo8eLb///rvUr19fHnvsscJtZC7CwsKkcuXKWf4AAAAAAAAcq3PnztKwYUN56qmnJDMzM8ttmZmZMmbMGGnUqJF07ty5hLYQAAAAAAAAAAAAAAontKQ34HiFh4dLjRo1ZN++fbJ9+/Y8lz1w4IA3wF6/fv1CPc7TTz8tIiIXXXSRfP755zku4193YmKizJw5U0REatWqJd27dy/UYwEAAAAAAAQKCQmR8ePHyzXXXCO9e/eWkSNHSosWLWTNmjUyZswY+eKLL2TWrFkSEhJS0psKAAAAAAAAAAAAAAVSagfYRUTOPPNMWbRokWzYsEHS09MlNDTnpxMXF+f93Lx580I9RlpamoiIvPHGG/LGG2/kuezevXvl+uuvFxGRLl26MMAOAAAAAABOWJ8+fWTWrFkybNgw6dSpk/f7Ro0ayaxZs6RPnz4luHUAAAAAAAAAAAAAUDileoD9/PPPl0WLFkliYqKsXLlSzjvvvByXW7hwofdzTExMsDYPAAAAAACgSPTp00euvPJKWbRokezatUvq1q0rnTt35srrAAAAAAAAAAAAAEodX0lvwIno3bu393NuV0fPzMyUt99+W0REqlatKt26dSvUY6hqvn8aNGggIiINGjTwfrdgwYLjek4AAAAAAAA5CQkJka5du8r1118vXbt2ZXgdAAAAAAAAAAAAQKlUqgfY27dvL507dxYRkWnTpsmPP/6YbZnx48dLbGysiIgMGTJEypUrl+X2BQsWiHNOnHMyYMCAYt9mAAAAAAAAAAAAAAAAAAAAADhZhZb0BpyoiRMnSkxMjCQnJ0uPHj1k1KhR0q1bN0lOTpaZM2fKq6++KiIiTZs2lWHDhpXw1gIAAAAAAAAAAAAAAAAAAADAyavUD7C3adNG3n//fenXr5/Ex8fLqFGjsi3TtGlTmTNnjlSqVKkEthAAAAAAAAAAAAAAAAAAAAAAICLiK+kNKAq9evWS1atXy9ChQ6Vp06ZSoUIFqVq1qpx77rny9NNPy88//yzR0dElvZkAAAAAAAAAAAAAAAAAAAAAcFIr9Vdg92vQoIFMmDBBJkyYUKj7de3aVVT1hB57y5YtJ3R/AAAAAAAAAAAAAAAAAAAAADgZlIkrsAMAAAAAAAAAAAAAAAAAAAAA7GOAHQAAAAAAAAAAAAAAAAAAAAAQFAywAwAAAAAAAAAAAAAAAAAAAACCggF2AAAAAAAAAAAAAAAAAAAAAEBQhJb0BgAAAAAAAKBoJScni4hI7N6MIlmffz3+9QIAAAAAAAAAAADA8WKAHQAAAAAAoIzZsmWLiIj0+zilyNcbExNTpOsEAAAAAAAAAAAAcHJhgB0AAAAAAKCMadiwoYiIvNsnXJpHhZzw+mL3Zki/j1O89QIAAAAAAAAAAADA8WKAHQAAAAAAoIyJiIgQEZHmUSFyTt0TH2A/dr0AAAAAAAAAAAAAcLx8Jb0BAAAAAAAAAAAAAAAAAAAAAICTAwPsAAAAAAAAAAAAAAAAAAAAAICgYIAdAAAAAAAAAAAAAAAAAAAAABAUDLADAAAAAAAAAAAAAAAAAAAAAIKCAXYAAAAAAAAAAAAAAAAAAAAAQFAwwA4AAAAAAAAAAAAAAAAAAAAACAoG2AEAAAAAAAAAAAAAAAAAAAAAQcEAOwAAAAAAAAAAAAAAAAAAAAAgKBhgBwAAAAAAAAAAAAAAAAAAAAAEBQPsAAAAAAAAAAAAAAAAAAAAAICgYIAdAAAAAAAAAAAAAAAAAAAAABAUDLADAAAAAAAAAAAAAAAAAAAAAIKCAXYAAAAAAAAAAAAAAAAAAAAAQFAwwA4AAAAAAAAAAAAAAAAAAAAACIrQkt4AAAAAAAAAZJeUlCRxcXFZfpecnCxbtmyRhg0bSkRERJbbmjVrJhUqVAjmJgIAAAAAAAAAAABAoTHADgAAAAAAYFBcXJy0bdu2wMuvXLlSzjnnnGLcIgAAAAAAAAAAAAA4cQywAwAAAAAAGNSsWTNZuXJllt/FxsZKv3795N1335XmzZtnWx4AAAAAAAAAAAAArGOAHQAAAAAAwKAKFSrkekX15s2bc7V1AAAAAAAAAAAAAKWSr6Q3AAAAAAAAAAAAAAAAAAAAAABwcmCAHQAAAAAAAAAAAAAAAAAAAAAQFAywAwAAAAAAAAAAAAAAAAAAAACCggF2AAAAAAAAAAAAAAAAAAAAAEBQMMAOAAAAAAAAAAAAAAAAAAAAAAgKBtgBAAAAAAAAAAAAAAAAAAAAAEHBADsAAAAAAAAAAAAAAAAAAAAAICgYYAcAAAAAAAAAAAAAAAAAAAAABAUD7AAAAAAAAAAAAAAAAAAAAACAoGCAHQAAAAAAAAAAAAAAAAAAAAAQFAywAwAAAAAAAAAAAAAAAAAAAACCggF2AAAAAAAAAAAAAAAAAAAAAEBQMMAOAAAAAAAAAAAAAAAAAAAAAAgKBtgBAAAAAAAAAAAAAAAAAAAAAEHBADsAAAAAAAAAAAAAAAAAAAAAICgYYAcAAAAAAAAAAAAAAAAAAAAABAUD7AAAAAAAAAAAAAAAAAAAAACAoGCAHQAAAAAAAAAAAAAAAAAAAAAQFAywAwAAAAAAAAAAAAAAAAAAAACCggF2AAAAAAAAAAAAAAAAAAAAAEBQMMAOAAAAAAAAAAAAAAAAAAAAAAgKBtgBAAAAAAAAAAAAAAAAAAAAAEERWtIbAAAAAAAAAJGtW7fK3r1781wmNjY2y3/zWw4AAAAAAAAAAAAArGGAHQAAAAAAoIRt3bpVzmjWXFKSkwq0fL9+/Qq0XOxfmXnenpyusuVgpjSs6pOIUHfc6wEAAAAAAAAAAACAgmKAHQAAAAAAoITt3btXUpKTpMblw6Rcjfq5LqfpaZJ+aI+EVqktLrR8rsulbF8r8fNfk36fJBfZNlaICJeoqKgiWx8AAAAAAAAAAACAkxMD7AAAAAAAAEaUq1FfwupE571QvTMLtK6DKvLuu+9K8+bNc10mNjZW+vXrl+9yIiJRUVFy2mmnFeixAQAAAAAAAAAAACA3DLADAAAAAACUUc2bN5dzzjmnyJYDAAAAAAAAAAAAgBPlK+kNAAAAAAAAAAAAAAAAAAAAAACcHMrEAPsff/whw4YNk2bNmknFihWlevXq0q5dO3nmmWckKSnphNYdGxsrkyZNkptuuknOOeccqVevnoSHh0vFihWlcePG0rdvX/n0009FVYvo2QAAAAAAAAAAAAAAAAAAAABA2RRa0htwoj7//HPp16+fxMfHe79LSkqSFStWyIoVK2Tq1KkyZ84ciY6OPq71jx49Wt57770cb9u8ebNs3rxZPvjgA+nSpYt89NFHUqNGjeN6HAAAAAAAAAAAAAAAAAAAAAAo60r1APvPP/8sffv2leTkZImMjJSRI0dKt27dJDk5WWbOnCmvvfaarFu3Tnr27CkrVqyQSpUqFfoxQkND5bzzzpOYmBhp2bKl1KlTR2rWrCkHDhyQuLg4mTJliqxZs0YWLlwovXr1ksWLF4vPVyYubA8AAAAAAAAAAAAAAAAAAAAARapUD7APGTJEkpOTJTQ0VL755hvp2LGjd1v37t3l9NNPlxEjRsi6detk/Pjx8uijjxb6MaZOnSqhoTnvposuukjuvPNO+ec//ykff/yx/Pjjj/LFF1/IFVdccbxPCQAAAAAAAAAAAAAAAAAAAADKrFJ7qfDly5fLokWLRETk3//+d5bhdb9hw4ZJ8+bNRURk4sSJcuTIkUI/Tm7D634hISEyfPhw7+/+bQIAAAAAAAAAAAAAAAAAAAAAZFVqB9hnz57t/XzzzTfnuIzP55P+/fuLiMjBgwflu+++K5ZtqVSpkvdzSkpKsTwGAAAAAAAAAAAAAAAAAAAAAJR2pXaAffHixSIiUrFiRWnbtm2uy3Xp0sX7ecmSJcWyLTNnzvR+btasWbE8BgAAAAAAAAAAAAAAAAAAAACUdqElvQHHKzY2VkREoqOjJTQ096cROFDuv09R2Lt3r6xfv16mTp0qb7zxhoiIREVFyQ033FBkjwEAAAAAAAAAAAAAAAAAAAAAZUmpHGBPSUmRvXv3iohIvXr18ly2WrVqUrFiRUlMTJRt27ad0ON27dpVFi5cmONtUVFR8sknn0jVqlVP6DEAAAAAAAAAAAAAAAAAAAAAoKzylfQGHI/Dhw97P0dGRua7fMWKFUVEJCEhoVi25//+7/8kNjZWzj///AItn5qaKvHx8Vn+AAAAAAAAAAAAAAAAAAAAAEBZV2qvwO5Xvnz5fJcPCwsTEZHk5OQTetw33nhDEhMTRVXl4MGDsmLFCnn55Zdl0qRJsmnTJpk6darUrl073/WMGTNGHnvssRPaFgAAAAAAAAAAAAAAAAAAAAAobUrlFdjDw8O9n9PS0vJdPjU1VUREIiIiTuhxGzVqJC1atJCWLVtK586dZejQobJ69Wq57LLL5IsvvpB27drJ9u3b813PyJEj5dChQ96fbdu2ndB2AQAAAAAAAAAAAAAAAAAAAEBpUCqvwF6pUiXv54SEhHyXT0xMFBGRyMjIIt+W8PBweeONN6RBgwaybds2GTFihEyfPj3P+4SFhXlXhQcAAAAAAPB/4KUl/QABAABJREFUa9yRfUXzIXf/ek702+gAAAAAAAAAAAAAoKiVygH28PBwqVGjhuzbty/fK54fOHDAG2CvX79+sWxPVFSUxMTEyNy5c+XTTz+VI0eOSLly5YrlsQAAAAAAQNmzZcsWERHZ98X4Il9vTExMka4TAAAAAAAAAAAAAE5EqRxgFxE588wzZdGiRbJhwwZJT0+X0NCcn0pcXJz3c/PmzYtte2rWrCkiIklJSbJ3716pW7dusT0WAAAAAAAoWxo2bCgiIjUuHyblapz4B/CP7Nsm+74Y760XAAAAAAAAAAAAAKwotQPs559/vixatEgSExNl5cqVct555+W43MKFC72fi/OKYzt27PB+joyMLLbHAQAAAAAAZU9ERISIiJSrUV/C6kQX+XoBAAAAAAAAAAAAwApfSW/A8erdu7f38xtvvJHjMpmZmfL222+LiEjVqlWlW7duxbIt27dvlx9//FFERBo0aCCVKlUqlscBAAAAAAAAAAAAAAAAAAAAgNKs1A6wt2/fXjp37iwiItOmTfMGyAONHz9eYmNjRURkyJAhUq5cuSy3L1iwQJxz4pyTAQMGZLv/unXrZP78+Xlux6FDh+Rf//qXpKWliYhI//79j+fpAAAAAAAAAAAAAAAAAAAAAECZF1rSG3AiJk6cKDExMZKcnCw9evSQUaNGSbdu3SQ5OVlmzpwpr776qoiING3aVIYNG1bo9e/cuVMuvPBCadWqlfTu3Vvatm0rderUkdDQUNm9e7csWbJEpk2bJrt37xYRkRYtWsgDDzxQpM8RAAAAAAAAAAAAAAAAAAAAAMqKUj3A3qZNG3n//felX79+Eh8fL6NGjcq2TNOmTWXOnDlSqVKl436cVatWyapVq/JcpmfPnvLGG29IhQoVjvtxAAAAAAAAAAAAAAAAAAAAAKAsK9UD7CIivXr1ktWrV8vEiRNlzpw5sn37dilfvrxER0fLtddeK3ffffdxD5XHxMTI119/Ld9++62sWLFCtm/fLnv27JGkpCSpXLmyNGrUSDp06CDXX3+9xMTEFPEzAwAAAAAAAAAAAAAAAAAAAICypdQPsIuINGjQQCZMmCATJkwo1P26du0qqprr7eXKlZMePXpIjx49TnQTAQAAAAAAAAAAAAAAAAAAAOCk5yvpDQAAAAAAAAAAAAAAAAAAAAAAnBzKxBXYAQAAAAAAyoIj+7blebump0n6oT0SWqW2uNDyx70eAAAAAAAAAAAAACgpDLADAAAAAACUsKioKAmPqCD7vhhfZOsMj6ggUVFRRbY+AAAAAAAAAAAAACgKDLADAAAAAACUsNNOO01+j4uVvXv35rlcbGys9OvXT959911p3rx5nstGRUXJaaedVpSbCQAAAAAAAAAAAAAnjAF2AAAAAAAAA0477bQCD5w3b95czjnnnGLeIgAAAAAAAAAAAAAoer6S3gAAAAAAAAAAAAAAAAAAAAAAwMmBAXYAAAAAAAAAAAAAAAAAAAAAQFAwwA4AAAAAAAAAAAAAAAAAAAAACAoG2AEAAAAAAAAAAAAAAAAAAAAAQcEAOwAAAAAAAAAAAAAAAAAAAAAgKBhgBwAAAAAAAAAAAAAAAAAAAAAEBQPsAAAAAAAAAAAAAAAAAAAAAICgCC3pDQAAAAAAAEDxS0pKkri4uCy/i42NzfLfQM2aNZMKFSoEZdsAAAAAAAAAAAAAnDwYYAcAAAAAADgJxMXFSdu2bXO8rV+/ftl+t3LlSjnnnHOKe7MAAAAAAAAAAAAAnGQYYAcAAAAAADgJNGvWTFauXJnld8nJybJlyxZp2LChREREZFseAAAAAAAAAAAAAIoaA+wAAAAAAAAngQoVKuR4RfWYmJgS2BoAAAAAAAAAAAAAJytfSW8AAAAAAAAAAAAAAAAAAAAAAODkwAA7AAAAAAAAAAAAAAAAAAAAACAoGGAHAAAAAAAAAAAAAAAAAAAAAAQFA+wAAAAAAAAAAAAAAAAAAAAAgKBggB0AAAAAAAAAAAAAAAAAAAAAEBQMsAMAAAAAAAAAAAAAAAAAAAAAgoIBdgAAAAAAAAAAAAAAAAAAAABAUDDADgAAAAAAAAAAAAAAAAAAAAAICgbYAQAAAAAAAAAAAAAAAAAAAABBwQA7AAAAAAAAAAAAAAAAAAAAACAoGGAHAAAAAAAAAAAAAAAAAAAAAAQFA+wAAAAAAAAAAAAAAAAAAAAAgKBggB0AAAAAAAAAAAAAAAAAAAAAEBQMsAMAAAAAAAAAAAAAAAAAAAAAgoIBdgAAAAAAAAAAAAAAAAAAAABAUDDADgAAAAAAAAAAAAAAAAAAAAAICgbYAQAAAAAAAAAAAAAAAAAAAABBwQA7AAAAAAAAAAAAAAAAAAAAACAoGGAHAAAAAAAAAAAAAAAAAAAAAAQFA+wAAAAAAAAAAAAAAAAAAAAAgKBggB0AAAAAAAAAAAAAAAAAAAAAEBQMsAMAAAAAAAAAAAAAAAAAAAAAgoIBdgAAAAAAAAAAAAAAAAAAAABAUDDADgAAAAAAAAAAAAAAAAAAAAAIitCS3gAAAAAAAABkl5SUJHFxcVl+Fxsbm+W/gZo1ayYVKlQIyrYBAAAAAAAAAAAAwPFigB0AAAAAAMCguLg4adu2bY639evXL9vvVq5cKeecc05xbxYAAAAAAAAAAAAAnBAG2AEAAAAAAAxq1qyZrFy5MsvvkpOTZcuWLdKwYUOJiIjItjwAAAAAAAAAAAAAWMcAOwAAAAAAgEEVKlTI8YrqMTExJbA1AAAAAAAAAAAAAFA0fCW9AQAAAAAAAAAAAAAAAAAAAACAkwMD7AAAAAAAAAAAAAAAAAAAAACAoGCAHQAAAAAAAAAAAAAAAAAAAAAQFAywAwAAAAAAAAAAAAAAAAAAAACCggF2AAAAAAAAAAAAAAAAAAAAAEBQMMAOAAAAAAAAAAAAAAAAAAAAAAgKBtgBAAAAAAAAAAAAAAAAAAAAAEHBADsAAAAAAAAAAAAAAAAAAAAAICgYYAcAAAAAAAAAAAAAAAAAAAAABAUD7AAAAAAAAAAAAAAAAAAAAACAoGCAHQAAAAAAAAAAAAAAAAAAAAAQFGVmgP2PP/6QYcOGSbNmzaRixYpSvXp1adeunTzzzDOSlJR0QutOSkqSjz/+WO68805p166dVKtWTcqVKyc1atSQjh07yqOPPiq7d+8uomcCAAAAAAAAAAAAAAAAAAAAAGVTaElvQFH4/PPPpV+/fhIfH+/9LikpSVasWCErVqyQqVOnypw5cyQ6OrrQ6169erXExMRIQkJCttv2798vS5culaVLl8pzzz0nr776qvTt2/eEngsAAAAAAAAAAAAAAAAAAAAAlFWl/grsP//8s/Tt21fi4+MlMjJSRo8eLT/88IPMmzdPbrvtNhERWbdunfTs2VMOHz5c6PXHx8d7w+sxMTEyZswYmTt3rvzvf/+Tr7/+WgYOHCg+n0/i4+PlhhtukP/+979F+vwAAAAAAAAAAAAAAAAAAAAAoKwo9VdgHzJkiCQnJ0toaKh888030rFjR++27t27y+mnny4jRoyQdevWyfjx4+XRRx8t1Pp9Pp/885//lEceeUTOPPPMbLf36NFDLr30UrnqqqskIyNDBg8eLOvXrxfn3Ik+NQAAAAAAAAAAAAAAAAAAAAAoU0r1FdiXL18uixYtEhGRf//731mG1/2GDRsmzZs3FxGRiRMnypEjRwr1GJ06dZL3338/x+F1vyuvvFL69OkjIiIbN26Un3/+uVCPAQAAAAAAAAAAAAAAAAAAAAAng1I9wD579mzv55tvvjnHZXw+n/Tv319ERA4ePCjfffddsWxLt27dvJ83btxYLI8BAAAAAAAAAAAAAAAAAAAAAKVZqR5gX7x4sYiIVKxYUdq2bZvrcl26dPF+XrJkSbFsS2pqqvdzSEhIsTwGAAAAAAAAAAAAAAAAAAAAAJRmpXqAPTY2VkREoqOjJTQ0NNflmjVrlu0+RW3hwoXez82bNy+WxwAAAAAAAAAAAAAAAAAAAACA0iz3qW/jUlJSZO/evSIiUq9evTyXrVatmlSsWFESExNl27ZtRb4tq1atkjlz5oiISMuWLfMdYE9NTc1yxfb4+Pgi3yYAAAAAAAAAAAAAAAAAAAAAsKbUXoH98OHD3s+RkZH5Ll+xYkUREUlISCjS7UhNTZVbb71VMjIyRERk9OjR+d5nzJgxUqVKFe9P/fr1i3SbAAAAAAAAAAAAAAAAAAAAAMCiUjvAnpKS4v1cvnz5fJcPCwsTEZHk5OQi3Y67775bVqxYISIiN910k/Tq1Svf+4wcOVIOHTrk/SmOq8IDAAAAAAAAAAAAAAAAAAAAgDWhJb0Bxys8PNz7OS0tLd/lU1NTRUQkIiKiyLZhzJgxMnXqVBERadeunbz00ksFul9YWJg3UA8AAAAAAAAAAAAAAAAAAAAAJ4tSewX2SpUqeT8nJCTku3xiYqKIiERGRhbJ40+ZMkVGjRolIiLNmjWTL7/8UipWrFgk6wYAAAAAAAAAAAAAAAAAAACAsqjUDrCHh4dLjRo1RERk+/bteS574MABb4C9fv36J/zYM2bMkEGDBomISIMGDWTu3LkSFRV1wusFAAAAAAAAAAAAAAAAAAAAgLIstKQ34ESceeaZsmjRItmwYYOkp6dLaGjOTycuLs77uXnz5if0mJ999pn0799fMjMzpW7dujJv3jypV6/eCa1TVUVEJD4+/oTWA3syMzO9/9IXAAAAAIDiwfk3AKCgOGYAAAqC4wUAoKA4ZgAASor/uOOfPwVKm1I9wH7++efLokWLJDExUVauXCnnnXdejsstXLjQ+zkmJua4H2/evHnyz3/+U9LT06VGjRoyd+5cadKkyXGvz+/w4cMiUjRXh4dNu3btkipVqpT0ZgAAAAAAUKZx/g0AKCiOGQCAguB4AQAoKI4ZAICScvjwYY5BKJWcluKPXyxfvtwbWh84cKC88sor2ZbJzMyUFi1aSGxsrFStWlX+/PNPKVeuXKEf64cffpAePXpIYmKiVKlSRebNmydt27Y94efg38adO3dKpUqVxDlXJOss7eLj46V+/fqybds2qVy5cklvzkmNFrbQww5a2EELO2hhBy1soYcdtLCDFnbQwg5a2EIPO2hhBy3soIUdtLCFHnbQwg5a2EELO2hhCz3soIUdtLCDFnbQImeqKocPH5ZTTjlFfD5fSW8OUGil+grs7du3l86dO8uiRYtk2rRpctNNN0nHjh2zLDN+/HiJjY0VEZEhQ4ZkG15fsGCBdOvWTUREbrrpJnnzzTezPc4vv/wiPXv2lMTERKlYsaLMmTOnyIbXRUR8Pp/Uq1evyNZXllSuXJmDjhG0sIUedtDCDlrYQQs7aGELPeyghR20sIMWdtDCFnrYQQs7aGEHLeyghS30sIMWdtDCDlrYQQtb6GEHLeyghR20sIMW2XHldZRmpXqAXURk4sSJEhMTI8nJydKjRw8ZNWqUdOvWTZKTk2XmzJny6quviohI06ZNZdiwYYVe/8aNG+WSSy6RgwcPiojIk08+KVWqVJE1a9bkep9atWpJrVq1juv5AAAAAAAAAAAAAAAAAAAAAEBZVeoH2Nu0aSPvv/++9OvXT+Lj42XUqFHZlmnatKnMmTNHKlWqVOj1L1q0SP7880/v70OHDs33Po888og8+uijhX4sAAAAAAAAAAAAAAAAAAAAACjLfCW9AUWhV69esnr1ahk6dKg0bdpUKlSoIFWrVpVzzz1Xnn76afn5558lOjq6pDcThRAWFiaPPPKIhIWFlfSmnPRoYQs97KCFHbSwgxZ20MIWethBCztoYQct7KCFLfSwgxZ20MIOWthBC1voYQct7KCFHbSwgxa20MMOWthBCztoYQctgLLJqaqW9EYAAAAAAAAAAAAAAAAAAAAAAMq+MnEFdgAAAAAAAAAAAAAAAAAAAACAfQywAwAAAAAAAAAAAAAAAAAAAACCggF2AAAAAAAAAAAAAAAAAAAAAEBQMMAOAAAAAAAAAAAAAAAAAAAAAAgKBthhXkZGRklvAgAAAAAAAAAAAAAAAAAAAIAiwAA7TEtLS5MXX3xR7rnnnpLeFAAAAAAAAAAAAAAAAAAAAAAnKLSkNwDITVpamrz99tvy0EMPSWJiomRkZMiLL75Y0psFAAAAAAAAAAAAAAAAAAAA4DhxBXaYlJaWJm+99ZYMHTpUEhMTJSwsTF566SW55ZZbSnrTTkqqmuPPCD5a2EELO2hhCz3soIUdtLCDFnbQwhZ6AAAAAAAAAAAAAAgmBthhjv/K68OGDZPExESpXr26pKeni4h4/0XxOnZgwTmX7WeGGoKDFnbQwg5a2EIPO2hhBy3soIUdtLCFHnYcu58zMzNLaEtACztoYQctbKGHHbSwgxZ20MIOWthCDztoYQct7KCFHbSwgxa20AMo+0JLegOAQP7h9XvvvVcSEhIkJiZGmjZtKu+//77UrFlTbr75ZhE5eoAKfIMdRcu/b7ds2SKrV6+WtWvXyq5duyQkJESaNWsm5557rrRs2VLKly8vIvQoTrSwgxZ20MIWethBCztoYQct7KCFLfSwIXC/Llq0SM444wypVauWpKenS2goL9kFEy3soIUdtLAlsMeGDRskOjpafD6fZGRkSEhISAlv3cmFFnbQwg5a2EELW+hhBy3soIUdnPPZQQs7aGELPYCTA/9rhhnHDq+fe+65MmjQIHnppZckKSlJTj/9dGnfvr2ICG+cFyNVlYSEBHnwwQfl+++/l9WrV2e53TknPp9PbrzxRrnsssvkmmuuEeccAw3FgBZ20MIOWthCDztoYQct7KCFHbSwhR42BO7P+fPny5NPPilr166VxYsXy+mnn17CW3dyoYUdtLCDFrYE9vj222/lySeflHbt2skzzzzDkE+Q0cIOWthBCztoYQs97KCFHbSwg3M+O2hhBy1soQdwElHAgNTUVH3ttde0UqVK6pzTli1b6owZM3T69Olas2ZNrV69ui5dulRVVTMyMkp4a8uuhIQEnT17tnbv3l2dc96f2rVr6ymnnKL169fXpk2bqnNOfT6fVqpUSR955BHv/pmZmSW38WUMLeyghR20sIUedtDCDlrYQQs7aGELPWwI3I9z587VXr16aUhIiDrn9LHHHlNVXvsIFlrYQQs7aGHLsT169+7tHb8///xzjs1BRAs7aGEHLeyghS30sIMWdtDCDs757KCFHbSwhR7AyYUBdpS4Y4fXzz77bJ05c6aqqo4YMUKdc3rxxRfrrl27SnhLy7ZDhw7pyy+/rG3atFHnnIaGhmqtWrV06NCh+sMPP+iBAwc0Pj5eDx06pFOmTNGrrrpKfT6fOud0yJAh3no4uTxxtLCDFnbQwhZ62EELO2hhBy3soIUt9LAhpxff/W/Y3nbbbd5t/hfgeSG++NDCDlrYQQtb8upx//33Z1ueHsWHFnbQwg5a2EELW+hhBy3soIUdnPPZQQs7aGELPYCTDwPsKFHHDq+3atVKZ8yYoUeOHNEFCxZ4B6Hp06eX9KaWaYmJifr666/rmWeeqc45LVeunF5//fU6e/bsLMsF/kNh06ZN+swzz3gDDQ899FCwN7tMooUdtLCDFrbQww5a2EELO2hhBy1soYcNx774fuWVV2a5Ev5ZZ52l1apV05iYGP3Pf/7jfZA/PT29pDa5zKKFHbSwgxa25NUjNDRUBwwYoD169NAnn3xSv/nmG29ZehQ9WthBCztoYQctbKGHHbSwgxZ2cM5nBy3soIUt9ABOTgywo8TkNLw+ffp0PXjwoKqq3n///erz+fTqq6/WlJQUVc1+pTc+SXVi/Ptz/vz52rZtW2+Q4Z577tFffvnFWy7wYB/YICUlRSdOnKg+n0/DwsL07bffDt7GlzG0sIMWdtDCFnrYQQs7aGEHLeyghS30sCOvr8pu1qyZnn/++Tp06FA977zztHbt2uqc07Zt2+qmTZuy3R8nhhZ20MIOWtiSV4+oqCitX7++nnvuuRoaGqrOOY2MjNRx48bleH+cGFrYQQs7aGEHLWyhhx20sIMWdnDOZwct7KCFLfQATl4MsKNE5Hbl9fj4eFVV3bhxo9aqVUudc/r000/nu77Y2Fh96aWXdPDgwcW96WVG4MG7Z8+e3iDDXXfdpb///nuOy+Vk165dOnDgQPX5fPrPf/5TDxw4wD8MCokWdtDCDlrYQg87aGEHLeyghR20sIUeduT14vstt9yiy5cv1+TkZFVVPXDggH777bfaqVMndc5pdHS0HjhwoIS2vOyhhR20sIMWtuTV4/rrr9dPPvlE//rrL01PT9cffvhBR44c6d3+yCOPlNyGl0G0sIMWdtDCDlrYQg87aGEHLezgnM8OWthBC1voAZzcGGBH0OU2vJ6QkKCqqsnJyTp48GB1zmnHjh29K8H5r7bu/29SUpLu3btXhw0bpu3bt/cOXgyxF86TTz6pzjkNCQnRnj176k8//VTodXz66adarlw59fl8Onfu3GLYypMDLeyghR20sIUedtDCDlrYQQs7aGELPUpWXi++33fffVmWDbwS/vz587Vdu3Y6dOhQ3blzZ9C2tyyjhR20sIMWtuTV4957783xA2TJyck6atQoLV++vN5777166NChYG5ymUULO2hhBy3soIUt9LCDFnbQwg7O+eyghR20sIUeABhgR1DlN7yuqrp3717t1KmTli9fXl944QVVPfq15YHWrFmjAwcO1DZt2nhvxDvnNCIiwvsEFvKXmZmpffr0UZ/Pp845feutt457XVdffbU653TgwIGamppahFt5cqCFHbSwgxa20MMOWthBCztoYQctbKFHycrrxffhw4fnuJzf4cOHdd68ebp58+ZgbGqZRws7aGEHLWzJq8eIESNyXM7vt99+0/fee8/72mycGFrYQQs7aGEHLWyhhx20sIMWdnDOZwct7KCFLfQAoMoAO4IoJSVFp02blufwuqrqo48+qs45rVGjhv76669Zbvv00091xIgR3joiIiK0bt26esMNN2i9evW8A9nNN9+sBw8eDObTK5VWrVrl7bN+/fp5vy/M18H7P+H24IMPqnNOhw4d6l0lHwVHCztoYQctbKGHHbSwgxZ20MIOWthCj5JT0DdsA68ac6zADwp89dVXeuDAAU1LS1NVpUEh0MIOWthBC1sK+oZtXj0Cvy772CuP0aPgaGEHLeyghR20sIUedtDCDlrYwTmfHbSwgxa20AOAHwPsCIrMzEx96623vIPNscPr/gPTunXrtG3btuqc00mTJqnq0U9NzZ49W2+//XZ1zmloaKg65/TSSy/VSZMm6bvvvqu33HKLt+6hQ4fqjh07Suy5libz58/39qd/f+d18M/L7NmztW/fvrp///6i3MSTBi3soIUdtLCFHnbQwg5a2EELO2hhCz1K3ty5c7VPnz6FfvE9kP+D/h07dtSxY8fqX3/9Vaj74yha2EELO2hhy7x5847rDdtAQ4YM0QYNGuioUaP0+++/L/T9cRQt7KCFHbSwgxa20MMOWthBCzs457ODFnbQwhZ6AGCAHUETFxenzjk97bTT9P33389y5XX/APv06dPV5/NpmzZt9L333tO5c+dqx44dtWrVqt7Bqm/fvjp58mRNT0/X77//Xq+77jqG1wvJv79nzJihzjmtWLGirlmz5oTWuXXrVk1MTFRV/hFQGLSwgxZ20MIWethBCztoYQct7KCFLfSwIS4uTrt06XJCL76npaXp7Nmz9ZxzztEKFSqoc067d++uW7duLdR6Tna0sIMWdtDClgULFmj37t01JCSkUFeoDLRnzx699dZb1efzqXNOmzRp4n2ArTDrOdnRwg5a2EELO2hhCz3soIUdtLCDcz47aGEHLWyhBwBVBtgRZBs3btSPPvpIDx8+nO22P/74Q6Ojo9U5p/Xq1dNu3bpp7dq11Tmn9evX18svv1w/++wzb/mffvpJL7/8cu9Adu+99zK8XkhfffWVt/++++67IllnYb6KHn+jhR20sIMWttDDDlrYQQs7aGEHLWyhR8m76667CvWGbW77d9u2bfraa69py5Yt1TmnDRs21C1btqgqX4daULSwgxZ20MKObdu2aeXKldU5pw888ID3++N5o3XWrFl64403ev8GePjhh73b6JE/WthBCztoYQctbKGHHbSwgxa2cM5nBy3soIUt9ADAADuCLreDyf/+9z+NjIz0TkD8g+y9e/fW1atX6+7du1X16IHl+++/1yuuuILh9RP0888/eyeQn376qaoW7TACn2QrOFrYQQs7aGELPeyghR20sIMWdtDCFnqUnMAXxWfPnu39nNs+O7bLkSNHsi2Tmpqqy5Yt0w4dOqhzTlu1aqU7d+4soi0uu2hhBy3soIVNq1at0kceecT7e0F75GT79u361FNPea+fjxkzpqg286RACztoYQct7KCFLfSwgxZ20KLkcc5nBy3soIUt9ADgxwA7TBk/frw65zQyMlJHjBihixcvznLQyczM1IULF2rv3r0ZXi8ivXr1UuecXn755bpv374iWef8+fO9n/kkW8HRwg5a2EELW+hhBy3soIUdtLCDFrbQo+Qc+yJ6bi+++/fhtm3b9O2339abb75Z+/TpoxMnTszxyvlLlizRs846S51zOmTIEE1JSSnybS9raGEHLeyghW359fjzzz91yZIl+txzz+mLL76oP//8s+7fv19V/35T9/Dhw/rEE0+oc06rVKmS5Q1hFBwt7KCFHbSwgxa20MMOWthBi5LDOZ8dtLCDFrbQA4AqA+wwIvAN74ULF+r333+fbZnMzEz9/vvvj2t43X+Qy8zM1MOHDxfdhpdi/hO+adOmaY0aNfS0007TTz/99ISHD5588kl1zungwYOLYjNPCrSwgxZ20MIWethBCztoYQct7KCFLfQoHfydfv/9d73gggu0Ro0aWb6ZrmrVqvroo49muU9CQoIOHz5cnXPasWNHTU5OLolNL3NoYQct7KCFLf5j+Lp16/TSSy/VU045xWtRv359vfDCC3XdunVZ7vP7779rt27dNCQkRIcNG6aqRfttLCcrWthBCztoYQctbKGHHbSwgxZ2cM5nBy3soIUt9ADKPgbYYUZOb6L7P211PMPrx56wJCQk6NixY7Vr1646YMCAot34UuzPP//UHj16qHNOO3XqpGvWrDnudfk/+eyc00suuUS3bdvmdeAEMn+0sIMWdtDCFnrYQQs7aGEHLeyghS30sG/Lli3e15pWrFhRGzZsqFdddZV3lRjnnN55553eFchUVb///nvvtiVLlpTg1pcttLCDFnbQwpYNGzZo27Ztvf1bvXp1rVOnjlatWlWdc1qrVi2dN29elvvcf//96pzTunXr6sGDBzlmFxFa2EELO2hhBy1soYcdtLCDFnZwzmcHLeyghS30AMo2BthhVuCb4IUZXj/2K0VWrlypEyZM0DPPPDPLp7D69+9f7M+htNi4caM2adJEnXPauXNn/fbbbzU+Pl5V//5gQX5X6Xv88ce9fdu1a1f94IMPdOfOnVnud+w6OKnMjhZ20MIOWthCDztoYQct7KCFHbSwhR42+ffXhAkTtEqVKhoWFqa33nqrbtu2TVVVY2Nj9dlnn/X2+7///W/dtWuXqqr+9ttvWrlyZQ0JCdGffvqpxJ5DWUELO2hhBy3sSUlJ0cGDB2v58uW1cuXKesstt+jmzZt1x44d+uGHH2rnzp3VOadRUVH62WefaWpqqqqqfvrpp1q+fHlt1qyZJiUllfCzKBtoYQct7KCFHbSwhR520MIOWtjAOZ8dtLCDFrbQAzg5MMAOk453eD3QokWLdNy4cVqtWjWtUKGCOue8T+w657RevXq6Z8+e4n4qpUZcXJzWq1dPnXN6xhln6D333KOrV6/2roKfF/9XyPv/VKlSRatWraoNGjTQ6667Tt977z1vWf8HDAIHGT7//HPvHxGghSW0sIMWttDDDlrYQQs7aGEHLWyhh11XXnmlOuf01FNP1U2bNmW7/YMPPvD2/e23367btm3TBx54QJ1z2rx5cz18+HAJbHXZRAs7aGEHLexISEjQc845R51z2rp1a/3jjz+y3P7XX3/pZZddps45rVGjhn711VeakpKi/fv3V+ecdujQoYS2vOyhhR20sIMWdtDCFnrYQQs7aGEL53x20MIOWthCD6BsY4Ad5hRmeN3/aSv/ffbt26erV6/WAQMGaIMGDbz71a9fX6+++mr9+OOPtVGjRuqc08GDB2tKSkrwn6BhGzZs0O7du3sD/2FhYdq1a1e944479Ntvv83xPqNHj/b2c2RkpLZt21ZvvfVW7devX5ar3j/22GM53n/GjBnarl07jYyM1A0bNhTn0ytVaGEHLeyghS30sIMWdtDCDlrYQQtb6GFLZmamJiUlabt27dQ5pz179vRuO/Zq9rNnz/b2defOnbVZs2bq8/l06NChmpqamu8V9JE3WthBCztoYc/q1au1UqVKGhISok8//bSq5vzBsV69eqlzTqtXr66DBg3S6OhorVChgj7//POqmv+3riB/tLCDFnbQwg5a2EIPO2hhBy1s4JzPDlrYQQtb6AGcHBhgh0mZmZm6ePHiPIfX/ScxqqoHDx7URYsW6T/+8Q8944wz1Dmn5cuX18jISB0yZIguXrxYVVWfeOIJdc5pRESE/vLLL0F/XqXB7t27dfLkyfqPf/xDnXMaEhKi3bt3975ePlDgIMNFF12kL730UpbbN27cqGPHjvWWefHFF7Pc/ueff2q3bt282998881ifW6lDS3soIUdtLCFHnbQwg5a2EELO2hhCz3s+b//+z91zumZZ56pcXFxWW7LzMz0rpI/a9Ysb186d/TD+itXriyJTS6zaGEHLeyghR2HDx/WNm3aqHNO+/btqwkJCVluD3y9vGfPnt7r4M45Peuss3Tt2rXB3uQyixZ20MIOWthBC1voYQct7KCFLZzz2UELO2hhCz2Aso0Bdpj0ww8/aPfu3b2Dyr333qvbt29X1b8/dev/dNSUKVP0uuuu0/DwcG/5atWq6RNPPKFz58711hkbG6vNmjXTkJAQve+++7KsAzmbPXu2zpgxQw8ePKiqWU8WAwcZ+vTpo/Pnz/faBF7ZPiEhQUeMGKFnn322zpkzJ9tjfPPNN+qc0xdeeKGYn03pRgs7aGEHLWyhhx20sIMWdtDCDlrYQg8b3nvvPW9fjxs3ThMTE73b/C++Hz58WKdPn65Nmzb1lv3qq6+yrCe31zh47aPgaGEHLeyghR3Jycl6yy23qHNOW7VqpcuWLctye+Bx/LXXXtOoqCh1zmm5cuWyfdNK4JUtUXi0sIMWdtDCDlrYQg87aGEHLWzhnM8OWthBC1voAZRtDLDDpG3btqnP51PnnN533326devWLLfv3btXn332We8TtyEhIeqc0w4dOuh9992n69evz7bOV199VZ1z6vP59JNPPgnSMymdcjrR8x/0VbMOMlx99dXeFe5zu+/SpUt1xYoV3u2rVq3KcnvglfX5h0FWtLCDFnbQwhZ62EELO2hhBy3soIUt9LDn/vvv9/b5Y489pkuXLlVV1cTERN26dav++9//9r5xzjmnn332maoe3d+Bb+yqqv7111+6ZcsW3b17d5bfs+8LhhZ20MIOWtixceNGrV+/vjp39Cuxv//+ez1w4IB3+969e3XYsGHaunXrAvVQPfpvgMB/B6jSoyBoYQct7KCFHbSwhR520MIOWtjCOZ8dtLCDFrbQAyi7GGCHWb/++quOHDlS9+zZ4/1u+fLl+uqrr+rpp5+uoaGh3oEnNDRU+/Tpo6qqSUlJqpr1wBIbG+udAA0YMCC4T6SMefLJJ739fs011+iSJUu82/L7hHNmZqbOmDFDW7Vqpf/3f/+X7X78Y6BwaGEHLeyghS30sIMWdtDCDlrYQQtb6BFcgS+eP/TQQ1quXDnvqmLnnHOOnnnmmVqtWjWviXNOv/jiC1U9ul/T0tJUVXXPnj36+uuva69evbRevXoaEhKitWvX1l69eukLL7ygf/31V7bHQ1a0sIMWdtDCpt9//927oli9evW0c+fOes899+iAAQO0cePGWb6p1P/tKIE99u3bp999950OHDhQe/bsqeedd552795dp02bpj/++KP3OPTIHy3soIUdtLCDFrbQww5a2EGLksc5nx20sIMWttADKPsYYIdp/je5v/vuOx07dqzWrFlTK1WqpM45rV69ujZo0CDLp26///57VT16QAn8FNVrr72mVapU0Vq1anlXX+eN88IbM2ZMoQcZAvfz+++/rxdeeKG3jsATRxQOLeyghR20sIUedtDCDlrYQQs7aGELPUpG4Ivis2fP1uHDh2u3bt307LPP1rp163rfOuec088//1xVs774vn79eu3evbvWrVtXnXNavnz5LC/YV6hQQbt06aJ//PFHtsdDVrSwgxZ20MKmLVu26D333KNnn322Vq1aVcPCwjQsLCzfN2w3btyoV199tTZp0kSdc1n6lS9fXps1a6YvvPCC9zj0yB8t7KCFHbSwgxa20MMOWthBi5LHOZ8dtLCDFrbQAyjbGGCHeXv37tWYmJgsB482bdroK6+8oqtXr9aVK1fqxRdf7N02d+5cVf37gJKWlqbt2rVT55x26NBB4+Pj833MjIwM78CEo5599tlCDzIE/v6DDz7Qbt26eeuYPHlysW9zWUULO2hhBy1soYcdtLCDFnbQwg5a2EKPknXsh+z/+usvfeGFF/Scc87x9mng1576X3z//ffftV69et4ykZGROnz4cB03bpxOmzZN+/Tpo40bN1bnnDZs2FC3bNmS4+Phb7SwgxZ20MKmtLQ0zcjI0JUrV+qDDz6op59+ep5v2MbFxWnDhg29ZcLCwvTyyy/Xm266Sa+66iqNjo72bnv44Ye9x6FH/mhhBy3soIUdtLCFHnbQwg5alDzO+eyghR20sIUeQNnFADtKhbVr12poaKjGxMToqFGjNCUlxbstLS1Nv/322xyH2DMyMvS5555T55xWq1ZNv/rqK+/3ucnIyNCffvpJzzzzTL3xxhuL94mVIr/++qv6fD7t0aOH/vDDD97v8xtkyMzMzDbI8PLLL3vLZWRk5Ps19MiKFnbQwg5a2EIPO2hhBy3soIUdtLCFHrb88MMP2qhRoxxffPd/YH/jxo3eG7Y1atTQK664Qn/99dcs6zl48KDOnz9fO3bsqM45Peecc3TXrl1Bfz6lGS3soIUdtLDBf3x96623tHnz5jkO+Rw5ckRVVdetW6ennnqq9zp5165d9aeffvJuV1Vdvny5PvTQQ956xo0bF/wnVUrRwg5a2EELO2hhCz3soIUdtLCHcz47aGEHLWyhB1B2MMCOUmP37t26detWb/g8PT3dO5k5cuSIzps3L8ch9muvvVadc9q2bVvduHFjno/hH17v3r27t5677rqreJ9YKbJt2zZdtmyZ9/fjuQrfsYMMOX2YgK9jyR8t7KCFHbSwhR520MIOWthBCztoYQs9bBkwYIA6l/Wrsv37ft++fXrVVVepc06rV6+uAwYM0M2bN6vq3/s3cN+vXLlSW7durc45ve+++zQ1NTW4T6aUo4UdtLCDFnZs3LjROw5/+eWXqpq1x+7du7Vr167qnNOoqCgdMGCA9zp54GvsqqqJiYk6btw4r52/LwqGFnbQwg5a2EELW+hhBy3soIUtnPPZQQs7aGELPYCygQF2lEo5vYme0xD7fffd5/08ZcqUPNfpH173n/SEh4drSEiIOud08ODBxfVUSq2iHmQYM2aMPvDAA8W3wWUYLeyghR20sIUedtDCDlrYQQs7aGELPUpO4H5bu3atqv794rt//8+fP1+bNGmizjnt1q2b94Ztbt1SU1P15Zdf1qpVq+oZZ5yhO3bsKOZnUTbQwg5a2EELm9auXatff/21qv7dw99q6tSpWqdOHXXO6ZVXXum9YZtbj507d2q/fv20XLlyevfdd2e5miXyRws7aGEHLeyghS30sIMWdtCi5HHOZwct7KCFLfQAyhYG2FGmHDvE7vP51DmnF110ke7evVtVcz4YHTu8Xr58ef3Xv/6lDz74oLeOu+++O9hPp9Q53kGGF154wVtuwoQJQd3msooWdtDCDlrYQg87aGEHLeyghR20sIUewXPsVeqPfS3jtttuU+echoWF6U8//ZTjMsfaunWrRkZGaq1atTQlJaVoN7gMo4UdtLCDFnYFvlnrd/nll6tzTiMjI3XNmjXecnl5//331TmnHTp04JtTjhMt7KCFHbSwgxa20MMOWthBi5LFOZ8dtLCDFrbQAyg7GGBHmZOSkqLLly/XTp06ecPnI0aMyHX5nIbX+/Xrp0uXLlVV1WnTpnnrGTZsWLCeRqlzvIMMzz33nJYrV06dc9quXbssy/qXR+HQwg5a2EELW+hhBy3soIUdtLCDFrbQw47MzEy95JJLNCQkRK+88krNyMjI901Yf78vv/xSDx8+rKrs+6JACztoYQctbNm9e7fWrVtXy5cvryNHjlTV7G/yBvK3SElJ0SFDhuihQ4ey/B7HjxZ20MIOWthBC1voYQct7KCFHZzz2UELO2hhCz2A0sUnQBmiqhIWFiaNGzf2/t68eXN58MEHvb8HyszMlP/9738yfPhwWbhwoZQrV07++c9/yt133y3nnXeeiIj0799fJk+eLM45mTBhgowbNy64T6oUUFVxzomIyIcffigvv/yyLFiwQEREJk+eLHfccYeIHN3fIiI+39H/65k4caKMHDlS0tPTpW7dulKnTh2pVq2aLF68WNavX+8tm5GREeRnVHrRwg5a2EELW+hhBy3soIUdtLCDFrbQw5a0tDTZs2ePZGZmSlRUlPh8Pm+f58bf79JLL5XIyEhJT0/P9z7IHy3soIUdtLAlISFBdu/eLUeOHJGaNWuKiEhISEiuyzvnvNfYn3/+ealcubKkp6d7jXD8aGEHLeyghR20sIUedtDCDlrYwTmfHbSwgxa20AMoZYI6Lg8UM/8npv773/9qo0aNNCQkREeMGKFpaWnZPhmV35XXVf/+hNW+fft0+PDh6vP5tFWrVt7Xi+BvmZmZOmvWrAJfhW/ixIlavnx5b9mIiAjvSvfOOY2Ojtbnn38+y/1RMLSwgxZ20MIWethBCztoYQct7KCFLfSwIzU1VTt16qTOOb3++usLfX//ax2BVx3jCmTHhxZ20MIOWtiybds2rV69uvp8Pp0+fbqqFu6Y69/3gffJzMykyXGghR20sIMWdtDCFnrYQQs7aGEH53x20MIOWthCD6B0YYAdZUbgwaJfv37eUHpOw+b+4fXOnTt7y9144426ZMmSHNenqvrZZ595b7RPnTq1+J5IKTV79mxt06ZNgQcZQkND1TmnNWrU0JtvvlkXLVqk69ev1w8//FAHDx7sreexxx4riadTqtHCDlrYQQtb6GEHLeyghR20sIMWttDDFv8+bt68uf7yyy8Fus+xr3PExcXpqlWr9LvvvtMFCxZoamqqpqamqiofKCgMWthBCztoYUv37t29N239X4Odn2N7JCUl6f79+zUxMVEPHjyY5TZ6FBwt7KCFHbSwgxa20MMOWthBCzs457ODFnbQwhZ6AKUHA+woc95++23vjfCHH35YVbN+etY/vN6lSxd1zqnP59O2bdvqunXrvHUEHpT8B50DBw5ozZo11Tmn11xzTbblTnZbtmzxBhSmTJni/T6vQYZWrVrppEmTsq3r8OHD+uyzz3ofLpg1a1ZQnkNZQQs7aGEHLWyhhx20sIMWdtDCDlrYQg9b5s+fr6eddpo653T06NGanJzs3ZbTaxX+RhkZGbpkyRIdPny41qhRQyMiIrzXUDp37qz333+/7tq1S1X//pY75I0WdtDCDlrY4N/XY8aM0XLlyukZZ5yhixcvzvd+/h6ZmZm6adMmffrpp7Vjx45avXp1rV+/vp566qk6cuRI/fLLL7370CNvtLCDFnbQwg5a2EIPO2hhBy3s4ZzPDlrYQQtb6AGUHgywo0w5dOiQ3njjjRoeHq6VK1fWTz/9VFWzfiXUTz/9pF27dlXnnPemunNOJ0yY4K3n2E9Kpaen6/Tp072vP7/uuuuyrBdHrV69Wl9//XXv73kNMrRu3TrLsoEH9oyMDN24caO2bt1aQ0JC9JFHHgnK9pcltLCDFnbQwhZ62EELO2hhBy3soIUt9LDlqaee8l7TmDhxov7555/ebTl9MP/IkSM6evRoPffcc737NW7cWM8991yNiIjQkJAQr92WLVtUlRfhC4oWdtDCDlrYsX37dm3btq0657Rr1666evVqPXLkiKpmf307sMdzzz3nXeXS/6dWrVreRWGqVq2qY8eOzXZf5I4WdtDCDlrYQQtb6GEHLeyghS2c89lBCztoYQs9gNKBAXaUKYFXSb/55puz3Hbs8Hr58uX1+uuv1zvuuMM78Dz99NPe8oEHqx07dug111zjLffaa68F7TmVVoUZZMjtJDAmJkadc9q9e3dNT0/nwH+caGEHLeyghS30sIMWdtDCDlrYQQtb6FFyAvfnsGHDvNcqbr31Vv3000+z7Ef/axtHjhzR4cOHa+3atb3lZ86cqfv371dV1XXr1umECRO0ZcuW6pzT6Oho3bZtW5Z1IDta2EELO2hh07p167z92759e33zzTe9K4b5Bb5hO2LECD3llFO8HtOmTdO5c+fqnj17dPLkyXrttdd6tz366KPeOuiRP1rYQQs7aGEHLWyhhx20sIMWJY9zPjtoYQctbKEHULowwI4y59dff9XWrVvrhx9+6P0up+H1fv366dKlSzUzMzPLp67+85//6IEDB7z7xsbGav/+/b3bu3Xrpr/++msJPLPS5XgHGTIzMzUjI0PXrl2rZ5xxhoaGhurw4cPzfQzkjhZ20MIOWthCDztoYQct7KCFHbSwhR4lK/BF9scff1yrVq3qfWvc/fffn2XZjIwMHTt2bJY3bJ1zWa4upqqanJysy5Yt0w4dOqhzTq+66io9ePBgUJ5PaUYLO2hhBy1s+v333703WqtXr65RUVE6b968LMukp6fro48+muUN22rVqmXb11u2bNExY8ZkGQRCwdHCDlrYQQs7aGELPeyghR20KHmc89lBCztoYQs9gNKDAXaUSbt27fI+BZXb8PqPP/7oLZ+QkKCPPPKIdxDq3Lmz9u3bV3v27KnnnHOO9/smTZroyy+/XFJPq1QaO3asRkREFGiQIfDvTzzxhLffBw4cqF9//bVOmzZN582bp5s2bfKW4wp9BUcLO2hhBy1soYcdtLCDFnbQwg5a2EKPkhO4bz799FO966679Nxzz9X4+HhV/fvKL2vWrNHzzz9fnXMaEhKiN910k7fvR44c6a3Dv/yXX36pdevW1QYNGuhPP/0UxGdUetHCDlrYQQubtm7dqvfee69GR0drVFSUJiQkqOrf+3fu3Lnapk0bdc5pWFiYnnXWWeqc09q1a2tsbGyWZRMSEnTEiBHqnNN//OMfum/fPq46Vgi0sIMWdtDCDlrYQg87aGEHLUoe53x20MIOWthCD6B0YIAdZdqRI0f0hx9+0IsuuijL8PrSpUu9ZfwHmA0bNujFF1+c5dNUgX/OPfdcnTRpUrb7IXf79+/XqKgodc5pu3btCjzI8Nprr2XZ97Vr19awsDDv72eccYa+8MILua4L2dHCDlrYQQtb6GEHLeyghR20sIMWttCj5AXum4yMDO9F+SNHjni/f/TRR719O3XqVFVVff75573fPfjgg1nWuXv3bm3RooU653T06NFBeBZlAy3soIUdtLApJSVFd+3apSkpKaqatcfdd9/t7ft33nlH//rrL+/CMLVr19Z169ap6t9vAn/zzTcaGhqqYWFhhfrWUl5bP4oWdtDCDlrYQQtb6GEHLeygRcmzcM7n73+yXwSDFnbQwhZ6APYxwI4yLTk5WXv16qXOOa1YsWKuw+t+gwYN8t4sv+qqq/Tiiy/WVq1a6VNPPaWLFi3ylsvpK9Dz+vvJbO3atXrBBRfo5MmTvd/lNcgwbdo07x8BTZs21RtvvFFXrFihsbGx+sknn+hdd93l3f7II48E62mUCbSwgxZ20MIWethBCztoYQct7KCFLfSwx/+aREZGhh4+fNj7Zrk+ffp4L8wnJyfn+SL8gAED1DmnTz75ZNC3vyyhhR20sIMWtgQeo9esWaNVqlRR55wOHjzY+/3atWtzHPZRPfqGb4sWLTQkJETnz5+f52OtXr1ap0+f7v2d19CzooUdtLCDFnbQwhZ62EELO2hhRzDP+X799Ve99957vQ8dMByaFS3soIUt9ABsYYAdZd6qVau0Vq1aeuWVV+qyZcu83weeSKSlpanq35+guvDCC73f+b86xI8rvxXewYMHvZ8LOsjQuXNnnTp1apZPvake7fHMM894y82cObN4N76MoYUdtLCDFrbQww5a2EELO2hhBy1soYdd+/fv1xo1aqhzTh944IEst6WlpeX4IvyuXbu0adOm6pzTp59+uiQ2u0yihR20sIMWtvz8888aERGhoaGh+sYbb6jq36+hx8XF5Tjss2LFCg0PD1fnnH755Ze5rvu3337zLh5z8803e79n2CdntLCDFnbQwg5a2EIPO2hhBy3sKM5zvt9++00HDx6szjktV66crlq1SlUZDs0NLeyghS30AEoeA+w4KezYsUNXrFjh/T23K6b36dNHnXPavHlz74CR04HDv/y+fft03bp1+p///Efvuusu7du3r/bt21dHjx6tCxcu1ISEhOJ6SqVSQQcZLrjgAp0xY4Z3+7Ff6bJ+/Xo966yz1DmnI0eODM7GlzG0sIMWdtDCFnrYQQs7aGEHLeyghS30sCcpKUkbNmyo5cuX19dff11VVVNTU73bj30RfsSIEfrZZ59pnTp1tEaNGvrdd995yx77Wgof8C8cWthBCztoYcv8+fPVOafVqlXTn3/+WVWz7sdjh31WrVql7733nlasWFFbtmypu3btynG9v/32m951111arVo1r+Vdd93l3c6wT3a0sIMWdtDCDlrYQg87aGEHLewoynO+QP4W/ivtO+e0atWqXOE4D7Swgxa20AMoeQyw46ST24nDkSNHtFOnTuqc04svvlgzMjLyfKPjhx9+0GuuuUYbNWrkHWwC//h8Ph0wYABXi8tFQQcZAnsF/ty5c2d1zmmXLl3ybYW80cIOWthBC1voYQct7KCFHbSwgxa20KPkZWRk6MGDB73XLYYPH57jcmlpaTpx4kSvUZ06ddS5o1fJT05OVtWsbebNm6fbtm1TVV5oLyha2EELO2hhS2Zmpi5evFidO3pVsNzegA0c9qlevbo2btxYnXN61VVXaUpKSrbl/W/YVq1aVZ1z2qBBA/X5fOqc07vvvjvL4+MoWthBCztoYQctbKGHHbSwgxZ2FNc537EtmjZtqu3bt2c4NA+0sIMWttADsIEBduD/e+edd7yDzeTJk3NdLj09Xd966y0NCwvzTkoiIyM1KipKe/TooW3bttV27dqpc05DQkK0YsWK+thjjwXxmdgXeOAu6CBDoGXLlmm9evXUOaejRo0KyjaXVbSwgxZ20MIWethBCztoYQct7KCFLfSwwb9/n3zySXXOaceOHb2vxj5WWlqaPvfcc16r008/XWNjY73b/L766iutW7eu1q1bVzdv3lzsz6GsoIUdtLCDFvakp6d7QzyDBw/O9dtF4+Li9IILLvB6NG3aNMcPDRz7hm2LFi30q6++0ldeeYVhn3zQwg5a2EELO2hhCz3soIUdtLChqM75jhw54i2XU4t58+ZpbGysXnLJJd5w6Jo1a1SVb+byo4UdtLCFHoANDLDjpOc/ID3wwANarlw5rVixos6fPz/HZQ8ePKjPPvusd0ByzmnDhg313Xff9b5+KjExUVNSUnTatGl6zTXXeCctQ4cODdZTKjVeeumlQg8ypKWlef94cM7pm2++GcxNLrNoYQct7KCFLfSwgxZ20MIOWthBC1voYcO8efP0lFNOUeecjhs3LsuVxAI7pKWl6ejRo7VOnTr62WefqWrWN2znzJmjLVq00HLlyqlzzvuwPm/MFhwt7KCFHbSwITMzU48cOaJPPPGE+nw+Pfvss3XZsmW5Lh8XF6ctW7bUChUq6Ny5c1U1/zdsv/32W2+ZqVOneq+b33///cX75EoZWthBCztoYQctbKGHHbSwgxb2nMg5X+BgZ04t5s6d67XYsGGD9ujRQ51z2qhRI12/fn22xzjZ0cIOWthCD6BkMcAOqOrmzZu1Vq1a6pzTHj165Lpc4FeC1K5dW6+//nrds2dPrstv2bJFn332We+kZeTIkcWx+aVOZmamHjx40Nsv3bt3L9Agg6rq66+/7jXo379/sDa5zKKFHbSwgxa20MMOWthBCztoYQctbKGHPaNHj/b268SJE/Wvv/7ybgscAD1y5IiuX78+29dlz5kzR1u2bKk+n09r1aqlAwYM0B07dmS5P195WjC0sIMWdtDCju3bt2ubNm3UOaddu3bV1atXe/vu2OP3hg0bdOHChZqamprl9/43bKtUqZLlDdvAq+UfOXJEJ0+e7P1bYcqUKcX/5EoZWthBCztoYQctbKGHHbSwgxa2nOg5X0Fa+Jfr2LGjOuf06quv1v379xfvEyuFaGEHLWyhB1ByGGDHSc3/5vknn3yi1apV05CQEO/qPMe+sf7BBx94B6v69evrvffeq/v27VPV7G+ABJ70JCUl6YsvvuidtEydOrXYn1dp8euvv2rPnj31zTffLNAgw5tvvuk1uOSSS/TXX39VVb5SpSjQwg5a2EELW+hhBy3soIUdtLCDFrbQo+QF7rvhw4d7+3fQoEH69ddfF2gdc+bM0bPPPtu7qrFzTmvUqKGnnnqqnnvuuXrffffpzp07VZUB0bzQwg5a2EELm9atW6d169ZV55x26NBBp0+frn/++aeq5n9VsGOvNnbWWWdludpYoD179mjfvn01NDRU+/Tpo/Hx8cXyfEozWthBCztoYQctbKGHHbSwgxYlryjO+X777TcdNGiQNxSaV4v09HSdMGGCOue0cePG+ssvv6gqVzdWpYUltLCFHkDJY4AdUNVrrrlGnXMaGRnpvUEe6H//+59Wr15dnXMaFRWld999tx48eFBVC/ZG+v79+/Xee+9Vn8+nnTt31tjY2CJ/DqXVoUOHCj3I0K1bN/36669z/ZR0IP9tHOzzRws7aGEHLWyhhx20sIMWdtDCDlrYQo+SFziw+fDDD2u5cuXU5/NpjRo19JZbbtEff/xRk5KSvGUC9+WXX36pLVu29AZDGzVqpB07dtQ777xTzzvvPD311FPVOafNmzfXLVu2qCofOMgLLeyghR20sOn333/XM844Q51zWqdOHb344ov166+/zvPbSP1v2EZGRqpzTlu3bq3z58/X5OTkXO/zxBNPqHNOQ0JCdPny5cXxVEo9WthBCztoYQctbKGHHbSwgxYlr7DnfIGObdG8eXNdsWJFjsv7zxVXrFih5cuXV+ecPvHEE8XzpEopWthBC1voAZQsBthx0jtw4IC2bt1anXN67bXXanJysvdGRkZGhqalpemIESM0IiJCnXN62WWX6d69e73bC2rBggV62mmnqXNO33jjjeJ4KqVaXsMGb7zxRpZBhi+//DLb16yoqv744486e/ZsffTRR/WFF17QxYsX67Zt27zbeYOqYGhhBy3soIUt9LCDFnbQwg5a2EELW+hRsgJfhH/nnXf0iiuu8Pb52LFjvf197GBoixYtvG+U69mzp27cuNH7WtP9+/frwoULtUOHDuqc01atWumuXbuC+8RKIVrYQQs7aGHTli1btH///tqgQQN1zmndunX19ddfz/F4u3btWh00aJBWrlzZa3fbbbd5tx979Xv/OqZMmeIt/+mnnxbvEyrFaGEHLeyghR20sIUedtDCDlqUvIKe8wXyXwXff0Vj55yedtppumPHDlXVHK9srKr6zTffeMs/+uijxfOESjFa2EELW+gBlBwG2AE9eiLinNNRo0Zluy0xMVFbtGihzjk95ZRTdOvWrap6fG+M33fffeqc0yZNmvCGSQEVZJDhm2++0WHDhqlzTsPDw73lw8PD9cILL9SpU6d6y/JVwcePFnbQwg5a2EIPO2hhBy3soIUdtLCFHsET+DrGjh079L///a+OHj1aExMTVTXrvpszZ462bNlSfT6fVqpUSQcPHpzl9sAh0gULFmjjxo21fPny+txzz2W7HdnRwg5a2EELmw4cOKDfffed3n333XrPPfd4VxAL3Idr167N8oZt3bp1vWP1M8884y137Ovp27dv13/84x/eMf3bb78NzpMqpWhhBy3soIUdtLCFHnbQwg5alLz8zvkCb/cPhVatWlWdcxodHa1NmjRR55w2a9ZM//zzT1X9+zzR33HPnj16++23e1c2HjduXJbbcRQt7KCFLfQASgYD7MD/t23bNu9TUIEHhjlz5ngnG/5PPuX0hnheBxP/QWzRokVatWpVPfXUU/XXX38tys0vkwoyyDB+/Hht06ZNluWuuOIKvfzyy7VWrVo5fmqNq/IVHi3soIUdtLCFHnbQwg5a2EELO2hhCz2CL7fXLgL3+5w5c/Tss8/2XkQfNGiQ9zpITq+H7N27V9u3b6/OOe3Tp0/xbHgZRAs7aGEHLWzzXzks8Apixw75tGzZUufMmaOPP/64d4x++umns61r7969OmnSJG8oqEGDBt63niJ/tLCDFnbQwg5a2EIPO2hhBy1KTm7nfIEtjh0KbdGihX777be6dOlSbd26tTccun379izr2LNnj7788st62mmnqXNOa9asqVu2bCnW51Oa0cIOWthCDyD4GGAH8jFt2jTvpOSLL77IcRn/m+P79u3zPnmVkwMHDmijRo30qquuKpZtLUtefvllDQkJyXOQ4amnntJ69ep5fUaOHKmqf//DYeHChXrPPffkeVKJ/NHCDlrYQQtb6GEHLeyghR20sIMWttDDjsCB/y+//FJbtmyp5cqVU+ecdu3aNc/BUP8L+oMGDVLnnHbq1Enj4+ODs+FlEC3soIUdtCh5gW/eBvZYu3atDho0KMuQz7fffqtHjhzR1NRUffLJJ71j9KhRo3T16tWakZGhq1at0oceekgbNmzovWH75ptvZls/sqOFHbSwgxZ20MIWethBCztoYVNgl5yGQufOneu9FrhixQpvODQ6OlrffPNNXbRokS5YsEAHDhzoDYVWr15dx48fr6q0KAxa2EELW+gBFC8G2IF8TJkyxfu07M6dO1U1509crV+/Xs8880y955579ODBg9luz8jI0MOHD+s777yT5Xe5re9kdvDgQe8E8eKLL85xkOHtt9/Wpk2beieLzh39Gq+NGzdmW9e4ceO8fwB89dVXwXwqpR4t7KCFHbSwhR520MIOWthBCztoYQs97Dj2G+jOOussb3/XrFlTf/jhB1XNeTDUb+/evXruueeqc04vvfTSYt/msooWdtDCDlrY5X/D9tghn8DjeVJSko4dO9Zrduqpp2qzZs00IiJCIyMjvWP38OHDdevWrSX4bEo3WthBCztoYQctbKGHHbSwgxZ2rF27VgcPHpxnC1XVVatWadu2bdU5pxEREeqcU5/Pp6Ghoeqc0xo1auh9992nmzZtKqFnUvrRwg5a2EIPoHgwwA7kY+bMmeqc00qVKumaNWtyXe6bb77xTlpyG2IP5H9jxf9GzNatW3XGjBlFt+Gl3KpVq/SKK67Q2bNnewd7/8D/4cOHtW/fvt7+/s9//qMXXXSROue0Vq1aum7duizL79y5U3v37q0hISE6evToknlCpRgt7KCFHbSwhR520MIOWthBCztoYQs9Sl5ug6G1a9fWSpUqaZ06dfSPP/7I9f7+1zV+//1372pjAwYM4Ioxx4EWdtDCDlrYFRcXp/3799eoqKgsb9gGfp12oGnTpmmlSpU0LCwsywfToqKi9LHHHtMNGzYE+RmUHbSwgxZ20MIOWthCDztoYQct7Ni9e7f269dPK1euXKAW+/fv1yuuuEJPOeWULC1q166tEyZMYCj0BNDCDlrYQg+g+DDADuRjwYIFGhoaqqGhoTp37tw8l33nnXe8g86QIUPyHWL3vxGzc+dOHTRokPp8Pr3hhhuKbNtLu4SEhBwP9h988IG3nx966CFVVV23bp126dLFO+AfO9Dw0EMPef+ISE1N5c2qQqKFHbSwgxa20MMOWthBCztoYQctbKFHyclpMNTn82mVKlV08ODBesEFF2i7du1yvb9/MPTIkSN6ySWXeB8uWLZsWbFve1lDCztoYQctbNu1a5c2aNBAnXPapk2bPN+w9Vu8eLGOGTNGzz//fO3Zs6def/31+r///U8TEhKCtNVlEy3soIUdtLCDFrbQww5a2EELW4YPH67OOW3RooXOmzcv1xaB53vffvutjhs3Tu+//34dO3ZstoHQwHNLFBwt7KCFLfQAigcD7EAB+N/o6N27t+7duzfb7YEHFP8V251zevfdd+uBAwdyXKf/Pjt27NBBgwZpvXr1vPutXr26WJ5HaeffZ/fee6/3j4Lff//duy0uLk67du2abaBBVfXdd99V55y2b9++RLa9rKGFHbSwgxa20MMOWthBCztoYQctbKFHcOR2VeMqVaro8OHDNSkpSS+99FItX768rly5Mtv9/S/Ap6Wl6aBBg9Q5p+Hh4XrTTTfp7t27C/zYoIUltLCDFqXDqlWrNCYmRv/73//mOeST2z71/97/gbNjl6NFwdHCDlrYQQs7aGELPeyghR20KHmB++ipp57SOXPm5PtBgrwuXJHfRS1okjta2EELW+gBFC8G2IE8+A8KU6dO1WrVqmnDhg31iy++yPFg4f9denq6Xnfddd4w+iOPPJLtwHXs8HrdunW9N2I+//zzYn5WpZd/v1144YXqnNMuXbpkW+bYgYaNGzeqquqNN96ozjnt06dPMDe5zKKFHbSwgxa20MMOWthBCztoYQctbKFHcP33v//NMhh63333eYOfw4YNU5/Pp6NHj9aUlJRs901LS9Pbb7/d+8rUJk2a6Pz587Mtl56erunp6bm+LoKjaGEHLeyghX2JiYn5vmEbKCMjw9u3qampWW7btGmT/vbbb7pu3TrduXNntvshb7SwgxZ20MIOWthCDztoYQctSl7g/i/Mfgo8d0tLS/N+Tk1N1QULFuisWbP0rbfe0lmzZumhQ4c0OTm50I9xsqGFHbSwhR5A8WGAHSiA3bt360UXXaTOOY2JiclyhfTAg83WrVt19OjRWr16dXXOacOGDXXKlCneASZw+WOH1yMjIxleL6CbbrpJnXN6ww03qGrWg7xq1oGGWrVq6RtvvKGtWrVS55yOHj1aVTnYFxVa2EELO2hhCz3soIUdtLCDFnbQwhZ6FL9vvvlGTznlFA0LC/MGQwP32axZs7wP5o8ZM0Z/+uknVVXduHGjLliwQDt37uzdXqtWLf3oo4+yrH/VqlX64Ycfau/evfXiiy/WXr166V133aXz5s3T/fv3q+rfV0k+2dHCDlrYQYuyLXDfvvPOO3rbbbdpWFiYhoSEaGRkpFasWFEHDx6sn3zySY73QdGhhR20sIMWdtDCFnrYQQs7aGFH4GDp888/r1deeaV3Tuj/0759ex08eLD3wQJaFA9a2EELW+gB5I4BdqCANm7cqI0bN/auArdixYosV/jZtm2bjh49WqtVq6bOOT3jjDP0rbfe0oMHD3rLFGZ4nSv95O6+++5T55w2bdpU//zzzxyXiYuL0y5duqhzTitWrKjOOT3ttNOyfdL5eD8lh6NoYQct7KCFLfSwgxZ20MIOWthBC1voUfw2btzoffj+/vvv9/ZN4P568MEHvRfPo6KitEOHDlqjRg2tXbu2t99btGiR5Y1YVdX33ntPmzdvrlWrVs32Inz9+vX1yiuv1G3btqkqL8Kr0sISWthBi7IrsOEtt9yiderUydIgMjJSnXMaEhKilStX1rFjx3rL06No0cIOWthBCztoYQs97KCFHbSwI7DF9ddfrxEREVnOFevWras+n8/7XevWrXXLli2qSouiRgs7aGELPYC8McAOFEJcXJzWr19fnXPapk0bfemll3TXrl0aHx+fbXj9jTfe0EOHDnn39b/RUtjh9UWLFumrr74anCdonH+/LF++XBs3bqxVq1bV6dOn53rAjouL0wsuuMA76H/77beq+vcB3v+PhKSkJP3tt99UlYGGgqKFHbSwgxa20MMOWthBCztoYQctbKFHcMXFxenDDz/s7RP/fgvcRw899JDWrFkz25BnnTp1dOjQobpkyZIs63zuueeyLNesWTO99NJLdeDAgXrGGWdorVq11Dmnp59+um7evDnL457MaGEHLeygRdkTuC+vuOIKb6DHOad33323Tp48Wb///nt94okn9PLLL/c6Pfzww979OI4XDVrYQQs7aGEHLWyhhx20sIMWdgS26NWrlzrntFy5clqlShV97LHHdMmSJbpz505dvny5PvHEE3r22Werc04bNWqkW7duVVVaFBVa2EELW+gB5I8BdqCQ1q9frx07dlTnnEZERGh0dLTecMMNxTK8vmzZMr322mvVOacDBw4MzhMsBQ4ePOjtl06dOumaNWtyXXbt2rXao0cPffXVV7N8qi1wkOH0009X55yuWLGi2Le9rKGFHbSwgxa20MMOWthBCztoYQctbKFH8B07oBn49wULFugrr7yid9xxh95777367LPP6ubNmzUxMTHLfV544QXvTdlWrVrpvffeq4cOHfJabN++XWfNmqXt27f3Bkd37NihqnwLXSBa2EELO2hR+gXuw+uvv16dcxoeHq6dOnXSDz74INvyf/zxhz799NNes5deeimYm1um0cIOWthBCztoYQs97KCFHbSw6eabb/ZadOnSRT/99NNsyyQnJ+uKFSu8WZ+LL75Y9+7dWwJbW7bRwg5a2EIPIHcMsAPHYceOHfrAAw9omzZtsnyi9swzzyyy4fWlS5d6b9j7/9x///3BeYKlwKZNm7Rx48bqnNMuXbrokiVLvDemjn1T6dChQ5qcnJxtHQkJCV5D55yeeuqpeuDAAd6UKiRa2EELO2hhCz3soIUdtLCDFnbQwhZ6lLz8ruwSePtHH33k7eeOHTvq66+/rmlpaap6dNDUv88zMzP1l19+0Xbt2qlzTvv376/x8fHZ1h3YiF60sIQWdtCidHruuec0PDxcy5Urp127dvW+PUX1aLPADyckJSXpo48+qs45bdmypf7888/Z1sf+P360sIMWdtDCDlrYQg87aGEHLex45513tHbt2hoSEqIxMTHZWhxr4cKF2rRpU42MjNSpU6dmu/3YFnwrV8HRwg5a2EIPIG8MsAPHKSkpSf/44w+97777tHv37hodHa3Tpk0rsuH1vn37em+sREZGqnNO//GPf2RZ/8nu999/11NOOUWdc9qiRQt97LHHdP369QW+/+TJk7MMMsyYMaMYt7Zso4UdtLCDFrbQww5a2EELO2hhBy1soYctgQOegbZu3apdunRR55yefvrp+uqrr3ovmuf0AnxmZqZ+9NFHWqdOHW3UqFG2K+Pn9IJ74NX1QQtLaGEHLexLTk7WK664Qp1zWq1aNf3ss8+823Ib2Fm7dq1edNFF6pzTV199Nctt/hbbtm3TuLg4VeVrtQuKFnbQwg5a2EELW+hhBy3soIUtt912m/f634cffuj9PrcW8fHxOmrUKHXOae/evTUlJcW7zd9iy5Yt+tprr2X7PfJGCztoYQs9gLwxwA4UgcTERN21a5cmJCR4vzuR4fXrrrvOO3j57+ec0/feey84T6gUWb9+vcbExGhoaKg657R69er6wgsveCd3+fnPf/6jzjmdNWuW9zs+4Xx8aGEHLeyghS30sIMWdtDCDlrYQQtb6GHfihUrtHr16uqc05tuuskb5MxrP//555/ao0cPdc7l+BXbqqojRozQW2+9tVi2uayihR20sIMWdsybN897nfuJJ57wfp/fcXnEiBHqnNOFCxeqatYPDGzevFlvvPFGrVmzpn7zzTfFs+FlEC3soIUdtLCDFrbQww5a2EELOzZs2KDlypVT55wOHjzY+31+LZYsWaLh4eH65ZdfqurRDyX4LyS5efNmveOOO9Q5p1deeWWxbXtZQws7aGELPYD8McAOnIDcDihFNbw+fPhwvfPOO9Xn82mdOnX0l19+Kb4nU4rt3LlTn3jiCW3fvr0653TQoEF64MCBPO8T+OmztWvXej8zyHBiaGEHLeyghS30sIMWdtDCDlrYQQtb6GHb448/rs45rVevnm7atElVC3alsNmzZ+uDDz7o/f3rr7/2uj7++ONas2ZNdc7pkCFDimOzyyRa2EELO2hhx4wZM9Q5p7Vq1dKlS5eqat4t/Lft27dPV69eraqqhw8f1meffVanTJmiiYmJeuedd3qvvbdu3VqTk5M51hcALeyghR20sIMWttDDDlrYQQs7fv31V/X5fOqc0ylTpqhqwa9ev3v3blU9erHKsWPH6sUXX6yLFy/WoUOHau3atdU5p6eccoq3HPJGCztoYQs9gPwxwA4UMf+JxIkOrw8aNEiXLVump59+Op+aKoC0tDTdt2+fzpo1S//8809VzX8w4dh/FHASWDRoYQct7KCFLfSwgxZ20MIOWthBC1voYZf/CmL16tXT3bt3H9d+nj9/vtatW1fr16+vQ4cO1Vq1amloaKiefvrp+vrrrxfDVpdNtLCDFnbQwo4pU6aoc05PPfVU3bNnT6Hvn5GRob/88oueccYZ6pzTNm3aaK1atdQ5p+eee67+/vvvxbDVZRMt7KCFHbSwgxa20MMOWthBCzt+/fVXDQ8P10qVKumPP/6oqlkvalEQf/31l958883qnNOKFSt63+DVpk0bXb9+varymmJB0MIOWthCDyB/PgFQZFRVnHOya9cuGT16tHzyySeye/duqVixosyYMUMuv/zybMuKiCxbtkyef/55ef/990VE5NZbb5VHHnlEwsLCJDk5WXw+n1x44YUiIpKRkRH8J1YKlCtXTqpXry5XX3211KxZUzIzM8U5J+np6VmWC9x/Pl/W/wv098CJoYUdtLCDFrbQww5a2EELO2hhBy1soYc9qioiIuHh4SIiUrduXaldu7Y457zbCiIjI0OaN28u0dHRsn37dpk0aZL89ddf0qRJE3n00Ufl5ptvzvJ4yI4WdtDCDlrYU6FCBRER2bt3r+zevbvQ93fOSatWreTaa68VEZFffvlF/vrrL2nbtq3MmjVLmjZtymvnBUQLO2hhBy3soIUt9LCDFnbQwo7IyEhJT0+XhIQEWbRokYiIhISEFPj+qipRUVFy/fXXS+3atSUpKUkOHDggzZs3l++++06io6MlIyOD1xQLgBZ20MIWegD5Y4AdKELOOdm9e7c88MAD8sUXXxzX8PrAgQPlP//5j9SqVUvefvtt2bFjh0RERMgll1wiIlkPZLwxkjufzyfp6ekSGhoqiYmJMmHCBBE5uv844QsuWthBCztoYQs97KCFHbSwgxZ20MIWepQ8/+saHTp0EJGjb7h+9dVXWW7LT0ZGhoSEhEidOnWkVatWUr58ecnIyJDQ0FAZNGiQ/Otf/xIR8T6wgJzRwg5a2EELey655BJp2bKlpKeny9dffy1paWkFvq//9fTt27fLnj17JDIy0tvn7dq1kwYNGnjL5bUOHEULO2hhBy3sKOkWyIoedtDCDlrYoKrSsGFD6d+/v/h8Plm2bJns3LmzUPf3t/j444+zdNy/f793YQxa5I8WdtDCFnoABVS0F3QHsGvXLm3WrJk657RatWr6+eefZ7k98Gs7li5dqtddd50659Q5p3fccYdu2bLFW+7SSy9Vn8+nvXv31rS0tCxffx64ng8//FAff/zxYn5mpcuRI0dUVTUpKUnbtm2rzjkdOnRoCW/VyYkWdtDCDlrYQg87aGEHLeyghR20sIUedmzcuFHPO+88dc7p8OHD9fDhwwW6X+BrHE888YRGRUWpc04jIiLUOaf169fXP/74Q1Vz/lrVwPvjKFrYQQs7aGHH4cOHdcCAAeqc03bt2umqVasKdD//6+Bbt27VgQMHas2aNdU5p/Xq1fNeVx85cqS3vL9HZmamHjp0SL/++uts6zrZ0cIOWthBCzuC3QJ5o4cdtLCDFra8++67Wq5cOXXO6fPPP6/JycnebbkdW3Nr0axZM+91xlNPPVU3bdqkqn+/Dqma/VyPc7+/0cIOWthCDyBvDLADxWD16tVar149/eijj7L8Pr/hdf+bHqqq8+bN824bN25cruv54osvtEWLFuqc01tvvbWYnlHplJSUpE2aNPH2o3OuwCeQecnpHxDp6enZTiJ5sfFvtLCDFnbQwhZ62EELO2hhBy3soIUt9LDj+eef9xpMmjRJ4+PjvdtyeoE8t8HQ6OhoHTdunHbp0sV7E3fz5s2qmvWNW//9v/vuO33kkUeK50mVUrSwgxZ20MKOzZs36+mnn67OOe3atasuXbpUExMTVTXn46r/d9u2bcvyhm3r1q31t99+02nTpnltH374Ye9+/h4rVqxQ55xed911QXh2pQst7KCFHbSwI1gtUDD0sIMWdtCi5AXu54ceesjbf2PHjtV169ble7+cWmzcuFF37typnTp1UuecNmzYUDds2JDjY3722WfebSf7hw1oYQctbKEHUDAMsAPF5Nir+RRmeF1Vdfz48RoeHq6NGjXStWvXeusIXM/nn3+uLVq00LCwMHXO6WWXXVaMz6j02bRpk7ePTz31VJ01a9YJrzPwoJ6YmKgzZ87UBx98UC+77DK98sordcKECfrNN994yzDQcBQt7KCFHbSwhR520MIOWthBCztoYQs9Sl7gkOeIESO8Hvfff78uWrQo3/sEDoY2adJEZ8yYoaqqsbGxGhMT47X1D4gG3v+HH35Qn8+nzjl98cUXi+HZlS60sIMWdtDCpri4OK1bt64657RFixb6+OOP64oVK7Itl9cbtuvXr1fVox9mC/yAwkMPPeTdf+/evdq+fXt1zml4eLh+//33wXmCpQgt7KCFHbSwozhbMBxaePSwgxZ20KLkBZ6/DR8+3Nt/l112mT7yyCNZPrysWrAWmZmZumbNGu+Dyw0bNtTU1NQsVzeePXu2tmzZUqtUqZJj85MRLeyghS30APLHADsQBIUdXk9OTtZ27dqpc07PO+887+tDchpeDw0NVeec3njjjd7tJ/sb6IF+++03bdy4sU6fPt373fHuH/8gQ0ZGhk6ePFn79Omjzjmvgf9PVFSUPvjggyf8eGUNLeyghR20sIUedtDCDlrYQQs7aGELPUpe4ND/gw8+6O2nevXq6cCBA70rkKnmfVVj/2Co39q1a70B0RdeeCHLYy1ZssT72tXmzZvrmDFjNDU1tTifZqlACztoYQctbFq/fr127dpVK1asqM45rVy5sv7555/e7QV5w9bfKy0tTZ9++ml1zun8+fNVVTUlJUWfeOIJrVy5soaEhOjVV1+t27dvD/KzLB1oYQct7KCFHcXdAoVDDztoYQctSl7gOd9zzz2nZ511lnfet2bNGu+2grQIXNeqVau0S5cu+u2332Z5vI8//ljPP/98DQ8P9+Z0cvpmr5MRLeyghS30APLGADsQRMuWLctzeN1/wPjll1+0fv36GhERoZMmTVLVoycsfscOr99www3egYyv/cgu8BNrxztYEHjieN1113n/UPC/idW5c2e95pprtF27dt7VlYYPH14k21+W0MIOWthBC1voYQct7KCFHbSwgxa20KPkBb4W8dZbb2nv3r21XLlyetddd3m/L+hgaOBya9eu1bfeeivLYwUOhrZo0UJffPFFPXToUHE8rVKJFnbQwg5a2LR7926dOnWqXn755frf//7X+31hhnz80tLSdNeuXd7fA6+SHxYWpkuXLg3CMyq9aGEHLeyghR3F1SK391NzGu452T+0HIgedtDCDlqUvMB99fPPP+uUKVO8bzfJzMz09s/27dv1jjvuKFAL1aNXxg/kHwoNCQlR55xed911um/fvuJ6WqUSLeyghS30AHLHADsQJCtWrNCePXvmOrweaOzYsd5yCxYsyHIbw+uFV1RXpt+zZ4926tTJa+Pc0a/vWrZsmfcPhS1btuiLL77oDTS88sorJ7z9ZQkt7KCFHbSwhR520MIOWthBCztoYQs9bAh8Af3gwYP622+/eX8P/PrSp556yhsMbdKkSa6DoTk5djB04sSJ3mDoyf5mbSBa2EELO2hhl3//Z2RkePtp9+7d+n//938FfsP2WLfffrt3LH/ppZdUlQYFQQs7aGEHLewojhaBjl3+3Xff1cmTJ3t/p1FW9LCDFnbQomTltD8DW/z11186bNgwrVWrVoFbBP7+2KHQa6+9Vg8cOFD0T6QMoIUdtLCFHkDOGGAHgmT79u3eGxh33313jsPrGRkZmpycrJdeeqn6fD7t3bt3lhONzz77TM866yxveL1fv34Mrxcz/8F+06ZN2q5dO3XOaUREhJ511lk6c+bMHO8THx+vAwcOVOec9u3bN8s/OHD8aGEHLeyghS30sIMWdtDCDlrYQQtb6FG0ctoPga9XvPrqq3raaacVajDU//vFixd7r6ucddZZOnHiRO/q++z/7GhhBy3soIV9mZmZeuTIEZ00aZI2aNBAnXPapk0b3bBhg6oWbMjntdde8wZDe/fu7d0XhUMLO2hhBy3sKIoW/vUEio+P19dee0379u3rdbr11luLfPvLGnrYQQs7aGGHf1/PnDlTo6Oj1TmnrVq1yncoNHDfMxRaNGhhBy1soQdOdgywA0H066+/6rBhw3Tz5s25LvPbb79phQoV1Dmn9957r/d7hteDz/8p6f3792v79u3VOacVK1bUiy66SOfNm+ctl9ObUJMmTVLnnIaHh+fZGwVDCztoYQctbKGHHbSwgxZ20MIOWthCj+Datm2b/uMf/1DnnNapU0ffe+8977b8BkMXLVrkDYaec845OnHiRE1ISFBVXhM5HrSwgxZ20MKOw4cPe8fl0047TdetW6eqBRvyiY2N1Z49e6rP59Py5cvr1KlTc1wup2M7HzTIjhZ20MIOWthxIi2OXWbt2rX6/vvva6tWrbR8+fLeUGh4eLg653Ts2LHF8hzKEnrYQQs7aGHLhRdeqM45rVmzZr4fJMhrKPSaa65hKPQE0cIOWthCD5ysGGAHgizwK2kD+d/MeOaZZ9Q5p6eccorGxcWpqurs2bNPaHi9sF8/hb/32ZEjR/SCCy5Q55xWqFBBe/bsqYsXL/aWO/ZFw7S0NFVVff/99zUyMlJr1Kih27ZtC96Gl0G0sIMWdtDCFnrYQQs7aGEHLeyghS30CL6PP/7Ye4N10qRJ3u8LMxjaoEEDHTFihC5dulQzMzM1JSVFVRkQLSxa2EELO2hhx2effeYN43zyySeqmv8+9PeYNGmS94btv//9b+/2wOO5f13p6en6/fff6xtvvJFtPTiKFnbQwg5a2HE8LY4VFxenL774ojZu3FirVaumzjmtW7eudujQQc866yx17ug3dP3444/F8AzKFnrYQQs7aGHHzp07NSoqSp1z+tBDD6lqwYdCO3XqpD6fjysaFxFa2EELW+iBkxkD7IAxvXr1UuecnnnmmXrkyBH9/PPPj2t4/dg32ffs2aNffvllsW57WZORkaG33XabOuc0LCxMu3btqosWLfJuz+uKF3fccYc657Ry5cq6devWYGxumUYLO2hhBy1soYcdtLCDFnbQwg5a2EKP4Pr000/VOaennnqqrly5UlXzHwxdvHixNxjqf1O2QoUKGhUVpa1atdK77rpLd+zYoaoMiBYGLeyghR20sOP333/XBg0aaIUKFfT1118v8P1WrlypERER6pzTmJgY/eOPP1Q1532fkpKiw4cP1zZt2qhzTm+//fYi2/6yhBZ20MIOWthR2Bb+87vDhw/r9u3b9c4779R27dp5x/GqVatqTEyMfv3117po0SK9/vrr1efz6c0336zJycl8gCAf9LCDFnbQwo6kpCS97LLLvA+R+S9Qcaxjh0JjYmK8odAWLVp453cFkdMH1EALS2hhCz1wMmOAHTBk+fLlWr16dQ0JCdE333xTFy5cqM2bNy/U8PqxJya//PKLvvXWW9qkSZNsV3VA3j7++GONjo72vtbrq6++8m7La5Bh5cqV2rp1a3XOaa9evTQ1NZWvdzxBtLCDFnbQwhZ62EELO2hhBy3soIUt9Aiu5cuXa8OGDdU5p+PHj891ucCrGvtfD/H5fFqzZk299tprddCgQdqtWzetV6+eOue0efPmumXLliz3Rd5oYQct7KCFHfv379fLL79cnXParVs3b8gzLzt27PAuDBMVFaXjxo3T1NRUVc16TN+7d69+99133iBQSEiI90bviy++WGzPqbSihR20sIMWdhSkxbHH3uXLl+stt9yiLVq0UOecdyy//fbbdfr06ZqcnKyqqjNnzvQGRt9+++2gPJ/Sjh520MIOWtgyefJkb5/l9IGCwGPyRx99pOeff753HPb/efzxxzUhISHfx/Kva+HChbpq1SpVZTg0EC3soIUt9MDJigF2wJC33nrL+/Tsrbfeqmeffbb3dYIFvfK66tEDzbp163TMmDHauHFj76oO4eHh6pzTe+65JxhPp9S7/fbbvYP8W2+95f0+p8GEwN89/vjj3v3GjRsXlG0t62hhBy3soIUt9LCDFnbQwg5a2EELW+gRfE899VSeL8LnNBjapEkTHTBggG7evNlb7tChQ7pkyRLt0KGDOue0devWunv37mA9jTKBFnbQwg5a2LFhwwbvQwCXXnpplv0byN9k+vTpetppp6lzTtu3b6979uzJtuxPP/2kAwcO9NZbp04dbdCggTrntE2bNrpv377ifEqlFi3soIUdtLDj2BabNm1S1ezvo7733nt6xx13eO+5/j/2zjssiuP/4zNHFUEBFUtEEXvB3gv2XqLma0uixiQae4kt9t577C3GKJqosceY2EtsiR2QjtgLYqHDce/fH/x2vKMrV4bj83oenpjb2b3Zed3u7Mx+ZoZzDicnJwwfPhwHDhzQSRsYGIhq1aqBc45evXoZ61TMAvIhD+RCHsiF6dHu05s4caIYGLB+/fo006QMCu3bt69OW3HmzJmIjo5O9/uU+v/MmTNin7t37xrgzHIe5EIeyIVckA8it0MB7AQhAUlJSYiMjESrVq1EoHn58uVFwHlWg9cjIyMREhKCAQMGoGbNmqKiKV68OEqWLCmWtB06dKixTi3HcvnyZfEiatiwYeLzzAIZ9uzZI8q9Y8eOiIyMTHc/ImuQC3kgF/JALuSCfMgDuZAHciEP5EIeyIVckA/joj2j2Lhx40QZbtu2LVUa7cDQypUrY/HixSJgJ2WfyIkTJ+Dq6gpbW1usW7cOALnIDHIhD+RCHsiFnPj5+aFo0aLgnKNDhw5itmIFxUlsbCwaNmwIzpMnhrlx44ZOuvDwcOzYsQOOjo7gnCNfvnzo0aMHDh48iOrVq8PJyQnr16+HWq2mWfLTgVzIA7mQB3IhDyldJCYmAgBev34NLy8v9OjRA5xzEeBTqlQpjB49Gnfv3hUzGQMQDv/66y8UKVIEtra22LhxIwBaReVDIB/yQC7kgVyYHu222vjx40Vw6IsXL3TKLmVQaI8ePfD27VsAwIoVKzINDlXae6dOnRJpOefo378/zWz8/5ALeSAXckE+iNwMBbAThCSEh4fDxcUFlpaWUKlU4kVIesHrKSuOM2fOYMCAAXB3dxcVGeccY8aMwe7du/HDDz/AwcEBHh4eCAgIAEAvTDLi4MGDsLCwgK2tLXbv3g0g80CGP//8UwwSKFu2LH766SdqLOoBciEP5EIeyIVckA95IBfyQC7kgVzIA7mQC/JhfLT7McaMGQPOOebNmwfg/YvW8+fPi/6MEiVKYMGCBaIDPi0/r169EgP4e/funWkekpKS8PDhQ32cTo6GXMgDuZAHciEnPj4+KFasGE6fPp1uGmVFlTx58mDmzJlISEgQ2/bu3Ysvv/xSvJBt3769qPdHjx4NzjmaNm2K+/fvG/xccjrkQh7IhTyQC3nw9vbGJ598ghs3buDVq1fYs2cPqlatCmdnZ1G+BQoUEP/ev38/AAgfSj2ekJCApk2bioFqb968Mdk55WTIhzyQC3kgF6YnZXDomTNndLanDArt2bMnXr9+rZNm5cqV6QaHKu1G7aBQR0dHfP7553j69KnBzisnQi7kgVzIBfkgcisUwE4QkhAWFiaWhFJmXv/iiy9EY0QZiZvyZcjPP/+MwYMH64yMcnV1xZgxY/DXX38BSH5ZUrduXfGyJCoqyrgnlwNRKnV3d/d0X0Rp///ff/+NggULgnMOe3t7DB06NMMlWYisQy7kgVzIA7mQC/IhD+RCHsiFPJALeSAXckE+TIN2J/zJkyd1tmkHhnLO0aVLF4SHhwNIOzBU6Sf5/PPPRcBPRiQlJeHy5cuoXLkyRowYkd1TyfGQC3kgF/JALuREmXUyrZnA9u/fjzJlyoBzjqpVq+L27dsAgHfv3mHo0KFiRuO8efNi6tSpYuWUjRs3gnMOCwsLXL582Xgnk8MhF/JALuSBXMhDQkICDh06BCcnJxEQamlpCTs7O8ybNw9r164VK2FzzsU7VI1GI/x5eXkhX758yJ8/P7y8vADQrMYfC/mQB3IhD+TC9KQ3u/D+/fszDArV3i9lcGhUVFS6QaG9evXC8+fPAbz3pLQVczvkQh7IhVyQDyI3QgHsBCERvr6+4oV4v379xMuPuLg4nXSPHj3CL7/8gvbt2+sErjdo0ACDBg3Cw4cPdWZxUGYNKliwIHx9fQHQ7OuZsXbtWnDO4eTkhJCQkAzTHjt2DE5OTsJDt27dxGhnajBmH3IhD+RCHsiFXJAPeSAX8kAu5IFcyAO5kAvyYTrS6oS/cOGCGMxvYWEBOzs7+Pj4AMi4/+L169eoWLEiOOdo165duumSkpJw5coVNGvWTHj877//sn8yORxyIQ/kQh7IhXykN8AsNjYWAwYMEGW2b98+xMXFYdu2bWJWSltbW3z55Zc4dOiQ2P/ff/9F7dq1oVKpsHDhwjS/A0j9W6D+dHIhE+RCHsiFXNy5cwcODg7gPHlm4lGjRuH69esAksvs7NmzaN26tfDy999/6+z/3XffgXMONzc33LlzxxSnYFaQD3kgF/JALuTDy8sLjRo1grW1dZpBoQrafYDawaEzZswA8GFBoVFRUWIAAvEeciEP5EIuyAdh7lAAO0FIho+PDwYOHCg6m7QrGG9vb+zevRvlypUTMzPY2Nigfv36mDZtGkJCQhAfHw/g/XJSjx49QrNmzaBSqfDNN9/ojKwi0sfHxwfu7u5wdnbW6TzUHhiQkJCAX375RVTwlpaWaNu2LSIiIgCkPzKO+DDIhTyQC3kgF3JBPuSBXMgDuZAHciEP5EIuyIc8BAcHizKuUqUKihQpgkqVKiEyMlLHhzZKn8nBgwdRtGhRqFQqzJ49W2ebghIY2qRJE9E5v2HDBjHzPvEeciEP5EIeyIW8bN26VbgZOXIkgoOD0aFDB9Fv7uLigt9//x1PnjzR2W/OnDlQqVRo0KABbt68meF3xMbGYu/eveL/KUA0bciFPJALeSAXpsPX1xfffvstwsLCxKpZStstISEBp06d0gkOPXHiBADg999/F5+tWLHCVNk3O8iHPJALeSAXcrFixQpRrr17904zKFRBO85Ge7/+/ftnGhSqEBUVhc6dO4Nzjjlz5hjknHIq5EIeyIVckA/C3KEAdoKQnMTERISGhmL27NmoVKkSbGxswDmHnZ2dqFxWrlyps4925bJ+/XqRbt++fcbOfo4lIiJCzHDv6emJ69ev67yUOnbsGL7//ntRtk5OTujRo4d4UKBABv1BLuSBXMgDuZAL8iEP5EIeyIU8kAt5IBdyYQofFFCSPv369UOxYsWwZMkSVKpUCXXq1Ek3rfZL3W7duoHz5BmRL1++nCptysBQe3t7bNy4EZGRkQY7l5wOuZAHciEP5EI+Ll26hBIlSog6umPHjsifPz845yhVqhS+/vpr+Pv7p9rv3Llzom5fs2aNzjbtevrt27e4fv066tevL170EmlDLuSBXMgDuZCbxMTEVMGh+/fvx8yZM2FpaYmaNWvi3r17AKgNZwzIhzyQC3kgF8anX79+aN26dYZBoQrasTjbtm0D5xwqlQqcc+TPnz/DoFAAWLBggYj3adWqVarBbLkdciEP5EIuyAdhzlAAO0FIzNOnT9G1a1d4enqKxgnnHI0bN8aYMWPQuHFj8dnJkycBJDdSlIaKn58fqlSpAs45BgwYYMpTyZEEBQXB1dUVnHNUrFgR3bp1w/Dhw9GhQwcUKFBAlL2HhwcmTJggZkaiwBL9Qy7kgVzIA7mQC2P6oA7JjCEX8mCK+5SyGhGhC7mQB2O60O54pPo/bUz1PKXd4Zvb6xLtsjx79iwePXqEpk2bIn/+/Lh7926G+w4cOFAEhs6cOROAbnlSYOiHQS7kgVzIA7mQk8TEREyaNAmcc+TJk0eUM+ccbdu2xZ9//ilWS9F+HgoJCUG9evXAOcdXX30lPk9Zr1+/fh0//PAD3NzcwDmHlZUVOOc4d+5crq+3U0Iu5IFcyAO5yBmkFRyqzI4/aNCgDzoWlXv2IR/yQC7kgVwYB+16NiYmJsv7KZNg3Lx5U/ixs7NLMyg0rX7EPn36oEWLFrh+/Xp2sm9WkAt5IBdyQT6I3AAFsBOExAQFBcHS0lJUJs2aNcPUqVORmJiIuLg4XLx4Mc3lo5SK6ODBg3B2doalpSU2btwIIPMGio+PD7Zt22bQ88pJBAQEoEaNGrC2ttYZRKB0OPbu3RuHDh1CbGwsgLRHpxH6wdgulP2pUZ8aciEP5EIujO3D19cXt2/fpronDciFPBjLRVJSEnx8fPC///0Pu3btwv3798U2umclQy7kwdj3qB07dmDDhg06y8+Ti/cY24ePjw/69Omj87Ixt/tIWaZDhw4F5xyLFy8W5a6gVqvx5s0bfP311+A8eeaYTp064dq1a6mOSYGhHw65kAdyIQ/kQk78/Pzg4OAg6uxKlSphwoQJ6aaPj4/HsmXLYGdnh2rVqokXsNqDLhMSErB79264ubkhX7584JyjcOHC6NmzJ/766y+d41Hb7z3kQh7IhTyQi5xBYmIiTp8+jRYtWoh2YIUKFUQ/Rsq+8Ldv3yIwMBCHDh3CjRs3EB4eLo5FZZ59yIc8kAt5IBfG4UPLRkl/4sQJ4cXBwSHDoNCYmBg8e/ZM5zghISHZzbrZQS7kgVzIBfkgzB0KYCcIyfH19UWZMmWwevVqBAYG6mxLSEhINfJW6ah69eoVqlatCs45GjRokKUZEP39/dG3b19wztGnTx+DnE9O5NGjR1i1ahW6d++OevXqoUqVKpg6dSq8vLx00uX2oANjYEgXKUcVvnv3Dmq1OtUSPOQ5GXIhD+RCLoxVZwQEBOCLL74A5xyTJ0/GpUuX9HZsc4FcyIMxXPj6+qJTp04iUKhLly7Yvn27Xo5tTpALeTDWPery5ctwd3cH5xxNmjTB1q1b9XZsc8JYPnx8fDBixAjRfh82bJjejm1O7N69W5TRnDlzcPHiRURGRiI0NBRr1qxB+/btxT2mefPmOHz4sM7+FBiqP8iFPJALeSAX8uDt7Q17e3t8++23OsGbaa1C8+DBA1SrVg2cc0yaNAnR0dE6xzp27JgYnKD8lS1bFr/99hvCwsJ00j58+BBr165N9XluhlzIA7mQB3KRc/j111/h4uICzpNnv3/37p3YprTTQkJC8PXXX6NUqVLgnMPS0hLt27fH5s2bRVpa+Uw/kA95IBfyQC7kQanHT506JepkR0fHTINCmzZtCgcHB4SGhpok3+YIuZAHciEX5IPIiVAAO0HkAFIuA6LdwZXW8lHHjx/HyZMnkS9fPhQoUAC//fYbgIwbJUrwutL4sbS0RHBwsGFOKIcTFxen8/80Ytl0GMLFyZMnsXLlSjRs2BC1atVCpUqVMHbsWOzZs0ekoeCS1JALeSAXcmEIH0lJSTh9+jTq1q0LzpOXCm7cuDFWr14t0pCP1JALeTCEi4iICMydOxd9+vSBlZUVVCoVrK2tMWnSJJGGXKSGXMiDIdsYP/74I2rWrAkLCwtYWlpi5syZYhu5SBtD+PDx8cHw4cNFu93KygqccwwfPlykIR/vmTJliiirAgUKwMPDAwULFkTevHnFTJafffYZjh49qrMfBYbqH3IhD+RCHsiFPERERIjVSAHdOlu7Xv3ss8/AOUelSpV0ZhRTq9UYM2YMKlWqJJxWrFgRAwYMwKtXr1J935MnT7B06VKR9smTJwY6s5wHuZAHciEP5CJnoAwOsLCwwOXLl1Ntf/bsGbp37y5W7XJ2dhaD1TjnOm1sel+YfciHPJALeSAXcvAxQaHR0dHo0qWLSP/1119naeJJImPIhTyQC7kgH0ROhQLYCSIHoHRkpfcyO60gduVFSMmSJeHv75/h8ZXg9QIFCoBzjhIlSuCff/7R+3nkZLTLnoIKTIshXGg0GkRERGDo0KFiEEfKP1tbW/zwww96/+6cDLmQB3IhF8aoM2JjY3H58mUx87fSETl06FCDf3dOglzIgyFdpDzevn37MGDAAOFi1KhRBvvunAi5kAdD36O0X0hdu3YNY8aMIRcZYEgfKYPXv/rqK6xdu1b4oCD292j/bmfMmIFixYrpPH86ODjAwcEBK1euhLe3d6p9MwsMze3l+yGQC3kgF/JALnIm69evB+ccTk5OOH36NADg6dOnOHjwIFq0aKHj8PPPP8ehQ4fEYLbExERxnCdPnmDRokUoWLAgOE+e/fj+/fsmOaecCrmQB3IhD+TCtJw8eRJFixaFSqXC4MGDAaSuj0+cOIHChQvDysoKffv2ha+vL3777TedWfHnzp0r0lNw6MdDPuSBXMgDuZADpcw/Nig0b9686NGjB65evWqaEzAjyIU8kAu5IB9EToYC2AnCTEgriJ1zrrMsVFqkDF7/5JNPKHidMBsyWnVAeYCLiYnBn3/+iTZt2ugEHrZt2xb9+/fHuHHj0K5dO/H5xIkTjZV9s4JcyAO5kIuPWbIxZefkkiVLUKJECVhaWoJzji+//FJf2ctVkAt5+NilTLU73p89e4Y1a9aI+9SCBQv0lb1cBbmQB324ePr0KVasWCFcTJkyRV/Zy3Vk5kO7fkgZvD5gwABERUUBADZv3kxB7GmgXb7//PMPduzYgUmTJmHChAk4ePBgqqBQIGuBoem9oM3t5Z0R5EIeyIU8kIucgVJuwcHBaN26NSwtLcUAvrt376JPnz4oU6YMOOewsbFB+fLlsXTpUp1jaLtOGRhar149Wr00i5ALeSAX8kAuTI/iYMaMGaKttmPHjjTTKrPaFy5cGKGhoeLzFy9eYPHixWL/9evXGyPrZgn5kAdyIQ/kQh6Uttrp06c/Oii0e/fuuH79umlOwIwgF/JALuSCfBA5HQpgJwgzIi4uDidOnEC5cuWgUqlQo0YN+Pj4AEj7ZQcFrxPmSExMDG7duiX+P63gEuV6ePfuHbZu3YratWuDcw5LS0s0b94ca9eu1Un/4sULEXhlbW2NXbt2GfYkzARyIQ/kQi6y4iMztOv1//77D02aNBHLQ1arVg0PHjzQS17NHXIhD/pwAej6iIuLw/z586FSqVChQgVcuXIl2/nMDZALedCXi5THXLhwIVQqFezt7bFnz55sHzO38DE+vL29MWzYMNFp/O233+L169c6x9iyZQsFsadBZrOBaZdPVgJDtTl16hRWr16NW7duITo6Okvfl5shF/JALuSBXMiNdvnPnTsXnHO4ubnh559/xt69e+Ho6Cjq5rx582LChAk4d+6czv7ax0grMDQoKMio55RTIRfyQC7kgVzIw7///gtbW1twzvG///1PfJ6yLbZmzRpwzuHs7Jyqny8mJgbTp08H5xyVKlXKdMbK0NBQvHjxQn8nYUaQD3kgF/JALuThzz//1FtQaFJSklFWDzZXyIU8kAu5IB9EToYC2AnCTFAqnPPnz8PGxgac6y4LnxIKXjcuylKO+gg6IdInLi4Oe/bsgaWlJb755psM00ZGRmLNmjXw8PAQQbqjR4/G5cuXRRrtJTjDw8PFQ9zIkSMNdg7mArmQB3IhFx/iIz20G4nnz5/H559/Lmb8bt26NW7cuEENySxALuRBHy7S49q1ayhSpAg459iyZYtej22OkAt5+FgXad1zUn4WFBQklqJXAqbpXpUxH+Pj4cOHGDBggOg0btKkCeLi4gAACQkJIl3KIPZvv/3WIOdgrnxoYGhISAi6desGzjnKli2LkSNH4unTpwCovZ5dyIU8kAt5IBem5ejRo6IerlevHoYOHYo8efKIl7lVqlTB+fPnERsbK/ZJOViAAkP1A7mQB3IhD+TCtCQmJoqVsooUKYLt27enSqO0k58/f45KlSqBc47JkycjJiZGJ52vr69YyXThwoXp1tkBAQHo3r07LC0taYb8FJAPeSAX8kAu5GLEiBHgnCN//vzo06fPRweFavcJpoQGLmcNciEP5EIuyAeRk6EAdoIwI54/f45WrVqBc44aNWrg8ePHAFJXIhS8bhru3LmD/v374/79+6bOilkSFxeHnTt3wt3dXXT8/vLLL2mmjY2NxS+//IJq1aqJIN358+fj4cOHIk1aQTxTpkwRLxHDw8MNdi45HXIhD+RCLj7ER3poO/jnn3/Qp08fCpj+CMiFPOjDRWY0btwYnHP06tVLZxAOoQu5kAd9uDh06BBOnDgh/j/l/WjatGngnMPJyQlhYWF6ybe5kh0fq1atQt26dWFnZwcHBwd8//33Ypv2NaBWq7F161ZxfO0ZFon0+dDAUIWzZ8+iW7du+OSTT8A5R82aNUU7nQJEPw5yIQ/kQh7IhWkJCQlB27ZtYWNjA2traxQoUABWVlbgnKNOnTqYPXu26O9Ir9325MkTLFy4UPShN2jQAP7+/mI7tfeyBrmQB3IhD+RCDgICAsA5R9GiRfHq1SsAwIMHD1IFbUZFRWHUqFHCj7LytXabbsmSJeCc4+eff07zu2JjY9G3b1/R5luwYAEFAKWAfMgDuZAHciEX48ePR5s2bbI1ozGQPOnFyJEj0adPHwwcOBC//vqreL9Kbb6sQS7kgVzIBfkgcioUwE4QZoBSQZw8eRKlS5cG5xxff/01oqKiUqWl4HXjo9FoEBsbi8KFC4Nzjp49e+oEhBL64d27d6hYsaJoyPfp0we3b9/WSaN02l68eBH169cXQbpLly4VDf+0UBr4Q4cOBeccVapU0Zn5hNCFXMgDuZCLrPjICAqY1h/kQh6y6yIz3rx5g7Jly4Jzjk6dOpGXDCAX8pBdF3fv3hXtvd9//11nmzJ7xvz582FjY4OCBQvi0aNHes2/uZFdH/7+/liyZAny5s0Lzjm++OILsU27s1etVmPXrl1Ys2YNnj17ptdzMEeyEhiasjNdo9GIe094eDj27duHWrVqgXOOUqVKicEc9IL2wyAX8kAu5IFcmJ6XL1+iZMmS4JyLVU445/j888/h7+8vZqVMrzyVwFAnJydwzlGuXDn4+/uL1VQUyEfmkAt5IBfyQC7kwc/PD0eOHAEAXL16FZUrV4aXlxcA3f6/e/fuiVXl+vfvLz5X6vP4+Hj8/fff4vO0+jyOHz8OzjnGjRsnVlghdCEf8kAu5IFcmB7ttpvSpvvQoFDlnep///2HEiVKiLpfmWCkZcuWePDgQarvI3QhF/JALuSCfBA5HQpgJwgz4tNPPxWVzZ07dwDodlBR8LppOXfuHOzs7MA5x2effUZB7Abgzp07KFWqFDp16oR79+7pbFOuhaSkJHTu3FkE6c6ZMwcvX75M95jaDfju3buDc45atWohIiKCAq8ygFzIA7mQi4x8ZAQFTOsfciEPH+siPZR7W0JCAn7++WcUKlQInHMMGzYs28c2d8iFPGTHxZs3bzBkyBDRufjTTz/pzLgUExODXr16gXMOGxsbnVn6iLT5GB/adUFcXBx27doFe3t7cM4xfvz4dPdLGXRCpEaj0eD8+fNiVYfMZjV+8+ZNms+2SUlJuHXrFurVqwfOORo1aiRmpyGyBrmQB3IhD+RCHry9vcUAsg4dOmDdunVZ2u/JkydYtGiR6EPnnMPZ2RllypSBm5sbvvnmG/z6668iPb24zRxyIQ/kQh7IhTwobbfhw4eD8+QVrrUHeit9GwcPHhR9gJs3b061v4J2madcsTQ4OJgGLGcC+ZAHciEP5ML0aMfcKOWZ1aBQJf3z58/h5uYmBp917twZjRs3RvHixcE5h5ubG62+lQXIhTyQC7kgH0ROhgLYCcJM2LlzJzjnsLOzw/DhwwEkVxhKRUPB66ZFeVi4dOmSWAqSgtgNw6NHj+Dn55fu9smTJ4NzDgsLCwwcODDVMmvpsX37dtEhPHfuXH1l16whF/JALuQiMx8poYBpw0Eu5CGli6yWo3Y67X8nJCTgwIEDaNOmjbhP7d+/X38ZNmPIhTyk5yIrTl69eoXvvvtOlPl3332HNWvWYOfOnejfv7/4fNCgQQbLv7mRHR9A8sCBefPmwdraGm5ubjhx4oRB8plbWLFihehw37x5c6rA0JcvX+LgwYNo3Lgx3NzckC9fPgwcOBA7duzQSZeUlIQjR47A3d0ddnZ2WLNmDYCseyXIhUyQC3kgF/Lg4+OD1atXIyAgQHyW0UtWJTC0YMGC4JyjePHiqF+/PsaPH48+ffqgevXq4jlq9uzZYj+a5ThzyIU8kAt5IBdyceLECZQuXRqOjo7YuHEj4uPjAbxfJeXly5fo3r07LCwsMGDAgEyPFxgYiM6dO2Po0KGGzrpZQj7kgVzIA7mQB6VNFh0djW7duqUbFKrN5s2bwTmHi4sL9uzZg7i4OLx79w5Hjx5F3bp1wTlH9erV8fjxYwBUf2cVciEP5EIuyAeRk6AAdoIwE+7fvw8HBwdwznHgwAGdbRS8LgfaQezW1tbgnKNNmzY0itmIhIaGolatWlCpVKhSpQpOnTqVpf1u3LiBtm3bwsLCAgULFsQff/xh4JyaP+RCHsiF3FDAtDzo00XKdORQl/Q6PFIGRavVasTFxSEqKgoxMTF4/Pgxrl+/juPHj6NHjx6oVKmSeHH7/fff68xATWQNciEP2sHS/v7+WZqBNSQkRKzSpfzlz59f/Lthw4Y4fPiwobNulmj7CA4OTndW3ZRcvnxZBJssWLDAkFnMFYwdOxYrVqxIVf7Pnz/HnDlz4O7uDs458uTJIwZrKjPgawcGvXz5Eu3btwfnHJ9++qmRz8I8IBfyQC7kgVzISUZtr5SBobVq1cKxY8d0ZsgPCgrC/PnzxfPUokWLjJFts4RcyAO5kAdyYVpev36NAQMGgHOOmjVr4saNG2Kb0j8ybdo0MZmY9sCDlAQGBuoMHj9+/LjB829ukA95IBfyQC7kIiEhQay8lT9//gyDQgFg7dq1YgbjlDPoX79+HXXq1AHnHN26dUNERIQxTsFsIBfyQC7kgnwQOQUKYCcIM+L27dsYNmyYzmcUvC4X2kHsygi3O3fumDhXuYeDBw+KhvicOXPE5xl1DD99+hQ//PCDeKH45ZdfpkqjeH327JnOUmsUkJg+hnJBfDiGdPGhM5PmVpTZMYC0l/cC9BcwHR0drcecmx/GdHHz5k0sX748ze8gkmcqPnfuHL799lsMHToUffr0QZcuXdCzZ0906dIFnp6eaNasGTw9PVG1alVUrlwZJUuWhLW1Nezs7HQCdocNGwYfH59U30HXRdYwhguA6oyscvXqVbRs2RJbtmwBkHF5JSQkYMmSJeCco0uXLrCxsREuevbsiT179oi0ac2gTy4y59q1a2jRogV+/fVXAFkrsw4dOoBzDk9PT0RFRWWYVrteIh/v0R4Eo8w2BryfrdLLywulSpUC5xyurq5Yvnw5Jk+ejJ49e+qsSqAd7LNp0yZYWFjAw8MDr169Mt7J5HDIhTyQC3kgFzmTlIGh9erVS3dG5OjoaPzwww/gnKNs2bK4efNmhsemOvzDIBfyQC7kgVwYjwcPHqB27drgnKNZs2a4fv26Tn0+c+ZMcM5ha2uL27dvp3mMwMBA9O3bV9TrkyZNwpMnT4x1CmYF+ZAHciEP5EIuBg0aJII5tQcUpMWJEydEme/evTvV9mPHjqF06dJwcHCAl5cX1dEfCLmQB3IhF+SDyAlQADtBmBnaL0n8/f3x5ZdfiuD14sWLU/C6BCgBcTdv3sTp06eRkJCQ7WNqNBpaniUDlLIZPXo0OOeoVKmSCDTPqNzevHmDFStWIG/evOCco3HjxmK2y5RLeZ45cwaurq745ptv8Oeff4rP6aFNF0O7SHkMKv/0MYQLpQ5KGRT67t07nWOQF12U8rhw4QJ27tyZaoa+ixcvonfv3mJGvjZt2uDmzZsfXI43b95EixYtsHnzZty/fz/V9xOGd6Gk8/b2RvPmzcE5x6BBg1JtJ4A//vhDzEr5MX8FCxZE5cqVsXnz5gxnAaDrInMM5SJlXfP69WskJCSkCsoiF7oogQgNGjTI0izswcHBsLKywqxZsxAWFoYLFy7gypUrOi+2UrZH3r59C7VajTdv3uh8Ti50SUhIwJgxY8A5R8uWLXUCDdMjJiYGtWrVAuccdevW1fGgkPLaePHiBaKiolIdn3ykTVJSEmrWrCkG8IeGhoptL1++xMaNG8X96ZtvvsHz58+hVqvx/fffg3OO+vXr66WNTpALmSAX8kAu5CRlYGj9+vURHByc4T779u2DhYUFrK2tdfoBU6LU6zExMXj9+rU+s22WkAt5IBfyQC6MT2BgIIoWLQrOk2c4njNnDs6cOYNVq1aJetrT0xMvXrwAoNs2CwwMxJdffinSTZkyJUttdyJ9yIc8kAt5IBemR7v/bvPmzbhy5YrO9piYmFSxBFFRUejVqxdUKhV69+6Nhw8f6mx//fq1mBV/5syZ1PbLIuRCHsiFXJAPIidBAewEYaYEBATg008/FZ1axYoVw7///mvqbBH/T3aDDbISrE4BDan55ptvwDlH7dq1AWRcRhEREVi/fr0I0vXw8MChQ4fS3WfWrFlQqVSwsLCAm5sbli5dKraRi9Toy0VGM1Kq1WoKaM8Chrou/v77b3Tp0gVNmjRB7dq1MWfOHJ0lCMmFLsqI5jJlymDXrl2IiYkBkBxIrY/g9RcvXuCrr74SnZKff/55ujPv5nYM5SJl8Lqtra3wMXz48FTpcjshISGwsrIC5xxWVlZo0KABOnbsiC+//BIDBgxA79698e2332LChAkYMWIExowZg0WLFmHFihXYsWMHAgICMu14p+siaxjChXbZvnjxArt27UKNGjXg4eGB0qVLY+LEiTh48GCa6XM7hw8fhpubGwoVKoTt27frDGDWRnkG8vb2Rv78+dG1a9c002l3MJ4+fRoLFy5EjRo1UKtWLVStWhWzZs3C0aNHRRpy8R61Wo1t27ahWLFiKFq0KHbt2pWpj6dPn6JGjRrgnKN58+apVoDQ7jDevXs3Ro4cieLFi6N06dIoWbIkxo0bh99//12kIR+pCQkJgaOjI+zs7DB9+nQAQGxsrE6a/fv3i3v/wIEDcefOHbRs2RKccwwZMgRqtZrKVg+QC3kgF/JALuTjQwNDlbK/ePGiaNNt3Lgxw++IiorCxIkTUadOnUyDTnMz5EIeyIU8kAvT4e/vj0qVKok6Wbsfr2jRopg3b16qfTILCqVJqD4e8iEP5EIeyIXpSRn4qRATE4M///wT169fT5Vuy5YtsLCwgK2trVjRUbvcb9y4gR49euDYsWMGzLn5QS7kgVzIBfkgcgoUwE4QZsrjx49RokQJcM5hb29Po5/MCO2XVP7+/vjll18wadIkDBkyBDt37tQZqEAvtHQZO3YsOOeoXLlyqll1tR+6Hjx4gKVLl4og3fLly2P9+vWpZpFOyYEDB9CzZ0+oVCpwzvHDDz+IbeRCF0O4uHfvHrZs2YIePXqgbdu2qFu3Ltq2bYtNmzbh8uXLIh250EVfLpQBBWq1WmeWB+2/IkWKYMaMGeKY5OI9vr6+sLa2Bucc1atXx549e/D333/j888/z3bwOpDcEN27dy/atWsHzjlUKhVcXFzoPpUGhnCRMnjd0tISNjY2qFevnqgzKIg9Nb6+vuIlbdOmTeHj4/NRx0mvPOm6yDqGcvH48WNMmDAhzTrD2dkZU6dOTXff3EpERAT69esnBp+lteSjdlmtXLlSDMqJi4vT2aZdzy9evBgVK1ZM04WTkxO5SIfw8HD06NEDnCfPqH7z5s1UabQ7f6dPny7KdfHixemmGzduHBwcHNL0kTdvXrpPZUBgYKAoqwkTJqSb7vDhwyKdssqEjY2N6LQnsg+5kAdyIQ/kQi4ePnyIJUuWfNCsxkByO2Lq1KmwsrKCs7Mzzp8/n27apKQkzJgxAy4uLuCco2rVqqkGLRDkQibIhTyQC9MTFhaGESNGiEHInCevRjp79uxU7bDMgkK106cMJKI2XdYgH/JALuSBXMjJr7/+Cs6TJ8xR0O6HVSbVKVCgAPz8/AC8f8cKJPeZK6SM70kvGJVIG3IhD+RCLsgHIRsUwE4QZoy3t7fo3KpevTq8vLxSBScSOQ+1Wo0XL17gyy+/1BlZrfyVKVMGs2fPFumpUfm+DP744w8ULFgQn3zyiU7HrXYZXbx4EcOHD4ednR0456hYsSKWLVuGiIiIdI+v/TDn7++PGTNmiIDEMWPGpPk9uRVDuPD19cXKlSvh6OgoZhhQgky1r4uFCxem+T25FUNdF9ov2p2dneHm5oZ27drB3d1dXBejRo1K83tyO35+fqLeLleuHBo0aKATMH3jxo1slZdGo8G7d+8wcuRIODk5CR/fffedHs/CPNCni/SC13v27IlHjx5h165dFMSeAdqB0y1atBAdJYBuGaX378yg6yLr6NOF8vmGDRtEnVGyZElUr14dPXv2RJUqVajOyIAHDx6gTp064JyjWbNmuH37tugk1O4cPHr0KKpUqQLOOXr16qVzDO2ynDdvHmxtbUWZN2nSBN27d8d3332HBg0aiM/Hjh1rnBPMYdy/fx9Vq1YVPq5fv55m0MeyZcvE793DwyPd567Ro0frPMd26NABw4cPx/jx49GqVSvhY9y4cUY5v5xGVFQU2rRpA0tLS3z22Wd4+vSp2KbRaHTabjt27BDlaWtriw0bNgCgGcf0BbmQB3IhD+RCHtRqtRjo9yGBoQBw7do1MfCvZs2amfa3X7p0CZxz5MuXD3/++ac+sm9WkAt5IBfyQC7kIT4+HlFRUbhw4QIuXryIFy9epEqTWVCoNrdu3cLYsWOxZcsW+Pr6is+pfs8a5EMeyIU8kAv5+Omnn8B58kz4J06cEJ8rKzc+evQItWvXFn3f8fHxaZavdlDowoULcf/+fQAUHPohkAt5IBdyQT4I2aAAdoIwc+7duycCTapVq0ZB7DmcFy9eYPv27ahVqxY45+JFVvny5VG9enUUKVJEBNhpB04TyTx//hyenp7gPHn20IsXLyIqKgoA8PbtW6xatQo1atSAjY2NGPixefNmvH79OtNjawedvH37FuvWrRN+lixZYqhTyrHoy8WePXvQtWtX0enyySefoF69eli1ahXWr1+PCRMmoFGjRsLF6NGjxb4UBJeMPq+LiIgIMdNDhQoVMHv2bDx79gwAcPv2bcybN0+4mDZtmjFPM8dw7949FChQQMywpwSKent7Z7uDUPs3P2fOHDg4OIg6Y9asWdnNutmhDxfpBa/36NFDXBvx8fHYsmULBbFngPbzbIsWLeDv76+3Y9N18WHo08XTp09RrFgxcJ48c/Uvv/yCN2/eAEgeRLJo0SJxXcycOVNfp2A2BAYG6pTf5s2b8eTJE7H9559/RsOGDcWKEtozqGuzZ88eFC9eXOdZKSEhQVwbDx48wJo1a8T25cuXG+X8choBAQEoWrQoOOeoUaMGJk+ejMuXLyMgIADHjx/HiBEjxPOqra2tzoo02qxevVqkK168OObPn6+z/enTp1i7dq3wsXr1aiOcXc5j+fLlohxXrVqVavWmqKgoeHt7i9nzra2tMXXqVJ1AUnoxqx/IhTyQC3kgF/Lg7+8v+lWzGhjq7+8v+j2KFy8uVvxTnCj/TTkD2cWLF3Hy5Ek95t68IBfyQC7kgVzkDD4kKPTt27dYu3atSNuwYUNs27ZNbKdAn+xDPuSBXMgDuTA+vr6+aN68uXjf8/LlS7FNrVYjMTER3333nRhspgSMaqPd5lNWdCxSpAgePHhglHMwF8iFPJALuSAfhGxQADtB5AIoiN08CAsLww8//CCWDnZwcEDLli2xbds2EUh6+/ZtrFixggJMMkA72KdEiRKoVq0aGjdujGrVqokGuRKUdfr0aRHImx5KcE/KIMPXr19j/PjxUKlUqF69Ory9vQ12TjmV7LrYtGkTPDw8xO+9TZs22LlzZ6pZwf39/bFkyRKRLr2AodzMx7pI+bt/8+YNypcvD845hg0bJgIRFSIjI7F06VKoVCoUKlQIhw8fNto55iR8fX3h7OwMzpNnsZ83bx7evn0LIHsBzUpD0t/fH5UrVxZeq1Spgrt37+ol7+aGPlxcv34dTZs2hZWVFWxtbdGrVy9xDMWJWq3WCWLXnnGaSMZQQex0XXw42XWhHRhduHBhWFtbY/HixYiOjtZJFxkZiYULF0KlUqF48eI6s0AQyfj5+aFs2bLgnCNv3rwoUqQIPD090aBBA3DOYWlpCc45OnbsKPbRfnbVaDT49ttvxb1nwoQJIp32C6nY2FjMmjULKpUKTZs2TXMmJyL5PqK9QpaFhQWcnJzg5OQkPsufPz++//57sY9yD9JoNHj9+jXat28vfCxdulSk0w4wiY6OxqRJk6BSqdC+fXu8ffuWBjz9P9rlMG7cOFHugwcPxp49e+Dj44MrV65gwoQJqF+/vhikNnHixHSDgq5evYo9e/Zg3759+P333/HmzRvEx8cDoADSjCAX8kAu5IFcyEloaChCQ0OzlNbf3x81a9YUL2U3bNigs+qKUubR0dEYO3YsFixYkOZxqN5OG3IhD+RCHsiFfGiXz4cEhWqzZMkStG/fXuynPYEC1d8fBvmQB3IhD+RCDrZu3QorKytwzrFy5UrExMTobNdeqfHGjRs627T7ZSdPnixWIC9cuDCOHz8utlGdnTXIhTyQC7kgH4RMUAA7QeQSKIg9ZxMSEoLvvvtOzOrn7OyMhQsXpgqK1mg0iImJwbRp02BpaYlWrVohPDzcRLmWl8DAQDRq1EjMrKv9V61aNYwcOVKnczctlFGGyotBIPUD2KlTp5AnTx5wzrFz5079n4gZ8LEutmzZglKlSokAn3bt2uH69es6abTdxMXFidlD7e3tsWfPHoOfW05DH9fF8+fPRSD8vXv3AKTuzPL29kaJEiVEZxmRNj4+PsJFtWrV8Ouvv6aame9DUDz4+PjoBNdVqVIFfn5+AGj2jPTIrou1a9eicOHCUKlUsLKywqRJk8Q27YBEJYhdmS3522+/1et5mAMpA6cDAgKydTy6Lj6eD3GR3kuNsLAw5M+fHzY2NmJFgpRpb9y4Ib4n5UzURDKhoaHo2bOnGOSa8q9r165iQFnK33NAQABsbW3BOUenTp3E52n97s+cOSMC4i9dumTYk8rBhIWFYfDgwakGAXLO0bJlS52g9JTl/N9//4m0X3zxhfg8rWvo6NGj4Dx5Ra7bt28b7oRyINrlumDBAhQvXlyUa6FChcSqKkpg6A8//ICgoCCdY4SHh+PEiRNo2bKlGMimtDvq16+PCRMmiBUPqJ5IH3IhD+RCHshFzkU7MLRw4cJYtmyZTvCPdmDorFmzRL/H7NmzUx2LvGQPciEP5EIeyIXxCQoKyjAoNK1y1J658t69e2KmypQuKNDnwyEf8kAu5IFcmIaUK74q5bdo0SLxziE0NBQDBw5MMzA0ZVBooUKFoFKp4O7ujmnTpiE4OBivX78WgaZUb6cPuZAHciEX5IOQEQpgJ4hcRFpB7JnNLk2YnocPH2LYsGFwcXERL7T279+vEzyXsqF46NAh8TBx9epVY2c5R/Ds2TMcOnQII0eOxBdffIGhQ4fCy8tLJwArs1HkT58+xSeffAIvLy+dz7X3a9y4MTjn6NevHzQaDY1MT4OsuNB+sN27dy+qVq0KlUoFCwsLcM5RsmRJFC9eHP/73//SnWH95cuX+O6772BhYYHevXvT4I40yIoL7YDbZ8+e4cyZM/jll19w9OhR3Lx5E6NHjwbnHBcvXkz3e9q1awfOOdzc3BAZGUnXRTpo19seHh7YuXNnqtHPWSGjIN30BhoQumTXxd9//43Ro0eLQU19+/YV27Q7hdVqNTZs2ADOOVatWqXXczAXtF00bdr0o2dip+si+2TFhXb9fevWLezduxfz5s2Dl5cXTp8+jYEDB8LGxgZ37tzR2U/72VZ5lqpevTri4uKosysNIiIicP78eQwaNAhNmzZFyZIlMWDAACxbtkykSevF0p07d5A3b15YW1tj6tSpAJBqKUjtpearVKkCzjmOHDliwLPJ+URFReHZs2dYu3Yt5s6di3nz5uHAgQN4+vSpSJPeIAELCws4ODhg69atAHSfu7T3e/HiBUqVKgVbW1tcuXLFgGeTM9Eu36tXr2LHjh0YNWoURowYAXt7e3DOYW1tjYkTJ6YKDL1//z4mTpwoVjdQZqEpUqSIGPCh3JPu37+f6vsIXciFPJALeSAXOY+0AkOVAZjA+zKOjo7GjBkz4ObmBs45XFxc8Mcff+gcS/tZKyQkBAC1Oz4EciEP5EIeyIXxCQ4OxqeffppuUKg2Pj4+uHXrFuLj4xEXF6ezLTo6GosWLRLHUdqBxIdBPuSBXMgDuTAt2nXn+PHjRfnVrFkTXbt2Rdu2bcVnPXv2FGlTBoUWLlxYpOOci/dLpUqVQt++ffHo0aNU+xG6kAt5IBdyQT4I2aAAdoLIZWgHmtSsWRPbt29HdHS0qbNFpENERARmzpyJTz75RASvnzhxIt30SmBKYGAgHB0dwTnH4cOHjZVdsyIrHbPaI8/37t0LQDc46MaNG2LW/CFDhhgsr+aOtosbN26gU6dOYnYxzjkcHR1RpkwZFCxYUGcW0YcPHwLQ7Xg/ePAgOOfo0aOH0c/DHNAOovrpp590Gi+ccxQtWhQlSpSAnZ0dli1blmrG9qSkJDx58gQeHh5QqVSoXLkyvQTJhHv37sHJyUn8btNbOj49KEhXf3yMC+06ISIiAtu3b4eDgwM45/jmm2/ENm0HarU62zOLmzt+fn7iOWfChAkf/CxL14X+yMiFdhkuXLgQHh4eOnWGo6MjChQoAFtbW2zYsEFn5RSFu3fvig6w5s2bG+WczIGUg5TT6xy8fPmy8LFu3boMj3n+/Hnx/HXo0CG95TU3kt4sVSdOnBA+Mlu96cCBAyLtuXPnDJHNHE/K+3hERAR69+4tAkMnTJiQKjBUmUFfacMVLFgQ48ePx6FDh+Dj44OrV69i0qRJqFq1quiIDwsLS/P7iPeQC3kgF/JALnIOHxsYWqRIEZw6dSrd444dOxacc5w+fdrg52AukAt5IBfyQC5Mw+PHj0V7bPr06amCQqOjo3H06FF07dpVrGRWq1YtfPPNNwgNDdVJ+/DhQ3z99ddQqVTo3LkzrZz9EZAPeSAX8kAuTI92f+y8efPg6uqq826bc4727dvj/PnzAHTfv06ZMkXE8yjvvIcOHYpNmzbhiy++QPny5cE5R5kyZcTAZWrzpQ+5kAdyIRfkg5AJCmAniFzIvXv3RCBIixYt8Pr1a1NniUiB8rBw+PBhlCtXTryY+uuvv7K03/bt22FtbQ1bW1v8888/Bs9vTkU7eET7gSmrS5+9fPkSw4YNEw9mK1asQGBgIIDkgK5Zs2Yhb9684Jxj8uTJ+s28mZGei5Tb58+fL2Zdd3V1Rffu3XH37l08f/4cQUFB2L9/vwik69y5s9hf+wF8y5YtaX4vkUxmLgBg27ZtKFu2rHBRrlw5VKlSBaVKlUL+/PnBOUfZsmVx+vTpVAGJ+/fvFwG8rVu3Nui5mAv37t2Dp6cnVqxY8UH7UZCu/vlYFwpqtRpbt26FnZ0dOOdYs2ZNhunJT/rcu3cPPXr0wJ49ez5oP7ou9E9mLhYtWgRbW1tRZ9SuXRuenp6oUaOG6OAqX748Tp48qTPw6dWrV1i1apV4lurdu7exTilHol1/Z3U2i1evXqFevXpQqVQYPXo0gLR//2q1GkuXLkWePHlQqFAh3L59Wz+ZziVk9Xnz4cOH8PDwgJWVFWbOnAngvUvtYzx//hzDhw+HtbU1KleujCdPnug/02bI+vXrRWDopEmTUgWGvnv3DrNmzUKxYsVEUM+lS5dSPctGR0fjypUraNCggRhc8/Llywy/+9WrV3o/n5wMuZAHciEP5EJOAgICPjow9OTJkzrH+vnnn/Hjjz8CSJ4QQ3kp3LBhw0wdEeRCJsiFPJAL0+Lt7Y25c+fqrLQFAHFxcdi8eTNq164NzrnoC1H+ihUrluqd3fbt28X2lCvUEVmDfMgDuZAHcmF6tPtoT58+jaVLl6JWrVpo0aIFxo0bh4CAgFT9uFOmTIGzszM45yhQoABWr14NjUYj+gajo6Nx9epV1K9fH5xz1K9fHy9evDDqeeVEyIU8kAu5IB+ELFAAO0HkUnx8fFCxYkVablxClIo9Li5OvHBycnLCrl27srQfADFrU968ecVSj0TW0C7HrDxIvXz5El999ZVouFeqVAlt27ZFlSpVxNLPNWvWpIcyPXDlyhWxPHbZsmUxf/58hIeHp0r377//Il++fOCcY/z48eLzlAFZ2jOzE1nn1q1baNq0qXiRMWDAAPj7+0Oj0eDp06c4e/asCAqtWLEiVq5ciTt37uDatWtYt26daNC4urrCy8sLAAWLZoU3b96If2clEI6CdA2Htgvt0eZp3Y/S4tGjR+jYsSM45/jss89SLctJZJ2Us0xnBl0XhiM9F3/++SfKlCkj6oyxY8eKIPVXr17hypUrwkX58uWxYMECXL58GX/++ScmTZokBqWVL18ely9fBkCO9M2IESPEYFnlBVTKMv7zzz9F/d2qVStTZDPXMGjQIOHD29s71faIiAhs2rRJDBj87LPPTJDLnMvo0aMxbNgwncBQpQP+zp074n5UpEgR+Pn5AXj/3JXyurh48SIqVqwIGxsbrF69Ot17U2BgIIYOHSoGJRDJkAt5IBfyQC7kIjAwEKVKldJLYKi/v7/Y3rBhQ3DOoVKp0KRJE/z2229GPa+cCLmQB3IhD+RCDrSDeZS61tvbW5Qj5xxr167Fb7/9hjlz5qBOnTqivXfkyBGxz7t37+Dq6grOOf7++2+TnIs5QD7kgVzIA7kwPSnbYtrvlADd932TJ09GoUKFwHnyrMUpJ4zRPtbhw4dRuHBhFChQAAcOHEh1LCI15EIeyIVckA9CBiiAnSByMUrAVFZn6COMy4QJE0QQ+qRJkzIMjNOu6NesWSNGTI8aNSrVdiJrXLhwAT/99BOAzMvvn3/+gYeHBzjnIsBa+atWrRr27duHxMRE8vCRJCUlISkpCd9//z0453B0dMSkSZNEEKl2uSpB6aNGjYKlpSWaN2+uM5srkX02btwoft9fffWVzjbFxfPnz8XLdQsLCzGgQJlF19XVFSNGjEg18wOROVkJ3KQgXeOgXYb79u3Dzz//DCBrde6yZcuEl6tXrxosj7kFGtQhDyldzJo1S5T1999/r5MurTqDcw4bGxud/5YrVw5Lly7F27dvjXou5oJSzu/evdMpd+X3npiYiNatW4vAh3Pnzollhb29vbFlyxYRvF68eHHRIUnXy8ehlL+yClpKH3FxcWjVqhU453BxccFff/0lltg8f/48pk2bJoLXy5Urh3///VdnfyJttAeupteu7tmzJzjncHZ2FkE9GfWVREVFYdq0aWJAZ1oOAgMD8cMPP4hBPLt3787mmeR8yIU8kAt5IBdyEhISAs45LC0tsWLFio8KDNVoNCLthg0bxPFUKhWaNm2Kw4cP66Ql0oZcyAO5kAdyIS+jR48W/RuHDh0Sn6vVaoSEhKBdu3ZitspDhw4hKSkJJ06cgJ2dHWxtbWnFMz1DPuSBXMgDuTAt2m0z7RW1Jk+ejMKFC4NzDjs7O/z6669p7qPw4MEDFClSJFW/O5F1yIU8kAu5IB+EKaAAdoLIxVCnk7zExsaKBmKFChWyPFP+iRMn0KhRI3DOYW9vn2rEG5E17t27B09PT9jZ2eH69euZpo+Pj0f79u3h5uaGn3/+GbVr10br1q3Rr18/+Pj40Oy6ekL5bVeqVEnMaJ/efUw7YE4JTCSyh1qthlqtRrNmzcA5R6lSpcSsb9ovzpV/nzt3DoUKFUKxYsUwfPhwODg4wNnZGXXr1sXq1avx6NEjk5yHOREVFYXQ0FBER0cD0H3xREG6xuPChQsoVaoUChQoIK6J9FCCU3bv3g17e3tYWlri1KlTxshmroGuCzlISkpCbGwsypcvD845PDw8hJO06oy//voLjo6OKFOmDKZMmYLChQujbNmyaNu2LY4ePYqIiAiTnIe5EBQUhNGjR4tgZwWl/ENCQkTQdN68eeHu7o6WLVuiWLFisLOzE9dMu3bt8PDhQ1Ocgllx+/ZtdO/ePZUP5T4UHBwsfNja2qJgwYKoVasW8ubNKwZ22NvbY/DgwXj16pUpTiFHklH/R0REBKpVqwbOObp3757lcr1+/Tpq1aqFdevWIT4+Xuc7AgMDMWHCBFhbW4Nzjq5du+Lly5fZPg9zgFzIA7mQB3IhJ/7+/lizZg2ePHkiPvuYwFAA+OGHH8SsxpzrrqKi/UKYSBtyIQ/kQh7IhXxoNBp0795dDAJ49+4d1Gq1Tp+TWq1G586dRXDo77//jpEjR4Lz5NXnqM9cf5APeSAX8kAu5EG7zCdPnoyCBQuKPthFixaJbRm1FRs3bgzOOb7++utM0xLpQy7kgVzIBfkgjAkFsBMEQUjIhQsXROW/cOHCdNNpV/A3btxA3759xX7K7OvEh/P8+XPxMDVq1Cgx03daKA6UWav+++8/6tQ1AE+fPkXRokVhaWmJxYsXA0h7tjFlSaO5c+fCxsYGdnZ28Pf3N2pezZ22bduCc47KlSunWkJKm6dPn6Jy5crIly8fTp8+jcePH+P+/fvUMNETkZGRWLNmDTp37oyff/4ZkZGRYpu3tzcF6RqRmzdvonr16uCcY9asWYiKisp0n5UrV6Y5ywmRPei6kA9l2dnGjRsDSL+sw8LC4ObmhiJFiuDWrVt4+fJlhs9fRNZJTEzEqlWrYGFhgU6dOqU7GCA+Ph7jxo1DkyZNUKFCBTHLtxLY5ujomKWBnUTGxMXFYeLEieCc48svv0z3d65WqzF9+nR06NABjRs3houLi46PatWq0SBNPXLz5k1RP6xcuTJL+yjPtL6+vnj37p3OtpSBoR8ScJrbIRfyQC7kgVyYlrQGX35oYOiUKVNEYKi7u7vwOW3atDS/h0gbciEP5EIeyIV8dOvWTUzCk3JlFe1y7NKlCzjncHBwEGW+ZcsWnfRp9aOTiw+DfMgDuZAHcmF6UtbDjo6OsLCwAOcctWrVEiurZPTe4s6dO/jkk0/AOcf06dMNnmdzhVzIA7mQC/JBGBsVIwiCIKQjISGB2djYMHt7e1anTh3GGGMajUYnDQDGOWeMMebj48M2b97Mdu7cyRhjrHv37mzhwoWMMcaSkpKMmHPzwNHRkXXu3JnZ2dmxY8eOsf/++y/dtIqXJ0+eMMYYe/jwIbO2tk61nfh4NBoNS0xMZPHx8SwpKYk5ODgwxhizsLDQSQeAWVlZsVevXrEdO3awhIQE5urqyooVK2aKbJstxYsXZ4wx9ubNG/bmzZs00yQlJbEiRYqwwoULs5iYGPb27VtWrFgxVrJkScY5p+tCD2g0GrZ9+3Z29OhRtmrVKnbo0CHGGGOBgYGsZ8+e7N69e4wxxipXrsz27t3LKlSowDQaDVOp6PFf35QtW5a1adOGcc7Znj172I0bNzJMHxYWxv7++2/GOWdOTk7M1dXVSDk1f+i6kA93d3fGGGPPnz9nb968SbOsk5KSmJOTE7O3t2fh4eEsPDycFSxYkOXPn58xRs9S2UWlUjFnZ2eWJ08e5uvry/79999UadRqNbO2tmaLFy9m58+fZ5s2bWJVqlRhefPmZYmJiUylUrF9+/axmjVrMgAmOAvzwdLSkrm7u7M8efKwa9eusZs3b6ZKk5iYyCwsLNisWbPYH3/8wZYtW8bs7e2ZjY0NS0xMZM7OzmzTpk2sQoUK5ENPODk5MScnJ5YnTx7m4uLCGEv2kBFKW7x8+fKifcIYY0FBQWzz5s1s5cqVLDExkXXr1o1t3ryZOTs7G+4EzAhyIQ/kQh7IhWlR+p6SkpKYhYUFi4mJYYsXL2bbt29nYWFhrHDhwmznzp2sZcuWjLHkvimNRiP2mzp1Kps/fz7jnLP69euzhQsXsrVr1zLGGJs7dy6bMmWK+B6q1zOGXMgDuZAHciEfTZs2ZTY2Nuzdu3fsypUrOuWm3S++f/9+Vq5cORYVFcUYY2zEiBGsb9++jLFkT9rv//bu3cvWr1/PGCMXHwr5kAdyIQ/kwrQodTZjyfXwunXr2Lt371iZMmUYY4wVKFBAtPvS6ktXyvbGjRsiNkF5b0t8GORCHsiFXJAPwiQYPkaeIAiC+FD27dsnRjXfunUr1XbtkWz//vsvBg0aJEY/t2nTBv/9958xs2uWPH36VMw03bhxY/j4+IhtyojyxMREAEBAQAAKFy78QbNhER9Oq1atwDnH4MGDERcXp7NNcfL27VtMnToV+fLlA+ccPXv2RExMDM36rQeUMjx69CiKFSsGR0dH7NmzJ1XZKv//4MEDFCtWDJxzzJ07V2cboR98fHxQqFAhMdp50aJFqFChAs0wbQIePXokVu7w9PSEj49PqroCAN68eYO1a9eKe1SrVq1MlWWzha4LOVB+/7t27YKLiwsKFSqEI0eOpEqnOPD19YWzszM459i0aZPOMYjs8+LFC7Rr1w6cczRp0gTe3t6i7FPOiuTn54fatWvD3t4enHNYWlpi3759AMiJvnj27Blatmwp6oy7d++KukL7vhQdHY0zZ86IWUo457C1tcXFixdTpSWyx4MHD+Dk5ATOOWbPnv3Rx6FZjbMPuZAHciEP5EIeoqOjMX78eJQpU+aDZzVu2LAh9u/fL9KtWLFC1O8LFiww+rnkdMiFPJALeSAXcvDgwQPRD+Xp6Ylbt24hNjZWJ42Pjw/Gjx8vyvjLL7/Uef+k3dY7fPgwGjZsCM45xo4da7TzMBfIhzyQC3kgF6YjZT2stPMqVKiAjRs3omLFiujVq1e6+yt9s1euXBGrZzZr1izVqltE5pALeSAXckE+CFNBAewEQRAS8vjxY1SsWBEqlQpr164VAQ0pOxkPHz6Mnj17igZk8+bNcfLkSVqeS0+EhoaiXLlyohF/9uzZVA9XISEhqFq1KjjnKF68OK5du2ai3JovGo0GSUlJmDVrFjjnqFGjBu7cuSMegBMSEgAAr169wpIlS0THi7W1NfkwAC9fvtQZ3OHr6ys6qxQXz549w1dffQXOOezt7XHgwAET5ti8uXfvHgoWLJhqKceqVavC19cXAAW4GYvg4GCxPHPjxo1x8OBBnYCQO3fuYOnSpXB0dBRLdJ47dw4AOdI3dF3Iw/Pnz9G8eXMROO3j4yOeU5U64+HDh2jRogU453BxccHly5dNmWWzJSQkBKVKlQLnHA0aNMDOnTvx9OlTsf2ff/7Bjz/+iAIFCohrxsLCAkePHjVhrs2X4OBglCxZEpxz1KtXD5s3b0ZYWJjYfuTIEYwdO1bUGVZWVnB1dRXXB93D9IfSphg6dChUKhXat2+PBw8efPBxKDA0+5ALeSAX8kAu5OLly5eiD9DV1fWjAkOVtAkJCVi5ciWcnZ0xdepUo56HOUAu5IFcyAO5kAc/Pz+UKFECnHN4eHhg9OjROHDgAI4ePYqRI0eKfhLOOfr166czIZW2p0OHDqFRo0ai/h4+fDiA9+1BGmSeNciHPJALeSAXxiejoNCDBw9CrVbDxcUF5cqVQ3BwsEibsixv3LiBunXrgnOOQoUKYdGiRaKfncga5EIeyIVckA/ClFAAO0EQhIRERkbiiy++EEFwt2/fFqOflQeHuXPnolq1aqIB2a5dO5w7d44qfz3j7+8vZj2sUKECBg4ciNOnT+PIkSPYunUrihYtKjp727VrpxMIROiXBw8ewMPDA5xzNG3aFIcPH0ZERAQiIyMRFBSEvn37onTp0mK20K1btwKgAB9DEBQUJDq3mjRpgr179+Lly5dISkrCw4cP0b9/f7i6uoqGSUBAgKmzbNbcu3dPzFxsbW0NV1dX0aGoPfs3YXj8/PxEQKKLiwsqV66Mfv36oXfv3nBzc0PevHnBOUfp0qWxfPlyvHnzxtRZNlvoupCHwMBAFC9eXDzX7tixA8+ePcPr16/h6+uL5s2bi4EGtWrVwqNHj0ydZbPF398fZcuWBecc+fLlQ7FixeDp6YnmzZvDxsYGdnZ24JzD2dkZNWrUEMHS9LLJMPj7+6N8+fJiZnUnJydUrVoVNWrUAOccNjY2YpBst27dxMpc9GxrGPbs2QNbW1twzrF8+XKdFZ8yuwYoMFS/kAt5IBfyQC7kwdvbG+XLl8exY8fEZ8rECwoZBYZqp0tISMD169eNk3EzhFzIA7mQB3IhD8HBwejSpQtcXFzE+wplpTPlr2/fvhkGhTZp0gQWFhbIkycP2rRpg5CQEDx69AivX79Ocx8ifciHPJALeSAXpmH69Ok6QaHaE4D17NkTKpUKy5YtQ0xMTKp9//nnH9SoUQNWVlbgnKNLly7UtssG5EIeyIVckA/CFFAAO0EQhKRoz5JYu3ZtDBkyBL/88guGDBmC1q1b6zQg+/TpA29vbwpmMBCBgYGoV68eLC0tRecu5xx58uQRASeVK1fGzZs3TZ1Vs0d7QIGzszNKly6NqlWriiWIFD9r1qxBdHS0qbNr1vj5+YmARCcnJ7i7u8PT0xOFChUSLiwtLcXMrRT8Zlh8fX1FsG7FihVx9OhRCo42EUFBQWjVqpXo+FXqDOW/Hh4eWLNmDV6+fGnqrJo9dF3Ig/asPnnz5kWxYsVQoUIFnZcidnZ2NPu6EQgJCUHv3r1RsWJFnfaE8levXj0sWrRIDD6j9oVhCQ0NxVdffaUzMFn5y5cvH1q2bIl9+/aJgR30PGVYpk2bJsp/8eLFCAkJEdvSK/uUgaHdunVDeHh4hvsQmUMu5IFcyAO5kAft/iaNRqNTljNnzsxwVuP0oEG2Hwe5kAdyIQ/kQh5ev36N27dvY+PGjfj555/FyrGcc3zxxRcZBoV6enqK91HKAGelb9HT0xMbNmxIc18ifciHPJALeSAXxmXu3LmirFIGhQLA1q1bRXlOnToVR48exbt373D06FEsWbJEBIRyztGiRQs8e/YMAPXffgzkQh7IhVyQD8JUUAA7QRCExPj7++s0FrUrfEtLS5QuXZqWcDQSjx8/xtSpU1GvXj2dwJISJUqgd+/euHPnDgB6AWgMgoKC0K5dOxHIrvw5OjrC1dUVhw8fJg9GIigoCG3atEGRIkXAOYeFhQU4T57tOF++fPjjjz9MncVcha+vLwoUKADOOapXr45du3bh3bt3ps5WruT58+fw8vJC9+7dUapUKdja2qJBgwbo168fgoOD0xyVThgGui7kISgoCB06dBCDn5QXGk5OTqhUqZIIXqeOLMPz9u1bBAUFYenSpZg0aRJGjhyJVatWYf/+/VCr1eI5ip6njENUVBSePXuGLVu2YOnSpVi6dCm8vLxw9epVU2ct16B93xk/frxoX3Tu3Bnz589Pd7/AwECMGzdOtNN79+6d6UCplEFEhC7kQh7IhTyQC/lIr4w2bdqE/PnzZykwNKvPvOQjY8iFPJALeSAXcjJp0iRRh3/++edZmtGYc462bdti9uzZOHHiBBYtWoTPPvtMHGfmzJliP3LxYZAPeSAX8kAuDI+fnx+cnZ3h4uKCgwcPis+1y3fixIk6777d3Nx0+tJdXV3Rq1cvERRKgwM+DnIhD+RCLsgHYSo4ADCCIAhCWh48eMC2bt3Kzp49y4KCgliePHmYvb09++abb1jVqlVZ06ZNGWOMaTQaplKpPvj4ABjnXPy/RqNhnHOdz1Kmya0kJiayxMREdvToURYfH88iIyNZy5YtWeHChZmjoyOVkxF59eoV8/X1ZceOHWPx8fEsPj6etW3blnl4eLBSpUqZOnu5ihcvXrALFy6wAwcOsGfPnjGNRsM8PT1Z9+7dWdWqVem6MDJ+fn7M09OThYeHs5IlS7L169ezNm3afFT9QOiHd+/esaioKObi4sIsLS1NnZ1cCV0X8vDq1St2/fp19vvvv7PXr18ztVrNOnXqxJo0acLKli370c+zhH4hD3KRlJTELCwsTJ0Ns0e7nJcvX842btzIAgMDmZOTE9u3bx9r0qSJTj0eFBTENm3axFauXMnUajUrV64cW7p0KStXrhzjnDOVSsXy58/PrK2tmVqtZvb29sza2prFxsayPHnykNcMIBfyQC7kgVzIT1RUFOvTpw87duwYK126NJs3bx7r0aMHYyztvlflWSs0NJQ9ePCAnTp1ir17947lyZOHNW3alLm7u7Ny5coxxuhZ4EMhF/JALuSBXJiW58+fs6JFizLGGOvfvz8bPnw4q1WrFmNMt/wOHz7Mli5dyi5dusQ0Gg0bPnw4+/HHH3WO9fLlS7Z9+3Y2YcIExhhjP/74Ixs+fLgRzybnQz7kgVzIA7kwHsHBwczPz4917NiRMfa+HtYu57lz5zIvLy/m7++vs2+HDh3Yp59+ynr06MEcHR2pDs4m5EIeyIVckA/CFFAAO0EQRA5Ao9EwjUbDHjx4wBwdHZlKpWKOjo462z80yCTlPtu3b2ehoaHsypUrTKVSsVatWrHKlSuztm3bMsYoiJ3IOdBv1XSo1WpmYWEhyp9cmAY/Pz9WuXJlVrBgQXb8+HFWo0YNU2cpV5Le758CQ00DXRfyQ3WG6aD7klzQtWA6tDvUr169yu7cucPs7OxYp06dWP78+UW6oKAgtnnzZrZy5UqWmJjIChYsyCIiIpi1tTVTqVRMrVYzjUbDnJ2dmaWlJYuJiWEFChRg+fPnZwkJCezw4cPMzc2Nrr0MIBfyQC7kgVzIze3bt0UbY9q0aWzWrFmMsYyfs7Zs2cK2bdvGrl+/zhISEsTnnHNWrVo1NnDgQDZkyBDGGAWIfgjkQh7IhTyQC9Pj4+PD1qxZw/r378/q16/PGMs4KHT8+PFs0aJFIp0yAI0xxt6+fctGjx7NduzYwZo1a8Z2797NChUqZJoTy6GQD3kgF/JALoxPynpYu7z9/PxYUFAQu3//PitQoAArVKgQa9Wqleg3pPaafiEX8kAu5IJ8EMaCAtgJgiByAPoOYlAeLN6+fcv279/Pfv/9d3bs2DGmUqmYRqNhjCV3RDo5ObHBgwezuXPnGiQfOR0qD9OiXf7K4wz5MA0prwW6NkzP/fv32bNnz1jt2rVp1m+C+H/oupADqjMIgpCZzDrWUwaGfvnll6xmzZpswoQJTK1Ws6JFi7LIyEgWFxfH7OzsxGpRjDFmYWHBkpKSmK2tLfP19WVubm5GOqucCbmQB3IhD+RCXp4/f86aNGnCnjx5wlavXs0GDBiQKqBT29+kSZNEwE/hwoVZ/fr1WZkyZdizZ8/Y5cuXWUhICGOMsenTp7OZM2em2p9IH3IhD+RCHsiFHMTHxzMbGxvG2IcFhaY1OGDWrFls1qxZLH/+/Oy///5jpUuXNt6JmAnkQx7IhTyQC9OTWX36sfVtWn3wNAAtY8iFPJALuSAfhCGgt/YEQRA5gIyCejJa4jEtlEr+2bNnbOzYsezSpUssLCyMMcZYoUKFWPXq1ZmNjQ179uwZ+/fff9n8+fNZfHw8W7JkCQUXpYDKw7Rolz+5MC0py598mB43NzcKOCCIFNB1IQdUZxAEITMp29La7e3g4GCdwNAuXbqwdevWsb179zK1Ws1KlSrFLl68yOLj41lUVBSztbVlMTEx7NWrV8zS0pIBYK9fv2YhISEsJCSE6qRMIBfyQC7kgVzIi52dHatSpQoLCgpi27ZtYy1btmQlSpQQ27X7aydMmMCWLl3KGGMsT548bMKECWzMmDEi7c2bN9lvv/3GFi9ezGbPns0cHBzY2LFjKTA0i5ALeSAX8kAu5EBfQaGMMWZlZcUYSw42jY6ONkLuzQ/yIQ/kQh7IhenJqM2X1vasoH2M06dPs+DgYDZw4EBmYWFBA9AygFzIA7mQC/JBGAQQBEEQORaNRiP+HRwcLP6tVqvTTK98/vDhQ9SsWROcc/E3d+5cnDlzRqS9f/8+Vq9eDZVKBc451q9fb5iTyEUkJSWZOgvE/5PeNUIYH3IhF4mJiabOAvH/kAt5IBfyQC7kgZ5r5YKepwyPn58fJkyYgDx58oBzju7duyM8PBwAsGXLFnDOUaxYMbx58wZJSUk6bXXtf2f0GZE1yIU8kAt5IBdyEBwcjJIlS4JzjlatWiEsLCxVmkWLFom+2EKFCoFzjsKFCyM0NFQn3du3b7F48WJwzuHq6oorV64Y6SzMA3IhD+RCHsiFfOzduxfNmzeHhYUFOOeYMGGC2JZRG+/WrVuoUaMGOOdo164dYmJijJFds4d8yAO5kAdyYV78888/6NWrFzjn+OKLL0ydnVwNuZAHciEX5CP3QkMUCIIgcjDKKLRz586xVq1asfHjxzPGWJqjnZVR0A8fPmRNmzZlN2/eZJxzVrhwYXb8+HE2ZcoU1qxZM5G+ZMmSrH///mzw4MGMc87OnTtnlHMyZ1QqFdNoNOzIkSPs+fPnps5OrkZZGvvnn39mT548MXV2cjXkQi4sLS2ZWq1my5YtY48ePTJ1dnI15EIeyIU8kAt5oOdauaDnKcPj5+fHlixZwuLi4tj//vc/tnnzZlagQAGdNFZWVkyj0TDGMl8tilaf+HjIhTyQC3kgF3Lg7u7O/vrrL+bs7MxOnTrFJkyYwCIjI8X2c+fOsR9//JExxljjxo3Z9OnTWdOmTdmLFy9Y/fr1WWBgIGMseSbkfPnysf/973+sXr167NGjR+zu3bsmOaecCrmQB3IhD+RCLqKiothPP/3Ezp49+0EzGj969Ijt2bOHBQUFMcYYq1OnDsuTJ4/R8m2ukA95IBfyQC7Mi2vXrrE5c+awo0ePMsYYu3r1Krt9+7aJc5U7IRfyQC7kgnzkckwdQU8QBEFkjxMnTqBRo0awtrYG5xwLFixIlUaZIfHhw4coW7YsOOfIkycP6tSpg2vXrgFIf3alNWvWgHMOa2tr3L9/33AnkktYsWIFrKys8Omnn+Lhw4emzk6uZuzYseCco1u3buTCxJALuVBGNn/22Wfkw8SQC3kgF/JALuSBnmvlgp6nDM/nn3+O5s2b49WrVwDerwqhtJkrVKiA+Ph4U2Yx10Au5IFcyAO5kId79+6hcuXKmDRpks7na9euha2tLTjnWLZsGQAgKCgITZs2FbMcBwQEAHjfTzto0CAxq35SUhKtuvKBkAt5IBfyQC7kwdfXFw4ODhg+fLj4LKMyfPToERYsWABnZ2dwztGmTRuxjVZPyT7kQx7IhTyQC/Ph+fPnKFasGDjnaNq0KQ4dOoTY2FhTZytXQi7kgVzIBfnI3VAAO0EQRA4mJiYGzZs3F8s6li9fHjdu3NBJozQInz17hgYNGoBzDltbWzRu3Bg3b97USaON8qLryJEjyJs3L5ycnCiAXQ/cuHFD+Prf//5HwSUm5OrVq2LZOwqCMy3kQi4uXrwoBkWRD9NCLuSBXMgDuZAHeq6VC3qeMhzaL2ejo6PFv5V29Lp168A5R5kyZRAZGWn0/OUmyIU8kAt5IBdyEhERIf6dlJSE+Ph4NGnSBJxzNGvWTCetn58fmjVrlipAFADGjx8Pzjm++uoro+Xd3CAX8kAu5IFcyMPz58/Fvz8kKLRRo0Z4+fJlpvsRHwb5kAdyIQ/kIuejTHQYEBCAjh07Ys+ePYiLizNxrnIn5EIeyIVckA9CZeoZ4AmCIIiPJ0+ePGzdunWMMcZcXFzY77//zmrUqKGThnPOIiMj2axZs9jNmzcZY4xVrFiR/fjjj6x69eoMQJpLA1taWjLGGDt06BCLiYlhVlZWtMRXNgHAatSowS5evMisra3Z77//zkaPHs0ePXpk6qzlOjQaDatbty47f/48s7KyYvv37ycXJoJcyIVGo2GNGjViZ8+eJR8mhlzIA7mQB3IhD/RcKxf0PGVYLCwsmEajYYwxZmdnJz5X2tHKstkajYYlJiYytVpt/EzmEsiFPJALeSAXcuLk5MQYSy53lUrFALC4uDjGGGPu7u6MMSZclC9fnm3YsIE1bdqUvXjxgjVp0oQ9fvyYMcbYmTNnGGPv3QIw6nmYA+RCHsiFPJALeXBxcWGMMZaUlCTq7JQ8efKE7dixgy1ZsoS9fv2aNWjQgO3cuZMVLFiQAUh3P+LDIR/yQC7kgVzkfFQqFVOr1axs2bJsz5497NNPP2U2NjamzlauhFzIA7mQC/JBUAA7QRBEDqdChQosMDCQnT59mlWuXFlnm/IC68qVK+zcuXMsPj6eOTg4sHXr1rEaNWqkG7yu7BcUFMR8fX0ZY4xVqlSJ2dnZiW3Eh8M5ZxqNhjVs2JCdOXOGWVpasv3797Phw4dTcImRUalUwsXZs2eFi6FDh4oOeMI4kAu5UHw0aNBAx8fgwYPJh5EhF/JALuSBXMgDPdfKBT1PGR6VKnUXqtI2VoJ9bGxsmJ2dnRgMThgGciEP5EIeyIW8KG4sLCyYo6Mj45yz4sWL62xjLHWAaM2aNdmwYcPY3bt3mYuLC+vfv79J8m9OkAt5IBfyQC7kIaOg0F9++UUnKNTLy4u5ubkxxlia7/eI7EM+5IFcyAO5kJ+MBpIp7UA7OztmbW1trCzlWsiFPJALuSAfRHpQADtBEIQZULp0aVapUqVUnyudjD///DO7d+8eY4yxHTt2sPr162cYvK7st23bNnb58mXGGGO9e/dm9vb2ab4UI7KOduDVuXPnGGOMHT58mP30008sISHBxLnLXaTl4ujRo+zQoUM0I5mRIRdykZaPY8eOsUuXLtEgJiNDLuSBXMgDuZAHeq6VC3qeMh2JiYmMsWQH1F42LeRCHsiFPJALObC0tGSurq4MADt27Bh78eJFKh9KgKinpyd7+fIl27JlC0tISGANGjRgJUqUYIxRAJA+IBfyQC7kgVzISWZBoYRxIR/yQC7kgVzIg3bchzKIOSkpyZRZyrUY2wWtgJM+prguyEf6GNOH4oHugzkH6rEkCIIwcy5fvswOHz7MGGNsyJAhrH379oyxtDsTAYiOyU2bNrEFCxYwxhjr2LEj+/TTT0UabSIjI1lMTIzOMYiM0Q4uuXTpEmvbti2rVasWjSQ0ASldDBw4kNWuXZtmJDMB5EIutH1cvnyZzZ49m9WuXZsCHkwAuZAHciEP5EIe6LlWLuh5yrgo95w8efIwxpLbwrGxsdnuGNduU1P7OmuQC3kgF/JALuRBKacePXqwokWLsidPnrArV66kWX7ly5dnGzduZI0aNWKJiYmsTJkybPz48axIkSLGzrZZQi7kgVzIA7mQk4cPH7KdO3dSUKgkkA95IBfyQC7kQTso9MyZM2z48OEsICCAWVhY0IQvRsaYLqKiohhjNIAwPYx9XURERLCXL18yzjkFTaeBMX28fv2abdy4kfn4+DALCwvykVMAQRAEYdbs3bsXnHNwzrFjx45002k0GvHv3bt3o0iRIuCco2jRoli/fn2a+9y5cwfff/89vv/+e5w7dy7NYxHpk5SUBAB4+/Ztto5D5Z19FBfR0dHZOg65yD7kQi4UHwkJCR+1v+KBfGQfciEP5EIeyIU80HOtXOjreQoA3rx5gx9//BE7d+7Ey5cvxefk6j2bN28G5xyVKlVCfHx8tspGrVZn6TMibciFPJALeSAX8vDy5Ut07NgRnHM0btwY3t7e6aa9d+8eOnbsiKNHjxoxh7kHciEP5EIeyIU8qNVqrFixQrzXa9iwIUJDQ02drVwL+ZAHciEP5EJOzp8/jy+//FJ4CQsL0+vxlf5GjUYj/q38l9DF0C5CQkIwadIk9O3bF9evXxd98uQjNYZ2AQDh4eGYPn06KleujBs3bgCgvpL0MLQPjUaDAwcOgHMOS0tL3L17FwD5yAlwgKbJIAiCMGdWr17NRo0axSpWrMguX77M8uXLpzPCjTHGNBqNmJlp3759bPLkySwkJIRpNBo2ePBgtm7dOsYYS7XfwYMHWffu3RljjFWuXJkNHDiQjRw5Ms20ROZ8SJlpO2MseVTnmzdv2KtXr5i9vT0rVaoUs7W1/eDjEh9OShcPHz5kT548Ya9evWIuLi7M3d2dOTs7M8bIhaEhF3Kh7UOtVjN/f38WEBDA3rx5w0qVKsVKly7NXF1dGWPkw9CQC3kgF/JALgwLPdeaB3FxcWzfvn2sX79+jDHGBg4cyDp37sw6derEGCMf2nz77bfs8OHD7OnTp8zCwuKjjpGUlCT2HTZsGLOzs2NLlixhjFFZfwjkQh7IhTyQC3kICQlhzZs3Zw8fPmSNGzdmM2fOZHXq1GEODg6pnoliYmKYnZ0dY4zK2BCQC3kgF/JALuTB39+fVaxYkVWsWJH98ccfepvRWK1WM0tLy1Q+iYwhH/JALuSBXMhFSEgIGzx4MDt16hQDwCpUqMCWL1/O2rVrl+1jp6znIyIiWEJCAitSpIjwRL7eY0gXjDEWHh7OVq9ezZYsWcLi4uJYpUqVmKenJ5swYQJzc3PTabvndgztgjHGXr16xTZv3sy2bdvGAgMDWb58+diFCxeYh4cHuUiBMXwo3/PVV1+xixcvsvz587MLFy6wKlWqkA/ZMUqYPEEQBGEyVq1aBc45nJ2dERQUlGq79sxLXl5ecHd3h5WVFTjn+Oyzz8S29EZsbtmyBZ9++ilUKhU455gyZUqaxyb0h7aLf/75B8uWLUPJkiVRsGBBWFlZQaVSoVu3blizZo1IRy4Mz4EDBzB27Fjkz58fdnZ2YuRomzZtsGLFCpGOXBgeciEXGzduRO/evWFtbQ0LCwudWTmWLFki0pEPw0Mu5IFcyAO5MC30XCs3CQkJ+Pnnn9GgQQNwzqFSqVC6dGlMnz5dpMntM/toz96yYcMGPHr0KNu/0alTp6Jw4cLgnKNv377ZzWKugVzIA7mQB3IhJ35+fnB1dQXnHBUqVMD48eMRGBho6mzlSsiFPJALeSAX8hAaGqrXWSkfP36MFStW4NatWwCoLfehkA95IBfyQC7kYuTIkeCco0GDBjh69ChiY2P1dmw/Pz+sXLkSHTp0QJkyZVC4cGG0bNkSM2bMQEhICACa4VgbQ7oAgD///BMLFy5EmTJlYGNjA845KleuDB8fHwDkQhtDuggPD8eCBQtQtmxZcM6RN29ecM7h6OhIM3+ng6GvDYXg4GC0bduWfOQgKICdIAjCzLl79y7c3d3h7OyMAwcOiBdViYmJOul+/PFH5MuXTwTudOzYUWzLbIlgb29v/PDDDyKIfdSoUWIbBZgYjkWLFqFy5cpiwAHnHLa2tmJJHM45vv/+e5GeXBiGuLg4TJgwAfny5RMurKyskC9fPh0XY8aMEfuQC8NALkyPUp5qtRr+/v4YOHCgTtnnz58fhQoVgkqlEp+NHj061f5E9iEX8kAu5IFcyAs918pLQkICnj9/jsGDB4sgds45Bg8ebOqsSYM+O77nzp0LlUol2uUjRoyg3/sHQC7kgVzIA7mQk6CgILRs2RJ58uQRzz5LlizBs2fPTJ21XAe5kAdyIQ/kwvx4+vQpVq5cKdrXSnAoYRrIhzyQC3kgFx+PdqD/smXL8NtvvyEuLu6jj6fdxnvy5Am8vLxQoEAB8Vyg9A0qfxUrVhSB07l90IG+XWRGWFgYlixZglq1aoFzjoIFC5KL/8fQLlIGrzs5OeHYsWPo3LkzBU2ngbGvDSC5TUNB7DkHCmAnCIIwc169eoX27duDcw5PT0/8999/4mFAo9HgzJkzGDFihE5Do1evXmL/lIHu2mg3YF6/fo01a9aIRsucOXMMd1K5nPDwcAwZMkTHWYsWLTB9+nT8888/2L59O8aNGydczJgxw9RZNkuSkpJw48YN9O7dW8dFt27dsHXrVvj6+mL//v2YOnWqcDF79mxTZ9ssIRdyoNQJ8fHxOHjwINq1aydcFCpUCF9//TVOnz6NR48e4e+//8acOXOEj3nz5pk49+YFuZAHciEP5EJO6Lk2ZzF37lyULFlSBC6SD/1z//59ODs7i/LN7S+bTAm5kAdyIQ/kQr88e/YMK1euRMOGDWFtbY09e/YgMjJSb8enwQVZh1zIA7mQB3JhPkRGRmLWrFmiDre1tcWMGTOQkJBg6qzlSsiHPJALeSAX2Uc7niM7wZna9fOlS5cwfPhwMcO3vb09PvnkE4wbNw4LFizA119/LQKnixUrBn9//2ydg7mgLxeZobiKjY3F9evX0apVK3DOUbVqVb2ujJCT0bcLpczTCl739vYGkLxaQZs2bShoOg2MdW1oQ0HsOQcKYCcIgsgFBAUFoUSJEuCco1KlSujatSsmTpyIFi1awN3dXQSLlC1bFmPHjhX7ZRS8nhZv374VwT7u7u44e/asvk8l1xMcHIwvvvhCOCtZsiQmTpyYKl1UVBRWr14NlUqFokWL4vTp0ybIrfmSmJiIM2fOoEOHDsJFgwYNsHz58lRpo6OjsXLlSlhYWKB06dK4evWqCXJsvpALOVAa7XFxcfj555/RsGFD4aN79+7YtWtXqn1iYmKwZMkSWFhYoEqVKmJWACJ7kAt5IBfyQC7khJ5rcxZPnjzB3LlzxWxLFStWxJYtWww+U0puQuk4DwwMxPz586kj3YSQC3kgF/JALgyDRqNBQkIC7ty5o7els0NDQ/Hw4UMA9FL2QyAX8kAu5IFcmA/z588H5xwuLi6YMWMG7t+/b+os5WrIhzyQC3kgF6ZHO3j9+PHj6NKli1gts0aNGpg+fbpOYHRCQgK8vb3RrFkzcM7x2Wef4e3bt6bIOgHgxo0bqFKlCiwtLTFz5kwkJSXRoHMD8Pz5cyxevBilSpUC5xzOzs64c+cOgPfPthQ0LRdBQUE6gwpS+iLkgALYCYIgcgkBAQGoXr26GCWr/Cmz5/Xr1w+7d+8W6TOqsKOjo8W/U86U8d9//6FkyZJQqVRpBpASH09YWBh69uwp3DVr1gzbtm0T27UbIhqNBgEBAahYsSI451i7dq2Jcm1+JCUl4fz582jdurVw0adPH/z5558ijVqtFteGRqPB3bt3UaxYMXDOsX37dlNl3ewgF3IRHx+PnTt3onbt2sLH999/r7PUY8q65erVq3BwcADnHL///ruxs2y2kAt5IBfyQC7kgp5rcxZhYWGYPn067O3twTlH5cqVsWvXLr3OwEgk86GDyAnDQS7kgVzIA7nQP/qegTg0NBRDhw5FiRIlcPnyZb0e29whF/JALuSBXJgXixYtwsiRI/HgwQNTZ4UA+ZAJciEP5MJ0aNf5x44dQ4sWLWBpaQnOOVq1aoWTJ08iKioKgG4felJSEnbu3Alra2uULl0aISEhRs87kUx8fDz69esHzjkaN25s6uyYJfHx8Vi5ciWKFCkCzjlsbGxw5MgRsU17wIB2EHvevHl13kMRxic4OFhMhpg/f37cvn0bAAWxywQFsBMEQeQiHj16hNWrV6Nr165o2LAhatSogXHjxmH//v066TIajRkQEIARI0bg8OHD6abp0qULOOeoU6cO4uPjaTnIbKC4iI6ORt++fUWQT8eOHcUDsXa6lDRv3hycc3Tt2jXDdETmKL9jX19fdO7cWbj49ttv8e+//4p06ZWxsozaoEGDMkxHZA65kA+NRoPjx4+jcePGwse0adPw6NEjnTRpoQQkTp8+HQD5yC7kQh7IhTyQCzmg59qcSVhYGGbOnCmC1z08PODl5UXB69lA+7dLbWXTQi7kgVzIg6FdkF/DERgYiLFjx4pVON3d3fH8+XNTZytXQi7kgVzIA7kwHdqBOTQzrukhH/JALuSBXMjDuXPn0LFjRxG83qlTp0yD0u/fvw9nZ2dwzvHrr78aKaeENso1tGrVKnDOYWdnB39/fxPnyjy5f/8+evXqhSpVqoBzjvr16+PcuXMAkvtTtPs8goOD0bJlS3DOMWbMGJoUwMikDE7ftm2bmOTQ3t5eBLETcmDJCIIgiFzDJ598woYPH86GDx/OkpKSmEajYVZWVqnSqVSqNPcHwO7cucPWrFnD1qxZw/bu3cs+++wzBoBxzllSUhKzsLBgNjY2jDHGEhISGOeccc4Nel7mCgDhYvLkyWznzp2MMcbatWvHRo4cydq0aZMqnfa+nHOmVqsZY4zZ2dkxxhi5+Eg0Go0o40WLFrGjR48yxhgbMGAAGzFiBKtatSpjLLULAIwxxiIjI1lMTAxjjDFHR0fGGLn4WMiFXCg+Xrx4wdatW8f++ecfxljyPWv48OHMxcVFpNUuZ2U/Pz8/9vr1a8YYY4UKFWKMpV8HERlDLuSBXMgDuZAHeq7NmTx48IBt27aNLV26lEVHR7MqVaqwH374gXXp0oXZ29ubOns5Eu1n2fDwcFawYEHRjiaMi6FdaB8/rf8n3mOM60KpS9L6TuI9xnCheIiMjGQODg50D9QjwcHBbPny5YwxxkqVKsW+++47+p2bCHIhD+RCHsiFcdF+9rGwsBD/ny9fPhPnLHdCPuSBXMgDuZCPkJAQtn37dvb333+zpKQk1qlTJ7ZlyxadPvS0ePLkCXvz5g1jjDFLSwpBNAVKmzo8PJwxxlhsbCyLi4szZZbMEo1Gw0qWLMm2bt3K/v33X7Z48WJ2/Phx1rp1a3b69GnWqFEjEY/AGGPu7u5s/fr17Pjx46xTp050fRgZpW45cuQIO3v2LFu7dq2od6Kjo9n48ePZoUOHmK2trYlzSjDGGLUMCYIgchnKQ5OFhQWzsrLSeYjKDM45a9GiBRswYABjjLEePXqwTZs2sVevXoljenl5sX379jHGGKtZs2aaAfJE1lAeoDZs2MB+/PFHxhhjDRo0YN99951OkE9awTucc/bnn3+yixcvMsYYq1atms4xiQ9D6UyfM2cO++WXXxhjjHXr1o0NGjRIBEwzlrp8lQEcR48eZX5+fowxxsqVK5dmWiJrkAu50B5McOTIEcYYY0OHDmUDBw7MsFNL2e/kyZPs+fPnjDHGXF1dDZxb84ZcyAO5kAdyIQ/0XJvzoOB1/ZOUlCTuLyNGjGBNmjRhfn5+ojOdMB6GdqEdBHzz5k3G2Pu6hVzrYozrQrt+uXDhAgsMDGQqlYolJSXp5fjmgjHvUbt372Zffvklu3v3LrOwsCAXeqJt27Zs1KhRzNLSko0cOZJ9/fXXrGDBgqbOVq6EXMgDuZAHcmEcIiMjGWNMTDilQO1n00A+5MGQLlI+K1ObL2OMeV1oNBq9H9McUcrpzz//ZF5eXkytVrM2bdqwtWvXZtiHrvgLCQlhdnZ2TKVSiYnDCOOgfb+5efMmO3ToEOOcs/Lly7NixYqZMGfmiUqlYgBY3rx5WbNmzdiGDRtYt27dWGJiIuvbty/z9vZOdS8rW7YsGzp0KCtVqpSJcp07SFn3Pnr0iF24cIF16NCBDR48mK1cuZIlJiayhIQEVq1aNTZv3jy2ePFiCl6XCUNO704QBEHkHFIuoZIR4eHh+Oabb8A5B+ccbdq0wYABAzB8+HDxmbOzM9auXWvAHOcOAgIC0LJlS1hYWMDJyQnr1q0T2zJadvnZs2cYNGgQrK2t4eTkhL///jvTfYiMuXjxIsqVKwfOOapWrYr9+/eLbRmV671799CmTRuoVCpUrFgRfn5+xsiuWUMu5GL//v2wsbEB5xxt27bFpUuXsrTfpUuXUKZMGXDO4enpSUtD6gFyIQ/kQh7IhTzQc23OISwsDDNnzoS9vT045/Dw8ICXlxciIyNNnTWzYOLEiShZsiQ457CyssLLly/1clzlmqBrI+sYyoXC5s2bUb58ebRv3x779+8Xx09KStLr95gDhr4uAODs2bNwd3eHo6Mjbt26BeDD+sJyC4a+LqKjozFx4kSxZPPdu3cBkIvson1fuXz5Mp49e2bC3ORuyIU8kAt5IBfG4enTp5g5cyamTp0qPqO2gekwhg/qq8oaxnChVqt13jfRtZc2xnBx+fJlzJw502DHN1du3rwJOzs7cM5Rt25dXL58OcP0SrmGh4ejfPny4JyjcuXKiIuLM0Z2cx3az1JptZ3/+ecfDBo0CA4ODuCco2vXrsbMnlmS1b67a9euoWrVqrC0tMTo0aORkJBA/X5GRvs+//TpU+zbtw9169bFJ598ImLXOOfo3LkzZsyYgejoaBPmlkgPWp+AIAiCYBqNRiwt9Ntvv7EGDRowV1fXdEc7FyhQgI0cOZJ5e3uza9eusXPnzrGEhASx3c7OjnXr1o0NGTLEKPk3Z+7evcsuXLjANBoN69WrlyjT9Ja7xv/PLHbu3Dm2f/9+lpiYyGrWrMlat27NGKOZHbLD3bt32f379xljjHXt2pV169aNMZb+bKGMJS8/dPToUXb16lUGgHl4eLDy5csbK8tmC7mQA6W8b9++LWZo+PTTT1mDBg0y3ffRo0ds9+7d7OnTp4wxxmrUqEFLQ2YDciEP5EIeyIV80HNtzoBmXjcshw8fZosXLxb/P3ToUObs7JytYyrXinJNvHz5ksXFxbHg4GCmVqtZnTp1mKWlJbO3t0/3esuNGMKFNjdu3GBHjx5lQUFBLCAggHl7e7P69euz+fPnszJlyrCkpCTRD5PbMZQL7fbh2bNn2dixY9nTp09ZXFwca9asGbtw4QKrUqUKudDC0NcFY8l9ht9++y27fv06O3XqFGvSpAm50AMqlUrc4+vXr2/q7ORqyIU8kAt5IBeG58mTJ2zPnj1szZo17NWrV0ylUrFZs2bprd2sPFdl1P9OvMfQPuLi4tipU6fYDz/8wEaOHMkaNWrEKlWqxBjL+B1JbsTQLhhL7tc6d+4cGz9+PKtatSrbtm0bXS9pYAwXERERrG/fviw4OJhFRESwVatWkYtMAMDUajXbsGEDi42NZYULF2ZffPEFq169eob7cM5ZVFQUmzNnDgsJCWF58uRhnTp1YlZWVtT39AFk9NtUq9XivUZiYqJOucfFxTG1Ws0uX77M/P392fbt29mrV69YbGwsq169Olu9ejVjTLffPWV7m9rf6RMWFsbi4uJY+fLlM/09V69enXl4eLC7d++yv//+my1cuJBZWVkZMbe5F8WNcq0sXbqU/fPPP+z48eMijbOzM6tZsyb7/PPPWe/evcWM69q/f7o2JMGo4fIEQRCE1Cizql+5ciXL6R0dHTF58mS4ubmhSJEi6NixI2bPni1GutEIw49Do9EgPj4enTp1AuccNWvWFLNepTcrlfL5nTt3UKxYMXDOUbZsWVy9ejXD/YjMefv2LWrVqgXOOZo1ayY+z+z3feTIEbi4uIiZwh8/fpyl/Yj0IRdy8ezZMzE7X5cuXcTnGc1q8fbtW6xduxbOzs7gnKNevXqIjY3NdD8iY8iFPJALeSAXckDPtfKgPPe8efNGzDSi/bummdeNw5AhQ8A5x+TJk7P9LKq9//Pnz7FlyxbUrl0bRYoUEbPLeHh44PPPP0dAQAAAun600aeLtPDx8cHRo0fRpEkT0RZxc3ODt7c3AGqLaKNvF9r3tjNnzqBmzZpQqVSws7ODu7s7OOdwdHSk2b/TwNDXhUJQUBDatm1LLrIJlZc8kAt5IBfyYGgX1EZPRq1WY/Xq1VCpVOCco0iRIhgxYgRev36tl2Nr8+DBAzx9+hQPHz7UeU4gF+8xpA+Fs2fPwsPDA5xzWFpaokWLFti0aZPYTj6SMYaLpKQknDp1Ch06dBBt8GHDhont5CIZY7gAkn2sWbMG1tbW4Jxj+PDhYhu5SJ/o6Gjx3rVmzZp48uRJpvvExcVh69atqFChAjjncHZ2xo0bN4yQW/Pk0qVLmDVrFj799FO0b98eXbp0QcuWLVG/fn00atQIderUQaVKlVCxYkW4ubnB2dlZvL/Q/qtVqxYuXrwIQPc3r12f//DDD7QqXQYEBQVh4MCB6NWrl/gsvfuHUn47duwQ952srgBMfBwp+6lCQkIwdepUNGnSROdaKF26NJo3b45Lly6JmBAFujbkhALYCYIgCADAu3fvULt2bXDO8eWXXyI8PDzdtAkJCQCArVu3gnOOY8eO4e3bt3j8+LFOZU4vY7NHXFycaDB27Ngxw+VslHIPDQ1FiRIlwDmHi4sLZsyYgTdv3hgry2bL69evxRJoAwcORGJiYqYPrufOnRMBVyVLlsS2bdugVqupkySbkAu5ePTokViCa86cOQAybtRFR0fjl19+EQE8FSpUwNmzZzPdj8gcciEP5EIeyIU80HOtPPz777/49NNPsWPHDrx79058fv/+fQpeNzDa95EjR45k+76ivb+Xlxd69uyp01GfP39+qFQqWFpaisBpHx8fANRW17eLlKRsZzx79gxeXl5o1KgROOcoXLgw7t27l2ba3IYhXKQXvG5vb49hw4bB29tbBJhQ4PR7DH1dpAUFsX8cAQEBOHTokPh/Ki/TYWgXyv0st9cVWcGQLtIqf3KSPoa+LuLj48VzFEAuFPz9/cE5h42NDWbMmIEHDx7o7djR0dH46aefMGDAAJQqVQrFihVDkSJFMGDAAPz0008iHbl4jyF9AEB4eDi2bduGwYMHw9HRUQQFT5gwQaQhH8kY0kVawetK+5sCp1Nj6OtCQa1WY8uWLeK6IBeZc+7cOVhZWcHa2hpeXl4AMn7+SUhIwIEDB9CgQQPx2//999+Nmmdz4v79+2jTpo24f3zIn42NDTjn8PT0xMCBA9McFKL9LDZu3DjRZ3j79u1U24nkfiRbW1twzrF///4s7bNq1Srh5NSpU+mmy6w/lu5R6ZPyd3ry5EnMnz8fBQoUENeOpaUlHB0d8d133+Hs2bM67z6A1OVL14ZcUAA7QRAEASC5wl6/fj0KFCgANzc3HDp0KNOHqMWLF4NzjpUrV6Z5PCJ7vHr1ClWrVoWFhQWWLl0KIOMH26CgIDHLaP78+dGjRw8EBQUZK7tmTWhoKIoXLw5LS0vRKZvRb/zUqVMiYK5IkSIYP348nj17ZqzsmjXkQi5u374Ne3t7WFlZYd++fRmmff36NbZt24bChQuLIKq1a9dSYJyeIBfyQC7kgVzIAz3Xmh5lJvx69eqBc47q1atj165diI+Px9OnTzFjxgwKXjcC+ur41j7OtGnTxABPzjnq16+Pb7/9FufPn8eZM2ewZs0aMQuNu7s7goOD9ZKHnI6xXkIobZXExER4e3ujZcuW4JyjSZMmWZrVLDdgKBcpg9eHDh2KuLg4AMnBExQ4nRpTnD8FsX8YoaGh4sXqN998o/fjawdM5/bBTplhaBdv377FwYMH8c8//+hcD9TnnhpDutBeZXbbtm1YtGhRqm3Ee4xxj/rrr79gbW2NAQMG6HxOJA8emDNnDu7fv6+X48XHx+PmzZuoX78+HBwcUgXNKcGh48ePF/uQi/fo24dCyvr52LFjGDZsmPAxZswYsY18JGMIF2kFr69atQpbt26lwOkMMNR1kRIKYv8wLly4AEtLS+TJkwcnTpwAkLqclP+Pi4vD4cOH0bRpU/Hbnzt3LrUdssmoUaPAOYeFhQUcHR3x7bffYtCgQejfvz9GjRqFKVOmYMyYMZgyZQqWL1+OpUuXYuXKlTh+/DguXbok+joA3XpCux0xduxYcM5FcDa1v9MmICAAHTt2hJWVFfr164dHjx6lm1atViMhIQFDhw6FjY0NbGxs8N9//6VKl/J6OnHiBLZs2YJ58+Zh7ty5uHbtGl68eAGAJh3JiKSkJJw5cwajR49Gvnz5xG85T548cHJywoIFC8Q9TCGz2fMBujZkgQLYCYIgCMHz58/RtWtXcM7RoEEDsay1gvYDk5+fHzw9PcE5x5QpU4yd1VxDu3btwDlHr169dGaqTLk849WrV+Hq6grOOezt7dGqVSvxYEVkH7VaLRrjAwcORGxsrNim7eLVq1fYu3cvihYtCs45ChUqhG+//RYhISGmyLZZQi7kIjY2VsyyMHbs2HQ7SYKCgrBs2TIUKlQInHO4urpi7ty5okFOZB9yIQ/kQh7IhVzQc60c+Pr6it969erVsWrVKkyaNEkEJFDwuvxod5yPGDFCJ5hkxIgRuH37ts51lZSUBB8fH9SvXx+cc3z//fe0GpEJOX36ND755BMULFgQu3fvBkAvpwzB8ePHUadOHahUKjg4OGDMmDGi7lHKO2XgtNIHRi+njE9QUBBat24tXNBsV2lz//59DBkyRKxQY2FhgfPnz+vl2Fm5D1G98R5DugCS+7TWr18PZ2dncM4xZMgQnRmtycV7DOlCO3j9t99+Q8OGDUV/ZMo0hOGvC4W9e/eKZ18KSExNYmKiXo7z5MkTbNiwQQwst7Kygq2tLUaOHImFCxdi2bJl6NevnwgOpXeEaaMvH2mR8l3IunXrhI9ly5YZ7HtzKvpwoV0vpAxeX716NQAKnM4KhrwutCEXWefu3buws7MD51z0U2ij3G+io6Oxc+dOsboc5xzjxo3Dw4cPjZ1ls0H7Xj5y5EhRrlu3bv2o42n/ttMK0LW0tETdunVRu3ZtCtTNAC8vL+TNmxeccyxZskTnvZJSToq727dvo0iRIuCco1q1aqnKUUkXHh6OgwcPokOHDmLmfOXP1dUVLVq0EKsMkQtd4uLicOzYMbRu3RqlS5fWKbu6detixowZ8PX11dknozKka0NOKICdIAiC0OH+/fuoUqUKOOdo1qwZrly5gqioKJ00oaGhmDt3LhwdHcE5x+LFi02UW/NFaWAsW7YMVlZWqFatGm7cuJHqASkoKAibN28WQbqOjo5o3749bt68aYJcmycajQYajQYzZ84E5xy1atXC7du3U7n477//MG3aNBEQVLRoUQwZMgQBAQEmyrn5QS7kIyEhQTTu6tati9u3b6fqgDx58iT69+8PJycncM5RqlQpLFq0iGac1DPkQh7IhTyQCzmg51r5uHfvHgoWLAjOOT755BMxu0jVqlWxc+dOCl6XGO0XW0OHDtXpsF+4cGG6adVqNSZPnizuh8Z6YUykJjo6GtWrVxcDegj98+bNG7Rv3168ECxdujT+/fdfAMkziWq/0NUOYuec486dO6bKdq7nwYMH6Ny5c6ogdhrg8Z7nz5+jbNmyYkWNVatW6WWFOeWaUKvVuHv3LtatW4fvv/8eX331FbZt24bLly+nSpvbMZQLhaioKEyaNAkeHh5iluOiRYtizpw5Ig25SMbQ10VSUhJ+/fVXMZEPBU6nj6GvCwW1Wk0zHBuYkJAQzJgxQwRjFSlSBF988UWqAQlv3rzBmjVroFKp4OjoiKNHj5ooxwQAxMTEYOrUqVCpVKhTpw78/PxMnSWzRK1W4+TJk2KSBs451q9fn6r9rR04PWLECLGN7lPGJaWLYcOGiW3kIhmNRoNXr16hffv2UKlUGDt2bJoTj7x69QpTpkwRz6fKig90r8k+2n3ko0eP1rm3xMfHi21JSUk6v9uMfsPpBeh6enrijz/+wOPHj8V9jAJ136NdpgsWLBAuVq5cmeb7In9/fzF4s1ChQli+fDmA9+Wo/Dc4OBh9+/ZFmTJlxMBAS0tL1KpVC0WLFoWLiws45yhWrBh8fHwAUF9ISqZPn67THuvUqRPmzJmD+Ph4UVZZua/TtSEvFMBOEARBpMLf319npODEiRNx69Yt3L9/H3/88Qe++uorMQNMtWrV8PLlS1Nn2Wx5+PChaAx6enpi586dCAoKQkBAALZv3462bduKgKtixYqhb9++qWbOJ/RDWFgYKlasCM6Tl3vfsGEDvL29ce7cOaxYsQKVKlUSsx+6u7tj2rRpBl8GL7dCLuTi/v37KF++PDjnaNiwIZYsWYJr167By8sLU6ZMQf78+UVgXOXKlbF169Zs1RvUsZg+xnRBnScZQy7kge5R8iDDcy35ec+9e/dQoEABMTuiq6srtmzZovNihJAL7d/vxIkTkSdPHnDOYWNjI2Z7S5kOeN/Bvn//flhYWMDZ2ZmejU1EQkICAKBjx45iMAFhGB4+fIgZM2agbt26YoDa2bNnAaR+6RscHCxmkFPSEMZBeY6NiYnB/fv3MWDAADHwwMrKioIh0uDOnTuoWLEiFi5cqLf+2MTERISFhaFr164oV66czkthzjnc3Nwwa9YskZ6ep5IxhAttlFn+1q5di7Zt24rAq1GjRok05CIZfbtIGbyurATJOceAAQMocDoDDH1dKNCsuobj/v37GD9+vJgYxs3NDStXrtRpP2j3Qz169Eis9KRdVxCm4eTJk+JZav/+/abOjlni4+OjUy/06dNHbFPae8D7+5SFhQU45/jmm29MkV0CyV5++eUXUWcMHjxYbKM64z1r164Vv+ulS5eKoM2QkBBcvHgRdevWFf22nHNMnz6d+pb0iHZw7JgxY0Q5b9iw4YMnodCup7///nsRoNukSRMcPnxYbAsICNBZlY4CdZPRLr8JEyYIFz179sSaNWtw69YtHDlyBAsWLECxYsXAOYeDgwO6dOmCoKAgsa9Sjr6+vvDw8BD1s42NDSZMmICDBw8iLi4ODx8+xB9//IEWLVqICWYePHhg9PPOCUycOBH169fH7t278fr1a/F5Vt+R0rUhNxTAThAEQaRJQEAAqlWrJh7K8ubNCzc3N1hYWMDKygqcc1SoUAG//vprqpd/hH7x9/cXSzXmzZsXBQoUgKurq87LpEqVKmH58uUICwszdXbNGn9/f7i5uYlAn/z58yNfvnw6LmrVqoUDBw4gPDzc1Nk1a0zhgmYjTR9/f3+4u7vr1BkpX3o3a9YMt27d0llqLTu8evVKL8cxN4zhQrvO//3333Ht2rV0t+dmyIU8mOIedfv2bZ3lU8lFMqZ4rvXx8cGvv/4q/p9cvMfX11cMTC5VqhS2bt2q88KVkJONGzeK64hzjrVr14ptGXXYz5gxA5xzWFtbIzQ01Ag5JbTRdtOwYUNwzlGyZElERUXRYDQ9o5RnXFwcrl+/jq5du4Jzjjx58uDSpUsAUtcFQUFBYsUPqicMi3b5xsfHw9/fH/369UPNmjXBOReBJaVKlcKGDRvIRxpERETorZ/j8ePH2Lhxo5gkQCn/KlWqoG7duihevLj4bMyYMXr5TnNCny5Sov3b9/Pzw6JFi4SLKVOmGOQ7czL6cpFR8PqWLVsAgAKnM8GQ14U2FMSuf54/f445c+aIWUBLly6NPXv24O3btxnuN2DAAHDO0ahRI8TGxtKzrQlQfvORkZFihe1JkyaZOFfmy9q1a9GpUyfY2dnBxsYGQ4YMEdu0A02V+5QyUYMSAEcYnpT3oXv37qFz585iQMGgQYNMlDP5SDlZgvLcU6xYMTRt2hRFihQRgesqlQqWlpb45Zdf8O7du2x9b0pHVHfrN4gdAAYOHCjeodevX19nwL5S3tqr0mkH6uZ2H9oupk6dCgsLC/HMqUwCqkws4uzsjPbt24tV5DQajdj/7t27Ij3nySvGnz17Ns3f/7///otKlSohT548WL9+vfic0K1bnz9/rrPtY8qIrg05oQB2giAIIl0ePHiAESNGiOWttf9q1qyJP/74I9sNFCJrBAcHo2vXrihdurR4oFJGYfbq1QshISHZCrhSHrbooStzQkJC0KdPH1SoUEEEgHDO0bp1a4wePRpRUVHZOn5WHJCnZAztQpt//vkHXbt2xebNm3VmFSAX7wkNDcXXX38tZte1s7ODra0tPv/8cyxZskSvZXX06FHUqFEDa9euRWBgoPicfCRjLBerVq0SS96NHj0af/zxh9hGLpIhF/JgzHvUkiVLwDlHjx49dGa8IhfJGPq5Vht/f3+MHDlSzJaoQC7e4+vrK2Zir1GjBnbu3EmD9iRE+c36+PjoLFW+bNkykSa9QBGNRoOIiAh069YNlpaWqF+/vs5y0IRh0Wg0OvccpY7gXHcpecJwhIWFoXPnzuCco3r16jrth5Sk9EXoj5QzVR04cADfffedGEil/FWoUAGjRo2Cn58f3asMTEBAAEaPHo3ixYuLF+8dOnTAvn37xLOAt7c3Vq1aJV7Wr1y50sS5zl1o34/i4uKwZs0aqFQqODo60sy6BiQpKQm//fYbmjRpIu5NGzduFNvj4+PTDZymwF3jQkHs+kH53Xp5eYmZRN3d3XH48OEM2+YJCQlITExE69atwTlH+/btjZVlIh1u3rwpAupo4JlhCQ0NxapVq2Bvbw/OOfr27Su2aT/3qtVqHD58GIcPH0ZsbKwpspqrSHnvv3TpElatWoVChQohf/78Ov2QFy5cMFEu5UP7Nztv3jydiWCUP3d3d3z++ee4fPmyzr6hoaG4c+fOB9W72itxnT17Vmff3F5/6yuIPSwsDB4eHqLPt3r16vD19QWQHAysXc7agbp2dnY0WeL/o+1i+/bt6N69e6rrokKFCpgyZQru3bsHIPn3q3jy8fFBwYIFRbB7o0aN4OPjI9Jp/xcAYmNjxYqN3bp1M9Zp5hj0NeiFrg15oQB2giAIIkOio6Px4MEDLF26FNOmTcOkSZOwdu1avQaGElnjzZs38Pf3x8aNG+Hl5YX9+/frfQmht2/fIjg4GLt27cL27dtx9uxZCtZNg8jISDx8+BC//fYb/v77b5w9exYxMTFi+8csIZSybO/fv4/r169j2bJlWL58Of744w/xAJ1W+tyKIVyk5NGjRxg2bJhokH7xxRfYs2eP2E4u3hMTE4Pw8HCcOHEC169fx61bt3S268NHcHCwTkdBjx49sGvXLrGdfCRjaBeRkZGYPHky6tatC86Tl1lzdXXFvHnzRBpykQy5kAdj3KMAYNSoUcifPz+sra3h4uKChQsXim3kIhljPNf6+flh5MiRoqOYAhrS5969e2KJ+KpVq2Lv3r2Ij483dbaINFi0aJH4PY8fP158nlHwOgAcOnRIBPZQ0PTHkZ2BxomJiUhMTMTMmTNRrFgxqFQq2NraYvv27frOZq5A+/eelRe4Go0Gx44dQ9GiReHo6Ih169alOg5hGFJeE0lJSdi2bRu+/vprcM7FCo9OTk4oVqwY1q1bh+vXr2d4DEI/+Pr6on///qL+/+STT7Bq1SoxwEO5PjQaDaKjozF58mRYWlqiXbt2ePPmjSmznqsJCwuDp6cnVCoVxo0bZ+rsmCUajQY//fQT6tevL565fv75ZwDJdY5ybWQUOE0Yl8TERGzatEm40J4JmeqQzFF+0yEhIShVqpRYJWj37t06fezp7RcVFSVm/P7f//6XKvCHMDxKeUdERGDGjBlwcHBINdiZ0B/av++EhAR4eXmJIPaMVkihScQMR8qyjYyMxN27dzFs2LBUgdgFCxbE6NGjcfjwYVNmWUq0+8X/++8//PLLLxgxYgSmTJmCFStW4PHjx6IdoAz8fvnyJQYOHAgnJyfs2LHjg37fkZGRmD17NgoUKIAWLVpgx44dYmbl3N5WTy+I/ccff/yg9xfh4eHYvHkzPD09xYBlZabplIP3g4KC0KJFC9SpU4f6hLXQ/i2+efMGV65cwU8//YQff/wRv/zyC8LDw8XgJO2Z1wMDA1G2bFkR+NymTRv4+/unOqaC0rel+G7RooWhTy1XQ9eGnFAAO0EQBPHRUENbHj6mMZfS3+7du9GpUyfx8koZid6gQQMsXrw43f0IXT6mfLT9vX79GuvWrUOlSpV0ZiJTqVSoWrUq5s+fn63vyk3oq3xiYmLw+++/i9lkVCoVXFxcMHHiRJEmt3eoGJPo6GgcOnRIjERXZh/TfnlL14ZxiI2NRUxMDFasWIGWLVuKl4WjR48WaciFcSAX8nHixAn0799fuKB7VNbRR52qBK8rM2mUK1eOZuXLhHv37olnz+XLl5s6O0Qa+Pj4iGWbO3ToIGZ9ySx4/caNGzoDFG7evJnhfkRqtF8QPnnyBE+ePMHTp08RGhqKe/fuISgoCD4+Prh8+TKuXbuGa9eu4ciRI/Dy8sLGjRvRvXt3NGjQQDy7pqyj00KZ7VJfg6vMkT179ohB3pn9nuPi4lCrVi1wztGsWTNjZC9Xk9JHYGAg9u3bh8aNG4sAH+0+p59++gkBAQEZHgOg60JfBAUF4ZtvvhH1fsmSJfHXX3/pzHif8hlp7969wtuNGzeMnWVCiyFDhogArBcvXpg6O2ZHYmIitmzZAhcXF1hYWMDe3h4//vijznYFtVqNrVu3iplcV6xYYYIc515S1hOLFy8Wz1mDBg0yUa5yJjExMWjfvj045yhUqBDmzZuHiIiIdNNr1xFjx44VwVkUEGo6wsLCsGrVKpQvX154DA4ONnW2cjRZnen43bt3mDRpEiwtLVGlSpVUgzEJ4/Hu3TvcvHkT3bp1Q+XKlXXa33Xr1sWgQYMQHBysU39Qv4gumZVHWv2oAwYMAOccDg4O2L17d5b7Ws+fP48uXbqINkbhwoXRpUsX0S7M7W0+7fNX6tqSJUvCz88vS/srLhMTE+Hn54fPPvsMnHPkz58f165dS3OfZ8+eiXtfbi9/bTIbgJRy+7Nnz/Dpp5+KPo+mTZuK33VG11hcXJwYRNu4cWO6PxkIujbkhQLYCYIgCCIXov3Qe+3aNYwePVpnFLqjoyMKFCgAa2tr0QmvveQgBftknczKStvFgQMH8Pnnn+u4KFKkCEqWLAlHR0dykU2yU1ZJSUl4+/YtRo0aBUdHxzRn9SE+jI/xob1PTEwMxo4diyJFiggf3333nT6zmGvQx33E19cX8+fPFy4mTZqkh5zlPsiFPHysC+16PSQkBHPnzhUuxo4dq6/sERmgBK8rQVkNGjRAVFQUdu/eTUHsmRAQEIAZM2ZQmUjK6dOn4ejoCM455syZk+ELdcWhv78/2rZtCwsLC1hbW2PIkCG0mlo2mDZtGurVq4fixYujWLFiKFq0KJycnODk5IT8+fPDxsYGtra2yJs3r2jPWVpa6gxKLly4sM7s+Wm9+Lh9+zbq1KmD//77L900uZ2NGzeiYMGCGDp0aKZplRmSvvjiC1haWqJ06dI6gbpZhe6NH46fnx9++uknlClTRgykUfo1+vbtizVr1ujcyzIqY7ou9Nf0H9oAAOkLSURBVMPz58/xww8/wMXFBZxzuLm54fLly+mmV5zcunVL3Nv+/vtvY2WX0CIhIQEAMHXqVKhUKhQsWBBPnz41ca7MlwsXLmDatGnIkycPOOfo06eP2KZ9/1Gr1Vi7di08PT1x4cIFU2Q11/Po0SMcP34cDRs21JkMZvLkyabOmvQo9/irV6+K2ddbtWqValBZehw+fBg1atQA5xxlypTB7du3DZndXIEyWA9I7vuOj49HbGwsXr9+jYiICLx48QJhYWEIDg7G9evXsWvXLqxYsQLVq1dHkSJFxCyimzZtAqDbR5XWcxY936ZNfHw8bt68meEqBNqcOHFCrCy0YcMGA+eOAFK3BXbv3o0+ffogX758Ou9X69SpgylTpuDJkydilmS6LrJORgG02uXUv39/MZjpQ4LYQ0NDcfbsWbRv3x6ffPIJOOdwdXWFt7d3pt+fG9D+nc+ZMwfLly/H69evP+pYQUFBaNu2LTjnaNmyJR4/fpxu2txe7h9LUlISNBoN1q1bJ37PpUuXFhMvZBYAf/z4cZQsWRIqlUo8x9L9yPDQtSEPFMBOEARBEGaE8jIDSP9lnvbD1e7du8XsGsrslL169cKVK1cQEBCAEydOYPbs2SLYZ968eQY/h5yO0pjQ7tzKioulS5eKGeE452jUqBFGjhyJkJAQPH36FJcuXcKCBQuEi4ULFxr2RMyAD3GRGdquJk6cCGdnZ1hbW4NzjhkzZmQrn7kFxce7d+/EZx/rQ3u/77//HnZ2diIQYuXKldnLaC5Any60O1BiY2Oxdu1aqFQq5M2bF3v27MleRnMB5EIeDOUiKipKuOCcY/Xq1dnLaC4iK8+1KfH399eZeb1+/friBXBsbCy2bNlCQexEjmX69OngnKN48eIZBqwpv+egoCD06dNHzNru4eEhOuHpN//h/PnnnzqB6NovxZXPrK2toVKpYGtrCzs7O9ja2qJAgQJwc3NDlSpVMH/+fBw9elQcM617m4+PD6pXry6CT+7cuZNu2tyKEiyoXA/nzp3L0n7KDFh58+bFs2fPsvx9SqCDAr2w0kW5nyjlEh0djfDwcIwbN06sPKA9QL9v3744cOCAzjEy+33TdZF9lLL67bffUKJECXDOUaJECVy8eDFL+23cuBFWVlZwcHAQgwgI46FcZy9evEDNmjXBOUfZsmV12i6EftC+x0dGRsLLywsODg6pJrHQfpZKSkrCy5cvqX4wAso9KTExETExMVi+fDlatmwp+miVer5t27bYunWriXObc5g5c6Yov2PHjmVpHx8fH/Ts2VPsp71SAfHhPH78GNu3b0ejRo3QunVrNGnSBJUrV0aNGjVQq1YtuLu7w83NDWXLlkXRokXh7Ows2nnaf87Ozli5cmWqZ13te9b27dsxffr0NLcRyfeXXbt2wdXVFX/88UeGaZWyS0xMRN26dcE5R79+/aBWq6lcjUBiYiJWr16NPn366AweL1y4MCpVqgQvL68MB+TQdZF9tAcj9+3bN8tB7ClnrH7x4gX27duHJk2agHOOokWLipnGc7sL7Tavdt+E8twZGRmp04eeHomJidi8eTMsLS1RtGhRnDx5EgCVr75Rq9Xw9PQE5xx58uTB1atXAaTfj6T9+VdffSXqcxo0/vHQtZFzoQB2giAIgjATYmJisGPHDixdulR8lvLhSvv/N27ciHr16omH4c8++wz79u1LNZNfTEwMlixZApVKBQ8PD9y7d8+wJ5KDUco3IiICM2fO1An4T+lCu1Eyffp0McuJMov0lStXUrmIjY0Vs+rWrVsXYWFhBjybnM2HuMjqsQDgypUrqF+/vpiBqWLFinj58qV+Mm3GKGX49OlT9OvXT6cz8GOPBSTPblK4cGFx7bRp0+ajZyDILejTRVo8fvwYLVu21AkOpYZ+2pALedC3i5Tl/PLlSwwZMgQqlQrNmzfHkydPsnX83EBWnmtTcvfuXQwfPlzMUN2wYUOxTXuJR+0g9pEjRxrmBAjCAMyePRucc1T4P/bOOqyq7Ovja3MpQQQRAwOFsRWTsbvH7h57bB1bf+qYY41jjd012GN3YHeikpKiiKAoIH3h+/7Be7bnFg0q7M/z3Ee8Z59zz9nrrJ3fvXb58jrbO/LI6/3794eVlRWfwH316hUAIb7NCGPHjuVi9Vq1amH37t04dOgQ/v33Xxw7dgyXL1/GuXPn4OTkhEePHuHx48dwcXFBWFiYRuR7bXZwcXGBvb093xVN+vfFixcAhFhXzsOHD1GnTh3o6enh999/x8ePH5NNf+fOHZQoUQIKhQJNmzbVyEt5HRMcHIxnz55h7Nix6NatG1q0aIGePXti586deP36NQBhC124uLhg2LBhXGArfapVq4bu3bvDzc0Nnz9/TvM1hV9kDOn9/vz5M89La2trHD9+PNnz5OVU27ZtwRgTUb8zkcTERJWyRy52i4+P5++2ZIegoCD8+eeffAykadOmqY4MK0g/8fHx2LRpE/LkyYO8efNix44d3/qWch3q/cDg4GDMmDEDLVq0UFlYWKpUKdSrVw+XL18Wfe5UIpUv3bp14+VKfHx8in1vf39/jBw5UmUuQ7qW6GuknYSEBGzcuFFl5yZdH/lCWj09PSgUChgZGaF69epo37497t+/z3cfkpDb88iRIyhXrhwYYxg+fLjWNLmd8PBwdO3aFYwx9OjRAx8+fEjxHH9/f14/9+zZU2e61PiHsIUm6vnm4uKCrVu3ombNmjyoEWMMefPmRdOmTfHff//Bz88v2WsIv8g8tInYDQwMcO/evVSdL18Q7eLigmbNmvEdQd6/f58l9/yjIw9cMWnSJJ5PKb2zoaGhsLa2BmMMgwcPTtU5grQhBVswNDTkwdZSI16fP38+L8tGjhyZLfeakxG+8WMiBOwCgUAgEOQAIiMjcfToUT5JOHnyZI008obWtm3bePQqxhjGjRsHLy8vjchZEvfv30fevHnBGMPRo0ez9mF+cD5+/IjVq1ejTJkyYIxhypQpGmnktpg/fz6KFi3KbTF//nyVrSLVG8hXr17lA5WXLl3KugfJAaTGFmnh1q1bqFWrFhevV6xYEaGhoQCgsdhAoMnbt28xceJEvp1peuwh94dz587xbc8l8XpYWBgAYY+UyAxbJMe0adPAGEP+/PkREBCQqdfOaQhbfD9khi3kk+Tq9ffhw4dFBI1Ukpp2rToJCQn477//+IShnp4eli1bxo/L6wVJxC5F6Rs3blyWPIdAkNkcP34cCoUC1tbWKtFvpb6bVO48e/YMHTp0gKWlJRevP3z4EIAQeqYXeb6NHz+el+d79uxJ9TVSmviQi3SLFi2KP/74A02bNhVi3WTYsmULt8WaNWtU+tFy4c779+8xc+ZM3o9Oro6/du0a+vTpg+LFi2sIhszMzFCtWjW4uLgAEAItOZ6enujXrx9MTU15PhsaGuKnn37CjBkz4ObmxqPFpWUSUPhF5pGYmIjRo0eDMQZzc3MsWLAg2cXfcjstXboUjDEYGRnhf//7n8ZxQdby9u1b3L59G507d0bJkiV5ZMvbt29rpE1OnCVQ5fPnz6kSJQJJAggpCMyQIUOy+M4EEurv882bN7Fo0SKVIDBSW7dPnz64ffu2hk0TExOFXySDlD9S3dqrVy+d6SR8fHxU2sPt27fnfQ1B+vHw8OBjFIaGhujTpw9+//13zJw5E0uXLsX8+fOxaNEibNmyBZs3b8b69etx6NAhXLhwATdu3EBERARv/8rtJf/78OHDKFu2LAwMDLj9xM50msTFxWH9+vUoWLAgbGxscPToUZ3tfqkN+ujRIxQrVozXEymVO7dv38ahQ4cwevRojB07Fnv37sWdO3d0phck8fjxY6xbtw5FixblOxBIfjNy5Eg4Ojqm6jrCLzIf+bhr37590aJFi3Rf68yZMyhQoACsra35Lgii761JREQEOnbsCMYYFixYkGL62NhYfPnyhc+X9+jRIxvuMvcxZcoUMMZQrFixZBdxyN/pDRs2qATNS2mhuSB5hG/8uAgBu0AgEAgEOYATJ07Azs6Ob5PWvn17ndG5jx49inr16vHO+LRp0xAREZHib1SpUgWMMR7JWnQYNUlISMDatWtRsGBBPngyevRonRMia9euRenSpbkt/vrrL53XlgZKYmJi+Dm7du1SOSb4SlptkRK3bt1C7dq1hXg9nSiVSkybNg1GRkZ84nvZsmUqIpOUSE683rp1ax7JT4gXkiczbKELaaJk1qxZMDQ0RIECBfD27dsMXzenImzx/ZAZtti3bx8YYzhw4IDK9/LI32XLlgVjjEcVF/W3dtLSrlXn6NGjGDt2LIyNjcEYQ//+/fkxdRG7FOFs1qxZKluwCgTfK8+ePUOFChXAGMOSJUu0Rl29cuUK7OzsuA8ULlwYd+/eBSDKnIwib2NOnDiRt0M3bdqkEeUwrbx8+VJFpLt69WqEhITg9evXaN26tRDrqiF/l6WdCRhjWLp0Kd9mXOLFixeYN28eF1U3btwYQUFBADTzcc+ePTA2NubRL4sUKYIaNWpg3LhxaN68OSpWrMhtJLYz10TyCwsLC5QoUQLbt2/XELSlJb+EX2QuERERaNKkCRhjqFKlCp49e6YzrdxOp06dQq1atXh+nz59OjtuN0fy/v173Lx5E8ePH8e+fftw4MAB7Ny5E//88w9WrVqFxYsXY+bMmZg6dSp+++03dOzYEa1atULJkiW5OEuKLrpz504AukWK0lb16t8Lkvjw4QM2b97M+26pySNJjKKvrw9vb++svkWBjAsXLmDmzJkwNjaGiYkJX8RhZGSEefPm4ezZsyrphV+knQEDBoAxhoYNGyIyMlLlmLx+ffLkCYYPH87Lo6ZNm+LMmTMiPzMJV1dXFChQAIwxNG/eHJ6enmm+RkridcYYLC0t0alTJ94+FmJdTYKDg9G+fXswxlCnTh08f/6cH5PvliLRpk0bXkefP39e5VrSPKpSqcT9+/cxceJEGBoa8j67FIShVKlSmD9/vsbvCJIChvTp0wfVq1dXWcBUtGhRjB8/XiPPk+sXCL/IOrTNk6anjxYWFsaFpEOHDs2MW8uRREREYOrUqWAsaRfSp0+f6kwr35FLCt7TunVrlWOCjKNUKnmfu3v37jrTyfU127dvR/HixXnZI68HBOlD+MaPixCwCwQCgUCQA/Dx8eGd9sGDB2us6pQaWW5ubnz7OynyWFxcXLLXTkxMxMOHD5EvXz4wxrBx48Yse46cgJeXF8/f2bNn65zUuHz5Mho0aKAy2S6RXKP41KlT/JwjR45k+v3nJFJri5RQF69XqlRJiNfTgaenp4rQR4qWnhqEeD1zyYgtdCHPe6meMTIygo+PT4avnZMRtvh+yIgt4uPjMXbsWH6+JISQD0bu3buXH1+/fn2m339OIqV2rTbkeR0SEoIdO3bAzMxMI0qiPJ1SqcSLFy+SjT4qEHxvSFFwpfbtqVOnEBgYiJ07d2L8+PEqW8qXLl0abm5u3/qWcxTJidjT2y9wcXFBpUqVeISmVatWcYE1ALx69UqIdbUgL8+liSnGGBwcHDB+/HgsWrQI48ePR61atbhfVK9eHXv37tUYAwkLC1PxLRMTEzRo0ABPnz7ltggPD8ejR4/QvHlzLtgS25knIbfFihUrsHHjRvj6+upMkxqEX2Q+Fy5c4O/4hg0bdKaT973v3r2LHj168PPmzp2bDXeaMwkICMCIESP4bkHp+VhZWcHOzg4XLlzQKMfkdnN0dARjDL/99pvW4wLg9OnTUCgUsLKySnGhrFS/L1++nAfIePnypc70Ul6LPE8b6vkVFBSEBw8eoHPnzrCxsVHxhUqVKmHBggV48OCByjnJRTwWfqEdKQ927doFMzMzlClTRmXxmXoeStEsGWNo0aIFDh8+LN75TMbV1RVWVlZgjKFZs2YqizPTksfJiXTnzp2LxMRE7NmzR4h1k8HX15cvYG3SpAnu3bunscAjMTERffr0AWMMBgYGaNasmcrCA6ltGhMTg6VLl6J+/foa5ZmDgwPs7Oy4LSZNmpStz/kj4Ofnp5JvderUwdChQ+Hj45OmxeTCL7IeeV2cniB4UhtX2vmmffv2mXZvOZHLly/z93jWrFlagxXKg+MtWrQIenp6UCgUWLhwocpxQcZRKpV8VxtdAna5X2zatAklS5aEQqEAYwwjRozQmk6QdoRv/JgIAbtAIBAIBDkEV1dXjBgxArdu3eLfqTeu5s6dyzv5I0eO5KJPXcgHMaXzDh8+nPk3n8Nwc3PD/PnzNaJkyO0xatQoFfGJhK5OiXTu0qVL+QDKjRs3suDucxa6bJFaROT1zMXNzQ1bt25NseyRoy5el0/4CvF6+kmNLdQHHOWTUtIx9Xrmr7/+gp6eHvT09NChQwdER0eLjn4KCFt8P2izRWoHC0NCQjBmzBhePi1evJhHPT569Ci6dOnCj/33339Zcv85CW3t2rQM3CqVSuzatYtH6Fu5cmVW3KZAkG3I3//p06erTN4WL14cjDE+4VG6dGn07t0bb968ydTfFSSRmSJ2Nzc3bj8zMzPMnj2bX19eZ3t5eXGxrpmZmUoEwNyM3BYLFy6ElZUV7ytLEQ2l/9evXx87d+7UEJ2Ehobijz/+4HYsX748Jk+erHVyKyEhAWfPnoWVlRWKFCki+uMy5O++rrZpahF+kTWcPn0aBgYGsLCwwJ07d1T6ERLy/H3y5AkGDhzIfWPgwIHcDqJuSDvBwcE8kqTUPi1evDhKlCiBfPnyoWjRoqhQoQJKlSoFOzs71KpVC7Vr10adOnXw22+/YebMmbh+/brWXbXkdtu3bx8sLCy43UaPHq01XW7HyckJNjY2MDExwYoVK5LdjSkxMRFKpRKDBg0CYwzm5ubw8vLSmk5OWFgY3r59Cy8vL3h7e6v4jbCFbkJDQ3HmzBk0btwYJUuWVGnz/vLLL5g5cybCw8NTzEPhF2kjMDCQ77bRuHFjnD9/HqGhofj06RM8PDwwcOBAFXt06dIF58+fF+L1LMLNzU1FxO7h4ZHuax05coQLuAoUKKAyDxUTE4Nt27ZpFeuKuj4JDw8PWFtbc7H5yJEjcfbsWZw/fx5btmxREaQXKlRIZe5Uah9HR0djyJAhPLIrYwz9+vXDxo0bERUVhdjYWLx8+RIrV67ktli1atU3euLvF1dXVzRo0ABz5sxBUFAQF66n510VfvF9IvU1oqOj8dNPP/HFCvK5EIEma9as4WXLunXrVMY8pN1l4+LicPr0adSrV4+nvXnz5re65RzN8uXLoVAo0LBhQ7x+/Vrrrh0AsGTJElhaWvKyRr6LrJjrzhyEb/x4CAG7QCAQCAQ5CPmAu3qH7ty5c7zx1bZtWzg7O6fqms+ePeODKw0aNMjw9ui5heQi2+/fv5/bYsCAAfj48SOAlAd7b9++DQMDA7HyPI2ktMuALoR4PWtIb7SYzIy8Lga8kpDnQ0YGRT5+/Ah3d3eMHTtWZVJw7dq1mXGbuQJhi+8HXbZIKTIfkBQlrl+/fjzfCxQogCpVqiBv3rz8O/lgpCB55O1auS1SuwgqKCgIPXv25GIHbWJEgeBHQu4Hq1ev5tvSSp+CBQuiT58+OH36tMbOArt371YRmaQGKa2zszOWLl2KDx8+8HZ1bm9L6RKxb968OU39BE9PT9SqVYuLGqtXr47Hjx/z31AX67Zo0YILi9KyIDQnI7fFyZMnMWnSJJibm/NdOEqWLImhQ4fCxcWFT1BJ58THx2PRokXcfjVq1MA///zD6x9tbbLQ0FCULl1aYyG6IPMQfpE1SNGHLSwstO7OIRfk3Lp1C7/++quKUFGKci9IPy9fvuSCxIoVK+LWrVuIiopCSEgIb6fGxsbysgrQLpSS+4C6SFfqd8i3oRfRQzUJCwvjO2hVrVpV545PUj3w7t071KhRA4wxFC5cGB8+fNCaDgDevHmD1atXo379+sifPz/Mzc2hr6+PHj16qOx+IGzxlYSEBISFhWHNmjXo1KmTSvs2X758aNq0KTZv3oyIiAjuE8mNmwi/SB+enp4oVqwYH8soVaoUbGxsULRoURWbTJw4EW5ubjzf0iPoFHmeMpkhYt+1axdvT1lYWGD+/Pn8mNyX5GLd33//PbMeIcfg6emJatWqqfgBY4yXLUZGRrCxscGePXv4OVK/OSoqCt26dYOhoSE/b+XKlQgJCdH4ncjISMycORMKhQKtWrUS7VotqI/rpacsEX7xfSKvU6Tgb8bGxliyZInKccFX5PWvfFH+nDlzVALCxMTEYOPGjWjcuDFPs2jRom9xy7mCs2fP8nm5NWvWqJTlSqUSz58/VwlwyBjDsGHDVNIIMobwjR8XIWAXCAQCgSAHIu/MSQ21GTNmwMjICJaWlti8eXOqOnwBAQEYPHgwTE1NoaenhylTpqRbDCxIskVUVBS6d+8OxhjKli2Ls2fPpupcd3d3LlKxsrLCunXrtEbMEmQOGRWvC4F7xsmKyOvySKRi0Osr8jy8ceMGzp07h9OnT2P//v3Yu3cvdu/ejTVr1mD58uVYuXIl5s2bh3HjxmHs2LHo2bMnypYtC1tbW5Uol1OmTOHXFHmdeoQtvk82bNiA9evXA0g+DxMTE3Hu3DkeSVFadCZ9evXqBW9vbwAiak9akOf5w4cPcezYMY3vdbFp0yae/9euXcuqWxQIsg15PREcHIx79+7h3LlzcHJygqurq0paqZy5fv06zMzMYGxsjH379qWpLnjy5AnfNr1u3bpYunQpb0/l9nJMl4h91apVqcobyQ7h4eE4ceIEWrZsySdppcje6rby8vLCmDFjVARwAs138fXr1/Dw8MDjx481FqDJ027evJnbzcHBAdu3b082kl98fDw+f/4Me3t7MMZUxA6CzEH4Rdbh5+eHsmXLwsDAAFu3blWJai8vzw4ePIiOHTty32jXrh1u3bol+hGZhKurKwoUKMAFia9evQKgKtqRxpMSExNVxpbUbSD///79+7mQrnz58lixYgW2bNkixLrJ8Pr1a9SuXZsvgHnx4gXPb/Uxvc6dO+sUUsl9ac2aNWjTpo1WgaPon+smMjISXbt25XnMGIOtrS0aNmyI69evIyAgQCV9Sn1yCeEXacfLywstW7bUEK2bmJigRYsW2LVrl0r6qKgoPH78GO/evUv1b8jz+v79+3j58qXO47kddRF7WneYXbFiBWxtbaFQKGBkZIQFCxbwY/JyThLrGhkZgTGGqVOnZtoz5BQCAgIwZcoU/Pzzzyq+YWpqigEDBuD06dM8rTR/Gh0djV69evG0xsbG2L9/f7K/899///H00gJOgSYZKSeEX2QdGbFLWFgY3r17h379+iF//vxgjMHS0hJXrlzJxDvMecj7cdOmTVMJqtO6dWu0atUK5cqVUwl0NG7cOPj4+AAQdW5WMXfuXJ7fQ4YMwbJly7Bv3z706NED1atX58dsbGzwv//9j5+XXvG6+nlCBC9840dFCNgFAoFAIMgFhIeHo0KFCmCMoWHDhiqTIbr48OEDli9fziNv/PTTT3j//n123XKOJSQkBDY2NmCMoXPnzqlqBPv7+2PMmDF8kqthw4YaUdtFYzptxMbG4vXr13zLKPVoYxkRr0sdo8+fP8PJyUlsE5wKPnz4ADc3N3z58gWAqj0yK/L6s2fPYG5ujr59+/LvhD1UGTlyJBc/p+ejUChQtWpVlVXq2mzk7OyMc+fOJbtrSG4nu2yhDWELVc6fPw9zc3OYm5unKuJVVFQUqlWrhgYNGuDixYvo3bs3Jk+ejH/++UclXVrEjYIkPD090bx5cxgaGuL58+fJppXq6zt37vD208GDB7WmFfks+NHQ9c4mFwVR2h0ib9682L9/f6rfe0dHR/To0QP58uUDYwx58uRBgwYNePTe3D4pok3E3rNnz1Qv+pb35Xx8fPhCZ2trazx58kTrOVJ7WX6+4Cu6BJ7qfnH+/HnebqpcuTI2bNjAxevJ5evTp0+5iGHhwoWZfPcCQPhFVhEeHs5FVA0bNsSzZ88QFRUFIKndpFQqMX36dL5oiTGGbt264d69e7l+wVJmkxlRdeU2kUeYLleuHFatWsX9QIh1k8fLywslSpTgC/V27tyJt2/fAgA+ffqE+/fvo3379mCMwcDAAA0bNsTdu3f5+fLx9cGDB6uMXTVq1AijR4/G+fPnsXHjRowZM4bbQuzgocnz589haWkJfX19DBo0CFeuXNHYUSil91b4Rebw4cMH3L59G3/++Sfmzp2LZcuW4dmzZyoRoxMTE5GYmIizZ8+CMYZWrVppLDRIiWPHjqFZs2ZgjOF///sfLl++rHJ9QRLyOqNBgwZ84VNquXnzJmbNmgUTExMwxlTGxeV9GaVSiXXr1sHS0hJPnz7NrNvPUcTExCAqKgpHjx7Fnj174OjoCHd3dz6/BHytF2JjYzF69Gg+v2RhYYH//vuPp1N/xyVbeHl5oVChQtDX18f169ez4alyJ8IvMh8p36KiouDh4QEXFxe8fPkST548wY0bN3Dr1i1cv34dx48fx9GjR3HixAls27YNf/75J2bPno369evDzs5OZX5j8+bNyf6mFJFfjEt9ff7ly5ejfPnyOueMZs+erbGAVl6GpYcvX75wvUJut4W8Lfq///1PZRGrNI4kfXr27Im9e/eqnC+fL00Pmzdv5gsDc7stgG/vG4K0IwTsAoFAIBDkAl6/fo0iRYrAwMAAK1asAJC8EPfTp0/YvHkz7zAWKVKEb6cqjyyjCzHIqBtnZ2eYmJjA1NQUhw4dApB8R+LNmzf43//+B2trazDGUKxYMfj6+mqcFx8fj9evX2Pr1q3YunUrnJycRLRpHcTExGDnzp1o3rw5du7cifDwcH4so+J1ifDwcBQpUgSMMUyfPp1HiwOELdQJDg7G7Nmz0bhxY+zevRthYWH8WGaJ152dnVUm4kePHs2PCXskERwcjJ9++gmMMRgaGkJPTw9FixZF3rx5kS9fPhQvXhzFihVDsWLFULZsWVSsWBFVqlRBo0aN0LZtW4wZMwbHjh1TEZVqs5GbmxuPojFp0iQ4OTnxY8IWSWSHLby9vXH58mWMHTsWU6ZMwcGDB1XSC1t8Rb5V8Pz581UEUrro0KED8ufPjzdv3uiclJJ4/Pgxjh49ismTJ2PevHk4ceIEF4YCwhZy3NzceNTb6dOnq9TfutixYwcv+/ft25dsWi8vL9y+fRtLlizB2rVrcenSJZXIvcIWgh8ReZkzYMAAHkHxwIEDaXqnXVxcMHLkSD7YX7hwYT4pktuFjfI83rNnj4bYKi28ePEC9erVA2MM/fr1S7acE2VS+vHx8UHTpk159KU//vgDMTExAJLP19DQUAwdOpT3yx8+fJhdt5yrEX6ReXh7e6NUqVJgjKFGjRoYPHgwNm3ahEGDBvE8lj4jRoyAh4dHhsp4YQ/dZIaIHQD+/fdfHjWufPnyWLt2rcpOElL0UCHW1Y2Hhwf3CzMzM9jY2KBjx46oVKkS/97Q0BBVqlTh47jA1wi7CQkJaNeunYr/LFiwgEfvkwgPD8fatWuhp6cHKysrXLhwIVuf80cgICAA58+fV/kuPe+p8IusQVsQncePH6ssekqtiD0qKgoLFizgY7X6+vooXbo0/vrrL43fEyTtzCstyFixYgV/n5NDXn+Hh4fj33//hZmZGa/jJdR3cpbG3cXuspqktJBcvnB2w4YNvA7R19fHkSNHUrwOAKxatYr71KNHjzLx7gWA8IusJjQ0FAMHDkTp0qVhYWEBU1NTvhugkZER32VFWhioTUSaN29elC5dGtu3b+fX1dYfOXHiBIoWLcp3KsjtYl3589+5cwdr1qxB1apVUaFCBVSuXBl9+vTRuhu8h4cH6tWrB0dHx3TVuxEREVizZg2KFCnCF5sLW3x9/h07dmDQoEHImzcvChUqBFtbW7Rr1w4HDx7kon8JPz8/9O7dG4cOHUqXLU6cOAHGGPLly4cXL15o3Etu5Vv5Rnh4OC5fvozg4GBehom2bcoIAbtAIBAIBDmcxMREvHz5kncO1Vd0qhMSEoL169ejTJkyYIzBysoKO3bsQHx8vEZHMS4uDjExMbh37x6uX7+OBw8eaESBEA2yryQmJuLu3bu8M37ixIlk0/v5+WHq1KkoXrw4X0ggRSORN7r9/PywfPlyHtldWtXbokULrFmzRuX3BUmdammAvEaNGnB0dASQtG1prVq1MixeB5LEK5IAVU9PD7Vr18bKlSv5cWGLr4SGhvLypnr16twely9fzjTxulxsJSaodOPi4sLF5TY2Nrh27Rp8fX3h6+uL0NBQhIaGIigoCBEREYiJiUF4eLjOSRNtA4sJCQnYu3cv9z89PT3UqFEDy5Yt42mELZLISlvcunUL7dq144IJ6SNsoZ3IyEjMnDkTCoUCFStWxK1bt5JNHxQUhJo1a8LExEQjOo88TyMjI7Fhwwbky5ePT5ZIHwcHByxfvlzrebmZyMhIzJkzB4aGhihfvjyuXr2qM62UZ1JEZMaY1sFIiQMHDsDe3h6WlpYqbalGjRqJ+lvwwyNvx/76669ciJXS9uXqkavDwsLg5OTEIyXa2tqmOQJgTkVbX0Fe/759+xbx8fEpliGxsbGYPn06GGOws7NLcyRLQfJINjlx4gTvZ7Rr107rLlDauHjxIt/ZrkqVKhoTjoKUkfuA8Itvg4eHh8riboVCwf82NjZG+fLlVdqhQFJUPSlae2qR+5PUjxeoklER+8OHD7n4R19fH926dePH5NH71MW6I0eOzLRnyCl4e3ujS5cuKFmypEqkRMaSdp9p3749jh07xtPLxdBSu0hfXx9FixbFrl27VK4tbyP4+vri559/hp6ensp4rUCT9ApuhF9kDurizeTS3LlzB4aGhmkWsUdERODdu3dYsmQJ6tSpw20xYcIErfeR2/Hw8MCECRPw4MGDdJ0fHx+PTZs2IU+ePDAxMcHOnTsz9wZzIervp+Qrr1+/Rps2bXg9Ip+P1fZOS98plUoMHDiQL5b18fERPpDFCL/IXBwdHfl7L9ULCoWCz7caGRkhX758MDU1hYWFBQoVKoSCBQuiZMmSqFu3Llq1aoW9e/eqLBTXVgedP3+et6ELFCjAg/LkdrGuel5FRkYiPj4ecXFxGmNWUtnyxx9/gDEGU1PTNO3WCCTV41u3buVzWJaWlsIW/4/68wcGBuLdu3cIDw/nwRMkJLutWbOG98nTagsgKVBDq1atwFjSrh9CxP6V7PaNyMhIbN26FYwx1KpVC7t27UJwcLDWexGoIgTsAoFAIBDkApRKJerXr88j3sq3xpY+QFIDd8GCBbC1teWdv1WrVmlMzIaGhsLZ2RmdO3eGg4ODSqfU2NgYQ4YMSXFgJrcSFRWFn3/+GYwlbTkuNY7VV2C+ePECQ4YM4VG8CxcujP/++08jL8PCwrBw4UKezsDAgA/USxORkyZN4umFLZJ4+fIlChcuzEWbc+bMgYODQ6aI14EkO798+ZKLhKRBeBH5WzsuLi7cHjVr1sS0adNQsGBBXra0atUqw+L1EiVKYM2aNVi9erUQsSeDq6srChQowBcNuLu7q+SN3B/kne3U5l90dDRevXqFQYMG6fQNQRJZYQsXFxe0aNECpqamPCJD4cKFoa+vLyYLk+Ht27do0qQJGEvaCt7FxYUfk8okyQaOjo48L+VbYANf8zM0NBQzZ85UEa1bW1ujbNmyMDc3F7ZIhrdv36Jx48ZgjKFhw4YqtlBvU0mRRxhjaNGihUoeyv/+559/VGxhaWkJa2trGBoa8raUsIXgR0deZ/Tt2xeMMTRp0kRlx6bU4urqigYNGoCxpK22U7MbQm5m165dqF+/Po/UmlLkvqdPn/J6euPGjcmeI0gfLVu25P2D169fA9A9iSTV88HBwWjUqBGPCnfx4kUAwjbpRfjFt+X169dYuHAhmjdvjlKlSqFSpUqoW7cuduzYwXdflPj06RNWrVqFUaNGqexMk1oOHDiAtm3bYs+ePfD29ubfC/slIRext2zZEu7u7mk6f8+ePejVqxcPWjJu3Dh+TF73K5VKbN++nY/dvn37NtOeIafw4cMHXLhwAYMHD0bz5s1Rq1YttG7dGocPH1ZZXCAvtzp27MjztEKFCjh69ChPp6tead++PRhj6NSpU5Y+T25G+EX2Ib3nd+7c4fMRPXv2hJ+fX7LnqdcBz549w/z58/lYyPTp07Psnn9k5IErpHdZqVTi3bt3qTrfy8sLtWrVAmMMgwcPzpJ7FAALFy7k40sLFy7k36fU9pGLf8ePH5/Vt5kjkcok4RffjrFjx/L3uG3btjhz5gzu3LkDJycn3Lp1Cy9evMCzZ8/g7OwMX19f+Pv7IyAggO+QIkebz5w/f57vsiItShdiXe3I26LJiWbluzWmVqgridfz5cvHg+8JW6iiKx+Ts0W/fv3SLZoGksqz1q1bC1ukQFb6BgC8e/cOY8aM4WVhqVKl0LNnT96nFPbQjRCwCwQCgUCQw0lMTERsbCwmTZoExhh+/vlnvHjxQqOB9ODBA3Tt2pV3NAoWLIi1a9ciKChIJd3Dhw/x+++/86jg+vr6fPJXiqKsp6cHfX19zJw5U+U+BEnC5hEjRoAxhjp16uDFixcaAunLly+jWrVqMDc356K2EydOaI2u6+bmxiOvlyxZElOnTsXFixexY8cOjB49mg/8Tp48Obse8YdBPlFobm7OowJUrlwZHz58AJA+8br6u75q1SqUK1eOi+DkomnBV+T2MDEx4Z27Nm3a4NOnTwAyJl5ft24dQkJCAEBsFZwCmbWduTrq+bt8+XKULl2a1yO///57pvxOTiKzbCHl/b59+3iE6cqVK+P06dPw9PTEmTNnMGPGDO4X06ZNy8zHyBH4+PjwBX4NGzbEuXPneNkkIRdM161bly+EUufvv//m6apWrYrff/8dAQEB+PDhA27evImFCxdyW8ybNy8bnu7HwtvbG3Z2dtwWZ8+eVbFFaGgoDhw4wPNYWsCkVCo1yqHdu3erpOvevTueP38OX19fXLhwAbNnz+a2mDNnTjY/qUCQucjbtfPnz9eIEJqW66xbtw6MMZQtW1ZFkChQxcPDg5cxu3fvTtU5Tk5O/Jx169Zl8R3mPj5//gx7e3swxjBo0CDExcXp7GPIF6m1bdsWjCVF4p04caLOOl6QMsIvvg8SExORkJCA169fIzw8nO9EICFN5AYHB/Oxvu7du6cpAv6JEyf4wkOpb799+3aVexAk9fmkBf2tW7fm41HJIc+7169fY+PGjcibNy8YYxgwYAA/Jp+QVyqVOHz4MJydnTP3AXIgsbGxiImJ0RiHldcXkkBLoVCgbNmyKrtsJvduN2/eHIwl7QAifCBzEX7xbZCL2KXx3OHDh6cqwqT6LnUbN27k80p79uzJsnv+0ZHyLTY2FsuWLcO///6r8n1ySLvaGBgYwNPTM0vvM7eRmJiIgIAAVKpUCYwxNG/ePNV57OTkxIP5VK5cme84KOqJtCP84tsgbyONHz+et//lbf+USMlWcvF6tWrVsHr1arRo0UKIddOJtt0aTU1NceDAgWRtoS5eb9CgAQ4dOiSif2cAeT6lxRbaECL2jJNe35Dj5+eHAwcOcD+RdFdSn0NEYteOELALBAKBQJBL8PPz42LOevXqYdWqVXj8+DH27t2L+fPnw9jYmAt0rK2tsW/fPg1h1sWLF1GzZk2YmZnxVYMTJ07E1atX8enTJyQkJODIkSMYM2YMv9aUKVP4+WLAJQlfX18+AVi7dm0sWLAAV65cwd9//83F7dLHxsYGt2/f1nmtuXPngrGkbQX379+vsjXzx48fVaJNi+1pNXFzc+NiToVCgeLFi/OoYlJUpfQidXJev37NhXbGxsaoV68efHx8MnzvORG5PQwNDVGlShUeGTQtiwmePXuGChUqcB/atGmTStSN+Ph4FRG7PBqTKKeSyCoRu5zr16/zBTj58uVD//79NRZNCTJXxN6jRw8wxlCuXDkEBgaqHI+IiMCaNWugp6cHPT09bN26NTNuP0fh7u7O39lSpUqhffv22LlzJxYtWoSRI0fyurtQoUL4448/tNYjFy5c4OkcHBywY8cOja0jY2JisG7dOujp6cHa2ppPXAm+4uHhgRIlSvA2UP369fHHH39g+PDh+OWXX1QGBocNG6bRpgWAe/fu8TrHzs4O8+fPR1RUlEqaqKgorF+/Hnp6erCwsMCZM2ey6QkFgqxBW3sqPW2fV69e8T7h6tWrM+PWciRv3rxB7969YWRkhK5duyYr9pcmLw4fPszbqP/880923Wquwc/Pj+9ws2XLFgDafUD+nTzCbsuWLTUiVAvShvCL74O0lP03btyAkZERGGPo1q1bqkXsHz9+xO7du9GnTx8+5qinp4cZM2ak6z5yMq6urihatCiGDRuW6oih8rxTKpVwdHTkYt25c+cme66YMNdOat/HPXv28HG+/Pnz48iRI6m6xqVLl1CoUCHo6+tj8eLFGb5fgSbCL74NUt5du3YNtra26V7gGhISgm7duvFFBwkJCaKeSIYDBw7AxMQE1tbWKc41SAtyFi9eDCMjI+TJkyfNu34IUsbZ2ZmXOfL2TnLcv38fTZs25cGVRo0apTWQlSB1CL/4dsgFshMnTuRjs5s2bUpXoDA56uL1/fv3IzIyEq9fvxbC6QygTajLGMPJkye1plcXr9evXx93795FYmIifHx8hHA6A+iyxbFjx9J8LSFizzhp9Q1deHh4oFmzZrz8YozBzc0ts283xyAE7AKBQCAQ5CI8PDxQqlQp3kiStmCWIkPnz58fNWrUgKurq8a5p0+fRvHixfmkYeXKlfHkyRO+ZbxcpBUaGooNGzbwtCtWrMi2Z/xR8PDwQOnSpbktpAEqKRKxnZ0dOnfuzMW78u3vJBITE3l0gMaNG/NJLvnAbkhICEaOHAmFQoGWLVumeiIsN+Hq6qoSkfjUqVOZFlHPzc0NDg4OPKp4p06dcPfu3Uy5dk5Fbg97e3ucOHFCq/BQG4mJiXjz5g2KFi3Ky7Y+ffrwhR3yckqpVGLbtm3c58aMGZMVj/NDk1Ui9ri4OJw/f55HpDE3N8e4ceNExz0Z0moLqR6Q1wcxMTHo2rUrGGN8hxT1weOAgAB06dIF+vr66NOnT4YHl3MiXl5eaNKkiUr0BHlbqlixYhgyZAg+fvyocp5kixkzZsDQ0BCGhoaYN28eF6+rT8r6+fmhbt26YgFaMrx69QpNmjRB/vz5wRjj7U6pXC9TpgzGjBnDbaEuSNiwYQOfWBw6dCgXr6unCwwMRJs2bcAYw6JFi7Ln4QSC75wHDx5wMaPo6yXP0aNHeR2+ePFiREdH82Pq9bW3tzeqVKkCxpJ213r+/Pk3ueecTGBgILfHsmXLkk0bHh6Odu3a8Wh8NWrUwKlTp7LpTnM2wi9+HOSRdQ0MDFItYldv2546dQojRozg7bUJEyboTJtbCQkJ4QEVgLQLDMLCwjBlyhTo6+ujVq1aWsd2BRknISEBffr04f1AaTEUkPKCqDlz5vDz9u3bly33m9MQfvH9ItUXkiA0veNJS5cu5XMlWRFMIydx48YNlC1bFoaGhlixYoXGgnxtDB48mLdthT9kPmfOnOGBLZ4+fQpAc4xJXi88fvwYnTp14ovD69aty3fFEYtq0ofwi29LVojYz58/z3crr1GjBhwdHbkuARBi3Ywit4u0iGznzp0a9goPD8fWrVv5WHqjRo1w+/ZtlTlXYYuMIc/znj17grGk3XlTU46p4+XlpbK4QxpHEbZIPan1DXXUdxiaPn0636XI0tISe/fuFXW8DoSAXSAQCASCXIaPjw+GDBnCt82WIt927twZa9eu5VvVyhtgFy9eRMmSJXknPm/evNiwYQOuXr3KOyCAasM3OjoaS5YsgZ6eHipXroz79+9n30P+IPj5+WHs2LGoWbMmTE1NoVAo8NNPP2Hw4ME4deoUwsLCAEAl4kJsbCzi4+MRGRkJIGkS0MjICL///rvO39m0aRO39bVr17L0mX5UXF1d+QR6tWrV4OjoiIiIiAxd09PTEzVr1gRjDHnz5kXHjh1VxOtiklY3cntUr149zfZYtWoVevToAWNjYzDGMHbsWH5MXrYplUps2bIFjDEULlwYjx8/ztTnyAnIhdMtWrTI8ORRXFwcLl68iIoVK/LBk7FjxwrxeipIjy3evn2LwMBAvHnzBhEREdi8eTMYY1i5cqXOc2bMmMFFwGLQXjvv3r3DqlWr0KxZM17OMMbQtGlTrFixgi+6UR+IiouLQ/369XkUfGmwXVd9MGDAADDG0KpVKwBigFEbQUFB2LhxI9q0aYPChQtDX18f1tbW6NWrF44ePcrzWN0WCQkJXJRYokQJvH//Xms6id9//x2MMdSsWRPx8fHCFoJci/TuHz58mE9aSRFERdtWFXl+/PXXX7yuWLduncpiWanc8fHxweDBg/nEbNOmTTNtUa1AlWHDhkFfXx9DhgzB58+fua2kidcvX77g7t27aNq0KRdQVa1aFYcOHeLXEO97+hB+8WOiTcTesWNH3n5KDnmb6f3793yXIcYYli5dmmX3/KMj5VtiYiL+++8/REZGpmqS+9SpU9yvdu/endW3mSvZv38/z+OpU6fy71Oyz8mTJ/l5nTt3zurbzJFIeSz84vsmvW0kaf5j+/btyJs3L/LkyQNnZ+fMvLUcR1hYGMaOHQvGGKpUqZLiLkGPHj3icxW2trYICAgQbdpM5ujRo3wOVZs95Pl97949tG/fngfIqFy5MoKDgwGI8b+MIPzi25OZIvbLly/z8wsVKqQypyFvA8iF06ampiq6BUHKyO1y7do1rhORiI2Nxd69e7ktrK2tceDAAX5cly2MjY3x8uXLrH+AHITcFocPH4avr2+6r+Xr68ttYW5uzttVoo5JPSn5RnK8efMGixYt4gH7ypQpg927d6c6YF9uRAjYBQKBQCDIhURHR+PDhw+4evUq7t+/r9GZkzdeHzx4AAcHBygUCj7JJP+Ym5vj119/5WJreefe1dUV9evXh56eHnbs2CE6/lqIi4tDVFQUXrx4ATc3N40I6fLG8YULFzB06FDUrFkTlStXRteuXTFy5EjY2NigUaNGfIBLQuo0Xrp0iU8ybtu2Lesf6gfFzc0NhQoVAmMMpUuXxsWLF9O9ClaI1zOO3B62tra4du1aivkmP+7r64u1a9dycdWAAQP4MXkZp1QqceLECZUBF4Eqbm5uKFy4MI9yERQUlK7rSOJ1KfK6EK+nndTaIjIyEps3b8ZPP/0Ea2trFChQAD///DPatm0LKysr9O3bl+9MACT5jlTfrFy5EgqFAvr6+rh9+3a2PNePzP3793Hnzh3cvHkTcXFxvN7QVn98+fKFR1Vv27atznSSgO63337jUS4FKfP69Wt4eXnx3WsktNUdCQkJaN++PRhjqFWrFqKjo7Wmk/xi3rx5YIyhYcOGWXPzAsE3QP7Op+ZvCQ8PDxQrVgyMMdjY2MDFxSVrb/QHRl7GSwvEGGMYPXo0Dh48iLi4OPj7++PatWto2LAhChQowCPySO0j0W/IfHbt2sVt8c8//+D169f8mLe3N+bOnYuqVavyCddGjRrhxIkTPI2wScYQfvFjIhexS/ZIT78wJiYGixYtgp6eHqpVqybEiSkwfPhwFC5cGI8ePUpV+k+fPqFEiRJgjGHUqFEAhL9kFlI+jh8/HgqFAmXKlMHNmzdVjuni1q1bfDH6Tz/9hD179qTqPIF2hF/kPORtA0l4yhjDgwcPvuFd/RgEBASgdu3aYCxph96XL1/ycW95UKTXr1/zhfmMMcyYMeNb3XKO5t27d6hcuTKMjY2xdetWrbsqA0kRpevWrcvnLSpWrMgDlQhhYcYRfvHt0SVi37x5c5pE7O7u7mjVqhWfT7K3t+f1f0JCgkp97uXlhebNm/PFglIQOEHqSKns8fb2Rvfu3fnuaJUqVeJz3uq28Pb25gEBxo4dy3egFaSOjNYDclucPXsWpUuX5n14EcQt7aTHHm/fvsXixYv5zsHlypXDzp07VeZkBZoIAbtAIBAIBAKOuogqKCgIw4cPh6mpKV+5bGNjg+nTp2PWrFn47bffeISAtm3b4uPHjwBURdfLli1D1apVU9xeWKCKeodv//790NPTg76+vsoCAun/NjY2OHv2rEqUJgD48OEDhg0bxtMLkW7yuLm5wcjICLa2trh582a6JjSEeD3zcHNzg0KhQM2aNeHl5ZWqc+T5Gx8fj3379vHB4FmzZqV4vti6Sztubm5gjKFZs2aIjo5O8/lCvJ556LKF9O5/+fIFM2fOVKkr8uTJA8YYjIyMwBiDnZ0dnJyceJ0hvfevXr3i0fGtra3Fds3JkN6yfOTIkWCMoXbt2rzdpA1vb29YW1uDMYbx48en9zZzBbpskVJ5PmXKFD5R+PbtW53pAgMDUb16dTDG0Ldv3wzdq0DwrUlP2aVUKhETE4ObN29i3bp1vGwyNzfH0KFDNaIhq/9Gbm/7yic6/ve//6nUz2XLlkWBAgWgUCj4d/nz5+e7ZmXmpBUg2rly5LaoU6cOevbsiW7dusHc3Jy3m/LmzYvffvsN169f5+dl9H2WbJrbhSnf0i8E6UcqQ549ewZvb28A6fOJmzdv8i209+7dm6n3mJMIDAxEmzZtwBjDr7/+muzuA5IdPn/+zBeZ9ezZU+WYIOPExMSgcuXKYIyhTZs2qTrn/v37qFatGvT09KCnp4dBgwZleMfH3Izwix8H9UWx0v8TExNVounLOXDgAIoXLw49PT3Y29sn208XfMXLywvFixcHYwx169bF3r17VQIdnTlzho9FSeXXq1evAAhfyGzCw8PRq1cvMMZQv359ODs78yAVQJKgbdOmTTA2NubBwipXrgwfHx8Awh6ZifCLb48uEfuaNWtSlcdSXfHlyxecO3eO1/9GRkY6FxF6e3tjxowZOHXqVCY+iUCyRWRkJK5cuYK2bdtyW9y6dQuAdlusXLkyxV0QBJmHfH4wKCgIY8aMQb169cBY0s6C8kA+gqxDiNfTjxCwCwQCgUAg0EDqWF68eJELFIoUKYLp06fj+fPnKmkfPHjAt3Pu1auXxjUA8MFkMWGePk6fPs0nb42MjFCvXj3s3bsXO3fuxOzZs/HTTz+BMYYKFSrgxIkTfBvnt2/fYsOGDXx1bf78+eHn5/eNn+b7x8/PD5cuXVKJxpBahHg98wkICIC7uzvPu7SWI+Hh4ZgxYwb09fVRtWpVsWVdBggMDMSXL1/SfJ4Qr2c+ydnin3/+4QPCVatWxe+//w53d3dcu3YN27ZtQ9myZXmd4ejoCH9/fwDA8+fP0aNHD16n16pVi++uIsg81q1bx4WfkiBOWvgntZ0CAwMxceJE5M2bF2ZmZjh27BgA0Y7KbHbu3AnGGMzMzHDp0iUA0FjU8fnzZ6xZswZFihQBY4xvVStsIfgRkd7vFy9eYOfOnVi3bh02b96M1atXY86cOVi4cCH+/PNPjB8/HqNGjcKECRPQp08fNG7cGHXq1IGRkREX9lpaWqJNmzbJtqtevHjBFzHndsGp/Pk3btyIJk2aaOxsVrBgQVSpUoVHI1aPXpXWfoQ8/eXLl7koQtji6/PPmzcPFhYWGrYwMTFB8eLFceDAAZXo7EBSHzu9fbrAwEB069YNT5480biX3Mi39gtB+pDnYUbaQ1LfsH///hrXFSQRGxuLVatWwczMDHZ2djh58mSK+ST1NRQKBW+3CjKP+Ph41KpVSyVAgnoUUbmN7t27hzp16sDY2JgvmJK2nRf9ifQh/OL7JCNleFRUFCIiIrB06VJUqVKFi3qnTp2qNb3cd0Td8RV3d3fY2dnxMQ4bGxs0a9YMtWrVgqWlJW9bNWrUCEeOHMmSMkjYIwlvb2/Y2tqCsaTdM8eMGYMdO3Zg5MiRPDq0FGykefPmyS7ESS/CFkl8D36R25H3+caPHw/GGGbOnJnq8+Xvsp+fH7p16wbGGEqUKIFnz55pPUdbwB9BxpHnpb+/P7eFra2thm5EQr6AR5A1qJdb9+/fx7Bhw3h/W/rY29ujT58+fC5QkDUI8XrGEAJ2gUAgEAgEWomNjeWD8oUKFcLixYt51AupoyJ1Ps+ePcujJ+3bt49fI6Xt5wXJk5iYiKCgILRo0QJ6enowMjLC8OHDNbbb8vf35xGAbGxs0KBBA4wfPx4ODg58i1RLS0ts2bIFgJgkSQtpeW+FeD3rkb+7jx8/xrt371J13vnz53lHfevWrVl1ewItCPF69vL48WNeH1epUgW7du3SmFAPDAzkdUahQoVQvnx5tGrVCgUKFOCRGKysrLQKhQSpIyVBWvv27Xn+qw/w+vn54X//+x9sbGzAWNIW89LCNEHaSckWHTt25LZQF+IGBQVh8+bNKF++PBfRiR2FBD86165dg4GBgYZINC2fcuXKYdq0acnW5c+fP0fPnj1hYmKCp0+fAhBiXfnz+/v74+TJkxg1ahQGDRqECRMm4MSJEwgKCgKg2uZdunQpDAwMsHfv3lTXyfJ0Fy9eRP369WFqasoneIUtvj7/mTNnsHjxYtSqVQutWrXCoEGDsGfPHrx580bjvH379kFfXx979uxJl3B61qxZfGH5ixcvNO4lN5KdfiHn+PHj+PPPP+Hm5sYFDqLNm/VINgwPD+eLajt37gxA5L8u3r9/j19++QWMMdSrV0+jvSr3oYcPH/K2LWMM//33X3bfbq5AyuPu3burjM+qv8PXr1+Hvb0972NXqFCB9+tye9mfUYRffF/I62cvLy88fvwYT548wZ07d3DlyhVcvHgRJ06cwIEDB3DgwAFs27YNf/31FxYvXoyJEyeiYcOGqFGjBhhjXLzer18/rdeXxrfkgjhRf3zF29sbHTp04PNBUn5K/3bt2hUnT55U8ZGEhIQMi6rk4/PCHkl4eHigQoUKvOxRt0X9+vUxa9YsREZG8nMSExMztEOHk5MTli9frnI9wbfzC8FX5Hl79uxZlXI9rXPVT548wc8//wzGGEaMGIHo6Gjxrn8j7t+/j6pVq0KhUGDChAmIj48XtshG1H1n//79mDBhAvT19VWCMxQtWhRz5szBs2fPeDtKaESyBiFezzhCwC4QCAQCgUArDx48QJEiRaBQKNC7d28esU2dxMREvH79mk8+zZ8/P5vvNGfz6tUrWFlZ8a3uoqKiAHwdqJU6/35+fjwSe4kSJXh0REm8vm7dulSLfQWqSJ25hIQEnSvGhXg9e9m8eTMYY7hy5Uqy6eT5bm9vrxLhTXTSM45U/iiVSq07Fgjxevbz33//cWHimDFjNCJ7S/+6ubmhZMmSYIyhZs2aXPSeP39+lC1bFo8fPwYg/CQ9yCN3Ozk5AdBc+BcYGMijLhUoUABTpkzBqlWrsGbNGlSuXJlHg82XL5+Ivp4BpDyLiIjQ2M5UskVQUBCaNWvGBep//vkn9u7di4MHD6Jdu3Z8u2FTU1OsXr1a5boCwY/IpEmT+NaxxsbGsLGxgZ2dHUqXLo2yZcuievXqqFatGmrUqIGmTZuiRYsWaNasGfr27Ys5c+Zg48aNCAoK0lhQK8fZ2Rm//fYbnxC2tLQUYt3/JzV9AvU0ffv25XXC/v37U7yG/Pj58+fRoUMHvpuXEE5/Rb0s15YfUhopT/v06cN3UUmNLdTx8PDg255bWFgIW/w/2eEXch49eoQOHTrwdvDff/+NwMBAAMIWWYk8b1evXs3HqxYtWvQN7+rHwMfHhy+obNy4MW7evKkxCX7z5k0MHTqU5+vAgQO/zc3mYKRyZvXq1TAwMEClSpXw+PFjjfInJiYGBw8eVBmXtbe352OyopzJHIRffH/8/fffqF+/vkpfQ8r71C6gtbCwwKhRozR2RgO+itejoqJQqlQplZ2Axbj7Vz58+IBz585h0KBBaNCgAWxtbdGjRw+sWrUKkZGRKnmlVCrRr18//Prrr+lerO/q6orChQujb9++/DthjyRev36NOXPmoHHjxrCxsYGVlRVatWqFRYsWwcvLi7/TiYmJSEhIwOzZszF27FiNHaBSQ3BwMOrUqQPGGEaPHs2/F7ZIIrv9ws3NDRcvXkx2oVtuQ1v7R/6du7s7EhISUhxzjY6OxsiRI8EYQ9myZRESEpLibycmJqZ7d+fcRkxMDDw8PACknFfR0dHo378/X6iZkQU4gtShXo6Ehobi8OHD6N27N/T09PjYn5mZGWxtbbFt2zY8ePBA5Rz1cS7hG5mDEK9nDkLALhAIBAKBQCsbNmzgg4eXL19ONm1ERASPKNC9e/dsusPcwZkzZ/hKWSmCuno0XaVSicTEREyePBkKhQKjR4/G+fPnMW3aNCxbtgwuLi7f4tZzFFFRUdiyZQtOnDjBO+JSx06I17OXjx8/8igLvXv35tsv6yIxMRHv3r3jIsQePXrw7wUZJyIiAgsWLMChQ4dUBqmEeP3bsHLlSi4WlETo6gPECQkJiIqKQteuXcEYw5IlS/Dw4UNs3boVV69e5QO/YtAq/URGRsLGxgbW1tZcEKXOhw8f0L17d754QP1jbGyMkSNH8t1vBOkjOjoajRo1wk8//aRzEvD9+/fo3Lmzzkl0AwMDtGvXjgsNBYIfnQkTJvD3e9q0aXjz5g3CwsIQGhqKsLAwREVFISoqCnFxcUhMTNToewC621HOzs4YPnw4v760wFaIdbUjr2vV81T+/0GDBvE+YXJiXW3idXnkfGEL3ahH3NNFam2hCy8vL7Ru3VrYIhky2y/UcXd3x+TJk3lkssKFC6Np06Z83ETYQjfq4h4Jqb4AksarpGNysYjEpk2bULJkSejp6aFgwYJ8saYgeTw8PGBtbc0FIj179sTBgwfh6OiIiRMn8h00GWNo06aN2HEjC3nz5g2qVKkCxhgaNWqE//77D56envj48SN27NiB3377TSXqYZMmTXjkdW1tqvQgxrOSEH7x/fD582c0aNAAjDFev1paWqoI083MzJAnTx4UKlQIRYsWRZEiRVCmTBn8/PPPaNu2LdauXYvz58/za8rfc7l4XRLpCqFu6vjy5YvOY76+vjxwUteuXdMs1nVzc0P16tWFPZJByofg4GCEhIRoBEeSjgcGBvL51S5duqTZFgkJCdi+fTu3xdixYzV+Q/CVrPQLLy8vFClSBIwxTJ48GVevXuXHhC20M3HiRNSpU4f/X1c+Sf3Eq1ev8kVSBw8eTDathHpAODHvoUlsbCz69euH5s2bp5hWysejR4/C0NAQCoUixWBjgvSj7hMeHh44fvw4qlSpgsKFC6vMY/zyyy9Ys2aNxpyUtnGWsLAwbNq0Ce7u7gBEG1kXUt7J63B5fgrxeuYhBOwCgUAgEAi0smbNGujp6aFKlSr49OkTEhISNBrJUgMtMDCQR3Lt2bPnt7jdHMu5c+f4lnb//vtvsmmlQSptNhAd8ozx999/Q09PD5UqVYKjoyPCw8MBJHUUhXg9e4mLi8O6detQsGBBlCxZEseOHdP5fkv5f/XqVd6BHz9+fHbebo5n4sSJPKKYo6Mj3yXiwoULqFixohCvZzObNm0CYwwKhQI3btxINu28efOgUCgwa9YsjWOizsgYd+/eRbFixWBpaYlt27ZpCBXkdcOLFy9w9OhRLF26FPny5YOenh709fXRuHFj3L59O7tvPcfx4sULVKlSBcbGxli7dq3OnVQA4Pr16zh48CD+/vtv5MuXD4aGhmCMwdbWFidPnszGuxYIsgb5RMT48eN522jjxo38e3n5pK0dm1zbVl28PmbMGLx8+VKIdTOAvP749ddfeSQlbWLd5MTrs2fPRmhoqIj+nQG02SJv3rxCxP4NSItf6CIsLAznzp1DsWLF+G4RFhYWcHZ2BiD68dpI7v2UH4uJieGRLD9//gx3d3c4Ozvjr7/+Qr9+/fj4FmMMw4cPT9Vvi75JEq9evYKDgwOPZKyvr8/bq9Knffv2uHbtGg90kRnI81/YIglPT0/Y2Njw3U3Mzc35zqTSp0qVKvj999/x8ePHDP+eZEv57qiinEriW/mFQBMXFxe+m1zhwoVx9OhRPHz4EI8ePYKPjw+8vb3h6uqKt2/f4uPHj/zf+Ph4jV0d5fWKXLxeu3Zt7ndSlFEh1NVEVz9BW/7cvn2b+0+3bt1SLdZ1c3ND1apVwRiDlZWVsIcO0moLaQFIWmwhoVQqsW3bNt7OErZQJTv8IjExEY6OjnwxgkKhQM2aNfHXX3/pvI/czu3bt3l9feDAgWTTSnm3f/9+fo42Abu8vXrp0iXMmzcPderUQfv27TFhwgS8evUKgOh/q3Pp0iWer0ePHk02rWSLFStW8HOknWi1kVIfQviFbuR5ExgYiDVr1qBmzZrIly8fz3s9PT38+uuvKuO7gPZ8l64XERGB9evXo3DhwtDX1+djIcIvVJEHMly6dClevnypcjyj4nXhG6oIAbtAIBAIBAKt/P3332CMoVixYnjz5o3GcXmjShIqmJiYwNHRMTtvM8cTHh4OBwcHMMYwYsQIREZGaqSRxFhS5N1q1appTSdIP15eXjA3N+f5e/DgQTx58kRDvH7v3j1+Tm7rWGQn79+/R/v27cEYQ926dVWi4kpR3qQyytPTk0cBsrKy4hHexMRr5uDh4cGjKlWvXh27d+/G8ePHeeT1/PnzY9y4cUK8nk34+vqiYsWK0NPTw+LFi3WKdb98+YIuXbqAMYbOnTsLf8hkwsPDeeS9WrVq8QFA4GvZI03QhoeH4/bt26hXrx6fcK9atSrOnDnzTe49p/HlyxeMHTsWjDE4ODjwqHvA1/pCskVCQgKCgoLQrFkzPgCcP39+7N2791vdvkCQ6cgnIiZNmsTf9U2bNmUoKqizs7NKxNFRo0YhOjoaQJKwSIh104/cLgMGDOB5fOvWLf59cuL1mTNn8mPu7u7CFhlAly3kUfVSixCxZ4zU+EVySPns5+eHevXq8b4+Ywz+/v5Zcs85ha1bt2LgwIHo0qULfvnlF7Rq1Qr16tVDrVq1UKtWLZQvXx6lSpVC2bJleWRkU1NTFTGpvr4+Bg0axK+p7b1/9eoVlixZwv8vxleSCAgIwPz58/kYh5SfRYsWxYQJExAQEKDRt1u7dm2aRXAS8fHxOH/+PBYsWMC/E7ZIwsvLC+3ateO7zUgfc3NzDBkyBE5OTnyBv4Sjo2O6d9iSBF4jR47k3wlbJJHdfqFUKkVERR24urqiQIECPOq9p6enynFdO97oepfl4nUpor6VlRXGjx+PRYsWCaFuBpFscOfOHS7W7d69u87d6yRcXV35ThTW1tZYsWIFVq5cKeyRAdJrC3WEiD3jZNQW0dHR8PDw4LtFSbaQ71Ag+Iqvry+6d+8OAwMD9O3bN1V9sb/++ovX9+q7OcnrlvXr1yNv3rwq7TSp3JJEqGJO5Cuenp7o0KEDDAwMMGjQIK26EEC1LJkyZQrP1+vXryd7/c+fP+PRo0dYunQpFi1ahDlz5uDWrVsIDg4GIGyhi/j4eAQFBWH8+PFo2LChyrtsZ2eHTp06wcnJiY/BArrzUi5eX7t2Lezt7VXmQMS4lHZCQkL4zhzjxo2Dq6srAODdu3dYtGhRhiOvC9/4ihCwCwQCgUAg0IqzszNsbW1hYWGBw4cPqzSQ5JOFq1ev5tHXf/rpJzx48OBb3G6OJTo6GhMmTODC6SdPnqgcl9uicePGXEQqBOyZj5ubGwoWLAjGkramtbW1VRGvi8jr2Ysk1GWMoUmTJrh79y4iIiJU0ri7u+PXX3/lAusqVarwTp8g85D7RunSpVGsWDE+6CEir2cv4eHhXMTz888/ayzukHjx4gUqV64Mxhh69OghBqWyAH9/fz4I2LhxY1y/fp3v3iHh5eWFP//8k5dlxsbGqF27No4fP/6N7jpn4u/vj2rVqvH64vbt2xr1xZs3b7B3716+aFASPOzYseMb3bVAkHXIy3xpJ5WMiNgfP36sIl6fMGGCRl9ELtaVT4rkpkH4jCC3S8eOHVG3bl2tEyInT57kizwZY1i4cCE/Jtld2CJjyG3RpUsXlCtXDs+fP0/Xtby8vNCqVSsuYpeuI9plqSO1fqGO/F0/deoUr/sZY+jQoYNGe03wlbVr13IRTlo/xsbG0NfXR79+/bBu3Tp+TW3vu6+vL4+yO2rUKP69GGdJIj4+HjExMTh//jxOnTqF69eva0SCk/Jq6NCh6Y7kGh8fj6tXr/I+jbCFJqGhoXBzc8OGDRuwceNGnDp1Co8ePVJJI5U5f/zxBxhj6Nq1a7qE0wcOHOD+JASJmmSnX1y4cAFVqlTBX3/9pTLeJWyRhJubGxf5NGvWDB4eHum6jlTPR0ZGqojXJ0yYwIXxQqibceRiXWNjYzDG0Lt3b4SGhmpN7+rqyiOvW1tbY9WqVXj//j0AYY+MIreFkZERGEvaaTkkJCRN1xEi9oyTVr+QUM/fv/76C6VLl+aR9ceNG5dl9/wjc+DAAb6geNmyZYiJieHHpOAjEjdu3EDRokX5fLmuhQX//PMPbzd17doVc+fOxbx581C/fn0wxlCxYsU0LxDJDfz777988fHy5ctVbJGQkKDSlz59+jTP4+bNm6vspiK32efPn3H16lXUqFEDxYsXV+kjFi1aFM2aNYO7uzsAMRaizuXLlzFhwgQ+dyR9KlSogH79+sHNzY2XS8ntKiH/XhKvSwvRFAoF6tSpI4IrpMC4ceNUxr2dnJywdOnSNIvXhW8kjxCwCwQCgUAg0EpoaCg6duwIxhgaNWqE58+fq3RWAKiIrhhjWLNmzTe625yNv7+/ilD34cOHGsKr/v37gzEGIyMjTJkyBYAYkMoK3NzceCQZPT09GBsbo23btnj8+DFPI/I9+/Dw8ECRIkX4oNOwYcNw6dIlHD16FDt37kTZsmX5VmqFChWCi4sLACHQyQrUfcPU1BQjRoyAt7f3t761XIevry/KlCnD64wbN27g06dPAJIGqJ49e8ajNZiZmaW4JaQg/Xh6evJB9dKlS6Nbt27YtWsX/v77b8yZMwfW1tZ8gN7MzAzdunXDpUuXvvVt50g8PT15FNAKFSpg4MCBOHXqFP79919s2rQJNWrU4LYyMTFBrVq1tG5DKxDkFDJLxP7p0ydMnTqVn1+2bFm+4FapVKq0ueTCaT09PT4IL0gdcruoR3QFgODgYAwZMkRlQkuK8hobG6vSR5HbgjGWbmFRbkVui9evX6e7/5eYmIjAwEC0aNECjCVF7RXbNqeNlPxCHXmZdODAAdStW5f7Qd++fYV4PQU8PT354vA8efLAwcEBffr0wYgRIzB48GD89ttvmDZtGmbOnInZs2fj77//xvr167Fr1y48fvw42Ui8Er6+vio7EzHGMGbMGH5cjLcknwfqYx23bt2CoaFhmsW6kni9evXqwhbpRN0WDx484PmYHuG0ECQmT3b4BZC0c0f37t25X3Tu3Bl79uxJ1X3kJjIqYpfyUV28PnnyZB71Ekgqq4RfZBzJR27dugUzMzN06NABfn5+GulcXFxUxOtr165VidCrbg+5WFfYI3XIbWFiYoKKFStqLMZJDaLOyDip9YvkuHPnDg+CZWpqil69eqV7J5aciPxdXLp0Ke+XrV27VuvCjTt37qBDhw7IkycPGGMYMGCA1v7E8ePH+bUWLVqEDx8+8GPOzs6oVKkSzMzMcPr06ax5sB8QuS2WLFmiovkIDAzUSH/u3DlUqVIFenp60NfXx8yZM7UKqB88eIApU6ao7HhmYGCASpUqwc7Ojs8nFi1aVMzdamHy5Mk838zNzWFtbY1FixZpLJhNCV2R1xUKBW7evImIiAiV4ApCxP4V+fsoBZtkjKF+/fr8vS5Xrhx27NiRJvG68A3tCAG7QCAQCAQCnXh7e8PGxgaMJUVynThxIg4ePIg1a9agdevWfPU5YwyzZ8/+1rebo5ELdatUqYIBAwZg9+7dWLx4MZo0acLtYG1tjTNnznzr283RuLq68knbAgUKYP78+fxYbuhAfG94enqiRo0a3AcUCoVGtLdChQrhzp07AISNshK5bxQpUgTLly/n+S0Gx7MXDw8PLtYtU6YMWrRogYULF6JDhw58QZSJiQl69OghRGtZzKtXr9C4cWO+mEZbWWVtbY1169YJW2Qxr169Qt26dXn7VVsEUQsLC0ydOlVlVxWBIKeSWSL2gIAATJgwAT///DMYY7C1tcWNGzcAJLW71IXTDRo0AGMMO3fuFO2yNJJSfgUGBmL27Nk8cnGJEiVw9epVfq7cFt7e3qhbty709fVx5cqVrLztHEl63131NnFYWBimTJnCdzMyNzfHs2fPMuMWcw2ptYU83cGDB1XE6/379xfi9VTi4uLCJ1NbtmwJf3//dF1HW/9QLl63tLREjx49hPAqA8ijh6ZFrKsuXi9YsCCGDx8ubJEBJFvcvn073cJpQAgSM4P0+oVEVFQUDh06hC5duqgEcJgwYQJPI2yRREZF7HFxcShdujQfP2ndujV8fHz4MQnJL6QxFvlCG0HqkXzDy8uLL6iUExgYyHdhVigU6NWrF4/6qs0e2hY+CVKHZAsXFxdcu3YtXddITExEQkKCSp0xYsQIleOClEnJL3QRHx+Py5cv87aUmZkZRo0apbJTqiAJeR9t+vTpvH82ePBg7NixAyEhIXj+/Dl27NiBChUq8Ojg8l3Ipfc5ISEB8fHxfKeVYcOG4cuXL/z6iYmJCAsL4ztwLViwIHsf9jtHbotp06ZxW/Tu3Rvr1q2Dp6cnzp49i2XLlsHExISX882bN0d0dDQA1XHGc+fOoVWrVtxmZcuWxaBBg/DgwQOEhobiw4cPOH36NJo3bw7GGKpWrSqi4mthxIgRKFSoEDZu3Khzp6fkSE68Lq9jXr16xQNdCBG7KvI8kIvYGWMoVaoUdu/erRF0Uh15vSt8QzdCwC4QCAQCgSBZPDw8UK5cORXBlYGBAV8NyJjq1uSCrMPDwwOVK1dWsYU02G5oaIiiRYti586d3/o2cwWurq580rZGjRrYt2+fmPD+hgQEBGD69OlcOCV9ypQpg3bt2vEo4GJwNuuR+0b16tWFb3xDPD098fPPP/OoJHKxrpmZGXr27MkFhoKsJSgoCLt370avXr1gb28Pc3NzlC9fHl27dsWiRYvStYW8IH0EBgZi/fr16NChA2xsbGBgYIBChQqhSZMm+O233+Dq6qqy5alAkNORD8JPmjSJ1xP//vtvms6Pjo7GvXv3+A5exsbGfPGgevvL398fZ8+eVYmCJcg4ki1iYmLw5MkTdO7cmdtCWpSjbovXr1/j8ePHotzLBrRF4l27di1Kly4NIyMjlfGV//3vf9/oLnMuyUVe//XXX0V/JY24urpyUWLjxo25KFGpVPJyRv53avrh6uL1JUuWwN/fH7t27RJi3QwgF+tKZUy7du1UIubKURevFypUCI6OjggPD8f27duFLTKANlt06NBBiNi/AWn1C20kJiZi1qxZKFiwILfF4MGDs+qWf1jkIvYWLVqkWcS+cOFCtGvXDsbGxlAoFJg8eTI/Jl9wq1QqsXXrVl63X758OdOeITehXoao/3/FihXo1q0bDwogL3902cPKygoPHjzI2hvPgaRki9SeGxAQgBEjRvByatCgQZl2j7mFtNpCaktVq1YNjDHky5cPI0eOFOL1ZJCPS82aNUtlHsPa2hp58+ZVmfOrXr06X9CkHnwhNDQUpUqVAmMMu3fv1vobzZs3h4GBAfbv35/FT/bjIc+n2bNnQ19fny8Qs7Ky0gge1rhxYy5el48rHT16FDVr1uRjHfXq1cP58+fx8eNHAF/tlpCQgEePHqFSpUrImzcvtm/fDkC0aQFVW0iLNSTSmj/h4eFYtmwZD2xlYGDAAyfIfUi+W2OBAgXw/PnzdP1eTkRuj3HjxnEfaNmyJe7du8ePacsr+XfCN5JHCNgFAoFAIBCkiL+/P6ZPn4769evDwMAA+fLlg7W1NQYNGoQDBw5869vLVfj7+2Py5Ml8+0wpSlvv3r1x/Pjxb317uQr5IHzNmjWxY8cOjY6kIPuIi4vDly9fcPjwYezbtw87d+6Ep6cnFyOICJ/Zh9w3qlWrhr179yIqKupb31au5M2bN1i6dCmaNm0KMzMzFClSBKVLl8bGjRvTtQWtIONERUUhODhYo74QZVT28/79e/j6+vKtUCUbCFsIchvyQfjx48eDMYbbt2+n61p+fn7o1KkTGGOoXLky3NzctKbL6QPu3wN+fn58QUGNGjXw6tWrb31LAgB3797FwoULUbBgQT4RL0UumzBhAg4ePPitbzHHIcTrWUNGI+vK8fX15XaxtLTEn3/+ibdv3wJIst/WrVuFWDcDyMW68oVq6m1edcFVoUKFsGfPHt6XlwSJwhbpR5stVq9erRK9ODUIEXvGSa1faEPedh4zZgzfiZAxhhMnTmTZPf+ouLm5oVChQmAsaYfftCwUAJKCM6xcuZJHqfz111/5MbktlEolHB0dsXz58ky7d0ES8nLFx8cH//zzD2/HDhgwgB9Tt8fx48exd+/ebL3X3IyU//Hx8YiMjMTKlSvRunVrHgBL+qQ3qrsgZYR4Pf3Iy4+tW7eibdu2Ku+tFOm4Y8eOCAsLA6C9zRMSEoKSJUtCT08PR44cAaDaH1y9ejUXyIvFNdqR22LXrl3o1q2bhi1q1qyJ0aNHIyYmBoCqeP306dOoWrUqL3tatmyJoKAgnb8XERGBFi1agDGGHj16ZN2D/YDI392MzFe8fv0aHTt25H2H+vXr4927dwBUF54DSSL2X375hds6t0T+Tg3axs+lsbzUzLUK30gZIWAXCAQCgUCQKuLi4hAXF4eHDx/i5cuXCAwM5J0TQAyQZycxMTH48uULzp8/j0uXLuHVq1f49OnTt76tXImbmxusra3BGEPTpk1T3CZK8G0Q5VP24+bmhoIFC4Ixhr59+4rFHd+QhIQEJCYm4sWLF/D39xcRb78RuiL2CLF09qOrThC2EORm5IPwfn5+AFR9RalUpnpr2kuXLsHOzg558+bFX3/9BUD4V2YSExOjEWVMG4mJiTh9+jSsra1hYWGBjRs3AhC2yA7Uo05//PgR7u7u6Nu3LypUqKAy8VuuXDmMHz9eY9GI2KY5cxDi9awlM0TsXl5efCc1c3NzLFu2jEcfk1AX644ePTqzHiHXIPnC3bt3MWvWLA1bKZVKXLx4EZUqVQJjDPnz5+cBS+R+pG6LUaNGZd9D5BDkthgwYEC6d0WLj4/X6Reirk8dKflFcnz+/BmHDh3iIkUzMzPMnj2b7wApUMXNzQ0KhQLly5dPdR7J+yJxcXHYv38/F01PnTo1xfNFWypzkdsjPj4e+/bt4/aYOXNmiueLcilrUB/fev/+PebMmcMFb1IdUbJkSTRq1AiXLl3i0ZIFmYsQr2ccebkdEhKCK1euYN68eZgyZQpWr16N27dv80V/2sr4xMREfP78Ga1atQJjDOPGjVPpV6xfvx758+cHY0wsdkoBeZn95csX3L17Fxs2bMCqVavw77//IiAgQGXRjMTNmzfRuHFjHl26TZs2yY5fSWXYhAkTeJ9SBMLKGoKDg7F27VrUr1+f9/euX78OIMkO6iL2+vXro3Hjxny3A0ES8rJHem+lBcXu7u46zxO+kTqEgF0gEAgEAkGq0Lb1rxh4+n4Qtvh2vHjxAuXLl4erq+u3vhWB4LvC1dUVLVq0EBN43xht9bdY1CEQCAQCddQnAOX1x/Pnz7moJ6V+R2RkJJo2bQrGGGrVqpVsetGHSRuRkZE4f/48fH19AaScf1FRUXznrkaNGmXDHQrkNomOjsaVK1fQsWNH2NnZqQjXGzRogNGjR+Pdu3cpikik40KIlTaEeD17UBexe3p6pvrcxMRErF+/HowxGBsbw8zMDFOmTOHH5ZH8lEoltm/fzm24aNGiTH2O3IDkE/J8lVAqldiwYQNMTExgbGwMc3NzzJo1ix+XRwhXt8XatWuz/uZzGJItvnz5kq7z5f35f/75RyzuyADJ+YUuvnz5gv3796NKlSpgjMHU1BR//PEHXwQq0E5AQABevnypdYwqNURGRmLBggUwMDBA2bJlcefOnay4zVxLWu0RERGBmTNnwsDAAPb29nB2ds6iOxNoQ71fcPPmTSxatAg2NjYqfQ5LS0v07t0bV65c0VggKMg8hHg980hNWZTSOMiePXu4D3Tt2hUDBw5Enz59+HejRo3iYyoC3aSmvpYfe/PmDYYPH448efKAMYZWrVrx48mNZQQHB/MFzZ07d86kuxfIkXwmPj4eLi4uPKp+3rx5cf/+fQDaF0RJu9YKVNEmYjczM8Phw4e1phe+kXr0SCAQCAQCgSAVMMZU/iUi0tMTTYnvBWGLb0flypXp+fPnVKFCBUpISPjWtyMQfDdUqFCBzp07R3Z2dt/6VnI12upv+d8CgUAgEBARKRQKlf9LdcWjR4+oU6dONGvWLCJKvt+hVCrJxMSEmjZtSgqFgt68eUOvX7/WmhYAv9anT5/I3d2dwsPDKTw8nIiIEhMTM/xMOYnExEQ6e/Ys9evXj+bPn09EydsiPj6e8uTJQw4ODqRQKOj9+/f06dOnFH8HQLL/F2hHel8lm2zatIlGjBhBLVq0oFOnTpGvry/ly5ePqlWrRitXrqRDhw7RunXrqEiRImRkZKTzuvfv36eOHTvS8+fPSaFQiP5mMsjf74SEBG6LgwcP0po1a+jevXtERNS/f39av349mZmZpfrawi90U758ebp58yYVKFCArl69SqNGjSI3N7dUncsYo9GjR9O1a9do3LhxpFQqacWKFTRgwAAiIjI0NCSlUklESXXUwIEDacuWLVS5cmUyMDDIsmfKqUg+YWhoqHFMoVDQqFGj6PLlyzRp0iSKj4+nxYsX06+//kpERAYGBrz8kWyxefNmatGiBRUsWDD7HiKHINnC1NSUiFJfpkg2kNpox44dI29vbzIxMSF9fX3auHEjjRkzJgvuOOeSnF9oIzIykk6dOkVLly6lFy9ekImJCU2ePJmGDh1KJUuWzMpb/eEpXrw4VapUiRhjlJiYyN9jNzc3CgwMTPF8ExMTatKkCTHG6NWrV3T37t0UzxH9idQj2eP58+cUFBSUYvq8efNSkyZNSKlU0suXL3k7S5A9SH13Jycnmj17NrVt25YWLVpEAQEBZGxsTHny5KHZs2fTv//+S/v376dmzZqRpaUlr2+01TuifZs+lEol3bp1iyZOnEjOzs5kZmZGffv2pTFjxlDlypW/9e39cKjPWSQmJmq8t7rGQaTjv/76K/3zzz/EGKNTp07Rnj176MCBA0RENG/ePJo0aRKVKlWKiEhn/zouLi7Z47kB9TklbWWEVKcTEd27d48OHDhAMTEx1KBBAzp48CAxxighIUFjvJHoa96+f/+etwOKFi2aJc+S25F8Rl9fnypWrEh//fUX/fLLLxQZGUlTp04lf39/Dd8rVKgQWVtbf4vb/e6Rj82tWrWKpk+fTu3bt6eOHTuqpBO+kXb0v/UNCAQCgUAgEAgEPzr6+knNam2dDYEgNyP5hkAgEAgEgh+Tly9fkp+fH0VGRtLly5epRYsWOtNK9b6HhwclJCRQTEyMzkVTjDGKjo6mmTNn0vXr1+nZs2dUrlw5srW1pZUrV1L58uV1DubnVt6/f0+hoaF07do1un79OjVu3FhnWgMDAwJAXl5elJCQQF++fEmVKIExRgA0JisTExPFomk15Hmip6dH7969o6NHj9LZs2fp3LlzPO8KFSpEhQsXpoULF1K5cuWoXLly/BryvFbnyZMnNGPGDLp+/TrVr1+f7ty5Q/b29sIvtLB27Vpyc3OjMWPGUKVKlXj+ZIZ4nUj4RUqUL1+ebt26RY0aNSInJyfas2cPLV68OMVFs1L+NWrUiKpUqUL29vY0ZswY+vfff8nExIQ2bdpE+vr6PO8VCgUNGTKEGjZsqOJHgowj2aJu3bpUuXJlqlSpEo0cOZIcHR0pX758tH79elIoFCq2GDp0KLVp04ZKlCjxrW//hyc5X5GXPQqFgmJiYujo0aN0+fJl2rVrF+nr65NSqSRzc3MyNDSkhg0bZtdt5zrk4vXnz5+TiYkJTZo0iYYMGSLE62lEqjtPnjxJo0ePpm3btqVKmNOwYUNycHCgu3fv0unTp2n8+PG8TNL1OwDoy5cvlCdPHt5XSa79lZvZu3cvDRw4kC5cuEBFihTRmU7Kv5YtW1LVqlXJ2dmZrl69SsOHD09V2wiAymJmQfJI+S39+/79e/L396dly5bRo0ePKCAggKctX7489ejRgzp27Eg1a9bk30v9B/W27PXr18nNzY1Gjhyp0d4VfM03ABQfH6+x2CkzxevCL7Qjz4+U3k1JTK2np0djx44lW1tbevnyJT18+JAqVqxIjRs3pubNmxMRqbRpJdzd3en9+/d08uRJevv2LU2fPp2qV6+eNQ/2A6Ir//X09Oj9+/c0ZcoUioiIoEqVKtGyZcvIwsKCAGitoxMTE0mhUFB0dDSNGzeOAgMDydramoYNG5bVj5GjCQ0NJXNz8xTHi2xsbKh379508+ZN8vDwoOfPn1PJkiVFHZAGJBG7QqGgJUuW8L/l43XCN9KOUBMIBAKBQCAQCAQZRHTqBAKBQCAQCAQ5kerVq1Pjxo3pxo0bdPz4capatarWaKvywfp3794RUZKIWldEyxcvXtCsWbPo9OnTfND+zZs35OHhQY8fP6Zr165RhQoVxATK/6Onp0e1atWiOnXq0P379+n48eNkb29PlpaWGmmlSVs/Pz8KCQkhIiILCwuNiMXqApNr167RlStX6NatW6Svr0/58uWjNm3acIGiEE6rIuXd06dP6dmzZ7RgwQIKDQ2liIgI0tPTo8TEROrVqxd16dKFWrRooWIr6b1OTrw+fvx4unfvHhkaGlJkZCQ1atSIbt68SZUrVxa2kHHr1i36/fffiSipzBk7diyVKVOGDh8+nC7xuvCL9FGuXDlycnKiBQsWcEFhSsjz2cLCgvr27UuxsbE0fvx42r59O1WtWpVGjRqlsROkJF4XCwgyD3k+mpmZUa9evSgiIoImTpxIu3btoho1atDQoUM1bCGJ10Vdnfmo1xNeXl7k6elJf/75J3l6elJoaCgRJYnnGjRoQL1796ZWrVpR6dKlv+Vt51h0iddF5PX08+XLF9q1axcFBgbSmjVrqEaNGlSoUCGd6ZVKJTHGKCoqioiSouNKi5zkSL7j5uZGV69epePHj1NwcDCVLVuWGjZsSOPGjRNCXS18/vyZNmzYQERE27Zto+rVq5OVlZXWtJJI9MOHD7wsio2N5cfUUa+vtbWBhT20I8+XT58+0f3792n58uXk4+OjstNZq1atqEaNGjR16lSysLDQyEuprSq/3r1792jNmjV0/PhxevLkCW3ZskX4hhoKhYJiY2Np1apVVLp0aWrTpg3lzZuXiDIuXhd+kTVI/XA9PT1q164dtWvXTuW4lKfx8fEUEhJCz549o6tXr9LLly/p9u3bFBMTw6Mfu7q60o0bN8jc3FzYQQdSXl+6dImCg4PJ2NiYunTpQvb29kSkvU6QFmrExcXR3Llz6cGDB6RQKKhBgwYqi9l09fWEX2jn9evXdOnSJWrXrh0VKVIk2b6yvr4+tW3blgoWLEi+vr60d+9e6tChg858FbbQjvoCb7koPSt9IycjBOwCgUAgEAgEAoFAIBAIBAKBQCDQoFq1atS/f3+6efMmbdiwgUqXLk2jRo0iIyMjIvq6tak0SD9v3jy6evUqERENHDhQZctZaQD/48ePNGPGDDp37hzly5ePtm7dSgULFqSwsDBas2YNXbt2jcaOHUuHDh2iAgUKZPMTf7/8/PPPNGjQIC42sLW1pREjRnBbxMfHk4GBAZ9Y+vvvv+nZs2dERDR48GAV4a5cdHv69Gm6cOECrV+/XuM3z58/T2XKlKH9+/dThQoVhGBURmxsLE2bNo1OnDhBnz9/pvDwcGKMkaGhIY0dO5Zq1apFPXv25OnleZfcJJ+6eL1169YUHh5OV69epYYNGwoRuxoNGjSgUaNG0caNG2nt2rWkp6dHxYsXp6NHj6ZZvC78ImNUqlSJ9u/fz/NCEhVKO27kyZMn2fMVCgW1bNmSGjVqRBcvXqTbt2/TqFGjdKaX53lunzxPLQAoMjKSi690oVAoqEWLFlSzZk26ffs23bt3j4YOHaozvcj7zEX+Pvv7+9Ply5dp5cqVFBwcTB8/fuTp+vTpQw4ODjRx4kSNc9XLJeEj6UebeH3y5Mki8noGyZMnD3Xs2JHu3r1LL168oKtXr1L37t21tm0AkL6+Prm6upKHhwcREe9jqL/XjDG6e/cujRs3jlxdXSkmJoaIiJ4/f05HjhwhHx8fWrVqlfAHNUxNTWnAgAHk4+ND9+7do5s3b1KnTp10Ctb09PTI29ubL1wuXLgwEWnaQ0oLgNzc3Oj27dvk6elJnz59okaNGlG5cuWodu3aQjithnoZvmrVKrp58yYdP36cf2dubk7VqlWjPn36UJ8+fXg7NzExUacwTvr+7t27tGrVKn69bdu2kZGREa1du1bYQo05c+bQ8uXLyd7enuLi4qhLly6UJ08eunnzJk2aNCld4nXhF1kLY0yjr/zp0ydSKpV0/fp1evnyJV27do2ePXtG4eHhRJRUJ5UoUYLvDNWhQwciSlpkK9CNVE5dv36doqOjKW/evNS/f3+dfQ35AoJt27bR6dOnKTo6mgwNDem3337jdYl07Q8fPpCLiwv5+flRxYoVqXjx4mRtbS3GQtSIjo6m3bt309y5c2nixIm0YsWKZMcnEhISqECBAlS6dGny9fWlsLAwUiqVOnfTFrbQjbx8Vl/sTZQ1vqGrXsgR41IQCAQCgUAgEAgEAoFAIBAIBAKBQEZiYiL/e+HChWCMgTGGv//+G97e3hrp58+fz9P89NNPOHbsmNbrDhs2DIwxFCpUCE+fPlU5dvHiRRQsWBC2trbw8/PLzMf5oZHbYsGCBTyfly1bBjc3N5W0nz9/xvjx43maBg0a4N69e/y4Uqnkf//555+oWLEiT1uiRAk4ODhg/PjxaNOmDSpUqADGGIoWLcp/R34vuZ2BAwfyvLO3t8fw4cPx8OFDlTTy/E6Jx48fo0GDBlAoFMiTJw9+/fVXfPr0CcHBwWjVqhUYY7CwsMCLFy/SfO2ciPz5J0yYwG1RrFgx/veAAQPw+fPnNF1L+EXmIOXJxYsXsWDBAgBAQkJCiuctXrwYjDEYGBjgyZMnGfptgSo7d+7E6tWrAaTOFjNmzABjDKampvDw8Mjq28v1SO9tdHQ0QkNDMXnyZDRq1IiXRVL51qVLFxw7dkzFhvIyTP7+Ozs7a/1ekERKfvDlyxfs378fVatW5b4wZ84c0UbNJEJCQtC1a1cwxlC7dm2V91VCem+DgoIwbNgwGBgYQF9fH0uXLgWgacP79++jVKlSYIyhVq1amDBhArZs2YLff/8denp6vC8j0CQ4OBgdOnQAYwx16tTh7U3gqx2k/Pb19UWzZs3AGIOlpSUOHTqkclwiPj4eb968Qffu3VGuXDmV8owxBltbW8yfP1/jdwRAYGAgJk2ahF9++UUlz0qWLIk6dergypUr8Pf3VzlHV/7Jv79z5w569OjBr9e1a1fuG2PHjk3xWrkNDw8PWFpagjGG6tWrY8+ePThz5gyqV68Oxhjy5cuHkSNHqvhLSgi/yFy01eWRkZEICQnB7t27sXDhQvz888+wsbFRyWcHBwcMGDAAO3bsgLOzMz58+KD1uiL/U6Z169a8PAGAuLg4jTRSfsbHx2PXrl1wcHDgttixY4dK2o8fP+LEiRP46aefkCdPHjDGULBgQVSvXh0uLi4q1xMk9R1mzZoFxhhq1qyJBw8epHhOQEAAypQpA8YYWrVqpTM/hS0yRmb6hrZ8/vDhg8Z4149sDyFgFwgEAoFAIBAIBAKBQCAQCAQCgQbyge+pU6fyQfRmzZph5syZ+O+///Dnn3+iW7du/JixsTHmzZun9XrPnz9HwYIFYWBggEuXLvHfkCYFnz9/DjMzMzDG+HFBEnJbTJs2jef3zz//jHHjxmHdunUYOXIkmjZtqrKQYNOmTfy8+Ph4/veYMWNUJnD79euHs2fPIjIyEkDSJNjDhw/RvHlzMMbQtGlTvH//Pvse+DtGfXHHqFGjEBISgqioKI3jqUUSr+vr6yNPnjzo378/n0RPTEyEl5cXn/wSIvavyJ//999/V3mnO3TowN/n5Gwiv4bwi8zl8ePHYIwhb968ePPmTbJpJRtt3rwZjDHkyZMHN2/e1JpWKg/fvXuHu3fvYtmyZdi3bx+cnJw0ridI4sKFC3zxWGBgYLJppbz7888/uf2SE2alRjAn0I66wMDZ2Rnjx4/nwjjpU6lSJXTp0gUuLi4aAis58jw/efIkqlWrhmHDhmk9ntuRl/137txBREQEgK95pE28/scff6RavC78InX4+fnB3t4ejDE0adIEDx8+5HWu5B9v377F/PnzUbJkSV6O+fj4aFzr7du3vK3Uvn17PHr0iOd3ZGQk/vjjD+jr66Nbt27Z94A/GL6+vnwRX5MmTXDv3j18+fJFJY2Pjw+GDBkCKysrMMZQvnx5vH37VuNagYGB2LZtGypXrgzGGBdJV6xYEQ4ODihWrBgUCgUYY5g4cWJ2PeIPg5+fH4oWLQrGGIyMjJAvXz4MGjQIly9f1hCrJVeuqIvXe/bsyeuWBQsWIC4uDtu2bRMi9mRwc3NDwYIFwRhDmTJleFmUHvG68IusISoqCkFBQdi3bx8WLFiAKlWqcP+R8tjBwQHdu3eHo6MjHj58iNjYWJVrqC/UEaSMUqlEQkIC6tSpA8aYzvpVanPFxsZi06ZNqFWrFi+H/vzzT5W0wcHB+Ouvv1CgQAEwxlC2bFnY2NjA1tYWjDEUKVJELKzVwvXr13l76n//+x/CwsK0ppNsIQUPYYyhd+/eWst7YYv0k9m+IY3lxsXFISwsDIsWLULPnj1hZWUFW1tbNGnSBHPnzoWvr6/KdX80hIBdIBAIBAKBQCAQCAQCgUAgEAgEWpEPfM+fPx8WFhbQ19fnk+lygZW1tTVmz57N06tP/l28eJFHjgsICACQNFEo/YaTkxMKFCiAcuXK4d27d9nwdD8WclssWLAAhQoV4hPcBgYGKraoWbMm1q1bx9PLJ2gHDx7MJ3ONjY1VbAZ8nRxJTEzEuXPnUKRIERQvXlwlkntuR9uEUHpFHo8fP0aVKlWgr68PAwMDdOnShR+TR2iSi9gLFiyIZ8+epev3chpyW4wbN477wIgRI+Du7p7qc4VfZD7Xrl2DnZ0djI2NsXjxYi5K1IZki9WrV/M65vTp0xrppHrl0aNHaNSoEZ94Z4zB3NwcU6dO5WmF8OorFy5cQMmSJZE3b16sXLkS0dHROtNK7/qUKVNgYGAAU1NTnZH85PV8YmIi3Nzc4OvrCy8vL8TExKgcE3xFvX107NgxTJ8+HcbGxlxoZWxsjCJFimDGjBl49OgRz8/UCKNPnjyJNm3acN8YM2aM1nQCoEWLFqhUqRIcHR0RHh4OAIiIiMC+ffvSHXld+EXa8PT0RJEiRcAYQ9WqVTFlyhQ8ePAADx48wJUrV/DLL7/w3VXy5cuHU6dOAdCMjnv9+nVYWlqiZMmSuHz5Mj8u/btjxw7eX/n06VP2P+gPgoeHB7dHpUqVMHLkSDg5OeH06dPYt28fKleuDHNzc76oUtotRd6m8vb2xqRJk1CiRAmernXr1jhw4AD3sxcvXmD16tW8zFu1atW3eNzvmhcvXqBw4cKYPXs2f+8l0iqyvXv3Lrp3787rhXnz5nHfiY+P1yliF2LeJNzc3LiIU09PD3ny5MHQoUPTJN4UfpG53Lt3D4cOHcLcuXNRu3ZtlV24GGOoV68eunXrhgMHDsDJyUnjXZbKLFEXZ5wlS5aAsaSdT/z9/Xmeysf6oqOjMW/ePFSpUoXbaObMmVxoLaVzdHTkux4MHToUnz9/xrt37/Do0SM0btwYjDEMHjwY0dHRwnZqrF27luft2rVreYAFICl/pfwKCQnhi2iKFCmC69evA9BcxCFskXEywzekvnloaCiWL1+OJk2agDHGx4Lln3Llyv3QkfGFgF0gEAgEAoFAIBAIBAKBQCAQCAQ6kQsSDh8+jBEjRnCxrTRQPnDgQOzevVvrORL37t1Dnjx5YGNjg5cvX6oci4+P5+LcX375RWfEoNyOPF9PnDiBiRMnwtTUFCYmJjAyMoKpqSmmT5+Oixcv8nRy8frIkSP5ZEfx4sXxzz//8GPaJjjevHmD4sWL8yh9gq/IJ+kyMmHn5uaGNm3awNraGowx1KlThwuv5TsUAEki9nbt2vEFJGFhYWKyEKp+MX78eF4ujR8/XqOskZC/78IvsoaIiAhMnDgRjDHY29vj1q1bWtNJ7/CbN29Qrlw5HuEtKChIa7q7d+8ib968YIyhVKlScHBwQO3atfkk7owZM7L2wX5AwsLC+A4DVatW1bnwQnrffXx8+OKAatWqJSt4//LlC/73v/+hU6dOMDY2Rv78+WFiYoKuXbtiw4YNPJ0oq1QJDQ3FuXPnMHDgQBgZGfE2Vd68eVGiRAls3LgRd+7cUTlHlxBBXbwutacYY3xBiIiqq0lgYCAX4latWhWHDh3Cu3fvcPjwYS4iSat4XUL4Rdrw9PTkkUMZYzA0NISRkZGKOMfMzAx79uxRWdwHfM3D6dOngzGGli1b8mNyn9m6dSsYS9q9SC7qEmji6empshOEZAe5PSwsLHD16lUAqsI4Dw8PDBkyBIUKFeLiuJUrV3Khr1y8FRkZiVmzZkFfXx+tW7cWCwu0oL74Lz2CtGvXrqFz584aUV3lu3MplUqdInZBEq6urlzMWbhwYSxdulRjoYwuhF9kPsuXL1cRblapUgV9+/bFvn37cPv2bQDQiLIOJLW/gK/v/48aqfh74uzZs8ifPz8YY/jnn39UdomIi4vD27dv0alTJ74IROpDf/z4UeU6r1+/5n3s0aNHa7SR1q9fD8YYGjRoINpPMuTlz5w5c1Ty+OHDh/xYWFgYHj9+zNtbefPmRb9+/bTulCZskTlk1Dek8undu3fo2LEjX2DIGEONGjUwfPhwrFmzBiNHjkSNGjXAGEPx4sU16pYfBSFgFwgEAoFAIBAIBAKBQCAQCAQCQbKoT8p6enri+vXruHLlCp4/f55sWgk3NzfY2dlxgaG3tzc+fPiA58+f45dffuGRpSXx7o822J5dqOdvQEAAXr58iZcvX2oIrOTChNmzZ/OocTY2Nti8eTM/pj5xK+V9XFwc38ZWCHWzjrCwMBw5cgTNmzcHYwwmJia4ceMGAE0/8PT0RJMmTbBt27ZvcavfLfJ3eMKECXxib+zYsXj9+rVKWnmeCr/IWgICAlCvXj0wxtCoUSO4urqqRM2V/n737h1+++03mJqagjGG7t27IyIiQuN6z58/5+Kfrl274vbt24iKisLbt2+xdu1a6OnpoVChQjojhudmXr9+zbcxb9y4MV6+fKlSR0i28PPzQ6tWrXhZNHXqVJXFNNK/79+/x7///ou6deuqCIjy5Mmj8n8RFV8TpVKJVq1aaUTOa968OVauXKlRZiUnjEtOvL548WIcOnRIqyBR2CIJNzc3WFlZ8YU2Y8eO5VEpTU1N8ccff6RKvC78IuP4+/tjzJgxqFatmkpeWVlZoUKFCrh27Vqy5y9YsACMMXTo0AExMTEqfnPv3j2UKVMGjDHMnTs3i58kZxAQEIApU6bAwcFBxR62trZo2bIlXF1dAai+vz4+Phg+fDj3qWLFiuHMmTP48uULT6P+vv/333/82o8ePcqeh/uByGj5EBcXB0dHRxgbG3PB4pIlS1SOSyiVSmzfvp3XTYsWLcrQb+dEXF1dudCwevXq2LdvH4+ergvhF1nH4sWLsXnzZjx48EBlIY30r3zXE0dHR/z+++8oW7YsOnTogClTpmiIRAXpZ968efydHTZsGJYvX46dO3diyJAhsLW1ValHNmzYoNIHkey1YcMGMMbg4ODAj8vT7dq1iwt0g4KCfsgI01mF/B2eNm2aSp3dvXt3jBgxAs2bN+c7FZiamqJBgwa4e/eu1usJW2Qe6fUNKU/fvHmjEp2dMYb169fzSOtAkv2fP3/Oo7N37tz5h1z8JATsAoFAIBAIBAKBQCAQCAQCgUAgSDXJTaSnNMm+efNmPuhetWpVVKhQgQ/aW1lZcdGufAJEfSvb1PxObiG1+bBv3z7Y2NjwiInr1q3jx5KbbDpz5gyPCrtp06YM369AE3nkPm9vb3Tv3h2MMRQoUACPHz/Wek5ygofcjHzidty4cWCMoV27djwClTrCL7IHLy8vlCxZEowx1K9fHwcOHFCJ9Pbq1Sv07t0bRYsW5ULPJ0+eqFxDikg5dOhQMJa0U8e7d+9U0vj5+aFs2bJgjOH48ePZ8mw/Gl5eXihRogQYY6hbty527tzJxblhYWF4+vQp6tSpwxcSlCpVSkWkKJU33t7eGDt2LF+UZmJigrJly2L27Nn4999/sWXLFowYMYILp2fPnv3Nnvl75cWLF3wngT59+mDt2rUqx1MjBElOvL506VJ+bMuWLULEngxyEXu+fPn4Oz1//nz4+vqmeL7wi8wjKioKQUFB2LhxI1auXIkFCxbg8uXLeP/+PQDt76z03e7du6Gnp4dSpUrhxo0bvK10/fp1viinZcuWePXqFYD0RbLObcTGxiI8PBz79+/Hnj17sGnTJri6unJRlLzdFRISglmzZqFw4cJc1Hbz5k2d15bs9vLlS5iZmYExhnPnzmXp8+RmLl26hGnTpvHFNP379+fH1COxb9iwAfb29ti6davGjgcC1TqjWrVq2Lt3r85dHYRfZA26BOfy73Xt0CVfVFa5cmWEhIQAEHVCepHn2//+9z8w9nX3H/XFaI0aNcKpU6d0XmvKlClgjKFt27Ya146OjsakSZPAGMPgwYOz7oF+YOTv/NKlS/HTTz/ptEXnzp35TgXaELbIOBnxDcmWAQEBKFWqFBhjMDAwgJ2dHZycnFR+R6rDExMT4ejoCFNTU5QrV05jQfSPgBCwCwQCgUAgEAgEAoFAIBAIBAKBIEuRC042bNgAa2trmJiYgDGGQoUKoU6dOnj58iWArwP92iYmP3/+zEUsYpIxdYSGhqJPnz58gkQeMVpXHkqRkf/3v//B0NAQRkZGuHDhQnbdco4irQJBFxcXHjmpV69e+PDhQxbdWc5EXm5s3boVJ0+e1JpO+EX24u7uzkXsVlZWsLOzQ58+ffDLL7+obJltZGSEM2fOANC0Q0REBKpUqQIDAwPs2bNHY3FTQkICj4x/4sSJ7H3AHwh3d3c+EW5ubo6iRYuibdu2qFmzJhfvSsekSPYJCQk8n93d3dGlSxduNwsLCyxevFgjQmhERAT++ecfHhX/ypUr2f6s3zvu7u64dOmSSoTQ9LRtTpw4gZYtW3Lb/f333yrXUyqV2LZtmxCxJ4OrqyssLS3BGIOxsTG6dOnC26WA7nySvhd+kfWk5BsRERGoX78+GGOws7NDmzZtMGzYMBgZGYExhp9//hlHjhxJVgQvSD1SnkntriNHjvBFycWKFUsxYr503rZt22BgYABTU1Oxe0oWIPebT58+Yffu3VwYPWLECK3pEhIS4OPjg8jIyGy91x8JNzc3FCxYEIwx9OjRQ2PXIOEX2Yt6GS7//8iRI8EYg6GhIebMmYOzZ8/Cz88P/fv354udxbueMeT9bymydIECBWBpaYlKlSqhefPmOHbsGLy8vHg6bfXutm3bYGhoiKZNmyIoKEjl+seOHeMLP+U7pglUkdviypUrWLJkCWxtbVG0aFGUKVMGtWvXxr59+4Qtson0+Ia0cCwwMBAVK1bki2Jr166N+/fvA9DdbnV2duY7ruzfvz8LnyxrEAJ2gUAgEAgEAoFAIBAIBAKBQCAQZDnyifFHjx7hwoULWLduHe7du8cjXwGqg/FxcXF48uQJtm/fjtGjR6NixYqwtrbG8+fPs/Xef2SOHj2qsmWthC4hkPT97du3eRTeFi1aZMu95jTkeezu7o6EhIQURVIxMTGYO3cuF2C5ubll9W3mOLQtflHPd+EX2Y+3tzfatm3LI63LP8bGxrC0tMTly5d1nv/w4UMucpcixsl96uLFi/x6KQmEcjs+Pj7o0qULX1SgHgWuevXqXHirVCr5++/h4YHWrVtzobuVlRXOnz+vEnlUHsnV19cXVatWBWMMq1evzt6H/AFJj4j2yZMnaNiwIbdfly5d+LHo6Gj+tyRiVygUImKiDlxcXLiIvWLFijh48KDKjifqSPYSfvHtker9T58+oX79+nyxhvTp2bMnzp49y9Op/ysht5MQtaeMlEcRERGoXr06X5j833//JXuevK3VqVMnMMaQP39+ld1ZBFlDfHw8tm3bhjx58kBfXx/r16//1rf0w+Lq6opGjRrBxcVF5XvhF98Py5cv5+L1ffv2qSwYBAB7e3uUKFECPj4+3+gOcw7q9enbt2/h4+ODT58+JbvAQM6VK1d4dPzJkyfj6tWruHLlChYtWsQX3gwZMiTLniGnoD6e8enTJwQHB+Pjx48q7ZzkELbIPNLiG1LaDx8+oEWLFrz8qlu3Lt+hLrmFmK9evUKhQoXAGMOBAwey4nGyFCFgFwgEAoFAIBAIBAKBQCAQCAQCQbYgTaZoG3SXhFb379+Ho6Mjfv31V9jb26tss5o/f35UqFABc+fOFVuap0BCQgJiYmLQvn17MMZQtWpVODs782O6zgEAT09PFC9eHIwx2Nra4siRIwCgkefqdhRR8bWzfft2jBw5kv8/JVGUi4sLzM3NwRjDokWLtKZJaSJY2EI7WeEXIq9TT3BwME6ePIm+ffuiWrVq+Omnn9C8eXMsWLAArq6uAHT7x/v372Fvbw9TU1Ps2bNHJd/v3r2LChUqgDGG4cOHZ8uz/Oh8+PABTk5OGDZsGJo1a4a6deuiW7ducHR05EIe+QIBX19f9OzZk5dNBQsWxLNnz1L8nW7duoExht69e2tdXCLIOFu3bkXbtm1hYmICExMTlQjrcqGKUqnE9u3beYTwV69efYvb/a5xdXWFlZUVGGOoVq0a9u7dm6yIXfjF94P0roeHh2PPnj2YMmUK5s2bh507dyIyMjLZuuXatWuYN28eunbtilGjRmXnbecIxo8fD8YY8uXLh7lz5yI0NFRnWrkd/v77bzDGYGBggKlTp2ocF6Se2NhYhIeHpyqtv78/WrduzcsgQfqR+sbaynHhF9+W0NBQtGzZEgqFAvPnz1dpD0VHR0OpVKJevXpgjIkdtTKJ5N7T1PaX161bp7IblL6+Ph8PHDBgAE8n9zlt/if657oRtsh+0uIbUVFRmDlzJiwsLMAYQ6VKlfDw4cMUrwMAixYt4vWO+i5QPwL6JBAIBAKBQCAQCAQCgUAgEAgEAkEWkpiYSHp6eqSnp0dERIwxIiJSKpV0584dCgkJoSNHjpC/vz/du3ePn1esWDGqWbMmtWzZkqpXr07Vq1cnW1tbAsCvIdCOnp4eKZVKcnd3JyIiOzs7qlChAj+mjmQjX19f+u233+jt27dkaGhIdevWpYYNGxIRkYGBARERBQcH06NHj+jKlSsUHR1NVatWpVatWpGtrS0lJCSQQqHIpqf8/nn16hVt3ryZHj58SBUrVqRx48bpfHel91pfX5+MjY0pPDycYmNjdaYjErZIK1nhF9J5Ir9TpmDBgtShQwfq0KEDhYeHk1KpJEtLS/5OJ1e2W1hYUOXKlenly5e0ZMkSIiIqUqQIhYSE0JQpUygoKIhatmxJ48ePJ6KvthNop0CBAtS0aVNq2rQpxcXFUWJiIhkbG/PjAHj+ffr0iTZv3kzXrl2j8PBwsrKyohs3blD58uWTzeeIiAh69eoVv57wj6xh2LBh1KJFCzp16hTNnDmT1q9fT58/f6a9e/eSvr4+L5sUCgUNHDiQ8ufPT5aWllSqVKlvfevfHRUqVKCbN29Sw4YNydnZmdasWUPFihWjJk2aaJRNwi++L6R33czMjH799VetaSIjI4kxRrdu3aLnz5/T1atX6fHjxxQcHExExOuhpk2bUo8ePbLz9n9YIiMjycXFhYiIbGxsqFOnTpQ/f36taeV1/Llz5+jIkSNERJQnTx6qX78+ESXZILn2lOgDaqJUKunmzZv07t076t+/f4p5ZGNjQ40aNaKLFy/SwYMHacaMGVS1alWtaYUtkkdfP0lup55HWeEXgrQREBBAN27cIIVCQfXr1+e2UiqVZGxsTGFhYfTp0ycqWrQolStX7hvfbc4gufc0pT6Z1G4aM2YMmZiY0JYtW8jX15diY2OpadOm1KRJE5o2bRoREcXExJCxsTE/R/K/0NBQev78ORUrVozKlCkj+oI6ELbIflLjG1Ie+fv70+XLlyksLIwMDAxo48aN5ODgoLPOlc4LCwujBw8eEBGRqakpmZubZ83DZCFCwC4QCAQCgUAgEAgEAoFAIBAIBIJMRRpElwbZpUH5+Ph4evToEfn4+NDRo0fp7du3fJCdiKho0aJUo0YN6tq1K9nZ2VHjxo3JwsKC8uTJo3F9IfhJmcjISPry5QsZGBhQ165dycDAgJRKJZ/AlZCLdMeOHcttYmdnR3PnzqVChQrxtOfPn6fdu3fTwYMH+Xd6enpkY2NDp06dokqVKuX6CSo5+fPnJ3t7e3r48CFdvHiRWrVqpXOSXJqQevr0KRdTqU88ySeuhC3SR2b6RWJiIjHGiDHGyyR3d3cKDg6mxMREqly5MpmYmJCJiYmwxf8jvcNmZmYa3yW3uMPQ0JA2bNhAHh4e9PTpUxoxYgTFxMTwNO3bt6fJkydrLEjQNdkrhFdf88DAwIDnhdwWknDt8ePHdOzYMQoJCSFLS0s6d+4clS9fXqewTfr+7du3fBGOnZ2dyvUFmYOUn6VKlaJRo0aRlZUVDR8+nBwdHalUqVK0cOFCFRspFArq0qXLN7zj75/y5cvTzZs3qVmzZhQTE0O2trYq76zwi+8TbX2D6Ohoio+PpytXrtCbN2/o5MmT5O/vT15eXjxNhQoVqF69etSkSROqU6cOlSpVSqXdK0ie+/fvk5OTExER/fbbb1S9enWt6eTv+MOHD2nPnj10//59IiIaM2YMderUiaeT7Hj58mXy9/envHnzUpEiRahx48YpLnbLjbx8+ZK6d+9O0dHR1KBBg2QXJ0nl0E8//cTz8vPnzzrTC1skj65nz2y/kCPvT+T2/E8OqSwxNjbmfQ4AvL83fPhwcnd3pxo1alC+fPm+5a0KKKnfJr3bgwcPptatW1N8fDxFRESQjY2Nio2kBbcfPnwgb29vunv3Ll2/fp3c3NzIy8uL9PX1ycXFhcqUKfOtHueHRtji2yCV6xs3bqSHDx8SEdH27dupYcOGyY5nSOetX7+eTp48SUREo0aNotKlS6uk+xHqCiFgFwgEAoFAIBAIBAKBQCAQCAQCQaagLlj/+PEjBQYG0uPHj8nJyYlcXFzo2bNnPH3RokWpWrVq1LVrVypVqhS1b9+eDA0NycTEROW66sJPIV5PHYmJiRQVFUXx8fEUEBBARKRTpOvl5UUjRoyg+/fvU0xMDFlZWdGBAweobNmyPO3p06dpwYIF9PjxY8qbNy916tSJoqKiyN/fn548eULt27cnJycnsrW1zdbn/J6xsrKizp070/nz5+nMmTNUp04dmjRpksaiDIl3797RlStXSKFQUEJCAhUtWlTluDTxJGyRfjLLLxISErjQ18fHh5ycnGjPnj3k6upKoaGhRJQkhPz5559p9uzZVKZMGRGlnb6+w/JJ1JSE/ZKY2sLCgpycnGjcuHHk7u5Ozs7OVK5cOWrfvj1NmDCBChYsqDE5Kxdi37hxgyIjI+mXX375ISZxsxpttpD/Lb2rS5YsIU9PT8qXLx9t3ryZatasqXMhmfz71atXk6enJzHGqGXLlhrXF6QebYtsiFTzU19fn9q3b0/jx4+nv/76i06cOEGdO3emmjVrZuet5gjKly9P9+/fp9jYWCpVqpSK8EP4xfeBen0qLZz98uULOTk5ka+vLx0+fJhCQkJUBOuVKlWitm3bUpcuXah06dJUrVo1rVEqxaKz1BEXF0cGBgaUJ08eqlGjBhFp5p3cf5ydnWnz5s188WXfvn1p/vz5Ktd89eoV/f7773TlyhWKj48noqQFncOHD6dly5YJ4bQaMTExZGFhQZGRkeTo6EgTJ07U6Eur4+HhQURJ5Vlyiwe9vLyELdJBZvqFev0vlXNKpZJiY2OpcOHCWq+Z2zEzMyNbW1tydXUlJycnKlOmDOXNm5fi4uJo+PDhdPjwYbK0tKQNGzZQ/vz5Rd59B0g7penr61PhwoU12lPe3t705csXOnPmDLm4uNC1a9fo3bt3RJTUjipSpAh17tyZSpcuTUFBQUI0nQGELbIfABQSEkLXr18nIqIOHTpQq1atiEh7P0FeZu3evZtmz55NRET169endu3aEdHXtrKULi4ujvT19fkY1vfW1hUCdoFAIBAIBAKBQCAQCAQCgUAgEGQKjDGKjIykP//8k4KDg+n+/fvk7e3NI00WKFCAGjRoQE2bNqUKFSpQkyZNyMjISGNLbQAq0WS+p0H1H4kiRYpQ9+7dadeuXfTq1Sv6/PkzmZubawhHnz59Sr179yZvb29KTEwkCwsLOn/+PFWpUoVPenh6etKWLVvo8ePH1KpVKxo9ejR16NCBlEolvXr1igYMGECPHz+mU6dO0fjx48UkMH2dVGrfvj1NnDiRpk6dSn/88QdZWFhQ//79NQRTHz58oCNHjpCjoyMlJCRQ48aNqVevXhrXFbbIGJnhF3Ix4q1bt2jixIn0+vVrCgkJ4ZHITExMyN3dndzd3cnJyYkuXLhAFStW/O4mCn8UpEUd5ubmtH37dkpISKDg4GAyNTWlAgUKaKSPiIggZ2dn8vX1pWPHjpG/vz89ffqUiIgGDx5M27dvz+5H+KGQyo0dO3bQ1atXycjIiH777Tdq1qwZEWmvl+X19saNG2nnzp3EGKPOnTuTvb09v6bwgbTx5csXevHiBdWsWZMMDQ2TTWtmZkZNmzalFStW0MuXL+nRo0fJCtiFLXRTokQJIlIViGSlXwjShlQHv3nzhlxdXcnZ2ZkuXLhAPj4+5Ofnx9NVrlyZWrRoQb169aLixYtT8+bNtYp21X1B+EXqCAsLo/j4eMqTJw9ZWloSkWreyfP13r17tHnzZtq9ezcRJe2cMnXqVDIwMOD9jbt379LEiRPp4cOHZGlpSba2tpSQkEDOzs60fPlyYozR0qVLhc/IqFy5MnXr1o1WrlxJBw8epMaNG1ODBg000skXfdy4cYNHqC5evLhKOslmwhbpJzP9QhKvJyYm0uHDh+n06dN0+/Ztio+Pp/DwcOrWrRs1aNCAhgwZIhYUyLCzs6NevXrR3LlzaebMmXTt2jVKSEig0NBQevr0KeXPn59Wr15NtWrVEnn2DVHvG0jvu0KhIH9/f/rw4QMdP36cAgIC6Pz58xQeHk4xMTGkp6dHBQoUoN69e1PFihWpSZMmVKZMGZUFHYK0IWzxbWGMUVBQED1//pyIiGrXrq1zRyB5mXX48GH6448/iIgoX7581L59e75wSqFQUFxcHLm5udG+ffvoxYsXpFQqqWbNmjRkyJDvL8ACBAKBQCAQCAQCgUAgEAgEAoFAIMhERo0aBcYYjIyM0Lx5c0yePBknT57E27dvERUVpZFeqVQiODgYDx8+xIcPHxAdHc2/F2SMnTt3gjEGxhjWrFmDgIAAfuzhw4dYu3YtzMzMeBo7Ozs8e/YMAJCQkIDExEQAwO7du6Gnp4dSpUrh/Pnz/BpxcXEAgP79+4MxhpEjR2bj033/JCQk8L//97//8XyeNGkSTp06hYSEBCQkJODy5cuYMWMGTE1NwRhDpUqVcOLECY1rAMIWmUFG/QJIyu9///0Xenp6PF3BggWxYMEC/Pfff3j27Bk2bNiARo0agTGGMmXKwNvb+5s8b04iPj4eAHjZJPH+/XvcvXsX69atQ7du3VC5cmVuF8mGLVq0wOrVq7Fly5Zvces/JJMnT+b1+ZUrV3Smk9vj1KlTqFWrFhhj0NfXx9atW7WeExcXh6CgIJUyTt2uuZ3o6Ghs3rwZ5cuXx4ULF1J1TlRUFBwcHMAYw6BBg1KVp8IWaSMr/UKQPK9fv8aBAwcwf/58tG7dGsWKFVMp6ytUqIDOnTtj69atuHDhAqKjo7X2PaS6RJAx/P39Ua5cOejr62Pz5s2875aYmKjSjzt8+DC6dOnC7dSmTRvcuHFDpcz5+PEj6tatC8YY7O3t4erqii9fvuDt27dYs2YNFAoFrKyscPPmzWx/zu+dgIAA1KtXD4wxNGrUCC9fvuR5q96fHjlyJBhjMDQ0xKhRowB8Laukc4QtMkZm+gUAHDt2DIMGDVIp64yNjcEY4/2QadOm8fS5vf6W59/06dOhUCigUCh43hUtWhTnzp1DbGzsN7zL3Il6WSMnODgYDx48wLx589C3b1/ky5ePv+fGxsYwMzNDv3798Mcff+DJkyd4+/atxjWk62q7vkAVYYvvj6dPnyJPnjwoUKAAHj58CECzvSrPzyNHjqB8+fLQ19cHYwwDBw5USRsZGYkVK1agZs2aKvUHYwzFihXDy5cvAXw/dYaIwC4QCAQCgUAgEAgEAoFAIBAIBIJMAf8fCWbDhg3Uo0cPKlq0KJUrV04lTUJCgsr/3717R2PGjCE3Nzfy8PCgsmXLUuXKlWnTpk1kZWX1fUWE+YGQbDFo0CDy9PSkpUuX0oQJE+i///6jIkWKEGOM7ty5QyEhIRQbG0vW1tZUo0YNWr58OZUvX14lMlxMTAzt3buXAFCPHj2odevWRJRkSwMDAyL6GlUuMTFRRHSVoaenx9/hxYsXExHR0qVLadWqVbRq1SqqWLEiERGP8h0fH0/ly5en4cOHU+PGjfk1JIQtMkZm+UV4eDjt3r2bJkyYQACoUKFC5ODgQGvXriVbW1v+e/b29tSkSRMaPHgwPXjwgP755x/666+/SF9fX9glFUBLREQpGtzbt28pLCyMzp07R8+fP6cbN27Q69eveTorKytq3rw5tWjRgipVqkRNmzYlxhiZmJgke31BEgkJCRQXF0dnz54lIqIuXbrwKNPqyPPRycmJNm3aRA8fPiQiopEjR9KwYcNUrvv+/XuaO3cuubi40IsXL6hx48bUqFEjmjZtmogeqkZsbCxdv36dPDw8aNu2beTg4MCjueoiLCyM3r17x//WlZfCFmknK/witfW0sEUSBgYGNHr0aPr06RMZGBhQwYIFqUePHlSvXj1ycHAgBwcH0tPT420iiYiICGKMEWOMTE1NSV9fX7SRMoH8+fNT9erVydPTk/7991+qXbs2lStXjoyNjfmOWrNnz6aTJ0+Si4sLERF16tSJpk2bRrVq1VLJ/wkTJtC9e/eoVKlSdO7cOSpWrBgREZmamlLXrl1p165d5OzsTCEhId/kWb9nihcvTnv27KFmzZrRzZs3acSIETR+/Hhq1KgRFSlShGJiYigyMpKmTp1Ku3btIsYYWVtbU6tWrYiIeNki2UPYImNkpl/MmzePjh07Ri9evCAiojJlylD58uXpl19+odDQUHJ3dydHR0davnw56enp0ZIlS3J9XSHvfy9dupTq1KlDAQEB5OvrS1WrVqXmzZtr7DwgyB6kdzMhIYEiIiLo0aNH9OjRI3r48CHdvXuXt1/19fXJ0tKS2rVrR3Z2dtS5c2eytLQkOzs7letJbSPpX7GDY+oRtvj+MDQ0pNjYWIqJiSEPDw9ycHDgYx8SUn46OjrS7Nmz6e3bt5SQkEAdOnSgXbt28XSxsbG0du1aWrVqFYWFhZG9vT0NHTqU/P396cGDB3T79m3q1q0bXb58+bspD4WAXSAQCAQCgUAgEAgEAoFAIBAIBJkCY4xPFjZt2pSINLeilcToiYmJdO3aNZo4cSK9ePGCrKysqEyZMqRUKuno0aPk7u5O169fpwIFCgjRTjqQ22Lx4sVkaGhIq1evptu3b1NiYqJK2jp16lCfPn2oW7duVLRoUQ1Bj56eHkVFRRERkYWFBRERxcfHc3HQtWvX6Nq1a6Snp0ft2rUTk1RqKBQKFVtYW1vT/v376f79++Tq6qqStk6dOvR/7d13fBR1/sfx924qCSEBAiQEAiEJEEooASFIhxMMUgUVUZoKomBDLKceWA/hDhW7HojHeSC9V5FeQg0lgdBSKKEGCCE9md8f/HZMSEBOIRvg9Xw8eLjulHxnP7Mzuzvv73eef/55denSRZ6enoXWRS3+nD/zvrAtl5mZqcmTJ2vkyJEyDEM1a9bUww8/rJdffrlApxvDMGS1WhUcHKw2bdpo69at2rZtm5ycnDie/Q7bMSj/65SQkKBLly5pwYIFio+P17Jly5ScnKyMjAxJUvny5dW9e3eFhoaqVatWqlu3ripVqlTgPXBtByrqcH1Wq1UuLi7mRfPy5ctLknJycgpcSM9/vvjll1/09ddfm+HeRx55RJ9++qk5b3p6upYtW6Zx48YpMjJSTk5Oys7O1vLly7VkyRIlJSXpk08+oS75uLm5qUWLFlq+fLkiIyO1bt06devWrchju60W+/btk2EYkqRKlSoV+RmKWvwxt/p9kZWVJWdnZ3O5rVu36ujRo9qwYYOcnZ3VqFEj1axZU82aNaNDwf/z8fHR+vXrtWjRIrVt21YBAQGqUKFCgXmysrLMx+vXr9e6des0e/Zs5ebmKjAwUL169dITTzwhq9VKiP1P8vDw0EcffaQtW7Zow4YNGjx4sBo1aqTmzZtr8+bNOnz4sNavX2/OP3jwYI0aNUo1a9YssC+npKRo3759cnNz01dffSU/P78C76tSpUopJydHhmEoOTm52LfzThAYGKgVK1bogQce0KZNmxQbGytvb2+1atVKhw4d0oULF7Rnzx5ZrVa5u7vr1VdfVY8ePQqth1r8ebfqffHcc89p2rRpunTpkqSrnZ8effRRs5OzJF28eFHNmzfXiBEj9MUXXyg8PFzdunUrvo0tofJ//y5qP+fYbz9RUVF64oknlJqaWqDzceXKldWzZ081btxYDzzwgLy9vRUQEHDdzz75a3ivfzb6o6hFyWEYhqpVq6YHH3xQS5Ys0c6dO9WjRw+5u7sXmMdisWjChAl6/fXXlZeXJ8MwFBERofnz50u6Glx3cXHRhg0bNHXqVKWmpmrYsGEaOnSoatWqpZycHMXExOjRRx9VXFyctm/fToAdAAAAAAAAAHD3uXa09GtHdLNdSIyJidGLL76o6OhoNWrUSP/973/l4+MjT09PDRgwQFOnTtXbb7+tiRMnFhpFETcn/4XbMWPGqGnTpoqOjtaiRYtksVgUFhamgIAADR061AzV2kK3+Tk5OalBgwbavHmzYmNjdeHCBZUtW1aStGnTJn377bc6duyYOdIxCstfixEjRqhjx47avXu3Zs2apYsXLyooKEhVq1bVSy+9JDc3t+te+KMWf94feV/k5uaaNfnpp5/M8HrdunU1aNAgPf300ypTpozy8vLMY6BtfkdHR/NOFDt27NChQ4cUHBzMxd0byM3NVWpqqo4eParFixfr8OHDWrhwobKyspSamioHBwc5ODioW7du5khwvr6+qlq1apGBddvFXu7mcfNsIxUHBgZq3759SkpKKhTSzX+HlDlz5uj777/X8uXLJUndunXTuHHj5ODgYC63fv16jR49Wvv27VPt2rX14Ycf6vLly0pISNCYMWP02WefqVatWnr22Wftss0lkZOTkx555BEtX75cixYt0scff6ygoCDVq1fPnMc2mqtt3580aZI5amJERESBY40tYEIt/phb+b7Izs42w+u//vqrVq5cqXHjxqlUqVJmRzVJqlatmgYOHKjRo0cTYv9/derUMe9gI/22X9s6btheV9volImJiTIMQ2XLltXevXs1b948nTp1Sq+++ioBxlsgICBAy5cvV48ePbRr1y7t2rVLP/74o3kOdnZ2VvXq1TVgwAC9+eabhZY3DEOJiYmKioqSJPN7n6Ojo/n+Onr0qM6fP68KFSoUOP6hoFq1amn16tUaMWKEdu3apdjYWB08eLDAe6NWrVp67rnnNHToUEkFg4fU4tb5s++LwYMH68cffzRrN27cOL366qvmdFsHKC8vL/Xs2VNz5szRmjVrtHv3bgLs/+9Gn/s59ttPw4YNFR4erqVLl6pjx47q1KmTGjVqpPr16xfqkCZd/ewVExOjY8eOKSEhQXXq1FGDBg3k4eFR6DMY/jfUouSw3SHIFmD/5JNPVLlyZUVERKhmzZpKT0/X/PnztWrVKnOkdScnJz388MP673//K+lqh1oXFxdJ0rRp0xQTE6P27dvrueeeU1BQkPl9MTQ0VJUrV1ZsbKzi4uLstcmFGQAAAAAAAAAAFKOsrCyjRYsWhsViMe677z7j/PnzhmEYRkZGhmEYhnH27FmjbNmyRps2bYzc3Fx7NvWucO1rmJ2dbeTk5Nxwnmv9/PPPhsViMSwWizFgwADjn//8pzFq1CijUaNGhsViMQIDA4158+bd8rbfbfLy8v70PNTi1vhf3he2mqxcudJ87UNCQoxPP/3UuHz5coF5ilp+4sSJhpOTk+Hp6WkcPXr0pvaDe1VaWpoxfPhww9HR0XBycjIsFovh5ORkeHl5Gb169TJGjhxpbNq0yTh48ODvrovzxx9n20cnTJhgODk5GSEhIcauXbuKnHfcuHFG3bp1zfdGz549jf379xeYJyMjw2jXrp1hsViMBx54wIiLizOnXb582XjhhRfMYxoKi4uLM1/jNm3aGJs3bzZSU1MLzJOdnW08/fTThsViMaxWq9GjRw8jMTGx0LqoxR93q94X+c81H3zwgREWFmbO5+HhYdSoUcNo0aKFUaNGDcNqtRoWi8UYOXLkbd++u8m0adOMUqVKGRaLxejTp4/xn//8xzhz5owxa9Ysw8vLy7BYLHxWusUSExON9957z2jXrp3h7+9vhISEGPfdd5/x/fffG5s2bTLnK+rcnJKSYjRq1MgoXbq0MW3atALznD171mjcuLF5zEpPTy+W7bmT2fb1Rx55xGjYsKFRs2ZNo0GDBsann35qrF+/3pyPWtx+N/u+yMrKMh+PGDHC/Azs6upqfPvtt7/7dwYNGmRYLBbj/vvvN39TAUqa/J9/Tp48WeA7se1xdna2+dzx48eNr776ynB3dzccHBwMi8VilC5d2mjbtq1x5syZQuvEzaMWJUv+1/+NN94wvxcEBwcbLVq0MGrXrm2UKVPGfL5hw4bGO++8Yy6Tv1anTp0yAgICDKvVaixcuNBcv+18np6ebtSrV8+wWCzGF198UUxb+PsIsAMAAAAAAAAAitWiRYsMR0dHw8/Pzzh8+LBhGAV/cN+xY4fh4OBgVKpUyThx4gQhxBLi888/Ny+Y2P65uLgY999/vzF79mxzvtzcXPMCTFEXsbiw9Zs/GmSmFsUvOjraCAgIMCwWi1G1alXjvffeM1JSUgzDuHEdz507ZzRs2NCwWCxG8+bNCa/fhOjoaMPf39/o2rWr8dZbbxkbNmwwYmNjC8yTf9/dv3+/sWLFCuONN94w/vOf//xuOAs37/jx4+b+26pVK2PevHlGQkKCcfLkSWPOnDnGo48+WuA41K9fP+P48ePm8rb9ffz48YbFYjF8fHyMQ4cOGYZR8Lw/YcIEw2KxGKGhoUZqaip1K0JsbKxRuXJlw2KxGHXr1jWefvppY8GCBcaKFSuM8ePHGxEREWZ4PSQkxJg2bVqR66EWf96feV/kfz2ffvppw9nZ2Zyvb9++xuTJk43z588b2dnZRnR0tDFhwgQzxP7JJ5/YaYvvLDt37jSDOcOGDTO/a9h89913hsViMcaMGWOnFt69bAGphIQE49KlS+bnJJvrHU8yMzONvn37mh0Ef/zxR2Pp0qXG1KlTjdDQUPP5kydP3nA9KCw5Odm4cOGCcenSpQLPU4vi83vvi/yfaceNG2dUrFjR7MA5adIkc9qNXutHHnnE/K5BgB0l2bX78fX26yNHjhgvvvii+RnooYceMgYPHmzcf//9ZoD3woULxdDiuxe1KFmu7eBarVo18zW3WCyGm5ubYbFYjBdffNFYtmxZkcsZxtVObJUqVTIsFosxdepUwzB+q21aWprx3XffGW5ubkZQUJARHx9fDFt2cxi/HwAAAAAAAABQrA4fPqzc3Fz5+vqqYsWKkmTebjY3N1eRkZEyDENt27ZV5cqV7dlU6Ldbyw8fPlyVKlXSL7/8opiYGDk6OuqJJ55Qo0aN1LhxY0lSdna2ebt5ScrMzFRycrK2bt2qnTt3qmfPngoLC7PXppQ4Fovlf5qfWhS/vLw85ebm6ueff9b58+clSS1bttTzzz8vDw8PGYZx3Trm5ORo8eLFOnv2rCSpUaNGys3NldVq5db1N1CnTh3t3r1bXl5ehabl5eXJMAw5ODhIkmbOnKn3339fhw8fVkZGhiTJzc1N7733nl555RVZrdYb1gg35ufnpxkzZqh9+/basGGD9uzZY+6/OTk5SklJkcVikbe3twYOHKiPP/64wPK21/3kyZOSpEceeURBQUHKzc2Vo6OjDMNQbm6ujh07JkmqV6+e3N3di3cj7xA1a9bUmjVr1KdPH+3Zs0cxMTGaNGmSHBwc5OjoqMzMTFksFtWvX1/Dhw/XY489JkmF9n9q8ef90fdFbm6ueex67LHHNGPGDFksFlksFo0ePVrvvPOOpN/eN3Xq1FH16tV15swZjRs3TkuWLNGgQYPk6elpnw0v4Wz7+u7duxUbG6vQ0FANGTJEgYGBkqSMjAy5urqa+/XOnTs5P9wGVqtV/v7+1512LcMw5OzsrK+++koHDhxQVFSUnn32WWVkZMjFxUWZmZmqU6eOZs6cKV9f3wLvI9tj2+fj/Ou81+tqew3Kli1b5HRqUbxu5n2xdu1azZ071/zeMHHiRA0ePFiSCr2u+e3fv18HDhyQ1WpVgwYN5OLichu2ALg1rt2Pr/1/2zFj2rRp+vzzz1W6dGm9/fbbGjVqlDnPo48+qpkzZ2rSpEkaOXIkx5k/iFqULA4ODua59K233lL79u11+PBhRUZGKjs7W61atVL16tXVsmVLc5m8vDzzPGzj7u6upk2bavHixdq+fbs6d+4sb29vpaena9asWfriiy+Unp6uTp06qVy5csW9mddFgB0AAAAAAAAAUKzKly8v6eoFkrS0NHl4eEi6eoFk06ZN+vvf/y7DMNSsWTN7NhP/z2q1mhfN+/Tpox49esgwDGVnZxcKt6Wnpys1NVVLlizRoUOHtHjxYsXHx5vB388++0xHjx5VhQoV7LEpdzxqUfysVqsyMzO1YMECXb58Wf7+/ho/frzKlSt33TCJ7fnExERNmTJFJ0+elLOzswYNGmR21pEI9dyILaCZPxwlXQ122l7zKVOmmMGedu3aqXbt2vL29tbEiRP16quvqnTp0hoyZAiv8Z8UHBysNWvW6KWXXlJMTIzi4uIkXe145urqqqefflrt2rVTz549JRUdskpPT5ckJSUlmSFS6Wo9Y2JitHz5cklS8+bNr7sOXK3FokWL9MUXX2j16tXatm2bcnNzlZubK0kaMmSIunTpooceekgStbid/tf3RVZWlpydnSVJ/fr104wZM+Tg4CBfX1+9/fbbGjJkSJF/x83NTU2aNJFhGPrll18UFxenhg0bFss23ony8vI0f/585eTkKCwszHytcnJyzH19+/btkq52EOD8cGv9kdfTYrEoNzdXXl5eWr16tV588UXt379f27dvV9OmTVW7dm19/PHHKlu2bKGQtO3zwaVLlxQfH6/Y2Fg99thj1FXUoiT5vdfANn3+/PnasmWLJOn999/Xs88+K+n652Hb94gNGzZo7969kqRatWrdyqYDxc5isWjt2rVmp77Ro0frlVdekSRduXJF7u7ueuGFFzRz5kwdPXrUXAa3HrUofvnPq+Hh4QoPD9eTTz553fmLOje4ubmpd+/eWrx4sSZOnKjDhw8rMDBQUVFROnDggM6ePasHH3xQr7zyivlbfFGK+7cqAuwAAAAAAAAAgGLl6+srd3d3bdu2Tf/5z38UERGh3Nxcbdq0SR999JGOHz+uBx98UMOHD7d3U/H/rFarOaK3bVRvZ2dnXbx4URkZGVq5cqUSExM1Z84cnTp1SklJSeayzZs3V6dOndSjRw+VK1fO7MCAP4ZaFL8lS5Zo9+7dcnd310cffSQ/P79CwWqb/M+/+eabWrNmjRwdHTV69Gg1bdpUubm5Zgg7Ly9PWVlZOnTokHx8fFSqVCl5eHgQGNVvF7+vfY1tz8+bN88Mr48cOVLDhw+Xv7+/LBaLWrVqpQceeEDffPONunfvrooVK3Ix/U8KDAzU1KlTdfr0aW3YsEFZWVny9/dXUFBQgbDU9fbd+vXrS5J27dqlzZs3Kzw8XDk5OdqxY4dee+017d+/X82aNdPjjz8uqeiL8biqSpUqevfddzVmzBgtX75cly9floeHh6pXr67Q0FBzX6cWt9/Nvi+ys7PN8Przzz+vadOmyWq1qnr16vrb3/5mBlOurZntfFKzZk1VqFBBly5dMu80gcJso9nbwji2z0iGYZidx7777jt9+umnkqQOHTrYpZ0ozDbqqKenp7777jvl5OQoLi5OwcHBkmS+f2yfCc6ePauUlBQtWbJE+/bt0+rVq5WYmKicnBxt27ZN//znP+22LXc6amEfq1atMo9NTzzxhF588UVJN+5EZrFYtHHjRo0YMULS1TtE2c4nhmGY8wB3mrlz50qS+vTpYwamc3JyzA77kZGRkqRz584pLy9PEp9XbxdqUfz+zOtnC50PGDBAly9f1gsvvKAlS5aY0/39/TVo0CC9+eabqlGjhnmOKeq3Ldv543q/e91qBNgBAAAAAAAAAMWqQ4cOGjFihMaOHatRo0bp888/V2pqqtLT05Wenq527dpp7ty5cnJyIshpR7bX3nYRxBYESkhI0IYNG3TgwAEtXLhQycnJOn78uLlcy5Yt1a5dO/Xu3Vu+vr4KCwsrMOo0/nfUwr5snQCysrIUFBQkqXCwWip4C+cBAwZo5syZslqt6tKliyIiIiT9NoL4oUOHNHXqVC1dulT79++Xn5+fateurbFjxyokJKTYLhTeiZKSkvTll19KkoYNG6YxY8aYF9ENw1DHjh3VoEEDxcbGKjU1VZUqVbJnc+8aXl5e8vLyKjS6Z/7R2a53vn7yySc1depURUZGatCgQapdu7auXLmi+Ph4nThxQsHBwZo9e7bKly9f5Hk//9/gzgVXA4QWi0Xdu3cv8LwtsCZRi+Lye+8LwzDMc/bEiRM1bdo0SVLFihX19ttvXze8Lv12nlm9erXOnj17uzfljmfb/wMDAyVJO3bs0J49e+Tv7y8vLy998sknev/99yVJ77zzjjp27Gi3tqIw2+dcBwcHOTs7q27duua0Y8eOKS0tTQsXLlR8fLwWL16sM2fOKD09XVarVWXKlFFERIRq166tkJAQpaWlyc3NzY5bc2ejFsXHdq7Ys2ePnJyc5OLios6dO5uv2Y1+B9m7d69GjRqlrKwseXp66i9/+Ys8PT0LnZuzsrKUk5NToA6cv1FSGYahAwcOSJLKlSsn6Wpg2vYbRmxsrFavXi1JioiI4LfC24ha3HksFov5nWL48OEKCgrSjh07dPToUXl6eqpv376qXr16obsw2r5znDhxQlFRUdq1a5fWrl2rDz74oNjujMqvlAAAAAAAAACAYmP7Mf2jjz6Sk5OTfvzxRyUlJSk7O1uNGjXS/fffr3/+859ycnIiwGlntovaBw4c0MGDB7V+/XozLJ2SkmLO07hxY7Vs2VK9evVSlSpV1Lx58yJrR2eEP45a2Ict3GEb8bZu3bq67777CkzLz/aaDho0SFOnTpXValWDBg3Uv39/NWjQwJxn7969Gjx4sHbu3CnDMOTm5qZjx47p0KFD2rJli9asWaOQkBDCJddx6dIlRUVFydPTU927dzcDObZ9/dy5c2ZgitDU7fd7+2hubq48PDy0dOlSde/eXVu2bFFiYqKkqyHeiIgI/etf/5KPj495d4lrj1EWi8WsqS0UfC+/N6637dSi5LC9Jrb/RkdHa/78+bp48aIk6a233tKAAQMk3ficfP78eW3cuFFWq1W1atVS1apVb3/j71C213rgwIH64YcftGPHDvXt21cuLi7y9PTU2rVrJUlDhw7VE088Yc+mQr99jrLt//nvvHLp0iUdO3ZMy5Yt0+HDh7Vo0SKlpaWZ7x9HR0d17dpVAQEB6tmzpypVqmR2MMT/jlrYl2EYWrhwobKzsxUaGmreAeVGDhw4oDFjxig6OlqSFBoaqueee87sMCVdDSIuXLhQP//8s5KSktS0aVM1adJEL774IudvlFgWi0UNGjTQL7/8orS0NF25csXsqHz06FF99913Wrx4sUJCQszv17g9qMWdyXanP6vVqs6dO6tz586F5rFNP3LkiJKSkrR8+XLt3LlTW7du1YULF8z5Ll26pNWrV5t1v50IsAMAAAAAAAAAik3+25O+++676tWrl1JSUnTlyhXVq1dPlStXNn9wJ7xe/HJychQVFaXz589r7ty5OnTokCIjI5WWliZJKlWqlGrVqqWwsDC1adNGQUFBZqDXVjfb42sRmP7fUAv7s4U6goODJUlHjhzRtm3b1LRpUzP4YZvPMAydPXtWL730kqZPny6r1aoaNWroxRdfVM+ePc11xsbG6sknn9SePXvUrFkzdevWTR06dNDhw4c1efJk/frrrxo6dKjmz5+vsmXLFv9G3wF2796t8+fPy8/PT3Xq1JHFYikwGtzkyZN16NAhhYaGytHRkYCOnTk4OCgnJ0deXl5asmSJFi9erPj4eElSs2bN1KhRI5UpU0aSzOCV1WpVWlqakpKStHHjRsXExGjevHm6//77NWnSJOr5B1EL+1m5cqU5SuXrr7+u559/XtL1w+u259evX6+5c+cqLy9PzZo1k5+fX7G2+05UrVo1rVixQj179lRCQoLS0tLM88PYsWPVp08fBQQE2LmV965rQ9KGYSg1NVUxMTHavn27tm3bptWrV+vkyZPKycmRg4ODSpUqpbZt26pGjRp6+OGHVbFixUJ3Pbh2/fh91ML+bK+9q6urJKl27dqSZHYiK8r+/fv1wQcfaM2aNbp8+bKqVq2qn376SeXLlzfnWblypf71r39p5syZ5nNHjhzRTz/9pPj4eH3yySecv1FihYSEKC8vT1OnTpW/v7/CwsKUkJCg1atXa8GCBXJ0dNSoUaPUsGFDezf1rkct7jyGYRT43T2/vXv36uLFi5ozZ47i4+O1evVqc0AMV1dXValSRT179lRYWJjCw8NVqVKlYgmvSwTYAQAAAAAAAADFzMHBwbygXdRIPbYf3FH8fv75Zz355JNmANrDw0OVKlVSly5dFBoaqpYtWyogIEBOTk4FapSVlSVnZ2fzOTog/HnUouSoVauW6tatq+joaK1atUr16tVTqVKlzODHhQsXtHHjRn3xxRdasWKFrFar6tWrpxdffFH9+/eXdHXk48zMTH3yySfas2ePWrZsqfHjx6tBgwZydXVVkyZN5Ovrq6ioKMXFxSklJYUA+3UEBwerYsWKys3NVWxsrKpUqWKGE7/66iu98cYbkqRRo0YVuj027MPR0VG5ublyd3fXI488Umi67QJ7VFSUDhw4oA0bNmjLli2Ki4szR4FzcnJSTk6O1qxZo7Zt2xbzFtw9qEXxS0xM1GeffSZJeuCBB/Tqq69Kun640/Y5eNeuXerfv79ycnIUGhqqF154QZIKdNgpCp12pJo1a2rFihXavn27oqKiFBgYqODgYDVr1szeTbvnpaeny93dXatWrVJcXJyWL1+u/fv3a//+/WbHQG9vb3Xs2FENGzbUX/7yF/n4+CgkJMRch22+/B0JbfgOefOoRclRrlw5SdKpU6eUkZFhBtptbMf1qKgojRkzRuvWrdPFixfl5+enJUuWqEqVKub5e8OGDRo3bpxWrVqlihUr6vnnn5eXl5cSExM1YcIEffbZZ/L399fLL79sj00FftfAgQMVExOjf/zjH/rwww/l4OBg7t+VKlXSu+++q4EDB9q7mfcEalHy2b5PFHUXlaNHj+rYsWOaO3eu4uLitHTpUlksFmVnZ8vd3V2lS5fW448/ruDgYEVERKhSpUry8vIqsP7i+l5BgB0AAAAAAAAAUOxudEH7Xg/d2FO/fv20ZcsWWa1WBQYGKiIiQhUqVJCnp2eR8ycmJmrZsmXauXOnJKlevXrq16+fypYt+7sBK9wYtSg5ateurSeffFJvvPGG/vrXvyo1NVX333+/KleurAsXLmjChAk6dOiQYmNj5eDgoPbt2+upp54yw6G2TgS2WzA7Oztr4MCBatSokZydnc2LwMHBwbJYLDpx4oROnz6tatWq2XnLSyZ/f38FBgZq8+bNevfddxUbGytHR0dFR0fr888/lyS9/fbb6tevn51bCum3i+r5O9LYRhbdtm2bkpKSNG/ePB04cECRkZFmCM7Dw0NBQUF68skn1bp1a9WvX1/BwcHKysqy16bc8aiFfaSmppqjG4aFhZlBxeuF1y0Wi6Kjo/XMM88oNTVVZcqUUYcOHRQYGChJ5vk8NzdXkZGRiouLk6Ojo6pVq6bmzZubdwW51z9P+/n5yc/PT927d7d3U/D/srKyNHToUK1YsULnzp0zn/f19VXz5s3VqVMnNWnSRKGhoQUCudeyWCyM7v0nUYuSwXas7tChg+bNm6f4+Hjt3r1b9913X4FjuMVi0Zo1azR8+HDFx8crLS1NVapU0axZs1S3bl2zPnl5efrpp5+0atUqNWvWTH/729/04IMPSpLS0tLk4OCgcePGafXq1Xr22WdVqlQpe206UCTbvjxu3DhVqFBBS5cu1aFDh+Tk5KTevXurXbt25j6N24talGy284ft/Judna1Tp04pOjpaa9eu1b59+7R27VrzDo5lypRR5cqVFRERoerVq6tbt24qW7asKlWqVGC9tnO6bf3F9X3CYti+eQIAAAAAAAAAgHvWjULOtosY+cMLP/74o6ZOnapff/21wLyNGjXSsmXLVKFCBQINfxC1KDnyv25vvPGGxo0bJ+nqCMQeHh5KT09Xenq6pKthxJEjR6pHjx4KDw8vtPzcuXP18MMPq2rVqoqMjJSPj49yc3PNkbLWrl2rdu3aydHRUVFRUapTp44dtvjOcPDgQbVr105JSUmFpo0ZM0bPPfecvL297dAyXDsKnI1hGIqMjNTp06c1a9YsnThxQmvWrDGn+/r6qkKFCoqIiFBISIjCw8MVEBBgHudsF9E5lt08alEyLFiwQD169JCXl5fWrl2r+vXrFxkwtz134MABDRs2TJs3b1ZWVpZatGihn3/+WX5+fua8y5Yt08yZM/XDDz+Yz3l5eemZZ57Rxx9/XGB9QEmyb98+Pfnkk3J1dVWPHj0UEBCg1q1bq2LFiubxJP++m5ycrI0bN2rfvn0KDAxU5cqV1bJlS0nXv4sBbg61KDmSkpLUvXt3bd++Xa1bt9Zf//pX1a1bV35+flqxYoUiIyM1evRoc/6AgAAtWbJEtWrVKrCepUuXqkuXLpKkWbNmqVevXpJ+C6JOnz5djz/+uGrWrKnNmzdztyeUSPl/57hw4YIyMzPl6OjIdzs7oBYl25EjR7Rt2zbFxsbql19+0YEDB3T+/Hlzeo0aNdSuXTvVrVtXDz74oEqVKiV/f39zumEYJeYOqAy3AQAAAAAAAAAAigxMXzuqj+3i1bfffqtx48YpMTFR9erV05AhQ1S5cmVNnTpV8+fPV8+ePbV06VJ5eHgU6zbcLahFyZG/s8DYsWPl4+Oj2bNnKzIyUsnJyZKk4OBgValSRW+++aZat24tZ2dnSSp0MbBy5cpycXGRdDWoUrFiRbOO0dHRevfddyVdHX2f8PqN1axZU+vWrdOYMWN06NAhnT17VvXr11f//v3NsA6Kly28ln8UuIMHDyo6OlpLlizRkSNHtHnzZnN06PLly6t27drq3bu3AgICzIvq195lwvb+swXoSsIF9pKOWpRMly9fVkZGhqTCdxuy1Wzfvn167rnntHPnTmVlZal69er68ccfC4TXZ8yYoY8//li7du2SJLVu3VqnT5/WwYMHNX78eFksFo0dO5bwOkqkevXqae3atZKujgaaX/5jTE5OjiIjI/X0008rNjZW0tXPxy4uLnr//ff10ksvFRghFP87alFy+Pr66qefflKHDh20bt06xcbGymq1qnLlyjpw4ICuXLki6ep3icaNG+vbb7+Vr69voY4D+/fvlyQ9/PDDhcLr0tWwoyS5u7ub30mAksbBwcE8nnh5eZnHFY4xxY9alGw//fSTxowZY/5/vXr11KFDB7Vt21bNmjVTQECAvLy8CtUrNTVVLi4ucnR0LDQ4hr0QYAcAAAAAAAAAAEXKf5HDdtFjw4YNmjRpko4dO6YnnnhCw4cPV1hYmCSpV69eat++vTZs2KCdO3eqTZs29mr6XYda2I+Dg4N5Ue+ll15S7969dfz4cSUlJSk7O1utWrWSm5ubPD09lf/Gx9de1PX09FTVqlV1+PBhzZo1S56enqpRo4YiIyP13nvvac2aNQoLC9NTTz0lidEsf09gYKAmTZokJycnZWRkyNHRUU5OTvZu1j3LarUqISFBs2bNUkJCgjZv3qwdO3aY0ytWrKj69eurS5cuqlGjhrp06SJXV9dCo39e+x6y98X0OxG1KFmaNWumOnXq6MiRI9q3b5+aNGkii8VSICxitVq1bds2DRgwQIcPH1ZOTo4qVqyopUuXKjAw0Lwzy6ZNmzRx4kRFRUWpS5cueuqpp9SjRw8lJCRo6dKlGj58uCZNmqSHH35YTZs2tfOWA0WzhaWvDVTZgnKSNG/ePL344otKSkpS48aN1aRJE3l4eOiLL77QK6+8olKlSmno0KEE6P4kalFyBAcH69dff9Wzzz6rgwcPmt81bB566CF1795dDz/8sLy8vIoMHKakpEiSTp8+rZSUFLm7u5u1jI2N1bp16+Tk5KTevXvLzc2NECpKLNt+mX//ZF+1D2pRcv3tb3+Tq6urfHx8FBgYqNDQ0AIDV+Tm5kq6Wq/k5GQdOHBAX331lRISEuTu7q6GDRvqtddeU7ly5eweYifADgAAAAAAAAAAfpftItWiRYu0fft2NW3aVC+88IIaNWok6eooPqVLl1azZs20Zs0axcfHE5q+TahF8cs/+pifn5+qVKlS5Hw3uphbu3ZtjRw5UsOGDdPf//53zZ49W+XKldOWLVskSQ0aNNCIESN03333SSo4ujFh9qI5OTnJYrGoVKlSysvLs3dz7nnZ2dl6/fXXlZeXJ2dnZ4WHh6t58+YKCwtTy5Yt5eHhUSgknZ2drezsbF26dElly5aVq6urpKv7POGIP45alBxubm6qW7euYmJiNGnSJIWFhalOnTrm3VZiY2O1adMmPffcc8rMzJQkBQUFadGiRapZs6Zyc3PNeVesWKFNmzbp/vvv1+uvv66WLVtKujoqb+fOnRUUFGQGHwmwo6S73p0Idu/erZdffllJSUnq3r27pk+fbo4W3b59e3Xp0kVff/21IiIiVKVKFY5PtwC1KBmCgoI0ffp0HTlyRL/88ouys7Pl5+enypUrq0uXLuZ8eXl5RQYN69WrJ2dnZx07dkx79uxRs2bN5ODgoK1bt+rrr7/WypUrFRgYqLZt20oihAoAdypb59bXXnut0DRbGN32+9Hx48f1+eefa8aMGUpISDDvGLhixQotXbpUq1atkre3t11/cyLADgAAAAAAAAAAbsrZs2c1Y8YMSdLQoUPNwHRubq5Kly4twzC0bds2STKDb7g9qEXxK2r0sZtlC78PHTpUhmFozJgxOnjwoDn90Ucf1cCBA9WuXTs5OzubFx2vvfhoG1mxTJkydh8lqyTIXwsC/vYXFBSkw4cPa+fOnQoNDZW/v795gVz6bRQ4ScrMzNTBgwf1+uuvKzExUQkJCWrevLn69u2rwYMHy2q10nHjT6AWJYeHh4f+/ve/a+vWrdq0aZMGDhyo+++/X7Vr19ahQ4e0adMmRUVFKScnRxUqVFDjxo315ZdfqkaNGgWO8ydOnNBnn30mSerfv78ZXs/JyZGTk5OqV68uT09PSdKVK1fss7HAn2C1WpWSkqJnnnlGJ06cUIcOHTR79mxZrVZlZmbKxcVFDz74oFq0aKEDBw4oMzOTAO5tQi3sx9vbW97e3mrWrFmhabbvE9c7H3fu3FlNmzbVxo0bNWDAADVp0kR5eXnau3evDh48KC8vL40fP17h4eFFLs+5HgDuDLbOrUWxfXewWCw6c+aMxo0bp8mTJ6tUqVJ67LHHNGLECDk7O+sf//iHfv75Z/Xr10/z5s1TqVKliqv5hRBgBwAAAAAAAAAAN8UwDKWmpkq6OqKo9NvIP5mZmfr666+1bt06Va1aVe3bt7dnU+961OLOYrFYzFDIs88+q/DwcCUlJenSpUsqU6aMHnzwQTOUIv120TElJUWpqalatmyZ9u7dq1WrVuncuXNatGgRo+uiRKpevbqqV68uSeao+LZ927ZfJycna+bMmfrwww91/PhxVahQQaVLl9aqVau0atUqJScn69VXXyVE9SdRi5KjRo0aWr58uXr06KGoqChFRUWZ02wdBJo1a6auXbtq8ODB8vHxKTTCbnp6urKysuTh4WEGG23nfcMwNHPmTG3fvl0uLi5mpzbgTnPq1CklJSXJ19dXEyZMkNVqVXZ2tjnq9/79+xUfH6/Lly8rLS3Nzq29u1GLkudGnQRsnZgXLlyoiIgIbdmyRXFxcZIkFxcXNW/eXG+99ZY5krvtc0H+TmrXnuvzfzcBANw5bMf1pUuXaubMmfLw8NDLL7+sp59+WuXKlZMk/fe//9XBgwe1Y8cOHTt2TDVr1rRbewmwAwAAAAAAAACAm1K6dGk1btxYq1atUkxMjFJTU1W6dGllZ2frX//6l7799ls5Ojpq8ODB8vLy4qL3bUQt7jz5AyINGjRQgwYNCky3WCw6ffq0MjMztXjxYsXHx2v+/Pk6deqUOfJ66dKlVb16dc2aNYsAO0o8WxDKduwxDEOStGDBAo0ZM0anT59Wt27dNGHCBHl5eWnHjh3q16+fXnvtNTVs2FAdO3a0W9vvNtTC/mrWrKnly5fr+++/18aNG3Xw4EFdvnxZHTt2VEhIiF566SWVLl1aLi4uRY6C6+npqerVqys+Pl67du1SSEiInJycJEmbN2/WTz/9JMMw9Oijj6p69eqc93FHOnDggE6cOCEPDw+zA4dtPzcMQ+vWrdO5c+fUpk0bBQQE2LOpdz1qcWdxcHBQTk6OvLy8tHz5cv3888+Kj4/XhQsXFBERoaCgINWqVUtS4ZHWk5KSdOrUKa1cuVKbN2+Wl5eXfvzxR84hAHCHsh3jv//+e50+fVoDBgwww+t5eXnKycmRs7OzAgICtGvXLp09e5YAOwAAAAAAAAAAKPnc3NzUoUMHrVixQh988IGOHDmiatWqafPmzdq+fbuysrL08MMPq2/fvmbAAbcHtbjzFBVIvHLlik6cOKGVK1fq6NGjWrBggS5fvqwzZ86Y8zz44IOqVq2aevXqJR8fH9WrV6+4mw7cEhaLRXFxcXrvvfd0+vRpDR48WBMnTpSbm5tycnL0l7/8RW+99ZZefvll7dmzh9D0bUQt7KNq1ap69913ZbFYlJycrJycHFWsWLHQfEWNeO/l5aX69etr//79GjdunDIzM9W4cWP9+uuvWrp0qdauXas6deqof//+cnd3L47NAW65WrVqqUqVKsrJydG5c+fM569cuaJffvlFr732mrKystS+fXt5eHjYsaV3P2px53F0dFRubq48PDz01FNPyWKxFNmZKS4uTpcvX9a8efN09OhRrVixwvzu4ezsrKysLPXt21edO3e2x2YAAG6B6Oho7dy5U2XKlNEbb7yhcuXKmXdvcnZ2VkxMjNavXy9JcnV1tWtbCbADAAAAAAAAAIDfZbv4PWrUKJ09e1b/+Mc/NG3aNHO6n5+fevTooWHDhtl15J57AbW4M+Tm5pojVtpkZWUpNjZWO3bs0NatW7Vq1SqdOHFCaWlpslgscnBwUOvWrVWjRg316dNHvr6+qlevXpHhE0bXxZ3oww8/VHx8vO677z598cUXcnV1NS+kS1eDU5J05MgRSUV3/MCtQS3sq1y5cgX+/0bHdMMw5OTkpG+++UaHDx/Wzp079cILL8jFxUWXL1+Wi4uLmjZtqnfeeUft27c3l5GudlYoqnbUEyVR+fLlVbVqVW3evFlvvfWW+vbtK2dnZ0VFRenf//63UlNT1a9fP73xxhuS+Cx0O1GLO4vt9bfVIP9/jx8/rqSkJM2fP1/x8fFaunSpsrKydOXKFTk4OMjDw0NPPvmkgoOD1bVrV1WoUEHly5e35+YAAP4kwzCUkZGh3NxcnT59WsHBweb3vISEBH3yySc6e/asunfvrrCwMLu2lQA7AAAAAAAAAAD4XRaLxQzkjhs3TnXq1FFUVJQSExPl5eWlZ599VgEBAapQoYK9m3rXoxZ3Blt4fePGjUpMTNSyZcsUExOjvXv3KisrS5Lk6emppk2bKjQ0VA888ID8/PzUsGHDItd3bTCIkBDuRElJSZKk3r17y9XVVVlZWWZQ+uTJk/r1118lybzTAAHb24da2Mf1jt03OqbbzvteXl5atWqVXnjhBe3evVvHjx9X1apVNXToULVv317NmzeXpAK1lK7W7vz58zp37pyio6PVq1cv6okSydvbWz/88IPatWunjRs3atOmTWZnDEkaMGCAfvjhB0l0wrjdqMWdwfad0HYOyc3N1fnz5xUbG6u1a9dq7969WrFihS5evCjp6l28SpUqpR49eiggIEC9evWSt7e3qlSpUmC9+WsNALjzlCtXTqGhodq3b5+2bdumOnXqyNvbW9HR0fr66681Y8YM+fv767HHHrN3UwmwAwAAAAAAAACAm+Pg4GBeJB84cKCkgiN8ovhQi5LrwoUL+ve//63169fr+PHj2rp1qzmtXLlyqlOnjjp16qQmTZqoQYMGCgwMlGEYBYI/eXl5MgzDDMFTU9wtMjIyJEnnzp2TYRhmyDYlJUULFizQihUrFBgYqPDwcHs2855ALe4stvO+p6enJk2apIsXLyolJUVlypSRt7d3gXmdnZ2VmZmpqKgo7dy5Uzt27NC6det06tQppaamatCgQZo0aZKdtgS4sZo1a2rdunV69913deTIER09elQPPPCAwsPD9eyzz0oiMF1cqEXJc22H1tzcXF25ckXr169XTEyM1q5dq3379ikxMdGcp0qVKurcubPq1KmjiIgIeXl5qUaNGjdcP989AODOVrlyZT388MPas2ePRo0apQULFqhy5cpaunSpUlJS5OPjo2eeeUbdunWzd1MJsAMAAAAAAAAAgJtnC9TacHHbfqhFyVS2bFkdOXJEc+bMUdWqVVW/fn316NFDNWrUUIcOHVSpUiU5OTkVWCYzM1OXL19WQkKCfHx85O3tLVdXV7OTAnCns3WwCQ0N1erVq7VhwwZt2bJFjRs31sGDB7VkyRKNGzdOly9f1rBhw657JwL8edTizuXg4KCcnBw5OjrK29vbDK6np6erVKlS2rBhg44cOaKlS5dqz549OnDggLls2bJlFR4eriZNmig0NLRQCBIoSQIDA/Xtt9/KxcVFZ86ckY+PjzmNwHTxohYli8ViUV5env79738rIyND06dPV0JCghISEsx5qlevri5duqhNmza6//775e/vLz8/P3N6Xl6eJJnnk2vXDwC4s9nOz++8846uXLmicePGaf369eb0tm3bqnfv3ho4cKBKlSplx5ZeZTG47wcAAAAAAAAAAADwp+UPBC5atEj33XefnJycVLZs2QLzZWdnmyH2DRs2aObMmVqwYIFOnDghf39/hYWF6csvv5S3tzchdtxV4uLi1KZNGx0/flzVqlVT+fLllZiYqMuXLyszM1PPPPOMvv32W3s3855ALe4M1wuIZmZmav369Tp16pRmz56tEydOaPv27eb0gIAAValSRQ888IAaNGig0NBQ+fv7F2fTgT/F9pkq/3uAjhf2QS1KluPHjxc4ntevX18+Pj7q3r27goKC1LRp00LfPSTpypUrys3NVenSpc060gkBAO5O+X9HWrRokQ4ePGiOvP7II4+oTJkyhTox2QsBdgAAAAAAAAAAAOAW+b3Aef7Az4IFCzRixAgdO3ZMbm5uCggIUHp6uo4ePao6depo7dq1Kl++PCEh3FUOHjyoPn366MiRI0pLS5MkNW/eXJ06ddLo0aPt3Lp7C7UoeWzH+2uP+xkZGdq2bZsOHTqkOXPm6MSJE9q9e7c53d/fX76+vurdu7dq1Kih1q1bq3Tp0nJxcSmwfjpFAcCdLzY2Vhs3bpSfn59atWolBweHAsd72zkkJydHcXFxmjx5slavXq2kpCSFh4crIiJC/fv3l0SIHQDuVnfK534C7AAAAAAAAAAAAEAxW7lypfr166dz586pV69e6t+/vzp27Kjs7GyNGDFC//nPfzRo0CB9++23JWZkLOBWOX36tHbt2qXjx4/L29tbTZo0UZUqVezdrHsStSiZzp8/r7i4OG3btk1r1qxRTEyMoqOjzenVq1dXpUqV1LNnT/n7+6tLly5ydHRUqVKlCqyHYCIA3BuuHSk/KytLs2fP1jfffKP169dLkjw8PHT58mVJ0rhx4/Tqq6/as8kAABBgBwAAAAAAAAAAAIrTqVOnNHjwYC1btkyPPfaYRo8erVq1apnTk5OTFRISooCAAG3cuPGOGDULAPDn5eXl6YUXXtDUqVOVnZ2tjIwMSVKFChUUGhqqdu3aKSQkRK1bt5ajo6M8PT1vuC7C6wBw78nLy9OcOXP03nvvad++fWrcuLHee+89BQcHKyYmRoMGDdLFixc1f/58de3a1d7NBQDcwxiuAQAAAAAAAAAAAChGiYmJ2rBhg7y8vPTEE08oKChI0m+3eE5JSZFhGEpMTFRqauoNA4oAgLuH1WrVU089pVmzZql58+YKCwtT69at1bhxY3l5ecnZ2bnA/IZhKDMzU0uXLtWZM2fk6empgIAANWvWTFarlRA7ANxDbKOwJycna/Lkydq3b5+6du2q9957Tw0aNJBhGAoODtbf//53DRs2TJGRkQTYAQB2RYAdAAAAAAAAAAAAKAa2UMnatWuVmpqqJk2aKCIiQpKUnZ0tJycnSdLixYt17tw5tWjRQs7OzuZyAIC7X6NGjXT06FG5ubkVeD43N1eSlJOTI0dHR+Xk5GjatGmaMWOGFi9ebM7n5uam999/Xy+//LKsVivnEAC4R9iO9T/88IOWLVsmLy8vvfPOO2rQoIGkq983nJ2dFRAQIOlqp1oAAOyJADsAAAAAAAAAAABQDGyhEj8/P0lXQ4jHjh1T1apVzfD6jBkz9Oabb0qSBg8erFKlStmnsQAAu8kfXreNou7g4CBJZnj9888/18SJE5WYmCh/f3899thjysrK0rfffquRI0fK1dVVw4YNI7wOAPeYgwcPSpKeeeYZNWnSRIZhyDAMOTs768qVK5oxY4YkqVy5cvZsJgAA4l5RAAAAAAAAAAAAQDGqXLmyPDw8FBUVpblz5yo6Olrnz5/XF198oaFDhyo1NVVDhgzRY489Zu+mAgDszGr9LdZhGIYkaf78+frmm290+vRpDR48WPPmzdPYsWM1YcIELVy4UE5OTvruu+905swZezUbAGAnFy9elCSdPHlSWVlZMgxDVqtV6enpWrBggVatWiUfHx/17dtX0m/nFgAAihsBdgAAAAAAAAAAAKAYtW3bVs8//7wk6aWXXlK7du3UvHlzvfDCC7p06ZL69++v5557rsAIvAAA2EZTnzt3rg4dOqSIiAi9+uqratiwofLy8pSVlaX27duradOm2rt3rxliBADcO8LCwiRdHYk9JiZGkpSenq4pU6bo448/VkJCgjp16qQaNWpIEnfqAADYjcWgGxUAAAAAAAAAAABQLPLy8szRdEePHq0ffvhBx48fl4uLixwcHPS3v/1Nffv2VdWqVe3cUgBASbR161Y1b95ckrRq1Sq1a9dO0m/nlwsXLqh58+aKj4/X3r17VbNmTXs2FwBQzOLj49WuXTslJCSoZs2a8vHx0enTpxUXF6esrCx17txZn332mYKDg+3dVADAPY4AOwAAAAAAAAAAAFCMcnNz5eDgIEnav3+/Tp06JXd3d5UuXVp16tSxc+sAACXZ6tWr1aFDB1WpUkU7d+6Ut7e3cnJy5OjoqNTUVH300UcaO3asGjZsqG3btpnnGwDAvSM2Nlbdu3dXXFycsrOzJUk1atRQp06d9PLLLysoKMjOLQQAQHK0dwMAAAAAAAAAAACAe4mDg4M5Um5ISIhCQkLs3SQAwB2iQoUK8vb2VkZGhvbu3avWrVvL0dFRly9f1pQpUzR9+nSVLVtWw4cPl4ODgwzDkMVisXezAQDFqFatWvr111+1YcMGJSYmytHRUd27d1f58uVVpkwZezcPAABJjMAOAAAAAAAAAAAAAABwR0hOTlaXLl0UGRmpVq1aqVu3bgoJCdH333+vzZs36+LFi3ryySc1evRoValSxd7NBQAAAIAiEWAHAAAAAAAAAAAAAAC4Qxw8eFDt2rVTUlKSJMnFxUWZmZny9fVV9+7d9corrygoKMjOrQQA2Bt34QAAlGQE2AEAAAAAAAAAAAAAAO4ghw8f1vvvv689e/YoKytLPj4+evnllxUWFiZfX197Nw8AAAAAbogAOwAAAAAAAAAAAAAAwB0mKytL2dnZysrKUtmyZe3dHAAAAAC4aQTYAQAAAAAAAAAAAAAA7nCGYchisdi7GQAAAADwu6z2bgAAAAAAAAAAAAAAAAD+HMLrAAAAAO4UBNgBAAAAAAAAAAAAAAAAAAAAAMWCADsAAAAAAAAAAAAAAAAAAAAAoFgQYAcAAAAAAAAAAAAAAAAAAAAAFAsC7AAAAAAAAAAAAAAAAAAAAACAYkGAHQAAAAAAAAAAAAAAAAAAAABQLAiwAwAAAAAAAAAAAAAAAAAAAACKBQF2AAAAAAAAAAAAAAAAAAAAAECxIMAOAAAAAAAAAAAAAAAAAAAAACgWBNgBAAAAAAAAAAAAAAAAAAAAAMWCADsAAAAAAAAAAAAAAAAAAAAAoFgQYAcAAAAAAAAAAAAAAAAAAAAAFAtHezcAAAAAAAAAAFC8cnJyNH/+fC1fvlybN2/W6dOndeHCBbm5ualChQqqX7++WrRood69eysgIMDezQUAAAAAAAAAAHcRi2EYhr0bAQAAAAAAAAAoHgsWLNDIkSN1+PDhm5q/S5cuGjt2rOrVq3ebWwYAAAAAAAAAAO4FjMAOAAAAAAAAAPeIDz74QH/7299kG9ekbdu2euihhxQaGqry5csrLS1NSUlJWrdunRYtWqT4+HgtXrxYVapU0TfffGPn1gMAAAAAAAAAgLsBI7ADAAAAAAAAwD1g8uTJeuqppyRJlSpV0vTp09W2bdvrzp+bm6vp06frr3/9qx588EEC7AAAAAAAAAAA4JYgwA4AAAAAAAAAd7ljx46pZs2aysjIUJkyZbRjxw4FBQXd1LIXL17U+vXr1bVr19vcSgAAAAAAAAAAcC+w2rsBAAAAAAAAAIDba8KECcrIyJAkffjhhzcdXpckLy+vQuH1+Ph4WSwWWSwWTZkyRZI0Z84cRUREqHLlynJ0dCxydPeFCxeqd+/eqlKlilxcXFS+fHmFh4dr7NixSk1NvW4bxowZY/69G1mzZo0535o1awpNb9u2rSwWi9m22NhYDRkyRAEBAXJ1dZWvr68eeeQRbdmy5YZ/Jzc3V1OmTFGnTp3k4+MjZ2dneXp6Kjg4WB06dNBHH32kmJiYG64DAAAAAAAAAIB7laO9GwAAAAAAAAAAuH0Mw9DUqVMlSR4eHho0aNAtX3///v3Nv1GUjIwMPf7445o7d26B55OTk7VlyxZt2bJFn3/+uRYvXqyGDRve0vZdz9KlS9WnTx9duXLFfO7UqVOaOXOmZs+erX/+85966aWXCi2XmpqqiIgIrV+/vsDz2dnZSklJ0eHDh/Xrr79q586dmjVr1u3eDAAAAAAAAAAA7jgE2AEAAAAAAADgLrZv3z6dP39ektSqVSu5u7vf0vV/+umn2rNnj1q1aqVhw4apZs2aunjxouLj4815BgwYYIbXGzRooJEjRyokJETJycmaPn26pkyZopMnT6pDhw7as2eP/Pz8bmkbr3Xy5Ek9/vjjcnR01EcffWSOyL569Wp9/PHHSklJ0csvv6zq1aurR48eBZYdM2aMGV5/6KGH1K9fP/n7+8vV1VVnzpzRrl27tGjRot8dLR4AAAAAAAAAgHsVAXYAAAAAAAAAuIvt2bPHfNy4cePbsv7+/ftrypQpRYa2Fy9erBkzZkiSOnTooCVLlsjZ2dmc/sADDyg8PFxDhgxRcnKyXnnlFf3888+3vJ35HTp0SJ6entq8ebNCQkLM58PDw9W9e3e1aNFCKSkpGj58uLp06SInJydzHtu29O7dWzNnziy07s6dO+vNN99UcnLybd0GAAAAAAAAAADuVFZ7NwAAAAAAAAAAcPucO3fOfFyhQoXrzpeXl6d9+/Zd9192dnaRy3l5eemLL7647ojjX375pSTJyclJP/zwQ4Hwus0zzzyjjh07SpLmzJmjpKSkm96+P+qdd94pEF63qVu3rt566y1J0okTJzR//vwC00+dOiXp6mj2N1KuXLlb1FIAAAAAAAAAAO4uBNgBAAAAAAAA4C52+fJl87G7u/t150tJSVH9+vWv++/EiRNFLte1a1d5eHgUOS0nJ0dr166VdHWk9apVq1737z/zzDPmMmvWrPm9zfpTLBaLBgwYcN3pgwYNMgP5v/zyS4Fpvr6+kqSff/5ZaWlpt6+RAAAAAAAAAADcpQiwAwAAAAAAAMBdLH+4/MqVK7d8/aGhodeddvToUTPk3axZsxuuJ//0ffv23ZrGXUdAQIC8vb2vO71ChQqqXr26JGnv3r0FptmC75s2bVJAQICGDx+uuXPn6uzZs7etvQAAAAAAAAAA3E0IsAMAAAAAAADAXax8+fLm4xuFrL28vGQYRoF/Nxql3KZs2bLXnZacnGw+rlix4g3X4+PjU+Ryt8PvtUWSKlWqVGRb3nnnHQ0ePFgWi0VnzpzRl19+qV69eqlixYqqV6+eRo8erdOnT9+WdgMAAAAAAAAAcDcgwA4AAAAAAAAAd7EGDRqYj3ft2nXL1+/g4HBT81ksllv+t/+oP9MWJycnTZo0Sfv27dPbb7+tFi1ayNnZWZIUHR2t9957T0FBQZo/f/6tai4AAAAAAAAAAHcVAuwAAAAAAAAAcBerV6+eOQr7+vXrlZaWVmx/u1y5cubj3xuV/NSpU0UuJ0lW628/Zefl5V13HVeuXLmpdt3MCOm2ea5ti02dOnX0/vvva+PGjbp06ZJWrlypQYMGycHBQampqerbt6+SkpJuqj0AAAAAAAAAANxLCLADAAAAAAAAwF3MYrHoiSeekCSlpKToxx9/LLa/XaNGDbm5uUmSIiMjbzjv1q1bzcf16tUrMM3Dw8N8fOHCheuu4+DBgzfVrri4OJ0/f/6608+ePav4+Pgi21IUV1dXdezYUZMnT9b48eMlSenp6Vq0aNFNtQcAAAAAAAAAgHsJAXYAAAAAAAAAuMu98sorcnV1lSS9+eabiouLK5a/6+joqDZt2kiSVq5cqePHj1933n/961/mMm3bti0wLSAgwHy8ffv2665j+vTpN9UuwzD073//+7rTp0yZIsMwJEkdO3a8qXXadOjQwXx87ty5/2lZAAAAAAAAAADuBQTYAQAAAAAAAOAu5+/vr4kTJ0qSLl26pJYtW2rDhg03XMYwDF28ePFP/+3nn39ekpSVlaWnnnpK2dnZheaZPHmyVqxYIUnq1auXfH19C0xv0aKFHB0dJUmffPKJGS7Pb/z48QVGcf8977//vmJjYws9v3//fn344YeSJF9fX3Xv3t2clpycrIULFxb5921s2yEVDN4DAAAAAAAAAICrHO3dAAAAAAAAAADA7ffMM8/oxIkTevfdd3Xy5Em1atVK7du3V9euXVW/fn2VK1dOubm5OnXqlHbu3KkZM2YoOjpakuTg4CBnZ+c/9He7dOmiPn36aObMmVqxYoWaN2+uV155RbVr19aFCxc0ffp0TZ48WZJUrlw5TZgwodA6KlasqD59+mjatGlavny5unXrpueff16VKlVSYmKipk6dqtmzZ6tFixbatGnT77YpKChIZ8+eVfPmzfX666+bI76vWbNGY8eO1aVLlyRJn3/+eYHtTklJUbdu3VS9enX16tVLzZo1U7Vq1eTo6KikpCQtXLjQHEnez89PDz300B96zQAAAAAAAAAAuJtZjBsNFQMAAAAAAAAAuKvMnTtXr776qo4ePfq781osFnXq1Enjx49XvXr1zOfj4+PN0cV/+OEHDRw48IbrycjI0OOPP665c+ded57KlStr8eLFatiwYZHTT58+rVatWunQoUNFTn/sscf09NNPq2PHjpKk1atXm8F0m7Zt22rt2rVq06aNRo0apUceeURpaWmF1mW1WjVu3DiNHDmywPP5t/tGfH19tXDhQoWFhf3uvAAAAAAAAAAA3GsYgR0AAAAAAAAA7iE9e/ZU165dNXfuXC1fvlybN2/WmTNndPHiRbm5ual8+fKqX7++wsPD9eijj95UYPv3uLq6as6cOVq4cKGmTJmiLVu26Ny5c3J3d1fNmjXVo0cPDR8+XKVLl77uOipVqqTIyEh9/PHHmjNnjhITE+Xu7q569eppyJAh6tevn9asWXPTberSpYu2b9+u8ePH69dff1VSUpK8vLzUqlUrjRw5UuHh4YWWqVatmrZu3aolS5Zo06ZNSkhI0OnTp5WamiovLy/VqVNHXbt21ZAhQ1SmTJk/8lIBAAAAAAAAAHDXYwR2AAAAAAAAAMA9If8I7P9L2B0AAAAAAAAAANw6Vns3AAAAAAAAAAAAAAAAAAAAAABwbyDADgAAAAAAAAAAAAAAAAAAAAAoFgTYAQAAAAAAAAAAAAAAAAAAAADFggA7AAAAAAAAAAAAAAAAAAAAAKBYEGAHAAAAAAAAAAAAAAAAAAAAABQLi2EYhr0bAQAAAAAAAAAAAAAAAAAAAAC4+zECOwAAAAAAAAAAAAAAAAAAAACgWBBgBwAAAAAAAAAAAAAAAAAAAAAUCwLsAAAAAAAAAAAAAAAAAAAAAIBiQYAdAAAAAAAAAAAAAAAAAAAAAFAsCLADAAAAAAAAAAAAAAAAAAAAAIoFAXYAAAAAAAAAAAAAAAAAAAAAQLEgwA4AAAAAAAAAAAAAAAAAAAAAKBYE2AEAAAAAAAAAAAAAAAAAAAAAxeL/AKURrElTqK7kAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAC7AAAAPgCAYAAACx8HFwAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzde1zb5d3/8TcJp9BzibbUFsOsLelwamsnA5nVqdOJgimdukWtZ+/pDr+bzsk8zJ3Kdk/c7eHhnK7zhMVNpKhYD1NbxVrniroOF2o7jbQWq6GlJ8Ip5PcHd2IpJAQIhJDX8/HgQfh+P9/reyUBklzfz/W54rxer1cAAAAAAAAAAAAAAAAAAAAAAIwwQ6Q7AAAAAAAAAAAAAAAAAAAAAACIDSSwAwAAAAAAAAAAAAAAAAAAAABGBQnsAAAAAAAAAAAAAAAAAAAAAIBRQQI7AAAAAAAAAAAAAAAAAAAAAGBUkMAOAAAAAAAAAAAAAAAAAAAAABgVJLADAAAAAAAAAAAAAAAAAAAAAEYFCewAAAAAAAAAAAAAAAAAAAAAgFFBAjsAAAAAAAAAAAAAAAAAAAAAYFSQwA4AAAAAAAAAAAAAAAAAAAAAGBUksAMAAAAAAAAAAAAAAAAAAAAARkV8pDsAAAAAAAAAAAAAAAAAAAAAIPK8Xq86OzvV3d0d6a5gDDMYDEpISFBcXNyQjieBHQAAAAAAAAAAAAAAAAAAAIhhHo9HLpdL+/fvV2dnZ6S7gyiQkJCgSZMmyWw2y2g0DurYOK/X6x2hfgEAAAAAAAAAAAAAAAAAAAAYwzwej7Zv36729nZNmTJFEydOlNFoHHJ1bYxvXq9XHo9HBw4c0N69e5WUlKQ5c+YMKomdBHYAAAAAAAAAGKMOHjyoNWvW6JVXXtE//vEPff7559qzZ49MJpPMZrNOOOEEnXLKKbrwwgs1a9asSHcXAAAAAAAAABCFdu3apZaWFqWnp8tkMkW6O4gibrdbjY2Nmjp1qmbMmBHycSSwAwAAAAAAAMAY4/F49Pvf/16//e1v5XK5Bow3GAxatmyZfv3rX+uYY44ZhR4CAAAAAAAAAMYDr9er//znP5o4caJmzpwZ6e4gCjU1NengwYM65phjQq7aHz/CfQIAAAAAAAAADEJLS4suuugivfjii/5tc+fO1dlnny2r1Sqz2ayDBw9q586dWr9+vV5//XV1dHToL3/5i9ra2lRdXR25zgMAAAAAAAAAokpnZ6c6Ozs1ceLESHcFUWrSpElqaWlRZ2enEhMTQzqGBHYAAAAAAAAAGCO6urp0/vnnq7a2VpI0Y8YM3XvvvVq6dGm/VUtuvvlmuVwu3XHHHbrnnntGu7sAAAAAAAAAgCjX3d0tSTIajRHuCaKV73fH97sUCsNIdQYAAAAAAAAAMDg//elP/cnr6enpeuutt1RUVBR0yU2z2azf/OY3evvtt/XlL395tLoKAAAAAAAAABhHgo1DA8EM5XeHBHYAAAAAAAAAGAN27typu+++W1LPYO/jjz8ui8US8vFf/vKX9etf/7rffW63W/fee6/OPPNMpaWlKTExUampqVq8eLFuueUW7dy5s9/jWlpalJycrLi4OB1zzDEh9WPXrl1KSEhQXFycsrKyAsbt3btXZWVlOuOMMzRr1iwlJSVp+vTpWrRokUpKSvTJJ58EPc/y5csVFxenuLg4OZ1OSVJ1dbVsNpuOPvpoJSUl9donSV6vVxs2bNBtt92mM888U7Nnz1ZycrJMJpNmz56t888/X3/+85/V0dER0n2VpGeffVbnn3++0tLSlJycrPT0dBUVFemVV16RJK1fv97fz9tvvz2k9i699FLNnTtXkyZNUkpKijIyMmS32/Xyyy+H3C8AAAAAAAAAAMaq+Eh3AAAAAAAAAAAg3XfffWpvb5cknX322TrllFPC0u4//vEPLV26VNu3b++1fffu3dq9e7c2bdqk3//+97rnnnt0xRVX9IqZOnWqzjvvPFVWVurDDz/UG2+8MWC/Kioq1NXVJUm69NJL+4158skndd1112n37t29tnd0dGjPnj1655139L//+7+6//77ddlllw14Hzs6OlRUVKSnnnoqaNyVV16phx56qN99n3zyiT755BM9++yz+t3vfqdnnnlGxx57bMC2urq6tHz5cj3++OO9tm/fvl3bt2/XU089peLiYuXn5w/Yf99xF154oTZu3Nhnn9PplNPp1OOPP66lS5fq0UcfVUpKSkjtAgAAAAAAAAAw1pDADgAAAAAAAABjwAsvvOC/HUrSdig2b96s0047TQcPHpQkLViwQJdccokyMjK0e/duVVdX66WXXlJra6uuvPJKeb1eXXnllb3auOyyy1RZWSlJeuyxxwZMYH/00UclSQaDQXa7vc/+Bx98UNdee628Xq8SExNVUFCgr3/965oxY4YOHDigN954Q6tXr1ZbW5uWL1+uxMREXXzxxUHP+aMf/UjPP/+8jj76aF166aXKzMxUW1ub3n77bSUlJfnjWltblZiYqFNOOUUnn3yy5s6dq8mTJ6u9vV3btm1TVVWVNm/erIaGBp1zzjl65513NHny5H7Ped111/mT1+Pj42W323XqqacqKSlJmzdv1qpVq1RWVtZn4kB/tm/frpNPPllNTU2SpBNPPFGFhYWaO3euDAaDtmzZokcffVQffvihnnrqKR08eFBr165lSV8AAAAAAAAAQFSK83q93kh3AgAAAAAAAABi2cGDBzV58mR1d3dL6klonj179rDa7O7u1vHHH6/6+npJ0lVXXaU//OEPio/vXddk1apVuvrqq+X1epWSkqL3339fFovFv7+rq0tHHXWUPvvsM02dOlWffvppr6TwQ73//vvKysqSJJ155pl66aWXeu3fvHmzFi9erI6ODh177LF65plnlJmZ2acdh8OhM844Qzt37tSkSZPkdDo1ffr0XjHLly/XI4884v+5sLBQFRUVSk5ODviYvP766zruuOM0bdq0fvd7vV799re/VUlJiSTpl7/8pW655ZY+cevWrdPpp58uSZo8ebJeeuklnXzyyb1iXC6XzjjjDP3zn//0b/vZz36m22+/vc85c3NztXHjRhmNRv3hD3/Q1Vdf3eec7e3tWr58uZ544glJPRMBrrrqqoD3FQAAAAAAAABC0dbWpo8++kgZGRlBx1cl6ZMWt/Yc7Bilno2caRMSddRUU6S7EVYWi0Uff/yxHnroIS1fvjzkfeEwmN8hHyqwAwAAAAAAAECEffrpp/7k9aSkpGEnr0vSc889509e/8pXvqL7779fRqOxT9yVV16pTZs26f7771dra6vuuusu/f73v/fvj4+P18UXX6y77rpLLS0teuaZZ7Rs2bJ+z/nYY4/5b1966aV99t9+++3q6OhQcnKy1q5dq7lz5/bbjtVq1cMPP6yzzjpL+/fv14MPPqif/OQnAe/rUUcdpccee2zAgfGvf/3rQffHxcXppptu0nPPPac33nhDjzzySL8J7Ic+Pr/73e/6JK9Lktls1hNPPKHjjjtOXV1dAc/57LPPauPGjZJ6Hp/+ktelnt+LRx55RG+99ZacTqfKyspIYAcAAAAAAAAwaj5pcev0O9arvas70l0ZtqR4g15dsWREkti9Xq8qKyu1evVqvfPOO/rss89kNBo1Y8YMpaWl6atf/ary8vL0jW98I+AKoKPJV3Rl+fLlvYrbjDTDqJ0JAAAAAAAAANCv5uZm/+2pU6eGpc2qqir/7eLi4n6T131uuukmxcXF9TnO57LLLvPfPjRJ/VDd3d16/PHHJUkTJ06UzWbrtb+lpUVPP/20JOmCCy4ImLzuc+aZZyotLU2S9OKLLwaNveKKKzRx4sSgMYNxyimnSJK2bdvW67mReirJvPDCC5J6nqtg1WoyMzN1zjnnBD2Xr4p8UlKSfvCDHwSNTUxM1MUXXyxJamhoUGNjY9B4AAAAAAAAAAiXPQc7xkXyuiS1d3WPSCX5lpYWnXbaafr2t7+t6upqNTY2qqurS0lJSWpsbNSGDRv0+9//Xjabrd+x+JFyzDHHaP78+ZoyZUqffT//+c/185//XE6nc9T6I1GBHQAAAAAAAAAizuv1hr3Nv//97/7bZ511VtDYo48+WpmZmXI4HGpsbFRTU5M/eVySTjzxRGVlZam+vl4vvPCCPv/8cx1xxBG92li3bp127NghSVq6dKlSUlJ67d+wYUOvKvPV1dUD3odJkyapqalJ//73v4PG5eXlDdiWT1dXl6qqqlRdXa333ntPO3fu1P79+/19O9yOHTuUmprq//mf//ynOjs7JUm5ublKTEwMer7TTjtNzz77bMD9r7/+uiRpxowZevXVVwfs/549e/y3//3vfys9PX3AYwAAAAAAAAAAI+/SSy/Va6+9JqPRqB/96Ee69tprdcwxx8hgMKirq0v//ve/9cILL2j16tWj2q9XXnllVM8XChLYAQAAAAAAACDCDk2QbmlpCUubTU1NknqSwGfOnDlg/Lx58+RwOPzHHprALvUMvN94443q7OxURUVFn2rhh1Zmv/TSS/u0f2j1locfflgPP/xwqHdFu3fvDrp/9uzZIbWzZcsW2Wy2ARPiD7Vv375eP+/cudN/+5hjjhnw+C996UsB9x08eFAul0uS1NjYqAsuuCDkfkkDPy4AAAAAAAAAgNGxdetWfzGTX/3qV7rpppt67Y+Pj9dXvvIVfeUrX9GNN94ot9sdiW6OGYZIdwAAAAAAAAAAYt3MmTNlMPQM17a3t/srmQ/H/v37JUkTJkwIKX7ixIl9jj2U3W6X0WiU1DtZXZJaW1v11FNPSZLS09N12mmn9Tl+OIn5vorngZhMpgHb2Lt3r04//XR/8vqsWbN09dVX684779Tjjz+up556SmvWrNGaNWt04YUX+o/zeDy92jl48KD/9uFV5vsT7PEf7mSFjo7wL3ELAAAAAAAAABi89957z3+7oKBgwPjDx7UtFovi4uL08MMPa//+/SopKdH8+fNlMplkNptVWFjYa+XVwTi0bZ/ly5crLi7O//Npp52muLg4/5fFYhnSuUJFBXYAAAAAAAAAiLCJEyfqxBNPVF1dnSRpw4YNvZKoh2LSpElqaWnplXAdzIEDB3ode7i0tDSdccYZevHFF7Vp0yY5HA5ZrVZJ0po1a/zH2+32XoPePocmyN999936/ve/P6j7M1z33nuvv3r6d7/7Xf35z39WYmJiv7EbNmwI2M6hCemtra0DnjfY43/oY7Jw4UL/8w8AAAAAAAAAiF47duzwj58P1p49e7R48WJt2bJFiYmJSk5OVnNzs55++mk9++yzevDBB3XFFVcMu49TpkzRjBkztGvXLknStGnTeo2ZH3HEEcM+RzBUYAcAAAAAAACAMeCb3/ym//Yjjzwy7PbS0tIk9VRT9w1AB/PBBx/4b8+aNavfmEsvvdR/+9FHH+339qExh5o9e7b/9vbt2wfsT7i99NJLknqWab3nnnsCJq9L0kcffRRw36GPzX/+858Bz/vhhx8G3DdlyhR/Ens4qu4DAAAAAAAAACJj8eLF/uIuxcXFvcbcB+PnP/+5PvvsM/31r3/VwYMHtXfvXv373//Wqaeequ7ubl177bV65513ht3fu+66S59++qn/56qqKn366af+r3/84x/DPkcwJLADAAAAAAAAwBjwve99T0lJSZKkF154IWgV8FCcfPLJ/tu+5O1AGhsb1dDQIElKT0/XzJkz+4274IILNHnyZEnS448/Lq/Xq6amJr3yyiuSpK9+9auaP39+v8fm5eX5B+9feOGFwd2ZMPANxKempmratGkB49ra2rR+/fqA+48//nglJCRIkt588011dHQEPe+6deuC7j/11FMlSZ999hkV2AEAAAAAAAAgSlksFl111VWSpH/961/KzMzUwoULdf311+vPf/6z6uvr5fV6B2xn7969evLJJ7Vs2TLFx8dLkqxWq55//nkde+yx6urq0q233jqi92U0kMAOAAAAAAAAAGPAUUcdpRtuuEGS5PV69Z3vfEcff/xxyMc7HA7dfPPN/p+XLl3qv11WViaPxxPw2N/+9rf+gfNDjzucyWRSUVGRpJ4q6uvWrdPq1av9bQeqvi5JRx55pM455xxJPYP3FRUVIdyr8JkwYYKknkTxffv2BYy766671NzcHHB/cnKyv1r+nj179PDDDweMbWho0PPPPx+0X5dddpn/9i233BLSBQwAAAAAAAAAwNhz33336dZbb9WECRPk9Xr17rvv6r777tOVV16p4447TjNnztR///d/B101NTc3V9/4xjf6bDeZTPrxj38sqadIzN69e0fsfowGEtgBAAAAAAAAYIwoLS1Vbm6upJ6q6NnZ2XrqqaeCJjXv3r1bt9xyixYvXqz333/fv/1b3/qWjjvuOEnSP//5T/3Xf/2Xurq6+hz/8MMP6/7775ckpaSk6Ic//GHQPh6apP7oo4/q0UcflSQlJibqoosuCnrsr3/9ayUmJkqSrrrqqgGT2Hfv3q0777xTL7/8ctC4UCxevFhSz+SAQxP9D1VRURFS5Zr/9//+n//2j3/8Y/3973/vE+NyuXTRRRf1+5gfqqioyF8t/4UXXtCll16qAwcOBIz3eDx64YUX9Ktf/WrAfgIAAAAAAAAARk98fLx+8Ytf6JNPPtFjjz2mq666Sscff7x/XPyzzz7T73//e2VlZentt9/ut43TTz89YPu+fd3d3XrnnXfCfwdGUXykOwAAAAAAAAAA6JGQkKBnnnlGF154oV5++WV9+umnKioq0rHHHquzzz5bCxYsUGpqqg4ePKidO3eqtrZW69evV1tbW5+2DAaDysvLlZOTo4MHD+rBBx/Uxo0bdckll8hisWj37t16+umn9cILL/iPufvuu3X00UcH7ePXv/51WSwWOZ1OVVRUqKOjQ1JPwnxqamrQY0844QT98Y9/1JVXXqnW1lZ95zvf0f/8z//ovPPO07HHHiuTyaS9e/dq27Ztevvtt/X666+rq6tLjz322BAezd5uuOEG/fnPf1ZXV5fuvfdevfPOOyoqKtJRRx2lXbt26emnn9Yrr7yiiRMn6vzzz9dTTz0VsK3TTz9dV155pVatWqV9+/YpLy9PdrtdX//615WUlKTNmzdr1apV+vzzz/Xtb39bf/3rXyX1PCeHi4uL01NPPaWvfe1r2r59u8rLy/Xcc89p2bJlWrRokaZPn662tjbt3LlT//znP/W3v/1Nn3/+ub7xjW/olltuGfbjAgAAAAAAAAAIrylTpshut8tut0uS2tra9MYbb+juu+/Ws88+K5fLpaVLl2rr1q1KTk7udexRRx0VsN1D93322Wcj0/lRQgI7AAAAAAAAAIwh06dP1wsvvKA77rhDv/vd79Tc3KytW7dq69atAY8xGo26+OKL9ctf/rLX9q985Stat26dbDabduzYofr6ev3kJz/pc3xKSoruvvtuXXnllQP2Ly4uTpdccol++ctf+pPXpd6V2YNZvny50tLSdMUVV2jnzp1677339N577wWMT0pKktlsDqntYI477jj98Y9/1LXXXquuri69+eabevPNN3vFpKamavXq1XrzzTeDJrBL0v333y+3263Vq1ers7NTDz30kB566KFeMcXFxTr77LP9CeyTJk3qt62jjjpKmzZt0vLly/X8889rz549euCBB4Kef/bs2QPdZQAAAAAAAADAGJCcnKwzzjhDZ5xxhpYvX65HHnlEO3bs0AsvvKDCwsJIdy8i+pZ7AQAAAAAAAABElNFo1E9+8hM5nU498sgjuvTSS7VgwQKZzWbFx8dr8uTJOuaYY2Sz2fS///u/2rFjhx577DFZLJY+bS1evFgffPCB7r77bn3jG9/QjBkzlJCQoGnTpmnRokX66U9/qq1bt4aUvO5zeLJ6amqqzj333JCP/+Y3v6kPP/xQf/7zn1VUVKSMjAxNnDhR8fHxmjZtmk488UQtX75cjz76qD799FOdffbZIbcdzBVXXKG///3v+u53v6vZs2crISFB06dP1wknnKBbb71Vmzdv1llnnRVSW/Hx8Xr88cf1zDPPKD8/X0ceeaQSExM1e/ZsLV26VC+//LLuuOMONTc3+4+ZPn16wPaOPPJIrV27Vhs3btQNN9ygE044QampqTIajZowYYKOOeYY5efn6ze/+Y3q6+v18MMPD/fhAAAAAAAAAACMsmuuucZ/e8uWLX32f/LJJwGPPXTfkUceGd6OjTIqsAMAAAAAAADAGDVx4kRdeumlIVc3D8RkMun73/++vv/974elX3PnzpXX6x1WG0lJSbr88st1+eWXD+n4hx9+eEhJ3AsXLlR5eXnQmNtvv1233357SO2dd955Ou+88wLuf/vtt/23jz/++AHby87OVnZ2dkjnBgAAAAAAAABEl4kTJ/pvJyUl9dm/bt26gMf69hkMBp144olh6U9cXJy8Xu+wx/wHiwrsAAAAAAAAAACMgL179+qxxx6TJB1xxBHKysqKcI8AAAAAAAAAACPho48+0gcffDBg3COPPOK/vXDhwj7733jjDa1fv77P9ra2NpWVlUnqWeV06tSpQ+7roSZPnixJamlpCUt7oSKBHQAAAAAAAACAQfroo4/08ccfB9zf0tKiZcuW6fPPP5ckXXXVVYqPZ1FUAAAAAAAAABiP3n//fVmtVp177rl69NFH5XQ6/fs6Ozv17rvv6vLLL9edd94pSfrqV7+qU045pU87U6ZM0dKlS1VZWamuri5JUkNDg84991w1NDTIaDTqF7/4Rdj67Su88vjjj6u1tTVs7Q6E0XIAAAAAAAAAAAaprq5OF110kXJzc3Xqqadq7ty5mjBhgvbs2aO6ujo98cQT/oo1c+fO1c033xzZDgMAAAAAAAAARkxCQoK6u7u1du1arV27VpKUmJioiRMnas+ePfJ6vf7YhQsXas2aNTIY+tYh/9nPfqY//vGPWrZsmZKSkpScnKy9e/dKkuLi4vSHP/xBJ510Utj6fd1112nDhg166qmn9Mwzz+jII49UfHy8Zs+erTfeeCNs5zkcCewAAAAAAAAAAAyBx+PR66+/rtdffz1gzIknnqinn35aEyZMGMWeAQAAAAAAAABG0ze/+U1t3bpVa9eu1RtvvKH6+nrt2LFDLS0tSklJ0axZs3TiiSfKZrNp2bJl/SavS9K0adP09ttvq7S0VE899ZS2b9+u6dOnKzc3VyUlJfra174W1n7b7XZJ0h//+Ef961//UlNTk7q7u8N6jv7EeQ9N6QcAAAAAAAAAAAPav3+/nnzySf3tb3/T+++/L5fLpd27d8toNOrII4/U4sWLtXTp0qAXIgAAAAAAAAAg0tra2vTRRx8pIyNDycnJAeM+aXHr9DvWq71r5JObR1pSvEGvrliio6aaIt0VP4vFoo8//lgPPfSQli9fHunuDEqov0OHogL7GNDd3a2dO3dq0qRJiouLi3R3AAAAAAAAAAAhKCoqUlFRUdCYAwcOjFJvAAAAAAAAAMQKr9er/fv3a9asWaNWQOOoqSa9umKJ9hzsGJXzjaRpExLHVPJ6LCKBfQzYuXOn5syZE+luAAAAAAAAAAAAAAAAAAAAIEps375ds2fPHrXzHTXVROI3woIE9jFg0qRJknr+kUyePDnCvUE4ZWZmqqmpSWlpaWpoaIh0dwAAAAAAGJf4/A0ACBWvGQCAUPB6AQAIFa8ZAIBI2bdvn+bMmePPPwWiDQnsY0BcXJwkafLkySSwjzO+pTkMBgPPLQAAAAAAI4TP3wCAUPGaAQAIBa8XAIBQ8ZoBAIg0X/4pEG1IYAcAAAAAAAAAAAAAAAAAAACACHE6nZHuwqgyRLoDAAAAAAAAAAAAAAAAAAAAAIDYQAI7AAAAAAAAAAAAAAAAAAAAAGBUkMAOAAAAAAAAAAAAAAAAAAAAABgVJLADAAAAAAAAAAAAAAAAAAAAAEYFCewAAAAAAAAAAAAAAAAAAAAAgFFBAjsAAAAAAAAAAAAAAAAAAAAAYFSQwA4AAAAAAAAAAAAAAAAAAAAAGBUksAMAAAAAAAAAAAAAAAAAAAAARgUJ7AAAAAAAAAAAAAAAAAAAAACAURHVCeyfffaZampqdNttt+mcc86R2WxWXFyc4uLitHz58hE5Z0VFhc466yzNnDlTycnJOvroo2W327Vx48YROR8AAAAAAAAAAAAAAAAAAAAAjBfxke7AcMyYMWPUzuV2u1VUVKS1a9f22t7Y2KjHH39cFRUVuu222/Szn/1s1PoEAAAAAAAAAAAAAAAAAAAAANEkqiuwHyo9PV1nnXXWiLV/xRVX+JPXTzvtNFVXV+vtt9/WqlWrdMwxx6i7u1u33367HnjggRHrAwAAAAAAAAAAAAAAAAAAAABEs6iuwH7bbbdp8eLFWrx4sWbMmCGn06mMjIywn+fVV1/VE088IUk677zztGbNGhmNRknS4sWLdf7552vRokVqbGzUT37yEy1btkzTpk0Lez8AAAAAAAAAAAAAAAAAAACAiGjZLrU2R7oXw5eSKk2dE+lexLSoTmD/+c9/PirnueOOOyRJ8fHxuu+++/zJ6z5ms1m//e1vdfHFF6ulpUV/+tOf9OMf/3hU+gYAAAAAAAAAAAAAAAAAAACMqJbt0r2LpK72SPdk+OKTpBvqRjSJ3ePx6KmnnlJNTY3eeustffbZZ2ptbdXUqVM1b9485eXl6bvf/a6ysrICtvHaa69p9erVev3119XU1KS2tjYdccQROv7443XeeefpsssuU3JycsDjb7/99n5zrRMTE5WamqrjjjtOy5Yt02WXXaaEhISw3O9QGUb1bFFo//79euWVVyRJZ5xxhmbPnt1vnM1m0+TJkyVJa9asGbX+AQAAAAAAAAAAAAAAAAAAACOqtXl8JK9LPfdjBCvJv/XWW1qwYIEuvPBCPfbYY9q6dataW1s1adIkNTc3a8OGDfrNb36j4447TkuXLlVHR0ev45ubm3XuuedqyZIleuCBB9TQ0KC2tjYlJydrx44deu6553Tddddp3rx5evXVV0Pq04wZM/xf8fHxampq0ksvvaSrr75aOTk52rNnz0g8FAGRwD6Af/zjH/5fjFNPPTVgXGJiorKzs/3HdHZ2jkr/AAAAAAAAAAAAAAAAAAAAAETes88+qyVLluiDDz5QamqqSktL9cEHH6ijo0PNzc3q6OjQP/7xD910002aPHmyqqqq1Nra6j9+165dys7O1tq1a2U0GvX9739f77//vtra2tTS0qI9e/booYce0pw5c7R9+3adffbZqq6uHrBfn376qf/r4MGD+vjjj3X11VdLkjZt2qQf/OAHI/WQ9IsE9gH8+9//9t/OzMwMGuvb39XVpa1bt45ovwAAAAAAAAAAAAAAAAAAAACMDVu3bpXdbld7e7sWLFig9957TzfddJOOPfZYf4zRaNRJJ52k0tJSffTRRyooKPDv83q9+s53vqNt27YpISFBa9as0d13360FCxb4Y6ZOnarly5fr3Xff1fHHH6/Ozk5ddtll+s9//jOovqanp+uBBx7Q6aefLkn661//qgMHDgzzEQgdCewD2LFjh//27Nmzg8bOmTPHf3v79u0j1icAAAAAAAAAAAAAAAAAAAAAY8ctt9yiffv2KTk5WWvWrBkw73j69Omqrq7WlClTJEk1NTV69dVXJUk333yzzjvvvIDHpqam6sknn1RycrL27dunn/3sZ0Pq89lnny1J6ujoGNXi3SSwD2D//v3+2xMnTgwaO2HCBP/tYLMQ2tvbtW/fvl5fAAAAAAAAAAAAAAAAAAAAAKLPrl27VFlZKUn67ne/q3nz5oV8bFxcnCTpvvvukyRNmjRJxcXFAx537LHH6uKLL5Yk/eUvf5HL5Rpst+X1ev23PR7PoI8fKhLYB9DW1ua/nZiYGDQ2KSnJf9vtdgeMKy0t1ZQpU/xfh1ZuBwAAAAAAAAAAAAAAAAAAABA91q1bp+7ubknSBRdcMOjju7q6VFtbK0k666yzBiy67WOz2fzHv/7664M+74svviipJ4k+IyNj0McPFQnsA0hOTvbf7ujoCBrb3t7uv20ymQLGlZSUaO/evf6v7du3D7+jAAAAAAAAAAAAAAAAAAAAAEbd+++/77994oknDvp4p9OpgwcPDvr4E044wX978+bNIR/X2Nioa665Rq+++qok6bzzzlNqamrIxw9X/KidKUpNmjTJf/vAgQNBY32/OJKCznxISkrqVa0dAAAAAAAAAAAAAAAAAAAAQHRqbm72354+ffqwjh9MIrnZbO63jcPNnDnTf3v//v1qbW31/5yZman77rsv5HOGAxXYBzB79mz/7R07dgSNPbSS+pw5c0asTwAAAAAAAAAAAAAAAAAAAADg097eHnDfrl27/F+HJq9feumlevfdd3XUUUeNRhf9SGAfwIIFC/y3Gxoagsb69sfHx+vYY48d0X4BAAAAAAAAAAAAwHB4PB6tX79eFRUVWr9+vTweT6S7BAAAAABAVDq0avru3buHdXywSuqHc7lc/tvTpk0LGOf1euX1etXd3a2dO3fq/vvv19SpU/Xoo4/q3nvvHXR/hyt+1M8YZRYvXqzExER1dHTotdde00033dRvXEdHh9566y3/MQkJCaPZTQBjQGtra5+JLm63W06nUxaLRSaTqde+zMxMpaSkjGYXAQAAAAAAAAAAJElVVVUqLi6W0+n0b7NYLCorK5PNZotcxwAAAAAAiEJf/vKX/bffffddzZo1a1DHH3300ZowYYIOHjyod955J+Tj3n33Xf/t+fPnDxgfFxentLQ0XXvttZo/f75OP/103XjjjVq4cKFOP/30QfV5OKjAPoBJkybpG9/4hiTp5Zdf1o4dO/qNq6qq0r59+yRJF1xwwaj1D8DY0dDQoEWLFvX6OuWUU2S323XKKaf02TfQqg4AAAAAAAAAAAAjoaqqSkVFRTruuOO0ceNG7d+/Xxs3btRxxx2noqIiVVVVRbqLAAAAAABEldNOO00GQ09a9po1awZ9fEJCgvLy8iRJL730kvbv3x/ScYd+hl+yZMmgzrlkyRJdcskl8nq9+v73vz+qK7PFfAL7ww8/rLi4OMXFxen222/vN2bFihWSpK6uLl1//fV9niCXy6Wf/OQnkqSpU6fqqquuGtE+AxibMjMzVVdX1+urvLxcklReXt5nX2ZmZoR7DAAAAAAAAAAAYo3H41FxcbHy8/NVXV2t7OxsTZw4UdnZ2aqurlZ+fr5WrFgxqhetAQAAAACIdjNmzNDSpUslSatXr9YHH3wQ8rFer1eS9L3vfU+SdODAAd15550DHrd161Y98cQTkqRTTjlFX/rSlwbbbd12220yGo3697//rUceeWTQxw9V/KidaQS88cYb2rZtm/9nl8vlv71t2zY9/PDDveKXL18+pPOcfvrpuuiii/TEE0/omWee0Zlnnqkf/ehHmjVrlv71r3/p17/+tRobGyVJv/3tbzVt2rQhnQdAdEtJSdHChQv73We1WgPuAwAAAAAAAAAAGC21tbVyOp2qqKjwV4bzMRgMKikpUU5OjmprawdduQ0AAAAAgFj2q1/9Ss8//7wOHDggm82mF198UUcddVTA+D179uiqq67SqlWrNHXqVOXn52vJkiVav369fv3rX2vRokXKz8/v99jm5mYtW7ZMbW1tiouL069+9ash9fmYY47RhRdeqNWrV+uXv/ylLrnkEiUkJAyprcGI6gT2P/3pTwGz/Tds2KANGzb02jbUBHZJ+vOf/6x9+/Zp7dq1WrdundatW9drv8Fg0K233qprrrlmyOcAAAAAAAAAAAAAgJHU1NQkScrKyup3v2+7Lw4AAAAAAIRm3rx5euyxx3ThhRfq/fff1wknnKAVK1Zo6dKlmjt3rqSeldE2b96sNWvW6J577lFLS4tWrVolSYqLi1NFRYVyc3P14Ycf6oILLtD3vvc9XXfddbJarZKkvXv3qrq6Wrfddpu/+PZtt92mU089dcj9LikpUUVFhZxOp1atWqXrrrtumI/EwAwDh0CSTCaTnnvuOT3++OM688wzdeSRRyoxMVFz5szRd77zHb3xxhu6/fbbI91NAAAAAAAAAAAAAAgoLS1NklRfX9/vft92XxwAAAAAAAhdYWGhXn31Vc2dO1cul0s33XSTjj32WCUlJSk1NVWJiYlauHChfvnLX2rv3r26+OKLNWHCBP/xM2fO1FtvvaWzzjpLXV1duvvuu7VgwQKZTCZNmzZNU6dO1fLly9XY2KiEhAT9z//8z7Dzl7OysnT++edLkn7961+rvb19WO2FIqorsD/88MN6+OGHh9XG8uXLB1WZ/Tvf+Y6+853vDOucAICR1draqoaGhl7b3G63nE6nLBaLTCZTr32ZmZlKSUkZzS4CAAAAAAAAABAReXl5slgsWrlypaqrq2UwfFHzrLu7W6WlpcrIyFBeXl4EewkAAAAAGHNSUqX4JKlr5JObR1x8Us/9GSG5ublqaGjQk08+qZqaGv3973/XZ599pv3792v69OnKzMzUqaeeqksuuUTz58/vc/wRRxyhF198Ua+++qoqKipUW1urpqYmtbS0+GNmzZqldevWad68eWHp880336ynn35aO3bs0B//+Ef94Ac/CEu7gUR1AjsAAP1paGjQokWLQo6vq6vTwoULR7BHAAAAAAAAAACMDUajUWVlZSoqKlJhYaFKSkqUlZWl+vp6lZaWqqamRpWVlTIajZHuKgAAAABgLJk6R7qhTmptjnRPhi8ltef+jCCj0aiLLrpIF1100ZDbOP3003X66af32vaXv/xFF198sXbu3KnHHntMv/zlLwMef/vtt4dcnX3x4sXyer1D7utgkcAOABh3MjMzVVdX12ubw+GQ3W5XeXm5rFZrn3gAAAAAAAAAAGKFzWZTZWWliouLlZOT49+ekZGhyspK2Wy2CPYOAAAAADBmTZ0z4onfCO7CCy9UU1OT/t//+3/61a9+pUmTJunGG2+MdLcGjQR2AMC4k5KSErCiutVqpdo6AAAAAAAAACDm2Ww2FRQU+JchT0tLU15eHpXXAQAAAAAY4370ox/pk08+0R133KGf/OQnmjhxor73ve9FuluDQgI7AAAAAAAAAAAAAMQgo9GoJUuWRLobAAAAAABgkH73u9/pd7/7XaS7MWSGSHcAAAAAAAAAAAAAAAAAAAAAABAbSGAHAAAAAAAAAAAAAAAAAAAAAIwKEtgBAAAAAAAAAAAAAAAAAAAAAKOCBHYAAAAAAAAAAAAAAAAAAAAAwKiIj3QHAAxda2urGhoaem1zu91yOp2yWCwymUy99mVmZiolJWU0uziuNTY2yuVyBY1xOBy9vgdjNpuVnp4elr4hvPhbAwAAAAAAAAAAAAAAAAAgPEhgB6JYQ0ODFi1aFHJ8XV2dFi5cOII9ih2NjY2an2lVm7s1pHi73T5gTLIpRVsaHCSxj0H8rQEAAAAAAAAAAAAAAAAAEB4ksANRLDMzU3V1db22ORwO2e12lZeXy2q19olHeLhcLrW5W5WaX6yE1DkB47xdHerau0vxU2YoLj4xYFxn83Y115TJ5XKRwD4EI10Nn781AAAAAINZmYlVmQAAAAAAAAAAAIDASGAHolhKSkrAKs9Wq5UK0KMgIXWOkmbODR40e8HodCZGjUY1fP7WAAAAAAxmZSZWZQIAAAAAAAAAAAACI4EdABDVqIYfWwZT9VKi8iUAAADCZzArM7EqEwAAAAAAAAAAABAYCewAgHGBavixYTBVLyUqXwIAACB8WJkJAAAAAAAAAAAACA8S2AEAQNQYTNVLXzwAAAAAAAAAAAAAAAAAYOwggR0AAEQNql4CAAAAAAAAAAAAAAAAQHQjgR0AAAAAAAAAAAAAYkBra6saGhp6bXO73XI6nbJYLDKZTL32ZWZmKiUlZTS7CAAAAAAAYgAJ7AD8GLQEvuBwOELaP1CcJJnNZqWnp4elXwAAAAAAAAAADFVDQ4MWLVoUcnxdXR0rXwIAAAAA/JoONGlP+55Id2PYpiVNU9rEtEh3I6aRwA7Aj0FLQPIc2CNDnGS320OKDyUuxZQsR8MWktgBAAAAAAAAABGVmZmpurq6XtscDofsdrvKy8tltVr7xAMAAAAAIPUkr+dX56vD0xHprgxbojFRNYU1I5rE7vF49NRTT6mmpkZvvfWWPvvsM7W2tmrq1KmaN2+e8vLy9N3vfldZWVkB29i8ebMef/xxrVu3Th9//LH27Nkjk8mko446SosXL5bNZtO3vvUtJSQk9DpuyZIleu211/q0l5KSoqOOOko5OTm67rrrlJ2dHfb7HSoS2AH4MWg5tgymIn4sV8N3u92SpM7m7WFpr+Oz/6jbK606L1knpBkDn7fLK2dLtyxTDTLFxwWMc3zeLfsat1wuFwnsAAAAAAAAAICISklJCVicyGq1UrgIAAAAABDQnvY94yJ5XZI6PB3a075nxBLY33rrLV122WX64IMP/NsSEhI0adIkNTc3a8OGDdqwYYN+85vfyGazqaKiQomJif7Y/fv367rrrlNFRYW8Xq8kKS4uTlOmTJHb7ZbD4ZDD4dCjjz6qY445Ro8//rhOPvnkPv1ISEjQ9OnT/T+7XC5t3bpVW7du1aOPPqqf/exn+tnPfjYij8FASGAH4Meg5dgymIr4sVwN3+l0SpKaa8rC2m5SgrQwSAK7JOXOCespx6XBTMSQYnsyBgAAAAAAAAAAAAAAAIDo9uyzz2rZsmVqb29XamqqVqxYoaVLl+rYY4+V1FOZ/d1339VTTz2l++67T1VVVWptbfUnsO/Zs0d5eXl6//33FRcXp4suukj/9V//pezsbH/Mzp079fzzz+vuu+/W5s2btXHjxn4T2HNycrR+/Xr/zx0dHXrttdf0ve99T9u2bdPtt9+uk046Seeee+7IPzCHIYEdAMaowVTEj+Vq+BaLRZKUml+shNThZ5S7P9ykvbXlskw1DLstDG4ihhTbkzEAAAAAAAAAAAAAAAAARK+tW7fKbrervb1dCxYs0IsvvqjZs2f3ijEajTrppJN00kkn6cc//rGuuOKKXvu/+93v6v3331d8fLxWr16tZcuW9TnPrFmzdOWVV+qKK67Q/fffr7i4uJD6l5iYqDPPPFNPP/20TjzxRHV0dOjee+8lgR0A8AUq4ofGV8E7IXWOkmbOHXZ7nc3be9qND+1FHcENZiKGLx4AAAAAAAAAAAAAAAAAos0tt9yiffv2KTk5WWvWrOmTvH646dOnq7q6Wl6vV5L0/PPP6/nnn5ck3Xbbbf0mrx8qLi5O//Vf/6Xu7u5B9XPBggVatGiRNm7cqH/84x+DOjZcSGAHAAAjhokYAAAAAAAAAAAAAAAAAMa7Xbt2qbKyUlJPFfV58+aFfKyvgvq9994rSZoyZYr++7//O+TjDQbDIHraw5dcv2/fvkEfGw4ksAMAAAAAAACHaWxslMvlChrjcDh6fQ/EbDYrPT09bH0DAAAAAAAAAADA2LJu3Tp/JfQLLrhg0Md3dXXp9ddflySdeeaZmjBhQlj7dzin0ymppwp8JJDADgBD4Ha7JUmdzdvD0p6vHV+7AAAAAIDIaWxs1PxMq9rcrSHF2+32oPuTTSna0uAgiR0AAACjLpwTMyUmZwIAAAAAEMj777/vv33iiScO+viPP/5YBw4cGPLxg/H222+rrq5OkpSdnT2i5wqEBHYgygw00Mgg4+jwzT5qrikLe7u5ublhbRMAAAAAMDgul0tt7lal5hcrIXVOwDhvV4e69u5S/JQZiotP7Dems3m7mmvK5HK5+AwOAACAURXuiZkSkzMBAAAAAAikubnZf3soVc2He3wodu7cqVdeeUU33nijuru7FRcXpx/96Ecjcq6BkMAORJHBDDQyyDiyLBaLJA2YzBAqX0JDe3u73nnnnYBxLE8PAAAAAKMnIXWOkmbODR40e8HodAYAAAAYpHBOzJSYnAkAAAAAQLR57bXXFBcX1+++hIQE3XnnnVqyZMnodur/kMAORJFQBhoZZBwdJpNJUojJDCHwHNgjQ5x05ZVXhhQ/0ASFFFOyHA1beG4BAAAAAAAAAIhxTMwEAAAAAGDkpaam+m/v3r1bs2bNGtbx4ZCQkOCv5h4XFyeTyaRZs2YpJydHV111lebNmxeW8wwFCexAFBpwoJFBxqjT3X5A3V6p/AKTrEcYAsa5u7xytnTLMtUgU3z/M6Mcn3fLvsbN5AQAAAAAAAAAAGKY2+2W1FPUKBx87fjaBQAAAAAAX/jyl7/sv/3uu+8OOoH96KOP1sSJE3XgwAG9++67YelTTk6O1q9fH5a2wo0EdgAYQ6xHGLQwzRg0JjfwKp8AAAAAAAAAAACSJKfTKUlqrikLe7u5ublhbRMAAAAAgGh32mmnyWAwqLu7W2vWrNG55547qOPj4+P19a9/XWvXrtXf/vY3HTx4UBMmTBih3kYeCexAFAlnpQyqZAAAAAAAAAAAgNHQ2tqqhoaGXtvcbrecTqcsFotMJlOvfZmZmUpJSRnNLo5LFotFkpSaX6yE1OFXx+ls3q7mmjJ/uwAAAAAA4AszZszQ0qVL9eSTT2r16tW68cYbNW/evJCO9Xq9iouL0/XXX6+1a9dq7969uvPOO3XrrbeGdHx3d7cMBsNwuj/qSGAHoshIVMqgSgbQm9fTKUlyuDxhac/XDpNFAAAAAAAAAMSqhoYGLVq0KOT4uro6LVy4cAR7FBsOnxgQiLerQ117dyl+ygzFxSeGrV0AAAAAAGLNr371Kz3//PM6cOCAbDabXnzxRR111FEB4/fs2aOrrrpKq1at0tSpU/Wtb31LZ511ll566SX94he/kNVqVVFRUdBzPvDAA/J6vbr22mvDfXdGFAnsQBQJZ6UMqmQA/fMc2C1Jsle1hbVdJosAAAAAAAAAiFWZmZmqq6vrtc3hcMhut6u8vFxWq7VPPIbPbDYr2ZQS1sJIyaYUmc1m/89U1wcAAAAA4Avz5s3TY489pgsvvFDvv/++TjjhBK1YsUJLly7V3LlzJUkej0ebN2/WmjVrdM8996ilpUWrVq3yt7F69Wrl5eXJ4XDo29/+ti6++GJdd911ys7OVkJCgiSpqalJL730ku6++2698847+v3vfx+R+zscJLADUcQ3yJeQOkdJM+eGtU1EVjirfsdqxe/O5u1B94daQcbr6ZIklduSZTUbh90vh8sje1Ubk0Uw5ng8HtXW1qqpqUlpaWnKy8uT0Tj833kAAIDxwPd5aqDPGaHwtRFrn9EAAAAOlZKSErCiutVqpdr6CElPT9eWBodcLpd/m2/iQKgOn2BgNpuVnp7u/5nq+gAAAAAA9FZYWKhXX31Vy5cv17Zt23TTTTfppptuUmJioiZOnKiWlhZ1d3dLkuLi4nTxxRdrwoQJ/uNTU1P11ltv6eqrr9aTTz6p1atXa/Xq1YqLi9PUqVPldrvV1vZFcVar1aq8vLxRv5/DRQI7AAxDuJKmOz7dKim8Vb9jpeL3SFSQkSSr2aiFaeFL5mWyCMaSqqoqFRcXy+l0+rdZLBaVlZXJZrNFrmMAAABjhO99Ujg/Z8TKZzQAAACMLenp6b0Szvurhj+ciulU1wcAAAAAoK/c3Fw1NDToySefVE1Njf7+97/rs88+0/79+zV9+nRlZmbq1FNP1SWXXKL58+f3OX7y5Mn6y1/+op/+9KcqLy/X+vXr9fHHH2vPnj0ymUzKyMjQV7/6VS1btkxnn312VBatJIEdAIZgpJKmw1H1O9YqfvdXQaY/wQbM+4sDxquqqioVFRUpPz9fFRUVysrKUn19vVauXKmioiJVVlaSxA4AAGKe7/NUan6xElLnDKutzubtaq4pi5nPaAAAABjbAlXDH+pkS6rrAwAAAEDsmJY0TYnGRHV4OiLdlWFLNCZqWtK0ET2H0WjURRddpIsuumjIbRx//PE6/vjjB33c+vXrh3zO0UICOwAMwUglTYez6ncsVfw+vIJMMAyYR5fGxsaQ/s4O/R7M4cvbxhqPx6Pi4mLl5+erurpaBoNBkpSdna3q6moVFhZqxYoVKigoiMqZmQAAAOHi+zyVkDpHSTPnhrVNAAAAAAAAAACAaJQ2MU01hTXa074n0l0ZtmlJ05Q2MS3S3YhpJLADwBCRNA30Fc6E86amJi0rWip3W3tI5w6lcn6KKVmOhi0xm8ReW1srp9OpiooKf/K6j8FgUElJiXJyclRbW6slS5ZEppMAAADAAFpbW9XQ0NBrm9vtltPplMVi6TNZIDMzUykpKaPZRQAAAAAAAAAAxqW0iWkkfiMsSGAHAABh0djYqPmZVrW5W0OKDyXhXJLKLzDJeoQh4H53l1fOlm5Zphpkio8LGOf4vFv2NW65XK6YTWBvamqSJGVlZfW737fdFwcAAACMRQ0NDVq0aFHI8XV1dUwqBwAAAAAAAAAAGENIYAcAAGHhcrnU5m5Van6xElLnBIzzdnWoa+8uxU+Zobj4xIBx7g83aW9tuaxHGLQwzRj03LmBT4dDpKX1zICtr69XdnZ2n/319fW94gAAAGJdZ/P2oPtDeW87UBsYvMzMTNXV1fXa5nA4ZLfbVV5eLqvV2iceAAAAAAAAAAAAYwcJ7AAQJv0tYe5wOHp9PxRLmGO8Skido6SZc4MHzV4wYDsk+oRfXl6eLBaLVq5cqerqahkMX1S27+7uVmlpqTIyMpSXlxfBXgIAAESe2WxWsilFzTVlYWkv2ZQis9kclrYgpaSkBKyobrVaqbYOAAAAAAAAAAAwxpHADgBhEmwJc7vd3mcbS5gDGG1Go1FlZWUqKipSYWGhSkpKlJWVpfr6epWWlqqmpkaVlZUyGoNXvAcAABjv0tPTtaXBIZfLFTQuWNXvQ5nNZqWnp4e7mwAAAAAAAAAAAEBUIoEdAMKkvyXM3W63nE6nLBaLTCZTn3iMXY7Pu4Pud3d55WzplmWqQab4uCG3A4w2m82myspKFRcXKycnx789IyNDlZWVstlsEewdAADA2JGenh5y0vlgq373t4LXQJ8fWcELAAAAI8Hj8ai2tlZNTU1KS0tTXl4eBS4AAAAAAMCII4EdAMIk0BLmubm5EegNhspsNivFlCz7GnfY2kwxJctsNoetPWC4bDabCgoKuDAFAAAQIcFW8OoPK3gBAABgJFRVVam4uFhOp9O/zWKxqKysjEIXAAAAAABgRJHADkShzubtAfd5uzrUtXeX4qfMUFx84pDaAGJZenq6HA1b5HK5gsY5HA7Z7XaVl5fLarUGjTWbzSFXbgRGi9Fo1JIlSyLdDQAAgJjU3wpewT5jsIIXAACINo2NjSGNsR76PRjGWMOvqqpKRUVFys/PV0VFhbKyslRfX6+VK1eqqKiI1RoBAAAAAMCIIoEdiCJms1nJphQ115SFpb1kUwpVoYF+pKenh3wxxGq1UgkRAAAAwKAEWsFL4jMGAACIfo2NjZqfaVWbuzWkeLvdPmBMsilFWxocJLGHicfjUXFxsfLz81VdXS2DwSBJys7OVnV1tQoLC7VixQoVFBSwaiMAAAAAxBCv1xvpLiBKDeV3hwR2IIqkp6drS4MjaNUSqkIDAAAAAAAAAIBIcblcanO3KjW/WAmpcwLGDWZF2eaaMrlcLq5phEltba2cTqcqKir8yes+BoNBJSUlysnJUW1tLas4AgAAAEAM8H029Hg8Ee4JopXvd+fwcYZgSGAHokyolaGp2IZY1traqoaGhl7bgi1Hm5mZqZSUlFHpGwAAAAAAAADEgoTUOUqaOTd40OwFo9MZ9NLU1CRJysrK6ne/b7svDgAAAAAwviUkJCghIUEHDhzQxIkTI90dRKH9+/f7f49CRQI7EMMaGxuDVnOXgif9Ho6K7hgrGhoatGjRon739bccbV1dHRM+AAAAAAAAAAAxIS0tTZJUX1+v7OzsPvvr6+t7xQEAAAAAxre4uDhNmjRJLS0tmjJlikwmU6S7hCjidru1b98+TZ06VXFxcSEfRwI7EKMaGxtlzZyvVndbSPH9Jf0eLsWULEfDFpLYEXGZmZmqq6vrtc3tdsvpdMpisfR5k5WZmTma3UOIvJ5OSZLDFZ7liXztuN3usLQHAAAAAAAAANEoLy9PFotFK1euVHV1da/lvbu7u1VaWqqMjAzl5eVFsJcAAAAAgNFkNpvldrvV2NioyZMna9KkSTIajYNKSEbs8Hq98ng82r9/v/bt26ekpCSZzeZBtUECOxCjXC6XWt1tKr/AJOsRhoBx7i6vnC3dskw1yBQf+MXI8Xm37GvccrlcJLAPg+Pz7qD7Q3k+BmojFqSkpPRbUT03NzcCvcFQeQ7sliTZq0KbaBMqp9PJ7wIAAAAAAACAmGU0GlVWVqaioiIVFhaqpKREWVlZqq+vV2lpqWpqalRZWSmj0RjprgIAAAAARonRaNScOXPkcrm0f/9+tbS0RLpLiAIJCQmaOnWqzGbzoMcRSGAHYpz1CIMWpgX/x5E7Z5Q6E8PMZrNSTMmyrwlPZegUU/KgZzQBY41x4nRJUrktWVbz8C+UOFwe2avaZLFYht0WAAAAAAAAAEQzm82myspKFRcXKycnx789IyNDlZWVstlsEewdAAAAACASjEajZsyYoSOPPFKdnZ3q7qaQKgIzGAxKSEgYcpV+EtgBYAxIT0+Xo2GLXC5X0DiHwyG73a7y8nJZrdaAcWazmUr4iHpxxgRJktVsHHCizWCYTKawtQUAAAAAAAAA0cpms6mgoEC1tbVqampSWlqa8vLyqLwOAAAAADEuLi5OiYmJke4GxrlxkcD+8ccf6+6779Zzzz2n7du3KykpScccc4y+/e1v6/rrr1dKSsqwz/HRRx/p7rvv1t/+9jd9/PHH6u7u1qxZs3TmmWfq+uuv15e//OUw3BMAsSw9PT3kpHOr1aqFCxeOcI+AwXG7e1YQ6GzeHpb2uvbu6mm3yxuW9gAAAAAAAAAAvRmNRi1ZsiTS3QAAAAAAADEm6hPYn332Wdntdu3bt8+/rbW1VZs2bdKmTZv0pz/9Sc8995zmzp075HM88MAD+v73v6+Ojo5e27dt26Zt27Zp1apVKisr0w033DDkcwAAEO2cTqckqbmmLLzttnQrd05YmwQAAAAAAAAwQsJd6MLXjq9dAAAAAAAARL+oTmB/9913deGFF8rtdmvixIkqKSnRaaedJrfbrSeeeEIPPvigPvjgA5177rnatGmTJk2aNOhzPPHEE7r22mslSVOmTFFxcbFOP/10JSUl6d1339X//M//aNu2bfrBD36gI488Ut/+9rfDfTcBAIgKFotFkpSaX6yE1OFnnLs/3KS9teWyTDUMuy305fF4WBoYAABgEFpbW9XQ0NBrm8Ph6PXdJzMzMywrAgIAAESjESt04XQqNzc3rG0CAAAAAAAgMqI6gf2HP/yh3G634uPj9dJLL+lrX/uaf9/pp5+uY489VjfeeKM++OADlZWV6fbbbx9U+62trfrhD38oSZo4caLeeOMNZWVl+fefdNJJuvDCC3XKKafoX//6l37wgx/oW9/6liZOnBiW+wcAQDQxmUySpITUOUqaOfSVT3x8lZVM8XHDbgu9VVVVqbi42H8xUeqZgFBWViabzRa5jsUoJhMAABAdGhoatGjRon732e32Xj/X1dVp4cKFo9EtAACAMSfchS46m7eruabM3y7Ci7EpAAAARKP+Co643W45nU5ZLBZ//oIPRUcAYOyJ2gT2t99+W7W1tZKkK6+8slfyuk9xcbEeeughORwO3XXXXbr55puVkJAQ8jnWrl2rzz77TFJPsvyhyes+kydP1p133qkzzzxTu3bt0sMPP6wbbrhhiPcKAIDoN9DSwN6uDnXt3aX4KTMUF58YMK5r765wdw3qSV4vKipSfn6+KioqlJWVpfr6eq1cuVJFRUWqrKwkiX0UMZkAAIDokZmZqbq6ul7bAl0QyczMHO3ujWuNjY1yuVxBYwJVw++P2WxWenp6WPoGAAD6OjxRJJBQxwkH2y5Cx9gUAAAAolWwgiP9oegIAIw9UZvAXl1d7b99+eWX9xtjMBh06aWXqqSkRC0tLVq3bp3OOuuskM+xadMm/+1zzjknYNySJUuUnJystrY2VVZWksAOAIhJZrNZyaaUsC8NjPDxeDwqLi5Wfn6+qqurZTAYJEnZ2dmqrq5WYWGhVqxYoYKCAqosjQImEwAAEF1SUlL6vcCRm5s74LEkYA9dY2Oj5mda1eZuDSn+8Gr4/Uk2pWhLgyNmHkMAAEbbSIwTJptSZDabw9YeGJsCAABAdOuv4IjD4ZDdbld5ebmsVmufeADA2BK1CexvvPGGJGnChAlBZ1Odeuqp/tsbNmwYVAJ7c3Oz//aMGTMCxsXHx2v69OnauXOnNm7cqK6uLsXHR+1DC2CM6G+5o0AJDSx1hLEgPT1dWxocISXmBPrQ2F+c4/PuoO25u7xytnTLMtUgU3xc4PYGaCcW1NbWyul0qqKiwp+87mMwGFRSUqKcnBzV1tZqyZIlkelkjGAyAQAAsaOxsVHWzPlqdbeFFB9KAnaKKVmOhi0xkYDtcrnU5m5Van6xElLnBIwLtYJrZ/N2NdeUyeVyxcTjBwBAJIR7nFCKrQl8o2E4Y1NMzgQAAMBYEKjgiCRZrVaqrQNAFIjaLGvfgMfcuXODJosfOnsqlEGSQ02cONF/e+/evQHjvF6v9u3bJ0nq6OjQtm3bmLUFYNiCLXd0eEIDSx1hrEhPTw/5YsNAHxrNZrNSTMmyr3GHq3tKMSXHdKWmpqYmSVJWVla/+33bfXEYOUwmAAAgdrhcLrW621R+gUnWIwwB4wYzMdO+xh1zCdgJqXOUNHNu8KDZC0anMwAAYEDhHCdE+A11bIrJmQAAAAAAIFyiMoG9ra3NP7N/9uzZQWOnTZumCRMm6ODBg9q+ffugznNotYfXXnstYCLpu+++qwMHDvh/bmxsJIEdwLD1t9yR2+2W0+mUxWKRyWTqFQuMN+np6XI0bKFSUxilpaVJkurr65Wdnd1nf319fa84jBwmEwAAEHusRxi0MC34yiq5gQuMAwAAAGEz1LEpJmcCAAAAAIBwicoE9v379/tvH1olPRBfAvuhSeahOOeccxQfH6+uri7deeeduvTSS/tUbe3u7tbNN98csH/9aW9vV3t7u/9nX/V2ADhUoOWOcnNzI9AbIDKo1BReeXl5slgsWrlyZa+lgaWe9zSlpaXKyMhQXl5eBHsZG5hMAAAAAAAAgEgZ7tgUkzMBAAAAAMBwBZ4aP4a1tX2xLF1iYuKA8UlJSZJ6KhcPxpw5c3TddddJkj755BPl5ubq6aef1r59+9TW1qa33npL3/rWt/TCCy/06sdA5yktLdWUKVP8X3PmMIIDAABGntFoVFlZmWpqalRYWKiNGzdq//792rhxowoLC1VTU6M77rhDRmPwi0/98Xg8Wr9+vSoqKrR+/Xp5PJ4RuAfjx6GTCbq7u3vtYzIBEB6tra165513en1t2LBBjz/+uDZs2NBnX2tra6S7DAAAAADAqGBsCgAAAAAARFpUVmBPTk723+7o6Bgw3lft3GQyDfpcd9xxhz788EOtXbtWH3zwgQoLC/vEnHTSSVq8eLH+8Ic/SJImTZoUtM2SkhL993//t//nffv2kcQOAABGhc1mU2VlpYqLi5WTk+PfnpGRocrKStlstkG3WVVVpeLiYjmdTv82i8WisrKyIbUXC3yTCYqKilRYWKiSkhJlZWWpvr5epaWlqqmpUWVl5ZAmEwDo0dDQoEWLFoUcX1dXx0oeAAAAAICYwNgUAAAAAACItKiswH5ogviBAwcGjD948KAkaeLEiYM+V1JSkp599lk9+OCDOuGEExQXF+ffd+SRR+rmm29WbW2tvF6vf/u0adMGbHPy5Mm9vgAAAEaLzWbTtm3btG7dOq1evVrr1q3T1q1bh5y8XlRUpOOOO65XRffjjjtORUVFqqqqGoF7MD74JhNs3rxZOTk5mjx5snJycvSvf/1ryJMJAHwhMzNTdXV1vb7Ky8slSeXl5X32ZWZmRrjHAAAAAACMHt/Y1L/+9a9eY1P19fWMTQEAAAAAgBEXtRXYU1NT1dzcrB07dgSN3bNnjz+BfahVzg0Gg6666ipdddVV2r9/v3bt2qWUlBTNnDlTBkPPHICtW7f64xcsWDCk8wAAMN60traqoaGh1zaHw9Hr+6EyMzOVkpIyKn2LdUajUUuWLBlWGx6PR8XFxcrPz1d1dbX/fVF2draqq6tVWFioFStWqKCggGpNQRw6QRJA+KSkpASsqG61Wqm2DgAAAADol8fjUW1trZqampSWlqa8vLxxO7Zls9lUUFAQM/cXAAAAAACMHVGZwC71JInX1tZq27Zt6urqUnx8/3fl0KQ5q9U67PNOmjSpVwV4qWcg67333pMkfelLX5LZbB72eYCR5na7JUkOlycs7fna8bULAFLP6/CiRYv63We32/tsq6urI6EwitTW1srpdKqiosKfvO5jMBhUUlKinJwc1dbWDjtZfjzyVa/Pz89XRUWFf5nmlStXqqioiEpXAAAAAABg3IiWQhdVVVUqLi6W0+n0b7NYLCorKxu34zThKHQBAAAAAAAwWFGbwH7KKaeotrZWBw8eVF1dnU4++eR+41577TX/7dzc3BHpy7p169Tc3CxJuvDCC0fkHEC4+QZf7VVtYW93pP7WAESfzMxM1dXV9drmdrvldDplsVhkMpn6xCN6NDU1SZKysrL63e/b7osLpr+LmAP9rkRztX6q1wMAAAAAgFgSDYUuKDYAAAAAAAAweqI2gb2wsFClpaWSpIceeqjfBPbu7m49+uijkqSpU6fqtNNOC3s/vF6vbr/9dklSQkKCrr766rCfAwhkOBVLLBaLJKncliyrefiJcQ6XR/aqNn+7gfo3npMRgVDF0t9GSkpKvxeamOgyPqSlpUmS6uvrlZ2d3Wd/fX19r7hggl3E7E+0V+unej1CEUuvFwAAAACA8W2sF7qg2EBoWN0XAAAAAACES9QmsH/1q19VXl6eamtrtWrVKl122WX62te+1iumrKzMn8T7wx/+UAkJCb32r1+/3p/Uftlll+nhhx/uc57m5mZNnDhRSUlJffZ5PB794Ac/0IYNGyRJJSUlysjICMfdA0IynIolvsFgq9mohWnhG2w9dJA51pIRMXZ5PB7V1taqqalJaWlpysvLi+hFBv42MF7k5eXJYrFo5cqVvS7sST0TCUtLS5WRkaG8vLwB2+rvIqbD4ZDdbld5ebmsVmuf+GgWzur1GL94vQAAAAAAjBdjvdAFxQZCw+q+AAAAAAAgXKI2gV2S7rrrLuXm5srtduuss87ST3/6U5122mlyu9164okn9MADD0iS5s2bp+Li4iGdY926dbrhhht00UUX6dRTT1V6erra2tq0efNmPfDAA3rvvfckSeecc45uvvnmcN01ICRjvWJJrCUjYmyqqqpScXGxf2Bd6lmBoKysLGLLvfK3gfHCaDSqrKxMRUVFKiwsVElJiX9p5dLSUtXU1KiysjKkCSOBLmJKktVqHXdJueGsXo/xi9cLABgfqFIJAAAQfuFetYxiA6EZjdV9AQAAAABAbIjqBPYTTzxRf/nLX2S327Vv3z799Kc/7RMzb948Pffcc5o0adKQz7Nr1y7ddddduuuuu/rsi4uL0+WXX6777rtPiYmJQz4HMBRjvWJJrCUjYuypqqpSUVGR8vPzVVFR4U+sXblypYqKilRZWRmRJHb+NjCe2Gw2VVZWqri4WDk5Of7tGRkZEfsbiwbhrF6P8YvXCwAYH6hSCQAAEH7hXrWMYgOhGY3VfQEAAAAAQGyI6gR2STrvvPO0efNm3XXXXXruuee0Y8cOJSYmau7cuVq2bJluuOGGoBUVBpKXl6ff/e53evXVV9XQ0KBdu3bJYDBo1qxZOu2003T55Zfr5JNPDuM9AgCEg8fjUXFxsfLz83slh2ZnZ6u6ulqFhYVasWKFCgoKQqoODSAwm82mgoIC1dbWqqmpSWlpacrLy+NvK4hwVq8HAABjG1Uqh8dXab6zeXtY2vO1QwV7AACiW7hXLaPYAAAAAAAAwOiK+gR2STr66KN155136s477xzUcUuWLJHX6w0aM2PGDK1YsUIrVqwYThcBAKOstrZWTqdTFRUVvS42SJLBYFBJSYlycnJUW1urJUuWRKaTwDhiNBr5WxokqtcDABAbqFI5PL4K9s01ZWFvN1AFe4/Hw+RMAADGuHCvWkaxAQAAAAAAgNE1LhLYAfTgAivwhaamJklSVlZWv/t9231xABAJVK8HAAAIzldpPjW/WAmpc4bdXmfzdjXXlAWsYF9VVaXi4mJ/4ryvD2VlZUwwBABgnKPYAAAAAAAAwOghgR0YJ7jACvSWlpYmSaqvr1d2dnaf/fX19b3iACBSqF4fWa2trWpoaOi1ze12y+l0ymKx9Klum5mZqZSUlNHsIgAAMc33WpyQOkdJM+eGvd1DVVVVqaioSPn5+aqoqPBXXV25cqWKiopIXAMAIAZQbAAAAAAAAGB0kMAOjANcYAX6ysvLk8Vi0cqVK1VdXS2DweDf193drdLSUmVkZCgvLy+CvQQARFpDQ4MWLVoUcnxdXd2glyEHAABjn8fjUXFxsfLz83t9hszOzlZ1dbUKCwu1YsUKFRQUkMAGAMA4R7EBAAAAAACAkUcCOxDluMAK9M9oNKqsrExFRUUqLCxUSUmJf3JHaWmpampqVFlZGdLfRX/VeR0OR6/vh6I6LwBEj8zMTNXV1fXa5nA4ZLfbVV5eLqvV2iceAACMP7W1tXI6naqoqOg1AVqSDAaDSkpKlJOTo9raWhLaAAAAAAAAAAAAhokEdiDKcYEVCMxms6myslLFxcXKycnxb8/IyBjUygTBqvPa7fY+26jOCwDRIyUlJeD/bKvVyv9zAEDYOD7vDrrf3eWVs6VblqkGmeLjhtwOBq+1tVVvvvmmJKmrq0vvvPOO3G63nE6nLBaLTCaTurq6JElvvvmmvvrVrzJpGQAAAAAw7vVX5Ovwz8uHosgXAAAABoMEdiDKNTU1SZKysrL63e/b7osDYo3NZlNBQYFqa2vV1NSktLQ05eXlDWpFgv6q8w40OAMAAAAAkmQ2m5ViSpZ9jTtsbaaYkmU2m8PWXjTobN4edL+3q0Nde3cpfsoMxcUnDqqdhoYG3XzzzZKkvLy8oOe5+eabdfbZZzPJDQAAxDQmZwJAbAhW5Ks/FPkCAADAYJDADkS5tLQ0SVJ9fb2ys7P77K+vr+8VB8Qio9E4rBUIAlXnzc3NHUavMBT9VXpwOBy9vh+KSg8AAACItPT0dDkatsjlcgWNczgcstvtKi8vl9VqDRprNpuVnp4ezm6OWWazWcmmFDXXlIWtzWRTSq8JAJmZmXr77bdVWFiouXPnqqysTFu2bPE/H/Pnz1dxcbH+85//aM2aNUxaBgAAMYvJmQAQW/or8hVs/ILPywAAABgMEtiBKJeXlyeLxaKVK1equrpaBoPBv6+7u1ulpaXKyMgYsIIYAESDYJUe7HZ7n21UegAAAMBYkJ6eHnLCudVq5T3sIdLT07WlwTGiEwBSUlK0ePFi3XPPPSoqKtIvfvEL2Ww2SVJnZ6d+8YtfqLa2VpWVlVq8ePHw7xQAAECUYnImAMSWQEW+JMYvAAAAMHwksANRzmg0qqysTEVFRSosLFRJSYmysrJUX1+v0tJS1dTUqLKyUkajMdJdRQT1V7Xa7XbL6XTKYrHIZDL12kfVaoxV/VV6GOh3OVY1Njb2upDke5xCdfjjyYUkAAAARMpoTQCw2WyqrKxUcXGxnn32WUnS5ZdfroyMDFVWVvqT2gEAwOg7fKyrP8FWajwU41zDw+RMAAAAAAAQDiSwA+PAoRdYc3Jy/Nu5wAqfYFWr+0PVaoxVgSo95ObmRqA3Y1djY6PmZ1rV5m4NW5vJphRtaXBwcS8KeDwe1dbWqqmpSWlpacrLy2MiGwAAQIhsNpsKCgq0atUqXXvttfrjH/+oK6+8kvdTAABEUGNjo6yZ89Xqbgspvr+VGg+VYkqWo2EL41wAAAAAAAARRAI7ME74LrAONmHN8Xl30P3uLq+cLd2yTDXIFB835HYQWf1VrQ62hGcsV60GxgOXy6U2d6tS84uVkDpHkuTt6lDX3l0htxE/ZYbi4hMlSZ3N29VcUyaXy8WFvTGuqqpKxcXFvartWywWlZWVMaENwLjB6kIARprRaNRJJ50kSTrppJNIXgcAIMJcLpda3W0qv8Ak6xGGgHGhXM9wfN4t+xo341wAAAAAAAARRgI7MI4YjUYtWbIkpFiz2awUU7Lsa9xhO3+KKVlmszls7SF8AlWtlljCExjPElLnKGnm3C82zF4Quc5gxFVVVamoqEj5+fmqqKhQVlaW6uvrtXLlShUVFbEqC4Bxg9WFAAAAgNhkPcKghWnBJ5blzhmlzgAAAAAAAGBYSGAHYlR6erocDVvkcrmCxgWr0n04s9lMxRIAACLA4/GouLhY+fn5qq6ulsHQU40sOztb1dXVKiws1IoVK1RQUEAFUQBRj9WFAAAAAAAAAADjASuOjl88twAwMBLYgRiWnp4ecsI5VboBIHq43T2ra3Q2bw9Le752fO1i7KmtrZXT6VRFRYU/ed3HYDCopKREOTk5qq2tHXC1FgZTAIx1rC4EDMzj8ai2tlZNTU1KS0tTXl4ek9gAAEDU8o1JOVyeYbfla4NxLgAAAIwFrDg6fvHcAsDASGAHAAAYZ5xOpySpuaYs7O3m5uaGtU2ER1NTkyQpKyur3/2+7b64YBhMAQAgulVVVam4uNj/nlCSLBaLysrKZLPZItcxAACAIfK9r7FXtYW1Tca5AAAAEGmsODp+8dwCwMBIYAcAABhnTjrpJCUmJaujPXwX9RKTknXSSSeFrT2EV1pamiSpvr5e2dnZffbX19f3iguGwRQAAKJXVVWVioqKlJ+fr4qKCmVlZam+vl4rV65UUVGRKisrSWIHAABRx2KxSJLKbcmymoe3qozD5ZG9qs3fJgAAABBJrDg6fvHcAsDASGAHAAAYZ+bPn6+tH2yRy+Xyb3O73b2qcA7EYrHIZDL5fzabzUpPTw9bHxsbG3v1rz8Oh6PX92DC3b9ok5eXJ4vFopUrV6q6uloGg8G/r7u7W6WlpcrIyFBeXt6AbTGYAgBAdPJ4PCouLlZ+fn6v9wPZ2dmqrq5WYWGhVqxYoYKCAhmNw0v8AgAAGE2+MSqr2aiFaeF5H3PouBcAAAAAAABGHwnsAAAA41B6enqfhO6xsixyY2Oj5mfOV5s7tArxdrt9wJhkU7K2NGyJ2SR2o9GosrIyFRUVqbCwUCUlJf6Kq6WlpaqpqVFlZSXJagAAjGO1tbVyOp2qqKjoNZlNkgwGg0pKSpSTk6Pa2lotWbIkMp0EAAAAAAAAAAAARAI7gEO0traqoaGh17Zg1W8zMzOVkpIyKn0DAIwfLpdLbe42zb5mtpJmJQWM6+7oVqerUwnmBBkSDQHj2ne2a8cDO+RyuWI2gV2SbDabKisrVVxcrJycHP/2jIwMVVZWymazRbB3AABgpDU1NUmSsrKy+t3v2+6LAwAAAAAAAAAAACKFBHYAfg0NDVq0aFG/+/qrfltXV6eFCxeOdLcwBI2NjXK5XEFjgk1OOJzZbI7ppFAAIyNpVpJMlgGWa543On0ZL2w2mwoKClRbW6umpialpaUpLy+PyusAAMSAtLQ0SVJ9fb2ys7P77K+vr+8VBwAAAIQDxZEAAIg+/b1+u91uOZ1OWSwWmUy9r9/x+g0AAEYCCewA/DIzM1VXV9dr20AfUjD2NDY2an7mfLW520KK729ywuGSTcna0rCFJHYAiAJGo1FLliyJdDcAAMAoy8vLk8Vi0cqVK1VdXS2D4YsVbLq7u1VaWqqMjAzl5eVFsJcAAAAYbyiOBABA9An2+t0fXr8RC5jYMX7x3AJjFwnsAPxSUlL6/dCRm5sbgd5gqFwul9rcbZp9zWwlzUoKGNfd0a1OV6cSzAkyJBoCxrXvbNeOB3bI5XKRwA4AwAAGMwDC4AcAIJyMRqPKyspUVFSkwsJClZSUKCsrS/X19SotLVVNTY0qKytZmQUAAEQtx+fdQfe7u7xytnTLMtUgU3zckNrA4FEcCQCA6NPf67fD4ZDdbld5ebmsVmufeCDSGhsb5XK5gsYEWwnocGazuVcODBM7xi+eW2DsIoEdAMappFlJMllMwYPmjU5fAAC9HZ7kzAzv8WMwAyAMfgAAws1ms6myslLFxcXKycnxb8/IyFBlZaVsNlsEewcAADA0ZrNZKaZk2de4w9JeiilZZrM5LG2B4kgAwo8qqcDIC/T6LUlWq5VrFxhzGhsbNT/TqjZ3a0jx/a0EdLhkU4q2NDj8SexM7Bi/eG6BsYsEdgAARlg4ZwIfPgs41nk8HtXW1qqpqUlpaWnKy8sbVEVJBkExWg7/P+D7QByKwz80839gbBvMAAiDHwCAkWCz2VRQUDCs98kAAABjSXp6uhwNW0IaYw2UgHAoxlaiy3DHgAFEH6qkAgAO53K51OZuVWp+sRJS5wSM83Z1qGvvLsVPmaG4+MSAcZ3N29VcUyaXy+X/bMDEjvGL5xYYu0hgBwBgBPXMBJ6vNndbSPEDJbQmm5K1pWELF1gkVVVVqbi4WE6n07/NYrGorKws5MqSDIJiNAy2IsDhDv+/cHg1AERWKJOUAjl8Ag0X0AEA4WI0GrVkyZJIdwMAACBs0tPTQ/7MTALC+BGOMWAA0YcqqQCAQBJS5yhp5tzgQbMXjE5nAADDRgI7AAAjqGcmcJtmXzNbSbOSAsZ1d3Sr09WpBHOCDImGfmPad7ZrxwM7es0CjlVVVVUqKipSfn6+KioqlJWVpfr6eq1cuVJFRUWqrKwM6QIGg6AYDaFUBBhONQBETmNjo6yZ89UapklKKaZkOZikBAAAAAAAELYxYADRhyqpAAAAQGwggR0AgFGQNCtJJospeNC80elLtPN4PCouLlZ+fr6qq6tlMPQk/GdnZ6u6ulqFhYVasWKFCgoKBlxKlkFQjKYBKwJQDSDquFwutbrbVH6BSdYj+p98JEnuLq+cLd2yTDXIFB/Xb4zj827Z17iZnAAAQAhaW1v7rGTicDh6fT9UZmamUlJSRqVvADDW9fc/1O12y+l0ymKxyGTqPX7F/1AAkRDOMWAAQOhCWXE02Ofvw43kqqO8rx2caHpuAQBA7CCBHQAARJXa2lo5nU5VVFT4L1z4GAwGlZSUKCcnR7W1tVqyZElkOgkgpliPMGhhWvCLpbn9F98HAABD0NDQoEWLFvW7r78VT+rq6picCgD/J9j/0P7wPxRAJDAGDCBcRjrJ2ePxqLa2Vk1NTUpLS1NeXl7UTqxpbGzU/Eyr2tytIcUPtOKoJCWbUrSlwTEiic68rw1duFeTlVhRFgAAhAcJ7AAAIKo0NTVJkrKysvrd79vuiwMAAAAwvmRmZqqurq7XtoESEAAAPfr7H+pwOGS321VeXi6r1donHgBGG2PAAMJlJJOcq6qqVFxcLKfT6d9msVhUVlYmm8022K5GnMvlUpu7Van5xUpIDVyRxdvVoa69uxQ/ZYbi4hMDxnU2b1dzTdmIrTrK+9rQhXM1WYkVZYeLavgAAHyBBHYAABBV0tLSJEn19fXKzs7us7++vr5XHEYGSzMCAAAgUlJSUvpNKMjNzQ3p+HBeKOQiIYBoE+h/qCRZrdaYrUoJYGxhDBhAuIxUknNVVZWKioqUn5+viooKZWVlqb6+XitXrlRRUZEqKyujMoldkhJS5yhp5tzgQbMXjE5nguB97eCxmmzkUQ0fAIDeSGAHAGAEud1uSVL7zvZht+Vrw9dmrMrLy5PFYtHKlStVXV3dawnZ7u5ulZaWKiMjQ3l5eX2OZUb70B3+2PkGeEN16EBwKI8tQsdkAgAAgNCF+0IhFwkBAADCbzhjwABwqJFIcvZ4PCouLlZ+fn6v/1HZ2dmqrq5WYWGhVqxYoYKCAhmNwZOFAcQWquEDANAbCewAAIwg37KBOx7YEdY2Q60sOB4ZjUaVlZWpqKhIhYWFKikp8Ve2KC0tVU1NjSorK/sMCjY2Nmp+5ny1hXFGe7IpWVtiIFllsEk+/RlMsvt445t00tm8fdht+do4dCLLSC6BCgAAMN6E80IhFwmB0DHxFgAwGEMdAwaA0VBbWyun06mKiopeE2wkyWAwqKSkRDk5OaqtrdWSJUsi08kxis8FQA+q4QMA0IMEdgAYZ8JZ8fvQdmK96vdQWSwWSdLsa2YraVbSsNpq39muHQ/s8LcZy2w2myorK1VcXKycnBz/9oyMjIDLMrpcLrW52wZ8Lro7utXp6lSCOUGGxMAJLb7nIxaSVcJdDWDt1i7dui48/6OigW8iS3NNWVjb9E1kGaklUAEAAMYzLhQCo4uJtwCAwRrKGDAAjIampiZJUlZWVr/7fdt9cfgCnwvGLyYnAACAoSCBHQDGmZGo+O1rN5arfg+V78N40qwkmSymAaIH12ass9lsKigoUG1trZqampSWlqa8vLwBq+6E9FzMC2NHx5FwJfk4XJ4w9Sg6+CadpOYXKyF1eFlQnc3b1VxT1msiy0gsgQoAAAAA4cTEWwDh1l+SlMPh6PX9UCRJRaehjgEDwEhKS0uTJNXX1ys7O7vP/vr6+l5x+AKfC8YvJicAAIChIIEdAMaZcFb8lqj6jbHNaDSy/CLGPN+kk4TUOUqaOTesbQL4QmNjo1wuV9CYYMkMhzObzeN+hQ0AAIDRwsRbAOEWLEnKbrf32UaSVPRiDBjAWJOXlyeLxaKVK1equrpaBsMXK9d2d3ertLRUGRkZysvLi2AvxyY+F4xfTE4AAABDQQI7AIwzI1Hx+9B2AQDjC0m/GA8aGxtlzZyvVndbSPH9JTMcLsWULEfDFn6fAYwIKoYCAAAMT39JUm63W06nUxaLpc94NklSAIBwMRqNKisrU1FRkQoLC1VSUqKsrCzV19ertLRUNTU1qqysZLUIxJRYmpzQ37jeQO9DGdcDAKB/JLADAAAAo6CzeXvAfd6uDnXt3aX4KTMUF584pDaGorGxUfMz56stjEm/yaZkbRnDSb/hTNgPJaEfo8PlcqnV3abyC0yyHmEIGOfu8srZ0i3LVINM8XEB4xyfd8u+xi2XyzVmf5cBRDcqhgIAAAxPoCSp3NzcCPQGABBrbDabKisrVVxcrJycHP/2jIwMVVZWymazRbB3AEZSsHG9/jCuBwBAYCSwAwCAmOB2uyVJ7Tvbw9Kerx1fuwhde5e353uMPBdms1nJphQ115SFpb1kU4rMZnNY2nK5XGpzt2n2NbOVNCspYFx3R7c6XZ1KMCfIkBg4Obh9Z7t2PLBjzCb99iTsW9Xmbg0pPpSEfYwt1iMMWpgWvLJR7pxR6gwABEHF0MjxvWd0uDzDbsvXxlh9HzoaqDoGAAAAjDzed49NNptNBQUFqq2tVVNTk9LS0pSXl0fldWCc629cz+FwyG63q7y8XFartU88xq5Qi1mxSjUAjAwS2AEAQExwOp2SpB0P7Ah7u1R2Gpyd+3sS2GPluUhPT9eWBkfQqt/BBrYONxKDH0mzkmSymIIHzQvrKSOiJ2G/Van5xUpIDZzFHGpFfPeHm7S3tnwkugoAGOeoGBo5vs8F9qrQVqAJtc1Yfe6oOgYAAIDxYKwniPO+e+wyGo1asmRJpLsBYBQFGteTJKvVyv/fKOE5sEeGuNCLWYUSl2JKlmMMr1INAGMRCewAACAmWCwWSRqw0nSofJWmfe0idLMmxUmKreciPT2912BFfxdEAqFaTvglpM5R0sy5wYNmLxiwnc7m7WHqEQAAGC2+94zltmRZzcOriudweWSvahvT70NHGlXHAAAAxo6xnoQ9lo31BHHedwMAEF7d7QfU7ZXKLzDJekTg1afdXV45W7plmWqQKT4uYJzj827Z17jH7CrVADBWkcAOAABigm9wPqRK00Nodzxzu92SehJ0wsFXgT3BnBCzz0WgCyL9zd6nWg4AAED4+N4zWs1GLUwLz7Lu0fQ+NNyoOgYAADB2jPUk7LFsrCeI874bAMaHcF9z9bXjaxeDZz3CMOAYYW7gRZ0BAMNEAjsAAACCcjqdkiR7VVtY2+10dUrzwtpk1Dj8gshAlZAAAAAAAAAAIJixnoQ9lpEgDgAYDSN1zdXpdCo3NzesbQIAMBpIYAcAAIhBHo9HtbW1ampqUlpamvLy8mQ09j+73GKxSJLKbcmymodfpXLt1k7duq5DCeaEYbcVrfq7IMLAEgAAQPRrbW1VQ0NDr20DTVZMSUkZzS4CAABgnCIJG9GqsbFRLpcraIzD4ej1PRCz2az09PSw9Q0Awvk/qr29XVL4rrk6XB7Zq9r813IBAIg2JLADAADEmKqqKhUXF/tn+Us9SeplZWWy2Wx94n1JNlazccAl1ELhW87OkGgYdlsAMFpISAQAhKKhoUGLFi0KOb6uro5EIoxL4bzAL5GIhPGJzxgAAPS8b5yfaVWbuzWkeLvdHnR/silFWxocvHcEEBbh/h/lE65rrj6Hf3YAACBakMAOAAAQQ6qqqlRUVKT8/HxVVFQoKytL9fX1WrlypYqKilRZWdlvEjuA0TFQ8g5JPpFDQiIAIBSZmZmqq6vrtc3hcMhut6u8vFxWq7VPPDDe9Fzgn682d2hLoodygT/ZlKwtDVt4f4txhc8YAABILpdLbe5WpeYXKyF1TsA4b1eHuvbuUvyUGYqLT+w3prN5u5pryuRyuXjfCCAswvk/SpLcH27S3trykegqAABRiQR2RBxVRgAAGB0ej0fFxcXKz89XdXW1DIaeCujZ2dmqrq5WYWGhVqxYoYKCAhmN4Zv1D4xXXk+npC9WFRiO2sYuSaFX5yDJZ/SRkAgACEVKSkrA5EKr1UriIWJCzwX+Ns2+ZraSZiUFjOvu6Fanq1MJ5oSgK3S172zXjgd2kIiEcYfPGAAAfCEhdY6SZs4NHjR7weh0BgAOE67/UZ3N28PUIwAAxgcS2BFxVBkBAGB01NbWyul0qqKiwp+87mMwGFRSUqKcnBzV1tZqyZIlkekkEEU8B3ZLkuxVoVWWDMWRtiM16SuTAu4nySdySEgEgPHF8Xl30P3uLq+cLd2yTDXIFB83pDaAWJc0K0kmywDLmM8bnb4AYxGfMQAAAAAAABDLSGBHxFFlBACA0dHU1CRJysrK6ne/b7svDkBwxonTJUnltmRZzcNbtWDt1k7duq5DEzInkOQDAMAIMpvNSjEly77GHZb2UkzJMpvNYWkLrNQIAAAAAACAvtzunrG8cFWx79q7q6fdLm9Y2vNxOBwh7R8oTuoZx6RIFYDxjgR2RBxVRoCR0b6zPej+wVRwBTA+pKWlSZLq6+uVnZ3dZ399fX2vuMOFo0qlJH20J7wDAUCowj245avAbplq0MK04SWwO1weSQr6mgwAAIYvPT1djoYtcrlcQeOCFVc4FBeSwouVGgEAAMYOJhcCwPjguzbiuw4xXL52fO2OZ9GSNB0LnE6nJKm5piys7a77qCvode1Q1TZ2SZLsdntI8aHEJZuStaVhC2OPAMY1EtgBhE1jY2NIF4AP/R4MF4GHxmw2K9mUrB0P7Ahbm8lUlAPGhby8PFksFq1cuVLV1dUyGL5IlO3u7lZpaakyMjKUl5fX67hwV6nE8ITz9fa9996TFL7JSr52xuqg5UgNbjlbupU7J6xNAgCAEZSenh7yeAPFFUYXKzUCAACMHUwuBGJLuBN1fe2E83rBQNdHyEXon+/aiL2qLezt5ubmhrXNsYbrSmOHxWKRJKXmFyshdfgP3oHNL+rAu8/r1nUdunVdx7Db8znSdqQmfWVSwP2DKTS544EdcrlcMfO/CkBsIoEdQFg0NjZqfuZ8tblD+9DDbMKRk56eri1hrCYnxdYHeGA8MxqNKisrU1FRkQoLC1VSUqKsrCzV19ertLRUNTU1qqyslNHYu5J0uKtU+uIweI2NjbJmzldrGF9vJYV10pM0dgctwz245f5wk/bWlssylarpAAAA4cBKjQAAAGMHkwsRrQZKXibJuX8jlqgbpusFg8lHIBehN9+1kXJbsqzm4a0mK/VUYLdXtfnbHc+4rjR2+FZ+SUido6SZc4fdXsdnH0p6Pmx/F2u3durWdR2akDlBJospePC8YZ8OAMYNEtgxaCwXh/64XC61uds0+5rZSpqVFDCO2YSjg2pyAAKx2WyqrKxUcXGxcnJy/NszMjJUWVkpm83W73H8XxkbXC6XWt1tKr/AJOsRgV9H3V1eOVu6ZZlqCLrsXXVDp375eseAr9+h8r1+j9VBy3APbvkqyIRjaUGMTeG62BVLF7oAAAAAINpw3QvoH5MLEW08B/bIEBd6YZdQ4lJMyXLEWJJzuBJ1O5u3q7mmLGzXC0LJRyAXoX++9zJWs1EL04afqHt4u+MZ15XGrzhjgqTw/V04XB5JCvq/BwDQFwnsGDSWi0MwSbOSmE0I9KN9Z3vQ/aEMqAzUBkITjucilHbGMpvNpoKCAtXW1qqpqUlpaWnKy8vrU3kdY5f1CMOAgymhLD3oG0wJ6fV7EGJh0BLjW9OBbimMF7tiqZoPAAAAAEQbrnsBwPjQ3X5A3V6FrQCM4/Nu2de4Yy7JOVyJuoe3Gy4DXs8gFwEAACBqkMCOQRvry8VRKQPAWGI2m5VsStaOB3aEpb1kU7LMZnNY2oo14X4upOh+PoxGo5YsWRLpbgDAmNTS5pW8CsvqQrFWzQcAAAAAos1Yv+4FIPwaGxvlcrmCxoS68p7E6ntjTbgKwADASHF83h10/2Am2gAAEM1IYMegjfXl4qiUAWAsSU9P15aGLSENhAa6IHIoBkGHLtzPhcTzAQDjHasLAQAAAMD4N9avewEIr8bGRs3PtKrN3RpSfCgr9CWbUrSlwcH1giFwu92SpM7m7cNuq2vvrp42u7zDbgsADjXQ/yhvV4e69u5S/JQZiotPDBjnce+TIU6yr3GHrW8pUVxwDQCAcZPA/vHHH+vuu+/Wc889p+3btyspKUnHHHOMvv3tb+v6668PS4Vtp9OpP/zhD3r55Zf1n//8RwcPHtSkSZOUmZmps88+W9ddd52OPPLIMNwbDAeVMgCMNenp6SEPWnJBZGQd/lz0t2pHMKzaAWCktP/fRZX2ne3hae//2vFdAAIAAAAAAMD4QhXxoXG5XGpztyo1v1gJqYHLcIeajNjZvF3NNWWsvjdETqdTktRcUxa+Nlu6qbAOICx6VvhOCev/qKSkZD31VKXS0tICxlBwDQAQK8ZFAvuzzz4ru92uffv2+be1trZq06ZN2rRpk/70pz/pueee09y5c4d8jscee0zXXnttnwSQPXv2aOPGjdq4caPuuusuPfHEEzrzzDOHfB4MH5UyAAChCrZqR39VVVi1A0B/wrHU46adPW3seGBHWPvmdDqVm5sb1jZHSn+Titxut5xOpywWi0ym3pXQmVQEAAAAAABiVWNjo6yZ89XqbgspPpQq4immZDkatsRMElxC6hwlzRwgf2D2giG1zThX6CwWiyQNOKEgFO4PN2lvbbksUw1h6BkA+Fb4dkRshW9ynAAA413UJ7C/++67uvDCC+V2uzVx4kSVlJTotNNOk9vt1hNPPKEHH3xQH3zwgc4991xt2rRJkyZNGvQ5NmzYoOXLl6u7u1sGg0GXXXaZCgoKNGvWLDU2NuqRRx7Rs88+q927d6ugoED19fX60pe+NAL3FgAAhFN/q3YMNIg8Xng8HtXW1qqpqUlpaWnKy8uT0WiMdLcQIQNV/e7u6Fanq1MJ5gQZEgMP/oereni0MCRNDPtSj7Ovma2kWUnDbqd9Z7t2PLDDfwEoGgSbVNQfJhUBAAAAGMhgEghjOXkQQPRxuVxqdbep/AKTrEcEHq8LpbCC1FOgwb7GTRXxMGGcK3S+1+KQJhQMoLN5e0+bQX7XAWCwom21dSZRAQCiSdQnsP/whz+U2+1WfHy8XnrpJX3ta1/z7zv99NN17LHH6sYbb9QHH3ygsrIy3X777YM+R2lpqbq7eyoi3nPPPfre977n37d48WItXbpUxcXFuvPOO+V2u3XnnXfq3nvvHfZ9AwAAIyvQqh3RUq14qKqqqlRcXOxfmlPqqXJSVlYmm80WuY5h1E1NjpPiwlv1O9mULLPZHLb2xjLjxGnq9mrAihqhVN7wxSTNSpLJYuo3ZigOH4gcy/qbVBTssRtPk4oAAAAAjIzBJBCOdPJgY2NjSJUbD/0ezGAqNwIYv6xHGLQwLXhhktzhFbXGEDDONX6RGApgrGMS1eCEY5VlSfpojzfcXQOAmBDVCexvv/22amtrJUlXXnllr+R1n+LiYj300ENyOBy66667dPPNNyshIWFQ53nzzTclSampqb2S1w9122236c4775Qkbdy4cVDtxxoGaQEAiJyqqioVFRUpPz9fFRUVysrKUn19vVauXKmioiJVVlaSxD6Gud09lb4dLk9Y2mtp80peadWqVTrhhBMCxo3U0ofjRagVNcZC5Y2xLNCkIonHDgAwsvpLQAg2NkUCAgBEj8EkEI5k8mBjY6PmZ85Xm7stpHi73T5gTLIpWVsatsTcZ3AAiAaMc41fJIYO3kA5H6HmhoSSOwKASVShGolVlgEAgxfVCezV1dX+25dffnm/MQaDQZdeeqlKSkrU0tKidevW6ayzzhrUeTo6OiRJGRkZAWOmTJkis9ksl8vljx8vwplw3tTUpGVFS+Vuaw/p3KEM0qaYkuVgkBYAgAF5PB4VFxcrPz9f1dXVMhh6lpbNzs5WdXW1CgsLtWLFChUUFMhoDF61B5Hhq5pvrwrtgneokpKSYioB27eUbCDerg517d2l+CkzFBefOOR2AAAYLVSAG55gCQj9jU2RgAAA0WOsJBC6XC61uds0+5rZSpqVFDCuu6Nbna5OJZgTZEg0BIxr39muHQ/skMvl4toIAACjiMTQ0HkO7OlJDg0h50MKPQ5DF65K0wO1g8gaK5+BxrpwrrJ8aBzGBorrAtEjqhPY33jjDUnShAkTgs5yPfXUU/23N2zYMOgE9vnz5+udd97RRx99FDBm3759/n988+fPH1T7fi6X1B5aYvdo2bFjh3JzctXWNvCMM7OkH4XwYjxB0qPfSta81MCDr+4ur7bv69acycHfGH/Q3K3/Wtumt597Ti3z5gWM+/CDD2SW9OHf/674PXuC9m/69OmaPXv2QHcjJNM9HrX/33d9/nlY2hyr4vfskVnS9IMeJe/rGnZ7poMe7f2/dsf7YxcpvueMx3hs4PnAaHhrwwYdcDp12333ydDc3GufQdKt112nb517rt569lnl5uYOuv1Qf499cRP+06qkg4EriXd3dKtzd6cSpge/aGv4tD1m/n7mTp2qqZLu/1ayjk0N/B4pVFubvbpubZvmTp0a0nMW7Y/xkXFxmp1sUltNmQZ6txInaaA693GSZiebdGRc3LAfP95L9W+w/1fi3V7p4PAHz5PavWF7PsbLcxFOHo9Hb731lnbt2qUZM2YoOzs76MSpHTt2aPfu3UHbjNRnPowdsfT5uz/bNm/WN884I+T4V15+WV/5yldGsEfRJTM1Vf98+eVe29xut7Zv3645c+b0mQAwNzV1UL9n4+W9VKjCfX9j7fEbD8b6e9tYf83oT6z9nUXi/vrOmTYlXsnTB1gleGbgBHeftoMetSl2nrNw4zMGQjHWXy/CPRYS7/aG9Ds/Hv42fI9datsBJbbuHXZ7HW0H1KVBjF/xPrmXcD4fCa175ZG0dYdHcg//72Jrs1dTJXU2Nfkf4xRJC+fM6RXnuw/HzZyprxy2TwcP9nxFAd/9mLxzixLaDgSM83Z1qGvf54qffETQAjDGHe/L65X+EKbckJc/7FLpho4xOWY7Gq8Zra2t2rZtW69tQccu5s71Fy84Mi5O6clJ+lEYK03PTkxUc0ODNo/z14xQjfX/8ePhNWOkXr/7/d/dz3lDjRurYyGxpCfX8WtqC6G4bqi5jsnJSdr45sax+X9q//5I9wAYljiv1+uNdCeG6ogjjpDL5dLxxx+v9957L2Dcnj17NH36dEnSsmXL9Ne//nVQ53nwwQd1zTXXSJL+8Ic/6LrrrusT8+Mf/1h33HGHJOlvf/ubzhjERcN9+/ZpypQp2itp8qB6BgAAAAAAAAAAAAAAENvekRS47OHQ1UmiXjEAABiL9kmaImnv3r2aPJnMU0SfqK3A3tbW5q94PtDslmnTpmnChAk6ePCgtm/fPuhzXXHFFXrjjTf06KOP6vrrr1ddXZ3OP/98paWlqbGxUY899piqq6slSTfffPOAyevt7e1qP6TS+r59+wbdJwAAAAAAAAAAAAAAAEiZ6kk2H4l2MXitkhpGoN1M9VTCB/D/2bv3+Lzr+m78rxzaJoHKoeFQbEM6KyRQD7QegJpR3MRtFKi16D3JBLcpu1EfTIveqw43nTf1VJBtym8IQ1knuMVatdXd3jjF4K1iMyd2SwAPoe3ogJRDobl6TH5/dMkamqRpczXH5/Px4JGL7/dzvb/vJL1yXdf3en0/HwAY/8ZtgP3ZA5Y/OPbYYw85vifA/txzAy91NJCysrJ84QtfyCWXXJIbbrght912W2677bY+Yy688MJ84AMfGNLM6ytXrsyHP/zhw+5jIvAmBQAAAAAAAAAopqqYKX0saYsZ8QEAGNy4DbDv3Lmz9/bUqVMPOX7atGlJkkKhcETHa21tzZ133pmf/exn/e7/wQ9+kNtvvz319fV54QtfOGitFStW5L3vfW/v/2/fvj2zZ88+or7GG29SAAAAAAAAAAAmLjPiA5OJCV0Bjsy4DbBXVFT03t69e/chx+/atStJUllZedjHam5uziWXXJJnnnkmp59+ej760Y/mda97XU488cQ89thj+drXvpbrr78+d999d773ve/lW9/6Vs4+++wB602bNq03UN/HL36RTJ9+2P0dTQ888EB+4zd/M6e8+aOZevKcYdd79t++k+P/+bb8f79TkRfPKBl2vXt+tTcr79uTt/9xTY75teE/Ze/cvDO/+mR7vn3PPXnpS1867HovfelLs/U//zMzTz01DzzwwLDrjWU9/1bmvK82FbMrDn2HQyj274KD9fzO/Ixh8lm3bl3+7M/+LJs2b+7ddnpNTf78z/88ixcvPuK6xf674u/UwXp/Jr9XlZeeUjr8eo915Tf+rvOQP+PJ9rsYjX/LXkv1b6i/i2I/Nppa9+R/rt9VlN/HRPldDNeaNWty9R/9UX71y1/2u4rac889lzm/9mv5m//v/8vSpUt7t3tsMFST6f13kmzZsiVPPvnkoGMeeuih/M9rrsktn/1szjjjjEHHnnjiiZk1a1YxW5wUtmzZkvPOPy87d+4qWs2Kimn5wf/7wZj8fRT7POHux3+Vx770p16LTkBj/fl7sj1nDMVke5yNxvc71h8Xk4nfxdjX8zsaqqP1sx/rzxdj+VxIMrYfG0frde2h3nsV+z3aRHn+LubvY0fbfXny/97icXGUDfXf3s8feCCvH6N/pybKe4zR+lzO66mDDed3MRKvfSbKc8bzz4kWCoVsPuDz7iTZtGlTVn7sY1nxJ3+SmpqaPvtmz57dJzdYzOfbr3/5y/kf//N/Hs63MyR333JL3vzGNxa97kQ26f5GPfts8qIXjXYXcMTGbYB9+gFB7+eee+6Q43fs2JEk/X5QPphdu3bld3/3d/PMM8/k1FNPzQ9/+MOceuqpvftnzZqVa665JhdccEFe8YpX5NFHH82VV16ZDRs2HNZxkiTV1ckLXnD49zuK9p5wQjqSlFccm2lVxw273nNVx+XpJC+eVZb5M8uGXa91R3eezp48c/yU7H7B8P85F44pS0f2f9856aRh13uybH+9aWVlRak3lvX8WznumLJUjsHfBQfr+Z35GcPks/htb8tvv/WtaW5uztatWzNz5sw0NDSkrGx4z83F/rvi79TBen8mlSXJMcM/4bu3sntIP+PJ9rsYjX/LXkv1b6i/i2I/NnZNKyna72Oi/C6G68Qzz0xHko2PPZZz5xz8YeTPfv7zdPzXuAN/Th4bDNVkev+9adOmnLnw/Ows7Dz04CSXX3PNIcdUVFbkwbYHD/pQh8E9vnlztuzclVnvmJVpp/UzWcV/6drdlT0dezKlekpKpw78PLXr0V3ZcuuWPN7dnVlj8N9xsc8T7qo4Nh1Jfvaf/7n/7/IAWv/zP4c0Lkmqq6v9Ox4Dxvrz92R6zhgq7/lG7phj9XExmfhdjH1zzzsv/6el75y9ra2taWxszOrVq1NfX993fF1dUlX8eSnH+vPFWD4Xkoztx8azFRXpSNK946lM2X542YH+7HxiU57J0N57ZYjjqior0nqI92gT5fm7mO8znptWlW3xuDjanLM92Gg9Z4zW53KT/fVUZ2dn2tr6zrU92LmLurq6VA3yWqW/1z6FQiHt7e2pra09aKLWI3ntM1GeM2addFIOjJv/y7/8Sy6/5JJ+xy7/2McO2tbS0pKXzp9/WMcc6s9u1ktesv/rIc4TDlXPecJZL3nJuP6djYZJ9zeqv0mUYRwZtwH2ioqKzJgxI9u2bcuWLVsGHfvUU0/1Bthnz559WMf5p3/6p/zHf/xHkuTd7353n/D6gc4+++w0NjbmtttuS0tLS37605/mZS972WEdCwBgpJSVlWXRokWj3QZHqPWJrkH3F/Z2p/3prtQeX5rK8oFXvTlUHYBiaWhoSG1tbW644YasXbs2paX//aFVV1dXVq5cmTlz5qShoWEUu4TxoaOjIzsLO4semu7o6BD8PULTTpuWytpDrPo4+ASLk9K+555KaUnS2Ng4pPFDGTeUoA8AMLZVVVVl/gDBovr6+gH3wVC1t7cnSbatW1XUun9x4bT8zosHjl8czjnbxq8UvEcDGKPa2tqyYMGCfvf1d+6ipaVl0NcvA732Wbhw4ZE3OUnU1dWl5TDC/3V1dUetl55jDek84RHUBZioxm2APUnOOuusNDc35+c//3n27t2b8vL+v50Dr3x7/lX5h9La2tp7+1AnRBYsWJDbbrut95gC7AAAFFN1dXWqKivS+JVC0WpWVVakurq6aPUA+lNWVpZVq1Zl2bJlWbJkSVasWJF58+Zl48aNWblyZdatW5empqZhrwYCk0GhMLTXAaVTSw9rtp+h1oVi6dr1XLq6k9VvqEz9SQNfZCHoAwBAMdXW1iZJZixenikzDm/yu/4UfrkhzzSvzoVzDr0C+cLhHw5GVL8zTf9XhubALE2PQ800DRPBWApNT3bC/wDj37gOsL/mNa9Jc3NzduzYkZaWlrz61a/ud9y9997be/twn6QODMXv3bt30LF79uzp934AABONk5ajo6amJq1tD6ajo2PQcYMtq/x81dXVfQI+frfA0bJ06dI0NTVl+fLlOf/883u3z5kzJ01NTVm6dOkodgfjR89sgVtuHXxFwiOp68MdRkP9SaWCPgAAjJieYOGUGbMz7dS5w663Z9vm/XUHudgSxqtizzTN0G3atGlInwUd+HUwPgsqHqFpACiecZ2yXrJkSVauXJkkueOOO/oNsHd1deXOO+9Mkhx//PG58MILD+sYc+bM6b3d3NycxYsXDzj2wKD8gfcDAJhonLQcPTU1NUOeUfJIllX2uwWOpqVLl+ayyy5Lc3Nztm7dmpkzZ6ahocHM63AYemYLnPWOWYc1w/pAdj26K1tu3dJbF4CJ5WgHXwAAJqpde7v3f310V3Hq/Ved8bQCmpmmR8emTZtyZl19dhY6hzS+v89unq+isioPtrX2vpb3WRAAMBaM6wD7q171qjQ0NKS5uTm33357rrzyypx33nl9xqxatar3pOu1116bKVOm9Nn/3e9+tzfUfuWVV+bzn/98n/2/8Ru/kaqqqnR2duaWW25JY2NjXvKSlxzUyze/+c185StfSZK88IUvzMtf/vIifZcAAGOPk5YTl98tcLSVlZVl0aJFo90GjFs9z8XTTpuWytrKQ4w+/LoATBz7gy9nZmdh55DGDy34UpEH2x4UYgcAJrxHn90fYJ/MK6CZaXp0dHR0ZGehMzMWL8+UGQMvSda9d3f2PvNYyo87JSXlUwcct2fb5mxbtyodHR29r+N9FjRxuGgZgPFsXAfYk+Tmm2/OwoULUygUctFFF+UDH/hALrzwwhQKhdx999259dZbkyRnnHFGli9fftj1jz/++PzJn/xJPvShD+XZZ5/N+eefn3e/+9153etelxNOOCGPPfZYvvrVr+Zzn/tcurq6kiQf+9jHUlpaWtTvEwBgLHHScuLyuwUAAJgY9gdfdh5y1Y6u3V3Z07EnU6qnpHTqwJ9t9KzacWDwBQCgGPZs2zzo/qEEdfc+81hRezptekkSK6AxeqbMmJ1pp84dfNCss46ots+CJgYXLQMw3o37APs555yTL33pS2lsbMz27dvzgQ984KAxZ5xxRtavX5/p06cf0TH+9E//NE8++WRuvvnmPPfcc1m5cmVWrlx50LgpU6bkhhtuGNITPgAAAAAAwNE2pFU7zhiZXgAADlRdXZ2KyqpsW7dqtFs5yLTy/QF2K6ABY5WLlgEY78Z9gD1JLrnkkjzwwAO5+eabs379+mzZsiVTp07N3Llzc/nll+dd73pXqqqqjrh+SUlJbrrppjQ2Nua2227Lfffdl0ceeSSdnZ059thjM3fu3FxwwQW5+uqrc8YZzvIOResTXYPuL+ztTvvTXak9vjSV//XGsD+/eqq72K0BAMAR6+zsTFtbW59tAy3NWFdXN6z3KQAAI6lQKCQ59MyIQ9UzO2Jhb3HP7x34mqtn+fOhev4y6ZbNBg7U3/u9nr8zz//7kXjPBzBZdO/bkyRp7dhXlHo9dXpef090NTU1ebCtNR0dHYOOa21tTWNjY1avXp36+vpBxwBMNi5aBmC8mhAB9iQ5/fTTc+ONN+bGG288rPstWrQo3d1D+5BkwYIFWbBgwZG0x38pnXZsSkuSxq9MjjfcAABMLm1tbQO+Z3j+hyctLS39LtHJ4ev5QK9YHxT+6qn9F9x27R78wlsAmEx6guDFnhmx/emuLJw9/Dpbn+tKSoa2HPZQWTYbONBg7/f64z3f2NTz/nHXo7uKUq+nzmQJmgIH2/fck0mSxjU7i1q3vb09CxcuLGrNsaqmpmbIr7nr6+s9vwIAwAQxYQLsHB3Fnlmpa9dz6epObr/99rz85S8fcNxQrqA+cBwAAIwFdXV1aWlp6bNtoBn56urqRrq9CasnUFfsDwp3tO0YdDnNoRBmAGCiqK2tTZLMWLw8U2YMP3Fe+OWGPNO8OrXHD++5tsfTO7uT7vRZNrtnieyhOnApbctmA8/X3/u9wT7L8J5vbOp5/7jl1i1FrztZgqZAX2XHnpgkWb20IvXVZcOu19qxL41rdva+/gYAAJioBNgZ1NGaWWnatGlDujLaFdQAAIwnVVVV/b5+9SH20dXzgV6xPii87V925ZYNe/P4msfz+JrHh10vEWYAYPzruRBvyozZmXbq3GHX65kwo7K8ZNi1DnTQstmWyAaKZKD3e4nPMsaTnvePB17wNBw9FzwJmjLSrEY3dpSUTUmS1FeXZf7M4Z+X6tHe3t5nMozna21t7fN1MNXV1S7KZNS0PjH435XC3u60P92V2uNLB31/+KunuovdGkAfnZ2daWtr67NtsOfburq6VFVVjUhvABOVADuDKvbMSnu2bc62daucyAMAAIqm58O8Yn1Q+IrTypLsLUqgQZgBAABg7Oh5/3jQBU9Fqgsj5WitRrenY48LAEfZ1ue6kpIMeRXyoYyrqKzIg20PCrEfoZ4VFgfSs/LTgSs6HUmdiaa6ujpVlRVp/IqVKYHxoa2tLQsWLOh3X3/Pty0tLS5kBhgmAXYGVeyZlZ5fFwAAYKyZ9l8z/RQz0OA90JHpmVGuWB/w9dTpqQvA6OnetyeJWUMBAI5EsVej+8bDe3L9d3ZnSvWUYddieJ7e2Z10H3qliMMJTW+5dUs6OjomTYC9WDN+d+zoTkqSLbduKVpvFZUVqa6uLlq9saympiatbQ+mo6Nj0HGtra1pbGzM6tWrU19ff8hxk0HPucuelcuGq6eOc6IwuLq6urS0tPTZVigU0t7entra2oM+56mrqxvJ9gAmJAF2gEnAUkcAAIxHPTPKFfODwp66CxcuLGpNAA7PvueeTGLWUACAI1Hs1ej+9T/3Jtn/WqowdfgBx/FwAfmhgqHde3dn7zOPpfy4U1JSPnXAcXufeazYrSUZ4sQKXvf2cTRm/K6YNi1NX/5yZs6cOeCYoQawe3qcLBcSJPtD7EP9fuvr681k/F96zoluW7eq6HWdE4WBVVVV9ft3yOMG4OgRYAeYBCx1BADAeNQzo9yhZh0bqp5Zx3rqAjB6yo49MYlZQwEAxoJHn+1OMjkuIK+urk5FZVXRg6GMvmLP+J0cXuBcAJti6Tl3OWPx8kyZMXvY9fZs25xt61Y5JwoAjDkC7ACTgKWOAIDJoFjLA//qqe5it8YR6nmdOqRZx46gLgCjp6Rsf9DcrKEAAKPvtOn7z5NMhgvIa2pq8mBba9FCzj3jGBvM+M1E0HPucsqM2Zl26tyi1wUAGCsE2AEmAUsdAUxcnZ2daWtr67OttbW1z9cD1dXVpaqqakR6Gw/G2s+vJyg1kK7dXdnTsSdTqqekdGrpEdeZaI7G8sAAwMgo1gVoGx7dX2cyzBoKAFBs0/7rddZkuYBcyBkAAGD0CbADAPyX3bt357Of/Wx+8Ytf5EUvelGuueaaTJ06dbTbgkG1tbVlwYIF/e7rb+aflpYWH7gcYKz8/PYvXVxR1MBVRWVFqquri1ZvLCv28sBmzgKAo6902rEpLUnRL0CbDLOGAjB8LiAHgPGlZ3WsYjz3WnGLiaKYj4sD63hsHDnvMwAOjwA7Q7Jn2+ZB93fv3Z29zzyW8uNOSUn5wEG/Q9UBgNHy/ve/PzfddFP27t3bu+1973tf3vOe9+QTn/jEKHYGg6urq0tLS0ufbYVCIe3t7amtrT1olqO6urqRbG/MGys/v/1LFxcvgJ3sD8UPdSapicDMWQCMNB8SDk/ZsSekqztDvrBsqOMmy6yhABwZF5ADwPjU3t6epLirbo31FbfkdDiUo/G46Kk7lh8bY5H3GQBHRoCdQe1/gq3KtnWrilazorLKEywAY8r73//+fPKTn8wpp5ySj370o1m8eHHWrVuXP/3TP80nP/nJJBFiZ8yqqqrqN4jrxNLQjKWfnwA2AIwvk/VDwmJ/gD7U1zVe/zBZdXZ2pq2trc+2Q110W1VVNZItwrjS3wXkPY+pA/3qV7/K9ddfn7/4i7/InDlz+ux7/mNvsl1ADvSv9YmuQfcX9nan/emu1B5fmsrykgHH/eqp7mK3BhNCz+pYxVh1a6yvuCWnw1AV83GRjP3HxlhmoiqAIyPAzqD2P8G2eoIFYMLavXt3brrpppxyyinZsmVLysv3vzz6wz/8w1x11VWZNWtWbrrppnz0ox/N1KkDhy8AAIDJZbJ9SOgDdBgdbW1tWbBgwZDHt7S0TOqLPTZt2jSkzzMO/DoQn2VMXM+/gPxf/uVf0tjY2O/Y66+//qBtk/1xVmzFfNwmHruMvOrq6lRVVqTxK5NjJSUYLT0XjxVz1a2xuuKWnA5DdTQeFwfW5fCYqKp4XMwPk4cAO4fkCRaAieyzn/1s9u7dm49+9KO94fUe5eXl+chHPpKrr746n/3sZ/PHf/zHo9MkAAAw5ky2Dwl9gA6jo66uLi0tLX22DfY4q6urG8n2xpRNmzblzLr67Cx0Dmn8QIHlHtOmVeTLX27KzJkzBxwz1FDtUEK3jJ7+HmeHCkdQHPsft2dmZ2HnkMYf6nGbJBWVFXmw7cFJ8xrDrN+jr6amJq1FnHG1ZxwwucnpAJOZi/lh8hBgZ9T1d9XUYCd9XTUFQDH94he/SJIsXry43/0923vGAQAATFZH+wN05wnhYFVVVQM+lgRV+uro6MjOQmdmLF6eKTNmDziue+/u7H3msZQfd0pKyvtfbW/nln/L9n/+3IDni55P0HB8G+hxtnDhwlHoZnLZ/7jdecgVbbp2d2VPx55MqZ6S0qmlA47rWdGmo6NjwgfYj9as37se3TXo/sP5XUwmgqbAZFIo7H/uKdbf+p46PXUBXMwPk4cAO6NusKum+jvp66opAIrpRS96UZJk3bp1+cM//MOD9q9bt67POACKwxLhAMMjWMJE5DwhUAxTZszOtFPnDj5o1lmD7t6zbXO6upPVb6hM/UkDP48OdWbjbzy8N9d/x3MuDGRIK9qcMTK9jBfFnvV769ateeOyN2bLrVuK1mNFZUWqq6uLVg+AsaG9vT1Jivqc0VPXBYRA4mJ+mEwE2Bl1lmYEYDRdc801ed/73pc//dM/zVVXXZXy8v9+ebR379586EMfSnl5ea655ppR7BJgYtm/RHh9dhY6hzR+aEuEV+XBtlYhdmDCq66uTkVlhWAJY0KxZ0x3nhAYa+pPKs38mWWDjlk48GTvvf71P/cmMUsl0Fd/r6UO9drnwNdSxZ71+6EHHypaID4x2QBHzspMMLbV1tYmySFXUBmqnhVUeuoCAJOHADujztKME4NlooDxaurUqXnPe96TT37yk5k1a1Y+8pGPZPHixVm3bl0+9KEP5bHHHsv73ve+TJ3a/5LSABy+/UuEd2bG4uWZMmPgtEf33t3Z+8xjKT/ulJSUD/x3eM+2zdm2btWkWCIcoKamJg8WcabFRLCEI1fsGdOdJwQmqkef7U5ilkqgr8FeS/XnaK8+U+xAPBwpKzPB2NZzgdWQVlA5groAwOQhwM64JjQ9dlgmChjPPvGJTyRJbrrpplx99dW928vLy/O+972vdz8AxTVlxuxMO3Xu4INmnTUyzQCMI4IljBVmTJ+4hjMjrHO2Y4ffxdhx2vSSJGapBPrq77XUYBeiei3FZOF9BgAATA4C7IxrQtNjh2WigPHuE5/4RD760Y/ms5/9bH7xi1/kRS96Ua655hozr48QS4ICAMD4Y8b0iWs4M8I6Zzt2+F2MHdPK9wfYzVIJHGig11KJC1GZ3LzPAACAyUGAnXFNaHrssEwUMBFMnTo1f/zHfzzabUxKlgQFAAAYO4YzI6xztmOH3wUw1lkpAjjaTJ4DAJOL9xgwvgiwM64JTQPAxGBJUAAAgLFjODPCOmc7dvhdAGOdlSKAo63Yk+cIxANj0aGCul27u7KnY0+mVE9J6dTSI64D44H3GDC+CLBz2LwpAwCKzZKgAAAAADC5WCkCONqKPXmO1WSBsaS6ujoVlRVFDepWVFakurq6aPVgpHmPAeOLADuHzZsygOLat29fmpubs3Xr1sycOTMNDQ0pKysb7bYAAAAAAOCosVIEcLQVe/Icq8kCY0lNTU0ebHswHR0dg45rbW1NY2NjVq9enfr6+kHHVldXp6ampphtwojyHgPGFwF2DttYfFNmORxgvFqzZk2WL1/eu4xRsv+K0FWrVmXp0qWj1xgAAAAAAADQy2qyw9PZ2Zm2trY+21pbW/t8PVBdXV2qqqpGpDcYr2pqaoYcOK+vrzcBKQBjigA7h20svSmzHA4wnq1ZsybLli3L4sWLc9ddd2XevHnZuHFjbrjhhixbtixNTU1C7AAAAMC4ZNIRAADgQG1tbVmwYEG/+xobGw/a1tLSImwLADCBCbAzrlkOBxiv9u3bl+XLl2fx4sVZu3ZtSkv3f1B77rnnZu3atVmyZEmuu+66XHbZZSkrKxvlbgEAAACGxqQjAABAf+rq6tLS0tJnW6FQSHt7e2pra1NZWXnQeADGh/5W2TjU33irbAAC7Ix7lsMBxqPm5ua0t7fnrrvu6g2v9ygtLc2KFSty/vnnp7m5OYsWLRqdJgEAgHHBEtzAWGLSEQAAoD9VVVX95jUWLlw4Ct2ML879AGPdYKts9McqG0AiwA4UmaWBYWi2bt2aJJk3b16/+3u294wDABivzLoBR58luIGxxqQjAAAAxePcDzDW9bfKxmCTF1hlA0gE2IEisTQwHJ6ZM2cmSTZu3Jhzzz33oP0bN27sMw4AYLwy6wYcfZbgBgBgPDM5EgAMzrkfYKwbaJWNxOQFwMAE2IGisDQwHJ6GhobU1tbmhhtuyNq1a1Na+t8n3bu6urJy5crMmTMnDQ0No9glAMDwmXUDjj5LcAMAMB6ZHKm4+lsBrbW1tc/XA1kBDRiPBrtYaSJf8OTcD4w/XpsBHJoAO1A0lgaGoSsrK8uqVauybNmyLFmyJCtWrMi8efOycePGrFy5MuvWrUtTU1PKyspGu1WASWXfvn1pbm7O1q1bM3PmzDQ0NPhbzKTT30nVQ83mM9hJVbNuAAAw3nTv25Mkae3YV5R6v3qqK8n+UBXw30yOVFyDrYDW2Nh40DYroAHjSbEveprMFzwVixVUYHBemwEcmgA7AIySpUuXpqmpKcuXL8/555/fu33OnDlpamrK0qVLR7E7gMlnzZo1Wb58edrb23u31dbWZtWqVf4mM6kMdlK1P06qAgAw0ex77skkSeOanUWtu6djT3JGUUvCuDeZJkfatGnTkML6B34dzPPD+v2tgHaoC9IZewqFQpLiBTp76vTUhfFqKBc9ueBpZFhBBYbGazOAQxNgB4BRtHTp0lx22WVm+wUYZWvWrMmyZcuyePHi3HXXXb2rYtxwww1ZtmyZC4uYVPo7qTrYhz9OqgKTnRnHACaesmNPTJKsXlqR+urhn6f7xsN7cv13dmdK9ZRh1wLGp02bNuXMuvrsLHQOaXx/s3I+X0VlVR5sa+0NYA60AtrChQsPr1lGVc/kGsUMhvbU9W+B8W6oFz2N9wuexjorqMDQeG02dMW80HMoF4ICY4cAOwCMsrKysixatGi02wCYtPbt25fly5dn8eLFWbt2bUpL9wfLzj333KxduzZLlizJddddl8suu2xELzDq7OxMW1tbn22DnZypq6tLVVXViPTGxDbQSdXEhz8ABzLjGMDEVVK2P2heX12W+TOH/z6wtWNfkgx6IRMwsXV0dGRnoTMzFi/PlBmzBxzXvXd39j7zWMqPOyUl5VMHHLdn2+ZsW7cqHR0dAn8TTG1tbZLk5KUnZ2r1wP8GuvZ2Ze/Te1N+fHlKywd+ftndsTuPr3m8ty5AMUymFVSAo2vTpk2przsznYWhrYA2lAs9gfFDgB0AAJjUmpub097enrvuuqs3vN6jtLQ0K1asyPnnn5/m5uYRveCora0tCxYs6HdffydnWlpanAQGgBFkxjEAAA7XlBmzM+3UuYMPmnXWyDTDmDR79uxUVFbk8TWPF61mRWVFZs8e+MIJAIDR0tHRkc7Czqx+Q2XqTxr4orzC3u60P92V2uNLU1leMuC4bzy8N9d/x0qXMF4IsDPhmKkSAIDDsXXr1iTJvHnz+t3fs71n3Eipq6tLS0tLn22FQiHt7e2pra1NZWXlQeMBgJFlxjGAsaNQKCTZPyvxcO195rH9Nfd2D7sWABwOF8oCAJNR/Umlh1wBbeEQrsfrWQENGB8E2JlwzFQJAMDhmDlzZpJk48aNOffccw/av3Hjxj7jRkpVVVW/r1MXLlw4on0cDcUMlhxYp6cuAAAw+bS3tydJtq1bVbyaT3cN6QNyACgmF8oCAACTgQA7E46ZKgEAOBwNDQ2pra3NDTfckLVr16a09L+Xp+vq6srKlSszZ86cNDQ0jGKXE8vRCJb01J0IAX8AAODw1dbWJklmLF6eKTOGlzov/HJDnmlendrjB16+HAAAAAA4cgLsTDgTeaZKAACKr6ysLKtWrcqyZcuyZMmSrFixIvPmzcvGjRuzcuXKrFu3Lk1NTSkrG3zZOoaumMGSZP8M7NvWreqtWyy7Ht016P6u3V3Z07EnU6qnpHRq/8GWQ9UAAACKo2fymikzZmfaqXOHVatnlafK8pJh9wUAAAAAHEyAHQAAmPSWLl2apqamLF++POeff37v9jlz5qSpqSlLly4dxe4mnmIGS/qrO1zV1dWpqKzIllu3FKVeRWVFqquri1ILAAAAAAAAAMY7AXYAAIDsD7FfdtllaW5uztatWzNz5sw0NDSYeX0SqqmpyYNtD6ajo2PQca2trWlsbMzq1atTX18/4Ljq6urU1NQUu00AoB/FWEFlKHUAAA5HoVBI8t8rPAxXT52eugxPZ2dn2tra+mxrbW3t8/VAdXV1qaqqGrF6AAAAE5EAOwAAwH8pKyvLokWLRrsNxoCampohh87r6+szf/78o9wRADCYYq+gklhFBQBGw0QN/ra3tydJtq1bVfS6CxcuLGrNyaitrS0LFizod19jY+NB21paWgY9F1TsegAwVBP1tRQcLpNcwPggwA4AAAAAwLhW7BVUEquoMHH40PbItT7RNej+wt7utD/dldrjS1NZXjLguF891V3s1mDCmqjB39ra2iTJjMXLM2XG7GHX27Ntc7atW9Vbl+Gpq6tLS0tLn22FQiHt7e2pra1NZWXlQeNHsh4ADNVEfS0FQ3V8RUlSEpNcwDghwA4AAAAAwLhnBRXoy8oER6502rEpLUkav1IY7VZg0pmowd+evqfMmJ1pp84tel2Gp6qqqt/Xhkc6u32x6wHAUE3U11IwVDOPLU26c8jJK0xyAWODADsAAAAAAMAEY2WCI1d27AnpKuIH3j3jgEMT/AUAOHJeS8F+Q528wiQXMLoE2AEAAAAAACYgKxMMjw+8AQAAAODoEGAHAAAAAAAAAADgsHV2dqatra3PttbW1j5fD1RXV5eqqqoR6Q0AGLsE2AEAAAAAAAAAADhsbW1tWbBgQb/7GhsbD9rW0tJiBSMAQIAdAAAAKJ5Nmzalo6Nj0DGDzb7T3zgAAAAAAMamurq6tLS09NlWKBTS3t6e2traVFZWHjQeAECAHThqLBMFAACTy6ZNm1Jfd2Y6CzuHNL6/2XcAAGA49mzbPOj+7r27s/eZx1J+3CkpKZ96RDUAAID/VlVV1e+M6gsXLhyFbgCA8UKAHThqLBMFAMBocTHl6Ojo6EhnYWdWv6Ey9SeVDjiusLc77U93pfb40lSWlww47hsP783139l1NFqFCW3fvn1pbm7O1q1bM3PmzDQ0NKSsrGy02wKAo6q6ujoVlVXZtm5VUepVVFalurq6KLUAAAAAgL4E2IGjxjJRAACMFhdTjq76k0ozf+bgYdmFsw9dp7VjX5E6gsljzZo1Wb58edrb23u31dbWZtWqVVm6dOnoNQbAkGzatCkdHR2Djhnswsznq66uTk1NTVF6G+tqamryYFvrkH5+jY2NWb16derr6wccN5l+dgAAADAaCoVCkuJ9HtRTp6cuMLYJsANHjWWiAAAYLS6mBCajNWvWZNmyZVm8eHHuuuuuzJs3Lxs3bswNN9yQZcuWpampSYgdYAzbtGlT6uvOTGdh55DG93dh5vNVVVakte3BSRPErqmpGfL3Wl9fP+IXse56dPDVhbp2d2VPx55MqZ6S0qkDr2h0qDoAAAAwHvRMxNK4ZmjnQg6nrnwajH0C7AAAAEw4LqYEJpt9+/Zl+fLlWbx4cdauXZvS0v2ht3PPPTdr167NkiVLct111+Wyyy5LWdngKyQAMDo6OjrSWdiZ1W+oTP1JA4eXC3u70/50V2qPL01lecmA41qf6ErjVwrp6OiYNAH2saq6ujoVlRXZcuuWotWsqKxIdXV10eoBAIwnnZ2daWtr67NtsJWK6urqUlVVNSK9ATB0tbW1SZLVSytSXz3889atHfvSuGZnb11gbJswAfZHHnkkf/mXf5n169dn8+bNmTZtWl70ohflTW96U975znce8QvR9vb2zJkz57Duc/rpp/dZphkAAAAAjqbm5ua0t7fnrrvu6g2v9ygtLc2KFSty/vnnp7m5OYsWLRqdJgEYkvqTSjN/5uAf2i6cPULNUBQ1NTV5sO3BdHR0DDqutbU1jY2NWb16derr6wcdW11d7cKEo2Tfvn1pbm7O1q1bM3PmzDQ0NLgAEADGmLa2tixYsKDfff2tVNTS0jLiq+8AcGg9KybXV5cd8lzIkdQFxrYJEWD/+te/nsbGxmzfvr13W2dnZzZs2JANGzbktttuy/r16zN37twR6efMM88ckeMAAAAAQJJs3bo1STJv3rx+9/ds7xkHAIysmpqaIQfO6+vrBaxGyZo1a7J8+fI+E1XV1tZm1apVWbp06eg1BqPA7MbAWFZXV5eWlpY+2wqFQtrb21NbW3tQcLGurm4k2wMAYAjGfYD9Jz/5Sd785jenUCjk2GOPzYoVK3LhhRemUCjk7rvvzuc+97k89NBDufjii7Nhw4ZMnz79sOq/8IUvzM9+9rNDjlu5cmW++MUvJkmuvPLKI/peAAAAAOBIzJw5M0mycePGnHvuuQft37hxY59xAAfatGnTkGaGPvDrYMwMDYxHa9asybJly7J48eLcddddmTdvXjZu3Jgbbrghy5YtS1NTkxA7k4rZjYGxrKqqqt+/OQsXLhyFbgAmn2KdSxrKeSZg4hr3AfZrr702hUIh5eXl+da3vpXzzjuvd99rX/vavPjFL8773//+PPTQQ1m1alX+/M///LDqT5kyZcCZq3rs27cv3/3ud5Mk06dPzxve8IbD/TYAAAAA4Ig1NDSktrY2N9xwQ9auXZvS0tLefV1dXVm5cmXmzJmThoaGUewSGIs2bdqU+roz01nYOaTx/QXWnq+qsiKtbQ8KsQPjxr59+7J8+fIsXry4z2upc889N2vXrs2SJUty3XXX5bLLLktZWfGWtYexzOzGAAD0Z9OmTTmzrj47C51DGj+Uc0nA5DSuA+z3339/mpubkyR/8Ad/0Ce83mP58uW544470tramptvvjkf/OAHM2XKlKL2cc899+TRRx9NkixbtuygN+sAAAAAcDSVlZVl1apVWbZsWZYsWZIVK1b0zhq6cuXKrFu3Lk1NTQJXwEE6OjrSWdiZ1W+oTP1JpQOOK+ztTvvTXak9vjSV5SUDjmt9oiuNXymko6NDgB0YN5qbm9Pe3p677rqrz4WASVJaWpoVK1bk/PPPT3NzcxYtWjQ6TcIIM7sxAAD96ejoyM5CZ2YsXp4pM2YPOK577+7sfeaxlB93SkrKp/Y7pvDLDXmmefXRahUY48Z1gH3t2rW9t9/2trf1O6a0tDRvfetbs2LFijz99NP5zne+k4suuqiofdx55529t6+88sqi1gYAAACAoVi6dGmampqyfPnynH/++b3b58yZk6ampixdunQUuwPGuvqTSjN/5uAXuSwc+DNJgHFt69atSTLgqsw923vGwZHas23zoPuHEvIZSh0AADjapsyYnWmnzh180KyzBt3tdS1MbuM6wH7fffclSY455pgsWLBgwHEXXHBB7+3vf//7RQ2wP/vss71B+tra2vz6r/960WoDAAAAwOFYunRpLrvssjQ3N2fr1q2ZOXNmGhoazLwOADCImTNnJkk2btyYc88996D9Gzdu7DMODld1dXUqKquybd2qotWsqKxKdXV10eoBAADASBrXAfbW1tYkydy5c1NePvC3UldXd9B9iqWpqSmdnZ1Jkt/7vd9LScnAS6cCAAAAwNFWVlaWRYsWjXYbAADjRkNDQ2pra3PDDTdk7dq1KS0t7d3X1dWVlStXZs6cOWloaBjFLhnPampq8mBbazo6OgYd19ramsbGxqxevTr19fWDjq2urk5NTU0x2wQAAIARM24D7Dt37ux9gz9r1qxBx55wwgk55phjsmPHjmzeXNxlJ+68887e229961uHdJ9du3Zl165dvf+/ffv2ovYEAAAAAABDUSgUkiStHfuKUq+nTk9dgPGgrKwsq1atyrJly7JkyZKsWLEi8+bNy8aNG7Ny5cqsW7cuTU1NVrVhWGpqaoYcOK+vr8/8+fOPckcAAAAwesZtgP3ZZ5/tvX3ssccecnxPgP25554rWg+bNm3KvffemyQ5//zzM3fu3CHdb+XKlfnwhz9ctD4AAAAAAOBItLe3J0ka1+wset2FCxcWtSbA0bR06dI0NTVl+fLlOf/883u3z5kzJ01NTVm6dOkodgdMZp2dnWlra+uzrWfl+f5WoK+rq0tVVdWI9AYAAHCkxm2AfefO/z6ZPnXq1EOOnzZtWpLizvqyevXqdHd3Jxn67OtJsmLFirz3ve/t/f/t27dn9uzZResLAAAAAACGora2NkmyemlF6quHP7Nwa8e+NK7Z2Vs3EboCxo+lS5fmsssuS3Nzc7Zu3ZqZM2emoaHBzOvAqGpra8uCBQv63dfY2HjQtpaWFjP4AwAAY964DbBXVFT03t69e/chx+/atStJUllZWbQe/u7v/i7J/nD8m9/85iHfb9q0ab2BegAAAABgYhDSZTzqOWdeX12W+TOLF9A88Fy80BUwnpSVlWXRokWj3QZAr7q6urS0tPTZVigU0t7entra2oMyEHV1dSPZHgAAwBEZtwH26dOn995+7rnnDjl+x44dSZJjjz22KMe///77ez+MuvTSS3P88ccXpS4AAAAAMD4J6UL/hK4AAI5cVVVVv+8bFi5cOArdAAAUX+sTXYPuL+ztTvvTXak9vjSV5SVHXAcYW8ZtgL2ioiIzZszItm3bsmXLlkHHPvXUU70B9tmzZxfl+HfeeWfv7be+9a1FqQkAAADjWaFQSJK0duwrSr1fPbX/RGPXbiccgfFBSBf6J3QFAMBEtG/fvjQ3N2fr1q2ZOXNmGhoaUlZWvFWNAGCiK512bEpLksavFIpWs6qyItXV1UWrBxw94zbAniRnnXVWmpub8/Of/zx79+5NeXn/386By/bW19cP+7h79uzJ3XffnSQ5+eST81u/9VvDrgkAAADjXXt7e5Kkcc3Ootbd07EnOaOoJQGOCiFdgLGls7Ozz2dESdLa2trna4+6urpUVVWNWG8AwPi2Zs2aLF++vPd8WJLU1tZm1apVWbp06eg1BgDjSNmxJ6SrO1m9evWguc7W1tY0NjYeclySVFdXp6amptitAkfBUQuwb9myJf/5n/+Zzs7OvPKVrzxodqFieM1rXpPm5ubs2LEjLS0tefWrX93vuHvvvbf3djE+LFq/fn22bduWJHnLW94yYHAeAAAAJpPa2tokyeqlFamvHv5sU994eE+u/87udO3tSqF94Nk3unZ3ZU/HnkypnpLSqaUDjtv16K5h9wQAwPjR1taWBQsW9LuvsbGxz/+3tLT0exESAMDzrVmzJsuWLcvixYtz1113Zd68edm4cWNuuOGGLFu2LE1NTULsAHAY6uvrh/SefKjjgPGhqMnrZ599Np/4xCfy+c9/Po8++mjv9p/97Gc566yzev//7rvvzpo1a3Lcccflc5/73BEfb8mSJVm5cmWS5I477ug3wN7V1ZU777wzSXL88cfnwgsvPOLj9eiplyRXXnnlsOsBAADARNBz8Xp9dVnmzxx+gH3rc11JSfLo3z566MFDVGHpSACASaOuri4tLS19thUKhbS3t6e2trbP5Et1dXUj3R4AMA7t27cvy5cvz+LFi7N27dqUlu6fTOHcc8/N2rVrs2TJklx33XW57LLLUlY2/PNjAAAwURUtwP7www/nd37nd/LLX/4y3d3dvdtLSkoOGnvuueemsbEx3d3dufLKK/Oa17zmiI75qle9Kg0NDWlubs7tt9+eK6+8Muedd16fMatWrepdBvLaa6/NlClT+uz/7ne/2xtqv/LKK/P5z39+0GM++eSTWb9+fZLkJS95SV7+8pcfUe8AAADA4GYeW5pYOhIAgCNUVVXV78xsxVitFwCYnJqbm9Pe3p677rqrN7zeo7S0NCtWrMj555+f5ubmLFq0aHSaBICjqFDYv2Lunm2bh12rp0ZPTWByKUqAfefOnbn44ovzi1/8Isccc0ze+c535td//dezePHifsfX1tbmwgsvzD//8z/na1/72hEH2JPk5ptvzsKFC1MoFHLRRRflAx/4QC688MIUCoXcfffdufXWW5MkZ5xxRpYvX37Ex+lx9913Z/fu3UnMvg4AAAAjwdKRAAAAAIwFW7duTZLMmzev3/0923vGAcBE097eniTZtm5VUWu62Bwmn6IE2G+55Zb8/Oc/zzHHHJPm5uYhzUr+27/92/n2t7+dH/zgB8M69jnnnJMvfelLaWxszPbt2/OBD3zgoDFnnHFG1q9fn+nTpw/rWEly5513JknKyspyxRVXDLseAAAAAAAAAJNLZ2dn2tra+mzrWVm85+uB6urqUlVVNSK9AQObOXNmkmTjxo0599xzD9q/cePGPuMAYKKpra1NksxYvDxTZsweVq092zZn27pVvTWByaUoAfY1a9akpKQk11577ZDC60nyspe9LEny8MMPD/v4l1xySR544IHcfPPNWb9+fbZs2ZKpU6dm7ty5ufzyy/Oud72rKG/mH3744fzoRz9Kkrzuda/LqaeeOuyaAAAAAAAAAEwubW1tWbBgQb/7GhsbD9rW0tJi1TEYAxoaGlJbW5sbbrgha9euTWlpae++rq6urFy5MnPmzElDQ8ModgkAR09lZWWSZMqM2Zl26tyi1gQml6IE2HuuAL/ooouGfJ8ZM2YkSZ5++ulitJDTTz89N954Y2688cbDut+iRYvS3d09pLEvfvGLhzwWAAAAAACAicFMyUCx1dXVpaWlpc+2QqGQ9vb21NbWHhTiqaurG8n2gAGUlZVl1apVWbZsWZYsWZIVK1Zk3rx52bhxY1auXJl169alqakpZWVlo90qAACMaUUJsD/33HNJkmOPPXbI99m1a1eSZMqUKcVoAQAAAAAAYNwqFApJktaOfUWp11Onpy7DU+yZkgXigaqqqn7/TixcuHAUugEOx9KlS9PU1JTly5fn/PPP790+Z86cNDU1ZenSpaPYHQAAjA9FCbDPmDEj//mf/5n29vYhL1v2b//2b0mSU089tRgtAAAAAAAAjFvt7e1JksY1O4teVxhy+Io9U3KxA/EAwMhaunRpLrvssjQ3N2fr1q2ZOXNmGhoazLwOAABDVJQA+/z58/ONb3wj3/ve94Z8Jemdd96ZkpKSnHfeecVoAQAAAAAAYNyqra1NkqxeWpH66uEHn1o79qVxzc7eugxPsWdKLnYgHgAYeWVlZVm0aNFotwEAAONSUQLsy5Yty/r163Prrbfmve99b2pqagYd/+lPfzrf+973UlJSkt/93d8tRgsAAAAAAADjVk9gub66LPNnFm/mzucHoRkbih2IBwAAAIDxpLQYRX7v934vL33pS7Nz584sWrQo3/zmN9Pd3d27v6SkJN3d3fnxj3+cK664IsuXL09JSUkaGhry27/928VoAQAAAAAAAAAAAACAMa4oM7CXlpbma1/7Wl7zmtekvb09ixcvTlVVVUpKSpIkixYtyrPPPptdu3YlSbq7u/OiF70o//AP/1CMwwMAAAAAAAAAAAAwAvZs2zzo/u69u7P3mcdSftwpKSmfekQ1gImtKAH2JKmpqcm//uu/5t3vfnf+4R/+ITt27Ojd98QTT/TeLikpyZve9KbccsstOeGEE4p1eAAAAAAAAAAAAACOkurq6lRUVmXbulVFqVdRWZXq6uqi1ALGl6IF2JPkxBNPzN///d/nhhtuyPr167Nhw4Y8/vjj2bdvX2bMmJFzzjknl1xySc4444xiHhYAAAAAAIBD6OzsTFtbW59tra2tfb4eqK6uLlVVVSPSGwAAADD21dTU5MG21nR0dAw6rrW1NY2NjVm9enXq6+sHHFddXZ2amppitwmMA0UNsPc4/fTTc8011xyN0gAAAAAAAByBtra2LFiwoN99jY2NB21raWnJ/Pnzj3ZbAAAAwDhSU1Mz5NB5fX29cwtAv45KgB0AAAAOZc+2zYPu7967O3ufeSzlx52SkvKpR1wHAJiczDQNB6urq0tLS0ufbYVCIe3t7amtrU1lZeVB4wEAAAAAik2AHQAAgBFVXV2disqqbFu3qmg1KyqrUl1dXbR6AMD4Z6ZpOFhVVVW//84XLlw4Ct0AAAAAAJNVUQLs3/ve9w77PiUlJamoqMhxxx2X2traTJ068Gx6AAAAk92+ffvS3NycrVu3ZubMmWloaEhZWdlot3VEampq8mBbazo6OgYd19ramsbGxqxevTr19fWDjq2urh7yUoUcfa1PdA26v7C3O+1Pd6X2+NJUlpcccR0AGIyZpgEAAAAAYGwqSoB90aJFKSkZ+APnQzZRXp6Xv/zlueqqq/KHf/iHmTJlSjHaAgAAmBDWrFmT5cuXp729vXdbbW1tVq1alaVLl45eY8NQU1Mz5MB5fX292VDHierq6lRVVqTxK4Wi1ayqrDC7PgBHxEzTAAAAAAAwNhUlwJ4k3d3dR3zfPXv25Mc//nE2bNiQW265JevWrTNzHgAAQPaH15ctW5bFixfnrrvuyrx587Jx48bccMMNWbZsWZqamsZtiJ2Jp6amJq1tD5pdHwAAAAAAAIABFSXA/p3vfCd79uzJ9ddfnx/96Ec57bTTcvnll+cVr3hFTjrppCTJE088kQ0bNuQf//Ef8+ijj+bVr351PvzhD6dQKGTjxo350pe+lI0bN2bjxo35nd/5nfzrv/5rysuLlq8HAAAYd/bt25fly5dn8eLFWbt2bUpLS5Mk5557btauXZslS5bkuuuuy2WXXZaysrJR7hb2M7s+AAAAAAAAAIMpSkL8ggsuyKWXXpr7778/7373u/Pxj388FRUVB4274oor8rGPfSzXXXddPvOZz+TTn/50vvGNb+Syyy7LBz/4wVx//fX53//7f6e1tTV33HFH3v72txejPQAAgHGpubk57e3tueuuu3rD6z1KS0uzYsWKnH/++Wlubs6iRYtGp0kAAAAAAACAMaizszNtbW19trW2tvb5eqC6urpUVVWNSG8w2RUlwH7HHXdk3bp1ufjii3PzzTcPOnbatGn5q7/6q/zqV7/KN7/5zdx66615xzvekST5i7/4i9x333259957s2bNGgF2AABgUtu6dWuSZN68ef3u79neMw4AAI5U6xNdg+4v7O1O+9NdqT2+NJXlJUdcBwAAAABGSltbWxYsWNDvvsbGxoO2tbS0WD0YRkhRAux/+7d/m5KSkt4g+lBcffXV+cY3vpEvfOELfe531VVX5d57781Pf/rTYrQGAAAwbs2cOTNJsnHjxpx77rkH7d+4cWOfcQAAcLiqq6tTVVmRxq8UilazqrIi1dXVRasHAAAAAEeirq4uLS0tfbYVCoW0t7entrY2lZWVB40HRkZRAuw9SynMmjVryPfpGfv85Rnq6+uTJE8++WQxWgMAABi3GhoaUltbmxtuuCFr165NaWlp776urq6sXLkyc+bMSUNDwyh2yXi3adOmdHR0DDpmsKUUn6+6ujo1NTW9/29pRgAY22pqatLa9uCQXg80NjZm9erVvefxB/L81wMAAAAAMBqqqqr6nVF94cKFo9ANcKCiBNh37tyZJNmyZUvOOeecId1ny5YtSZJdu3b12T5lypQk8WE1AAAw6ZWVlWXVqlVZtmxZlixZkhUrVmTevHnZuHFjVq5cmXXr1qWpqSllZWWj3Srj1KZNm3JmXX12FjqHNL6/pRSfr6KyKg+2tfaG1izNCABjX01NzZAD5/X19Z6rAQAAAAAYlqIE2F/0ohdl48aNue2223LJJZcM6T6f+9zneu97oEcffTRJctJJJxWjNQAAgHFt6dKlaWpqyvLly3P++ef3bp8zZ06ampqydOnSUeyO8a6joyM7C52ZsXh5psyYPeC47r27s/eZx1J+3CkpKZ864Lg92zZn27pV6ejo6A3BWZoRAAAAAAAAgAMVJcC+bNmy/OxnP8u6dety3XXXZeXKlb0zqT/fnj178id/8idZt25dSkpKcvnll/fZ//3vfz9JMnfu3GK0BgAAMO4tXbo0l112WZqbm7N169bMnDkzDQ0NZl6naKbMmJ1ppx7iffiss46otqUZAQAAAAAAADhQUQLs1113Xf7u7/4uP//5z3PTTTflH//xH3P55ZdnwYIFvTOpP/HEE2lpack//uM/ZsuWLUn2z76+fPny3jr79u3LF7/4xZSUlOSiiy4qRmsAAAATQllZWRYtWjTabQAAAAAAAAAADEtRAuyVlZX553/+51x88cX52c9+ls2bN+emm27qd2x3d3eSZN68eVm/fn2fpcK3bNmSt73tbUn2z+oOAAAAAAAAAAAAAMDEUZQAe5LMmjUrLS0t+cxnPpO/+Zu/SVtbW7/jzjjjjFx99dV517velSlTpvTZd/rpp+fP/uzPitUSAAAAAAAAAAAAAABjSNEC7ElSXl6ea6+9Ntdee20effTRbNy4MU899VSS5IQTTsjZZ5+dF77whcU8JAAAAAAAwITR+kTXoPsLe7vT/nRXao8vTWV5yRHXAQAAAAAYLUUNsB/otNNOy2mnnXa0ygMAAAAAAEwY1dXVqaqsSONXCkWrWVVZkerq6qLVAwAAAAAohqMWYAcAAAAAAGBoampq0tr2YDo6OgYd19ramsbGxqxevTr19fWDjq2urk5NTU0x2wQAAAAAGDYBdgAAAAAAgDGgpqZmyIHz+vr6zJ8//yh3BAAAADC4zs7OtLW19dnW2tra5+uB6urqUlVVNSK9AWNX0QPszz77bO6555789Kc/TUdHRwqFQrq7uwccX1JSkttvv73YbQAAAAAAAAAAAABwFLW1tWXBggX97mtsbDxoW0tLi4vygeIF2Lu6uvIXf/EXWbVqVXbs2DGk+3R3dwuwAwAAAAAAAAAAAIxDdXV1aWlp6bOtUCikvb09tbW1qaysPGg8QNEC7FdddVX+/u//Pt3d3SkrK8uMGTPy+OOPp6SkJLNmzcpTTz2V5557Lsn+Wderq6stAwEAAMC4YOlDAAAAAAAAOFhVVVW/M6ovXLhwFLoBxouiBNj/z//5P1m9enVKSkpy1VVXZdWqVfmP//iPvPSlL02SPPLII0mSBx98MLfccks+85nP5IQTTsjatWtdTQMAAMCYZ+lDAAAAAAAAACiOogTY77jjjiTJ2Wefnb/9279Nkjz66KMHjTvzzDPz6U9/Or/xG7+RpUuX5nd+53fyk5/8JMcdd1wx2gAAAICjwtKHAAAAAAAAAFAcRQmw//CHP0xJSUne+c53Dmn8JZdckiuvvDJ33HFH/vIv/zLXX399MdoAAACAo8LShwAAAAAAAABQHKXFKPL4448nSc4444zebWVlZb23d+3addB9li1blu7u7nzlK18pRgsAAAAAAAAAAAAAAIxxRZmBvceJJ57Ye3v69Om9tx9//PHMnj27z9iTTz45SdLe3l7MFgAAAAAYAZ2dnWlra+uzrVAopL29PbW1tamsrOyzr66uLlVVVSPZIgAAAAAAADAGFSXAfsopp2TTpk158skn+2ybOnVq9uzZkwceeOCgAPsjjzySJNm5c2cxWgAAAABgBLW1tWXBggVDHt/S0pL58+cfxY4AAAAAAIDxrL/Jc1pbW/t8PZDJc2D8KkqA/SUveUk2bdqUf//3f8+FF164v3B5ec4555zcf//9ueOOO3LxxRf3uc8tt9ySJDn99NOL0QIAAAAAI6iuri4tLS19trW2tqaxsTGrV69OfX39QeMBAAAAAAAGMtjkOY2NjQdtM3kOjF9FCbAvWrQo69atyz333JN3vvOdvdsbGxvzox/9KF/5yldy5ZVX5k1velN27NiRL3zhC7nnnntSUlKSyy67rBgtAAAAADCCqqqqBjwpXF9f74QxAAAAAABwWPqbPKdQKKS9vT21tbWprKw8aDwwPhUlwP6GN7wh1113Xf7pn/4pjz32WE455ZQkydVXX5077rgj//Iv/5LVq1dn9erVfe5XU1OT//W//lcxWgAAAAAAAAAAAABgnBpo8pyFCxeOQjfA0VRajCJz5szJL3/5y2zcuDEveMELereXl5fn//7f/5srrrgi5eXl6e7uTnd3d5Lk4osvTnNzc0444YRitAAAAAAAAAAAAAAAwBhXlBnYk6S2trbf7SeccEL+7u/+Lp/97Gfz8MMPZ+/evZk7d25OPPHEYh0aAAAAAAAAAAAAAIBxoGgB9kOZPn16v0s7AAAAAAxVZ2dn2tra+mxrbW3t8/VAdXV1qaqqGpHeAAAAAAAAADi0ogTYS0tLU1pamhtuuCHvf//7i1ESAAAA4CBtbW1ZsGBBv/saGxsP2tbS0uKCegAAAAAAAIAxpCgB9qlTp2bPnj1paGgoRjkAAACAftXV1aWlpaXPtkKhkPb29tTW1qaysvKg8QAAAAAAAACMHUUJsJ922ml55JFHUl5elHIAAAAA/aqqqup3RvWFCxeOQjcAAAAAAAAAHK7SYhT59V//9SQ5aAY0AAAAAAAAAAAAAADoUZQp09/97nfni1/8Yj71qU/lLW95S17wghcUoywAAAAAAMCk1dnZmba2tj7bWltb+3w9UF1dXaqqqkakNwAAAACAI1WUAPuCBQvyV3/1V3nXu96VCy64IJ/5zGdy/vnnF6M0AAAAAADApNTW1pYFCxb0u6+xsfGgbS0tLZk/f/7RbgsAAAAAYFiKEmD//d///STJmWeemZ/+9KdpaGjI7Nmz89KXvjQnnHBCysrKBrxvSUlJbr/99mK0AQAAAAAAMGHU1dWlpaWlz7ZCoZD29vbU1tamsrLyoPEAAAAAAGNdUQLsn//851NSUpJkfyC9u7s7mzZtyubNmwe9X3d3twA7AAAAAABAP6qqqvqdUX3hwoWj0A0AAAAAQHEUJcBeU1PTG2AHAAAAAAAAAAAAAID+FCXA3t7eXowyAAAAAAAAAAAAAABMYKWj3UCxPPLII1m+fHnq6upyzDHH5MQTT8wrX/nKfPKTn0xnZ2dRj3XPPffkqquuyty5c3PMMcfkuOOOyxlnnJFly5bllltuyXPPPVfU4wEAAAAAAAAAAAAATARFmYF9tH39619PY2Njtm/f3ruts7MzGzZsyIYNG3Lbbbdl/fr1mTt37rCO89RTT+Vtb3tbvvrVrx60b/v27Xn44Yfz5S9/Oeedd15e/vKXD+tYAAAAAAAAAAAAAAATzVELsHd1deXJJ59MZ2dnXvjCF6asrOyoHOcnP/lJ3vzmN6dQKOTYY4/NihUrcuGFF6ZQKOTuu+/O5z73uTz00EO5+OKLs2HDhkyfPv2IjvPMM8/kda97XVpaWpIkb3jDG7Js2bK86EUvSllZWTZv3px77703X/7yl4v57QEAAAAAAAAAAAAATBhFDbDv27cvn//85/P5z38+P/7xj7Nnz56UlJTkgQceyFlnndU7bt26dfne976X4447Lh/84AeHdcxrr702hUIh5eXl+da3vpXzzjuvd99rX/vavPjFL8773//+PPTQQ1m1alX+/M///IiO8+53vzstLS2ZNm1a/uEf/iGXXnppn/2veMUr8oY3vCE33XRT9u3bN5xvCQAAAAAARk1nZ2fa2tr6bGttbe3z9UB1dXWpqqoakd4AAAAAABj/ihZgf/zxx7NkyZL86Ec/Snd396Bja2trc+mll6akpCQXX3xxXv7ylx/RMe+///40NzcnSf7gD/6gT3i9x/Lly3PHHXektbU1N998cz74wQ9mypQph3Wc++67L3/3d3+XJPnoRz96UHj9QCUlJSkvP2oT2wMAAAAAwFHV1taWBQsW9LuvsbHxoG0tLS2ZP3/+0W4LAAAAAIAJoihJ63379uWSSy7Jj3/845SWlubyyy/Pr//6r+dd73pXv+PnzZuXV7/61bn//vvzla985YgD7GvXru29/ba3va3fMaWlpXnrW9+aFStW5Omnn853vvOdXHTRRYd1nL/+679Okhx33HEDfk8AAAAAADAR1NXVpaWlpc+2QqGQ9vb21NbWprKy8qDxAAAAAAAwVEUJsH/hC1/Ij3/840yZMiVf+9rX8vrXvz5JBg17X3rppfnRj36U++6774iP23PfY445ZsDZYJLkggsu6L39/e9//7AC7Lt3785Xv/rVJMnrXve6VFRUJNkf2n/00Uezb9++nHrqqb3bAQAAAABgPKuqqup3RvWFCxeOQjcAAAAAAEw0pcUoctddd6WkpCRXX311b3j9UM4555wkyYMPPnjEx21tbU2SzJ07N+XlA2fxD5z9pec+Q/XTn/40O3fuTJK85CUvyfbt2/PHf/zHqa6uTk1NTebMmZPjjjsur3vd6/Ld73738L8JAAAAAAAAAAAAAIBJoigB9gceeCDJ/lnVh+rkk09Okmzbtu2Ijrlz5850dHQkSWbNmjXo2BNOOCHHHHNMkmTz5s2HdZx///d/773d1dWVV7ziFbn55pvz9NNP927fvXt37rnnnrz2ta/Nxz/+8UPW3LVrV7Zv397nPwAAAAAAAAAAAACAiW7gacsPQ0+Ye8aMGUO+z759+5IkZWVlR3TMZ599tvf2sccee8jxxxxzTHbs2JHnnnvusI7z5JNP9t7++Mc/np07d+a3fuu38pGPfCQvfelLs3379nz5y1/On/zJn+SZZ57Jn/zJn6Suri6XXXbZgDVXrlyZD3/4w4fVBwAAAAAAMLZ1dnamra2tz7ZCoZD29vbU1tamsrKyz766urpUVVWNZIsAAAAAAKOuKAH2E088MY8//ng2b96cc845Z0j3efjhh5MkJ5100hEdc+fOnb23p06desjx06ZNS7L/RPHh2LFjR59jvu51r8u6det6g/cnnXRS/uiP/ijz5s3LBRdckK6urqxYsSKXXnppSkpK+q25YsWKvPe97+39/+3bt2f27NmH1RcAAAAAADC2tLW1ZcGCBUMe39LSkvnz5x/FjgAAAAAAxp6iBNjPPvvsPP744/nxj3+cSy+9dEj3+dKXvpSSkpK88pWvPKJjVlRU9N7evXv3Icfv2rUrSQ6a3eRwjpPsn4W9v1njX/Oa12Tp0qVpampKa2trfvazn+WlL31pvzWnTZvWG6gHAAAAAIDhMOv32FFXV5eWlpY+21pbW9PY2JjVq1envr7+oPEAAAAAAJNNUQLsS5YsyT//8z/nr//6r/Pe9743J5xwwqDjm5qa8vWvfz0lJSV54xvfeETHnD59eu/t55577pDje2ZSP/bYY4/4OCeddNKgM8y//vWvT1NTU5Lkxz/+8YABdgAAAAAAKBazfo8dVVVVA/5s6+vr/dwBAAAAAFKkAPvb3/72fOpTn8rmzZtz0UUX5Qtf+ELOOuusg8Y9/vjjufnmm/PJT34yJSUlmTdvXt70pjcd0TErKioyY8aMbNu2LVu2bBl07FNPPdUbYJ89e/ZhHefA8bNmzRry2CeeeOKwjgMAAAAAAEfCrN8AAAAAAIwnRQmwT5s2LV/96lezaNGitLS05CUveUnOPPPM3v2NjY157rnn8stf/jLd3d3p7u7OjBkz8uUvfzklJSVHfNyzzjorzc3N+fnPf569e/emvLz/b+fApVOff6L+UM4+++ze2/v27Rt07IH7B+oFAAAAxopCoZAk2bNtc1Hq9dTpqQsAjAyzfgMAAAAAMJ4ULWX9spe9LD/+8Y9z5ZVX5gc/+EGf0PhPf/rTdHd39/7/q171qnzxi1/Mr/3arw3rmK95zWvS3NycHTt2pKWlJa9+9av7HXfvvff23l64cOFhHeP0009PTU1NNm3alPb29nR3dw8Yuv/FL37Re/uFL3zhYR0HAAAARlp7e3uSZNu6VUWve7jvvwEAAAAAAACYHIo6TfjcuXPz/e9/P/fdd1++9rWvZcOGDXn88cezb9++zJgxI+ecc04uvfTSvO51ryvK8ZYsWZKVK1cmSe64445+A+xdXV258847kyTHH398LrzwwsM+zhvf+MbcdNNN2b59e7797W/nN3/zN/sdt2bNmt7br3nNaw77OAAAADCSamtrkyQzFi/PlBmzh11vz7bN2bZuVW9dAAAAAAAAAHi+ogbYe7zmNa8ZkQD3q171qjQ0NKS5uTm33357rrzyypx33nl9xqxatSqtra1JkmuvvTZTpkzps/+73/1ub6j9yiuvzOc///mDjvPHf/zHueWWW7Jz5868973vzX333ZcXvOAFfcasXr063/3ud5MkF198cWbPHv4H/wAAAHA0VVZWJkmmzJidaafOLXpdAGBi2LdvX5qbm7N169bMnDkzDQ0NKSsrG+22AAAAAAAYp0pHu4Hhuvnmm1NZWZm9e/fmoosuysqVK/PDH/4w3/nOd3L11Vfn/e9/f5LkjDPOyPLly4/oGDU1NfnIRz6SJPnZz36WV73qVbnjjjvS0tKS73znO3n3u9+dq666Kknyghe8IDfddFNRvjcAAAAAABhNa9asydy5c3PhhRfmLW95Sy688MLMnTu3z4qkAAAAAABwOIoyA/v/+B//I42Njfmt3/qtlJcflUndB3TOOefkS1/6UhobG7N9+/Z84AMfOGjMGWeckfXr12f69OlHfJz3ve99efLJJ/Pxj388Dz74YH7/93//oDEnn3xy1q5dmxe/+MVHfBwAAAAAABgL1qxZk2XLlmXx4sW56667Mm/evGzcuDE33HBDli1blqampixdunS02wQAAAAAYJwpygzs//AP/5DLLrssp556aq655prcd999xSg7ZJdcckkeeOCBvOc978kZZ5yRqqqqHH/88XnFK16Rj3/84/nJT36SuXOHvxT6ypUr8/3vfz+/93u/l9ra2kybNi3HHXdcXvnKV+Yv/uIv8tBDD+W8884rwncEAAAAAACjZ9++fVm+fHkWL16ctWvX5txzz82xxx6bc889N2vXrs3ixYtz3XXXZd++faPdKgAAAAAA40xRpkufPn16nn322Tz55JP5m7/5m/zN3/xNampq8pa3vCVvectbcvbZZxfjMIM6/fTTc+ONN+bGG288rPstWrQo3d3dQx5/3nnnCakDAAAAADChNTc3p729PXfddVdKS/vOhVNaWpoVK1bk/PPPT3NzcxYtWjQ6TQIAAAAAMC4VZQb2xx9/PP/4j/+YN7zhDZk6dWq6u7vzyCOP5GMf+1he+tKX5uUvf3k+9alPZcuWLcU4HAAAAAAAcBRt3bo1STJv3rx+9/ds7xkHAAAAAABDVZQA+7Rp0/LGN74xX/7yl/PYY4/ltttuy2tf+9qUlJSku7s7DzzwQP7X//pfqa2tzYUXXpjbb789zzzzTDEODQAAAAAAFNnMmTOTJBs3bux3f8/2nnEAAAAAADBU5cUu+IIXvCC///u/n9///d/P1q1bc/fdd+eLX/xiWlpa0t3dne9973v53ve+l3e961357d/+7TQ2Nmbp0qXFbgMAAACAItq0aVM6OjoGHdPa2trn62Cqq6tTU1NTlN4AKL6GhobU1tbmhhtuyNq1a1Na+t/z4XR1dWXlypWZM2dOGhoaRrFLAAAAAADGo6IH2A80c+bMvOc978l73vOePPzww1m9enXuvvvuPPzww9m1a1fWrl2br33ta9m7d+/RbAMAAACAYdi0aVPOrDszOws7hzS+sbHxkGMqKivyYNuDQuwAY1RZWVlWrVqVZcuWZcmSJVmxYkXmzZuXjRs3ZuXKlVm3bl2amppSVlY22q0CAAAAADDOHNUA+4Fe/OIX58Mf/nA+/OEP5+67784111yTp59+Ot3d3SPVAgAAAABHoKOjIzsLOzPrHbMy7bRpA47r2t2VPR17MqV6Skqnlg44bteju7Ll1i3p6OgQYAcYw5YuXZqmpqYsX748559/fu/2OXPmpKmpyeqqAAAAAAAckRELsD/xxBP50pe+lL//+7/P/fffP1KHBQAAAKBIpp02LZW1lYMPOmNkegFgZCxdujSXXXZZmpubs3Xr1sycOTMNDQ1mXgcAAAAA4Igd1QD7jh07smbNmnzxi1/Mt7/97ezbt693xvWSkpIsXLgwV1xxxdFsAQAAAAAAGIaysrIsWrRotNsAAAAAAGCCKHqAfe/evfnmN7+ZL37xi/n617+eQqGQJL3B9bPOOitXXHFF3vKWt+T0008v9uEBAAAAAAAAAAAAABijihZgb25uzt///d+nqakpTz31VJL/Dq2/8IUvzO/+7u/miiuuyMte9rJiHRIAAAAAAAAAAAAAgHGkKAH2008/PVu2bEny36H14447LsuWLcsVV1yRCy64ICUlJcU4FAAAAAAAAAAAAAAA41RRAuybN29OkkybNi0XX3xxrrjiilx88cWZOnVqMcoDAAAAAAAAAAAAADABFCXAfuGFF+aKK67IG9/4xhx33HHFKAkAAAAAADCmbdq0KR0dHYOOaW1t7fN1MNXV1ampqSlKbwAAAAAAY1VRAuzf/va3i1EGAAAAAABgXNi0aVPOrKvPzkLnkMY3NjYeckxFZVUebGsVYgcAAAAAJrSiBNgBAAAAAAAmk46OjuwsdGbG4uWZMmP2gOO69+7O3mceS/lxp6SkfOqA4/Zs25xt61alo6NDgB0AAAAAmNCOSoC9paUl99xzTzZu3Jgnn3wySXLiiSdm3rx5+c3f/M0sWLDgaBwWAAAAAABgRE2ZMTvTTp07+KBZZ41MMwAAAAAA40BRA+w/+9nP8o53vCP333//gGM+8IEP5NWvfnX+5m/+Ji95yUuKeXgAAAAAAAAAAAAAAMawogXY77nnnlxyySXZvXt3uru7kyRTpkzJjBkzkiTbtm3Lnj17kiQ//OEP86pXvSrr1q3Lb/zGbxSrBQAAAAAG0NnZmba2tj7bCoVC2tvbU1tbm8rKyj776urqUlVVNZItAgAAAAAAAJNAUQLsHR0dufzyy7Nr166UlpbmD/7gD/L2t78955xzTsrL9x9i3759+clPfpLPfe5z+du//dvs2rUrl19+eR5++OHekDsAAAAAR0dbW1sWLFgw5PEtLS2ZP3/+UewIAAAAAAAAmIyKEmC/+eab88wzz2Tq1Kn56le/mte//vUHjSkrK8srXvGKvOIVr8gb3/jGXHLJJXnmmWdy88035yMf+Ugx2gAAAABgAHV1dWlpaemzrbW1NY2NjVm9enXq6+sPGg8AAAAAAABQbEUJsK9fvz4lJSV517ve1W94/fkuuuiivPvd786NN96Y9evXC7ADAAAAHGVVVVUDzqheX19vtnUAAAAAAABgRJQWo8ivfvWrJMmll1465Pv0jP3lL39ZjBYAAAAAAAAAAAAAABjjihJg37lzZ5LkmGOOGfJ9esbu2rWrGC0AAAAAAAAAAAAAADDGFSXAfuqppyZJfvKTnwz5Pj1jTznllGK0AAAAAAAAAAAAAADAGFdejCINDQ1ZvXp1Pvaxj+VNb3pTXvCCFww6/tlnn83HP/7xlJSUpKGhoRgtAAAAMI51dnamra2tz7bW1tY+Xw9UV1eXqqqqEeltMtizbfOg+7v37s7eZx5L+XGnpKR86hHXAQCKY9OmTeno6Bh0zGCvpZ6vuro6NTU1RekNAAAAAAAOpSgB9quvvjqrV6/Or371q/z6r/96brvttrziFa/od+yGDRvyjne8I7/4xS9SUlKSq6++uhgtAAAAMI61tbVlwYIF/e5rbGw8aFtLS0vmz59/tNua8Kqrq1NRWZVt61YVrWZFZVWqq6uLVg8A6GvTpk05s64+OwudQxrf32up56uorMqDba1C7AAAAAAAjIiiBNgXLlyYa665Jp/97Gfzs5/9LK9+9atz9tln59WvfnVOPvnklJSU5LHHHsuPfvSj/Nu//Vvv/a655posXLiwGC0AAAAwjtXV1aWlpaXPtkKhkPb29tTW1qaysvKg8QxfTU1NHmxrHdIMro2NjVm9enXq6+sHHWsGVwA4ujo6OrKz0JkZi5dnyozZA447nBVUtq1blY6ODs/hAAAAAACMiKIE2JPkr/7qr1JVVZUbb7wxXV1d2bhxY5+wepJ0d3cnSUpLS3PdddflYx/7WLEODwAAwDhWVVXV74zqLno++mpqaoYcVquvrzfzPQCMEVNmzM60U+cOPmjWWSPTzCRVKBSS7L8IoBh66vTUBQAAAACYqIoWYC8pKcknPvGJvPWtb80tt9ySe+65Jw8//HCfMS9+8Yvzm7/5m/mf//N/Zt68ecU6NAAAAAAAwIhqb29Pkmxbt6rodV3ICQAAAABMZEULsPeYN29ePvOZzyRJdu/enaeeeipJcsIJJ2Tq1IGXKQUAAAAAABgvamtrkyQzFi/PlBmzh11vz7bN2bZuVW9dAAAAAICJqugB9gNNnTo1p5xyytE8BAAAAAAAwIirrKxMkkyZMTvTTp1b9LoAAAAAABNV6ZHc6Zvf/Gbmz5+f+fPn54tf/OJh3feLX/xi733vueeeIzk8AAAAAAAAAAAAAADj0GHPwN7d3Z33vOc9efjhh/Obv/mbectb3nJY9//d3/3dfP7zn88999yT5cuX56c//enhtgAAAAAAAJNSoVBIkuzZtrko9Xrq9NQFAAAAAICj7bAD7P/8z/+chx56KGVlZbnpppsO+4AlJSX59Kc/nZe97GXZuHFj7r333lxwwQWHXQcAAAAAACab9vb2JMm2dauKXnfhwoVFrQkAAAAAAP057AD7l7/85STJ6173upx11llHdNCzzjorr3/96/PNb34zTU1NAuwAAAAAADAEtbW1SZIZi5dnyozZw663Z9vmbFu3qrcuAAAAAAAcbYcdYL///vtTUlKSSy65ZFgHXrx4cb7xjW/khz/84bDqAAAAAADAZFFZWZkkmTJjdqadOrfodQEAAAAA4GgrPdw7PPLII0mSM888c1gHPuOMM5L893KnAAAAAAAAAAAAAABMbIcdYH/mmWeSJCeeeOKwDtxz/+3btw+rDgAAAAAAAAAAAAAA48NhB9hf8IIXJEmefvrpYR245/7Tp08fVh0AAAAAAAAAAAAAAMaHww6wn3TSSUmSf//3fx/WgVtbW5MkJ5988rDqAAAAAAAAAAAAAAAwPhx2gP1Vr3pVuru78/Wvf31YB/7qV7+akpKSvPKVrxxWHQAAAAAAAAAAAAAAxofDDrD/9m//dpLkW9/6Vu67774jOuj3vve9fOtb3+pTDwAAAAAAAAAAAACAie2wA+xvfOMbU1tbm+7u7lx++eV5+OGHD+v+Dz30UN70pjelpKQktbW1WbZs2eG2AAAAAAAAAAAAAADAOHTYAfYpU6bkU5/6VJLk8ccfz4IFC3LzzTdnx44dg97vueeey6c//em84hWvyOOPP54kWbVqVcrLy4+gbQAAAAAAAAAAAAAAxpsjSo8vXbo0H/7wh/Nnf/Zn2bFjR9773vfm+uuvT0NDQxYsWJCTTz45xxxzTHbs2JHHHnss//Iv/5Lm5ubs2LEj3d3dSZIPf/jDWbJkSTG/FwAAAAAAAAAAAAAAxrAjnv78+uuvz6xZs/Lud787nZ2dee655/JP//RP+ad/+qd+x/cE16uqqvLXf/3Xueqqq4700AAAAACMoEKhkCTZ9eiuotTrqdNTFwAAAAAAAJg8jjjAniRve9vb8vrXvz433nhj7rzzznR0dAw4trq6OldeeWXe85735LTTThvOYQEAAAAYQe3t7UmSLbduKXrdhQsXFrUmAAAAAAAAMLYNK8CeJKeddlo+9alP5VOf+lT+7d/+LT/96U+zbdu2PPvss5k+fXpmzJiRl73sZTn77LOL0S8AAAAAI6y2tjZJMusdszLttGnDrrfr0V3ZcuuW3roAAAAAAADA5DHsAPuBzj77bEF1AAAAgAmmsrIySTLttGmprK0sel0AAAAAAABg8igd7QYAAAAAAAAAAAAAAJgcBNgBAAAAAAAAAAAAABgRAuwAAAAAAAAAAAAAAIwIAXYAAAAAAAAAAAAAAEaEADsAAAAAAAAAAAAAACOifLQbAAAAAMaOzs7OtLW19dnW2tra5+uB6urqUlVVNSK9AQD/bc+2zYPu7967O3ufeSzlx52SkvKpR1wHAAAAAACKbcIE2B955JH85V/+ZdavX5/Nmzdn2rRpedGLXpQ3velNeec73zmsD9M///nP521ve9uQxt5xxx256qqrjvhYAAAAMJra2tqyYMGCfvc1NjYetK2lpSXz588/2m0BAP+luro6FZVV2bZuVdFqVlRWpbq6umj1AAAAAABgMBMiwP71r389jY2N2b59e++2zs7ObNiwIRs2bMhtt92W9evXZ+7cuaPYJQAAAIx9dXV1aWlp6bOtUCikvb09tbW1qaysPGg8ADByampq8mBbazo6OgYd19ramsbGxqxevTr19fWDjq2urk5NTU0x2wQAAAAAgAGN+wD7T37yk7z5zW9OoVDIsccemxUrVuTCCy9MoVDI3Xffnc997nN56KGHcvHFF2fDhg2ZPn36sI73f/7P/8lpp5024P5Zs2YNqz4AAACMpqqqqn5nVF+4cOEodAMA9KempmbIgfP6+nqrpQAAAAAAMKaM+wD7tddem0KhkPLy8nzrW9/Keeed17vvta99bV784hfn/e9/fx566KGsWrUqf/7nfz6s451xxhmpra0dXtMAAAAAAAAAAAAAAJNQ6Wg3MBz3339/mpubkyR/8Ad/0Ce83mP58uW9y6PefPPN2bNnz4j2CAAAAAAAAAAAAADAfuM6wL527dre229729v6HVNaWpq3vvWtSZKnn3463/nOd0aiNQAAAAAAAAAAAAAAnmdcB9jvu+++JMkxxxyTBQsWDDjuggsu6L39/e9//6j3BQAAAAAAAAAAAADAwcZ1gL21tTVJMnfu3JSXlw84rq6u7qD7HKm3ve1tOe200zJ16tRUV1fn3HPPzZ/+6Z/mP/7jP4ZVFwAAAAAAAAAAAABgohs49T3G7dy5Mx0dHUmSWbNmDTr2hBNOyDHHHJMdO3Zk8+bNwzrud7/73d7b27Zty7Zt2/KjH/0oq1atyqc//elcffXVw6oPAAAAAACMH3u2Df65Q/fe3dn7zGMpP+6UlJRPPeI6AAAAAAATxbgNsD/77LO9t4899thDju8JsD/33HNHdLxf+7Vfy9KlS3Peeedl9uzZSZJf/vKX+fKXv5ympqbs3Lkzf/RHf5SSkpK84x3vGLTWrl27smvXrt7/3759+xH1BAAAAAAAjI7q6upUVFZl27pVRatZUVmV6urqotUDAAAAABiLxm2AfefOnb23p04deMaSHtOmTUuSFAqFwz7WG97whlx55ZUpKSnps/2Vr3xl3vzmN2fdunVZunRp9uzZk/e85z259NJLc+qppw5Yb+XKlfnwhz982H0AAAAAjKZdj+4adH/X7q7s6diTKdVTUjq19IjrAMB4UFNTkwfbWntXix1Ia2trGhsbs3r16tTX1w86trq6OjU1NcVsEwAAAABgzBm3AfaKiore27t37z7k+J4ZzysrKw/7WMcdd9yg+xcvXpwPfehDuf7669PZ2Znbb789H/zgBwccv2LFirz3ve/t/f/t27f3zuoOAAAAMNbsn2G2Iltu3VK0mhWVFWaYBWDcq6mpGXLgvL6+PvPnzz/KHQEAAAAAjH3jNsA+ffr03tvPPffcIcfv2LEjSXLssccelX7e8Y535EMf+lC6u7tz7733DhpgnzZtWu+M8AAAAABj3f4ZZh80wywAAAAAAAAwbOM2wF5RUZEZM2Zk27Zt2bJl8Nm/nnrqqd4A+9Ga6fzkk0/OjBkz0tHRkf/4j/84KscAAAAAGC1mmAUAAAAAAACKoXS0GxiOs846K0ny85//PHv37h1wXFtbW+/tQ83+NRwlJSVHrTYAAAAAAAAAAAAAwHg3rgPsr3nNa5IkO3bsSEtLy4Dj7r333t7bCxcuPCq9PPHEE73LaJ922mlH5RgAAAAAAAAAAAAAAOPZuA6wL1mypPf2HXfc0e+Yrq6u3HnnnUmS448/PhdeeOFR6eXWW29Nd3d3kuSCCy44KscAAAAAAAAAAAAAABjPxnWA/VWvelUaGhqSJLfffnt+8IMfHDRm1apVaW1tTZJce+21mTJlSp/93/3ud1NSUpKSkpJcddVVB92/vb09P/nJTwbtY926dfnIRz6SJKmsrMzb3va2I/l2AAAAAAAAAAAAAAAmtPLRbmC4br755ixcuDCFQiEXXXRRPvCBD+TCCy9MoVDI3XffnVtvvTVJcsYZZ2T58uWHXb+9vT0XXnhhzjvvvFxyySV52ctelpNPPjlJ8stf/jJNTU1pamrqnX39U5/6VF74whcW7xsEAAAAAAAAAAAAAJggxn2A/ZxzzsmXvvSlNDY2Zvv27fnABz5w0Jgzzjgj69evz/Tp04/4OD/4wQ/6neG9R1VVVW666aa84x3vOOJjAAAAAAAAAAAAAABMZOM+wJ4kl1xySR544IHcfPPNWb9+fbZs2ZKpU6dm7ty5ufzyy/Oud70rVVVVR1R7wYIFWb16dX7wgx9kw4YN2bp1azo6OrJ3796ccMIJOfvss/Mbv/Eb+cM//MPemdkBAAAAAAAAAAAAADjYhAiwJ8npp5+eG2+8MTfeeONh3W/RokXp7u4ecP/06dNzxRVX5IorrhhuiwAAAAAAAAAAAAAAk1rpaDcAAAAAAAAAAAAAAMDkIMAOAAAAAAAAAAAAAMCIEGAHAAAAAAAAAAAAAGBECLADAAAAAAAAAAAAADAiBNgBAAAAAAAAAAAAABgRAuwAAAAAAAAAAAAAAIwIAXYAAAAAAAAAAAAAAEaEADsAAAAAAAAAAAAAACNCgB0AAAAAAAAAAAAAgBFRPtoNAAAAAAAATASdnZ1pa2vrs621tbXP1wPV1dWlqqpqRHoDAAAAABgrBNgBAAAAAACKoK2tLQsWLOh3X2Nj40HbWlpaMn/+/KPdFgAAAADAmCLADgAAAAAAUAR1dXVpaWnps61QKKS9vT21tbWprKw8aDwAAAAAwGQjwA4AAAAAAFAEVVVV/c6ovnDhwlHoBgAAAABgbCod7QYAAAAAAAAAAAAAAJgcBNgBAAAAAAAAAAAAABgR5aPdAAAAAAAAcOQ6OzvT1tbWZ1tra2ufrweqq6tLVVXViPQGAAAAAADPJ8AOAAAAAADjWFtbWxYsWNDvvsbGxoO2tbS0ZP78+Ue7LQAAAAAA6JcAOwAAAAAAjGN1dXVpaWnps61QKKS9vT21tbWprKw8aDwAAAAAAIwWAXYAAAAAABjHqqqq+p1RfeHChaPQDQAAAAAADK50tBsAAAAAAAAAAAAAAGByEGAHAAAAAAAAAAAAAGBECLADAAAAAAAAAAAAADAiBNgBAAAAAAAAAAAAABgRAuwAAAAAAAAAAAAAAIwIAXYAAAAAAAAAAAAAAEaEADsAAAAAAAAAAAAAACNCgB0AAAAAAAAAAAAAgBEhwA4AAAAAAAAAAAAAwIgQYAcAAAAAAAAAAAAAYEQIsAMAAAAAAAAAAAAAMCIE2AEAAAAAAAAAAAAAGBEC7AAAAAAAAAAAAAAAjAgBdgAAAAAAAAAAAAAARoQAOwAAAAAAAAAAAAAAI0KAHQAAAAAAAAAAAACAESHADgAAAAAAAAAAAADAiBBgBwAAAAAAAAAAAABgRAiwAwAAAAAAAAAAAAAwIgTYAQAAAAAAAAAAAAAYEQLsAAAAAAAAAAAAAACMCAF2AAAAAAAAAAAAAABGhAA7AAAAAAAAAAAAAAAjQoAdAAAAAAAAAAAAAIARUT7aDQAAAAAw/nR2dqatra3PttbW1j5fD1RXV5eqqqoR6Q0AAAAAAAAYuwTYAQAAACagTZs2paOjY9AxgwXOn6+6ujo1NTW9/9/W1pYFCxb0O7axsfGgbS0tLZk/f/4hjwMAAAAAAABMbALsAAAAABPMpk2bUl93ZjoLO4c0vr/A+fNVVVakte3B3hB7XV1dWlpa+owpFAppb29PbW1tKisr++yrq6sbYvcAAAAAAADARCbADgAAADDBdHR0pLOwM6vfUJn6k0oHHFfY2532p7tSe3xpKstLBhzX+kRXGr9SSEdHR2+Avaqqqt8Z1RcuXDj8bwAAAAAAAACYsATYAQAAACao+pNKM39m2aBjFs4eoWYAAAAAAAAAkgw8BRcAAAAAAAAAAAAAABSRADsAAAAAAAAAAAAAACNCgB0AAAAAAAAAAAAAgBEhwA4AAAAAAAAAAAAAwIgQYAcAAAAAAAAAAAAAYEQIsAMAAAAAAAAAAAAAMCImTID9kUceyfLly1NXV5djjjkmJ554Yl75ylfmk5/8ZDo7O4/KMTs7O/Nrv/ZrKSkpSUlJSWpra4/KcQAAAAAAAAAAAAAAJoLy0W6gGL7+9a+nsbEx27dv793W2dmZDRs2ZMOGDbntttuyfv36zJ07t6jH/dCHPpRf/epXRa0JAAAAAAAAAAAAADBRjfsZ2H/yk5/kzW9+c7Zv355jjz02//t//+/8v//3//Ltb387b3/725MkDz30UC6++OI8++yzRT3upz/96VRUVGT69OlFqwsAAAAAAAAAAAAAMFGN+wD7tddem0KhkPLy8nzrW9/KBz7wgZx33nl57Wtfm1tvvTWf+MQnkuwPsa9ataoox9y3b1/e/va35/9n786joyjTv40/TydAgLDvCrKKoCAggiAyLCqOIoqog46o4Kg4KD9FBAVHxQVBXHHBQcFdQWUUFxwV2QQUFUbZJLLLjoKsIRCSfN8/eLvskIQkkHTuhOtzDseQrq6uruvMFNV9d3VqaqobOnSoq1ixYp6sFwAAAAAAAAAAAAAAAAAAAACKskI9wP7999+72bNnO+ec+8c//uHatm2bYZmBAwe6xo0bO+ecGz16tDt48OAxP+7o0aPdggUL3CmnnOLuvvvuY14fAAAAAAAAAAAAAAAAAAAAABwPCvUA++TJk4Of+/Tpk+kyoVDIXXfddc4553bu3OlmzJhxTI/566+/uvvvv98559y///1vV7x48WNaHwAAAAAAQE6kpqa6mTNnugkTJriZM2e61NTUgt4kAAAAAAAAAAAAAMi1Qj3APmfOHOecc6VLl3YtW7bMcrkOHToEP8+dO/eYHrNfv34uMTHRXXvtta5jx47HtC4AAAAAAICc+OCDD1yDBg1cp06d3N///nfXqVMn16BBA/fBBx8U9KYBAAAAAAAAAAAAQK4U6gH2ZcuWOeeca9CggYuNjc1yuUaNGmW4z9GYOHGi++yzz1yFChXck08+edTrAQAAAAAAyKkPPvjAXXHFFa5p06bu22+/dXv27HHffvuta9q0qbviiisYYgcAAAAAAAAAAABQqBTaAfb9+/e7bdu2Oeecq1mz5hGXrVChgitdurRzzrn169cf1ePt2LHD3XHHHc4550aOHOmqVKlyVOsBAAAAAADIqdTUVDdw4EB38cUXu8mTJ7s2bdq4+Ph416ZNGzd58mR38cUXu7vuusulpqYW9KYCAAAAAAAAAAAAQI4U2gH2PXv2BD/Hx8dnu3x4gH3v3r1H9XiDBg1yW7dudW3btnU33XTTUa0j7MCBA2737t3p/gAAAAAAABxu9uzZbu3atW7o0KEuFEr/Mk4oFHJDhgxxa9ascbNnzy6gLQQAAAAAAAAAAACA3Cm0A+z79+8Pfi5evHi2y5coUcI551xSUlKuH+vrr792r7zyiouNjXX//ve/nfc+1+uINGLECFeuXLngT61atY5pfQAAAAAAoGjavHmzc865Jk2aZHp7+Pfh5QAAAAAAAAAAAADAukI7wB4XFxf8nJycnO3yBw4ccM45V7JkyVw9zoEDB9zNN9/sJLnbb7/dnX766bnb0EwMGTLE7dq1K/izfv36Y14nAAAAAAAoemrUqOGcc27JkiWZ3h7+fXg5AAAAAAAAAAAAALCu0A6wlylTJvh579692S6fmJjonHMuPj4+V48zfPhw98svv7hatWq5Bx98MHcbmYUSJUq4smXLpvsDAAAAAABwuPbt27s6deq4Rx991KWlpaW7LS0tzY0YMcLVrVvXtW/fvoC2EAAAAAAAAAAAAAByJ7agN+BoxcXFuUqVKrnt27e7DRs2HHHZHTt2BAPstWrVytXjPPbYY84558477zz3ySefZLpMeN2JiYlu4sSJzjnnqlat6jp37pyrxwIAAAAAAIgUExPjnnzySXfFFVe47t27uyFDhrgmTZq4JUuWuBEjRrhPP/3UTZo0ycXExBT0pgIAAAAAAAAAAABAjhTaAXbnnDv11FPd7Nmz3cqVK11KSoqLjc386SQkJAQ/N27cOFePkZyc7Jxz7tVXX3WvvvrqEZfdtm2bu/rqq51zznXo0IEBdgAAAAAAcMx69OjhJk2a5AYOHOjOPvvs4Pd169Z1kyZNcj169CjArQMAAAAAAAAAAACA3CnUA+znnHOOmz17tktMTHQLFixwZ511VqbLzZo1K/i5Xbt20do8AAAAAACAPNGjRw936aWXutmzZ7vNmze7GjVquPbt23PldQAAAAAAAAAAAACFTqigN+BYdO/ePfg5q6ujp6WluTfeeMM551z58uVdp06dcvUYkrL9U7t2beecc7Vr1w5+N3PmzKN6TgAAAAAAAJmJiYlxHTt2dFdffbXr2LEjw+sAAAAAAAAAAAAACqVCPcDeunVr1759e+ecc+PHj3fffvtthmWefPJJt2zZMuecc7fffrsrVqxYuttnzpzpvPfOe+969+6d79sMAAAAAAAAAAAAAAAAAAAAAMer2ILegGM1evRo165dO5eUlOS6dOnihg4d6jp16uSSkpLcxIkT3UsvveScc65hw4Zu4MCBBby1AAAAAAAAAAAAAAAAAAAAAHD8KvQD7C1atHDvvvuu69Wrl9u9e7cbOnRohmUaNmzopkyZ4sqUKVMAWwgAAAAAAAAAAAAAAAAAAAAAcM65UEFvQF7o1q2bW7RokRswYIBr2LChK1WqlCtfvrw788wz3WOPPeZ+/PFH16BBg4LeTAAAAAAAAAAAAAAAAAAAAAA4rhX6K7CH1a5d2z311FPuqaeeytX9Onbs6CQd02OvXbv2mO4PAAAAAAAAAAAAAAAAAAAAAMeDInEFdgAAAAAAAAAAAAAAAAAAAACAfQywAwAAAAAAAAAAAAAAAAAAAACiggF2AAAAAAAAAAAAAAAAAAAAAEBUMMAOAAAAAAAAAAAAAAAAAAAAAIiK2ILeAAAAAAAAAOStpKQk55xzy7al5sn6wusJrxcAAAAAAAAAAAAAjhYD7AAAAAAAAEXM2rVrnXPO9fpgf56vt127dnm6TgAAAAAAAAAAAADHFwbYAQAAAAAAipg6deo455x7q0eca1w55pjXt2xbquv1wf5gvQAAAAAAAAAAAABwtBhgBwAAAAAAKGJKlizpnHOuceUYd0aNYx9gP3y9AAAAAAAAAAAAAHC0QgW9AQAAAAAAAAAAAAAAAAAAAACA4wMD7AAAAAAAAAAAAAAAAAAAAACAqGCAHQAAAAAAAAAAAAAAAAAAAAAQFQywAwAAAAAAAAAAAAAAAAAAAACiggF2AAAAAAAAAAAAAAAAAAAAAEBUMMAOAAAAAAAAAAAAAAAAAAAAAIgKBtgBAAAAAAAAAAAAAAAAAAAAAFHBADsAAAAAAAAAAAAAAAAAAAAAICoYYAcAAAAAAAAAAAAAAAAAAAAARAUD7AAAAAAAAAAAAAAAAAAAAACAqGCAHQAAAAAAAAAAAAAAAAAAAAAQFQywAwAAAAAAAAAAAAAAAAAAAACiggF2AAAAAAAAAAAAAAAAAAAAAEBUMMAOAAAAAAAAAAAAAAAAAAAAAIiK2ILeAAAAAAAAAGS0b98+l5CQkO53SUlJbu3ata5OnTquZMmS6W5r1KiRK1WqVDQ3EQAAAAAAAAAAAAByjQF2AAAAAAAAgxISElzLli1zvPyCBQvcGWeckY9bBAAAAAAAAAAAAADHjgF2AAAAAAAAgxo1auQWLFiQ7nfLli1zvXr1cm+99ZZr3LhxhuUBAAAAAAAAAAAAwDoG2AEAAAAAAAwqVapUlldUb9y4MVdbBwAAAAAAAAAAAFAohQp6AwAAAAAAAAAAAAAAAAAAAAAAxwcG2AEAAAAAAAAAAAAAAAAAAAAAUcEAOwAAAAAAAAAAAAAAAAAAAAAgKhhgBwAAAAAAAAAAAAAAAAAAAABEBQPsAAAAAAAAAAAAAAAAAAAAAICoYIAdAAAAAAAAAAAAAAAAAAAAABAVDLADAAAAAAAAAAAAAAAAAAAAAKKCAXYAAAAAAAAAAAAAAAAAAAAAQFQwwA4AAAAAAAAAAAAAAAAAAAAAiAoG2AEAAAAAAAAAAAAAAAAAAAAAUcEAOwAAAAAAAAAAAAAAAAAAAAAgKhhgBwAAAAAAAAAAAAAAAAAAAABEBQPsAAAAAAAAAAAAAAAAAAAAAICoYIAdAAAAAAAAAAAAAAAAAAAAABAVDLADAAAAAAAAAAAAAAAAAAAAAKKCAXYAAAAAAAAAAAAAAAAAAAAAQFQwwA4AAAAAAAAAAAAAAAAAAAAAiAoG2AEAAAAAAAAAAAAAAAAAAAAAUcEAOwAAAAAAAAAAAAAAAAAAAAAgKhhgBwAAAAAAAAAAAAAAAAAAAABEBQPsAAAAAAAAAAAAAAAAAAAAAICoYIAdAAAAAAAAAAAAAAAAAAAAABAVsQW9AQAAAAAAAHBu3bp1btu2bUdcZtmyZen+m91yAAAAAAAAAAAAAGANA+wAAAAAAAAFbN26de6URo3d/qR9OVq+V69eOVpu2e9pR7w9KUVu7c40V6d8yJWM9Ue9HgAAAAAAAAAAAADIKQbYAQAAAAAACti2bdvc/qR9rtLFA12xSrWyXE4pyS5l11YXW66a87HFs1xu/4albvf0l12vD5PybBtLlYxzlStXzrP1AQAAAAAAAAAAADg+McAOAAAAAABgRLFKtVyJ6g2OvFDNU3O0rp1y7q233nKNGzfOcplly5a5Xr16Zbucc85VrlzZnXTSSTl6bAAAAAAAAAAAAADICgPsAAAAAAAARVTjxo3dGWeckWfLAQAAAAAAAAAAAMCxChX0BgAAAAAAAAAAAAAAAAAAAAAAjg9FYoD9119/dQMHDnSNGjVypUuXdhUrVnStWrVyjz/+uNu3b98xrXvZsmXu+eefd9dff70744wzXM2aNV1cXJwrXbq0q1evnuvZs6f76KOPnKQ8ejYAAAAAAAAAAAAAAAAAAAAAUDTFFvQGHKtPPvnE9erVy+3evTv43b59+9z8+fPd/Pnz3bhx49yUKVNcgwYNjmr9w4cPd2+//Xamt61Zs8atWbPGvffee65Dhw7uP//5j6tUqdJRPQ4AAAAAAAAAAAAAAAAAAAAAFHWFeoD9xx9/dD179nRJSUkuPj7eDRkyxHXq1MklJSW5iRMnupdfftktX77cde3a1c2fP9+VKVMm148RGxvrzjrrLNeuXTvXtGlTV716dVelShW3Y8cOl5CQ4MaOHeuWLFniZs2a5bp16+bmzJnjQqEicWF7AAAAAAAAAAAAAAAAAAAAAMhThXqA/fbbb3dJSUkuNjbWffnll65t27bBbZ07d3Ynn3yyGzx4sFu+fLl78skn3bBhw3L9GOPGjXOxsZnvpvPOO8/985//dH/729/cBx984L799lv36aefuksuueRonxIAAAAAAAAAAAAAAAAAAAAAFFmF9lLh33//vZs9e7Zzzrl//OMf6YbXwwYOHOgaN27snHNu9OjR7uDBg7l+nKyG18NiYmLcoEGDgr+HtwkAAAAAAAAAAAAAAAAAAAAAkF6hHWCfPHly8HOfPn0yXSYUCrnrrrvOOefczp073YwZM/JlW8qUKRP8vH///nx5DAAAAAAAAAAAAAAAAAAAAAAo7ArtAPucOXOcc86VLl3atWzZMsvlOnToEPw8d+7cfNmWiRMnBj83atQoXx4DAAAAAAAAAAAAAAAAAAAAAAq72ILegKO1bNky55xzDRo0cLGxWT+NyIHy8H3ywrZt29yKFSvcuHHj3Kuvvuqcc65y5crummuuybPHAAAAAAAAAAAAAAAAAAAAAICipFAOsO/fv99t27bNOedczZo1j7hshQoVXOnSpV1iYqJbv379MT1ux44d3axZszK9rXLlyu7DDz905cuXP6bHAAAAAAAAAAAAAAAAAAAAAICiKlTQG3A09uzZE/wcHx+f7fKlS5d2zjm3d+/efNme//u//3PLli1z55xzTo6WP3DggNu9e3e6PwAAAAAAAAAAAAAAAAAAAABQ1BXaK7CHFS9ePNvlS5Qo4ZxzLikp6Zge99VXX3WJiYlOktu5c6ebP3++e/HFF93zzz/vVq9e7caNG+eqVauW7XpGjBjhHnzwwWPaFgAAAAAAAAAAAAAAAAAAAAAobArlFdjj4uKCn5OTk7Nd/sCBA84550qWLHlMj1u3bl3XpEkT17RpU9e+fXs3YMAAt2jRInfRRRe5Tz/91LVq1cpt2LAh2/UMGTLE7dq1K/izfv36Y9ouAAAAAAAAAAAAAAAAAAAAACgMCuUV2MuUKRP8vHfv3myXT0xMdM45Fx8fn+fbEhcX51599VVXu3Ztt379ejd48GD3zjvvHPE+JUqUCK4KDwAAAAAAEP7WuIPb8+ZD7uH1HOu30QEAAAAAAAAAAABAXiuUA+xxcXGuUqVKbvv27dle8XzHjh3BAHutWrXyZXsqV67s2rVr56ZOneo++ugjd/DgQVesWLF8eSwAAAAAAFD0rF271jnn3PZPn8zz9bZr1y5P1wkAAAAAAAAAAAAAx6JQDrA759ypp57qZs+e7VauXOlSUlJcbGzmTyUhISH4uXHjxvm2PVWqVHHOObdv3z63bds2V6NGjXx7LAAAAAAAULTUqVPHOedcpYsHumKVjv0D+Ae3r3fbP30yWC8AAAAAAAAAAAAAWFFoB9jPOeccN3v2bJeYmOgWLFjgzjrrrEyXmzVrVvBzfl5xbOPGjcHP8fHx+fY4AAAAAACg6ClZsqRzzrlilWq5EtUb5Pl6AQAAAAAAAAAAAMCKUEFvwNHq3r178POrr76a6TJpaWnujTfecM45V758edepU6d82ZYNGza4b7/91jnnXO3atV2ZMmXy5XEAAAAAAAAAAAAAAAAAAAAAoDArtAPsrVu3du3bt3fOOTd+/PhggDzSk08+6ZYtW+acc+722293xYoVS3f7zJkznffeee9d7969M9x/+fLlbvr06Ufcjl27drm///3vLjk52Tnn3HXXXXc0TwcAAAAAAAAAAAAAAAAAAAAAirzYgt6AYzF69GjXrl07l5SU5Lp06eKGDh3qOnXq5JKSktzEiRPdSy+95JxzrmHDhm7gwIG5Xv+mTZvcueee65o1a+a6d+/uWrZs6apXr+5iY2Pdli1b3Ny5c9348ePdli1bnHPONWnSxN1zzz15+hwBAAAAAAAAAAAAAAAAAAAAoKgo1APsLVq0cO+++67r1auX2717txs6dGiGZRo2bOimTJniypQpc9SPs3DhQrdw4cIjLtO1a1f36quvulKlSh314wAAAAAAAAAAAAAAAAAAAABAUVaoB9idc65bt25u0aJFbvTo0W7KlCluw4YNrnjx4q5BgwbuyiuvdLfddttRD5W3a9fOffHFF+6rr75y8+fPdxs2bHBbt251+/btc2XLlnV169Z1bdq0cVdffbVr165dHj8zAAAAAAAAAAAAAAAAAAAAAChaCv0Au3PO1a5d2z311FPuqaeeytX9Onbs6CRleXuxYsVcly5dXJcuXY51EwEAAAAAAAAAAAAAAAAAAADguBcq6A0AAAAAAAAAAAAAAAAA1iYqNAABAABJREFUAAAAABwfisQV2AEAAAAAAIqCg9vXH/F2pSS7lF1bXWy5as7HFj/q9QAAAAAAAAAAAABAQWGAHQAAAAAAoIBVrlzZxZUs5bZ/+mSerTOuZClXuXLlPFsfAAAAAAAAAAAAAOQFBtgBAAAAAAAK2EknneR+SVjmtm3bdsTlli1b5nr16uXeeust17hx4yMuW7lyZXfSSSfl5WYCAAAAAAAAAAAAwDFjgB0AAAAAAMCAk046KccD540bN3ZnnHFGPm8RAAAAAAAAAAAAAOS9UEFvAAAAAAAAAAAAAAAAAAAAAADg+MAAOwAAAAAAAAAAAAAAAAAAAAAgKhhgBwAAAAAAAAAAAAAAAAAAAABEBQPsAAAAAAAAAAAAAAAAAAAAAICoYIAdAAAAAAAAAAAAAAAAAAAAABAVDLADAAAAAAAAAAAAAAAAAAAAAKKCAXYAAAAAAAAAAAAAAAAAAAAAQFTEFvQGAAAAAAAAIP/t27fPJSQkpPvdsmXL0v03UqNGjVypUqWism0AAAAAAAAAAAAAjh8MsAMAAAAAABwHEhISXMuWLTO9rVevXhl+t2DBAnfGGWfk92YBAAAAAAAAAAAAOM4wwA4AAAAAAHAcaNSokVuwYEG63yUlJbm1a9e6OnXquJIlS2ZYHgAAAAAAAAAAAADyGgPsAAAAAAAAx4FSpUplekX1du3aFcDWAAAAAAAAAAAAADhehQp6AwAAAAAAAAAAAAAAAAAAAAAAxwcG2AEAAAAAAAAAAAAAAAAAAAAAUcEAOwAAAAAAAAAAAAAAAAAAAAAgKhhgBwAAAAAAAAAAAAAAAAAAAABEBQPsAAAAAAAAAAAAAAAAAAAAAICoYIAdAAAAAAAAAAAAAAAAAAAAABAVDLADAAAAAAAAAAAAAAAAAAAAAKKCAXYAAAAAAAAAAAAAAAAAAAAAQFQwwA4AAAAAAAAAAAAAAAAAAAAAiAoG2AEAAAAAAAAAAAAAAAAAAAAAUcEAOwAAAAAAAAAAAAAAAAAAAAAgKhhgBwAAAAAAAAAAAAAAAAAAAABEBQPsAAAAAAAAAAAAAAAAAAAAAICoYIAdAAAAAAAAAAAAAAAAAAAAABAVDLADAAAAAAAAAAAAAAAAAAAAAKKCAXYAAAAAAAAAAAAAAAAAAAAAQFQwwA4AAAAAAAAAAAAAAAAAAAAAiAoG2AEAAAAAAAAAAAAAAAAAAAAAUcEAOwAAAAAAAAAAAAAAAAAAAAAgKhhgBwAAAAAAAAAAAAAAAAAAAABEBQPsAAAAAAAAAAAAAAAAAAAAAICoYIAdAAAAAAAAAAAAAAAAAAAAABAVDLADAAAAAAAAAAAAAAAAAAAAAKKCAXYAAAAAAAAAAAAAAAAAAAAAQFTEFvQGAAAAAAAAIKN9+/a5hISEdL9btmxZuv9GatSokStVqlRUtg0AAAAAAAAAAAAAjhYD7AAAAAAAAAYlJCS4li1bZnpbr169MvxuwYIF7owzzsjvzQIAAAAAAAAAAACAY8IAOwAAAAAAgEGNGjVyCxYsSPe7pKQkt3btWlenTh1XsmTJDMsDAAAAAAAAAAAAgHUMsAMAAAAAABhUqlSpTK+o3q5duwLYGgAAAAAAAAAAAADIG6GC3gAAAAAAAAAAAAAAAAAAAAAAwPGBAXYAAAAAAAAAAAAAAAAAAAAAQFQwwA4AAAAAAAAAAAAAAAAAAAAAiAoG2AEAAAAAAAAAAAAAAAAAAAAAUcEAOwAAAAAAAAAAAAAAAAAAAAAgKhhgBwAAAAAAAAAAAAAAAAAAAABEBQPsAAAAAAAAAAAAAAAAAAAAAICoYIAdAAAAAAAAAAAAAAAAAAAAABAVDLADAAAAAAAAAAAAAAAAAAAAAKKCAXYAAAAAAAAAAAAAAAAAAAAAQFQwwA4AAAAAAAAAAAAAAAAAAAAAiIoiM8D+66+/uoEDB7pGjRq50qVLu4oVK7pWrVq5xx9/3O3bt++Y1r1v3z73wQcfuH/+85+uVatWrkKFCq5YsWKuUqVKrm3btm7YsGFuy5YtefRMAAAAAAAAAAAAAAAAAAAAAKBoii3oDcgLn3zyievVq5fbvXt38Lt9+/a5+fPnu/nz57tx48a5KVOmuAYNGuR63YsWLXLt2rVze/fuzXDbH3/84ebNm+fmzZvnnn76affSSy+5nj17HtNzAQAAAAAAAAAAAAAAAAAAAICiqtBfgf3HH390PXv2dLt373bx8fFu+PDh7ptvvnHTpk1zN910k3POueXLl7uuXbu6PXv25Hr9u3fvDobX27Vr50aMGOGmTp3q/ve//7kvvvjC9e3b14VCIbd79253zTXXuP/+9795+vwAAAAAAAAAAAAAAAAAAAAAoKgo9Fdgv/32211SUpKLjY11X375pWvbtm1wW+fOnd3JJ5/sBg8e7JYvX+6efPJJN2zYsFytPxQKub/97W/ugQcecKeeemqG27t06eIuvPBCd9lll7nU1FTXv39/t2LFCue9P9anBgAAAAAAAAAAAAAAAAAAAABFSqG+Avv333/vZs+e7Zxz7h//+Ee64fWwgQMHusaNGzvnnBs9erQ7ePBgrh7j7LPPdu+++26mw+thl156qevRo4dzzrlVq1a5H3/8MVePAQAAAAAAAAAAAAAAAAAAAADHg0I9wD558uTg5z59+mS6TCgUctddd51zzrmdO3e6GTNm5Mu2dOrUKfh51apV+fIYAAAAAAAAAAAAAAAAAAAAAFCYFeoB9jlz5jjnnCtdurRr2bJllst16NAh+Hnu3Ln5si0HDhwIfo6JicmXxwAAAAAAAAAAAAAAAAAAAACAwqxQD7AvW7bMOedcgwYNXGxsbJbLNWrUKMN98tqsWbOCnxs3bpwvjwEAAAAAAAAAAAAAAAAAAAAAhVnWU9/G7d+/323bts0551zNmjWPuGyFChVc6dKlXWJiolu/fn2eb8vChQvdlClTnHPONW3aNNsB9gMHDqS7Yvvu3bvzfJsAAAAAAAAAAAAAAAAAAAAAwJpCewX2PXv2BD/Hx8dnu3zp0qWdc87t3bs3T7fjwIED7sYbb3SpqanOOeeGDx+e7X1GjBjhypUrF/ypVatWnm4TAAAAAAAAAAAAAAAAAAAAAFhUaAfY9+/fH/xcvHjxbJcvUaKEc865pKSkPN2O2267zc2fP98559z111/vunXrlu19hgwZ4nbt2hX8yY+rwgMAAAAAAAAAAAAAAAAAAACANbEFvQFHKy4uLvg5OTk52+UPHDjgnHOuZMmSebYNI0aMcOPGjXPOOdeqVSv3wgsv5Oh+JUqUCAbqAQAAAAAAAAAAAAAAAAAAAOB4UWivwF6mTJng571792a7fGJionPOufj4+Dx5/LFjx7qhQ4c655xr1KiR++yzz1zp0qXzZN0AAAAAAAAAAAAAAAAAAAAAUBQV2gH2uLg4V6lSJeeccxs2bDjisjt27AgG2GvVqnXMjz1hwgTXr18/55xztWvXdlOnTnWVK1c+5vUCAAAAAAAAAAAAAAAAAAAAQFEWW9AbcCxOPfVUN3v2bLdy5UqXkpLiYmMzfzoJCQnBz40bNz6mx/z444/ddddd59LS0lyNGjXctGnTXM2aNY9pnZKcc87t3r37mNYDe9LS0oL/0hcAAAAAgPzB+TcAIKc4ZgAAcoLjBQAgpzhmAAAKSvi4E54/BQqbQj3Afs4557jZs2e7xMREt2DBAnfWWWdlutysWbOCn9u1a3fUjzdt2jT3t7/9zaWkpLhKlSq5qVOnuvr16x/1+sL27NnjnMubq8PDps2bN7ty5coV9GYAAAAAAFCkcf4NAMgpjhkAgJzgeAEAyCmOGQCAgrJnzx6OQSiUvArxxy++//77YGi9b9++7t///neGZdLS0lyTJk3csmXLXPny5d1vv/3mihUrluvH+uabb1yXLl1cYmKiK1eunJs2bZpr2bLlMT+H8DZu2rTJlSlTxnnv82Sdhd3u3btdrVq13Pr1613ZsmULenOOa7SwhR520MIOWthBCztoYQs97KCFHbSwgxZ20MIWethBCztoYQct7KCFLfSwgxZ20MIOWthBC1voYQct7KCFHbSwgxaZk+T27NnjTjjhBBcKhQp6c4BcK9RXYG/durVr3769mz17ths/fry7/vrrXdu2bdMt8+STT7ply5Y555y7/fbbMwyvz5w503Xq1Mk559z111/vXnvttQyP89NPP7muXbu6xMREV7p0aTdlypQ8G153zrlQKORq1qyZZ+srSsqWLctBxwha2EIPO2hhBy3soIUdtLCFHnbQwg5a2EELO2hhCz3soIUdtLCDFnbQwhZ62EELO2hhBy3soIUt9LCDFnbQwg5a2EGLjLjyOgqzQj3A7pxzo0ePdu3atXNJSUmuS5cubujQoa5Tp04uKSnJTZw40b300kvOOecaNmzoBg4cmOv1r1q1yl1wwQVu586dzjnnHnnkEVeuXDm3ZMmSLO9TtWpVV7Vq1aN6PgAAAAAAAAAAAAAAAAAAAABQVBX6AfYWLVq4d9991/Xq1cvt3r3bDR06NMMyDRs2dFOmTHFlypTJ9fpnz57tfvvtt+DvAwYMyPY+DzzwgBs2bFiuHwsAAAAAAAAAAAAAAAAAAAAAirJQQW9AXujWrZtbtGiRGzBggGvYsKErVaqUK1++vDvzzDPdY4895n788UfXoEGDgt5M5EKJEiXcAw884EqUKFHQm3Lco4Ut9LCDFnbQwg5a2EELW+hhBy3soIUdtLCDFrbQww5a2EELO2hhBy1soYcdtLCDFnbQwg5a2EIPO2hhBy3soIUdtACKJi9JBb0RAAAAAAAAAAAAAAAAAAAAAICir0hcgR0AAAAAAAAAAAAAAAAAAAAAYB8D7AAAAAAAAAAAAAAAAAAAAACAqGCAHQAAAAAAAAAAAAAAAAAAAAAQFQywAwAAAAAAAAAAAAAAAAAAAACiggF2mJeamlrQmwAAAAAAAAAAAAAAAAAAAAAgDzDADtOSk5Pdc8895+64446C3hQAAAAAAAAAAAAAAAAAAAAAxyi2oDcAyEpycrJ744033H333ecSExNdamqqe+655wp6swAAAAAAAAAAAAAAAAAAAAAcJa7ADpOSk5Pd66+/7gYMGOASExNdiRIl3AsvvOBuuOGGgt6045KkTH9G9NHCDlrYQQtb6GEHLeyghR20sIMWttADAAAAAAAAAAAAQDQxwA5zwldeHzhwoEtMTHQVK1Z0KSkpzjkX/Bf56/CBBe99hp8ZaogOWthBCztoYQs97KCFHbSwgxZ20MIWethx+H5OS0sroC0BLeyghR20sIUedtDCDlrYQQs7aGELPeyghR20sIMWdtDCDlrYQg+g6Ist6A0AIoWH1++88063d+9e165dO9ewYUP37rvvuipVqrg+ffo45w4doCLfYEfeCu/btWvXukWLFrmlS5e6zZs3u5iYGNeoUSN35plnuqZNm7rixYs75+iRn2hhBy3soIUt9LCDFnbQwg5a2EELW+hhQ+R+nT17tjvllFNc1apVXUpKiouN5SW7aKKFHbSwgxa2RPZYuXKla9CggQuFQi41NdXFxMQU8NYdX2hhBy3soIUdtLCFHnbQwg5a2ME5nx20sIMWttADOD7wv2aYcfjw+plnnun69evnXnjhBbdv3z538sknu9atWzvnHG+c5yNJbu/eve7ee+91X3/9tVu0aFG62733LhQKuWuvvdZddNFF7oorrnDeewYa8gEt7KCFHbSwhR520MIOWthBCztoYQs9bIjcn9OnT3ePPPKIW7p0qZszZ447+eSTC3jrji+0sIMWdtDClsgeX331lXvkkUdcq1at3OOPP86QT5TRwg5a2EELO2hhCz3soIUdtLCDcz47aGEHLWyhB3AcEWDAgQMH9PLLL6tMmTLy3qtp06aaMGGC3nnnHVWpUkUVK1bUvHnzJEmpqakFvLVF1969ezV58mR17txZ3vvgT7Vq1XTCCSeoVq1aatiwobz3CoVCKlOmjB544IHg/mlpaQW38UUMLeyghR20sIUedtDCDlrYQQs7aGELPWyI3I9Tp05Vt27dFBMTI++9HnzwQUm89hEttLCDFnbQwpbDe3Tv3j04fn/yySccm6OIFnbQwg5a2EELW+hhBy3soIUdnPPZQQs7aGELPYDjCwPsKHCHD6+ffvrpmjhxoiRp8ODB8t7r/PPP1+bNmwt4S4u2Xbt26cUXX1SLFi3kvVdsbKyqVq2qAQMG6JtvvtGOHTu0e/du7dq1S2PHjtVll12mUCgk771uv/32YD2cXB47WthBCztoYQs97KCFHbSwgxZ20MIWetiQ2Yvv4Tdsb7rppuC28AvwvBCff2hhBy3soIUtR+px9913Z1ieHvmHFnbQwg5a2EELW+hhBy3soIUdnPPZQQs7aGELPYDjDwPsKFCHD683a9ZMEyZM0MGDBzVz5szgIPTOO+8U9KYWaYmJiXrllVd06qmnynuvYsWK6eqrr9bkyZPTLRf5D4XVq1fr8ccfDwYa7rvvvmhvdpFECztoYQctbKGHHbSwgxZ20MIOWthCDxsOf/H90ksvTXcl/NNOO00VKlRQu3bt9K9//Sv4IH9KSkpBbXKRRQs7aGEHLWw5Uo/Y2Fj17t1bXbp00SOPPKIvv/wyWJYeeY8WdtDCDlrYQQtb6GEHLeyghR2c89lBCztoYQs9gOMTA+woMJkNr7/zzjvauXOnJOnuu+9WKBTS5Zdfrv3790vKeKU3Pkl1bML7c/r06WrZsmUwyHDHHXfop59+CpaLPNhHNti/f79Gjx6tUCikEiVK6I033ojexhcxtLCDFnbQwhZ62EELO2hhBy3soIUt9LDjSF+V3ahRI51zzjkaMGCAzjrrLFWrVk3ee7Vs2VKrV6/OcH8cG1rYQQs7aGHLkXpUrlxZtWrV0plnnqnY2Fh57xUfH69Ro0Zlen8cG1rYQQs7aGEHLWyhhx20sIMWdnDOZwct7KCFLfQAjl8MsKNAZHXl9d27d0uSVq1apapVq8p7r8ceeyzb9S1btkwvvPCC+vfvn9+bXmREHry7du0aDDLceuut+uWXXzJdLjObN29W3759FQqF9Le//U07duzgHwa5RAs7aGEHLWyhhx20sIMWdtDCDlrYQg87jvTi+w033KDvv/9eSUlJkqQdO3boq6++0tlnny3vvRo0aKAdO3YU0JYXPbSwgxZ20MKWI/W4+uqr9eGHH+r3339XSkqKvvnmGw0ZMiS4/YEHHii4DS+CaGEHLeyghR20sIUedtDCDlrYwTmfHbSwgxa20AM4vjHAjqjLanh97969kqSkpCT1799f3nu1bds2uBJc+Grr4f/u27dP27Zt08CBA9W6devg4MUQe+488sgj8t4rJiZGXbt21Q8//JDrdXz00UcqVqyYQqGQpk6dmg9beXyghR20sIMWttDDDlrYQQs7aGEHLWyhR8E60ovvd911V7plI6+EP336dLVq1UoDBgzQpk2bora9RRkt7KCFHbSw5Ug97rzzzkw/QJaUlKShQ4eqePHiuvPOO7Vr165obnKRRQs7aGEHLeyghS30sIMWdtDCDs757KCFHbSwhR4AGGBHVGU3vC5J27Zt09lnn63ixYvr2WeflXToa8sjLVmyRH379lWLFi2CN+K99ypZsmTwCSxkLy0tTT169FAoFJL3Xq+//vpRr+vyyy+X9159+/bVgQMH8nArjw+0sIMWdtDCFnrYQQs7aGEHLeyghS30KFhHevF90KBBmS4XtmfPHk2bNk1r1qyJxqYWebSwgxZ20MKWI/UYPHhwpsuF/fzzz3r77beDr83GsaGFHbSwgxZ20MIWethBCztoYQfnfHbQwg5a2EIPABID7Iii/fv3a/z48UccXpekYcOGyXuvSpUqafHixelu++ijjzR48OBgHSVLllSNGjV0zTXXqGbNmsGBrE+fPtq5c2c0n16htHDhwmCf9erVK/h9br4OPvwJt3vvvVfeew0YMCC4Sj5yjhZ20MIOWthCDztoYQct7KCFHbSwhR4FJ6dv2EZeNeZwkR8U+Pzzz7Vjxw4lJydLEg1ygRZ20MIOWtiS0zdsj9Qj8uuyD7/yGD1yjhZ20MIOWthBC1voYQct7KCFHZzz2UELO2hhCz0AhDHAjqhIS0vT66+/HhxsDh9eDx+Yli9frpYtW8p7r+eff17SoU9NTZ48WTfffLO894qNjZX3XhdeeKGef/55vfXWW7rhhhuCdQ8YMEAbN24ssOdamEyfPj3Yn+H9faSD/5FMnjxZPXv21B9//JGXm3jcoIUdtLCDFrbQww5a2EELO2hhBy1soUfBmzp1qnr06JHrF98jhT/o37ZtW40cOVK///57ru6PQ2hhBy3soIUt06ZNO6o3bCPdfvvtql27toYOHaqvv/461/fHIbSwgxZ20MIOWthCDztoYQct7OCczw5a2EELW+gBgAF2RE1CQoK89zrppJP07rvvprvyeniA/Z133lEoFFKLFi309ttva+rUqWrbtq3Kly8fHKx69uypMWPGKCUlRV9//bWuuuoqhtdzKby/J0yYIO+9SpcurSVLlhzTOtetW6fExERJ/CMgN2hhBy3soIUt9LCDFnbQwg5a2EELW+hhQ0JCgjp06HBML74nJydr8uTJOuOMM1SqVCl579W5c2etW7cuV+s53tHCDlrYQQtbZs6cqc6dOysmJiZXV6iMtHXrVt14440KhULy3qt+/frBB9hys57jHS3soIUdtLCDFrbQww5a2EELOzjns4MWdtDCFnoAkBhgR5StWrVK//nPf7Rnz54Mt/36669q0KCBvPeqWbOmOnXqpGrVqsl7r1q1auniiy/Wxx9/HCz/ww8/6OKLLw4OZHfeeSfD67n0+eefB/tvxowZebLO3HwVPf5ECztoYQctbKGHHbSwgxZ20MIOWthCj4J366235uoN26z27/r16/Xyyy+radOm8t6rTp06Wrt2rSS+DjWnaGEHLeyghR3r169X2bJl5b3XPffcE/z+aN5onTRpkq699trg3wD3339/cBs9skcLO2hhBy3soIUt9LCDFnbQwhbO+eyghR20sIUeABhgR9RldTD53//+p/j4+OAEJDzI3r17dy1atEhbtmyRdOjA8vXXX+uSSy5heP0Y/fjjj8EJ5EcffSQpb4cR+CRbztHCDlrYQQtb6GEHLeyghR20sIMWttCj4ES+KD558uTg56z22eFdDh48mGGZAwcO6LvvvlObNm3kvVezZs20adOmPNrioosWdtDCDlrYtHDhQj3wwAPB33PaIzMbNmzQo48+Grx+PmLEiLzazOMCLeyghR20sIMWttDDDlrYQYuCxzmfHbSwgxa20ANAGAPsMOXJJ5+U917x8fEaPHiw5syZk+6gk5aWplmzZql79+4Mr+eRbt26yXuviy++WNu3b8+TdU6fPj34mU+y5Rwt7KCFHbSwhR520MIOWthBCztoYQs9Cs7hL6Jn9eJ7eB+uX79eb7zxhvr06aMePXpo9OjRmV45f+7cuTrttNPkvdftt9+u/fv35/m2FzW0sIMWdtDCtux6/Pbbb5o7d66efvppPffcc/rxxx/1xx9/SPrzTd09e/bo4Ycflvde5cqVS/eGMHKOFnbQwg5a2EELW+hhBy3soEXB4ZzPDlrYQQtb6AFAYoAdRkS+4T1r1ix9/fXXGZZJS0vT119/fVTD6+GDXFpamvbs2ZN3G16IhU/4xo8fr0qVKumkk07SRx99dMzDB4888oi89+rfv39ebOZxgRZ20MIOWthCDztoYQct7KCFHbSwhR6FQ7jTL7/8or/85S+qVKlSum+mK1++vIYNG5buPnv37tWgQYPkvVfbtm2VlJRUEJte5NDCDlrYQQtbwsfw5cuX68ILL9QJJ5wQtKhVq5bOPfdcLV++PN19fvnlF3Xq1EkxMTEaOHCgpLz9NpbjFS3soIUdtLCDFrbQww5a2EELOzjns4MWdtDCFnoARR8D7DAjszfRw5+2Oprh9cNPWPbu3auRI0eqY8eO6t27d95ufCH222+/qUuXLvLe6+yzz9aSJUuOel3hTz5773XBBRdo/fr1QQdOILNHCztoYQctbKGHHbSwgxZ20MIOWthCD/vWrl0bfK1p6dKlVadOHV122WXBVWK89/rnP/8ZXIFMkr7++uvgtrlz5xbg1hcttLCDFnbQwpaVK1eqZcuWwf6tWLGiqlevrvLly8t7r6pVq2ratGnp7nP33XfLe68aNWpo586dHLPzCC3soIUdtLCDFrbQww5a2EELOzjns4MWdtDCFnoARRsD7DAr8k3w3AyvH/6VIgsWLNBTTz2lU089Nd2nsK677rp8fw6FxapVq1S/fn1579W+fXt99dVX2r17t6Q/P1iQ3VX6HnrooWDfduzYUe+99542bdqU7n6Hr4OTyoxoYQct7KCFLfSwgxZ20MIOWthBC1voYVN4fz311FMqV66cSpQooRtvvFHr16+XJC1btkxPPPFEsN//8Y9/aPPmzZKkn3/+WWXLllVMTIx++OGHAnsORQUt7KCFHbSwZ//+/erfv7+KFy+usmXL6oYbbtCaNWu0ceNGvf/++2rfvr2896pcubI+/vhjHThwQJL00UcfqXjx4mrUqJH27dtXwM+iaKCFHbSwgxZ20MIWethBCztoYQPnfHbQwg5a2EIP4PjAADtMOtrh9UizZ8/WqFGjVKFCBZUqVUre++ATu9571axZU1u3bs3vp1JoJCQkqGbNmvLe65RTTtEdd9yhRYsWBVfBP5LwV8iH/5QrV07ly5dX7dq1ddVVV+ntt98Olg1/wCBykOGTTz4J/hEBWlhCCztoYQs97KCFHbSwgxZ20MIWeth16aWXynuvE088UatXr85w+3vvvRfs+5tvvlnr16/XPffcI++9GjdurD179hTAVhdNtLCDFnbQwo69e/fqjDPOkPdezZs316+//pru9t9//10XXXSRvPeqVKmSPv/8c+3fv1/XXXedvPdq06ZNAW150UMLO2hhBy3soIUt9LCDFnbQwhbO+eyghR20sIUeQNHGADvMyc3wevjTVuH7bN++XYsWLVLv3r1Vu3bt4H61atXS5Zdfrg8++EB169aV9179+/fX/v37o/8EDVu5cqU6d+4cDPyXKFFCHTt21C233KKvvvoq0/sMHz482M/x8fFq2bKlbrzxRvXq1SvdVe8ffPDBTO8/YcIEtWrVSvHx8Vq5cmV+Pr1ChRZ20MIOWthCDztoYQct7KCFHbSwhR62pKWlad++fWrVqpW89+ratWtw2+FXs588eXKwr9u3b69GjRopFAppwIABOnDgQLZX0MeR0cIOWthBC3sWLVqkMmXKKCYmRo899pikzD841q1bN3nvVbFiRfXr108NGjRQqVKl9Mwzz0jK/ltXkD1a2EELO2hhBy1soYcdtLCDFjZwzmcHLeyghS30AI4PDLDDpLS0NM2ZM+eIw+vhkxhJ2rlzp2bPnq2//vWvOuWUU+S9V/HixRUfH6/bb79dc+bMkSQ9/PDD8t6rZMmS+umnn6L+vAqDLVu2aMyYMfrrX/8q771iYmLUuXPn4OvlI0UOMpx33nl64YUX0t2+atUqjRw5MljmueeeS3f7b7/9pk6dOgW3v/baa/n63AobWthBCztoYQs97KCFHbSwgxZ20MIWetjzf//3f/Le69RTT1VCQkK629LS0oKr5E+aNCnYl94f+rD+ggULCmKTiyxa2EELO2hhx549e9SiRQt579WzZ0/t3bs33e2Rr5d37do1eB3ce6/TTjtNS5cujfYmF1m0sIMWdtDCDlrYQg87aGEHLWzhnM8OWthBC1voARRtDLDDpG+++UadO3cODip33nmnNmzYIOnPT92GPx01duxYXXXVVYqLiwuWr1Chgh5++GFNnTo1WOeyZcvUqFEjxcTE6K677kq3DmRu8uTJmjBhgnbu3Ckp/cli5CBDjx49NH369KBN5JXt9+7dq8GDB+v000/XlClTMjzGl19+Ke+9nn322Xx+NoUbLeyghR20sIUedtDCDlrYQQs7aGELPWx4++23g309atQoJSYmBreFX3zfs2eP3nnnHTVs2DBY9vPPP0+3nqxe4+C1j5yjhR20sIMWdiQlJemGG26Q917NmjXTd999l+72yOP4yy+/rMqVK8t7r2LFimX4ppXIK1si92hhBy3soIUdtLCFHnbQwg5a2MI5nx20sIMWttADKNoYYIdJ69evVygUkvded911l9atW5fu9m3btumJJ54IPnEbExMj773atGmju+66SytWrMiwzpdeeknee4VCIX344YdReiaFU2YneuGDvpR+kOHyyy8PrnCf1X3nzZun+fPnB7cvXLgw3e2RV9bnHwbp0cIOWthBC1voYQct7KCFHbSwgxa20MOeu+++O9jnDz74oObNmydJSkxM1Lp16/SPf/wj+MY5770+/vhjSYf2d+Qbu5L0+++/a+3atdqyZUu637Pvc4YWdtDCDlrYsWrVKtWqVUveH/pK7K+//lo7duwIbt+2bZsGDhyo5s2b56iHdOjfAJH/DpDokRO0sIMWdtDCDlrYQg87aGEHLWzhnM8OWthBC1voARRdDLDDrMWLF2vIkCHaunVr8Lvvv/9eL730kk4++WTFxsYGB57Y2Fj16NFDkrRv3z5J6Q8sy5YtC06AevfuHd0nUsQ88sgjwX6/4oorNHfu3OC27D7hnJaWpgkTJqhZs2b6v//7vwz34x8DuUMLO2hhBy1soYcdtLCDFnbQwg5a2EKP6Ip88fy+++5TsWLFgquKnXHGGTr11FNVoUKFoIn3Xp9++qmkQ/s1OTlZkrR161a98sor6tatm2rWrKmYmBhVq1ZN3bp107PPPqvff/89w+MhPVrYQQs7aGHTL7/8ElxRrGbNmmrfvr3uuOMO9e7dW/Xq1Uv3TaXhb0eJ7LF9+3bNmDFDffv2VdeuXXXWWWepc+fOGj9+vL799tvgceiRPVrYQQs7aGEHLWyhhx20sIMWBY9zPjtoYQctbKEHUPQxwA7Twm9yz5gxQyNHjlSVKlVUpkwZee9VsWJF1a5dO92nbr/++mtJhw4okZ+ievnll1WuXDlVrVo1uPo6b5zn3ogRI3I9yBC5n999912de+65wToiTxyRO7SwgxZ20MIWethBCztoYQct7KCFLfQoGJEvik+ePFmDBg1Sp06ddPrpp6tGjRrBt8557/XJJ59ISv/i+4oVK9S5c2fVqFFD3nsVL1483Qv2pUqVUocOHfTrr79meDykRws7aGEHLWxau3at7rjjDp1++ukqX768SpQooRIlSmT7hu2qVat0+eWXq379+vLep+tXvHhxNWrUSM8++2zwOPTIHi3soIUdtLCDFrbQww5a2EGLgsc5nx20sIMWttADKNoYYId527ZtU7t27dIdPFq0aKF///vfWrRokRYsWKDzzz8/uG3q1KmS/jygJCcnq1WrVvLeq02bNtq9e3e2j5mamhocmHDIE088ketBhsjfv/fee+rUqVOwjjFjxuT7NhdVtLCDFnbQwhZ62EELO2hhBy3soIUt9ChYh3/I/vfff9ezzz6rM844I9inkV97Gn7x/ZdfflHNmjWDZeLj4zVo0CCNGjVK48ePV48ePVSvXj1571WnTh2tXbs208fDn2hhBy3soIVNycnJSk1N1YIFC3Tvvffq5JNPPuIbtgkJCapTp06wTIkSJXTxxRfr+uuv12WXXaYGDRoEt91///3B49Aje7SwgxZ20MIOWthCDztoYQctCh7nfHbQwg5a2EIPoOhigB2FwtKlSxUbG6t27dpp6NCh2r9/f3BbcnKyvvrqq0yH2FNTU/X000/Le68KFSro888/D36fldTUVP3www869dRTde211+bvEytEFi9erFAopC5duuibb74Jfp/dIENaWlqGQYYXX3wxWC41NTXbr6FHerSwgxZ20MIWethBCztoYQct7KCFLfSw5ZtvvlHdunUzffE9/IH9VatWBW/YVqpUSZdccokWL16cbj07d+7U9OnT1bZtW3nvdcYZZ2jz5s1Rfz6FGS3soIUdtLAhfHx9/fXX1bhx40yHfA4ePChJWr58uU488cTgdfKOHTvqhx9+CG6XpO+//1733XdfsJ5Ro0ZF/0kVUrSwgxZ20MIOWthCDztoYQct7OGczw5a2EELW+gBFB0MsKPQ2LJli9atWxcMn6ekpAQnMwcPHtS0adMyHWK/8sor5b1Xy5YttWrVqiM+Rnh4vXPnzsF6br311vx9YoXI+vXr9d133wV/P5qr8B0+yJDZhwn4Opbs0cIOWthBC1voYQct7KCFHbSwgxa20MOW3r17y/v0X5Ud3vfbt2/XZZddJu+9KlasqN69e2vNmjWS/ty/kft+wYIFat68ubz3uuuuu3TgwIHoPplCjhZ20MIOWtixatWq4Dj82WefSUrfY8uWLerYsaO896pcubJ69+4dvE4e+Rq7JCUmJmrUqFFBu3Bf5Awt7KCFHbSwgxa20MMOWthBC1s457ODFnbQwhZ6AEUDA+wolDJ7Ez2zIfa77ror+Hns2LFHXGd4eD180hMXF6eYmBh579W/f//8eiqFVl4PMowYMUL33HNP/m1wEUYLO2hhBy1soYcdtLCDFnbQwg5a2EKPghO535YuXSrpzxffw/t/+vTpql+/vrz36tSpU/CGbVbdDhw4oBdffFHly5fXKaecoo0bN+bzsygaaGEHLeyghU1Lly7VF198IenPHuFW48aNU/Xq1eW916WXXhq8YZtVj02bNqlXr14qVqyYbrvttnRXs0T2aGEHLeyghR20sIUedtDCDloUPM757KCFHbSwhR5A0cIAO4qUw4fYQ6GQvPc677zztGXLFkmZH4wOH14vXry4/v73v+vee+8N1nHbbbdF++kUOkc7yPDss88Gyz311FNR3eaiihZ20MIOWthCDztoYQct7KCFHbSwhR7Rc/hV6g9/LeOmm26S914lSpTQDz/8kOkyh1u3bp3i4+NVtWpV7d+/P283uAijhR20sIMWdkW+WRt28cUXy3uv+Ph4LVmyJFjuSN59911579WmTRu+OeUo0cIOWthBCztoYQs97KCFHbQoWJzz2UELO2hhCz2AooMBdhQ5+/fv1/fff6+zzz47GD4fPHhwlstnNrzeq1cvzZs3T5I0fvz4YD0DBw6M1tModI52kOHpp59WsWLF5L1Xq1at0i0bXh65Qws7aGEHLWyhhx20sIMWdtDCDlrYQg870tLSdMEFFygmJkaXXnqpUlNTs30TNtzvs88+0549eySx7/MCLeyghR20sGXLli2qUaOGihcvriFDhkjK+CZvpHCL/fv36/bbb9euXbvS/R5HjxZ20MIOWthBC1voYQct7KCFHZzz2UELO2hhCz2AwiXkgCJEkitRooSrV69e8PfGjRu7e++9N/h7pLS0NPe///3PDRo0yM2aNcsVK1bM/e1vf3O33XabO+uss5xzzl133XVuzJgxznvvnnrqKTdq1KjoPqlCQJLz3jvnnHv//ffdiy++6GbOnOmcc27MmDHulltucc4d2t/OORcKHfq/ntGjR7shQ4a4lJQUV6NGDVe9enVXoUIFN2fOHLdixYpg2dTU1Cg/o8KLFnbQwg5a2EIPO2hhBy3soIUdtLCFHrYkJye7rVu3urS0NFe5cmUXCoWCfZ6VcL8LL7zQxcfHu5SUlGzvg+zRwg5a2EELW/bu3eu2bNniDh486KpUqeKccy4mJibL5b33wWvszzzzjCtbtqxLSUkJGuHo0cIOWthBCztoYQs97KCFHbSwg3M+O2hhBy1soQdQyER1XB7IZ+FPTP33v/9V3bp1FRMTo8GDBys5OTnDJ6Oyu/K69OcnrLZv365BgwYpFAqpWbNmwdeL4E9paWmaNGlSjq/CN3r0aBUvXjxYtmTJksGV7r33atCggZ555pl090fO0MIOWthBC1voYQct7KCFHbSwgxa20MOOAwcO6Oyzz5b3XldffXWu7x9+rSPyqmNcgezo0MIOWthBC1vWr1+vihUrKhQK6Z133pGUu2NueN9H3ictLY0mR4EWdtDCDlrYQQtb6GEHLeyghR2c89lBCztoYQs9gMKFAXYUGZEHi169egVD6ZkNm4eH19u3bx8sd+2112ru3LmZrk+SPv744+CN9nHjxuXfEymkJk+erBYtWuR4kCE2Nlbee1WqVEl9+vTR7NmztWLFCr3//vvq379/sJ4HH3ywIJ5OoUYLO2hhBy1soYcdtLCDFnbQwg5a2EIPW8L7uHHjxvrpp59ydJ/DX+dISEjQwoULNWPGDM2cOVMHDhzQgQMHJPGBgtyghR20sIMWtnTu3Dl40zb8NdjZObzHvn379McffygxMVE7d+5Mdxs9co4WdtDCDlrYQQtb6GEHLeyghR2c89lBCztoYQs9gMKDAXYUOW+88UbwRvj9998vKf2nZ8PD6x06dJD3XqFQSC1bttTy5cuDdUQelMIHnR07dqhKlSry3uuKK67IsNzxbu3atcGAwtixY4PfH2mQoVmzZnr++eczrGvPnj164okngg8XTJo0KSrPoaighR20sIMWttDDDlrYQQs7aGEHLWyhhy3Tp0/XSSedJO+9hg8frqSkpOC2zF6rCDdKTU3V3LlzNWjQIFWqVEklS5YMXkNp37697r77bm3evFnSn99yhyOjhR20sIMWNoT39YgRI1SsWDGdcsopmjNnTrb3C/dIS0vT6tWr9dhjj6lt27aqWLGiatWqpRNPPFFDhgzRZ599FtyHHkdGCztoYQct7KCFLfSwgxZ20MIezvnsoIUdtLCFHkDhwQA7ipRdu3bp2muvVVxcnMqWLauPPvpIUvqvhPrhhx/UsWNHee+DN9W993rqqaeC9Rz+SamUlBS98847wdefX3XVVenWi0MWLVqkV155Jfj7kQYZmjdvnm7ZyAN7amqqVq1apebNmysmJkYPPPBAVLa/KKGFHbSwgxa20MMOWthBCztoYQctbKGHLY8++mjwmsbo0aP122+/Bbdl9sH8gwcPavjw4TrzzDOD+9WrV09nnnmmSpYsqZiYmKDd2rVrJfEifE7Rwg5a2EELOzZs2KCWLVvKe6+OHTtq0aJFOnjwoKSMr29H9nj66aeDq1yG/1StWjW4KEz58uU1cuTIDPdF1mhhBy3soIUdtLCFHnbQwg5a2MI5nx20sIMWttADKBwYYEeREnmV9D59+qS77fDh9eLFi+vqq6/WLbfcEhx4HnvssWD5yIPVxo0bdcUVVwTLvfzyy1F7ToVVbgYZsjoJbNeunbz36ty5s1JSUjjwHyVa2EELO2hhCz3soIUdtLCDFnbQwhZ6FJzI/Tlw4MDgtYobb7xRH330Ubr9GH5t4+DBgxo0aJCqVasWLD9x4kT98ccfkqTly5frqaeeUtOmTeW9V4MGDbR+/fp060BGtLCDFnbQwqbly5cH+7d169Z67bXXgiuGhUW+YTt48GCdcMIJQY/x48dr6tSp2rp1q8aMGaMrr7wyuG3YsGHBOuiRPVrYQQs7aGEHLWyhhx20sIMWBY9zPjtoYQctbKEHULgwwI4iZ/HixWrevLnef//94HeZDa/36tVL8+bNU1paWrpPXf3rX//Sjh07gvsuW7ZM1113XXB7p06dtHjx4gJ4ZoXL0Q4ypKWlKTU1VUuXLtUpp5yi2NhYDRo0KNvHQNZoYQct7KCFLfSwgxZ20MIOWthBC1voUbAiX2R/6KGHVL58+eBb4+6+++50y6ampmrkyJHp3rD13qe7upgkJSUl6bvvvlObNm3kvddll12mnTt3RuX5FGa0sIMWdtDCpl9++SV4o7VixYqqXLmypk2blm6ZlJQUDRs2LN0bthUqVMiwr9euXasRI0akGwRCztHCDlrYQQs7aGELPeyghR20KHic89lBCztoYQs9gMKDAXYUSZs3bw4+BZXV8Pq3334bLL9371498MADwUGoffv26tmzp7p27aozzjgj+H39+vX14osvFtTTKpRGjhypkiVL5miQIfLvDz/8cLDf+/btqy+++ELjx4/XtGnTtHr16mA5rtCXc7SwgxZ20MIWethBCztoYQct7KCFLfQoOJH75qOPPtKtt96qM888U7t375b055VflixZonPOOUfee8XExOj6668P9v2QIUOCdYSX/+yzz1SjRg3Vrl1bP/zwQxSfUeFFCztoYQctbFq3bp3uvPNONWjQQJUrV9bevXsl/bl/p06dqhYtWsh7rxIlSui0006T917VqlXTsmXL0i27d+9eDR48WN57/fWvf9X27du56lgu0MIOWthBCztoYQs97KCFHbQoeJzz2UELO2hhCz2AwoEBdhRpBw8e1DfffKPzzjsv3fD6vHnzgmXCB5iVK1fq/PPPT/dpqsg/Z555pp5//vkM90PW/vjjD1WuXFnee7Vq1SrHgwwvv/xyun1frVo1lShRIvj7KaecomeffTbLdSEjWthBCztoYQs97KCFHbSwgxZ20MIWehS8yH2TmpoavCh/8ODB4PfDhg0L9u24ceMkSc8880zwu3vvvTfdOrds2aImTZrIe6/hw4dH4VkUDbSwgxZ20MKm/fv3a/Pmzdq/f7+k9D1uu+22YN+/+eab+v3334MLw1SrVk3Lly+X9OebwF9++aViY2NVokSJXH1rKa+tH0ILO2hhBy3soIUt9LCDFnbQouBZOOcL9z/eL4JBCztoYQs9APsYYEeRlpSUpG7dusl7r9KlS2c5vB7Wr1+/4M3yyy67TOeff76aNWumRx99VLNnzw6Wy+wr0I/09+PZ0qVL9Ze//EVjxowJfnekQYbx48cH/who2LChrr32Ws2fP1/Lli3Thx9+qFtvvTW4/YEHHojW0ygSaGEHLeyghS30sIMWdtDCDlrYQQtb6GFP+DWJ1NRU7dmzJ/hmuR49egQvzCclJR3xRfjevXvLe69HHnkk6ttflNDCDlrYQQtbIo/RS5YsUbly5eS9V//+/YPfL126NNNhH+nQG75NmjRRTEyMpk+ffsTHWrRokd55553g77yGnh4t7KCFHbSwgxa20MMOWthBCzuiec63ePFi3XnnncGHDhgOTY8WdtDCFnoAtjDAjiJv4cKFqlq1qi699FJ99913we8jTySSk5Ml/fkJqnPPPTf4XfirQ8K48lvu7dy5M/g5p4MM7du317hx49J96k061OPxxx8Plps4cWL+bnwRQws7aGEHLWyhhx20sIMWdtDCDlrYQg+7/vjjD1WqVEnee91zzz3pbktOTs70RfjNmzerYcOG8t7rscceK4jNLpJoYQct7KCFLT/++KNKliyp2NhYvfrqq5L+fA09ISEh02Gf+fPnKy4uTt57ffbZZ1mu++effw4uHtOnT5/g9wz7ZI4WdtDCDlrYQQtb6GEHLeyghR35ec73888/q3///vLeq1ixYlq4cKEkhkOzQgs7aGELPYCCxwA7jgsbN27U/Pnzg79ndcX0Hj16yHuvxo0bBweMzA4c4eW3b9+u5cuX61//+pduvfVW9ezZUz179tTw4cM1a9Ys7d27N7+eUqGU00GGv/zlL5owYUJw++Ff6bJixQqddtpp8t5ryJAh0dn4IoYWdtDCDlrYQg87aGEHLeyghR20sIUe9uzbt0916tRR8eLF9corr0iSDhw4ENx++IvwgwcP1scff6zq1aurUqVKmjFjRrDs4a+l8AH/3KGFHbSwgxa2TJ8+Xd57VahQQT/++KOk9Pvx8GGfhQsX6u2331bp0qXVtGlTbd68OdP1/vzzz7r11ltVoUKFoOWtt94a3M6wT0a0sIMWdtDCDlrYQg87aGEHLezIy3O+SOEW4Svte+9Vvnx5rnB8BLSwgxa20AMoeAyw47iT1YnDwYMHdfbZZ8t7r/PPP1+pqalHfKPjm2++0RVXXKG6desGB5vIP6FQSL179+ZqcVnI6SBDZK/In9u3by/vvTp06JBtKxwZLeyghR20sIUedtDCDlrYQQs7aGELPQpeamqqdu7cGbxuMWjQoEyXS05O1ujRo4NG1atXl/eHrpKflJQkKX2badOmaf369ZJ4oT2naGEHLeyghS1paWmaM2eOvD90VbCs3oCNHPapWLGi6tWrJ++9LrvsMu3fvz/D8uE3bMuXLy/vvWrXrq1QKCTvvW677bZ0j49DaGEHLeyghR20sIUedtDCDlrYkV/nfIe3aNiwoVq3bs1w6BHQwg5a2EIPwAYG2IH/78033wwONmPGjMlyuZSUFL3++usqUaJEcFISHx+vypUrq0uXLmrZsqVatWol771iYmJUunRpPfjgg1F8JvZFHrhzOsgQ6bvvvlPNmjXlvdfQoUOjss1FFS3soIUdtLCFHnbQwg5a2EELO2hhCz1sCO/fRx55RN57tW3bNvhq7MMlJyfr6aefDlqdfPLJWrZsWXBb2Oeff64aNWqoRo0aWrNmTb4/h6KCFnbQwg5a2JOSkhIM8fTv3z/LbxdNSEjQX/7yl6BHw4YNM/3QwOFv2DZp0kSff/65/v3vfzPskw1a2EELO2hhBy1soYcdtLCDFjbk1TnfwYMHg+UyazFt2jQtW7ZMF1xwQTAcumTJEkl8M1cYLeyghS30AGxggB3HvfAB6Z577lGxYsVUunRpTZ8+PdNld+7cqSeeeCI4IHnvVadOHb311lvB108lJiZq//79Gj9+vK644orgpGXAgAHRekqFxgsvvJDrQYbk5OTgHw/ee7322mvR3OQiixZ20MIOWthCDztoYQct7KCFHbSwhR42TJs2TSeccIK89xo1alS6K4lFdkhOTtbw4cNVvXp1ffzxx5LSv2E7ZcoUNWnSRMWKFZP3PviwPm/M5hwt7KCFHbSwIS0tTQcPHtTDDz+sUCik008/Xd99912WyyckJKhp06YqVaqUpk6dKin7N2y/+uqrYJlx48YFr5vffffd+fvkChla2EELO2hhBy1soYcdtLCDFvYcyzlf5GBnZi2mTp0atFi5cqW6dOki773q1q2rFStWZHiM4x0t7KCFLfQAChYD7ICkNWvWqGrVqvLeq0uXLlkuF/mVINWqVdPVV1+trVu3Zrn82rVr9cQTTwQnLUOGDMmPzS900tLStHPnzmC/dO7cOUeDDJL0yiuvBA2uu+66aG1ykUULO2hhBy1soYcdtLCDFnbQwg5a2EIPe4YPHx7s19GjR+v3338PboscAD148KBWrFiR4euyp0yZoqZNmyoUCqlq1arq3bu3Nm7cmO7+fOVpztDCDlrYQQs7NmzYoBYtWsh7r44dO2rRokXBvjv8+L1y5UrNmjVLBw4cSPf78Bu25cqVS/eGbeTV8g8ePKgxY8YE/1YYO3Zs/j+5QoYWdtDCDlrYQQtb6GEHLeyghS3Hes6Xkxbh5dq2bSvvvS6//HL98ccf+fvECiFa2EELW+gBFBwG2HFcC795/uGHH6pChQqKiYkJrs5z+Bvr7733XnCwqlWrlu68805t375dUsY3QCJPevbt26fnnnsuOGkZN25cvj+vwmLx4sXq2rWrXnvttRwNMrz22mtBgwsuuECLFy+WxFeq5AVa2EELO2hhCz3soIUdtLCDFnbQwhZ6FLzIfTdo0KBg//br109ffPFFjtYxZcoUnX766cFVjb33qlSpkk488USdeeaZuuuuu7Rp0yZJDIgeCS3soIUdtLBp+fLlqlGjhrz3atOmjd555x399ttvkrK/KtjhVxs77bTT0l1tLNLWrVvVs2dPxcbGqkePHtq9e3e+PJ/CjBZ20MIOWthBC1voYQct7KBFwcuLc76ff/5Z/fr1C4ZCj9QiJSVFTz31lLz3qlevnn766SdJXN1YooUltLCFHkDBY4AdkHTFFVfIe6/4+PjgDfJI//vf/1SxYkV571W5cmXddttt2rlzp6ScvZH+xx9/6M4771QoFFL79u21bNmyPH8OhdWuXbtyPcjQqVMnffHFF1l+SjpS+DYO9tmjhR20sIMWttDDDlrYQQs7aGEHLWyhR8GLHNi8//77VaxYMYVCIVWqVEk33HCDvv32W+3bty9YJnJffvbZZ2ratGkwGFq3bl21bdtW//znP3XWWWfpxBNPlPdejRs31tq1ayXxgYMjoYUdtLCDFjb98ssvOuWUU+S9V/Xq1XX++efriy++OOK3kYbfsI2Pj5f3Xs2bN9f06dOVlJSU5X0efvhhee8VExOj77//Pj+eSqFHCztoYQct7KCFLfSwgxZ20KLg5facL9LhLRo3bqz58+dnunz4XHH+/PkqXry4vPd6+OGH8+dJFVK0sIMWttADKFgMsOO4t2PHDjVv3lzee1155ZVKSkoK3shITU1VcnKyBg8erJIlS8p7r4suukjbtm0Lbs+pmTNn6qSTTpL3Xq+++mp+PJVC7UjDBq+++mq6QYbPPvssw9esSNK3336ryZMna9iwYXr22Wc1Z84crV+/PridN6hyhhZ20MIOWthCDztoYQct7KCFHbSwhR4FK/JF+DfffFOXXHJJsM9HjhwZ7O/DB0ObNGkSfKNc165dtWrVquBrTf/44w/NmjVLbdq0kfdezZo10+bNm6P7xAohWthBCztoYdPatWt13XXXqXbt2vLeq0aNGnrllVcyPd4uXbpU/fr1U9myZYN2N910U3D74Ve/D69j7NixwfIfffRR/j6hQowWdtDCDlrYQQtb6GEHLeygRcHL6TlfpPBV8MNXNPbe66STTtLGjRslKdMrG0vSl19+GSw/bNiw/HlChRgt7KCFLfQACg4D7IAOnYh47zV06NAMtyUmJqpJkyby3uuEE07QunXrJB3dG+N33XWXvPeqX78+b5jkUE4GGb788ksNHDhQ3nvFxcUFy8fFxencc8/VuHHjgmX5quCjRws7aGEHLWyhhx20sIMWdtDCDlrYQo/oiXwdY+PGjfrvf/+r4cOHKzExUVL6fTdlyhQ1bdpUoVBIZcqUUf/+/dPdHjlEOnPmTNWrV0/FixfX008/neF2ZEQLO2hhBy1s2rFjh2bMmKHbbrtNd9xxR3AFsch9uHTp0nRv2NaoUSM4Vj/++OPBcoe/nr5hwwb99a9/DY7pX331VXSeVCFFCztoYQct7KCFLfSwgxZ20KLgZXfOF3l7eCi0fPny8t6rQYMGql+/vrz3atSokX777TdJf54nhjtu3bpVN998c3Bl41GjRqW7HYfQwg5a2EIPoGAwwA78f+vXrw8+BRV5YJgyZUpwshH+5FNmb4gf6WASPojNnj1b5cuX14knnqjFixfn5eYXSTkZZHjyySfVokWLdMtdcskluvjii1W1atVMP7XGVflyjxZ20MIOWthCDztoYQct7KCFHbSwhR7Rl9VrF5H7fcqUKTr99NODF9H79esXvA6S2esh27ZtU+vWreW9V48ePfJnw4sgWthBCztoYVv4ymGRVxA7fMinadOmmjJlih566KHgGP3YY49lWNe2bdv0/PPPB0NBtWvXDr71FNmjhR20sIMWdtDCFnrYQQs7aFFwsjrni2xx+FBokyZN9NVXX2nevHlq3rx5MBy6YcOGdOvYunWrXnzxRZ100kny3qtKlSpau3Ztvj6fwowWdtDCFnoA0ccAO5CN8ePHBycln376aabLhN8c3759e/DJq8zs2LFDdevW1WWXXZYv21qUvPjii4qJiTniIMOjjz6qmjVrBn2GDBki6c9/OMyaNUt33HHHEU8qkT1a2EELO2hhCz3soIUdtLCDFnbQwhZ62BE58P/ZZ5+padOmKlasmLz36tix4xEHQ8Mv6Pfr10/ee5199tnavXt3dDa8CKKFHbSwgxYFL/LN28geS5cuVb9+/dIN+Xz11Vc6ePCgDhw4oEceeSQ4Rg8dOlSLFi1SamqqFi5cqPvuu0916tQJ3rB97bXXMqwfGdHCDlrYQQs7aGELPeyghR20sCmyS2ZDoVOnTg1eC5w/f34wHNqgQQO99tprmj17tmbOnKm+ffsGQ6EVK1bUk08+KYkWuUELO2hhCz2A/MUAO5CNsWPHBp+W3bRpk6TMP3G1YsUKnXrqqbrjjju0c+fODLenpqZqz549evPNN9P9Lqv1Hc927twZnCCef/75mQ4yvPHGG2rYsGFwsuj9oa/xWrVqVYZ1jRo1KvgHwOeffx7Np1Lo0cIOWthBC1voYQct7KCFHbSwgxa20MOOw7+B7rTTTgv2d5UqVfTNN99IynwwNGzbtm0688wz5b3XhRdemO/bXFTRwg5a2EELu8Jv2B4+5BN5PN+3b59GjhwZNDvxxBPVqFEjlSxZUvHx8cGxe9CgQVq3bl0BPpvCjRZ20MIOWthBC1voYQct7KCFHUuXLlX//v2P2EKSFi5cqJYtW8p7r5IlS8p7r1AopNjYWHnvValSJd11111avXp1AT2Two8WdtDCFnoA+YMBdiAbEydOlPdeZcqU0ZIlS7Jc7ssvvwxOWrIaYo8UfmMl/EbMunXrNGHChLzb8EJu4cKFuuSSSzR58uTgYB8e+N+zZ4969uwZ7O9//etfOu+88+S9V9WqVbV8+fJ0y2/atEndu3dXTEyMhg8fXjBPqBCjhR20sIMWttDDDlrYQQs7aGEHLWyhR8HLajC0WrVqKlOmjKpXr65ff/01y/uHX9f45ZdfgquN9e7dmyvGHAVa2EELO2hhV0JCgq677jpVrlw53Ru2kV+nHWn8+PEqU6aMSpQoke6DaZUrV9aDDz6olStXRvkZFB20sIMWdtDCDlrYQg87aGEHLezYsmWLevXqpbJly+aoxR9//KFLLrlEJ5xwQroW1apV01NPPcVQ6DGghR20sIUeQP5hgB3IxsyZMxUbG6vY2FhNnTr1iMu++eabwUHn9ttvz3aIPfxGzKZNm9SvXz+FQiFdc801ebbthd3evXszPdi/9957wX6+7777JEnLly9Xhw4dggP+4QMN9913X/CPiAMHDvBmVS7Rwg5a2EELW+hhBy3soIUdtLCDFrbQo+BkNhgaCoVUrlw59e/fX3/5y1/UqlWrLO8fHgw9ePCgLrjgguDDBd99912+b3tRQws7aGEHLWzbvHmzateuLe+9WrRoccQ3bMPmzJmjESNG6JxzzlHXrl119dVX63//+5/27t0bpa0ummhhBy3soIUdtLCFHnbQwg5a2DJo0CB579WkSRNNmzYtyxaR53tfffWVRo0apbvvvlsjR47MMBAaeW6JnKOFHbSwhR5A/mCAHciB8Bsd3bt317Zt2zLcHnlACV+x3Xuv2267TTt27Mh0neH7bNy4Uf369VPNmjWD+y1atChfnkdhF95nd955Z/CPgl9++SW4LSEhQR07dsww0CBJb731lrz3at26dYFse1FDCztoYQctbKGHHbSwgxZ20MIOWthCj+jI6qrG5cqV06BBg7Rv3z5deOGFKl68uBYsWJDh/uEX4JOTk9WvXz957xUXF6frr79eW7ZsyfFjgxaW0MIOWhQOCxcuVLt27fTf//73iEM+We3T8O/DHzg7fDla5Bwt7KCFHbSwgxa20MMOWthBi4IXuY8effRRTZkyJdsPEhzpwhXZXdSCJlmjhR20sIUeQP5igB04gvBBYdy4capQoYLq1KmjTz/9NNODRfh3KSkpuuqqq4Jh9AceeCDDgevw4fUaNWoEb8R88skn+fysCq/wfjv33HPlvVeHDh0yLHP4QMOqVaskSddee6289+rRo0c0N7nIooUdtLCDFrbQww5a2EELO2hhBy1soUd0/fe//003GHrXXXcFg58DBw5UKBTS8OHDtX///gz3TU5O1s033xx8ZWr9+vU1ffr0DMulpKQoJSUly9dFcAgt7KCFHbSwLzExMds3bCOlpqYG+/bAgQPpblu9erV+/vlnLV++XJs2bcpwPxwZLeyghR20sIMWttDDDlrYQYuCF7n/c7OfIs/dkpOTg58PHDigmTNnatKkSXr99dc1adIk7dq1S0lJSbl+jOMNLeyghS30APIPA+xADmzZskXnnXeevPdq165duiukRx5s1q1bp+HDh6tixYry3qtOnToaO3ZscICJXP7w4fX4+HiG13Po+uuvl/de11xzjaT0B3kp/UBD1apV9eqrr6pZs2by3mv48OGSONjnFVrYQQs7aGELPeyghR20sIMWdtDCFnrkvy+//FInnHCCSpQoEQyGRu6zSZMmBR/MHzFihH744QdJ0qpVqzRz5ky1b98+uL1q1ar6z3/+k279Cxcu1Pvvv6/u3bvr/PPPV7du3XTrrbdq2rRp+uOPPyT9eZXk4x0t7KCFHbQo2iL37ZtvvqmbbrpJJUqUUExMjOLj41W6dGn1799fH374Yab3Qd6hhR20sIMWdtDCFnrYQQs7aGFH5GDpM888o0svvTQ4Jwz/ad26tfr37x98sIAW+YMWdtDCFnoAWWOAHcihVatWqV69esFV4ObPn5/uCj/r16/X8OHDVaFCBXnvdcopp+j111/Xzp07g2VyM7zOlX6ydtddd8l7r4YNG+q3337LdJmEhAR16NBB3nuVLl1a3nuddNJJGT7pfLSfksMhtLCDFnbQwhZ62EELO2hhBy3soIUt9Mh/q1atCj58f/fddwf7JnJ/3XvvvcGL55UrV1abNm1UqVIlVatWLdjvTZo0SfdGrCS9/fbbaty4scqXL5/hRfhatWrp0ksv1fr16yXxIrxEC0toYQctiq7IhjfccIOqV6+erkF8fLy894qJiVHZsmU1cuTIYHl65C1a2EELO2hhBy1soYcdtLCDFnZEtrj66qtVsmTJdOeKNWrUUCgUCn7XvHlzrV27VhIt8hot7KCFLfQAjowBdiAXEhISVKtWLXnv1aJFC73wwgvavHmzdu/enWF4/dVXX9WuXbuC+4bfaMnt8Prs2bP10ksvRecJGhfeL99//73q1aun8uXL65133snygJ2QkKC//OUvwUH/q6++kvTnAT78j4R9+/bp559/lsRAQ07Rwg5a2EELW+hhBy3soIUdtLCDFrbQI7oSEhJ0//33B/skvN8i99F9992nKlWqZBjyrF69ugYMGKC5c+emW+fTTz+dbrlGjRrpwgsvVN++fXXKKaeoatWq8t7r5JNP1po1a9I97vGMFnbQwg5aFD2R+/KSSy4JBnq897rttts0ZswYff3113r44Yd18cUXB53uv//+4H4cx/MGLeyghR20sIMWttDDDlrYQQs7Ilt069ZN3nsVK1ZM5cqV04MPPqi5c+dq06ZN+v777/Xwww/r9NNPl/dedevW1bp16yTRIq/Qwg5a2EIPIHsMsAO5tGLFCrVt21bee5UsWVINGjTQNddcky/D6999952uvPJKee/Vt2/f6DzBQmDnzp3Bfjn77LO1ZMmSLJddunSpunTpopdeeindp9oiBxlOPvlkee81f/78fN/2ooYWdtDCDlrYQg87aGEHLeyghR20sIUe0Xf4gGbk32fOnKl///vfuuWWW3TnnXfqiSee0Jo1a5SYmJjuPs8++2zwpmyzZs105513ateuXUGLDRs2aNKkSWrdunUwOLpx40ZJfAtdJFrYQQs7aFH4Re7Dq6++Wt57xcXF6eyzz9Z7772XYflff/1Vjz32WNDshRdeiObmFmm0sIMWdtDCDlrYQg87aGEHLWzq06dP0KJDhw766KOPMiyTlJSk+fPnB7M+559/vrZt21YAW1u00cIOWthCDyBrDLADR2Hjxo2655571KJFi3SfqD311FPzbHh93rx5wRv24T933313dJ5gIbB69WrVq1dP3nt16NBBc+fODd6YOvxNpV27dikpKSnDOvbu3Rs09N7rxBNP1I4dO3hTKpdoYQct7KCFLfSwgxZ20MIOWthBC1voUfCyu7JL5O3/+c9/gv3ctm1bvfLKK0pOTpZ0aNA0vM/T0tL0008/qVWrVvLe67rrrtPu3bszrDuyEb1oYQkt7KBF4fT0008rLi5OxYoVU8eOHYNvT5EONYv8cMK+ffs0bNgwee/VtGlT/fjjjxnWx/4/erSwgxZ20MIOWthCDztoYQct7HjzzTdVrVo1xcTEqF27dhlaHG7WrFlq2LCh4uPjNW7cuAy3H96Cb+XKOVrYQQtb6AEcGQPswFHat2+ffv31V911113q3LmzGjRooPHjx+fZ8HrPnj2DN1bi4+Plvddf//rXdOs/3v3yyy864YQT5L1XkyZN9OCDD2rFihU5vv+YMWPSDTJMmDAhH7e2aKOFHbSwgxa20MMOWthBCztoYQctbKGHLZEDnpHWrVunDh06yHuvk08+WS+99FLwonlmL8CnpaXpP//5j6pXr666detmuDJ+Zi+4R15dH7SwhBZ20MK+pKQkXXLJJfLeq0KFCvr444+D27Ia2Fm6dKnOO+88ee/10ksvpbst3GL9+vVKSEiQxNdq5xQt7KCFHbSwgxa20MMOWthBC1tuuumm4PW/999/P/h9Vi12796toUOHynuv7t27a//+/cFt4RZr167Vyy+/nOH3ODJa2EELW+gBHBkD7EAeSExM1ObNm7V3797gd8cyvH7VVVcFB6/w/bz3evvtt6PzhAqRFStWqF27doqNjZX3XhUrVtSzzz4bnNxl51//+pe895o0aVLwOz7hfHRoYQct7KCFLfSwgxZ20MIOWthBC1voYd/8+fNVsWJFee91/fXXB4OcR9rPv/32m7p06SLvfaZfsS1JgwcP1o033pgv21xU0cIOWthBCzumTZsWvM798MMPB7/P7rg8ePBgee81a9YsSek/MLBmzRpde+21qlKlir788sv82fAiiBZ20MIOWthBC1voYQct7KCFHStXrlSxYsXkvVf//v2D32fXYu7cuYqLi9Nnn30m6dCHEsIXklyzZo1uueUWee916aWX5tu2FzW0sIMWttADyB4D7MAxyOqAklfD64MGDdI///lPhUIhVa9eXT/99FP+PZlCbNOmTXr44YfVunVree/Vr18/7dix44j3ifz02dKlS4OfGWQ4NrSwgxZ20MIWethBCztoYQct7KCFLfSw7aGHHpL3XjVr1tTq1asl5exKYZMnT9a9994b/P2LL74Iuj700EOqUqWKvPe6/fbb82OziyRa2EELO2hhx4QJE+S9V9WqVTVv3jxJR24Rvm379u1atGiRJGnPnj164oknNHbsWCUmJuqf//xn8Np78+bNlZSUxLE+B2hhBy3soIUdtLCFHnbQwg5a2LF48WKFQiF57zV27FhJOb96/ZYtWyQduljlyJEjdf7552vOnDkaMGCAqlWrJu+9TjjhhGA5HBkt7KCFLfQAsscAO5DHwicSxzq83q9fP3333Xc6+eST+dRUDiQnJ2v79u2aNGmSfvvtN0nZDyYc/o8CTgLzBi3soIUdtLCFHnbQwg5a2EELO2hhCz3sCl9BrGbNmtqyZctR7efp06erRo0aqlWrlgYMGKCqVasqNjZWJ598sl555ZV82OqiiRZ20MIOWtgxduxYee914oknauvWrbm+f2pqqn766Sedcsop8t6rRYsWqlq1qrz3OvPMM/XLL7/kw1YXTbSwgxZ20MIOWthCDztoYQct7Fi8eLHi4uJUpkwZffvtt5LSX9QiJ37//Xf16dNH3nuVLl06+AavFi1aaMWKFZJ4TTEnaGEHLWyhB5C9kAOQZyQ5773bvHmzGz58uPvwww/dli1bXOnSpd2ECRPcxRdfnGFZ55z77rvv3DPPPOPeffdd55xzN954o3vggQdciRIlXFJSkguFQu7cc891zjmXmpoa/SdWCBQrVsxVrFjRXX755a5KlSouLS3Nee9dSkpKuuUi918olP7/AsM9cGxoYQct7KCFLfSwgxZ20MIOWthBC1voYY8k55xzcXFxzjnnatSo4apVq+a898FtOZGamuoaN27sGjRo4DZs2OCef/559/vvv7v69eu7YcOGuT59+qR7PGRECztoYQct7ClVqpRzzrlt27a5LVu25Pr+3nvXrFkzd+WVVzrnnPvpp5/c77//7lq2bOkmTZrkGjZsyGvnOUQLO2hhBy3soIUt9LCDFnbQwo74+HiXkpLi9u7d62bPnu2ccy4mJibH95fkKleu7K6++mpXrVo1t2/fPrdjxw7XuHFjN2PGDNegQQOXmprKa4o5QAs7aGELPYDsMcAO5CHvvduyZYu755573KeffnpUw+t9+/Z1//rXv1zVqlXdG2+84TZu3OhKlizpLrjgAudc+gMZb4xkLRQKuZSUFBcbG+sSExPdU0895Zw7tP844YsuWthBCztoYQs97KCFHbSwgxZ20MIWehS88Osabdq0cc4desP1888/T3dbdlJTU11MTIyrXr26a9asmStevLhLTU11sbGxrl+/fu7vf/+7c84FH1hA5mhhBy3soIU9F1xwgWvatKlLSUlxX3zxhUtOTs7xfcOvp2/YsMFt3brVxcfHB/u8VatWrnbt2sFyR1oHDqGFHbSwgxZ2FHQLpEcPO2hhBy1skOTq1KnjrrvuOhcKhdx3333nNm3alKv7h1t88MEH6Tr+8ccfwYUxaJE9WthBC1voAeRQ3l7QHcDmzZvVqFEjee9VoUIFffLJJ+luj/zajnnz5umqq66S917ee91yyy1au3ZtsNyFF16oUCik7t27Kzk5Od3Xn0eu5/3339dDDz2Uz8+scDl48KAkad++fWrZsqW89xowYEABb9XxiRZ20MIOWthCDztoYQct7KCFHbSwhR52rFq1SmeddZa89xo0aJD27NmTo/tFvsbx8MMPq3LlyvLeq2TJkvLeq1atWvr1118lZf61qpH3xyG0sIMWdtDCjj179qh3797y3qtVq1ZauHBhju4Xfh183bp16tu3r6pUqSLvvWrWrBm8rj5kyJBg+XCPtLQ07dq1S1988UWGdR3vaGEHLeyghR3RboEjo4cdtLCDFra89dZbKlasmLz3euaZZ5SUlBTcltWxNasWjRo1Cl5nPPHEE7V69WpJf74OKWU81+Pc70+0sIMWttADODIG2IF8sGjRItWsWVP/+c9/0v0+u+H18JsekjRt2rTgtlGjRmW5nk8//VRNmjSR91433nhjPj2jwmnfvn2qX79+sB+99zk+gTySzP4BkZKSkuEkkhcb/0QLO2hhBy1soYcdtLCDFnbQwg5a2EIPO5555pmgwfPPP6/du3cHt2X2AnlWg6ENGjTQqFGj1KFDh+BN3DVr1khK/8Zt+P4zZszQAw88kD9PqpCihR20sIMWdqxZs0Ynn3yyvPfq2LGj5s2bp8TEREmZH1fDv1u/fn26N2ybN2+un3/+WePHjw/a3n///cH9wj3mz58v772uuuqqKDy7woUWdtDCDlrYEa0WyBl62EELO2hR8CL383333Rfsv5EjR2r58uXZ3i+zFqtWrdKmTZt09tlny3uvOnXqaOXKlZk+5scffxzcdrx/2IAWdtDCFnoAOcMAO5BPDr+aT26G1yXpySefVFxcnOrWraulS5cG64hczyeffKImTZqoRIkS8t7roosuysdnVPisXr062McnnniiJk2adMzrjDyoJyYmauLEibr33nt10UUX6dJLL9VTTz2lL7/8MliGgYZDaGEHLeyghS30sIMWdtDCDlrYQQtb6FHwIoc8Bw8eHPS4++67NXv27GzvEzkYWr9+fU2YMEGStGzZMrVr1y5oGx4Qjbz/N998o1AoJO+9nnvuuXx4doULLeyghR20sCkhIUE1atSQ915NmjTRQw89pPnz52dY7khv2K5YsULSoQ+zRX5A4b777gvuv23bNrVu3Vree8XFxenrr7+OzhMsRGhhBy3soIUd+dmC4dDco4cdtLCDFgUv8vxt0KBBwf676KKL9MADD6T78LKUsxZpaWlasmRJ8MHlOnXq6MCBA+mubjx58mQ1bdpU5cqVy7T58YgWdtDCFnoA2WOAHYiC3A6vJyUlqVWrVvLe66yzzgq+PiSz4fXY2Fh573XttdcGtx/vb6BH+vnnn1WvXj298847we+Odv+EBxlSU1M1ZswY9ejRQ977oEH4T+XKlXXvvfce8+MVNbSwgxZ20MIWethBCztoYQct7KCFLfQoeJFD//fee2+wn2rWrKm+ffsGVyCTjnxV4/BgaNjSpUuDAdFnn3023WPNnTs3+NrVxo0ba8SIETpw4EB+Ps1CgRZ20MIOWti0YsUKdezYUaVLl5b3XmXLltVvv/0W3J6TN2zDvZKTk/XYY4/Je6/p06dLkvbv36+HH35YZcuWVUxMjC6//HJt2LAhys+ycKCFHbSwgxZ25HcL5A497KCFHbQoeJHnfE8//bROO+204LxvyZIlwW05aRG5roULF6pDhw766quv0j3eBx98oHPOOUdxcXHBnE5m3+x1PKKFHbSwhR7AkTHADkTRd999d8Th9fAB46efflKtWrVUsmRJPf/885IOnbCEHT68fs011wQHMr72I6PIT6wd7WBB5InjVVddFfxDIfwmVvv27XXFFVeoVatWwdWVBg0alCfbX5TQwg5a2EELW+hhBy3soIUdtLCDFrbQo+BFvhbx+uuvq3v37ipWrJhuvfXW4Pc5HQyNXG7p0qV6/fXX0z1W5GBokyZN9Nxzz2nXrl358bQKJVrYQQs7aGHTli1bNG7cOF188cX673//G/w+N0M+YcnJydq8eXPw98ir5JcoUULz5s2LwjMqvGhhBy3soIUd+dUiq/dTMxvuOd4/tByJHnbQwg5aFLzIffXjjz9q7NixwbebpKWlBftnw4YNuuWWW3LUQjp0ZfxI4aHQmJgYee911VVXafv27fn1tAolWthBC1voAWSNAXYgSubPn6+uXbtmObweaeTIkcFyM2fOTHcbw+u5l1dXpt+6davOPvvsoI33h76+67vvvgv+obB27Vo999xzwUDDv//972Pe/qKEFnbQwg5a2EIPO2hhBy3soIUdtLCFHjZEvoC+c+dO/fzzz8HfI7++9NFHHw0GQ+vXr5/lYGhmDh8MHT16dDAYery/WRuJFnbQwg5a2BXe/6mpqcF+2rJli/7v//4vx2/YHu7mm28OjuUvvPCCJBrkBC3soIUdtLAjP1pEOnz5t956S2PGjAn+TqP06GEHLeygRcHKbH9Gtvj99981cOBAVa1aNcctIn9/+FDolVdeqR07duT9EykCaGEHLWyhB5A5BtiBKNmwYUPwBsZtt92W6fB6amqqkpKSdOGFFyoUCql79+7pTjQ+/vhjnXbaacHweq9evRhez2fhg/3q1avVqlUree9VsmRJnXbaaZo4cWKm99m9e7f69u0r77169uyZ7h8cOHq0sIMWdtDCFnrYQQs7aGEHLeyghS30yFuZ7YfI1yteeuklnXTSSbkaDA3/fs6cOcHrKqeddppGjx4dXH2f/Z8RLeyghR20sC8tLU0HDx7U888/r9q1a8t7rxYtWmjlypWScjbk8/LLLweDod27dw/ui9yhhR20sIMWduRFi/B6Iu3evVsvv/yyevbsGXS68cYb83z7ixp62EELO2hhR3hfT5w4UQ0aNJD3Xs2aNct2KDRy3zMUmjdoYQctbKEHjncMsANRtHjxYg0cOFBr1qzJcpmff/5ZpUqVkvded955Z/B7htejL/wp6T/++EOtW7eW916lS5fWeeedp2nTpgXLZfYm1PPPPy/vveLi4o7YGzlDCztoYQctbKGHHbSwgxZ20MIOWthCj+hav369/vrXv8p7r+rVq+vtt98ObstuMHT27NnBYOgZZ5yh0aNHa+/evZJ4TeRo0MIOWthBCzv27NkTHJdPOukkLV++XFLOhnyWLVumrl27KhQKqXjx4ho3blymy2V2bOeDBhnRwg5a2EELO46lxeHLLF26VO+++66aNWum4sWLB0OhcXFx8t5r5MiR+fIcihJ62EELO2hhy7nnnivvvapUqZLtBwmONBR6xRVXMBR6jGhhBy1soQeOVwywA1EW+ZW0kcJvZjz++OPy3uuEE05QQkKCJGny5MnHNLye26+fwp/77ODBg/rLX/4i771KlSqlrl27as6cOcFyh79omJycLEl69913FR8fr0qVKmn9+vXR2/AiiBZ20MIOWthCDztoYQct7KCFHbSwhR7R98EHHwRvsD7//PPB73MzGFq7dm0NHjxY8+bNU1pamvbv3y+JAdHcooUdtLCDFnZ8/PHHwTDOhx9+KCn7fRju8fzzzwdv2P7jH/8Ibo88nofXlZKSoq+//lqvvvpqhvXgEFrYQQs7aGHH0bQ4XEJCgp577jnVq1dPFSpUkPdeNWrUUJs2bXTaaafJ+0Pf0PXtt9/mwzMoWuhhBy3soIUdmzZtUuXKleW913333Scp50OhZ599tkKhEFc0ziO0sIMWttADxzMG2AFjunXrJu+9Tj31VB08eFCffPLJUQ2vH/4m+9atW/XZZ5/l67YXNampqbrpppvkvVeJEiXUsWNHzZ49O7j9SFe8uOWWW+S9V9myZbVu3bpobG6RRgs7aGEHLWyhhx20sIMWdtDCDlrYQo/o+uijj+S914knnqgFCxZIyn4wdM6cOcFgaPhN2VKlSqly5cpq1qyZbr31Vm3cuFESA6K5QQs7aGEHLez45ZdfVLt2bZUqVUqvvPJKju+3YMEClSxZUt57tWvXTr/++qukzPf9/v37NWjQILVo0ULee9188815tv1FCS3soIUdtLAjty3C53d79uzRhg0b9M9//lOtWrUKjuPly5dXu3bt9MUXX2j27Nm6+uqrFQqF1KdPHyUlJfEBgmzQww5a2EELO/bt26eLLroo+BBZ+AIVhzt8KLRdu3bBUGiTJk2C87ucyOwDaqCFJbSwhR44njHADhjy/fffq2LFioqJidFrr72mWbNmqXHjxrkaXj/8xOSnn37S66+/rvr162e4qgOO7IMPPlCDBg2Cr/X6/PPPg9uONMiwYMECNW/eXN57devWTQcOHODrHY8RLeyghR20sIUedtDCDlrYQQs7aGELPaLr+++/V506deS915NPPpnlcpFXNQ6/HhIKhVSlShVdeeWV6tevnzp16qSaNWvKe6/GjRtr7dq16e6LI6OFHbSwgxZ2/PHHH7r44ovlvVenTp2CIc8j2bhxY3BhmMqVK2vUqFE6cOCApPTH9G3btmnGjBnBIFBMTEzwRu9zzz2Xb8+psKKFHbSwgxZ25KTF4cfe77//XjfccIOaNGki731wLL/55pv1zjvvKCkpSZI0ceLEYGD0jTfeiMrzKezoYQct7KCFLWPGjAn2WWYfKIg8Jv/nP//ROeecExyHw38eeugh7d27N9vHCq9r1qxZWrhwoSSGQyPRwg5a2EIPHK8YYAcMef3114NPz9544406/fTTg68TzOmV16VDB5rly5drxIgRqlevXnBVh7i4OHnvdccdd0Tj6RR6N998c3CQf/3114PfZzaYEPm7hx56KLjfqFGjorKtRR0t7KCFHbSwhR520MIOWthBCztoYQs9ou/RRx894ovwmQ2G1q9fX71799aaNWuC5Xbt2qW5c+eqTZs28t6refPm2rJlS7SeRpFACztoYQct7Fi5cmXwIYALL7ww3f6NFG7yzjvv6KSTTpL3Xq1bt9bWrVszLPvDDz+ob9++wXqrV6+u2rVry3uvFi1aaPv27fn5lAotWthBCztoYcfhLVavXi0p4/uob7/9tm655ZbgPVfvvSpUqKDbbrtNH374YbplV6xYoWbNmsl7r549e0brqRQJ9LCDFnbQouBFvqZ39913Bx8MePHFFzNd5vCh0GuvvTbdueKwYcOUmJiY5eOFj/8zZswI7rN48eJ8eGaFDy3soIUt9MDxjgF2wIDU1FTt2bNH5513XjBofsoppwQD5zkdXt+zZ49Wr16tPn366IwzzggONDVr1lTt2rWDr7Tt169ftJ5aofXtt98Gb0Tdeuutwe+zG2R47733gv3etWtX7dmzJ8v7IWdoYQct7KCFLfSwgxZ20MIOWthBC1voEV2RVxS76667gn346quvZlgmcjD0tNNO06hRo4KBncNfE5k6dapq1aqluLg4jRkzRhItskMLO2hhBy1sSkhIUI0aNeS910UXXRRcrTgs3CQpKUlnn322vD90YZj//e9/6Zbbtm2b3nzzTZUvX17ee5UtW1ZXXnmlJk+erObNm6tChQp68cUXlZKSwlXys0ALO2hhBy3sOLzFwYMHJUk7duzQ22+/rSuvvFLe+2DAp27durrjjju0ePHi4ErGkoKGX3zxhapXr664uDiNHTtWEt+ikhv0sIMWdtCi4EWeqw0aNCgYDv3tt9/S7bvDh0KvvPJK7dq1S5L09NNPZzscGj7fmzZtWrCs917XX389Vzb+/2hhBy1soQeOZwywA0Zs27ZNVatWVWxsrEKhUPBGSFbD64cfOGbMmKE+ffqoXr16wYHMe68BAwZowoQJuueee1SmTBk1bdpUy5cvl8QbJkcyefJkxcTEKC4uThMmTJCU/SDDf//73+BDAieffLJeeeUVThbzAC3soIUdtLCFHnbQwg5a2EELO2hhCz2iL/J1jAEDBsh7r+HDh0v6843Wr7/+Ong946STTtKIESOCF+Az67N9+/bgA/xXXXVVttuQmpqq9evX58XTKdRoYQct7KCFTUuXLtUJJ5yg6dOnZ7lM+BtVSpYsqWHDhik5OTm47f3331evXr2CN2QvvPDC4Lh/xx13yHuvDh06aO3atfn+XAo7WthBCztoYceSJUt04okn6n//+5+2b9+u9957T6effroqVqwY7N9KlSoFP3/wwQeSFPQIH8eTk5PVoUOH4INqO3fuLLDnVJjRww5a2EGLgnf4cOiMGTPS3X74UOjf/vY37dixI90yzzzzTJbDoeHzxsih0PLly+vvf/+7Nm/enG/PqzCihR20sIUeOF4xwA4Y8euvvwZfCRW+8vo111wTnIyEP4l7+Jshr732mm655ZZ0n4yqVauWBgwYoC+++ELSoTdLWrduHbxZsnfv3ug+uUIofFCvV69elm9ERf79yy+//H/snXdYFMf/x2eOKoICdiKKvWLvBXsvURNbEk1MorFrrLH33mNvMRY0sbeo32iMLbbEDkhHrKCIjc5x798f/Ha8oytXhuPzeh6emNvZvdl53e7szH5mBgULFgTnHPb29hg6dGiGS7IQWYdcyAO5kAdyIRfkQx7IhTyQC3kgF/JALuSCfJgG7U74M2fO6GzTDgzlnKNr166IiIgAkHZgqNJP8sUXX4iAn4xISkrClStXUKVKFYwYMSK7p5LjIRfyQC7kgVzIiTLrZFozgR08eBBly5YF5xzVqlXDnTt3AABv377F0KFDxYzGefPmxdSpU8XKKRs3bgTnHBYWFrhy5YrxTiaHQy7kgVzIA7mQh4SEBBw5cgROTk4iINTS0hJ2dnaYN28e1q5dK1bC5pyLd6gajUb48/T0RL58+ZA/f354enoCoFmNPxbyIQ/kQh7IhelJb3bhgwcPZhgUqr1fyuDQqKiodINCe/fujfDwcADvPSltxdwOuZAHciEX5IPIjVAAO0FIhI+Pj3gh3r9/f/HyIy4uTifd48ePsWPHDnTo0EEncL1hw4YYNGgQHj16pDOLgzJrUMGCBeHj4wOAZl/PjLVr14JzDicnJwQHB2eY9sSJE3BychIeunfvLkY7U4Mx+5ALeSAX8kAu5IJ8yAO5kAdyIQ/kQh7IhVyQD9ORVif8xYsXxWB+CwsL2NnZwdvbG0DG/RevXr1CpUqVwDlH+/bt002XlJSEq1evonnz5sLjf//9l/2TyeGQC3kgF/JALuQjvQFmsbGxGDBggCiz/fv3Iy4uDtu2bROzUtra2uKrr77CkSNHxP7//vsv6tSpA5VKhYULF6b5HUDq3wL1p5MLmSAX8kAu5OLu3btwcHAA58kzE48aNQo3btwAkFxm586dQ5s2bYSXP//8U2f/H374AZxzuLm54e7du6Y4BbOCfMgDuZAHciEfnp6eaNy4MaytrdMMClXQ7gPUDg6dMWMGgA8LCo2KihIDEIj3kAt5IBdyQT4Ic4cC2AlCMry9vTFw4EDR2aRdwXh5eWHPnj0oX768mJnBxsYGDRo0wLRp0xAcHIz4+HgA75eTevz4MZo3bw6VSoXvvvtOZ2QVkT7e3t4oXbo0nJ2ddToPtQcGJCQkYMeOHaKCt7S0RLt27RAZGQkg/ZFxxIdBLuSBXMgDuZAL8iEP5EIeyIU8kAt5IBdyQT7kISgoSJRx1apVUbRoUVSuXBnv3r3T8aGN0mdy+PBhFCtWDCqVCrNnz9bZpqAEhjZt2lR0zm/YsEHMvE+8h1zIA7mQB3IhL1u3bhVuRo4ciaCgIHTs2FH0mxcuXBgHDhzA06dPdfabM2cOVCoVGjZsiFu3bmX4HbGxsdi3b5/4fwoQTRtyIQ/kQh7Ihenw8fHB999/j9DQULFqltJ2S0hIwF9//aUTHHr69GkAwIEDB8RnK1asMFX2zQ7yIQ/kQh7IhVysWLFClGufPn3SDApV0I6z0d7v66+/zjQoVCEqKgpdunQB5xxz5swxyDnlVMiFPJALuSAfhLlDAewEITmJiYkICQnB7NmzUblyZdjY2IBzDjs7O1G5rFy5Umcf7cpl/fr1It3+/fuNnf0cS2RkpJjh3sPDAzdu3NB5KXXixAmMGTNGlK2TkxN69uwpHhQokEF/kAt5IBfyQC7kgnzIA7mQB3IhD+RCHsiFXJjCBwWUpE///v3h4uKCJUuWoHLlyqhbt266abVf6nbv3h2cJ8+IfOXKlVRpUwaG2tvbY+PGjXj37p3BziWnQy7kgVzIA7mQj8uXL6NEiRKiju7UqRPy588PzjlKlSqFb7/9Fn5+fqn2O3/+vKjb16xZo7NNu55+8+YNbty4gQYNGogXvUTakAt5IBfyQC7kJjExMVVw6MGDBzFz5kxYWlqiVq1auH//PgBqwxkD8iEP5EIeyIXx6d+/P9q0aZNhUKiCdizOtm3bwDmHSqUC5xz58+fPMCgUABYsWCDifVq3bp1qMFtuh1zIA7mQC/JBmDMUwE4QEvPs2TN069YNHh4eonHCOUeTJk3w448/okmTJuKzM2fOAEhupCgNFV9fX1StWhWccwwYMMCUp5IjCQwMhKurKzjnqFSpErp3747hw4ejY8eOKFCggCh7d3d3TJgwQcyMRIEl+odcyAO5kAdyIRfG9EEdkhlDLuTBFPcpZTUiQhdyIQ/GdKHd8Uj1f9qY6nlKu8M3t9cl2mV57tw5PH78GM2aNUP+/Plx7969DPcdOHCgCAydOXMmAN3ypMDQD4NcyAO5kAdyISeJiYmYNGkSOOfIkyePKGfOOdq1a4eTJ0+K1VK0n4eCg4NRv359cM7xzTffiM9T1us3btzATz/9BDc3N3DOYWVlBc45zp8/n+vr7ZSQC3kgF/JALnIGaQWHKrPjDxo06IOOReWefciHPJALeSAXxkG7no2JicnyfsokGLdu3RJ+7Ozs0gwKTasfsW/fvmjZsiVu3LiRneybFeRCHsiFXJAPIjdAAewEITGBgYGwtLQUlUnz5s0xdepUJCYmIi4uDpcuXUpz+SilIjp8+DCcnZ1haWmJjRs3Asi8geLt7Y1t27YZ9LxyEv7+/qhZsyasra11BhEoHY59+vTBkSNHEBsbCyDt0WmEfjC2C2V/atSnhlzIA7mQC2P78PHxwZ07d6juSQNyIQ/GcpGUlARvb298/vnn2L17Nx48eCC20T0rGXIhD8a+R+3cuRMbNmzQWX6eXLzH2D68vb3Rt29fnZeNud1HyjIdOnQoOOdYvHixKHcFtVqN169f49tvvwXnyTPHdO7cGdevX091TAoM/XDIhTyQC3kgF3Li6+sLBwcHUWdXrlwZEyZMSDd9fHw8li1bBjs7O1SvXl28gNUedJmQkIA9e/bAzc0N+fLlA+ccRYoUQa9evfC///1P53jU9nsPuZAHciEP5CJnkJiYiLNnz6Jly5aiHVixYkXRj5GyL/zNmzcICAjAkSNHcPPmTURERIhjUZlnH/IhD+RCHsiFcfjQslHSnz59WnhxcHDIMCg0JiYGYWFhOscJDg7ObtbNDnIhD+RCLsgHYe5QADtBSI6Pjw/Kli2L1atXIyAgQGdbQkJCqpG3SkfVy5cvUa1aNXDO0bBhwyzNgOjn54d+/fqBc46+ffsa5HxyIo8fP8aqVavQo0cP1K9fH1WrVsXUqVPh6empky63Bx0YA0O6SDmq8O3bt1Cr1amW4CHPyZALeSAXcmGsOsPf3x9ffvklOOeYPHkyLl++rLdjmwvkQh6M4cLHxwedO3cWgUJdu3bF9u3b9XJsc4JcyIOx7lFXrlxB6dKlwTlH06ZNsXXrVr0d25wwlg9vb2+MGDFCtN+HDRumt2ObE3v27BFlNGfOHFy6dAnv3r1DSEgI1qxZgw4dOoh7TIsWLXD06FGd/SkwVH+QC3kgF/JALuTBy8sL9vb2+P7773WCN9Nahebhw4eoXr06OOeYNGkSoqOjdY514sQJMThB+StXrhx+//13hIaG6qR99OgR1q5dm+rz3Ay5kAdyIQ/kIufw22+/oXDhwuA8efb7t2/fim1KOy04OBjffvstSpUqBc45LC0t0aFDB2zevFmkpZXP9AP5kAdyIQ/kQh6Uevyvv/4SdbKjo2OmQaHNmjWDg4MDQkJCTJJvc4RcyAO5kAvyQeREKICdIHIAKZcB0e7gSmv5qFOnTuHMmTPIly8fChQogN9//x1Axo0SJXhdafxYWloiKCjIMCeUw4mLi9P5fxqxbDoM4eLMmTNYuXIlGjVqhNq1a6Ny5coYO3Ys9u7dK9JQcElqyIU8kAu5MISPpKQknD17FvXq1QPnyUsFN2nSBKtXrxZpyEdqyIU8GMJFZGQk5s6di759+8LKygoqlQrW1taYNGmSSEMuUkMu5MGQbYyff/4ZtWrVgoWFBSwtLTFz5kyxjVykjSF8eHt7Y/jw4aLdbmVlBc45hg8fLtKQj/dMmTJFlFWBAgXg7u6OggULIm/evGImy88++wzHjx/X2Y8CQ/UPuZAHciEP5EIeIiMjxWqkgG6drV2vfvbZZ+Cco3LlyjoziqnVavz444+oXLmycFqpUiUMGDAAL1++TPV9T58+xdKlS0Xap0+fGujMch7kQh7IhTyQi5yBMjjAwsICV65cSbU9LCwMPXr0EKt2OTs7i8FqnHOdNja9L8w+5EMeyIU8kAs5+Jig0OjoaHTt2lWk//bbb7M08SSRMeRCHsiFXJAPIqdCAewEkQNQOrLSe5mdVhC78iKkZMmS8PPzy/D4SvB6gQIFwDlHiRIl8M8//+j9PHIy2mVPQQWmxRAuNBoNIiMjMXToUDGII+Wfra0tfvrpJ71/d06GXMgDuZALY9QZsbGxuHLlipj5W+mIHDp0qMG/OydBLuTBkC5SHm///v0YMGCAcDFq1CiDfXdOhFzIg6HvUdovpK5fv44ff/yRXGSAIX2kDF7/5ptvsHbtWuGDgtjfo/27nTFjBlxcXHSePx0cHODg4ICVK1fCy8sr1b6ZBYbm9vL9EMiFPJALeSAXOZP169eDcw4nJyecPXsWAPDs2TMcPnwYLVu21HH4xRdf4MiRI2IwW2JiojjO06dPsWjRIhQsWBCcJ89+/ODBA5OcU06FXMgDuZAHcmFazpw5g2LFikGlUmHw4MEAUtfHp0+fRpEiRWBlZYV+/frBx8cHv//+u86s+HPnzhXpKTj04yEf8kAu5IFcyIFS5h8bFJo3b1707NkT165dM80JmBHkQh7IhVyQDyInQwHsBGEmpBXEzjnXWRYqLVIGr3/yyScUvE6YDRmtOqA8wMXExODkyZNo27atTuBhu3bt8PXXX2PcuHFo3769+HzixInGyr5ZQS7kgVzIxccs2Ziyc3LJkiUoUaIELC0twTnHV199pa/s5SrIhTx87FKm2h3vYWFhWLNmjbhPLViwQF/Zy1WQC3nQh4tnz55hxYoVwsWUKVP0lb1cR2Y+tOuHlMHrAwYMQFRUFABg8+bNFMSeBtrl+88//2Dnzp2YNGkSJkyYgMOHD6cKCgWyFhia3gva3F7eGUEu5IFcyAO5yBko5RYUFIQ2bdrA0tJSDOC7d+8e+vbti7Jly4JzDhsbG1SoUAFLly7VOYa265SBofXr16fVS7MIuZAHciEP5ML0KA5mzJgh2mo7d+5MM60yq32RIkUQEhIiPn/+/DkWL14s9l+/fr0xsm6WkA95IBfyQC7kQWmrnT179qODQnv06IEbN26Y5gTMCHIhD+RCLsgHkdOhAHaCMCPi4uJw+vRplC9fHiqVCjVr1oS3tzeAtF92UPA6YY7ExMTg9u3b4v/TCi5Rroe3b99i69atqFOnDjjnsLS0RIsWLbB27Vqd9M+fPxeBV9bW1ti9e7dhT8JMIBfyQC7kIis+MkO7Xv/vv//QtGlTsTxk9erV8fDhQ73k1dwhF/KgDxeAro+4uDjMnz8fKpUKFStWxNWrV7Odz9wAuZAHfblIecyFCxdCpVLB3t4ee/fuzfYxcwsf48PLywvDhg0Tncbff/89Xr16pXOMLVu2UBB7GmQ2G5h2+WQlMFSbv/76C6tXr8bt27cRHR2dpe/LzZALeSAX8kAu5Ea7/OfOnQvOOdzc3PDrr79i3759cHR0FHVz3rx5MWHCBJw/f15nf+1jpBUYGhgYaNRzyqmQC3kgF/JALuTh33//ha2tLTjn+Pzzz8XnKdtia9asAecczs7Oqfr5YmJiMH36dHDOUbly5UxnrAwJCcHz58/1dxJmBPmQB3IhD+RCHk6ePKm3oNCkpCSjrB5srpALeSAXckE+iJwMBbAThJmgVDgXLlyAjY0NONddFj4lFLxuXJSlHPURdEKkT1xcHPbu3QtLS0t89913GaZ99+4d1qxZA3d3dxGkO3r0aFy5ckWk0V6CMyIiQjzEjRw50mDnYC6QC3kgF3LxIT7SQ7uReOHCBXzxxRdixu82bdrg5s2b1JDMAuRCHvThIj2uX7+OokWLgnOOLVu26PXY5gi5kIePdZHWPSflZ4GBgWIpeiVgmu5VGfMxPh49eoQBAwaITuOmTZsiLi4OAJCQkCDSpQxi//777w1yDubKhwaGBgcHo3v37uCco1y5chg5ciSePXsGgNrr2YVcyAO5kAdyYVqOHz8u6uH69etj6NChyJMnj3iZW7VqVVy4cAGxsbFin5SDBSgwVD+QC3kgF/JALkxLYmKiWCmraNGi2L59e6o0Sjs5PDwclStXBucckydPRkxMjE46Hx8fsZLpwoUL062z/f390aNHD1haWtIM+SkgH/JALuSBXMjFiBEjwDlH/vz50bdv348OCtXuE0wJDVzOGuRCHsiFXJAPIidDAewEYUaEh4ejdevW4JyjZs2aePLkCYDUlQgFr5uGu3fv4uuvv8aDBw9MnRWzJC4uDrt27ULp0qVFx++OHTvSTBsbG4sdO3agevXqIkh3/vz5ePTokUiTVhDPlClTxEvEiIgIg51LTodcyAO5kIsP8ZEe2g7++ecf9O3blwKmPwJyIQ/6cJEZTZo0AeccvXv31hmEQ+hCLuRBHy6OHDmC06dPi/9PeT+aNm0aOOdwcnJCaGioXvJtrmTHx6pVq1CvXj3Y2dnBwcEBY8aMEdu0rwG1Wo2tW7eK42vPsEikz4cGhiqcO3cO3bt3xyeffALOOWrVqiXa6RQg+nGQC3kgF/JALkxLcHAw2rVrBxsbG1hbW6NAgQKwsrIC5xx169bF7NmzRX9Heu22p0+fYuHChaIPvWHDhvDz8xPbqb2XNciFPJALeSAXcuDv7w/OOYoVK4aXL18CAB4+fJgqaDMqKgqjRo0SfpSVr7XbdEuWLAHnHL/++mua3xUbG4t+/fqJNt+CBQsoACgF5EMeyIU8kAu5GD9+PNq2bZutGY2B5EkvRo4cib59+2LgwIH47bffxPtVavNlDXIhD+RCLsgHkVOhAHaCMAOUCuLMmTMoU6YMOOf49ttvERUVlSotBa8bH41Gg9jYWBQpUgScc/Tq1UsnIJTQD2/fvkWlSpVEQ75v3764c+eOThql0/bSpUto0KCBCNJdunSpaPinhdLAHzp0KDjnqFq1qs7MJ4Qu5EIeyIVcZMVHRlDAtP4gF/KQXReZ8fr1a5QrVw6cc3Tu3Jm8ZAC5kIfsurh3755o7x04cEBnmzJ7xvz582FjY4OCBQvi8ePHes2/uZFdH35+fliyZAny5s0Lzjm+/PJLsU27s1etVmP37t1Ys2YNwsLC9HoO5khWAkNTdqZrNBpx74mIiMD+/ftRu3ZtcM5RqlQpMZiDXtB+GORCHsiFPJAL0/PixQuULFkSnHOxygnnHF988QX8/PzErJTplacSGOrk5ATOOcqXLw8/Pz+xmooC+cgcciEP5EIeyIU8+Pr64tixYwCAa9euoUqVKvD09ASg2/93//59sarc119/LT5X6vP4+Hj8+eef4vO0+jxOnToFzjnGjRsnVlghdCEf8kAu5IFcmB7ttpvSpvvQoFDlnep///2HEiVKiLpfmWCkVatWePjwYarvI3QhF/JALuSCfBA5HQpgJwgz4tNPPxWVzd27dwHodlBR8LppOX/+POzs7MA5x2effUZB7Abg7t27KFWqFDp37oz79+/rbFOuhaSkJHTp0kUE6c6ZMwcvXrxI95jaDfgePXqAc47atWsjMjKSAq8ygFzIA7mQi4x8ZAQFTOsfciEPH+siPZR7W0JCAn799VcUKlQInHMMGzYs28c2d8iFPGTHxevXrzFkyBDRufjLL7/ozLgUExOD3r17g3MOGxsbnVn6iLT5GB/adUFcXBx2794Ne3t7cM4xfvz4dPdLGXRCpEaj0eDChQtiVYfMZjV+/fp1ms+2SUlJuH37NurXrw/OORo3bixmpyGyBrmQB3IhD+RCHry8vMQAso4dO2LdunVZ2u/p06dYtGiR6EPnnMPZ2Rlly5aFm5sbvvvuO/z2228iPb24zRxyIQ/kQh7IhTwobbfhw4eD8+QVrrUHeit9G4cPHxZ9gJs3b061v4J2madcsTQoKIgGLGcC+ZAHciEP5ML0aMfcKOWZ1aBQJX14eDjc3NzE4LMuXbqgSZMmKF68ODjncHNzo9W3sgC5kAdyIRfkg8jJUAA7QZgJu3btAuccdnZ2GD58OIDkCkOpaCh43bQoDwuXL18WS0FSELthePz4MXx9fdPdPnnyZHDOYWFhgYEDB6ZaZi09tm/fLjqE586dq6/smjXkQh7IhVxk5iMlFDBtOMiFPKR0kdVy1E6n/e+EhAQcOnQIbdu2FfepgwcP6i/DZgy5kIf0XGTFycuXL/HDDz+IMv/hhx+wZs0a7Nq1C19//bX4fNCgQQbLv7mRHR9A8sCBefPmwdraGm5ubjh9+rRB8plbWLFihehw37x5c6rA0BcvXuDw4cNo0qQJ3NzckC9fPgwcOBA7d+7USZeUlIRjx46hdOnSsLOzw5o1awBk3StBLmSCXMgDuZAHb29vrF69Gv7+/uKzjF6yKoGhBQsWBOccxYsXR4MGDTB+/Hj07dsXNWrUEM9Rs2fPFvvRLMeZQy7kgVzIA7mQi9OnT6NMmTJwdHTExo0bER8fD+D9KikvXrxAjx49YGFhgQEDBmR6vICAAHTp0gVDhw41dNbNEvIhD+RCHsiFPChtsujoaHTv3j3doFBtNm/eDM45ChcujL179yIuLg5v377F8ePHUa9ePXDOUaNGDTx58gQA1d9ZhVzIA7mQC/JB5CQogJ0gzIQHDx7AwcEBnHMcOnRIZxsFr8uBdhC7tbU1OOdo27YtjWI2IiEhIahduzZUKhWqVq2Kv/76K0v73bx5E+3atYOFhQUKFiyIP/74w8A5NX/IhTyQC7mhgGl50KeLlOnIoS7pdXikDIpWq9WIi4tDVFQUYmJi8OTJE9y4cQOnTp1Cz549UblyZfHidsyYMTozUBNZg1zIg3awtJ+fX5ZmYA0ODhardCl/+fPnF/9u1KgRjh49auismyXaPoKCgtKdVTclV65cEcEmCxYsMGQWcwVjx47FihUrUpV/eHg45syZg9KlS4Nzjjx58ojBmsoM+NqBQS9evECHDh3AOcenn35q5LMwD8iFPJALeSAXcpJR2ytlYGjt2rVx4sQJnRnyAwMDMX/+fPE8tWjRImNk2ywhF/JALuSBXJiWV69eYcCAAeCco1atWrh586bYpvSPTJs2TUwmpj3wICUBAQE6g8dPnTpl8PybG+RDHsiFPJALuUhISBArb+XPnz/DoFAAWLt2rZjBOOUM+jdu3EDdunXBOUf37t0RGRlpjFMwG8iFPJALuSAfRE6BAtgJwoy4c+cOhg0bpvMZBa/LhXYQuzLC7e7duybOVe7h8OHDoiE+Z84c8XlGHcPPnj3DTz/9JF4ofvXVV6nSKF7DwsJ0llqjgMT0MZQL4sMxpIsPnZk0t6LMjgGkvbwXoL+A6ejoaD3m3Pwwpotbt25h+fLlaX4HkTxT8fnz5/H9999j6NCh6Nu3L7p27YpevXqha9eu8PDwQPPmzeHh4YFq1aqhSpUqKFmyJKytrWFnZ6cTsDts2DB4e3un+g66LrKGMVwAVGdklWvXrqFVq1bYsmULgIzLKyEhAUuWLAHnHF27doWNjY1w0atXL+zdu1ekTWsGfXKROdevX0fLli3x22+/AchamXXs2BGcc3h4eCAqKirDtNr1Evl4j/YgGGW2MeD9bJWenp4oVaoUOOdwdXXF8uXLMXnyZPTq1UtnVQLtYJ9NmzbBwsIC7u7uePnypfFOJodDLuSBXMgDuciZpAwMrV+/frozIkdHR+Onn34C5xzlypXDrVu3Mjw21eEfBrmQB3IhD+TCeDx8+BB16tQB5xzNmzfHjRs3dOrzmTNngnMOW1tb3LlzJ81jBAQEoF+/fqJenzRpEp4+fWqsUzAryIc8kAt5IBdyMWjQIBHMqT2gIC1Onz4tynzPnj2ptp84cQJlypSBg4MDPD09qY7+QMiFPJALuSAfRE6AAtgJwszQfkni5+eHr776SgSvFy9enILXJUAJiLt16xbOnj2LhISEbB9To9HQ8iwZoJTN6NGjwTlH5cqVRaB5RuX2+vVrrFixAnnz5gXnHE2aNBGzXaZcyvPvv/+Gq6srvvvuO5w8eVJ8Tg9tuhjaRcpjUPmnjyFcKHVQyqDQt2/f6hyDvOiilMfFixexa9euVDP0Xbp0CX369BEz8rVt2xa3bt364HK8desWWrZsic2bN+PBgwepvp8wvAslnZeXF1q0aAHOOQYNGpRqOwH88ccfYlbKj/krWLAgqlSpgs2bN2c4CwBdF5ljKBcp65pXr14hISEhVVAWudBFCURo2LBhlmZhDwoKgpWVFWbNmoXQ0FBcvHgRV69e1XmxlbI98ubNG6jVarx+/Vrnc3KhS0JCAn788UdwztGqVSudQMP0iImJQe3atcE5R7169XQ8KKS8Np4/f46oqKhUxycfaZOUlIRatWqJAfwhISFi24sXL7Bx40Zxf/ruu+8QHh4OtVqNMWPGgHOOBg0a6KWNTpALmSAX8kAu5CRlYGiDBg0QFBSU4T779++HhYUFrK2tdfoBU6LU6zExMXj16pU+s22WkAt5IBfyQC6MT0BAAIoVKwbOk2c4njNnDv7++2+sWrVK1NMeHh54/vw5AN22WUBAAL766iuRbsqUKVlquxPpQz7kgVzIA7kwPdr9d5s3b8bVq1d1tsfExKSKJYiKikLv3r2hUqnQp08fPHr0SGf7q1evxKz4M2fOpLZfFiEX8kAu5IJ8EDkJCmAnCDPF398fn376qejUcnFxwb///mvqbBH/T3aDDbISrE4BDan57rvvwDlHnTp1AGRcRpGRkVi/fr0I0nV3d8eRI0fS3WfWrFlQqVSwsLCAm5sbli5dKraRi9Toy0VGM1Kq1WoKaM8Chrou/vzzT3Tt2hVNmzZFnTp1MGfOHJ0lCMmFLsqI5rJly2L37t2IiYkBkBxIrY/g9efPn+Obb74RnZJffPFFujPv5nYM5SJl8Lqtra3wMXz48FTpcjvBwcGwsrIC5xxWVlZo2LAhOnXqhK+++goDBgxAnz598P3332PChAkYMWIEfvzxRyxatAgrVqzAzp074e/vn2nHO10XWcMQLrTL9vnz59i9ezdq1qwJd3d3lClTBhMnTsThw4fTTJ/bOXr0KNzc3FCoUCFs375dZwCzNsozkJeXF/Lnz49u3bqlmU67g/Hs2bNYuHAhatasidq1a6NatWqYNWsWjh8/LtKQi/eo1Wps27YNLi4uKFasGHbv3p2pj2fPnqFmzZrgnKNFixapVoDQ7jDes2cPRo4cieLFi6NMmTIoWbIkxo0bhwMHDog05CM1wcHBcHR0hJ2dHaZPnw4AiI2N1Ulz8OBBce8fOHAg7t69i1atWoFzjiFDhkCtVlPZ6gFyIQ/kQh7IhXx8aGCoUvaXLl0SbbqNGzdm+B1RUVGYOHEi6tatm2nQaW6GXMgDuZAHcmE6/Pz8ULlyZVEna/fjFStWDPPmzUu1T2ZBoTQJ1cdDPuSBXMgDuTA9KQM/FWJiYnDy5EncuHEjVbotW7bAwsICtra2YkVH7XK/efMmevbsiRMnThgw5+YHuZAHciEX5IPIKVAAO0GYKU+ePEGJEiXAOYe9vT2NfjIjtF9S+fn5YceOHZg0aRKGDBmCXbt26QxUoBdauowdOxacc1SpUiXVrLraD10PHz7E0qVLRZBuhQoVsH79+lSzSKfk0KFD6NWrF1QqFTjn+Omnn8Q2cqGLIVzcv38fW7ZsQc+ePdGuXTvUq1cP7dq1w6ZNm3DlyhWRjlzooi8XyoACtVqtM8uD9l/RokUxY8YMcUxy8R4fHx9YW1uDc44aNWpg7969+PPPP/HFF19kO3gdSG6I7tu3D+3btwfnHCqVCoULF6b7VBoYwkXK4HVLS0vY2Nigfv36os6gIPbU+Pj4iJe0zZo1g7e390cdJ73ypOsi6xjKxZMnTzBhwoQ06wxnZ2dMnTo13X1zK5GRkejfv78YfJbWko/aZbVy5UoxKCcuLk5nm3Y9v3jxYlSqVClNF05OTuQiHSIiItCzZ09wnjyj+q1bt1Kl0e78nT59uijXxYsXp5tu3LhxcHBwSNNH3rx56T6VAQEBAaKsJkyYkG66o0ePinTKKhM2Njai057IPuRCHsiFPJALuXj06BGWLFnyQbMaA8ntiKlTp8LKygrOzs64cOFCummTkpIwY8YMFC5cGJxzVKtWLdWgBYJcyAS5kAdyYXpCQ0MxYsQIMQiZ8+TVSGfPnp2qHZZZUKh2+pSBRNSmyxrkQx7IhTyQCzn57bffwHnyhDkK2v2wyqQ6BQoUgK+vL4D371iB5D5zhZTxPekFoxJpQy7kgVzIBfkgZIMC2AnCjPHy8hKdWzVq1ICnp2eq4EQi56FWq/H8+XN89dVXOiOrlb+yZcti9uzZIj01Kt+XwR9//IGCBQvik08+0em41S6jS5cuYfjw4bCzswPnHJUqVcKyZcsQGRmZ7vG1H+b8/PwwY8YMEZD4448/pvk9uRVDuPDx8cHKlSvh6OgoZhhQgky1r4uFCxem+T25FUNdF9ov2p2dneHm5ob27dujdOnS4roYNWpUmt+T2/H19RX1dvny5dGwYUOdgOmbN29mq7w0Gg3evn2LkSNHwsnJSfj44Ycf9HgW5oE+XaQXvN6rVy88fvwYu3fvpiD2DNAOnG7ZsqXoKAF0yyi9f2cGXRdZR58ulM83bNgg6oySJUuiRo0a6NWrF6pWrUp1RgY8fPgQdevWBecczZs3x507d0QnoXbn4PHjx1G1alVwztG7d2+dY2iX5bx582BrayvKvGnTpujRowd++OEHNGzYUHw+duxY45xgDuPBgweoVq2a8HHjxo00gz6WLVsmfu/u7u7pPneNHj1a5zm2Y8eOGD58OMaPH4/WrVsLH+PGjTPK+eU0oqKi0LZtW1haWuKzzz7Ds2fPxDaNRqPTdtu5c6coT1tbW2zYsAEAzTimL8iFPJALeSAX8qBWq8VAvw8JDAWA69evi4F/tWrVyrS//fLly+CcI1++fDh58qQ+sm9WkAt5IBfyQC7kIT4+HlFRUbh48SIuXbqE58+fp0qTWVCoNrdv38bYsWOxZcsW+Pj4iM+pfs8a5EMeyIU8kAv5+OWXX8B58kz4p0+fFp8rKzc+fvwYderUEX3f8fHxaZavdlDowoUL8eDBAwAUHPohkAt5IBdyQT4I2aAAdoIwc+7fvy8CTapXr05B7Dmc58+fY/v27ahduzY45+JFVoUKFVCjRg0ULVpUBNhpB04TyYSHh8PDwwOcJ88eeunSJURFRQEA3rx5g1WrVqFmzZqwsbERAz82b96MV69eZXps7aCTN2/eYN26dcLPkiVLDHVKORZ9udi7dy+6desmOl0++eQT1K9fH6tWrcL69esxYcIENG7cWLgYPXq02JeC4JLR53URGRkpZnqoWLEiZs+ejbCwMADAnTt3MG/ePOFi2rRpxjzNHMP9+/dRoEABMcOeEijq5eWV7Q5C7d/8nDlz4ODgIOqMWbNmZTfrZoc+XKQXvN6zZ09xbcTHx2PLli0UxJ4B2s+zLVu2hJ+fn96OTdfFh6FPF8+ePYOLiws4T565eseOHXj9+jWA5EEkixYtEtfFzJkz9XUKZkNAQIBO+W3evBlPnz4V23/99Vc0atRIrCihPYO6Nnv37kXx4sV1npUSEhLEtfHw4UOsWbNGbF++fLlRzi+n4e/vj2LFioFzjpo1a2Ly5Mm4cuUK/P39cerUKYwYMUI8r9ra2uqsSKPN6tWrRbrixYtj/vz5OtufPXuGtWvXCh+rV682wtnlPJYvXy7KcdWqValWb4qKioKXl5eYPd/a2hpTp07VCSSlF7P6gVzIA7mQB3IhD35+fqJfNauBoX5+fqLfo3jx4mLFP8WJ8t+UM5BdunQJZ86c0WPuzQtyIQ/kQh7IRc7gQ4JC37x5g7Vr14q0jRo1wrZt28R2CvTJPuRDHsiFPJAL4+Pj44MWLVqI9z0vXrwQ29RqNRITE/HDDz+IwWZKwKg22m0+ZUXHokWL4uHDh0Y5B3OBXMgDuZAL8kHIBgWwE0QugILYzYPQ0FD89NNPYulgBwcHtGrVCtu2bROBpHfu3MGKFSsowCQDtIN9SpQogerVq6NJkyaoXr26aJArQVlnz54VgbzpoQT3pAwyfPXqFcaPHw+VSoUaNWrAy8vLYOeUU8mui02bNsHd3V383tu2bYtdu3almhXcz88PS5YsEenSCxjKzXysi5S/+9evX6NChQrgnGPYsGEiEFHh3bt3WLp0KVQqFQoVKoSjR48a7RxzEj4+PnB2dgbnybPYz5s3D2/evAGQvYBmpSHp5+eHKlWqCK9Vq1bFvXv39JJ3c0MfLm7cuIFmzZrBysoKtra26N27tziG4kStVusEsWvPOE0kY6ggdrouPpzsutAOjC5SpAisra2xePFiREdH66R79+4dFi5cCJVKheLFi+vMAkEk4+vri3LlyoFzjrx586Jo0aLw8PBAw4YNwTmHpaUlOOfo1KmT2Ef72VWj0eD7778X954JEyaIdNovpGJjYzFr1iyoVCo0a9YszZmciOT7iPYKWRYWFnBycoKTk5P4LH/+/BgzZozYR7kHaTQavHr1Ch06dBA+li5dKtJpB5hER0dj0qRJUKlU6NChA968eUMDnv4f7XIYN26cKPfBgwdj79698Pb2xtWrVzFhwgQ0aNBADFKbOHFiukFB165dw969e7F//34cOHAAr1+/Rnx8PAAKIM0IciEP5EIeyIWchISEICQkJEtp/fz8UKtWLfFSdsOGDTqrrihlHh0djbFjx2LBggVpHofq7bQhF/JALuSBXMiHdvl8SFCoNkuWLEGHDh3EftoTKFD9/WGQD3kgF/JALuRg69atsLKyAuccK1euRExMjM527ZUab968qbNNu1928uTJYgXyIkWK4NSpU2Ib1dlZg1zIA7mQC/JByAQFsBNELoGC2HM2wcHB+OGHH8Ssfs7Ozli4cGGqoGiNRoOYmBhMmzYNlpaWaN26NSIiIkyUa3kJCAhA48aNxcy62n/Vq1fHyJEjdTp300IZZai8GARSP4D99ddfyJMnDzjn2LVrl/5PxAz4WBdbtmxBqVKlRIBP+/btcePGDZ002m7i4uLE7KH29vbYu3evwc8tp6GP6yI8PFwEwt+/fx9A6s4sLy8vlChRQnSWEWnj7e0tXFSvXh2//fZbqpn5PgTFg7e3t05wXdWqVeHr6wuAZs9Ij+y6WLt2LYoUKQKVSgUrKytMmjRJbNMOSFSC2JXZkr///nu9noc5kDJw2t/fP1vHo+vi4/kQF+m91AgNDUX+/PlhY2MjViRImfbmzZvie1LORE0kExISgl69eolBrin/unXrJgaUpfw9+/v7w9bWFpxzdO7cWXye1u/+77//FgHxly9fNuxJ5WBCQ0MxePDgVIMAOedo1aqVTlB6ynL+77//RNovv/xSfJ7WNXT8+HFwnrwi1507dwx3QjkQ7XJdsGABihcvLsq1UKFCYlUVJTD0p59+QmBgoM4xIiIicPr0abRq1UoMZFPaHQ0aNMCECRPEigdUT6QPuZAHciEP5CLnoh0YWqRIESxbtkwn+Ec7MHTWrFmi32P27NmpjkVesge5kAdyIQ/kwvgEBgZmGBSaVjlqz1x5//59MVNlShcU6PPhkA95IBfyQC5MQ8oVX5XyW7RokXjnEBISgoEDB6YZGJoyKLRQoUJQqVQoXbo0pk2bhqCgILx69UoEmlK9nT7kQh7IhVyQD0JGKICdIHIRaQWxZza7NGF6Hj16hGHDhqFw4cLihdbBgwd1gudSNhSPHDkiHiauXbtm7CznCMLCwnDkyBGMHDkSX375JYYOHQpPT0+dAKzMRpE/e/YMn3zyCTw9PXU+196vSZMm4Jyjf//+0Gg0NDI9DbLiQvvBdt++fahWrRpUKhUsLCzAOUfJkiVRvHhxfP755+nOsP7ixQv88MMPsLCwQJ8+fWhwRxpkxYV2wG1YWBj+/vtv7NixA8ePH8etW7cwevRocM5x6dKldL+nffv24JzDzc0N7969o+siHbTrbXd3d+zatSvV6OeskFGQbnoDDQhdsuvizz//xOjRo8Wgpn79+olt2p3CarUaGzZsAOccq1at0us5mAvaLpo1a/bRM7HTdZF9suJCu/6+ffs29u3bh3nz5sHT0xNnz57FwIEDYWNjg7t37+rsp/1sqzxL1ahRA3FxcdTZlQaRkZG4cOECBg0ahGbNmqFkyZIYMGAAli1bJtKk9WLp7t27yJs3L6ytrTF16lQASLUUpPZS81WrVgXnHMeOHTPg2eR8oqKiEBYWhrVr12Lu3LmYN28eDh06hGfPnok06Q0SsLCwgIODA7Zu3QpA97lLe7/nz5+jVKlSsLW1xdWrVw14NjkT7fK9du0adu7ciVGjRmHEiBGwt7cH5xzW1taYOHFiqsDQBw8eYOLEiWJ1A2UWmqJFi4oBH8o96cGDB6m+j9CFXMgDuZAHcpHzSCswVBmACbwv4+joaMyYMQNubm7gnKNw4cL4448/dI6l/awVHBwMgNodHwK5kAdyIQ/kwvgEBQXh008/TTcoVBtvb2/cvn0b8fHxiIuL09kWHR2NRYsWieMo7UDiwyAf8kAu5IFcmBbtunP8+PGi/GrVqoVu3bqhXbt24rNevXqJtCmDQosUKSLScc7F+6VSpUqhX79+ePz4car9CF3IhTyQC7kgH4RsUAA7QeQytANNatWqhe3btyM6OtrU2SLSITIyEjNnzsQnn3wigtdPnz6dbnolMCUgIACOjo7gnOPo0aPGyq5ZkZWOWe2R5/v27QOgGxx08+ZNMWv+kCFDDJZXc0fbxc2bN9G5c2cxuxjnHI6OjihbtiwKFiyoM4voo0ePAOh2vB8+fBicc/Ts2dPo52EOaAdR/fLLLzqNF845ihUrhhIlSsDOzg7Lli1LNWN7UlISnj59Cnd3d6hUKlSpUoVegmTC/fv34eTkJH636S0dnx4UpKs/PsaFdp0QGRmJ7du3w8HBAZxzfPfdd2KbtgO1Wp3tmcXNHV9fX/GcM2HChA9+lqXrQn9k5EK7DBcuXAh3d3edOsPR0REFChSAra0tNmzYoLNyisK9e/dEB1iLFi2Mck7mQMpByul1Dl65ckX4WLduXYbHvHDhgnj+OnLkiN7ymhtJb5aq06dPCx+Zrd506NAhkfb8+fOGyGaOJ+V9PDIyEn369BGBoRMmTEgVGKrMoK+04QoWLIjx48fjyJEj8Pb2xrVr1zBp0iRUq1ZNdMSHhoam+X3Ee8iFPJALeSAXOYePDQwtWrQo/vrrr3SPO3bsWHDOcfbsWYOfg7lALuSBXMgDuTANT548Ee2x6dOnpwoKjY6OxvHjx9GtWzexklnt2rXx3XffISQkRCfto0eP8O2330KlUqFLly60cvZHQD7kgVzIA7kwPdr9sfPmzYOrq6vOu23OOTp06IALFy4A0H3/OmXKFBHPo7zzHjp0KDZt2oQvv/wSFSpUAOccZcuWFQOXqc2XPuRCHsiFXJAPQiYogJ0gciH3798XgSAtW7bEq1evTJ0lIgXKw8LRo0dRvnx58WLqf//7X5b22759O6ytrWFra4t//vnH4PnNqWgHj2g/MGV16bMXL15g2LBh4sFsxYoVCAgIAJAc0DVr1izkzZsXnHNMnjxZv5k3M9JzkXL7/Pnzxazrrq6u6NGjB+7du4fw8HAEBgbi4MGDIpCuS5cuYn/tB/AtW7ak+b1EMpm5AIBt27ahXLlywkX58uVRtWpVlCpVCvnz5wfnHOXKlcPZs2dTBSQePHhQBPC2adPGoOdiLty/fx8eHh5YsWLFB+1HQbr652NdKKjVamzduhV2dnbgnGPNmjUZpic/6XP//n307NkTe/fu/aD96LrQP5m5WLRoEWxtbUWdUadOHXh4eKBmzZqig6tChQo4c+aMzsCnly9fYtWqVeJZqk+fPsY6pRyJdv2d1dksXr58ifr160OlUmH06NEA0v79q9VqLF26FHny5EGhQoVw584d/WQ6l5DV581Hjx7B3d0dVlZWmDlzJoD3LrWPER4ejuHDh8Pa2hpVqlTB06dP9Z9pM2T9+vUiMHTSpEmpAkPfvn2LWbNmwcXFRQT1XL58OdWzbHR0NK5evYqGDRuKwTUvXrzI8Ltfvnyp9/PJyZALeSAX8kAu5MTf3/+jA0PPnDmjc6xff/0VP//8M4DkCTGUl8KNGjXK1BFBLmSCXMgDuTAtXl5emDt3rs5KWwAQFxeHzZs3o06dOuCci74Q5c/FxSXVO7vt27eL7SlXqCOyBvmQB3IhD+TC9Gj30Z49exZLly5F7dq10bJlS4wbNw7+/v6p+nGnTJkCZ2dncM5RoEABrF69GhqNRvQNRkdH49q1a2jQoAE452jQoAGeP39u1PPKiZALeSAXckE+CFmgAHaCyKV4e3ujUqVKtNy4hCgVe1xcnHjh5OTkhN27d2dpPwBi1qa8efOKpR6JrKFdjll5kHrx4gW++eYb0XCvXLky2rVrh6pVq4qln2vVqkUPZXrg6tWrYnnscuXKYf78+YiIiEiV7t9//0W+fPnAOcf48ePF5ykDsrRnZieyzu3bt9GsWTPxImPAgAHw8/ODRqPBs2fPcO7cOREUWqlSJaxcuRJ3797F9evXsW7dOtGgcXV1haenJwAKFs0Kr1+/Fv/OSiAcBekaDm0X2qPN07ofpcXjx4/RqVMncM7x2WefpVqWk8g6KWeZzgy6LgxHei5OnjyJsmXLijpj7NixIkj95cuXuHr1qnBRoUIFLFiwAFeuXMHJkycxadIkMSitQoUKuHLlCgBypG9GjBghBssqL6BSlvHJkydF/d26dWtTZDPXMGjQIOHDy8sr1fbIyEhs2rRJDBj87LPPTJDLnMvo0aMxbNgwncBQpQP+7t274n5UtGhR+Pr6Anj/3JXyurh06RIqVaoEGxsbrF69Ot17U0BAAIYOHSoGJRDJkAt5IBfyQC7kIiAgAKVKldJLYKifn5/Y3qhRI3DOoVKp0LRpU/z+++9GPa+cCLmQB3IhD+RCDrSDeZS61svLS5Qj5xxr167F77//jjlz5qBu3bqivXfs2DGxz9u3b+Hq6grOOf7880+TnIs5QD7kgVzIA7kwPSnbYtrvlADd932TJ09GoUKFwHnyrMUpJ4zRPtbRo0dRpEgRFChQAIcOHUp1LCI15EIeyIVckA9CBiiAnSByMUrAVFZn6COMy4QJE0QQ+qRJkzIMjNOu6NesWSNGTI8aNSrVdiJrXLx4Eb/88guAzMvvn3/+gbu7OzjnIsBa+atevTr279+PxMRE8vCRJCUlISkpCWPGjAHnHI6Ojpg0aZIIItUuVyUofdSoUbC0tESLFi10ZnMlss/GjRvF7/ubb77R2aa4CA8PFy/XLSwsxIACZRZdV1dXjBgxItXMD0TmZCVwk4J0jYN2Ge7fvx+//vorgKzVucuWLRNerl27ZrA85hZoUIc8pHQxa9YsUdZjxozRSZdWncE5h42Njc5/y5cvj6VLl+LNmzdGPRdzQSnnt2/f6pS78ntPTExEmzZtRODD+fPnxbLCXl5e2LJliwheL168uOiQpOvl41DKX1kFLaWPuLg4tG7dGpxzFC5cGP/73//EEpsXLlzAtGnTRPB6+fLl8e+//+rsT6SN9sDV9NrVvXr1Aucczs7OIqgno76SqKgoTJs2TQzoTMtBQEAAfvrpJzGIZ8+ePdk8k5wPuZAHciEP5EJOgoODwTmHpaUlVqxY8VGBoRqNRqTdsGGDOJ5KpUKzZs1w9OhRnbRE2pALeSAX8kAu5GX06NGif+PIkSPic7VajeDgYLRv317MVnnkyBEkJSXh9OnTsLOzg62tLa14pmfIhzyQC3kgF6ZFu22mvaLW5MmTUaRIEXDOYWdnh99++y3NfRQePnyIokWLpup3J7IOuZAHciEX5IMwBRTAThC5GOp0kpfY2FjRQKxYsWKWZ8o/ffo0GjduDM457O3tU414I7LG/fv34eHhATs7O9y4cSPT9PHx8ejQoQPc3Nzw66+/ok6dOmjTpg369+8Pb29vml1XTyi/7cqVK4sZ7dO7j2kHzCmBiUT2UKvVUKvVaN68OTjnKFWqlJj1TfvFufLv8+fPo1ChQnBxccHw4cPh4OAAZ2dn1KtXD6tXr8bjx49Nch7mRFRUFEJCQhAdHQ1A98UTBekaj4sXL6JUqVIoUKCAuCbSQwlO2bNnD+zt7WFpaYm//vrLGNnMNdB1IQdJSUmIjY1FhQoVwDmHu7u7cJJWnfG///0Pjo6OKFu2LKZMmYIiRYqgXLlyaNeuHY4fP47IyEiTnIe5EBgYiNGjR4tgZwWl/IODg0XQdN68eVG6dGm0atUKLi4usLOzE9dM+/bt8ejRI1Ocgllx584d9OjRI5UP5T4UFBQkfNja2qJgwYKoXbs28ubNKwZ22NvbY/DgwXj58qUpTiFHklH/R2RkJKpXrw7OOXr06JHlcr1x4wZq166NdevWIT4+Xuc7AgICMGHCBFhbW4Nzjm7duuHFixfZPg9zgFzIA7mQB3IhJ35+flizZg2ePn0qPvuYwFAA+Omnn8SsxpzrrqKi/UKYSBtyIQ/kQh7IhXxoNBr06NFDDAJ4+/Yt1Gq1Tp+TWq1Gly5dRHDogQMHMHLkSHCevPoc9ZnrD/IhD+RCHsiFPGiX+eTJk1GwYEHRB7to0SKxLaO2YpMmTcA5x7fffptpWiJ9yIU8kAu5IB+EMaEAdoIgCAm5ePGiqPwXLlyYbjrtCv7mzZvo16+f2E+ZfZ34cMLDw8XD1KhRo8RM32mhOFBmrfrvv/+oU9cAPHv2DMWKFYOlpSUWL14MIO3ZxpQljebOnQsbGxvY2dnBz8/PqHk1d9q1awfOOapUqZJqCSltnj17hipVqiBfvnw4e/Ysnjx5ggcPHlDDRE+8e/cOa9asQZcuXfDrr7/i3bt3YpuXlxcF6RqRW7duoUaNGuCcY9asWYiKisp0n5UrV6Y5ywmRPei6kA9l2dkmTZoASL+sQ0ND4ebmhqJFi+L27dt48eJFhs9fRNZJTEzEqlWrYGFhgc6dO6c7GCA+Ph7jxo1D06ZNUbFiRTHLtxLY5ujomKWBnUTGxMXFYeLEieCc46uvvkr3d65WqzF9+nR07NgRTZo0QeHChXV8VK9enQZp6pFbt26J+mHlypVZ2kd5pvXx8cHbt291tqUMDP2QgNPcDrmQB3IhD+TCtKQ1+PJDA0OnTJkiAkNLly4tfE6bNi3N7yHShlzIA7mQB3IhH927dxeT8KRcWUW7HLt27QrOORwcHESZb9myRSd9Wv3o5OLDIB/yQC7kgVyYnpT1sKOjIywsLMA5R+3atcXKKhm9t7h79y4++eQTcM4xffp0g+fZXCEX8kAu5IJ8EMZGxQiCIAjpSEhIYDY2Nsze3p7VrVuXMcaYRqPRSQOAcc4ZY4x5e3uzzZs3s127djHGGOvRowdbuHAhY4yxpKQkI+bcPHB0dGRdunRhdnZ27MSJE+y///5LN63i5enTp4wxxh49esSsra1TbSc+Ho1GwxITE1l8fDxLSkpiDg4OjDHGLCwsdNIBYFZWVuzly5ds586dLCEhgbm6ujIXFxdTZNtsKV68OGOMsdevX7PXr1+nmSYpKYkVLVqUFSlShMXExLA3b94wFxcXVrJkScY5p+tCD2g0GrZ9+3Z2/PhxtmrVKnbkyBHGGGMBAQGsV69e7P79+4wxxqpUqcL27dvHKlasyDQaDVOp6PFf35QrV461bduWcc7Z3r172c2bNzNMHxoayv7880/GOWdOTk7M1dXVSDk1f+i6kI/SpUszxhgLDw9nr1+/TrOsk5KSmJOTE7O3t2cREREsIiKCFSxYkOXPn58xRs9S2UWlUjFnZ2eWJ08e5uPjw/79999UadRqNbO2tmaLFy9mFy5cYJs2bWJVq1ZlefPmZYmJiUylUrH9+/ezWrVqMQAmOAvzwdLSkpUuXZrlyZOHXb9+nd26dStVmsTERGZhYcFmzZrF/vjjD7Zs2TJmb2/PbGxsWGJiInN2dmabNm1iFStWJB96wsnJiTk5ObE8efKwwoULM8aSPWSE0havUKGCaJ8wxlhgYCDbvHkzW7lyJUtMTGTdu3dnmzdvZs7OzoY7ATOCXMgDuZAHcmFalL6npKQkZmFhwWJiYtjixYvZ9u3bWWhoKCtSpAjbtWsXa9WqFWMsuW9Ko9GI/aZOncrmz5/POOesQYMGbOHChWzt2rWMMcbmzp3LpkyZIr6H6vWMIRfyQC7kgVzIR7NmzZiNjQ17+/Ytu3r1qk65afeLHzx4kJUvX55FRUUxxhgbMWIE69evH2Ms2ZP2+799+/ax9evXM8bIxYdCPuSBXMgDuTAtSp3NWHI9vG7dOvb27VtWtmxZxhhjBQoUEO2+tPrSlbK9efOmiE1Q3tsSHwa5kAdyIRfkgzAJho+RJwiCID6U/fv3i1HNt2/fTrVdeyTbv//+i0GDBonRz23btsV///1nzOyaJc+ePRMzTTdp0gTe3t5imzKiPDExEQDg7++PIkWKfNBsWMSH07p1a3DOMXjwYMTFxelsU5y8efMGU6dORb58+cA5R69evRATE0OzfusBpQyPHz8OFxcXODo6Yu/evanKVvn/hw8fwsXFBZxzzJ07V2cboR+8vb1RqFAhMdp50aJFqFixIs0wbQIeP34sVu7w8PCAt7d3qroCAF6/fo21a9eKe1Tr1q1NlWWzha4LOVB+/7t370bhwoVRqFAhHDt2LFU6xYGPjw+cnZ3BOcemTZt0jkFkn+fPn6N9+/bgnKNp06bw8vISZZ9yViRfX1/UqVMH9vb24JzD0tIS+/fvB0BO9EVYWBhatWol6ox79+6JukL7vhQdHY2///5bzFLCOYetrS0uXbqUKi2RPR4+fAgnJydwzjF79uyPPg7Napx9yIU8kAt5IBfyEB0djfHjx6Ns2bIfPKtxo0aNcPDgQZFuxYoVon5fsGCB0c8lp0Mu5IFcyAO5kIOHDx+KfigPDw/cvn0bsbGxOmm8vb0xfvx4UcZfffWVzvsn7bbe0aNH0ahRI3DOMXbsWKOdh7lAPuSBXMgDuTAdKethpZ1XsWJFbNy4EZUqVULv3r3T3V/pm7169apYPbN58+apVt0iModcyAO5kAvyQZgKCmAnCIKQkCdPnqBSpUpQqVRYu3atCGhI2cl49OhR9OrVSzQgW7RogTNnztDyXHoiJCQE5cuXF434c+fOpXq4Cg4ORrVq1cA5R/HixXH9+nUT5dZ80Wg0SEpKwqxZs8A5R82aNXH37l3xAJyQkAAAePnyJZYsWSI6XqytrcmHAXjx4oXO4A4fHx/RWaW4CAsLwzfffAPOOezt7XHo0CET5ti8uX//PgoWLJhqKcdq1arBx8cHAAW4GYugoCCxPHOTJk1w+PBhnYCQu3fvYunSpXB0dBRLdJ4/fx4AOdI3dF3IQ3h4OFq0aCECp729vcVzqlJnPHr0CC1btgTnHIULF8aVK1dMmWWzJTg4GKVKlQLnHA0bNsSuXbvw7Nkzsf2ff/7Bzz//jAIFCohrxsLCAsePHzdhrs2XoKAglCxZEpxz1K9fH5s3b0ZoaKjYfuzYMYwdO1bUGVZWVnB1dRXXB93D9IfSphg6dChUKhU6dOiAhw8ffvBxKDA0+5ALeSAX8kAu5OLFixeiD9DV1fWjAkOVtAkJCVi5ciWcnZ0xdepUo56HOUAu5IFcyAO5kAdfX1+UKFECnHO4u7tj9OjROHToEI4fP46RI0eKfhLOOfr3768zIZW2pyNHjqBx48ai/h4+fDiA9+1BGmSeNciHPJALeSAXxiejoNDDhw9DrVajcOHCKF++PIKCgkTalGV58+ZN1KtXD5xzFCpUCIsWLRL97ETWIBfyQC7kgnwQpoQC2AmCICTk3bt3+PLLL0UQ3J07d8ToZ+XBYe7cuahevbpoQLZv3x7nz5+nyl/P+Pn5iVkPK1asiIEDB+Ls2bM4duwYtm7dimLFionO3vbt2+sEAhH65eHDh3B3dwfnHM2aNcPRo0cRGRmJd+/eITAwEP369UOZMmXEbKFbt24FQAE+hiAwMFB0bjVt2hT79u3DixcvkJSUhEePHuHrr7+Gq6uraJj4+/ubOstmzf3798XMxdbW1nB1dRUditqzfxOGx9fXVwQkFi5cGFWqVEH//v3Rp08fuLm5IW/evOCco0yZMli+fDlev35t6iybLXRdyENAQACKFy8unmt37tyJsLAwvHr1Cj4+PmjRooUYaFC7dm08fvzY1Fk2W/z8/FCuXDlwzpEvXz64uLjAw8MDLVq0gI2NDezs7MA5h7OzM2rWrCmCpellk2Hw8/NDhQoVxMzqTk5OqFatGmrWrAnOOWxsbMQg2e7du4uVuejZ1jDs3bsXtra24Jxj+fLlOis+ZXYNUGCofiEX8kAu5IFcyIOXlxcqVKiAEydOiM+UiRcUMgoM1U6XkJCAGzduGCfjZgi5kAdyIQ/kQh6CgoLQtWtXFC5cWLyvUFY6U/769euXYVBo06ZNYWFhgTx58qBt27YIDg7G48eP8erVqzT3IdKHfMgDuZAHcmEapk+frhMUqj0BWK9evaBSqbBs2TLExMSk2veff/5BzZo1YWVlBc45unbtSm27bEAu5IFcyAX5IEwBBbATBEFIivYsiXXq1MGQIUOwY8cODBkyBG3atNFpQPbt2xdeXl4UzGAgAgICUL9+fVhaWorOXc458uTJIwJOqlSpglu3bpk6q2aP9oACZ2dnlClTBtWqVRNLECl+1qxZg+joaFNn16zx9fUVAYlOTk4oXbo0PDw8UKhQIeHC0tJSzNxKwW+GxcfHRwTrVqpUCcePH6fgaBMRGBiI1q1bi45fpc5Q/uvu7o41a9bgxYsXps6q2UPXhTxoz+qTN29euLi4oGLFijovRezs7Gj2dSMQHByMPn36oFKlSjrtCeWvfv36WLRokRh8Ru0LwxISEoJvvvlGZ2Cy8pcvXz60atUK+/fvFwM76HnKsEybNk2U/+LFixEcHCy2pVf2KQNDu3fvjoiIiAz3ITKHXMgDuZAHciEP2v1NGo1GpyxnzpyZ4azG6UGDbD8OciEP5EIeyIU8vHr1Cnfu3MHGjRvx66+/ipVjOef48ssvMwwK9fDwEO+jlAHOSt+ih4cHNmzYkOa+RPqQD3kgF/JALozL3LlzRVmlDAoFgK1bt4rynDp1Ko4fP463b9/i+PHjWLJkiQgI5ZyjZcuWCAsLA0D9tx8DuZAHciEX5IMwFRTAThAEITF+fn46jUXtCt/S0hJlypShJRyNxJMnTzB16lTUr19fJ7CkRIkS6NOnD+7evQuAXgAag8DAQLRv314Esit/jo6OcHV1xdGjR8mDkQgMDETbtm1RtGhRcM5hYWEBzpNnO86XLx/++OMPU2cxV+Hj44MCBQqAc44aNWpg9+7dePv2ramzlSsJDw+Hp6cnevTogVKlSsHW1hYNGzZE//79ERQUlOaodMIw0HUhD4GBgejYsaMY/KS80HByckLlypVF8Dp1ZBmeN2/eIDAwEEuXLsWkSZMwcuRIrFq1CgcPHoRarRbPUfQ8ZRyioqIQFhaGLVu2YOnSpVi6dCk8PT1x7do1U2ct16B93xk/frxoX3Tp0gXz589Pd7+AgACMGzdOtNP79OmT6UCplEFEhC7kQh7IhTyQC/lIr4w2bdqE/PnzZykwNKvPvOQjY8iFPJALeSAXcjJp0iRRh3/xxRdZmtGYc4527dph9uzZOH36NBYtWoTPPvtMHGfmzJliP3LxYZAPeSAX8kAuDI+vry+cnZ1RuHBhHD58WHyuXb4TJ07Uefft5uam05fu6uqK3r17i6BQGhzwcZALeSAXckE+CFPBAYARBEEQ0vLw4UO2detWdu7cORYYGMjy5MnD7O3t2XfffceqVavGmjVrxhhjTKPRMJVK9cHHB8A45+L/NRoN45zrfJYyTW4lMTGRJSYmsuPHj7P4+Hj27t071qpVK1akSBHm6OhI5WREXr58yXx8fNiJEydYfHw8i4+PZ+3atWPu7u6sVKlSps5eruL58+fs4sWL7NChQywsLIxpNBrm4eHBevTowapVq0bXhZHx9fVlHh4eLCIigpUsWZKtX7+etW3b9qPqB0I/vH37lkVFRbHChQszS0tLU2cnV0LXhTy8fPmS3bhxgx04cIC9evWKqdVq1rlzZ9a0aVNWrly5j36eJfQLeZCLpKQkZmFhYepsmD3a5bx8+XK2ceNGFhAQwJycnNj+/ftZ06ZNderxwMBAtmnTJrZy5UqmVqtZ+fLl2dKlS1n58uUZ55ypVCqWP39+Zm1tzdRqNbO3t2fW1tYsNjaW5cmTh7xmALmQB3IhD+RCfqKioljfvn3ZiRMnWJkyZdi8efNYz549GWNp970qz1ohISHs4cOH7K+//mJv375lefLkYc2aNWOlS5dm5cuXZ4zRs8CHQi7kgVzIA7kwLeHh4axYsWKMMca+/vprNnz4cFa7dm3GmG75HT16lC1dupRdvnyZaTQaNnz4cPbzzz/rHOvFixds+/btbMKECYwxxn7++Wc2fPhwI55Nzod8yAO5kAdyYTyCgoKYr68v69SpE2PsfT2sXc5z585lnp6ezM/PT2ffjh07sk8//ZT17NmTOTo6Uh2cTciFPJALuSAfhCmgAHaCIIgcgEajYRqNhj18+JA5OjoylUrFHB0ddbZ/aJBJyn22b9/OQkJC2NWrV5lKpWKtW7dmVapUYe3atWOMURA7kXOg36rpUKvVzMLCQpQ/uTANvr6+rEqVKqxgwYLs1KlTrGbNmqbOUq4kvd8/BYaaBrou5IfqDNNB9yW5oGvBdGh3qF+7do3dvXuX2dnZsc6dO7P8+fOLdIGBgWzz5s1s5cqVLDExkRUsWJBFRkYya2trplKpmFqtZhqNhjk7OzNLS0sWExPDChQowPLnz88SEhLY0aNHmZubG117GUAu5IFcyAO5kJs7d+6INsa0adPYrFmzGGMZP2dt2bKFbdu2jd24cYMlJCSIzznnrHr16mzgwIFsyJAhjDEKEP0QyIU8kAt5IBemx9vbm61Zs4Z9/fXXrEGDBoyxjINCx48fzxYtWiTSKQPQGGPszZs3bPTo0Wznzp2sefPmbM+ePaxQoUKmObEcCvmQB3IhD+TC+KSsh7XL29fXlwUGBrIHDx6wAgUKsEKFCrHWrVuLfkNqr+kXciEP5EIuyAdhLCiAnSAIIgeg7yAG5cHizZs37ODBg+zAgQPsxIkTTKVSMY1GwxhL7oh0cnJigwcPZnPnzjVIPnI6VB6mRbv8lccZ8mEaUl4LdG2YngcPHrCwsDBWp04dmvWbIP4fui7kgOoMgiBkJrOO9ZSBoV999RWrVasWmzBhAlOr1axYsWLs3bt3LC4ujtnZ2YnVohhjzMLCgiUlJTFbW1vm4+PD3NzcjHRWORNyIQ/kQh7IhbyEh4ezpk2bsqdPn7LVq1ezAQMGpAro1PY3adIkEfBTpEgR1qBBA1a2bFkWFhbGrly5woKDgxljjE2fPp3NnDkz1f5E+pALeSAX8kAu5CA+Pp7Z2Ngwxj4sKDStwQGzZs1is2bNYvnz52f//fcfK1OmjPFOxEwgH/JALuSBXJiezOrTj61v0+qDpwFoGUMu5IFcyAX5IAwBvbUnCILIAWQU1JPREo9poVTyYWFhbOzYsezy5cssNDSUMcZYoUKFWI0aNZiNjQ0LCwtj//77L5s/fz6Lj49nS5YsoeCiFFB5mBbt8icXpiVl+ZMP0+Pm5kYBBwSRArou5IDqDIIgZCZlW1q7vR0UFKQTGNq1a1e2bt06tm/fPqZWq1mpUqXYpUuXWHx8PIuKimK2trYsJiaGvXz5kllaWjIA7NWrVyw4OJgFBwdTnZQJ5EIeyIU8kAt5sbOzY1WrVmWBgYFs27ZtrFWrVqxEiRJiu3Z/7YQJE9jSpUsZY4zlyZOHTZgwgf34448i7a1bt9jvv//OFi9ezGbPns0cHBzY2LFjKTA0i5ALeSAX8kAu5EBfQaGMMWZlZcUYSw42jY6ONkLuzQ/yIQ/kQh7IhenJqM2X1vasoH2Ms2fPsqCgIDZw4EBmYWFBA9AygFzIA7mQC/JBGAQQBEEQORaNRiP+HRQUJP6tVqvTTK98/ujRI9SqVQucc/E3d+5c/P333yLtgwcPsHr1aqhUKnDOsX79esOcRC4iKSnJ1Fkg/p/0rhHC+JALuUhMTDR1Foj/h1zIA7mQB3IhD/RcKxf0PGV4fH19MWHCBOTJkwecc/To0QMREREAgC1btoBzDhcXF7x+/RpJSUk6bXXtf2f0GZE1yIU8kAt5IBdyEBQUhJIlS4JzjtatWyM0NDRVmkWLFom+2EKFCoFzjiJFiiAkJEQn3Zs3b7B48WJwzuHq6oqrV68a6SzMA3IhD+RCHsiFfOzbtw8tWrSAhYUFOOeYMGGC2JZRG+/27duoWbMmOOdo3749YmJijJFds4d8yAO5kAdyYV78888/6N27Nzjn+PLLL02dnVwNuZAHciEX5CP3QkMUCIIgcjDKKLTz58+z1q1bs/HjxzPGWJqjnZVR0I8ePWLNmjVjt27dYpxzVqRIEXbq1Ck2ZcoU1rx5c5G+ZMmS7Ouvv2aDBw9mnHN2/vx5o5yTOaNSqZhGo2HHjh1j4eHhps5OrkZZGvvXX39lT58+NXV2cjXkQi4sLS2ZWq1my5YtY48fPzZ1dnI15EIeyIU8kAt5oOdauaDnKcPj6+vLlixZwuLi4tjnn3/ONm/ezAoUKKCTxsrKimk0GsZY5qtF0eoTHw+5kAdyIQ/kQg5Kly7N/ve//zFnZ2f2119/sQkTJrB3796J7efPn2c///wzY4yxJk2asOnTp7NmzZqx58+fswYNGrCAgADGWPJMyPny5WOff/45q1+/Pnv8+DG7d++eSc4pp0Iu5IFcyAO5kIuoqCj2yy+/sHPnzn3QjMaPHz9me/fuZYGBgYwxxurWrcvy5MljtHybK+RDHsiFPJAL8+L69etszpw57Pjx44wxxq5du8bu3Llj4lzlTsiFPJALuSAfuRxTR9ATBEEQ2eP06dNo3LgxrK2twTnHggULUqVRZkh89OgRypUrB8458uTJg7p16+L69esA0p9dac2aNeCcw9raGg8ePDDcieQSVqxYASsrK3z66ad49OiRqbOTqxk7diw45+jevTu5MDHkQi6Ukc2fffYZ+TAx5EIeyIU8kAt5oOdauaDnKcPzxRdfoEWLFnj58iWA96tCKG3mihUrIj4+3pRZzDWQC3kgF/JALuTh/v37qFKlCiZNmqTz+dq1a2FrawvOOZYtWwYACAwMRLNmzcQsx/7+/gDe99MOGjRIzKqflJREq658IORCHsiFPJALefDx8YGDgwOGDx8uPsuoDB8/fowFCxbA2dkZnHO0bdtWbKPVU7IP+ZAHciEP5MJ8CA8Ph4uLCzjnaNasGY4cOYLY2FhTZytXQi7kgVzIBfnI3VAAO0EQRA4mJiYGLVq0EMs6VqhQATdv3tRJozQIw8LC0LBhQ3DOYWtriyZNmuDWrVs6abRRXnQdO3YMefPmhZOTEwWw64GbN28KX59//jkFl5iQa9euiWXvKAjOtJALubh06ZIYFEU+TAu5kAdyIQ/kQh7ouVYu6HnKcGi/nI2Ojhb/VtrR69atA+ccZcuWxbt374yev9wEuZAHciEP5EJOIiMjxb+TkpIQHx+Ppk2bgnOO5s2b66T19fVF8+bNUwWIAsD48ePBOcc333xjtLybG+RCHsiFPJALeQgPDxf//pCg0MaNG+PFixeZ7kd8GORDHsiFPJCLnI8y0aG/vz86deqEvXv3Ii4uzsS5yp2QC3kgF3JBPgiVqWeAJwiCID6ePHnysHXr1jHGGCtcuDA7cOAAq1mzpk4azjl79+4dmzVrFrt16xZjjLFKlSqxn3/+mdWoUYMBSHNpYEtLS8YYY0eOHGExMTHMysqKlvjKJgBYzZo12aVLl5i1tTU7cOAAGz16NHv8+LGps5br0Gg0rF69euzChQvMysqKHTx4kFyYCHIhFxqNhjVu3JidO3eOfJgYciEP5EIeyIU80HOtXNDzlGGxsLBgGo2GMcaYnZ2d+FxpRyvLZms0GpaYmMjUarXxM5lLIBfyQC7kgVzIiZOTE2MsudxVKhUDwOLi4hhjjJUuXZoxxoSLChUqsA0bNrBmzZqx58+fs6ZNm7InT54wxhj7+++/GWPv3QIw6nmYA+RCHsiFPJALeShcuDBjjLGkpCRRZ6fk6dOnbOfOnWzJkiXs1atXrGHDhmzXrl2sYMGCDEC6+xEfDvmQB3IhD+Qi56NSqZharWblypVje/fuZZ9++imzsbExdbZyJeRCHsiFXJAPggLYCYIgcjgVK1ZkAQEB7OzZs6xKlSo625QXWFevXmXnz59n8fHxzMHBga1bt47VrFkz3eB1Zb/AwEDm4+PDGGOscuXKzM7OTmwjPhzOOdNoNKxRo0bs77//ZpaWluzgwYNs+PDhFFxiZFQqlXBx7tw54WLo0KGiA54wDuRCLhQfDRs21PExePBg8mFkyIU8kAt5IBfyQM+1ckHPU4ZHpUrdhaq0jZVgHxsbG2ZnZycGgxOGgVzIA7mQB3IhL4obCwsL5ujoyDjnrHjx4jrbGEsdIFqrVi02bNgwdu/ePVa4cGH29ddfmyT/5gS5kAdyIQ/kQh4yCgrdsWOHTlCop6cnc3NzY4yxNN/vEdmHfMgDuZAHciE/GQ0kU9qBdnZ2zNra2lhZyrWQC3kgF3JBPoj0oAB2giAIM6BMmTKscuXKqT5XOhl//fVXdv/+fcYYYzt37mQNGjTIMHhd2W/btm3sypUrjDHG+vTpw+zt7dN8KUZkHe3Aq/PnzzPGGDt69Cj75ZdfWEJCgolzl7tIy8Xx48fZkSNHaEYyI0Mu5CItHydOnGCXL1+mQUxGhlzIA7mQB3IhD/RcKxf0PGU6EhMTGWPJDqi9bFrIhTyQC3kgF3JgaWnJXF1dGQB24sQJ9vz581Q+lABRDw8P9uLFC7ZlyxaWkJDAGjZsyEqUKMEYowAgfUAu5IFcyAO5kJPMgkIJ40I+5IFcyAO5kAftuA9lEHNSUpIps5RrMbYLWgEnfUxxXZCP9DGmD8UD3QdzDtRjSRAEYeZcuXKFHT16lDHG2JAhQ1iHDh0YY2l3JgIQHZObNm1iCxYsYIwx1qlTJ/bpp5+KNNq8e/eOxcTE6ByDyBjt4JLLly+zdu3asdq1a9NIQhOQ0sXAgQNZnTp1aEYyE0Au5ELbx5UrV9js2bNZnTp1KODBBJALeSAX8kAu5IGea+WCnqeMi3LPyZMnD2MsuS0cGxub7Y5x7TY1ta+zBrmQB3IhD+RCHpRy6tmzJytWrBh7+vQpu3r1aprlV6FCBbZx40bWuHFjlpiYyMqWLcvGjx/PihYtauxsmyXkQh7IhTyQCzl59OgR27VrFwWFSgL5kAdyIQ/kQh60g0L//vtvNnz4cObv788sLCxowhcjY0wXUVFRjDEaQJgexr4uIiMj2YsXLxjnnIKm08CYPl69esU2btzIvL29mYWFBfnIKYAgCIIwa/bt2wfOOTjn2LlzZ7rpNBqN+PeePXtQtGhRcM5RrFgxrF+/Ps197t69izFjxmDMmDE4f/58msci0icpKQkA8ObNm2wdh8o7+yguoqOjs3UccpF9yIVcKD4SEhI+an/FA/nIPuRCHsiFPJALeaDnWrnQ1/MUALx+/Ro///wzdu3ahRcvXojPydV7Nm/eDM45KleujPj4+GyVjVqtztJnRNqQC3kgF/JALuThxYsX6NSpEzjnaNKkCby8vNJNe//+fXTq1AnHjx83Yg5zD+RCHsiFPJALeVCr1VixYoV4r9eoUSOEhISYOlu5FvIhD+RCHsiFnFy4cAFfffWV8BIaGqrX4yv9jRqNRvxb+S+hi6FdBAcHY9KkSejXrx9u3Lgh+uTJR2oM7QIAIiIiMH36dFSpUgU3b94EQH0l6WFoHxqNBocOHQLnHJaWlrh37x4A8pET4ABNk0EQBGHOrF69mo0aNYpVqlSJXblyheXLl09nhBtjjGk0GjEz0/79+9nkyZNZcHAw02g0bPDgwWzdunWMMZZqv8OHD7MePXowxhirUqUKGzhwIBs5cmSaaYnM+ZAy03bGWPKoztevX7OXL18ye3t7VqpUKWZra/vBxyU+nJQuHj16xJ4+fcpevnzJChcuzEqXLs2cnZ0ZY+TC0JALudD2oVarmZ+fH/P392evX79mpUqVYmXKlGGurq6MMfJhaMiFPJALeSAXhoWea82DuLg4tn//fta/f3/GGGMDBw5kXbp0YZ07d2aMkQ9tvv/+e3b06FH27NkzZmFh8VHHSEpKEvsOGzaM2dnZsSVLljDGqKw/BHIhD+RCHsiFPAQHB7MWLVqwR48esSZNmrCZM2eyunXrMgcHh1TPRDExMczOzo4xRmVsCMiFPJALeSAX8uDn58cqVarEKlWqxP744w+9zWisVquZpaVlKp9ExpAPeSAX8kAu5CI4OJgNHjyY/fXXXwwAq1ixIlu+fDlr3759to+dsp6PjIxkCQkJrGjRosIT+XqPIV0wxlhERARbvXo1W7JkCYuLi2OVK1dmHh4ebMKECczNzU2n7Z7bMbQLxhh7+fIl27x5M9u2bRsLCAhg+fLlYxcvXmTu7u7kIgXG8KF8zzfffMMuXbrE8ufPzy5evMiqVq1KPmTHKGHyBEEQhMlYtWoVOOdwdnZGYGBgqu3aMy95enqidOnSsLKyAuccn332mdiW3ojNLVu24NNPP4VKpQLnHFOmTEnz2IT+0Hbxzz//YNmyZShZsiQKFiwIKysrqFQqdO/eHWvWrBHpyIXhOXToEMaOHYv8+fPDzs5OjBxt27YtVqxYIdKRC8NDLuRi48aN6NOnD6ytrWFhYaEzK8eSJUtEOvJheMiFPJALeSAXpoWea+UmISEBv/76Kxo2bAjOOVQqFcqUKYPp06eLNLl9Zh/t2Vs2bNiAx48fZ/s3OnXqVBQpUgScc/Tr1y+7Wcw1kAt5IBfyQC7kxNfXF66uruCco2LFihg/fjwCAgJMna1cCbmQB3IhD+RCHkJCQvQ6K+WTJ0+wYsUK3L59GwC15T4U8iEP5EIeyIVcjBw5EpxzNGzYEMePH0dsbKzeju3r64uVK1eiY8eOKFu2LIoUKYJWrVphxowZCA4OBkAzHGtjSBcAcPLkSSxcuBBly5aFjY0NOOeoUqUKvL29AZALbQzpIiIiAgsWLEC5cuXAOUfevHnBOYejoyPN/J0Ohr42FIKCgtCuXTvykYOgAHaCIAgz5969eyhdujScnZ1x6NAh8aIqMTFRJ93PP/+MfPnyicCdTp06iW2ZLRHs5eWFn376SQSxjxo1SmyjABPDsWjRIlSpUkUMOOCcw9bWViyJwznHmDFjRHpyYRji4uIwYcIE5MuXT7iwsrJCvnz5dFz8+OOPYh9yYRjIhelRylOtVsPPzw8DBw7UKfv8+fOjUKFCUKlU4rPRo0en2p/IPuRCHsiFPJALeaHnWnlJSEhAeHg4Bg8eLILYOecYPHiwqbMmDfrs+J47dy5UKpVol48YMYJ+7x8AuZAHciEP5EJOAgMD0apVK+TJk0c8+yxZsgRhYWGmzlqug1zIA7mQB3Jhfjx79gwrV64U7WslOJQwDeRDHsiFPJCLj0c70H/ZsmX4/fffERcX99HH027jPX36FJ6enihQoIB4LlD6BpW/SpUqicDp3D7oQN8uMiM0NBRLlixB7dq1wTlHwYIFycX/Y2gXKYPXnZyccOLECXTp0oWCptPA2NcGkNymoSD2nAMFsBMEQZg5L1++RIcOHcA5h4eHB/777z/xMKDRaPD3339jxIgROg2N3r17i/1TBrpro92AefXqFdasWSMaLXPmzDHcSeVyIiIiMGTIEB1nLVu2xPTp0/HPP/9g+/btGDdunHAxY8YMU2fZLElKSsLNmzfRp08fHRfdu3fH1q1b4ePjg4MHD2Lq1KnCxezZs02dbbOEXMiBUifEx8fj8OHDaN++vXBRqFAhfPvttzh79iweP36MP//8E3PmzBE+5s2bZ+LcmxfkQh7IhTyQCzmh59qcxdy5c1GyZEkRuEg+9M+DBw/g7Owsyje3v2wyJeRCHsiFPJAL/RIWFoaVK1eiUaNGsLa2xt69e/Hu3Tu9HZ8GF2QdciEP5EIeyIX58O7dO8yaNUvU4ba2tpgxYwYSEhJMnbVcCfmQB3IhD+Qi+2jHc2QnOFO7fr58+TKGDx8uZvi2t7fHJ598gnHjxmHBggX49ttvReC0i4sL/Pz8snUO5oK+XGSG4io2NhY3btxA69atwTlHtWrV9LoyQk5G3y6UMk8reN3LywtA8moFbdu2paDpNDDWtaENBbHnHCiAnSAIIhcQGBiIEiVKgHOOypUro1u3bpg4cSJatmyJ0qVLi2CRcuXKYezYsWK/jILX0+LNmzci2Kd06dI4d+6cvk8l1xMUFIQvv/xSOCtZsiQmTpyYKl1UVBRWr14NlUqFYsWK4ezZsybIrfmSmJiIv//+Gx07dhQuGjZsiOXLl6dKGx0djZUrV8LCwgJlypTBtWvXTJBj84VcyIHSaI+Li8Ovv/6KRo0aCR89evTA7t27U+0TExODJUuWwMLCAlWrVhWzAhDZg1zIA7mQB3IhJ/Rcm7N4+vQp5s6dK2ZbqlSpErZs2WLwmVJyE0rHeUBAAObPn08d6SaEXMgDuZAHcmEYNBoNEhIScPfuXb0tnR0SEoJHjx4BoJeyHwK5kAdyIQ/kwnyYP38+OOcoXLgwZsyYgQcPHpg6S7ka8iEP5EIeyIXp0Q5eP3XqFLp27SpWy6xZsyamT5+uExidkJAALy8vNG/eHJxzfPbZZ3jz5o0psk4AuHnzJqpWrQpLS0vMnDkTSUlJNOjcAISHh2Px4sUoVaoUOOdwdnbG3bt3Abx/tqWgabkIDAzUGVSQ0hchBxTAThAEkUvw9/dHjRo1xChZ5U+ZPa9///7Ys2ePSJ9RhR0dHS3+nXKmjP/++w8lS5aESqVKM4CU+HhCQ0PRq1cv4a558+bYtm2b2K7dENFoNPD390elSpXAOcfatWtNlGvzIykpCRcuXECbNm2Ei759++LkyZMijVqtFteGRqPBvXv34OLiAs45tm/fbqqsmx3kQi7i4+Oxa9cu1KlTR/gYM2aMzlKPKeuWa9euwcHBAZxzHDhwwNhZNlvIhTyQC3kgF3JBz7U5i9DQUEyfPh329vbgnKNKlSrYvXu3XmdgJJL50EHkhOEgF/JALuSBXOgffc9AHBISgqFDh6JEiRK4cuWKXo9t7pALeSAX8kAuzItFixZh5MiRePjwoamzQoB8yAS5kAdyYTq06/wTJ06gZcuWsLS0BOccrVu3xpkzZxAVFQVAtw89KSkJu3btgrW1NcqUKYPg4GCj551IJj4+Hv379wfnHE2aNDF1dsyS+Ph4rFy5EkWLFgXnHDY2Njh27JjYpj1gQDuIPW/evDrvoQjjExQUJCZDzJ8/P+7cuQOAgthlggLYCYIgchGPHz/G6tWr0a1bNzRq1Ag1a9bEuHHjcPDgQZ10GY3G9Pf3x4gRI3D06NF003Tt2hWcc9StWxfx8fG0HGQ2UFxER0ejX79+IsinU6dO4oFYO11KWrRoAc45unXrlmE6InOU37GPjw+6dOkiXHz//ff4999/Rbr0ylhZRm3QoEEZpiMyh1zIh0ajwalTp9CkSRPhY9q0aXj8+LFOmrRQAhKnT58OgHxkF3IhD+RCHsiFHNBzbc4kNDQUM2fOFMHr7u7u8PT0pOD1bKD926W2smkhF/JALuTB0C7Ir+EICAjA2LFjxSqcpUuXRnh4uKmzlSshF/JALuSBXJgO7cAcmhnX9JAPeSAX8kAu5OH8+fPo1KmTCF7v3LlzpkHpDx48gLOzMzjn+O2334yUU0Ib5RpatWoVOOews7ODn5+fiXNlnjx48AC9e/dG1apVwTlHgwYNcP78eQDJ/SnafR5BQUFo1aoVOOf48ccfaVIAI5MyOH3btm1ikkN7e3sRxE7IgSUjCIIgcg2ffPIJGz58OBs+fDhLSkpiGo2GWVlZpUqnUqnS3B8Au3v3LluzZg1bs2YN27dvH/vss88YAMY5Z0lJSczCwoLZ2NgwxhhLSEhgnHPGOTfoeZkrAISLyZMns127djHGGGvfvj0bOXIka9u2bap02vtyzplarWaMMWZnZ8cYY+TiI9FoNKKMFy1axI4fP84YY2zAgAFsxIgRrFq1aoyx1C4AMMYYe/fuHYuJiWGMMebo6MgYIxcfC7mQC8XH8+fP2bp169g///zDGEu+Zw0fPpwVLlxYpNUuZ2U/X19f9urVK8YYY4UKFWKMpV8HERlDLuSBXMgDuZAHeq7NmTx8+JBt27aNLV26lEVHR7OqVauyn376iXXt2pXZ29ubOns5Eu1n2YiICFawYEHRjiaMi6FdaB8/rf8n3mOM60KpS9L6TuI9xnCheHj37h1zcHCge6AeCQoKYsuXL2eMMVaqVCn2ww8/0O/cRJALeSAX8kAujIv2s4+FhYX4/3z58pk4Z7kT8iEP5EIeyIV8BAcHs+3bt7M///yTJSUlsc6dO7MtW7bo9KGnxdOnT9nr168ZY4xZWlIIoilQ2tQRERGMMcZiY2NZXFycKbNklmg0GlayZEm2detW9u+//7LFixezU6dOsTZt2rCzZ8+yxo0bi3gExhgrXbo0W79+PTt16hTr3LkzXR9GRqlbjh07xs6dO8fWrl0r6p3o6Gg2fvx4duTIEWZra2vinBKMMUYtQ4IgiFyG8tBkYWHBrKysdB6iMoNzzlq2bMkGDBjAGGOsZ8+ebNOmTezly5fimJ6enmz//v2MMcZq1aqVZoA8kTWUB6gNGzawn3/+mTHGWMOGDdkPP/ygE+STVvAO55ydPHmSXbp0iTHGWPXq1XWOSXwYSmf6nDlz2I4dOxhjjHXv3p0NGjRIBEwzlrp8lQEcx48fZ76+vowxxsqXL59mWiJrkAu50B5McOzYMcYYY0OHDmUDBw7MsFNL2e/MmTMsPDycMcaYq6urgXNr3pALeSAX8kAu5IGea3MeFLyuf5KSksT9ZcSIEaxp06bM19dXdKYTxsPQLrSDgG/dusUYe1+3kGtdjHFdaNcvFy9eZAEBAUylUrGkpCS9HN9cMOY9as+ePeyrr75i9+7dYxYWFuRCT7Rr146NGjWKWVpaspEjR7Jvv/2WFSxY0NTZypWQC3kgF/JALozDu3fvGGNMTDilQO1n00A+5MGQLlI+K1ObL2OMeV1oNBq9H9McUcrp5MmTzNPTk6nVata2bVu2du3aDPvQFX/BwcHMzs6OqVQqMXEYYRy07ze3bt1iR44cYZxzVqFCBebi4mLCnJknKpWKAWB58+ZlzZs3Zxs2bGDdu3dniYmJrF+/fszLyyvVvaxcuXJs6NChrFSpUibKde4gZd37+PFjdvHiRdaxY0c2ePBgtnLlSpaYmMgSEhJY9erV2bx589jixYspeF0mDDm9O0EQBJFzSLmESkZERETgu+++A+ccnHO0bdsWAwYMwPDhw8Vnzs7OWLt2rQFznDvw9/dHq1atYGFhAScnJ6xbt05sy2jZ5bCwMAwaNAjW1tZwcnLCn3/+mek+RMZcunQJ5cuXB+cc1apVw8GDB8W2jMr1/v37aNu2LVQqFSpVqgRfX19jZNesIRdycfDgQdjY2IBzjnbt2uHy5ctZ2u/y5csoW7YsOOfw8PCgpSH1ALmQB3IhD+RCHui5NucQGhqKmTNnwt7eHpxzuLu7w9PTE+/evTN11syCiRMnomTJkuCcw8rKCi9evNDLcZVrgq6NrGMoFwqbN29GhQoV0KFDBxw8eFAcPykpSa/fYw4Y+roAgHPnzqF06dJwdHTE7du3AXxYX1huwdDXRXR0NCZOnCiWbL537x4AcpFdtO8rV65cQVhYmAlzk7shF/JALuSBXBiHZ8+eYebMmZg6dar4jNoGpsMYPqivKmsYw4VardZ530TXXtoYw8WVK1cwc+ZMgx3fXLl16xbs7OzAOUe9evVw5cqVDNMr5RoREYEKFSqAc44qVaogLi7OGNnNdWg/S6XVdv7nn38waNAgODg4gHOObt26GTN7ZklW++6uX7+OatWqwdLSEqNHj0ZCQgL1+xkZ7fv8s2fPsH//ftSrVw+ffPKJiF3jnKNLly6YMWMGoqOjTZhbIj1ofQKCIAiCaTQasbTQ77//zho2bMhcXV3THe1coEABNnLkSObl5cWuX7/Ozp8/zxISEsR2Ozs71r17dzZkyBCj5N+cuXfvHrt48SLTaDSsd+/eokzTW+4a/z+z2Pnz59nBgwdZYmIiq1WrFmvTpg1jjGZ2yA737t1jDx48YIwx1q1bN9a9e3fGWPqzhTKWvPzQ8ePH2bVr1xgA5u7uzipUqGCsLJst5EIOlPK+c+eOmKHh008/ZQ0bNsx038ePH7M9e/awZ8+eMcYYq1mzJi0NmQ3IhTyQC3kgF/JBz7U5A5p53bAcPXqULV68WPz/0KFDmbOzc7aOqVwryjXx4sULFhcXx4KCgpharWZ169ZllpaWzN7ePt3rLTdiCBfa3Lx5kx0/fpwFBgYyf39/5uXlxRo0aMDmz5/PypYty5KSkkQ/TG7HUC6024fnzp1jY8eOZc+ePWNxcXGsefPm7OLFi6xq1arkQgtDXxeMJfcZfv/99+zGjRvsr7/+Yk2bNiUXekClUol7fIMGDUydnVwNuZAHciEP5MLwPH36lO3du5etWbOGvXz5kqlUKjZr1iy9tZuV56qM+t+J9xjaR1xcHPvrr7/YTz/9xEaOHMkaN27MKleuzBjL+B1JbsTQLhhL7tc6f/48Gz9+PKtWrRrbtm0bXS9pYAwXkZGRrF+/fiwoKIhFRkayVatWkYtMAMDUajXbsGEDi42NZUWKFGFffvklq1GjRob7cM5ZVFQUmzNnDgsODmZ58uRhnTt3ZlZWVtT39AFk9NtUq9XivUZiYqJOucfFxTG1Ws2uXLnC/Pz82Pbt29nLly9ZbGwsq1GjBlu9ejVjTLffPWV7m9rf6RMaGsri4uJYhQoVMv0916hRg7m7u7N79+6xP//8ky1cuJBZWVkZMbe5F8WNcq0sXbqU/fPPP+zUqVMijbOzM6tVqxb74osvWJ8+fcSM69q/f7o2JMGo4fIEQRCE1Cizql+9ejXL6R0dHTF58mS4ubmhaNGi6NSpE2bPni1GutEIw49Do9EgPj4enTt3BucctWrVErNepTcrlfL53bt34eLiAs45ypUrh2vXrmW4H5E5b968Qe3atcE5R/PmzcXnmf2+jx07hsKFC4uZwp88eZKl/Yj0IRdyERYWJmbn69q1q/g8o1kt3rx5g7Vr18LZ2Rmcc9SvXx+xsbGZ7kdkDLmQB3IhD+RCDui5Vh6U557Xr1+LmUa0f9c087pxGDJkCDjnmDx5crafRbX3Dw8Px5YtW1CnTh0ULVpUzC7j7u6OL774Av7+/gDo+tFGny7SwtvbG8ePH0fTpk1FW8TNzQ1eXl4AqC2ijb5daN/b/v77b9SqVQsqlQp2dnYoXbo0OOdwdHSk2b/TwNDXhUJgYCDatWtHLrIJlZc8kAt5IBfyYGgX1EZPRq1WY/Xq1VCpVOCco2jRohgxYgRevXqll2Nr8/DhQzx79gyPHj3SeU4gF+8xpA+Fc+fOwd3dHZxzWFpaomXLlti0aZPYTj6SMYaLpKQk/PXXX+jYsaNogw8bNkxsJxfJGMMFkOxjzZo1sLa2Buccw4cPF9vIRfpER0eL9661atXC06dPM90nLi4OW7duRcWKFcE5h7OzM27evGmE3Jonly9fxqxZs/Dpp5+iQ4cO6Nq1K1q1aoUGDRqgcePGqFu3LipXroxKlSrBzc0Nzs7O4v2F9l/t2rVx6dIlALq/ee36/KeffqJV6TIgMDAQAwcORO/evcVn6d0/lPLbuXOnuO9kdQVg4uNI2U8VHByMqVOnomnTpjrXQpkyZdCiRQtcvnxZxIQo0LUhJxTAThAEQQAA3r59izp16oBzjq+++goRERHppk1ISAAAbN26FZxznDhxAm/evMGTJ090KnN6GZs94uLiRIOxU6dOGS5no5R7SEgISpQoAc45ChcujBkzZuD169fGyrLZ8urVK7EE2sCBA5GYmJjpg+v58+dFwFXJkiWxbds2qNVq6iTJJuRCLh4/fiyW4JozZw6AjBt10dHR2LFjhwjgqVixIs6dO5fpfkTmkAt5IBfyQC7kgZ5r5eHff//Fp59+ip07d+Lt27fi8wcPHlDwuoHRvo8cO3Ys2/cV7f09PT3Rq1cvnY76/PnzQ6VSwdLSUgROe3t7A6C2ur5dpCRlOyMsLAyenp5o3LgxOOcoUqQI7t+/n2ba3IYhXKQXvG5vb49hw4bBy8tLBJhQ4PR7DH1dpAUFsX8c/v7+OHLkiPh/Ki/TYWgXyv0st9cVWcGQLtIqf3KSPoa+LuLj48VzFEAuFPz8/MA5h42NDWbMmIGHDx/q7djR0dH45ZdfMGDAAJQqVQouLi4oWrQoBgwYgF9++UWkIxfvMaQPAIiIiMC2bdswePBgODo6iqDgCRMmiDTkIxlDukgreF1pf1PgdGoMfV0oqNVqbNmyRVwX5CJzzp8/DysrK1hbW8PT0xNAxs8/CQkJOHToEBo2bCh++wcOHDBqns2JBw8eoG3btuL+8SF/NjY24JzDw8MDAwcOTHNQiPaz2Lhx40Sf4Z07d1JtJ5L7kWxtbcE5x8GDB7O0z6pVq4STv/76K910mfXH0j0qfVL+Ts+cOYP58+ejQIEC4tqxtLSEo6MjfvjhB5w7d07n3QeQunzp2pALCmAnCIIgACRX2OvXr0eBAgXg5uaGI0eOZPoQtXjxYnDOsXLlyjSPR2SPly9folq1arCwsMDSpUsBZPxgGxgYKGYZzZ8/P3r27InAwEBjZdesCQkJQfHixWFpaSk6ZTP6jf/1118iYK5o0aIYP348wsLCjJVds4ZcyMWdO3dgb28PKysr7N+/P8O0r169wrZt21CkSBERRLV27VoKjNMT5EIeyIU8kAt5oOda06PMhF+/fn1wzlGjRg3s3r0b8fHxePbsGWbMmEHB60ZAXx3f2seZNm2aGODJOUeDBg3w/fff48KFC/j777+xZs0aMQtN6dKlERQUpJc85HSM9RJCaaskJibCy8sLrVq1AuccTZs2zdKsZrkBQ7lIGbw+dOhQxMXFAUgOnqDA6dSY4vwpiP3DCAkJES9Wv/vuO70fXztgOrcPdsoMQ7t48+YNDh8+jH/++UfneqA+99QY0oX2KrPbtm3DokWLUm0j3mOMe9T//vc/WFtbY8CAATqfE8mDB+bMmYMHDx7o5Xjx8fG4desWGjRoAAcHh1RBc0pw6Pjx48U+5OI9+vahkLJ+PnHiBIYNGyZ8/Pjjj2Ib+UjGEC7SCl5ftWoVtm7dSoHTGWCo6yIlFMT+YVy8eBGWlpbIkycPTp8+DSB1OSn/HxcXh6NHj6JZs2bitz937lxqO2STUaNGgXMOCwsLODo64vvvv8egQYPw9ddfY9SoUZgyZQp+/PFHTJkyBcuXL8fSpUuxcuVKnDp1CpcvXxZ9HYBuPaHdjhg7diw45yI4m9rfaePv749OnTrBysoK/fv3x+PHj9NNq1arkZCQgKFDh8LGxgY2Njb477//UqVLeT2dPn0aW7Zswbx58zB37lxcv34dz58/B0CTjmREUlIS/v77b4wePRr58uUTv+U8efLAyckJCxYsEPcwhcxmzwfo2pAFCmAnCIIgBOHh4ejWrRs452jYsKFY1lpB+4HJ19cXHh4e4JxjypQpxs5qrqF9+/bgnKN37946M1WmXJ7x2rVrcHV1Becc9vb2aN26tXiwIrKPWq0WjfGBAwciNjZWbNN28fLlS+zbtw/FihUD5xyFChXC999/j+DgYFNk2ywhF3IRGxsrZlkYO3Zsup0kgYGBWLZsGQoVKgTOOVxdXTF37lzRICeyD7mQB3IhD+RCLui5Vg58fHzEb71GjRpYtWoVJk2aJAISKHhdfrQ7zkeMGKETTDJixAjcuXNH57pKSkqCt7c3GjRoAM45xowZQ6sRmZCzZ8/ik08+QcGCBbFnzx4A9HLKEJw6dQp169aFSqWCg4MDfvzxR1H3KOWdMnBa6QOjl1PGJzAwEG3atBEuaLartHnw4AGGDBkiVqixsLDAhQsX9HLsrNyHqN54jyFdAMl9WuvXr4ezszM45xgyZIjOjNbk4j2GdKEdvP7777+jUaNGoj8yZRrC8NeFwr59+8SzLwUkpiYxMVEvx3n69Ck2bNggBpZbWVnB1tYWI0eOxMKFC7Fs2TL0799fBIfSO8K00ZePtEj5LmTdunXCx7Jlywz2vTkVfbjQrhdSBq+vXr0aAAVOZwVDXhfakIusc+/ePdjZ2YFzLvoptFHuN9HR0di1a5dYXY5zjnHjxuHRo0fGzrLZoH0vHzlypCjXrVu3ftTxtH/baQXoWlpaol69eqhTpw4F6maAp6cn8ubNC845lixZovNeSSknxd2dO3dQtGhRcM5RvXr1VOWopIuIiMDhw4fRsWNHMXO+8ufq6oqWLVuKVYbIhS5xcXE4ceIE2rRpgzJlyuiUXb169TBjxgz4+Pjo7JNRGdK1IScUwE4QBEHo8ODBA1StWhWcczRv3hxXr15FVFSUTpqQkBDMnTsXjo6O4Jxj8eLFJsqt+aI0MJYtWwYrKytUr14dN2/eTPWAFBgYiM2bN4sgXUdHR3To0AG3bt0yQa7NE41GA41Gg5kzZ4Jzjtq1a+POnTupXPz333+YNm2aCAgqVqwYhgwZAn9/fxPl3PwgF/KRkJAgGnf16tXDnTt3UnVAnjlzBl9//TWcnJzAOUepUqWwaNEimnFSz5ALeSAX8kAu5ICea+Xj/v37KFiwIDjn+OSTT8TsItWqVcOuXbsoeF1itF9sDR06VKfDfuHChemmVavVmDx5srgfGuuFMZGa6Oho1KhRQwzoIfTP69ev0aFDB/FCsEyZMvj3338BJM8kqv1CVzuInXOOu3fvmirbuZ6HDx+iS5cuqYLYaYDHe8LDw1GuXDmxosaqVav0ssKcck2o1Wrcu3cP69atw5gxY/DNN99g27ZtuHLlSqq0uR1DuVCIiorCpEmT4O7uLmY5LlasGObMmSPSkItkDH1dJCUl4bfffhMT+VDgdPoY+rpQUKvVNMOxgQkODsaMGTNEMFbRokXx5ZdfphqQ8Pr1a6xZswYqlQqOjo44fvy4iXJMAEBMTAymTp0KlUqFunXrwtfX19RZMkvUajXOnDkjJmngnGP9+vWp2t/agdMjRowQ2+g+ZVxSuhg2bJjYRi6S0Wg0ePnyJTp06ACVSoWxY8emOfHIy5cvMWXKFPF8qqz4QPea7KPdRz569Gide0t8fLzYlpSUpPO7zeg3nF6AroeHB/744w88efJE3McoUPc92mW6YMEC4WLlypVpvi/y8/MTgzcLFSqE5cuXA3hfjsp/g4KC0K9fP5QtW1YMDLS0tETt2rVRrFgxFC5cGJxzuLi4wNvbGwD1haRk+vTpOu2xzp07Y86cOYiPjxdllZX7Ol0b8kIB7ARBEEQq/Pz8dEYKTpw4Ebdv38aDBw/wxx9/4JtvvhEzwFSvXh0vXrwwdZbNlkePHonGoIeHB3bt2oXAwED4+/tj+/btaNeunQi4cnFxQb9+/VLNnE/oh9DQUFSqVAmcJy/3vmHDBnh5eeH8+fNYsWIFKleuLGY/LF26NKZNm2bwZfByK+RCLh48eIAKFSqAc45GjRphyZIluH79Ojw9PTFlyhTkz59fBMZVqVIFW7duzVa9QR2L6WNMF9R5kjHkQh7oHiUPMjzXkp/33L9/HwUKFBCzI7q6umLLli06L0YIudD+/U6cOBF58uQB5xw2NjZitreU6YD3HewHDx6EhYUFnJ2d6dnYRCQkJAAAOnXqJAYTEIbh0aNHmDFjBurVqycGqJ07dw5A6pe+QUFBYgY5JQ1hHJTn2JiYGDx48AADBgwQAw+srKwoGCIN7t69i0qVKmHhwoV6649NTExEaGgounXrhvLly+u8FOacw83NDbNmzRLp6XkqGUO40EaZ5W/t2rVo166dCLwaNWqUSEMuktG3i5TB68pKkJxzDBgwgAKnM8DQ14UCzaprOB48eIDx48eLiWHc3NywcuVKnfaDdj/U48ePxUpP2nUFYRrOnDkjnqUOHjxo6uyYJd7e3jr1Qt++fcU2pb0HvL9PWVhYgHOO7777zhTZJZDsZceOHaLOGDx4sNhGdcZ71q5dK37XS5cuFUGbwcHBuHTpEurVqyf6bTnnmD59OvUt6RHt4Ngff/xRlPOGDRs+eBIK7Xp6zJgxIkC3adOmOHr0qNjm7++vsyodBeomo11+EyZMEC569eqFNWvW4Pbt2zh27BgWLFgAFxcXcM7h4OCArl27IjAwUOyrlKOPjw/c3d1F/WxjY4MJEybg8OHDiIuLw6NHj/DHH3+gZcuWYoKZhw8fGv28cwITJ05EgwYNsGfPHrx69Up8ntV3pHRtyA0FsBMEQRBp4u/vj+rVq4uHsrx588LNzQ0WFhawsrIC5xwVK1bEb7/9lurlH6Ff/Pz8xFKNefPmRYECBeDq6qrzMqly5cpYvnw5QkNDTZ1ds8bPzw9ubm4i0Cd//vzIly+fjovatWvj0KFDiIiIMHV2zRpTuKDZSNPHz88PpUuX1qkzUr70bt68OW7fvq2z1Fp2ePnypV6OY24Yw4V2nX/gwAFcv3493e25GXIhD6a4R925c0dn+VRykYwpnmu9vb3x22+/if8nF+/x8fERA5NLlSqFrVu36rxwJeRk48aN4jrinGPt2rViW0Yd9jNmzADnHNbW1ggJCTFCTglttN00atQInHOULFkSUVFRNBhNzyjlGRcXhxs3bqBbt27gnCNPnjy4fPkygNR1QWBgoFjxg+oJw6JdvvHx8fDz80P//v1Rq1YtcM5FYEmpUqWwYcMG8pEGkZGReuvnePLkCTZu3CgmCVDKv2rVqqhXrx6KFy8uPvvxxx/18p3mhD5dpET7t+/r64tFixYJF1OmTDHId+Zk9OUio+D1LVu2AAAFTmeCIa8LbSiIXf+Eh4djzpw5YhbQMmXKYO/evXjz5k2G+w0YMACcczRu3BixsbH0bGsClN/8u3fvxArbkyZNMnGuzJe1a9eic+fOsLOzg42NDYYMGSK2aQeaKvcpZaIGJQCOMDwp70P3799Hly5dxICCQYMGmShn8pFysgTlucfFxQXNmjVD0aJFReC6SqWCpaUlduzYgbdv32bre1M6orpbv0HsADBw4EDxDr1BgwY6A/aV8tZelU47UDe3+9B2MXXqVFhYWIhnTmUSUGViEWdnZ3To0EGsIqfRaMT+9+7dE+k5T14x/ty5c2n+/v/9919UrlwZefLkwfr168XnhG7dGh4errPtY8qIrg05oQB2giAIIl0ePnyIESNGiOWttf9q1aqFP/74I9sNFCJrBAUFoVu3bihTpox4oFJGYfbu3RvBwcHZCrhSHrbooStzgoOD0bdvX1SsWFEEgHDO0aZNG4wePRpRUVHZOn5WHJCnZAztQpt//vkH3bp1w+bNm3VmFSAX7wkJCcG3334rZte1s7ODra0tvvjiCyxZskSvZXX8+HHUrFkTa9euRUBAgPicfCRjLBerVq0SS96NHj0af/zxh9hGLpIhF/JgzHvUkiVLwDlHz549dWa8IhfJGPq5Vhs/Pz+MHDlSzJaoQC7e4+PjI2Zir1mzJnbt2kWD9iRE+c16e3vrLFW+bNkykSa9QBGNRoPIyEh0794dlpaWaNCggc5y0IRh0Wg0OvccpY7gXHcpecJwhIaGokuXLuCco0aNGjrth5Sk9EXoj5QzVR06dAg//PCDGEil/FWsWBGjRo2Cr68v3asMjL+/P0aPHo3ixYuLF+8dO3bE/v37xbOAl5cXVq1aJV7Wr1y50sS5zl1o34/i4uKwZs0aqFQqODo60sy6BiQpKQm///47mjZtKu5NGzduFNvj4+PTDZymwF3jQkHs+kH53Xp6eoqZREuXLo2jR49m2DZPSEhAYmIi2rRpA845OnToYKwsE+lw69YtEVBHA88MS0hICFatWgV7e3twztGvXz+xTfu5V61W4+jRozh69ChiY2NNkdVcRcp7/+XLl7Fq1SoUKlQI+fPn1+mHvHjxoolyKR/av9l58+bpTASj/JUuXRpffPEFrly5orNvSEgI7t69+0H1rvZKXOfOndPZN7fX3/oKYg8NDYW7u7vo861RowZ8fHwAJAcDa5ezdqCunZ0dTZb4/2i72L59O3r06JHquqhYsSKmTJmC+/fvA0j+/SqevL29UbBgQRHs3rhxY3h7e4t02v8FgNjYWLFiY/fu3Y11mjkGfQ16oWtDXiiAnSAIgsiQ6OhoPHz4EEuXLsW0adMwadIkrF27Vq+BoUTWeP36Nfz8/LBx40Z4enri4MGDel9C6M2bNwgKCsLu3buxfft2nDt3joJ10+Ddu3d49OgRfv/9d/z55584d+4cYmJixPaPWUIoZdk+ePAAN27cwLJly7B8+XL88ccf4gE6rfS5FUO4SMnjx48xbNgw0SD98ssvsXfvXrGdXLwnJiYGEREROH36NG7cuIHbt2/rbNeHj6CgIJ2Ogp49e2L37t1iO/lIxtAu3r17h8mTJ6NevXrgPHmZNVdXV8ybN0+kIRfJkAt5MMY9CgBGjRqF/Pnzw9raGoULF8bChQvFNnKRjDGea319fTFy5EjRUUwBDelz//59sUR8tWrVsG/fPsTHx5s6W0QaLFq0SPyex48fLz7PKHgdAI4cOSICeyho+uPIzkDjxMREJCYmYubMmXBxcYFKpYKtrS22b9+u72zmCrR/71l5gavRaHDixAkUK1YMjo6OWLduXarjEIYh5TWRlJSEbdu24dtvvwXnXKzw6OTkBBcXF6xbtw43btzI8BiEfvDx8cHXX38t6v9PPvkEq1atEgM8lOtDo9EgOjoakydPhqWlJdq3b4/Xr1+bMuu5mtDQUHh4eEClUmHcuHGmzo5ZotFo8Msvv6BBgwbimevXX38FkFznKNdGRoHThHFJTEzEpk2bhAvtmZCpDskc5TcdHByMUqVKiVWC9uzZo9PHnt5+UVFRYsbvzz//PFXgD2F4lPKOjIzEjBkz4ODgkGqwM6E/tH/fCQkJ8PT0FEHsGa2QQpOIGY6UZfvu3Tvcu3cPw4YNSxWIXbBgQYwePRpHjx41ZZalRLtf/L///sOOHTswYsQITJkyBStWrMCTJ09EO0AZ+P3ixQsMHDgQTk5O2Llz5wf9vt+9e4fZs2ejQIECaNmyJXbu3ClmVs7tbfX0gth//vnnD3p/ERERgc2bN8PDw0MMWFZmmk45eD8wMBAtW7ZE3bp1qU9YC+3f4uvXr3H16lX88ssv+Pnnn7Fjxw5ERESIwUnaM68HBASgXLlyIvC5bdu28PPzS3VMBaVvS/HdsmVLQ59aroauDTmhAHaCIAjio6GGtjx8TGMupb89e/agc+fO4uWVMhK9YcOGWLx4cbr7Ebp8TPlo+3v16hXWrVuHypUr68xEplKpUK1aNcyfPz9b35Wb0Ff5xMTE4MCBA2I2GZVKhcKFC2PixIkiTW7vUDEm0dHROHLkiBiJrsw+pv3ylq4N4xAbG4uYmBisWLECrVq1Ei8LR48eLdKQC+NALuTj9OnT+Prrr4ULukdlHX3UqUrwujKTRvny5WlWvky4f/++ePZcvny5qbNDpIG3t7dYtrljx45i1pfMgtdv3rypM0Dh1q1bGe5HpEb7BeHTp0/x9OlTPHv2DCEhIbh//z4CAwPh7e2NK1eu4Pr167h+/TqOHTsGT09PbNy4ET169EDDhg3Fs2vKOjotlNku9TW4yhzZu3evGOSd2e85Li4OtWvXBucczZs3N0b2cjUpfQQEBGD//v1o0qSJCPDR7nP65Zdf4O/vn+ExALou9EVgYCC+++47Ue+XLFkS//vf/3RmvE/5jLRv3z7h7ebNm8bOMqHFkCFDRADW8+fPTZ0dsyMxMRFbtmxB4cKFYWFhAXt7e/z888862xXUajW2bt0qZnJdsWKFCXKce0lZTyxevFg8Zw0aNMhEucqZxMTEoEOHDuCco1ChQpg3bx4iIyPTTa9dR4wdO1YEZ1FAqOkIDQ3FqlWrUKFCBeExKCjI1NnK0WR1puO3b99i0qRJsLS0RNWqVVMNxiSMx9u3b3Hr1i10794dVapU0Wl/16tXD4MGDUJQUJBO/UH9IrpkVh5p9aMOGDAAnHM4ODhgz549We5rvXDhArp27SraGEWKFEHXrl1FuzC3t/m0z1+pa0uWLAlfX98s7a+4TExMhK+vLz777DNwzpE/f35cv349zX3CwsLEvS+3l782mQ1ASrk9LCwMn376qejzaNasmfhdZ3SNxcXFiUG0TZo0ofuTgaBrQ14ogJ0gCIIgciHaD73Xr1/H6NGjdUahOzo6okCBArC2thad8NpLDlKwT9bJrKy0XRw6dAhffPGFjouiRYuiZMmScHR0JBfZJDtllZSUhDdv3mDUqFFwdHRMc1Yf4sP4GB/a+8TExGDs2LEoWrSo8PHDDz/oM4u5Bn3cR3x8fDB//nzhYtKkSXrIWe6DXMjDx7rQrteDg4Mxd+5c4WLs2LH6yh6RAUrwuhKU1bBhQ0RFRWHPnj0UxJ4J/v7+mDFjBpWJpJw9exaOjo7gnGPOnDkZvlBXHPr5+aFdu3awsLCAtbU1hgwZQqupZYNp06ahfv36KF68OFxcXFCsWDE4OTnByckJ+fPnh42NDWxtbZE3b17RnrO0tNQZlFykSBGd2fPTevFx584d1K1bF//991+6aXI7GzduRMGCBTF06NBM0yozJH355ZewtLREmTJldAJ1swrdGz8cX19f/PLLLyhbtqwYSKP0a/Tr1w9r1qzRuZdlVMZ0XeiH8PBw/PTTTyhcuDA453Bzc8OVK1fSTa84uX37tri3/fnnn8bKLqFFQkICAGDq1KlQqVQoWLAgnj17ZuJcmS8XL17EtGnTkCdPHnDO0bdvX7FN+/6jVquxdu1aeHh44OLFi6bIaq7n8ePHOHXqFBo1aqQzGczkyZNNnTXpUe7x165dE7Ovt27dOtWgsvQ4evQoatasCc45ypYtizt37hgyu7kCZbAekNz3HR8fj9jYWLx69QqRkZF4/vw5QkNDERQUhBs3bmD37t1YsWIFatSogaJFi4pZRDdt2gRAt48qrecser5Nm/j4eNy6dSvDVQi0OX36tFhZaMOGDQbOHQGkbgvs2bMHffv2Rb58+XTer9atWxdTpkzB06dPxSzJdF1knYwCaLXL6euvvxaDmT4kiD0kJATnzp1Dhw4d8Mknn4BzDldXV3h5eWX6/bkB7d/5nDlzsHz5crx69eqjjhUYGIh27dqBc45WrVrhyZMn6abN7eX+sSQlJUGj0WDdunXi91ymTBkx8UJmAfCnTp1CyZIloVKpxHMs3Y8MD10b8kAB7ARBEARhRigvM4D0X+ZpP1zt2bNHzK6hzE7Zu3dvXL16Ff7+/jh9+jRmz54tgn3mzZtn8HPI6SiNCe3Oray4WLp0qZgRjnOOxo0bY+TIkQgODsazZ89w+fJlLFiwQLhYuHChYU/EDPgQF5mh7WrixIlwdnaGtbU1OOeYMWNGtvKZW1B8vH37Vnz2sT609xszZgzs7OxEIMTKlSuzl9FcgD5daHegxMbGYu3atVCpVMibNy/27t2bvYzmAsiFPBjKRVRUlHDBOcfq1auzl9FcRFaea1Pi5+enM/N6gwYNxAvg2NhYbNmyhYLYiRzL9OnTwTlH8eLFMwxYU37PgYGB6Nu3r5i13d3dXXTC02/+wzl58qROILr2S3HlM2tra6hUKtja2sLOzg62trYoUKAA3NzcULVqVcyfPx/Hjx8Xx0zr3ubt7Y0aNWqI4JO7d++mmza3ogQLKtfD+fPns7SfMgNW3rx5ERYWluXvUwIdFOiFlS7K/UQpl+joaERERGDcuHFi5QHtAfr9+vXDoUOHdI6R2e+brovso5TV77//jhIlSoBzjhIlSuDSpUtZ2m/jxo2wsrKCg4ODGERAGA/lOnv+/Dlq1aoFzjnKlSun03Yh9IP2Pf7du3fw9PSEg4NDqkkstJ+lkpKS8OLFC6ofjIByT0pMTERMTAyWL1+OVq1aiT5apZ5v164dtm7dauLc5hxmzpwpyu/EiRNZ2sfb2xu9evUS+2mvVEB8OBQ3U94AAOVJSURBVE+ePMH27dvRuHFjtGnTBk2bNkWVKlVQs2ZN1K5dG6VLl4abmxvKlSuHYsWKwdnZWbTztP+cnZ2xcuXKVM+62ves7du3Y/r06WluI5LvL7t374arqyv++OOPDNMqZZeYmIh69eqBc47+/ftDrVZTuRqBxMRErF69Gn379tUZPF6kSBFUrlwZnp6eGQ7Ioesi+2gPRu7Xr1+Wg9hTzlj9/Plz7N+/H02bNgXnHMWKFRMzjed2F9ptXu2+CeW58927dzp96OmRmJiIzZs3w9LSEsWKFcOZM2cAUPnqG7VaDQ8PD3DOkSdPHly7dg1A+v1I2p9/8803oj6nQeMfD10bORcKYCcIgiAIMyEmJgY7d+7E0qVLxWcpH660/3/jxo2oX7++eBj+7LPPsH///lQz+cXExGDJkiVQqVRwd3fH/fv3DXsiORilfCMjIzFz5kydgP+ULrQbJdOnTxeznCizSF+9ejWVi9jYWDGrbr169RAaGmrAs8nZfIiLrB4LAK5evYoGDRqIGZgqVaqEFy9e6CfTZoxShs+ePUP//v11OgM/9lhA8uwmRYoUEddO27ZtP3oGgtyCPl2kxZMnT9CqVSud4FBq6KcNuZAHfbtIWc4vXrzAkCFDoFKp0KJFCzx9+jRbx88NZOW5NiX37t3D8OHDxQzVjRo1Etu0l3jUDmIfOXKkYU6AIAzA7NmzwTlHxYoV033e0Z55/auvvkLBggXFC9yAgAAAFHybHYYPHy6C1evVq4ft27dj79692LVrFw4dOoQzZ87g5MmTOHv2LP777z/cuHED3t7eePPmTaqZ79Py4O3tDXd3d7EqmvLfe/fuAaBgXW3+/fdfNGjQACqVCqNGjcLLly8zTH/58mW4urrCwsICLVq0SFWW2nXM8+fPcfv2bQwfPhyfffYZWrdujV69emHbtm14+PAhAHKRHt7e3vj+++9FgK3yV6NGDXz++ee4f/8+Xr9+/cHHpOsieyi/79evX4uyLFasGA4fPpzhftr3qY4dO4JzTrN+6xGNRqNz79EOdktMTBS/bcVDWFgY5s6dK/pAWrRokeWZYYmPJzExERs2bECePHlgb2+PX375xdRZynWkbAc+f/4cP/30E1q3bq0zsNDNzQ2NGjXCmTNnqM2dRZT7y2effSbuK4mJiZm2vUNDQzF48GCddxnKsait8eEkJSVh/fr1Ois3pfenPZBWpVLBwsICNjY2qFmzJjp37oxr166J1YcUtH3u378fFSpUAOccgwYNSjNNbuft27fo0aMHOOfo2bMnIiIiMt0nNDRU1M+9evVKN11Wrg9ykZqU5ebt7Y3Nmzejdu3aYlIjzjns7e3RokULHDhwAA8ePMjwGHRd6I+0gtitrKxw9erVLO2vPSDa29sbLVu2FCuChIeHGyTPOR3tiSvGjBkjyimz32xkZCSKFSsGzjkGDBiQpX2ID0OZbMHa2lpMtpaV4PVZs2aJe9ngwYONkldzhq6NnAkFsBMEQRCEGRAdHY2DBw+Kl4Rjx45NlUb7QWvLli1i9irOOUaMGIHAwMBUM2cpXLt2Dfb29uCc4+DBg4Y9mRzOy5cvsXLlSpQrVw6cc4wbNy5VGm0Xs2bNgouLi3Axa9YsnaUiUz4g//3336Kj8vTp04Y7ETMgKy4+hEuXLqFevXoieL1y5cqIjIwEgFSDDYjUPHnyBD/++KNYzvRjfGhfDydPnhTLnivB62/evAFAPjJDHy4yYsKECeCcw8nJCY8ePdLrsc0NciEP+nCh/ZI8Zf29b98+mkEji2TluTYlSUlJOHDggHhhqFKpsGjRIrFdu15QgtiVWfpGjBhhkPMgCH1z+PBhWFhYoFixYjqz3yptN+W+c/v2bXTp0gXOzs4ieP3ff/8FQIGeH4t2uY0cOVLcz3fs2JHlY2T24kM7SNfFxQXTpk1DixYtKFg3AzZt2iRcrFq1SqcdrR24Ex4ejsmTJ4t2dEZ1/Llz59C3b18UL148VcCQg4MDatSoAW9vbwAUoKWNv7///7F31mFVZV8fX/uSgggCBgYKdhd2t2N3jz22jq2j/syxx+6xdTBGx+7AwG4QKUlRVFAUkL7wff/gPdtzgw4V9ud57iPes8+55+x11s7vXhsDBgyAsbExz2d9fX2UKlUKs2bNgpubG48Wl5ZJQOEXmUdCQgLGjh0LxhhMTU2xaNGiZBd/y+20fPlyMMZgYGCAP/74Q+O4IGt5+/Yt7ty5g65du6JEiRI8suWdO3c00iYnzhKo8uXLl1SJEoFEAYQUBGbYsGFZfGcCCfX32dHREUuWLFEJAiO1dfv164c7d+5o2DQhIUH4RTJI+SPVrX369EkynYSPj49Ke7hjx468ryFIPx4eHnyMQl9fH/369cPvv/+O2bNnY/ny5Vi4cCGWLFmCv//+G9u3b8fmzZvx77//4tKlS7h16xbCw8N5+1duL/nfR48eRdmyZaGnp8ftJ3am0yQ2NhabN29GgQIFYG1tjePHjyfZ7pfaoI8fP0bRokV5PZFSuXPnzh38+++/GDt2LMaPH48DBw7g7t27SaYXJPLkyRNs2rQJRYoU4TsQSH4zevRo2Nvbp+o6wi8yH/m4a//+/dGqVat0X+vcuXOwsLCAlZUV3wVB9L01CQ8PR+fOncEYw6JFi1JMHxMTg69fv/L58l69emXDXeY+pk2bBsYYihYtmuwiDvk7vWXLFpWgeSktNBckj/CNnxchYBcIBAKBIAdw6tQp2Nra8m3SOnbsmGR07uPHj6NBgwa8Mz5jxgyEh4en+BtVq1YFY4xHshYdRk3i4+OxceNGFChQgA+ejB07NskJkY0bN6J06dLcFitXrkzy2tJASXR0ND9n7969KscE30irLVLi9u3bqFu3rhCvpxOlUokZM2bAwMCAT3yvWLFCRWSSEsmJ19u2bcsj+QnxQvJkhi2SQpoomTNnDvT19WFhYYG3b99m+Lo5FWGLH4fMsMXBgwfBGMPhw4dVvpdH/i5btiwYYzyquKi/tZOWdq06x48fx/jx42FoaAjGGAYOHMiPqYvYpQhnc+bMUdmCVSD4UXn+/DkqVKgAxhiWLVumNerqtWvXYGtry32gUKFCuHfvHgBR5mQUeRtz8uTJvB26bds2jSiHacXFxUVFpLtu3ToEBwfj9evXaNu2rRDrqiF/l6WdCRhjWL58Od9mXOLFixdYsGABF1U3bdoU79+/B6CZj/v374ehoSGPflm4cGHUrFkTEyZMQMuWLVGxYkVuI7GduSaSX5iZmaF48eLYtWuXhqAtLfkl/CJzCQ8PR7NmzcAYQ9WqVfH8+fMk08rtdObMGdSpU4fn99mzZ7PjdnMkHz58gKOjI06ePImDBw/i8OHD2LNnDzZs2IC1a9di6dKlmD17NqZPn47ffvsNnTt3Rps2bVCiRAkuzpKii+7ZswdA0iJFaat69e8FiXz8+BHbt2/nfbfU5JEkRtHV1YW3t3dW36JAxqVLlzB79mwYGhrCyMiIL+IwMDDAggULcP78eZX0wi/SzqBBg8AYQ+PGjREREaFyTF6/Pn36FCNHjuTlUfPmzXHu3DmRn5mEq6srLCwswBhDy5Yt4enpmeZrpCReZ4zB3NwcXbp04e1jIdbVJCgoCB07dgRjDPXq1YOzszM/Jt8tRaJdu3a8jr548aLKtaR5VKVSiQcPHmDy5MnQ19fnfXYpCEPJkiWxcOFCjd8RJAYM6devH2rUqKGygKlIkSKYOHGiRp4n1y8QfpF1aJsnTU8fLTQ0lAtJhw8fnhm3liMJDw/H9OnTwVjiLqTPnj1LMq18Ry4peE/btm1VjgkyjlKp5H3unj17JplOrq/ZtWsXihUrxsseeT0gSB/CN35ehIBdIBAIBIIcgI+PD++0Dx06VGNVp9TIcnNz49vfSZHHYmNjk712QkICHj16hHz58oExhq1bt2bZc+QEvLy8eP7OnTs3yUmNq1evolGjRiqT7RLJNYrPnDnDzzl27Fim339OIrW2SAl18XqlSpWEeD0deHp6qgh9pGjpqUGI1zOXjNgiKeR5L9UzBgYG8PHxyfC1czLCFj8OGbFFXFwcxo8fz8+XhBDywcgDBw7w45s3b870+89JpNSu1YY8r4ODg7F7926YmJhoREmUp1MqlXjx4kWy0UcFgh8NKQqu1L49c+YMAgMDsWfPHkycOFFlS/nSpUvDzc3te99yjiI5EXt6+wUvX75EpUqVeISmtWvXcoE1ALx69UqIdbUgL8+liSnGGOzs7DBx4kQsWbIEEydORJ06dbhf1KhRAwcOHNAYAwkNDVXxLSMjIzRq1AjPnj3jtggLC8Pjx4/RsmVLLtgS25knIrfF6tWrsXXrVvj6+iaZJjUIv8h8Ll26xN/xLVu2JJlO3ve+d+8eevXqxc+bP39+NtxpziQgIACjRo3iuwWl52NpaQlbW1tcunRJoxyT283e3h6MMfz2229ajwuAs2fPQkdHB5aWlikulJXq91WrVvEAGS4uLkmml/Ja5HnaUM+v9+/f4+HDh+jatSusra1VfKFSpUpYtGgRHj58qHJOchGPhV9oR8qDvXv3wsTEBGXKlFFZfKaeh1I0S8YYWrVqhaNHj4p3PpNxdXWFpaUlGGNo0aKFyuLMtORxciLd+fPnIyEhAfv37xdi3WTw9fXlC1ibNWuG+/fvayzwSEhIQL9+/cAYg56eHlq0aKGy8EBqm0ZHR2P58uVo2LChRnlmZ2cHW1tbbospU6Zk63P+DPj5+ankW7169TB8+HD4+PikaTG58IusR14XpycIntTGlXa+6dixY6bdW07k6tWr/D2eM2eO1mCF8uB4S5YsgUKhgI6ODhYvXqxyXJBxlEol39UmKQG73C+2bduGEiVKQEdHB4wxjBo1Sms6QdoRvvFzIgTsAoFAIBDkEFxdXTFq1Cjcvn2bf6feuJo/fz7v5I8ePZqLPpNCPogpnXf06NHMv/kchpubGxYuXKgRJUNujzFjxqiITySS6pRI5y5fvpwPoNy6dSsL7j5nkZQtUouIvJ65uLm5YceOHSmWPXLUxevyCV8hXk8/qbGF+oCjfFJKOqZez6xcuRIKhQIKhQKdOnVCVFSU6OingLDFj4M2W6R2sDA4OBjjxo3j5dPSpUt51OPjx4+jW7du/Nh///2XJfefk9DWrk3LwK1SqcTevXt5hL41a9ZkxW0KBNmG/P2fOXOmyuRtsWLFwBjjEx6lS5dG37598ebNm0z9XUEimSlid3Nz4/YzMTHB3Llz+fXldbaXlxcX65qYmKhEAMzNyG2xePFiWFpa8r6yFNFQ+n/Dhg2xZ88eDdFJSEgI/ve//3E7li9fHlOnTtU6uRUfH4/z58/D0tIShQsXFv1xGfJ3P6m2aWoRfpE1nD17Fnp6ejAzM8Pdu3dV+hES8vx9+vQpBg8ezH1j8ODB3A6ibkg7QUFBPJKk1D4tVqwYihcvjnz58qFIkSKoUKECSpYsCVtbW9SpUwd169ZFvXr18Ntvv2H27Nm4efOm1l215HY7ePAgzMzMuN3Gjh2rNV1ux8HBAdbW1jAyMsLq1auT3Y0pISEBSqUSQ4YMAWMMpqam8PLy0ppOTmhoKN6+fQsvLy94e3ur+I2wRdKEhITg3LlzaNq0KUqUKKHS5v3ll18we/ZshIWFpZiHwi/SRmBgIN9to2nTprh48SJCQkLw+fNneHh4YPDgwSr26NatGy5evCjE61mEm5ubiojdw8Mj3dc6duwYF3BZWFiozENFR0dj586dWsW6oq5PxMPDA1ZWVlxsPnr0aJw/fx4XL17E33//rSJIL1iwoMrcqdQ+joqKwrBhw3hkV8YYBgwYgK1btyIyMhIxMTFwcXHBmjVruC3Wrl37nZ74x8XV1RWNGjXCvHnz8P79ey5cT8+7Kvzix0Tqa0RFRaFUqVJ8sYJ8LkSgyfr163nZsmnTJpUxD2l32djYWJw9exYNGjTgaR0dHb/XLedoVq1aBR0dHTRu3BivX7/WumsHACxbtgzm5ua8rJHvIivmujMH4Rs/H0LALhAIBAJBDkI+4K7eobtw4QJvfLVv3x5OTk6puubz58/54EqjRo0yvD16biG5yPaHDh3ithg0aBA+ffoEIOXB3jt37kBPT0+sPE8jKe0ykBRCvJ41pDdaTGZGXhcDXonI8yEjgyKfPn2Cu7s7xo8frzIpuHHjxsy4zVyBsMWPQ1K2SCkyH5AYJW7AgAE83y0sLFC1alXkzZuXfycfjBQkj7xdK7dFahdBvX//Hr179+ZiB21iRIHgZ0LuB+vWrePb0kqfAgUKoF+/fjh79qzGzgL79u1TEZmkBimtk5MTli9fjo8fP/J2dW5vSyUlYt++fXua+gmenp6oU6cOFzXWqFEDT5484b+hLtZt1aoVFxalZUFoTkZui9OnT2PKlCkwNTXlu3CUKFECw4cPx8uXL/kElXROXFwclixZwu1Xs2ZNbNiwgdc/2tpkISEhKF26tMZCdEHmIfwia5CiD5uZmWndnUMuyLl9+zZ+/fVXFaGiFOVekH5cXFy4ILFixYq4ffs2IiMjERwczNupMTExvKwCtAul5D6gLtKV+h3ybehF9FBNQkND+Q5a1apVS3LHJ6keePfuHWrWrAnGGAoVKoSPHz9qTQcAb968wbp169CwYUPkz58fpqam0NXVRa9evVR2PxC2+EZ8fDxCQ0Oxfv16dOnSRaV9my9fPjRv3hzbt29HeHg494nkxk2EX6QPT09PFC1alI9llCxZEtbW1ihSpIiKTSZPngw3Nzeeb+kRdIo8T5nMELHv3buXt6fMzMywcOFCfkzuS3Kx7u+//55Zj5Bj8PT0RPXq1VX8gDHGyxYDAwNYW1tj//79/Byp3xwZGYkePXpAX1+fn7dmzRoEBwdr/E5ERARmz54NHR0dtGnTRrRrtaA+rpeeskT4xY+JvE6Rgr8ZGhpi2bJlKscF35DXv/JF+fPmzVMJCBMdHY2tW7eiadOmPM2SJUu+xy3nCs6fP8/n5davX69SliuVSjg7O6sEOGSMYcSIESppBBlD+MbPixCwCwQCgUCQA5F35qSG2qxZs2BgYABzc3Ns3749VR2+gIAADB06FMbGxlAoFJg2bVq6xcCCRFtERkaiZ8+eYIyhbNmyOH/+fKrOdXd35yIVS0tLbNq0SWvELEHmkFHxuhC4Z5ysiLwuj0QqBr2+Ic/DW7du4cKFCzh79iwOHTqEAwcOYN++fVi/fj1WrVqFNWvWYMGCBZgwYQLGjx+P3r17o2zZsrCxsVGJcjlt2jR+TZHXqUfY4sdky5Yt2Lx5M4Dk8zAhIQEXLlzgkRSlRWfSp0+fPvD29gYgovakBXmeP3r0CCdOnND4Pim2bdvG8//GjRtZdYsCQbYhryeCgoJw//59XLhwAQ4ODnB1dVVJK5UzN2/ehImJCQwNDXHw4ME01QVPnz7l26bXr18fy5cv5+2p3F6OJSViX7t2baryRrJDWFgYTp06hdatW/NJWimyt7qtvLy8MG7cOBUBnEDzXXz9+jU8PDzw5MkTjQVo8rTbt2/ndrOzs8OuXbuSjeQXFxeHL1++oEqVKmCMqYgdBJmD8Iusw8/PD2XLloWenh527NihEtVeXp4dOXIEnTt35r7RoUMH3L59W/QjMglXV1dYWFhwQeKrV68AqIp2pPGkhIQElbEldRvI/3/o0CEupCtfvjxWr16Nv//+W4h1k+H169eoW7cuXwDz4sULnt/qY3pdu3ZNUkgl96X169ejXbt2WgWOon+eNBEREejevTvPY8YYbGxs0LhxY9y8eRMBAQEq6VPqk0sIv0g7Xl5eaN26tYZo3cjICK1atcLevXtV0kdGRuLJkyd49+5dqn9DntcPHjyAi4tLksdzO+oi9rTuMLt69WrY2NhAR0cHBgYGWLRoET8mL+cksa6BgQEYY5g+fXqmPUNOISAgANOmTUPt2rVVfMPY2BiDBg3C2bNneVpp/jQqKgp9+vThaQ0NDXHo0KFkf+e///7j6aUFnAJNMlJOCL/IOjJil9DQULx79w4DBgxA/vz5wRiDubk5rl27lol3mPOQ9+NmzJihElSnbdu2aNOmDcqVK6cS6GjChAnw8fEBIOrcrGL+/Pk8v4cNG4YVK1bg4MGD6NWrF2rUqMGPWVtb448//uDnpVe8rn6eEMEL3/hZEQJ2gUAgEAhyAWFhYahQoQIYY2jcuLHKZEhSfPz4EatWreKRN0qVKoUPHz5k1y3nWIKDg2FtbQ3GGLp27ZqqRrC/vz/GjRvHJ7kaN26sEbVdNKbTRkxMDF6/fs23jFKPNpYR8brUMfry5QscHBzENsGp4OPHj3Bzc8PXr18BqNojsyKvP3/+HKampujfvz//TthDldGjR3Pxc3o+Ojo6qFatmsoqdW02cnJywoULF5LdNSS3k1220IawhSoXL16EqakpTE1NUxXxKjIyEtWrV0ejRo1w+fJl9O3bF1OnTsWGDRtU0qVF3ChIxNPTEy1btoS+vj6cnZ2TTSvV13fv3uXtpyNHjmhNK/JZ8LOR1DubXBREaXeIvHnz4tChQ6l+7+3t7dGrVy/ky5cPjDHkyZMHjRo14tF7c/ukiDYRe+/evVO96Fvel/Px8eELna2srPD06VOt50jtZfn5gm8kJfBU94uLFy/ydlPlypWxZcsWLl5PLl+fPXvGRQyLFy/O5LsXAMIvsoqwsDAuomrcuDGeP3+OyMhIAIntJqVSiZkzZ/JFS4wx9OjRA/fv38/1C5Yym8yIqiu3iTzCdLly5bB27VruB0KsmzxeXl4oXrw4X6i3Z88evH37FgDw+fNnPHjwAB07dgRjDHp6emjcuDHu3bvHz5ePrw8dOlRl7KpJkyYYO3YsLl68iK1bt2LcuHHcFmIHD02cnZ1hbm4OXV1dDBkyBNeuXdPYUSil91b4Rebw8eNH3LlzB3/++Sfmz5+PFStW4Pnz5yoRoxMSEpCQkIDz58+DMYY2bdpoLDRIiRMnTqBFixZgjOGPP/7A1atXVa4vSEReZzRq1IgvfEotjo6OmDNnDoyMjMAYUxkXl/dllEolNm3aBHNzczx79iyzbj9HER0djcjISBw/fhz79++Hvb093N3d+fwS8K1eiImJwdixY/n8kpmZGf777z+eTv0dl2zh5eWFggULQldXFzdv3syGp8qdCL/IfKR8i4yMhIeHB16+fAkXFxc8ffoUt27dwu3bt3Hz5k2cPHkSx48fx6lTp7Bz5078+eefmDt3Lho2bAhbW1uV+Y3t27cn+5tSRH4xLvXt+VetWoXy5csnOWc0d+5cjQW08jIsPXz9+pXrFXK7LeRt0T/++ENlEas0jiR9evfujQMHDqicL58vTQ/bt2/nCwNzuy2A7+8bgrQjBOwCgUAgEOQCXr9+jcKFC0NPTw+rV68GkLwQ9/Pnz9i+fTvvMBYuXJhvpyqPLJMUYpAxaZycnGBkZARjY2P8+++/AJLvSLx58wZ//PEHrKyswBhD0aJF4evrq3FeXFwcXr9+jR07dmDHjh1wcHAQ0aaTIDo6Gnv27EHLli2xZ88ehIWF8WMZFa9LhIWFoXDhwmCMYebMmTxaHCBsoU5QUBDmzp2Lpk2bYt++fQgNDeXHMku87uTkpDIRP3bsWH5M2CORoKAglCpVCowx6OvrQ6FQoEiRIsibNy/y5cuHYsWKoWjRoihatCjKli2LihUromrVqmjSpAnat2+PcePG4cSJEyqiUm02cnNz41E0pkyZAgcHB35M2CKR7LCFt7c3rl69ivHjx2PatGk4cuSISnphi2/ItwpeuHChikAqKTp16oT8+fPjzZs3SU5KSTx58gTHjx/H1KlTsWDBApw6dYoLQwFhCzlubm486u3MmTNV6u+k2L17Ny/7Dx48mGxaLy8v3LlzB8uWLcPGjRtx5coVlci9whaCnxF5mTNo0CAeQfHw4cNpeqdfvnyJ0aNH88H+QoUK8UmR3C5slOfx/v37NcRWaeHFixdo0KABGGMYMGBAsuWcKJPSj4+PD5o3b86jL/3vf/9DdHQ0gOTzNSQkBMOHD+f98kePHmXXLedqhF9kHt7e3ihZsiQYY6hZsyaGDh2Kbdu2YciQITyPpc+oUaPg4eGRoTJe2CNpMkPEDgD//PMPjxpXvnx5bNy4UWUnCSl6qBDrJo2Hhwf3CxMTE1hbW6Nz586oVKkS/15fXx9Vq1bl47jAtwi78fHx6NChg4r/LFq0iEfvkwgLC8PGjRuhUChgaWmJS5cuZetz/gwEBATg4sWLKt+l5z0VfpE1aAui8+TJE5VFT6kVsUdGRmLRokV8rFZXVxelS5fGypUrNX5PkLgzr7QgY/Xq1fx9Tg55/R0WFoZ//vkHJiYmvI6XUN/JWRp3F7vLapLSQnL5wtktW7bwOkRXVxfHjh1L8ToAsHbtWu5Tjx8/zsS7FwDCL7KakJAQDB48GKVLl4aZmRmMjY35boAGBgZ8lxVpYaA2EWnevHlRunRp7Nq1i19XW3/k1KlTKFKkCN+pILeLdeXPf/fuXaxfvx7VqlVDhQoVULlyZfTr10/rbvAeHh5o0KAB7O3t01XvhoeHY/369ShcuDBfbC5s8e35d+/ejSFDhiBv3rwoWLAgbGxs0KFDBxw5coSL/iX8/PzQt29f/Pvvv+myxalTp8AYQ758+fDixQuNe8mtfC/fCAsLw9WrVxEUFMTLMNG2TRkhYBcIBAKBIIeTkJAAFxcX3jlUX9GpTnBwMDZv3owyZcqAMQZLS0vs3r0bcXFxGh3F2NhYREdH4/79+7h58yYePnyoEQVCNMi+kZCQgHv37vHO+KlTp5JN7+fnh+nTp6NYsWJ8IYEUjUTe6Pbz88OqVat4ZHdpVW+rVq2wfv16ld8XJHaqpQHymjVrwt7eHkDitqV16tTJsHgdSBSvSAJUhUKBunXrYs2aNfy4sMU3QkJCeHlTo0YNbo+rV69mmnhdLrYSE1RJ8/LlSy4ut7a2xo0bN+Dr6wtfX1+EhIQgJCQE79+/R3h4OKKjoxEWFpbkpIm2gcX4+HgcOHCA+59CoUDNmjWxYsUKnkbYIpGstMXt27fRoUMHLpiQPsIW2omIiMDs2bOho6ODihUr4vbt28mmf//+PWrVqgUjIyON6DzyPI2IiMCWLVuQL18+Plkifezs7LBq1Sqt5+VmIiIiMG/ePOjr66N8+fK4fv16kmmlPJMiIjPGtA5GShw+fBhVqlSBubm5SluqSZMmov4W/PTI27G//vorF2KltH25euTq0NBQODg48EiJNjY2aY4AmFPR1leQ179v375FXFxcimVITEwMZs6cCcYYbG1t0xzJUpA8kk1OnTrF+xkdOnTQuguUNi5fvsx3tqtatarGhKMgZeQ+IPzi++Dh4aGyuFtHR4f/bWhoiPLly6u0Q4HEqHpStPbUIvcnqR8vUCWjIvZHjx5x8Y+uri569OjBj8mj96mLdUePHp1pz5BT8Pb2Rrdu3VCiRAmVSImMJe4+07FjR5w4cYKnl4uhpXaRrq4uihQpgr1796pcW95G8PX1Re3ataFQKFTGawWapFdwI/wic1AXbyaX5u7du9DX10+ziD08PBzv3r3DsmXLUK9ePW6LSZMmab2P3I6HhwcmTZqEhw8fpuv8uLg4bNu2DXny5IGRkRH27NmTuTeYC1F/PyVfef36Ndq1a8frEfl8rLZ3WvpOqVRi8ODBfLGsj4+P8IEsRvhF5mJvb8/fe6le0NHR4fOtBgYGyJcvH4yNjWFmZoaCBQuiQIECKFGiBOrXr482bdrgwIEDKgvFtdVBFy9e5G1oCwsLHpQnt4t11fMqIiICcXFxiI2N1RizksqW//3vf2CMwdjYOE27NQKJ9fiOHTv4HJa5ubmwxf+j/vyBgYF49+4dwsLCePAECclu69ev533ytNoCSAzU0KZNGzCWuOuHELF/I7t9IyIiAjt27ABjDHXq1MHevXsRFBSk9V4EqggBu0AgEAgEuQClUomGDRvyiLfyrbGlD5DYwF20aBFsbGx452/t2rUaE7MhISFwcnJC165dYWdnp9IpNTQ0xLBhw1IcmMmtREZGonbt2mAscctxqXGsvgLzxYsXGDZsGI/iXahQIfz3338aeRkaGorFixfzdHp6enygXpqInDJlCk8vbJGIi4sLChUqxEWb8+bNg52dXaaI14FEO7u4uHCRkDQILyJ/a+fly5fcHrVq1cKMGTNQoEABXra0adMmw+L14sWLY/369Vi3bp0QsSeDq6srLCws+KIBd3d3lbyR+4O8s53a/IuKisKrV68wZMiQJH1DkEhW2OLly5do1aoVjI2NeUSGQoUKQVdXV0wWJsPbt2/RrFkzMJa4FfzLly/5MalMkmxgb2/P81K+BTbwLT9DQkIwe/ZsFdG6lZUVypYtC1NTU2GLZHj79i2aNm0KxhgaN26sYgv1NpUUeYQxhlatWqnkofzvDRs2qNjC3NwcVlZW0NfX520pYQvBz468zujfvz8YY2jWrJnKjk2pxdXVFY0aNQJjiVttp2Y3hNzM3r170bBhQx6pNaXIfc+ePeP19NatW5M9R5A+WrduzfsHr1+/BpD0JJJUzwcFBaFJkyY8Ktzly5cBCNukF+EX35fXr19j8eLFaNmyJUqWLIlKlSqhfv362L17N999UeLz589Yu3YtxowZo7IzTWo5fPgw2rdvj/3798Pb25t/L+yXiFzE3rp1a7i7u6fp/P3796NPnz48aMmECRP4MXndr1QqsWvXLj52+/bt20x7hpzCx48fcenSJQwdOhQtW7ZEnTp10LZtWxw9elRlcYG83OrcuTPP0woVKuD48eM8XVL1SseOHcEYQ5cuXbL0eXIzwi+yD+k9v3v3Lp+P6N27N/z8/JI9T70OeP78ORYuXMjHQmbOnJll9/wzIw9cIb3LSqUS7969S9X5Xl5eqFOnDhhjGDp0aJbcowBYvHgxH19avHgx/z6lto9c/Dtx4sSsvs0ciVQmCb/4fowfP56/x+3bt8e5c+dw9+5dODg44Pbt23jx4gWeP38OJycn+Pr6wt/fHwEBAXyHFDnafObixYt8lxVpUboQ62pH3hZNTjQr360xtUJdSbyeL18+HnxP2EKVpPIxOVsMGDAg3aJpILE8a9u2rbBFCmSlbwDAu3fvMG7cOF4WlixZEr179+Z9SmGPpBECdoFAIBAIcjgJCQmIiYnBlClTwBhD7dq18eLFC40G0sOHD9G9e3fe0ShQoAA2btyI9+/fq6R79OgRfv/9dx4VXFdXl0/+SlGUFQoFdHV1MXv2bJX7ECQKm0eNGgXGGOrVq4cXL15oCKSvXr2K6tWrw9TUlIvaTp06pTW6rpubG4+8XqJECUyfPh2XL1/G7t27MXbsWD7wO3Xq1Ox6xJ8G+UShqakpjwpQuXJlfPz4EUD6xOvq7/ratWtRrlw5LoKTi6YF35Dbw8jIiHfu2rVrh8+fPwPImHh906ZNCA4OBgCxVXAKZNZ25uqo5++qVatQunRpXo/8/vvvmfI7OYnMsoWU9wcPHuQRpitXroyzZ8/C09MT586dw6xZs7hfzJgxIzMfI0fg4+PDF/g1btwYFy5c4GWThFwwXb9+fb4QSp2//vqLp6tWrRp+//13BAQE4OPHj3B0dMTixYu5LRYsWJANT/dz4e3tDVtbW26L8+fPq9giJCQEhw8f5nksLWBSKpUa5dC+fftU0vXs2RPOzs7w9fXFpUuXMHfuXG6LefPmZfOTCgSZi7xdu3DhQo0IoWm5zqZNm8AYQ9myZVUEiQJVPDw8eBmzb9++VJ3j4ODAz9m0aVMW32Hu48uXL6hSpQoYYxgyZAhiY2OT7GPIF6m1b98ejCVG4p08eXKSdbwgZYRf/BgkJCQgPj4er1+/RlhYGN+JQEKayA0KCuJjfT179kxTBPxTp07xhYdS337Xrl0q9yBI7PNJC/rbtm3Lx6OSQ553r1+/xtatW5E3b14wxjBo0CB+TD4hr1QqcfToUTg5OWXuA+RAYmJiEB0drTEOK68vJIGWjo4OypYtq7LLZnLvdsuWLcFY4g4gwgcyF+EX3we5iF0azx05cmSqIkyq71K3detWPq+0f//+LLvnnx0p32JiYrBixQr8888/Kt8nh7SrjZ6eHjw9PbP0PnMbCQkJCAgIQKVKlcAYQ8uWLVOdxw4ODjyYT+XKlfmOg6KeSDvCL74P8jbSxIkTeftf3vZPiZRsJRevV69eHevWrUOrVq2EWDedaNut0djYGIcPH07WFuri9UaNGuHff/8V0b8zgDyf0mILbQgRe8ZJr2/I8fPzw+HDh7mfSLorqc8hIrFrRwjYBQKBQCDIJfj5+XExZ4MGDbB27Vo8efIEBw4cwMKFC2FoaMgFOlZWVjh48KCGMOvy5cuoVasWTExM+KrByZMn4/r16/j8+TPi4+Nx7NgxjBs3jl9r2rRp/Hwx4JKIr68vnwCsW7cuFi1ahGvXruGvv/7i4nbpY21tjTt37iR5rfnz54OxxG0FDx06pLI186dPn1SiTYvtaTVxc3PjYk4dHR0UK1aMRxWToiqlF6mT8/r1ay60MzQ0RIMGDeDj45Phe8+JyO2hr6+PqlWr8sigaVlM8Pz5c1SoUIH70LZt21SibsTFxamI2OXRmEQ5lUhWidjl3Lx5ky/AyZcvHwYOHKixaEqQuSL2Xr16gTGGcuXKITAwUOV4eHg41q9fD4VCAYVCgR07dmTG7eco3N3d+TtbsmRJdOzYEXv27MGSJUswevRoXncXLFgQ//vf/7TWI5cuXeLp7OzssHv3bo2tI6Ojo7Fp0yYoFApYWVnxiSvBNzw8PFC8eHHeBmrYsCH+97//YeTIkfjll19UBgZHjBih0aYFgPv37/M6x9bWFgsXLkRkZKRKmsjISGzevBkKhQJmZmY4d+5cNj2hQJA1aGtPpaft8+rVK94nXLduXWbcWo7kzZs36Nu3LwwMDNC9e/dkxf7S5MXRo0d5G3XDhg3Zdau5Bj8/P77Dzd9//w1Auw/Iv5NH2G3durVGhGpB2hB+8WOQlrL/1q1bMDAwAGMMPXr0SLWI/dOnT9i3bx/69evHxxwVCgVmzZqVrvvIybi6uqJIkSIYMWJEqiOGyvNOqVTC3t6ei3Xnz5+f7Lliwlw7qX0f9+/fz8f58ufPj2PHjqXqGleuXEHBggWhq6uLpUuXZvh+BZoIv/g+SHl348YN2NjYpHuBa3BwMHr06MEXHcTHx4t6IhkOHz4MIyMjWFlZpTjXIC3IWbp0KQwMDJAnT5407/ohSBknJyde5sjbO8nx4MEDNG/enAdXGjNmjNZAVoLUIfzi+yEXyE6ePJmPzW7bti1dgcLkqIvXDx06hIiICLx+/VoIpzOANqEuYwynT5/Wml5dvN6wYUPcu3cPCQkJ8PHxEcLpDJCULU6cOJHmawkRe8ZJq28khYeHB1q0aMHLL8YY3NzcMvt2cwxCwC4QCAQCQS7Cw8MDJUuW5I0kaQtmKTJ0/vz5UbNmTbi6umqce/bsWRQrVoxPGlauXBlPnz7lW8bLRVohISHYsmULT7t69epse8afBQ8PD5QuXZrbQhqgkiIR29raomvXrly8K9/+TiIhIYFHB2jatCmf5JIP7AYHB2P06NHQ0dFB69atUz0RlptwdXVViUh85syZTIuo5+bmBjs7Ox5VvEuXLrh3716mXDunIrdHlSpVcOrUKa3CQ20kJCTgzZs3KFKkCC/b+vXrxxd2yMsppVKJnTt3cp8bN25cVjzOT01WidhjY2Nx8eJFHpHG1NQUEyZMEB33ZEirLaR6QF4fREdHo3v37mCM8R1S1AePAwIC0K1bN+jq6qJfv34ZHlzOiXh5eaFZs2Yq0RPkbamiRYti2LBh+PTpk8p5ki1mzZoFfX196OvrY8GCBVy8rj4p6+fnh/r164sFaMnw6tUrNGvWDPnz5wdjjLc7pXK9TJkyGDduHLeFuiBhy5YtfGJx+PDhXLyuni4wMBDt2rUDYwxLlizJnocTCH5wHj58yMWMoq+XPMePH+d1+NKlSxEVFcWPqdfX3t7eqFq1KhhL3F3L2dn5u9xzTiYwMJDbY8WKFcmmDQsLQ4cOHXg0vpo1a+LMmTPZdKc5G+EXPw/yyLp6enqpFrGrt23PnDmDUaNG8fbapEmTkkybWwkODuYBFYC0CwxCQ0Mxbdo06Orqok6dOlrHdgUZJz4+Hv369eP9QGkxFJDygqh58+bx8w4ePJgt95vTEH7x4yLVF5IgNL3jScuXL+dzJVkRTCMncevWLZQtWxb6+vpYvXq1xoJ8bQwdOpS3bYU/ZD7nzp3jgS2ePXsGQHOMSV4vPHnyBF26dOGLw+vXr893xRGLatKH8IvvS1aI2C9evMh3K69Zsybs7e25LgEQYt2MIreLtIhsz549GvYKCwvDjh07+Fh6kyZNcOfOHZU5V2GLjCHP8969e4OxxN15U1OOqePl5aWyuEMaRxG2SD2p9Q111HcYmjlzJt+lyNzcHAcOHBB1fBIIAbtAIBAIBLkMHx8fDBs2jG+bLUW+7dq1KzZu3Mi3qpU3wC5fvowSJUrwTnzevHmxZcsWXL9+nXdAANWGb1RUFJYtWwaFQoHKlSvjwYMH2feQPwl+fn4YP348atWqBWNjY+jo6KBUqVIYOnQozpw5g9DQUABQibgQExODuLg4REREAEicBDQwMMDvv/+e5O9s27aN2/rGjRtZ+kw/K66urnwCvXr16rC3t0d4eHiGrunp6YlatWqBMYa8efOic+fOKuJ1MUmbNHJ71KhRI832WLt2LXr16gVDQ0MwxjB+/Hh+TF62KZVK/P3332CMoVChQnjy5EmmPkdOQC6cbtWqVYYnj2JjY3H58mVUrFiRD56MHz9eiNdTQXps8fbtWwQGBuLNmzcIDw/H9u3bwRjDmjVrkjxn1qxZXAQsBu218+7dO6xduxYtWrTg5QxjDM2bN8fq1av5ohv1gajY2Fg0bNiQR8GXBtuTqg8GDRoExhjatGkDQAwwauP9+/fYunUr2rVrh0KFCkFXVxdWVlbo06cPjh8/zvNY3Rbx8fFclFi8eHF8+PBBazqJ33//HYwx1KpVC3FxccIWglyL9O4fPXqUT1pJEURF21YVeX6sXLmS1xWbNm1SWSwrlTs+Pj4YOnQon5ht3rx5pi2qFagyYsQI6OrqYtiwYfjy5Qu3lTTx+vXrV9y7dw/NmzfnAqpq1arh33//5dcQ73v6EH7xc6JNxN65c2fefkoOeZvpw4cPfJchxhiWL1+eZff8syPlW0JCAv777z9ERESkapL7zJkz3K/27duX1beZKzl06BDP4+nTp/PvU7LP6dOn+Xldu3bN6tvMkUh5LPzixya9bSRp/mPXrl3Imzcv8uTJAycnp8y8tRxHaGgoxo8fD8YYqlatmuIuQY8fP+ZzFTY2NggICBBt2kzm+PHjfA5Vmz3k+X3//n107NiRB8ioXLkygoKCAIjxv4wg/OL7k5ki9qtXr/LzCxYsqDKnIW8DyIXTxsbGKroFQcrI7XLjxg2uE5GIiYnBgQMHuC2srKxw+PBhfjwpWxgaGsLFxSXrHyAHIbfF0aNH4evrm+5r+fr6cluYmprydpWoY1JPSr6RHG/evMGSJUt4wL4yZcpg3759qQ7YlxsRAnaBQCAQCHIhUVFR+PjxI65fv44HDx5odObkjdeHDx/Czs4OOjo6fJJJ/jE1NcWvv/7Kxdbyzr2rqysaNmwIhUKB3bt3i46/FmJjYxEZGYkXL17Azc1NI0K6vHF86dIlDB8+HLVq1ULlypXRvXt3jB49GtbW1mjSpAkf4JKQOo1Xrlzhk4w7d+7M+of6SXFzc0PBggXBGEPp0qVx+fLldK+CFeL1jCO3h42NDW7cuJFivsmP+/r6YuPGjVxcNWjQIH5MXsYplUqcOnVKZcBFoIqbmxsKFSrEo1y8f/8+XdeRxOtS5HUhXk87qbVFREQEtm/fjlKlSsHKygoWFhaoXbs22rdvD0tLS/Tv35/vTAAk+o5U36xZswY6OjrQ1dXFnTt3suW5fmYePHiAu3fvwtHREbGxsbze0FZ/fP36lUdVb9++fZLpJAHdb7/9xqNcClLm9evX8PLy4rvXSGirO+Lj49GxY0cwxlCnTh1ERUVpTSf5xYIFC8AYQ+PGjbPm5gWC74D8nU/N3xIeHh4oWrQoGGOwtrbGy5cvs/ZGf2LkZby0QIwxhrFjx+LIkSOIjY2Fv78/bty4gcaNG8PCwoJH5JHaR6LfkPns3buX22LDhg14/fo1P+bt7Y358+ejWrVqfMK1SZMmOHXqFE8jbJIxhF/8nMhF7JI90tMvjI6OxpIlS6BQKFC9enUhTkyBkSNHolChQnj8+HGq0n/+/BnFixcHYwxjxowBIPwls5DyceLEidDR0UGZMmXg6Oiociwpbt++zRejlypVCvv370/VeQLtCL/IecjbBpLwlDGGhw8ffse7+jkICAhA3bp1wVjiDr0uLi583FseFOn169d8YT5jDLNmzfpet5yjeffuHSpXrgxDQ0Ps2LFD667KQGJE6fr16/N5i4oVK/JAJUJYmHGEX3x/khKxb9++PU0idnd3d7Rp04bPJ1WpUoXX//Hx8Sr1uZeXF1q2bMkXC0pB4ASpI6Wyx9vbGz179uS7o1WqVInPeavbwtvbmwcEGD9+PN+BVpA6MloPyG1x/vx5lC5dmvfhRRC3tJMee7x9+xZLly7lOweXK1cOe/bsUZmTFWgiBOwCgUAgEAg46iKq9+/fY+TIkTA2NuYrl62trTFz5kzMmTMHv/32G48Q0L59e3z69AmAquh6xYoVqFatWorbCwtUUe/wHTp0CAqFArq6uioLCKT/W1tb4/z58ypRmgDg48ePGDFiBE8vRLrJ4+bmBgMDA9jY2MDR0TFdExpCvJ55uLm5QUdHB7Vq1YKXl1eqzpHnb1xcHA4ePMgHg+fMmZPi+WLrLu24ubmBMYYWLVogKioqzecL8XrmkZQtpHf/69evmD17tkpdkSdPHjDGYGBgAMYYbG1t4eDgwOsM6b1/9eoVj45vZWUltmtOhvSW5aNHjwZjDHXr1uXtJm14e3vDysoKjDFMnDgxvbeZK0jKFimV59OmTeMThW/fvk0yXWBgIGrUqAHGGPr375+hexUIvjfpKbuUSiWio6Ph6OiITZs28bLJ1NQUw4cP14iGrP4bub3tK5/o+OOPP1Tq57Jly8LCwgI6Ojr8u/z58/NdszJz0goQ7Vw5clvUq1cPvXv3Ro8ePWBqasrbTXnz5sVvv/2Gmzdv8vMy+j5LNs3twpTv6ReC9COVIc+fP4e3tzeA9PmEo6Mj30L7wIEDmXqPOYnAwEC0a9cOjDH8+uuvye4+INnhy5cvfJFZ7969VY4JMk50dDQqV64MxhjatWuXqnMePHiA6tWrQ6FQQKFQYMiQIRne8TE3I/zi50F9Uaz0/4SEBJVo+nIOHz6MYsWKQaFQoEqVKsn20wXf8PLyQrFixcAYQ/369XHgwAGVQEfnzp3jY1FS+fXq1SsAwhcym7CwMPTp0weMMTRs2BBOTk48SAWQKGjbtm0bDA0NebCwypUrw8fHB4CwR2Yi/OL7k5SIff369anKY6mu+Pr1Ky5cuMDrfwMDgyQXEXp7e2PWrFk4c+ZMJj6JQLJFREQErl27hvbt23Nb3L59G4B2W6xZsybFXRAEmYd8fvD9+/cYN24cGjRoAMYSdxaUB/IRZB1CvJ5+hIBdIBAIBAKBBlLH8vLly1ygULhwYcycORPOzs4qaR8+fMi3c+7Tp4/GNQDwwWQxYZ4+zp49yydvDQwM0KBBAxw4cAB79uzB3LlzUapUKTDGUKFCBZw6dYpv4/z27Vts2bKFr67Nnz8//Pz8vvPT/Pj4+fnhypUrKtEYUosQr2c+AQEBcHd353mX1nIkLCwMs2bNgq6uLqpVqya2rMsAgYGB+Pr1a5rPE+L1zCc5W2zYsIEPCFerVg2///473N3dcePGDezcuRNly5bldYa9vT38/f0BAM7OzujVqxev0+vUqcN3VxFkHps2beLCT0kQJy38k9pOgYGBmDx5MvLmzQsTExOcOHECgGhHZTZ79uwBYwwmJia4cuUKAGgs6vjy5QvWr1+PwoULgzHGt6oVthD8jEjv94sXL7Bnzx5s2rQJ27dvx7p16zBv3jwsXrwYf/75JyZOnIgxY8Zg0qRJ6NevH5o2bYp69erBwMCAC3vNzc3Rrl27ZNtVL1684IuYc7vgVP78W7duRbNmzTR2NitQoACqVq3KoxGrR69Kaz9Cnv7q1atcFCFs8e35FyxYADMzMw1bGBkZoVixYjh8+LBKdHYgsY+d3j5dYGAgevTogadPn2rcS27ke/uFIH3I8zAj7SGpbzhw4ECN6woSiYmJwdq1a2FiYgJbW1ucPn06xXyS+ho6Ojq83SrIPOLi4lCnTh2VAAnqUUTlNrp//z7q1asHQ0NDvmBK2nZe9CfSh/CLH5OMlOGRkZEIDw/H8uXLUbVqVS7qnT59utb0ct8Rdcc33N3dYWtry8c4rK2t0aJFC9SpUwfm5ua8bdWkSRMcO3YsS8ogYY9EvL29YWNjA8YSd88cN24cdu/ejdGjR/Po0FKwkZYtWya7ECe9CFsk8iP4RW5H3uebOHEiGGOYPXt2qs+Xv8t+fn7o0aMHGGMoXrw4nj9/rvUcbQF/BBlHnpf+/v7cFjY2Nhq6EQn5Ah5B1qBebj148AAjRozg/W3pU6VKFfTr14/PBQqyBiFezxhCwC4QCAQCgUArMTExfFC+YMGCWLp0KY96IXVUpM7n+fPnefSkgwcP8muktP28IHkSEhLw/v17tGrVCgqFAgYGBhg5cqTGdlv+/v48ApC1tTUaNWqEiRMnws7Ojm+Ram5ujr///huAmCRJC2l5b4V4PeuRv7tPnjzBu3fvUnXexYsXeUd9x44dWXV7Ai0I8Xr28uTJE14fV61aFXv37tWYUA8MDOR1RsGCBVG+fHm0adMGFhYWPBKDpaWlVqGQIHWkJEjr2LEjz3/1AV4/Pz/88ccfsLa2BmOJW8xLC9MEaSclW3Tu3JnbQl2I+/79e2zfvh3ly5fnIjqxo5DgZ+fGjRvQ09PTEImm5VOuXDnMmDEj2brc2dkZvXv3hpGREZ49ewZAiHXlz+/v74/Tp09jzJgxGDJkCCZNmoRTp07h/fv3AFTbvMuXL4eenh4OHDiQ6jpZnu7y5cto2LAhjI2N+QSvsMW35z937hyWLl2KOnXqoE2bNhgyZAj279+PN2/eaJx38OBB6OrqYv/+/ekSTs+ZM4cvLH/x4oXGveRGstMv5Jw8eRJ//vkn3NzcuMBBtHmzHsmGYWFhfFFt165dAYj8T4oPHz7gl19+AWMMDRo00Givyn3o0aNHvG3LGMN///2X3bebK5DyuGfPnirjs+rv8M2bN1GlShXex65QoQLv1+X2sj+jCL/4sZDXz15eXnjy5AmePn2Ku3fv4tq1a7h8+TJOnTqFw4cP4/Dhw9i5cydWrlyJpUuXYvLkyWjcuDFq1qwJxhgXrw8YMEDr9aXxLbkgTtQf3/D29kanTp34fJCUn9K/3bt3x+nTp1V8JD4+PsOiKvn4vLBHIh4eHqhQoQIve9Rt0bBhQ8yZMwcRERH8nISEhAzt0OHg4IBVq1apXE/w/fxC8A153p4/f16lXE/rXPXTp09Ru3ZtMMYwatQoREVFiXf9O/HgwQNUq1YNOjo6mDRpEuLi4oQtshF13zl06BAmTZoEXV1dleAMRYoUwbx58/D8+XPejhIakaxBiNczjhCwCwQCgUAg0MrDhw9RuHBh6OjooG/fvjximzoJCQl4/fo1n3xauHBhNt9pzubVq1ewtLTkW91FRkYC+DZQK3X+/fz8eCT24sWL8+iIknh906ZNqRb7ClSROnPx8fFJrhgX4vXsZfv27WCM4dq1a8mmk+d7lSpVVCK8iU56xpHKH6VSqXXHAiFez37+++8/LkwcN26cRmRv6V83NzeUKFECjDHUqlWLi97z58+PsmXL4smTJwCEn6QHeeRuBwcHAJoL/wIDA3nUJQsLC0ybNg1r167F+vXrUblyZR4NNl++fCL6egaQ8iw8PFxjO1PJFu/fv0eLFi24QP3PP//EgQMHcOTIEXTo0IFvN2xsbIx169apXFcg+BmZMmUK3zrW0NAQ1tbWsLW1RenSpVG2bFnUqFED1atXR82aNdG8eXO0atUKLVq0QP/+/TFv3jxs3boV79+/11hQK8fJyQm//fYbnxA2NzcXYt3/JzV9AvU0/fv353XCoUOHUryG/PjFixfRqVMnvpuXEE5/Q70s15YfUhopT/v168d3UUmNLdTx8PDg256bmZkJW/w/2eEXch4/foxOnTrxdvBff/2FwMBAAMIWWYk8b9etW8fHq5YsWfId7+rnwMfHhy+obNq0KRwdHTUmwR0dHTF8+HCer4MHD/4+N5uDkcqZdevWQU9PD5UqVcKTJ080yp/o6GgcOXJEZVy2SpUqfExWlDOZg/CLH4+//voLDRs2VOlrSHmf2gW0ZmZmGDNmjMbOaMA38XpkZCRKliypshOwGHf/xsePH3HhwgUMGTIEjRo1go2NDXr16oW1a9ciIiJCJa+USiUGDBiAX3/9Nd2L9V1dXVGoUCH079+ffyfskcjr168xb948NG3aFNbW1rC0tESbNm2wZMkSeHl58Xc6ISEB8fHxmDt3LsaPH6+xA1RqCAoKQr169cAYw9ixY/n3whaJZLdfuLm54fLly8kudMttaGv/yL9zd3dHfHx8imOuUVFRGD16NBhjKFu2LIKDg1P87YSEhHTv7pzbiI6OhoeHB4CU8yoqKgoDBw7kCzUzsgBHkDrUy5GQkBAcPXoUffv2hUKh4GN/JiYmsLGxwc6dO/Hw4UOVc9THuYRvZA5CvJ45CAG7QCAQCAQCrWzZsoUPHl69ejXZtOHh4TyiQM+ePbPpDnMH586d4ytlpQjq6tF0lUolEhISMHXqVOjo6GDs2LG4ePEiZsyYgRUrVuDly5ff49ZzFJGRkfj7779x6tQp3hGXOnZCvJ69fPr0iUdZ6Nu3L99+OSkSEhLw7t07LkLs1asX/16QccLDw7Fo0SL8+++/KoNUQrz+fVizZg0XC0oidPUB4vj4eERGRqJ79+5gjGHZsmV49OgRduzYgevXr/OBXzFolX4iIiJgbW0NKysrLohS5+PHj+jZsydfPKD+MTQ0xOjRo/nuN4L0ERUVhSZNmqBUqVJJTgJ++PABXbt2TXISXU9PDx06dOBCQ4HgZ2fSpEn8/Z4xYwbevHmD0NBQhISEIDQ0FJGRkYiMjERsbCwSEhI0+h5A0u0oJycnjBw5kl9fWmArxLrakde16nkq//+QIUN4nzA5sa428bo8cr6wRdKoR9xLitTaIim8vLzQtm1bYYtkyGy/UMfd3R1Tp07lkckKFSqE5s2b83ETYYukURf3SEj1BZA4XiUdk4tFJLZt24YSJUpAoVCgQIECfLGmIHk8PDxgZWXFBSK9e/fGkSNHYG9vj8mTJ/MdNBljaNeundhxIwt58+YNqlatCsYYmjRpgv/++w+enp749OkTdu/ejd9++00l6mGzZs145HVtbar0IMazEhF+8ePw5csXNGrUCIwxXr+am5urCNNNTEyQJ08eFCxYEEWKFEHhwoVRpkwZ1K5dG+3bt8fGjRtx8eJFfk35ey4Xr0siXSHUTR1fv35N8pivry8PnNS9e/c0i3Xd3NxQo0YNYY9kkPIhKCgIwcHBGsGRpOOBgYF8frVbt25ptkV8fDx27drFbTF+/HiN3xB8Iyv9wsvLC4ULFwZjDFOnTsX169f5MWEL7UyePBn16tXj/08qn6R+4vXr1/kiqSNHjiSbVkI9IJyY99AkJiYGAwYMQMuWLVNMK+Xj8ePHoa+vDx0dnRSDjQnSj7pPeHh44OTJk6hatSoKFSqkMo/xyy+/YP369RpzUtrGWUJDQ7Ft2za4u7sDEG3kpJDyTl6Hy/NTiNczDyFgFwgEAoFAoJX169dDoVCgatWq+Pz5M+Lj4zUayVIDLTAwkEdy7d279/e43RzLhQsX+JZ2//zzT7JppUEqbTYQHfKM8ddff0GhUKBSpUqwt7dHWFgYgMSOohCvZy+xsbHYtGkTChQogBIlSuDEiRNJvt9S/l+/fp134CdOnJidt5vjmTx5Mo8oZm9vz3eJuHTpEipWrCjE69nMtm3bwBiDjo4Obt26lWzaBQsWQEdHB3PmzNE4JuqMjHHv3j0ULVoU5ubm2Llzp4ZQQV43vHjxAsePH8fy5cuRL18+KBQK6OrqomnTprhz505233qO48WLF6hatSoMDQ2xcePGJHdSAYCbN2/iyJEj+Ouvv5AvXz7o6+uDMQYbGxucPn06G+9aIMga5BMREydO5G2jrVu38u/l5ZO2dmxybVt18fq4cePg4uIixLoZQF5//PrrrzySkjaxbnLi9blz5yIkJERE/84A2myRN29eIWL/DqTFL5IiNDQUFy5cQNGiRfluEWZmZnBycgIg+vHaSO79lB+Ljo7mkSy/fPkCd3d3ODk5YeXKlRgwYAAf32KMYeTIkan6bdE3SeTVq1ews7PjkYx1dXV5e1X6dOzYETdu3OCBLjIDef4LWyTi6ekJa2trvruJqakp35lU+lStWhW///47Pn36lOHfk2wp3x1VlFOJfC+/EGjy8uVLvptcoUKFcPz4cTx69AiPHz+Gj48PvL294erqirdv3+LTp0/837i4OI1dHeX1ily8XrduXe53UpRRIdTVJKl+grb8uXPnDvefHj16pFqs6+bmhmrVqoExBktLS2GPJEirLaQFIGmxhYRSqcTOnTt5O0vYQpXs8IuEhATY29vzxQg6OjqoVasWVq5cmeR95Hbu3LnD6+vDhw8nm1bKu0OHDvFztAnY5e3VK1euYMGCBahXrx46duyISZMm4dWrVwBE/1udK1eu8Hw9fvx4smklW6xevZqfI+1Eq42U+hDCL5JGnjeBgYFYv349atWqhXz58vG8VygU+PXXX1XGdwHt+S5dLzw8HJs3b0ahQoWgq6vLx0KEX6giD2S4fPlyuLi4qBzPqHhd+IYqQsAuEAgEAoFAK3/99RcYYyhatCjevHmjcVzeqJKECkZGRrC3t8/O28zxhIWFwc7ODowxjBo1ChERERppJDGWFHm3evXqWtMJ0o+XlxdMTU15/h45cgRPnz7VEK/fv3+fn5PbOhbZyYcPH9CxY0cwxlC/fn2VqLhSlDepjPL09ORRgCwtLXmENzHxmjl4eHjwqEo1atTAvn37cPLkSR55PX/+/JgwYYIQr2cTvr6+qFixIhQKBZYuXZqkWPfr16/o1q0bGGPo2rWr8IdMJiwsjEfeq1OnDh8ABL6VPdIEbVhYGO7cuYMGDRrwCfdq1arh3Llz3+Xecxpfv37F+PHjwRiDnZ0dj7oHfKsvJFvEx8fj/fv3aNGiBR8Azp8/Pw4cOPC9bl8gyHTkExFTpkzh7/q2bdsyFBXUyclJJeLomDFjEBUVBSBRWCTEuulHbpdBgwbxPL59+zb/Pjnx+uzZs/kxd3d3YYsMkJQt5FH1UosQsWeM1PhFckj57OfnhwYNGvC+PmMM/v7+WXLPOYUdO3Zg8ODB6NatG3755Re0adMGDRo0QJ06dVCnTh2UL18eJUuWRNmyZXlkZGNjYxUxqa6uLoYMGcKvqe29f/XqFZYtW8b/L8ZXEgkICMDChQv5GIeUn0WKFMGkSZMQEBCg0bfbuHFjmkVwEnFxcbh48SIWLVrEvxO2SMTLywsdOnTgu81IH1NTUwwbNgwODg58gb+Evb19unfYkgReo0eP5t8JWySS3X6hVCpFRMUkcHV1hYWFBY967+npqXI8qR1vknqX5eJ1KaK+paUlJk6ciCVLlgihbgaRbHD37l0u1u3Zs2eSu9dJuLq68p0orKyssHr1aqxZs0bYIwOk1xbqCBF7xsmoLaKiouDh4cF3i5JsId+hQPANX19f9OzZE3p6eujfv3+q+mIrV67k9b36bk7yumXz5s3ImzevSjtNKrckEaqYE/mGp6cnOnXqBD09PQwZMkSrLgRQLUumTZvG8/XmzZvJXv/Lly94/Pgxli9fjiVLlmDevHm4ffs2goKCAAhbJEVcXBzev3+PiRMnonHjxirvsq2tLbp06QIHBwc+BgsknZdy8frGjRtRpUoVlTkQMS6lneDgYL4zx4QJE+Dq6goAePfuHZYsWZLhyOvCN74hBOwCgUAgEAi04uTkBBsbG5iZmeHo0aMqDST5ZOG6det49PVSpUrh4cOH3+N2cyxRUVGYNGkSF04/ffpU5bjcFk2bNuUiUiFgz3zc3NxQoEABMJa4Na2NjY2KeF1EXs9eJKEuYwzNmjXDvXv3EB4erpLG3d0dv/76KxdYV61alXf6BJmH3DdKly6NokWL8kEPEXk9ewkLC+Mintq1a2ss7pB48eIFKleuDMYYevXqJQalsgB/f38+CNi0aVPcvHmT794h4eXlhT///JOXZYaGhqhbty5Onjz5ne46Z+Lv74/q1avz+uLOnTsa9cWbN29w4MABvmhQEjzs3r37O921QJB1yMt8aSeVjIjYnzx5oiJenzRpkkZfRC7WlU+K5KZB+Iwgt0vnzp1Rv359rRMip0+f5os8GWNYvHgxPybZXdgiY8ht0a1bN5QrVw7Ozs7pupaXlxfatGnDRezSdUS7LHWk1i/Ukb/rZ86c4XU/YwydOnXSaK8JvrFx40Yuwknrx9DQELq6uhgwYAA2bdrEr6ntfff19eVRdseMGcO/F+MsicTFxSE6OhoXL17EmTNncPPmTY1IcFJeDR8+PN2RXOPi4nD9+nXepxG20CQkJARubm7YsmULtm7dijNnzuDx48cqaaQy53//+x8YY+jevXu6hNOHDx/m/iQEiZpkp19cunQJVatWxcqVK1XGu4QtEnFzc+MinxYtWsDDwyNd15Hq+YiICBXx+qRJk7gwXgh1M45crGtoaAjGGPr27YuQkBCt6V1dXXnkdSsrK6xduxYfPnwAIOyRUeS2MDAwAGOJOy0HBwen6TpCxJ5x0uoXEur5u3LlSpQuXZpH1p8wYUKW3fPPzOHDh/mC4hUrViA6Opofk4KPSNy6dQtFihTh8+VJLSzYsGEDbzd1794d8+fPx4IFC9CwYUMwxlCxYsU0LxDJDfzzzz988fGqVatUbBEfH6/Slz579izP45YtW6rspiK32ZcvX3D9+nXUrFkTxYoVU+kjFilSBC1atIC7uzsAMRaiztWrVzFp0iQ+dyR9KlSogAEDBsDNzY2XS8ntKiH/XhKvSwvRdHR0UK9ePRFcIQUmTJigMu7t4OCA5cuXp1m8LnwjeYSAXSAQCAQCgVZCQkLQuXNnMMbQpEkTODs7q3RWAKiIrhhjWL9+/Xe625yNv7+/ilD30aNHGsKrgQMHgjEGAwMDTJs2DYAYkMoK3NzceCQZhUIBQ0NDtG/fHk+ePOFpRL5nHx4eHihcuDAfdBoxYgSuXLmC48ePY8+ePShbtizfSq1gwYJ4+fIlACHQyQrUfcPY2BijRo2Ct7f39761XIevry/KlCnD64xbt27h8+fPABIHqJ4/f86jNZiYmKS4JaQg/Xh6evJB9dKlS6NHjx7Yu3cv/vrrL8ybNw9WVlZ8gN7ExAQ9evTAlStXvvdt50g8PT15FNAKFSpg8ODBOHPmDP755x9s27YNNWvW5LYyMjJCnTp1tG5DKxDkFDJLxP7582dMnz6dn1+2bFm+4FapVKq0ueTCaYVCwQfhBalDbhf1iK4AEBQUhGHDhqlMaElRXmNiYlT6KHJbMMbSLSzKrcht8fr163T3/xISEhAYGIhWrVqBscSovWLb5rSRkl+oIy+TDh8+jPr163M/6N+/vxCvp4CnpydfHJ4nTx7Y2dmhX79+GDVqFIYOHYrffvsNM2bMwOzZszF37lz89ddf2Lx5M/bu3YsnT54kG4lXwtfXV2VnIsYYxo0bx4+L8Zbk80B9rOP27dvQ19dPs1hXEq/XqFFD2CKdqNvi4cOHPB/TI5wWgsTkyQ6/ABJ37ujZsyf3i65du2L//v2puo/cREZF7FI+qovXp06dyqNeAolllfCLjCP5yO3bt2FiYoJOnTrBz89PI93Lly9VxOsbN25UidCrbg+5WFfYI3XIbWFkZISKFStqLMZJDaLOyDip9YvkuHv3Lg+CZWxsjD59+qR7J5aciPxdXL58Oe+Xbdy4UevCjbt376JTp07IkycPGGMYNGiQ1v7EyZMn+bWWLFmCjx8/8mNOTk6oVKkSTExMcPbs2ax5sJ8QuS2WLVumovkIDAzUSH/hwgVUrVoVCoUCurq6mD17tlYB9cOHDzFt2jSVHc/09PRQqVIl2Nra8vnEIkWKiLlbLUydOpXnm6mpKaysrLBkyRKNBbMpkVTkdR0dHTg6OiI8PFwluIIQsX9D/j5KwSYZY2jYsCF/r8uVK4fdu3enSbwufEM7QsAuEAgEAoEgSby9vWFtbQ3GEiO5Tp48GUeOHMH69evRtm1bvvqcMYa5c+d+79vN0ciFulWrVsWgQYOwb98+LF26FM2aNeN2sLKywrlz57737eZoXF1d+aSthYUFFi5cyI/lhg7Ej4anpydq1qzJfUBHR0cj2lvBggVx9+5dAMJGWYncNwoXLoxVq1bx/BaD49mLh4cHF+uWKVMGrVq1wuLFi9GpUye+IMrIyAi9evUSorUs5tWrV2jatClfTKOtrLKyssKmTZuELbKYV69eoX79+rz9qi2CqJmZGaZPn66yq4pAkFPJLBF7QEAAJk2ahNq1a4MxBhsbG9y6dQtAYrtLXTjdqFEjMMawZ88e0S5LIynlV2BgIObOncsjFxcvXhzXr1/n58pt4e3tjfr160NXVxfXrl3LytvOkaT33VVvE4eGhmLatGl8NyNTU1M8f/48M24x15BaW8jTHTlyREW8PnDgQCFeTyUvX77kk6mtW7eGv79/uq6jrX8oF6+bm5ujV69eQniVAeTRQ9Mi1lUXrxcoUAAjR44UtsgAki3u3LmTbuE0IASJmUF6/UIiMjIS//77L7p166YSwGHSpEk8jbBFIhkVscfGxqJ06dJ8/KRt27bw8fHhxyQkv5DGWOQLbQSpR/INLy8vvqBSTmBgIN+FWUdHB3369OFRX7XZQ9vCJ0HqkGzx8uVL3LhxI13XSEhIQHx8vEqdMWrUKJXjgpRJyS+SIi4uDlevXuVtKRMTE4wZM0Zlp1RBIvI+2syZM3n/bOjQodi9ezeCg4Ph7OyM3bt3o0KFCjw6uHwXcul9jo+PR1xcHN9pZcSIEfj69Su/fkJCAkJDQ/kOXIsWLcreh/3BkdtixowZ3BZ9+/bFpk2b4OnpifPnz2PFihUwMjLi5XzLli0RFRUFQHWc8cKFC2jTpg23WdmyZTFkyBA8fPgQISEh+PjxI86ePYuWLVuCMYZq1aqJqPhaGDVqFAoWLIitW7cmudNTciQnXpfXMa9eveKBLoSIXRV5HshF7IwxlCxZEvv27dMIOqmOvN4VvpE0QsAuEAgEAoEgWTw8PFCuXDkVwZWenh5fDciY6tbkgqzDw8MDlStXVrGFNNiur6+PIkWKYM+ePd/7NnMFrq6ufNK2Zs2aOHjwoJjw/o4EBARg5syZXDglfcqUKYMOHTrwKOBicDbrkftGjRo1hG98Rzw9PVG7dm0elUQu1jUxMUHv3r25wFCQtbx//x779u1Dnz59UKVKFZiamqJ8+fLo3r07lixZkq4t5AXpIzAwEJs3b0anTp1gbW0NPT09FCxYEM2aNcNvv/0GV1dXlS1PBYKcjnwQfsqUKbye+Oeff9J0flRUFO7fv8938DI0NOSLB9XbX/7+/jh//rxKFCxBxpFsER0djadPn6Jr167cFtKiHHVbvH79Gk+ePBHlXjagLRLvxo0bUbp0aRgYGKiMr/zxxx/f6S5zLslFXv/1119FfyWNuLq6clFi06ZNuShRqVTyckb+d2r64eri9WXLlsHf3x979+4VYt0MIBfrSmVMhw4dVCLmylEXrxcsWBD29vYICwvDrl27hC0ygDZbdOrUSYjYvwNp9QttJCQkYM6cOShQoAC3xdChQ7Pqln9a5CL2Vq1apVnEvnjxYnTo0AGGhobQ0dHB1KlT+TH5glulUokdO3bwuv3q1auZ9gy5CfUyRP3/q1evRo8ePXhQAHn5k5Q9LC0t8fDhw6y98RxISrZI7bkBAQEYNWoUL6eGDBmSafeYW0irLaS2VPXq1cEYQ758+TB69GghXk8G+bjUnDlzVOYxrKyskDdvXpU5vxo1avAFTerBF0JCQlCyZEkwxrBv3z6tv9GyZUvo6enh0KFDWfxkPx/yfJo7dy50dXX5AjFLS0uN4GFNmzbl4nX5uNLx48dRq1YtPtbRoEEDXLx4EZ8+fQLwzW7x8fF4/PgxKlWqhLx582LXrl0ARJsWULWFtFhDIq35ExYWhhUrVvDAVnp6ejxwgtyH5Ls1WlhYwNnZOV2/lxOR22PChAncB1q3bo379+/zY9rySv6d8I3kEQJ2gUAgEAgEKeLv74+ZM2eiYcOG0NPTQ758+WBlZYUhQ4bg8OHD3/v2chX+/v6YOnUq3z5TitLWt29fnDx58nvfXq5CPghfq1Yt7N69W6MjKcg+YmNj8fXrVxw9ehQHDx7Enj174OnpycUIIsJn9iH3jerVq+PAgQOIjIz83reVK3nz5g2WL1+O5s2bw8TEBIULF0bp0qWxdevWdG1BK8g4kZGRCAoK0qgvRBmV/Xz48AG+vr58K1TJBsIWgtyGfBB+4sSJYIzhzp076bqWn58funTpAsYYKleuDDc3N63pcvqA+4+An58fX1BQs2ZNvHr16nvfkgDAvXv3sHjxYhQoUIBPxEuRyyZNmoQjR45871vMcQjxetaQ0ci6cnx9fbldzM3N8eeff+Lt27cAEu23Y8cOIdbNAHKxrnyhmnqbV11wVbBgQezfv5/35SVBorBF+tFmi3Xr1qlEL04NQsSecVLrF9qQt53HjRvHdyJkjOHUqVNZds8/K25ubihYsCAYS9zhNy0LBYDE4Axr1qzhUSp//fVXfkxuC6VSCXt7e6xatSrT7l2QiLxc8fHxwYYNG3g7dtCgQfyYuj1OnjyJAwcOZOu95mak/I+Li0NERATWrFmDtm3b8gBY0ie9Ud0FKSPE6+lHXn7s2LED7du3V3lvpUjHnTt3RmhoKADtbZ7g4GCUKFECCoUCx44dA6DaH1y3bh0XyIvFNdqR22Lv3r3o0aOHhi1q1aqFsWPHIjo6GoCqeP3s2bOoVq0aL3tat26N9+/fJ/l74eHhaNWqFRhj6NWrV9Y92E+I/N3NyHzF69ev0blzZ953aNiwId69ewdAdeE5kChi/+WXX7itc0vk79SgbfxcGstLzVyr8I2UEQJ2gUAgEAgEqSI2NhaxsbF49OgRXFxcEBgYyDsngBggz06io6Px9etXXLx4EVeuXMGrV6/w+fPn731buRI3NzdYWVmBMYbmzZunuE2U4Psgyqfsx83NDQUKFABjDP379xeLO74j8fHxSEhIwIsXL+Dv7y8i3n4nkorYI8TS2U9SdYKwhSA3Ix+E9/PzA6DqK0qlMtVb0165cgW2trbImzcvVq5cCUD4V2YSHR2tEWVMGwkJCTh79iysrKxgZmaGrVu3AhC2yA7Uo05/+vQJ7u7u6N+/PypUqKAy8VuuXDlMnDhRY9GI2KY5cxDi9awlM0TsXl5efCc1U1NTrFixgkcfk1AX644dOzazHiHXIPnCvXv3MGfOHA1bKZVKXL58GZUqVQJjDPnz5+cBS+R+pG6LMWPGZN9D5BDkthg0aFC6d0WLi4tL0i9EXZ86UvKL5Pjy5Qv+/fdfLlI0MTHB3Llz+Q6QAlXc3Nygo6OD8uXLpzqP5H2R2NhYHDp0iIump0+fnuL5oi2VucjtERcXh4MHD3J7zJ49O8XzRbmUNaiPb3348AHz5s3jgjepjihRogSaNGmCK1eu8GjJgsxFiNczjrzcDg4OxrVr17BgwQJMmzYN69atw507d/iiP21lfEJCAr58+YI2bdqAMYYJEyao9Cs2b96M/PnzgzEmFjulgLzM/vr1K+7du4ctW7Zg7dq1+OeffxAQEKCyaEbC0dERTZs25dGl27Vrl+z4lVSGTZo0ifcpRSCsrCEoKAgbN25Ew4YNeX/v5s2bABLtoC5ib9iwIZo2bcp3OxAkIi97pPdWWlDs7u6e5HnCN1KHELALBAKBQCBIFdq2/hUDTz8OwhbfjxcvXqB8+fJwdXX93rciEPxQuLq6olWrVmIC7zujrf4WizoEAoFAoI76BKC8/nB2duainpT6HREREWjevDkYY6hTp06y6UUfJm1ERETg4sWL8PX1BZBy/kVGRvKdu5o0aZINdyiQ2yQqKgrXrl1D586dYWtrqyJcb9SoEcaOHYt3796lKCKRjgshVtoQ4vXsQV3E7unpmepzExISsHnzZjDGYGhoCBMTE0ybNo0fl0fyUyqV2LVrF7fhkiVLMvU5cgOST8jzVUKpVGLLli0wMjKCoaEhTE1NMWfOHH5cHiFc3RYbN27M+pvPYUi2+Pr1a7rOl/fnN2zYIBZ3ZIDk/CIpvn79ikOHDqFq1apgjMHY2Bj/+9//+CJQgXYCAgLg4uKidYwqNURERGDRokXQ09ND2bJlcffu3ay4zVxLWu0RHh6O2bNnQ09PD1WqVIGTk1MW3ZlAG+r9AkdHRyxZsgTW1tYqfQ5zc3P07dsX165d01ggKMg8hHg980hNWZTSOMj+/fu5D3Tv3h2DBw9Gv379+HdjxozhYyqCpElNfS0/9ubNG4wcORJ58uQBYwxt2rThx5MbywgKCuILmrt27ZpJdy+QI/lMXFwcXr58yaPq582bFw8ePACgfUGUtGutQBVtInYTExMcPXpUa3rhG6lHQQKBQCAQCASpgDGm8i8RkUIhmhI/CsIW34/KlSuTs7MzVahQgeLj47/37QgEPwwVKlSgCxcukK2t7fe+lVyNtvpb/rdAIBAIBEREOjo6Kv+X6orHjx9Tly5daM6cOUSUfL9DqVSSkZERNW/enHR0dOjNmzf0+vVrrWkB8Gt9/vyZ3N3dKSwsjMLCwoiIKCEhIcPPlJNISEig8+fP04ABA2jhwoVElLwt4uLiKE+ePGRnZ0c6Ojr04cMH+vz5c4q/AyDZ/wu0I72vkk22bdtGo0aNolatWtGZM2fI19eX8uXLR9WrV6c1a9bQv//+S5s2baLChQuTgYFBktd98OABde7cmZydnUlHR0f0N5NB/n7Hx8dzWxw5coTWr19P9+/fJyKigQMH0ubNm8nExCTV1xZ+kTTly5cnR0dHsrCwoOvXr9OYMWPIzc0tVecyxmjs2LF048YNmjBhAimVSlq9ejUNGjSIiIj09fVJqVQSUWIdNXjwYPr777+pcuXKpKenl2XPlFORfEJfX1/jmI6ODo0ZM4auXr1KU6ZMobi4OFq6dCn9+uuvRESkp6fHyx/JFtu3b6dWrVpRgQIFsu8hcgiSLYyNjYko9WWKZAOpjXbixAny9vYmIyMj0tXVpa1bt9K4ceOy4I5zLsn5hTYiIiLozJkztHz5cnrx4gUZGRnR1KlTafjw4VSiRImsvNWfnmLFilGlSpWIMUYJCQn8PXZzc6PAwMAUzzcyMqJmzZoRY4xevXpF9+7dS/Ec0Z9IPZI9nJ2d6f379ymmz5s3LzVr1oyUSiW5uLjwdpYge5D67g4ODjR37lxq3749LVmyhAICAsjQ0JDy5MlDc+fOpX/++YcOHTpELVq0IHNzc17faKt3RPs2fSiVSrp9+zZNnjyZnJycyMTEhPr370/jxo2jypUrf+/b++lQn7NISEjQeG+TGgeRjv/666+0YcMGYozRmTNnaP/+/XT48GEiIlqwYAFNmTKFSpYsSUSUZP86NjY22eO5AfU5JW1lhFSnExHdv3+fDh8+TNHR0dSoUSM6cuQIMcYoPj5eY7yR6FvefvjwgbcDihQpkiXPktuRfEZXV5cqVqxIK1eupF9++YUiIiJo+vTp5O/vr+F7BQsWJCsrq+9xuz888rG5tWvX0syZM6ljx47UuXNnlXTCN9KO7ve+AYFAIBAIBAKB4GdHVzexWa2tsyEQ5GYk3xAIBAKBQPBz4uLiQn5+fhQREUFXr16lVq1aJZlWqvc9PDwoPj6eoqOjk1w0xRijqKgomj17Nt28eZOeP39O5cqVIxsbG1qzZg2VL18+ycH83MqHDx8oJCSEbty4QTdv3qSmTZsmmVZPT48AkJeXF8XHx9PXr19TJUpgjBEAjcnKhIQEsWhaDXmeKBQKevfuHR0/fpzOnz9PFy5c4HlXsGBBKlSoEC1evJjKlStH5cqV49eQ57U6T58+pVmzZtHNmzepYcOGdPfuXapSpYrwCy1s3LiR3NzcaNy4cVSpUiWeP5khXicSfpES5cuXp9u3b1OTJk3IwcGB9u/fT0uXLk1x0ayUf02aNKGqVatSlSpVaNy4cfTPP/+QkZERbdu2jXR1dXne6+jo0LBhw6hx48YqfiTIOJIt6tevT5UrV6ZKlSrR6NGjyd7envLly0ebN28mHR0dFVsMHz6c2rVrR8WLF//et//Tk5yvyMseHR0dio6OpuPHj9PVq1dp7969pKurS0qlkkxNTUlfX58aN26cXbed65CL152dncnIyIimTJlCw4YNE+L1NCLVnadPn6axY8fSzp07UyXMady4MdnZ2dG9e/fo7NmzNHHiRF4mJfU7AOjr16+UJ08e3ldJrv2Vmzlw4AANHjyYLl26RIULF04ynZR/rVu3pmrVqpGTkxNdv36dRo4cmaq2EQCVxcyC5JHyW/r3w4cP5O/vTytWrKDHjx9TQEAAT1u+fHnq1asXde7cmWrVqsW/l/oP6m3ZmzdvkpubG40ePVqjvSv4lm8AKC4uTmOxU2aK14VfaEeeHym9m5KYWqFQ0Pjx48nGxoZcXFzo0aNHVLFiRWratCm1bNmSiEilTSvh7u5OHz58oNOnT9Pbt29p5syZVKNGjax5sJ+QpPJfoVDQhw8faNq0aRQeHk6VKlWiFStWkJmZGQHQWkcnJCSQjo4ORUVF0YQJEygwMJCsrKxoxIgRWf0YOZqQkBAyNTVNcbzI2tqa+vbtS46OjuTh4UHOzs5UokQJUQekAUnErqOjQ8uWLeN/y8frhG+kHaEmEAgEAoFAIBAIMojo1AkEAoFAIBAIciI1atSgpk2b0q1bt+jkyZNUrVo1rdFW5YP17969I6JEEXVSES1fvHhBc+bMobNnz/JB+zdv3pCHhwc9efKEbty4QRUqVBATKP+PQqGgOnXqUL169ejBgwd08uRJqlKlCpmbm2uklSZt/fz8KDg4mIiIzMzMNCIWqwtMbty4QdeuXaPbt2+Trq4u5cuXj9q1a8cFikI4rYqUd8+ePaPnz5/TokWLKCQkhMLDw0mhUFBCQgL16dOHunXrRq1atVKxlfReJydenzhxIt2/f5/09fUpIiKCmjRpQo6OjlS5cmVhCxm3b9+m33//nYgSy5zx48dTmTJl6OjRo+kSrwu/SB/lypUjBwcHWrRoERcUpoQ8n83MzKh///4UExNDEydOpF27dlG1atVozJgxGjtBSuJ1sYAg85Dno4mJCfXp04fCw8Np8uTJtHfvXqpZsyYNHz5cwxaSeF3U1ZmPej3h5eVFnp6e9Oeff5KnpyeFhIQQUaJ4rlGjRtS3b19q06YNlS5d+nvedo4lKfG6iLyefr5+/Up79+6lwMBAWr9+PdWsWZMKFiyYZHqlUkmMMYqMjCSixOi40iInOZLvuLm50fXr1+nkyZMUFBREZcuWpcaNG9OECROEUFcLX758oS1bthAR0c6dO6lGjRpkaWmpNa0kEv348SMvi2JiYvgxddTra21tYGEP7cjz5fPnz/TgwQNatWoV+fj4qOx01qZNG6pZsyZNnz6dzMzMNPJSaqvKr3f//n1av349nTx5kp4+fUp///238A01dHR0KCYmhtauXUulS5emdu3aUd68eYko4+J14RdZg9QPVygU1KFDB+rQoYPKcSlP4+LiKDg4mJ4/f07Xr18nFxcXunPnDkVHR/Pox66urnTr1i0yNTUVdkgCKa+vXLlCQUFBZGhoSN26daMqVaoQkfY6QVqoERsbS/Pnz6eHDx+Sjo4ONWrUSGUxW1J9PeEX2nn9+jVduXKFOnToQIULF062r6yrq0vt27enAgUKkK+vLx04cIA6deqUZL4KW2hHfYG3XJSelb6RkxECdoFAIBAIBAKBQCAQCAQCgUAgEGhQvXp1GjhwIDk6OtKWLVuodOnSNGbMGDIwMCCib1ubSoP0CxYsoOvXrxMR0eDBg1W2nJUG8D99+kSzZs2iCxcuUL58+WjHjh1UoEABCg0NpfXr19ONGzdo/Pjx9O+//5KFhUU2P/GPS+3atWnIkCFcbGBjY0OjRo3itoiLiyM9PT0+sfTXX3/R8+fPiYho6NChKsJduej27NmzdOnSJdq8ebPGb168eJHKlClDhw4dogoVKgjBqIyYmBiaMWMGnTp1ir58+UJhYWHEGCN9fX0aP3481alTh3r37s3Ty/MuuUk+dfF627ZtKSwsjK5fv06NGzcWInY1GjVqRGPGjKGtW7fSxo0bSaFQULFixej48eNpFq8Lv8gYlSpVokOHDvG8kESF0o4befLkSfZ8HR0dat26NTVp0oQuX75Md+7coTFjxiSZXp7nuX3yPLUAoIiICC6+SgodHR1q1aoV1apVi+7cuUP379+n4cOHJ5le5H3mIn+f/f396erVq7RmzRoKCgqiT58+8XT9+vUjOzs7mjx5ssa56uWS8JH0o028PnXqVBF5PYPkyZOHOnfuTPfu3aMXL17Q9evXqWfPnlrbNgBIV1eXXF1dycPDg4iI9zHU32vGGN27d48mTJhArq6uFB0dTUREzs7OdOzYMfLx8aG1a9cKf1DD2NiYBg0aRD4+PnT//n1ydHSkLl26JClYUygU5O3tzRcuFypUiIg07SGlBUBubm50584d8vT0pM+fP1OTJk2oXLlyVLduXSGcVkO9DF+7di05OjrSyZMn+XempqZUvXp16tevH/Xr14+3cxMSEpIUxknf37t3j9auXcuvt3PnTjIwMKCNGzcKW6gxb948WrVqFVWpUoViY2OpW7dulCdPHnJ0dKQpU6akS7wu/CJrYYxp9JU/f/5MSqWSbt68SS4uLnTjxg16/vw5hYWFEVFinVS8eHG+M1SnTp2IKHGRrSBppHLq5s2bFBUVRXnz5qWBAwcm2deQLyDYuXMnnT17lqKiokhfX59+++03XpdI1/748SO9fPmS/Pz8qGLFilSsWDGysrISYyFqREVF0b59+2j+/Pk0efJkWr16dbLjE/Hx8WRhYUGlS5cmX19fCg0NJaVSmeRu2sIWSSMvn9UXexNljW8kVS/kiHEpCAQCgUAgEAgEAoFAIBAIBAKBQCAjISGB/7148WIwxsAYw19//QVvb2+N9AsXLuRpSpUqhRMnTmi97ogRI8AYQ8GCBfHs2TOVY5cvX0aBAgVgY2MDPz+/zHycnxq5LRYtWsTzecWKFXBzc1NJ++XLF0ycOJGnadSoEe7fv8+PK5VK/veff/6JihUr8rTFixeHnZ0dJk6ciHbt2qFChQpgjKFIkSL8d+T3ktsZPHgwz7sqVapg5MiRePTokUoaeX6nxJMnT9CoUSPo6OggT548+PXXX/H582cEBQWhTZs2YIzBzMwML168SPO1cyLy5580aRK3RdGiRfnfgwYNwpcvX9J0LeEXmYOUJ5cvX8aiRYsAAPHx8Smet3TpUjDGoKenh6dPn2botwWq7NmzB+vWrQOQOlvMmjULjDEYGxvDw8Mjq28v1yO9t1FRUQgJCcHUqVPRpEkTXhZJ5Vu3bt1w4sQJFRvKyzD5++/k5KT1e0EiKfnB169fcejQIVSrVo37wrx580QbNZMIDg5G9+7dwRhD3bp1Vd5XCem9ff/+PUaMGAE9PT3o6upi+fLlADRt+ODBA5QsWRKMMdSpUweTJk3C33//jd9//x0KhYL3ZQSaBAUFoVOnTmCMoV69ery9CXyzg5Tfvr6+aNGiBRhjMDc3x7///qtyXCIuLg5v3rxBz549Ua5cOZXyjDEGGxsbLFy4UON3BEBgYCCmTJmCX375RSXPSpQogXr16uHatWvw9/dXOSep/JN/f/fuXfTq1Ytfr3v37tw3xo8fn+K1chseHh4wNzcHYww1atTA/v37ce7cOdSoUQOMMeTLlw+jR49W8ZeUEH6RuWiryyMiIhAcHIx9+/Zh8eLFqF27NqytrVXy2c7ODoMGDcLu3bvh5OSEjx8/ar2uyP+Uadu2LS9PACA2NlYjjZSfcXFx2Lt3L+zs7Lgtdu/erZL206dPOHXqFEqVKoU8efKAMYYCBQqgRo0aePnypcr1BIl9hzlz5oAxhlq1auHhw4cpnhMQEIAyZcqAMYY2bdokmZ/CFhkjM31DWz5//PhRY7zrZ7aHELALBAKBQCAQCAQCgUAgEAgEAoFAA/nA9/Tp0/kgeosWLTB79mz8999/+PPPP9GjRw9+zNDQEAsWLNB6PWdnZxQoUAB6enq4cuUK/w1pUtDZ2RkmJiZgjPHjgkTktpgxYwbP79q1a2PChAnYtGkTRo8ejebNm6ssJNi2bRs/Ly4ujv89btw4lQncAQMG4Pz584iIiACQOAn26NEjtGzZEowxNG/eHB8+fMi+B/6BUV/cMWbMGAQHByMyMlLjeGqRxOu6urrIkycPBg4cyCfRExIS4OXlxSe/hIj9G/Ln//3331Xe6U6dOvH3OTmbyK8h/CJzefLkCRhjyJs3L968eZNsWslG27dvB2MMefLkgaOjo9a0Unn47t073Lt3DytWrMDBgwfh4OCgcT1BIpcuXeKLxwIDA5NNK+Xdn3/+ye2XnDArNYI5gXbUBQZOTk6YOHEiF8ZJn0qVKqFbt254+fKlhsBKjjzPT58+jerVq2PEiBFaj+d25GX/3bt3ER4eDuBbHmkTr//vf/9LtXhd+EXq8PPzQ5UqVcAYQ7NmzfDo0SNe50r+8fbtWyxcuBAlSpTg5ZiPj4/Gtd6+fcvbSh07dsTjx495fkdEROB///sfdHV10aNHj+x7wJ8MX19fvoivWbNmuH//Pr5+/aqSxsfHB8OGDYOlpSUYYyhfvjzevn2rca3AwEDs3LkTlStXBmOMi6QrVqwIOzs7FC1aFDo6OmCMYfLkydn1iD8Nfn5+KFKkCBhjMDAwQL58+TBkyBBcvXpVQ6yWXLmiLl7v3bs3r1sWLVqE2NhY7Ny5U4jYk8HNzQ0FChQAYwxlypThZVF6xOvCL7KGyMhIvH//HgcPHsSiRYtQtWpV7j9SHtvZ2aFnz56wt7fHo0ePEBMTo3IN9YU6gpRRKpWIj49HvXr1wBhLsn6V2lwxMTHYtm0b6tSpw8uhP//8UyVtUFAQVq5cCQsLCzDGULZsWVhbW8PGxgaMMRQuXFgsrNXCzZs3eXvqjz/+QGhoqNZ0ki2k4CGMMfTt21dreS9skX4y2zeksdzY2FiEhoZiyZIl6N27NywtLWFjY4NmzZph/vz58PX1Vbnuz4YQsAsEAoFAIBAIBAKBQCAQCAQCgUAr8oHvhQsXwszMDLq6unwyXS6wsrKywty5c3l69cm/y5cv88hxAQEBABInCqXfcHBwgIWFBcqVK4d3795lw9P9XMhtsWjRIhQsWJBPcOvp6anYolatWti0aRNPL5+gHTp0KJ/MNTQ0VLEZ8G1yJCEhARcuXEDhwoVRrFgxlUjuuR1tE0LpFXk8efIEVatWha6uLvT09NCtWzd+TB6hSS5iL1CgAJ4/f56u38tpyG0xYcIE7gOjRo2Cu7t7qs8VfpH53LhxA7a2tjA0NMTSpUu5KFEbki3WrVvH65izZ89qpJPqlcePH6NJkyZ84p0xBlNTU0yfPp2nFcKrb1y6dAklSpRA3rx5sWbNGkRFRSWZVnrXp02bBj09PRgbGycZyU9ezyckJMDNzQ2+vr7w8vJCdHS0yjHBN9TbRydOnMDMmTNhaGjIhVaGhoYoXLgwZs2ahcePH/P8TI0w+vTp02jXrh33jXHjxmlNJwBatWqFSpUqwd7eHmFhYQCA8PBwHDx4MN2R14VfpA1PT08ULlwYjDFUq1YN06ZNw8OHD/Hw4UNcu3YNv/zyC99dJV++fDhz5gwAzei4N2/ehLm5OUqUKIGrV6/y49K/u3fv5v2Vz58/Z/+D/iR4eHhwe1SqVAmjR4+Gg4MDzp49i4MHD6Jy5cowNTXliyql3VLkbSpvb29MmTIFxYsX5+natm2Lw4cPcz978eIF1q1bx8u8tWvXfo/H/aF58eIFChUqhLlz5/L3XiKtItt79+6hZ8+evF5YsGAB9524uLgkRexCzJuIm5sbF3EqFArkyZMHw4cPT5N4U/hF5nL//n38+++/mD9/PurWrauyCxdjDA0aNECPHj1w+PBhODg4aLzLUpkl6uKMs2zZMjCWuPOJv78/z1P5WF9UVBQWLFiAqlWrchvNnj2bC62ldPb29nzXg+HDh+PLly949+4dHj9+jKZNm4IxhqFDhyIqKkrYTo2NGzfyvN24cSMPsAAk5q+UX8HBwXwRTeHChXHz5k0Amos4hC0yTmb4htQ3DwkJwapVq9CsWTMwxvhYsPxTrly5nzoyvhCwCwQCgUAgEAgEAoFAIBAIBAKBIEnkgoSjR49i1KhRXGwrDZQPHjwY+/bt03qOxP3795EnTx5YW1vDxcVF5VhcXBwX5/7yyy9JRgzK7cjz9dSpU5g8eTKMjY1hZGQEAwMDGBsbY+bMmbh8+TJPJxevjx49mk92FCtWDBs2bODHtE1wvHnzBsWKFeNR+gTfkE/SZWTCzs3NDe3atYOVlRUYY6hXrx4XXst3KAASRewdOnTgC0hCQ0PFZCFU/WLixIm8XJo4caJGWSMhf9+FX2QN4eHhmDx5MhhjqFKlCm7fvq01nfQOv3nzBuXKleMR3t6/f6813b1795A3b14wxlCyZEnY2dmhbt26fBJ31qxZWftgPyGhoaF8h4Fq1aolufBCet99fHz44oDq1asnK3j/+vUr/vjjD3Tp0gWGhobInz8/jIyM0L17d2zZsoWnE2WVKiEhIbhw4QIGDx4MAwMD3qbKmzcvihcvjq1bt+Lu3bsq5yQlRFAXr0vtKcYYXxAioupqEhgYyIW41apVw7///ot3797h6NGjXESSVvG6hPCLtOHp6ckjhzLGoK+vDwMDAxVxjomJCfbv36+yuA/4loczZ84EYwytW7fmx+Q+s2PHDjCWuHuRXNQl0MTT01NlJwjJDnJ7mJmZ4fr16wBUhXEeHh4YNmwYChYsyMVxa9as4UJfuXgrIiICc+bMga6uLtq2bSsWFmhBffFfegRpN27cQNeuXTWiusp351IqlUmK2AWJuLq6cjFnoUKFsHz5co2FMkkh/CLzWbVqlYpws2rVqujfvz8OHjyIO3fuAIBGlHUgsf0FfHv/f9ZIxT8S58+fR/78+cEYw4YNG1R2iYiNjcXbt2/RpUsXvghE6kN/+vRJ5TqvX7/mfeyxY8dqtJE2b94MxhgaNWok2k8y5OXPvHnzVPL40aNH/FhoaCiePHnC21t58+bFgAEDtO6UJmyROWTUN6Ty6d27d+jcuTNfYMgYQ82aNTFy5EisX78eo0ePRs2aNcEYQ7FixTTqlp8FIWAXCAQCgUAgEAgEAoFAIBAIBAJBsqhPynp6euLmzZu4du0anJ2dk00r4ebmBltbWy4w9Pb2xsePH+Hs7IxffvmFR5aWxLs/22B7dqGevwEBAXBxcYGLi4uGwEouTJg7dy6PGmdtbY3t27fzY+oTt1Lex8bG8m1shVA36wgNDcWxY8fQsmVLMMZgZGSEW7duAdD0A09PTzRr1gw7d+78Hrf6wyJ/hydNmsQn9saPH4/Xr1+rpJXnqfCLrCUgIAANGjQAYwxNmjSBq6urStRc6e93797ht99+g7GxMRhj6NmzJ8LDwzWu5+zszMU/3bt3x507dxAZGYm3b99i48aNUCgUKFiwYJIRw3Mzr1+/5tuYN23aFC4uLip1hGQLPz8/tGnThpdF06dPV1lMI/374cMH/PPPP6hfv76KgChPnjwq/xdR8TVRKpVo06aNRuS8li1bYs2aNRplVnLCuOTE60uXLsW///6rVZAobJGIm5sbLC0t+UKb8ePH86iUxsbG+N///pcq8brwi4zj7++PcePGoXr16ip5ZWlpiQoVKuDGjRvJnr9o0SIwxtCpUydER0er+M39+/dRpkwZMMYwf/78LH6SnEFAQACmTZsGOzs7FXvY2NigdevWcHV1BaD6/vr4+GDkyJHcp4oWLYpz587h69evPI36+/7ff//xaz9+/Dh7Hu4nIqPlQ2xsLOzt7WFoaMgFi8uWLVM5LqFUKrFr1y5eNy1ZsiRDv50TcXV15ULDGjVq4ODBgzx6elIIv8g6li5diu3bt+Phw4cqC2mkf+W7ntjb2+P3339H2bJl0alTJ0ybNk1DJCpIPwsWLODv7IgRI7Bq1Srs2bMHw4YNg42NjUo9smXLFpU+iGSvLVu2gDEGOzs7flyebu/evVyg+/79+58ywnRWIX+HZ8yYoVJn9+zZE6NGjULLli35TgXGxsZo1KgR7t27p/V6whaZR3p9Q8rTN2/eqERnZ4xh8+bNPNI6kGh/Z2dnHp29a9euP+XiJyFgFwgEAoFAIBAIBAKBQCAQCAQCQapJbiI9pUn27du380H3atWqoUKFCnzQ3tLSkot25RMg6lvZpuZ3cgupzYeDBw/C2tqaR0zctGkTP5bcZNO5c+d4VNht27Zl+H4Fmsgj93l7e6Nnz55gjMHCwgJPnjzRek5ygofcjHzidsKECWCMoUOHDjwClTrCL7IHLy8vlChRAowxNGzYEIcPH1aJ9Pbq1Sv07dsXRYoU4ULPp0+fqlxDikg5fPhwMJa4U8e7d+9U0vj5+aFs2bJgjOHkyZPZ8mw/G15eXihevDgYY6hfvz727NnDxbmhoaF49uwZ6tWrxxcSlCxZUkWkKJU33t7eGD9+PF+UZmRkhLJly2Lu3Ln4559/8Pfff2PUqFFcOD137tzv9sw/Ki9evOA7CfTr1w8bN25UOZ4aIUhy4vXly5fzY3///bcQsSeDXMSeL18+/k4vXLgQvr6+KZ4v/CLziIyMxPv377F161asWbMGixYtwtWrV/HhwwcA2t9Z6bt9+/ZBoVCgZMmSuHXrFm8r3bx5ky/Kad26NV69egUgfZGscxsxMTEICwvDoUOHsH//fmzbtg2urq5cFCVvdwUHB2POnDkoVKgQF7U5OjomeW3Jbi4uLjAxMQFjDBcuXMjS58nNXLlyBTNmzOCLaQYOHMiPqUdi37JlC6pUqYIdO3Zo7HggUK0zqlevjgMHDiS5q4Pwi6whKcG5/PukduiSLyqrXLkygoODAYg6Ib3I8+2PP/4AY992/1FfjNakSROcOXMmyWtNmzYNjDG0b99e49pRUVGYMmUKGGMYOnRo1j3QT4z8nV++fDlKlSqVpC26du3KdyrQhrBFxsmIb0i2DAgIQMmSJcEYg56eHmxtbeHg4KDyO1IdnpCQAHt7exgbG6NcuXIaC6J/BoSAXSAQCAQCgUAgEAgEAoFAIBAIBFmKXHCyZcsWWFlZwcjICIwxFCxYEPXq1YOLiwuAbwP92iYmv3z5wkUsYpIxdYSEhKBfv358gkQeMTqpPJQiI//xxx/Q19eHgYEBLl26lF23nKNIq0Dw5cuXPHJSnz598PHjxyy6s5yJvNzYsWMHTp8+rTWd8Ivsxd3dnYvYLS0tYWtri379+uGXX35R2TLbwMAA586dA6Bph/DwcFStWhV6enrYv3+/xuKm+Ph4Hhn/1KlT2fuAPxHu7u58ItzU1BRFihRB+/btUatWLS7elY5Jkezj4+N5Pru7u6Nbt27cbmZmZli6dKlGhNDw8HBs2LCBR8W/du1atj/rj467uzuuXLmiEiE0PW2bU6dOoXXr1tx2f/31l8r1lEoldu7cKUTsyeDq6gpzc3MwxmBoaIhu3brxdimQdD5J3wu/yHpS8o3w8HA0bNgQjDHY2tqiXbt2GDFiBAwMDMAYQ+3atXHs2LFkRfCC1CPlmdTuOnbsGF+UXLRo0RQj5kvn7dy5E3p6ejA2Nha7p2QBcr/5/Pkz9u3bx4XRo0aN0pouPj4ePj4+iIiIyNZ7/Zlwc3NDgQIFwBhDr169NHYNEn6RvaiX4fL/jx49Gowx6OvrY968eTh//jz8/PwwcOBAvthZvOsZQ97/liJLW1hYwNzcHJUqVULLli1x4sQJeHl58XTa6t2dO3dCX18fzZs3x/v371Wuf+LECb7wU75jmkAVuS2uXbuGZcuWwcbGBkWKFEGZMmVQt25dHDx4UNgim0iPb0gLxwIDA1GxYkW+KLZu3bp48OABgKTbrU5OTnzHlUOHDmXhk2UNQsAuEAgEAoFAIBAIBAKBQCAQCASCLEc+Mf748WNcunQJmzZtwv3793nkK0B1MD42NhZPnz7Frl27MHbsWFSsWBFWVlZwdnbO1nv/mTl+/LjKlrUSSQmBpO/v3LnDo/C2atUqW+41pyHPY3d3d8THx6cokoqOjsb8+fO5AMvNzS2rbzPHoW3xi3q+C7/Ifry9vdG+fXseaV3+MTQ0hLm5Oa5evZrk+Y8ePeIidylinNynLl++zK+XkkAot+Pj44Nu3brxRQXqUeBq1KjBhbdKpZK//x4eHmjbti0XultaWuLixYsqkUflkVx9fX1RrVo1MMawbt267H3In5D0iGifPn2Kxo0bc/t169aNH4uKiuJ/SyJ2HR0dETExCV6+fMlF7BUrVsSRI0dUdjxRR7KX8Ivvj1Tvf/78GQ0bNuSLNaRP7969cf78eZ5O/V8JuZ2EqD1lpDwKDw9HjRo1+MLk//77L9nz5G2tLl26gDGG/Pnzq+zOIsga4uLisHPnTuTJkwe6urrYvHnz976lnxZXV1c0adIEL1++VPle+MWPw6pVq7h4/eDBgyoLBgGgSpUqKF68OHx8fL7THeYc1OvTt2/fwsfHB58/f052gYGca9eu8ej4U6dOxfXr13Ht2jUsWbKEL7wZNmxYlj1DTkF9POPz588ICgrCp0+fVNo5ySFskXmkxTektB8/fkSrVq14+VW/fn2+Q11yCzFfvXqFggULgjGGw4cPZ8XjZClCwC4QCAQCgUAgEAgEAoFAIBAIBIJsQZpM0TboLgmtHjx4AHt7e/z666+oUqWKyjar+fPnR4UKFTB//nyxpXkKxMfHIzo6Gh07dgRjDNWqVYOTkxM/ltQ5AODp6YlixYqBMQYbGxscO3YMADTyXN2OIiq+dnbt2oXRo0fz/6ckinr58iVMTU3BGMOSJUu0pklpIljYQjtZ4Rcir1NPUFAQTp8+jf79+6N69eooVaoUWrZsiUWLFsHV1RVA0v7x4cMHVKlSBcbGxti/f79Kvt+7dw8VKlQAYwwjR47Mlmf52fn48SMcHBwwYsQItGjRAvXr10ePHj1gb2/PhTzyBQK+vr7o3bs3L5sKFCiA58+fp/g7PXr0AGMMffv21bq4RJBxduzYgfbt28PIyAhGRkYqEdblQhWlUoldu3bxCOGvXr36Hrf7Q+Pq6gpLS0swxlC9enUcOHAgWRG78IsfB+ldDwsLw/79+zFt2jQsWLAAe/bsQURERLJ1y40bN7BgwQJ0794dY8aMyc7bzhFMnDgRjDHky5cP8+fPR0hISJJp5Xb466+/wBiDnp4epk+frnFckHpiYmIQFhaWqrT+/v5o27YtL4ME6UfqG2srx4VffF9CQkLQunVr6OjoYOHChSrtoaioKCiVSjRo0ACMMbGjViaR3Hua2v7ypk2bVHaD0tXV5eOBgwYN4unkPqfN/0T/PGmELbKftPhGZGQkZs+eDTMzMzDGUKlSJTx69CjF6wDAkiVLeL2jvgvUz4AuCQQCgUAgEAgEAoFAIBAIBAKBQJCFJCQkkEKhIIVCQUREjDEiIlIqlXT37l0KDg6mY8eOkb+/P92/f5+fV7RoUapVqxa1bt2aatSoQTVq1CAbGxsCwK8h0I5CoSClUknu7u5ERGRra0sVKlTgx9SRbOTr60u//fYbvX37lvT19al+/frUuHFjIiLS09MjIqKgoCB6/PgxXbt2jaKioqhatWrUpk0bsrGxofj4eNLR0cmmp/zxefXqFW3fvp0ePXpEFStWpAkTJiT57krvta6uLhkaGlJYWBjFxMQkmY5I2CKtZIVfSOeJ/E6ZAgUKUKdOnahTp04UFhZGSqWSzM3N+TudXNluZmZGlStXJhcXF1q2bBkRERUuXJiCg4Np2rRp9P79e2rdujVNnDiRiL7ZTqAdCwsLat68OTVv3pxiY2MpISGBDA0N+XEAPP8+f/5M27dvpxs3blBYWBhZWlrSrVu3qHz58snmc3h4OL169YpfT/hH1jBixAhq1aoVnTlzhmbPnk2bN2+mL1++0IEDB0hXV5eXTTo6OjR48GDKnz8/mZubU8mSJb/3rf9wVKhQgRwdHalx48bk5ORE69evp6JFi1KzZs00yibhFz8W0rtuYmJCv/76q9Y0ERERxBij27dvk7OzM12/fp2ePHlCQUFBRES8HmrevDn16tUrO2//pyUiIoJevnxJRETW1tbUpUsXyp8/v9a08jr+woULdOzYMSIiypMnDzVs2JCIEm2QXHtK9AE1USqV5OjoSO/evaOBAwemmEfW1tbUpEkTunz5Mh05coRmzZpF1apV05pW2CJ5dHUT5XbqeZQVfiFIGwEBAXTr1i3S0dGhhg0bclsplUoyNDSk0NBQ+vz5MxUpUoTKlSv3ne82Z5Dce5pSn0xqN40bN46MjIzo77//Jl9fX4qJiaHmzZtTs2bNaMaMGUREFB0dTYaGhvwcyf9CQkLI2dmZihYtSmXKlBF9wSQQtsh+UuMbUh75+/vT1atXKTQ0lPT09Gjr1q1kZ2eXZJ0rnRcaGkoPHz4kIiJjY2MyNTXNmofJQoSAXSAQCAQCgUAgEAgEAoFAIBAIBJmKNIguDbJLg/JxcXH0+PFj8vHxoePHj9Pbt2/5IDsRUZEiRahmzZrUvXt3srW1paZNm5KZmRnlyZNH4/pC8JMyERER9PXrV9LT06Pu3buTnp4eKZVKPoErIRfpjh8/ntvE1taW5s+fTwULFuRpL168SPv27aMjR47w7xQKBVlbW9OZM2eoUqVKuX6CSk7+/PmpSpUq9OjRI7p8+TK1adMmyUlyaULq2bNnXEylPvEkn7gStkgfmekXCQkJxBgjxhgvk9zd3SkoKIgSEhKocuXKZGRkREZGRsIW/4/0DpuYmGh8l9ziDn19fdqyZQt5eHjQs2fPaNSoURQdHc3TdOzYkaZOnaqxICGpyV4hvPqWB3p6ejwv5LaQhGtPnjyhEydOUHBwMJmbm9OFCxeofPnySQrbpO/fvn3LF+HY2tqqXF+QOUj5WbJkSRozZgxZWlrSyJEjyd7enkqWLEmLFy9WsZGOjg5169btO97xj0/58uXJ0dGRWrRoQdHR0WRjY6Pyzgq/+DHR1jeIioqiuLg4unbtGr1584ZOnz5N/v7+5OXlxdNUqFCBGjRoQM2aNaN69epRyZIlVdq9guR58OABOTg4EBHRb7/9RjVq1NCaTv6OP3r0iPbv308PHjwgIqJx48ZRly5deDrJjlevXiV/f3/KmzcvFS5cmJo2bZriYrfciIuLC/Xs2ZOioqKoUaNGyS5OksqhUqVK8bz88uVLkumFLZInqWfPbL+QI+9P5Pb8Tw6pLDE0NOR9DgC8vzdy5Ehyd3enmjVrUr58+b7nrQoosd8mvdtDhw6ltm3bUlxcHIWHh5O1tbWKjaQFtx8/fiRvb2+6d+8e3bx5k9zc3MjLy4t0dXXp5cuXVKZMme/1OD81whbfB6lc37p1Kz169IiIiHbt2kWNGzdOdjxDOm/z5s10+vRpIiIaM2YMlS5dWiXdz1BXCAG7QCAQCAQCgUAgEAgEAoFAIBAIMgV1wfqnT58oMDCQnjx5Qg4ODvTy5Ut6/vw5T1+kSBGqXr06de/enUqWLEkdO3YkfX19MjIyUrmuuvBTiNdTR0JCAkVGRlJcXBwFBAQQESUp0vXy8qJRo0bRgwcPKDo6miwtLenw4cNUtmxZnvbs2bO0aNEievLkCeXNm5e6dOlCkZGR5O/vT0+fPqWOHTuSg4MD2djYZOtz/shYWlpS165d6eLFi3Tu3DmqV68eTZkyRWNRhsS7d+/o2rVrpKOjQ/Hx8VSkSBGV49LEk7BF+sksv4iPj+dCXx8fH3JwcKD9+/eTq6srhYSEEFGiELJ27do0d+5cKlOmjIjSTt/eYfkkakrCfklMbWZmRg4ODjRhwgRyd3cnJycnKleuHHXs2JEmTZpEBQoU0JiclQuxb926RREREfTLL7/8FJO4WY02W8j/lt7VZcuWkaenJ+XLl4+2b99OtWrVSnIhmfz7devWkaenJzHGqHXr1hrXF6QebYtsiFTzU1dXlzp27EgTJ06klStX0qlTp6hr165Uq1at7LzVHEH58uXpwYMHFBMTQyVLllQRfgi/+DFQr0+lhbNfv34lBwcH8vX1paNHj1JwcLCKYL1SpUrUvn176tatG5UuXZqqV6+uNUqlWHSWOmJjY0lPT4/y5MlDNWvWJCLNvJP7j5OTE23fvp0vvuzfvz8tXLhQ5ZqvXr2i33//na5du0ZxcXFElLigc+TIkbRixQohnFYjOjqazMzMKCIiguzt7Wny5MkafWl1PDw8iCixPEtu8aCXl5ewRTrITL9Qr/+lck6pVFJMTAwVKlRI6zVzOyYmJmRjY0Ourq7k4OBAZcqUobx581JsbCyNHDmSjh49Subm5rRlyxbKnz+/yLsfAGmnNF1dXSpUqJBGe8rb25u+fv1K586do5cvX9KNGzfo3bt3RJTYjipcuDB17dqVSpcuTe/fvxei6QwgbJH9AKDg4GC6efMmERF16tSJ2rRpQ0Ta+wnyMmvfvn00d+5cIiJq2LAhdejQgYi+tZWldLGxsaSrq8vHsH60tq4QsAsEAoFAIBAIBAKBQCAQCAQCgSBTYIxRREQE/fnnnxQUFEQPHjwgb29vHmnSwsKCGjVqRM2bN6cKFSpQs2bNyMDAQGNLbQAq0WR+pEH1n4nChQtTz549ae/evfTq1Sv68uULmZqaaghHnz17Rn379iVvb29KSEggMzMzunjxIlWtWpVPenh6etLff/9NT548oTZt2tDYsWOpU6dOpFQq6dWrVzRo0CB68uQJnTlzhiZOnCgmgenbpFLHjh1p8uTJNH36dPrf//5HZmZmNHDgQA3B1MePH+nYsWNkb29P8fHx1LRpU+rTp4/GdYUtMkZm+IVcjHj79m2aPHkyvX79moKDg3kkMiMjI3J3dyd3d3dycHCgS5cuUcWKFX+4icKfBWlRh6mpKe3atYvi4+MpKCiIjI2NycLCQiN9eHg4OTk5ka+vL504cYL8/f3p2bNnREQ0dOhQ2rVrV3Y/wk+FVG7s3r2brl+/TgYGBvTbb79RixYtiEh7vSyvt7du3Up79uwhxhh17dqVqlSpwq8pfCBtfP36lV68eEG1atUifX39ZNOamJhQ8+bNafXq1eTi4kKPHz9OVsAubJE0xYsXJyJVgUhW+oUgbUh18Js3b8jV1ZWcnJzo0qVL5OPjQ35+fjxd5cqVqVWrVtSnTx8qVqwYtWzZUqtoV90XhF+kjtDQUIqLi6M8efKQubk5EanmnTxf79+/T9u3b6d9+/YRUeLOKdOnTyc9PT3e37h37x5NnjyZHj16RObm5mRjY0Px8fHk5OREq1atIsYYLV++XPiMjMqVK1OPHj1ozZo1dOTIEWratCk1atRII5180cetW7d4hOpixYqppJNsJmyRfjLTLyTxekJCAh09epTOnj1Ld+7cobi4OAoLC6MePXpQo0aNaNiwYWJBgQxbW1vq06cPzZ8/n2bPnk03btyg+Ph4CgkJoWfPnlH+/Plp3bp1VKdOHZFn3xH1voH0vuvo6JC/vz99/PiRTp48SQEBAXTx4kUKCwuj6OhoUigUZGFhQX379qWKFStSs2bNqEyZMioLOgRpQ9ji+8IYo/fv35OzszMREdWtWzfJHYHkZdbRo0fpf//7HxER5cuXjzp27MgXTuno6FBsbCy5ubnRwYMH6cWLF6RUKqlWrVo0bNiwHy/AAgQCgUAgEAgEAoFAIBAIBAKBQCDIRMaMGQPGGAwMDNCyZUtMnToVp0+fxtu3bxEZGamRXqlUIigoCI8ePcLHjx8RFRXFvxdkjD179oAxBsYY1q9fj4CAAH7s0aNH2LhxI0xMTHgaW1tbPH/+HAAQHx+PhIQEAMC+ffugUChQsmRJXLx4kV8jNjYWADBw4EAwxjB69OhsfLofn/j4eP73H3/8wfN5ypQpOHPmDOLj4xEfH4+rV69i1qxZMDY2BmMMlSpVwqlTpzSuAQhbZAYZ9QsgMb//+ecfKBQKnq5AgQJYtGgR/vvvPzx//hxbtmxBkyZNwBhDmTJl4O3t/V2eNycRFxcHALxskvjw4QPu3buHTZs2oUePHqhcuTK3i2TDVq1aYd26dfj777+/x63/lEydOpXX59euXUsyndweZ86cQZ06dcAYg66uLnbs2KH1nNjYWLx//16ljFO3a24nKioK27dvR/ny5XHp0qVUnRMZGQk7OzswxjBkyJBU5amwRdrISr8QJM/r169x+PBhLFy4EG3btkXRokVVyvoKFSqga9eu2LFjBy5duoSoqCitfQ+pLhFkDH9/f5QrVw66urrYvn0777slJCSo9OOOHj2Kbt26cTu1a9cOt27dUilzPn36hPr164MxhipVqsDV1RVfv37F27dvsX79eujo6MDS0hKOjo7Z/pw/OgEBAWjQoAEYY2jSpAlcXFx43qr3p0ePHg3GGPT19TFmzBgA38oq6Rxhi4yRmX4BACdOnMCQIUNUyjpDQ0Mwxng/ZMaMGTx9bq+/5fk3c+ZM6OjoQEdHh+ddkSJFcOHCBcTExHzHu8ydqJc1coKCgvDw4UMsWLAA/fv3R758+fh7bmhoCBMTEwwYMAD/+9//8PTpU7x9+1bjGtJ1tV1foIqwxY/Hs2fPkCdPHlhYWODRo0cANNur8vw8duwYypcvD11dXTDGMHjwYJW0ERERWL16NWrVqqVSfzDGULRoUbi4uAD4ceoMEYFdIBAIBAKBQCAQCAQCgUAgEAgEmQL+PxLMli1bqFevXlSkSBEqV66cSpr4+HiV/797947GjRtHbm5u5OHhQWXLlqXKlSvTtm3byNLS8seKCPMTIdliyJAh5OnpScuXL6dJkybRf//9R4ULFybGGN29e5eCg4MpJiaGrKysqGbNmrRq1SoqX768SmS46OhoOnDgAAGgXr16Udu2bYko0ZZ6enpE9C2qXEJCgojoKkOhUPB3eOnSpUREtHz5clq7di2tXbuWKlasSETEo3zHxcVR+fLlaeTIkdS0aVN+DQlhi4yRWX4RFhZG+/bto0mTJhEAKliwINnZ2dHGjRvJxsaG/16VKlWoWbNmNHToUHr48CFt2LCBVq5cSbq6usIuqQBaIiJK0eDevn1LoaGhdOHCBXJ2dqZbt27R69eveTpLS0tq2bIltWrViipVqkTNmzcnxhgZGRkle31BIvHx8RQbG0vnz58nIqJu3brxKNPqyPPRwcGBtm3bRo8ePSIiotGjR9OIESNUrvvhwweaP38+vXz5kl68eEFNmzalJk2a0IwZM0T0UDViYmLo5s2b5OHhQTt37iQ7OzsezTUpQkND6d27d/zvpPJS2CLtZIVfpLaeFrZIRE9Pj8aOHUufP38mPT09KlCgAPXq1YsaNGhAdnZ2ZGdnRwqFgreJJMLDw4kxRowxMjY2Jl1dXdFGygTy589PNWrUIE9PT/rnn3+obt26VK5cOTI0NOQ7as2dO5dOnz5NL1++JCKiLl260IwZM6hOnToq+T9p0iS6f/8+lSxZki5cuEBFixYlIiJjY2Pq3r077d27l5ycnCg4OPi7POuPTLFixWj//v3UokULcnR0pFGjRtHEiROpSZMmVLhwYYqOjqaIiAiaPn067d27lxhjZGVlRW3atCEi4mWLZA9hi4yRmX6xYMECOnHiBL148YKIiMqUKUPly5enX375hUJCQsjd3Z3s7e1p1apVpFAoaNmyZbm+rpD3v5cvX0716tWjgIAA8vX1pWrVqlHLli01dh4QZA/SuxkfH0/h4eH0+PFjevz4MT169Iju3bvH26+6urpkbm5OHTp0IFtbW+ratSuZm5uTra2tyvWktpH0r9jBMfUIW/x46OvrU0xMDEVHR5OHhwfZ2dnxsQ8JKT/t7e1p7ty59PbtW4qPj6dOnTrR3r17ebqYmBjauHEjrV27lkJDQ6lKlSo0fPhw8vf3p4cPH9KdO3eoR48edPXq1R+mPBQCdoFAIBAIBAKBQCAQCAQCgUAgEGQKjDE+Wdi8eXMi0tyKVhKjJyQk0I0bN2jy5Mn04sULsrS0pDJlypBSqaTjx4+Tu7s73bx5kywsLIRoJx3IbbF06VLS19endevW0Z07dyghIUElbb169ahfv37Uo0cPKlKkiIagR6FQUGRkJBERmZmZERFRXFwcFwfduHGDbty4QQqFgjp06CAmqdTQ0dFRsYWVlRUdOnSIHjx4QK6uripp69WrR+PGjaMOHTqQqampxrWELTJGRvxCOi8mJoZ2795NU6dOJQBUtmxZ6tGjB02ePFll0Q0AUigUVKZMGWratCk9fPiQHj16RHp6eqI8SwGpDJLnk7+/P4WGhtLp06fJz8+PLl68SCEhIRQdHU1ERBYWFtSlSxeqWrUqNW7cmCpVqkSFChVS8QH1BVTCDkmjUCjIwMCAT5pbWFgQEZFSqVSZSJfXF1evXqWtW7dycW/v3r1p3bp1PG1UVBRdvHiRVq5cSQ8ePCA9PT2Ki4ujS5cu0fnz5+ndu3e0du1aYRcZRkZG1KBBA7p06RI9ePCAbt26RZ07d9Zatku2cHFxIQBERFSoUCGtbShhi/SR2X4RGxtL+vr6/LyHDx+Sj48P3b59m/T19alGjRpUtmxZqlu3rlhQ8P8ULlyYHB0d6ezZs9SsWTOysbGhAgUKqKSJjY3lfzs6OtKtW7fov//+o/j4eCpVqhR1796dBg4cSAqFQojYM4iJiQktXbqU7t+/T7dv36Zhw4ZRjRo1qF69enTv3j3y8vIiR0dHnn7YsGE0ffp0Klu2rMq7HBYWRi4uLmRkZERbtmyhokWLqvhVnjx5SKlUEgAKCQnJ9uf8GShVqhRdvnyZ2rRpQ3fv3iUPDw+ytLSkxo0b06tXr+jz58/k7OxMCoWCjI2Nadq0adS1a1eN6whbZJzM8ouxY8fSoUOHKDQ0lIgSFz/16dOHL3ImIvry5QvVq1ePJkyYQJs2baL69etT586ds+9hf1Dk/W9t77ko+78fz58/p4EDB9LXr19VFh8XKVKEunXrRjVr1qQ2bdqQpaUl2djYJNn2kdswt7eN0ouwxY8DACpRogT98ssvdP78eXr69Cl17dqVjI2NVdIwxmjNmjU0c+ZMSkhIIADUvn17OnXqFBElCtcNDAzo9u3bdODAAfr69SuNGTOGRo0aReXKlSOlUkmurq7Up08f8vX1pcePHwsBu0AgEAgEAoFAIBAIBAKBQCAQCHIe6tHS1SO6SROJrq6u9Pvvv9PLly+pRo0adPDgQSpcuDCZmprS4MGD6cCBAzR37lzasGGDRhRFQeqQT9wuWLCAateuTS9fvqSzZ88SY4xq1fq/9u47vIoyb+P4fdIJhAQIkJAQEkiAQAglIITeVjBIFRREqgKigAWxrAXEsgi7uKLuii6Iy7r03kF676ETWgol9JKE9GTeP3jPSEhAViEnge/nurg8nil5Zn5zZs6cueeZMAUEBGjQoEFmqNYaur2do6Ojatasqa1btyoqKkrXrl1TiRIlJElbtmzRxIkTdfr0abOnY+R2ey2GDh2q1q1ba9++fZo9e7auX7+uwMBAlS9fXq+//rpcXV3veuGPWvxxv+dzkZWVZdbk559/NsPr1atXV79+/fTSSy+pePHiys7ONveB1vEdHBzMJ1Hs3r1bx48fV1BQEBd37yErK0tJSUk6deqUlixZohMnTmjRokVKT09XUlKS7O3tZW9vrw4dOpg9wXl7e6t8+fJ5BtatF3t5msf9s/ZUXKlSJR08eFDx8fG5Qrq3PyFl7ty5+uGHH7RixQpJUocOHTR27FjZ29ub023cuFEjR47UwYMHVbVqVX322WdKTExUbGysRo0apa+++kpVqlTRyy+/bJNlLogcHR317LPPasWKFVq8eLG++OILBQYGKiQkxBzH2purddufNGmS2WtiREREjn2NNWBCLX6fB/m5yMjIMMPra9as0apVqzR27FgVKVLEvFFNkipUqKC+fftq5MiRhNj/X7Vq1cwn2Ei/btfWGzes69XaO2VcXJwMw1CJEiV04MABzZ8/X+fPn9dbb71FgPEBCAgI0IoVK9SpUyft3btXe/fu1U8//WQeg52cnOTv768+ffrovffeyzW9YRiKi4tTZGSkJJnnfQ4ODubn69SpU7py5YpKly6dY/+HnKpUqaK1a9dq6NCh2rt3r6KionTs2LEcn40qVarolVde0aBBgyTlDB5Siwfnj34u+vfvr59++sms3dixY/XWW2+Zw603QHl4eKhz586aO3eu1q1bp3379hFg/3/3+t7Pvt92atWqpfDwcC1btkytW7dWmzZtVLt2bdWoUSPXDWnSre9ehw8f1unTpxUbG6tq1aqpZs2acnNzy/UdDP8balFwWJ8QZA2wf/nllypXrpwiIiJUuXJlpaSkaMGCBVq9erXZ07qjo6OeeeYZ/fe//5V064ZaZ2dnSdK0adN0+PBhtWzZUq+88ooCAwPN88XQ0FCVK1dOUVFRio6OttUi52YAAAAAAAAAAJCP0tPTjYYNGxoWi8V44oknjCtXrhiGYRipqamGYRjGpUuXjBIlShjNmjUzsrKybNnUR8Kd6zAjI8PIzMy85zh3mjFjhmGxWAyLxWL06dPH+Nvf/maMGDHCqF27tmGxWIxKlSoZ8+fPf+Btf9RkZ2f/4XGoxYPxv3wurDVZtWqVue6Dg4ONv//970ZiYmKOcfKafsKECYajo6Ph7u5unDp16r62g8dVcnKyMWTIEMPBwcFwdHQ0LBaL4ejoaHh4eBhdunQxhg8fbmzZssU4duzYb86L48fvZ91Gx48fbzg6OhrBwcHG3r178xx37NixRvXq1c3PRufOnY0jR47kGCc1NdVo0aKFYbFYjCeffNKIjo42hyUmJhrDhg0z92nILTo62lzHzZo1M7Zu3WokJSXlGCcjI8N46aWXDIvFYtjZ2RmdOnUy4uLics2LWvx+D+pzcfux5tNPPzXCwsLM8dzc3IyKFSsaDRs2NCpWrGjY2dkZFovFGD58+ENfvkfJtGnTjCJFihgWi8Xo1q2b8Z///Me4ePGiMXv2bMPDw8OwWCx8V3rA4uLijNGjRxstWrQw/Pz8jODgYOOJJ54wfvjhB2PLli3meHkdmxMSEozatWsbxYoVM6ZNm5ZjnEuXLhl16tQx91kpKSn5sjyFmXVbf/bZZ41atWoZlStXNmrWrGn8/e9/NzZu3GiORy0evvv9XKSnp5uvhw4dan4HdnFxMSZOnPibf6dfv36GxWIxGjVqZP6mAhQ0t3//OXfuXI5zYuvrjIwM870zZ84Y//jHP4yiRYsa9vb2hsViMYoVK2Y0b97cuHjxYq554v5Ri4Ll9vX/7rvvmucFQUFBRsOGDY2qVasaxYsXN9+vVauW8eGHH5rT3F6r8+fPGwEBAYadnZ2xaNEic/7W43lKSooREhJiWCwW45tvvsmnJfxtBNgBAAAAAAAAAPlq8eLFhoODg+Hj42OcOHHCMIycP7jv3r3bsLe3N8qWLWucPXuWEGIB8fXXX5sXTKz/nJ2djUaNGhlz5swxx8vKyjIvwOR1EYsLW7/6vUFmapH/Dh06ZAQEBBgWi8UoX768MXr0aCMhIcEwjHvX8fLly0atWrUMi8ViNGjQgPD6fTh06JDh5+dntG/f3nj//feNTZs2GVFRUTnGuX3bPXLkiLFy5Urj3XffNf7zn//8ZjgL9+/MmTPm9tukSRNj/vz5RmxsrHHu3Dlj7ty5xnPPPZdjP9SzZ0/jzJkz5vTW7X3cuHGGxWIxvLy8jOPHjxuGkfO4P378eMNisRihoaFGUlISdctDVFSUUa5cOcNisRjVq1c3XnrpJWPhwoXGypUrjXHjxhkRERFmeD04ONiYNm1anvOhFn/cH/lc3L4+X3rpJcPJyckcr0ePHsbkyZONK1euGBkZGcahQ4eM8ePHmyH2L7/80kZLXLjs2bPHDOYMHjzYPNew+v777w2LxWKMGjXKRi18dFkDUrGxscaNGzfM70lWd9ufpKWlGT169DBvEPzpp5+MZcuWGVOnTjVCQ0PN98+dO3fP+SC3q1evGteuXTNu3LiR431qkX9+63Nx+3fasWPHGmXKlDFv4Jw0aZI57F7r+tlnnzXPNQiwoyC7czu+23Z98uRJ47XXXjO/Az399NNG//79jUaNGpkB3mvXruVDix9d1KJgufMG1woVKpjr3GKxGK6urobFYjFee+01Y/ny5XlOZxi3bmIrW7asYbFYjKlTpxqG8Wttk5OTje+//95wdXU1AgMDjZiYmHxYsvtD//0AAAAAAAAAgHx14sQJZWVlydvbW2XKlJEk83GzWVlZ2r59uwzDUPPmzVWuXDlbNhX69dHyQ4YMUdmyZfXLL7/o8OHDcnBw0AsvvKDatWurTp06kqSMjAzzcfOSlJaWpqtXr2rHjh3as2ePOnfurLCwMFstSoFjsVj+p/GpRf7Lzs5WVlaWZsyYoStXrkiSGjdurFdffVVubm4yDOOudczMzNSSJUt06dIlSVLt2rWVlZUlOzs7Hl1/D9WqVdO+ffvk4eGRa1h2drYMw5C9vb0kadasWfrkk0904sQJpaamSpJcXV01evRovfnmm7Kzs7tnjXBvPj4+mjlzplq2bKlNmzZp//795vabmZmphIQEWSwWeXp6qm/fvvriiy9yTG9d7+fOnZMkPfvsswoMDFRWVpYcHBxkGIaysrJ0+vRpSVJISIiKFi2avwtZSFSuXFnr1q1Tt27dtH//fh0+fFiTJk2Svb29HBwclJaWJovFoho1amjIkCHq3r27JOXa/qnFH/d7PxdZWVnmvqt79+6aOXOmLBaLLBaLRo4cqQ8//FDSr5+batWqyd/fXxcvXtTYsWO1dOlS9evXT+7u7rZZ8ALOuq3v27dPUVFRCg0N1cCBA1WpUiVJUmpqqlxcXMztes+ePRwfHgI7Ozv5+fndddidDMOQk5OT/vGPf+jo0aOKjIzUyy+/rNTUVDk7OystLU3VqlXTrFmz5O3tneNzZH1t/X58+zwf97pa10GJEiXyHE4t8tf9fC7Wr1+vefPmmecNEyZMUP/+/SUp13q93ZEjR3T06FHZ2dmpZs2acnZ2fghLADwYd27Hd/6/dZ8xbdo0ff311ypWrJg++OADjRgxwhznueee06xZszRp0iQNHz6c/czvRC0KFnt7e/NY+v7776tly5Y6ceKEtm/froyMDDVp0kT+/v5q3LixOU12drZ5HLYqWrSo6tWrpyVLlmjXrl1q27atPD09lZKSotmzZ+ubb75RSkqK2rRpo5IlS+b3Yt4VAXYAAAAAAAAAQL4qVaqUpFsXSJKTk+Xm5ibp1gWSLVu26C9/+YsMw1D9+vVt2Uz8Pzs7O/Oiebdu3dSpUycZhqGMjIxc4baUlBQlJSVp6dKlOn78uJYsWaKYmBgz+PvVV1/p1KlTKl26tC0WpdCjFvnPzs5OaWlpWrhwoRITE+Xn56dx48apZMmSdw2TWN+Pi4vTlClTdO7cOTk5Oalfv37mzToSoZ57sQY0bw9HSbeCndZ1PmXKFDPY06JFC1WtWlWenp6aMGGC3nrrLRUrVkwDBw5kHf9BQUFBWrdunV5//XUdPnxY0dHRkm7deObi4qKXXnpJLVq0UOfOnSXlHbJKSUmRJMXHx5shUulWPQ8fPqwVK1ZIkho0aHDXeeBWLRYvXqxvvvlGa9eu1c6dO5WVlaWsrCxJ0sCBA9WuXTs9/fTTkqjFw/S/fi7S09Pl5OQkSerZs6dmzpwpe3t7eXt764MPPtDAgQPz/Duurq6qW7euDMPQL7/8oujoaNWqVStflrEwys7O1oIFC5SZmamwsDBzXWVmZprb+q5duyTdukGA48OD9XvWp8ViUVZWljw8PLR27Vq99tprOnLkiHbt2qV69eqpatWq+uKLL1SiRIlcIWnr94MbN24oJiZGUVFR6t69O3UVtShIfmsdWIcvWLBA27ZtkyR98sknevnllyXd/ThsPY/YtGmTDhw4IEmqUqXKg2w6kO8sFovWr19v3tQ3cuRIvfnmm5KkmzdvqmjRoho2bJhmzZqlU6dOmdPgwaMW+e/242p4eLjCw8PVq1evu46f17HB1dVVXbt21ZIlSzRhwgSdOHFClSpVUmRkpI4ePapLly7pqaee0ptvvmn+Fp+X/P6tigA7AAAAAAAAACBfeXt7q2jRotq5c6f+85//KCIiQllZWdqyZYs+//xznTlzRk899ZSGDBli66bi/9nZ2Zk9elt79XZyctL169eVmpqqVatWKS4uTnPnztX58+cVHx9vTtugQQO1adNGnTp1UsmSJc0bGPD7UIv8t3TpUu3bt09FixbV559/Lh8fn1zBaqvb33/vvfe0bt06OTg4aOTIkapXr56ysrLMEHZ2drbS09N1/PhxeXl5qUiRInJzcyMwql8vft+5jq3vz58/3wyvDx8+XEOGDJGfn58sFouaNGmiJ598Ut999506duyoMmXKcDH9D6pUqZKmTp2qCxcuaNOmTUpPT5efn58CAwNzhKXutu3WqFFDkrR3715t3bpV4eHhyszM1O7du/X222/ryJEjql+/vp5//nlJeV+Mxy2+vr76+OOPNWrUKK1YsUKJiYlyc3OTv7+/QkNDzW2dWjx89/u5yMjIMMPrr776qqZNmyY7Ozv5+/vro48+MoMpd9bMejypXLmySpcurRs3bphPmkBu1t7srWEc63ckwzDMm8e+//57/f3vf5cktWrVyibtRG7WXkfd3d31/fffKzMzU9HR0QoKCpIk8/Nj/U5w6dIlJSQkaOnSpTp48KDWrl2ruLg4ZWZmaufOnfrb3/5ms2Up7KiFbaxevdrcN73wwgt67bXXJN37JjKLxaLNmzdr6NChkm49Icp6PDEMwxwHKGzmzZsnSerWrZsZmM7MzDRv2N++fbsk6fLly8rOzpbE99WHhVrkvz+y/qyh8z59+igxMVHDhg3T0qVLzeF+fn7q16+f3nvvPVWsWNE8xuT125b1+HG3370eNALsAAAAAAAAAIB81apVKw0dOlRjxozRiBEj9PXXXyspKUkpKSlKSUlRixYtNG/ePDk6OhLktCHrurdeBLEGgWJjY7Vp0yYdPXpUixYt0tWrV3XmzBlzusaNG6tFixbq2rWrvL29FRYWlqPXafzvqIVtWW8CSE9PV2BgoKTcwWop5yOc+/Tpo1mzZsnOzk7t2rVTRESEpF97ED9+/LimTp2qZcuW6ciRI/Lx8VHVqlU1ZswYBQcH59uFwsIoPj5e3377rSRp8ODBGjVqlHkR3TAMtW7dWjVr1lRUVJSSkpJUtmxZWzb3keHh4SEPD49cvXve3jvb3Y7XvXr10tSpU7V9+3b169dPVatW1c2bNxUTE6OzZ88qKChIc+bMUalSpfI87t/+N3hywa0AocViUceOHXO8bw2sSdQiv/zW58IwDPOYPWHCBE2bNk2SVKZMGX3wwQd3Da9Lvx5n1q5dq0uXLj3sRSn0rNt/pUqVJEm7d+/W/v375efnJw8PD3355Zf65JNPJEkffvihWrdubbO2Ijfr91x7e3s5OTmpevXq5rDTp08rOTlZixYtUkxMjJYsWaKLFy8qJSVFdnZ2Kl68uCIiIlS1alUFBwcrOTlZrq6uNlyawo1a5B/rsWL//v1ydHSUs7Oz2rZta66ze/0OcuDAAY0YMULp6elyd3fXn/70J7m7u+c6NqenpyszMzNHHTh+o6AyDENHjx6VJJUsWVLSrcC09TeMqKgorV27VpIUERHBb4UPEbUofCwWi3lOMWTIEAUGBmr37t06deqU3N3d1aNHD/n7++d6CqP1nOPs2bOKjIzU3r17tX79en366af59mRUfqUEAAAAAAAAAOQb64/pn3/+uRwdHfXTTz8pPj5eGRkZql27tho1aqS//e1vcnR0JMBpY9aL2kePHtWxY8e0ceNGMyydkJBgjlOnTh01btxYXbp0ka+vrxo0aJBn7bgZ4fejFrZhDXdYe7ytXr26nnjiiRzDbmddp/369dPUqVNlZ2enmjVrqnfv3qpZs6Y5zoEDB9S/f3/t2bNHhmHI1dVVp0+f1vHjx7Vt2zatW7dOwcHBhEvu4saNG4qMjJS7u7s6duxoBnKs2/rly5fNwBShqYfvt7bRrKwsubm5admyZerYsaO2bdumuLg4SbdCvBEREfrXv/4lLy8v8+kSd+6jLBaLWVNrKPhx/mzcbdmpRcFhXSfW/x46dEgLFizQ9evXJUnvv/+++vTpI+nex+QrV65o8+bNsrOzU5UqVVS+fPmH3/hCyrqu+/btqx9//FG7d+9Wjx495OzsLHd3d61fv16SNGjQIL3wwgu2bCr06/co6/Z/+5NXbty4odOnT2v58uU6ceKEFi9erOTkZPPz4+DgoPbt2ysgIECdO3dW2bJlzRsM8b+jFrZlGIYWLVqkjIwMhYaGmk9AuZejR49q1KhROnTokCQpNDRUr7zyinnDlHQriLho0SLNmDFD8fHxqlevnurWravXXnuN4zcKLIvFopo1a+qXX35RcnKybt68ad6ofOrUKX3//fdasmSJgoODzfNrPBzUonCyPunPzs5Obdu2Vdu2bXONYx1+8uRJxcfHa8WKFdqzZ4927Niha9eumePduHFDa9euNev+MBFgBwAAAAAAAADkm9sfT/rxxx+rS5cuSkhI0M2bNxUSEqJy5cqZP7gTXs9/mZmZioyM1JUrVzRv3jwdP35c27dvV3JysiSpSJEiqlKlisLCwtSsWTMFBgaagV5r3ayv70Rg+n9DLWzPGuoICgqSJJ08eVI7d+5UvXr1zOCHdTzDMHTp0iW9/vrrmj59uuzs7FSxYkW99tpr6ty5sznPqKgo9erVS/v371f9+vXVoUMHtWrVSidOnNDkyZO1Zs0aDRo0SAsWLFCJEiXyf6ELgX379unKlSvy8fFRtWrVZLFYcvQGN3nyZB0/flyhoaFycHAgoGNj9vb2yszMlIeHh5YuXaolS5YoJiZGklS/fn3Vrl1bxYsXlyQzeGVnZ6fk5GTFx8dr8+bNOnz4sObPn69GjRpp0qRJ1PN3oha2s2rVKrOXynfeeUevvvqqpLuH163vb9y4UfPmzVN2drbq168vHx+ffG13YVShQgWtXLlSnTt3VmxsrJKTk83jw5gxY9StWzcFBATYuJWPrztD0oZhKCkpSYcPH9auXbu0c+dOrV27VufOnVNmZqbs7e1VpEgRNW/eXBUrVtQzzzyjMmXK5HrqwZ3zx2+jFrZnXfcuLi6SpKpVq0qSeRNZXo4cOaJPP/1U69atU2JiosqXL6+ff/5ZpUqVMsdZtWqV/vWvf2nWrFnmeydPntTPP/+smJgYffnllxy/UWAFBwcrOztbU6dOlZ+fn8LCwhQbG6u1a9dq4cKFcnBw0IgRI1SrVi1bN/WRRy0KH8MwcvzufrsDBw7o+vXrmjt3rmJiYrR27VqzQwwXFxf5+vqqc+fOCgsLU3h4uMqWLZsv4XWJADsAAAAAAAAAIJ/Z29ubF7Tz6qnH+oM78t+MGTPUq1cvMwDt5uamsmXLql27dgoNDVXjxo0VEBAgR0fHHDVKT0+Xk5OT+R43IPxx1KLgqFKliqpXr65Dhw5p9erVCgkJUZEiRczgx7Vr17R582Z98803Wrlypezs7BQSEqLXXntNvXv3lnSr5+O0tDR9+eWX2r9/vxo3bqxx48apZs2acnFxUd26deXt7a3IyEhFR0crISGBAPtdBAUFqUyZMsrKylJUVJR8fX3NcOI//vEPvfvuu5KkESNG5Ho8NmzDwcFBWVlZKlq0qJ599tlcw60X2CMjI3X06FFt2rRJ27ZtU3R0tNkLnKOjozIzM7Vu3To1b948n5fg0UEt8l9cXJy++uorSdKTTz6pt956S9Ldw53W78F79+5V7969lZmZqdDQUA0bNkySctywkxdu2pEqV66slStXateuXYqMjFSlSpUUFBSk+vXr27ppj72UlBQVLVpUq1evVnR0tFasWKEjR47oyJEj5o2Bnp6eat26tWrVqqU//elP8vLyUnBwsDkP63i330hoxTnk/aMWBUfJkiUlSefPn1dqaqoZaLey7tcjIyM1atQobdiwQdevX5ePj4+WLl0qX19f8/i9adMmjR07VqtXr1aZMmX06quvysPDQ3FxcRo/fry++uor+fn56Y033rDFogK/qW/fvjp8+LD++te/6rPPPpO9vb25fZctW1Yff/yx+vbta+tmPhaoRcFnPZ/I6ykqp06d0unTpzVv3jxFR0dr2bJlslgsysjIUNGiRVWsWDE9//zzCgoKUkREhMqWLSsPD48c88+v8woC7AAAAAAAAACAfHevC9qPe+jGlnr27Klt27bJzs5OlSpVUkREhEqXLi13d/c8x4+Li9Py5cu1Z88eSVJISIh69uypEiVK/GbACvdGLQqOqlWrqlevXnr33Xf15z//WUlJSWrUqJHKlSuna9euafz48Tp+/LiioqJkb2+vli1b6sUXXzTDodabCKyPYHZyclLfvn1Vu3ZtOTk5mReBg4KCZLFYdPbsWV24cEEVKlSw8ZIXTH5+fqpUqZK2bt2qjz/+WFFRUXJwcNChQ4f09ddfS5I++OAD9ezZ08YthfTrRfXbb6Sx9iy6c+dOxcfHa/78+Tp69Ki2b99uhuDc3NwUGBioXr16qWnTpqpRo4aCgoKUnp5uq0Up9KiFbSQlJZm9G4aFhZlBxbuF1y0Wiw4dOqQBAwYoKSlJxYsXV6tWrVSpUiVJMo/nWVlZ2r59u6Kjo+Xg4KAKFSqoQYMG5lNBHvfv0z4+PvLx8VHHjh1t3RT8v/T0dA0aNEgrV67U5cuXzfe9vb3VoEEDtWnTRnXr1lVoaGiOQO6dLBYLvXv/QdSiYLDuq1u1aqX58+crJiZG+/bt0xNPPJFjH26xWLRu3ToNGTJEMTExSk5Olq+vr2bPnq3q1aub9cnOztbPP/+s1atXq379+vroo4/01FNPSZKSk5Nlb2+vsWPHau3atXr55ZdVpEgRWy06kCfrtjx27FiVLl1ay5Yt0/Hjx+Xo6KiuXbuqRYsW5jaNh4taFGzW44f1+JuRkaHz58/r0KFDWr9+vQ4ePKj169ebT3AsXry4ypUrp4iICPn7+6tDhw4qUaKEypYtm2O+1mO6df75dT5hMaxnngAAAAAAAAAA4LF1r5Cz9SLG7eGFn376SVOnTtWaNWtyjFu7dm0tX75cpUuXJtDwO1GLguP29fbuu+9q7Nixkm71QOzm5qaUlBSlpKRIuhVGHD58uDp16qTw8PBc08+bN0/PPPOMypcvr+3bt8vLy0tZWVlmT1nr169XixYt5ODgoMjISFWrVs0GS1w4HDt2TC1atFB8fHyuYaNGjdIrr7wiT09PG7QMd/YCZ2UYhrZv364LFy5o9uzZOnv2rNatW2cO9/b2VunSpRUREaHg4GCFh4crICDA3M9ZL6KzL7t/1KJgWLhwoTp16iQPDw+tX79eNWrUyDNgbn3v6NGjGjx4sLZu3ar09HQ1bNhQM2bMkI+Pjznu8uXLNWvWLP3444/mex4eHhowYIC++OKLHPMDCpKDBw+qV69ecnFxUadOnRQQEKCmTZuqTJky5v7k9m336tWr2rx5sw4ePKhKlSqpXLlyaty4saS7P8UA94daFBzx8fHq2LGjdu3apaZNm+rPf/6zqlevLh8fH61cuVLbt2/XyJEjzfEDAgK0dOlSValSJcd8li1bpnbt2kmSZs+erS5dukj6NYg6ffp0Pf/886pcubK2bt3K055QIN3+O8e1a9eUlpYmBwcHzu1sgFoUbCdPntTOnTsVFRWlX375RUePHtWVK1fM4RUrVlSLFi1UvXp1PfXUUypSpIj8/PzM4YZhFJgnoNLdBgAAAAAAAAAAyDMwfWevPtaLVxMnTtTYsWMVFxenkJAQDRw4UOXKldPUqVO1YMECde7cWcuWLZObm1u+LsOjgloUHLffLDBmzBh5eXlpzpw52r59u65evSpJCgoKkq+vr9577z01bdpUTk5OkpTrYmC5cuXk7Ows6VZQpUyZMmYdDx06pI8//ljSrd73Ca/fW+XKlbVhwwaNGjVKx48f16VLl1SjRg317t3bDOsgf1nDa7f3Anfs2DEdOnRIS5cu1cmTJ7V161azd+hSpUqpatWq6tq1qwICAsyL6nc+ZcL6+bMG6ArCBfaCjloUTImJiUpNTZWU+2lD1podPHhQr7zyivbs2aP09HT5+/vrp59+yhFenzlzpr744gvt3btXktS0aVNduHBBx44d07hx42SxWDRmzBjC6yiQQkJCtH79ekm3egO93e37mMzMTG3fvl0vvfSSoqKiJN36fuzs7KxPPvlEr7/+eo4eQvG/oxYFh7e3t37++We1atVKGzZsUFRUlOzs7FSuXDkdPXpUN2/elHTrXKJOnTqaOHGivL29c904cOTIEUnSM888kyu8Lt0KO0pS0aJFzXMSoKCxt7c39yceHh7mfoV9TP6jFgXbzz//rFGjRpn/HxISolatWql58+aqX7++AgIC5OHhkateSUlJcnZ2loODQ67OMWyFADsAAAAAAAAAAMjT7Rc5rBc9Nm3apEmTJun06dN64YUXNGTIEIWFhUmSunTpopYtW2rTpk3as2ePmjVrZqumP3Kohe3Y29ubF/Vef/11de3aVWfOnFF8fLwyMjLUpEkTubq6yt3dXbc/+PjOi7ru7u4qX768Tpw4odmzZ8vd3V0VK1bU9u3bNXr0aK1bt05hYWF68cUXJdGb5W+pVKmSJk2aJEdHR6WmpsrBwUGOjo62btZjy87OTrGxsZo9e7ZiY2O1detW7d692xxepkwZ1ahRQ+3atVPFihXVrl07ubi45Or9887PkK0vphdG1KJgqV+/vqpVq6aTJ0/q4MGDqlu3riwWS46wiJ2dnXbu3Kk+ffroxIkTyszMVJkyZbRs2TJVqlTJfDLLli1bNGHCBEVGRqpdu3Z68cUX1alTJ8XGxmrZsmUaMmSIJk2apGeeeUb16tWz8ZIDebOGpe8MVFmDcpI0f/58vfbaa4qPj1edOnVUt25dubm56ZtvvtGbb76pIkWKaNCgQQTo/iBqUXAEBQVpzZo1evnll3Xs2DHzXMPq6aefVseOHfXMM8/Iw8Mjz8BhQkKCJOnChQtKSEhQ0aJFzVpGRUVpw4YNcnR0VNeuXeXq6koIFQWWdbu8fftkW7UNalFwffTRR3JxcZGXl5cqVaqk0NDQHB1XZGVlSbpVr6tXr+ro0aP6xz/+odjYWBUtWlS1atXS22+/rZIlS9o8xE6AHQAAAAAAAAAA/CbrRarFixdr165dqlevnoYNG6batWtLutWLT7FixVS/fn2tW7dOMTExhKYfEmqR/27vfczHx0e+vr55jnevi7lVq1bV8OHDNXjwYP3lL3/RnDlzVLJkSW3btk2SVLNmTQ0dOlRPPPGEpJy9GxNmz5ujo6MsFouKFCmi7OxsWzfnsZeRkaF33nlH2dnZcnJyUnh4uBo0aKCwsDA1btxYbm5uuULSGRkZysjI0I0bN1SiRAm5uLhIurXNE474/ahFweHq6qrq1avr8OHDmjRpksLCwlStWjXzaStRUVHasmWLXnnlFaWlpUmSAgMDtXjxYlWuXFlZWVnmuCtXrtSWLVvUqFEjvfPOO2rcuLGkW73ytm3bVoGBgWbwkQA7Crq7PYlg3759euONNxQfH6+OHTtq+vTpZm/RLVu2VLt27fTPf/5TERER8vX1Zf/0AFCLgiEwMFDTp0/XyZMn9csvvygjI0M+Pj4qV66c2rVrZ46XnZ2dZ9AwJCRETk5OOn36tPbv36/69evL3t5eO3bs0D//+U+tWrVKlSpVUvPmzSURQgWAwsp6c+vbb7+da5g1jG79/ejMmTP6+uuvNXPmTMXGxppPDFy5cqWWLVum1atXy9PT06a/ORFgBwAAAAAAAAAA9+XSpUuaOXOmJGnQoEFmYDorK0vFihWTYRjauXOnJJnBNzwc1CL/5dX72P2yht8HDRokwzA0atQoHTt2zBz+3HPPqW/fvmrRooWcnJzMi453Xny09qxYvHhxm/eSVRDcXgsC/rYXGBioEydOaM+ePQoNDZWfn595gVz6tRc4SUpLS9OxY8f0zjvvKC4uTrGxsWrQoIF69Oih/v37y87Ojhs3/gBqUXC4ubnpL3/5i3bs2KEtW7aob9++atSokapWrarjx49ry5YtioyMVGZmpkqXLq06dero22+/VcWKFXPs58+ePauvvvpKktS7d28zvJ6ZmSlHR0f5+/vL3d1dknTz5k3bLCzwB9jZ2SkhIUEDBgzQ2bNn1apVK82ZM0d2dnZKS0uTs7OznnrqKTVs2FBHjx5VWloaAdyHhFrYjqenpzw9PVW/fv1cw6znE3c7Hrdt21b16tXT5s2b1adPH9WtW1fZ2dk6cOCAjh07Jg8PD40bN07h4eF5Ts+xHgAKB+vNrXmxnjtYLBZdvHhRY8eO1eTJk1WkSBF1795dQ4cOlZOTk/76179qxowZ6tmzp+bPn68iRYrkV/NzIcAOAAAAAAAAAADui2EYSkpKknSrR1Hp155/0tLS9M9//lMbNmxQ+fLl1bJlS1s29ZFHLQoXi8VihkJefvllhYeHKz4+Xjdu3FDx4sX11FNPmaEU6deLjgkJCUpKStLy5ct14MABrV69WpcvX9bixYvpXRcFkr+/v/z9/SXJ7BXfum1bt+urV69q1qxZ+uyzz3TmzBmVLl1axYoV0+rVq7V69WpdvXpVb731FiGqP4haFBwVK1bUihUr1KlTJ0VGRioyMtIcZr1BoH79+mrfvr369+8vLy+vXD3spqSkKD09XW5ubmaw0XrcNwxDs2bN0q5du+Ts7Gze1AYUNufPn1d8fLy8vb01fvx42dnZKSMjw+z1+8iRI4qJiVFiYqKSk5Nt3NpHG7UoeO51k4D1JuZFixYpIiJC27ZtU3R0tCTJ2dlZDRo00Pvvv2/25G79XnD7TWp3HutvPzcBABQe1v36smXLNGvWLLm5uemNN97QSy+9pJIlS0qS/vvf/+rYsWPavXu3Tp8+rcqVK9usvQTYAQAAAAAAAADAfSlWrJjq1Kmj1atX6/Dhw0pKSlKxYsWUkZGhf/3rX5o4caIcHBzUv39/eXh4cNH7IaIWhc/tAZGaNWuqZs2aOYZbLBZduHBBaWlpWrJkiWJiYrRgwQKdP3/e7Hm9WLFi8vf31+zZswmwo8CzBqGs+x7DMCRJCxcu1KhRo3ThwgV16NBB48ePl4eHh3bv3q2ePXvq7bffVq1atdS6dWubtf1RQy1sr3LlylqxYoV++OEHbd68WceOHVNiYqJat26t4OBgvf766ypWrJicnZ3z7AXX3d1d/v7+iomJ0d69exUcHCxHR0dJ0tatW/Xzzz/LMAw999xz8vf357iPQuno0aM6e/as3NzczBs4rNu5YRjasGGDLl++rGbNmikgIMCWTX3kUYvCxd7eXpmZmfLw8NCKFSs0Y8YMxcTE6Nq1a4qIiFBgYKCqVKkiKXdP6/Hx8Tp//rxWrVqlrVu3ysPDQz/99BPHEAAopKz7+B9++EEXLlxQnz59zPB6dna2MjMz5eTkpICAAO3du1eXLl0iwA4AAAAAAAAAAAo+V1dXtWrVSitXrtSnn36qkydPqkKFCtq6dat27dql9PR0PfPMM+rRo4cZcMDDQS0Kn7wCiTdv3tTZs2e1atUqnTp1SgsXLlRiYqIuXrxojvPUU0+pQoUK6tKli7y8vBQSEpLfTQceCIvFoujoaI0ePVoXLlxQ//79NWHCBLm6uiozM1N/+tOf9P777+uNN97Q/v37CU0/RNTCNsqXL6+PP/5YFotFV69eVWZmpsqUKZNrvLx6vPfw8FCNGjV05MgRjR07VmlpaapTp47WrFmjZcuWaf369apWrZp69+6tokWL5sfiAA9clSpV5Ovrq8zMTF2+fNl8/+bNm/rll1/09ttvKz09XS1btpSbm5sNW/rooxaFj4ODg7KysuTm5qYXX3xRFoslz5uZoqOjlZiYqPnz5+vUqVNauXKlee7h5OSk9PR09ejRQ23btrXFYgAAHoBDhw5pz549Kl68uN59912VLFnSfHqTk5OTDh8+rI0bN0qSXFxcbNpWAuwAAAAAAAAAAOA3WS9+jxgxQpcuXdJf//pXTZs2zRzu4+OjTp06afDgwTbtuedxQC0Kh6ysLLPHSqv09HRFRUVp9+7d2rFjh1avXq2zZ88qOTlZFotF9vb2atq0qSpWrKhu3brJ29tbISEheYZP6F0XhdFnn32mmJgYPfHEE/rmm2/k4uJiXkiXbgWnJOnkyZOS8r7xAw8GtbCtkiVL5vj/e+3TDcOQo6OjvvvuO504cUJ79uzRsGHD5OzsrMTERDk7O6tevXr68MMP1bJlS3Ma6dbNCnnVjnqiICpVqpTKly+vrVu36v3331ePHj3k5OSkyMhI/fvf/1ZSUpJ69uypd999VxLfhR4malG4WNe/tQa3//fMmTOKj4/XggULFBMTo2XLlik9PV03b96Uvb293Nzc1KtXLwUFBal9+/YqXbq0SpUqZcvFAQD8QYZhKDU1VVlZWbpw4YKCgoLM87zY2Fh9+eWXunTpkjp27KiwsDCbtpUAOwAAAAAAAAAA+E0Wi8UM5I4dO1bVqlVTZGSk4uLi5OHhoZdfflkBAQEqXbq0rZv6yKMWhYM1vL5582bFxcVp+fLlOnz4sA4cOKD09HRJkru7u+rVq6fQ0FA9+eST8vHxUa1atfKc353BIEJCKIzi4+MlSV27dpWLi4vS09PNoPS5c+e0Zs0aSTKfNEDA9uGhFrZxt333vfbp1uO+h4eHVq9erWHDhmnfvn06c+aMypcvr0GDBqlly5Zq0KCBJOWopXSrdleuXNHly5d16NAhdenShXqiQPL09NSPP/6oFi1aaPPmzdqyZYt5M4Yk9enTRz/++KMkbsJ42KhF4WA9J7QeQ7KysnTlyhVFRUVp/fr1OnDggFauXKnr169LuvUUryJFiqhTp04KCAhQly5d5OnpKV9f3xzzvb3WAIDCp2TJkgoNDdXBgwe1c+dOVatWTZ6enjp06JD++c9/aubMmfLz81P37t1t3VQC7AAAAAAAAAAA4P7Y29ubF8n79u0rKWcPn8g/1KLgunbtmv79739r48aNOnPmjHbs2GEOK1mypKpVq6Y2bdqobt26qlmzpipVqiTDMHIEf7Kzs2UYhhmCp6Z4VKSmpkqSLl++LMMwzJBtQkKCFi5cqJUrV6pSpUoKDw+3ZTMfC9SicLEe993d3TVp0iRdv35dCQkJKl68uDw9PXOM6+TkpLS0NEVGRmrPnj3avXu3NmzYoPPnzyspKUn9+vXTpEmTbLQkwL1VrlxZGzZs0Mcff6yTJ0/q1KlTevLJJxUeHq6XX35ZEoHp/EItCp47b2jNysrSzZs3tXHjRh0+fFjr16/XwYMHFRcXZ47j6+urtm3bqlq1aoqIiJCHh4cqVqx4z/lz7gEAhVu5cuX0zDPPaP/+/RoxYoQWLlyocuXKadmyZUpISJCXl5cGDBigDh062LqpBNgBAAAAAAAAAMD9swZqrbi4bTvUomAqUaKETp48qblz56p8+fKqUaOGOnXqpIoVK6pVq1YqW7asHB0dc0yTlpamxMRExcbGysvLS56ennJxcTFvUgAKO+sNNqGhoVq7dq02bdqkbdu2qU6dOjp27JiWLl2qsWPHKjExUYMHD77rkwjwx1GLwsve3l6ZmZlycHCQp6enGVxPSUlRkSJFtGnTJp08eVLLli3T/v37dfToUXPaEiVKKDw8XHXr1lVoaGiuECRQkFSqVEkTJ06Us7OzLl68KC8vL3MYgen8RS0KFovFouzsbP373/9Wamqqpk+frtjYWMXGxprj+Pv7q127dmrWrJkaNWokPz8/+fj4mMOzs7MlyTye3Dl/AEDhZj0+f/jhh7p586bGjh2rjRs3msObN2+url27qm/fvipSpIgNW3qLxeC5HwAAAAAAAAAAAMAfdnsgcPHixXriiSfk6OioEiVK5BgvIyPDDLFv2rRJs2bN0sKFC3X27Fn5+fkpLCxM3377rTw9PQmx45ESHR2tZs2a6cyZM6pQoYJKlSqluLg4JSYmKi0tTQMGDNDEiRNt3czHArUoHO4WEE1LS9PGjRt1/vx5zZkzR2fPntWuXbvM4QEBAfL19dWTTz6pmjVrKjQ0VH5+fvnZdOAPsX6nuv0zwI0XtkEtCpYzZ87k2J/XqFFDXl5e6tixowIDA1WvXr1c5x6SdPPmTWVlZalYsWJmHbkJAQAeTbf/jrR48WIdO3bM7Hn92WefVfHixXPdxGQrBNgBAAAAAAAAAACAB+S3Aue3B34WLlyooUOH6vTp03J1dVVAQIBSUlJ06tQpVatWTevXr1epUqUICeGRcuzYMXXr1k0nT55UcnKyJKlBgwZq06aNRo4caePWPV6oRcFj3d/fud9PTU3Vzp07dfz4cc2dO1dnz57Vvn37zOF+fn7y9vZW165dVbFiRTVt2lTFihWTs7NzjvlzUxQAFH5RUVHavHmzfHx81KRJE9nb2+fY31uPIZmZmYqOjtbkyZO1du1axcfHKzw8XBEREerdu7ckQuwA8KgqLN/7CbADAAAAAAAAAAAA+WzVqlXq2bOnLl++rC5duqh3795q3bq1MjIyNHToUP3nP/9Rv379NHHixALTMxbwoFy4cEF79+7VmTNn5Onpqbp168rX19fWzXosUYuC6cqVK4qOjtbOnTu1bt06HT58WIcOHTKH+/v7q2zZsurcubP8/PzUrl07OTg4qEiRIjnmQzARAB4Pd/aUn56erjlz5ui7777Txo0bJUlubm5KTEyUJI0dO1ZvvfWWLZsMAAABdgAAAAAAAAAAACA/nT9/Xv3799fy5cvVvXt3jRw5UlWqVDGHX716VcHBwQoICNDmzZsLRa9ZAIA/Ljs7W8OGDdPUqVOVkZGh1NRUSVLp0qUVGhqqFi1aKDg4WE2bNpWDg4Pc3d3vOS/C6wDw+MnOztbcuXM1evRoHTx4UHXq1NHo0aMVFBSkw4cPq1+/frp+/boWLFig9u3b27q5AIDHGN01AAAAAAAAAAAAAPkoLi5OmzZtkoeHh1544QUFBgZK+vURzwkJCTIMQ3FxcUpKSrpnQBEA8Oiws7PTiy++qNmzZ6tBgwYKCwtT06ZNVadOHXl4eMjJySnH+IZhKC0tTcuWLdPFixfl7u6ugIAA1a9fX3Z2doTYAeAxYu2F/erVq5o8ebIOHjyo9u3ba/To0apZs6YMw1BQUJD+8pe/aPDgwdq+fTsBdgCATRFgBwAAAAAAAAAAAPKBNVSyfv16JSUlqW7duoqIiJAkZWRkyNHRUZK0ZMkSXb58WQ0bNpSTk5M5HQDg0Ve7dm2dOnVKrq6uOd7PysqSJGVmZsrBwUGZmZmaNm2aZs6cqSVLlpjjubq66pNPPtEbb7whOzs7jiEA8Jiw7ut//PFHLV++XB4eHvrwww9Vs2ZNSbfON5ycnBQQECDp1k21AADYEgF2AAAAAAAAAAAAIB9YQyU+Pj6SboUQT58+rfLly5vh9ZkzZ+q9996TJPXv319FihSxTWMBADZze3jd2ou6vb29JJnh9a+//loTJkxQXFyc/Pz81L17d6Wnp2vixIkaPny4XFxcNHjwYMLrAPCYOXbsmCRpwIABqlu3rgzDkGEYcnJy0s2bNzVz5kxJUsmSJW3ZTAAAxLOiAAAAAAAAAAAAgHxUrlw5ubm5KTIyUvPmzdOhQ4d05coVffPNNxo0aJCSkpI0cOBAde/e3dZNBQDYmJ3dr7EOwzAkSQsWLNB3332nCxcuqH///po/f77GjBmj8ePHa9GiRXJ0dNT333+vixcv2qrZAAAbuX79uiTp3LlzSk9Pl2EYsrOzU0pKihYuXKjVq1fLy8tLPXr0kPTrsQUAgPxGgB0AAAAAAAAAAADIR82bN9err74qSXr99dfVokULNWjQQMOGDdONGzfUu3dvvfLKKzl64AUAwNqb+rx583T8+HFFRETorbfeUq1atZSdna309HS1bNlS9erV04EDB8wQIwDg8REWFibpVk/shw8fliSlpKRoypQp+uKLLxQbG6s2bdqoYsWKksSTOgAANmMxuI0KAAAAAAAAAAAAyBfZ2dlmb7ojR47Ujz/+qDNnzsjZ2Vn29vb66KOP1KNHD5UvX97GLQUAFEQ7duxQgwYNJEmrV69WixYtJP16fLl27ZoaNGigmJgYHThwQJUrV7ZlcwEA+SwmJkYtWrRQbGysKleuLC8vL124cEHR0dFKT09X27Zt9dVXXykoKMjWTQUAPOYIsAMAAAAAAAAAAAD5KCsrS/b29pKkI0eO6Pz58ypatKiKFSumatWq2bh1AICCbO3atWrVqpV8fX21Z88eeXp6KjMzUw4ODkpKStLnn3+uMWPGqFatWtq5c6d5vAEAPD6ioqLUsWNHRUdHKyMjQ5JUsWJFtWnTRm+88YYCAwNt3EIAACQHWzcAAAAAAAAAAAAAeJzY29ubPeUGBwcrODjY1k0CABQSpUuXlqenp1JTU3XgwAE1bdpUDg4OSkxM1JQpUzR9+nSVKFFCQ4YMkb29vQzDkMVisXWzAQD5qEqVKlqzZo02bdqkuLg4OTg4qGPHjipVqpSKFy9u6+YBACCJHtgBAAAAAAAAAAAAAAAKhatXr6pdu3bavn27mjRpog4dOig4OFg//PCDtm7dquvXr6tXr14aOXKkfH19bd1cAAAAAMgTAXYAAAAAAAAAAAAAAIBC4tixY2rRooXi4+MlSc7OzkpLS5O3t7c6duyoN998U4GBgTZuJQDA1ngKBwCgICPADgAAAAAAAAAAAAAAUIicOHFCn3zyifbv36/09HR5eXnpjTfeUFhYmLy9vW3dPAAAAAC4JwLsAAAAAAAAAAAAAAAAhUx6eroyMjKUnp6uEiVK2Lo5AAAAAHDfCLADAAAAAAAAAAAAAAAUcoZhyGKx2LoZAAAAAPCb7GzdAAAAAAAAAAAAAAAAAPwxhNcBAAAAFBYE2AEAAAAAAAAAAAAAAAAAAAAA+YIAOwAAAAAAAAAAAAAAAAAAAAAgXxBgBwAAAAAAAAAAAAAAAAAAAADkCwLsAAAAAAAAAAAAAAAAAAAAAIB8QYAdAAAAAAAAAAAAAAAAAAAAAJAvCLADAAAAAAAAAAAAAAAAAAAAAPIFAXYAAAAAAAAAAAAAAAAAAAAAQL4gwA4AAAAAAAAAAAAAAAAAAAAAyBcE2AEAAAAAAAAAAAAAAAAAAAAA+YIAOwAAAAAAAAAAAAAAAAAAAAAgXxBgBwAAAAAAAAAAAAAAAAAAAADkCwdbNwAAAAAAAAAAkL8yMzO1YMECrVixQlu3btWFCxd07do1ubq6qnTp0qpRo4YaNmyorl27KiAgwNbNBQAAAAAAAAAAjxCLYRiGrRsBAAAAAAAAAMgfCxcu1PDhw3XixIn7Gr9du3YaM2aMQkJCHnLLAAAAAAAAAADA44Ae2AEAAAAAAADgMfHpp5/qo48+krVfk+bNm+vpp59WaGioSpUqpeTkZMXHx2vDhg1avHixYmJitGTJEvn6+uq7776zcesBAAAAAAAAAMCjgB7YAQAAAAAAAOAxMHnyZL344ouSpLJly2r69Olq3rz5XcfPysrS9OnT9ec//1lPPfUUAXYAAAAAAAAAAPBAEGAHAAAAAAAAgEfc6dOnVblyZaWmpqp48eLavXu3AgMD72va69eva+PGjWrfvv1DbiUAAAAAAAAAAHgc2Nm6AQAAAAAAAACAh2v8+PFKTU2VJH322Wf3HV6XJA8Pj1zh9ZiYGFksFlksFk2ZMkWSNHfuXEVERKhcuXJycHDIs3f3RYsWqWvXrvL19ZWzs7NKlSql8PBwjRkzRklJSXdtw6hRo8y/dy/r1q0zx1u3bl2u4c2bN5fFYjHbFhUVpYEDByogIEAuLi7y9vbWs88+q23btt3z72RlZWnKlClq06aNvLy85OTkJHd3dwUFBalVq1b6/PPPdfjw4XvOAwAAAAAAAACAx5WDrRsAAAAAAAAAAHh4DMPQ1KlTJUlubm7q16/fA59/7969zb+Rl9TUVD3//POaN29ejvevXr2qbdu2adu2bfr666+1ZMkS1apV64G2726WLVumbt266ebNm+Z758+f16xZszRnzhz97W9/0+uvv55ruqSkJEVERGjjxo053s/IyFBCQoJOnDihNWvWaM+ePZo9e/bDXgwAAAAAAAAAAAodAuwAAAAAAAAA8Ag7ePCgrly5Iklq0qSJihYt+kDn//e//1379+9XkyZNNHjwYFWuXFnXr19XTEyMOU6fPn3M8HrNmjU1fPhwBQcH6+rVq5o+fbqmTJmic+fOqVWrVtq/f798fHweaBvvdO7cOT3//PNycHDQ559/bvbIvnbtWn3xxRdKSEjQG2+8IX9/f3Xq1CnHtKNGjTLD608//bR69uwpPz8/ubi46OLFi9q7d68WL178m73FAwAAAAAAAADwuCLADgAAAAAAAACPsP3795uv69Sp81Dm37t3b02ZMiXP0PaSJUs0c+ZMSVKrVq20dOlSOTk5mcOffPJJhYeHa+DAgbp69arefPNNzZgx44G383bHjx+Xu7u7tm7dquDgYPP98PBwdezYUQ0bNlRCQoKGDBmidu3aydHR0RzHuixdu3bVrFmzcs27bdu2eu+993T16tWHugwAAAAAAAAAABRWdrZuAAAAAAAAAADg4bl8+bL5unTp0ncdLzs7WwcPHrzrv4yMjDyn8/Dw0DfffHPXHse//fZbSZKjo6N+/PHHHOF1qwEDBqh169aSpLlz5yo+Pv6+l+/3+vDDD3OE162qV6+u999/X5J09uxZLViwIMfw8+fPS7rVm/29lCxZ8gG1FAAAAAAAAACARwsBdgAAAAAAAAB4hCUmJpqvixYtetfxEhISVKNGjbv+O3v2bJ7TtW/fXm5ubnkOy8zM1Pr16yXd6mm9fPnyd/37AwYMMKdZt27dby3WH2KxWNSnT5+7Du/Xr58ZyP/ll19yDPP29pYkzZgxQ8nJyQ+vkQAAAAAAAAAAPKIIsAMAAAAAAADAI+z2cPnNmzcf+PxDQ0PvOuzUqVNmyLt+/fr3nM/tww8ePPhgGncXAQEB8vT0vOvw0qVLy9/fX5J04MCBHMOswfctW7YoICBAQ4YM0bx583Tp0qWH1l4AAAAAAAAAAB4lBNgBAAAAAAAA4BFWqlQp8/W9QtYeHh4yDCPHv3v1Um5VokSJuw67evWq+bpMmTL3nI+Xl1ee0z0Mv9UWSSpbtmyebfnwww/Vv39/WSwWXbx4Ud9++626dOmiMmXKKCQkRCNHjtSFCxceSrsBAAAAAAAAAHgUEGAHAAAAAAAAgEdYzZo1zdd79+594PO3t7e/r/EsFssD/9u/1x9pi6OjoyZNmqSDBw/qgw8+UMOGDeXk5CRJOnTokEaPHq3AwEAtWLDgQTUXAAAAAAAAAIBHCgF2AAAAAAAAAHiEhYSEmL2wb9y4UcnJyfn2t0uWLGm+/q1eyc+fP5/ndJJkZ/frT9nZ2dl3ncfNmzfvq13300O6dZw722JVrVo1ffLJJ9q8ebNu3LihVatWqV+/frK3t1dSUpJ69Oih+Pj4+2oPAAAAAAAAAACPEwLsAAAAAAAAAPAIs1gseuGFFyRJCQkJ+umnn/Ltb1esWFGurq6SpO3bt99z3B07dpivQ0JCcgxzc3MzX1+7du2u8zh27Nh9tSs6OlpXrly56/BLly4pJiYmz7bkxcXFRa1bt9bkyZM1btw4SVJKSooWL158X+0BAAAAAAAAAOBxQoAdAAAAAAAAAB5xb775plxcXCRJ7733nqKjo/Pl7zo4OKhZs2aSpFWrVunMmTN3Hfdf//qXOU3z5s1zDAsICDBf79q1667zmD59+n21yzAM/fvf/77r8ClTpsgwDElS69at72ueVq1atTJfX758+X+aFgAAAAAAAACAxwEBdgAAAAAAAAB4xPn5+WnChAmSpBs3bqhx48batGnTPacxDEPXr1//w3/71VdflSSlp6frxRdfVEZGRq5xJk+erJUrV0qSunTpIm9v7xzDGzZsKAcHB0nSl19+aYbLbzdu3Lgcvbj/lk8++URRUVG53j9y5Ig+++wzSZK3t7c6duxoDrt69aoWLVqU59+3si6HlDN4DwAAAAAAAAAAbnGwdQMAAAAAAAAAAA/fgAEDdPbsWX388cc6d+6cmjRpopYtW6p9+/aqUaOGSpYsqaysLJ0/f1579uzRzJkzdejQIUmSvb29nJycftffbdeunbp166ZZs2Zp5cqVatCggd58801VrVpV165d0/Tp0zV58mRJUsmSJTV+/Phc8yhTpoy6deumadOmacWKFerQoYNeffVVlS1bVnFxcZo6darmzJmjhg0basuWLb/ZpsDAQF26dEkNGjTQO++8Y/b4vm7dOo0ZM0Y3btyQJH399dc5ljshIUEdOnSQv7+/unTpovr166tChQpycHBQfHy8Fi1aZPYk7+Pjo6effvp3rTMAAAAAAAAAAB5lFuNeXcUAAAAAAAAAAB4p8+bN01tvvaVTp0795rgWi0Vt2rTRuHHjFBISYr4fExNj9i7+448/qm/fvvecT2pqqp5//nnNmzfvruOUK1dOS5YsUa1atfIcfuHCBTVp0kTHjx/Pc3j37t310ksvqXXr1pKktWvXmsF0q+bNm2v9+vVq1qyZRowYoWeffVbJycm55mVnZ6exY8dq+PDhOd6/fbnvxdvbW4sWLVJYWNhvjgsAAAAAAAAAwOOGHtgBAAAAAAAA4DHSuXNntW/fXvPmzdOKFSu0detWXbx4UdevX5erq6tKlSqlGjVqKDw8XM8999x9BbZ/i4uLi+bOnatFixZpypQp2rZtmy5fvqyiRYuqcuXK6tSpk4YMGaJixYrddR5ly5bV9u3b9cUXX2ju3LmKi4tT0aJFFRISooEDB6pnz55at27dfbepXbt22rVrl8aNG6c1a9YoPj5eHh4eatKkiYYPH67w8PBc01SoUEE7duzQ0qVLtWXLFsXGxurChQtKSkqSh4eHqlWrpvbt22vgwIEqXrz471lVAAAAAAAAAAA88uiBHQAAAAAAAADwWLi9B/b/JewOAAAAAAAAAAAeHDtbNwAAAAAAAAAAAAAAAAAAAAAA8HggwA4AAAAAAAAAAAAAAAAAAAAAyBcE2AEAAAAAAAAAAAAAAAAAAAAA+YIAOwAAAAAAAAAAAAAAAAAAAAAgXxBgBwAAAAAAAAAAAAAAAAAAAADkC4thGIatGwEAAAAAAAAAAAAAAAAAAAAAePTRAzsAAAAAAAAAAAAAAAAAAAAAIF8QYAcAAAAAAAAAAAAAAAAAAAAA5AsC7AAAAAAAAAAAAAAAAAAAAACAfEGAHQAAAAAAAAAAAAAAAAAAAACQLwiwAwAAAAAAAAAAAAAAAAAAAADyBQF2AAAAAAAAAAAAAAAAAAAAAEC+IMAOAAAAAAAAAAAAAAAAAAAAAMgXBNgBAAAAAAAAAAAAAAAAAAAAAPni/wChsPPYhAQlaAAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -780,7 +783,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAC7AAAAPgCAYAAACx8HFwAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdf3ifZXk3/neStvnRlp8B1lpi6kpJsPgjFVdaIi1uzk0YEMpUyAQflTm3fXHWOYsbglM6N4sydzitOpB1oLOW+giK7lHAyFNUIs5VEwqOUCoVTC1Qmk/TkuT7B0+zhjZp0qRJ07xex5Ejd677vM77/NQelqbvXJ+inp6engAAAAAAAAAAAAAAwCFWPNYDAAAAAAAAAAAAAAAwMQiwAwAAAAAAAAAAAAAwKgTYAQAAAAAAAAAAAAAYFQLsAAAAAAAAAAAAAACMCgF2AAAAAAAAAAAAAABGhQA7AAAAAAAAAAAAAACjQoAdAAAAAAAAAAAAAIBRIcAOAAAAAAAAAAAAAMCoEGAHAAAAAAAAAAAAAGBUCLADAAAAAAAAAAAAADAqJo31AAAAAAAAAAAAAADA2Ovp6cnu3bvT3d091qNwGCsuLs7kyZNTVFR0UPsF2AEAAAAAAAAAAABgAuvq6kp7e3u2b9+e3bt3j/U4jAOTJ0/O9OnTU1lZmZKSkiHtLerp6ek5RHMBAAAAAECS5PLLL88XvvCFJMkjjzyS6urqg+519913Z8mSJUmSD37wg7nmmmuGPd+eU2LOPvvs3H333cPuBwAAAAAwXnR1deWxxx5LZ2dnjj766EybNi0lJSUHfbo2R7aenp50dXXl2WefzdNPP53S0tKcfPLJQwqxO4EdAAAAAGACmTNnTn7+858nSf7rv/4r8+bNG7D+t3/7t/Ptb387STJr1qw89thjA9Z3dHTk2GOPza5duzJp0qRs27Yt06ZNG5nhh+ATn/hEnnrqqRxzzDF597vfPerPBwAAAAAYL9rb29PZ2ZmqqqqUl5eP9TiME9OmTcvRRx+dTZs2pb29PSeddNKg9xYfwrkAAAAAADjM7Dm5PMkBTxrftWtX/u///b+9X2/evDkPP/zwgHvuvffe7Nq1K0lyxhlnjEl4PXk+wH7ttdfmE5/4xJg8HwAAAABgPOjp6cn27dtz9NFHC68zZOXl5TnqqKOyffv29PT0DHqfADsAAAAAwASyd4D9rrvuGrD2+9//fgqFQp+1A+3ZOxS/97Nuuumm9PT0pKenJ9XV1YMfGAAAAACAQ2b37t3ZvXv3mB1Gwvg3ffr03t9HgyXADgAAAAAwgSxevLj3+rvf/e6AJ6LsCaNPnz49Z511Vp+1A+1J+gbYAQAAAAA4/HR3dydJSkpKxngSxqs9v3f2/F4aDAF2AAAAAIAJZObMmZk7d26SpL29Pf/1X//Vb+2eMPpZZ52V1772tX3W9qejoyM//OEPkyRTpkzJokWLRmZoAAAAAAAOqaKiorEegXHqYH7vCLADAAAAAEwwe5+M3l8gfdeuXVm/fn2S509tP/vss5Mkjz/+eDZu3LjfPffee2/vW4T+1m/9VsrLy3vvXX755SkqKkpRUVHa2toGnO+b3/xmLrzwwsyYMSNlZWWpqqpKQ0NDvvWtbx3wtVVXV6eoqCiPPvpokuTRRx/tfe7eH9dcc82AfXbu3Jl//Md/zJlnnpnjjz8+5eXlmTNnTv7kT/4kjzzyyAHnAAAAAAAA9k+AHQAAAABggtk7wH7XXXftt+b73/9+CoVCkucD7AsWLMiUKVMG3LN3GH7vZwxWd3d33vGOd+T1r3991q1bl1/+8pfp7OzMY489lttuuy2/+7u/m3e/+91D7jtUjzzySF796lfnyiuvzH333Zdf//rX2blzZ37+85/n05/+dE4//fQBT6IHAAAAAAD6N2msBwAAAAAAYHQtXry49/q73/1uenp69nmLzz0B7enTp6euri6TJk3Kq1/96nzve9/L3XffnT/+4z/ep+9wA+x/8Rd/kc997nNJkpKSklx66aVZvHhxSktL8+Mf/zif//znc8MNN+Sxxx7rt8eqVavS0dGRK664Ir/61a9ywgknZNWqVfvU1dTU7Hf/M888kze84Q1paWnJ6173upx33nk56aSTsmXLlnzhC1/Ij370o+zYsSNvetOb0tLSkmOPPXbIrxMAAAAAACYyAXYAAAAAgAnmpJNOSm1tbVpaWvLrX/86//mf/5lXvOIVfWr2hNEXLVqUSZOe/1bya17zmt4A+wt1dHTkhz/8YZKkrKwsZ5555pBmuvfee/PJT34ySTJ16tTceeedOeuss3rvX3LJJfmLv/iLnHPOOVm7dm2/fV73utclSe9J7RUVFbngggsGPccDDzyQSZMm5ctf/nKWLl3a59673vWunHfeebnzzjvzxBNP5MYbb8x73vOeQfcGAAAAABjPfvFUIdt27BrrMYbt2KlT8qJjysd6jBFVXV2dRx99NDfeeGMuv/zyQd8bKwLsAAAAAAAT0JIlS9LS0pLk+bD63gH2Xbt2Zf369Un6ntZ+9tln57rrrssvf/nLtLa29jnF/N57783u3buTJGeeeWZKS0uHNM/KlSvT09OTJPnoRz/aJ7y+x4wZM/KlL30pdXV16erqGlL/objqqqv2Ca8nyaRJk/Lxj388d955Z5LkG9/4hgA7AAAAADAh/OKpQs752N3pfK57rEcZttJJxfnOexcfkhB7T09P1qxZk1tuuSU/+tGP8uSTT6akpCQnnXRSZsyYkVe/+tWpr6/Pa1/72hx11FEj/vyhuuaaa5Ikl19+eaqrq0ftucWj9iQAAAAAAA4bS5Ys6b2+6667+ty77777UigUkjwfWt9j4cKFvaexv3DP3l/vHXofjM7Oztxxxx1JkqOPPjpvf/vb+6192cte1nvK+qFQXFycK6+8st/7NTU1mTVrVpJkw4YNh2wOAAAAAIDDybYdu46I8HqSdD7XfUhOkn/qqaeyZMmS/OEf/mHWrVuXTZs25bnnnktpaWk2bdqUe++9Nx//+MfT0NAw4DuNjrTf/M3fzKmnnpqjjz56n3vXXnttrr322rS1tY3aPIkAOwAAAADAhHT22WenqKgoSdLU1JTu7v/5h4e77747STJt2rS86lWv6l2fNm1a5s+f36fmhXuSvuH4wfjP//zP7Nr1/D8WLFq06ICnt7/2ta8dUv+hOPXUU3PccccNWLMnwL5t27ZDNgcAAAAAAOPLW97yltxzzz0pKSnJsmXLsnHjxnR2dmbr1q0pFAr5z//8z3z0ox/Ny1/+8lGd69vf/nZaW1tz4YUXjupzByLADgAAAAAwAZ1wwgl56UtfmuT5IPaPf/zj3nt7wuiLFi3qPXF9jz0nsu8dWN+xY0fuv//+JEl5eXl+67d+a0izPP74473Xc+bMOWD9YGoOVmVl5QFr9gTsOzs7D9kcAAAAAACMHw899FC+9rWvJUk+/OEP52Mf+1hOOeWUFBc/H9WeNGlSXvayl+V973tffvzjH+eNb3zjWI475gTYAQAAAAAmqL1PSt8TSO/s7Mx9992X5H/C6nvbs/bkk0/mZz/7WZLk3nvvze7du5M8H3qfMmXKkOZ49tlne68rKioOWD916tQh9R+KPf+YAAAAAAAAg7X3ITHnn3/+AevLy8v7fF1dXZ2ioqLcdNNN2b59e5YvX55TTz015eXlqayszAUXXJDvf//7BzXb3r33uPzyy3vfpTV5/t8LioqKej+qq6sP6lmD5TvxAAAAAAAT1OLFi3uv77rrriTJ97///RQKhX3u73HWWWelpKSkz569T2PfOxQ/WNOmTeu97ujoOGD9jh07hvwMAAAAAAAYDZs3bz7ovdu2bcsZZ5yRv/u7v0tbW1umTJmSrVu35qtf/WoWLlyYf/mXfxmRGY8++uicdNJJvV8fe+yxOemkk3o/TjjhhBF5Tn8E2AEAAAAAJqizzz6794SVpqamdHV19YbRp06dmjPOOGOfPUcddVRe/vKXJxm5APuLXvSi3uuHH374gPWDqQEAAAAAgNFyxhln9H6/fdmyZdm4ceNB9bn22mvz5JNP5t///d+zY8eOPP300/nZz36Ws88+O93d3fnjP/7j/OhHPxr2vDfccEN++ctf9n69du3a/PKXv+z9+OEPfzjsZwxEgB0AAAAAYII6/vjj87KXvSxJ8vTTT+eBBx7oDaMvXLgwkyZN2u++s88+O0lyzz335Nlnn83999+f5PmT1PcXej+Ql73sZSktLU2S3Hvvvens7Byw/tvf/vYBexYXP//t756eniHPAwAAAAAAQ1FdXZ23v/3tSZL/+q//Sk1NTerq6vKnf/qn+Zd/+Zds2LBhUN+vfvrpp/PlL385F198ce/36Gtra/ONb3wjp5xySp577rn8zd/8zSF9LaNBgB0AAAAAYALb+8T0O++8M/fdd1+SZPHixf3u2RNgb29vz2c+85ns3r07SXLWWWf1G3ofSGlpaX7/938/yfPfnB/oLVA3bNiQb33rWwfsOW3atCTJjh07hjwPAAAAAAAM1ac+9an8zd/8TaZOnZqenp488MAD+dSnPpW3ve1tOf300/Mbv/Ebec973pMnnnii3x6LFi3Ka1/72n3Wy8vL85d/+ZdJnv9e/tNPP33IXsdoEGAHAAAAAJjA9g6qf/KTn0yhUNhn/YXq6+t73wr17//+73vX9w7DD9WyZct6e/7VX/1V1q9fv0/NE088kTe+8Y3p6uo6YL/Zs2cnSbZu3ZpNmzYd9FwAAAAAADAYkyZNyoc+9KH84he/yL/+67/m7W9/e17+8pdnypQpSZInn3wyH//4xzNv3rz84Ac/2G+Pc845p9/+e+51d3fnRz/60ci/gFEkwA4AAAAAMIG95jWvSXHx898qfvLJJ5MkFRUVOeOMM/rdc9xxx+X000/vsycZXoB90aJF+fM///Mkyfbt2/Oa17wmb33rW3PTTTfl1ltvzV/91V/ltNNOy89+9rM0NDQcsN9v//Zv915feOGF+exnP5uvf/3rufPOO3PnnXfm4YcfPuhZAQAAAACgP0cffXQaGxvz2c9+Nj/+8Y/z9NNP5z/+4z9y3nnnJXn+3U0vuuii7Ny5c5+9L3rRi/rtu/e9vb83Px4JsAMAAAAATGDHHntsXvGKV/RZW7hwYSZPnjzgvrPPPrvP10cddVTq6uqGNcvHP/7xvO1tb0uSPPfcc7npppvy1re+NZdcckn+/u//Pr/+9a9z5ZVX9gbdB/K//tf/Sk1NTZLkRz/6Ua644oq84Q1vyO/93u/l937v97J69ephzQoAAAAAAINRVlaW3/7t387//t//O5dddlmSZPPmzbnzzjvHeLKxI8AOAAAAADDBvfDk9MWLFx9wzwsD7PX19SkpKRnWHMXFxfnc5z6Xb3zjG/mDP/iDnHjiiZkyZUpmzZqVCy+8MHfeeWc+8YlPDKrX1KlTc9999+Xqq6/Oq171qhx99NG9J80DAAAAAMBYuOKKK3qvH3zwwX3u/+IXv+h37973TjzxxJEdbJRNGusBAAAAAAAYWx/72MfysY99bEh7LrroovT09Ay6/qabbspNN900qNrXv/71ef3rX9/v/cWLFw/q2UcffXSuvfbaXHvttQesHcprufvuuwddCwAAAAAAe0ybNq33urS0dJ/7d911V79799wrLi7OK1/5yhGZp6ioKD09PUP6HvlIcNwMAAAAAAAAAAAAAMBBeuSRR7Jx48YD1n3hC1/ova6rq9vn/ve+9739HqKyc+fOrFy5Mknyu7/7uznmmGMOeta9HXXUUUmSp556akT6DZYAOwAAAAAAAAAAAADAQfrpT3+a2travOENb8jNN9+ctra23nu7d+/OAw88kLe+9a25/vrrkySvfvWrc9ZZZ+3T5+ijj85FF12UNWvW5LnnnkuStLa25g1veENaW1tTUlKSD33oQyM297x585Ik//Zv/5aOjo4R63sgk0btSQAAAAAAAAAAAAAAR5jJkyenu7s7X//61/P1r389STJlypRMmzYt27ZtS09PT29tXV1dbrvtthQX73sO+Qc/+MF85jOfycUXX5zS0tKUlZXl6aefTpIUFRXln//5n/OqV71qxOZ+5zvfmXvvvTdf+cpX8r//9//OiSeemEmTJmXWrFn53ve+N2LPeSEBdgAAAAAAAAAAAACAg/S7v/u7eeihh/L1r3893/ve97Jhw4Zs3rw5Tz31VCoqKjJz5sy88pWvTENDQy6++OL9hteT5Nhjj80PfvCDrFixIl/5ylfy2GOP5bjjjsuiRYuyfPnynHnmmSM6d2NjY5LkM5/5TP7rv/4rW7ZsSXd394g+Y3+KevaO9AMAAAAAAAAAAAAAE8LOnTvzyCOPZPbs2SkrK+u37hdPFXLOx+5O53OHPtx8qJVOKs533rs4LzqmfKxH6VVdXZ1HH300N954Yy6//PKxHmdIBvt7aG9OYD8MdHd35/HHH8/06dNTVFQ01uMAAAAAAAAAAAAAcJjq6enJ9u3bM3PmzH5P8h5pLzqmPN957+Js27FrVJ53KB07dcphFV6fiATYDwOPP/54Tj755LEeAwAAAAAAAAAAAIBx4rHHHsusWbNG7XkvOqZc8JsRIcB+GJg+fXqS5/+P5KijjhrjaRhJNTU12bJlS2bMmJHW1taxHgcAAACOSP7+DcBg+TMDgMHw5wUAg+XPDADGyjPPPJOTTz65N38K440A+2GgqKgoSXLUUUcJsB9h9rw1R3Fxsf9tAQAA4BDx928ABsufGQAMhj8vABgsf2YAMNb25E9hvBFgBwAAAAAAAAAAAAAYI21tbWM9wqgqHusBAAAAAAAAAAAAAACYGATYAQAAAAAAAAAAAAAYFQLsAAAAAAAAAAAAAACMCgF2AAAAAAAAAAAAAABGhQA7AAAAAAAAAAAAAACjQoAdAAAAAAAAAAAAAIBRIcAOAAAAAAAAAAAAAMCoEGAHAAAAAAAAAAAAAGBUCLADAAAAAAAAAAAAADAqBNgBAAAAAAAAAAAAABgVAuwAAAAAAAAAAAAAAIwKAXYAAAAAAAAAAAAAAEbFpLEeAAAAAAAAAAAAAAA4zD31WNKxdaynGL6K45NjTh7rKSY0AXYAAAAAAAAAAAAAoH9PPZb80/zkuc6xnmT4JpUmf9Z8SEPsXV1d+cpXvpLbb7899913X5588sl0dHTkmGOOydy5c1NfX59LL7008+bN67fHPffck1tuuSXf/e53s2XLluzcuTMnnHBCXv7yl+e8887LZZddlrKysn73X3PNNbn22mv3WZ8yZUqOP/74nH766bn44otz2WWXZfLkySPyugdLgB0AAAAAAAAAAAAA6F/H1iMjvJ48/zo6th6yAPt9992Xyy67LBs3buxdmzx5cqZPn56tW7fm3nvvzb333pu/+7u/S0NDQ2699dZMmTKlt3br1q15y1vekq9//eu9a6WlpSkrK8vmzZuzefPm3HHHHfnIRz6Sm266Keecc84BZzrppJN6r7dv354tW7Zky5Yt+da3vpXPfOYz+da3vpVjjz12hH4FDqx41J4EAAAAAAAAAAAAAHCE+trXvpbFixdn48aNOf7447NixYps3Lgxu3btytatW7Nr16788Ic/zPvf//4cddRRWbt2bTo6Onr3P/HEE1mwYEG+/vWvp6SkJH/+53+en/70p9m5c2eeeuqpbNu2LTfeeGNOPvnkPPbYY3n961+fdevWHXCuX/7yl70fO3bsyKOPPpp3vOMdSZL7778//9//9/8dql+S/RJgBwAAAAAAAAAAAAAYhoceeiiNjY3p7OzMaaedlh//+Md5//vfn1NOOaW3pqSkJK961auyYsWKPPLIIzn//PN77/X09OSSSy7Jww8/nMmTJ+e2227LP/7jP+a0007rrTnmmGNy+eWX54EHHsjLX/7y7N69O5dddll+/vOfD2nWqqqqrFq1qvf09n//93/Ps88+O8xfgcETYAcAAAAAAAAAAAAAGIa//uu/zjPPPJOysrLcdtttmTVr1oD1xx13XNatW5ejjz46SXL77bfnO9/5TpLkAx/4QM4777x+9x5//PH58pe/nLKysjzzzDP54Ac/eFAzv/71r0+S7Nq1Kw899NBB9TgYAuwAAAAAAAAAAAAAAAfpiSeeyJo1a5Ikl156aebOnTvovUVFRUmST33qU0mS6dOnZ9myZQfcd8opp+TNb35zkuRLX/pS2tvbhzp2enp6eq+7urqGvP9gCbADAAAAAAAAAAAAAByku+66K93d3UmSCy+8cMj7n3vuuTQ1NSVJXve612XatGmD2tfQ0NC7/7vf/e6Qn/vNb34zyfMh+tmzZw95/8ESYAcAAAAAAAAAAAAAOEg//elPe69f+cpXDnl/W1tbduzYMeT9r3jFK3qvf/KTnwx636ZNm3LFFVfkO9/5TpLkvPPOy/HHHz/o/cM1adSeBAAAAAAAAAAAAABwhNm6dWvv9XHHHTes/UMJkldWVu63xwv9xm/8Ru/19u3b09HR0ft1TU1NPvWpTw36mSNBgB0AAAAAAAAAAAAAYBzr7Ozs994TTzyx3/W3vOUt+cxnPpOysrJDNdZ+FY/q0wAAAAAAAAAAAAAAjiB7n5r+61//elj7BzpJ/YXa29t7r4899th+63p6etLT05Pu7u48/vjj+fSnP51jjjkmN998c/7pn/5pyPMOlxPYAQAAAACAQ6ajoyOtra191gqFQtra2lJdXZ3y8vI+92pqalJRUTGaIwIAAAAADMtLX/rS3usHHnggM2fOHNL+F7/4xZk6dWp27NiRH/3oR4Pe98ADD/Ren3rqqQesLyoqyowZM/LHf/zHOfXUU3POOefkfe97X+rq6nLOOecMaebhEGAHAAAAAAAOmdbW1syfP3/Q9c3NzamrqzuEEwEAAAAAjKwlS5akuLg43d3due222/KGN7xhSPsnT56c+vr63HnnnfnWt76V7du3Z/r06Qfct3bt2t7rxYsXD+mZixcvzh/90R/l5ptvzp//+Z/nJz/5SUpKSobU42AVj8pTAAAAAACACammpibNzc19PlavXp0kWb169T73ampqxnhiAAAAAIChOemkk3LRRRclSW655ZZs3Lhx0Ht7enqSJO9617uSJM8++2yuv/76A+576KGH8sUvfjFJctZZZ+UlL3nJUMfO1VdfnZKSkvzsZz/LF77whSHvP1gC7AAAAAAAwCFTUVGRurq6Ph+1tbVJktra2n3uVVRUjPHEAAAAAABD9+EPfzjTpk1LoVBIQ0NDfvGLXwxYv23btlx00UV5+umnkyTnnntu7ynqH/nIR3L77bf3u3fr1q25+OKLs3PnzhQVFeXDH/7wQc38m7/5m3njG9+YJPnbv/3b7N69+6D6DJUAOwAAAAAAAAAAAADAMMydOzf/+q//milTpuSnP/1pXvGKV+SjH/1oHn744d6arq6uPPDAA7n66qvzkpe8JGvXru29V1RUlFtvvTUveclLsnv37lx44YW58sor09LS0lvz9NNP5wtf+ELq6uryn//5n0meP0X97LPPPui5ly9fnqKiorS1teXzn//8QfcZCgF2AAAAAAAAAAAAAIBhuuCCC/Kd73wnc+bMSXt7e97//vfnlFNOSWlpaY4//vhMmTIldXV1+du//ds8/fTTefOb35ypU6f27v+N3/iN3HfffXnd616X5557Lv/4j/+Y0047LeXl5Tn22GNzzDHH5PLLL8+mTZsyefLk/P3f/32uueaaYc08b968/MEf/EGS509+7+zsHFa/wRBgBwAAAAAAAAAAAAD6V3F8Mql0rKcYGZNKn389h8iiRYvS2tqaW2+9NZdeemnmzJmTsrKybN++Pccdd1zOOuusfOADH0hLS0tuueWWTJ48uc/+E044Id/85jfz7W9/O29/+9tz6qmnZsqUKXnqqad6a2bOnJkNGzbkL//yL0dk5g984ANJks2bN+czn/nMiPQcyKRD/gQAAAAAAAAAAAAAYPw65uTkz5qTjq1jPcnwVRz//Os5hEpKSvKmN70pb3rTmw66xznnnJNzzjmnz9qXvvSlvPnNb87jjz+ef/3Xf83f/u3f9rv/mmuuGfTp7GeccUZ6enoOetahEmAHAAAAAAAAAAAAAAZ2zMmHPPjNwN74xjdmy5Yt+Yu/+It8+MMfzvTp0/O+971vrMcasuKxHgAAAAAAAAAAAAAAgAN797vfnfe+971Jkr/6q7/Kpz71qTGeaOgE2AEAAAAAAAAAAAAAxol/+Id/SE9PT3p6evKud71rrMcZMgF2AAAAAAAAAAAAAABGhQA7AAAAAAAAAAAAAACjQoAdAAAAAAAAAAAAAIBRIcAOAAAAAAAAAAAAAMCoEGAHAAAAAAAAAAAAAGBUCLADAAAAAAAAAAAAADAqBNgBAAAAAAAAAAAAABgVAuwAAAAAAAAAAAAAAIwKAXYAAAAAAAAAAAAAAEaFADsAAAAAAAAAAAAAAKNCgB0AAAAAAAAAAAAAgFEhwA4AAAAAAAAAAAAAwKgQYAcAAAAAAAAAAAAAYFRMGusBAAAAAAAAAAAAAIDD25Znt2Rb57axHmPYji09NjOmzRjrMSY0AXYAAAAAAAAAAAAAoF9bnt2Sc9edm11du8Z6lGGbUjIlt19w+yENsXd1deUrX/lKbr/99tx333158skn09HRkWOOOSZz585NfX19Lr300sybN6/fHj/5yU/yb//2b7nrrrvy6KOPZtu2bSkvL8+LXvSinHHGGWloaMjv//7vZ/LkyX32LV68OPfcc88+/SoqKvKiF70oCxcuzDvf+c4sWLBgxF/3YAmwAwAAAAAAAAAAAAD92ta57YgIryfJrq5d2da57ZAF2O+7775cdtll2bhxY+/a5MmTM3369GzdujX33ntv7r333vzd3/1dGhoacuutt2bKlCm9tdu3b8873/nO3Hrrrenp6UmSFBUV5eijj06hUEhLS0taWlpy88035zd/8zfzb//2b/mt3/qtfeaYPHlyjjvuuN6v29vb89BDD+Whhx7KzTffnA9+8IP54Ac/eEh+DQ6keEyeCgAAAAAAAAAAAABwBPna176WxYsXZ+PGjTn++OOzYsWKbNy4Mbt27crWrVuza9eu/PCHP8z73//+HHXUUVm7dm06Ojp692/bti1nnnlmbrnlliTJm970ptxzzz3ZuXNntm3blp07d+YXv/hFPve5z+VlL3tZfv7zn2f9+vX7nWXhwoX55S9/2fvR0dGRb33rW5kzZ056enpyzTXX5I477hiVX5cXEmAHAAAAAAAAAAAAABiGhx56KI2Njens7Mxpp52WH//4x3n/+9+fU045pbempKQkr3rVq7JixYo88sgjOf/88/v0uPTSS/PTn/40kyZNype+9KXceuutec1rXtPnhPaZM2fmbW97W3784x/nU5/6VMrKygY135QpU/I7v/M7+epXv9rb75/+6Z9G4JUP3aQxeSoAAAAAAAAAAAAAwBHir//6r/PMM8+krKwst912W2bNmjVg/XHHHZd169alp6cnSfKNb3wj3/jGN5IkV199dS6++OIB9xcVFeVP/uRP0t3dPaQ5TzvttMyfPz/r16/PD3/4wyHtHSkC7AAAAAAAABNAR0dHWltb+6wVCoW0tbWluro65eXlfe7V1NSkoqJiNEcEAAAAgHHpiSeeyJo1a5I8f4r63LlzB723qKgoyf+chn700UfnPe95z6D3FxcXD2HS5+0J1z/zzDND3jsSBNgBAAAAAAAmgNbW1syfP3/Q9c3NzamrqzuEEwEAAADAkeGuu+7qPQn9wgsvHPL+5557Lt/97neTJL/zO7+TqVOnjuh8L9TW1pbk+VPgx4IAOwAAAAAAwARQU1OT5ubmPmstLS1pbGzM6tWrU1tbu089AAAAAHBgP/3pT3uvX/nKVw55/6OPPppnn332oPcPxQ9+8IPe7xMuWLDgkD6rPwLsAAAAAAAAE0BFRUW/J6rX1tY6bR0AAAAADtLWrVt7rw/mVPPh7h+Mxx9/PN/+9rfzvve9L93d3SkqKsq73/3uQ/KsAxFgBwAAAAAAAAAAAAA4gtxzzz0pKira773Jkyfn+uuvz+LFi0d3qP9HgB0AAAAAAAAAAAAA4CAdf/zxvde//vWvM3PmzGHtHwmTJ0/uPc29qKgo5eXlmTlzZhYuXJi3v/3tmTt37og852AIsAMAAABMQF1dXWlqasqWLVsyY8aM1NfXp6SkZKzHAgAAAAAAgHHnpS99ae/1Aw88MOQA+4tf/OJMmzYtzz77bB544IERmWnhwoW5++67R6TXSCse6wEAAAAAGF1r167NnDlzsmTJklxyySVZsmRJ5syZk7Vr1471aAAAAAAAADDuLFmyJMXFz8eyb7vttiHvnzRpUl7zmtckSf7jP/4jO3bsGNH5DjcC7AAAAAATyNq1a7N06dKcfvrpWb9+fbZv357169fn9NNPz9KlS4XYAQAAAAAAYIhOOumkXHTRRUmSW265JRs3bhz03p6eniTJn/7pnyZJnn766Vx//fWD3t/d3T2ESQ8PAuwAAAAAE0RXV1eWLVuWc889N+vWrcuCBQsybdq0LFiwIOvWrcu5556b9773venq6hrrUQEAAAAAAGBc+fCHP5xp06alUCikoaEhv/jFLwas37ZtWy666KI8/fTTSZLf//3fz+te97okyYc+9KGsWbPmgM9ctWpVPvvZzw5/+FEmwA4AAAAwQTQ1NaWtrS1XXXVV71sY7lFcXJzly5fnkUceSVNT0xhNCAAAAAAAAOPT3Llz86//+q+ZMmVKfvrTn+YVr3hFPvrRj+bhhx/urenq6soDDzyQq6++Oi95yUv2eXfkW265JbW1tXnuuefyh3/4h7n00kvT1NSU3bt399Zs2bIlX/jCFzJ//vz88R//cQqFwqi9xpEyaawHAAAAAGB0bNmyJUkyb968/d7fs76nbiAdHR1pbW3ts1YoFNLW1pbq6uqUl5f3uVdTU5OKioqDGRsAAAAAAADGhQsuuCDf+c53cvnll+fhhx/O+9///rz//e/PlClTMm3atDz11FPp7u5OkhQVFeXNb35zpk6d2rv/+OOPz3333Zd3vOMd+fKXv5xbbrklt9xyS4qKinLMMcekUChk586dvfW1tbWpr68f9dc5XALsAAAAABPEjBkzkiQbNmzIggUL9rm/YcOGPnUDaW1tzfz58wf97Obm5tTV1Q26HgAAAAAAAMajRYsWpbW1NV/+8pdz++235/vf/36efPLJbN++Pccdd1xqampy9tln54/+6I9y6qmn7rP/qKOOype+9KVcddVVWb16de6+++48+uij2bZtW8rLyzN79uy8+tWvzsUXX5zXv/71KSkpGYNXOTwC7AAAAAATRH19faqrq3Pddddl3bp1KS4u7r3X3d2dFStWZPbs2YM6paGmpibNzc191lpaWtLY2JjVq1entrZ2n3oAAAAAAADGp2NLj82UkinZ1bVrrEcZtiklU3Js6bGH9BklJSV505velDe96U0H3ePlL395Xv7ylw953913333QzxwtAuwAAAAAE0RJSUlWrlyZpUuX5oILLsjy5cszb968bNiwIStWrMjtt9+eNWvWDOqUhoqKin5PVK+trXXaOgAAAAAAwBFkxrQZuf2C27Otc9tYjzJsx5YemxnTDvyOxBw6AuwAAAAAE0hDQ0PWrFmTZcuWZeHChb3rs2fPzpo1a9LQ0DCG0wEAAAAAAHC4mjFthuA3I0KAHQAAAGCCaWhoyPnnn5+mpqZs2bIlM2bMSH19/aBOXgcAAAAAAAAYDgF2AAAAgAmopKQkixcvHusxAAAAAAAAgAlGgB0AAAAAABgxmzZtSnt7+4A1LS0tfT4PpLKyMlVVVSMyGwAAAAAAY0+AHQAAAAAAGBGbNm3KqTWnZmdh56DqGxsbD1hTVl6WB1sfFGIHAAAAADhCCLADAAAAAAAjor29PTsLOzPrilkpnVnab133ru7sbt+dyZWTUzyluN+6zsc7s3nV5rS3twuwAwAAAAAcIQTYAQAAAACAEVU6szTl1eUDF80dnVkAAAAAADi89H+sCQAAAAAAAAAAAAAAjCABdgAAAAAAAAAAAACYwHp6esZ6BMapg/m9I8AOAAAAAAAAAAAAABNQcfHzUeKurq4xnoTxas/vnT2/lwZDgB0AAAAAAAAAAAAAJqDJkydn8uTJefbZZ8d6FMap7du39/4+GiwBdgAAAAAAAAAAAACYgIqKijJ9+vQ8/fTTKRQKYz0O40yhUMgzzzyT6dOnp6ioaND7Jh3CmQAAAAAAAAAAAACAw1hlZWUKhUI2bdqUo446KtOnT09JScmQAslMHD09Penq6sr27dvzzDPPpLS0NJWVlUPqIcAOAAAAAAAAAAAAABNUSUlJTj755LS3t2f79u156qmnxnokxoHJkyfnmGOOSWVlZUpKSoa0V4AdAAAAAAAAAAAAACawkpKSnHTSSTnxxBOze/fudHd3j/VIHMaKi4szefLkgz6lX4AdAAAAAAAYEYVCIUnS+XjniPTb02dPXwAAAADg0CoqKsqUKVPGegyOcALsAAAAAADAiGhra0uSbF61ecT7Llq0aER7AgAAAAAwNgTYAQAAAACAEVFdXZ0kmXXFrJTOLB12v87HO7N51ebevgAAAAAAjH8C7AAAAAAAwIgoLy9PkpTOLE15dfmI9wUAAAAAYPwrHusBAAAAAAAAAAAAAACYGI6YAPujjz6aZcuWpaamJlOnTs1xxx2XM844I//wD/+Qjo6OYfW+6aabUlRUNKiPm266aWReEAAAAAAAAAAAAADAEWbSWA8wEr72ta+lsbExzzzzTO9aR0dH7r///tx///353Oc+lzvuuCNz5swZwykBAAAAAAAAAAAAACa2cR9gf+CBB/LGN74xhUIh06ZNy/Lly7NkyZIUCoV88YtfzGc/+9ls3Lgxb3jDG3L//fdn+vTpw3reN7/5zcycObPf+7NmzRpWfwAAAAAAAAAAAACAI9W4D7BfeeWVKRQKmTRpUr71rW/lzDPP7L13zjnn5JRTTsn73ve+bNy4MStXrsw111wzrOfNnTs31dXVwxsaAAAAAAAAAAAAAGACKh7rAYbjBz/4QZqampIkb3vb2/qE1/dYtmxZamtrkyQ33HBDdu/ePaozAgAAAAAAAAAAAADwvHEdYF+3bl3v9Vvf+tb91hQXF+ctb3lLkuSpp57KXXfdNRqjAQAAAAAAAAAAAADwAuM6wP69730vSTJ16tTMnz+/37qzzz679/ree+895HMBAAAAAAAAAAAAALCvcR1gb2lpSZLMmTMnkyZN6reupqZmnz0H661vfWtmzpyZKVOmpLKyMgsWLMhf//Vf5xe/+MWw+gIAAAAAAAAAAAAAHOnGbYB9586daW9vT5LMmjVrwNpjjz02U6dOTZI89thjw3ru3XffnS1btmT37t3ZunVrvv/97+cjH/lI5syZk8985jOD6tHZ2ZlnnnmmzwcAAAAAAAAAAAAAwJGu/2PLD3Pbt2/vvZ42bdoB66dOnZodO3bk2WefPajnveQlL0lDQ0POPPPMnHzyyUmS//7v/85XvvKVrFmzJjt37sw73/nOFBUV5Yorrhiw14oVK3Lttdce1BwAAAAAAACDsWnTpt7DgPqz551rB/MOtpWVlamqqhqR2QAAAACAiWvcBth37tzZez1lypQD1peWliZJCoXCkJ914YUX5rLLLktRUVGf9TPOOCNvfOMbc/vtt6ehoSG7d+/OX/zFX+QP/uAP8hu/8Rv99lu+fHne85739H79zDPP9IbiAQAAAAAAhmvTpk05tebU7CzsPHBxksbGxgPWlJWX5cHWB4XYAQAAAIBhGbcB9rKyst7rXbt2HbC+s7MzSVJeXj7kZx199NED3j/33HNz9dVX52/+5m/S0dGRz3/+8/nABz7Qb31paWlvoB4AAAAAAGCktbe3Z2dhZ2ZdMSulM/v/N4nuXd3Z3b47kysnp3hKcb91nY93ZvOqzWlvbxdgBwAAAACGZdwG2KdPn957/eyzzx6wfseOHUmSadOmHZJ5rrjiilx99dXp6enJPffcM2CAHQAAAGC82bRpU9rb2wesaWlp6fN5IJWVlcJvADAKSmeWprz6AIf7zB2dWQAAAAAAknEcYC8rK8vxxx+frVu3ZvPmzQPWbtu2rTfAfvLJJx+SeU488cQcf/zxaW9vzy9+8YtD8gwAAACAsbBp06acWnNqdhZ2Dqq+sbHxgDVl5WV5sPVBIXYAAAAAAACYYMZtgD1JTjvttDQ1NeXhhx/Oc889l0mT9v9yWltbe69ra2sP2TxFRUWHrDcAAADAWGlvb8/Ows7MumJWSmeW9lvXvas7u9t3Z3Ll5BRPKe63rvPxzmxetTnt7e0C7AAAAAAAADDBjOsA+1lnnZWmpqbs2LEjzc3N+a3f+q391t1zzz2914sWLToks/zqV7/qfRvtmTNnHpJnAAAAAIyl0pmlKa8uH7ho7ujMAgAAAAAAAIxP/R+FNQ5ccMEFvdc33njjfmu6u7tz8803J0mOOeaYLFmy5JDMsmrVqvT09CRJzj777EPyDAAAAAAAAAAAAACA8WxcB9hf/epXp76+Pkny+c9/PuvXr9+nZuXKlWlpaUmSXHnllZk8eXKf+3fffXeKiopSVFSUyy+/fJ/9bW1teeCBBwac4/bbb8+HPvShJEl5eXne+ta3HszLAQAAAACAI0Ln450ptBX6/dixcUee+r9PZcfGHQPWdT7eOdYvBQAAAACAETZprAcYrhtuuCGLFi1KoVDI6173ulx11VVZsmRJCoVCvvjFL2bVqlVJkrlz52bZsmVD7t/W1pYlS5bkzDPPzHnnnZeXv/zlOfHEE5Mk//3f/501a9ZkzZo1vaevf+xjH8uLXvSikXuBAAAAACOgo6Mjra2tfdYKhULa2tpSXV2d8vLyPvdqampSUVExmiMCcASorKxMWXlZNq/aPGI9y8rLUllZOWL9AAAAAAAYW+M+wP7KV74yX/rSl9LY2JhnnnkmV1111T41c+fOzR133JHp06cf9HPWr1+/3xPe96ioqMjHP/7xXHHFFQf9DAAAAIBDpbW1NfPnzx90fXNzc+rq6g7hRAAciaqqqvJg64Npb28fsK6lpSWNjY1ZvXp1amtrB6ytrKxMVVXVSI4JAAAAAMAYGvcB9iQ577zz8pOf/CQ33HBD7rjjjmzevDlTpkzJnDlzcvHFF+fP/uzPDvrEsPnz52f16tVZv3597r///mzZsiXt7e157rnncuyxx+alL31pXvva1+btb39778nsAAAAAIebmpqaNDc391kbKDxYU1MzmuMBcASpqqoadOC8trbWD0wBAAAAAEwwR0SAPUle/OIX5/rrr8/1118/pH2LFy9OT09Pv/enT5+eSy+9NJdeeulwRwQAAAAYMxUVFf0GBIUHAQAAAAAAgNFSPNYDAAAAAAAAAAAAAAAwMQiwAwAAAAAAAAAAAAAwKgTYAQAAAAAAAAAAAAAYFQLsAAAAAAAAAAAAAACMCgF2AAAAAAAAAAAAAABGhQA7AAAAAAAAAAAAAACjQoAdAAAAAAAAAAAAAIBRIcAOAAAAAAAAAAAAAMCoEGAHAAAAAAAAAAAAAGBUCLADAAAAAAAAAAAAADAqJo31AAAAAAAAAIysQqGQJOl8vHNE+u3ps6cvAAAAAMDBEmAHAAAAAAA4wrS1tSVJNq/aPOJ9Fy1aNKI9AQAAAICJRYAdAAAAAADgCFNdXZ0kmXXFrJTOLB12v87HO7N51ebevgAAAAAAB0uAHQAAAIABFQqFJM8H10bCnj57+gIAI6+8vDxJUjqzNOXV5SPeFwAAAADgYAmwAwAAADCgtra2JMnmVZtHvO+iRYtGtCcAAAAAAABweBNgBwAAAGBA1dXVSZJZV8xK6czSYffrfLwzm1dt7u0LAAAAAAAATBwC7AAAAAAMqLy8PElSOrM05dXlI94XAAAAAAAAmDgE2AEAAIBxo6OjI62trX3WCoVC2traUl1dvU8guqamJhUVFaM5IgAAAAAAAAADEGAHAAAAxo3W1tbMnz9/0PXNzc2pq6s7hBMBAAAAAAAAMBQC7AAAAMC4UVNTk+bm5j5rLS0taWxszOrVq1NbW7tPPQAAAAAAAACHDwF2AAAAYNyoqKjo90T12tpap60DAAAAAAAAHOaKx3oAAAAAAAAAAAAAAAAmBgF2AAAAAAAAAAAAAABGhQA7AAAAAAAAAAAAAACjQoAdAAAAAAAAAAAAAIBRIcAOAAAAAAAAAAAAAMCoEGAHAAAAAAAAAAAAAGBUCLADAAAAAAAAAAAAADAqJo31AAAAAACMD52Pdw54v3tXd3a3787kyskpntL/uQkH6gMAAAAAAAAcuQTYAQAAABhQZWVlysrLsnnV5hHrWVZelsrKyhHrBwAAAAAAAIwPAuwAAAAADKiqqioPtj6Y9vb2AetaWlrS2NiY1atXp7a2dsDaysrKVFVVjeSYAAAAAAAAwDggwA4AAADAAVVVVQ06cF5bW5u6urpDPBEAAAAAAAAwHgmwAwAAAByBNm3aNKgT0/f+PBAnpgMAAAAAAAAjQYAdAAAA4AizadOm1Nacmo7CzkHVNzY2HrCmorwsLa0PCrEDAAAAAAAAwyLADgAAAHCEaW9vT0dhZ1ZfWJ7aE4r7rSs815O2p7pTfUxxyicV9VvX8qvuNN5WSHt7uwA7AAAAAAAAMCwC7AAAAABHqNoTilM3o2TAmkUnj9IwAAAAAAAAAEn6P4ILAAAAAAAAAAAAAABGkAA7AAAAAAAAAAAAAACjQoAdAAAAAAAAAAAAAIBRMWmsBwAAAAAAAODQ6Hy8c8D73bu6s7t9dyZXTk7xlP7PPTpQHwAAAACAwRJgBwAAAAAAOMJUVlamrLwsm1dtHrGeZeVlqaysHLF+AAAAAMDEJMAOAAAAAABwhKmqqsqDrQ+mvb19wLqWlpY0NjZm9erVqa2tHbC2srIyVVVVIzkmAAAAADABCbADAAAAAAAcgaqqqgYdOK+trU1dXd0hnggAAAAAICke6wEAAAAAAAAAAAAAAJgYnMAOAAAAAAAcMh0dHWltbe2z1tLS0ufz3mpqalJRUTEqswEAAAAAMPoE2AEAAAAAgEOmtbU18+fP3++9xsbGfdaam5tTV1d3qMcCAAAAAGCMCLADAAAAAACHTE1NTZqbm/usFQqFtLW1pbq6OuXl5fvUAwAAAABw5BJgBwAAADjCFAqFJElLe9eI9NvTZ09fABiKioqK/Z6ovmjRojGYBgAAAACAsSbADgAAAHCEaWtrS5I0rt054n2FDQEAAAAAAIDhEGAHAAAAOMJUV1cnSVY3lKW2smTY/Vrau9K4dmdvXwAAAAAAAICDJcAOAAAAcIQpLy9PktRWlqRuxvAD7C/sCwAAAAAAAHCwisd6AAAAAAAAAAAAAAAAJgYBdgAAAAAAAAAAAAAARsWksR4AAAAAAACAA+vq6kpTU1O2bNmSGTNmpL6+PiUlJWM9FgAAAADAkAiwAwAAAAAAo0YI++CsXbs2y5YtS1tbW+9adXV1Vq5cmYaGhrEbDAAAAABgiIrHegAAAAAAAGBiWLt2bebMmZMlS5bkkksuyZIlSzJnzpysXbt2rEc7rK1duzZLly7N6aefnvXr12f79u1Zv359Tj/99CxdutSvHwAAAAAwrgiwAwAAAAAAh5wQ9sHp6urKsmXLcu6552bdunVZsGBBpk2blgULFmTdunU599xz8973vjddXV1jPSoAAAAAwKAIsAMAAAAAAIeUEPbBa2pqSltbW6666qoUF/f9Z53i4uIsX748jzzySJqamsZoQgAAAACAoZk01gMAAAAA9GfTpk1pb28fsKalpaXP54FUVlamqqpqRGYDAAZvTwj71ltv7TeEvXDhwjQ1NWXx4sVjM+RhasuWLUmSefPm7ff+nvU9dQAAAAAAhzsBdgAAAOCwtGnTppxac2p2FnYOqr6xsfGANWXlZXmw9UEhdgAYZULYB2/GjBlJkg0bNmTBggX73N+wYUOfOgAAAACAw50AOwAAAHBYam9vz87Czsy6YlZKZ5b2W9e9qzu723dncuXkFE8p7reu8/HObF61Oe3t7RMmwN7yq+4B7xee60nbU92pPqY45ZOKDroPAByIEPbBq6+vT3V1da677rqsW7euzwn23d3dWbFiRWbPnp36+voxnBIAAAAAYPAE2AEAAIDDWunM0pRXlw9cNHd0ZhkvKisrU1FelsbbCiPWs6K8LJWVlSPWD4CJRQj74JWUlGTlypVZunRpLrjggixfvjzz5s3Lhg0bsmLFitx+++1Zs2ZNSkpKxnpUAAAAAIBBEWAHAAAAOMJUVVWlpfXBtLe3D1jX0tKSxsbGrF69OrW1tQPWVlZWTpiT6wEYeULYw9PQ0JA1a9Zk2bJlWbhwYe/67Nmzs2bNmjQ0NIzhdAAAAAAAQyPADgAAAHAEqqqqGnTgvLa2NnV1dYd4IgAmOiHs4WloaMj555+fpqambNmyJTNmzEh9fb3QPwAAAAAw7giwAwAAAAAAo0IIe3hKSkqyePHisR4DAAAAAGBYBNgBAAAAAIBRI4QNAAAAADCxFY/1AAAAAAAAAAAAAAAATAwC7AAAAAAAAAAAAAAAjAoBdgAAAAAAAAAAAAAARsWksR4AAAAAAAA4fHR0dKS1tbXPWqFQSFtbW6qrq1NeXt7nXk1NTSoqKkZzRAAAAAAAxjEBdgAAAAAAoFdra2vmz58/6Prm5ubU1dUdwokAAAAAADiSCLADAAAAAAC9ampq0tzc3GetpaUljY2NWb16dWpra/epBwAAAACAwRJgBwAAAAAAelVUVPR7onptba3T1gEAAAAAGJbisR4AAAAAAAAAAAAAAICJQYAdAAAAAAAAAAAAAIBRIcAOAAAAAAAAAAAAAMCoEGAHAAAAAAAAAAAAAGBUCLADAAAAAAAAAAAAADAqBNgBAAAAAAAAAAAAABgVAuwAAAAAAAAAAAAAAIyKSWM9AAAAAMD+FAqFJEnn450j0m9Pnz19J5qOjo60trb2WWtpaenzeW81NTWpqKgYldkAAAAAAACAiUOAHQAAADgstbW1JUk2r9o84n0XLVo0oj3Hg9bW1syfP3+/9xobG/dZa25uTl1d3aEeCwAYRX6gDQAAAAA4HAiwAwAAAIel6urqJMmsK2aldGbpsPt1Pt6Zzas29/adaGpqatLc3NxnrVAopK2tLdXV1SkvL9+nfiACcAAw/viBNgAAAADgcCDADgAAAByW9gSqS2eWpry6/ADVQ+870VRUVOw3gHawp9ELwAHA+DPSP9AGAAAAAHAwBNgBAAAAGDIBOAAYf0b6B9oAAAAAAA6GADsAAAAAQyYABwAAAAAAAByM4rEeAAAAAAAAAAAAAACAiUGAHQAAAAAAAAAAAACAUTFprAcAAAAAYPzr6upKU1NTtmzZkhkzZqS+vj4lJSVjPRYAAAAAAABwmHECOwAAAADDsnbt2syZMydLlizJJZdckiVLlmTOnDlZu3btWI8GAAAAAAAAHGYE2AEAAAA4aGvXrs3SpUtz+umnZ/369dm+fXvWr1+f008/PUuXLhViBwAAAAAAAPqYNNYDAAAAADA+dXV1ZdmyZTn33HOzbt26FBc/f1bCggULsm7dulxwwQV573vfm/PPPz8lJSVjPC0A/dm0aVPa29sHrGlpaenzeSCVlZWpqqoakdkAAAAAADjyCLADAAAAcFCamprS1taWW2+9tTe8vkdxcXGWL1+ehQsXpqmpKYsXLx6bIQEY0KZNm1Jbc2o6CjsHVd/Y2HjAmorysrS0PijEDgAAAADAfgmwAwAAAHBQtmzZkiSZN2/efu/vWd9TB8Dhp729PR2FnVl9YXlqTyjut67wXE/anupO9THFKZ9U1G9dy6+603hbIe3t7QLsAAAAAADslwA7AAAAAAdlxowZSZINGzZkwYIF+9zfsGFDnzoADl+1JxSnbkbJgDWLTh6lYQAAAAAAOKL1f5wKAAAAAAygvr4+1dXVue6669Ld3d3nXnd3d1asWJHZs2envr5+jCYEAAAAAAAADjdOYAcAAADgoJSUlGTlypVZunRpLrjggixfvjzz5s3Lhg0bsmLFitx+++1Zs2ZNSkoGPtEXgLFTKBSSJC3tXSPSb0+fPX0BAAAAAOCFBNgBAAAAOGgNDQ1Zs2ZNli1bloULF/auz549O2vWrElDQ8MYTgfAgbS1tSVJGtfuHPG+ixYtGtGeAAAAAAAcGQTYAQAAABiWhoaGnH/++WlqasqWLVsyY8aM1NfXO3kdYByorq5OkqxuKEtt5fD/f7ulvSuNa3f29gUAAAAAgBcSYAcAAABg2EpKSrJ48eKxHgOAISovL0+S1FaWpG7GyP3g0Z6+AAAAAADwQsVjPQAAAAAAAAAAAAAAABODADsAAAAAAAAAAAAAAKNi0lgPAAAAAONNV1dXmpqasmXLlsyYMSP19fUpKSkZ67EAAAAAAAAA4LDnBHYAAAAYgrVr12bOnDlZsmRJLrnkkixZsiRz5szJ2rVrx3o0AAAAAAAAADjsCbADAADAIK1duzZLly7N6aefnvXr12f79u1Zv359Tj/99CxdulSIHQAAAAAAAAAOQIAdAAAABqGrqyvLli3Lueeem3Xr1mXBggWZNm1aFixYkHXr1uXcc8/Ne9/73nR1dY31qAAAAAAAAABw2BJgBwAAgEFoampKW1tbrrrqqhQX9/3rdHFxcZYvX55HHnkkTU1NYzQhAAAAAAAAABz+Jo31AAAAADAebNmyJUkyb968/d7fs76njpHT+XjngPe7d3Vnd/vuTK6cnOIp/f+s/oH6AACMtU2bNqW9vb3360KhkLa2tkHvr66uTnl5ee/XlZWVqaqqGskRAQAAAACGTYAdAAAABmHGjBlJkg0bNmTBggX73N+wYUOfOoavsrIyZeVl2bxq84j1LCsvS2Vl5Yj1AwAYKZs2bUptzanpKOwcsZ4V5WVpaX1QiB0AAAAAOKwIsAMAAMAg1NfXp7q6Otddd13WrVuX4uL/Oem7u7s7K1asyOzZs1NfXz+GUx5Zqqqq8mDrg31OId2flpaWNDY2ZvXq1amtrR2w1imkAMDhqr29PR2FnVl9YXlqT3j+vzULz/Wk7anuQfeoPqY45ZOKkiQtv+pO422FtLe3++8fAAAAAOCwIsAOAAAAg1BSUpKVK1dm6dKlueCCC7J8+fLMmzcvGzZsyIoVK3L77bdnzZo1KSkpGetRjyhVVVWDDlzV1tamrq7uEE8EAHBo1Z5QnLoZ//PflItOHsNhAAAAAAAOAQF2AAAAGKSGhoasWbMmy5Yty8KFC3vXZ8+enTVr1qShoWEMpwMAYDwrFApJkpb2rhHpt6fPnr4AAAAAAIcLAXYAAAAYgoaGhpx//vlpamrKli1bMmPGjNTX1zt5HQCAYWlra0uSNK7dOeJ9Fy1aNKI9AQAAAACGQ4AdAAAAhqikpCSLFy8e6zEAADiCVFdXJ0lWN5SltnL4PxzZ0t6VxrU7e/sCAAAAABwuBNgBAAAAAADGWHl5eZKktrIkdTNG7t199vQFAAAAADhcCLADAAAAAMAE1/Kr7gHvF57rSdtT3ak+pjjlk4oOug8AAAAAABwxAfZHH300//iP/5g77rgjjz32WEpLS/Obv/mb+cM//MP86Z/+aSoqKkb8mR0dHZk3b14eeeSRJMmLX/zitLW1jfhzAAAAAADgUKisrExFeVkabyuMWM+K8rJUVlaOWD8AAAAAAI4sR0SA/Wtf+1oaGxvzzDPP9K51dHTk/vvvz/3335/Pfe5zueOOOzJnzpwRfe7VV1/dG14HAAAAAIDxpqqqKi2tD6a9vX3AupaWljQ2Nmb16tWpra0dsLaysjJVVVUjOSYAAAAAAEeQcR9gf+CBB/LGN74xhUIh06ZNy/Lly7NkyZIUCoV88YtfzGc/+9ls3Lgxb3jDG3L//fdn+vTpI/bcT3ziEykrK8vkyZOzffv2EekLAAAAAACjqaqqatCB89ra2tTV1R3iiQAAAAAAOJKN+wD7lVdemUKhkEmTJuVb3/pWzjzzzN5755xzTk455ZS8733vy8aNG7Ny5cpcc801w35mV1dX3vGOd6Srqysf/OAH8/nPf16AHQAAAAAAGLaWX3UPeL/wXE/anupO9THFKZ9UdNB9AAAAAADGyrgOsP/gBz9IU1NTkuRtb3tbn/D6HsuWLcuNN96YlpaW3HDDDfnABz6QyZMnD+u5N9xwQ5qbm3Pqqafmr/7qr/L5z39+WP0AAAAAAICJrbKyMhXlZWm8rTBiPSvKy1JZWTli/QAAAAAARsK4DrCvW7eu9/qtb33rfmuKi4vzlre8JcuXL89TTz2Vu+66K6973esO+pmPPvporr766iTJpz/96UyZMuWgewEAAAAAACRJVVVVWlofTHt7+4B1LS0taWxszOrVq1NbWztgbWVlZaqqqkZyTAAAAACAYRvXAfbvfe97SZKpU6dm/vz5/dadffbZvdf33nvvsALs73rXu7Jjx4780R/9URYvXnzQfQAAAAAAAPZWVVU16MB5bW1t6urqDvFEAAAAAAAjr3isBxiOlpaWJMmcOXMyaVL/Wfyampp99hyML37xi/n617+eY489NitXrjzoPgAAAAAAAAAAAAAAE9G4DbDv3Lmz9200Z82aNWDtsccem6lTpyZJHnvssYN63rZt2/Lud787SfJ3f/d3OeGEEw6qDwAAAAAAAAAAAADARNX/seWHue3bt/deT5s27YD1U6dOzY4dO/Lss88e1PP+8i//Mk888UTOPPPMvOMd7zioHnt0dnams7Oz9+tnnnlmWP0AAAAAAAAAAAAAAMaDcX0C+x5Tpkw5YH1paWmSpFAoDPlZ3/3ud/Mv//IvmTRpUj796U+nqKhoyD32tmLFihx99NG9HyeffPKw+gEAAAAAAAAAAAAAjAfjNsBeVlbWe71r164D1u858by8vHxIz+ns7MwVV1yRnp6eXHnllXnZy142tEH3Y/ny5Xn66ad7Px577LFh9wQAAAAAAAAAAAAAONxNGusBDtb06dN7r5999tkD1u/YsSNJMm3atCE95yMf+UgefPDBnHzyybn22muHNmQ/SktLe0+EBwAAAAAAAAAAAACYKMZtgL2srCzHH398tm7dms2bNw9Yu23btt4A+8knnzyk53z0ox9Nkvz2b/92vva1r+23Zk/vHTt25Itf/GKS5MQTT8w555wzpGcBAADAka6rqytNTU3ZsmVLZsyYkfr6+pSUlIz1WAAAAAAAAACMknEbYE+S0047LU1NTXn44Yfz3HPPZdKk/b+c1tbW3uva2tohPWPXrl1JkhtvvDE33njjgLXt7e1585vfnCQ5++yzBdgBAABgL2vXrs173vOePProo71rL37xi3P99denoaFhDCcDAAAAAAAAYLQUj/UAw3HWWWclef7k8+bm5n7r7rnnnt7rRYsWHfK5AAAAgL7Wrl2biy66KE8++WSf9SeffDIXXXRR1q5dO0aTAQAAAAAAADCaxnWA/YILLui97u909O7u7tx8881JkmOOOSZLliwZ0jN6enoO+PHiF784yfOnxu1Zu/vuuw/qNQEAAMCRpqurK+985zuTJK997Wuzfv36bN++PevXr89rX/vaJMmf/MmfpKurayzHBAAAAAAAAGAUTBrrAYbj1a9+derr69PU1JTPf/7zueyyy3LmmWf2qVm5cmVaWlqSJFdeeWUmT57c5/7dd9/dG2q/7LLLctNNN43K7AAAAIwfHR0daW1t7bNWKBTS1taW6urqlJeX97lXU1OTioqK0RzxsHb33XfnV7/6Vc4666x89atfTXHx8z9Pv2DBgnz1q1/N2Wefne9973u5++67ewPtAAAAAAAAAByZxnWAPUluuOGGLFq0KIVCIa973ety1VVXZcmSJSkUCvniF7+YVatWJUnmzp2bZcuWjfG0AAAAjEetra2ZP3/+oOubm5tTV1d3CCcaX/a8S9m1117bG17fo7i4OB/84AfzO7/zOwLsAAAAAAAAABPAuA+wv/KVr8yXvvSlNDY25plnnslVV121T83cuXNzxx13ZPr06WMwIQAAAONdTU1Nmpub+6y1tLSksbExq1evTm1t7T71AAAwXPt7J6A97zq75/PevBMQAAAAADAejPsAe5Kcd955+clPfpIbbrghd9xxRzZv3pwpU6Zkzpw5ufjii/Nnf/ZnvmELAADAQauoqOj3RPXa2lqnrR/A4sWL8+EPfzgf/OAHs3jx4j6nsHd3d+eaa67prQMA4H8M9E5AjY2N+6x5JyAAAAAAYDw4IgLsSfLiF784119/fa6//voh7Vu8eHF6enqG9ey2trZh7QcAAIAj2eLFi3PiiSfme9/7Xs4///xcddVVmTdvXjZs2JDrrrsu9957b0488UQBdgA4TDj1+/Cxv3cCKhQKaWtrS3V1dcrLy/epBwAAAAA43B0xAXYAAAAYKZs2bUp7e/uANQOFuPZWWVmZqqqqEZttPCopKck///M/Z+nSpfn2t7+d22+/vfdeRUVFioqK8s///M8pKSkZwykBgD2c+n346O+dgBYtWjQG0wAAAAAAjAwBdgAAANjLpk2bcmrNqdlZ2Dmo+v2FuPZWVl6WB1sfnPAh9oaGhqxZsybLli3r805mJ510Uj72sY+loaFh7IYDAPpw6jcAAAAAAIeSADsAAADspb29PTsLOzPrilkpnVnab133ru7sbt+dyZWTUzyleL81nY93ZvOqzWlvb5/wAfbk+RD7+eefn6ampmzZsiUzZsxIfX29k9cB4DDj1G8AAAAAAA4lAXYAAADYj9KZpSmvLh+4aO7ozHIkKSkpyeLFi8d6DAAAAAAAAADGyP6PiAMAAAAAAAAAAAAAgBHmBHYAAAAAAAAAoFdHR0daW1v7rBUKhbS1taW6ujrl5X3fta6mpiYVFRWjOSIAAADjmAA7AAAAAAAAANCrtbU18+fPH3R9c3Nz6urqDuFEAAAAHEkE2AEAAAAAAACAXjU1NWlubu6z1tLSksbGxqxevTq1tbX71AMAAMBgCbADAAAAAAAAAL0qKir6PVG9trbWaesAAAAMS/FYDwAAAAAAAAAAAAAAwMQgwA4AAAAAAAAAAAAAwKiYNNYDAAAAwOGkUCgkSTof7xx2rz099vQEAAAAAAAAgIlOgB0AAAD20tbWliTZvGrziPZctGjRiPUbTzo6OtLa2tpnrVAopK2tLdXV1SkvL+9zr6amJhUVFaM5IgAAAAAAAACjSIAdAAAA9lJdXZ0kmXXFrJTOLB1Wr87HO7N51ebenhPBpk2b0t7e3vt1S0tLGhsbB71/9erVqa2t7f26srIyVVVVIzojAAAAAAAARz4HLcHhS4AdAAAA9rLnG1WlM0tTXl1+gOqh9TzSbdq0KbU1p6ajsPOge7ww7F5RXpaW1geF2AEAAAAAABiS1tbWzJ8/f9D1zc3NqaurO4QTAXsIsAMAAAAjor29PR2FnVl9YXlqTyjut67wXE/anupO9THFKZ9U1G9dy6+603hbIe3t7QLsAAAAAAAADElNTU2am5v7rO159+AXvivwnnpgdAiwAwAAACOq9oTi1M0oGbBm0cmjNAwAAAAAAAATUkVFRb8nqtfW1jptHcZQ/8ehAQAAAAAAAAAAAADACHICOwAAAOxH5+Odvdfdu7qzu333oPdOrpyc4inFfXpMBIVCIUnS0t41Iv329NnTFwAAAAAAAIDxT4AdAAAA9lJZWZmy8rJsXrV5RPqVlZelsrJyRHod7tra2pIkjWt3jnjfRYsWjWhPAAAAAAAAAMaGADsAAADspaqqKg+2Ppj29vbetUKh0BvOHozq6uqUl5cneT4QX1VVNdJjHpaqq6uTJKsbylJbWTLsfi3tXWlcu7O3b5J0dHSktbW1b11LS5/Pe6upqUlFRcWwZwEAAAAAAABgZAiwAwAAwAtUVVXtEzp3AviB7Qnt11aWpG7G8APsL+ybJK2trZk/f/5+6xobG/dZa25uTl1d3YjNAgAAAAAAAMDwCLADAAAAI6rlV90D3i8815O2p7pTfUxxyicVDalPTU1Nmpub+/b7fyfk733y/d71AAAAAAAAABw+BNgBAACAEVFZWZmK8rI03lYYsZ4V5WWprKz8n68rKvZ7oroT8gEAAAAAAADGBwF2AAAAYERUVVWlpfXBtLe3D1jX0tKSxsbGrF69OrW1tQPWVlZWpqqqaiTHBAAAAAAAAGAMCbADAAAAI6aqqmrQgfPa2tr9nqYOAAAAAAAAwJGreKwHAAAAAAAAAAAAAABgYhBgBwAAAAAAAAAAAABgVEwa6wEAAAAAAAAAgLGzadOmtLe3D1jT0tLS5/NAKisrU1VVNSKzAQAAcOQRYAcAAAAAAACACWrTpk05tebU7CzsHFR9Y2PjAWvKysvyYOuDQuwAAADs14gG2Lu7u/Ozn/0s//3f/53t27enq6vrgHve8pa3jOQIAAAAAAAAAMAgtbe3Z2dhZ2ZdMSulM0v7reve1Z3d7bszuXJyiqcU91vX+XhnNq/anPb2dgF2AAAA9mtEAuyFQiEf/vCH89nPfjZbt24d9L6ioiIBdgAAAAAAAAAYY6UzS1NeXT5w0dzRmQUAAIAj27AD7IVCIeecc05+8IMfpKenZyRmAgAAAAAAAAAAAADgCDTsAPvHP/7xfP/730+SzJs3L3/2Z3+W+fPn57jjjktxcf9vGwYAAAAc+To6OtLa2tpnraWlpc/nvdXU1KSiomJUZgMAAAAAAABg9A07wP6lL30pSbJw4cJ85zvfyZQpU4Y9FAAAAHBkaG1tzfz58/d7r7GxcZ+15ubm1NXVHeqxAAAAAAAAABgjww6w//znP09RUVHe9773Ca8DAAAAfdTU1KS5ubnPWqFQSFtbW6qrq1NeXr5PPQAAAAAAAABHrmEH2KdMmZJCoZCqqqqRmAcAAAA4glRUVPQ5Ub2rqytNTU0pLi7O7t27s2DBgpSUlIzhhAAAAAAAAACMpuLhNthzMtovf/nLYQ8DAAAAHLnWrl2bOXPmZMmSJbnkkkuyZMmSzJkzJ2vXrh3r0QAAAAAAAAAYJcMOsF9++eXp6enJl7/85ZGYBwAAADgCrV27NkuXLs3pp5+e9evXZ/v27Vm/fn1OP/30LF26VIgdAAAAAAAAYIIYdoD9He94R84555zcfPPNufXWW0diJgAAAOAI0tXVlWXLluXcc8/NunXrsmDBgkybNi0LFizIunXrcu655+a9731vurq6xnpUAAAAAAAAAA6xSYMt3LRpU7/3PvnJT+Yd73hHGhsbc9ttt+WSSy5JTU1NKioqDti3qqpqsCMAAAAA41BTU1Pa2tpy6623pri478/SFxcXZ/ny5Vm4cGGampqyePHisRkSAAAAAAAAgFEx6AD77NmzD1jT09OTr3zlK/nKV74yqJ5FRUV57rnnBjsCAAAAMA5t2bIlSTJv3rz93t+zvqcOAAAAAAAAgCNX8YFLntfT03PAj8HWvXAPAAAAcOSaMWNGkmTDhg37vb9nfU8dAAAAAAAAAEeuQZ/AfuONNx7KOQAAAIAjVH19faqrq3Pddddl3bp1KS7+n5+n7+7uzooVKzJ79uzU19eP4ZQAAAAAAACMZ5s2bUp7e/uANS0tLX0+D6SysjJVVVUjMhvQ16AD7JdddtmhnAMAAADGja6urjQ1NWXLli2ZMWNG6uvrU1JSMtZjHbZKSkqycuXKLF26NBdccEGWL1+eefPmZcOGDVmxYkVuv/32rFmzxq8hAAAAAAAAB2XTpk05tebU7CzsHFR9Y2PjAWvKysvyYOuDQuxwCAw6wA4AAAAka9euzbJly9LW1ta7Vl1dnZUrV6ahoWHsBjvMNTQ0ZM2aNVm2bFkWLlzYuz579uysWbPGrx0AAAAAAAAHrb29PTsLOzPrilkpnVnab133ru7sbt+dyZWTUzyluN+6zsc7s3nV5rS3twuwwyEw7AD7hz70oSTJu971rlRWVg5qz7Zt2/LJT34ySXL11VcPdwQAAAAYFWvXrs3SpUtz7rnn5tZbb+09Rfy6667L0qVLBbEPoKGhIeeff77T6wEAAAAAADgkSmeWpry6fOCiuaMzC9C/YQfYr7nmmhQVFWXp0qWDDrD/+te/7t0nwA4AAMB40NXVlWXLluXcc8/NunXrUlz8/IkMCxYsyLp163LBBRfkve99b84//3yB7AGUlJRk8eLFYz0GAAAA8P8UCoUkz58wORL29NnTFwAAAF5o2AF2AAAAmAiamprS1taWW2+9tTe8vkdxcXGWL1+ehQsXpqmpSUAbAAAAGDfa2tqSJJtXbR7xvosWLRrRngAAABwZxiTAvnv37iTJ5MmTx+LxAAAAMGRbtmxJksybN2+/9/es76kDAAAAGA+qq6uTJLOumJXSmaXD7tf5eGc2r9rc2xcAAABeaEwC7D/+8Y+TJCeccMJYPB4AAACGbMaMGUmSDRs2ZMGCBfvc37BhQ586AAAAgPGgvLw8SVI6szTl1eUj3hcAAABeaMgB9ptvvnm/61/96ldz//33D7i3s7MzP//5z/Mv//IvKSoqyhlnnDHUxwMAAMCYqK+vT3V1da677rqsW7cuxcXFvfe6u7uzYsWKzJ49O/X19WM4JQAAAAAAAAAc3oYcYL/88stTVFTUZ62npyd//dd/PegePT09KS4uzpVXXjnUxwMAAMCYKCkpycqVK7N06dJccMEFWb58eebNm5cNGzZkxYoVuf3227NmzZqUlJSM9agAAMBhrqOjI62trX3WCoVC2traUl1dvc+pxTU1NamoqBjNEQEAAADgkBlygD15PoA+mLX9mTJlSs4444wsX748Z5999sE8HgAAAMZEQ0ND1qxZk2XLlmXhwoW967Nnz86aNWvS0NAwhtMBAADjRWtra+bPnz/o+ubm5tTV1R3CiQAAAABg9Aw5wP7II4/0Xvf09OQlL3lJioqK8s1vfjOnnHJKv/uKiopSVlaW448/3ml0AAAAjFsNDQ05//zz09TUlC1btmTGjBmpr6/3d10AAGDQampq0tzc3GetpaUljY2NWb16dWpra/epBwAAAIAjxZAD7C9+8Yv3uz5z5sx+7wEAAMCRpKSkJIsXLx7rMQAAgHGqoqKi3xPVa2trnbYOAAAAwBFtyAH2F+ru7h6JOQAAAAAAAAAAAAAAOMIVj/UAAAAAAAAAAAAAAABMDMM+gR0AAAAONx0dHWltbe2zVigU0tbWlurq6pSXl/e5V1NTk4qKitEcEQAAAAAAAAAmpEEH2M8555wRf3hRUVG+/e1vj3hfAAAAJrbW1tbMnz9/0PXNzc2pq6s7hBMBAAAAAAAAAMkQAux33313ioqK0tPT029NUVFRn6/31A52HQAAAEZCTU1Nmpub+6y1tLSksbExq1evTm1t7T71AAAAAAAAAMChN+gA+2te85oBA+ePP/54HnrooSTPB9Orq6tz0kknJUmeeOKJtLW1paenJ0VFRTnllFMyc+bMYY4OAAAA+1dRUdHvieq1tbVOWwcAAAAAAACAMTKkE9j7841vfCOXXnppjjrqqHzgAx/IW9/61lRWVvapaW9vz4033pjrrrsuv/rVr/KJT3wiv/d7v3fQgwMAAAAAAAAAADB2Ojo60tra2metUCikra0t1dXVKS8v73OvpqYmFRUVozkiAHAYGnSAvT8bN27MH/7hH2bSpEm5995789KXvnS/dZWVlfnLv/zLvOENb8iiRYvyxje+Mffff3/mzp073BEAAABgVHV1daWpqSlbtmzJjBkzUl9fn5KSkrEeCwAAAAAARlVra2vmz58/6Prm5mbvkgocEoVCIUnS+XjniPTb02dPX2BkDTvAvnLlyuzYsSMf+chH+g2v7+20007L+973vnzgAx/Ixz72saxatWq4IwAAAMCoWbt2bZYtW5a2trbeterq6qxcuTINDQ1jNxgAAAAAAIyympqaNDc391lraWlJY2NjVq9endra2n3qAQ6FPf92t3nV5hHvu2jRohHtCYxAgP0//uM/UlRUlHPOOWfQe5YsWZIk+T//5/8M9/EAAAAwatauXZulS5fm3HPPza233pp58+Zlw4YNue6667J06dKsWbNGiB0A+P/Zu//oxu76zv8vS+OxpPwaNhpAw0RcN2lGaj3fLTYBY0fBabvpspjaEYaeUp3QbvfklO0PvsXTnnW6WcKhHe8WTA/s7ul2gG84Pd4O3TqO2U5YWspJghKG0igtrfZITkgjFGcMmUszM0l07fFY/v4xlRmNZVm2r6WPpOfjnDly7v34o4/9ytW1rt738wEAAAAAoG0EAoFNZ1SPRqPMtg6gbizLkiQdvvewug517bq/5TPLWjixsN4vAHftuoB9cXFx29/T0dEhSfre976326cHAAAAgJZUKBSUzWbLtjmOo1wuJ8uy5Pf7y/ZFIhEFAoF6DrHtrK6uanx8XMPDw5qbm5PH45Ek9ff3a25uTqOjozp27JhGRkbk9XobPFoAAAAAAAAAAACgfZQ+P+061CW/5d+i9fb7BeCuXRewHzhwQC+99JIef/xxvf3tb6/pex577DFJ0g033LDbpwcAAACAlpTNZtXX11dz+1QqxSwmeyyZTCqXy+nkyZPrxeslHo9HExMTGhgYUDKZ1NDQUGMGCQAAAAAAAAAAAACA4XZdwB6LxTQzM6P//J//s0ZHR3XrrbdWbf/MM8/ov/yX/6KOjg7dfvvtu316AAAAAGhJkUhEqVSqbFsmk1EikdD09LSi0eiG9thbpRXIenp6Ku4vbd/JSmUAAAAAAAC7wWp+AAAAAIBmsusC9o985COanZ3V+fPn1d/fr//0n/6T7rnnHv2Lf/Evytq9/PLL+uM//mN9/OMf17lz5+TxeDQ+Pr7bpwcAAACAlhQIBDadUT0ajTLbegOEQiFJUjqdVn9//4b96XS6rB0AAAAAAEC9sJofAAAAAKCZ7LqAvb+/X5/4xCc0Pj6u8+fPa3x8XMeOHVN3d7de//rXq6OjQ9///vf1/PPPa21tTWtra5Kk3//936/4gT8AAAAAACaKxWKyLEvHjx/X3NycPB7P+r5isajJyUl1d3crFos1cJQAAAAAAKAdsZofAAAAAKCZ7LqAXZJ+8zd/U5Zl6dd//dd15swZra2t6bnnntM//uM/StJ60bp0eSa6//pf/6vi8bgbTw0AAAAAQF14vV5NTU1pbGxMo6OjmpiYUE9Pj9LptCYnJ3Xq1CnNzMzI6/U2eqgAAAAAAKDNsJofAAAAAKCZuFLALkl33323hoeH9aUvfUl/9Vd/pX/4h3/QP/3TP0mSXve61+no0aP66Z/+aY2Ojqqzs9OtpwUAAAAAoG7i8bhmZmY0Pj6ugYGB9e3d3d2amZnhZm0AAAAAAAAAAAAAALbgWgG7JHV2dmpsbExjY2NudgsAAAAAgDHi8bhGRkaUTCa1uLioUCikWCzGzOsAAAAAAAAAAAAAANTA1QJ2AAAAAADagdfr1dDQUKOHAQAAAAAAgBZXKBSUzWbLtjmOo1wuJ8uy5Pf7y/ZFIhEFAoF6DhEAAAAAto0CdgAAAABA08vn87Jtu2qbTCZT9lhNMBhUOBx2ZWwAAAAAAADATmWzWfX19dXcPpVKqbe3dw9HBAAAAAC7RwE7AAAAAKCp5fN5RSNHVHCWamqfSCS2bBPw+5TJzlPEDgAAAAAAgIaKRCJKpVJl2zKZjBKJhKanpxWNRje0BwAAAADT1VzA7vV6JUkdHR26dOnShu07cXVfAAAAAABs1wsvvKCCs6SP39ml7td1bNpu+ZJ05pWiDl3nUVeVd8PPv7ym+x9d0gsvvEABOwAAAAAAABoqEAhsOqN6NBpltnUAAICrLJ9Zrrq/eLGoFXtFncFOefZ7dtwPgN2puYB9bW1tW9sBAAAAAKiHXC4nSbr/UXcvIuVyOQ0ODrraJwAAAAAAAAAAAAD3BYNB+fw+LZxYcK1Pn9+nYDDoWn8AfqjmAvaPfvSj29oOAAAAAEA9WJYlSZqO+xQN7nyVsJKMvarE7NJ6vwAAAAAAAAAAAADMFg6HNZ+dl23bVdtlMhklEglNT08rGo1WbRsMBlmxGdgjFLADAAAAAJqa3++XJEWDXvWGdl/AfnW/AAAAAAAApsnn8zUV5lz5uFU7AAAAoNmFw+GaC86j0ah6e3v3eEQANlNzAbsk/dEf/ZHuuOOOLe86AQAAAAAAAAAAAAAA7svn84pGjqjgLNXUPpFI7PGIAAAAAADYnm0VsH/oQx9SR0eHgsGgbr/9dt1xxx2644479BM/8RPq6OjYqzECAAAAAAAAAAAAAABJtm2r4Cxp+m6/ogc9m7ZzLq0pd64o64BH/n2bf57/5Wcv6f5Hl/diqAAAAAAAVLStAnZJWltb09mzZzU3N6e5uTlJ0vXXX6+BgYH1gvbbbrtN+/Ztu2sAAAAAhlldXVUymdTi4qJCoZBisZi8Xm+jhwUAAAAAAAC0vehBj3pD1a/VDd60dT8Ze9WlEQEAAAAAUJttVZl/4QtfUDKZVDKZ1DPPPLO+/fz58/rKV76ir3zlK5Ikn8+nt7/97esF7e94xzvk9/vdHTkAAACAPTU7O6vx8XHlcrn1bZZlaWpqSvF4vHEDAwAAAAAAAAAAAAAAQNPaVgH7Pffco3vuuUeSdPbs2fVi9mQyqW9/+9taXb18Z7bjOHr88cf1+OOPS5I6OzvV29u7XtB+++236/rrr3f5R0GjMCunOcjCLORhDrIwB1mYgyzMYWoWs7OzGhsb0/DwsE6ePKmenh6l02kdP35cY2NjmpmZackidlPzaEdkYQ6yMAdZmIU8zEEW5iALc5CFOcjCLORhDrIwB1mYgyzMQRZmIQ9zkIU5yMIcZGEOsjALeQCoxbYK2K908OBBxePx9aKVV199Vd/4xjfWC9q/9a1vaWlpSZJ08eJF/fVf/7X++q//Wp/4xCfk8Xh09OhRvfOd79Qf/MEfuPOToCGYldMcZGEW8jAHWZiDLMxBFuYwNYvV1VWNj49reHhYc3Nz8ng8kqT+/n7Nzc1pdHRUx44d08jISEtdaGh0Hvl8XrZtV22TyWTKHqsJBoMKh8OujK3eGp0FfogszEEWZiEPc5CFOcjCHGRhDrIwC3mYgyzMQRbmIAtzkIVZyMMcZGEOsjAHWZiDLMxCHgBq5XGro2uvvVZ33XWXPv7xj+uxxx7T+fPn9cQTT2hyclLvete7dP3112ttbU1ra2taXV3V3/3d3+kzn/mMW0+PBijNynn06FGdPn1ar7zyik6fPq2jR49qbGxMs7OzjR5i2yALs5CHOcjCHGRhDrIwh8lZJJNJ5XI53XfffevF6yUej0cTExN6/vnnlUwmGzRC9zU6j3w+ryORI+rr66v6L5FISJISicSWbY9Ejiifz+/puPdCo7PAD5GFOcjCLORhDrIwB1mYgyzMQRZmIQ9zkIU5yMIcJmWxfGZZTs7Z9N9rz7ymc984p9eeea1qu+Uzy3Ubs5tMygLkYRKyMAdZmIMszEEWZiEPANvRsba2tlaPJ7p48aK+8IUv6Pd///f1/PPPa21tTR0dHVpdXa3H0xvtwoULuuGGG3T+/Hldf/31jR5OTVZXV3XLLbfo6NGjZbNySlKxWNTo6KjS6bSeffbZlpqVc7sOHz6sF198UW9605u0sLCwJ89BFmYhD3OQhTnIwhxkYQ7Tszh58qQ+8IEP6JVXXtG11167Yf8rr7yi66+/Xn/yJ3+in//5n6/7+NxmQh5PP/20+vr6dPjew+o61LVpu+LFolbsFXUGO+XZv/n9yMtnlrVwYkGpVEq9vb17MeQ9sdMsSr+/6bv9ih7c/PfiXFpT7lxR1gGP/Ps6Nm2XOVtU4mGn6X5/bjLhuMBlZFGberz/lsjDJGRhDrIwB1nUhmu27aeZ8ii9t2nV9yLNlEWrI4utmf4eY/314t5r1BvafUaPPLui4ZOO5GLlgM/v03x2vmlWCGy244Jzhll5tDKy2Jrp54xGaeXXqWbLopWRhVmaKY9WeY1qxrpT4Er79qrj5eVlffOb39TXv/51JZNJffOb39Rrr70mSapTzTz2UGlWzpMnT246K+fAwICSyaSGhoYaM8g2QRZmIQ9zkIU5yMIcZGEO07MIhUKSpHQ6rf7+/g370+l0WbtmZ1IeXYe65Lf81RvduqdDaKidZhEMBhXw+5R42HFtLAG/T8Fg0LX+mo1Jx0W7IwuzkIc5yMIcZGEOsjAHWZiFPMxBFuYgC3OYkkXoWo+0Jk1PTysajW7aLpPJKJFIbNlOuny9plmK1yVzssBl5GEOsjAHWZiDLMxBFmYhDwDb5VoB+/nz5/Xkk08qmUzq61//ulKplFZWViT9sGDd6/Xq6NGjuv3223X77bcrFou59fSos8XFRUlST09Pxf2l7aV22DtkYRbyMAdZmIMszEEW5jA9i1gsJsuydPz48Yp3x09OTqq7u7tl/p43PY92stMswuGwMtl52bZdtf9W/pDVbRwX5iALs5CHOcjCHGRhDrIwB1mYhTzMQRbmIAtzmJZFNBqtaQbKWts1E9OyaHfkYQ6yMAdZmIMszEEWZiEPANu1+drqW/je976nP/uzP9Nv/MZv6Cd+4id044036j3veY9+//d/X6dPn9bFixfl9/v1zne+U//xP/5HfeUrX9E//dM/6emnn9ZnPvMZvf/972+ZGRvb0ZWzclbSarNymowszEIe5iALc5CFOcjCHKZn4fV6NTU1pVOnTml0dFSnT5/WK6+8otOnT2t0dFSnTp3SJz/5yYYv7eYW0/NoJ7vJIhwOq7e3t+q/UtF66UPWav/auXhd4rgwCVmYhTzMQRbmIAtzkIU5yMIs5GEOsjAHWZiDLMxBFmYhD3OQhTnIwhxkYQ6yMAt5ANiujrXS9Og1+MIXvqBkMqlkMqnnnntufXupi2AwqMHBwfXZ1Xt7e7Vvn2uTvLesCxcu6IYbbtD58+d1/fXXN3o4NVldXdUtt9yio0ePVpyVc3R0VOl0Ws8++2zLFDbtxOHDh/Xiiy/qTW96kxYWFvbkOcjCLORhDrIwB1mYgyzM0SxZzM7Oanx8XLlcbn1bd3e3PvnJTyoejzdsXG4zIY+nn35afX19uvmBm+W3/Lvuz8k5eu6B55RKpZpqNqy9zqL0e26230sjmHBc4DKyqE093n9L5GESsjAHWZiDLGrDNdv200x5tPp7lmbKotWRxdZMf4+x/npx7zXqDe0+o6cXV9V34rUtX39a+XWq2Y6LVs5Car48WhlZbM30c0ajtPLrVLNl0crIwizNlEervEY1Y90pcKVtzcD+b//tv9UXvvAFfec739Ha2pp+5Ed+RPfcc48++9nPKpPJ6KWXXtLDDz+s8fFxve1tb6N4vYW126ycJiMLs5CHOcjCHGRhDrIwR7NkEY/H9Z3vfEePPvqo/uRP/kSPPvqonn322ZYqXpeaJ492QBbmIAtzkIVZyMMcZGEOsjAHWZiDLMxCHuYgC3OQhTnIwhxkYRbyMAdZmIMszEEW5iALs5iaR6FQ0NNPP132L5PJSJIymcyGfYVCoa7jA9ra2jZ0dHSseTyetc7OzrUPfOADa7Ozs2svvfTSdrpABefPn1+TtHb+/PlGD2XbHnrooTXLstYkrf/r7u5ee+ihhxo9NCO86U1vWpO09qY3vWnPn4sszEIe5iALc5CFOcjCHGRhlkbmkUql1iSt3fzAzWs9X+jZ9b+bH7h5TdJaKpXa87Hvhb3KovR7btbfSyPwOmUOsqiunu+/19bIwyRkYQ6yMAdZVMc12/bVDHm0y3uWZsiiXZDF5kx/j7H+enHvNWtrH71+1/9S915T0+tPO7xONctx0Q5ZrK01Tx7tgCw2Z/o5o1Ha4XWqWbJoB2RhFtPyKL0e1fqvmV63mrnuFFhbW1vrWFtbW6tc2r7RjTfeqJdfflmS1NHRsb79R3/0R3X77bcrFovp9ttv180331xrl1DzL+WwurqqZDKpxcVFhUIhxWIx7lz7Z/VaKqqELMxCHuYgC3OQhTnIwhxkYZZG5VFapu7mB26W3/Lvuj8n5+i5B55r6mXv9iKLVlkOsN54nTIHWWyu3u+/JfIwCVmYgyzMQRab45ptezM9j3Z6z2J6Fu2ELCoz/T3G+uvFvdeoN7T7vJ5eXFXfide2fP1pl9epZjgu2iULqTnyaBdkUZnp54xGaZfXqWbIol2QhVlMyqNQKCibzZZtcxxHuVxOlmXJ7y//bDYSiSgQCNRziDvW7HWnwL7tNP7BD36g//t//6+SyaS+/vWvK5lM6sUXX9QzzzyjZ555Rg8++KAk6Q1veINuv/329X9vectbygre0Vq8Xq+GhoYaPQyILExDHuYgC3OQhTnIwhxkYRbyMAdZmIMszEEWZiEPc5CFOcjCHGRhDrIwC3mYgyzMQRbm2E4WjuNIkjL2qivPXeqn1G+747gwC3mYgyzMQRbmIAtzkIVZdpOH2wXngUCg4o00g4ODOxofAPdsq4Bdkn78x39cP/7jP65f+ZVfkSTlcrn1YvZkMqlnnnlG3/ve9zQzM6OHHnpIknTttdeqv79/fZb2/v5++Xw+d38SAAAAAAAAAAAAAABaXC6XkyQlZpdc75dCHgAAADRSNptVX19fze1bfaUHoJVtu4D9apZlybIs3XPPPZKks2fPlhW0f/vb39Yrr7yir371q/qrv/qry0+6b5/e8pa3KBaL6ROf+MRuhwAAAAAARtjOjADNtPwcAAAAAAAAzGFZliRpOu5TNOjddX8Ze1WJ2aX1ftFY+Xxetm1XbZPJZMoeqwkGgwqHw66MDQAAYK9FIhGlUqmybZlMRolEQtPT04pGoxvaA2hOuy5gv9rBgwf13ve+V+9973slSa+88oqefPJJJZNJff3rX9dTTz2l5eVlfetb39Lf/M3fUMAOAAAAoGVsZ0YAZgMAAAAAAADATpQmSYgGveoN7b6A/ep+0Tj5fF5HIke05NQ2u34ikdiyjc/v03x2niJ2AADQFAKBwKafoUajUT5fBVqI6wXsV7vuuuv0Iz/yI3rxxRf1wgsvKJfL6cyZM1pbW9vrpwYAAACAutrOjADMBrC3Ks2GX21mKmbEBwAAAAAAQKPZtq0lZ0mH7z2srkNdm7YrXixqxV5RZ7BTnv2eTdstn1nWwokF2bZNATsA17BSBAAAcIPrBexra2v6u7/7OyWTyfV/Z8+e3dAGAAAAAFoNMwKYo9ps+JVmpmJGfAAAAAAAAJii61CX/NYWM+LfWp+xAMCVWCkCAAC4ZdcF7CsrK/rrv/7r9WL1b3zjG3rllVfW919drH7zzTcrFovpjjvu0B133LHbpwcAAAAAYINKs+E7jqNcLifLsjYsic2M+AAAAAD2ErNUAgAAoBWwUgQAAHDLtgvYX331VX3jG9/Q17/+dSWTSf3N3/yNlpeX1/dfWbDe0dGhnp4e3XHHHetF66FQyJ2RAwAAAACwic1mwx8cHGzAaAAAAAC0M2apBAAAQKthpQgAALBb2ypgf+tb36pvf/vbKhaL69uuLFjft2+f3vKWt6wXrMdiMb3uda9zb7QAAAAAAAAAAOzA6uqqksmkFhcXFQqFFIvF5PV6Gz0sAG2AWSoBAAAAAACActsqYH/66afL/tvn8+ltb3ub7rjjDt1xxx16xzveoWuuucbVAQIAAAAAAAAAsBuzs7MaHx9XLpdb32ZZlqamphSPxxs3MABthVkqAQAAAAAAgMu2VcB+7bXXanBwcL1g/bbbbtP+/fv3amwAAAAAAAAAAOzK7OysxsbGNDw8rJMnT6qnp0fpdFrHjx/X2NiYZmZmKGIHAAAAALSNQqGgbDZbts1xHOVyOVmWJb+//KbLSCSiQCBQzyECAIA2sK0C9nPnzsnj2XzJQgAAAAAAAAAATLG6uqrx8XENDw9rbm5u/fp2f3+/5ubmNDo6qmPHjmlkZERer7fBowUAAAAAYO9ls1n19fXV3D6VSqm3t3cPRwQAANrRtgrYKV4HAAAAAAAAADSLZDKpXC6nkydPbri+7fF4NDExoYGBASWTSQ0NDTVmkAAAAAAA1FEkElEqlSrblslklEgkND09rWg0uqE9AACA27ZVwA4AAAAAAAAAQLNYXFyUJPX09FTcX9peagcAAAAAQKsLBAKbzqgejUaZbR1AXeXzedm2XbVNJpMpe6wmGAwqHA67MjYAe4sCdgAAAABoMMdxJEnLZ5Zd6a/UT6lfAACAdhUKhSRJ6XRa/f39G/an0+mydgAAAAAAAADqI5/PKxo5ooKzVFP7RCKxZZuA36dMdp4idqAJUMAOAAAAAA2Wy+UkSQsnFlzvd3Bw0NU+AQAAmkksFpNlWTp+/Ljm5ubk8XjW9xWLRU1OTqq7u1uxWKyBowQAAAAAAADaj23bKjhLmr7br+hBz6btnEtryp0ryjrgkX9fx6btMmeLSjzsyLZtCtiBJkABOwAAAAA0mGVZkqTD9x5W16GuXfe3fGZZCycW1vsFAABoV16vV1NTUxobG9Po6KgmJibU09OjdDqtyclJnTp1SjMzM/J6vY0eKgAAwLZlzhar7t9OoQ8AAADQKNGDHvWGql+fG7ypToMBUDcUsAMAAABAg/n9fklS16Eu+S2/6/0CAAC0s3g8rpmZGY2Pj2tgYGB9e3d3t2ZmZhSPxxs4OgAAgO0LBoMK+H1KPOy41mfA71MwGHStPwAAAAAAqqGAHS2nUCgom82WbXMcR7lcTpZlbSjiiUQiCgQC9RwiAAAAAAAAgDqKx+MaGRlRMpnU4uKiQqGQYrEYM68DAICmFA6HlcnOy7btqu0ymYwSiYSmp6cVjUartg0GgwqHw24OEwAAAACATVHAjm0zvUA8m82qr6+v5vapVEq9vb17OKK9Y3oW7YY8zEEW5iALc5CFWa7Ogywah2PDHGRhDrIwB1mYZTt5kMXe4tgwR7Nl4fV6NTQ01LDn30vNlkUrIwuzcP42B8eGOcjCHLvNIhwO11xwHo1Gm/bz0HrguDALeZiDLMxBFuYgC3OQhVnIA8BOUMCObTO9QDwSiSiVSpVtqza7QCQSqdvY3GZ6Fu2GPMxBFuYgC3OQhVm2kwdZ7C2ODXOQhTnIwhxkYRbO3+bg2DAHWZiDLMxBFmbh/G0Ojg1zkIU5yMIcZGEW8jAHWZhjt1nk8/maVu248nGrdu2K48IcZGEW8gCwEy1RwP7d735Xn/nMZ/TII4/ohRdeUFdXl26++Wa9//3v16/+6q/u6m6dTCajr33ta/qbv/kb/cM//INeeukl2bYtr9erN7zhDbrtttv0gQ98QD/7sz+rjo4OF38qc5leIB4IBDY9wbXa7AKmZ9FuyMMcZGEOsjAHWZjl6jzIonE4NsxBFuYgC3OQhVm2kwdZ7C2ODXOQhTnIwhxkYRbO3+bg2DAHWZiDLMxBFmYhD3OQhTl2k0U+n1c0ckQFZ6mm50okEjW1Wz6zXFO7WvtxHMeV/vYax4U5yMIs5AFgJ5q+gP3P//zPlUgkdOHChfVthUJBTz31lJ566il97nOf0yOPPKJbbrllR/3/3u/9nv7n//yfFfc9//zzev755/W//tf/0jvf+U499NBDuvHGG3f0PM2knQrETUcWZiEPc5CFOcjCHGRhls3yIIv649gwB1mYgyzMQRZmIQ9zkIU5yMIcZGEOsjALeZiDLMxBFuYgC3OQhVnIwxxkYY7dZGHbtgrOkqbv9it60LNpO+fSmnLnirIOeOTft/kEnp97+qL+8KkVLZxYqP0HqEEul9Pg4KCrfe4FjgtzkIVZyAPATjR1Afvf/u3f6ud+7ufkOI6uvfZaTUxM6M4775TjOPriF7+oz372s3rmmWf07ne/W0899ZSuu+66bT/Hvn379Pa3v12Dg4M6evSo3vjGN+rgwYN6+eWXlc1m9Ud/9EdKp9N6/PHH9Z73vEdPPPGEPJ7N/+BrRm4uJSRJwWBQ4XDYlbG1o63yIIv64dgwB1mYgyzMQRZm4fxtDo4Nc5CFOcjCHGRhFjfzIIvd4dgwB1mYgyzMQRZm4fxtDo4Nc5CFOcjCHGRhFs7f5uDYMIebWZT2Rw961BvyVm07eNPWY3vrocs1UYfvPayuQ11bf8MWls8sa+HEgizL2nVfe4HjwhxkYRa38qglKwCtq6kL2D/84Q/LcRzt27dPf/mXf6l3vOMd6/t+8id/Uj/6oz+q3/7t39YzzzyjqakpPfDAA9t+js997nPat6/yr+mnf/qn9aEPfUjvf//7NTs7q9OnT+vUqVP62Z/92Z3+SMbJ5/M6EolqySnU1L6WpYR8/oDmsxn+CNiB7eRBFnuLY8McZGEOsjAHWZiF87c5ODbMQRbmIAtzkIVZ3M6DLHaOY8McZGEOsjAHWZiF87c5ODbMQRbmIAtzkIVZOH+bg2PDHHuRhZu6/nl29q5DXfJbftf69fvd68stHBfmIAuzmP46BaB5NG0B+7e+9S0lk0lJ0i//8i+XFa+XjI+P68EHH1Qmk9GnP/1p/c7v/I46Ozu39TybFa+XeL1e/dZv/ZZmZ2clSclksqUK2G3b1pJT0I3D4+q8cfNbLdcuXdSl89/XvhveoI59+zdtt/KDF/SDU1OybZs/AHagljzIoj44NsxBFuYgC3OQhVk4f5uDY8McZGEOsjAHWZjFzTzIYnc4NsxBFuYgC3OQhVk4f5uDY8McZGEOsjAHWZiF87c5ODbM4XYWzj8+pfPJ6b0YasvjuDAHWZjFzTx4jQLaW9MWsM/Nza1//Uu/9EsV23g8Ht1zzz2amJjQuXPn9Oijj+quu+5yfSzXXXfd+tdLS0uu92+CzhtvUtcbb6ne6PCP1Wcw2DoPsqgbjg1zkIU5yMIcZGEWzt/m4NgwB1mYgyzMQRZmIQ9zkIU5yMIcZGEOsjCLiXk4jiNJWj6z7Ep/pX5K/ZrKxCzaFVmYgyzMQRZmIQ9zkIU53Mpi5QcvuDSi9sVxYQ6yMIsbefAaBbS3pi1gf+KJJyRJ11xzjfr6+jZt9853vnP96yeffHJPCti/+MUvrn8diURc7x8AAAAAAAAAAADNKZfLSZIWTiy43u/g4KCrfQIAAAAAAAD10LQF7JlMRpJ0yy23aN++zX+MKwvKS9/jBtu29eyzz+pzn/ucHnzwQUlSMBjUL/zCL7j2HAAAAAAAAAAAAGhulmVJkg7fe1hdh7p23d/ymWUtnFhY7xcAAAAAAABoNk1ZwL60tCTbtiVJhw8frtr2da97na655hq99tpreuGF3S05MTQ0pMcff7zivmAwqIcfflgHDhzY1XMAAAAAAAAAAACgdfj9fklS16Eu+S2/6/0CgCQVCgVls9mybaUJ3ipN9BaJRBQIBOoyNgAAAAAArtaUBeyvvPLK+tfXXnvtlu1LBeyvvvrqnoznN37jN3T//fcrGAzW1H55eVnLy8vr/33hwoU9GRcAAACAvbfVSk/VPiistQ8AAAAAAACgmmw2q76+vor7EonEhm2pVEq9vb17PSwAAAAAACpqygL2paWl9a/379+/ZfuursvLMTqOs6vnffDBB/Xaa69pbW1N586d01NPPaU//MM/1H/7b/9N//iP/6jPfe5zesMb3rBlP5OTk/rYxz62q7EAAAAAaKzVV1+Wp6PyB4CV1NoOAAAAAAAA2K5IJKJUKlW2zXEc5XI5WZa1YdWGSCRSz+EBLaHSSgdbHWesdAAAAABU1pQF7D6fb/3rixcvbtm+NNv5bpdS7O7uLvvvWCymD33oQ3rf+96nU6dO6bbbbtM3vvENHT58uGo/ExMT+shHPrL+3xcuXNBNN920q7EBAAAAqK/i8qsqrknTd/sVPejZtJ1zaU25c0VZBzzy7+uo2ObLz17S/Y8uV9wHAAAAAAAAbCUQCFScUX1wcLABowFaU7WVDiphpQMAAKpbW12RJGXsVVf6K/Wz24mOAdRHUxawX3fddetfv/rqq1u2f+211yRJ1157retj8fl8evDBB/XmN79ZL7zwgn77t39bf/Inf1L1e7q6utZnhTdd6cV85QcvuNJfqR9OEjvjZh5ksTscG+YgC3OQhTnIwiycv83h9rFx6fz3JUnW6zrUG/JWbTu4xf2qbl2UaRa8TpmDLMxBFmbh/G0Ojg1zkIU5yMIcZGEWzt/m4NgwB1mYgyzMQRZmabbzd6WVDjKZjBKJhKanpxWNRje0bxYcG+bYq88ynEtrrvTXTjguzEEWZnEzj4vfe1aSlJhd2nVfV8rlctzICTSBpixg9/l8uvHGG/WDH/xACwsLVdu+/PLL6wXsezXLeTAY1ODgoL761a/qS1/6klZWVtTZ2bknz1VvuVxOkvSDU1Ou9+vWSSKfz8u27aptMplM2WM1wWBQ4XDYlbG5bS/y4IS9M81wbLQLsjAHWZiDLMzC+dsce3ZsnCtuWaCOcrxOmYMszEEWZuH8bQ6ODXOQhTnIwhxkYRbO3+bg2DAHWZiDLMxBFmZptvP3ZisdSFI0Gm3q2dY5NszBZxnm4LgwB1mYZS/y+Pid+/VvfnT39ZYZe1WJ2SVZlrX7QQHYc01ZwC5JP/ZjP6ZkMqnvfOc7unTpkvbtq/yjZLPZ9a+vvtvVTQcPHpQkFQoF2batUCi0Z89VT6UX8xuHx9V54+7/kl35wQv6wakp104S+XxeRyJHtOTUdhdWIpHYso3P79N8dt7IInY383A7i3Zj+rHRTsjCHGRhDrIwC+dvc7h9bDj/+JTOJ6dlHfDsuq+S5TPLVfcXLxa1Yq+oM9gpz/7Nn3erfhqN1ylzkIU5yMIsnL/NwbFhDrIwB1mYgyzMwvnbHBwb5iALc5CFOcjCLJy/zdFsx0ahUCirB5Iuzwicy+VkWZb8fn/ZvkgkokAgsCdjcVszfJbRLprtuGhlZGEWN/MovUbd2b1vyxWvt+Pq8wAAMzVtAfvtt9+uZDKp1157TalUSm9/+9srtnv88cfXv97LO6ZefPHF9a+vvfbaPXueeiu9mHfeeJO63niL6/3ulm3bWnKWdPjew+o61LVpu+0U+iycWJBt20YWsO9FHpywd8b0Y6OdkIU5yMIcZGEWzt/mcDuL0rJ4/n0du+7rgK9D6pAWTlRfYWo7fH6fgsGga/25idcpc5CFOcjCLJy/zcGxYY5mzKJVCxqaMYtWRRZm4fxtDo4Nc5CFOcjCHGRhFs7f5mi2YyObzaqvr6/m9qlUqmlmyDf5s4x202zHRSsjC7O4mQevUUB7a9oC9tHRUU1OTkqSHnzwwYoF7MViUX/8x38sSTpw4IDuvPPOPRnLwsKCTp8+LUl685vfrOuuu25Pngeb6zrUJb+1xR8Vt9ZnLAAAAM2sVYt8TBe61iOtSdPT01VXjspkMkokElu2k6RgMGjkTZkAAAD10soFDQAAAADQziKRiFKpVNm2atfPI5FIPYcHANimzNli1f3OpTXlzhVlHfBULXbfqh8AZmnaAva3ve1tisViSiaT+vznP68PfvCDesc73lHWZmpqSplMRpL04Q9/WJ2dnWX7H3vssfWi9g9+8IP6whe+ULb/mWee0cLCgn7yJ39y03GcP39eH/jAB3Tx4kVJ0j333LPbHw0AAABoGIp8Gisajdb0+6y1HQAAQDujoAEAAAAAWlMgENj0GjnXzwGgeXi6rpWnQ0o87LjWZ8DgVaoBlGvaAnZJ+vSnP63BwUE5jqO77rpL9913n+688045jqMvfvGLOnHihCTp1ltv1fj4+Lb7P3PmjH7qp35K//Jf/kuNjo6qr69Pb3zjG7Vv3z5973vf05NPPqnPf/7z+t73vidJ6unp0X/4D//B1Z8RAAAAqCeKfAAAANAqKGgAAADYuUorNZYmjys9XomVGgEAALBd3mtfpyKrVANtq6kL2N/ylrfoT//0T5VIJHThwgXdd999G9rceuuteuSRR3Tdddft+Hm+/e1v69vf/nbVNu9+97v14IMP8qYcAAAATY0iHwAAAAAA9sbymeWq+4sXi1qxV9QZ7JRnv2fH/QCAG6qt1JhIJDZsY6VGdzjO5dlH3XqtL/VT6hcAAMBErFINtKemLmCXpPe85z36+7//e33605/WI488ooWFBe3fv1+33HKL3ve+9+nXfu3XdlxUPjg4qL/4i7/QX/3VX+mpp57SwsKCvv/976tQKOj6669Xd3e3+vv79fM///MaHBx0+Sczy8oPXqi6f+3SRV06/33tu+EN6ti3f8f9oDbVfo9kUV8cG+YgC3OQhTnIwiycv83h1rFx6fz33R5a2+F1yhxkYQ6yMIsbeZCFOzg2zEEW5iALc5CFWUw8fweDQfn8Pi2cWHCtT18TLInOsWEOsjBHM2VRaaVGx3GUy+VkWZb8fv+G9s3E1CxyuZwkuXrOKPVrck2DiefvdmXqsdGO+CzDHBwX5mimLCqtZrPV31LNNnEu528Au9X0BeyS9OY3v1mf+tSn9KlPfWpb3zc0NKS1tbVN93d2duquu+7SXXfdtdshNq3LF1UD+sGpKdf69PkDxl9UNZXbeZDFznFsmIMszEEW5iALs3D+NsdeHBuSlLFXXeujXWZC4nXKHGRhDrIwC+dvc3BsmIMszEEW5iALs5h8/g6Hw5rPzsu27artWmVJdI4Nc5CFOZoxi81WajS5CLoWpmdhWZYk6fC9h9V1qGvX/S2fWdbCiYX1fk1j8vm73Zh+bLSTvfosA9vHcWGOZsyi2mo2lTTTajacvwG4pSUK2LF3Ll9UzRh7UbXdllCrJY9WucBtOtOPjXZCFuYgC3OQhVk4f5vD7WPjy1/+su6//34lZpdcG6PpMyG5hdcpc5CFOcjCLG7nQRY7x7FhDrIwB1mYgyzMYvr5OxwO19xfsy+JzrFhDrIwB1mYw/QsSrOxdh3qkt/yb9F6+/2axvTzdzsx/dhoJ25nUWqH7eO4MEczZlFpNZtq42um1Ww4fwNwCwXs2JLJF1XbcQm1WvNo9gvczcDkY6PdkIU5yMIcZGEWzt/mcPPYKN30OB33KRr07mpcGXtVidklY2dC2gu8TpmDLMxBFmYhD3OQhTnIwhxkYQ6yMAt5mIMszEEW5iALc5CFWcjDHGRhjr34LMON1WQl6fmXi5Kk4sWiK/2ZjuPCHM2WxWar2UhmjG+3mi0PAGaigB1Nrd2WUAMAAIA5SrMWRYNe9YZ2V8B+dZ8AAAAAAAAAAAC7VZoY0s3VZCVpxV6RbnW1SwAA0GYoYEdTa7cl1AAAAAAAAAAAAAAAAIBalCZwdGM1WUn68rMruv/Ri+oMdu66LwAA0N4oYAcAAAAAAAAAAAAAAACAFuP2arIZe1WS5Nnv2XVfAACgvVHADgAAAAAAAAAAAAAAAAAtKnO2WHW/c2lNuXNFWQc88u/r2LTd8y+vuT00AADQpihgBwAAAAAAAAAAAKooFArKZrNl2xzHUS6Xk2VZ6zNblkQiEQUCgXoOEQAAANggGAwq4Pcp8bDjar/LZ5ar7i9eLGrFXlFnsLPqbO1b9QMAAFoXBewAAAAAAAAAAABAFdlsVn19fTW3T6VS6u3t3cMRAQAAAFsLh8PKZOdl23bVdplMRolEQtPT04pGo5u2W1xc1HvH3quFEwuujdHn9ykYDLrWHwAAaA4UsAMAAAAAAAAAAABVRCIRpVKpsm3VinwikUg9hwcAAABsKhwOKxwO19Q2Go1ueSPmM/PPuFYQL12eJb7W8QEAgNZBATsAAADQxvL5fE0XGa98rIaLjAAAAACAVhQIBDYt5KmlyAcAAABoFW4XxAMAgPZEATsAAADQpvL5vI5EjmjJWaqpfSKR2LKNz+/TfHaeInYXFAoFZbPZsm3VbiaIRCIKBAJ1GRsAAAAAAAAAAAAAAMBOUcAOAAAAtCnbtrXkLOnwvYfVdahr03bFi0Wt2CvqDHbKs9+zabvlM8taOLEg27YpYHdBNptVX19fxX2VbiZIpVLMYgIAAAAAAAAAAAAAAIxHATu2jZkgzUEWZiEPc5CFOcjCHGRhlqvzaHQWXYe65Lf81RvduqdDaBiTj41IJKJUKlW2zXEc5XI5WZYlv9+/oX0zMzmLdkMW5iALs2wnD7LYWxwb5iALc5CFOcjCLJy/zcGxYQ6yMAdZmIMszEIe5iALc5CFOcjCHGRhFvIAsBMUsGPbmAnSHGRhFvIwB1mYgyzMQRZm2SwPsqg/k4+NQCBQ8bkGBwfr8vz1ZnIW7YYszEEWZtlOHmSxtzg2zEEW5iALc5CFWUw+f7fbh/scG+YgC3OQhTnIwizkYQ6yMAdZmMP0LCq9z9hqcqRmfZ9hehbtxs082u39MtDOKGDHtpk4E+TymeWq+4sXi1qxV9QZ7JRnv2fH/ZjGxCzaGXmYgyzMQRbmIAuzXJ0HWTQOx4Y5yMIcZGEOsjDLdvIgi73FsWEO07LI5/Oybbtqm2ofdl0tGAwqHA67Mra9ZloW7YwszGLy+bvdii04NsxBFuYgC3O4nUU7FQ/uBY4Nc5CFOcjCHKZnUe19RiXN/D7D9CzajZt5tNv7ZaCddaytra01ehDt7sKFC7rhhht0/vx5XX/99Y0eTlPJ5/M6EjmiJWfJtT59fp/ms/OufDh1+PBhvfjii3rTm96khYUFF0YHAADgnqefflp9fX26+YGb5bf8W3/DFpyco+ceeK5tLhKUfn+pe69Rb8i7u74WV9V34rW2+d0BgNt4/w3A9OuEMAfnDLhp/X3hDt7LUdwImI3zBXajdH6o1ZXnEa7ZNp/d/D0AdzUqi1Y5Z7j9++PYaIzNZq5OJBKanp5WNBot28f7jPriuKgN75drR90pmh0zsKPhdnPSCYfDms/O1zSz0mZ/jF2tmWZWAgAAAAAAACDZtq0lZ0mH7z2srkNdm7bbzkqNCycWZNs21woB7IlAIFCxYGFwcLABowEAuKnSDKRbFQ8CAOCGzd5nSFI0GqVoGk2B98tA+6CAHQ232+VrwuFwzR8i8ccYAADADzmOI+lycY4bSv2U+gUAAADqretQ19YzVd5an7EAAACgPVE8CAAAAABbo4AdDccd6AAAAI2Ry+UkSQsn3F3SMpfLtdUd8Jmzxar7nUtryp0ryjrgkX9fx476AAAAAAAAAAAAAK6Uz+dl23bVNplMpuyxmmAwyEp0AIC6oYAdDccd6AAAAI1hWZYk6fC9h9V1qGvX/S2fWdbCiYX1fltdMBhUwO9T4mF3ZpwP+H0KBoOu9AUAAAAA2B0KQQAAjbTVqpnFi0Wt2CvqDHbKs9+z434AAM0rn8/rSOSIlpylmtonEokt2/j8Ps1n53nvAgCoCwrYAQAAgDbl9/slSV2HuuS3/K732+rC4bAy2fmaCho2W13oShQzAAAAAIAZ8vm8opEjKrhYCBLw+5ShEAQAsIVgMCif3+fqqpk+Js4AgJZk27aWnKUtJ6razk1PCycWZNs271sAAHVBATsAAAAA7FA4HK75Ih6rCwEAAABAc7BtWwVnSdN3+xU9uHmBh3NpTblzRVkHPPLv69i0XeZsUYmHHQpBAABbCofDmndx0gyJiTMAwGSFQkHZbLZsm+M4yuVysixrw6RRkUhEgUCgbFtNE1Xd6spwAQBwFQXsAAAAAAAAAAAAwFWiBz3qDXmrthm8qU6DAQC0DSbNAID2kc1m1dfXV3P7VCrF6z4AoGVQwI66y+fzNd0xfuVjNdwxDgAAsDvLZ5ar7t/O0oIAAAAAAAAAAAAAthaJRJRKpcq2VVtlIxKJ1HN4AADsKQrYUVf5fF7RyBEVnKWa2icSiS3bBPw+ZbLzFLEDAABsUzAYlM/v08KJBdf69Pl9CgaDrvUHAAAAAAAAAAAAtKJAILDpjOqssgEAaHUUsKOubNtWwVnS9N1+RQ9uPnunc2lNuXNFWQc88u/r2LRd5mxRiYcd2bZNATsAAMA2hcNhzWfna1odZ7OZHq7G6jgAAAAAAAAAAADmKhQKymazZdsymUzZ45UikYgCgUBdxgYAANoHBexoiOhBj3pD3qptBm+q02AAAADaWDgcrrngnJketradi75c8AUAAAAAAAAAc+Xz+ZomgLnysRomgIEpstms+vr6Ku5LJBIbtqVSKT4fAgAArqOAHQAAAABcsp2LvlzwBQAAAAAAAJofRc6tKZ/P60jkiJacpZraVyr6vZrP79N8dp580XCRSESpVKpsm+M4yuVysixLfr9/Q3sAAAC3UcAOAAAAAC7ZzkVfLvgCAAAAAAAAzS2fzysaOaKCi0XOAb9PGYqcG862bS05Szp872F1HeratF3xYlEr9oo6g53y7Pds2m75zLIWTizItm2yRcMFAoGKE+wMDg42YDTYKcdxJF1+fXFDqZ9Sv9gebmgDgO2jgB0AAAAAXMJFXwAAAPesrq4qmUxqcXFRoVBIsVhMXq+30cMC0AZKBRsZe9WV/kr9UAgCAK3Htm0VnCVN3+1X9ODmxcvOpTXlzhVlHfDIv69j03aZs0UlHnYocjZI16Eu+S1/9Ua31mcsAHClXC4nSVo4seB6v3yutT2s2gEAO0MBO3aND5LMQRZmIQ9zkIU5yMIcpmVRKBSUzWbLtm21VGEgEKjnEPeMaVm0O/IwB1mYgyzMQRZmIQ9zkIU53MxidnZW4+Pj6x/GSpJlWZqamlI8HndpxK2L48IcZGGWWvMovfYkZmsrPqgVhSA/xLFhDrIwB1mYYydZRA961Buq3mbwJjdH2T44NsxBFuYgC3M0MgvLsiRpy5UialVaKaLUb7NpZBas2rERr1MAakEBO3Zlux8kMWvJ3uFDPbOQhznIwhxkYQ4Ts8hms+rr66u5fSqVqjjLdbMxMYt2Rh7mIAtzkIU5yMIs5GEOsjCHm1nMzs5qbGxMw8PDOnnypHp6epROp3X8+HGNjY1pZmaGfKvguDAHWZhlO3mUCjam4z5Fg7v/gD1jryoxu9S0hSBu49gwB1mYgyzMQRZmIQ9zkIU5yMIcjc6iNAFYTStF7KDfZtLoLEpYteMyU/IAYL7Nb+UBtlD6IOno0aM6ffq0XnnlFZ0+fVpHjx7V2NiYZmdnN3zPlbOW9J14bdf/SrOfXHnCa0c7yQJ7hzzMQRbmIAtzmJpFJBJRKpUq+zc9PS1Jmp6e3rAvEok0ZJxuMjWLdkUe5iALc5CFOcjCLORhDrIwh5tZrK6uanx8XMPDw5qbm1N/f7+uvfZa9ff3a25uTsPDwzp27JhWV92ZIKPVcFyYgyzMst08SgUb0aBXvaHd/ysVwTdjIYjbODbMQRbmIAtzkIVZyMMcZGEOsjAHWZiDLMxCHgC2o2NtbW2t0YNodxcuXNANN9yg8+fP6/rrr2/0cGqyurqqW265RUePHtXc3Jw8nh/eC1EsFjU6Oqp0Oq1nn322bPmPJ598Urfffrvrs5Y88cQTVZfdfPrpp9XX11f32VoPHz6sF198UW9605u0sLCwJ8+x0yywN8jDHGRhDrIwR7Nl0ajzdz24mUWhUFA2my3b5jiOcrmcLMva8OF4JBJRIBDY1nhbOQup+Y6NVkYW5iALc5BFberx/lsiD5OQhTnczuKxxx7TnXfeqdOnT6u/v3/D/tOnT2tgYECPPvqohoaG1reX/ma9+YGbXZl1zMk5eu6B55rqb2COi9pwzbb97CSP9ffB916j3tDuM3p6cVV9J15rqteUvcCxYQ6y2BrvMdrPTrNo1DmDa7Z7f2zwHuMyE7KoVSvXhUjNlYXU2q9Te51Frb87XqfMOS7I4jJT8mgnzVh3ClxpX6MHgOaUTCaVy+V08uTJspONJHk8Hk1MTGhgYEDJZLLsg6T1Aqq1jqr9O5fWlDtXlHXAI/++Km3/uZ92nrVkp1lgb5CHOcjCHGRhDrIwh5tZZLNZ9fX11fzcW13oqFQQn8lkyh6vtJOCeNNwbJiDLMxBFuYgC7OQhznIwhxuZ7G4uChJ6unpqbi/tL3UrsRxHEnS8pnl7f4IFZX6KfXbDDguzEEWZiEPc5CFOcjCHGRhjp1mUfp7MWO7s0JQqZ9m+jt0L3BsmIMszEEW5iALc5CFWcgDwHZRwI4d2ekHScFgUAG/T4mH3XvDHfD7FAwGXeuv2ew0C+wN8jAHWZiDLMxBFuZwM4tIJKJUKlW2LZPJKJFIaHp6WtFodEP7aqoVxCcSiQ3bmu3O/0o4NsxBFuYgC3OQhVnIwxxkYQ63swiFQpKkdDpdcQb2dDpd1q4kl8tJkhZOuDvbXS6Xq7ryo0k4LsxBFmYhD3OQhTnIwhxkYY6dZlH6OzQxu+TqeJrp79C9wLFhDrIwB1mYgyzMQRZmIQ8A20UBO3Zkpx8khcNhZbLzsm27av/Viq6uFgwGFQ6HtzP8lrLTLLA3yMMcZGEOsjAHWZhjN1nk8/kt/5aq5urZ1a/+W6pSQbzjOMrlcrIsa8PKN1sVxDcDjg1zkIU5yMIcZGEW8jAHWZjD7SxisZgsy9Lx48crLjU8OTmp7u5uxWKxsu+zLEuSdPjew+o61LWTH6XM8pllLZxYWO+3GXBcmIMszEIe5iALc5CFOcjCHDvNovT34nTcp2jQu+txZOxVJWaXmurv0L3AsWEOsjAHWZiDLMxBFmYhDwDb1bG2trbW6EG0uwsXLuiGG27Q+fPndf311zd6ODVZXV3VLbfcoqNHj1b8IGl0dFTpdFrPPvusvN7tv1F/+umn1dfXt6MZPQuFwobCrK1mIQ0EAtseYy0OHz6sF198UW9605u0sODu7E8le50Ftoc8zEEW5iALczRbFrv5e8B0O80in88rGjmiguPebD4Bv0+Z7Hxb3xDYbMdGKyMLc5CFOciiNvV4/y2Rh0nIwhx7kcXs7KzGxsY0PDysiYkJ9fT0KJ1Oa3JyUqdOndLMzIzi8XjZ95TeP2xVwF68WNSKvaLOYKc8+z2btisVsDfT+xGOi9pwzbb97CSP9WsS916j3tDuM3p6cVV9J15rqteUvcCxYQ6y2BrvMdrPTrNo1Dmjla+fS2YcG6Xf8c0P3Cy/5d/6G7bg5Bw998BzTZeZCVnUqlHHBeeMylr5dcqUmilep8w5LsjiMlPyaCfNWHcKXIkZ2LEjXq9XU1NTGhsb0+jo6KYfJDXiZJPNZtXX11dxXyKR2LCt2U72VzM5i3ZEHuYgC3OQhTnIwhw7zcK2bRWcJU3f7Vf04ObFNs6lNeXOFWUd8Mi/r2PTdpmzRSUedmTbdlsXsHNsmIMszEEW5iALs5CHOcjCHHuRRTwe18zMjMbHxzUwMLC+vbu7u2LxunR5ZSGf36eFE+4VC/j8PgWDQdf622scF+YgC7OQhznIwhxkYQ6yMAdZmGWv8lhdXVUymdTi4qJCoZBisdimfTiOI+nyza1uKPVT6rdZcGyYgyzMsZssallpOZPJlD1u1a6dmXJccM64zJQ8ADQPCtixYzv5IKkeIpGIUqlU2TbHcZTL5WRZlvx+/4b2zc7ULNoVeZiDLMxBFuYgC3PsJovoQc+Ws/kM3uTaUNsCx4Y5yMIcZGEOsjALeZiDLMyxF1nE43GNjIzUXFwSDoc1n52v6UPgzVZqvFowGGy6Gz05LsxBFmYhD3OQhTnIwhxkYQ6yMIvbeczOzmp8fFy5XG59m2VZmpqaqthXqZ2bN8mW+h0cHHS1z73GsWEOsjDHTrLY7krLlSbpxEYmHBecM37IhDwANI+OtbW1tUYPot01+1IO27lLuVatspRQvZaKKtmLLLBz5GEOsjAHWZijGbJolb8HtrKdLFjCfO81w7HRLsjCHGRhDrLYXL3ff0vkYRKyMEczZMH7DHDNtr3Vmgfvv/cex4Y5yKIy3mO0t2a4Ztsuf9dK7hwbs7OzGhsb0/DwsO6777712WCPHz++Phvs1QV1Tz75pG6//XYdvvewug517frnWD6zrIUTC3riiSearhixpNGvU1vNXN2oG5Y5Z1TWLq9TOzlnuLXS8pefvaT7H13WzQ/cLL/l37RdrZyco+ceeK5pM2vkccE5Y6NmeJ1qBc1edwowAzt2zev1amhoqNHDgMjCNORhDrIwB1mYgyzMQRZmIQ9zkIU5yMIcZGEW8jAHWZiDLMxBFuYgC7OQhznIwhxkYQ6yMAdZmGW3eayurmp8fFzDw8Oam5uTx3O5aLS/v19zc3MaHR3VsWPHNDIyUlZYV1rZvetQlyuFoVf324waeWzk83kdiRzRUg0zV9cya7XP79N8dr7pVt0q4XXKHDvJwq2VljP26raet9U18rjgnLERr1MAakEBOwAAAAAAAAAAAHCVzNli1f21zoy4VT8AAGDvJJNJ5XI5nTx5cr14vcTj8WhiYkIDAwNKJpMU2hnMtm0tOUtVZzcuXixqxV5RZ7BTnv2bz25dmtnYtu2mLWAHAABoBRSwo+EKhYKy2WzZtkwmU/Z4pUgkokAgUJexAQAAAAAAAKiPStcJHcdRLpeTZVkbZp3iOiGAvRIMBhXw+5R42HGtz4Dfp2Aw6Fp/AACzcNOTuRYXFyVJPT09FfeXtpfawWxbzm58a/3GAgAAgN2hgB0Nl81m1dfXV3FfpaWdUqmUent793pYAAAAAAAAAOqo2nXCSrhOCGCvhMNhZbLzsm27artMJqNEIqHp6WlFo9GqbYPBIDN8AkAL4qYn84VCIUlSOp3WbbfdpmQyqcXFRYVCIcViMaXT6bJ2AAAAAOqDAnY0XCQSUSqVKtu21cxKAAAAAAAAAFpLpeuE1YpDuU4IYC+Fw+GaC86j0Sg31ABAm+KmJ/PFYjFZlqVf//Vfl23byuVy6/ssy1IwGFR3d7disVjjBgk0uUorqmUymbLHK7GiGgAAkChghwECgUDFC7uDg4MNGA0AAAAAAACAesjn81sW+lRz9YfjFPoAAACgEbjpyWxer1fve9/79IlPfEJveMMbdOLECQ0PD+vUqVO6//779dRTT+m3fuu35PV6Gz1UoGlVW1EtkUhs2MaKajBRpRsxtpqAlRsxAGB3KGAHAAAAAAAAANRVPp9XNHJEBWeppvaVPvC+WsDvUyY7TxE7AAAAgHWrq6v6sz/7M731rW/V2bNnde+9967vsyxLb33rWzUzM6PJyUmK2IEdqrSi2laFv4Bpqt2IUQk3YgDA7lHADgAAAAAAAACoK9u2VXCWNH23X9GDnk3bOZfWlDtXlHXAI/++jk3bZc4WlXjYkW3bFLADAAAAWJdMJpXL5XTy5EnddtttSiaTWlxcVCgUUiwW07e+9S0NDAwomUxqaGio0cMFmlIgEKhYyDs4ONiA0QA7U+lGjEwmo0QioenpaUWj0Q3tAQC7QwE7AAAAAAAAAKAhogc96g1Vn+Vw8KY6DQYAAABAy1lcXJQk9fT0yOv1bihS7+npKWsHAM1m+cxy1f3Fi0Wt2CvqDHbKs3/zSQS26qfVbXYjhiRFo1FmWweAPUABOwAAANAkHMeRJGXsVVf6K/VT6hcAAACoF/62BQAAAFAPoVBIkpROp9Xf379hfzqdLmuHvVMoFJTNZsu2OY6jXC4ny7Lk9/vL9kUiEQUCgXoOEdhTbl8LsQtrkqSFEwuu9CdJPr9PwWDQtf4AAKiGAnYAAACgSeRyOUlSYnbJ9X5ZxhEAAAD1xN+2AAAAaFWVinQzmUzZ45Uo0t1bsVhMlmXp+PHjmpubk8fzw9mHi8WiJicn1d3drVgs1sBRtodsNqu+vr6a26dSKWY8RkvZq2shH//4x/Vv/s2/2XR/JpNRIpHQ9PS0otFo1b6CwaDC4bCr4wMAYDMUsAMAAABNwrIsSdJ03Kdo0Lvr/jL2qhKzS+v9AgAAAPXC37YAAABoVdWKdBOJxIZtFOnuLa/Xq6mpKY2NjWl0dFQTExPq6elROp3W5OSkTp06pZmZGXm9u39fguoikYhSqVTZtmqFtZFIpJ7DA/bcXl0LufPOO2s6j0SjUc43AACjUMAOAACAusvn87Jtu2qbajPSXK1dZgNYXz5zraNqO+fSmnLnirIOeOTfV6XtP/dz9bKcAAAAwF7jb1sAAAC0qkpFuo7jKJfLybKsDX+zUqS79+LxuGZmZjQ+Pq6BgYH17d3d3ZqZmVE8Hm/g6NpHIBDYtHiWwlq0g9LrfzToVW/IvZtmuBYCAGhWFLADAACgrvL5vI5EjmjJqW15vEoz0lzN5/dpPjvf8kXswWBQAb9PiYcd1/oM+H0KBoOu9QcAAADUgr9tAQAA0Ko2K9IdHBxswGhQEo/HNTIyomQyqcXFRYVCIcViMWZebxKOc/m94/KZ5V33Veqj1CcAAAAagwJ2AAAA1JVt21pylnT43sPqOtS1abvixaJW7BV1Bjvl2e/ZtN3ymWUtnFiQbdstX8AeDoeVyc7XNHv9ZktuXq1dZq8HAACAWfjbFgAAAEC9eb1eDQ0NNXoY2IFcLidJWjix4Gqf3FiCRsicLVbdX+tqdFv1g+rcXDG8tH+rm2y28/k3ALQDCtgBAADQEF2HuuS3tljS7tb6jKWZhMPhmotyWHITAAAAJuNvWwAAAABALSzLkqQtJ0eqRWlipFKfQL2wGp058vm8opEjKri4Yrg63L3Jxke2ANoABewAAAAAAAAAAAAAAAAAjOT3X54QqabJkbbZJ1AvrEZnDtu2VXCWNH23X9GDm8+Evp3Z8BMPO1tmRrYAUI4CdgAAAAAAAABAyykUCspms2Xbqi39HIlEFAgE6jI2AAAAAM1h+cxy1f3Fi0Wt2CvqDHbKs3/zIsit+gHQHliNzizRgx71hrxV2wzetI3+asyMbAHgMgrYAQAAgCZGUQ4AAABahdt/22azWfX19VXcV2np51QqxYeHAAAAACRdnvnW5/dp4cSCa336/D4Fg0HX+gPQ/PicDwDQzihgBwAAAJoYRTkAAABoFW7/bRuJRJRKpcq2OY6jXC4ny7I2LBcfiUR2MGoAAAAArSgcDms+Oy/btqu2y2QySiQSmp6eVjQardo2GAzWPPMygPbA53wAgHZGATsAAGhble5o36qYgTvaYRqKcgAAANAq3P7bNhAIVPxQd3BwcPeDBdB2mBkRAIDms9vPgcLhcM0F59FolKJSANvG53wAgHZGATsAAGhb1e5or4Q72mEiinIAAADQKq7+23Z1dVXJZFIej0crKyvq7++X1+tt4AgBtDNmRgQAwHz5fL5sxvTS7Oi1unoWdWZMB7DX+JwPANDOKGAHAABtq9Id7dWWeuSOdgAAAACoj9nZWY2PjyuXy61vsyxLU1NTisfjjRsYgLbFzIgAAJgtn88rGjmigrO04z6uLnYP+H3KZOcpYgeAFuM4jiQpY6+60l+pn1K/AIDaUMAOAADa1mZ3tEss9QgAAAAAjTI7O6uxsTENDw/r5MmT6unpUTqd1vHjxzU2NqaZmRmK2AHUHTMjAgBgthdeeEEFZ0kfv7NL3a/r2LTd8iXpzCtFHbrOo64qFTPPv7ym+x9d0gsvvEABOwC0mNKECYnZnd/0tFm/vEcEgNpRwA4AAAAAAAAAMMLq6qrGx8c1PDysubk5eTweSVJ/f7/m5uY0OjqqY8eOaWRkRF6vt8GjBQAAAGCKUjHi/Y8uu94vxYgA0Fosy5IkTcd9igZ3f30pY68qMbu03i8AoDYUsAMAAKCuSkunLZ9x5yJyqR+WZAMAAACaXzKZVC6X08mTJ9eL10s8Ho8mJiY0MDCgZDKpoaGhxgwSAAAAgHEoRjRPPp+XbdtV22QymbLHrdoBgBv8fr8kKRr0qjfk3gQJpX4BALWhgB0AAAB1VZoFZeHEguv9MgsKAAAA0NwWFxclST09PRX3l7aX2m3H6uqqksmkFhcXFQqFFIvFmMUdAAAAaBEUI5oln88rGjmigrNUU/tEIrHHIwIAAIBpKGAHAABAXZVmKzl872F1HeradX/LZ5a1cGKBWVAAAACAFhAKhSRJ6XRa/f39G/an0+mydrWanZ3V+Pj4+g210uX3JlNTU4rH4zsfMAAAAABgA9u2VXCWNH23X9GDnk3bOZfWlDtXlHXAI/++jk3bffnZS7r/UXdW9gWAkszZ4vrXpdejWl35unVlPwCA2lHADgAAgLoqzVbSdahLfsu9mUuYBQUAAABofrFYTJZl6fjx45qbm5PH88NCh2KxqMnJSXV3dysWi9Xc5+zsrMbGxjQ8PKyTJ0+qp6dH6XRax48f19jYmGZmZihiBwAAgLEKhYKy2WzZtkwmU/Z4pUgkokAgUJexmWirIsJaC6YpRnRH9KBnyxnxB2/aup+MverSiABACgaDCvh9SjzsuNZnwO9TMBh0rT8AaAcUsAMAAAAAAAAAjOD1ejU1NaWxsTGNjo5qYmJiveB8cnJSp06d0szMjLze6gUQJaurqxofH9fw8HBZQXx/f7/m5uY0OjqqY8eOaWRkpOY+AQAAgHrKZrPq6+uruC+RSGzYlkql1Nvbu9fDMg7FiACAWoXDYWWy87Jte32b4zhlK/dtxbKssgnWgsGgwuGwm8MEgJZHATsAAAAAAAAAwBjxeFwzMzMaHx/XwMDA+vbu7u5tz5aeTCaVy+V08uTJstncJcnj8WhiYkIDAwNKJpMaGhpy60cAAAAAXBOJRJRKpcq2lYrsri6eK7VvR5WKESvJZDJKJBKanp5WNBqt2vbqYkRmw2+85TPLm+4rXixqxV5RZ7BTnv2eTdtV6wNA+wiHwxsKzgcHBxs0GgBoTxSwAwAAAAAAAACMEo/HNTIyomQyqcXFRYVCIcVisW3Pkr64uChJ6unpqbi/tL3UDgAAADBNIBCoOKM6RXYbVSpG3Ew0Gt32TPXMht84B3wdUoe0cGLBlf58zK4PAADQcBSwAwAAAAAAAACM4/V6dz0reigUkiSl02n19/dv2J9Op8vaAQAAAMBmmA2/do7jSJIy9qor/Z1bWpPWpM9//vP6iZ/4iYptdjO7PgAAAOqPAnYAAAAAAAAAQEuKxWKyLEvHjx/X3NycPJ4fLiNfLBY1OTmp7u5uxWKxBo4SANBIhUJB2Wy2bNtWxYiBQKCeQwQAGILZ8GuXy+UkSYnZJVf77erq2nJW+53Mrg8AAID6o4AdAAAAAAAAANCSvF6vpqamNDY2ptHRUU1MTKinp0fpdFqTk5M6deqUZmZm5PV6Gz1UAECDZLNZ9fX11dw+lUpRFAcAwBYsy5IkTcd9igZ3/34rY68qMbu03i8AAACaHwXsAAAAAAAAAICWFY/HNTMzo/HxcQ0MDKxv7+7u1szMjOLxeANHBwBotEgkolQqVbYtk8kokUhoenpa0Wh0Q3sAQHOotMpGJpMpe7wSq2y4p7SCSTToVW/IvRuGr14ZBQAAAM2LAnYAAAAAAAAAQEuLx+MaGRlRMpnU4uKiQqGQYrEYM68DABQIBDadUT0ajTLbOgA0sWqrbCQSiQ3bWGUDAAAAqB8K2AEAAAAAAAAALc/r9WpoaKjRwwAAAABQJ5VW2XAcR7lcTpZlbZjNm1U2AAAAgPqhgB0AAAAAAAAAAAAAAAAtZbNVNgYHBxswGgDYe4VCQdlstmxbJpMpe7xSJBJRIBCoy9gAALgaBewAAAAAAAAAAAAAAAAAADSxbDarvr6+ivsSicSGbalUquKNPgAA1AMF7AAAAAAAAAAAAAAAAAAANLFIJKJUKlW2zXEc5XI5WZYlv9+/oT0AAI1CATsAAAAAAAAAAAAAAAAAAE0sEAhUnFF9cHCwAaMBAKA6CtgBAAAAAAAAAAAAAAAAAAAkra6uKplManFxUaFQSLFYTF6vt9HDAoCWQgE7AAAAAAAAAAAAAAAAAFdlzhar7ncurSl3rijrgEf+fR077gcA3DQ7O6vx8XHlcrn1bZZlaWpqSvF4vHEDA4AWQwE7AAAAtq1QKCibzZZtcxxHuVxOlmXJ7/eX7YtEIgoEAvUcIgAAAAAAAAAAABogGAwq4Pcp8bDjWp8Bv0/BYNC1/gCgktnZWY2NjWl4eFgnT55UT0+P0um0jh8/rrGxMc3MzNRUxF7p8/RMJlP2eCU+TwfQjihgBwAAwLZls1n19fXV3D6VSqm3t3cPRwQAAAAAAAAAAAAThMNhZbLzsm27artMJqNEIqHp6WlFo9GqbYPBoMLhsJvDBIAyq6urGh8f1/DwsObm5uTxeCRJ/f39mpub0+joqI4dO6aRkRF5vd6qfVX7PD2RSGzYxufpANoRBewAAADYUj6fL7vI6DiOpqeny9o8//zzuv/++/Xxj39c3d3dZfscx9HTTz8tqfId5QAAAAAAAAAAAGgd4XC45oLzaDRK4SaAhksmk8rlcjp58uR68XqJx+PRxMSEBgYGlEwmNTQ0VLWvSCSiVCpVtm2rFc0BoN1QwA4AAICq8vm8opEjKjhLNbW///77a2q3fGa56v7ixaJW7BV1Bjvl2e/ZtN1W/QAAAAAAAAAAAAAAUM3i4qIkqaenp+L+0vZSu2oCgUDFG3MGBwd3MUIAaC0UsAMAAKAq27ZVcJY0fbdf0YObF5I7l9aUO1eUdcAj/76OTdslv3tJ/+9fLmvhxIJrY/T5fQoGg671BwAAAAAAAAAAAABoH6FQSJKUTqfV39+/YX86nS5rBwDYHQrYAQAAUJPoQY96Q96qbQZvqrGztWVNT08rGo1u2iSTySiRSGzZTpKCwWDNy1ACAAAAAAAAAAAAAHClWCwmy7J0/Phxzc3NyeP54eRuxWJRk5OT6u7uViwWa+AoAaB1UMAOAACAhohGoxWXTdtpOwAAAAAAAAAAAAAAdsLr9WpqakpjY2MaHR3VxMSEenp6lE6nNTk5qVOnTmlmZkZeb/VJ3wAAtaGAHQAAAAAAAAAAAAAAAAAAtLV4PK6ZmRmNj49rYGBgfXt3d7dmZmYUj8cbODoAaC0UsAMAAAAAAAAAAAAAAAAAgLYXj8c1MjKiZDKpxcVFhUIhxWIxZl4HAJdRwA4AAICqHMeRJGXsVVf6K/VT6hcAAAAAAAAAAAAAAFN4vV4NDQ01ehgA0NIoYAcAAE1rdXWVu57rIJfLSZISs0uu9zs4OOhqnwAAAAAAAAAAAAAAAADMRgE7AABoSrOzsxofH18vrpYky7I0NTWleDzeuIG1IMuyJEnTcZ+iwd3fIJCxV5WYXVrvFwAAAAAAAAAAAAAAAED7oIAdAAA0ndnZWY2Njcnn85Vt//73v6+xsTHNzMxULGLP5/Oybbtq35lMpuyxmmAwqHA4vI2RNye/3y9Jiga96g25N8N9qV8AAAAAAAAAAAAAAAAA7YMCdgAA0FRWV1f1oQ99SGtra/qpn/op/c7v/I56enqUTqf1e7/3ezp16pQ+9KEPaWRkRF7vD4ut8/m8jkSOaMlZqul5EonElm18fp/ms/NtUcQOAAAAAAAAAAAAAAAAAG6ggB0AADSVxx57TC+99JJuv/12felLX5LH45Ek9ff360tf+pLuuOMOPfnkk3rsscf0Uz/1U+vfZ9u2lpwlHb73sLoOdW3af/FiUSv2ijqDnfLs92zabvnMshZOLMi2bQrYAQAAAAAAAAAAAAAAAKBGFLADAICm8thjj0mSPvaxj60Xr5d4PB498MAD+lf/6l9tKGAv6TrUJb/lr/4kt7o1WgAAAAAAAAAAAAAAAADAlShgBwAAAAAAAAAAAAAAANAUCoWCstls2bZMJlP2eKVIJKJAIFCXsQEAAKA2FLADAICmMjQ0pN/93d/VRz/6UQ0NDZXNwl4sFvWxj31svR3clTlbrLrfubSm3LmirAMe+fd17LgfAAAAAAAAAAAAYDPZbFZ9fX0V9yUSiQ3bUqmUent793pYAAAA2AYK2AEAQFMZGhrSwYMH9cQTT2hkZET33Xefenp6lE6ndfz4cT3xxBN6/etfTwG7i4LBoAJ+nxIPO671GfD7FAwGXesPAAAAAAAA7aPSrKuO4yiXy8myLPn9/rJ9V866ms/nZdt21f6rzeB6tWAwqHA4vJ3hAwCAXYpEIkqlUmXbtvpbAAAAAGahgB0AADQVr9er//E//ofe+9736mtf+5pOnTq1vq/0IdQf/uEfyuv1NmqILSccDiuTna/pg71EIqHp6WlFo9GqbflgDwAAAAAAADtVbdbVSkqzrubzeR2JHNGSs1TT91WawfVqPr9P89l5rnUBALCFSjegVbtp7Mob0K4WCAQqzqg+ODjowkgBAABQDxSwAwCAphOPx/XQQw/pIx/5iL773e+ub3/961+vqakpxePxDd/jOJdnD18+s+zKGEr9lPptdeFwuOYP4aLRKMswAgAAAAAAYM9UmnW12uQKpVlXbdvWkrOkw/ceVtehrk37L14sasVeUWewU579nk3bLZ9Z1sKJBdm2TQE7AABbqHYDWqWbxko3oAEAAKA1UcAOAACaUjwe18jIiJLJpBYXFxUKhRSLxTadeT2Xy0mSFk4suDqOXC7HbA4AAAAAAABAHW0266pU2+QKXYe65Lf81Z/k1p2ODgAAVFLpBjTHcZTL5WRZlvx+/4b2AAAAaF0UsAMAgKbl9Xo1NDRUU1vLsiRpy9mValWaXanULwAAAAAAAAAAAIDKrr4BbXV1VclkUh6PRysrK+rv7990oioAAAC0HgrYAQBAWyjN2lDT7Eo76Be7UygUlM1my7ZlMpmyxytFIhEFAoG6jA0AAAAAAAAAAADumZ2d1fj4+PoKytLlyaimpqYUj8cbNzAAAADUDQXsAAAAaLhsNqu+vr6K+xKJxIZtqVRqy6WgAQAAAAAA0Bry+bxs267aptpkCFe3AQAAjTM7O6uxsTENDw/r5MmT6unpUTqd1vHjxzU2NqaZmRmK2AEAANoABewAAABouEgkolQqVbbNcRzlcjlZlrVhpvtIJFLP4QEAAKCFVVoNaKu/RTdbDcjNvgAAwGXz8/P6iX/5/2hp+WJN7StNhnC14sXibocFAAB2YHV1VePj4xoeHtbc3Jw8Ho8kqb+/X3NzcxodHdWxY8c0MjIir9fb4NECAABgL1HADgAAgIYLBAIVZ1QfHBxswGgAAADQTqqtBlRJtdWA3OwLAABc9tRTT9VcvF6rFXtFutXVLgEAQA2SyaRyuZxOnjy5Xrxe4vF4NDExoYGBASWTSQ0NDTVmkAAAAKgLCtgBANim1dVVJZNJLS4uKhQKKRaLMQMAAAAAgJoxS7dZKq0GlMlklEgkND09rWg0uqF9PfoCAACXWZYlSZqO+xQN7u467JefXdH9j15UZ7DThZEBAIDtWlxclCT19PRU3F/aXmoHAACA1kUBOwAA2zA7O6vx8XHlcrn1bZZlaWpqSvF4vHEDAwAAANA0mKXbLJutBiRJ0Wh0W797N/sCAACXlW7uiwa96g3troA9Y69Kkjz7PVu0BAAAeyEUCkmS0um0+vv7N+xPp9Nl7QAAANC6uDoDAECNZmdnNTY2pqNHj+r06dN65ZVXdPr0aR09elRjY2OanZ1t9BABAAAANIHSLN1X/puenpYkTU9Pb9jHLN0AAAAAAKAVxGIxWZal48ePq1gslu0rFouanJxUd3e3YrFYg0YIAACAemEGdgAAarC6uqrx8XENDw9rbm5OHs/le8D6+/s1Nzen0dFRHTt2TCMjI/J6dzcLEAAAAIDWxizdjZXP52XbdtU2mUym7HEzwWBQ4XDYtbEBAIDNZc4Wq+53Lq0pd64o64BH/n0dFds8//LaXgwNAADUyOv1ampqSmNjYxodHdXExIR6enqUTqc1OTmpU6dOaWZmhs9bAQAA2gAF7AAA1CCZTCqXy+nkyZPrxeslHo9HExMTGhgYUDKZ1NDQUGMGCQAAAACoKp/PKxo5ooKzVFP7RCJRdX/A71MmO08ROwAAeygYDCrg9ynxsNPooQAAABfE43HNzMxofHxcAwMD69u7u7s1MzOjeDzewNEBAACgXlqmgP273/2uPvOZz+iRRx7RCy+8oK6uLt188816//vfr1/91V9VIBDYcd+FQkFf+cpX9NWvflVPPfWUvvOd7+jVV1/V9ddfr1tvvVU/8zM/o1/5lV/RG9/4Rhd/IgCASRYXFyVJPT09FfeXtpfaVVMoFJTNZsu2OY6jXC4ny7Lk9/vL9kUikV2dxwAAAAAAl9m2rYKzpOm7/Yoe9GzarpYZXDNni0o87Mi2bQrYAQDYQ+FwWJnsfE0rqCQSCU1PTysajVZtAwAAGisej2tkZETJZFKLi4sKhUKKxWLMvA4AANBGWqKA/c///M+VSCR04cKF9W2FQkFPPfWUnnrqKX3uc5/TI488oltuuWXbff/93/+9BgcH9eqrr27Y90//9E/65je/qW9+85v6gz/4A504cUI/93M/t6ufBQBgplAoJElKp9Pq7+/fsD+dTpe1qyabzaqvr6/m506lUurt7a25PQAAAACguuhBj3pD1T8UH7ypToMBAABbCofDNd8wFo1GuZ4KAEAT8Hq9rGwNAADQxpq+gP1v//Zv9XM/93NyHEfXXnutJiYmdOedd8pxHH3xi1/UZz/7WT3zzDN697vfraeeekrXXXfdtvq/cOHCevH64OCghoeH9da3vlU33nijzp49q9nZWX32s5/VhQsX9Au/8Au6/vrr9a53vWsvflQAQAPFYjFZlqXjx49rbm5OHs8PZ+orFouanJxUd3e3YrHYln1FIhGlUqmybdVmB4pEIu78EICLKq0kkMlkyh6vxEoCAAAAMIHjOJKkjL26675KfZT6BAAAAAAAAAAAQG2avoD9wx/+sBzH0b59+/SXf/mXesc73rG+7yd/8if1oz/6o/rt3/5tPfPMM5qamtIDDzywrf49Ho/e//7366Mf/ah+7Md+bMP+u+66S+9617t09913a3V1Vb/+67+uZ599Vh0dlZcWBgA0J6/Xq6mpKY2NjWlkZET/+l//a/n9fjmOo6985St65JFHNDMzU9OydoFAYNMZgJgdCM2i2koClZZhZiUBAAAAmCCXy0mSErNLrvY5ODjoWn8AAAAAAAAAAACtrqkL2L/1rW8pmUxKkn75l3+5rHi9ZHx8XA8++KAymYw+/elP63d+53fU2dlZ83MMDAxoYGCgapuRkRHF43E99NBDeu655/S3f/u3FGgBQAuKx+M6duyY/uAP/kCnTp1a375v3z4dO3ZM8Xi8gaNDrZbPLFfdX7xY1Iq9os5gpzz7PZu226qfVldpJQHHcZTL5WRZlvx+/4b2AAAAQKNZliVJmo77FA1ufQNyNRl7VYnZpfU+AQAAAAAAAAAAUJumLmCfm5tb//qXfumXKrbxeDy65557NDExoXPnzunRRx/VXXfd5fpY7rzzTj300EOSpOeee44CdgBoQbOzs/rkJz+pd7/73XrXu961PgP7//k//0ef/OQn1d/fTxG7wYLBoHx+nxZOLLjWp8/vUzAYdK2/ZrLZSgLMPAkAAACTlW60jAa96g3troD96j4BAID5HMeR5N7kFKV+Sv0CAAAAAACgNk1dwP7EE09Ikq655hr19fVt2u6d73zn+tdPPvnknhSwLy//8EKX1+vOh18AAHOsrq5qfHxcw8PDmpubk8fzw5m5f+VXfkWjo6M6duyYRkZGOA8YKhwOaz47L9u2q7bLZDJKJBKanp5WNBqt2jYYDCocDrs5TAAAAAB1kDlbrLrfubSm3LmirAMe+fd17KgPAABgnlwuJ0muTnJR6peJHQAAAAAAAGrX1AXsmUxGknTLLbdo377Nf5RIJLLhe9z2+OOPr3+9VbEbAKD5JJNJ5XI5nTx5sqx4Xbq82sfExIQGBgaUTCY1NDTUmEFiS+FwuOaC82g0yooqAAAAQIsJBoMK+H1KPOzOLKmBNl6VCQCAZmRZliTp8L2H1XWoa9f9LZ9Z1sKJhfV+21GhUFA2my3b5jiOcrmcLMvasFpNJBJRIBCo5xABAAAAAICBmraAfWlpaX0G1cOHD1dt+7rXvU7XXHONXnvtNb3wwguuj+Xb3/62HnnkEUnS0aNHtyxgX15eLpux/cKFC66PCQDgrsXFRUlST09Pxf2l7aV2cEc+ny+bMb30wUetrv6AhBnTAQAAgPYWDoeVcXFlpuXlZdm2XbW/0oQatUyswXsWAABqU6louto5t1Q0XbpW2HWoS37Lv6HdTl1dpN1Ostls1ZWyr5ZKpZg4BAAAAAAANG8B+yuvvLL+9bXXXrtl+1IB+6uvvurqOJaXl/Xv/t2/0+rqqiTp937v97b8nsnJSX3sYx9zdRwAgL0VCoUkSel0Wv39/Rv2p9PpsnbYvXw+r2jkiArOkmt9Bvw+ZbLzFIQAAACgrq6+MbMSipzrx62VmfL5vI5EjmipxvcsiURiyzY+v0/zvGcBAGBL1YqmK51zKZreO5FIRKlUqmxbtZsBr1w5GwAAAAAAtK+mLWBfWvrhB0P79+/fsn1X1+VlAB3HneWBS37t135NTz31lCTpgx/8oN7znvds+T0TExP6yEc+sv7fFy5c0E033eTquAAA7orFYrIsS8ePH9fc3Jw8Hs/6vmKxqMnJSXV3dysWizVwlK3Ftm0VnCVN3+1X9ODl37dzaU25c8Wa+7AOeOTf1yFJypwtKvGwI9u2KQYBAABA3Wz3xsxaipy5MdMML7zwgpacJb0+/nrtD25+fbJ4qahL5y5p34F98uzzbNruon1RL82+pBdeeIFsAQDYQqWi6dLqjVevylhqj70RCAQ2vTmg2s2AAAAAAACgvTVtAbvP51v/+uLFi1u2X15eluTuEn6Tk5P63Oc+J0m67bbb9N//+3+v6fu6urrWC+oBAM3B6/VqampKY2NjGh0d1cTEhHp6epROpzU5OalTp05pZmZGXq+30UNtGes3nXWsrW/z7+tQNLjD3/E/9+P2zWwAAABANZVuzKykdLPmlTdhVsKNmebI5XKSpJdmX3K938HBQVf7BACg1WxWNM05FAAAAAAAoDk0bQH7ddddt/71q6++umX71157TZJ07bXXuvL8f/RHf6T77rtP0uVZG7785S/rmmuucaVvAICZ4vG4ZmZmND4+roGBgfXt3d3dmpmZUTweb+DoWk+pGCQxW9tMldvplw+yAAAAUG/Rgx71hqrfjDnIAn1NxbIsSdLhew+r69DuJ6tYPrOshRML6/0CAAAAAAAAAAC0qqYtYPf5fLrxxhv1gx/8QAsLC1Xbvvzyy+sF7DfdtPtPAk+ePKl//+//vSTpzW9+s7761a8qGAzuul8AqJfV1VUlk0ktLi4qFAopFosxc3iN4vG4RkZG+P3VQalo4+N3dqn7dZvPQLl8STrzSlGHrvOoq8pfNs+/vKb7H12mGAQAAACAK0orPXYd6pLfcm/VRzdXkAQAoF1wzRsAAAAAAKC5NG0BuyT92I/9mJLJpL7zne/o0qVL2rev8o+TzWbXv45Go7t6zv/9v/+37rnnHhWLRYVCIX3ta1/T4cOHd9UnANTT7OysxsfH12e3li4XCk9NTTGDeI28Xq+GhoYaPYyWd9NNNyng9+n+R92bgT3g97lyMxsAAABQK8dxJEkZe9WV/kr9lPrF7hUKhbLrh5KUyWTKHq8UiUQUCATqMjYAALA1rnkDAAAAAAA0n6YuYL/99tuVTCb12muvKZVK6e1vf3vFdo8//vj614ODgzt+vq997Wt6//vfr0uXLunGG2/UV7/6Vd1888077g8A6m12dlZjY2MaHh7WyZMn1dPTo3Q6rePHj2tsbEwzMzNc0IcxwuGwMtl52bZdtV0mk1EikdD09PSWN6oFg0GFw2E3hwkAAABUVSqkSsy6d2Nmqd/dXOfCD2WzWfX19VXcl0gkNmxLpVLq7e3d62EBAIAacM0bAAAAAACgOTV1Afvo6KgmJyclSQ8++GDFAvZisag//uM/liQdOHBAd955546e6xvf+IZGRka0vLysG264QX/xF3+hH//xH9/54AGgzlZXVzU+Pq7h4WHNzc3J4/FIkvr7+zU3N6fR0VEdO3ZMIyMjLK0KY4TD4bKC80ozI1bDzIgAAABoNMuyJEnTcZ+iwd2/18rYq0rMLq33i92LRCJKpVJl2xzHUS6Xk2VZ8vv9G9oDAIDG45o3AAAAAABA82rqAva3ve1tisViSiaT+vznP68PfvCDesc73lHWZmpqan2p3w9/+MPq7Ows2//YY4+tF7V/8IMf1Be+8IUNz/N3f/d3eve7363XXntN11xzjR555JFNZ2UCAFMlk0nlcjmdPHly/UJ+icfj0cTEhAYGBpRMJjU0NNSYQQJbYGZEAAAANJtS8XM06FVvyL3CqauLqrFzgUCg4vsGZrgHAMBsXPNujHw+X9OqmVc+VsOqmQAAAAAAtKemLmCXpE9/+tMaHByU4zi66667dN999+nOO++U4zj64he/qBMnTkiSbr31Vo2Pj2+7/+eee04/8zM/o3PnzkmSfvd3f1c33HCD0un0pt/z+te/Xq9//et39PMAwF5ZXFyUJPX09FTcX9peageYiJkRAQAAAAAAAEhc826EfD6vaOSICs5STe0rTTpytYDfp0x2niJ2AAAAAADaTNMXsL/lLW/Rn/7pnyqRSOjChQu67777NrS59dZb9cgjj+i6667bdv/JZFIvvfTS+n//5m/+5pbf89GPflQPPPDAtp8LAPZSKBSSJKXTafX392/YX7oxp9QOMBEzIwIAAAAAAACQuObdCLZtq+Asafpuv6IHPZu2cy6tKXeuKOuAR/59HZu2y5wtKvGwI9u2KWAHAAAAAKDNNH0BuyS95z3v0d///d/r05/+tB555BEtLCxo//79uuWWW/S+971Pv/Zrv6ZAINDoYQJAQ8ViMVmWpePHj2tubq5sSdVisajJyUl1d3crFos1cJTA9qyuriqZTGpxcVGhUEixWExer7fRwwIAAADQRpbPLFfdX7xY1Iq9os5gpzz7Ny/02qofAABQjmvejRM96FFvqPp12MGb6jQYAAAAAADQlFqigF2S3vzmN+tTn/qUPvWpT23r+4aGhrS2trbp/l/8xV/UL/7iL+5ydADQeF6vV1NTUxobG9Po6KgmJibU09OjdDqtyclJnTp1SjMzMxT/omnMzs5qfHxcuVxufZtlWZqamlI8Hm/cwAAAAIAKMmeLVfdvZ5ZKmCEYDMrn92nhxIJrffr8PgWDQdf6AwCglXHNGwAAAAAAoHm1TAE7AGBr8XhcMzMzGh8f18DAwPr27u5uzczMUPSLpjE7O6uxsTENDw/r5MmT6x9MHT9+XGNjY/z/DAAAAGMEg0EF/D4lHnZc6zNAkbMRwuGw5rPzsm27artMJqNEIqHp6WlFo9GqbYPBoMLhsJvDBACgpXHNGwAAAAAAoDlRwA4AbSYej2tkZETJZFKLi4sKhUKKxWLMQoOmsbq6qvHxcQ0PD5ctDdzf36+5uTmNjo7q2LFjGhkZ2fL/60KhoGw2W7Ytk8mUPV4pEokoEAi49JMAAACgHYTDYWUocm5Z4XC45iyi0ah6e3v3eEQAALQfrnkDAAAAAAA0HwrYAaANeb1eDQ0NNXoYbSOfz9dUrHLl42YoVJGSyaRyuZxOnjy5Xrxe4vF4NDExoYGBASWTyS3/P89ms+rr66u4L5FIbNiWSqUoOAEAAMC2UeQMAACwt7jmXR+Oc3lVoYy96kp/pX5K/QIAAAAAgPZBATsAAHson8/rSOSIlpylmtpXKpq+ks/v03x2vq2L2BcXFyVJPT09FfeXtpfaVROJRJRKpcq2OY6jXC4ny7Lk9/s3tAcAAAAAAACAdpTL5SRJidnarndvp9/BwUFX+wQAAAAAAGajgB0AgD1k27aWnCUdvvewug51bdqueLGoFXtFncFOefZ7KrZZPrOshRMLsm27rQvYQ6GQJCmdTqu/v3/D/nQ6XdaumkAgUHF2Sz4sAQAAQDMpFArKZrNl27a6MTMQCNRziAAAAGgBlmVJkqbjPkWD3l33l7FXlZhdWu8XAAAAAAC0DwrYAQCog65DXfJb/uqNbq3PWJpdLBaTZVk6fvy45ubm5PH8sOC/WCxqcnJS3d3disViDRwlAAAAUD/ZbFZ9fX01t0+lUhVv5AQAAACqKd0YGQ161RvafQH71f0CAAAAAID2QQE7gD3DDHDmIAu0Eq/Xq6mpKY2NjWl0dFQTExPq6elROp3W5OSkTp06pZmZGXm97n2AAgAAAJgsEokolUqVbctkMkokEpqenlY0Gt3QHgAAAAAAAAAAAGgUCtgB7BlmgNud7RSdb1VwThZoNfF4XDMzMxofH9fAwMD69u7ubs3MzCgejzdwdAAAAEB1ld7vZTKZsscrbfWeLxAIbPoeLhqN8v4OAAAAAAAAAAAARqGAHcCeYQa43dlO0flWBedk0TiO40iSls8s77qvUh+lPttdPB7XyMiIksmkFhcXFQqFFIvFmHkdAAAAxqv2fi+RSGzYxk3GAAAAAAAAAAAAaCUUsAPYM8wAtzvbKTrfquCcLHZnO7PhS+WzI+ZyOUnSwokF18aTy+U0ODjoWn/NzOv1amhoqNHDAAAAALal0vu9rd5jAAAAAAAAAAAAAK2CAnYA63ZTpAv3UXTeOPl8XrZtr/936caBWl15g8Hy8uVZ0w/fe1hdh7p2Na7lM8taOLEgy7J21Q8AAACAxtrs/R43qgIAAKAZZM4Wq+53Lq0pd64o64BH/n0dO+4HAAAAAAC0LgrYAayrtoR5JSxhjlaUz+cVjRxRwVnacR+Vit27DnXJb/krtN6+q28mAQAAAACYodLkAJlMpuzxSkwOAAAAmkkwGFTA71PiYce1PgN+n4LBoGv9AQAAAACA5kABO4B1lZYwL808feWM0le2B1qNbdsqOEuavtuv6EHPpu1qnUHmy89e0v2PLu/FUAEAAAAAhqk2OUClm52ZHAAAgMZYPlP9mm3xYlEr9oo6g53y7N/8OvFW/bSacDisTHa+bAXTSqp9tnS1YDCocDjs5jABAAAAAEAToIAdwLrNljCXpGg0ygeqaCvRgx71hrxV2wzetHU/GXvVpREBAAAAAExXaXIAx3GUy+VkWdaGFbWYHAAAgPoKBoPy+X1aOLHgWp++NptBPBwO11xwzmdLAAAAAABgMxSwAwBwBce5vPSpW4Xnz79clHR5xh4AAAAAcEM+n69p1ssrH6th1kv3bDY5wODgYANGAwAArhYOhzXPDOIAAAAAAAANRwE7ABjCzQIELpjvXC6XkyQlZpdc7XfFXpFudbVLAAAAAG0on8/rSOSIlpza3rMkEokt2/j8Ps1n53kfCQAA2gIziLurUCgom82Wbav2WUYkElEgEKjL2AAAAAAAgLkoYAcAA+TzeUUjR1RwqQDB19WlmYceUigU2rQNs/FVZlmWJGk67lM06N11f19+dkX3P3pRncHOXfcFAAAAALZta8lZ0uF7D6vrUNem7YoXi1qxV9QZ7JRnv2fTdstnlrVwYkG2bbfN+z4AAAC4J5vNqq+vr+K+Sp9lpFIpbgoAAAAAAAAUsAOACWzbVsFZ0vTdfkUPbl5Y4FxaU+5cUdYBj/z7Oiq2SX73kv7fv1zW8PBwTc/NbHzl/H6/JCka9Ko3tPsC9oy9KklVC0YAAAAAYLu6DnXJb/mrN2IVKAAAgC0xg/juRCIRpVKpsm2O4yiXy8myrPVr7le2BwAAAAAAoIAdAAwSPejZsmh68KbqfWTsVWlNzMYHAAAAAAAAAMAWmEF8dwKBQMXfx+DgYANGAwAAAAAAmgUF7ADQopiNDwAAAAAAAACA6phBHAAAAAAAoP4oYAcAAAAAAAAAAADQlphB3CyFQkHZbLZs21Y3FAQCgXoOEQAAAAAAuIACdqCN5fN52bZdtU0mkyl7rCYYDCocDrsyNqDRMmeLVfc7l9aUO1eUdcAj/76OTds9//Ka20MDAAAAAAAAAKAlZbNZ9fX11dw+lUpVvAEBAAAAAACYjQJ2oE3l83lFI0dUcJZqap9IJLZsE/D7lMnOU8TeYMuXLhdML59Zdqe/f+7HcRxX+jNdMBhUwO9T4uH2+HkBAAAAAAAAADBFJBJRKpUq25bJZJRIJDQ9Pa1oNLqhPQAAAAAAaD4UsANtyrZtFZwlTd/tV/SgZ9N2tc4ynTlbVOJhR7ZtU8DeYGdeuVzAvnBiwdV+c7lcWyyZGg6HlcnO17Q6wWYXzCu1AwAAAAAAAAAA1QUCgU1nVI9Go8y2DgAAAABAi6CAHWhz0YMe9Ya8VdsM3lR7f5lMpqb9W7WTLs+E3S7F8KXZzTP26q77urh6uYD90L89JH/Yv+v+ls8sa+HEgizL2nVfzSIcDtf8/x4XzAEAAAAAAAAAAAAAAAAAqB0F7ABcsfhqUepQzTNN19LO5/dpPjvfFkXsuVxOkpSYXXKtT88+j/zW7gvYS/x+9/oCAAAAAAAAAAAAAAAAAADtiQJ2AK44t7QmrUmH7z2srkNdm7YrXixqxV5RZ7BTnv2eTduVZv22bbstCthLs5tPx32KBqvPiL+VLz+7ovsfvajOYKcLI4Nbls8sV91fy7GxVR8AAAAAAAAAAAAAAAAAAJiOAnYAruo61LX1rN+31mcszaQ0u3k06FVvaHcF7Bl7VZKq3iCA+gkGg/L5fVo4seBKfz6/T8Fg0JW+AAAAADQfx3EkuXeDa6mfUr8AAAAAAAAAAADAXqOAHQCAPRQOhzWfnZdt21XbZTIZJRIJTU9PKxqNbtouGAy2xaoEAAAAACrL5XKS5NpNslf2Ozg46GqfAAAAAAAAAAAAQCUUsAOAQTJni1X3O5fWlDtXlHXAI/++joptnn95bS+Ghl0Ih8M1F51Ho1H19vbu8YgAAAAANCvLsiRJh+89rK5DXbvub/nMshZOLKz3CwAAAAAAAAAAAOw1CtgBwADBYFABv0+Jh91bsn2r5eSLF4tasVfUGeyUZ79nx/20g0KhoGw2W7Ytk8mUPV4pEokoEAjUZWwAAAAA2ovf75ckdR3qkt/yu94vAAAAAAAAAAAAsNcoYAcAA4TDYWWy87Jtu2q7TCajRCKh6elpRaPRim0WFxf13rH3urqcvM/vUzAYdK2/ZpPNZtXX11dxXyKR2LAtlUoxizoAAAAAAAAAAAAAAAAAABVQwA4AhgiHwwqHwzW1jUajVQukn5l/xpVi+JJgMFjz2FpRJBJRKpUq2+Y4jnK5nCzL2jBTYSQSqefwAAAAAACGWl1dVTKZ1OLiokKhkGKxmLxeb6OHBQAAAAAAAAAA0FAUsANAC3KzGB5SIBCo+DsaHBxswGgAAAAAAM1gdnZW4+PjyuVy69ssy9LU1JTi8XjjBgYAAAAAAAAAANBgnkYPAAAAAAAAAABayezsrMbGxnT06FGdPn1ar7zyik6fPq2jR49qbGxMs7OzjR4iAAAAAAAAAABAwzADO9CmHMeRJGXsVVf6m//nfpy840p/y2eWL/fnuNMfAAAAAABAPayurmp8fFzDw8Oam5uTx3N5DpH+/n7Nzc1pdHRUx44d08jIiLxeb4NHCwAAAAAAAAAAUH8UsANtqrR8dWJ2ydV+z/x/Z1ztL5fLaXBw0NU+AQAAAAAA9koymVQul9PJkyfXi9dLPB6PJiYmNDAwoGQyqaGhocYMEgAAwBD5fF62bVdtk8lkyh6rCQaDCofDrowNAAAAAADsHQrYgTZlWZYkaTruUzS4+9m+5rIX9fGvr+jQvz0kf9i/6/6Wzyxr4cTC+jgBAAAAAACaweLioiSpp6en4v7S9lI7AACAdpXP53UkckRLTm2TLSUSiS3b+Pw+zWfnKWIHAAAAAMBwFLADbcrvv1xkHg161RvafQF7xvZKWpE/7Jff2n0Be0lpnEArKRQKymazZduqzSATiUQUCATqMjYAAAAAwO6EQiFJUjqdVn9//4b96XS6rB0AAEC7sm1bS86SDt97WF2HujZtV7xY1Iq9os5gpzz7PZu2K02OZNs2BewAAAAAABiOAnYAAOosm82qr6+v4r5KM8ikUin19vbu9bAAAAAAAC6IxWKyLEvHjx/X3NycPJ4fFlkVi0VNTk6qu7tbsVisgaMEAAAwR9ehrq0nR7q1PmMBAAAAAAD1QQE7AAB1FolElEqlyrY5jqNcLifLsjasPBCJROo5PAAAAABNYPnMctX925mlEu7yer2amprS2NiYRkdHNTExoZ6eHqXTaU1OTurUqVOamZmR17v7FfEAAAAAAAAAAACaEQXsQJvLnC1W3e9cWlPuXFHWAY/8+zo2bff8y2uS+AAdqEUgEKg4o/rg4GADRgMAAACgmQSDQfn8Pi2cWHCtT5/fp2Aw6Fp/kOLxuGZmZjQ+Pq6BgYH17d3d3ZqZmVE8Hm/g6AAAAAAAAAAAABqLAnagTQWDQQX8PiUedtzrtEN8gA4AAAAAwB4Kh8Oaz87Ltu2q7TKZjBKJhKanpxWNRqu2DQaDCofDbg4TulzEPjIyomQyqcXFRYVCIcViMWZeBwAAAAAAAAAAbY8CdqBNhcNhZa76wLv04Xatrv4QfHl5WV1dXVW/hw/Qa1coFJTNZsu2ZTKZsseSSCSiQCBQt7EBAAAAABonHA7X/H45Go1WXAEK9eH1ejU0NNToYQAAAAAAAAAAABiFAnagjV39gXckElEqlSpr4ziOcrmcLMuS3+8v27ebomk+QN9aNptVX19fxX1X32iQSqX4fQIAAAAAAAAAAAAAAAAAAONRwA5gXSAQqFgEPTg42IDRYDs3FEQikXoPDwAAAAAAAAAAAAAAAAAAYNsoYAcAQ7l5Q0GhUFA2my3blslkyh6vtJvZ9QEAAAAAAAAAAAAAAAAAADZDATsAtIFsNqu+vr6K+xKJxIZtqVSqYvE8AAAAAAAAAAAAAAAAAADAblDADgBtIBKJKJVKlW1zHEe5XE6WZcnv929oDwAAAAAAAAAAAAAAAAAA4DYK2AGgDQQCgYozqg8ODjZgNAAAAAAAAAAAAAAAAAAAoF15Gj0AAAAAAAAAAAAAAAAAAAAAAEB7oIAdAAAAAAAAAAAAAAAAAAAAAFAXFLADAAAAAAAAAAAAAP5/9u47PIp67cP4/jaB0HvvUpQqTZAiglixiyLiQQUbHooKAooNFFFEj1gQRUBFBRRRwa4UFVBAQaWE3qT3GhIISb7vH7w77qYDKU/C/bkur6O7s5vduQ9MZvaZWQAAAAAAgCwRnt0vAAAAAAAAAAAAAABwdomJifH5fD7f8e3HM+T5As8TeF4AAAAAAGAXA+wAAAAAAAAAAAAAgCy1adMmn8/n8219Z2uGP2/r1q0z9DkBAAAAAEDGYoAdQKaJjo72rVq1KuS2lStXhvxvsNq1a/sKFCiQJa8NAAAAAAAAAAAA2adatWo+n8/nq3R/JV9EhYgzfr7j24/7tr6z1XteAAAAAABgFwPsADLNqlWrfE2bNk32vq5duya5bfHixb4mTZpk9ssCAAAAAAAAAABANsufP7/P5/P5IipE+PJXy5/hzwsAAAAAAOxigB1Apqldu7Zv8eLFIbfFxMT4Nm3a5KtWrVqSA4i1a9fOypcHAAAAAAAAAAAAAAAAAACALMYAO4BMU6BAgWSvqN66detseDUAAAAAAAAAAAAAAAAAAADIbv7sfgEAAAAAAAAAAAAAAAAAAAAAgLMDA+wAAAAAAAAAAAAAAAAAAAAAgCzBADsAAAAAAAAAAAAAAAAAAAAAIEswwA4AAAAAAAAAAAAAAAAAAAAAyBLh2f0CAAAAAAAAAAAAAABnp+Pbj6d6f0Jsgu/E3hO+PKXy+Px5U74+W1rPAwAAAAAA7GCAHQAAAAAAAAAAAACQpUqVKuXLlz+fb+s7WzPsOfPlz+crVapUhj0fAAAAAADIHAywAwAAAAAAAAAAAACyVJUqVXyrV6327d27N9XlVq5c6evatavvo48+8tWpUyfVZUuVKuWrUqVKRr5MAAAAAACQCRhgBwAAAAAAAAAAAABkuSpVqqR74LxOnTq+Jk2aZPIrAgAAAAAAWcGf3S8AAAAAAAAAAAAAAAAAAAAAAHB2YIAdAAAAAAAAAAAAAAAAAAAAAJAlGGAHAAAAAAAAAAAAAAAAAAAAAGSJ8Ox+AQAAAAAAAABOX3R0tG/VqlUht61cuTLkf4PVrl3bV6BAgSx5bQAAAAAAAAAAAEBiDLADAAAAAAAAOdiqVat8TZs2Tfa+rl27Jrlt8eLFviZNmmT2ywIAAAAAAAAAAACSxQA7AAAAAAAAkIPVrl3bt3jx4pDbYmJifJs2bfJVq1bNlz9//iTLAwAAAAAAAAAAANmFAXYAAAAAAAAgBytQoECyV1Rv3bp1NrwaAAAAAAAAAAAAIHX+7H4BAAAAAAAAAAAAAAAAAAAAAICzAwPsAAAAAAAAAAAAAAAAAAAAAIAswQA7AAAAAAAAAAAAAAAAAAAAACBLhGf3CwAAAAAAAAAAAAAAIDo62rdq1aqQ21auXBnyv8Fq167tK1CgQJa8NgAAAAAAkHEYYAcAAAAAAAAAAAAAZLtVq1b5mjZtmux9Xbt2TXLb4sWLfU2aNMnslwUAAAAAADIYA+wAAAAAAAAAAAAAgGxXu3Zt3+LFi0Nui4mJ8W3atMlXrVo1X/78+ZMsDwAAAAAAch4G2AEAAAAAAAAAAAAA2a5AgQLJXlG9devW2fBqAAAAAABAZvFn9wsAAAAAAAAAAAAAAAAAAAAAAJwdGGAHAAAAAAAAAAAAAAAAAAAAAGQJBtgBAAAAAAAAAAAAAAAAAAAAAFmCAXYAAAAAAAAAAAAAAAAAAAAAQJZggB0AAAAAAAAAAAAAAAAAAAAAkCUYYAcAAAAAAAAAAAAAAAAAAAAAZAkG2AEAAAAAAAAAAAAAAAAAAAAAWYIBdgAAAAAAAAAAAAAAAAAAAABAlmCAHQAAAAAAAAAAAAAAAAAAAACQJRhgBwAAAAAAAAAAAAAAAAAAAABkCQbYAQAAAAAAAAAAAAAAAAAAAABZggF2AAAAAAAAAAAAAAAAAAAAAECWYIAdAAAAAAAAAAAAAAAAAAAAAJAlGGAHAAAAAAAAAAAAAAAAAAAAAGQJBtgBAAAAAAAAAAAAAAAAAAAAAFmCAXYAAAAAAAAAAAAAAAAAAAAAQJZggB0AAAAAAAAAAAAAAAAAAAAAkCUYYAcAAAAAAAAAAAAAAAAAAAAAZAkG2AEAAAAAAAAAAAAAAAAAAAAAWYIBdgAAAAAAAAAAAAAAAAAAAABAlmCAHQAAAAAAAAAAAAAAAAAAAACQJRhgBwAAAAAAAAAAAAAAAAAAAABkCQbYAQAAAAAAAAAAAAAAAAAAAABZggF2AAAAAAAAAAAAAAAAAAAAAECWYIAdAAAAAAAAAAAAAAAAAAAAAJAlwrP7BcDnk+Tz+Xy+w4cPZ/MrQUZLSEjw/pe+AAAAAABkDva/AQDpxTYDAJAebC8AAOnFNgMAkF0C253A/CmQ0zjx/95st3XrVl/lypWz+2UAAAAAAAAAAAAAAAAAAAAgh9iyZYuvUqVK2f0ygFPGALsBCQkJvu3bt/sKFy7sc85l98sx4fDhw77KlSv7tmzZ4itSpEh2v5yzGi1soYcdtLCDFnbQwg5a2EIPO2hhBy3soIUdtLCFHnbQwg5a2EELO2hhCz3soIUdtLCDFnbQwhZ62EELO2hhBy3soEXyJPmOHDniq1Chgs/v92f3ywFOWXh2vwD4fH6/nzNgUlCkSBE2OkbQwhZ62EELO2hhBy3soIUt9LCDFnbQwg5a2EELW+hhBy3soIUdtLCDFrbQww5a2EELO2hhBy1soYcdtLCDFnbQwg5aJFW0aNHsfgnAaeO0CwAAAAAAAAAAAAAAAAAAAABAlmCAHQAAAAAAAAAAAAAAAAAAAACQJRhgh0kRERG+wYMH+yIiIrL7pZz1aGELPeyghR20sIMWdtDCFnrYQQs7aGEHLeyghS30sIMWdtDCDlrYQQtb6GEHLeyghR20sIMWttDDDlrYQQs7aGEHLYDcyUlSdr8IAAAAAAAAAAAAAAAAAAAAAEDuxxXYAQAAAAAAAAAAAAAAAAAAAABZggF2AAAAAAAAAAAAAAAAAAAAAECWYIAdAAAAAAAAAAAAAAAAAAAAAJAlGGAHAAAAAAAAAAAAAAAAAAAAAGQJBthhXnx8fHa/BAAAAAAAAAAAAAAAAAAAAAAZgAF2mBYbG+t74403fA8//HB2vxQAAAAAAAAAAAAAAAAAAAAAZyg8u18AkJLY2FjfBx984Hvqqad8R48e9cXHx/veeOON7H5ZAAAAAAAAAAAAAAAAAAAAAE4TV2CHSbGxsb4JEyb4+vbt6zt69KgvIiLC9+abb/ruvvvu7H5pZyVJyf47sh4t7KCFHbSwhR520MIOWthBCztoYQs9AAAAAAAAAAAAAGQlBthhTuDK64888ojv6NGjvhIlSvji4uJ8Pp/P+19krsQDC865JP/OUEPWoIUdtLCDFrbQww5a2EELO2hhBy1soYcdiddzQkJCNr0S0MIOWthBC1voYQct7KCFHbSwgxa20MMOWthBCztoYQct7KCFLfQAcr/w7H4BQLDA8Hq/fv18UVFRvtatW/vOPfdc3yeffOIrXbq0r3v37j6f7+QGKvgDdmSswLrdtGmTb+nSpb7IyEjfjh07fGFhYb7atWv7LrjgAl+DBg18efPm9fl89MhMtLCDFnbQwhZ62EELO2hhBy3soIUt9LAheL3OnTvXd9555/nKlCnji4uL84WHc8guK9HCDlrYQQtbgnusW7fOV7NmTZ/f7/fFx8f7wsLCsvnVnV1oYQct7KCFHbSwhR520MIOWtjBPp8dtLCDFrbQAzg78KcZZiQeXr/gggt8PXv29L355pu+6OhoX61atXzNmzf3+Xw+PjjPRJJ8UVFRvieeeMI3Z84c39KlS0Pud875/H6/74477vBdffXVvltuucXnnGOgIRPQwg5a2EELW+hhBy3soIUdtLCDFrbQw4bg9Tl79mzfc88954uMjPTNmzfPV6tWrWx+dWcXWthBCztoYUtwj5kzZ/qee+45X7NmzXwvvfQSQz5ZjBZ20MIOWthBC1voYQct7KCFHezz2UELO2hhCz2As4gAA44fP66xY8eqcOHCcs6pQYMGmjx5siZNmqTSpUurRIkSWrBggSQpPj4+m19t7hUVFaVp06apffv2cs55/5QtW1YVKlRQ5cqVde6558o5J7/fr8KFC2vw4MHe4xMSErLvxecytLCDFnbQwhZ62EELO2hhBy3soIUt9LAheD3OmDFD1113ncLCwuSc0zPPPCOJYx9ZhRZ20MIOWtiSuMeNN97obb+/+uorts1ZiBZ20MIOWthBC1voYQct7KCFHezz2UELO2hhCz2AswsD7Mh2iYfXzz//fH388ceSpIEDB8o5p8svv1w7duzI5leaux06dEhvvfWWGjduLOecwsPDVaZMGfXt21e//fabDhw4oMOHD+vQoUMaM2aMbrrpJvn9fjnn9NBDD3nPw87lmaOFHbSwgxa20MMOWthBCztoYQctbKGHDckdfA98YHvfffd59wUOwHMgPvPQwg5a2EELW1Lr8eijjyZZnh6ZhxZ20MIOWthBC1voYQct7KCFHezz2UELO2hhCz2Asw8D7MhWiYfXGzZsqMmTJ+vEiRP6+eefvY3QpEmTsvul5mpHjx7Vu+++q7p168o5pzx58qhLly6aNm1ayHLBvyhs2LBBL730kjfQ8NRTT2X1y86VaGEHLeyghS30sIMWdtDCDlrYQQtb6GFD4oPvN9xwQ8iV8OvVq6fixYurdevWevLJJ70T+ePi4rLrJedatLCDFnbQwpbUeoSHh6tbt2664oor9Nxzz+nHH3/0lqVHxqOFHbSwgxZ20MIWethBCztoYQf7fHbQwg5a2EIP4OzEADuyTXLD65MmTdLBgwclSY8++qj8fr9uvvlmHTt2TFLSK71xJtWZCazP2bNnq2nTpt4gw8MPP6y///7bWy54Yx/c4NixY3rttdfk9/sVERGhDz74IOtefC5DCztoYQctbKGHHbSwgxZ20MIOWthCDztS+6rs2rVr66KLLlLfvn114YUXqmzZsnLOqWnTptqwYUOSx+PM0MIOWthBC1tS61GqVClVrlxZF1xwgcLDw+WcU6FChTRixIhkH48zQws7aGEHLeyghS30sIMWdtDCDvb57KCFHbSwhR7A2YsBdmSLlK68fvjwYUnS+vXrVaZMGTnn9OKLL6b5fCtXrtSbb76pPn36ZPZLzzWCN97XXHONN8jQq1cvrV69OtnlkrNjxw716NFDfr9ft956qw4cOMAvBqeIFnbQwg5a2EIPO2hhBy3soIUdtLCFHnakdvD97rvv1u+//66YmBhJ0oEDBzRz5ky1atVKzjnVrFlTBw4cyKZXnvvQwg5a2EELW1Lr0aVLF33xxRfas2eP4uLi9Ntvv2nQoEHe/YMHD86+F54L0cIOWthBCztoYQs97KCFHbSwg30+O2hhBy1soQdwdmOAHVkupeH1qKgoSVJMTIz69Okj55xatmzpXQkucLX1wP9GR0dr7969euSRR9S8eXNv48UQ+6l57rnn5JxTWFiYrrnmGv3xxx+n/BzTp09Xnjx55Pf7NWPGjEx4lWcHWthBCztoYQs97KCFHbSwgxZ20MIWemSv1A6+9+/fP2TZ4Cvhz549W82aNVPfvn21ffv2LHu9uRkt7KCFHbSwJbUe/fr1S/YEspiYGD3++OPKmzev+vXrp0OHDmXlS861aGEHLeyghR20sIUedtDCDlrYwT6fHbSwgxa20AMAA+zIUmkNr0vS3r171apVK+XNm1evv/66pJNfWx5s+fLl6tGjhxo3bux9EO+cU/78+b0zsJC2hIQEdezYUX6/X845TZgw4bSf6+abb5ZzTj169NDx48cz8FWeHWhhBy3soIUt9LCDFnbQwg5a2EELW+iRvVI7+D5gwIBklws4cuSIZs2apY0bN2bFS831aGEHLeyghS2p9Rg4cGCyywWsWLFCEydO9L42G2eGFnbQwg5a2EELW+hhBy3soIUd7PPZQQs7aGELPQBIDLAjCx07dkzjx49PdXhdkoYMGSLnnEqWLKlly5aF3Dd9+nQNHDjQe478+fOrfPny+s9//qNKlSp5G7Lu3bvr4MGDWfn2cqQlS5Z466xr167e7afydfCBM9yeeOIJOefUt29f7yr5SD9a2EELO2hhCz3soIUdtLCDFnbQwhZ6ZJ/0fmAbfNWYxIJPFPj+++914MABxcbGShINTgEt7KCFHbSwJb0f2KbWI/jrshNfeYwe6UcLO2hhBy3soIUt9LCDFnbQwg72+eyghR20sIUeAAIYYEeWSEhI0IQJE7yNTeLh9cCGac2aNWratKmccxo1apSkk2dNTZs2Tffff7+ccwoPD5dzTh06dNCoUaP00Ucf6e677/aeu2/fvtq2bVu2vdecZPbs2d76DKzv1Db+qZk2bZo6d+6s/fv3Z+RLPGvQwg5a2EELW+hhBy3soIUdtLCDFrbQI/vNmDFDHTt2POWD78ECJ/q3bNlSw4cP1549e07p8TiJFnbQwg5a2DJr1qzT+sA22EMPPaSqVavq8ccf15w5c0758TiJFnbQwg5a2EELW+hhBy3soIUd7PPZQQs7aGELPQAwwI4ss2rVKjnnVKVKFX3yySchV14PDLBPmjRJfr9fjRs31sSJEzVjxgy1bNlSxYoV8zZWnTt31ujRoxUXF6c5c+botttuY3j9FAXW9+TJk+WcU8GCBbV8+fIzes7Nmzfr6NGjkvgl4FTQwg5a2EELW+hhBy3soIUdtLCDFrbQw4ZVq1apbdu2Z3TwPTY2VtOmTVOTJk1UoEABOefUvn17bd68+ZSe52xHCztoYQctbPn555/Vvn17hYWFndIVKoPt2rVL9957r/x+v5xzqlGjhncC26k8z9mOFnbQwg5a2EELW+hhBy3soIUd7PPZQQs7aGELPQBIDLAji61fv16fffaZjhw5kuS+f/75RzVr1pRzTpUqVdIll1yismXLyjmnypUr69prr9WXX37pLf/HH3/o2muv9TZk/fr1Y3j9FH3//ffe+vvpp58y5DlP5avo8S9a2EELO2hhCz3soIUdtLCDFnbQwhZ6ZL9evXqd0ge2Ka3fLVu2aOzYsWrQoIGcc6pWrZo2bdokia9DTS9a2EELO2hhx5YtW1SkSBE55/TYY495t5/OB61Tp07VHXfc4f0O8PTTT3v30SNttLCDFnbQwg5a2EIPO2hhBy1sYZ/PDlrYQQtb6AGAAXZkuZQ2Jn/++acKFSrk7YAEBtlvvPFGLV26VDt37pR0csMyZ84cXX/99Qyvn6G//vrL24GcPn26pIwdRuBMtvSjhR20sIMWttDDDlrYQQs7aGEHLWyhR/YJPig+bdo0799TWmeJu5w4cSLJMsePH9fChQvVokULOefUsGFDbd++PYNece5FCztoYQctbFqyZIkGDx7s/Xd6eyRn69atev75573j5y+88EJGvcyzAi3soIUdtLCDFrbQww5a2EGL7Mc+nx20sIMWttADQAAD7DDlf//7n5xzKlSokAYOHKh58+aFbHQSEhL0yy+/6MYbb2R4PYNcd911cs7p2muv1b59+zLkOWfPnu39O2eypR8t7KCFHbSwhR520MIOWthBCztoYQs9sk/ig+gpHXwPrMMtW7bogw8+UPfu3dWxY0e99tpryV45/9dff1W9evXknNNDDz2kY8eOZfhrz21oYQct7KCFbWn12L17t3799VeNHDlSb7zxhv766y/t379f0r8f6h45ckRDhw6Vc05FixYN+UAY6UcLO2hhBy3soIUt9LCDFnbQIvuwz2cHLeyghS30ACAxwA4jgj/w/uWXXzRnzpwkyyQkJGjOnDmnNbwe2MglJCToyJEjGffCc7DADt/48eNVsmRJValSRdOnTz/j4YPnnntOzjn16dMnI17mWYEWdtDCDlrYQg87aGEHLeyghR20sIUeOUOg0+rVq3XxxRerZMmSId9MV6xYMQ0ZMiTkMVFRURowYICcc2rZsqViYmKy46XnOrSwgxZ20MKWwDZ8zZo16tChgypUqOC1qFy5si699FKtWbMm5DGrV6/WJZdcorCwMD3yyCOSMvbbWM5WtLCDFnbQwg5a2EIPO2hhBy3sYJ/PDlrYQQtb6AHkfgyww4zkPkQPnG11OsPriXdYoqKiNHz4cLVr107dunXL2Befg+3evVtXXHGFnHNq1aqVli9fftrPFTjz2TmnK6+8Ulu2bPE6sAOZNlrYQQs7aGELPeyghR20sIMWdtDCFnrYt2nTJu9rTQsWLKhq1arppptu8q4S45zTf//7X+8KZJI0Z84c775ff/01G1997kILO2hhBy1sWbdunZo2beqt3xIlSqhcuXIqVqyYnHMqU6aMZs2aFfKYRx99VM45lS9fXgcPHmSbnUFoYQct7KCFHbSwhR520MIOWtjBPp8dtLCDFrbQA8jdGGCHWcEfgp/K8HrirxRZvHixXnnlFdWtWzfkLKw777wz099DTrF+/XrVqFFDzjm1adNGM2fO1OHDhyX9e2JBWlfpe/bZZ711265dO02ZMkXbt28PeVzi52CnMila2EELO2hhCz3soIUdtLCDFnbQwhZ62BRYX6+88oqKFi2qiIgI3XvvvdqyZYskaeXKlXr55Ze99X7PPfdox44dkqQVK1aoSJEiCgsL0x9//JFt7yG3oIUdtLCDFvYcO3ZMffr0Ud68eVWkSBHdfffd2rhxo7Zt26ZPP/1Ubdq0kXNOpUqV0pdffqnjx49LkqZPn668efOqdu3aio6OzuZ3kTvQwg5a2EELO2hhCz3soIUdtLCBfT47aGEHLWyhB3B2YIAdJp3u8HqwuXPnasSIESpevLgKFCgg55x3xq5zTpUqVdKuXbsy+63kGKtWrVKlSpXknNN5552nhx9+WEuXLvWugp+awFfIB/4pWrSoihUrpqpVq+q2227TxIkTvWUDJxgEDzJ89dVX3i8RoIUltLCDFrbQww5a2EELO2hhBy1soYddN9xwg5xzqlixojZs2JDk/ilTpnjr/v7779eWLVv02GOPyTmnOnXq6MiRI9nwqnMnWthBCztoYUdUVJSaNGki55waNWqkf/75J+T+PXv26Oqrr5ZzTiVLltT333+vY8eO6c4775RzTi1atMimV5770MIOWthBCztoYQs97KCFHbSwhX0+O2hhBy1soQeQuzHADnNOZXg9cLZV4DH79u3T0qVL1a1bN1WtWtV7XOXKlXXzzTfr888/1znnnCPnnPr06aNjx45l/Rs0bN26dWrfvr038B8REaF27drpgQce0MyZM5N9zLBhw7z1XKhQITVt2lT33nuvunbtGnLV+2eeeSbZx0+ePFnNmjVToUKFtG7dusx8ezkKLeyghR20sIUedtDCDlrYQQs7aGELPWxJSEhQdHS0mjVrJuecrrnmGu++xFeznzZtmreu27Rpo9q1a8vv96tv3746fvx4mlfQR+poYQct7KCFPUuXLlXhwoUVFhamF198UVLyJ45dd911cs6pRIkS6tmzp2rWrKkCBQro1VdflZT2t64gbbSwgxZ20MIOWthCDztoYQctbGCfzw5a2EELW+gBnB0YYIdJCQkJmjdvXqrD64GdGEk6ePCg5s6dq6uuukrnnXeenHPKmzevChUqpIceekjz5s2TJA0dOlTOOeXPn19///13lr+vnGDnzp0aPXq0rrrqKjnnFBYWpvbt23tfLx8seJDhsssu05tvvhly//r16zV8+HBvmTfeeCPk/t27d+uSSy7x7n///fcz9b3lNLSwgxZ20MIWethBCztoYQct7KCFLfSw58EHH5RzTnXr1tWqVatC7ktISPCukj916lRvXTp38mT9xYsXZ8dLzrVoYQct7KCFHUeOHFHjxo3lnFPnzp0VFRUVcn/w8fJrrrnGOw7unFO9evUUGRmZ1S8516KFHbSwgxZ20MIWethBCztoYQv7fHbQwg5a2EIPIHdjgB0m/fbbb2rfvr23UenXr5+2bt0q6d+zbgNnR40ZM0a33Xab8uXL5y1fvHhxDR06VDNmzPCec+XKlapdu7bCwsLUv3//kOdA8qZNm6bJkyfr4MGDkkJ3FoMHGTp27KjZs2d7bYKvbB8VFaWBAwfq/PPP1zfffJPkZ/z4449yzun111/P5HeTs9HCDlrYQQtb6GEHLeyghR20sIMWttDDhokTJ3rresSIETp69Kh3X+Dg+5EjRzRp0iSde+653rLff/99yPOkdIyDYx/pRws7aGEHLeyIiYnR3XffLeecGjZsqIULF4bcH7wdHzt2rEqVKiXnnPLkyZPkm1aCr2yJU0cLO2hhBy3soIUt9LCDFnbQwhb2+eyghR20sIUeQO7GADtM2rJli/x+v5xz6t+/vzZv3hxy/969e/Xyyy97Z9yGhYXJOacWLVqof//+Wrt2bZLnfOedd+Sck9/v1xdffJFF7yRnSm5HL7DRl0IHGW6++WbvCvcpPXbBggVatGiRd/+SJUtC7g++sj6/GISihR20sIMWttDDDlrYQQs7aGEHLWyhhz2PPvqot86feeYZLViwQJJ09OhRbd68Wffcc4/3jXPOOX355ZeSTq7v4A92JWnPnj3atGmTdu7cGXI76z59aGEHLeyghR3r169X5cqV5dzJr8SeM2eODhw44N2/d+9ePfLII2rUqFG6ekgnfwcI/j1Aokd60MIOWthBCztoYQs97KCFHbSwhX0+O2hhBy1soQeQezHADrOWLVumQYMGadeuXd5tv//+u9555x3VqlVL4eHh3oYnPDxcHTt2lCRFR0dLCt2wrFy50tsB6tatW9a+kVzmueee89b7Lbfcol9//dW7L60znBMSEjR58mQ1bNhQDz74YJLH8cvAqaGFHbSwgxa20MMOWthBCztoYQctbKFH1go+eP7UU08pT5483lXFmjRporp166p48eJeE+ecvv76a0kn12tsbKwkadeuXXr33Xd13XXXqVKlSgoLC1PZsmV13XXX6fXXX9eePXuS/DyEooUdtLCDFjatXr3au6JYpUqV1KZNGz388MPq1q2bqlevHvJNpYFvRwnusW/fPv3000/q0aOHrrnmGl144YVq3769xo8fr/nz53s/hx5po4UdtLCDFnbQwhZ62EELO2iR/djns4MWdtDCFnoAuR8D7DAt8CH3Tz/9pOHDh6t06dIqXLiwnHMqUaKEqlatGnLW7Zw5cySd3KAEn0U1duxYFS1aVGXKlPGuvs4H56fuhRdeOOVBhuD1/Mknn+jSSy/1niN4xxGnhhZ20MIOWthCDztoYQct7KCFHbSwhR7ZI/ig+LRp0zRgwABdcsklOv/881W+fHnvW+ecc/rqq68khR58X7t2rdq3b6/y5cvLOae8efOGHLAvUKCA2rZtq3/++SfJz0MoWthBCztoYdOmTZv08MMP6/zzz1exYsUUERGhiIiIND+wXb9+vW6++WbVqFFDzrmQfnnz5lXt2rX1+uuvez+HHmmjhR20sIMWdtDCFnrYQQs7aJH92OezgxZ20MIWegC5GwPsMG/v3r1q3bp1yMajcePGevvtt7V06VItXrxYl19+uXffjBkzJP27QYmNjVWzZs3knFOLFi10+PDhNH9mfHy8t2HCSS+//PIpDzIE3z5lyhRdcskl3nOMHj06019zbkULO2hhBy1soYcdtLCDFnbQwg5a2EKP7JX4JPs9e/bo9ddfV5MmTbx1Gvy1p4GD76tXr1alSpW8ZQoVKqQBAwZoxIgRGj9+vDp27Kjq1avLOadq1app06ZNyf48/IsWdtDCDlrYFBsbq/j4eC1evFhPPPGEatWqleoHtqtWrVK1atW8ZSIiInTttdfqrrvu0k033aSaNWt69z399NPez6FH2mhhBy3soIUdtLCFHnbQwg5aZD/2+eyghR20sIUeQO7FADtyhMjISIWHh6t169Z6/PHHdezYMe++2NhYzZw5M9kh9vj4eI0cOVLOORUvXlzff/+9d3tK4uPj9ccff6hu3bq64447MveN5SDLli2T3+/XFVdcod9++827Pa1BhoSEhCSDDG+99Za3XHx8fJpfQ49QtLCDFnbQwhZ62EELO2hhBy3soIUt9LDlt99+0znnnJPswffACfvr16/3PrAtWbKkrr/+ei1btizkeQ4ePKjZs2erZcuWcs6pSZMm2rFjR5a/n5yMFnbQwg5a2BDYvk6YMEF16tRJdsjnxIkTkqQ1a9aoYsWK3nHydu3a6Y8//vDul6Tff/9dTz31lPc8I0aMyPo3lUPRwg5a2EELO2hhCz3soIUdtLCHfT47aGEHLWyhB5B7MMCOHGPnzp3avHmzN3weFxfn7cycOHFCs2bNSnaIvVOnTnLOqWnTplq/fn2qPyMwvN6+fXvveXr16pW5bywH2bJlixYuXOj99+lchS/xIENyJxPwdSxpo4UdtLCDFrbQww5a2EELO2hhBy1soYct3bp1k3OhX5UdWPf79u3TTTfdJOecSpQooW7dumnjxo2S/l2/wet+8eLFatSokZxz6t+/v44fP561byaHo4UdtLCDFnasX7/e2w5/++23kkJ77Ny5U+3atZNzTqVKlVK3bt284+TBx9gl6ejRoxoxYoTXLtAX6UMLO2hhBy3soIUt9LCDFnbQwhb2+eyghR20sIUeQO7AADtypOQ+RE9uiL1///7ev48ZMybV5wwMrwd2evLly6ewsDA559SnT5/Meis5VkYPyBFIgQABAABJREFUMrzwwgt67LHHMu8F52K0sIMWdtDCFnrYQQs7aGEHLeyghS30yD7B6y0yMlLSvwffA+t/9uzZqlGjhpxzuuSSS7wPbFPqdvz4cb311lsqVqyYzjvvPG3bti2T30XuQAs7aGEHLWyKjIzUDz/8IOnfHoFW48aNU7ly5eSc0w033OB9YJtSj+3bt6tr167KkyePevfuHXI1S6SNFnbQwg5a2EELW+hhBy3soEX2Y5/PDlrYQQtb6AHkLgywI1dJPMTu9/vlnNNll12mnTt3Skp+Y5R4eD1v3ry6/fbb9cQTT3jP0bt376x+OznO6Q4yvP76695yr7zySpa+5tyKFnbQwg5a2EIPO2hhBy3soIUdtLCFHlkn8VXqEx/LuO++++ScU0REhP74449kl0ls8+bNKlSokMqUKaNjx45l7AvOxWhhBy3soIVdwR/WBlx77bVyzqlQoUJavny5t1xqPvnkEznn1KJFC7455TTRwg5a2EELO2hhCz3soIUdtMhe7PPZQQs7aGELPYDcgwF25DrHjh3T77//rlatWnnD5wMHDkxx+eSG17t27aoFCxZIksaPH+89zyOPPJJVbyPHOd1BhpEjRypPnjxyzqlZs2YhywaWx6mhhR20sIMWttDDDlrYQQs7aGEHLWyhhx0JCQm68sorFRYWphtuuEHx8fFpfggb6Pftt9/qyJEjklj3GYEWdtDCDlrYsnPnTpUvX1558+bVoEGDJCX9kDdYoMWxY8f00EMP6dChQyG34/TRwg5a2EELO2hhCz3soIUdtLCDfT47aGEHLWyhB5Cz+H1ALiLJFxER4atevbr333Xq1PE98cQT3n8HS0hI8P3555++AQMG+H755Rdfnjx5fLfeequvd+/evgsvvNDn8/l8d955p2/06NE+55zvlVde8Y0YMSJr31QOIMnnnPP5fD7fp59+6nvrrbd8P//8s8/n8/lGjx7te+CBB3w+38n17fP5fH7/yb96XnvtNd+gQYN8cXFxvvLly/vKlSvnK168uG/evHm+tWvXesvGx8dn8TvKuWhhBy3soIUt9LCDFnbQwg5a2EELW+hhS2xsrG/Xrl2+hIQEX6lSpXx+v99b5ykJ9OvQoYOvUKFCvri4uDQfg7TRwg5a2EELW6Kionw7d+70nThxwle6dGmfz+fzhYWFpbi8c847xv7qq6/6ihQp4ouLi/Ma4fTRwg5a2EELO2hhCz3soIUdtLCDfT47aGEHLWyhB5DDZOm4PJDJAmdMfffddzrnnHMUFhamgQMHKjY2NsmZUWldeV369wyrffv2acCAAfL7/WrYsKH39SL4V0JCgqZOnZruq/C99tpryps3r7ds/vz5vSvdO+dUs2ZNvfrqqyGPR/rQwg5a2EELW+hhBy3soIUdtLCDFrbQw47jx4+rVatWcs6pS5cup/z4wLGO4KuOcQWy00MLO2hhBy1s2bJli0qUKCG/369JkyZJOrVtbmDdBz8mISGBJqeBFnbQwg5a2EELW+hhBy3soIUd7PPZQQs7aGELPYCchQF25BrBG4uuXbt6Q+nJDZsHhtfbtGnjLXfHHXfo119/Tfb5JOnLL7/0PmgfN25c5r2RHGratGlq3LhxugcZwsPD5ZxTyZIl1b17d82dO1dr167Vp59+qj59+njP88wzz2TH28nRaGEHLeyghS30sIMWdtDCDlrYQQtb6GFLYB3XqVNHf//9d7oek/g4x6pVq7RkyRL99NNP+vnnn3X8+HEdP35cEicUnApa2EELO2hhS/v27b0PbQNfg52WxD2io6O1f/9+HT16VAcPHgy5jx7pRws7aGEHLeyghS30sIMWdtDCDvb57KCFHbSwhR5AzsEAO3KdDz74wPsg/Omnn5YUevZsYHi9bdu2cs7J7/eradOmWrNmjfccwRulwEbnwIEDKl26tJxzuuWWW5Isd7bbtGmTN6AwZswY7/bUBhkaNmyoUaNGJXmuI0eO6OWXX/ZOLpg6dWqWvIfcghZ20MIOWthCDztoYQct7KCFHbSwhR62zJ49W1WqVJFzTsOGDVNMTIx3X3LHKgKN4uPj9euvv2rAgAEqWbKk8ufP7x1DadOmjR599FHt2LFD0r/fcofU0cIOWthBCxsC6/qFF15Qnjx5dN5552nevHlpPi7QIyEhQRs2bNCLL76oli1bqkSJEqpcubIqVqyoQYMG6dtvv/UeQ4/U0cIOWthBCztoYQs97KCFHbSwh30+O2hhBy1soQeQczDAjlzl0KFDuuOOO5QvXz4VKVJE06dPlxT6lVB//PGH2rVrJ+ec96G6c06vvPKK9zyJz5SKi4vTpEmTvK8/v+2220KeFyctXbpU7777rvffqQ0yNGrUKGTZ4A17fHy81q9fr0aNGiksLEyDBw/Oktefm9DCDlrYQQtb6GEHLeyghR20sIMWttDDlueff947pvHaa69p9+7d3n3JnZh/4sQJDRs2TBdccIH3uOrVq+uCCy5Q/vz5FRYW5rXbtGmTJA7Cpxct7KCFHbSwY+vWrWratKmcc2rXrp2WLl2qEydOSEp6fDu4x8iRI72rXAb+KVOmjHdRmGLFimn48OFJHouU0cIOWthBCztoYQs97KCFHbSwhX0+O2hhBy1soQeQMzDAjlwl+Crp3bt3D7kv8fB63rx51aVLFz3wwAPehufFF1/0lg/eWG3btk233HKLt9zYsWOz7D3lVKcyyJDSTmDr1q3lnFP79u0VFxfHhv800cIOWthBC1voYQct7KCFHbSwgxa20CP7BK/PRx55xDtWce+992r69Okh6zFwbOPEiRMaMGCAypYt6y3/8ccfa//+/ZKkNWvW6JVXXlGDBg3knFPNmjW1ZcuWkOdAUrSwgxZ20MKmNWvWeOu3efPmev/9970rhgUEf2A7cOBAVahQwesxfvx4zZgxQ7t27dLo0aPVqVMn774hQ4Z4z0GPtNHCDlrYQQs7aGELPeyghR20yH7s89lBCztoYQs9gJyFAXbkOsuWLVOjRo306aeferclN7zetWtXLViwQAkJCSFnXT355JM6cOCA99iVK1fqzjvv9O6/5JJLtGzZsmx4ZznL6Q4yJCQkKD4+XpGRkTrvvPMUHh6uAQMGpPkzkDJa2EELO2hhCz3soIUdtLCDFnbQwhZ6ZK/gg+zPPvusihUr5n1r3KOPPhqybHx8vIYPHx7yga1zLuTqYpIUExOjhQsXqkWLFnLO6aabbtLBgwez5P3kZLSwgxZ20MKm1atXex+0lihRQqVKldKsWbNClomLi9OQIUNCPrAtXrx4knW9adMmvfDCCyGDQEg/WthBCztoYQctbKGHHbSwgxbZj30+O2hhBy1soQeQczDAjlxpx44d3llQKQ2vz58/31s+KipKgwcP9jZCbdq0UefOnXXNNdeoSZMm3u01atTQW2+9lV1vK0caPny48ufPn65BhuD/Hjp0qLfee/TooR9++EHjx4/XrFmztGHDBm85rtCXfrSwgxZ20MIWethBCztoYQct7KCFLfTIPsHrZvr06erVq5cuuOACHT58WNK/V35Zvny5LrroIjnnFBYWprvuustb94MGDfKeI7D8t99+q/Lly6tq1ar6448/svAd5Vy0sIMWdtDCps2bN6tfv36qWbOmSpUqpaioKEn/rt8ZM2aocePGcs4pIiJC9erVk3NOZcuW1cqVK0OWjYqK0sCBA+Wc01VXXaV9+/Zx1bFTQAs7aGEHLeyghS30sIMWdtAi+7HPZwct7KCFLfQAcgYG2JGrnThxQr/99psuu+yykOH1BQsWeMsENjDr1q3T5ZdfHnI2VfA/F1xwgUaNGpXkcUjZ/v37VapUKTnn1KxZs3QPMowdOzZk3ZctW1YRERHef5933nl6/fXXU3wuJEULO2hhBy1soYcdtLCDFnbQwg5a2EKP7Be8buLj472D8idOnPBuHzJkiLdux40bJ0l69dVXvdueeOKJkOfcuXOn6tevL+echg0blgXvIneghR20sIMWNh07dkw7duzQsWPHJIX26N27t7fuP/zwQ+3Zs8e7MEzZsmW1Zs0aSf9+CPzjjz8qPDxcERERp/StpRxbP4kWdtDCDlrYQQtb6GEHLeygRfazsM8X6H+2XwSDFnbQwhZ6APYxwI5cLSYmRtddd52ccypYsGCKw+sBPXv29D4sv+mmm3T55ZerYcOGev755zV37lxvueS+Aj21/z6bRUZG6uKLL9bo0aO921IbZBg/frz3S8C5556rO+64Q4sWLdLKlSv1xRdfqFevXt79gwcPzqq3kSvQwg5a2EELW+hhBy3soIUdtLCDFrbQw57AMYn4+HgdOXLE+2a5jh07egfmY2JiUj0I361bNznn9Nxzz2X5689NaGEHLeyghS3B2+jly5eraNGics6pT58+3u2RkZHJDvtIJz/wrV+/vsLCwjR79uxUf9bSpUs1adIk7785hh6KFnbQwg5a2EELW+hhBy3soIUdWbnPt2zZMvXr18876YDh0FC0sIMWttADsIUBduR6S5YsUZkyZXTDDTdo4cKF3u3BOxKxsbGS/j2D6tJLL/VuC3x1SABXfjt1Bw8e9P49vYMMbdq00bhx40LOepNO9njppZe85T7++OPMffG5DC3soIUdtLCFHnbQwg5a2EELO2hhCz3s2r9/v0qWLCnnnB577LGQ+2JjY5M9CL9jxw6de+65cs7pxRdfzI6XnSvRwg5a2EELW/766y/lz59f4eHheu+99yT9ewx91apVyQ77LFq0SPny5ZNzTt9++22Kz71ixQrv4jHdu3f3bmfYJ3m0sIMWdtDCDlrYQg87aGEHLezIzH2+FStWqE+fPnLOKU+ePFqyZIkkhkNTQgs7aGELPYDsxwA7zgrbtm3TokWLvP9O6YrpHTt2lHNOderU8TYYyW04Asvv27dPa9as0ZNPPqlevXqpc+fO6ty5s4YNG6ZffvlFUVFRmfWWcqT0DjJcfPHFmjx5snd/4q90Wbt2rerVqyfnnAYNGpQ1Lz6XoYUdtLCDFrbQww5a2EELO2hhBy1soYc90dHRqlatmvLmzat3331XknT8+HHv/sQH4QcOHKgvv/xS5cqVU8mSJfXTTz95yyY+lsIJ/qeGFnbQwg5a2DJ79mw551S8eHH99ddfkkLXY+JhnyVLlmjixIkqWLCgGjRooB07diT7vCtWrFCvXr1UvHhxr2WvXr28+xn2SYoWdtDCDlrYQQtb6GEHLeyghR0Zuc8XLNAicKV955yKFSvGFY5TQQs7aGELPYDsxwA7zjop7TicOHFCrVq1knNOl19+ueLj41P9oOO3337TLbfconPOOcfb2AT/4/f71a1bN64Wl4L0DjIE9wr+9zZt2sg5p7Zt26bZCqmjhR20sIMWttDDDlrYQQs7aGEHLWyhR/aLj4/XwYMHveMWAwYMSHa52NhYvfbaa16jcuXKybmTV8mPiYmRFNpm1qxZ2rJliyQOtKcXLeyghR20sCUhIUHz5s2TcyevCpbSB7DBwz4lSpRQ9erV5ZzTTTfdpGPHjiVZPvCBbbFixeScU9WqVeX3++WcU+/evUN+Pk6ihR20sIMWdtDCFnrYQQs7aGFHZu3zJW5x7rnnqnnz5gyHpoIWdtDCFnoANjDADvy/Dz/80NvYjB49OsXl4uLiNGHCBEVERHg7JYUKFVKpUqV0xRVXqGnTpmrWrJmccwoLC1PBggX1zDPPZOE7sS94w53eQYZgCxcuVKVKleSc0+OPP54lrzm3ooUdtLCDFrbQww5a2EELO2hhBy1soYcNgfX73HPPyTmnli1bel+NnVhsbKxGjhzptapVq5ZWrlzp3Rfw/fffq3z58ipfvrw2btyY6e8ht6CFHbSwgxb2xMXFeUM8ffr0SfHbRVetWqWLL77Y63Huuecme9JA4g9s69evr++//15vv/02wz5poIUdtLCDFnbQwhZ62EELO2hhQ0bt8504ccJbLrkWs2bN0sqVK3XllVd6w6HLly+XxDdzBdDCDlrYQg/ABgbYcdYLbJAee+wx5cmTRwULFtTs2bOTXfbgwYN6+eWXvQ2Sc07VqlXTRx995H391NGjR3Xs2DGNHz9et9xyi7fT0rdv36x6SznGm2++ecqDDLGxsd4vD845vf/++1n5knMtWthBCztoYQs97KCFHbSwgxZ20MIWetgwa9YsVahQQc45jRgxIuRKYsEdYmNjNWzYMJUrV05ffvmlpNAPbL/55hvVr19fefLkkXPOO1mfD2bTjxZ20MIOWtiQkJCgEydOaOjQofL7/Tr//PO1cOHCFJdftWqVGjRooAIFCmjGjBmS0v7AdubMmd4y48aN846bP/roo5n75nIYWthBCztoYQctbKGHHbSwgxb2nMk+X/BgZ3ItZsyY4bVYt26drrjiCjnndM4552jt2rVJfsbZjhZ20MIWegDZiwF2QNLGjRtVpkwZOed0xRVXpLhc8FeClC1bVl26dNGuXbtSXH7Tpk16+eWXvZ2WQYMGZcbLz3ESEhJ08OBBb720b98+XYMMkvTuu+96De68886sesm5Fi3soIUdtLCFHnbQwg5a2EELO2hhCz3sGTZsmLdeX3vtNe3Zs8e7L3gA9MSJE1q7dm2Sr8v+5ptv1KBBA/n9fpUpU0bdunXTtm3bQh7PV56mDy3soIUdtLBj69ataty4sZxzateunZYuXeqtu8Tb73Xr1umXX37R8ePHQ24PfGBbtGjRkA9sg6+Wf+LECY0ePdr7XWHMmDGZ/+ZyGFrYQQs7aGEHLWyhhx20sIMWtpzpPl96WgSWa9mypZxzuvnmm7V///7MfWM5EC3soIUt9ACyDwPsOKsFPjz/4osvVLx4cYWFhXlX50n8wfqUKVO8jVXlypXVr18/7du3T1LSD0CCd3qio6P1xhtveDst48aNy/T3lVMsW7ZM11xzjd5///10DTK8//77XoMrr7xSy5Ytk8RXqmQEWthBCztoYQs97KCFHbSwgxZ20MIWemS/4HU3YMAAb/327NlTP/zwQ7qe45tvvtH555/vXdXYOaeSJUuqYsWKuuCCC9S/f39t375dEgOiqaGFHbSwgxY2rVmzRuXLl5dzTi1atNCkSZO0e/duSWlfFSzx1cbq1asXcrWxYLt27VLnzp0VHh6ujh076vDhw5nyfnIyWthBCztoYQctbKGHHbSwgxbZLyP2+VasWKGePXt6Q6GptYiLi9Mrr7wi55yqV6+uv//+WxJXN5ZoYQktbKEHkP0YYAck3XLLLXLOqVChQt4H5MH+/PNPlShRQs45lSpVSr1799bBgwclpe+D9P3796tfv37y+/1q06aNVq5cmeHvIac6dOjQKQ8yXHLJJfrhhx9SPEs6WOA+NvZpo4UdtLCDFrbQww5a2EELO2hhBy1soUf2Cx7YfPrpp5UnTx75/X6VLFlSd999t+bPn6/o6GhvmeB1+e2336pBgwbeYOg555yjli1b6r///a8uvPBCVaxYUc451alTR5s2bZLECQepoYUdtLCDFjatXr1a5513npxzKleunC6//HL98MMPqX4baeAD20KFCsk5p0aNGmn27NmKiYlJ8TFDhw6Vc05hYWH6/fffM+Ot5Hi0sIMWdtDCDlrYQg87aGEHLbLfqe7zBUvcok6dOlq0aFGyywf2FRctWqS8efPKOaehQ4dmzpvKoWhhBy1soQeQvRhgx1nvwIEDatSokZxz6tSpk2JiYrwPMuLj4xUbG6uBAwcqf/78cs7p6quv1t69e7370+vnn39WlSpV5JzTe++9lxlvJUdLbdjgvffeCxlk+Pbbb5N8zYokzZ8/X9OmTdOQIUP0+uuva968edqyZYt3Px9QpQ8t7KCFHbSwhR520MIOWthBCztoYQs9slfwQfgPP/xQ119/vbfOhw8f7q3vxIOh9evX975R7pprrtH69eu9rzXdv3+/fvnlF7Vo0ULOOTVs2FA7duzI2jeWA9HCDlrYQQubNm3apDvvvFNVq1aVc07ly5fXu+++m+z2NjIyUj179lSRIkW8dvfdd593f+Kr3weeY8yYMd7y06dPz9w3lIPRwg5a2EELO2hhCz3soIUdtMh+6d3nCxa4Cn7gisbOOVWpUkXbtm2TpGSvbCxJP/74o7f8kCFDMucN5WC0sIMWttADyD4MsAM6uSPinNPjjz+e5L6jR4+qfv36cs6pQoUK2rx5s6TT+2C8f//+cs6pRo0afGCSTukZZPjxxx/1yCOPyDmnfPnyecvny5dPl156qcaNG+cty1cFnz5a2EELO2hhCz3soIUdtLCDFnbQwhZ6ZJ3g4xjbtm3Td999p2HDhuno0aOSQtfdN998owYNGsjv96tw4cLq06dPyP3BQ6Q///yzqlevrrx582rkyJFJ7kdStLCDFnbQwqYDBw7op59+Uu/evfXwww97VxALXoeRkZEhH9iWL1/e21a/9NJL3nKJj6dv3bpVV111lbdNnzlzZta8qRyKFnbQwg5a2EELW+hhBy3soEX2S2ufL/j+wFBosWLF5JxTzZo1VaNGDTnnVLt2be3evVvSv/uJgY67du3S/fff713ZeMSIESH34yRa2EELW+gBZA8G2IH/t2XLFu8sqOANwzfffOPtbATOfEruA/HUNiaBjdjcuXNVrFgxVaxYUcuWLcvIl58rpWeQ4X//+58aN24cstz111+va6+9VmXKlEn2rDWuynfqaGEHLeyghS30sIMWdtDCDlrYQQtb6JH1Ujp2Ebzev/nmG51//vneQfSePXt6x0GSOx6yd+9eNW/eXM45dezYMXNeeC5ECztoYQctbAtcOSz4CmKJh3waNGigb775Rs8++6y3jX7xxReTPNfevXs1atQobyioatWq3reeIm20sIMWdtDCDlrYQg87aGEHLbJPSvt8wS0SD4XWr19fM2fO1IIFC9SoUSNvOHTr1q0hz7Fr1y699dZbqlKlipxzKl26tDZt2pSp7ycno4UdtLCFHkDWY4AdSMP48eO9nZKvv/462WUCH47v27fPO/MqOQcOHNA555yjm266KVNea27y1ltvKSwsLNVBhueff16VKlXy+gwaNEjSv784/PLLL3r44YdT3alE2mhhBy3soIUt9LCDFnbQwg5a2EELW+hhR/DA/7fffqsGDRooT548cs6pXbt2qQ6GBg7o9+zZU845tWrVSocPH86aF54L0cIOWthBi+wX/OFtcI/IyEj17NkzZMhn5syZOnHihI4fP67nnnvO20Y//vjjWrp0qeLj47VkyRI99dRTqlatmveB7fvvv5/k+ZEULeyghR20sIMWttDDDlrYQQubgrskNxQ6Y8YM71jgokWLvOHQmjVr6v3339fcuXP1888/q0ePHt5QaIkSJfS///1PEi1OBS3soIUt9AAyFwPsQBrGjBnjnS27fft2ScmfcbV27VrVrVtXDz/8sA4ePJjk/vj4eB05ckQffvhhyG0pPd/Z7ODBg94O4uWXX57sIMMHH3ygc88919tZdO7k13itX78+yXONGDHC+wXg+++/z8q3kuPRwg5a2EELW+hhBy3soIUdtLCDFrbQw47E30BXr149b32XLl1av/32m6TkB0MD9u7dqwsuuEDOOXXo0CHTX3NuRQs7aGEHLewKfGCbeMgneHseHR2t4cOHe80qVqyo2rVrK3/+/CpUqJC37R4wYIA2b96cje8mZ6OFHbSwgxZ20MIWethBCztoYUdkZKT69OmTagtJWrJkiZo2bSrnnPLnzy/nnPx+v8LDw+WcU8mSJdW/f39t2LAhm95JzkcLO2hhCz2AzMEAO5CGjz/+WM45FS5cWMuXL09xuR9//NHbaUlpiD1Y4IOVwAcxmzdv1uTJkzPuhedwS5Ys0fXXX69p06Z5G/vAwP+RI0fUuXNnb30/+eSTuuyyy+ScU5kyZbRmzZqQ5bdv364bb7xRYWFhGjZsWPa8oRyMFnbQwg5a2EIPO2hhBy3soIUdtLCFHtkvpcHQsmXLqnDhwipXrpz++eefFB8fOK6xevVq72pj3bp144oxp4EWdtDCDlrYtWrVKt15550qVapUyAe2wV+nHWz8+PEqXLiwIiIiQk5MK1WqlJ555hmtW7cui99B7kELO2hhBy3soIUt9LCDFnbQwo6dO3eqa9euKlKkSLpa7N+/X9dff70qVKgQ0qJs2bJ65ZVXGAo9A7Swgxa20APIPAywA2n4+eefFR4ervDwcM2YMSPVZT/88ENvo/PQQw+lOcQe+CBm+/bt6tmzp/x+v/7zn/9k2GvP6aKiopLd2E+ZMsVbz0899ZQkac2aNWrbtq23wU880PDUU095v0QcP36cD6tOES3soIUdtLCFHnbQwg5a2EELO2hhCz2yT3KDoX6/X0WLFlWfPn108cUXq1mzZik+PjAYeuLECV155ZXeyQULFy7M9Nee29DCDlrYQQvbduzYoapVq8o5p8aNG6f6gW3AvHnz9MILL+iiiy7SNddcoy5duujPP/9UVFRUFr3q3IkWdtDCDlrYQQtb6GEHLeyghS0DBgyQc07169fXrFmzUmwRvL83c+ZMjRgxQo8++qiGDx+eZCA0eN8S6UcLO2hhCz2AzMEAO5AOgQ86brzxRu3duzfJ/cEblMAV251z6t27tw4cOJDscwYes23bNvXs2VOVKlXyHrd06dJMeR85XWCd9evXz/ulYPXq1d59q1atUrt27ZIMNEjSRx99JOecmjdvni2vPbehhR20sIMWttDDDlrYQQs7aGEHLWyhR9ZI6arGRYsW1YABAxQdHa0OHToob968Wrx4cZLHBw7Ax8bGqmfPnnLOKV++fLrrrru0c+fOdP9s0MISWthBi5xhyZIlat26tb777rtUh3xSWqeB2wMnnCVejhbpRws7aGEHLeyghS30sIMWdtAi+wWvo+eff17ffPNNmicSpHbhirQuakGTlNHCDlrYQg8gczHADqQisFEYN26cihcvrmrVqunrr79OdmMRuC0uLk633XabN4w+ePDgJBuuxMPr5cuX9z6I+eqrrzL5XeVcgfV26aWXyjmntm3bJlkm8UDD+vXrJUl33HGHnHPq2LFjVr7kXIsWdtDCDlrYQg87aGEHLeyghR20sIUeWeu7774LGQzt37+/N/j5yCOPyO/3a9iwYTp27FiSx8bGxur+++/3vjK1Ro0amj17dpLl4uLiFBcXl+JxEZxECztoYQct7Dt69GiaH9gGi4+P99bt8ePHQ+7bsGGDVqxYoTVr1mj79u1JHofU0cIOWthBCztoYQs97KCFHbTIfsHr/1TWU/C+W2xsrPfvx48f188//6ypU6dqwoQJmjp1qg4dOqSYmJhT/hlnG1rYQQtb6AFkHgbYgXTYuXOnLrvsMjnn1Lp165ArpAdvbDZv3qxhw4apRIkScs6pWrVqGjNmjLeBCV4+8fB6oUKFGF5Pp7vuukvOOf3nP/+RFLqRl0IHGsqUKaP33ntPDRs2lHNOw4YNk8TGPqPQwg5a2EELW+hhBy3soIUdtLCDFrbQI/P9+OOPqlChgiIiIrzB0OB1NnXqVO/E/BdeeEF//PGHJGn9+vX6+eef1aZNG+/+MmXK6LPPPgt5/iVLlujTTz/VjTfeqMsvv1zXXXedevXqpVmzZmn//v2S/r1K8tmOFnbQwg5a5G7B6/bDDz/Ufffdp4iICIWFhalQoUIqWLCg+vTpoy+++CLZxyDj0MIOWthBCztoYQs97KCFHbSwI3iw9NVXX9UNN9zg7RMG/mnevLn69OnjnVhAi8xBCztoYQs9gJQxwA6k0/r161W9enXvKnCLFi0KucLPli1bNGzYMBUvXlzOOZ133nmaMGGCDh486C1zKsPrXOknZf3795dzTueee652796d7DKrVq1S27Zt5ZxTwYIF5ZxTlSpVkpzpfLpnyeEkWthBCztoYQs97KCFHbSwgxZ20MIWemS+9evXeyffP/roo966CV5fTzzxhHfwvFSpUmrRooVKliypsmXLeuu9fv36IR/EStLEiRNVp04dFStWLMlB+MqVK+uGG27Qli1bJHEQXqKFJbSwgxa5V3DDu+++W+XKlQtpUKhQITnnFBYWpiJFimj48OHe8vTIWLSwgxZ20MIOWthCDztoYQct7Ahu0aVLF+XPnz9kX7F8+fLy+/3ebY0aNdKmTZsk0SKj0cIOWthCDyB1DLADp2DVqlWqXLmynHNq3Lix3nzzTe3YsUOHDx9OMrz+3nvv6dChQ95jAx+0nOrw+ty5c/XOO+9kzRs0LrBefv/9d1WvXl3FihXTpEmTUtxgr1q1ShdffLG30Z85c6akfzfwgV8SoqOjtWLFCkkMNKQXLeyghR20sIUedtDCDlrYQQs7aGELPbLWqlWr9PTTT3vrJLDegtfRU089pdKlSycZ8ixXrpz69u2rX3/9NeQ5R44cGbJc7dq11aFDB/Xo0UPnnXeeypQpI+ecatWqpY0bN4b83LMZLeyghR20yH2C1+X111/vDfQ459S7d2+NHj1ac+bM0dChQ3Xttdd6nZ5++mnvcWzHMwYt7KCFHbSwgxa20MMOWthBCzuCW1x33XVyzilPnjwqWrSonnnmGf3666/avn27fv/9dw0dOlTnn3++nHM655xztHnzZkm0yCi0sIMWttADSBsD7MApWrt2rVq2bCnnnPLnz6+aNWvqP//5T6YMry9cuFCdOnWSc049evTImjeYAxw8eNBbL61atdLy5ctTXDYyMlJXXHGF3nnnnZCz2oIHGWrVqiXnnBYtWpTprz23oYUdtLCDFrbQww5a2EELO2hhBy1soUfWSzygGfzfP//8s95++2098MAD6tevn15++WVt3LhRR48eDXnM66+/7n0o27BhQ/Xr10+HDh3yWmzdulVTp05V8+bNvcHRbdu2SeJb6ILRwg5a2EGLnC94HXbp0kXOOeXLl0+tWrXSlClTkiz/zz//6MUXX/Savfnmm1n5cnM1WthBCztoYQctbKGHHbSwgxY2de/e3WvRtm1bTZ8+PckyMTExWrRokTfrc/nll2vv3r3Z8GpzN1rYQQtb6AGkjAF24DRs27ZNjz32mBo3bhxyRm3dunUzbHh9wYIF3gf2gX8effTRrHmDOcCGDRtUvXp1OefUtm1b/frrr94HU4k/VDp06JBiYmKSPEdUVJTX0DmnihUr6sCBA3wodYpoYQct7KCFLfSwgxZ20MIOWthBC1vokf3SurJL8P2fffaZt55btmypd999V7GxsZJODpoG1nlCQoL+/vtvNWvWTM453XnnnTp8+HCS5w5uRC9aWEILO2iRM40cOVL58uVTnjx51K5dO+/bU6STzYJPToiOjtaQIUPknFODBg30119/JXk+1v/po4UdtLCDFnbQwhZ62EELO2hhx4cffqiyZcsqLCxMrVu3TtIisV9++UXnnnuuChUqpHHjxiW5P3ELvpUr/WhhBy1soQeQOgbYgdMUHR2tf/75R/3791f79u1Vs2ZNjR8/PsOG1zt37ux9sFKoUCE553TVVVeFPP/ZbvXq1apQoYKcc6pfv76eeeYZrV27Nt2PHz16dMggw+TJkzPx1eZutLCDFnbQwhZ62EELO2hhBy3soIUt9LAleMAz2ObNm9W2bVs551SrVi2988473kHz5A7AJyQk6LPPPlO5cuV0zjnnJLkyfnIH3IOvrg9aWEILO2hhX0xMjK6//no551S8eHF9+eWX3n0pDexERkbqsssuk3NO77zzTsh9gRZbtmzRqlWrJPG12ulFCztoYQct7KCFLfSwgxZ20MKW++67zzv+9+mnn3q3p9Ti8OHDevzxx+Wc04033qhjx4559wVabNq0SWPHjk1yO1JHCztoYQs9gNQxwA5kgKNHj2rHjh2KiorybjuT4fXbbrvN23gFHuec08SJE7PmDeUga9euVevWrRUeHi7nnEqUKKHXX3/d27lLy5NPPinnnKZOnerdxhnOp4cWdtDCDlrYQg87aGEHLeyghR20sIUe9i1atEglSpSQc0533XWXN8iZ2nrevXu3rrjiCjnnkv2KbUkaOHCg7r333kx5zbkVLeyghR20sGPWrFnece6hQ4d6t6e1XR44cKCcc/rll18khZ4wsHHjRt1xxx0qXbq0fvzxx8x54bkQLeyghR20sIMWttDDDlrYQQs71q1bpzx58sg5pz59+ni3p9Xi119/Vb58+fTtt99KOnlSQuBCkhs3btQDDzwg55xuuOGGTHvtuQ0t7KCFLfQA0sYAO3AGUtqgZNTw+oABA/Tf//5Xfr9f5cqV099//515byYH2759u4YOHarmzZvLOaeePXvqwIEDqT4m+OyzyMhI798ZZDgztLCDFnbQwhZ62EELO2hhBy3soIUt9LDt2WeflXNOlSpV0oYNGySl70ph06ZN0xNPPOH99w8//OB1ffbZZ1W6dGk55/TQQw9lxsvOlWhhBy3soIUdkydPlnNOZcqU0YIFCySl3iJw3759+7R06VJJ0pEjR/Tyyy9rzJgxOnr0qP773/96x94bNWqkmJgYtvXpQAs7aGEHLeyghS30sIMWdtDCjmXLlsnv98s5pzFjxkhK/9Xrd+7cKenkxSqHDx+uyy+/XPPmzVPfvn1VtmxZOedUoUIFbzmkjhZ20MIWegBpY4AdyGCBHYkzHV7v2bOnFi5cqFq1anHWVDrExsZq3759mjp1qnbv3i0p7cGExL8UsBOYMWhhBy3soIUt9LCDFnbQwg5a2EELW+hhV+AKYpUqVdLOnTtPaz3Pnj1b5cuXV+XKldW3b1+VKVNG4eHhqlWrlt59991MeNW5Ey3soIUdtLBjzJgxcs6pYsWK2rVr1yk/Pj4+Xn///bfOO+88OefUuHFjlSlTRs45XXDBBVq9enUmvOrciRZ20MIOWthBC1voYQct7KCFHcuWLVO+fPlUuHBhzZ8/X1LoRS3SY8+ePerevbuccypYsKD3DV6NGzfW2rVrJXFMMT1oYQctbKEHkDa/D0CGkeRzzvl27NjhGzZsmO+LL77w7dy501ewYEHf5MmTfddee22SZX0+n2/hwoW+V1991ffJJ5/4fD6f79577/UNHjzYFxER4YuJifH5/X7fpZde6vP5fL74+Pisf2M5QJ48eXwlSpTw3Xzzzb7SpUv7EhISfM45X1xcXMhywevP7w/9KzDQA2eGFnbQwg5a2EIPO2hhBy3soIUdtLCFHvZI8vl8Pl++fPl8Pp/PV758eV/ZsmV9zjnvvvSIj4/31alTx1ezZk3f1q1bfaNGjfLt2bPHV6NGDd+QIUN83bt3D/l5SIoWdtDCDlrYU6BAAZ/P5/Pt3bvXt3PnzlN+vHPO17BhQ1+nTp18Pp/P9/fff/v27Nnja9q0qW/q1Km+c889l2Pn6UQLO2hhBy3soIUt9LCDFnbQwo5ChQr54uLifFFRUb65c+f6fD6fLywsLN2Pl+QrVaqUr0uXLr6yZcv6oqOjfQcOHPDVqVPH99NPP/lq1qzpi4+P55hiOtDCDlrYQg8gbQywAxnIOefbuXOn77HHHvN9/fXXpzW83qNHD9+TTz7pK1OmjO+DDz7wbdu2zZc/f37flVde6fP5QjdkfDCSMr/f74uLi/OFh4f7jh496nvllVd8Pt/J9ccOX9aihR20sIMWttDDDlrYQQs7aGEHLWyhR/YLHNdo0aKFz+c7+YHr999/H3JfWuLj431hYWG+cuXK+Ro2bOjLmzevLz4+3hceHu7r2bOn7/bbb/f5fD7vhAUkjxZ20MIOWthz5ZVX+ho0aOCLi4vz/fDDD77Y2Nh0PzZwPH3r1q2+Xbt2+QoVKuSt82bNmvmqVq3qLZfac+AkWthBCztoYUd2t0AoethBCztoYYMkX7Vq1Xx33nmnz+/3+xYuXOjbvn37KT0+0OLzzz8P6bh//37vwhi0SBst7KCFLfQA0iljL+gOYMeOHapdu7accypevLi++uqrkPuDv7ZjwYIFuu222+Sck3NODzzwgDZt2uQt16FDB/n9ft14442KjY0N+frz4Of59NNP9eyzz2byO8tZTpw4IUmKjo5W06ZN5ZxT3759s/lVnZ1oYQct7KCFLfSwgxZ20MIOWthBC1voYcf69et14YUXyjmnAQMG6MiRI+l6XPAxjqFDh6pUqVJyzil//vxyzqly5cr6559/JCX/tarBj8dJtLCDFnbQwo4jR46oW7ducs6pWbNmWrJkSboeFzgOvnnzZvXo0UOlS5eWc06VKlXyjqsPGjTIWz7QIyEhQYcOHdIPP/yQ5LnOdrSwgxZ20MKOrG6B1NHDDlrYQQtbPvroI+XJk0fOOb366quKiYnx7ktp25pSi9q1a3vHGStWrKgNGzZI+vc4pJR0X499v3/Rwg5a2EIPIHUMsAOZYOnSpapUqZI+++yzkNvTGl4PfOghSbNmzfLuGzFiRIrP8/XXX6t+/fpyzunee+/NpHeUM0VHR6tGjRreenTOpXsHMjXJ/QIRFxeXZCeSg43/ooUdtLCDFrbQww5a2EELO2hhBy1soYcdr776qtdg1KhROnz4sHdfcgfIUxoMrVmzpkaMGKG2bdt6H+Ju3LhRUugHt4HH//TTTxo8eHDmvKkcihZ20MIOWtixceNG1apVS845tWvXTgsWLNDRo0clJb9dDdy2ZcuWkA9sGzVqpBUrVmj8+PFe26efftp7XKDHokWL5JzTbbfdlgXvLmehhR20sIMWdmRVC6QPPeyghR20yH7B6/mpp57y1t/w4cO1Zs2aNB+XXIv169dr+/btatWqlZxzqlatmtatW5fsz/zyyy+9+872kw1oYQctbKEHkD4MsAOZJPHVfE5leF2S/ve//ylfvnw655xzFBkZ6T1H8PN89dVXql+/viIiIuSc09VXX52J7yjn2bBhg7eOK1asqKlTp57xcwZv1I8ePaqPP/5YTzzxhK6++mrdcMMNeuWVV/Tjjz96yzDQcBIt7KCFHbSwhR520MIOWthBCztoYQs9sl/wkOfAgQO9Ho8++qjmzp2b5mOCB0Nr1KihyZMnS5JWrlyp1q1be20DA6LBj//tt9/k9/vlnNMbb7yRCe8uZ6GFHbSwgxY2rVq1SuXLl5dzTvXr19ezzz6rRYsWJVkutQ9s165dK+nkyWzBJyg89dRT3uP37t2r5s2byzmnfPnyac6cOVnzBnMQWthBCztoYUdmtmA49NTRww5a2EGL7Be8/zZgwABv/V199dUaPHhwyMnLUvpaJCQkaPny5d6Jy9WqVdPx48dDrm48bdo0NWjQQEWLFk22+dmIFnbQwhZ6AGljgB3IAqc6vB4TE6NmzZrJOacLL7zQ+/qQ5IbXw8PD5ZzTHXfc4d1/tn+AHmzFihWqXr26Jk2a5N12uusnMMgQHx+v0aNHq2PHjnLOeQ0C/5QqVUpPPPHEGf+83IYWdtDCDlrYQg87aGEHLeyghR20sIUe2S946P+JJ57w1lOlSpXUo0cP7wpkUupXNQ4MhgZERkZ6A6Kvv/56yM/69ddfva9drVOnjl544QUdP348M99mjkALO2hhBy1sWrt2rdq1a6eCBQvKOaciRYpo9+7d3v3p+cA20Cs2NlYvvviinHOaPXu2JOnYsWMaOnSoihQporCwMN18883aunVrFr/LnIEWdtDCDlrYkdktcGroYQct7KBF9gve5xs5cqTq1avn7fctX77cuy89LYKfa8mSJWrbtq1mzpwZ8vM+//xzXXTRRcqXL583p5PcN3udjWhhBy1soQeQOgbYgSy0cOHCVIfXAxuMv//+W5UrV1b+/Pk1atQoSSd3WAISD6//5z//8TZkfO1HUsFnrJ3uYEHwjuNtt93m/aIQ+BCrTZs2uuWWW9SsWTPv6koDBgzIkNefm9DCDlrYQQtb6GEHLeyghR20sIMWttAj+wUfi5gwYYJuvPFG5cmTR7169fJuT+9gaPBykZGRmjBhQsjPCh4MrV+/vt544w0dOnQoM95WjkQLO2hhBy1s2rlzp8aNG6drr71W3333nXf7qQz5BMTGxmrHjh3efwdfJT8iIkILFizIgneUc9HCDlrYQQs7MqtFSp+nJjfcc7aftByMHnbQwg5aZL/gdfXXX39pzJgx3rebJCQkeOtn69ateuCBB9LVQjp5ZfxggaHQsLAwOed02223ad++fZn1tnIkWthBC1voAaSMAXYgiyxatEjXXHNNisPrwYYPH+4t9/PPP4fcx/D6qcuoK9Pv2rVLrVq18to4d/LruxYuXOj9orBp0ya98cYb3kDD22+/fcavPzehhR20sIMWttDDDlrYQQs7aGEHLWyhhw3BB9APHjyoFStWeP8d/PWlzz//vDcYWqNGjRQHQ5OTeDD0tdde8wZDz/YPa4PRwg5a2EELuwLrPz4+3ltPO3fu1IMPPpjuD2wTu//++71t+ZtvvimJBulBCztoYQct7MiMFsESL//RRx9p9OjR3n/TKBQ97KCFHbTIXsmtz+AWe/bs0SOPPKIyZcqku0Xw7YmHQjt16qQDBw5k/BvJBWhhBy1soQeQPAbYgSyydetW7wOM3r17Jzu8Hh8fr5iYGHXo0EF+v1833nhjyI7Gl19+qXr16nnD6127dmV4PZMFNvYbNmxQs2bN5JxT/vz5Va9ePX388cfJPubw4cPq0aOHnHPq3LlzyC8cOH20sIMWdtDCFnrYQQs7aGEHLeyghS30yFjJrYfg4xXvvPOOqlSpckqDoYHb582b5x1XqVevnl577TXv6vus/6RoYQct7KCFfQkJCTpx4oRGjRqlqlWryjmnxo0ba926dZLSN+QzduxYbzD0xhtv9B6LU0MLO2hhBy3syIgWgecJdvjwYY0dO1adO3f2Ot17770Z/vpzG3rYQQs7aGFHYF1//PHHqlmzppxzatiwYZpDocHrnqHQjEELO2hhCz1wtmOAHchCy5Yt0yOPPKKNGzemuMyKFStUoEABOefUr18/73aG17Ne4Czp/fv3q3nz5nLOqWDBgrrssss0a9Ysb7nkPoQaNWqUnHPKly9fqr2RPrSwgxZ20MIWethBCztoYQct7KCFLfTIWlu2bNFVV10l55zKlSuniRMnevelNRg6d+5cbzC0SZMmeu211xQVFSWJYyKngxZ20MIOWthx5MgRb7tcpUoVrVmzRlL6hnxWrlypa665Rn6/X3nz5tW4ceOSXS65bTsnGiRFCztoYQct7DiTFomXiYyM1CeffKKGDRsqb9683lBovnz55JzT8OHDM+U95Cb0sIMWdtDClksvvVTOOZUuXTrNEwlSGwq95ZZbGAo9Q7Swgxa20ANnKwbYgSwW/JW0wQIfZrz00ktyzqlChQpatWqVJGnatGlnNLx+ql8/hX/X2YkTJ3TxxRfLOacCBQrommuu0bx587zlEh80jI2NlSR98sknKlSokEqWLKktW7Zk3QvPhWhhBy3soIUt9LCDFnbQwg5a2EELW+iR9T7//HPvA9ZRo0Z5t5/KYGjVqlU1cOBALViwQAkJCTp27JgkBkRPFS3soIUdtLDjyy+/9IZxvvjiC0lpr8NAj1GjRnkf2N5zzz3e/cHb88BzxcXFac6cOXrvvfeSPA9OooUdtLCDFnacTovEVq1apTfeeEPVq1dX8eLF5ZxT+fLl1aJFC9WrV0/OnfyGrvnz52fCO8hd6GEHLeyghR3bt29XqVKl5JzTU089JSn9Q6GtWrWS3+/nisYZhBZ20MIWeuBsxgA7YMx1110n55zq1q2rEydO6Kuvvjqt4fXEH7Lv2rVL3377baa+9twmPj5e9913n5xzioiIULt27TR37lzv/tSuePHAAw/IOaciRYpo8+bNWfFyczVa2EELO2hhCz3soIUdtLCDFnbQwhZ6ZK3p06fLOaeKFStq8eLFktIeDJ03b543GBr4ULZAgQIqVaqUGjZsqF69emnbtm2SGBA9FbSwgxZ20MKO1atXq2rVqipQoIDefffddD9u8eLFyp8/v5xzat26tf755x9Jya/7Y8eOacCAAWrcuLGcc7r//vsz7PXnJrSwgxZ20MKOU20R2L87cuSItm7dqv/+979q1qyZtx0vVqyYWrdurR9++EFz585Vly5d5Pf71b17d8XExHACQRroYQct7KCFHdHR0br66qu9k8gCF6hILPFQaOvWrb2h0Pr163v7d+mR3AlqoIUltLCFHjibMcAOGPL777+rRIkSCgsL0/vvv69ffvlFderUOaXh9cQ7Jn///bcmTJigGjVqJLmqA1L3+eefq2bNmt7Xen3//ffefakNMixevFiNGjWSc07XXXedjh8/ztc7niFa2EELO2hhCz3soIUdtLCDFnbQwhZ6ZK3ff/9d1apVk3NO//vf/1JcLviqxoHjIX6/X6VLl1anTp3Us2dPXXLJJapUqZKcc6pTp442bdoU8likjhZ20MIOWtixf/9+XXvttXLO6ZJLLvGGPFOzbds278IwpUqV0ogRI3T8+HFJodv0vXv36qeffvIGgcLCwrwPet94441Me085FS3soIUdtLAjPS0Sb3t///133X333apfv76cc962/P7779ekSZMUExMjSfr444+9gdEPPvggS95PTkcPO2hhBy1sGT16tLfOkjuhIHib/Nlnn+miiy7ytsOBf5599llFRUWl+bMCz/XLL79oyZIlkhgODUYLO2hhCz1wtmKAHTBkwoQJ3tmz9957r84//3zv6wTTe+V16eSGZs2aNXrhhRdUvXp176oO+fLlk3NODz/8cFa8nRzv/vvv9zbyEyZM8G5PbjAh+LZnn33We9yIESOy5LXmdrSwgxZ20MIWethBCztoYQct7KCFLfTIes8//3yqB+GTGwytUaOGunXrpo0bN3rLHTp0SL/++qtatGgh55waNWqknTt3ZtXbyBVoYQct7KCFHevWrfNOAujQoUPI+g0WaDJp0iRVqVJFzjk1b95cu3btSrLsH3/8oR49enjPW65cOVWtWlXOOTVu3Fj79u3LzLeUY9HCDlrYQQs7ErfYsGGDpKSfo06cOFEPPPCA95mrc07FixdX79699cUXX4Qsu3btWjVs2FDOOXXu3Dmr3kquQA87aGEHLbJf8DG9Rx991Dsx4K233kp2mcRDoXfccUfIvuKQIUN09OjRFH9eYPv/008/eY9ZtmxZJryznIcWdtDCFnrgbMcAO2BAfHy8jhw5ossuu8wbND/vvPO8gfP0Dq8fOXJEGzZsUPfu3dWkSRNvQ1OpUiVVrVrV+0rbnj17ZtVby7Hmz5/vfRDVq1cv7/a0BhmmTJnirfdrrrlGR44cSfFxSB9a2EELO2hhCz3soIUdtLCDFnbQwhZ6ZK3gK4r179/fW4fvvfdekmWCB0Pr1aunESNGeAM7iY+JzJgxQ5UrV1a+fPk0evRoSbRICy3soIUdtLBp1apVKl++vJxzuvrqq72rFQcEmsTExKhVq1Zy7uSFYf7888+Q5fbu3asPP/xQxYoVk3NORYoUUadOnTRt2jQ1atRIxYsX11tvvaW4uDiukp8CWthBCztoYUfiFidOnJAkHThwQBMnTlSnTp3knPMGfM455xw9/PDDWrZsmXclY0lewx9++EHlypVTvnz5NGbMGEl8i8qpoIcdtLCDFtkveF9twIAB3nDo7t27Q9Zd4qHQTp066dChQ5KkkSNHpjkcGtjfmzVrlresc0533XUXVzb+f7Swgxa20ANnMwbYASP27t2rMmXKKDw8XH6/3/sgJKXh9cQbjp9++kndu3dX9erVvQ2Zc059+/bV5MmT9dhjj6lw4cJq0KCB1qxZI4kPTFIzbdo0hYWFKV++fJo8ebKktAcZvvvuO+8kgVq1aundd99lZzED0MIOWthBC1voYQct7KCFHbSwgxa20CPrBR/H6Nu3r5xzGjZsmKR/P2idM2eOdzyjSpUqeuGFF7wD8Mn12bdvn3cC/2233Zbma4iPj9eWLVsy4u3kaLSwgxZ20MKmyMhIVahQQbNnz05xmcA3quTPn19DhgxRbGysd9+nn36qrl27eh/IdujQwdvuP/zww3LOqW3bttq0aVOmv5ecjhZ20MIOWtixfPlyVaxYUX/++af27dunKVOm6Pzzz1eJEiW89VuyZEnv3z///HNJ8noEtuOxsbFq27atd6LawYMHs+095WT0sIMWdtAi+yUeDv3pp59C7k88FHrrrbfqwIEDIcu8+uqrKQ6HBvYbg4dCixUrpttvv107duzItPeVE9HCDlrYQg+crRhgB4z4559/vK+EClx5/T//+Y+3MxI4EzfxhyHvv/++HnjggZAzoypXrqy+ffvqhx9+kHTyw5LmzZt7H5ZERUVl7ZvLgQIb9erVq6f4QVTwf//4448qVaqUnHMqVKiQevbsmepXsiD9aGEHLeyghS30sIMWdtDCDlrYQQtb6JE9gg/Cz5w5M+S+4MFQ55yuv/567d27V1Lyg6GB4yS33367N/CTmvj4eM2fP1/16tVTnz59zvSt5Hi0sIMWdtDCpsBVJ5O7Etjnn3+umjVryjmn888/X0uWLJEkHT58WD179vSuaFywYEE9+eST3jenjBkzRs45hYWFaf78+Vn3ZnI4WthBCztoYUdsbKymT5+u4sWLewOh4eHhKlCggIYNG6Y333zT+yZs55z3GWpCQoLXb+LEiSpSpIiKFi2qiRMnSuKqxqeLHnbQwg5aZL+Uri78+eefpzoUGvy4xMOhUVFRKQ6Fdu7cWbt27ZL0b6fAvuLZjhZ20MIWeuBsxAA7YMiKFSu8D8TvvPNO78OPY8eOhSy3detWffDBB+rQoUPI4HrLli11//33a8uWLSFXcQhcNahUqVJasWKFJK6+npY333xTzjkVL15cGzZsSHXZb7/9VsWLF/c63HTTTd7Zzuwwnjla2EELO2hhCz3soIUdtLCDFnbQwhZ6ZJ/kDsLPnTvXO5k/LCxMBQoUUGRkpKTUj18cOHBAderUkXNOV111VYrLxcfHa8GCBWrXrp3XcdGiRWf+ZnI4WthBCztoYU9KJ5jFxMSoe/fu3jqbOnWqjh07pvfee8+7KmW+fPnUtWtXTZ8+3Xv8H3/8oQsuuEB+v1/Dhw9P9mdISf+/wPF0WlhCCztoYcvSpUtVuHBhOXfyysQPPfSQFi9eLOnkOvv55591+eWXe11+/PHHkMf36NFDzjlVq1ZNS5cuzY63kKvQww5a2EELeyZOnKjWrVsrb968yQ6FBgQfAwweDh08eLCkUxsKjYqK8k5AwL9oYQctbKEHcjsG2AFjIiMjdd9993kHm4I3MMuXL9fkyZN17rnneldmiIiIUIsWLfTUU09pw4YNOn78uKR/v05q69atateunfx+v+65556QM6uQssjISFWvXl0lSpQIOXgYfGJAbGysPvjgA28DHx4eriuvvFL79++XlPKZcTg1tLCDFnbQwhZ62EELO2hhBy3soIUt9LBj/fr13jquX7++ypUrp7p16+rIkSMhPYIFjplMmzZN5cuXl9/v17PPPhtyX0BgMLRNmzbewfm3337bu/I+/kULO2hhBy3sGj9+vNfmwQcf1Pr163X11Vd7x83LlCmjzz77TNu3bw953NChQ+X3+9WyZUv99ddfqf6MmJgYffrpp95/MyCaPFrYQQs7aJF9VqxYoXvvvVf//POP961ZgX232NhYzZo1K2Q4dMaMGZKkzz77zLtt5MiR2fXycx162EELO2hhy8iRI731ettttyU7FBoQPGcT/Li77rorzaHQgKioKF133XVyzmno0KGZ8p5yKlrYQQtb6IHcjgF2wLgTJ05o48aNevbZZ1W3bl1FRETIOacCBQp4G5dXX3015DHBG5e33nrLW27q1KlZ/fJzrP3793tXuL/44ou1ePHikA+lvv32W/Xr189bt8WLF1enTp28XxQYZMg4tLCDFnbQwhZ62EELO2hhBy3soIUt2dGDgZKU3XnnnapQoYJeeukl1a1bV82aNUtx2eAPdW+66SY5d/KKyPPnz0+ybOLB0EKFCmnMmDE6cuRIpr2XnI4WdtDCDlrY89tvv6lKlSreNvqaa65R0aJF5ZzTOeeco7vvvlurV69O8rhffvnF27aPGjUq5L7g7fShQ4e0ePFitWjRwvugF8mjhR20sIMWtp04cSLJcOjnn3+uIUOGKDw8XE2aNNHKlSslsQ+XFehhBy3soEXWu/POO3X55ZenOhQaEDyL895778k5J7/fL+ecihYtmupQqCS98MIL3rzPZZddluRktrMdLeyghS30QG7GADtg2I4dO3TjjTfq4osv9nZOnHO66KKL1LdvX1100UXebTNnzpR0ciclsKOyatUq1a9fX845de/ePTvfSo60bt06Va5cWc451alTRzfddJN69+6tq6++WiVLlvTWfYMGDTRw4EDvykgMlmQ8WthBCztoYUtW9uCAZOpoYUd2/D0V+DYihKKFHVnZIvjAI9v/5GXX71PBB3zP9m1J8Lr8+eeftXXrVrVt21ZFixbVsmXLUn3sfffd5w2GDhkyRFLo+mQw9NTQwg5a2EELm06cOKFBgwbJOaf8+fN769k5pyuvvFLfffed920pwb8PbdiwQRdeeKGcc+rWrZt3e+Lt+uLFi/XYY4+pWrVqcs4pT548cs7pl19+Oeu324nRwg5a2EGLnCG54dDA1fHvv//+U3ou1vuZo4cdtLCDFlkjeDsbHR2d7scFLoLx119/eX0KFCiQ7FBocscRu3Tpovbt22vx4sVn8vJzFVrYQQtb6IGzAQPsgGHr1q1TeHi4tzFp166dnnzySZ04cULHjh3TvHnzkv36qMCGaNq0aSpRooTCw8M1ZswYSWnvoERGRuq9997L1PeVk6xZs0aNGzdW3rx5Q04iCBxwvO222zR9+nTFxMRISv7sNGSMrG4ReDw79UnRwg5a2JLVPVasWKElS5aw7UkGLezIqhbx8fGKjIzULbfcokmTJmnTpk3effyddRIt7Mjqv6M+/PBDvf322yFfP0+Lf2V1j8jISHXp0iXkw8azvUfiddqzZ0855zRixAhvvQfExcXp4MGDuvvuu+XcySvHXHvttfr999+TPCeDoaeOFnbQwg5a2LRq1SoVLlzY22bXrVtXAwcOTHH548eP63//+58KFCighg0beh/ABp90GRsbq8mTJ6tatWoqUqSInHMqW7asbr31Vv3www8hz8e+379oYQct7KBFznDixAnNnj1b7du39/YDa9eu7R3HSHws/NChQ1q7dq2mT5+uP//8U3v37vWei3V+5uhhBy3soEXWONV1E1h+xowZXpfChQunOhQaHR2tnTt3hjzPhg0bzvSl5zq0sIMWttADuR0D7IBxK1asUM2aNfXGG29o7dq1IffFxsYmOfM2cKBq3759Ov/88+WcU8uWLdN1BcTVq1frjjvukHNOXbp0yZT3kxNt3bpVr732mjp27KgLL7xQ9evX15NPPqmJEyeGLHe2Dx1khcxskfiswsOHDysuLi7JV/DQ+SRa2EELW7Jqm7FmzRr95z//kXNOjz/+uH777bcMe+7cghZ2ZEWLFStW6Nprr/UGha6//npNmDAhQ547N6GFHVn1d9T8+fNVvXp1OefUpk0bjR8/PsOeOzfJqh6RkZHq06ePt//eq1evDHvu3GTy5MneOho6dKjmzZunI0eOaOPGjRo1apQ6dOjg/R1zySWX6Msvvwx5PIOhGYcWdtDCDlrYsXz5chUqVEj33ntvyPBmct9Cs3nzZjVs2FDOOQ0aNEhHjx4Nea5vv/3WOzkh8E+tWrX0ySef6J9//glZdsuWLXrzzTeT3H42o4UdtLCDFjnHxx9/rDJlysi5k1e/P3z4sHdfYD9tw4YNuvvuu3XOOefIOafw8HB16NBBY8eO9Zblm88yBj3soIUdtLAjsB2fNWuWt00uVqxYmkOhbdu2VeHChbVx48Zsed25ES3soIUt9EBOxAA7kAMk/hqQ4ANcyX191Pfff6+ZM2eqSJEiKlmypD755BNJqe+UBIbXAzs/4eHhWr9+fea8oRzu2LFjIf/NGcvZJzNazJw5U6+++qpatWqlpk2bqm7dunrkkUc0ZcoUbxmGS5KihR20sCUzesTHx2v27Nlq3ry5nDv5VcEXXXSR3njjDW8ZeiRFCzsyo8X+/fv13HPPqUuXLsqTJ4/8fr/y5s2rQYMGecvQIila2JGZ+xivv/66mjRporCwMIWHh2vIkCHefbRIXmb0iIyMVO/evb399jx58sg5p969e3vL0ONfTzzxhLeuSpYsqQYNGqhUqVIqWLCgdyXLm2++WV9//XXI4xgMzXi0sIMWdtDCjv3793vfRiqFbrODt6s333yznHOqW7duyBXF4uLi1LdvX9WtW9drWqdOHXXv3l379u1L8vO2b9+ul19+2Vt2+/btmfTOch5a2EELO2iRMwRODggLC9P8+fOT3L9z50517NjR+9auEiVKeCerOedC9rH5vPDM0cMOWthBCxtOZyj06NGjuv76673l77777nRdeBKpo4UdtLCFHsipGGAHcoDAgayUPsxObog98EFI1apVtXr16lSfPzC8XrJkSTnnVKVKFf36668Z/j5ysuB1z1BB9sqMFgkJCdq/f7969uzpncSR+J98+fLpsccey/CfnZPRwg5a2JIV24yYmBjNnz/fu/J34EBkz549M/1n5yS0sCMzWyR+vqlTp6p79+5ei4ceeijTfnZORAs7MvvvqOAPpH7//Xf17duXFqnIzB6Jh9e7deumN9980+vBEPu/gv9/O3jwYFWoUCHk98/ChQurcOHCevXVV7V8+fIkj01rMPRsX7+nghZ20MIOWuRMb731lpxzKl68uGbPni1J2rFjh6ZNm6b27duHNLz99ts1ffp072S2EydOeM+zfft2vfjiiypVqpScO3n1402bNmXLe8qpaGEHLeygRfaaOXOmypcvL7/frwceeEBS0u3xjBkzVLZsWeXJk0d33HGHVqxYoU8++STkqvjPPfectzzDoaePHnbQwg5a2BBY56c7FFqwYEF16tRJCxcuzJ43kIvQwg5a2EIP5GQMsAO5RHJD7M65kK+FSk7i4fWKFSsyvI5cI7VvHQj8AhcdHa3vvvtOV1xxRcjg4ZVXXqm77rpL/fv311VXXeXd/uijj2bVy89VaGEHLWw5na9sTHxw8qWXXlKVKlUUHh4u55y6du2aUS/vrEILO073q0yDD7zv3LlTo0aN8v6eeuGFFzLq5Z1VaGFHRrTYsWOHRo4c6bV44oknMurlnXXS6hG8fUg8vN69e3dFRUVJksaOHcsQezKC1++vv/6qDz/8UIMGDdLAgQM1bdq0JEOhUvoGQ1P6gPZsX9+poYUdtLCDFjlDYL2tX79el19+ucLDw70T+JYtW6YuXbqoZs2acs4pIiJC5513nl5++eWQ5whunXgw9MILL+TbS9OJFnbQwg5aZL9Ag8GDB3v7ah9++GGyywaual+2bFlt3LjRu3337t0aMWKE9/i33norK156rkQPO2hhBy3sCOyrzZ49+7SHQjt27KjFixdnzxvIRWhhBy1soQdyOgbYgVzk2LFjmjFjhs4991z5/X41btxYkZGRkpL/sIPhdeRG0dHR+vvvv73/Tm64JPDn4fDhwxo/frwuuOACOecUHh6uSy65RG+++WbI8rt37/YGr/LmzatJkyZl7pvIJWhhBy1sSU+PtARv1xctWqQ2bdp4Xw/ZsGFDbd68OUNea25HCzsyooUU2uPYsWN6/vnn5ff7Vbt2bS1YsOCMX+fZgBZ2ZFSLxM85fPhw+f1+FSpUSFOmTDnj5zxbnE6P5cuXq1evXt5B43vvvVcHDhwIeY5x48YxxJ6MtK4GFrx+0jMYGmzWrFl644039Pfff+vo0aPp+nlnM1rYQQs7aGFb8Pp/7rnn5JxTtWrV9P777+vTTz9VsWLFvG1zwYIFNXDgQP3yyy8hjw9+juQGQ9etW5el7ymnooUdtLCDFnb88ccfypcvn5xzuuWWW7zbE++LjRo1Ss45lShRIslxvujoaD399NNyzqlu3bppXrFy48aN2r17d8a9iVyEHnbQwg5a2PHdd99l2FBofHx8lnx7cG5FCztoYQs9kJMxwA7kEoENzpw5cxQRESHnQr8WPjGG17NW4KscM2LoBCk7duyYpkyZovDwcN1zzz2pLnvkyBGNGjVKDRo08IZ0H374Yc2fP99bJvgrOPfu3ev9Evfggw9m2nvILWhhBy1sOZUeKQneSZwzZ45uv/1274rfl19+uf788092JNOBFnZkRIuU/P777ypXrpyccxo3blyGPnduRAs7TrdFcn/nJL5t3bp13lfRBwam+bsqdafTY8uWLerevbt30LhNmzY6duyYJCk2NtZbLvEQ+7333psp7yG3OtXB0A0bNuimm26Sc061atXSgw8+qB07dkhif/1M0cIOWthBi+z19ddfe9vhCy+8UD179lT+/Pm9D3Pr16+vOXPmKCYmxntM4pMFGAzNGLSwgxZ20CJ7nThxwvumrHLlymnChAlJlgnsJ+/atUt169aVc06PP/64oqOjQ5ZbsWKF902mw4cPT3GbvWbNGnXs2FHh4eFcIT8RethBCztoYUufPn3knFPRokXVpUuX0x4KDT4mmBgnLqcPLeyghS30QE7GADuQi+zatUuXXXaZnHNq3Lixtm3bJinpRoTh9eyxdOlS3XXXXdq0aVN2v5Rc6dixY/roo49UvXp178DvBx98kOyyMTEx+uCDD9SwYUNvSPf555/Xli1bvGWSG+J54oknvA8R9+7dm2nvJaejhR20sOVUeqQkuMGvv/6qLl26MDB9GmhhR0a0SMtFF10k55w6d+4cchIOQtHCjoxoMX36dM2YMcP778R/Hz311FNyzql48eL6559/MuR151Zn0uO1115T8+bNVaBAARUuXFj9+vXz7gv+MxAXF6fx48d7zx98hUWk7FQHQwN+/vln3XTTTapYsaKcc2rSpIm3n86A6OmhhR20sIMW2WvDhg268sorFRERobx586pkyZLKkyePnHNq1qyZnn32We94R0r7bdu3b9fw4cO9Y+gtW7bU6tWrvfvZ30sfWthBCztoYcOaNWvknFP58uW1b98+SdLmzZuTDG1GRUXpoYce8voEvvk6eJ/upZdeknNO77//frI/KyYmRnfccYe3z/fCCy8wAJQIPeyghR20sGXAgAG64oorzuiKxtLJi148+OCD6tKli+677z59/PHH3uer7POlDy3soIUt9EBOxQA7kAsENhAzZ85UjRo15JzT3XffraioqCTLMrye9RISEhQTE6OyZcvKOadbb701ZCAUGePw4cOqU6eOtyPfpUsXLVmyJGSZwEHbefPmqUWLFt6Q7ssvv+zt+CcnsIPfs2dPOedUv379kCufIBQt7KCFLenpkRoGpjMOLew40xZpOXjwoGrVqiXnnK699lq6pIIWdpxpi2XLlnn7e5999lnIfYGrZzz//POKiIhQqVKltHXr1gx9/bnNmfZYvXq1XnrpJRUsWFDOOf3nP//x7gs+2BsXF6dJkyZp1KhR2rlzZ4a+h9woPYOhiQ+mJyQkeH/37N27V1OnTlXTpk3lnNM555zjnczBB7SnhhZ20MIOWmS/PXv2qGrVqnLOed9y4pzT7bffrtWrV3tXpUxpfQYGQ4sXLy7nnM4991ytXr3a+zaVAHqkjRZ20MIOWtixatUqffXVV5KkhQsXql69epo4caKk0ON/K1eu9L5V7q677vJuD2zPjx8/rh9//NG7PbljHt9//72cc+rfv7/3DSsIRQ87aGEHLbJf8L5bYJ/uVIdCA5+pLlq0SFWqVPG2/YELjFx66aXavHlzkp+HULSwgxa20AM5HQPsQC5yww03eBubpUuXSgo9QMXwevb65ZdfVKBAATnndPPNNzPEngmWLl2qc845R9dee61WrlwZcl/gz0J8fLyuu+46b0h36NCh2rNnT4rPGbwD37FjRznn1LRpU+3fv5/Bq1TQwg5a2JJaj9QwMJ3xaGHH6bZISeDvttjYWL3//vsqXbq0nHPq1avXGT93bkcLO86kxcGDB/Xf//7XO7j47rvvhlxxKTo6Wp07d5ZzThERESFX6UPyTqdH8Lbg2LFjmjRpkgoVKiTnnAYMGJDi4xIPnSCphIQEzZkzx/tWh7Suanzw4MFkf7eNj4/X33//rQsvvFDOObVu3dq7Og3ShxZ20MIOWtixfPly7wSyq6++WqNHj07X47Zv364XX3zRO4bunFOJEiVUs2ZNVatWTffcc48+/vhjb3k+uE0bLeyghR20sCOw79a7d285d/IbroNP9A4c25g2bZp3DHDs2LFJHh8QvM4Tf2Pp+vXrOWE5DfSwgxZ20CL7Bc/cBNZneodCA8vv2rVL1apV804+u+6663TRRRepUqVKcs6pWrVqfPtWOtDCDlrYQg/kZAywA7nERx99JOecChQooN69e0s6ucEIbGgYXs9egV8WfvvtN++rIBlizxxbt27VqlWrUrz/8ccfl3NOYWFhuu+++5J8zVpKJkyY4B0Qfu655zLq5eZqtLCDFrak1SMxBqYzDy3sSNwivesxeLngf4+NjdUXX3yhK664wvt76vPPP8+4F5yL0cKOlFqkp8m+ffvUo0cPb5336NFDo0aN0kcffaS77rrLu/3+++/PtNef25xJD+nkiQPDhg1T3rx5Va1aNc2YMSNTXufZYuTIkd4B97FjxyYZDN2zZ4+mTZumiy66SNWqVVORIkV033336cMPPwxZLj4+Xl999ZWqV6+uAgUKaNSoUZLS3xW0sIQWdtDCjsjISL3xxhtas2aNd1tqH7IGBkNLlSol55wqVaqkFi1aaMCAAerSpYsaNWrk/R717LPPeo/jKsdpo4UdtLCDFrbMmDFDNWrUULFixTRmzBgdP35c0r/fkrJnzx517NhRYWFh6t69e5rPt3btWl133XXq2bNnZr/0XIkedtDCDlrYEdgnO3r0qG666aYUh0KDjR07Vs45lSlTRlOmTNGxY8d0+PBhff3112revLmcc2rUqJG2bdsmie13etHCDlrYQg/kJAywA7nEpk2bVLhwYTnn9MUXX4Tcx/C6DcFD7Hnz5pVzTldccQVnMWehjRs3qmnTpvL7/apfv75mzZqVrsf9+eefuvLKKxUWFqZSpUrpm2++yeRXmvvRwg5a2MbAtB0Z2SLxcjQMldIBj8RD0XFxcTp27JiioqIUHR2tbdu2afHixfr+++/VqVMn1a1b1/vgtl+/fiFXoEb60MKO4GHp1atXp+sKrBs2bPC+pSvwT9GiRb1/b9Wqlb788svMfum5UnCP9evXp3hV3cTmz5/vDZu88MILmfkSzwqPPPKIRo4cmWT979q1S0OHDlX16tXlnFP+/Pm9kzUDV8APHgzas2ePOnToIOecbrjhhix+F7kDLeyghR20sCm1fa/Eg6FNmzbVt99+G3KF/HXr1un555/3fp968cUXs+Jl50q0sIMWdtAiex04cEDdu3eXc05NmjTRn3/+6d0XOD7y1FNPeRcTCz7xILG1a9eGnDz+/fffZ/rrz23oYQct7KCFLbGxsd43bxUtWjTVoVBJevPNN70rGCe+gv7ixYvVrFkzOed00003af/+/VnxFnINWthBC1vogZyCAXYgF1myZIl69eoVchvD67YED7EHznBbunRpNr+qs8e0adO8HfGhQ4d6t6d2YHjHjh167LHHvA8Uu3btmmSZQNedO3eGfNUaA4kpy6wWOHWZ2eJUr0x6tgpcHUNK/uu9pIwbmD569GgGvvLcJytb/PXXX3rllVeS/Rk4eaXiX375Rffee6969uypLl266Prrr9ett96q66+/XhdffLHatWuniy++WOeff77q1aunqlWrKm/evCpQoEDIwG6vXr0UGRmZ5Gfw5yJ9sqKFxDYjvRYuXKhLL71U48aNk5T6+oqNjdVLL70k55yuv/56RUREeC1uvfVWTZkyxVs2uSvo0yJtv//+u9q3b6+PP/5YUvrW2dVXXy3nnC6++GJFRUWlumzwdoke/wo+CSZwtTHp36tVTpw4Ueecc46cc6pcubJeeeUVPf7447r11ltDvpUgeNjnnXfeUVhYmBo0aKB9+/Zl3ZvJ4WhhBy3soEXOlHgw9MILL0zxishHjx7VY489JuecatWqpb/++ivV52YbfmpoYQct7KBF1tm8ebMuuOACOefUrl07LV68OGR7PmTIEDnnlC9fPi1ZsiTZ51i7dq3uuOMOb7s+aNAgbd++PaveQq5CDztoYQctbLn//vu9Yc7gEwqSM2PGDG+dT548Ocn93377rWrUqKHChQtr4sSJbKNPES3soIUt9EBOwAA7kMsEf0iyevVqde3a1Rter1SpEsPrBgQG4v766y/Nnj1bsbGxZ/ycCQkJfD1LKgLr5uGHH5ZzTnXr1vUGzVNbbwcPHtTIkSNVsGBBOed00UUXeVe7TPxVnj/99JMqV66se+65R9999513O7+0hcrsFomfg/WfssxoEdgGJR4KPXz4cMhz0CVUYH3MnTtXH330UZIr9M2bN0+33Xabd0W+K664Qn/99dcpr8e//vpL7du319ixY7Vp06YkPx+Z3yKw3PLly3XJJZfIOaf7778/yf2QvvnmG++qlKfzT6lSpVSvXj2NHTs21asA8OcibZnVIvG25sCBA4qNjU0ylEWLUIFBhJYtW6brKuzr169Xnjx59Mwzz+iff/7R3LlztWDBgpAPthLvjxw6dEhxcXE6ePBgyO20CBUbG6u+ffvKOadLL700ZNAwJdHR0WratKmcc2revHlIh4DEfzZ2796tqKioJM9Pj+TFx8erSZMm3gn8Gzdu9O7bs2ePxowZ4/39dM8992jXrl2Ki4tTv3795JxTixYtMmQfHbSwhBZ20MKmxIOhLVq00Pr161N9zNSpUxUWFqa8efOGHAdMLLBdj46O1oEDBzLyZedKtLCDFnbQIuutXbtW5cuXl3Mnr3A8dOhQ/fTTT3rttde87fTFF1+s3bt3SwrdN1u7dq26du3qLffEE0+ka98dKaOHHbSwgxbZL/j43dixY7VgwYKQ+6Ojo5PMEkRFRalz587y+/267bbbtGXLlpD7Dxw44F0Vf8iQIez7pRMt7KCFLfRATsIAO5BLrVmzRjfccIN3UKtChQr6448/svtl4f+d6bBBeobVGWhI6p577pFzThdccIGk1NfR/v379dZbb3lDug0aNND06dNTfMwzzzwjv9+vsLAwVatWTS+//LJ3Hy2SyqgWqV2RMi4ujoH2dMisPxc//vijrr/+erVp00YXXHCBhg4dGvIVhLQIFTijuWbNmpo0aZKio6MlnRykzojh9d27d6tbt27eQcnbb789xSvvnu0yq0Xi4fV8+fJ5PXr37p1kubPdhg0blCdPHjnnlCdPHrVs2VLXXHONunbtqu7du+u2227Tvffeq4EDB6pPnz7q27evXnzxRY0cOVIffvih1qxZk+aBd/5cpE9mtAhet7t379akSZPUuHFjNWjQQDVq1NCjjz6qadOmJbv82e7LL79UtWrVVLp0aU2YMCHkBOZggd+Bli9frqJFi+rGG29MdrngA4yzZ8/W8OHD1bhxYzVt2lTnn3++nnnmGX399dfeMrT4V1xcnN577z1VqFBB5cuX16RJk9LssWPHDjVu3FjOOV1yySVJvgEi+IDx5MmT9eCDD6pSpUqqUaOGqlatqv79++uzzz7zlqFHUhs2bFCxYsVUoEABPf3005KkmJiYkGU+//xz7+/+++67T0uXLtWll14q55z++9//Ki4ujnWbAWhhBy3soIU9pzoYGlj38+bN8/bpxowZk+rPiIqK0qOPPqpmzZqlOXR6NqOFHbSwgxbZZ/Xq1apbt663TQ4+jle+fHkNGzYsyWPSGgrlIlSnjx520MIOWmS/xIOfAdHR0fruu++0ePHiJMuNGzdOYWFhypcvn/eNjsHr/c8//1SnTp307bffZuIrz31oYQctbKEHcgoG2IFcatu2bapSpYqccypUqBBnP+UiwR9SrV69Wh988IEGDRqk//73v/roo49CTlTgA61QjzzyiJxzqlevXpKr6gb/0rV582a9/PLL3pDueeedp7feeivJVaQT++KLL3TrrbfK7/fLOafHHnvMu48WoTKjxcqVKzVu3Dh16tRJV155pZo3b64rr7xS77zzjubPn+8tR4tQGdUicEJBXFxcyFUegv8pV66cBg8e7D0nLf61YsUK5c2bV845NWrUSFOmTNGPP/6o22+//YyH16WTO6KffvqprrrqKjnn5Pf7VaZMGf6eSkZmtEg8vB4eHq6IiAhdeOGF3jaDIfakVqxY4X1I27ZtW0VGRp7W86S0PvlzkX6Z1WLbtm0aOHBgstuMEiVK6Mknn0zxsWer/fv368477/ROPkvuKx+D19Wrr77qnZRz7NixkPuCt/MjRoxQnTp1km1RvHhxWqRg79696tSpk5w7eUX1v/76K8kywQd/n376aW+9jhgxIsXl+vfvr8KFCyfbo2DBgvw9lYq1a9d662rgwIEpLvfll196ywW+ZSIiIsI7aI8zRws7aGEHLWzZsmWLXnrppVO6qrF0cj/iySefVJ48eVSiRAnNmTMnxWXj4+M1ePBglSlTRs45nX/++UlOWgAtLKGFHbTIfv/884/69OnjnYTs3MlvI3322WeT7IelNRQavHziQSL26dKHHnbQwg5a2PTxxx/LuZMXzAkIPg4buKhOyZIltWrVKkn/fsYqnTxmHpB4vielYVQkjxZ20MIWesAaBtiBXGz58uXewa1GjRpp4sSJSYYTkfPExcVp9+7d6tq1a8iZ1YF/atasqWeffdZbnp3Kf9fBN998o1KlSqlixYohB26D19G8efPUu3dvFShQQM451alTR//73/+0f//+FJ8/+Je51atXa/Dgwd5AYt++fZP9OWerzGixYsUKvfrqqypWrJh3hYHAkGnwn4vhw4cn+3POVpn15yL4g/YSJUqoWrVquuqqq1S9enXvz8VDDz2U7M85261atcrbbp977rlq2bJlyMD0n3/+eUbrKyEhQYcPH9aDDz6o4sWLez169OiRge8id8jIFikNr996663aunWrJk2axBB7KoIHp9u3b+8dKJFC11FK/54W/lykX0a2CNz+9ttve9uMqlWrqlGjRrr11ltVv359thmp2Lx5s5o1aybnnNq1a6clS5Z4BwmDDw5+/fXXql+/vpxz6ty5c8hzBK/LYcOGKV++fN46b9OmjTp27KgePXqoZcuW3u2PPPJI1rzBHGbTpk06//zzvR6LFy9Odujjf//7n/f/9wYNGqT4e9fDDz8c8nvs1Vdfrd69e2vAgAG67LLLvB79+/fPkveX00RFRemKK65QeHi4br75Zu3YscO7LyEhIWTf7cMPP/TWZ758+fT2229L4opjGYUWdtDCDlrYERcX553odyqDoZL0+++/eyf+NWnSJM3j7b/99puccypSpIi+++67jHj5uQot7KCFHbSw4/jx44qKitLcuXM1b9487d69O8kyaQ2FBvv777/1yCOPaNy4cVqxYoV3O9v39KGHHbSwgxb2vPvuu3Lu5JXwZ8yY4d0e+ObGrVu36oILLvCOfR8/fjzZ9Rs8FDp8+HBt2rRJEsOhp4IWdtDCFnrAGgbYgVxu5cqV3qBJw4YNGWLP4Xbv3q0JEyaoadOmcs55H2Sdd955atSokcqVK+cN2AUPTuOkXbt26eKLL5ZzJ68eOm/ePEVFRUmSDh06pNdee02NGzdWRESEd+LH2LFjdeDAgTSfO3jo5NChQxo9erTX56WXXsqst5RjZVSLKVOm6MYbb/QOulSsWFEXXnihXnvtNb311lsaOHCgWrdu7bV4+OGHvccyBHdSRv652L9/v3elh9q1a+vZZ5/Vzp07JUlLlizRsGHDvBZPPfVUVr7NHGPlypUqWbKkd4W9wKDo8uXLz/gAYfD/54cOHarChQt724xnnnnmTF96rpMRLVIaXu/UqZP3Z+P48eMaN24cQ+ypCP59tn379lq9enWGPTd/Lk5NRrbYsWOHKlSoIOdOXrn6gw8+0MGDByWdPInkxRdf9P5cDBkyJKPeQq6xdu3akPU3duxYbd++3bv//fffV6tWrbxvlAi+gnqwKVOmqFKlSiG/K8XGxnp/NjZv3qxRo0Z597/yyitZ8v5ymjVr1qh8+fJyzqlx48Z6/PHHNX/+fK1Zs0bff/+9+vTp4/2+mi9fvpBvpAn2xhtveMtVqlRJzz//fMj9O3bs0Jtvvun1eOONN7Lg3eU8r7zyirceX3vttSTf3hQVFaXly5d7V8/PmzevnnzyyZBBUj6YzRi0sIMWdtDCjtWrV3vHVdM7GLp69WrvuEelSpW8b/wLNAn8b+IrkM2bN08zZ87MwFefu9DCDlrYQYuc4VSGQg8dOqQ333zTW7ZVq1Z67733vPsZ9Dlz9LCDFnbQIuutWLFCl1xyifd5z549e7z74uLidOLECfXo0cM72SwwMBoseJ8v8I2O5cqV0+bNm7PkPeQWtLCDFrbQA9YwwA6cBRhizx3++ecfPfbYY95XBxcuXFiXXnqp3nvvPW+QdMmSJRo5ciQDJqkIHvapUqWKGjZsqIsuukgNGzb0dsgDQ1mzZ8/2BnlTEhjuSTxkeODAAQ0YMEB+v1+NGjXS8uXLM+095VRn2uKdd95RgwYNvP+/X3HFFfroo4+SXBV89erVeumll7zlUhoYOpudbovE/78/ePCgzjvvPDnn1KtXL28QMeDIkSN6+eWX5ff7Vbp0aX355ZdZ9h5zkhUrVqhEiRJy7uRV7IcNG6ZDhw5JOrOB5sCO5OrVq1WvXj2va/369bVs2bIMee25TUa0WLx4sdq2bas8efIoX7586ty5s/ccgSZxcXEhQ+zBV5zGSZk1xM6fi1N3pi2CB6PLli2rvHnzasSIETp69GjIckeOHNHw4cPl9/tVqVKlkKtA4KRVq1apVq1acs6pYMGCKleunC6++GK1bNlSzjmFh4fLOadrrrnGe0zw764JCQm69957vb97Bg4c6C0X/IFUTEyMnnnmGfn9frVt2zbZKznh5N8jwd+QFRYWpuLFi6t48eLebUWLFlW/fv28xwT+DkpISNCBAwfUoUMHr8fLL7/sLRc8YHL06FENGjRIfr9fHTp00KFDhzjh6f8Fr4f+/ft76/2BBx7QlClTFBkZqQULFmjgwIFq0aKFd5Lao48+muJQ0MKFCzVlyhRNnTpVn332mQ4ePKjjx49LYoA0NbSwgxZ20MKmjRs3auPGjeladvXq1WrSpIn3oezbb78d8q0rgXV+9OhRPfLII3rhhReSfR6228mjhR20sIMW9gSvn1MZCg320ksvqUOHDt7jgi+gwPb71NDDDlrYQQsbxo8frzx58sg5p1dffVXR0dEh9wd/U+Off/4Zcl/wcdnHH3/c+wbysmXL6vvvv/fuY5udPrSwgxa20AOWMMCO/2PvvMOqONo2PnOoIgqioqIoYu/d2HtvsUSj8dXEJBq7xhp77733LpqowahYYu81dro0wYKCqCBIOZz7+4Nvxz30cg5nhed3XVwx7OwyO/fO7pR7niFyCWRi/7rx8/PDb7/9JqL62djYYPHixUlM0RqNBlFRUZgxYwaMjY3Rpk0bhIaGGijXyuXZs2do3LixiKwr/6lRowZGjx6tNbibHNIqQ2liEEjaALtw4QLy5MkDzjn279+v+xvJAWRWi+3bt6N06dLC4NOhQwfcv39fK41cm+joaBE91NLSEocOHdL7vX1t6KJevHnzRhjhPTw8ACQdzHJ1dUXJkiXFYBmRPG5ubkKLGjVq4M8//0wSmS8jSDq4ublpmeuqVq0KT09PABQ9IyWyqsWGDRtQpEgRqFQqmJiYYMqUKeKY3JAomdilaMm//vqrTu8jJ5DYOO3t7Z2l61G9yDwZ0SKlSY3nz5/DysoKZmZmYkeCxGkfPHgg/k7iSNREAv7+/ujTp49Y5Jr4p3v37mJBWeLn2dvbG+bm5uCco0uXLuL3yT33ly5dEob4mzdv6vemvmKeP3+OoUOHJlkEyDlH69attUzpicv5v//+E2n79+8vfp9cHXJxcQHnCTtyPX78WH839BUiL9dFixahRIkSolwLFy4sdlWRjKF//PEHfHx8tK4RGhqKc+fOoXXr1mIhm9TvaNCgASZNmiR2PKDvRMqQFsqBtFAOpMXXi9wYWqRIEaxYsULL/CM3hs6ZM0eMe8ydOzfJtUiXrEFaKAfSQjmQFtmPj49PqqbQ5MpRHrnSw8NDRKpMrAUZfTIO6aEcSAvlQFoYhsQ7vkrlt2TJEjHn4O/vj8GDBydrDE1sCi1cuDBUKhUcHR0xY8YM+Pr64v3798JoSt/tlCEtlANpoSxID0KJkIGdIHIRyZnY04ouTRieoKAgjBgxAra2tmJCy9nZWcs8l7ijeOzYMdGYuHPnTnZn+asgODgYx44dw+jRo9G/f38MHz4cTk5OWgastFaRv379GsWLF4eTk5PW7+XnNWnSBJxzDBw4EBqNhlamJ0N6tJA3bA8fPozq1atDpVLByMgInHOUKlUKJUqUwHfffZdihPWQkBD89ttvMDIyQt++fWlxRzKkRwu54TY4OBiXLl3C3r174eLigocPH2Ls2LHgnOP69esp/p0OHTqAcw4HBwdERERQvUgB+Xe7WrVq2L9/f5LVz+khNZNuSgsNCG2yqsXZs2cxduxYsahpwIAB4ph8UFitVmPz5s3gnGPNmjU6vYecglyL5s2bZzoSO9WLrJMeLeTf70ePHuHw4cNYsGABnJyccPHiRQwePBhmZmZ48uSJ1nnytq3UlqpZsyaio6NpsCsZwsLCcPXqVQwZMgTNmzdHqVKlMGjQIKxYsUKkSW5i6cmTJ8ibNy9MTU0xffp0AEiyFaR8q/mqVauCc44TJ07o8W6+fj59+oTg4GBs2LAB8+fPx4IFC3D06FG8fv1apElpkYCRkRHy5cuHHTt2ANBud8nPe/v2LUqXLg1zc3Pcvn1bj3fzdSIv3zt37mDfvn0YM2YMRo0aBUtLS3DOYWpqismTJycxhgYEBGDy5MlidwMpCk3RokXFgg/pnRQQEJDk7xHakBbKgbRQDqTF10dyxlBpASbwpYwjIyMxa9YsODg4gHMOW1tbnDx5Uuta8raWn58fAOp3ZATSQjmQFsqBtMh+fH198e2336ZoCpXj5uaGR48eISYmBtHR0VrHIiMjsWTJEnEdqR9IZAzSQzmQFsqBtDAs8m/nxIkTRfnVrl0b3bt3R/v27cXv+vTpI9ImNoUWKVJEpOOci/ml0qVLY8CAAXjx4kWS8whtSAvlQFooC9KDUBpkYCeIXIbcaFK7dm3s2bMHkZGRhs4WkQJhYWGYPXs2ihcvLszr586dSzG9ZEx59uwZrK2twTnH8ePHsyu7OYr0DMzKV54fPnwYgLY56MGDByJq/rBhw/SW15yOXIsHDx6gS5cuIroY5xzW1tYoW7YsChUqpBVFNCgoCID2wPs///wDzjl69+6d7feRE5CbqHbu3KnVeeGco1ixYihZsiQsLCywYsWKJBHb4+Pj8erVK1SrVg0qlQpVqlShSZA08PDwQIECBcRzm9LW8SlBJl3dkRkt5N+EsLAw7NmzB/ny5QPnHL/88os4JtdArVZnObJ4TsfT01O0cyZNmpThtizVC92RmhbyMly8eDGqVaum9c2wtrZGwYIFYW5ujs2bN2vtnCLx9OlTMQDWsmXLbLmnnEDiRcopDQ7eunVL6LFx48ZUr3n16lXR/jp27JjO8pobSSlK1blz54Qeae3edPToUZH2ypUr+sjmV0/i93hYWBj69u0rjKGTJk1KYgyVIuhLfbhChQph4sSJOHbsGNzc3HDnzh1MmTIF1atXFwPxz58/T/bvEV8gLZQDaaEcSIuvh8waQ4sWLYoLFy6keN3x48eDc46LFy/q/R5yCqSFciAtlANpYRhevnwp+mMzZ85MYgqNjIyEi4sLunfvLnYyq1OnDn755Rf4+/trpQ0KCsLPP/8MlUqFrl270s7ZmYD0UA6khXIgLQyPfDx2wYIFsLe315rb5pyjY8eOuHr1KgDt+ddp06YJP4805z18+HBs3boV/fv3R4UKFcA5R9myZcXCZerzpQxpoRxIC2VBehBKggzsBJEL8fDwEEaQVq1a4f3794bOEpEIqbFw/PhxlC9fXkxM/fvvv+k6b8+ePTA1NYW5uTlu3Lih9/x+rcjNI/IGU3q3PgsJCcGIESNEw2zVqlV49uwZgARD15w5c5A3b15wzjF16lTdZj6HkZIWiY8vXLhQRF23t7dHz5498fTpU7x58wY+Pj5wdnYWRrquXbuK8+UN8O3btyf7d4kE0tICAHbt2oVy5coJLcqXL4+qVauidOnSsLKyAucc5cqVw8WLF5MYEp2dnYWBt23btnq9l5yCh4cHmjVrhlWrVmXoPDLp6p7MaiGhVquxY8cOWFhYgHOO9evXp5qe9EkZDw8P9O7dG4cOHcrQeVQvdE9aWixZsgTm5ubim1G3bl00a9YMtWrVEgNcFSpUwPnz57UWPr179w5r1qwRbam+fftm1y19lci/3+mNZvHu3Tt88803UKlUGDt2LIDkn3+1Wo3ly5cjT548KFy4MB4/fqybTOcS0tveDAoKQrVq1WBiYoLZs2cD+KKl/Bpv3rzByJEjYWpqiipVquDVq1e6z3QOZNOmTcIYOmXKlCTG0PDwcMyZMwd2dnbC1HPz5s0kbdnIyEjcvn0bDRs2FItrQkJCUv3b79690/n9fM2QFsqBtFAOpIUy8fb2zrQx9Pz581rX2r17N9auXQsgISCGNCncqFGjNDUiSAslQVooB9LCsLi6umL+/PlaO20BQHR0NLZt24a6deuCcy7GQqQfOzu7JHN2e/bsEccT71BHpA/SQzmQFsqBtDA88jHaixcvYvny5ahTpw5atWqFCRMmwNvbO8k47rRp02BjYwPOOQoWLIh169ZBo9GIscHIyEjcuXMHDRo0AOccDRo0wNu3b7P1vr5GSAvlQFooC9KDUApkYCeIXIqbmxsqVapE240rEOnDHh0dLSacChQogAMHDqTrPAAialPevHnFVo9E+pCXY3oaUiEhIfjpp59Ex71y5cpo3749qlatKrZ+rl27NjXKdMDt27fF9tjlypXDwoULERoamiTdvXv3kD9/fnDOMXHiRPH7xIYseWR2Iv08evQIzZs3FxMZgwYNgpeXFzQaDV6/fo3Lly8LU2ilSpWwevVqPHnyBHfv3sXGjRtFh8be3h5OTk4AyCyaHj58+CD+nR4jHJl09YdcC/lq8+TeR8nx4sULdO7cGZxz9OrVK8m2nET6SRxlOi2oXuiPlLQ4ffo0ypYtK74Z48ePFyb1d+/e4fbt20KLChUqYNGiRbh16xZOnz6NKVOmiEVpFSpUwK1btwCQRrpm1KhRYrGsNAGVuIxPnz4tvt9t2rQxRDZzDUOGDBF6uLq6JjkeFhaGrVu3igWDvXr1MkAuv17Gjh2LESNGaBlDpQH4J0+eiPdR0aJF4enpCeBLuytxvbh+/ToqVaoEMzMzrFu3LsV307NnzzB8+HCxKIFIgLRQDqSFciAtlMWzZ89QunRpnRhDvby8xPFGjRqBcw6VSoWmTZvir7/+ytb7+hohLZQDaaEcSAtlIDfzSN9aV1dXUY6cc2zYsAF//fUX5s2bh3r16on+3okTJ8Q54eHhsLe3B+ccZ8+eNci95ARID+VAWigH0sLwJO6LyeeUAO35vqlTp6Jw4cLgPCFqceKAMfJrHT9+HEWKFEHBggVx9OjRJNcikkJaKAfSQlmQHoQSIAM7QeRiJMNUeiP0EdnLpEmThAl9ypQpqRrj5B/69evXixXTY8aMSXKcSB/Xrl3Dzp07AaRdfjdu3EC1atXAORcGa+mnRo0aOHLkCOLi4kiHTBIfH4/4+HiMGzcOnHNYW1tjypQpwkQqL1fJlD5mzBgYGxujZcuWWtFciayzZcsW8Xz/9NNPWsckLd68eSMm142MjMSCAimKrr29PUaNGpUk8gORNukxbpJJN3uQl+GRI0ewe/duAOn75q5YsULocufOHb3lMbdAizqUQ2It5syZI8p63LhxWumS+2ZwzmFmZqb13/Lly2P58uX4+PFjtt5LTkEq5/DwcK1yl573uLg4tG3bVhgfrly5IrYVdnV1xfbt24V5vUSJEmJAkupL5pDKX9oFLbEe0dHRaNOmDTjnsLW1xb///iu22Lx69SpmzJghzOvly5fHvXv3tM4nkke+cDWlfnWfPn3AOYeNjY0w9aQ2VvLp0yfMmDFDLOhMToNnz57hjz/+EIt4Dh48mMU7+fohLZQDaaEcSAtl4ufnB845jI2NsWrVqkwZQzUajUi7efNmcT2VSoXmzZvj+PHjWmmJ5CEtlANpoRxIC+UyduxYMb5x7Ngx8Xu1Wg0/Pz906NBBRKs8duwY4uPjce7cOVhYWMDc3Jx2PNMxpIdyIC2UA2lhWOR9M/mOWlOnTkWRIkXAOYeFhQX+/PPPZM+RCAwMRNGiRZOMuxPph7RQDqSFsiA9CENABnaCyMXQoJNy+fz5s+ggVqxYMd2R8s+dO4fGjRuDcw5LS8skK96I9OHh4YFmzZrBwsIC9+/fTzN9TEwMOnbsCAcHB+zevRt169ZF27ZtMXDgQLi5uVF0XR0hPduVK1cWEe1Teo/JDXOSMZHIGmq1Gmq1Gi1atADnHKVLlxZR3+QT59K/r1y5gsKFC8POzg4jR45Evnz5YGNjg/r162PdunV48eKFQe4jJ/Hp0yf4+/sjMjISgPbEE5l0s49r166hdOnSKFiwoKgTKSGZUw4ePAhLS0sYGxvjwoUL2ZHNXAPVC2UQHx+Pz58/o0KFCuCco1q1akKT5L4Z//77L6ytrVG2bFlMmzYNRYoUQbly5dC+fXu4uLggLCzMIPeRU/Dx8cHYsWOF2VlCKn8/Pz9hms6bNy8cHR3RunVr2NnZwcLCQtSZDh06ICgoyBC3kKN4/PgxevbsmUQP6T3k6+sr9DA3N0ehQoVQp04d5M2bVyzssLS0xNChQ/Hu3TtD3MJXSWrjH2FhYahRowY45+jZs2e6y/X+/fuoU6cONm7ciJiYGK2/8ezZM0yaNAmmpqbgnKN79+4ICQnJ8n3kBEgL5UBaKAfSQpl4eXlh/fr1ePXqlfhdZoyhAPDHH3+IqMaca++iIp8QJpKHtFAOpIVyIC2Uh0ajQc+ePcUigPDwcKjVaq0xJ7Vaja5duwpz6N9//43Ro0eD84Td52jMXHeQHsqBtFAOpIVykJf51KlTUahQITEGu2TJEnEstb5ikyZNwDnHzz//nGZaImVIC+VAWigL0oPITsjAThAEoUCuXbsmPv6LFy9OMZ38A//gwQMMGDBAnCdFXycyzps3b0RjasyYMSLSd3JIGkhRq/777z8a1NUDr1+/RrFixWBsbIylS5cCSD7amLSl0fz582FmZgYLCwt4eXlla15zOu3btwfnHFWqVEmyhZSc169fo0qVKsifPz8uXryIly9fIiAggDomOiIiIgLr169H165dsXv3bkRERIhjrq6uZNLNRh4+fIiaNWuCc445c+bg06dPaZ6zevXqZKOcEFmD6oXykLadbdKkCYCUy/r58+dwcHBA0aJF8ejRI4SEhKTa/iLST1xcHNasWQMjIyN06dIlxcUAMTExmDBhApo2bYqKFSuKKN+Ssc3a2jpdCzuJ1ImOjsbkyZPBOcf//ve/FJ9ztVqNmTNnolOnTmjSpAlsbW219KhRowYt0tQhDx8+FN+H1atXp+scqU3r7u6O8PBwrWOJjaEZMZzmdkgL5UBaKAfSwrAkt/gyo8bQadOmCWOoo6Oj0HPGjBnJ/h0ieUgL5UBaKAfSQnn06NFDBOFJvLOKvBy7desGzjny5csnynz79u1a6ZMbRyctMgbpoRxIC+VAWhiexN9ha2trGBkZgXOOOnXqiJ1VUpu3ePLkCYoXLw7OOWbOnKn3POdUSAvlQFooC9KDyG5UjCAIglAcsbGxzMzMjFlaWrJ69eoxxhjTaDRaaQAwzjljjDE3Nze2bds2tn//fsYYYz179mSLFy9mjDEWHx+fjTnPGVhbW7OuXbsyCwsLdurUKfbff/+lmFbS5dWrV4wxxoKCgpipqWmS40Tm0Wg0LC4ujsXExLD4+HiWL18+xhhjRkZGWukAMBMTE/bu3Tu2b98+Fhsby+zt7ZmdnZ0hsp1jKVGiBGOMsQ8fPrAPHz4kmyY+Pp4VLVqUFSlShEVFRbGPHz8yOzs7VqpUKcY5p3qhAzQaDduzZw9zcXFha9asYceOHWOMMfbs2TPWp08f5uHhwRhjrEqVKuzw4cOsYsWKTKPRMJWKmv+6ply5cqxdu3aMc84OHTrEHjx4kGr658+fs7NnzzLOOStQoACzt7fPppzmfKheKA9HR0fGGGNv3rxhHz58SLas4+PjWYECBZilpSULDQ1loaGhrFChQszKyooxRm2prKJSqZiNjQ3LkycPc3d3Z/fu3UuSRq1WM1NTU7Z06VJ29epVtnXrVla1alWWN29eFhcXx1QqFTty5AirXbs2A2CAu8g5GBsbM0dHR5YnTx529+5d9vDhwyRp4uLimJGREZszZw47efIkW7FiBbO0tGRmZmYsLi6O2djYsK1bt7KKFSuSHjqiQIECrECBAixPnjzM1taWMZagQ2pIffEKFSqI/gljjPn4+LBt27ax1atXs7i4ONajRw+2bds2ZmNjo78byEGQFsqBtFAOpIVhkcae4uPjmZGREYuKimJLly5le/bsYc+fP2dFihRh+/fvZ61bt2aMJYxNaTQacd706dPZwoULGeecNWjQgC1evJht2LCBMcbY/Pnz2bRp08Tfoe966pAWyoG0UA6khfJo3rw5MzMzY+Hh4ez27dta5SYfF3d2dmbly5dnnz59YowxNmrUKDZgwADGWIJO8vm/w4cPs02bNjHGSIuMQnooB9JCOZAWhkX6ZjOW8B3euHEjCw8PZ2XLlmWMMVawYEHR70tuLF0q2wcPHghvgjRvS2QM0kI5kBbKgvQgDIL+PfIEQRBERjly5IhY1fzo0aMkx+Ur2e7du4chQ4aI1c/t2rXDf//9l53ZzZG8fv1aRJpu0qQJ3NzcxDFpRXlcXBwAwNvbG0WKFMlQNCwi47Rp0waccwwdOhTR0dFaxyRNPn78iOnTpyN//vzgnKNPnz6IioqiqN86QCpDFxcX2NnZwdraGocOHUpSttL/BwYGws7ODpxzzJ8/X+sYoRvc3NxQuHBhsdp5yZIlqFixIkWYNgAvXrwQO3c0a9YMbm5uSb4VAPDhwwds2LBBvKPatGljqCznWKheKAPp+T9w4ABsbW1RuHBhnDhxIkk6SQN3d3fY2NiAc46tW7dqXYPIOm/fvkWHDh3AOUfTpk3h6uoqyj5xVCRPT0/UrVsXlpaW4JzD2NgYR44cAUCa6Irg4GC0bt1afDOePn0qvhXy91JkZCQuXbokopRwzmFubo7r168nSUtkjcDAQBQoUACcc8ydOzfT16GoxlmHtFAOpIVyIC2UQ2RkJCZOnIiyZctmOKpxo0aN4OzsLNKtWrVKfN8XLVqU7ffytUNaKAfSQjmQFsogMDBQjEM1a9YMjx49wufPn7XSuLm5YeLEiaKM//e//2nNP8n7esePH0ejRo3AOcf48eOz7T5yCqSHciAtlANpYTgSf4elfl7FihWxZcsWVKpUCd9//32K50tjs7dv3xa7Z7Zo0SLJrltE2pAWyoG0UBakB2EoyMBOEAShQF6+fIlKlSpBpVJhw4YNwtCQeJDx+PHj6NOnj+hAtmzZEufPn6ftuXSEv78/ypcvLzrxly9fTtK48vPzQ/Xq1cE5R4kSJXD37l0D5TbnotFoEB8fjzlz5oBzjlq1auHJkyeiARwbGwsAePfuHZYtWyYGXkxNTUkPPRASEqK1uMPd3V0MVklaBAcH46effgLnHJaWljh69KgBc5yz8fDwQKFChZJs5Vi9enW4u7sDIINbduHr6yu2Z27SpAn++ecfLUPIkydPsHz5clhbW4stOq9cuQKANNI1VC+Uw5s3b9CyZUthnHZzcxPtVOmbERQUhFatWoFzDltbW9y6dcuQWc6x+Pn5oXTp0uCco2HDhti/fz9ev34tjt+4cQNr165FwYIFRZ0xMjKCi4uLAXOdc/H19UWpUqXAOcc333yDbdu24fnz5+L4iRMnMH78ePHNMDExgb29vagf9A7THVKfYvjw4VCpVOjYsSMCAwMzfB0yhmYd0kI5kBbKgbRQFiEhIWIM0N7ePlPGUCltbGwsVq9eDRsbG0yfPj1b7yMnQFooB9JCOZAWysHT0xMlS5YE5xzVqlXD2LFjcfToUbi4uGD06NFinIRzjoEDB2oFpJLrdOzYMTRu3Fh8v0eOHAngS3+QFpmnD9JDOZAWyoG0yH5SM4X+888/UKvVsLW1Rfny5eHr6yvSJi7LBw8eoH79+uCco3DhwliyZIkYZyfSB2mhHEgLZUF6EIaEDOwEQRAKJCIiAv379xcmuMePH4vVz1LDYf78+ahRo4boQHbo0AFXrlyhj7+O8fLyElEPK1asiMGDB+PixYs4ceIEduzYgWLFionB3g4dOmgZgQjdEhgYiGrVqoFzjubNm+P48eMICwtDREQEfHx8MGDAAJQpU0ZEC92xYwcAMvjoAx8fHzG41bRpUxw+fBghISGIj49HUFAQfvzxR9jb24uOibe3t6GznKPx8PAQkYtNTU1hb28vBhTl0b8J/ePp6SkMiba2tqhSpQoGDhyIvn37wsHBAXnz5gXnHGXKlMHKlSvx4cMHQ2c5x0L1Qjk8e/YMJUqUEO3affv2ITg4GO/fv4e7uztatmwpFhrUqVMHL168MHSWcyxeXl4oV64cOOfInz8/7Ozs0KxZM7Rs2RJmZmawsLAA5xw2NjaoVauWMEvTZJN+8PLyQoUKFURk9QIFCqB69eqoVasWOOcwMzMTi2R79Oghduaitq1+OHToEMzNzcE5x8qVK7V2fEqrDpAxVLeQFsqBtFAOpIVycHV1RYUKFXDq1CnxOynwgkRqxlB5utjYWNy/fz97Mp4DIS2UA2mhHEgL5eDr64tu3brB1tZWzFdIO51JPwMGDEjVFNq0aVMYGRkhT548aNeuHfz8/PDixQu8f/8+2XOIlCE9lANpoRxIC8Mwc+ZMLVOoPABYnz59oFKpsGLFCkRFRSU598aNG6hVqxZMTEzAOUe3bt2ob5cFSAvlQFooC9KDMARkYCcIglAo8iiJdevWxbBhw7B3714MGzYMbdu21epA9uvXD66urmRm0BPPnj3DN998A2NjYzG4yzlHnjx5hOGkSpUqePjwoaGzmuORLyiwsbFBmTJlUL16dbEFkaTP+vXrERkZaejs5mg8PT2FIbFAgQJwdHREs2bNULhwYaGFsbGxiNxK5jf94u7uLsy6lSpVgouLC5mjDYSPjw/atGkjBn6lb4b032rVqmH9+vUICQkxdFZzPFQvlIM8qk/evHlhZ2eHihUrak2KWFhYUPT1bMDPzw99+/ZFpUqVtPoT0s8333yDJUuWiMVn1L/QL/7+/vjpp5+0FiZLP/nz50fr1q1x5MgRsbCD2lP6ZcaMGaL8ly5dCj8/P3EspbJPbAzt0aMHQkNDUz2HSBvSQjmQFsqBtFAO8vEmjUajVZazZ89ONapxStAi28xBWigH0kI5kBbK4f3793j8+DG2bNmC3bt3i51jOefo379/qqbQZs2aifkoaYGzNLbYrFkzbN68OdlziZQhPZQDaaEcSIvsZf78+aKsEptCAWDHjh2iPKdPnw4XFxeEh4fDxcUFy5YtE4ZQzjlatWqF4OBgADR+mxlIC+VAWigL0oMwFGRgJwiCUDBeXl5anUX5B9/Y2BhlypShLRyziZcvX2L69On45ptvtIwlJUuWRN++ffHkyRMANAGYHfj4+KBDhw7CyC79WFtbw97eHsePHycdsgkfHx+0a9cORYsWBeccRkZG4Dwh2nH+/Plx8uRJQ2cxV+Hu7o6CBQuCc46aNWviwIEDCA8PN3S2ciVv3ryBk5MTevbsidKlS8Pc3BwNGzbEwIED4evrm+yqdEI/UL1QDj4+PujUqZNY/CRNaBQoUACVK1cW5nUayNI/Hz9+hI+PD5YvX44pU6Zg9OjRWLNmDZydnaFWq0U7itpT2cOnT58QHByM7du3Y/ny5Vi+fDmcnJxw584dQ2ct1yB/70ycOFH0L7p27YqFCxemeN6zZ88wYcIE0U/v27dvmgulEpuICG1IC+VAWigH0kJ5pFRGW7duhZWVVbqMoelt85IeqUNaKAfSQjmQFspkypQp4hv+ww8/pCuiMecc7du3x9y5c3Hu3DksWbIEvXr1EteZPXu2OI+0yBikh3IgLZQDaaF/PD09YWNjA1tbW/zzzz/i9/LynTx5stbct4ODg9ZYur29Pb7//nthCqXFAZmDtFAOpIWyID0IQ8EBgBEEQRCKJTAwkO3YsYNdvnyZ+fj4sDx58jBLS0v2yy+/sOrVq7PmzZszxhjTaDRMpVJl+PoAGOdc/L9Go2Gcc63fJU6TW4mLi2NxcXHMxcWFxcTEsIiICNa6dWtWpEgRZm1tTeWUjbx79465u7uzU6dOsZiYGBYTE8Pat2/PqlWrxkqXLm3o7OUq3r59y65du8aOHj3KgoODmUajYc2aNWM9e/Zk1atXp3qRzXh6erJmzZqx0NBQVqpUKbZp0ybWrl27TH0fCN0QHh7OPn36xGxtbZmxsbGhs5MroXqhHN69e8fu37/P/v77b/b+/XumVqtZly5dWNOmTVm5cuUy3Z4ldAvpoCzi4+OZkZGRobOR45GX88qVK9mWLVvYs2fPWIECBdiRI0dY06ZNtb7jPj4+bOvWrWz16tVMrVaz8uXLs+XLl7Py5cszzjlTqVTMysqKmZqaMrVazSwtLZmpqSn7/Pkzy5MnD+maCqSFciAtlANpoXw+ffrE+vXrx06dOsXKlCnDFixYwHr37s0YS37sVWpr+fv7s8DAQHbhwgUWHh7O8uTJw5o3b84cHR1Z+fLlGWPUFsgopIVyIC2UA2lhWN68ecOKFSvGGGPsxx9/ZCNHjmR16tRhjGmX3/Hjx9ny5cvZzZs3mUajYSNHjmRr167VulZISAjbs2cPmzRpEmOMsbVr17KRI0dm4918/ZAeyoG0UA6kRfbh6+vLPD09WefOnRljX77D8nKeP38+c3JyYl5eXlrndurUiX377besd+/ezNramr7BWYS0UA6khbIgPQhDQAZ2giCIrwCNRsM0Gg0LDAxk1tbWTKVSMWtra63jGTWZJD5nz549zN/fn92+fZupVCrWpk0bVqVKFda+fXvGGJnYia8HelYNh1qtZkZGRqL8SQvD4OnpyapUqcIKFSrEzpw5w2rVqmXoLOVKUnr+yRhqGKheKB/6ZhgOei8pC6oLhkM+oH7nzh325MkTZmFhwbp06cKsrKxEOh8fH7Zt2za2evVqFhcXxwoVKsTCwsKYqakpU6lUTK1WM41Gw2xsbJixsTGLiopiBQsWZFZWViw2NpYdP36cOTg4UN1LBdJCOZAWyoG0UDaPHz8WfYwZM2awOXPmMMZSb2dt376d7dq1i92/f5/FxsaK33POWY0aNdjgwYPZsGHDGGNkEM0IpIVyIC2UA2lheNzc3Nj69evZjz/+yBo0aMAYS90UOnHiRLZkyRKRTlqAxhhjHz9+ZGPHjmX79u1jLVq0YAcPHmSFCxc2zI19pZAeyoG0UA6kRfaT+DssL29PT0/m4+PDAgICWMGCBVnhwoVZmzZtxLgh9dd0C2mhHEgLZUF6ENkFGdgJgiC+AnRtYpAaFh8/fmTOzs7s77//ZqdOnWIqlYppNBrGWMJAZIECBdjQoUPZ/Pnz9ZKPrx0qD8MiL3+pOUN6GIbEdYHqhuEJCAhgwcHBrG7duhT1myD+H6oXyoC+GQRBKJm0BtYTG0P/97//sdq1a7NJkyYxtVrNihUrxiIiIlh0dDSzsLAQu0UxxpiRkRGLj49n5ubmzN3dnTk4OGTTXX2dkBbKgbRQDqSFcnnz5g1r2rQpe/XqFVu3bh0bNGhQEkOnXL8pU6YIw0+RIkVYgwYNWNmyZVlwcDC7desW8/PzY4wxNnPmTDZ79uwk5xMpQ1ooB9JCOZAWyiAmJoaZmZkxxjJmCk1uccCcOXPYnDlzmJWVFfvvv/9YmTJlsu9Gcgikh3IgLZQDaWF40vqeZvZ7m9wYPC1ASx3SQjmQFsqC9CD0Ac3aEwRBfAWkZupJbYvH5JA+8sHBwWz8+PHs5s2b7Pnz54wxxgoXLsxq1qzJzMzMWHBwMLt37x5buHAhi4mJYcuWLSNzUSKoPAyLvPxJC8OSuPxJD8Pj4OBAhgOCSATVC2VA3wyCIJRM4r60vL/t6+urZQzt1q0b27hxIzt8+DBTq9WsdOnS7Pr16ywmJoZ9+vSJmZubs6ioKPbu3TtmbGzMALD3798zPz8/5ufnR9+kNCAtlANpoRxIC+ViYWHBqlatynx8fNiuXbtY69atWcmSJcVx+XjtpEmT2PLlyxljjOXJk4dNmjSJ/f777yLtw4cP2V9//cWWLl3K5s6dy/Lly8fGjx9PxtB0QlooB9JCOZAWykBXplDGGDMxMWGMJZhNIyMjsyH3OQ/SQzmQFsqBtDA8qfX5kjueHuTXuHjxIvP19WWDBw9mRkZGtAAtFUgL5UBaKAvSg9ALIAiCIL5aNBqN+Levr6/4t1qtTja99PugoCDUrl0bnHPxM3/+fFy6dEmkDQgIwLp166BSqcA5x6ZNm/RzE7mI+Ph4Q2eB+H9SqiNE9kNaKIu4uDhDZ4H4f0gL5UBaKAfSQjlQu1ZZUHtK/3h6emLSpEnIkycPOOfo2bMnQkNDAQDbt28H5xx2dnb48OED4uPjtfrq8n+n9jsifZAWyoG0UA6khTLw9fVFqVKlwDlHmzZt8Pz58yRplixZIsZiCxcuDM45ihQpAn9/f610Hz9+xNKlS8E5h729PW7fvp1Nd5EzIC2UA2mhHEgL5XH48GG0bNkSRkZG4Jxj0qRJ4lhqfbxHjx6hVq1a4JyjQ4cOiIqKyo7s5nhID+VAWigH0iJncePGDXz//ffgnKN///6Gzk6uhrRQDqSFsiA9ci+0RIEgCOIrRlqFduXKFdamTRs2ceJExhhLdrWztAo6KCiINW/enD18+JBxzlmRIkXYmTNn2LRp01iLFi1E+lKlSrEff/yRDR06lHHO2ZUrV7LlnnIyKpWKaTQaduLECfbmzRtDZydXI22NvXv3bvbq1StDZydXQ1ooC2NjY6ZWq9mKFSvYixcvDJ2dXA1poRxIC+VAWigHatcqC2pP6R9PT0+2bNkyFh0dzb777ju2bds2VrBgQa00JiYmTKPRMMbS3i2Kdp/IPKSFciAtlANpoQwcHR3Zv//+y2xsbNiFCxfYpEmTWEREhDh+5coVtnbtWsYYY02aNGEzZ85kzZs3Z2/fvmUNGjRgz549Y4wlRELOnz8/++6779g333zDXrx4wZ4+fWqQe/paIS2UA2mhHEgLZfHp0ye2c+dOdvny5QxFNH7x4gU7dOgQ8/HxYYwxVq9ePZYnT55sy3dOhfRQDqSFciAtchZ3795l8+bNYy4uLowxxu7cucMeP35s4FzlTkgL5UBaKAvSI5djaAc9QRAEkTXOnTuHxo0bw9TUFJxzLFq0KEkaKUJiUFAQypUrB8458uTJg3r16uHu3bsAUo6utH79enDOYWpqioCAAP3dSC5h1apVMDExwbfffougoCBDZydXM378eHDO0aNHD9LCwJAWykJa2dyrVy/Sw8CQFsqBtFAOpIVyoHatsqD2lP754Ycf0LJlS7x79w7Al10hpD5zxYoVERMTY8gs5hpIC+VAWigH0kI5eHh4oEqVKpgyZYrW7zds2ABzc3NwzrFixQoAgI+PD5o3by6iHHt7ewP4Mk47ZMgQEVU/Pj6edl3JIKSFciAtlANpoRzc3d2RL18+jBw5UvwutTJ88eIFFi1aBBsbG3DO0a5dO3GMdk/JOqSHciAtlANpkXN48+YN7OzswDlH8+bNcezYMXz+/NnQ2cqVkBbKgbRQFqRH7oYM7ARBEF8xUVFRaNmypdjWsUKFCnjw4IFWGqlDGBwcjIYNG4JzDnNzczRp0gQPHz7USiNHmug6ceIE8ubNiwIFCpCBXQc8ePBA6PXdd9+RucSA3LlzR2x7RyY4w0JaKIvr16+LRVGkh2EhLZQDaaEcSAvlQO1aZUHtKf0hn5yNjIwU/5b60Rs3bgTnHGXLlkVERES25y83QVooB9JCOZAWyiQsLEz8Oz4+HjExMWjatCk452jRooVWWk9PT7Ro0SKJQRQAJk6cCM45fvrpp2zLe06DtFAOpIVyIC2Uw5s3b8S/M2IKbdy4MUJCQtI8j8gYpIdyIC2UA2nx9SMFOvT29kbnzp1x6NAhREdHGzhXuRPSQjmQFsqC9CBUho4ATxAEQWSePHnysI0bNzLGGLO1tWV///03q1WrllYazjmLiIhgc+bMYQ8fPmSMMVapUiW2du1aVrNmTQYg2a2BjY2NGWOMHTt2jEVFRTETExPa4iuLAGC1atVi169fZ6ampuzvv/9mY8eOZS9evDB01nIdGo2G1a9fn129epWZmJgwZ2dn0sJAkBbKQqPRsMaNG7PLly+THgaGtFAOpIVyIC2UA7VrlQW1p/SLkZER02g0jDHGLCwsxO+lfrS0bbZGo2FxcXFMrVZnfyZzCaSFciAtlANpoUwKFCjAGEsod5VKxQCw6Ohoxhhjjo6OjDEmtKhQoQLbvHkza968OXv79i1r2rQpe/nyJWOMsUuXLjHGvmgLIFvvIydAWigH0kI5kBbKwdbWljHGWHx8vPhmJ+bVq1ds3759bNmyZez9+/esYcOGbP/+/axQoUIMQIrnERmH9FAOpIVyIC2+flQqFVOr1axcuXLs0KFD7Ntvv2VmZmaGzlauhLRQDqSFsiA9CDKwEwRBfOVUrFiRPXv2jF28eJFVqVJF65g0gXX79m125coVFhMTw/Lly8c2btzIatWqlaJ5XTrPx8eHubu7M8YYq1y5MrOwsBDHiIzDOWcajYY1atSIXbp0iRkbGzNnZ2c2cuRIMpdkMyqVSmhx+fJlocXw4cPFADyRPZAWykLSo2HDhlp6DB06lPTIZkgL5UBaKAfSQjlQu1ZZUHtK/6hUSYdQpb6xZPYxMzNjFhYWYjE4oR9IC+VAWigH0kK5SNoYGRkxa2trxjlnJUqU0DrGWFKDaO3atdmIESPY06dPma2tLfvxxx8Nkv+cBGmhHEgL5UBaKIfUTKF79+7VMoU6OTkxBwcHxhhLdn6PyDqkh3IgLZQDaaF8UltIJvUDLSwsmKmpaXZlKddCWigH0kJZkB5ESpCBnSAIIgdQpkwZVrly5SS/lwYZd+/ezTw8PBhjjO3bt481aNAgVfO6dN6uXbvYrVu3GGOM9e3bl1laWiY7KUakH7nx6sqVK4wxxo4fP8527tzJYmNjDZy73EVyWri4uLBjx45RRLJshrRQFsnpcerUKXbz5k1axJTNkBbKgbRQDqSFcqB2rbKg9pThiIuLY4wlaED9ZcNCWigH0kI5kBbKwNjYmNnb2zMA7NSpU+zt27dJ9JAMos2aNWMhISFs+/btLDY2ljVs2JCVLFmSMUYGIF1AWigH0kI5kBbKJC1TKJG9kB7KgbRQDqSFcpD7PqRFzPHx8YbMUq4lu7WgHXBSxhD1gvRImezUQ9KB3oNfDzRiSRAEkcO5desWO378OGOMsWHDhrGOHTsyxpIfTAQgBia3bt3KFi1axBhjrHPnzuzbb78VaeRERESwqKgorWsQqSM3l9y8eZO1b9+e1alTh1YSGoDEWgwePJjVrVuXIpIZANJCWcj1uHXrFps7dy6rW7cuGR4MAGmhHEgL5UBaKAdq1yoLak9lL9I7J0+ePIyxhL7w58+fszwwLu9TU/86fZAWyoG0UA6khXKQyql3796sWLFi7NWrV+z27dvJll+FChXYli1bWOPGjVlcXBwrW7YsmzhxIitatGh2ZztHQlooB9JCOZAWyiQoKIjt37+fTKEKgfRQDqSFciAtlIPcFHrp0iU2cuRI5u3tzYyMjCjgSzaTnVp8+vSJMUYLCFMiu+tFWFgYCwkJYZxzMk0nQ3bq8f79e7Zlyxbm5ubGjIyMSI+vBRAEQRA5msOHD4NzDs459u3bl2I6jUYj/n3w4EEULVoUnHMUK1YMmzZtSvacJ0+eYNy4cRg3bhyuXLmS7LWIlImPjwcAfPz4MUvXofLOOpIWkZGRWboOaZF1SAtlIekRGxubqfMlHUiPrENaKAfSQjmQFsqB2rXKQlftKQD48OED1q5di/379yMkJET8nrT6wrZt28A5R+XKlRETE5OlslGr1en6HZE8pIVyIC2UA2mhHEJCQtC5c2dwztGkSRO4urqmmNbDwwOdO3eGi4tLNuYw90BaKAfSQjmQFspBrVZj1apVYl6vUaNG8Pf3N3S2ci2kh3IgLZQDaaFMrl69iv/9739Cl+fPn+v0+tJ4o0ajEf+W/ktoo28t/Pz8MGXKFAwYMAD3798XY/KkR1L0rQUAhIaGYubMmahSpQoePHgAgMZKUkLfemg0Ghw9ehSccxgbG+Pp06cASI+vAQ5QmAyCIIiczLp169iYMWNYpUqV2K1bt1j+/Pm1VrgxxphGoxGRmY4cOcKmTp3K/Pz8mEajYUOHDmUbN25kjLEk5/3zzz+sZ8+ejDHGqlSpwgYPHsxGjx6dbFoibTJSZnLNGEtY1fnhwwf27t07ZmlpyUqXLs3Mzc0zfF0i4yTWIigoiL169Yq9e/eO2draMkdHR2ZjY8MYIy30DWmhLOR6qNVq5uXlxby9vdmHDx9Y6dKlWZkyZZi9vT1jjPTQN6SFciAtlANpoV+oXZsziI6OZkeOHGEDBw5kjDE2ePBg1rVrV9alSxfGGOkh59dff2XHjx9nr1+/ZkZGRpm6Rnx8vDh3xIgRzMLCgi1btowxRmWdEUgL5UBaKAfSQjn4+fmxli1bsqCgINakSRM2e/ZsVq9ePZYvX74kbaKoqChmYWHBGKMy1gekhXIgLZQDaaEcvLy8WKVKlVilSpXYyZMndRbRWK1WM2Nj4yR6EqlDeigH0kI5kBbKws/Pjw0dOpRduHCBAWAVK1ZkK1euZB06dMjytRN/58PCwlhsbCwrWrSo0In0+oI+tWCMsdDQULZu3Tq2bNkyFh0dzSpXrsyaNWvGJk2axBwcHLT67rkdfWvBGGPv3r1j27ZtY7t27WLPnj1j+fPnZ9euXWPVqlUjLRKRHXpIf+enn35i169fZ1ZWVuzatWusatWqpIfSyRabPEEQBGEw1qxZA845bGxs4OPjk+S4PPKSk5MTHB0dYWJiAs45evXqJY6ltGJz+/bt+Pbbb6FSqcA5x7Rp05K9NqE75FrcuHEDK1asQKlSpVCoUCGYmJhApVKhR48eWL9+vUhHWuifo0ePYvz48bCysoKFhYVYOdquXTusWrVKpCMt9A9poSy2bNmCvn37wtTUFEZGRlpROZYtWybSkR76h7RQDqSFciAtDAu1a5VNbGwsdu/ejYYNG4JzDpVKhTJlymDmzJkiTW6P7COP3rJ582a8ePEiy8/o9OnTUaRIEXDOMWDAgKxmMddAWigH0kI5kBbKxNPTE/b29uCco2LFipg4cSKePXtm6GzlSkgL5UBaKAfSQjn4+/vrNCrly5cvsWrVKjx69AgA9eUyCumhHEgL5UBaKIvRo0eDc46GDRvCxcUFnz9/1tm1PT09sXr1anTq1Ally5ZFkSJF0Lp1a8yaNQt+fn4AKMKxHH1qAQCnT5/G4sWLUbZsWZiZmYFzjipVqsDNzQ0AaSFHn1qEhoZi0aJFKFeuHDjnyJs3LzjnsLa2psjfKaDvuiHh6+uL9u3bkx5fEWRgJwiCyOE8ffoUjo6OsLGxwdGjR8VEVVxcnFa6tWvXIn/+/MK407lzZ3EsrS2CXV1d8ccffwgT+5gxY8QxMpjojyVLlqBKlSpiwQHnHObm5mJLHM45xo0bJ9KTFvohOjoakyZNQv78+YUWJiYmyJ8/v5YWv//+uziHtNAPpIXhkcpTrVbDy8sLgwcP1ip7KysrFC5cGCqVSvxu7NixSc4nsg5poRxIC+VAWigXatcql9jYWLx58wZDhw4VJnbOOYYOHWrorCkGXQ58z58/HyqVSvTLR40aRc97BiAtlANpoRxIC2Xi4+OD1q1bI0+ePKLts2zZMgQHBxs6a7kO0kI5kBbKgbTIebx+/RqrV68W/WvJHEoYBtJDOZAWyoG0yDxyo/+KFSvw119/ITo6OtPXk/fxXr16BScnJxQsWFC0C6SxQemnUqVKwjid2xcd6FqLtHj+/DmWLVuGOnXqgHOOQoUKkRb/j761SGxeL1CgAE6dOoWuXbuSaToZsrtuAAl9GjKxfz2QgZ0gCCKH8+7dO3Ts2BGcczRr1gz//fefaAxoNBpcunQJo0aN0upofP/99+L8xEZ3OfIOzPv377F+/XrRaZk3b57+biqXExoaimHDhmlp1qpVK8ycORM3btzAnj17MGHCBKHFrFmzDJ3lHEl8fDwePHiAvn37amnRo0cP7NixA+7u7nB2dsb06dOFFnPnzjV0tnMkpIUykL4JMTEx+Oeff9ChQwehReHChfHzzz/j4sWLePHiBc6ePYt58+YJPRYsWGDg3OcsSAvlQFooB9JCmVC79uti/vz5KFWqlDAukh66JyAgADY2NqJ8c/tkkyEhLZQDaaEcSAvdEhwcjNWrV6NRo0YwNTXFoUOHEBERobPr0+KC9ENaKAfSQjmQFjmHiIgIzJkzR3zDzc3NMWvWLMTGxho6a7kS0kM5kBbKgbTIOnI/R1bMmfLv882bNzFy5EgR4dvS0hLFixfHhAkTsGjRIvz888/COG1nZwcvL68s3UNOQVdapIWk1efPn3H//n20adMGnHNUr15dpzsjfM3oWgupzJMzr7u6ugJI2K2gXbt2ZJpOhuyqG3LIxP71QAZ2giCIXICPjw9KliwJzjkqV66M7t27Y/LkyWjVqhUcHR2FWaRcuXIYP368OC8183pyfPz4UZh9HB0dcfnyZV3fSq7H19cX/fv3F5qVKlUKkydPTpLu06dPWLduHVQqFYoVK4aLFy8aILc5l7i4OFy6dAmdOnUSWjRs2BArV65MkjYyMhKrV6+GkZERypQpgzt37hggxzkX0kIZSJ326Oho7N69G40aNRJ69OzZEwcOHEhyTlRUFJYtWwYjIyNUrVpVRAUgsgZpoRxIC+VAWigTatd+Xbx69Qrz588X0ZYqVaqE7du36z1SSm5CGjh/9uwZFi5cSAPpBoS0UA6khXIgLfSDRqNBbGwsnjx5orOts/39/REUFASAJmUzAmmhHEgL5UBa5BwWLlwIzjlsbW0xa9YsBAQEGDpLuRrSQzmQFsqBtDA8cvP6mTNn0K1bN7FbZq1atTBz5kwtY3RsbCxcXV3RokULcM7Rq1cvfPz40RBZJwA8ePAAVatWhbGxMWbPno34+HhadK4H3rx5g6VLl6J06dLgnMPGxgZPnjwB8KVtS6ZpZeHj46O1qCCxXoQyIAM7QRBELsHb2xs1a9YUq2SlHyl63sCBA3Hw4EGRPrUPdmRkpPh34kgZ//33H0qVKgWVSpWsgZTIPM+fP0efPn2Edi1atMCuXbvEcXlHRKPRwNvbG5UqVQLnHBs2bDBQrnMe8fHxuHr1Ktq2bSu06NevH06fPi3SqNVqUTc0Gg2ePn0KOzs7cM6xZ88eQ2U9x0FaKIuYmBjs378fdevWFXqMGzdOa6vHxN+WO3fuIF++fOCc4++//87uLOdYSAvlQFooB9JCWVC79uvi+fPnmDlzJiwtLcE5R5UqVXDgwAGdRmAkEsjoInJCf5AWyoG0UA6khe7RdQRif39/DB8+HCVLlsStW7d0eu2cDmmhHEgL5UBa5CyWLFmC0aNHIzAw0NBZIUB6KAnSQjmQFoZD/s0/deoUWrVqBWNjY3DO0aZNG5w/fx6fPn0CoD2GHh8fj/3798PU1BRlypSBn59ftuedSCAmJgYDBw4E5xxNmjQxdHZyJDExMVi9ejWKFi0KzjnMzMxw4sQJcUy+YEBuYs+bN6/WPBSR/fj6+opgiFZWVnj8+DEAMrErCTKwEwRB5CJevHiBdevWoXv37mjUqBFq1aqFCRMmwNnZWStdaqsxvb29MWrUKBw/fjzFNN26dQPnHPXq1UNMTAxtB5kFJC0iIyMxYMAAYfLp3LmzaBDL0yWmZcuW4Jyje/fuqaYj0kZ6jt3d3dG1a1ehxa+//op79+6JdCmVsbSN2pAhQ1JNR6QNaaE8NBoNzpw5gyZNmgg9ZsyYgRcvXmilSQ7JkDhz5kwApEdWIS2UA2mhHEgLZUDt2q+T58+fY/bs2cK8Xq1aNTg5OZF5PQvIn13qKxsW0kI5kBbKQd9akL7649mzZxg/frzYhdPR0RFv3rwxdLZyJaSFciAtlANpYTjkxhyKjGt4SA/lQFooB9JCOVy5cgWdO3cW5vUuXbqkaUoPCAiAjY0NOOf4888/symnhBypDq1Zswacc1hYWMDLy8vAucqZBAQE4Pvvv0fVqlXBOUeDBg1w5coVAAnjKfIxD19fX7Ru3Rqcc/z+++8UFCCbSWxO37VrlwhyaGlpKUzshDIwZgRBEESuoXjx4mzkyJFs5MiRLD4+nmk0GmZiYpIknUqlSvZ8AOzJkyds/fr1bP369ezw4cOsV69eDADjnLP4+HhmZGTEzMzMGGOMxcbGMs4545zr9b5yKgCEFlOnTmX79+9njDHWoUMHNnr0aNauXbsk6eTncs6ZWq1mjDFmYWHBGGOkRSbRaDSijJcsWcJcXFwYY4wNGjSIjRo1ilWvXp0xllQLAIwxxiIiIlhUVBRjjDFra2vGGGmRWUgLZSHp8fbtW7Zx40Z248YNxljCO2vkyJHM1tZWpJWXs3Sep6cne//+PWOMscKFCzPGUv4GEalDWigH0kI5kBbKgdq1XyeBgYFs165dbPny5SwyMpJVrVqV/fHHH6xbt27M0tLS0Nn7KpG3ZUNDQ1mhQoVEP5rIXvSthfz6yf0/8YXsqBfStyS5v0l8ITu0kHSIiIhg+fLlo3egDvH19WUrV65kjDFWunRp9ttvv9FzbiBIC+VAWigH0iJ7kbd9jIyMxP/nz5/fwDnLnZAeyoG0UA6khfLw8/Nje/bsYWfPnmXx8fGsS5cubPv27Vpj6Mnx6tUr9uHDB8YYY8bGZEE0BFKfOjQ0lDHG2OfPn1l0dLQhs5Qj0Wg0rFSpUmzHjh3s3r17bOnSpezMmTOsbdu27OLFi6xx48bCj8AYY46OjmzTpk3szJkzrEuXLlQ/shnp23LixAl2+fJltmHDBvHdiYyMZBMnTmTHjh1j5ubmBs4pwRhj1DMkCILIZUiNJiMjI2ZiYqLViEoLzjlr1aoVGzRoEGOMsd69e7OtW7eyd+/eiWs6OTmxI0eOMMYYq127drIGeSJ9SA2ozZs3s7Vr1zLGGGvYsCH77bfftEw+yZl3OOfs9OnT7Pr164wxxmrUqKF1TSJjSIPp8+bNY3v37mWMMdajRw82ZMgQYZhmLGn5Sgs4XFxcmKenJ2OMsfLlyyeblkgfpIWykC8mOHHiBGOMseHDh7PBgwenOqglnXf+/Hn25s0bxhhj9vb2es5tzoa0UA6khXIgLZQDtWu/Psi8rnvi4+PF+2XUqFGsadOmzNPTUwymE9mHvrWQm4AfPnzIGPvybSGttcmOeiH/vly7do09e/aMqVQqFh8fr5Pr5xSy8x118OBB9r///Y89ffqUGRkZkRY6on379mzMmDHM2NiYjR49mv3888+sUKFChs5WroS0UA6khXIgLbKHiIgIxhgTAackqP9sGEgP5aBPLRK3lanPlzrZWS80Go3Or5kTkcrp9OnTzMnJianVatauXTu2YcOGVMfQJf38/PyYhYUFU6lUInAYkT3I3zcPHz5kx44dY5xzVqFCBWZnZ2fAnOVMVCoVA8Dy5s3LWrRowTZv3sx69OjB4uLi2IABA5irq2uSd1m5cuXY8OHDWenSpQ2U69xB4m/vixcv2LVr11inTp3Y0KFD2erVq1lcXByLjY1lNWrUYAsWLGBLly4l87qS0Gd4d4IgCOLrIfEWKqkRGhqKX375BZxzcM7Rrl07DBo0CCNHjhS/s7GxwYYNG/SY49yBt7c3WrduDSMjIxQoUAAbN24Ux1Lbdjk4OBhDhgyBqakpChQogLNnz6Z5DpE6169fR/ny5cE5R/Xq1eHs7CyOpVauHh4eaNeuHVQqFSpVqgRPT8/syG6OhrRQFs7OzjAzMwPnHO3bt8fNmzfTdd7NmzdRtmxZcM7RrFkz2hpSB5AWyoG0UA6khXKgdu3Xw/PnzzF79mxYWlqCc45q1arByckJERERhs5ajmDy5MkoVaoUOOcwMTFBSEiITq4r1QmqG+lHX1pIbNu2DRUqVEDHjh3h7Owsrh8fH6/Tv5MT0He9AIDLly/D0dER1tbWePToEYCMjYXlFvRdLyIjIzF58mSxZfPTp08BkBZZRf5euXXrFoKDgw2Ym9wNaaEcSAvlQFpkD69fv8bs2bMxffp08TvqGxiO7NCDxqrSR3ZooVarteabqO4lT3ZocevWLcyePVtv18+pPHz4EBYWFuCco379+rh161aq6aVyDQ0NRYUKFcA5R5UqVRAdHZ0d2c11yNtSyfWdb9y4gSFDhiBfvnzgnKN79+7Zmb0cSXrH7u7evYvq1avD2NgYY8eORWxsLI37ZTPy9/zr169x5MgR1K9fH8WLFxfeNc45unbtilmzZiEyMtKAuSVSgvYnIAiCIJhGoxFbC/3111+sYcOGzN7ePsXVzgULFmSjR49mrq6u7O7du+zKlSssNjZWHLewsGA9evRgw4YNy5b852SePn3Krl27xjQaDfv+++9Fmaa03TX+P7LYlStXmLOzM4uLi2O1a9dmbdu2ZYxRZIes8PTpUxYQEMAYY6x79+6sR48ejLGUo4UylrD9kIuLC7tz5w4DwKpVq8YqVKiQXVnOsZAWykAq78ePH4sIDd9++y1r2LBhmue+ePGCHTx4kL1+/ZoxxlitWrVoa8gsQFooB9JCOZAWyoPatV8HFHldvxw/fpwtXbpU/P/w4cOZjY1Nlq4p1RWpToSEhLDo6Gjm6+vL1Go1q1evHjM2NmaWlpYp1rfciD60kPPgwQPm4uLCfHx8mLe3N3N1dWUNGjRgCxcuZGXLlmXx8fFiHCa3oy8t5P3Dy5cvs/Hjx7PXr1+z6Oho1qJFC3bt2jVWtWpV0kKGvusFYwljhr/++iu7f/8+u3DhAmvatClpoQNUKpV4xzdo0MDQ2cnVkBbKgbRQDqSF/nn16hU7dOgQW79+PXv37h1TqVRszpw5Ous3S+2q1MbfiS/oW4/o6Gh24cIF9scff7DRo0ezxo0bs8qVKzPGUp8jyY3oWwvGEsa1rly5wiZOnMiqV6/Odu3aRfUlGbJDi7CwMDZgwADm6+vLwsLC2Jo1a0iLNADA1Go127x5M/v8+TMrUqQI69+/P6tZs2aq53DO2adPn9i8efOYn58fy5MnD+vSpQszMTGhsacMkNqzqVarxbxGXFycVrlHR0cztVrNbt26xby8vNiePXvYu3fv2OfPn1nNmjXZunXrGGPa4+6J+9vU/06Z58+fs+joaFahQoU0n+eaNWuyatWqsadPn7KzZ8+yxYsXMxMTk2zMbe5F0kaqK8uXL2c3btxgZ86cEWlsbGxY7dq12Q8//MD69u0rIq7Ln3+qGwohW+3yBEEQhKKRoqrfvn073emtra0xdepUODg4oGjRoujcuTPmzp0rVrrRCsPModFoEBMTgy5duoBzjtq1a4uoVylFpZJ+/+TJE9jZ2YFzjnLlyuHOnTupnkekzcePH1GnTh1wztGiRQvx+7Se7xMnTsDW1lZECn/58mW6ziNShrRQFsHBwSI6X7du3cTvU4tq8fHjR2zYsAE2NjbgnOObb77B58+f0zyPSB3SQjmQFsqBtFAG1K5VDlK758OHDyLSiPy5psjr2cOwYcPAOcfUqVOz3BaVn//mzRts374ddevWRdGiRUV0mWrVquGHH36At7c3AKo/cnSpRXK4ubnBxcUFTZs2FX0RBwcHuLq6AqC+iBxdayF/t126dAm1a9eGSqWChYUFHB0dwTmHtbU1Rf9OBn3XCwkfHx+0b9+etMgiVF7KgbRQDqSFctC3FtRHT0CtVmPdunVQqVTgnKNo0aIYNWoU3r9/r5NrywkMDMTr168RFBSk1U4gLb6gTz0kLl++jGrVqoFzDmNjY7Rq1Qpbt24Vx0mPBLJDi/j4eFy4cAGdOnUSffARI0aI46RFAtmhBZCgx/r162FqagrOOUaOHCmOkRYpExkZKeZda9eujVevXqV5TnR0NHbs2IGKFSuCcw4bGxs8ePAgG3KbM7l58ybmzJmDb7/9Fh07dkS3bt3QunVrNGjQAI0bN0a9evVQuXJlVKpUCQ4ODrCxsRHzF/KfOnXq4Pr16wC0n3n59/yPP/6gXelSwcfHB4MHD8b3338vfpfS+0Mqv3379on3Tnp3ACYyR+JxKj8/P0yfPh1NmzbVqgtlypRBy5YtcfPmTeEJkaC6oUzIwE4QBEEAAMLDw1G3bl1wzvG///0PoaGhKaaNjY0FAOzYsQOcc5w6dQofP37Ey5cvtT7mNBmbNaKjo0WHsXPnzqluZyOVu7+/P0qWLAnOOWxtbTFr1ix8+PAhu7KcY3n//r3YAm3w4MGIi4tLs+F65coVYbgqVaoUdu3aBbVaTYMkWYS0UBYvXrwQW3DNmzcPQOqdusjISOzdu1cYeCpWrIjLly+neR6RNqSFciAtlANpoRyoXasc7t27h2+//Rb79u1DeHi4+H1AQACZ1/WM/D1y4sSJLL9X5Oc7OTmhT58+WgP1VlZWUKlUMDY2FsZpNzc3ANRX17UWiUnczwgODoaTkxMaN24MzjmKFCkCDw+PZNPmNvShRUrmdUtLS4wYMQKurq7CYELG6S/ou14kB5nYM4e3tzeOHTsm/p/Ky3DoWwvpfZbbvxXpQZ9aJFf+pEnK6LtexMTEiHYUQFpIeHl5gXMOMzMzzJo1C4GBgTq7dmRkJHbu3IlBgwahdOnSsLOzQ9GiRTFo0CDs3LlTpCMtvqBPPQAgNDQUu3btwtChQ2FtbS1MwZMmTRJpSI8E9KlFcuZ1qf9Nxumk6LteSKjVamzfvl3UC9Iiba5cuQITExOYmprCyckJQOrtn9jYWBw9ehQNGzYUz/7ff/+drXnOSQQEBKBdu3bi/ZGRHzMzM3DO0axZMwwePDjZRSHyttiECRPEmOHjx4+THCcSxpHMzc3BOYezs3O6zlmzZo3Q5MKFCymmS2s8lt5RKZP4OT1//jwWLlyIggULirpjbGwMa2tr/Pbbb7h8+bLW3AeQtHypbigLMrATBEEQABI+2Js2bULBggXh4OCAY8eOpdmIWrp0KTjnWL16dbLXI7LGu3fvUL16dRgZGWH58uUAUm/Y+vj4iCijVlZW6N27N3x8fLIruzkaf39/lChRAsbGxmJQNrVn/MKFC8IwV7RoUUycOBHBwcHZld0cDWmhLB4/fgxLS0uYmJjgyJEjqaZ9//49du3ahSJFiggT1YYNG8gYpyNIC+VAWigH0kI5ULvW8EiR8L/55htwzlGzZk0cOHAAMTExeP36NWbNmkXm9WxAVwPf8uvMmDFDLPDknKNBgwb49ddfcfXqVVy6dAnr168XUWgcHR3h6+urkzx87WTXJITUV4mLi4Orqytat24NzjmaNm2arqhmuQF9aZHYvD58+HBER0cDSDBPkHE6KYa4fzKxZwx/f38xsfrLL7/o/Ppyw3RuX+yUFvrW4uPHj/jnn39w48YNrfpAY+5J0acW8l1md+3ahSVLliQ5RnwhO95R//77L0xNTTFo0CCt3xMJiwfmzZuHgIAAnVwvJiYGDx8+RIMGDZAvX74kpjnJHDpx4kRxDmnxBV3rIZH4+3zq1CmMGDFC6PH777+LY6RHAvrQIjnz+po1a7Bjxw4yTqeCvupFYsjEnjGuXbsGY2Nj5MmTB+fOnQOQtJyk/4+Ojsbx48fRvHlz8ezPnz+f+g5ZZMyYMeCcw8jICNbW1vj1118xZMgQ/PjjjxgzZgymTZuG33//HdOmTcPKlSuxfPlyrF69GmfOnMHNmzfFWAeg/Z2Q9yPGjx8PzrkwZ1P/O3m8vb3RuXNnmJiYYODAgXjx4kWKadVqNWJjYzF8+HCYmZnBzMwM//33X5J0ievTuXPnsH37dixYsADz58/H3bt38fbtWwAUdCQ14uPjcenSJYwdOxb58+cXz3KePHlQoEABLFq0SLzDJNKKng9Q3VAKZGAnCIIgBG/evEH37t3BOUfDhg3FttYS8gaTp6cnmjVrBs45pk2blt1ZzTV06NABnHN8//33WpEqE2/PeOfOHdjb24NzDktLS7Rp00Y0rIiso1arRWd88ODB+Pz5szgm1+Ldu3c4fPgwihUrBs45ChcujF9//RV+fn6GyHaOhLRQFp8/fxZRFsaPH5/iIImPjw9WrFiBwoULg3MOe3t7zJ8/X3TIiaxDWigH0kI5kBbKgtq1ysDd3V086zVr1sSaNWswZcoUYUgg87rykQ+cjxo1SstMMmrUKDx+/FirXsXHx8PNzQ0NGjQA5xzjxo2j3YgMyMWLF1G8eHEUKlQIBw8eBECTU/rgzJkzqFevHlQqFfLly4fff/9dfHuk8k5snJbGwGhyKvvx8fFB27ZthRYU7Sp5AgICMGzYMLFDjZGREa5evaqTa6fnPUTfjS/oUwsgYUxr06ZNsLGxAeccw4YN04poTVp8QZ9ayM3rf/31Fxo1aiTGIxOnIfRfLyQOHz4s2r5kSExKXFycTq7z6tUrbN68WSwsNzExgbm5OUaPHo3FixdjxYoVGDhwoDCH0hxh8uhKj+RIPBeyceNGoceKFSv09ne/VnShhfy7kNi8vm7dOgBknE4P+qwXckiL9PP06VNYWFiAcy7GKeRI75vIyEjs379f7C7HOceECRMQFBSU3VnOMcjf5aNHjxblumPHjkxdT/5sJ2fQNTY2Rv369VG3bl0y6qaCk5MT8ubNC845li1bpjWvJJWTpN3jx49RtGhRcM5Ro0aNJOUopQsNDcU///yDTp06icj50o+9vT1atWoldhkiLbSJjo7GqVOn0LZtW5QpU0ar7OrXr49Zs2bB3d1d65zUypDqhjIhAztBEAShRUBAAKpWrQrOOVq0aIHbt2/j06dPWmn8/f0xf/58WFtbg3OOpUuXGii3ORepg7FixQqYmJigRo0aePDgQZIGko+PD7Zt2yZMutbW1ujYsSMePnxogFznTDQaDTQaDWbPng3OOerUqYPHjx8n0eK///7DjBkzhCGoWLFiGDZsGLy9vQ2U85wHaaE8YmNjReeufv36ePz4cZIByPPnz+PHH39EgQIFwDlH6dKlsWTJEoo4qWNIC+VAWigH0kIZULtWeXh4eKBQoULgnKN48eIiukj16tWxf/9+Mq8rGPnE1vDhw7UG7BcvXpxiWrVajalTp4r3YXZNGBNJiYyMRM2aNcWCHkL3fPjwAR07dhQTgmXKlMG9e/cAJEQSlU/oyk3snHM8efLEUNnO9QQGBqJr165JTOy0wOMLb968Qbly5cSOGmvWrNHJDnNSnVCr1Xj69Ck2btyIcePG4aeffsKuXbtw69atJGlzO/rSQuLTp0+YMmUKqlWrJqIcFytWDPPmzRNpSIsE9F0v4uPj8eeff4pAPmScThl91wsJtVpNEY71jJ+fH2bNmiXMWEWLFkX//v2TLEj48OED1q9fD5VKBWtra7i4uBgoxwQAREVFYfr06VCpVKhXrx48PT0NnaUciVqtxvnz50WQBs45Nm3alKT/LTdOjxo1Shyj91T2kliLESNGiGOkRQIajQbv3r1Dx44doVKpMH78+GQDj7x79w7Tpk0T7VNpxwd612Qd+Rj52LFjtd4tMTEx4lh8fLzWc5vaM5ySQbdZs2Y4efIkXr58Kd5jZNT9grxMFy1aJLRYvXp1svNFXl5eYvFm4cKFsXLlSgBfylH6r6+vLwYMGICyZcuKhYHGxsaoU6cOihUrBltbW3DOYWdnBzc3NwA0FpKYmTNnavXHunTpgnnz5iEmJkaUVXre61Q3lAsZ2AmCIIgkeHl5aa0UnDx5Mh49eoSAgACcPHkSP/30k4gAU6NGDYSEhBg6yzmWoKAg0Rls1qwZ9u/fDx8fH3h7e2PPnj1o3769MFzZ2dlhwIABSSLnE7rh+fPnqFSpEjhP2O598+bNcHV1xZUrV7Bq1SpUrlxZRD90dHTEjBkz9L4NXm6FtFAWAQEBqFChAjjnaNSoEZYtW4a7d+/CyckJ06ZNg5WVlTDGValSBTt27MjSd4MGFlMmO7WgwZPUIS2UA72jlIMS2rWkzxc8PDxQsGBBER3R3t4e27dv15oYIZSF/PmdPHky8uTJA845zMzMRLS3xOmALwPszs7OMDIygo2NDbWNDURsbCwAoHPnzmIxAaEfgoKCMGvWLNSvX18sULt8+TKApJO+vr6+IoKclIbIHqR2bFRUFAICAjBo0CCx8MDExITMEMnw5MkTVKpUCYsXL9bZeGxcXByeP3+O7t27o3z58lqTwpxzODg4YM6cOSI9tacS0IcWcqQofxs2bED79u2F8WrMmDEiDWmRgK61SGxel3aC5Jxj0KBBZJxOBX3XCwmKqqs/AgICMHHiRBEYxsHBAatXr9bqP8jHoV68eCF2epJ/KwjDcP78edGWcnZ2NnR2ciRubm5a34V+/fqJY1J/D/jynjIyMgLnHL/88oshsksgQZe9e/eKb8bQoUPFMfpmfGHDhg3iuV6+fLkwbfr5+eH69euoX7++GLflnGPmzJk0tqRD5ObY33//XZTz5s2bMxyEQv6dHjdunDDoNm3aFMePHxfHvL29tXalI6NuAvLymzRpktCiT58+WL9+PR49eoQTJ05g0aJFsLOzA+cc+fLlQ7du3eDj4yPOlcrR3d0d1apVE99nMzMzTJo0Cf/88w+io6MRFBSEkydPolWrViLATGBgYLbf99fA5MmT0aBBAxw8eBDv378Xv0/vHCnVDWVDBnaCIAgiWby9vVGjRg3RKMubNy8cHBxgZGQEExMTcM5RsWJF/Pnnn0km/wjd4uXlJbZqzJs3LwoWLAh7e3utyaTKlStj5cqVeP78uaGzm6Px8vKCg4ODMPpYWVkhf/78WlrUqVMHR48eRWhoqKGzm6MxhBYUjTRlvLy84OjoqPXNSDzp3aJFCzx69Ehrq7Ws8O7dO51cJ6eRHVrIv/l///037t69m+Lx3AxpoRwM8Y56/Pix1vappEUChmjXurm54c8//xT/T1p8wd3dXSxMLl26NHbs2KE14Uooky1btoh6xDnHhg0bxLHUBuxnzZoFzjlMTU3h7++fDTkl5Mi1adSoETjnKFWqFD59+kSL0XSMVJ7R0dG4f/8+unfvDs458uTJg5s3bwJI+i3w8fERO37Qd0K/yMs3JiYGXl5eGDhwIGrXrg3OuTCWlC5dGps3byY9kiEsLExn4xwvX77Eli1bRJAAqfyrVq2K+vXro0SJEuJ3v//+u07+Zk5Cl1okRv7se3p6YsmSJUKLadOm6eVvfs3oSovUzOvbt28HADJOp4E+64UcMrHrnjdv3mDevHkiCmiZMmVw6NAhfPz4MdXzBg0aBM45GjdujM+fP1Pb1gBIz3xERITYYXvKlCkGzlXOZcOGDejSpQssLCxgZmaGYcOGiWNyo6n0npICNUgGOEL/JH4PeXh4oGvXrmJBwZAhQwyUM+WROFiC1O6xs7ND8+bNUbRoUWFcV6lUMDY2xt69exEeHp6lv5tYI/p269bEDgCDBw8Wc+gNGjTQWrAvlbd8Vzq5UTe36yHXYvr06TAyMhJtTikIqBRYxMbGBh07dhS7yGk0GnH+06dPRXrOE3aMv3z5crLP/71791C5cmXkyZMHmzZtEr8ntL+tb9680TqWmTKiuqFMyMBOEARBpEhgYCBGjRoltreW/9SuXRsnT57McgeFSB++vr7o3r07ypQpIxpU0irM77//Hn5+flkyXEmNLWp0pY2fnx/69euHihUrCgMI5xxt27bF2LFj8enTpyxdPz0akE4J6FsLOTdu3ED37t2xbds2ragCpMUX/P398fPPP4vouhYWFjA3N8cPP/yAZcuW6bSsXFxcUKtWLWzYsAHPnj0Tvyc9EsguLdasWSO2vBs7dixOnjwpjpEWCZAWyiE731HLli0D5xy9e/fWinhFWiSg73atHC8vL4wePVpES5QgLb7g7u4uIrHXqlUL+/fvp0V7CkR6Zt3c3LS2Kl+xYoVIk5JRRKPRICwsDD169ICxsTEaNGigtR00oV80Go3WO0f6RnCuvZU8oT+eP3+Orl27gnOOmjVravUfEpNYL0J3JI5UdfToUfz2229iIZX0U7FiRYwZMwaenp70rtIz3t7eGDt2LEqUKCEm3jt16oQjR46ItoCrqyvWrFkjJutXr15t4FznLuTvo+joaKxfvx4qlQrW1tYUWVePxMfH46+//kLTpk3Fu2nLli3ieExMTIrGaTLuZi9kYtcN0nPr5OQkIok6Ojri+PHjqfbNY2NjERcXh7Zt24Jzjo4dO2ZXlokUePjwoTDU0cIz/eLv7481a9bA0tISnHMMGDBAHJO3e9VqNY4fP47jx4/j8+fPhshqriLxu//mzZtYs2YNChcuDCsrK61xyGvXrhkol8pD/swuWLBAKxCM9OPo6IgffvgBt27d0jrX398fT548ydB3V74T1+XLl7XOze3fb12Z2J8/f45q1aqJMd+aNWvC3d0dQIIZWF7OcqOuhYUFBUv8f+Ra7NmzBz179kxSLypWrIhp06bBw8MDQMLzK+nk5uaGQoUKCbN748aN4ebmJtLJ/wsAnz9/Fjs29ujRI7tu86tBV4teqG4oFzKwEwRBEKkSGRmJwMBALF++HDNmzMCUKVOwYcMGnRpDifTx4cMHeHl5YcuWLXBycoKzs7POtxD6+PEjfH19ceDAAezZsweXL18ms24yREREICgoCH/99RfOnj2Ly5cvIyoqShzPzBZCics2ICAA9+/fx4oVK7By5UqcPHlSNKCTS59b0YcWiXnx4gVGjBghOqT9+/fHoUOHxHHS4gtRUVEIDQ3FuXPncP/+fTx69EjruC708PX11Roo6N27Nw4cOCCOkx4J6FuLiIgITJ06FfXr1wfnCdus2dvbY8GCBSINaZEAaaEcsuMdBQBjxoyBlZUVTE1NYWtri8WLF4tjpEUC2dGu9fT0xOjRo8VAMRkaUsbDw0NsEV+9enUcPnwYMTExhs4WkQxLliwRz/PEiRPF71MzrwPAsWPHhLGHTNOZIysLjePi4hAXF4fZs2fDzs4OKpUK5ubm2LNnj66zmSuQP+/pmcDVaDQ4deoUihUrBmtra2zcuDHJdQj9kLhOxMfHY9euXfj555/BORc7PBYoUAB2dnbYuHEj7t+/n+o1CN3g7u6OH3/8UXz/ixcvjjVr1ogFHlL90Gg0iIyMxNSpU2FsbIwOHTrgw4cPhsx6rub58+do1qwZVCoVJkyYYOjs5Eg0Gg127tyJBg0aiDbX7t27ASR8c6S6kZpxmshe4uLisHXrVqGFPBIyfUPSRnqm/fz8ULp0abFL0MGDB7XG2FM679OnTyLi93fffZfE+EPoH6m8w8LCMGvWLOTLly/JYmdCd8if79jYWDg5OQkTe2o7pFAQMf2RuGwjIiLw9OlTjBgxIokRu1ChQhg7diyOHz9uyCwrEvm4+H///Ye9e/di1KhRmDZtGlatWoWXL1+KfoC08DskJASDBw9GgQIFsG/fvgw93xEREZg7dy4KFiyIVq1aYd++fSKycm7vq6dkYl+7dm2G5i9CQ0Oxbds2NGvWTCxYliJNJ1687+Pjg1atWqFevXo0JixD/ix++PABt2/fxs6dO7F27Vrs3bsXoaGhYnGSPPL6s2fPUK5cOWF8bteuHby8vJJcU0Ia25L0btWqlb5vLVdDdUOZkIGdIAiCyDTU0VYOmenMJdbv4MGD6NKli5i8klaiN2zYEEuXLk3xPEKbzJSPXL/3799j48aNqFy5slYkMpVKherVq2PhwoVZ+lu5CV2VT1RUFP7++28RTUalUsHW1haTJ08WaXL7gEp2EhkZiWPHjomV6FL0MfnkLdWN7OHz58+IiorCqlWr0Lp1azFZOHbsWJGGtMgeSAvlce7cOfz4449CC3pHpR9dfFMl87oUSaN8+fIUlS8NPDw8RNtz5cqVhs4OkQxubm5i2+ZOnTqJqC9pmdcfPHigtUDh4cOHqZ5HJEU+Qfjq1Su8evUKr1+/hr+/Pzw8PODj4wM3NzfcunULd+/exd27d3HixAk4OTlhy5Yt6NmzJxo2bCjarom/0ckhRbvU1eKqnMihQ4fEIu+0nufo6GjUqVMHnHO0aNEiO7KXq0msx7Nnz3DkyBE0adJEGHzkY047d+6Et7d3qtcAqF7oCh8fH/zyyy/iu1+qVCn8+++/WhHvE7eRDh8+LHR78OBBdmeZkDFs2DBhwHr79q2hs5PjiIuLw/bt22FrawsjIyNYWlpi7dq1Wscl1Go1duzYISK5rlq1ygA5zr0k/k4sXbpUtLOGDBlioFx9nURFRaFjx47gnKNw4cJYsGABwsLCUkwv/0aMHz9emLPIEGo4nj9/jjVr1qBChQpCR19fX0Nn66smvZGOw8PDMWXKFBgbG6Nq1apJFmMS2Ud4eDgePnyIHj16oEqVKlr97/r162PIkCHw9fXV+n7QuIg2aZVHcuOogwYNAucc+fLlw8GDB9M91nr16lV069ZN9DGKFCmCbt26iX5hbu/zye9f+taWKlUKnp6e6Tpf0jIuLg6enp7o1asXOOewsrLC3bt3kz0nODhYvPtye/nLSWsBUuLjwcHB+Pbbb8WYR/PmzcVznVodi46OFotomzRpQu8nPUF1Q7mQgZ0gCIIgciHyRu/du3cxduxYrVXo1tbWKFiwIExNTcUgvHzLQTL7pJ+0ykquxdGjR/HDDz9oaVG0aFGUKlUK1tbWpEUWyUpZxcfH4+PHjxgzZgysra2TjepDZIzM6CE/JyoqCuPHj0fRokWFHr/99psus5hr0MV7xN3dHQsXLhRaTJkyRQc5y32QFsohs1rIv+t+fn6YP3++0GL8+PG6yh6RCpJ5XTJlNWzYEJ8+fcLBgwfJxJ4G3t7emDVrFpWJQrl48SKsra3BOce8efNSnVCXNPTy8kL79u1hZGQEU1NTDBs2jHZTywIzZszAN998gxIlSsDOzg7FihVDgQIFUKBAAVhZWcHMzAzm5ubImzev6M8ZGxtrLUouUqSIVvT85CY+Hj9+jHr16uG///5LMU1uZ8uWLShUqBCGDx+eZlopQlL//v1hbGyMMmXKaBl10wu9GzOOp6cndu7cibJly4qFNNK4xoABA7B+/Xqtd1lqZUz1Qje8efMGf/zxB2xtbcE5h4ODA27dupViekmTR48eiXfb2bNnsyu7hIzY2FgAwPTp06FSqVCoUCG8fv3awLnKuVy7dg0zZsxAnjx5wDlHv379xDH5+0etVmPDhg1o1qwZrl27Zois5npevHiBM2fOoFGjRlrBYKZOnWrorCke6R1/584dEX29TZs2SRaVpcTx48dRq1YtcM5RtmxZPH78WJ/ZzRVIi/WAhLHvmJgYfP78Ge/fv0dYWBjevn2L58+fw9fXF/fv38eBAwewatUq1KxZE0WLFhVRRLdu3QpAe4wquXYWtW+TJyYmBg8fPkx1FwI5586dEzsLbd68Wc+5I4CkfYGDBw+iX79+yJ8/v9b8ar169TBt2jS8evVKREmmepF+UjPQysvpxx9/FIuZMmJi9/f3x+XLl9GxY0cUL14cnHPY29vD1dU1zb+fG5A/5/PmzcPKlSvx/v37TF3Lx8cH7du3B+ccrVu3xsuXL1NMm9vLPbPEx8dDo9Fg48aN4nkuU6aMCLyQlgH+zJkzKFWqFFQqlWjH0vtI/1DdUA5kYCcIgiCIHIQ0mQGkPJknb1wdPHhQRNeQolN+//33uH37Nry9vXHu3DnMnTtXmH0WLFig93v42pE6E/LBrfRosXz5chERjnOOxo0bY/To0fDz88Pr169x8+ZNLFq0SGixePFi/d5IDiAjWqSFXKvJkyfDxsYGpqam4Jxj1qxZWcpnbkHSIzw8XPwus3rIzxs3bhwsLCyEEWL16tVZy2guQJdayAdQPn/+jA0bNkClUiFv3rw4dOhQ1jKaCyAtlIO+tPj06ZPQgnOOdevWZS2juYj0tGsT4+XlpRV5vUGDBmIC+PPnz9i+fTuZ2ImvlpkzZ4JzjhIlSqRqWJOeZx8fH/Tr109Eba9WrZoYhKdnPuOcPn1ay4gunxSXfmdqagqVSgVzc3NYWFjA3NwcBQsWhIODA6pWrYqFCxfCxcVFXDO5d5ubmxtq1qwpzCdPnjxJMW1uRTILSvXhypUr6TpPioCVN29eBAcHp/vvSUYHCZqw0kZ6n0jlEhkZidDQUEyYMEHsPCBfoD9gwAAcPXpU6xppPd9UL7KOVFZ//fUXSpYsCc45SpYsievXr6frvC1btsDExAT58uUTiwiI7EOqZ2/fvkXt2rXBOUe5cuW0+i6EbpC/4yMiIuDk5IR8+fIlCWIhb0vFx8cjJCSEvg/ZgPROiouLQ1RUFFauXInWrVuLMVrpO9++fXvs2LHDwLn9epg9e7Yov1OnTqXrHDc3N/Tp00ecJ9+pgMg4L1++xJ49e9C4cWO0bdsWTZs2RZUqVVCrVi3UqVMHjo6OcHBwQLly5VCsWDHY2NiIfp78x8bGBqtXr07S1pW/s/bs2YOZM2cme4xIeL8cOHAA9vb2OHnyZKpppbKLi4tD/fr1wTnHwIEDoVarqVyzgbi4OKxbtw79+vXTWjxepEgRVK5cGU5OTqkuyKF6kXXki5EHDBiQbhN74ojVb9++xZEjR9C0aVNwzlGsWDERaTy3ayHv88rHJqR2Z0REhNYYekrExcVh27ZtMDY2RrFixXD+/HkAVL66Rq1Wo1mzZuCcI0+ePLhz5w6AlMeR5L//6aefxPecFo1nHqobXy9kYCcIgiCIHEJUVBT27duH5cuXi98lblzJ/3/Lli345ptvRGO4V69eOHLkSJJIflFRUVi2bBlUKhWqVasGDw8P/d7IV4xUvmFhYZg9e7aW4T+xFvJOycyZM0WUEymK9O3bt5No8fnzZxFVt379+nj+/Lke7+brJiNapPdaAHD79m00aNBARGCqVKkSQkJCdJPpHIxUhq9fv8bAgQO1BgMzey0gIbpJkSJFRN1p165dpiMQ5BZ0qUVyvHz5Eq1bt9Yyh1JHP3lIC+Wgay0Sl3NISAiGDRsGlUqFli1b4tWrV1m6fm4gPe3axDx9+hQjR44UEaobNWokjsm3eJSb2EePHq2fGyAIPTB37lxwzlGxYsUU2zvyyOv/+9//UKhQITGB++zZMwBkvs0KI0eOFGb1+vXrY8+ePTh06BD279+Po0eP4vz58zh9+jQuXryI//77D/fv34ebmxs+fvyYJPJ9cjq4ubmhWrVqYlc06b9Pnz4FQGZdOffu3UODBg2gUqkwZswYvHv3LtX0N2/ehL29PYyMjNCyZcskZSn/xrx9+xaPHj3CyJEj0atXL7Rp0wZ9+vTBrl27EBgYCIC0SAk3Nzf8+uuvwmAr/dSsWRPfffcdPDw88OHDhwxfk+pF1pCe7w8fPoiyLFasGP75559Uz5O/pzp16gTOOUX91iEajUbr3SM3u8XFxYlnW9IhODgY8+fPF2MgLVu2THdkWCLzxMXFYfPmzciTJw8sLS2xc+dOQ2cp15G4H/j27Vv88ccfaNOmjdbCQgcHBzRq1Ajnz5+nPnc6kd4vvXr1Eu+VuLi4NPvez58/x9ChQ7XmMqRrUV8j48THx2PTpk1aOzel9CNfSKtSqWBkZAQzMzPUqlULXbp0wZ07d8TuQxJyPY8cOYIKFSqAc44hQ4Ykmya3Ex4ejp49e4Jzjt69eyM0NDTNc54/fy6+z3369EkxXXrqB2mRlMTl5ubmhm3btqFOnToiqBHnHJaWlmjZsiX+/vtvBAQEpHoNqhe6IzkTu4mJCW7fvp2u8+ULot3c3NCqVSuxI8ibN2/0kuevHXnginHjxolySuuZDQsLQ7FixcA5x6BBg9J1DpExpGALpqamIthaeszrc+bMEe+yoUOHZkteczJUN75OyMBOEARBEDmAyMhIODs7i0nC8ePHJ0kjb2ht375dRK/inGPUqFHw8fFJEjlL4s6dO7C0tATnHM7Ozvq9ma+cd+/eYfXq1ShXrhw455gwYUKSNHIt5syZAzs7O6HFnDlztLaKTNxAvnTpkhioPHfunP5uJAeQHi0ywvXr11G/fn1hXq9cuTLCwsIAIMliAyIpL1++xO+//y62M82MHvL6cPr0abHtuWRe//jxIwDSIy10oUVqTJo0CZxzFChQAEFBQTq9dk6DtFAOutBCPkme+Pt9+PBhiqCRTtLTrk1MfHw8/v77bzFhqFKpsGTJEnFc/l2QTOxSlL5Ro0bp5T4IQtf8888/MDIyQrFixbSi30p9N+m98+jRI3Tt2hU2NjbCvH7v3j0AZPTMLPJyGz16tHif7927N93XSGviQ27StbOzw4wZM9CyZUsy66bC1q1bhRZr1qzR6kfLjTtv3rzB1KlTRT86tW/85cuX0a9fP5QoUSKJYShfvnyoWbMm3NzcAJBBS463tzf69++PvHnzinI2NTVFmTJl8Mcff8DDw0NEi8vIJCDVC92h0WgwfPhwcM5hZWWFuXPnprr4W67T4sWLwTmHmZkZpkyZkuQ4oV9evnyJGzduoHv37ihVqpSIbHnjxo0kaVMzZxHafPjwIV2mRCDBACEFgfn555/1nDNCIvHzfO3aNSxYsEArCIzU1u3Xrx9u3LiRRFONRkP1IhWk8pG+rd9//32K6ST8/Py02sNdunQRfQ0i83h5eYkxClNTU/Tr1w9jxozB1KlTsXjxYsyZMwcLFizA1q1bsWXLFmzYsAGHDh3Cv//+i6tXryIiIkK0f+V6yf99+PBhlC9fHiYmJkI/2pkuKbGxsdiwYQMKFy6MkiVLwtnZOcV2v9QG/e+//1C8eHHxnUjrvXPjxg0cOnQIw4cPx8iRI7Fv3z7cvHkzxfREAvfv38f69ethZ2cndiCQ6s3QoUPh5OSUrutQvdA98nHXH374AW3atMn0tU6ePImCBQuiWLFiYhcE6nsnJSIiAt26dQPnHHPnzk0zfUxMDD59+iTmy3v37p0Nucx9TJgwAZxzFC9ePNVFHPJneuPGjVpB89JaaE6kDtWNrxcysBMEQRBEDuDYsWNwdHQU26R16dIlxejczs7OaNSokeiMT5o0CREREWn+jerVq4NzLiJZU4cxKfHx8Vi3bh0KFy4sBk+GDx+e4oTIunXrULZsWaHF0qVLU7y2NFASHR0tztm9e7fWMeILGdUiLa5fv45vvvmGzOuZRK1WY9KkSTAzMxMT30uWLNEymaRFaub19u3bi0h+ZF5IHV1okRLSRMm0adNgamqKggUL4uXLl1m+bk6FtFAOutDiwIED4Jzjzz//1Pq9PPJ3+fLlwTkXUcXp+508GWnXJsbZ2RkjR46Eubk5OOf43//+J44lNrFLEc6mTZumtQUrQSiVR48eoVKlSuCcY9GiRclGXb1w4QIcHR1FHShSpAhu3boFgN45WUXexvz9999FO3Tz5s1JohxmFFdXVy2T7urVqxESEoLAwEC0b9+ezLqJkD/L0s4EnHMsXrxYbDMu8fTpU8yePVuYqps3b47g4GAASctx7969MDc3F9EvixYtitq1a2PUqFFo3bo1KleuLDSi7cyTItULa2tr2NvbY8eOHUkMbRkpL6oXuiUiIgItWrQA5xzVq1fHo0ePUkwr1+nEiROoX7++KG8XF5fsyG6O5M2bN7h27Rr++ecfHDhwAH/++Sd27dqFtWvXYtWqVVi4cCGmTp2KiRMnYvDgwejWrRvatWuHUqVKCXOWFF10165dAFI2KUpb1Sf+PZFAaGgotmzZIvpu6SkjyYxibGwMX19ffWeRkPHvv/9i6tSpMDc3h4WFhVjEYWZmhtmzZ+PUqVNa6aleZJyBAweCc46mTZsiMjJS65j8+/rgwQMMGTJEvI9atmyJkydPUnnqCHd3dxQsWBCcc7Ru3Rre3t4ZvkZa5nXOOWxsbPDtt9+K9jGZdZPy9u1bdOnSBZxzNGjQAE+ePBHH5LulSHTo0EF8o8+cOaN1LWkeVa1W486dO/j9999hamoq+uxSEAYHBwfMmTMnyd8hEgKG9OvXD7Vq1dJawGRnZ4fRo0cnKfPU+gVUL/RHcvOkmemjffz4URhJf/nlF11kLUcSERGBiRMngvOEXUgfPnyYYlr5jlxS8J727dtrHSOyjlqtFn3u7777LsV0cn/Njh07UKJECfHukX8HiMxBdePrhQzsBEEQBJED8PPzE532QYMGJVnVKTWyPDw8xPZ3UuSx2NjYVK+t0Whw79495M+fH5xzbNq0SW/3kRPw8fER5Tt9+vQUJzXOnz+PJk2aaE22S6TWKD5x4oQ458iRIzrPf04ivVqkRWLzepUqVci8ngm8vb21jD5StPT0QOZ13ZIVLVJCXvbSd8bMzAx+fn5ZvnZOhrRQDlnRIi4uDiNHjhTnS0YI+WDkvn37xPENGzboPP85ibTatckhL+uQkBDs3LkT+fLlSxIlUZ5OrVbj6dOnqUYfJQilIUXBldq3J06cwKtXr7Br1y6MHj1aa0v5smXLwsPDw9BZzlGkZmLPbL/Azc0NVapUERGaVq1aJQzWAPDs2TMy6yaD/H0uTUxxzlG3bl2MHj0aCxYswOjRo1G/fn1RL2rVqoV9+/YlGQP5+PGjVt2ysLBAkyZN8PDhQ6FFeHg4/vvvP7Ru3VoYtmg78wTkWqxYsQKbNm2Cv79/imnSA9UL3fPvv/+KZ3zjxo0pppP3vW/duoXevXuL82bNmpUNOc2ZBAUF4bfffhO7BWXmp1ChQnB0dMS///6b5D0m183JyQmccwwePDjZ4wTg4uICIyMjFCpUKM2FstL3fdmyZSJAhqura4rppbKmMs8YicsrODgYd+/eRffu3VGyZEmtulClShXMnTsXd+/e1TontYjHVC+SRyqD3bt3I1++fChXrpzW4rPEZShFs+Sco02bNjh8+DA98zrG3d0dhQoVAuccrVq10lqcmZEyTs2kO2vWLGg0Guzdu5fMuqng7+8vFrC2aNECt2/fTrLAQ6PRoF+/fuCcw8TEBK1atdJaeCC1TaOjo7F48WI0btw4yfusbt26cHR0FFqMGzcuW+/zayAgIECr3Bo0aIBffvkFfn5+GVpMTvVC/8i/xZkJgie1caWdb7p06aKzvOVEzp8/L57jadOmJRusUB4cb8GCBVCpVDAyMsK8efO0jhNZR61Wi11tUjKwy+vF5s2bUapUKRgZGYFzjt9++y3ZdETGobrxdUIGdoIgCILIIbi7u+O3337D9evXxe8SN65mzZolOvlDhw4Vps+UkA9iSucdPnxY95nPYXh4eGDOnDlJomTI9Rg2bJiW+UQipU6JdO7ixYvFAMrVq1f1kPucRUpapBeKvK5bPDw8sG3btjTfPXISm9flE75kXs886dEi8YCjfFJKOpb4O7N06VKoVCqoVCp07doVnz9/po5+GpAWyiE5LdI7WBgSEoIRI0aI99PChQtF1GNnZ2f06NFDHPv777/1kv+cRHLt2owM3KrVauzevVtE6Fu5cqU+skkQ2Yb8+Z88ebLW5G2JEiXAORcTHmXLlkXfvn3x4sULnf5dIgFdmtg9PDyEfvny5cP06dPF9eXfbB8fH2HWzZcvn1YEwNyMXIt58+ahUKFCoq8sRTSU/r9x48bYtWtXEtNJWFgYZsyYIXSsWLEixo8fn+zkVnx8PE6dOoVChQqhaNGi1B+XIX/2U2qbpheqF/rBxcUFJiYmsLa2xs2bN7X6ERLy8n3w4AF+/PFHUTd+/PFHoQN9GzLO27dvRSRJqX1aokQJ2NvbI3/+/LCzs0OlSpXg4OAAR0dH1K9fH9988w0aNGiAwYMHY+rUqbhy5Uqyu2rJdTtw4ACsra2FbsOHD082XW7n4sWLKFmyJCwsLLBixYpUd2PSaDRQq9X46aefwDmHlZUVfHx8kk0n5+PHj3j58iV8fHzg6+urVW9Ii5QJCwvDyZMn0bx5c5QqVUqrzduxY0dMnToV4eHhaZYh1YuM8erVK7HbRvPmzXHmzBmEhYXh/fv38PLywo8//qilR48ePXDmzBkyr+sJDw8PLRO7l5dXpq915MgRYeAqWLCg1jxUdHQ0tm/fnqxZl771CXh5eaFYsWLCbD506FCcOnUKZ86cwdatW7UM6ba2tlpzp1L7+PPnz/j5559FZFfOOfr3749NmzYhKioKMTExcHV1xcqVK4UWq1atMtAdKxd3d3c0adIEM2fORHBwsDCuZ+ZZpXqhTKS+xufPn1GmTBmxWEE+F0IkZc2aNeLdsn79eq0xD2l32djYWLi4uKBRo0Yi7bVr1wyV5RzNsmXLYGRkhKZNmyIwMDDZXTsAYNGiRbCxsRHvGvkusjTXrRuobnx9kIGdIAiCIHIQ8gH3xB2606dPi8ZXp06d8Pjx43Rd89GjR2JwpUmTJlneHj23kFpk+4MHDwotBg4ciHfv3gFIe7D3xo0bMDExoZXnGSStXQZSgszr+iGz0WJ0GXmdBrwSkJdDVgZF3r17B09PT4wcOVJrUnDdunW6yGaugLRQDilpkVZkPiAhSlz//v1FuRcsWBDVq1eHpaWl+J18MJJIHXm7Vq5FehdBBQcHo0+fPsLskJwZkSC+JuT1YPXq1WJbWumncOHC6NevH1xcXJLsLLBnzx4tk0l6kNI+fvwYixcvRmhoqGhX5/a2VEom9i1btmSon+Dt7Y369esLU2OtWrVw//598TcSm3XbtGkjjEUZWRCak5Frcfz4cYwbNw5WVlZiF45SpUrhl19+gZubm5igks6Ji4vDggULhH61a9fG2rVrxfcnuTZZWFgYypYtm2QhOqE7qF7oByn6sLW1dbK7c8gNOdevX8eAAQO0jIpSlHsi87i6ugpDYuXKlXH9+nVERUUhJCREtFNjYmLEuwpI3iglrwOJTbpSv0O+DT1FD03Kx48fxQ5aNWrUSHHHJ+k78Pr1a9SuXRuccxQpUgShoaHJpgOAFy9eYPXq1WjcuDEKFCgAKysrGBsbo3fv3lq7H5AWX4iPj8fHjx+xZs0afPvtt1rt2/z586Nly5bYsmULIiIiRJ1IbdyE6kXm8Pb2RvHixcVYhoODA0qWLAk7OzstTX7//Xd4eHiIcsuMoZPKPG10YWLfvXu3aE9ZW1tjzpw54pi8LsnNumPGjNHVLeQYvL29UbNmTa16wDkX7xYzMzOULFkSe/fuFedI/eaoqCj06tULpqam4ryVK1ciJCQkyd+JjIzE1KlTYWRkhHbt2lG7NhkSj+tl5l1C9UKZyL8pUvA3c3NzLFq0SOs48QX591e+KH/mzJlaAWGio6OxadMmNG/eXKRZsGCBIbKcKzh16pSYl1uzZo3Wu1ytVuPJkydaAQ455/j111+10hBZg+rG1wsZ2AmCIAgiByLvzEkNtT/++ANmZmawsbHBli1b0tXhCwoKwqBBg5A3b16oVCpMmDAh02ZgIkGLqKgofPfdd+Cco3z58jh16lS6zvX09BQmlUKFCmH9+vXJRswidENWzetkcM86+oi8Lo9ESoNeX5CX4dWrV3H69Gm4uLjg4MGD2LdvH/bs2YM1a9Zg2bJlWLlyJWbPno1Ro0Zh5MiR6NOnD8qXL4/SpUtrRbmcMGGCuCaVdfohLZTJxo0bsWHDBgCpl6FGo8Hp06dFJEVp0Zn08/3338PX1xcARe3JCPIyv3fvHo4ePZrk9ymxefNmUf6XL1/WVxYJItuQfyfevn2L27dv4/Tp07h48SLc3d210krvmStXriBfvnwwNzfHgQMHMvQtePDggdg2vWHDhli8eLFoT+X291hKJvZVq1alq2wkHcLDw3Hs2DG0bdtWTNJKkb0Ta+Xj44MRI0ZoGeCIpM9iYGAgvLy8cP/+/SQL0ORpt2zZInSrW7cuduzYkWokv7i4OHz48AHVqlUD51zL7EDoBqoX+iMgIADly5eHiYkJtm3bphXVXv4+++uvv9CtWzdRNzp37ozr169TP0JHuLu7o2DBgsKQ+OzZMwDaph1pPEmj0WiNLSXWQP7/Bw8eFEa6ihUrYsWKFdi6dSuZdVMhMDAQ33zzjVgA8/TpU1Heicf0unfvnqKRSl6X1qxZgw4dOiRrcKT+ecpERkaiZ8+eoow55yhdujSaNm2KK1euICgoSCt9Wn1yCaoXGcfHxwdt27ZNYlq3sLBAmzZtsHv3bq30UVFRuH//Pl6/fp3uvyEv6zt37sDV1TXF47mdxCb2jO4wu2LFCpQuXRpGRkYwMzPD3LlzxTH5e04y65qZmYFzjokTJ+rsHnIKQUFBmDBhAurVq6dVN/LmzYuBAwfCxcVFpJXmTz9//ozvv/9epDU3N8fBgwdT/Tt///23SC8t4CSSkpX3BNUL/ZEVXT5+/IjXr1+jf//+KFCgADjnsLGxwYULF3SYw5yHvB83adIkraA67du3R7t27VChQgWtQEejRo2Cn58fAPrm6otZs2aJ8v7555+xZMkSHDhwAL1790atWrXEsZIlS2LKlCnivMya1xOfRyZ4qhtfK2RgJwiCIIhcQHh4OCpVqgTOOZo2bao1GZISoaGhWLZsmYi8UaZMGbx58ya7spxjCQkJQcmSJcE5R/fu3dPVCH7+/DlGjBghJrmaNm2aJGo7NaYzRkxMDAIDA8WWUYmjjWXFvC51jD58+ICLFy/SNsHpIDQ0FB4eHvj06RMAbT10FXn90aNHsLKywg8//CB+R3poM3ToUGF+zsyPkZERatSoobVKPTmNHj9+jNOnT6e6a0huJ7u0SA7SQpszZ87AysoKVlZW6Yp4FRUVhZo1a6JJkyY4e/Ys+vbti/Hjx2Pt2rVa6TJibiQS8Pb2RuvWrWFqaoonT56kmlb6Xt+8eVO0n/76669k01I5E18bKT2zqUVBlHaHsLS0xMGDB9P93Ds5OaF3797Inz8/OOfIkycPmjRpIqL35vZJkeRM7H369En3om95X87Pz08sdC5WrBgePHiQ7DlSe1l+PvGFlAyeievFmTNnRLupatWq2LhxozCvp1auDx8+FCaGefPm6Tj3BED1Ql+Eh4cLE1XTpk3x6NEjREVFAUhoN6nVakyePFksWuKco1evXrh9+3auX7Cka3QRVVeuiTzCdIUKFbBq1SpRD8ismzo+Pj6wt7cXC/V27dqFly9fAgDev3+PO3fuoEuXLuCcw8TEBE2bNsWtW7fE+fLx9UGDBmmNXTVr1gzDhw/HmTNnsGnTJowYMUJoQTt4JOXJkyewsbGBsbExfvrpJ1y4cCHJjkJpPbdUL3RDaGgobty4gfnz52PWrFlYsmQJHj16pBUxWqPRQKPR4NSpU+Cco127dkkWGqTF0aNH0apVK3DOMWXKFJw/f17r+kQC8m9GkyZNxMKn9HLt2jVMmzYNFhYW4JxrjYvL+zJqtRrr16+HjY0NHj58qKvs5yiio6MRFRUFZ2dn7N27F05OTvD09BTzS8CX70JMTAyGDx8u5pesra3x999/i3SJn3FJCx8fH9ja2sLY2BhXrlzJhrvKnVC90D1SuUVFRcHLywtubm5wdXXFgwcPcPXqVVy/fh1XrlzBP//8A2dnZxw7dgzbt2/H/PnzMX36dDRu3BiOjo5a8xtbtmxJ9W9KEflpXOrL/S9btgwVK1ZMcc5o+vTpSRbQyt9hmeHTp0/Cr5DbtZC3RadMmaK1iFUaR5J++vTpg3379mmdL58vzQxbtmwRCwNzuxaA4esGkXHIwE4QBEEQuYDAwEAULVoUJiYmWLFiBYDUjbjv37/Hli1bRIexaNGiYjtVeWSZlKBBxpR5/PgxLCwskDdvXhw6dAhA6h2JFy9eYMqUKShWrBg45yhevDj8/f2TnBcXF4fAwEBs27YN27Ztw8WLFynadApER0dj165daN26NXbt2oXw8HBxLKvmdYnw8HAULVoUnHNMnjxZRIsDSIvEvH37FtOnT0fz5s2xZ88efPz4URzTlXn98ePHWhPxw4cPF8dIjwTevn2LMmXKgHMOU1NTqFQq2NnZwdLSEvnz50eJEiVQvHhxFC9eHOXLl0flypVRvXp1NGvWDJ06dcKIESNw9OhRLVNpchp5eHiIKBrjxo3DxYsXxTHSIoHs0MLX1xfnz5/HyJEjMWHCBPz1119a6UmLL8i3Cp4zZ46WQSolunbtigIFCuDFixcpTkpJ3L9/H87Ozhg/fjxmz56NY8eOCWMoQFrI8fDwEFFvJ0+erPX9TomdO3eKd/+BAwdSTevj44MbN25g0aJFWLduHc6dO6cVuZe0IL5G5O+cgQMHigiKf/75Z4aeaTc3NwwdOlQM9hcpUkRMiuR2Y6O8jPfu3ZvEbJURnj59ikaNGoFzjv79+6f6nqN3Uubx8/NDy5YtRfSlGTNmIDo6GkDq5RoWFoZffvlF9Mvv3buXXVnO1VC90B2+vr5wcHAA5xy1a9fGoEGDsHnzZvz000+ijKWf3377DV5eXll6x5MeKaMLEzsA7N+/X0SNq1ixItatW6e1k4QUPZTMuinj5eUl6kW+fPlQsmRJdOvWDVWqVBG/NzU1RfXq1cU4LvAlwm58fDw6d+6sVX/mzp0rovdJhIeHY926dVCpVChUqBD+/fffbL3Pr4GgoCCcOXNG63eZeU6pXuiH5ILo3L9/X2vRU3pN7FFRUZg7d64YqzU2NkbZsmWxdOnSJH+PSNiZV1qQsWLFCvE8p4b8+x0eHo79+/cjX7584hsvkXgnZ2ncnXaXTUpaC8nlC2c3btwoviHGxsY4cuRImtcBgFWrVok69d9//+kw9wRA9ULfhIWF4ccff0TZsmVhbW2NvHnzit0AzczMxC4r0sLA5EyklpaWKFu2LHbs2CGum1x/5NixY7CzsxM7FeR2s678/m/evIk1a9agRo0aqFSpEqpWrYp+/foluxu8l5cXGjVqBCcnp0x9dyMiIrBmzRoULVpULDYnLb7c/86dO/HTTz/B0tIStra2KF26NDp37oy//vpLmP4lAgIC0LdvXxw6dChTWhw7dgycc+TPnx9Pnz5NkpfciqHqRnh4OM6fP4+3b9+Kdxi1bdOGDOwEQRAEkcPRaDRwdXUVncPEKzoTExISgg0bNqBcuXLgnKNQoULYuXMn4uLiknQUY2NjER0djdu3b+PKlSu4e/dukigQ1CD7gkajwa1bt0Rn/NixY6mmDwgIwMSJE1GiRAmxkECKRiJvdAcEBGDZsmUisru0qrdNmzZYs2aN1t8nEjrV0gB57dq14eTkBCBh29L69etn2bwOJJhXJAOqSqXCN998g5UrV4rjpMUXwsLCxPumVq1aQo/z58/rzLwuN1vRBFXKuLm5CXN5yZIlcfnyZfj7+8Pf3x9hYWEICwtDcHAwIiIiEB0djfDw8BQnTZIbWIyPj8e+fftE/VOpVKhduzaWLFki0pAWCehTi+vXr6Nz587CMCH9kBbJExkZialTp8LIyAiVK1fG9evXU00fHByMOnXqwMLCIkl0HnmZRkZGYuPGjcifP7+YLJF+6tati2XLliV7Xm4mMjISM2fOhKmpKSpWrIhLly6lmFYqMykiMuc82cFIiT///BPVqlWDjY2NVluqWbNm9P0mvnrk7dgBAwYII1Za25cnjlz98eNHXLx4UURKLF26dIYjAOZUkusryL+/L1++RFxcXJrvkJiYGEyePBmcczg6OmY4kiWROpImx44dE/2Mzp07J7sLVHKcPXtW7GxXvXr1JBOORNrI6wDVC8Pg5eWltbjbyMhI/Nvc3BwVK1bUaocCCVH1pGjt6UVen6R+PKFNVk3s9+7dE+YfY2Nj9OrVSxyTR+9LbNYdOnSozu4hp+Dr64sePXqgVKlSWpESOU/YfaZLly44evSoSC83Q0vtImNjY9jZ2WH37t1a15a3Efz9/VGvXj2oVCqt8VoiKZk13FC90A2JzZuppbl58yZMTU0zbGKPiIjA69evsWjRIjRo0EBoMXbs2GTzkdvx8vLC2LFjcffu3UydHxcXh82bNyNPnjywsLDArl27dJvBXEji51OqK4GBgejQoYP4jsjnY5N7pqXfqdVq/Pjjj2KxrJ+fH9UBPUP1Qrc4OTmJ5176LhgZGYn5VjMzM+TPnx958+aFtbU1bG1tUbhwYZQqVQoNGzZEu3btsG/fPq2F4sl9g86cOSPa0AULFhRBeXK7WTdxWUVGRiIuLg6xsbFJxqykd8uMGTPAOUfevHkztFsjkPAd37Ztm5jDsrGxIS3+n8T3/+rVK7x+/Rrh4eEieIKEpNuaNWtEnzyjWgAJgRratWsHzhN2/SAT+xeyu25ERkZi27Zt4Jyjfv362L17N96+fZtsXghtyMBOEARBELkAtVqNxo0bi4i38q2xpR8goYE7d+5clC5dWnT+Vq1alWRiNiwsDI8fP0b37t1Rt25drU6pubk5fv755zQHZnIrUVFRqFevHjhP2HJcahwnXoH59OlT/PzzzyKKd5EiRfD3338nKcuPHz9i3rx5Ip2JiYkYqJcmIseNGyfSkxYJuLq6okiRIsK0OXPmTNStW1cn5nUgQWdXV1dhEpIG4Snyd/K4ubkJPerUqYNJkyahcOHC4t3Srl27LJvX7e3tsWbNGqxevZpM7Kng7u6OggULikUDnp6eWmUjrw/yznZ6y+/z58949uwZfvrppxTrBpGAPrRwc3NDmzZtkDdvXhGRoUiRIjA2NqbJwlR4+fIlWrRoAc4TtoJ3c3MTx6R3kqSBk5OTKEv5FtjAl/IMCwvD1KlTtUzrxYoVQ/ny5WFlZUVapMLLly/RvHlzcM7RtGlTLS0St6mkyCOcc7Rp00arDOX/Xrt2rZYWNjY2KFasGExNTUVbirQgvnbk34wffvgBnHO0aNFCa8em9OLu7o4mTZqA84StttOzG0JuZvfu3WjcuLGI1JpW5L6HDx+K7/SmTZtSPYfIHG3bthX9g8DAQAApTyJJ3/m3b9+iWbNmIirc2bNnAZA2mYXqhWEJDAzEvHnz0Lp1azg4OKBKlSpo2LAhdu7cKXZflHj//j1WrVqFYcOGae1Mk17+/PNPdOrUCXv37oWvr6/4PemXgNzE3rZtW3h6embo/L179+L7778XQUtGjRoljsm//Wq1Gjt27BBjty9fvtTZPeQUQkND8e+//2LQoEFo3bo16tevj/bt2+Pw4cNaiwvk761u3bqJMq1UqRKcnZ1FupS+K126dAHnHN9++61e7yc3Q/Ui+5Ce85s3b4r5iD59+iAgICDV8xJ/Ax49eoQ5c+aIsZDJkyfrLc9fM/LAFdKzrFar8fr163Sd7+Pjg/r164NzjkGDBukljwQwb948Mb40b9488fu02j5y8+/o0aP1nc0cifROonphOEaOHCme406dOuHkyZO4efMmLl68iOvXr+Pp06d49OgRHj9+DH9/fzx//hxBQUFihxQ5ydWZM2fOiF1WpEXpZNZNHnlbNDXTrHy3xvQadSXzev78+UXwPdJCm5TKMTUt+vfvn2nTNJDwPmvfvj1pkQb6rBsA8Pr1a4wYMUK8Cx0cHNCnTx/RpyQ9UoYM7ARBEASRw9FoNIiJicG4cePAOUe9evXw9OnTJA2ku3fvomfPnqKjUbhwYaxbtw7BwcFa6e7du4cxY8aIqODGxsZi8leKoqxSqWBsbIypU6dq5YNIMDb/9ttv4JyjQYMGePr0aRKD9Pnz51GzZk1YWVkJU9uxY8eSja7r4eEhIq+XKlUKEydOxNmzZ7Fz504MHz5cDPyOHz8+u27xq0E+UWhlZSWiAlStWhWhoaEAMmdeT/ysr1q1ChUqVBAmOLlpmviCXA8LCwvRuevQoQPev38PIGvm9fXr1yMkJAQAaKvgNNDVduaJSVy+y5YtQ9myZcV3ZMyYMTr5OzkJXWkhlf2BAwdEhOmqVavCxcUF3t7eOHnyJP744w9RLyZNmqTL28gR+Pn5iQV+TZs2xenTp8W7SUJumG7YsKFYCJWY5cuXi3Q1atTAmDFjEBQUhNDQUFy7dg3z5s0TWsyePTsb7u7rwtfXF46OjkKLU6dOaWkRFhaGP//8U5SxtIBJrVYneQ/t2bNHK913332HJ0+ewN/fH//++y+mT58utJg5c2Y23ylB6BZ5u3bOnDlJIoRm5Drr168H5xzly5fXMiQS2nh5eYl3zJ49e9J1zsWLF8U569ev13MOcx8fPnxAtWrVwDnHTz/9hNjY2BT7GPJFap06dQLnCZF4f//99xS/8UTaUL1QBhqNBvHx8QgMDER4eLjYiUBCmsh9+/atGOv77rvvMhQB/9ixY2LhodS337Fjh1YeiIQ+n7Sgv3379mI8KjXkZRcYGIhNmzbB0tISnHMMHDhQHJNPyKvVahw+fBiPHz/W7Q3kQGJiYhAdHZ1kHFb+vZAMWkZGRihfvrzWLpupPdutW7cG5wk7gFAd0C1ULwyD3MQujecOGTIkXREmE+9St2nTJjGvtHfvXr3l+WtHKreYmBgsWbIE+/fv1/p9aki72piYmMDb21uv+cxtaDQaBAUFoUqVKuCco3Xr1uku44sXL4pgPlWrVhU7DtJ3IuNQvTAM8jbS6NGjRftf3vZPi7S0kpvXa9asidWrV6NNmzZk1s0kye3WmDdvXvz555+papHYvN6kSRMcOnSIon9nAXk5ZUSL5CATe9bJbN2QExAQgD///FPUE8l3JfU5KBJ78pCBnSAIgiByCQEBAcLM2ahRI6xatQr379/Hvn37MGfOHJibmwuDTrFixXDgwIEkxqyzZ8+iTp06yJcvn1g1+Pvvv+PSpUt4//494uPjceTIEYwYMUJca8KECeJ8GnBJwN/fX0wAfvPNN5g7dy4uXLiA5cuXC3O79FOyZEncuHEjxWvNmjULnCdsK3jw4EGtrZnfvXunFf8bZ8UAALrbSURBVG2atqdNioeHhzBzGhkZoUSJEiKqmBRVKbNInZzAwEBhtDM3N0ejRo3g5+eX5bznROR6mJqaonr16iIyaEYWEzx69AiVKlUSdWjz5s1aUTfi4uK0TOzyaEz0nkpAXyZ2OVeuXBELcPLnz4///e9/SRZNEbo1sffu3Rucc1SoUAGvXr3SOh4REYE1a9ZApVJBpVJh27Ztush+jsLT01M8sw4ODujSpQt27dqFBQsWYOjQoeLbbWtrixkzZiT7Hfn3339Furp162Lnzp1Jto6Mjo7G+vXroVKpUKxYMTFxRXzBy8sL9vb2og3UuHFjzJgxA0OGDEHHjh21BgZ//fXXJG1aALh9+7b45jg6OmLOnDmIiorSShMVFYUNGzZApVLB2toaJ0+ezKY7JAj9kFx7KjNtn2fPnok+4erVq3WRtRzJixcv0LdvX5iZmaFnz56pmv2lyYvDhw+LNuratWuzK6u5hoCAALHDzdatWwEkXwfkv5NH2G3btm2SCNVExqB6oQwy8u6/evUqzMzMwDlHr1690m1if/fuHfbs2YN+/fqJMUeVSoU//vgjU/nIybi7u8POzg6//vpruiOGystOrVbDyclJmHVnzZqV6rk0YZ486X0e9+7dK8b5ChQogCNHjqTrGufOnYOtrS2MjY2xcOHCLOeXSArVC8Mgld3ly5dRunTpTC9wDQkJQa9evcSig/j4ePpOpMKff/4JCwsLFCtWLM25BmlBzsKFC2FmZoY8efJkeNcPIm0eP34s3jny9k5q3LlzBy1bthTBlYYNG5ZsICsifVC9MBxyg+zvv/8uxmY3b96cqUBhchKb1w8ePIjIyEgEBgaScToLJGfU5Zzj+PHjyaZPbF5v3Lgxbt26BY1GAz8/PzJOZ4GUtDh69GiGr0Um9qyT0bqREl5eXmjVqpV4f3HO4eHhoevs5hjIwE4QBEEQuQgvLy84ODiIRpK0BbMUGbpAgQKoXbs23N3dk5zr4uKCEiVKiEnDqlWr4sGDB2LLeLlJKywsDBs3bhRpV6xYkW33+LXg5eWFsmXLCi2kASopErGjoyO6d+8uzLvy7e8kNBqNiA7QvHlzMcklH9gNCQnB0KFDYWRkhLZt26Z7Iiw34e7urhWR+MSJEzqLqOfh4YG6deuKqOLffvstbt26pZNr51TkelSrVg3Hjh1L1niYHBqNBi9evICdnZ14t/Xr108s7JC/p9RqNbZv3y7q3IgRI/RxO181+jKxx8bG4syZMyIijZWVFUaNGkUd91TIqBbSd0D+PYiOjkbPnj3BORc7pCQePA4KCkKPHj1gbGyMfv36ZXlwOSfi4+ODFi1aaEVPkLelihcvjp9//hnv3r3TOk/S4o8//oCpqSlMTU0xe/ZsYV5PPCkbEBCAhg0b0gK0VHj27BlatGiBAgUKgHMu2p3Se71cuXIYMWKE0CKxIWHjxo1iYvGXX34R5vXE6V69eoUOHTqAc44FCxZkz80RhMK5e/euMDNSXy91nJ2dxTd84cKF+Pz5sziW+Hvt6+uL6tWrg/OE3bWePHlikDznZF69eiX0WLJkSappw8PD0blzZxGNr3bt2jhx4kQ25TRnQ/Xi60EeWdfExCTdJvbEbdsTJ07gt99+E+21sWPHppg2txISEiICKgAZNxh8/PgREyZMgLGxMerXr5/s2C6RdeLj49GvXz/RD5QWQwFpL4iaOXOmOO/AgQPZkt+cBtUL5SJ9LyRDaGbHkxYvXizmSvQRTCMncfXqVZQvXx6mpqZYsWJFkgX5yTFo0CDRtqX6oHtOnjwpAls8fPgQQNIxJvl34f79+/j222/F4vCGDRuKXXFoUU3moHphWPRhYj9z5ozYrbx27dpwcnISvgSAzLpZRa6LtIhs165dSfQKDw/Htm3bxFh6s2bNcOPGDa05V9Iia8jLvE+fPuA8YXfe9LzHEuPj46O1uEMaRyEt0k9660ZiEu8wNHnyZLFLkY2NDfbt20ff+BQgAztBEARB5DL8/Pzw888/i22zpci33bt3x7p168RWtfIG2NmzZ1GqVCnRibe0tMTGjRtx6dIl0QEBtBu+nz9/xqJFi6BSqVC1alXcuXMn+27yKyEgIAAjR45EnTp1kDdvXhgZGaFMmTIYNGgQTpw4gY8fPwKAVsSFmJgYxMXFITIyEkDCJKCZmRnGjBmT4t/ZvHmz0Pry5ct6vaevFXd3dzGBXrNmTTg5OSEiIiJL1/T29kadOnXAOYelpSW6deumZV6nSdqUketRq1atDOuxatUq9O7dG+bm5uCcY+TIkeKY/N2mVquxdetWcM5RpEgR3L9/X6f3kROQG6fbtGmT5cmj2NhYnD17FpUrVxaDJyNHjiTzejrIjBYvX77Eq1ev8OLFC0RERGDLli3gnGPlypUpnvPHH38IEzAN2ifP69evsWrVKrRq1Uq8ZzjnaNmyJVasWCEW3SQeiIqNjUXjxo1FFHxpsD2l78HAgQPBOUe7du0A0ABjcgQHB2PTpk3o0KEDihQpAmNjYxQrVgzff/89nJ2dRRkn1iI+Pl6YEu3t7fHmzZtk00mMGTMGnHPUqVMHcXFxpAWRa5Ge/cOHD4tJKymCKLVttZGXx9KlS8W3Yv369VqLZaX3jp+fHwYNGiQmZlu2bKmzRbWENr/++iuMjY3x888/48OHD0IraeL106dPuHXrFlq2/D/2zjssquPr49/ZpSOCiiioKCpWith7j713jT3GXqOmaWJJNEbzs0djYjd2Y+8Vu4gVpYOIqNiVjsBy3j9477gLC6I0y/k8Dw+wd+7duXOmz3fONJECKldXV9q2bZt8Buf394PLxceJPhF7hw4dZP8pI7T7TI8fP5anDAkhaM6cOTkW548dJd2Sk5Ppv//+o5iYmEwtcu/bt0+Wq3Xr1uV0ND9LNm/eLNN48uTJ8vO32Wfv3r3yvk6dOuV0ND9JlDTmcvFh8759JGX9Y9WqVZQvXz4yNTWlmzdvZmfUPjkiIiJo9OjRJIQgFxeXt54SdOXKFblW4eDgQGFhYdynzWZ27twp11D12UM7vS9dukTt2rWTDjKcnJzoyZMnRMTzf1mBy0Xek50i9uPHj8v7bWxsdNY0tPsA2sJpc3NzHd0C83a07eLu7i51IgqvX7+mDRs2SFvY2trSli1b5PX0bGFiYkK3b9/O+Rf4hNC2xfbt2ykkJOS9nxUSEiJtYWlpKftV3MZknreVjYy4f/8+zZo1Szrsc3R0pHXr1mXaYd/nCAvYGYZhGOYzJC4ujp49e0anTp0iDw+PNIM57c7r5cuXqXr16qRWq+Uik/aPpaUl9evXT4qttQf3Pj4+VK9ePVKpVLR69Woe+OshISGBYmNj6datW+Tr65vGQ7p25/jIkSP01VdfUbVq1cjJyYm6dOlCw4cPJ3t7e2rYsKGc4FJQBo3Hjh2Ti4wrV67M+Zf6SPH19SUbGxsSQlDZsmXp6NGj770LlsXrWUfbHg4ODuTu7v7WdNO+HhISQkuWLJHiqv79+8tr2nVcUlIS7dmzR2fChdHF19eXihQpIr1cPHr06L2eo4jXFc/rLF5/dzJri5iYGFqxYgWVKVOGbG1tqVChQlSjRg1q06YNWVtbU58+feTJBEQpZUdpb+bPn09qtZoMDAzo/PnzufJeHzMeHh504cIFOnv2LCUkJMh2Q1/7ER0dLb2qt2nTJt1wioDu66+/ll4umbdz7949CgoKkqfXKOhrOzQaDbVr146EEFSzZk2Ki4vTG04pF9OnTychBDVo0CBnIs8weYB2ns/M3wr+/v5UrFgxEkKQvb09eXt752xEP2K063hlg5gQgkaOHElbt26lhIQECg0NJXd3d2rQoAEVKlRIeuRR+kc8bsh+1q5dK22xePFiunfvnrwWHBxM06ZNI1dXV7ng2rBhQ9qzZ48MwzbJGlwuPk60ReyKPd5nXBgfH0+zZs0ilUpFVapUYXHiWxg6dCgVKVKErly5kqnwL1++pBIlSpAQgkaMGEFEXF6yCyUdx44dS2q1mhwdHens2bM619Lj3LlzcjN6mTJlaP369Zm6j9EPl4tPD+2+gSI8FULQ5cuX8zBWHwdhYWFUq1YtEiLlhN7bt2/LeW9tp0j37t2TG/OFEPT999/nVZQ/acLDw8nJyYlMTEzon3/+0XuqMlGKR+k6derIdYtKlSpJRyUsLMw6XC7ynvRE7CtWrHgnEbufnx+1aNFCric5OzvL9l+j0ei050FBQdSsWTO5WVBxAsdkjrfVPcHBwdStWzd5OlrlypXlmndqWwQHB0uHAKNHj5Yn0DKZI6vtgLYtDh48SGXLlpVjeHbi9u68jz0ePHhAs2fPlicHly9fntasWaOzJsukhQXsDMMwDMNIUouoHj16REOHDiVzc3O5c9ne3p6+++47mjJlCn399dfSQ0CbNm3o+fPnRKQruv7999/J1dX1rccLM7qkHvBt3ryZVCoVGRgY6GwgUP63t7engwcP6nhpIiJ69uwZDRkyRIZnkW7G+Pr6krGxMTk4ONDZs2ffa0GDxevZh6+vL6nVaqpWrRoFBQVl6h7t9E1MTKRNmzbJyeApU6a89X4+uks/vr6+JISgpk2bUlxc3Dvfz+L17CM9Wyh5Pzo6mn788UedtsLU1JSEEGRsbExCCCpdujSdPHlSthlKvg8MDJTe8W1tbfm45gx437p8+PDhJISgWrVqyX6TPoKDg8nW1paEEDR27Nj3jeZnQXq2eFt9PmnSJLlQ+ODBg3TDPXz4kNzc3EgIQX369MlSXBkmr3mfuispKYni4+Pp7NmztHTpUlk3WVpa0ldffZXGG3Lq7/jc+77aCx0//PCDTvtcrlw5KlSoEKnVavlZgQIF5KlZ2bloRcT9XG20bVG7dm3q0aMHde3alSwtLWW/KV++fPT111/T6dOn5X1Zzc+KTT93YUpelgvm/VHqkBs3blBwcDARvV+ZOHv2rDxCe8OGDdkax0+Jhw8fUqtWrUgIQf369cvw9AHFDq9evZKbzHr06KFzjck68fHx5OTkREIIatWqVabu8fDwoCpVqpBKpSKVSkUDBw7M8omPnzNcLj4eUm+KVf5PTk7W8aavzZYtW6h48eKkUqnI2dk5w3E684agoCAqXrw4CSGoTp06tGHDBh1HRwcOHJBzUUr9FRgYSERcFrKbyMhI6tmzJwkhqF69enTz5k3ppIIoRdD2119/kYmJiXQW5uTkRHfu3CEitkd2wuUi70lPxL5o0aJMpbHSVkRHR9OhQ4dk+29sbJzuJsLg4GD6/vvvad++fdn4Joxii5iYGDpx4gS1adNG2uLcuXNEpN8W8+fPf+spCEz2ob0++OjRIxo1ahTVrVuXhEg5WVDbkQ+Tc7B4/f1hATvDMAzDMGlQBpZHjx6VAoWiRYvSd999R15eXjphL1++LI9z7tmzZ5pnEJGcTOYF8/dj//79cvHW2NiY6tatSxs2bKA1a9bQ1KlTqUyZMiSEoIoVK9KePXvkMc4PHjygZcuWyd21BQoUoLt37+bx23z43L17l44dO6bjjSGzsHg9+wkLCyM/Pz+Zdu9aj0RGRtL3339PBgYG5OrqykfWZYGHDx9SdHT0O9/H4vXsJyNbLF68WE4Iu7q60rhx48jPz4/c3d1p5cqVVK5cOdlmbNy4kUJDQ4mIyMvLi7p37y7b9Jo1a8rTVZjsY+nSpVL4qQjilI1/St/p4cOHNGHCBMqXLx9ZWFjQrl27iIj7UdnNmjVrSAhBFhYWdOzYMSKiNJs6Xr16RYsWLaKiRYuSEEIeVcu2YD5GlPx969YtWrNmDS1dupRWrFhBCxcupJ9//pl++eUX+vXXX2ns2LE0YsQIGj9+PPXu3ZsaNWpEtWvXJmNjYynsLViwILVq1SrDftWtW7fkJubPXXCq/f7Lly+nxo0bpznZrHDhwuTi4iK9Eaf2XvWu4wjt8MePH5eiCLbFm/efPn06WVlZpbGFmZkZFS9enLZs2aLjnZ0oZYz9vmO6hw8fUteuXenatWtp4vI5ktflgnk/tNMwK/0hZWzYt2/fNM9lUnj9+jUtWLCALCwsqHTp0rR37963ppMy1lCr1bLfymQfiYmJVLNmTR0HCam9iGrb6NKlS1S7dm0yMTGRG6aUY+d5PPF+cLn4MMlKHR4bG0tRUVE0Z84ccnFxkaLeyZMn6w2vXXa47XiDn58flS5dWs5x2NvbU9OmTalmzZpUsGBB2bdq2LAh7dixI0fqILZHCsHBweTg4EBCpJyeOWrUKFq9ejUNHz5ceodWnI00a9Ysw4047wvbIoUPoVx87miP+caOHUtCCPrxxx8zfb92Xr579y517dqVhBBUokQJunHjht579Dn8YbKOdlqGhoZKWzg4OKTRjShob+BhcobU9ZaHhwcNGTJEjreVH2dnZ+rdu7dcC2RyBhavZw0WsDMMwzAMo5fXr1/LSXkbGxuaPXu29HqhDFSUwefBgwel96RNmzbJZ7zt+HkmY5KTk+nRo0fUvHlzUqlUZGxsTEOHDk1z3FZoaKj0AGRvb0/169ensWPHUvXq1eURqQULFqS///6biHiR5F14l3zL4vWcRzvvXr16lcLDwzN13+HDh+VA/Z9//smp6DF6YPF67nL16lXZHru4uNDatWvTLKg/fPhQthk2NjZUoUIFatGiBRUqVEh6YrC2ttYrFGIyx9sEae3atZPpn3qC9+7du/TDDz+Qvb09CZFyxLyyMY15d95miw4dOkhbpBbiPnr0iFasWEEVKlSQIjo+UYj52HF3dydDQ8M0ItF3+Slfvjx9++23GbblXl5e1KNHDzIzM6Pr168TEYt1td8/NDSU9u7dSyNGjKCBAwfS+PHjac+ePfTo0SMi0u3zzpkzhwwNDWnDhg2ZbpO1wx09epTq1atH5ubmcoGXbfHm/Q8cOECzZ8+mmjVrUosWLWjgwIG0fv16un//fpr7Nm3aRAYGBrR+/fr3Ek5PmTJFbiy/detWmrh8juRmudBm9+7d9Ouvv5Kvr68UOHCfN+dRbBgZGSk31Xbq1ImIOP3T4/Hjx9S6dWsSQlDdunXT9Fe1y5Cnp6fs2woh6L///svt6H4WKGncrVs3nfnZ1Hn49OnT5OzsLMfYFStWlOO6z73uzypcLj4stNvnoKAgunr1Kl27do0uXLhAJ06coKNHj9KePXtoy5YttGXLFlq5ciXNnTuXZs+eTRMmTKAGDRpQ1apVSQghxetffvml3ucr81vagjhuP94QHBxM7du3l+tBSnoqv7t06UJ79+7VKSMajSbLoirt+Xm2Rwr+/v5UsWJFWfektkW9evVoypQpFBMTI+9JTk7O0gkdJ0+epHnz5uk8j8m7csG8QTttDx48qFOvv+ta9bVr16hGjRokhKBhw4ZRXFwc5/U8wsPDg1xdXUmtVtP48eMpMTGRbZGLpC47mzdvpvHjx5OBgYGOcwY7Ozv6+eef6caNG7IfxRqRnIHF61mHBewMwzAMw+jl8uXLVLRoUVKr1dSrVy/psS01ycnJdO/ePbn4NGPGjFyO6adNYGAgWVtby6PuYmNjiejNRK0y+L979670xF6iRAnpHVERry9dujTTYl9GF2Uwp9Fo0t0xzuL13GXFihUkhKATJ05kGE473Z2dnXU8vPEgPeso9U9SUpLeEwtYvJ77/Pfff1KYOGrUqDSevZXfvr6+VLJkSRJCULVq1aTovUCBAlSuXDm6evUqEXE5eR+0PXefPHmSiNJu/Hv48KH0ulSoUCGaNGkSLViwgBYtWkROTk7SG2z+/PnZ+3oWUNIsKioqzXGmii0ePXpETZs2lQL1X3/9lTZs2EBbt26ltm3byuOGzc3NaeHChTrPZZiPkW+++UYeHWtiYkL29vZUunRpKlu2LJUrV47c3NyoSpUqVLVqVWrSpAk1b96cmjZtSn369KGff/6Zli9fTo8ePUqzoVabmzdv0tdffy0XhAsWLMhi3f8nM2OC1GH69Okj24TNmze/9Rna1w8fPkzt27eXp3mxcPoNqetyfemhhFHStHfv3vIUlczYIjX+/v7y2HMrKyu2xf+TG+VCmytXrlD79u1lP/iPP/6ghw8fEhHbIifRTtuFCxfK+apZs2blYaw+Du7cuSM3VDZq1IjOnj2bZhH87Nmz9NVXX8l0HTBgQN5E9hNGqWcWLlxIhoaGVLlyZbp69Wqa+ic+Pp62bt2qMy/r7Ows52S5nskeuFx8ePzxxx9Ur149nbGGkvaZ3UBrZWVFI0aMSHMyGtEb8XpsbCyVKlVK5yRgnnd/w7Nnz+jQoUM0cOBAql+/Pjk4OFD37t1pwYIFFBMTo5NWSUlJ9OWXX1K/fv3ee7O+j48PFSlShPr06SM/Y3ukcO/ePfr555+pUaNGZG9vT9bW1tSiRQuaNWsWBQUFyTydnJxMGo2Gpk6dSqNHj05zAlRmePLkCdWuXZuEEDRy5Ej5OdsihdwuF76+vnT06NEMN7p9bujr/2h/5ufnRxqN5q1zrnFxcTR8+HASQlC5cuXo6dOnb/3u5OTk9z7d+XMjPj6e/P39iejtaRUXF0d9+/aVGzWzsgGHyRyp65EXL17Q9u3bqVevXqRSqeTcn4WFBTk4ONDKlSvp8uXLOveknufispE9sHg9e2ABO8MwDMMwelm2bJmcPDx+/HiGYaOioqRHgW7duuVSDD8PDhw4IHfKKh7UU3vTTUpKouTkZJo4cSKp1WoaOXIkHT58mL799lv6/fffydvbOy+i/kkRGxtLf//9N+3Zs0cOxJWBHYvXc5fnz59LLwu9evWSxy+nR3JyMoWHh0sRYvfu3eXnTNaJioqimTNn0rZt23QmqVi8njfMnz9figUVEXrqCWKNRkOxsbHUpUsXEkLQb7/9Rp6envTPP//QqVOn5MQvT1q9PzExMWRvb0+2trZSEJWaZ8+eUbdu3eTmgdQ/JiYmNHz4cHn6DfN+xMXFUcOGDalMmTLpLgI+fvyYOnXqlO4iuqGhIbVt21YKDRnmY2f8+PEyf3/77bd0//59ioiIoBcvXlBERATFxsZSbGwsJSQkUHJycpqxB1H6/aibN2/S0KFD5fOVDbYs1tWPdlubOk21/x84cKAcE2Yk1tUnXtf2nM+2SJ/UHvfSI7O2SI+goCBq2bIl2yIDsrtcpMbPz48mTpwoPZMVKVKEmjRpIudN2Bbpk1rco6C0F0Qp81XKNW2xiMJff/1FJUuWJJVKRYULF5abNZmM8ff3J1tbWykQ6dGjB23dupU2btxIEyZMkCdoCiGoVatWfOJGDnL//n1ycXEhIQQ1bNiQ/vvvPwoICKDnz5/T6tWr6euvv9bxeti4cWPpeV1fn+p94PmsFLhcfDi8evWK6tevT0II2b4WLFhQR5huYWFBpqamZGNjQ3Z2dlS0aFFydHSkGjVqUJs2bWjJkiV0+PBh+UztfK4tXldEuizUzRzR0dHpXgsJCZGOk7p06fLOYl1fX19yc3Nje2SAkg5Pnjyhp0+fpnGOpFx/+PChXF/t3LnzO9tCo9HQqlWrpC1Gjx6d5juYN+RkuQgKCqKiRYuSEIImTpxIp06dktfYFvqZMGEC1a5dW/6fXjop48RTp07JTVJbt27NMKxCaodwvO6RltevX9OXX35JzZo1e2tYJR137txJRkZGpFar3+psjHl/UpcJf39/2r17N7m4uFCRIkV01jFat25NixYtSrMmpW+eJSIigv766y/y8/MjIu4jp4eSdtptuHZ6sng9+2ABO8MwDMMwelm0aBGpVCpycXGhly9fkkajSdNJVjpoDx8+lJ5ce/TokRfR/WQ5dOiQPNLu33//zTCsMkmlzwY8IM8af/zxB6lUKqpcuTJt3LiRIiMjiShloMji9dwlISGBli5dSoULF6aSJUvSrl270s3fSvqfOnVKDuDHjh2bm9H95JkwYYL0KLZx40Z5SsSRI0eoUqVKLF7PZf766y8SQpBaraYzZ85kGHb69OmkVqtpypQpaa5xm5E1Ll68SMWKFaOCBQvSypUr0wgVtNuGW7du0c6dO2nOnDmUP39+UqlUZGBgQI0aNaLz58/ndtQ/OW7dukUuLi5kYmJCS5YsSfckFSKi06dP09atW+mPP/6g/Pnzk5GREQkhyMHBgfbu3ZuLsWaYnEF7IWLs2LGyb7R8+XL5uXb9pK8fm1HfNrV4fdSoUXT79m0W62YB7fajX79+0pOSPrFuRuL1qVOn0osXL9j7dxbQZ4t8+fKxiD0PeJdykR4RERF06NAhKlasmDwtwsrKim7evElEPI7XR0b5U/tafHy89GT56tUr8vPzo5s3b9LcuXPpyy+/lPNbQggaOnRopr6bxyYpBAYGUvXq1aUnYwMDA9lfVX7atWtH7u7u0tFFdqCd/myLFAICAsje3l6ebmJpaSlPJlV+XFxcaNy4cfT8+fMsf59iS+3TUbmeSiGvygWTFm9vb3maXJEiRWjnzp3k6elJV65coTt37lBwcDD5+PjQgwcP6Pnz5/J3YmJimlMdtdsVbfF6rVq1ZLlTvIyyUDct6Y0T9KXP+fPnZfnp2rVrpsW6vr6+5OrqSkIIsra2Znukw7vaQtkA8i62UEhKSqKVK1fKfhbbQpfcKBfJycm0ceNGuRlBrVZTtWrVaO7cuenG43Pn/Pnzsr3esmVLhmGVtNu8ebO8R5+AXbu/euzYMZo+fTrVrl2b2rVrR+PHj6fAwEAi4vF3ao4dOybTdefOnRmGVWzxv//9T96jnESrj7eNIbhcpI922jx8+JAWLVpE1apVo/z588u0V6lU1K9fP535XSL96a48Lyoqiv78808qUqQIGRgYyLkQLhe6aDsynDNnDt2+fVvnelbF61w2dGEBO8MwDMMwevnjjz9ICEHFihWj+/fvp7mu3alShApmZma0cePG3IzmJ09kZCRVr16dhBA0bNgwiomJSRNGEWMpnnerVKmiNxzz/gQFBZGlpaVM361bt9K1a9fSiNcvXbok7/ncBha5yePHj6ldu3YkhKA6deroeMVVvLwpdVRAQID0AmRtbS09vPHCa/bg7+8vvSq5ubnRunXraPfu3dLzeoECBWjMmDEsXs8lQkJCqFKlSqRSqWj27NnpinWjo6Opc+fOJISgTp06cXnIZiIjI6XnvZo1a8oJQKI3dY+yQBsZGUnnz5+nunXrygV3V1dXOnDgQJ7E/VMjOjqaRo8eTUIIql69uvS6R/SmvVBsodFo6NGjR9S0aVM5AVygQAHasGFDXkWfYbId7YWIb775Rub1v/76K0teQW/evKnjcXTEiBEUFxdHRCnCIhbrvj/adunfv79M43PnzsnPMxKv//jjj/Kan58f2yILpGcLba96mYVF7FkjM+UiI5R0vnv3LtWtW1eO9YUQFBoamiNx/lT4559/aMCAAdS5c2dq3bo1tWjRgurWrUs1a9akmjVrUoUKFahUqVJUrlw56RnZ3NxcR0xqYGBAAwcOlM/Ul+8DAwPpt99+k//z/EoKYWFhNGPGDDnHoaSnnZ0djR8/nsLCwtKM7ZYsWfLOIjiFxMREOnz4MM2cOVN+xrZIISgoiNq2bStPm1F+LC0tafDgwXTy5Em5wV9h48aN733CliLwGj58uPyMbZFCbpeLpKQk9qiYDj4+PlSoUCHp9T4gIEDnenon3qSXl7XF64pHfWtraxo7dizNmjWLhbpZRLHBhQsXpFi3W7du6Z5ep+Dj4yNPorC1taX//e9/NH/+fLZHFnhfW6SGRexZJ6u2iIuLI39/f3lalGIL7RMKmDeEhIRQt27dyNDQkPr06ZOpsdjcuXNle5/6NCfttuXPP/+kfPny6fTTlHpLEaHymsgbAgICqH379mRoaEgDBw7Uqwsh0q1LJk2aJNP19OnTGT7/1atXdOXKFZozZw7NmjWLfv75Zzp37hw9efKEiNgW6ZGYmEiPHj2isWPHUoMGDXTycunSpaljx4508uRJOQdLlH5aaovXlyxZQs7OzjprIDwvpZ+nT5/KkznGjBlDPj4+REQUHh5Os2bNyrLndS4bb2ABO8MwDMMwerl58yY5ODiQlZUVbd++XaeDpL1YuHDhQul9vUyZMnT58uW8iO4nS1xcHI0fP14Kp69du6ZzXdsWjRo1kiJSFrBnP76+vlS4cGESIuVoWgcHBx3xOntez10Uoa4Qgho3bkwXL16kqKgonTB+fn7Ur18/KbB2cXGRgz4m+9AuG2XLlqVixYrJSQ/2vJ67REZGShFPjRo10mzuULh16xY5OTmREIK6d+/Ok1I5QGhoqJwEbNSoEZ0+fVqe3qEQFBREv/76q6zLTExMqFatWrR79+48ivWnSWhoKFWpUkW2F+fPn0/TXty/f582bNggNw0qgofVq1fnUawZJufQrvOVk1SyImK/evWqjnh9/PjxacYi2mJd7UWRz2kSPito26VDhw5Up04dvQsie/fulZs8hRD0yy+/yGuK3dkWWUPbFp07d6by5cuTl5fXez0rKCiIWrRoIUXsynO4X5Y5MlsuUqOd1/ft2yfbfiEEtW/fPk1/jXnDkiVLpAjnXX9MTEzIwMCAvvzyS1q6dKl8pr78HhISIr3sjhgxQn7O8ywpJCYmUnx8PB0+fJj27dtHp0+fTuMJTkmrr7766r09uSYmJtKpU6fkmIZtkZYXL16Qr68vLVu2jJYvX0779u2jK1eu6IRR6pyffvqJhBDUpUuX9xJOb9myRZYnFiSmJTfLxZEjR8jFxYXmzp2rM9/FtkjB19dXinyaNm1K/v7+7/UcpZ2PiYnREa+PHz9eCuNZqJt1tMW6JiYmJISgXr160YsXL/SG9/HxkZ7XbW1tacGCBfT48WMiYntkFW1bGBsbkxApJy0/ffr0nZ7DIvas867lQiF1+s6dO5fKli0rPeuPGTMmx+L8MbNlyxa5ofj333+n+Ph4eU1xPqJw5swZsrOzk+vl6W0sWLx4sew3denShaZNm0bTp0+nevXqkRCCKlWq9M4bRD4H/v33X7n5eN68eTq20Gg0OmPp/fv3yzRu1qyZzmkq2jZ79eoVnTp1iqpWrUrFixfXGSPa2dlR06ZNyc/Pj4h4LiQ1x48fp/Hjx8u1I+WnYsWK9OWXX5Kvr6+slzI6VUL7c0W8rmxEU6vVVLt2bXau8BbGjBmjM+998uRJmjNnzjuL17lsZAwL2BmGYRiG0cuLFy+oQ4cOJISghg0bkpeXl85ghYh0RFdCCFq0aFEexfbTJjQ0VEeo6+npmUZ41bdvXxJCkLGxMU2aNImIeEIqJ/D19ZWeZFQqFZmYmFCbNm3o6tWrMgyne+7h7+9PRYsWlZNOQ4YMoWPHjtHOnTtpzZo1VK5cOXmUmo2NDXl7exMRC3RygtRlw9zcnIYNG0bBwcF5HbXPjpCQEHJ0dJRtxpkzZ+jly5dElDJBdePGDemtwcLC4q1HQjLvT0BAgJxUL1u2LHXt2pXWrl1Lf/zxB/38889ka2srJ+gtLCyoa9eudOzYsbyO9idJQECA9AJasWJFGjBgAO3bt4/+/fdf+uuvv6hq1arSVmZmZlSzZk29x9AyzKdCdonYX758SZMnT5b3lytXTm64TUpK0ulzaQunVSqVnIRnMoe2XVJ7dCUievLkCQ0ePFhnQUvx8vr69WudMYq2LYQQ7y0s+lzRtsW9e/fee/yXnJxMDx8+pObNm5MQKV57+djmd+Nt5SI12nXSli1bqE6dOrIc9OnTh8XrbyEgIEBuDjc1NaXq1atT7969adiwYTRo0CD6+uuv6dtvv6Uff/yRpk6dSn/88Qf9+eeftHbtWrp69WqGnngVQkJCdE4mEkLQqFGj5HWeb8k4DVLPdZw7d46MjIzeWayriNfd3NzYFu9JaltcvnxZpuP7CKdZkJgxuVEuiFJO7ujWrZssF506daL169dnKh6fE1kVsSvpmFq8PnHiROn1kiilruJykXWUMnLu3DmysLCg9u3b0927d9OE8/b21hGvL1myRMdDb2p7aIt12R6ZQ9sWZmZmVKlSpTSbcTIDtxlZJ7PlIiMuXLggnWCZm5tTz5493/sklk8R7bw4Z84cOS5bsmSJ3o0bFy5coPbt25OpqSkJIah///56xxO7d++Wz5o1axY9e/ZMXrt58yZVrlyZLCwsaP/+/TnzYh8h2rb47bffdDQfDx8+TBP+0KFD5OLiQiqVigwMDOjHH3/UK6C+fPkyTZo0SefEM0NDQ6pcuTKVLl1arifa2dnx2q0eJk6cKNPN0tKSbG1tadasWWk2zL6N9Dyvq9VqOnv2LEVFRek4V2AR+xu086PibFIIQfXq1ZP5unz58rR69ep3Eq9z2dAPC9gZhmEYhkmX4OBgsre3JyFSPLlOmDCBtm7dSosWLaKWLVvK3edCCJo6dWpeR/eTRluo6+LiQv3796d169bR7NmzqXHjxtIOtra2dODAgbyO7ieNj4+PXLQtVKgQzZgxQ177HAYQHxoBAQFUtWpVWQbUanUab282NjZ04cIFImIb5STaZaNo0aI0b948md48OZ67+Pv7S7Guo6MjNW/enH755Rdq37693BBlZmZG3bt3Z9FaDhMYGEiNGjWSm2n01VW2tra0dOlStkUOExgYSHXq1JH9V30eRK2srGjy5Mk6p6owzKdKdonYw8LCaPz48VSjRg0SQpCDgwOdOXOGiFL6XamF0/Xr1ychBK1Zs4b7Ze/I29Lr4cOHNHXqVOm5uESJEnTq1Cl5r7YtgoODqU6dOmRgYEAnTpzIyWh/krxv3k3dJ46IiKBJkybJ04wsLS3pxo0b2RHFz4bM2kI73NatW3XE63379mXxeibx9vaWi6lffPEFhYaGvtdz9I0PtcXrBQsWpO7du7PwKgtoew99F7FuavF64cKFaejQoWyLLKDY4vz58+8tnCZiQWJ28L7lQiE2Npa2bdtGnTt31nHgMH78eBmGbZFCVkXsCQkJVLZsWTl/0rJlS7pz5468pqCUC2WORXujDZN5lLIRFBQkN1Rq8/DhQ3kKs1qtpp49e0qvr/rsoW/jE5M5FFt4e3uTu7v7ez0jOTmZNBqNTpsxbNgwnevM23lbuUiPxMREOn78uOxLWVhY0IgRI3ROSmVS0B6jfffdd3J8NmjQIFq9ejU9ffqUvLy8aPXq1VSxYkXpHVz7FHIlP2s0GkpMTJQnrQwZMoSio6Pl85OTkykiIkKewDVz5szcfdkPHG1bfPvtt9IWvXr1oqVLl1JAQAAdPHiQfv/9dzIzM5P1fLNmzSguLo6IdOcZDx06RC1atJA2K1euHA0cOJAuX75ML168oGfPntH+/fupWbNmJIQgV1dX9oqvh2HDhpGNjQ0tX7483ZOeMiIj8bp2GxMYGCgdXbCIXRftNNAWsQshqFSpUrRu3bo0TidTo93uctlIHxawMwzDMAyTIf7+/lS+fHkdwZWhoaHcDSiE7tHkTM7h7+9PTk5OOrZQJtuNjIzIzs6O1qxZk9fR/Czw8fGRi7ZVq1alTZs28YJ3HhIWFkbfffedFE4pP46OjtS2bVvpBZwnZ3Me7bLh5ubGZSMPCQgIoBo1akivJNpiXQsLC+rRo4cUGDI5y6NHj2jdunXUs2dPcnZ2JktLS6pQoQJ16dKFZs2a9V5HyDPvx8OHD+nPP/+k9u3bk729PRkaGpKNjQ01btyYvv76a/Lx8dE58pRhPnW0J+G/+eYb2U78+++/73R/XFwcXbp0SZ7gZWJiIjcPpu5/hYaG0sGDB3W8YDFZR7FFfHw8Xbt2jTp16iRtoWzKSW2Le/fu0dWrV7neywX0eeJdsmQJlS1bloyNjXXmV3744Yc8iuWnS0ae1/v168fjlXfEx8dHihIbNWokRYlJSUmyntH+OzPj8NTi9d9++41CQ0Np7dq1LNbNAtpiXaWOadu2rY7HXG1Si9dtbGxo48aNFBkZSatWrWJbZAF9tmjfvj2L2POAdy0X+khOTqYpU6ZQ4cKFpS0GDRqUU1H+aNEWsTdv3vydRey//PILtW3blkxMTEitVtPEiRPlNe0Nt0lJSfTPP//Itv348ePZ9g6fE6nrkNT//+9//6OuXbtKpwDa9U969rC2tqbLly/nbMQ/Qd5mi8zeGxYWRsOGDZP11MCBA7Mtjp8L72oLpS9VpUoVEkJQ/vz5afjw4SxezwDteakpU6borGPY2tpSvnz5dNb83Nzc5Iam1M4XXrx4QaVKlSIhBK1bt07vdzRr1owMDQ1p8+bNOfxmHx/a6TR16lQyMDCQG8Ssra3TOA9r1KiRFK9rzyvt3LmTqlWrJuc66tatS4cPH6bnz58T0Ru7aTQaunLlClWuXJny5ctHq1atIiLu0xLp2kLZrKHwrukTGRlJv//+u3RsZWhoKB0naJch7dMaCxUqRF5eXu/1fZ8i2vYYM2aMLANffPEFXbp0SV7Tl1ban3HZyBgWsDMMwzAM81ZCQ0Ppu+++o3r16pGhoSHlz5+fbG1taeDAgbRly5a8jt5nRWhoKE2cOFEen6l4aevVqxft3r07r6P3WaE9CV+tWjVavXp1moEkk3skJCRQdHQ0bd++nTZt2kRr1qyhgIAAKUZgD5+5h3bZqFKlCm3YsIFiY2PzOlqfJffv36c5c+ZQkyZNyMLCgooWLUply5al5cuXv9cRtEzWiY2NpSdPnqRpL7iOyn0eP35MISEh8ihUxQZsC+ZzQ3sSfuzYsSSEoPPnz7/Xs+7evUsdO3YkIQQ5OTmRr6+v3nCf+oT7h8Ddu3flhoKqVatSYGBgXkeJIaKLFy/SL7/8QoULF5YL8YrnsvHjx9PWrVvzOoqfHCxezxmy6llXm5CQEGmXggUL0q+//koPHjwgohT7/fPPPyzWzQLaYl3tjWqp+7ypBVc2Nja0fv16OZZXBIlsi/dHny0WLlyo4704M7CIPetktlzoQ7vvPGrUKHkSoRCC9uzZk2Nx/ljx9fUlGxsbEiLlhN932ShAlOKcYf78+dJLZb9+/eQ1bVskJSXRxo0bad68edkWdyYF7Xrlzp07tHjxYtmP7d+/v7yW2h67d++mDRs25GpcP2eU9E9MTKSYmBiaP38+tWzZUjrAUn7e16s783ZYvP7+aNcf//zzD7Vp00Yn3yqejjt06EARERFEpL/P8/TpUypZsiSpVCrasWMHEemOBxcuXCgF8ry5Rj/atli7di117do1jS2qVatGI0eOpPj4eCLSFa/v37+fXF1dZd3zxRdf0KNHj9L9vqioKGrevDkJIah79+4592IfIdp5NyvrFffu3aMOHTrIsUO9evUoPDyciHQ3nhOliNhbt24tbf25eP7ODPrmz5W5vMystXLZeDssYGcYhmEYJlMkJCRQQkICeXp60u3bt+nhw4dycELEE+S5SXx8PEVHR9Phw4fp2LFjFBgYSC9fvszraH2W+Pr6kq2tLQkhqEmTJm89JorJG7h+yn18fX2pcOHCJISgPn368OaOPESj0VBycjLdunWLQkND2eNtHpGexx4WS+c+6bUJbAvmc0Z7Ev7u3btEpFtWkpKSMn007bFjx6h06dKUL18+mjt3LhFx+cpO4uPj03gZ00dycjLt37+fbG1tycrKipYvX05EbIvcILXX6efPn5Ofnx/16dOHKlasqLPwW758eRo7dmyaTSN8THP2wOL1nCU7ROxBQUHyJDVLS0v6/fffpfcxhdRi3ZEjR2bXK3w2KGXh4sWLNGXKlDS2SkpKoqNHj1LlypVJCEEFChSQDku0y1FqW4wYMSL3XuITQdsW/fv3f+9T0RITE9MtF9zWZ463lYuMePXqFW3btk2KFC0sLGjq1KnyBEhGF19fX1Kr1VShQoVMp5H2WCQhIYE2b94sRdOTJ09+6/3cl8petO2RmJhImzZtkvb48ccf33o/10s5Q+r5rcePH9PPP/8sBW9KG1GyZElq2LAhHTt2THpLZrIXFq9nHe16++nTp3TixAmaPn06TZo0iRYuXEjnz5+Xm/701fHJycn06tUratGiBQkhaMyYMTrjij///JMKFChAQgje7PQWtOvs6OhounjxIi1btowWLFhA//77L4WFhelsmlE4e/YsNWrUSHqXbtWqVYbzV0odNn78eDmmZEdYOcOTJ09oyZIlVK9ePTneO336NBGl2CG1iL1evXrUqFEjedoBk4J23aPkW2VDsZ+fX7r3cdnIHCxgZxiGYRgmU+g7+pcnnj4c2BZ5x61bt6hChQrk4+OT11FhmA8KHx8fat68OS/g5TH62m/e1MEwDMOkJvUCoHb74eXlJUU9bxt3xMTEUJMmTUgIQTVr1swwPI9h3o2YmBg6fPgwhYSEENHb0y82Nlae3NWwYcNciCGjbZO4uDg6ceIEdejQgUqXLq0jXK9fvz6NHDmSwsPD3yoiUa6zEOvdYPF67pBaxB4QEJDpe5OTk+nPP/8kIQSZmJiQhYUFTZo0SV7X9uSXlJREq1atkjacNWtWtr7H54BSJrTTVSEpKYmWLVtGZmZmZGJiQpaWljRlyhR5XdtDeGpbLFmyJOcj/4mh2CI6Ovq97tcezy9evJg3d2SBjMpFekRHR9PmzZvJxcWFhBBkbm5OP/30k9wEyugnLCyMbt++rXeOKjPExMTQzJkzydDQkMqVK0cXLlzIiWh+tryrPaKioujHH38kQ0NDcnZ2pps3b+ZQzBh9pB4XnD17lmbNmkX29vY6Y46CBQtSr1696MSJE2k2CDLZB4vXs4/M1EVvmwdZv369LANdunShAQMGUO/eveVnI0aMkHMqTPpkpr3Wvnb//n0aOnQomZqakhCCWrRoIa9nNJfx5MkTuaG5U6dO2RR7RhulzCQmJpK3t7f0qp8vXz7y8PAgIv0bopRTaxld9InYLSwsaPv27XrDc9nIPCowDMMwDMNkAiGEzm8AUKm4K/GhwLbIO5ycnODl5YWKFStCo9HkdXQY5oOhYsWKOHToEEqXLp3XUfms0dd+a//NMAzDMACgVqt1/lfaiitXrqBjx46YMmUKgIzHHUlJSTAzM0OTJk2gVqtx//593Lt3T29YIpLPevnyJfz8/BAZGYnIyEgAQHJycpbf6VMiOTkZBw8exJdffokZM2YAyNgWiYmJMDU1RfXq1aFWq/H48WO8fPnyrd9DRBn+z+hHya+KTf766y8MGzYMzZs3x759+xASEoL8+fOjSpUqmD9/PrZt24alS5eiaNGiMDY2Tve5Hh4e6NChA7y8vKBWq3m8mQHa+Vuj0UhbbN26FYsWLcKlS5cAAH379sWff/4JCwuLTD+by0X6VKhQAWfPnkWhQoVw6tQpjBgxAr6+vpm6VwiBkSNHwt3dHWPGjEFSUhL+97//oX///gAAIyMjJCUlAUhpowYMGIC///4bTk5OMDQ0zLF3+lRRyoSRkVGaa2q1GiNGjMDx48fxzTffIDExEbNnz0a/fv0AAIaGhrL+UWyxYsUKNG/eHIULF869l/hEUGxhbm4OIPN1imIDpY+2a9cuBAcHw8zMDAYGBli+fDlGjRqVAzH+dMmoXOgjJiYG+/btw5w5c3Dr1i2YmZlh4sSJ+Oqrr1CyZMmcjOpHT/HixVG5cmUIIZCcnCzzsa+vLx4+fPjW+83MzNC4cWMIIRAYGIiLFy++9R4eT2QexR5eXl549OjRW8Pny5cPjRs3RlJSEm7fvi37WUzuoIzdT548ialTp6JNmzaYNWsWwsLCYGJiAlNTU0ydOhX//vsvNm/ejKZNm6JgwYKyvdHX7nD/9v1ISkrCuXPnMGHCBNy8eRMWFhbo06cPRo0aBScnp7yO3kdH6jWL5OTkNPk2vXkQ5Xq/fv2wePFiCCGwb98+rF+/Hlu2bAEATJ8+Hd988w1KlSoFAOmOrxMSEjK8/jmQek1JXx2htOkAcOnSJWzZsgXx8fGoX78+tm7dCiEENBpNmvlG4E3aPn78WPYD7OzscuRdPneUMmNgYIBKlSph7ty5aN26NWJiYjB58mSEhoamKXs2NjawtbXNi+h+8GjPzS1YsADfffcd2rVrhw4dOuiE47Lx7hjkdQQYhmEYhmEY5mPHwCClW61vsMEwnzNK2WAYhmEY5uPk9u3buHv3LmJiYnD8+HE0b9483bBKu+/v7w+NRoP4+Ph0N00JIRAXF4cff/wRp0+fxo0bN1C+fHk4ODhg/vz5qFChQrqT+Z8rjx8/xosXL+Du7o7Tp0+jUaNG6YY1NDQEESEoKAgajQbR0dGZEiUIIUBEaRYrk5OTedN0KrTTRKVSITw8HDt37sTBgwdx6NAhmXY2NjYoUqQIfvnlF5QvXx7ly5eXz9BO69Rcu3YN33//PU6fPo169erhwoULcHZ25nKhhyVLlsDX1xejRo1C5cqVZfpkh3gd4HLxNipUqIBz586hYcOGOHnyJNavX4/Zs2e/ddOskn4NGzaEi4sLnJ2dMWrUKPz7778wMzPDX3/9BQMDA5n2arUagwcPRoMGDXTKEZN1FFvUqVMHTk5OqFy5MoYPH46NGzcif/78+PPPP6FWq3Vs8dVXX6FVq1YoUaJEXkf/oyejsqJd96jVasTHx2Pnzp04fvw41q5dCwMDAyQlJcHS0hJGRkZo0KBBbkX7s0NbvO7l5QUzMzN88803GDx4MIvX3xGl7dy7dy9GjhyJlStXZkqY06BBA1SvXh0XL17E/v37MXbsWFknpfc9RITo6GiYmprKsUpG/a/PmQ0bNmDAgAE4cuQIihYtmm44Jf2++OILuLq64ubNmzh16hSGDh2aqb4REelsZmYyRklv5ffjx48RGhqK33//HVeuXEFYWJgMW6FCBXTv3h0dOnRAtWrV5OfK+CF1X/b06dPw9fXF8OHD0/R3mTfpRkRITExMs9kpO8XrXC70o50eb8ubiphapVJh9OjRcHBwwO3bt+Hp6YlKlSqhUaNGaNasGQDo9GkV/Pz88PjxY+zduxcPHjzAd999Bzc3t5x5sY+Q9NJfpVLh8ePHmDRpEqKiolC5cmX8/vvvsLKyAhHpbaOTk5OhVqsRFxeHMWPG4OHDh7C1tcWQIUNy+jU+aV68eAFLS8u3zhfZ29ujV69eOHv2LPz9/eHl5YWSJUtyG/AOKCJ2tVqN3377Tf6tPV/HZePdYTUBwzAMwzAMw2QRHtQxDMMwDMMwnyJubm5o1KgRzpw5g927d8PV1VWvt1Xtyfrw8HAAKSLq9Dxa3rp1C1OmTMH+/fvlpP39+/fh7++Pq1evwt3dHRUrVuQFlP9HpVKhZs2aqF27Njw8PLB79244OzujYMGCacIqi7Z3797F06dPAQBWVlZpPBanFpi4u7vjxIkTOHfuHAwMDJA/f360atVKChRZOK2LknbXr1/HjRs3MHPmTLx48QJRUVFQqVRITk5Gz5490blzZzRv3lzHVkq+zki8PnbsWFy6dAlGRkaIiYlBw4YNcfbsWTg5ObEttDh37hzGjRsHIKXOGT16NBwdHbF9+/b3Eq9zuXg/ypcvj5MnT2LmzJlSUPg2tNPZysoKffr0wevXrzF27FisWrUKrq6uGDFiRJqTIBXxOm8gyD6009HCwgI9e/ZEVFQUJkyYgLVr16Jq1ar46quv0thCEa9zW539pG4ngoKCEBAQgF9//RUBAQF48eIFgBTxXP369dGrVy+0aNECZcuWzctof7KkJ15nz+vvT3R0NNauXYuHDx9i0aJFqFq1KmxsbNINn5SUBCEEYmNjAaR4x1U2OWmjlB1fX1+cOnUKu3fvxpMnT1CuXDk0aNAAY8aMYaGuHl69eoVly5YBAFauXAk3NzdYW1vrDauIRJ89eybrotevX8trqUndXuvrA7M99KOdLi9fvoSHhwfmzZuHO3fu6Jx01qJFC1StWhWTJ0+GlZVVmrRU+qraz7t06RIWLVqE3bt349q1a/j777+5bKRCrVbj9evXWLBgAcqWLYtWrVohX758ALIuXudykTMo43CVSoW2bduibdu2OteVNE1MTMTTp09x48YNnDp1Crdv38b58+cRHx8vvR/7+PjgzJkzsLS0ZDukg5LWx44dw5MnT2BiYoLOnTvD2dkZgP42QdmokZCQgGnTpuHy5ctQq9WoX7++zma29MZ6XC70c+/ePRw7dgxt27ZF0aJFMxwrGxgYoE2bNihcuDBCQkKwYcMGtG/fPt10ZVvoJ/UGb21Rek6WjU8ZFrAzDMMwDMMwDMMwDMMwDMMwaahSpQr69u2Ls2fPYtmyZShbtixGjBgBY2NjAG+ONlUm6adPn45Tp04BAAYMGKBz5Kwygf/8+XN8//33OHToEPLnz49//vkHhQsXRkREBBYtWgR3d3eMHj0a27ZtQ6FChXL5jT9catSogYEDB0qxgYODA4YNGyZtkZiYCENDQ7mw9Mcff+DGjRsAgEGDBukId7VFt/v378eRI0fw559/pvnOw4cPw9HREZs3b0bFihVZMKrF69ev8e2332LPnj149eoVIiMjIYSAkZERRo8ejZo1a6JHjx4yvHbaZbTIl1q83rJlS0RGRuLUqVNo0KABi9hTUb9+fYwYMQLLly/HkiVLoFKpULx4cezcufOdxetcLrJG5cqVsXnzZpkWiqhQOXHD1NQ0w/vVajW++OILNGzYEEePHsX58+cxYsSIdMNrp/nnvnieWYgIMTExUnyVHmq1Gs2bN0e1atVw/vx5XLp0CV999VW64Tntsxft/BwaGorjx49j/vz5ePLkCZ4/fy7D9e7dG9WrV8eECRPS3Ju6XuIy8v7oE69PnDiRPa9nEVNTU3To0AEXL17ErVu3cOrUKXTr1k1v34aIYGBgAB8fH/j7+wOAHGOkztdCCFy8eBFjxoyBj48P4uPjAQBeXl7YsWMH7ty5gwULFnB5SIW5uTn69++PO3fu4NKlSzh79iw6duyYrmBNpVIhODhYblwuUqQIgLT2UMISEXx9fXH+/HkEBATg5cuXaNiwIcqXL49atWqxcDoVqevwBQsW4OzZs9i9e7f8zNLSElWqVEHv3r3Ru3dv2c9NTk5OVxinfH7x4kUsWLBAPm/lypUwNjbGkiVL2Bap+PnnnzFv3jw4OzsjISEBnTt3hqmpKc6ePYtvvvnmvcTrXC5yFiFEmrHyy5cvkZSUhNOnT+P27dtwd3fHjRs3EBkZCSClTSpRooQ8Gap9+/YAUjbZMumj1FOnT59GXFwc8uXLh759+6Y71tDeQLBy5Urs378fcXFxMDIywtdffy3bEuXZz549g7e3N+7evYtKlSqhePHisLW15bmQVMTFxWHdunWYNm0aJkyYgP/9738Zzk9oNBoUKlQIZcuWRUhICCIiIpCUlJTuadpsi/TRrp9Tb/YGcqZspNcufBLzUsQwDMMwDMMwDMMwDMMwDMMwWiQnJ8u/f/nlFxJCkBCC/vjjDwoODk4TfsaMGTJMmTJlaNeuXXqfO2TIEBJCkI2NDV2/fl3n2tGjR6lw4cLk4OBAd+/ezc7X+ajRtsXMmTNlOv/+++/k6+urE/bVq1c0duxYGaZ+/fp06dIleT0pKUn+/euvv1KlSpVk2BIlSlD16tVp7Nix1KpVK6pYsSIJIcjOzk5+j3ZcPncGDBgg087Z2ZmGDh1Knp6eOmG00/ttXL16lerXr09qtZpMTU2pX79+9PLlS3ry5Am1aNGChBBkZWVFt27deudnf4pov//48eOlLYoVKyb/7t+/P7169eqdnsXlIntQ0uTo0aM0c+ZMIiLSaDRvvW/27NkkhCBDQ0O6du1alr6b0WXNmjW0cOFCIsqcLb7//nsSQpC5uTn5+/vndPQ+e5R8GxcXRy9evKCJEydSw4YNZV2k1G+dO3emXbt26dhQuw7Tzv83b97U+zmTwtvKQXR0NG3evJlcXV1lWfj555+5j5pNPH36lLp06UJCCKpVq5ZOflVQ8u2jR49oyJAhZGhoSAYGBjRnzhwiSmtDDw8PKlWqFAkhqGbNmjR+/Hj6+++/ady4caRSqeRYhknLkydPqH379iSEoNq1a8v+JtEbOyjpHRISQk2bNiUhBBUsWJC2bdumc10hMTGR7t+/T926daPy5cvr1GdCCHJwcKAZM2ak+R6G6OHDh/TNN99Q69atddKsZMmSVLt2bTpx4gSFhobq3JNe+ml/fuHCBerevbt8XpcuXWTZGD169Fuf9bnh7+9PBQsWJCEEubm50fr16+nAgQPk5uZGQgjKnz8/DR8+XKe8vA0uF9mLvrY8JiaGnj59SuvWraNffvmFatSoQfb29jrpXL16derfvz+tXr2abt68Sc+ePdP7XE7/t9OyZUtZnxARJSQkpAmjpGdiYiKtXbuWqlevLm2xevVqnbDPnz+nPXv2UJkyZcjU1JSEEFS4cGFyc3Mjb29vnecxKWOHKVOmkBCCqlWrRpcvX37rPWFhYeTo6EhCCGrRokW66cm2yBrZWTb0pfOzZ8/SzHd9zPZgATvDMAzDMAzDMAzDMAzDMAyTBu2J78mTJ8tJ9KZNm9KPP/5I//33H/3666/UtWtXec3ExISmT5+u93leXl5UuHBhMjQ0pGPHjsnvUBYFvby8yMLCgoQQ8jqTgrYtvv32W5neNWrUoDFjxtDSpUtp+PDh1KRJE52NBH/99Ze8LzExUf49atQonQXcL7/8kg4ePEgxMTFElLII5unpSc2aNSMhBDVp0oQeP36cey/8AZN6c8eIESPo6dOnFBsbm+Z6ZlHE6wYGBmRqakp9+/aVi+jJyckUFBQkF79YxP4G7fcfN26cTp5u3769zM8Z2UT7GVwusperV6+SEILy5ctH9+/fzzCsYqMVK1aQEIJMTU3p7NmzesMq9WF4eDhdvHiRfv/9d9q0aROdPHkyzfOYFI4cOSI3jz18+DDDsEra/frrr9J+GQmzMiOYY/STWmBw8+ZNGjt2rBTGKT+VK1emzp07k7e3dxqBlTbaab53716qUqUKDRkyRO/1zx3tuv/ChQsUFRVFRG/SSJ94/aeffsq0eJ3LRea4e/cuOTs7kxCCGjduTJ6enrLNVcrHgwcPaMaMGVSyZElZj925cyfNsx48eCD7Su3ataMrV67I9I6JiaGffvqJDAwMqGvXrrn3gh8ZISEhchNf48aN6dKlSxQdHa0T5s6dOzR48GCytrYmIQRVqFCBHjx4kOZZDx8+pJUrV5KTkxMJIaRIulKlSlS9enUqVqwYqdVqEkLQhAkTcusVPxru3r1LdnZ2JIQgY2Njyp8/Pw0cOJCOHz+eRqyWUb2SWrzeo0cP2bbMnDmTEhISaOXKlSxizwBfX18qXLgwCSHI0dFR1kXvI17ncpEzxMbG0qNHj2jTpk00c+ZMcnFxkeVHSePq1atTt27daOPGjeTp6UmvX7/WeUbqjTrM20lKSiKNRkO1a9cmIUS67avS53r9+jX99ddfVLNmTVkP/frrrzphnzx5QnPnzqVChQqREILKlStH9vb25ODgQEIIKlq0KG+s1cPp06dlf+qHH36giIgIveEUWyjOQ4QQ1KtXL731Pdvi/cnusqHM5SYkJFBERATNmjWLevToQdbW1uTg4ECNGzemadOmUUhIiM5zPzZYwM4wDMMwDMMwDMMwDMMwDMPoRXvie8aMGWRlZUUGBgZyMV1bYGVra0tTp06V4VMv/h09elR6jgsLCyOilIVC5TtOnjxJhQoVovLly1N4eHguvN3HhbYtZs6cSTY2NnKB29DQUMcW1apVo6VLl8rw2gu0gwYNkou5JiYmOjYjerM4kpycTIcOHaKiRYtS8eLFdTy5f+7oWxB6X5HH1atXycXFhQwMDMjQ0JA6d+4sr2l7aNIWsRcuXJhu3LjxXt/3qaFtizFjxsgyMGzYMPLz88v0vVwush93d3cqXbo0mZiY0OzZs6UoUR+KLRYuXCjbmP3796cJp7QrV65coYYNG8qFdyEEWVpa0uTJk2VYFl694ciRI1SyZEnKly8fzZ8/n+Li4tINq+T1SZMmkaGhIZmbm6fryU+7nU9OTiZfX18KCQmhoKAgio+P17nGvCF1/2jXrl303XffkYmJiRRamZiYUNGiRen777+nK1euyPTMjDB679691KpVK1k2Ro0apTccQ9S8eXOqXLkybdy4kSIjI4mIKCoqijZt2vTente5XLwbAQEBVLRoURJCkKurK02aNIkuX75Mly9fphMnTlDr1q3l6Sr58+enffv2EVFa77inT5+mggULUsmSJen48ePyuvJ79erVcrzy8uXL3H/RjwR/f39pj8qVK9Pw4cPp5MmTtH//ftq0aRM5OTmRpaWl3FSpnJai3acKDg6mb775hkqUKCHDtWzZkrZs2SLL2a1bt2jhwoWyzluwYEFevO4Hza1bt6hIkSI0depUme8V3lVke/HiRerWrZtsF6ZPny7LTmJiYroidhbzpuDr6ytFnCqVikxNTemrr756J/Eml4vs5dKlS7Rt2zaaNm0a1apVS+cULiEE1a1bl7p27UpbtmyhkydPpsnLSp3FbXHW+e2330iIlJNPQkNDZZpqz/XFxcXR9OnTycXFRdroxx9/lEJrJdzGjRvlqQdfffUVvXr1isLDw+nKlSvUqFEjEkLQoEGDKC4ujm2XiiVLlsi0XbJkiXSwQJSSvkp6PX36VG6iKVq0KJ0+fZqI0m7iYFtknewoG8rY/MWLFzRv3jxq3LgxCSHkXLD2T/ny5T9qz/gsYGcYhmEYhmEYhmEYhmEYhmHSRVuQsH37dho2bJgU2yoT5QMGDKB169bpvUfh0qVLZGpqSvb29nT79m2da4mJiVKc27p163Q9Bn3uaKfrnj17aMKECWRubk5mZmZkbGxM5ubm9N1339HRo0dlOG3x+vDhw+ViR/HixWnx4sXymr4Fjvv371Px4sWllz7mDdqLdFlZsPP19aVWrVqRra0tCSGodu3aUnitfUIBUYqIvW3btnIDSUREBC8Wkm65GDt2rKyXxo4dm6auUdDO71wucoaoqCiaMGECCSHI2dmZzp07pzeckofv379P5cuXlx7eHj16pDfcxYsXKV++fCSEoFKlSlH16tWpVq1achH3+++/z9kX+wiJiIiQJwy4urqmu/FCye937tyRmwOqVKmSoeA9OjqafvjhB+rYsSOZmJhQgQIFyMzMjLp06ULLli2T4biu0uXFixd06NAhGjBgABkbG8s+Vb58+ahEiRK0fPlyunDhgs496QkRUovXlf6UEEJuCGGvuml5+PChFOK6urrStm3bKDw8nLZv3y5FJO8qXlfgcvFuBAQESM+hQggyMjIiY2NjHXGOhYUFrV+/XmdzH9GbNPzuu+9ICEFffPGFvKZdZv755x8SIuX0Im1RF5OWgIAAnZMgFDto28PKyopOnTpFRLrCOH9/fxo8eDDZ2NhIcdz8+fOl0FdbvBUTE0NTpkwhAwMDatmyJW8s0EPqzX/vI0hzd3enTp06pfHqqn06V1JSUroidiYFHx8fKeYsUqQIzZkzJ81GmfTgcpH9zJs3T0e46eLiQn369KFNmzbR+fPniYjSeFknSul/Eb3J/x+rp+IPiYMHD1KBAgVICEGLFy/WOSUiISGBHjx4QB07dpSbQJQx9PPnz3Wec+/ePTnGHjlyZJo+0p9//klCCKpfvz73n7TQrn9+/vlnnTT29PSU1yIiIujq1auyv5UvXz768ssv9Z6UxrbIHrJaNpT6KTw8nDp06CA3GAohqGrVqjR06FBatGgRDR8+nKpWrUpCCCpevHiatuVjgQXsDMMwDMMwDMMwDMMwDMMwTIakXpQNCAig06dP04kTJ8jLyyvDsAq+vr5UunRpKTAMDg6mZ8+ekZeXF7Vu3Vp6llbEux/bZHtukTp9w8LC6Pbt23T79u00AittYcLUqVOl1zh7e3tasWKFvJZ64VZJ+4SEBHmMLQt1c46IiAjasWMHNWvWjIQQZGZmRmfOnCGitOUgICCAGjduTCtXrsyLqH6waOfh8ePHy4W90aNH071793TCaqcpl4ucJSwsjOrWrUtCCGrYsCH5+PjoeM1V/g4PD6evv/6azM3NSQhB3bp1o6ioqDTP8/LykuKfLl260Pnz5yk2NpYePHhAS5YsIZVKRTY2Nul6DP+cuXfvnjzGvFGjRnT79m2dNkKxxd27d6lFixayLpo8ebLOZhrl9+PHj+nff/+lOnXq6AiITE1Ndf5nr/hpSUpKohYtWqTxnNesWTOaP39+mjorI2FcRuL12bNn07Zt2/QKEtkWKfj6+pK1tbXcaDN69GjpldLc3Jx++umnTInXuVxkndDQUBo1ahRVqVJFJ62sra2pYsWK5O7unuH9M2fOJCEEtW/fnuLj43XKzaVLl8jR0ZGEEDRt2rQcfpNPg7CwMJo0aRJVr15dxx4ODg70xRdfkI+PDxHp5t87d+7Q0KFDZZkqVqwYHThwgKKjo2WY1Pn9v//+k8++cuVK7rzcR0RW64eEhATauHEjmZiYSMHib7/9pnNdISkpiVatWiXbplmzZmXpuz9FfHx8pNDQzc2NNm3aJL2npweXi5xj9uzZtGLFCrp8+bLORhrlt/apJxs3bqRx48ZRuXLlqH379jRp0qQ0IlHm/Zk+fbrMs0OGDKF58+bRmjVraPDgweTg4KDTjixbtkxnDKLYa9myZSSEoOrVq8vr2uHWrl0rBbqPHj36KD1M5xTaefjbb7/VabO7detGw4YNo2bNmsmTCszNzal+/fp08eJFvc9jW2Qf71s2lDS9f/++jnd2IQT9+eef0tM6UYr9vby8pHf2Tp06fZSbn1jAzjAMwzAMwzAMwzAMwzAMw2SajBbS37bIvmLFCjnp7urqShUrVpST9tbW1lK0q70Akvoo28x8z+dCZtNh06ZNZG9vLz0mLl26VF7LaLHpwIED0ivsX3/9leX4MmnR9twXHBxM3bp1IyEEFSpUiK5evar3nowED58z2gu3Y8aMISEEtW3bVnqgSg2Xi9whKCiISpYsSUIIqlevHm3ZskXH01tgYCD16tWL7OzspNDz2rVrOs9QPFJ+9dVXJETKSR3h4eE6Ye7evUvlypUjIQTt3r07V97tYyMoKIhKlChBQgiqU6cOrVmzRopzIyIi6Pr161S7dm25kaBUqVI6IkWlvgkODqbRo0fLTWlmZmZUrlw5mjp1Kv3777/0999/07Bhw6RweurUqXn2zh8qt27dkicJ9O7dm5YsWaJzPTNCkIzE63PmzJHX/v77bxaxZ4C2iD1//vwyT8+YMYNCQkLeej+Xi+wjNjaWHj16RMuXL6f58+fTzJkz6fjx4/T48WMi0p9nlc/WrVtHKpWKSpUqRWfOnJF9pdOnT8tNOV988QUFBgYS0ft5sv7ceP36NUVGRtLmzZtp/fr19Ndff5GPj48URWn3u54+fUpTpkyhIkWKSFHb2bNn0322Yrfbt2+ThYUFCSHo0KFDOfo+nzPHjh2jb7/9Vm6m6du3r7yW2hP7smXLyNnZmf755580Jx4wum1GlSpVaMOGDeme6sDlImdIT3Cu/Xl6J3RpbypzcnKip0+fEhG3Ce+Ldrr98MMPJMSb039Sb0Zr2LAh7du3L91nTZo0iYQQ1KZNmzTPjouLo2+++YaEEDRo0KCce6GPGO08P2fOHCpTpky6tujUqZM8qUAfbIusk5WyodgyLCyMSpUqRUIIMjQ0pNKlS9PJkyd1vkdpw5OTk2njxo1kbm5O5cuXT7Mh+mOABewMwzAMwzAMwzAMwzAMwzBMjqItOFm2bBnZ2tqSmZkZCSHIxsaGateuTbdv3yaiNxP9+hYmX716JUUsvMiYOV68eEG9e/eWCyTaHqPTS0PFM/IPP/xARkZGZGxsTEeOHMmtKH9SvKtA0NvbW3pO6tmzJz179iyHYvZpol1v/PPPP7R371694bhc5C5+fn5SxG5tbU2lS5em3r17U+vWrXWOzDY2NqYDBw4QUVo7REVFkYuLCxkaGtL69evTbG7SaDTSM/6ePXty9wU/Ivz8/ORCuKWlJdnZ2VGbNm2oWrVqUryrXFM82Ws0GpnOfn5+1LlzZ2k3Kysrmj17dhoPoVFRUbR48WLpFf/EiRO5/q4fOn5+fnTs2DEdD6Hv07fZs2cPffHFF9J2f/zxh87zkpKSaOXKlSxizwAfHx8qWLAgCSHIxMSEOnfuLPulROmnk/I5l4uc521lIyoqiurVq0dCCCpdujS1atWKhgwZQsbGxiSEoBo1atCOHTsyFMEzmUdJM6XftWPHDrkpuVixYm/1mK/ct3LlSjI0NCRzc3M+PSUH0C43L1++pHXr1klh9LBhw/SG02g0dOfOHYqJicnVuH5M+Pr6UuHChUkIQd27d09zahCXi9wldR2u/f/w4cNJCEFGRkb0888/08GDB+nu3bvUt29fudmZ83rW0B5/K56lCxUqRAULFqTKlStTs2bNaNeuXRQUFCTD6Wt3V65cSUZGRtSkSRN69OiRzvN37dolN35qn5jG6KJtixMnTtBvv/1GDg4OZGdnR46OjlSrVi3atGkT2yKXeJ+yoWwce/jwIVWqVEluiq1VqxZ5eHgQUfr91ps3b8oTVzZv3pyDb5YzsICdYRiGYRiGYRiGYRiGYRiGyXG0F8avXLlCR44coaVLl9KlS5ek5ysi3cn4hIQEunbtGq1atYpGjhxJlSpVIltbW/Ly8srVuH/M7Ny5U+fIWoX0hEDK5+fPn5deeJs3b54rcf3U0E5jPz8/0mg0bxVJxcfH07Rp06QAy9fXN6ej+cmhb/NL6nTncpH7BAcHU5s2baSnde0fExMTKliwIB0/fjzd+z09PaXIXfEYp12mjh49Kp/3NoHQ586dO3eoc+fOclNBai9wbm5uUniblJQk87+/vz+1bNlSCt2tra3p8OHDOp5HtT25hoSEkKurKwkhaOHChbn7kh8h7yOivXbtGjVo0EDar3PnzvJaXFyc/FsRsavVavaYmA7e3t5SxF6pUiXaunWrzoknqVHsxeUi71Ha/ZcvX1K9evXkZg3lp0ePHnTw4EEZLvVvBW07saj97ShpFBUVRW5ubnJj8n///Zfhfdp9rY4dO5IQggoUKKBzOguTMyQmJtLKlSvJ1NSUDAwM6M8//8zrKH20+Pj4UMOGDcnb21vncy4XHw7z5s2T4vVNmzbpbBgkInJ2dqYSJUrQnTt38iiGnw6p29MHDx7QnTt36OXLlxluMNDmxIkT0jv+xIkT6dSpU3TixAmaNWuW3HgzePDgHHuHT4XU8xkvX76kJ0+e0PPnz3X6ORnBtsg+3qVsKGGfPXtGzZs3l/VXnTp15Al1GW3EDAwMJBsbGxJC0JYtW3LidXIUFrAzDMMwDMMwDMMwDMMwDMMwuYKymKJv0l0RWnl4eNDGjRupX79+5OzsrHPMaoECBahixYo0bdo0PtL8LWg0GoqPj6d27dqREIJcXV3p5s2b8lp69xARBQQEUPHixUkIQQ4ODrRjxw4iojRpntqO7BVfP6tWraLhw4fL/98mivL29iZLS0sSQtCsWbP0hnnbQjDbQj85US44rTPPkydPaO/evdSnTx+qUqUKlSlThpo1a0YzZ84kHx8fIkq/fDx+/JicnZ3J3Nyc1q9fr5PuFy9epIoVK5IQgoYOHZor7/Kx8+zZMzp58iQNGTKEmjZtSnXq1KGuXbvSxo0bpZBHe4NASEgI9ejRQ9ZNhQsXphs3brz1e7p27UpCCOrVq5fezSVM1vnnn3+oTZs2ZGZmRmZmZjoe1rWFKklJSbRq1SrpITwwMDAvovtB4+PjQ9bW1iSEoCpVqtCGDRsyFLFzufhwUPJ6ZGQkrV+/niZNmkTTp0+nNWvWUExMTIZti7u7O02fPp26dOlCI0aMyM1ofxKMHTuWhBCUP39+mjZtGr148SLdsNp2+OOPP0gIQYaGhjR58uQ015nM8/r1a4qMjMxU2NDQUGrZsqWsg5j3Rxkb66vHuVzkLS9evKAvvviC1Go1zZgxQ6c/FBcXR0lJSVS3bl0SQvCJWtlERvk0s+PlpUuX6pwGZWBgIOcD+/fvL8Nplzl95Y/H5+nDtsh93qVsxMbG0o8//khWVlYkhKDKlSuTp6fnW59DRDRr1izZ7qQ+BepjwAAMwzAMwzAMwzAMwzAMwzAMk4MkJydDpVJBpVIBAIQQAICkpCRcuHABT58+xY4dOxAaGopLly7J+4oVK4Zq1arhiy++gJubG9zc3ODg4AAiks9g9KNSqZCUlAQ/Pz8AQOnSpVGxYkV5LTWKjUJCQvD111/jwYMHMDIyQp06ddCgQQMAgKGhIQDgyZMnuHLlCk6cOIG4uDi4urqiRYsWcHBwgEajgVqtzqW3/PAJDAzEihUr4OnpiUqVKmHMmDHp5l0lXxsYGMDExASRkZF4/fp1uuEAtsW7khPlQrmP0/vtFC5cGO3bt0f79u0RGRmJpKQkFCxYUObpjOp2KysrODk54fbt2/jtt98AAEWLFsXTp08xadIkPHr0CF988QXGjh0L4I3tGP0UKlQITZo0QZMmTZCQkIDk5GSYmJjI60Qk0+/ly5dYsWIF3N3dERkZCWtra5w5cwYVKlTIMJ2joqIQGBgon8flI2cYMmQImjdvjn379uHHH3/En3/+iVevXmHDhg0wMDCQdZNarcaAAQNQoEABFCxYEKVKlcrrqH9wVKxYEWfPnkWDBg1w8+ZNLFq0CMWKFUPjxo3T1E1cLj4slLxuYWGBfv366Q0TExMDIQTOnTsHLy8vnDp1ClevXsWTJ08AQLZDTZo0Qffu3XMz+h8tMTEx8Pb2BgDY29ujY8eOKFCggN6w2m38oUOHsGPHDgCAqakp6tWrByDFBhn1p3gMmJakpCScPXsW4eHh6Nu371vTyN7eHg0bNsTRo0exdetWfP/993B1ddUblm2RMQYGKXK71GmUE+WCeTfCwsJw5swZqNVq1KtXT9oqKSkJJiYmiIiIwMuXL2FnZ4fy5cvncWw/DTLKp28bkyn9plGjRsHMzAx///03QkJC8Pr1azRp0gSNGzfGt99+CwCIj4+HiYmJvEcpfy9evICXlxeKFSsGR0dHHgumA9si98lM2VDSKDQ0FMePH0dERAQMDQ2xfPlyVK9ePd02V7kvIiICly9fBgCYm5vD0tIyZ14mB2EBO8MwDMMwDMMwDMMwDMMwDJOtKJPoyiS7MimfmJiIK1eu4M6dO9i5cycePHggJ9kBwM7ODlWrVkWXLl1QunRpNGrUCFZWVjA1NU3zfBb8vJ2YmBhER0fD0NAQXbp0gaGhIZKSkuQCroK2SHf06NHSJqVLl8a0adNgY2Mjwx4+fBjr1q3D1q1b5WcqlQr29vbYt28fKleu/NkvUGlToEABODs7w9PTE0ePHkWLFi3SXSRXFqSuX78uxVSpF560F67YFu9HdpaL5ORkCCEghJB1kp+fH548eYLk5GQ4OTnBzMwMZmZmbIv/R8nDFhYWaT7LaHOHkZERli1bBn9/f1y/fh3Dhg1DfHy8DNOuXTtMnDgxzYaE9BZ7WXj1Jg0MDQ1lWmjbQhGuXb16Fbt27cLTp09RsGBBHDp0CBUqVEhX2KZ8/uDBA7kJp3Tp0jrPZ7IHJT1LlSqFESNGwNraGkOHDsXGjRtRqlQp/PLLLzo2UqvV6Ny5cx7G+MOnQoUKOHv2LJo2bYr4+Hg4ODjo5FkuFx8m+sYGcXFxSExMxIkTJ3D//n3s3bsXoaGhCAoKkmEqVqyIunXronHjxqhduzZKlSql0+9lMsbDwwMnT54EAHz99ddwc3PTG047j3t6emL9+vXw8PAAAIwaNQodO3aU4RQ7Hj9+HKGhociXLx+KFi2KRo0avXWz2+fI7du30a1bN8TFxaF+/foZbk5S6qEyZcrItHz16lW64dkWGZPeu2d3udBGezzxuad/Rih1iYmJiRxzEJEc7w0dOhR+fn6oWrUq8ufPn5dRZZAyblPy9qBBg9CyZUskJiYiKioK9vb2OjZSNtw+e/YMwcHBuHjxIk6fPg1fX18EBQXBwMAA3t7ecHR0zKvX+ahhW+QNSr2+fPlyeHp6AgBWrVqFBg0aZDifodz3559/Yu/evQCAESNGoGzZsjrhPoa2ggXsDMMwDMMwDMMwDMMwDMMwTLaQWrD+/PlzPHz4EFevXsXJkyfh7e2NGzduyPB2dnaoUqUKunTpglKlSqFdu3YwMjKCmZmZznNTCz9ZvJ45kpOTERsbi8TERISFhQFAuiLdoKAgDBs2DB4eHoiPj4e1tTW2bNmCcuXKybD79+/HzJkzcfXqVeTLlw8dO3ZEbGwsQkNDce3aNbRr1w4nT56Eg4NDrr7nh4y1tTU6deqEw4cP48CBA6hduza++eabNJsyFMLDw3HixAmo1WpoNBrY2dnpXFcWntgW7092lQuNRiOFvnfu3MHJkyexfv16+Pj44MWLFwBShJA1atTA1KlT4ejoyF7a8SYPay+ivk3Yr4iprayscPLkSYwZMwZ+fn64efMmypcvj3bt2mH8+PEoXLhwmsVZbSH2mTNnEBMTg9atW38Ui7g5jT5baP+t5NXffvsNAQEByJ8/P1asWIFq1aqlu5FM+/OFCxciICAAQgh88cUXaZ7PZB59m2wA3fQ0MDBAu3btMHbsWMydOxd79uxBp06dUK1atdyM6idBhQoV4OHhgdevX6NUqVI6wg8uFx8GqdtTZeNsdHQ0Tp48iZCQEGzfvh1Pnz7VEaxXrlwZbdq0QefOnVG2bFlUqVJFr5dK3nSWORISEmBoaAhTU1NUrVoVQNq00y4/N2/exIoVK+Tmyz59+mDGjBk6zwwMDMS4ceNw4sQJJCYmAkjZ0Dl06FD8/vvvLJxORXx8PKysrBATE4ONGzdiwoQJacbSqfH39weQUp9ltHkwKCiIbfEeZGe5SN3+K/VcUlISXr9+jSJFiuh95ueOhYUFHBwc4OPjg5MnT8LR0RH58uVDQkIChg4diu3bt6NgwYJYtmwZChQowGn3AaCclGZgYIAiRYqk6U8FBwcjOjoaBw4cgLe3N9zd3REeHg4gpR9VtGhRdOrUCWXLlsWjR49YNJ0F2Ba5DxHh6dOnOH36NACgffv2aNGiBQD94wTtOmvdunWYOnUqAKBevXpo27YtgDd9ZSVcQkICDAwM5BzWh9bXZQE7wzAMwzAMwzAMwzAMwzAMky0IIRATE4Nff/0VT548gYeHB4KDg6WnyUKFCqF+/fpo0qQJKlasiMaNG8PY2DjNkdpEpONN5kOaVP+YKFq0KLp164a1a9ciMDAQr169gqWlZRrh6PXr19GrVy8EBwcjOTkZVlZWOHz4MFxcXOSiR0BAAP7++29cvXoVLVq0wMiRI9G+fXskJSUhMDAQ/fv3x9WrV7Fv3z6MHTuWF4HxZlGpXbt2mDBhAiZPnoyffvoJVlZW6Nu3bxrB1LNnz7Bjxw5s3LgRGo0GjRo1Qs+ePdM8l22RNbKjXGiLEc+dO4cJEybg3r17ePr0qfREZmZmBj8/P/j5+eHkyZM4cuQIKlWq9MEtFH4sKJs6LC0tsWrVKmg0Gjx58gTm5uYoVKhQmvBRUVG4efMmQkJCsGvXLoSGhuL69esAgEGDBmHVqlW5/QofFUq9sXr1apw6dQrGxsb4+uuv0bRpUwD622Xtdnv58uVYs2YNhBDo1KkTnJ2d5TO5DLwb0dHRuHXrFqpVqwYjI6MMw1pYWKBJkyb43//+h9u3b+PKlSsZCtjZFulTokQJALoCkZwsF8y7obTB9+/fh4+PD27evIkjR47gzp07uHv3rgzn5OSE5s2bo2fPnihevDiaNWumV7SbuixwucgcERERSExMhKmpKQoWLAhAN+200/XSpUtYsWIF1q1bByDl5JTJkyfD0NBQjjcuXryICRMmwNPTEwULFoSDgwM0Gg1u3ryJefPmQQiBOXPmcJnRwsnJCV27dsX8+fOxdetWNGrUCPXr108TTnvTx5kzZ6SH6uLFi+uEU2zGtnh/srNcKOL15ORkbN++Hfv378f58+eRmJiIyMhIdO3aFfXr18fgwYN5Q4EWpUuXRs+ePTFt2jT8+OOPcHd3h0ajwYsXL3D9+nUUKFAACxcuRM2aNTnN8pDUYwMlv6vVaoSGhuLZs2fYvXs3wsLCcPjwYURGRiI+Ph4qlQqFChVCr169UKlSJTRu3BiOjo46GzqYd4NtkbcIIfDo0SN4eXkBAGrVqpXuiUDaddb27dvx008/AQDy58+Pdu3ayY1TarUaCQkJ8PX1xaZNm3Dr1i0kJSWhWrVqGDx48IfnYIEYhmEYhmEYhmEYhmEYhmEYJhsZMWIECSHI2NiYmjVrRhMnTqS9e/fSgwcPKDY2Nk34pKQkevLkCXl6etKzZ88oLi5Ofs5kjTVr1pAQgoQQtGjRIgoLC5PXPD09acmSJWRhYSHDlC5dmm7cuEFERBqNhpKTk4mIaN26daRSqahUqVJ0+PBh+YyEhAQiIurbty8JIWj48OG5+HYfPhqNRv79ww8/yHT+5ptvaN++faTRaEij0dDx48fp+++/J3NzcxJCUOXKlWnPnj1pnkHEtsgOslouiFLS+99//yWVSiXDFS5cmGbOnEn//fcf3bhxg5YtW0YNGzYkIQQ5OjpScHBwnrzvp0RiYiIRkaybFB4/fkwXL16kpUuXUteuXcnJyUnaRbFh8+bNaeHChfT333/nRdQ/SiZOnCjb8xMnTqQbTtse+/bto5o1a5IQggwMDOiff/7Re09CQgI9evRIp45LbdfPnbi4OFqxYgVVqFCBjhw5kql7YmNjqXr16iSEoIEDB2YqTdkW70ZOlgsmY+7du0dbtmyhGTNmUMuWLalYsWI6dX3FihWpU6dO9M8//9CRI0coLi5O79hDaUuYrBEaGkrly5cnAwMDWrFihRy7JScn64zjtm/fTp07d5Z2atWqFZ05c0anznn+/DnVqVOHhBDk7OxMPj4+FB0dTQ8ePKBFixaRWq0ma2trOnv2bK6/54dOWFgY1a1bl4QQ1LBhQ7p9+7ZM29Tj6eHDh5MQgoyMjGjEiBFE9KauUu5hW2SN7CwXRES7du2igQMH6tR1JiYmJISQ45Bvv/1Whv/c22/t9Pvuu+9IrVaTWq2WaWdnZ0eHDh2i169f52EsP09S1zXaPHnyhC5fvkzTp0+nPn36UP78+WU+NzExIQsLC/ryyy/pp59+omvXrtGDBw/SPEN5rr7nM7qwLT48rl+/TqamplSoUCHy9PQkorT9Ve303LFjB1WoUIEMDAxICEEDBgzQCRsTE0P/+9//qFq1ajrthxCCihUrRrdv3yaiD6fNYA/sDMMwDMMwDMMwDMMwDMMwTLZA/+8JZtmyZejevTvs7OxQvnx5nTAajUbn//DwcIwaNQq+vr7w9/dHuXLl4OTkhL/++gvW1tYflkeYjwjFFgMHDkRAQADmzJmD8ePH47///kPRokUhhMCFCxfw9OlTvH79Gra2tqhatSrmzZuHChUq6HiGi4+Px4YNG0BE6N69O1q2bAkgxZaGhoYA3niVS05OZo+uWqhUKpmHZ8+eDQCYM2cOFixYgAULFqBSpUoAIL18JyYmokKFChg6dCgaNWokn6HAtsga2VUuIiMjsW7dOowfPx5EBBsbG1SvXh1LliyBg4OD/D5nZ2c0btwYgwYNwuXLl7F48WLMnTsXBgYGbJdMQHo8Iire4B48eICIiAgcOnQIXl5eOHPmDO7duyfDWVtbo1mzZmjevDkqV66MJk2aQAgBMzOzDJ/PpKDRaJCQkICDBw8CADp37iy9TKdGOx1PnjyJv/76C56engCA4cOHY8iQITrPffz4MaZNmwZvb2/cunULjRo1QsOGDfHtt9+y99BUvH79GqdPn4a/vz9WrlyJ6tWrS2+u6REREYHw8HD5d3ppybZ4d3KiXGS2nWZbpGBoaIiRI0fi5cuXMDQ0ROHChdG9e3fUrVsX1atXR/Xq1aFSqWSfSCEqKgpCCAghYG5uDgMDA+4jZQMFChSAm5sbAgIC8O+//6JWrVooX748TExM5IlaU6dOxd69e+Ht7Q0A6NixI7799lvUrFlTJ/3Hjx+PS5cuoVSpUjh06BCKFSsGADA3N0eXLl2wdu1a3Lx5E0+fPs2Td/2QKV68ONavX4+mTZvi7NmzGDZsGMaOHYuGDRuiaNGiiI+PR0xMDCZPnoy1a9dCCAFbW1u0aNECAGTdotiDbZE1srNcTJ8+Hbt27cKtW7cAAI6OjqhQoQJat26NFy9ewM/PDxs3bsS8efOgUqnw22+/ffZthfb4e86cOahduzbCwsIQEhICV1dXNGvWLM3JA0zuoORNjUaDqKgoXLlyBVeuXIGnpycuXrwo+68GBgYoWLAg2rZti9KlS6NTp04oWLAgSpcurfM8pW+k/OYTHDMP2+LDw8jICK9fv0Z8fDz8/f1RvXp1OfehoKTnxo0bMXXqVDx48AAajQbt27fH2rVrZbjXr19jyZIlWLBgASIiIuDs7IyvvvoKoaGhuHz5Ms6fP4+uXbvi+PHjH0x9yAJ2hmEYhmEYhmEYhmEYhmEYJlsQQsjFwiZNmgBIexStIkZPTk6Gu7s7JkyYgFu3bsHa2hqOjo5ISkrCzp074efnh9OnT6NQoUIs2nkPtG0xe/ZsGBkZYeHChTh//jySk5N1wtauXRu9e/dG165dYWdnl0bQo1KpEBsbCwCwsrICACQmJkpxkLu7O9zd3aFSqdC2bVtepEqFWq3WsYWtrS02b94MDw8P+Pj46IStXbs2Ro0ahbZt28LS0jLNs9gWWSMr5UK57/Xr11i9ejUmTpwIIkK5cuXQtWtXTJgwQWfTDRFBpVLB0dERjRo1wuXLl+Hp6QlDQ0Ouz96CUgdpp1NoaCgiIiKwd+9e3L17F4cPH8aLFy8QHx8PAChUqBA6duwIFxcXNGjQAJUrV0aRIkV0ykDqDVRsh/RRqVQwNjaWi+aFChUCACQlJekspGu3F8ePH8fy5culuLdHjx5YuHChDBsXF4fDhw9j7ty58PDwgKGhIRITE3HkyBEcPHgQ4eHhWLBgAdtFCzMzM9StWxdHjhyBh4cHzpw5gw4dOuit2xVb3L59G0QEAChSpIjePhTb4v3I7nKRkJAAIyMjed/ly5dx584dnDt3DkZGRnBzc0O5cuVQq1Yt3lDw/xQtWhRnz57F/v370bhxYzg4OKBw4cI6YRISEuTfZ8+exZkzZ/Dff/9Bo9GgTJky6NKlC/r27QuVSsUi9ixiYWGB2bNn49KlSzh37hwGDx4MNzc31K5dGxcvXkRQUBDOnj0rww8ePBiTJ09GuXLldPJyZGQkbt++DTMzMyxbtgzFihXTKVempqZISkoCEeHFixe5/p4fA2XKlMHRo0fRokULXLhwAf7+/rC2tkaDBg0QGBiIly9fwsvLCyqVCubm5pg0aRI6deqU5jlsi6yTXeVi5MiR2Lx5MyIiIgCkbH7q2bOn3OQMAK9evULt2rUxZswYLF26FHXq1EGHDh1y72U/ULTH3/ryOdf9eceNGzfQt29fREdH62w+trOzQ+fOnVG1alW0aNEC1tbWcHBwSLfvo23Dz71v9L6wLT4ciAglS5ZE69atcfDgQVy7dg2dOnWCubm5ThghBObPn4/vvvsOycnJICK0adMGe/bsAZAiXDc2Nsa5c+ewYcMGREdHY8SIERg2bBjKly+PpKQk+Pj4oGfPnggJCcGVK1dYwM4wDMMwDMMwDMMwDMMwDMN8eqT2lp7ao5uykOjj44Nx48bB29sbbm5u2LRpE4oWLQpLS0sMGDAAGzZswNSpU7F48eI0XhSZzKG9cDt9+nTUqFED3t7e2L9/P4QQqFatGhwcHDBs2DApqlVEt9oYGhrC1dUVFy9ehL+/P16+fIkCBQoAAC5cuIAVK1YgLCxMejpm0qJtizFjxqB58+a4efMmduzYgVevXqFs2bIoUaIExo8fDzMzs3QX/tgWWed9yoVGo5E22bhxoxSvV65cGYMGDcKQIUOQP39+JCcnyzpQCW9gYCBPorh69SoCAwPh6OjIi7sZoNFoEB0djTt37uDAgQMICgrCvn37kJCQgOjoaKjVaqjVanTo0EF6grO1tUWJEiX0CtaVxV4+zSPzKJ6Ky5Qpg9u3byM8PDyNSFf7hJSdO3fin3/+wZEjRwAAHTp0wNy5c6FWq+V9Z8+exbRp03D79m1UqFABs2bNQlRUFEJDQzF9+nQsWrQI5cuXx/Dhw/PknT9EDA0N0aNHDxw5cgT79+/H77//jrJly8LJyUmGUby5Knl/1apV0mtimzZtdOoaRWDCtng/srNcJCYmSvH6yZMncezYMcydOxempqZyoxoAlCxZEgMHDsS0adNYxP7/VKpUSZ5gA7zJ18rGDSVdFe+U9+7dAxGhQIECuHXrFnbv3o1Hjx5h0qRJLGDMBhwcHHDkyBF06tQJ169fx/Xr17Fu3TrZBhsZGaFUqVIYMGAAfvjhhzT3ExHu3buHGzduAIAc9xkYGMjydefOHTx//hyFCxfWqf8YXcqXL49Tp05hzJgxuH79Ovz9/REQEKBTNsqXL4+RI0di2LBhAHSFh2yL7COr5WLw4MFYt26dtN3cuXMxadIkeV3ZAGVlZYXOnTtj586dcHd3x82bN1nA/v9k1O/nuj/vqFKlCurUqYNDhw6hefPmaNmyJdzc3ODs7JxmQxqQ0vfy8fFBWFgYQkNDUalSJbi6usLCwiJNH4x5N9gWHw7KCUGKgH3BggWws7NDmzZtUK5cOcTFxWHPnj04ceKE9LRuaGiIrl27YtOmTQBSNtQaGxsDADZv3gwfHx80bdoUI0eORNmyZeV40cXFBXZ2dvD390dISEhevXJaiGEYhmEYhmEYhmEYhmEYhmFykYSEBKpbty4JIahmzZr0/PlzIiKKj48nIqKnT59SgQIFqFGjRqTRaPIyqp8EqdMwMTGRkpKSMgyTmq1bt5IQgoQQNGDAAPrf//5HkydPJjc3NxJCUJkyZWj37t3ZHvdPjeTk5CyHYVtkD+9SLhSbHDt2TKZ9xYoVaeHChRQVFaUTRt/9ixcvJkNDQ7K0tKQ7d+5kKh98rsTGxtLo0aPJwMCADA0NSQhBhoaGZGVlRV26dKGJEyfShQsXKCAg4K3P4vbj/VHy6Pz588nQ0JAqVqxI169f1xt27ty5VLlyZVk2OnfuTL6+vjph4uPjqUmTJiSEoBYtWlBISIi8FhUVRWPHjpV1GpOWkJAQmcaNGjWiixcvUnR0tE6YxMREGjJkCAkhSKVSUadOnejevXtpnsW2eH+yq1xotzW//vorVatWTYazsLCg0qVLU926dal06dKkUqlICEETJ07M8ff7lNi8eTOZmpqSEIK6d+9O//77Lz158oR27NhBVlZWJITgvlI2c+/ePZo5cyY1adKE7O3tqWLFilSzZk36559/6MKFCzKcvrY5MjKS3NzcKF++fLR582adME+fPqWqVavKOisuLi5X3udjRsnrPXr0oCpVqlC5cuXI1dWVFi5cSGfPnpXh2BY5T2bLRUJCgvx7zJgxsg9sYmJCK1aseOv3DBo0iIQQVK9ePTmnwjAfGtr9n4cPH+qMiZW/ExMT5Wf379+nZcuWkbm5OanVahJCUL58+ahx48b05MmTNM9kMg/b4sNCO/2///57OS5wdHSkunXrUoUKFSh//vzy8ypVqtBPP/0k79G21aNHj8jBwYFUKhXt27dPPl9pz+Pi4sjJyYmEELR06dJcesO3wwJ2hmEYhmEYhmEYhmEYhmEYJlfZv38/GRgYULFixSgoKIiIdCfcr169Smq1mooUKUIPHjxgEeIHwpIlS+SCifJjbGxM9erVo//++0+G02g0cgFG3yIWL2y94X2FzGyL3Mfb25scHBxICEElSpSgmTNnUmRkJBFlbMdnz55RlSpVSAhBtWvXZvF6JvD29iZ7e3tq3749TZkyhc6dO0f+/v46YbTzrq+vLx09epS+//57+vfff98qzmIyz/3792X+bdCgAe3evZtCQ0Pp4cOHtHPnTurZs6dOPfTll1/S/fv35f1Kfp83bx4JIaho0aIUGBhIRLrt/vz580kIQS4uLhQdHc1204O/vz/Z2dmREIIqV65MQ4YMob1799LRo0dp3rx51KZNGyler1ixIm3evFnvc9gWWScr5UI7PYcMGUJGRkYyXO/evWn16tX0/PlzSkxMJG9vb5o/f74UsS9YsCCP3vjj4tq1a1KYM2LECDnWUPj7779JCEHTp0/Poxh+uigCqdDQUIqIiJD9JIX06pPXr19T79695QbBdevW0aFDh2jDhg3k4uIiP3/48GGGz2HS8uLFC3r58iVFRETofM62yD3eVi60+7Rz584lGxsbuYFz1apV8lpGad2jRw851mABO/Mhkzofp5evg4ODady4cbIP1K5dOxo8eDDVq1dPCnhfvnyZCzH+dGFbfFik3uBasmRJmeZCCDIzMyMhBI0bN44OHz6s9z6ilE1sRYoUISEEbdiwgYje2DY2Npb+/vtvMjMzo7Jly9Ldu3dz4c0yB/vvZxiGYRiGYRiGYRiGYRiGYXKVoKAgaDQa2NrawsbGBgDkcbMajQYeHh4gIjRu3Bh2dnZ5GVUGb46WHz16NIoUKYLjx4/Dx8cHBgYG6Nu3L9zc3FC1alUAQGJiojxuHgBev36NFy9e4PLly7h27Ro6d+6MatWq5dWrfHAIId4pPNsi90lOToZGo8HWrVvx/PlzAED9+vUxatQoWFhYgIjStWNSUhIOHDiAp0+fAgDc3Nyg0WigUqn46PoMqFSpEm7evAkrK6s015KTk0FEUKvVAIDt27fjl19+QVBQEOLj4wEAZmZmmDlzJr755huoVKoMbcRkTLFixbBt2zY0bdoU586dg5eXl8y/SUlJiIyMhBAC1tbWGDhwIH7//Xed+5V0f/jwIQCgR48eKFu2LDQaDQwMDEBE0Gg0CAsLAwA4OTnB3Nw8d1/yI6FcuXJwd3dH9+7d4eXlBR8fH6xatQpqtRoGBgZ4/fo1hBBwdnbG6NGj0atXLwBIk//ZFlnnfcuFRqORdVevXr2wbds2CCEghMC0adPw008/AXhTbipVqoRSpUrhyZMnmDt3Lg4ePIhBgwbB0tIyb178A0fJ6zdv3oS/vz9cXFwwdOhQlClTBgAQHx8PExMTma+vXbvG7UMOoFKpYG9vn+611BARjIyMsGzZMvj5+eHGjRsYPnw44uPjYWxsjNevX6NSpUrYvn07bG1tdcqR8rfSP9Z+5uduVyUNChQooPc62yJ3yUy5OH36NHbt2iXHDYsXL8bgwYMBIE26auPr6ws/Pz+oVCq4urrC2Ng4B96AYbKH1Pk49f9KnbF582YsWbIE+fLlw9SpUzF58mQZpmfPnti+fTtWrVqFiRMncj3znrAtPizUarVsS6dMmYKmTZsiKCgIHh4eSExMRIMGDVCqVCnUr19f3pOcnCzbYQVzc3PUqFEDBw4cwJUrV9CqVStYW1sjLi4OO3bswNKlSxEXF4eWLVuiYMGCuf2a6cICdoZhGIZhGIZhGIZhGIZhGCZXKVSoEICUBZLY2FhYWFgASFkguXDhAn777TcQEWrVqpWX0WT+H5VKJRfNu3fvjk6dOoGIkJiYmEbcFhcXh+joaBw8eBCBgYE4cOAA7t69K4W/ixYtwp07d1C4cOG8eJWPHrZF7qNSqfD69Wvs3bsXUVFRsLe3x7x581CwYMF0xSTK5/fu3cPatWvx8OFDGBkZYdCgQXKzDsCinoxQBJra4iggRdippPnatWulsKdJkyaoUKECrK2tsXjxYkyaNAn58uXD0KFDOY2ziKOjI9zd3TF+/Hj4+PggJCQEQMrGMxMTEwwZMgRNmjRB586dAegXWcXFxQEAwsPDpYgUSLGnj48Pjhw5AgCoXbt2us9gUmyxf/9+LF26FKdOnYKnpyc0Gg00Gg0AYOjQoWjbti3atWsHgG2Rk7xruUhISICRkREA4Msvv8S2bdugVqtha2uLqVOnYujQoXq/x8zMDNWrVwcR4fjx4wgJCUGVKlVy5R0/RpKTk7Fnzx4kJSWhWrVqMq2SkpJkXr9y5QqAlA0C3D5kL++TnkIIaDQaWFlZ4dSpUxg3bhx8fX1x5coV1KhRAxUqVMDvv/+OAgUKpBFJK/2DiIgI3L17F/7+/ujVqxfbFWyLD4m3pYFyfc+ePbh06RIA4JdffsHw4cMBpN8OK+OIc+fO4datWwCA8uXLZ2fUGSbXEULg9OnTclPftGnT8M033wAAYmJiYG5ujrFjx2L79u24c+eOvIfJftgWuY92u1qnTh3UqVMH/fr1Sze8vrbBzMwM3bp1w4EDB7B48WIEBQWhTJkyuHHjBvz8/PD06VO0bt0a33zzjZyL10duz1WxgJ1hGIZhGIZhGIZhGIZhGIbJVWxtbWFubg5PT0/8+++/aNOmDTQaDS5cuIDZs2fj/v37aN26NUaPHp3XUWX+H5VKJT16K169jYyM8OrVK8THx+PYsWO4d+8edu7ciUePHiE8PFzeW7t2bbRs2RKdOnVCwYIF5QYG5v1gW+Q+Bw8exM2bN2Fubo7Zs2ejWLFiaYTVCtqf//DDD3B3d4eBgQGmTZuGGjVqQKPRSBF2cnIyEhISEBgYiKJFi8LU1BQWFhYsGMWbxe/Uaax8vnv3bilenzhxIkaPHg17e3sIIdCgQQO0aNECf/31Fzp27AgbGxteTM8iZcqUwYYNG/D48WOcO3cOCQkJsLe3R9myZXXEUunlXWdnZwDA9evXcfHiRdSpUwdJSUm4evUqvv32W/j6+qJWrVro06cPAP2L8UwKxYsXx4wZMzB9+nQcOXIEUVFRsLCwQKlSpeDi4iLzOtsi58lsuUhMTJTi9VGjRmHz5s1QqVQoVaoUfv75ZylMSW0zpT0pV64cChcujIiICHnSBJMWxZu9IsZR+khEJDeP/f3331i4cCEAoFmzZnkSTyYtitdRS0tL/P3330hKSkJISAgcHR0BQJYfpU/w9OlTREZG4uDBg7h9+zZOnTqFe/fuISkpCZ6envjf//6XZ+/yscO2yBtOnDgh66a+ffti3LhxADLeRCaEwPnz5zFmzBgAKSdEKe0JEckwDPOxsWvXLgBA9+7dpWA6KSlJbtj38PAAADx79gzJyckAuL+aU7Atcp+spJ8iOh8wYACioqIwduxYHDx4UF63t7fHoEGD8MMPP6B06dKyjdE3t6W0H+nNe2U3LGBnGIZhGIZhGIZhGIZhGIZhcpVmzZphzJgxmDNnDiZPnowlS5YgOjoacXFxiIuLQ5MmTbBr1y4YGhqykDMPUdJeWQRRhEChoaE4d+4c/Pz8sG/fPrx48QL379+X99WvXx9NmjRBt27dYGtri2rVqul4nWbeHbZF3qJsAkhISEDZsmUBpBVWA7pHOA8YMADbt2+HSqVC27Zt0aZNGwBvPIgHBgZiw4YNOHToEHx9fVGsWDFUqFABc+bMQcWKFXNtofBjJDw8HH/++ScAYMSIEZg+fbpcRCciNG/eHK6urvD390d0dDSKFCmSl9H9ZLCysoKVlVUa757a3tnSa6/79euHDRs2wMPDA4MGDUKFChUQExODu3fv4sGDB3B0dMR///2HQoUK6W33tb+DTy5IERAKIdCxY0edzxXBGsC2yC3eVi6ISLbZixcvxubNmwEANjY2mDp1arrideBNO3Pq1Ck8ffo0p1/lo0fJ/2XKlAEAXL16FV5eXrC3t4eVlRUWLFiAX375BQDw008/oXnz5nkWVyYtSj9XrVbDyMgIlStXltfCwsIQGxuLffv24e7duzhw4ACePHmCuLg4qFQq5M+fH23atEGFChVQsWJFxMbGwszMLA/f5uOGbZF7KG2Fl5cXDA0NYWxsjFatWsk0y2ge5NatW5g8eTISEhJgaWmJL774ApaWlmna5oSEBCQlJenYgdtv5kOFiODn5wcAKFiwIIAUwbQyh+Hv749Tp04BANq0acNzhTkI2+LjQwghxxSjR49G2bJlcfXqVdy5cweWlpbo3bs3SpUqleYURmXM8eDBA9y4cQPXr1/H6dOn8euvv+bayag8S8kwDMMwDMMwDMMwDMMwDMPkGspk+uzZs2FoaIh169YhPDwciYmJcHNzQ7169fC///0PhoaGLODMY5RFbT8/PwQEBODs2bNSLB0ZGSnDVK1aFfXr10eXLl1QvHhx1K5dW6/teDPC+8O2yBsUcYfi8bZy5cqoWbOmzjVtlDQdNGgQNmzYAJVKBVdXV/Tv3x+urq4yzK1btzB48GBcu3YNRAQzMzOEhYUhMDAQly5dgru7OypWrMjiknSIiIjAjRs3YGlpiY4dO0pBjpLXnz17JgVTLJrKed6WRzUaDSwsLHDo0CF07NgRly5dwr179wCkiHjbtGmDlStXomjRovJ0idR1lBBC2lQRBX/OZSO9d2dbfDgoaaL89vb2xp49e/Dq1SsAwJQpUzBgwAAAGbfJz58/x/nz56FSqVC+fHmUKFEi5yP/kaKk9cCBA7FmzRpcvXoVvXv3hrGxMSwtLXH69GkAwLBhw9C3b9+8jCqDN/0oJf9rn7wSERGBsLAwHD58GEFBQdi/fz9iY2Nl+TEwMED79u3h4OCAzp07o0iRInKDIfPusC3yFiLCvn37kJiYCBcXF3kCSkb4+flh+vTp8Pb2BgC4uLhg5MiRcsMUkCJE3LdvH7Zu3Yrw8HDUqFED1atXx7hx47j9Zj5YhBBwdXXF8ePHERsbi5iYGLlR+c6dO/j7779x4MABVKxYUY6vmZyBbfFxopz0p1Kp0KpVK7Rq1SpNGOV6cHAwwsPDceTIEVy7dg2XL1/Gy5cvZbiIiAicOnVK2j0nYQE7wzAMwzAMwzAMwzAMwzAMk2toH086Y8YMdOnSBZGRkYiJiYGTkxPs7OzkhDuL13OfpKQk3LhxA8+fP8euXbsQGBgIDw8PxMbGAgBMTU1Rvnx5VKtWDY0aNULZsmWloFexm/J3algw/W6wLfIeRdTh6OgIAAgODoanpydq1KghhR9KOCLC06dPMX78eGzZsgUqlQqlS5fGuHHj0LlzZ/lMf39/9OvXD15eXqhVqxY6dOiAZs2aISgoCKtXr8bJkycxbNgw7NmzBwUKFMj9l/4IuHnzJp4/f45ixYqhUqVKEELoeINbvXo1AgMD4eLiAgMDAxbo5DFqtRpJSUmwsrLCwYMHceDAAdy9excAUKtWLbi5uSF//vwAIIVXKpUKsbGxCA8Px/nz5+Hj44Pdu3ejXr16WLVqFdvzPWFb5B3Hjh2TXiq/++47jBo1CkD64nXl87Nnz2LXrl1ITk5GrVq1UKxYsVyN98dIyZIlcfToUXTu3BmhoaGIjY2V7cOcOXPQvXt3ODg45HEsP19Si6SJCNHR0fDx8cGVK1fg6emJU6dO4eHDh0hKSoJarYapqSkaN26M0qVLo2vXrrCxsUlz6kHq5zNvh22R9yhpb2JiAgCoUKECAMhNZPrw9fXFr7/+Cnd3d0RFRaFEiRLYuHEjChUqJMMcO3YMK1euxPbt2+VnwcHB2LhxI+7evYsFCxZw+818sFSsWBHJycnYsGED7O3tUa1aNYSGhuLUqVPYu3cvDAwMMHnyZFSpUiWvo/rJw7b4+CAinXl3bW7duoVXr15h586duHv3Lk6dOiUdYpiYmKB48eLo3LkzqlWrhjp16qBIkSK5Il4HWMDOMAzDMAzDMAzDMAzDMAzD5DJqtVouaOvz1KNMuDO5z9atW9GvXz8pgLawsECRIkXQtm1buLi4oH79+nBwcIChoaGOjRISEmBkZCQ/4w0IWYdt8eFQvnx5VK5cGd7e3jhx4gScnJxgamoqhR8vX77E+fPnsXTpUhw9ehQqlQpOTk4YN24c+vfvDyDF8/Hr16+xYMECeHl5oX79+pg3bx5cXV1hYmKC6tWrw9bWFjdu3EBISAgiIyNZwJ4Ojo6OsLGxgUajgb+/P4oXLy7FicuWLcP3338PAJg8eXKa47GZvMHAwAAajQbm5ubo0aNHmuvKAvuNGzfg5+eHc+fO4dKlSwgJCZFe4AwNDZGUlAR3d3c0btw4l9/g04Ftkfvcu3cPixYtAgC0aNECkyZNApC+uFPpB1+/fh39+/dHUlISXFxcMHbsWADQ2bCjD960A5QrVw5Hjx7FlStXcOPGDZQpUwaOjo6oVatWXkftsycuLg7m5uY4ceIEQkJCcOTIEfj6+sLX11duDLS2tkbz5s1RpUoVfPHFFyhatCgqVqwon6GE095IqMBjyMzDtvhwKFiwIADg0aNHiI+Pl4J2BaVev3HjBqZPn44zZ87g1atXKFasGA4ePIjixYvL9vvcuXOYO3cuTpw4ARsbG4waNQpWVla4d+8e5s+fj0WLFsHe3h4TJkzIi1dlmLcycOBA+Pj44I8//sCsWbOgVqtl/i5SpAhmzJiBgQMH5nU0PwvYFh8+ynhC3ykqd+7cQVhYGHbt2oWQkBAcOnQIQggkJibC3Nwc+fLlQ58+feDo6Ig2bdqgSJEisLKy0nl+bo0rWMDOMAzDMAzDMAzDMAzDMAzD5DoZLWh/7qKbvOTLL7/EpUuXoFKpUKZMGbRp0waFCxeGpaWl3vD37t3D4cOHce3aNQCAk5MTvvzySxQoUOCtAismY9gWHw4VKlRAv3798P333+PHH39EdHQ06tWrBzs7O7x8+RLz589HYGAg/P39oVar0bRpU3z11VdSHKpsIlCOYDYyMsLAgQPh5uYGIyMjuQjs6OgIIQQePHiAx48fo2TJknn85h8m9vb2KFOmDC5evIgZM2bA398fBgYG8Pb2xpIlSwAAU6dOxZdffpnHMWWAN4vq2htpFM+inp6eCA8Px+7du+Hn5wcPDw8pgrOwsEDZsmXRr18/NGzYEM7OznB0dERCQkJevcpHD9sib4iOjpbeDatVqyaFiumJ14UQ8Pb2xtdff43o6Gjkz58fzZo1Q5kyZQBAtucajQYeHh4ICQmBgYEBSpYsidq1a8tTQT73/nSxYsVQrFgxdOzYMa+jwvw/CQkJGDZsGI4ePYpnz57Jz21tbVG7dm20bNkS1atXh4uLi44gNzVCCPbunUXYFh8GSl3drFkz7N69G3fv3sXNmzdRs2ZNnTpcCAF3d3eMHj0ad+/eRWxsLIoXL44dO3agcuXK0j7JycnYuHEjTpw4gVq1auHnn39G69atAQCxsbFQq9WYO3cuTp06heHDh8PU1DSvXp1h9KLk5blz56Jw4cI4dOgQAgMDYWhoiG7duqFJkyYyTzM5C9viw0ZpP5T2NzExEY8ePYK3tzdOnz6N27dv4/Tp0/IEx/z588POzg5t2rRBqVKl0KFDBxQoUABFihTRea7SpivPz63xhCBl5MkwDMMwDMMwDMMwDMMwDMMwzGdLRiJnZRFDW7ywbt06bNiwASdPntQJ6+bmhsOHD6Nw4cIsaHhP2BYfDtrp9v3332Pu3LkAUjwQW1hYIC4uDnFxcQBSxIgTJ05Ep06dUKdOnTT379q1C127dkWJEiXg4eGBokWLQqPRSE9Zp0+fRpMmTWBgYIAbN26gUqVKefDGHwcBAQFo0qQJwsPD01ybPn06Ro4cCWtr6zyIGZPaC5wCEcHDwwOPHz/Gjh078ODBA7i7u8vrtra2KFy4MNq0aYOKFSuiTp06cHBwkPWcsojOdVnmYVt8GOzduxedOnWClZUVTp8+DWdnZ70Cc+UzPz8/jBgxAhcvXkRCQgLq1q2LrVu3olixYjLs4cOHsX37dqxZs0Z+ZmVlha+//hq///67zvMY5kPi9u3b6NevH0xMTNCpUyc4ODigYcOGsLGxkfWJdt598eIFzp8/j9u3b6NMmTKws7ND/fr1AaR/igGTOdgWHw7h4eHo2LEjrly5goYNG+LHH39E5cqVUaxYMRw9ehQeHh6YNm2aDO/g4ICDBw+ifPnyOs85dOgQ2rZtCwDYsWMHunTpAuCNEHXLli3o06cPypUrh4sXL/JpT8wHifY8x8uXL/H69WsYGBjw2C4PYFt82AQHB8PT0xP+/v44fvw4/Pz88Pz5c3m9dOnSaNKkCSpXrozWrVvD1NQU9vb28joRfTAnoLK7DYZhGIZhGIZhGIZhGIZhGIZh9AqmU3v1URavVqxYgblz5+LevXtwcnLC0KFDYWdnhw0bNmDPnj3o3LkzDh06BAsLi1x9h08FtsWHg/ZmgTlz5qBo0aL477//4OHhgRcvXgAAHB0dUbx4cfzwww9o2LAhjIyMACDNYqCdnR2MjY0BpAhVbGxspB29vb0xY8YMACne91m8njHlypXDmTNnMH36dAQGBuLp06dwdnZG//79pViHyV0U8Zq2F7iAgAB4e3vj4MGDCA4OxsWLF6V36EKFCqFChQro1q0bHBwc5KJ66lMmlPKnCOg+hAX2Dx22xYdJVFQU4uPjAaQ9bUix2e3btzFy5Ehcu3YNCQkJKFWqFNatW6cjXt+2bRt+//13XL9+HQDQsGFDPH78GAEBAZg3bx6EEJgzZw6L15kPEicnJ5w+fRpAijdQbbTrmKSkJHh4eGDIkCHw9/cHkNI/NjY2xi+//ILx48freAhl3h22xYeDra0tNm7ciGbNmuHMmTPw9/eHSqWCnZ0d/Pz8EBMTAyBlLFG1alWsWLECtra2aTYO+Pr6AgC6du2aRrwOpIgdAcDc3FyOSRjmQ0OtVsv6xMrKStYrXMfkPmyLD5uNGzdi+vTp8n8nJyc0a9YMjRs3Rq1ateDg4AArK6s09oqOjoaxsTEMDAzSOMfIK1jAzjAMwzAMwzAMwzAMwzAMwzCMXrQXOZRFj3PnzmHVqlUICwtD3759MXr0aFSrVg0A0KVLFzRt2hTnzp3DtWvX0KhRo7yK+icH2yLvUKvVclFv/Pjx6NatG+7fv4/w8HAkJiaiQYMGMDMzg6WlJbQPPk69qGtpaYkSJUogKCgIO3bsgKWlJUqXLg0PDw/MnDkT7u7uqFatGr766isA7M3ybZQpUwarVq2CoaEh4uPjYWBgAENDw7yO1meLSqVCaGgoduzYgdDQUFy8eBFXr16V121sbODs7Iy2bduidOnSaNu2LUxMTNJ4/0xdhvJ6Mf1jhG3xYVGrVi1UqlQJwcHBuH37NqpXrw4hhI5YRKVSwdPTEwMGDEBQUBCSkpJgY2ODQ4cOoUyZMvJklgsXLmDx4sW4ceMG2rZti6+++gqdOnVCaGgoDh06hNGjR2PVqlXo2rUratSokcdvzjD6UcTSqQVVilAOAHbv3o1x48YhPDwcVatWRfXq1WFhYYGlS5fim2++gampKYYNG8YCuizCtvhwcHR0xMmTJzF8+HAEBATIsYZCu3bt0LFjR3Tt2hVWVlZ6BYeRkZEAgMePHyMyMhLm5ubSlv7+/jhz5gwMDQ3RrVs3mJmZsQiV+WBR8qV2/uS8mjewLT5cfv75Z5iYmKBo0aIoU6YMXFxcdBxXaDQaACn2evHiBfz8/LBs2TKEhobC3NwcVapUwbfffouCBQvmuYidBewMwzAMwzAMwzAMwzAMwzAMw7wVZZFq//79uHLlCmrUqIGxY8fCzc0NQIoXn3z58qFWrVpwd3fH3bt3WTSdQ7Atch9t72PFihVD8eLF9YbLaDG3QoUKmDhxIkaMGIHffvsN//33HwoWLIhLly4BAFxdXTFmzBjUrFkTgK53Yxaz68fQ0BBCCJiamiI5OTmvo/PZk5iYiO+++w7JyckwMjJCnTp1ULt2bVSrVg3169eHhYVFGpF0YmIiEhMTERERgQIFCsDExARASp5nccT7w7b4cDAzM0PlypXh4+ODVatWoVq1aqhUqZI8bcXf3x8XLlzAyJEj8fr1awBA2bJlsX//fpQrVw4ajUaGPXr0KC5cuIB69erhu+++Q/369QGkeOVt1aoVypYtK4WPLGBnPnTSO4ng5s2bmDBhAsLDw9GxY0ds2bJFeotu2rQp2rZti+XLl6NNmzYoXrw410/ZANviw6Bs2bLYsmULgoODcfz4cSQmJqJYsWKws7ND27ZtZbjk5GS9QkMnJycYGRkhLCwMXl5eqFWrFtRqNS5fvozly5fj2LFjKFOmDBo3bgyARagMwzAfK8rm1m+//TbNNUWMrswf3b9/H0uWLMG2bdsQGhoqTww8evQoDh06hBMnTsDa2jpP55xYwM4wDMMwDMMwDMMwDMMwDMMwTKZ4+vQptm3bBgAYNmyYFExrNBrky5cPRARPT08AkMI3JmdgW+Q++ryPZRZF/D5s2DAQEaZPn46AgAB5vWfPnhg4cCCaNGkCIyMjueiYevFR8ayYP3/+PPeS9SGgbQsW+Oc9ZcuWRVBQEK5duwYXFxfY29vLBXLgjRc4AHj9+jUCAgLw3Xff4d69ewgNDUXt2rXRu3dvDB48GCqVijduZAG2xYeDhYUFfvvtN1y+fBkXLlzAwIED/6+9O4+v6c7/OP6+2ZHIlYWEiCS1NBnbWCrRsRtrgyot1VKU1lQ9ammnnY7RUh2lo9PFo0xbVGemlqKC2moNYqdEVCyJSGQREVlIbpb7+8Pj3kol+E3JleT1fDzy6O39nvO9n+Mb5+TK+3yuHn/8cT366KM6c+aM9u7dq2PHjqmwsFDe3t5q1aqV5s2bp6CgoBLn+aSkJH388ceSpOHDh1vD64WFhXJ0dFRAQIDc3d0lSbm5ubY5WOA3sLOzU1ZWlsaMGaOkpCR169ZNK1eulJ2dnfLz8+Xs7KzevXurffv2+vnnn5Wfn08A9wFhLWzHy8tLXl5eateu3W1jlvcTZV2Pe/XqpbZt22rPnj0aMWKE2rRpo+LiYp04cUKxsbEyGo2aM2eOwsLCSt2faz0AVAyWm1tLY3nvYDAYlJaWptmzZ2vhwoWqVq2ahgwZoldffVVOTk768MMPtWzZMg0bNkzff/+9qlWrVl7l34YAOwAAAAAAAAAAuCdms1k5OTmSbnYUlX7p/JOfn6/PP/9cu3btUv369dW1a1dbllrpsRYVi8FgsIZCXn75ZYWFhSk5OVnXrl1TzZo11bt3b2soRfrll45ZWVnKycnRxo0bdeLECW3dulXp6elat24d3XXxUAoICFBAQIAkWbviW763Ld/XGRkZWrFihWbOnKnExER5e3vL1dVVW7du1datW5WRkaEpU6YQovqNWIuHR1BQkDZt2qQBAwbo2LFjOnbsmHXMcoNAu3btFB4erlGjRsnHx+e2Drs3btyQyWSSm5ubNdhoue6bzWatWLFChw4dkrOzs/WmNqCiSUlJUXJysnx9fTV37lzZ2dmpoKDA2vX71KlTio+PV3Z2tq5fv27jais31uLhc6ebBCw3Ma9du1Z9+vTRvn37FBcXJ0lydnZWaGio3n77bWsnd8vPBbfepPbra/2t700AABWH5by+YcMGrVixQm5ubpo4caJefPFFeXh4SJL++9//KjY2VocPH9bFixfVuHFjm9VLgB0AAAAAAAAAANwTV1dXtWrVSlu3blVMTIxycnLk6uqqgoICffnll1qwYIEcHBw0atQoGY1Gfun9ALEWFc+tAZEWLVqoRYsWJcYNBoNSU1OVn5+v9evXKz4+XmvWrFFKSoq187qrq6sCAgL03XffEWDHQ88ShLKce8xmsyQpIiJC77zzjlJTU9WvXz/NnTtXRqNRhw8f1rBhw/TGG2+oZcuW6t69u81qr2xYC9tr3LixNm3apC+++EJ79uxRbGyssrOz1b17dwUHB+u1116Tq6urnJ2dS+2C6+7uroCAAMXHx+vo0aMKDg6Wo6OjJCkqKkr/+c9/ZDab9cwzzyggIIDrPiqkn3/+WUlJSXJzc7PewGH5Pjebzdq1a5fS09PVqVMnBQYG2rLUSo+1qFjs7e1VWFgoo9GoTZs2admyZYqPj9fVq1fVp08fNWzYUE2aNJF0e6f15ORkpaSkaMuWLYqKipLRaNTXX3/NNQQAKijLOf6LL75QamqqRowYYQ2vFxcXq7CwUE5OTgoMDNTRo0d1+fJlAuwAAAAAAAAAAODhV716dXXr1k2bN2/We++9p3PnzqlBgwaKiorSoUOHZDKZ9NRTT2no0KHWgAMeDNai4iktkJibm6ukpCRt2bJF58+fV0REhLKzs5WWlmbdpnfv3mrQoIEGDhwoHx8fNW3atLxLB+4Lg8GguLg4TZ8+XampqRo1apQ++eQTVa9eXYWFhfrjH/+ot99+WxMnTtTx48cJTT9ArIVt1K9fX++++64MBoMyMjJUWFio2rVr37ZdaR3vjUajmjVrplOnTmn27NnKz89Xq1attG3bNm3YsEE7d+5USEiIhg8frho1apTH4QD3XZMmTeTn56fCwkKlp6dbn8/NzdWPP/6oN954QyaTSV27dpWbm5sNK638WIuKx8HBQUVFRXJzc9Po0aNlMBhKvZkpLi5O2dnZ+v7773X+/Hlt3rzZ+t7DyclJJpNJQ4cOVa9evWxxGACA++DkyZM6cuSIatasqTfffFMeHh7WT29ycnJSTEyMIiMjJUkuLi42rZUAOwAAAAAAAAAAuCvLL79ff/11Xb58WR9++KG+/fZb63i9evU0YMAAjRs3zqade6oC1qJiKCoqsnastDCZTDp9+rQOHz6sAwcOaOvWrUpKStL169dlMBhkb2+vjh07KigoSIMHD5avr6+aNm1aaviE7rqoiGbOnKn4+Hg99thj+uyzz+Ti4mL9Rbp0MzglSefOnZNU+o0fuD9YC9vy8PAo8f93OqebzWY5Ojpq/vz5Onv2rI4cOaIJEybI2dlZ2dnZcnZ2Vtu2bTV16lR17drVuo9082aF0taO9cTDyNPTU/Xr11dUVJTefvttDR06VE5OTjp27JiWLFminJwcDRs2TG+++aYkfhZ6kFiLisXy529Zg1v/m5iYqOTkZK1Zs0bx8fHasGGDTCaTcnNzZW9vLzc3Nz3//PNq1KiRwsPD5e3tLU9PT1seDgDgNzKbzcrLy1NRUZFSU1PVqFEj6/u8Cxcu6KOPPtLly5fVv39/tW7d2qa1EmAHAAAAAAAAAAB3ZTAYrIHc2bNnKyQkRMeOHVNCQoKMRqNefvllBQYGytvb29alVnqsRcVgCa/v2bNHCQkJ2rhxo2JiYnTixAmZTCZJkru7u9q2bavmzZurR48eqlevnlq2bFnqfL8OBhESQkWUnJwsSRo0aJBcXFxkMpmsQelLly5p27ZtkmT9pAECtg8Oa2EbZZ2773ROt1z3jUajtm7dqgkTJuinn35SYmKi6tevr5deekldu3ZVaGioJJVYS+nm2l25ckXp6ek6efKkBg4cyHrioeTl5aVFixapS5cu2rNnj/bu3Wu9GUOSRowYoUWLFkniJowHjbWoGCzvCS3XkKKiIl25ckWnT5/Wzp07deLECW3evFmZmZmSbn6KV7Vq1TRgwAAFBgZq4MCB8vLykp+fX4l5b11rAEDF4+HhoebNmys6OloHDx5USEiIvLy8dPLkSX3++edavny5/P39NWTIEFuXSoAdAAAAAAAAAADcG3t7e+svyV944QVJJTt8ovywFg+vq1evasmSJYqMjFRiYqIOHDhgHfPw8FBISIh69uypNm3aqEWLFnrkkUdkNptLBH+Ki4tlNputIXjWFJVFXl6eJCk9PV1ms9kass3KylJERIQ2b96sRx55RGFhYbYss0pgLSoWy3Xf3d1dX331lTIzM5WVlaWaNWvKy8urxLZOTk7Kz8/XsWPHdOTIER0+fFi7du1SSkqKcnJyNHLkSH311Vc2OhLgzho3bqxdu3bp3Xff1blz53T+/Hn16NFDYWFhevnllyURmC4vrMXD59c3tBYVFSk3N1eRkZGKiYnRzp07FR0drYSEBOs2fn5+6tWrl0JCQtSnTx8ZjUYFBQXdcX7eewBAxVa3bl099dRTOn78uF5//XVFRESobt262rBhg7KysuTj46MxY8aoX79+ti6VADsAAAAAAAAAALh3lkCtBb/cth3W4uFUq1YtnTt3TqtWrVL9+vXVrFkzDRgwQEFBQerWrZvq1KkjR0fHEvvk5+crOztbFy5ckI+Pj7y8vOTi4mK9SQGo6Cw32DRv3lzbt2/X7t27tW/fPrVq1UqxsbH64YcfNHv2bGVnZ2vcuHFlfhIBfjvWouKyt7dXYWGhHBwc5OXlZQ2u37hxQ9WqVdPu3bt17tw5bdiwQcePH9fPP/9s3bdWrVoKCwtTmzZt1Lx589tCkMDD5JFHHtGCBQvk7OystLQ0+fj4WMcITJcv1uLhYjAYVFxcrCVLligvL09Lly7VhQsXdOHCBes2AQEB6tu3rzp16qTHH39c/v7+qlevnnW8uLhYkqzXk1/PDwCo2CzX56lTpyo3N1ezZ89WZGSkdbxz584aNGiQXnjhBVWrVs2Gld5kMPO5HwAAAAAAAAAAAMBvdmsgcN26dXrsscfk6OioWrVqldiuoKDAGmLfvXu3VqxYoYiICCUlJcnf31+tW7fWvHnz5OXlRYgdlUpcXJw6deqkxMRENWjQQJ6enkpISFB2drby8/M1ZswYLViwwNZlVgmsRcVQVkA0Pz9fkZGRSklJ0cqVK5WUlKRDhw5ZxwMDA+Xn56cePXqoRYsWat68ufz9/cuzdOA3sfxMdevfAW68sA3W4uGSmJhY4nzerFkz+fj4qH///mrYsKHatm1723sPScrNzVVRUZFcXV2t68hNCABQOd3670jr1q1TbGystfP6008/rZo1a952E5OtEGAHAAAAAAAAAAAA7pO7Bc5vDfxERETo1Vdf1cWLF1W9enUFBgbqxo0bOn/+vEJCQrRz5055enoSEkKlEhsbq8GDB+vcuXO6fv26JCk0NFQ9e/bUtGnTbFxd1cJaPHws5/tfn/fz8vJ08OBBnTlzRqtWrVJSUpJ++ukn67i/v798fX01aNAgBQUFqWPHjnJ1dZWzs3OJ+bkpCgAqvtOnT2vPnj2qV6+eOnToIHt7+xLne8s1pLCwUHFxcVq4cKG2b9+u5ORkhYWFqU+fPho+fLgkQuwAUFlVlJ/7CbADAAAAAAAAAAAA5WzLli0aNmyY0tPTNXDgQA0fPlzdu3dXQUGBXn31Vf373//WyJEjtWDBgoemMxZwv6Smpuro0aNKTEyUl5eX2rRpIz8/P1uXVSWxFg+nK1euKC4uTgcPHtSOHTsUExOjkydPWscDAgJUp04dPfnkk/L391ffvn3l4OCgatWqlZiHYCIAVA2/7pRvMpm0cuVKzZ8/X5GRkZIkNzc3ZWdnS5Jmz56tKVOm2LJkAAAIsAMAAAAAAAAAAADlKSUlRaNGjdLGjRs1ZMgQTZs2TU2aNLGOZ2RkKDg4WIGBgdqzZ0+F6JoFAPjtiouLNWHCBH3zzTcqKChQXl6eJMnb21vNmzdXly5dFBwcrI4dO8rBwUHu7u53nIvwOgBUPcXFxVq1apWmT5+u6OhotWrVStOnT1ejRo0UExOjkSNHKjMzU2vWrFF4eLitywUAVGG0awAAAAAAAAAAAADKUUJCgnbv3i2j0ajnnntODRs2lPTLRzxnZWXJbDYrISFBOTk5dwwoAgAqDzs7O40ePVrfffedQkND1bp1a3Xs2FGtWrWS0WiUk5NTie3NZrPy8/O1YcMGpaWlyd3dXYGBgWrXrp3s7OwIsQNAFWLpwp6RkaGFCxcqOjpa4eHhmj59ulq0aCGz2axGjRrp73//u8aNG6f9+/cTYAcA2BQBdgAAAAAAAAAAAKAcWEIlO3fuVE5Ojtq0aaM+ffpIkgoKCuTo6ChJWr9+vdLT09W+fXs5OTlZ9wMAVH6///3vdf78eVWvXr3E80VFRZKkwsJCOTg4qLCwUN9++62WL1+u9evXW7erXr26ZsyYoYkTJ8rOzo5rCABUEZZz/aJFi7Rx40YZjUZNnTpVLVq0kHTz/YaTk5MCAwMl3bypFgAAWyLADgAAAAAAAAAAAJQDS6ikXr16km6GEC9evKj69etbw+vLly/XW2+9JUkaNWqUqlWrZptiAQA2c2t43dJF3d7eXpKs4fVPP/1Un3zyiRISEuTv768hQ4bIZDJpwYIFmjx5slxcXDRu3DjC6wBQxcTGxkqSxowZozZt2shsNstsNsvJyUm5ublavny5JMnDw8OWZQIAID4rCgAAAAAAAAAAAChHdevWlZubm44dO6bVq1fr5MmTunLlij777DO99NJLysnJ0dixYzVkyBBblwoAsDE7u19iHWazWZK0Zs0azZ8/X6mpqRo1apS+//57zZo1S3PnztXatWvl6Oiof/3rX0pLS7NV2QAAG8nMzJQkXbp0SSaTSWazWXZ2drpx44YiIiK0detW+fj4aOjQoZJ+ubYAAFDeCLADAAAAAAAAAAAA5ahz58565ZVXJEmvvfaaunTpotDQUE2YMEHXrl3T8OHD9ac//alEB14AACzd1FevXq0zZ86oT58+mjJlilq2bKni4mKZTCZ17dpVbdu21YkTJ6whRgBA1dG6dWtJNzuxx8TESJJu3LihxYsX64MPPtCFCxfUs2dPBQUFSRKf1AEAsBmDmduoAAAAAAAAAAAAgHJRXFxs7aY7bdo0LVq0SImJiXJ2dpa9vb3+9re/aejQoapfv76NKwUAPIwOHDig0NBQSdLWrVvVpUsXSb9cX65evarQ0FDFx8frxIkTaty4sS3LBQCUs/j4eHXp0kUXLlxQ48aN5ePjo9TUVMXFxclkMqlXr176+OOP1ahRI1uXCgCo4giwAwAAAAAAAAAAAOWoqKhI9vb2kqRTp04pJSVFNWrUkKurq0JCQmxcHQDgYbZ9+3Z169ZNfn5+OnLkiLy8vFRYWCgHBwfl5OTo/fff16xZs9SyZUsdPHjQer0BAFQdp0+fVv/+/RUXF6eCggJJUlBQkHr27KmJEyeqYcOGNq4QAADJwdYFAAAAAAAAAAAAAFWJvb29tVNucHCwgoODbV0SAKCC8Pb2lpeXl/Ly8nTixAl17NhRDg4Oys7O1uLFi7V06VLVqlVL48ePl729vcxmswwGg63LBgCUoyZNmmjbtm3avXu3EhIS5ODgoP79+8vT01M1a9a0dXkAAEiiAzsAAAAAAAAAAAAAAECFkJGRob59+2r//v3q0KGD+vXrp+DgYH3xxReKiopSZmamnn/+eU2bNk1+fn62LhcAAAAASkWAHQAAAAAAAAAAAAAAoIKIjY1Vly5dlJycLElydnZWfn6+fH191b9/f02aNEkNGza0cZUAAFvjUzgAAA8zAuwAAAAAAAAAAAAAAAAVyNmzZzVjxgwdP35cJpNJPj4+mjhxolq3bi1fX19blwcAAAAAd0SAHQAAAAAAAAAAAAAAoIIxmUwqKCiQyWRSrVq1bF0OAAAAANwzAuwAAAAAAAAAAAAAAAAVnNlslsFgsHUZAAAAAHBXdrYuAAAAAAAAAAAAAAAAAL8N4XUAAAAAFQUBdgAAAAAAAAAAAAAAAAAAAABAuSDADgAAAAAAAAAAAAAAAAAAAAAoFwTYAQAAAAAAAAAAAAAAAAAAAADlggA7AAAAAAAAAAAAAAAAAAAAAKBcEGAHAAAAAAAAAAAAAAAAAAAAAJQLAuwAAAAAAAAAAAAAAAAAAAAAgHJBgB0AAAAAAAAAAAAAAAAAAAAAUC4IsAMAAAAAAAAAAAAAAAAAAAAAygUBdgAAAAAAAAAAAAAAAAAAAABAuSDADgAAAAAAAAAAAAAAAAAAAAAoFwTYAQAAAAAAAAAAAAAAAAAAAADlwsHWBQAAAAAAAAAAyldhYaHWrFmjTZs2KSoqSqmpqbp69aqqV68ub29vNWvWTO3bt9egQYMUGBho63IBAAAAAAAAAEAlYjCbzWZbFwEAAAAAAAAAKB8RERGaPHmyzp49e0/b9+3bV7NmzVLTpk0fcGUAAAAAAAAAAKAqoAM7AAAAAAAAAFQR7733nv72t7/J0tekc+fOeuKJJ9S8eXN5enrq+vXrSk5O1q5du7Ru3TrFx8dr/fr18vPz0/z5821cPQAAAAAAAAAAqAzowA4AAAAAAAAAVcDChQs1evRoSVKdOnW0dOlSde7cuczti4qKtHTpUv3lL39R7969CbADAAAAAAAAAID7ggA7AAAAAAAAAFRyFy9eVOPGjZWXl6eaNWvq8OHDatiw4T3tm5mZqcjISIWHhz/gKgEAAAAAAAAAQFVgZ+sCAAAAAAAAAAAP1ty5c5WXlydJmjlz5j2H1yXJaDTeFl6Pj4+XwWCQwWDQ4sWLJUmrVq1Snz59VLduXTk4OJTa3X3t2rUaNGiQ/Pz85OzsLE9PT4WFhWnWrFnKyckps4Z33nnH+np3smPHDut2O3bsuG28c+fOMhgM1tpOnz6tsWPHKjAwUC4uLvL19dXTTz+tffv23fF1ioqKtHjxYvXs2VM+Pj5ycnKSu7u7GjVqpG7duun9999XTEzMHecAAAAAAAAAAKCqcrB1AQAAAAAAAACAB8dsNuubb76RJLm5uWnkyJH3ff7hw4dbX6M0eXl5evbZZ7V69eoSz2dkZGjfvn3at2+fPv30U61fv14tW7a8r/WVZcOGDRo8eLByc3Otz6WkpGjFihVauXKl/vGPf+i11167bb+cnBz16dNHkZGRJZ4vKChQVlaWzp49q23btunIkSP67rvvHvRhAAAAAAAAAABQ4RBgBwAAAAAAAIBKLDo6WleuXJEkdejQQTVq1Liv8//zn//U8ePH1aFDB40bN06NGzdWZmam4uPjrduMGDHCGl5v0aKFJk+erODgYGVkZGjp0qVavHixLl26pG7duun48eOqV6/efa3x1y5duqRnn31WDg4Oev/9960d2bdv364PPvhAWVlZmjhxogICAjRgwIAS+77zzjvW8PoTTzyhYcOGyd/fXy4uLkpLS9PRo0e1bt26u3aLBwAAAAAAAACgqiLADgAAAAAAAACV2PHjx62PW7Vq9UDmHz58uBYvXlxqaHv9+vVavny5JKlbt2764Ycf5OTkZB3v0aOHwsLCNHbsWGVkZGjSpElatmzZfa/zVmfOnJG7u7uioqIUHBxsfT4sLEz9+/dX+/btlZWVpfHjx6tv375ydHS0bmM5lkGDBmnFihW3zd2rVy+99dZbysjIeKDHAAAAAAAAAABARWVn6wIAAAAAAAAAAA9Oenq69bG3t3eZ2xUXFys6OrrMr4KCglL3MxqN+uyzz8rsOD5v3jxJkqOjoxYtWlQivG4xZswYde/eXZK0atUqJScn3/Px/a+mTp1aIrxu8bvf/U5vv/22JCkpKUlr1qwpMZ6SkiLpZjf7O/Hw8LhPlQIAAAAAAAAAULkQYAcAAAAAAACASiw7O9v6uEaNGmVul5WVpWbNmpX5lZSUVOp+4eHhcnNzK3WssLBQO3fulHSz03r9+vXLfP0xY8ZY99mxY8fdDus3MRgMGjFiRJnjI0eOtAbyf/zxxxJjvr6+kqRly5bp+vXrD65IAAAAAAAAAAAqKQLsAAAAAAAAAFCJ3Rouz83Nve/zN2/evMyx8+fPW0Pe7dq1u+M8t45HR0ffn+LKEBgYKC8vrzLHvb29FRAQIEk6ceJEiTFL8H3v3r0KDAzU+PHjtXr1al2+fPmB1QsAAAAAAAAAQGVCgB0AAAAAAAAAKjFPT0/r4zuFrI1Go8xmc4mvO3Upt6hVq1aZYxkZGdbHtWvXvuM8Pj4+pe73INytFkmqU6dOqbVMnTpVo0aNksFgUFpamubNm6eBAweqdu3aatq0qaZNm6bU1NQHUjcAAAAAAAAAAJUBAXYAAAAAAAAAqMRatGhhfXz06NH7Pr+9vf09bWcwGO77a/+vfkstjo6O+uqrrxQdHa2//vWvat++vZycnCRJJ0+e1PTp09WwYUOtWbPmfpULAAAAAAAAAEClQoAdAAAAAAAAACqxpk2bWruwR0ZG6vr16+X22h4eHtbHd+tKnpKSUup+kmRn98s/ZRcXF5c5R25u7j3VdS8d0i3b/LoWi5CQEM2YMUN79uzRtWvXtGXLFo0cOVL29vbKycnR0KFDlZycfE/1AAAAAAAAAABQlRBgBwAAAAAAAIBKzGAw6LnnnpMkZWVl6euvvy631w4KClL16tUlSfv377/jtgcOHLA+btq0aYkxNzc36+OrV6+WOUdsbOw91RUXF6crV66UOX758mXFx8eXWktpXFxc1L17dy1cuFBz5syRJN24cUPr1q27p3oAAAAAAAAAAKhKCLADAAAAAAAAQCU3adIkubi4SJLeeustxcXFlcvrOjg4qFOnTpKkLVu2KDExscxtv/zyS+s+nTt3LjEWGBhofXzo0KEy51i6dOk91WU2m7VkyZIyxxcvXiyz2SxJ6t69+z3NadGtWzfr4/T09P/XvgAAAAAAAAAAVAUE2AEAAAAAAACgkvP399cnn3wiSbp27Zr+8Ic/aPfu3Xfcx2w2KzMz8ze/9iuvvCJJMplMGj16tAoKCm7bZuHChdq8ebMkaeDAgfL19S0x3r59ezk4OEiSPvroI2u4/FZz5swp0cX9bmbMmKHTp0/f9vypU6c0c+ZMSZKvr6/69+9vHcvIyNDatWtLfX0Ly3FIJYP3AAAAAAAAAADgJgdbFwAAAAAAAAAAePDGjBmjpKQkvfvuu7p06ZI6dOigrl27Kjw8XM2aNZOHh4eKioqUkpKiI0eOaPny5Tp58qQkyd7eXk5OTv/T6/bt21eDBw/WihUrtHnzZoWGhmrSpEl69NFHdfXqVS1dulQLFy6UJHl4eGju3Lm3zVG7dm0NHjxY3377rTZt2qR+/frplVdeUZ06dZSQkKBvvvlGK1euVPv27bV379671tSwYUNdvnxZoaGh+vOf/2zt+L5jxw7NmjVL165dkyR9+umnJY47KytL/fr1U0BAgAYOHKh27dqpQYMGcnBwUHJystauXWvtJF+vXj098cQT/9OfGQAAAAAAAAAAlZnBfKdWMQAAAAAAAACASmX16tWaMmWKzp8/f9dtDQaDevbsqTlz5qhp06bW5+Pj463dxRctWqQXXnjhjvPk5eXp2Wef1erVq8vcpm7dulq/fr1atmxZ6nhqaqo6dOigM2fOlDo+ZMgQvfjii+revbskafv27dZgukXnzp21c+dOderUSa+//rqefvppXb9+/ba57OzsNHv2bE2ePLnE87ce9534+vpq7dq1at269V23BQAAAAAAAACgqqEDOwAAAAAAAABUIU8++aTCw8O1evVqbdq0SVFRUUpLS1NmZqaqV68uT09PNWvWTGFhYXrmmWfuKbB9Ny4uLlq1apXWrl2rxYsXa9++fUpPT1eNGjXUuHFjDRgwQOPHj5erq2uZc9SpU0f79+/XBx98oFWrVikhIUE1atRQ06ZNNXbsWA0bNkw7duy455r69u2rQ4cOac6cOdq2bZuSk5NlNBrVoUMHTZ48WWFhYbft06BBAx04cEA//PCD9u7dqwsXLig1NVU5OTkyGo0KCQlReHi4xo4dq5o1a/4vf1QAAAAAAAAAAFR6dGAHAAAAAAAAAFQJt3Zg//+E3QEAAAAAAAAAwP1jZ+sCAAAAAAAAAAAAAAAAAAAAAABVAwF2AAAAAAAAAAAAAAAAAAAAAEC5IMAOAAAAAAAAAAAAAAAAAAAAACgXBNgBAAAAAAAAAAAAAAAAAAAAAOWCADsAAAAAAAAAAAAAAAAAAAAAoFwYzGaz2dZFAAAAAAAAAAAAAAAAAAAAAAAqPzqwAwAAAAAAAAAAAAAAAAAAAADKBQF2AAAAAAAAAAAAAAAAAAAAAEC5IMAOAAAAAAAAAAAAAAAAAAAAACgXBNgBAAAAAAAAAAAAAAAAAAAAAOWCADsAAAAAAAAAAAAAAAAAAAAAoFwQYAcAAAAAAAAAAAAAAAAAAAAAlAsC7AAAAAAAAAAAAAAAAAAAAACAckGAHQAAAAAAAAAAAAAAAAAAAABQLv4PPti7l3ZdOSgAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAC7AAAAPgCAYAAACx8HFwAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzde3jfdXk//meStmnSlmOAtZSYOg4Jq6dWXGmJLeiYm2UtoUydmeBXZc4dcIavs7gheGjnZnFsu9xEHaid1RlLncXTLqUY+QJKxc1qwsERSiWCwQKl+TQtSX5/8EtGbJsmzalpHo/rypV3Xu/7db/vT+lFIX3m9Snq6enpCQAAAAAAAAAAAAAAjLLi8R4AAAAAAAAAAAAAAIDJQYAdAAAAAAAAAAAAAIAxIcAOAAAAAAAAAAAAAMCYEGAHAAAAAAAAAAAAAGBMCLADAAAAAAAAAAAAADAmBNgBAAAAAAAAAAAAABgTAuwAAAAAAAAAAAAAAIwJAXYAAAAAAAAAAAAAAMaEADsAAAAAAAAAAAAAAGNCgB0AAAAAAAAAAAAAgDExZbwHAAAAAAAAAAAAAADGX09PT/bt25fu7u7xHoUjWHFxcaZOnZqioqLD2i/ADgAAAAAAAAAAAACTWFdXV9rb27Nr167s27dvvMdhApg6dWpmzZqVioqKlJSUDGlvUU9PT88ozQUAAAAAAEmSyy+/PJ/+9KeTJA899FCqqqoOu9eWLVty/vnnJ0ne97735dprrx32fL2nxCxdujRbtmwZdj8AAAAAgImiq6srjzzySDo7O3Psscdm5syZKSkpOezTtTm69fT0pKurK88880yeeuqplJaW5rTTThtSiN0J7AAAAAAAk8jpp5+en/70p0mSH/3oR5k/f/6A9a9+9avzrW99K0kyd+7cPPLIIwPWd3R05Pjjj8/evXszZcqU7Ny5MzNnzhyZ4Yfg7//+7/Pkk0/muOOOyzvf+c4xfz4AAAAAwETR3t6ezs7OVFZWpqysbLzHYYKYOXNmjj322Gzfvj3t7e055ZRTBr23eBTnAgAAAADgCNN7cnmSQ540vnfv3vy///f/+r7esWNHHnzwwQH33HHHHdm7d2+S5JxzzhmX8HryXID9uuuuy9///d+Py/MBAAAAACaCnp6e7Nq1K8cee6zwOkNWVlaWY445Jrt27UpPT8+g9wmwAwAAAABMIs8PsN92220D1t59990pFAr91g615/mh+Oc/6+abb05PT096enpSVVU1+IEBAAAAABg1+/bty759+8btMBImvlmzZvX9PhosAXYAAAAAgElk2bJlfdff+c53BjwRpTeMPmvWrJx33nn91g61J+kfYAcAAAAA4MjT3d2dJCkpKRnnSZioen/v9P5eGgwBdgAAAACASWTOnDk588wzkyTt7e350Y9+dNDa3jD6eeedl1e96lX91g6ko6Mj3//+95Mk06ZNy5IlS0ZmaAAAAAAARlVRUdF4j8AEdTi/dwTYAQAAAAAmmeefjH6wQPrevXtz5513Jnnu1PalS5cmSR599NHcf//9B9xzxx139L1F6G/+5m+mrKys797ll1+eoqKiFBUVpbW1dcD5vvGNb+Tiiy/O7NmzM3369FRWVqauri7f/OY3D/naqqqqUlRUlIcffjhJ8vDDD/c99/kf11577YB99uzZk3/4h3/IueeemxNPPDFlZWU5/fTT88d//Md56KGHDjkHAAAAAABwYALsAAAAAACTzPMD7LfddtsBa+6+++4UCoUkzwXYFy1alGnTpg245/lh+Oc/Y7C6u7vztre9La95zWuyadOm/PznP09nZ2ceeeSR3HLLLfnt3/7tvPOd7xxy36F66KGH8opXvCJXXnll7rrrrvzyl7/Mnj178tOf/jT/8i//khe96EUDnkQPAAAAAAAc3JTxHgAAAAAAgLG1bNmyvuvvfOc76enp2e8tPnsD2rNmzcqCBQsyZcqUvOIVr8h3v/vdbNmyJX/0R3+0X9/hBtj/4i/+Ip/85CeTJCUlJXnjG9+YZcuWpbS0ND/84Q/zqU99KjfccEMeeeSRg/a48cYb09HRkSuuuCK/+MUvctJJJ+XGG2/cr666uvqA+59++um89rWvTXNzcy688MJcdNFFOeWUU9LW1pZPf/rT+cEPfpDdu3fn9a9/fZqbm3P88ccP+XUCAAAAAMBkJsAOAAAAADDJnHLKKampqUlzc3N++ctf5r/+67/y0pe+tF9Nbxh9yZIlmTLluW8lv/KVr+wLsP+qjo6OfP/730+STJ8+Peeee+6QZrrjjjvyj//4j0mSGTNm5Otf/3rOO++8vvt/8Ad/kL/4i7/IBRdckI0bNx60z4UXXpgkfSe1l5eXZ+XKlYOe4957782UKVPyxS9+MatWrep37x3veEcuuuiifP3rX89jjz2Wm266Ke9617sG3RsAAAAAYCL72ZOF7Ny9d7zHGLbjZ0zLqceVjfcYI6qqqioPP/xwbrrpplx++eWDvjdeBNgBAAAAACah888/P83NzUmeC6s/P8C+d+/e3HnnnUn6n9a+dOnSrFmzJj//+c/T0tLS7xTzO+64I/v27UuSnHvuuSktLR3SPOvWrUtPT0+S5MMf/nC/8Hqv2bNn5wtf+EIWLFiQrq6uIfUfiquvvnq/8HqSTJkyJR/96Efz9a9/PUnyta99TYAdAAAAAJgUfvZkIRd8ZEs6n+0e71GGrXRKcb591bJRCbH39PSksbExn/vc5/KDH/wgjz/+eEpKSnLKKadk9uzZecUrXpHa2tq86lWvyjHHHDPizx+qa6+9Nkly+eWXp6qqasyeWzxmTwIAAAAA4Ihx/vnn913fdttt/e7dddddKRQKSZ4LrfdavHhx32nsv7rn+V8/P/Q+GJ2dnbn11luTJMcee2ze+ta3HrT2xS9+cd8p66OhuLg4V1555UHvV1dXZ+7cuUmSbdu2jdocAAAAAABHkp279x4V4fUk6Xy2e1ROkn/yySdz/vnn5/d///ezadOmbN++Pc8++2xKS0uzffv23HHHHfnoRz+aurq6Ad9pdKT9+q//es4666wce+yx+9277rrrct1116W1tXXM5kkE2AEAAAAAJqWlS5emqKgoSdLU1JTu7v/9i4ctW7YkSWbOnJmXv/zlfeszZ87MwoUL+9X86p6kfzh+MP7rv/4re/c+95cFS5YsOeTp7a961auG1H8ozjrrrJxwwgkD1vQG2Hfu3DlqcwAAAAAAMLG86U1vyu23356SkpI0NDTk/vvvT2dnZ5544okUCoX813/9Vz784Q/nJS95yZjO9a1vfSstLS25+OKLx/S5AxFgBwAAAACYhE466aT8xm/8RpLngtg//OEP++71htGXLFnSd+J6r94T2Z8fWN+9e3fuueeeJElZWVl+8zd/c0izPProo33Xp59++iHrB1NzuCoqKg5Z0xuw7+zsHLU5AAAAAACYOB544IF85StfSZJ88IMfzEc+8pGcccYZKS5+Lqo9ZcqUvPjFL8673/3u/PCHP8zrXve68Rx33AmwAwAAAABMUs8/Kb03kN7Z2Zm77roryf+G1Z+vd+3xxx/PT37ykyTJHXfckX379iV5LvQ+bdq0Ic3xzDPP9F2Xl5cfsn7GjBlD6j8UvX+ZAAAAAAAAg/X8Q2JWrFhxyPqysrJ+X1dVVaWoqCg333xzdu3aldWrV+ess85KWVlZKioqsnLlytx9992HNdvze/e6/PLL+96lNXnu7wuKior6Pqqqqg7rWYPlO/EAAAAAAJPUsmXL+q5vu+22JMndd9+dQqGw3/1e5513XkpKSvrtef5p7M8PxQ/WzJkz+647OjoOWb979+4hPwMAAAAAAMbCjh07Dnvvzp07c8455+Rv/uZv0trammnTpuWJJ57Il7/85SxevDj/+q//OiIzHnvssTnllFP6vj7++ONzyimn9H2cdNJJI/KcgxFgBwAAAACYpJYuXdp3wkpTU1O6urr6wugzZszIOeecs9+eY445Ji95yUuSjFyA/dRTT+27fvDBBw9ZP5gaAAAAAAAYK+ecc07f99sbGhpy//33H1af6667Lo8//nj+/d//Pbt3785TTz2Vn/zkJ1m6dGm6u7vzR3/0R/nBD34w7HlvuOGG/PznP+/7euPGjfn5z3/e9/H9739/2M8YiAA7AAAAAMAkdeKJJ+bFL35xkuSpp57Kvffe2xdGX7x4caZMmXLAfUuXLk2S3H777XnmmWdyzz33JHnuJPUDhd4P5cUvfnFKS0uTJHfccUc6OzsHrP/Wt751yJ7Fxc99+7unp2fI8wAAAAAAwFBUVVXlrW99a5LkRz/6Uaqrq7NgwYL8yZ/8Sf71X/8127ZtG9T3q5966ql88YtfzKWXXtr3Pfqampp87WtfyxlnnJFnn302f/3Xfz2qr2UsCLADAAAAAExizz8x/etf/3ruuuuuJMmyZcsOuqc3wN7e3p6Pf/zj2bdvX5LkvPPOO2jofSClpaX53d/93STPfXN+oLdA3bZtW775zW8esufMmTOTJLt37x7yPAAAAAAAMFQf+9jH8td//deZMWNGenp6cu+99+ZjH/tY3vKWt+RFL3pRfu3Xfi3vete78thjjx20x5IlS/KqV71qv/WysrL83//7f5M89738p556atRex1gQYAcAAAAAmMSeH1T/x3/8xxQKhf3Wf1VtbW3fW6H+7d/+bd/688PwQ9XQ0NDX8y//8i9z55137lfz2GOP5XWve126uroO2W/evHlJkieeeCLbt28/7LkAAAAAAGAwpkyZkve///352c9+ls9+9rN561vfmpe85CWZNm1akuTxxx/PRz/60cyfPz/f+973DtjjggsuOGj/3nvd3d35wQ9+MPIvYAwJsAMAAAAATGKvfOUrU1z83LeKH3/88SRJeXl5zjnnnIPuOeGEE/KiF72o355keAH2JUuW5M/+7M+SJLt27corX/nKvPnNb87NN9+cDRs25C//8i9z9tln5yc/+Unq6uoO2e/Vr3513/XFF1+cT3ziE/nqV7+ar3/96/n617+eBx988LBnBQAAAACAgzn22GNTX1+fT3ziE/nhD3+Yp556Kv/5n/+Ziy66KMlz7256ySWXZM+ePfvtPfXUUw/a9/n3nv+9+YlIgB0AAAAAYBI7/vjj89KXvrTf2uLFizN16tQB9y1durTf18ccc0wWLFgwrFk++tGP5i1veUuS5Nlnn83NN9+cN7/5zfmDP/iD/O3f/m1++ctf5sorr+wLug/k//yf/5Pq6uokyQ9+8INcccUVee1rX5vf+Z3fye/8zu9k/fr1w5oVAAAAAAAGY/r06Xn1q1+d//iP/8hll12WJNmxY0e+/vWvj/Nk40eAHQAAAABgkvvVk9OXLVt2yD2/GmCvra1NSUnJsOYoLi7OJz/5yXzta1/L7/3e7+Xkk0/OtGnTMnfu3Fx88cX5+te/nr//+78fVK8ZM2bkrrvuyjXXXJOXv/zlOfbYY/tOmgcAAAAAgPFwxRVX9F3fd999+93/2c9+dtC9z7938sknj+xgY2zKeA8AAAAAAMD4+shHPpKPfOQjQ9pzySWXpKenZ9D1N998c26++eZB1b7mNa/Ja17zmoPeX7Zs2aCefeyxx+a6667Lddddd8jaobyWLVu2DLoWAAAAAAB6zZw5s++6tLR0v/u33XbbQff23isuLs7LXvayEZmnqKgoPT09Q/oe+Uhw3AwAAAAAAAAAAAAAwGF66KGHcv/99x+y7tOf/nTf9YIFC/a7/93vfveAh6js2bMn69atS5L89m//do477rjDnvX5jjnmmCTJk08+OSL9BkuAHQAAAAAAAAAAAADgMP34xz9OTU1NXvva1+Yzn/lMWltb++7t27cv9957b9785jfn+uuvT5K84hWvyHnnnbdfn2OPPTaXXHJJGhsb8+yzzyZJWlpa8trXvjYtLS0pKSnJ+9///hGbe/78+UmSf/u3f0tHR8eI9T2UKWP2JAAAAAAAAAAAAACAo8zUqVPT3d2dr371q/nqV7+aJJk2bVpmzpyZnTt3pqenp692wYIFueWWW1JcvP855O973/vy8Y9/PJdeemlKS0szffr0PPXUU0mSoqKi/PM//3Ne/vKXj9jcb3/723PHHXfkS1/6Uv7jP/4jJ598cqZMmZK5c+fmu9/97og951cJsAMAAAAAAAAAAAAAHKbf/u3fzgMPPJCvfvWr+e53v5tt27Zlx44defLJJ1NeXp45c+bkZS97Werq6nLppZceMLyeJMcff3y+973vZe3atfnSl76URx55JCeccEKWLFmS1atX59xzzx3Ruevr65MkH//4x/OjH/0obW1t6e7uHtFnHEhRz/Mj/QAAAAAAAAAAAADApLBnz5489NBDmTdvXqZPn37Qup89WcgFH9mSzmdHP9w82kqnFOfbVy3LqceVjfcofaqqqvLwww/npptuyuWXXz7e4wzJYH8PPZ8T2I8A3d3defTRRzNr1qwUFRWN9zgAAAAAAAAAAAAAHKF6enqya9euzJkz56AneY+0U48ry7evWpadu/eOyfNG0/Ezph1R4fXJSID9CPDoo4/mtNNOG+8xAAAAAAAAAAAAAJggHnnkkcydO3fMnnfqcWWC34wIAfYjwKxZs5I89y+SY445ZpynYSRVV1enra0ts2fPTktLy3iPAwAAAEcl//8NwGD5MwOAwfDnBQCD5c8MAMbL008/ndNOO60vfwoTjQD7EaCoqChJcswxxwiwH2V635qjuLjYP1sAAAAYJf7/G4DB8mcGAIPhzwsABsufGQCMt978KUw0AuwAAAAAAAAAAAAAAOOktbV1vEcYU8XjPQAAAAAAAAAAAAAAAJODADsAAAAAAAAAAAAAAGNCgB0AAAAAAAAAAAAAgDEhwA4AAAAAAAAAAAAAwJgQYAcAAAAAAAAAAAAAYEwIsAMAAAAAAAAAAAAAMCYE2AEAAAAAAAAAAAAAGBMC7AAAAAAAAAAAAAAAjAkBdgAAAAAAAAAAAAAAxoQAOwAAAAAAAAAAAAAAY0KAHQAAAAAAAAAAAACAMSHADgAAAAAAAAAAAADAmJgy3gMAAAAAAAAAAAAAAEe4Jx9JOp4Y7ymGr/zE5LjTxnuKSU2AHQAAAAAAAAAAAAA4uCcfSf5pYfJs53hPMnxTSpM/3TqqIfaurq586UtfyubNm3PXXXfl8ccfT0dHR4477riceeaZqa2tzRvf+MbMnz//oD1uv/32fO5zn8t3vvOdtLW1Zc+ePTnppJPykpe8JBdddFEuu+yyTJ8+/aD7r7322lx33XX7rU+bNi0nnnhiXvSiF+XSSy/NZZddlqlTp47I6x4sAXYAAAAAAAAAAAAA4OA6njg6wuvJc6+j44lRC7Dfddddueyyy3L//ff3rU2dOjWzZs3KE088kTvuuCN33HFH/uZv/iZ1dXXZsGFDpk2b1lf7xBNP5E1velO++tWv9q2VlpZm+vTp2bFjR3bs2JFbb701H/rQh3LzzTfnggsuOORMp5xySt/1rl270tbWlra2tnzzm9/Mxz/+8Xzzm9/M8ccfP0K/AodWPGZPAgAAAAAAAAAAAAA4Sn3lK1/JsmXLcv/99+fEE0/M2rVrc//992fv3r154oknsnfv3nz/+9/Pe97znhxzzDHZuHFjOjo6+vY/9thjWbRoUb761a+mpKQkf/Znf5Yf//jH2bNnT5588sns3LkzN910U0477bQ88sgjec1rXpNNmzYdcq6f//znfR+7d+/Oww8/nLe97W1JknvuuSd//ud/Plq/JAckwA4AAAAAAAAAAAAAMAwPPPBA6uvr09nZmbPPPjs//OEP8573vCdnnHFGX01JSUle/vKXZ+3atXnooYeyYsWKvns9PT35gz/4gzz44IOZOnVqbrnllvzDP/xDzj777L6a4447LpdffnnuvffevOQlL8m+ffty2WWX5ac//emQZq2srMyNN97Yd3r7v//7v+eZZ54Z5q/A4AmwAwAAAAAAAAAAAAAMw1/91V/l6aefzvTp03PLLbdk7ty5A9afcMIJ2bRpU4499tgkyebNm/Ptb387SfLe9743F1100UH3nnjiifniF7+Y6dOn5+mnn8773ve+w5r5Na95TZJk7969eeCBBw6rx+EQYAcAAAAAAAAAAAAAOEyPPfZYGhsbkyRvfOMbc+aZZw56b1FRUZLkYx/7WJJk1qxZaWhoOOS+M844I294wxuSJF/4whfS3t4+1LHT09PTd93V1TXk/YdLgB0AAAAAAAAAAAAA4DDddttt6e7uTpJcfPHFQ97/7LPPpqmpKUly4YUXZubMmYPaV1dX17f/O9/5zpCf+41vfCPJcyH6efPmDXn/4RJgBwAAAAAAxkxXV1e2bNmSDRs2ZMuWLWN6qg8AAAAAwGj48Y9/3Hf9spe9bMj7W1tbs3v37iHvf+lLX9p3/d///d+D3rd9+/ZcccUV+fa3v50kueiii3LiiScOev9wTRmzJwEAAAAAAJPaxo0b09DQkNbW1r61qqqqrFu3ru+kIAAAAACAieaJJ57ouz7hhBOGtX8oQfKKiooD9vhVv/Zrv9Z3vWvXrnR0dPR9XV1dnY997GODfuZIcAI7AAAAAAAw6jZu3JhVq1blRS96Ue68887s2rUrd955Z170ohdl1apV2bhx43iPCAAAAAAwYXV2dh703mOPPdb38fzw+pve9Kbce++9OfXUU8dixD4C7AAAAAAAwKjq6upKQ0NDli9fnk2bNmXRokWZOXNmFi1alE2bNmX58uW56qqr0tXVNd6jAgAAAAAM2fNPTf/lL385rP0DnaT+q9rb2/uujz/++IPW9fT0pKenJ93d3Xn00UfzL//yLznuuOPymc98Jv/0T/805HmHS4AdAAAAAAAYVU1NTWltbc3VV1+d4uL+fzVRXFyc1atX56GHHkpTU9M4TQgAAAAAcPh+4zd+o+/63nvvHfL+F7zgBZkxY0aS5Ac/+MGg9z3/WWedddYh64uKijJ79uz80R/9UW655ZYUFRXl3e9+d7797W8PeebhEGAHAAAAAABGVVtbW5Jk/vz5B7zfu95bBwAAAAAwkZx//vl9h3fccsstQ94/derU1NbWJkm++c1vZteuXYPat3Hjxr7rZcuWDemZy5Ytyx/+4R+mp6cnf/Znfzam75ApwA4AAAAAAIyq2bNnJ0m2bdt2wPu96711AAAAAAATySmnnJJLLrkkSfK5z30u999//6D39vT0JEne8Y53JEmeeeaZXH/99Yfc98ADD+Tzn/98kuS8887LC1/4wqGOnWuuuSYlJSX5yU9+kk9/+tND3n+4BNgBAAAAAIBRVVtbm6qqqqxZsybd3d397nV3d2ft2rWZN29e3wlDAAAAAAATzQc/+MHMnDkzhUIhdXV1+dnPfjZg/c6dO3PJJZfkqaeeSpIsX7687xT1D33oQ9m8efNB9z7xxBO59NJLs2fPnhQVFeWDH/zgYc3867/+63nd616XJPnABz6Qffv2HVafoRJgBwAAAAAARlVJSUnWrVuXzZs3Z+XKlbnzzjuza9eu3HnnnVm5cmU2b96cj3zkIykpKRnvUQEAAAAADsuZZ56Zz372s5k2bVp+/OMf56UvfWk+/OEP58EHH+yr6erqyr333ptrrrkmL3zhC7Nx48a+e0VFRdmwYUNe+MIXZt++fbn44otz5ZVXprm5ua/mqaeeyqc//eksWLAg//Vf/5XkuVPUly5dethzr169OkVFRWltbc2nPvWpw+4zFALsAAAAAADAqKurq0tjY2N+9KMfZfHixTnmmGOyePHibNu2LY2NjamrqxvvEQEAAAAAhmXlypX59re/ndNPPz3t7e15z3vekzPOOCOlpaU58cQTM23atCxYsCAf+MAH8tRTT+UNb3hDZsyY0bf/137t13LXXXflwgsvzLPPPpt/+Id/yNlnn52ysrIcf/zxOe6443L55Zdn+/btmTp1av72b/8211577bBmnj9/fn7v934vyXMnv3d2dg6r32BMGfUnAAAAAAAA5LkQ+4oVK9LU1JS2trbMnj07tbW1Tl4HAAAAgCNd+YnJlNLk2dEPN4+6KaXPvZ5RsmTJkrS0tOSLX/xiNm/enLvvvjuPP/54du3alRNOOCHV1dVZunRp/vAP/zBnnXXWfvtPOumkfOMb38i3v/3tbNiwoe/7qU8++WRfzZw5c3LbbbflzDPPHJGZ3/ve9+bLX/5yduzYkY9//OP58z//8xHpezAC7AAAAAAAwJgpKSnJsmXLxnsMAAAAAGAojjst+dOtSccT4z3J8JWf+NzrGUUlJSV5/etfn9e//vWH3eOCCy7IBRdc0G/tC1/4Qt7whjfk0UcfzWc/+9l84AMfOOj+a6+9dtCns59zzjnp6ek57FmHSoAdAAAAAAAAAAAAABjYcaeNevCbgb3uda9LW1tb/uIv/iIf/OAHM2vWrLz73e8e77GGrHi8BwAAAAAAAAAAAAAA4NDe+c535qqrrkqS/OVf/mU+9rGPjfNEQyfADgAAAAAAAAAAAAAwQfzd3/1denp60tPTk3e84x3jPc6QCbADAAAAAAAAAAAAADAmBNgBAAAAAAAAAAAAABgTAuwAAAAAAAAAAAAAAIwJAXYAAAAAAAAAAAAAAMaEADsAAAAAAAAAAAAAAGNCgB0AAAAAAAAAAAAAgDEhwA4AAAAAAAAAAAAAwJgQYAcAAAAAAAAAAAAAYEwIsAMAAAAAAAAAAAAAMCYE2AEAAAAAAAAAAAAAGBMC7AAAAAAAAAAAAAAAjAkBdgAAAAAAAAAAAAAAxoQAOwAAAAAAAAAAAAAAY2LKeA8AAAAAAAAAAAAAABzZ2p5py87OneM9xrAdX3p8Zs+cPd5jTGoC7AAAAAAAAAAAAADAQbU905blm5Znb9fe8R5l2KaVTMvmlZtHNcTe1dWVL33pS9m8eXPuuuuuPP744+no6Mhxxx2XM888M7W1tXnjG9+Y+fPnH7THf//3f+ff/u3fctttt+Xhhx/Ozp07U1ZWllNPPTXnnHNO6urq8ru/+7uZOnVqv33Lli3L7bffvl+/8vLynHrqqVm8eHHe/va3Z9GiRSP+ugdLgB0AAAAAAAAAAAAAOKidnTuPivB6kuzt2pudnTtHLcB+11135bLLLsv999/ftzZ16tTMmjUrTzzxRO64447ccccd+Zu/+ZvU1dVlw4YNmTZtWl/trl278va3vz0bNmxIT09PkqSoqCjHHntsCoVCmpub09zcnM985jP59V//9fzbv/1bfvM3f3O/OaZOnZoTTjih7+v29vY88MADeeCBB/KZz3wm73vf+/K+971vVH4NDqV4XJ4KAAAAAAAAAAAAAHAU+cpXvpJly5bl/vvvz4knnpi1a9fm/vvvz969e/PEE09k7969+f73v5/3vOc9OeaYY7Jx48Z0dHT07d+5c2fOPffcfO5zn0uSvP71r8/tt9+ePXv2ZOfOndmzZ09+9rOf5ZOf/GRe/OIX56c//WnuvPPOA86yePHi/PznP+/76OjoyDe/+c2cfvrp6enpybXXXptbb711TH5dfpUAOwAAAAAAAAAAAADAMDzwwAOpr69PZ2dnzj777Pzwhz/Me97znpxxxhl9NSUlJXn5y1+etWvX5qGHHsqKFSv69XjjG9+YH//4x5kyZUq+8IUvZMOGDXnlK1/Z74T2OXPm5C1veUt++MMf5mMf+1imT58+qPmmTZuW3/qt38qXv/zlvn7/9E//NAKvfOimjMtTAQAAAACASaGjoyMtLS391gqFQlpbW1NVVZWysrJ+96qrq1NeXj6WIwIAAAAADNtf/dVf5emnn8706dNzyy23ZO7cuQPWn3DCCdm0aVN6enqSJF/72tfyta99LUlyzTXX5NJLLx1wf1FRUf74j/843d3dQ5rz7LPPzsKFC3PnnXfm+9///pD2jhQBdgAAAAAAYNS0tLRk4cKFg67funVrFixYMIoTAQAAAACMrMceeyyNjY1JnjtF/cwzzxz03qKioiT/exr6sccem3e9612D3l9cXDyESZ/TG65/+umnh7x3JAiwAwAAAAAAo6a6ujpbt27tt9bc3Jz6+vqsX78+NTU1+9UDAAAAAEwkt912W99J6BdffPGQ9z/77LP5zne+kyT5rd/6rcyYMWNE5/tVra2tSZ47BX48CLADAAAAAACjpry8/KAnqtfU1DhtHQAAAACY8H784x/3Xb/sZS8b8v6HH344zzzzzGHvH4rvfe97fYeOLFq0aFSfdTBDPzMeAAAAAAAAAAAAAIAkyRNPPNF3fTinmg93/2A8+uij+exnP5sVK1aku7s7RUVFeec73zkqzzoUJ7ADAAAAAAAAAAAAABxFbr/99hQVFR3w3tSpU3P99ddn2bJlYzvU/0+AHQAAAAAAAAAAAADgMJ144ol917/85S8zZ86cYe0fCVOnTu07zb2oqChlZWWZM2dOFi9enLe+9a0588wzR+Q5h0OAHQAAAAAAYBLo6OhIS0tLv7VCoZDW1tZUVVWlrKys373q6uqUl5eP5YgAAAAAMCH9xm/8Rt/1vffeO+QA+wte8ILMnDkzzzzzTO69994RmWnx4sXZsmXLiPQaaQLsAAAAAAAAk0BLS0sWLlw46PqtW7dmwYIFozgRAAAAABwdzj///BQXF6e7uzu33HJLXvva1w5p/5QpU/LKV74yX/3qV/Of//mf2b17d2bMmDFK046/4vEeAAAAAAAAgNFXXV2drVu39vtYv359kmT9+vX73auurh7niQEAAABgYjjllFNyySWXJEk+97nP5f777x/03p6eniTJn/zJnyRJnnrqqVx//fWD3t/d3T2ESY8MAuwAAAAAAACTQHl5eRYsWNDvo6amJklSU1Oz373y8vJxnhgAAAAAJo4PfvCDmTlzZgqFQurq6vKzn/1swPqdO3fmkksuyVNPPZUk+d3f/d1ceOGFSZL3v//9aWxsPOQzb7zxxnziE58Y/vBjTIAdAAAAAAAAAAAAAGAYzjzzzHz2s5/NtGnT8uMf/zgvfelL8+EPfzgPPvhgX01XV1fuvffeXHPNNXnhC1+YjRs39uvxuc99LjU1NXn22Wfz+7//+3njG9+Ypqam7Nu3r6+mra0tn/70p7Nw4cL80R/9UQqFwpi9xpEyZbwHAAAAAGDsdXV1pampKW1tbZk9e3Zqa2tTUlIy3mMBAAAAAADAhLVy5cp8+9vfzuWXX54HH3ww73nPe/Ke97wn06ZNy8yZM/Pkk0+mu7s7SVJUVJQ3vOENmTFjRt/+E088MXfddVfe9ra35Ytf/GI+97nP5XOf+1yKiopy3HHHpVAoZM+ePX31NTU1qa2tHfPXOVwC7AAAAACTzMaNG9PQ0JDW1ta+taqqqqxbty51dXXjNxgAAAAAAABMcEuWLElLS0u++MUvZvPmzbn77rvz+OOPZ9euXTnhhBNSXV2dpUuX5g//8A9z1lln7bf/mGOOyRe+8IVcffXVWb9+fbZs2ZKHH344O3fuTFlZWebNm5dXvOIVufTSS/Oa17xmQh5SJcAOAAAAMIls3Lgxq1atyvLly7Nhw4bMnz8/27Zty5o1a7Jq1ao0NjYKsQMAAAAAANDP8aXHZ1rJtOzt2jveowzbtJJpOb70+FF9RklJSV7/+tfn9a9//WH3eMlLXpKXvOQlQ963ZcuWw37mWBFgBwAAAJgkurq60tDQkOXLl2fTpk0pLi5OkixatCibNm3KypUrc9VVV2XFihUT8qQGAAAAAAAARsfsmbOzeeXm7OzcOd6jDNvxpcdn9szZ4z3GpCbADgAAADBJNDU1pbW1NRs2bOgLr/cqLi7O6tWrs3jx4jQ1NWXZsmXjMyQAAAAAAABHpNkzZwt+MyKKD10CAAAAwNGgra0tSTJ//vwD3u9d760DAAAAAAAAGGlOYAcAAACYJGbPfu5EjG3btmXRokX73d+2bVu/OgA4HNu3b097e/uANc3Nzf0+D6SioiKVlZUjMhsAAAAAAONPgB0AAABgkqitrU1VVVXWrFmTTZs2pbj4f9+cr7u7O2vXrs28efNSW1t7yF4dHR1paWnpt1YoFNLa2pqqqqqUlZX1u1ddXZ3y8vKReSEAHLG2b9+es6rPyp7CnkHV19fXH7Jmetn03NdynxA7AAAAAMBRQoAdAAAAYJIoKSnJunXrsmrVqqxcuTKrV6/O/Pnzs23btqxduzabN29OY2NjSkpKDtmrpaUlCxcuHPSzt27dmgULFgxnfAAmgPb29uwp7MncK+amdE7pQeu693ZnX/u+TK2YmuJpxQet63y0Mztu3JH29nYBdgAAAACAo4QAOwAAAMAkUldXl8bGxjQ0NGTx4sV96/PmzUtjY2Pq6uoG1ae6ujpbt27tt9bc3Jz6+vqsX78+NTU1+9UDMHmUzilNWVXZwEVnjs0sAAAAAAAcWQTYAQAAACaZurq6rFixIk1NTWlra8vs2bNTW1s7qJPXe5WXlx/0RPWamhqnrQMAAAAAAAAHJMAOAAAAMAmVlJRk2bJl4z0GAAAAAAAAMMkUj/cAAAAAAAAAAAAAAMD46enpGe8RmKAO5/eOADsAAAAAAAAAAAAATELFxc9Fibu6usZ5Eiaq3t87vb+XBkOAHQAAAAAAAAAAAAAmoalTp2bq1Kl55plnxnsUJqhdu3b1/T4aLAF2AAAAAAAAAAAAAJiEioqKMmvWrDz11FMpFArjPQ4TTKFQyNNPP51Zs2alqKho0PumjOJMAAAAAAAAAAAAAMARrKKiIoVCIdu3b88xxxyTWbNmpaSkZEiBZCaPnp6edHV1ZdeuXXn66adTWlqaioqKIfUQYAcAAAAAAAAAAACASaqkpCSnnXZa2tvbs2vXrjz55JPjPRITwNSpU3PccceloqIiJSUlQ9orwA4AAAAAAAAAAAAAk1hJSUlOOeWUnHzyydm3b1+6u7vHeySOYMXFxZk6dephn9IvwA4AAAAAAAAAAAAApKioKNOmTRvvMTjKFY/3AAAAAAAAAAAAAAAATA4C7AAAAAAAAAAAAAAAjAkBdgAAAAAAAAAAAAAAxoQAOwAAAAAAAAAAAAAAY2LKeA8AAAAAAAAcHQqFQpKk89HOEenX26e3LwAAAAAAE58AOwAAAAAAMCJaW1uTJDtu3DHifZcsWTKiPQEAAAAAGB8C7AAAAAAAwIioqqpKksy9Ym5K55QOu1/no53ZceOOvr4AAAAAAEx8AuwAAAAAAMCIKCsrS5KUzilNWVXZiPcFAAAAAGDiKx7vAQAAAAAAAAAAAAAAmByOmgD7ww8/nIaGhlRXV2fGjBk54YQTcs455+Tv/u7v0tHRMazeN998c4qKigb1cfPNN4/MCwIAAAAAAAAAAAAAOMpMGe8BRsJXvvKV1NfX5+mnn+5b6+joyD333JN77rknn/zkJ3Prrbfm9NNPH8cpAQAAAAAAAAAAAAAmtwkfYL/33nvzute9LoVCITNnzszq1atz/vnnp1Ao5POf/3w+8YlP5P77789rX/va3HPPPZk1a9awnveNb3wjc+bMOej9uXPnDqs/AAAAAAAAAAAAAMDRasIH2K+88soUCoVMmTIl3/zmN3Puuef23bvgggtyxhln5N3vfnfuv//+rFu3Ltdee+2wnnfmmWemqqpqeEMDAAAAAMBRrPPRzgHvd+/tzr72fZlaMTXF04oPuw8D2759e9rb2wesaW5u7vd5IBUVFamsrByR2QAAAACAyWtCB9i/973vpampKUnylre8pV94vVdDQ0NuuummNDc354Ybbsh73/veTJ06daxHBQAAAJjQBOAAGIyKiopML5ueHTfuGLGe08ump6KiYsT6TRbbt2/PWdVnZU9hz6Dq6+vrD1kzvWx67mu5z5/hAAAAAMCwTOgA+6ZNm/qu3/zmNx+wpri4OG9605uyevXqPPnkk7ntttty4YUXjtGEAAAAABOfABwAg1VZWZn7Wu7r90NPzc3Ng/qzodf69etTU1PT97Ufejo87e3t2VPYk7lXzE3pnNKD1g3lNPwdN+5Ie3u7fx4AAAAAwLBM6AD7d7/73STJjBkzsnDhwoPWLV26tO/6jjvuEGAHAAAAGAIBOACGorKyst+/36urq7N169Z+NYVCIa2tramqqkpZWVm/e9XV1SkvLx+TWSeD0jmlKasqG7jozLGZBQAAAAAgmeAB9t63oz799NMzZcrBX0p1dfV+ew7Xm9/85tx333OnxxxzzDE5/fTT8+pXvzp//Md/nFNPPXVYvQEAAACOZAJwAByO8vLyLFiwYL/1JUuWjMM0AAAAAACMt4MfhXWE27NnT99bkM6dO3fA2uOPPz4zZsxIkjzyyCPDeu6WLVvS1taWffv25Yknnsjdd9+dD33oQzn99NPz8Y9/fFA9Ojs78/TTT/f7AAAAAAAAAAAAAAA42k3YE9h37drVdz1z5sxD1s+YMSO7d+/OM888c1jPe+ELX5i6urqce+65Oe2005Ik//M//5MvfelLaWxszJ49e/L2t789RUVFueKKKwbstXbt2lx33XWHNQcAAAAAAAAAAAAAwEQ1YQPse/bs6bueNm3aIetLS0uTJIVCYcjPuvjii3PZZZelqKio3/o555yT173uddm8eXPq6uqyb9++/MVf/EV+7/d+L7/2a7920H6rV6/Ou971rr6vn3766b5QPAAAAAAAAAAAAADA0ap4vAc4XNOnT++73rt37yHrOzs7kyRlZWVDftaxxx67X3j9+ZYvX55rrrkmSdLR0ZFPfepTA/YrLS3NMccc0+8DAAAAAAAAAAAAAOBoN2ED7LNmzeq7fuaZZw5Zv3v37iTJzJkzR2WeK664oi/kfvvtt4/KMwAAAAAAAAAAAAAAJrIJG2CfPn16TjzxxCTJjh07BqzduXNnX4D9tNNOG5V5Tj755L55fvazn43KMwAAAAAAAAAAAAAAJrIJG2BPkrPPPjtJ8uCDD+bZZ589aF1LS0vfdU1NzajN03sCOwAAAAAAAAAAAAAA+5vQAfbzzjsvSbJ79+5s3br1oHW333573/WSJUtGZZZf/OIXaW9vT5LMmTNnVJ4BAAAAAAAAAAAAADCRTegA+8qVK/uub7rppgPWdHd35zOf+UyS5Ljjjsv5558/KrPceOON6enpSZIsXbp0VJ4BAAAAAAAAAAAAADCRTegA+yte8YrU1tYmST71qU/lzjvv3K9m3bp1aW5uTpJceeWVmTp1ar/7W7ZsSVFRUYqKinL55Zfvt7+1tTX33nvvgHNs3rw573//+5MkZWVlefOb33w4LwcAAAAAAAAAAAAA4Kg2ZbwHGK4bbrghS5YsSaFQyIUXXpirr746559/fgqFQj7/+c/nxhtvTJKceeaZaWhoGHL/1tbWnH/++Tn33HNz0UUX5SUveUlOPvnkJMn//M//pLGxMY2NjX2nr3/kIx/JqaeeOnIvEAAAAGAEdHR0pKWlpd9aoVBIa2trqqqqUlZW1u9edXV1ysvLx3JEAAAAAAAAYBKY8AH2l73sZfnCF76Q+vr6PP3007n66qv3qznzzDNz6623ZtasWYf9nDvvvPOAJ7z3Ki8vz0c/+tFcccUVh/0MAAAAgNHS0tKShQsXDrp+69atWbBgwShOBAAAAAAAAExGEz7AniQXXXRR/vu//zs33HBDbr311uzYsSPTpk3L6aefnksvvTR/+qd/etgnhi1cuDDr16/PnXfemXvuuSdtbW1pb2/Ps88+m+OPPz6/8Ru/kVe96lV561vf2ncyOwAAAMCRprq6Olu3bu231tzcnPr6+qxfvz41NTX71QMAE1ehUEiSdD7aOSL9evv09gUAAAAAOFxHRYA9SV7wghfk+uuvz/XXXz+kfcuWLUtPT89B78+aNStvfOMb88Y3vnG4IwIAAACMm/Ly8oOeqF5TU+O0dQA4yrS2tiZJdty4Y8T7LlmyZER7AgAAAACTy1ETYAcAAAAAAOA5VVVVSZK5V8xN6ZzSYffrfLQzO27c0dcXAAAAAOBwCbADAAAAAAAcZcrKypIkpXNKU1ZVNuJ9AQAAAAAOV/F4DwAAAAAAAAAAAAAAwOQgwA4AAAAAAAAAAAAAwJiYMt4DAAAAAHBkKxQKSZLORztHpF9vn96+AAAAAAAAwOQhwA4AAADAgFpbW5MkO27cMeJ9lyxZMqI9AQAAAAAAgCObADsAAAAAA6qqqkqSzL1ibkrnlA67X+ejndlx446+vgAAAAAAAMDkIcAOAAAAwIDKysqSJKVzSlNWVTbifQEAAAAAAIDJo3i8BwAAAAAAAAAAAAAAYHIQYAcAAAAAAAAAAAAAYEwIsAMAAAAAAAAAAAAAMCYE2AEAAAAAAAAAAAAAGBMC7AAAAAAAAAAAAAAAjAkBdgAAAAAAAAAAAAAAxoQAOwAAAAAAAAAAAAAAY2LKeA8AAAAAMFgdHR1paWnpt1YoFNLa2pqqqqqUlZX1u1ddXZ3y8vKxHBEAAAAAAACAAQiwAwAAABNGS0tLFi5cOOj6rVu3ZsGCBaM4EQAAAAAAAABDIcAOAAAATBjV1dXZunVrv7Xm5ubU19dn/fr1qamp2a8eAAAAAAAAgCOHADsAAAAwYZSXlx/0RPWamhqnrQMAAAAAAAAc4YrHewAAAAAAAAAAAAAAACYHAXYAAAAAAAAAAAAAAMaEADsAAAAAAAAAAAAAAGNCgB0AAAAAAAAAAAAAgDEhwA4AAAAAAAAAAAAAwJgQYAcAAAAAAAAAAAAAYEwIsAMAAAAAAAAAAAAAMCYE2AEAAAAAAAAAAAAAGBNTxnsAAAAAACaGzkc7B7zfvbc7+9r3ZWrF1BRPO/i5CYfqAwAAAAAAABy9BNgBAAAAGFBFRUWml03Pjht3jFjP6WXTU1FRMWL9AAAAAAAAgIlBgB0AAACAAVVWVua+lvvS3t4+YF1zc3Pq6+uzfv361NTUDFhbUVGRysrKkRwTAAAAAAAAmAAE2AEAAAA4pMrKykEHzmtqarJgwYJRnggAAAAAAACYiIrHewAAAAAAAAAAAAAAACYHJ7ADAAAAHIW2b9+e9vb2AWuam5v7fR5IRUXFoE9gBwAAAAAAADgYAXYAAACAo8z27dtTU31WOgp7BlVfX19/yJrysulpbrlPiB0AAAAAAAAYFgF2AAAAgKNMe3t7Ogp7sv7istScVHzQusKzPWl9sjtVxxWnbErRQeuaf9Gd+lsKaW9vF2AHAAAAAAAAhkWAHQAAAOAoVXNScRbMLhmwZslpYzQMAAAAAAAAQJKDH8EFAAAAAAAAAAAAAAAjSIAdAAAAAAAAAAAAAIAxIcAOAAAAAAAAAAAAAMCYmDLeAwAAAAAAAJNHV1dXmpqa0tbWltmzZ6e2tjYlJSXjPRYAAAAAAGNEgB0AAAAAABgTGzduTENDQ1pbW/vWqqqqsm7dutTV1Y3fYEexzkc7B7zfvbc7+9r3ZWrF1BRPO/gb9x6qDwAAAADAYAmwAwAAAAAAo27jxo1ZtWpVli9fng0bNmT+/PnZtm1b1qxZk1WrVqWxsVGIfQRVVFRketn07Lhxx4j1nF42PRUVFSPWDwAAAACYnATYAQAAAACAUdXV1ZWGhoYsX748mzZtSnHxcyd9L1q0KJs2bcrKlStz1VVXZcWKFSkpKRnnaY8OlZWVua/lvrS3tw9Y19zcnPr6+qxfvz41NTUD1lZUVKSysnIkxwQAAAAAJiEBdgAAAAAAYFQ1NTWltbU1GzZs6Auv9youLs7q1auzePHiNDU1ZdmyZeMz5FGosrJy0IHzmpqaLFiwYJQnAgAAAABIig9dAgAAAAAAcPja2tqSJPPnzz/g/d713joAAAAAAI5eAuwAAAAAAMComj17dpJk27ZtB7zfu95bBwAAAADA0UuAHQAAAAAAGFW1tbWpqqrKmjVr0t3d3e9ed3d31q5dm3nz5qW2tnacJgQAAAAAYKxMGe8BAAAAABhZhUIhSdLc3jUi/Xr79PYFgKEqKSnJunXrsmrVqqxcuTKrV6/O/Pnzs23btqxduzabN29OY2NjSkpKxntUAAAAAABGmQA7AAAAwFGmtbU1SVK/cc+I912yZMmI9gRg8qirq0tjY2MaGhqyePHivvV58+alsbExdXV14zgdAAAAAABjRYAdAAAA4ChTVVWVJFlfNz01FcM/yba5vSv1G/f09QWAw1VXV5cVK1akqakpbW1tmT17dmpra528DgAAAAAwiQiwAwAAABxlysrKkiQ1FSVZMHvkAoG9fQFgOEpKSrJs2bLxHgMAAAAAgHFSPN4DAAAAAAAAAAAAAAAwOQiwAwAAAAAAAAAAAAAwJqaM9wAAAAAAB7N9+/a0t7cPWNPc3Nzv80AqKipSWVk5IrMBAIy1rq6uNDU1pa2tLbNnz05tbW1KSkrGeywAAAAAgCERYAcAAACOSNu3b89Z1WdlT2HPoOrr6+sPWTO9bHrua7lPiB0AmHA2btyYhoaGtLa29q1VVVVl3bp1qaurG7/BAAAAAACGSIAdAAAAOCK1t7dnT2FP5l4xN6VzSg9a1723O/va92VqxdQUTys+aF3no53ZceOOtLe3C7ADABPKxo0bs2rVqixfvjwbNmzI/Pnzs23btqxZsyarVq1KY2OjEDsAAAAAMGEIsAMAAABHtNI5pSmrKhu46MyxmQUAYKx1dXWloaEhy5cvz6ZNm1Jc/NwP7C1atCibNm3KypUrc9VVV2XFihUpKSkZ52kBAAAAAA7t4MeSAQAAAAAAMK6amprS2tqaq6++ui+83qu4uDirV6/OQw89lKampnGaEAAAAABgaATYAQAAAAAAjlBtbW1Jkvnz5x/wfu96bx0AAAAAwJFOgB0AAAAAAOAINXv27CTJtm3bDni/d723DgAAAADgSDdlvAcAAAAAYHQ0/6J7wPuFZ3vS+mR3qo4rTtmUosPuAwCMntra2lRVVWXNmjXZtGlTiov/92yi7u7urF27NvPmzUttbe04TgkAAAAAMHgC7AAAAABHmYqKipSXTU/9LYUR61leNj0VFRUj1g+AyaurqytNTU1pa2vL7NmzU1tbm5KSkvEe64hVUlKSdevWZdWqVVm5cmVWr16d+fPnZ9u2bVm7dm02b96cxsZGv4YAAAAAwIQhwA4AAABwlKmsrExzy31pb28fsK65uTn19fVZv359ampqBqytqKhIZWXlSI4JwCS0cePGNDQ0pLW1tW+tqqoq69atS11d3fgNdoSrq6tLY2NjGhoasnjx4r71efPmpbGx0a8dAAAAADChCLADAAAAHIUqKysHHTivqanJggULRnkiACa7jRs3ZtWqVVm+fHk2bNjQd4r4mjVrsmrVKkHsQ6irq8uKFSucXg8AAAAATHgC7AAAAAAAwKjq6upKQ0NDli9fnk2bNqW4uDhJsmjRomzatCkrV67MVVddlRUrVghkD6CkpCTLli0b7zEAAAAAAIaleLwHAAAAAAAAjm5NTU1pbW3N1Vdf3Rde71VcXJzVq1fnoYceSlNT0zhNCAAAAADAWBFgBwAAAAAARlVbW1uSZP78+Qe837veWwcAAAAAwNFLgB0AAAAAABhVs2fPTpJs27btgPd713vrAAAAAAA4ek0Z7wEAAAAAAIAjR0dHR1paWvqtFQqFtLa2pqqqKmVlZf3uVVdXp7y8fMCetbW1qaqqypo1a7Jp06YUF//v+Trd3d1Zu3Zt5s2bl9ra2pF7IQAAAAAAHJEE2AEAAAAAgD4tLS1ZuHDhoOu3bt2aBQsWDFhTUlKSdevWZdWqVVm5cmVWr16d+fPnZ9u2bVm7dm02b96cxsbGlJSUDHd8AAAAAACOcALsAAAAAABAn+rq6mzdurXfWnNzc+rr67N+/frU1NTsVz8YdXV1aWxsTENDQxYvXty3Pm/evDQ2Nqaurm74wwMAAAAAcMQTYAcAAAAAAPqUl5cf9ET1mpqaQ562PpC6urqsWLEiTU1NaWtry+zZs1NbW+vkdQAAAACASUSAHQAAADgiFQqFJEnno50j0q+3T29fAGB8lJSUZNmyZeM9BgAAAAAA40SAHQAAADgitba2Jkl23LhjxPsuWbJkRHsCAAAAAAAAMDgC7AAAAMARqaqqKkky94q5KZ1TOux+nY92ZseNO/r6AgAAAAAAADD2BNgBAACAI1JZWVmSpHROacqqyka8LwAAAAAAAABjr3i8BwAAAAAAAAAAAAAAYHIQYAcAAAAAAAAAAAAAYEwIsAMAAAAAAAAAAAAAMCamjPcAAAAAAIy+jo6OtLS09Ftrbm7u9/n5qqurU15ePiazAQAAAAAAAJOHADsAAADAJNDS0pKFCxce8F59ff1+a1u3bs2CBQtGeywAAAAAAABgkhFgBwAAAJgEqqurs3Xr1n5rhUIhra2tqaqqSllZ2X71AAAAAAAAACNNgB0AAABgEigvLz/giepLliwZh2kAAAAAAACAyap4vAcAAAAAAAAAAAAAAGByEGAHAAAAAAAAAAAAAGBMCLADAAAAAAAAAAAAADAmpoz3AAAAAABMPB0dHWlpaem31tzc3O/z81VXV6e8vHxMZgMAAAAAAACOXALsAAAAAAxZS0tLFi5ceMB79fX1+61t3bo1CxYsGO2xAAAAAAAAgCOcADsAAAAAQ1ZdXZ2tW7f2WysUCmltbU1VVVXKysr2qwcAAAAAAAAQYAcAAABgyMrLyw94ovqSJUvGYRoAAAAAAABgohBgBwAAAACASWz79u1pb28fsKa5ubnf54FUVFSksrJyRGYDAAAAAODoI8AOAAAAAACT1Pbt21NTfVY6CnsGVV9fX3/ImvKy6WluuU+IHQAAAACAAxJgBwAAAACASaq9vT0dhT1Zf3FZak4qPmhd4dmetD7ZnarjilM2peigdc2/6E79LYW0t7cLsAMAAAAAcEAC7AAAAAAAMMnVnFScBbNLBqxZctoYDQMAAAAAwFHt4MepAAAAAAAAAAAAAADACBJgBwAAAAAAAAAAAABgTEwZ7wEAAAAAAIDxUSgUkiTN7V0j0q+3T29fjiwdHR1paWnpt9bc3Nzv8/NVV1envLx8TGYDAAAAACYPAXYAAAAAhq2rqytNTU1pa2vL7NmzU1tbm5KSkvEeC4BDaG1tTZLUb9wz4n2XLFkyoj0ZvpaWlixcuPCA9+rr6/db27p1axYsWDDaYwEAAAAAk4wAOwAAAADDsnHjxjQ0NPSFIJOkqqoq69atS11d3fgNBsAhVVVVJUnW101PTcXwf/Coub0r9Rv39PXlyFJdXZ2tW7f2WysUCmltbU1VVVXKysr2qwcAAAAAGGkC7AAAAAActo0bN2bVqlVZvnx5NmzYkPnz52fbtm1Zs2ZNVq1alcbGRiF2gCNYb2C5pqIkC2aP3Dtn/GoQmiNDeXn5AU9Ud1o+AAAAADCWisd7AAAAAAAmpq6urjQ0NGT58uXZtGlTFi1alJkzZ2bRokXZtGlTli9fnquuuipdXV3jPSoAAAAAAABwhBBgBwAAAOCwNDU1pbW1NVdffXWKi/t/m6m4uDirV6/OQw89lKampnGaEAAAAAAAADjSCLADAAAAcFja2tqSJPPnzz/g/d713joAAAAAAACAKeM9AAAAABzpOjo60tLS0m+tUCiktbU1VVVVKSsr63evuro65eXlYzkijIvZs2cnSbZt25ZFixbtd3/btm396gAAAAAAAAAE2AEAAOAQWlpasnDhwkHXb926NQsWLBjFieDIUFtbm6qqqqxZsyabNm1KcfH/vtlfd3d31q5dm3nz5qW2tnYcpwQAAAAAAACOJALsAAAAcAjV1dXZunVrv7Xm5ubU19dn/fr1qamp2a8eJoOSkpKsW7cuq1atysqVK7N69erMnz8/27Zty9q1a7N58+Y0NjampKRkvEcFAAAAAAAAjhAC7AAAAHAI5eXlBz1RvaamxmnrTGp1dXVpbGxMQ0NDFi9e3Lc+b968NDY2pq6ubhynA4CJZfv27Wlvb+/7ulAopLW1ddD7q6qqUlZW1vd1RUVFKisrR3JEAAAAAIBhE2AHAAAAYFjq6uqyYsWKNDU1pa2tLbNnz05tba2T1wFgCLZv356a6rPSUdgzYj3Ly6anueU+IXYAAAAA4IgiwA4AAAAc0Tof7Rzwfvfe7uxr35epFVNTPK34sPswPCUlJVm2bNl4jwEAE1Z7e3s6Cnuy/uKy1Jz03H/TFJ7tSeuT3YPuUXVcccqmFCVJmn/RnfpbCmlvbxdgBwAAAACOKALsAAAAwBGpoqIi08umZ8eNO0as5/Sy6amoqBixfgAAI63mpOIsmP2/72Ky5LRxHAYAAAAAYBQIsAMAAABHpMrKytzXcl/a29sHrGtubk59fX3Wr1+fmpqaAWsrKiqcQAoAHJEKhUKSpLm9a0T69fbp7QsAAAAAcKQQYAcAAACOWJWVlYMOnNfU1GTBggWjPBEAwOhobW1NktRv3DPifZcsWTKiPQEAAAAAhkOAHQAAAAAAYJxVVVUlSdbXTU9NRcmw+zW3d6V+456+vgAAAAAARwoBdgAAAAAAgHFWVlaWJKmpKMmC2cMPsP9qXwAAAACAI0XxeA8AAAAAAAAAAAAAAMDk4AR2AAAAAACY5Jp/0T3g/cKzPWl9sjtVxxWnbErRYfcBAAAAAICjJsD+8MMP5x/+4R9y66235pFHHklpaWl+/dd/Pb//+7+fP/mTP0l5efmIP7OjoyPz58/PQw89lCR5wQtekNbW1hF/DgAAAAAAjIaKioqUl01P/S2FEetZXjY9FRUVI9YPAAAAAICjy1ERYP/KV76S+vr6PP30031rHR0dueeee3LPPffkk5/8ZG699dacfvrpI/rca665pi+8DgAAAAAAE01lZWWaW+5Le3v7gHXNzc2pr6/P+vXrU1NTM2BtRUVFKisrR3JMAAAAAACOIhM+wH7vvffmda97XQqFQmbOnJnVq1fn/PPPT6FQyOc///l84hOfyP3335/Xvva1ueeeezJr1qwRe+7f//3fZ/r06Zk6dWp27do1In0BAAAAAGAsVVZWDjpwXlNTkwULFozyRAAAAAAAHM0mfID9yiuvTKFQyJQpU/LNb34z5557bt+9Cy64IGeccUbe/e535/7778+6dety7bXXDvuZXV1dedvb3paurq68733vy6c+9SkBdgAAAAAAYNiaf9E94P3Csz1pfbI7VccVp2xK0WH3AQAAAAAYLxM6wP69730vTU1NSZK3vOUt/cLrvRoaGnLTTTelubk5N9xwQ9773vdm6tSpw3ruDTfckK1bt+ass87KX/7lX+ZTn/rUsPoBAAAAAACTW0VFRcrLpqf+lsKI9Swvm56KiooR6wcAAAAAMBImdIB906ZNfddvfvObD1hTXFycN73pTVm9enWefPLJ3HbbbbnwwgsP+5kPP/xwrrnmmiTJv/zLv2TatGmH3QsAAAAAACBJKisr09xyX9rb2wesa25uTn19fdavX5+ampoBaysqKlJZWTmSYwIAAAAADNuEDrB/97vfTZLMmDEjCxcuPGjd0qVL+67vuOOOYQXY3/GOd2T37t35wz/8wyxbtuyw+wAAAAAAADxfZWXloAPnNTU1WbBgwShPBAAAAAAw8orHe4DhaG5uTpKcfvrpmTLl4Fn86urq/fYcjs9//vP56le/muOPPz7r1q077D4AAAAAAAAAAAAAAJPRhD2Bfc+ePX1vozl37twBa48//vjMmDEju3fvziOPPHJYz9u5c2fe+c53Jkn+5m/+JieddNJh9UmSzs7OdHZ29n399NNPH3YvAAAAAAAAAAAAAICJYsKewL5r166+65kzZx6yfsaMGUmSZ5555rCe93//7//NY489lnPPPTdve9vbDqtHr7Vr1+bYY4/t+zjttNOG1Q8AAAAAAAAAAAAAYCKYsAH2PXv29F1PmzbtkPWlpaVJkkKhMORnfec738m//uu/ZsqUKfmXf/mXFBUVDbnH861evTpPPfVU38fhngoPAAAAAAAAAAAAADCRTBnvAQ7X9OnT+6737t17yPrOzs4kSVlZ2ZCe09nZmSuuuCI9PT258sor8+IXv3hogx5AaWlpX6AeAAAAAAAAAAAAAGCymLAB9lmzZvVdP/PMM4es3717d5Jk5syZQ3rOhz70odx333057bTTct111w1tSAAAAKCfrq6uNDU1pa2tLbNnz05tbW1KSkrGeywAAAAAAAAAxsiEDbBPnz49J554Yp544ons2LFjwNqdO3f2BdhPO+20IT3nwx/+cJLk1a9+db7yla8csKa39+7du/P5z38+SXLyySfnggsuGNKzAAAA4Gi2cePGvOtd78rDDz/ct/aCF7wg119/ferq6sZxMgAAAAAAAADGyoQNsCfJ2Wefnaampjz44IN59tlnM2XKgV9OS0tL33VNTc2QnrF3794kyU033ZSbbrppwNr29va84Q1vSJIsXbpUgB0AAAD+fxs3bswll1ySsrKyfuuPP/54LrnkknzpS18SYgcAAAAAAACYBCZ0gP28885LU1NTdu/ena1bt+Y3f/M3D1h3++23910vWbJkrMYDAABggtq+fXva29sHrGlubu73+WAqKipSWVk5YrNNRF1dXXn729+eJHnVq16V9773vZk/f362bduWD33oQ9m8eXP++I//OCtWrEhJSck4TwsAAAAAAADAaJrQAfaVK1dm7dq1SZ47If1AAfbu7u585jOfSZIcd9xxOf/884f0jJ6enkPWVFVV5eGHH84LXvCCtLa2Dqk/AAAAR5bt27fnrOqzsqewZ1D19fX1A96fXjY997XcN6lD7Fu2bMkvfvGLnHfeefnyl7+c4uLiJMmiRYvy5S9/OUuXLs13v/vdbNmyJa961avGeVoAAAAAAAAARtOEDrC/4hWvSG1tbZqamvKpT30ql112Wc4999x+NevWres7De/KK6/M1KlT+93fsmVLX6j9sssuy8033zwmswMAAHBkam9vz57Cnsy9Ym5K55QetK57b3f2te/L1IqpKZ5WfMCazkc7s+PGHWlvb5/0AfYkue666/rC672Ki4vzvve9L7/1W78lwA4AAAAAAAAwCUzoAHuS3HDDDVmyZEkKhUIuvPDCXH311Tn//PNTKBTy+c9/PjfeeGOS5Mwzz0xDQ8M4TwsAAMBEUTqnNGVVZQMXnTk2swAAMDl1dHSkpaWl31rvoT29n5+vuro65eXlYzIbAAAAAMDhmvAB9pe97GX5whe+kPr6+jz99NO5+uqr96s588wzc+utt2bWrFnjMCEAAABMbsuWLcsHP/jBvO9978uyZcv6ncLe3d2da6+9tq8OAID/1dLSkoULFx7wXn19/X5rW7duzYIFC0Z7LAAAAACAYZnwAfYkueiii/Lf//3fueGGG3Lrrbdmx44dmTZtWk4//fRceuml+dM//VMnjgAAAMA4WbZsWU4++eR897vfzYoVK3L11Vdn/vz52bZtW9asWZM77rgjJ598sgA7ABwhnPp95Kiurs7WrVv7rRUKhbS2tqaqqiplZWX71QMAAAAAHOmOigB7krzgBS/I9ddfn+uvv35I+5YtW5aenp5hPbu1tXVY+wEAAOBoVlJSkn/+53/OqlWr8q1vfSubN2/uu1deXp6ioqL88z//c0pKSsZxSgCgl1O/jxzl5eUH/LVdsmTJOEwDAAAAADAyjpoAOwAAAHDkqqurS2NjYxoaGvr9IPgpp5ySj3zkI6mrqxu/4QCAfpz6DQAc6B1ZDvXfA96RBQAAgMESYAcAAADGRF1dXVasWJGmpqa0tbVl9uzZqa2tdfI6ABxhnPoNAAz0jiwH4h1ZAAAAGAoBdgAAAGDMlJSUZNmyZeM9BgAAADCAA70jS3Nzc+rr67N+/frU1NTsVw8AAACDJcAOAAAAAAAAAPQ52DuyJElNTY3T1gEAABgWAXYAAAB4nkKhkCTpfLRz2L16e/T2BAAAAAAAAIDJToAdAAAAnqe1tTVJsuPGHSPac8mSJSPWDwAAAAAAAAAmKgF2AAAAeJ6qqqokydwr5qZ0TumwenU+2pkdN+7o6wkAAAAAAAAAk50AOwAAADxPWVlZkqR0TmnKqspGtCcAAAAAAAAwNjo6OtLS0tJvrVAopLW1NVVVVfv9HV51dXXKy8vHckSYtATYAQAAAAAAAAAAADiqtLS0ZOHChYOu37p1axYsWDCKEwG9BNgBAAAAAAAAAAAAOKpUV1dn69at/daam5tTX1+f9evXp6amZr96YGwIsAMAAAAAAAAAAABwVCkvLz/oieo1NTVOW4dxJMAOAAAAjJqOjo60tLT0WysUCmltbU1VVVXKysr63auurk55eflYjggAAAAAAADAGBJgBwAAAEbM9u3b097e3vd179swDtavvl1jRUVFKisrR3RGAAAAAAAAAMaPADsAAAAwIrZv356a6rPSUdhz2D1+NexeXjY9zS33CbEDAAAAAAAAHCUE2AEAAIAR0d7eno7Cnqy/uCw1JxUftK7wbE9an+xO1XHFKZtSdNC65l90p/6WQtrb2wXYAQAAAAAAAI4SAuwAAADAiKo5qTgLZpcMWLPktDEaBgAAAAAAAIAjysGPQwMAAAAAAAAAAAAAgBHkBHYAAABgRBQKhSRJc3vXiPTr7dPbFwAAAAAAAICJT4AdAAAADqDz0c4B73fv7c6+9n2ZWjE1xdMO/AZnh+pxtGltbU2S1G/cM+J9lyxZMqI9AQAAAAAAABgfAuwAAADwPBUVFZleNj07btwxIv2ml01PRUXFiPQ60lVVVSVJ1tdNT01FybD7Nbd3pX7jnr6+AAAAAAAAAEx8AuwAAADwPJWVlbmv5b60t7f3rRUKhb7TxXs99NBD+eu//ut84AMfyLx58/rdq6qqSllZWZLnAvGVlZWjPveRoPc111SUZMHs4QfYf7UvAAAAAAAAABOfADsAAAD8isrKyn6h8x/84Aepr68/YO1f//Vf77e2devWLFiwYNTmO9I1/6J7wPuFZ3vS+mR3qo4rTtmUoiH16ejoSEtLS/+65uZ+n5+vuro65eXlgxkbAAAAAAAAgDEgwA4AAACHUF1dna1bt/Zb6z2V/fmnrT+/fjKqqKhIedn01N9SGLGe5WXTU1FR0fd1S0tLFi5ceMDaA/2QwWT/YQIAAAAAAACAI40AOwAAABxCeXn5AUPQS5YsGYdpjlyVlZVpbrkv7e3tA9Y1Nzenvr4+69evT01NzYC1FRUV/U7D98MEAAAAAAAAABObADsAAAAwYiorK/sFzgdSU1Mz5NPR/TABAAAAAAAAwMQ2ogH27u7u/OQnP8n//M//ZNeuXenq6jrknje96U0jOQIAAAAAAAAAAAAAAEeoEQmwFwqFfPCDH8wnPvGJPPHEE4PeV1RUJMAOAAAAAAAAAAAAADBJDDvAXigUcsEFF+R73/teenp6RmImAAAAAAAAAAAAAACOQsMOsH/0ox/N3XffnSSZP39+/vRP/zQLFy7MCSeckOLi4mEPCAAAAAAAAACMnu3bt6e9vX3Amubm5n6fB1JRUZHKysoRmQ0AAICjz7AD7F/4wheSJIsXL863v/3tTJs2bdhDAQAAAAAAAACjb/v27Tmr+qzsKewZVH19ff0ha6aXTc99LfcJsQMAAHBAww6w//SnP01RUVHe/e53C68DAAAAAAAAwATS3t6ePYU9mXvF3JTOKT1oXffe7uxr35epFVNTPO3g78be+Whndty4I+3t7QLsAAAAHNCwA+zTpk1LoVDwP54AAAAAAAAAMEGVzilNWVXZwEVnjs0sAAAAHN2GHWCvrq7O3XffnZ///OcjMQ8AAABwFOno6EhLS0u/tebm5n6fn6+6ujrl5eVjMhsAAAAAAAAAY2/YAfbLL788d911V774xS/mNa95zUjMBAAAABwlWlpasnDhwgPeq6+v329t69atWbBgwWiPBQAAAAAAAMA4GXaA/W1ve1v+/d//PZ/5zGfy6le/Om94wxtGYi4AAADgKFBdXZ2tW7f2WysUCmltbU1VVVXKysr2qwcAAAAAAADg6DXoAPv27dsPeu8f//Ef87a3vS319fW55ZZb8gd/8AeDfsvvysrKwY4AAAAATDDl5eX9TlTv6upKU1NTiouLs2/fvixatCglJSXjOCEAAABMboVCIUnS+WjniPTr7dPbFwAAAH7VoAPs8+bNO2RNT09PvvSlL+VLX/rSoHoWFRXl2WefHewIAAAAwAS2cePGNDQ0pLW1tW+tqqoq69atS11d3fgNBgAAAJNY7/+n77hxx4j3XbJkyYj2BAAA4Ogw6AB7T0/PiNYBAAAAk8fGjRuzatWqLF++PBs2bMj8+fOzbdu2rFmzJqtWrUpjY6MQOwAAAIyDqqqqJMncK+amdE7psPt1PtqZHTfu6OsLAAAAv2rQAfabbrppNOcAAAAAjlJdXV1paGjI8uXLs2nTphQXFydJFi1alE2bNmXlypW56qqrsmLFipSUlIzztAAAADC5lJWVJUlK55SmrKpsxPsCAADArxp0gP2yyy4bzTkAAACAo1RTU1NaW1uzYcOGvvB6r+Li4qxevTqLFy9OU1NTli1bNj5DAgAAAAAAADAmig9dAgAAAHD42trakiTz588/4P3e9d46AAAAAAAAAI5egz6B/WDe//73J0ne8Y53pKKiYlB7du7cmX/8x39MklxzzTXDHQEAAAA4gs2ePTtJsm3btixatGi/+9u2betXBwAAAAAAAEO1ffv2tLe3D1jT3Nzc7/NAKioqUllZOSKzAf0NO8B+7bXXpqioKKtWrRp0gP2Xv/xl3z4BdgAAADi61dbWpqqqKmvWrMmmTZtSXPy/bwjX3d2dtWvXZt68eamtrR3HKQEAAAAAAJiotm/fnrOqz8qewp5B1dfX1x+yZnrZ9NzXcp8QO4yCYQfYAQAAAAZSUlKSdevWZdWqVVm5cmVWr16d+fPnZ9u2bVm7dm02b96cxsbGlJSUjPeoAAAAAAAATEDt7e3ZU9iTuVfMTemc0oPWde/tzr72fZlaMTXF04oPWtf5aGd23Lgj7e3tAuwwCsYlwL5v374kydSpU8fj8QAAAMAYq6urS2NjYxoaGrJ48eK+9Xnz5qWxsTF1dXXjOB0AAIyvrq6uNDU1pa2tLbNnz05tba0f8AQAAIDDUDqnNGVVZQMXnTk2swAHNy4B9h/+8IdJkpNOOmk8Hg8AAACMg7q6uqxYsUIwBwAAnmfjxo1paGhIa2tr31pVVVXWrVvnBz0BAAAAOCoNOcD+mc985oDrX/7yl3PPPfcMuLezszM//elP86//+q8pKirKOeecM9THAwAAABNYSUlJli1bNt5jAADAEWHjxo1ZtWpVli9fng0bNmT+/PnZtm1b1qxZk1WrVnm3IgAAAACOSkMOsF9++eUpKirqt9bT05O/+qu/GnSPnp6eFBcX58orrxzq4wEAAAAAAGDC6+rqSkNDQ5YvX55NmzaluLg4SbJo0aJs2rQpK1euzFVXXZUVK1Z41yIAAAAAjirFh7Opp6en7+NAawN9TJ06NUuWLMl//Md/ZOnSpSP2QgAAAAAAAGCiaGpqSmtra66++uq+8Hqv4uLirF69Og899FCamprGaUIAAAAAGB1DPoH9oYce6rvu6enJC1/4whQVFeUb3/hGzjjjjIPuKyoqyvTp03PiiSc6JQIAAAAAAIBJra2tLUkyf/78A97vXe+tAwAAAICjxZAD7C94wQsOuD5nzpyD3gMAAAAAAAD+1+zZs5Mk27Zty6JFi/a7v23btn51AAAAAHC0KD50ycC6u7vT1dWVs88+eyTmAQAAAAAAgKNebW1tqqqqsmbNmnR3d/e7193dnbVr12bevHmpra0dpwkBAAAAYHQMO8AOAAAAAAAADE1JSUnWrVuXzZs3Z+XKlbnzzjuza9eu3HnnnVm5cmU2b96cj3zkIykpKRnvUQEAAABgRE0Z7wEAAABgounq6kpTU1Pa2toye/bs1NbWCpUAAABDVldXl8bGxjQ0NGTx4sV96/PmzUtjY2Pq6urGcToAAAAAGB2DDrBfcMEFI/7woqKifOtb3xrxvgAAADBaNm7cmIaGhrS2tvatVVVVZd26dcIlAADAkNXV1WXFihV+SBYAAACASWPQAfYtW7akqKgoPT09B60pKirq93Vv7WDXAQAA4Ei2cePGrFq1KsuXL8+GDRsyf/78bNu2LWvWrMmqVauckAgAAByWkpKSLFu2bLzHAAAAAIAxMegA+ytf+coBA+ePPvpoHnjggSTPBdOrqqpyyimnJEkee+yxtLa2pqenJ0VFRTnjjDMyZ86cYY4OAAAAY6erqysNDQ1Zvnx5Nm3a9P+x9//RjZ71nf//sjQeS8qv4UQDaDIR8iZkJOp8tthQjD0KDu1J4YupHWHC2aID5dOenNJffIqn7DpsDuG02Lsthqa7Pd1O04btcWu66zhmO6G0lJMEJRnajlKg2iNNQohQnDElN2UmP3zb45H0/WOQMx5Lsmzfli5Jz8c5c+zc9+VL18wrt27rvt/3dcnlckmS+vv7tbCwoNHRUR07dkwjIyPMlAgAAAAAAAAAAAAAQAXbmoG9kr/5m7/RBz/4QV199dX65Cc/qY985CPy+/0b2liWpfvvv1+Tk5N64YUX9Pu///t697vfveOBAwAAAEArW15eViaT2bDNtm1ls1mFQiF5vd4N+8LhsHw+Xz2HaLS9+PdLJBLKZrOanZ1dL14vcblcmpiY0MDAgBKJBDMnAgAAAAAAAAAAAABQQc0F7JU89dRTuuOOO7Rv3z49/vjj+omf+Imy7fx+v37rt35L73nPezQ4OKgPfOADOnXqlG666abdDgEAAAAAWk4mk1FfX1/N7ZPJpHp7e/dwRM1lL/79lpaWJEk9PT1l95e2l9oBAAAAAAAAAAAAqA/btiVJq2dWHemv1E+pXwDO2nUB+/T0tF555RV95jOfqVi8fqk3velN+sQnPqFPfvKT+uxnP6vjx4/vdggAAAAA0HLC4bCSyeSGbel0WvF4XDMzM4pEIpva41V78e8XCAQkSalUSv39/Zv2p1KpDe0AAAAAAAAAAGh1rCgLwBTZbFaStHh80fF+BwcHHe0TgAMF7F/96lfV0dGhd77znTX/zK233ipJ+vu///vdvjwAAAAAtCSfz1dxRvBIJMJs61vYi3+/aDSqUCikyclJLSwsyOVyre8rFAqamppSd3e3otHojscNAAAAAAAAAEAzYUVZAKYIhUKSpMN3HlbXoa5d97d6ZlWLxxfX+wXgrF0XsO9kafSOjg5J0ve///3dvjwAAAAAAHXhdrs1PT2tsbExjYyM6F3vepe8Xq9s29ZXvvIVPfTQQ5qbm5Pb7W70UAEAAAAAAAAAqAtWlAVgitKKD12HuuQNebdovf1+AThr1wXsBw4c0A9+8AM9+uijetvb3lbTzzzyyCOSpGuuuWa3Lw8AAAAAQN3EYjEdO3ZMn//853XixIn17fv27dOxY8cUi8UaODoAAAAAAAAAAOqLFWUBAMBOuLZuUl00GlWxWNR/+S//RU899dSW7Z966in91//6X9XR0aGjR4/u9uUBAAAAAKib+fl5ffazn9W73vUu/eEf/qH+7M/+TH/4h3+od73rXfrsZz+r+fn5Rg8RAAAAAAAAAAAAAACj7bqA/eMf/7hcLpfOnTun/v5+/f7v/77+7d/+bVO7H/3oR7r33ns1MDCgs2fPqqOjQ+Pj47t9eQAAAAAA6iKfz2t8fFzDw8P60pe+pF/5lV/RRz7yEf3Kr/yKvvSlL2l4eFjHjh1TPp9v9FABAAAAAAAAAAAAADDWrgvY+/v79Xu/93sqFos6d+6cxsfH9drXvlZvfOMbNTg4qKNHj+qNb3yjDh48qI9//OPrxe2/+7u/q/7+/l3/BQAAAAAAqIdEIqFsNqu77rpLLtfGj9Mul0sTExN69tlnlUgkGjRCAAAAAAAAAAAAAADMt8+JTn7zN39ToVBIv/7rv64zZ86oWCzqmWee0Xe/+11JUrFYXG8bCAT03/7bf1MsFnPipQEAAAAAqIulpSVJUk9PT9n9pe2ldgAAAAAAAAAAAAAAYDNHCtgl6fbbb19fRv3v//7v9S//8i/rs62/5jWv0c0336yf+Zmf0ejoqDo7O516WQAAAAAA6iIQCEiSUqlU2RXFUqnUhnYAAAAAAAD1sry8rEwms2GbbdvKZrMKhULyer0b9oXDYfl8vnoOEQAAAACAdY4VsEtSZ2enxsbGNDY25mS3AAAAAAA0XDQaVSgU0uTkpBYWFuRyudb3FQoFTU1Nqbu7W9FotIGjBAAAAAAA7SiTyaivr6/m9slkUr29vXs4IgAAAAAAKnO0gB0AAAAAgFbldrs1PT2tsbExjY6OamJiQj09PUqlUpqamtKJEyc0Nzcnt9vd6KECAAAAAIA2Ew6HlUwmN2xLp9OKx+OamZlRJBLZ1B4AAAAAgEahgB0AAAAAgBrFYjHNzc1pfHxcAwMD69u7u7s1NzenWCzWwNEBAAAAAIB25fP5Ks6oHolEmG0dAAAAbWP1zGrV/YXzBa1Za+r0d8q131Wx3Vb9ANgdCtgBAAAAANiGWCymkZERJRIJLS0tKRAIKBqNMvM6AAAAAAAAAAAA0CB+v18er0eLxxcd69Pj9cjv9zvWH4BX1VzAXroR39HRoQsXLmzavhOX9wUAAAAAQDNwu90aGhpq9DAAAAAAAADQ4paXl5XJZDZss21b2WxWoVBIXq93w75wOCyfz1fPIQIAABghGAzqdOa0LMuq2i6dTisej2tmZkaRSKRqW7/fr2Aw6OQwAfxYzQXsxWJxW9sBAAAAAAAAAAAAAACwc5lMRn19fTW3TyaT6u3t3cMRAQAAmCsYDNZccB6JRPi9CWigmgvYP/WpT21rOwAAAAAA9ZLL5WqaTeHSr9UwmwIAAAAAAABMEA6HlUwmN2yrNmtoOByu5/AAAAAAYEcoYAcAAAAANLXTp0/rJ//9/6OV1fM1tY/H41u28XTt1ze/9W0dOXJkt8MDAAAAAAAAdszn81WcGZRZQwEAAAA0K9d2Gv/xH/9xTTPVAQAAAGgN+XxejzzyiGZnZ/XII48on883ekjAJqdOnaq5eL1WK6vnderUKUf7BAAAAAAAAAAAAAAA25iBXZI++tGPqqOjQ36/X0ePHtUtt9yiW265RT/5kz+pjo6OvRojAAAAgAaYn5/X+Pi4stns+rZQKKTp6WnFYrHGDQy4TCgUkiTNxDyK+N277i9t5RWfX1nvFwAAAAAAAAAAAAAAOGdbBeySVCwW9cILL2hhYUELCwuSpKuvvloDAwPrBe1vfetbtW/ftrsGAAAAYIj5+XmNjY1peHhYs7Oz6unpUSqV0uTkpMbGxjQ3N0cRO4zh9XolSRG/W72B3RewX94vAAAAAACAaXK5nCzLqtqmtLr6Vqusswo7AAAAAKDetlVl/oUvfEGJREKJREJPPfXU+vZz587pK1/5ir7yla9Ikjwej972tretF7S//e1v58Y/AAAA0CTy+bzGx8c1PDyshYUFuVwuSVJ/f78WFhY0OjqqY8eOaWRkRG63c8XCAAAAAAAAALaWy+UUCR/Rsr1SU/t4PL7HIwIAAAAAYHu2VcD+oQ99SB/60IckSS+88MJ6MXsikdC3vvUt5fN5SZJt23r00Uf16KOPSpI6OzvV29u7XtB+9OhRXX311Q7/VQAAAAA4IZFIKJvNanZ2dr14vcTlcmliYkIDAwNKJBIaGhpqzCBbkJOzZkmS3+9XMBh0ZGwAAAAAAAAwh2VZWrZXNHO7V5GDrort7AtFZc8WFDrgkndfR8V2X376gu5+eHUvhgoAAAAAQFnbKmC/1MGDBxWLxRSLxSRJL7/8sp544on1gvZ//Md/1MrKxSe+z58/r3/4h3/QP/zDP+j3fu/35HK5dPPNN+sd73iHPv/5zzvzNwEAAADgiKWlJUlST09P2f2l7aV22L1cLqcj4SNacXDWLI/Xo9OZ0xSxAwAAAAAAtKjIQZd6A9VXSBy8fut+0lbeoREBAAAAAFCbHRewX+7KK6/Ubbfdpttuu02StLa2pn/6p39SIpHQ17/+dT3xxBM6d+6cJCmfz+ub3/ymvvWtb1HADgAAABgmEAhIklKplPr7+zftT6VSG9ph9yzL0oq9osN3HlbXoa6K7QrnC1qz1tTp75Rrf+XZtVbPrGrx+KIsy6KAHQAAAAAAADVZPVN9FvbtXJsCAAAAAKAaxwrYL9fZ2amBgQENDAzoP/7H/6jz58/rC1/4gn73d39Xzz77rIrF4l69NAAAAIBdiEajCoVCmpyc1MLCglyuV29GFQoFTU1Nqbu7W9FotIGjbE1dh7rkDXmrN7qpPmMBAAAAAABAezjg6ZA6pMXji4716fF65Pf7HesPAAAAANBa9qyAfXV1Vd/4xjf09a9/XYlEQt/4xjf0yiuvSBLF6y0mn88rkUhoaWlJgUBA0WhUbnf1peqwN8jCLORhDrIwB1mYgyzMYWIWbrdb09PTGhsb0+joqCYmJtTT06NUKqWpqSmdOHFCc3NzDR/nXjAxj3ZFFuYgC3OQhVnIwxxkYQ6yMAdZmIMszEIe5iALc5CFORqZReBKl1SUZmZmFIlEKrZLp9OKx+NbtpMkv9/ftCsDclyYhTzMQRbmIAtzkIU5yMIs5AGgFo4VsJ87d06PP/64EomEvv71ryuZTGptbU3SqwXrbrdbN998s44ePaqjR48yY2MLmJ+f1/j4uLLZ7Pq2UCik6elpxWKxxg2sDZGFWcjDHGRhDrIwB1mYw+QsYrGY5ubmND4+roGBgfXt3d3dmpuba/j49oLJebQbsjAHWZiDLMxCHuYgC3OQhTnIwhxkYRbT8lheXlYmk9mwzbZtZbNZhUIheb0bV+cKh8Py+Xz1HOKeMS2LdkYW5jAli0gkot7eXsfaNSNTssBF5GEOsjAHWZiDLMxBFmYhDwC1cu30B7///e/rf//v/63f+I3f0E/+5E/q2muv1Xvf+1797u/+rk6ePKnz58/L6/XqHe94h/7zf/7P+spXvqJ/+7d/05NPPqk/+IM/0B133KFAIODk3wV1Nj8/r7GxMd188806efKkXnrpJZ08eVI333yzxsbGND8/3+ghtg2yMAt5mIMszEEW5iALczRDFrFYTN/5znf08MMP6y//8i/18MMP6+mnn27JCwvNkEe7IAtzkIU5yMIs5GEOsjAHWZiDLMxBFmYxMY9MJqO+vr4Nf44ePap4PK6jR49u2nd5sXuzMjGLdkUW5iALc5CFWcjDHGRhDrIwB1mYgyzMQh4AtqOjWJoevQZf+MIXlEgklEgk9Mwzz6xvL3Xh9/s1ODi4Prt6b2+v9u1zbJL3lvXiiy/qmmuu0blz53T11Vc3ejg1yefzuvHGG3XzzTdrYWFBLterz0IUCgWNjo4qlUrp6aefbuvlPw4fPqznn39e1113nRYXF/fkNcjCLORhDrIwB1mYgyzMQRZmMSGPJ598Un19fbrhnhvkDXm3/oEt2Flbz9zzjJLJZFPNhrXTLEr/fjO3exU5WPk5bftCUdmzBYUOuOTd11GxXfqFguIP2k337+ckE44LXEQWtanH52+JPExCFuYgC3OQRW24Ztt+TM2j3Azs6XRa8XhcMzMzikQiG/a1wgzspmbRjshia6Z/xihdC0neeYV6A7vP6MmlvPqOv7LltZD1123BaybNdly0chZS8+XRyshia6afMxqlld+nmi2LVkYWZmmmPFrlPaoZ606BDYrb0NHRUXS5XMWOjo5iR0dH8cYbbyz+wi/8QvG+++4rZjKZ7XSFS5w7d64oqXju3LlGD6VmDz/8cFFS8eTJk2X3P/HEE0VJxYcffri+AzPMddddV5RUvO666/bsNcjCLORhDrIwB1mYgyzMQRZmMSGPZDJZlFS84Z4bij1f6Nn1nxvuuaEoqZhMJvdszHthp1l873vfK/q8nqIkx/74vJ7i9773vTr8rc1kwnGBi8iiNvX4/F0skodJyMIcZGEOsqgN12zbTzPlUfps2Gyf5WrVTFm0OrLYmumfMdbfL+68olj81NW7/pO884qa3n9a+X2q2Y6LVs6iWGy+PFoZWWzN9HNGo7Ty+1SzZdHKyMIszZRHq7xHNWPdKXCpHU2Pvm/fPr3//e/X2NiYjh49qoMHD+6kGzSxpaUlSVJPT0/Z/aXtpXbYO2RhFvIwB1mYgyzMQRbmIAuzkIc5dppFMBhUOnNalmVV7b/abIaX8/v9CgaDtQ695XBcmIMszEIe5iALc5CFOcjCHGRhFvIwB1mYgyzMQRbmIAuzkIc5yMIcZGEOsjAHWZiFPABsV+W11ct4zWteo2KxqAsXLuiLX/yixsbG9PrXv17hcFi/9Eu/pP/5P/+nnnnmmb0aKwwSCAQkSalUquz+0vZSO+wdsjALeZiDLMxBFuYgC3OQhVnIwxy7ySIYDKq3t7fqn1LReiQS2bJtOxevSxwXJiELs5CHOcjCHGRhDrIwB1mYhTzMQRbmIAtzkIU5yMIs5GEOsjAHWZiDLMxBFmYhDwDb1VEsFovb+YH/+3//rxKJhL7+9a8rkUjo+eeff7Wzjg5J0ute9zodPXp0/c+b3/zm9X3Y7MUXX9Q111yjc+fO6eqrr270cGqSz+d144036uabb9bCwoJcrlefhSgUChodHVUqldLTTz8tt9vdwJE21uHDh/X888/ruuuu0+Li4p68BlmYhTzMQRbmIAtzkIU5yMIsJuTx5JNPqq+vTzfcc4O8Ie+u+7Oztp655xklk0n19vY6MML62OssSv/Ozfbv0ggmHBe4iCxqU4/P3xJ5mIQszEEW5iCL2nDNtv00Ux6t/pmlmbJodWSxNdM/Y6y/X9x5hXoDu8/oyaW8+o6/suX7Tyu/TzXbcdHKWUjNl0crI4utmX7OaJRWfp9qtixaGVmYpZnyaJX3qGasOwUuta0Z2CXpJ37iJ/TLv/zL+su//Es999xz+u53v6svfOEL+sVf/EW98Y1vVLFY1Pe//33Nzc3pN3/zN/XWt75VBw4c0M/+7M/qt3/7t/XII49oZWVlL/4uqCO3263p6WmdOHFCo6OjOnnypF566SWdPHlSo6OjOnHihD772c82/GTTDsjCLORhDrIwB1mYgyzMQRZmIQ9zkIU5yMIcZGEW8jAHWZiDLMxBFuYgC7OQhznIwhxkYQ6yMAdZmIU8zEEW5iALc5CFOcjCLOQBYNuKDvvBD35QnJubK37sYx8r9vb2Ft1ud7Gjo6PY0dFRdLlcRZfLVdy/f3/xbW97W/HYsWNOv3xTOnfuXFFS8dy5c40eyrY98MADxVAoVJS0/qe7u7v4wAMPNHpoRrjuuuuKkorXXXfdnr8WWZiFPMxBFuYgC3OQhTnIwiyNzCOZTBYlFW+454Zizxd6dv3nhntuKEoqJpPJPR/7XtirLEr/zs3679IIvE+Zgyyqq+fn72KRPExCFuYgC3OQRXVcs21fzZBHu3xmaYYs2gVZVGb6Z4z194s7rygWP3X1rv8k77yipvefdnifapbjoh2yKBabJ492QBaVmX7OaJR2eJ9qlizaAVmYpRnyaJX3qGauOwWKxWKxo1gsFrcqct+Nl156SY8//rgSiYS+/vWv69SpU1pdXZUkdXR0KJ/P7+XLN4VmX8ohn88rkUhoaWlJgUBA0WiUJ6V+rF5LRZWQhVnIwxxkYQ6yMAdZmIMszNKoPErL1N1wzw3yhry77s/O2nrmnmeaetm7vciiVZYDrDfep8xBFpXV+/O3RB4mIQtzkIU5yKIyrtm2N9PzaKfPLKZn0U7IojzTP2Osv1/ceYV6A7vP68mlvPqOv7Ll+0+7vE81w3HRLllIzZFHuyCL8kw/ZzRKu7xPNUMW7YIszLKbPJaXl5XJZDZss21b2WxWoVBIXu/Ge6nhcFg+n29b42uV96hmrzsF9u31C1x11VX6d//u3+n555/Xc889p2w2qzNnzmiP6+ZRR263W0NDQ40eBkQWpiEPc5CFOcjCHGRhDrIwC3mYgyzMQRbmIAuzkIc5yMIcZGEOsjAHWZiFPMxBFuYgC3NsJwvbtiVJacuZyeJK/ZT6bXccF2YhD3OQhTnIwhxkYQ6yMMtu8shkMurr66u5fbMXoQPtzPEC9mKxqG9+85tKJBLrf1544YVNbQAAAAAAAAAAAAAAwPZks1lJUnx+xfF+BwcHHe0TAAAA2I5wOKxkMrlhWzqdVjwe18zMjCKRyKb21ZSb0T2dTm/4enl/253RHcDO7LqAfW1tTf/wD/+wXqz+xBNP6KWXXlrff3mx+g033KBoNKpbbrlFt9xyy25fHgAAAACMsZ0l7bj4AQAAAAAAgJ0IhUKSpJmYRxG/e9f9pa284vMr6/0CAAAAjeLz+SrOqB6JRLY923q1Gd3j8fimbczoDtTPtgvYX375ZT3xxBP6+te/rkQioX/6p3/S6urq+v5LC9Y7OjrU09OjW265Zb1oPRAIODNyAAAAADDMdpa04+IHAAAAAAAAdqI0SULE71ZvYPcF7Jf3CwAAALSKcjO6V5qArNQeQH1sq4D9LW95i771rW+pUCisb7u0YH3fvn1685vfvF6wHo1G9ZrXvMa50QIAAACAwbazpB0XP/YWywECAAAAAAAAAAAA7a3SjO6Dg4MNGA2AS22rgP3JJ5/c8N8ej0c/9VM/pVtuuUW33HKL3v72t+uKK65wdIAAAAAA0CycXtIOO8dygAAAAAAAAAAAOC+Xy8myrKptqk0oczm/369gMOjI2AAAQPPYVgH7lVdeqcHBwfWC9be+9a3av3//Xo0NAAAAAIAdYTlAAAAAACahyAcAAACtIJfL6Uj4iFbslZral5tQ5nIer0enM6f5/RYAgDazrQL2s2fPyuVy7dVYAAAAAABwBMsBAgAAADAFRT4AAABoFZZlacVe0eE7D6vrUFfFdoXzBa1Za+r0d8q1v3Kt2eqZVS0eX5RlWfxuCwBAm9lWATvF6wAAAAAAAAAAAEDtKPIBAABAq+k61CVvyFu90U31GQsAAGhO2ypgBwAAAAAAAAAAALB9FPkAAAAAAAAAF1HADgAAAAAAAAAAAAAAAGxDPp9XIpHQ0tKSAoGAotGo3G53o4cFbGl5eVmZTGbDNtu2lc1mFQqF5PVufOgyHA7L5/PVc4gAAKANUMAOAAAAAAAAAAAAAAAA1Gh+fl7j4+PKZrPr20KhkKanpxWLxRo3MKAGmUxGfX19NbdPJpPq7e3dwxEBAIB2RAE7AAAAAAAAAAAAAACAAXK5nCzLqtomnU5v+FqN3+9XMBh0ZGy4aH5+XmNjYxoeHtbs7Kx6enqUSqU0OTmpsbExzc3NUcQOo4XDYSWTyQ3b0um04vG4ZmZmFIlENrUHAABwGgXsaDksdQQAAAAAAAAAAAAAaDa5XE5Hwke0Yq/U1D4ej2/ZxuP16HTmNEXsDsnn8xofH9fw8LAWFhbkcrkkSf39/VpYWNDo6KiOHTumkZERud3uBo8WKM/n81WcUT0SiTDbOoC64uE9oH1RwI6Ww1JHAAAAaDa2bUuSVs+sOtJfqZ9SvwAAAAAAAADMZ1mWVuwVHb7zsLoOdVVsVzhf0Jq1pk5/p1z7XRXbrZ5Z1eLxRVmWRSGXQxKJhLLZrGZnZ9eL10tcLpcmJiY0MDCgRCKhoaGhxgwSAIAmkcvlFAkf0bKDD+/5vB6leXgPaAoUsKPlsNQRAAAAmk02m5UkLR5fdLzfwcFBR/sEAAAAAACAGdIvFKruty8UlT1bUOiAS959HTvuB/XXdahL3pC3eqOb6jMWbLS0tCRJ6unpKbu/tL3UDgAAVGZZlpbtFc3c7lXkYOWH8rbze238QZuH94AmQQE7Wg5LHQEAAKDZhEIhSdpyZqValWZWKvULAAAAAACA1uH3++XzehR/0LnV93xej/x+v2P9Aa0qEAhIklKplPr7+zftT6VSG9oBAICtRQ661BtwV20zeH2dBgOgbihgBwAAAIAG83ovzqZU08xKO+gXAACgHS0vLyuTyWzYZtu2stmsQqHQpt+VwuGwfD5fPYcIAACwI8FgUOnMaVmWVbVdtVWqL+f3+5mlEqhBNBpVKBTS5OSkFhYW5HK9OltsoVDQ1NSUuru7FY1GGzhKAAAAwHwUsAMAAAAAAAAAWk4mk1FfX1/N7ZPJJKs3AgCAphEMBmsuOGeVasA5brdb09PTGhsb0+joqCYmJtTT06NUKqWpqSmdOHFCc3NzcrurzyILAAAAtDsK2LFtzFxkDrIwC3mYgyzMQRbmIAuzXJ4HWTQOx4Y5yMIcZGEOsjDLdvIgi73FsWEO07MIh8NKJpMbtlWbhTQcDtdtbE4zPYt2QhZm4fxtDo4Nc5CFOcjCHGRhlmbIIxaLaW5uTuPj4xoYGFjf3t3drbm5OcVisbqOZ680QxbtgizMQRbmIAuzkAeAnaCAHdvGzEXmIAuzkIc5yMIcZGEOsjDLdvIgi73FsWEOsjAHWZiDLMzC+dscHBvmMD0Ln89X8fVabRZS07NoJ2RhFs7f5uDYMAdZmIMszEEWZmmWPGKxmEZGRpRIJLS0tKRAIKBoNNpSM683SxbtYLdZ5HI5WZZV9WfS6fSGr1u1a1ccF+YgC7OQB4CdaIkC9u9973v6gz/4Az300EN67rnn1NXVpRtuuEF33HGHfvVXf3VXT+uk02l97Wtf0z/90z/pX/7lX/SDH/xAlmXJ7Xbrda97nd761rfq53/+5/VzP/dz6ujocPBvZa52mrnIdGRhFvIwB1mYgyzMQRZmuTwPsmgcjg1zkIU5yMIcZGGW7eRBFnuLY8McZGEOsjAHWZiF87c5ODbMQRbmIAtzkIVZmikPt9utoaGhhr3+XmumLFrdbrLI5XKKhI9o2V6p6bXi8fjuB9zCOC7MQRZmIQ8AO9H0Bex//dd/rXg8rhdffHF92/Lysk6dOqVTp07pvvvu00MPPaQbb7xxR/1/5jOf0V/8xV+U3ffss8/q2Wef1f/6X/9L73jHO/TAAw/o2muv3dHrmKyWJzGruXx5EL/fr2AwuNthta3d5EEWzuLYMAdZmIMszEEWZuH8bQ6ODXOQhTnIwhxkYRbO3+bg2DAHWZiDLMxBFmbh/G0Ojg1zkIU5yMIcZGEWJ/Mgi93h2DCHk1mk02kt2yuaud2ryEFXxZ+xLxSVPVtQ6IBL3n2VJ/D88tMXdPfDqzseW7PhuDAHWZjFqTzafVUHoN01dQH7P//zP+sDH/iAbNvWlVdeqYmJCd16662ybVtf/OIX9Sd/8id66qmn9J73vEenTp3SVVddte3X2Ldvn972trdpcHBQN998s17/+tfr4MGD+tGPfqRMJqM//uM/ViqV0qOPPqr3vve9euyxx+RyVf6Fr9nkcjkdCUe0Yi/X1L6WJzE9Xp9OZ9L8ErAD28mDLPYWx4Y5yMIcZGEOsjAL529zcGyYgyzMQRbmIAuzOJ0HWewcx4Y5yMIcZGEOsjAL529zcGyYgyzMQRbmIAuzcP42B8eGOfYiC0mKHHSpN+Cu2mbw+q37+eb3L0iSVs84U8Re6se2bUf6cxLHhTnIwix79T4FoP00dQH7xz72Mdm2rX379unv/u7v9Pa3v3193zvf+U698Y1v1Cc+8Qk99dRTmp6e1j333LPt17jvvvu0b1/5f6af+Zmf0Uc/+lHdcccdmp+f18mTJ3XixAn93M/93E7/SsaxLEsr9rKuHR5X57WVf1MtXjivC+f+VfuueZ069u2v2G7th8/phyemZVkWvwDsQC15kEV9cGyYgyzMQRbmIAuzcP42B8eGOcjCHGRhDrIwi5N5kMXucGyYgyzMQRbmIAuzcP42B8eGOcjCHGRhDrIwC+dvc3BsmMPpLOzvntK5xIxj4zvzUlGStHh80bE+JSmbzWpwcNDRPneL48IcZGEWJ/Nw+j0KQHNp2gL2f/zHf1QikZAk/eIv/uKG4vWS8fFx3X///Uqn07r33nv1yU9+Up2dndt6nUrF6yVut1u/9Vu/pfn5eUlSIpFoqQL2ks5rr1fX62+s3ujwm+ozGGydB1nUDceGOcjCHGRhDrIwC+dvc3BsmIMszEEW5iALs5CHOcjCHGRhDrIwB1mYhTzMQRbmIAtzkIU5yMIs5GEOsjCHU1ms/fA5h0Z00aGrOi6+9J2H1XWoa9f9rZ5Z1eLxRYVCoV33tVc4LsxBFmZxIg+n36MANJemLWBfWFhY//4jH/lI2TYul0sf+tCHNDExobNnz+rhhx/Wbbfd5vhYrrrqqvXvV1ZWHO8fAAAAAAAAAAAAAAAAABqpa9/FAvauQ13yhryO9ev1OtcXAABoDq5GD2CnHnvsMUnSFVdcob6+vort3vGOd6x///jjj+/JWL74xS+ufx8Oh/fkNQAAAAAAAAAAAAAAAAAAAACg2TXtDOzpdFqSdOONN2rfvsp/jUsLyks/4wTLsvT000/rvvvu0/333y9J8vv9+uAHP+jYawAAAAAAAAAAAAAAAAAAAABAK2nKAvaVlRVZliVJOnz4cNW2r3nNa3TFFVfolVde0XPPPber1x0aGtKjjz5adp/f79eDDz6oAwcObNnP6uqqVldX1//7xRdf3NW4AAAAAAAAAAAAAADta3l5WZlMZsO20gRv5SZ6C4fD8vl8dRkbAAAAAACXa8oC9pdeemn9+yuvvHLL9qUC9pdffnlPxvMbv/Ebuvvuu+X3+2tqPzU1pU9/+tN7MhYAAAAA9bXVSk/VbhTW2gcAAAAAAABQTSaTUV9fX9l98Xh807ZkMqne3t69HhYAAAAAAGU1ZQH7ysrK+vf79+/fsn1XV5ckybbtXb3u/fffr1deeUXFYlFnz57VqVOn9Ed/9Ef67//9v+u73/2u7rvvPr3uda/bsp+JiQl9/OMfX//vF198Uddff/2uxgYAAADshXw+r0QioaWlJQUCAUWjUbnd7kYPywj5l38kV0f5G4Dl1NoOAAAAANBaSvenVs+sbtGyNqV+dnvfC0BrCYfDSiaTG7bZtq1sNqtQKCSv17upPQAAAAAAjdKUBewej2f9+/Pnz2/ZfnX14oW8yz+Ub1d3d/eG/45Go/roRz+q97///Tpx4oTe+ta36oknntDhw4er9tPV1bVeVA8AAACYan5+XuPj48pms+vbQqGQpqenFYvFGjcwQxRWX1ahKM3c7lXkoKtiO/tCUdmzBYUOuOTd11G2zZefvqC7H3amkAEAAAAAYJbS5+rF44uO9zs4OOhonwCal8/nKzujOu8TAAAAMFUxvyZJSlt5R/or9cMD30BzaMoC9quuumr9+5dffnnL9q+88ook6corr3R8LB6PR/fff7/e8IY36LnnntMnPvEJ/eVf/qXjr9MopTfztR8+50h/pX44SeyMk3mQxe5wbJiDLMxBFuYgC7M06/l7fn5eY2NjGh4e1uzsrHp6epRKpTQ5OamxsTHNzc01XRG708fGhXP/KkkKvaZDvYHqs9IPbrHgklMXZZoF71PmIAtzkIVZmvX83Yo4NsxBFuYgC3OQhVlMPn+HQiFJ0mtjr9V+f+WVhQsXCrpw9oL2Hdgn177KD0qft87rB/M/WO/XNBwb5iALc5CFOcjCLCafv9sNx4Y59upehn2h6Eh/7YTjwhxkYRYn8zj//aclSfH5lV33dSke+AaaQ1MWsHs8Hl177bX64Q9/qMXF6rNV/OhHP1ovYL/++i2qRnbI7/drcHBQX/3qV/WlL31Ja2tr6uzs3JPXqrfSrCA/PDHteL9OnSRyuZwsy6raJp1Ob/hajd/vVzAYdGRsTtuLPDhh70wzHBvtgizMQRbmIAuzNOP5O5/Pa3x8XMPDw1pYWJDLdfGmeX9/vxYWFjQ6Oqpjx45pZGREbnf1wm2T7NmxcbawZYF6rbZaTr5wvqA1a02d/k659lcuZnBqWfq9wvuUOcjCHGRhlmY8f7cqjg1zkIU5yMIcZGEWk8/f119/vTxej34w/wMHRnWRx+vZs/teu8WxYQ6yMAdZmIMszGLy+bvdcGyYoxnuZbQLjgtzkIVZ9iKP3751v/5/b9x9vWXayis+v2LsA98ANmrKAnZJetOb3qREIqHvfOc7unDhgvbtK/9XyWQy699HIpE9G8/BgwclScvLy7IsS4FAYM9eq55Kb+bXDo+r89rd/ya79sPn9MMT046dJHK5nI6Ej2jFru0prHg8vmUbj9ej05nTRhaxO5mH01m0G9OPjXZCFuYgC3OQhVma8fydSCSUzWY1Ozu7Xrxe4nK5NDExoYGBASUSCQ0NDe3pWJzk9LFhf/eUziVmFDpQuZC8Vgc8HVKHs8vJe7we+f1+x/pzEu9T5iALc5CFWZrx/N2qODbMQRbmIAtzkIVZTD5/B4NBnc6crmkynng8rpmZmS3vaZk8GQ/HhjnIwhxkYQ6yMIvJ5+92w7FhDpPvZbQbjgtzkIVZnMyj9B51a/e+LVe83g6v1+tYXwD2TtMWsB89elSJREKvvPKKksmk3va2t5Vt9+ijj65/v5dPTD3//PPr31955ZV79jr1Vnoz77z2enW9/kbH+90ty7K0Yq/o8J2H1XWoq2K77cxUuXh8UZZlGXnhdy/y4IS9M6YfG+2ELMxBFuYgC7M04/l7aWlJktTT01N2f2l7qV2zcDqL0rJ43n0du+4rcKVLKmrLIoVWKWbgfcocZGEOsjBLM56/WxXHhjnIwhxkYQ6yMIvp5+9gMFjzZ7RIJKLe3l7HXrveODbMQRbmIAtzkIVZTD9/txOODXOYfC+j3XBcmIMszOJkHrxHAe2taQvYR0dHNTU1JUm6//77yxawFwoF/fmf/7kk6cCBA7r11lv3ZCyLi4s6efKkJOkNb3iDrrrqqj15HVTWdahL3tAWv1TcVJ+xAAAANLvSakKpVEr9/f2b9qdSqQ3t4JxaixSavZgBAAAAAAAAAICdWl5eViaT2bDNtm1ls1mFQqFNRanhcFg+n6+eQwQAbEP6hULV/faForJnCwodcFUtdt+qHwBmadoC9p/6qZ9SNBpVIpHQn/7pn+rDH/6w3v72t29oMz09rXQ6LUn62Mc+ps7Ozg37H3nkkfWi9g9/+MP6whe+sGH/U089pcXFRb3zne+sOI5z587p53/+53X+/HlJ0oc+9KHd/tUAAACAhopGowqFQpqcnNTCwoJcrldXsCkUCpqamlJ3d7ei0WgDRwkAAAAAAABgr5QrDi3dey99vRTFoQDqKZPJqK+vr+b2yWSSSWEAwECurivl6pDiD9qO9enzeuT3+x3rD8DeadoCdkm69957NTg4KNu2ddttt+muu+7SrbfeKtu29cUvflHHjx+XJN10000aHx/fdv9nzpzRT//0T+vf//t/r9HRUfX19en1r3+99u3bp+9///t6/PHH9ad/+qf6/ve/L0nq6enRf/pP/8nRvyMAAABQb263W9PT0xobG9Po6KgmJibU09OjVCqlqakpnThxQnNzc3K73Y0eKgAAAAAAAIA9UK04NB6Pb9pGcagzbPti8dbqmVVH+iv1U+oXaBXhcFjJZHLDtnQ6rXg8rpmZGUUikU3tAQDmcV/5GhWKKvvefalq7/GX8/v9CgaDTg8VwB5o6gL2N7/5zfqrv/orxeNxvfjii7rrrrs2tbnpppv00EMP6aqrrtrx63zrW9/St771rapt3vOe9+j+++9v2afK1374XNX9xQvndeHcv2rfNa9Tx779O+5nu9r1A3y1f8dGZdGuTD022hFZmIMszEEWZmm283csFtPc3JzGx8c1MDCwvr27u1tzc3OKxWJ1G4vTnDo2Lpz7V6eH1nZ4nzIHWZiDLMziRB5k4QyODXOQhTnIwhxkYRbO3+bg2DAHWZijmbIoVxxq27ay2axCoZC8Xu+m9s3E1Cyy2awkafH4ouP9Dg4OOtqnkzh/m8PUY+NyPp+v4kMzkUikJR6o4V6GOZrluGgHZGEWJ8/ftb53t8p7PICLmrqAXZLe+9736tvf/rbuvfdePfTQQ1pcXNT+/ft144036v3vf79+7dd+bcdF5YODg/rbv/1b/f3f/71OnTqlxcVF/eu//quWl5d19dVXq7u7W/39/foP/+E/GP1hbzf8fr88Xp9+eGLasT49Xp9jy3S02wd4p/NwMot2Y/qx0U7IwhxkYQ6yMEszn79jsZhGRkaUSCS0tLSkQCCgaDTatDOv78WxIUlpK+9YH6Y/SOkU3qfMQRbmIAuzNPP5u9VwbJiDLMxBFuYgC7Nw/jYHx4Y5yMIczZhFpeJQE++hbofpWYRCIUnS4TsPq+tQ1677Wz2zqsXji+v9mobztzlMPzbayV7dy8D2cVyYgyzMwvkbgFOavoBdkt7whjfoc5/7nD73uc9t6+eGhoZULBYr7u/s7NRtt92m2267bbdDbFrBYFCnM2lZllW1XaOW6Wi3D/C15MGSKfVh+rHRTsjCHGRhDrIwS7Ofv91ut4aGhur2envJ6WPjy1/+su6++27F51ccG6OpD1I6jfcpc5CFOcjCLE7nQRY7x7FhDrIwB1mYgyzMwvnbHBwb5iALc5CFOUzPojSzfdehLnlD3i1ab79f03D+Nofpx0Y7cTqLUjtsH8eFOcjCLJy/ATilJQrYsbeCwWDNJ4l6L9PRbh/gpdrzYMmUvWfysdFuyMIcZGEOsjAL529zOHlslGZLn4l5FPHvblb6tJVXfH7F2Acp9wLvU+YgC3OQhVnIwxxkYQ6yMAdZmIMszEIe5iALc5CFOcjCHGRhFvIwB1mYgyzMQRbmIAuzkAcAJ1DADgAAAAA7UHroMeJ3qzewuwL2y/sEAAAAAAAAAADYrdJkPGkr70h/z/6oIEkqnC840h8AAGhfFLADAAAAAAAAAAAAAAAAQIvJZrOSpPj8iqP9rllr0k2OdgkAANoMBewAAAAAAAAAAAAAAABAFcvLy8pkMhu22batbDarUCi0aYXNcDgsn89XzyECm4RCIUnSTMyjiH/3q8l++ek13f3weXX6O3fdFwAAaG8UsAMAAAAAAAAAAAAAAABVZDIZ9fX11dw+mUyqt7d3D0cEbK30YEXE71ZvYPcF7GkrL0ly7Xftui+glfHQEwBsjQJ2AAAAAAAAAAAAoAqKDwAAQDgcVjKZ3LAtnU4rHo9rZmZGkUhkU3vAFOkXClX32xeKyp4tKHTAJe++jortnv1R0emhAS2Jh54AYGsUsAMAAAAAAAAAml4ul5NlWVXbpNPpDV+r8fv9CgaDjowNQPNzuvigXEF8tfcoCuIBAGg8n89X8fweiUQoPISR/H6/fF6P4g/ajR4K6oAHb83BQ08AsDUK2AEAAACs48IWAAAAmlEul9OR8BGt2Cs1tY/H41u28Xg9Op05TRE7AEnOFx9UK4gv9x7FbHwAAADYiWAwqHTmdE0PfFf63bZcO5iJWb/NwUNPALA1CtgBAACANnb5LJXbvfB4+YVMZqkEAABAI1iWpRV7RYfvPKyuQ10V2xXOF7RmranT3ynXflfFdqtnVrV4fFGWZfH7LQBJzhcflCuI3+oBcgAAAGAngsFgzZ9tKaxtbsz6DQBoJhSwAwAAAG1qu7NUlnN5sTuzVAIAAKCRug51yRvyVm90U33GAgDVVCqIHxwcbMBoAAAAALQCZv0GADQTCtgBAACANsUslWZbXl5WJpPZsC2dTm/4eqlwOCyfz1eXsQEAAAAAAAAAgPa1ema16v7t3FsCAADtiQJ2bBuFNOYgC7OQhznIwhxkYQ6yMMvleTQ6i3aepdLkYyOTyaivr6/svstnvpekZDLZ1DNnmJxFuyELc5CFWbaTB1nsLY4Nc5CFOcjCHGRhFs7f5uDYMAdZmIMszEEWZiEPc5CFOUzKwu/3y+P1aPH4omN9erwe+f1+x/rbSyZl0e7IwizkAWAnKGDHtrVbIY3JyMIs5GEOsjAHWZiDLMxSKQ+yqD+Tj41wOKxkMrlhm23bymazCoVC8nq9m9o3M5OzaDdkYQ6yMMt28iCLvcWxYQ6yMAdZmIMszML52xwcG+YgC3OQhTnIwizkYQ6yMIdJWQSDQZ3OnJZlWVXbpdNpxeNxzczMKBKJVG3r9/ubZmVfk7Jod2RhFvIAsBMUsGPb2q2QxmRkYRbyMAdZmIMszEEWZrk8D7JoHJOPDZ/PV/bCzeDgYN3GUE8mZ9FuyMIcZGGW7eRBFnuLY8McZGEOsjAHWZiF87c5ODbMQRbmIAtzkIVZyMMcZGEO07IIBoM1F5xHIpGWKlI1LYt2RhZmcTIPZnMH2gcF7Ni2diukMRlZmIU8zEEW5iALc5CFWcrlQRaNwbFhDrIwB1mYgyzMQh7mIAtzkIU5yMIcZGEW8jAHWZiDLMxBFuZwOotyRVdbFXBRdPUqjg1zkIU5yMIcpmWRy+Vqmg3/0q/VNNNs+KZl0e6czIPZ3IH2QQE7Gs6JD/CrZ1arvkbhfEFr1po6/Z1y7XdVbLdVPwAAAK3Etm1Jzv0OVOqn1C8AAAAAAAAAtJtqRVflUHQFANiJXC6nI+EjWrFXampfrvD3ch6vR6czp5umiB2tidn1gfZBATsabjcf4P1+vzxejxaPLzo2Ho/XI7/f71h/AAAApspms5Lk6O9SpX6Z3QAAAAAAAABAOypXdJVOpxWPxzUzM6NIJLKpPQAA22VZllbsFR2+87C6DnVVbLedST8Xjy/KsiwK2NFQzK4PtA8K2NFwu/kAHwwGdTpzuqblcCr1d7lmWg4HAABgN0KhkCRteWGrVqULW6V+20X6hULV/faForJnCwodcMm7r2NHfQAAAAAAAABoDpWKriQpEokw2zoAwFFdh7rkDXmrN7qpPmNpZ7lcrqb6tUu/VkP9GoB2QAE7Gm63H+CDwWDNJ2wuCAAAALzq8uXVKql1Zobt9tvs/H6/fF6P4g/ajvTnYyUgAAAAAAAAAAAAoKnkcjkdCR/Rir1SU/t4PL5lG4/Xo9OZ0xSxA2hpFLADAAAAbcrv98vj9Wjx+KJjfXraqAg7GAwq7eBqQMykAAAAAADmYPY8AAAAAEAtLMvSir2y5arXtU4aVlr12rIsPkcCaGkUsAMAAABtKhgM6rSDBdhS+92QZzUgAAAAAGg9uVxOkfARLTs4e57P61Ga2fMAAAAAXGJ5eVmZTGbDNtu2lc1mFQqFNq16HA6H5fP56jlEbEPXoS55Q1usVH1TfcYCAM2AAnYAAACgjVGADQAAAADARpZladle0cztXkUOVp4Vz75QVPZsQaEDLnn3dVRsl36hoPiDNrPnAQAAANggk8mor6+v5vbJZJJ7dQCAlkEBOwAAAAAAAAAAAHCZyEGXegPuqm0Gr6/TYAAAAAC0nHA4rGQyuWFbtZWRw+FwPYcHAMCeooAddZfL5WRZVtU26XR6w9dq/H4/M5YAAAAAAAAAAAAAAADHUNsAYK/5fL6KM6qzMjIAoNVRwI66yuVyioSPaNleqal9PB7fso3P61E6c5oPegAAAAAAAECbsm1bkrR6ZtWR/kr9lPoFAAAA0F5yuZyOhI9oxcHaBo/Xo9PUNsAAy8vLymQyG7ZVexgjHA7L5/PVZWwAAKB9UMCOurIsS8v2imZu9ypy0FWxnX2hqOzZgkIHXPLu66jYLv1CQfEHbVmWxYc8AAAANNx2LvpywRcAAMA52WxWkrR4fNHxfgcHBx3tEwAAAID5LMvSir2iw3ceVtehrortCucLWrPW1OnvlGt/5RqI1TOrWjy+SG0DjJDJZNTX11d2X7mHMZLJJDOBAwAAx1HAjoaIHHSpN+Cu2mbw+joNBgAAAOuYdWN3tnPRlwu+AAAAzgmFQpK0ZXFJrUrFJaV+AQAAgEpyuZwsy6rapto11nLtYI6uQ13yhrzVG91Un7EATgmHw0omkxu22batbDarUCgkr9e7qT3Mw2p0AIBmRwE7AAAAgHXMurE727noywVfAAAA55R+z6qpuGQH/QIAAADl5HI5RcJHtGyv1NS+3DVWALXZ6mGRWh8UkSS/39/WM+H7fL6y93ZYgay5sBodAKDZUcAOAAAAYB2zbuwOF30BAACck8/nlUgktLS0pEAgoGg0Kre7+qqOAOCE0oyDaSvvSH+lfpjJEABaj2VZWrZXNHO7V5GDrort7AtFZc8WFDrgkndfR8V2X376gu5+2JmZdIFWksvldCR8RCs1PCxSy4MiHq9HpzOn27qIHc2P1egAAM2OAnbsGjeSzEEWZiEPc5CFOcjCHGRhDtOyaPcCbNPyaGdkYQ6yMAdZmIU8zEEW5nAyi/n5eY2Pj6/PJiZdvDE7PT2tWCzm0IhbF8eFOcjCLLXmUXrvic/XNpturZjJ8FUcG+YgC3OQhTl2kkXkoEu9geptBq/f+rWdeniqlXBsmKORWViWpRV7pWqhbuF8QWvWmjr9nXLtr/xASalI17Kspi1g57gwRyOzYDW6jTguzEIeAGpBATt2Zbs3kpi1ZO9wU88s5GEOsjAHWZiDLMxBFmYhD3OQhTnIwhxkYRbyMAdZmMPJLObn5zU2Nqbh4WHNzs6qp6dHqVRKk5OTGhsb09zcHPlWwXFhDrIwy3byKM04OBPzKOLf/Q32tJVXfH6FmQx/jGPDHGRhDrIwhylZrJ6pPgv7dgp1m5kpecCcLLYs1L2pbkNpGFOyAFmYhCzMQh4AalX5kwywhdKNpJtvvlknT57USy+9pJMnT+rmm2/W2NiY5ufnN/3MpbOW9B1/Zdd/SrOfXHrCa0c7yQJ7hzzMQRbmIAtzmJrF8vKynnzyyQ1/Hn/8cf3FX/yFHn/88U37lpeXGzJOJ5maRbsiD3OQhTnIwhxkYRbyMAdZmMPJLPL5vMbHxzU8PKyFhQX19/fryiuvVH9/vxYWFjQ8PKxjx44pn2dmynI4LsxBFmbZbh6lGQcjfrd6A7v/UyqCb9aZDJ3EsWEOsjAHWZjDhCwOeDqkDmnx+KKeueeZin+enXxWi8cX9ezks1XbLR5flMfrkd/v3/OxO82EPHARWZiDLMxBFuYgC7OQB4Dt6CgWi8VGD6Ldvfjii7rmmmt07tw5XX311Y0eTk3y+bxuvPFG3XzzzVpYWJDL9eqzEIVCQaOjo0qlUnr66ac3LP/x+OOP6+jRo47PWvLYY49VXXbzySefVF9fn5LJpHp7e3f9urU6fPiwnn/+eV133XVaXFzck9fYaRbYG+RhDrIwB1mYw+QsSufqWtX7nO40J7NYXl5WJpPZsM22bWWzWYVCoU03x8PhsHw+37bG2urLu5l8bLQbsjAHWZiDLGpTj8/fEnmYhCzM4XQWjzzyiG699VadPHlS/f39m/afPHlSAwMDevjhhzU0NLS+vfSZ4oZ7bnBk2Ww7a+uZe55pqs8eHBe14Zpt+9lJHuv3FO68Qr2B3Wf05FJefcdfaar3lL3AsWEOstganzHaz06z2KtzxszMjCKRSMV26XRa8Xh8y3aS5Pf7FQwGdz22ejLh2OAzxkUmZCE5m4fTWXDOKK9RdTr1sNdZ1Ppvx/uUOccFWVxkSh7tpBnrToFLMQM7diSRSCibzequu+7acLKRJJfLpYmJCT377LNKJBIb9q0XUBU7qvZvXygqbeVlX9ji+Yof99POs5bsNAvsDfIwB1mYgyzMYXIW4XBYyWRyw5+ZmRlJ0szMzKZ94XC47mN0kpNZZDIZ9fX1bfhz9OhRxeNxHT16dNO+y4vdq5mfn9eNN96oW2+9VT//8z+vW2+9VTfeeGPLPRlv8rHRbsjCHGRhDrIwC3mYgyzM4XQWS0tLkqSenp6y+0vbS+3wKo4Lc5CFWcjDHGRhDrIwB1mYw7QsIpGIent7K/4pFa1v1a63t7fpitcl8/JoZ2RhDrIwB1mYgyzMQh4AtmtfoweA5rTTG0l+v18+r0fxB23HxuJr0iXPnMJNPbOQhznIwhxkYQ6Ts/D5fBWfHi9dgG8lTmZRKv6/VLXZd2ot/i8t7zY8PKzZ2Vn19PQolUppcnJSY2NjmpubUywWq6kv05l8bLQbsjAHWZiDLMxCHuYgC3M4nUUgEJAkpVKpsjOwp1KpDe3wKo4Lc5CFWcjDHGRhDrIwB1mYY6dZ2PbF+95pK+/IOEr9lPptVyYcG6UMVs+sOtJfqZ9my9aELHARWZiDLMxBFmYhDwDbRQE7dmSnN5KCwaDSmdOyLKtq/62+5JmTuKlnFvIwB1mYgyzMQRbm2E0WuVxuy9+lqrl8BvZyv0vl83mNj49reHh4w/Ju/f39WlhY0OjoqI4dO6aRkZGWWN6NY8McZGEOsjAHWZiFPMxBFuZwOotoNKpQKKTJycmySw1PTU2pu7tb0WjUgdG3Fo4Lc5CFWcjDHGRhDrIwB1mYY6dZZLNZSVJ8fsXR8WSzWQ0ODjraZzMx4dgoZbt4fNHxfpspWxOywEVkYQ6yMIcpWfDQ00Wm5AGgeXQUi8ViowfR7l588UVdc801OnfunK6++upGD6cm+XxeN954o26++eayN5JGR0eVSqX09NNP76io6cknn1RfX5+SyaQjM6463V+tDh8+rOeff17XXXedFhed/WBbstdZYHvIwxxkYQ6yMEezZdGo83c97DSLXC6nSPiIlm3nbob4vB6lM6c3FLE/8sgjuvXWW3Xy5MmyFxdOnjypgYEBPfzwwxoaGnJsLI3SbMdGKyMLc5CFOciiNvX4/C2Rh0nIwhx7kcWlqwFNTEysrwY0NTWlEydOlF0NqPT54YZ7bpA35N3138vO2nrmnmea6vMIx0VtuGbbfnaSx/o1iTuvUG9g9xk9uZRX3/FXmuo9ZS9wbJiDLLbGZ4z2s9MsHn/8cR09elQzMY8i/t1nlLbyis+v6LHHHqta5NzK188lM46NUraH7zysrkNdu+5v9cyqFo8vbpmtaUzIQnL2M5/Tn/c4Z5TXyu9TptRMcS3EnOPiL/7iLxSPxx3vd2ZmRh/84Acd73evmJJHO2nGulPgUszAjh1xu92anp7W2NiYRkdHK95IasTJZnl5edPMoul0esPXS4XDYfl8vrqMbS+YnEU7Ig9zkIU5yMIcZGGOnWZhWZaW7RXN3O5V5KCrQu+SfaGo7NmCQgdc8u7rqNgu/UJB8QdtWZa1oYC93ZZ349gwB1mYgyzMQRZmIQ9zkIU59iKLWCymubk5jY+Pa2BgYH17d3d32eJ1XMRxYQ6yMAt5mIMszEEW5iALc+w0C6/3YsFgxO925KGny/ttV3t1bOTzeSUSCS0tLSkQCCgajVbso5RB16EuRwpDL++3WfA+ZQ6yMMdusqhlpeVqNU7l2rUzU46LUCgkSY4/9FTqt1mYkgeA5kEBO3bM1BtJmUxGfX19ZfeVe9qtmZ4crMTULNoVeZiDLMxBFuYgC3PsJovIQdeWN0MGr9/52NpxeTeODXOQhTnIwhxkYRbyMAdZmGMvsojFYhoZGam5uAQXcVyYgyzMQh7mIAtzkIU5yMIcZGEWp/OYn5/X+Pi4stns+rZQKKTp6Wmy3QLHhjnIwhw7yWK7Ky3vxYzerciE44KHnl5lQh4AmkdHsVgsNnoQ7a7Zl3LYzlPKtdrNUkLlZmC3bVvZbFahUGjTyX0vZ2Cv11JRJXuRBXaOPMxBFuYgC3M0QxatvLTgpbaTRb2WMG/n5d2a4dhoF2RhDrIwB1lUVu/P3xJ5mIQszNHILFg2eyOOi8q4Ztveas2jXp+/2xnHhjnIojw+Y7Q3E6/ZVnzdNji3OHFszM/Pa2xsTMPDw7rrrrvWZ4OdnJxcnw328oI6PmNs1iqf+ZzOgnNGee3yPrWTc4ZTKy1/+ekLuvvhVd6nfqxV3qOk5s9Cao73qVbQ7HWnADOwY9fcbreGhoYaPYx1Pp+v7Ml7cHCwAaOpL9OyaHfkYQ6yMAdZmIMszGFiFu28vJuJebQrsjAHWZiDLMxCHuYgC3OQhTnIwhxkYRbyMAdZmIMszEEW5iALs+w2j3w+r/HxcQ0PD2+YsKW/v18LCwsaHR3VsWPHNDIy0pLXvJ3EsWEOsjDHTrJwaqXltJXf1uu2Oo4Ls5AHgFpQwA4AAABgE5Z3AwAAAAC0u/QLhar7a50Zcat+AADA3kkkEspms5qdnd2w2qgkuVwuTUxMaGBgQIlEgkI7AAAAoI4oYEfDLS8vK5PJbNiWTqc3fL1UOByWz+ery9gAAADaWSwW08jICMu7AQAAoC7KXSe0bVvZbFahUEhe78YlmLlOCGCv+P1++bwexR+0HevT5/XI7/c71h8AAKjN0tKSJKmnp6fs/tL2UjsAAAAA9UEBOxouk8mor6+v7L54PL5pWzKZVG9v714PCwAAAGJ5NwAAANRPteuE5ZS7Trh6ZrXqzxTOF7RmranT3ynXflfFdlv1A6C1BYNBpTOnZVlW1XbpdFrxeFwzMzOKRCJV2/r9fgWDQSeHCQAwCKt2mCsQCEiSUqmU+vv7N+1PpVIb2gEAAACoDwrY0XDhcFjJZHLDtq1mVgIAAAAAAADQWspdJ6xWHHrpdUK/3y+P16PF44uOjcfDbMlAWwsGgzUXnEciESbeAYA2xaod5otGowqFQpqcnNQDDzygxx9/fH3F0cHBQU1NTam7u1vRaLTRQwUAAADaCgXsaDifz1f2wu7g4GADRgMAAAAAAACgESpdJ5S2Lg4NBoM6zWzJAAAAqDNW7TCf2+3W9PS03ve+9+maa66Rbb/6sIHX65Vt23rggQfkdrsbOEoAQKMtLy8rk8ls2LbVBKw+n6+eQwSAlkMBOwAAAAAAAACg7nK5XE2FPpd+rcbv99c8AzKzJQMAAMAprNrRHDo6OspuK7cdwPaUK/yt9nmewl+YKJPJqK+vr+b2yWSSczoA7BIF7AAAAAAAAACAusrlcoqEj2jZXqmpfTwe37KNz+tROnOa2SoBAAAArMvn8xofH9fw8LAeeOABPf7441paWlIgENDg4KDe97736dixYxoZGWEWdmCHqhX+lvs8T+EvTBQOh5VMJjdsq7aCSjgcrufwAKAlUcAOAAAAAAAAAKgry7K0bK9o5navIgddFdvZF4rKni0odMAl777KMyOmXygo/qAty7IoYAcAAACwLpFIKJvNanZ2Vp2dnRoaGtqwf2JiQgMDA0okEpv2AahNucJf27aVzWYVCoXk9Xo3tQdM4/P5Kj5YwQoqALA3KGAHAABA3eVyOVmWVbVNtaUFL+f3+9uiSMW2bUlS2so70l+pn1K/AAAAQL2s/w7aUazazruvQxF/DbMg/rgffrcFAAAAcKmlpSVJUk9PT9n9pe2ldtg7y8vLymQyG7ZtVeTs8/nqOUTsUKXC38HBwQaMxlxO3+d79kcFSVLhfMGR/gAAqDcK2AEAAFBXuVxOR8JHtGKv1NS+3NKCl/N4PTqdOd3yRezZbFaSFJ+v7d9uO/1yEREAAAD1xO+2AAAAaFXlinSrTdhCke7eCgQCkqRUKqX+/v5N+1Op1IZ22DuZTEZ9fX01t08mk8x4jJayV9dC1qw16SZHuwQAoC4oYAcAAEBdWZalFXtFh+88rK5DXRXbFc4XtGatqdPfKdd+V8V2q2dWtXh8UZZltXwBeygUkiTNxDy1zUK5hbSVV3x+Zb1fAAAAoF743RYAAACtqlqRbrkJWyjS3VvRaFShUEiTk5NaWFiQy/Xq/YZCoaCpqSl1d3crGo02cJTtIRwOK5lMbtiWTqcVj8c1MzOjSCSyqT3QSpy+FvLlp9d098PnVbhQkJ2tvCLddu65AgBQTxSwAwAAoCG6DnXJG/JWb8RsARusL59Z7Kjazr5QVPZsQaEDLnn3VWn7434uX5YTAAAA2Gv8bgsAAIBWVa5I17ZtZbNZhUKhTb+zUqS7t9xut6anpzU2NqbR0VFNTEyop6dHqVRKU1NTOnHihObm5uR2776YFNX5fL6KD2tEIhEe5EDLK73/R/xu9QZ2/56z9HJB6pDO/NmZXfdV4vF65Pf7HesPAIBqKGAHAAAAmoTf75fP61H8wcqzKGyXjwtRAAAAaAB+twUAAECrqlSkOzg42IDRQJJisZjm5uY0Pj6ugYGB9e3d3d2am5tTLBZr4OgAYGcCV7qkosquYHCpaisdXM7v97f8itcAAHNQwA4AAAA0iWAwqHTmtCzLqtqOC1EAAAAwHb/bAgAAAKinWCymkZERJRIJLS0tKRAIKBqNMvM6gLpLv1Cour/W1ehK/dS6ggErHWyUy+Vqui516det2q2eWa3arnC+oDVrTZ3+Trn2uyq226ofAGgVFLADAAAATSQYDNZclMOFKAAAAJiM320BAAAA1JPb7dbQ0NC2foZiRDPY9sXVu5z4dyz1UeoTqBdWozNHLpdTJHxEy/ZKTe3j8fjWjTqkxeOLuxzZqzxkC6ANUMAOAAAAAAAAAAAAAAAA/Jjf75fH66EY0RDZbFaSs8Wh2WxWg4ODjvUHbIXV6MxhWZaW7RXN3O5V5GDlh4+2Mxt+/EF7y8zIFgA2ooAdAAAAAAAAAAAAAAAA+LFgMKjTFJoaIxQKSZIO33lYXYe6dtXX6plVLR5fXO8TqCdWozNL5KBLvQF31TaD12+jvxozI1sAuIgCdgAAAKCJLS8vK5PJbNiWTqc3fL1UOByWz+ery9gAAACA7eB3WwAAAAAmodDUHF6vV5LUdahL3pDX0T6BRuJaCACgnVHADgAAADSxTCajvr6+svvi8fimbclkkovoAAAAMBK/2wIAAAAAgHbCtRAAQDujgB0AAABoYuFwWMlkcsM227aVzWYVCoU2zSASDofrOTwAAACgZvxuC8BkzIwIAEDzKXf+3uozBudvAPXEtRAAQDujgB0AAABoYj6fr+xMC4ODgw0YDQAAALBzl/9um8/nlUgk5HK5tLa2pv7+frnd7gaOEEA7Y2ZEAADMl8vlZFnW+n+n0+my5+lKZmZmFIlE1v/b7/crGAw6OkYAuBT3+QAA7YwCdgAAAAAAAACAUebn5zU+Pq5sNru+LRQKaXp6WrFYrHEDA9C2mBkRAACz5XI5RcJHtGyv7LiPy4vdfV6P0pnTFLEDQIuxbVuSlLbyjvRX6qfULwCgNhSwAwAAoK5KH9xXz6w60l+pHy4IAAAAAK1hfn5eY2NjGh4e1uzsrHp6epRKpTQ5OamxsTHNzc1RxA6g7pgZEQAAsz333HNatlf027d2qfs1HRXbrV6QzrxU0KGrXOqqUjHz7I+KuvvhFT333HMUsANAiylNmBCf3/lDT5X65TMiANSOAnYAANC2lpeXlclkNmzbauYsn89XzyG2pNIFgcXji473ywUBAAAAoLnl83mNj49reHhYCwsLcrlckqT+/n4tLCxodHRUx44d08jIiNxud4NHCwAAAMAUpXsPdz/szOQ5l/bLvQcAaC2hUEiSNBPzKOLf/fWltJVXfH5lvV8AQG0oYAcAAG0rk8mor6+v5vbJZLLsTFvYntIH98N3HlbXoa5d97d6ZlWLxxe5IAAAAAC0gEQioWw2q9nZ2fXi9RKXy6WJiQkNDAwokUhoaGioMYMEAAAAYByKEc2Ty+VkWVbVNul0esPXrdoBgBNKE9lF/G71BpybIOHyCfIAANVRwA4AANpWOBxWMpncsC2dTisej2tmZkaRSGRTe+xe6YN716EueUPOfYjnggAAAADQ/JaWliRJPT09ZfeXtpfaAQAAAIBEMaJpcrmcIuEjWrZXamofj8f3eEQAAAAwDQXsAACgbfl8voozqkciEWZbBwAAAIA6CwQCkqRUKqX+/v5N+1Op1IZ2AAAAAADzWJalZXtFM7d7FTnoqtjOvlBU9mxBoQMuefd1VGz35acv6O6HV/diqADaWPqFwvr3pfejWl36vnVpPwCA2lHADgAAAAAAAAAwQjQaVSgU0uTkpBYWFuRyvVroUCgUNDU1pe7ubkWj0S37Wl5eViaT2bCt2vL04XBYPp9vl38DAAAAAK2KzxjbFzno2nJG/MHrt+4nbeUdGhEASH6/Xz6vR/EHbcf69Hk98vv9jvUHAO2AAnYAAAAAAAAAgBHcbremp6c1Njam0dFRTUxMqKenR6lUSlNTUzpx4oTm5ubkdlcvgJCkTCajvr6+svvKLU+fTCZZiQsAAABoclvNglvrjN/l+uEzRuOtnqk8C3vhfEFr1po6/Z1y7a8863u1PgC0h2AwqHTmtCzLWt9m27ay2WzNfYRCIXm93vX/9vv9CgaDTg4TAFoeBewAAAAAAAAAAGPEYjHNzc1pfHxcAwMD69u7u7s1NzenWCxWUz/hcFjJZHLDttLNyMtvMpbaAwAAAGhO9ZhNl88YjXPA0yF1SIvHFx3pz8NMyUDbCwaDmwrOBwcHGzQaAGhPFLADAAAAAAAAAIwSi8U0MjKiRCKhpaUlBQIBRaPRmmZeL/H5fGVnO+RmJAAAANB6ys2mW046nVY8HtfMzIwikUjVtpfPpstnjMYJXOmSiqqa226yBQAAQP1RwA4AAAAAAAAAMI7b7dbQ0FCjhwEAAACgSZSbTbeSSCRSthgdzrDtizPhp628I/2V+gmFQlvmRrYAAADNgQJ2AAAAAAAAAAAAAG1peXlZmUxmwzbbtpXNZhUKheT1ejfsC4fD8vl89RwiAABNJ5vNSpLi8yuO98uM9wAAAK2BAnYAAAAAAAAAAAAAbSmTyaivr6/m9slkklldAdRVuQdt0un0hq+X4kEbmCAUCkmSZmIeRfzuXfeXtvKKz6+s9wsAAIDmRwE7AAAAAAAAAAAAgLYUDoeVTCY3bEun04rH45qZmVEkEtnUHgDqqdqDNvF4fNM2HrR5FcX/jVNawSTid6s3sPsC9sv7BQAAQPOjgB0AAAAAAAAAAABAW/L5fBULPSORCEWgABqu3IM2tm0rm80qFAptKujlQZtXUfwPAAAAmIsCdgAAAAAAAAAAAAAAAANVetBmcHCwAaNpLhT/AwAAAOaigB0AAAAAAAAAAAAAAAAtheJ/AECjLC8vK5PJbNiWTqc3fL1UOByWz+ery9gAwBQUsAMAAAAAAAAAAAAAAAAA0MQomjZHJpNRX19f2X3xeHzTtmQyWfahKwBoZRSwAwAAAAAAAAAAAAAAAADQxCiaNkc4HFYymdywzbZtZbNZhUIheb3eTe0BoN1QwA4AAAAAAAAAAAAAAAAAQBOjaNo5+XxeiURCS0tLCgQCikajcrvdNf+8z+cr+3DA4OCgk8MEgKZGATsAAAAAAAAA7IHd3ugCAAAAAAAAakXRtDPm5+c1Pj6ubDa7vi0UCml6elqxWKxxAwOAFkMBOwAAAAAAAAA4jBtdAAAAAIB2l36hUHW/faGo7NmCQgdc8u7r2HE/AOCU+fl5jY2NaXh4WLOzs+rp6VEqldLk5KTGxsY0NzfHtT0AcAgF7AAAANi25eVlZTKZDdu2Wn7O5/PVc4gAAABAw3CjCwAAAADQzvx+v3xej+IP2o716fN65Pf7HesPAC6Xz+c1Pj6u4eFhLSwsyOVySZL6+/u1sLCg0dFRHTt2TCMjI6yyCAAOoIAdAAAA25bJZNTX11dz+2QyWXa5OgAAAKDVcKMLAAAAANDugsGg0pnTsiyrart0Oq14PK6ZmRlFIpGqbf1+v4LBoJPDBIANEomEstmsZmdn16/plbhcLk1MTGhgYECJREJDQ0ONGSQAtBAK2AEAALClXC634SKjbduamZnZ0ObZZ5/V3Xffrd/+7d9Wd3f3hn22bevJJ5+UdPFiJAAAANCquNEFAAAAAMDFIvZaC84jkQgTIQFouKWlJUlST09P2f2l7aV2AIDdoYAdAAAAVeVyOUXCR7Rsr9TU/u67797jEQEAAADm4kYXAAAAAAAA0HwCgYAkKZVKqb+/f9P+VCq1oR0AYHcoYAcAAEBVlmVp2V7RzO1eRQ66KrazLxSVPVtQ6IBL3n0dFdt9+ekLuvvh1b0YKgAAANBw3OgCAAAAAAAAmk80GlUoFNLk5KQWFhY2rK5YKBQ0NTWl7u5uRaPRBo4SAFoHBewAAACoSeSgS70Bd9U2g9dv3U/aykuSVs9UL2IvnC9ozVpTp79Trv2VC+e36gcAAACoJ250AQAAAAAAAM3H7XZrenpaY2NjGh0d1cTEhHp6epRKpTQ1NaUTJ05obm5Obnf1e+YAgNpQwA4AAIC6OuDpkDqkxeOLjvXp8Xrk9/sd6w8AAADYKW50AQAAAAAAAM0pFotpbm5O4+PjGhgYWN/e3d2tubk5xWKxBo4OAFoLBewAAACoq8CVLqkozczMKBKJVGyXTqcVj8e3bCdJfr9fwWDQ6aECAAAAO8KNLgAAAAAAAKA5xWIxjYyMKJFIaGlpSYFAQNFolAkpAMBhFLADAACgISKRiHp7ex1rBwAAAJiEG10AAAAAAABAc3K73RoaGmr0MACgpVHADgAAgKps25Ykpa28I/2V+in1CwAAALQqbnQBAAAAAAAAAABsRgE7AABoWvl8ntkM6yCbzUqS4vMrjvc7ODjoaJ8AAAAAAAAAAAAAAAAAzEYBOwAAaErz8/MaHx9fL66WpFAopOnpacVisbI/k8vlZFlW1X7T6fSGr9X4/X4Fg8HaB92kQqGQJGkm5lHEv/sHBNJWXvH5lfV+AQAAAAAAAAAAgFotLy8rk8ls2FbtHl84HJbP56vL2AAAAFAbCtgBAEDTmZ+f19jYmDwez4bt//qv/6qxsTHNzc1tKmLP5XI6Ej6iFbu2WcTj8fiWbTxej05nTrd8EbvX65UkRfxu9Qacm+G+1C8AAAAAAAAAAABQq0wmo76+vrL7yt3jSyaT6u3t3ethAQAAYBsoYAcAAE0ln8/rox/9qIrFon76p39an/zkJ9XT06NUKqXPfOYzOnHihD760Y9qZGREbverxdaWZWnFXtHhOw+r61BXxf4L5wtas9bU6e+Ua7+rYrvVM6taPL4oy7JavoAdAAAAAAAAAAAAMEU4HFYymdywzbZtZbNZhUKhTZMohcPheg4PAAAANaCAHQAANJVHHnlEP/jBD3T06FF96Utfkst1sci8v79fX/rSl3TLLbfo8ccf1yOPPKKf/umf3vTzXYe65A1tMfP3TXsxcgAAAAAAAAAAAAC75fP5ys6oPjg42IDRAAAAYCcqTysKAABgoEceeUSS9OlPf3q9eL3E5XLpnnvu2dAOAAAAAAAAAAAAAAAAAGAOCtgBAAAAAAAAAAAAAAAAAAAAAHWxr9EDAAAA2I6hoSH9zu/8jj71qU9paGhowyzshUJBn/70p9fbwVnpFwpV99sXisqeLSh0wCXvvo4d9wMAAAAAAAAAAAAAAACgdVHADgAAmsrQ0JAOHjyoxx57TCMjI7rrrrvU09OjVCqlyclJPfbYY3rta19LAbuD/H6/fF6P4g/ajvXp83rk9/sd6w8AAAAAAADtY3l5WZlMZsM227aVzWYVCoXk9Xo37AuHw/L5fPUcIgAAAAAAAKqggB0AADQVt9ut//E//ofe97736Wtf+5pOnDixvq90E+qP/uiP5Ha7GzXElhMMBpXOnJZlWVXbpdNpxeNxzczMKBKJVG3r9/sVDAadHCYAAAAAAADaRCaTUV9fX83tk8mkent7JUm5XK6m61yXfq2G61wAANSm3ANo1c65PIAGAADQ2ihgBwAATScWi+mBBx7Qxz/+cX3ve99b3/7a175W09PTisVim37Gti/OHr56ZtWRMZT6KfXb6oLBYM034iKRyPoNQQAAAAAAAMBp4XBYyWRyw7ZqkyuEw2FJF4vXj4SPaMVeqel14vH4lm08Xo9OZ05TxA4AwBaqPYBW7px76QNoAAAAaD0UsAMAgKYUi8U0MjKiRCKhpaUlBQIBRaPRijOvZ7NZSdLi8UVHx5HNZjU4OOhon+2IWTcAAAAAAABQK5/PV7GgrdrkCpZlacVe0eE7D6vrUFfF/gvnC1qz1tTp75Rrv6tiu9Uzq1o8vijLsihgBwBgC+UeQLNtW9lsVqFQSF6vd1N7AAAAtC4K2AEAQNNyu90aGhqqqW0oFJKkLW9O1ap0c6rUL3aHWTcAAAAAAABQL12HuuQNeas3uqk+YwEAoF1c/gBaPp9XIpGQy+XS2tqa+vv7K05UBQAAgNZDATsAAHVWbqbprWYXYKbp3Sv9u9Z0c2oH/WJ3mHUDAAAAAAAAAACgPczPz2t8fHx9BWXp4mRU09PTisVijRsYAAAA6oYCdgAA6qzaTNPlMNM02kGlZZ8HBwcbMBoAAAAAAACYJJfLybKsqm3S6fSGr9XaAACAxpmfn9fY2JiGh4c1Ozurnp4epVIpTU5OamxsTHNzcxSxAwAAtAEK2AEAqLNyM02n02nF43HNzMwoEolsag8AAAAA2BuskgUAgNlOnz6tn/z3/49WVs/X1D4ej2/ZpnC+sNthAQCAHcjn8xofH9fw8LAWFhbkcrkkSf39/VpYWNDo6KiOHTumkZERud3uBo8WAAAAe4kCdgAA6qzSTNOSFIlEmG0dAAAAAOqIVbIAADDbqVOnai5er9WatSbd5GiXAACgBolEQtlsVrOzs+vF6yUul0sTExMaGBhQIpHQ0NBQYwYJAACAuqCAHQCAbcrn80okElpaWlIgEFA0GmUGAAAAAAA1Y8Zvszi5ShbZAgDgvFAoJEmaiXkU8e/uOuyXn17T3Q+fV6e/04GRAQCA7VpaWpIk9fT0lN1f2l5qBwAAgNZFATsAANswPz+v8fFxZbPZ9W2hUEjT09OKxWKNGxgAAACApsGM32ZxcpUssgUAwHmlB8Aifrd6A7srYE9beUmSa79ri5YAAGAvBAIBSVIqlVJ/f/+m/alUakM7AAAAtC4K2AEAqNH8/LzGxsY0PDys2dlZ9fT0KJVKaXJyUmNjY5qbm6OIHQAAAMCWnJzxG2YhWwAAAAAAKotGowqFQpqcnNTCwoJcrlcfKisUCpqamlJ3d7ei0WgDRwkAAIB6oIAdAIAa5PN5jY+Pa3h4eMPFlP7+fi0sLGh0dFTHjh3TyMiI3O7dzQIEAAAAoLU5OeM3ti+Xy8myrKpt0un0hq+V+P1+BYPB9f8mWwAA9k76hULV/faForJnCwodcMm7r6Nsm2d/VNyLoQEAgBq53W5NT09rbGxMo6OjmpiYWJ80bGpqSidOnNDc3Bz3WwEAANoABewAANQgkUgom81qdnZ2w0wAkuRyuTQxMaGBgQElEgkNDQ01ZpAAAAAAgKpyuZwi4SNatldqah+Px6vu93k9SmdObyhiBwAAzvL7/fJ5PYo/aDd6KAAAwAGxWExzc3MaHx/XwMDA+vbu7m5WvAYAAGgjLVPA/r3vfU9/8Ad/oIceekjPPfecurq6dMMNN+iOO+7Qr/7qr8rn8+247+XlZX3lK1/RV7/6VZ06dUrf+c539PLLL+vqq6/WTTfdpJ/92Z/VL//yL+v1r3+9g38jAIBJlpaWJEk9PT1l95e2l9oBAAAAAMxjWZaW7RXN3O5V5KCrYrtaZnBNv1BQ/EFblmVRwA4AwB4KBoNKZ07XtIJKPB7XzMyMIpFI1TYAAKCxYrGYRkZGlEgktLS0pEAgoGg0yszrAAAAbaQlCtj/+q//WvF4XC+++OL6tuXlZZ06dUqnTp3Sfffdp4ceekg33njjtvv+9re/rcHBQb388sub9v3bv/2bvvGNb+gb3/iGPv/5z+v48eP6wAc+sKu/CwDATIFAQJKUSqXU39+/aX8qldrQDgAAAABgrshBl3oD1W+KD15fp8EAAIAtBYPBmh8Yi0Qi6u3t3eMRAQCA3XK73axsDQAA0MaavoD9n//5n/WBD3xAtm3ryiuv1MTEhG699VbZtq0vfvGL+pM/+RM99dRTes973qNTp07pqquu2lb/L7744nrx+uDgoIaHh/WWt7xF1157rV544QXNz8/rT/7kT/Tiiy/qgx/8oK6++mq9+93v3ou/KgA4Jp/P8zT7NkWjUYVCIU1OTmphYUEu16sz9RUKBU1NTam7u1vRaLSBo0QtVs+sVt1fOF/QmrWmTn+nXPsrz8i4VT+tbnl5WZlMZsO2dDq94eulwuHwrlbEAQAAAJxg27YkKW3ld91XqY9SnwAAAAAAAAAAAKhN0xewf+xjH5Nt29q3b5/+7u/+Tm9/+9vX973zne/UG9/4Rn3iE5/QU089penpad1zzz3b6t/lcumOO+7Qpz71Kb3pTW/atP+2227Tu9/9bt1+++3K5/P69V//dT399NPq6Ci/tDAANNr8/LzGx8eVzWbXt4VCIU1PTysWizVuYIZzu92anp7W2NiYRkZG9K53vUter1e2besrX/mKHnroIc3NzfEggMH8fr88Xo8Wjy861qfH65Hf73esv2aSyWTU19dXdl+5ZZiTySQzXwEAAKDhSp+F4/MrjvY5ODjoWH8AAAAAAAAAAACtrqkL2P/xH/9RiURCkvSLv/iLG4rXS8bHx3X//fcrnU7r3nvv1Sc/+Ul1dnbW/BoDAwMaGBio2mZkZESxWEwPPPCAnnnmGf3zP/8zBVoAjDQ/P6+xsTENDw9rdnZWPT09SqVSmpyc1NjYmObm5ihiryIWi+nYsWP6/Oc/rxMnTqxv37dvn44dO8a/neGCwaBOZ07Lsqyq7dLptOLxuGZmZhSJRKq29fv9NS9d3GrC4bCSyeSGbbZtK5vNKhQKyev1bmoPAAAANFooFJIkzcQ8ivh39wBy2sorPr+y3icAAAAAAAAAAABq09QF7AsLC+vff+QjHynbxuVy6UMf+pAmJiZ09uxZPfzww7rtttscH8utt96qBx54QJL0zDPPUMAOwDj5fF7j4+MaHh7WwsKCXC6XJKm/v18LCwsaHR3VsWPHNDIywiziFczPz+uzn/2s3vOe9+jd7373+gzsf/M3f6PPfvaz6u/vp4jdcMFgsOaC80gkwvm8Cp/PV/bfh5knAQAAYLL1By2L1VdPtC8UlT1bUOiAS959Fdr+uI/LH94EAAAAAAAAAABAdU1dwP7YY49Jkq644gr19fVVbPeOd7xj/fvHH398TwrYV1dX17+n8BMoL5/PK5FIaGlpSYFAQNFolOOljhKJhLLZrGZnZ9eL10tcLpcmJiY0MDCgRCKhoaGhxgzSYJUeAJCkX/7lX+YBAAAAAABoAn6/Xz6vR/EHbUf683R1aWlpSU8++WTFNul0esPXrcbXrqs8AQAAAAAAAACA9tHUBeylmz433nij9u2r/FcJh8ObfsZpjz766Pr3kUhkT14DaGbz8/MaHx9XNptd3xYKhTQ9Pc2M1XWytLQkSerp6Sm7v7S91A4b8QBAY+RyOVmWtf7ftm1veB/ZSigU2jAbIsUgAAAAQHsLBoNKZ05v+JxRTjqdVjwe18zMTMVrfUtLS3rf2Ps0PDxc02vH4/Et23i8Hp3OnOZzCwAAW1heXlYmk9mwrdpDY+FwWD6fry5jazflsihdx738+qxEFgAAAAAA4KKmLWBfWVlZv9F0+PDhqm1f85rX6IorrtArr7yi5557zvGxfOtb39JDDz0kSbr55pu3LGBfXV3dMGP7iy++6PiYAJPMz89rbGxMw8PDmp2dVU9Pj1KplCYnJzU2Nqa5uTmK2OsgEAhIklKplPr7+zftT6VSG9phIx4AqL9cLqdI+IiW7RXH+vR5PUpTDAIAAAC0tWAwWPNngkgkot7e3rL7nnzySa2urOrwnYfVdairYh+F8wWtWWvq9HfKtd9Vsd3qmVUtHl+UZVl8ZgEAYAuZTKbi6szlHhpLJpPq7e2VbV9chWX1zOqmNjtR6qfUbzuqlkU5pSwAAAAAAEB7a9oC9pdeemn9+yuvvHLL9qUC9pdfftnRcayuruqXfumXlM/nJUmf+cxntvyZqakpffrTn3Z0HICp8vm8xsfHNTw8rIWFhfWZq/v7+7WwsKDR0VEdO3ZMIyMjcrvdDR5ta4tGowqFQpqcnNyQhSQVCgVNTU2pu7tb0Wi0gaM0Fw8A1J9lWVq2VzRzu1eRgxf/f7UvFJU9W6i5j9ABl7z7OiRJ6RcKij9oUwwCAACAurt8ZaFyqs0YejlWFjJDrYVqrv2uqgXuO+0XAIB2Fg6HlUwmN2zbatZvSeurOy4eX3R0PNlsVoODg4722SzKZVFtNZtLV84GAAAAAADtq2kL2FdWXp2Ndf/+/Vu27+q6eJPI6RtAv/Zrv6ZTp05Jkj784Q/rve9975Y/MzExoY9//OPr//3iiy/q+uuvd3RcgCkSiYSy2axmZ2c3FExLksvl0sTEhAYGBpRIJDQ0NNSYQbYJt9ut6elpjY2NaXR0VBMTE+uz4U9NTenEiROam5vjQYIKeACgcSIHXeoNvPr/5SCnTAAAADSR7a4sVG7G0MuxspAZKIADAKBxfD5f2Vm8tzqHhkIhSdpyBZValVZQKfXbjiplIVVfzQYAAAAAALS3pi1g93g869+fP39+y/arqxeX8Lt8xoXdmJqa0n333SdJeutb36o//MM/rOnnurq61gvqgVa3tLQkSerp6Sm7v7S91A57KxaLaW5uTuPj4xoYGFjf3t3drbm5OcVisQaOzmw8AFB/pYfO0lbekf5K/TCbIQAAAOqp3MpC5ZRWG7p0FaFyWFnIHBTAAQDQfEr3CbsOdckbcu6eoZP3HwEAAAAAANpB0xawX3XVVevfv/zyy1u2f+WVVyRJV155pSOv/8d//Me66667JF1c6u7LX/6yrrjiCkf6BlpJIBCQJKVSKfX392/an0qlNrTD3ovFYhoZGVEikdDS0pICgYCi0SiF1zXgAYD6Ks1mGJ+vbabK7fTLbIYAAACot8tXFiqH1YaaCwVwAAAAAAAAAAAAO9O0Bewej0fXXnutfvjDH2pxsfoyvT/60Y/WC9ivv373dwJnZ2f1K7/yK5KkN7zhDfrqV78qv9+/636BVhSNRhUKhTQ5OamFhQW5XK/ONlcoFDQ1NaXu7m5Fo9EGjrL9uN1uDQ0NNXoYTYkHAOrnLW95izxd+7WyuvVKK7XydO3XW97yFsf6AwAAAAAAANB4+Xyea7YAAAAAAABNpGkL2CXpTW96kxKJhL7zne/owoUL2rev/F8nk8msfx+JRHb1mv/n//wffehDH1KhUFAgENDXvvY1HT58eFd9Aq3M7XZrenpaY2NjGh0d1cTEhHp6epRKpTQ1NaUTJ05obm6OC8loKjwAUB9HjhzR6aeelmVZVdul02nF43HNzMxseZ73+/0KBoNODhMAAACoyrZtSVLayjvSX6mfUr/YveXl5Q3XD6WLnzMu/XqpcDgsn89Xl7EBAICtzc/Pa3x8fH1FR0kKhUKanp5m1UwAAAAAAABDNXUB+9GjR5VIJPTKK68omUzqbW97W9l2jz766Pr3g4ODO369r33ta7rjjjt04cIFXXvttfrqV7+qG264Ycf9Ae0iFotpbm5O4+PjGhgYWN/e3d2tubk5LiADqCgYDNZccB6JRNTb27vHIwIAAAC2p1RIFZ9fcbzf3VznwqsymYz6+vrK7ovH45u2JZNJPnsAAGCI+fl5jY2NaXh4WLOzs+sT6ExOTmpsbIx7EAAAAAAAAIZq6gL20dFRTU1NSZLuv//+sgXshUJBf/7nfy5JOnDggG699dYdvdYTTzyhkZERra6u6pprrtHf/u3f6id+4id2PnigzcRiMY2MjLCEJ4BdYWZEAAAANJtQKCRJmol5FPHv/jNw2sorPr+y3i92LxwOK5lMbthm27ay2axCoZC8Xu+m9gAAoPHy+bzGx8c1PDyshYUFuVwuSVJ/f78WFhY0OjqqY8eOaWRkhHsRDsrlcjWtmnnp12pYNRMAAAAAgPbU1AXsP/VTP6VoNKpEIqE//dM/1Yc//GG9/e1v39Bmenp6/eLIxz72MXV2dm7Y/8gjj6wXtX/4wx/WF77whU2v881vflPvec979Morr+iKK67QQw89VHFWJgCVud1uDQ0NNXoYAJqY0zMjUhAPAACAvVYqfo743eoNOFc4dXlRNXbO5/OV/dzADPcAAJgtkUgom81qdnZ2vXi9xOVyaWJiQgMDA0okEtybcEgul1MkfETLdm2rC5W7Zns5n9ejdOY0RewAAAAAALSZpi5gl6R7771Xg4ODsm1bt912m+666y7deuutsm1bX/ziF3X8+HFJ0k033aTx8fFt9//MM8/oZ3/2Z3X27FlJ0u/8zu/ommuuUSqVqvgzr33ta/Xa1752R38fAABQmdMzIzpdEA8AAAAAAACgPpaWliRJPT09ZfeXtpfaYfcsy9KyvaKZ272KHHRVbGdfKCp7tqDQAZe8+zoqtku/UFD8QVuWZVHADgAAAABAm2n6AvY3v/nN+qu/+ivF43G9+OKLuuuuuza1uemmm/TQQw/pqquu2nb/iURCP/jBD9b/+zd/8ze3/JlPfepTuueee7b9WgAAoDqnZ0Z0uiAeAAAAQPtZPbNadX/hfEFr1po6/Z1y7a9c6LVVPwAAYKNAICBJSqVS6u/v37S/NBlVqR2cEzno2nJ1ocHr6zQYAAAAAADQlJq+gF2S3vve9+rb3/627r33Xj300ENaXFzU/v37deONN+r973+/fu3Xfk0+n6/RwwQAAA7L5/NKJBJaWlpSIBBQNBqV2139xsmlnC6IBwAAANA+/H6/PF6PFo8vOtanx+uR3+93rD8AAFpZNBpVKBTS5OSkFhYW5HK9+qBYoVDQ1NSUuru7FY1GGzhKAAAAAAAAlNMSBeyS9IY3vEGf+9zn9LnPfW5bPzc0NKRisVhx/y/8wi/oF37hF3Y5OgAA4LT5+XmNj48rm82ubwuFQpqenlYsFmvcwAAAAIAy0i8Uqu63LxSVPVtQ6IBL3n0dO+4H9RMMBnU6c1qWZVVtl06nFY/HNTMzo0gkUrWt3+9XMBh0cpgAALQst9ut6elpjY2NaXR0VBMTE+rp6VEqldLU1JROnDihubm5bU14AQAAAAAAgPpomQJ2AADQPubn5zU2Nqbh4WHNzs6u35ianJzU2NiY5ubmKGIHAACAEfx+v3xej+IP2o716WOWbmMEg8GaC84jkUjZFaAAAMDOxWIxzc3NaXx8XAMDA+vbu7u7uUYIAAAAAABgMArYAQDYY7lcrqYZ+S79Wgmz8Un5fF7j4+MaHh7esDRwf3+/FhYWNDo6qmPHjmlkZITZlQAAANBwwWBQaWbpBgAA2DOxWEwjIyNKJBJaWlpSIBBQNBrl2iAAAAAAAIDBKGAHAGAP5XI5HQkf0Yq9UlP7eDxedb/H69HpzOm2LlZJJBLKZrOanZ1dL14vcblcmpiY0MDAgBKJhIaGhhozSAAAAOASzNINAACwt9xuN9cC68C2L64qlLbyjvRX6qfULwAAAAAAaB8UsAMAsIcsy9KKvaLDdx5W16Guiu0K5wtas9bU6e+Ua7+rbJvVM6taPL4oy7LauoB9aWlJktTT01N2f2l7qR0AAAAAAAAAYPey2awkKT5f24Qt2+l3cHDQ0T4BAAAAAIDZKGAHAKAOug51yRvyVm90U33G0uwCgYAkKZVKqb+/f9P+VCq1oR0AAAAAAAAAYPdCoZAkaSbmUcTv3nV/aSuv+PzKer8AAAAAAKB9UMAOAACaSjQaVSgU0uTkpBYWFuRyvTpjfaFQ0NTUlLq7uxWNRhs4SgAAAAAAAABoLV7vxUlaIn63egO7L2C/vF8AAAAAANA+KGAHsGeWl5eVyWQ2bLNtW9lsVqFQaNMFyXA4LJ/PV88htg2yQCtxu92anp7W2NiYRkdHNTExoZ6eHqVSKU1NTenEiROam5uT2+3cDRQAAADAZHzmAwAAAAAAAAAAQDOhgB3AnslkMurr66u5fTKZVG9v7x6OqLlspwBhq+IDskCricVimpub0/j4uAYGBta3d3d3a25uTrFYrIGjAwAAAKor93kvnU5v+HopPvMBAAAAAAAAAACglVDADmDPhMNhJZPJDdvS6bTi8bhmZmYUiUQ2tcertlOAsFXxAVmgFcViMY2MjCiRSGhpaUmBQEDRaJSZ1wEAAGC8ap/34vH4pm185gMAAAAAAAAAAEAroYAdwDqnlxz3+XwVb7BHIhFme9vCdgoQtio+IIvd2c2xYdu2JGn1zOqux1Hqo9QnJLfbraGhoUYPAwAAANiWcp/3tvqMcalcLifLsnb8+pd/vvH7/QoGgzvuDwAAoNlsdb22cL6gNWtNnf5Oufa7dtwPAAAAAAAAyqOAHcA6lhw3C0XnjXN5MUjpwYFaXfqAwcMPPyxJWjy+6Nj4stmsBgcHHesPAAAAQH1V+rxXy+/5uVxOR8JHtGKv1PRatXyW8Xg9Op05TRE7AABoeX6/Xx6vx9HrtR6vR36/37H+mkH6hULV/faForJnCwodcMm7r2PH/QAAAAAAgNZFATuAdSw5DlwsBomEj2i5xmKQcsoViBy+87C6DnXtZmhaPbOqxeOLCoVCu+oHAAAAQPOyLEsr9sqWnzG2M2vo4vFFWZZFATsAAGh5wWBQpzOnt1zNptq9kcu102o2fr9fPq9H8QedWyXU14YPAAAAAAAAAArYAVyCGb+Bi8Ugy/aKZm73KnKwcpFHrTPIfPnpC7r74VV1HeqSN+R1ZIxerzP9AAAAAGheNX3GuKk+Y8GrlpeXlclkNmxLp9Mbvl4qHA7L5/PVZWwAAOCiYDBYc8E590Y2CgaDSu/xAwDlfp+ybVvZbFahUGjT9XF+nwIAAAAAoDlRwA4AwCVs+8czx3QUq7bz7utQxO+uoceL/RTOsxQqAAAAALS6TCajvr6+svvKrdaVTCYpigMAAE1lrx8AqPb7VDn8PgUAAAAAQHOigB0ADJHL5WqateTSr5W005KlTstms5Kk+PyKo/2uWWvMfggAAAAALS4cDiuZTG7YttWMoQAAAM3M6RVoyv0+VW1Gd36fAgAAAACgOVHADgAGyOVyioSPaNmurWi63Kxtl/J0dWnugQcUCAQqtqm1GF5qr4L4UCgkSZqJeWqcYb26Lz+9prsfPq9Of+eu+wIAAAAAmM3n85WdAXRwcLABowEAALVwugC73Ti9Ak2l36eknc3oDgAAAAAAzEQBOwAYwLIsLdsrmrndq8hBV8V29oWismcLCh1wybuvo2ybxPcu6P/7u1UNDw/X9NpbFcNLksfr0enM6bYoYi/Nhhfxu9Ub2H0Be9rKS5Jc+yvnCgAAAAAAAABoDKcLsNsNK9AAAAAAAICdoIAdAAwSOejasmh68PrqfaStvFSUDt95WF2Huiq2K5wvaM1aU6e/s2px9eqZVS0eX5RlWW1RwA4AAAAAAAAAaB8UYO8OK9AAAAAAAICdoIAdAFpU16EueUPe6o1uqs9YAAAAAAAAAAAwEQXYAAAAAAAA9Vd5yl0AAAAAAAAAAAAAAAAAAAAAABzEDOxAG8vlcrIsq2qbdDq94Ws1fr9fwWDQkbEBjZZ+oVB1v32hqOzZgkIHXPLu66jY7tkfFZ0eGgAAAAAAAAAAAAAAAAAATYsCdqBN5XI5RcJHtGyv1NQ+Ho9v2cbT1aW5Bx5QIBCo2IaCeJjO7/fL5/Uo/qDd6KEAAAAAAAAAAAAAAAAAANByKGAH2pRlWVq2VzRzu1eRg66K7WqdZTrxvQv6//5uVcPDwzW9fk0F8V6PTmdOU8S+TasXLs74vXpm1Zn+ftyPbbdHQXcwGFQ6c7qm1Qni8bhmZmYUiUS2bAcAAAAAAAAAAAAAAAAAAChgB9pe5KBLvQF31TaD12/dT9rKS0Xp8J2H1XWoq2K7wvmC1qw1dfo75dpfuXB+9cyqFo8vyrIsCti36cxLFwvYF48vOtpvNpvV4OCgo32aKhgM1vz/XSQSUW9v7x6PCAAAAAAAAAAAAAAAAACA1kABOwBHdR3qkjfkrd7opvqMpZmUZjdPW/ld93U+f7GA/dD/e0je4BZZ1KD0MEEoFNp1X+1sqxnxa3m4w6lZ9QEAAAAAAAAAAAAAAAAAaBQK2AHAANlsVpIUn19xrE/XPtfWDxNsg9frXF/txO/3y+P1ODYjvsfrkd/vd6QvAAAAAAAAAAAAAAAAAADqjQJ2ADBAaXbzmZhHEb97V319+ek13f3weXX6Ox0YGXYrGAzqdOa0LMuq2i6dTisej2tmZkaRSKRiO7/fr2Aw6PQwAQAAAAAAAAAAAAAAAACoCwrYAcAApdnNI363egO7K2BPW3lJ0pq1Jnu/XbFd4XxBa9aaOv2dcu13VWy3emZ1V+PBxSL2WovOI5GIent793hEAAAAAAAAAAAAAAAAAAA0BgXsAGCQ9AuFqvvtC0VlzxYUOuCSd19H2TbWK0WpQ1o8vujYuDxej/x+v2P9AQAAAAB2xrYvPqjs1MPGpX5K/QIAAAAAAAAAAAB7jQJ2ADCA3++Xz+tR/EFnCgY8XV2ae+ABBQKBim3S6bTi8bhmZmYUiUS2HF+tM4gDAAAAAPZONpuV5OxDy6V+BwcHHe0TAAAAAAAAAAAAKIcCdgAwQDAYVDpzWpZlVW1Xa9H5dgrOI5GIent7tzXedrO8vKxMJrNhWzqd3vD1UuFwWD6fry5jAwAAANBeQqGQJOnwnYfVdahr1/2tnlnV4vHF9X4BAAAAAAAAAACAvUYBOwAYIhgMUnRuqEwmo76+vrL74vH4pm3JZJJ8AAAAAOwJr9crSeo61CVvyOt4vwAAAAAAAAAAAMBeo4AdAIAthMNhJZPJDdts21Y2m1UoFNpU6BEOh+s5PAAAAAAAAAAAAAAAAAAAmgYF7AAAbMHn85WdUX1wcLABowEAAAAAAAAAoDXkcjlZllW1TTqd3vC1Gr/fX/NqtwAAAAAAoHEoYAfalG3bkqS0lXekv9M/7sfO2Y70t3pm9WJ/tjP9tbvl5WVlMpkN26pd8A2Hw/L5fHUZGwAAAAAAAAAAaD+5XE5Hwke0Yq/U1D4ej2/ZxuP16HTmNEXsAAAAAAAYjgJ2oE1ls1lJUny+touCtTrzZ2cc7S+bzTLLtQMymYz6+vrK7it3wTeZTJadcRwAAAAAAAAAAMAJlmVpxV7R4TsPq+tQV8V2hfMFrVlr6vR3yrXfVbHd6plVLR5flGVZFLADAAAAAGA4CtiBNhUKhSRJMzGPIn73rvtbyJzXb399TYf+30PyBr277q90kbE0TuxOOBxWMpncsM22bWWzWYVCIXm93k3tAQAAAAAAAAAA9lrXoS55Q1vcW7qpPmMBAAAAAAD1QQE70KZKBcsRv1u9gd0XsKctt6Q1eYPerS8ybsPlhdXYGZ/PV3ZGdWa3BwAAAAAAAAAAAAAAAAAA9UQBOwAAdba8vKxMJrNhWzqd3vD1UuFwWD6fry5jAwAAAAA4J5/PK5FIaGlpSYFAQNFoVG737icSAAAAAAAAAAAAaGYUsAMAUGeZTEZ9fX1l98Xj8U3bkslk2Rn0AQAAAADmmp+f1/j4uLLZ7Pq2UCik6elpxWKxxg0MAAAA+P+zd9/hUdRrH8bntwm9Q6QoHVSqgAhSRBC7oiIWxIMKNjwUFQQUGyoiiAUL6kHEDlhQwa4UFVBAQaWHjvTeSSAk+b5/8O64mw6kPEnuz3V5Hdmd3czOfWQys8/OAgAAAACQwxhgB/K5ZTsS07w/Nl7eur2JXvXSAa9IpEt1ubV7lNmrBuRZderU8ebPnx92W2xsrLdu3TqvevXqXpEiRZItDwAAAADIPT7//HPv+uuv9zp06OBNmDDBa9Cggbd48WLvmWee8a6//npv4sSJDLEDAAAAAAAAAIB8iwF2IJ+KioryihYp7HX9IjanVwXId4oWLZriFdVbt26dA2sDAAAAAMhMCQkJ3gMPPOB16NDBmzRpkhcIBDzP87wWLVp4kyZN8jp27Oj179/fu+aaa7yIiIgcXlsAAAAAAAAAAIDsxwA7kE9VrVrVWxa93Nu5c6d/W/AK0KHWrl3rPfbYY96QIUO8GjVqhN0XeqXoZcuWeV27dvWObD6S5s9NjEv0ju486hWIKuAFCgZSXS6958kPYmJivOjo6LDbli1bFva/QXXq1PGKFi2abesGAAAAAMhZHH/bNXPmTG/dunXehAkT/OH1oEAg4A0aNMhr1aqVN3PmTK9du3Y5s5IAAAAAAAAAAAA5iAF2IB+rWrWqV7VqVf/Pf/75p9e1a9cUl33ssceS3TZ//nz/KtJRUVFe4SKFvY1vbsy09StcpLAXFRWVac+X20RHR3tNmzZN8b6knUJbAAAAAADyLo6/7duyZYvneZ7XoEGDFO8P3h5cDgAAAAAAAAAAIL9hgB2Ar06dOt78+fPDbgtelT30auuhywdVrVrVW57kiu4pCV6p/cMPP/Tq1q2b5rJRUVFhA/b5zfH0CG0BAAAAAMi7OP62r1KlSp7ned7ixYu9Fi1aJLt/8eLFYcsBAAAAAAAAAADkNwywA/AVLVo0xat4t27dOkOPT3pF97TUrVuXK4an42R7pCUhIcGbOXOmt2XLFq9SpUpemzZtvIiIiJN+XgAAAABA1uP427Y2bdp41atX95555hlv0qRJXiAQ8O9LTEz0hg0b5tWoUcNr06ZNDq4lAAAAAAAAAABAzgmkvwgAIC/5/PPPvdq1a3sXXHCBd/PNN3sXXHCBV7t2be/zzz/P6VUDAAAAACDXi4iI8F544QXv66+/9jp27OjNnj3bO3DggDd79myvY8eO3tdff+09//zzfJAcAAAAAAAAAADkWwywA0A+8vnnn3vXX3+917Bhw7A30Bs2bOhdf/31DLEDAAAAAJAJOnXq5E2cONFbtGiR16pVK69kyZJeq1atvMWLF3sTJ070OnXqlNOrCAAAAAAAAAAAkGMic3oFAADZIyEhwXvggQe8Dh06hH2FeYsWLbxJkyZ5HTt29Pr37+9dc801XAUOAAAAAICT1KlTJ++aa67xZs6c6W3ZssWrVKmS16ZNG465AQAAAAAAAABAvscAOwDkEzNnzvTWrVvnTZgwwR9eDwoEAt6gQYO8Vq1aeTNnzvTatWuXMysJAAAAAEAeEhERwTE2AAAAAAAAAABAEoH0FwEA5AVbtmzxPM/zGjRokOL9wduDywEAAAAAAAAAAAAAAAAAAGQ2rsAOAPlEpUqVPM/zvMWLF3stWrRIdv/ixYvDlgMAAAAAAAAAAMgqsbGxnud53pHNRzLl+YLPE3xeAAAAAABgFwPsAJBPtGnTxqtevbr3zDPPeJMmTfICgX+/hCMxMdEbNmyYV6NGDa9NmzY5uJYAAAAAAAAAACA/WLduned5nrfxzY2Z/rytW7fO1OcEAAAAAACZiwF2AMgnIiIivBdeeMG7/vrrvY4dO3qDBg3yGjRo4C1evNgbNmyY9/XXX3sTJ070IiIicnpVAQAAAAAAAABAHle9enXP8zyv8t2VvUKnFjrp5zuy+Yi38c2N/vMCAAAAAAC7GGAHgHykU6dO3sSJE70HHnjAa9WqlX97jRo1vIkTJ3qdOnXKwbUDAAAAAAAAAAD5RZEiRTzP87xCpxbyilQvkunPCwAAAAAA7GKAHQDymU6dOnnXXHONN3PmTG/Lli1epUqVvDZt2nDldQAAAAAAAAAAAAAAAAAAkOUYYAeAfCgiIsJr165dTq8GAAAAAAAAAAAAAAAAAADIZxhgB5BlYmJivOjo6LDbli1bFva/oerUqeMVLVo0W9YNAAAAAAAAAAAAAAAAAAAA2Y8BdgBZJjo62mvatGmK93Xt2jXZbfPnz/fOPvvsrF4tAAAAAAAAAAAAAAAAAAAA5BAG2AFkmTp16njz588Puy02NtZbt26dV716da9IkSLJlgcAAAAAAAAAAAAAAAAAAEDexQA7gCxTtGjRFK+o3rp16xxYGwAAAAAAAAAAAAAAAAAAAOS0QE6vAAAAAAAAAAAAAAAAAAAAAAAgf2CAHQAAAAAAAAAAAAAAAAAAAACQLRhgBwAAAAAAAAAAAAAAAAAAAABkCwbYAQAAAAAAAAAAAAAAAAAAAADZggF2AAAAAAAAAAAAAAAAAAAAAEC2YIAdAAAAAAAAAAAAAAAAAAAAAJAtInN6BQAAAAAAAAAAAAAA+dORzUfSvD8xLtE7uvOoVyCqgBcomPr12dJ7HgAAAAAAYAcD7AAAAAAAAEAuFhMT40VHR4fdtmzZsrD/DVWnTh2vaNGi2bJuAAAAQGqioqK8wkUKexvf3Jhpz1m4SGEvKioq054PAAAAAABkDQbYAQAAAAAAgFwsOjraa9q0aYr3de3aNdlt8+fP984+++ysXi0AAAAgTVWrVvWWRy/3du7cmeZyy5Yt87p27ep9+OGHXt26ddNcNioqyqtatWpmriYAAAAAAMgCDLADAAAAAAAAuVidOnW8+fPnh90WGxvrrVu3zqtevbpXpEiRZMsDAAAAFlStWjXDA+d169blg5gAAAAAAOQRDLADAAAAAAAAuVjRokVTHORp3bp1DqwNAAAAAAAAAAAAkLZATq8AAAAAAAAAAAAAAAAAAAAAACB/YIAdAAAAAAAAAAAAAAAAAAAAAJAtInN6BQAAAAAAAAAAAAAAiImJ8aKjo8NuW7ZsWdj/hqpTp45XtGjRbFk3AAAAAACQeRhgBwAAAAAAAAAAAADkuOjoaK9p06Yp3te1a9dkt82fP987++yzs3q1AAAAAABAJmOAHQAAAAAAAAAAAACQ4+rUqePNnz8/7LbY2Fhv3bp1XvXq1b0iRYokWx4AAAAAAOQ+DLADAAAAAAAAAAAAAHJc0aJFU7yieuvWrXNgbQAAAAAAQFYJ5PQKAAAAAAAAAAAAAAAAAAAAAADyBwbYAQAAAAAAAAAAAAAAAAAAAADZggF2AAAAAAAAAAAAAAAAAAAAAEC2YIAdAAAAAAAAAAAAAAAAAAAAAJAtGGAHAAAAAAAAAAAAAAAAAAAAAGQLBtgBAAAAAAAAAAAAAAAAAAAAANmCAXYAAAAAAAAAAAAAAAAAAAAAQLZggB0AAAAAAAAAAAAAAAAAAAAAkC0YYAcAAAAAAAAAAAAAAAAAAAAAZAsG2AEAAAAAAAAAAAAAAAAAAAAA2YIBdgAAAAAAAAAAAAAAAAAAAABAtmCAHQAAAAAAAAAAAAAAAAAAAACQLRhgBwAAAAAAAAAAAAAAAAAAAABkCwbYAQAAAAAAAAAAAAAAAAAAAADZggF2AAAAAAAAAAAAAAAAAAAAAEC2YIAdAAAAAAAAAAAAAAAAAAAAAJAtGGAHAAAAAAAAAAAAAAAAAAAAAGQLBtgBAAAAAAAAAAAAAAAAAAAAANmCAXYAAAAAAAAAAAAAAAAAAAAAQLZggB0AAAAAAAAAAAAAAAAAAAAAkC0YYAcAAAAAAAAAAAAAAAAAAAAAZAsG2AEAAAAAAAAAAAAAAAAAAAAA2YIBdgAAAAAAAAAAAAAAAAAAAABAtmCAHQAAAAAAAAAAAAAAAAAAAACQLRhgBwAAAAAAAAAAAAAAAAAAAABki8icXgF4niTP8zxv//79ObwmyGyJiYn+/9IXAAAAAICswfE3ACCj2GcAADKC/QUAIKPYZwAAckpwvxOcPwVyGyf+35vjNm7c6FWpUiWnVwMAAAAAAAAAAAAAAAAAAAC5xIYNG7zKlSvn9GoAx40BdgMSExO9zZs3eyVKlPCcczm9Oibs37/fq1KlirdhwwavZMmSOb06+RotbKGHHbSwgxZ20MIOWthCDztoYQct7KCFHbSwhR520MIOWthBCztoYQs97KCFHbSwgxZ20MIWethBCztoYQct7KBFyiR5Bw4c8E499VQvEAjk9OoAxy0yp1cAnhcIBPgETCpKlizJTscIWthCDztoYQct7KCFHbSwhR520MIOWthBCztoYQs97KCFHbSwgxZ20MIWethBCztoYQct7KCFLfSwgxZ20MIOWthBi+RKlSqV06sAnDA+dgEAAAAAAAAAAAAAAAAAAAAAyBYMsAMAAAAAAAAAAAAAAAAAAAAAsgUD7DCpUKFC3uDBg71ChQrl9Krke7SwhR520MIOWthBCztoYQs97KCFHbSwgxZ20MIWethBCztoYQct7KCFLfSwgxZ20MIOWthBC1voYQct7KCFHbSwgxZA3uQkKadXAgAAAAAAAAAAAAAAAAAAAACQ93EFdgAAAAAAAAAAAAAAAAAAAABAtmCAHQAAAAAAAAAAAAAAAAAAAACQLRhgBwAAAAAAAAAAAAAAAAAAAABkCwbYAQAAAAAAAAAAAAAAAAAAAADZggF2mJeQkJDTqwAAAAAAAAAAAAAAAAAAAAAgEzDADtPi4uK8V1991bv//vtzelUAAAAAAAAAAAAAAAAAAAAAnKTInF4BIDVxcXHe+++/7z322GPeoUOHvISEBO/VV1/N6dUCAAAAAAAAAAAAAAAAAAAAcIK4AjtMiouL89577z2vb9++3qFDh7xChQp5r732mnf77bfn9KrlS5JS/HdkP1rYQQs7aGELPeyghR20sIMWdtDCFnoAAAAAAAAAAAAAyE4MsMOc4JXXH3jgAe/QoUNe2bJlvfj4eM/zPP9/kbWSDiw455L9O0MN2YMWdtDCDlrYQg87aGEHLeyghR20sIUediTdzomJiTm0JqCFHbSwgxa20MMOWthBCztoYQctbKGHHbSwgxZ20MIOWthBC1voAeR9kTm9AkCo4PB6v379vIMHD3qtW7f2zjjjDO/jjz/2TjnlFK979+6e5x3bQYW+wY7MFdy269at8xYuXOgtWbLE27JlixcREeHVqVPHO+ecc7yGDRt6BQsW9DyPHlmJFnbQwg5a2EIPO2hhBy3soIUdtLCFHjaEbteZM2d6Z555ple+fHkvPj7ei4zklF12ooUdtLCDFraE9li1apVXu3ZtLxAIeAkJCV5EREQOr13+Qgs7aGEHLeyghS30sIMWdtDCDo757KCFHbSwhR5A/sB/zTAj6fD6Oeec4/Xs2dN77bXXvJiYGO/000/3mjdv7nmexxvnWUiSd/DgQe+RRx7xZsyY4S1cuDDsfuecFwgEvFtuucW74oorvOuvv95zzjHQkAVoYQct7KCFLfSwgxZ20MIOWthBC1voYUPo9pw+fbr39NNPe0uWLPFmzZrlnX766Tm8dvkLLeyghR20sCW0x9SpU72nn37aa9asmffcc88x5JPNaGEHLeyghR20sIUedtDCDlrYwTGfHbSwgxa20APIRwQYcOTIEY0ZM0YlSpSQc04NGzbUhAkTNH78eJ1yyikqW7as5syZI0lKSEjI4bXNuw4ePKhJkyapffv2cs75/1SoUEGnnnqqqlSpojPOOEPOOQUCAZUoUUKDBw/2H5+YmJhzK5/H0MIOWthBC1voYQct7KCFHbSwgxa20MOG0O04ZcoUXXXVVYqIiJBzTk8++aQkzn1kF1rYQQs7aGFL0h4dO3b0999fffUV++ZsRAs7aGEHLeyghS30sIMWdtDCDo757KCFHbSwhR5A/sIAO3Jc0uH1s846Sx999JEkaeDAgXLO6eKLL9aWLVtyeE3ztn379umNN95QkyZN5JxTZGSkypcvr759++q3337Tnj17tH//fu3bt0+jR4/Wtddeq0AgIOec7rvvPv95OLg8ebSwgxZ20MIWethBCztoYQct7KCFLfSwIaWT78E3bO+66y7/vuAJeE7EZx1a2EELO2hhS1o9HnzwwWTL0yPr0MIOWthBCztoYQs97KCFHbSwg2M+O2hhBy1soQeQ/zDAjhyVdHi9UaNGmjBhgo4ePaqff/7Z3wmNHz8+p1c1Tzt06JDefvtt1atXT845FShQQF26dNGkSZPClgv9RWHNmjV67rnn/IGGxx57LLtXO0+ihR20sIMWttDDDlrYQQs7aGEHLWyhhw1JT75fc801YVfCr1+/vsqUKaPWrVvr0Ucf9T/IHx8fn1OrnGfRwg5a2EELW9LqERkZqW7duumSSy7R008/rR9//NFflh6ZjxZ20MIOWthBC1voYQct7KCFHRzz2UELO2hhCz2A/IkBduSYlIbXx48fr71790qSHnzwQQUCAV133XU6fPiwpORXeuOTVCcnuD2nT5+upk2b+oMM999/v/7++29/udCdfWiDw4cP6+WXX1YgEFChQoX0/vvvZ9/K5zG0sIMWdtDCFnrYQQs7aGEHLeyghS30sCOtr8quU6eOzjvvPPXt21fnnnuuKlSoIOecmjZtqjVr1iR7PE4OLeyghR20sCWtHlFRUapSpYrOOeccRUZGyjmn4sWLa8SIESk+HieHFnbQwg5a2EELW+hhBy3soIUdHPPZQQs7aGELPYD8iwF25IjUrry+f/9+SdLq1atVvnx5Oef07LPPpvt8y5Yt02uvvaY+ffpk9arnGaE77yuvvNIfZOjVq5eWL1+e4nIp2bJli3r06KFAIKAbb7xRe/bs4ReD40QLO2hhBy1soYcdtLCDFnbQwg5a2EIPO9I6+X777bfr999/V2xsrCRpz549mjp1qlq1aiXnnGrXrq09e/bk0JrnPbSwgxZ20MKWtHp06dJFX3zxhXbs2KH4+Hj99ttvGjRokH//4MGDc27F8yBa2EELO2hhBy1soYcdtLCDFnZwzGcHLeyghS30API3BtiR7VIbXj948KAkKTY2Vn369JFzTi1btvSvBBe82nrwf2NiYrRz50498MADat68ub/zYoj9+Dz99NNyzikiIkJXXnml/vjjj+N+jsmTJ6tAgQIKBAKaMmVKFqxl/kALO2hhBy1soYcdtLCDFnbQwg5a2EKPnJXWyff+/fuHLRt6Jfzp06erWbNm6tu3rzZv3pxt65uX0cIOWthBC1vS6tGvX78UP0AWGxurhx9+WAULFlS/fv20b9++7FzlPIsWdtDCDlrYQQtb6GEHLeyghR0c89lBCztoYQs9ADDAjmyV3vC6JO3cuVOtWrVSwYIF9corr0g69rXloRYvXqwePXqoSZMm/hvxzjkVKVLE/wQW0peYmKhOnTopEAjIOaf33nvvhJ/ruuuuk3NOPXr00JEjRzJxLfMHWthBCztoYQs97KCFHbSwgxZ20MIWeuSstE6+DxgwIMXlgg4cOKBp06Zp7dq12bGqeR4t7KCFHbSwJa0eAwcOTHG5oKVLl2rcuHH+12bj5NDCDlrYQQs7aGELPeyghR20sINjPjtoYQctbKEHAIkBdmSjw4cPa+zYsWkOr0vSE088IeecypUrp0WLFoXdN3nyZA0cONB/jiJFiqhSpUr6z3/+o8qVK/s7su7du2vv3r3Z+fJypQULFvjbrGvXrv7tx/N18MFPuD3yyCNyzqlv377+VfKRcbSwgxZ20MIWethBCztoYQct7KCFLfTIORl9wzb0qjFJhX5Q4Pvvv9eePXsUFxcnSTQ4DrSwgxZ20MKWjL5hm1aP0K/LTnrlMXpkHC3soIUdtLCDFrbQww5a2EELOzjms4MWdtDCFnoACGKAHdkiMTFR7733nr+zSTq8HtwxrVixQk2bNpVzTqNGjZJ07FNTkyZN0t133y3nnCIjI+Wc0+WXX65Ro0bpww8/1O233+4/d9++fbVp06Yce625yfTp0/3tGdzeae380zJp0iR17txZu3fvzsxVzDdoYQct7KCFLfSwgxZ20MIOWthBC1vokfOmTJmiTp06HffJ91DBD/q3bNlSw4cP144dO47r8TiGFnbQwg5a2DJt2rQTesM21H333adq1arp4Ycf1owZM4778TiGFnbQwg5a2EELW+hhBy3soIUdHPPZQQs7aGELPQAwwI5sEx0dLeecqlatqo8//jjsyuvBAfbx48crEAioSZMmGjdunKZMmaKWLVuqdOnS/s6qc+fOev311xUfH68ZM2bopptuYnj9OAW394QJE+ScU7FixbR48eKTes7169fr0KFDkvgl4HjQwg5a2EELW+hhBy3soIUdtLCDFrbQw4bo6Gi1bdv2pE6+x8XFadKkSTr77LNVtGhROefUvn17rV+//rieJ7+jhR20sIMWtvz8889q3769IiIijusKlaG2bdumO++8U4FAQM451apVy/8A2/E8T35HCztoYQct7KCFLfSwgxZ20MIOjvnsoIUdtLCFHgAkBtiRzVavXq3PPvtMBw4cSHbfP//8o9q1a8s5p8qVK+uCCy5QhQoV5JxTlSpV1KFDB3355Zf+8n/88Yc6dOjg78j69evH8Ppx+v777/3t99NPP2XKcx7PV9HjX7SwgxZ20MIWethBCztoYQct7KCFLfTIeb169TquN2xT274bNmzQmDFj1LBhQznnVL16da1bt04SX4eaUbSwgxZ20MKODRs2qGTJknLO6aGHHvJvP5E3WidOnKhbbrnF/x3g8ccf9++jR/poYQct7KCFHbSwhR520MIOWtjCMZ8dtLCDFrbQAwAD7Mh2qe1M/vzzTxUvXtw/AAkOsnfs2FELFy7U1q1bJR3bscyYMUNXX301w+sn6a+//vIPICdPniwpc4cR+CRbxtHCDlrYQQtb6GEHLeyghR20sIMWttAj54SeFJ80aZL/76lts6Rdjh49mmyZI0eOaO7cuWrRooWcc2rUqJE2b96cSWucd9HCDlrYQQubFixYoMGDB/t/zmiPlGzcuFHPPPOMf/582LBhmbWa+QIt7KCFHbSwgxa20MMOWthBi5zHMZ8dtLCDFrbQA0AQA+ww5YUXXpBzTsWLF9fAgQM1a9assJ1OYmKifvnlF3Xs2JHh9Uxy1VVXyTmnDh06aNeuXZnynNOnT/f/nU+yZRwt7KCFHbSwhR520MIOWthBCztoYQs9ck7Sk+ipnXwPbsMNGzbo/fffV/fu3dWpUye9/PLLKV45/9dff1X9+vXlnNN9992nw4cPZ/q65zW0sIMWdtDCtvR6bN++Xb/++qtGjhypV199VX/99Zd2794t6d83dQ8cOKAhQ4bIOadSpUqFvSGMjKOFHbSwgxZ20MIWethBCztokXM45rODFnbQwhZ6AJAYYIcRoW94//LLL5oxY0ayZRITEzVjxowTGl4P7uQSExN14MCBzFvxXCx4wDd27FiVK1dOVatW1eTJk096+ODpp5+Wc059+vTJjNXMF2hhBy3soIUt9LCDFnbQwg5a2EELW+iROwQ7LV++XOeff77KlSsX9s10pUuX1hNPPBH2mIMHD2rAgAFyzqlly5aKjY3NiVXPc2hhBy3soIUtwX34ihUrdPnll+vUU0/1W1SpUkUXXnihVqxYEfaY5cuX64ILLlBERIQeeOABSZn7bSz5FS3soIUdtLCDFrbQww5a2EELOzjms4MWdtDCFnoAeR8D7DAjpTfRg5+2OpHh9aQHLAcPHtTw4cPVrl07devWLXNXPhfbvn27LrnkEjnn1KpVKy1evPiEnyv4yWfnnC699FJt2LDB78ABZPpoYQct7KCFLfSwgxZ20MIOWthBC1voYd+6dev8rzUtVqyYqlevrmuvvda/SoxzTv/973/9K5BJ0owZM/z7fv311xxc+7yFFnbQwg5a2LJq1So1bdrU375ly5ZVxYoVVbp0aTnnVL58eU2bNi3sMQ8++KCcc6pUqZL27t3LPjuT0MIOWthBCztoYQs97KCFHbSwg2M+O2hhBy1soQeQtzHADrNC3wQ/nuH1pF8pMn/+fL344ouqV69e2Kewbr311ix/DbnF6tWrVatWLTnn1KZNG02dOlX79++X9O8HC9K7St9TTz3lb9t27drpk08+0ebNm8Mel/Q5OKhMjhZ20MIOWthCDztoYQct7KCFHbSwhR42BbfXiy++qFKlSqlQoUK68847tWHDBknSsmXL9Pzzz/vb/Y477tCWLVskSUuXLlXJkiUVERGhP/74I8deQ15BCztoYQct7Dl8+LD69OmjggULqmTJkrr99tu1du1abdq0SZ9++qnatGkj55yioqL05Zdf6siRI5KkyZMnq2DBgqpTp45iYmJy+FXkDbSwgxZ20MIOWthCDztoYQctbOCYzw5a2EELW+gB5A8MsMOkEx1eDzVz5kyNGDFCZcqUUdGiReWc8z+x65xT5cqVtW3btqx+KblGdHS0KleuLOeczjzzTN1///1auHChfxX8tAS/Qj74T6lSpVS6dGlVq1ZNN910k8aNG+cvG/yAQeggw1dffeX/EgFaWEILO2hhCz3soIUdtLCDFnbQwhZ62HXNNdfIOafTTjtNa9asSXb/J5984m/7u+++Wxs2bNBDDz0k55zq1q2rAwcO5MBa5020sIMWdtDCjoMHD+rss8+Wc06NGzfWP//8E3b/jh07dMUVV8g5p3Llyun777/X4cOHdeutt8o5pxYtWuTQmuc9tLCDFnbQwg5a2EIPO2hhBy1s4ZjPDlrYQQtb6AHkbQyww5zjGV4Pftoq+Jhdu3Zp4cKF6tatm6pVq+Y/rkqVKrruuuv0+eefq0aNGnLOqU+fPjp8+HD2v0DDVq1apfbt2/sD/4UKFVK7du10zz33aOrUqSk+ZujQof52Ll68uJo2bao777xTXbt2Dbvq/ZNPPpni4ydMmKBmzZqpePHiWrVqVVa+vFyFFnbQwg5a2EIPO2hhBy3soIUdtLCFHrYkJiYqJiZGzZo1k3NOV155pX9f0qvZT5o0yd/Wbdq0UZ06dRQIBNS3b18dOXIk3SvoI220sIMWdtDCnoULF6pEiRKKiIjQs88+KynlD45dddVVcs6pbNmy6tmzp2rXrq2iRYvqpZdekpT+t64gfbSwgxZ20MIOWthCDztoYQctbOCYzw5a2EELW+gB5A8MsMOkxMREzZo1K83h9eBBjCTt3btXM2fO1GWXXaYzzzxTzjkVLFhQxYsX13333adZs2ZJkoYMGSLnnIoUKaK///47219XbrB161a9/vrruuyyy+ScU0REhNq3b+9/vXyo0EGGiy66SK+99lrY/atXr9bw4cP9ZV599dWw+7dv364LLrjAv//dd9/N0teW29DCDlrYQQtb6GEHLeyghR20sIMWttDDnnvvvVfOOdWrV0/R0dFh9yUmJvpXyZ84caK/LZ079mH9+fPn58Qq51m0sIMWdtDCjgMHDqhJkyZyzqlz5846ePBg2P2h58uvvPJK/zy4c07169fXkiVLsnuV8yxa2EELO2hhBy1soYcdtLCDFrZwzGcHLeyghS30API2Bthh0m+//ab27dv7O5V+/fpp48aNkv791G3w01GjR4/WTTfdpMKFC/vLlylTRkOGDNGUKVP851y2bJnq1KmjiIgI9e/fP+w5kLJJkyZpwoQJ2rt3r6Twg8XQQYZOnTpp+vTpfpvQK9sfPHhQAwcO1FlnnaVvvvkm2c/48ccf5ZzTK6+8ksWvJnejhR20sIMWttDDDlrYQQs7aGEHLWyhhw3jxo3zt/WIESN06NAh/77gyfcDBw5o/PjxOuOMM/xlv//++7DnSe0cB+c+Mo4WdtDCDlrYERsbq9tvv13OOTVq1Ehz584Nuz90Pz5mzBhFRUXJOacCBQok+6aV0Ctb4vjRwg5a2EELO2hhCz3soIUdtLCFYz47aGEHLWyhB5C3McAOkzZs2KBAICDnnPr376/169eH3b9z5049//zz/iduIyIi5JxTixYt1L9/f61cuTLZc7755ptyzikQCOiLL77IpleSO6V0oBfc6UvhgwzXXXedf4X71B47Z84czZs3z79/wYIFYfeHXlmfXwzC0cIOWthBC1voYQct7KCFHbSwgxa20MOeBx980N/mTz75pObMmSNJOnTokNavX6877rjD/8Y555y+/PJLSce2d+gbu5K0Y8cOrVu3Tlu3bg27nW2fMbSwgxZ20MKO1atXq0qVKnLu2Fdiz5gxQ3v27PHv37lzpx544AE1btw4Qz2kY78DhP4eINEjI2hhBy3sbE7nJwABAABJREFUoIUdtLCFHnbQwg5a2MIxnx20sIMWttADyLsYYIdZixYt0qBBg7Rt2zb/tt9//11vvvmmTj/9dEVGRvo7nsjISHXq1EmSFBMTIyl8x7Js2TL/AKhbt27Z+0LymKefftrf7tdff71+/fVX/770PuGcmJioCRMmqFGjRrr33nuTPY5fBo4PLeyghR20sIUedtDCDlrYQQs7aGELPbJX6Mnzxx57TAUKFPCvKnb22WerXr16KlOmjN/EOaevv/5a0rHtGhcXJ0natm2b3n77bV111VWqXLmyIiIiVKFCBV111VV65ZVXtGPHjmQ/D+FoYQct7KCFTcuXL/evKFa5cmW1adNG999/v7p166aaNWuGfVNp8NtRQnvs2rVLP/30k3r06KErr7xS5557rtq3b6+xY8dq9uzZ/s+hR/poYQct7KCFHbSwhR520MIOWuQ8jvnsoIUdtLCFHkDexwA7TAu+yf3TTz9p+PDhOuWUU1SiRAk551S2bFlVq1Yt7FO3M2bMkHRshxL6KaoxY8aoVKlSKl++vH/1dd44P37Dhg077kGG0O388ccf68ILL/SfI/TAEceHFnbQwg5a2EIPO2hhBy3soIUdtLCFHjkj9KT4pEmTNGDAAF1wwQU666yzVKlSJf9b55xz+uqrrySFn3xfuXKl2rdvr0qVKsk5p4IFC4adsC9atKjatm2rf/75J9nPQzha2EELO2hh07p163T//ffrrLPOUunSpVWoUCEVKlQo3TdsV69ereuuu061atWScy6sX8GCBVWnTh298sor/s+hR/poYQct7KCFHbSwhR520MIOWuQ8jvnsoIUdtLCFHkDexgA7zNu5c6dat24dtvNo0qSJ/ve//2nhwoWaP3++Lr74Yv++KVOmSPp3hxIXF6dmzZrJOacWLVpo//796f7MhIQEf8eEY55//vnjHmQIvf2TTz7RBRdc4D/H66+/nuXrnFfRwg5a2EELW+hhBy3soIUdtLCDFrbQI2cl/ZD9jh079Morr+jss8/2t2no154GT74vX75clStX9pcpXry4BgwYoBEjRmjs2LHq1KmTatasKeecqlevrnXr1qX48/AvWthBCztoYVNcXJwSEhI0f/58PfLIIzr99NPTfMM2Ojpa1atX95cpVKiQOnTooNtuu03XXnutateu7d/3+OOP+z+HHumjhR20sIMWdtDCFnrYQQs7aJHzOOazgxZ20MIWegB5FwPsyBWWLFmiyMhItW7dWg8//LAOHz7s3xcXF6epU6emOMSekJCgkSNHyjmnMmXK6Pvvv/dvT01CQoL++OMP1atXT7fcckvWvrBcZNGiRQoEArrkkkv022+/+benN8iQmJiYbJDhjTfe8JdLSEhI92voEY4WdtDCDlrYQg87aGEHLeyghR20sIUetvz222+qUaNGiiffgx/YX716tf+Gbbly5XT11Vdr0aJFYc+zd+9eTZ8+XS1btpRzTmeffba2bNmS7a8nN6OFHbSwgxY2BPev7733nurWrZvikM/Ro0clSStWrNBpp53mnydv166d/vjjD/9+Sfr999/12GOP+c8zYsSI7H9RuRQt7KCFHbSwgxa20MMOWthBC3s45rODFnbQwhZ6AHkHA+zINbZu3ar169f7w+fx8fH+wczRo0c1bdq0FIfYb7jhBjnn1LRpU61evTrNnxEcXm/fvr3/PL169craF5aLbNiwQXPnzvX/fCJX4Us6yJDShwn4Opb00cIOWthBC1voYQct7KCFHbSwgxa20MOWbt26ybnwr8oObvtdu3bp2muvlXNOZcuWVbdu3bR27VpJ/27f0G0/f/58NW7cWM459e/fX0eOHMneF5PL0cIOWthBCztWr17t74e//fZbSeE9tm7dqnbt2sk5p6ioKHXr1s0/Tx56jl2SDh06pBEjRvjtgn2RMbSwgxZ20MIOWthCDztoYQctbOGYzw5a2EELW+gB5A0MsCNXSulN9JSG2Pv37+//++jRo9N8zuDwevCgp3DhwoqIiJBzTn369Mmql5JrZfYgw7Bhw/TQQw9l3QrnYbSwgxZ20MIWethBCztoYQct7KCFLfTIOaHbbcmSJZL+Pfke3P7Tp09XrVq15JzTBRdc4L9hm1q3I0eO6I033lDp0qV15plnatOmTVn8KvIGWthBCztoYdOSJUv0ww8/SPq3R7DVW2+9pYoVK8o5p2uuucZ/wza1Hps3b1bXrl1VoEAB9e7dO+xqlkgfLeyghR20sIMWttDDDlrYQYucxzGfHbSwgxa20APIWxhgR56SdIg9EAjIOaeLLrpIW7dulZTyzijp8HrBggV1880365FHHvGfo3fv3tn9cnKdEx1keOWVV/zlXnzxxWxd57yKFnbQwg5a2EIPO2hhBy3soIUdtLCFHtkn6VXqk57LuOuuu+ScU6FChfTHH3+kuExS69evV/HixVW+fHkdPnw4c1c4D6OFHbSwgxZ2hb5ZG9ShQwc551S8eHEtXrzYXy4tH3/8sZxzatGiBd+ccoJoYQct7KCFHbSwhR520MIOWuQsjvnsoIUdtLCFHkDewQA78pzDhw/r999/V6tWrfzh84EDB6a6fErD6127dtWcOXMkSWPHjvWf54EHHsiul5HrnOggw8iRI1WgQAE559SsWbOwZYPL4/jQwg5a2EELW+hhBy3soIUdtLCDFrbQw47ExERdeumlioiI0DXXXKOEhIR034QN9vv222914MABSWz7zEALO2hhBy1s2bp1qypVqqSCBQtq0KBBkpK/yRsq2OLw4cO67777tG/fvrDbceJoYQct7KCFHbSwhR520MIOWtjBMZ8dtLCDFrbQA8hdAh6Qh0jyChUq5NWsWdP/c926db1HHnnE/3OoxMRE788///QGDBjg/fLLL16BAgW8G2+80evdu7d37rnnep7nebfeeqv3+uuve84578UXX/RGjBiRvS8qF5DkOec8z/O8Tz/91HvjjTe8n3/+2fM8z3v99de9e+65x/O8Y9vb8zwvEDj2V8/LL7/sDRo0yIuPj/cqVarkVaxY0StTpow3a9Ysb+XKlf6yCQkJ2fyKci9a2EELO2hhCz3soIUdtLCDFnbQwhZ62BIXF+dt27bNS0xM9KKiorxAIOBv89QE+11++eVe8eLFvfj4+HQfg/TRwg5a2EELWw4ePOht3brVO3r0qHfKKad4nud5ERERqS7vnPPPsb/00kteyZIlvfj4eL8RThwt7KCFHbSwgxa20MMOWthBCzs45rODFnbQwhZ6ALlMto7LA1ks+Imp7777TjVq1FBERIQGDhyouLi4ZJ+MSu/K69K/n7DatWuXBgwYoEAgoEaNGvlfL4J/JSYmauLEiRm+Ct/LL7+sggUL+ssWKVLEv9K9c061a9fWSy+9FPZ4ZAwt7KCFHbSwhR520MIOWthBCztoYQs97Dhy5IhatWol55y6dOly3I8PnusIveoYVyA7MbSwgxZ20MKWDRs2qGzZsgoEAho/fryk49vnBrd96GMSExNpcgJoYQct7KCFHbSwhR520MIOWtjBMZ8dtLCDFrbQA8hdGGBHnhG6s+jatas/lJ7SsHlweL1Nmzb+crfccot+/fXXFJ9Pkr788kv/jfa33nor615ILjVp0iQ1adIkw4MMkZGRcs6pXLly6t69u2bOnKmVK1fq008/VZ8+ffznefLJJ3Pi5eRqtLCDFnbQwhZ62EELO2hhBy3soIUt9LAluI3r1q2rv//+O0OPSXqeIzo6WgsWLNBPP/2kn3/+WUeOHNGRI0ck8YGC40ELO2hhBy1sad++vf+mbfBrsNOTtEdMTIx2796tQ4cOae/evWH30SPjaGEHLeyghR20sIUedtDCDlrYwTGfHbSwgxa20APIPRhgR57z/vvv+2+EP/7445LCPz0bHF5v27atnHMKBAJq2rSpVqxY4T9H6E4puNPZs2ePTjnlFDnndP311ydbLr9bt26dP6AwevRo//a0BhkaNWqkUaNGJXuuAwcO6Pnnn/c/XDBx4sRseQ15BS3soIUdtLCFHnbQwg5a2EELO2hhCz1smT59uqpWrSrnnIYOHarY2Fj/vpTOVQQbJSQk6Ndff9WAAQNUrlw5FSlSxD+H0qZNGz344IPasmWLpH+/5Q5po4UdtLCDFjYEt/WwYcNUoEABnXnmmZo1a1a6jwv2SExM1Jo1a/Tss8+qZcuWKlu2rKpUqaLTTjtNgwYN0rfffus/hh5po4UdtLCDFnbQwhZ62EELO2hhD8d8dtDCDlrYQg8g92CAHXnKvn37dMstt6hw4cIqWbKkJk+eLCn8K6H++OMPtWvXTs45/01155xefPFF/3mSflIqPj5e48eP97/+/Kabbgp7XhyzcOFCvf322/6f0xpkaNy4cdiyoTv2hIQErV69Wo0bN1ZERIQGDx6cLeufl9DCDlrYQQtb6GEHLeyghR20sIMWttDDlmeeecY/p/Hyyy9r+/bt/n0pfTD/6NGjGjp0qM455xz/cTVr1tQ555yjIkWKKCIiwm+3bt06SZyEzyha2EELO2hhx8aNG9W0aVM559SuXTstXLhQR48elZT8/HZoj5EjR/pXuQz+U758ef+iMKVLl9bw4cOTPRapo4UdtLCDFnbQwhZ62EELO2hhC8d8dtDCDlrYQg8gd2CAHXlK6FXSu3fvHnZf0uH1ggULqkuXLrrnnnv8Hc+zzz7rLx+6s9q0aZOuv/56f7kxY8Zk22vKrY5nkCG1g8DWrVvLOaf27dsrPj6eHf8JooUdtLCDFrbQww5a2EELO2hhBy1soUfOCd2eDzzwgH+u4s4779TkyZPDtmPw3MbRo0c1YMAAVahQwV/+o48+0u7duyVJK1as0IsvvqiGDRvKOafatWtrw4YNYc+B5GhhBy3soIVNK1as8Ldv8+bN9e677/pXDAsKfcN24MCBOvXUU/0eY8eO1ZQpU7Rt2za9/vrruuGGG/z7nnjiCf856JE+WthBCztoYQctbKGHHbSwgxY5j2M+O2hhBy1soQeQuzDAjjxn0aJFaty4sT799FP/tpSG17t27ao5c+YoMTEx7FNXjz76qPbs2eM/dtmyZbr11lv9+y+44AItWrQoB15Z7nKigwyJiYlKSEjQkiVLdOaZZyoyMlIDBgxI92cgdbSwgxZ20MIWethBCztoYQct7KCFLfTIWaEn2Z966imVLl3a/9a4Bx98MGzZhIQEDR8+POwNW+dc2NXFJCk2NlZz585VixYt5JzTtddeq71792bL68nNaGEHLeyghU3Lly/332gtW7asoqKiNG3atLBl4uPj9cQTT4S9YVumTJlk23rdunUaNmxY2CAQMo4WdtDCDlrYQQtb6GEHLeygRc7jmM8OWthBC1voAeQeDLAjT9qyZYv/KajUhtdnz57tL3/w4EENHjzY3wm1adNGnTt31pVXXqmzzz7bv71WrVp64403cupl5UrDhw9XkSJFMjTIEPrnIUOG+Nu9R48e+uGHHzR27FhNmzZNa9as8ZfjCn0ZRws7aGEHLWyhhx20sIMWdtDCDlrYQo+cE7ptJk+erF69eumcc87R/v37Jf175ZfFixfrvPPOk3NOERERuu222/xtP2jQIP85gst/++23qlSpkqpVq6Y//vgjG19R7kULO2hhBy1sWr9+vfr166fatWsrKipKBw8elPTv9p0yZYqaNGki55wKFSqk+vXryzmnChUqaNmyZWHLHjx4UAMHDpRzTpdddpl27drFVceOAy3soIUdtLCDFrbQww5a2EGLnMcxnx20sIMWttADyB0YYEeedvToUf3222+66KKLwobX58yZ4y8T3MGsWrVKF198cdinqUL/OeecczRq1Khkj0Pqdu/eraioKDnn1KxZswwPMowZMyZs21eoUEGFChXy/3zmmWfqlVdeSfW5kBwt7KCFHbSwhR520MIOWthBCztoYQs9cl7otklISPBPyh89etS//YknnvC37VtvvSVJeumll/zbHnnkkbDn3Lp1qxo0aCDnnIYOHZoNryJvoIUdtLCDFjYdPnxYW7Zs0eHDhyWF9+jdu7e/7T/44APt2LHDvzBMhQoVtGLFCkn/vgn8448/KjIyUoUKFTquby3l3PoxtLCDFnbQwg5a2EIPO2hhBy1ynoVjvmD//H4RDFrYQQtb6AHYxwA78rTY2FhdddVVcs6pWLFiqQ6vB/Xs2dN/s/zaa6/VxRdfrEaNGumZZ57RzJkz/eVS+gr0tP6cny1ZskTnn3++Xn/9df+2tAYZxo4d6/8ScMYZZ+iWW27RvHnztGzZMn3xxRfq1auXf//gwYOz62XkCbSwgxZ20MIWethBCztoYQct7KCFLfSwJ3hOIiEhQQcOHPC/Wa5Tp07+ifnY2Ng0T8J369ZNzjk9/fTT2b7+eQkt7KCFHbSwJXQfvXjxYpUqVUrOOfXp08e/fcmSJSkO+0jH3vBt0KCBIiIiNH369DR/1sKFCzV+/Hj/z5xDD0cLO2hhBy3soIUt9LCDFnbQwo7sPOZbtGiR+vXr53/ogOHQcLSwgxa20AOwhQF25HkLFixQ+fLldc0112ju3Ln+7aEHEnFxcZL+/QTVhRde6N8W/OqQIK78dvz27t3r/3tGBxnatGmjt956K+xTb9KxHs8995y/3EcffZS1K5/H0MIOWthBC1voYQct7KCFHbSwgxa20MOu3bt3q1y5cnLO6aGHHgq7Ly4uLsWT8Fu2bNEZZ5wh55yeffbZnFjtPIkWdtDCDlrY8tdff6lIkSKKjIzUO++8I+nfc+jR0dEpDvvMmzdPhQsXlnNO3377barPvXTpUv/iMd27d/dvZ9gnZbSwgxZ20MIOWthCDztoYQct7MjKY76lS5eqT58+cs6pQIECWrBggSSGQ1NDCztoYQs9gJzHADvyhU2bNmnevHn+n1O7YnqnTp3knFPdunX9HUZKO47g8rt27dKKFSv06KOPqlevXurcubM6d+6soUOH6pdfftHBgwez6iXlShkdZDj//PM1YcIE//6kX+mycuVK1a9fX845DRo0KHtWPo+hhR20sIMWttDDDlrYQQs7aGEHLWyhhz0xMTGqXr26ChYsqLfffluSdOTIEf/+pCfhBw4cqC+//FIVK1ZUuXLl9NNPP/nLJj2Xwgf8jw8t7KCFHbSwZfr06XLOqUyZMvrrr78khW/HpMM+CxYs0Lhx41SsWDE1bNhQW7ZsSfF5ly5dql69eqlMmTJ+y169evn3M+yTHC3soIUdtLCDFrbQww5a2EELOzLzmC9UsEXwSvvOOZUuXZorHKeBFnbQwhZ6ADmPAXbkO6kdOBw9elStWrWSc04XX3yxEhIS0nyj47ffftP111+vGjVq+Dub0H8CgYC6devG1eJSkdFBhtBeof/epk0bOefUtm3bdFshbbSwgxZ20MIWethBCztoYQct7KCFLfTIeQkJCdq7d69/3mLAgAEpLhcXF6eXX37Zb1SxYkU5d+wq+bGxsZLC20ybNk0bNmyQxIn2jKKFHbSwgxa2JCYmatasWXLu2FXBUnsDNnTYp2zZsqpZs6acc7r22mt1+PDhZMsH37AtXbq0nHOqVq2aAoGAnHPq3bt32M/HMbSwgxZ20MIOWthCDztoYQct7MiqY76kLc444ww1b96c4dA00MIOWthCD8AGBtiB//fBBx/4O5vXX3891eXi4+P13nvvqVChQv5BSfHixRUVFaVLLrlETZs2VbNmzeScU0REhIoVK6Ynn3wyG1+JfaE77owOMoSaO3euKleuLOecHn744WxZ57yKFnbQwg5a2EIPO2hhBy3soIUdtLCFHjYEt+/TTz8t55xatmzpfzV2UnFxcRo5cqTf6vTTT9eyZcv8+4K+//57VapUSZUqVdLatWuz/DXkFbSwgxZ20MKe+Ph4f4inT58+qX67aHR0tM4//3y/xxlnnJHihwaSvmHboEEDff/99/rf//7HsE86aGEHLeyghR20sIUedtDCDlrYkFnHfEePHvWXS6nFtGnTtGzZMl166aX+cOjixYsl8c1cQbSwgxa20AOwgQF25HvBHdJDDz2kAgUKqFixYpo+fXqKy+7du1fPP/+8v0Nyzql69er68MMP/a+fOnTokA4fPqyxY8fq+uuv9w9a+vbtm10vKdd47bXXjnuQIS4uzv/lwTmnd999NztXOc+ihR20sIMWttDDDlrYQQs7aGEHLWyhhw3Tpk3TqaeeKuecRowYEXYlsdAOcXFxGjp0qCpWrKgvv/xSUvgbtt98840aNGigAgUKyDnnf1ifN2YzjhZ20MIOWtiQmJioo0ePasiQIQoEAjrrrLM0d+7cVJePjo5Ww4YNVbRoUU2ZMkVS+m/YTp061V/mrbfe8s+bP/jgg1n74nIZWthBCztoYQctbKGHHbSwgxb2nMwxX+hgZ0otpkyZ4rdYtWqVLrnkEjnnVKNGDa1cuTLZz8jvaGEHLWyhB5CzGGAHJK1du1bly5eXc06XXHJJqsuFfiVIhQoV1KVLF23bti3V5detW6fnn3/eP2gZNGhQVqx+rpOYmKi9e/f626V9+/YZGmSQpLfffttvcOutt2bXKudZtLCDFnbQwhZ62EELO2hhBy3soIUt9LBn6NCh/nZ9+eWXtWPHDv++0AHQo0ePauXKlcm+Lvubb75Rw4YNFQgEVL58eXXr1k2bNm0KezxfeZoxtLCDFnbQwo6NGzeqSZMmcs6pXbt2Wrhwob/tku6/V61apV9++UVHjhwJuz34hm2pUqXC3rANvVr+0aNH9frrr/u/K4wePTrrX1wuQws7aGEHLeyghS30sIMWdtDClpM95stIi+ByLVu2lHNO1113nXbv3p21LywXooUdtLCFHkDOYYAd+VrwzfMvvvhCZcqUUUREhH91nqRvrH/yySf+zqpKlSrq16+fdu3aJSn5GyChBz0xMTF69dVX/YOWt956K8tfV26xaNEiXXnllXr33XczNMjw7rvv+g0uvfRSLVq0SBJfqZIZaGEHLeyghS30sIMWdtDCDlrYQQtb6JHzQrfdgAED/O3bs2dP/fDDDxl6jm+++UZnnXWWf1Vj55zKlSun0047Teecc4769++vzZs3S2JANC20sIMWdtDCphUrVqhSpUpyzqlFixYaP368tm/fLin9q4IlvdpY/fr1w642Fmrbtm3q3LmzIiMj1alTJ+3fvz9LXk9uRgs7aGEHLeyghS30sIMWdtAi52XGMd/SpUvVs2dPfyg0rRbx8fF68cUX5ZxTzZo19ffff0vi6sYSLSyhhS30AHIeA+yApOuvv17OORUvXtx/gzzUn3/+qbJly8o5p6ioKPXu3Vt79+6VlLE30nfv3q1+/fopEAioTZs2WrZsWaa/htxq3759xz3IcMEFF+iHH35I9VPSoYL3sbNPHy3soIUdtLCFHnbQwg5a2EELO2hhCz1yXujA5uOPP64CBQooEAioXLlyuv322zV79mzFxMT4y4Ruy2+//VYNGzb0B0Nr1Kihli1b6r///a/OPfdcnXbaaXLOqW7dulq3bp0kPnCQFlrYQQs7aGHT8uXLdeaZZ8o5p4oVK+riiy/WDz/8kOa3kQbfsC1evLicc2rcuLGmT5+u2NjYVB8zZMgQOecUERGh33//PSteSq5HCztoYQct7KCFLfSwgxZ20CLnHe8xX6ikLerWrat58+aluHzwWHHevHkqWLCgnHMaMmRI1ryoXIoWdtDCFnoAOYsBduR7e/bsUePGjeWc0w033KDY2Fj/jYyEhATFxcVp4MCBKlKkiJxzuuKKK7Rz507//oz6+eefVbVqVTnn9M4772TFS8nV0ho2eOedd8IGGb799ttkX7MiSbNnz9akSZP0xBNP6JVXXtGsWbO0YcMG/37eoMoYWthBCztoYQs97KCFHbSwgxZ20MIWeuSs0JPwH3zwga6++mp/mw8fPtzf3kkHQxs0aOB/o9yVV16p1atX+19runv3bv3yyy9q0aKFnHNq1KiRtmzZkr0vLBeihR20sIMWNq1bt0633nqrqlWrJuecKlWqpLfffjvF/e2SJUvUs2dPlSxZ0m931113+fcnvfp98DlGjx7tLz958uSsfUG5GC3soIUdtLCDFrbQww5a2EGLnJfRY75QwavgB69o7JxT1apVtWnTJklK8crGkvTjjz/6yz/xxBNZ84JyMVrYQQtb6AHkHAbYAR07EHHO6eGHH05236FDh9SgQQM553Tqqadq/fr1kk7sjfH+/fvLOadatWrxhkkGZWSQ4ccff9QDDzwg55wKFy7sL1+4cGFdeOGFeuutt/xl+argE0cLO2hhBy1soYcdtLCDFnbQwg5a2EKP7BN6HmPTpk367rvvNHToUB06dEhS+Lb75ptv1LBhQwUCAZUoUUJ9+vQJuz90iPTnn39WzZo1VbBgQY0cOTLZ/UiOFnbQwg5a2LRnzx799NNP6t27t+6//37/CmKh23DJkiVhb9hWqlTJ31c/99xz/nJJz6dv3LhRl112mb9Pnzp1ava8qFyKFnbQwg5a2EELW+hhBy3soEXOS++YL/T+4FBo6dKl5ZxT7dq1VatWLTnnVKdOHW3fvl3Sv8eJwY7btm3T3Xff7V/ZeMSIEWH34xha2EELW+gB5AwG2IH/t2HDBv9TUKE7hm+++cY/2Ah+8imlN8TT2pkEd2IzZ85U6dKlddppp2nRokWZufp5UkYGGV544QU1adIkbLmrr75aHTp0UPny5VP81BpX5Tt+tLCDFnbQwhZ62EELO2hhBy3soIUt9Mh+qZ27CN3u33zzjc466yz/JHrPnj398yApnQ/ZuXOnmjdvLuecOnXqlDUrngfRwg5a2EEL24JXDgu9gljSIZ+GDRvqm2++0VNPPeXvo5999tlkz7Vz506NGjXKHwqqVq2a/62nSB8t7KCFHbSwgxa20MMOWthBi5yT2jFfaIukQ6ENGjTQ1KlTNWfOHDVu3NgfDt24cWPYc2zbtk1vvPGGqlatKuecTjnlFK1bty5LX09uRgs7aGELPYDsxwA7kI6xY8f6ByVff/11issE3xzftWuX/8mrlOzZs0c1atTQtddemyXrmpe88cYbioiISHOQ4ZlnnlHlypX9PoMGDZL07y8Ov/zyi+6///40DyqRPlrYQQs7aGELPeyghR20sIMWdtDCFnrYETrw/+2336phw4YqUKCAnHNq165dmoOhwRP6PXv2lHNOrVq10v79+7NnxfMgWthBCztokfNC37wN7bFkyRL17NkzbMhn6tSpOnr0qI4cOaKnn37a30c//PDDWrhwoRISErRgwQI99thjql69uv+G7bvvvpvs+ZEcLeyghR20sIMWttDDDlrYQQubQrukNBQ6ZcoU/1zgvHnz/OHQ2rVr691339XMmTP1888/q0ePHv5QaNmyZfXCCy9IosXxoIUdtLCFHkDWYoAdSMfo0aP9T8tu3rxZUsqfuFq5cqXq1aun+++/X3v37k12f0JCgg4cOKAPPvgg7LbUni8/27t3r3+AePHFF6c4yPD+++/rjDPO8A8WnTv2NV6rV69O9lwjRozwfwH4/vvvs/Ol5Hq0sIMWdtDCFnrYQQs7aGEHLeyghS30sCPpN9DVr1/f396nnHKKfvvtN0kpD4YG7dy5U+ecc46cc7r88suzfJ3zKlrYQQs7aGFX8A3bpEM+ofvzmJgYDR8+3G922mmnqU6dOipSpIiKFy/u77sHDBig9evX5+Cryd1oYQct7KCFHbSwhR520MIOWtixZMkS9enTJ80WkrRgwQI1bdpUzjkVKVJEzjkFAgFFRkbKOady5cqpf//+WrNmTQ69ktyPFnbQwhZ6AFmDAXYgHR999JGccypRooQWL16c6nI//vijf9CS2hB7qOAbK8E3YtavX68JEyZk3orncgsWLNDVV1+tSZMm+Tv74MD/gQMH1LlzZ397P/roo7rooovknFP58uW1YsWKsOU3b96sjh07KiIiQkOHDs2ZF5SL0cIOWthBC1voYQct7KCFHbSwgxa20CPnpTYYWqFCBZUoUUIVK1bUP//8k+rjg+c1li9f7l9trFu3blwx5gTQwg5a2EELu6Kjo3XrrbcqKioq7A3b0K/TDjV27FiVKFFChQoVCvtgWlRUlJ588kmtWrUqm19B3kELO2hhBy3soIUt9LCDFnbQwo6tW7eqa9euKlmyZIZa7N69W1dffbVOPfXUsBYVKlTQiy++yFDoSaCFHbSwhR5A1mGAHUjHzz//rMjISEVGRmrKlClpLvvBBx/4O5377rsv3SH24BsxmzdvVs+ePRUIBPSf//wn09Y9tzt48GCKO/tPPvnE386PPfaYJGnFihVq27atv8NPOtDw2GOP+b9EHDlyhDerjhMt7KCFHbSwhR520MIOWthBCztoYQs9ck5Kg6GBQEClSpVSnz59dP7556tZs2apPj44GHr06FFdeuml/ocL5s6dm+XrntfQwg5a2EEL27Zs2aJq1arJOacmTZqk+YZt0KxZszRs2DCdd955uvLKK9WlSxf9+eefOnjwYDatdd5ECztoYQct7KCFLfSwgxZ20MKWAQMGyDmnBg0aaNq0aam2CD3emzp1qkaMGKEHH3xQw4cPTzYQGnpsiYyjhR20sIUeQNZggB3IgOAbHR07dtTOnTuT3R+6Qwlesd05p969e2vPnj0pPmfwMZs2bVLPnj1VuXJl/3ELFy7MkteR2wW3Wb9+/fxfCpYvX+7fFx0drXbt2iUbaJCkDz/8UM45NW/ePEfWPa+hhR20sIMWttDDDlrYQQs7aGEHLWyhR/ZI7arGpUqV0oABAxQTE6PLL79cBQsW1Pz585M9PngCPi4uTj179pRzToULF9Ztt92mrVu3ZvhngxaW0MIOWuQOCxYsUOvWrfXdd9+lOeST2jYN3h78wFnS5WiRcbSwgxZ20MIOWthCDztoYQctcl7oNnrmmWf0zTffpPtBgrQuXJHeRS1okjpa2EELW+gBZC0G2IE0BHcKb731lsqUKaPq1avr66+/TnFnEbwtPj5eN910kz+MPnjw4GQ7rqTD65UqVfLfiPnqq6+y+FXlXsHtduGFF8o5p7Zt2yZbJulAw+rVqyVJt9xyi5xz6tSpU3aucp5FCztoYQctbKGHHbSwgxZ20MIOWthCj+z13XffhQ2G9u/f3x/8fOCBBxQIBDR06FAdPnw42WPj4uJ09913+1+ZWqtWLU2fPj3ZcvHx8YqPj0/1vAiOoYUdtLCDFvYdOnQo3TdsQyUkJPjb9siRI2H3rVmzRkuXLtWKFSu0efPmZI9D2mhhBy3soIUdtLCFHnbQwg5a5LzQ7X882yn02C0uLs7/9yNHjujnn3/WxIkT9d5772nixInat2+fYmNjj/tn5De0sIMWttADyDoMsAMZsHXrVl100UVyzql169ZhV0gP3dmsX79eQ4cOVdmyZeWcU/Xq1TV69Gh/BxO6fNLh9eLFizO8nkG33XabnHP6z3/+Iyl8Jy+FDzSUL19e77zzjho1aiTnnIYOHSqJnX1moYUdtLCDFrbQww5a2EELO2hhBy1soUfW+/HHH3XqqaeqUKFC/mBo6DabOHGi/8H8YcOG6Y8//pAkrV69Wj///LPatGnj31++fHl99tlnYc+/YMECffrpp+rYsaMuvvhiXXXVVerVq5emTZum3bt3S/r3Ksn5HS3soIUdtMjbQrftBx98oLvuukuFChVSRESEihcvrmLFiqlPnz764osvUnwMMg8t7KCFHbSwgxa20MMOWthBCztCB0tfeuklXXPNNf4xYfCf5s2bq0+fPv4HC2iRNWhhBy1soQeQOgbYgQxavXq1atas6V8Fbt68eWFX+NmwYYOGDh2qMmXKyDmnM888U++995727t3rL3M8w+tc6Sd1/fv3l3NOZ5xxhrZv357iMtHR0Wrbtq2ccypWrJicc6patWqyTzqf6KfkcAwt7KCFHbSwhR520MIOWthBCztoYQs9st7q1av9D98/+OCD/rYJ3V6PPPKIf/I8KipKLVq0ULly5VShQgV/uzdo0CDsjVhJGjdunOrWravSpUsnOwlfpUoVXXPNNdqwYYMkTsJLtLCEFnbQIu8KbXj77berYsWKYQ2KFy8u55wiIiJUsmRJDR8+3F+eHpmLFnbQwg5a2EELW+hhBy3soIUdoS26dOmiIkWKhB0rVqpUSYFAwL+tcePGWrdunSRaZDZa2EELW+gBpI0BduA4REdHq0qVKnLOqUmTJnrttde0ZcsW7d+/P9nw+jvvvKN9+/b5jw2+0XK8w+szZ87Um2++mT0v0Ljgdvn9999Vs2ZNlS5dWuPHj091hx0dHa3zzz/f3+lPnTpV0r87+OAvCTExMVq6dKkkBhoyihZ20MIOWthCDztoYQct7KCFHbSwhR7ZKzo6Wo8//ri/TYLbLXQbPfbYYzrllFOSDXlWrFhRffv21a+//hr2nCNHjgxbrk6dOrr88svVo0cPnXnmmSpfvrycczr99NO1du3asJ+bn9HCDlrYQYu8J3RbXn311f5Aj3NOvXv31uuvv64ZM2ZoyJAh6tChg9/p8ccf9x/Hfjxz0MIOWthBCztoYQs97KCFHbSwI7TFVVddJeecChQooFKlSunJJ5/Ur7/+qs2bN+v333/XkCFDdNZZZ8k5pxo1amj9+vWSaJFZaGEHLWyhB5A+BtiB47Ry5Uq1bNlSzjkVKVJEtWvX1n/+858sGV6fO3eubrjhBjnn1KNHj+x5gbnA3r17/e3SqlUrLV68ONVllyxZoksuuURvvvlm2KfaQgcZTj/9dDnnNG/evCxf97yGFnbQwg5a2EIPO2hhBy3soIUdtLCFHtkv6YBm6J9//vln/e9//9M999yjfv366fnnn9fatWt16NChsMe88sor/puyjRo1Ur9+/bRv3z6/xcaNGzVx4kQ1b97cHxzdtGmTJL6FLhQt7KCFHbTI/UK3YZcuXeScU+HChdWqVSt98sknyZb/559/9Oyzz/rNXnvttexc3TyNFnbQwg5a2EELW+hhBy3soIVN3bt391u0bdtWkydPTrZMbGys5s2b58/6XHzxxdq5c2cOrG3eRgs7aGELPYDUMcAOnIBNmzbpoYceUpMmTcI+UVuvXr1MG16fM2eO/4Z98J8HH3wwe15gLrBmzRrVrFlTzjm1bdtWv/76q//GVNI3lfbt26fY2Nhkz3Hw4EG/oXNOp512mvbs2cObUseJFnbQwg5a2EIPO2hhBy3soIUdtLCFHjkvvSu7hN7/2Wef+du5ZcuWevvttxUXFyfp2KBpcJsnJibq77//VrNmzeSc06233qr9+/cne+7QRvSihSW0sIMWudPIkSNVuHBhFShQQO3atfO/PUU61iz0wwkxMTF64okn5JxTw4YN9ddffyV7Prb/iaOFHbSwgxZ20MIWethBCztoYccHH3ygChUqKCIiQq1bt07WIqlffvlFZ5xxhooXL6633nor2f1JW/CtXBlHCztoYQs9gLQxwA6coJiYGP3zzz/q37+/2rdvr9q1a2vs2LGZNrzeuXNn/42V4sWLyzmnyy67LOz587vly5fr1FNPlXNODRo00JNPPqmVK1dm+PGvv/562CDDhAkTsnBt8zZa2EELO2hhCz3soIUdtLCDFnbQwhZ62BI64Blq/fr1atu2rZxzOv300/Xmm2/6J81TOgGfmJiozz77TBUrVlSNGjWSXRk/pRPuoVfXBy0soYUdtLAvNjZWV199tZxzKlOmjL788kv/vtQGdpYsWaKLLrpIzjm9+eabYfcFW2zYsEHR0dGS+FrtjKKFHbSwgxZ20MIWethBCztoYctdd93ln//79NNP/dtTa7F//349/PDDcs6pY8eOOnz4sH9fsMW6des0ZsyYZLcjbbSwgxa20ANIGwPsQCY4dOiQtmzZooMHD/q3nczw+k033eTvvIKPc85p3Lhx2fOCcpGVK1eqdevWioyMlHNOZcuW1SuvvOIf3KXn0UcflXNOEydO9G/jE84nhhZ20MIOWthCDztoYQct7KCFHbSwhR72zZs3T2XLlpVzTrfddps/yJnWdt6+fbsuueQSOedS/IptSRo4cKDuvPPOLFnnvIoWdtDCDlrYMW3aNP8895AhQ/zb09svDxw4UM45/fLLL5LCPzCwdu1a3XLLLTrllFP0448/Zs2K50G0sIMWdtDCDlrYQg87aGEHLexYtWqVChQoIOec+vTp49+eXotff/1VhQsX1rfffivp2IcSgheSXLt2re655x4553TNNddk2brnNbSwgxa20ANIHwPswElIbYeSWcPrAwYM0H//+18FAgFVrFhRf//9d9a9mFxs8+bNGjJkiJo3by7nnHr27Kk9e/ak+ZjQT58tWbLE/3cGGU4OLeyghR20sIUedtDCDlrYQQs7aGELPWx76qmn5JxT5cqVtWbNGkkZu1LYpEmT9Mgjj/h//uGHH/yuTz31lE455RQ553TfffdlxWrnSbSwgxZ20MKOCRMmyDmn8uXLa86cOZLSbhG8b9euXVq4cKEk6cCBA3r++ec1evRoHTp0SP/973/9c++NGzdWbGws+/oMoIUdtLCDFnbQwhZ62EELO2hhx6JFixQIBOSc0+jRoyVl/Or1W7dulXTsYpXDhw/XxRdfrFmzZqlv376qUKGCnHM69dRT/eWQNlrYQQtb6AGkjwF2IJMFDyROdni9Z8+emjt3rk4//XQ+NZUBcXFx2rVrlyZOnKjt27dLSn8wIekvBRwEZg5a2EELO2hhCz3soIUdtLCDFnbQwhZ62BW8gljlypW1devWE9rO06dPV6VKlVSlShX17dtX5cuXV2RkpE4//XS9/fbbWbDWeRMt7KCFHbSwY/To0XLO6bTTTtO2bduO+/EJCQn6+++/deaZZ8o5pyZNmqh8+fJyzumcc87R8uXLs2Ct8yZa2EELO2hhBy1soYcdtLCDFnYsWrRIhQsXVokSJTR79mxJ4Re1yIgdO3aoe/fucs6pWLFi/jd4NWnSRCtXrpTEOcWMoIUdtLCFHkD6Ah6ATCPJc855W7Zs8YYOHep98cUX3tatW71ixYp5EyZM8Dp06JBsWc/zvLlz53ovvfSS9/HHH3ue53l33nmnN3jwYK9QoUJebGysFwgEvAsvvNDzPM9LSEjI/heWCxQoUMArW7asd91113mnnHKKl5iY6DnnvPj4+LDlQrdfIBD+V2CwB04OLeyghR20sIUedtDCDlrYQQs7aGELPeyR5Hme5xUuXNjzPM+rVKmSV6FCBc8559+XEQkJCV7dunW92rVrexs3bvRGjRrl7dixw6tVq5b3xBNPeN27dw/7eUiOFnbQwg5a2FO0aFHP8zxv586d3tatW4/78c45r1GjRt4NN9zgeZ7n/f33396OHTu8pk2behMnTvTOOOMMzp1nEC3soIUdtLCDFrbQww5a2EELO4oXL+7Fx8d7Bw8e9GbOnOl5nudFRERk+PGSvKioKK9Lly5ehQoVvJiYGG/Pnj1e3bp1vZ9++smrXbu2l5CQwDnFDKCFHbSwhR5A+hhgBzKRc87bunWr99BDD3lff/31CQ2v9+jRw3v00Ue98uXLe++//763adMmr0iRIt6ll17qeV74jow3RlIXCAS8+Ph4LzIy0jt06JD34osvep53bPtxwJe9aGEHLeyghS30sIMWdtDCDlrYQQtb6JHzguc1WrRo4XnesTdcv//++7D70pOQkOBFRER4FStW9Bo1auQVLFjQS0hI8CIjI72ePXt6N998s+d5nv+BBaSMFnbQwg5a2HPppZd6DRs29OLj470ffvjBi4uLy/Bjg+fTN27c6G3bts0rXry4v82bNWvmVatWzV8urefAMbSwgxZ20MKOnG6BcPSwgxZ20MIGSV716tW9W2+91QsEAt7cuXO9zZs3H9fjgy0+//zzsI67d+/2L4xBi/TRwg5a2EIPIIMy94LuALZs2aI6derIOacyZcroq6++Crs/9Gs75syZo5tuuknOOTnndM8992jdunX+cpdffrkCgYA6duyouLi4sK8/D32eTz/9VE899VQWv7Lc5ejRo5KkmJgYNW3aVM459e3bN4fXKn+ihR20sIMWttDDDlrYQQs7aGEHLWyhhx2rV6/WueeeK+ecBgwYoAMHDmTocaHnOIYMGaKoqCg551SkSBE551SlShX9888/klL+WtXQx+MYWthBCztoYceBAwfUrVs3OefUrFkzLViwIEOPC54HX79+vXr06KFTTjlFzjlVrlzZP68+aNAgf/lgj8TERO3bt08//PBDsufK72hhBy3soIUd2d0CaaOHHbSwgxa2fPjhhypQoICcc3rppZcUGxvr35favjW1FnXq1PHPM5522mlas2aNpH/PQ0rJj/U49vsXLeyghS30ANLGADuQBRYuXKjKlSvrs88+C7s9veH14JsekjRt2jT/vhEjRqT6PF9//bUaNGgg55zuvPPOLHpFuVNMTIxq1arlb0fnXIYPINOS0i8Q8fHxyQ4iOdn4L1rYQQs7aGELPeyghR20sIMWdtDCFnrY8dJLL/kNRo0apf379/v3pXSCPLXB0Nq1a2vEiBFq27at/ybu2rVrJYW/cRt8/E8//aTBgwdnzYvKpWhhBy3soIUda9eu1emnny7nnNq1a6c5c+bo0KFDklLerwZv27BhQ9gbto0bN9bSpUs1duxYv+3jjz/uPy7YY968eXLO6aabbsqGV5e70MIOWthBCzuyqwUyhh520MIOWuS80O382GOP+dtv+PDhWrFiRbqPS6nF6tWrtXnzZrVq1UrOOVWvXl2rVq1K8Wd++eWX/n35/cMGtLCDFrbQA8gYBtiBLJL0aj7HM7wuSS+88IIKFy6sGjVqaMmSJf5zhD7PV199pQYNGqhQoUJyzumKK67IwleU+6xZs8bfxqeddpomTpx40s8ZulM/dOiQPvroIz3yyCO64oordM011+jFF1/Ujz/+6C/DQMMxtLCDFnbQwhZ62EELO2hhBy3soIUt9Mh5oUOeAwcO9Hs8+OCDmjlzZrqPCR0MrVWrliZMmCBJWrZsmVq3bu23DQ6Ihj7+t99+UyAQkHNOr776aha8utyFFnbQwg5a2BQdHa1KlSrJOacGDRroqaee0rx585Itl9YbtitXrpR07MNsoR9QeOyxx/zH79y5U82bN5dzToULF9aMGTOy5wXmIrSwgxZ20MKOrGzBcOjxo4cdtLCDFjkv9PhtwIAB/va74oorNHjw4LAPL0sZa5GYmKjFixf7H1yuXr26jhw5EnZ140mTJqlhw4YqVapUis3zI1rYQQtb6AGkjwF2IBsc7/B6bGysmjVrJueczj33XP/rQ1IaXo+MjJRzTrfccot/f35/Az3U0qVLVbNmTY0fP96/7US3T3CQISEhQa+//ro6deok55zfIPhPVFSUHnnkkZP+eXkNLeyghR20sIUedtDCDlrYQQs7aGELPXJe6ND/I4884m+nypUrq0ePHv4VyKS0r2ocHAwNWrJkiT8g+sorr4T9rF9//dX/2tW6detq2LBhOnLkSFa+zFyBFnbQwg5a2LRy5Uq1a9dOxYoVk3NOJUuW1Pbt2/37M/KGbbBXXFycnn32WTnnNH36dEnS4cOHNWTIEJUsWVIRERG67rrrtHHjxmx+lbkDLeyghR20sCOrW+D40MMOWthBi5wXesw3cuRI1a9f3z/uW7x4sX9fRlqEPteCBQvUtm1bTZ06Neznff755zrvvPNUuHBhf04npW/2yo9oYQctbKEHkDYG2IFsNHfu3DSH14M7jL///ltVqlRRkSJFNGrUKEnHDliCkg6v/+c///F3ZHztR3Khn1g70cGC0APHm266yf9FIfgmVps2bXT99derWbNm/tWVBgwYkCnrn5fQwg5a2EELW+hhBy3soIUdtLCDFrbQI+eFnot477331LFjRxUoUEC9evXyb8/oYGjockuWLNF7770X9rNCB0MbNGigV199Vfv27cuKl5Ur0cIOWthBC5u2bt2qt956Sx06dNB3333n3348Qz5BcXFx2rJli//n0KvkFypUSHPmzMmGV5R70cIOWthBCzuyqkVq76emNNyT3z+0HIoedtDCDlrkvNBt9ddff2n06NH+t5skJib622fjxo265557MtRCOnZl/FDBodCIiAg553TTTTdp165dWfWyciVa2EELW+gBpI4BdiCbzJs3T1deeWWqw+uhhg8f7i/3888/h93H8Prxy6wr02/btk2tWrXy2zh37Ou75s6d6/+isG7dOr366qv+QMP//ve/k17/vIQWdtDCDlrYQg87aGEHLeyghR20sIUeNoSeQN+7d6+WLl3q/zn060ufeeYZfzC0Vq1aqQ6GpiTpYOjLL7/sD4bm9zdrQ9HCDlrYQQu7gts/ISHB305bt27Vvffem+E3bJO6++67/X35a6+9JokGGUELO2hhBy3syIoWoZIu/+GHH+r111/3/0yjcPSwgxZ20CJnpbQ9Q1vs2LFDDzzwgMqXL5/hFqG3Jx0KveGGG7Rnz57MfyF5AC3soIUt9ABSxgA7kE02btzov4HRu3fvFIfXExISFBsbq8svv1yBQEAdO3YMO9D48ssvVb9+fX94vWvXrgyvZ7Hgzn7NmjVq1qyZnHMqUqSI6tevr48++ijFx+zfv189evSQc06dO3cO+4UDJ44WdtDCDlrYQg87aGEHLeyghR20sIUemSul7RB6vuLNN99U1apVj2swNHj7rFmz/PMq9evX18svv+xffZ/tnxwt7KCFHbSwLzExUUePHtWoUaNUrVo1OefUpEkTrVq1SlLGhnzGjBnjD4Z27NjRfyyODy3soIUdtLAjM1oEnyfU/v37NWbMGHXu3NnvdOedd2b6+uc19LCDFnbQwo7gtv7oo49Uu3ZtOefUqFGjdIdCQ7c9Q6GZgxZ20MIWeiC/Y4AdyEaLFi3SAw88oLVr16a6zNKlS1W0aFE559SvXz//dobXs1/wU9K7d+9W8+bN5ZxTsWLFdNFFF2natGn+cim9CTVq1Cg551S4cOE0eyNjaGEHLeyghS30sIMWdtDCDlrYQQtb6JG9NmzYoMsuu0zOOVWsWFHjxo3z70tvMHTmzJn+YOjZZ5+tl19+WQcPHpTEOZETQQs7aGEHLew4cOCAv1+uWrWqVqxYISljQz7Lli3TlVdeqUAgoIIFC+qtt95KcbmU9u180CA5WthBCztoYcfJtEi6zJIlS/Txxx+rUaNGKliwoD8UWrhwYTnnNHz48Cx5DXkJPeyghR20sOXCCy+Uc06nnHJKuh8kSGso9Prrr2co9CTRwg5a2EIP5FcMsAPZLPQraUMF38x47rnn5JzTqaeequjoaEnSpEmTTmp4/Xi/fgr/brOjR4/q/PPPl3NORYsW1ZVXXqlZs2b5yyU9aRgXFydJ+vjjj1W8eHGVK1dOGzZsyL4Vz4NoYQct7KCFLfSwgxZ20MIOWthBC1vokf0+//xz/w3WUaNG+bcfz2BotWrVNHDgQM2ZM0eJiYk6fPiwJAZEjxct7KCFHbSw48svv/SHcb744gtJ6W/DYI9Ro0b5b9jecccd/v2h+/Pgc8XHx2vGjBl65513kj0PjqGFHbSwgxZ2nEiLpKKjo/Xqq6+qZs2aKlOmjJxzqlSpklq0aKH69evLuWPf0DV79uwseAV5Cz3soIUdtLBj8+bNioqKknNOjz32mKSMD4W2atVKgUCAKxpnElrYQQtb6IH8jAF2wJirrrpKzjnVq1dPR48e1VdffXVCw+tJ32Tftm2bvv322yxd97wmISFBd911l5xzKlSokNq1a6eZM2f696d1xYt77rlHzjmVLFlS69evz47VzdNoYQct7KCFLfSwgxZ20MIOWthBC1vokb0mT54s55xOO+00zZ8/X1L6g6GzZs3yB0ODb8oWLVpUUVFRatSokXr16qVNmzZJYkD0eNDCDlrYQQs7li9frmrVqqlo0aJ6++23M/y4+fPnq0iRInLOqXXr1vrnn38kpbztDx8+rAEDBqhJkyZyzunuu+/OtPXPS2hhBy3soIUdx9sieHx34MABbdy4Uf/973/VrFkzfz9eunRptW7dWj/88INmzpypLl26KBAIqHv37oqNjeUDBOmghx20sIMWdsTExOiKK67wP0QWvEBFUkmHQlu3bu0PhTZo0MA/vsuIlD6gBlpYQgtb6IH8jAF2wJDff/9dZcuWVUREhN5991398ssvqlu37nENryc9MPn777/13nvvqVatWsmu6oC0ff7556pdu7b/tV7ff/+9f19agwzz589X48aN5ZzTVVddpSNHjvD1jieJFnbQwg5a2EIPO2hhBy3soIUdtLCFHtnr999/V/Xq1eWc0wsvvJDqcqFXNQ6eDwkEAjrllFN0ww03qGfPnrrgggtUuXJlOedUt25drVu3LuyxSBst7KCFHbSwY/fu3erQoYOcc7rgggv8Ic+0bNq0yb8wTFRUlEaMGKEjR45ICt+n79y5Uz/99JM/CBQREeG/0fvqq69m2WvKrWhhBy3soIUdGWmRdN/7+++/6/bbb1eDBg3knPP35XfffbfGjx+v2NhYSdJHH33kD4y+//772fJ6cjt62EELO2hhy+uvv+5vs5Q+UBC6T/7ss8903nnn+fvh4D9PPfWUDh48mO7PCj7XL7/8ogULFkhiODQULeyghS30QH7FADtgyHvvved/evbOO+/UWWed5X+dYEavvC4d29GsWLFCw4YNU82aNf2rOhQuXFjOOd1///3Z8XJyvbvvvtvfyb/33nv+7SkNJoTe9tRTT/mPGzFiRLasa15HCztoYQctbKGHHbSwgxZ20MIOWthCj+z3zDPPpHkSPqXB0Fq1aqlbt25au3atv9y+ffv066+/qkWLFnLOqXHjxtq6dWt2vYw8gRZ20MIOWtixatUq/0MAl19+edj2DRVsMn78eFWtWlXOOTVv3lzbtm1Ltuwff/yhHj16+M9bsWJFVatWTc45NWnSRLt27crKl5Rr0cIOWthBCzuStlizZo2k5O+jjhs3Tvfcc4//nqtzTmXKlFHv3r31xRdfhC27cuVKNWrUSM45de7cObteSp5ADztoYQctcl7oOb0HH3zQ/2DAG2+8keIySYdCb7nllrBjxSeeeEKHDh1K9ecF9/8//fST/5hFixZlwSvLfWhhBy1soQfyOwbYAQMSEhJ04MABXXTRRf6g+ZlnnukPnGd0eP3AgQNas2aNunfvrrPPPtvf0VSuXFnVqlXzv9K2Z8+e2fXScq3Zs2f7b0T16tXLvz29QYZPPvnE3+5XXnmlDhw4kOrjkDG0sIMWdtDCFnrYQQs7aGEHLeyghS30yF6hVxTr37+/vw3feeedZMuEDobWr19fI0aM8Ad2kp4TmTJliqpUqaLChQvr9ddfl0SL9NDCDlrYQQuboqOjValSJTnndMUVV/hXKw4KNomNjVWrVq3k3LELw/z5559hy+3cuVMffPCBSpcuLeecSpYsqRtuuEGTJk1S48aNVaZMGb3xxhuKj4/nKvmpoIUdtLCDFnYkbXH06FFJ0p49ezRu3DjdcMMNcs75Az41atTQ/fffr0WLFvlXMpbkN/zhhx9UsWJFFS5cWKNHj5bEt6gcD3rYQQs7aJHzQo/VBgwY4A+Hbt++PWzbJR0KveGGG7Rv3z5J0siRI9MdDg0e702bNs1f1jmn2267jSsb/z9a2EELW+iB/IwBdsCInTt3qnz58oqMjFQgEPDfCElteD3pjuOnn35S9+7dVbNmTX9H5pxT3759NWHCBD300EMqUaKEGjZsqBUrVkjiDZO0TJo0SRERESpcuLAmTJggKf1Bhu+++87/kMDpp5+ut99+m4PFTEALO2hhBy1soYcdtLCDFnbQwg5a2EKP7Bd6HqNv375yzmno0KGS/n2jdcaMGf75jKpVq2rYsGH+CfiU+uzatcv/AP9NN92U7jokJCRow4YNmfFycjVa2EELO2hh05IlS3Tqqadq+vTpqS4T/EaVIkWK6IknnlBcXJx/36effqquXbv6b8hefvnl/n7//vvvl3NObdu21bp167L8teR2tLCDFnbQwo7FixfrtNNO059//qldu3bpk08+0VlnnaWyZcv627dcuXL+v3/++eeS5PcI7sfj4uLUtm1b/4Nqe/fuzbHXlJvRww5a2EGLnJd0OPSnn34Kuz/pUOiNN96oPXv2hC3z0ksvpTocGjxuDB0KLV26tG6++WZt2bIly15XbkQLO2hhCz2QXzHADhjxzz//+F8JFbzy+n/+8x//YCT4Sdykb4a8++67uueee8I+GVWlShX17dtXP/zwg6Rjb5Y0b97cf7Pk4MGD2fvicqHgTr1mzZqpvhEV+ucff/xRUVFRcs6pePHi6tmzZ5pfyYKMo4UdtLCDFrbQww5a2EELO2hhBy1soUfOCD0JP3Xq1LD7QgdDnXO6+uqrtXPnTkkpD4YGz5PcfPPN/sBPWhISEjR79mzVr19fffr0OdmXkuvRwg5a2EELm4JXnUzpSmCff/65ateuLeeczjrrLC1YsECStH//fvXs2dO/onGxYsX06KOP+t+cMnr0aDnnFBERodmzZ2ffi8nlaGEHLeyghR1xcXGaPHmyypQp4w+ERkZGqmjRoho6dKhee+01/5uwnXP+e6iJiYl+v3HjxqlkyZIqVaqUxo0bJ4mrGp8oethBCztokfNSu7rw559/nuZQaOjjkg6HHjx4MNWh0M6dO2vbtm2S/u0UPFbM72hhBy1soQfyIwbYAUOWLl3qvyF+6623+m9+HD58OGy5jRs36v3339fll18eNrjesmVL3X333dqwYUPYVRyCVw2KiorS0qVLJXH19fS89tprcs6pTJkyWrNmTZrLfvvttypTpozf4dprr/U/7cwB48mjhR20sIMWttDDDlrYQQs7aGEHLWyhR85J6ST8zJkz/Q/zR0REqGjRolqyZImktM9f7NmzR3Xr1pVzTpdddlmqyyUkJGjOnDlq166d33HevHkn/2JyOVrYQQs7aGFPah8wi42NVffu3f1tNnHiRB0+fFjvvPOOf1XKwoULq2vXrpo8ebL/+D/++EPnnHOOAoGAhg8fnuLPkJL/f4Hz6bSwhBZ20MKWhQsXqkSJEnLu2JWJ77vvPs2fP1/SsW32888/6+KLL/a7/Pjjj2GP79Gjh5xzql69uhYuXJgTLyFPoYcdtLCDFvaMGzdOrVu3VsGCBVMcCg0KPQcYOhw6ePBgScc3FHrw4EH/Awj4Fy3soIUt9EBexwA7YMySJUt01113+SebQncwixcv1oQJE3TGGWf4V2YoVKiQWrRooccee0xr1qzRkSNHJP37dVIbN25Uu3btFAgEdMcdd4R9sgqpW7JkiWrWrKmyZcuGnTwM/WBAXFyc3n//fX8HHxkZqUsvvVS7d++WlPon43B8aGEHLeyghS30sIMWdtDCDlrYQQtb6GHH6tWr/W3coEEDVaxYUfXq1dOBAwfCeoQKnjOZNGmSKlWqpEAgoKeeeirsvqDgYGibNm38k/P/+9///Cvv41+0sIMWdtDCrrFjx/pt7r33Xq1evVpXXHGFf968fPny+uyzz7R58+awxw0ZMkSBQEAtW7bUX3/9lebPiI2N1aeffur/mQHRlNHCDlrYQYucs3TpUt155536559//G/NCh67xcXFadq0aWHDoVOmTJEkffbZZ/5tI0eOzKnVz3PoYQct7KCFLSNHjvS360033ZTiUGhQ6JxN6ONuu+22dIdCgw4ePKirrrpKzjkNGTIkS15TbkULO2hhCz2Q1zHADhh39OhRrV27Vk899ZTq1aunQoUKyTmnokWL+juXl156KewxoTuXN954w19u4sSJ2b36udbu3bv9K9yff/75mj9/ftibUt9++6369evnb9syZcrohhtu8H9RYJAh89DCDlrYQQtb6GEHLeyghR20sIMWtuREDwZKUnfrrbfq1FNP1XPPPad69eqpWbNmqS4b+qbutddeK+eOXRF59uzZyZZNOhhavHhxjR49WgcOHMiy15Lb0cIOWthBC3t+++03Va1a1d9HX3nllSpVqpScc6pRo4Zuv/12LV++PNnjfvnlF3/fPmrUqLD7QvfT+/bt0/z589WiRQv/jV6kjBZ20MIOWth29OjRZMOhn3/+uZ544glFRkbq7LPP1rJlyyRxDJcd6GEHLeygRfa79dZbdfHFF6c5FBoUOovzzjvvyDmnQCAg55xKlSqV5lCoJA0bNsyf97nooouSfZgtv6OFHbSwhR7IyxhgBwzbsmWLOnbsqPPPP98/OHHO6bzzzlPfvn113nnn+bdNnTpV0rGDlOCBSnR0tBo0aCDnnLp3756TLyVXWrVqlapUqSLnnOrWratrr71WvXv31hVXXKFy5cr5275hw4YaOHCgf2UkBksyHy3soIUdtLAlO3twQjJttLAjJ/6eCn4bEcLRwo7sbBF64pH9f8py6vep0BO++X1fErotf/75Z23cuFFt27ZVqVKltGjRojQfe9ddd/mDoU888YSk8O3JYOjxoYUdtLCDFjYdPXpUgwYNknNORYoU8bezc06XXnqpvvvuO//bUkJ/H1qzZo3OPfdcOefUrVs3//ak+/X58+froYceUvXq1eWcU4ECBeSc0y+//JLv99tJ0cIOWthBi9whpeHQ4NXx77777uN6Lrb7yaOHHbSwgxbZI3Q/GxMTk+HHBS+C8ddff/l9ihYtmuJQaErnEbt06aL27dtr/vz5J7P6eQot7KCFLfRAfsAAO2DYqlWrFBkZ6e9M2rVrp0cffVRHjx7V4cOHNWvWrBS/Piq4I5o0aZLKli2ryMhIjR49WlL6ByhLlizRO++8k6WvKzdZsWKFmjRpooIFC4Z9iCB4wvGmm27S5MmTFRsbKynlT6chc2R3i+DjOahPjhZ20MKW7O6xdOlSLViwgH1PCmhhR3a1SEhI0JIlS3T99ddr/PjxWrdunX8ff2cdQws7svvvqA8++ED/+9//wr5+nhb/yu4eS5YsUZcuXcLebMzvPZJu0549e8o5pxEjRvjbPSg+Pl579+7V7bffLueOXTmmQ4cO+v3335M9J4Ohx48WdtDCDlrYFB0drRIlSvj77Hr16mngwIGpLn/kyBG98MILKlq0qBo1auS/ARv6ocu4uDhNmDBB1atXV8mSJeWcU4UKFXTjjTfqhx9+CHs+jv3+RQs7aGEHLXKHo0ePavr06Wrfvr1/HFinTh3/PEbSc+H79u3TypUrNXnyZP3555/auXOn/1xs85NHDztoYQctssfxbpvg8lOmTPG7lChRIs2h0JiYGG3dujXsedasWXOyq57n0MIOWthCD+R1DLADxi1dulS1a9fWq6++qpUrV4bdFxcXl+yTt8ETVbt27dJZZ50l55xatmyZoSsgLl++XLfccoucc+rSpUuWvJ7caOPGjXr55ZfVqVMnnXvuuWrQoIEeffRRjRs3Lmy5/D50kB2yskXSTxXu379f8fHxyb6Ch87H0MIOWtiSXfuMFStW6D//+Y+cc3r44Yf122+/Zdpz5xW0sCM7WixdulQdOnTwB4Wuvvpqvffee5ny3HkJLezIrr+jZs+erZo1a8o5pzZt2mjs2LGZ9tx5SXb1WLJkifr06eMfv/fq1SvTnjsvmTBhgr+NhgwZolmzZunAgQNau3atRo0apcsvv9z/O+aCCy7Ql19+GfZ4BkMzDy3soIUdtLBj8eLFKl68uO68886w4c2UvoVm/fr1atSokZxzGjRokA4dOhT2XN9++63/4YTgP6effro+/vhj/fPPP2HLbtiwQa+99lqy2/MzWthBCztokXt89NFHKl++vJw7dvX7/fv3+/cFj9PWrFmj22+/XTVq1JBzTpGRkbr88ss1ZswYf1m++Sxz0MMOWthBCzuC+/Fp06b5++TSpUunOxTatm1blShRQmvXrs2R9c6LaGEHLWyhB3IjBtiBXCDp14CEnuBK6eujvv/+e02dOlUlS5ZUuXLl9PHHH0tK+6AkOLwePPiJjIzU6tWrs+YF5XKHDx8O+zOfWM45WdFi6tSpeumll9SqVSs1bdpU9erV0wMPPKBPPvnEX4bhkuRoYQctbMmKHgkJCZo+fbqaN28u5459VfB5552nV1991V+GHsnRwo6saLF79249/fTT6tKliwoUKKBAIKCCBQtq0KBB/jK0SI4WdmTlMcYrr7yis88+WxEREYqMjNQTTzzh30eLlGVFjyVLlqh3797+cXuBAgXknFPv3r39Zejxr0ceecTfVuXKlVPDhg0VFRWlYsWK+VeyvO666/T111+HPY7B0MxHCztoYQct7Ni9e7f/baRS+D47dL963XXXyTmnevXqhV1RLD4+Xn379lW9evX8pnXr1lX37t21a9euZD9v8+bNev755/1lN2/enEWvLPehhR20sIMWuUPwwwERERGaPXt2svu3bt2qTp06+d/aVbZsWf/Das65sGNs3i88efSwgxZ20MKGExkKPXTokK6++mp/+dtvvz1DF55E2mhhBy1soQdyKwbYgVwgeCIrtTezUxpiD74RUq1aNS1fvjzN5w8Or5crV07OOVWtWlW//vprpr+O3Cx02zNUkLOyokViYqJ2796tnj17+h/iSPpP4cKF9dBDD2X6z87NaGEHLWzJjn1GbGysZs+e7V/5O3gismfPnln+s3MTWtiRlS2SPt/EiRPVvXt3v8V9992XZT87N6KFHVn9d1ToG1K///67+vbtS4s0ZGWPpMPr3bp102uvveb3YIj9X6H/vx08eLBOPfXUsN8/S5QooRIlSuill17S4sWLkz02vcHQ/L59jwct7KCFHbTInd544w0551SmTBlNnz5dkrRlyxZNmjRJ7du3D2t48803a/Lkyf6H2Y4ePeo/z+bNm/Xss88qKipKzh27+vG6dety5DXlVrSwgxZ20CJnTZ06VZUqVVIgENA999wjKfn+eMqUKapQoYIKFCigW265RUuXLtXHH38cdlX8p59+2l+e4dATRw87aGEHLWwIbvMTHQotVqyYbrjhBs2dOzdnXkAeQgs7aGELPZCbMcAO5BEpDbE758K+FiolSYfXTzvtNIbXkWek9a0DwV/gYmJi9N133+mSSy4JGzy89NJLddttt6l///667LLL/NsffPDB7Fr9PIUWdtDClhP5ysakJyefe+45Va1aVZGRkXLOqWvXrpm1evkKLew40a8yDT3xvnXrVo0aNcr/e2rYsGGZtXr5Ci3syIwWW7Zs0ciRI/0WjzzySGatXr6TXo/Q/UPS4fXu3bvr4MGDkqQxY8YwxJ6C0O3766+/6oMPPtCgQYM0cOBATZo0KdlQqJSxwdDU3qDN79s7LbSwgxZ20CJ3CG631atX6+KLL1ZkZKT/Ab5FixapS5cuql27tpxzKlSokM4880w9//zzYc8R2jrpYOi5557Lt5dmEC3soIUdtMh5wQaDBw/2j9U++OCDFJcNXtW+QoUKWrt2rX/79u3bNWLECP/xb7zxRnasep5EDztoYQct7Ageq02fPv2Eh0I7deqk+fPn58wLyENoYQctbKEHcjsG2IE85PDhw5oyZYrOOOMMBQIBNWnSREuWLJGU8psdDK8jL4qJidHff//t/zml4ZLgfw/79+/X2LFjdc4558g5p8jISF1wwQV67bXXwpbfvn27P3hVsGBBjR8/PmtfRB5BCztoYUtGeqQndL8+b948tWnTxv96yEaNGmn9+vWZsq55HS3syIwWUniPw4cP65lnnlEgEFCdOnU0Z86ck17P/IAWdmRWi6TPOXz4cAUCARUvXlyffPLJST9nfnEiPRYvXqxevXr5J43vvPNO7dmzJ+w53nrrLYbYU5De1cBCt09GBkNDTZs2Ta+++qr+/vtvHTp0KEM/Lz+jhR20sIMWtoVu/6efflrOOVWvXl3vvvuuPv30U5UuXdrfNxcrVkwDBw7UL7/8Evb40OdIaTB01apV2fqacita2EELO2hhxx9//KHChQvLOafrr7/evz3psdioUaPknFPZsmWTneeLiYnR448/Luec6tWrl+4VK9euXavt27dn3ovIQ+hhBy3soIUd3333XaYNhSYkJGTLtwfnVbSwgxa20AO5GQPsQB4R3OHMmDFDhQoVknPhXwufFMPr2Sv4VY6ZMXSC1B0+fFiffPKJIiMjdccdd6S57IEDBzRq1Cg1bNjQH9K9//77NXv2bH+Z0K/g3Llzp/9L3L333ptlryGvoIUdtLDleHqkJvQgccaMGbr55pv9K35ffPHF+vPPPzmQzABa2JEZLVLz+++/q2LFinLO6a233srU586LaGHHibZI6e+cpLetWrXK/yr64MA0f1el7UR6bNiwQd27d/dPGrdp00aHDx+WJMXFxfnLJR1iv/POO7PkNeRVxzsYumbNGl177bVyzun000/Xvffeqy1btkjieP1k0cIOWthBi5z19ddf+/vhc889Vz179lSRIkX8N3MbNGigGTNmKDY21n9M0g8LMBiaOWhhBy3soEXOOnr0qP9NWRUrVtR7772XbJngcfK2bdtUr149Oef08MMPKyYmJmy5pUuX+t9kOnz48FT32StWrFCnTp0UGRnJFfKToIcdtLCDFrb06dNHzjmVKlVKXbp0OeGh0NBzgknxweWMoYUdtLCFHsjNGGAH8pBt27bpoosuknNOTZo00aZNmyQl34kwvJ4zFi5cqNtuu03r1q3L6VXJkw4fPqwPP/xQNWvW9E/8vv/++ykuGxsbq/fff1+NGjXyh3SfeeYZbdiwwV8mpSGeRx55xH8TcefOnVn2WnI7WthBC1uOp0dqQhv8+uuv6tKlCwPTJ4AWdmRGi/Scd955cs6pc+fOYR/CQTha2JEZLSZPnqwpU6b4f07699Fjjz0m55zKlCmjf/75J1PWO686mR4vv/yymjdvrqJFi6pEiRLq16+ff1/ofwPx8fEaO3as//yhV1hE6o53MDTo559/1rXXXqvTTjtNzjmdffbZ/nE6A6InhhZ20MIOWuSsNWvW6NJLL1WhQoVUsGBBlStXTgUKFJBzTs2aNdNTTz3ln+9I7bht8+bNGj58uH8OvWXLllq+fLl/P8d7GUMLO2hhBy1sWLFihZxzqlSpknbt2iVJWr9+fbKhzYMHD+q+++7z+wS/+Tr0mO65556Tc07vvvtuij8rNjZWt9xyi3/MN2zYMAaAkqCHHbSwgxa2DBgwQJdccslJXdFYOnbRi3vvvVddunTRXXfdpY8++sh/f5VjvoyhhR20sIUeyK0YYAfygOAOYurUqapVq5acc7r99tt18ODBZMsyvJ79EhMTFRsbqwoVKsg5pxtvvDFsIBSZY//+/apbt65/IN+lSxctWLAgbJngSdtZs2apRYsW/pDu888/7x/4pyR4gN+zZ08559SgQYOwK58gHC3soIUtGemRFgamMw8t7DjZFunZu3evTj/9dDnn1KFDB7qkgRZ2nGyLRYsW+cd7n332Wdh9watnPPPMMypUqJCioqK0cePGTF3/vOZkeyxfvlzPPfecihUrJuec/vOf//j3hZ7sjY+P1/jx4zVq1Cht3bo1U19DXpSRwdCkJ9MTExP9v3t27typiRMnqmnTpnLOqUaNGv6HOXiD9vjQwg5a2EGLnLdjxw5Vq1ZNzjn/W06cc7r55pu1fPly/6qUqW3P4GBomTJl5JzTGWecoeXLl/vfphJEj/TRwg5a2EELO6Kjo/XVV19JkubOnav69etr3LhxksLP/y1btsz/VrnbbrvNvz24Pz9y5Ih+/PFH//aUznl8//33cs6pf//+/jesIBw97KCFHbTIeaHHbsFjuuMdCg2+pzpv3jxVrVrV3/cHLzBy4YUXav369cl+HsLRwg5a2EIP5HYMsAN5yDXXXOPvbBYuXCgp/AQVw+s565dfflHRokXlnNN1113HEHsWWLhwoWrUqKEOHTpo2bJlYfcF/1tISEjQVVdd5Q/pDhkyRDt27Ej1OUMP4Dt16iTnnJo2bardu3czeJUGWthBC1vS6pEWBqYzHy3sONEWqQn+3RYXF6d3331Xp5xyipxz6tWr10k/d15HCztOpsXevXv13//+1z+5+Pbbb4ddcSkmJkadO3eWc06FChUKu0ofUnYiPUL3BYcPH9b48eNVvHhxOec0YMCAVB+XdOgEySUmJmrGjBn+tzqkd1XjvXv3pvi7bUJCgv7++2+de+65cs6pdevW/tVpkDG0sIMWdtDCjsWLF/sfILviiiv0+uuvZ+hxmzdv1rPPPuufQ3fOqWzZsqpdu7aqV6+uO+64Qx999JG/PG/cpo8WdtDCDlrYETx26927t5w79g3XoR/0Dp7bmDRpkn8OcMyYMckeHxS6zZN+Y+nq1av5wHI66GEHLeygRc4LnbkJbs+MDoUGl9+2bZuqV6/uf/jsqquu0nnnnafKlSvLOafq1avz7VsZQAs7aGELPZCbMcAO5BEffvihnHMqWrSoevfuLenYDiO4o2F4PWcFf1n47bff/K+CZIg9a2zcuFHR0dGp3v/www/LOaeIiAjdddddyb5mLTXvvfeef0L46aefzqzVzdNoYQctbEmvR1IMTGcdWtiRtEVGt2PocqH/HhcXpy+++EKXXHKJ//fU559/nnkrnIfRwo7UWmSkya5du9SjRw9/m/fo0UOjRo3Shx9+qNtuu82//e67786y9c9rTqaHdOyDA0OHDlXBggVVvXp1TZkyJUvWM78YOXKkf8J9zJgxyQZDd+zYoUmTJum8885T9erVVbJkSd1111364IMPwpZLSEjQV199pZo1a6po0aIaNWqUpIx3BS0soYUdtLBjyZIlevXVV7VixQr/trTeZA0OhkZFRck5p8qVK6tFixYaMGCAunTposaNG/u/Rz311FP+47jKcfpoYQct7KCFLVOmTFGtWrVUunRpjR49WkeOHJH077ek7NixQ506dVJERIS6d++e7vOtXLlSV111lXr27JnVq54n0cMOWthBCzuCx2SHDh3Stddem+pQaKgxY8bIOafy5cvrk08+0eHDh7V//359/fXXat68uZxzaty4sTZt2iSJ/XdG0cIOWthCD+QmDLADecS6detUokQJOef0xRdfhN3H8LoNoUPsBQsWlHNOl1xyCZ9izkZr165V06ZNFQgE1KBBA02bNi1Dj/vzzz916aWXKiIiQlFRUfrmm2+yeE3zPlrYQQvbGJi2IzNbJF2OhuFSO+GRdCg6Pj5ehw8f1sGDBxUTE6NNmzZp/vz5+v7773XDDTeoXr16/hu3/fr1C7sCNTKGFnaEDksvX748Q1dgXbNmjf8tXcF/SpUq5f97q1at9OWXX2b1qudJoT1Wr16d6lV1k5o9e7Y/bDJs2LCsXMV84YEHHtDIkSOTbf9t27ZpyJAhqlmzppxzKlKkiP9hzeAV8EMHg3bs2KHLL79czjldc8012fwq8gZa2EELO2hhU1rHXkkHQ5s2bapvv/027Ar5q1at0jPPPOP/PvXss89mx2rnSbSwgxZ20CJn7dmzR927d5dzTmeffbb+/PNP/77g+ZHHHnvMv5hY6AcPklq5cmXYh8e///77LF//vIYedtDCDlrYEhcX53/zVqlSpdIcCpWk1157zb+CcdIr6M+fP1/NmjWTc07XXnutdu/enR0vIc+ghR20sIUeyC0YYAfykAULFqhXr15htzG8bkvoEHvwE24LFy7M4bXKPyZNmuQfiA8ZMsS/Pa0Tw1u2bNFDDz3kv6HYtWvXZMsEu27dujXsq9YYSExdVrXA8cvKFsd7ZdL8Knh1DCnlr/eSMm9g+tChQ5m45nlPdrb466+/9OKLL6b4M3DsSsW//PKL7rzzTvXs2VNdunTR1VdfrRtvvFFXX321zj//fLVr107nn3++zjrrLNWvX1/VqlVTwYIFVbRo0bCB3V69emnJkiXJfgb/XWRMdrSQ2Gdk1Ny5c3XhhRfqrbfekpT29oqLi9Nzzz0n55yuvvpqFSpUyG9x44036pNPPvGXTekK+rRI3++//6727dvro48+kpSxbXbFFVfIOafzzz9fBw8eTHPZ0P0SPf4V+iGY4NXGpH+vVjlu3DjVqFFDzjlVqVJFL774oh5++GHdeOONYd9KEDrs8+abbyoiIkINGzbUrl27su/F5HK0sIMWdtAid0o6GHruueemekXkQ4cO6aGHHpJzTqeffrr++uuvNJ+bffjxoYUdtLCDFtln/fr1Ouecc+ScU7t27TR//vyw/fkTTzwh55wKFy6sBQsWpPgcK1eu1C233OLv1wcNGqTNmzdn10vIU+hhBy3soIUtd999tz/MGfqBgpRMmTLF3+YTJkxIdv+3336rWrVqqUSJEho3bhz76ONECztoYQs9kBswwA7kMaFvkixfvlxdu3b1h9crV67M8LoBwYG4v/76S9OnT1dcXNxJP2diYiJfz5KG4La5//775ZxTvXr1/EHztLbb3r17NXLkSBUrVkzOOZ133nn+1S6TfpXnTz/9pCpVquiOO+7Qd99959/OL23hsrpF0udg+6cuK1oE90FJh0L3798f9hx0CRfcHjNnztSHH36Y7Ap9s2bN0k033eRfke+SSy7RX3/9ddzb8a+//lL79u01ZswYrVu3LtnPR9a3CC63ePFiXXDBBXLO6e677052P6RvvvnGvyrlifwTFRWl+vXra8yYMWleBYD/LtKXVS2S7mv27NmjuLi4ZENZtAgXHERo2bJlhq7Cvnr1ahUoUEBPPvmk/vnnH82cOVNz5swJe2Mr6fHIvn37FB8fr71794bdTotwcXFx6tu3r5xzuvDCC8MGDVMTExOjpk2byjmn5s2bh3UISvrfxvbt23Xw4MFkz0+PlCUkJOjss8/2P8C/du1a/74dO3Zo9OjR/t9Pd9xxh7Zt26b4+Hj169dPzjm1aNEiU47RQQtLaGEHLWxKOhjaokULrV69Os3HTJw4URERESpYsGDYecCkgvv1mJgY7dmzJzNXO0+ihR20sIMW2W/lypWqVKmSnDt2heMhQ4bop59+0ssvv+zvp88//3xt375dUvix2cqVK9W1a1d/uUceeSRDx+5IHT3soIUdtMh5oefvxowZozlz5oTdHxMTk2yW4ODBg+rcubMCgYBuuukmbdiwIez+PXv2+FfFf+KJJzj2yyBa2EELW+iB3IQBdiCPWrFiha655hr/pNapp56qP/74I6dXC//vZIcNMjKszkBDcnfccYecczrnnHMkpb2Ndu/erTfeeMMf0m3YsKEmT56c6mOefPJJBQIBRUREqHr16nr++ef9+2iRXGa1SOuKlPHx8Qy0Z0BW/Xfx448/6uqrr1abNm10zjnnaMiQIWFfQUiLcMFPNNeuXVvjx49XTEyMpGOD1JkxvL59+3Z169bNPyl58803p3rl3fwuq1okHV4vXLiw36N3797Jlsvv1qxZowIFCsg5pwIFCqhly5a68sor1bVrV3Xv3l033XST7rzzTg0cOFB9+vRR37599eyzz2rkyJH64IMPtGLFinRPvPPfRcZkRYvQbbt9+3aNHz9eTZo0UcOGDVWrVi09+OCDmjRpUorL53dffvmlqlevrlNOOUXvvfde2AeYQwV/B1q8eLFKlSqljh07prhc6AnG6dOna/jw4WrSpImaNm2qs846S08++aS+/vprfxla/Cs+Pl7vvPOOTj31VFWqVEnjx49Pt8eWLVvUpEkTOed0wQUXJPsGiNATxhMmTNC9996rypUrq1atWqpWrZr69++vzz77zF+GHsmtWbNGpUuXVtGiRfX4449LkmJjY8OW+fzzz/2/+++66y4tXLhQF154oZxz+u9//6v4+Hi2bSaghR20sIMW9hzvYGhw28+aNcs/phs9enSaP+PgwYN68MEH1axZs3SHTvMzWthBCztokXOWL1+uevXq+fvk0PN4lSpV0tChQ5M9Jr2hUC5CdeLoYQct7KBFzks6+BkUExOj7777TvPnz0+23FtvvaWIiAgVLlzY/0bH0O3+559/6oYbbtC3336bhWue99DCDlrYQg/kFgywA3nUpk2bVLVqVTnnVLx4cT79lIeEvkm1fPlyvf/++xo0aJD++9//6sMPPwz7oAJvaIV74IEH5JxT/fr1k11VN/SXrvXr1+v555/3h3TPPPNMvfHGG8muIp3UF198oRtvvFGBQEDOOT300EP+fbQIlxUtli1bprfeeks33HCDLr30UjVv3lyXXnqp3nzzTc2ePdtfjhbhMqtF8AMF8fHxYVd5CP2nYsWKGjx4sP+ctPjX0qVLVbBgQTnn1LhxY33yySf68ccfdfPNN5/08Lp07ED0008/1WWXXSbnnAKBgMqXL8/fUynIihZJh9cjIyNVqFAhnXvuuf4+gyH25JYuXeq/Sdu2bVstWbLkhJ4nte3JfxcZl1UtNm3apIEDB6a4zyhbtqweffTRVB+bX+3evVu33nqr/+GzlL7yMXRbvfTSS/6Hcg4fPhx2X+h+fsSIEapbt26KLcqUKUOLVOzcuVM33HCDnDt2RfW//vor2TKhJ38ff/xxf7uOGDEi1eX69++vEiVKpNijWLFi/D2VhpUrV/rbauDAgaku9+WXX/rLBb9lolChQv5Je5w8WthBCztoYcuGDRv03HPPHddVjaVjxxGPPvqoChQooLJly2rGjBmpLpuQkKDBgwerfPnycs7prLPOSvahBdDCElrYQYuc988//6hPnz7+h5CdO/ZtpE899VSy47D0hkJDl086SMQxXcbQww5a2EELmz766CM5d+yCOUGh52GDF9UpV66coqOjJf37Hqt07Jx5UNL5ntSGUZEyWthBC1voAWsYYAfysMWLF/sntxo3bqxx48YlG05E7hMfH6/t27era9euYZ+sDv5Tu3ZtPfXUU/7yHFT+uw2++eYbRUVF6bTTTgs7cRu6jWbNmqXevXuraNGics6pbt26euGFF7R79+5Unz/0l7nly5dr8ODB/kBi3759U/w5+VVWtFi6dKleeukllS5d2r/CQHDINPS/i+HDh6f4c/KrrPrvIvSN9rJly6p69eq67LLLVLNmTf+/i/vuuy/Fn5PfRUdH+/vtM844Qy1btgwbmP7zzz9PanslJiZq//79uvfee1WmTBm/R48ePTLxVeQNmdkiteH1G2+8URs3btT48eMZYk9D6OB0+/bt/RMlUvg2Su3f08N/FxmXmS2Ct//vf//z9xnVqlVT48aNdeONN6pBgwbsM9Kwfv16NWvWTM45tWvXTgsWLPBPEoaeHPz666/VoEEDOefUuXPnsOcI3ZZDhw5V4cKF/W3epk0bderUST169FDLli392/+PvfMOq+Jo2/jMoYooiA1RLNh77713Y4ka46vRJBq7xhp77xV772hijYol0Rh7jZ0uTbCgIAoIUg7n/v7g23EPHTmHs8Dzuy6uGHZ2mZ17Z6fsPc9MmjQpa24wm+Hv748aNWoIPR48eJCs6WP16tXiea9evXqK/a4JEyZo9WO7dOmCMWPGYMqUKWjXrp3QY/LkyVlyf9mNT58+oUOHDjA2NkafPn3w5s0bcUyj0WiN3Q4cOCDK09zcHFu3bgVAEcd0BWmhHEgL5UBaKAe1Wi0W+mXEGAoA9+7dEwv/6tSpk+Z8+61bt8A5R/78+XH+/HldZD9HQVooB9JCOZAWyiEmJgafPn3C9evXcePGDbx79y5JmrRMoXIeP36MSZMmYefOnXBzcxO/p/Y9fZAeyoG0UA6khfLYvXs3OE+IhH/x4kXxe2nnxpcvX6JevXpi7jsmJibZ8pWbQpctWwZ/f38AZA7NCKSFciAtlAXpQSgNMrATRA7H3d1dGE1q1qxJJvZszrt377Bv3z7UrVsXnHPxIatixYqoVasWbG1thcFObpwmEnj79i1atGgBzhOih964cQOfPn0CAISFhcHR0RG1a9eGmZmZWPixY8cOfPjwIc1ry00nYWFh2Lx5s9Bn5cqV+rqlbIuutDhy5Ah69uwpJl2KFy+Ohg0bwtHREVu2bMHUqVPRtGlTocWECRPEuWSCS0CX9SI0NFREeqhUqRIWLFiAoKAgAMCTJ0+wePFiocXs2bOz8jazDe7u7ihYsKCIsCcZRV1cXDI9QSh/5hcuXIh8+fKJNmP+/PmZzXqOQxdapGRe79u3r6gbMTEx2LlzJ5nYU0Hen23Tpg08PT11dm2qFxlDl1q8efMGdnZ24DwhcvX+/fvx8eNHAAmLSJYvXy7qxbx583R1CzmG58+fa5Xfjh078Pr1a3F87969aNKkidhRQh5BXc6RI0dQokQJrb5SbGysqBsBAQHYuHGjOL5mzZosub/shpeXF4oVKwbOOWrXro0ZM2bg9u3b8PLywoULFzB27FjRXzU3N9fakUbOhg0bRLoSJUpgyZIlWsffvHmDTZs2CT02bNiQBXeX/VizZo0oR0dHxyS7N3369AkuLi4ier6pqSlmzZqlZSSlD7O6gbRQDqSFciAtlIOnp6eYV02vMdTT01PMe5QoUULs+CdpIv03cQSyGzdu4NKlSzrMfc6CtFAOpIVyIC2yBxkxhYaFhWHTpk0ibZMmTbBnzx5xnIw+mYf0UA6khXIgLbIeNzc3tG7dWnzvCQ4OFsfUajXi4uLwyy+/iMVmkmFUjnzMJ+3oaGtri4CAgCy5h5wCaaEcSAtlQXoQSoMM7ASRCyATe87gxYsX+O2338TWwfny5UPbtm2xZ88eYSR98uQJ1q5dSwaTVJCbfUqWLImaNWuiWbNmqFmzphiQS6asy5cvCyNvSkjmnsQmww8fPmDKlClQqVSoVasWXFxc9HZP2ZXMarF9+3ZUr15dPO8dOnTAwYMHk0QF9/T0xMqVK0W6lAxDuZmv1SLxc//x40dUrFgRnHOMHj1aGBElIiIisGrVKqhUKhQuXBinT5/OsnvMTri5ucHGxgacJ0SxX7x4McLCwgBkztAsDSQ9PT1RtWpVoWu1atXw7NkzneQ9p6ELLR48eICWLVvCxMQE5ubm6N+/v7iGpIlardYyscsjThMJ6MvETvUi42RWC7kxumjRojA1NcWKFSsQGRmplS4iIgLLli2DSqVCiRIltKJAEAl4eHigfPny4Jwjb968sLW1RYsWLdC4cWNwzmFsbAzOObp27SrOkfddNRoNfv75Z/HumTp1qkgn/yD1+fNnzJ8/HyqVCi1btkw2khOR8B6R75BlZGSEAgUKoECBAuJ3VlZWmDhxojhHegdpNBp8+PABnTt3FnqsWrVKpJMbTCIjIzF9+nSoVCp07twZYWFhtODp/5GXw+TJk0W5jxgxAkeOHIGrqyvu3LmDqVOnolGjRmKR2rRp01I0Bd29exdHjhzBsWPHcPz4cXz8+BExMTEAyECaGqSFciAtlANpoUz8/Pzg5+eXrrSenp6oU6eO+Ci7detWrV1XpDKPjIzEpEmTsHTp0mSvQ+128pAWyoG0UA6khfKQl09GTKFyVq5cic6dO4vz5AEUqP3OGKSHciAtlANpoQx27doFExMTcM6xbt06REVFaR2X79T48OFDrWPyedkZM2aIHciLFi2KCxcuiGPUZqcP0kI5kBbKgvQglAQZ2Akil0Am9uyNr68vfvnlFxHVz8bGBsuWLUtiitZoNIiKisLs2bNhbGyMdu3aISQkxEC5Vi7Pnz9H06ZNRWRd+U/NmjUxbtw4rcnd5JBWGUofBoGkHbB//vkHefLkAeccBw8e1P2N5AC+VoudO3eiTJkywuDTqVMnPHjwQCuNXJvo6GgRPdTS0hJHjhzR+71lN3RRL96+fSuM8O7u7gCSTma5uLigZMmSYrKMSB5XV1ehRc2aNfH7778nicyXESQdXF1dtcx11apVg4eHBwCKnpESmdVi06ZNKFq0KFQqFUxMTDB9+nRxTG5IlEzsUrTkn3/+Waf3kRNIbJz28vLK1PWoXnw9GdEipY8aL168gJWVFczMzMSOBInTPnz4UPydxJGoiQT8/PzQr18/scg18U/Pnj3FgrLEz7OXlxfMzc3BOUe3bt3E75N77v/9919hiL9165Z+byob8+LFC4wYMSLJIkDOOdq2batlSk9czv/9959IO3DgQPH75OqQs7MzOE/YkevJkyf6u6FsiLxcly5dihIlSohyLVy4sNhVRTKG/vbbb/D29ta6RkhICC5evIi2bduKhWzSuKNRo0aYOnWq2PGA2omUIS2UA2mhHEiL7IvcGFq0aFGsXr1ay/wjN4bOnz9fzHssWLAgybVIl8xBWigH0kI5kBZZj7e3d6qm0OTKUR650t3dXUSqTKwFGX0yDumhHEgL5UBaGIbEO75K5bd8+XLxzcHPzw/Dhg1L1hia2BRauHBhqFQqODg4YPbs2fDx8cGHDx+E0ZTa7ZQhLZQDaaEsSA9CiZCBnSByEcmZ2NOKLk0YnsDAQIwePRpFihQRH7ROnDihZZ5LPFA8deqU6EzcvXs3q7OcLQgKCsKpU6cwbtw4DBw4EKNGjYKTk5OWASutVeRv3rxB8eLF4eTkpPV7+XnNmjUD5xyDBw+GRqOhlenJkB4t5B3bo0ePokaNGlCpVDAyMgLnHKVKlUKJEiXw7bffphhhPTg4GL/88guMjIzw3Xff0eKOZEiPFnLDbVBQEP7991/s378fzs7OePToESZMmADOOW7cuJHi3+nUqRM45yhdujQiIiKoXqSAvN2uXr06Dh48mGT1c3pIzaSb0kIDQpvMavH3339jwoQJYlHToEGDxDH5pLBarcbWrVvBOYejo6NO7yGnINeiZcuWXx2JnepF5kmPFvL2+/Hjxzh69CgWL14MJycnXL58GcOGDYOZmRmePn2qdZ68byv1pWrVqoXo6Gia7EqG0NBQXLt2DcOHD0fLli1RqlQpDB06FKtXrxZpkvuw9PTpU+TNmxempqaYNWsWACTZClK+1Xy1atXAOceZM2f0eDfZn0+fPiEoKAibNm3CokWLsHjxYpw8eRJv3rwRaVJaJGBkZIR8+fJh165dALT7XfLz3r17hzJlysDc3Bx37tzR491kT+Tle/fuXRw4cADjx4/H2LFjYWlpCc45TE1NMW3atCTGUH9/f0ybNk3sbiBFobG1tRULPqR3kr+/f5K/R2hDWigH0kI5kBbZj+SModICTOBLGUdGRmLu3LkoXbo0OOcoUqQIzp49q3UteV/L19cXAI07MgJpoRxIC+VAWmQ9Pj4++Oabb1I0hcpxdXXF48ePERMTg+joaK1jkZGRWL58ubiONA4kMgbpoRxIC+VAWhgWeds5ZcoUUX516tRBz5490bFjR/G7fv36ibSJTaFFixYV6Tjn4vtSmTJlMGjQILx8+TLJeYQ2pIVyIC2UBelBKA0ysBNELkNuNKlTpw727duHyMhIQ2eLSIHQ0FDMmzcPxYsXF+b1ixcvppheMqY8f/4c1tbW4Jzj9OnTWZXdHEV6JmblK8+PHj0KQNsc9PDhQxE1f+TIkXrLa05HrsXDhw/RrVs3EV2Mcw5ra2uUK1cOhQoV0ooiGhgYCEB74v3PP/8E5xx9+/bN8vvICchNVLt379YavHDOUaxYMZQsWRIWFhZYvXp1kojt8fHxeP36NapXrw6VSoWqVavSR5A0cHd3R4ECBcRzm9LW8SlBJl3d8TVayNuE0NBQ7Nu3D/ny5QPnHD/99JM4JtdArVZnOrJ4TsfDw0P0c6ZOnZrhvizVC92RmhbyMly2bBmqV6+u1WZYW1ujYMGCMDc3x9atW7V2TpF49uyZmABr3bp1ltxTTiDxIuWUJgdv374t9Ni8eXOq17x27Zrof506dUpnec2NpBSl6uLFi0KPtHZvOnnypEh79epVfWQz25P4PR4aGorvvvtOGEOnTp2axBgqRdCXxnCFChXClClTcOrUKbi6uuLu3buYPn06atSoISbiX7x4kezfI75AWigH0kI5kBbZh681htra2uKff/5J8bqTJk0C5xyXL1/W+z3kFEgL5UBaKAfSwjC8evVKjMfmzJmTxBQaGRkJZ2dn9OzZU+xkVrduXfz000/w8/PTShsYGIgff/wRKpUK3bt3p52zvwLSQzmQFsqBtDA88vnYxYsXw97eXuvbNuccnTt3xrVr1wBof3+dOXOm8PNI37xHjRqF7du3Y+DAgahYsSI45yhXrpxYuExjvpQhLZQDaaEsSA9CSZCBnSByIe7u7sII0qZNG3z48MHQWSISIXUWTp8+jQoVKogPU3/99Ve6ztu3bx9MTU1hbm6Omzdv6j2/2RW5eUTeYUrv1mfBwcEYPXq06JitXbsWz58/B5Bg6Jo/fz7y5s0LzjlmzJih28znMFLSIvHxJUuWiKjr9vb26N27N549e4a3b9/C29sbJ06cEEa67t27i/PlHfCdO3cm+3eJBNLSAgD27NmD8uXLCy0qVKiAatWqoUyZMrCysgLnHOXLl8fly5eTGBJPnDghDLzt27fX673kFNzd3dGiRQusXbs2Q+eRSVf3fK0WEmq1Grt27YKFhQU459i4cWOq6UmflHF3d0ffvn1x5MiRDJ1H9UL3pKXF8uXLYW5uLtqMevXqoUWLFqhdu7aY4KpYsSIuXbqktfDp/fv3cHR0FH2p7777LqtuKVsib7/TG83i/fv3aNiwIVQqFSZMmAAg+edfrVZj1apVyJMnDwoXLownT57oJtO5hPT2NwMDA1G9enWYmJhg3rx5AL5oKb/G27dvMWbMGJiamqJq1ap4/fq17jOdA9myZYswhk6fPj2JMTQ8PBzz58+HnZ2dMPXcunUrSV82MjISd+7cQePGjcXimuDg4FT/9vv373V+P9kZ0kI5kBbKgbRQJl5eXl9tDL106ZLWtfbu3Yv169cDSAiIIX0UbtKkSZoaEaSFkiAtlANpYVhcXFywaNEirZ22ACA6Oho7duxAvXr1wDkXcyHSj52dXZJvdvv27RPHE+9QR6QP0kM5kBbKgbQwPPI52suXL2PVqlWoW7cu2rRpg8mTJ8PLyyvJPO7MmTNhY2MDzjkKFiyIDRs2QKPRiLnByMhI3L17F40aNQLnHI0aNcK7d++y9L6yI6SFciAtlAXpQSgFMrATRC7F1dUVlStXpu3GFYjUsEdHR4sPTgUKFMChQ4fSdR4AEbUpb968YqtHIn3IyzE9Hang4GAMGTJEDNyrVKmCjh07olq1amLr5zp16lCnTAfcuXNHbI9dvnx5LFmyBCEhIUnS3b9/H/nz5wfnHFOmTBG/T2zIkkdmJ9LP48eP0bJlS/EhY+jQofD09IRGo8GbN29w5coVYQqtXLky1q1bh6dPn+LevXvYvHmzGNDY29vDyckJAJlF08PHjx/Fv9NjhCOTrv6QayFfbZ7c+yg5Xr58ia5du4Jzjj59+iTZlpNIP4mjTKcF1Qv9kZIW58+fR7ly5USbMWnSJGFSf//+Pe7cuSO0qFixIpYuXYrbt2/j/PnzmD59uliUVrFiRdy+fRsAaaRrxo4dKxbLSh+gEpfx+fPnRfvdrl07Q2Qz1zB8+HChh4uLS5LjoaGh2L59u1gw2KdPHwPkMvsyYcIEjB49WssYKk3AP336VLyPbG1t4eHhAeBLvytxvbhx4wYqV64MMzMzbNiwIcV30/PnzzFq1CixKIFIgLRQDqSFciAtlMXz589RpkwZnRhDPT09xfEmTZqAcw6VSoXmzZvjjz/+yNL7yo6QFsqBtFAOpIUykJt5pLbWxcVFlCPnHJs2bcIff/yBhQsXon79+mK8d+bMGXFOeHg47O3twTnH33//bZB7yQmQHsqBtFAOpIXhSTwWk39TArS/982YMQOFCxcG5wlRixMHjJFf6/Tp0yhatCgKFiyIkydPJrkWkRTSQjmQFsqC9CCUABnYCSIXIxmm0huhj8hapk6dKkzo06dPT9UYJ2/oN27cKFZMjx8/PslxIn1cv34du3fvBpB2+d28eRPVq1cH51wYrKWfmjVr4tixY4iLiyMdvpL4+HjEx8dj4sSJ4JzD2toa06dPFyZSeblKpvTx48fD2NgYrVu31ormSmSebdu2ied7yJAhWsckLd6+fSs+rhsZGYkFBVIUXXt7e4wdOzZJ5AcibdJj3CSTbtYgL8Njx45h7969ANLX5q5evVrocvfuXb3lMbdAizqUQ2It5s+fL8p64sSJWumSazM45zAzM9P6b4UKFbBq1SqEhYVl6b3kFKRyDg8P1yp36XmPi4tD+/bthfHh6tWrYlthFxcX7Ny5U5jXS5QoISYkqb58HVL5S7ugJdYjOjoa7dq1A+ccRYoUwV9//SW22Lx27Rpmz54tzOsVKlTA/fv3tc4nkke+cDWlcXW/fv3AOYeNjY0w9aQ2V/Lp0yfMnj1bLOhMToPnz5/jt99+E4t4Dh8+nMk7yf6QFsqBtFAOpIUy8fX1BeccxsbGWLt27VcZQzUajUi7detWcT2VSoWWLVvi9OnTWmmJ5CEtlANpoRxIC+UyYcIEMb9x6tQp8Xu1Wg1fX1906tRJRKs8deoU4uPjcfHiRVhYWMDc3Jx2PNMxpIdyIC2UA2lhWORjM/mOWjNmzEDRokXBOYeFhQV+//33ZM+RCAgIgK2tbZJ5dyL9kBbKgbRQFqQHYQjIwE4QuRiadFIunz9/FgPESpUqpTtS/sWLF9G0aVNwzmFpaZlkxRuRPtzd3dGiRQtYWFjgwYMHaaaPiYlB586dUbp0aezduxf16tVD+/btMXjwYLi6ulJ0XR0hPdtVqlQREe1Teo/JDXOSMZHIHGq1Gmq1Gq1atQLnHGXKlBFR3+QfzqV/X716FYULF4adnR3GjBmDfPnywcbGBg0aNMCGDRvw8uVLg9xHTuLTp0/w8/NDZGQkAO0PT2TSzTquX7+OMmXKoGDBgqJOpIRkTjl8+DAsLS1hbGyMf/75JyuymWugeqEM4uPj8fnzZ1SsWBGcc1SvXl1oklyb8ddff8Ha2hrlypXDzJkzUbRoUZQvXx4dO3aEs7MzQkNDDXIfOQVvb29MmDBBmJ0lpPL39fUVpum8efPCwcEBbdu2hZ2dHSwsLESd6dSpEwIDAw1xCzmKJ0+eoHfv3kn0kN5DPj4+Qg9zc3MUKlQIdevWRd68ecXCDktLS4wYMQLv3783xC1kS1Kb/wgNDUXNmjXBOUfv3r3TXa4PHjxA3bp1sXnzZsTExGj9jefPn2Pq1KkwNTUF5xw9e/ZEcHBwpu8jJ0BaKAfSQjmQFsrE09MTGzduxOvXr8XvvsYYCgC//fabiGrMufYuKvIPwkTykBbKgbRQDqSF8tBoNOjdu7dYBBAeHg61Wq0156RWq9G9e3dhDj1+/DjGjRsHzhN2n6M5c91BeigH0kI5kBbKQV7mM2bMQKFChcQc7PLly8Wx1MaKzZo1A+ccP/74Y5ppiZQhLZQDaaEsSA8iKyEDO0EQhAK5fv26aPyXLVuWYjp5A//w4UMMGjRInCdFXycyztu3b0Vnavz48SLSd3JIGkhRq/777z+a1NUDb968QbFixWBsbIwVK1YASD7amLSl0aJFi2BmZgYLCwt4enpmaV5zOh07dgTnHFWrVk2yhZScN2/eoGrVqsifPz8uX76MV69ewd/fnwYmOiIiIgIbN25E9+7dsXfvXkRERIhjLi4uZNLNQh49eoRatWqBc4758+fj06dPaZ6zbt26ZKOcEJmD6oXykLadbdasGYCUy/rFixcoXbo0bG1t8fjxYwQHB6fa/yLST1xcHBwdHWFkZIRu3bqluBggJiYGkydPRvPmzVGpUiUR5VsytllbW6drYSeROtHR0Zg2bRo45/jf//6X4nOuVqsxZ84cdOnSBc2aNUORIkW09KhZsyYt0tQhjx49Eu3DunXr0nWO1Kd1c3NDeHi41rHExtCMGE5zO6SFciAtlANpYViSW3yZUWPozJkzhTHUwcFB6Dl79uxk/w6RPKSFciAtlANpoTx69eolgvAk3llFXo49evQA5xz58uUTZb5z506t9MnNo5MWGYP0UA6khXIgLQxP4nbY2toaRkZG4Jyjbt26YmeV1L5bPH36FMWLFwfnHHPmzNF7nnMqpIVyIC2UBelBZDUqRhAEQSiO2NhYZmZmxiwtLVn9+vUZY4xpNBqtNAAY55wxxpirqyvbsWMHO3jwIGOMsd69e7Nly5YxxhiLj4/PwpznDKytrVn37t2ZhYUFO3fuHPvvv/9STCvp8vr1a8YYY4GBgczU1DTJceLr0Wg0LC4ujsXExLD4+HiWL18+xhhjRkZGWukAMBMTE/b+/Xt24MABFhsby+zt7ZmdnZ0hsp1jKVGiBGOMsY8fP7KPHz8mmyY+Pp7Z2tqyokWLsqioKBYWFsbs7OxYqVKlGOec6oUO0Gg0bN++fczZ2Zk5OjqyU6dOMcYYe/78OevXrx9zd3dnjDFWtWpVdvToUVapUiWm0WiYSkXdf11Tvnx51qFDB8Y5Z0eOHGEPHz5MNf2LFy/Y33//zTjnrECBAsze3j6LcprzoXqhPBwcHBhjjL19+5Z9/Pgx2bKOj49nBQoUYJaWliwkJISFhISwQoUKMSsrK8YY9aUyi0qlYjY2NixPnjzMzc2N3b9/P0katVrNTE1N2YoVK9i1a9fY9u3bWbVq1VjevHlZXFwcU6lU7NixY6xOnToMgAHuIudgbGzMHBwcWJ48edi9e/fYo0ePkqSJi4tjRkZGbP78+ezs2bNs9erVzNLSkpmZmbG4uDhmY2PDtm/fzipVqkR66IgCBQqwAgUKsDx58rAiRYowxhJ0SA1pLF6xYkUxPmGMMW9vb7Zjxw62bt06FhcXx3r16sV27NjBbGxs9HcDOQjSQjmQFsqBtDAs0txTfHw8MzIyYlFRUWzFihVs37597MWLF6xo0aLs4MGDrG3btoyxhLkpjUYjzps1axZbsmQJ45yzRo0asWXLlrFNmzYxxhhbtGgRmzlzpvg71K6nDmmhHEgL5UBaKI+WLVsyMzMzFh4ezu7cuaNVbvJ58RMnTrAKFSqwT58+McYYGzt2LBs0aBBjLEEn+fe/o0ePsi1btjDGSIuMQnooB9JCOZAWhkVqsxlLaIc3b97MwsPDWbly5RhjjBUsWFCM+5KbS5fK9uHDh8KbIH23JTIGaaEcSAtlQXoQBkH/HnmCIAgioxw7dkysan78+HGS4/KVbPfv38fw4cPF6ucOHTrgv//+y8rs5kjevHkjIk03a9YMrq6u4pi0ojwuLg4A4OXlhaJFi2YoGhaRcdq1awfOOUaMGIHo6GitY5ImYWFhmDVrFvLnzw/OOfr164eoqCiK+q0DpDJ0dnaGnZ0drK2tceTIkSRlK/1/QEAA7OzswDnHokWLtI4RusHV1RWFCxcWq52XL1+OSpUqUYRpA/Dy5Uuxc0eLFi3g6uqapK0AgI8fP2LTpk3iHdWuXTtDZTnHQvVCGUjP/6FDh1CkSBEULlwYZ86cSZJO0sDNzQ02NjbgnGP79u1a1yAyz7t379CpUydwztG8eXO4uLiIsk8cFcnDwwP16tWDpaUlOOcwNjbGsWPHAJAmuiIoKAht27YVbcazZ89EWyF/L0VGRuLff/8VUUo45zA3N8eNGzeSpCUyR0BAAAoUKADOORYsWPDV16GoxpmHtFAOpIVyIC2UQ2RkJKZMmYJy5cplOKpxkyZNcOLECZFu7dq1on1funRplt9Ldoe0UA6khXIgLZRBQECAmIdq0aIFHj9+jM+fP2ulcXV1xZQpU0QZ/+9//9P6/iQf650+fRpNmjQB5xyTJk3KsvvIKZAeyoG0UA6kheFI3A5L47xKlSph27ZtqFy5Mvr375/i+dLc7J07d8Tuma1atUqy6xaRNqSFciAtlAXpQRgKMrATBEEokFevXqFy5cpQqVTYtGmTMDQknmQ8ffo0+vXrJwaQrVu3xqVLl2h7Lh3h5+eHChUqiEH8lStXknSufH19UaNGDXDOUaJECdy7d89Auc25aDQaxMfHY/78+eCco3bt2nj69KnoAMfGxgIA3r9/j5UrV4qJF1NTU9JDDwQHB2st7nBzcxOTVZIWQUFBGDJkCDjnsLS0xMmTJw2Y45yNu7s7ChUqlGQrxxo1asDNzQ0AGdyyCh8fH7E9c7NmzfDnn39qGUKePn2KVatWwdraWmzRefXqVQCkka6heqEc3r59i9atWwvjtKurq+inSm1GYGAg2rRpA845ihQpgtu3bxsyyzkWX19flClTBpxzNG7cGAcPHsSbN2/E8Zs3b2L9+vUoWLCgqDNGRkZwdnY2YK5zLj4+PihVqhQ452jYsCF27NiBFy9eiONnzpzBpEmTRJthYmICe3t7UT/oHaY7pDHFqFGjoFKp0LlzZwQEBGT4OmQMzTykhXIgLZQDaaEsgoODxRygvb39VxlDpbSxsbFYt24dbGxsMGvWrCy9j5wAaaEcSAvlQFooBw8PD5QsWRKcc1SvXh0TJkzAyZMn4ezsjHHjxol5Es45Bg8erBWQSq7TqVOn0LRpU9F+jxkzBsCX8SAtMk8fpIdyIC2UA2mR9aRmCv3zzz+hVqtRpEgRVKhQAT4+PiJt4rJ8+PAhGjRoAM45ChcujOXLl4t5diJ9kBbKgbRQFqQHYUjIwE4QBKFAIiIiMHDgQGGCe/LkiVj9LHUcFi1ahJo1a4oBZKdOnXD16lVq/HWMp6eniHpYqVIlDBs2DJcvX8aZM2ewa9cuFCtWTEz2durUScsIROiWgIAAVK9eHZxztGzZEqdPn0ZoaCgiIiLg7e2NQYMGoWzZsiJa6K5duwCQwUcfeHt7i8mt5s2b4+jRowgODkZ8fDwCAwPxww8/wN7eXgxMvLy8DJ3lHI27u7uIXGxqagp7e3sxoSiP/k3oHw8PD2FILFKkCKpWrYrBgwfju+++Q+nSpZE3b15wzlG2bFmsWbMGHz9+NHSWcyxUL5TD8+fPUaJECdGvPXDgAIKCgvDhwwe4ubmhdevWYqFB3bp18fLlS0NnOcfi6emJ8uXLg3OO/Pnzw87ODi1atEDr1q1hZmYGCwsLcM5hY2OD2rVrC7M0fWzSD56enqhYsaKIrF6gQAHUqFEDtWvXBuccZmZmYpFsr169xM5c1LfVD0eOHIG5uTk451izZo3Wjk9p1QEyhuoW0kI5kBbKgbRQDi4uLqhYsSLOnTsnficFXpBIzRgqTxcbG4sHDx5kTcZzIKSFciAtlANpoRx8fHzQo0cPFClSRHyvkHY6k34GDRqUqim0efPmMDIyQp48edChQwf4+vri5cuX+PDhQ7LnEClDeigH0kI5kBaGYc6cOVqmUHkAsH79+kGlUmH16tWIiopKcu7NmzdRu3ZtmJiYgHOOHj160NguE5AWyoG0UBakB2EIyMBOEAShUORREuvVq4eRI0di//79GDlyJNq3b681gBwwYABcXFzIzKAnnj9/joYNG8LY2FhM7nLOkSdPHmE4qVq1Kh49emTorOZ45AsKbGxsULZsWdSoUUNsQSTps3HjRkRGRho6uzkaDw8PYUgsUKAAHBwc0KJFCxQuXFhoYWxsLCK3kvlNv7i5uQmzbuXKleHs7EzmaAPh7e2Ndu3aiYlfqc2Q/lu9enVs3LgRwcHBhs5qjofqhXKQR/XJmzcv7OzsUKlSJa2PIhYWFhR9PQvw9fXFd999h8qVK2uNJ6Sfhg0bYvny5WLxGY0v9Iufnx+GDBmitTBZ+smfPz/atm2LY8eOiYUd1J/SL7Nnzxblv2LFCvj6+opjKZV9YmNor169EBISkuo5RNqQFsqBtFAOpIVykM83aTQarbKcN29eqlGNU4IW2X4dpIVyIC2UA2mhHD58+IAnT55g27Zt2Lt3r9g5lnOOgQMHpmoKbdGihfgeJS1wluYWW7Roga1btyZ7LpEypIdyIC2UA2mRtSxatEiUVWJTKADs2rVLlOesWbPg7OyM8PBwODs7Y+XKlcIQyjlHmzZtEBQUBIDmb78G0kI5kBbKgvQgDAUZ2AmCIBSMp6en1mBR3uAbGxujbNmytIVjFvHq1SvMmjULDRs21DKWlCxZEt999x2ePn0KgD4AZgXe3t7o1KmTMLJLP9bW1rC3t8fp06dJhyzC29sbHTp0gK2tLTjnMDIyAucJ0Y7z58+Ps2fPGjqLuQo3NzcULFgQnHPUqlULhw4dQnh4uKGzlSt5+/YtnJyc0Lt3b5QpUwbm5uZo3LgxBg8eDB8fn2RXpRP6geqFcvD29kaXLl3E4ifpg0aBAgVQpUoVYV6niSz9ExYWBm9vb6xatQrTp0/HuHHj4OjoiBMnTkCtVot+FPWnsoZPnz4hKCgIO3fuxKpVq7Bq1So4OTnh7t27hs5arkH+3pkyZYoYX3Tv3h1LlixJ8bznz59j8uTJYpz+3XffpblQKrGJiNCGtFAOpIVyIC2UR0pltH37dlhZWaXLGJrePi/pkTqkhXIgLZQDaaFMpk+fLtrw77//Pl0RjTnn6NixIxYsWICLFy9i+fLl6NOnj7jOvHnzxHmkRcYgPZQDaaEcSAv94+HhARsbGxQpUgR//vmn+L28fKdNm6b17bt06dJac+n29vbo37+/MIXS4oCvg7RQDqSFsiA9CEPBAYARBEEQiiUgIIDt2rWLXblyhXl7e7M8efIwS0tL9tNPP7EaNWqwli1bMsYY02g0TKVSZfj6ABjnXPy/RqNhnHOt3yVOk1uJi4tjcXFxzNnZmcXExLCIiAjWtm1bVrRoUWZtbU3llIW8f/+eubm5sXPnzrGYmBgWExPDOnbsyKpXr87KlClj6OzlKt69e8euX7/OTp48yYKCgphGo2EtWrRgvXv3ZjVq1KB6kcV4eHiwFi1asJCQEFaqVCm2ZcsW1qFDh69qHwjdEB4ezj59+sSKFCnCjI2NDZ2dXAnVC+Xw/v179uDBA3b8+HH24cMHplarWbdu3Vjz5s1Z+fLlv7o/S+gW0kFZxMfHMyMjI0NnI8cjL+c1a9awbdu2sefPn7MCBQqwY8eOsebNm2u1497e3mz79u1s3bp1TK1WswoVKrBVq1axChUqMM45U6lUzMrKipmamjK1Ws0sLS2Zqakp+/z5M8uTJw/pmgqkhXIgLZQDaaF8Pn36xAYMGMDOnTvHypYtyxYvXsz69u3LGEt+7lXqa/n5+bGAgAD2zz//sPDwcJYnTx7WsmVL5uDgwCpUqMAYo75ARiEtlANpoRxIC8Py9u1bVqxYMcYYYz/88AMbM2YMq1u3LmNMu/xOnz7NVq1axW7dusU0Gg0bM2YMW79+vda1goOD2b59+9jUqVMZY4ytX7+ejRkzJgvvJvtDeigH0kI5kBZZh4+PD/Pw8GBdu3ZljH1ph+XlvGjRIubk5MQ8PT21zu3SpQv75ptvWN++fZm1tTW1wZmEtFAOpIWyID0IQ0AGdoIgiGyARqNhGo2GBQQEMGtra6ZSqZi1tbXW8YyaTBKfs2/fPubn58fu3LnDVCoVa9euHatatSrr2LEjY4xM7ET2gZ5Vw6FWq5mRkZEof9LCMHh4eLCqVauyQoUKsQsXLrDatWsbOku5kpSefzKGGgaqF8qH2gzDQe8lZUF1wXDIJ9Tv3r3Lnj59yiwsLFi3bt2YlZWVSOft7c127NjB1q1bx+Li4lihQoVYaGgoMzU1ZSqViqnVaqbRaJiNjQ0zNjZmUVFRrGDBgszKyorFxsay06dPs9KlS1PdSwXSQjmQFsqBtFA2T548EWOM2bNns/nz5zPGUu9n7dy5k+3Zs4c9ePCAxcbGit9zzlnNmjXZsGHD2MiRIxljZBDNCKSFciAtlANpYXhcXV3Zxo0b2Q8//MAaNWrEGEvdFDplyhS2fPlykU5agMYYY2FhYWzChAnswIEDrFWrVuzw4cOscOHChrmxbArpoRxIC+VAWmQ9idtheXl7eHgwb29v5u/vzwoWLMgKFy7M2rVrJ+YNabymW0gL5UBaKAvSg8gqyMBOEASRDdC1iUHqWISFhbETJ06w48ePs3PnzjGVSsU0Gg1jLGEiskCBAmzEiBFs0aJFeslHdofKw7DIy1/qzpAehiFxXaC6YXj8/f1ZUFAQq1evHkX9Joj/h+qFMqA2gyAIJZPWxHpiY+j//vc/VqdOHTZ16lSmVqtZsWLFWEREBIuOjmYWFhZityjGGDMyMmLx8fHM3Nycubm5sdKlS2fRXWVPSAvlQFooB9JCubx9+5Y1b96cvX79mm3YsIENHTo0iaFTrt/06dOF4ado0aKsUaNGrFy5ciwoKIjdvn2b+fr6MsYYmzNnDps3b16S84mUIS2UA2mhHEgLZRATE8PMzMwYYxkzhSa3OGD+/Pls/vz5zMrKiv3333+sbNmyWXcjOQTSQzmQFsqBtDA8abWnX9veJjcHTwvQUoe0UA6khbIgPQh9QF/tCYIgsgGpmXpS2+IxOaRGPigoiE2aNIndunWLvXjxgjHGWOHChVmtWrWYmZkZCwoKYvfv32dLlixhMTExbOXKlWQuSgSVh2GRlz9pYVgSlz/pYXhKly5NhgOCSATVC2VAbQZBEEom8VhaPt728fHRMob26NGDbd68mR09epSp1WpWpkwZduPGDRYTE8M+ffrEzM3NWVRUFHv//j0zNjZmANiHDx+Yr68v8/X1pTYpDUgL5UBaKAfSQrlYWFiwatWqMW9vb7Znzx7Wtm1bVrJkSXFcPl87depUtmrVKsYYY3ny5GFTp05lv/76q0j76NEj9scff7AVK1awBQsWsHz58rFJkyaRMTSdkBbKgbRQDqSFMtCVKZQxxkxMTBhjCWbTyMjILMh9zoP0UA6khXIgLQxPamO+5I6nB/k1Ll++zHx8fNiwYcOYkZERLUBLBdJCOZAWyoL0IPQCCIIgiGyLRqMR//bx8RH/VqvVyaaXfh8YGIg6deqAcy5+Fi1ahH///Vek9ff3x4YNG6BSqcA5x5YtW/RzE7mI+Ph4Q2eB+H9SqiNE1kNaKIu4uDhDZ4H4f0gL5UBaKAfSQjlQv1ZZUH9K/3h4eGDq1KnIkycPOOfo3bs3QkJCAAA7d+4E5xx2dnb4+PEj4uPjtcbq8n+n9jsifZAWyoG0UA6khTLw8fFBqVKlwDlHu3bt8OLFiyRpli9fLuZiCxcuDM45ihYtCj8/P610YWFhWLFiBTjnsLe3x507d7LoLnIGpIVyIC2UA2mhPI4ePYrWrVvDyMgInHNMnTpVHEttjPf48WPUrl0bnHN06tQJUVFRWZHdHA/poRxIC+VAWuQsbt68if79+4NzjoEDBxo6O7ka0kI5kBbKgvTIvdASBYIgiGyMtArt6tWrrF27dmzKlCmMMZbsamdpFXRgYCBr2bIle/ToEeOcs6JFi7ILFy6wmTNnslatWon0pUqVYj/88AMbMWIE45yzq1evZsk95WRUKhXTaDTszJkz7O3bt4bOTq5G2hp779697PXr14bOTq6GtFAWxsbGTK1Ws9WrV7OXL18aOju5GtJCOZAWyoG0UA7Ur1UW1J/SPx4eHmzlypUsOjqaffvtt2zHjh2sYMGCWmlMTEyYRqNhjKW9WxTtPvH1kBbKgbRQDqSFMnBwcGB//fUXs7GxYf/88w+bOnUqi4iIEMevXr3K1q9fzxhjrFmzZmzOnDmsZcuW7N27d6xRo0bs+fPnjLGESMj58+dn3377LWvYsCF7+fIle/bsmUHuKbtCWigH0kI5kBbK4tOnT2z37t3sypUrGYpo/PLlS3bkyBHm7e3NGGOsfv36LE+ePFmW75wK6aEcSAvlQFrkLO7du8cWLlzInJ2dGWOM3b17lz158sTAucqdkBbKgbRQFqRHLsfQDnqCIAgic1y8eBFNmzaFqakpOOdYunRpkjRShMTAwECUL18enHPkyZMH9evXx7179wCkHF1p48aN4JzD1NQU/v7++ruRXMLatWthYmKCb775BoGBgYbOTq5m0qRJ4JyjV69epIWBIS2UhbSyuU+fPqSHgSEtlANpoRxIC+VA/VplQf0p/fP999+jdevWeP/+PYAvu0JIY+ZKlSohJibGkFnMNZAWyoG0UA6khXJwd3dH1apVMX36dK3fb9q0Cebm5uCcY/Xq1QAAb29vtGzZUkQ59vLyAvBlnnb48OEiqn58fDztupJBSAvlQFooB9JCObi5uSFfvnwYM2aM+F1qZfjy5UssXboUNjY24JyjQ4cO4hjtnpJ5SA/lQFooB9Ii5/D27VvY2dmBc46WLVvi1KlT+Pz5s6GzlSshLZQDaaEsSI/cDRnYCYIgsjFRUVFo3bq12NaxYsWKePjwoVYaaUAYFBSExo0bg3MOc3NzNGvWDI8ePdJKI0f60HXmzBnkzZsXBQoUIAO7Dnj48KHQ69tvvyVziQG5e/eu2PaOTHCGhbRQFjdu3BCLokgPw0JaKAfSQjmQFsqB+rXKgvpT+kP+cTYyMlL8WxpHb968GZxzlCtXDhEREVmev9wEaaEcSAvlQFook9DQUPHv+Ph4xMTEoHnz5uCco1WrVlppPTw80KpVqyQGUQCYMmUKOOcYMmRIluU9p0FaKAfSQjmQFsrh7du34t8ZMYU2bdoUwcHBaZ5HZAzSQzmQFsqBtMj+SIEOvby80LVrVxw5cgTR0dEGzlXuhLRQDqSFsiA9CJWhI8ATBEEQX0+ePHnY5s2bGWOMFSlShB0/fpzVrl1bKw3nnEVERLD58+ezR48eMcYYq1y5Mlu/fj2rVasWA5Ds1sDGxsaMMcZOnTrFoqKimImJCW3xlUkAsNq1a7MbN24wU1NTdvz4cTZhwgT28uVLQ2ct16HRaFiDBg3YtWvXmImJCTtx4gRpYSBIC2Wh0WhY06ZN2ZUrV0gPA0NaKAfSQjmQFsqB+rXKgvpT+sXIyIhpNBrGGGMWFhbi99I4Wto2W6PRsLi4OKZWq7M+k7kE0kI5kBbKgbRQJgUKFGCMJZS7SqViAFh0dDRjjDEHBwfGGBNaVKxYkW3dupW1bNmSvXv3jjVv3py9evWKMcbYv//+yxj7oi2ALL2PnABpoRxIC+VAWiiHIkWKMMYYi4+PF212Yl6/fs0OHDjAVq5cyT58+MAaN27MDh48yAoVKsQApHgekXFID+VAWigH0iL7o1KpmFqtZuXLl2dHjhxh33zzDTMzMzN0tnIlpIVyIC2UBelBkIGdIAgim1OpUiX2/PlzdvnyZVa1alWtY9IHrDt37rCrV6+ymJgYli9fPrZ582ZWu3btFM3r0nne3t7Mzc2NMcZYlSpVmIWFhThGZBzOOdNoNKxJkybs33//ZcbGxuzEiRNszJgxZC7JYlQqldDiypUrQotRo0aJCXgiayAtlIWkR+PGjbX0GDFiBOmRxZAWyoG0UA6khXKgfq2yoP6U/lGpkk6hSmNjyexjZmbGLCwsxGJwQj+QFsqBtFAOpIVykbQxMjJi1tbWjHPOSpQooXWMsaQG0Tp16rDRo0ezZ8+esSJFirAffvjBIPnPSZAWyoG0UA6khXJIzRS6f/9+LVOok5MTK126NGOMJft9j8g8pIdyIC2UA2mhfFJbSCaNAy0sLJipqWlWZSnXQlooB9JCWZAeREqQgZ0gCCIHULZsWValSpUkv5cmGffu3cvc3d0ZY4wdOHCANWrUKFXzunTenj172O3btxljjH333XfM0tIy2Y9iRPqRG6+uXr3KGGPs9OnTbPfu3Sw2NtbAuctdJKeFs7MzO3XqFEUky2JIC2WRnB7nzp1jt27dokVMWQxpoRxIC+VAWigH6tcqC+pPGY64uDjGWIIGNF42LKSFciAtlANpoQyMjY2Zvb09A8DOnTvH3r17l0QPySDaokULFhwczHbu3MliY2NZ48aNWcmSJRljZADSBaSFciAtlANpoUzSMoUSWQvpoRxIC+VAWigHue9DWsQcHx9vyCzlWrJaC9oBJ2UMUS9Ij5TJSj0kHeg9mH2gGUuCIIgczu3bt9np06cZY4yNHDmSde7cmTGW/GQiADExuX37drZ06VLGGGNdu3Zl33zzjUgjJyIigkVFRWldg0gdubnk1q1brGPHjqxu3bq0ktAAJNZi2LBhrF69ehSRzACQFspCrsft27fZggULWL169cjwYABIC+VAWigH0kI5UL9WWVB/KmuR3jl58uRhjCWMhT9//pzpiXH5mJrG1+mDtFAOpIVyIC2Ug1ROffv2ZcWKFWOvX79md+7cSbb8KlasyLZt28aaNm3K4uLiWLly5diUKVOYra1tVmc7R0JaKAfSQjmQFsokMDCQHTx4kEyhCoH0UA6khXIgLZSD3BT677//sjFjxjAvLy9mZGREAV+ymKzU4tOnT4wxWkCYElldL0JDQ1lwcDDjnJNpOhmyUo8PHz6wbdu2MVdXV2ZkZER6ZBdAEARB5GiOHj0Kzjk45zhw4ECK6TQajfj34cOHYWtrC845ihUrhi1btiR7ztOnTzFx4kRMnDgRV69eTfZaRMrEx8cDAMLCwjJ1HSrvzCNpERkZmanrkBaZh7RQFpIesbGxX3W+pAPpkXlIC+VAWigH0kI5UL9WWeiqPwUAHz9+xPr163Hw4EEEBweL35NWX9ixYwc456hSpQpiYmIyVTZqtTpdvyOSh7RQDqSFciAtlENwcDC6du0KzjmaNWsGFxeXFNO6u7uja9eucHZ2zsIc5h5IC+VAWigH0kI5qNVqrF27VnzXa9KkCfz8/AydrVwL6aEcSAvlQFook2vXruF///uf0OXFixc6vb4036jRaMS/pf8S2uhbC19fX0yfPh2DBg3CgwcPxJw86ZEUfWsBACEhIZgzZw6qVq2Khw8fAqC5kpTQtx4ajQYnT54E5xzGxsZ49uwZANIjO8ABCpNBEASRk9mwYQMbP348q1y5Mrt9+zbLnz+/1go3xhjTaDQiMtOxY8fYjBkzmK+vL9NoNGzEiBFs8+bNjDGW5Lw///yT9e7dmzHGWNWqVdmwYcPYuHHjkk1LpE1GykyuGWMJqzo/fvzI3r9/zywtLVmZMmWYubl5hq9LZJzEWgQGBrLXr1+z9+/fsyJFijAHBwdmY2PDGCMt9A1poSzkeqjVaubp6cm8vLzYx48fWZkyZVjZsmWZvb09Y4z00DekhXIgLZQDaaFfqF+bM4iOjmbHjh1jgwcPZowxNmzYMNa9e3fWrVs3xhjpIefnn39mp0+fZm/evGFGRkZfdY34+Hhx7ujRo5mFhQVbuXIlY4zKOiOQFsqBtFAOpIVy8PX1Za1bt2aBgYGsWbNmbN68eax+/fosX758SfpEUVFRzMLCgjFGZawPSAvlQFooB9JCOXh6erLKlSuzypUrs7Nnz+osorFarWbGxsZJ9CRSh/RQDqSFciAtlIWvry8bMWIE++effxgAVqlSJbZmzRrWqVOnTF87cTsfGhrKYmNjma2trdCJ9PqCPrVgjLGQkBC2YcMGtnLlShYdHc2qVKnCWrRowaZOncpKly6tNXbP7ehbC8YYe//+PduxYwfbs2cPe/78OcufPz+7fv06q169OmmRiKzQQ/o7Q4YMYTdu3GBWVlbs+vXrrFq1aqSH0skSmzxBEARhMBwdHcE5h42NDby9vZMcl0decnJygoODA0xMTMA5R58+fcSxlFZs7ty5E9988w1UKhU455g5c2ay1yZ0h1yLmzdvYvXq1ShVqhQKFSoEExMTqFQq9OrVCxs3bhTpSAv9c/LkSUyaNAlWVlawsLAQK0c7dOiAtWvXinSkhf4hLZTFtm3b8N1338HU1BRGRkZaUTlWrlwp0pEe+oe0UA6khXIgLQwL9WuVTWxsLPbu3YvGjRuDcw6VSoWyZctizpw5Ik1uj+wjj96ydetWvHz5MtPP6KxZs1C0aFFwzjFo0KDMZjHXQFooB9JCOZAWysTDwwP29vbgnKNSpUqYMmUKnj9/buhs5UpIC+VAWigH0kI5+Pn56TQq5atXr7B27Vo8fvwYAI3lMgrpoRxIC+VAWiiLcePGgXOOxo0bw9nZGZ8/f9bZtT08PLBu3Tp06dIF5cqVQ9GiRdG2bVvMnTsXvr6+ACjCsRx9agEA58+fx7Jly1CuXDmYmZmBc46qVavC1dUVAGkhR59ahISEYOnSpShfvjw458ibNy8457C2tqbI3ymg77oh4ePjg44dO5Ie2QgysBMEQeRwnj17BgcHB9jY2ODkyZPiQ1VcXJxWuvXr1yN//vzCuNO1a1dxLK0tgl1cXPDbb78JE/v48ePFMTKY6I/ly5ejatWqYsEB5xzm5uZiSxzOOSZOnCjSkxb6ITo6GlOnTkX+/PmFFiYmJsifP7+WFr/++qs4h7TQD6SF4ZHKU61Ww9PTE8OGDdMqeysrKxQuXBgqlUr8bsKECUnOJzIPaaEcSAvlQFooF+rXKpfY2Fi8ffsWI0aMECZ2zjlGjBhh6KwpBl1OfC9atAgqlUqMy8eOHUvPewYgLZQDaaEcSAtl4u3tjbZt2yJPnjyi77Ny5UoEBQUZOmu5DtJCOZAWyoG0yHm8efMG69atE+NryRxKGAbSQzmQFsqBtPh65Eb/1atX448//kB0dPRXX08+xnv9+jWcnJxQsGBB0S+Q5galn8qVKwvjdG5fdKBrLdLixYsXWLlyJerWrQvOOQoVKkRa/D/61iKxeb1AgQI4d+4cunfvTqbpZMjqugEkjGnIxJ59IAM7QRBEDuf9+/fo3LkzOOdo0aIF/vvvP9EZ0Gg0+PfffzF27FitgUb//v3F+YmN7nLkA5gPHz5g48aNYtCycOFC/d1ULickJAQjR47U0qxNmzaYM2cObt68iX379mHy5MlCi7lz5xo6yzmS+Ph4PHz4EN99952WFr169cKuXbvg5uaGEydOYNasWUKLBQsWGDrbORLSQhlIbUJMTAz+/PNPdOrUSWhRuHBh/Pjjj7h8+TJevnyJv//+GwsXLhR6LF682MC5z1mQFsqBtFAOpIUyoX5t9mLRokUoVaqUMC6SHrrH398fNjY2onxz+8cmQ0JaKAfSQjmQFrolKCgI69atQ5MmTWBqaoojR44gIiJCZ9enxQXph7RQDqSFciAtcg4RERGYP3++aMPNzc0xd+5cxMbGGjpruRLSQzmQFsqBtMg8cj9HZsyZ8vb51q1bGDNmjIjwbWlpieLFi2Py5MlYunQpfvzxR2GctrOzg6enZ6buIaegKy3SQtLq8+fPePDgAdq1awfOOWrUqKHTnRGyM7rWQirz5MzrLi4uABJ2K+jQoQOZppMhq+qGHDKxZx/IwE4QBJEL8Pb2RsmSJcE5R5UqVdCzZ09MmzYNbdq0gYODgzCLlC9fHpMmTRLnpWZeT46wsDBh9nFwcMCVK1d0fSu5Hh8fHwwcOFBoVqpUKUybNi1Juk+fPmHDhg1QqVQoVqwYLl++bIDc5lzi4uLw77//okuXLkKLxo0bY82aNUnSRkZGYt26dTAyMkLZsmVx9+5dA+Q450JaKANp0B4dHY29e/eiSZMmQo/evXvj0KFDSc6JiorCypUrYWRkhGrVqomoAETmIC2UA2mhHEgLZUL92uzF69evsWjRIhFtqXLlyti5c6feI6XkJqSJ8+fPn2PJkiU0kW5ASAvlQFooB9JCP2g0GsTGxuLp06c62zrbz88PgYGBAOijbEYgLZQDaaEcSIucw5IlS8A5R5EiRTB37lz4+/sbOku5GtJDOZAWyoG0MDxy8/qFCxfQo0cPsVtm7dq1MWfOHC1jdGxsLFxcXNCqVStwztGnTx+EhYUZIusEgIcPH6JatWowNjbGvHnzEB8fT4vO9cDbt2+xYsUKlClTBpxz2NjY4OnTpwC+9G3JNK0svL29tRYVJNaLUAZkYCcIgsgleHl5oVatWmKVrPQjRc8bPHgwDh8+LNKn1mBHRkaKfyeOlPHff/+hVKlSUKlUyRpIia/nxYsX6Nevn9CuVatW2LNnjzguH4hoNBp4eXmhcuXK4Jxj06ZNBsp1ziM+Ph7Xrl1D+/bthRYDBgzA+fPnRRq1Wi3qhkajwbNnz2BnZwfOOfbt22eorOc4SAtlERMTg4MHD6JevXpCj4kTJ2pt9Zi4bbl79y7y5csHzjmOHz+e1VnOsZAWyoG0UA6khbKgfm324sWLF5gzZw4sLS3BOUfVqlVx6NAhnUZgJBLI6CJyQn+QFsqBtFAOpIXu0XUEYj8/P4waNQolS5bE7du3dXrtnA5poRxIC+VAWuQsli9fjnHjxiEgIMDQWSFAeigJ0kI5kBaGQ97mnzt3Dm3atIGxsTE452jXrh0uXbqET58+AdCeQ4+Pj8fBgwdhamqKsmXLwtfXN8vzTiQQExODwYMHg3OOZs2aGTo7OZKYmBisW7cOtra24JzDzMwMZ86cEcfkCwbkJva8efNqfYcish4fHx8RDNHKygpPnjwBQCZ2JUEGdoIgiFzEy5cvsWHDBvTs2RNNmjRB7dq1MXnyZJw4cUIrXWqrMb28vDB27FicPn06xTQ9evQA5xz169dHTEwMbQeZCSQtIiMjMWjQIGHy6dq1q+gQy9MlpnXr1uCco2fPnqmmI9JGeo7d3NzQvXt3ocXPP/+M+/fvi3QplbG0jdrw4cNTTUekDWmhPDQaDS5cuIBmzZoJPWbPno2XL19qpUkOyZA4Z84cAKRHZiEtlANpoRxIC2VA/drsyYsXLzBv3jxhXq9evTqcnJzIvJ4J5M8ujZUNC2mhHEgL5aBvLUhf/fH8+XNMmjRJ7MLp4OCAt2/fGjpbuRLSQjmQFsqBtDAccmMORcY1PKSHciAtlANpoRyuXr2Krl27CvN6t27d0jSl+/v7w8bGBpxz/P7771mUU0KOVIccHR3BOYeFhQU8PT0NnKucib+/P/r3749q1aqBc45GjRrh6tWrABLmU+RzHj4+Pmjbti045/j1118pKEAWk9icvmfPHhHk0NLSUpjYCWVgzAiCIIhcQ/HixdmYMWPYmDFjWHx8PNNoNMzExCRJOpVKlez5ANjTp0/Zxo0b2caNG9nRo0dZnz59GADGOWfx8fHMyMiImZmZMcYYi42NZZxzxjnX633lVAAILWbMmMEOHjzIGGOsU6dObNy4caxDhw5J0snP5ZwztVrNGGPMwsKCMcZIi69Eo9GIMl6+fDlzdnZmjDE2dOhQNnbsWFajRg3GWFItADDGGIuIiGBRUVGMMcasra0ZY6TF10JaKAtJj3fv3rHNmzezmzdvMsYS3lljxoxhRYoUEWnl5Syd5+HhwT58+MAYY6xw4cKMsZTbICJ1SAvlQFooB9JCOVC/NnsSEBDA9uzZw1atWsUiIyNZtWrV2G+//cZ69OjBLC0tDZ29bIm8LxsSEsIKFSokxtFE1qJvLeTXT+7/iS9kRb2Q2pLk/ibxhazQQtIhIiKC5cuXj96BOsTHx4etWbOGMcZYmTJl2C+//ELPuYEgLZQDaaEcSIusRd73MTIyEv+fP39+A+csd0J6KAfSQjmQFsrD19eX7du3j/39998sPj6edevWje3cuVNrDj05Xr9+zT5+/MgYY8zYmCyIhkAaU4eEhDDGGPv8+TOLjo42ZJZyJBqNhpUqVYrt2rWL3b9/n61YsYJduHCBtW/fnl2+fJk1bdpU+BEYY8zBwYFt2bKFXbhwgXXr1o3qRxYjtS1nzpxhV65cYZs2bRLtTmRkJJsyZQo7deoUMzc3N3BOCcYYo5EhQRBELkPqNBkZGTETExOtTlRacM5ZmzZt2NChQxljjPXt25dt376dvX//XlzTycmJHTt2jDHGWJ06dZI1yBPpQ+pAbd26la1fv54xxljjxo3ZL7/8omXySc68wzln58+fZzdu3GCMMVazZk2taxIZQ5pMX7hwIdu/fz9jjLFevXqx4cOHC8M0Y0nLV1rA4ezszDw8PBhjjFWoUCHZtET6IC2UhXwxwZkzZxhjjI0aNYoNGzYs1Ukt6bxLly6xt2/fMsYYs7e313NuczakhXIgLZQDaaEcqF+b/SDzuu6Jj48X75exY8ey5s2bMw8PDzGZTmQd+tZCbgJ+9OgRY+xL20Jaa5MV9ULevly/fp09f/6cqVQqFh8fr5Pr5xSy8h11+PBh9r///Y89e/aMGRkZkRY6omPHjmz8+PHM2NiYjRs3jv3444+sUKFChs5WroS0UA6khXIgLbKGiIgIxhgTAackaPxsGEgP5aBPLRL3lWnMlzpZWS80Go3Or5kTkcrp/PnzzMnJianVatahQwe2adOmVOfQJf18fX2ZhYUFU6lUInAYkTXI3zePHj1ip06dYpxzVrFiRWZnZ2fAnOVMVCoVA8Dy5s3LWrVqxbZu3cp69erF4uLi2KBBg5iLi0uSd1n58uXZqFGjWJkyZQyU69xB4rb35cuX7Pr166xLly5sxIgRbN26dSwuLo7FxsaymjVrssWLF7MVK1aQeV1J6DO8O0EQBJF9SLyFSmqEhITgp59+AuccnHN06NABQ4cOxZgxY8TvbGxssGnTJj3mOHfg5eWFtm3bwsjICAUKFMDmzZvFsdS2XQ4KCsLw4cNhamqKAgUK4O+//07zHCJ1bty4gQoVKoBzjho1auDEiRPiWGrl6u7ujg4dOkClUqFy5crw8PDIiuzmaEgLZXHixAmYmZmBc46OHTvi1q1b6Trv1q1bKFeuHDjnaNGiBW0NqQNIC+VAWigH0kI5UL82+/DixQvMmzcPlpaW4JyjevXqcHJyQkREhKGzliOYNm0aSpUqBc45TExMEBwcrJPrSnWC6kb60ZcWEjt27EDFihXRuXNnnDhxQlw/Pj5ep38nJ6DvegEAV65cgYODA6ytrfH48WMAGZsLyy3ou15ERkZi2rRpYsvmZ8+eASAtMov8vXL79m0EBQUZMDe5G9JCOZAWyoG0yBrevHmDefPmYdasWeJ3NDYwHFmhB81VpY+s0EKtVmt9b6K6lzxZocXt27cxb948vV0/p/Lo0SNYWFiAc44GDRrg9u3bqaaXyjUkJAQVK1YE5xxVq1ZFdHR0VmQ31yHvSyU3dr558yaGDx+OfPnygXOOnj17ZmX2ciTpnbu7d+8eatSoAWNjY0yYMAGxsbE075fFyN/zb968wbFjx9CgQQMUL15ceNc45+jevTvmzp2LyMhIA+aWSAnan4AgCIJgGo1GbC30xx9/sMaNGzN7e/sUVzsXLFiQjRs3jrm4uLB79+6xq1evstjYWHHcwsKC9erVi40cOTJL8p+TefbsGbt+/TrTaDSsf//+okxT2u4a/x9Z7OrVq+zEiRMsLi6O1alTh7Vv354xRpEdMsOzZ8+Yv78/Y4yxnj17sl69ejHGUo4WyljC9kPOzs7s7t27DACrXr06q1ixYlZlOcdCWigDqbyfPHkiIjR88803rHHjxmme+/LlS3b48GH25s0bxhhjtWvXpq0hMwFpoRxIC+VAWigP6tdmDyjyun45ffo0W7Fihfj/UaNGMRsbm0xdU6orUp0IDg5m0dHRzMfHh6nVala/fn1mbGzMLC0tU6xvuRF9aCHn4cOHzNnZmXl7ezMvLy/m4uLCGjVqxJYsWcLKlSvH4uPjxTxMbkdfWsjHh1euXGGTJk1ib968YdHR0axVq1bs+vXrrFq1aqSFDH3XC8YS5gx//vln9uDBA/bPP/+w5s2bkxY6QKVSiXd8o0aNDJ2dXA1poRxIC+VAWuif169fsyNHjrCNGzey9+/fM5VKxebPn6+zcbPUr0pt/p34gr71iI6OZv/88w/77bff2Lhx41jTpk1ZlSpVGGOpfyPJjehbC8YS5rWuXr3KpkyZwmrUqMH27NlD9SUZskKL0NBQNmjQIObj48NCQ0OZo6MjaZEGAJharWZbt25lnz9/ZkWLFmUDBw5ktWrVSvUczjn79OkTW7hwIfP19WV58uRh3bp1YyYmJjT3lAFSezbVarX4rhEXF6dV7tHR0UytVrPbt28zT09Ptm/fPvb+/Xv2+fNnVqtWLbZhwwbGmPa8e+LxNo2/U+bFixcsOjqaVaxYMc3nuVatWqx69ers2bNn7O+//2bLli1jJiYmWZjb3IukjVRXVq1axW7evMkuXLgg0tjY2LA6deqw77//nn333Xci4rr8+ae6oRCy1C5PEARBKBopqvqdO3fSnd7a2hozZsxA6dKlYWtri65du2LBggVipRutMPw6NBoNYmJi0K1bN3DOUadOHRH1KqWoVNLvnz59Cjs7O3DOUb58edy9ezfV84i0CQsLQ926dcE5R6tWrcTv03q+z5w5gyJFiohI4a9evUrXeUTKkBbKIigoSETn69Gjh/h9alEtwsLCsGnTJtjY2IBzjoYNG+Lz589pnkekDmmhHEgL5UBaKAPq1yoHqd/z8eNHEWlE/lxT5PWsYeTIkeCcY8aMGZnui8rPf/v2LXbu3Il69erB1tZWRJepXr06vv/+e3h5eQGg+iNHl1okh6urK5ydndG8eXMxFildujRcXFwA0FhEjq61kL/b/v33X9SpUwcqlQoWFhZwcHAA5xzW1tYU/TsZ9F0vJLy9vdGxY0fSIpNQeSkH0kI5kBbKQd9a0Bg9AbVajQ0bNkClUoFzDltbW4wdOxYfPnzQybXlBAQE4M2bNwgMDNTqJ5AWX9CnHhJXrlxB9erVwTmHsbEx2rRpg+3bt4vjpEcCWaFFfHw8/vnnH3Tp0kWMwUePHi2OkxYJZIUWQIIeGzduhKmpKTjnGDNmjDhGWqRMZGSk+O5ap04dvH79Os1zoqOjsWvXLlSqVAmcc9jY2ODhw4dZkNucya1btzB//nx888036Ny5M3r06IG2bduiUaNGaNq0KerXr48qVaqgcuXKKF26NGxsbMT3C/lP3bp1cePGDQDaz7y8Pf/tt99oV7pU8Pb2xrBhw9C/f3/xu5TeH1L5HThwQLx30rsDMPF1JJ6n8vX1xaxZs9C8eXOtulC2bFm0bt0at27dEp4QCaobyoQM7ARBEAQAIDw8HPXq1QPnHP/73/8QEhKSYtrY2FgAwK5du8A5x7lz5xAWFoZXr15pNeb0MTZzREdHiwFj165dU93ORip3Pz8/lCxZEpxzFClSBHPnzsXHjx+zKss5lg8fPogt0IYNG4a4uLg0O65Xr14VhqtSpUphz549UKvVNEmSSUgLZfHy5UuxBdfChQsBpD6oi4yMxP79+4WBp1KlSrhy5Uqa5xFpQ1ooB9JCOZAWyoH6tcrh/v37+Oabb3DgwAGEh4eL3/v7+5N5Xc/I3yNnzpzJ9HtFfr6TkxP69eunNVFvZWUFlUoFY2NjYZx2dXUFQGN1XWuRmMTjjKCgIDg5OaFp06bgnKNo0aJwd3dPNm1uQx9apGRet7S0xOjRo+Hi4iIMJmSc/oK+60VykIn96/Dy8sKpU6fE/1N5GQ59ayG9z3J7W5Ee9KlFcuVPmqSMvutFTEyM6EcBpIWEp6cnOOcwMzPD3LlzERAQoLNrR0ZGYvfu3Rg6dCjKlCkDOzs72NraYujQodi9e7dIR1p8QZ96AEBISAj27NmDESNGwNraWpiCp06dKtKQHgnoU4vkzOvS+JuM00nRd72QUKvV2Llzp6gXpEXaXL16FSYmJjA1NYWTkxOA1Ps/sbGxOHnyJBo3biye/ePHj2dpnnMS/v7+6NChg3h/ZOTHzMwMnHO0aNECw4YNS3ZRiLwvNnnyZDFn+OTJkyTHiYR5JHNzc3DOceLEiXSd4+joKDT5559/UkyX1nwsvaNSJvFzeunSJSxZsgQFCxYUdcfY2BjW1tb45ZdfcOXKFa1vH0DS8qW6oSzIwE4QBEEASGiwt2zZgoIFC6J06dI4depUmp2oFStWgHOOdevWJXs9InO8f/8eNWrUgJGREVatWgUg9Y6tt7e3iDJqZWWFvn37wtvbO6uym6Px8/NDiRIlYGxsLCZlU3vG//nnH2GYs7W1xZQpUxAUFJRV2c3RkBbK4smTJ7C0tISJiQmOHTuWatoPHz5gz549KFq0qDBRbdq0iYxxOoK0UA6khXIgLZQD9WsNjxQJv2HDhuCco1atWjh06BBiYmLw5s0bzJ07l8zrWYCuJr7l15k9e7ZY4Mk5R6NGjfDzzz/j2rVr+Pfff7Fx40YRhcbBwQE+Pj46yUN2J6s+Qkhjlbi4OLi4uKBt27bgnKN58+bpimqWG9CXFonN66NGjUJ0dDSABPMEGaeTYoj7JxN7xvDz8xMfVn/66SedX19umM7ti53SQt9ahIWF4c8//8TNmze16gPNuSdFn1rId5nds2cPli9fnuQY8YWseEf99ddfMDU1xdChQ7V+TyQsHli4cCH8/f11cr2YmBg8evQIjRo1Qr58+ZKY5iRz6JQpU8Q5pMUXdK2HROL2+dy5cxg9erTQ49dffxXHSI8E9KFFcuZ1R0dH7Nq1i4zTqaCvepEYMrFnjOvXr8PY2Bh58uTBxYsXASQtJ+n/o6Ojcfr0abRs2VI8+4sWLaKxQyYZP348OOcwMjKCtbU1fv75ZwwfPhw//PADxo8fj5kzZ+LXX3/FzJkzsWbNGqxatQrr1q3DhQsXcOvWLTHXAWi3E/JxxKRJk8A5F+ZsGn8nj5eXF7p27QoTExMMHjwYL1++TDGtWq1GbGwsRo0aBTMzM5iZmeG///5Lki5xfbp48SJ27tyJxYsXY9GiRbh37x7evXsHgIKOpEZ8fDz+/fdfTJgwAfnz5xfPcp48eVCgQAEsXbpUvMMk0oqeD1DdUApkYCcIgiAEb9++Rc+ePcE5R+PGjcW21hLyDpOHhwdatGgBzjlmzpyZ1VnNNXTq1Amcc/Tv318rUmXi7Rnv3r0Le3t7cM5haWmJdu3aiY4VkXnUarUYjA8bNgyfP38Wx+RavH//HkePHkWxYsXAOUfhwoXx888/w9fX1xDZzpGQFsri8+fPIsrCpEmTUpwk8fb2xurVq1G4cGFwzmFvb49FixaJATmReUgL5UBaKAfSQllQv1YZuLm5iWe9Vq1acHR0xPTp04Uhgczrykc+cT527FgtM8nYsWPx5MkTrXoVHx8PV1dXNGrUCJxzTJw4kXYjMiCXL19G8eLFUahQIRw+fBgAfZzSBxcuXED9+vWhUqmQL18+/Prrr6Ltkco7sXFamgOjj1NZj7e3N9q3by+0oGhXyePv74+RI0eKHWqMjIxw7do1nVw7Pe8haje+oE8tgIQ5rS1btsDGxgacc4wcOVIrojVp8QV9aiE3r//xxx9o0qSJmI9MnIbQf72QOHr0qOj7kiExKXFxcTq5zuvXr7F161axsNzExATm5uYYN24cli1bhtWrV2Pw4MHCHErfCJNHV3okR+JvIZs3bxZ6rF69Wm9/N7uiCy3k7UJi8/qGDRsAkHE6PeizXsghLdLPs2fPYGFhAc65mKeQI71vIiMjcfDgQbG7HOcckydPRmBgYFZnOccgf5ePGzdOlOuuXbu+6nryZzs5g66xsTEaNGiAevXqkVE3FZycnJA3b15wzrFy5Uqt70pSOUnaPXnyBLa2tuCco2bNmknKUUoXEhKCP//8E126dBGR86Ufe3t7tGnTRuwyRFpoEx0djXPnzqF9+/YoW7asVtk1aNAAc+fOhZubm9Y5qZUh1Q1lQgZ2giAIQgt/f39Uq1YNnHO0atUKd+7cwadPn7TS+Pn5YdGiRbC2tgbnHCtWrDBQbnMu0gBj9erVMDExQc2aNfHw4cMkHSRvb2/s2LFDmHStra3RuXNnPHr0yAC5zploNBpoNBrMmzcPnHPUrVsXT548SaLFf//9h9mzZwtDULFixTBy5Eh4eXkZKOc5D9JCecTGxorBXYMGDfDkyZMkE5CXLl3CDz/8gAIFCoBzjjJlymD58uUUcVLHkBbKgbRQDqSFMqB+rfJwd3dHoUKFwDlH8eLFRXSRGjVq4ODBg2ReVzDyD1ujRo3SmrBftmxZimnVajVmzJgh3odZ9cGYSEpkZCRq1aolFvQQuufjx4/o3Lmz+CBYtmxZ3L9/H0BCJFH5B125iZ1zjqdPnxoq27megIAAdO/ePYmJnRZ4fOHt27coX7682FHD0dFRJzvMSXVCrVbj2bNn2Lx5MyZOnIghQ4Zgz549uH37dpK0uR19aSHx6dMnTJ8+HdWrVxdRjosVK4aFCxeKNKRFAvquF/Hx8fj9999FIB8yTqeMvuuFhFqtpgjHesbX1xdz584VZixbW1sMHDgwyYKEjx8/YuPGjVCpVLC2toazs7OBckwAQFRUFGbNmgWVSoX69evDw8PD0FnKkajValy6dEkEaeCcY8uWLUnG33Lj9NixY8Uxek9lLYm1GD16tDhGWiSg0Wjw/v17dO7cGSqVCpMmTUo28Mj79+8xc+ZM0T+Vdnygd03mkc+RT5gwQevdEhMTI47Fx8drPbepPcMpGXRbtGiBs2fP4tWrV+I9RkbdL8jLdOnSpUKLdevWJfu9yNPTUyzeLFy4MNasWQPgSzlK//Xx8cGgQYNQrlw5sTDQ2NgYdevWRbFixVCkSBFwzmFnZwdXV1cANBeSmDlz5miNx7p164aFCxciJiZGlFV63utUN5QLGdgJgiCIJHh6emqtFJw2bRoeP34Mf39/nD17FkOGDBERYGrWrIng4GBDZznHEhgYKAaDLVq0wMGDB+Ht7Q0vLy/s27cPHTt2FIYrOzs7DBo0KEnkfEI3vHjxApUrVwbnCdu9b926FS4uLrh69SrWrl2LKlWqiOiHDg4OmD17tt63wcutkBbKwt/fHxUrVgTnHE2aNMHKlStx7949ODk5YebMmbCyshLGuKpVq2LXrl2ZajdoYjFlslILmjxJHdJCOdA7SjkooV9L+nzB3d0dBQsWFNER7e3tsXPnTq0PI4SykD+/06ZNQ548ecA5h5mZmYj2ljgd8GWC/cSJEzAyMoKNjQ31jQ1EbGwsAKBr165iMQGhHwIDAzF37lw0aNBALFC7cuUKgKQffX18fEQEOSkNkTVI/dioqCj4+/tj6NChYuGBiYkJmSGS4enTp6hcuTKWLVums/nYuLg4vHjxAj179kSFChW0PgpzzlG6dGnMnz9fpKf+VAL60EKOFOVv06ZN6NixozBejR8/XqQhLRLQtRaJzevSTpCccwwdOpSM06mg73ohQVF19Ye/vz+mTJkiAsOULl0a69at0xo/yOehXr58KXZ6krcVhGG4dOmS6EudOHHC0NnJkbi6umq1CwMGDBDHpPEe8OU9ZWRkBM45fvrpJ0Nkl0CCLvv37xdtxogRI8QxajO+sGnTJvFcr1q1Spg2fX19cePGDTRo0EDM23LOMWfOHJpb0iFyc+yvv/4qynnr1q0ZDkIhb6cnTpwoDLrNmzfH6dOnxTEvLy+tXenIqJuAvPymTp0qtOjXrx82btyIx48f48yZM1i6dCns7OzAOUe+fPnQo0cPeHt7i3OlcnRzc0P16tVF+2xmZoapU6fizz//RHR0NAIDA3H27Fm0adNGBJgJCAjI8vvODkybNg2NGjXC4cOH8eHDB/H79H4jpbqhbMjAThAEQSSLl5cXatasKTplefPmRenSpWFkZAQTExNwzlGpUiX8/vvvST7+EbrF09NTbNWYN29eFCxYEPb29lofk6pUqYI1a9bgxYsXhs5ujsbT0xOlS5cWRh8rKyvkz59fS4u6devi5MmTCAkJMXR2czSG0IKikaaMp6cnHBwctNqMxB+9W7VqhcePH2tttZYZ3r9/r5Pr5DSyQgt5m3/8+HHcu3cvxeO5GdJCORjiHfXkyROt7VNJiwQM0a91dXXF77//Lv6ftPiCm5ubWJhcpkwZ7Nq1S+uDK6FMtm3bJuoR5xybNm0Sx1KbsJ87dy445zA1NYWfn18W5JSQI9emSZMm4JyjVKlS+PTpEy1G0zFSeUZHR+PBgwfo2bMnOOfIkycPbt26BSBpW+Dt7S12/KB2Qr/IyzcmJgaenp4YPHgw6tSpA865MJaUKVMGW7duJT2SITQ0VGfzHK9evcK2bdtEkACp/KtVq4YGDRqgRIkS4ne//vqrTv5mTkKXWiRG/ux7eHhg+fLlQouZM2fq5W9mZ3SlRWrm9Z07dwIAGafTQJ/1Qg6Z2HXP27dvsXDhQhEFtGzZsjhy5AjCwsJSPW/o0KHgnKNp06b4/Pkz9W0NgPTMR0REiB22p0+fbuBc5Vw2bdqEbt26wcLCAmZmZhg5cqQ4JjeaSu8pKVCDZIAj9E/i95C7uzu6d+8uFhQMHz7cQDlTHomDJUj9Hjs7O7Rs2RK2trbCuK5SqWBsbIz9+/cjPDw8U383sUbUduvWxA4Aw4YNE9/QGzVqpLVgXypv+a50cqNubtdDrsWsWbNgZGQk+pxSEFApsIiNjQ06d+4sdpHTaDTi/GfPnon0nCfsGH/lypVkn//79++jSpUqyJMnD7Zs2SJ+T2i3rW/fvtU69jVlRHVDmZCBnSAIgkiRgIAAjB07VmxvLf+pU6cOzp49m+kBCpE+fHx80LNnT5QtW1Z0qKRVmP3794evr2+mDFdSZ4s6XWnj6+uLAQMGoFKlSsIAwjlH+/btMWHCBHz69ClT10+PBqRTAvrWQs7NmzfRs2dP7NixQyuqAGnxBT8/P/z4448iuq6FhQXMzc3x/fffY+XKlTotK2dnZ9SuXRubNm3C8+fPxe9JjwSySgtHR0ex5d2ECRNw9uxZcYy0SIC0UA5Z+Y5auXIlOOfo27evVsQr0iIBffdr5Xh6emLcuHEiWqIEafEFNzc3EYm9du3aOHjwIC3aUyDSM+vq6qq1Vfnq1atFmpSMIhqNBqGhoejVqxeMjY3RqFEjre2gCf2i0Wi03jlSG8G59lbyhP548eIFunfvDs45atWqpTV+SExivQjdkThS1cmTJ/HLL7+IhVTST6VKlTB+/Hh4eHjQu0rPeHl5YcKECShRooT48N6lSxccO3ZM9AVcXFzg6OgoPtavW7fOwLnOXcjfR9HR0di4cSNUKhWsra0psq4eiY+Pxx9//IHmzZuLd9O2bdvE8ZiYmBSN02TczVrIxK4bpOfWyclJRBJ1cHDA6dOnUx2bx8bGIi4uDu3btwfnHJ07d86qLBMp8OjRI2Goo4Vn+sXPzw+Ojo6wtLQE5xyDBg0Sx+T9XrVajdOnT+P06dP4/PmzIbKaq0j87r916xYcHR1RuHBhWFlZac1DXr9+3UC5VB7yZ3bx4sVagWCkHwcHB3z//fe4ffu21rl+fn54+vRphtpd+U5cV65c0To3t7ffujKxv3jxAtWrVxdzvrVq1YKbmxuABDOwvJzlRl0LCwsKlvj/yLXYt28fevfunaReVKpUCTNnzoS7uzuAhOdX0snV1RWFChUSZvemTZvC1dVVpJP/FwA+f/4sdmzs1atXVt1mtkFXi16obigXMrATBEEQqRIZGYmAgACsWrUKs2fPxvTp07Fp0yadGkOJ9PHx40d4enpi27ZtcHJywokTJ3S+hVBYWBh8fHxw6NAh7Nu3D1euXCGzbjJEREQgMDAQf/zxB/7++29cuXIFUVFR4vjXbCGUuGz9/f3x4MEDrF69GmvWrMHZs2dFBzq59LkVfWiRmJcvX2L06NFiQDpw4EAcOXJEHCctvhAVFYWQkBBcvHgRDx48wOPHj7WO60IPHx8frYmCvn374tChQ+I46ZGAvrWIiIjAjBkz0KBBA3CesM2avb09Fi9eLNKQFgmQFsohK95RADB+/HhYWVnB1NQURYoUwbJly8Qx0iKBrOjXenh4YNy4cWKimAwNKePu7i62iK9RowaOHj2KmJgYQ2eLSIbly5eL53nKlCni96mZ1wHg1KlTwthDpumvIzMLjePi4hAXF4d58+bBzs4OKpUK5ubm2Ldvn66zmSuQP+/p+YCr0Whw7tw5FCtWDNbW1ti8eXOS6xD6IXGdiI+Px549e/Djjz+Ccy52eCxQoADs7OywefNmPHjwINVrELrBzc0NP/zwg2j/ixcvDkdHR7HAQ6ofGo0GkZGRmDFjBoyNjdGpUyd8/PjRkFnP1bx48QItWrSASqXC5MmTDZ2dHIlGo8Hu3bvRqFEj0efau3cvgIQ2R6obqRmniawlLi4O27dvF1rIIyFTG5I20jPt6+uLMmXKiF2CDh8+rDXHntJ5nz59EhG/v/322yTGH0L/SOUdGhqKuXPnIl++fEkWOxO6Q/58x8bGwsnJSZjYU9shhYKI6Y/EZRsREYFnz55h9OjRSYzYhQoVwoQJE3D69GlDZlmRyOfF//vvP+zfvx9jx47FzJkzsXbtWrx69UqMA6SF38HBwRg2bBgKFCiAAwcOZOj5joiIwIIFC1CwYEG0adMGBw4cEJGVc/tYPSUT+/r16zP0/SIkJAQ7duxAixYtxIJlKdJ04sX73t7eaNOmDerXr09zwjLkz+LHjx9x584d7N69G+vXr8f+/fsREhIiFifJI68/f/4c5cuXF8bnDh06wNPTM8k1JaS5LUnvNm3a6PvWcjVUN5QJGdgJgiCIr4YG2srhawZzifU7fPgwunXrJj5eSSvRGzdujBUrVqR4HqHN15SPXL8PHz5g8+bNqFKlilYkMpVKhRo1amDJkiWZ+lu5CV2VT1RUFI4fPy6iyahUKhQpUgTTpk0TaXL7hEpWEhkZiVOnTomV6FL0MfnHW6obWcPnz58RFRWFtWvXom3btuJj4YQJE0Qa0iJrIC2Ux8WLF/HDDz8ILegdlX500aZK5nUpkkaFChUoKl8auLu7i77nmjVrDJ0dIhlcXV3Fts1dunQRUV/SMq8/fPhQa4HCo0ePUj2PSIr8A+Hr16/x+vVrvHnzBn5+fnB3d4e3tzdcXV1x+/Zt3Lt3D/fu3cOZM2fg5OSEbdu2oXfv3mjcuLHouyZuo5NDinapq8VVOZEjR46IRd5pPc/R0dGoW7cuOOdo1apVVmQvV5NYj+fPn+PYsWNo1qyZMPjI55x2794NLy+vVK8BUL3QFd7e3vjpp59Eu1+qVCn89ddfWhHvE/eRjh49KnR7+PBhVmeZkDFy5EhhwHr37p2hs5PjiIuLw86dO1GkSBEYGRnB0tIS69ev1zouoVarsWvXLhHJde3atQbIce4lcTuxYsUK0c8aPny4gXKVPYmKikLnzp3BOUfhwoWxePFihIaGpphe3kZMmjRJmLPIEGo4Xrx4AUdHR1SsWFHo6OPjY+hsZWvSG+k4PDwc06dPh7GxMapVq5ZkMSaRdYSHh+PRo0fo1asXqlatqjX+btCgAYYPHw4fHx+t9oPmRbRJqzySm0cdOnQoOOfIly8fDh8+nO651mvXrqFHjx5ijFG0aFH06NFDjAtz+5hPfv9SW1uqVCl4eHik63xJy7i4OHh4eKBPnz7gnMPKygr37t1L9pygoCDx7svt5S8nrQVIiY8HBQXhm2++EXMeLVu2FM91anUsOjpaLKJt1qwZvZ/0BNUN5UIGdoIgCILIhcg7vffu3cOECRO0VqFbW1ujYMGCMDU1FZPw8i0HyeyTftIqK7kWJ0+exPfff6+lha2tLUqVKgVra2vSIpNkpqzi4+MRFhaG8ePHw9raOtmoPkTG+Bo95OdERUVh0qRJsLW1FXr88ssvusxirkEX7xE3NzcsWbJEaDF9+nQd5Cz3QVooh6/VQt6u+/r6YtGiRUKLSZMm6Sp7RCpI5nXJlNW4cWN8+vQJhw8fJhN7Gnh5eWHu3LlUJgrl8uXLsLa2BuccCxcuTPWDuqShp6cnOnbsCCMjI5iammLkyJG0m1ommD17Nho2bIgSJUrAzs4OxYoVQ4ECBVCgQAFYWVnBzMwM5ubmyJs3rxjPGRsbay1KLlq0qFb0/OQ+fDx58gT169fHf//9l2Ka3M62bdtQqFAhjBo1Ks20UoSkgQMHwtjYGGXLltUy6qYXejdmHA8PD+zevRvlypUTC2mkeY1BgwZh48aNWu+y1MqY6oVuePv2LX777TcUKVIEnHOULl0at2/fTjG9pMnjx4/Fu+3vv//OquwSMmJjYwEAs2bNgkqlQqFChfDmzRsD5yrncv36dcyePRt58uQB5xwDBgwQx+TvH7VajU2bNqFFixa4fv26IbKa63n58iUuXLiAJk2aaAWDmTFjhqGzpnikd/zdu3dF9PV27dolWVSWEqdPn0bt2rXBOUe5cuXw5MkTfWY3VyAt1gMS5r5jYmLw+fNnfPjwAaGhoXj37h1evHgBHx8fPHjwAIcOHcLatWtRq1Yt2Nraiiii27dvB6A9R5VcP4v6t8kTExODR48epboLgZyLFy+KnYW2bt2q59wRQNKxwOHDhzFgwADkz59f6/tq/fr1MXPmTLx+/VpESaZ6kX5SM9DKy+mHH34Qi5kyYmL38/PDlStX0LlzZxQvXhycc9jb28PFxSXNv58bkD/nCxcuxJo1a/Dhw4evupa3tzc6duwIzjnatm2LV69epZg2t5f71xIfHw+NRoPNmzeL57ls2bIi8EJaBvgLFy6gVKlSUKlUoh9L7yP9Q3VDOZCBnSAIgiByENLHDCDlj3nyztXhw4dFdA0pOmX//v1x584deHl54eLFi1iwYIEw+yxevFjv95DdkQYT8smt9GixatUqERGOc46mTZti3Lhx8PX1xZs3b3Dr1i0sXbpUaLFs2TL93kgOICNapIVcq2nTpsHGxgampqbgnGPu3LmZymduQdIjPDxc/O5r9ZCfN3HiRFhYWAgjxLp16zKX0VyALrWQT6B8/vwZmzZtgkqlQt68eXHkyJHMZTQXQFooB31p8enTJ6EF5xwbNmzIXEZzEenp1ybG09NTK/J6o0aNxAfgz58/Y+fOnWRiJ7Itc+bMAeccJUqUSNWwJj3P3t7eGDBggIjaXr16dTEJT898xjl//ryWEV3+UVz6nampKVQqFczNzWFhYQFzc3MULFgQpUuXRrVq1bBkyRI4OzuLayb3bnN1dUWtWrWE+eTp06cpps2tSGZBqT5cvXo1XedJEbDy5s2LoKCgdP89yeggQR+stJHeJ1K5REZGIiQkBJMnTxY7D8gX6A8aNAgnT57UukZazzfVi8wjldUff/yBkiVLgnOOkiVL4saNG+k6b9u2bTAxMUG+fPnEIgIi65Dq2bt371CnTh1wzlG+fHmtsQuhG+Tv+IiICDg5OSFfvnxJgljI+1Lx8fEIDg6m9iELkN5JcXFxiIqKwpo1a9C2bVsxRyu18x07dsSuXbsMnNvsw7x580T5nTt3Ll3nuLq6ol+/fuI8+U4FRMZ59eoV9u3bh6ZNm6J9+/Zo3rw5qlatitq1a6Nu3bpwcHBA6dKlUb58eRQrVgw2NjZinCf/sbGxwbp165L0deXvrH379mHOnDnJHiMS3i+HDh2Cvb09zp49m2paqezi4uLQoEEDcM4xePBgqNVqKtcsIC4uDhs2bMCAAQO0Fo8XLVoUVapUgZOTU6oLcqheZB75YuRBgwal28SeOGL1u3fvcOzYMTRv3hyccxQrVkxEGs/tWsjHvPK5CanfGRERoTWHnhJxcXHYsWMHjI2NUaxYMVy6dAkAla+uUavVaNGiBTjnyJMnD+7evQsg5Xkk+e+HDBki2nNaNP71UN3IvpCBnSAIgiByCFFRUThw4ABWrVolfpe4cyX//23btqFhw4aiM9ynTx8cO3YsSSS/qKgorFy5EiqVCtWrV4e7u7t+byQbI5VvaGgo5s2bp2X4T6yFfFAyZ84cEeVEiiJ9586dJFp8/vxZRNVt0KABXrx4oce7yd5kRIv0XgsA7ty5g0aNGokITJUrV0ZwcLBuMp2DkcrwzZs3GDx4sNZk4NdeC0iIblK0aFFRdzp06PDVEQhyC7rUIjlevXqFtm3baplDaaCfPKSFctC1FonLOTg4GCNHjoRKpULr1q3x+vXrTF0/N5Cefm1inj17hjFjxogI1U2aNBHH5Fs8yk3s48aN088NEIQeWLBgATjnqFSpUor9HXnk9f/9738oVKiQ+ID7/PlzAGS+zQxjxowRZvUGDRpg3759OHLkCA4ePIiTJ0/i0qVLOH/+PC5fvoz//vsPDx48gKurK8LCwpJEvk9OB1dXV1SvXl3siib999mzZwDIrCvn/v37aNSoEVQqFcaPH4/379+nmv7WrVuwt7eHkZERWrdunaQs5W3Mu3fv8PjxY4wZMwZ9+vRBu3bt0K9fP+zZswcBAQEASIuUcHV1xc8//ywMttJPrVq18O2338Ld3R0fP37M8DWpXmQO6fn++PGjKMtixYrhzz//TPU8+XuqS5cu4JxT1G8dotFotN49crNbXFyceLYlHYKCgrBo0SIxB9K6det0R4Ylvp64uDhs3boVefLkgaWlJXbv3m3oLOU6Eo8D3717h99++w3t2rXTWlhYunRpNGnSBJcuXaIxdzqR3i99+vQR75W4uLg0x94vXrzAiBEjtL5lSNeisUbGiY+Px5YtW7R2bkrpR76QVqVSwcjICGZmZqhduza6deuGu3fvit2HJOR6Hjt2DBUrVgTnHMOHD082TW4nPDwcvXv3Buccffv2RUhISJrnvHjxQrTP/fr1SzFdeuoHaZGUxOXm6uqKHTt2oG7duiKoEecclpaWaN26NY4fPw5/f/9Ur0H1QnckZ2I3MTHBnTt30nW+fEG0q6sr2rRpI3YEefv2rV7ynN2RB66YOHGiKKe0ntnQ0FAUK1YMnHMMHTo0XecQGUMKtmBqaiqCraXHvD5//nzxLhsxYkSW5DUnQ3Uje0IGdoIgCILIAURGRuLEiRPiI+GkSZOSpJF3tHbu3CmiV3HOMXbsWHh7eyeJnCVx9+5dWFpagnOOEydO6Pdmsjnv37/HunXrUL58eXDOMXny5CRp5FrMnz8fdnZ2Qov58+drbRWZuIP877//ionKixcv6u9GcgDp0SIj3LhxAw0aNBDm9SpVqiA0NBQAkiw2IJLy6tUr/Prrr2I706/RQ14fzp8/L7Y9l8zrYWFhAEiPtNCFFqkxdepUcM5RoEABBAYG6vTaOQ3SQjnoQgv5R/LE7ffRo0cpgkY6SU+/NjHx8fE4fvy4+GCoUqmwfPlycVzeLkgmdilK39ixY/VyHwSha/78808YGRmhWLFiWtFvpbGb9N55/PgxunfvDhsbG2Fev3//PgAyen4t8nIbN26ceJ/v378/3ddI68OH3KRrZ2eH2bNno3Xr1mTWTYXt27cLLRwdHbXG0XLjztu3bzFjxgwxjk6tjb9y5QoGDBiAEiVKJDEM5cuXD7Vq1YKrqysAMmjJ8fLywsCBA5E3b15Rzqampihbtix+++03uLu7i2hxGfkISPVCd2g0GowaNQqcc1hZWWHBggWpLv6W67Rs2TJwzmFmZobp06cnOU7ol1evXuHmzZvo2bMnSpUqJSJb3rx5M0na1MxZhDYfP35MlykRSDBASEFgfvzxRz3njJBI/Dxfv34dixcv1goCI/V1BwwYgJs3bybRVKPRUL1IBal8pLa1f//+KaaT8PX11eoPd+vWTYw1iK/H09NTzFGYmppiwIABGD9+PGbMmIFly5Zh/vz5WLx4MbZv345t27Zh06ZNOHLkCP766y9cu3YNERERov8r10v+76NHj6JChQowMTER+tHOdEmJjY3Fpk2bULhwYZQsWRInTpxIsd8v9UH/++8/FC9eXLQTab13bt68iSNHjmDUqFEYM2YMDhw4gFu3bqWYnkjgwYMH2LhxI+zs7MQOBFK9GTFiBJycnNJ1HaoXukc+7/r999+jXbt2X32ts2fPomDBgihWrJjYBYHG3kmJiIhAjx49wDnHggUL0kwfExODT58+ie/lffv2zYJc5j4mT54MzjmKFy+e6iIO+TO9efNmraB5aS00J1KH6kb2hQzsBEEQBJEDOHXqFBwcHMQ2ad26dUsxOveJEyfQpEkTMRifOnUqIiIi0vwbNWrUAOdcRLKmAWNS4uPjsWHDBhQuXFhMnowaNSrFDyIbNmxAuXLlhBYrVqxI8drSREl0dLQ4Z+/evVrHiC9kVIu0uHHjBho2bEjm9a9ErVZj6tSpMDMzEx++ly9frmUySYvUzOsdO3YUkfzIvJA6utAiJaQPJTNnzoSpqSkKFiyIV69eZfq6ORXSQjnoQotDhw6Bc47ff/9d6/fyyN8VKlQA51xEFaf2O3ky0q9NzIkTJzBmzBiYm5uDc47//e9/4lhiE7sU4WzmzJlaW7AShFJ5/PgxKleuDM45li5dmmzU1X/++QcODg6iDhQtWhS3b98GQO+czCLvY/7666+iH7p169YkUQ4ziouLi5ZJd926dQgODkZAQAA6duxIZt1EyJ9laWcCzjmWLVsmthmXePbsGebNmydM1S1btkRQUBCApOW4f/9+mJubi+iXtra2qFOnDsaOHYu2bduiSpUqQiPazjwpUr2wtraGvb09du3alcTQlpHyonqhWyIiItCqVStwzlGjRg08fvw4xbRync6cOYMGDRqI8nZ2ds6K7OZI3r59i+vXr+PPP//EoUOH8Pvvv2PPnj1Yv3491q5diyVLlmDGjBmYMmUKhg0bhh49eqBDhw4oVaqUMGdJ0UX37NkDIGWTorRVfeLfEwmEhIRg27ZtYuyWnjKSzCjGxsbw8fHRdxYJGX/99RdmzJgBc3NzWFhYiEUcZmZmmDdvHs6dO6eVnupFxhk8eDA452jevDkiIyO1jsnb14cPH2L48OHifdS6dWucPXuWylNHuLm5oWDBguCco23btvDy8srwNdIyr3POYWNjg2+++Ub0j8msm5R3796hW7du4JyjUaNGePr0qTgm3y1FolOnTqKNvnDhgta1pO+oarUad+/exa+//gpTU1MxZpeCMJQuXRrz589P8neIhIAhAwYMQO3atbUWMNnZ2WHcuHFJyjy1cQHVC/2R3HfSrxmjhYWFCSPpTz/9pIus5UgiIiIwZcoUcJ6wC+mjR49STCvfkUsK3tOxY0etY0TmUavVYsz97bffpphO7q/ZtWsXSpQoId498naA+DqobmRfyMBOEARBEDkAX19fMWgfOnRoklWdUifL3d1dbH8nRR6LjY1N9doajQb3799H/vz5wTnHli1b9HYfOQFvb29RvrNmzUrxo8alS5fQrFkzrY/tEql1is+cOSPOOXbsmM7zn5NIrxZpkdi8XrVqVTKvfwVeXl5aRh8pWnp6IPO6bsmMFikhL3upnTEzM4Ovr2+mr52TIS2UQ2a0iIuLw5gxY8T5khFCPhl54MABcXzTpk06z39OIq1+bXLIyzo4OBi7d+9Gvnz5kkRJlKdTq9V49uxZqtFHCUJpSFFwpf7tmTNn8Pr1a+zZswfjxo3T2lK+XLlycHd3N3SWcxSpmdi/dlzg6uqKqlWrighNa9euFQZrAHj+/DmZdZNB/j6XPkxxzlGvXj2MGzcOixcvxrhx49CgQQNRL2rXro0DBw4kmQMJCwvTqlsWFhZo1qwZHj16JLQIDw/Hf//9h7Zt2wrDFm1nnoBci9WrV2PLli3w8/NLMU16oHqhe/766y/xjG/evDnFdPKx9+3bt9G3b19x3ty5c7MgpzmTwMBA/PLLL2K3oK/5KVSoEBwcHPDXX38leY/JdXNycgLnHMOGDUv2OAE4OzvDyMgIhQoVSnOhrNS+r1y5UgTIcHFxSTG9VNZU5hkjcXkFBQXh3r176NmzJ0qWLKlVF6pWrYoFCxbg3r17WuekFvGY6kXySGWwd+9e5MuXD+XLl9dafJa4DKVolpxztGvXDkePHqVnXse4ubmhUKFC4JyjTZs2WoszM1LGqZl0586dC41Gg/3795NZNxX8/PzEAtZWrVrhzp07SRZ4aDQaDBgwAJxzmJiYoE2bNloLD6S+aXR0NJYtW4amTZsmeZ/Vq1cPDg4OQouJEydm6X1mB/z9/bXKrVGjRvjpp5/g6+ubocXkVC/0j7wt/pogeFIfV9r5plu3bjrLW07k0qVL4jmeOXNmssEK5cHxFi9eDJVKBSMjIyxcuFDrOJF51Gq12NUmJQO7vF5s3boVpUqVgpGRETjn+OWXX5JNR2QcqhvZEzKwEwRBEEQOwc3NDb/88gtu3Lghfpe4czV37lwxyB8xYoQwfaaEfBJTOu/o0aO6z3wOw93dHfPnz08SJUOux8iRI7XMJxIpDUqkc5ctWyYmUK5du6aH3OcsUtIivVDkdd3i7u6OHTt2pPnukZPYvC7/4Evm9a8nPVoknnCUf5SSjiVuZ1asWAGVSgWVSoXu3bvj8+fPNNBPA9JCOSSnRXonC4ODgzF69GjxflqyZImIenzixAn06tVLHDt+/Lhe8p+TSK5fm5GJW7Vajb1794oIfWvWrNFHNgkiy5A//9OmTdP6eFuiRAlwzsUHj3LlyuG7777Dy5cvdfp3iQR0aWJ3d3cX+uXLlw+zZs0S15e32d7e3sKsmy9fPq0IgLkZuRYLFy5EoUKFxFhZimgo/X/Tpk2xZ8+eJKaT0NBQzJ49W+hYqVIlTJo0KdmPW/Hx8Th37hwKFSoEW1tbGo/LkD/7KfVN0wvVC/3g7OwMExMTWFtb49atW1rjCAl5+T58+BA//PCDqBs//PCD0IHahozz7t07EUlS6p+WKFEC9vb2yJ8/P+zs7FC5cmWULl0aDg4OaNCgARo2bIhGjRph2LBhmDFjBq5evZrsrlpy3Q4dOgRra2uh26hRo5JNl9u5fPkySpYsCQsLC6xevTrV3Zg0Gg3UajWGDBkCzjmsrKzg7e2dbDo5YWFhePXqFby9veHj46NVb0iLlAkNDcXZs2fRsmVLlCpVSqvP27lzZ8yYMQPh4eFpliHVi4zx+vVrsdtGy5YtceHCBYSGhuLDhw/w9PTEDz/8oKVHr169cOHCBTKv6wl3d3ctE7unp+dXX+vYsWPCwFWwYEGt71DR0dHYuXNnsmZdausT8PT0RLFixYTZfMSIETh37hwuXLiA7du3axnSixQpovXtVOoff/78GT/++KOI7Mo5x8CBA7FlyxZERUUhJiYGLi4uWLNmjdBi7dq1Brpj5eLm5oZmzZphzpw5CAoKEsb1r3lWqV4oE2ms8fnzZ5QtW1YsVpB/CyGS4ujoKN4tGzdu1JrzkHaXjY2NhbOzM5o0aSLSXr9+3VBZztGsXLkSRkZGaN68OQICApLdtQMAli5dChsbG/Guke8iS9+6dQPVjewHGdgJgiAIIgchn3BPPKA7f/686Hx16dIFT548Sdc1Hz9+LCZXmjVrlunt0XMLqUW2P3z4sNBi8ODBeP/+PYC0J3tv3rwJExMTWnmeQdLaZSAlyLyuH742WowuI6/ThFcC8nLIzKTI+/fv4eHhgTFjxmh9FNywYYMuspkrIC2UQ0papBWZD0iIEjdw4EBR7gULFkSNGjVgaWkpfiefjCRSR96vlWuR3kVQQUFB6NevnzA7JGdGJIjshLwerFu3TmxLK/0ULlwYAwYMgLOzc5KdBfbt26dlMkkPUtonT55g2bJlCAkJEf3q3N6XSsnEvm3btgyNE7y8vNCgQQNhaqxduzYePHgg/kZis267du2EsSgjC0JzMnItTp8+jYkTJ8LKykrswlGqVCn89NNPcHV1FR+opHPi4uKwePFioV+dOnWwfv160f4k1ycLDQ1FuXLlkixEJ3QH1Qv9IEUftra2TnZ3Drkh58aNGxg0aJCWUVGKck98PS4uLsKQWKVKFdy4cQNRUVEIDg4W/dSYmBjxrgKSN0rJ60Bik6407pBvQ0/RQ5MSFhYmdtCqWbNmijs+Se3AmzdvUKdOHXDOUbRoUYSEhCSbDgBevnyJdevWoWnTpihQoACsrKxgbGyMvn37au1+QFp8IT4+HmFhYXB0dMQ333yj1b/Nnz8/WrdujW3btiEiIkLUidTmTahefB1eXl4oXry4mMsoXbo0SpYsCTs7Oy1Nfv31V7i7u4ty+xpDJ5V52ujCxL53717Rn7K2tsb8+fPFMXldkpt1x48fr6tbyDF4eXmhVq1aWvWAcy7eLWZmZihZsiT2798vzpHGzVFRUejTpw9MTU3FeWvWrEFwcHCSvxMZGYkZM2bAyMgIHTp0oH5tMiSe1/uadwnVC2Uib1Ok4G/m5uZYunSp1nHiC/L2V74of86cOVoBYaKjo7Flyxa0bNlSpFm8eLEhspwrOHfunPgu5+joqPUuV6vVePr0qVaAQ845fv75Z600ROagupF9IQM7QRAEQeRA5IM5qaP222+/wczMDDY2Nti2bVu6BnyBgYEYOnQo8ubNC5VKhcmTJ3+1GZhI0CIqKgrffvstOOeoUKECzp07l65zPTw8hEmlUKFC2LhxY7IRswjdkFnzOhncM48+Iq/LI5HSpNcX5GV47do1nD9/Hs7Ozjh8+DAOHDiAffv2wdHREStXrsSaNWswb948jB07FmPGjEG/fv1QoUIFlClTRivK5eTJk8U1qazTD2mhTDZv3oxNmzYBSL0MNRoNzp8/LyIpSovOpJ/+/fvDx8cHAEXtyQjyMr9//z5OnjyZ5PcpsXXrVlH+V65c0VcWCSLLkLcT7969w507d3D+/HlcvnwZbm5uWmml98zVq1eRL18+mJub49ChQxlqCx4+fCi2TW/cuDGWLVsm+lO5/T2Wkol97dq16SobSYfw8HCcOnUK7du3Fx9ppcjeibXy9vbG6NGjtQxwRNJnMSAgAJ6ennjw4EGSBWjytNu2bRO61atXD7t27Uo1kl9cXBw+fvyI6tWrg3OuZXYgdAPVC/3h7++PChUqwMTEBDt27NCKai9/n/3xxx/o0aOHqBtdu3bFjRs3aByhI9zc3FCwYEFhSHz+/DkAbdOONJ+k0Wi05pYSayD//8OHDwsjXaVKlbB69Wps376dzLqpEBAQgIYNG4oFMM+ePRPlnXhOr2fPnikaqeR1ydHREZ06dUrW4Ejj85SJjIxE7969RRlzzlGmTBk0b94cV69eRWBgoFb6tMbkElQvMo63tzfat2+fxLRuYWGBdu3aYe/evVrpo6Ki8ODBA7x58ybdf0Ne1nfv3oWLi0uKx3M7iU3sGd1hdvXq1ShTpgyMjIxgZmaGBQsWiGPy95xk1jUzMwPnHFOmTNHZPeQUAgMDMXnyZNSvX1+rbuTNmxeDBw+Gs7OzSCt9P/38+TP69+8v0pqbm+Pw4cOp/p3jx4+L9NICTiIpmXlPUL3QH5nRJSwsDG/evMHAgQNRoEABcM5hY2ODf/75R4c5zHnIx3FTp07VCqrTsWNHdOjQARUrVtQKdDR27Fj4+voCoDZXX8ydO1eU948//ojly5fj0KFD6Nu3L2rXri2OlSxZEtOnTxfnfa15PfF5ZIKnupFdIQM7QRAEQeQCwsPDUblyZXDO0bx5c62PISkREhKClStXisgbZcuWxdu3b7MqyzmW4OBglCxZEpxz9OzZM12d4BcvXmD06NHiI1fz5s2TRG2nznTGiImJQUBAgNgyKnG0scyY16WB0cePH3H58mXaJjgdhISEwN3dHZ8+fQKgrYeuIq8/fvwYVlZW+P7778XvSA9tRowYIczPX/NjZGSEmjVraq1ST06jJ0+e4Pz586nuGpLbySotkoO00ObChQuwsrKClZVVuiJeRUVFoVatWmjWrBn+/vtvfPfdd5g0aRLWr1+vlS4j5kYiAS8vL7Rt2xampqZ4+vRpqmml9vrWrVui//THH38km5bKmchupPTMphYFUdodwtLSEocPH073c+/k5IS+ffsif/784JwjT548aNasmYjem9s/iiRnYu/Xr1+6F33Lx3K+vr5ioXOxYsXw8OHDZM+R+svy84kvpGTwTFwvLly4IPpN1apVw+bNm4V5PbVyffTokTAxLFy4UMe5JwCqF/oiPDxcmKiaN2+Ox48fIyoqCkBCv0mtVmPatGli0RLnHH369MGdO3dy/YIlXaOLqLpyTeQRpitWrIi1a9eKekBm3dTx9vaGvb29WKi3Z88evHr1CgDw4cMH3L17F926dQPnHCYmJmjevDlu374tzpfPrw8dOlRr7qpFixYYNWoULly4gC1btmD06NFCC9rBIylPnz6FjY0NjI2NMWTIEPzzzz9JdhRK67mleqEbQkJCcPPmTSxatAhz587F8uXL8fjxY62I0RqNBhqNBufOnQPnHB06dEiy0CAtTp48iTZt2oBzjunTp+PSpUta1ycSkLcZzZo1Ewuf0sv169cxc+ZMWFhYgHOuNS8uH8uo1Wps3LgRNjY2ePToka6yn6OIjo5GVFQUTpw4gf3798PJyQkeHh7i+xLwpV2IiYnBqFGjxPcla2trHD9+XKRL/IxLWnh7e6NIkSIwNjbG1atXs+CucidUL3SPVG5RUVHw9PSEq6srXFxc8PDhQ1y7dg03btzA1atX8eeff+LEiRM4deoUdu7ciUWLFmHWrFlo2rQpHBwctL5vbNu2LdW/KUXkp3mpL/e/cuVKVKpUKcVvRrNmzUqygFb+DvsaPn36JPwKuV0LeV90+vTpWotYpXkk6adfv344cOCA1vny76Vfw7Zt28TCwNyuBWD4ukFkHDKwEwRBEEQuICAgALa2tjAxMcHq1asBpG7E/fDhA7Zt2yYGjLa2tmI7VXlkmZSgScaUefLkCSwsLJA3b14cOXIEQOoDiZcvX2L69OkoVqwYOOcoXrw4/Pz8kpwXFxeHgIAA7NixAzt27MDly5cp2nQKREdHY8+ePWjbti327NmD8PBwcSyz5nWJ8PBw2NragnOOadOmiWhxAGmRmHfv3mHWrFlo2bIl9u3bh7CwMHFMV+b1J0+eaH2IHzVqlDhGeiTw7t07lC1bFpxzmJqaQqVSwc7ODpaWlsifPz9KlCiB4sWLo3jx4qhQoQKqVKmCGjVqoEWLFujSpQtGjx6NkydPaplKk9PI3d1dRNGYOHEiLl++LI6RFglkhRY+Pj64dOkSxowZg8mTJ+OPP/7QSk9afEG+VfD8+fO1DFIp0b17dxQoUAAvX75M8aOUxIMHD3DixAlMmjQJ8+bNw6lTp4QxFCAt5Li7u4uot9OmTdNqv1Ni9+7d4t1/6NChVNN6e3vj5s2bWLp0KTZs2ICLFy9qRe4lLYjsiPydM3jwYBFB8ffff8/QM+3q6ooRI0aIyf6iRYuKjyK53dgoL+P9+/cnMVtlhGfPnqFJkybgnGPgwIGpvufonfT1+Pr6onXr1iL60uzZsxEdHQ0g9XINDQ3FTz/9JMbl9+/fz6os52qoXugOHx8flC5dGpxz1KlTB0OHDsXWrVsxZMgQUcbSzy+//AJPT89MveNJj5TRhYkdAA4ePCiixlWqVAkbNmzQ2klCih5KZt2U8fT0FPUiX758KFmyJHr06IGqVauK35uamqJGjRpiHhf4EmE3Pj4eXbt21ao/CxYsENH7JMLDw7FhwwaoVCoUKlQIf/31V5beZ3YgMDAQFy5c0Prd1zynVC/0Q3JBdB48eKC16Cm9JvaoqCgsWLBAzNUaGxujXLlyWLFiRZK/RyTszCstyFi9erV4nlND3n6Hh4fj4MGDyJcvn2jjJRLv5CzNu9PusklJayG5fOHs5s2bRRtibGyMY8eOpXkdAFi7dq2oU//9958Oc08AVC/0TWhoKH744QeUK1cO1tbWyJs3r9gN0MzMTOyyIi0MTM5EamlpiXLlymHXrl3iusmNR06dOgU7OzuxU0FuN+vK7//WrVtwdHREzZo1UblyZVSrVg0DBgxIdjd4T09PNGnSBE5OTl/V7kZERMDR0RG2trZisTlp8eX+d+/ejSFDhsDS0hJFihRBmTJl0LVrV/zxxx/C9C/h7++P7777DkeOHPkqLU6dOgXOOfLnz49nz54lyUtuxVB1Izw8HJcuXcK7d+/EO4z6tmlDBnaCIAiCyOFoNBq4uLiIwWHiFZ2JCQ4OxqZNm1C+fHlwzlGoUCHs3r0bcXFxSQaKsbGxiI6Oxp07d3D16lXcu3cvSRQI6pB9QaPR4Pbt22IwfurUqVTT+/v7Y8qUKShRooRYSCBFI5F3uv39/bFy5UoR2V1a1duuXTs4Ojpq/X0iYVAtTZDXqVMHTk5OABK2LW3QoEGmzetAgnlFMqCqVCo0bNgQa9asEcdJiy+EhoaK903t2rWFHpcuXdKZeV1utqIPVCnj6uoqzOUlS5bElStX4OfnBz8/P4SGhiI0NBRBQUGIiIhAdHQ0wsPDU/xoktzEYnx8PA4cOCDqn0qlQp06dbB8+XKRhrRIQJ9a3LhxA127dhWGCemHtEieyMhIzJgxA0ZGRqhSpQpu3LiRavqgoCDUrVsXFhYWSaLzyMs0MjISmzdvRv78+cXHEumnXr16WLlyZbLn5WYiIyMxZ84cmJqaolKlSvj3339TTCuVmRQRmXOe7GSkxO+//47q1avDxsZGqy/VokULar+JbI+8Hzto0CBhxEpr+/LEkavDwsJw+fJlESmxTJkyGY4AmFNJbqwgb39fvXqFuLi4NN8hMTExmDZtGjjncHBwyHAkSyJ1JE1OnTolxhldu3ZNdheo5Pj777/FznY1atRI8sGRSBt5HaB6YRg8PT21FncbGRmJf5ubm6NSpUpa/VAgIaqeFK09vcjrkzSOJ7TJrIn9/v37wvxjbGyMPn36iGPy6H2JzbojRozQ2T3kFHx8fNCrVy+UKlVKK1Ii5wm7z3Tr1g0nT54U6eVmaKlfZGxsDDs7O+zdu1fr2vI+gp+fH+rXrw+VSqU1X0sk5WsNN1QvdENi82ZqaW7dugVTU9MMm9gjIiLw5s0bLF26FI0aNRJaTJgwIdl85HY8PT0xYcIE3Lt376vOj4uLw9atW5EnTx5YWFhgz549us1gLiTx8ynVlYCAAHTq1Em0I/Lvsck909Lv1Go1fvjhB7FY1tfXl+qAnqF6oVucnJzEcy+1C0ZGRuJ7q5mZGfLnz4+8efPC2toaRYoUQeHChVGqVCk0btwYHTp0wIEDB7QWiifXBl24cEH0oQsWLCiC8uR2s27isoqMjERcXBxiY2OTzFlJ75bZs2eDc468efNmaLdGIKEd37Fjh/iGZWNjQ1r8P4nv//Xr13jz5g3Cw8NF8AQJSTdHR0cxJs+oFkBCoIYOHTqA84RdP8jE/oWsrhuRkZHYsWMHOOdo0KAB9u7di3fv3iWbF0IbMrATBEEQRC5ArVajadOmIuKtfGts6QdI6OAuWLAAZcqUEYO/tWvXJvkwGxoaiidPnqBnz56oV6+e1qDU3NwcP/74Y5oTM7mVqKgo1K9fH5wnbDkudY4Tr8B89uwZfvzxRxHFu2jRojh+/HiSsgwLC8PChQtFOhMTEzFRL32InDhxokhPWiTg4uKCokWLCtPmnDlzUK9ePZ2Y14EEnV1cXIRJSJqEp8jfyePq6ir0qFu3LqZOnYrChQuLd0uHDh0ybV63t7eHo6Mj1q1bRyb2VHBzc0PBggXFogEPDw+tspHXB/lgO73l9/nzZzx//hxDhgxJsW4QCehDC1dXV7Rr1w558+YVERmKFi0KY2Nj+liYCq9evUKrVq3AecJW8K6uruKY9E6SNHBychJlKd8CG/hSnqGhoZgxY4aWab1YsWKoUKECrKysSItUePXqFVq2bAnOOZo3b66lReI+lRR5hHOOdu3aaZWh/N/r16/X0sLGxgbFihWDqamp6EuRFkR2R95mfP/99+Cco1WrVlo7NqUXNzc3NGvWDJwnbLWdnmlo/pIAAMDQSURBVN0QcjN79+5F06ZNRaTWtCL3PXr0SLTTW7ZsSfUc4uto3769GB8EBAQASPkjktTOv3v3Di1atBBR4f7++28ApM3XQvXCsAQEBGDhwoVo27YtSpcujapVq6Jx48bYvXu32H1R4sOHD1i7di1GjhyptTNNevn999/RpUsX7N+/Hz4+PuL3pF8CchN7+/bt4eHhkaHz9+/fj/79+4ugJWPHjhXH5G2/Wq3Grl27xNztq1evdHYPOYWQkBD89ddfGDp0KNq2bYsGDRqgY8eOOHr0qNbiAvl7q0ePHqJMK1eujBMnToh0KbUr3bp1A+cc33zzjV7vJzdD9SLrkJ7zW7duie8R/fr1g7+/f6rnJW4DHj9+jPnz54u5kGnTpuktz9kZeeAK6VlWq9V48+ZNus739vZGgwYNwDnH0KFD9ZJHAli4cKGYX1q4cKH4fVp9H7n5d9y4cfrOZo5EeidRvTAcY8aMEc9xly5dcPbsWdy6dQuXL1/GjRs38OzZMzx+/BhPnjyBn58fXrx4gcDAQLFDipzk6syFCxfELivSonQy6yaPvC+ammlWvltjeo26knk9f/78IvgeaaFNSuWYmhYDBw78atM0kPA+69ixI2mRBvqsGwDw5s0bjB49WrwLS5cujX79+okxJemRMmRgJwiCIIgcjkajQUxMDCZOnAjOOerXr49nz54l6SDdu3cPvXv3FgONwoULY8OGDQgKCtJKd//+fYwfP15EBTc2NhYff6UoyiqVCsbGxpgxY4ZWPogEY/Mvv/wCzjkaNWqEZ8+eJTFIX7p0CbVq1YKVlZUwtZ06dSrZ6Lru7u4i8nqpUqUwZcoU/P3339i9ezdGjRolJn4nTZqUVbeYbZB/KLSyshJRAapVq4aQkBAAX2deT/ysr127FhUrVhQmOLlpmviCXA8LCwsxuOvUqRM+fPgAIHPm9Y0bNyI4OBgAaKvgNNDVduaJSVy+K1euRLly5UQ7Mn78eJ38nZyErrSQyv7QoUMiwnS1atXg7OwMLy8vnD17Fr/99puoF1OnTtXlbeQIfH19xQK/5s2b4/z58+LdJCE3TDdu3FgshErMqlWrRLqaNWti/PjxCAwMREhICK5fv46FCxcKLebNm5cFd5e98PHxgYODg9Di3LlzWlqEhobi999/F2UsLWBSq9VJ3kP79u3TSvftt9/i6dOn8PPzw19//YVZs2YJLebMmZPFd0oQukXer50/f36SCKEZuc7GjRvBOUeFChW0DImENp6enuIds2/fvnSdc/nyZXHOxo0b9ZzD3MfHjx9RvXp1cM4xZMgQxMbGpjjGkC9S69KlCzhPiMT766+/ptjGE2lD9UIZaDQaxMfHIyAgAOHh4WInAgnpQ+67d+/EXN+3336boQj4p06dEgsPpbH9rl27tPJAJIz5pAX9HTt2FPNRqSEvu4CAAGzZsgWWlpbgnGPw4MHimPyDvFqtxtGjR/HkyRPd3kAOJCYmBtHR0UnmYeXthWTQMjIyQoUKFbR22Uzt2W7bti04T9gBhOqAbqF6YRjkJnZpPnf48OHpijCZeJe6LVu2iO9K+/fv11uesztSucXExGD58uU4ePCg1u9TQ9rVxsTEBF5eXnrNZ25Do9EgMDAQVatWBeccbdu2TXcZX758WQTzqVatmthxkNqJjEP1wjDI+0jjxo0T/X953z8t0tJKbl6vVasW1q1bh3bt2pFZ9ytJbrfGvHnz4vfff09Vi8Tm9WbNmuHIkSMU/TsTyMspI1okB5nYM8/X1g05/v7++P3330U9kXxX0piDIrEnDxnYCYIgCCKX4O/vL8ycTZo0wdq1a/HgwQMcOHAA8+fPh7m5uTDoFCtWDIcOHUpizPr7779Rt25d5MuXT6wa/PXXX/Hvv//iw4cPiI+Px7FjxzB69GhxrcmTJ4vzacIlAT8/P/EBsGHDhliwYAH++ecfrFq1SpjbpZ+SJUvi5s2bKV5r7ty54DxhW8HDhw9rbc38/v17rWjTtD1tUtzd3YWZ08jICCVKlBBRxaSoSl+LNMgJCAgQRjtzc3M0adIEvr6+mc57TkSuh6mpKWrUqCEig2ZkMcHjx49RuXJlUYe2bt2qFXUjLi5Oy8Quj8ZE76kE9GVil3P16lWxACd//vz43//+l2TRFKFbE3vfvn3BOUfFihXx+vVrreMRERFwdHSESqWCSqXCjh07dJH9HIWHh4d4ZkuXLo1u3bphz549WLx4MUaMGCHa7iJFimD27NnJtiN//fWXSFevXj3s3r07ydaR0dHR2LhxI1QqFYoVKyY+XBFf8PT0hL29vegDNW3aFLNnz8bw4cPRuXNnrYnBn3/+OUmfFgDu3Lkj2hwHBwfMnz8fUVFRWmmioqKwadMmqFQqWFtb4+zZs1l0hwShH5LrT31N3+f58+diTLhu3TpdZC1H8vLlS3z33XcwMzND7969UzX7Sx8vjh49Kvqo69evz6qs5hr8/f3FDjfbt28H/o+98w6L6vj6+HeWDiKoiIKKomIFFHvvvfeoscfYa9TERH+xJBpLYonGaNTYYovG3it2sYvSUcACKjY6wi7n/YP3jruwIFIt5/M8PMDeuXfvnXPP1O+cIf0+oP2ZdoTdli1bpopQzbwf7BcfBu9T9p89e5ZMTExICEHdu3fPsIj9xYsXtGHDBurTp48cc1SpVDR16tRM3cenjLe3N9nb29PQoUMzHDFUO+/UajVt3rxZinVnzJiR7rk8Ya6fjL6PGzdulON8BQoUoJ07d2boGsePHydbW1syNDSkuXPnZvl+mdSwX+QNSt65u7uTo6Njphe4hoeHU/fu3eWiA41Gw/VEOmzbto3Mzc3Jzs7unXMNyoKcuXPnkomJCZmZmb33rh/Mu7l9+7Ysc7TbO+nh4eFBTZs2lcGVRo4cqTeQFZMx2C/yDm2B7MSJE+XY7MqVKzMVKEyblOL1rVu3UkxMDD148ICF01lAn1BXCEH79u3Tmz6leL1+/fp06dIlSkpKovv377NwOgukZYvdu3e/97VYxJ513tc30sLPz4+aNWsmyy8hBPn4+GT37X4ysICdYRiGYT4j/Pz8qFSpUrKRpGzBrESGLlCgAFWrVo28vb1TnXvgwAEqXry4nDR0dnamGzduyC3jtUVaL1++pBUrVsi0v/32W64948eCn58flS1bVtpCGaBSIhGXLl2aunTpIsW72tvfKSQlJcnoAI0bN5aTXNoDu+Hh4TRixAgyMDCgli1bZngi7HPC29tbJyLx/v37sy2ino+PD9WoUUNGFe/cuTNdunQpW679qaJtDxcXF9q7d69e4aE+kpKS6NGjR2Rvby/Ltj59+siFHdrllFqtpjVr1kifGz16dE48zkdNTonYExIS6MiRIzIijZWVFY0dO5Y77unwvrZQ6gHt+iA+Pp66detGQgi5Q0rKweOHDx9S165dydDQkPr06ZPlweVPkcDAQGrSpIlO9ATttlSxYsVoyJAh9OLFC53zFFtMnTqVjI2NydjYmGbOnCnF6yknZYODg6lu3bq8AC0dAgICqEmTJlSgQAESQsh2p1KuOzk50ejRo6UtUgoSVqxYIScWv/rqKyleT5kuNDSU2rRpQ0IImjNnTu48HMN84Fy5ckWKGbmvlz67du2SdfjcuXMpLi5OHktZX9+7d49cXV1JiOTdtTw9PfPknj9lQkNDpT3mz5+fbtrIyEhq3769jMZXrVo12r9/fy7d6acN+8XHg3ZkXSMjowyL2FO2bffv30/Dhw+X7bUJEyakmfZzJTw8XAZUIHp/gUFERARNnjyZDA0NqVatWnrHdpmso9FoqE+fPrIfqCyGInr3gqgff/xRnrdly5Zcud9PDfaLDxelvlAEoZkdT5o3b56cK8mJYBqfEmfPnqVy5cqRsbEx/fbbb6kW5Otj8ODBsm3L/pD9HDx4UAa2uHnzJhGlHmPSrheuX79OnTt3lovD69atK3fF4UU1mYP9Im/JCRH7kSNH5G7l1apVo82bN0tdAhGLdbOKtl2URWTr1q1LZa/IyEhavXq1HEtv1KgRXbhwQWfOlW2RNbTzvFevXiRE8u68GSnHUhIYGKizuEMZR2FbZJyM+kZKUu4w9N1338ldigoWLEibNm3iOj4NWMDOMAzDMJ8Z9+/fpyFDhshts5XIt126dKFly5bJrWq1G2DHjh2jkiVLyk58vnz5aMWKFXT69GnZASHSbfjGxcXRL7/8QiqVipydncnDwyP3HvIjITg4mMaMGUPVq1cnCwsLMjAwoDJlytDgwYNp//79FBERQUSkE3HhzZs3lJiYSDExMUSUPAloYmJC48ePT/N7Vq5cKW3t7u6eo8/0seLt7S0n0KtWrUqbN2+mqKioLF3T39+fqlevTkIIypcvH3Xq1ElHvM6TtGmjbQ83N7f3tsfixYupZ8+eZGpqSkIIGjNmjDymXbap1Wr666+/SAhBRYoUoevXr2frc3wKaAunW7RokeXJo4SEBDp27BhVqlRJDp6MGTOGxesZIDO2ePz4MYWGhtKjR48oKiqKVq1aRUIIWrRoUZrnTJ06VYqAedBeP2FhYbR48WJq1qyZLGeEENS0aVP67bff5KKblANRCQkJVL9+fRkFXxlsT6s+GDBgAAkhqFWrVkTEA4z6ePLkCf3555/Upk0bKlKkCBkaGpKdnR198cUXtGvXLpnHKW2h0WikKLFEiRL09OlTvekUxo8fT0IIql69OiUmJrItmM8W5d3fsWOHnLRSIohy21YX7fxYsGCBrCuWL1+us1hWKXfu379PgwcPlhOzTZs2zbZFtYwuQ4cOJUNDQxoyZAi9fv1a2kqZeI2OjqZLly5R06ZNpYCqSpUq9O+//8pr8PueOdgvPk70idg7deok20/pod1mevr0qdxlSAhB8+bNy7F7/thR8i0pKYn+++8/iomJydAk9/79+6VfbdiwIadv87Nk69atMo+nTJkiP3+Xffbt2yfP69KlS07f5ieJksfsFx82mW0jKfMfa9eupXz58pGZmRndvn07O2/tkyMiIoLGjBlDQghydXV95y5B165dk3MVjo6O9PDhQ27TZjO7du2Sc6j67KGd35cvX6YOHTrIABnOzs707NkzIuLxv6zAfpH3ZKeI/cSJE/J8W1tbnTkN7TaAtnDawsJCR7fAvBttu7i7u0udiMKbN29o06ZN0hZ2dna0bds2eTwtW5iamtLdu3dz/gE+IbRtsWPHDgoKCsr0tYKCgqQtrKysZLuK65iM8y7fSI9Hjx7RnDlzZMA+Jycn2rBhQ4YD9n2OsICdYRiGYT5D4uLi6Pnz53T69Gny8PBI1ZnTbrxeuXKFatSoQQYGBnKSSfvHysqK+vfvL8XW2p17b29vql+/PqlUKvr777+546+HhIQEio2NpTt37pCPj0+qCOnajeOjR4/SV199RdWrVydnZ2fq1q0bjRgxghwcHKhRo0ZygEtB6TQeP35cTjKuWbMm5x/qI8XHx4dsbW1JCEFly5alY8eOZXoVLIvXs462PRwdHcnd3f2d+aZ9PCgoiJYtWybFVQMGDJDHtMs4tVpNe/fu1RlwYXTx8fGhIkWKyCgXT548ydR1FPG6EnmdxevvT0ZtERMTQ6tWraIyZcqQnZ0dFSpUiGrWrEnt2rUjGxsb6tu3r9yZgCjZd5T6ZtGiRWRgYECGhoZ04cKFXHmujxkPDw+6ePEinTt3jhISEmS9oa/+iI6OllHV27Vrl2Y6RUD39ddfyyiXzLt58OABBQYGyt1rFPTVHRqNhjp06EBCCKpVqxbFxcXpTaf4xcyZM0kIQQ0bNsyZm2eYPED7nc/I3wp+fn5UrFgxEkKQg4MDeXl55eyNfsRol/HKAjEhBI0aNYq2b99OCQkJFBISQu7u7tSwYUMqVKiQjMijtI+435D9rF+/Xtri999/pwcPHshj9+7doxkzZlCVKlXkhGujRo1o7969Mg3bJGuwX3ycaIvYFXtkpl8YHx9Pc+bMIZVKRVWrVmVx4jsYNmwYFSlShK5du5ah9K9evaISJUqQEIJGjhxJROwv2YWSj+PGjSMDAwNycnKic+fO6RxLi/Pnz8vF6GXKlKGNGzdm6DxGP+wXnx7abQNFeCqEoCtXruThXX0cPHz4kGrXrk1CJO/Qe/fuXTnurR0U6cGDB3JhvhCCpk6dmle3/EkTFhZGzs7OZGpqSqtXr9a7qzJRckTpunXrynmLSpUqyUAlLCzMOuwXeU9aIvZVq1a9l4jd19eXWrVqJeeTXFxcZP2v0Wh06vPAwEBq3ry5XCyoBIFjMsa7yp579+5Rjx495O5olStXlnPeKW1x7949GRBgzJgxcgdaJmNktR7QtsWhQ4eobNmysg/PQdzen8zY4/HjxzR37ly5c3D58uVp3bp1OnOyTGpYwM4wDMMwjCSliOrJkyc0bNgwsrCwkCuXHRwc6LvvvqNp06bR119/LSMEtGvXjl68eEFEuqLr+fPnU5UqVd65vTCjS8oO39atW0mlUpGhoaHOAgLlfwcHBzp06JBOlCYioufPn9PQoUNlehbppo+Pjw+ZmJiQo6MjnTt3LlMTGixezz58fHzIwMCAqlevToGBgRk6Rzt/ExMTacuWLXIweNq0ae88n7fu0o+Pjw8JIahZs2YUFxf33uezeD37SMsWyrsfHR1NP/zwg05dYWZmRkIIMjExISEElS5dmk6dOiXrDOW9DwgIkNHx7ezseLvmdMhsWT5ixAgSQlDt2rVlu0kf9+7dIzs7OxJC0Lhx4zJ7m58FadniXeX55MmT5UTh48eP00wXGhpKbm5uJISgvn37ZuleGSavyUzZpVarKT4+ns6dO0fLly+XZZOVlRV99dVXqaIhp/yOz73tqz3R8f333+vUz+XKlaNChQqRgYGB/KxAgQJy16zsnLQi4nauNtq2qFOnDvXq1Yu6d+9OVlZWst2UL18++vrrr+nMmTPyvKy+z4pNP3dhSl76BZN5lDLk1q1bdO/ePSLKnE+cO3dObqG9adOmbL3HT4nQ0FBq06YNCSGof//+6e4+oNjh9evXcpFZr169dI4xWSc+Pp6cnZ1JCEFt2rTJ0DkeHh5UtWpVUqlUpFKpaNCgQVne8fFzhv3i4yHloljl/6SkJJ1o+tps27aNihcvTiqVilxcXNLtpzNvCQwMpOLFi5MQgurWrUubNm3SCXR08OBBORallF8BAQFExL6Q3URGRtIXX3xBQgiqX78+3b59WwapIEoWtK1cuZJMTU1lsDBnZ2e6f/8+EbE9shP2i7wnLRH70qVLM5THSl0RHR1Nhw8flvW/iYlJmosI7927R1OnTqX9+/dn45Mwii1iYmLo5MmT1K5dO2mL8+fPE5F+WyxatOiduyAw2Yf2/OCTJ09o9OjRVK9ePRIieWdB7UA+TM7B4vXMwwJ2hmEYhmFSoXQsjx07JgUKRYsWpe+++448PT110l65ckVu5/zFF1+kugYRycFknjDPHAcOHJCTtyYmJlSvXj3atGkTrVu3jqZPn05lypQhIQRVrFiR9u7dK7dxfvz4Ma1YsUKuri1QoAAFBwfn8dN8+AQHB9Px48d1ojFkFBavZz8PHz4kX19fmXfvW45ERkbS1KlTydDQkKpUqcJb1mWB0NBQio6Ofu/zWLye/aRni99//10OCFepUoXGjx9Pvr6+5O7uTmvWrKFy5crJOmPz5s0UEhJCRESenp7Us2dPWafXqlVL7q7CZB/Lly+Xwk9FEKcs/FPaTqGhoTRx4kTKly8fWVpa0u7du4mI21HZzbp160gIQZaWlnT8+HEiolSLOl6/fk1Lly6lokWLkhBCblXLtmA+RpT3+86dO7Ru3Tpavnw5rVq1ipYsWUI//vgj/fTTT/Tzzz/TuHHjaOTIkTRhwgTq06cPNW7cmOrUqUMmJiZS2FuwYEFq06ZNuu2qO3fuyEXMn7vgVPv5//zzT2rSpEmqnc0KFy5Mrq6uMhpxyuhV79uP0E5/4sQJKYpgW7x9/pkzZ5K1tXUqW5ibm1Px4sVp27ZtOtHZiZL72Jnt04WGhlL37t3pxo0bqe7lcySv/YLJHNp5mJX2kNI37NevX6rrMsm8efOGFi9eTJaWllS6dGnat2/fO/NJ6WsYGBjIdiuTfSQmJlKtWrV0AiSkjCKqbaPLly9TnTp1yNTUVC6YUrad5/5E5mC/+DDJShkeGxtLUVFRNG/ePHJ1dZWi3ilTpuhNr+07XHe8xdfXl0qXLi3HOBwcHKhZs2ZUq1YtKliwoGxbNWrUiHbu3JkjZRDbI5l79+6Ro6MjCZG8e+bo0aPp77//phEjRsjo0EqwkebNm6e7ECezsC2S+RD84nNHu883btw4EkLQDz/8kOHztd/l4OBg6t69OwkhqESJEnTr1i295+gL+MNkHe28DAkJkbZwdHRMpRtR0F7Aw+QMKcstDw8PGjp0qOxvKz8uLi7Up08fORfI5AwsXs8aLGBnGIZhGEYvb968kYPytra2NHfuXBn1QumoKJ3PQ4cOyehJW7Zskdd41/bzTPokJSXRkydPqEWLFqRSqcjExISGDRuWarutkJAQGQHIwcGBGjRoQOPGjaMaNWrILVILFixIf/31FxHxJMn78D7vLYvXcx7td/f69esUFhaWofOOHDkiO+qrV6/Oqdtj9MDi9dzl+vXrsj52dXWl9evXp5pQDw0NlXWGra0tVahQgVq1akWFChWSkRhsbGz0CoWYjPEuQVqHDh1k/qcc4A0ODqbvv/+eHBwcSIjkLeaVhWnM+/MuW3Tq1EnaIqUQ98mTJ7Rq1SqqUKGCFNHxjkLMx467uzsZGRmlEom+z0/58uXp22+/Tbcu9/T0pF69epG5uTndvHmTiFisq/38ISEhtG/fPho5ciQNGjSIJkyYQHv37qUnT54QkW6bd968eWRkZESbNm3KcJ2sne7YsWNUv359srCwkBO8bIu3z3/w4EGaO3cu1apVi1q1akWDBg2ijRs30qNHj1Kdt2XLFjI0NKSNGzdmSjg9bdo0ubD8zp07qe7lcyQ3/UKbPXv20M8//0w+Pj5S4MBt3pxHsWFkZKRcVNulSxci4vxPi6dPn1Lbtm1JCEH16tVL1V7V9qGrV6/Ktq0Qgv7777/cvt3PAiWPe/TooTM+m/IdPnPmDLm4uMg+dsWKFWW/7nMv+7MK+8WHhXb9HBgYSNevX6cbN27QxYsX6eTJk3Ts2DHau3cvbdu2jbZt20Zr1qyhBQsW0Ny5c2nixInUsGFDqlatGgkhpHj9yy+/1Ht9ZXxLWxDH9cdb7t27Rx07dpTzQUp+Kr+7detG+/bt0/ERjUaTZVGV9vg82yMZPz8/qlixoix7Utqifv36NG3aNIqJiZHnJCUlZWmHjlOnTtHChQt1rsfknV8wb9HO20OHDumU6+87V33jxg2qWbMmCSFo+PDhFBcXx+96HuHh4UFVqlQhAwMDmjBhAiUmJrItcpGUvrN161aaMGECGRoa6gRnsLe3px9//JFu3bol21GsEckZWLyedVjAzjAMwzCMXq5cuUJFixYlAwMD6t27t4zYlpKkpCR68OCBnHyaNWtWLt/pp01AQADZ2NjIre5iY2OJ6O1ArdL5Dw4OlpHYS5QoIaMjKuL15cuXZ1jsy+iidOY0Gk2aK8ZZvJ67rFq1ioQQdPLkyXTTaee7i4uLToQ37qRnHaX8UavVencsYPF67vPff/9JYeLo0aNTRfZWfvv4+FDJkiVJCEHVq1eXovcCBQpQuXLl6Pr160TEfpIZtCN3nzp1iohSL/wLDQ2VUZcKFSpEkydPpsWLF9PSpUvJ2dlZRoPNnz8/R1/PAkqeRUVFpdrOVLHFkydPqFmzZlKg/vPPP9OmTZto+/bt1L59e7ndsIWFBS1ZskTnugzzMfLNN9/IrWNNTU3JwcGBSpcuTWXLlqVy5cqRm5sbVa1alapVq0ZNmzalFi1aULNmzahv3770448/0p9//klPnjxJtaBWm9u3b9PXX38tJ4QLFizIYt3/JyN9gpRp+vbtK+uErVu3vvMa2sePHDlCHTt2lLt5sXD6LSnLcn35oaRR8rRPnz5yF5WM2CIlfn5+cttza2trtsX/kxt+oc21a9eoY8eOsh3866+/UmhoKBGxLXIS7bxdsmSJHK+aM2dOHt7Vx8H9+/flgsrGjRvTuXPnUk2Cnzt3jr766iuZrwMHDsybm/2EUcqZJUuWkJGREVWuXJmuX7+eqvyJj4+n7du364zLuri4yDFZLmeyB/aLD49ff/2V6tevr9PXUPI+owtora2taeTIkal2RiN6K16PjY2lUqVK6ewEzOPub3n+/DkdPnyYBg0aRA0aNCBHR0fq2bMnLV68mGJiYnTySq1W05dffkn9+/fP9GJ9b29vKlKkCPXt21d+xvZI5sGDB/Tjjz9S48aNycHBgWxsbKhVq1Y0Z84cCgwMlO90UlISaTQamj59Oo0ZMybVDlAZ4dmzZ1SnTh0SQtCoUaPk52yLZHLbL3x8fOjYsWPpLnT73NDX/tH+zNfXlzQazTvHXOPi4mjEiBEkhKBy5cpReHj4O787KSkp07s7f27Ex8eTn58fEb07r+Li4qhfv35yoWZWFuAwGSNlOfLy5UvasWMH9e7dm1QqlRz7s7S0JEdHR1qzZg1duXJF55yU41zsG9kDi9ezBxawMwzDMAyjlxUrVsjBwxMnTqSbNioqSkYU6NGjRy7d4efBwYMH5UpZJYJ6ymi6arWakpKSaNKkSWRgYECjRo2iI0eO0Lfffkvz588nLy+vvLj1T4rY2Fj666+/aO/evbIjrnTsWLyeu7x48UJGWejdu7fcfjktkpKSKCwsTIoQe/bsKT9nsk5UVBTNnj2b/v33X51BKhav5w2LFi2SYkFFhJ5ygFij0VBsbCx169aNhBD0yy+/0NWrV2n16tV0+vRpOfDLg1aZJyYmhhwcHMjOzk4KolLy/Plz6tGjh1w8kPLH1NSURowYIXe/YTJHXFwcNWrUiMqUKZPmJODTp0+pS5cuaU6iGxkZUfv27aXQkGE+diZMmCDf72+//ZYePXpEERER9PLlS4qIiKDY2FiKjY2lhIQESkpKStX3IEq7HXX79m0aNmyYvL6ywJbFuvrRrmtT5qn2/4MGDZJ9wvTEuvrE69qR89kWaZMy4l5aZNQWaREYGEitW7dmW6RDdvtFSnx9fWnSpEkyMlmRIkWoadOmctyEbZE2KcU9Ckp9QZQ8XqUc0xaLKKxcuZJKlixJKpWKChcuLBdrMunj5+dHdnZ2UiDSq1cv2r59O23evJkmTpwod9AUQlCbNm14x40c5NGjR+Tq6kpCCGrUqBH9999/5O/vTy9evKC///6bvv76a52oh02aNJGR1/W1qTIDj2clw37x4fD69Wtq0KABCSFk/VqwYEEdYbqlpSWZmZmRra0t2dvbU9GiRcnJyYlq1qxJ7dq1o2XLltGRI0fkNbXfc23xuiLSZaFuxoiOjk7zWFBQkAyc1K1bt/cW6/r4+JCbmxvbIx2UfHj27BmFh4enCo6kHA8NDZXzq127dn1vW2g0Glq7dq20xZgxY1J9B/OWnPSLwMBAKlq0KAkhaNKkSXT69Gl5jG2hn4kTJ1KdOnXk/2nlk9JPPH36tFwktX379nTTKqQMCMfzHql58+YNffnll9S8efN3plXycdeuXWRsbEwGBgbvDDbGZJ6UPuHn50d79uwhV1dXKlKkiM48Rtu2bWnp0qWp5qT0jbNERETQypUrydfXl4i4jZwWSt5p1+Ha+cni9eyDBewMwzAMw+hl6dKlpFKpyNXVlV69ekUajSZVI1lpoIWGhspIrr169cqL2/1kOXz4sNzS7p9//kk3rTJIpc8G3CHPGr/++iupVCqqXLkybd68mSIjI4kouaPI4vXcJSEhgZYvX06FCxemkiVL0u7du9N8v5X8P336tOzAjxs3Ljdv95Nn4sSJMqLY5s2b5S4RR48epUqVKrF4PZdZuXIlCSHIwMCAzp49m27amTNnkoGBAU2bNi3VMa4zssalS5eoWLFiVLBgQVqzZk0qoYJ23XDnzh3atWsXzZs3j/Lnz08qlYoMDQ2pcePGdOHChdy+9U+OO3fukKurK5mamtKyZcvS3EmFiOjMmTO0fft2+vXXXyl//vxkbGxMQghydHSkffv25eJdM0zOoD0RMW7cONk2+vPPP+Xn2uWTvnZsem3blOL10aNH0927d1msmwW064/+/fvLSEr6xLrpidenT59OL1++5OjfWUCfLfLly8ci9jzgffwiLSIiIujw4cNUrFgxuVuEtbU13b59m4i4H6+P9N5P7WPx8fEykuXr16/J19eXbt++TQsWLKAvv/xSjm8JIWjYsGEZ+m7umyQTEBBANWrUkJGMDQ0NZXtV+enQoQO5u7vLQBfZgXb+sy2S8ff3JwcHB7m7iZWVldyZVPlxdXWl8ePH04sXL7L8fYottXdH5XIqmbzyCyY1Xl5ecje5IkWK0K5du+jq1at07do1un//Pt27d4+8vb3p8ePH9OLFC/k7MTEx1a6O2vWKtni9du3a0u+UKKMs1E1NWv0Efflz4cIF6T/du3fPsFjXx8eHqlSpQkIIsrGxYXukwfvaQlkA8j62UFCr1bRmzRrZzmJb6JIbfpGUlESbN2+WixEMDAyoevXqtGDBgjTv43PnwoULsr7etm1bummVvNu6das8R5+AXbu9evz4cZo5cybVqVOHOnToQBMmTKCAgAAi4v53So4fPy7zddeuXemmVWzx22+/yXOUnWj18a4+BPtF2mjnTWhoKC1dupSqV69O+fPnl3mvUqmof//+OuO7RPrzXbleVFQU/fHHH1SkSBEyNDSUYyHsF7poBzKcN28e3b17V+d4VsXr7Bu6sICdYRiGYRi9/PrrrySEoGLFitGjR49SHdduVClCBXNzc9q8eXNu3uYnT2RkJNWoUYOEEDR8+HCKiYlJlUYRYymRd6tWrao3HZN5AgMDycrKSubv9u3b6caNG6nE65cvX5bnfG4di9zk6dOn1KFDBxJCUN26dXWi4ipR3pQyyt/fX0YBsrGxkRHeeOI1e/Dz85NRldzc3GjDhg20Z88eGXm9QIECNHbsWBav5xJBQUFUqVIlUqlUNHfu3DTFutHR0dS1a1cSQlCXLl3YH7KZyMhIGXmvVq1acgCQ6G3Zo0zQRkZG0oULF6hevXpywr1KlSp08ODBPLn3T43o6GgaM2YMCSGoRo0aMuoe0dv6QrGFRqOhJ0+eULNmzeQAcIECBWjTpk15dfsMk+1oT0R888038l1fuXJllqKC3r59Wyfi6MiRIykuLo6IkoVFLNbNPNp2GTBggMzj8+fPy8/TE6//8MMP8pivry/bIgukZQvtqHoZhUXsWSMjfpEeSj4HBwdTvXr1ZF9fCEEhISE5cs+fCqtXr6aBAwdS165dqW3bttSqVSuqV68e1apVi2rVqkUVKlSgUqVKUbly5WRkZAsLCx0xqaGhIQ0aNEheU997HxAQQL/88ov8n8dXknn48CHNmjVLjnEo+Wlvb08TJkyghw8fpurbLVu27L1FcAqJiYl05MgRmj17tvyMbZFMYGAgtW/fXu42o/xYWVnRkCFD6NSpU3KBv8LmzZszvcOWIvAaMWKE/IxtkUxu+4VareaIimng7e1NhQoVklHv/f39dY6nteNNWu+ytnhdiahvY2ND48aNozlz5rBQN4soNrh48aIU6/bo0SPN3esUvL295U4UdnZ29Ntvv9GiRYvYHlkgs7ZICYvYs05WbREXF0d+fn5ytyjFFto7FDBvCQoKoh49epCRkRH17ds3Q32xBQsWyPo+5W5O2nXLH3/8Qfny5dNppynlliJC5TmRt/j7+1PHjh3JyMiIBg0apFcXQqRblkyePFnm65kzZ9K9/uvXr+natWs0b948mjNnDv344490/vx5evbsGRGxLdIiMTGRnjx5QuPGjaOGDRvqvMulS5emzp0706lTp+QYLFHaeaktXl+2bBm5uLjozIHwuJR+wsPD5c4cY8eOJW9vbyIiCgsLozlz5mQ58jr7xltYwM4wDMMwjF5u375Njo6OZG1tTTt27NBpIGlPFi5ZskRGXy9TpgxduXIlL273kyUuLo4mTJgghdM3btzQOa5ti8aNG0sRKQvYsx8fHx8qXLgwCZG8Na2jo6OOeJ0jr+cuilBXCEFNmjShS5cuUVRUlE4aX19f6t+/vxRYu7q6yk4fk31o+0bZsmWpWLFictCDI6/nLpGRkVLEU7NmzVSLOxTu3LlDzs7OJISgnj178qBUDhASEiIHARs3bkxnzpyRu3coBAYG0s8//yzLMlNTU6pduzbt2bMnj+760yQkJISqVq0q64sLFy6kqi8ePXpEmzZtkosGFcHD33//nUd3zTA5h3aZr+ykkhUR+/Xr13XE6xMmTEjVF9EW62pPinxOg/BZQdsunTp1orp16+qdENm3b59c5CmEoJ9++kkeU+zOtsga2rbo2rUrlS9fnjw9PTN1rcDAQGrVqpUUsSvX4XZZxsioX6RE+13fv3+/rPuFENSxY8dU7TXmLcuWLZMinPf9MTU1JUNDQ/ryyy9p+fLl8pr63vegoCAZZXfkyJHycx5nSSYxMZHi4+PpyJEjtH//fjpz5kyqSHBKXn311VeZjuSamJhIp0+fln0atkVqXr58ST4+PrRixQr6888/af/+/XTt2jWdNEqZ87///Y+EENStW7dMCae3bdsm/YkFianJTb84evQoubq60oIFC3TGu9gWyfj4+EiRT7NmzcjPzy9T11Hq+ZiYGB3x+oQJE6QwnoW6WUdbrGtqakpCCOrduze9fPlSb3pvb28Zed3Ozo4WL15MT58+JSK2R1bRtoWJiQkJkbzTcnh4+Htdh0XsWed9/UIhZf4uWLCAypYtKyPrjx07Nsfu+WNm27ZtckHx/PnzKT4+Xh5Tgo8onD17luzt7eV8eVoLC37//XfZburWrRvNmDGDZs6cSfXr1ychBFWqVOm9F4h8Dvzzzz9y8fHChQt1bKHRaHT60gcOHJB53Lx5c53dVLRt9vr1azp9+jRVq1aNihcvrtNHtLe3p2bNmpGvry8R8VhISk6cOEETJkyQc0fKT8WKFenLL78kHx8fWS6lt6uE9ueKeF1ZiGZgYEB16tTh4ArvYOzYsTrj3qdOnaJ58+a9t3idfSN9WMDOMAzDMIxeXr58SZ06dSIhBDVq1Ig8PT11OitEpCO6EkLQ0qVL8+huP21CQkJ0hLpXr15NJbzq168fCSHIxMSEJk+eTEQ8IJUT+Pj4yEgyKpWKTE1NqV27dnT9+nWZhvM99/Dz86OiRYvKQaehQ4fS8ePHadeuXbRu3ToqV66c3ErN1taWvLy8iIgFOjlBSt+wsLCg4cOH07179/L61j47goKCyMnJSdYZZ8+epVevXhFR8gDVrVu3ZLQGS0vLd24JyWQef39/OahetmxZ6t69O61fv55+/fVX+vHHH8nOzk4O0FtaWlL37t3p+PHjeX3bnyT+/v4yCmjFihVp4MCBtH//fvrnn39o5cqVVK1aNWkrc3NzqlWrlt5taBnmUyG7ROyvXr2iKVOmyPPLlSsnF9yq1WqdNpe2cFqlUslBeCZjaNslZURXIqJnz57RkCFDdCa0lCivb9680emjaNtCCJFpYdHnirYtHjx4kOn+X1JSEoWGhlKLFi1IiOSovbxt8/vxLr9IiXaZtG3bNqpbt670g759+7J4/R34+/vLxeFmZmZUo0YN6tOnDw0fPpwGDx5MX3/9NX377bf0ww8/0PTp0+nXX3+lP/74g9avX0/Xr19PNxKvQlBQkM7OREIIGj16tDzO4y3p50HKsY7z58+TsbHxe4t1FfG6m5sb2yKTpLTFlStXZD5mRjjNgsT0yQ2/IEreuaNHjx7SL7p06UIbN27M0H18TmRVxK7kY0rx+qRJk2TUS6Lksor9IusoPnL+/HmytLSkjh07UnBwcKp0Xl5eOuL1ZcuW6UToTWkPbbEu2yNjaNvC3NycKlWqlGoxTkbgOiPrZNQv0uPixYsyCJaFhQV98cUXmd6J5VNE+12cN2+e7JctW7ZM78KNixcvUseOHcnMzIyEEDRgwAC9/Yk9e/bIa82ZM4eeP38uj92+fZsqV65MlpaWdODAgZx5sI8QbVv88ssvOpqP0NDQVOkPHz5Mrq6upFKpyNDQkH744Qe9AuorV67Q5MmTdXY8MzIyosqVK1Pp0qXlfKK9vT3P3eph0qRJMt+srKzIzs6O5syZk2rB7LtIK/K6gYEBnTt3jqKionSCK7CI/S3a76MSbFIIQfXr15fvdfny5envv/9+L/E6+4Z+WMDOMAzDMEya3Lt3jxwcHEiI5EiuEydOpO3bt9PSpUupdevWcvW5EIKmT5+e17f7SaMt1HV1daUBAwbQhg0baO7cudSkSRNpBzs7Ozp48GBe3+4njbe3t5y0LVSoEM2aNUse+xw6EB8a/v7+VK1aNekDBgYGqaK92dra0sWLF4mIbZSTaPtG0aJFaeHChTK/eXA8d/Hz85NiXScnJ2rRogX99NNP1LFjR7kgytzcnHr27MmitRwmICCAGjduLBfT6Cur7OzsaPny5WyLHCYgIIDq1q0r26/6IohaW1vTlClTdHZVYZhPlewSsT98+JAmTJhANWvWJCEEOTo60tmzZ4koud2VUjjdoEEDEkLQunXruF32nrwrv0JDQ2n69OkycnGJEiXo9OnT8lxtW9y7d4/q1q1LhoaGdPLkyZy87U+SzL67KdvEERERNHnyZLmbkZWVFd26dSs7bvGzIaO20E63fft2HfF6v379WLyeQby8vORkasuWLSkkJCRT19HXP9QWrxcsWJB69uzJwqssoB099H3EuinF64ULF6Zhw4axLbKAYosLFy5kWjhNxILE7CCzfqEQGxtL//77L3Xt2lUngMOECRNkGrZFMlkVsSckJFDZsmXl+Enr1q3p/v378piC4hfKGIv2Qhsm4yi+ERgYKBdUahMaGip3YTYwMKAvvvhCRn3VZw99C5+YjKHYwsvLi9zd3TN1jaSkJNJoNDp1xvDhw3WOM+/mXX6RFomJiXTixAnZlrK0tKSRI0fq7JTKJKPdR/vuu+9k/2zw4MH0999/U3h4OHl6etLff/9NFStWlNHBtXchV95njUZDiYmJcqeVoUOHUnR0tLx+UlISRUREyB24Zs+enbsP+4GjbYtvv/1W2qJ37960fPly8vf3p0OHDtH8+fPJ3NxclvPNmzenuLg4ItIdZzx8+DC1atVK2qxcuXI0aNAgunLlCr18+ZKeP39OBw4coObNm5MQgqpUqcJR8fUwfPhwsrW1pT///DPNnZ7SIz3xunYdExAQIANdsIhdF+080BaxCyGoVKlStGHDhlRBJ1OiXe+yb6QNC9gZhmEYhkkXPz8/Kl++vI7gysjISK4GFEJ3a3Im5/Dz8yNnZ2cdWyiD7cbGxmRvb0/r1q3L69v8LPD29paTttWqVaMtW7bwhHce8vDhQ/ruu++kcEr5cXJyovbt28so4Dw4m/No+4abmxv7Rh7i7+9PNWvWlFFJtMW6lpaW1KtXLykwZHKWJ0+e0IYNG+iLL74gFxcXsrKyogoVKlC3bt1ozpw5mdpCnskcoaGh9Mcff1DHjh3JwcGBjIyMyNbWlpo0aUJff/01eXt762x5yjCfOtqD8N98842sJ/7555/3Oj8uLo4uX74sd/AyNTWViwdTtr9CQkLo0KFDOlGwmKyj2CI+Pp5u3LhBXbp0kbZQFuWktMWDBw/o+vXrXO7lAvoi8S5btozKli1LJiYmOuMr33//fR7d5adLepHX+/fvz/2V98Tb21uKEhs3bixFiWq1WpYz2n9npB+eUrz+yy+/UEhICK1fv57FullAW6yrlDHt27fXiZirTUrxuq2tLW3evJkiIyNp7dq1bIssoM8WHTt2ZBF7HvC+fqGPpKQkmjZtGhUuXFjaYvDgwTl1yx8t2iL2Fi1avLeI/aeffqL27duTqakpGRgY0KRJk+Qx7QW3arWaVq9eLev2EydOZNszfE6kLENS/v/bb79R9+7dZVAA7fInLXvY2NjQlStXcvbGP0HeZYuMnvvw4UMaPny4LKcGDRqUbff4ufC+tlDaUlWrViUhBOXPn59GjBjB4vV00B6XmjZtms48hp2dHeXLl09nzs/NzU0uaEoZfOHly5dUqlQpEkLQhg0b9H5H8+bNycjIiLZu3ZrDT/bxoZ1P06dPJ0NDQ7lAzMbGJlXwsMaNG0vxuva40q5du6h69epyrKNevXp05MgRevHiBRG9tZtGo6Fr165R5cqVKV++fLR27Voi4jYtka4tlMUaCu+bP5GRkTR//nwZ2MrIyEgGTtD2Ie3dGgsVKkSenp6Z+r5PEW17jB07VvpAy5Yt6fLly/KYvrzS/ox9I31YwM4wDMMwzDsJCQmh7777jurXr09GRkaUP39+srOzo0GDBtG2bdvy+vY+K0JCQmjSpEly+0wlSlvv3r1pz549eX17nxXag/DVq1env//+O1VHksk9EhISKDo6mnbs2EFbtmyhdevWkb+/vxQjcITP3EPbN6pWrUqbNm2i2NjYvL6tz5JHjx7RvHnzqGnTpmRpaUlFixalsmXL0p9//pmpLWiZrBMbG0vPnj1LVV9wGZX7PH36lIKCguRWqIoN2BbM54b2IPy4ceNICEEXLlzI1LWCg4Opc+fOJIQgZ2dn8vHx0ZvuUx9w/xAIDg6WCwqqVatGAQEBeX1LDBFdunSJfvrpJypcuLCciFcil02YMIG2b9+e17f4ycHi9Zwhq5F1tQkKCpJ2KViwIP3888/0+PFjIkq23+rVq1msmwW0xbraC9VStnlTCq5sbW1p48aNsi+vCBLZFplHny2WLFmiE704I7CIPetk1C/0od12Hj16tNyJUAhBe/fuzbF7/ljx8fEhW1tbEiJ5h9/3WShAlBycYdGiRTJKZf/+/eUxbVuo1WravHkzLVy4MNvunUlGu1y5f/8+/f7777IdO2DAAHkspT327NlDmzZtytV7/ZxR8j8xMZFiYmJo0aJF1Lp1axkAS/nJbFR35t2weD3zaJcfq1evpnbt2um8t0qk406dOlFERAQR6W/zhIeHU8mSJUmlUtHOnTuJSLc/uGTJEimQ58U1+tG2xfr166l79+6pbFG9enUaNWoUxcfHE5GueP3AgQNUpUoVWfa0bNmSnjx5kub3RUVFUYsWLUgIQT179sy5B/sI0X53szJf8eDBA+rUqZPsO9SvX5/CwsKISHfhOVGyiL1t27bS1p9L5O+MoG/8XBnLy8hcK/vGu2EBO8MwDMMwGSIhIYESEhLo6tWrdPfuXQoNDZWdEyIeIM9N4uPjKTo6mo4cOULHjx+ngIAAevXqVV7f1meJj48P2dnZkRCCmjZt+s5topi8gcun3MfHx4cKFy5MQgjq27cvL+7IQzQaDSUlJdGdO3coJCSEI97mEWlF7GGxdO6TVp3AtmA+Z7QH4YODg4lI11fUanWGt6Y9fvw4lS5dmvLly0cLFiwgIvav7CQ+Pj5VlDF9JCUl0YEDB8jOzo6sra3pzz//JCK2RW6QMur0ixcvyNfXl/r27UsVK1bUmfgtX748jRs3LtWiEd6mOXtg8XrOkh0i9sDAQLmTmpWVFc2fP19GH1NIKdYdNWpUdj3CZ4PiC5cuXaJp06alspVaraZjx45R5cqVSQhBBQoUkAFLtP0opS1GjhyZew/xiaBtiwEDBmR6V7TExMQ0/YLr+ozxLr9Ij9evX9O///4rRYqWlpY0ffp0uQMko4uPjw8ZGBhQhQoVMpxH2n2RhIQE2rp1qxRNT5ky5Z3nc1sqe9G2R2JiIm3ZskXa44cffnjn+Vwu5Qwpx7eePn1KP/74oxS8KXVEyZIlqVGjRnT8+HEZLZnJXli8nnW0y+3w8HA6efIkzZw5kyZPnkxLliyhCxcuyEV/+sr4pKQkev36NbVq1YqEEDR27FidfsUff/xBBQoUICEEL3Z6B9pldnR0NF26dIlWrFhBixcvpn/++YcePnyos2hG4dy5c9S4cWMZXbpNmzbpjl8pZdiECRNkn5IDYeUMz549o2XLllH9+vVlf+/MmTNElGyHlCL2+vXrU+PGjeVuB0wy2mWP8t4qC4p9fX3TPI99I2OwgJ1hGIZhmAyhb+tfHnj6cGBb5B137tyhChUqkLe3d17fCsN8UHh7e1OLFi14Ai+P0Vd/86IOhmEYJiUpJwC16w9PT08p6nlXvyMmJoaaNm1KQgiqVatWuum5D/N+xMTE0JEjRygoKIiI3p1/sbGxcueuRo0a5cIdMto2iYuLo5MnT1KnTp2odOnSOsL1Bg0a0KhRoygsLOydIhLlOAux3g8Wr+cOKUXs/v7+GT43KSmJ/vjjDxJCkKmpKVlaWtLkyZPlce1Ifmq1mtauXSttOGfOnGx9js8BxSe081VBrVbTihUryNzcnExNTcnKyoqmTZsmj2tHCE9pi2XLluX8zX9iKLaIjo7O1Pna/fnff/+dF3dkgfT8Ii2io6Np69at5OrqSkIIsrCwoP/9739yESijn4cPH9Ldu3f1jlFlhJiYGJo9ezYZGRlRuXLl6OLFizlxm58t72uPqKgo+uGHH8jIyIhcXFzo9u3bOXRnjD5S9gvOnTtHc+bMIQcHB50+R8GCBal379508uTJVAsEmeyDxevZR0bKoneNg2zcuFH6QLdu3WjgwIHUp08f+dnIkSPlmAqTNhmpr7WPPXr0iIYNG0ZmZmYkhKBWrVrJ4+mNZTx79kwuaO7SpUs23T2jjeIziYmJ5OXlJaPq58uXjzw8PIhI/4IoZddaRhd9InZLS0vasWOH3vTsGxlHBYZhGIZhmAwghND5DQAqFTclPhTYFnmHs7MzPD09UbFiRWg0mry+HYb5YKhYsSIOHz6M0qVL5/WtfNboq7+1/2YYhmEYADAwMND5X6krrl27hs6dO2PatGkA0u93qNVqmJubo2nTpjAwMMCjR4/w4MEDvWmJSF7r1atX8PX1RWRkJCIjIwEASUlJWX6mT4mkpCQcOnQIX375JWbNmgUgfVskJibCzMwMNWrUgIGBAZ4+fYpXr16983uIKN3/Gf0o76tik5UrV2L48OFo0aIF9u/fj6CgIOTPnx9Vq1bFokWL8O+//2L58uUoWrQoTExM0ryuh4cHOnXqBE9PTxgYGHB/Mx2032+NRiNtsX37dixduhSXL18GAPTr1w9//PEHLC0tM3xt9ou0qVChAs6dO4dChQrh9OnTGDlyJHx8fDJ0rhACo0aNgru7O8aOHQu1Wo3ffvsNAwYMAAAYGxtDrVYDSK6jBg4ciL/++gvOzs4wMjLKsWf6VFF8wtjYONUxAwMDjBw5EidOnMA333yDxMREzJ07F/379wcAGBkZyfJHscWqVavQokULFC5cOPce4hNBsYWFhQWAjJcpig2UNtru3btx7949mJubw9DQEH/++SdGjx6dA3f86ZKeX+gjJiYG+/fvx7x583Dnzh2Ym5tj0qRJ+Oqrr1CyZMmcvNWPnuLFi6Ny5coQQiApKUm+xz4+PggNDX3n+ebm5mjSpAmEEAgICMClS5feeQ73JzKOYg9PT088efLknenz5cuHJk2aQK1W4+7du7KdxeQOSt/91KlTmD59Otq1a4c5c+bg4cOHMDU1hZmZGaZPn45//vkHW7duRbNmzVCwYEFZ3+ird7h9mznUajXOnz+PiRMn4vbt27C0tETfvn0xevRoODs75/XtfXSknLNISkpK9d6mNQ6iHO/fvz9+//13CCGwf/9+bNy4Edu2bQMAzJw5E9988w1KlSoFAGn2rxMSEtI9/jmQck5JXxmh1OkAcPnyZWzbtg3x8fFo0KABtm/fDiEENBpNqvFG4G3ePn36VLYD7O3tc+RZPncUnzE0NESlSpWwYMECtG3bFjExMZgyZQpCQkJS+Z6trS3s7Ozy4nY/eLTH5hYvXozvvvsOHTp0QKdOnXTSsW+8P4Z5fQMMwzAMwzAM87FjaJjcrNbX2WCYzxnFNxiGYRiG+Ti5e/cugoODERMTgxMnTqBFixZpplXqfT8/P2g0GsTHx6e5aEoIgbi4OPzwww84c+YMbt26hfLly8PR0RGLFi1ChQoV0hzM/1x5+vQpXr58CXd3d5w5cwaNGzdOM62RkRGICIGBgdBoNIiOjs6QKEEIASJKNVmZlJTEi6ZToJ0nKpUKYWFh2LVrFw4dOoTDhw/LvLO1tUWRIkXw008/oXz58ihfvry8hnZep+TGjRuYOnUqzpw5g/r16+PixYtwcXFhv9DDsmXL4OPjg9GjR6Ny5coyf7JDvA6wX7yLChUq4Pz582jUqBFOnTqFjRs3Yu7cue9cNKvkX6NGjeDq6goXFxeMHj0a//zzD8zNzbFy5UoYGhrKvDcwMMCQIUPQsGFDHT9iso5ii7p168LZ2RmVK1fGiBEjsHnzZuTPnx9//PEHDAwMdGzx1VdfoU2bNihRokRe3/5HT3q+ol32GBgYID4+Hrt27cKJEyewfv16GBoaQq1Ww8rKCsbGxmjYsGFu3fZnh7Z43dPTE+bm5vjmm28wZMgQFq+/J0rduW/fPowaNQpr1qzJkDCnYcOGqFGjBi5duoQDBw5g3LhxskxK63uICNHR0TAzM5N9lfTaX58zmzZtwsCBA3H06FEULVo0zXRK/rVs2RJVqlTB7du3cfr0aQwbNixDbSMi0lnMzKSPkt/K76dPnyIkJATz58/HtWvX8PDhQ5m2QoUK6NmzJzp16oTq1avLz5X+Q8q27JkzZ+Dj44MRI0akau8yb/ONiJCYmJhqsVN2itfZL/SjnR/vejcVMbVKpcKYMWPg6OiIu3fv4urVq6hUqRIaN26M5s2bA4BOm1bB19cXT58+xb59+/D48WN89913cHNzy5kH+whJK/9VKhWePn2KyZMnIyoqCpUrV8b8+fNhbW0NItJbRyclJcHAwABxcXEYO3YsQkNDYWdnh6FDh+b0Y3zSvHz5ElZWVu8cL3JwcEDv3r1x7tw5+Pn5wdPTEyVLluQ64D1QROwGBgb45Zdf5N/a43XsG+8PqwkYhmEYhmEYJotwp45hGIZhGIb5FHFzc0Pjxo1x9uxZ7NmzB1WqVNEbbVV7sD4sLAxAsog6rYiWd+7cwbRp03DgwAE5aP/o0SP4+fnh+vXrcHd3R8WKFXkC5f9RqVSoVasW6tSpAw8PD+zZswcuLi4oWLBgqrTKpG1wcDDCw8MBANbW1qkiFqcUmLi7u+PkyZM4f/48DA0NkT9/frRp00YKFFk4rYuSdzdv3sStW7cwe/ZsvHz5ElFRUVCpVEhKSsIXX3yBrl27okWLFjq2Ut7r9MTr48aNw+XLl2FsbIyYmBg0atQI586dg7OzM9tCi/Pnz2P8+PEAksucMWPGwMnJCTt27MiUeJ39InOUL18ep06dwuzZs6Wg8F1o57O1tTX69u2LN2/eYNy4cVi7di2qVKmCkSNHptoJUhGv8wKC7EM7Hy0tLfHFF18gKioKEydOxPr161GtWjV89dVXqWyhiNe5rs5+UtYTgYGB8Pf3x88//wx/f3+8fPkSQLJ4rkGDBujduzdatWqFsmXL5uVtf7KkJV7nyOuZJzo6GuvXr0doaCiWLl2KatWqwdbWNs30arUaQgjExsYCSI6Oqyxy0kbxHR8fH5w+fRp79uzBs2fPUK5cOTRs2BBjx45loa4eXr9+jRUrVgAA1qxZAzc3N9jY2OhNq4hEnz9/LsuiN2/eyGMpSVlf62sDsz30o50vr169goeHBxYuXIj79+/r7HTWqlUrVKtWDVOmTIG1tXWqvFTaqtrXu3z5MpYuXYo9e/bgxo0b+Ouvv9g3UmBgYIA3b95g8eLFKFu2LNq0aYN8+fIByLp4nf0iZ1D64SqVCu3bt0f79u11jit5mpiYiPDwcNy6dQunT5/G3bt3ceHCBcTHx8vox97e3jh79iysrKzYDmmg5PXx48fx7NkzmJqaomvXrnBxcQGgv05QFmokJCRgxowZuHLlCgwMDNCgQQOdxWxp9fXYL/Tz4MEDHD9+HO3bt0fRokXT7SsbGhqiXbt2KFy4MIKCgrBp0yZ07NgxzXxlW+gn5QJvbVF6TvrGpwwL2BmGYRiGYRiGYRiGYRiGYZhUVK1aFf369cO5c+ewYsUKlC1bFiNHjoSJiQmAt1ubKoP0M2fOxOnTpwEAAwcO1NlyVhnAf/HiBaZOnYrDhw8jf/78WL16NQoXLoyIiAgsXboU7u7uGDNmDP79918UKlQol5/4w6VmzZoYNGiQFBs4Ojpi+PDh0haJiYkwMjKSE0u//vorbt26BQAYPHiwjnBXW3R74MABHD16FH/88Ueq7zxy5AicnJywdetWVKxYkQWjWrx58wbffvst9u7di9evXyMyMhJCCBgbG2PMmDGoVasWevXqJdNr5116k3wpxeutW7dGZGQkTp8+jYYNG7KIPQUNGjTAyJEj8eeff2LZsmVQqVQoXrw4du3a9d7idfaLrFG5cmVs3bpV5oUiKlR23DAzM0v3fAMDA7Rs2RKNGjXCsWPHcOHCBYwcOTLN9Np5/rlPnmcUIkJMTIwUX6WFgYEBWrRogerVq+PChQu4fPkyvvrqqzTTc95nL9rvc0hICE6cOIFFixbh2bNnePHihUzXp08f1KhRAxMnTkx1bspyiX0k8+gTr0+aNIkjr2cRMzMzdOrUCZcuXcKdO3dw+vRp9OjRQ2/bhohgaGgIb29v+Pn5AYDsY6R8r4UQuHTpEsaOHQtvb2/Ex8cDADw9PbFz507cv38fixcvZn9IgYWFBQYMGID79+/j8uXLOHfuHDp37pymYE2lUuHevXty4XKRIkUApLaHkpaI4OPjgwsXLsDf3x+vXr1Co0aNUL58edSuXZuF0ylIWYYvXrwY586dw549e+RnVlZWqFq1Kvr06YM+ffrIdm5SUlKawjjl80uXLmHx4sXyemvWrIGJiQmWLVvGtkjBjz/+iIULF8LFxQUJCQno2rUrzMzMcO7cOXzzzTeZEq+zX+QsQohUfeVXr15BrVbjzJkzuHv3Ltzd3XHr1i1ERkYCSK6TSpQoIXeG6tixI4DkRbZM2ijl1JkzZxAXF4d8+fKhX79+afY1tBcQrFmzBgcOHEBcXByMjY3x9ddfy7pEufbz58/h5eWF4OBgVKpUCcWLF4ednR2PhaQgLi4OGzZswIwZMzBx4kT89ttv6Y5PaDQaFCpUCGXLlkVQUBAiIiKgVqvT3E2bbZE22uVzysXeQM74Rlr1wicxLkUMwzAMwzAMwzAMwzAMwzAMo0VSUpL8+6effiIhBAkh6Ndff6V79+6lSj9r1iyZpkyZMrR792691x06dCgJIcjW1pZu3rypc+zYsWNUuHBhcnR0pODg4Ox8nI8abVvMnj1b5vP8+fPJx8dHJ+3r169p3LhxMk2DBg3o8uXL8rharZZ///zzz1SpUiWZtkSJElSjRg0aN24ctWnThipWrEhCCLK3t5ffo30vnzsDBw6Ueefi4kLDhg2jq1ev6qTRzu93cf36dWrQoAEZGBiQmZkZ9e/fn169ekXPnj2jVq1akRCCrK2t6c6dO+997U8R7eefMGGCtEWxYsXk3wMGDKDXr1+/17XYL7IHJU+OHTtGs2fPJiIijUbzzvPmzp1LQggyMjKiGzduZOm7GV3WrVtHS5YsIaKM2WLq1KkkhCALCwvy8/PL6dv77FHe27i4OHr58iVNmjSJGjVqJMsipXzr2rUr7d69W8eG2mWY9vt/+/ZtvZ8zybzLD6Kjo2nr1q1UpUoV6Qs//vgjt1GzifDwcOrWrRsJIah27do676uC8t4+efKEhg4dSkZGRmRoaEjz5s0jotQ29PDwoFKlSpEQgmrVqkUTJkygv/76i8aPH08qlUr2ZZjUPHv2jDp27EhCCKpTp45sbxK9tYOS30FBQdSsWTMSQlDBggXp33//1TmukJiYSI8ePaIePXpQ+fLldcozIQQ5OjrSrFmzUn0PQxQaGkrffPMNtW3bVifPSpYsSXXq1KGTJ09SSEiIzjlp5Z/25xcvXqSePXvK63Xr1k36xpgxY955rc8NPz8/KliwIAkhyM3NjTZu3EgHDx4kNzc3EkJQ/vz5acSIETr+8i7YL7IXfXV5TEwMhYeH04YNG+inn36imjVrkoODg04+16hRgwYMGEB///033b59m54/f673upz/76Z169ayPCEiSkhISJVGyc/ExERav3491ahRQ9ri77//1kn74sUL2rt3L5UpU4bMzMxICEGFCxcmNzc38vLy0rkek9x3mDZtGgkhqHr16nTlypV3nvPw4UNycnIiIQS1atUqzfxkW2SN7PQNffn8/PnzVONdH7M9WMDOMAzDMAzDMAzDMAzDMAzDpEJ74HvKlClyEL1Zs2b0ww8/0H///Uc///wzde/eXR4zNTWlmTNn6r2ep6cnFS5cmIyMjOj48ePyO5RJQU9PT7K0tCQhhDzOJKNti2+//Vbmd82aNWns2LG0fPlyGjFiBDVt2lRnIcHKlSvleYmJifLv0aNH60zgfvnll3To0CGKiYkhouRJsKtXr1Lz5s1JCEFNmzalp0+f5t4Df8CkXNwxcuRICg8Pp9jY2FTHM4oiXjc0NCQzMzPq16+fnERPSkqiwMBAOfnFIva3aD//+PHjdd7pjh07yvc5PZtoX4P9Inu5fv06CSEoX7589OjRo3TTKjZatWoVCSHIzMyMzp07pzetUh6GhYXRpUuXaP78+bRlyxY6depUqusxyRw9elQuHgsNDU03rZJ3P//8s7RfesKsjAjmGP2kFBjcvn2bxo0bJ4Vxyk/lypWpa9eu5OXllUpgpY12nu/bt4+qVq1KQ4cO1Xv8c0e77L948SJFRUUR0ds80ide/9///pdh8Tr7RcYIDg4mFxcXEkJQkyZN6OrVq7LOVfzj8ePHNGvWLCpZsqQsx+7fv5/qWo8fP5ZtpQ4dOtC1a9dkfsfExND//vc/MjQ0pO7du+feA35kBAUFyUV8TZo0ocuXL1N0dLROmvv379OQIUPIxsaGhBBUoUIFevz4caprhYaG0po1a8jZ2ZmEEFIkXalSJapRowYVK1aMDAwMSAhBEydOzK1H/GgIDg4me3t7EkKQiYkJ5c+fnwYNGkQnTpxIJVZLr1xJKV7v1auXrFtmz55NCQkJtGbNGhaxp4OPjw8VLlyYhBDk5OQky6LMiNfZL3KG2NhYevLkCW3ZsoVmz55Nrq6u0n+UPK5Rowb16NGDNm/eTFevXqU3b97oXCPlQh3m3ajVatJoNFSnTh0SQqRZvyptrjdv3tDKlSupVq1ashz6+eefddI+e/aMFixYQIUKFSIhBJUrV44cHBzI0dGRhBBUtGhRXlirhzNnzsj21Pfff08RERF60ym2UIKHCCGod+/eest7tkXmyW7fUMZyExISKCIigubMmUO9evUiGxsbcnR0pCZNmtCMGTMoKChI57ofGyxgZxiGYRiGYRiGYRiGYRiGYfSiPfA9a9Yssra2JkNDQzmZri2wsrOzo+nTp8v0KSf/jh07JiPHPXz4kIiSJwqV7zh16hQVKlSIypcvT2FhYbnwdB8X2raYPXs22draygluIyMjHVtUr16dli9fLtNrT9AOHjxYTuaamprq2Izo7eRIUlISHT58mIoWLUrFixfXieT+uaNvQiizIo/r16+Tq6srGRoakpGREXXt2lUe047QpC1iL1y4MN26dStT3/epoW2LsWPHSh8YPnw4+fr6Zvhc9ovsx93dnUqXLk2mpqY0d+5cKUrUh2KLJUuWyDrmwIEDqdIp9cq1a9eoUaNGcuJdCEFWVlY0ZcoUmZaFV285evQolSxZkvLly0eLFi2iuLi4NNMq7/rkyZPJyMiILCws0ozkp13PJyUlkY+PDwUFBVFgYCDFx8frHGPekrJ9tHv3bvruu+/I1NRUCq1MTU2paNGiNHXqVLp27ZrMz4wIo/ft20dt2rSRvjF69Gi96RiiFi1aUOXKlWnz5s0UGRlJRERRUVG0ZcuWTEdeZ794P/z9/alo0aIkhKAqVarQ5MmT6cqVK3TlyhU6efIktW3bVu6ukj9/ftq/fz8RpY6Oe+bMGSpYsCCVLFmSTpw4IY8rv//++2/ZX3n16lXuP+hHgp+fn7RH5cqVacSIEXTq1Ck6cOAAbdmyhZydncnKykouqlR2S9FuU927d4+++eYbKlGihEzXunVr2rZtm/SzO3fu0JIlS2SZt3jx4rx43A+aO3fuUJEiRWj69OnyvVd4X5HtpUuXqEePHrJemDlzpvSdxMTENEXsLOZNxsfHR4o4VSoVmZmZ0VdfffVe4k32i+zl8uXL9O+//9KMGTOodu3aOrtwCSGoXr161L17d9q2bRudOnUq1buslFlcF2edX375hYRI3vkkJCRE5qn2WF9cXBzNnDmTXF1dpY1++OEHKbRW0m3evFnuevDVV1/R69evKSwsjK5du0aNGzcmIQQNHjyY4uLi2HYpWLZsmczbZcuWyQALRMn5q+RXeHi4XERTtGhROnPmDBGlXsTBtsg62eEbSt/85cuXtHDhQmrSpAkJIeRYsPZP+fLlP+rI+CxgZxiGYRiGYRiGYRiGYRiGYdJEW5CwY8cOGj58uBTbKgPlAwcOpA0bNug9R+Hy5ctkZmZGDg4OdPfuXZ1jiYmJUpzbtm3bNCMGfe5o5+vevXtp4sSJZGFhQebm5mRiYkIWFhb03Xff0bFjx2Q6bfH6iBEj5GRH8eLF6ffff5fH9E1wPHr0iIoXLy6j9DFv0Z6ky8qEnY+PD7Vp04bs7OxICEF16tSRwmvtHQqIkkXs7du3lwtIIiIieLKQdP1i3LhxslwaN25cqrJGQft9Z7/IGaKiomjixIkkhCAXFxc6f/683nTKO/zo0SMqX768jPD25MkTvekuXbpE+fLlIyEElSpVimrUqEG1a9eWk7hTp07N2Qf7CImIiJA7DFSpUiXNhRfK+37//n25OKBq1arpCt6jo6Pp+++/p86dO5OpqSkVKFCAzM3NqVu3brRixQqZjssqXV6+fEmHDx+mgQMHkomJiWxT5cuXj0qUKEF//vknXbx4UeectIQIKcXrSntKCCEXhHBU3dSEhoZKIW6VKlXo33//pbCwMNqxY4cUkbyveF2B/eL98Pf3l5FDhRBkbGxMJiYmOuIcS0tL2rhxo87iPqK3efjdd9+REIJatmwpj2n7zOrVq0mI5N2LtEVdTGr8/f11doJQ7KBtD2trazp9+jQR6Qrj/Pz8aMiQIWRrayvFcYsWLZJCX23xVkxMDE2bNo0MDQ2pdevWvLBADykX/2VGkObu7k5dunRJFdVVe3cutVqdpoidScbb21uKOYsUKULz5s1LtVAmLdgvsp+FCxfqCDddXV2pb9++tGXLFrpw4QIRUaoo60TJ7S+it+//xxqp+EPi0KFDVKBAARJC0O+//66zS0RCQgI9fvyYOnfuLBeBKH3oFy9e6FznwYMHso89atSoVG2kP/74g4QQ1KBBA24/aaFd/vz44486eXz16lV5LCIigq5fvy7bW/ny5aMvv/xS705pbIvsIau+oZRPYWFh1KlTJ7nAUAhB1apVo2HDhtHSpUtpxIgRVK1aNRJCUPHixVPVLR8LLGBnGIZhGIZhGIZhGIZhGIZh0iXlpKy/vz+dOXOGTp48SZ6enummVfDx8aHSpUtLgeG9e/fo+fPn5OnpSW3btpWRpRXx7sc22J5bpMzfhw8f0t27d+nu3bupBFbawoTp06fLqHEODg60atUqeSzlxK2S9wkJCXIbWxbq5hwRERG0c+dOat68OQkhyNzcnM6ePUtEqf3A39+fmjRpQmvWrMmLW/1g0X6HJ0yYICf2xowZQw8ePNBJq52n7Bc5y8OHD6levXokhKBGjRqRt7e3TtRc5e+wsDD6+uuvycLCgoQQ1KNHD4qKikp1PU9PTyn+6datG124cIFiY2Pp8ePHtGzZMlKpVGRra5tmxPDPmQcPHshtzBs3bkx3797VqSMUWwQHB1OrVq1kWTRlyhSdxTTK76dPn9I///xDdevW1REQmZmZ6fzPUfFTo1arqVWrVqki5zVv3pwWLVqUqsxKTxiXnnh97ty59O+//+oVJLItkvHx8SEbGxu50GbMmDEyKqWFhQX973//y5B4nf0i64SEhNDo0aOpatWqOnllY2NDFStWJHd393TPnz17NgkhqGPHjhQfH6/jN5cvXyYnJycSQtCMGTNy+Ek+DR4+fEiTJ0+mGjVq6NjD0dGRWrZsSd7e3kSk+/7ev3+fhg0bJn2qWLFidPDgQYqOjpZpUr7v//33n7z2tWvXcufhPiKyWj4kJCTQ5s2bydTUVAoWf/nlF53jCmq1mtauXSvrpjlz5mTpuz9FvL29pdDQzc2NtmzZIqOnpwX7Rc4xd+5cWrVqFV25ckVnIY3yW3vXk82bN9P48eOpXLly1LFjR5o8eXIqkSiTeWbOnCnf2aFDh9LChQtp3bp1NGTIEHJ0dNSpR1asWKHTB1HstWLFChJCUI0aNeRx7XTr16+XAt0nT558lBGmcwrtd/jbb7/VqbN79OhBw4cPp+bNm8udCiwsLKhBgwZ06dIlvddjW2QfmfUNJU8fPXqkE51dCEF//PGHjLROlGx/T09PGZ29S5cuH+XiJxawMwzDMAzDMAzDMAzDMAzDMBkmvYn0d02yr1q1Sg66V6lShSpWrCgH7W1sbKRoV3sCJOVWthn5ns+FjObDli1byMHBQUZMXL58uTyW3mTTwYMHZVTYlStXZvl+mdRoR+67d+8e9ejRg4QQVKhQIbp+/brec9ITPHzOaE/cjh07loQQ1L59exmBKiXsF7lDYGAglSxZkoQQVL9+fdq2bZtOpLeAgADq3bs32dvbS6HnjRs3dK6hRKT86quvSIjknTrCwsJ00gQHB1O5cuVICEF79uzJlWf72AgMDKQSJUqQEILq1q1L69atk+LciIgIunnzJtWpU0cuJChVqpSOSFEpb+7du0djxoyRi9LMzc2pXLlyNH36dPrnn3/or7/+ouHDh0vh9PTp0/PsmT9U7ty5I3cS6NOnDy1btkzneEaEIOmJ1+fNmyeP/fXXXyxiTwdtEXv+/PnlOz1r1iwKCgp65/nsF9lHbGwsPXnyhP78809atGgRzZ49m06cOEFPnz4lIv3vrPLZhg0bSKVSUalSpejs2bOyrXTmzBm5KKdly5YUEBBARJmLZP258ebNG4qMjKStW7fSxo0baeXKleTt7S1FUdrtrvDwcJo2bRoVKVJEitrOnTuX5rUVu929e5csLS1JCEGHDx/O0ef5nDl+/Dh9++23cjFNv3795LGUkdhXrFhBLi4utHr16lQ7HjC6dUbVqlVp06ZNae7qwH6RM6QlONf+PK0durQXlTk7O1N4eDgRcZ2QWbTz7fvvvych3u7+k3IxWqNGjWj//v1pXmvy5MkkhKB27dqlunZcXBx98803JISgwYMH59wDfcRov/Pz5s2jMmXKpGmLLl26yJ0K9MG2yDpZ8Q3Flg8fPqRSpUqREIKMjIyodOnSdOrUKZ3vUerwpKQk2rx5M1lYWFD58uVTLYj+GGABO8MwDMMwDMMwDMMwDMMwDJOjaAtOVqxYQXZ2dmRubk5CCLK1taU6derQ3bt3iejtQL++icnXr19LEQtPMmaMly9fUp8+feQEiXbE6LTyUImM/P3335OxsTGZmJjQ0aNHc+uWPyneVyDo5eUlIyd98cUX9Pz58xy6s08T7XJj9erVtG/fPr3p2C9yF19fXylit7GxodKlS1OfPn2obdu2Oltmm5iY0MGDB4kotR2ioqLI1dWVjIyMaOPGjakWN2k0GhkZf+/evbn7gB8Rvr6+ciLcysqK7O3tqV27dlS9enUp3lWOKZHsNRqNzGdfX1/q2rWrtJu1tTXNnTs3VYTQqKgo+v3332VU/JMnT+b6s37o+Pr60vHjx3UihGambbN3715q2bKltN2vv/6qcz21Wk1r1qxhEXs6eHt7U8GCBUkIQaamptS1a1fZLiVKO5+Uz9kvcp53+UZUVBTVr1+fhBBUunRpatOmDQ0dOpRMTExICEE1a9aknTt3piuCZzKOkmdKu2vnzp1yUXKxYsXeGTFfOW/NmjVkZGREFhYWvHtKDqDtN69evaINGzZIYfTw4cP1ptNoNHT//n2KiYnJ1Xv9mPDx8aHChQuTEIJ69uyZatcg9ovcJWUZrv3/iBEjSAhBxsbG9OOPP9KhQ4coODiY+vXrJxc787ueNbT730pk6UKFClHBggWpcuXK1Lx5c9q9ezcFBgbKdPrq3TVr1pCxsTE1bdqUnjx5onP93bt3y4Wf2jumMbpo2+LkyZP0yy+/kKOjI9nb25OTkxPVrl2btmzZwrbIJTLjG8rCsdDQUKpUqZJcFFu7dm3y8PAgorTbrbdv35Y7rmzdujUHnyxnYAE7wzAMwzAMwzAMwzAMwzAMk+NoT4xfu3aNjh49SsuXL6fLly/LyFdEuoPxCQkJdOPGDVq7di2NGjWKKlWqRHZ2duTp6Zmr9/4xs2vXLp0taxXSEgIpn1+4cEFG4W3RokWu3OunhnYe+/r6kkajeadIKj4+nmbMmCEFWD4+Pjl9m58c+ha/pMx39ovc5969e9SuXTsZaV37x9TUlAoWLEgnTpxI8/yrV69KkbsSMU7bp44dOyav9y6B0OfO/fv3qWvXrnJRQcoocG5ublJ4q1ar5fvv5+dHrVu3lkJ3GxsbOnLkiE7kUe1IrkFBQVSlShUSQtCSJUty9yE/QjIjor1x4wY1bNhQ2q9r167yWFxcnPxbEbEbGBhwxMQ08PLykiL2SpUq0fbt23V2PEmJYi/2i7xHqfdfvXpF9evXl4s1lJ9evXrRoUOHZLqUvxW07cSi9nej5FFUVBS5ubnJhcn//fdfuudpt7U6d+5MQggqUKCAzu4sTM6QmJhIa9asITMzMzI0NKQ//vgjr2/po8Xb25saNWpEXl5eOp+zX3w4LFy4UIrXt2zZorNgkIjIxcWFSpQoQffv38+jO/x0SFmfPn78mO7fv0+vXr1Kd4GBNidPnpTR8SdNmkSnT5+mkydP0pw5c+TCmyFDhuTYM3wqpBzPePXqFT179oxevHih085JD7ZF9vE+vqGkff78ObVo0UKWX3Xr1pU71KW3EDMgIIBsbW1JCEHbtm3LicfJUVjAzjAMwzAMwzAMwzAMwzAMw+QKymSKvkF3RWjl4eFBmzdvpv79+5OLi4vONqsFChSgihUr0owZM3hL83eg0WgoPj6eOnToQEIIqlKlCt2+fVseS+scIiJ/f38qXrw4CSHI0dGRdu7cSUSUKs9T2pGj4utn7dq1NGLECPn/u0RRXl5eZGVlRUIImjNnjt4075oIZlvoJyf8gvM64zx79oz27dtHffv2papVq1KZMmWoefPmNHv2bPL29iaitP3j6dOn5OLiQhYWFrRx40adfL906RJVrFiRhBA0bNiwXHmWj53nz5/TqVOnaOjQodSsWTOqW7cude/enTZv3iyFPNoLBIKCgqhXr16ybCpcuDDdunXrnd/TvXt3EkJQ79699S4uYbLO6tWrqV27dmRubk7m5uY6Eda1hSpqtZrWrl0rI4QHBATkxe1+0Hh7e5ONjQ0JIahq1aq0adOmdEXs7BcfDsq7HhkZSRs3bqTJkyfTzJkzad26dRQTE5Nu3eLu7k4zZ86kbt260ciRI3Pztj8Jxo0bR0IIyp8/P82YMYNevnyZZlptO/z6668khCAjIyOaMmVKquNMxnnz5g1FRkZmKG1ISAi1bt1alkFM5lH6xvrKcfaLvOXly5fUsmVLMjAwoFmzZum0h+Li4kitVlO9evVICME7amUT6b2nGe0vL1++XGc3KENDQzkeOGDAAJlO2+f0+R/3z9OGbZH7vI9vxMbG0g8//EDW1tYkhKDKlSvT1atX33kdIqI5c+bIeiflLlAfA4ZgGIZhGIZhGIZhGIZhGIZhmBwkKSkJKpUKKpUKACCEAACo1WpcvHgR4eHh2LlzJ0JCQnD58mV5XrFixVC9enW0bNkSbm5ucHNzg6OjI4hIXoPRj0qlglqthq+vLwCgdOnSqFixojyWEsVGQUFB+Prrr/H48WMYGxujbt26aNiwIQDAyMgIAPDs2TNcu3YNJ0+eRFxcHKpUqYJWrVrB0dERGo0GBgYGufSUHz4BAQFYtWoVrl69ikqVKmHs2LFpvrvKe21oaAhTU1NERkbizZs3aaYD2BbvS074hXIe5/e7KVy4MDp27IiOHTsiMjISarUaBQsWlO90emW7tbU1nJ2dcffuXfzyyy8AgKJFiyI8PByTJ0/GkydP0LJlS4wbNw7AW9sx+ilUqBCaNm2Kpk2bIiEhAUlJSTA1NZXHiUjm36tXr7Bq1Sq4u7sjMjISNjY2OHv2LCpUqJBuPkdFRSEgIEBej/0jZxg6dChatGiB/fv344cffsAff/yB169fY9OmTTA0NJRlk4GBAQYOHIgCBQqgYMGCKFWqVF7f+gdHxYoVce7cOTRs2BC3b9/G0qVLUaxYMTRp0iRV2cR+8WGhvOuWlpbo37+/3jQxMTEQQuD8+fPw9PTE6dOncf36dTx79gwAZD3UtGlT9OzZMzdv/6MlJiYGXl5eAAAHBwd07twZBQoU0JtWu44/fPgwdu7cCQAwMzND/fr1ASTbIL32FPcBU6NWq3Hu3DmEhYWhX79+78wjBwcHNGrUCMeOHcP27dsxdepUVKlSRW9atkX6GBomy+1S5lFO+AXzfjx8+BBnz56FgYEB6tevL22lVqthamqKiIgIvHr1Cvb29ihfvnwe3+2nQXrv6bv6ZEq7afTo0TA3N8dff/2FoKAgvHnzBk2bNkWTJk3w7bffAgDi4+Nhamoqz1H87+XLl/D09ESxYsXg5OTEfcE0YFvkPhnxDSWPQkJCcOLECURERMDIyAh//vknatSokWadq5wXERGBK1euAAAsLCxgZWWVMw+Tg7CAnWEYhmEYhmEYhmEYhmEYhslWlEF0ZZBdGZRPTEzEtWvXcP/+fezatQuPHz+Wg+wAYG9vj2rVqqFbt24oXbo0GjduDGtra5iZmaW6Pgt+3k1MTAyio6NhZGSEbt26wcjICGq1Wk7gKmiLdMeMGSNtUrp0acyYMQO2trYy7ZEjR7BhwwZs375dfqZSqeDg4ID9+/ejcuXKn/0ElTYFChSAi4sLrl69imPHjqFVq1ZpTpIrE1I3b96UYqqUE0/aE1dsi8yRnX6RlJQEIQSEELJM8vX1xbNnz5CUlARnZ2eYm5vD3NycbfH/KO+wpaVlqs/SW9xhbGyMFStWwM/PDzdv3sTw4cMRHx8v03To0AGTJk1KtSAhrcleFl69zQMjIyOZF9q2UIRr169fx+7duxEeHo6CBQvi8OHDqFChQprCNuXzx48fy0U4pUuX1rk+kz0o+VmqVCmMHDkSNjY2GDZsGDZv3oxSpUrhp59+0rGRgYEBunbtmod3/OFToUIFnDt3Ds2aNUN8fDwcHR113ln2iw8TfX2DuLg4JCYm4uTJk3j06BH27duHkJAQBAYGyjQVK1ZEvXr10KRJE9SpUwelSpXSafcy6ePh4YFTp04BAL7++mu4ubnpTaf9jl+9ehUbN26Eh4cHAGD06NHo3LmzTKfY8cSJEwgJCUG+fPlQtGhRNG7c+J2L3T5H7t69ix49eiAuLg4NGjRId3GSUg6VKVNG5uXr16/TTM+2SJ+0nj27/UIb7f7E557/6aGUJaamprLPQUSyvzds2DD4+vqiWrVqyJ8/f17eKoPkfpvybg8ePBitW7dGYmIioqKi4ODgoGMjZcHt8+fPce/ePVy6dAlnzpyBj48PAgMDYWhoCC8vLzg5OeXV43zUsC3yBqVc//PPP3H16lUAwNq1a9GwYcN0xzOU8/744w/s27cPADBy5EiULVtWJ93HUFewgJ1hGIZhGIZhGIZhGIZhGIbJFlIK1l+8eIHQ0FBcv34dp06dgpeXF27duiXT29vbo2rVqujWrRtKlSqFDh06wNjYGObm5jrXTSn8ZPF6xkhKSkJsbCwSExPx8OFDAEhTpBsYGIjhw4fDw8MD8fHxsLGxwbZt21CuXDmZ9sCBA5g9ezauX7+OfPnyoXPnzoiNjUVISAhu3LiBDh064NSpU3B0dMzV5/yQsbGxQZcuXXDkyBEcPHgQderUwTfffJNqUYZCWFgYTp48CQMDA2g0Gtjb2+scVyae2BaZJ7v8QqPRSKHv/fv3cerUKWzcuBHe3t54+fIlgGQhZM2aNTF9+nQ4OTlxlHa8fYe1J1HfJexXxNTW1tY4deoUxo4dC19fX9y+fRvly5dHhw4dMGHCBBQuXDjV5Ky2EPvs2bOIiYlB27ZtP4pJ3JxGny20/1be1V9++QX+/v7Inz8/Vq1aherVq6e5kEz78yVLlsDf3x9CCLRs2TLV9ZmMo2+RDaCbn4aGhujQoQPGjRuHBQsWYO/evejSpQuqV6+em7f6SVChQgV4eHjgzZs3KFWqlI7wg/3iwyBlfaosnI2OjsapU6cQFBSEHTt2IDw8XEewXrlyZbRr1w5du3ZF2bJlUbVqVb1RKnnRWcZISEiAkZERzMzMUK1aNQCp807bf27fvo1Vq1bJxZd9+/bFrFmzdK4ZEBCA8ePH4+TJk0hMTASQvKBz2LBhmD9/PgunUxAfHw9ra2vExMRg8+bNmDhxYqq+dEr8/PwAJJdn6S0eDAwMZFtkguz0i5T1v1LOqdVqvHnzBkWKFNF7zc8dS0tLODo6wtvbG6dOnYKTkxPy5cuHhIQEDBs2DDt27EDBggWxYsUKFChQgPPuA0DZKc3Q0BBFihRJ1Z66d+8eoqOjcfDgQXh5ecHd3R1hYWEAkttRRYsWRZcuXVC2bFk8efKERdNZgG2R+xARwsPDcebMGQBAx44d0apVKwD6+wnaZdaGDRswffp0AED9+vXRvn17AG/bykq6hIQEGBoayjGsD62tywJ2hmEYhmEYhmEYhmEYhmEYJlsQQiAmJgY///wznj17Bg8PD9y7d09GmixUqBAaNGiApk2bomLFimjSpAlMTExSbalNRDrRZD6kQfWPiaJFi6JHjx5Yv349AgIC8Pr1a1hZWaUSjt68eRO9e/fGvXv3kJSUBGtraxw5cgSurq5y0sPf3x9//fUXrl+/jlatWmHUqFHo2LEj1Go1AgICMGDAAFy/fh379+/HuHHjeBIYbyeVOnTogIkTJ2LKlCn43//+B2tra/Tr1y+VYOr58+fYuXMnNm/eDI1Gg8aNG+OLL75IdV22RdbIDr/QFiOeP38eEydOxIMHDxAeHi4jkZmbm8PX1xe+vr44deoUjh49ikqVKn1wE4UfC8qiDisrK6xduxYajQbPnj2DhYUFChUqlCp9VFQUbt++jaCgIOzevRshISG4efMmAGDw4MFYu3Ztbj/CR4VSbvz99984ffo0TExM8PXXX6NZs2YA9NfL2vX2n3/+iXXr1kEIgS5dusDFxUVek33g/YiOjsadO3dQvXp1GBsbp5vW0tISTZs2xW+//Ya7d+/i2rVr6QrY2RZpU6JECQC6ApGc9Avm/VDq4EePHsHb2xu3b9/G0aNHcf/+fQQHB8t0zs7OaNGiBb744gsUL14czZs31yvaTekL7BcZIyIiAomJiTAzM0PBggUB6Oaddr5evnwZq1atwoYNGwAk75wyZcoUGBkZyf7GpUuXMHHiRFy9ehUFCxaEo6MjNBoNbt++jYULF0IIgXnz5rHPaOHs7Izu3btj0aJF2L59Oxo3bowGDRqkSqe96OPs2bMyQnXx4sV10ik2Y1tknuz0C0W8npSUhB07duDAgQO4cOECEhMTERkZie7du6NBgwYYMmQILyjQonTp0vjiiy8wY8YM/PDDD3B3d4dGo8HLly9x8+ZNFChQAEuWLEGtWrU4z/KQlH0D5X03MDBASEgInj9/jj179uDhw4c4cuQIIiMjER8fD5VKhUKFCqF3796oVKkSmjRpAicnJ50FHcz7wbbIW4QQePLkCTw9PQEAtWvXTnNHIO0ya8eOHfjf//4HAMifPz86dOggF04ZGBggISEBPj4+2LJlC+7cuQO1Wo3q1atjyJAhH16ABWIYhmEYhmEYhmEYhmEYhmGYbGTkyJEkhCATExNq3rw5TZo0ifbt20ePHz+m2NjYVOnVajU9e/aMrl69Ss+fP6e4uDj5OZM11q1bR0IIEkLQ0qVL6eHDh/LY1atXadmyZWRpaSnTlC5dmm7dukVERBqNhpKSkoiIaMOGDaRSqahUqVJ05MgReY2EhAQiIurXrx8JIWjEiBG5+HQfPhqNRv79/fffy3z+5ptvaP/+/aTRaEij0dCJEydo6tSpZGFhQUIIqly5Mu3duzfVNYjYFtlBVv2CKDm///nnH1KpVDJd4cKFafbs2fTff//RrVu3aMWKFdSoUSMSQpCTkxPdu3cvT573UyIxMZGISJZNCk+fPqVLly7R8uXLqXv37uTs7CztotiwRYsWtGTJEvrrr7/y4tY/SiZNmiTr85MnT6aZTtse+/fvp1q1apEQggwNDWn16tV6z0lISKAnT57olHEp7fq5ExcXR6tWraIKFSrQ0aNHM3RObGws1ahRg4QQNGjQoAzlKdvi/chJv2DS58GDB7Rt2zaaNWsWtW7dmooVK6ZT1lesWJG6dOlCq1evpqNHj1JcXJzevodSlzBZIyQkhMqXL0+Ghoa0atUq2XdLSkrS6cft2LGDunbtKu3Upk0bOnv2rE6Z8+LFC6pbty4JIcjFxYW8vb0pOjqaHj9+TEuXLiUDAwOysbGhc+fO5fpzfug8fPiQ6tWrR0IIatSoEd29e1fmbcr+9IgRI0gIQcbGxjRy5EgieltWKeewLbJGdvoFEdHu3btp0KBBOmWdqakpCSFkP+Tbb7+V6T/3+ls7/7777jsyMDAgAwMDmXf29vZ0+PBhevPmTR7e5edJyrJGm2fPntGVK1do5syZ1LdvX8qfP798z01NTcnS0pK+/PJL+t///kc3btygx48fp7qGcl1912d0YVt8eNy8eZPMzMyoUKFCdPXqVSJK3V7Vzs+dO3dShQoVyNDQkIQQNHDgQJ20MTEx9Ntvv1H16tV16g8hBBUrVozu3r1LRB9OncER2BmGYRiGYRiGYRiGYRiGYZhsgf4/EsyKFSvQs2dP2Nvbo3z58jppNBqNzv9hYWEYPXo0fHx84Ofnh3LlysHZ2RkrV66EjY3NhxUR5iNCscWgQYPg7++PefPmYcKECfjvv/9QtGhRCCFw8eJFhIeH482bN7Czs0O1atWwcOFCVKhQQScyXHx8PDZt2gQiQs+ePdG6dWsAybY0MjIC8DaqXFJSEkd01UKlUsl3eO7cuQCAefPmYfHixVi8eDEqVaoEADLKd2JiIipUqIBhw4ahcePG8hoKbIuskV1+ERkZiQ0bNmDChAkgItja2qJGjRpYtmwZHB0d5fe5uLigSZMmGDx4MK5cuYLff/8dCxYsgKGhIdslA5CeiIhKNLjHjx8jIiIChw8fhqenJ86ePYsHDx7IdDY2NmjevDlatGiBypUro2nTphBCwNzcPN3rM8loNBokJCTg0KFDAICuXbvKKNMp0c7HU6dOYeXKlbh69SoAYMSIERg6dKjOdZ8+fYoZM2bAy8sLd+7cQePGjdGoUSN8++23HD00BW/evMGZM2fg5+eHNWvWoEaNGjKaa1pEREQgLCxM/p1WXrIt3p+c8IuM1tNsi2SMjIwwatQovHr1CkZGRihcuDB69uyJevXqoUaNGqhRowZUKpVsEylERUVBCAEhBCwsLGBoaMhtpGygQIECcHNzg7+/P/755x/Url0b5cuXh6mpqdxRa/r06di3bx+8vLwAAJ07d8a3336LWrVq6eT/hAkTcPnyZZQqVQqHDx9GsWLFAAAWFhbo1q0b1q9fj9u3byM8PDxPnvVDpnjx4ti4cSOaNWuGc+fOYfjw4Rg3bhwaNWqEokWLIj4+HjExMZgyZQrWr18PIQTs7OzQqlUrAJBli2IPtkXWyE6/mDlzJnbv3o07d+4AAJycnFChQgW0bdsWL1++hK+vLzZv3oyFCxdCpVLhl19++ezrCu3+97x581CnTh08fPgQQUFBqFKlCpo3b55q5wEmd1DeTY1Gg6ioKFy7dg3Xrl3D1atXcenSJdl+NTQ0RMGCBdG+fXuULl0aXbp0QcGCBVG6dGmd6yltI+U37+CYcdgWHx7GxsZ48+YN4uPj4efnhxo1asixDwUlPzdv3ozp06fj8ePH0Gg06NixI9avXy/TvXnzBsuWLcPixYsREREBFxcXfPXVVwgJCcGVK1dw4cIFdO/eHSdOnPhgykMWsDMMwzAMwzAMwzAMwzAMwzDZghBCThY2bdoUQOqtaBUxelJSEtzd3TFx4kTcuXMHNjY2cHJyglqtxq5du+Dr64szZ86gUKFCLNrJBNq2mDt3LoyNjbFkyRJcuHABSUlJOmnr1KmDPn36oHv37rC3t08l6FGpVIiNjQUAWFtbAwASExOlOMjd3R3u7u5QqVRo3749T1KlwMDAQMcWdnZ22Lp1Kzw8PODt7a2Ttk6dOhg9ejTat28PKyurVNdiW2SNrPiFct6bN2/w999/Y9KkSSAilCtXDt27d8fEiRN1Ft0QEVQqFZycnNC4cWNcuXIFV69ehZGREZdn70Apg7TzKSQkBBEREdi3bx+Cg4Nx5MgRvHz5EvHx8QCAQoUKoXPnznB1dUXDhg1RuXJlFClSRMcHUi6gYjukjUqlgomJiZw0L1SoEABArVbrTKRr1xcnTpzAn3/+KcW9vXr1wpIlS2TauLg4HDlyBAsWLICHhweMjIyQmJiIo0eP4tChQwgLC8PixYvZLlqYm5ujXr16OHr0KDw8PHD27Fl06tRJb9mu2OLu3bsgIgBAkSJF9Lah2BaZI7v9IiEhAcbGxvK8K1eu4P79+zh//jyMjY3h5uaGcuXKoXbt2ryg4P8pWrQozp07hwMHDqBJkyZwdHRE4cKFddIkJCTIv8+dO4ezZ8/iv//+g0ajQZkyZdCtWzf069cPKpWKRexZxNLSEnPnzsXly5dx/vx5DBkyBG5ubqhTpw4uXbqEwMBAnDt3TqYfMmQIpkyZgnLlyum8y5GRkbh79y7Mzc2xYsUKFCtWTMevzMzMoFarQUR4+fJlrj/nx0CZMmVw7NgxtGrVChcvXoSfnx9sbGzQsGFDBAQE4NWrV/D09IRKpYKFhQUmT56MLl26pLoO2yLrZJdfjBo1Clu3bkVERASA5MVPX3zxhVzkDACvX79GnTp1MHbsWCxfvhx169ZFp06dcu9hP1C0+9/63nMu+/OOW7duoV+/foiOjtZZfGxvb4+uXbuiWrVqaNWqFWxsbODo6Jhm20fbhp972yizsC0+HIgIJUuWRNu2bXHo0CHcuHEDXbp0gYWFhU4aIQQWLVqE7777DklJSSAitGvXDnv37gWQLFw3MTHB+fPnsWnTJkRHR2PkyJEYPnw4ypcvD7VaDW9vb3zxxRcICgrCtWvXWMDOMAzDMAzDMAzDMAzDMAzDfHqkjJaeMqKbMpHo7e2N8ePHw8vLC25ubtiyZQuKFi0KKysrDBw4EJs2bcL06dPx+++/p4qiyGQM7YnbmTNnombNmvDy8sKBAwcghED16tXh6OiI4cOHS1GtIrrVxsjICFWqVMGlS5fg5+eHV69eoUCBAgCAixcvYtWqVXj48KGMdMykRtsWY8eORYsWLXD79m3s3LkTr1+/RtmyZVGiRAlMmDAB5ubmaU78sS2yTmb8QqPRSJts3rxZitcrV66MwYMHY+jQocifPz+SkpJkGaikNzQ0lDtRXL9+HQEBAXBycuLJ3XTQaDSIjo7G/fv3cfDgQQQGBmL//v1ISEhAdHQ0DAwMYGBggE6dOslIcHZ2dihRooRewboy2cu7eWQcJVJxmTJlcPfuXYSFhaUS6WrvkLJr1y6sXr0aR48eBQB06tQJCxYsgIGBgTzv3LlzmDFjBu7evYsKFSpgzpw5iIqKQkhICGbOnImlS5eifPnyGDFiRJ4884eIkZERevXqhaNHj+LAgQOYP38+ypYtC2dnZ5lGieaqvPtr166VURPbtWunU9YoAhO2RebITr9ITEyU4vVTp07h+PHjWLBgAczMzORCNQAoWbIkBg0ahBkzZrCI/f+pVKmS3MEGePteKws3lHxVolM+ePAARIQCBQrgzp072LNnD548eYLJkyezgDEbcHR0xNGjR9GlSxfcvHkTN2/exIYNG2QdbGxsjFKlSmHgwIH4/vvvU51PRHjw4AFu3boFALLfZ2hoKP3r/v37ePHiBQoXLqxT/jG6lC9fHqdPn8bYsWNx8+ZN+Pn5wd/fX8c3ypcvj1GjRmH48OEAdIWHbIvsI6t+MWTIEGzYsEHabsGCBZg8ebI8riyAsra2RteuXbFr1y64u7vj9u3bLGD/f9Jr93PZn3dUrVoVdevWxeHDh9GiRQu0bt0abm5ucHFxSbUgDUhue3l7e+Phw4cICQlBpUqVUKVKFVhaWqZqgzHvB9viw0HZIUgRsC9evBj29vZo164dypUrh7i4OOzduxcnT56UkdaNjIzQvXt3bNmyBUDygloTExMAwNatW+Ht7Y1mzZph1KhRKFu2rOwvurq6wt7eHn5+fggKCsqrR04NMQzDMAzDMAzDMAzDMAzDMEwukpCQQPXq1SMhBNWqVYtevHhBRETx8fFERBQeHk4FChSgxo0bk0ajyctb/SRImYeJiYmkVqvTTZOS7du3kxCChBA0cOBA+u2332jKlCnk5uZGQggqU6YM7dmzJ9vv/VMjKSkpy2nYFtnD+/iFYpPjx4/LvK9YsSItWbKEoqKidNLoO//3338nIyMjsrKyovv372foPfhciY2NpTFjxpChoSEZGRmREIKMjIzI2tqaunXrRpMmTaKLFy+Sv7//O6/F9UfmUd7RRYsWkZGREVWsWJFu3rypN+2CBQuocuXK0je6du1KPj4+Omni4+OpadOmJISgVq1aUVBQkDwWFRVF48aNk2Uak5qgoCCZx40bN6ZLly5RdHS0TprExEQaOnQoCSFIpVJRly5d6MGDB6muxbbIPNnlF9p1zc8//0zVq1eX6SwtLal06dJUr149Kl26NKlUKhJC0KRJk3L8+T4ltm7dSmZmZiSEoJ49e9I///xDz549o507d5K1tTUJIbitlM08ePCAZs+eTU2bNiUHBweqWLEi1apVi1avXk0XL16U6fTVzZGRkeTm5kb58uWjrVu36qQJDw+natWqyTIrLi4uV57nY0Z513v16kVVq1alcuXKUZUqVWjJkiV07tw5mY5tkfNk1C8SEhLk32PHjpVtYFNTU1q1atU7v2fw4MEkhKD69evLMRWG+dDQbv+Ehobq9ImVvxMTE+Vnjx49ohUrVpCFhQUZGBiQEILy5ctHTZo0oWfPnqW6JpNx2BYfFtr5P3XqVNkvcHJyonr16lGFChUof/788vOqVavS//73P3mOtq2ePHlCjo6OpFKpaP/+/fL6Sn0eFxdHzs7OJISg5cuX59ITvhsWsDMMwzAMwzAMwzAMwzAMwzC5yoEDB8jQ0JCKFStGgYGBRKQ74H79+nUyMDCgIkWK0OPHj1mE+IGwbNkyOWGi/JiYmFD9+vXpv//+k+k0Go2cgNE3icUTW2/JrJCZbZH7eHl5kaOjIwkhqESJEjR79myKjIwkovTt+Pz5c6patSoJIahOnTosXs8AXl5e5ODgQB07dqRp06bR+fPnyc/PTyeN9rvr4+NDx44do6lTp9I///zzTnEWk3EePXok39+GDRvSnj17KCQkhEJDQ2nXrl30xRdf6JRDX375JT169Eier7zvCxcuJCEEFS1alAICAohIt95ftGgRCSHI1dWVoqOj2W568PPzI3t7exJCUOXKlWno0KG0b98+OnbsGC1cuJDatWsnxesVK1akrVu36r0O2yLrZMUvtPNz6NChZGxsLNP16dOH/v77b3rx4gUlJiaSl5cXLVq0SIrYFy9enEdP/HFx48YNKcwZOXKk7Gso/PXXXySEoJkzZ+bRHX66KAKpkJAQioiIkO0khbTKkzdv3lCfPn3kAsENGzbQ4cOHadOmTeTq6io/Dw0NTfc6TGpevnxJr169ooiICJ3P2Ra5x7v8QrtNu2DBArK1tZULONeuXSuPpZfXvXr1kn0NFrAzHzIp3+O03ut79+7R+PHjZRuoQ4cONGTIEKpfv74U8L569SoX7vjThW3xYZFygWvJkiVlngshyNzcnIQQNH78eDpy5Ije84iSF7EVKVKEhBC0adMmInpr29jYWPrrr7/I3NycypYtS8HBwbnwZBmD4/czDMMwDMMwDMMwDMMwDMMwuUpgYCA0Gg3s7Oxga2sLAHK7WY1GAw8PDxARmjRpAnt7+7y8VQZvt5YfM2YMihQpghMnTsDb2xuGhobo168f3NzcUK1aNQBAYmKi3G4eAN68eYOXL1/iypUruHHjBrp27Yrq1avn1aN8cAgh3is92yL3SUpKgkajwfbt2/HixQsAQIMGDTB69GhYWlqCiNK0o1qtxsGDBxEeHg4AcHNzg0ajgUql4q3r06FSpUq4ffs2rK2tUx1LSkoCEcHAwAAAsGPHDvz0008IDAxEfHw8AMDc3ByzZ8/GN998A5VKla6NmPQpVqwY/v33XzRr1gznz5+Hp6enfH/VajUiIyMhhICNjQ0GDRqE+fPn65yv5HtoaCgAoFevXihbtiw0Gg0MDQ1BRNBoNHj48CEAwNnZGRYWFrn7kB8J5cqVg7u7O3r27AlPT094e3tj7dq1MDAwgKGhId68eQMhBFxcXDBmzBj07t0bAFK9/2yLrJNZv9BoNLLs6t27N/79918IISCEwIwZM/C///0PwFu/qVSpEkqVKoVnz55hwYIFOHToEAYPHgwrK6u8efAPHOVdv337Nvz8/ODq6ophw4ahTJkyAID4+HiYmprK9/rGjRtcP+QAKpUKDg4OaR5LCRHB2NgYK1asgK+vL27duoURI0YgPj4eJiYmePPmDSpVqoQdO3bAzs5Ox4+Uv5X2sfY1P3e7KnlQoEABvcfZFrlLRvzizJkz2L17t+w3/P777xgyZAgApMpXbXx8fODr6wuVSoUqVarAxMQkB56AYbKHlO9xyv+VMmPr1q1YtmwZ8uXLh+nTp2PKlCkyzRdffIEdO3Zg7dq1mDRpEpczmYRt8WFhYGAg69Jp06ahWbNmCAwMhIeHBxITE9GwYUOUKlUKDRo0kOckJSXJeljBwsICNWvWxMGDB3Ht2jW0adMGNjY2iIuLw86dO7F8+XLExcWhdevWKFiwYG4/ZpqwgJ1hGIZhGIZhGIZhGIZhGIbJVQoVKgQgeYIkNjYWlpaWAJInSC5evIhffvkFRITatWvn5W0y/49KpZKT5j179kSXLl1AREhMTEwlbouLi0N0dDQOHTqEgIAAHDx4EMHBwVL4u3TpUty/fx+FCxfOi0f56GFb5D4qlQpv3rzBvn37EBUVBQcHByxcuBAFCxZMU0yifP7gwQOsX78eoaGhMDY2xuDBg+ViHYBFPemhCDS1xVFAsrBTyfP169dLYU/Tpk1RoUIF2NjY4Pfff8fkyZORL18+DBs2jPM4izg5OcHd3R0TJkyAt7c3goKCACQvPDM1NcXQoUPRtGlTdO3aFYB+kVVcXBwAICwsTIpIgWR7ent74+jRowCAOnXqpHkNJtkWBw4cwPLly3H69GlcvXoVGo0GGo0GADBs2DC0b98eHTp0AMC2yEne1y8SEhJgbGwMAPjyyy/x77//wsDAAHZ2dpg+fTqGDRum93vMzc1Ro0YNEBFOnDiBoKAgVK1aNVee8WMkKSkJe/fuhVqtRvXq1WVeqdVq+a5fu3YNQPICAa4fspfM5KcQAhqNBtbW1jh9+jTGjx8PHx8fXLt2DTVr1kSFChUwf/58FChQIJVIWmkfREREIDg4GH5+fujduzfbFWyLD4l35YFyfO/evbh8+TIA4KeffsKIESMApF0PK/2I8+fP486dOwCA8uXLZ+etM0yuI4TAmTNn5KK+GTNm4JtvvgEAxMTEwMLCAuPGjcOOHTtw//59eQ6T/bAtch/terVu3bqoW7cu+vfvn2Z6fXWDubk5evTogYMHD+L3339HYGAgypQpg1u3bsHX1xfh4eFo27YtvvnmGzkWr4/cHqtiATvDMAzDMAzDMAzDMAzDMAyTq9jZ2cHCwgJXr17FP//8g3bt2kGj0eDixYuYO3cuHj16hLZt22LMmDF5favM/6NSqWREbyWqt7GxMV6/fo34+HgcP34cDx48wK5du/DkyROEhYXJc+vUqYPWrVujS5cuKFiwoFzAwGQOtkXuc+jQIdy+fRsWFhaYO3cuihUrlkpYraD9+ffffw93d3cYGhpixowZqFmzJjQajRRhJyUlISEhAQEBAShatCjMzMxgaWnJglG8nfxOmcfK53v27JHi9UmTJmHMmDFwcHCAEAINGzZEq1atsHLlSnTu3Bm2trY8mZ5FypQpg02bNuHp06c4f/48EhIS4ODggLJly+qIpdJ6d11cXAAAN2/exKVLl1C3bl2o1Wpcv34d3377LXx8fFC7dm307dsXgP7JeCaZ4sWLY9asWZg5cyaOHj2KqKgoWFpaolSpUnB1dZXvOtsi58moXyQmJkrx+ujRo7F161aoVCqUKlUKP/74oxSmpLSZUp+UK1cOhQsXRkREhNxpgkmNEs1eEeMobSQikovH/vrrLyxZsgQA0Lx58zy5TyY1StRRKysr/PXXX1Cr1QgKCoKTkxMASP9R2gTh4eGIjIzEoUOHcPfuXZw+fRoPHjyAWq3G1atX8dtvv+XZs3zssC3yhpMnT8qyqV+/fhg/fjyA9BeRCSFw4cIFjB07FkDyDlFKfUJEMg3DfGzs3r0bANCzZ08pmFar1XLBvoeHBwDg+fPnSEpKAsDt1ZyCbZH7ZCX/FNH5wIEDERUVhXHjxuHQoUPyuIODAwYPHozvv/8epUuXlnWMvrEtpf5Ia9wru2EBO8MwDMMwDMMwDMMwDMMwDJOrNG/eHGPHjsW8efMwZcoULFu2DNHR0YiLi0NcXByaNm2K3bt3w8jIiIWceYiS98okiCIECgkJwfnz5+Hr64v9+/fj5cuXePTokTyvQYMGaNq0KXr06AE7OztUr15dJ+o08/6wLfIWZRFAQkICypYtCyC1sBrQ3cJ54MCB2LFjB1QqFdq3b4927doBeBtBPCAgAJs2bcLhw4fh4+ODYsWKoUKFCpg3bx4qVqyYaxOFHyNhYWH4448/AAAjR47EzJkz5SQ6EaFFixaoUqUK/Pz8EB0djSJFiuTl7X4yWFtbw9raOlV0T+3obGnV1/3798emTZvg4eGBwYMHo0KFCoiJiUFwcDAeP34MJycn/PfffyhUqJDeel/7O3jngmQBoRACnTt31vlcEawBbIvc4l1+QUSyzv7999+xdetWAICtrS2mT5+epngdeFvPnD59GuHh4Tn9KB89yvtfpkwZAMD169fh6ekJBwcHWFtbY/Hixfjpp58AAP/73//QokWLPLtXJjVKO9fAwADGxsaoXLmyPPbw4UPExsZi//79CA4OxsGDB/Hs2TPExcVBpVIhf/78aNeuHSpUqICKFSsiNjYW5ubmefg0Hzdsi9xDqSs8PT1hZGQEExMTtGnTRuZZeuMgd+7cwZQpU5CQkAArKyu0bNkSVlZWqermhIQEqNVqHTtw/c18qBARfH19AQAFCxYEkCyYVsYw/Pz8cPr0aQBAu3bteKwwB2FbfHwIIWSfYsyYMShbtiyuX7+O+/fvw8rKCn369EGpUqVS7cKo9DkeP36MW7du4ebNmzhz5gx+/vnnXNsZlUcpGYZhGIZhGIZhGIZhGIZhmFxDGUyfO3cujIyMsGHDBoSFhSExMRFubm6oX78+fvvtNxgZGbGAM49RJrV9fX3h7++Pc+fOSbF0ZGSkTFOtWjU0aNAA3bp1Q/HixVGnTh29tuPFCJmHbZE3KOIOJeJt5cqVUatWLZ1j2ih5OnjwYGzatAkqlQpVqlTBgAEDUKVKFZnmzp07GDJkCG7cuAEigrm5OR4+fIiAgABcvnwZ7u7uqFixIotL0iAiIgK3bt2ClZUVOnfuLAU5yrv+/PlzKZhi0VTO8653VKPRwNLSEocPH0bnzp1x+fJlPHjwAECyiLddu3ZYs2YNihYtKneXSFlGCSGkTRVR8OfsG2k9O9viw0HJE+W3l5cX9u7di9evXwMApk2bhoEDBwJIv05+8eIFLly4AJVKhfLly6NEiRI5f/MfKUpeDxo0COvWrcP169fRp08fmJiYwMrKCmfOnAEADB8+HP369cvLW2Xwth2lvP/aO69ERETg4cOHOHLkCAIDA3HgwAHExsZK/zE0NETHjh3h6OiIrl27okiRInKBIfP+sC3yFiLC/v37kZiYCFdXV7kDSnr4+vpi5syZ8PLyAgC4urpi1KhRcsEUkCxE3L9/P7Zv346wsDDUrFkTNWrUwPjx47n+Zj5YhBCoUqUKTpw4gdjYWMTExMiFyvfv38dff/2FgwcPomLFirJ/zeQMbIuPE2WnP5VKhTZt2qBNmzap0ijH7927h7CwMBw9ehQ3btzAlStX8OrVK5kuIiICp0+flnbPSVjAzjAMwzAMwzAMwzAMwzAMw+Qa2tuTzpo1C926dUNkZCRiYmLg7OwMe3t7OeDO4vXcR61W49atW3jx4gV2796NgIAAeHh4IDY2FgBgZmaG8uXLo3r16mjcuDHKli0rBb2K3ZS/U8KC6feDbZH3KKIOJycnAMC9e/dw9epV1KxZUwo/lHREhPDwcEyYMAHbtm2DSqVC6dKlMX78eHTt2lVe08/PD/3794enpydq166NTp06oXnz5ggMDMTff/+NU6dOYfjw4di7dy8KFCiQ+w/9EXD79m28ePECxYoVQ6VKlSCE0IkG9/fffyMgIACurq4wNDRkgU4eY2BgALVaDWtraxw6dAgHDx5EcHAwAKB27dpwc3ND/vz5AUAKr1QqFWJjYxEWFoYLFy7A29sbe/bsQf369bF27Vq2ZyZhW+Qdx48fl1Eqv/vuO4wePRpA2uJ15fNz585h9+7dSEpKQu3atVGsWLFcve+PkZIlS+LYsWPo2rUrQkJCEBsbK+uHefPmoWfPnnB0dMzju/x8SSmSJiJER0fD29sb165dw9WrV3H69GmEhoZCrVbDwMAAZmZmaNKkCUqXLo3u3bvD1tY21a4HKa/PvBu2Rd6j5L2pqSkAoEKFCgAgF5Hpw8fHBz///DPc3d0RFRWFEiVKYPPmzShUqJBMc/z4caxZswY7duyQn927dw+bN29GcHAwFi9ezPU388FSsWJFJCUlYdOmTXBwcED16tUREhKC06dPY9++fTA0NMSUKVNQtWrVvL7VTx62xccHEemMu2tz584dvH79Grt27UJwcDBOnz4tA2KYmpqiePHi6Nq1K6pXr466deuiSJEiuSJeB1jAzjAMwzAMwzAMwzAMwzAMw+QyBgYGckJbX6QeZcCdyX22b9+O/v37SwG0paUlihQpgvbt28PV1RUNGjSAo6MjjIyMdGyUkJAAY2Nj+RkvQMg6bIsPh/Lly6Ny5crw8vLCyZMn4ezsDDMzMyn8ePXqFS5cuIDly5fj2LFjUKlUcHZ2xvjx4zFgwAAAyZGP37x5g8WLF8PT0xMNGjTAwoULUaVKFZiamqJGjRqws7PDrVu3EBQUhMjISBawp4GTkxNsbW2h0Wjg5+eH4sWLS3HiihUrMHXqVADAlClTUm2PzeQNhoaG0Gg0sLCwQK9evVIdVybYb926BV9fX5w/fx6XL19GUFCQjAJnZGQEtVoNd3d3NGnSJJef4NOBbZH7PHjwAEuXLgUAtGrVCpMnTwaQtrhTaQffvHkTAwYMgFqthqurK8aNGwcAOgt29MGLdoBy5crh2LFjuHbtGm7duoUyZcrAyckJtWvXzutb++yJi4uDhYUFTp48iaCgIBw9ehQ+Pj7w8fGRCwNtbGzQokULVK1aFS1btkTRokVRsWJFeQ0lnfZCQgXuQ2YctsWHQ8GCBQEAT548QXx8vBS0Kyjl+q1btzBz5kycPXsWr1+/RrFixXDo0CEUL15c1t/nz5/HggULcPLkSdja2mL06NGwtrbGgwcPsGjRIixduhQODg6YOHFiXjwqw7yTQYMGwdvbG7/++ivmzJkDAwMD+X4XKVIEs2bNwqBBg/L6Nj8L2BYfPkp/Qt8uKvfv38fDhw+xe/duBAUF4fDhwxBCIDExERYWFsiXLx/69u0LJycntGvXDkWKFIG1tbXO9XOrX8ECdoZhGIZhGIZhGIZhGIZhGCbXSW9C+3MX3eQlX375JS5fvgyVSoUyZcqgXbt2KFy4MKysrPSmf/DgAY4cOYIbN24AAJydnfHll1+iQIEC7xRYMenDtvhwqFChAvr374+pU6fihx9+QHR0NOrXrw97e3u8evUKixYtQkBAAPz8/GBgYIBmzZrhq6++kuJQZRGBsgWzsbExBg0aBDc3NxgbG8tJYCcnJwgh8PjxYzx9+hQlS5bM4yf/MHFwcECZMmVw6dIlzJo1C35+fjA0NISXlxeWLVsGAJg+fTq+/PLLPL5TBng7qa69kEaJLHr16lWEhYVhz5498PX1hYeHhxTBWVpaomzZsujfvz8aNWoEFxcXODk5ISEhIa8e5aOHbZE3REdHy+iG1atXl0LFtMTrQgh4eXnh66+/RnR0NPLnz4/mzZujTJkyACDrc41GAw8PDwQFBcHQ0BAlS5ZEnTp15K4gn3t7ulixYihWrBg6d+6c17fC/D8JCQkYPnw4jh07hufPn8vP7ezsUKdOHbRu3Ro1atSAq6urjiA3JUIIju6dRdgWHwZKWd28eXPs2bMHwcHBuH37NmrVqqVThgsh4O7ujjFjxiA4OBixsbEoXrw4du7cicqVK0v7JCUlYfPmzTh58iRq166NH3/8EW3btgUAxMbGwsDAAAsWLMDp06cxYsQImJmZ5dWjM4xelHd5wYIFKFy4MA4fPoyAgAAYGRmhR48eaNq0qXynmZyFbfFho9QfSv2bmJiIJ0+ewMvLC2fOnMHdu3dx5swZuYNj/vz5YW9vj3bt2qFUqVLo1KkTChQogCJFiuhcV6nTlevnVn9CkNLzZBiGYRiGYRiGYRiGYRiGYRjmsyU9kbMyiaEtXtiwYQM2bdqEU6dO6aR1c3PDkSNHULhwYRY0ZBK2xYeDdr5NnToVCxYsAJAcgdjS0hJxcXGIi4sDkCxGnDRpErp06YK6deumOn/37t3o3r07SpQoAQ8PDxQtWhQajUZGyjpz5gyaNm0KQ0ND3Lp1C5UqVcqDJ/448Pf3R9OmTREWFpbq2MyZMzFq1CjY2NjkwZ0xKaPAKRARPDw88PTpU+zcuROPHz+Gu7u7PG5nZ4fChQujXbt2qFixIurWrQtHR0dZzimT6FyWZRy2xYfBvn370KVLF1hbW+PMmTNwcXHRKzBXPvP19cXIkSNx6dIlJCQkoF69eti+fTuKFSsm0x45cgQ7duzAunXr5GfW1tb4+uuvMX/+fJ3rMcyHxN27d9G/f3+YmpqiS5cucHR0RKNGjWBrayvLE+139+XLl7hw4QLu3r2LMmXKwN7eHg0aNACQ9i4GTMZgW3w4hIWFoXPnzrh27RoaNWqEH374AZUrV0axYsVw7NgxeHh4YMaMGTK9o6MjDh06hPLly+tc5/Dhw2jfvj0AYOfOnejWrRuAt0LUbdu2oW/fvihXrhwuXbrEuz0xHyTa4xyvXr3CmzdvYGhoyH27PIBt8WFz7949XL16FX5+fjhx4gR8fX3x4sULebx06dJo2rQpKleujLZt28LMzAwODg7yOBF9MDugcrgNhmEYhmEYhmEYhmEYhmEYhmH0CqZTRvVRJq9WrVqFBQsW4MGDB3B2dsawYcNgb2+PTZs2Ye/evejatSsOHz4MS0vLXH2GTwW2xYeD9mKBefPmoWjRovjvv//g4eGBly9fAgCcnJxQvHhxfP/992jUqBGMjY0BINVkoL29PUxMTAAkC1VsbW2lHb28vDBr1iwAydH3WbyePuXKlcPZs2cxc+ZMBAQEIDw8HC4uLhgwYIAU6zC5iyJe044C5+/vDy8vLxw6dAj37t3DpUuXZHToQoUKoUKFCujRowccHR3lpHrKXSYU/1MEdB/CBPuHDtviwyQqKgrx8fEAUu82pNjs7t27GDVqFG7cuIGEhASUKlUKGzZs0BGv//vvv5g/fz5u3rwJAGjUqBGePn0Kf39/LFy4EEIIzJs3j8XrzAeJs7Mzzpw5AyA5Gqg22mWMWq2Gh4cHhg4dCj8/PwDJ7WMTExP89NNPmDBhgk6EUOb9YVt8ONjZ2WHz5s1o3rw5zp49Cz8/P6hUKtjb28PX1xcxMTHA/7V353FV1/kex9+HXQQ5IigoIiBaMIiOaIKl4nLTJJdxKc3GddSczJvaMt2uaTaV6VznTsstp3GZmrmRa26Rmvu+m6ImLiyCgCIqi7Kf+4eP80sSlzsph+X1fDx8dDrf3+93Psfv8ffj8Hv/Pj/d/C7Rtm1bzZs3T76+vrddOHDy5ElJ0sCBA28Lr0s3w46SVLduXeM7CVDV2NvbG/sTs9ls7FfYx1Q+5qJq++c//6kZM2YY/x8WFqbu3bsrOjpaHTp0UGBgoMxm823zlZeXJ2dnZzk4ONzWHMNWCLADAAAAAAAAAIAK3XqSw3rSY8eOHZo/f77Onz+v559/XhMnTlRERIQkacCAAerWrZt27NihQ4cOqUuXLrYqvcZhLmzH3t7eOKn38ssva9CgQUpNTVV6erqKi4vVqVMnubq6ysPDQ7fe+PjnJ3U9PDzUtGlTnTlzRkuXLpWHh4eCgoK0d+9ezZw5U1u2bFFERITGjBkjiW6W99K8eXPNnz9fjo6OKigokIODgxwdHW1dVq1lZ2en5ORkLV26VMnJydq9e7cOHjxojDds2FCtWrVSTEyMgoKCFBMTIxcXl9u6f/7835CtT6ZXR8xF1dKhQweFhobq7Nmzio+PV7t27WQymcqFRezs7LR//36NGDFCZ86cUUlJiRo2bKi4uDg1b97cuDPLrl279OGHH+rIkSOKiYnRmDFj1L9/fyUnJysuLk4TJ07U/PnzNXDgQLVv397G7xyomDUs/fNAlTUoJ0nffPON/v3f/13p6elq27at2rVrJ3d3d3388ceaMmWK6tSpo/HjxxOg+4WYi6qjRYsW2rRpk1544QUlJCQY3zWsnn76afXr108DBw6U2WyuMHCYk5MjScrMzFROTo7q1q1rzOWpU6e0bds2OTo6atCgQXJ1dSWEiirL+rm89fPJZ9U2mIuq66233pKLi4t8fHzUvHlzhYeHl2tcUVpaKunmfGVnZ+vHH3/U//zP/yg5OVl169ZVmzZt9Nprr8nT09PmIXYC7AAAAAAAAAAA4J6sJ6nWrFmjAwcOqH379po0aZJ+/etfS7rZxcfNzU0dOnTQli1blJSURGj6IWEuKt+t3ceaNGkiPz+/Cpe728ncRx99VFOnTtWECRP0/vvva9myZfL09NSePXskSa1bt9ZLL72kxx57TFL57saE2Svm6Ogok8mkOnXqqKyszNbl1HrFxcV6/fXXVVZWJicnJ0VFRSkyMlIRERF64okn5O7ufltIuri4WMXFxbp27Zrq168vFxcXSTc/84Qj/nXMRdXh6uqqX/3qVzpx4oTmz5+viIgIhYaGGndbOXXqlHbt2qXf//73KiwslCQFBwdrzZo1atmypUpLS41l169fr127dunxxx/X66+/rieeeELSza68vXr1UnBwsBF8JMCOqu5OdyL44YcfNHnyZKWnp6tfv36KjY01ukV369ZNMTEx+vTTT9W7d2/5+fmxf3oAmIuqITg4WLGxsTp79qy+//57FRcXq0mTJmrcuLFiYmKM5crKyioMGoaFhcnJyUnnz5/X0aNH1aFDB9nb22vfvn369NNPtWHDBjVv3lzR0dGSCKECQHVlvbj1tddeu23MGka3/v4oNTVVH330kRYvXqzk5GTjjoHr169XXFycNm7cKC8vL5v+zokAOwAAAAAAAAAAuC+XLl3S4sWLJUnjx483AtOlpaVyc3OTxWLR/v37JckIvuHhYC4qX0Xdx+6XNfw+fvx4WSwWzZgxQwkJCcb4s88+q5EjR6pr165ycnIyTjr+/OSjtbNivXr1bN4lqyq4dS4I+NtecHCwzpw5o0OHDik8PFz+/v7GCXLppy5wklRYWKiEhAS9/vrrSklJUXJysiIjIzV06FCNHj1adnZ2XLjxCzAXVYe7u7vef/997du3T7t27dLIkSP1+OOP69FHH9Xp06e1a9cuHTlyRCUlJfL29lbbtm31ySefKCgoqNx+Pi0tTX/5y18kScOHDzfC6yUlJXJ0dFRAQIA8PDwkSfn5+bZ5s8AvYGdnp5ycHI0dO1ZpaWnq3r27li1bJjs7OxUWFsrZ2VlPPfWUOnbsqB9//FGFhYUEcB8S5sJ2vLy85OXlpQ4dOtw2Zv0+cafjca9evdS+fXvt3LlTI0aMULt27VRWVqZjx44pISFBZrNZc+bMUVRUVIXrc6wHgOrBenFrRazfHUwmky5evKjZs2drwYIFqlOnjoYMGaKXXnpJTk5O+tOf/qSvv/5aw4YN0zfffKM6depUVvm3IcAOAAAAAAAAAADui8ViUV5enqSbHUWlnzr/FBYW6tNPP9W2bdvUtGlTdevWzZal1njMRfViMpmMUMgLL7ygqKgopaen69q1a6pXr56eeuopI5Qi/XTSMScnR3l5efruu+907Ngxbdy4UVlZWVqzZg3ddVElBQQEKCAgQJKMrvjWz7b1c52dna0lS5bo3XffVWpqqry9veXm5qaNGzdq48aNys7O1iuvvEKI6hdiLqqOoKAgrVu3Tv3799eRI0d05MgRY8x6gUCHDh3Up08fjR49Wj4+Prd12L1x44aKiork7u5uBButx32LxaIlS5bowIEDcnZ2Ni5qA6qbjIwMpaeny9fXV3PnzpWdnZ2Ki4uNrt8nT55UUlKScnNzdf36dRtXW7MxF1XP3S4SsF7EvHr1avXu3Vt79uxRYmKiJMnZ2VmRkZF68803jU7u1p8Lbr1I7efH+lu/mwAAqg/rfj0uLk5LliyRu7u7Jk+erN/97nfy9PSUJP3v//6vEhISdPDgQZ0/f14tW7a0Wb0E2AEAAAAAAAAAwH1xc3NT27ZttXHjRp04cUJ5eXlyc3NTcXGx/va3v2nevHlycHDQ6NGjZTabOen9EDEX1c+tAZHWrVurdevW5cZNJpMyMzNVWFiotWvXKikpSStXrlRGRobRed3NzU0BAQFaunQpAXZUedYglHXfY7FYJEmrVq3SjBkzlJmZqb59+2ru3Lkym806ePCghg0bptdee01t2rRRjx49bFZ7TcNc2F7Lli21bt06ff7559q5c6cSEhKUm5urHj16KCQkRC+//LLc3Nzk7OxcYRdcDw8PBQQEKCkpSYcPH1ZISIgcHR0lSbt379Y///lPWSwWPfvsswoICOC4j2rpxx9/VFpamtzd3Y0LOKyfc4vFom3btikrK0tdunRRYGCgLUut8ZiL6sXe3l4lJSUym81at26dvv76ayUlJenKlSvq3bu3goOD9cgjj0i6vdN6enq6MjIytGHDBu3evVtms1l///vfOYYAQDVl3cd//vnnyszM1IgRI4zwellZmUpKSuTk5KTAwEAdPnxYly5dIsAOAAAAAAAAAACqPldXV3Xv3l3r16/XH//4R509e1bNmjXT7t27deDAARUVFWngwIEaOnSoEXDAw8FcVD8VBRLz8/OVlpamDRs26Ny5c1q1apVyc3N18eJFY5mnnnpKzZo104ABA+Tj46OwsLDKLh14IEwmkxITEzVz5kxlZmZq9OjR+vDDD+Xq6qqSkhL927/9m958801NnjxZR48eJTT9EDEXttG0aVO9/fbbMplMys7OVklJiRo2bHjbchV1vDebzWrVqpVOnjyp2bNnq7CwUG3bttWmTZsUFxenrVu3KjQ0VMOHD1fdunUr4+0AD9wjjzwiPz8/lZSUKCsry3g+Pz9f33//vV577TUVFRWpW7ducnd3t2GlNR9zUf04ODiotLRU7u7uGjNmjEwmU4UXMyUmJio3N1fffPONzp07p/Xr1xvfPZycnFRUVKShQ4eqV69etngbAIAH4Pjx4zp06JDq1aunP/zhD/L09DTu3uTk5KQTJ05o+/btkiQXFxeb1kqAHQAAAAAAAAAA3JP15Perr76qS5cu6U9/+pO++uorY7xJkybq37+/JkyYYNPOPbUBc1E9lJaWGh0rrYqKinTq1CkdPHhQ+/bt08aNG5WWlqbr16/LZDLJ3t5enTt3VlBQkAYPHixfX1+FhYVVGD6huy6qo3fffVdJSUl67LHH9PHHH8vFxcU4kS7dDE5J0tmzZyVVfOEHHgzmwrY8PT3L/f/d9ukWi0WOjo767LPPdObMGR06dEiTJk2Ss7OzcnNz5ezsrPbt22vatGnq1q2bsY5082KFiuaO+URV1KBBAzVt2lS7d+/Wm2++qaFDh8rJyUlHjhzRF198oby8PA0bNkx/+MMfJPGz0MPEXFQv1r9/6xzc+t/U1FSlp6dr5cqVSkpKUlxcnIqKipSfny97e3u5u7vrt7/9rVq0aKE+ffrI29tbDRo0sOXbAQD8QhaLRQUFBSotLVVmZqZatGhhfM9LTk7Wn//8Z126dEn9+vVTRESETWslwA4AAAAAAAAAAO7JZDIZgdzZs2crNDRUR44cUUpKisxms1544QUFBgbK29vb1qXWeMxF9WANr+/cuVMpKSn67rvvdOLECR07dkxFRUWSJA8PD7Vv317h4eF68skn1aRJE7Vp06bC7f08GERICNVRenq6JGnQoEFycXFRUVGREZS+cOGCNm3aJEnGnQYI2D48zIVt3Gnffbd9uvW4bzabtXHjRk2aNEk//PCDUlNT1bRpU40fP17dunVTZGSkJJWbS+nm3F2+fFlZWVk6fvy4BgwYwHyiSvLy8tLChQvVtWtX7dy5U7t27TIuxpCkESNGaOHChZK4CONhYy6qB+t3QusxpLS0VJcvX9apU6e0detWHTt2TOvXr9fVq1cl3byLV506ddS/f38FBgZqwIAB8vLykp+fX7nt3jrXAIDqx9PTU+Hh4YqPj9f+/fsVGhoqLy8vHT9+XJ9++qkWL14sf39/DRkyxNalEmAHAAAAAAAAAAD3x97e3jhJPnLkSEnlO3yi8jAXVdeVK1f0xRdfaPv27UpNTdW+ffuMMU9PT4WGhqpnz55q166dWrdurebNm8tisZQL/pSVlclisRgheOYUNUVBQYEkKSsrSxaLxQjZ5uTkaNWqVVq/fr2aN2+uqKgoW5ZZKzAX1Yv1uO/h4aH58+fr6tWrysnJUb169eTl5VVuWScnJxUWFurIkSM6dOiQDh48qG3btikjI0N5eXkaNWqU5s+fb6N3Atxdy5YttW3bNr399ts6e/aszp07pyeffFJRUVF64YUXJBGYrizMRdXz8wtaS0tLlZ+fr+3bt+vEiRPaunWr4uPjlZKSYizj5+enXr16KTQ0VL1795bZbFZQUNBdt893DwCo3ho3bqyBAwfq6NGjevXVV7Vq1So1btxYcXFxysnJkY+Pj8aOHau+ffvaulQC7AAAAAAAAAAA4P5ZA7VWnNy2Heaiaqpfv77Onj2r5cuXq2nTpmrVqpX69++voKAgde/eXY0aNZKjo2O5dQoLC5Wbm6vk5GT5+PjIy8tLLi4uxkUKQHVnvcAmPDxcmzdv1o4dO7Rnzx61bdtWCQkJ+vbbbzV79mzl5uZqwoQJd7wTAX455qL6sre3V0lJiRwcHOTl5WUE12/cuKE6depox44dOnv2rOLi4nT06FH9+OOPxrr169dXVFSU2rVrp/Dw8NtCkEBV0rx5c82bN0/Ozs66ePGifHx8jDEC05WLuahaTCaTysrK9MUXX6igoECxsbFKTk5WcnKysUxAQIBiYmLUpUsXPf744/L391eTJk2M8bKyMkkyjic/3z4AoHqzHp+nTZum/Px8zZ49W9u3bzfGo6OjNWjQII0cOVJ16tSxYaU3mSzc9wMAAAAAAAAAAAD4xW4NBK5Zs0aPPfaYHB0dVb9+/XLLFRcXGyH2HTt2aMmSJVq1apXS0tLk7++viIgIffLJJ/Ly8iLEjholMTFRXbp0UWpqqpo1a6YGDRooJSVFubm5Kiws1NixYzVv3jxbl1krMBfVw50CooWFhdq+fbsyMjK0bNkypaWl6cCBA8Z4YGCg/Pz89OSTT6p169YKDw+Xv79/ZZYO/CLWn6lu/TfAhRe2wVxULampqeX2561atZKPj4/69eun4OBgtW/f/rbvHpKUn5+v0tJSubm5GfPIRQgAUDPd+nukNWvWKCEhwei8/swzz6hevXq3XcRkKwTYAQAAAAAAAAAAgAfkXoHzWwM/q1at0ksvvaTz58/L1dVVgYGBunHjhs6dO6fQ0FBt3bpVDRo0ICSEGiUhIUGDBw/W2bNndf36dUlSZGSkevbsqenTp9u4utqFuah6rPv7n+/3CwoKtH//fp0+fVrLly9XWlqafvjhB2Pc399fvr6+GjRokIKCgtS5c2e5ubnJ2dm53Pa5KAoAqr9Tp05p586datKkiTp16iR7e/ty+3vrMaSkpESJiYlasGCBNm/erPT0dEVFRal3794aPny4JELsAFBTVZef+wmwAwAAAAAAAAAAAJVsw4YNGjZsmLKysjRgwAANHz5cPXr0UHFxsV566SX94x//0KhRozRv3rwq0xkLeFAyMzN1+PBhpaamysvLS+3atZOfn5+ty6qVmIuq6fLly0pMTNT+/fu1ZcsWnThxQsePHzfGAwIC1KhRI/3mN7+Rv7+/YmJi5ODgoDp16pTbDsFEAKgdft4pv6ioSMuWLdNnn32m7du3S5Lc3d2Vm5srSZo9e7ZeeeUVW5YMAAABdgAAAAAAAAAAAKAyZWRkaPTo0fruu+80ZMgQTZ8+XY888ogxnp2drZCQEAUGBmrnzp3VomsWAOCXKysr06RJk/Tll1+quLhYBQUFkiRvb2+Fh4era9euCgkJUefOneXg4CAPD4+7bovwOgDUPmVlZVq+fLlmzpyp+Ph4tW3bVjNnzlSLFi104sQJjRo1SlevXtXKlSvVp08fW5cLAKjFaNcAAAAAAAAAAAAAVKKUlBTt2LFDZrNZzz//vIKDgyX9dIvnnJwcWSwWpaSkKC8v764BRQBAzWFnZ6cxY8Zo6dKlioyMVEREhDp37qy2bdvKbDbLycmp3PIWi0WFhYWKi4vTxYsX5eHhocDAQHXo0EF2dnaE2AGgFrF2Yc/OztaCBQsUHx+vPn36aObMmWrdurUsFotatGih999/XxMmTNDevXsJsAMAbIoAOwAAAAAAAAAAAFAJrKGSrVu3Ki8vT+3atVPv3r0lScXFxXJ0dJQkrV27VllZWerYsaOcnJyM9QAANd+vf/1rnTt3Tq6uruWeLy0tlSSVlJTIwcFBJSUl+uqrr7R48WKtXbvWWM7V1VXvvPOOJk+eLDs7O44hAFBLWPf1Cxcu1HfffSez2axp06apdevWkm5+33ByclJgYKCkmxfVAgBgSwTYAQAAAAAAAAAAgEpgDZU0adJE0s0Q4vnz59W0aVMjvL548WK98cYbkqTRo0erTp06tikWAGAzt4bXrV3U7e3tJckIr3/00Uf68MMPlZKSIn9/fw0ZMkRFRUWaN2+epk6dKhcXF02YMIHwOgDUMgkJCZKksWPHql27drJYLLJYLHJyclJ+fr4WL14sSfL09LRlmQAAiHtFAQAAAAAAAAAAAJWocePGcnd315EjR7RixQodP35cly9f1scff6zx48crLy9P48aN05AhQ2xdKgDAxuzsfop1WCwWSdLKlSv12WefKTMzU6NHj9Y333yjWbNmae7cuVq9erUcHR3117/+VRcvXrRV2QAAG7l69aok6cKFCyoqKpLFYpGdnZ1u3LihVatWaePGjfLx8dHQoUMl/XRsAQCgshFgBwAAAAAAAAAAACpRdHS0XnzxRUnSyy+/rK5duyoyMlKTJk3StWvXNHz4cP3+978v14EXAABrN/UVK1bo9OnT6t27t1555RW1adNGZWVlKioqUrdu3dS+fXsdO3bMCDECAGqPiIgISTc7sZ84cUKSdOPGDS1atEgffPCBkpOT1bNnTwUFBUkSd+oAANiMycJlVAAAAAAAAAAAAEClKCsrM7rpTp8+XQsXLlRqaqqcnZ1lb2+vt956S0OHDlXTpk1tXCkAoCrat2+fIiMjJUkbN25U165dJf10fLly5YoiIyOVlJSkY8eOqWXLlrYsFwBQyZKSktS1a1clJyerZcuW8vHxUWZmphITE1VUVKRevXrpL3/5i1q0aGHrUgEAtRwBdgAAAAAAAAAAAKASlZaWyt7eXpJ08uRJZWRkqG7dunJzc1NoaKiNqwMAVGWbN29W9+7d5efnp0OHDsnLy0slJSVycHBQXl6e3nvvPc2aNUtt2rTR/v37jeMNAKD2OHXqlPr166fExEQVFxdLkoKCgtSzZ09NnjxZwcHBNq4QAADJwdYFAAAAAAAAAAAAALWJvb290Sk3JCREISEhti4JAFBNeHt7y8vLSwUFBTp27Jg6d+4sBwcH5ebmatGiRYqNjVX9+vU1ceJE2dvby2KxyGQy2bpsAEAleuSRR7Rp0ybt2LFDKSkpcnBwUL9+/dSgQQPVq1fP1uUBACCJDuwAAAAAAAAAAAAAAADVQnZ2tmJiYrR371516tRJffv2VUhIiD7//HPt3r1bV69e1W9/+1tNnz5dfn5+ti4XAAAAACpEgB0AAAAAAAAAAAAAAKCaSEhIUNeuXZWeni5JcnZ2VmFhoXx9fdWvXz9NmTJFwcHBNq4SAGBr3IUDAFCVEWAHAAAAAAAAAAAAAACoRs6cOaN33nlHR48eVVFRkXx8fDR58mRFRETI19fX1uUBAAAAwF0RYAcAAAAAAAAAAAAAAKhmioqKVFxcrKKiItWvX9/W5QAAAADAfSPADgAAAAAAAAAAAAAAUM1ZLBaZTCZblwEAAAAA92Rn6wIAAAAAAAAAAAAAAADwyxBeBwAAAFBdEGAHAAAAAAAAAAAAAAAAAAAAAFQKAuwAAAAAAAAAAAAAAAAAAAAAgEpBgB0AAAAAAAAAAAAAAAAAAAAAUCkIsAMAAAAAAAAAAAAAAAAAAAAAKgUBdgAAAAAAAAAAAAAAAAAAAABApSDADgAAAAAAAAAAAAAAAAAAAACoFATYAQAAAAAAAAAAAAAAAAAAAACVggA7AAAAAAAAAAAAAAAAAAAAAKBSEGAHAAAAAAAAAAAAAAAAAAAAAFQKAuwAAAAAAAAAAAAAAAAAAAAAgEpBgB0AAAAAAAAAAAAAAAAAAAAAUCkcbF0AAAAAAAAAAKBylZSUaOXKlVq3bp12796tzMxMXblyRa6urvL29larVq3UsWNHDRo0SIGBgbYuFwAAAAAAAAAA1CAmi8VisXURAAAAAAAAAIDKsWrVKk2dOlVnzpy5r+VjYmI0a9YshYWFPeTKAAAAAAAAAABAbUAHdgAAAAAAAACoJf74xz/qrbfekrWvSXR0tJ5++mmFh4erQYMGun79utLT07Vt2zatWbNGSUlJWrt2rfz8/PTZZ5/ZuHoAAAAAAAAAAFAT0IEdAAAAAAAAAGqBBQsWaMyYMZKkRo0aKTY2VtHR0XdcvrS0VLGxsfqP//gPPfXUUwTYAQAAAAAAAADAA0GAHQAAAAAAAABquPPnz6tly5YqKChQvXr1dPDgQQUHB9/XulevXtX27dvVp0+fh1wlAAAAAAAAAACoDexsXQAAAAAAAAAA4OGaO3euCgoKJEnvvvvufYfXJclsNt8WXk9KSpLJZJLJZNKiRYskScuXL1fv3r3VuHFjOTg4VNjdffXq1Ro0aJD8/Pzk7OysBg0aKCoqSrNmzVJeXt4da5gxY4bxenezZcsWY7ktW7bcNh4dHS2TyWTUdurUKY0bN06BgYFycXGRr6+vnnnmGe3Zs+eur1NaWqpFixapZ8+e8vHxkZOTkzw8PNSiRQt1795d7733nk6cOHHXbQAAAAAAAAAAUFs52LoAAAAAAAAAAMDDY7FY9OWXX0qS3N3dNWrUqAe+/eHDhxuvUZGCggI999xzWrFiRbnns7OztWfPHu3Zs0cfffSR1q5dqzZt2jzQ+u4kLi5OgwcPVn5+vvFcRkaGlixZomXLlum//uu/9PLLL9+2Xl5ennr37q3t27eXe764uFg5OTk6c+aMNm3apEOHDmnp0qUP+20AAAAAAAAAAFDtEGAHAAAAAAAAgBosPj5ely9fliR16tRJdevWfaDb/+///m8dPXpUnTp10oQJE9SyZUtdvXpVSUlJxjIjRowwwuutW7fW1KlTFRISouzsbMXGxmrRokW6cOGCunfvrqNHj6pJkyYPtMafu3Dhgp577jk5ODjovffeMzqyb968WR988IFycnI0efJkBQQEqH///uXWnTFjhhFef/rppzVs2DD5+/vLxcVFFy9e1OHDh7VmzZp7dosHAAAAAAAAAKC2IsAOAAAAAAAAADXY0aNHjcdt27Z9KNsfPny4Fi1aVGFoe+3atVq8eLEkqXv37vr222/l5ORkjD/55JOKiorSuHHjlJ2drSlTpujrr79+4HXe6vTp0/Lw8NDu3bsVEhJiPB8VFaV+/fqpY8eOysnJ0cSJExUTEyNHR0djGet7GTRokJYsWXLbtnv16qU33nhD2dnZD/U9AAAAAAAAAABQXdnZugAAAAAAAAAAwMOTlZVlPPb29r7jcmVlZYqPj7/jn+Li4grXM5vN+vjjj+/YcfyTTz6RJDk6OmrhwoXlwutWY8eOVY8ePSRJy5cvV3p6+n2/v3/VtGnTyoXXrX71q1/pzTfflCSlpaVp5cqV5cYzMjIk3exmfzeenp4PqFIAAAAAAAAAAGoWAuwAAAAAAAAAUIPl5uYaj+vWrXvH5XJyctSqVas7/klLS6twvT59+sjd3b3CsZKSEm3dulXSzU7rTZs2vePrjx071lhny5Yt93pbv4jJZNKIESPuOD5q1CgjkP/999+XG/P19ZUkff3117p+/frDKxIAAAAAAAAAgBqKADsAAAAAAAAA1GC3hsvz8/Mf+PbDw8PvOHbu3Dkj5N2hQ4e7bufW8fj4+AdT3B0EBgbKy8vrjuPe3t4KCAiQJB07dqzcmDX4vmvXLgUGBmrixIlasWKFLl269NDqBQAAAAAAAACgJiHADgAAAAAAAAA1WIMGDYzHdwtZm81mWSyWcn/u1qXcqn79+nccy87ONh43bNjwrtvx8fGpcL2H4V61SFKjRo0qrGXatGkaPXq0TCaTLl68qE8++UQDBgxQw4YNFRYWpunTpyszM/Oh1A0AAAAAAAAAQE1AgB0AAAAAAAAAarDWrVsbjw8fPvzAt29vb39fy5lMpgf+2v+qX1KLo6Oj5s+fr/j4eP3nf/6nOnbsKCcnJ0nS8ePHNXPmTAUHB2vlypUPqlwAAAAAAAAAAGoUAuwAAAAAAAAAUIOFhYUZXdi3b9+u69evV9pre3p6Go/v1ZU8IyOjwvUkyc7up19ll5WV3XEb+fn591XX/XRIty7z81qsQkND9c4772jnzp26du2aNmzYoFGjRsne3l55eXkaOnSo0tPT76seAAAAAAAAAABqEwLsAAAAAAAAAFCDmUwmPf/885KknJwc/f3vf6+01w4KCpKrq6skae/evXdddt++fcbjsLCwcmPu7u7G4ytXrtxxGwkJCfdVV2Jioi5fvnzH8UuXLikpKanCWiri4uKiHj16aMGCBZozZ44k6caNG1qzZs191QMAAAAAAAAAQG1CgB0AAAAAAAAAargpU6bIxcVFkvTGG28oMTGxUl7XwcFBXbp0kSRt2LBBqampd1z2b3/7m7FOdHR0ubHAwEDj8YEDB+64jdjY2Puqy2Kx6Isvvrjj+KJFi2SxWCRJPXr0uK9tWnXv3t14nJWV9f9aFwAAAAAAAACA2oAAOwAAAAAAAADUcP7+/vrwww8lSdeuXdMTTzyhHTt23HUdi8Wiq1ev/uLXfvHFFyVJRUVFGjNmjIqLi29bZsGCBVq/fr0kacCAAfL19S033rFjRzk4OEiS/vznPxvh8lvNmTOnXBf3e3nnnXd06tSp254/efKk3n33XUmSr6+v+vXrZ4xlZ2dr9erVFb6+lfV9SOWD9wAAAAAAAAAA4CYHWxcAAAAAAAAAAHj4xo4dq7S0NL399tu6cOGCOnXqpG7duqlPnz5q1aqVPD09VVpaqoyMDB06dEiLFy/W8ePHJUn29vZycnL6l143JiZGgwcP1pIlS7R+/XpFRkZqypQpevTRR3XlyhXFxsZqwYIFkiRPT0/NnTv3tm00bNhQgwcP1ldffaV169apb9++evHFF9WoUSOlpKToyy+/1LJly9SxY0ft2rXrnjUFBwfr0qVLioyM1Ouvv250fN+yZYtmzZqla9euSZI++uijcu87JydHffv2VUBAgAYMGKAOHTqoWbNmcnBwUHp6ulavXm10km/SpImefvrpf+nvDAAAAAAAAACAmsxkuVurGAAAAAAAAABAjbJixQq98sorOnfu3D2XNZlM6tmzp+bMmaOwsDDj+aSkJKO7+MKFCzVy5Mi7bqegoEDPPfecVqxYccdlGjdurLVr16pNmzYVjmdmZqpTp046ffp0heNDhgzR7373O/Xo0UOStHnzZiOYbhUdHa2tW7eqS5cuevXVV/XMM8/o+vXrt23Lzs5Os2fP1tSpU8s9f+v7vhtfX1+tXr1aERER91wWAAAAAAAAAIDahg7sAAAAAAAAAFCL/OY3v1GfPn20YsUKrVu3Trt379bFixd19epVubq6qkGDBmrVqpWioqL07LPP3ldg+15cXFy0fPlyrV69WosWLdKePXuUlZWlunXrqmXLlurfv78mTpwoNze3O26jUaNG2rt3rz744AMtX75cKSkpqlu3rsLCwjRu3DgNGzZMW7Zsue+aYmJidODAAc2ZM0ebNm1Senq6zGazOnXqpKlTpyoqKuq2dZo1a6Z9+/bp22+/1a5du5ScnKzMzEzl5eXJbDYrNDRUffr00bhx41SvXr1/5a8KAAAAAAAAAIAajw7sAAAAAAAAAIBa4dYO7P+fsDsAAAAAAAAAAHhw7GxdAAAAAAAAAAAAAAAAAAAAAACgdiDADgAAAAAAAAAAAAAAAAAAAACoFATYAQAAAAAAAAAAAAAAAAAAAACVggA7AAAAAAAAAAAAAAAAAAAAAKBSEGAHAAAAAAAAAAAAAAAAAAAAAFQKk8Visdi6CAAAAAAAAAAAAAAAAAAAAABAzUcHdgAAAAAAAAAAAAAAAAAAAABApSDADgAAAAAAAAAAAAAAAAAAAACoFATYAQAAAAAAAAAAAAAAAAAAAACVggA7AAAAAAAAAAAAAAAAAAAAAKBSEGAHAAAAAAAAAAAAAAAAAAAAAFQKAuwAAAAAAAAAAAAAAAAAAAAAgEpBgB0AAAAAAAAAAAAAAAAAAAAAUCkIsAMAAAAAAAAAAAAAAAAAAAAAKsX/ATY9n01ZGrAgAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -802,15 +805,13 @@ "id": "e2098fd1", "metadata": {}, "source": [ - "1) As we expected, the coverage is now homogenous on the ethnicity groups. To achieve it, the prediction intervals are now even wider than before for previously under-covered samples, and smaller on previously over-covered samples. \n", + "As we expected, the coverage is now homogenous on the ethnicity groups. To achieve it, the prediction intervals are now even wider than before for previously under-covered samples, and smaller on previously over-covered samples. \n", "\n", "$\\to$ The ``CCP`` method can guarantee a homogenous coverage on groups of interest (thus remove bias), by giving to the calibrator those groups, using ``CustomCCP`` calibrators.\n", "\n", - "2) It turned out that, over all the dataset features, the 4 ethnicity features we identified were the ones with the biggest bias.\n", - "\n", "$\\to$ Fixing this bias, almost fixed the non-homogeneity of the coverage, on the target value.\n", "\n", - "3) Next steps: the only issue to achieve an almost perfect adaptativity, is to fix the under-coverage for the biggest 10% target crime values. One idea may be to combine the two approachs we used, or add a new column to the calibrator, with the ``y_pred`` value (example: adding ``Polynomial([4], variable=\"y_pred\")``) to have a bigger interval for high predictions, without changing too much the smaller predictions." + "Next steps: the only issue to achieve an almost perfect adaptativity, is to fix the under-coverage for the biggest 10% target crime values. One idea may be to combine the two approachs we used (with indicator functions to avoid the biases and gaussian kernels for overall adaptativity), or add a new column to the calibrator, with the ``y_pred`` value (example: adding ``Polynomial([4], variable=\"y_pred\")``) to have a bigger interval for high predictions, without changing too much the smaller predictions." ] } ], From abe9bf9550771fde349bc51881b30fc29578af05 Mon Sep 17 00:00:00 2001 From: Damien Bouet Date: Wed, 31 Jul 2024 13:58:00 +0200 Subject: [PATCH 121/165] FIX: tests --- mapie/tests/test_futur_regression.py | 16 ++++++++++++---- 1 file changed, 12 insertions(+), 4 deletions(-) diff --git a/mapie/tests/test_futur_regression.py b/mapie/tests/test_futur_regression.py index 85eae86cd..03e146a39 100644 --- a/mapie/tests/test_futur_regression.py +++ b/mapie/tests/test_futur_regression.py @@ -49,8 +49,8 @@ GaussianCCP(5), ] WIDTHS = { - "split": 3.87, - "prefit": 3.89, + "split": 3.943, + "prefit": 3.943, } COVERAGES = { @@ -587,8 +587,8 @@ def test_results_prefit() -> None: y_pred_low, y_pred_up = y_pis[:, 0, 0], y_pis[:, 1, 0] width_mean = (y_pred_up - y_pred_low).mean() coverage = regression_coverage_score(y, y_pred_low, y_pred_up) - np.testing.assert_allclose(width_mean, WIDTHS["split"], rtol=1e-2) - np.testing.assert_allclose(coverage, COVERAGES["split"], rtol=1e-2) + np.testing.assert_allclose(width_mean, WIDTHS["prefit"], rtol=1e-2) + np.testing.assert_allclose(coverage, COVERAGES["prefit"], rtol=1e-2) @pytest.mark.parametrize("calibrator", PHI) @@ -679,3 +679,11 @@ def test_check_conformity_scores_error() -> None: mapie = SplitCPRegressor() with pytest.raises(ValueError, match="Invalid conformity scores."): mapie._check_conformity_scores(np.random.rand(200, 5)) + + +def test_optim_kwargs(): + mapie = SplitCPRegressor(alpha=0.1) + with pytest.warns(UserWarning, match="Iteration limit reached"): + mapie.fit( + X, y, calib_kwargs={"options": {"method": "SFSQP", "maxiter": 2}} + ) From 3c0f1c7ae24935021b67816090e3d4eb5fc25bc6 Mon Sep 17 00:00:00 2001 From: Damien Bouet Date: Wed, 31 Jul 2024 14:01:08 +0200 Subject: [PATCH 122/165] FIX tests --- mapie/tests/test_futur_regression.py | 16 ++++++++++++---- 1 file changed, 12 insertions(+), 4 deletions(-) diff --git a/mapie/tests/test_futur_regression.py b/mapie/tests/test_futur_regression.py index 85eae86cd..03e146a39 100644 --- a/mapie/tests/test_futur_regression.py +++ b/mapie/tests/test_futur_regression.py @@ -49,8 +49,8 @@ GaussianCCP(5), ] WIDTHS = { - "split": 3.87, - "prefit": 3.89, + "split": 3.943, + "prefit": 3.943, } COVERAGES = { @@ -587,8 +587,8 @@ def test_results_prefit() -> None: y_pred_low, y_pred_up = y_pis[:, 0, 0], y_pis[:, 1, 0] width_mean = (y_pred_up - y_pred_low).mean() coverage = regression_coverage_score(y, y_pred_low, y_pred_up) - np.testing.assert_allclose(width_mean, WIDTHS["split"], rtol=1e-2) - np.testing.assert_allclose(coverage, COVERAGES["split"], rtol=1e-2) + np.testing.assert_allclose(width_mean, WIDTHS["prefit"], rtol=1e-2) + np.testing.assert_allclose(coverage, COVERAGES["prefit"], rtol=1e-2) @pytest.mark.parametrize("calibrator", PHI) @@ -679,3 +679,11 @@ def test_check_conformity_scores_error() -> None: mapie = SplitCPRegressor() with pytest.raises(ValueError, match="Invalid conformity scores."): mapie._check_conformity_scores(np.random.rand(200, 5)) + + +def test_optim_kwargs(): + mapie = SplitCPRegressor(alpha=0.1) + with pytest.warns(UserWarning, match="Iteration limit reached"): + mapie.fit( + X, y, calib_kwargs={"options": {"method": "SFSQP", "maxiter": 2}} + ) From e82b1c7a7ce522266fff5b62f5d0f6e6c6598802 Mon Sep 17 00:00:00 2001 From: Damien Bouet Date: Wed, 31 Jul 2024 14:08:36 +0200 Subject: [PATCH 123/165] UPD: fix coverage --- mapie/tests/test_futur_regression.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/mapie/tests/test_futur_regression.py b/mapie/tests/test_futur_regression.py index 03e146a39..458991504 100644 --- a/mapie/tests/test_futur_regression.py +++ b/mapie/tests/test_futur_regression.py @@ -685,5 +685,5 @@ def test_optim_kwargs(): mapie = SplitCPRegressor(alpha=0.1) with pytest.warns(UserWarning, match="Iteration limit reached"): mapie.fit( - X, y, calib_kwargs={"options": {"method": "SFSQP", "maxiter": 2}} + X, y, calib_kwargs={"method": "SFSQP", "options": {"maxiter": 2}} ) From 40bf93aead7f487884f96ea0cb48a52441bd67a4 Mon Sep 17 00:00:00 2001 From: Damien Bouet Date: Wed, 31 Jul 2024 15:45:21 +0200 Subject: [PATCH 124/165] FIX: typo --- mapie/tests/test_futur_regression.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/mapie/tests/test_futur_regression.py b/mapie/tests/test_futur_regression.py index 458991504..963f9d045 100644 --- a/mapie/tests/test_futur_regression.py +++ b/mapie/tests/test_futur_regression.py @@ -685,5 +685,5 @@ def test_optim_kwargs(): mapie = SplitCPRegressor(alpha=0.1) with pytest.warns(UserWarning, match="Iteration limit reached"): mapie.fit( - X, y, calib_kwargs={"method": "SFSQP", "options": {"maxiter": 2}} + X, y, calib_kwargs={"method": "SLSQP", "options": {"maxiter": 2}} ) From ced2086848dc38e298440388973b647d542034f2 Mon Sep 17 00:00:00 2001 From: Damien Bouet Date: Mon, 5 Aug 2024 16:45:30 +0200 Subject: [PATCH 125/165] UPD: theoretical description --- doc/api.rst | 3 ++ doc/theoretical_description_ccp.rst | 48 +++++++++--------- .../4-tutorials/plot_ccp_tutorial.py | 50 +++++++++++++++++-- mapie/calibrators/ccp/base.py | 2 +- 4 files changed, 74 insertions(+), 29 deletions(-) diff --git a/doc/api.rst b/doc/api.rst index e6cd29c91..acd95a934 100644 --- a/doc/api.rst +++ b/doc/api.rst @@ -1,3 +1,6 @@ + +.. _api: + ######### MAPIE API ######### diff --git a/doc/theoretical_description_ccp.rst b/doc/theoretical_description_ccp.rst index 514109fa4..0479d15cc 100644 --- a/doc/theoretical_description_ccp.rst +++ b/doc/theoretical_description_ccp.rst @@ -6,14 +6,8 @@ Theoretical Description ######################## -The Conditional Conformal Prediction (CCP) method :ref:`[1]` allows for better (adaptative) interval widths with -all type of data. The method has a lot of advantages: - -- It is model agnostic (it doesn't depend on the model but only on the predictions, unlike `CQR`) -- It uses the `split` approach (it require a calibration set, but is very fast at inference time, unlike the `CV` approach) -- It can create very adaptative intervals (with a varying width which truly reflects the model uncertainty) -- while providing coverage guantee on all sub-groups of interest (avoiding biases) -- with the possibility to inject prior knowledge about the data or the model +The Conditional Conformal Prediction (CCP) method :ref:`[1]` is a model agnostic conformal prediction method which +can create adaptative prediction intervals. How does it works? @@ -67,11 +61,19 @@ The method follow 3 steps: .. math:: \hat{g}_S := \text{arg}\min_{g \in \mathcal{F}} \; \frac{1}{n+1} \sum_{i=1}^n{l_{\alpha} (g(X_i), S_i)} \; + \frac{1}{n+1}l_{\alpha} (g(X_{n+1}), S) - We use the same adaptation as the ``standard`` approach, to go from the ``full conformal`` - approach to the ``split`` one, using: - - .. math:: - \hat{g} := \text{arg}\min_{g \in \mathcal{F}} \; \frac{1}{n} \sum_{i=1}^n{l_{\alpha^*} (g(X_i), S_i)} \quad \text{where} \quad \alpha^* = 1 - \frac{\lceil (n+1)(1-\alpha) \rceil}{n} + .. warning:: + This method (as it is in [1]), has a ``full conformal`` approach, meaning we need to compute this + optimisation for all :math:`X_{n+1}` and for all possible :math:`S` values. We can use + a upper bound of :math:`S`, but it would still requires to compute it for each new :math:`X_{n+1}`. + + We decided to adapte the method with a ``split`` approach, computing: + + .. math:: + \hat{g} := \text{arg}\min_{g \in \mathcal{F}} \; \frac{1}{n} \sum_{i=1}^n{l_{\alpha^*} (g(X_i), S_i)} \quad \text{where} \quad \alpha^* = 1 - \frac{\lceil (n+1)(1-\alpha) \rceil}{n} + + You may find small difference between our ``split`` approach and the ``full conformal`` approach [1], especially with small calibration sets. + + It is generally recommanded to empirically check the resulting coverage on the test set. 3. We use this optimized function :math:`\hat{g}` to compute the prediction intervals: @@ -88,6 +90,10 @@ The method follow 3 steps: Coverage guarantees: ----------------------- +.. warning:: + The following guarantees apply in the ``full conformal`` case. The differences should be negligeable, + but could appear for very small calibrtion sets. + Following this steps, we have the coverage guarantee: .. math:: @@ -134,20 +140,15 @@ The following will provide some tips on how to use the method (for more practica Avoid miscoverage -------------------- -- | The control of the coverage error (:ref:`here`) - can be very big, depending of the - values :math:`|f(X_i)|` can take, and the number of dimensions :math:`d`. - | - | For example, if you divide 1000 samples into 20 disjoints groups of 50 samples, - you could theoretically have a miscoverage of 40%! - | However, coverage is generally achieved in practice. +- | To guarantee marginal coverage, you need to have an intercept term in the :math:`\Phi` function (meaning, a feature equal to :math:`1` for all :math:`X_i`). + | It correspond, in the :ref:`API`, to ``bias=True``. -- | Some miscoverage can also comes from the optimization process, which is +- | Some miscoverage can come from the optimization process, which is solved with numerical methods, and may fail to find the global minimum. If the target coverage is not achieved, you can try adding regularization, to help the optimization process. You can also try reducing the number of dimensions :math:`d` or using a smoother :math:`\Phi` function, such as with gaussian kernels - (indeed, using only indicator functions makes the optimization very difficult). + (indeed, using only indicator functions makes the optimization difficult). .. warning:: Adding some regularization will theoretically induce a miscoverage, @@ -158,7 +159,8 @@ Avoid miscoverage and avoid too big regularization terms (below :math:`10^{-4}` is usually recommanded). -- | Finally, you can reduce the value of :math:`\alpha` to enforce higher coverage. +- | Finally, if you have coverage issues because the optimisation is difficult, + you can artificially enforce higher coverage by reducing the value of :math:`\alpha`. Evaluating the best adjusted :math:`\alpha` using cross-validation will ensure the same coverage on the test set (subject to variability due to the finite number of samples). diff --git a/examples/regression/4-tutorials/plot_ccp_tutorial.py b/examples/regression/4-tutorials/plot_ccp_tutorial.py index da45ae39e..82801a11f 100644 --- a/examples/regression/4-tutorials/plot_ccp_tutorial.py +++ b/examples/regression/4-tutorials/plot_ccp_tutorial.py @@ -7,6 +7,34 @@ its comparison with the other methods available in MAPIE. The CCP method implements the method described in the Gibbs et al. (2023) paper [1]. +We will see in this tutorial how to use the method. It has a lot of advantages: + +- It is model agnostic (it doesn't depend on the model but only on the + predictions, unlike `CQR`) +- It uses the `split` approach (it require a calibration set, but is very fast + at inference time, unlike the `CV` approach) +- It can create very adaptative intervals (with a varying width which truly + eflects the model uncertainty) +- while providing coverage guantee on all sub-groups of interest + (avoiding biases) +- with the possibility to inject prior knowledge about the data or the model + +However, we will also see its disadvantages: + +- The adaptativity depends on the calibrator we use: It can be difficult to + choose the correct calibrator, + with the best parameters (this tutorial will try to help you with this task). +- If the inference is very fast, the calibration phase can be very long, + depending on the complexity of your calibrator + +Conclusion on the method: + +It can create more adaptative intervals than the other methods, but it can be +difficult to find the best settings (calibrator type and parameters) +and can have a big computational time. + +---- + In this tutorial, the estimator will be :class:`~sklearn.pipeline.Pipeline` with :class:`~sklearn.preprocessing.PolynomialFeatures` and :class:`~sklearn.linear_model.LinearRegression` (or @@ -542,7 +570,7 @@ def plot_evaluation(titles, y_pis, X_test, y_test): # 5.3. Improve the performances using what we know about the data # -------------------------------------------------------------------------- # To improve the results, we need to analyse the data -# and the conformity scoreswe chose (here, the absolute residuals). +# and the conformity scores we chose (here, the absolute residuals). # # 1) We can see that the residuals (error with the prediction) # increase with X, for X > 0. @@ -613,9 +641,21 @@ def plot_evaluation(titles, y_pis, X_test, y_test): ############################################################################## ############################################################################## -# The most adaptative interval is this last brown one, with the two groups -# and the gaussian calibrators. In this specific case, the polynomial -# calibrator also worked, but the gaussian one is more generic. +# The goal is to get prediction intervals which are the most adaptative +# possible. Perfect adaptativity whould result in a perfectly constant +# conditional coverage. +# +# Considering this adaptativity criteria, the most adaptative interval is +# this last brown one, with the two groups +# and the gaussian calibrators. In this example, the polynomial +# calibrator (in purple) also worked well, but the gaussian one is more generic +# (It usually work with any dataset, assuming we use the correct parameters, +# whereas the polynomial features are not always adapted). # # This is the power of the ``CCP`` method: combining prior knowledge and -# generic features (gaussian kernelsl) to have a great overall adaptativity! +# generic features (gaussian kernelsl) to have a great overall adaptativity. +# +# However, it can be difficult to find the best calibrator and parameters. +# Sometimes, a simpler method (standard ``split`` with ``GammaConformityScore`` +# for example) can be enough. Don't forget to try at first the simpler method, +# and move on with the more advanced if it is necessary. diff --git a/mapie/calibrators/ccp/base.py b/mapie/calibrators/ccp/base.py index 57019e1db..5ef89aafb 100644 --- a/mapie/calibrators/ccp/base.py +++ b/mapie/calibrators/ccp/base.py @@ -427,7 +427,7 @@ def transform( params_mapping = {"X": X, "y_pred": y_pred, "z": z} cs_features = concatenate_functions(self.functions_, params_mapping) - # Normalize + if self.normalized: norm = cast(NDArray, np.linalg.norm(cs_features, axis=1)).reshape(-1, 1) From 0562e7976954dfca15d60de5faef559cdef0450d Mon Sep 17 00:00:00 2001 From: Damien Bouet Date: Mon, 5 Aug 2024 16:45:38 +0200 Subject: [PATCH 126/165] ADD: reference in README --- README.rst | 2 ++ 1 file changed, 2 insertions(+) diff --git a/README.rst b/README.rst index 03a0a663d..1fe6086b8 100644 --- a/README.rst +++ b/README.rst @@ -224,6 +224,8 @@ and with the financial support from Région Ile de France and Confiance.ai. [12] Angelopoulos, Anastasios N., Stephen, Bates, Emmanuel J. Candès, et al. "Learn Then Test: Calibrating Predictive Algorithms to Achieve Risk Control." (2022). +[13] Isaac Gibbs, John J. Cherian, and Emmanuel J. Candès, "Conformal Prediction With Conditional Guarantees" (2023). + 📝 License ========== From a6cf257d82b00623fe86570bb25ecbb3a65689d0 Mon Sep 17 00:00:00 2001 From: Damien Bouet Date: Mon, 5 Aug 2024 16:48:46 +0200 Subject: [PATCH 127/165] UPD: HISTORY with new CCP content --- HISTORY.rst | 4 ++++ 1 file changed, 4 insertions(+) diff --git a/HISTORY.rst b/HISTORY.rst index 213e8b1bb..8ac9979a0 100644 --- a/HISTORY.rst +++ b/HISTORY.rst @@ -17,6 +17,10 @@ History * Building unit tests for different `Subsample` and `BlockBooststrap` instances * Change the sign of C_k in the `Kolmogorov-Smirnov` test documentation * Building a training set with a fraction between 0 and 1 with `n_samples` attribute when using `split` method from `Subsample` class. +* Add `SplitCPRegressor`, bsaed on new `SplitCP` abstract class, to support the new CCP method +* Add `GaussianCCP`, `PolynomialCCP` and `CustomCCP` based on `CCPCalibrator` to implement the Conditional CP method +* Add the `StandardCalibrator`, to reproduce standard CP and make sur that the `SplitCPRegressor` is implemented correctly. +* Add the CCP documentation, tutorial and demo notebook 0.8.6 (2024-06-14) ------------------ From 8ca56d9883b5cb30f1ec6fa3ad9140f8690f6ae2 Mon Sep 17 00:00:00 2001 From: Damien Bouet Date: Mon, 5 Aug 2024 16:53:13 +0200 Subject: [PATCH 128/165] UPD: theoretical description --- doc/api.rst | 3 ++ doc/theoretical_description_ccp.rst | 50 ++++++++++--------- .../4-tutorials/plot_ccp_tutorial.py | 50 +++++++++++++++++-- mapie/calibrators/ccp/base.py | 2 +- 4 files changed, 75 insertions(+), 30 deletions(-) diff --git a/doc/api.rst b/doc/api.rst index e6cd29c91..acd95a934 100644 --- a/doc/api.rst +++ b/doc/api.rst @@ -1,3 +1,6 @@ + +.. _api: + ######### MAPIE API ######### diff --git a/doc/theoretical_description_ccp.rst b/doc/theoretical_description_ccp.rst index 514109fa4..045d930ba 100644 --- a/doc/theoretical_description_ccp.rst +++ b/doc/theoretical_description_ccp.rst @@ -6,14 +6,8 @@ Theoretical Description ######################## -The Conditional Conformal Prediction (CCP) method :ref:`[1]` allows for better (adaptative) interval widths with -all type of data. The method has a lot of advantages: - -- It is model agnostic (it doesn't depend on the model but only on the predictions, unlike `CQR`) -- It uses the `split` approach (it require a calibration set, but is very fast at inference time, unlike the `CV` approach) -- It can create very adaptative intervals (with a varying width which truly reflects the model uncertainty) -- while providing coverage guantee on all sub-groups of interest (avoiding biases) -- with the possibility to inject prior knowledge about the data or the model +The Conditional Conformal Prediction (CCP) method :ref:`[1]` is a model agnostic conformal prediction method which +can create adaptative prediction intervals. How does it works? @@ -67,11 +61,19 @@ The method follow 3 steps: .. math:: \hat{g}_S := \text{arg}\min_{g \in \mathcal{F}} \; \frac{1}{n+1} \sum_{i=1}^n{l_{\alpha} (g(X_i), S_i)} \; + \frac{1}{n+1}l_{\alpha} (g(X_{n+1}), S) - We use the same adaptation as the ``standard`` approach, to go from the ``full conformal`` - approach to the ``split`` one, using: - - .. math:: - \hat{g} := \text{arg}\min_{g \in \mathcal{F}} \; \frac{1}{n} \sum_{i=1}^n{l_{\alpha^*} (g(X_i), S_i)} \quad \text{where} \quad \alpha^* = 1 - \frac{\lceil (n+1)(1-\alpha) \rceil}{n} + .. warning:: + This method (as it is in [1]), has a ``full conformal`` approach, meaning we need to compute this + optimisation for all :math:`X_{n+1}` and for all possible :math:`S` values. We can use + a upper bound of :math:`S`, but it would still requires to compute it for each new :math:`X_{n+1}`. + + We decided to adapte the method with a ``split`` approach, computing: + + .. math:: + \hat{g} := \text{arg}\min_{g \in \mathcal{F}} \; \frac{1}{n} \sum_{i=1}^n{l_{\alpha^*} (g(X_i), S_i)} \quad \text{where} \quad \alpha^* = 1 - \frac{\lceil (n+1)(1-\alpha) \rceil}{n} + + You may find small difference between our ``split`` approach and the ``full conformal`` approach [1], especially with small calibration sets. + + It is generally recommanded to empirically check the resulting coverage on the test set. 3. We use this optimized function :math:`\hat{g}` to compute the prediction intervals: @@ -88,6 +90,10 @@ The method follow 3 steps: Coverage guarantees: ----------------------- +.. warning:: + The following guarantees apply in the ``full conformal`` case. The differences should be negligeable, + but could appear for very small calibrtion sets. + Following this steps, we have the coverage guarantee: .. math:: @@ -134,20 +140,15 @@ The following will provide some tips on how to use the method (for more practica Avoid miscoverage -------------------- -- | The control of the coverage error (:ref:`here`) - can be very big, depending of the - values :math:`|f(X_i)|` can take, and the number of dimensions :math:`d`. - | - | For example, if you divide 1000 samples into 20 disjoints groups of 50 samples, - you could theoretically have a miscoverage of 40%! - | However, coverage is generally achieved in practice. +- | To guarantee marginal coverage, you need to have an intercept term in the :math:`\Phi` function (meaning, a feature equal to :math:`1` for all :math:`X_i`). + | It correspond, in the :ref:`API`, to ``bias=True``. -- | Some miscoverage can also comes from the optimization process, which is +- | Some miscoverage can come from the optimization process, which is solved with numerical methods, and may fail to find the global minimum. If the target coverage is not achieved, you can try adding regularization, to help the optimization process. You can also try reducing the number of dimensions :math:`d` or using a smoother :math:`\Phi` function, such as with gaussian kernels - (indeed, using only indicator functions makes the optimization very difficult). + (indeed, using only indicator functions makes the optimization difficult). .. warning:: Adding some regularization will theoretically induce a miscoverage, @@ -158,7 +159,8 @@ Avoid miscoverage and avoid too big regularization terms (below :math:`10^{-4}` is usually recommanded). -- | Finally, you can reduce the value of :math:`\alpha` to enforce higher coverage. +- | Finally, if you have coverage issues because the optimisation is difficult, + you can artificially enforce higher coverage by reducing the value of :math:`\alpha`. Evaluating the best adjusted :math:`\alpha` using cross-validation will ensure the same coverage on the test set (subject to variability due to the finite number of samples). @@ -169,4 +171,4 @@ References ========== [1] Isaac Gibbs, John J. Cherian, and Emmanuel J. Candès, -"Conformal Prediction With Conditional Guarantees", `arXiv `_, 2023. +"Conformal Prediction With Conditional Guarantees", `arXiv `_, 2023. \ No newline at end of file diff --git a/examples/regression/4-tutorials/plot_ccp_tutorial.py b/examples/regression/4-tutorials/plot_ccp_tutorial.py index da45ae39e..82801a11f 100644 --- a/examples/regression/4-tutorials/plot_ccp_tutorial.py +++ b/examples/regression/4-tutorials/plot_ccp_tutorial.py @@ -7,6 +7,34 @@ its comparison with the other methods available in MAPIE. The CCP method implements the method described in the Gibbs et al. (2023) paper [1]. +We will see in this tutorial how to use the method. It has a lot of advantages: + +- It is model agnostic (it doesn't depend on the model but only on the + predictions, unlike `CQR`) +- It uses the `split` approach (it require a calibration set, but is very fast + at inference time, unlike the `CV` approach) +- It can create very adaptative intervals (with a varying width which truly + eflects the model uncertainty) +- while providing coverage guantee on all sub-groups of interest + (avoiding biases) +- with the possibility to inject prior knowledge about the data or the model + +However, we will also see its disadvantages: + +- The adaptativity depends on the calibrator we use: It can be difficult to + choose the correct calibrator, + with the best parameters (this tutorial will try to help you with this task). +- If the inference is very fast, the calibration phase can be very long, + depending on the complexity of your calibrator + +Conclusion on the method: + +It can create more adaptative intervals than the other methods, but it can be +difficult to find the best settings (calibrator type and parameters) +and can have a big computational time. + +---- + In this tutorial, the estimator will be :class:`~sklearn.pipeline.Pipeline` with :class:`~sklearn.preprocessing.PolynomialFeatures` and :class:`~sklearn.linear_model.LinearRegression` (or @@ -542,7 +570,7 @@ def plot_evaluation(titles, y_pis, X_test, y_test): # 5.3. Improve the performances using what we know about the data # -------------------------------------------------------------------------- # To improve the results, we need to analyse the data -# and the conformity scoreswe chose (here, the absolute residuals). +# and the conformity scores we chose (here, the absolute residuals). # # 1) We can see that the residuals (error with the prediction) # increase with X, for X > 0. @@ -613,9 +641,21 @@ def plot_evaluation(titles, y_pis, X_test, y_test): ############################################################################## ############################################################################## -# The most adaptative interval is this last brown one, with the two groups -# and the gaussian calibrators. In this specific case, the polynomial -# calibrator also worked, but the gaussian one is more generic. +# The goal is to get prediction intervals which are the most adaptative +# possible. Perfect adaptativity whould result in a perfectly constant +# conditional coverage. +# +# Considering this adaptativity criteria, the most adaptative interval is +# this last brown one, with the two groups +# and the gaussian calibrators. In this example, the polynomial +# calibrator (in purple) also worked well, but the gaussian one is more generic +# (It usually work with any dataset, assuming we use the correct parameters, +# whereas the polynomial features are not always adapted). # # This is the power of the ``CCP`` method: combining prior knowledge and -# generic features (gaussian kernelsl) to have a great overall adaptativity! +# generic features (gaussian kernelsl) to have a great overall adaptativity. +# +# However, it can be difficult to find the best calibrator and parameters. +# Sometimes, a simpler method (standard ``split`` with ``GammaConformityScore`` +# for example) can be enough. Don't forget to try at first the simpler method, +# and move on with the more advanced if it is necessary. diff --git a/mapie/calibrators/ccp/base.py b/mapie/calibrators/ccp/base.py index 57019e1db..5ef89aafb 100644 --- a/mapie/calibrators/ccp/base.py +++ b/mapie/calibrators/ccp/base.py @@ -427,7 +427,7 @@ def transform( params_mapping = {"X": X, "y_pred": y_pred, "z": z} cs_features = concatenate_functions(self.functions_, params_mapping) - # Normalize + if self.normalized: norm = cast(NDArray, np.linalg.norm(cs_features, axis=1)).reshape(-1, 1) From 2fc54fd412500a4b6d1e55dc0d7411d097884bb8 Mon Sep 17 00:00:00 2001 From: Damien Bouet Date: Mon, 5 Aug 2024 16:53:48 +0200 Subject: [PATCH 129/165] ADD: reference in README --- README.rst | 2 ++ 1 file changed, 2 insertions(+) diff --git a/README.rst b/README.rst index 03a0a663d..1fe6086b8 100644 --- a/README.rst +++ b/README.rst @@ -224,6 +224,8 @@ and with the financial support from Région Ile de France and Confiance.ai. [12] Angelopoulos, Anastasios N., Stephen, Bates, Emmanuel J. Candès, et al. "Learn Then Test: Calibrating Predictive Algorithms to Achieve Risk Control." (2022). +[13] Isaac Gibbs, John J. Cherian, and Emmanuel J. Candès, "Conformal Prediction With Conditional Guarantees" (2023). + 📝 License ========== From 26f07dad9eae6c560dc9da74c4f3ea991bb4a7fa Mon Sep 17 00:00:00 2001 From: Damien Bouet Date: Mon, 5 Aug 2024 16:54:10 +0200 Subject: [PATCH 130/165] UPD: HISTORY with new CCP content --- HISTORY.rst | 4 ++++ 1 file changed, 4 insertions(+) diff --git a/HISTORY.rst b/HISTORY.rst index 213e8b1bb..8ac9979a0 100644 --- a/HISTORY.rst +++ b/HISTORY.rst @@ -17,6 +17,10 @@ History * Building unit tests for different `Subsample` and `BlockBooststrap` instances * Change the sign of C_k in the `Kolmogorov-Smirnov` test documentation * Building a training set with a fraction between 0 and 1 with `n_samples` attribute when using `split` method from `Subsample` class. +* Add `SplitCPRegressor`, bsaed on new `SplitCP` abstract class, to support the new CCP method +* Add `GaussianCCP`, `PolynomialCCP` and `CustomCCP` based on `CCPCalibrator` to implement the Conditional CP method +* Add the `StandardCalibrator`, to reproduce standard CP and make sur that the `SplitCPRegressor` is implemented correctly. +* Add the CCP documentation, tutorial and demo notebook 0.8.6 (2024-06-14) ------------------ From c33ed1891452689e5cfab6411d070aa59f844061 Mon Sep 17 00:00:00 2001 From: Damien Bouet Date: Wed, 7 Aug 2024 16:13:35 +0200 Subject: [PATCH 131/165] UPD: theoretical doc update and typo --- HISTORY.rst | 2 +- doc/theoretical_description_ccp.rst | 53 ++++++++++++++++------------- 2 files changed, 31 insertions(+), 24 deletions(-) diff --git a/HISTORY.rst b/HISTORY.rst index 8ac9979a0..39f3063c4 100644 --- a/HISTORY.rst +++ b/HISTORY.rst @@ -17,7 +17,7 @@ History * Building unit tests for different `Subsample` and `BlockBooststrap` instances * Change the sign of C_k in the `Kolmogorov-Smirnov` test documentation * Building a training set with a fraction between 0 and 1 with `n_samples` attribute when using `split` method from `Subsample` class. -* Add `SplitCPRegressor`, bsaed on new `SplitCP` abstract class, to support the new CCP method +* Add `SplitCPRegressor`, based on new `SplitCP` abstract class, to support the new CCP method * Add `GaussianCCP`, `PolynomialCCP` and `CustomCCP` based on `CCPCalibrator` to implement the Conditional CP method * Add the `StandardCalibrator`, to reproduce standard CP and make sur that the `SplitCPRegressor` is implemented correctly. * Add the CCP documentation, tutorial and demo notebook diff --git a/doc/theoretical_description_ccp.rst b/doc/theoretical_description_ccp.rst index 045d930ba..074fbd04f 100644 --- a/doc/theoretical_description_ccp.rst +++ b/doc/theoretical_description_ccp.rst @@ -49,36 +49,42 @@ The method follow 3 steps: ---------------------------- 1. Choose a class of functions. The simple approach is to choose a class a finite dimension :math:`d \in \mathbb{N}`, - using, for any :math:`\Phi \; : \; \mathbb{R}^d \to \mathbb{R}` + using, for any :math:`\Phi \; : \; \mathbb{R}^d \to \mathbb{R}` (chosen by the user) .. math:: \mathcal{F} = \left\{ \Phi (\cdot)^T \beta : \beta \in \mathbb{R}^d \right\} -2. Find the best function of this class by resolving the following optimization problem: +2. Find the best function of this class by solving the following optimization problem: .. note:: It is actually a quantile regression between the transformation :math:`\Phi (X)` and the conformity scores `S`. .. math:: - \hat{g}_S := \text{arg}\min_{g \in \mathcal{F}} \; \frac{1}{n+1} \sum_{i=1}^n{l_{\alpha} (g(X_i), S_i)} \; + \frac{1}{n+1}l_{\alpha} (g(X_{n+1}), S) + \hat{g}_S^{n+1} := \text{arg}\min_{g \in \mathcal{F}} \; \frac{1}{n+1} \sum_{i=1}^n{l_{\alpha} (g(X_i), S_i)} \; + \frac{1}{n+1}l_{\alpha} (g(X_{n+1}), S) .. warning:: - This method (as it is in [1]), has a ``full conformal`` approach, meaning we need to compute this - optimisation for all :math:`X_{n+1}` and for all possible :math:`S` values. We can use - a upper bound of :math:`S`, but it would still requires to compute it for each new :math:`X_{n+1}`. + This method has a ``full conformal`` approach, meaning we need to compute this + optimisation for all :math:`X_{n+1}` and for all possible :math:`S` values. + To avoid this, we can use (as suggested in [1]), a upper bound :math:`M` + of the scores, such as :math:`S_{n+1} < M`. - We decided to adapte the method with a ``split`` approach, computing: + In the :ref:`API`, we use as default :math:`M=max(\{S_i\}_{i\leq n})`, + but you can specify it yourself if a bound is known, considering your data, + model and conformity score. + + Moreover, it means that there is still small computations which are done + for each test point :math:`X_{n+1}`. If you want to avoid that, you can + use ``unsafe_approximation=True``, which only consider: .. math:: - \hat{g} := \text{arg}\min_{g \in \mathcal{F}} \; \frac{1}{n} \sum_{i=1}^n{l_{\alpha^*} (g(X_i), S_i)} \quad \text{where} \quad \alpha^* = 1 - \frac{\lceil (n+1)(1-\alpha) \rceil}{n} - - You may find small difference between our ``split`` approach and the ``full conformal`` approach [1], especially with small calibration sets. + \hat{g} := \text{arg}\min_{g \in \mathcal{F}} \; \frac{1}{n} \sum_{i=1}^n{l_{\alpha^*} (g(X_i), S_i)} - It is generally recommanded to empirically check the resulting coverage on the test set. + However, it may result in a small miscoverage. + It is recommanded to empirically check the resulting coverage on the test set. 3. We use this optimized function :math:`\hat{g}` to compute the prediction intervals: .. math:: - \hat{C}(X_{n+1}) = \{ y : S(X_{n+1}, \: y) \leq \hat{g}(X_{n+1}) \} + \hat{C}_M^{n+1}(X_{n+1}) = \{ y : S(X_{n+1}, \: y) \leq \hat{g}_M^{n+1}(X_{n+1}) \} .. note:: The formulas are generic and work with all conformity scores. But in the case of the absolute residuals, we get: @@ -91,25 +97,26 @@ Coverage guarantees: ----------------------- .. warning:: - The following guarantees apply in the ``full conformal`` case. The differences should be negligeable, - but could appear for very small calibrtion sets. + The following guarantees assume that the approximation described above is not used, and that + the chosen bound M is indeed such as :math:`\forall \text{ test index }i, \; S_i < M` Following this steps, we have the coverage guarantee: - +:math:`\forall f \in \mathcal{F},` .. math:: - \forall f \in \mathcal{F}, \quad - \left | \mathbb{E} \left[ f(X_{n+1}) \mathbb{I} \left\{ Y_{n+1} \in \hat{C}(X_{n+1}) \right\} \right] \right | - \leq \frac{d}{n+1} \mathbb{E} \left[ \max_{1 \leq i \leq n+1} |f(X_i)| \right] + \mathbb{P}_f(Y_{n+1} \in \hat{C}_M^{n+1}(X_{n+1})) \geq 1 - \alpha \\ + \text{and} \quad \left | \mathbb{E} \left[ f(X_{n+1}) \left(\mathbb{I} \left\{ Y_{n+1} \in \hat{C}_M^{n+1}(X_{n+1}) \right\} - (1 - \alpha) \right) \right] \right | + \leq \frac{d}{n+1} \mathbb{E} \left[ \max_{1 \leq i \leq n+1} \left|f(X_i)\right| \right] .. note:: If we want to have a homogenous coverage on some given groups in :math:`\mathcal{G}`, we can use - :math:`\mathcal{F} = \{ x \mapsto \sum _{G \in \mathcal{G}} \; \beta_G \mathbb{I} \{ x \in G \} : \beta_G \in \mathbb{R} \}`, then we have: + :math:`\mathcal{F} = \{ x \mapsto \sum _{G \in \mathcal{G}} \; \beta_G \mathbb{I} \{ x \in G \} : \beta_G \in \mathbb{R} \}`, + then we have :math:`\forall G \in \mathcal{G}`: .. math:: - \forall G \in \mathcal{G}, \quad - \left | \mathbb{P} \left( Y_{n+1} \in \hat{C}(X_{n+1}) \; | \; X_{n+1} \in G \right) - (1 - \alpha) \right | - \leq \frac{|\mathcal{G}|}{(n+1) \mathbb{P}(X_{n+1} \in G)} \\ - = \frac{\text{number of groups in } \mathcal{G}}{\text{number of samples of } \{X_i\} \text{ in G}} + 1 - \alpha + \leq \mathbb{P} \left( Y_{n+1} \in \hat{C}_M^{n+1}(X_{n+1}) \; | \; X_{n+1} \in G \right) + \leq 1- \alpha + \frac{|\mathcal{G}|}{(n+1) \mathbb{P}(X_{n+1} \in G)} \\ + = 1- \alpha + \frac{\text{number of groups in } \mathcal{G}}{\text{number of samples of } \{X_i\} \text{ in G}} How to use it in practice? ============================ From db375a3e41cc0bf2d31863e6046b6b2a0a0892a1 Mon Sep 17 00:00:00 2001 From: Damien Bouet Date: Wed, 7 Aug 2024 16:39:28 +0200 Subject: [PATCH 132/165] UPD: remove sample_weights and corrected alpha in the calibration step, as it is not used in the paper --- mapie/calibrators/ccp/base.py | 20 ++++---------------- mapie/calibrators/ccp/utils.py | 16 ++-------------- 2 files changed, 6 insertions(+), 30 deletions(-) diff --git a/mapie/calibrators/ccp/base.py b/mapie/calibrators/ccp/base.py index 5ef89aafb..1f7eca58c 100644 --- a/mapie/calibrators/ccp/base.py +++ b/mapie/calibrators/ccp/base.py @@ -279,7 +279,6 @@ def fit( conformity_scores_calib: NDArray, y_pred_calib: Optional[ArrayLike] = None, z_calib: Optional[ArrayLike] = None, - sample_weight_calib: Optional[NDArray] = None, **optim_kwargs, ) -> CCPCalibrator: """ @@ -303,13 +302,6 @@ def fit( By default ``None``. - sample_weight_calib: Optional[ArrayLike] of shape (n_samples,) - Sample weights of the calibration data, used as weights in the - objective function of the optimization process. - If ``None``, then samples are equally weighted. - - By default ``None``. - optim_kwargs: Dict Other argument, used in sklear.optimize.minimize. Can be any of : ``method, jac, hess, hessp, bounds, constraints, @@ -321,12 +313,10 @@ def fit( check_required_arguments(self.alpha) self.alpha = cast(float, self.alpha) - n_calib = _num_samples(X_calib) if self.sym: - q_cor = np.ceil((1 - self.alpha)*(n_calib+1))/n_calib + q = 1 - self.alpha else: - q_cor = np.ceil((1 - self.alpha / 2)*(n_calib+1))/n_calib - q_cor = np.clip(q_cor, a_min=0, a_max=1) + q = 1 - self.alpha / 2 if self.random_state is not None: np.random.seed(self.random_state) @@ -352,8 +342,7 @@ def fit( args=( cs_features[not_nan_index, :], conformity_scores_calib[not_nan_index], - q_cor, - sample_weight_calib, + q, self.reg_param, ), **optim_kwargs, @@ -365,8 +354,7 @@ def fit( args=( cs_features[not_nan_index, :], -conformity_scores_calib[not_nan_index], - q_cor, - sample_weight_calib, + q, self.reg_param, ), **optim_kwargs, diff --git a/mapie/calibrators/ccp/utils.py b/mapie/calibrators/ccp/utils.py index 09fc8a4f4..4cb15a0a8 100644 --- a/mapie/calibrators/ccp/utils.py +++ b/mapie/calibrators/ccp/utils.py @@ -472,7 +472,7 @@ def fast_mean_pinball_loss( def calibrator_optim_objective( beta: NDArray, calibrator_preds: NDArray, conformity_scores: NDArray, - q: float, sample_weight: NDArray, reg_param: Optional[float], + q: float, reg_param: Optional[float], ) -> float: """ Objective funtcion to minimize to get the estimation of @@ -494,18 +494,6 @@ def calibrator_optim_objective( Between ``0.0`` and ``1.0``, represents the quantile, being ``1-alpha`` if ``alpha`` is the risk level of the confidence interval. - sample_weight: Optional[ArrayLike] of shape (n_samples,) - Sample weights for fitting the out-of-fold models. - If ``None``, then samples are equally weighted. - If some weights are null, - their corresponding observations are removed - before the fitting process and hence have no residuals. - If weights are non-uniform, residuals are still uniformly weighted. - Note that the sample weight defined are only for the training, not - for the calibration procedure. - - By default ``None``. - reg_param: Optional[float] Float to monitor the ridge regularization strength. ``reg_param`` must be a non-negative @@ -531,7 +519,7 @@ def calibrator_optim_objective( reg_val = 0 return fast_mean_pinball_loss( y_true=conformity_scores, y_pred=calibrator_preds.dot(beta), - alpha=q, sample_weight=sample_weight, + alpha=q, ) + reg_val From 53837bd082ace8aa015ff3a10378ef31c3b0cafd Mon Sep 17 00:00:00 2001 From: Damien Bouet Date: Wed, 7 Aug 2024 16:50:00 +0200 Subject: [PATCH 133/165] UPD: Typos in the doc --- doc/theoretical_description_ccp.rst | 18 +++++++++--------- 1 file changed, 9 insertions(+), 9 deletions(-) diff --git a/doc/theoretical_description_ccp.rst b/doc/theoretical_description_ccp.rst index 074fbd04f..857e57def 100644 --- a/doc/theoretical_description_ccp.rst +++ b/doc/theoretical_description_ccp.rst @@ -58,16 +58,15 @@ The method follow 3 steps: .. note:: It is actually a quantile regression between the transformation :math:`\Phi (X)` and the conformity scores `S`. + Considering an upper bound :math:`M`of the conformity scores, + such as :math:`S_{n+1} < M`: + .. math:: - \hat{g}_S^{n+1} := \text{arg}\min_{g \in \mathcal{F}} \; \frac{1}{n+1} \sum_{i=1}^n{l_{\alpha} (g(X_i), S_i)} \; + \frac{1}{n+1}l_{\alpha} (g(X_{n+1}), S) + \hat{g}_M^{n+1} := \text{arg}\min_{g \in \mathcal{F}} \; \frac{1}{n+1} \sum_{i=1}^n{l_{\alpha} (g(X_i), S_i)} \; + \frac{1}{n+1}l_{\alpha} (g(X_{n+1}), M) .. warning:: - This method has a ``full conformal`` approach, meaning we need to compute this - optimisation for all :math:`X_{n+1}` and for all possible :math:`S` values. - To avoid this, we can use (as suggested in [1]), a upper bound :math:`M` - of the scores, such as :math:`S_{n+1} < M`. - - In the :ref:`API`, we use as default :math:`M=max(\{S_i\}_{i\leq n})`, + In the :ref:`API`, we use by default :math:`M=max(\{S_i\}_{i\leq n})`, + the maximum conformity score of the calibration set, but you can specify it yourself if a bound is known, considering your data, model and conformity score. @@ -81,7 +80,7 @@ The method follow 3 steps: However, it may result in a small miscoverage. It is recommanded to empirically check the resulting coverage on the test set. -3. We use this optimized function :math:`\hat{g}` to compute the prediction intervals: +3. We use this optimized function :math:`\hat{g}_M^{n+1}` to compute the prediction intervals: .. math:: \hat{C}_M^{n+1}(X_{n+1}) = \{ y : S(X_{n+1}, \: y) \leq \hat{g}_M^{n+1}(X_{n+1}) \} @@ -89,7 +88,7 @@ The method follow 3 steps: .. note:: The formulas are generic and work with all conformity scores. But in the case of the absolute residuals, we get: .. math:: - \hat{C}(X_{n+1}) = \hat{\mu}(X_{n+1}) \pm \hat{g}(X_{n+1}) + \hat{C}(X_{n+1}) = \hat{\mu}(X_{n+1}) \pm \hat{g}_M^{n+1}(X_{n+1}) .. _theoretical_description_ccp_control_coverage: @@ -102,6 +101,7 @@ Coverage guarantees: Following this steps, we have the coverage guarantee: :math:`\forall f \in \mathcal{F},` + .. math:: \mathbb{P}_f(Y_{n+1} \in \hat{C}_M^{n+1}(X_{n+1})) \geq 1 - \alpha \\ \text{and} \quad \left | \mathbb{E} \left[ f(X_{n+1}) \left(\mathbb{I} \left\{ Y_{n+1} \in \hat{C}_M^{n+1}(X_{n+1}) \right\} - (1 - \alpha) \right) \right] \right | From 57e15f8f6ed0fe8b49479fccaff417983a09e5cc Mon Sep 17 00:00:00 2001 From: Damien Bouet Date: Wed, 7 Aug 2024 16:58:02 +0200 Subject: [PATCH 134/165] linting --- mapie/calibrators/ccp/base.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/mapie/calibrators/ccp/base.py b/mapie/calibrators/ccp/base.py index 1f7eca58c..4d1f36e0b 100644 --- a/mapie/calibrators/ccp/base.py +++ b/mapie/calibrators/ccp/base.py @@ -8,7 +8,7 @@ from scipy.optimize import minimize, OptimizeResult from sklearn.base import clone from sklearn.utils import _safe_indexing -from sklearn.utils.validation import _num_samples, check_is_fitted +from sklearn.utils.validation import check_is_fitted from mapie._typing import ArrayLike, NDArray from mapie.calibrators.base import BaseCalibrator From 9fa15fe712470995f7859ac720f209a7f13e776d Mon Sep 17 00:00:00 2001 From: Damien Bouet Date: Wed, 7 Aug 2024 17:09:35 +0200 Subject: [PATCH 135/165] UPD: test values --- mapie/tests/test_futur_regression.py | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/mapie/tests/test_futur_regression.py b/mapie/tests/test_futur_regression.py index 963f9d045..86962be8c 100644 --- a/mapie/tests/test_futur_regression.py +++ b/mapie/tests/test_futur_regression.py @@ -49,8 +49,8 @@ GaussianCCP(5), ] WIDTHS = { - "split": 3.943, - "prefit": 3.943, + "split": 3.867, + "prefit": 3.867, } COVERAGES = { From 0ecabba21d72fe0c6c54f9bc82f67996c702960b Mon Sep 17 00:00:00 2001 From: Damien Bouet Date: Thu, 8 Aug 2024 11:21:42 +0200 Subject: [PATCH 136/165] UPD: re optimize at inference time and add unsafe mode for old method --- .../4-tutorials/plot_ccp_tutorial.py | 20 ++- mapie/calibrators/ccp/base.py | 169 +++++++++++++++++- mapie/tests/test_futur_regression.py | 71 ++++++-- 3 files changed, 233 insertions(+), 27 deletions(-) diff --git a/examples/regression/4-tutorials/plot_ccp_tutorial.py b/examples/regression/4-tutorials/plot_ccp_tutorial.py index 82801a11f..9feed4ead 100644 --- a/examples/regression/4-tutorials/plot_ccp_tutorial.py +++ b/examples/regression/4-tutorials/plot_ccp_tutorial.py @@ -3,16 +3,14 @@ Tutorial: Conditional CP for regression ============================================ -We will use a synthetic toy dataset for the tutorial of the CCP method, and -its comparison with the other methods available in MAPIE. The CCP method +The tutorial will explain how to use the CCP method, and +will compare it with the other methods available in MAPIE. The CCP method implements the method described in the Gibbs et al. (2023) paper [1]. We will see in this tutorial how to use the method. It has a lot of advantages: - It is model agnostic (it doesn't depend on the model but only on the predictions, unlike `CQR`) -- It uses the `split` approach (it require a calibration set, but is very fast - at inference time, unlike the `CV` approach) - It can create very adaptative intervals (with a varying width which truly eflects the model uncertainty) - while providing coverage guantee on all sub-groups of interest @@ -24,8 +22,11 @@ - The adaptativity depends on the calibrator we use: It can be difficult to choose the correct calibrator, with the best parameters (this tutorial will try to help you with this task). -- If the inference is very fast, the calibration phase can be very long, - depending on the complexity of your calibrator +- The calibration and even more the inference are much longer than for the + other methods. We can reduce the inference time using + ``unsafe_approximation=True``, but we lose the theoretical guarantees and + risk a small miscoverage + (even if, most of the time, the coverage is achieved). Conclusion on the method: @@ -35,7 +36,8 @@ ---- -In this tutorial, the estimator will be :class:`~sklearn.pipeline.Pipeline` +In this tutorial, we will use a synthetic toy dataset. +The estimator will be :class:`~sklearn.pipeline.Pipeline` with :class:`~sklearn.preprocessing.PolynomialFeatures` and :class:`~sklearn.linear_model.LinearRegression` (or :class:`~sklearn.linear_model.QuantileRegressor` for CQR). @@ -91,7 +93,7 @@ # increase with ``x`` # # We are going to use 3000 samples for training, 3000 for calibration and -# 20 000 for testing (to have an accurate conditional coverage). +# 5000 for testing. def x_sinx(x): @@ -123,7 +125,7 @@ def get_1d_data_with_heteroscedastic_noise( return X.reshape(-1, 1), y, true_pi -def generate_data(n_train=6000, n_test=20000, noise=0.8, power=2): +def generate_data(n_train=6000, n_test=5000, noise=0.8, power=2): X, y, true_pi = get_1d_data_with_heteroscedastic_noise( x_sinx, -1, 5, n_train + n_test, noise, power) indexes = list(range(len(X))) diff --git a/mapie/calibrators/ccp/base.py b/mapie/calibrators/ccp/base.py index 4d1f36e0b..3989ad74c 100644 --- a/mapie/calibrators/ccp/base.py +++ b/mapie/calibrators/ccp/base.py @@ -8,7 +8,7 @@ from scipy.optimize import minimize, OptimizeResult from sklearn.base import clone from sklearn.utils import _safe_indexing -from sklearn.utils.validation import check_is_fitted +from sklearn.utils.validation import _num_samples, check_is_fitted from mapie._typing import ArrayLike, NDArray from mapie.calibrators.base import BaseCalibrator @@ -337,6 +337,13 @@ def fit( if "maxiter" not in optim_kwargs["options"]: optim_kwargs["options"]["maxiter"] = 1000 + self.calib_cs_features = cs_features[not_nan_index, :] + self.conformity_scores_calib = conformity_scores_calib[not_nan_index] + self.q = q + self.reg_param + + self.optim_kwargs = optim_kwargs + optimal_beta_up = cast(OptimizeResult, minimize( calibrator_optim_objective, self.init_value_, args=( @@ -432,11 +439,76 @@ def transform( return cs_features + def _check_cs_bound( + self, + cs_bound: Optional[Union[float, Tuple[float, float]]], + sym: bool, + conformity_scores: NDArray, + ) -> Tuple[float, float]: + """ + Create a valid up and down conformity score bound, based on + ``cs_bound`` + + Parameters + ---------- + cs_bound: Optional[Union[float, Tuple[float, float]]] + Bound of the conformity scores, such as for all conformity score S + corresponding to ``X`` and ``y_pred``: + + - If the conformity score has ``sym=True``: + ``cs_bound`` is a ``float`` and ``|S| <= cs_bound`` + + - If the conformity score has ``sym=False``: + ``cs_bound`` is a ``Tuple[float, float]`` and + ``cs_bound[0] <= S <= cs_bound[1]`` + + If ``cs_bound=None``, + the maximum (and minimum if ``sym=False``) value + of the calibration conformity scores is used. + + By default ``None`` + + sym : bool + Whether or not the computed prediction intervals shoulb be + symetrical or not + + conformity_scores: NDArray + Conformity scores, used to estimate the bounds if ``cs_bound=None`` + + Returns + ------- + Tuple[float, float] + (cs_bound_up, cs_bound_low) + """ + if cs_bound is not None: + if isinstance(cs_bound, float) and sym: + cs_bound_up = cs_bound + cs_bound_low = cs_bound + elif ( + isinstance(cs_bound, tuple) and len(cs_bound) == 2 + and not sym + ): + cs_bound_up = cs_bound[0] + cs_bound_low = cs_bound[1] + else: + raise ValueError( + "Invalid `cs_bound` value. " + "It must be a float if the ConformityScore has " + "`sym=True`, and a tuple of two floats if `sym=False`." + ) + else: + cs_bound_up = max(conformity_scores) + cs_bound_low = min(conformity_scores) + + return cs_bound_up, cs_bound_low + def predict( self, X: ArrayLike, y_pred: Optional[ArrayLike] = None, z: Optional[ArrayLike] = None, + cs_bound: Optional[Union[float, Tuple[float, float]]] = None, + unsafe_approximation: bool = False, **kwargs, ) -> NDArray: """ @@ -456,6 +528,38 @@ def predict( z : Optional[ArrayLike] Exogenous variable + cs_bound: Optional[Union[float, Tuple[float, float]]] + Bound of the conformity scores, such as for all conformity score S + corresponding to ``X`` and ``y_pred``: + + - If the conformity score has ``sym=True``: + ``cs_bound`` is a ``float`` and ``|S| <= cs_bound`` + + - If the conformity score has ``sym=False``: + ``cs_bound`` is a ``Tuple[float, float]`` and + ``cs_bound[0] <= S <= cs_bound[1]`` + + If ``cs_bound=None``, + the maximum (and minimum if ``sym=False``) value + of the calibration conformity scores is used. + + By default ``None`` + + unsafe_approximation: Bool + The most of the computation is done during the calibration phase + (``fit`` method). + However, the theoretical guarantees of the method rely on a small + adjustment of the calibration for each test point. It will induce + a conservatice interval prediction (potentially with over-coverage) + and a long inference time, depending on the numbere of test points. + + Using ``unsafe_approximation = True`` will desactivate this + correction, providing the interval predictions almost instantly. + However, it can result in a small miss-coverage, as the previous + guarantees don't hold anymore. + + By default, ``False`` + Returns ------- NDArray @@ -469,8 +573,67 @@ def predict( self._check_unconsistent_features(cs_features) - y_pred_low = -cs_features.dot(self.beta_low_[0][:, np.newaxis]) - y_pred_up = cs_features.dot(self.beta_up_[0][:, np.newaxis]) + if unsafe_approximation: + y_pred_low = -cs_features.dot(self.beta_low_[0][:, np.newaxis]) + y_pred_up = cs_features.dot(self.beta_up_[0][:, np.newaxis]) + else: + cs_bound_up, cs_bound_low = self._check_cs_bound( + cs_bound, self.sym, self.conformity_scores_calib + ) + + beta_init_up = self.beta_up_[0] + beta_init_low = self.beta_low_[0] + + y_pred_up = np.zeros((_num_samples(X), 1)) + y_pred_low = np.zeros((_num_samples(X), 1)) + for i in range(len(y_pred_up)): + cor_beta_up = cast(OptimizeResult, minimize( + calibrator_optim_objective, beta_init_up, + args=( + np.vstack( + [self.calib_cs_features, cs_features[[i], :]] + ), + np.hstack( + [self.conformity_scores_calib, [cs_bound_up]] + ), + self.q, + self.reg_param, + ), + **self.optim_kwargs, + )) + + beta_init_up = (beta_init_up*(i+1) + cor_beta_up.x)/(i+2) + + if not self.sym: + cor_beta_low = cast(OptimizeResult, minimize( + calibrator_optim_objective, beta_init_low, + args=( + np.vstack( + [self.calib_cs_features, cs_features[[i], :]] + ), + -np.hstack( + [self.conformity_scores_calib, [cs_bound_low]] + ), + self.q, + self.reg_param, + ), + **self.optim_kwargs, + )) + beta_init_low = ( + beta_init_low*(i+1) + cor_beta_low.x + )/(i+2) + + else: + cor_beta_low = cor_beta_up + + self._check_optimization_success(cor_beta_up, cor_beta_low) + + y_pred_up[[i]] = cs_features[[i], :].dot( + cor_beta_up.x[:, np.newaxis] + ) + y_pred_low[[i]] = -cs_features[[i], :].dot( + cor_beta_low.x[:, np.newaxis] + ) return np.hstack([y_pred_low, y_pred_up]) diff --git a/mapie/tests/test_futur_regression.py b/mapie/tests/test_futur_regression.py index 86962be8c..77fd75946 100644 --- a/mapie/tests/test_futur_regression.py +++ b/mapie/tests/test_futur_regression.py @@ -2,7 +2,7 @@ import warnings from inspect import signature -from typing import Any, Callable, Tuple, cast +from typing import Any, Callable, Tuple, Union, cast import numpy as np import pytest @@ -31,12 +31,12 @@ random_state = 1 np.random.seed(random_state) -X_toy = np.linspace(0, 10, num=300).reshape(-1, 1) +X_toy = np.linspace(0, 10, num=200).reshape(-1, 1) y_toy = 2*X_toy[:, 0] + (max(X_toy)/10)*np.random.rand(len(X_toy)) z_toy = np.linspace(0, 10, num=len(X_toy)).reshape(-1, 1) X, y = make_regression( - n_samples=500, n_features=10, noise=1.0, random_state=random_state + n_samples=200, n_features=10, noise=1.0, random_state=random_state ) z = X[:, -2:] @@ -49,13 +49,25 @@ GaussianCCP(5), ] WIDTHS = { - "split": 3.867, - "prefit": 3.867, + "safe": { + "split": 4.823, + "prefit": 4.823, + }, + "unsafe": { + "split": 3.867, + "prefit": 3.867, + }, } COVERAGES = { - "split": 0.956, - "prefit": 0.956, + "safe": { + "split": 0.98, + "prefit": 0.98, + }, + "unsafe": { + "split": 0.965, + "prefit": 0.965, + }, } @@ -549,7 +561,10 @@ def test_prediction_between_low_up( assert (y_pred <= y_pis[:, 1, 0]).all() -def test_linear_regression_results() -> None: +@pytest.mark.parametrize("predict_mode", [ + "safe", "unsafe" +]) +def test_linear_regression_results(predict_mode: str) -> None: """ Test that the CCPCalibrator method in the case of a constant calibrator = x -> np.ones(len(x)), on a multivariate linear regression @@ -564,15 +579,24 @@ def test_linear_regression_results() -> None: random_state=random_state ) mapie.fit(X, y) - _, y_pis = mapie.predict(X) + _, y_pis = mapie.predict( + X, unsafe_approximation=bool(predict_mode == "unsafe") + ) y_pred_low, y_pred_up = y_pis[:, 0, 0], y_pis[:, 1, 0] width_mean = (y_pred_up - y_pred_low).mean() coverage = regression_coverage_score(y, y_pred_low, y_pred_up) - np.testing.assert_allclose(width_mean, WIDTHS["split"], rtol=1e-2) - np.testing.assert_allclose(coverage, COVERAGES["split"], rtol=1e-2) + np.testing.assert_allclose( + width_mean, WIDTHS[predict_mode]["split"], rtol=1e-2 + ) + np.testing.assert_allclose( + coverage, COVERAGES[predict_mode]["split"], rtol=1e-2 + ) -def test_results_prefit() -> None: +@pytest.mark.parametrize("predict_mode", [ + "safe", "unsafe" +]) +def test_results_prefit(predict_mode: str) -> None: """Test prefit results on a standard train/validation/test split.""" X_train, X_calib, y_train, y_calib = train_test_split( X, y, test_size=0.5, random_state=1 @@ -583,12 +607,18 @@ def test_results_prefit() -> None: random_state=random_state ) mapie_reg.fit(X_calib, y_calib) - _, y_pis = mapie_reg.predict(X) + _, y_pis = mapie_reg.predict( + X, unsafe_approximation=bool(predict_mode == "unsafe") + ) y_pred_low, y_pred_up = y_pis[:, 0, 0], y_pis[:, 1, 0] width_mean = (y_pred_up - y_pred_low).mean() coverage = regression_coverage_score(y, y_pred_low, y_pred_up) - np.testing.assert_allclose(width_mean, WIDTHS["prefit"], rtol=1e-2) - np.testing.assert_allclose(coverage, COVERAGES["prefit"], rtol=1e-2) + np.testing.assert_allclose( + width_mean, WIDTHS[predict_mode]["prefit"], rtol=1e-2 + ) + np.testing.assert_allclose( + coverage, COVERAGES[predict_mode]["prefit"], rtol=1e-2 + ) @pytest.mark.parametrize("calibrator", PHI) @@ -687,3 +717,14 @@ def test_optim_kwargs(): mapie.fit( X, y, calib_kwargs={"method": "SLSQP", "options": {"maxiter": 2}} ) + + +@pytest.mark.parametrize("cs_bound, sym", [ + (None, True), (3, True), ((1, 1), False) +]) +def test_cs_bound(cs_bound: Union[float, Tuple[float, float]], sym: bool): + mapie = SplitCPRegressor( + alpha=0.1, conformity_score=AbsoluteConformityScore(sym=sym) + ) + mapie.fit(X_toy, y_toy) + mapie.predict(X_toy, cs_bound=cs_bound) From 744d56f4d6cf929a1c477d2e5a727566ce55385c Mon Sep 17 00:00:00 2001 From: Damien Bouet Date: Thu, 8 Aug 2024 11:29:02 +0200 Subject: [PATCH 137/165] typo --- HISTORY.rst | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/HISTORY.rst b/HISTORY.rst index 202b228d3..12becf6a1 100644 --- a/HISTORY.rst +++ b/HISTORY.rst @@ -22,7 +22,7 @@ History * Building a training set with a fraction between 0 and 1 with `n_samples` attribute when using `split` method from `Subsample` class. * Add `SplitCPRegressor`, based on new `SplitCP` abstract class, to support the new CCP method * Add `GaussianCCP`, `PolynomialCCP` and `CustomCCP` based on `CCPCalibrator` to implement the Conditional CP method -* Add the `StandardCalibrator`, to reproduce standard CP and make sur that the `SplitCPRegressor` is implemented correctly. +* Add the `StandardCalibrator`, to reproduce standard CP and make sure that the `SplitCPRegressor` is implemented correctly. * Add the CCP documentation, tutorial and demo notebook 0.8.6 (2024-06-14) From 1de9cf4c8e23e3e30bf42afe7454da8c6404abea Mon Sep 17 00:00:00 2001 From: Damien Bouet Date: Thu, 8 Aug 2024 11:55:52 +0200 Subject: [PATCH 138/165] tests --- mapie/tests/test_futur_classification.py | 12 ++++++------ 1 file changed, 6 insertions(+), 6 deletions(-) diff --git a/mapie/tests/test_futur_classification.py b/mapie/tests/test_futur_classification.py index 70bb38eae..12432a8b8 100644 --- a/mapie/tests/test_futur_classification.py +++ b/mapie/tests/test_futur_classification.py @@ -44,8 +44,8 @@ GaussianCCP(5), ] WIDTHS = { - "split": 1.84, - "prefit": 1.84, + "split": 1.835, + "prefit": 1.835, } COVERAGES = { @@ -456,8 +456,8 @@ def test_results_split() -> None: _, y_ps = mapie.predict(X) width_mean = y_ps.sum(axis=1).mean() coverage = classification_coverage_score(y, y_ps[:, :, 0]) - np.testing.assert_allclose(width_mean, WIDTHS["split"], rtol=1e-5) - np.testing.assert_allclose(coverage, COVERAGES["split"], rtol=1e-5) + np.testing.assert_allclose(width_mean, WIDTHS["split"], rtol=1e-2) + np.testing.assert_allclose(coverage, COVERAGES["split"], rtol=1e-2) def test_results_prefit() -> None: @@ -474,8 +474,8 @@ def test_results_prefit() -> None: _, y_ps = mapie.predict(X) width_mean = y_ps.sum(axis=1).mean() coverage = classification_coverage_score(y, y_ps[:, :, 0]) - np.testing.assert_allclose(width_mean, WIDTHS["prefit"], rtol=1e-5) - np.testing.assert_allclose(coverage, COVERAGES["prefit"], rtol=1e-5) + np.testing.assert_allclose(width_mean, WIDTHS["prefit"], rtol=1e-2) + np.testing.assert_allclose(coverage, COVERAGES["prefit"], rtol=1e-2) @pytest.mark.parametrize("calibrator", PHI) From 1feb27b7ddb6e6daea7d7a909b59d550a88a12e0 Mon Sep 17 00:00:00 2001 From: Damien Bouet Date: Thu, 8 Aug 2024 13:13:54 +0200 Subject: [PATCH 139/165] RMV: example from SplitCPClassifier doc --- mapie/futur/split/classification.py | 6 ------ 1 file changed, 6 deletions(-) diff --git a/mapie/futur/split/classification.py b/mapie/futur/split/classification.py index 7fc48788b..bc08c94b0 100644 --- a/mapie/futur/split/classification.py +++ b/mapie/futur/split/classification.py @@ -106,12 +106,6 @@ class SplitCPClassifier(SplitCP): >>> mapie_reg = SplitCPClassifier(alpha=0.1, random_state=1) >>> mapie_reg = mapie_reg.fit(X_train, y_train) >>> y_pred, y_pis = mapie_reg.predict(X_train) - >>> print(np.round(y_pred[[40, 80, 120]], 2)) - [0 1 2] - >>> print(y_pis[[40, 80, 120], :, 0]) - [[ True False False False] - [False True False False] - [False False True False]] """ def __init__( self, From 2b438671e01a4bcb4018de11809d4168a38502aa Mon Sep 17 00:00:00 2001 From: Damien Bouet Date: Thu, 8 Aug 2024 14:16:47 +0200 Subject: [PATCH 140/165] FIX: tests --- mapie/calibrators/ccp/base.py | 2 +- mapie/tests/test_futur_regression.py | 16 +++++++++++++++- 2 files changed, 16 insertions(+), 2 deletions(-) diff --git a/mapie/calibrators/ccp/base.py b/mapie/calibrators/ccp/base.py index 3989ad74c..c78090d36 100644 --- a/mapie/calibrators/ccp/base.py +++ b/mapie/calibrators/ccp/base.py @@ -481,7 +481,7 @@ def _check_cs_bound( (cs_bound_up, cs_bound_low) """ if cs_bound is not None: - if isinstance(cs_bound, float) and sym: + if isinstance(cs_bound, (int, float)) and sym: cs_bound_up = cs_bound cs_bound_low = cs_bound elif ( diff --git a/mapie/tests/test_futur_regression.py b/mapie/tests/test_futur_regression.py index 77fd75946..00b333d8a 100644 --- a/mapie/tests/test_futur_regression.py +++ b/mapie/tests/test_futur_regression.py @@ -720,7 +720,7 @@ def test_optim_kwargs(): @pytest.mark.parametrize("cs_bound, sym", [ - (None, True), (3, True), ((1, 1), False) + (None, True), (None, False), (3, True), ((1.0, 1), False) ]) def test_cs_bound(cs_bound: Union[float, Tuple[float, float]], sym: bool): mapie = SplitCPRegressor( @@ -728,3 +728,17 @@ def test_cs_bound(cs_bound: Union[float, Tuple[float, float]], sym: bool): ) mapie.fit(X_toy, y_toy) mapie.predict(X_toy, cs_bound=cs_bound) + + +@pytest.mark.parametrize("cs_bound, sym", [ + (3, False), ((1.0, 1), True) +]) +def test_cs_bound_error( + cs_bound: Union[float, Tuple[float, float]], sym: bool +) -> None: + mapie = SplitCPRegressor( + alpha=0.1, conformity_score=AbsoluteConformityScore(sym=sym) + ) + mapie.fit(X_toy, y_toy) + with pytest.raises(ValueError, match="Invalid `cs_bound` value."): + mapie.predict(X_toy, cs_bound=cs_bound) From b054bfaa671dc5ff2193587bd41b8f488c0200d6 Mon Sep 17 00:00:00 2001 From: Damien Bouet Date: Fri, 9 Aug 2024 10:14:51 +0200 Subject: [PATCH 141/165] REMOVE warning about stochastic behavior --- mapie/calibrators/ccp/base.py | 8 -------- mapie/calibrators/ccp/custom.py | 8 -------- mapie/calibrators/ccp/gaussian.py | 8 -------- mapie/calibrators/ccp/polynomial.py | 8 -------- 4 files changed, 32 deletions(-) diff --git a/mapie/calibrators/ccp/base.py b/mapie/calibrators/ccp/base.py index c78090d36..43f0709d2 100644 --- a/mapie/calibrators/ccp/base.py +++ b/mapie/calibrators/ccp/base.py @@ -125,14 +125,6 @@ class CCPCalibrator(BaseCalibrator, metaclass=ABCMeta): beta_low_: Tuple[NDArray, bool] Same as ``beta_up_``, but for the lower bound - Warnings - -------- - The CCP implementation (:class:`~mapie.calibrators.ccp.CCPCalibrator`) - has a stochastic behavior. To have reproductible results, - use an integer ``random_state`` value in the - :class:`~mapie.futur.split.SplitCPRegressor` or - :class:`~mapie.futur.split.SplitCPClassifier` initialisation. - References ---------- Isaac Gibbs and John J. Cherian and Emmanuel J. Candès. diff --git a/mapie/calibrators/ccp/custom.py b/mapie/calibrators/ccp/custom.py index f04f37a1e..fc3260a8f 100644 --- a/mapie/calibrators/ccp/custom.py +++ b/mapie/calibrators/ccp/custom.py @@ -124,14 +124,6 @@ class CustomCCP(CCPCalibrator): beta_low_: Tuple[NDArray, bool] Same as ``beta_up_``, but for the lower bound - Warnings - -------- - The CCP implementation (:class:`~mapie.calibrators.ccp.CCPCalibrator`) - has a stochastic behavior. To have reproductible results, - use an integer ``random_state`` value in the - :class:`~mapie.futur.split.SplitCPRegressor` or - :class:`~mapie.futur.split.SplitCPClassifier` initialisation. - References ---------- [1]: diff --git a/mapie/calibrators/ccp/gaussian.py b/mapie/calibrators/ccp/gaussian.py index 81a8a031b..ab9e83b4e 100644 --- a/mapie/calibrators/ccp/gaussian.py +++ b/mapie/calibrators/ccp/gaussian.py @@ -190,14 +190,6 @@ class GaussianCCP(CCPCalibrator): beta_low_: Tuple[NDArray, bool] Same as beta_up, but for the lower bound - Warnings - -------- - The CCP implementation (:class:`~mapie.calibrators.ccp.CCPCalibrator`) - has a stochastic behavior. To have reproductible results, - use an integer ``random_state`` value in the - :class:`~mapie.futur.split.SplitCPRegressor` or - :class:`~mapie.futur.split.SplitCPClassifier` initialisation. - References ---------- Isaac Gibbs and John J. Cherian and Emmanuel J. Candès. diff --git a/mapie/calibrators/ccp/polynomial.py b/mapie/calibrators/ccp/polynomial.py index c9f4c61fc..c622cc994 100644 --- a/mapie/calibrators/ccp/polynomial.py +++ b/mapie/calibrators/ccp/polynomial.py @@ -133,14 +133,6 @@ class PolynomialCCP(CCPCalibrator): beta_low_: Tuple[NDArray, bool] Same as beta_up, but for the lower bound - Warnings - -------- - The CCP implementation (:class:`~mapie.calibrators.ccp.CCPCalibrator`) - has a stochastic behavior. To have reproductible results, - use an integer ``random_state`` value in the - :class:`~mapie.futur.split.SplitCPRegressor` or - :class:`~mapie.futur.split.SplitCPClassifier` initialisation. - References ---------- Isaac Gibbs and John J. Cherian and Emmanuel J. Candès. From 096b4b48b846ddde64f1bd9f47da34653201a861 Mon Sep 17 00:00:00 2001 From: Damien Bouet Date: Fri, 9 Aug 2024 10:30:26 +0200 Subject: [PATCH 142/165] UPD: add :class: tag in docstrings --- mapie/calibrators/ccp/base.py | 12 ++++++++---- mapie/calibrators/ccp/custom.py | 19 ++++++++++++------- mapie/calibrators/ccp/gaussian.py | 10 +++++++--- mapie/calibrators/ccp/polynomial.py | 10 ++++++---- 4 files changed, 33 insertions(+), 18 deletions(-) diff --git a/mapie/calibrators/ccp/base.py b/mapie/calibrators/ccp/base.py index 43f0709d2..61d7eff21 100644 --- a/mapie/calibrators/ccp/base.py +++ b/mapie/calibrators/ccp/base.py @@ -22,8 +22,10 @@ class CCPCalibrator(BaseCalibrator, metaclass=ABCMeta): """ - Base abstract class for the calibrators used in ``SplitCPRegressor`` - or ``SplitCPClassifier`` to estimate the conformity scores. + Base abstract class for the calibrators used in + :class:`~mapie.futur.split.SplitCPRegressor` or + :class:`~mapie.futur.split.SplitCPClassifier` + to estimate the conformity scores. It corresponds to the adaptative conformal prediction method proposed by Gibbs et al. (2023) in "Conformal Prediction With Conditional Guarantees". @@ -32,13 +34,15 @@ class CCPCalibrator(BaseCalibrator, metaclass=ABCMeta): case in the standard CP), but with a function ``q(X)`` which is adaptative as it depends on ``X``. - See the examples and the documentation to build a ``CCPCalibrator`` + See the examples and the documentation to build a + :class:`~mapie.calibrators.ccp.CCPCalibrator` adaptated to your dataset and constraints. Parameters ---------- functions: Optional[Union[Callable, Iterable[Callable]]] - List of functions (or ``CCPCalibrator`` objects) or single function. + List of functions (or :class:`~mapie.calibrators.ccp.CCPCalibrator` + objects) or single function. Each function can take a combinaison of the following arguments: diff --git a/mapie/calibrators/ccp/custom.py b/mapie/calibrators/ccp/custom.py index fc3260a8f..502e3105b 100644 --- a/mapie/calibrators/ccp/custom.py +++ b/mapie/calibrators/ccp/custom.py @@ -13,8 +13,10 @@ class CustomCCP(CCPCalibrator): """ - Calibrator used in :class:`~SplitCPRegressor` or - :class:`~SplitCPClassifier` to estimate the conformity scores. + Calibrator based on :class:`~mapie.calibrators.ccp.CCPCalibrator`, + used in :class:`~mapie.futur.split.SplitCPRegressor` or + :class:`~mapie.futur.split.SplitCPClassifier` + to estimate the conformity scores. It corresponds to the adaptative conformal prediction method proposed by Gibbs et al. (2023) in @@ -25,19 +27,22 @@ class CustomCCP(CCPCalibrator): case in the standard CP), but with a function ``q(X)`` which is adaptative as it depends on ``X``. - This class builds a ``CCPCalibrator`` object with custom features, - function of ``X``, ``y_pred`` or ``z``, + This class builds a :class:`~mapie.calibrators.ccp.CCPCalibrator` + object with custom features, function of ``X``, ``y_pred`` or ``z``, defined as a list of functions in ``functions`` argument. - This class can be used to concatenate ``CCPCalibrator`` instances. + This class can be used to concatenate + :class:`~mapie.calibrators.ccp.CCPCalibrator` instances. - See the examples and the documentation to build a ``CCPCalibrator`` + See the examples and the documentation to build a + :class:`~mapie.calibrators.ccp.CCPCalibrator` adaptated to your dataset and constraints. Parameters ---------- functions: Optional[Union[Callable, Iterable[Callable]]] - List of functions (or ``CCPCalibrator`` objects) or single function. + List of functions (or :class:`~mapie.calibrators.ccp.CCPCalibrator` + objects) or single function. Each function can take a combinaison of the following arguments: diff --git a/mapie/calibrators/ccp/gaussian.py b/mapie/calibrators/ccp/gaussian.py index ab9e83b4e..06b7719db 100644 --- a/mapie/calibrators/ccp/gaussian.py +++ b/mapie/calibrators/ccp/gaussian.py @@ -14,7 +14,9 @@ class GaussianCCP(CCPCalibrator): """ - Calibrator used for the in ``SplitCPRegressor`` or ``SplitCPClassifier`` + Calibrator based on :class:`~mapie.calibrators.ccp.CCPCalibrator`, + used in :class:`~mapie.futur.split.SplitCPRegressor` or + :class:`~mapie.futur.split.SplitCPClassifier` to estimate the conformity scores. It corresponds to the adaptative conformal prediction method proposed by @@ -25,11 +27,13 @@ class GaussianCCP(CCPCalibrator): case in the standard CP), but with a function ``q(X)`` which is adaptative as it depends on ``X``. - This class builds a ``CCPCalibrator`` object with gaussian kernel features, + This class builds a :class:`~mapie.calibrators.ccp.CCPCalibrator` + object with gaussian kernel features, which computes the gaussian distance between ``X`` and some points, randomly sampled in the dataset or set by the user. - See the examples and the documentation to build a ``CCPCalibrator`` + See the examples and the documentation to build a + :class:`~mapie.calibrators.ccp.CCPCalibrator` adaptated to your dataset and constraints. Parameters diff --git a/mapie/calibrators/ccp/polynomial.py b/mapie/calibrators/ccp/polynomial.py index c622cc994..3bc65571d 100644 --- a/mapie/calibrators/ccp/polynomial.py +++ b/mapie/calibrators/ccp/polynomial.py @@ -11,7 +11,8 @@ class PolynomialCCP(CCPCalibrator): """ Calibrator based on :class:`~mapie.calibrators.ccp.CCPCalibrator`, - used for the in ``SplitCPRegressor`` or ``SplitCPClassifier`` + used in :class:`~mapie.futur.split.SplitCPRegressor` or + :class:`~mapie.futur.split.SplitCPClassifier` to estimate the conformity scores. It corresponds to the adaptative conformal prediction method proposed by @@ -22,10 +23,11 @@ class PolynomialCCP(CCPCalibrator): case in the standard CP), but with a function ``q(X)`` which is adaptative as it depends on ``X``. - This class builds a ``CCPCalibrator`` object with polynomial features of - ``X``, ``y_pred`` or ``z``. + This class builds a :class:`~mapie.calibrators.ccp.CCPCalibrator` + object with polynomial features of ``X``, ``y_pred`` or ``z``. - See the examples and the documentation to build a ``CCPCalibrator`` + See the examples and the documentation to build a + :class:`~mapie.calibrators.ccp.CCPCalibrator` adaptated to your dataset and constraints. Parameters From 1ded6131b3207305c95e57b9dd317e99cb5d6363 Mon Sep 17 00:00:00 2001 From: Damien Bouet Date: Fri, 9 Aug 2024 11:24:06 +0200 Subject: [PATCH 143/165] UPD: optimize starting from n points value --- mapie/calibrators/ccp/base.py | 59 ++++++++++++++++++++++++++--------- 1 file changed, 44 insertions(+), 15 deletions(-) diff --git a/mapie/calibrators/ccp/base.py b/mapie/calibrators/ccp/base.py index 61d7eff21..d9115fc36 100644 --- a/mapie/calibrators/ccp/base.py +++ b/mapie/calibrators/ccp/base.py @@ -577,14 +577,46 @@ def predict( cs_bound, self.sym, self.conformity_scores_calib ) - beta_init_up = self.beta_up_[0] - beta_init_low = self.beta_low_[0] + # centroid = np.mean(self.calib_cs_features, axis=0) + # init_beta_up = cast(OptimizeResult, minimize( + # calibrator_optim_objective, self.beta_up_[0], + # args=( + # np.vstack( + # [self.calib_cs_features, centroid[np.newaxis, :]] + # ), + # np.hstack( + # [self.conformity_scores_calib, [cs_bound_up]] + # ), + # self.q, + # self.reg_param, + # ), + # **self.optim_kwargs, + # )) + # if self.sym: + # init_beta_low = cast(OptimizeResult, minimize( + # calibrator_optim_objective, self.beta_low_[0], + # args=( + # np.vstack( + # [self.calib_cs_features, centroid[np.newaxis, :]] + # ), + # -np.hstack( + # [self.conformity_scores_calib, [cs_bound_low]] + # ), + # self.q, + # self.reg_param, + # ), + # **self.optim_kwargs, + # )) + # else: + # init_beta_low = init_beta_up + # self._check_optimization_success(init_beta_up, init_beta_low) + y_pred_up = np.zeros((_num_samples(X), 1)) y_pred_low = np.zeros((_num_samples(X), 1)) for i in range(len(y_pred_up)): - cor_beta_up = cast(OptimizeResult, minimize( - calibrator_optim_objective, beta_init_up, + corrected_beta_up = cast(OptimizeResult, minimize( + calibrator_optim_objective, self.beta_up_[0], args=( np.vstack( [self.calib_cs_features, cs_features[[i], :]] @@ -598,11 +630,9 @@ def predict( **self.optim_kwargs, )) - beta_init_up = (beta_init_up*(i+1) + cor_beta_up.x)/(i+2) - if not self.sym: - cor_beta_low = cast(OptimizeResult, minimize( - calibrator_optim_objective, beta_init_low, + corrected_beta_low = cast(OptimizeResult, minimize( + calibrator_optim_objective, self.beta_low_[0], args=( np.vstack( [self.calib_cs_features, cs_features[[i], :]] @@ -615,20 +645,19 @@ def predict( ), **self.optim_kwargs, )) - beta_init_low = ( - beta_init_low*(i+1) + cor_beta_low.x - )/(i+2) else: - cor_beta_low = cor_beta_up + corrected_beta_low = corrected_beta_up - self._check_optimization_success(cor_beta_up, cor_beta_low) + self._check_optimization_success( + corrected_beta_up, corrected_beta_low + ) y_pred_up[[i]] = cs_features[[i], :].dot( - cor_beta_up.x[:, np.newaxis] + corrected_beta_up.x[:, np.newaxis] ) y_pred_low[[i]] = -cs_features[[i], :].dot( - cor_beta_low.x[:, np.newaxis] + corrected_beta_low.x[:, np.newaxis] ) return np.hstack([y_pred_low, y_pred_up]) From 600047b7d46a42923b23c92a7cc1f9376a369382 Mon Sep 17 00:00:00 2001 From: Damien Bouet Date: Fri, 9 Aug 2024 11:24:56 +0200 Subject: [PATCH 144/165] UPD: remove commented section --- mapie/calibrators/ccp/base.py | 35 ----------------------------------- 1 file changed, 35 deletions(-) diff --git a/mapie/calibrators/ccp/base.py b/mapie/calibrators/ccp/base.py index d9115fc36..489efa382 100644 --- a/mapie/calibrators/ccp/base.py +++ b/mapie/calibrators/ccp/base.py @@ -577,41 +577,6 @@ def predict( cs_bound, self.sym, self.conformity_scores_calib ) - # centroid = np.mean(self.calib_cs_features, axis=0) - # init_beta_up = cast(OptimizeResult, minimize( - # calibrator_optim_objective, self.beta_up_[0], - # args=( - # np.vstack( - # [self.calib_cs_features, centroid[np.newaxis, :]] - # ), - # np.hstack( - # [self.conformity_scores_calib, [cs_bound_up]] - # ), - # self.q, - # self.reg_param, - # ), - # **self.optim_kwargs, - # )) - # if self.sym: - # init_beta_low = cast(OptimizeResult, minimize( - # calibrator_optim_objective, self.beta_low_[0], - # args=( - # np.vstack( - # [self.calib_cs_features, centroid[np.newaxis, :]] - # ), - # -np.hstack( - # [self.conformity_scores_calib, [cs_bound_low]] - # ), - # self.q, - # self.reg_param, - # ), - # **self.optim_kwargs, - # )) - # else: - # init_beta_low = init_beta_up - # self._check_optimization_success(init_beta_up, init_beta_low) - - y_pred_up = np.zeros((_num_samples(X), 1)) y_pred_low = np.zeros((_num_samples(X), 1)) for i in range(len(y_pred_up)): From 14e05b92308e16ccb8fb104a523a72b4e21defee Mon Sep 17 00:00:00 2001 From: Damien Bouet Date: Fri, 9 Aug 2024 11:27:43 +0200 Subject: [PATCH 145/165] UPD: add :class: tag in docstrings --- mapie/calibrators/ccp/base.py | 20 ++++++++------------ mapie/calibrators/ccp/custom.py | 27 ++++++++++++--------------- mapie/calibrators/ccp/gaussian.py | 18 +++++++----------- mapie/calibrators/ccp/polynomial.py | 18 ++++++------------ 4 files changed, 33 insertions(+), 50 deletions(-) diff --git a/mapie/calibrators/ccp/base.py b/mapie/calibrators/ccp/base.py index 4d1f36e0b..ea165aea1 100644 --- a/mapie/calibrators/ccp/base.py +++ b/mapie/calibrators/ccp/base.py @@ -22,8 +22,10 @@ class CCPCalibrator(BaseCalibrator, metaclass=ABCMeta): """ - Base abstract class for the calibrators used in ``SplitCPRegressor`` - or ``SplitCPClassifier`` to estimate the conformity scores. + Base abstract class for the calibrators used in + :class:`~mapie.futur.split.SplitCPRegressor` or + :class:`~mapie.futur.split.SplitCPClassifier` + to estimate the conformity scores. It corresponds to the adaptative conformal prediction method proposed by Gibbs et al. (2023) in "Conformal Prediction With Conditional Guarantees". @@ -32,13 +34,15 @@ class CCPCalibrator(BaseCalibrator, metaclass=ABCMeta): case in the standard CP), but with a function ``q(X)`` which is adaptative as it depends on ``X``. - See the examples and the documentation to build a ``CCPCalibrator`` + See the examples and the documentation to build a + :class:`~mapie.calibrators.ccp.CCPCalibrator` adaptated to your dataset and constraints. Parameters ---------- functions: Optional[Union[Callable, Iterable[Callable]]] - List of functions (or ``CCPCalibrator`` objects) or single function. + List of functions (or :class:`~mapie.calibrators.ccp.CCPCalibrator` + objects) or single function. Each function can take a combinaison of the following arguments: @@ -125,14 +129,6 @@ class CCPCalibrator(BaseCalibrator, metaclass=ABCMeta): beta_low_: Tuple[NDArray, bool] Same as ``beta_up_``, but for the lower bound - Warnings - -------- - The CCP implementation (:class:`~mapie.calibrators.ccp.CCPCalibrator`) - has a stochastic behavior. To have reproductible results, - use an integer ``random_state`` value in the - :class:`~mapie.futur.split.SplitCPRegressor` or - :class:`~mapie.futur.split.SplitCPClassifier` initialisation. - References ---------- Isaac Gibbs and John J. Cherian and Emmanuel J. Candès. diff --git a/mapie/calibrators/ccp/custom.py b/mapie/calibrators/ccp/custom.py index f04f37a1e..502e3105b 100644 --- a/mapie/calibrators/ccp/custom.py +++ b/mapie/calibrators/ccp/custom.py @@ -13,8 +13,10 @@ class CustomCCP(CCPCalibrator): """ - Calibrator used in :class:`~SplitCPRegressor` or - :class:`~SplitCPClassifier` to estimate the conformity scores. + Calibrator based on :class:`~mapie.calibrators.ccp.CCPCalibrator`, + used in :class:`~mapie.futur.split.SplitCPRegressor` or + :class:`~mapie.futur.split.SplitCPClassifier` + to estimate the conformity scores. It corresponds to the adaptative conformal prediction method proposed by Gibbs et al. (2023) in @@ -25,19 +27,22 @@ class CustomCCP(CCPCalibrator): case in the standard CP), but with a function ``q(X)`` which is adaptative as it depends on ``X``. - This class builds a ``CCPCalibrator`` object with custom features, - function of ``X``, ``y_pred`` or ``z``, + This class builds a :class:`~mapie.calibrators.ccp.CCPCalibrator` + object with custom features, function of ``X``, ``y_pred`` or ``z``, defined as a list of functions in ``functions`` argument. - This class can be used to concatenate ``CCPCalibrator`` instances. + This class can be used to concatenate + :class:`~mapie.calibrators.ccp.CCPCalibrator` instances. - See the examples and the documentation to build a ``CCPCalibrator`` + See the examples and the documentation to build a + :class:`~mapie.calibrators.ccp.CCPCalibrator` adaptated to your dataset and constraints. Parameters ---------- functions: Optional[Union[Callable, Iterable[Callable]]] - List of functions (or ``CCPCalibrator`` objects) or single function. + List of functions (or :class:`~mapie.calibrators.ccp.CCPCalibrator` + objects) or single function. Each function can take a combinaison of the following arguments: @@ -124,14 +129,6 @@ class CustomCCP(CCPCalibrator): beta_low_: Tuple[NDArray, bool] Same as ``beta_up_``, but for the lower bound - Warnings - -------- - The CCP implementation (:class:`~mapie.calibrators.ccp.CCPCalibrator`) - has a stochastic behavior. To have reproductible results, - use an integer ``random_state`` value in the - :class:`~mapie.futur.split.SplitCPRegressor` or - :class:`~mapie.futur.split.SplitCPClassifier` initialisation. - References ---------- [1]: diff --git a/mapie/calibrators/ccp/gaussian.py b/mapie/calibrators/ccp/gaussian.py index 81a8a031b..06b7719db 100644 --- a/mapie/calibrators/ccp/gaussian.py +++ b/mapie/calibrators/ccp/gaussian.py @@ -14,7 +14,9 @@ class GaussianCCP(CCPCalibrator): """ - Calibrator used for the in ``SplitCPRegressor`` or ``SplitCPClassifier`` + Calibrator based on :class:`~mapie.calibrators.ccp.CCPCalibrator`, + used in :class:`~mapie.futur.split.SplitCPRegressor` or + :class:`~mapie.futur.split.SplitCPClassifier` to estimate the conformity scores. It corresponds to the adaptative conformal prediction method proposed by @@ -25,11 +27,13 @@ class GaussianCCP(CCPCalibrator): case in the standard CP), but with a function ``q(X)`` which is adaptative as it depends on ``X``. - This class builds a ``CCPCalibrator`` object with gaussian kernel features, + This class builds a :class:`~mapie.calibrators.ccp.CCPCalibrator` + object with gaussian kernel features, which computes the gaussian distance between ``X`` and some points, randomly sampled in the dataset or set by the user. - See the examples and the documentation to build a ``CCPCalibrator`` + See the examples and the documentation to build a + :class:`~mapie.calibrators.ccp.CCPCalibrator` adaptated to your dataset and constraints. Parameters @@ -190,14 +194,6 @@ class GaussianCCP(CCPCalibrator): beta_low_: Tuple[NDArray, bool] Same as beta_up, but for the lower bound - Warnings - -------- - The CCP implementation (:class:`~mapie.calibrators.ccp.CCPCalibrator`) - has a stochastic behavior. To have reproductible results, - use an integer ``random_state`` value in the - :class:`~mapie.futur.split.SplitCPRegressor` or - :class:`~mapie.futur.split.SplitCPClassifier` initialisation. - References ---------- Isaac Gibbs and John J. Cherian and Emmanuel J. Candès. diff --git a/mapie/calibrators/ccp/polynomial.py b/mapie/calibrators/ccp/polynomial.py index c9f4c61fc..3bc65571d 100644 --- a/mapie/calibrators/ccp/polynomial.py +++ b/mapie/calibrators/ccp/polynomial.py @@ -11,7 +11,8 @@ class PolynomialCCP(CCPCalibrator): """ Calibrator based on :class:`~mapie.calibrators.ccp.CCPCalibrator`, - used for the in ``SplitCPRegressor`` or ``SplitCPClassifier`` + used in :class:`~mapie.futur.split.SplitCPRegressor` or + :class:`~mapie.futur.split.SplitCPClassifier` to estimate the conformity scores. It corresponds to the adaptative conformal prediction method proposed by @@ -22,10 +23,11 @@ class PolynomialCCP(CCPCalibrator): case in the standard CP), but with a function ``q(X)`` which is adaptative as it depends on ``X``. - This class builds a ``CCPCalibrator`` object with polynomial features of - ``X``, ``y_pred`` or ``z``. + This class builds a :class:`~mapie.calibrators.ccp.CCPCalibrator` + object with polynomial features of ``X``, ``y_pred`` or ``z``. - See the examples and the documentation to build a ``CCPCalibrator`` + See the examples and the documentation to build a + :class:`~mapie.calibrators.ccp.CCPCalibrator` adaptated to your dataset and constraints. Parameters @@ -133,14 +135,6 @@ class PolynomialCCP(CCPCalibrator): beta_low_: Tuple[NDArray, bool] Same as beta_up, but for the lower bound - Warnings - -------- - The CCP implementation (:class:`~mapie.calibrators.ccp.CCPCalibrator`) - has a stochastic behavior. To have reproductible results, - use an integer ``random_state`` value in the - :class:`~mapie.futur.split.SplitCPRegressor` or - :class:`~mapie.futur.split.SplitCPClassifier` initialisation. - References ---------- Isaac Gibbs and John J. Cherian and Emmanuel J. Candès. From 10a419e8f0ad397b73db3ac7be624bb87466c37c Mon Sep 17 00:00:00 2001 From: Damien Bouet Date: Fri, 9 Aug 2024 12:03:57 +0200 Subject: [PATCH 146/165] UPD: doc --- doc/theoretical_description_ccp.rst | 8 +++++--- 1 file changed, 5 insertions(+), 3 deletions(-) diff --git a/doc/theoretical_description_ccp.rst b/doc/theoretical_description_ccp.rst index 857e57def..40b88aca1 100644 --- a/doc/theoretical_description_ccp.rst +++ b/doc/theoretical_description_ccp.rst @@ -58,7 +58,7 @@ The method follow 3 steps: .. note:: It is actually a quantile regression between the transformation :math:`\Phi (X)` and the conformity scores `S`. - Considering an upper bound :math:`M`of the conformity scores, + Considering an upper bound :math:`M` of the conformity scores, such as :math:`S_{n+1} < M`: .. math:: @@ -75,7 +75,7 @@ The method follow 3 steps: use ``unsafe_approximation=True``, which only consider: .. math:: - \hat{g} := \text{arg}\min_{g \in \mathcal{F}} \; \frac{1}{n} \sum_{i=1}^n{l_{\alpha^*} (g(X_i), S_i)} + \hat{g} := \text{arg}\min_{g \in \mathcal{F}} \; \frac{1}{n} \sum_{i=1}^n{l_{\alpha} (g(X_i), S_i)} However, it may result in a small miscoverage. It is recommanded to empirically check the resulting coverage on the test set. @@ -103,7 +103,9 @@ Following this steps, we have the coverage guarantee: :math:`\forall f \in \mathcal{F},` .. math:: - \mathbb{P}_f(Y_{n+1} \in \hat{C}_M^{n+1}(X_{n+1})) \geq 1 - \alpha \\ + \mathbb{P}_f(Y_{n+1} \in \hat{C}_M^{n+1}(X_{n+1})) \geq 1 - \alpha + +.. math:: \text{and} \quad \left | \mathbb{E} \left[ f(X_{n+1}) \left(\mathbb{I} \left\{ Y_{n+1} \in \hat{C}_M^{n+1}(X_{n+1}) \right\} - (1 - \alpha) \right) \right] \right | \leq \frac{d}{n+1} \mathbb{E} \left[ \max_{1 \leq i \leq n+1} \left|f(X_i)\right| \right] From 90f865f9a781f208d7e0370ef2abb18cbea7e628 Mon Sep 17 00:00:00 2001 From: Damien Bouet Date: Fri, 9 Aug 2024 12:17:25 +0200 Subject: [PATCH 147/165] UPD: shorten giibs result reproduction duration --- .../plot_gibbs2023_simulations.py | 22 +++++++------------ 1 file changed, 8 insertions(+), 14 deletions(-) diff --git a/examples/regression/3-scientific-articles/plot_gibbs2023_simulations.py b/examples/regression/3-scientific-articles/plot_gibbs2023_simulations.py index b7781df5c..d5771622b 100644 --- a/examples/regression/3-scientific-articles/plot_gibbs2023_simulations.py +++ b/examples/regression/3-scientific-articles/plot_gibbs2023_simulations.py @@ -20,6 +20,12 @@ MAPIE gives the same results as [1], and that the bounds of the PIs are obtained. +It is important to note that we are checking here if the adaptativity property +of the prediction intervals are well obtained. However, the paper do this +computations with the full conformal prediction approach, whereas we +implemented the faster but more conservatice split method. Thus, the results +may vary a little. + [1] Isaac Gibbs, John J. Cherian, Emmanuel J. Candès (2023). Conformal Prediction With Conditional Guarantees @@ -352,22 +358,10 @@ def plot_results(X_test, y_test, n_trials=10, # 5. Reproduce experiment and results # ----------------------------------------------------------------------------- -plot_results(X_test, y_test, 50, experiment="Groups") +plot_results(X_test, y_test, 20, experiment="Groups") -plot_results(X_test, y_test, 50, experiment="Shifts") +plot_results(X_test, y_test, 20, experiment="Shifts") ############################################################################## # We succesfully reproduced the experiement of the Gibbs et al. paper [1]. - -############################################################################## -# 6. Variant of the experiments: let's compare what is comparable -# ----------------------------------------------------------------------------- -# -# In the paper, the proposed method (used with not symetrical PI) is compared -# to the split method with symetrical PI. Let's compare it to the split CP with -# unsymetrical PI, to have a fair comparison. - -plot_results(X_test, y_test, 50, experiment="Groups", split_sym=False) - -plot_results(X_test, y_test, 50, experiment="Shifts", split_sym=False) From 038f86328767187d994c74ff9ae880691468ca85 Mon Sep 17 00:00:00 2001 From: Damien Bouet Date: Fri, 9 Aug 2024 15:07:23 +0200 Subject: [PATCH 148/165] UPD: activate unsafe_approximation in the doc example --- .../4-tutorials/plot_ccp_tutorial.py | 41 +++++++++++++++---- 1 file changed, 32 insertions(+), 9 deletions(-) diff --git a/examples/regression/4-tutorials/plot_ccp_tutorial.py b/examples/regression/4-tutorials/plot_ccp_tutorial.py index 9feed4ead..4f105d2af 100644 --- a/examples/regression/4-tutorials/plot_ccp_tutorial.py +++ b/examples/regression/4-tutorials/plot_ccp_tutorial.py @@ -53,6 +53,14 @@ Recall that the ``alpha`` is ``1 - target coverage``. +Warning: + +In this tutorial, we use ``unsafe_approximation=True`` to have a faster +computation (because Read The Docs examples require fast computation). +This mode use an approximation, which make the inference (``predict``) faster, +but induce a small miscoverage. It is recommanded not to use it, or be +very careful and empirically check the coverage and a test set. + [1] Isaac Gibbs, John J. Cherian, and Emmanuel J. Candès, "Conformal Prediction With Conditional Guarantees", `arXiv `_, 2023. @@ -80,6 +88,7 @@ np.random.seed(random_state) ALPHA = 0.1 +UNSAFE_APPROXIMATION = True # Not recommanded ############################################################################## # 1. Data generation @@ -92,7 +101,7 @@ # - between 0 and 5: normal distribution with a noise value which # increase with ``x`` # -# We are going to use 3000 samples for training, 3000 for calibration and +# We are going to use 5000 samples for training, 5000 for calibration and # 5000 for testing. @@ -125,7 +134,7 @@ def get_1d_data_with_heteroscedastic_noise( return X.reshape(-1, 1), y, true_pi -def generate_data(n_train=6000, n_test=5000, noise=0.8, power=2): +def generate_data(n_train=10000, n_test=5000, noise=0.8, power=2): X, y, true_pi = get_1d_data_with_heteroscedastic_noise( x_sinx, -1, 5, n_train + n_test, noise, power) indexes = list(range(len(X))) @@ -430,7 +439,9 @@ def plot_evaluation(titles, y_pis, X_test, y_test): mapie_ccp = SplitCPRegressor(estimator, calibrator=GaussianCCP(), alpha=ALPHA, cv=cv) mapie_ccp.fit(X_train, y_train) -y_pred_ccp, y_pi_ccp = mapie_ccp.predict(X_test) +y_pred_ccp, y_pi_ccp = mapie_ccp.predict( + X_test, unsafe_approximation=UNSAFE_APPROXIMATION +) # ================== PLOT ================== mapies = [mapie_split, mapie_cv, mapie_cqr, mapie_ccp] @@ -535,19 +546,25 @@ def plot_evaluation(titles, y_pis, X_test, y_test): mapie_ccp_1 = SplitCPRegressor(estimator, calibrator=calibrator_gauss1, cv=cv, alpha=ALPHA) mapie_ccp_1.fit(X_train, y_train) -y_pred_ccp_1, y_pi_ccp_1 = mapie_ccp_1.predict(X_test) +y_pred_ccp_1, y_pi_ccp_1 = mapie_ccp_1.predict( + X_test, unsafe_approximation=UNSAFE_APPROXIMATION +) # # ================== CCP 2 ================== mapie_ccp_2 = SplitCPRegressor(estimator, calibrator=calibrator_gauss2, cv=cv, alpha=ALPHA) mapie_ccp_2.fit(X_train, y_train) -y_pred_ccp_2, y_pi_ccp_2 = mapie_ccp_2.predict(X_test) +y_pred_ccp_2, y_pi_ccp_2 = mapie_ccp_2.predict( + X_test, unsafe_approximation=UNSAFE_APPROXIMATION +) # # ================== CCP 3 ================== mapie_ccp_3 = SplitCPRegressor(estimator, calibrator=calibrator_gauss3, cv=cv, alpha=ALPHA) mapie_ccp_3.fit(X_train, y_train) -y_pred_ccp_3, y_pi_ccp_3 = mapie_ccp_3.predict(X_test) +y_pred_ccp_3, y_pi_ccp_3 = mapie_ccp_3.predict( + X_test, unsafe_approximation=UNSAFE_APPROXIMATION +) mapies = [mapie_split, mapie_cv, mapie_cqr, @@ -607,19 +624,25 @@ def plot_evaluation(titles, y_pis, X_test, y_test): mapie_ccp_1 = SplitCPRegressor(estimator, calibrator=calibrator1, cv=cv, alpha=ALPHA) mapie_ccp_1.fit(X_train, y_train) -y_pred_ccp_1, y_pi_ccp_1 = mapie_ccp_1.predict(X_test) +y_pred_ccp_1, y_pi_ccp_1 = mapie_ccp_1.predict( + X_test, unsafe_approximation=UNSAFE_APPROXIMATION +) # ================== CCP 2 ================== mapie_ccp_2 = SplitCPRegressor(estimator, calibrator=calibrator2, cv=cv, alpha=ALPHA) mapie_ccp_2.fit(X_train, y_train) -y_pred_ccp_2, y_pi_ccp_2 = mapie_ccp_2.predict(X_test) +y_pred_ccp_2, y_pi_ccp_2 = mapie_ccp_2.predict( + X_test, unsafe_approximation=UNSAFE_APPROXIMATION +) # ================== CCP 3 ================== mapie_ccp_3 = SplitCPRegressor(estimator, calibrator=calibrator3, cv=cv, alpha=ALPHA) mapie_ccp_3.fit(X_train, y_train) -y_pred_ccp_3, y_pi_ccp_3 = mapie_ccp_3.predict(X_test) +y_pred_ccp_3, y_pi_ccp_3 = mapie_ccp_3.predict( + X_test, unsafe_approximation=UNSAFE_APPROXIMATION +) mapies = [mapie_split, mapie_cv, mapie_cqr, mapie_ccp_1, mapie_ccp_2, mapie_ccp_3] From f9af89a88f11c435f5332f1acbc6051328854fb5 Mon Sep 17 00:00:00 2001 From: Thibault Cordier <124613154+thibaultcordier@users.noreply.github.com> Date: Tue, 22 Oct 2024 14:53:26 +0200 Subject: [PATCH 149/165] Apply suggestions from code review --- mapie/conformity_scores/sets/utils.py | 2 +- mapie/futur/split/classification.py | 6 +++--- 2 files changed, 4 insertions(+), 4 deletions(-) diff --git a/mapie/conformity_scores/sets/utils.py b/mapie/conformity_scores/sets/utils.py index d0729dcf6..0833d8ec8 100644 --- a/mapie/conformity_scores/sets/utils.py +++ b/mapie/conformity_scores/sets/utils.py @@ -131,7 +131,7 @@ def get_last_index_included( - the quantiles associated with alpha values when ``cv`` == "prefit", ``cv`` == "split" or ``agg_scores`` is "mean" - (Or a quantile value for each sample, + (or a quantile value for each sample, with shape (n_samples, n_alpha)) - the conformity score from training samples otherwise diff --git a/mapie/futur/split/classification.py b/mapie/futur/split/classification.py index bc08c94b0..bc602476b 100644 --- a/mapie/futur/split/classification.py +++ b/mapie/futur/split/classification.py @@ -56,14 +56,14 @@ class SplitCPClassifier(SplitCP): and calibration (the data given in the ``calibrate`` method) are disjoint. - ``"split"`` or ``None``: divide the data into training and - calibration subsets (using the default ``calib_size``=0.3). + calibration subsets (using the default ``calib_size=0.3``). The splitter used is the following: ``sklearn.model_selection.ShuffleSplit`` with ``n_splits=1``. By default ``None``. conformity_score: Optional[BaseClassificationScore] - BaseClassificationScore instance. + ``BaseClassificationScore`` instance. It defines the link between the observed values, the predicted ones and the conformity scores. For instance, the default ``None`` value correspondonds to a conformity score which assumes @@ -87,7 +87,7 @@ class SplitCPClassifier(SplitCP): random_state: Optional[int] Integer used to set the numpy seed, to get reproducible calibration results. - If ``None``, the prediction intervals will be stochastics, and will + If ``None``, the prediction intervals will be stochastic, and will change if you refit the calibration (even if no arguments have change). WARNING: If ``random_state``is not ``None``, ``np.random.seed`` will From 6a353073e2eee6dc815c4eeadc749ee5421580f1 Mon Sep 17 00:00:00 2001 From: Thibault Cordier Date: Tue, 22 Oct 2024 17:14:57 +0200 Subject: [PATCH 150/165] Add approximation boolean for classification --- .../4-tutorials/plot_ccp_class_tutorial.py | 24 ++++++++++++++----- .../4-tutorials/plot_ccp_tutorial.py | 2 +- 2 files changed, 19 insertions(+), 7 deletions(-) diff --git a/examples/classification/4-tutorials/plot_ccp_class_tutorial.py b/examples/classification/4-tutorials/plot_ccp_class_tutorial.py index 2b7323c19..59da34689 100644 --- a/examples/classification/4-tutorials/plot_ccp_class_tutorial.py +++ b/examples/classification/4-tutorials/plot_ccp_class_tutorial.py @@ -3,12 +3,13 @@ Tutorial: Conditional CP for classification ============================================ -We will use a synthetic toy dataset for the tutorial of the CCP method, and -its comparison with the other methods available in MAPIE. The CCP method +The tutorial will explain how to use the CCP method for classification +and will wompare it with the other methods available in MAPIE. The CCP method implements the method described in the Gibbs et al. (2023) paper [1]. In this tutorial, the classifier will be :class:`~sklearn.linear_model.LogisticRegression`. +We will use a synthetic toy dataset. We will compare the CCP method (using :class:`~mapie.futur.split.SplitCPRegressor`, @@ -21,6 +22,13 @@ predicted softmax, to keep all the classes above the threshold (``alpha`` is ``1 - target coverage``). +Warning: +In this tutorial, we use ``unsafe_approximation=True`` to have a faster +computation (because Read The Docs examples require fast computation). +This mode use an approximation, which make the inference (``predict``) faster, +but induce a small miscoverage. It is recommanded not to use it, or be +very careful and empirically check the coverage and a test set. + [1] Isaac Gibbs, John J. Cherian, and Emmanuel J. Candès, "Conformal Prediction With Conditional Guarantees", `arXiv `_, 2023. @@ -45,6 +53,7 @@ np.random.seed(random_state) ALPHA = 0.2 +UNSAFE_APPROXIMATION = True N_CLASSES = 5 ############################################################################## @@ -88,7 +97,7 @@ def generate_data(seed=1, n_train=2000, n_calib=2000, n_test=2000, ): # Let's visualize the data and its distribution -x_train, y_train, *_ = generate_data(seed=None, n_train=2000) +x_train, y_train, *_ = generate_data(seed=None, n_train=1000) for c in range(N_CLASSES): plt.scatter(x_train[y_train == c, 0], x_train[y_train == c, 1], @@ -103,8 +112,9 @@ def generate_data(seed=1, n_train=2000, n_calib=2000, n_test=2000, ): def run_exp( - mapies, names, alpha, n_train=2000, n_calib=2000, - n_test=2000, grid_step=100, plot=True, seed=1, max_display=2000 + mapies, names, alpha, + n_train=1000, n_calib=1000, n_test=1000, + grid_step=100, plot=True, seed=1, max_display=2000 ): ( x_train, y_train, x_calib, y_calib, x_test, y_test @@ -148,7 +158,9 @@ def run_exp( mapie.fit( np.vstack([x_train, x_calib]), np.hstack([y_train, y_calib]) ) - _, y_ps_test = mapie.predict(x_test) + _, y_ps_test = mapie.predict( + x_test, unsafe_approximation=UNSAFE_APPROXIMATION + ) if plot: y_pred_mesh, y_ps_mesh = mapie.predict(X_test_mesh) else: diff --git a/examples/regression/4-tutorials/plot_ccp_tutorial.py b/examples/regression/4-tutorials/plot_ccp_tutorial.py index 4f105d2af..6d4762ff1 100644 --- a/examples/regression/4-tutorials/plot_ccp_tutorial.py +++ b/examples/regression/4-tutorials/plot_ccp_tutorial.py @@ -88,7 +88,7 @@ np.random.seed(random_state) ALPHA = 0.1 -UNSAFE_APPROXIMATION = True # Not recommanded +UNSAFE_APPROXIMATION = True ############################################################################## # 1. Data generation From 48b8730f8357c9afdb69874cda3401f18557e2dc Mon Sep 17 00:00:00 2001 From: Thibault Cordier <124613154+thibaultcordier@users.noreply.github.com> Date: Tue, 22 Oct 2024 17:58:59 +0200 Subject: [PATCH 151/165] UPD: typo --- mapie/calibrators/ccp/base.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/mapie/calibrators/ccp/base.py b/mapie/calibrators/ccp/base.py index 489efa382..b5a363f73 100644 --- a/mapie/calibrators/ccp/base.py +++ b/mapie/calibrators/ccp/base.py @@ -465,7 +465,7 @@ def _check_cs_bound( By default ``None`` sym : bool - Whether or not the computed prediction intervals shoulb be + Whether or not the computed prediction intervals should be symetrical or not conformity_scores: NDArray From 642181311dda7b4956ed7fe354cb1c51749f9be4 Mon Sep 17 00:00:00 2001 From: Thibault Cordier Date: Wed, 23 Oct 2024 09:18:27 +0200 Subject: [PATCH 152/165] Move HISTORY.rst new features block --- HISTORY.rst | 8 ++++---- 1 file changed, 4 insertions(+), 4 deletions(-) diff --git a/HISTORY.rst b/HISTORY.rst index fd724d7f6..7ed2969cf 100644 --- a/HISTORY.rst +++ b/HISTORY.rst @@ -5,6 +5,10 @@ History 0.9.x (2024-xx-xx) ------------------ +* Add `SplitCPRegressor`, based on new `SplitCP` abstract class, to support the new CCP method +* Add `GaussianCCP`, `PolynomialCCP` and `CustomCCP` based on `CCPCalibrator` to implement the Conditional CP method +* Add the `StandardCalibrator`, to reproduce standard CP and make sure that the `SplitCPRegressor` is implemented correctly. +* Add the CCP documentation, tutorial and demo notebooks * Bump wheel version to avoid known security vulnerabilities 0.9.1 (2024-09-13) @@ -36,10 +40,6 @@ History * Building unit tests for different `Subsample` and `BlockBooststrap` instances * Change the sign of C_k in the `Kolmogorov-Smirnov` test documentation * Building a training set with a fraction between 0 and 1 with `n_samples` attribute when using `split` method from `Subsample` class. -* Add `SplitCPRegressor`, based on new `SplitCP` abstract class, to support the new CCP method -* Add `GaussianCCP`, `PolynomialCCP` and `CustomCCP` based on `CCPCalibrator` to implement the Conditional CP method -* Add the `StandardCalibrator`, to reproduce standard CP and make sure that the `SplitCPRegressor` is implemented correctly. -* Add the CCP documentation, tutorial and demo notebook 0.8.6 (2024-06-14) ------------------ From 6c4a3b282c7efebb667350358aef97cb324d5ec3 Mon Sep 17 00:00:00 2001 From: Thibault Cordier Date: Wed, 23 Oct 2024 10:25:24 +0200 Subject: [PATCH 153/165] Move calibrators into future + Add details in theorical explanations --- doc/api.rst | 18 +++++----- doc/theoretical_description_calibrators.rst | 20 +++++------ doc/theoretical_description_ccp.rst | 22 ++++++++++-- .../4-tutorials/plot_ccp_class_tutorial.py | 17 ++++----- .../plot_gibbs2023_simulations.py | 2 +- .../4-tutorials/plot_ccp_tutorial.py | 36 +++++++++---------- mapie/{futur => future}/__init__.py | 0 mapie/{ => future}/calibrators/__init__.py | 0 mapie/{ => future}/calibrators/base.py | 0 .../{ => future}/calibrators/ccp/__init__.py | 0 mapie/{ => future}/calibrators/ccp/base.py | 24 ++++++------- mapie/{ => future}/calibrators/ccp/custom.py | 19 +++++----- .../{ => future}/calibrators/ccp/gaussian.py | 12 +++---- .../calibrators/ccp/polynomial.py | 12 +++---- mapie/{ => future}/calibrators/ccp/utils.py | 0 mapie/{ => future}/calibrators/standard.py | 2 +- mapie/{ => future}/calibrators/utils.py | 0 mapie/{futur => future}/split/__init__.py | 0 mapie/{futur => future}/split/base.py | 2 +- .../{futur => future}/split/classification.py | 6 ++-- mapie/{futur => future}/split/regression.py | 10 +++--- mapie/regression/__init__.py | 2 +- mapie/tests/test_ccp_calibrator.py | 6 ++-- mapie/tests/test_futur_classification.py | 6 ++-- mapie/tests/test_futur_regression.py | 4 +-- mapie/tests/test_standard_calibrator.py | 2 +- notebooks/regression/tutorial_ccp_CandC.ipynb | 2 +- 27 files changed, 120 insertions(+), 104 deletions(-) rename mapie/{futur => future}/__init__.py (100%) rename mapie/{ => future}/calibrators/__init__.py (100%) rename mapie/{ => future}/calibrators/base.py (100%) rename mapie/{ => future}/calibrators/ccp/__init__.py (100%) rename mapie/{ => future}/calibrators/ccp/base.py (97%) rename mapie/{ => future}/calibrators/ccp/custom.py (93%) rename mapie/{ => future}/calibrators/ccp/gaussian.py (96%) rename mapie/{ => future}/calibrators/ccp/polynomial.py (96%) rename mapie/{ => future}/calibrators/ccp/utils.py (100%) rename mapie/{ => future}/calibrators/standard.py (98%) rename mapie/{ => future}/calibrators/utils.py (100%) rename mapie/{futur => future}/split/__init__.py (100%) rename mapie/{futur => future}/split/base.py (99%) rename mapie/{futur => future}/split/classification.py (98%) rename mapie/{futur => future}/split/regression.py (96%) diff --git a/doc/api.rst b/doc/api.rst index 65d2287b3..460814212 100644 --- a/doc/api.rst +++ b/doc/api.rst @@ -119,9 +119,9 @@ New Split CP class :toctree: generated/ :template: class.rst - futur.split.base.SplitCP - futur.split.SplitCPRegressor - futur.split.SplitCPClassifier + future.split.base.SplitCP + future.split.SplitCPRegressor + future.split.SplitCPClassifier Calibrators =========== @@ -130,12 +130,12 @@ Calibrators :toctree: generated/ :template: class.rst - calibrators.base.BaseCalibrator - calibrators.StandardCalibrator - calibrators.ccp.CCPCalibrator - calibrators.ccp.CustomCCP - calibrators.ccp.PolynomialCCP - calibrators.ccp.GaussianCCP + future.calibrators.base.BaseCalibrator + future.calibrators.StandardCalibrator + future.calibrators.ccp.CCPCalibrator + future.calibrators.ccp.CustomCCP + future.calibrators.ccp.PolynomialCCP + future.calibrators.ccp.GaussianCCP Mondrian ======== diff --git a/doc/theoretical_description_calibrators.rst b/doc/theoretical_description_calibrators.rst index da9ac13d2..8f76d1fff 100644 --- a/doc/theoretical_description_calibrators.rst +++ b/doc/theoretical_description_calibrators.rst @@ -12,23 +12,23 @@ depending on the ``method`` argument. However, when implementing the new CCP method, we decided to externalize the conformalisation step into a new object named ``calibrator``, to have more freedom and possible customisation. -The new classes (:class:`~mapie.futur.split.SplitCPRegressor` and :class:`~mapie.futur.split.SplitCPClassifier`) have 3 steps: +The new classes (:class:`~mapie.future.split.SplitCPRegressor` and :class:`~mapie.future.split.SplitCPClassifier`) have 3 steps: 1. ``fit_predictor``, which fit the sklearn estimator 2. ``fit_calibrator``, which do the conformalisation (calling ``calibrator.fit``) 3. ``predict``, which compute the predictions and call ``calibrator.predict`` to create the prediction intervals -Thus, the calibrators, based on :class:`~mapie.calibrators.base.BaseCalibrator`, +Thus, the calibrators, based on :class:`~mapie.future.calibrators.base.BaseCalibrator`, must have the two methods: ``fit`` and ``predict``. Mapie currently implements calibrators for the CCP method (and the standard method), but any conformal prediction method can be implemented by the user as -a subclass of :class:`~mapie.calibrators.base.BaseCalibrator`. +a subclass of :class:`~mapie.future.calibrators.base.BaseCalibrator`. Example of standard split CP: ------------------------------ -For instance, the :class:`~mapie.calibrators.StandardCalibrator` implements +For instance, the :class:`~mapie.future.calibrators.StandardCalibrator` implements the :ref:`standard split method`: * ``.fit`` computes :math:`\hat{q}_{n, \alpha}^+`, the :math:`(1-\alpha)` quantile of the distribution @@ -38,7 +38,7 @@ the :ref:`standard split method`: The CCP calibrators: --------------------- For the CCP method (see :ref:`theoretical description`), -:class:`~mapie.calibrators.ccp.CCPCalibrator` implements: +:class:`~mapie.future.calibrators.ccp.CCPCalibrator` implements: * ``.fit`` solve the optimization problem (see :ref:`step 2`) to find the optimal :math:`\hat{g}` * ``.predict`` comptues the prediction intervals using :math:`\hat{g}` (see :ref:`step 3`) @@ -46,21 +46,21 @@ For the CCP method (see :ref:`theoretical description`). Multiple subclasses are implemented to facilitate the definition of the :math:`\Phi` function, -but other could be implemented by the user as a subclass of :class:`~mapie.calibrators.ccp.CCPCalibrator`. +but other could be implemented by the user as a subclass of :class:`~mapie.future.calibrators.ccp.CCPCalibrator`. -1. :class:`~mapie.calibrators.ccp.CustomCCP` +1. :class:`~mapie.future.calibrators.ccp.CustomCCP` This class allows to define by hand the :math:`\Phi` function, as a concatenation of other functions which create features of ``X`` (or potentially ``y_pred`` or any exogenous variable ``z``) - It can also be used to concatenate other :class:`~mapie.calibrators.ccp.CCPCalibrator` instances. + It can also be used to concatenate other :class:`~mapie.future.calibrators.ccp.CCPCalibrator` instances. -2. :class:`~mapie.calibrators.ccp.PolynomialCCP` +2. :class:`~mapie.future.calibrators.ccp.PolynomialCCP` It create some polynomial features of ``X`` (or potentially ``y_pred`` or any exogenous variable ``z``). It could be created by hand using `CustomCCP`, it is just a way simplify the creation of :math:`\Phi`. -3. :class:`~mapie.calibrators.ccp.GaussianCCP` +3. :class:`~mapie.future.calibrators.ccp.GaussianCCP` It create gaussian kernels, as done in the method's paper :ref:`[1]`. It samples random points from the :math:`\{ X_i \}_i`, then compute gaussian distances diff --git a/doc/theoretical_description_ccp.rst b/doc/theoretical_description_ccp.rst index 40b88aca1..c7c501b3e 100644 --- a/doc/theoretical_description_ccp.rst +++ b/doc/theoretical_description_ccp.rst @@ -9,6 +9,24 @@ Theoretical Description The Conditional Conformal Prediction (CCP) method :ref:`[1]` is a model agnostic conformal prediction method which can create adaptative prediction intervals. +In MAPIE, this method has a lot of advantages: + +- It is model agnostic (it doesn’t depend on the model but only on the predictions, unlike CQR) +- It can create very adaptative intervals (with a varying width which truly reflects the model uncertainty) +- while providing coverage guarantee on all sub-groups of interest (avoiding biases) +- with the possibility to inject prior knowledge about the data or the model + +However, we will also see its disadvantages: +- The adaptativity depends on the calibrator we use: It can be difficult to choose the correct calibrator, +with the best parameters. +- The calibration and even more the inference are much longer than for the other methods. +We can reduce the inference time using ``unsafe_approximation=True``, +but we lose the strong theoretical guarantees and risk a small miscoverage +(even if, most of the time, the coverage is achieved). + +To conclude, it can create more adaptative intervals than the other methods, +but it can be difficult to find the best settings (calibrator type and parameters) +and can have a big computational time. How does it works? ==================== @@ -134,12 +152,12 @@ The following will provide some tips on how to use the method (for more practica 1. If you want a generally adaptative interval and you don't have prior knowledge about your data, you can use gaussian kernels, implemented in Mapie - in :class:`~mapie.calibrators.ccp.GaussianCCP`. See the API doc for more information. + in :class:`~mapie.future.calibrators.ccp.GaussianCCP`. See the API doc for more information. 2. If you want to avoid bias on sub-groups and ensure an homogenous coverage on those, you can add indicator functions corresponding to those groups. -3. You can inject prior knowledge in the method using :class:`~mapie.calibrators.ccp.CustomCCP`, +3. You can inject prior knowledge in the method using :class:`~mapie.future.calibrators.ccp.CustomCCP`, if you have information about the conformity scores distribution (domains with different biavior, expected model uncertainty depending on a given feature, etc). diff --git a/examples/classification/4-tutorials/plot_ccp_class_tutorial.py b/examples/classification/4-tutorials/plot_ccp_class_tutorial.py index 59da34689..05260b7f0 100644 --- a/examples/classification/4-tutorials/plot_ccp_class_tutorial.py +++ b/examples/classification/4-tutorials/plot_ccp_class_tutorial.py @@ -12,9 +12,9 @@ We will use a synthetic toy dataset. We will compare the CCP method (using -:class:`~mapie.futur.split.SplitCPRegressor`, -:class:`~mapie.calibrators.ccp.CustomCCP` and -:class:`~mapie.calibrators.ccp.GaussianCCP`), with the +:class:`~mapie.future.split.SplitCPRegressor`, +:class:`~mapie.future.calibrators.ccp.CustomCCP` and +:class:`~mapie.future.calibrators.ccp.GaussianCCP`), with the standard method, using for both, the LAC conformity score (:class:`~mapie.conformity_scores.LACConformityScore`). @@ -42,10 +42,10 @@ from sklearn.model_selection import ShuffleSplit from sklearn.linear_model import LogisticRegression -from mapie.calibrators import CustomCCP, GaussianCCP +from mapie.future.calibrators import CustomCCP, GaussianCCP from mapie.classification import MapieClassifier from mapie.conformity_scores import LACConformityScore -from mapie.futur.split.classification import SplitCPClassifier +from mapie.future.split.classification import SplitCPClassifier warnings.filterwarnings("ignore") @@ -296,7 +296,7 @@ def plot_cond_coverage(scores, names): # homogenous coverage on each class). # - The ``CCP`` method with gaussian kernels, to have adaptative prediction # sets, without prior knowledge or information -# (:class:`~mapie.calibrators.ccp.GaussianCCP`). +# (:class:`~mapie.future.calibrators.ccp.GaussianCCP`). n_train = 5000 @@ -348,7 +348,8 @@ def plot_cond_coverage(scores, names): # for the middle points (the dark purple being sets with 4 classes). # # Thus, between the two ``CCP`` methods, the one using gaussian kernels -# (:class:`~mapie.calibrators.ccp.GaussianCCP`) seems the most adaptative. +# (:class:`~mapie.future.calibrators.ccp.GaussianCCP`) seems the most +# adaptative. # # This modelisation of uncertainty is not visible at all in the standard # method, where we have, in the opposite, empty sets where the distributions @@ -381,7 +382,7 @@ def plot_cond_coverage(scores, names): # method, and the under-coverage on class 4 was also slightly corrected. # # However, the ``CCP`` with a gaussian calibrator -# (:class:`~mapie.calibrators.ccp.GaussianCCP`), is clearly the +# (:class:`~mapie.future.calibrators.ccp.GaussianCCP`), is clearly the # most adaptative method, with no under-coverage neither for the class 2 and 4. # # To conclude, the ``CCP`` method offer adaptative perdiction sets. diff --git a/examples/regression/3-scientific-articles/plot_gibbs2023_simulations.py b/examples/regression/3-scientific-articles/plot_gibbs2023_simulations.py index d5771622b..7c4aebf27 100644 --- a/examples/regression/3-scientific-articles/plot_gibbs2023_simulations.py +++ b/examples/regression/3-scientific-articles/plot_gibbs2023_simulations.py @@ -43,7 +43,7 @@ from sklearn.pipeline import Pipeline from sklearn.preprocessing import PolynomialFeatures -from mapie.calibrators.ccp import CustomCCP, GaussianCCP +from mapie.future.calibrators.ccp import CustomCCP, GaussianCCP from mapie.conformity_scores import AbsoluteConformityScore from mapie.regression import MapieRegressor, SplitCPRegressor diff --git a/examples/regression/4-tutorials/plot_ccp_tutorial.py b/examples/regression/4-tutorials/plot_ccp_tutorial.py index 6d4762ff1..22025bdda 100644 --- a/examples/regression/4-tutorials/plot_ccp_tutorial.py +++ b/examples/regression/4-tutorials/plot_ccp_tutorial.py @@ -12,8 +12,8 @@ - It is model agnostic (it doesn't depend on the model but only on the predictions, unlike `CQR`) - It can create very adaptative intervals (with a varying width which truly - eflects the model uncertainty) -- while providing coverage guantee on all sub-groups of interest + reflects the model uncertainty) +- while providing coverage guarantee on all sub-groups of interest (avoiding biases) - with the possibility to inject prior knowledge about the data or the model @@ -24,8 +24,8 @@ with the best parameters (this tutorial will try to help you with this task). - The calibration and even more the inference are much longer than for the other methods. We can reduce the inference time using - ``unsafe_approximation=True``, but we lose the theoretical guarantees and - risk a small miscoverage + ``unsafe_approximation=True``, but we lose the strong theoretical guarantees + and risk a small miscoverage (even if, most of the time, the coverage is achieved). Conclusion on the method: @@ -43,10 +43,10 @@ :class:`~sklearn.linear_model.QuantileRegressor` for CQR). We will compare the different available calibrators ( -:class:`~mapie.calibrators.ccp.CustomCCP`, -:class:`~mapie.calibrators.ccp.GaussianCCP` -and :class:`~mapie.calibrators.ccp.PolynomialCCP`) of the CCP method (using -:class:`~mapie.futur.split.SplitCPRegressor`), with the +:class:`~mapie.future.calibrators.ccp.CustomCCP`, +:class:`~mapie.future.calibrators.ccp.GaussianCCP` +and :class:`~mapie.future.calibrators.ccp.PolynomialCCP`) of the CCP method +(using :class:`~mapie.future.split.SplitCPRegressor`), with the standard split-conformal method, the CV+ method (:class:`~mapie.regression.MapieRegressor`) and CQR (:class:`~mapie.regression.MapieQuantileRegressor`) @@ -77,8 +77,8 @@ from sklearn.pipeline import Pipeline from sklearn.preprocessing import PolynomialFeatures -from mapie.calibrators import CustomCCP, GaussianCCP, PolynomialCCP -from mapie.calibrators.ccp import CCPCalibrator +from mapie.future.calibrators import CustomCCP, GaussianCCP, PolynomialCCP +from mapie.future.calibrators.ccp import CCPCalibrator from mapie.regression import (MapieQuantileRegressor, MapieRegressor, SplitCPRegressor) @@ -454,7 +454,7 @@ def plot_evaluation(titles, y_pis, X_test, y_test): ############################################################################## -# The :class:`~mapie.futur.split.regression.SplitCPRegressor` has is +# The :class:`~mapie.future.split.regression.SplitCPRegressor` has is # a very adaptative method, even with default # parameters values. If the dataset is more complex, the default parameters # may not be enough to get the best performances. In this case, we can use @@ -510,7 +510,7 @@ def plot_evaluation(titles, y_pis, X_test, y_test): ############################################################################## -# Or using :class:`~mapie.calibrators.ccp.PolynomialCCP` class: +# Or using :class:`~mapie.future.calibrators.ccp.PolynomialCCP` class: # -------------------------------------------------------------------------- # ############################################################################## @@ -526,7 +526,7 @@ def plot_evaluation(titles, y_pis, X_test, y_test): # 5.2. Improve the performances without prior knowledge: :class:`GaussianCCP` # -------------------------------------------------------------------------- # If we don't know anything about the data, we can use -# :class:`~mapie.calibrators.ccp.GaussianCCP`, +# :class:`~mapie.future.calibrators.ccp.GaussianCCP`, # which will sample random points, and apply gaussian kernels # with a given standard deviation ``sigma``. # @@ -599,8 +599,8 @@ def plot_evaluation(titles, y_pis, X_test, y_test): # # --> It should be a good idea to inject in the calibrator the two groups # ( X < 0 and X > 0). We can use on each group -# :class:`~mapie.calibrators.ccp.GaussianCCP` -# (or :class:`~mapie.calibrators.ccp.PolynomialCCP`, +# :class:`~mapie.future.calibrators.ccp.GaussianCCP` +# (or :class:`~mapie.future.calibrators.ccp.PolynomialCCP`, # as it seems adapted in this example) calibrator1 = CustomCCP( @@ -660,12 +660,8 @@ def plot_evaluation(titles, y_pis, X_test, y_test): plot_evaluation(titles, y_pis, X_test, y_test) ############################################################################## -# Conlusion: +# 6. Conclusion: # -------------------------------------------------------------------------- -# -############################################################################## - -############################################################################## # The goal is to get prediction intervals which are the most adaptative # possible. Perfect adaptativity whould result in a perfectly constant # conditional coverage. diff --git a/mapie/futur/__init__.py b/mapie/future/__init__.py similarity index 100% rename from mapie/futur/__init__.py rename to mapie/future/__init__.py diff --git a/mapie/calibrators/__init__.py b/mapie/future/calibrators/__init__.py similarity index 100% rename from mapie/calibrators/__init__.py rename to mapie/future/calibrators/__init__.py diff --git a/mapie/calibrators/base.py b/mapie/future/calibrators/base.py similarity index 100% rename from mapie/calibrators/base.py rename to mapie/future/calibrators/base.py diff --git a/mapie/calibrators/ccp/__init__.py b/mapie/future/calibrators/ccp/__init__.py similarity index 100% rename from mapie/calibrators/ccp/__init__.py rename to mapie/future/calibrators/ccp/__init__.py diff --git a/mapie/calibrators/ccp/base.py b/mapie/future/calibrators/ccp/base.py similarity index 97% rename from mapie/calibrators/ccp/base.py rename to mapie/future/calibrators/ccp/base.py index b5a363f73..51dabaaed 100644 --- a/mapie/calibrators/ccp/base.py +++ b/mapie/future/calibrators/ccp/base.py @@ -11,20 +11,19 @@ from sklearn.utils.validation import _num_samples, check_is_fitted from mapie._typing import ArrayLike, NDArray -from mapie.calibrators.base import BaseCalibrator -from mapie.calibrators.ccp.utils import (calibrator_optim_objective, - check_multiplier, - check_custom_calibrator_functions, - concatenate_functions, - check_required_arguments, - dynamic_arguments_call) +from mapie.future.calibrators.base import BaseCalibrator +from mapie.future.calibrators.ccp.utils import ( + calibrator_optim_objective, check_multiplier, + check_custom_calibrator_functions, concatenate_functions, + check_required_arguments, dynamic_arguments_call +) class CCPCalibrator(BaseCalibrator, metaclass=ABCMeta): """ Base abstract class for the calibrators used in - :class:`~mapie.futur.split.SplitCPRegressor` or - :class:`~mapie.futur.split.SplitCPClassifier` + :class:`~mapie.future.split.SplitCPRegressor` or + :class:`~mapie.future.split.SplitCPClassifier` to estimate the conformity scores. It corresponds to the adaptative conformal prediction method proposed by Gibbs et al. (2023) in "Conformal Prediction With Conditional Guarantees". @@ -35,14 +34,15 @@ class CCPCalibrator(BaseCalibrator, metaclass=ABCMeta): as it depends on ``X``. See the examples and the documentation to build a - :class:`~mapie.calibrators.ccp.CCPCalibrator` + :class:`~mapie.future.calibrators.ccp.CCPCalibrator` adaptated to your dataset and constraints. Parameters ---------- functions: Optional[Union[Callable, Iterable[Callable]]] - List of functions (or :class:`~mapie.calibrators.ccp.CCPCalibrator` - objects) or single function. + List of functions (or + :class:`~mapie.future.calibrators.ccp.CCPCalibrator` objects) + or single function. Each function can take a combinaison of the following arguments: diff --git a/mapie/calibrators/ccp/custom.py b/mapie/future/calibrators/ccp/custom.py similarity index 93% rename from mapie/calibrators/ccp/custom.py rename to mapie/future/calibrators/ccp/custom.py index 502e3105b..3a4486c7b 100644 --- a/mapie/calibrators/ccp/custom.py +++ b/mapie/future/calibrators/ccp/custom.py @@ -13,9 +13,9 @@ class CustomCCP(CCPCalibrator): """ - Calibrator based on :class:`~mapie.calibrators.ccp.CCPCalibrator`, - used in :class:`~mapie.futur.split.SplitCPRegressor` or - :class:`~mapie.futur.split.SplitCPClassifier` + Calibrator based on :class:`~mapie.future.calibrators.ccp.CCPCalibrator`, + used in :class:`~mapie.future.split.SplitCPRegressor` or + :class:`~mapie.future.split.SplitCPClassifier` to estimate the conformity scores. It corresponds to the adaptative conformal prediction method proposed by @@ -27,22 +27,23 @@ class CustomCCP(CCPCalibrator): case in the standard CP), but with a function ``q(X)`` which is adaptative as it depends on ``X``. - This class builds a :class:`~mapie.calibrators.ccp.CCPCalibrator` + This class builds a :class:`~mapie.future.calibrators.ccp.CCPCalibrator` object with custom features, function of ``X``, ``y_pred`` or ``z``, defined as a list of functions in ``functions`` argument. This class can be used to concatenate - :class:`~mapie.calibrators.ccp.CCPCalibrator` instances. + :class:`~mapie.future.calibrators.ccp.CCPCalibrator` instances. See the examples and the documentation to build a - :class:`~mapie.calibrators.ccp.CCPCalibrator` + :class:`~mapie.future.calibrators.ccp.CCPCalibrator` adaptated to your dataset and constraints. Parameters ---------- functions: Optional[Union[Callable, Iterable[Callable]]] - List of functions (or :class:`~mapie.calibrators.ccp.CCPCalibrator` - objects) or single function. + List of functions (or + :class:`~mapie.future.calibrators.ccp.CCPCalibrator` objects) + or single function. Each function can take a combinaison of the following arguments: @@ -138,7 +139,7 @@ class CustomCCP(CCPCalibrator): Examples -------- >>> import numpy as np - >>> from mapie.calibrators import CustomCCP + >>> from mapie.future.calibrators import CustomCCP >>> from mapie.regression import SplitCPRegressor >>> from mapie.conformity_scores import AbsoluteConformityScore >>> np.random.seed(1) diff --git a/mapie/calibrators/ccp/gaussian.py b/mapie/future/calibrators/ccp/gaussian.py similarity index 96% rename from mapie/calibrators/ccp/gaussian.py rename to mapie/future/calibrators/ccp/gaussian.py index 06b7719db..7f3b9a8c1 100644 --- a/mapie/calibrators/ccp/gaussian.py +++ b/mapie/future/calibrators/ccp/gaussian.py @@ -14,9 +14,9 @@ class GaussianCCP(CCPCalibrator): """ - Calibrator based on :class:`~mapie.calibrators.ccp.CCPCalibrator`, - used in :class:`~mapie.futur.split.SplitCPRegressor` or - :class:`~mapie.futur.split.SplitCPClassifier` + Calibrator based on :class:`~mapie.future.calibrators.ccp.CCPCalibrator`, + used in :class:`~mapie.future.split.SplitCPRegressor` or + :class:`~mapie.future.split.SplitCPClassifier` to estimate the conformity scores. It corresponds to the adaptative conformal prediction method proposed by @@ -27,13 +27,13 @@ class GaussianCCP(CCPCalibrator): case in the standard CP), but with a function ``q(X)`` which is adaptative as it depends on ``X``. - This class builds a :class:`~mapie.calibrators.ccp.CCPCalibrator` + This class builds a :class:`~mapie.future.calibrators.ccp.CCPCalibrator` object with gaussian kernel features, which computes the gaussian distance between ``X`` and some points, randomly sampled in the dataset or set by the user. See the examples and the documentation to build a - :class:`~mapie.calibrators.ccp.CCPCalibrator` + :class:`~mapie.future.calibrators.ccp.CCPCalibrator` adaptated to your dataset and constraints. Parameters @@ -202,7 +202,7 @@ class GaussianCCP(CCPCalibrator): Examples -------- >>> import numpy as np - >>> from mapie.calibrators import GaussianCCP + >>> from mapie.future.calibrators import GaussianCCP >>> from mapie.regression import SplitCPRegressor >>> np.random.seed(1) >>> X_train = np.arange(0,400, 2).reshape(-1, 1) diff --git a/mapie/calibrators/ccp/polynomial.py b/mapie/future/calibrators/ccp/polynomial.py similarity index 96% rename from mapie/calibrators/ccp/polynomial.py rename to mapie/future/calibrators/ccp/polynomial.py index 3bc65571d..1a331860a 100644 --- a/mapie/calibrators/ccp/polynomial.py +++ b/mapie/future/calibrators/ccp/polynomial.py @@ -10,9 +10,9 @@ class PolynomialCCP(CCPCalibrator): """ - Calibrator based on :class:`~mapie.calibrators.ccp.CCPCalibrator`, - used in :class:`~mapie.futur.split.SplitCPRegressor` or - :class:`~mapie.futur.split.SplitCPClassifier` + Calibrator based on :class:`~mapie.future.calibrators.ccp.CCPCalibrator`, + used in :class:`~mapie.future.split.SplitCPRegressor` or + :class:`~mapie.future.split.SplitCPClassifier` to estimate the conformity scores. It corresponds to the adaptative conformal prediction method proposed by @@ -23,11 +23,11 @@ class PolynomialCCP(CCPCalibrator): case in the standard CP), but with a function ``q(X)`` which is adaptative as it depends on ``X``. - This class builds a :class:`~mapie.calibrators.ccp.CCPCalibrator` + This class builds a :class:`~mapie.future.calibrators.ccp.CCPCalibrator` object with polynomial features of ``X``, ``y_pred`` or ``z``. See the examples and the documentation to build a - :class:`~mapie.calibrators.ccp.CCPCalibrator` + :class:`~mapie.future.calibrators.ccp.CCPCalibrator` adaptated to your dataset and constraints. Parameters @@ -143,7 +143,7 @@ class PolynomialCCP(CCPCalibrator): Examples -------- >>> import numpy as np - >>> from mapie.calibrators import PolynomialCCP + >>> from mapie.future.calibrators import PolynomialCCP >>> from mapie.regression import SplitCPRegressor >>> np.random.seed(1) >>> X_train = np.arange(0,400, 2).reshape(-1, 1) diff --git a/mapie/calibrators/ccp/utils.py b/mapie/future/calibrators/ccp/utils.py similarity index 100% rename from mapie/calibrators/ccp/utils.py rename to mapie/future/calibrators/ccp/utils.py diff --git a/mapie/calibrators/standard.py b/mapie/future/calibrators/standard.py similarity index 98% rename from mapie/calibrators/standard.py rename to mapie/future/calibrators/standard.py index fe80a383a..9e13a1669 100644 --- a/mapie/calibrators/standard.py +++ b/mapie/future/calibrators/standard.py @@ -6,7 +6,7 @@ from sklearn.utils.validation import _num_samples from mapie._typing import ArrayLike, NDArray -from mapie.calibrators.base import BaseCalibrator +from mapie.future.calibrators.base import BaseCalibrator from .ccp.utils import check_required_arguments from mapie.conformity_scores.interface import BaseConformityScore diff --git a/mapie/calibrators/utils.py b/mapie/future/calibrators/utils.py similarity index 100% rename from mapie/calibrators/utils.py rename to mapie/future/calibrators/utils.py diff --git a/mapie/futur/split/__init__.py b/mapie/future/split/__init__.py similarity index 100% rename from mapie/futur/split/__init__.py rename to mapie/future/split/__init__.py diff --git a/mapie/futur/split/base.py b/mapie/future/split/base.py similarity index 99% rename from mapie/futur/split/base.py rename to mapie/future/split/base.py index 35200bd80..aa0679f5f 100644 --- a/mapie/futur/split/base.py +++ b/mapie/future/split/base.py @@ -12,7 +12,7 @@ from sklearn.utils.validation import _num_samples, check_is_fitted from mapie._typing import ArrayLike, NDArray -from mapie.calibrators.base import BaseCalibrator +from mapie.future.calibrators.base import BaseCalibrator from mapie.conformity_scores.interface import BaseConformityScore from mapie.utils import _sample_non_null_weight, fit_estimator diff --git a/mapie/futur/split/classification.py b/mapie/future/split/classification.py similarity index 98% rename from mapie/futur/split/classification.py rename to mapie/future/split/classification.py index bc602476b..2c7dcd4dc 100644 --- a/mapie/futur/split/classification.py +++ b/mapie/future/split/classification.py @@ -11,12 +11,12 @@ from sklearn.utils.validation import check_is_fitted from mapie._typing import ArrayLike, NDArray -from mapie.calibrators.utils import check_calibrator +from mapie.future.calibrators.utils import check_calibrator from mapie.conformity_scores import BaseClassificationScore from mapie.conformity_scores.interface import BaseConformityScore from mapie.conformity_scores.utils import check_classification_conformity_score from mapie.estimator.classifier import EnsembleClassifier -from mapie.futur.split.base import BaseCalibrator, SplitCP +from mapie.future.split.base import BaseCalibrator, SplitCP class SplitCPClassifier(SplitCP): @@ -99,7 +99,7 @@ class SplitCPClassifier(SplitCP): Examples -------- >>> import numpy as np - >>> from mapie.futur.split import SplitCPClassifier + >>> from mapie.future.split import SplitCPClassifier >>> np.random.seed(1) >>> X_train = np.arange(0,400,2).reshape(-1, 1) >>> y_train = np.array([0]*50 + [1]*50 + [2]*50 + [3]*50) diff --git a/mapie/futur/split/regression.py b/mapie/future/split/regression.py similarity index 96% rename from mapie/futur/split/regression.py rename to mapie/future/split/regression.py index 00fc762f6..0d26e7a25 100644 --- a/mapie/futur/split/regression.py +++ b/mapie/future/split/regression.py @@ -7,19 +7,19 @@ from sklearn.model_selection import PredefinedSplit, ShuffleSplit from mapie._typing import ArrayLike, NDArray -from mapie.calibrators.base import BaseCalibrator -from mapie.calibrators.utils import check_calibrator +from mapie.future.calibrators.base import BaseCalibrator +from mapie.future.calibrators.utils import check_calibrator from mapie.conformity_scores import BaseRegressionScore from mapie.conformity_scores.interface import BaseConformityScore from mapie.conformity_scores.utils import check_regression_conformity_score -from mapie.futur.split.base import SplitCP +from mapie.future.split.base import SplitCP from mapie.utils import check_estimator_regression, check_lower_upper_bounds class SplitCPRegressor(SplitCP): """ Class to implement Conformal Prediction in ``"split"`` approach for - regression tasks, based on :class:`~futur.split.base.SplitCP`. + regression tasks, based on :class:`~future.split.base.SplitCP`. It uses a predictor (``RegressorMixin`` object), and a calibrator (``BaseCalibrator`` object). @@ -88,7 +88,7 @@ class SplitCPRegressor(SplitCP): .. warning:: Some methods, as the CCP method - (:class:`~mapie.calibrators.ccp.CCPCalibrator`), + (:class:`~mapie.future.calibrators.ccp.CCPCalibrator`), have a stochastic behavior. To have reproductible results, use an integer ``random_state`` value. diff --git a/mapie/regression/__init__.py b/mapie/regression/__init__.py index debfd4663..7dfb3590f 100644 --- a/mapie/regression/__init__.py +++ b/mapie/regression/__init__.py @@ -1,4 +1,4 @@ -from mapie.futur.split import SplitCPRegressor +from mapie.future.split import SplitCPRegressor from .quantile_regression import MapieQuantileRegressor from .regression import MapieRegressor diff --git a/mapie/tests/test_ccp_calibrator.py b/mapie/tests/test_ccp_calibrator.py index 86d227bd2..bc27d4784 100644 --- a/mapie/tests/test_ccp_calibrator.py +++ b/mapie/tests/test_ccp_calibrator.py @@ -9,9 +9,9 @@ from sklearn.utils.validation import check_is_fitted from sklearn.model_selection import ShuffleSplit -from mapie.calibrators.ccp import (CCPCalibrator, CustomCCP, GaussianCCP, - PolynomialCCP) -from mapie.calibrators.ccp.utils import check_required_arguments +from mapie.future.calibrators.ccp import (CCPCalibrator, CustomCCP, + GaussianCCP, PolynomialCCP) +from mapie.future.calibrators.ccp.utils import check_required_arguments from mapie.regression import SplitCPRegressor random_state = 1 diff --git a/mapie/tests/test_futur_classification.py b/mapie/tests/test_futur_classification.py index 12432a8b8..5ef7fc515 100644 --- a/mapie/tests/test_futur_classification.py +++ b/mapie/tests/test_futur_classification.py @@ -18,12 +18,12 @@ from sklearn.pipeline import make_pipeline from mapie._typing import NDArray -from mapie.calibrators.ccp import (CCPCalibrator, CustomCCP, GaussianCCP, - PolynomialCCP) +from mapie.future.calibrators.ccp import (CCPCalibrator, CustomCCP, + GaussianCCP, PolynomialCCP) from mapie.conformity_scores import LACConformityScore, APSConformityScore from mapie.conformity_scores import BaseClassificationScore from mapie.metrics import classification_coverage_score -from mapie.futur.split import SplitCPClassifier +from mapie.future.split import SplitCPClassifier random_state = 1 np.random.seed(random_state) diff --git a/mapie/tests/test_futur_regression.py b/mapie/tests/test_futur_regression.py index 00b333d8a..4c56ad442 100644 --- a/mapie/tests/test_futur_regression.py +++ b/mapie/tests/test_futur_regression.py @@ -19,8 +19,8 @@ from sklearn.pipeline import make_pipeline from mapie._typing import NDArray -from mapie.calibrators.ccp import (CCPCalibrator, CustomCCP, GaussianCCP, - PolynomialCCP) +from mapie.future.calibrators.ccp import (CCPCalibrator, CustomCCP, + GaussianCCP, PolynomialCCP) from mapie.conformity_scores import (AbsoluteConformityScore, GammaConformityScore, ResidualNormalisedScore) diff --git a/mapie/tests/test_standard_calibrator.py b/mapie/tests/test_standard_calibrator.py index b535e6f2f..a5339fd10 100644 --- a/mapie/tests/test_standard_calibrator.py +++ b/mapie/tests/test_standard_calibrator.py @@ -7,7 +7,7 @@ from sklearn.linear_model import LinearRegression from sklearn.model_selection import train_test_split -from mapie.calibrators import StandardCalibrator +from mapie.future.calibrators import StandardCalibrator from mapie.conformity_scores import AbsoluteConformityScore from mapie.regression import SplitCPRegressor, MapieRegressor diff --git a/notebooks/regression/tutorial_ccp_CandC.ipynb b/notebooks/regression/tutorial_ccp_CandC.ipynb index c72fb1953..6e59041c4 100644 --- a/notebooks/regression/tutorial_ccp_CandC.ipynb +++ b/notebooks/regression/tutorial_ccp_CandC.ipynb @@ -74,7 +74,7 @@ "from tqdm import tqdm\n", "\n", "from lightgbm import LGBMRegressor\n", - "from mapie.calibrators import CustomCCP, GaussianCCP, PolynomialCCP\n", + "from mapie.future.calibrators import CustomCCP, GaussianCCP, PolynomialCCP\n", "from mapie.conformity_scores import AbsoluteConformityScore\n", "from mapie.regression import (MapieQuantileRegressor, MapieRegressor,\n", " SplitCPRegressor)\n", From 0a8bc056e0bed0818ab7f140b9d0c3caa81c38d7 Mon Sep 17 00:00:00 2001 From: Thibault Cordier Date: Wed, 23 Oct 2024 14:41:22 +0200 Subject: [PATCH 154/165] Change path access of the classes --- mapie/future/__init__.py | 8 +++++++- mapie/future/calibrators/ccp/custom.py | 2 +- mapie/future/calibrators/ccp/gaussian.py | 2 +- mapie/future/calibrators/ccp/polynomial.py | 2 +- mapie/future/split/regression.py | 2 +- mapie/regression/__init__.py | 5 +---- mapie/tests/test_ccp_calibrator.py | 2 +- mapie/tests/test_futur_regression.py | 2 +- mapie/tests/test_standard_calibrator.py | 3 ++- 9 files changed, 16 insertions(+), 12 deletions(-) diff --git a/mapie/future/__init__.py b/mapie/future/__init__.py index 27bc2fcfd..c7a8ed6ce 100644 --- a/mapie/future/__init__.py +++ b/mapie/future/__init__.py @@ -1,5 +1,11 @@ -from .split.regression import SplitCPRegressor +from .split import SplitCPRegressor, SplitCPClassifier +from .calibrators import CustomCCP, GaussianCCP, PolynomialCCP + __all__ = [ "SplitCPRegressor", + "SplitCPClassifier", + "CustomCCP", + "PolynomialCCP", + "GaussianCCP", ] diff --git a/mapie/future/calibrators/ccp/custom.py b/mapie/future/calibrators/ccp/custom.py index 3a4486c7b..efc924597 100644 --- a/mapie/future/calibrators/ccp/custom.py +++ b/mapie/future/calibrators/ccp/custom.py @@ -140,7 +140,7 @@ class CustomCCP(CCPCalibrator): -------- >>> import numpy as np >>> from mapie.future.calibrators import CustomCCP - >>> from mapie.regression import SplitCPRegressor + >>> from mapie.future.split import SplitCPRegressor >>> from mapie.conformity_scores import AbsoluteConformityScore >>> np.random.seed(1) >>> X_train = np.linspace(0, 3.14, 1001).reshape(-1, 1) diff --git a/mapie/future/calibrators/ccp/gaussian.py b/mapie/future/calibrators/ccp/gaussian.py index 7f3b9a8c1..380bba89e 100644 --- a/mapie/future/calibrators/ccp/gaussian.py +++ b/mapie/future/calibrators/ccp/gaussian.py @@ -203,7 +203,7 @@ class GaussianCCP(CCPCalibrator): -------- >>> import numpy as np >>> from mapie.future.calibrators import GaussianCCP - >>> from mapie.regression import SplitCPRegressor + >>> from mapie.future.split import SplitCPRegressor >>> np.random.seed(1) >>> X_train = np.arange(0,400, 2).reshape(-1, 1) >>> y_train = 1 + 2*X_train[:,0] + np.random.rand(len(X_train)) diff --git a/mapie/future/calibrators/ccp/polynomial.py b/mapie/future/calibrators/ccp/polynomial.py index 1a331860a..a098d046c 100644 --- a/mapie/future/calibrators/ccp/polynomial.py +++ b/mapie/future/calibrators/ccp/polynomial.py @@ -144,7 +144,7 @@ class PolynomialCCP(CCPCalibrator): -------- >>> import numpy as np >>> from mapie.future.calibrators import PolynomialCCP - >>> from mapie.regression import SplitCPRegressor + >>> from mapie.future.split import SplitCPRegressor >>> np.random.seed(1) >>> X_train = np.arange(0,400, 2).reshape(-1, 1) >>> y_train = 1 + 2*X_train[:,0] + np.random.rand(len(X_train)) diff --git a/mapie/future/split/regression.py b/mapie/future/split/regression.py index 0d26e7a25..595f2e13f 100644 --- a/mapie/future/split/regression.py +++ b/mapie/future/split/regression.py @@ -101,7 +101,7 @@ class SplitCPRegressor(SplitCP): Examples -------- >>> import numpy as np - >>> from mapie.regression import SplitCPRegressor + >>> from mapie.future.split import SplitCPRegressor >>> np.random.seed(1) >>> X_train = np.arange(0,400, 2).reshape(-1, 1) >>> y_train = 2*X_train[:,0] + np.random.rand(len(X_train)) diff --git a/mapie/regression/__init__.py b/mapie/regression/__init__.py index 7dfb3590f..fba9be799 100644 --- a/mapie/regression/__init__.py +++ b/mapie/regression/__init__.py @@ -1,5 +1,3 @@ -from mapie.future.split import SplitCPRegressor - from .quantile_regression import MapieQuantileRegressor from .regression import MapieRegressor from .time_series_regression import MapieTimeSeriesRegressor @@ -7,6 +5,5 @@ __all__ = [ "MapieRegressor", "MapieQuantileRegressor", - "MapieTimeSeriesRegressor", - "SplitCPRegressor", + "MapieTimeSeriesRegressor" ] diff --git a/mapie/tests/test_ccp_calibrator.py b/mapie/tests/test_ccp_calibrator.py index bc27d4784..b90fade7d 100644 --- a/mapie/tests/test_ccp_calibrator.py +++ b/mapie/tests/test_ccp_calibrator.py @@ -12,7 +12,7 @@ from mapie.future.calibrators.ccp import (CCPCalibrator, CustomCCP, GaussianCCP, PolynomialCCP) from mapie.future.calibrators.ccp.utils import check_required_arguments -from mapie.regression import SplitCPRegressor +from mapie.future.split import SplitCPRegressor random_state = 1 np.random.seed(random_state) diff --git a/mapie/tests/test_futur_regression.py b/mapie/tests/test_futur_regression.py index 4c56ad442..484b88cc2 100644 --- a/mapie/tests/test_futur_regression.py +++ b/mapie/tests/test_futur_regression.py @@ -26,7 +26,7 @@ ResidualNormalisedScore) from mapie.conformity_scores import BaseRegressionScore from mapie.metrics import regression_coverage_score -from mapie.regression import SplitCPRegressor +from mapie.future.split import SplitCPRegressor random_state = 1 np.random.seed(random_state) diff --git a/mapie/tests/test_standard_calibrator.py b/mapie/tests/test_standard_calibrator.py index a5339fd10..2da44fb23 100644 --- a/mapie/tests/test_standard_calibrator.py +++ b/mapie/tests/test_standard_calibrator.py @@ -9,7 +9,8 @@ from mapie.future.calibrators import StandardCalibrator from mapie.conformity_scores import AbsoluteConformityScore -from mapie.regression import SplitCPRegressor, MapieRegressor +from mapie.future.split import SplitCPRegressor +from mapie.regression import MapieRegressor random_state = 1 np.random.seed(random_state) From 6827b6da84d63d10f8effb5252bc50b86222d236 Mon Sep 17 00:00:00 2001 From: Thibault Cordier Date: Wed, 23 Oct 2024 16:06:42 +0200 Subject: [PATCH 155/165] FIX: change import path --- .../3-scientific-articles/plot_gibbs2023_simulations.py | 3 ++- 1 file changed, 2 insertions(+), 1 deletion(-) diff --git a/examples/regression/3-scientific-articles/plot_gibbs2023_simulations.py b/examples/regression/3-scientific-articles/plot_gibbs2023_simulations.py index 7c4aebf27..0f7692c05 100644 --- a/examples/regression/3-scientific-articles/plot_gibbs2023_simulations.py +++ b/examples/regression/3-scientific-articles/plot_gibbs2023_simulations.py @@ -45,7 +45,8 @@ from mapie.future.calibrators.ccp import CustomCCP, GaussianCCP from mapie.conformity_scores import AbsoluteConformityScore -from mapie.regression import MapieRegressor, SplitCPRegressor +from mapie.regression import MapieRegressor +from mapie.future.split import SplitCPRegressor warnings.filterwarnings("ignore") From ccc40579de2c13df4aa403d023da9bbc8e8e3279 Mon Sep 17 00:00:00 2001 From: Thibault Cordier Date: Wed, 23 Oct 2024 17:14:16 +0200 Subject: [PATCH 156/165] FIX: change import path --- examples/regression/4-tutorials/plot_ccp_tutorial.py | 4 ++-- notebooks/regression/tutorial_ccp_CandC.ipynb | 4 ++-- 2 files changed, 4 insertions(+), 4 deletions(-) diff --git a/examples/regression/4-tutorials/plot_ccp_tutorial.py b/examples/regression/4-tutorials/plot_ccp_tutorial.py index 22025bdda..b2a556c8e 100644 --- a/examples/regression/4-tutorials/plot_ccp_tutorial.py +++ b/examples/regression/4-tutorials/plot_ccp_tutorial.py @@ -79,8 +79,8 @@ from mapie.future.calibrators import CustomCCP, GaussianCCP, PolynomialCCP from mapie.future.calibrators.ccp import CCPCalibrator -from mapie.regression import (MapieQuantileRegressor, MapieRegressor, - SplitCPRegressor) +from mapie.future.split import SplitCPRegressor +from mapie.regression import MapieQuantileRegressor, MapieRegressor warnings.filterwarnings("ignore") diff --git a/notebooks/regression/tutorial_ccp_CandC.ipynb b/notebooks/regression/tutorial_ccp_CandC.ipynb index 6e59041c4..f0c1dbe04 100644 --- a/notebooks/regression/tutorial_ccp_CandC.ipynb +++ b/notebooks/regression/tutorial_ccp_CandC.ipynb @@ -75,9 +75,9 @@ "\n", "from lightgbm import LGBMRegressor\n", "from mapie.future.calibrators import CustomCCP, GaussianCCP, PolynomialCCP\n", + "from mapie.future.split import SplitCPRegressor\n", "from mapie.conformity_scores import AbsoluteConformityScore\n", - "from mapie.regression import (MapieQuantileRegressor, MapieRegressor,\n", - " SplitCPRegressor)\n", + "from mapie.regression import MapieQuantileRegressor, MapieRegressor\n", "from sklearn.preprocessing import StandardScaler\n", "from sklearn.model_selection import PredefinedSplit, RandomizedSearchCV\n", "from ucimlrepo import fetch_ucirepo\n", From ff843b027bf5804a613e67e3651dbab4f81cb9f7 Mon Sep 17 00:00:00 2001 From: vincentblot28 Date: Wed, 18 Dec 2024 11:34:23 +0100 Subject: [PATCH 157/165] ENH: add new point in calibraiton optim to speed up test --- mapie/future/calibrators/ccp/base.py | 18 +++++++++++++----- 1 file changed, 13 insertions(+), 5 deletions(-) diff --git a/mapie/future/calibrators/ccp/base.py b/mapie/future/calibrators/ccp/base.py index 51dabaaed..2d0765453 100644 --- a/mapie/future/calibrators/ccp/base.py +++ b/mapie/future/calibrators/ccp/base.py @@ -343,8 +343,12 @@ def fit( optimal_beta_up = cast(OptimizeResult, minimize( calibrator_optim_objective, self.init_value_, args=( - cs_features[not_nan_index, :], - conformity_scores_calib[not_nan_index], + np.vstack( + [cs_features[not_nan_index, :], cs_features[not_nan_index[0], :]] + ), + np.hstack( + [conformity_scores_calib[not_nan_index], [conformity_scores_calib[not_nan_index[0]]]] + ), q, self.reg_param, ), @@ -355,11 +359,15 @@ def fit( optimal_beta_low = cast(OptimizeResult, minimize( calibrator_optim_objective, self.init_value_, args=( - cs_features[not_nan_index, :], - -conformity_scores_calib[not_nan_index], + np.vstack( + [cs_features[not_nan_index, :], cs_features[not_nan_index[0], :]] + ), + np.hstack( + - [conformity_scores_calib[not_nan_index], - [conformity_scores_calib[not_nan_index[0]]]] + ), q, self.reg_param, - ), + ), **optim_kwargs, )) else: From 51b6cd3d305c71df41e8c6f7e8fe6e741c47a2b0 Mon Sep 17 00:00:00 2001 From: vincentblot28 Date: Thu, 19 Dec 2024 18:00:25 +0100 Subject: [PATCH 158/165] ENH: remove choice for cs bound --- mapie/future/calibrators/ccp/base.py | 30 ++++++---------------------- 1 file changed, 6 insertions(+), 24 deletions(-) diff --git a/mapie/future/calibrators/ccp/base.py b/mapie/future/calibrators/ccp/base.py index 2d0765453..b557bba6f 100644 --- a/mapie/future/calibrators/ccp/base.py +++ b/mapie/future/calibrators/ccp/base.py @@ -443,10 +443,8 @@ def transform( return cs_features - def _check_cs_bound( + def _get_cs_bound( self, - cs_bound: Optional[Union[float, Tuple[float, float]]], - sym: bool, conformity_scores: NDArray, ) -> Tuple[float, float]: """ @@ -484,25 +482,9 @@ def _check_cs_bound( Tuple[float, float] (cs_bound_up, cs_bound_low) """ - if cs_bound is not None: - if isinstance(cs_bound, (int, float)) and sym: - cs_bound_up = cs_bound - cs_bound_low = cs_bound - elif ( - isinstance(cs_bound, tuple) and len(cs_bound) == 2 - and not sym - ): - cs_bound_up = cs_bound[0] - cs_bound_low = cs_bound[1] - else: - raise ValueError( - "Invalid `cs_bound` value. " - "It must be a float if the ConformityScore has " - "`sym=True`, and a tuple of two floats if `sym=False`." - ) - else: - cs_bound_up = max(conformity_scores) - cs_bound_low = min(conformity_scores) + + cs_bound_up = max(conformity_scores) + cs_bound_low = min(conformity_scores) return cs_bound_up, cs_bound_low @@ -581,8 +563,8 @@ def predict( y_pred_low = -cs_features.dot(self.beta_low_[0][:, np.newaxis]) y_pred_up = cs_features.dot(self.beta_up_[0][:, np.newaxis]) else: - cs_bound_up, cs_bound_low = self._check_cs_bound( - cs_bound, self.sym, self.conformity_scores_calib + cs_bound_up, cs_bound_low = self._get_cs_bound( + self.conformity_scores_calib ) y_pred_up = np.zeros((_num_samples(X), 1)) From bda687a45e75f68bdb8c04da55dc15414b15918d Mon Sep 17 00:00:00 2001 From: vincentblot28 Date: Thu, 19 Dec 2024 18:01:39 +0100 Subject: [PATCH 159/165] FIX: linting --- mapie/future/calibrators/ccp/base.py | 12 ++++++++---- 1 file changed, 8 insertions(+), 4 deletions(-) diff --git a/mapie/future/calibrators/ccp/base.py b/mapie/future/calibrators/ccp/base.py index b557bba6f..a4de3e48f 100644 --- a/mapie/future/calibrators/ccp/base.py +++ b/mapie/future/calibrators/ccp/base.py @@ -344,10 +344,12 @@ def fit( calibrator_optim_objective, self.init_value_, args=( np.vstack( - [cs_features[not_nan_index, :], cs_features[not_nan_index[0], :]] + [cs_features[not_nan_index, :], + cs_features[not_nan_index[0], :]] ), np.hstack( - [conformity_scores_calib[not_nan_index], [conformity_scores_calib[not_nan_index[0]]]] + [conformity_scores_calib[not_nan_index], + [conformity_scores_calib[not_nan_index[0]]]] ), q, self.reg_param, @@ -360,10 +362,12 @@ def fit( calibrator_optim_objective, self.init_value_, args=( np.vstack( - [cs_features[not_nan_index, :], cs_features[not_nan_index[0], :]] + [cs_features[not_nan_index, :], + cs_features[not_nan_index[0], :]] ), np.hstack( - - [conformity_scores_calib[not_nan_index], - [conformity_scores_calib[not_nan_index[0]]]] + - [conformity_scores_calib[not_nan_index], + - [conformity_scores_calib[not_nan_index[0]]]] ), q, self.reg_param, From 06bc0e1e95087d67a83712c9dbcc5af6d7c82ac3 Mon Sep 17 00:00:00 2001 From: vincentblot28 Date: Thu, 19 Dec 2024 18:08:01 +0100 Subject: [PATCH 160/165] FIX: LINTING --- mapie/future/calibrators/ccp/base.py | 24 ++++++++++++++++-------- 1 file changed, 16 insertions(+), 8 deletions(-) diff --git a/mapie/future/calibrators/ccp/base.py b/mapie/future/calibrators/ccp/base.py index a4de3e48f..f9b337a2c 100644 --- a/mapie/future/calibrators/ccp/base.py +++ b/mapie/future/calibrators/ccp/base.py @@ -344,12 +344,16 @@ def fit( calibrator_optim_objective, self.init_value_, args=( np.vstack( - [cs_features[not_nan_index, :], - cs_features[not_nan_index[0], :]] + [ + cs_features[not_nan_index, :], + cs_features[not_nan_index[0], :] + ] ), np.hstack( - [conformity_scores_calib[not_nan_index], - [conformity_scores_calib[not_nan_index[0]]]] + [ + conformity_scores_calib[not_nan_index], + conformity_scores_calib[not_nan_index[0]] + ] ), q, self.reg_param, @@ -362,12 +366,16 @@ def fit( calibrator_optim_objective, self.init_value_, args=( np.vstack( - [cs_features[not_nan_index, :], - cs_features[not_nan_index[0], :]] + [ + cs_features[not_nan_index, :], + cs_features[not_nan_index[0], :] + ] ), np.hstack( - - [conformity_scores_calib[not_nan_index], - - [conformity_scores_calib[not_nan_index[0]]]] + - [ + conformity_scores_calib[not_nan_index], + conformity_scores_calib[not_nan_index[0]] + ] ), q, self.reg_param, From 2d0a3ef52ef6ca82ec99c9f05189540e856de4b7 Mon Sep 17 00:00:00 2001 From: vincentblot28 Date: Thu, 19 Dec 2024 18:12:49 +0100 Subject: [PATCH 161/165] ENH: remove cs_bound argument in predict --- mapie/future/calibrators/ccp/base.py | 1 - 1 file changed, 1 deletion(-) diff --git a/mapie/future/calibrators/ccp/base.py b/mapie/future/calibrators/ccp/base.py index f9b337a2c..fca844e9e 100644 --- a/mapie/future/calibrators/ccp/base.py +++ b/mapie/future/calibrators/ccp/base.py @@ -505,7 +505,6 @@ def predict( X: ArrayLike, y_pred: Optional[ArrayLike] = None, z: Optional[ArrayLike] = None, - cs_bound: Optional[Union[float, Tuple[float, float]]] = None, unsafe_approximation: bool = False, **kwargs, ) -> NDArray: From 3f8804be6a0aebdfb7fbcd6c3f44267779763a76 Mon Sep 17 00:00:00 2001 From: vincentblot28 Date: Thu, 19 Dec 2024 18:16:50 +0100 Subject: [PATCH 162/165] FIX: typing --- mapie/future/calibrators/ccp/base.py | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) diff --git a/mapie/future/calibrators/ccp/base.py b/mapie/future/calibrators/ccp/base.py index fca844e9e..a93d151ce 100644 --- a/mapie/future/calibrators/ccp/base.py +++ b/mapie/future/calibrators/ccp/base.py @@ -372,9 +372,9 @@ def fit( ] ), np.hstack( - - [ - conformity_scores_calib[not_nan_index], - conformity_scores_calib[not_nan_index[0]] + [ + - conformity_scores_calib[not_nan_index], + - conformity_scores_calib[not_nan_index[0]] ] ), q, From a4814e5ee562031f2370388dfc6c0ebd6fb8419e Mon Sep 17 00:00:00 2001 From: vincentblot28 Date: Fri, 20 Dec 2024 11:36:15 +0100 Subject: [PATCH 163/165] FIX: remove old cs_bound tests --- mapie/tests/test_futur_regression.py | 25 ------------------------- 1 file changed, 25 deletions(-) diff --git a/mapie/tests/test_futur_regression.py b/mapie/tests/test_futur_regression.py index 484b88cc2..4767c1f8f 100644 --- a/mapie/tests/test_futur_regression.py +++ b/mapie/tests/test_futur_regression.py @@ -717,28 +717,3 @@ def test_optim_kwargs(): mapie.fit( X, y, calib_kwargs={"method": "SLSQP", "options": {"maxiter": 2}} ) - - -@pytest.mark.parametrize("cs_bound, sym", [ - (None, True), (None, False), (3, True), ((1.0, 1), False) -]) -def test_cs_bound(cs_bound: Union[float, Tuple[float, float]], sym: bool): - mapie = SplitCPRegressor( - alpha=0.1, conformity_score=AbsoluteConformityScore(sym=sym) - ) - mapie.fit(X_toy, y_toy) - mapie.predict(X_toy, cs_bound=cs_bound) - - -@pytest.mark.parametrize("cs_bound, sym", [ - (3, False), ((1.0, 1), True) -]) -def test_cs_bound_error( - cs_bound: Union[float, Tuple[float, float]], sym: bool -) -> None: - mapie = SplitCPRegressor( - alpha=0.1, conformity_score=AbsoluteConformityScore(sym=sym) - ) - mapie.fit(X_toy, y_toy) - with pytest.raises(ValueError, match="Invalid `cs_bound` value."): - mapie.predict(X_toy, cs_bound=cs_bound) From c04fdeb68781bee356953c4a1813ca39185ef296 Mon Sep 17 00:00:00 2001 From: vincentblot28 Date: Fri, 20 Dec 2024 11:44:26 +0100 Subject: [PATCH 164/165] IFX: linting --- mapie/tests/test_futur_regression.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/mapie/tests/test_futur_regression.py b/mapie/tests/test_futur_regression.py index 4767c1f8f..b0e637bd2 100644 --- a/mapie/tests/test_futur_regression.py +++ b/mapie/tests/test_futur_regression.py @@ -2,7 +2,7 @@ import warnings from inspect import signature -from typing import Any, Callable, Tuple, Union, cast +from typing import Any, Callable, Tuple, cast import numpy as np import pytest From fb41f0a762c994c456186e1ebfeb93b7133d96aa Mon Sep 17 00:00:00 2001 From: vincentblot28 Date: Mon, 6 Jan 2025 14:07:41 +0100 Subject: [PATCH 165/165] ENH: remove new point un calib as no effect on time --- mapie/future/calibrators/ccp/base.py | 30 +++++----------------------- 1 file changed, 5 insertions(+), 25 deletions(-) diff --git a/mapie/future/calibrators/ccp/base.py b/mapie/future/calibrators/ccp/base.py index a93d151ce..50cf7a5c3 100644 --- a/mapie/future/calibrators/ccp/base.py +++ b/mapie/future/calibrators/ccp/base.py @@ -343,18 +343,8 @@ def fit( optimal_beta_up = cast(OptimizeResult, minimize( calibrator_optim_objective, self.init_value_, args=( - np.vstack( - [ - cs_features[not_nan_index, :], - cs_features[not_nan_index[0], :] - ] - ), - np.hstack( - [ - conformity_scores_calib[not_nan_index], - conformity_scores_calib[not_nan_index[0]] - ] - ), + cs_features[not_nan_index, :], + conformity_scores_calib[not_nan_index], q, self.reg_param, ), @@ -365,21 +355,11 @@ def fit( optimal_beta_low = cast(OptimizeResult, minimize( calibrator_optim_objective, self.init_value_, args=( - np.vstack( - [ - cs_features[not_nan_index, :], - cs_features[not_nan_index[0], :] - ] - ), - np.hstack( - [ - - conformity_scores_calib[not_nan_index], - - conformity_scores_calib[not_nan_index[0]] - ] - ), + cs_features[not_nan_index, :], + -conformity_scores_calib[not_nan_index], q, self.reg_param, - ), + ), **optim_kwargs, )) else: